Apostila
de
Teoria
para
Circuitos Digitais

(Versão A2021M02D25)

Universidade Federal Fluminense

Alexandre Santos de la Vega

Departamento de Engenharia de Telecomunicações – TET

Escola de Engenharia – TCE

Universidade Federal Fluminense – UFF

Fevereiro – 2021

CO1 0100	1 1 17 41 1 0 4
621.3192	de la Vega, Alexandre Santos
(*) D278 (*) 2021	Apostila de Teoria para Circuitos Digitais / Alexandre Santos de la Vega. — Niterói: UFF/TCE/TET, 2021.
	287 (sem romanos) ou 311 (com romanos) p. (*)
	Apostila de Teoria – Graduação, Engenharia de Telecomunicações, UFF/TCE/TET, 2021.
	 Circuitos Digitais. Técnicas Digitais. Telecomunicações. I. Título.

(*)OBTER INFO NA BIBLIOTECA E ATUALIZAR !!!

 $Aos\ meus\ alunos.$

Prefácio

O trabalho em questão cobre os tópicos abordados na disciplina Circuitos Digitais.

O presente volume apresenta um conteúdo teórico. O conteúdo prático, utilizando códigos de programas demonstrativos, pode ser encontrado no volume entitulado Apostila com Códigos de Programas Demonstrativos usando a linguagem VHDL para Circuitos Digitais.

As apostilas foram escritas com o intuito de servir como uma referência rápida para os alunos do curso de graduação em Engenharia de Telecomunicações da Universidade Federal Fluminense (UFF).

O material básico utilizado foram as minhas notas de aula que, por sua vez, originaram-se em uma coletânea de livros sobre os assuntos abordados.

A motivação principal foi a de aumentar o dinamismo das aulas. Portanto, deve ficar bem claro que esta apostila não pretende substituir os livros textos ou outros livros de referência. Muito pelo contrário, ela deve ser utilizada apenas como ponto de partida para estudos mais aprofundados, utilizando-se a literatura existente.

Espero conseguir manter o presente texto em constante atualização e ampliação. Correções e sugestões são sempre bem-vindas.

Rio de Janeiro, 08 de setembro de 2010. Alexandre Santos de la Vega UFF/TCE/TET

Agradecimentos

Aos alunos do Curso de Engenharia de Telecomunicações e aos professores do Departamento de Engenharia de Telecomunicações (TET), da Universidade Federal Fluminense (UFF), que colaboraram com críticas e sugestões bastante úteis à finalização deste trabalho. Em particular, à professora Carmen Maria Costa de Carvalho pela leitura meticulosa da versão original.

Aos funcionários e ex-funcionários do TET, Arlei, Carmen Lúcia, Eduardo, Francisco e Jussara, pelo apoio constante.

Aos meus alunos, que, além de servirem de motivação principal, obrigam-me sempre a tentar melhorar, em todos os sentidos.

Mais uma vez, e sempre, aos meus pais, por tudo.

Rio de Janeiro, 08 de setembro de 2010. Alexandre Santos de la Vega UFF/TCE/TET

Sumário

P	refác	io	V
\mathbf{A}	grade	ecimentos	vi
Sι	ımár	io	ix
\mathbf{Li}	sta d	le Tabelas	xvi
Li	sta d	le Figuras	xx
I	$\mathbf{A}_{\mathbf{I}}$	oresentação	1
1	Des	crição do documento	9
	1.1	Introdução	
	1.2	Circuitos digitais combinacionais	
	1.3	Circuitos digitais sequenciais	
	1.4	Circuitos digitais programáveis	
	1.5	Tópicos adicionais	4
II	. C	fircuitos digitais combinacionais	
2	Cor	nceitos básicos	7
	2.1	Telecomunicações	7
	2.2	Sinais e sistemas	
	2.3	Sinais e sistemas digitais	
	2.4	Computação	
	2.5	Informação, quantidade e circuitos digitais	
3		ções lógicas	11
	3.1	Introdução	11
	3.2	Mecanismos básicos de raciocínio	11
		3.2.1 Raciocínio por indução (ou por analogia)	12
		3.2.2 Raciocínio por dedução	12
		3.2.3 Estruturas axiomáticas	12
		3.2.4 Classificação das lógicas dedutivas	13
	3.3	Exemplo introdutório usando lógica clássica	14
	3.4	Conceitos básicos	15
	3.5	Formulação lógica clássica	15

	3.6		LO
		3.6.1 Funções de 1 variável	16
		3.6.2 Funções de 2 variáveis	17
		3.6.3 Funções de $N_v > 2$ variáveis	17
		3.6.4 Operadores lógicos básicos	18
	3.7	Relações de implicação	18
	3.8	Tautologia e equivalência lógica	8
	3.9	Conjunto funcionalmente completo de operadores	20
	3.10	Teoremas de De Morgan	21
	3.11		21
	3.12		23
			24
		1 3 0	27
		1	27
		J Company of the Comp	28
	0.10	1 1 3	28
			29
		· · · · · · · · · · · · · · · · · · ·	29
	3 17		30
	0.11	Likereleios proposios	,0
4			3
	4.1	3	33
	4.2	O Company of the comp	34
	4.3	ı	35
	4.4		35
	4.5		36
	4.6	3	37
	4.7	Exemplos de associação com a estrutura algébrica de Boole	37
	4.8	Isomorfismo	38
	4.9	Simplificação algébrica de expressões lógicas	38
	4.10	Exemplo de manipulação algébrica não sistemática: Postulados, Lemas, Teoremas 3	38
	4.11	Exemplo de manipulação algébrica por isomorfismo: Diagrama de Venn	11
	4.12	Resumo das relações algébricas	12
	4.13	Exercícios propostos	14
5	Forr	nas padrões para representação de expressões booleanas 4	17
	5.1		17
	5.2		18
	5.3		19
			19
		1 3	50
			52
			54
	5.4		55
	J.T	•	55
			55
			55
	5 5		55 57
	5.5	Exercícios propostos) (

6	$\mathbf{Sim}_{\mathbf{S}}$	plificação algébrica sistemática de expressões booleanas	59
	6.1	Definição do ponto final: forma mínima procurada	59
	6.2	Processo de expansão × processo de simplificação	60
		6.2.1 Expansão sem redundância	60
		6.2.2 Expansão com redundância	61
		6.2.3 Análise das expansões	61
	6.3	Definição do ponto inicial: forma máxima padrão	62
	6.4		62
		6.4.1 Operações básicas: aglutinação e replicação	62
		6.4.2 Uso da aglutinação	63
		6.4.3 Uso da replicação	63
	6.5	Eliminação sistemática de literais	64
	6.6	Implicantes e implicados	67
		6.6.1 Implicantes	67
		6.6.2 Implicados	67
		6.6.3 Implicantes, implicados e o processo de simplificação	68
	6.7	Processo sistemático de simplificação	68
	6.8	Subjetividade, complexidade e formas alternativas	69
	6.9	Minimização com estruturas de ordem superior: fatoração	69
	6.10	· · · · · · · · · · · · · · · · · · ·	70
		6.10.1 Funções de três variáveis	70
		6.10.2 Funções de quatro variáveis	75
	6.11	Exercícios propostos	83
7	Map	pa de Karnaugh	85
	7.1	Introdução	85
	7.2	Motivação para o desenvolvimento do mapa-K	85
	7.3	Construção do mapa-K	87
		7.3.1 Funções de 1 variável	87
		7.3.2 Funções de 2 variáveis	88
		7.3.3 Funções de 3 variáveis	89
		7.3.4 Funções de 4 variáveis	90
	7.4	Preenchimento do mapa-K	91
	7.5	Mapa-K como forma de expressão	91
	7.6	Mapa-K na simplificação de expressões booleanas	93
		7.6.1 Adjacência lógica, aglutinação e replicação	93
		7.6.2 Seleção sistemática de termos (implicantes ou implicados)	94
		7.6.3 Mapa-K de funções com múltiplos mínimos e mapa cíclico	94
		7.6.4 Indeterminações: don't-care e can't-happen	95
	7.7	Exercícios propostos	97
8	Sigt	emas de numeração	99
O	8.1	Introdução	99
	8.2	Sistema de numeração posicional convencional	
	0.2	8.2.1 Representação de números inteiros não negativos	
		8.2.2 Representação de números fracionários não negativos	
		8.2.3 Representação de números inteiros negativos	
		8.2.4 Representação de números fracionários negativos	
		<u> </u>	
		8.2.5 Conversão entre bases	r_{10}

		8.2.6 Bases mais comuns em circuitos digitais	. 117
	8.3	Quantização	. 119
		8.3.1 Conceitos básicos	. 119
		8.3.2 SNPC: resolução, base e quantidade de dígitos	. 119
		8.3.3 Classificações	. 121
	8.4	Códigos numéricos	. 121
		8.4.1 Introdução	. 121
		8.4.2 Códigos numéricos comuns	. 121
		8.4.3 Outros códigos numéricos	
		8.4.4 Códigos BCD	. 123
	8.5	Representação em ponto flutuante	
		8.5.1 O padrão de ponto flutuante IEEE 754	
		8.5.2 Ponto flutuante × ponto fixo	
	8.6	Aritmética binária	
		8.6.1 Tabelas de operações básicas entre dígitos	
		8.6.2 Escalamento por potência inteira da base	
		8.6.3 Adição e subtração em complemento-a-2	
		8.6.4 Funções envolvidas na adição de dígitos binários	
	8.7	Exercícios propostos	
	0.1	Exercises proposition	. 101
9	Circ	uitos combinacionais básicos	139
	9.1	Introdução	. 139
	9.2	Interpretações dos circuitos combinacionais	. 139
		9.2.1 Exemplos de interpretações	. 140
	9.3	Uso de portas lógicas como elementos de controle	. 141
	9.4	Uso de elementos de controle para mascaramento	
	9.5	Gerador de funções lógicas	
	9.6	Conversor de códigos	. 141
	9.7	Gerador e detector de paridade	. 141
	9.8	Multiplexador e demultiplexador	. 141
		9.8.1 Exemplos de projeto de multiplexador	. 142
		9.8.2 Exemplos de projeto de demultiplexador	
	9.9	Codificador e decodificador de endereço	
	9.10	Codificador de prioridade	
		9.10.1 Exemplos de projeto de codificador de prioridade	. 147
	9.11	Ordenador, separador ou agrupador binário	
		9.11.1 Célula básica para um separador binário	
		9.11.2 Estrutura modular com isolamento de um <i>bit</i> por vez	
		9.11.3 Estrutura modular com sucessivas trocas em paralelo	
	9.12	Deslocadores (shifters)	
		Somadores em binário puro	
		9.13.1 <i>Half-adder</i> (HA)	
		9.13.2 <i>Full-adder</i> (FA)	
		9.13.3 Ripple-carry adder (RCA) ou carry propagate adder (CPA)	
		9.13.4 Carry lookahead adder (CLA)	
	9 14	Subtratores em binário puro	
	U.II	9.14.1 Half-subtractor (HS)	
		9.14.2 Full-subtractor (FS)	
		9.14.3 Ripple-borrow subtractor (RBS) ou borrow propagate subtractor (BPS)	
		5.11.5 Implie correspond accordance (ICDS) on correspond propagate successful (DIS)	. точ

9.15	Incrementador e decrementador em binário puro	. 154
9.16	Complementadores	. 155
	9.16.1 Complementador-a-1 (bitwise implementation)	. 155
	9.16.2 Complementador-a-2	. 155
9.17	Multiplicadores em binário puro	. 156
	9.17.1 Multiplicador de 1 bit	. 156
	9.17.2 Multiplicador de N bits	. 156
9.18	Detector de $\mathit{overflow}$ em adição de valores codificados em complemento-a-2	. 156
9.19	Saturador de valor codificado em complemento-a-2	. 157
9.20	Comparadores da quantidade de dígitos	. 157
	9.20.1 Comparador da quantidade de dígitos em um operando	. 157
	9.20.2 Comparador da quantidade de dígitos em dois operandos	. 157
9.21	Comparadores numéricos de dois operandos	
	9.21.1 Identificador de igualdade	
	9.21.2 Projeto modular (bit scanning)	
	9.21.3 Projeto usando a técnica de complemento	. 160
III (Circuitos digitais seqüenciais	161
10 Circ	cuitos seqüenciais: conceitos básicos	163
10.1	Introdução	. 163
10.2	Estados e variáveis de estado	. 163
10.3	Tipos de variáveis e sua interações	. 164
10.4	Modelo genérico para circuitos seqüenciais	. 165
10.5	Classificação quanto à dependência do sinal de saída	. 166
10.6	Classificação quanto ao tipo de controle da mudança de estado	. 167
	10.6.1 Circuitos seqüenciais <i>clock-mode</i> ou <i>clocked</i>	. 167
	10.6.2 Circuitos seqüenciais <i>pulsed</i>	. 168
	10.6.3 Circuitos seqüenciais level-mode	. 169
	mentos básicos de armazenamento	171
	Introdução	
	Classificação quanto à funcionalidade	
	Relacionamento entre os tipos básicos de flip-flops	
	Mapas de excitação dos flip-flops	
	Tipos de comportamento das saídas dos flip-flops	
	Excitação × comportamento	
	Funcionalidade × excitação × comportamento	
	Circuitos seqüenciais × tabelas dos flip-flops	
	Estruturas estáticas simétricas	
11.10	0Exemplos de flip-flops	
	11.10.1 Flip-flops do tipo unclocked	
11 1	11.10.2 Flip-flops do tipo $clocked$	
	1Variações de funcionalidade	
11.17	2Diferenças de nomenclatura	. 188

12	Circ	cuitos seqüenciais <i>clock-mode</i> 18	9
	12.1	Introdução	39
	12.2	Controle de circuitos do tipo <i>clock-mode</i>	0
		12.2.1 Características da estrutura clock-mode	0
		12.2.2 Controle de circuitos do tipo Moore	0
		12.2.3 Controle de circuitos do tipo Mealy	1
	12.3	Representação dos estados)2
	12.4	Estado inicial)2
	12.5	Classificação quanto à capacidade de memorização	12
	12.6	Análise de circuitos seqüenciais)4
		12.6.1 Etapas de análise)4
		12.6.2 Exemplos de análise)4
	12.7	Projeto de circuitos seqüenciais	15
		12.7.1 Opções de projeto e suas características	15
		12.7.2 Etapas de projeto de circuitos seqüenciais	15
		12.7.3 Exemplos de projeto de circuitos seqüenciais	16
	12.8	Minimização de estados	8
		12.8.1 Conceitos básicos	8
		12.8.2 Eliminação de estados redundantes por simples inspeção	8
		12.8.3 Método da partição em classes de estados indistinguíveis	0
		12.8.4 Método da tabela de implicação de estados)3
	12.9	Atribuição de estados)5
		12.9.1 Considerações iniciais)5
		12.9.2 Base teórica para as regras de atribuição de estados	06
		12.9.3 Exemplo de regras simples (Armstrong-Humphrey)	2
		12.9.4 Exemplo de regras mais refinadas	3
	12.10	DEfeitos causados por estados extras	.3
		12.10.1 Definição do problema	.3
		12.10.2 Possíveis soluções	.4
13	Circ	cuitos seqüenciais <i>pulsed</i> 21	5
	13.1	Introdução	5
	13.2	Restrições de operação	6
	13.3	Classificação quanto aos pulsos de entrada	7
	13.4	Circuitos pulse-mode	8
		13.4.1 Motivação	8
		13.4.2 Mudanças nas representações	8
		13.4.3 Exemplos de projeto	
	13.5	Circuitos $ripple$ - $clock$	21
		13.5.1 Motivação	21
		13.5.2 Operação	
		13.5.3 Desvantagens	21
		13.5.4 Técnica de projeto	
		13.5.5 Exemplo	22
	13.6	Circuitos controlled-clock	22

14	Circ	cuitos seqüenciais level-mode	225
	14.1	Introdução	. 225
	14.2	Problemas comuns em circuitos level-mode	. 226
	14.3	Exemplo de análise de circuito level-mode	. 227
	14.4	Exemplo de projeto de circuito level-mode	. 227
	14.5	Problemas causados pela realimentação contínua	. 228
		14.5.1 Problemas causados pelo bloco de lógica combinacional	
		14.5.2 Problema natural dos circuitos level-mode	
	14.6	Solução para as corridas: atribuição de estados	. 229
		14.6.1 Definição do problema	
		14.6.2 Possíveis soluções	. 231
	14.7	Solução para os perigos	
		Valores das saídas em estados instáveis	
IJ	/ (Circuitos digitais programáveis	237
15	Circ	cuitos programáveis	239
	15.1	Introdução	. 239
	15.2	Circuitos configuráveis externamente	. 240
		15.2.1 Configuração de portas lógicas	. 240
		15.2.2 Configuração de funções lógicas com multiplexador	. 241
	15.3	Circuitos configuráveis internamente: PLDs	. 244
${f V}$	${f A}$	pêndices	245
٨	Noc	ções básicas sobre implementação de funções lógicas	247
A	_	Introdução	
		Conceitos básicos	
	A.3	Famílias lógicas	
	A.4	Modelo de chaves	
	Λ.4	A.4.1 Conceitos básicos	
		A.4.2 Arranjos série e paralelo de chaves	
		A.4.3 Modelo de chaves para a função NOT	
		A.4.4 Modelo de chaves para a função NAND	
		A.4.5 Modelo de chaves para a função NOR	
		1 3	
		1 0	
		A.4.8 Saída em <i>Tri-State</i> (3S)	. 201
В	-	picos sobre divisão de números inteiros	263
	B.1	Algoritmo de divisão inteira	. 263
	T		
	B.2	Quociente	
	B.2 B.3	Resto ou resíduo	. 263
		·	. 263

\mathbf{C}	Min	nimização de tabela de estados	265
	C.1	Introdução	265
	C.2	Tabelas de estados completamente especificadas	266
		C.2.1 Relações de equivalência	266
		C.2.2 Estados e circuitos equivalentes	266
		C.2.3 Determinação de classes de estados indistinguíveis	267
		C.2.4 Circuito de classes de equivalência	
	C.3	Tabelas de estados não completamente especificadas	
		C.3.1 Introdução	
		C.3.2 Noções básicas de compatibilidade	
		C.3.3 Formalização dos conceitos de compatibilidade e de cobertura	
		C.3.4 Sistematização do processo de minimização	
D	Ling	guagens de descrição de <i>hardware</i>	271
	-	Introdução	
		Linguagens de descrição de hardware	
			410
\mathbf{E}	Intr	rodução à linguagem VHDL	275
	E.1	Histórico da linguagem VHDL	
	E.2	VHDL como linguagem	275
		E.2.1 Considerações gerais	275
		E.2.2 Palavras reservadas	276
		E.2.3 Identificadores definidos pelo usuário	276
		E.2.4 Elementos sintáticos	276
	E.3	Conceitos básicos sobre o código VHDL	278
		E.3.1 Elementos básicos	278
		E.3.2 Tipos de execução	278
		E.3.3 Mecanismo genérico de simulação	279
	E.4	Estrutura do código VHDL	280
		E.4.1 Bibliotecas e pacotes	280
		E.4.2 Entidade	281
		E.4.3 Arquitetura	281
	E.5	Algumas regras sintáticas de VHDL	
		E.5.1 Regras para biblioteca	282
		E.5.2 Regras para pacote	
		E.5.3 Regras para entidade	
		E.5.4 Regras para arquitetura	
		E.5.5 Regras para processo	
		E.5.6 Regras para componente	
	E.6	Exemplos de declarações genéricas	
	2.0	E.6.1 Exemplos de biblioteca e de pacote	
		E.6.2 Exemplos de entidade	
		E.6.3 Exemplos de arquitetura	
		E.6.4 Exemplos de processo	
		1.0.4 Lixempios de processo	400

Bibliografia 287

Lista de Tabelas

3.1	Tabela de funções lógicas de uma variável: $X_i = f_i(A)$, para $0 \le i \le 3$	16
3.2	Tabela de operadores lógicos de uma variável	16
3.3	Tabela de funções lógicas de duas variáveis: $X_i = f_i(A, B)$, para $0 \le i \le 15$	17
3.4	Tabela de operadores lógicos de duas variáveis	17
3.5	Exemplos de Tautologias ou Leis da Lógica	19
3.6	Pares de proposições equivalentes, definindo os operadores OR, IMPLICA e XNO	R, em função
3.7	Pares de proposições equivalentes, definindo os operadores AND, IMPLICA e XNO	
3.8	Pares de proposições equivalentes, definindo os operadores AND, OR e XNOR, en	n função dos
3.9	Funções lógicas de duas variáveis e suas expressões equivalentes, empregando os op-	peradores Al
3.10	Tabela de funções canônicas (mintermos e maxtermos) para duas variáveis	22
3.11	Exemplo de decomposição em funções canônicas (mintermos e maxtermos)	22
3.12	Tabela de funções canônicas (mintermos e maxtermos) para uma variável	23
3.13	Uso de operador lógico como elemento de controle	28
4.1	Tabela de mapeamento: Cálculo Proposicional × Álgebra de Boole	37
4.2	Tabela de mapeamento: Teoria de Conjuntos × Álgebra de Boole	37
4.3	Resumo dos postulados de Huntington para a estrutura algébrica de Boole	42
4.4	Resumo dos lemas para a estrutura algébrica de Boole	42
4.5	Resumo dos teoremas para a estrutura algébrica de Boole	43
4.6	Resumo da definição de uma estrutura algébrica de Boole particular	43
4.7	Resumo das relações de isomorfismo.	43
5.1	Definição de mintermos para três variáveis (A,B,C)	49
5.2	Definição de maxtermos para três variáveis (A,B,C)	49
5.3	Exemplo de função e associação de mintermos	52
5.4	Exemplo de função e definição de maxtermos	53
5.5	Exemplo da obtenção do grupo AND-OR para a função XOR	56
5.6	Exemplo da mudança de grupo para a função XOR	56
5.7	Exemplo da obtenção do grupo OR-AND para a função XOR	56
6.1	Tabela verdade genérica para funções de 3 variáveis	64
7.1	Tabela verdade da Equação (7.1)	86
7.2	Tabela verdade da Equação (7.1), reorganizada	87
7.3	Tabela verdade para funções de 1 variável	87
7.4	Tabela verdade para funções de 2 variáveis	88
7.5	Tabela verdade para funções de 3 variáveis	89
7.6	Tabela verdade para funções de 4 variáveis	90
7.7	Tabela verdade relativa à Equação (7.4)	92
7.8	Tabela verdade de função incompletamente especificada	95

8.11 8.12 8.13	Tabela de sinal-e-magnitude, para número inteiros, $b=2$ e $N=4$
8.15 8.16 8.17 8.18 8.19	Outros códigos numéricos BCD ponderados: 7421, 5421, 5311, 4221 e 2421 125 Exemplos de códigos numéricos BCD não ponderados
	Forma 1 para representar a detecção de <i>overflow</i> na adição em complemento-a-2. 133 Forma 2 para representar a detecção de <i>overflow</i> na adição em complemento-a-2. 134
9.11	Tabela verdade do MUX 2x1
10.1	Tipos de interações entre sinais dos tipos nível e pulso
11.2 11.3 11.4 11.5	Transformações envolvendo $flip$ - $flops$ dos tipos JK , D , T_1 e T_2
12.1	Número de atribuições de estados efetivamente diferentes
14.2 14.3	Atribuição de estados universal, usando shared-row, para tabelas de 3 estados 232 Atribuição de estados universal, usando multiple-row, para tabelas de 4 estados. 233 Atribuição de estados universal, usando shared-row, para tabelas de 5 a 8 estados.233 Atribuição de estados universal, usando shared-row, para tabelas de 9 a 12 estados.233

14.5	Atribuição de estados padrão, usando shared-row, para tabelas de 5 estados	233
15.1	Classificação de circuitos digitais de acordo com a função realizada	240
15.2	Comportamento funcional dos dispositivos NC7SZ57 e NC7SZ58	241
15.3	Opções de configuração dos dispositivos NC7SZ57 e NC7SZ58	241
A.1	Tipos básicos de associação entre valores de tensão e valores lógicos binários	248
A.2	Comportamento elétrico do modelo de chaves NOT	252
A.3	Comportamento lógico do modelo de chaves NOT	252
A.4	Comportamento elétrico do modelo de chaves NAND	253
A.5	Comportamento lógico do modelo de chaves NAND	254
A.6	Comportamento elétrico do modelo de chaves NOR	255
A.7	Comportamento lógico do modelo de chaves NOR	256
A.8	Comparação do comportamento dos blocos de chaves ${\bf N}$ e ${\bf P}$ no modelo de chaves	da função ló
A.9	Comparação do comportamento dos blocos de chaves ${\bf N}$ e ${\bf P}$ no modelo de chaves	da função ló
A.10	Comparação do comportamento dos blocos de chaves N e P no modelo de chaves	da função ló
D.1	Lista de fabricantes, produtos e funções, que lidam com HDL	274
E.1	Operadores de VHDL	278

Lista de Figuras

3.2	Blocos funcionais fundamentais, associados aos operadores lógicos básicos (IEC).	24
3.3	Manipulação algébrica de blocos: exemplo 1	25
3.4	Manipulação algébrica de blocos: exemplo 2	26
3.5	Uso de operador lógico como elemento de controle: simbologia genérica	28
4.1	Mapeamento entre uma função genérica de duas variáveis e um Diagrama de Venr	n. 41
6.1	Eliminações de 1 literal em combinações de 2 mintermos	65
6.2	Eliminações de 2 literais em combinações 4 de mintermos	65
6.3	Eliminações de 1 literal em combinações de 2 maxtermos	66
6.4	Eliminações de 2 literais em combinações 4 de maxtermos	66
7.1	Exemplos de mapas de Karnaugh para funções de 1 variável	87
7.2	Exemplos de mapas de Karnaugh para funções de 2 variáveis	88
7.3	Exemplos de mapas de Karnaugh para funções de 3 variáveis	89
7.4	Exemplos de mapas de Karnaugh para funções de 4 variáveis	90
7.5	Mapa de Karnaugh relativo à Equação (7.1), considerando apenas os mintermos.	91
7.6	Mapa de Karnaugh relativo à Equação (7.1), considerando apenas os maxtermos.	91
7.7	Mapa de Karnaugh relativo à Equação (7.4)	92
7.8	Mapa de Karnaugh relativo à Equação (7.9)	93
7.9	Mapa de Karnaugh relativo à Equação (7.10)	93
7.10		95
7.11	1	95
	Mapa de Karnaugh da Tabela 7.8	96
	Mapa de Karnaugh dos mintermos da Tabela 7.8	96
7.14	Mapa de Karnaugh dos maxtermos da Tabela 7.8	96
8.1	Representação de quantidades $q < b$, para $b = 3$	101
8.2	Representação de quantidades $q \geq b$, para $b = 3$, com ambigüidade	101
8.3	Representação de quantidades $q \geq b$, para $b=3$, com eliminação da ambigüidade a	através da ji
8.4	Uso repetido da técnica de justaposição de dígitos para representação de quantida	
8.5	Mapeamento decimal-binário para números não negativos e ${\cal N}=4,$ sem sinal	
8.6	Mapeamento decimal-binário para números não negativos e ${\cal N}=4,$ com sinal	
8.7	Mapeamento decimal-binário para números negativos e $N=4,\mathrm{com}$ codificação Si	nal-e-Magni
8.8	Mapeamento decimal-binário para números negativos e $N=4$, com codificação Co	
8.9	Mapeamento decimal-binário para números negativos e $N=4,\mathrm{com}$ codificação Co	
	Comparação dos mapeamentos decimal-binário para números negativos e $N=4$.	
	Tabelas de operações entre dígitos para $b=2$: (a) adição e (b) multiplicação	
	Tabelas de operações entre dígitos para $b=3$: (a) adição e (b) multiplicação	
8.13	Tabelas de operações entre dígitos para $b=4$: (a) adição e (b) multiplicação	130

Blocos funcionais fundamentais, associados aos operadores lógicos básicos (IEEE). 24

10.1 Modelo genérico para circuitos seqüenciais.16510.2 Exemplo de máquina de Mealy.16610.3 Exemplo de máquina de Moore.16710.4 Modelo genérico para circuitos seqüenciais clock-mode.16810.5 Modelo genérico para circuitos seqüenciais pulsed.16810.6 Modelo genérico para circuitos seqüenciais level-mode.169
11.1 Tabelas de operação básica para os flip-flops SR, JK, D e T2
12.1 Modelo genérico para circuitos seqüenciais clock-mode

13.2	Equivalência de notações para mapa de Karnaugh utilizado na síntese de variáveis pulsadas.21
13.3	Tabelas de estados para circuitos <i>pulse-mode</i> Mealy e Moore
13.4	Mapas de Karnaugh para síntese de variáveis pulsadas, considerando-se duas entradas pulsada
13.5	Mapas de Karnaugh para síntese de variáveis pulsadas, considerando-se três entradas pulsadas
13.6	Exemplo 1 de controle de sinal de <i>clock</i>
13.7	Exemplo 2 de controle de sinal de <i>clock</i>
13.8	Modelo genérico para circuitos seqüenciais controlled-clock
14.1	Modelo genérico para circuitos seqüenciais level-mode
14.2	Padrões de identificação de perigo essencial em tabelas de fluxo
14.3	Quadro resumo das mudanças de estado nos circuitos seqüenciais $level$ - $mode$, operando em mo
15.1	Mapas de Karnaugh da função exemplo, para implementação usando MUX 243
A.1	Chaves simples ou Single-Pole Single-Throw (SPST). (a) Chave-N. (b) Chave-P. 249
A.2	Modelo comportamental para a relação de complementariedade no acionamento, entre as chav
A.3	Arranjo série de chaves simples. (a) Chave-N. (b) Chave-P
A.4	Arranjo paralelo de chaves simples. (a) Chave-N. (b) Chave-P 250
A.5	Modelo de chaves simples para uma implementação da função lógica NOT, onde: (a) chave N
A.6	Modelo de chaves complementares para uma implementação da função lógica NOT.251
A.7	Modelo de chaves simples para uma implementação da função lógica NAND, onde: (a) chave l
A.8	Modelo de chaves complementares para uma implementação da função lógica NAND.254
A.9	Modelo de chaves simples para uma implementação da função lógica NOR, onde: (a) chave N
A.10	Modelo de chaves complementares para uma implementação da função lógica NOR.256
A.11	Modelo de chaves complementares para uma implementação do arranjo AOI definido por $f(A)$
A.12	Modelo de chaves complementares para uma implementação do arranjo OAI definido por $f(A)$
A.13	${\it Modelo}\ de\ chaves\ complementares\ para\ uma\ implementação\ de\ função\ lógica\ NOT\ com\ saída$
	Palavras reservadas de VHDL
E.2	Símbolos especiais de VHDL

Parte I Apresentação

Capítulo 1

Descrição do documento

1.1 Introdução

- Este é um documento em constante atualização.
- Ele consta de tópicos desenvolvidos em sala de aula.
- Na preparação das aulas são utilizados os seguintes livros:
 - Livros indicados pela ementa da disciplina: [IC08], [Tau82].
 - Livros indicados pelo professor: [HP81], [Rhy73], [TWM07], [Uye02].
- Este documento aborda os seguintes assuntos:
 - Circuitos digitais combinacionais.
 - Circuitos digitais sequenciais.

1.2 Circuitos digitais combinacionais

- Conceitos básicos: busca contextualizar a disciplina no âmbito do curso de graduação e apresentar os conceitos que serão necessários ao longo do texto.
- Funções lógicas: que define as bases para a representação de informações não numéricas em circuitos digitais tradicionais.
- Álgebra de Boole: que apresenta um formalismo matemático para a estrutura algébrica da lógica implementada em circuitos digitais tradicionais.
- Formas padrões para representação de expressões booleanas: que define formas de expressões booleanas adequadas a um processo sistemático de simplifição das mesmas.
- Simplificação algébrica de expressões booleanas: que ilustra um processo algébrico para a simplificação sistemática de expressões booleanas.
- Mapa de Karnaugh: que apresenta uma ferramenta tabular para a simplificação sistemática de expressões booleanas.
- Sistemas de numeração: que define as bases para a representação de quantidades numéricas em circuitos digitais.

• Circuitos combinacionais básicos: que apresenta os blocos funcionais combinacionais básicos utilizados em sistemas digitais.

1.3 Circuitos digitais sequenciais

- Conceitos básicos: busca contextualizar a disciplina no âmbito do curso de graduação e apresentar os conceitos que serão necessários ao longo do texto.
- Elementos básicos de armazenamento: apresenta os elementos de armazenamento utilizados nos circuitos seqüenciais abordados neste texto.
- Circuitos sequenciais do tipo *clock-mode*: define as características dessa classe de circuitos e aborda os procedimentos, as técnicas e as ferramentas de análise e de projeto para circuitos da classe.
- Circuitos sequenciais do tipo *pulsed*: define as características dessa classe de circuitos e aborda os procedimentos, as técnicas e as ferramentas de análise e de projeto para circuitos da classe.
- Circuitos sequenciais do tipo *level-mode*: define as características dessa classe de circuitos e aborda os procedimentos, as técnicas e as ferramentas de análise e de projeto para circuitos da classe.

1.4 Circuitos digitais programáveis

• Circuitos programáveis: apresenta uma breve descrição sobre circuitos digitais que podem ser configurados para cumprir diferentes funções, combinacionais e/ou seqüenciais.

1.5 Tópicos adicionais

- Noções básicas sobre implementação de funções lógicas: que lista as principais famílias lógicas utilizadas na implementação de circuitos digitais e apresenta a implementação de portas lógicas básicas empregando um arranjo complementar de chaves complementares.
- Tópicos sobre divisão de números inteiros: que aborda brevemente alguns itens sobre divisão de números inteiros, citados ao longo do texto.
- Minimização de tabelas de estados: define o problema e apresenta técnicas de minimização para tabelas de estados.
- Introdução à linguagem VHDL: trata de aspectos básicos da linguagem.

Parte II Circuitos digitais combinacionais

Capítulo 2

Conceitos básicos

O conteúdo que é abordado no presente material didático tem sido utilizado em disciplinas ministradas nos seguintes cursos de graduação: Engenharia de Telecomunicações e Computação. Esse capítulo busca contextualizar tal conteúdo em tais cursos e tratar de alguns conceitos básicos utilizados ao longo do material.

2.1 Telecomunicações

- Telecomunicações: definição e exemplos.
- Sistemas de Telecomunicações: definição, anatomia e exemplos.

2.2 Sinais e sistemas

- Sinais: definição.
- Classificação de sinais: analógico, amostrado, quantizado e digital.
- Sistemas: definição, anatomia (variáveis, elementos e topologia), análise × projeto.
- Relação: circuito × sistema.
- Classificação de sistemas:
 - parâmetros concentrados × distribuídos.
 - parâmetros constantes no tempo, fixo ou invariante no tempo × parâmetros variáveis no tempo, variável ou variante no tempo.
 - linear \times não linear.
 - instantâneo ou sem memória × dinâmico ou com memória.
 - contínuo × discreto (analógico/amostrado/quantizado/digital).
- Sistemas dinâmicos: estado e variáveis de estado.

2.3 Sinais e sistemas digitais

- Discretização: definição.
- Tipos de discretização: uniforme × não uniforme.
- Discretização uniforme: resolução.
- Medição e armazenamento → discretização de variáveis.
- Variável discretizada: amostragem × quantização.
- Tipos de aproximação na quantização: truncamento, arredondamento e truncamento em magnitude.
- Anatomia de sistemas digitais:
 - Classes de sinais: sinais de dados, sinais de temporização, sinais de controle e alimentação.
 - Processamento digital dos sinais: digitais × analógicos.
 - Processamento digital dos sinais analógicos: conversores A/D e D/A, filtro limitador de banda (anti-aliasing filter) e filtro de interpolação (smoothing filter).

2.4 Computação

- ullet Hierarquia em hardware e em software:
 - Elementos básicos.
 - Blocos funcionais de complexidade básica, média e elevada.
 - Sistemas de complexidade básica, média e elevada.
- Codificação:
 - Código: sintaxe (símbolos) × semântica (significado).
 - No caso geral: representação de idéias.
 - No caso de computação: representação de dados.
 - No caso de transmissão digital: representação de informação baseada nas características da fonte (compressão) e do canal (redução de taxa de erro).
- Elementos codificados:
 - Informação (fatos, classificações) × Quantidade (números, contagem).
 - Informação pode ser codificada em quantidade.
 - Quantidade pode ser codificada como informação.
 - Ambos podem ser representados e manipulados como um único elemento.
 - Ambos são um único elemento.
 - Ambos significam idéias codificadas.

2.5 Informação, quantidade e circuitos digitais

- Representação de informação:
 - Uma vez que a informação é multivalorada, pode-se utilizar, para representá-la, um único dispositivo com múltiplos estados ou vários dispositivos com um número reduzido de estados.
 - O número total de estados, ou de condições às quais os dispositivos podem ser ajustados, deve ser igual ou maior ao número de valores possíveis que a informação a ser representada pode assumir.
 - Na tentativa de minimizar o número de dispositivos e o número de diferentes estados em cada dispositivo, já foi demonstrado que o número de estados ótimo para cada dispositivo é o número e = 2.718281828459 [Ric56].
 - Embora a melhor aproximação seja um total de 3 estados por dispositivo, a disponibilidade de dispositivos eletro-eletrônicos que apresentam 2 estados de operação (chaves, relés, diodos, transistores), aliada à facilidade e à confiabilidade (estabilidade e robustez) de implementação, têm levado à escolha da representação através de mecanismos envolvendo 2 estados por dispositivo.
 - Assim, para informações envolvendo N estados, são necessários M dispositivos de 2 estados, tal que $2^M > N$.

• Representação de quantidade:

- Representação numérica (quantizada) de uma informação analógica ou discreta.
- Representação de informação analógica: amostragem e quantização.
- Representação de informação discreta: quantização.
- Fontes de erro:
 - * Acurácia da medida.
 - * Resolução da medida (precisão).
 - * Limites da representação da medida (máximo e mínimo).
 - * Erros de conversão A/D.
 - * Capacidade de armazenamento da amostra.
- Quantidades são naturalmente multivaloradas e representadas por símbolos.
- Novamente, dois extremos são possíveis. Por um lado, pode-se usar um único símbolo variável, cujas variações representam todos os valores numéricos desejados. De outra forma, pode-se optar por uma combinação de símbolos de um conjunto, o qual é capaz de representar apenas uma faixa de valores.
- Exemplos de representação numérica:
 - * Um sistema de numeração com 4 dígitos e resolução de 0.001 pode representar números positivos de 0.000 até 9.999, num total de 10.000 valores diferentes.
 - * Para representar 100 valores diferentes, pode-se utilizar 100 símbolos fixos diferentes ou X símbolos variáveis, com Y valores cada.

• Circuitos digitais:

- Um sistema de numeração significa, para a representação de quantidades numéricas, o mesmo que símbolos lógicos significam para a representação de informações não numéricas.
- Utilizando-se uma simbologia que atenda a ambas as representações, pode-se implementar sistemas que manipulem quantidades numéricas e informações não numéricas sem distinção.
- Tais sistemas, e seus circuitos, são denominados sistemas e circuitos digitais.

Capítulo 3

Funções lógicas

3.1 Introdução

- O objetivo deste documento não é trabalhar o ensino da área matemática denominada de lógica. Pelo contrário, busca-se apenas aproveitar os resultados desse ramo da matemática na geração de circuitos eletro-eletrônicos que implementem funções lógicas.
- Porém, é recomendável que se discutam, pelo menos, algumas questões básicas sobre a chamada lógica simbólica ou lógica matemática. Isso é feito a seguir, antes de se tratar da implementação das funções lógicas.
- Em todas as áreas de atuação profissional pode-se encontrar algum tipo de manipulação de informações.
- A manipulação de informações pode ser dividida em três partes básicas: a obtenção dos dados, o processamento desses dados e a geração de novos dados.
- Toda e qualquer ação envolvida nesses processos requer, de certa forma, tomadas de decisão.
- Compreender o raciocínio humano que rege as tomadas de decisão possibilita que tal mecanismo seja implantado em sistemas artificiais.
- A lógica pode ser vista como um ramo de estudos da matemática que fornece elementos para a tentativa de modelagem do raciocínio humano.
- A lógica formal fornece uma linguagem estruturada para a definição e a manipulação de argumentos.

3.2 Mecanismos básicos de raciocínio

Podem-se identificar dois mecanismos, básicos e distintos, que são comumente utilizados no raciocínio humano, quais sejam: a indução (ou analogia) e a dedução. Ambos são brevemente discutidos a seguir.

3.2.1 Raciocínio por indução (ou por analogia)

- O raciocínio por indução (ou por analogia) é baseado em métodos empíricos.
- Nesse caso, conclui-se que algo é sempre verdadeiro a partir de um número limitado de exemplos. Tais conclusões empíricas são, na realidade, generalizações, baseadas em um número limitado de observações ou de experimentos.
- Assim, a partir de alguns exemplos, definem-se procedimentos padrões para a obtenção de algum resultado, ao invés de serem realizadas deduções ou demonstrações
- As conclusões estabelecidas por meio de um raciocínio por indução não são completamente garantidas pelos fatos. Pelo contrário, os exemplos utilizados apenas levam a crer que tais conclusões são sempre verdadeiras. Portanto, há apenas uma chance de que as conclusões estejam corretas.
- Dessa forma, não se pode dizer que o mecanismo de raciocínio por indução seja absolutamente confiável.
- Cabe ressaltar que o raciocínio por indução (ou por analogia) não deve ser confundido com o Princípio de Indução Matemática, o qual surge naturalmente como um teorema, dentro de um processo de raciocínio por dedução.

3.2.2 Raciocínio por dedução

- O raciocínio por dedução envolve um conjunto de proposições e um conjunto ou sistema de regras.
- As proposições são conjuntos de enunciados. Por sua vez, um determinado conjunto ou sistema de regras também é denominado de um sistema de lógica ou simplesmente de uma lógica.
- As proposições iniciais são denominadas de premissas. Aplicando-se as regras sobre as premissas, procura-se demonstrar, ou deduzir, uma proposição final, que é denominada de conclusão.
- Deve ficar claro que, no raciocínio por dedução, não se procura saber se a conclusão é Verdadeira ou Falsa. O objetivo do raciocínio por dedução é alcançar a conclusão, a partir das premissas, utilizando-se as regras definidas. Se a conclusão puder ser deduzida pelas regras, a partir das premissas, então o raciocínio é dito Válido (ou Correto ou Legítimo). Caso contrário, ele é dito Inválido (ou Incorreto ou Ilegítimo).

3.2.3 Estruturas axiomáticas

- As denominadas estruturas axiomáticas são diretamente relacionadas com o raciocínio dedutivo.
- Ao se realizar uma argumentação por raciocínio dedutivo deve-se tomar cuidado para que não se estabeleça uma circularidade no discurso, onde A é definido a partir de B, que é definido a partir de C, que é definido a partir de A.
- O emprego de uma estrutura axiomática é uma forma de se impedir que ocorra uma circularidade na discurso dedutivo.

- Uma estrutura axiomática possui os seguintes elementos padrões:
 - A apresentação dos termos primitivos, que são os termos básicos utilizados no discurso, mas que não possuem uma definição.
 - A definição de termos derivados dos termos primitivos.
 - A apresentação de axiomas ou postulados, que se utilizam dos termos primitivos e que são declarações primárias, sem definição. Pode-se ainda fazer uma distinção entre axioma e postulado, considerando-se o primeiro como algo que parece intuitivo e o segundo como uma mera imposição.
 - A definição de um conjunto ou sistema de regras, que também é denominado de lógica ou sistema de lógica.
 - A definição de declarações derivadas dos axiomas/postulados, que se utilizam dos termos primitivos e dos derivados, sendo obtidas por meio da aplicação das regras sobre os axiomas/postulados. Tais declarações derivadas são chamadas de Teoremas.
- Quando um discurso possui a estrutura acima, mas os elementos são entidades abstratas, sem significado real, ele define um Ramo de Matemática Pura. Nesse caso, tem-se a denominada Axiomática Formal.
- Quando os elementos definidos acima possuem um significado real, o discurso é denominado de Modelo do Ramo de Matemática Pura, ou apenas um Ramo de Matemática Aplicada. Aqui, tem-se a chamada Axiomática Material.
- Por um lado, os axiomas/postulados e os teoremas podem ser identificados como declarações afirmativas ou proposições. Por outro lado, os termos primitivos podem ser interpretados como variáveis. Assim, dado que os axiomas/postulados são declarações que se utilizam dos termos primitivos, eles podem ser vistos como funções proposicionais de tais variáveis. Da mesma forma, como os teoremas são implicações lógicas dos axiomas/postulados, eles também podem ser identificados como funções proposicionais.
- Deve-se notar ainda que a própria lógica pode ser definida como uma estrutura axiomática, possuindo: termos primitivos, termos derivados, axiomas/postulados, um conjunto ou sistema de regras e teoremas.

3.2.4 Classificação das lógicas dedutivas

- As lógicas dedutivas podem ser divididas em: clássica, complementar e não-clássica.
- A lógica clássica também recebe outras denominações, tais como: Lógica Binária, Lógica Bivalente, Cálculo Proposicional e Cálculo de Predicados de Primeira Ordem.
- Exemplos de lógica complementar são: modal, deôntica e epistêmica.
- Alterando-se os princípios da lógica clássica, surgem as lógicas não-clássicas. Alguns exemplos são: paracompletas, intuicionistas, não-aléticas, não-reflexivas, probabilísticas, polivalentes, fuzzy.
- Tais conjuntos de lógicas não serão aqui apresentados, uma vez que isso foge ao objetivo principal do documento.
- Como foi dito anteriormente, apenas serão utilizados os resultados da lógica binária para a implementação de funções lógicas por circuitos eletro-eletrônicos.

3.3 Exemplo introdutório usando lógica clássica

- Definição do problema e suas motivações:
 - Modelagem de um sistema automático de tomada de decisão.
 - Verificação do uso de cinto de segurança em um automóvel.
- Objetivo da solução: O sonorizador deverá emitir um sinal de alarme se, e somente se, a
 ignição for acionada e a marcha for engatada, uma vez que os assentos frontais estejam
 ocupados e os respectivos cintos de segurança não estejam engatados.
- Infraestrutura existente:
 - Sensor de ignição.
 - Sensor de engate de marcha.
 - Sensor de presença em assentos dianteiros.
 - Sensor de engate de cintos de segurança dianteiros.
 - Atuador de sonorizador de alarme.
- Valores condicionais (mutuamente excludentes): F (False) e T (True).
- Declarações condicionais básicas (sentenças declarativas) e variáveis associadas:
 - Alarme deve soar: A.
 - Ignição está acionada: I.
 - Marcha está engatada: M.
 - Banco do motorista está ocupado: B_M .
 - Cinto do motorista está engatado: C_M .
 - Banco do carona está ocupado: B_C .
 - Cinto do carona está engatado: C_C .
- Declarações derivadas
 - Negação
 - * Função: NOT (¬).
 - * Exemplo: Banco não está ocupado $(\neg B)$.
 - Composição (ou conexão ou combinação)
 - * Conjunção:
 - · Função: OR (\vee) .
 - · Exemplo: Banco do motorista OR banco do carona $(B_M \vee B_C)$.
 - * Disjunção:
 - · Função: AND (\land) .
 - · Exemplo: Ignição AND Marcha $(I \wedge M)$.
 - * Equivalência:
 - · Função: XNOR (\equiv).
 - · Exemplo: Alarme XNOR "Modelo proposto" $(A \equiv MP)$.
- Proposta de modelo: $A \equiv I \wedge \{M \wedge [(B_M \wedge \neg C_M) \vee (B_C \wedge \neg C_C)]\}.$

3.4. Conceitos básicos

3.4 Conceitos básicos

• Elementos utilizados em uma formulação funcional: valores fixos, variáveis e funções.

- Os valores fixos representam os estados definidos na formulação e são descritos por uma simbologia adequada.
- As variáveis carregam informação. A codificação da informação depende do significado que lhes é atribuído e dos estados que elas venham a assumir.
- As funções realizam um mapeamento entre variáveis. De uma forma geral, os estados correntes de determinadas variáveis são utilizados para especificar um estado que será atribuído a uma determinada variável.
- As funções são comumente descritas por: tabelas (pequena quantidade de pontos), gráficos (grande quantidade de pontos) e equações (lei de formação explícita).
- Deve ser ressaltado que os valores fixos, as variáveis e as funções, podem ser associados a qualquer tipo de informação, não necessariamente representando quantidades.

3.5 Formulação lógica clássica

- Nesse texto, será abordado apenas um tipo de lógica: binária, bivalente ou clássica.
- Os argumentos serão representados por proposições.
- Uma proposição é uma sentença afirmativa declarativa (ou uma afirmação declarativa ou uma assertiva ou um *statement*), sobre a qual faz sentido afirmar-se que a mesma é verdadeira ou falsa.
- Variáveis e valores fixos na lógica binária:
 - As variáveis representam as assertivas (ou as proposições).
 - Só existem dois valores fixos que podem ser atribuídos a uma variável.
 - Os dois valores devem ser, do ponto de vista lógico, mutuamente excludentes.
- Modelagem lógica de um problema real:
 - A formulação de um problema real envolve diversas representações ou codificações.
 - Problema real \rightarrow um sistema formado por um conjunto de assertivas (*statements*), associadas por meio de conectivos (operadores ou funções).
 - Conectivo → elemento de conexão que é modelado por uma função lógica.
 - Assertiva → afirmação declarativa (statement) sobre algum elemento do problema, a qual é representada por uma variável de asserção do sistema.
 - Variável de asserção \rightarrow variável do sistema associada a uma assertiva, à qual será atribuído um valor fixo lógico ($truth\ value$).
 - Valor fixo lógico → representação do estado de uma variável de asserção por meio de um símbolo com significado lógico Por exemplo: F/T, F/V, 0/1, 0/5 ou +12/-12.
- Uma vez que os dois valores fixos possíveis são mutamente excludentes, naturalmente surge a idéia de negação (da associação de assertivas, do conectivo, da assertiva, da variável de asserção, do valor ou do símbolo).

3.6 Operadores lógicos clássicos

- Um operador lógico clássico pode ser matematicamente definido por meio de uma função de variáveis lógicas (truth function).
- A função realiza um mapeamento entre um dado conjunto de variáveis lógicas em uma nova variável lógica, de tal forma que $V = f(V_1, V_2, \dots, V_{N_n})$.
- Uma vez que as variáveis envolvidas em tais funções lógicas representam proposições, pode-se dizer que elas são, na realidade, funções proposicionais. Logo, a formalização matemática da lógica que se utiliza de tais funções lógicas/proposicionais (lógica clássica) recebe as seguintes denominações: cálculo de funções lógicas ou cálculo sentencial ou cálculo proposicional ou tautologia.
- Devido à pequena quantidade de valores assumidos pelas funções, a representação mais eficiente para funções lógicas é uma tabela, denominada de Tabela Verdade (truth table).
- Os dois valores lógicos possíveis para cada variável são simbolicamente representados por F (false) e T (true).
- Uma vez que as variáveis só podem asumir 2 valores, então, para um total de N_v variáveis, obtém-se um total de $N_c = 2^{N_v}$ combinações de valores e um total de $N_f = 2^{N_c}$ funções.

3.6.1 Funções de 1 variável

Nesse caso, o mapeamento realizado é definido por X = f(A), de forma que $N_v = 1$ variável, $N_c = 2^{N_v} = 2$ combinações de valores e $N_f = 2^{N_c} = 4$ funções. Cada uma das funções lógicas de uma variável $X_i = f_i(A)$, para $0 \le i \le 3$, é definida por sua própria Tabela Verdade, as quais são agrupadas na Tabela 3.1. Os operadores lógicos associados às funções $X_i = f_i(A)$ são definidos na Tabela 3.2.

A	X_0	X_1	X_2	X_3
F	F	F	T	T
T	F	T	F	T

Tabela 3.1: Tabela de funções lógicas de uma variável: $X_i = f_i(A)$, para $0 \le i \le 3$.

Função	Operador						
	Operação	peração Notação					
X_0	(F)	(F)	Contradição				
X_1	(A)	(A)	Identidade lógica				
X_2	NOT(A)	$\neg(A)$ ou $\sim(A)$ ou $\overline{(A)}$ ou $\overline{(A)'}$ ou $\overline{(A)^*}$ ou $\overline{(A)}$	Negação lógica				
X_3	(T)	(T)	Tautologia				

Tabela 3.2: Tabela de operadores lógicos de uma variável.

3.6.2 Funções de 2 variáveis

Aqui, o mapeamento realizado é definido por X = f(A, B), de forma que $N_v = 2$ variáveis, $N_c = 2^{N_v} = 4$ combinações de valores e $N_f = 2^{N_c} = 16$ funções. Cada uma das funções lógicas de duas variáveis $X_i = f_i(A, B)$, para $0 \le i \le 15$, é definida por sua própria Tabela Verdade, as quais são agrupadas na Tabela 3.3. Os operadores lógicos associados às funções $X_i = f_i(A, B)$ são definidos na Tabela 3.4.

A	B	X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}
F	F	F	F	F	F	F	F	F	F	T	T	T	T	T	T	T	T
F	T	F	F	F	F	T	T	T	T	F	F	F	F	T	T	T	T
T	F	F	F	T	T	F	F	T	T	F	F	T	T	F	F	T	T
T	T	F	T	F	T	F	T	F	T	F	T	F	T	F	T	F	T

Tabela 3.3: Tabela de funções lógicas de duas variáveis: $X_i = f_i(A, B)$, para $0 \le i \le 15$.

Função	Operador						
	Operação	Notação					
X_0	(F)	(F)					
X_1	$(A \ AND \ B)$	$(A \wedge B)$					
X_2	$NOT(A\ IMPLICA\ B)$	$\neg (A \to B) \text{ ou } \neg (A \supset B)$					
X_3	(A)	(A)					
X_4	$NOT(B\ IMPLICA\ A)$	$\neg (A \leftarrow B) \text{ ou } \neg (A \subset B)$					
X_5	(B)	(B)					
X_6	$(A \ XOR \ B)$	$(A \veebar B)$					
X_7	$(A \ OR \ B)$	$(A \lor B)$					
X_8	$NOT(A \ OR \ B) \equiv (A \ NOR \ B)$	$\neg (A \lor B) \text{ ou } (A \downarrow B)$					
X_9	$NOT(A \ XOR \ B) \equiv (A \ XNOR \ B)$	$\neg (A \veebar B)$ ou $(A \land B)$ ou $(A \leftrightarrow B)$ ou $(A \equiv B)$					
X_{10}	NOT(B)	$\neg(B)$					
X_{11}	$(B\ IMPLICA\ A)$	$(A \leftarrow B)$ ou $(A \subset B)$					
X_{12}	NOT(A)	$\neg(A)$					
X_{13}	$(A\ IMPLICA\ B)$	$(A \to B)$ ou $(A \supset B)$					
X_{14}	$NOT(A \ AND \ B) \equiv (A \ NAND \ B)$	$\neg (A \land B) \text{ ou } (A \uparrow B)$					
X_{15}	(T)	(T)					

Tabela 3.4: Tabela de operadores lógicos de duas variáveis.

É possível que se estabeleça uma relação entre a Lógica Binária e a Teoria de Conjuntos. Porém, deve-se ressaltar que, na equivalência entre os símbolos \leftarrow e \subset , o significado do símbolo \subset não é associado à relação de inclusão (*inclusion*) ou de contenção (*containment*) entre conjuntos. Na simbologia em questão, ele pode ser interpretado como uma versão estilizada da seta ou, ainda, como uma adaptação da letra "C", associada à relação de "conseqüência de".

3.6.3 Funções de $N_v > 2$ variáveis

Pode-se mostrar que as funções de $N_v > 2$ variáveis podem ser definidas através da combinação das variáveis lógicas e das operações identificadas nas funções de 1 e 2 variáveis.

3.6.4 Operadores lógicos básicos

Com base nas funções lógicas identificadas nas Tabelas 3.1 e 3.3, podem ser definidos os operadores lógicos encontrados nas Tabelas 3.2 e 3.4. Podem-se destacar os seguintes operadores unários: identidade lógica e NOT (negação lógica). Por sua vez, podem-se destacar os seguintes operadores (ou conectivos) binários: AND (E lógico), OR (OU-inclusivo lógico), XOR (OU-eXclusivo), IMPLICA (implicação lógica), NAND (NOT-AND), NOR (NOT-OR), XNOR (NOT-XOR ou bi-implicação ou equivalência lógica), e NOT-IMPLICA.

3.7 Relações de implicação

Podem-se definir três relações de implicação de uma assertiva precedente A para uma assertiva consequente B:

```
• Condição necessária: "SOMENTE SE (A=T) ENTÃO (B=T)" ou "(B=T) SOMENTE SE (A=T)".
```

```
Condição suficiente:
"SE (A = T) ENTÃO (B = T)"
ou
"(B = T) SE (A = T)".
```

Condição necessária e suficiente:
"SE E SOMENTE SE (A = T) ENTÃO (B = T)" ou
"(B = T) SE E SOMENTE SE (A = T)".

Portanto, pode-se estabelecer a seguinte modelagem:

- Condição necessária: $(A \leftarrow B)$.
- Condição suficiente: $(A \to B)$.
- Condição necessária e suficiente: $(A \to B) \land (A \leftarrow B) \equiv (A \leftrightarrow B) \equiv (A \equiv B)$.

3.8 Tautologia e equivalência lógica

Uma proposição fundamental é aquela associada a uma variável lógica. A combinação de proposições fundamentais (variáveis lógicas), por meio de conectores, conectivos ou operadores lógicos (funções lógicas), gera uma nova proposição.

Uma proposição que possui todos os seus valores iguais a T, independentemente dos valores das suas proposições fundamentais, é dita uma Tautologia ou Lei da Lógica. Algumas tautologias são apresentadas na Tabela 3.5.

Se as tabelas verdade de duas proposições P_1 e P_2 forem iguais, as proposições são ditas logicamente equivalentes e a proposição $P_1 \leftrightarrow P_2$ é uma tautologia. Assim sendo, em qualquer proposição onde apareça P_1 , essa última pode ter trocada por P_2 , e vice-versa. As Tabelas 3.6, 3.7 e 3.8, ilustram alguns pares de proposições logicamente equivalentes, envolvendo os operadores lógicos NOT, AND, OR, IMPLICA e XNOR. Tais equivalências mostram que existe um interdefinição entre tais operadores. Portanto, alguns deles podem ser dispensados pelo uso dos demais. Isso é tratado na próxima seção.

Lei	Nome
$p \lor \neg p$	Lei do meio excluído
$\neg (p \land \neg p)$	Lei da contradição
$[(p \to q) \land (q \to r)] \to (p \to r)$	Lei do silogismo
$p \leftrightarrow \neg \left(\neg p\right)$	Lei da dupla negação
$(p \to q) \leftrightarrow (\neg q \to \neg p)$	Lei da contraposição

Tabela 3.5: Exemplos de Tautologias ou Leis da Lógica.

P_1	P_2
$p \lor q$	$\neg (\neg p \land \neg q)$
$p \rightarrow q$	$\neg (p \land \neg q)$
$p \leftrightarrow q$	$\neg (p \land \neg q) \land \neg (\neg p \land q)$

Tabela 3.6: Pares de proposições equivalentes, definindo os operadores OR, IMPLICA e XNOR, em função dos operadores NOT e AND.

P_1	P_2
$p \wedge q$	$\neg (\neg p \lor \neg q)$
$p \rightarrow q$	$(\neg p \lor q)$
$p \leftrightarrow q$	$\neg \left[\neg \left(\neg p \lor q\right) \lor \neg \left(p \lor \neg q\right)\right]$

Tabela 3.7: Pares de proposições equivalentes, definindo os operadores AND, IMPLICA e XNOR, em função dos operadores NOT e OR.

P_1	P_2
$p \wedge q$	$\neg (p \rightarrow \neg q)$
$p \lor q$	$(\neg p \to q)$
$p \leftrightarrow q$	$\neg [(p \to q) \to \neg (q \to p)]$

Tabela 3.8: Pares de proposições equivalentes, definindo os operadores AND, OR e XNOR, em função dos operadores NOT e IMPLICA.

3.9 Conjunto funcionalmente completo de operadores

Deve-se notar, nas Tabelas 3.1 a 3.4, que metade da funções X_k pode ser obtida através da aplicação do operador de negação lógica (NOT) sobre a outra metade. Além disso, deve-se notar que alguns operadores (conectivos) binários podem ser descritos por meio da combinação de outros operadores, conforme ilustrado nas Tabelas 3.6, 3.7 e 3.8.

Portanto, as seguintes questões surgem naturalmente:

- É possível descrever todos os demais operadores a partir de um determinado conjunto (conjunto completo) ?
- Todos os operadores de um dado conjunto completo são absolutamente necessários (independentes)?
- Existe um conjunto mínimo de operadores que forme um conjunto completo (conjunto completo mínimo) ?

As seguintes respostas podem ser demonstradas:

- Tentativa 1: $\{AND\} \rightarrow \tilde{Nao}!$
- Tentativa 2: $\{OR\} \rightarrow N\tilde{a}o!$
- Tentativa 3: $\{AND, OR\} \rightarrow N\tilde{a}o!$
- Tentativa 4: $\{AND, OR, NOT\} \rightarrow OK! \rightarrow Conjunto completo, mas não mínimo...$
- Tentativa 5: {AND, NOT} ou {NAND} \rightarrow OK! \rightarrow Conjunto completo e mínimo!
- Tentativa 6: $\{OR, NOT\}$ ou $\{NOR\} \rightarrow OK! \rightarrow Conjunto completo e mínimo!$

A Tentativa 4 é ilustrada na Tabela 3.9.

A partir da Tentativa 4, a Tentativa 5 pode ser demonstrada por meio da relação

$$(A \lor B) = \neg (\neg A \land \neg B) = \neg (\neg (A \land A) \land \neg (B \land B)) = (A \uparrow A) \uparrow (B \uparrow B) .$$

A partir da Tentativa 4, a Tentativa 6 pode ser demonstrada por meio da relação

$$(A \land B) = \neg (\neg A \lor \neg B) = \neg (\neg (A \lor A) \lor \neg (B \lor B)) = (A \downarrow A) \downarrow (B \downarrow B) .$$

Os operadores NOT, AND e OR são naturalmente utilizados nas expressões lógicas elaboradas pelo ser humano. Além disso, os operadores AND e OR possuem a propriedade de associatividade. Os operadores NOT, NAND e NOR são facilmente implementados por dispositivos eletro-eletrônicos. Porém, os operadores NAND e NOR não são associativos. Assim sendo, é comum que se definam as expressões lógicas utilizando os operadores do conjunto {NOT, AND, OR} e, em seguida, se for desejado, que elas sejam convertidas em expressões equivalentes, empregando os operadores do conjunto alternativo {NOT, NAND, NOR}.

Função lógica	Expressão equivalente
$X_k = f_k(A, B)$	{AND, OR, NOT}
X_0	$(A \land \neg A) = (B \land \neg B) = F$
X_1	$(A \wedge B)$
X_2	$(A \land \neg B)$
X_3	A
X_4	$(\neg A \land B)$
X_5	В
X_6	$(A \land \neg B) \lor (\neg A \land B)$
X_7	$(A \lor B)$
X_8	$\neg (A \lor B) = (\neg A \land \neg B)$
X_9	$(\neg A \land \neg B) \lor (A \land B)$
X_{10}	$\neg B$
X_{11}	$(A \lor \neg B)$
X_{12}	$\neg A$
X_{13}	$(\neg A \lor B)$
X_{14}	$\neg (A \land B) = (\neg A \lor \neg B)$
X_{15}	$(A \vee \neg A) = (B \vee \neg B) = T$

Tabela 3.9: Funções lógicas de duas variáveis e suas expressões equivalentes, empregando os operadores AND, OR e NOT.

3.10 Teoremas de De Morgan

Os teoremas de De Morgan descrevem uma relação direta entre os operadores NOT, AND e OR. Eles podem ser enunciados da seguinte forma:

- (A NAND B) \equiv NOT (A AND B) \equiv (NOT A) OR (NOT B) ou $(A \uparrow B) \equiv \neg (A \land B) \equiv (\neg A) \lor (\neg B)$
- (A NOR B) \equiv NOT (A OR B) \equiv (NOT A) AND (NOT B) ou $(A \downarrow B) \equiv \neg (A \lor B) \equiv (\neg A) \land (\neg B)$

3.11 Decomposição em funções canônicas

Uma vez que as funções NOT, OR e AND, formam um conjunto funcionalmente completo, sabe-se que uma função lógica genérica pode ser decomposta em uma combinação qualquer de tais funções. Porém, pode-se definir uma decomposição sistemática e bem estruturada, empregando-se funções canônicas, dos tipos m e M.

Em uma função canônica do tipo m, apenas um dos valores da sua Tabela Verdade é T, enquanto todos os demais são F. Uma vez que, na decomposição de uma função genérica, ela será um termo com um número mínimo de valores T, a função do tipo m é denominada de mintermo. A função AND possui um único valor T na sua Tabela Verdade, quando ambas as entradas assumem o valor T. Logo, um mintermo pode ser montado a partir uma função AND, por meio de uma adequação das variáveis de entrada.

Em uma função canônica do tipo M, apenas um dos valores da sua Tabela Verdade é F, enquanto todos os demais são T. Uma vez que, na decomposição de uma função genérica, ela será um termo com um número máximo de valores T, a função do tipo M, é denominada de maxtermo. A função OR possui um único valor F na sua Tabela Verdade, quando ambas as entradas assumem o valor F. Logo, um maxtermo pode ser montado a partir uma função OR, por meio de uma adequação das variáveis de entrada.

Para funções de duas variáveis, f(A, B), os mintermos m_i são definidos por: $m_0(A, B) = (\neg A \land \neg B), m_1(A, B) = (\neg A \land B), m_2(A, B) = (A \land \neg B)$ e $m_3(A, B) = (A \land B)$.

Para funções de duas variáveis, f(A, B), os maxtermos M_i são definidos por:

$$M_0(A, B) = (A \vee B), M_1(A, B) = (A \vee \neg B), M_2(A, B) = (\neg A \vee B) \in M_3(A, B) = (\neg A \vee \neg B).$$

A Tabela 3.10 apresenta as funções canônicas (mintermos e maxtermos) para duas variáveis.

Linha
0
1
2
3

\boldsymbol{A}	B
F	F
F	T
T	F
T	T
•	

m_0	m_1	m_2	m_3
T	F	F	F
F	T	F	F
F	F	T	F
F	F	F	T

M_0	M_1	M_2	M_3
F	T	T	T
T	F	T	T
T	T	F	T
T	T	T	F

Tabela 3.10: Tabela de funções canônicas (mintermos e maxtermos) para duas variáveis.

Para sintetizar os diversos valores T da Tabela Verdade de uma função genérica, utilizam-se os mintermos correspondentes, combinados pelo operador lógico OR.

Para sintetizar os diversos valores F da Tabela Verdade de uma função genérica, utilizam-se os maxtermos correspondentes, combinados pelo operador lógico AND.

A título de exemplo, a Tabela 3.11 ilustra a decomposição da função $X(A, B) = (A \veebar B)$ de duas formas, que são as seguintes:

1.
$$X(A,B) = (A \veebar B) = m_1 \lor m_2 = (\neg A \land B) \lor (A \land \neg B).$$

2.
$$X(A, B) = (A \vee B) = M_0 \wedge M_3 = (A \vee B) \wedge (\neg A \vee \neg B)$$
.

A	B	$A \veebar B$	m_1	m_2	M_0	M_3
F	F	F	F	F	F	T
F	T	T	T	F	T	T
T	F	T	F	T	T	T
T	\overline{T}	\overline{F}	F	\overline{F}	T	F

Tabela 3.11: Exemplo de decomposição em funções canônicas (mintermos e maxtermos).

Deve-se ressaltar que, para uma determinada função alvo $X(\cdot)$, cada função m_i (ou M_i) utilizada na sua decomposição é responsável por sintetizar apenas um dos valores T (ou F) de $X(\cdot)$. Logo, o total de termos m somado ao total de termos M, usados na decomposição de $X(\cdot)$, é igual ao total de valores da sua Tabela Verdade.

Deve-se perceber ainda que:

- É válida a seguinte equivalência: $\neg(m_i) = M_i$.
- Portanto, as relações $\neg m_3 = M_3$ e $\neg M_0 = m_0$ representam, ao mesmo tempo, uma prova para os Teoremas de De Morgan e uma outra forma de enunciá-los.

Por fim, deve-se notar que:

- Os mintermos são aplicações dos operadores NOT e AND sobre as variáveis. Por sua vez, as funções lógicas genéricas são aplicações dos operadores OR sobre os mintermos.
- Os maxtermos são aplicações dos operadores NOT e OR sobre as variáveis. Por sua vez, as funções lógicas genéricas são aplicações dos operadores AND sobre os maxtermos.
- Logo, a decomposição de uma função lógica genérica em mintermos ou em maxtermos é apenas um arranjo dos operadores NOT, OR e AND, por meio de uma estrutura bem definida.

No caso particular de funções de uma variável X(A), a Tabela 3.12 mostra que são válidas as seguintes relações: $m_0 = \neg M_0 = \neg A$ e $m_1 = \neg M_1 = A$.

A	m_0	m_1	M_0	M_1
F	T	F	F	T
T	F	T	T	F

Tabela 3.12: Tabela de funções canônicas (mintermos e maxtermos) para uma variável.

