Lista 13: Słaba zbieżność

Zadania na ćwiczenia: 2025-06-02

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

- 1. Niech $\{X_n\}$ będzie ciągiem zmiennych losowych takim, że X_n ma rozkład $\operatorname{Exp}(\lambda_n)$. Pokaż, że jeżeli $\lambda_n \to \lambda > 0$, to $X_n \Rightarrow \operatorname{Exp}(\lambda)$. Odpowiedź
 - Wystarczy zbadać zbieżność dystrybu
ant w punktach ciągłości dystrybuanty granicznej. Dla
 $t \geq 0$ mamy

 $\mathbb{P}[X_n \le t] = 1 - e^{-\lambda_n t} \to 1 - e^{-\lambda t}.$

- 2. Czy zmienne losowe posiadające gęstość mogą słabo zbiegać do rozkładu dyskretnego? Czy zmienne losowe o rozkładach dyskretnych mogą słabo zbiegać do rozkładu posiadającego gęstość? Odpowiedź $\frac{1}{n}\sum_{k=1}^{n} \delta_{k/n} \Rightarrow \lambda_{1|[0,1]}$ oraz $\mathcal{N}(0,1/n) \Rightarrow \delta_{0}$.
- $\frac{1}{n} \sum_{k=1}^{n} \delta_{k/n} \Rightarrow \lambda_{1|[0,1]} \text{ oraz } \mathcal{N}(0,1/n) \Rightarrow \delta_{0}.$ 3. Niech $\{X_{n}\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie jednostajnym U[0,1]. Niech $Y_{n} = n \min_{1 \leq i \leq n} X_{i}$. Pokaż, że Y_{n} zbiega słabo do rozkładu wykładniczego Exp(1). Odpowiedź

Mamy

$$\mathbb{P}[Y_n > t] = (1 - t/n)^n \to e^{-t}$$

4. Niech $F \subseteq \mathbb{R}^d$. Pokaż, że dla każdych $x, y \in \mathbb{R}^d$

$$|\operatorname{dist}(x, F) - \operatorname{dist}(y, F)| \le ||x - y||.$$

Wywnioskuj, że dla $\epsilon > 0$ funkcja $f(x) = (1 - \operatorname{dist}(x, F)/\epsilon)_+$ jest jednostajnie ciągła. Odpowiedź Niech f będzie dowolnym elementem F. Z nierówności trójkąta

$$||x - f|| + ||x - y|| < ||y - f||$$

biorac kres dolny po $f \in F$,

$$\operatorname{dist}(x, F) + \|x - y\| < \operatorname{dist}(y, F).$$

Zamieniając x i y miejscami i stosując ten sam argument otrzymujemy pierwszą tezę. Druga teza wynika teraz z nierówności $|a_+ - b_+| \le |a - b|$ dla $a, b \in \mathbb{R}$.

5. Niech $n \in \mathbb{N}$. Z liczb $\{1,\ldots,n\}$ losujemy trzy liczby. Niech X_n będzie ich medianą (środkową wartością). Pokaż, że X_n/n przy $n \to \infty$ zbiega według rozkładu do rozkładu o gęstości $6x(1-x)\mathbf{1}_{[0,1]}(x)$. Odpowiedź

Mamy

$$\mathbb{P}[X_n = k] = 6(k-1)(n-k)/(n(n-1)(n-2)).$$

Dla każdej $f \in C_b(\mathbb{R})$ mamy

$$\mathbb{E}[f(X_n)] = \sum_{k} f(k/n)6(k-1)(n-k)/(n(n-1)(n-2))$$

$$\to \int_0^1 f(x)6x(1-x)dx$$

Zadania na ćwiczenia

- 6. Wykaż, że dodatnie zmienne losowe $\{X_n\}_{n=1}^{\infty}$ zbiegają słabo do rozkładu $\mathcal{U}[0,1]$ wtedy i tylko wtedy, gdy zmienne losowe $Y_n = -2\log X_n$ zbiegają słabo do rozkładu wykładniczego $\operatorname{Exp}(1/2)$.
- 7. Pokaż, że jeśli $X, \{X_n\}_{n=1}^{\infty}$ są zmiennymi losowymi oraz $X_n \to^{\mathbb{P}} X$, to $X_n \Rightarrow X$.
- 8. Pokaż, że jeśli $X, \{X_n\}_{n=1}^{\infty}$ są zmiennymi losowymi oraz $X_n \Rightarrow c \in \mathbb{R}$, to $X_n \to^{\mathbb{P}} c$.

