Systems in 60 Minutes

Raymond Xu raymondxu.io

What happens when you visit google.com?

- Horizontally
- Vertically

What happens when you visit google.com?

- Horizontally
- Vertically

What's the best way to learn new systems?

What happens when you visit google.com?

- Horizontally
- Vertically

What's the best way to learn new systems?

Source: Google Cloud Platform Solutions

What happens when you visit google.com?

- Horizontally
- Vertically

What's the best way to learn new systems?

"Envoy is a high performance C++ distributed proxy designed for single services and applications, as well as a communication bus and "universal data plane" designed for large microservice "service mesh" architectures."

Source: Google Cloud Platform Solutions

What happens when you visit google.com?

- Horizontally
- Vertically

What's the best way to learn new syst is?

"Envoy is a high performance C++ distribut proxy designed for single services and applications, as well as a communication bus and "universal data plane" designed for large microservice "service mesh" architectures."

Source: Google Cloud Platform Solutions

Horizontal

Your Computer \rightarrow Networks \rightarrow Google \rightarrow Networks \rightarrow Your Computer

Google Networks Your Computer

Your Computer

- Applications
- Operating System
- Hardware
- Physics

Google

Computer

- Applications
- Operating System
- Hardware
- Physics

Google

Computer

- Applications
- Operating System
- Hardware
- Physics

Google

- Applications
- Operating System
- Hardware
- Physics

Computer

- Applications
- Operating System
- Hardware
- Physics

Google Computer

Computer

- Applications
- Operating System
- Hardware
- Physics

Google Computer x 1,000,000

Computer

- Applications
- Operating System
- Hardware
- Physics

Google

Computer

x 1,000,000

+ Distributed Systems

Computer

- Applications
- Operating System
- Hardware
- Physics

Google

Computer

x 1,000,000

+ Distributed Systems

- Protocols
- Infrastructure
- Physics

Networks transfer data.

Computers store and manipulate data.

Computers store and manipulate data.

Networks transfer data.

Data can be anything

- Text
- Images
- Videos

All data can be represented one-dimensionally with 1s and 0s (bits)

How do you interpret a sequence of bits?

Character encodings

PPM example (a simple image file format)

01010000 00110010 00110000 00110000 00110000 00110000 00110100 00101000 00110000 001

PPM example (a simple image file format)

ASCII Character encoding...

PPM example (a simple image file format)

PPM example (a simple image file format)

PPM example (a simple image file format)

File type Width Height Maximum color value R G B ...

PPM example (a simple image file format)

File type Width Height Maximum color value R G B ...

Storing Data

Memory

- Voltage through a circuit indicates 1 or 0
- So with enough circuits we can represent arbitrary data
- Power loss = data loss

Storing Data

Hard Drive (Disk)

- Metal can be precisely magnetized/demagnetized
- Direction of magnetism indicates 1 or 0
- Platters can store data
- Does not need to maintain power

Manipulating Data

CPU

- Cleverly arranged circuits can model math
- Take some input state and deterministically produce some meaningful output state
- Defined instructions (code?!) allow us to tell the CPU what to do

Operating System

Software that manages a computer's hardware and runs programs

Intermediary layer between user and hardware, and applications and hardware

Kernel

- The most important part of an OS
- A program that controls the hardware
 - CPU, Memory, Devices

Applications

Built on top of the operating system API

Written in high level programming languages (typically)

Examples: Microsoft Office, Web Browsers, Compilers, Database Management Systems

Databases

Data stored on disk in a specific structured manner (think file formats)

A Database Management System (DBMS) sits on top of the database and allows other applications to interact with the data

A Primitive Database

```
db_set () {
    echo "$1,$2" >> database
}

db_get () {
    grep "^$1," database | sed -e "s/^$1,//" | tail -n 1
}
```

Source: Martin Kleppmann, Designing Data-Intensive Applications

A Primitive Database

```
db set(){
    echo "$1,$2" >> database
db get(){
    grep "^$1," database | sed -e "s/^$1,//" | tail -n 1
```