3.12 Blocos funcionais fundamentais

Para um operador lógico genérico, pode-se definir um bloco funcional que realize a operação lógica correspondente. Posteriormente, pode-se propor um sistema físico que implemente o bloco funcional desejado.

No caso dos operadores lógicos básicos, é adotada uma nomenclatura espefícica para os blocos funcionais a eles associados. Para a identidade lógica, o bloco é denominado de BUFFER. O bloco NOT é associado à negação lógica. Os demais operadores (AND, OR, XOR, NAND, NOR, XNOR) são associados a blocos funcionais que recebem a denominação genérica de porta lógica (logic gate).

Blocos funcionais fundamentais, associados aos operadores lógicos básicos, são ilustrados na Figura 3.1. Os símbolos usados nessa figura, que apresentam distinção de formato, são definidos no padrão IEEE Standard No.91 (ANSI Y 32.14, 1973). Um outro conjunto de símbolos, ilustrados na Figura 3.2 e que apresentam um formato uniforme, foi estabelecido pelo *International Electrotechnical Comission* (Publicação IEC 117-15) e foi incluído no mesmo padrão.

Figura 3.1: Blocos funcionais fundamentais, associados aos operadores lógicos básicos (IEEE).

Figura 3.2: Blocos funcionais fundamentais, associados aos operadores lógicos básicos (IEC).

3.13 Manipulação algébrica de blocos

Os blocos funcionais são uma representação alternativa para os operadores lógicos. Por sua vez, os desenhos esquemáticos que contêm blocos funcionais, denominados de circuitos lógicos, são uma representação alternativa para as equações envolvendo operadores lógicos. Portanto, pode-se realizar uma manipulação diretamente sobre os blocos lógicos de um circuito, equivalentemente àquela realizada sobre os operadores lógicos de uma equação. Dois exemplos de manipulação algébrica de equações são mostrados nas Equações (3.1) e (3.2). Dois exemplos de manipulação algébrica de blocos, referentes às manipulações das Equações (3.1) e (3.2), são mostrados nas Figuras 3.3 e 3.4, respectivamente.

$$X(A,B) = A \vee B$$

$$= (\neg A \wedge B) \vee (A \wedge \neg B)$$

$$= \neg (\neg ((\neg A \wedge B) \vee (A \wedge \neg B)))$$

$$= \neg ((\neg A \wedge B) \downarrow (A \wedge \neg B))$$

$$= \neg ((\neg (\neg A \wedge B)) \wedge (\neg (A \wedge \neg B)))$$

$$= (\neg A \uparrow B) \uparrow (A \uparrow \neg B) . \tag{3.1}$$

Figura 3.3: Manipulação algébrica de blocos: exemplo 1.

$$X(A,B) = A \veebar B$$

$$= (A \lor B) \land (\neg A \lor \neg B)$$

$$= \neg (\neg ((A \lor B) \land (\neg A \lor \neg B)))$$

$$= \neg ((A \lor B) \uparrow (\neg A \lor \neg B))$$

$$= \neg ((\neg (A \lor B)) \lor (\neg (\neg A \lor \neg B)))$$

$$= (A \downarrow B) \downarrow (\neg A \downarrow \neg B) . \tag{3.2}$$

Figura 3.4: Manipulação algébrica de blocos: exemplo 2.

3.14 Conectivos de ordem superior

Os operadores lógicos básicos que foram definidos são associados a funções que dependem de um ou dois parâmetros. Assim, os conectivos básicos são operadores binários.

Apesar de um operador lógico do tipo AND(A,B,C,D) ser, por definição, um bloco funcional genérico, pode-se denominá-lo de um conectivo AND de ordem superior (a dois). Assim, um bloco funcional associado ao operador AND(A,B,C,D) é representado por uma porta AND de quatro entradas.

Possíveis implementações para o operador AND(A,B,C,D), empregando-se apenas blocos fundamentais do tipo AND (X,Y), são dadas por

$$AND(A, B, C, D) = AND(D, AND(C, AND(B, A)))$$
(3.3)

e por

$$AND(A, B, C, D) = AND(AND(D, C), AND(B, A)).$$
(3.4)

3.15 Técnica de bundling

A técnica de bundling é uma operação elementar, que permite simplificar expressões de funções lógicas que contenham uma associação em três planos (ou níveis) de lógica com as seguintes seqüências de operadores: NAND \rightarrow NOT \rightarrow AND, NAND \rightarrow NOT \rightarrow NAND, NOR \rightarrow NOT \rightarrow OR e NOR \rightarrow NOT \rightarrow NOR.

Nesses casos, é possível agrupar (bundle) as variáveis do primeiro operador e passá-las diretamente para o segundo operador, dispensando o operador NOT intermediário.

Tal modificação pode acarretar um ganho no tempo de resposta e/ou na quantidade do circuito empregado na implementação.

Para as associações NAND \rightarrow NOT \rightarrow AND e NAND \rightarrow NOT \rightarrow NAND, podem ser citados os seguintes exemplos:

$$X(A, B, C) = A \wedge [\neg(B \uparrow C)] = A \wedge \{\neg[\neg(B \wedge C)]\} = A \wedge (B \wedge C) = (A \wedge B \wedge C),$$

$$X(A, B, C) = A \uparrow [\neg(B \uparrow C)] = \neg(A \wedge \{\neg[\neg(B \wedge C)]\}) = \neg[A \wedge (B \wedge C)] = (A \uparrow B \uparrow C)$$

е

е

$$\begin{cases} X(A,B,C) = A \uparrow [\neg (B \uparrow C)] = \neg (A \land \{\neg [\neg (B \land C)]\}) = \neg [A \land (B \land C)] = (A \uparrow B \uparrow C) \\ Y(B,C,D) = D \lor (B \uparrow C) \end{cases}$$

Por sua vez, para as associações NOR \to NOT \to OR e NOR \to NOT \to NOR, podem ser citados os seguintes exemplos:

$$X(A,B,C) = A \vee [\neg(B \downarrow C)] = A \vee \{\neg[\neg(B \vee C)]\} = A \vee (B \vee C) = (A \vee B \vee C) ,$$

$$X(A,B,C) = A \downarrow [\neg(B \downarrow C)] = \neg(A \vee \{\neg[\neg(B \vee C)]\}) = \neg[A \vee (B \vee C)] = (A \downarrow B \downarrow C)$$

$$\begin{cases} X(A,B,C) = A \downarrow [\neg(B \downarrow C)] = \neg(A \lor \{\neg[\neg(B \lor C)]\}) = \neg[A \lor (B \lor C)] = (A \downarrow B \downarrow C) \\ Y(B,C,D) = D \land (B \downarrow C) \end{cases}$$

3.16 Exemplos de aplicação direta de portas lógicas

As portas lógicas são elementos básicos na construção de circuitos digitais. Assim sendo, elas podem ser pensadas como os circuitos digitais mais simples. A seguir, são apresentados alguns exemplos de aplicação direta de portas lógicas.

3.16.1 Uso de operador lógico como elemento de controle

No projeto de circuitos digitais, é comum que se necessite de alguns elementos básicos de controle, os quais podem ser implementados através dos operadores lógicos.

Considerando-se que as variáveis lógicas A e B, bem como a função do operador X(A,B), sejam respectivamente mapeadas nas variáveis de entrada E, de controle CTRL e de saída S(E,CTRL), e que elas assumam apenas os valores lógicos F e T, podem-se definir as ações de controle apresentadas na Tabela 3.13.

Uma simbologia genérica para tais operações pode ser visualizada na Figura 3.5.

Operador lógico: $X(A, B)$	Ação de controle: $S(E, CTRL)$		
AND	$S = (CTRL \wedge E) = \left\{\right.$	$ \begin{array}{cccc} F & , & CTRL = F \\ E & , & CTRL = T \end{array} $	
NAND	$S = (CTRL \uparrow E) = \left\{ \right.$	$\left\{ egin{array}{ll} T & , & CTRL = F \\ \neg E & , & CTRL = T \end{array} \right.$	
OR	$S = (CTRL \vee E) = \left\{ \right.$	$\left\{ egin{array}{ll} E & , & CTRL = F \ T & , & CTRL = T \end{array} ight.$	
NOR	$S = (CTRL \downarrow E) = \left\{ \right.$		
XOR	$S = (CTRL \veebar E) = \left\{\right.$		
XNOR	$S = (CTRL \equiv E) = \begin{cases} $		
IMPLICA	$S = (CTRL \to E) = \begin{cases} $	$\left\{ egin{array}{ll} T & , & CTRL = F \ E & , & CTRL = T \end{array} ight.$	
	$S = (CTRL \leftarrow E) = \left\{ \right.$	$egin{array}{ll} eg E &, & CTRL = F \\ eg T &, & CTRL = T onumber \end{array}$	
NOT IMPLICA	$S = \neg (CTRL \to E) = \left\{ \right.$	$\left\{ egin{array}{ll} F & , & CTRL = F \\ \neg E & , & CTRL = T \end{array} \right.$	
	$S = \neg (CTRL \leftarrow E) = \left\{\right.$	$\left(egin{array}{ccc} E & , & CTRL = F \\ F & , & CTRL = T \end{array} ight)$	

Tabela 3.13: Uso de operador lógico como elemento de controle.

Figura 3.5: Uso de operador lógico como elemento de controle: simbologia genérica.

3.16.2 Identificador de paridade e gerador de paridade

De uma forma genérica, o termo PARIDADE pode ser tecnicamente utilizado para designar a contagem de valores F ou T em um conjunto de valores $V = \{V_1, V_2, \cdots, V_N\}$, onde $V_k \in \{F, T\}$. Nesse sentido, paridade ímpar e paridade par indicam que o conjunto de valores V possui um número ímpar e um número par de valores F ou T, respectivamente.

Em algumas aplicações, pode ser necessário que se identifique a paridade de um dado conjunto de valores $\mathbf{V} = \{V_1, V_2, \dots, V_N\}$. Em outras, um novo valor V_{N+1} deve ser gerado e agregado a um dado conjunto \mathbf{V} , de tal forma que o novo conjunto aumentado $\mathbf{V}_{\mathbf{P}} = \{\mathbf{V}, V_{N+1}\}$ tenha a paridade desejada.

Analisando-se a Tabela Verdade dos operadores lógicos XOR(A,B) e XNOR(A,B), pode-se constatar que eles assumem o valor T quando existe em $\mathbf{V} = \{V_1, V_2\}$, respectivamente, um número ímpar de valores T e um número par de valores F.

Portanto, para o conjunto $V = \{V_1, V_2\}$, os operadores XOR(A,B) e XNOR(A,B) podem ser usados como identificadores de paridade ímpar de valores T e paridade par de valores F, respectivamente.

Por outro lado, para o conjunto $V = \{V_1, V_2\}$, os operadores XOR(A,B) e XNOR(A,B) podem ser usados como geradores do valor V_3 , a fim de que o conjunto $V_P = \{V_1, V_2, V_3\}$ apresente paridade par de valores T e paridade ímpar de valores F, respectivamente.

3.16.3 Identificador de igualdade entre padrões binários

Dadas duas cadeias de valores binários, $V = \{V_1, V_2, \dots, V_N\}$ e $W = \{W_1, W_2, \dots, W_N\}$, onde V_k e $W_k \in \{F, T\}$, pode ser necessário identificar se ambos os padrões são iguais.

Analisando-se a Tabela Verdade dos operadores lógicos XOR(A,B) e XNOR(A,B), pode-se constatar que eles assumem o valor T quando os valores de A e de B são diferentes ou iguais, respectivamente.

Portanto, para os conjuntos $V = \{V_1\}$ e $W = \{W_1\}$, os operadores XOR(A,B) e XNOR(A,B) podem ser usados como identificadores de diferença e de igualdade, respectivamente.

3.17 Exercícios propostos

- 1. Para cada operador binário $Op \in \{AND, OR, XOR, NAND, NOR, XNOR\}$, atenda aos seguintes itens:
 - (a) Calcule o resultados das seguintes operações:
 - i. A Op F.
 - ii. A Op T.
 - iii. A Op A.
 - iv. $A Op \neg A$.
 - (b) Mostre que, para tais operadores, valem as seguintes propriedades:
 - i. Comutatividade: A Op B = B Op A.
 - ii. Associatividade: A Op (B Op C) = (A Op B) Op C.
 - iii. Distributividade com os demais operadores: $A Op_i (B Op_j C) = (A Op_i B) Op_j (A Op_i C)$. para $i \neq j$.
 - (c) Calcule os seguintes elementos particulares:
 - i. Elemento neutro (E_n) : $A Op E_n = A$.
 - ii. Elemento inverso (E_{inv}) : A $Op E_{inv} = E_n$.
- 2. Considerando que todas as funções lógicas sejam descritas pela combinação dos operadores unário e binários, prove que:
 - (a) Os conjuntos {AND}, {OR} e {AND, OR}, não são conjuntos completos.
 - (b) O conjunto {AND, OR, NOT} é um conjunto completo.
 - (c) O conjunto {AND, OR, NOT} não é um conjunto completo mínimo.
 - (d) O conjunto {AND, NOT} e {NAND} é um conjunto completo mínimo.
 - (e) O conjunto {OR, NOT} e {NOR} é um conjunto completo mínimo.
- 3. Escreva as funções de todos os conectivos binários utilizando apenas as seguintes funções básicas:
 - (a) $\{AND, NOT\}$.
 - (b) $\{OR, NOT\}.$
 - (c) NAND.
 - (d) NOR.
- 4. Prove as tautologias da Tabela 3.5.
- 5. Prove as equivalências das Tabelas 3.6, 3.7 e 3.8.
- 6. Prove os Teoremas de De Morgan.
- 7. Decomponha as funções de todos os conectivos binários como combinações das funções básicas m_i (mintermos), associadas pelo conectivo OR.
- 8. Decomponha as funções de todos os conectivos binários como combinações das funções básicas M_i (maxtermos), associadas pelo conectivo AND.

- 9. Dados os mintermos $m_i(A, B)$ e os maxtermos $M_i(A, B)$, atenda aos seguintes itens:
 - (a) Descreva cada mintermo $m_i(A, B)$ em função dos demais mintermos $m_j(A, B)$, onde $i \neq j$.
 - (b) Descreva cada mintermo $m_i(A, B)$ em função dos maxtermos $M_i(A, B)$.
 - (c) Descreva cada maxtermo $M_i(A, B)$ em função dos demais maxtermos $M_j(A, B)$, onde $i \neq j$.
 - (d) Descreva cada maxtermo $M_i(A, B)$ em função dos mintermos $m_i(A, B)$.
- 10. Para os exercícios listados abaixo, considere as equações lógicas apresentadas em seguida.

Exercícios:

- (a) Desenhe um Diagrama de Blocos Funcionais equivalente, para cada uma das equações lógicas fornecidas.
- (b) Decomponha cada uma das equações lógicas fornecidas como combinação das funções básicas m_i (mintermos), associadas pelo conectivo OR.
- (c) Decomponha cada uma das equações lógicas fornecidas como combinação das funções básicas M_i (maxtermos), associadas pelo conectivo AND.
- (d) Desenhe um Diagrama de Blocos Funcionais equivalente, para cada uma das decomposições pedidas anteriormente.

Equações lógicas:

i.
$$F(A, B) = (A \vee B) \wedge (A \vee \neg B) \wedge (\neg A \vee B)$$
.

ii.
$$F(A, B) = (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)$$
.

iii.
$$F(A, B) = (A \land \neg B) \lor (\neg A \land B) \lor (A \land B)$$
.

iv.
$$F(A, B) = (\neg A \land \neg B) \lor (\neg A \land B) \lor (A \land \neg B)$$
.

v.
$$F(A, B, C, D) = (A \vee B) \wedge (\neg(C \wedge D)).$$

- 11. Para cada operador binário $Op \in \{AND, OR, XOR, NAND, NOR, XNOR\}$ e $N \geq 2$, atenda aos seguintes itens:
 - (a) Calcule o resultado da seguinte sequência de operações:

$$(V_N \ Op \ (\cdots (V_3 \ Op \ (V_2 \ Op \ V_1))\cdots))$$
.

(Sugestão: Calcule os casos particulares onde N=2,3,4,5 e aplique o Princípio de Indução Matemática para obter o resultado do caso geral.)

(b) Considere que $Op(V_1, V_2, \dots, V_N)$ é um operador de ordem N e verique a validade da seguinte relação:

$$Op(V_1, V_2, \cdots, V_N) = (V_N Op (\cdots (V_3 Op (V_2 Op V_1)) \cdots))$$
.

- 12. Verifique a validade das seguintes relações:
 - (a) $A \ XOR \ B = (\neg A \ AND \ B) \ OR \ (A \ AND \ \neg B) = (A \ OR \ B) \ AND \ (\neg A \ OR \ \neg B).$
 - (b) $A \ XNOR \ B = (A \ AND \ B) \ OR \ (\neg A \ AND \ \neg B) = (\neg A \ OR \ B) \ AND \ (A \ OR \ \neg B).$
 - (c) $A XOR B = \neg (A XNOR B) = \neg A XNOR B = A XNOR \neg B$.
 - (d) $A XNOR B = \neg (A XOR B) = \neg A XOR B = A XOR \neg B$.

Capítulo 4

Álgebra de Boole

4.1 Introdução

- A implementação de um sistema digital apresenta um custo.
- Por razões óbvias, sempre é desejado o menor custo possível.
- A complexidade da implementação é um dos itens associados ao seu custo.
- Logo, deve-se minimizar a implementação a fim de se reduzir o seu custo.
- Na modelagem de um problema por equações lógicas, podem-se obter inúmeras equações lógicas equivalentes.
- Nesse caso, visando minimizar o custo da implementação, é interessante que se encontre a menor equação lógica possível, a fim de se alcançar a menor implementação possível.
- O cálculo proposicional não apresenta ferramentas adequadas para encontrar a função lógica mínima, dentro de um conjunto de equações lógicas equivalentes.
- Assim, torna-se necessário definir uma representação para a lógica empregada, a qual forneça ferramentas para a minimização das funções lógicas.
- Tais ferramentas podem ser encontradas na álgebra abstrata.
- A álgebra pode ser definida como o ramo da matemática que estuda as generalizações dos conceitos e das operações da aritmética.
- Em álgebra abstrata definem-se estruturas abstratas que representam, de uma forma global, diversas estruturas encontradas na prática.
- Uma estrutura algébrica adequada para a formulação, a manipulação e a minimização de funções lógicas foi inicialmente proposta por Boole, a qual será tratada neste capítulo.

4.2 Postulados de Huntington

- Na definição de estruturas algébricas abstratas, é utilizado um processo axiomático.
- Em um sistema axiomático, são estabelecidos os seguintes itens:
 - um conjunto de elementos;
 - um determinado número de operações;
 - alguns elementos particulares;
 - algumas propriedades.
- Na associação de uma determinada estrutura abstrata com um determinado sistema existente são definidos:
 - os elementos que compõem os conjuntos;
 - o funcionamento das operações;
 - os elementos particulares.
- Um sistema axiomático pode ser definido de diversas maneiras equivalentes entre si.
- Entre as diversas formas de abordar a estrutura proposta por Boole, uma das mais utilizadas são os Postulados de Huntington, apresentados a seguir.
- Deve ser ressaltado que, nesses postulados, os símbolos denotam itens puramente abstratos. Assim sendo, as operações abstratas "+" e ":" não significam as operações aritméticas básicas de adição e multiplicação. Por sua vez, os símbolos "0" e "1" não representam quantidades, uma vez que não é definido um tipo particular para os elementos.
- Postulados de Huntington
 - 1. Existe um conjunto K de objetos ou elementos, sujeito a uma relação de equivalência, denotada pelo símbolo "=", que satisfaz ao princípio da substituição.
 - 2. É definida uma operação, denotada por "+", tal que, dados a e $b \in \mathbf{K}$, $(a+b) \in \mathbf{K}$. É definida uma operação, denotada por "·", tal que, dados a e $b \in \mathbf{K}$, $(a \cdot b) \in \mathbf{K}$.
 - 3. Existe um elemento $0 \in \mathbf{K}$, tal que, para cada $a \in \mathbf{K}$, (a+0) = a. Existe um elemento $1 \in \mathbf{K}$, tal que, para cada $a \in \mathbf{K}$, $(a \cdot 1) = a$.
 - 4. As seguintes relações de comutatividade são válidas:

$$(a+b) = (b+a)$$
$$(a \cdot b) = (b \cdot a)$$

5. As seguintes relações de distributividade são válidas:

$$a + (b \cdot c) = (a+b) \cdot (a+c)$$
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

6. Para cada elemento $a \in K$ existe um elemento $\overline{a} \in K$, tal que:

$$a + \overline{a} = 1$$
$$a \cdot \overline{a} = 0$$

7. Deve haver, pelo menos, um total de dois elementos $a \in b \in K$, tal que $a \neq b$.

4.3 Versão alternativa para os Postulados de Huntington

- A Álgebra Booleana é um conjunto $B = \{a, b, c, \dots\}$ com duas operações binárias, \cup (cup) e \cap (cap), satisfazendo os seguintes postulados:
 - 1. Cada uma das operações binárias é comutativa.

Assim, dados $a \in b \in \mathbf{B}$, tem-se que:

$$(a \cup b) = (b \cup a)$$
$$(a \cap b) = (b \cap a)$$

2. Existem dois elementos distintos, z e $u \in B$, respectivamente relativos às operações \cup e \cap , tal que:

$$(a \cup z) = a$$
$$(a \cap u) = a$$

3. Cada uma das operações é relativamente distributiva à outra, de tal forma que:

$$a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$$
$$a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$$

4. Para cada elemento $a \in B$ existe um elemento $\overline{a} \in B$, tal que:

```
a \cup \overline{a} = ua \cap \overline{a} = z
```

Deve ser ressaltado que, nesses postulados, os símbolos denotam itens puramente abstratos. Assim sendo, as operações abstratas "∪" e "∩" não significam as operações básicas sobre conjuntos conhecidas respectivamente como união e interseção. Por sua vez, os símbolos "z" e "u" não representam respectivamente os conjuntos Vazio e Universo.

4.4 Dualidade

- A dualidade é a característica daquilo que é dual, o que significa ser composto por duas unidades ou dois elementos.
- Pode-se observar que alguns postulados de Huntington são apresentados em pares.
- Em cada par, um postulado pode ser obtido através do outro, efetuando-se a troca das operações "+" e "·", bem como dos elementos 0 e 1.
- Cada teorema relacionado à estrutura algébrica de Boole possui um teorema dual.
- Ao usar a dualidade sobre a prova de um teorema, pode-se facilmente provar o seu dual.
- A dualidade é normalmente expressa por meio de um teorema. Sendo um teorema sobre teoremas, ela faz parte do que é chamado de metamatemática.

4.5 Lemas e teoremas fundamentais

- Nessa seção, apresentam-se lemas e teoremas para a estrutura algébrica de Boole.
- Os postulados podem ser entendidos como proposições fundamentais do sistema axiomático, enquanto os lemas e os teoremas são proposições derivadas a partir das proposições fundamentais, por meio de regras dedutivas.
- Os lemas são resultados intermediários das provas dos teoremas.
- Os teoremas podem ser usados como ferramentas para resolução de problemas.
- Os lemas e os teoremas, apresentados a seguir, podem ser demonstrados a partir dos postulados de Huntington, definidos anteriormente.
- Lemas:
 - 1. Os elementos 0 e 1 são únicos.
 - 2. Para cada $a \in \mathbf{K}$, $(a+a) = a \in (a \cdot a) = a$.
 - 3. Para cada $a \in K$, (a + 1) = 1 e $(a \cdot 0) = 0$.
 - 4. Os elementos 0 e 1 são distintos e $\overline{1} = 0$.
 - 5. Para cada par $a \in b \in K$, $a + (a \cdot b) = a \in a \cdot (a + b) = a$,
 - 6. O elemento \overline{a} , definido no Postulado 6, é único, para cada $a \in K$.
 - 7. Para cada $a \in \mathbf{K}$, $a = \overline{(\overline{a})}$.
 - 8. Para quaisquer três elementos $a, b \in c \in \mathbf{K}, a \cdot [(a+b)+c] = [(a+b)+c] \cdot a = a$.
- Teoremas:
 - 1. Para quaisquer três elementos $a, b \in c \in K$, a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - 2. Para cada par $a \in b \in K$, $a + (\overline{a} \cdot b) = (a + b)$ $a \cdot (\overline{a} + b) = (a \cdot b)$
 - 3. Para cada par $a \in b \in K$, $\frac{\overline{a+b} = \overline{a} \cdot \overline{b}}{\overline{a \cdot b} = \overline{a} + \overline{b}}$
 - 4. Para quaisquer três elementos a,b e $c \in \mathbf{K}$, $(a \cdot b) + (\overline{a} \cdot c) + (b \cdot c) = (a \cdot b) + (\overline{a} \cdot c)$

4.6 Definição de uma estrutura algébrica particular

De acordo com o Postulado 7, apresentado acima, o menor conjunto K possível é aquele que possui dois elementos. Por sua vez, uma estrutura algébrica que possa ser associada ao Cálculo Proposicional também deve possuir um conjunto K com dois elementos. Portanto, para modelar algebricamente o Cálculo Proposicional, pode-se definir a seguinte estrutura algébrica:

- Elementos: $K = \{0, 1\}.$
- Complementos: $\begin{cases} 0 = \overline{1} \\ 1 = \overline{0} \end{cases} .$
- Identidades: $\begin{cases} 1 \cdot 1 &= 1+1 &= 1+0 &= 0+1 &= 1 \\ 0+0 &= 0 \cdot 0 &= 0 \cdot 1 &= 1 \cdot 0 &= 0 \end{cases} .$

4.7 Exemplos de associação com a estrutura algébrica de Boole

- Cálculo proposicional: a associação entre o cálculo proposicional e a estrutura algébrica de Boole é apresentada na Tabela 4.1.
- Teoria de conjuntos: a associação entre a teoria de conjuntos e a estrutura algébrica de Boole é apresentada na Tabela 4.2.
- Das Tabelas 4.1 e 4.2, pode-se concluir que o Cálculo proposicional e Teoria de Conjuntos compartilham a mesma estrutura algébrica de Boole.

Cálculo Proposicional	Álgebra de Boole
^	
V	+
\overline{F}	0
T	1
$\neg(S)$	$\frac{1}{S}$

Tabela 4.1: Tabela de mapeamento: Cálculo Proposicional \times Álgebra de Boole.

Teoria de Conjuntos	Álgebra de Boole
\cap	•
U	+
S_Z	0
S_U	1
C(S)	\overline{S}

Tabela 4.2: Tabela de mapeamento: Teoria de Conjuntos \times Álgebra de Boole.

4.8 Isomorfismo

- Sistemas que são modelados pela mesma estrutura algébrica são ditos sistemas isomórficos.
- Sistemas isomórficos podem ser mapeados uns nos outros, por intermédio da estrutura compartilhada.
- As operações realizadas em cada sistema isomórfico são equivalentes e podem ser relacionadas entre si.
- As ferramentas existentes em um sistema isomófico podem ser usadas para resolver problemas nos sistemas equivalentes, através do mapeamento adequado.

4.9 Simplificação algébrica de expressões lógicas

- As expressões lógicas, provenientes de problemas reais e que devem ser implementadas com o menor custo possível, podem ser simplificadas por meio das ferramentas da álgebra abstrata (Postulados, Lemas e Teoremas).
- Inicialmente, deve-se mapear o sistema lógico (cálculo proposicional) em um sistema algébrico (estrutura algébrica de Boole).
- Em seguida, pode-se realizar a manipulação algébrica das expressões lógicas mapeadas, a fim de reduzí-las a formas mais simples e, conseqüentemente, reduzir o custo de sua implementação.
- As ferramentas algébricas utilizadas são os postulados, os lemas e os teoremas da estrutura algébrica com a qual se esteja trabalhando.
- A manipulação algébrica não sistemática depende da habilidade do profissional e não é diretamente automatizável, uma vez que não há uma definição inicial nem de qual conjunto de ferramentas nem de qual item do conjunto deva ser utilizado, nem mesmo em qual ordem.
- Portanto, faz-se necessário utilizar algum mecanismo mais adequado à atividade de simplificação das expressões.
- Um exemplo de manipulação algébrica não sistemática é apresentado a seguir.

4.10 Exemplo de manipulação algébrica não sistemática: Postulados, Lemas, Teoremas

Inicialmente, usando a Tabela 4.1, a expressão lógica $(A \lor B) \land (A \lor \neg B) \land (\neg A \lor B)$ é mapeada na expressão booleana $(A+B) \cdot (A+\overline{B}) \cdot (\overline{A}+B)$. Em seguida, as Equações (4.1) a (4.3) ilustram possíveis manipulações algébricas, não sistemáticas, da expressão booleana, a fim de minimizá-la. É fácil perceber, por essas equações, que, dependendo das escolhas realizadas, há uma grande diferença no esforço dispendido. Além disso, não há qualquer garantia de que a expressão final seja a expressão mínima, ou de que a expressão mínima será alcançada.

$$(A+B) \cdot (A+\overline{B}) \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$([(A+B) \cdot (A)] + [(A+B) \cdot (\overline{B})]) \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$([(A+A) + (B \cdot A)] + [(A \cdot \overline{B}) + (B \cdot \overline{B})]) \cdot (\overline{A}+B)$$

$$\downarrow L2/P6$$

$$([A+(B \cdot A)] + [(A \cdot \overline{B}) + 0]) \cdot (\overline{A}+B)$$

$$\downarrow P4/P3$$

$$([A+(A \cdot B)] + [(A \cdot \overline{B})]) \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$[A+(A \cdot \overline{B})] \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$[A \cdot (\overline{A}+B)] + [(A \cdot \overline{B}) \cdot (\overline{A}+B)]$$

$$\downarrow P5$$

$$(A \cdot \overline{A}) + (A \cdot B) + (A \cdot \overline{B} \cdot \overline{A}) + (A \cdot \overline{B} \cdot B)$$

$$\downarrow P6/P4/P4$$

$$0 + (A \cdot B) + (A \cdot \overline{A} \cdot \overline{B}) + (A \cdot B \cdot \overline{B})$$

$$\downarrow P6$$

$$0 + (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B)$$

$$\downarrow P6$$

$$0 + (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B)$$

$$\downarrow P6$$

$$0 + (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B)$$

$$\downarrow P4/L3$$

$$0 + (A \cdot B) + 0 + 0$$

$$\downarrow P3/P3/P3$$

$$(A \cdot B)$$

$$(4.1)$$

$$(A+B) \cdot (A+\overline{B}) \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$[A+(B \cdot \overline{B})] \cdot (\overline{A}+B)$$

$$\downarrow P6$$

$$(A+0) \cdot (\overline{A}+B)$$

$$\downarrow P3$$

$$A \cdot (\overline{A}+B)$$

$$\downarrow P5$$

$$(A \cdot \overline{A}) + (A \cdot B)$$

$$\downarrow P6$$

$$0 + (A \cdot B)$$

$$\downarrow P4$$

$$(A \cdot B) + 0$$

$$\downarrow P3$$

$$(A \cdot B)$$

$$(A+B) \cdot (A+\overline{B}) \cdot (\overline{A}+B)$$

$$\downarrow L2$$

$$(A+B) \cdot (A+B) \cdot (A+\overline{B}) \cdot (\overline{A}+B)$$

$$\downarrow P4$$

$$(A+B) \cdot (A+\overline{B}) \cdot (A+B) \cdot (\overline{A}+B)$$

$$\downarrow P5/P5$$

$$[A+(B \cdot \overline{B})] \cdot [(A \cdot \overline{A}) + B]$$

$$\downarrow P6/P6$$

$$[A+0] \cdot [0+B]$$

$$\downarrow P4$$

$$[A+0] \cdot [B+0]$$

$$\downarrow P3/P3$$

$$(A \cdot B)$$

$$(4.3)$$

4.11 Exemplo de manipulação algébrica por isomorfismo: Diagrama de Venn

- Na tentativa de sistematizar o processo de simplificação de uma expressão lógica, pode-se aproveitar o isomorfismo existente entre o Cálculo Proposicional e a Teoria de Conjuntos.
- Mapeando-se as operações e os elementos dos dois sistemas, o Diagrama de Venn pode ser usado na simplificação de expressões lógicas que envolvam 2 ou 3 variáveis.
- Nesse sentido, a cada variável da expressão lógica é associado um conjunto e para cada linha da Tabela Verdade da expressão lógica é associada uma região do Diagrama de Venn construído com os conjuntos definidos.
- A Figura 4.1 mostra um exemplo de mapeamento entre uma função genérica de duas variáveis e um Diagrama de Venn.
- Através da manipulação do Diagrama de Venn, pode-se tentar encontrar uma expressão simplificada, equivalente à expressão original.
- Ainda assim, embora seja um processo sistemático, a etapa final da simplificação através do Diagrama de Venn exige habilidade para encontrar a expressão mais simples.
- Além disso, para expressões que envolvam mais variáveis, o processo torna-se complexo e confuso.
- Portanto, devem ser utilizadas ferramentas mais eficientes, as quais serão tratadas a seguir.

Figura 4.1: Mapeamento entre uma função genérica de duas variáveis e um Diagrama de Venn.

4.12 Resumo das relações algébricas

As Tabelas 4.3 a 4.7 apresentam um resumo das relações algébricas abordadas neste capítulo: os postulados, os lemas, os teoremas, a definição de uma estrutura algébrica de Boole particular e os isomorfismos.

	Postulados de Huntington			
Р3	$\begin{cases} a+0 = a \\ a \cdot 1 = a \end{cases}$			
P4	$\begin{cases} (a+b) &= (b+a) \\ (a \cdot b) &= (b \cdot a) \end{cases}$			
P5	$\begin{cases} a + (b \cdot c) = (a+b) \cdot (a+c) \\ a \cdot (b+c) = (a \cdot b) + (a \cdot c) \end{cases}$			
P6	$\begin{cases} a + \overline{a} &= 1 \\ a \cdot \overline{a} &= 0 \end{cases}$			

Tabela 4.3: Resumo dos postulados de Huntington para a estrutura algébrica de Boole.

	Lemas
L2	$\int a + a = a$
112	$a \cdot a = a$
L3	$\int a+1 = 1$
ПО	$\begin{array}{cccc} a \cdot 0 & = & 0 \end{array}$
L4	$\int 0 = \overline{1}$
174	$\sqrt{0} = 1$
L5	$\int a + (a \cdot b) = a$
Ц	$\begin{array}{ccc} a \cdot (a+b) & = & a \end{array}$
L7	$\{a = \overline{(\overline{a})}$
L8	${a \cdot [(a+b) + c] = [(a+b) + c] \cdot a = a}$

Tabela 4.4: Resumo dos lemas para a estrutura algébrica de Boole.

	Teoremas
T1	$\begin{cases} a + (b+c) &= (a+b) + c \\ a \cdot (b \cdot c) &= (a \cdot b) \cdot c \end{cases}$
Т2	$\begin{cases} a + (\overline{a} \cdot b) &= (a+b) \\ a \cdot (\overline{a} + b) &= (a \cdot b) \end{cases}$
Т3	$ \left\{ \begin{array}{lcl} \overline{(a+b)} & = & \overline{a} \cdot \overline{b} \\ \overline{(a \cdot b)} & = & \overline{a} + \overline{b} \end{array} \right. $
Т4	$\begin{cases} (a \cdot b) + (\overline{a} \cdot c) + (b \cdot c) &= (a \cdot b) + (\overline{a} \cdot c) \\ (a + b) \cdot (\overline{a} + c) \cdot (b + c) &= (a + b) \cdot (\overline{a} + c) \end{cases}$

Tabela 4.5: Resumo dos teoremas para a estrutura algébrica de Boole.

Estrutura algébrica de Boole Particular			
Elementos	$\{K = \{0, 1\}$		
Complementos	$\begin{cases} 0 = \overline{1} \\ \overline{0} = 1 \end{cases}$		
Identidades	$ \begin{cases} 1 \cdot 1 &= 1+1 &= 1+0 &= 0+1 &= 1 \\ 0+0 &= 0 \cdot 0 &= 0 \cdot 1 &= 1 \cdot 0 &= 0 \end{cases} $		

Tabela 4.6: Resumo da definição de uma estrutura algébrica de Boole particular.

Isomorfismos				
Teoria de Conjuntos	Cálculo Proposicional	Álgebra de Boole		
U	V	+		
\cap	\wedge	•		
S_Z	F	0		
S_U	T	1		
C(S)	$\neg(S)$	\overline{S}		

Tabela 4.7: Resumo das relações de isomorfismo.

4.13 Exercícios propostos

- 1. Considerando o isomorfismo do Cálculo Proposicional com a Álgebra de Boole Binária:
 - (a) Provar que os postulados, os lemas e os teoremas, da Álgebra de Boole, se aplicam para o Cálculo Proposicional.
 - (b) Para cada um dos operadores lógicos (unário e binários), escrever sua Tabela Verdade usando a notação da Álgebra de Boole.
- 2. Para uma função genérica de duas variáveis, montar sua Tabela Verdade e identificar, em um Diagrama de Venn correspondente, cada uma das linhas da tabela.
- 3. Para uma função genérica de três variáveis, montar sua Tabela Verdade e identificar, em um Diagrama de Venn correspondente, cada uma das linhas da tabela.
- 4. Desenhar um Diagrama de Venn equivalente para cada uma das funções lógicas $X_i = f_i(A, B)$, onde $0 \le i \le 15$,
- 5. Para os exercícios listados abaixo, considerar as equações lógicas apresentadas em seguida.
 - (a) Escrever as equações booleanas referentes às equações lógicas fornecidas.
 - (b) Montar a Tabela Verdade para cada uma das equações lógicas fornecidas, usando a notação da Álgebra de Boole.
 - (c) Aplicando os postulados, os lemas e os teoremas, da Álgebra Abstrata de Boole, apresentar uma simplificação para as equações booleanas referentes às equações lógicas fornecidas.
 - (d) Utilizando o Diagrama de Venn, apresentar uma simplificação para as equações booleanas referentes às equações lógicas fornecidas.

Equações lógicas:

i.
$$F(A, B) = (A \lor B) \land (A \lor \neg B) \land (\neg A \lor B)$$
.

ii.
$$F(A, B) = (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)$$
.

iii.
$$F(A, B) = (A \land \neg B) \lor (\neg A \land B) \lor (A \land B)$$
.

iv.
$$F(A, B) = (\neg A \land \neg B) \lor (\neg A \land B) \lor (A \land \neg B).$$

v.
$$F(A, B, C, D) = (A \lor B) \land (\neg(C \land D)).$$

- 6. Provar as relações dos conjuntos duais abaixo, utilizando a Tabela Verdade com a notação da Álgebra de Boole. Repetir o exercício, utilizando o Diagrama de Venn.
 - (a) $A + 0 = A \tag{P3}$

$$A + \overline{A} = 1 \tag{P6}$$

$$A + A = A \tag{L2}$$

$$A + 1 = 1 \tag{L3}$$

(b)
$$A \cdot 1 = A$$
 (P3)

$$A \cdot \overline{A} = 0 \tag{P6}$$

$$A \cdot A = A \tag{L2}$$

$$A \cdot 0 = 0 \tag{L3}$$

- 7. Provar as relações abaixo, relativas ao conectivo XOR (\oplus) , utilizando a Tabela Verdade com a notação da Álgebra de Boole. Repetir os itens (a) a (n), utilizando o Diagrama de Venn.
 - (a) $A \oplus 0 = A$
 - (b) $A \oplus 1 = \overline{A}$
 - (c) $A \oplus A = 0$
 - (d) $A \oplus \overline{A} = 1$
 - (e) $\overline{A} \oplus \overline{A} = 0$
 - (f) $(A \oplus A) \oplus A = A$
 - (g) $(A \oplus A) \oplus \overline{A} = \overline{A}$
 - (h) $A \oplus (\overline{A} \oplus \overline{A}) = A$
 - (i) $\overline{A} \oplus (\overline{A} \oplus \overline{A}) = \overline{A}$
 - (j) $A \oplus B = (\overline{A} \cdot B) + (A \cdot \overline{B}) = (\overline{A} + \overline{B}) \cdot (A + B)$
 - (k) $\overline{A \oplus B} = (\overline{A} \cdot \overline{B}) + (A \cdot B) = (\overline{A} + B) \cdot (A + \overline{B})$
 - (1) $\overline{A \oplus B} = \overline{A} \oplus B = A \oplus \overline{B}$
 - (m) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$
 - (n) $A \cdot (B \oplus C) = (A \cdot B) \oplus (A \cdot C)$
 - (o) $f(C,D,E,F)=(C\cdot D)+(E\cdot F)=A\oplus B$, para $C=\overline{A},\,D=B,\,E=A$ e $F=\overline{B}$.
 - (p) $f(C, D, E, F) = (C \cdot D) + (E \cdot F) = \overline{A \oplus B}$, para $C = \overline{A}$, $D = \overline{B}$, $E = A \in F = B$.
 - (q) $f(C, D, E, F) = (C + D) \cdot (E + F) = A \oplus B$, para $C = \overline{A}$, $D = \overline{B}$, $E = A \in F = B$.
 - (r) $f(C, D, E, F) = (C + D) \cdot (E + F) = \overline{A \oplus B}$, para $C = \overline{A}$, D = B, E = A e $F = \overline{B}$.

Capítulo 5

Formas padrões para representação de expressões booleanas

5.1 Introdução

- O projeto de sistemas digitais convencionais envolve a implementação de equações lógicas.
- Equações lógicas expressas pela Álgebra de Boole são denominadas equações booleanas.
- A minimização do custo de implementação de um projeto está associada à simplificação de suas equações booleanas.
- Um processo eficiente de simplificação deve ser simples de se entender, fácil de se operar, de rápida execução e completamente sistemático, a fim de permitir sua automatização.
- Os processos sistemáticos de simplificação que serão apresentados nos capítulos que se seguem trabalham sobre uma função expressa em formas padrões.
- Assim, para que se possa usar tais ferramentas de projeto, expressões booleanas genéricas devem ser inicialmente expandidas para tais formas.
- As formas padrões básicas são as decomposições da expressão booleana original em mintermos e maxtermos.
- Uma expansão em mintermos envolve realizar os mintermos necessários com operadores AND e, em seguida, combiná-los com operadores OR. Por essa razão, uma decomposição em mintermos é chamada de forma padrão AND-OR.
- Uma expansão em maxtermos envolve realizar os maxtermos necessários com operadores OR e, em seguida, combiná-los com operadores AND Por essa razão, uma decomposição em maxtermos é chamada de forma padrão OR-AND.
- As demais formas padrões surgem como resultado de manipulações algébricas das formas padrões básicas.
- Podem ser identificados dois conjuntos de formas padrões:
 - Grupo AND-OR \rightarrow {AND-OR, NAND-NAND, OR-NAND, NOR-OR}.
 - Grupo OR-AND → {AND-NOR, NAND-AND, OR-AND, NOR-NOR}.

5.2 Definições

- Literal: variável booleana ou seu complemento.
- Termo (combinação de literais):
 - Termo produto: combinação de literais através do operador AND.
 - Termo soma: combinação de literais através do operador OR.
 - Termo normal: termo produto ou termo soma onde nenhum literal aparece mais de uma vez.
 - Termo normal expandido: termo normal que contém todos os literais envolvidos na expressão booleana.

• Observações:

- Uma vez que $(A \cdot A) = (A + A) = A$, $(A + \overline{A}) = 1$ e $(A \cdot \overline{A}) = 0$, conclui-se que múltiplas ocorrências de um literal em um termo soma ou em um termo produto acarretam: i) redundância ou ii) funções triviais.
- Portanto, pode-se dizer que, para fins de simplificação, a forma normal é a melhor forma de representação.
- Além disso, como será abordado a seguir, a forma normal expandida é o ponto de partida para o processo de simplificação adotado.
- Expansão (combinação de termos):
 - Soma de produtos (SOP): combinação de termos produto através do operador OR.
 - Produto de somas (POS): combinação de termos soma através do operador AND.
 - Soma de produtos normal: SOP onde os termos produto são termos normais.
 - Produto de somas normal: POS onde os termos soma são termos normais.
 - Forma normal expandida: forma normal (SOP ou POS) onde cada termo é um termo normal expandido.

• Expansão padrão:

- Em uma forma SOP normal expandida, os termos produto são chamados de: produtos padrões, produtos canônicos ou mintermos.
- A forma SOP normal expandida recebe as seguintes denominações: SOP padrão, SOP canônica, soma de mintermos, decomposição em mintermos ou forma normal disjuntiva completa.
- Em uma forma POS normal expandida, os termos soma são chamados de: somas padrões, somas canônicas ou maxtermos.
- A forma POS normal expandida recebe as seguintes denominações: POS padrão, POS canônica, produto de maxtermos, decomposição em maxtermos ou forma normal conjuntiva completa.

• Exemplos da definição de mintermos e maxtermos, para três variáveis, são apresentados na Tabela 5.1 e na Tabela 5.2, respectivamente.

Linha	A	В	C	Produto	Mintermo
0	0	0	0	$(\overline{A} \cdot \overline{B} \cdot \overline{C})$	m_0
1	0	0	1	$(\overline{A} \cdot \overline{B} \cdot C)$	m_1
2	0	1	0	$(\overline{A} \cdot B \cdot \overline{C})$	m_2
3	0	1	1	$(\overline{A} \cdot B \cdot C)$	m_3
4	1	0	0	$(A \cdot \overline{B} \cdot \overline{C})$	m_4
5	1	0	1	$(A \cdot \overline{B} \cdot C)$	m_5
6	1	1	0	$(A \cdot B \cdot \overline{C})$	m_6
7	1	1	1	$(A \cdot B \cdot C)$	m_7

Tabela 5.1: Definição de mintermos para três variáveis (A,B,C).

Linha	A	B	C	Soma	Maxtermo
0	0	0	0	(A+B+C)	M_0 (ou M_7)
1	0	0	1	$(A+B+\overline{C})$	M_1 (ou M_6)
2	0	1	0	$(A + \overline{B} + C)$	$M_2 (ou M_5)$
3	0	1	1	$(A + \overline{B} + \overline{C})$	M_3 (ou M_4)
4	1	0	0	$(\overline{A} + B + C)$	M_4 (ou M_3)
5	1	0	1	$(\overline{A} + B + \overline{C})$	$M_5 (ou M_2)$
6	1	1	0	$(\overline{A} + \overline{B} + C)$	M_6 (ou M_1)
7	1	1	1	$(\overline{A} + \overline{B} + \overline{C})$	$M_7 (ou M_0)$

Tabela 5.2: Definição de maxtermos para três variáveis (A,B,C).

5.3 Obtenção de formas SOP e POS padrões

Dada uma expressão booleana qualquer, pode-se obter uma forma padrão (SOP ou POS) por meio dos seguintes procedimentos ou de suas combinações: complementação da lista de termos canônicos, manipulação algébrica e utilização de tabela verdade. Cada um deles é abordado a seguir.

5.3.1 Complementação da lista de termos canônicos

Dada uma função lógica, cada termo canônico (mintermo ou maxtermo) de uma forma padrão que a represente é associado a uma linha da sua tabela verdade.

Uma vez que foi adotada uma numeração única para mintermos e maxtermos, associada com o número da linha da tabela verdade, pode-se facilmente obter a lista do termos canônicos de um dos dois tipos por complementação numérica da lista do outro tipo.

Por exemplo, dada a expressão $F(A,B,C) = \sum (1,3,5)$ para definir a SOP padrão, pode-se obter a expressão $F(A,B,C) = \prod (0,2,4,6,7)$ para definir a POS padrão, e vice-versa, por simples complementação numérica.

5.3.2 Manipulação algébrica

- Para se obter uma forma normal:
 - Inicialmente, se houver negação de algum termo que não seja um literal, deve-se aplicar o teorema de De Morgan.
 - Quando houver negação apenas de literais, deve-se aplicar, repetidamente, as regras de distributividade.
 - Finalmente, deve-se eliminar literais e/ou termos redundantes ou triviais.
- Para se obter a forma normal expandida:
 - Primeiro, deve-se inserir os literais faltosos nos termos normais. Isso é feito aplicandose os postulados, os lemas e os teoremas da álgebra de Boole sobre a forma normal.
 - Em seguida, deve-se eliminar literais e/ou termos redundantes ou triviais.
- Um exemplo do procedimento para a obtenção de uma forma POS padrão é apresentado na Equação (5.1), para F = f(A, B, C, D).

$$F = (A+B) \cdot \overline{(C \cdot D)}$$

$$= (A+B) \cdot \overline{(C \cdot D)}$$

$$= (A+B+0) \cdot (0+\overline{C}+\overline{D})$$

$$= [A+B+(C \cdot \overline{C})] \cdot [(B \cdot \overline{B}) + \overline{C} + \overline{D}]$$

$$= (A+B+C) \cdot (A+B+\overline{C}) \cdot (B+\overline{C}+\overline{D}) \cdot (\overline{B}+\overline{C}+\overline{D})$$

$$= (A+B+C+0) \cdot (A+B+\overline{C}+0) \cdot (0+B+\overline{C}+\overline{D}) \cdot (0+\overline{B}+\overline{C}+\overline{D})$$

$$= [A+B+C+(D \cdot \overline{D})] \cdot [A+B+\overline{C}+(D \cdot \overline{D})] \cdot [(A \cdot \overline{A}) + B + \overline{C} + \overline{D}]$$

$$= (A+B+C+D) \cdot (A+B+C+\overline{D}) \cdot (A+B+\overline{C}+D)$$

$$= (A+B+C+D) \cdot (A+B+C+\overline{D}) \cdot (A+B+\overline{C}+D) \cdot (A+B+\overline{C}+D) \cdot (A+B+\overline{C}+\overline{D}) \cdot (A+B+$$

• Um exemplo do procedimento para a obtenção de uma forma SOP padrão é apresentado na Equação (5.2), para F = f(A, B, C, D).

$$F = (A+B) \cdot \overline{(C \cdot D)}$$

$$= (A+B) \cdot \overline{(C \cdot D)}$$

$$= [(A+B) \cdot \overline{C}] + [(A+B) \cdot \overline{D}]$$

$$= [(A \cdot \overline{C}) + (B \cdot \overline{C})] + [(A \cdot \overline{D}) + (B \cdot \overline{D})]$$

$$= (A \cdot \overline{C}) + (B \cdot \overline{C}) + (A \cdot \overline{D}) + (B \cdot \overline{D})$$

$$= (A \cdot 1 \cdot \overline{C}) + (1 \cdot B \cdot \overline{C}) + (A \cdot 1 \cdot \overline{D}) + (1 \cdot B \cdot \overline{D})$$

$$= (A \cdot (B+\overline{B}) \cdot \overline{C}] + [(A+\overline{A}) \cdot B \cdot \overline{C}] + (A \cdot (B+\overline{B}) \cdot \overline{D}) + [(A+\overline{A}) \cdot B \cdot \overline{D}]$$

$$= (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D})$$

$$= (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D}) + (A \cdot B \cdot \overline{D})$$

$$= (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C} \cdot 1) + (A \cdot B \cdot \overline{C} \cdot 1) + (A \cdot B \cdot \overline{C} \cdot 1) + (A \cdot B \cdot \overline{C} \cdot \overline{D}) + (A \cdot B \cdot \overline{C} \cdot \overline{$$

5.3.3 Utilização de tabela verdade

A partir de uma tabela verdade, pode-se obter diretamente as formas padrões na forma de decomposição em mintermos ou maxtermos. Ambas as formas são discutidas a seguir.

Decomposição em mintermos

• Dada uma expressão booleana, pode-se montar uma tabela verdade que a represente, como demonstrado na Tabela 5.3, para uma função X = f(A, B, C).

A	B	C	X	Y_1	Y_2	Y_3	Linha	$L\'ogica$	Mintermo
0	0	0	0	0	0	0	0	$(\overline{A} \cdot \overline{B} \cdot \overline{C})$	m_0
0	0	1	1	1	0	0	1	$(\overline{A} \cdot \overline{B} \cdot C)$	m_1
0	1	0	0	0	0	0	2	$(\overline{A} \cdot B \cdot \overline{C})$	m_2
0	1	1	0	0	0	0	3	$(\overline{A} \cdot B \cdot C)$	m_3
1	0	0	1	0	1	0	4	$(A \cdot \overline{B} \cdot \overline{C})$	m_4
1	0	1	0	0	0	0	5	$(A \cdot \overline{B} \cdot C)$	m_5
1	1	0	1	0	0	1	6	$(A \cdot B \cdot \overline{C})$	m_6
1	1	1	0	0	0	0	7	$(A \cdot B \cdot C)$	m_7

Tabela 5.3: Exemplo de função e associação de mintermos.

• Da Tabela 5.3, pode-se escrever que

$$Y_1 = f_1(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) = m_1$$

$$Y_2 = f_2(A, B, C) = (A \cdot \overline{B} \cdot \overline{C}) = m_4$$

$$Y_3 = f_3(A, B, C) = (A \cdot B \cdot \overline{C}) = m_6$$

e que
$$X = f(A, B, C) = (Y_1) + (Y_2) + (Y_3)$$
.

- Pelas definições apresentadas, as funções auxiliares Y_i são mintermos e a função X pode ser descrita pela forma SOP padrão $X = m_1 + m_4 + m_6 = \sum m(1, 4, 6)$.
- Analisando-se as funções auxiliares Y_i , pode-se observar que, para cada combinação das variáveis, apenas um dos termos produto apresenta um valor lógico 1, enquanto todos os outros assumem o valor lógico 0. Essa é a razão pela qual tais termos são denominados produtos canônicos ou mintermos.
- Uma vez que toda expressão booleana é completamente representada por uma tabela verdade e, a partir da tabela verdade, sempre é possível se obter uma forma SOP padrão, pode-se enunciar o teorema a seguir.
- Teorema: Qualquer expressão booleana de N variáveis, $y = f(x_1, x_2, \dots, x_N)$, pode ser expressa por uma forma SOP padrão.

Decomposição em maxtermos

• Dada uma expressão booleana, pode-se montar uma tabela verdade que a represente, como demonstrado na Tabela 5.4, para uma função X = f(A, B, C).

A	В	C	X	Z_1	Z_2	Z_3	Z_4	Z_5	Linha	$L\'ogica$	Maxtermo
0	0	0	0	0	1	1	1	1	0	(A+B+C)	$M_0 (ou M_7)$
0	0	1	1	1	1	1	1	1	1	$(A+B+\overline{C})$	$M_1 (ou M_6)$
0	1	0	0	1	0	1	1	1	2	$\left(A + \overline{B} + C\right)$	$M_2 (ou M_5)$
0	1	1	0	1	1	0	1	1	3	$(A + \overline{B} + \overline{C})$	M_3 (ou M_4)
1	0	0	1	1	1	1	1	1	4	$(\overline{A} + B + C)$	M_4 (ou M_3)
1	0	1	0	1	1	1	0	1	5	$(\overline{A} + B + \overline{C})$	$M_5 (ou M_2)$
1	1	0	1	1	1	1	1	1	6	$(\overline{A} + \overline{B} + C)$	M_6 (ou M_1)
1	1	1	0	1	1	1	1	0	7	$(\overline{A} + \overline{B} + \overline{C})$	$M_7 (ou M_0)$

Tabela 5.4: Exemplo de função e definição de maxtermos.

• Da Tabela 5.4, pode-se escrever que

$$Z_{1} = f_{1}(A, B, C) = (A + B + C) = M_{0}$$

$$Z_{2} = f_{2}(A, B, C) = (A + \overline{B} + C) = M_{2}$$

$$Z_{3} = f_{3}(A, B, C) = (A + \overline{B} + \overline{C}) = M_{3}$$

$$Z_{4} = f_{4}(A, B, C) = (\overline{A} + B + \overline{C}) = M_{5}$$

$$Z_{5} = f_{5}(A, B, C) = (\overline{A} + \overline{B} + \overline{C}) = M_{7}$$

e que
$$X = f(A, B, C) = (Z_1) \cdot (Z_2) \cdot (Z_3) \cdot (Z_4) \cdot (Z_5)$$
.

- Pelas definições apresentadas, as funções auxiliares Z_i são maxtermos e a função X pode ser descrita pela forma POS padrão $X = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_7 = \prod M(0, 2, 3, 5, 7)$.
- Analisando-se as funções auxiliares Z_i , pode-se observar que, para cada combinação das variáveis, apenas um dos termos soma apresenta um valor lógico 0, enquanto todos os outros assumem o valor lógico 1. Essa é a razão pela qual tais termos são denominados somas canônicas ou maxtermos.
- Uma vez que toda expressão booleana é completamente representada por uma tabela verdade e, a partir da tabela verdade, sempre é possível se obter uma forma POS padrão, pode-se enunciar o teorema a seguir.
- **Teorema**: Qualquer expressão booleana de N variáveis, $y = f(x_1, x_2, \dots, x_N)$, pode ser expressa por uma forma POS padrão.

5.3.4 Negação das formas SOP e POS

Dadas uma função genérica $F(A, B, C, ...) = F(\cdot)$ e a sua negação $\overline{F}(A, B, C, ...) = \overline{F}(\cdot)$, podem-se estabelecer relações simples entre as suas formas padrões SOP e POS.

Primeiramente, deve-se lembrar a relação entre mintermos e maxtermos, dada por

$$m_k = \overline{M_k} \ .$$

Em seguida, deve-se levar em consideração o Teorema de De Morgan para os casos genéricos dados por

$$\overline{(X \cdot Y \cdot Z \cdot \ldots)} = (\overline{X} + \overline{Y} + \overline{Z} + \ldots)$$

e

$$\overline{(X+Y+Z+\ldots)} = (\overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \ldots) .$$

Por fim, definindo-se, sem perda de generalidade, as formas padrões SOP e POS de $F(\cdot)$ respectivamente como

$$F_{SOP}(\cdot) = (m_i + m_j + m_k)$$

e

$$F_{POS}(\cdot) = (M_l \cdot M_m \cdot M_n \cdot \ldots)$$
,

bem como as formas padrões SOP e POS de $\overline{F}(\cdot)$ respectivamente como

$$\overline{F}_{SOP}(\cdot) = (m_l + m_m + m_n + \ldots)$$

e

$$\overline{F}_{POS}(\cdot) = (M_i \cdot M_j \cdot M_k) ,$$

obtêm-se as seguintes relações:

$$\overline{F}_{POS}(\cdot) = (M_i \cdot M_j \cdot M_k)
= (\overline{m}_i \cdot \overline{m}_j \cdot \overline{m}_k)
= (\overline{m}_i + m_j + m_k)
= [\overline{F}_{SOP}(\cdot)]$$

e

$$\overline{F}_{SOP}(\cdot) = (m_l + m_m + m_n + \ldots)
= (\overline{M}_l + \overline{M}_m + \overline{M}_n + \ldots)
= (\overline{M}_l \cdot M_m \cdot M_n \cdot \ldots)
= [\overline{F_{POS}(\cdot)}].$$

5.4 Conjuntos de formas padrões

5.4.1 Definição

- Uma expressão booleana pode ser representada por um total de oito formas padrões.
- Uma soma de mintermos (SOP padrão) é identificada como uma forma AND-OR.
- Um produto de maxtermos (POS padrão) é identificado como uma forma OR-AND.
- A partir da forma AND-OR, pode-se obter o seguinte grupo de formas padrões: {AND-OR, NAND-NAND, OR-NAND, NOR-OR}.
- A partir da forma OR-AND, pode-se obter o seguinte grupo de formas padrões: {OR-AND, NOR-NOR, AND-NOR, NAND-AND}.

5.4.2 Obtenção

- Dentro de um mesmo grupo, as formas podem ser obtidas através da aplicação sucessiva dos Teoremas de De Morgan.
- A mudança de grupo pode ser realizada aplicando-se a regra de distributividade entre as formas AND-OR e OR-AND.
- As Tabelas 5.5 a 5.7, exemplificam, para a função XOR, a obtenção do grupo AND-OR, a mudança de grupo e a obtenção do grupo OR-AND, respectivamente.
- Partindo-se da tabela verdade, pode-se obter diretamente algumas formas:
 - A soma de mintermos da função fornece a forma AND-OR.
 - O produto de maxtermos da função, fornece a forma OR-AND.
 - A soma de mintermos da função complementar, fornece a forma AND-NOR (grupo OR-AND).
 - O produto de maxtermos da função complementar, fornece a forma OR-NAND (grupo AND-OR).
- Assim, uma outra técnica para mudança de grupo é montar a tabela verdade da função, a partir de uma dada forma. De posse da tabela verdade, pode-se obter uma forma do outro grupo.

5.4.3 Utilização

- O projeto e a análise de circuitos digitais convencionais são baseados na formação, na manipulação e na implementação de funções lógicas/booleanas. Por dois motivos básicos, as formas AND-OR e OR-AND são as formas mais utilizadas na representação de tais funções. Primeiro, ela são diretamente obtidas no processo de especificação do problema. Segundo, elas são mais próximas da forma como se processa o pensamento (expressão lógica) do ser humano.
- Por outro lado, as formas NAND-NAND e NOR-NOR são as formas básicas de operação dos circuitos eletro-eletrônicos usados para implementar as funções lógicas/booleanas.

- Portanto, transformações entre tais formas são freqüentemente realizadas.
- As formas padrões possuem dois grandes atrativos. Por um lado, e de uma forma geral, elas apresentam o menor retardo de operação, uma vez que são compostas apenas por dois planos de lógica. Além disso, elas são o ponto de partida para um processo de simplificação sistemático e eficiente, conforme será abordado em seguida.

	Expressão boolena						
F(A,B)	=	$A \oplus B$					
	=	$(\overline{A} \cdot B) + (A \cdot \overline{B})$	AND-OR				
	=	$\overline{(\overline{A} \cdot B) + (A \cdot \overline{B})}$					
	=	$\overline{(\overline{A} \cdot B)} \cdot \overline{(A \cdot \overline{B})} = (\overline{A} \uparrow B) \uparrow (A \uparrow \overline{B})$	NAND-NAND				
	=	$ \underline{(A+\overline{B})\cdot(\overline{A}+B)} = (A+\overline{B})\uparrow(\overline{A}+B) $	OR-NAND				
	=	$(A + \overline{B}) + (\overline{A} + B) = (A \downarrow \overline{B}) + (\overline{A} \downarrow B)$	NOR-OR				
	=	$(\overline{A} \cdot B) + (A \cdot \overline{B})$	AND-OR				

Tabela 5.5: Exemplo da obtenção do grupo AND-OR para a função XOR.

$$F(A,B) = A \oplus B$$

$$= (\overline{A} \cdot B) + (A \cdot \overline{B})$$

$$= [(\overline{A} \cdot B) + A] \cdot [(\overline{A} \cdot B) + \overline{B}]$$

$$= [(\overline{A} + A) \cdot (B + A)] \cdot [(\overline{A} + \overline{B}) \cdot (B + \overline{B})]$$

$$= [(1) \cdot (B + A)] \cdot [(\overline{A} + \overline{B}) \cdot (1)]$$

$$= (B + A) \cdot (\overline{A} + \overline{B})$$

$$= (\overline{A} + \overline{B}) \cdot (A + B)$$

Tabela 5.6: Exemplo da mudança de grupo para a função XOR.

		Expressão booleana	Forma padrão
F(A,B)	=	$A \oplus B$	
	=	$(\overline{A} + \overline{B}) \cdot (A + B)$	OR-AND
	=	$\overline{\left(\overline{A}+\overline{B}\right)\cdot\left(A+B\right)}$	
	=	$\overline{(\overline{A} + \overline{B})} + \overline{(A + B)} = (\overline{A} \downarrow \overline{B}) \downarrow (A \downarrow B)$	NOR-NOR
	=	$\overline{(A \cdot B) + (\overline{A} \cdot \overline{B})} = (A \cdot B) \downarrow (\overline{A} \cdot \overline{B})$	AND-NOR
	=	$\overline{(A \cdot B)} \cdot \overline{(\overline{A} \cdot \overline{B})} = (A \uparrow B) \cdot (\overline{A} \uparrow \overline{B})$	NAND-AND
	=	$(\overline{A} + \overline{B}) \cdot (A + B)$	OR-AND

Tabela 5.7: Exemplo da obtenção do grupo OR-AND para a função XOR.

5.5 Exercícios propostos

- 1. Um aluno de Circuitos Digitais desenvolveu o seguinte raciocínio:
 - A Tabela Verdade de uma função lógica $F(\cdot)$, com notação booleana, possui apenas os valores algébricos 0 e 1.
 - Equacionando-se cada valor 1 de $F(\cdot)$ isoladamente, obtém-se uma SOP padrão $F_{SOP}(\cdot)$.
 - Equacionando-se cada valor 0 de $F(\cdot)$ isoladamente, obtém-se uma POS padrão $F_{POS}(\cdot)$.
 - Dado que $0 = \overline{1}$ e $1 = \overline{0}$:
 - Pode-se obter $F_{POS}(\cdot)$ pela SOP da negação de $F(\cdot)$: $F_{POS}(\cdot) = \overline{F}_{SOP}(\cdot)$.
 - Pode-se obter $F_{SOP}(\cdot)$ pela POS da negação de $F(\cdot)$: $F_{SOP}(\cdot) = \overline{F}_{POS}(\cdot)$.

Você concorda com ele? **JUSTIFIQUE !!!**

Observação:

Deve-se entender como justificativa, uma explicação conceitual, acompanhada ou não de uma prova matemática.

Uma simples demonstração matemática, provando a veracidade ou a falsidade do raciocínio, sem uma argumentação conceitual, não será aceita como justificativa.

De forma simples, devem ser apresentadas as razões que tornam o raciocínio verdadeiro ou falso.

- 2. Para os exercícios listados abaixo, considerar as equações booleanas apresentadas em seguida.
 - (a) Algebricamente, obter a forma SOP normal da equação fornecida.
 - (b) Algebricamente, obter a forma SOP padrão da equação fornecida.
 - (c) Expressar a função por uma lista de mintermos.
 - (d) A partir da SOP padrão, obter as demais formas do seu grupo.
 - (e) Algebricamente, obter a forma POS normal da equação fornecida.
 - (f) Algebricamente, obter a forma POS padrão da equação fornecida.
 - (g) Expressar a função por uma lista de maxtermos.
 - (h) A partir da POS padrão, obter as demais formas do seu grupo.
 - (i) Expressar a função por uma tabela verdade, com notação booleana.

Equações boolenas:

i.
$$F(A,B,C) = \frac{\left\{B \cdot \left[\left(\overline{A} \cdot \overline{C}\right) + (A \cdot C)\right]\right\} + \overline{\left\{B + \left[\left(\overline{A} + \overline{C}\right) \cdot (A + C)\right]\right\}}}{\left\{\left[\overline{(A+B)} + C\right] \cdot \left[\overline{A} + \overline{(B+\overline{C})}\right]\right\}}.$$
ii.
$$F(A,B,C) = \overline{\left\{\left[\overline{(A+B)} + C\right] \cdot \left[\overline{A} + \overline{(B+\overline{C})}\right]\right\}}.$$

Capítulo 6

Simplificação algébrica sistemática de expressões booleanas

6.1 Definição do ponto final: forma mínima procurada

Para que se possa propor um processo sistemático destinado à minimização de expressões booleanas, é necessário que se defina, primeiramente, o que será aceito como expressão mínima.

Ao se definir a expressão mínima, serão considerados os seguintes requisitos: i) menor quantidade de circuito necessário à implementação, ii) circuito com o menor tempo de resposta e iii) existência de procedimentos sistemáticos, simples e práticos, que levem à expressão mínima.

No intuito de atender aos três requisitos acima simultaneamente, serão consideradas apenas as expressões com dois planos de operações lógicas: SOP (AND-OR) e POS (OR-AND). Esses dois tipos de expressões também são conhecidas por: estruturas em dois níveis e estruturas de segunda ordem.

Uma expressão com dois planos de operações lógicas será considerada mínima se: i) não existir outra expressão desse tipo com um número menor de termos e ii) não existir outra expressão desse tipo com mesmo número de termos, porém com um número menor de literais.

Deve ser ressaltado que, se for levado em consideração apenas a quantidade de circuito necessário à implementação, a definição acima não garante que a expressão final será um mínimo global. Em alguns casos, embora aceita como mínima, a expressão encontrada pode representar um mínimo local. Por exemplo, a função $F(A, B, C, D) = \sum m(5, 6, 9, 10, 13, 14)$ pode ser expressa por

$$F(A, B, C, D) = (A + B) \cdot \left[(C \cdot \overline{D}) + (\overline{C} \cdot D) \right]$$
(6.1)

е

$$F(A, B, C, D) = (A \cdot \overline{C} \cdot D) + (A \cdot C \cdot \overline{D}) + (B \cdot \overline{C} \cdot D) + (B \cdot C \cdot \overline{D}). \tag{6.2}$$

Na Equação (6.1), a função é representada por uma expressão booleana genérica. Essa expressão apresenta três planos de operações lógicas, sendo considerada uma estrutura de três níveis ou de ordem superior (a dois). Na Equação (6.2), a expressão booleana encontra-se na forma SOP. Embora a expressão da Equação (6.1) seja a menor entre as duas, ela apresenta, funcionalmente, um tempo de resposta maior, uma vez que envolve três planos de operações lógicas. Além disso, não há um processo sistemático, simples e prático, para sua obtenção. Logo, a expressão da Equação (6.2) será considerada a expressão mínima procurada pelo processo de minimização descrito a seguir, ainda que seja um mínimo local.

