Oficina de Entrada e Saída com Arduino

Grupo HardwareLivreUSP

Conteúdo da oficina

- Estrutura de uma placa Arduino
- Conceitos de sinais elétricos
 - Sinal digital, analógico, PWM
- Ambiente de desenvolvimento
 - Os blocos básicos de um programa em Arduino
 - Receber e enviar sinais digitais
- Projeto Genius (Jogo da memória)

O Arduino UNO

A Galileo

Entrada e Saída (I/O)

- Entrada e saída de dados / sinais em relação ao microcontrolador
- Entrada
 - o Um sinal externo é enviado ao microcontrolador
- Saída
 - o O microcontrolador gera um sinal e o envia ao meio externo
- Que sinais são esses?

Analógico Vs Digital

- Sinal analógico
 - Pode assumir qualquer valor entre o limite mínimo e máximo
- Sinal digital
 - o Discretizado (geralmente apenas 0 ou 1)

Pulse Width Modulation (PWM)

- Pulsos (ligado e desligado / 1 e 0)
 durante determinada proporção
 de tempo em um ciclo constante
- Simula um sinal analógico com um sinal digital

O LED (Light Emitting Diode)

- Usualmente operam em um nível de tensão de 1,6 a 3,3 volts e sob uma corrente elétrica próxima de 20 mA
- Possuem polaridade
 - Perna maior é positiva
 - Perna menor é negativa

https://en.wikipedia.org/wiki/Light-emitting_diode

Resistores

- Dificultam a passagem de corrente elétrica
- Provocam queda do potencial elétrico de uma ponta para a outra

LED e Resistor

Normalmente junto ao LED é usado um resistor de 220 a 330 ohms para evitar que o LED queime.

Fundamento teórico:

- Primeira lei de Ohm: i = V / R
- Lei de Kirchhoff das tensões (LKT)

Protoboard / breadboard

Muito usada para fazer testes e protótipos iniciais.

Protoboard / breadboard

- As ilhas no centro da placa estão conectadas horizontalmente
- As ilhas nas laterais da placa estão conectadas verticalmente

- Instale a IDE do Arduino obtida em:
 - o https://www.arduino.cc/en/Main/Software
- Para a IDE da Galileo visite:
 - o http://www.intel.

<u>com/content/www/us/en/support/boards-</u>

and-kits/intel-galileo-boards/000005614.

<u>htmlS</u>

```
File Edit Sketch Tools Help
memorygame
    level = 1:
    start = 1:
 void loop()
  if(start) {
     for (int i = 0; i < length; i++) {
      playNote(notes[i], beats[i]*tempo);
      delay(tempo/2);
    lcd.print("Press Again to");
    lcd.setCursor(0, 1);
    lcd.print("Start");
    lcd.setCursor(5, 1);
    lcd.write((uint8 t)0);
    delay (100):
    lcd.setCursor(5, 1):
    lcd.write((uint8 t)1):
    delay(100):
    if (getButtonPress()) {
      start = 0:
      lcd.clear();
      lcd.setCursor(0, 0);
      if (user == game && game != 0 && score < 10) {
        lcd.nrint("You Are Correct"):
        score++;
        lcd.setCursor(0, 1);
        lcd.print("Score:");
        lcd.setCursor(6, 1):
Done compiling
Binary sketch size: 7.912 bytes (of a 32.256 byte maximum)
```

- Conecte o Arduino em uma porta USB do computador
- Selecione a placa Arduino em Tools -> Board
- Selecione a porta USB em Tools -> Serial Port

- Monte o projeto na protoboard
- Hardware necessário
 - o Placa Arduino
 - Protoboard
 - o 1 LED
 - o 1 Resistor de 220 Ohms
 - Fios para conectar os componentes

- Abra o código do exemplo em
 File -> Examples -> Basics -> Blink
- Compile o código
- Envie o programa para o Arduino

Atividades

- Modifique o projeto
 - Sugestões:
 - altere a frequência com que o LED pisca
 - faça dois LEDs piscarem juntos
 - faça dois LEDs piscarem alternadamente
- Utilize analogWrite(led, <valor>) no lugar de digitalWrite(led, HIGH)
 - <valor> é um número entre 0 e 255
- Faça o exemplo em File -> Examples -> Basics -> Fade
 - Projeto completo disponível em https://www.arduino.cc/en/Tutorial/Fade

Milhares de exemplos

A IDE Arduino vem com vários exemplos, dos mais simples (piscar um LED) aos mais elaborados envolvendo sensores, motores, etc..