9. Niech X, $\{X_n\}_{n\in\mathbb{N}}$, Y, $\{Y_n\}_{n\in\mathbb{N}}$ będą zmiennymi losowymi takimi, że

$$X_n \Rightarrow X \quad \text{oraz} \quad Y_n \Rightarrow Y.(\#eq:ref)$$

a. Pokaż, że jeżeli X_n i Y_n są niezależne oraz X i Y są niezależne, to to ma miejsce słaba zbieżność dwuwymiarowych wektorów losowych

$$(X_n, Y_n) \Rightarrow (X, Y).$$

b. Pokaż, że jeżeli $(X_n, Y_n) \Rightarrow (X, Y)$, to

$$X_n + Y_n \Rightarrow X + Y$$
.

- c. Podaj przykład zmiennych losowych dla których @ref(eq:ref) ale nie jest prawdą, że $X_n + Y_n \Rightarrow X + Y$.
- 10. Pokaż, że jeśli $X_n \Rightarrow X$ oraz $Y_n \Rightarrow c \in \mathbb{R}$, to $X_n + Y_n \Rightarrow X + c$;
- 11. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym standardowym rozkładzie normalnym $\mathcal{N}(0,1)$. Niech $Y_n=n\min_{1\leq i\leq n}|X_i|$. Pokaż, że Y_n zbiega słabo do rozkładu wykładniczego. Z jakim parametrem?
- 12. Niech dla $n \in \mathbb{N}$ X_n będzie liczbą punktów stałych jednostajnie wylosowanej permutacji liczb $\{1,2,\ldots,n\}$. Znajdź granicę według rozkładu ciągu zmiennych $\{X_n\}_{n\in\mathbb{N}}$.
- 13. Niech $\mu_{\alpha} = \mathcal{N}(m_{\alpha}, \sigma_{\alpha}^2)$. Udowodnić, że rodzina $\{\mu_{\alpha} : \alpha \in \Lambda\}$ jest ciasna wtedy i tylko wtedy, gdy istnieje takie K > 0, że dla wszystkich $\alpha \in \Lambda$ jest

$$|m_{\alpha}| \le K, \quad \sigma_{\alpha}^2 \le K.$$

Wskazówka

Pokaż, że rodzina jest ciasna wtedy i tylko wtedy, gdy

$$\lim_{t \to \infty} \sup_{\alpha \in \Lambda} \frac{t - m_{\alpha}}{\sigma_{\alpha}} = \infty.$$

Zadania dodatkowe

14. Niech $c_{j,n}$ dla $j \leq n$ będzie kolekcją liczb rzeczywistych. Pokaz, że jeśli

$$\max_{1 \leq j \leq n} |c_{j,n}| \to 0, \quad \lim_{n \to \infty} \sum_{j=1}^n c_{j,n} = \lambda, \quad \text{oraz} \quad \sup_n \sum_{j=1}^n |c_{j,n}| < \infty,$$

to

$$\lim_{n \to \infty} \prod_{j=1}^{n} (1 + c_{j,n}) = e^{\lambda}.$$

- 15. Niech $\{X_n\}_{n\in\mathbb{N}}$ będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na zbiorze $\{1,2,\ldots,N\}$. Oznaczmy przez $T_N=\min\{n:X_n=X_m\text{ dla pewnego }m< n\}$. Oblicz granicę według rozkładu ciągu T_N/\sqrt{N} , gdy $N\to\infty$. Wykorzystaj otrzymany wynik do rozwiązania problemu urodzin: oszacuj prawdopodobieństwo, że w gronie 23 osób sa dwie mające urodziny tego samego dnia.
- 16. Niech μ będzie miarą σ -skończoną, f_n, f funkcjami nieujemnymi i takimi, że miary $\nu_n(A) = \int_A f_n d\mu$, $\nu(A) = \int_A f d\mu$ są miarami probabilistycznymi. Niech $f_n \to f$ mu-p.w. Udowodnić, że

$$\sup_{A} |\nu(A) - \nu_n(A)| \le \int_{\Omega} |f - f_n| d\mu \to 0.$$

Wywnioskuj, że $\nu_n \Rightarrow \nu$.

17. Niech X_n będzie pierwszą współrzędną zmiennej losowej o rozkładzie jednostajnym na kuli jednostkowej w \mathbb{R}^n . Wykazać, że

$$\sqrt{n}X_n \Rightarrow \mathcal{N}(0,1).$$

18. Niech ξ_1, ξ_2, \ldots będzie ciągiem niezależnych zmiennych losowych o wspólnym rozkładzie $\mathbb{P}[\xi_k = \pm 1] = 1/2$. Niech $S_n = \sum_{k=1}^n \xi_k$. Pokaż, że nie istnieje zmienna losowa η taka, że $S_n/\sqrt{n} \to \eta$ według prawdopodobieństwa.