Com base nessa definição de forma mínima (local), conclui-se que uma determinada função lógica pode ter diversas expressões mínimas (locais) equivalentes.

Além disso, não se pode garantir que, para uma dada função, a expressão mínima seja da forma SOP ou da forma POS. É necessário minimizar ambas as formas e escolher a menor delas. Por exemplo, a função $F(A,B,C,D) = \sum m(0,1,8,9)$ apresenta formas mínimas SOP e POS equivalentes entre si. Por sua vez, no caso das funções $F(A,B,C,D) = \sum m(4,5,8,9)$ e $F(A,B,C,D) = \sum m(2,7,8,13)$, a forma POS mínima é menor que a forma SOP mínima. Finalmente, para a função $F(A,B,C,D) = \sum m(6,7,8,9)$, a forma SOP mínima é menor que a forma POS mínima. Deve-se observar que, em todos os exemplos, o número de mintermos é o mesmo e que ele é menor do que o número de maxtermos.

6.2 Processo de expansão × processo de simplificação

O processo sistemático de simplificação que será apresentado pode ser visto como a inversão de um processo de expansão da forma mínima definida acima. Portanto, é interessante analisar o processo de expansão, na tentativa de facilitar o entendimento do processo de simplificação. Isso é feito a seguir.

6.2.1 Expansão sem redundância

Aplicando-se os Postulados P3, P6 e P5, bem como o Postulado P4, da Álgebra de Boole, pode-se demonstrar as seguintes relações:

$$f(A,B) = (B) = (B) \cdot (1) = (B) \cdot (A + \overline{A}) = (B \cdot A) + (B \cdot \overline{A}) = (A \cdot B) + (\overline{A} \cdot B) , \quad (6.3)$$

$$f(A,B) = (B) = (B) + (0) = (B) + (A \cdot \overline{A}) = (B + A) \cdot (B + \overline{A}) = (A + B) \cdot (\overline{A} + B) , \quad (6.4)$$

$$f(A,B,C) = (A \cdot B) = (A \cdot B) \cdot (1) = (A \cdot B) \cdot (C + \overline{C}) = (A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) , \quad (6.5)$$

$$f(A,B,C) = (A + B) = (A + B) + (0) = (A + B) + (C \cdot \overline{C}) = (A + B + C) \cdot (A + B + \overline{C}) , \quad (6.6)$$

$$f(A,B,C) = (B)$$

$$= (B) \cdot (1)$$

$$= (B) \cdot (A + \overline{A})$$

$$= (B) \cdot (A + A)$$

$$= (B \cdot A) + (B \cdot \overline{A})$$

$$= (A \cdot B) + (\overline{A} \cdot B)$$

$$= [(A \cdot B) \cdot (1)] + [(\overline{A} \cdot B) \cdot (1)]$$

$$= [(A \cdot B) \cdot (C + \overline{C})] + [(\overline{A} \cdot B) \cdot (C + \overline{C})]$$

$$= (A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (\overline{A} \cdot B \cdot \overline{C})$$
(6.7)

e

$$f(A, B, C) = (B)$$

$$= (B) + (0)$$

$$= (B) + (A \cdot \overline{A})$$

$$= (B + A) \cdot (B + \overline{A})$$

$$= (A + B) \cdot (\overline{A} + B)$$

$$= [(A + B) + (0)] \cdot [(\overline{A} + B) + (0)]$$

$$= [(A + B) + (C \cdot \overline{C})] \cdot [(\overline{A} \cdot B) + (C \cdot \overline{C})]$$

$$= (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) . \tag{6.8}$$

6.2.2 Expansão com redundância

Aplicando-se os Postulados P3, P6 e P5, bem como o Postulado P4 e o Lema L2, da Álgebra de Boole, pode-se demonstrar as seguintes relações:

$$f(A, B, C) = (A \cdot B) + (A \cdot C)$$

$$= [(A \cdot B) \cdot (1)] + [(A \cdot C) \cdot (1)]$$

$$= [(A \cdot B) \cdot (C + \overline{C})] + [(A \cdot C) \cdot (B + \overline{B})]$$

$$= [(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C})] + [(A \cdot C \cdot B) + (A \cdot C \cdot \overline{B})]$$

$$= [(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C})] + [(A \cdot B \cdot C) + (A \cdot \overline{B} \cdot C)]$$

$$= (A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$$
(6.9)

е

$$f(A, B, C) = (A + B) \cdot (A + C)$$

$$= [(A + B) + (0)] \cdot [(A + C) + (0)]$$

$$= [(A + B) + (C \cdot \overline{C})] \cdot [(A + C) + (B \cdot \overline{B})]$$

$$= [(A + B + C) \cdot (A + B + \overline{C})] \cdot [(A + C + B) \cdot (A + C + \overline{B})]$$

$$= [(A + B + C) \cdot (A + B + \overline{C})] \cdot [(A + B + C) \cdot (A + \overline{B} + C)]$$

$$= (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C) . \tag{6.10}$$

6.2.3 Análise das expansões

As Equações (6.3) a (6.10) mostram que:

- O mesmo termo inicial simplificado pode gerar termos finais expandidos que são do tipo mintermo (Termo Soma Padrão) ou maxtermo (Termo Produto Padrão).
- A expansão de 1 literal pode gerar 2 termos (somas ou produtos) padrões de 2 literais.
- A expansão de 1 literal pode gerar 4 termos (somas ou produtos) padrões de 3 literais.
- Pode-se mostrar que a expansão de 1 literal pode gerar 2^L termos (somas ou produtos) padrões de L+1 literais.
- Algumas expansões geram termos (somas ou produtos) padrões iguais, o que significa uma redundância na equação expandida final. Dito de outra forma, pode-se pensar que tais redundâncias devem necessariamente aparecer para que a expansão seja completa.
- A expansão sem redundâncias de um termo qualquer segue o procedimento geral dado por: $P3 \rightarrow P6 \rightarrow P5$.
- A expansão com redundâncias de um termo qualquer segue o procedimento geral dado por: $P3 \rightarrow P6 \rightarrow P5 \rightarrow L2$.
- Eventualmente, durante a expansão, pode ser necessário aplicar o Postulado P4.

6.3 Definição do ponto inicial: forma máxima padrão

A partir da definição da forma mínima procurada e da análise do processo de expansão, torna-se natural pensar em um processo de simplificação fundamentado na inversão do processo de expansão.

No caso da expansão, o ponto de partida é uma forma mínima. Aplicando-se uma sequência de postulados, obtém-se uma forma expandida máxima, sem redundância de termos. A forma máxima será uma SOP padrão ou uma POS padrão.

No caso da simplificação, pode-se propor que a equação lógica/booleana seja, inicialmente, colocada em uma forma máxima padrão, SOP ou POS. Em seguida, aplicando-se a seqüência de postulados na ordem inversa, chega-se à forma mínima, SOP ou POS. Finalmente, pode-se comparar as duas formas mínimas, SOP e POS, e decidir-se por uma delas.

6.4 Simplificação sistemática de expressões booleanas a partir de SOP e POS padrões

As formas SOP (AND-OR) e POS (OR-AND) apresentam duas grandes vantagens: a facilidade de descrição do problema durante a sua modelagem e a quantidade de planos de operações lógicas utilizados na sua implementação. Porém, nem sempre tais formas estão em sua expressão mais simples.

A aplicação das operações de aglutinação e de replicação em funções lógicas expressas nas formas padrões SOP e POS é a base para um processo sistemático de simplificação. Isso é discutido a seguir.

6.4.1 Operações básicas: aglutinação e replicação

No processo sistemático de simplificação algébrica de expressões booleanas, duas operações são fundamentais: a aglutinação e a replicação, as quais são definidas nas Equações (6.11) e (6.12), respectivamente. Da Álgebra de Boole, a aglutinação utiliza os Postulados P5, P6 e P3, enquanto a replicação emprega o Lema L2.

Aglutinação
$$\begin{cases} (A \cdot B) + (A \cdot \overline{B}) &= A \cdot (B + \overline{B}) = A \cdot 1 = A \\ (A + B) \cdot (A + \overline{B}) &= A + (B \cdot \overline{B}) = A + 0 = A \end{cases}$$
(6.11)

Replicação
$$\begin{cases} A = A + A + A + A + \dots \\ A = A \cdot A \cdot A \cdot \dots \end{cases}$$
(6.12)

6.4.2 Uso da aglutinação

A propriedade de distributividade mostra que, se dois termos diferem de apenas um literal $(L \ e \ \overline{L})$, eles podem ser fatorados. Surgem, desse modo, combinações do literal com seu complemento. Tais combinações geram valores lógicos 0 ou 1, os quais podem ser eliminados da expressão. Isto é exemplificado nas Equações (6.11), (6.13) e (6.14).

$$F(A, B, C) = \sum_{m_4 + m_6} m(4, 6)$$

$$= (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C})$$

$$= (A \cdot \overline{C} \cdot \overline{B}) + (A \cdot \overline{C} \cdot B)$$

$$= [(A \cdot \overline{C}) \cdot \overline{B}] + [(A \cdot \overline{C}) \cdot B)]$$

$$= (A \cdot \overline{C}) \cdot (\overline{B} + B)$$

$$= (A \cdot \overline{C}) \cdot (1)$$

$$F(A, B, C) = \prod_{0 \in A} (0, 4)$$

$$= M_0 \cdot M_4$$

$$= (A + B + C) \cdot (\overline{A} + B + C)$$

$$= [A + (B + C)] \cdot [\overline{A} + (B + C)]$$

$$= (A \cdot \overline{A}) + (B + C)$$

$$= (0) + (B + C)$$

$$= (B + C)$$
(6.14)

6.4.3 Uso da replicação

Em algumas expressões, um mesmo termo tem a possibilidade de se combinar com diversos outros termos por aglutinação. Porém, formalmente, apenas dois termos podem ser combinados por vez. Logo, a operação de replicação possibilita que um mesmo termo seja combinado com diversos outros por aglutinação, possibilitando diversas simplificações. Isto é exemplificado na Equação (6.15).

$$F(A, B, C) = \sum_{m_0 + m_1 + m_2} m_0 + m_1 + m_2$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C})$$

$$= m_0 + m_1 + m_2 + m_0$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot \overline{C})$$

$$= [(\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C)] + [(\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot \overline{C})]$$

$$= [(\overline{A} \cdot \overline{B}) \cdot (\overline{C} + C)] + [(\overline{A} \cdot \overline{C}) \cdot (\overline{B} + B)]$$

$$= (\overline{A} \cdot \overline{B}) + (\overline{A} \cdot \overline{C})$$

$$= (\overline{A}) \cdot (\overline{B} + \overline{C})$$

$$(6.15)$$

6.5 Eliminação sistemática de literais

Aplicando-se as operações de aglutinação e de replicação às formas padrões SOP e POS, vários termos podem ser combinados, gerando um número menor de termos mais simples, por meio da eliminação de literais. A quantidade de literais eliminados depende do número de termos combinados e da configuração de literais em cada termo.

- Eliminação de 1 literal: exceto 1 literal, o qual será eliminado, todos os demais literais são idênticos em uma combinação de 2 termos normais.
- Eliminação de 2 literais: exceto 2 literais, os quais serão eliminados, todos os demais literais são idênticos em uma combinação de 4 termos normais.
- Eliminação de 3 literais: exceto 3 literais, os quais serão eliminados, todos os demais literais são idênticos em uma combinação de 8 termos normais.
- Eliminação de N literais: exceto N literais, os quais serão eliminados, todos os demais literais são idênticos em uma combinação de 2^N termos normais.

A título de exemplo, a Tabela 6.1 apresenta uma tabela verdade genérica para funções de 3 variáveis. Para tais funções, as Figuras 6.1 e 6.2 ilustram as possibilidades de eliminação de 1 e 2 literais em combinações de 2 e 4 mintermos, respectivamente. Por sua vez, as Figuras 6.3 e 6.4 ilustram as possibilidades de eliminação de 1 e 2 literais em combinações de 2 e 4 maxtermos, respectivamente.

Linha	A	B	C	F(A,B,C)
0	0	0	0	F_0
1	0	0	1	F_1
2	0	1	0	F_2
3	0	1	1	F_3
4	1	0	0	F_4
5	1	0	1	F_5
6	1	1	0	F_6
7	1	1	1	F_7

Tabela 6.1: Tabela verdade genérica para funções de 3 variáveis.

$$m_{0} + m_{1} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) = (\overline{A} \cdot \overline{B})$$

$$m_{2} + m_{3} = (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) = (\overline{A} \cdot B)$$

$$m_{4} + m_{5} = (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) = (A \cdot \overline{B})$$

$$m_{6} + m_{7} = (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) = (A \cdot B)$$

$$m_{0} + m_{2} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) = (\overline{A} \cdot \overline{C})$$

$$m_{1} + m_{3} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) = (\overline{A} \cdot \overline{C})$$

$$m_{4} + m_{6} = (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) = (A \cdot \overline{C})$$

$$m_{5} + m_{7} = (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) = (\overline{A} \cdot \overline{C})$$

$$m_{0} + m_{4} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) = (\overline{B} \cdot \overline{C})$$

$$m_{1} + m_{5} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) = (\overline{B} \cdot \overline{C})$$

$$m_{2} + m_{6} = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) = (\overline{B} \cdot \overline{C})$$

$$m_{3} + m_{7} = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) = (B \cdot \overline{C})$$

Figura 6.1: Eliminações de 1 literal em combinações de 2 mintermos.

$$m_{0} + m_{1} + m_{2} + m_{3} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) = (\overline{A})$$

$$m_{4} + m_{5} + m_{6} + m_{7} = (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) = (A)$$

$$m_{0} + m_{1} + m_{4} + m_{5} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) = (\overline{B})$$

$$m_{2} + m_{3} + m_{6} + m_{7} = (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) = (B)$$

$$m_{0} + m_{2} + m_{4} + m_{6} = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) = (\overline{C})$$

$$m_{1} + m_{3} + m_{5} + m_{7} = (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C) = (C)$$

Figura 6.2: Eliminações de 2 literais em combinações 4 de mintermos.

$$M_{0} \cdot M_{1} = (A + B + C) \cdot (A + B + \overline{C}) = (A + B)$$

$$M_{2} \cdot M_{3} = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) = (A + \overline{B})$$

$$M_{4} \cdot M_{5} = (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) = (\overline{A} + B)$$

$$M_{6} \cdot M_{7} = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{A} + \overline{B})$$

$$M_{0} \cdot M_{2} = (A + B + C) \cdot (A + \overline{B} + C) = (A + C)$$

$$M_{1} \cdot M_{3} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) = (A + \overline{C})$$

$$M_{4} \cdot M_{6} = (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C) = (\overline{A} + C)$$

$$M_{5} \cdot M_{7} = (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{A} + \overline{C})$$

$$M_{0} \cdot M_{4} = (A + B + C) \cdot (\overline{A} + B + \overline{C}) = (B + C)$$

$$M_{1} \cdot M_{5} = (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) = (B + \overline{C})$$

$$M_{2} \cdot M_{6} = (A + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C) = (\overline{B} + C)$$

$$M_{3} \cdot M_{7} = (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{B} + \overline{C})$$

Figura 6.3: Eliminações de 1 literal em combinações de 2 maxtermos.

$$M_{0} \cdot M_{1} \cdot M_{2} \cdot M_{3} = (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) = (A)$$

$$M_{4} \cdot M_{5} \cdot M_{6} \cdot M_{7} = (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{A})$$

$$M_{0} \cdot M_{1} \cdot M_{4} \cdot M_{5} = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) = (B)$$

$$M_{2} \cdot M_{3} \cdot M_{6} \cdot M_{7} = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{B})$$

$$M_{0} \cdot M_{2} \cdot M_{4} \cdot M_{6} = (A + B + C) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C) = (C)$$

$$M_{1} \cdot M_{3} \cdot M_{5} \cdot M_{7} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}) = (\overline{C})$$

Figura 6.4: Eliminações de 2 literais em combinações 4 de maxtermos.

6.6 Implicantes e implicados

Quando uma função é expressa na forma SOP (AND-OR) ou POS (OR-AND), seus termos recebem uma denominação adicional, de acordo com o valor lógico que eles geram na tabela verdade da função: implicantes ou implicados. Tal denominação é descrita a seguir.

6.6.1 Implicantes

Quando uma função é expressa na forma SOP (AND-OR), cada termo produto é denominado de implicante (*implicant*). O nome se deve ao fato de que, caso o termo produto (implicante) assuma o valor lógico 1, isso implicará em um valor lógico 1 para a função.

No caso de uma SOP padrão, os implicantes são os próprios mintermos. Caso contrário, eles são o resultado de simplificações provenientes de combinações de mintermos.

A Equação (6.16) apresenta um exemplo de implicantes. Na primeira expressão, ela apresenta 3 implicantes, que são os mintermos responsáveis pelas 3 combinações lógicas de literais que fazem a função assumir o valor lógico 1. A segunda expressão apresenta 2 implicantes. O primeiro deles, sendo uma combinação de 2 mintermos, representa 2 combinações lógicas de literais capazes de produzir um valor lógico 1 para a função. O segundo deles, sendo um dos mintermos, representa a terceira combinação lógica de literais capaz de produzir um valor lógico 1 para a função.

$$F(A, B, C) = \sum m(0, 1, 7)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$$

$$= (\overline{A} \cdot \overline{B}) + (A \cdot B \cdot C)$$
(6.16)

6.6.2 Implicados

Quando uma função é expressa na forma POS (OR-AND), cada termo soma é denominado de implicado (*implicate*). O nome se deve ao fato de que, caso o termo soma (implicado) assuma o valor lógico 0, isso implicará em um valor lógico 0 para a função.

No caso de um POS padrão, os implicados são os próprios maxtermos. Caso contrário, eles são o resultado de simplificações provenientes de combinações de maxtermos.

A Equação (6.17) apresenta um exemplo de implicados. Na primeira expressão, ela apresenta 3 implicados, que são os maxtermos responsáveis pelas 3 combinações lógicas de literais que fazem a função assumir o valor lógico 0. A segunda expressão apresenta 2 implicados. O primeiro deles, sendo uma combinação de 2 maxtermos, representa 2 combinações lógicas de literais capazes de produzir um valor lógico 0 para a função. O segundo deles, sendo um dos maxtermos, representa a terceira combinação lógica de literais capaz de produzir um valor lógico 0 para a função.

$$F(A, B, C) = \prod M(2, 3, 5)$$

$$= (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$$

$$= (A + \overline{B}) \cdot (\overline{A} + B + \overline{C})$$
(6.17)

6.6.3 Implicantes, implicados e o processo de simplificação

Pela definição apresentada, os termos normais expandidos das formas SOP padrão e POS padrão são implicantes e implicados que geram, respectivamente, apenas um único valor lógico "1" e "0" na tabela verdade da função por eles especificada.

A associação de 2^n implicantes ou implicados quaisquer, com o intuito de eliminar n literais, resulta em um único implicante ou implicado, acarretando a diminuição do número de tais termos.

Além disso, cada novo implicante e implicado, gerado pela associação de 2^n termos normais expandidos, passa a ser responsável, respectivamente, pela geração de 2^n valores lógicos "1" e "0" na tabela verdade da função por eles especificada.

Assim sendo, o processo de simplificação definido acima pode ser pensado como a busca do menor número possível de implicantes e implicados, cada um deles apresentando o menor número possível de literais e, consequentemente, cada um deles gerando, respectivamente, o maior número possível de valores lógicos "1" e "0" na tabela verdade da função por eles especificada.

6.7 Processo sistemático de simplificação

O ponto de partida do processo é expressar a função lógica nas formas SOP padrão e POS padrão. Em seguida, a operação de aglutinação é aplicada sucessivamente. Sempre que possível, a operação de replicação deve ser empregada, para maximizar a simplificação das expressão. Quando mais nenhuma aglutinação puder ser efetuada, a expressão restante será, naturalmente, a expressão definida anteriormente como mínima.

Em uma seleção sistemática, duas definições são de grande auxílio na escolha de termos a serem agrupados para simplificação: termo essencial e termo primo.

Quando um termo original é coberto por um único agrupamento possível, o termo resultante do agrupamento é denominado de termo essencial. Isso indica que os termos essenciais devem ser incluídos na expressão mínima equivalente à função desejada.

Um termo original que não tenha sido coberto por qualquer agrupamento anterior deve ser incluído em um agrupamento máximo, o qual será denominado de termo primo. Isso indica que os termos primos devem ser incluídos na expressão mínima equivalente à função desejada.

Deve ser ressaltado que nem todo agrupamento máximo representa um termo primo. Assim, uma forma sistemática de escolha de termos é:

- S1 Identificar todas as possibilidades de agrupamento, através dos maiores grupos possíveis.
- **S2** Marcar todos os termos originais cobertos por apenas 1 agrupamento. Tais agrupamentos formam os termos essenciais.
- S3 Listar todos os termos essenciais.
- S4 Usar os maiores agrupamentos possíveis para cobrir os termos originais não cobertos pelos termos essenciais, formando termos primos.
- S5 Listar apenas tais termos primos.
- S6 Montar a expressão mínima, a partir das duas listas.

No caso da existência de diversas formas mínimas equivalentes, em uma SOP ou em uma POS, deve-se aplicar algum critério extra para a escolha final.

Dada uma função, e suas formas SOP e POS, nada se pode garantir em relação a qual das duas conduzirá à expressão mais simples. Assim, é necessário encontrar a forma mínima de ambas e decidir qual delas é a mais simples.

6.8 Subjetividade, complexidade e formas alternativas

A existência de Postulados, Lemas e Teoremas, possibilita, mas não facilita, o processo de simplificação de equações booleanas. O emprego aleatório de tais ferramentas induz uma imensa subjetividade no processo, ao mesmo tempo que não garante que a simplificação máxima seja encontrada.

O processo sistemático de simplificação, usando replicação e aglutinação, acarreta uma grande redução na subjetividade do processo. Porém, para equações com muitos literais e/ou muitos termos, o processo ainda irá apresentar um certo grau de subjetividade e um bom grau de complexidade, no que se refere: à escolha dos termos a serem replicados e à escolha dos termos a serem aglutinados.

A fim de se tornar o processo de minimização ainda menos subjetivo e menos complexo, pode-se realizá-lo não diretamente sobre as equações, mas, alternativamente, sobre uma forma pictórica de representação ou através de um procedimento computacional. Em ambos os casos, as operações básicas são as mesmas, porém realizadas sobre outras formas de expressão. As alternativas comumente empregadas são o Mapa de Karnaugh e o Algoritmo Tabular de Quine-McCluskey.

6.9 Minimização com estruturas de ordem superior: fatoração

Deve-se notar que a fatoração de termos em uma expressão booleana sempre acarreta um aumento no número de planos de lógica, gerando estruturas com mais níveis ou de ordens maiores.

No caso particular onde surge uma simplificação após a fatoração, o número de planos de lógica não se altera, mantendo o número de níveis ou a ordem da estrutura. Nesses casos, o que ocorre é uma compensação causada pelas relações $(L \cdot \overline{L}) = 0$ e $(L + \overline{L}) = 1$, que acabam por suprimir o plano extra criado pela fatoração. Por exemplo, em uma fatoração com supressão de termo, tem-se que

$$\begin{array}{lll} f(A,B,C) &=& (A\cdot B) + (A\cdot \overline{B}) + (B\cdot C) & \rightarrow & 2 \text{ n\'iveis} \\ &=& [A\cdot (B+\overline{B})] + (B\cdot C) & \rightarrow & 3 \text{ n\'iveis} \\ &=& [A\cdot (1)] + (B\cdot C) & \rightarrow & 2 \text{ n\'iveis} \\ &=& (A) + (B\cdot C) & \rightarrow & 2 \text{ n\'iveis} \end{array},$$

e, em uma fatoração com supressão de termo e de entrada, tem-se que

$$\begin{array}{lll} f(A,B,C,D) &=& (A\cdot B\cdot C) + (A\cdot \overline{B}\cdot C) + (B\cdot D) &\to & 2 \text{ n\'iveis} \\ &=& [(A\cdot C)\cdot (B+\overline{B})] + (B\cdot D) &\to & 3 \text{ n\'iveis} \\ &=& [(A\cdot C)\cdot (1)] + (B\cdot D) &\to & 2 \text{ n\'iveis} \\ &=& (A\cdot C) + (B\cdot D) &\to & 2 \text{ n\'iveis} \ . \end{array}$$

Em alguns casos, partindo-se de uma expressão booleana padrão (SOP ou POS) e aplicando-se as fatorações adequadas (replicação e aglutinação), chega-se a uma expressão de segunda ordem absolutamente mínima (SOP ou POS). Em alguns outros casos, a expressão de segunda ordem mínima ainda permite fatorações, mas que não acarretarão simplificações e gerarão uma estrutura de ordem superior. Em casos extremos, a própria expressão padrão já é uma expressão de segunda ordem mínima e, ainda que seja possível realizar fatorações, elas também não acarretarão simplificações e também gerarão uma estrutura de ordem superior.

Em aplicações onde o tempo de resposta é um parâmetro importante, é recomendado o emprego de um estrutura de segunda ordem mínima, ainda que ela não represente a estrutura mínima. Por outro lado, quando o tempo de resposta não é decisivo, pode-se tentar encontrar uma fatoração favorável que leve à estrutura absolutamente mínimo. Nesse caso, a dificuldade é encontrar um modo simples e prático de se realizar tais fatorações em uma expressão booleana qualquer.

6.10 Exemplos de simplificação

A seguir, são apresentados alguns exemplos de simplificação algébrica sistemática, para funções de três e quatro variáveis, empregando as técnicas de aglutinação e, quando necessário, de replicação.

6.10.1 Funções de três variáveis

Exemplo 1

Seja a função especificada por $f(A, B, C) = \sum m(0, 3, 5, 6)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(0,3,5,6) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) .$$

Analisando-se os mintermos, verifica-se que não há possibilidades de aglutinação. Portanto, a SOP padrão já é a SOP mínima.

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(1,2,4,7) = (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+\overline{B}+\overline{C}) .$$

Analisando-se os maxtermos, verifica-se que não há possibilidades de aglutinação. Portanto, a POS padrão já é a POS mínima.

Exemplo 2

Seja a função especificada por $f(A, B, C) = \sum m(0, 2, 5, 7)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(0,2,5,7) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C) .$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_0 - m_2)$ e $(m_5 - m_7)$. Portanto, a SOP mínima é dada por

$$\begin{split} f(A,B,C) &= \sum m(0,2,5,7) \\ &= \left[(\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) \right] + \left[(A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C) \right] \\ &= \left[(\overline{A} \cdot \overline{C}) \cdot (\overline{B} + B) \right] + \left[(A \cdot C) + (\overline{B} + B) \right] \\ &= \left[(\overline{A} \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot C) \cdot (1) \right] \\ &= (\overline{A} \cdot \overline{C}) + (A \cdot C) \; . \end{split}$$

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(1,3,4,6) = (A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+C) \cdot (\overline{A}+\overline{B}+C) .$$

Analisando-se os maxtermos, verifica-se que há as seguintes possibilidades de aglutinação: $(M_1 - M_3)$ e $(M_4 - M_6)$. Portanto, a POS mínima é dada por

$$f(A, B, C) = \prod M(1, 3, 4, 6)$$

$$= \left[(A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \right] \cdot \left[(\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C) \right]$$

$$= \left[(A + \overline{C}) + (B \cdot \overline{B}) \right] \cdot \left[(\overline{A} + C) + (B \cdot \overline{B}) \right]$$

$$= \left[(A + \overline{C}) + (0) \right] \cdot \left[(\overline{A} + C) + (0) \right]$$

$$= (A + \overline{C}) \cdot (\overline{A} + C) .$$

Exemplo 3

Seja a função especificada por $f(A, B, C) = \sum m(2, 5, 6, 7)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(2,5,6,7) = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) .$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_2 - m_6)$, $(m_5 - m_7)$ e $(m_6 - m_7)$. Observando-se que as aglutinações $(m_2 - m_6)$ e $(m_5 - m_7)$ são essenciais e já cobrem todos os valores booleanos "1" da função, a aglutinação $(m_6 - m_7)$ torna-se redundante, não precisando ser realizada. Portanto, a SOP mínima é dada por

$$f(A, B, C) = \sum m(2, 5, 6, 7)$$

$$= [(\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C})] + [(A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)]$$

$$= [(B \cdot \overline{C}) \cdot (\overline{A} + A)] + [(A \cdot C) + (\overline{B} + B)]$$

$$= [(B \cdot \overline{C}) \cdot (1)] + [(A \cdot C) \cdot (1)]$$

$$= (B \cdot \overline{C}) + (A \cdot C).$$

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(0,1,3,4) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+C) .$$

Analisando-se os maxtermos, verifica-se que há as seguintes possibilidades de aglutinação: $(M_0 - M_1)$, $(M_1 - M_3)$ e $(M_0 - M_4)$. Observando-se que as aglutinações $(M_0 - M_4)$ e $(M_1 - M_3)$ são essenciais e já cobrem todos os valores booleanos "0" da função, a aglutinação $(M_0 - M_1)$ torna-se redundante, não precisando ser realizada. Portanto, a POS mínima é dada por

$$f(A, B, C) = \prod M(0, 1, 3, 4)$$

$$= [(A + B + C) \cdot (\overline{A} + B + C)] \cdot [(A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C})]$$

$$= [(B + C) + (A \cdot \overline{A})] \cdot [(A + \overline{C}) + (B \cdot \overline{B})]$$

$$= [(B + C) + (0)] \cdot [(A + \overline{C}) + (0)]$$

$$= (B + C) + (A + \overline{C}).$$

Exemplo 4

Seja a função especificada por $f(A, B, C) = \sum m(2, 6, 7)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(2,6,7) = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C).$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: (m_2-m_6) e (m_6-m_7) . Observando-se que as aglutinações (m_2-m_6) e (m_6-m_7) são essenciais, deve-se duplicar o mintermo m_6 para que se obtenha a simplificação máxima. Portanto, a SOP mínima é dada por

$$\begin{split} f(A,B,C) &= \sum m(2,6,7) \\ &= \left[(\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \left[(A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (\overline{A} + A) \right] + \left[(A \cdot B) + (\overline{C} + C) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot B) + (1) \right] \\ &= (B \cdot \overline{C}) + (A \cdot B) \; . \end{split}$$

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(0,1,3,4,5) = (A+B+C)\cdot (A+B+\overline{C})\cdot (A+\overline{B}+\overline{C})\cdot (\overline{A}+B+C)\cdot (\overline{A}+B+\overline{C}) \ .$$

Analisando-se os maxtermos, verifica-se que há as seguintes possibilidades de aglutinação: $(M_0-M_1), (M_0-M_4), (M_1-M_3), (M_1-M_5)$ e (M_4-M_5) . Observando-se que a aglutinação (M_1-M_3) é essencial, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "0" e para simplificar ao máximo a função: $\{(M_1-M_3), (M_0-M_1), (M_4-M_5)\}$ ou $\{(M_1-M_3), (M_0-M_4), (M_1-M_5)\}$. Em qualquer das duas opções, deve-se duplicar o maxtermo M_1 .

Empregando-se as aglutinações $(M_1 - M_3)$, $(M_0 - M_1)$ e $(M_4 - M_5)$, a POS mínima é dada por

$$f(A,B,C) = \prod M(0,1,3,4,5)$$

$$= [(A+B+\overline{C})\cdot(A+\overline{B}+\overline{C})] \cdot [(\overline{A}+B+C)(\overline{A}+B+\overline{C})]$$

$$= [(A+B+C)\cdot(A+B+\overline{C})]\cdot[(\overline{A}+B+C)(\overline{A}+B+\overline{C})]$$

$$= [(A+\overline{C})+(B\cdot\overline{B})]\cdot[(A+B)+(C\cdot\overline{C})]\cdot[(\overline{A}+B)+(C\cdot\overline{C})]$$

$$= [(A+\overline{C})+(0)]\cdot[(A+B)+(0)]\cdot[(\overline{A}+B)+(0)]$$

$$= (A+\overline{C})\cdot(A+B)\cdot(\overline{A}+B)$$

$$= (A+\overline{C})\cdot[B+(A\cdot\overline{A})]$$

$$= (A+\overline{C})\cdot[B+(0)]$$

$$= (A+\overline{C})\cdot(B).$$

Nesse caso, ocorre a dupla aglutinação $[(M_0 - M_1) - (M_4 - M_5)]$. Inicialmente, a variável C é dispensada. Em seguida, isso acontece com a variável A.

Empregando-se as aglutinações $(M_1 - M_3)$, $(M_0 - M_4)$ e $(M_1 - M_5)$, a POS mínima é dada por

$$f(A, B, C) = \prod M(0, 1, 3, 4, 5)$$

$$= \left[(A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \right] \cdot \left[(A + B + C) \cdot (\overline{A} + B + C) \right] \cdot \left[(A + B + C) \cdot (\overline{A} + B + \overline{C}) \right]$$

$$= \left[(A + \overline{C}) + (B \cdot \overline{B}) \right] \cdot \left[(B + C) + (A \cdot \overline{A}) \right] \cdot \left[(B + \overline{C}) + (A \cdot \overline{A}) \right]$$

$$= \left[(A + \overline{C}) + (0) \right] \cdot \left[(B + C) + (0) \right] \cdot \left[(B + \overline{C}) + (0) \right]$$

$$= (A + \overline{C}) \cdot (B + C) \cdot (B + \overline{C})$$

$$= (A + \overline{C}) \cdot \left[B + (C \cdot \overline{C}) \right]$$

$$= (A + \overline{C}) \cdot (B)$$

Nesse caso, ocorre a dupla aglutinação $[(M_0 - M_4) - (M_1 - M_5)]$. Inicialmente, a variável A é dispensada. Em seguida, isso acontece com a variável C.

Exemplo 5

Seja a função especificada por $f(A, B, C) = \sum m(2, 4, 6, 7)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(2,4,6,7) = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_2 - m_6)$, $(m_4 - m_6)$ e $(m_6 - m_7)$. Observando-se que as aglutinações $(m_2 - m_6)$, $(m_4 - m_6)$ e $(m_6 - m_7)$ são essenciais, deve-se triplicar o mintermo m_6 para que se obtenha a simplificação máxima. Portanto, a SOP mínima é dada por

$$\begin{split} f(A,B,C) &= \sum m(2,4,6,7) \\ &= \left[(\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \\ &= \left[(A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \left[(A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (\overline{A} + A) \right] + \left[(A \cdot \overline{C}) \cdot (\overline{B} + B) \right] + \left[(A \cdot B) + (\overline{C} + C) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot B) + (1) \right] \\ &= (B \cdot \overline{C}) + (A \cdot \overline{C}) + (A \cdot B) \; . \end{split}$$

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(0,1,3,5) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+\overline{C}) .$$

Analisando-se os maxtermos, verifica-se que há as seguintes possibilidades de aglutinação: $(M_0 - M_1)$, $(M_1 - M_3)$ e $(M_1 - M_5)$. Observando-se que as aglutinações $(M_0 - M_1)$, $(M_1 - M_3)$ e $(M_1 - M_5)$ são essenciais, deve-se triplicar o maxtermo M_1 para que se obtenha a simplificação máxima. Portanto, a POS mínima é dada por

$$f(A,B,C) = \prod M(0,1,3,5)$$

$$= [(A+B+C)\cdot(A+B+\overline{C})] \cdot [(A+B+\overline{C})\cdot(\overline{A}+B+\overline{C})] \cdot [(A+B+\overline{C})\cdot(\overline{A}+B+\overline{C})]$$

$$= [(A+B)+(C\cdot\overline{C})]\cdot[(A+\overline{C})+(B\cdot\overline{B})]\cdot[(B+\overline{C})+(A\cdot\overline{A})]$$

$$= [(A+B)+(0)]\cdot[(A+\overline{C})+(0)]\cdot[(B+\overline{C})+(0)]$$

$$= (A+B)\cdot(A+\overline{C})\cdot(B+\overline{C}).$$

Exemplo 6

Seja a função especificada por $f(A, B, C) = \sum m(2, 4, 5, 6, 7)$. A equação literal da SOP padrão é dada por

$$f(A,B,C) = \sum m(2,4,5,6,7) = (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) .$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_2 - m_6)$, $(m_4 - m_5)$, $(m_4 - m_6)$, $(m_5 - m_7)$ e $(m_6 - m_7)$. Observando-se que a aglutinação $(m_2 - m_6)$ é essencial, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "1" e para simplificar ao máximo a função: $\{(m_2 - m_6), (m_4 - m_5), (m_6 - m_7)\}$ ou $\{(m_2 - m_6), (m_4 - m_6), (m_5 - m_7)\}$. Em qualquer das duas opções, deve-se duplicar o mintermo m_6 .

Empregando-se as aglutinações $(m_2 - m_6)$, $(m_4 - m_5)$ e $(m_6 - m_7)$, a SOP mínima é dada por

$$f(A, B, C) = \sum m(2, 4, 5, 6, 7)$$

$$= \left[(\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \left[(A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) \right] + \left[(A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) \right]$$

$$= \left[(B \cdot \overline{C}) \cdot (\overline{A} + A) \right] + \left[(A \cdot \overline{B}) \cdot (\overline{C} + C) \right] + \left[(A \cdot B) \cdot (\overline{C} + C) \right]$$

$$= \left[(B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot \overline{B}) \cdot (1) \right] + \left[(A \cdot B) \cdot (1) \right]$$

$$= (B \cdot \overline{C}) + (A \cdot \overline{B}) + (A \cdot B)$$

$$= (B \cdot \overline{C}) + \left[A \cdot (\overline{B} + B) \right]$$

$$= (B \cdot \overline{C}) + \left[A \cdot (1) \right]$$

$$= (B \cdot \overline{C}) + (A) .$$

Nesse caso, ocorre a dupla aglutinação $[(m_4 - m_5) - (m_6 - m_7)]$. Inicialmente, a variável C é dispensada. Em seguida, isso acontece com a variável B.

Empregando-se as aglutinações $(m_2 - m_6)$, $(m_4 - m_6)$ e $(m_5 - m_7)$, a SOP mínima é dada por

$$\begin{split} f(A,B,C) &= \sum m(2,4,5,6,7) \\ &= \left[(\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \\ &= \left[(A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) \right] + \left[(A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (\overline{A} + A) \right] + \left[(A \cdot \overline{C}) \cdot (\overline{B} + B) \right] + \left[(A \cdot C) \cdot (\overline{B} + B) \right] \\ &= \left[(B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot C) \cdot (1) \right] \end{split}$$

$$= (B \cdot \overline{C}) + (A \cdot \overline{C}) + (A \cdot C)$$

$$= (B \cdot \overline{C}) + [A \cdot (\overline{C} + C)]$$

$$= (B \cdot \overline{C}) + [A \cdot (1)]$$

$$= (B \cdot \overline{C}) + (A).$$

Nesse caso, ocorre a dupla aglutinação $[(m_4 - m_6) - (m_5 - m_7)]$. Inicialmente, a variável B é dispensada. Em seguida, isso acontece com a variável C.

Por sua vez, a equação literal da POS padrão é dada por

$$f(A,B,C) = \prod M(0,1,3) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) .$$

Analisando-se os maxtermos, verifica-se que há as seguintes possibilidades de aglutinação: (M_0-M_1) e (M_1-M_3) . Observando-se que as aglutinações (M_0-M_1) e (M_1-M_3) são essenciais, deve-se duplicar o maxtermo M_1 para que se obtenha a simplificação máxima. Portanto, a POS mínima é dada por

$$f(A,B,C) = \prod M(0,1,3)$$

$$= \left[(A+B+C) \cdot (A+B+\overline{C}) \right] \cdot \left[(A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) \right]$$

$$= \left[(A+B) + (C \cdot \overline{C}) \right] \cdot \left[(A+\overline{C}) + (B \cdot \overline{B}) \right]$$

$$= \left[(A+B) + (0) \right] \cdot \left[(A+\overline{C}) + (0) \right]$$

$$= (A+B) + (A+\overline{C}).$$

6.10.2 Funções de quatro variáveis

Exemplo 1

Seja a função especificada por $f(A,B,C,D) = \sum m(0,5,7,10,14)$. A equação literal da SOP padrão é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(0,5,7,10,14) \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ &(\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot D) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \;. \end{split}$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_5 - m_7)$ e $(m_{10} - m_{14})$. Portanto, a SOP mínima é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(0,5,7,10,14) \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ & \left[(\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ & \left[(\overline{A} \cdot B \cdot D) \cdot (\overline{C} + C) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ & \left[(\overline{A} \cdot B \cdot D) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + (A \cdot C \cdot \overline{D}) \; . \end{split}$$

Exemplo 2

Seja a função especificada por $f(A,B,C,D) = \sum m(0,7,10,14,15)$. A equação literal da SOP padrão é dada por

$$f(A, B, C, D) = \sum m(0, 7, 10, 14, 15)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot C \cdot D) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D).$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_7 - m_{15})$, $(m_{10} - m_{14})$ e $(m_{14} - m_{15})$. Observando-se que as aglutinações $(m_7 - m_{15})$ e $(m_{10} - m_{14})$ são essenciais e já cobrem todos os valores booleanos "1" da função, a aglutinação $(m_{14} - m_{15})$ torna-se redundante, não precisando ser realizada. Portanto, a SOP mínima é dada por

$$f(A, B, C, D) = \sum m(0, 7, 10, 14, 15)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D})$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (B \cdot C \cdot D) \cdot (\overline{A} + A) + (A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (B \cdot C \cdot D) \cdot (1) + (A \cdot C \cdot \overline{D}) \cdot (1)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (B \cdot C \cdot D) + (A \cdot C \cdot \overline{D}) \cdot (1)$$

Exemplo 3

Seja a função especificada por $f(A, B, C, D) = \sum m(0, 6, 10, 14, 15)$. A equação literal da SOP padrão é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(0,6,10,14,15) \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ &(\overline{A} \cdot B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \; . \end{split}$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_6 - m_{14})$, $(m_{10} - m_{14})$ e $(m_{14} - m_{15})$. Observando-se que as aglutinações $(m_6 - m_{14})$, $(m_{10} - m_{14})$ e $(m_{14} - m_{15})$ são essenciais, deve-se triplicar o mintermo m_{14} para que se obtenha a simplificação máxima. Portanto, a SOP mínima é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(0,6,10,14,15) \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \left[(\overline{A} \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \\ & \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \left[(A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \left[(B \cdot C \cdot \overline{D}) \cdot (\overline{A} + A) \right] + \\ & \left[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(A \cdot B \cdot C) \cdot (\overline{D} + D) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \left[(B \cdot C \cdot \overline{D}) \cdot (1) \right] + \\ & \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot B \cdot C) \cdot (1) \right] \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (B \cdot C \cdot \overline{D}) + (A \cdot C \cdot \overline{D}) + (A \cdot B \cdot C) \; . \end{split}$$

Exemplo 4

Seja a função especificada por $f(A, B, C, D) = \sum m(0, 5, 7, 10, 11, 14, 15)$. A equação literal da SOP padrão é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(0,5,7,10,11,14,15) \\ &= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ & (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot D) + \\ & (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \;. \end{split}$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: (m_5-m_7) , $(m_{10}-m_{11})$, $(m_{14}-m_{15})$, $(m_{10}-m_{14})$ e $(m_{11}-m_{15})$. Observando-se que a aglutinação (m_5-m_7) é essencial, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "1" e para simplificar ao máximo a função: $\{(m_5-m_7), (m_{10}-m_{11}), (m_{14}-m_{15})\}$ ou $\{(m_5-m_7), (m_{10}-m_{14}), (m_{11}-m_{15})\}$.

Empregando-se as aglutinações $(m_5 - m_7)$, $(m_{10} - m_{11})$ e $(m_{14} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(0,5,7,10,11,14,15)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot D)] + [(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D)] + [(A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot D) \cdot (\overline{C} + C)] + [(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D)] + [(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot D) \cdot (1)] + [(A \cdot \overline{B} \cdot C) \cdot (1)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + [(A \cdot C) \cdot (\overline{B} + B)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot D)] + [(A \cdot C) \cdot (1)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + (A \cdot C) \cdot (\overline{C} \cdot \overline{C})$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{11}) - (m_{14} - m_{15})]$. Inicialmente, a variável D é dispensada. Em seguida, isso acontece com a variável B.

Empregando-se as aglutinações $(m_5 - m_7)$, $(m_{10} - m_{14})$ e $(m_{11} - m_{15})$, a SOP mínima é dada por

$$f(A, B, C, D) = \sum m(0, 5, 7, 10, 11, 14, 15)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot D)] +$$

$$[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D})] + [(A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot D)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot D) \cdot (\overline{C} + C)] +$$

$$[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B)] + [(A \cdot C \cdot D) \cdot (\overline{B} + B)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + [(\overline{A} \cdot B \cdot D) \cdot (1)] + [(A \cdot C \cdot \overline{D}) \cdot (1)] + [(A \cdot C \cdot D) \cdot (1)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + (A \cdot C \cdot \overline{D}) + (A \cdot C \cdot D)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + [(A \cdot C) \cdot (\overline{D} + D)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + [(A \cdot C) \cdot (1)]$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D) + (A \cdot C) .$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{14}) - (m_{11} - m_{15})]$. Inicialmente, a variável B é dispensada. Em seguida, isso acontece com a variável D.

Exemplo 5

Seja a função especificada por $f(A, B, C, D) = \sum m(0, 4, 5, 10, 11, 14, 15)$. A equação literal da SOP padrão é dada por

$$f(A, B, C, D) = \sum m(0, 4, 5, 10, 11, 14, 15)$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{D}$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: $(m_0-m_4), (m_4-m_5), (m_{10}-m_{11}), (m_{14}-m_{15}), (m_{10}-m_{14})$ e $(m_{11}-m_{15})$. Observando-se que as aglutinações (m_0-m_4) e (m_4-m_5) são essenciais, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "1" e para simplificar ao máximo a função: $\{(m_0-m_4), (m_4-m_5), (m_{10}-m_{11}), (m_{14}-m_{15})\}$ ou $\{(m_0-m_4), (m_4-m_5), (m_{10}-m_{14}), (m_{11}-m_{15})\}$. Em qualquer das duas opções, deve-se duplicar o mintermo m_4 .

Empregando-se as aglutinações $(m_0 - m_4)$, $(m_4 - m_5)$, $(m_{10} - m_{11})$ e $(m_{14} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(0,4,5,10,11,14,15)$$

$$= \left[(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) \right] + \left[(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(\overline{A} \cdot B \cdot \overline{C}) \cdot (\overline{D} + D) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (\overline{B} + B) \right] \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (1) \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (1) \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (1) \right]$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{11}) - (m_{14} - m_{15})]$. Inicialmente, a variável D é dispensada. Em seguida, isso acontece com a variável B.

Empregando-se as aglutinações $(m_0 - m_4)$, $(m_4 - m_5)$, $(m_{10} - m_{14})$ e $(m_{11} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(0,4,5,10,11,14,15)$$

$$= \left[(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) \right] + \left[(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot D) \right]$$

$$= \left[(\overline{A} \cdot \overline{C} \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(\overline{A} \cdot B \cdot \overline{C}) \cdot (\overline{D} + D) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(A \cdot C \cdot D) \cdot (\overline{B} + B) \right]$$

$$= \left[(\overline{A} \cdot \overline{C} \cdot \overline{D}) \cdot (1) \right] + \left[(\overline{A} \cdot B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (\overline{D} + D) \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (1) \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + \left[(A \cdot C) \cdot (1) \right]$$

$$= (\overline{A} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot C \cdot C) \cdot (\overline{D} + C) \cdot (\overline{D} + C)$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{14}) - (m_{11} - m_{15})]$. Inicialmente, a variável B é dispensada. Em seguida, isso acontece com a variável D.

Exemplo 6

Seja a função especificada por $f(A, B, C, D) = \sum m(4, 5, 8, 10, 11, 14, 15)$. A equação literal da SOP padrão é dada por

$$\begin{split} f(A,B,C,D) &= \sum m(4,5,8,10,11,14,15) \\ &= (\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + \\ & (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \;. \end{split}$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: (m_4-m_5) , (m_8-m_{10}) , $(m_{10}-m_{11})$, $(m_{14}-m_{15})$, $(m_{10}-m_{14})$ e $(m_{11}-m_{15})$. Observando-se que as aglutinações (m_4-m_5) e (m_8-m_{10}) são essenciais, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "1" e para simplificar ao máximo a função: $\{(m_4-m_5), (m_8-m_{10}), (m_{10}-m_{11}), (m_{14}-m_{15})\}$ ou $\{(m_4-m_5), (m_8-m_{10}), (m_{10}-m_{14}), (m_{11}-m_{15})\}$. Em qualquer das duas opções, deve-se duplicar o mintermo m_{10} .

Empregando-se as aglutinações $(m_4 - m_5)$, $(m_8 - m_{10})$, $(m_{10} - m_{11})$ e $(m_{14} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(4,5,8,10,11,14,15)$$

$$= [(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D)] + [(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D})] + [(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D})] + [(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D)]$$

$$= [(\overline{A} \cdot B \cdot \overline{C}) \cdot (\overline{D} + D)] + [(A \cdot \overline{B} \cdot \overline{D}) \cdot (\overline{C} + C)] + [(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D)] + [(A \cdot B \cdot C) \cdot (\overline{D} + D)]$$

$$= [(\overline{A} \cdot B \cdot \overline{C}) \cdot (1)] + [(A \cdot \overline{B} \cdot \overline{D}) \cdot (1)] + [(A \cdot \overline{B} \cdot C) \cdot (1)] + [(A \cdot \overline{B} \cdot C) \cdot (1)]$$

$$= (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + [(A \cdot C) \cdot (\overline{B} + B)]$$

$$= (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + [(A \cdot C) \cdot (1)]$$

$$= (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot C) \cdot (1)$$

$$= (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot C) \cdot (1)$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{11}) - (m_{14} - m_{15})]$. Inicialmente, a variável D é dispensada. Em seguida, isso acontece com a variável B.

Empregando-se as aglutinações $(m_4 - m_5)$, $(m_8 - m_{10})$, $(m_{10} - m_{14})$ e $(m_{11} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(4,5,8,10,11,14,15)$$

$$= \left[(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) \right] + \left[(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot D) \right]$$

$$= \left[(\overline{A} \cdot B \cdot \overline{C}) \cdot (\overline{D} + D) \right] + \left[(A \cdot \overline{B} \cdot \overline{D}) \cdot (\overline{C} + C) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(A \cdot C \cdot D) \cdot (\overline{B} + B) \right]$$

$$= \left[(\overline{A} \cdot B \cdot \overline{C}) \cdot (1) \right] + \left[(A \cdot C \cdot D) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right]$$

$$= (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D}) + \left((A \cdot C \cdot \overline{D}) + (A$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{14}) - (m_{11} - m_{15})]$. Inicialmente, a variável B é dispensada. Em seguida, isso acontece com a variável D.

Exemplo 7

Seja a função especificada por $f(A, B, C, D) = \sum m(6, 8, 10, 11, 13, 14, 15)$. A equação literal da SOP padrão é dada por

$$f(A, B, C, D) = \sum m(6, 8, 10, 11, 13, 14, 15)$$

$$= (\overline{A} \cdot B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot \overline{C} \cdot D) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D).$$

Analisando-se os mintermos, verifica-se que há as seguintes possibilidades de aglutinação: (m_6-m_{14}) , (m_8-m_{10}) , $(m_{13}-m_{15})$, $(m_{10}-m_{11})$, $(m_{14}-m_{15})$, $(m_{10}-m_{14})$ e $(m_{11}-m_{15})$. Observando-se que as aglutinações (m_6-m_{14}) , (m_8-m_{10}) , $(m_{13}-m_{15})$ são essenciais, as seguintes aglutinações devem ser feitas para cobrir todos os valores booleanos "1" e para simplificar ao máximo a função: $\{(m_6-m_{14}), (m_8-m_{10}), (m_{13}-m_{15}), (m_{10}-m_{11}), (m_{14}-m_{15})\}$ ou $\{(m_6-m_{14}), (m_8-m_{10}), (m_{13}-m_{15}), (m_{10}-m_{14}), (m_{11}-m_{15})\}$. Em qualquer das duas opções, devem-se duplicar os mintermos m_{10} , m_{14} e m_{15} .

Empregando-se as aglutinações (m_6-m_{14}) , (m_8-m_{10}) , $(m_{13}-m_{15})$, $(m_{10}-m_{11})$, $(m_{14}-m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(6,8,10,11,13,14,15)$$

$$= \left[(\overline{A} \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot \overline{C} \cdot D) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) \right]$$

$$= \left[(B \cdot C \cdot \overline{D}) \cdot (\overline{A} + A) \right] + \left[(A \cdot \overline{B} \cdot \overline{D}) \cdot (\overline{C} + C) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (\overline{D} + D) \right]$$

$$= \left[(B \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot B \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot C) \cdot (1) \right]$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + \left(A \cdot \overline{B} \cdot C \right) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + \left((A \cdot \overline{B} \cdot C) \cdot (\overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + \left((A \cdot C) \cdot (\overline{D} + B) \right) \right]$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + \left((A \cdot C) \cdot (1) \right]$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + (A \cdot C) \cdot (1)$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10} - m_{11}) - (m_{14} - m_{15})]$. Inicialmente, a variável D é dispensada. Em seguida, isso acontece com a variável B.

Empregando-se as aglutinações $(m_6 - m_{14})$, $(m_8 - m_{10})$, $(m_{13} - m_{15})$, $(m_{10} - m_{14})$ e $(m_{11} - m_{15})$, a SOP mínima é dada por

$$f(A,B,C,D) = \sum m(6,8,10,11,13,14,15)$$

$$= \left[(\overline{A} \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot D) \right] + \left[(A \cdot \overline{B} \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot \overline{D}) \right] + \left[(A \cdot \overline{B} \cdot C \cdot D) + (A \cdot B \cdot C \cdot D) \right]$$

$$= \left[(B \cdot C \cdot \overline{D}) \cdot (\overline{A} + A) \right] + \left[(A \cdot \overline{B} \cdot \overline{D}) \cdot (\overline{C} + C) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (\overline{B} + B) \right] + \left[(A \cdot C \cdot D) \cdot (\overline{B} + B) \right]$$

$$= \left[(B \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot \overline{B} \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot B \cdot D) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right] + \left[(A \cdot C \cdot \overline{D}) \cdot (1) \right]$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + (A \cdot C \cdot \overline{D}) + (A \cdot C \cdot D)$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + (A \cdot C) \cdot (\overline{D} + D)$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + (A \cdot C) \cdot (1)$$

$$= (B \cdot C \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{D}) + (A \cdot B \cdot D) + (A \cdot C) .$$

Nesse caso, ocorre a dupla aglutinação $[(m_{10}-m_{14})-(m_{11}-m_{15})]$. Inicialmente, a variável B é dispensada. Em seguida, isso acontece com a variável D.

6.11Exercícios propostos

- 1. Obtenha, algebricamente, as formas SOP mínima e POS mínima para as seguintes equações booleanas:
 - (a) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C).$
 - (b) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}).$
 - (c) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C).$
 - (d) $F(A, B, C) = (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C).$
 - (e) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot C).$
 - (f) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}).$
- 2. Obtenha, algebricamente, as formas SOP mínima e POS mínima para as seguintes equações booleanas:
 - (a) $F(A, B, C) = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C)$.
 - (b) $F(A, B, C) = (A + B + C) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}).$
 - (c) $F(A, B, C) = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}).$
 - (d) $F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}).$
 - (e) $F(A, B, C) = (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C).$
 - (f) $F(A, B, C) = (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C})$
- 3. Para os exercícios listados abaixo, considerar as equações booleanas apresentadas em seguida.
 - (a) Algebricamente, obter a forma SOP padrão da equação fornecida.
 - (b) Algebricamente, obter a forma SOP mínima, a partir da SOP padrão.
 - (c) Algebricamente, obter a forma POS padrão da equação fornecida.
 - (d) Algebricamente, obter a forma POS mínima, a partir da POS padrão.
 - (e) Apresentar a expressão mínima para função.

Equações boolenas:

$$\begin{aligned} &\text{i. } F(A,B,C) = \underbrace{\left\{B \cdot \left[\left(\overline{A} \cdot \overline{C}\right) + (A \cdot C)\right]\right\} + \overline{\left\{B + \left[\left(\overline{A} + \overline{C}\right) \cdot (A + C)\right]\right\}}. \\ &\text{ii. } F(A,B,C) = \overline{\left\{\left[\overline{(A+B)} + C\right] \cdot \left[\overline{A} + \overline{(B+\overline{C})}\right]\right\}}. \end{aligned}$$

ii.
$$F(A, B, C) = \overline{\left\{ \left[\overline{(A+B)} + C \right] \cdot \left[\overline{A} + \overline{\left(B + \overline{C}\right)} \right] \right\}}$$

Capítulo 7

Mapa de Karnaugh

7.1 Introdução

O mapa de Karnaugh (mapa-K) é mais uma das possíveis expressões de uma função lógica, além de uma equação lógica genérica, uma equação booleana genérica, uma forma do grupo SOP, uma forma do grupo POS, uma forma padrão do grupo SOP, uma forma padrão do grupo POS, uma lista de mintermos, uma lista de maxtermos e uma tabela verdade.

Além de representar uma simples expressão para uma função lógica, o mapa-K pode ser usado como ferramenta para a minimização da equação que a define.

O mapa-K pode ser interpretado como uma tabela verdade rearranjada ou como uma representação análoga ao Diagrama de Venn. Para cada linha da tabela verdade de uma equação booleana é associada uma posição no mapa. Uma vez que cada linha da tabela verdade é associada a um mintermo ou a um maxtermo, a cada um deles também é associada uma posição do mapa.

A fim de que o mapa-K seja empregado como uma ferramenta prática no processo de simplificação de equações booleanas, ele deve ser arranjado da seguinte forma:

- De forma similar à uma tabela verdade, deve existir uma localização única no mapa para cada combinação das variáveis das quais a função lógica é dependente.
- As localizações devem ser arranjadas de tal forma que os grupos de mintermos/maxtermos que apresentam potencial para serem combinados em formas reduzidas devam ser facilmente encontrados por uma simples inspeção visual.

Devido a uma limitação prática, são construídos mapas-K para funções lógicas de até 6 variáveis. Para funções lógicas com um número superior a 6 variáveis, pode-se utilizar um algoritmo de minimização, tal como o algoritmo tabular de Quine-McCluskey.

7.2 Motivação para o desenvolvimento do mapa-K

A equação boolena

$$F(A, B, C) = \sum m(1, 2, 6, 7) = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

$$= \prod M(0, 3, 4, 5) = (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) .$$

$$(7.1)$$

é ilustrada na Tabela 7.1, onde são incluídas as indicações de mintermos (m_k) e maxtermos (M_k) .

Linha	A	B	C	F(A,B,C)	m_k/M_k
0	0	0	0	0	M_0
1	0	0	1	1	m_1
2	0	1	0	1	m_2
3	0	1	1	0	M_3
4	1	0	0	0	M_4
5	1	0	1	0	M_5
6	1	1	0	1	m_6
7	1	1	1	1	m_7

Tabela 7.1: Tabela verdade da Equação (7.1).

A SOP mínima da Equação (7.1) pode ser obtida replicando-se o mintermo m_6 e aglutinando cada cópia com os mintermos m_2 e m_7 , o que fornece

$$F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) + (B \cdot \overline{C}) + (A \cdot B). \tag{7.2}$$

Deve-se observar, na tabela verdade, que:

- Os mintermos m_6 e m_7 , que são próximos, combinam-se.
- Os mintermos m_6 e m_2 , que são distantes, combinam-se.
- Os mintermos m_1 e m_2 , que são próximos, não se combinam.
- Os mintermos m_1 e m_7 , que são distantes, não se combinam.

Por sua vez, a POS mínima da Equação (7.1) pode ser obtida replicando-se o maxtermo M_4 e aglutinando cada cópia com os maxtermos M_0 e M_5 , o que fornece

$$F(A, B, C) = (A + \overline{B} + \overline{C}) \cdot (B + C) \cdot (\overline{A} + B) . \tag{7.3}$$

Deve-se observar, na tabela verdade, que:

- Os maxtermos M_4 e M_5 , que são próximos, combinam-se.
- Os maxtermos M_4 e M_0 , que são distantes, combinam-se.
- Os maxtermos M_3 e M_4 , que são próximos, não se combinam.
- Os maxtermos M_3 e M_0 , que são distantes, não se combinam.

Portanto, não é difícil concluir que a tabela verdade, na forma apresentada na Figura 7.1, não é uma ferramenta muito útil para o processo de minimização. Nessa forma, ela apresenta uma dificuldade similar àquela encontrada nas equações, na busca por combinações de termos.

Uma modificação que pode ser executada sobre a tabela verdade, no sentido de torná-la uma ferramenta mais prática para o processo de otimização, é a reorganização das suas linhas, como ilustrado na Tabela 7.2.

Linha	A	B	C	F(A,B,C)	m_k/M_k
0	0	0	0	0	M_0
1	0	0	1	1	m_1
3	0	1	1	0	M_3
2	0	1	0	1	m_2
6	1	1	0	1	m_6
7	1	1	1	1	m_7
5	1	0	1	0	M_5
4	1	0	0	0	M_4

Tabela 7.2: Tabela verdade da Equação (7.1), reorganizada.

Nessa nova organização, o termo de cada linha é potencialmente combinável com os termos das linhas imediatamente anterior e posterior. Da mesma forma, considerando uma conexão circular, o termo do topo é potencialmente combinável com o termo do fundo da tabela.

Para o exemplo em questão, torna-se mais fácil verificar que o mintermo m_1 fica isolado, enquanto o mintermo m_6 combina-se com os mintermos m_2 e m_7 . Da mesma forma, observa-se mais facilmente que o maxtermo M_3 fica isolado, enquanto o maxtermo M_4 combina-se com os maxtermos M_5 e M_0 .

A ideia da alocação geometricamente adjacente para os termos potencialmente combináveis, empregada acima, serve de motivação para o desenvolvimento do mapa-K.

7.3 Construção do mapa-K

A seguir, são apresentadas as construções de mapas-K para funções de uma a quatro variáveis.

7.3.1 Funções de 1 variável

Linha	A	F(A)
0	0	F_0
1	1	F_1

Tabela 7.3: Tabela verdade para funções de 1 variável.

$$\begin{array}{c|c}
\overline{A} & A \\
\hline
F_0 & F_1
\end{array}
\longleftrightarrow
\begin{array}{c|c}
A & 0 & 1 \\
\hline
F_0 & F_1
\end{array}$$

$$\begin{array}{c|c}
A & \overline{A} \\
\hline
F_1 & F_0
\end{array}
\longleftrightarrow
\begin{array}{c|c}
A & 1 & 0 \\
\hline
F_1 & F_0
\end{array}$$

Figura 7.1: Exemplos de mapas de Karnaugh para funções de 1 variável.

7.3.2 Funções de 2 variáveis

Linha	A	B	F(A,B)
0	0	0	F_0
1	0	1	F_1
2	1	0	F_2
3	1	1	F_3

Tabela 7.4: Tabela verdade para funções de 2 variáveis.

Figura 7.2: Exemplos de mapas de Karnaugh para funções de 2 variáveis.

7.3.3 Funções de 3 variáveis

Linha	A	В	C	F(A,B,C)
0	0	0	0	F_0
1	0	0	1	F_1
2	0	1	0	F_2
3	0	1	1	F_3
4	1	0	0	F_4
5	1	0	1	F_5
6	1	1	0	F_6
7	1	1	1	F_7

Tabela 7.5: Tabela verdade para funções de 3 variáveis.

Figura 7.3: Exemplos de mapas de Karnaugh para funções de 3 variáveis.

7.3.4 Funções de 4 variáveis

Linha	A	В	C	D	F(A,B,C,D)
0	0	0	0	0	F_0
1	0	0	0	1	F_1
2	0	0	1	0	F_2
3	0	0	1	1	F_3
4	0	1	0	0	F_4
5	0	1	0	1	F_5
6	0	1	1	0	F_6
7	0	1	1	1	F_7
8	1	0	0	0	F_8
9	1	0	0	1	F_9
10	1	0	1	0	F_{10}
11	1	0	1	1	F_{11}
12	1	1	0	0	F_{12}
13	1	1	0	1	F_{13}
14	1	1	1	0	F_{14}
15	1	1	1	1	F_{15}

Tabela 7.6: Tabela verdade para funções de 4 variáveis.

Figura 7.4: Exemplos de mapas de Karnaugh para funções de 4 variáveis.

7.4 Preenchimento do mapa-K

Por construção, cada uma das localizações do mapa é associada a cada uma das combinações das variáveis das quais a função é dependente. Isso equivale a dizer que cada uma das localizações do mapa é associada a uma linha da tabela verdade da função. Logo, cada uma das localizações do mapa deve ser preenchida com o respectivo valor da função (0 ou 1).

Para montar o mapa de uma função lógica e empregá-lo para simplificar uma forma SOP, deve-se manter os valores 1 (mintermos) no mapa e ignorar os valores 0 (maxtermos), a fim de facilitar a identificação visual.

Para montar o mapa de uma função lógica e empregá-lo para simplificar uma forma POS, deve-se manter os valores 0 (maxtermos) no mapa e ignorar os valores lógicos 1 (mintermos), a fim de facilitar a identificação visual.

Por exemplo, considerando os mintermos e os maxtermos separadamente, as Figuras 7.5 e 7.6 ilustram os mapas-K para a Equação (7.1), respectivamente.

		AB							
		00	00 01 11 10						
C	0		1	1					
	1	1		1					

Figura 7.5: Mapa de Karnaugh relativo à Equação (7.1), considerando apenas os mintermos.

		AB				
		00	01	11	10	
C	0	0			0	
	1		0		0	

Figura 7.6: Mapa de Karnaugh relativo à Equação (7.1), considerando apenas os maxtermos.

7.5 Mapa-K como forma de expressão

Uma função de variáveis booleanas pode ser expressa por uma equação genérica, por uma forma do grupo SOP, por uma forma do grupo POS, por uma forma padrão do grupo SOP, por uma forma padrão do grupo POS por uma lista de mintermos, por uma lista de maxtermos e por uma tabela verdade.

Além de ser usado como ferramenta de minimização, o mapa-K pode ser visto como mais uma alternativa de representação para funções booleanas.

As transformações entre: i) uma equação genérica, ii) uma forma dos grupos SOP ou POS e iii) uma forma padrão dos grupos SOP ou POS, envolvem manipulação algébrica das equações.

Por outro lado, as transformações realizadas entre uma lista de mintermos ou maxtermos, uma tabela verdade, um mapa-K e as demais representações, envolvem catalogação direta.

Portanto, partindo-se de uma dada forma de representação, pode-se facilmente obter todas as demais, independentemente do tipo de mapeamento utilizado.

Um exemplo de tais relacionamentos pode ser obtido a partir da função dada por

$$F(A, B, C) = \overline{\left(\overline{A} + \overline{(B+C)}\right)} . \tag{7.4}$$

Após alguma manipulação algébrica, a Equação (7.4) pode gerar a forma POS

$$F(A, B, C) = (A) \cdot (B + C) \tag{7.5}$$

e a forma SOP

$$F(A, B, C) = (A \cdot B) + (A \cdot C)$$
 (7.6)

Expandindo-se os termos das Equações (7.5) e (7.6), obtém-se, respectivamente, a forma padrão POS

$$F(A,B,C) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+C)$$

$$= \prod M(0,1,2,3,4)$$
(7.7)

e a forma padrão SOP

$$F(A, B, C) = (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

=
$$\sum m(5, 6, 7) .$$
 (7.8)

Por sua vez, a tabela verdade referente à Equação (7.4) é apresentada na Tabela 7.7.

Linha	A	B	C	F(A,B,C)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Tabela 7.7: Tabela verdade relativa à Equação (7.4).

Finalmente, o mapa-K da função é mostrado na Figura 7.7.

		AB				
		00	01	11	10	
C	0	0	0	1	0	
	1	0	0	1	1	

Figura 7.7: Mapa de Karnaugh relativo à Equação (7.4).

7.6 Mapa-K na simplificação de expressões booleanas

7.6.1 Adjacência lógica, aglutinação e replicação

A simplificação algébrica de expressões booleanas baseia-se na utilização de duas operações: a aglutinação e a replicação.

Se dois termos diferem de apenas um literal $(A \in \overline{A})$, a aplicação da aglutinação permite simplificá-los em um único termo, sem o literal em questão. Tais termos são ditos logicamente adjacentes. Isso pode ser exemplificado por

$$F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot C)$$
$$= (\overline{B} \cdot \overline{C}) + (B \cdot C) . \tag{7.9}$$

Por sua vez, a replicação permite que um mesmo termo seja utilizado em simplificações envolvendo diversos outros termos. Um exemplo de replicação é dado por

$$F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C})$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot \overline{C})$$

$$= (\overline{A} \cdot \overline{C}) + (\overline{B} \cdot \overline{C}).$$

$$(7.10)$$

Os mapas de Karnaugh são construídos de tal forma que as adjacências geométricas do mapa são equivalentes às adjacências lógicas dos termos das equações. Portanto, a combinação algébrica dos termos de uma equação é equivalente à combinação de termos adjacentes do mapa. Assim sendo, a equação pode ser simplificada através da leitura direta da informação do mapa. O mapa da Figura 7.8 exemplifica a Equação (7.9), onde são realizadas as combinações $m_0 + m_4$ e $m_3 + m_7$.