Source: Martin Kleppmann, Designing Data-Intensive Applications

```
$ db set 123 raymondxu.io
$ db_set 456 pokerchips.io
$ db get 123
raymondxu.io
$ cat database
123,raymondxu.io
456,pokerchips.io
```

Databases

Real databases use data structures and algorithms for efficiency

Data modeling is representing the data requirements of an application in a useful and efficient manner

Layering

Layering

Building Blocks: Transistors

Layering

Storing Data: Memory, Disk

Building Blocks: Transistors

Layering

Manipulating Data: CPU

Storing Data: Memory, Disk

Building Blocks: Transistors

Layering

Overseer: OS

Manipulating Data: CPU

Storing Data: Memory, Disk

Building Blocks: Transistors

Layering

User uses: Applications

Overseer: OS

Manipulating Data: CPU

Storing Data: Memory, Disk

Building Blocks: Transistors

Computers store and manipulate data.

Networks transfer data.

Computers store and manipulate data.

Networks transfer data.

Networks

So we can store and manipulate data within one computer

Networks

So we can store and manipulate data within one computer

How do we transfer data between computers?

Networks

So we can store and manipulate data within one computer

How do we transfer data between computers?

First let's prepare the data for transmission...

Protocols

Standardized procedures for communication

Can't just send your raw data into a network

- Where does it go?
- What is the data?
- What if some of the data is lost?
- How do you know it was sent?

Source: https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm

Source: https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm

Internet

Internet

So we have prepared our data for transmission and can accept transmitted data

What's inside the "Internet" box?

Internet

Internet Backbone

A core web of fiber optic cables

• Light transmission

Source: https://en.wikipedia.org/wiki/Internet_backbone

Internet Backbone

A core web of fiber optic cables

• Light transmission

Source: https://en.wikipedia.org/wiki/Internet_backbone

Routers

Routers are devices that forwards data packets

Routing tables make sure we get to the destination IP address

Another protocol

Physical and wireless transmission

WiFi uses radio signals (electromagnetic wave modulation)

Routers

Routers are devices that forwards data packets

Routing tables make sure we get to the destination IP address

Another protocol

Physical and wireless transmission

WiFi uses radio signals (electromagnetic wave modulation)

Routers use IP addresses — what's the IP for google.com?

Domain Name System (DNS)

Converts web URLs into IP addresses

Distributed database that tracks names and IP addresses

Domain Name System (DNS)

Converts web URLs into IP addresses

Distributed database that tracks names and IP addresses

\$ host google.com

google.com has address 172.217.6.238 google.com has IPv6 address 2607:f8b0:4006:805::200e google.com mail is handled by 40 alt3.aspmx.l.google.com. google.com mail is handled by 30 alt2.aspmx.l.google.com. google.com mail is handled by 50 alt4.aspmx.l.google.com. google.com mail is handled by 10 aspmx.l.google.com. google.com mail is handled by 20 alt1.aspmx.l.google.com.

Vertical

Computer

- Applications
- Operating System
- Hardware
- Physics

Google

Computer

x 1,000,000

+ Distributed Systems

Networks

- Protocols
- Infrastructure
- Physics

1. Computers store and manipulate data. Networks transfer data.

- 1. Computers store and manipulate data. Networks transfer data.
- 2. All data is bits. Bits are electricity.

- 1. Computers store and manipulate data. Networks transfer data.
- 2. All data is bits. Bits are electricity.
- 3. Computing is theoretical. Computers are machines that model computing.

- 1. Computers store and manipulate data. Networks transfer data.
- 2. All data is bits. Bits are electricity.
- 3. Computing is theoretical. Computers are machines that model computing.
- 4. Layering and black boxes reduce the complexity of understanding systems.

- 1. Computers store and manipulate data. Networks transfer data.
- 2. All data is bits. Bits are electricity.
- 3. Computing is theoretical. Computers are machines that model computing.
- 4. Layering and black boxes reduce the complexity of understanding systems.
- 5. "Systems in 60 Seconds" alliterates better but wouldn't be as educational.

Resources

What happens when: https://github.com/alex/what-happens-when

How Does the Internet Work?:

https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm

From NAND to Tetris: http://nand2tetris.org/

Systems in 60 Minutes

Raymond Xu raymondxu.io

