

No. Variables	No. cells	No. of adjacent for each cell	No. of variables for one minterm	No. of variables for two Groups	No. of variables for four Groups	No. of variables for eight Groups
1						
2						
3						
4						
5						
6						
n						

ECE 2372 / Dr. Tooraj Nikoubin / Spring 2017 / Lecture 5 / Karnough map simplification

Outline

- Karnough map simplification
- 4 variable karnaugh map
- Don't care condition
- Algorithm for better grouping
- Karnaugh map with >= 5 variable

4-Variable Karnaugh Map

F = AC'D + A'CD' + B

Note the row and column orderings. Required for adjacency

Find a POS Solution

Find solutions to groups of 0's to find F' Invert to get F then use DeMorgan's

Don't Care

- A **don't-care term** is an input to a function that the designer does not care about
- Because that input would never happen
- Example:
 - BCD number (0-9, A-F) are 4 bits, don't care about input A-F
 - Suppose a system have 5 type of input
 Unfortunately we can't have 2 input line
 Make 3 input line and last 3 sequence as don't care
 S0, S1, S2,S3,S4, X,X,X == > 000, 001...,111

Dealing With Don't Cares

Circle the x's that help get bigger groups of 1's Don't circle the x's that don't

Prime Implicants

- A group of one or more 1's which are adjacent and can be combined on a Karnaugh Map is called an **implicant**.
- The *biggest* group of 1's which can be circled to cover a given 1 is called a **prime implicant**.
- -They are the only implicants we care about.

Prime Implicants

Are there any additional prime implicants in the map that are not shown above?

All The Prime Implicants

When looking for a minimal solution – only circle prime implicants...
A minimal solution will never contain non-prime implicants

Essential Prime Implicants

Not all prime implicants are required

A prime implicant which is the only cover of some 1 is *essential* – a minimal solution requires it.

Non-essential Prime Implicants

A Minimal Solution Example

Another Example

A'B' is not required...
Every one of its locations is covered by multiple implicants

After choosing essentials Minimum **essentials**, everything is covered...

Finding the Minimum Sum of Products

- 1. Find each essential prime implicant and include it in the solution.
- 2. Determine if any minterms are not yet covered.
- 3. Find the minimal # of remaining prime implicants which finish the cover.

Another Example Use of non-essential primes

Another Example Use of non-essential primes

5-Variable Karnaugh Map

The planes are adjacent to one another one is above the other in 3D)

Some Implicants in a 5-Variable KMap

Some of these are not prime...

5-Variable KMap Example

Find the minimum sum-of-products for: $F = \Sigma m (0,1,4,5,11,14,15,16,17,20,21,30,31)$

5-Variable KMap Example

Find the minimum sum-of-products for: $F = \Sigma \text{ m } (0,1,4,5,11,14,15,16,17,20,21,30,31)$

6-Variable Karnaugh Map

KMap Summary

- A Kmap is simply a folded truth table
- where physical adjacency implies logical adjacency
- KMaps are most commonly used hand method for logic minimization
- KMaps have other uses for visualizing Boolean
 Equations you may see some later.

KARNAUGH MAP REVIEW

AB								
CD	00	01	11	10				
00	0	4	12	8				
01	1	5	13	9				
11	3	7	15	11				
10	2	6	14	10				
				Λ				

AB							
CD	00	01	11	10			
00	0	4	12	8			
01	1	5	13	9			
11	3	7	15	11			
10	2	6	14	10			

LSB MSB Y = F(A, B, C, D)Y= F(1, 2, 4, 8)

			Review A			
В	m_2	m_6	m ₇	m_3		
	m _{io}	m ₁₄	m_{i_5}	m ₁₁	D	
	m ₈	m ₁₂	m_{i3}	m ₉	U	
	m _o	m_4	m_5	m ₁		
		C				

MSB	LSB
Y = F(A, B, C,	D)
Y = F(8, 4, 2,	1)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0	0 1 0	1 1 0	0 0 1 1	1 0 1	0 1 1	1 1 1	
A									
A	1								
D C B	0 0 0	1 0	0 1	1 1 0	0 0	1 0	0 1	1 1	
ט			0		_	_ '	_ '	'	

Α	m_{o}	$m_{\scriptscriptstyle 1}$	m_2	m_3	m_4	m_5	m_6	m_7	

Mandatory Loop or Mandatory Grope for minimization

Review

A'B'

$$A'B' + A'C'D + B'D'$$

$$A'B' + A'C'D + B'D' + CD$$

$$A'C'D + B'D' + CD$$

$$Y = \overline{A} B \overline{C} D$$

$$Y = A C$$

$$Y = A C$$

$$Y = \overline{B} C$$

$$Y = A B \overline{D}$$

$$Y = A \overline{B} \overline{D}$$

$$Y = A \overline{D}$$

A)
$$f(A, B, C) = \overline{A}\overline{B} + \overline{A}C + \overline{B}C$$

			<i> </i>	4
В		1		
	1	1	1	
		С		

B)
$$f(A,B,C,D) = AB\overline{D} + \overline{A}B\overline{C} + \overline{B}\overline{C}D$$