		AB				
		00	01	11	10	
C	0	1	0	0	1	
	1	0	1	1	0	

Figura 7.8: Mapa de Karnaugh relativo à Equação (7.9).

No mapa, a replicação é interpretada como a combinação de um termo com os demais geometricamente adjacentes. O mapa da Figura 7.9 exemplifica a Equação (7.10), onde o mintermo m_0 é replicado para as combinações $m_0 + m_2$ e $m_0 + m_4$.

		AB				
		00	01	11	10	
C	0	1	1	0	1	
	1	0	0	0	0	

Figura 7.9: Mapa de Karnaugh relativo à Equação (7.10).

7.6.2 Seleção sistemática de termos (implicantes ou implicados)

Em uma seleção sistemática, duas definições são de grande auxílio na escolha de termos a serem agrupados para simplificação: termo essencial e termo primo.

Quando um termo original é coberto por um único agrupamento possível, o termo resultante do agrupamento é denominado de termo essencial. Isso indica que os termos essenciais devem ser incluídos na expressão mínima equivalente à função desejada.

Um termo original que não tenha sido coberto por qualquer agrupamento anterior deve ser incluído em um agrupamento máximo, o qual será denominado de termo primo. Isso indica que os termos primos devem ser incluídos na expressão mínima equivalente à função desejada.

Deve ser ressaltado que nem todo agrupamento máximo representa um termo primo. Assim, uma forma sistemática de escolha de termos é:

- S1 Identificar todas as possibilidades de agrupamento, através dos maiores grupos possíveis.
- **S2** Marcar todos os termos originais cobertos por apenas 1 agrupamento. Tais agrupamentos formam os termos essenciais.
- S3 Listar todos os termos essenciais.
- S4 Usar os maiores agrupamentos possíveis para cobrir os termos originais não cobertos pelos termos essenciais, formando termos primos.
- S5 Listar apenas tais termos primos.
- S6 Montar a expressão mínima, a partir das duas listas.

No caso da existência de diversas formas mínimas equivalentes, em uma SOP ou em uma POS, deve-se aplicar algum critério extra para a escolha final.

Dada uma função, e suas formas SOP e POS, nada se pode garantir em relação a qual das duas conduzirá à expressão mais simples. Assim, é necessário encontrar a forma mínima de ambas e decidir qual delas é a mais simples.

7.6.3 Mapa-K de funções com múltiplos mínimos e mapa cíclico

Algumas equações booleanas não possuem uma forma mínima única. Isso acontece porque, em um conjunto de termos da expressão, cada um deles é coberto por mais de um agrupamento de termos logicamente equivalentes. Assim sendo, não é possível selecionar um conjunto único de termos essenciais e/ou primos.

Em tais casos, o que se deve fazer é avaliar as possíveis soluções e escolher a de menor custo. Caso ainda existam opções logicamente equivalentes, todas de mesmo custo, deve-se adotar algum critério extra de escolha.

A Figura 7.10 apresenta o mapa de uma função com múltiplas formas mínimas, envolvendo o termo m_2 , que possui duas soluções de mesmo custo: i) $(m_0 + m_4), (m_3 + m_7), (m_0 + m_2)$ e ii) $(m_0 + m_4), (m_3 + m_7), (m_3 + m_2)$.

Em alguns casos particulares, todos os termos de um subconjunto dos termos da função são cobertos por mais de um agrupamento, todos de mesmo custo. Tal subconjunto de termos forma um ciclo. Mapas de funções com tal característica são denominados de mapas cíclicos.

Nesses casos, deve-se adotar algum critério extra de escolha para quebrar o ciclo.

A Figura 7.11 apresenta um mapa com ciclo, que possui duas soluções de mesmo custo: i) $(m_0 + m_2), (m_3 + m_7), (m_4 + m_5)$ e ii) $(m_0 + m_4), (m_2 + m_3), (m_5 + m_7)$.

			A	B	
		00	01	11	10
C	0	1	1	0	1
	1	0	1	1	0

Figura 7.10: Mapa de Karnaugh com múltiplas formas mínimas.

			A	B	
		00	01	11	10
C	0	1	1	0	1
	1	0	1	1	1

Figura 7.11: Mapa de Karnaugh com ciclo.

7.6.4 Indeterminações: don't-care e can't-happen

Em alguns problemas, as funções booleanas podem não ser completamente especificadas. Nesses casos, duas situações podem ocorrer. Na primeira delas, para uma dada combinação de valores dos literais, o valor da função não é relevante (don't-care). Por outro lado, pode acontecer que uma determinada combinação de literais nunca ocorra (can't-happen). Em ambas as situações, pode-se especificar livremente qualquer um dos valores lógicos para a função. Para caracterizar o aspecto indeterminado da sua especificação, costuma-se atribuir um valor lógico indeterminado X.

Os valores indeterminados podem ser utilizados no processo de simplificação de formas padrões contendo mintermos ou maxtermos.

A Tabela 7.8 exemplifica uma função incompletamente especificada, a qual também pode ser expressa por

$$F(A, B, C) = \sum m(0, 3, 4) + \sum d(2, 7) = \prod M(1, 5, 6) \cdot \prod d(2, 7) . \tag{7.11}$$

As Figuras 7.12–7.14 ilustram os mapas de Karnaugh da função, de seus mintermos e de seus maxtermos, respectivamente.

Linha	A	B	C	F(A, B, C)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	X
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	X

Tabela 7.8: Tabela verdade de função incompletamente especificada.

			A	B	
		00	01	11	10
C	0	1	X	0	1
	1	0	1	X	0

Figura 7.12: Mapa de Karnaugh da Tabela 7.8.

			A	B	
		00	01	11	10
C	0	1	X		1
	1		1	X	

Figura 7.13: Mapa de Karnaugh dos mintermos da Tabela 7.8.

			A	B	
		00	01	11	10
C	0		X	0	
	1	0		X	0

Figura 7.14: Mapa de Karnaugh dos maxtermos da Tabela 7.8.

Da configuração de mintermos apresentada no mapa da Figura 7.13, pode-se escrever que

$$F(A, B, C) = \sum m(0, 3, 4) + \sum d(2, 7)$$

$$= (m_0 + m_4) + (m_3 + d_2) = (\overline{B} \cdot \overline{C}) + (\overline{A} \cdot B)$$

$$= (m_0 + m_4) + (m_3 + d_7) = (\overline{B} \cdot \overline{C}) + (B \cdot C) . \tag{7.12}$$

Da configuração de maxtermos apresentada no mapa da Figura 7.14, pode-se escrever que

$$F(A, B, C) = \prod M(1, 5, 6) \cdot \prod d(2, 7)$$

$$= (M_1 \cdot M_5) \cdot (M_6 \cdot d_2) = (B + \overline{C}) \cdot (\overline{B} + C)$$

$$= (M_1 \cdot M_5) \cdot (M_6 \cdot d_7) = (B + \overline{C}) \cdot (\overline{A} + \overline{B}) . \tag{7.13}$$

As Equações (7.12) e (7.13) mostram que os valores lógicos indeterminados podem ser usados, ou não, no processo de simplificação. Elas ilustram ainda o papel relevante dos valores indeterminados na simplificação de funções booleanas.

Deve ser ressaltado que, uma vez escolhidos como "0" ou como "1", os valores indeterminados "X", bem como a função original, perdem a sua característica de indeterminação na expressão mínima. Assim sendo, a função minimizada final passa a ser completamente especificada.

7.7 Exercícios propostos

- 1. Obtenha, utilizando o Mapa de Karnaugh, as formas SOP mínima e POS mínima para as seguintes equações booleanas:
 - (a) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C).$
 - (b) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C}).$
 - (c) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C).$
 - (d) $F(A, B, C) = (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C).$
 - (e) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot C).$
 - (f) $F(A, B, C) = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}).$
- 2. Obtenha, utilizando o Mapa de Karnaugh, as formas SOP mínima e POS mínima para as seguintes equações booleanas:
 - (a) $F(A, B, C) = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C).$
 - (b) $F(A, B, C) = (A + B + C) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}).$
 - (c) $F(A, B, C) = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}).$
 - (d) $F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}).$
 - (e) $F(A, B, C) = (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C).$
 - (f) $F(A, B, C) = (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C}).$
- 3. Para os exercícios listados abaixo, considerar as equações booleanas apresentadas em seguida.
 - (a) Obter a forma SOP padrão da equação fornecida.
 - (b) Obter a forma SOP mínima, utilizando o mapa de Karnaugh correspondente.
 - (c) Obter a forma POS padrão da equação fornecida.
 - (d) Obter a forma POS mínima, utilizando o mapa de Karnaugh correspondente.
 - (e) Apresentar a expressão mínima para função.

Equações boolenas:

$$\begin{aligned} &\text{i. } F(A,B,C) = \underbrace{\left\{B \cdot \left[\left(\overline{A} \cdot \overline{C}\right) + (A \cdot C)\right]\right\} + \overline{\left\{B + \left[\left(\overline{A} + \overline{C}\right) \cdot (A + C)\right]\right\}}. \\ &\text{ii. } F(A,B,C) = \overline{\left\{\left[\overline{(A+B)} + C\right] \cdot \left[\overline{A} + \overline{(B+\overline{C})}\right]\right\}}. \end{aligned}$$

- 4. Construa a Tabela Verdade e o Mapa de Karnaugh a partir das expressões booleanas mínimas apresentadas nas Equações (7.12) e (7.13). Perceba as diferenças entre tais representações, bem como as diferenças entre cada uma delas e a Tabela Verdade original e o Mapa de Karnaugh original, apresentados na Tabela 7.8 e na Figura 7.12, respectivamente.
- 5. Para os exercícios listados abaixo, considerar as equações booleanas apresentadas em seguida.
 - (a) Obter a forma SOP mínima, utilizando o mapa de Karnaugh correspondente.
 - (b) Obter a forma POS mínima, utilizando o mapa de Karnaugh correspondente.
 - (c) Apresentar a expressão mínima para função.

Equações boolenas:

i. $F(A, B, C) = \sum m(0, 2, 3, 5, 7)$ ii. $F(A, B, C) = \sum m(0, 1, 3, 4, 5)$ iii. $F(A, B, C) = \sum m(0, 1, 2, 4, 6, 7)$ iv. $F(A, B, C, D) = \sum m(4, 5, 11, 13, 15)$ v. $F(A, B, C, D) = \sum m(0, 1, 5, 6, 7, 14)$ vi. $F(A, B, C, D) = \sum m(0, 1, 2, 6, 7, 8, 9, 10, 14)$ vii. $F(A, B, C, D) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$ viii. $F(A, B, C, D) = \sum m(0, 1, 2, 6, 7, 8, 9, 10, 14, 15)$ ix. $F(A, B, C, D) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14, 15)$ x. $F(A, B, C, D) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15)$ xi. $F(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 9, 10, 12, 13)$ xii. $F(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 9, 10, 12, 13, 15)$ xiii. $F(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 15)$ xiv. $F(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 14, 15)$ xv. $F(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 11, 15)$ xvi. $F(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 13, 15)$ xvii. $F(A, B, C, D) = \sum m(0, 2, 5, 6, 8, 10, 13)$ xviii. $F(A, B, C, D) = \sum m(0, 2, 5, 7, 8, 10, 11, 13, 15)$ xix. $F(A, B, C, D) = \sum m(1, 5, 6, 7, 11, 12, 13, 15)$ xx. $F(A, B, C, D) = \sum m(2, 3, 4, 5, 6, 7, 10, 12, 13, 15)$

xxi. $F(A, B, C, D) = \sum m(1, 2, 4, 6, 7, 9, 11, 12, 13, 14, 15)$

Capítulo 8

Sistemas de numeração

8.1 Introdução

- Sistema numérico (number system) × sistema de numeração (numeral system).
- Sistemas numéricos classificam o tipo da quantidade numérica: N, Z, Q, R, C, etc..
- Sistemas de numeração tratam da representação da quantidade numérica: grupos de numerais (símbolos) que representam quantidades.
- Máquinas digitais possuem capacidade de armazenamento finito. Um registro só pode armazenar uma quantidade finita de elementos básicos de informação e a máquina só pode armazenar uma quantidade finita de registros. Portanto, toda quantidade armazenada será uma aproximação da quantidade original. O sistema de numeração utilizado pela máquina tem influência direta na qualidade dessa aproximação.
- Da mesma forma, a eficiência de uma determinada implementação para as operações aritméticas básicas (adição, subtração, multiplicação e divisão) também é influenciada pelo sistema de numeração utilizado pela máquina. Deve ser ressaltado que a eficiência é, geralmente, medida em relação ao tempo necessário para a realização da operação, à quantidade de elementos constituintes utilizados, aos tipos de tais elementos e ao consumo de energia.
- Assim, através da escolha adequada entre as diversas alternativas matemáticas para a representação de quantidades, bem como da sua implementação (máquina e linguagem de programação), procura-se reduzir o erro das aproximações e/ou tornar as operações aritméticas mais eficientes.
- Sistemas comumente usados em máquinas digitais:
 - Posicional.
 - Resíduos (ou resto).
 - Racional.
 - Logarítmico.

• Sistemas de numeração posicional

- Sistema vetorial posicional.
- É definido um conjunto básico de dígitos ou símbolos $\boldsymbol{S} = \{s_1, s_2, \cdots, s_M\}.$
- Os números x são representados por grupos de dígitos (vetores) pertencentes a S: $\mathbf{x} = [d_N, \dots, d_2, d_1]_S$, onde $d_i \in S$.
- A posição de cada dígito no vetor tem significado.
- A cada posição i é associado um peso numérico w_i , o qual é multiplicado pelo dígito d_i correspondente: $\mathbf{w} = [w_N, \cdots, w_2, w_1]$.
- Os dígitos d_i representam números inteiros, podendo ser positivos e/ou negativos.
- Os pesos podem ser os mais diversos possíveis.

• Sistemas de numeração de resíduos (ou restos)

- Sistema vetorial não posicional.
- É definido um vetor de elementos primos entre si dois a dois: $\mathbf{m} = [m_1, m_2, \cdots, m_N]$.
- São calculados os resíduos (restos) r_i da divisão de um número inteiro x por cada elemento m_i .
- Os números x são representados por um vetor contendo os resíduos: $\mathbf{x} = [r_1, r_2, \cdots, r_N]_m$.
- Nas operações aritméticas, os resíduos podem ser tratados independentemente, acelerando o processo de cálculo.

Sistemas de numeração racional

- Representação de números através de frações.
- Numerador e denominador da fração são representados por números inteiros.
- As operações aritméticas são realizadas sem erro, mesmo em uma máquina com precisão finita.

• Sistemas de numeração logarítmico

- Um número real $\mu > 1$ é definido como base.
- É gerado um conjunto de números reais $\mathbf{L}_{\mu} = \{x \mid |x| = \mu^i, i \in \mathbb{Z}\}\ U\ \{0\}.$
- É objetivada uma melhoria de precisão na representação dos números, conseguida através de arredondamento geométrico.

8.2 Sistema de numeração posicional convencional

Nos itens que se seguem, são abordados diversos aspectos do sistema de numeração posicional convencional (SNPC):

- Representação de números com partes inteira e fracionária.
- Representação de números positivos, nulos e negativos.
- Tabelas de operações básicas entre dígitos.
- Escalamento por potência inteira da base.
- Conversão entre bases.
- Bases mais comuns em circuitos digitais.

8.2.1 Representação de números inteiros não negativos

Para representar quantidades numéricas inteiras, ordenadas e não negativas, o sistema de numeração posicional convencional utiliza um conjunto ordenado e não negativo de símbolos simples (dígitos) $d_i \in \mathbf{S} = \{s_1, s_2, \dots, s_M\} = \{0, 1, 2, \dots, (b-1)\}$, juntamente com uma técnica de poderação ou escala. O número de elementos de \mathbf{S} , M = b, é denominado **base** ou **radical** (radix) do sistema de numeração. Os pesos ou fatores de escala utilizados são potências inteiras da base $w_i \in \mathbf{W} = \{w_1, w_2, w_3, \dots\} = \{b^0, b^1, b^2, \dots\}$.

Uma visão geométrica modular do processo de representação pode ser encontrada nas Figuras 8.1-8.4, para b=3. Para representar cada uma das quantidades q < b, é utilizado apenas um dos elementos de \mathbf{S} , como na Figura 8.1. Para as quantidades $q \ge b$, como não existem outros símbolos disponíveis, repetem-se os elementos de \mathbf{S} , em módulos de comprimento b, como exemplificado na Figura 8.2. Porém, isso gera ambigüidade na representação, a qual é resolvida através da combinação de símbolos, como ilustrado na Figura 8.3. Agora, a cada módulo de b símbolos, no nível básico de representação L=0, são justapostos os elementos de \mathbf{S} , formando um novo nível de representação L=1. Essa técnica é aplicada, sucessivamente, cada vez que o número de possibilidades de representação em um determinado nível L se esgota e uma nova ambigüidade é gerada pela repetição de símbolos, como é apresentado na Figura 8.4.

Em cada nível da representação existe um módulo formado pelos símbolos de S. Devido à lei de formação empregada, o comprimento do módulo em cada nível é uma versão escalada dos comprimentos dos módulos dos níveis inferiores. Os fatores de escala são as potências inteiras da base $\mathbf{W} = \{b^0, b^1, b^2, \cdots\}$. As mudanças de símbolos, dentro de cada nível, são reguladas pelo fator de escala do nível. Dessa forma, dentro de cada nível L = 0, 1, 2, ..., (N-1), ocorre uma mudança de símbolos a cada b^L unidades da quantidade representada.

Figura 8.1: Representação de quantidades q < b, para b = 3.

0	1	2	0	1	2	0	1	2

Figura 8.2: Representação de quantidades $q \ge b$, para b = 3, com ambigüidade.

0	1	2	0	1	2	0	1	2
	0			1			2	

Figura 8.3: Representação de quantidades $q \ge b$, para b = 3, com eliminação da ambigüidade através da justaposição dos dígitos.

0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	0			1			2			0			1			2			0			1			2	
				0									1									2				

Figura 8.4: Uso repetido da técnica de justaposição de dígitos para representação de quantidades $q \ge b$, para b = 3, sem ambigüidade.

Algebricamente, a idéia geométrica modular de uma combinação de níveis pode ser expressa por uma soma de níveis de valores, onde o valor numérico de cada nível k é expresso por um dígito $d_k \in \mathbf{S}$, ponderado por um fator $w_k \in \mathbf{W}$, conforme a Equação (8.1). A notação pode ser simplificada através da justaposição dos dígitos, acompanhada da especificação da base, como ilustrado na Equação (8.2). Nos casos onde se opera sempre com a mesma base, a sua indicação pode ser omitida, como na Equação (8.3).

$$(q_I)_b = (d_{N-1} \times b^{N-1}) + \dots + (d_2 \times b^2) + (d_1 \times b^1) + (d_0 \times b^0) = \sum_{k=0}^{N-1} d_k b^k . \tag{8.1}$$

$$(q_I)_b = \sum_{k=0}^{N-1} d_k b^k = [d_{N-1} \cdots d_2 d_1 d_0]_b . \tag{8.2}$$

$$q_I = \sum_{k=0}^{N-1} d_k b^k = [d_{N-1} \cdots d_2 d_1 d_0] . \tag{8.3}$$

8.2.2 Representação de números fracionários não negativos

Para representar quantidades numéricas puramente fracionárias, ordenadas e não negativas, o sistema de numeração posicional convencional utiliza o mesmo mecanismo empregado com números inteiros. Nesse caso, os pesos w_i , usados para ponderar os dígitos d_i , são potências inteiras e negativas da base b.

Partindo-se das Equações (8.1) a (8.3), pode-se dizer que

$$(q_F)_b = b^{-N} \cdot (q_I)_b = (d_{N-1} \times b^{-1}) + \dots + (d_1 \times b^{-N+1}) + (d_0 \times b^{-N}) = \sum_{k=0}^{N-1} d_k b^{-N+k}$$
 (8.4)

ou, utilizando-se uma notação mais genérica, que

$$(q_F)_b = (d_{-1} \times b^{-1}) + (d_{-2} \times b^{-2}) + \dots + (d_{-N} \times b^{-N}) = \sum_{k=-N}^{-1} d_k b^k = [d_{-1}d_{-2} \cdots d_{-N}]_b . \tag{8.5}$$

Na representação simplificada por um vetor de dígitos, para uso humano, emprega-se um símbolo extra para diferenciar as representações de números puramente inteiros, puramente fracionários e com partes inteira e fracionária. Normalmente é utilizado um ponto ou uma vírgula, como é ilustrado na Equação (8.6), para números puramente inteiros, na Equação (8.7), para números puramente fracionários, e na Equação (8.8), para números com partes inteira e fracionária.

$$(q_I)_b = \sum_{k=0}^{N_I - 1} d_k b^k = [d_{N_I - 1} \cdots d_1 d_0 \cdot]_b = [d_{N_I - 1} \cdots d_1 d_0 \cdot 0]_b.$$
 (8.6)

$$(q_F)_b = \sum_{k=-N_F}^{-1} d_k b^k = [\cdot d_{-1} d_{-2} \cdots d_{-N_F}]_b = [0 \cdot d_{-1} d_{-2} \cdots d_{-N_F}]_b.$$
(8.7)

$$(q)_b = (q_I)_b + (q_F)_b = \sum_{k=-N_F}^{N_I - 1} d_k b^k = [d_{N_I - 1} \cdots d_2 d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-N_F}]_b . \tag{8.8}$$

Na representação utilizada nos circuitos digitais o símbolo extra não é utilizado, uma vez que o conhecimento de quantos dígitos são empregados para as partes inteira e fracionária transformam-no em uma informação redundante e, portanto, dispensável.

Para o uso humano, a redundância é útil para facilitar a visualização das partes inteira e fracionária, bem como para sua manipulação.

8.2.3 Representação de números inteiros negativos

- Na representação matemática para uso humano, uma forma de diferenciar números positivos e negativos é a adição dos símbolos "+" e "-", respectivamente. Tais símbolos também podem ser interpretados como operadores unários. Logo, a menos que seja necessário resolver alguma ambigüidade, o símbolo "+" é dispensado, uma vez que não realiza qualquer modificação sobre a quantidade original.
- Na representação utilizada nos circuitos digitais, é necessário empregar um dos próprios símbolos utilizados na codificação de quantidades para diferenciar quantidades positivas e negativas, devido a não existência de outros símbolos.
- Diversas formas de recodificação podem ser encontradas para os vetores de dígitos que representam as quantidades numéricas. As mais comuns são discutidas a seguir.
- Representação numérica
 - Sistema: SNPC com base b.
 - Dígitos: $d_i \in S = \{0, 1, 2, \dots, (b-1)\}.$
 - Representação: vetor de N dígitos.
- Significado dos N dígitos
 - O dígito mais significativo representa o sinal: $d_{N-1} = s_{N-1}$.
 - Os restantes (N-1) dígitos representam a quantidade numérica.

- Números positivos
 - Dígito mais significativo: $d_{N-1} = s_{N-1} = 0$.
 - Representação: $(q_{I+})_b = [s_{N-1}d_{N-2}\cdots d_2d_1d_0]_b = [0\ d_{N-2}\cdots d_2d_1d_0]_b.$
 - Codificação: sinal-e-magnitude.
- Números negativos
 - Dígito mais significativo: $d'_{N-1} = s'_{N-1} = (b-1)$.
 - Representação: $(q_{I-})_b = [s'_{N-1}d'_{N-2}\cdots d'_2d'_1d'_0]_b = [(b-1)\ d'_{N-2}\cdots d'_2d'_1d'_0]_b.$
 - Codificações:
 - * Sinal-e-magnitude.
 - * Sinal-e-complemento:
 - · Complemento à base (b).
 - · Complemento à base diminuída (b-1).
- A seguir, são abordadas as codificações de números negativos para b=2.

Visão geral das codificações

- As Figuras 8.5 a 8.10 apresentam uma visão geométrica das codificações.
- Na representação de números inteiros não negativos, considerando-se b = 2, é utilizada a justaposição de N dígitos para representar 2^N valores consecutivos, na faixa $[0; (2^N 1)]$. Por exemplo, para N = 4, o valor $V = (6)_{10}$ é representado por $V = (0110)_2$. Isso é ilustrado na Figura 8.5, para N = 4.
- Para possibilitar a representação de números inteiros negativos, o dígito mais significativo é utilizado para simbolizar os sinais "+" e "-". Normalmente, são adotados "0" e "1", respectivamente. Portanto, uma metade dos 2^N possíveis padrões de dígitos é usada para representar os números positivos e o zero, enquanto a outra metade pode ser usada para representar números negativos.
- Para os valores não negativos, a associação entre números e padrões de dígitos é a mesma utilizada anteriormente, adotando-se o dígito mais significativo com valor "0", para representar o sinal "+". Por exemplo, para N=4, o valor $V=(+6)_{10}$ é representado por $V_{SM}=(0110)_2$. Isso é ilustrado na Figura 8.6, para N=4.
- Por outro lado, para os valores negativos, três outros tipos de associação são comumente empregados.
- Na codificação denominada de Sinal-e-Magnitude, a associação entre números negativos e padrões de dígitos é a mesma utilizada anteriormente, adotando-se o dígito mais significativo com valor "1", para representar o sinal "-". Por exemplo, para N=4, o valor $V=(-6)_{10}$ é representado por $V_{SM}=(1110)_2$. Isso é ilustrado na Figura 8.7, para N=4.
- Nas codificações denominadas de complementares, um valor negativo (V = -|V|) é representado por seu valor complementar (V_C) em relação a um determinado valor de referência (V_R) , de tal forma que $V_C = V_R |V|$.

- Na codificação denominada de Complemento-a-1, o valor de referência é igual ao maior valor representável $(V_R = b^N 1 = 2^N 1)$. Por exemplo, para N = 4, o valor $V = (-6)_{10}$ é representado pelo valor complementar $V_{C1} = V_R |V| = (15 |6|)_{10} = (9)_{10} = (1001)_2$. Isso é ilustrado na Figura 8.8, para N = 4.
- Na codificação denominada de Complemento-a-2, o valor de referência é o valor seguinte ao maior valor representável $(V_R = b^N = 2^N)$. Por exemplo, para N = 4, o valor $V = (-6)_{10}$ é representado pelo valor complementar $V_{C1} = V_R |V| = (16 |6|)_{10} = (10)_{10} = (1010)_2$. Isso é ilustrado na Figura 8.9, para N = 4.
- Para melhor comparação, todas as codificações são reunidas na Figura 8.10, para N=4.

Figura 8.5: Mapeamento decimal-binário para números não negativos e N=4, sem sinal.

Figura 8.6: Mapeamento decimal-binário para números não negativos e N=4, com sinal.

Figura 8.7: Mapeamento decimal-binário para números negativos e N=4, com codificação Sinal-e-Magnitude.

Figura 8.8: Mapeamento decimal-binário para números negativos e N=4, com codificação Complemento-a-1.

Figura 8.9: Mapeamento decimal-binário para números negativos e N=4, com codificação Complemento-a-2.

Figura 8.10: Comparação dos mapeamentos decimal-binário para números negativos e N=4.

Sinal-e-magnitude

- Assim como na representação para uso humano, o dígito de sinal $d_{N-1} = s_{N-1} = 0$ ou (b-1) pode ser interpretado como um operador unário ou como um dígito sem peso numérico, que indica apenas o valor do sinal.
- Os demais dígitos representam um valor numérico positivo.
- A representação possui dois padrões binários para o valor numérico nulo: +(0) e -(0).
- A Equação (8.9) apresenta uma interpretação numérica da representação, para b=2.
- Um exemplo é apresentado na Tabela 8.1, para b=2 e N=4.

$$(q_{I})_{2} = [0/1 \ d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2} = [s_{N-1} d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2}$$

$$= (-1)^{s_{N-1}} \times \left[(d_{N-2} \times 2^{N-2}) + \cdots + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0}) \right]$$

$$= (-1)^{s_{N-1}} \times \left(\sum_{k=0}^{N-2} d_{k} 2^{k} \right)$$

$$(8.9)$$

	Bin	ário		Decimal	Interpretação
0	1	1	1	7	$(+1)\cdot(7)$
0	1	1	0	6	$(+1) \cdot (6)$
0	1	0	1	5	$(+1)\cdot(5)$
0	1	0	0	4	$(+1)\cdot(4)$
0	0	1	1	3	$(+1)\cdot(3)$
0	0	1	0	2	$(+1) \cdot (2)$
0	0	0	1	1	$(+1) \cdot (1)$
0	0	0	0	0	$(+1) \cdot (0)$
1	0	0	0	0	$(-1)\cdot(0)$
1	0	0	1	-1	$(-1)\cdot(1)$
1	0	1	0	-2	$(-1)\cdot(2)$
1	0	1	1	-3	$(-1)\cdot(3)$
1	1	0	0	-4	$(-1)\cdot(4)$
1	1	0	1	-5	$(-1)\cdot(5)$
1	1	1	0	-6	$(-1)\cdot(6)$
1	1	1	1	-7	$(-1)\cdot(7)$

Tabela 8.1: Tabela de sinal-e-magnitude, para número inteiros, b = 2 e N = 4.

Complemento à base diminuída

- Para quantidades positivas, a codificação é sinal-e-magnitude, onde $d_{N-1} = s_{N-1} = 0$.
- Para quantidades negativas, a codificação é $d_{N-1} = s_{N-1} = (b-1)$ e os demais dígitos são recodificados.
- A representação possui dois padrões binários para o valor numérico nulo: +(0) e -(0).
- Interpretação 1:
 - Técnica: um valor positivo adequado é adicionado ao número negativo, de tal forma que o resultado seja positivo e que o dígito de sinal passe de 0 para (b-1).
 - O número negativo é representado como o complemento do seu valor absoluto em relação a um módulo cujo valor é a menor potência (inteira e positiva) da base que é maior do que a representação do valor absoluto a ser representado, reduzida de uma unidade.
 - Para $(q_{I-})_b$ representada por um vetor de N dígitos: $-|x| \leftrightarrow x_C = (b^N 1) |x|$.
 - As Equações (8.10) e (8.11) apresentam uma interpretação numérica da representação, para b=2.

$$(q_{I-})_2 = -|x| = -\left(\sum_{k=0}^{N-1} d_k 2^k\right) = -\left[d_{N-1} d_{N-2} \cdots d_1 d_0\right]_2 = -\left[0 \ d_{N-2} \cdots d_1 d_0\right]_2 \tag{8.10}$$

$$x_{C1} = (2^{N} - 1) - |x| = (2^{N} - 1) - \left(\sum_{k=0}^{N-1} d_{k} 2^{k}\right)$$
$$= [1 \ 1 \cdots 1 \ 1]_{2} - [0 \ d_{N-2} \cdots d_{1} d_{0}]_{2} = [1 \ d'_{N-2} \cdots d'_{1} d'_{0}]_{2}$$
(8.11)

- Interpretação 2 (para b = 2):
 - O dígito de sinal tem peso negativo: $w_{N-1} = [-(2^{N-1} 1)].$
 - Os demais dígitos representam um valor numérico positivo que, somado ao valor negativo do dígito de sinal, fornece o valor negativo desejado.
 - As Equações (8.12) e (8.13) apresentam uma interpretação numérica da representação, para b=2.

$$(q_{I+})_{2} = [0 \ d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2}$$

$$= [s_{N-1} \ d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2}$$

$$= s_{N-1} \cdot [-(2^{N-1} - 1)] + [(d_{N-2} \times 2^{N-2}) + \cdots + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})]$$

$$= s_{N-1} \cdot [-(2^{N-1} - 1)] + \left(\sum_{k=0}^{N-2} d_{k} 2^{k}\right)$$
(8.12)

$$(q_{I-})_{2} = [1 \ d'_{N-2} \cdots d'_{2} d'_{1} d'_{0}]_{2}$$

$$= [s'_{N-1} d'_{N-2} \cdots d'_{2} d'_{1} d'_{0}]_{2}$$

$$= s'_{N-1} \cdot [-(2^{N-1} - 1)] + [(d'_{N-2} \times 2^{N-2}) + \cdots + (d'_{2} \times 2^{2}) + (d'_{1} \times 2^{1}) + (d'_{0} \times 2^{0})]$$

$$= s'_{N-1} \cdot [-(2^{N-1} - 1)] + \left(\sum_{k=0}^{N-2} d'_{k} 2^{k}\right)$$
(8.13)

- $\bullet\,$ Um exemplo é apresentado na Tabela 8.2, para b=2 e N=4.
- Para a base b = 2, pode-se definir o seguinte algoritmo para a conversão entre as representações de quantidades positivas e negativas, em complemento-a-1:
 - Dada uma representação numérica, em complemento-a-1, para se obter sua representação complementar basta que se troque os numerais 0 por 1 e que se troque os numerais 1 por 0.

	Bina	ário	I	Decimal	Interpretação 1	Interpretação 2
0	1	1	1	7	(0) + (7)	(0) + (7)
0	1	1	0	6	(0) + (6)	(0) + (6)
0	1	0	1	5	(0) + (5)	(0) + (5)
0	1	0	0	4	(0) + (4)	(0) + (4)
0	0	1	1	3	(0) + (3)	(0) + (3)
0	0	1	0	2	(0) + (2)	(0) + (2)
0	0	0	1	1	(0) + (1)	(0) + (1)
0	0	0	0	0	(0) + (0)	(0) + (0)
1	1	1	1	0	(15) - (0)	(-7) + (7)
1	1	1	0	-1	(15) - (1)	(-7) + (6)
1	1	0	1	-2	(15) - (2)	(-7) + (5)
1	1	0	0	-3	(15) - (3)	(-7) + (4)
1	0	1	1	-4	(15) - (4)	(-7) + (3)
1	0	1	0	-5	(15) - (5)	(-7) + (2)
1	0	0	1	-6	(15) - (6)	(-7) + (1)
1	0	0	0	-7	(15) - (7)	(-7) + (0)

Tabela 8.2: Tabela de complemento-a-1, para número inteiros, b=2 e N=4.

Complemento à base

- Para quantidades positivas, a codificação é sinal-e-magnitude, onde $d_{N-1} = s_{N-1} = 0$.
- Para quantidades negativas, a codificação é $d_{N-1} = s_{N-1} = (b-1)$ e os demais dígitos são recodificados.
- A representação possui apenas um padrão binário para o valor numérico nulo: 0.
- Interpretação 1:
 - Técnica: um valor positivo adequado é adicionado ao número negativo, de tal forma que o resultado seja positivo e que o dígito de sinal passe de 0 para (b-1).
 - O número negativo é representado como o complemento do seu valor absoluto em relação a um módulo cujo valor é a menor potência (inteira e positiva) da base que é maior do que a representação do valor absoluto a ser representado.
 - Para $(q_{I-})_b$ representada por um vetor de N dígitos: $-|x| \leftrightarrow x_C = b^N |x|$.
 - As Equações (8.14) e (8.15) apresentam uma interpretação numérica da representação, para b=2.

$$(q_{I-})_2 = -|x| = -\left(\sum_{k=0}^{N-1} d_k 2^k\right) = -\left[d_{N-1} d_{N-2} \cdots d_1 d_0\right]_2 = -\left[0 \ d_{N-2} \cdots d_1 d_0\right]_2$$
(8.14)

$$x_{C2} = 2^{N} - |x| = 2^{N} - \left(\sum_{k=0}^{N-1} d_{k} 2^{k}\right) = \begin{bmatrix} 1 \ 0 \ 0 \cdots 0 \ 0 \end{bmatrix}_{2} - \begin{bmatrix} 0 \ d_{N-2} \cdots d_{1} d_{0} \end{bmatrix}_{2} = \begin{bmatrix} 1 \ d'_{N-2} \cdots d'_{1} d'_{0} \end{bmatrix}_{2}$$
(8.15)

- Interpretação 2 (para b = 2):
 - O dígito de sinal tem peso negativo: $w_{N-1} = (-2^{N-1})$.
 - Os demais dígitos representam um valor numérico positivo que, somado ao valor negativo do dígito de sinal, fornece o valor negativo desejado.
 - As Equações (8.16) e (8.17) apresentam uma interpretação numérica da representação, para b=2.

$$(q_{I+})_{2} = [0 \ d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2}$$

$$= [s_{N-1} \ d_{N-2} \cdots d_{2} d_{1} d_{0}]_{2}$$

$$= s_{N-1} \cdot [-(2^{N-1})] + [(d_{N-2} \times 2^{N-2}) + \cdots + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})]$$

$$= s_{N-1} \cdot [-(2^{N-1})] + \left(\sum_{k=0}^{N-2} d_{k} 2^{k}\right)$$
(8.16)

$$(q_{I-})_{2} = [1 \ d'_{N-2} \cdots d'_{2} d'_{1} d'_{0}]_{2}$$

$$= [s'_{N-1} d'_{N-2} \cdots d'_{2} d'_{1} d'_{0}]_{2}$$

$$= s'_{N-1} \cdot [-(2^{N-1})] + [(d'_{N-2} \times 2^{N-2}) + \cdots + (d'_{2} \times 2^{2}) + (d'_{1} \times 2^{1}) + (d'_{0} \times 2^{0})]$$

$$= s'_{N-1} \cdot [-(2^{N-1})] + \left(\sum_{k=0}^{N-2} d'_{k} 2^{k}\right)$$
(8.17)

- Um exemplo é apresentado na Tabela 8.3, para b=2 e N=4.
- Para a base b=2, podem-se definir os seguintes algoritmos para a conversão entre as representações de quantidades positivas e negativas, em complemento-a-2:
 - Algoritmo 1: Dada uma representação numérica, em complemento-a-2, para se obter sua representação complementar basta: i) que se troque os numerais 0 por 1 e que se troque os numerais 1 por 0 (complemento-a-1) e, em seguida, ii) que seja adicionado o valor 1 ao dígito menos significativo (*Least Significant Bit* ou LSB).
 - Algoritmo 2: Dada uma representação numérica, em complemento-a-2, para se obter sua representação complementar deve-se realizar uma busca a partir do dígito menos significativo (LSB). Durante a busca, os dígitos não serão modificados até que seja encontrado o primeiro numeral 1, que também não será modificado. A partir deste ponto, basta que se troque os numerais 0 por 1 e que se troque os numerais 1 por 0.
 - Uma vez que trabalha com adição, o primeiro algoritmo é mais adequado para ambientes onde já se dispõe de um circuito somador.
 - Por sua vez, dado que ele envolve um processo de varredura, o segundo algoritmo é mais recomendado quando se deseja implementar um simples bloco funcional para realizar a complementação.
 - Nessa codificação, o valor mais negativo representável é dado por (-2^{N-1}) . Por sua vez, o valor mais positivo representável é dado por $(2^{N-1}-1)$. Assim, dado que o valor mais negativo não possui um valor positivo equivalente, a sua conversão para um valor positivo deve ser tratada como uma situação de "overflow". Nesse caso, tal situação deve ser detectada e, em seguida, o valor positivo deve ser saturado no maior valor representável.

	Bina	ário		Decimal	Interpretação 1	Interpretação 2
0	1	1	1	7	(0) + (7)	(0) + (7)
0	1	1	0	6	(0) + (6)	(0) + (6)
0	1	0	1	5	(0) + (5)	(0) + (5)
0	1	0	0	4	(0) + (4)	(0) + (4)
0	0	1	1	3	(0) + (3)	(0) + (3)
0	0	1	0	2	(0) + (2)	(0) + (2)
0	0	0	1	1	(0) + (1)	(0) + (1)
0	0	0	0	0	(0) + (0)	(0) + (0)
1	1	1	1	-1	(16) - (1)	(-8) + (7)
1	1	1	0	-2	(16) - (2)	(-8) + (6)
1	1	0	1	-3	(16) - (3)	(-8) + (5)
1	1	0	0	-4	(16) - (4)	(-8) + (4)
1	0	1	1	-5	(16) - (5)	(-8) + (3)
1	0	1	0	-6	(16) - (6)	(-8) + (2)
1	0	0	1	-7	(16) - (7)	(-8) + (1)
1	0	0	0	-8	(16) - (8)	(-8) + (0)

Tabela 8.3: Tabela de complemento-a-2, para número inteiros, b=2 e N=4.

8.2.4 Representação de números fracionários negativos

- O equacionamento utilizado para a representação de números inteiros negativos pode ser aproveitado para números negativos puramente fracionários.
- Uma quantidade puramente fracionária x_F pode ser obtida através da multiplicação de uma quantidade inteira x_I por um fator de escala FE adequado $(x_F = FE \cdot x_I)$.
- Assim, para aproveitar o equacionamento anterior, basta utilizar um escalamento.
- Cabe ressaltar que, em circuitos digitais que manipulam números binários e que utilizam uma posição fixa para o separador das partes inteira e fracionária (aritmética de ponto fixo), é comum que se interprete todas as grandezas como números puramente fracionários $0 \le |x_F| < 1$, codificados em complemento-a-2. Nesse caso, o separador encontra-se (virtualmente) entre o dígito de sinal (s_{N-1}) e os demais N-1 dígitos que representam a quantidade numérica. Partindo-se das Equações (8.14) e (8.15), não é difícil demonstrar a seguinte equivalência: $-|x_F| \leftrightarrow (x_F)_{C2} = 2 |x_F|$. Finalmente, partindo-se das Equações (8.16) e (8.17), não é difícil demonstrar a seguinte notação: $(x_F)_{C2} = -s_{N-1} + \left(\sum_{k=1}^{N-1} d_{-k} 2^{-k}\right)$.
- A título de exemplo, as Tabelas 8.1 a 8.3, que representam números inteiros, são transformadas nas Tabelas 8.4 a 8.6, para números puramente fracionários, através do fator de escala $FE = 2^{-(N-1)} = 2^{-3} = 8^{-1}$.
- Comparando-se os conteúdos das Tabelas 8.1 a 8.6, destaca-se mais uma vez o fato de que um mesmo padrão de dígitos pode ser interpretado de diversas formas diferentes, dependendo do sistema de numeração, da forma de codificação e da posição do separador fracionário utilizados.

	Binário			Decimal	Interpretação
0	1	1	1	0.875	$(+1) \cdot (0.875)$
0	1	1	0	0.750	$(+1) \cdot (0.750)$
0	1	0	1	0.625	$(+1) \cdot (0.625)$
0	1	0	0	0.500	$(+1) \cdot (0.500)$
0	0	1	1	0.375	$(+1) \cdot (0.375)$
0	0	1	0	0.250	$(+1) \cdot (0.250)$
0	0	0	1	0.125	$(+1) \cdot (0.125)$
0	0	0	0	0.000	$(+1) \cdot (0.000)$
1	0	0	0	0.000	$(-1) \cdot (0.000)$
1	0	0	1	-0.125	$(-1) \cdot (0.125)$
1	0	1	0	-0.250	$(-1) \cdot (0.250)$
1	0	1	1	-0.375	$(-1) \cdot (0.375)$
1	1	0	0	-0.500	$(-1) \cdot (0.500)$
1	1	0	1	-0.625	$(-1) \cdot (0.625)$
1	1	1	0	-0.750	$(-1) \cdot (0.750)$
1	1	1	1	-0.875	$(-1) \cdot (0.875)$

Tabela 8.4: Tabela de sinal-e-magnitude, para números puramente fracionários, b=2 e N=4.

Binário		Decimal	Interpretação 1	Interpretação 2		
0	1	1	1	0.875	(0.000) + (0.875)	(0.000) + (0.875)
0	1	1	0	0.750	(0.000) + (0.750)	(0.000) + (0.750)
0	1	0	1	0.625	(0.000) + (0.625)	(0.000) + (0.625)
0	1	0	0	0.500	(0.000) + (0.500)	(0.000) + (0.500)
0	0	1	1	0.375	(0.000) + (0.375)	(0.000) + (0.375)
0	0	1	0	0.250	(0.000) + (0.250)	(0.000) + (0.250)
0	0	0	1	0.125	(0.000) + (0.125)	(0.000) + (0.125)
0	0	0	0	0.000	(0.000) + (0.000)	(0.000) + (0.000)
1	1	1	1	0.000	(1.875) - (0.000)	(-0.875) + (0.875)
1	1	1	0	-0.125	(1.875) - (0.125)	(-0.875) + (0.750)
1	1	0	1	-0.250	(1.875) - (0.250)	(-0.875) + (0.625)
1	1	0	0	-0.375	(1.875) - (0.375)	(-0.875) + (0.500)
1	0	1	1	-0.500	(1.875) - (0.500)	(-0.875) + (0.375)
1	0	1	0	-0.625	(1.875) - (0.625)	(-0.875) + (0.250)
1	0	0	1	-0.750	(1.875) - (0.750)	(-0.875) + (0.125)
1	0	0	0	-0.875	(1.875) - (0.875)	(-0.875) + (0.000)

Tabela 8.5: Tabela de complemento-a-1, para números puramente fracionários, b=2 e N=4.

	Bina	ário		Decimal	Interpretação 1	Interpretação 2
0	1	1	1	0.875	(0) + (0.875)	(0) + (0.875)
0	1	1	0	0.750	(0) + (0.750)	(0) + (0.750)
0	1	0	1	0.625	(0) + (0.625)	(0) + (0.625)
0	1	0	0	0.500	(0) + (0.500)	(0) + (0.500)
0	0	1	1	0.375	(0) + (0.375)	(0) + (0.375)
0	0	1	0	0.250	(0) + (0.250)	(0) + (0.250)
0	0	0	1	0.125	(0) + (0.125)	(0) + (0.125)
0	0	0	0	0.000	(0) + (0.000)	(0) + (0.000)
1	1	1	1	-0.125	(2) - (0.125)	(-1) + (0.875)
1	1	1	0	-0.250	(2) - (0.250)	(-1) + (0.750)
1	1	0	1	-0.375	(2) - (0.375)	(-1) + (0.625)
1	1	0	0	-0.500	(2) - (0.500)	(-1) + (0.500)
1	0	1	1	-0.625	(2) - (0.625)	(-1) + (0.375)
1	0	1	0	-0.750	(2) - (0.750)	(-1) + (0.250)
1	0	0	1	-0.875	(2) - (0.875)	(-1) + (0.125)
1	0	0	0	-1.000	(2) - (1.000)	(-1) + (0.000)

Tabela 8.6: Tabela de complemento-a-2, para números puramente fracionários, b=2 e N=4.

8.2.5 Conversão entre bases

A seguir, são consideradas as conversões de números não negativos (inteiros e puramente fracionários).

Números não negativos e inteiros

A conversão da base s para a base t é o processo onde, conhecendo-se os dígitos d'_i da Equação (8.18), deseja-se encontrar os dígitos d_i da Equação (8.19). Considerando-se todas as quantidades expressas na base s, podem-se definir as relações expressas na Equação (8.20). Assim, para que se encontrem os dígitos d_i , basta que se realizem divisões sucessivas do dividendo N_i pelo divisor t, gerando-se o quociente N_{i+1} e o resto d_i , e que, no final, os restos sejam posicionados na ordem adequada. Uma vez que o número de dígitos d_i é finito, é garantido que o algoritmo terá um número finito de passos.

$$(q)_s = [d'_J \cdots d'_1 d'_0]_s = (N_0)_s$$
 (8.18)

$$(q)_t = [d_K \cdots d_1 d_0]_t . (8.19)$$

$$N_{0} = (d_{K} \times t^{K} + \dots + d_{2} \times t^{2} + d_{1} \times t^{1} + d_{0} \times t^{0})$$

$$= (d_{K} \times t^{K-1} + \dots + d_{2} \times t^{1} + d_{1} \times t^{0}) \times t + (d_{0} \times t^{0})$$

$$= N_{1} \times t + d_{0}$$

$$N_{1} = (d_{K} \times t^{K-1} + \dots + d_{2} \times t^{1} + d_{1} \times t^{0})$$

$$= (d_{K} \times t^{K-2} + \dots + d_{2} \times t^{0}) \times t + (d_{1} \times t^{0})$$

$$= N_{2} \times t + d_{1}$$

:

$$N_{K-1} = (d_K \times t^1 + d_{K-1} \times t^0)$$

$$= (d_K) \times t + (d_{K-1} \times t^0)$$

$$= N_K \times t + d_{K-1}$$

$$N_K = d_K.$$
(8.20)

Números não negativos e puramente fracionários

A conversão da base s para a base t é o processo onde, conhecendo-se os dígitos d'_i da Equação (8.21), deseja-se encontrar os dígitos d_i da Equação (8.22). Considerando-se todas as quantidades expressas na base s, podem-se definir as relações expressas na Equação (8.23). Assim, para que se encontrem os dígitos d_i , basta que se realizem multiplicações sucessivas do multiplicando puramente fracionário N_i pelo multiplicador t, gerando-se o resultado N_{i-1} , que contém d_i como parte inteira, e que, no final, os restos sejam posicionados na ordem adequada. Uma vez que não se pode garantir que o número de dígitos d_i será finito, deve-se estabelecer um número máximo de passos para garantir que o algoritmo terá um término.

$$(q)_s = [d'_{-1}d'_{-2}\cdots d'_{-J}]_s = (N_{-1})_s. (8.21)$$

$$(q)_t = [d_{-1}d_{-2}\cdots d_{-K}]_t . (8.22)$$

$$N_{-1} \times t = (d_{-1} \times t^{-1} + d_{-2} \times t^{-2} + d_{-3} \times t^{-3} + \dots + d_{-K} \times t^{-K}) \times t$$

$$= (d_{-1} \times t^{0}) + (d_{-2} \times t^{-1} + d_{-3} \times t^{-2} + \dots + d_{K} \times t^{-K+1})$$

$$= d_{-1} + N_{-2}$$

$$N_{-2} \times t = (d_{-2} \times t^{-1} + d_{-3} \times t^{-2} + \dots + d_{-K} \times t^{-K+1}) \times t$$

$$= (d_{-2} \times t^{0}) + (d_{-3} \times t^{-1} + \dots + d_{K} \times t^{-K+2})$$

$$= d_{-2} + N_{-3}$$

:

$$N_{-K+1} \times t = (d_{-K+1} \times t^{-1} + d_{-K} \times t^{-2}) \times t$$
$$= (d_{-K+1} \times t^{0}) + (d_{-K} \times t^{-1})$$
$$= d_{-K+1} + N_{-K}$$

$$N_{-K} \times t = (d_{-K} \times t^{-1}) \times t$$

$$= (d_{-K} \times t^{0})$$

$$= d_{-K}$$
(8.23)

8.2.6 Bases mais comuns em circuitos digitais

A notação em base b=2 é a mais adequada para lidar com a implementação de circuitos digitais baseados em sistemas binários. Porém, dada uma base de valor reduzido, a representação terá um número elevado de dígitos. Para o uso humano, quanto maior é o número de dígitos, mais trabalhoso é a sua interpretação e a sua manipulação. Assim, a fim de simplificar a representação, duas bases são muito utilizadas: octal e hexadecimal. A base octal emprega b=8 e dígitos $d_i \in \mathbf{S} = \{0,1,2,\cdots,7\}$. Por sua vez, a base hexadecimal emprega b=16 e dígitos $d_i \in \mathbf{S} = \{0,1,2,\cdots,9,A,B,...,F\}$. Supondo-se números não negativos e inteiros, as Equações (8.24) - (8.26) ilustram as notações nas três bases.

$$(q_I)_2 = (d_J \times 2^J) + \dots + (d_2 \times 2^2) + (d_1 \times 2^1) + (d_0 \times 2^0)$$
 (8.24)

$$(q_I)_8 = (d'_K \times 8^K) + \dots + (d'_2 \times 8^2) + (d'_1 \times 8^1) + (d'_0 \times 8^0) . \tag{8.25}$$

$$(q_I)_{16} = (d_I'' \times 16^L) + \dots + (d_2'' \times 16^2) + (d_1'' \times 16^1) + (d_0'' \times 16^0)$$
 (8.26)

As bases binária, octal e hexadecimal são comumente utilizadas em conjunto, devido à facilidade de conversão entre as três bases. As Equações (8.27) – (8.31) ilustram a relação entre as bases binária e octal.

$$(q_{I})_{2} = (d_{J} \times 2^{J}) + (d_{J-1} \times 2^{J-1}) + (d_{J-2} \times 2^{J-2}) + \cdots + (d_{5} \times 2^{5}) + (d_{4} \times 2^{4}) + (d_{3} \times 2^{3}) + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})$$

$$= [(d_{J} \times 2^{2}) + (d_{J-1} \times 2^{1}) + (d_{J-2} \times 2^{0})] \times 2^{J-2} + \cdots + [(d_{5} \times 2^{2}) + (d_{4} \times 2^{1}) + (d_{3} \times 2^{0})] \times 2^{3} + [(d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})] \times 2^{0}$$

$$= (d'_{K} \times 8^{K}) + \cdots + (d'_{1} \times 8^{1}) + (d'_{0} \times 8^{0})$$

$$= (q_{I})_{8}. \tag{8.27}$$

$$J - 2 = 3K (8.28)$$

$$[d_2d_1d_0]_2 = [d'_0]_8 . (8.29)$$

$$[d_5d_4d_3]_2 = [d_1']_8 . (8.30)$$

$$[d_J d_{J-1} d_{J-2}]_2 = [d'_K]_8. (8.31)$$

As Equações (8.32) – (8.36) ilustram a relação entre as bases binária e hexadecimal.

$$(q_{I})_{2} = (d_{J} \times 2^{J}) + (d_{J-1} \times 2^{J-1}) + (d_{J-2} \times 2^{J-2}) + (d_{J-3} \times 2^{J-3}) + \dots + (d_{7} \times 2^{7}) + (d_{6} \times 2^{6}) + (d_{5} \times 2^{5}) + (d_{4} \times 2^{4}) + (d_{3} \times 2^{3}) + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})$$

$$= [(d_{J} \times 2^{3}) + (d_{J-1} \times 2^{2}) + (d_{J-2} \times 2^{1}) + (d_{J-3} \times 2^{0})] \times 2^{J-3} + \dots + [(d_{7} \times 2^{3}) + (d_{6} \times 2^{2}) + (d_{5} \times 2^{1}) + (d_{4} \times 2^{0})] \times 2^{4} + [(d_{3} \times 2^{3}) + (d_{2} \times 2^{2}) + (d_{1} \times 2^{1}) + (d_{0} \times 2^{0})] \times 2^{0}$$

$$= (d''_{L} \times 16^{L}) + \dots + (d''_{1} \times 16^{1}) + (d''_{0} \times 16^{0})$$

$$= (q_{I})_{16}. \tag{8.32}$$

$$J - 3 = 4L (8.33)$$

$$[d_3d_2d_1d_0]_2 = [d_0'']_{16} . (8.34)$$

$$[d_7 d_6 d_5 d_4]_2 = [d_1'']_{16} . (8.35)$$

$$[d_J d_{J-1} d_{J-2} d_{J-3}]_2 = [d_L'']_{16} . (8.36)$$

As Equações (8.37) – (8.41) ilustram a relação entre as bases octal e hexadecimal.

$$(q_{I})_{8} = (d'_{K} \times 8^{K}) + (d'_{K-1} \times 8^{K-1}) + \cdots + (d'_{3} \times 8^{3}) + (d'_{2} \times 8^{2}) + (d'_{1} \times 8^{1}) + (d'_{0} \times 8^{0})$$

$$= [(d'_{K} \times 8^{1}) + (d'_{K-1} \times 8^{0})] \times 8^{K-1} + \cdots + [(d'_{3} \times 8^{1}) + (d'_{2} \times 8^{0}) +] \times 8^{2} + [(d'_{1} \times 8^{1}) + (d'_{0} \times 8^{0})] \times 8^{0}$$

$$= (d''_{L} \times 16^{L}) + \cdots + (d''_{1} \times 16^{1}) + (d''_{0} \times 16^{0})$$

$$= (q_{I})_{16}. \tag{8.37}$$

$$K - 1 = 2L (8.38)$$

$$[d_1'd_0']_8 = [d_0'']_{16} . (8.39)$$

$$[d_3'd_2']_8 = [d_1'']_{16} . (8.40)$$

$$[d'_K d'_{K-1}]_2 = [d''_L]_{16} . (8.41)$$

Embora todas as equações tenham sido definidas para números não negativos e inteiros, não é difícil mostrar que as relações se mantêm para números não negativos e fracionários.

8.3. Quantização 119

8.3 Quantização

8.3.1 Conceitos básicos

Quantizar significa representar, através de uma aproximação, uma faixa contínua de valores originais por uma faixa discreta de valores correspondentes. Na representação discreta de valores contínuos, o intervalo mínimo de representação é denominado de resolução.

Todo sistema físico de medição possui um intervalo mínimo de medida (resolução da medida). Por outro lado, todo sistema de numeração possui um intervalo mínimo de representação das quantidades numéricas (resolução da representação). Logo, toda medida, bem como a sua respectiva representação, possuem um grau intrínseco de aproximação.

Conseqüentemente, toda representação discreta de valores contínuos apresenta um erro, intrinsicamente ligado à sua medida e/ou à sua representação, denominado erro de quantização.

8.3.2 SNPC: resolução, base e quantidade de dígitos

A resolução de um SNPC está diretamente ligada com a sua base e com a quantidade de dígitos utilizados na representação numérica.

Uma medida da resolução pode ser obtida por meio da quantidade de níveis representáveis. Pensando-se em uma representação de valores inteiros, percebe-se que, a cada dígito adicionado na representação, a quantidade de níveis é multiplicada pelo valor da base. A Tabela 8.7 apresenta alguns valores de níveis em um SNPC, em função do número de dígitos empregados, para as bases b=2 e b=10.

Número	Padrão	Níveis	Níveis
de dígitos	inteiro	(b=2)	(b = 10)
1	d_0	$2^1 = 2$	$10^1 = 10$
2	d_1d_0	$2^2 = 4$	$10^2 = 100$
3	$d_2d_1d_0$	$2^3 = 8$	$10^3 = 1000$
4	$d_3d_2d_1d_0$	$2^4 = 16$	$10^4 = 10000$
5	$d_4d_3d_2d_1d_0$	$2^5 = 32$	$10^5 = 100000$
6	$d_5d_4d_3d_2d_1d_0$	$2^6 = 64$	$10^6 = 1000000$

Tabela 8.7: Alguns valores de níveis em um SNPC, em função do número de dígitos empregados, para as bases b = 2 e b = 10.

Por sua vez, a resolução numérica também pode ser empregada como forma de medida da resolução. Pensando-se em uma representação de valores fracionários, percebe-se que, a cada dígito adicionado na representação, a resolução numérica é multiplicada pelo valor da base. A Tabela 8.8 apresenta alguns valores de resolução numérica em um SNPC, em função do número de dígitos empregados, para as bases b=2 e b=10.

A partir dessas duas abordagens, pode-se concluir que, quanto maior for o valor da base, maior será o aumento da resolução, para cada dígito adicionado na representação.

Número	Padrão	Resolução	Resolução
de dígitos	fracionário	(b=2)	(b = 10)
1	$.d_{-1}$	$2^{-1} = .5$	$10^{-1} = .1$
2	$.0d_{-2}$	$2^{-2} = .25$	$10^{-2} = .01$
3	$.00d_{-3}$	$2^{-3} = .125$	$10^{-3} = .001$
4	$.000d_{-4}$	$2^{-4} = .0625$	$10^{-4} = .0001$
5	$.0000d_{-5}$	$2^{-5} = .03125$	$10^{-5} = .00001$
6	$.00000d_{-6}$	$2^{-6} = .015625$	$10^{-6} = .000001$

Tabela 8.8: Alguns valores de resolução numérica em um SNPC, em função do número de dígitos empregados, para as bases b=2 e b=10.

Para uma determinada base, a única forma de se aumentar a resolução é aumentar o número de dígitos utilizados na representação. Porém, como já observado acima, para bases de pequeno valor o aumento da resolução com o aumento de dígitos também é pequeno. Com isso, pode ser necessária uma quantidade de dígitos indesejada ou ainda inviável. A Tabela 8.9 mostra o efeito do pequeno aumento da resolução numérica em um SNPC, em função do número de dígitos empregados, para a base b=2.

Número	Padrão	Resolução
de dígitos	fracionário	(b=2)
1	$.d_{-1}$	$2^{-1} = .5$
2	$.0d_{-2}$	$2^{-2} = .25$
3	$.00d_{-3}$	$2^{-3} = .125$
4	$.000d_{-4}$	$2^{-4} = .0625$
5	$.0000d_{-5}$	$2^{-5} = .03125$
6	$.00000d_{-6}$	$2^{-6} = .015625$
7	$.000000d_{-7}$	$2^{-7} = .0078125$
8	$.0000000d_{-8}$	$2^{-8} = .00390625$
9	$.00000000d_{-9}$	$2^{-9} = .001953125$
10	$.000000000d_{-10}$	$2^{-9} = .0009765625$

Tabela 8.9: Efeito do pequeno aumento da resolução numérica em um SNPC, em função do número de dígitos empregados, para a base b=2.

A título de exemplo, os números $(.93750)_{10} = (.11110)_2$ e $(.96875)_{10} = (.11111)_2$ podem ser representados com 5 *bits*. Porém, para que se represente o número $(.94200)_{10}$ são necessários 53 *bits*. Alternativamente, pode-se representá-lo das seguintes formas:

- Com 5 bits, onde $(.94200)_{10} \approx (.11110)_2$, gerando um erro relativo de $e_r = .48 \%$.
- Com 8 bits, onde $(.94200)_{10} \approx (.11110001)_2$, gerando um erro relativo de $e_r = .06 \%$.
- Com 11 bits, onde $(.94200)_{10} \approx (.11110001001)_2$, gerando um erro relativo de $e_r = .01 \%$.

Para aumentar a resolução sem alterar a base e sem aumentar excessivamente a quantidade de dígitos empregados na representação, é comum que se abandone a codificação em ponto fixo. A alternativa mais utilizada é a codificação denominada de ponto flutuante (*floating-point*), definido pelo padrão IEEE 754.

8.3.3 Classificações

Dependendo dos parâmetros considerados, a quantização pode assumir diversas clasificações. Quanto à regularidade da discretização efetuada, a quantização pode ser classificada como: uniforme e não uniforme. Na quantização uniforme é utilizado um intervalo de discretização único. Na quantização não uniforme são empregados diversos intervalos de discretização diferentes.

Quanto à aproximação adotada para o valor numérico, podem-se destacar três tipos de quantização: truncamento, arredondamento e truncamento em magnitude. O truncamento assume o simples abandono dos dígitos menos significativos. Assim sendo, não se pode garantir que o valor final seja mais próximo do valor original. Além disso, dependendo do código utilizado para representar a quantidade numérica, o módulo do valor original pode diminuir ou aumentar. No arredondamento, é realizada uma análise dos dígitos menos significativos, de forma que o valor final seja mais próximo do valor original. Em alguns sistemas digitais, é desejado que o módulo dos valores quantizados nunca seja aumentado. Dessa forma, realiza-se o denominado truncamento em magnitude. Para alguns códigos, isso significa o simples truncamento do valor original. Para outros, deve-se efetuar uma análise do valor original, de forma a garantir que não ocorra um aumento no seu módulo.

8.4 Códigos numéricos

8.4.1 Introdução

O uso de variáveis e valores booleanos para lidar (representar, armazenar, processar ou transmitir) com itens multivalorados é comumente chamado de codificação (coding ou encoding). A cada um dos diferentes valores envolvidos é atribuída uma combinação particular de valores booleanos. Os padrões booleanos utilizados são denominados de palavras do código (code words) [[Rhy73]]. Alguns códigos numéricos são apresentados a seguir.

8.4.2 Códigos numéricos comuns

Para representar os números naturais, comumente são empregados os seguintes códigos numéricos: decimal, binário, octal e hexadecimal. Em essência, todos esses códigos são representações dos números naturais em um SNPC, com uma determinada base. A relação entre tais códigos é ilustrada na Tabela 8.10, para um código binário com 4 bits.

O código binário também pode receber as seguintes denominações: binário posicional, binário sequencial, binário convencional, binário comum, binário simples e binário puro.

8.4.3 Outros códigos numéricos

Alguns outros códigos numéricos para números naturais são os seguintes:

- Gray.
- One-hot.
- Johnson.

A relação de tais códigos com os códigos decimal e binário é ilustrada na Tabela 8.11, para um código binário com 4 bits.

Decimal	Binário	Octal	Hexadecimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Tabela 8.10: Relação entre os códigos numéricos decimal, binário, octal e hexadecimal, para um código binário com $4\ bits$.

Decimal	Binário	Gray	$One ext{-}hot$	Johnson
00	0000	0000	00000000000000001	00000000
01	0001	0001	00000000000000010	10000000
02	0010	0011	0000000000000100	11000000
03	0011	0010	0000000000001000	11100000
04	0100	0110	0000000000010000	11110000
05	0101	0111	0000000000100000	11111000
06	0110	0101	0000000001000000	11111100
07	0111	0100	0000000010000000	11111110
08	1000	1100	0000000100000000	11111111
09	1001	1101	0000001000000000	01111111
10	1010	1111	0000010000000000	00111111
11	1011	1110	00001000000000000	00011111
12	1100	1010	000100000000000000	00001111
13	1101	1011	00100000000000000	00000111
14	1110	1001	01000000000000000	00000011
15	1111	1000	10000000000000000	00000001

Tabela 8.11: Relação entre os códigos numéricos decimal, binário, Gray, One-hot e Johnson, para um código binário com 4 bits.

8.4.4 Códigos BCD

Na codificação de números decimais, é comum que se utilizem padrões binários para representar separadamente cada dígito decimal. Inúmeras representações podem ser propostas e o conjunto de todas elas é globalmente denominado de BCD (*Binary-Coded Decimal* ou *Boolean-Coded Decimal*).

Alguns exemplos de códigos BCD muito empregados na prática são os seguintes:

- 8421.
- *Excess-3* (XS3).
- Mid-Gray-4 (parte central do código Gray de 4 bits).

Os códigos 8421 e XS3 são muito usados em aritmética decimal. O código Mid-Gray-4 é largamente utilizado em sensores de posição. A relação de tais códigos com os dígitos decimais é ilustrada na Tabela 8.12.

Decimal	8421	Excess-3	Mid-Gray-4
0	0000	0011	0010
1	0001	0100	0110
2	0010	0101	0111
3	0011	0110	0101
4	0100	0111	0100
5	0101	1000	1100
6	0110	1001	1101
7	0111	1010	1111
8	1000	1011	1110
9	1001	1100	1010

Tabela 8.12: Relação entre os dígitos decimais e os códigos BCD 8421, Excess-3 e Mid-Gray-4.

Os códigos BCD não possuem, necessariamente, uma representação única. A Tabela 8.13 apresenta diferentes versões do código numérico BCD 631(-1).

Decimal	631(-1)	631(-1)
0	0000	0000
1	0010	0010
2	0101	0101
3	0100	0100
4	0110	0110
5	1001	1001
6	1000	1011
7	1010	1010
8	1101	1101
9	1100	1111

Tabela 8.13: Diferentes versões do código numérico BCD 631(-1).

Apesar de representarem apenas 10 valores diferentes, os códigos BCD não são compostos necessariamente por 4 bits. A Tabela 8.14 apresenta os códigos 2-out-of-5 e Biquinary, que são compostos por 5 e 7 bits, respectivamente.

Decimal	2-out-of-5	2-out-of-5	Biquinary	Biquinary
			$(50\ 43210)$	$(05\ 01234)$
0	00011	00011	01 00001	10 10000
1	00101	00101	01 00010	10 01000
2	00110	01001	01 00100	10 00100
3	01001	10001	01 01000	10 00010
4	01010	00110	01 10000	10 00001
5	01100	01010	10 00001	01 10000
6	10001	10010	10 00010	01 01000
7	10010	01100	10 00100	01 00100
8	10100	10100	10 01000	01 00010
9	11000	11000	10 10000	01 00001

Tabela 8.14: Códigos numéricos BCD com mais de 4 bits: 2-out-of-5 e Biquinary.

De acordo com algumas características apresentadas pelos códigos BCD, eles podem ser classificados em:

• Código ponderado (weighted code): nessa classe de códigos, cada bit B_k é associado a um peso numérico w_k . No caso geral, o valor numérico é calculado por

$$q = C_B + \sum_k w_k \ B_k \ , \tag{8.42}$$

onde C_B é a constante de polarização (bias) do código.

- Código auto-complementado (self-complementing code): nesse caso, a simples inversão dos bits (complemento a 1) conduz à complementação a 9 do valor numérico decimal relativo ao padrão binário.
- Código refletido (reflected code): para esses códigos, os padrões binários relativos aos valores decimais 0 a 4 são refletidos em relação aos dos valores 5 a 9, com exceção de uma das colunas de bits. Tais códigos podem ser complementados a 9 apenas pela inversão do bit pertencente à coluna não refletida.
- Código de conta exata (exact count code): em tais códigos, cada padrão binário apresenta a mesma quantidade de bits com valor booleano igual a "1".
- Código de distância unitária (*unit distance code*): em tal classe, os padrões binários numericamente adjacentes diferem apenas em uma das colunas de *bits*.

Quando os códigos BCD são empregados nos cálculos da aritmética decimal, a codificação mais utilizada é o complemento a 10. Porém, dado que estão sendo realizados cálculos numéricos, o processo mais natural de complementação a 10 é por meio da complementação a 9, seguida da adição de uma unidade ao resultado. Por isso, é interessante que um código BCD apresente simplicidade na sua complementação a 9.