Linguagem de programação

- Linguagem baseada em C/C++
- Estrutura simples
 - o setup()
 - Executa apenas uma vez logo no início
 - o loop()
 - Executa ciclicamente após o setup()

```
Arduino 1:1.0.5+dfsq2-2
File Edit Sketch Tools Help
   Knock
 // these constants won't change:
 const int ledPin = 13:
                             // led connected to digital pin 13
 const int knockSensor = AO; // the piezo is connected to analog pin O
 const int threshold = 100; // threshold value to decide when the detect
 // these variables will change:
 int sensorReading = 0;
                             // variable to store the value read from the
int ledState = LOW:
                             // variable used to store the last LED statu
 void setup() {
 pinMode(ledPin, OUTPUT); // declare the ledPin as as OUTPUT
 Serial.begin(9600);
                            // use the serial port
 void loop() {
  // read the sensor and store it in the variable sensorReading:
   sensorReading = analogRead(knockSensor);
   // if the sensor reading is greater than the threshold:
   if (sensorReading >= threshold) {
     // toggle the status of the ledPin:
     ledState = !ledState:
     // update the LED pin itself:
     digitalWrite(ledPin, ledState);
    // send the string "Knock!" back to the computer, followed by newline
     Serial.println("Knock!"):
  delay(100); // delay to avoid overloading the serial port buffer
```

Referência da linguagem

https://www.arduino.cc/en/Reference/HomePage

Recebendo e enviando sinais digitais

Objetivo: Ligar e desligar um LED de acordo com o estado de um botão.

O botão / push button

Quando pressionado o botão conecta os contatos A e C aos contatos em B e D.

Projeto Botão

- Hardware necessário
 - o Placa Arduino
 - Protoboard
 - o 1 LED
 - o 2 Resistores de 220 ohms
 - Fios para conectar os componentes
 - o Um botão

Recebendo e enviando sinais digitais

- Código para o projeto em: File ->
 Examples -> Digital -> Button
- Compile o código (opcional)
- Envie o programa para o Arduino

Atividades

- Mude o código para que o LED permaneça ligado e desligue quando o botão estiver pressionado
- Mude o código para que o LED mude de estado (ligado/desligado) ao pressionar do botão
 - o Botão liga e desliga
- Mude o projeto para que o LED ligue e permaneça ligado ao pressionar de um botão e desligue e permaneça desligado ao pressionar de outro botão.
 - o Botão liga e (outro) botão desliga

Pullup e pulldown

- Até agora usamos resistores pulldown
- As Arduinos têm resistores internos para uso como resistores pullup
- Acessados com pinMode(<pino>,
 INPUT_PULLUP) isso inverte o
 comportamento do pino de entrada
 - HIGH quando o sensor está desligado e
 LOW quando ligado

Atividades

- Estude o exemplo em https://www.arduino.cc/en/Tutorial/InputPullupSerial
- Faça a atividade anterior (botão liga e botão desliga) sem usar resistores
- Extra: estude o conteúdo em https://www.arduino.cc/en/Tutorial/DigitalPins

Projeto Genius (Jogo da memória)

- Hardware necessário
 - Placa Arduino
 - Protoboard
 - o 4 LEDs
 - o 8 Resistores de 220 ohms
 - 4 botões
 - 1 alto falante (speaker)
 - Fios para conectar os componentes

Código e melhor descrição do projeto em

http://labdegaragem.com/profiles/blogs/arduino-genius-jogo-da-mem-ria

Projeto Genius (Jogo da memória)

E se eu não tiver uma placa Arduino?

Se você não tiver uma placa Arduino visite https://123d.circuits.io/

Grupo HardwareLivreUSP

Muito obrigado!

Curtam nossa pagina no facebook: www.facebook.com/Hardwarelivreusp

Participe do nosso grupo de Email: harduime@googlegroups.com