			Α		
_	1		1	1	
В	1				D
	1			1	ט
		(C		

$$Y = A B \overline{D}$$

$$Y = A \overline{B} \overline{D}$$

$$Y = A \overline{D}$$

$$F = A \overline{D}$$

			Α		
			1	1	
В	1)
	1	1		1	D
	1		1	1	
		(S		

$$F = A\overline{D}$$

$$F = \overline{B} \overline{C}$$

$$F = A\overline{D} + \overline{B}\overline{C} + \overline{A}\overline{B}D$$

$$F = \overline{A} \overline{B} D$$

$$F = \overline{A} \overline{C} D$$

$$F = A\overline{D} + \overline{B}\overline{C} + \overline{A}\overline{B}D + \overline{A}\overline{C}D$$

$$Y = A\overline{D} + \overline{B}\overline{C} + \overline{A}\overline{C}D + \overline{A}\overline{B}D$$

A)
$$f(A, B, C) = \overline{A}\overline{B} + \overline{A}C + \overline{B}C$$

			F	4
В		1		
	1	1	1	
		С	-	

B)
$$f(A,B,C,D) = AB\overline{D} + \overline{A}B\overline{C} + \overline{B}\overline{C}D$$

			Α		
_	1		1	1	
В	1				
	1			1	D
		(C		

$$F(A, B, C) = A C$$

$$F(A,B,C) = A C + A B + B C$$

F(A, B, C, D)

$$F(A, B, C, D) = A C D + A \overline{B} \overline{C}$$

$$F(A, B, C, D) = A C D + A \overline{B} \overline{C} + \overline{A} B C + \overline{A} \overline{B} \overline{D}$$

			Α		
	1				
В	1	1	1	1	_
	1	1	1	1	ט
	1			1	
		(C		

$$F(A, B, C, D) = D$$

$$F(A, B, C, D) = D + \overline{AC}$$

$$F(A, B, C, D) = D + \overline{AC} + \overline{BC}$$

		Α		
	1		1	
В		1	1	
		1	1	D
	1			
				•

		A		
	1			
В	1	1	1	_
		1	1	ט

		A		
	1			
В	1	1	1	
		1	1	D

$$F(A, B, C, D) = AD + \overline{ACDE}$$

		A		
	1		1	
В		1	1	
		1	1	ט
	1			

$$F(A, B, C, D) = AD + \overline{ACDE} + \overline{ABCE}$$

Review

 $F(A, B, C, D, E) = AD + \overline{ACDE} + \overline{ABCE} + \overline{ABCE} + AB\overline{CE}$

F(A, B, C, D)

			Α	I	
	1				
В	1				D
	1			1	D
	1		1	1	
		(C		

$$F(A, B, C, D) = \overline{AC}$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC}$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD}$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD} \implies SOP$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD} \implies SOP$$

			A		
	1	0	0	0	
В	1	0	0	0	
	1	0	0	1	ט
	1	0	1	1	
		(C		

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD} \implies SOP$$

$$F' = \overline{AC}$$

$$F(A, B, C, D) = \overline{A} \overline{C} + \overline{B} \overline{C} + A \overline{B} \overline{D} \implies SOP$$

$$F' = \overline{AC} + AB$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD} \longrightarrow SOP$$

$$F' = \overline{AC} + AB + CD$$

$$F = (A + \overline{C})(\overline{A} + \overline{B})(\overline{C} + \overline{D})$$

$$F(A, B, C, D) = \overline{AC} + \overline{BC} + A\overline{BD} \longrightarrow SOP$$

$$F' = \overline{AC} + AB + CD$$

$$F = (A + \overline{C})(\overline{A} + \overline{B})(\overline{C} + \overline{D})$$

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

		Α	
В			0
	0	0	0
	С		

$$A \overline{B} + \overline{A} \overline{B} C + A \overline{C}$$

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

			Α	
В	1	1	1	
	1			
		С		

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

			Α	
В	1	1	1	
	1			
		С		

$$SOP = \overline{AB}$$

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

$$SOP = \overline{A}B + BC$$

A)
$$f(A, B, C) = (\overline{A} + B)(A + \overline{B} + \overline{C})(\overline{A} + C)$$

			Α	
В	1	1	1	
	1			
		C		

$$SOP = \overline{A}B + BC + \overline{A}\overline{C}$$

LSB)
B)
$$f(A, B, C, D) = (A + \overline{B})(C + \overline{D})(\overline{A} + C)$$

$$SOP = AC + C\overline{B} + \overline{ABD}$$

Don't Care

- A **don't-care term** is an input to a function that the designer does not care about
- Because that input would never happen
- Example:
 - BCD number (0-9, A-F) are 4 bits, don't care about input A-F
 - Suppose a system have 5 type of input
 Unfortunately we can't have 2 input line
 Make 3 input line and last 3 sequence as don't care
 S0, S1, S2,S3,S4, X,X,X == > 000, 001...,111

Dealing With Don't Cares

Circle the x's that help get bigger groups of 1's Don't circle the x's that don't

Thank You