Além daqueles já apresentados, alguns outros códigos BCD ponderados são reunidos na Tabela 8.15. Por sua vez, exemplos de códigos BCD não ponderados são apresentados na Tabela 8.16.

Decimal	7421	5421	5311	4221	2421	2421
0	0000	0000	0000	0000	0000	0000
1	0001	0001	0001	0001	0001	0001
2	0010	0010	0011	0010	0010	0010
3	0011	0011	0100	0011	0011	0011
4	0100	0100	0101	1000	0100	0100
5	0101	0101	1000	0111	0101	1011
6	0110	0110	1001	1100	0110	1100
7	1000	0111	1011	1101	0111	1101
8	1001	1011	1100	1110	1110	1110
9	1010	1100	1101	1111	1111	1111

Tabela 8.15: Outros códigos numéricos BCD ponderados: 7421, 5421, 5311, 4221 e 2421.

Decimal	I	II	III
0	0000	1000	1001
1	0001	0011	1000
2	0010	0010	0101
3	0011	1011	0000
4	0100	0000	1100
5	1100	0100	0011
6	1011	1111	1111
7	1010	0110	1010
8	1001	0111	0111
9	1000	1100	0110

Tabela 8.16: Exemplos de códigos numéricos BCD não ponderados.

8.5 Representação em ponto flutuante

A seguir, é apresentada uma representação denominada de ponto flutuante, normatizada pelo padrão IEEE 754. Em seguida, é realizada uma breve comparação entre a representação em ponto flutuante e a representação em ponto fixo.

8.5.1 O padrão de ponto flutuante IEEE 754

O padrão IEEE 754 define uma representação numérica denominada de ponto flutuante, contendo os seguintes elementos:

- S: bit de sinal, onde S=0 para um valor positivo e S=1 para um valor negativo.
- E : expoente relativo ou deslocado, que é representado por meio de um número inteiro, com X bits. O expoente efetivo e é calculado por e = (E V), onde $V = [2^{(X-1)} 1]$.
- F : valor puramente fracionário, que é representado com R bits.
- q: a quantidade a ser representada, calculada a partir de S, F e E.

A quantidade q é representada em notação científica normalizada, o que significa dizer que, para todos os valores possíveis, sempre haverá exatamente um dígito inteiro não nulo antes do ponto fracionário. Uma vez que, na representação, é utilizada uma base binária, onde o conjunto de símbolos é $C_S = \{0, 1\}$, o dígito inteiro deve ser sempre igual a "1" e, portanto, não é necessário armazená-lo. Para a representação de números negativos é adotada uma codificação em Sinal-e-Magnitude. Assim, a quantidade q é calculada por

$$q = (-1)^{S} (1+F) 2^{e}$$

$$= (-1)^{S} (1+F) 2^{(E-V)}$$

$$= (-1)^{S} (1+F) 2^{\{E-[2^{(X-1)}-1]\}}.$$
(8.43)

A quantidade positiva (1+F) é denominada de significando ou mantissa. Uma vez que F é armazenado com R bits, a quantidade q é representada efetivamente com (R+1) bits.

O expoente armazenado E é um número inteiro e não negativo. Isso garante a representação de números grandes. Porém, para a representação de números pequenos, é necessário que o expoente seja negativo. Por essa razão, o valor de offset V é subtraído do expoente relativo E, gerando o expoente efetivo e, que passa a ser inteiro.

Alguns valores de q são reservados para representar determinados casos particulares. A Tabela 8.17 apresenta o conjunto de representações possíveis com o padrão IEEE 754.

Sinal (S)	Expoente (E)	Fração (F)	Quantidade (q)
0 / 1	0	0	+0 / -0
0 / 1	max	0	$+\infty / -\infty$
0 / 1	max	$\neq 0$	NaN
0 / 1	0	$\neq 0$	não normalizado
0 / 1	1 a (max-1)	qualquer	normalizado

Tabela 8.17: Conjunto de representações possíveis com o padrão de ponto flutuante IEEE 754, onde: $\max = (2^X - 1)$, X é o total de *bits* de E e NaN (*Not a Number*) indica que q não é um número.

O padrão IEEE 754 define duas representações básicas, com as seguintes denominações: precisão simples e precisão dupla.

No caso da precisão simples, é empregado um total de 32 bits, sendo 1 bit para S, 8 bits para E e 23 bits para F. Os valores representáveis são:

$$q = -\infty$$
; $-2^{128} < q \le -2^{-126}$; $q = \pm 0$; $+2^{-126} \le q < +2^{128}$; $q = +\infty$.

No caso da precisão dupla, é empregado um total de 64 bits, sendo 1 bit para S, 11 bits para E e 52 bits para F. Os valores representáveis são:

$$q = -\infty$$
; $-2^{1024} < q \le -2^{-1022}$; $q = \pm 0$; $+2^{-1022} \le q < +2^{1024}$; $q = +\infty$.

8.5.2 Ponto flutuante \times ponto fixo

Supondo uma representação em ponto fixo com o mesmo tamanho de palavra que uma representação em ponto flutuante, W=B bits, ambas irão representar o mesmo total de valores numéricos $T=2^B$.

A diferença entre as duas representações irá se manifestar em dois itens: na resolução da representação e na faixa de valores representáveis. Dito de outra forma, esses dois itens definem quais valores serão efetivamente representados.

No tocante à resolução, a representação em ponto fixo apresenta um resolução fixa, enquanto que, na representação em ponto flutuante, a resolução é variável.

Para alterar a faixa de valores representáveis, na representação de ponto fixo, é necessário aplicar um fator de escala fixo M_{fix} , externo à representação. Por outro lado, a notação científica, empregada na representação em ponto flutuante, já aplica, de forma implícita, um fator de escala variável M_{var} , aumentando naturalmente a sua faixa de valores.

O efeito causado pelas representações é uma distribuição uniforme de valores na faixa representável, para ponto fixo, e uma distribuição com uma compressão de resolução em um dos extremos da faixa e uma expansão de resolução no outro extremo, para ponto flutuante.

Esses aspectos são brevemente discutidos a seguir, de forma matemática.

Ponto fixo

Supondo-se uma representação em ponto fixo, codificada em Sinal-e-Magnitude, onde S é o bit de sinal, com tamanho de palavra W = B bits, sendo B = (1 + X + R), então uma quantidade inteira q_I pode ser definida por

$$q_I = (-1)^S \left(\sum_{k=0}^{(B-1)-1} d_k \ 2^k \right) ,$$

com uma resolução

$$r_{ai} = 1$$
.

Por sua vez, uma quantidade q_M , escalada por um fator de escala M_{fix} , é definida por

$$q_M = q_I \ M_{fix} = (-1)^S \left(\sum_{k=0}^{(B-1)-1} d_k \ 2^k \right) \ M_{fix} ,$$

com uma resolução

$$r_{q_M} = r_{q_I} M_{fix} = M_{fix} .$$

Assim, pode-se dizer que q_I é um caso particular de q_M , de tal forma que

$$q_I = q_M|_{M_{fix}=1}$$

е

$$r_{q_I} = r_{q_M}|_{M_{fix}=1} .$$

A Tabela 8.18 apresenta alguns exemplos para uma representação numérica em ponto fixo, codificado em Sinal-e-Magnitude, para alguns fatores de escala M_{fix} diferentes.

Padrão binário	<i>a</i> -	Ø	<i>a</i>
	q_I	q_M	q_M
(B=1+3+2)	$(r_{q_I} = 1)$	$(r_{q_M} = M_{fix} = 2^{-5})$	$(r_{q_M} = M_{fix} = 2^5)$
0/1-000-00	±0	± 0.00000	± 0
0/1-000-01	±1	± 0.03125	± 32
0/1-000-10	± 2	± 0.06250	± 64
0/1-000-11	± 3	± 0.09375	± 96
0/1-001-00	±4	± 0.12500	±128
0/1-001-01	± 5	± 0.15625	± 160
0/1-001-10	± 6	± 0.18750	± 192
0/1-001-11	± 7	± 0.21875	± 224
i i	:	:	:
0/1-110-00	±24	± 0.75000	± 768
0/1-110-01	± 25	± 0.78125	± 800
0/1-110-10	± 26	± 0.81250	± 832
0/1-110-11	± 27	± 0.84375	± 864
0/1-111-00	±28	± 0.87500	±896
0/1-111-01	± 29	± 0.90625	± 928
0/1-111-10	± 30	± 0.93750	± 960
0/1-111-11	± 31	± 0.96875	± 992

Tabela 8.18: Exemplos para uma representação numérica em ponto fixo, codificado em Sinal-e-Magnitude, para alguns fatores de escala M_{fix} diferentes.

Ponto flutuante

Supondo-se uma representação em ponto flutuante, onde S é o bit de sinal, com tamanho de palavra W = B bits, sendo B = (1 + X + R), onde o expoente relativo E possui X bits e o valor fracionário F possui R bits, então uma quantidade q pode ser definida por

$$q = (-1)^{S} (1+F) 2^{e}$$

$$= (-1)^{S} (1+F) 2^{(E-V)}$$

$$= (-1)^{S} q_{s} M_{var}, \qquad (8.44)$$

onde: $q_s = (1 + F)$ é o significando, V é um valor de offset e $M_{var} = 2^{(E-V)}$ é um fator de escala, variável com o valor de E.

A resolução r_s do significando q_s é fixa e dada por

$$r_s = 2^{-R} .$$

Por sua vez, a resolução r_q de q é variável e dada por

$$r_q = r_s \ M_{var} = 2^{-R} \ 2^{(E-V)} = 2^{(-R+E-V)}$$

e, para $0 \le E \le (2^X - 1)$, ocupa a faixa $2^{(-R-V)} \le r_q \le 2^{\{-R + (2^X - 1) - V\}}$.

A Tabela 8.19 apresenta um exemplo para uma representação numérica em ponto flutuante, sem valores reservados, com X=3, R=2 e V=1.

Padrão binário	q_s	Е	M_{var}	q	r_q
(S-E-F)	(1+F)		$2^{(E-V)}$	$[(-1)^S q_s M_{var}]$	$2^{(-R+E-V)}$
0/1-000-00	1.00	0	2^{-1}	± 0.500	0.125
0/1-000-01	1.25			± 0.625	
0/1-000-10	1.50			± 0.750	
0/1-000-11	1.75			± 0.875	
0/1-001-00	1.00	1	2^{0}	± 1.000	0.250
0/1-001-01	1.25			± 1.250	
0/1-001-10	1.50			± 1.500	
0/1-001-11	1.75			± 1.750	
:	:	• • •		:	:
0/1-110-00	1.00	6	2^5	±32	8
0/1-110-01	1.25			± 40	
0/1-110-10	1.50			± 48	
0/1-110-11	1.75			± 56	
0/1-111-00	1.00	7	2^{6}	±64	16
0/1-111-01	1.25			±80	
0/1-111-10	1.50			±96	
0/1-111-11	1.75			± 112	

Tabela 8.19: Exemplo para uma representação numérica em ponto flutuante, sem valores reservados, com X=3, R=2 e V=1.

8.6 Aritmética binária

8.6.1 Tabelas de operações básicas entre dígitos

- Para uma determinada base, as operações de adição e multiplicação entre dígitos podem ser facilmente definidas por meio de tabelas.
- As Figuras 8.11 8.13 apresentam as tabelas para as bases $b=2,\ b=3$ e b=4, respectivamente.
- A partir de tais tabelas, definidas para dígitos, podem ser definidos algoritmos e implementações para uma operação envolvendo quantidades genéricas, expressas na base em questão.

Figura 8.11: Tabelas de operações entre dígitos para b=2: (a) adição e (b) multiplicação.

+	0	1	2		×	0	1	2
0	0	1	2		0	0	0	0
1	1	2	10		1	0	1	2
2	2	10	11		2	0	2	11
(a) (b)								

Figura 8.12: Tabelas de operações entre dígitos para b=3: (a) adição e (b) multiplicação.

+	0	1	2	3		X	0	1	2	3
0	0	1	2	3		0	0	0	0	0
1	1	2	3	10		1	0	1	2	3
2	2	3	10	11		2	0	2	10	12
3	3	10	11	12		3	0	3	12	101
(a)							(b)		

Figura 8.13: Tabelas de operações entre dígitos para b=4: (a) adição e (b) multiplicação.

8.6.2 Escalamento por potência inteira da base

Um multiplicador é um circuito com relativa complexidade de implementação. Por isso, possui relevantes medidas de custo (espaço ocupado, energia consumida e tempo de operação).

Por outro lado, o escalamento por potência inteira da base é uma operação simples, com baixa complexidade de implementação. O escalamento pode ser de dois tipos, dependendo do valor da potência inteira da base: multiplicação (valor positivo) ou divisão (valor negativo).

Na Equação (8.45), é apresentada uma quantidade genérica q, representada na base b. A multiplicação de q pela base b é definida nas Equações (8.46) e (8.47). A divisão de q pela base b é definida nas Equações (8.48) e (8.49). De acordo com as Equações (8.45) e (8.49), a implementação do escalamento pode ser obtida através do simples deslocamento dos dígitos da representação.

$$(q)_b = (q_I)_b + (q_F)_b = \sum_{k=N_I}^{-N_F} d_k b^k = [d_{N_I} \cdots d_2 d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-N_F}]_b . \tag{8.45}$$

$$(q')_{b} = (q)_{b} \times b$$

$$= \left(\sum_{k=N_{I}}^{-N_{F}} d_{k} b^{k}\right) \times b = \sum_{k=N_{I}}^{-N_{F}} d_{k} b^{k+1} = \sum_{k=N_{I}+1}^{-N_{F}+1} d_{k-1} b^{k} = \sum_{k=N_{I}+1}^{-N_{F}+1} d'_{k} b^{k}$$

$$= [d_{N_{I}} \cdots d_{2} d_{1} d_{0} d_{-1} \cdot d_{-2} \cdots d_{-N_{F}}]_{b}$$

$$= [d'_{N_{I}+1} \cdots d'_{3} d'_{2} d'_{1} d'_{0} \cdot d'_{-1} d'_{-2} \cdots d'_{-N_{F}+1}]_{b}.$$
(8.46)

$$d_k' = d_{k-1} . (8.47)$$

$$(q\prime)_{b} = (q)_{b} \times b^{-1}$$

$$= \left(\sum_{k=N_{I}}^{-N_{F}} d_{k}b^{k}\right) \times b^{-1} = \sum_{k=N_{I}}^{-N_{F}} d_{k}b^{k-1} = \sum_{k=N_{I}-1}^{-N_{F}-1} d_{k+1}b^{k} = \sum_{k=N_{I}-1}^{-N_{F}-1} d'_{k}b^{k}$$

$$= [d_{N_{I}} \cdots d_{2}d_{1} \cdot d_{0}d_{-1}d_{-2} \cdots d_{-N_{F}}]_{b}$$

$$= [d'_{N_{I}-1} \cdots d'_{3}d'_{2}d'_{1}d'_{0} \cdot d'_{-1}d'_{-2} \cdots d'_{-N_{F}-1}]_{b}.$$
(8.48)

$$d_k' = d_{k+1} . (8.49)$$

8.6.3 Adição e subtração em complemento-a-2

A codificação em complemento-a-2 apresenta, entre outras, a grande vantagem de conseguir transformar o processo de subtração em pura adição: $x_1 - x_2 = x_1 + (-x_2) = x_1 + (x_2)_{C2}$. Assim, um único bloco somador pode ser usado para realizar as operações de adição e subtração de números codificados em complemento-a-2.

A adição de dois números puramente fracionários pode produzir um número com parte inteira. Na representação de números puramente fracionários, com ponto fixo, não são utilizados dígitos para valores inteiros. Portanto, um resultado contendo parte inteira, positivo ou negativo, é considerado uma situação de *overflow*. Para que o resultado da adição em complemento-a-2 possa ser considerado correto, a ocorrência de *overflow* deve ser detectada e devidademente tratada.

Análise de overflow na adição em complemento-a-2

Dado um bloco somador, operando com dados puramente fracionários, codificados em complemento-a-2, o sinal de saída carry-out representa uma parte inteira de valor $v_I = 2$.

• Caso 1: adição de números positivos. $0 \le x_1 < 1, 0 \le x_2 < 1$ e $x_A = x_1 + x_2$. Logo: $0 \le x_A < 2$. Se $0 \le x_A < 1$: adição sem overflow. Se $1 \le x_A < 2$: adição com overflow.

• Caso 2: subtração de números positivos.

 $0 \le x_1 < 1, -1 < x_2 < 0, (-|x_2|)_{C2} = 2 - |x_2|$ e $x_A = (x_1 + x_2) = x_1 - |x_2| = x_1 + (x_2)_{C2} = 2 + (x_1 - |x_2|).$ Logo: $-1 < x_A < 1$.

Portanto, nesse caso, não haverá ocorrência de overflow.

Se $x_1 \ge |x_2|$: resultado positivo, bastando ignorar o sinal de *carry-out* $(x_P = x_A - 2)$. Se $x_1 < |x_2|$: resultado negativo já codificado $(x_N = x_A)$.

• Caso 3: adição de números negativos.

 $-1 < x_2 < 0, \ -1 < x_2 < 0, \ (-|x_1|)_{C2} = 2 - |x_1|, \ (-|x_2|)_{C2} = 2 - |x_2| \ \mathrm{e} \\ (x_{C2})_A = x_1 + x_2 = (-|x_1|)_{C2} + (-|x_2|)_{C2} = (2 - |x_1|) + (2 - |x_2|) = 2 + [2 - (|x_1| + |x_2|)]. \\ \mathrm{Logo:} \ 0 < |x_1| + |x_2| < 2 \rightarrow 2 < (x_{C2})_A < 4. \\ \mathrm{Se} \ 2 < (x_{C2})_A \le 3: \ \mathrm{adição} \ \mathrm{com} \ \mathit{overflow}. \\ \mathrm{Se} \ 3 < (x_{C2})_A < 4: \ \mathrm{adição} \ \mathrm{sem} \ \mathit{overflow}.$

Se o resultado for sem *overflow*, o mesmo já estará codificado, bastando ignorar o sinal de *carry-out* $((x_A)_{C2} = (x_{C2})_A - 2)$.

Detecção de overflow na adição em complemento-a-2

A partir dos resultados da análise de overflow na adição em complemento-a-2, não é difícil encontrar um mecanismo que indique sua ocorrência. Utilizando sinais externos ao bloco de adição, a detecção de overflow pode ser feita através da análise dos bits de sinal dos operandos $(d_{s1} \ e \ d_{s2})$ e do resultado (d_{sA}) , bem como do sinal de $carry-out\ (c_O)$ do bloco somador. As Tabelas 8.20 e 8.21 apresentam duas formas para representar a detecção de overflow na adição em complemento-a-2, onde OF = 0 e OF = 1 indicam a ausência e a presença de overflow, respectivamente. A diferença entre as duas formas é que, na Tabela 8.20, são levados em consideração os casos que não podem acontecer $(can't\ happen)$, o que pode levar a simplificações da função final. Pode-se verificar que, em ambos os casos, a equação simplificada é dada por

$$OF = (\overline{d_{s1}} \cdot \overline{d_{s2}} \cdot d_{sA}) + (d_{s1} \cdot d_{s2} \cdot \overline{d_{sA}}) . \tag{8.50}$$

Tratamento de overflow

O tratamento de *overflow* mais comumente empregado é a saturação do resultado no valor máximo representável (positivo ou negativo).

Em alguns casos, onde é exigido que os dados sejam interpretados como sendo estritamente menores que a unidade (|x| < 1), a solução é a saturação do resultado no valor máximo representável (positivo ou negativo) imediatamente menor que a unidade.

Caso	d_{s1}	d_{s2}	d_{sA}	c_O	OF
Adição de	0	0	0	0	0
positivos				1	X
			1	0	1
				1	X
Subtração	0	1	0	0	X
de positivos				1	0
			1	0	0
				1	X
	1	0	0	0	X
				1	0
			1	0	0
				1	X
Adição de	1	1	0	0	X
negativos				1	1
			1	0	X
				1	0

$$X = can't happen$$

$$OF = 0 \rightarrow \text{sem } overflow$$

 $OF = 1 \rightarrow \text{com } overflow$

Tabela 8.20: Forma 1 para representar a detecção de overflow na adição em complemento-a-2.

Caso	d_{s1}	d_{s2}	d_{sA}	c_O	OF
Adição de	0	0	0	X	0
positivos	0	0	1	X	1
Subtração	0	1	0	X	0
de positivos	1	0	0	X	0
Adição de	1	1	0	X	1
negativos	1	1	1	X	0

$$X = don't care$$

$$OF = 0 \rightarrow \text{sem } overflow$$

 $OF = 1 \rightarrow \text{com } overflow$

Tabela 8.21: Forma 2 para representar a detecção de overflow na adição em complemento-a-2.

8.6.4 Funções envolvidas na adição de dígitos binários

A adição de dígitos binários pode ser facilmente definida por meio de tabelas. A Figura 8.14 apresenta as tabelas que definem a adição entre dois dígitos binários (A e B). A Figura 8.14.(a) define a operação completa, com todos os resultados descritos por dois dígitos. A Figura 8.14.(b) define os dígitos da esquerda do resultado, que representam a parte excedente da adição, denominada de "vai-um" $(carry\ out\ -\ C_o)$. A Figura 8.14.(c) define os dígitos da direita, que representam o resultado básico da adição, denominado de soma (S).

Figura 8.14: Tabelas que definem a adição entre dois dígitos binários $(A \in B)$: (a) adição completa, (b) "vai-um" $(carry\ out\ -\ C_o)$ e (c) soma (S).

Apesar dos resultados das tabelas de C_o e de S serem numéricos, os mesmos podem ser interpretados como valores booleanos. Assim, supondo-se os dígitos binários A e B, pode-se dizer que

$$C_o = f_{C2}(A, B) = (A \cdot B)$$

e que

$$S = f_{S2}(A, B) = (\overline{A} \cdot B) + (A \cdot \overline{B}) = (A \oplus B)$$
.

Na adição entre dois números com diversos dígitos binários, naturalmente acontece uma propagação de excessos de soma, denominados de C_o (carry out) para os blocos que os geram e de C_i (carry in) para os blocos que os recebem. Logo, torna-se necessário definir a adição entre três dígitos binários $(A, B \in C_i)$, o que é feito nas tabelas da Figura 8.15.

+	00	01	11	10		C_o	00	01	11	10		S	00	01	11	10
0	00	01	10	01		0	0	0	1	0		0	0	1	0	1
1	01	10	11	10		1	0	1	1	1		1	1	0	1	0
		(a)			-			(b)			•			(c)		

Figura 8.15: Tabelas que definem a adição entre três dígitos binários $(A, B \in C_i)$: (a) adição completa, (b) "vai-um" $(carry \ out - C_o)$ e (c) soma (S).

Nesse caso, supondo-se os dígitos A e B na parte superior das tabelas e o dígito C_i à esquerda, pode-se dizer que

$$S = f_{S3}(A, B, C_i) = (\overline{A} \cdot B \cdot \overline{C_i}) + (A \cdot \overline{B} \cdot \overline{C_i}) + (\overline{A} \cdot \overline{B} \cdot C_i) + (A \cdot B \cdot C_i)$$

$$= [(A \oplus B) \cdot \overline{C_i}] + [\overline{(A \oplus B)} \cdot C_i]$$

$$= (A \oplus B) \oplus C_i$$

e que

$$C_o = f_{C3}(A, B, C_i) = (A \cdot B \cdot \overline{C_i}) + (A \cdot B \cdot C_i) + (\overline{A} \cdot B \cdot C_i) + (A \cdot \overline{B} \cdot C_i)$$

que pode ser simplificada como

$$C_o = f_{C3}(A, B, C_i)$$

= $(A \cdot B) + (A \cdot C_i) + (B \cdot C_i)$

e ainda como

$$C_o = f_{C3}(A, B, C_i)$$

= $(A \cdot B) + [(A + B) \cdot C_i]$,

ou como

$$C_o = f_{C3}(A, B, C_i)$$

= $(A \cdot B) + [(\overline{A} \cdot B) + (A \cdot \overline{B})] \cdot C_i$
= $(A \cdot B) + [(A \oplus B) \cdot C_i]$.

Procurando-se otimizar algumas implementações, pode-se mostrar ainda que

$$\overline{C_o} = f_{C3} \left(\overline{A}, \overline{B}, \overline{C_i} \right)$$

e que

$$\overline{S} = f_{S3} \left(\overline{A}, \overline{B}, \overline{C_i} \right) .$$

As funções definidas acima são suficientes para implementar um somador de dois números com N dígitos binários através do algoritmo mais elementar. Porém, três funções mostram-se bastante úteis na implementação de somadores com algoritmos mais complexos: Generate (G), Propagate (P) e Kill (K). A Figura 8.16 apresenta as tabelas que definem as funções G, P e K, supondo-se os dígitos A e B na parte superior das tabelas e o dígito C_i à esquerda. Para melhor entender a sua aplicabilidade, é importante ressaltar a principal característica das funções G, P e K, que é não depender de C_i .

G	00	01	11	10	P	00	01	11	10	K	00	01	11	1(
0	0	0	1	0	0	0	1	0	1	0	1	0	0	0
1	0	0	1	0	1	0	1	0	1	1	1	0	0	0
		(a)					(b)					(c)		

Figura 8.16: Tabelas que definem três funções úteis na implementação de somadores binários com algoritmos complexos: (a) Generate (G), (b) Propagate (P) e (c) Kill (K).

A função Generate (G) assume o valor booleano "1" quando $C_o = 1$ independentemente do valor de C_i . Logo, deve-se ter A = B = 1, definindo-se

$$G = f_G(A, B, C_i) = (A \cdot B) .$$

A função Propagate (P) assume o valor booleano "1" quando $C_o = 1$ por propagação exclusiva do valor $C_i = 1$. Logo, deve-se ter A = 0 e B = 1 ou A = 1 e B = 0, definindo-se

$$P = f_P(A, B, C_i) = (A \oplus B)$$
.

A função Kill (K) assume o valor booleano "1" quando é impossível ter $C_o=1$ independentemente do valor de C_i . Logo, deve-se ter A=B=0, definindo-se

$$K = f_K(A, B, C_i) = (\overline{A} \cdot \overline{B})$$
.

As funções S e C_o podem ser escritas em função de G e P, de tal forma que

$$S = f_{S3}(A, B, C_i)$$

= $(A \oplus B) \oplus C_i = (P \oplus C_i)$

e

$$C_o = f_{C3}(A, B, C_i)$$

= $(A \cdot B) + [(A \oplus B) \cdot C_i] = G + (P \cdot C_i)$
= $(A \cdot B) + [(A + B) \cdot C_i] = G + (P^+ \cdot C_i)$,

onde

$$P^+ = (A + B)$$

pode ser usada para diminuir o tempo de propagação envolvido na geração do sinal C_o .

8.7 Exercícios propostos

- 1. Considerando o SNPC, para cada uma das bases listadas abaixo, obter as respectivas representações para as quantidades apresentadas em seguida.
 - (a) Base b=2.
 - (b) Base b = 3.
 - (c) Base b = 16.

Quantidades numéricas:

```
i. q = (17)_{10}.

ii. q = (24)_{10}.

iii. q = (32)_{10}.

iv. q = (48)_{10}.

v. q = (80)_{10}.

vi. q = (144)_{10}.

vii. q = (272)_{10}.

viii. q = (528)_{10}.
```

- 2. Considerando o SNPC, com base b=2, para cada uma das codificações listadas abaixo, obter as respectivas representações para as quantidades apresentadas em seguida.
 - (a) Sinal-e-magnitude.
 - (b) Complemento-a-1.
 - (c) Complemento-a-2.

Quantidades numéricas:

```
i. q = (-17)_{10}.

ii. q = (-24)_{10}.

iii. q = (-32)_{10}.

iv. q = (-48)_{10}.

v. q = (-80)_{10}.

vi. q = (-144)_{10}.

vii. q = (-272)_{10}.

viii. q = (-528)_{10}.
```

- 3. Considerando o SNPC, com base b=2, com codificação em complemento-a-2, analise o resultado das seguintes operações:
 - (a) (00100) + (01001).
 - (b) (01100) + (01101).
 - (c) (00100) + (10111).
 - (d) (10100) + (01101).
 - (e) (11100) + (10111).
 - (f) (10100) + (10011).

- 4. Considerando o SNPC, com base b=2, com codificação em complemento-a-2, com um total 5 dígitos, para cada uma das quantizações listadas abaixo, obter as respectivas representações para as quantidades apresentadas em seguida.
 - (a) Truncamento.
 - (b) Arredondento.
 - (c) Truncamento em magnitude.

Quantidades numéricas:

- i. (0010000).
- ii. (0010001).
- iii. (0010010).
- iv. (0010011).
- v. (0010100).
- vi. (0010101).
- vii. (0010110).
- viii. (0010111).
- ix. (1110000).
- x. (1101111).
- xi. (1101110).
- xii. (1101101).
- xiii. (1101100).
- xiv. (1101011).
- xv. (1101010).
- xvi. (1101001).

Capítulo 9

Circuitos combinacionais básicos

9.1 Introdução

- Esse capítulo trata do projeto de alguns exemplos de circuitos combinacionais simples, básicos e tanto necessários quanto comuns a diversas aplicações.
- Técnicas de projetos
 - Não existe uma técnica de projeto única que atenda a todos os tipos de problemas.
 - Para problemas com baixa complexidade e poucas variáveis:
 - * Projeto formal: equacionamento lógico direto + minimização das equações + implementação do circuito.
 - * Tentativa-e-erro (*cut-and-try*): sugestão de uma solução, sem a aplicação de uma técnica formal, seguida de verificação da funcionalidade.
 - Para problemas com alta complexidade e/ou muitas variáveis:
 - * Divisão do sistema original em subsistemas (divide-to-conquer), a fim de diminuir a complexidade do sistema a ser projetado.
 - * Cada subsistema pode ser subdividido, acarretando um projeto hierárquico.
 - * Para cada subsistema:
 - · Projeto formal.
 - · Uso de blocos já projetados.
 - · Tipos de blocos: idênticos (projeto modular) ou diferentes.
- Arquiteturas básicas
 - Paralela.
 - Serial.

9.2 Interpretações dos circuitos combinacionais

- Internamente, um circuito combinacional é apenas um conjunto de portas lógicas interligadas, sem realimentações, que realizam operações lógicas com nenhum significado extra.
- Externamente, baseado nas relações entre as variáveis de entrada e de saída, os circuitos combinacionais podem ser interpretados de diferentes formas, de acordo com suas aplicações.

9.2.1 Exemplos de interpretações

- Gerador de funções lógicas
 - Entrada: variáveis ou parâmetros de entrada para funções lógicas.
 - Saída: resultados provenientes da avaliação das funções lógicas implementadas.
- Interpretador de comandos
 - Padrões binários apresentados na entrada dos circuitos combinacionais podem ser interpretados como palavras de comando ou instruções a serem interpretadas e executadas pelo circuito.
 - O conjunto de padrões possíveis de serem apresentados, interpretados e executados pelo circuito, representa o denominado conjunto de instruções (instruction set) que o circuito compreende.
 - Por exemplo, um circuito combinacional que implemente a função lógica AND, com duas entradas, pode ser interpretado como um circuito que compreende quatro comandos e produz uma saída que pode assumir quatro valores possíveis.
 - Entrada: palavra de comando ou instrução, podendo conter dados dentro do código da instrução.
 - Saída: sinais de controle que irão controlar a execução do comando e, possivelmente, dados.
- Conversor de códigos
 - Entrada: código original.
 - Saída: novo código.
- Sistema digital instantâneo ou sem memória
 - Entrada: seqüência ou sinal de entrada.
 - Saída: seqüência ou sinal de saída.
- Controle de fluxo de dados
 - Entrada: dados de entrada + sinais de controle de entrada.
 - Saída: dados de saída + sinais de controle de saída.
- Operador
 - Entrada: Operandos.
 - Saída: Resultados das operações realizadas pelo circuito sobre os operandos apresentados.
- Operador programável
 - Entrada: Operandos + Sinais de controle da operação.
 - Saída: Resultados das operações escolhidas para serem realizadas pelo circuito sobre os operandos apresentados.

9.3 Uso de portas lógicas como elementos de controle

• Uma porta lógica com N entradas pode ser interpretada como um bloco funcional com 1 saída, 1 entrada e (N-1) sinais de controle.

9.4 Uso de elementos de controle para mascaramento

- Por vezes, é necessário interromper o fluxo de um sinal, baseado em determinadas condições. Isso é denominado de mascaramento do sinal, onde a máscara do processo é formada pelo conjunto de condições envolvidas.
- Um elemento de controle pode ser empregado para implementar o mascaramento, aplicandose o sinal na sua entrada e a máscara no seu controle.

9.5 Gerador de funções lógicas

- ullet Um circuito combinacional com N entradas e M saídas pode ser interpretado como M funções lógicas de N variáveis.
- Cada uma das M funções pode ser definida independentemente das demais.
- As funções podem ser implementadas de forma independente uma das outras, facilitando o projeto, os testes e a manutenção, ou compartilhando partes do circuito, a fim de reduzir custos de implementação.

9.6 Conversor de códigos

• Um conversor de códigos é um circuito combinacional com N entradas e M saídas, onde, para cada padrão de valores de entrada definido, existe um padrão de valores de saída correspondente.

9.7 Gerador e detector de paridade

- Dado um operando de (N-1) bits, o circuito gera um enésimo bits, de tal forma que o total de valores "1" seja par ou ímpar, conforme definido.
- Dado um operando de *N bits*, o circuito indica se o número de valores "1" é par ou ímpar, conforme definido.

9.8 Multiplexador e demultiplexador

• Um multiplexador é um circuito combinacional com N_1 entradas e 1 saída, controlado por N_2 sinais de controle. De acordo com o padrão de valores aplicados nos sinais de controle, uma das entradas é copiada para a saída.

- Um demultiplexador é um circuito combinacional com 1 entrada e N_1 saídas, controlado por N_2 sinais de controle. De acordo com o padrão de valores aplicados nos sinais de controle, a entrada é copiada para uma das saídas, enquanto as demais assumem um valor lógico/booleano fixo.
- A fim de se utilizar toda a funcionalidade do circuito implementado, normalmente é empregada a relação $N_1 = 2^{N_2}$.

9.8.1 Exemplos de projeto de multiplexador

A seguir, são apresentados os exemplos de projeto de dois multiplexadores, denominados de MUX 2x1 e MUX 4x1.

MUX 2x1

Um multiplexador com 2 entradas binárias $(E_0 \in E_1)$, 1 sinal de controle (C_0) e 1 saída (S), também denominado de MUX 2x1, é definido por

$$S = \begin{cases} E_0 & , & C_0 = 0 \\ E_1 & , & C_0 = 1 \end{cases} ,$$

cuja tabela verdade é apresentada na Tabela 9.1.

C_0	E_1	E_0	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Tabela 9.1: Tabela verdade do MUX 2x1.

Equacionando-se a saída por uma composição de mintermos de 3 variáveis $(C_0, E_1 \in E_0)$, obtém-se

$$S = m_{1} + m_{3} + m_{6} + m_{7}$$

$$= (\overline{C_{0}} \cdot \overline{E_{1}} \cdot E_{0}) + (\overline{C_{0}} \cdot E_{1} \cdot E_{0}) + (C_{0} \cdot E_{1} \cdot \overline{E_{0}}) + (C_{0} \cdot E_{1} \cdot E_{0})$$

$$= [(\overline{C_{0}} \cdot E_{0}) \cdot (\overline{E_{1}} + E_{1})] + [(C_{0} \cdot E_{1}) \cdot (\overline{E_{0}} + E_{0})]$$

$$= (\overline{C_{0}} \cdot E_{0}) + (C_{0} \cdot E_{1}). \tag{9.1}$$

Equacionando-se a saída por uma composição de maxtermos de 3 variáveis $(C_0, E_1 \in E_0)$, obtém-se

$$S = M_{0} + M_{2} + M_{4} + M_{5}$$

$$= (C_{0} + E_{1} + E_{0}) \cdot (C_{0} + \overline{E_{1}} + E_{0}) \cdot (\overline{C_{0}} + E_{1} + E_{0}) \cdot (\overline{C_{0}} + E_{1} + \overline{E_{0}})$$

$$= [(C_{0} + E_{0}) + (E_{1} \cdot \overline{E_{1}})] \cdot [(\overline{C_{0}} + E_{1}) + (E_{0} \cdot \overline{E_{0}})]$$

$$= (C_{0} + E_{0}) \cdot (\overline{C_{0}} + E_{1}) . \tag{9.2}$$

As formas simplificadas das Equações (9.1) e (9.2) geram a tabela verdade simplificada que é apresentada na Tabela 9.2.

C_0	E_1	E_0	S
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Tabela 9.2: Tabela verdade simplificada do MUX 2x1.

Podem-se ainda reescrever as formas simplificadas das Equações (9.1) e (9.2) por meio de mintermos e maxtermos de 1 variável (C_0) , o que resulta em

$$S = (m_0 \cdot E_0) + (m_1 \cdot E_1)$$

= $(M_0 + E_0) \cdot (M_1 + E_1)$. (9.3)

MUX 4x1

Um multiplexador com 4 entradas binárias $(E_0, E_1, E_2 \in E_3)$, 2 sinais de controle $(C_0 \in C_1)$ e 1 saída (S), também denominado de MUX 4x1, é definido por

$$S = \begin{cases} E_0 & , & C_1 C_0 = 00 \\ E_1 & , & C_1 C_0 = 01 \\ E_2 & , & C_1 C_0 = 10 \\ E_3 & , & C_1 C_0 = 11 \end{cases} ,$$

cuja tabela verdade simplificada é apresentada na Tabela 9.3.

C_1	C_0	E_3	E_2	E_1	E_0	S
0	0	X	X	X	0	0
0	0	X	X	X	1	1
0	1	X	X	0	X	0
0	1	X	X	1	X	1
1	0	X	0	X	X	0
1	0	X	1	X	X	1
1	1	0	X	X	X	0
1	1	1	X	X	X	1

Tabela 9.3: Tabela verdade simplificada do MUX 4x1.

Equacionando-se a saída a partir da tabela verdade simplificada, obtém-se

$$S = (\overline{C_1} \cdot \overline{C_0} \cdot E_0) + (\overline{C_1} \cdot C_0 \cdot E_1) + (C_1 \cdot \overline{C_0} \cdot E_2) + (C_1 \cdot C_0 \cdot E_3)$$

= $(C_1 + C_0 + E_0) \cdot (C_1 + \overline{C_0} + E_1) \cdot (\overline{C_1} + C_0 + E_2) \cdot (\overline{C_1} + \overline{C_0} + E_3)$. (9.4)

Podem-se ainda reescrever as formas simplificadas da Equação (9.4) por meio de mintermos e maxtermos de 2 variáveis (C_1 e C_0), o que resulta em

$$S = (m_0 \cdot E_0) + (m_1 \cdot E_1) + (m_2 \cdot E_2) + (m_3 \cdot E_3)$$

= $(M_0 + E_0) \cdot (M_1 + E_1) \cdot (M_2 + E_2) \cdot (M_3 + E_3)$. (9.5)

9.8.2 Exemplos de projeto de demultiplexador

A seguir, são apresentados os exemplos de projeto de dois demultiplexadores, denominados de DEMUX 2x1 e DEMUX 4x1.

DEMUX 2x1

Um demultiplexador com 1 entrada binária (E), 1 sinal de controle (C_0) e 2 saídas $(S_0 \in S_1)$, também denominado de DEMUX 2x1, é definido por

$$S_0 = \begin{cases} E & , & C_0 = 0 \\ 0 & , & C_0 = 1 \end{cases}$$

e

$$S_1 = \left\{ \begin{array}{ll} 0 & , & C_0 = 0 \\ E & , & C_0 = 1 \end{array} \right. ,$$

cuja tabela verdade é apresentada na Tabela 9.4.

C_0	E	S_0	S_1
0	0	0	0
0	1	1	0
1	0	0	0
1	1	0	1

Tabela 9.4: Tabela verdade do DEMUX 2x1.

Equacionando-se as saídas por uma composição de mintermos de 2 variáveis $(C_0 \in E)$, obtém-se

$$S_0 = m_1 = (\overline{C_0} \cdot E) \tag{9.6}$$

е

$$S_1 = m_3 = (C_0 \cdot E) \ . \tag{9.7}$$

Equacionando-se as saídas por uma composição de maxtermos de 2 variáveis $(C_0 \in E)$, obtém-se

$$S_{0} = M_{0} + M_{2} + M_{3}$$

$$= (C_{0} + E) \cdot (\overline{C_{0}} + E) \cdot (\overline{C_{0}} + \overline{E})$$

$$= (C_{0} + E) \cdot (\overline{C_{0}} + E) \cdot (\overline{C_{0}} + E) \cdot (\overline{C_{0}} + \overline{E})$$

$$= [(C_{0} \cdot \overline{C_{0}}) + (E)] \cdot [(\overline{C_{0}}) + (E \cdot \overline{E})]$$

$$= (E) \cdot (\overline{C_{0}}) . \tag{9.8}$$

$$S_{1} = M_{0} + M_{1} + M_{2}$$

$$= (C_{0} + E) \cdot (C_{0} + \overline{E}) \cdot (\overline{C_{0}} + E)$$

$$= (C_{0} + E) \cdot (C_{0} + \overline{E}) \cdot (\overline{C_{0}} + E) \cdot (C_{0} + E)$$

$$= [(C_{0}) + (E \cdot \overline{E})] \cdot [(\overline{C_{0}} \cdot C_{0}) + (E)]$$

$$= (C_{0}) \cdot (E) . \tag{9.9}$$

Podem-se ainda reescrever as Equações (9.6) a (9.9) por meio de mintermos de 1 variável (C_0) , o que resulta em

$$S_0 = (m_0 \cdot E) \tag{9.10}$$

е

$$S_1 = (m_1 \cdot E) . \tag{9.11}$$

DEMUX 4x1

Um demultiplexador com 1 entrada binária (E), 2 sinais de controle $(C_0 \in C_1)$ e 4 saídas $(S_0, S_1, S_2 \in S_3)$, também denominado de DEMUX 4x1, é definido por

$$S_0 = \begin{cases} E & , & C_1 C_0 = 00 \\ 0 & , & \text{caso contrário} \end{cases},$$

$$S_1 = \left\{ \begin{array}{ll} E & , & C_1 C_0 = 01 \\ 0 & , & {\rm caso~contr\'{a}rio} \end{array} \right. ,$$

$$S_2 = \begin{cases} E & , & C_1 C_0 = 10 \\ 0 & , & \text{caso contrário} \end{cases}$$

 $S_3 = \begin{cases} E & , & C_1 C_0 = 11 \\ 0 & , & \text{caso contrário} \end{cases},$

cuja tabela verdade é apresentada na Tabela 9.5.

C_1	C_0	E	S_0	S_1	S_0	S_3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

Tabela 9.5: Tabela verdade do DEMUX 4x1.

Equacionando-se as saídas por uma composição de mintermos de 3 variáveis $(C_1, C_0 \in E)$, obtém-se

$$S_0 = m_1 = (\overline{C_1} \cdot \overline{C_0} \cdot E) , \qquad (9.12)$$

$$S_1 = m_3 = (\overline{C_1} \cdot C_0 \cdot E) , \qquad (9.13)$$

$$S_2 = m_5 = (C_1 \cdot \overline{C_0} \cdot E) \tag{9.14}$$

e

е

$$S_3 = m_7 = (C_1 \cdot C_0 \cdot E) \ . \tag{9.15}$$

Podem-se ainda reescrever as Equações (9.12) a (9.15) por meio de mintermos de 2 variáveis $(C_1 \in C_0)$, o que resulta em

$$S_0 = (m_0 \cdot E) ,$$
 (9.16)

$$S_1 = (m_1 \cdot E) , \qquad (9.17)$$

$$S_2 = (m_2 \cdot E) \tag{9.18}$$

е

$$S_3 = (m_3 \cdot E) \ . \tag{9.19}$$

9.9 Codificador e decodificador de endereço

- Um codificador/decodificador de endereço (address coder/decoder) também é conhecido como um codificador/decodificador de linha (line coder/decoder).
- Um codificador de endereço é um circuito combinacional com N_1 entradas e N_2 saídas. Apenas uma das entradas assumirá um valor lógico/booleano, enquanto todas as demais assumirão o valor lógico/booleano complementar. O padrão de valores gerado na saída (interpretado como um endereço), será referente à entrada com valor lógico/booleano diferente das demais entradas.
- Um decodificador de endereço é um circuito combinacional com N_2 entradas e N_1 saídas. De acordo com o padrão de valores aplicados na entrada (interpretado como um endereço), uma das saídas assumirá um valor lógico/booleano, enquanto todas as demais assumirão o valor lógico/booleano complementar.
- A fim de se utilizar toda a funcionalidade do circuito implementado, normalmente é empregada a relação $N_1 = 2^{N_2}$.
- De uma forma geral, ambos os blocos funcionais podem ser interpretados como conversores de códigos. Um codificador de endereço pode ser visto como um conversor de código one-hot para código binário. Por sua vez, um decodificador de endereço pode ser dito um conversor de código binário para código one-hot.
- Um decodificador de endereço pode também ser interpretado como um demultiplexador cuja entrada recebe o valor lógico/booleano desejado para a saída a ser selecionada. Logo, pode-se projetá-lo a partir de um demultiplexador, com as possíveis simplificações.
- Dependendo dos valores lógicos/booleanos adotados para as saídas, um decodificador de endereço ainda pode ser interpretado como um gerador de mintermos ou de maxtermos.

9.10 Codificador de prioridade

- Um codificador de prioridades é um circuito combinacional com R entradas, numeradas de E_0 a E_{R-1} , onde cada uma delas é associada a uma requisição.
- Uma requisição é representada por um valor lógico/booleano.
- ullet As requisições são independentes entre si, podendo ocorrer um total de 0 a R requisições simultâneas.
- As prioridades das requisições são organizadas na ordem crescente ou decrescente dos números das entradas.
- Em uma primeira versão, o circuito apresenta R saídas. Nesse caso, a saída S_k , para $0 \le k \le (R-1)$, deve assumir um valor lógico/booleano somente quando houver uma requisição na entrada E_k e ela for a de mais alta prioridade no momento, enquanto todas as demais saídas assumirão o valor lógico/booleano complementar.
- Em uma outra versão, o circuito apresenta N saídas, onde $R=2^N$. Aqui, o padrão de valores gerado na saída (interpretado como um endereço), será referente à entrada onde ocorre a requisição de mais alta prioridade.

9.10.1 Exemplos de projeto de codificador de prioridade com um número de saídas igual ao número de entradas

A seguir, são apresentados exemplos de projeto de codificador de prioridade com um número de saídas igual ao número de entradas.

Codificador de prioridade com 2 entradas e 2 saídas

A Tabela 9.6 apresenta a definição de um codificador de prioridade com 2 entradas e 2 saídas, com prioridade crescente.

E_1	E_0	S_1	S_0
0	0	0	0
0	1	0	1
1	X	1	0

Tabela 9.6: Tabela verdade simplificada do codificador de prioridade com 2 entradas e 2 saídas.

A partir da definição do codificador, pode-se propor o seguinte equacionamento:

$$S_1 = 1 \cdot E_1 = \overline{(0)} \cdot E_1$$

е

$$S_0 = \overline{E_1} \cdot E_0 = \overline{(E_1)} \cdot E_0 \ .$$

Codificador de prioridade com 3 entradas e 3 saídas

A Tabela 9.7 apresenta a definição de um codificador de prioridade com 3 entradas e 3 saídas, com prioridade crescente.

E_2	E_1	E_0	S_2	S_1	S_0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	X	0	1	0
1	X	X	1	0	0

Tabela 9.7: Tabela verdade simplificada do codificador de prioridade com 3 entradas e 3 saídas.

A partir da definição do codificador, pode-se propor o seguinte equacionamento:

$$S_2 = 1 \cdot E_2 = \overline{(0)} \cdot E_2 ,$$

$$S_1 = \overline{E_2} \cdot E_1 = \overline{(E_2)} \cdot E_1$$

е

$$S_0 = \overline{E_2} \cdot \overline{E_1} \cdot E_0 = \overline{(E_2 + E_1)} \cdot E_0 .$$

Codificador de prioridade com R entradas e R saídas

A Tabela 9.8 apresenta a definição de um codificador de prioridade com R entradas e R saídas, com prioridade crescente.

E_{R-1}		E_2	E_1	E_0	S_{R-1}		S_2	S_1	S_0
0		0	0	0	0		0	0	0
0		0	0	1	0		0	0	1
0		0	1	X	0	• • •	0	1	0
0		1	X	X	0	• • •	1	0	0
:	٠	:	:		:	٠.	:	:	
1		X	X	X	1		0	0	0

Tabela 9.8: Tabela verdade simplificada do codificador de prioridade com R entradas e R saídas.

A partir da definição do codificador, pode-se propor o seguinte equacionamento:

$$S_{R-1} = 1 \cdot E_{R-1} = \overline{(0)} \cdot E_{R-1} ,$$

$$S_{R-2} = \overline{E_{R-1}} \cdot E_{R-2} = \overline{(E_{R-1})} \cdot E_{R-2} ,$$

$$S_{R-3} = \overline{E_{R-1}} \cdot \overline{E_{R-2}} \cdot E_{R-3} = \overline{(E_{R-1} + E_{R-2})} \cdot E_{R-3}$$

$$\vdots$$

$$S_2 = \overline{E_{R-1}} \cdot \cdots \cdot \overline{E_3} \cdot E_2 = \overline{(E_{R-1} + \cdots + E_3)} \cdot E_2 ,$$

$$S_1 = \overline{E_{R-1}} \cdot \cdots \cdot \overline{E_2} \cdot E_1 = \overline{(E_{R-1} + \cdots + E_2)} \cdot E_1$$

$$S_0 = \overline{E_{R-1}} \cdot \cdots \cdot \overline{E_1} \cdot E_0 = \overline{(E_{R-1} + \cdots + E_1)} \cdot E_0 .$$

Codificador de prioridade com R entradas e R saídas: solução modular

O codificador de prioridade com R entradas e R saídas aceita uma solução modular. Pode-se propor um bloco funcional básico, a ser utilizado para cada entrada, com a função de bloqueio da requisição. Um sinal para a indicação de bloqueio (B) é propagado entre cada par de blocos consecutivos.

Supondo-se um codificador com prioridade crescente, as entradas do bloco básico são: a requisição E_k e o sinal de bloqueio B_k , onde $0 \le k \le (R-1)$ e

$$B_k = \left\{ \begin{array}{ll} 0 & , & \text{não bloqueia a requisição k.} \\ 1 & , & \text{bloqueia a requisição k.} \end{array} \right.$$

As saídas do bloco básico são: a requisição efetiva S_k e o sinal de bloqueio B_{k-1} .

A Tabela 9.9 apresenta a definição do bloco básico para o codificador de prioridade com R entradas e R saídas, modular, com prioridade crescente. Da tabela, conclui-se que

$$S_k = \overline{B_k} \cdot E_k$$

е

е

$$B_{k-1} = (B_k + E_k)$$
.

B_k	E_k	S_k	B_{k-1}
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	1

Tabela 9.9: Tabela verdade do bloco básico para o codificador de prioridade com R entradas e R saídas modular, com prioridade crescente.

9.11 Ordenador, separador ou agrupador binário

- O circuito possui N bits na entrada e N bits na saída.
- Os bits da entrada devem ser separados, de tal forma que, na saída, todos os bits de valor 1 sejam agrupados próximos ao MSB (Most Significant Bit) e todos os bits de valor 0 sejam agrupados próximos ao LSB (Least Significant Bit), ou vice-versa.
- Estruturas modulares de *N bits* podem ser obtidas a partir de uma célula básica de 2 *bits*. A seguir, são comentadas a célula básica e duas dessas estruturas modulares.

9.11.1 Célula básica para um separador binário

A célula básica para um separador binário de N bits é um separador de N=2 bits. Assim, um dos dois bits da saída deve receber prioritariamente um dos valores 1 da entrada, enquanto o outro bit deve receber prioritariamente um dos valores 0 da entrada. Dada uma entrada $E = \{X, Y\}$ e uma saída $S = \{S_1, S_2\}$, onde S_1 deverá assumir o valor 1 caso haja pelo menos um valor 1 na entrada e S_2 só deverá assumir o valor 1 se houver dois valores 1 na entrada, podem-se definir os seguintes mapeamentos:

$$S_1 = (X + Y)$$

е

$$S_2 = (X \cdot Y) .$$

9.11.2 Estrutura modular com isolamento de um bit por vez

Nessa estrutura, os N bits da entrada são aplicados a um primeiro conjunto de (N-1) células básicas (CB's), ligadas em cascata, com o propósito de separar o primeiro dos valores desejados. Por sua vez, os (N-1) bits provenientes do primeiro conjunto de CB's são ligados a um segundo conjunto de (N-2) CB's, ligadas em cascata, com o propósito de separar o segundo dos valores desejados. Conjuntos similares, com funções similares, contendo (N-k) CB's, completam a estrutura. O último conjunto, onde k=(N-1), é formado por uma única CB e separa os dois bits finais. Com essa organização, é construída uma estrutura modular, com o formato de uma matriz triangular, contendo um total de (N-1)N/2 CB's. Pode-se dizer que a estrutura final é uma ligação em cascata de conjuntos que são formados, cada um deles, por uma ligação em cascata de CB's.

9.11.3 Estrutura modular com sucessivas trocas em paralelo

Essa estrutura é formada por uma ligação em cascata de N camadas C_k , $1 \le k \le N$, que são formadas, cada uma delas, por um conjunto de CB's que operam em paralelo. Para N par, as camadas com valores ímpares de k são formadas por (N/2) CB's, enquanto as camadas com valores pares de k são formadas por [(N/2) - 1] CB's. Para N ímpar, todas as camadas são formadas por (N-1)/2 CB's. Portanto, nesse caso também é empregado um total de (N-1)N/2 CB's. A estrutura obtida nessa construção apresenta a capacidade potencial de testar e de comutar a posição de todos os bits da entrada, dois a dois. Assim, um bit que ocupe uma posição extrema na entrada pode ser permutado várias vezes até atingir o extremo oposto na saída. Da mesma forma, os bits em posições medianas podem ser adequadamente testados e, se necessário, permutados.

9.12 Deslocadores (shifters)

- O circuito possui N bits na entrada e N bits na saída.
- O padrão de saída é uma versão deslocada do padrão de entrada.
- O deslocamento pode ser de qualquer quantidade e para qualquer um dos dois sentidos.
- Três tipos de deslocamento são comumente implementados:
 - Deslocamento lógico: as posições vazias são ocupadas pelo valor booleano "0".
 - Deslocamento aritmético: as posições vazias são ocupadas pelo valor booleano da extremidade mais próxima.
 - Deslocamento circular ou rotação: cada posição vazia é ocupada pelo valor removido.
- O termo barrel shifter é usado tanto para circuitos que implementam apenas a rotação como também para aqueles que realizam os demais deslocamentos.

9.13 Somadores em binário puro

A seguir, são apresentados somadores de 2 operandos, codificados em binário puro.

9.13.1 Half-adder (HA)

- Um *half-adder* é um circuito combinacional com 2 entradas e 2 saídas, todas de 1 *bit*, que se comporta como um somador de 2 operandos, onde uma das saídas é o resultado da soma e a outra é o sinal de "vai-um" de saída (*carry out*).
- Equações básicas de um half-adder:

$$C_o = (A \cdot B)$$
.

$$S = (\overline{A} \cdot B) + (A \cdot \overline{B}) = (A \oplus B) .$$

9.13.2 Full-adder (FA)

- Um full-adder é um circuito combinacional com 3 entradas e 2 saídas, todas de 1 bit, que se comporta como um somador de 2 operandos, onde uma das entradas é sinal de "vai-um" de entrada (carry in), enquanto uma das saídas é o resultado da soma e a outra é o sinal de "vai-um" de saída (carry out).
- Empregando-se diferentes elementos constituintes, diversas implementações podem ser encontradas para um full-adder. Alguns exemplos são:
 - SOP mínima:

$$C_o = (A \cdot B) + (A \cdot C_i) + (B \cdot C_i) .$$

$$S = (\overline{A} \cdot B \cdot \overline{C_i}) + (A \cdot \overline{B} \cdot \overline{C_i}) + (\overline{A} \cdot \overline{B} \cdot C_i) + (A \cdot B \cdot C_i) = (A \oplus B) \oplus C_i .$$

- Bloco HA:

$$C_{o_1} = (A \cdot B) = G .$$

$$S_1 = (A \oplus B) = P .$$

$$C_{o_2} = (S_1 \cdot C_i) = (P \cdot C_i) .$$

$$S_2 = (S_1 \oplus C_i) = (P \oplus C_i) .$$

$$C_o = C_{o_1} + C_{o_2} = G + (P \cdot C_i) .$$

$$S = S_2 = (P \oplus C_i) .$$

- Bloco AOI (com diferentes composições):

$$\overline{C_o} = \overline{(A \cdot B) + (A \cdot C_i) + (B \cdot C_i)} = \overline{(A \cdot B) + [(A + B) \cdot C_i]}.$$

$$\overline{S} = \overline{(A \cdot B \cdot C_i) + [(A + B + C_i) \cdot \overline{C_o}]} = \overline{[(A \cdot B) \cdot C_i] + [(A + B + C_i) \cdot \overline{C_o}]}.$$

- Multiplexador:

$$MUX_{1} = (\overline{C_{i}} \cdot \overline{A}) + (C_{i} \cdot A) .$$

$$MUX_{2} = (B \cdot \overline{MUX_{1}}) + (A \cdot MUX_{1}) .$$

$$MUX_{3} = (\overline{MUX_{2}} \cdot \overline{MUX_{1}}) + (B \cdot MUX_{1}) .$$

$$\overline{C_{o}} = \overline{MUX_{2}} .$$

$$C_{o} = MUX_{2} .$$

$$S = MUX_{3} .$$

9.13.3 Ripple-carry adder (RCA) ou carry propagate adder (CPA)

- Um ripple-carry adder ou um carry propagate adder é um circuito combinacional com 1 entrada de 1 bit, 2 entradas de N bits, 1 saída de N bits e 1 saída de 1 bit. que se comporta como um somador de 2 operandos de N bits, que recebe um sinal de "vai-um" de entrada (carry in) e gera um sinal de "vai-um" de saída (carry out), além do resultado de N bits.
- Na sua forma original, o circuito é modular, sendo formado por uma sequência de N blocos do tipo full-adder, interligados pelos sinais "vai-um" de entrada (carry in) e "vai-um" de saída (carry out) de cada par de blocos, o que justifica o seu nome.
- A facilidade de projeto é contrabalanceada pelo tempo de estabilização do resultado, que é lento, uma vez que deve-se esperar pelo tempo total de N propagações do sinal de "vai-um" (carry), acrescido do tempo de operação do último full-adder.
- Algumas implementações do bloco FA necessitam de um inversor tanto na saída C_o quanto na saída S. A remoção desses inversores produz um bloco \overline{FA} que apresenta uma redução de tempo na geração do carry. Utilizando-se esse FA modificado para implementar o somador RCA, pode-se reduzir o tempo de caminho crítico do somador, que é o tempo total de propagação de carry. Porém, para o correto funcionamento do somador RCA, inversores extras devem ser anexados. Considerando-se que os operandos são formados pelos N dígitos $Op = \begin{bmatrix} d_{N-1} & d_{N-2} & \cdots & d_1 & d_0 \end{bmatrix}$, deve-se adicionar um inversor na saída dos blocos \overline{FA} com índice zero e par. Por sua vez, deve-se adicionar um inversor em cada uma das entradas dos blocos \overline{FA} com índice ímpar. Se N for ímpar, deve-se acrescentar um inversor na saída carry out do somador RCA.

9.13.4 Carry lookahead adder (CLA)

- Um carry lookahead adder é um circuito combinacional com 1 entrada de 1 bit, 2 entradas de N bits, 1 saída de N bits e 1 saída de 1 bit. que se comporta como um somador de 2 operandos de N bits, que recebe um sinal de "vai-um" de entrada (carry in) e gera um sinal de "vai-um" de saída (carry out), além do resultado de N bits.
- Esse é um dos diversos somadores que busca uma melhoria de eficiência através da diminuição do tempo de caminho crítico, associado à propagação interna do *carry*.
- O circuito também é formado por uma seqüência de N blocos do tipo full-adder. Porém, a característica básica desse somador é que a geração do sinal C_o em cada estágio é feita localmente, ao invés de esperar a propagação de carry pelos estágios anteriores.
- Supondo-se que o sinal C_k é o carry de ligação entre os estágios k-1 e k, as equações originais do somador, para N=4, são:

$$C_{0} = C_{in}$$

$$C_{1} = G_{0} + (P_{0} \cdot C_{0})$$

$$C_{2} = G_{1} + (P_{1} \cdot C_{1})$$

$$C_{3} = G_{2} + (P_{2} \cdot C_{2})$$

$$C_{4} = G_{3} + (P_{3} \cdot C_{3}) = C_{out}$$

• Por sua vez, supondo-se que o sinal S_k é a saída do estágio k, as equações originais do somador, para N=4, são:

$$S_0 = (P_0 \oplus C_0)$$

$$S_1 = (P_1 \oplus C_1)$$

$$S_2 = (P_2 \oplus C_2)$$

$$S_3 = (P_3 \oplus C_3)$$

• Para obter a citada aceleração do tempo de caminho crítico, são definidas as funções generate de grupo $G_{i:j}$ e propagate de grupo $P_{i:j}$, definidas a seguir, de tal forma que os sinais C_k são reescritos como

$$C_1 = G_0 + (P_0 \cdot C_0)$$

= $G_{0:0} + (P_{0:0} \cdot C_0)$

$$C_2 = G_1 + (P_1 \cdot C_1)$$

$$= G_1 + (P_1 \cdot (G_0 + (P_0 \cdot C_0)))$$

$$= (G_1 + P_1 \cdot G_0) + (P_1 \cdot P_0) \cdot C_0$$

$$= G_{1:0} + (P_{1:0} \cdot C_0)$$

$$C_{3} = G_{2} + (P_{2} \cdot C_{2})$$

$$= G_{2} + (P_{2} \cdot (G_{1} + (P_{1} \cdot (G_{0} + (P_{0} \cdot C_{0})))))$$

$$= (G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0}) + (P_{2} \cdot P_{1} \cdot P_{0}) \cdot C_{0}$$

$$= G_{2:0} + (P_{2:0} \cdot C_{0})$$

$$C_4 = G_3 + (P_3 \cdot C_3)$$

$$= G_3 + (P_3 \cdot (G_2 + (P_2 \cdot (G_1 + (P_1 \cdot (G_0 + (P_0 \cdot C_0)))))))$$

$$= (G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0) + (P_3 \cdot P_2 \cdot P_1 \cdot P_0) \cdot C_0$$

$$= G_{3:0} + (P_{3:0} \cdot C_0) ,$$

onde

$$G_k = (A_k \cdot B_k)$$

е

$$P_k = (A_k \oplus B_k) ,$$

lembrando-se ainda que, para o cálculo dos sinais C_k , pode-se utilizar

$$P_k^+ = (A_k + B_k) .$$

9.14 Subtratores em binário puro

• A seguir, são apresentados subtratores de 2 operandos, codificados em binário puro.

9.14.1 Half-subtractor (HS)

• Um *half-subtractor* é um circuito combinacional com 2 entradas e 2 saídas, todas de 1 *bit*, que se comporta como um subtrator de 2 operandos, onde uma das saídas é o resultado da subtração e a outra é o sinal de "veio-um" de saída (*borrow out*).

9.14.2 Full-subtractor (FS)

• Um full-subtractor é um circuito combinacional com 3 entradas e 2 saídas, todas de 1 bit, que se comporta como um subtrator de 2 operandos, onde uma das entradas é sinal de "veio-um" de entrada (borrow in), enquanto uma das saídas é o resultado da subtração e a outra é o sinal de "veio-um" de saída (borrow out).

9.14.3 Ripple-borrow subtractor (RBS) ou borrow propagate subtractor (BPS)

- Um ripple-borrow subtractor ou um borrow propagate subtractor é um circuito combinacional com 1 entrada de 1 bit, 2 entradas de N bits, 1 saída de N bits e 1 saída de 1 bit. que se comporta como um subtrator de 2 operandos de N bits, que recebe um sinal de "veio-um" de entrada (borrow in) e gera um sinal de "veio-um" de saída (borrow out), além do resultado de N bits.
- Na sua forma original, o circuito é modular, sendo formado por uma sequência de N blocos do tipo full-subtractor, interligados pelos sinais "veio-um" de entrada (borrow in) e "veio-um" de saída (borrow out) de cada par de blocos, o que justifica o seu nome.
- A facilidade de projeto é contrabalanceada pelo tempo de estabilização do resultado, que é lento, uma vez que deve-se esperar pelo tempo total de N propagações do sinal de "veio-um" (borrow), acrescido do tempo de operação do último full-subtractor.

9.15 Incrementador e decrementador em binário puro

- Os circuitos incrementador e decrementador são versões simplificadas dos circuitos somador e subtrator, respectivamente.
- Eles adicionam ou subtraem, respectivamente, uma unidade ao *bit* menos significativo (LSB) do operando a ser incrementado ou decrementado.
- Assim sendo, pode-se adotar um projeto por uso de blocos pré-existentes.

• Por exemplo:

- Um incrementador pode ser obtido de um ripple-carry adder baseado em full-adder, aplicando-se $\mathbf{Op_2} = [\ 0\ 0\ \cdots\ 0\ 0\] = 0\ e\ C_{in} = 1$, além de realizar as conseqüentes simplificações no circuito.
- Um decrementador pode ser obtido de um *ripple-borrow subtractor* baseado em *full-subtractor*, aplicando-se $\mathbf{Op_2} = [0\ 0\ \cdots\ 0\ 0] = 0\ e\ B_{in} = 1$, além de realizar as consequentes simplificações no circuito.
- Um decrementador pode ser obtido de um *ripple-carry adder* baseado em *full-adder*, aplicando-se $Op_2 = [1 \ 1 \ \cdots \ 1 \ 1] = -1 \ e \ C_{in} = 0$, além de realizar as conseqüentes simplificações no circuito.

9.16 Complementadores

• A seguir, são apresentados dois exemplos de conversores de códigos numéricos.

9.16.1 Complementador-a-1 (bitwise implementation)

- Um complementador-a-1 é um circuito combinacional com N entradas e N saídas, que realiza a conversão entre os códigos numéricos binário puro e complemento-a-1.
- Uma vez que, nessa conversão, as operações sobre os *bits* são independentes, um projeto modular elementar pode ser adotado.
- Para um complementador incondicional, são necessários apenas inversores.
- Para um complementador condicional, utiliza-se a porta lógica XOR como bloco básico.

9.16.2 Complementador-a-2

- Um complementador-a-2 é um circuito combinacional com N entradas e N saídas, que realiza a conversão entre os códigos numéricos binário puro e complemento-a-2.
- Uma vez que, nessa conversão, as operações sobre os *bits* não são independentes, diferentes técnicas podem ser adotadas, as quais são abordadas a seguir.

Complementador-a-1 + somador em binário puro

• Nesse caso, um complementador-a-2 é implementado usando um circuito complementador-a-1 em conjunto com um circuito somador em binário puro. Por sua vez, o circuito somador pode ser formado por somadores básicos de dois operandos ou pode ser apenas um incrementador.

Decrementador com saídas invertidas

• Para um complementador-a-2 incondicional, pode-se adotar um decrementador com as saídas invertidas. Isso é matematicamente comprovado por

$$(q)_{C2} = 2^N - |q| = 2^N - 1 + 1 - |q| = 2^N - 1 - (|q| - 1) = (|q| - 1)_{C1}$$
.

Complementador-a-2 puro (bit-scanning implementation)

- Nesse caso, um complementador-a-2 é implementado usando um projeto modular.
- É realizada uma varredura do *bit* menos significativo (LSB) para o mais significativo (MSB). Enquanto não for encontrado o primeiro *bit* com valor "1", os *bits* com valor "0" são mantidos. Ao encontrar-se o primeiro *bit* com valor "1", este também é mantido. A partir daí, todos os demais *bits* têm os seus valores invertidos.
- No caso de um complementador incondicional, o módulo k recebe o bit B_k e um sinal F_{k-1} que indica se o primeiro valor "1" já foi encontrado, gerando o bit complementado C_k e o novo sinal F_k .
- No caso de um complementador condicional, pode-se adotar duas soluções básicas. Na primeira delas, é utilizado o complementador incondicional, com uma porta lógica AND externamente adicionada a cada módulo, para controlar a propagação do sinal de varredura F. A outra incorpora o sinal de controle diretamente no projeto do módulo.

9.17 Multiplicadores em binário puro

• A seguir, é apresentada uma possível implementação modular para um multiplicador de 2 operandos, em binário puro.

9.17.1 Multiplicador de 1 bit

• É facilmente demonstrável que um multiplicador de 2 operandos de 1 bit pode ser implementado por uma porta lógica AND.

9.17.2 Multiplicador de N bits

• Utilizando-se um projeto modular, pode-se mostrar que um multiplicador de 2 operandos de *N bits* pode ser implementado usando apenas multiplicadores de 1 *bit* e *full-adders*.

9.18 Detector de *overflow* em adição de valores codificados em complemento-a-2

Em implementações com aritmética de ponto fixo e tamanho de palavra finita, o resultado da adição de valores codificados em complemento-a-2 pode não ser representável, caracterizando uma situação de *overflow*.

A ocorrência de *overflow* pode ser detectada analisando-se alguns dos sinais externos ao bloco somador.

Conforme discutido em 8.6.3, a Equação (8.50) define uma possível forma de detecção, que é dada por

$$OF = (\overline{d_{s1}} \cdot \overline{d_{s2}} \cdot d_{sA}) + (d_{s1} \cdot d_{s2} \cdot \overline{d_{sA}}) ,$$

onde OF, d_{s1} , d_{s2} e d_{sA} representam o sinal indicativo de *overflow* e os dígitos de sinal do operando 1, do operando 2 e do resultado da adição, respectivamente.

9.19 Saturador de valor codificado em complemento-a-2

Em implementações com aritmética de ponto fixo e tamanho de palavra finita, é comum a ocorrência de overflow.

O tratamento mais comumente empregado é a saturação do valor em *overflow* no valor máximo representável, positivo ($0\ 1\ 1\ 1\ \cdots\ 1\ 1\ 1$) ou negativo ($1\ 0\ 0\ \cdots\ 0\ 0\ 0$).

Em alguns casos, onde é exigido que os dados sejam interpretados como sendo estritamente menores que a unidade (|x| < 1), a solução é a saturação do valor em *overflow* no valor máximo representável imediatamente menor que a unidade, positivo ($0\ 1\ 1\ 1\ \cdots\ 1\ 1\ 1$) ou negativo ($1\ 0\ 0\ 0\ \cdots\ 0\ 0\ 1$).

Considerando-se uma representação dada por $[B_{N-1} \ B_{N-2} \ B_{N-3} \ \cdots \ B_2 \ B_1 \ B_0]$, e uma variável para seleção do tipo de saturação t_sat , de tal forma que $t_sat = 0$ significa saturação em valores máximos e $t_sat = 1$ significa saturação em valores máximos menores que a unidade, pode-se mostrar que um conjunto de equações que implementam tal solução é dado por

$$S_{N-1} = \left(\overline{OF} \cdot E_{N-1}\right) + \left(OF \cdot \overline{E_{N-1}}\right) ,$$

$$S_k = \left(\overline{OF} \cdot E_k\right) + \left(OF \cdot E_{N-1}\right)$$

е

$$S_0 = (\overline{OF} \cdot E_0) + (OF \cdot E_{N-1}) + (OF \cdot t_sat) ,$$

onde OF, E e S, significam, respectivamente, um sinal de indicação de overflow, a entrada e a saída, bem como $(N-2) \le k \le 1$.

9.20 Comparadores da quantidade de dígitos

 A seguir, são apresentados exemplos de circuitos combinacionais utilizados para a comparação da quantidade de dígitos em operandos.

9.20.1 Comparador da quantidade de dígitos em um operando

• Dado um operando, com N dígitos, o circuito fornece 3 saídas, que indicam se o número de valores "0" é menor, igual ou maior que o número de valores "1".

9.20.2 Comparador da quantidade de dígitos em dois operandos

• Dados 2 operandos, com N dígitos cada, o circuito fornece 3 saídas, que indicam se o número de valores "0", ou "1", no operando Op_1 é menor, igual ou maior que no operando Op_2 .

9.21 Comparadores numéricos de dois operandos

Supondo-se dois números, $x \in y \in \mathbb{N}$, codificados em binário puro, com N dígitos, os mesmos podem assumir valores na faixa $[0; (2^N - 1)]$. Deseja-se compará-los e gerar três sinais binários que indiquem as seguintes condições: x < y, x = y e x > y.

A seguir, são discutidas uma técnica para identificação de igualdade e três técnicas que podem ser usadas no projeto de um comparador genérico.

9.21.1 Identificador de igualdade

Para que duas cadeias de valores binários sejam iguais, elas devem ser iguais dígito a dígito. A igualdade entre dois dígitos pode ser testada com o operador XNOR (x_k, y_k) . Portanto, a igualdade entre duas cadeias de N dígitos pode ser testada por meio da seguinte relação:

$$I(x,y) = I(x_{N-1}, y_{N-1}) \ AND \cdots I(x_1, y_1) \ AND \ I(x_0, y_0)$$

= $(x_{N-1} \ XNOR \ y_{N-1}) \ AND \cdots (x_1 \ XNOR \ y_1) \ AND (x_0 \ XNOR \ y_0) \ .$ (9.20)

A Equação 9.20 pode ser implementada de forma modular (bit scanning), considerando-se que os módulos sejam definidos por

$$I(x_k, y_k) = (x_k \ XNOR \ y_k) \ AND \ I(x_{k+1}, y_{k+1}) \ ,$$

para
$$(N-1) \le k \le 0$$
 e $I(x_N, y_N) = 1$.

9.21.2 Projeto modular (bit scanning)

Nesse caso, os dígitos d_k de x e de y são comparados um a um, do mais significativo (d_{N-1}) até o menos significativo (d_0) , empregando-se N blocos comparadores de dígitos.

Além dos dígitos x_k e y_k , o bloco comparador dos dígitos d_k deve receber também outros dois sinais $(S_{1_{k+1}} e S_{2_{k+1}})$, provenientes da comparação realizada no bloco de posição k+1. Como resultado, ele deve gerar dois novos sinais equivalentes $(S_{1_k} e S_{2_k})$, relativos à sua comparação, que deverão ser fornecidos ao bloco de posição k-1.

Os dois sinais de entrada do bloco de posição k = (N - 1) representam os dois sinais de entrada do comparador, devendo ser escolhidos adequadamente.

Os dois sinais de saída do bloco de posição k=0 representam os dois sinais de saída do comparador, de tal forma que $S_1=S_{1_0}$ e $S_2=S_{2_0}$.

O terceiro sinal de saída do comparador (S_3) pode ser obtido pela combinação adequada dos outros dois.

Os sinais S_1 e S_2 podem ser escolhidos dentre as seguintes opções:

1.
$$S_1 = (x < y)$$
 e $S_2 = (x = y)$, onde $S_{1_N} = 0$ e $S_{2_N} = 1$.

2.
$$S_1 = (x < y)$$
 e $S_2 = (x > y)$, onde $S_{1_N} = 0$ e $S_{2_N} = 0$.

3.
$$S_1 = (x = y)$$
 e $S_2 = (x > y)$, onde $S_{1_N} = 1$ e $S_{2_N} = 0$.

Em seguida, o sinal S_3 pode gerado por

$$S_3 = (NOT S_1) \ AND \ (NOT S_2) = S_1 \ NOR \ S_2$$
.

Opção 3:
$$E = S_1 = (x = y)$$
; $G = S_2 = (x > y)$

A Tabela 9.10 apresenta a Tabela Verdade do módulo básico de comparação.

A Tabela 9.11 apresenta o Mapa de Karnaugh para o sinal G_k .

A Tabela 9.12 apresenta o Mapa de Karnaugh para o sinal E_k .

Dos mapas de Karnaugh, podem-se obter as seguintes formas mínimas:

$$G_k = G_{k+1} + (x_k \cdot \overline{y_k} \cdot E_{k+1})$$

е

$$E_k = (\overline{x_k} \cdot \overline{y_k} \cdot E_{k+1}) + (x_k \cdot y_k \cdot E_{k+1})$$
.

G_{k+1}	E_{k+1}	x_k	y_k	G_k	E_k
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	X	X
1	1	0	1	X	X
1	1	1	0	X	X
1	1	1	1	X	X

Tabela 9.10: Tabela Verdade do módulo básico de comparação. Sinais igual (E) e maior (G).

		$G_{k+1} E_{k+1}$			
		00	01	11	10
	00	0	0	X	1
$x_k y_k$	01	0	0	X	1
	11	0	0	X	1
	10	0	1	X	1

Tabela 9.11: Mapa de Karnaugh para o sinal G_k do módulo básico de comparação.

		$G_{k+1} E_{k+1}$				
		00	01	11	10	
	00	0	1	X	0	
$x_k y_k$	01	0	0	X	0	
	11	0	1	X	0	
	10	0	0	X	0	

Tabela 9.12: Mapa de Karnaugh para o sinal E_k do módulo básico de comparação.

9.21.3 Projeto usando a técnica de complemento

A comparação numérica aqui abordada é realizada com padrões binários interpretados como números não negativos, sem codificação adicional. Porém, a técnica de codificação por complemento, usada na representação de números negativos, pode ser empregada na implementação de um comparador. Isso é discutido a seguir.

Uso de complemento a 1

Na codificação por complemento a 1, o valor do módulo de codificação para um número binário com N dígitos vale $V_{mod_{C1}} = (2^N - 1)$, que é o maior valor representável V_{max} . Dados os números x e y, o seu complemento a 1 pode ser definido por $x_{C1} = (V_{mod_{C1}} - x)$ e por $y_{C1} = (V_{mod_{C1}} - y)$, respectivamente.

Realizando-se a operação $r_{yx_{C1}} = y + x_{C1} = y + (V_{mod_{C1}} - x) = V_{mod_{C1}} + (y - x) = V_{max} + (y - x)$, pode-se observar que, se $y \le x$ então $r_{yx_{C1}} \le V_{max}$, e que, se y > x então $r_{yx_{C1}} > V_{max}$. Portanto, se o sinal de *carry out* do somador for igual a 0 ou a 1, tem-se que $y \le x$ ou y > x, respectivamente.

Da mesma forma pode-se realizar a operação $r_{xy_{C1}} = x + y_{C1} = x + (V_{mod_{C1}} - y) = V_{mod_{C1}} + (x - y) = V_{max} + (x - y)$, verificando-se as condições $x \le y$ ou x > y.

Finalmente, pode-se verificar se x = y, utilizando-se os dois resultados anteriores.

Uso de complemento a 2

Na codificação por complemento a 2, o valor do módulo de codificação para um número binário com N dígitos vale $V_{mod_{C2}} = 2^N = V_{max} + 1$. Dados os números x e y, o seu complemento a 2 pode ser definido por $x_{C2} = (V_{mod_{C2}} - x)$ e por $y_{C2} = (V_{mod_{C2}} - y)$, respectivamente.

Realizando-se a operação $r_{yx_{C2}} = y + x_{C2} = y + (V_{mod_{C2}} - x) = V_{mod_{C2}} + (y - x) = V_{max} + 1 + (y - x)$, pode-se observar que, se y < x então $r_{yx_{C2}} \le V_{max}$, e que, se $y \ge x$ então $r_{yx_{C2}} > V_{max}$. Portanto, se o sinal de *carry out* do somador for igual a 0 ou a 1, tem-se que y < x ou $y \ge x$, respectivamente.

Da mesma forma pode-se realizar a operação $r_{xy_{C2}} = x + y_{C2} = x + (V_{mod_{C2}} - y) = V_{mod_{C2}} + (x - y) = V_{max} + 1 + (x - y)$, verificando-se as condições x < y ou $x \ge y$.

Finalmente, pode-se verificar se x = y, utilizando-se os dois resultados anteriores.

Parte III Circuitos digitais seqüenciais

Capítulo 10

Circuitos seqüenciais: conceitos básicos

10.1 Introdução

- Circuitos combinacionais × circuitos seqüenciais.
- Circuitos combinacionais são sistemas instantâneos ou sem memória.
- Circuitos següenciais são sistemas dinâmicos ou com memória.
- Por serem sistemas instantâneos, os circuitos combinacionais respondem sempre da mesma forma, em qualquer momento, para os mesmos valores das variáveis de entrada.
- Por sua vez, por serem sistemas dinâmicos, dependendo da informação que se encontre armazenada, os circuitos seqüenciais podem responder de formas diferentes, em diferentes momentos, para os mesmos valores das variáveis de entrada.
- Circuitos sequenciais também podem ser denominados de máquinas de estados ou de autômatos.

10.2 Estados e variáveis de estado

- Uma vez que eles são capazes de armazenar energia, os sistemas dinâmicos podem apresentar diversas configurações energéticas diferentes, denominadas **estados**.
- Uma medida do estado de um sistema, em um instante de tempo $t = t_n$, são os valores assumidos por todas as variáveis do sistema, em $t = t_n$.
- Interpretando-se o conjunto de todas as variáveis de um sistema como um espaço vetorial, pode-se selecionar um conjunto mínimo de variáveis para formar uma base para esse espaço. Uma vez que, a partir da base, podem ser obtidas todas as demais variáveis e, portanto, pode-se caracterizar o estado do sistema, as variáveis da base são denominadas variáveis de estado do sistema.
- Dessa forma, uma definição clássica para estado e variáveis de estado é: "O estado de um sistema, em qualquer instante de tempo $t=t_n$, é o menor conjunto de variáveis (denominadas variáveis de estado), calculadas em $t=t_n$, suficiente para determinar o comportamento do sistema para qualquer instante de tempo $t \geq t_n$, quando a entrada do sistema é conhecida para $t \geq t_n$ ".

10.3 Tipos de variáveis e sua interações

- Será considerado que todas as variáveis do circuito são booleanas.
- Assim sendo, os valores das variáveis podem ser interpretados como:
 - Nível: a informação é representada pelos níveis lógicos das variáveis boolenas (0 e
 1). Cada nível representa um evento.
 - Borda: a informação é associada à seqüência de níveis 0 e 1 (borda positiva) ou à seqüência de níveis 1 e 0 (borda negativa). Cada borda representa um evento.
 - Transição: a informação é associada à troca de níveis 0 para 1 (transição positiva) ou à troca de níveis 1 para 0 (transição negativa). Cada transição representa um evento.
 - Pulso: a informação é associada à seqüência de níveis 0 e 1 e 0 (pulso positivo) ou à seqüência de níveis 1 e 0 e 1 (pulso negativo). A duração do valor intermediário da seqüência é denominada de largura do pulso (pulsewidth) e deve ser pequena em relação aos tempos envolvidos. Cada pulso representa um evento.
- Para alguns tipos de circuitos, as interações entre sinais dos tipos nível e pulso são de particular interesse. A Tabela 10.1 resume as possíveis interações, considerando-se as operações lógicas AND e OR. Os resultados indicam que, para tais operações, alguns tipos de interações produzem resultados indeterminados. Portanto, no projeto de sistemas com sinais pulsados, tais resultados devem ser levados em consideração.

A	В	$A \cdot B$	A + B
Nível	Nível	Nível	Nível
Nível	Pulso Positivo	Pulso Positivo	Indeterminado
Pulso Positivo	Pulso Positivo	Indeterminado	Pulso Positivo
Nível	Pulso Negativo	Indeterminado	Pulso Negativo
Pulso Negativo	Pulso Negativo	Pulso Negativo	Indeterminado
Pulso Positivo	Pulso Negativo	Indeterminado	Indeterminado

Tabela 10.1: Tipos de interações entre sinais dos tipos nível e pulso.

10.4 Modelo genérico para circuitos sequenciais

- Na Figura 10.1 é apresentado um modelo genérico para circuitos sequenciais, onde:
 - $-x_i \in \mathbf{x}, i = 1, 2, \dots, L$, são as variáveis de entrada ou variáveis de entrada principais.
 - $-z_i \in \mathbf{z}, i=1,2,\cdots,M$, são as variáveis de saída ou variáveis de saída principais.
 - $-Y_i \in \boldsymbol{Y}, \, i=1,2,\cdots,P,$ são as variáveis de excitação ou variáveis de saída secundárias
 - $-y_i \in \mathbf{y}, i = 1, 2, \dots, R$, são as variáveis de estado ou variáveis de entrada secundárias.
 - $-t_n$ é o instante atual, t_{n-1} é o instante anterior e t_{n+1} é o próximo instante.
 - $-z_i^n = f_i(x_1^n, \dots, x_L^n, y_1^n, \dots, y_R^n), i = 1, 2, \dots, M.$
 - $-Y_i^n = f_i(x_1^n, \dots, x_L^n, y_1^n, \dots, y_R^n), j = 1, 2, \dots, P.$
 - $-y_k^{n+1} = f_k(Y_1^n, \dots, Y_P^n), k = 1, 2, \dots, R.$
- O conjunto das variáveis y_i é denominado estado atual.
- Por sua vez, conjunto das variáveis x_i e y_i é dito estado atual total.
- O bloco denominado **Função Combinacional** é um circuito combinacional que, de acordo com a viabilidade de custo, pode ser implementado através de portas lógicas individuais, memórias ROM (*Read-Only Memory*) ou circuitos PLA (*Programmable Logic Array*).
- O bloco de memória denominado **Geração e Armazenamento das Variáveis de Estado** representa um dispositivo genérico de memória (*flip-flop*, banco de memória, atrasos de propagação).
- A função do bloco de memória não é simplesmente armazenar Y_i^n na forma de y_i^{n+1} . Pelo contrário, a sua função é mais complexa: a partir de alguns Y_i^n deve ser gerado y_j^{n+1} , o qual, então, será retido (armazenado).

Figura 10.1: Modelo genérico para circuitos sequenciais.

10.5 Classificação quanto à dependência do sinal de saída

- Máquinas (circuitos) de Mealy e de Moore.
- Máquinas de Mealy: $z_i^n = f_i(x_1^n, \dots, x_L^n, y_1^n, \dots, y_R^n), i = 1, 2, \dots, M.$
- Máquinas de Moore: $z_i^n = f_i(y_1^n, \dots, y_R^n), i = 1, 2, \dots, M.$
- As Figuras 10.2 e 10.3 apresentam, respectivamente, um exemplo de máquina de Mealy e um exemplo de máquina de Moore.
- Geralmente, as máquinas de Mealy são implementadas por circuitos mais simples do que as máquinas de Moore.
- Por outro lado, nas máquinas de Moore, em conseqüência de sua definição, os valores dos sinais de saída permanecem constantes entre dois estados consecutivos. Portanto, tornase mais simples controlar a interação entre diversos blocos de circuitos desse tipo. Pela mesma razão, é mais fácil acompanhar a evolução dos estados do circuito, o que simplifica a depuração de erros.

Figura 10.2: Exemplo de máquina de Mealy.

Figura 10.3: Exemplo de máquina de Moore.

10.6 Classificação quanto ao tipo de controle da mudança de estado

Na literatura, são encontradas várias denominações diferentes para designar os diversos tipos de circuitos seqüenciais existentes. A nomenclatura aqui utilizada será a seguinte: Clock-mode ou clocked, Pulsed, Level-mode. Tais classes são brevemente descritas a seguir.

10.6.1 Circuitos seqüenciais clock-mode ou clocked

- A Figura 10.4 ilustra um modelo genérico para circuitos seqüenciais clock-mode.
- Todas as variáveis carregam informação nos níveis.
- As variáveis de estado são modificadas apenas pela ação de um sinal pulsante, com função de temporização ou de controle, comumente denominado de relógio (clock).
- Apesar de ser um sinal pulsante, não é necessário que o *clock* seja periódico.
- O sinal de *clock* não carrega qualquer tipo de informação. Ele só determina quando haverá mudança de estado.
- As variáveis de excitação, em conjunto com os elementos de armazenamento, determinam qual será a mudança de estado.
- As variáveis de entrada devem estar estáveis quando da atuação do *clock*.
- Um clock atuando em t_n , com \boldsymbol{x}^n , \boldsymbol{z}^n , e \boldsymbol{Y}^n estáveis, provoca uma mudança de estado de \boldsymbol{y}^n para \boldsymbol{y}^{n+1} .
- O circuito deve estar estável entre dois pulsos de *clock*. Assim, o que limita a freqüência máxima de operação do circuito é, basicamente, a soma do tempo de estabilização da memória com o tempo de propagação máximo do circuito combinacional.

• De certa forma, um circuito seqüencial *clock-mode* pode ser interpretado como um caso particular de circuitos seqüenciais *pulsed*.

Figura 10.4: Modelo genérico para circuitos seqüenciais clock-mode.

10.6.2 Circuitos seqüenciais pulsed

- A Figura 10.5 apresenta um modelo genérico para circuitos seqüenciais pulsed.
- Não há um sinal pulsante de *clock* separado, sem informação.
- A mudança de estado ocorre pela atuação de um pulso em um sinal de entrada.

Figura 10.5: Modelo genérico para circuitos sequenciais pulsed.

10.6.3 Circuitos seqüenciais level-mode

- Na Figura 10.6 pode ser visto um modelo genérico para circuitos seqüenciais level-mode.
- A realimentação das variáveis de excitação Y_i , gerando as variáveis de estado y_j , é realizada de forma contínua, ao contrário das demais classes, onde a mesma é controlada.
- A mudança de estado ocorre pela atuação de níveis dos sinais de entrada.
- Caso particular: operação em modo fundamental, onde uma mudança de nível só pode ocorrer após a mudança de nível anterior ter levado a máquina a um estado estável.
- Assim como nos demais classes: $y_k^{n+1} = f_k(Y_1^n, \dots, Y_P^n), k = 1, 2, \dots, R$.
- Mais especificamente, neste caso: P = R e $y_k(t + \Delta t_k) = Y_k(t), k = 1, 2, \dots, P$.
- Os atrasos Δt_k que implementam o bloco de memória não são blocos de retardo isolados. Eles representam a concentração de atrasos de propagação existentes no circuito combinacional.

Figura 10.6: Modelo genérico para circuitos sequenciais level-mode.

Capítulo 11

Elementos básicos de armazenamento

11.1 Introdução

- Se toda a informação presente em um circuito seqüencial for expressa por meio de valores binários, os elementos básicos de armazenamento deverão ser dispositivos capazes de armazenar variáveis booleanas.
- Assim, os requisitos básicos para tais dispositivos são:
 - Capacidade de representar os valores lógicos "0" e "1".
 - Possibilidade de representar apenas os valores lógicos "0" e "1".
 - Capacidade de travar (latch) os valores lógicos "0" e "1" por tempo indeterminado.
 - Capacidade de decidir sobre o valor lógico a ser armazenado, a partir de sinais de acionamento.
- Os requisitos acima definem um dispositivo com dois estados, estáveis, cuja mudança de estados é disparada (triggered) por sinais de ativação específicos.
- Tecnicamente, tal dispositivo é denominado de multivibrador biestável.
- Popularmente, embora não haja um consenso sobre a classificação dos dispositivos, são empregadas as denominações *latch* e *flip-flop*.
- Um dispositivo multivibrador biestável pode ser implementado através de circuitos analógicos, utilizando-se transistores, resistores e capacitores.
- Por outro lado, é possível obter uma implementação dita digital, utilizando-se apenas portas lógicas como elementos primitivos.
- Do ponto de vista de integração do sistema (lógica combinacional + lógica seqüencial), a implementação digital pode ser interpretada como a mais adequada para o projeto de sistemas digitais, uma vez que utiliza portas lógicas como elementos primitivos.
- Deve ser ressaltado que, pela sua própria caracterização, os elementos básicos de armazenamento, implementados de forma digital, são circuitos seqüenciais elementares, do tipo level-mode.

11.2 Classificação quanto à funcionalidade

- No tocante à funcionalidade, existem quatro tipos básicos de flip-flops: SR, JK, D e T.
- Dependendo do tipo de implementação do dispositivo e dos sinais de ativação existentes, diversas variações desses quatro tipos básicos podem ser definidas e implementadas.
- Independentemente das possíveis variações, a funcionalidade básica de cada um dos quatro tipos citados pode ser representada pelas seguintes equações, onde X^n representa o valor da variável X no instante t_n e X^{n+1} representa o valor da variável X no instante seguinte t_{n+1} :
 - Flip-flop SR:

$$\begin{cases}
Q^{n+1} = (S^n) + (\overline{R^n} \cdot Q^n) &, \text{ para } (S^n \cdot R^n) = 0 \\
Indeterminado &, \text{ para } S^n = R^n = 1
\end{cases}$$
(11.1)

- Flip-flop JK:

$$Q^{n+1} = \left(J^n \cdot \overline{Q^n}\right) + \left(\overline{K^n} \cdot Q^n\right) . \tag{11.2}$$

- Flip-flop D:

$$Q^{n+1} = D^n (11.3)$$

- Flip-flop T_1 :

$$Q^{n+1} = \overline{Q^n} \tag{11.4}$$

- Flip-flop T_2 :

$$Q^{n+1} = \left(T^n \cdot \overline{Q^n}\right) + \left(\overline{T^n} \cdot Q^n\right) . \tag{11.5}$$

- As operações básicas, associadas às Equações (11.1), (11.2), (11.3) e (11.5), podem ser mais facilmente identificadas através de suas respectivas tabelas, apresentadas na Figura 11.1.
- As variáveis S, R, J, K, D e T representam os sinais de entrada, enquanto a variável Q representa o sinal de saída dos respectivos flip-flops.
- Das equações apresentadas, e de suas respectivas tabelas, torna-se natural o significado da nomenclatura dos sinais: Q (Quiescent), SR (Set-Reset), D (unit Delay) e T (Toggle).
- ullet A nomenclatura JK surgiu historicamente, sem qualquer relação com a sua funcionalidade.

S^n	\mathbb{R}^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	proibido

J^n	K^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	$\overline{Q^n}$

D^n	Q^{n+1}
0	0
1	1

T^n	Q^{n+1}
0	Q^n
1	$\overline{Q^n}$

Figura 11.1: Tabelas de operação básica para os flip-flops SR, JK, D e T_2 .

11.3 Relacionamento entre os tipos básicos de flip-flops

- Observando-se as equações dos tipos básicos de *flip-flops*, e suas respectivas tabelas, podese notar um estreito relacionamento entre eles.
- Alguns desses relacionamentos podem ser estabelecidos sem o emprego de realimentação, o que acontece nos casos de um *flip-flop* com mais funcionalidade para um *flip-flop* com menos funcionalidade.
- Os casos contrários requerem que o flip-flop seja realimentado.
- Inicialmente, pode-se estabelecer as seguintes relações entre os flip-flops SR, JK, D e T:
 - Para as combinações de entrada "00", "01" e "10", os *flip-flops* SR e JK possuem o mesmo comportamento.
 - O flip-flop JK amplia a operação do flip-flop SR, implementando uma funcionalidade para a combinação de entrada "11".
 - O flip-flop JK, com as entradas J = K = 1 ou J = K = T, é equivalente ao flip-flop T, de acordo com as Equações (11.4) e (11.5), respectivamente.
 - Por sua vez, um *flip-flop* D pode ser implementado a partir de *flip-flops* SR ou JK, se S = D e $R = \overline{S}$ ou se J = D e $K = \overline{J}$, respectivamente.
 - Um flip-flop T_1 pode ser implementado a partir de um flip-flop T_2 , fazendo-se T=1.
 - A partir de um flip-flop D pode-se implementar um flip-flop T, adotando-se $D = \overline{Q}$ ou $D = (T \cdot \overline{Q}) + (\overline{T} \cdot Q)$, conforme as Equações (11.4) e (11.5), respectivamente.
- A Tabela 11.1 apresenta um resumo de transformações envolvendo flip-flops dos tipos SR, JK, D, e T, utilizando suas entradas e saídas como variáveis de projeto. As opções marcadas com (*) indicam a impossibilidade desse tipo de projeto, uma vez que o flip-flop do tipo T_1 não possui entrada de dados. Existe apenas um sinal de sincronismo (CTRL ou CK) que controla a sua operação. Sendo assim, uma solução diferente deve ser proposta, a qual atue sobre tal sinal de controle.

Transformação	Tipo de a	arquitetura
desejada	Sem realimentação	Com realimentação
$JK \longrightarrow SR$	Não aplicar: $J = K = 1$	
$JK \longrightarrow D$	$J=D \; ; \; K=\overline{J}$	_
$JK \longrightarrow T_1$	J = K = 1	
$JK \longrightarrow T_2$	J = K = T	
$SR \longrightarrow JK$		$S = (J \cdot \overline{Q}) ; R = (K \cdot Q)$
$D \longrightarrow JK$		$D = (J \cdot \overline{Q}) + (\overline{K} \cdot Q)$
$T_1 \longrightarrow JK$	(*)	(*)
$T_2 \longrightarrow JK$	_	$T = (J \cdot \overline{Q}) + (K \cdot Q)$
	<u>_</u>	
$SR \longrightarrow D$	$S = D \; ; \; R = \overline{S}$	
$SR \longrightarrow T_1$	_	$S = \overline{Q} ; R = Q$
$SR \longrightarrow T_2$	_	$S = (T \cdot \overline{Q}) \; ; \; R = (T \cdot Q)$
$D \longrightarrow SR$	<u> </u>	$D = (S) + (\overline{R} \cdot Q)$ (*)
$T_1 \longrightarrow SR$	(*)	\ /
$T_2 \longrightarrow SR$	_	$T = (S \cdot \overline{Q}) + (R \cdot Q)$
$D \longrightarrow T_1$		$D = \overline{Q}$
$D \longrightarrow T_2$	_	$D = (T \cdot \overline{Q}) + (\overline{T} \cdot Q)$
$T_1 \longrightarrow D$	(*)	(*)
$T_2 \longrightarrow D$	_	$T = (D \cdot \overline{Q}) + (\overline{D} \cdot Q)$
/T. /T.	(\ \	(4)
$T_1 \longrightarrow T_2$	(*)	(*)
T T.	T 1	
$T_2 \longrightarrow T_1$	T=1	_

Tabela 11.1: Transformações envolvendo flip-flops dos tipos $JK,\,D,\,T_1$ e $T_2.$

11.4 Mapas de excitação dos *flip-flops*

- Uma outra forma de descrever a operação de um *flip-flop* é através do tipo de excitação que deve ser aplicado nas suas entradas a fim de provocar uma determinada variação na sua saída. Tal forma de descrição é denominada mapa de excitação.
- A Figura 11.2 apresenta os mapas de excitação para os flip-flops SR, JK, D e T_2 .

Q^n	\rightarrow	Q^{n+1}	S^n	R^n
0	\rightarrow	0	0	X
0	\rightarrow	1	1	0
1	\rightarrow	0	0	1
1	\rightarrow	1	X	0
0	\rightarrow	X	X	X
1	\rightarrow	X	X	X

Q^n	\rightarrow	Q^{n+1}	J^n	K^n
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0
0	\rightarrow	X	X	X
1	\rightarrow	X	X	X

Q^n	\rightarrow	Q^{n+1}	D^n
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1
0	\rightarrow	X	X
1	\rightarrow	X	X

Q^n	\rightarrow	Q^{n+1}	T^n
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	1
1	\rightarrow	1	0
0	\rightarrow	X	X
1	\rightarrow	X	X

Figura 11.2: Mapas de excitação para os flip-flops SR, JK, D e T_2 .

11.5 Tipos de comportamento das saídas dos flip-flops

• Os tipos de comportamento que a saída de um *flip-flop* pode apresentar, de um instante de tempo (t_n) para o instante de tempo seguinte (t_{n+1}) , são definidos na Tabela 11.2.

$Q^n \rightarrow Q^{n+1}$	Símbolo	Tipo de Comportamento
$0 \rightarrow 0$	0	Estático
$0 \rightarrow 1$	α	Dinâmico
$1 \rightarrow 0$	β	Dinâmico
$1 \rightarrow 1$	1	Estático
$0 \rightarrow X$	X	Indeterminado
$1 \rightarrow X$	X	Indeterminado

Tabela 11.2: Definição dos tipos de comportamento apresentados pela saída de um flip-flop.

11.6 Excitação \times comportamento

• As tabelas da Figura 11.3 associam os tipos de comportamento da saída às respectivas excitações que as entradas devem sofrer, para os flip-flops SR, JK, D e T_2 .

Q^n	\rightarrow	Q^{n+1}	Variação	S^n	R^n
0	\rightarrow	0	0	0	X
0	\rightarrow	1	α	1	0
1	\rightarrow	0	β	0	1
1	\rightarrow	1	1	X	0
0	\rightarrow	X	X	X	X
1	\rightarrow	X	X	X	X

$Q^n \rightarrow Q^{n+1}$	Variação	J^n	K^n
$0 \rightarrow 0$	0	0	X
$0 \rightarrow 1$	α	1	X
$1 \rightarrow 0$	β	X	1
$1 \rightarrow 1$	1	X	0
$0 \rightarrow X$	X	X	X
$1 \rightarrow X$	X	X	X

$Q^n \rightarrow Q^{n+1}$	Variação	D^n
$0 \rightarrow 0$	0	0
$0 \rightarrow 1$	α	1
$1 \rightarrow 0$	β	0
$1 \rightarrow 1$	1	1
$0 \rightarrow X$	X	X
$1 \rightarrow X$	X	X

Q^n	\rightarrow	Q^{n+1}	Variação	T^n
0	\rightarrow	0	0	0
0	\rightarrow	1	α	1
1	\rightarrow	0	β	1
1	\rightarrow	1	1	0
0	\rightarrow	X	X	X
1	\rightarrow	X	X	X

Figura 11.3: Tipos de comportamento e respectivas excitações para os flip-flops SR, JK, D e T_2 .

11.7 Funcionalidade \times excitação \times comportamento

• A Tabela 11.3 apresenta um resumo geral de funcionalidade-excitação-comportamento, relacionando os valores de excitação a serem aplicados nas entradas, a partir de cada tipo de comportamento da saída, para cada tipo de flip-flop.

Entrada	Entrada = "1"	Entrada = "0"	Entrada = "X"
S	α	$0\;,eta$	1, X
R	β	$1, \alpha$	0, X
J	α	0	$1, \beta, X$
K	β	1	$0, \alpha, X$
D	$1, \alpha$	$0\;,eta$	X
Т	$\alpha \; , eta$	0,1	X

Tabela 11.3: Tabela resumo de funcionalidade-excitação-comportamento para os flip-flops SR, JK, D e T_2 .

11.8 Circuitos seqüenciais imes tabelas dos flip-flops

- Uma vez que os *flip-flops* podem usados como elementos básicos de armazenamento nos circuitos seqüenciais, as tabelas que os definem apresentam-se como ferramentas de análise e síntese para tais circuitos.
- As aplicações e os termos citados a seguir serão definidos nos próximos capítulos.
- No processo de análise de um circuito seqüencial, as tabelas de operação dos *flip-flops* são utilizadas para montar a tabela de mudança de estados.
- No processo de síntese, as tabelas de excitação e de comportamento são necessárias para montar os mapas-K de excitação e de transição, respectivamente.
- Os mapas-K de excitação apresentam os valores que as variáveis de excitação do circuito seqüencial, que são as variáveis de entrada dos elementos de memória, devem assumir, em função das suas variáveis de estado e das variáveis de entrada. É utilizado um mapa-K específico para cada entrada de cada flip-flop.
- Os mapas-K de transição descrevem o comportamento dos elementos de memória do circuito seqüencial, em função das suas variáveis de estado e das variáveis de entrada. É necessário apenas um único mapa-K para todos os tipos de *flip-flops*, para cada elemento de memória.
- Portanto, as funções lógicas que geram as variáveis de excitação, que são as variáveis de entrada dos elementos de memória, podem ser obtidas: i) do mapa-K de excitação de cada entrada, de cada *flip-flop* ou ii) do mapa-K de transição de cada elemento de memória, em conjunto com a tabela resumo 11.3.
- Como exemplo, a Tabela 11.4 descreve as mudanças de estado e os tipos de comportamento dos elementos de memória para um contador binário, crescente, de três bits. Por sua vez, os mapas-K de transição dos elementos de memória e os mapas-K de escitação para flip-flops JK são apresentados na Figuras 11.4 e 11.5, respectivamente. Deve-se notar que este contador não possui variáveis de entrada. Das tabelas das Figuras 11.4 e 11.5, pode-se obter

$$J_2 = K_2 = (Q_1 \cdot Q_0) , \qquad (11.6)$$

$$J_1 = K_1 = Q_0 (11.7)$$

е

$$J_0 = K_0 = 1 (11.8)$$

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Q_2	Q_1	Q_0
0	0	0	0	0	1	0	0	α
0	0	1	0	1	0	0	α	β
0	1	0	0	1	1	0	1	α
0	1	1	1	0	0	α	β	β
1	0	0	1	0	1	1	0	α
1	0	1	1	1	0	1	α	β
1	1	0	1	1	1	1	1	α
1	1	1	0	0	0	β	β	β

Tabela 11.4: Tabela de mudanças de estado e de comportamento dos elementos de memória para um contador binário, crescente, de três bits.

Figura 11.4: Mapas-K de transição para os elementos de memória de um contador binário, crescente, de três *bits*.

Figura 11.5: Mapas-K de excitação para os flip-flops JK de um contador binário, crescente, de três bits.

11.9 Estruturas estáticas simétricas

- Os elementos básicos de armazenamento (flip-flops) podem ser implementados de diversas formas diferentes.
- Duas características são de grande interesse para o projeto de circuitos seqüenciais: i) que os *flip-flops* possuam saídas complementares e ii) que a temporização das mudanças dos valores de tais saídas possua o maior sincronismo possível.
- Tais características podem ser obtidas através de estruturas simétricas.
- A Figura 11.6 apresenta uma estrutura simétrica de armazenamento, implementada por dois inversores autorealimentados.
- A autorealimentação confere uma característica de armazenamento estático à estrutura, pois suas saídas Q e \overline{Q} estarão estáveis (quiescentes) enquanto os inversores estiverem energizados.
- A estrutura da Figura 11.6 apresenta uma grande desvantagem: não é controlável.
- Algumas propostas para tornar o circuito da Figura 11.6 controlável são ilustradas na Figura 11.7.
 - No primeiro caso, Figura 11.7.a, utiliza-se um inversor com capacidade de corrente alta (inversor forte), um inversor com capacidade de corrente baixa (inversor fraco) e uma única chave responsável pela escrita do dado binário.
 - No segundo caso, Figura 11.7.b, são utilizados dois inversores idênticos, enquanto uma chave de duas posições controla a escrita e a manutenção do dado binário.
 - No terceiro caso, Figura 11.7.c, são utilizados dois inversores idênticos e a chave de duas posições é implementada através de duas chaves com controles independentes para escrita e armazenamento.
 - No último caso, Figura 11.7.d, são utilizados dois inversores idênticos e a chave de duas posições é implementada através de duas chaves com acionamentos complementares para escrita e armazenamento.

Figura 11.6: Estrutura de armazenamento estática e simétrica, não controlável.

Figura 11.7: Estruturas de armazenamento estáticas e simétricas, controláveis por chaves.

11.10 Exemplos de flip-flops

- Uma vez que *flip-flops* são circuitos seqüenciais do tipo *level-mode*, os mesmos devem ser projetados adequadamente, por meio das técnicas existentes para tais tipos de sistemas.
- Porém, ainda que não se conheça a forma como foram projetados, não é difícil analisar o funcionamento de um determinado *flip-flop*.
- A seguir são apresentadas algumas implementações de flip-flops.
- Embora não haja um consenso na classificação dos *flip-flops*, os mesmos serão divididos em: *unclocked* (sem sinal de controle de sincronismo) e *clocked* (com sinal de controle de sincronismo).

11.10.1 Flip-flops do tipo unclocked

- Os flip-flops do tipo unclocked são também denominados de latches.
- O circuito de armazenamento estático da Figura 11.6 pode ser controlado usando apenas portas lógicas. O primeiro passo nesse sentido é substituir os inversores por portas lógicas NOR ou NAND. Em seguida, um terminal de entrada de cada porta deve ser desconectado, a fim de ser utilizado como terminal de controle (S e R). O processo é ilustrado nas Figuras 11.8 e 11.9.

Figura 11.8: Uso de portas lógicas NOR na implementação de controle em uma estrutura de armazenamento estática e simétrica.

Figura 11.9: Uso de portas lógicas NAND na implementação de controle em uma estrutura de armazenamento estática e simétrica.

- Deve ser notado que, enquanto S=R=0, os valores de Q e \overline{Q} são mantidos estáveis.
- Alterando-se os valores dos sinais de controle para S=1 e R=0, obtém-se:
 - $-\overline{Q}_{NOR}=0$ e, em seguida, $Q_{NOR}=1$.
 - $-Q_{NAND}=1$ e, em seguida, $\overline{Q}_{NAND}=0$.
- Retornando-se à condição S=R=0, os valores de Q e \overline{Q} são mantidos estáveis.
- Alterando-se os valores dos sinais de controle para S=0 e R=1, obtém-se:
 - $Q_{NOR}=0$ e, em seguida, $\overline{Q}_{NOR}=1.$
 - $-\overline{Q}_{NAND}=1$ e, em seguida, $Q_{NAND}=0.$
- Se forem atribuídos os valores S=R=1, o resultado é indeterminado e não complementar. No caso da implementação com NOR, $Q_{NOR}=\overline{Q}_{NOR}=0$. No caso da implementação com NAND, $Q_{NAND}=\overline{Q}_{NAND}=1$. Por essa razão, tal configuração é dita proibida.
- A Tabela 11.5 resume a análise acima, de onde pode-se observar que ambos os circuitos implementam um flip-flop do tipo unclocked SR.
- Quanto aos demais tipos de flip-flop:
 - Acrescentando-se uma porta lógica inversora aos circuitos, de forma que $R = \overline{S}$, eles podem implementar um *flip-flop* do tipo *unclocked* D. Porém, tal construção não tem utilidade prática, uma vez que o circuito final passa a se comportar como um mero propagador do sinal de entrada, sem controle de retenção.
 - Devido a problemas de instabilidade, não é possível implementar flip-flops dos tipos unclocked JK e unclocked T.
- Finalmente, cabe observar que, embora o flip-flop do tipo unclocked SR possua várias limitações, o mesmo é usado como núcleo básico para a implementação dos flip-flops do tipo clocked, conforme será ilustrado a seguir.

S^n	R^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	proibido

Tabela 11.5: Operação das estruturas de armazenamento estáticas e simétricas controladas por meio de portas lógicas NOR e NAND.

11.10.2 Flip-flops do tipo clocked

• Dependendo da arquitetura utilizada, podem ser destacadas três classes de *flip-flops* do tipo *clocked*: elementar, *master-slave* e *edge-triggered*.

Flip-flops do tipo clocked elementar

• Em relação aos *flip-flops* do tipo *clocked* elementar, pode-se dizer que um SR é um *latch* com controle de sincronismo, conforme exemplificado nas Figuras 11.10 e 11.11. Por sua vez, um *flip-flop* D pode ser implementado a partir de um SR, conforme ilustrado na Figura 11.12.

Figura 11.10: Exemplo de implementação de *flip-flop* SR do tipo *clocked* elementar, usando portas lógicas NOR.

Figura 11.11: Exemplo de implementação de *flip-flop* SR do tipo *clocked* elementar, usando portas lógicas NAND.

Figura 11.12: Exemplo de implementação de *flip-flop* D do tipo *clocked* elementar, com base em um *flip-flop* SR.

Flip-flops dos tipos clocked master-slave e clocked edge-triggered

- O tipo elementar pode ser usado como bloco básico de construção para outras estruturas funcionais. Os tipos *master-slave* e *edge-triggered* são soluções propostas para problemas que podem surgir em tais implementações.
- O tipo master-slave emprega o conceito de pipelining. A idéia por trás dessa técnica é que, a cada unidade funcional de uma cadeia de processamento, sejam adicionados elementos de memória de entrada (master) e de saída (slave), com sinais de controle de carregamento alternados. Dessa forma, todas as unidades da cadeia trabalham em paralelo, aumentando o fluxo de processamento (throughput). A técnica é ilustrada na Figura 11.13. No caso do flip-flop master-slave, a unidade funcional é apenas uma transmissão, conectando os elementos de memória de entrada e de saída.
- Embora uma estrutura master-slave empregue o dobro do circuito necessário ao armazenamento, ela permite um maior controle de fluxo entre a entrada e a saída do flip-flop. Uma vez que os sinais de entrada só provocam modificações na saída após uma alternância de sinais de controle, tais flip-flops podem ser interpretados como sensíveis a bordas (de subida ou de descida) ou a pulsos (positivo ou negativo).
- O tipo edge-triggered é uma solução proposta para um problema de operação apresentado pelo tipo master-slave. Nessa estrutura, além da célula básica de armazenamento, circuitos realimentados garantem que, logo após ocorra uma transição do sinal de controle, o flip-flop fique insensível a qualquer variação dos sinais de entrada, até que ocorra uma outra transição do mesmo tipo. Assim, desprezando-se o tempo necessário à insensibilização da estrutura, pode-se dizer que a mesma é sensível a transições (positiva ou negativa).
- Um exemplo de implementação para um *flip-flop* D do tipo *clocked*, com estrutura *master-slave*, pode ser encontrado na Figura 11.14, onde é empregado um *flip-flop* SR como célula básica.
- Não é difícil mostrar que um flip-flop SR pode ser usado para implementar um flip-flop JK, desde que $S = (\overline{Q} \cdot J)$ e $R = (Q \cdot K)$. Implementações utilizando flip-flops SR unclocked e clocked são mostradas nas Figuras 11.15 e 11.16, respectivamente. Uma vez que a realimentação das saídas $(Q \in \overline{Q})$ para as entradas $(J \in K)$ é realizada de forma contínua, ambas apresentam o mesmo problema: oscilam quando J = K = 1. Para solucionar esse problema, exemplos de implementação para um flip-flop JK do tipo clocked, com estrutura master-slave, são apresentados nas Figuras 11.17 11.19.
- Devido a problemas de temporização, o flip-flop D da Figura 11.14 pode apresentar mau funcionamento e até mesmo oscilações. Uma implementação mais robusta é alcançada utilizando-se o flip-flop JK master-slave, com D = J e $K = \overline{J}$.
- Por sua vez, um flip-flop T pode ser implementado com J = K = 1 ou J = K = T.

Figura 11.13: Técnica de *pipelining*: (a) Bloco funcional original e (b) Bloco com *pipelining*.

Figura 11.14: Exemplo de implementação de flip-flop D do tipo master-slave, com base em flip-flops SR.

Figura 11.15: Exemplo de implementação de *flip-flop* JK, a partir de *flip-flop* SR *unclocked*, com problema de oscilação.

Figura 11.16: Exemplo de implementação de *flip-flop* JK, a partir de *flip-flop* SR *clocked*, com problema de oscilação.

Figura 11.17: Exemplo de implementação de *flip-flop* JK, a partir de *flip-flop* SR *clocked*, sem problema de oscilação, devido ao uso de estrutura *master-slave*.

Figura 11.18: Exemplo 1 de implementação de flip-flop JK do tipo master-slave.

Figura 11.19: Exemplo 2 de implementação de flip-flop JK do tipo master-slave.

11.11 Variações de funcionalidade

- De acordo com o circuito implementado, um *flip-flop* pode apresentar algumas variações nas suas características funcionais.
- Saídas disponíveis: simples (Q) ou dupla e complementar $(Q \in \overline{Q})$.
- Entradas para inicialização da saída: $CLEAR \ (Q=0)$ e $PRESET \ (Q=1)$.
- Tipo de ativação dos sinais de entrada: nível baixo (nível lógico "0") ou nível alto (nível lógico "1").
- Tipo de ativação dos sinais de controle: nível (baixo ou alto), borda (descida ou subida), transição (subida ou descida) ou pulso (negativo ou positivo).

11.12 Diferenças de nomenclatura

- Diversas nomenclaturas diferentes podem ser encontradas na literatura técnica.
- Utilizando como referência os tipos aqui definidos, as nomenclaturas mais comumente encontradas são apresentados na Tabela 11.6.

Nomenclatura	Nomes	Tipos aqui definidos
N1	Flip-flop	Todos
		(os tipos unclocked e clocked elementar
		são considerados flip-flops elementares)
N2	Latch	unclocked e clocked elementar
	Flip-flop	clocked master-slave e
		clocked edge-triggered
N3	Latch	unclocked e clocked elementar
	Latch master-slave	clocked master-slave
	Flip-flop	clocked edge-triggered
N4	Latch	unclocked
	Controlled/Clocked-latch	clocked elementar
N5	Positive/Negative-edge flip-flop	clocked master-slave

Tabela 11.6: Diferentes nomenclaturas para flip-flops.

Capítulo 12

Circuitos seqüenciais clock-mode

12.1 Introdução

• A Figura 12.1 ilustra um modelo genérico para circuitos seqüenciais clock-mode.

Figura 12.1: Modelo genérico para circuitos seqüenciais clock-mode.

- As variáveis de estado são modificadas apenas pela ação de um sinal pulsante, com função de temporização ou de controle, comumente denominado de relógio (clock). Apesar de ser um sinal pulsante, não é necessário que o clock seja periódico.
- O sinal de *clock* não carrega qualquer tipo de informação. Ele só determina quando haverá mudança de estado.
- As variáveis de excitação, em conjunto com os elementos de armazenamento, determinam qual será a mudança de estado.
- Um clock atuando em t_n , com \boldsymbol{x}^n , \boldsymbol{z}^n , e \boldsymbol{Y}^n estáveis, provoca uma mudança de estado de \boldsymbol{y}^n para \boldsymbol{y}^{n+1} .
- O circuito deve estar estável entre dois pulsos de *clock*. Logo, cada circuito possuirá uma freqüência máxima de operação. Tal freqüência será limitada por: i) acionamento dos sinais de entrada, ii) tempos de retardo no bloco "Função Combinacional" e iii) tempos de retardo no bloco "Geração e Armazenamento das Variáveis de Estado".

12.2 Controle de circuitos do tipo clock-mode

12.2.1 Características da estrutura clock-mode

- $z^n = f_1(y^n, x^n)$, para circuitos do tipo Mealy.
- $z^n = f_2(y^n)$, para circuitos do tipo Moore.
- $Y^n = f_3(y^n, x^n)$.
- $y^{n+1} = f_4(Y^n)$.
- Tempos de propagação:
 - Estabilização da entrada x: Δt_x .
 - Entrada \boldsymbol{x} para saída \boldsymbol{z} : Δt_{zx} .
 - Entrada x para excitação Y: Δt_{Yx} .
 - Excitação Y para estado y: Δt_{yY} .
 - Estado \boldsymbol{y} para saída \boldsymbol{z} : $\Delta t_{\boldsymbol{z}\boldsymbol{y}}$.
 - Estado y para excitação Y: Δt_{Yy} .
 - Tempo máximo de propagação: $\Delta t_{max} = max\{\Delta t\} = max\{\Delta t_1, \Delta t_2, \dots, \Delta t_k\}.$
- Condições de correta operação:
 - Para uma leitura correta dos sinais de saída z, os mesmos devem estar estáveis no momento da leitura.
 - Para uma operação previsível do bloco Geração e Armazenamento das Variáveis de Estado (G&A), as variáveis de excitação Y devem estar estáveis no momento do acionamento do bloco.

12.2.2 Controle de circuitos do tipo Moore

- Será assumindo como $\Delta t_x \geq max\{\Delta t_x\}$ o intervalo de tempo entre o acionamento do bloco G&A e a estabilização dos sinais de entrada x.
- Assumindo que as variáveis de estado \boldsymbol{y} estejam estáveis, as variáveis de excitação \boldsymbol{Y} estarão estáveis após um tempo $\Delta t_{Yx} \geq max\{\Delta t_{Yx}\}$, a partir da estabilização dos sinais de entrada \boldsymbol{x} .
- Assumindo que todos os sinais estejam estáveis, as variáveis de estado y estarão estáveis após um tempo $\Delta t_{yY} \geq max\{\Delta t_{yY}\}$, a partir do acionamento do bloco G&A.
- As variáveis de saída z estarão estáveis após um tempo $\Delta t_{zy} \geq max\{\Delta t_{zy}\}$, a partir da estabilização dos sinais de estado y.
- Assumindo que os sinais de entrada \boldsymbol{x} estejam estáveis, as variáveis de excitação \boldsymbol{Y} estarão estáveis após um tempo $\Delta t_{Yy} \geq \max\{\Delta t_{Yy}\}$, a partir da estabilização das variáveis de estado \boldsymbol{y} .

- Uma vez que, nos circuitos do tipo Moore, a saída depende apenas das variáveis de estado, só é possível ler um valor de saída diferente a cada estado. Assim, ainda que a entrada varie durante o período de tempo de um estado, haverá interesse apenas no seu valor estável final, antes do próximo acionamento que causará uma mudança de estado. Portanto, é necessário considerar apenas o tempo total de estabilização dos sinais de entrada \boldsymbol{x} .
- Logo, para cumprir as condições de correta operação, o período de acionamento do bloco G&A deve ser

$$T_{CTRL} = T_{CK} \ge \max\{(\Delta t_x + \Delta t_{Yx}), (\Delta t_{yY} + \Delta t_{Yy}), (\Delta t_{yY} + \Delta t_{zy})\}. \tag{12.1}$$

• É recomendável que se utilize

$$\Delta t_{yY} < (\Delta t_x + \Delta t_{Yx}) < max\{(\Delta t_{yY} + \Delta t_{Yy}), (\Delta t_{yY} + \Delta t_{zy})\}. \tag{12.2}$$

12.2.3 Controle de circuitos do tipo Mealy

- Será assumindo como $\Delta t_x \geq max\{\Delta t_x\}$ o intervalo de tempo entre o acionamento do bloco G&A e a estabilização dos sinais de entrada x.
- Assumindo que as variáveis de estado \boldsymbol{y} estejam estáveis, as variáveis de saída \boldsymbol{z} estarão estáveis após um tempo $\Delta t_{zx} \geq max\{\Delta t_{zx}\}$, a partir da estabilização dos sinais de entrada \boldsymbol{x} .
- Assumindo que as variáveis de estado \boldsymbol{y} estejam estáveis, as variáveis de excitação \boldsymbol{Y} estarão estáveis após um tempo $\Delta t_{Yx} \geq max\{\Delta t_{Yx}\}$, a partir da estabilização dos sinais de entrada \boldsymbol{x} .
- Assumindo que todos os sinais estejam estáveis, as variáveis de estado y estarão estáveis após um tempo $\Delta t_{yY} \geq max\{\Delta t_{yY}\}$, a partir do acionamento do bloco G&A.
- Assumindo que os sinais de entrada x estejam estáveis, as variáveis de saída z estarão estáveis após um tempo $\Delta t_{zy} \geq max\{\Delta t_{zy}\}$, a partir da estabilização dos sinais de estado y.
- Assumindo que os sinais de entrada \boldsymbol{x} estejam estáveis, as variáveis de excitação \boldsymbol{Y} estarão estáveis após um tempo $\Delta t_{Yy} \geq \max\{\Delta t_{Yy}\}$, a partir da estabilização das variáveis de estado \boldsymbol{y} .
- Logo, para cumprir as condições de correta operação, supondo uma única mudança nos sinais de entrada a cada estado, o período de acionamento do bloco G&A deve ser

$$T_{CTRL} = T_{CK} \geq max\{(\Delta t_x + \Delta t_{zx}), (\Delta t_x + \Delta t_{Yx}), (\Delta t_{yY} + \Delta t_{zy}), (\Delta t_{yY} + \Delta t_{Yy})\} . \quad (12.3)$$

• Nesse caso, é recomendável que se utilize

$$\Delta t_{yY} < (\Delta t_x + \Delta t_{Yx}) < max\{(\Delta t_{yY} + \Delta t_{zy}), (\Delta t_{yY} + \Delta t_{Yy})\}$$
(12.4)

е

$$(\Delta t_x + \Delta t_{zx}) < \max\{(\Delta t_{yY} + \Delta t_{zy}), (\Delta t_{yY} + \Delta t_{Yy})\}. \tag{12.5}$$

12.3 Representação dos estados

- Recursos comuns: texto, equações, tabelas, diagramas gráficos, diagramas temporais.
- Equações: equações de definição dos elementos de memória, equações de próximo estado.
- Tabelas: tabela de transição (de estados), tabela de atribuição de estados e tabela (de transição) de estados.
- Diagramas gráficos: diagrama de fluxo (fluxograma) e diagrama de estados.

12.4 Estado inicial

- Os circuitos sequenciais, dependendo de sua classe, devem ou podem apresentar um estado explícito de inicialização (reset state).
- O estado inicial pode ser um estado extra ou apenas um dos estados já pertencentes à operação normal do circuito.
- Associada ao estado de inicialização, deve haver uma sequência de inicialização (reset sequence ou synchronizing sequence).
- Normalmente, a sequência de inicialização é fornecida por um único e particular sinal de entrada, denominado sinal ou linha de inicialização (reset line).
- O sinal de inicialização pode atuar sobre os elementos de memória através das variáveis de excitação ou através de entradas de controle específicas para inicialização (CLEAR e PRESET), caso existam.

12.5 Classificação quanto à capacidade de memorização

- Circuito com memória não finita
 - Apresenta um estado inicial ou de inicialização (reset state).
 - Apresenta um estado final ou um ciclo de estados final.
 - Possui uma sequência de inicialização (reset sequence ou synchronizing sequence).
 - Caso particular:
 - * Circuito de Moore onde o número de estados distintos é igual ao número de valores distintos de saída, de forma que se possa estabelecer uma correspondência biunívoca entre valores de estados e de saídas $(z_i = y_i, i = 1, 2, \dots, K)$.

• Circuito com memória finita

- A Figura 12.2 apresenta um circuito com memória finita.
- Os blocos de retardo unitário D são conjuntos de flip-flops do tipo D.
- Os vetores \boldsymbol{x}^{n-r} , $r=0,1,\cdots,R$, e \boldsymbol{z}^{n-s} , $s=0,1,\cdots,S$, representam os sinais de entrada x_i^{n-r} , $i=1,2,\cdots,L$, e de saída z_j^{n-s} , $j=1,2,\cdots,M$, respectivamente.
- Neste tipo de circuito: $\boldsymbol{z}^n = f(\boldsymbol{x}^n, \boldsymbol{x}^{n-1}, \cdots, \boldsymbol{x}^{n-R}, \boldsymbol{z}^{n-1}, \cdots, \boldsymbol{z}^{n-S}).$
- O valor $P=\max\left\{ R,S\right\}$ é definido como comprimento ou profundidade da memória.
- Dependendo do projeto, pode haver um estado de inicialização explícito, com uma seqüência de inicialização associada.
- Um circuito com memória finita pode ser empregado como passo inicial para uma solução com memória não finita.
- As Figuras 12.3 e 12.4 destacam, respectivamente, dois casos particulares:
 - * Circuitos com memória de entrada finita: $\boldsymbol{z}^n = f(\boldsymbol{x}^n, \boldsymbol{x}^{n-1}, \cdots, \boldsymbol{x}^{n-R})$.
 - * Circuitos com memória de saída finita: $z^n = g(z^{n-1}, \dots, z^{n-S})$.

Figura 12.2: Modelo genérico para circuitos com memória finita.

Figura 12.3: Modelo genérico para circuitos com memória de entrada finita.

Figura 12.4: Modelo genérico para circuitos com memória de saída finita.

12.6 Análise de circuitos sequenciais

- Dado um circuito digital sequencial, existem algumas etapas genéricas para a análise do seu comportamento.
- A seguir, tais etapas são abordadas e alguns exemplos são apresentados.

12.6.1 Etapas de análise

- Passos principais:
 - A1 Circuito a ser analisado.
 - A2 Equações das variáveis de saída, baseadas nas ligações do circuito.
 - A3 Equações das variáveis de excitação, baseadas nas ligações do circuito.
 - A4 Equações de próximo estado, baseadas na operação dos elementos de memória.
 - **A5** Tabela de transição de estados (*transition table*), contendo os valores das variáveis de estado.
 - A6 Tabela de atribuição de estados, associando nomes aos valores das variáveis de estado.
 - ${f A7}$ Tabela de transição de estados ($state\ table$), contendo os nomes atribuídos aos estados.
 - A8 Diagrama de estados.

12.6.2 Exemplos de análise

- Circuito com memória finita.
- Caso particular de circuito de Moore onde o número de estados distintos é igual ao número de valores distintos de saída, de forma que se possa estabelecer uma correspondência biunívoca entre valores de estados e de saídas $(z_i = y_i, i = 1, 2, \dots, K)$.
- Circuito com memória não finita genérico.

12.7 Projeto de circuitos seqüenciais

- Uma vez que a síntese é o processo reverso em relação à análise, as etapas de projeto podem ser obtidas, a princípio, revertendo-se a ordem das etapas de análise.
- Porém, existe uma profunda diferença entre os dois processos. Na análise, há um único circuito, uma única entrada e um único estado inicial. Portanto, uma saída única é obtida no processo. Por outro lado, no processo de síntese há uma entrada e uma saída, únicas, e se procura por um circuito que realize o mapeamento entrada-saída. A solução nesse caso raramente é única, pois, em cada passo do processo de síntese, decisões podem ser fazer necessárias, gerando uma árvore de opções.
- A seguir, são comentadas as características de projeto para cada um dos tipos de circuito clock-mode acima definidos, bem como são especificadas as etapas de projeto para tais circuitos e são apresentados alguns exemplos.

12.7.1 Opções de projeto e suas características

- Circuito com memória finita: ausência de lógica combinacional (ligação por meio de fios) na geração das variáveis de excitação.
- Caso particular de circuito de Moore onde o número de estados distintos é igual ao número de valores distintos de saída, de forma que se possa estabelecer uma correspondência biunívoca entre valores de estados e de saídas $(z_i = y_i, i = 1, 2, \dots, K)$: ausência de lógica combinacional (ligação por meio de fios) na geração das variáveis de saída.
- Circuito com memória não finita genérico: possível existência de lógica combinacional na geração das variáveis de excitação e de saída, a qual pode ser minimizada.
- A Figura 12.5 apresenta os fluxos de projeto para cada uma das três opções.

12.7.2 Etapas de projeto de circuitos seqüenciais

- Os três tipos de projeto abordados possuem etapas que são particulares para cada caso. Porém, pode-se definir um fluxo geral de projeto, que atenda a todos os três tipos. Assim, dependendo do tipo de projeto, pode-se utilizar apenas as etapas necessárias a cada caso.
- Etapas gerais de projeto:
 - P1 Problema a ser resolvido.
 - P2 Descrição funcional do problema (textual).
 - P3 Descrição diagramática, baseada na descrição textual:
 - Diagrama de fluxo (fluxograma).
 - Diagrama de estados.
 - **P4** Tabela de transição de estados (state table):
 - Diretamente obtida da descrição funcional (circuito com memória finita).
 - Baseada na descrição diagramática (circuito com memória não finita).

- P5 Tentativa de minimização, onde raramente é feita uma minimização global que envolva o circuito combinacional e a memória ao mesmo tempo. Ao invés disso, o mais comum é que se realize o processo em duas etapas:
 - **P5.1 -** Memória: Tabela de transição de estados reduzida (*minimal-state table*), baseada em técnicas de minimização de estados.
 - P5.2 Combinacional: dependente da classe do circuito a ser projetado. No caso de circuito com memória finita e no caso particular de circuito de Moore, a minimização combinacional é uma característica da estrutura. No caso de circuito com memória não finita, tal minimização é realizada no passo P6.
- P6 Tabela de atribuição de estados, baseada em regras genéricas de atribuição.
- P7 Tabela de transição de estados (transition table):
 - Diretamente da especificação do problema (circuito com memória finita).
 - Diretamente da especificação das variáveis de saída (caso particular de circuito de Moore com memória não finita).
 - Baseada na atribuição de estados (circuito com memória não finita genérico).
- P8 Escolha dos elementos de memória.
- P9 Equações de entrada dos elementos de memória (variáveis de excitação), baseadas na tabela de transição de estados (transition table) e nas tabelas de excitação dos elementos de memória (excitation table/map ou transition list/table/map).
- P10 Circuito proposto.
- P11 Análise do circuito para verificação de comportamento dos estados não utilizados e não especificados, caso existam.

12.7.3 Exemplos de projeto de circuitos seqüenciais

- Circuito com memória finita de entrada.
- Circuito com memória finita de saída.
- Circuito com memória finita de entrada e de saída.
- Caso particular de circuito de Moore onde o número de estados distintos é igual ao número de valores distintos de saída, de forma que se possa estabelecer uma correspondência biunívoca entre valores de estados e de saídas $(z_i = y_i, i = 1, 2, \dots, K)$.
- Circuito com memória não finita genérico.
- Relacionamento dos três tipos de projeto.

Figura 12.5: Fluxos de projeto para circuitos seqüenciais *clock-mode*: (a) Fluxo genérico, (b) Caso particular de Máquina de Moore e (c) Máquina de Memória Finita (MMF).

12.8 Minimização de estados

12.8.1 Conceitos básicos

- A minimização do número de estados de um circuito seqüencial pode conduzir à redução da quantidade de circuitos lógicos necessários para implementar os estados (bloco Geração e Armazenamento) e as saídas (bloco Função Combinacional).
- Dada uma tabela de transição de estados (*state table*), pode-se constatar que diferentes estados podem realizar a mesma função. Do ponto de vista externo ao circuito, pode-se dizer que não é possível distinguir entre tais estados, uma vez que eles apresentam o mesmo resultado. Nesse caso, tal conjunto de estados pode ser representado por um único estado. Conseqüentemente, a tabela de transição de estados (*state table*) é simplificada e, possivelmente, o circuito lógico minimizado.
- Uma formalismo teórico é apresentado no Apêndice C.

12.8.2 Eliminação de estados redundantes por simples inspeção

- A simples inspeção da tabela de transição de estados (*state table*) pode revelar estados redundantes, os quais podem ser imediatamente unificados em um estado equivalente.
- Em geral, esse método não conduz a um conjunto mínimo de estados, funcionando apenas como um pré-processamento para os demais métodos de minimização.
- Condição de redundância: estados (q^n) que, para cada entrada simples (x^n) , conduzem aos mesmos próximos estados e às mesmas saídas (q^{n+1}, z^n) , representam um único estado equivalente.
- Algoritmo de eliminação de estados redundantes por simples inspeção:
 - EI1 Verificar a existência de redundância.
 - EI2 Se não houver redundância, ir ao passo EI6.
 - EI3 Se houver redundância, escolher um dos estados redundantes como estado equivalente, mantendo-o na tabela e eliminando todos os demais estados redundantes.
 - EI4 Atualizar a tabela, trocando a designação dos estados eliminados por aquela do estado escolhido como equivalente.
 - EI5 Voltar ao passo EI1.
 - **EI6** Fim.
- A Figura 12.6 apresenta um exemplo de eliminação de estados redundantes por simples inspeção.

Figura 12.6: Eliminação de estados redundantes através da inspeção da tabela de estados.

12.8.3 Método da partição em classes de estados indistinguíveis (método de Huffman-Mealy)

- O processo é simples, mas não pode ser aplicado para os casos de tabelas de estados não completamente especificadas.
- Ele é baseado no **Teorema 1**, discutido no Apêndice C e apresentado a seguir.
- - 1. $\lambda(p^n, x^n) = \lambda(q^n, x^n)$.
 - 2. $\delta(p^n, x^n) \triangleq \delta(q^n, x^n)$.
- Conforme definido no Apêndice C, as funções $\lambda(q^n, x^n) = z^n$ e $\delta(q^n, x^n) = q^{n+1}$, representam, respectivamente, a saída atual e o próximo estado.
- Basicamente, o método pode ser dividido em duas partes:
 - Aplicação da condição (1) do Teorema 1.
 - Aplicações sucessivas da condição (2) do **Teorema 1**.
- Algoritmo de minimização por partição em classes de estados indistinguíveis:
 - HM0 Tentar eliminar estados redundantes por simples inspeção da tabela de estados original. Se houver alguma eliminação, a tabela de estados reduzida passa a representar a tabela de estados original para o restante do algoritmo. Este passo não é necessário, mas diminui o espaço de busca do algoritmo.
 - **HM1** A partir da tabela de estados original, separar, em classes distintas $(C_{z_i} \in C_z)$, os estados (e_j) que possuem os mesmos conjuntos de saídas (z_{i_k}) , para cada valor da entrada (x_k) .
 - HM2 Se houver apenas um estado por classe, ir para o passo HM7.
 - HM3 Se houver pelo menos uma classe atual com mais de um estado, descobrir as classes referentes aos próximos estados de cada estado atual, as quais serão denominadas de próximas classes.
 - **HM4** Para cada classe com mais de um estado, verificar as próximas classes, para cada valor da entrada (x).
 - **HM5** Se, dentro de uma mesma classe, houver estados com próximas classes diferentes dos demais, separá-los em uma nova classe e retornar para o passo HM2.
 - HM6 Se, dentro de cada classe, não houver estado com próximas classes diferentes dos demais, ir para o passo HM7.
 - **HM7** Fim.
- As Figuras 12.7, 12.8 e 12.9 ilustram o processo para diferentes tabelas de estado.

Figura 12.7: Exemplo de minimização positiva em um passo.

q^n	q^{n+1}	$^{1},z^{n}$
	$x^n = 0$	$x^n = 1$
A	B,0	B, 1
B	F, 1	D, 1
C	E, 1	G, 1
D	A, 0	C, 0
E	D, 1	G, 0
F	F, 0	A, 0
G	C, 1	B,0

Classe(n)	0			1	1	2			3					
Estado(n)	D F		7	1	$A \mid E \mid$		G		B		C			
Classe(n+1)	1	3	0	1	3	3	0	2	3	3	0	0	2	2

Figura 12.8: Exemplo de minimização negativa em um passo.

Figura 12.9: Exemplo de minimização positiva em mais de um passo.

12.8.4 Método da tabela de implicação de estados (método de Paul-Unger)

- Processo mais complexo do que o apresentado pelo método da partição em classes.
- Porém, ele é mais genérico, podendo ser aplicado para os casos de tabelas de estados não completamente especificadas.
- **Definição 1**: Um conjunto de estados P é implicado por um conjunto de estados R se, para alguma entrada específica x_k , P é o conjunto de todos os próximos estados $p_i^{n+1} = \delta(r_j^n, x_k^n)$, para todos os estados atuais $r_j \in R$.
- A partir do **Teorema 1** e da **Definição 1**, pode-se dizer que os estados de um conjunto R são equivalentes apenas se todos os estados de um conjunto P, implicado por R, também são equivalentes.
- Para que os estados de um conjunto R sejam equivalentes, todos os pares $(r_i, r_j) \in R$ devem ser equivalentes.
- Logo, para verificar a equivalência dos estados de um conjunto, basta testar a implicação para cada par de estados do conjunto.
- Uma forma de realizar esse teste é montar uma árvore de implicação.
- A partir de um determinado par $(r_i, r_j) \in R$, são determinados os estados implicados para cada entrada. Partindo de cada novo conjunto implicado, a operação é repetida. Se algum conjunto implicado da árvore de (r_i, r_j) não for equivalente, o par inicial (r_i, r_j) não pode ser equivalente.
- Tal processo de investigação, que caracteriza uma prova por absurdo ou contradição, possui uma complexidade muito elevada.
- Uma forma mais eficiente de verificar a equivalência de estados é através de uma prova por negação.
- Nesse caso, os estados são organizados em uma tabela de implicação, onde todas as combinações de pares de estados encontram-se representadas. Para cada par, são determinados os estados implicados, para cada entrada. Em seguida, todos as implicações proibidas são eliminadas da tabela. O processo de proibição é repetido até que nenhuma proibição seja encontrada. Por fim, são listadas as classes de equivalência.
- As proibições iniciais são provenientes de pares de estados que apresentam saídas diferentes para as mesmas entradas.
- Uma tabela de implicação e uma de suas células são apresentadas, respectivamente, nas Figuras 12.10 e 12.11.

Figura 12.10: Tabela de implicação genérica do método de Paul-Unger.

Figura 12.11: Célula genérica da tabela do método de Paul-Unger.

- Algoritmo de minimização por tabela de implicação de estados:
 - PU0 Tentar eliminar estados redundantes por simples inspeção da tabela de estados original. Se houver alguma eliminação, a tabela de estados reduzida passa a representar a tabela de estados original para o restante do algoritmo. Este passo não é necessário, mas diminui o espaço de busca do algoritmo.
 - **PU1** A partir da tabela de estados original, separar, em classes distintas $(C_{z_i} \in C_z)$, os estados (e_j) que possuem os mesmos conjuntos de saídas (z_{i_k}) , para cada valor da entrada (x_k) .
 - PU2 Se houver apenas um estado por classe, ir para o passo PU8.
 - **PU3** Montar uma matriz triangular inferior, contendo índices horizontais $h_i \equiv e_i \in \{C_z e_N\}$ e índices verticais $v_j \equiv e_j \in \{C_z e_1\}$.
 - **PU4 -** Anular todas as posições da matriz, referentes às combinações $h_i \times v_j$, onde $C_z(e_i) \neq C_z(e_j)$.
 - **PU5** Preencher todas as posições da matriz, referentes às combinações $h_i^n \times v_j^n$, onde $C_z(e_i^n) = C_z(e_j^n)$, com os pares $(h_i^{n+1} v_j^{n+1})_k$, se $h_i^{n+1} \neq v_j^{n+1}$, para cada valor da entrada (x_k) .
 - **PU6** Repetir, até que não haja mais anulações, para cada posição não anulada $h_i^n \times v_j^n$ da matriz:
 - $\mathbf{PU61}$ Verificar se os pares $(h_i^{n+1} v_j^{n+1})_k$ foram anulados.
 - **PU62 -** Se, pelo menos um dos pares tiver sido anulado, anular a posição corrente $h_i^n \times v_j^n$ da matriz e notificar a ocorrência de anulação.
 - **PU7 -** Organizar em classes de equivalência os estados cujas combinações $h_i^n \times v_j^n$ não foram anuladas e em classes individuais os demais estados.
 - PU8 Fim.

12.9 Atribuição de estados

12.9.1 Considerações iniciais

- No projeto de um circuito digital seqüencial, a atribuição de estados tem influência direta na síntese da lógica combinacional que gera as variáveis de excitação e as variáveis de saída.
- A prática demonstra que atribuições de estados diferentes podem produzir lógicas combinacionais diferentes.
- Portanto, a fim de se obter o circuito combinacional de menor custo, deve-se procurar a atribuição de estados que favoreça a sua síntese.
- Uma vez que os estados são representados por um conjunto de V variáveis booleanas, duas situações podem ocorrer. Na primeira, o número de estados (S) que se deseja representar é igual ao número de estados representáveis, de forma que $S=2^V$. Caso contrário, o número de estados a serem representados encontra-se na seguinte faixa: $2^{V-1} < S < 2^V$.
- Quando $S=2^V$, o problema de atribuição de estados se resume a estabelecer uma relação de equivalência dos estados desejados com as configurações existentes para as variáveis de estado.
- No caso de $2^{V-1} < S < 2^V$, além da equivalência, é necessário também escolher S configurações a serem utilizadas dentre as 2^V existentes.
- Para um número de estados na faixa $2^{V-1} < S \le 2^V$, pode-se demonstrar que o número total de atribuições (A_{tot}) pode ser calculado por $A_{tot} = \frac{2^V!}{(2^V S)!}$.
- Porém, muitas dessas atribuições são redundantes, pois representam apenas trocas e/ou complementações lógicas das variáveis de estado.
- Assim, pode-se demonstrar que o número de atribuições efetivamente diferentes (A_{dif}) pode ser calculado por $A_{dif} = \frac{(2^V 1)!}{(2^V S)! \ V!}$.
- A Tabela 12.1 ilustra algumas possibilidades.

Estados	Variáveis de Estado	Atribuições
(S)	(V)	(A_{dif})
2	1	1
3	2	3
4	2	3
5	3	140
6	3	420
7	3	840
8	3	840
9	4	10.810.800

Tabela 12.1: Número de atribuições de estados efetivamente diferentes.

• Assim sendo, para S=3 ou 4, podem ser realizados 3 projetos, a partir das 3 atribuições possíveis, escolhendo-se o de menor custo.

- Para $S \geq 5$, pode-se visualizar duas soluções:
 - Aplicar um algoritmo que encontre a atribuição de menor custo.
 - Aplicar regras que indiquem um conjunto reduzido de atribuições de menor custo, projetar cada uma delas e realizar a escolha.
- Na literatura relativa ao assunto, podem ser encontradas várias propostas de técnicas a serem aplicadas no processo de atribuição de estados.
- Infelizmente, nenhuma delas apresenta um algoritmo de busca da melhor atribuição.
- Na realidade, são apresentadas regras genéricas, cujo emprego conduz a um conjunto reduzido de atribuições de menor custo.
- Portanto, enfatizando, a função das regras propostas é a de reduzir o número total de atribuições para uma quantidade mínima de atribuições que mereçam ser analisadas.
- De posse de um conjunto reduzido de candidatas a uma atribuição de menor custo, o projetista pode testar as alternativas e realizar a escolha.
- Vale ressaltar, ainda, que a aplicação das regras não garante que a melhor atribuição seja encontrada.
- Dependendo da especificação do circuito sequencial e do tipo de elemento de memória utilizado, as regras podem apontar para uma solução que não é a de menor custo, porém é bem próxima.

12.9.2 Base teórica para as regras de atribuição de estados

- A atribuição de estados de menor custo é aquela que sintetiza as variáveis de excitação e as variáveis de saída através da menor quantidade de circuito combinacional.
- A redução da quantidade de circuito combinacional empregada é associada à simplificação da equação lógica que o representa.
- Por sua vez, a minimização de uma equação lógica é conseguida através da combinação de mintermos ou maxtermos que possuam adjacência lógica.
- Por adjacência lógica entende-se a situação onde dois mintermos (ou maxtermos) diferem pelo valor de apenas um de seus *bit*.
- No mapa de Karnaugh simbólico da Figura 12.12, os conjuntos de variáveis $\{x_1, x_0\}$ e $\{y_1, y_0\}$ representam, respectivamente, as variáveis de entrada e as variáveis de estado.
- Utilizando-se o mapa na síntese das variáveis de excitação (Y) e das variáveis de saída (z), destacam-se três situações distintas.
- Supondo-se que o mapa se refere à síntese de variáveis de excitação, ocorrerem dois casos que envolvem uma dinâmica de mudança de estados. O primeiro deles é relacionado com a possibilidade de simplificação de valores em linha (v_r) . Ele trata da mudança de dois estados atuais para dois próximos estados, para um mesmo valor de entrada. O outro caso é relacionado com a possibilidade de simplificação de valores em coluna (v_c) . Ele trata da mudança de um estado atual para dois próximos estados, para dois valores de entrada diferentes.

- Por outro lado, se o mapa se refere à síntese das variáveis de saída, ocorre a terceira alternativa, estática. Nesse caso, os valores atuais ("0" ou "1") da saída podem promover simplificações em linha (v_r) e/ou em colunas (v_c) .
- Com base na análise de cada situação, pode-se definir um conjunto de regras básicas que indique uma atribuição de estados adequada.
- Ainda que tais regras não conduzam à maior simplificação possível, elas ajudam a escolher uma solução próxima da ótima.

			y_1	y_0							
		00 01 11 10									
	00	v_r	v_r								
x_1x_0	01										
	11			v_c							
	10			v_c							

Figura 12.12: Análise de minimização para as equações de excitação e de saída: mapa de Karnaugh simbólico.

Análise para a síntese de variáveis de excitação

- Do mapa de Karnaugh da Figura 12.12, destacam-se duas situações dinâmicas distintas.
- Uma simplificação de linha (v_r) envolve a dinâmica de dois estados atuais para dois próximos estados, considerando uma mesma entrada.
- Por sua vez, uma simplificação de coluna (v_c) envolve a dinâmica de um estado atual para dois próximos estados, considerando duas entradas diferentes.
- Na simplificação de linha (v_r) , podem ser identificados alguns subcasos, de acordo com os próximos estados: i) todos iguais para as mesmas entradas, ii) todos iguais para entradas diferentes, iii) alguns iguais para as mesmas entradas, iv) alguns iguais para entradas diferentes, e v) todos diferentes. Tais subcasos não serão analisados, sendo deixados como proposta de exercício.
- A Figura 12.13 apresenta uma tabela de atribuição de estados hipotética. Nesse caso, os estados logicamente adjacentes são: (a, b), (a, c), (b, d) e (c, d).
- As Figuras 12.14 e 12.15 ilustram a análise de minimização para as variáveis de excitação.
- A Figura 12.14 mostra que, se dois estados atuais possuem o mesmo próximo estado e não são logicamente adjacentes, as suas excitações para os elementos de memória (E_{ij}) não poderão ser combinadas. Caso contrário, elas se combinarão com certeza, minimizando a expressão lógica, a menos de uma das variáveis de estado, para a qual não há garantia.
- Assim, desconsiderando-se os subcasos, a recomendação é: "Dois estados que possuam o mesmo próximo estado devem ser logicamente adjacentes!".

- A Figura 12.15 mostra que, se um estado atual possui dois próximos estados que não possuem adjacência lógica, nada garante que as excitações dos elementos de memória (E_{ij} e E_{kl}) serão as mesmas e, portanto, nada garante que elas serão agrupadas para minimizar a expressão lógica. Caso contrário, a minimização é possível com certeza, a menos de uma das variáveis de estado, para a qual não há garantia.
- Nesse caso, a recomendação é: "Dois estados que sejam próximos estados de um mesmo estado devem ser logicamente adjacentes!".
- Uma vez que as duas recomendações envolvem, respectivamente, um impedimento e uma possibilidade, a primeira delas delas deve ser prioritária em relação à segunda.

Estados	Variáveis de Estado
q	y_1y_0
a	00
b	01
d	11
c	10

Figura 12.13: Análise de minimização para as equações de excitação e de saída: tabela de atribuição de estados hipotética.

q^n	$y_1^n y_0^n$	q^n	+1	y_1^{n+1}	y_0^{n+1}
		$x^n = 0$	$x^n = 1$	$x^n = 0$	$x^n = 1$
			• • •		
b	01	a	• • •	00	• • •
c	10	a	• • •	00	• • •
• • •			• • •	• • •	• • •

Tabela de transição de estados

			y_1^n	y_0^n			$y_1^n y_0^n$					
		00	01	11	10			00	01	11	10	
x^n	0		E_{00}		E_{10}	x^n	0		E_{10}		E_{00}	
	1						1					

Dinâmica da variável de estado y_1 Dinâmica da variável de estado y_0

a) Caso sem simplificação.

q^n	$y_1^n y_0^n$	q^n	+1	$y_1^{n+1}y_0^{n+1}$				
		$x^n = 0$	$x^n = 1$	$x^n = 0$	$x^n = 1$			
			• • •	• • •	• • •			
b	01	a	• • •	00	• • •			
d	11	a	• • •	00	• • •			
• • •	• • •	• • •	• • •	• • •	• • •			

Tabela de transição de estados

			711.	y_0^n			$y_1^n y_0^n$					
		00	01	11	10			00	01	11	10	
x^n	0		E_{00}	E_{10}		x^n	0		E_{10}	E_{10}		
	1						1					

Dinâmica da variável de estado y_1 Dinâmica da variável de estado y_0

b) Caso com simplificação.

Figura 12.14: Análise de minimização para as equações de excitação: casos de estados atuais com mesmo próximo estado.

q^n	$y_1^n y_0^n$	q^n	+1	$y_1^{n+1}y_0^{n+1}$				
		$x^n = 0$	$x^n = 1$	$x^n = 0$	$x^n = 1$			
			• • •	• • •	• • •			
a	00	b	c	01	10			
	• • •		• • •	• • •	• • •			
			• • •	• • •	• • •			

Tabela de transição de estados

Dinâmica da variável de estado y_1 Dinâmica da variável de estado y_0

a) Caso sem simplificação.

q^n	$y_1^n y_0^n$	q^n	+1	$y_1^{n+1}y_0^{n+1}$				
		$x^n = 0$	$x^n = 1$	$x^n = 0$	$x^n = 1$			
			• • •	• • •	• • •			
a	00	b	d	01	11			
• • •			• • •	• • •	• • •			
• • •			• • •	• • •	• • •			

Tabela de transição de estados

			$y_1^n y$	\mathcal{J}_0^n			$y_1^n y_0^n$					
		00	01	11	10			00	01	11	10	
x^n	0	E_{00}				x^n	0	E_{01}				
	1	E_{01}				_	1	E_{01}				

Dinâmica da variável de estado y_1 Dinâmica da variável de estado y_0

b) Caso com simplificação.

Figura 12.15: Análise de minimização para as equações de excitação: casos de estado atual com próximos estados diferentes.

Análise para a síntese de variáveis de saída

- Do mapa de Karnaugh da Figura 12.12, destaca-se uma situação estática, não envolvendo mudanças de estado.
- Com base na atribuição de estados apresentada na Figura 12.13, a Figura 12.16 ilustra a análise de minimização para as variáveis de saída. Se dois estados atuais possuem a mesma saída, para a mesma entrada, e não são logicamente adjacentes, os valores de saída não poderão ser combinados. Caso contrário, os valores de saída serão combinados com certeza, minimizando a expressão lógica.
- Portanto, a recomendação é: "Dois estados atuais que possuam a mesma saída, para a mesma entrada, devem ser logicamente adjacentes!".
- Normalmente, o número de variáveis de saída é menor que o número de variáveis de excitação. Assim sendo, tal recomendação terá a menor prioridade.

q^n	$y_1^n y_0^n$	z_i^n		
		$x^n = 0$	$x^n = 1$	
b	01	1	0	
c	10	1	0	
			• • •	

Tabela de transição de estados

Mapa-K da saída z_i

a) Caso sem simplificação.

q^n	$y_1^n y_0^n$	z_i^n		
		$x^n = 0$	$x^n = 1$	
• • •			• • •	
b	01	1	0	
d	11	1	0	

		$y_1^n y_0^n$			
		00	01	11	10
x^n	0		1	1	
	1		0	0	
			2	í,	

Tabela de transição de estados

Mapa-K da saída z_i

b) Caso com simplificação.

Figura 12.16: Análise de minimização para as equações de saída.

12.9.3 Exemplo de regras simples (Armstrong-Humphrey)

- No projeto de circuitos sequenciais que possuam um número pequeno de estados, podem ser utilizadas duas regras básicas no processo de atribuição de estados [Arm62], [Hum58].
- Tais regras são originadas na tentativa de minimização da lógica responsável pela geração das variáveis de excitação.
- A principal motivação para o emprego destas regras é que elas são de curta descrição, de fácil compreensão, de simples aplicação e conduzem a bons resultados.
- Regras:
 - Regra 1: Dois ou mais estados que possuam o mesmo próximo estado devem ser logicamente adjacentes.
 - Regra 2: Dois ou mais estados que sejam próximos estados de um mesmo estado devem ser logicamente adjacentes.
- É importante ressaltar que as regras são listadas em ordem decrescente de prioridade.
- A Figura 12.17 ilustra as regras descritas acima.

Figura 12.17: Ilustração das regras de Armstrong-Humphrey.

12.9.4 Exemplo de regras mais refinadas

- Um conjunto de regras mais completo pode ser obtido: i) ao se detalhar a Regra 1, anteriormente apresentada, e ii) ao se incorporar a tentativa de minimização da lógica responsável pela geração das variáveis de saída.
- \bullet É importante ressaltar que as regras são listadas em ordem decrescente de prioridade.
- Regras:

- Regras 1:

- * Regra 1a: Os estados que possuam todos os próximos estados iguais, coluna a coluna, devem ser logicamente adjacentes. Se possível, os próximos estados também devem ser logicamente adjacentes, de acordo com a Regra 2.
- * Regra 1b: Os estados que possuam todos os próximos estados iguais, mas em colunas diferentes, devem ser logicamente adjacentes se os próximos estados também puderem ser logicamente adjacentes.
- * Regra 1c: Os estados que possuam alguns do próximos estados iguais devem ser logicamente adjacentes. A prioridade de adjacência será maior para os estados que apresentarem um maior número de próximos estados iguais.
- Regra 2: Os próximos estados provenientes de um mesmo estado atual devem ser logicamente adjacentes.
- Regra 3: As atribuições devem ser feitas de forma a simplificar os mapas das variáveis de saída. Assim sendo, os estados que possuam as mesmas saídas, para as mesmas entradas, devem ser logicamente adjacentes.

12.10 Efeitos causados por estados extras

12.10.1 Definição do problema

- No projeto de circuitos sequenciais, é comum ocorrer a situação onde o número total de estados que pode ser implementado pelo circuito é maior do que o número total de estados que constam na sua especificação.
- Uma vez que, teoricamente, não haverá transições dos estados principais para os estados extras, os valores de próximo estado e de saída para os estados extras podem ser assumidos como não especificados (don't care ou com valor lógico "X").
- Tal decisão de projeto acarreta duas conseqüências imediatas. Por um lado, evita-se empregar uma quantidade extra de circuito lógico combinacional, responsável pelo correto funcionamento a partir dos estados extras. Além disso, os valores lógicos "X" podem acarretar simplificações no projeto do circuito lógico principal, durante a síntese das variáveis de excitação.
- Na prática, porém, algum mal funcionamento do circuito pode colocá-lo em um dos estados extras.
- Por essa razão, deve-se realizar uma análise do circuito projetado, de modo a verificar o comportamento de tais estados.

- As seguintes situações podem ocorrer nos circuitos cujo projeto contém estados não especificados:
 - No caso particular do uso de *flip-flops* do tipo SR, pode acontecer alguma indeterminação no circuito seqüencial devido a indeterminações nos *flip-flops* (S = R = 1).
 - As saídas do circuito podem apresentar valores não esperados e/ou não especificados.
 - Podem surgir estados extras isolados (dead states) ou ciclos isolados de estados extras (dead cycles), totalmente independentes dos estados relativos à operação normal do circuito seqüencial projetado.
 - Todos os estados extras podem formar seqüências de estados que convergem para os estados relativos à operação normal do circuito seqüencial projetado. O diagrama de estado de tais circuitos é chamado de arbusto (bush), sendo o conjunto dos estados normais de operação denominado de tronco (trunk) e as seqüências de estados extras de ramos (branches). Nesses casos, o circuito seqüencial é dito auto-corretivo (self-correcting).

12.10.2 Possíveis soluções

- As soluções para o retorno do circuito aos seus estados principais, a partir de algum estado extra, podem envolver dois tipos de ações.
- Adotando-se uma correção ativa, pode-se empregar circuitos lógicos adicionais, com a função de auxiliar na detecção dos estados extras e na atuação sobre o circuito.
- Em um tipo de correção passiva, pode-se projetar o circuito de tal forma que seu Diagrama de Estados final seja um arbusto.
- Ações ativas (após o projeto):
 - Detecção de erro: que exige um circuito adicional para identificação de um estado extra.
 - Sinalização de erro: que pode ser implementada através de um sinal extra de saída (flag de erro) ou de um valor de saída não especificado.
 - Interrupção do sinal de clock: que necessita de um circuito extra para mascaramento do sinal de clock original.
 - Correção ativa: que executa o retorno a um dos estados principais através de um sinal de RESET.
- Ações passivas (durante o projeto):
 - Verificar os mapas-K de excitação, para evitar que ocorram indeterminações (valores S=R=1) em flip-flops do tipo SR.
 - Verificar os mapas-K de excitação, para evitar que ocorram dead states e/ou dead cycles.
 - Verificar os mapas-K de saída, para garantir consistência nos valores das mesmas.
- Deve ser ressaltado que, em projetos onde a operação correta é fundamental, ambos os tipos de ações devem ser empregados.

Capítulo 13

Circuitos seqüenciais pulsed

13.1 Introdução

• A Figura 13.1 apresenta um modelo genérico para circuitos sequenciais pulsed.

Figura 13.1: Modelo genérico para circuitos sequenciais pulsed.

- O modelo destaca a ausência de um sinal especial de relógio ou *clock*, que atue diretamente sobre o circuito de memória, destinado puramente ao sincronismo.
- Uma mudança de estado é provocada pela ocorrência de um pulso em um dos sinais de entrada.
- Qualquer um dos sinais de entrada pode ser do tipo pulso.
- Os sinais de entrada x_i podem ser tanto do tipo nível quanto do tipo pulso. Porém, é obrigatório que pelo menos um deles seja do tipo pulso.
- No caso de circuitos seqüenciais do tipo Mealy, por definição, as saídas poderão ser do tipo nível e/ou do tipo pulso, uma vez que poderão ser provenientes das combinações dos níveis das variáveis de estado com os níveis e os pulsos dos sinais de entrada. Porém, o mais comum é que as saídas sejam todas do tipo pulso.

- Para os circuitos seqüenciais do tipo Moore, as saídas deverão ser do tipo nível e deverão permanecer estáveis durante o intervalo de tempo entre dois pulsos de entrada consecutivos.
- Os elementos de memória podem ser dos tipos unclocked ou clocked.
- Em relação às combinações de sinais dos tipos nível e pulso, vale destacar os seguintes aspectos:
 - Uma vez que combinações lógicas AND e OR entre pulsos positivos e negativos produzem resultados indeterminados, apenas um tipo de pulso (positivo ou negativo) deve ser usado.
 - Após a escolha do tipo de pulso a ser utilizado (positivo ou negativo), ainda deve ser lembrado que algumas interações entre sinais dos tipos nível e pulso geram resultados indeterminados para as operações lógicas AND e OR.
 - Portanto, considerando-se que os sinais x_l , x_p e \overline{x}_p representam, respectivamente, sinais dos tipos nível, pulso positivo e pulso negativo, as seguintes combinações podem ser empregadas:

$$\left\{ \begin{array}{l} x_l \cdot x_l = x_l \quad , \quad x_l + x_l = x_l \quad , \quad x_l \cdot x_p = x_p \quad , \quad x_p + x_p = x_p \\ \\ \text{ou} \\ \\ x_l \cdot x_l = x_l \quad , \quad x_l + x_l = x_l \quad , \quad x_l + \overline{x}_p = \overline{x}_p \quad , \quad \overline{x}_p \cdot \overline{x}_p = \overline{x}_p \end{array} \right.$$

13.2 Restrições de operação

- Os circuitos seqüenciais *pulsed* apresentam as seguintes restrições para o seu correto funcionamento:
 - Deve ser garantido que os elementos de memória operem de tal forma que ocorra apenas uma mudança de estado para cada pulso de entrada.
 - Todos os pulsos de entrada devem apresentar uma duração (largura de pulso) suficiente para o correto acionamento dos elementos de memória.
 - As bordas de disparo dos pulsos de entrada consecutivos, em um mesmo sinal de entrada ou em sinais de entrada diferentes, devem ser espaçadas de um intervalo maior que o tempo de mudança de estado dos elementos de memória.
 - * Como consequência desta restrição, é vetada a ocorrência de pulsos simultâneos em sinais de entrada diferentes.
 - As entradas do tipo nível devem estar estáveis quando ocorrer um pulso em qualquer das entradas do tipo pulso.

13.3 Classificação quanto aos pulsos de entrada

- Três classes de circuitos sequenciais do tipo pulsed podem ser destacadas: controlled-clock, pulse-mode e ripple-clock.
- Circuitos do tipo *controlled-clock* são casos particulares, sujeitos a mais restrições. Ainda assim, tal abordagem permite o projeto de sistemas digitais mais complexos do que aqueles pertencentes à classe de circuitos *clock-mode*.
- Circuitos do tipo *pulse-mode* representam uma classe mais geral dentro dos circuitos do tipo *pulsed*. Eles podem ser empregados nos casos onde as restrições de sincronismo dos circuitos *clock-mode* e *controlled-clock* não possam ser cumpridas.
- Circuitos do tipo *ripple-clock* resultam de um tentativa de otimização que pode levar à redução da quantidade de *hardware* em detrimento da freqüência máxima de operação.
- Circuitos do tipo controlled-clock:
 - Os elementos de memória são do tipo clocked.
 - Existe somente uma entrada pulsada, sendo esta periódica e denominada de clock.
 - O sinal de clock não é aplicado diretamente nas entradas de controle dos elementos de memória. Ele é combinado com os outros sinais de entrada e/ou com as variáveis de estado para gerar fontes secundárias de sinais pulsados, sincronizados com o sinal de clock.
- Circuitos do tipo *pulse-mode*:
 - Os elementos de memória podem ser dos tipos unclocked ou clocked.
 - Normalmente, existe mais de uma entrada pulsada.
 - Podem ser destacados dois casos: i) coexistência de entradas dos tipos nível e pulso e ii) existência apenas de entradas do tipo pulso.
 - Geralmente, os diversos sinais de entrada pulsantes são aperiódicos e temporalmente descorrelacionados.
- Circuitos do tipo ripple-clock:
 - Existe, pelo menos, uma entrada pulsada.
 - Existe, pelo menos, um elemento de memória ativado pelos pulsos de entrada. Em seguida, as saídas desse elemento servem de sinal de ativação para outros elementos de memória, e assim consecutivamente, até que todos os elementos de memória tenham sido ativados.
 - As entradas pulsadas podem ser periódicas ou não.
 - O intervalo de tempo entre pulsos de entrada consecutivos deve levar em conta o tempo de propagação de disparos sucessivos dos elementos de memória. Isso pode ser controlado através do pior caso ou através de sinais de término de disparos.
 - Geralmente, o circuito apresenta estados intermediários não estáveis (transitórios).
 Se necessário for, as saídas devem ser controladas pelos pulsos de entrada, a fim de que apresentem apenas os resultados estáveis.

13.4 Circuitos pulse-mode

13.4.1 Motivação

- Existem situações onde as restrições de sincronismo para os circuitos *clock-mode* e *controlled-clock* não podem ser atendidas.
- Uma situação típica é a interface entre subsistemas projetados independentemente uns dos outros.
- Outra situação típica é a interconexão de subsistemas implementados com famílias lógicas diferentes, onde a diferença de taxa de operação é significativa.
- Por exemplo, um sinal de saída do tipo nível em um subsistema com taxas elevadas de chaveamento pode ser interpretado com um pulso de entrada em um subsistema mais lento.
- Utilizando a técnica de projeto *pulse-mode*, o projetista ganha liberdade para designar quais sinais serão interpretados como sendo do tipo nível ou do tipo pulso.

13.4.2 Mudanças nas representações

- O diagrama de estados, a tabela de transição de estados (*state table*) e o mapa-K usados na síntese de circuitos *pulse-mode* apresentam algumas mudanças em relação àqueles que são empregados em circuitos *clock-mode*.
- Tanto a sintaxe quanto a semântica de tais representações sofrem modificações.
- Diversas sintaxes, bem como seus significados, podem ser propostas.
- A sintaxe e a semântica utlizadas no presente texto são detalhadas a seguir.
- Assim como nos circuitos *clock-mode*, os valores $x_l = 0$ e $x_l = 1$, de uma entrada do tipo nível, e os valores $z_l = 0$ e $z_l = 1$, de uma saída do tipo nível, representam os níveis lógicos que tais sinais podem assumir.
- No diagrama de estados, a ausência ou a presença de um pulso (positivo ou negativo) em um sinal de entrada pulsante x_p é representada, respectivamente, pela ausência ou pela presença da variável x_p (pulso positivo) ou de sua negação lógica \overline{x}_p (pulso negativo).
- No diagrama de estados, a ausência ou a presença de um pulso (positivo ou negativo) em um sinal de saída pulsante z_p é representada, respectivamente, pelo valor lógico "0" ou pela presença da variável z_p (pulso positivo) ou de sua negação lógica \overline{z}_p (pulso negativo).
- Na tabela de estados, os valores $z_p = \overline{z}_p = 0$ e $z_p = \overline{z}_p = 1$, de saídas pulsantes z_p (pulso positivo) e \overline{z}_p (pulso negativo), representam, respectivamente, a ausência e a presença de um pulso em z_p e \overline{z}_p .
- Entradas não especificadas nas transições do diagrama de estados, bem como as saídas nesses casos, são representadas na tabela de estados como don't care ("X").
- No diagrama de estados, a especificação conjunta de duas ou mais variáveis de entrada do tipo pulso, (x_{p1}, x_{p2}, \cdots) , indica apenas que a ocorrência de um pulso em qualquer dos sinais x_{pi} acarretará uma mudança de estado. Afinal, deve ser lembrado que, devido às restrições de operação, é proibida a ocorrência de pulsos simultâneos.

- Como conseqüência das possibilidades de combinação entre sinais do tipo nível e sinais do tipo pulso, as variáveis de saída e as variáveis de excitação devem ser geradas por SOP envolvendo pulsos positivos ou por POS envolvendo pulsos negativos.
- A sintaxe e a semântica do mapa-K, usado na síntese das funções combinacionais, vão depender do tipo de elemento de memória utilizado.
- Na síntese das variáveis pulsadas (excitação ou saída), é comum que se utilize os valores "0" e "1" para representar, respectivamente, a ausência ou a presença de pulsos. Esse tipo de representação é mais adequado para um tratamento por computador. Para uso humano, pode ser de grande auxílio utilizar um sinal indicativo de pulso ("Π"), conforme ilustrado na Figura 13.2.
- Vale a pena ressaltar que, por vezes, o funcionamento desejado do circuito produz um diagrama e uma tabela de estados não completamente especificados. Nesses casos, cabe ao projetista decidir como proceder em relação aos itens não especificados durante a realização do projeto.
- A Figura 13.3 apresenta exemplos de tabelas de estados para circuitos pulse-mode Mealy e Moore. A tabela da Figura 13.3 a especifica que deverá ocorrer um pulso na saída z_p quando o circuito estiver no estado q = B e ocorrer um pulso na entrada x_{p2} ou quando o circuito estiver no estado q = C e ocorrer um pulso na entrada x_{p1} . Por sua vez, a tabela da Figura 13.3 b determina que a saída deverá assumir o nível $z_l = 1$ enquanto o circuito estiver no estado q = D e não ocorrer um pulso em qualquer das entradas.

Figura 13.2: Equivalência de notações para mapa de Karnaugh utilizado na síntese de variáveis pulsadas.

q^n	q^{n+1}, z_p		
	x_{p1}	x_{p2}	
A	A, 0	B,0	
B	- , -	C, 1	
C	A, 1	D, 0	
D	A, 0	A, 0	

q^n	q^n	z_l^n	
	x_{p1}	x_{p2}	
A	B	_	0
B	D	C	0
C	A	A	0
D	C	A	1

- a) Circuito do tipo Mealy.
- b) Circuito do tipo Moore.

Figura 13.3: Tabelas de estados para circuitos *pulse-mode* Mealy e Moore.

13.4.3 Exemplos de projeto

• Exemplo utilizando *flip-flop* JK, *master-slave*, ativado por pulso nas entradas J e K, enquanto a entrada de controle de sincronismo C é mantida em nível lógico "1".

Figura 13.4: Mapas de Karnaugh para síntese de variáveis pulsadas, considerando-se duas entradas pulsadas: (a) Mapa completo e (b) Mapa simplificado.

		x_{p1}	x_{p2}	x_{p3}	
	00	$0/\Pi$	$0/\Pi$	$0/\Pi$	
y_1y_2	01	$0/\Pi$	$0/\Pi$	$0/\Pi$	
	11	$0/\Pi$	$0/\Pi$	$0/\Pi$	
	10	$0/\Pi$	$0/\Pi$	$0/\Pi$	
<u> </u>					
(b)					

Figura 13.5: Mapas de Karnaugh para síntese de variáveis pulsadas, considerando-se três entradas pulsadas: (a) Mapa completo e (b) Mapa simplificado.

13.5 Circuitos ripple-clock

13.5.1 Motivação

- A classe de circuitos *ripple-clock* surge como uma tentativa de otimização no acionamento dos elementos de memória do circuito seqüencial.
- A mudança na forma de acionamento dos elementos de memória pode levar a uma simplificação da lógica combinacional do circuito seqüencial.
- Tal simplificação acarreta uma redução da quantidade de *hardware* do circuito combinacional.

13.5.2 Operação

- Nos circuitos do tipo *clock-mode*, os elementos de memória são acionados simultaneamente pelo sinal de sincronismo (*clock*).
- De forma semelhante, nos circuitos do tipo *pulse-mode*, os elementos de memória são potencialmente acionados em paralelo. A diferença, neste caso, é que, dependendo dos sinais de entrada, alguns elementos de memória podem não ser acionados em uma determinada mudança de estado. Ainda assim, a forma de acionamento é estruturalmente paralela.
- Nos circuitos *ripple-clock*, o acionamento é realizado por uma seqüência de eventos. Um sinal de entrada provoca o acionamento de um ou mais elementos de memória. Por sua vez, as modificações nas saídas destes elementos acionam outros elementos de memória. Este mecanismo se repete até que um último conjunto de elementos de memória seja ativado, completando a mudança de estado do circuito seqüencial.

13.5.3 Desvantagens

- As desvantagens deste tipo de acionamento são: i) o aumento do tempo de estabilização nas mudancas de estado, o que é equivalente à redução da freqüência máxima de operação do circuito seqüencial e ii) o surgimento de estados e de conjunto de saídas intermediários (instáveis) durante uma mudança de estados estáveis.
- No cálculo do período mínimo para o sinal de acionamento inicial, deve-se levar em conta o pior caso, que é quando ocorrem todos os níveis de acionamento intermediários.

13.5.4 Técnica de projeto

- Na síntese da lógica combinacional para os circuitos *clock-mode* (ou *pulse-mode*), torna-se necessário que os valores das variáveis de excitação que preenchem os mapas-K sejam rigidamente controlados, pois os elementos de memória serão constantemente (ou potencialmente) acionados, independentemente do estado em que se encontre o circuito.
- No caso dos circuitos *ripple-clock*, os elementos de memória poderão ser acionados apenas quando necessário. Portanto, para os estados onde não ocorrerá acionamento, os valores da variáveis de excitação podem ser considerados *don't care* ("X"), o que pode conduzir a simplificações na lógica combinacional.
- O desafio, portanto, é obter um arranjo de acionamentos que reduza ao máximo a lógica combinacional necessária.

13.5.5 Exemplo

• O exemplo mais clássico é a obtenção do circuito *ripple-clock* para um contador binário, a partir de um projeto de circuito *clock-mode* que utiliza um *flip-flop* JK sensível a transição.

13.6 Circuitos controlled-clock

- Os elementos de memória são do tipo clocked.
- Assim como nos circuitos seqüenciais *clock-mode*, existe somente uma entrada pulsada, sendo esta periódica e denominada de *clock*.
- Porém, o sinal de clock não é aplicado diretamente nas entradas de controle dos elementos de memória.
- Como o próprio nome indica, o sinal de *clock* principal (*master clock*) é combinado com sinais de controle do tipo nível (sinais de entrada e/ou variáveis de estado) para gerar fontes secundárias de sinais pulsados, sincronizados com o sinal de *clock*.
- Tais sinais pulsados secundários são aplicados nas entradas de controle dos elementos de memória ou ainda enviados para circuitos do tipo *pulse-mode*.
- As Figuras 13.6 e 13.7 apresentam exemplos de controle de sinal de *clock*.

Figura 13.6: Exemplo 1 de controle de sinal de *clock*.

Figura 13.7: Exemplo 2 de controle de sinal de *clock*.

- Em uma grande variedade de aplicações de sistemas digitais, o conteúdo dos elementos de memória ou não é modificado ou é condicionalmente carregado com o resultado da aplicação de alguma função sobre um conjunto de dados.
- Portanto, para tais sistemas, o *flip-flop* do tipo D é o mais utilizado, pois realiza a função de armazenamento com um custo menor do que o *flip-flop* do tipo JK.
- Sinais de controle de CLEAR e PRESET, independentes do sinal de ativação do flip-flop, são comumente utilizados.
- Porém, a fim de evitar mudanças impróprias, provocadas pela aplicação de tais sinais ao mesmo tempo em que o *flip-flop* é ativado, tais entradas de controle são normalmente utilizadas apenas para a inicialização (*reset*) do circuito.
- Uma arquitetura do tipo *controlled-clock* comumente encontrada na prática é a denominada Lógica de Transferência entre Registradores (*Register-Transfer Logic* ou RTL).
- Nos circuitos que possuem tal arquitetura, os dados são condicionalmente armazenados em registradores.
- De acordo com o processamento a ser realizado, os dados são transferidos entre registradores específicos.
- Eventualmente, podem ser inseridos circuitos combinacionais no caminho de ligação entre dois registradores, os quais serão responsáveis pela implementação de funções lógicas e/ou aritméticas, necessárias ao processamento dos dados armazenados.
- As transferências são controladas por meio de sinais pulsantes secundários, sincronizados com o sinal de *clock* principal.
- Normalmente, todos os sinais de um sistema são organizados em conjuntos de ligações, denominados de barras ou barramentos: barra de dados (data bus), barra de controle (control bus) e barra de alimentação (power bus).
- A transferência entre dois registradores é realizada por meio de uma barra de dados (data bus).
- A Figura 13.8, apresentada em [HP81], ilustra um modelo genérico para circuitos seqüenciais controlled-clock.
- O modelo separa o sistema em duas partes: um bloco de processamento de dados e um bloco de controle.
- O bloco de processamento de dados incorpora os registradores que armazenam os dados a serem processados e a lógica combinacional necessária à realização das funções de processamento.
- O bloco de controle representa os circuitos seqüenciais responsáveis por gerar os sinais de controle (níveis e pulsos) que realizam as transferências apropriadas, sincronizadas com o sinal de *clock* principal.
- Normalmente, o número de linhas de entradas de controle e o número de linhas de sinais de controle são pequenos em comparação tanto ao número de linhas de dados de entrada e de saída quanto ao número de linhas de interconexão de dados, internas ao bloco de processamento de dados.

Figura 13.8: Modelo genérico para circuitos seqüenciais controlled-clock.

Capítulo 14

Circuitos seqüenciais level-mode

14.1 Introdução

• A Figura 14.1 apresenta um modelo genérico para circuitos seqüenciais level-mode.

Figura 14.1: Modelo genérico para circuitos sequenciais level-mode.

- O modelo destaca a ausência de elementos de memória permanente.
- Ao invés disso, tal estrutura se utiliza de elementos de memória temporária, implementados através de atrasos.
- Por sua vez, os atrasos que implementam o bloco de memória não são blocos de retardo isolados. Eles representam a concentração de atrasos de propagação existentes no circuito combinacional. Consequentemente, os valores de tais atrasos podem variar ao longo do tempo, uma vez que eles serão dependentes dos diversos fluxos que os sinais podem percorrer através do circuito combinacional.
- Assim como nos demais classes: $y_k^{n+1} = f_k(Y_1^n, \dots, Y_P^n), k = 1, 2, \dots, R.$
- Mais especificamente, neste caso: P = R e $y_k(t + \Delta t_k) = Y_k(t), k = 1, 2, \dots, P$.
- Todos os sinais presentes no circuito são do tipo nível.
- Uma mudança de estado é provocada por uma mudança de nível nos sinais de entrada.

- Em resumo, a Figura 14.1 indica que um circuito seqüencial *level-mode* genérico é simplesmente um circuito combinacional realimentado, com entradas do tipo nível.
- Porém, deve ser lembrado que, por definição, todo circuito seqüencial deve ser realimentado, mas a simples realimentação de um circuito combinacional não garante que ele passe a se comportar como um circuito seqüencial.
- Em circuitos sequenciais pulsados (*pulsed* e *clock-mode*), é natural que as saídas dos elementos de armazenamento sejam escolhidas como variáveis de estado, uma vez que eles são também os elementos de sincronismo do sistema.
- Nos circuitos *level-mode* a realimentação é continuamente aplicada. Assim, qualquer ponto dela pode ser identificado como uma variável de estado sem causar prejuízo à análise ou ao projeto do circuito.
- Diz-se que um circuito opera em modo fundamental se, e somente se, não forem permitidas mudanças nos valores de suas variáveis de entrada até que o circuito atinja um estado estável.
- Deve-se observar que o modo fundamental é uma restrição quanto à forma como o circuito é operado e não quanto ao tipo de projeto executado.
- O modo fundamental pode ser implementado permitindo-se que apenas uma das variáveis de entrada seja modificada por vez e garantindo-se que modificações sucessivas em tais variáveis só ocorram após a estabilização do circuito.

14.2 Problemas comuns em circuitos level-mode

- Nos circuitos sequenciais controlados por pulsos (pulsed e clock-mode) a realimentação é interrompida pelo bloco de memória e é ativada segundo um certo sincronismo.
- Por outro lado, nos circuitos seqüenciais *level-mode* a realimentação encontra-se ativa durante todo o tempo.
- Consequentemente, podem ocorrer instabilidades e incertezas.
- Alguns problemas mais comuns são:
 - As condições de entrada ou de saída de um circuito podem ser indeterminadas.
 - A condição da saída de um circuito pode ser instável, a qual pode apresentar mudanças ainda que as entradas não sejam modificadas.
 - A condição da saída de um circuito, mesmo que estável, pode não ser preditível a partir das condições da entrada.
- As soluções mais empregadas para tais problemas são:
 - Evitar instabilidades crônicas (oscilações): se o circuito exibe oscilações para alguns valores de entrada e é estável para outros, então as condições que imprimem oscilações devem ser evitadas.
 - Evitar incertezas: se o circuito exibe comportamento indeterminado para alguns valores de entrada e determinismo para outros, então as condições que provocam indeterminismo devem ser evitadas.

- Operar em modo fundamental.
- Operar em modo pulsado (pulsed e clock-mode).
- Alguns pontos devem ser ressaltados:
 - Circuitos que exibem oscilação sob certas condições não podem ser utilizados em aplicações de armazenamento ou processamento de dados. Porém, tal comportamento é essencial quando a intenção é gerar sinais de sequenciamento ou temporização.
 - Nem sempre é possível garantir a operação em modo fundamental, uma vez que sinais provenientes de diversas fontes diferentes podem variar aleatoriamente. Nesses casos, uma solução é empregar circuitos sincronizadores extras para garantir a operação em modo fundamental.

14.3 Exemplo de análise de circuito level-mode

- Análise de dois circuitos sequenciais que implementam um flip-flop SR.
- Tabela de transição (de estados).
- Tabela de fluxo de estados (flow table).
- Tabela de fluxo de estados primitiva (primitive flow table).

14.4 Exemplo de projeto de circuito level-mode

- Diversas opções de projeto para circuitos seqüenciais que implementem um flip-flop SR.
- Definição de uma especificação para um flip-flop SR.
- Exemplo de diagrama de tempo.
- Tabela de fluxo de estados primitiva (primitive flow table).
- Tabela de fluxo de estados (flow table) minimizada ou reduzida.
- Tabela de atribuição de estados.
- Tabela de transição (de estados).
- Síntese das variáveis de excitação e de saída.
- Circuito final.

14.5 Problemas causados pela realimentação contínua

14.5.1 Problemas causados pelo bloco de lógica combinacional

- Existem dois efeitos comuns em circuitos combinacionais: corrida (race) e perigo (hazard).
- No primeiro caso, após uma mudança nos sinais binários de entrada, espera-se alterar mais de um dos sinais binários de saída. Devido a atrasos internos, os sinais de saída, partindo de um valor inicial (estável), podem assumir configurações intermediárias (instáveis) antes de atingir o seu valor final (estável).
- No segundo caso, após uma mudança nos sinais binários de entrada, duas situações podem ocorrer. Na primeira delas, espera-se que o valor de um determinado sinal binário de saída não seja modificado. Porém, devido a atrasos internos, ainda que o valores inicial e final sejam o mesmo, surgem variações intermediárias. Isso é denominado perigo estático (static hazard). Na segunda situação, espera-se que o valor de um determinado sinal binário de saída seja coplementado. Porém, devido a atrasos internos, ainda que o valor final seja o complemento do valor inicial, surgem variações intermediárias. Isso é denominado perigo dinâmico (dynamic hazard).
- Para os circuitos combinacionais, embora a ocorrência de valores intermediários não previstos seja inoportuna, uma solução simples é aguardar a estabilização do resultado final.
- Em circuitos seqüenciais pulsados (pulsed e clock-mode), a ocorrência de configurações intermediárias nas variáveis de excitação também não representa sério problema, uma vez que a realimentação é interrompida pelo bloco que gera e armazena as variáveis de estado. Novamente, uma solução simples é aguardar a estabilização do resultado final.
- Porém, nos circuitos sequenciais level-mode, a realimentação acontece de forma contínua.
- Nesse caso, os valores intermediários não previstos, causados por corridas e/ou perigos no bloco combinacional, geram estados intermediários não previstos, os quais podem provocar mudanças de estado não desejadas, comprometendo o funcionamento do circuito seqüencial.

14.5.2 Problema natural dos circuitos level-mode

- Devido à realimentação contínua, os circuitos *level-mode* apresentam um problema envolvendo duas ou mais variáveis de excitação/estado.
- Supondo operação em modo fundamental, após uma variação nos sinais de entrada, uma variável de excitação Y_1 pode sofrer modificação, ser realimentada e atuar sobre uma outra variável de excitação Y_2 , antes que a variação da entrada exerça influência sobre Y_2 .
- Nesse caso, Y_2 pode assumir um valor não esperado, comprometendo o funcionamento do circuito sequencial.
- Esse comportamento é denominado de perigo essencial (essential hazard).
- Uma vez que o problema é associado ao tipo de estrutura e à sua especificação, ele pode ser detectado diretamente na tabela de fluxo.

- Supondo um sinal de entrada binário, que sofra três variações consecutivas. Caso a primeira e a terceira variações conduzam o circuito aos estados q_1 e q_3 , tal que $q_1 \neq q_3$, então existe perigo essencial na tabela de fluxo do circuito [Ung59].
- O comportamento em questão irá ocorrrer se quaisquer duas colunas adjacentes da tabela de fluxo exibirem um dos dois padrões apresentados na Figura 14.2.

Figura 14.2: Padrões de identificação de perigo essencial em tabelas de fluxo.

14.6 Solução para as corridas: atribuição de estados

14.6.1 Definição do problema

Objetivo da atribuição de estados

- Em circuitos seqüenciais pulsados (*pulsed* e *clock-mode*) a escolha da atribuição de estados visa a minimização do bloco de lógica combinacional.
- Em circuitos seqüenciais *level-mode*, operando em modo fundamental, o problema de estados intermediários, causados por corridas no bloco combinacional, pode ser resolvido através de uma atribuição de estados adequada.
- Dependendo da tabela de fluxo em questão, para que se encontre uma atribuição de estados adequada, pode ser necessário aumentar o número de estados do circuito.

Tipos de mudança de estado

- Duas situações podem ocorrer durante uma mudança de estado: i) alteração imediata de estado ou ii) surgimento de estados intermediários (instáveis) não previstos.
- No primeiro caso, as variáveis de estado modificam-se de tal forma que o circuito passa diretamente do estado inicial ao final, sem estados intermediários. Na prática, isso ocorre porque apenas uma das variáveis de estado necessita trocar de valor.
- No segundo caso, duas situações podem ocorrer: ciclo (cycle) ou corrida (race).
- Um ciclo é definido por uma sequência única de estados intermediários, instáveis, entre dois estados estáveis (o inicial e o final).
- Os únicos problemas causados pelo ciclo são o prolongamento e a não uniformidade do tempo de estabilização da mudança de estado.

- A corrida caracteriza-se pela existência de diferentes ciclos para um mesmo estado inicial estável. Nesse caso, não é possível prever por qual ciclo o circuito irá fluir.
- Dois tipos de corrida podem ser definidos: não crítica (non-critical) e crítica (critical).
- Nas corridas não críticas, o estado final estável é sempre o mesmo, independentemente da seqüência de troca das variáveis de estado e, portanto, dos ciclos percorridos. Nesses casos, os problemas são os mesmos dos ciclos.
- Nas corridas críticas, os diferentes ciclos podem levar a diferentes estados finais estáveis. Portanto, corridas críticas representam comportamento não desejado.
- A Figura 14.3 apresenta um quadro resumo das mudanças de estado nos circuitos seqüenciais *level-mode*, operando em modo fundamental.

Figura 14.3: Quadro resumo das mudanças de estado nos circuitos seqüenciais *level-mode*, operando em modo fundamental.

14.6.2 Possíveis soluções

Origem do problema

- Em função do que foi exposto, pode-se concluir que: i) uma alteração imediata de estado pode ser interpretada como um caso particular de ciclo e ii) as situações de corrida (ciclos múltiplos) podem acarretar resultados indesejáveis (corrida crítica).
- Portanto, uma solução para o problema de funcionamento indesejado é adotar uma atribuição de estados que realize mudanças de estado apenas por ciclos.
- Para que uma mudança de estado seja executada em ciclo, cada par de estados, do inicial ao final, deve possuir adjacência lógica.
- Dessa forma, para cada mudança de estado, apenas uma variável deverá trocar de valor, evitando a ocorrência de corrida entre as variáveis.

Identificação do problema

- A análise dos tipos de mudanças de estado (ciclos e/ou corridas) que ocorrem em uma dada tabela de fluxo de estados pode ser feita através de um hipercubo booleano.
- Inicialmente, um hipercubo é montado, contendo um número de nós suficiente para conter a quantidade de estados estáveis da tabela de fluxo.
- Em seguida, percorrendo a tabela de fluxo, os estados são associados aos nós do hipercubo.
- A presença de ciclos e/ou corridas é verificada pelas transições presentes no hipercubo.
- Transições realizadas pelas arestas do hipercubo representam ciclos.
- Transições que ocorrem por diagonais significam corridas.
- A classificação das corridas deve ser realizada com o auxílio da tabela de fluxo.
- Supondo-se uma tabela de fluxo organizada de forma que as combinações de entrada definam as colunas, uma transição para uma coluna que contenha apenas um estado estável é associada a uma corrida não crítica. Por outro lado, se a coluna possuir dois ou mais estados estáveis diferentes, a transição representa uma corrida crítica.

Estados reservas (spare states)

- A atribuição de estados deve ser feita de tal forma que sejam respeitadas todas as adjacências lógicas em todas as mudanças de estado.
- Dada uma determinada tabela e um determinado número de estados, pode-se não conseguir uma atribuição de estados adequada.
- Neste caso, devem-se empregar estados reservas (spare states).
- Para números de estados que não sejam potências de dois, podem-se usar os estados extras como estados reservas.
- Porém, quando o número de estados é uma potência de dois ou não se consegue uma atribuição adequada com os estados extras já existentes, deve-se gerar estados reservas acrescentando-se novas variáveis de estado.

Técnicas de atribuição

- Existem duas técnicas básicas para usar os estados reservas: atribuição por múltiplas linhas (multiple-row assignment) e atribuição por linhas compartilhadas (shared-row assignment).
- Na técnica de atribuição por múltiplas linhas, aproveitando-se o fato de que o número de estados é dobrado para cada nova variável de estado acrescentada, cada estado original passa a ser representado por duas ou mais linhas na tabela de transição. Esta multiplicidade de representação para cada estado permite que se implemente adjacência lógica para cada par de estados. Conseqüentemente, em qualquer tabela de fluxo, com qualquer número de estados originais, todas as corridas podem ser transformadas em ciclos.
- A técnica de múltiplas linhas necessita que o número de linhas da tabela de transição seja igual a, pelo menos, o dobro do número de estados. Assim, caso o número de estados não seja uma potência de dois, é recomendável que se tente aplicar a técnica de linhas compartilhadas.
- Na técnica de linhas compartilhadas, as combinações reservas de variáveis de estado (linhas da tabela de transição) não são atribuídas a estados individuais. Como o próprio nome já diz, cada linha é compartilhada por diferentes configurações de entrada (colunas da tabela de transição), a fim de transformar corridas em ciclos.

Atribuições tabeladas

- Dois tipos de atribuições de estado podem ser empregadas: universal e padrão [Sau67].
- Atribuições universais são apresentadas em [Sau67], as quais se utilizam de 2 variáveis para 3 estados, 3 variáveis para 4 estados, 4 variáveis para até 8 estados e 5 variáveis para até 12 estados.
- Tais atribuições, ilustradas nas Tabelas 14.1 14.4, realizam quaisquer tabelas de fluxo, com os referidos números de estados, sem corridas críticas.
- Dado um determinado número de estados, as atribuições padrões procuram utilizar um número menor de variáveis de estado para representá-los. Porém, elas não são capazes de realizar todas as tabelas com tal número de estados.
- Um exemplo de atribuição padrão para tabelas com 5 estados é apresentado na Tabela 14.5.

Tabela 14.1: Atribuição de estados universal, usando shared-row, para tabelas de 3 estados.

		y_2y_1			
		00	01	11	10
y_0	0	0	2	1	3
	1	1	3	0	2

Tabela 14.2: Atribuição de estados universal, usando multiple-row, para tabelas de 4 estados.

		y_3y_2			
		00	01	11	10
	00	+	+		
y_1y_0	01			+	+
	11	+	+		
	10			+	+

Tabela 14.3: Atribuição de estados universal, usando shared-row, para tabelas de 5 a 8 estados.

			$y_4y_3y_2$						
		000	001	011	010	110	111	101	100
	00	+	+			+	+		
y_1y_0	01			+	+				
	11	+	+						
	10			+	+			+	+

Tabela 14.4: Atribuição de estados universal, usando shared-row, para tabelas de 9 a 12 estados.

		g_2g_1			
		00	01	11	10
y_0	0	+		+	
	1	+	+	+	

Tabela 14.5: Atribuição de estados padrão, usando shared-row, para tabelas de 5 estados.

Conjunto de destinação (destination set)

- Conjunto de destinação (destination set) é um conceito que se pode utilizar na tentativa de atender a uma determinada tabela de fluxo com uma atribuição que utilize apenas estados reservas já existentes, sem acrescentar uma variável de estado extra.
- Dada uma tabela de fluxo, formam-se conjuntos de destinação para cada configuração das variáveis de entrada (coluna da tabela).
- Para cada coluna, tais conjuntos são formados por um estado estável da coluna com um estado (linha da tabela) que faça transição para o estado estável.
- A fim de que não haja corridas críticas, os membros de cada conjunto de destinação devem ser logicamente adjacentes ou devem ser alocados, em relação aos estados reservas, de forma que as transições cíclicas formadas para todos os conjuntos sejam atendidas sem interferência mútua (cruzamento de ciclos).

Comparações

- Uma comparação entre as duas técnicas pode ser feita com base na complexidade e no tempo de operação do circuito final.
- A técnica de linhas compartilhadas requer um número menor de variáveis de estado. Portanto, o seu uso gera circuitos mais simples.
- A técnica de múltiplas linhas gera transições imediatas. Portanto, o seu emprego produz circuitos com menor tempo de operação.
- Outras técnicas, que reduzem o tempo de operação do circuito, embora demandem maior tempo de projeto e aumento da complexidade do circuito, podem ser encontradas em [Ung69].

14.7 Solução para os perigos

- Dado o perigo estático para o valor binário "1", ele ocorre porque o circuito desativa o mintermo inicial antes de ativar o mintermo final. Dessa forma, acontece a transição $1|_{min_inicial} \rightarrow 0 \rightarrow 1|_{min_final}$.
- Portanto, para solucionar o problema, basta acrescentar um mintermo redundante, que permanecerá ativo durante a troca dos mintermos inicial e final. Assim, será realizada a transição $1|_{min_inicial} \rightarrow 1|_{min_redundante} \rightarrow 1|_{min_final}$.
- Adicionalmente, é apresentado em [McC65] o seguinte teorema:
 "Um circuito combinacional implementado na forma padrão SOP de segunda ordem que for livre de todos os perigos estáticos para o valor binário "1", será livre de todos os perigos estáticos e dinâmicos.".
- Finalmente, uma forma comum de evitar o perigo essencial é acrescentar atrasos de propagação (inversores em número par) ao circuito.

14.8 Valores das saídas em estados instáveis

- Em mudanças de estados que se fazem por meio de ciclos, deve-se tomar cuidado com os valores atribuídos para as saídas durante os estados instáveis, a fim de se evitar a geração de pulsos espúrios.
- Se, tanto no estado inicial quanto no estado final, o valor especificado para a saída for o mesmo, ele deverá permanecer constante durante o ciclo.
- Se, do estado inicial para o estado final, os valores especificados para a saída forem diferentes, deverá ocorrer apenas uma mudança durante o ciclo. Consequentemente, o valor da saída só poderá ser especificado como don 't care ('X' ou '—') para um dos estados do ciclo.

Parte IV Circuitos digitais programáveis

Capítulo 15

Circuitos programáveis

15.1 Introdução

De acordo com a função realizada por um circuito digital, ele pode ser classificado em: circuito fixo (ou invariante no tempo) e circuito variável (ou variante no tempo). Como os próprios nomes já indicam, um circuito fixo realiza uma única função, enquanto um circuito variável pode permitir a realização de um conjunto de funções diferentes.

Costuma-se dizer que circuitos variáveis são programáveis. Embora não esteja errado, o termo programável induz ao pensamento de que o circuito é capaz de executar o que hoje é denominado de um programa de computador. Logo, talvez seja mais indicado dizer que os circuitos variáveis são configuráveis, deixando o termo programável para indicar um tipo específico de circuito configurável. A partir dessa denominação, podem-se definir diversos tipos de configurações e, portanto, diversos tipos de circuitos variáveis.

Pode-se pensar em dividir a configuração dos circuitos variáveis em: externa e interna.

Na configuração dita externa, podem-se agrupar os circuitos que possuem uma estrutura fixa, mas que mudam de função de acordo com as combinações de valores aplicados em algumas de suas entradas. Esse tipo de configuração pode ser usado em circuitos digitais combinacionais e/ou seqüenciais que ocupam uma extensa faixa de complexidade: portas lógicas, funções lógicas, circuitos digitais básicos, blocos funcionais e até mesmo sistemas digitais mais complexos.

Na configuração denominada de interna, podem-se reunir os circuitos que possuem uma estrutura com elementos constituintes fixos, mas que podem sofrer modificações na sua interconexão (roteamento), no conteúdo de informação armazenada (dado) ou em ambos. Esse tipo de configuração é preferencialmente utilizado em circuitos digitais complexos, que podem implementar circuitos combinacionais e/ou seqüenciais, tais como: Dispositivo Lógico Programável (ou *Programmable Logic Device* ou PLD) e processador (microprocessador, microcontrolador e processador de sinal digital).

Naturalmente, sistemas computacionais de complexidade elevada utilizam todos os tipos de circuitos (fixos e variáveis).

A Tabela 15.1 resume a classificação de circuitos digitais de acordo com a função realizada, definida acima.

A seguir, é apresentada uma introdução sobre o assunto. Deve ser ressaltado que, devido ao fato de apresentarem um conteúdo de alta complexidade e de alta especificidade, não serão abordades os diveros tipos de processadores nem os incontáveis sistemas computacionais de complexidade elevada.

	Fixo		
Circuito		Configuração externa	
digital	Variável		Troca de roteamento
		Configuração interna	Troca de dados
			Troca de ambos

Tabela 15.1: Classificação de circuitos digitais de acordo com a função realizada.

15.2 Circuitos configuráveis externamente

A seguir, são apresentados alguns exemplos de circuitos configuráveis externamente. São abordadas as configurações de portas lógicas, de funções lógicas, de circuitos digitais básicos, de blocos funcionais e de sistemas digitais mais complexos.

15.2.1 Configuração de portas lógicas

Nesse caso, a configuração externa do dispositivo possibilita a implementação uma porta lógica específica, dentro de um conjunto fixo e reduzido de opções.

Em algumas aplicações, é interessante que o dispositivo implemente apenas uma porta lógica. Isso facilita o roteamento na placa de circuito impresso, uma vez que a porta lógica é localizada diretamente na trajeto do sinal, evitando eventuais desvios de trilhas. Como conseqüência, pode-se ter trilhas diretas e mais curtas, reduzindo resistências e acoplamentos eletromagnéticos das trilhas, o que se traduz em menores tempos de resposta. Além disso, se for necessário realizar alguma modificação simples no circuito, torna-se mais fácil redesenhar a placa de circuito impresso.

Por exemplo, no início dos anos 2000, a Fairchild Semiconductors¹ fabricava uma família de dispositivos denominada de TinyLogic. Os dispositivos dessa família possuíam características adequadas ao uso em aparelhos portáteis, tais como: baixo custo, dimensão reduzida, baixo consumo e reduzido tempo de resposta. Existiam as seguintes séries: HS (*High Speed*), HT (*High speed Ttl*), UHS (*Ultra-High Speed*) e ULP (*Ultra-Low Power*). Um exemplo de dispositivos da série UHS são o NC7SZ57 e o NC7SZ58. Algumas das características apresentadas por esses dispositivos eram:

- Podiam ser configuradas cinco portas lógicas diferentes, com possíveis negações lógicas nas entradas e/ou na saída. As portas eram: AND, NAND, OR, NOR e XOR/XNOR.
- A saída de um deles era logicamente complementar a do outro.
- No caso da alimentação assumir o valor de tensão nulo, tanto as entradas quanto a saída assumiam um estado de alta impedância.
- A corrente de saída era suficiente para acionar diretamente alguns dispositivos, tais como: LED, acoplador óptico e relé de baixa corrente.
- Todas as entradas possuíam histerese.
- O encapsulamento (SC70) era do tipo SMD (Surface-Mounted Device), com dimensões reduzidas (2,00 mm \times 1,25 mm) e organização DIL (Dual In Line) de seis pinos, sendo: dois pinos para alimentação (V_{CC} e GND), três pinos de entrada e um pino de saída.

¹http://www.fairchildsemi.com

A Tabela 15.2 descreve o comportamento funcional dos dispositivos NC7SZ57 e NC7SZ58. Por sua vez, a Tabela 15.3 descreve as opções de configuração dos dispositivos. Em ambas as tabelas, são feitas as seguintes associações: "1" = $V_{HIGH} = V_{CC}$ e "0" = $V_{LOW} = GND$.

Cabe lembrar que se pode obter um segundo conjunto de portas diferentes, porém logicamente equivalentes ao primeiro, por meio da aplicação dos Teoremas de De Morgan e das seguintes relações: A XOR $B \equiv \overline{A}$ XNOR $B \equiv A$ XNOR \overline{B} e A XNOR $B \equiv \overline{A}$ XOR $B \equiv A$ XOR \overline{B} .

E	Entradas		Saída	
E_2	E_1	E_0	NC7SZ57	NC7SZ58
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Tabela 15.2: Comportamento funcional dos dispositivos NC7SZ57 e NC7SZ58.

Entradas	Sai	ída
	NC7SZ57	NC7SZ58
$E_0 = 0$	$\overline{E_1}$ NAND E_2	$\overline{E_1}$ AND E_2
$E_0 = 1$	E_1 AND E_2	E_1 NAND E_2
$E_1 = 0$	E_0 NOR E_2	$E_0 \text{ OR } E_2$
$E_1 = 1$	E_0 NAND $\overline{E_2}$	$E_0 \text{ AND } \overline{E_2}$
$E_2 = 0$	$\overline{E_0}$	E_0
$E_2 = 1$	E_1	$\overline{E_1}$
$E_0 = E_1$	E_0 XNOR E_2	$E_0 \text{ XOR } E_2$
$E_0 = E_2$	E_0 NAND $\overline{E_1}$	$E_0 \text{ AND } \overline{E_1}$
$E_1 = E_2$	$\overline{E_1}$ NAND E_0	$\overline{E_1}$ AND E_0

Tabela 15.3: Opções de configuração dos dispositivos NC7SZ57 e NC7SZ58.

15.2.2 Configuração de funções lógicas com multiplexador

Um multiplexador (MUX) digital é um dispositivo com N sinais de entrada E_n , M sinais de controle C_m e 1 sinal de saída S, onde: cada sinal assume apenas valores binários, $N \leq 2^M$ e $M \in \mathbb{N}^+$.

Um MUX tem a função de um seletor. A saída S deverá assumir o mesmo valor da entrada E_n , quando o padrão binário presente em $\mathbf{C} = [C_{M-1} \ C_{M-2} \ \cdots \ C_1 \ C_0]$ apresentar o valor $(\mathbf{C})_2 = n = [\mathbf{C}]_n$. Logo, os padrões binários de \mathbf{C} podem ser interpretados como endereços que serão empregados na seleção do sinal de entrada que será copiado para a saída do MUX.

O modelo básico para um MUX, baseado em portas lógicas, é um arranjo padrão AND-OR, composto de um plano com N portas AND de (M+1) entradas, seguido de um plano com 1 porta OR de N entradas. Nesse modelo, cada porta AND realiza a operação

$$AND (E_n, [C]_n) = AND (E_n, [C_{M-1}, C_{M-2}, \cdots, C_1, C_0]_n) = AND (E_n, m(n)),$$

onde m(n) representa o mintermo n. Portanto, enquanto a saída da porta AND endereçada pelo mintermo n apresenta uma cópia da entrada E_n do MUX, as demais portas AND terão saída igual a "0". Por sua vez, a porta OR completa a cópia da entrada selecionada para a sua saída, que é a saída do MUX.

Uma vez que a função básica de um MUX é a de um seletor, pode-se pensar em utilizá-lo para implementar uma função lógica genérica, por meio da configuração adequada das suas entradas $(E_n \in C_m)$.

Em uma primeira tentativa, basta interpretar a tabela verdade (TV) de uma função lógica de V variáveis como um processo de seleção de valores "0" e "1", onde os endereços da seleção são os padrões apresentados pelo conjunto de variáveis. Portanto, uma dada função lógica de V variáveis pode ser implementada por um MUX com M = V e $N = 2^M$, conectando-se as M variáveis aos sinais C_m do MUX e fornecendo-se os valores "0" e "1" às entradas E_n do MUX, de acordo com a TV da função alvo.

Com o intuito de diminuir a quantidade de circuito necessária para implementar uma mesma função lógica, pode-se pensar em utilizar um MUX menor. Para isso, deve-se observar que, nas funções lógicas de V variáveis, haverá 2 valores na TV para cada combinação de (V-1) variáveis. Esses valores poderão ser iguais a "00", "01", "10" ou "11", bem como poderão ser associados a "0", "1", V_k e $\overline{V_k}$, onde V_k é a variável desconsiderada no endereçamento. Portanto, pode-se implementar uma dada função lógica de V variáveis por um MUX com M=(V-1) e $N=2^M$, conectando-se as M variáveis escolhidas aos sinais C_m do MUX e fornecendo-se os valores "0", "1", V_k ou $\overline{V_k}$, às entradas E_n do MUX, de acordo com a TV da função alvo. A economia é significativa, pois o MUX é reduzido à metade e, mesmo no caso onde o complemento de uma das variáveis não esteja à disposição, é necessário que se acrescente apenas um inversor.

Pode-se obter uma redução ainda maior no tamanho do MUX, em troca da inclusão de um circuito lógico adicional. Para isso, deve-se observar que, nas funções de V=(K+L) variáveis, haverá 2^L valores na TV para cada combinação de K variáveis. Esses valores poderão ser associados a "0", "1" e aos valores provenientes de combinações lógicas das L variáveis desconsideradas no endereçamento. Portanto, pode-se implementar uma dada função lógica de V=(K+L) variáveis por um MUX com M=K e $N=2^M$, conectando-se as M variáveis escolhidas aos sinais C_m do MUX e fornecendo-se os valores "0", "1" e de combinações lógicas das L variáveis não utilizadas no endereçamento, às entradas E_n do MUX, de acordo com a TV da função alvo. Nesse caso, deve-se fazer um balanceamento entre a redução da quantidade de circuito do MUX e o aumento da quantidade de circuito adicional.

Deve ser ressaltado que, em todos os casos, diversas soluções podem ser propostas, dependendo de quais variáveis serão escolhidas para o endereçamento e da sua ordenação. Dentro desse universo de soluções, algumas delas poderão requerer menos circuitos do que outras.

A título de exemplo, será considerada a função lógica definida por

$$f(A, B, C, D) = \sum_{i} m(1, 3, 5, 7, 10, 11, 12, 13) = \prod_{i} M(0, 2, 4, 6, 8.9, 14, 15)$$

$$= (\overline{A} \cdot D) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C})$$

$$= (A + D) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C}) . \tag{15.1}$$

A Figura 15.1 ilustra algumas formas de organização do Mapa de Karnaugh da função exemplo, para implementação usando MUX.

Figura 15.1: Mapas de Karnaugh da função exemplo, para implementação usando MUX.

Para um MUX com M=4 e N=16, pode ser adotada a seguinte configuração:

$$\begin{cases}
 [C_3 C_2 C_1 C_0] = [A B C D] \\
 [E_{15} E_{14} \cdots E_1 E_0] = [0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0]
\end{cases}$$

Para um MUX com M=3 e N=8, podem ser adotadas as seguintes configurações:

$$\begin{cases}
 \left[C_2 C_1 C_0 \right] = \left[B C D \right] \\
 \left[E_7 E_6 \cdots E_1 E_0 \right] = \left[\overline{A} \ 0 \ 1 \ A \ 1 \ A \overline{A} \ 0 \right] \\
\end{cases}$$

$$\begin{cases}
 \left[C_2 C_1 C_0 \right] = \left[A B C \right] \\
 \left[E_7 E_6 \cdots E_1 E_0 \right] = \left[0 \ 1 \ 1 \ 0 \ D \ D \ D \right]
\end{cases}$$

Para um MUX com M=2 e N=4, podem ser adotadas as seguintes configurações:

$$\begin{cases}
 [C_1 C_0] = [A B] \\
 [E_3 E_2 E_1 E_0] = [\overline{C} C D D]
\end{cases}, \\
 \begin{cases}
 [C_1 C_0] = [A C] \\
 [E_3 E_2 E_1 E_0] = [\overline{B} B D D]
\end{cases}, \\
 [C_1 C_0] = [A D] \\
 [E_3 E_2 E_1 E_0] = [(B \oplus C) (B \oplus C) 1 0]
\end{cases},$$

е

е

$$\begin{cases}
 \left[C_1 C_0 \right] = \left[C D \right] \\
 \left[E_3 E_2 E_1 E_0 \right] = \left[(\overline{A} + \overline{B}) (A \cdot \overline{B}) (\overline{A} + B) (A \cdot B) \right] \\
 \left[C_1 C_0 \right] = \left[B D \right] \\
 \left[E_3 E_2 E_1 E_0 \right] = \left[(\overline{A} + \overline{C}) (A \cdot \overline{C}) (\overline{A} + C) (A \cdot C) \right] \\
 \left[C_1 C_0 \right] = \left[B C \right] \\
 \left[E_3 E_2 E_1 E_0 \right] = \left[(\overline{A} \cdot D) (A + D) (A + D) (\overline{A} \cdot D) \right]
\end{cases}$$

15.3 Circuitos configuráveis internamente: PLDs

Os PLDs comerciais passaram por uma linha evolutiva de complexidade. Em ordem crescente de complexidade, os PLDs receberam as seguintes denominações:

- ROM (Read-Only Memory).
- PAL (Programmable Array Logic).
- PLA (Programmable Logic Array).
- PAL/PLA com um flip-flop do tipo D (DFF) em cada saída.
- GAL (Generic Array Logic).
- PALCE (PAL CMOS Electrically erasable/programable device).
- SPLD (Simple Programmable Logic Device).
- CPLD (Complex Programmable Logic Device).
- FPGA (Field-Programmable Gate Array).

Parte V Apêndices

Apêndice A

Noções básicas sobre implementação de funções lógicas

A.1 Introdução

A implementação de funções lógicas é um assunto que possui grande extensão e é rico em detalhes. Ainda que tal conteúdo não seja o objetivo do presente documento, é importante que algumas noções básicas sejam abordadas. Este capítulo tem por objetivo apresentar, de forma breve e superficial, alguns itens comumente encontrados em implementações típicas. Inicialmente, são abordados alguns conceitos básicos, presentes na implementação de circuitos lógicos em circuitos integrados. Em seguida, as famílias lógicas são comentadas. Finalmente, é discutido um modelo de chaves para a implementação de funções da lógica binária, com processamento de tensão.

A.2 Conceitos básicos

Circuito integrado monolítico é um termo empregado para designar a construção de um circuito eletrônico em uma única porção de material semicondutor.

Os elementos básicos usados em sistemas eletro-eletrônicos que implementam circuitos lógicos baseados em circuitos integrados são: elementos externos ao circuito integrado (fontes de alimentação e geradores de sinais) e elementos internos ao circuito integrado (transistores).

As fontes de alimentação são elementos de transdução, que transformam grandezas de outros sistemas físicos em uma grandeza elétrica de tensão ou de corrente, de valor fixo. Elas podem ser também elementos de transformação de grandezas elétricas de tensão ou de corrente de valor variável em uma grandeza elétrica de tensão ou de corrente de valor fixo.

Na implementação de um determinado sistema lógico matemático por um sistema elétrico físico, os valores lógicos fixos devem ser associados a valores elétricos fixos, fornecidos pelas fontes (na alimentação ou nos sinais de excitação) e pelas saídas dos circuitos integrados. No caso da lógica binária, devem ser implementados os valores lógicos fixos F (False) e T (True). Considerando-se um processamento de tensão, podem ser associados a eles os seguintes valores elétricos fixos: +|V| e 0, 0 e -|V| ou +|V| e -|V|. Os dois tipos básicos de associação entre valores de tensão e valores lógicos binários são apresentados na Tabela A.1.

Os transistores são dispositivos eletrônicos de três terminais. Um dos terminais é usado para realizar um acionamento que produzirá um efeito sobre os outros dois terminais. Observam-se três modos de operação, considerando-se o efeito causado nos dois terminais controlados: circuito aberto, curto-circuito e fonte de corrente controlada (por tensão ou por corrente).

Tensões		Associação 1	Associação 2	
+ V	0	+ V	Т	F
0	- V	- V	F	Т

Tabela A.1: Tipos básicos de associação entre valores de tensão e valores lógicos binários.

As implementações clássicas de funções lógicas binárias, tem, como modelo, o uso de dispositivos que possuem dois estados. Assim, em cada tipo de implementação, normalmente, são utilizados apenas dois dos três modos de operação dos transistores.

A.3 Famílias lógicas

Na implementação dos circuitos digitais, podem ser utilizados diferentes dispositivos físicos, associados a diversas técnicas de composição e a diversos modos de operação.

Se determinados dispositivos físicos são conectados de uma forma específica, são operados de um modo particular e apresentam parâmetros lógicos e físicos que obedecem a padrões estabelecidos, então diz-se que o circuito final pertence a uma Família Lógica.

Historicamente, várias famílias lógicas foram propostas, empregando-se dispositivos eletrônicos e processamento de tensão. Usando transistor bipolar de junção (Bipolar Junction Transistor ou BJT), podem ser citadas: Resistor-Transistor Logic (RTL), Direct-Coupled Transistor Logic (DCTL), Diode-Transistor Logic (DTL), Transistor-Transistor Logic (TTL), Emitter-Coupled Logic (ECL) e Integrated Injection Logic (IIL ou I2L). Usando transistor de efeito de campo (Field Effect Transistor ou FET) do tipo Metal-Oxide-Semiconductor (MOS), denominado de MOSFET, podem ser citadas: lógica com transistor do tipo N (NMOS), lógica com transistor do tipo P (PMOS) e lógica com arranjo complementar de ambos os tipos de transistor (CMOS).

As famílias lógicas mais comumente utilizadas são a TTL e a CMOS.

Devido ao seu baixo consumo de energia e à sua baixa ocupação de espaço, os circuitos lógicos CMOS são largamente utilizados em implementações de circuitos integrados de alta densidade.

A.4 Modelo de chaves

A.4.1 Conceitos básicos

Nas implementações que utilizam processamento de tensão, os transistores são usados, basicamente, como chaves de passagem, operando nos modos de circuito aberto e curto-circuito entre os dois terminais controlados. A fontes de alimentação são utilizadas, ao mesmo tempo, como sinal de acionamento e como resultado da avaliação da função lógica. Neste caso, os sinais de entrada do circuito, que representam os parâmetros dos quais depende a função lógica, são usados apenas para acionar transistores operando como chaves, cujo acionamento pode ainda acionar outros transistores. Uma vez selecionado um determinado caminho formado por chaves fechadas, uma das duas fontes de alimentação é conectada com a saída, o que irá representar o valor da função lógica implementada para um dado conjunto de valores dos seus parâmetros.

Deve-se notar que os circuitos em si não implementam funções lógicas. Internamente, eles apenas realizam operações elétricas. Porém, através de associações de significados pertinentes, pode-se, externamente, interpretar o seu funcionamento como a avaliação de uma função lógica.

Pode-se propor um modelo de chaves para a implementação de funções da lógica binária, com processamento de tensão, utilizando-se as chaves apresentadas na Figura A.1, denominadas de chave-N e chave-P. O terminal A é o ponto de acionamento, o terminal R é o ponto de referência e o terminal F é o ponto para onde irá fluir o valor da referência, quando a chave for fechada. Enquanto a chave estiver aberta, o valor do terminal F permanece indefinido.

Figura A.1: Chaves simples ou Single-Pole Single-Throw (SPST). (a) Chave-N. (b) Chave-P.

Será adotado o seguinte padrão de acionamento para as chaves N e P. Supondo-se que $V_{AR} = V_A - V_R$ é a diferença de potencial entre os terminais A e R, a chave-N será fechada quando $V_{AR} > 0$ ou $V_A > V_R$ e será aberta quando $V_{AR} \le 0$ ou $V_A \le V_R$. De forma contrária, a chave-P será fechada quando $V_{AR} < 0$ ou $V_A < V_R$ e será aberta quando $V_{AR} \ge 0$ ou $V_A \ge V_R$.

Supondo-se que $V_R = -|V_L|$ na chave-N e que $V_R = +|V_H|$ na chave-P, pode-se dizer, do ponto de vista elétrico, que, quando $A = +|V_H|$, a chave-N será fechada e a chave-P será aberta. De forma contrária, quando $A = -|V_L|$, a chave-N será aberta e a chave-P será fechada.

Definindo-se que $F = -|V_L|$ e que $T = +|V_H|$, pode-se dizer, do ponto de vista lógico, que, quando A = T, a chave-N será fechada e a chave-P será aberta. De forma contrária, quando A = F, a chave-N será aberta e a chave-P será fechada.

A partir do padrão de acionamento definido, conclui-se que as chaves N e P são complementares em relação ao seu acionamento. Dito de outra forma, pode-se interpretar o comportamento de uma chave-P acionada por uma variável A como o de uma chave-N acionada por uma variável ¬A. Isso é ilustrado na Figura A.2, onde o comportamento de uma chave-P é interpretada como a associação de um bloco inversor lógico (NOT) com uma chave-N. Por essa razão, a chave-P é representada como a chave-N acrescida de um círculo de negação.

Quanto ao terminal F, quando a chave está fechada, tem-se $V_F = V_R$. Por outro lado, quando a chave está aberta, o valor de V_F é indefinido e costuma-se dizer que o ponto F está flutuando.

Figura A.2: Modelo comportamental para a relação de complementariedade no acionamento, entre as chaves N e P.

A.4.2 Arranjos série e paralelo de chaves

A Figura A.3 mostra um arranjo série de chaves. Para as chaves-N, se $V_{A_1} > V_{R_1}$ e $V_{A_2} > V_{R_1}$, então ambas as chaves estarão fechadas e $V_{F_2} = V_{R_2} = V_{F_1} = V_{R_1}$. Caso contrário, uma das chaves estará aberta, ou ambas, e o valor de V_F é indefinido. Para as chaves-P, se $V_{A_1} < V_{R_1}$ e $V_{A_2} < V_{R_1}$, então ambas as chaves estarão fechadas e $V_{F_2} = V_{R_2} = V_{F_1} = V_{R_1}$. Caso contrário, uma das chaves estará aberta, ou ambas, e o valor de V_F é indefinido. Esse tipo de arranjo é a base para modelar uma implementação da função lógica AND.

Figura A.3: Arranjo série de chaves simples. (a) Chave-N. (b) Chave-P.

A Figura A.4 mostra um arranjo série de chaves. Para as chaves-N, se $V_{A_1} > V_{R_1}$ ou $V_{A_2} > V_{R_2}$, ou ambos, então uma das chaves estará fechada, ou ambas, e $V_{F_2} = V_{R_2} = V_{F_1} = V_{R_1}$. Caso contrário, ambas as chaves estarão abertas, e o valor de V_F é indefinido. Para as chaves-P, se $V_{A_1} < V_{R_1}$ ou $V_{A_2} < V_{R_2}$, ou ambos, então uma das chaves estará fechada, ou ambas, e $V_{F_2} = V_{R_2} = V_{F_1} = V_{R_1}$. Caso contrário, ambas as chaves estarão abertas, e o valor de V_F é indefinido. Esse tipo de arranjo é a base para modelar uma implementação da função lógica OR.

Figura A.4: Arranjo paralelo de chaves simples. (a) Chave-N. (b) Chave-P.

A.4. Modelo de chaves 251

A.4.3 Modelo de chaves para a função NOT

Nas Figuras A.5 e A.6, são apresentados arranjos de chaves N e P, com fontes de alimentação. Baseado na operação das chaves, pode-se comprovar o comportamento elétrico apresentado na Tabela A.2. Estabelecendo-se a associação +|V|=T e -|V|=F, pode-se identificar o comportamento lógico apresentado na Tabela A.3. Esses tipos de arranjo modelam uma implementação da função lógica NOT.

Figura A.5: Modelo de chaves simples para uma implementação da função lógica NOT, onde: (a) chave N e (b) chave P.

Figura A.6: Modelo de chaves complementares para uma implementação da função lógica NOT.

V_A	$V_X = f(V_A)$
- V	+ V
+ V	- V

Tabela A.2: Comportamento elétrico do modelo de chaves NOT.

A	X = f(A)
F	Т
Τ	F

Tabela A.3: Comportamento lógico do modelo de chaves NOT.

A.4.4 Modelo de chaves para a função NAND

Nas Figuras A.7 e A.8, são apresentados arranjos de chaves N e P, com fontes de alimentação. Baseado na operação das chaves, pode-se comprovar o comportamento elétrico apresentado na Tabela A.4. Estabelecendo-se a associação +|V|=T e -|V|=F, pode-se identificar o comportamento lógico apresentado na Tabela A.5. Esses tipos de arranjo modelam uma implementação da função lógica NAND.

Figura A.7: Modelo de chaves simples para uma implementação da função lógica NAND, onde: (a) chave N e (b) chave P.

V_A	V_B	$V_X = f(V_A, V_B)$			
- V	- V	+ V			
- V	+ V	+ V			
+ V	- V	+ V			
+ V	+ V	- V			

Tabela A.4: Comportamento elétrico do modelo de chaves NAND.

Figura A.8: Modelo de chaves complementares para uma implementação da função lógica NAND.

Α	В	X = f(A, B)
F	F	Т
F	Τ	Т
Т	F	Т
Т	Τ	F

Tabela A.5: Comportamento lógico do modelo de chaves NAND.

A.4.5 Modelo de chaves para a função NOR

Nas Figuras A.9 e A.10, são apresentados arranjos de chaves N e P, com fontes de alimentação. Baseado na operação das chaves, pode-se comprovar o comportamento elétrico apresentado na Tabela A.6. Estabelecendo-se a associação +|V|=T e -|V|=F, pode-se identificar o comportamento lógico apresentado na Tabela A.7. Esses tipos de arranjo modelam uma implementação da função lógica NAND.

Figura A.9: Modelo de chaves simples para uma implementação da função lógica NOR, onde: (a) chave N e (b) chave P.

V_A	V_B	$V_X = f(V_A, V_B)$				
- V	- V	+ V				
- V	+ V	- V				
+ V	- V	- V				
+ V	+ V	- V				

Tabela A.6: Comportamento elétrico do modelo de chaves NOR.

Figura A.10: Modelo de chaves complementares para uma implementação da função lógica NOR.

Α	В	X = f(A, B)
F	F	Т
F	Τ	F
Т	F	F
Т	Т	F

Tabela A.7: Comportamento lógico do modelo de chaves NOR.

A.4. Modelo de chaves 257

A.4.6 Modelo de chaves para arranjos AOI e OAI

Além dos conectivos lógicos básicos (NOT, NAND e NOR), dois tipos de arranjos são largamente utilizados na implementação de funções lógicas, os quais são denominados de AO (AND-OR) e de OA (OR-AND). Como foi visto acima, o modelo de chaves complementares apresenta uma inversão intrínseca. Assim, são naturalmente implementados os arranjos AOI (AND-OR-INVERTER) e OAI (OR-AND-INVERTER), descritos a seguir.

Arranjos AOI

Os arranjos AOI (AND-OR-INVERTER) são funções lógicas onde as variáveis (e suas negações) são inicialmente combinadas por conectivos AND. Em seguida, tais termos são combinados por conectivos OR. Finalmente, toda a função sofre uma inversão através da operação NOT.

Exemplos de arranjos AOI são

$$f(A,B) = \neg ((A \land \neg B) \lor (\neg A \land B)),$$

$$f(A,B,C) = \neg((\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land B \land C) \lor),$$

e

$$f(A, B, C, D) = \neg((\neg A \land B \land \neg C \land D) \lor (\neg A \land B \land C \land \neg D) \lor (A \land \neg B \land C \land \neg D) \lor (A \land \neg B \land C \land D)).$$

O arranjo AOI definido por $f(A, B, C, D) = \neg((A \land B) \lor (C \land D))$ pode ser implementado pelo modelo de chaves complementares mostrado na Figura A.11.

Arranjos OAI

Os arranjos OAI (OR-AND-INVERTER) são funções lógicas onde as variáveis (e suas negações) são inicialmente combinadas por conectivos OR. Em seguida, tais termos são combinados por conectivos AND. Finalmente, toda a função sofre uma inversão através da operação NOT. Exemplos de arranjos OAI são

$$f(A,B) = \neg(\ (A\ \lor\ \neg B)\ \land\ (\neg A\ \lor\ B)\)\ ,$$

$$f(A,B,C) = \neg((\neg A \lor \neg B \lor C) \land (\neg A \lor B \lor \neg C) \land (A \lor \neg B \lor \neg C) \land (A \lor B \lor C) \land),$$

е

$$f(A,B,C,D) = \neg((\neg A \lor B \lor \neg C \lor D) \land (\neg A \lor B \lor C \lor \neg D) \land (A \lor \neg B \lor C \lor \neg D) \land (A \lor \neg B \lor C \lor D)).$$

O arranjo OAI definido por $f(A, B, C, D) = \neg((A \lor B) \land (C \lor D))$ pode ser implementado pelo modelo de chaves complementares mostrado na Figura A.12.

Figura A.11: Modelo de chaves complementares para uma implementação do arranjo AOI definido por $f(A,B,C,D)=\neg(\ (A\ \land\ B)\ \lor\ (C\ \land\ D)\).$

Figura A.12: Modelo de chaves complementares para uma implementação do arranjo OAI definido por $f(A,B,C,D)=\neg(\ (A\ \lor\ B)\ \land\ (C\ \lor\ D)\).$

A.4.7 Modelo de chaves complementares genérico

Do ponto de vista funcional, os conectivos lógicos anteriormente modelados (NOT, NAND e NOR) são suficientes para gerar qualquer função lógica binária desejada. Mesmo assim, cabe investigar tanto a possibilidade de síntese de uma função genérica quanto a existência de uma lei de formação para tal.

Observando-se os modelos apresentados para as funções NOT, NAND e NOR, percebe-se que os mesmos compartilham certas características.

Uma vez que as chaves N e P sofrem acionamento complementar, os blocos de chaves N e P herdam o mesmo comportamento. Esse comportamento complementar garante a consistência da operação, pois quando um bloco proporciona um caminho de condução ao longo de sua estrutura e força um valor lógico na saída, o outro bloco gera uma obstrução e provoca uma indeterminação. O comportamento complementar dos blocos de chaves N e P nos modelos NOT, NAND e NOR, pode ser observado, respectivamente, nas Tabelas A.8, A.9 e A.10, onde o valor lógico I significa uma indeterminação.

Tabela A.8: Comparação do comportamento dos blocos de chaves N e P no modelo de chaves da função lógica NOT. (a) Chave-N. (b) Chave-P. (c) Arranjo complementar.

A B X(A,B) F F I F T I T F I T T F	A B X(A,B) F F T T T T T	A B X(A,B) F F T T T T F T
(a)	(b)	(c)

Tabela A.9: Comparação do comportamento dos blocos de chaves N e P no modelo de chaves da função lógica NAND. (a) Chave-N. (b) Chave-P. (c) Arranjo complementar.

Α	В	X(A,B)		Α	В	X(A,B)	Α	В	X(A,B)
F	F	I		F	F	Т	F	F	Т
F	Т	F		F	Т	I	F	Т	F
Τ	F	F		Τ	F	I	Τ	F	F
Τ	Т	F		Τ	Τ	I	Τ	Т	F
(a)			•		(b)		((c)

Tabela A.10: Comparação do comportamento dos blocos de chaves N e P no modelo de chaves da função lógica NOR. (a) Chave-N. (b) Chave-P. (c) Arranjo complementar.

Pode-se constatar que o bloco de chaves-N possui uma ligação direta com a função desejada Porém, ele apresenta uma inversão intrínseca à estrutura. No caso da função NOT, quando a variável de entrada vale T, o bloco conduz, realizando a passagem de um valor F para a saída. No caso da função NAND, quando as variáveis de entrada valem ambas T, o bloco conduz, realizando uma operação AND, mas passando um valor F para a saída. No caso da função NOR, quando uma das variáveis de entrada vale T, ou ambas, o bloco conduz, realizando uma operação OR, mas passando um valor F para a saída. Logo, pode-se dizer que, definindo-se a função desejada como $\neg X(A, B, C, \cdots)$ o bloco de chaves-N realiza o seu complemento: $X(A, B, C, \cdots)$.

Por sua vez, o bloco de chaves-P deve colaborar na síntese da função desejada de uma forma funcionalmente complementar ao bloco de chaves-N, ao mesmo tempo que seu acionamento deve ser provocado pelo complemento das variáveis de entrada que acionam o bloco de chaves-N. Isso é equivalente à aplicação do Teorema de De Morgan ao complemento da funcionalidade do bloco de chaves-N. Porém, nessa estrutura, a função do bloco de chaves-N já é o complemento da função desejada. Logo, a síntese do bloco de chaves-P é equivalente à aplicação do Teorema de De Morgan sobre a função desejada. Além disso, o acionamento das chaves-P já é baseado no complemento das variáveis que acionam o bloco de chaves-N. Portanto, após aplicar o Teorema de De Morgan sobre a função desejada, deve-se desprezar a negação das variáveis de entrada na equação final. Isso pode ser facilmente verificado nos modeles de chaves para as funções NOT, NAND e NOR.

Resumindo, a regra geral para a síntese de uma função lógica binária qualquer, usando chaves complementares, através de um arranjo complementar, pode ser definida da seguinte forma:

- Definir a função desejada como $\neg X(A, B, C, \cdots)$.
- Sintetizar, através de um arranjo de chaves-N, a função $X(A, B, C, \cdots)$.
- Aplicar o Teorema de De Morgan sobre $\neg X(A, B, C, \cdots)$. Desconsiderar a negação das variáveis de entrada. Sintetizar a equação final através de um arranjo de chaves-P.

A.4.8 Saída em Tri-State (3S)

Em algumas aplicações, pode ser necessário que o estágio de saída de um circuito digital isole a parte interna da parte externa do circuito. Eletricamente, essa desconexão é interpretada como um circuito aberto ou uma ligação de alta impedância, denominada de *High-Z*. Do ponto de vista lógico, quando a conexão é estabelecida, a saída assume os estados F ou T. Porém, quando a conexão é interrompida, e a saída entra em modo *High-Z*, define-se um terceiro estado. Por essa razão, diz-se que o circuito possui uma saída do tipo *Tri-State* ou 3S. A Figura A.13 apresenta um modelo de chaves complementares para uma implementação de função lógica NOT com saída em *Tri-State* (3S). Conforme indicado, o controle de conexão da saída é realizado por um sinal de habilitação (*enable* ou EN).

Figura A.13: Modelo de chaves complementares para uma implementação de função lógica NOT com saída em Tri-State~(3S).

Apêndice B

Tópicos sobre divisão de números inteiros

B.1 Algoritmo de divisão inteira

Teorema (Divisão com resto): Para cada inteiro c (dividendo) e cada inteiro positivo d (divisor), existe um único par de inteiros Q (quociente) e r (resto), tal que $c = d \cdot Q + r$, onde $0 \le r < d$.

B.2 Quociente

O quociente pode ser descrito por

$$Q = \left| \frac{c}{d} \right| ,$$

onde $|(\cdot)|$ representa o maior inteiro menor que (\cdot) .

B.3 Resto ou resíduo

O resto da divisão de c por d pode ser descrito por

$$r = R_d[c] = ((c)) = c \quad (\text{mod } d) ,$$

podendo ainda ser denominado de resíduo de c, módulo d.

B.4 Congruência

Dois números inteiros c_1 e c_2 que, divididos por um terceiro inteiro positivo d, apresentam o mesmo resto (ou resíduo) r são ditos congruentes, módulo d, e são representados por

$$c_1 \equiv c_2 \pmod{d}$$
,

onde ≡ denota uma relação de equivalência.

B.5 Relações úteis

Teorema: Para um mesmo número inteiro positivo d,

- (i) $R_d[a+b] = R_d[R_d[a] + R_d[b]]$
- (ii) $R_d[a \cdot b] = R_d[R_d[a] \cdot R_d[b]]$

onde + e \cdot denotam, respectivamente, as operações de adição e multiplicação entre números inteiros.

Apêndice C

Minimização de tabela de estados

C.1 Introdução

- A minimização do número de estados de um circuito sequencial pode conduzir à redução da quantidade de circuitos lógicos necessários para implementar os estados (bloco Geração e Armazenamento) e as saídas (bloco Função Combinacional).
- Dada uma tabela de transição de estados (*state table*), pode-se constatar que diferentes estados podem realizar a mesma função.
- Do ponto de vista externo ao circuito, pode-se dizer que não é possível distinguir entre tais estados, uma vez que eles apresentam o mesmo resultado.
- Nesse caso, tal conjunto de estados pode ser representado por um único estado.
- Consequentemente, a tabela de transição de estados (state table) é simplificada e, possivelmente, o circuito lógico minimizado.
- Na minimização do número de estados de uma máquina seqüencial, a idéia básica é organizar os estados de uma máquina M1 em classes que possuam uma determinada propriedade e, em seguida, definir uma máquina M2, de tal forma que cada estado em M2 cumpra a função de uma das classes em M1.
- Podem-se destacar dois grupos de descrição de máquinas: i) descrição completamente especificada e ii) descrição não completamente especificada.
- Nas máquinas sequenciais com descrição completamente especificada, utiliza-se o critério de equivalência entre máquinas.
- No caso das máquinas com descrição não completamente especificada, utilizam-se os critérios de compatibilidade e cobertura.
- Pode-se dizer que a equivalência é um caso particular de cobertura, que, por sua vez, é um caso particular de compatibilidade.
- Nas máquinas seqüenciais com descrição completamente especificada, a solução é única e, portanto, o processo é mais simples e direto. Nesses casos, utiliza-se o critério de equivalência para garantir o cumprimento da mesma função por duas máquinas, M1 e M2. Empregando-se as condições de exclusão definidas para equivalência, os estados de uma máquina M1 são organizados em classes disjuntas de equivalência. Para cada classe de M1 é definido um estado equivalente em M2.

- Nas máquinas seqüenciais com descrição não completamente especificada, normalmente deve-se avaliar diferentes soluções possíveis, o que torna o processo mais complexo e menos objetivo. Nesses casos, utiliza-se o critério de cobertura para garantir o cumprimento da mesma função por duas máquinas, M1 e M2. Empregando-se as condições de exclusão definidas para compatibilidade, os estados de uma máquina M1 são organizados em classes conjuntas de compatibilidade máxima. Em seguida, deve-se determinar uma coleção de cobertura (cover collection) mínima, que é uma coleção fechada (closed collection) mínima que contém cada estado de M1 em, pelo menos, uma classe de compatibilidade. Para cada classe de compatibilidade da coleção de cobertura de M1 é definido um estado de cobertura em M2.
- O formalismo (Definições, Teoremas e Corolários) apresentado nesse capítulo foi retirado integralmente de [HP81].

C.2 Tabelas de estados completamente especificadas

C.2.1 Relações de equivalência

- Quando um par ordenado de elementos (x, y) possui uma propriedade R que os relaciona, pode-se dizer que "x é R-relacionado com y", o que é simbolizado por xRy.
- A relação R é definida como o conjunto de todos os pares ordenados que possuem a propriedade em questão.
- Pode-se assumir que R é uma relação definida sobre um conjunto de elementos, de tal forma que x ou y possam representar qualquer elemento do conjunto.
- Classificação das relações:
 - Reflexão: se xRx é válida para qualquer x, então R é reflexiva.
 - Simetria: se $yRx \leftrightarrow xRy$, então R é simétrica.
 - Transitividade: se $(xRy \in yRz) \rightarrow xRz$, então R é transitiva.
 - Equivalência: se R é reflexiva, simétrica e transitiva, então R é uma relação de equivalência.

C.2.2 Estados e circuitos equivalentes

- As tabelas de transição de estados (state tables) representam duas funções: a função de próximo estado $\delta(\cdot)$ e a função de saída $\lambda(\cdot)$.
- Pode-se definir a função de próximo estado por: $\delta(q_i^n, x^n) = q_j^{n+1}$.
- Pode-se definir a função de saída por: $\lambda(q_i^n, x^n) = z^n$.
- Para uma seqüência de sinais de entrada dada por $X=x^nx^{n+1}\cdots x^{n+R}$, tem-se: $\delta(q_i^n,x^nx^{n+1}\cdots x^{n+R})=q_j^{n+(R+1)} \text{ e } \lambda(q_i^n,x^nx^{n+1}\cdots x^{n+R})=z^nz^{n+1}\cdots z^{n+R}.$
- Em última análise, dado um estado inicial e uma seqüência de valores de entrada, a função de um circuito seqüencial é produzir uma seqüência de valores de saída apropriada.

- Dessa forma, podem-se estabelecer relações de equivalência entre estados e entre circuitos seqüenciais.
- Definição 1: Sejam S e T dois circuitos seqüenciais completamente especificados, sujeitos a seqüências de entrada possíveis e idênticas. Seja $(x^nx^{n+1}\cdots x^{n+R})$ uma seqüência de possíveis valores de entrada, de comprimento arbitrário. Os estados $p \in T$ e $q \in S$ são ditos indistinguíveis (equivalentes), definido por $p \equiv q$, se e somente se $\lambda_T(p^n, x^nx^{n+1}\cdots x^{n+R}) = \lambda_S(q^n, x^nx^{n+1}\cdots x^{n+R})$ para cada possível seqüência de entrada.
- **Definição 2**: Os circuitos seqüenciais S e T são ditos equivalentes, definido por $S \equiv T$, se e somente se para cada estado p em T existe um estado q em S tal que $p \equiv q$, e, inversamente, para cada estado q em S existe um estado p em T tal que $q \equiv p$.

C.2.3 Determinação de classes de estados indistinguíveis

- Uma proposta para se obter a tabela de transição de estados (*state table*) mínima é particioná-la no menor número possível de classes de equivalência de estados indistinguíveis.
- Em seguida, pode-se obter um circuito sequencial equivalente, onde cada estado corresponda a uma classe do circuito original.
- Uma vez que nem toda partição é uma classe de equivalência, deve-se ter uma forma de se definir corretamente as partições.
- Teorema 1: Suponha que os estados de um circuito seqüencial foram particionados em classes disjuntas, onde $p \triangleq q$ denota que os estados p e q pertencem à mesma classe. A partição é composta por classes de equivalência de estados indistinguíveis se e somente se as duas condições seguintes forem satisfeitas por cada par de estados p e q da mesma classe, para cada entrada simples x^n :
 - 1. $\lambda(p^n, x^n) = \lambda(q^n, x^n)$.
 - 2. $\delta(p^n, x^n) \triangleq \delta(q^n, x^n)$.

C.2.4 Circuito de classes de equivalência

- Com a tabela de transição de estados (*state table*) particionada em classes de equivalência, pode-se obter um circuito seqüencial equivalente ao original, com o número de estados minimizado.
- Teorema 2: Suponha que seja formado um circuito seqüencial T, que corresponda a um circuito completamente especificado S, de forma que para cada estado $p_j \in T$ corresponda uma classe de equivalência $C_j \in S$. O circuito T assim construído, denominado circuito de classes de equivalência, é equivalente a S. Além disso, nenhum outro circuito equivalente a S possuirá um número menor de estados do que T e qualquer circuito equivalente a S que possua o mesmo número de estados de T deve ser T.

C.3 Tabelas de estados não completamente especificadas

C.3.1 Introdução

- Na representação de um circuito digital, a falta de especificação de valores pode surgir por diversos fatores.
- Em circuitos combinacionais, determinadas entradas e/ou saídas dos blocos funcionais podem não ocorrer (can't happen) ou podem não importar (don't care). Genericamente, ambos os casos são empregados como don't care, durante o processo de minimização dos circuitos.
- Em circuitos següenciais, as indeterminações podem apresentar várias origens:
 - Nas máquinas completamente especificadas que possuem um número de estados cujo valor não é uma potência de dois, os estados extras da tabela de atribuição podem ser assumidos como don't cares. Nesses casos, é comum que eles recebam a denominação de don't cares acidentais (incidental don't cares).
 - Determinadas seqüências de entrada podem nunca acontecer, gerando indeterminações na tabela de estados (próximas entradas e saídas), as quais podem ser especificadas como don't cares.
 - Em máquinas onde as saídas são amostradas em intervalos de tempo maiores do que aqueles das mudancas de estado, podem-se atribuir valores indeterminados às saídas intermediárias, as quais também podem ser assumidas como don't cares.
- Em circuitos combinacionais, o valor don't care ('X') pode ser substituído apenas por valores booleanos ('0' ou '1'). Nesses casos, a substituição de valores é um processo simples de ser executado e sempre auxilia na minimização das expressões.
- Em circuitos seqüenciais, situações diferentes podem ocorrer:
 - Um valor $don't\ care\ ('X')$ de estado/saída pode ser substituído por N/M valores de estados/saídas.
 - A substituição indiscriminada de valores de estados/saídas pode: i) proporcionar a minimização do número de estados, ii) conduzir a um número próximo do mínimo ou iii) impedir a minimização.
- Assim, deve-se adotar um método sistemático na tentativa de minimização de estados de máquinas não completamente especificadas.

C.3.2 Noções básicas de compatibilidade

- Dada uma tabela de estados, com próximos estados e/ou saídas não completamente especificados, é possível que se realize combinações de estados, reduzindo o número total estados da tabela.
- Porém, não se pode falar, genericamente, de equivalência de estados em máquinas seqüenciais não completamente especificadas.
- A equivalência entre estados exige que tanto suas saídas quanto seus próximos estados sejam definidos para todos os valores das entradas.

- Tal exigência não é cumprida por máquinas não completamente especificadas.
- Estados não completamente especificados que podem ser combinados em um único estado final são ditos compatíveis entre si.
- Obviamente, estados que são idênticos em seus valores especificados podem ser transformados em estados equivalentes através da atribuição adequada de seus valores não especificados.
- Consequentemente, tais estados são compatíveis e podem ser combinados em um único estado.
- Porém, tal condição é suficiente, mas não necessária.
- Estados não idênticos também podem ser combinados, em algumas condições.
- Em qualquer associação de estados, é aplicado o conceito segundo o qual estados que possuem a mesma função dentro do circuito devem produzir os mesmos valores de saída, para os mesmos valores de entrada.
- No caso das máquinas não completamente especificadas, a compatibilidade é associada apenas aos valores especificados de entrada, de próximo estado e de saída.

C.3.3 Formalização dos conceitos de compatibilidade e de cobertura

- **Definição 1**: Seja uma seqüência de valores de entrada $x = \{x^n x^{n+1} \cdots x^{n+(K+1)}\}$, aplicada a um circuito S, cuja descrição é não completamente especificada e que se encontra em um estado inicial q^n . A seqüência x é dita aplicável a q se todos os valores de próximo estado forem especificados, exceto, possivelmente, aquele produzido pela última entrada da seqüência.
- Definição 2: Dois estados, $p \in q$, de um circuito S, são ditos compatíveis se e somente se

$$\lambda_S\left(\delta(p, x^n x^{n+1} \cdots x^{n+K}), x^{n+(K+1)}\right) = \lambda_S\left(\delta(q, x^n x^{n+1} \cdots x^{n+K}), x^{n+(K+1)}\right) ,$$

sempre que ambas as saídas forem especificadas, para cada seqüência x aplicável a ambos os estados, onde $x = \{x^n x^{n+1} \cdots x^{n+(K+1)}\}.$

- Teorema 1: Se dois estados, p e q, de um circuito S, são compatíveis, então as seguintes condições devem ser satisfeitas para toda entrada simples x:
 - 1. $\lambda(p^n, x^n) = \lambda(q^n, x^n)$, sempre que ambas forem especificadas.
 - 2. $\delta(p^n, x^n)$ e $\delta(q^n, x^n)$ são compatíveis, sempre que ambos forem especificados.
- **Definição 3**: Um conjunto de estados S_i , de um circuito S, é denominado uma classe de compatibilidade se cada par de estados em S_i for compatível.
- Definição 4: Uma classe de compatibilidade máxima é uma classe de compatibilidade que deixará de sê-la, se um estado que não lhe for pertencente for a ela adicionado. Um estado isolado, que não é compatível com qualquer outro estado, é definido como uma classe de compatibilidade máxima.

- **Definição 5**: Diz-se que um estado p, de uma tabela de estados T, cobre um estado q, de uma tabela de estados S, o que é definido por $p \ge q$, se, para qualquer seqüência de entradas aplicável a q e aplicada a ambas as tabelas, inicialmente nos estados p^n e q^n , respectivamente, as duas seqüências de saídas forem idênticas, sempre que a saída de S for especificada.
- **Definição 6**: Diz-se que uma tabela de estados T cobre uma tabela de estados S se, para estado q em S, existe um estado p em T que cobre q.
- Teorema 2: Se um estado p em T cobre ambos os estados q_i e q_j em S, então os estados q_i e q_j devem ser compatíveis.
- Corolário 2.1: Se um estado p em T cobre um conjunto de estados S_i de S, então tais estados devem formar uma classe de compatibilidade.
- **Definição 7**: Uma coleção de classes de compatibilidade é dita fechada se, para qualquer classe $\{q_1, q_2, \dots, q_m\}$ da coleção e para toda entrada simples x, todos os próximos estados especificados, $\delta(q_1^n, x^n), \delta(q_2^n, x^n), \dots, \delta(q_m^n, x^n)$, pertencem a uma única classe da coleção.
- Teorema 3: Suponha que, a partir dos n estados de um circuito seqüencial não completamente especificado S, seja formada uma coleção de m classes de compatibilidade, de modo que cada um dos n estados seja membro de, pelo menos, uma das m classes. O circuito S poderá ser coberto por um circuito T, que possua exatamente m estados, (p_1, p_2, \dots, p_m) , de forma que cada classe de compatibilidade de S seja coberta por um dos estados de T, se e somente se a coleção de m classes de compatibilidade de S for fechada.

C.3.4 Sistematização do processo de minimização

- A **Definição 1**, a **Definição 2**, e o **Teorema 1** apresentam as condições de exclusão que podem ser usadas na organização dos estados em classes de compatibilidade.
- A **Definição 3** e a **Definição 4**, fornecem as diretrizes para a geração das classes de compatibilidade.
- A Definição 5, a Definição 6, o Teorema 2 e o Corolário 2.1 tratam da propriedade de cobertura e de sua relação com a propriedade de compatibilidade.
- A Definição 7, e o Teorema 3 indicam as condições de cobertura entre máquinas.

Apêndice D

Linguagens de descrição de hardware

D.1 Introdução

- Desde a implementação do primeiro dispositivo eletrônico em circuito integrado, os avanços tecnológicos têm possibilitado um rápido aumento na quantidade de elementos que podem ser combinados em um único circuito nesse tipo de implementação.
- Naturalmente, com a oferta de uma maior densidade de componentes, a complexidade dos circuitos projetados cresce na mesma taxa.
- Porém, a capacidade de um ser humano em lidar com a idealização, o projeto, a documentação e a manutenção de sistemas com um grande número de componentes é extremamente limitada.
- Dessa forma, torna-se necessário o uso de ferramentas de apoio, adequadas a tal tipo de problema.
- Existem duas técnicas de projeto largamente utilizadas na abordagem de problemas de elevada complexidade:
 - Adotar uma visão hierárquica na elaboração do sistema, de forma que, em cada nível de representação, toda a complexidade dos níveis inferiores seja ocultada.
 - Aumentar o nível de abstração na descrição do sistema, de forma que o foco esteja mais na função desempenhada e menos na implementação propriamente dita.

D.2 Abordagem hierárquica

- Na definição de um sistema de baixa complexidade, pode-se descrever a sua operação de uma forma simples e direta.
- Por outro lado, na definição de sistemas com complexidade elevada, pode-se utilizar o conceito organizacional de hierarquia.
- Em uma abordagem hierárquica, um sistema de complexidade genérica é recursivamente dividido em módulos ou unidades mais simples. O ponto de parada da recursividade é subjetivo e costuma ser escolhido como a descrição comportamental mais simples possível e/ou desejada.

- Nesse sentido, o sistema completo pode ser interpretado como o módulo mais complexo ou mais externo da hierarquia.
- A abordagem hierárquica facilita a descrição, a análise e o projeto dos circuitos, uma vez que cada módulo pode ser tratado como um circuito único, isolado dos demais.
- A descrição hierárquica no sentido do todo para as partes mais simples é chamada de top-down.
- Por outro lado, a descrição hierárquica no sentido das partes mais simples para o todo é chamada de *bottom-up*.
- Normalmente, aplica-se um processo *top-down* para a especificação e um processo *bottom-up* para a implementação de sistemas.

D.3 Níveis de abstração

A descrição, a análise e a síntese de circuitos podem ser realizadas em diversos níveis de abstração.

Do ponto de vista do comportamento modelado, os seguintes níveis podem ser considerados:

- Físico-matemático: que adota equações matemáticas para descrever um modelo físico de comportamento. Obviamente, é o modelo mais próximo do comportamento físico do circuito. É tipicamente utilizado na descrição funcional de circuitos analógicos.
- Lógico: que emprega equações lógicas na sua descrição. É naturalmente utilizado na descrição funcional de circuitos digitais.
- Estrutural: que utiliza, intrinsicamente, uma descrição hierárquica do circuito modelado. Inicialmente, são definidos, testados e validados, blocos de baixa complexidade. Em seguida, realizando-se instanciações desses blocos, são definidos blocos de complexidade mais elevada. Tal processo é repetido até que o sistema desejado seja adequadamente definido. Portanto, esse é um modelo que preserva a visão da estrutura física dos circuitos.
- Comportamental: que apresenta um nível de representação mais abstrato e mais distante do sistema físico. Encontra aplicação direta em testes de funcionalidade dos circuitos.

Do ponto de vista da complexidade dos sistemas, os seguintes níveis podem ser considerados:

- Componentes: que representam os elementos básicos de circuitos.
- Células básicas: que são circuitos de baixa complexidade.
- Blocos funcionais: que são circuitos de média complexidade.
- Sistemas: que são circuitos de alta complexidade.

D.4 Linguagens de descrição de hardware

- Na área de projeto de circuitos integrados, o uso de uma Linguagem de Descrição de *Hardware (Hardware Description Language* ou HDL) tem sido proposto, a fim de permitir uma descrição mais abstrata dos seus elementos constituintes e de possibilitar que estes sejam organizados de forma hierárquica.
- Uma HDL é uma linguagem de modelagem, utilizada para descrever tanto a estrutura quanto a operação de um *hardware* digital.
- Em linguagens de programação comuns, os processos de interpretação e de compilação podem ser modelados como a tradução de uma linguagem entendida por uma máquina virtual para uma outra linguagem associada a uma outra máquina virtual.
- No caso de uma HDL, o modelo é um pouco diferente. A partir da descrição apresentada pelo código elaborado, o compilador deve inferir um *hardware* digital equivalente.
- Portanto, por meio de uma HDL, além de um mapeamento lingüístico e/ou matemático, é realizado um mapemento físico.
- De acordo com o seu comportamento funcional, um *hardware* digital pode ser classificado da seguinte forma:
 - Combinacional: sistema instantâneo (ou sem memória), com operação concorrente de eventos.
 - Seqüencial: sistema dinâmico (ou com memória), com operação seqüencial de eventos.
- Logo, uma HDL deve ser capaz de descrever ambos os comportamentos: o concorrente e o seqüencial.
- As aplicações típicas para uma HDL são as seguintes:
 - Documentação de circuitos digitais.
 - Análises de circuitos digitais, tais como: simulações e checagens diversas.
 - Síntese (projeto) de circuitos digitais. Uma vez definida uma implementação alvo, o compilador infere um circuito equivalente à descrição HDL e gera um código adequado para tal implementação. Sínteses típicas são as seguintes: a geração de código para configurar dispositivos lógicos programáveis e a geração de máscaras (layout) para fabricação de circuitos integrados.
- Algumas características que levam uma HDL a ser largamente empregada são as seguintes:
 - Apresentar padrões bem estabelecidos e bem documentados.
 - Apresentar características encontradas em outras HDLs.
 - Possuir vasta literatura disponível.
 - A existência de várias ferramentas computacionais para a HDL em questão, tais como: editores, compiladores, simuladores, checadores diversos.
 - A existência de ferramentas computacionais de diversos tipos, tais como:
 - * Domínio público ou comercial.

- * Implementada isoladamente ou incluída em ambiente de desenvolvimento integrado (*Integrated Development Environment* ou IDE).
- * Implementada em diversas plataformas computacionais.
- Exemplos de HDL
 - Independentes de tecnologia e de fabricante: VHDL, Verilog, SystemVerilog.
 - Dependentes de fabricante: AHDL (Altera HDL).
- A Tabela D.1 apresenta uma lista de fabricantes, produtos e funções, que lidam com HDL.

Fabricante	Produto	Função
Altera	Quartus II	Síntese e simulação
Xilinx	ISE	Síntese e simulação
Menthor Graphics	Precision RTL	Síntese
	ModelSim	Simulação
Synopys/Synplicity	Design Compiler Ultra	Síntese
	Synplify Pro/Premier	
	VCS	Simulação
Cadence	NC-Sim	Simulação

Tabela D.1: Lista de fabricantes, produtos e funções, que lidam com HDL.

Apêndice E

Introdução à linguagem VHDL

A linguagem VHDL é apresentada a seguir, de forma introdutória. Para que se adquira um conhecimento mais aprofundado sobre a linguagem, é recomendado consultar uma literatura específica (manuais e livros especializados).

E.1 Histórico da linguagem VHDL

- Durante o desenvolvimento do programa Very High Speed Integrated Circuits (VHSIC), iniciado em 1980 pelo Departamento de Defesa (DoD) dos Estados Unidos da América, surgiu a necessidade de uma HDL específica para lidar com os tipos de circuitos integrados envolvidos no programa. Em função disso, foi proposta a primeira versão da linguagem VHDL (VHSIC Hardware Description Language).
- A linguagem VHDL continuou a ser desenvolvida pelo IEEE (Institute of Electrical and Electronics Engineers) e foi a primeira HDL padronizada, por meio dos padrões IEEE Standard 1076 (Standard VHDL Language Reference Manual 1987) e IEEE Standard 1164 (Standard Multivalue Logic System for VHDL Model Interoperability 1993).
- Os padrões IEEE são revisados, pelo menos, a cada cinco anos. Portanto, já foram gerados os padrões VHDL-1987, VHDL-1993, VHDL-2002 e VHDL-2008.

E.2 VHDL como linguagem

Como qualquer linguagem escrita, VHDL utiliza um conjunto específico de símbolos e de regras que definem aspectos de sintaxe e de semântica.

Embora seja uma linguagem específica para a descrição de circuitos eletrônicos digitais, aplicada na documentação, simulação e síntese automática de tais circuitos, VHDL ainda pode ser interpretada como uma linguagem de programação.

Vista como uma linguagem de programação, VHDL apresenta elementos comuns a diversas linguagens de programação modernas, alguns dos quais são discutidos a seguir.

E.2.1 Considerações gerais

- Arquivos contendo código VHDL são formatados em tipo TEXTO.
- O nome do arquivo que contém o código VHDL (nome.vhd) deve ser o mesmo nome da entidade mais externa na hierarquia de circuitos descrita pelo arquivo em questão.

- Comentários são iniciados com dois hífens consecutivos (--).
- Um sinal físico, com valores binários, é definido pelo tipo BIT. Por sua vez, um conjunto de tais sinais é definido pelo tipo BIT_VECTOR.
- O valor de um sinal do tipo BIT é indicado com aspas simples (p.ex.: '0' e '1'), enquanto o valor de um sinal do tipo BIT_VECTOR é delimitado por aspas duplas (p.ex.: "0000", "0101" e "1111").
- Duas operações básicas no uso de VHDL são a compilação e a simulação. A partir de uma descrição VHDL do circuito digital, armazenada em arquivo do tipo texto, o compilador VHDL infere um circuito equivalente na implementação alvo e armazena tal informação em um outro arquivo do tipo texto. A partir do arquivo que contém informação sobre o circuito compilado e de uma descrição de sinais de teste, armazenada em arquivo do tipo texto, o simulador VHDL calcula os sinais gerados pelas saídas do circuito.

E.2.2 Palayras reservadas

As palavras reservadas (*reserved words* ou *keywords*) são identificadores que possuem um significado especial dentro da linguagem. Assim, seu uso é restrito à sua definição original e, uma vez que não podem ser redefinidas, elas não podem ser empregadas para nenhum outro propósito.

A Figura E.1 apresenta as palavras reservadas de VHDL.

E.2.3 Identificadores definidos pelo usuário

Algumas regras básicas para a construção de identificadores são as seguintes:

- Todo identificador é formado por uma seqüência de caracteres (*string*) única, de qualquer comprimento.
- Identificadores podem ser formados apenas com letras minúsculas e/ou maiúsculas (a até z e A até Z), com números de 0 a 9 e com o símbolo " $_$ " (sublinhado ou underscore).
- Todo identificador deve começar com uma letra.
- O símbolo de *underscore* não pode ser usado como primeiro nem como último caractere do identificador. Também não é permitido usar dois símbolos de *underscore* consecutivos.
- VHDL não é case sensitive. Logo: identificador \equiv IdEnTiFiCaDoR \equiv IDENTIFICADOR.

Os padrões mais recentes permitem o uso de um conjunto expandido de caracteres, incluindo a utilização de hífen e de acentos. Porém, as regras acima são suficientes para garantir a compatibilidade entre os diversos padrões.

E.2.4 Elementos sintáticos

Além das palavras reservadas e dos identificadores definidos pelo usuário, podem-se utilizar símbolos especiais para escrever o código VHDL. Assim como as palavras reservadas, seu uso é restrito à sua definição original.

A Figura E.2 apresenta símbolos especiais de VHDL.

abs	disconnect	label	package	then
access	downto	library	port	to
after		linkage	postponed	transport
alias	else	literal	procedure	type
all	elseif	loop	process	
and	end		protected	unaffected
architecture	entity	map	pure	units
array	exit	mod		until
assert			range	use
attribute	file	nand	record	
	for	new	register	variable
begin	function	next	reject	
block		nor	rem	wait
body	generate	not	report	when
buffer	generic	null	return	while
bus	group		rol	with
	guarded	of	ror	
case		on		xnor
component	if	open	select	xor
configuration	impure	or	severity	
constant	in	others	shared	
	inertial	out	signal	
	inout		sla	
	is		sll	
			sra	
			srl	
			subtype	

Figura E.1: Palavras reservadas de VHDL.

Símbolo	Significado
	Comentário
;	Terminador
(Parêntese da esquerda
	Parêntese da direita
:	Separação entre elemento e tipo
<>	Declaração de faixa indefinida (box)
#	Notação base#número#
	Notação de ponto
,	Aspas simples ou marca de $tick$
"	Aspas duplas
&	Concatenador
<=	Atribuição a sinal
:=	Atribuição a variável/constante
=>	Atribuição a elemento de conjunto

Símbolo	Significado
	OR condicional
=>	Símbolo de THEN em CASE
+	Adição ou identidade unária
_	Subtração ou negação unária
*	Multiplicação
/	Divisão (com truncamento)
**	Exponenciação
=	Igual a
/= <	Diferente de
<	Menor do que
>	Maior do que
<=	Menor do que ou igual a
>=	Maior do que ou igual a

Figura E.2: Símbolos especiais de VHDL.

E.3 Conceitos básicos sobre o código VHDL

E.3.1 Elementos básicos

- Alguns elementos básicos de um código VHDL são: constante, variável, sinal e operador.
- Constantes são geralmente empregadas para flexibilização e/ou otimização do código.
- Variável é um elemento abstrato para armazenamento de informação matemática.
- Sinal é o elemento da linguagem associado com elementos físicos de conexão (pino e fio).
- Operadores representam as relações funcionais básicas. Eles são definidos com as palavras reservadas e com os elementos sintáticos, sendo organizados em seis classes: atribuição, lógica, aritmética, comparação, deslocamento e concatenação. A Tabela E.1 apresenta os operadores de VHDL.

Classe	Operadores
Atribuição	<=, :=, =>.
Lógica	NOT, AND, OR, XOR,
	NAND, NOR, XNOR.
Aritmética	+, -, *, /, **,
	ABS, $MOD^{(1)}$, $REM^{(2)}$.
Comparação	=, /=. <, >, <=, >=.
Deslocamento	SLL, SRL, SLA, SRA,
	ROL, ROR.
Concatenação	& ("," e OTHERS).

- (1) Module: resto de a/b, com sinal de b.
- (2) Remainder: resto de a/b, com sinal de a.

Tabela E.1: Operadores de VHDL.

E.3.2 Tipos de execução

- De acordo com o tipo de execução, os códigos VHDL são divididos em: concorrente e seqüencial.
- Códigos concorrentes são empregados para descrever circuitos digitais combinacionais.
 Por sua vez, os códigos seqüenciais são utilizados para descrever tanto circuitos combinacionais quanto circuitos seqüenciais.
- As instruções VHDL são naturalmente executadas de forma concorrente. Assim, embora o código seja organizado em linhas, todas as linhas têm igual precedência.
- Para que um código seja considerado seqüencial, isso deve ser forçado. O mecanismo mais comum para forçar um código a ser seqüencial é denominado de processo, definido pela instrução PROCESS. Um processo é concorrente com qualquer outro comando e com qualquer outro processo. Outras opções para gerar código seqüencial são os subprogramas (FUNCTION e PROCEDURE).

- As constantes podem ser declaradas e usadas em ambos os tipos de código.
- Variáveis só podem ser declaradas e usadas dentro de um código seqüencial.
- Os sinais só podem ser declarados dentro de código concorrente, mas podem ser utilizados em ambos os tipos de código.
- Os operadores podem ser usados para construir ambos os tipos de código.
- As seguintes instruções de controle de fluxo podem ser empregadas apenas em código concorrente: WHEN, SELECT e GENERATE.
- Por outro lado, as seguintes instruções de controle de fluxo podem ser empregadas apenas em código seqüencial, ou seja, dentro de PROCESS, FUNCTION ou PROCEDURE: IF, CASE, LOOP e WAIT.

E.3.3 Mecanismo genérico de simulação

- A simulação de um modelo em VHDL é baseada em eventos.
- A passagem do tempo é simulada em passos discretos, associados à ocorrência de eventos.
- Quando um novo valor é agendado para ser atribuído a um dado sinal, em um tempo futuro, diz-se que ocorreu o agendamento de uma transação sobre tal sinal.
- Ao ocorrer uma atribuição a um sinal, se o novo valor for diferente do valor anterior, diz-se que ocorreu um evento sobre tal sinal.
- Uma simulação é dividida em duas partes: a fase de inicialização e os ciclos de simulação.
- A fase de inicialização é composta pelas seguintes etapas:
 - O tempo da simulação é ajustado para o valor inicial t=0 s.
 - A cada sinal declarado, é atribuído um valor inicial.
 - Para cada um dos processos declarados, é ativada uma instância e seus comandos seqüenciais são executados.
 - Usualmente, um processo contém atribuições a sinais, que agendarão transações sobre eles, em valores futuros de tempo.
 - Cada processo executa até que seja alcançado o comando WAIT, o que causa a sua suspensão.
 - Após a suspensão de todos os processos ativados, a fase de inicialização é terminada, passando-se para a execução dos ciclos de simulação.
- Os ciclos de simulação são formados pelas seguintes etapas:
 - O tempo de simulação é avançado até o próximo valor para o qual foi agendada uma transação sobre um sinal.
 - Todas as transações agendadadas para o tempo corrente são executadas.
 - As execuções das transações podem causar a ocorrência de eventos sobre sinais.
 - Todos os processos sensíveis aos sinais sobres os quais ocorreram eventos são reativados.

- Os processos reativados executam seus comandos seqüenciais.
- Possivelmente, os processos reativados agendarão novas transações sobre sinais
- Cada processo executa até que seja alcançado o comando WAIT, o que causa a sua suspensão.
- Após a suspensão de todos os processos reativados, o ciclo é repetido.
- Quando não houver mais qualquer transação agendadada, a simulação atinge seu fim.

E.4 Estrutura do código VHDL

Um código VHDL genérico, que contém a descrição de um determinado circuito, apresenta as seguintes partes:

- Declaração de bibliotecas e pacotes: que é um conjunto de declarações sobre as bibliotecas a serem consideradas e sobre os pacotes pertencentes a tais bibliotecas que deverão ser empregados.
- Entidade: que descreve a interface de acesso ao circuito, definindo a sua identificação, as suas entradas e as suas saidas.
- Arquitetura: que descreve a operação do circuito, definindo as relações entre as suas saídas e as suas entradas.

Cada uma dessas partes é discutida a seguir.

E.4.1 Bibliotecas e pacotes

- Em aplicativos de desenvolvimento, é comum que diversos elementos sejam previamente definidos, tais como: identificadores, valores constantes, nomes de variáveis e de estruturas, inicialização de variáveis e de estruturas, macros, funções e objetos.
- O objetivo em se definir previamente tais elementos é facilitar o trabalho do projetista.
- Uma vez definidos, testados e validados, tais elementos podem ser utilizados em quaisquer projetos, sem que seja necessária a sua definição a cada projeto.
- Cada aplicativo possui seus próprios padrões para a organização dos elementos previamente definidos.
- Uma organização simples e bastante utilizada são os arquivos de configuração.
- Por outro lado, uma forma mais estruturada de organização é obtida através do agrupamento de informações em um pacote (package) e de pacotes em uma biblioteca (library).
- Os compiladores VHDL normalmente consideram a inclusão automática das seguintes bibliotecas: std e work.
- A biblioteca std contém definições sobre os tipos básicos de dados e os correspondentes operadores. Por sua vez, a biblioteca work indica o diretório onde estão armazenados os arquivos do projeto.
- Nos circuitos digitais descritos em VHDL, são largamente utilizados a biblioteca padrão *ieee* e os seus pacotes *standard* e *IEEE 1164*, ambos definidos pelo IEEE.

E.4.2 Entidade

Entidade é o termo associado a um módulo de circuito em VHDL. A declaração de uma entidade descreve a interface de acesso ao circuito, definindo a sua identificação, as suas entradas e as suas saidas. As entradas e saídas são associadas aos pontos ou pinos de acesso do circuito físico e são conjuntamente denominadas de portas.

E.4.3 Arquitetura

Aspectos gerais

Arquitetura é o mecanismo utilizado em VHDL para descrever a operação de um circuito. Uma declaração de arquitetura é sempre associada a uma determinada entidade. Na arquitetura, são definidas as relações entre as saídas e as entradas da entidade a ela associada.

Um mesmo circuito digital pode ser descrito por diversas maneiras equivalentes, tais como: tabela verdade, equações genéricas diferentes, equações relacionadas a diferentes decomposições específicas, diferentes decomposições hierárquicas. Assim, dependendo do nível de abstração utilizado, uma mesma entidade pode ter seu funcionamento descrito por diversas arquiteturas diferentes.

Tipos de descrição

De uma forma geral, a descrição das operações de um circuito dentro de uma arquitetura pode assumir duas formas: comportamental ou estrutural. Em uma descrição comportamental, é feita uma descrição explícita das relações entre as saídas e as entradas. Para tal, são usados os operadores e/ou as instruções de controle de fluxo. Por sua vez, em uma descrição estrutural, é utilizado o conceito de hierarquia. Nesse caso, são utilizados módulos mais simples, previamente descritos, bem como são definidas as conexões que os interligam. Dado que uma descrição estrutural é um modelo hierárquico, os módulos que compõem o nível mais baixo e básico da hierarquia devem ser descritos de uma forma comportamental.

Instanciação de módulos

Deve-se notar que a existência de um mecanismo que possibilita a definição de um circuito em forma hierárquica permite a construção de bibliotecas de módulos e a instanciação de módulos a partir de uma determinada biblioteca.

A técnica de instanciação de módulos a partir de uma biblioteca otimiza o trabalho de descrição de circuitos complexos, bem como permite a reusabilidade de código.

Em VHDL, um módulo instanciável é denominado de componente (COMPONENT). Podese instanciar um módulo componente de duas formas básicas:

- O componente é declarado em um pacote, que é localizado em uma biblioteca, e é instanciado no código principal.
- O componente é declarado e instanciado no código principal.

E.5 Algumas regras sintáticas de VHDL

Comumente, as regras sintáticas das linguagens de programação são apresentadas com as notações denominadas de BNF (*Backus-Naur Form*) e EBNF (*Extended Backus-Naur Form*). Seguindo esse padrão, alguma regras sintáticas de VHDL são apresentadas a seguir.

E.5.1 Regras para biblioteca

```
library_clause <=
    LIBRARY identifier { , ... };

use_clause <=
    USE selected_name { , ... };

selected_name <=
    identifier . identifier . ( identifier | ALL )</pre>
```

Em selected_name, o identifier mais à esquerda refere-se à biblioteca, o identifier do meio indica o pacote e o identifier mais à direita aponta o item a ser utilizado.

E.5.2 Regras para pacote

```
package_declaration <=
    PACKAGE identifier IS
        { package_declarative_item}
    END [ PACKAGE ] [ identifier ] ;

package_body <=
    PACKAGE BODY identifier IS
        { package_body_declarative_item}
    END [ PACKAGE BODY ] [ identifier ] ;</pre>
```

E.5.3 Regras para entidade

```
entity_declaration <=
    ENTITY identifier IS
        [ GENERIC ( generic_interface_list ) ; ]
        [ PORT ( port_interface_list ) ; ]
    END [ ENTITY ] [ identifier ] ;

generic_interface_list <=
    ( identifier { , ... } : subtype_indication [ := expression ] )
    { , ... }

port_interface_list <=
    ( identifier { , ... } : [ mode ] subtype_indication ) { , ... }</pre>
```

```
modet <=
    IN | OUT | INOUT</pre>
```

E.5.4 Regras para arquitetura

```
architecture_body <=</pre>
    ARCHITECTURE identifier OF entity_name IS
        { block_declarative_item }
    BEGIN
        { concurrent_statement }
    END [ ARCHITECTURE ] [ identifier ] ;
signal_declaration <=
    SIGNAL identifier { , ... } : subtype_indication [ := expression ] ;
signal_assignment_statement <=</pre>
    name <= ( value_expression [ AFTER time_expression ] ) { , ... } ;</pre>
conditional_signal_assignment <=</pre>
    name <= { waveform WHEN boolean_expression ELSE }</pre>
               waveform [ WHEN boolean_expression ] ;
selected_signal_assignment <=</pre>
    WITH expression SELECT
        name <= { waveform WHEN choices , }</pre>
                   waveform WHEN choices;
```

E.5.5 Regras para processo

E.5.6 Regras para componente

```
component_instantiation_statement <=
   instantiation_label:
   ENTITY entity_name ( architecture_identifier )
        [ GENERIC MAP ( generic_association_list ) ]
        PORT MAP ( port_association_list ) ;

generic_association_list <=
        ( [ generic_name => ] ( expression | OPEN ) ) { , ... } ;

port_association_list <=
        ( [ port_name => ] signal_name ) { , ... } ;
```

E.6 Exemplos de declarações genéricas

E.6.1 Exemplos de biblioteca e de pacote

Um código tipicamente encontrado em arquivos VHDL, para a declaração de bibliotecas e para o uso de pacotes, é o seguinte:

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
```

E.6.2 Exemplos de entidade

Uma declaração genérica de entidade é a seguinte:

Deve ser ressaltado que o campo GENERIC é um conteúdo opcional.

E.6.3 Exemplos de arquitetura

```
Uma declaração genérica de arquitetura é a seguinte:
  ARCHITECTURE __architecture_name OF __entity_name IS
    -- Declarative section
      -- TYPE
      -- CONSTANT
      -- SIGNAL
      -- COMPONENT
      -- VARIABLE
       -- FUNCTION
  BEGIN
    -- Code section
      -- Process Statement
      -- Concurrent Procedure Call
      -- Concurrent Signal Assignment
      -- Conditional Signal Assignment
      -- Selected Signal Assignment
      -- Component Instantiation Statement
      -- Generate Statement
  END ARCHITECTURE __architecture_name;
  Um exemplo de declaração de arquitetura que emprega componentes (declarados no próprio
código) é o seguinte:
   ARCHITECTURE __architecture_name OF __entity_name IS
    COMPONENT C_1 IS
      PORT(x, y : IN BIT;
              : OUT BIT);
    END COMPONENT C_1;
    COMPONENT C_2 IS
      PORT(x, y, z : IN BIT;
                  : OUT BIT);
    END COMPONENT C_2;
    SIGNAL s1, s2 : BIT;
  BEGIN
    Inst_1 : C_1 PORT MAP(x \Rightarrow a, y \Rightarrow b, z \Rightarrow s1) --> Syntax #1
```

```
Inst_2 : C_1 PORT MAP(c,d,s2) --> Syntax #2
--
Inst_3 : C_2 PORT MAP(e,s1,s2,f)
--
END ARCHITECTURE __architecture_name;
```

E.6.4 Exemplos de processo

Uma declaração genérica de processo, comumente usada no caso de circuitos combinacionais, é a seguinte:

Uma declaração genérica de processo, comumente usada no caso de circuitos sequenciais, é a seguinte:

```
__process_label : PROCESS IS
   VARIABLE __variable_name : __type;
   VARIABLE __variable_name : __type;
BEGIN
   WAIT UNTIL __clk_signal = __valor;
   -- Signal Assignment Statement
   -- Variable Assignment Statement
   -- Procedure Call Statement
   -- If Statement
   -- Case Statement
   -- Loop Statement
END PROCESS __process_label;
```

Referências Bibliográficas

- [Arm62] D. B. Armstrong. A Programmed Algorithm for Assigning Internal Codes to Sequential Machines. *IRE Transactions on Electronic Computers*, EC 11(4):466–472, August 1962.
- [HP81] F. J. Hill and G. R. Peterson. *Introduction to Switching Theory and Logical Design*. John Wiley, New York, NY, 3rd edition, 1981.
- [Hum58] W. S. Humphrey. Switching Circuits with Computer Applications. McGraw-Hill, New York, NY, 1958.
- [IC08] I. V. Idoeta and F. G. Capuano. *Elementos de Eletrônica Digital*. Editora Érica, 40.^a edição edition, 2008.
- [McC65] E. J. McCluskey. *Introduction to the Theory of Switching Circuits*. McGraw-Hill, New York, NY, 1965.
- [Rhy73] V. T. Rhyne. Fundamentals of Digital Systems Design. Prentice-Hall, Englewood Cliffs, NJ, 1973.
- [Ric56] R. K. Richards. Arithmetic Operations in Digital Computers. Van Nostrand Reinhold, New York, NY, 1956.
- [Sau67] G. A. Saucier. Encoding of Asynchronous Sequential Networks. *IEEE Transactions on Computers*, EC 16(3), 1967.
- [Tau82] H. Taub. Digital Circuits and Microprocessors. McGraw-Hill, New York, NY, 1982. Em português: McGraw-Hill, Rio de Janeiro, 1984.
- [TWM07] R. J. Tocci, N. S. Widmer, and G. L. Moss. Sistemas Digitais: Princípios e Aplicações. Prentice Hall, Pearson Education, 10.ª edição edition, 2007.
- [Ung59] S. H. Unger. Hazards and Delays in Asynchronous Sequential Switching Circuits. IRE Transactions on Circuit Theory, CT-6(12), 1959.
- [Ung69] S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley, New York, NY, 1969.
- [Uye02] J. P. Uyemura. Sistemas Digitais: Uma abordagem integrada. Thomson Pioneira, São Paulo, SP, 2002.