Modernizing Exams — Designing a Tool for Valid and Scalable Decentralized E-Exams

Eine Bachelorarbeit von Jasper Anders 30.10.2020

Motivation

Im Allgemeinen

Klausuren sind einer der wenigen Teile der Bildung die nicht im großen Stil von digitalisierung profitiert haben. Die Digitalisierung birgt dabei folgende Vorteile:

- Verbesserte Auswertung von Klausurergebnissen
- Erhebliche Vereinfachung der logistischen Planung von Klausuren; während des Testens und der Korrektur
- Archivierung ist deutlich effizienter und sicherer
- Erweiterung des Klausur-Mediums erlaubt anwendungsorientiertere Fragen
- Das Corona Virus schränkt zudem Präsenzklausuren erheblich ein

Wo stehen wir

- E-Klausuren existieren bereits, dann aber oft unter folgenden restriktiven Bedingungen. E-klausuren...
 - nutzen Infrastruktur der Unis, also z.B. Computer-Räume
 - finden auf Geräten der Studenten statt, weiterhin aber zentralisiert, also z.B. in einem Hörsaal
 - finden unter Einsatz von **Proctoring** statt
 - werden als Möglichkeit der Selbsteinschätzung genutzt
- E-Klausuren Tools sind oft in den LMS
 (Learn-Management-Systemen) integriert, die die Instutionen
 nutzen, um Lernmaterial zu verwalten.

Warum Tools, die wir schon haben nicht ausreichen

Prominente Tools haben unterschiedliche **Stärken und Schwächen**. Besonders gravierend sind exemplarisch folgende Themen:

- Schlechte Handhabung von Verbindungsabbrüchen → Gegebene Antworten müssen u.U. wiederholt werden.
- Keine Möglichkeit der Identitätsüberprüfung
- Unzulängliche Maßnahmen gegen Betrugsversuche

Was brauchen wir für eine valide Klausur? – Anforderungen und

Ausgestaltung

Anforderungen an Klausuren

Klausuren sind mehr als nur eine Summe von Fragen. Unabhängig von Inhalten, müssen Klausuren **Rahmenbedingungen erfüllen**. Diese Rahmenbedingen können mit folgenden Anforderungen abgesteckt werden. Nämlich Anforderungen an ...

- Generelle Validität
- Anfechtungsschutz
- Gleichbehandlung
- Schutz vor Betrugsversuchen
- Transparenz
- Datenschutz
- Integrität
- und Zuordbarkeit

Diese Anforderung werden durch konkrete Ausgestaltungen erfüllt. Im Folgenden werden diese Ausgestaltungen skizziert; teilweise in einem theoretischen Kontext, teils ganz praktisch.

Generelle Validität i

Meint:

Klausurergebnisse sollten möglichst genau den **Kenntnis und Fähigkeitenstand** eines Prüflings wiederspiegeln.

Lässt sich erreichen mit:

- Verschiedene Fragetypen
- Zeitbeschränkung auf Fragenbasis

Bedeutet in der Umsetzung:

- Einbinden von Kontrollzeiten in der Benutzeroberfläche
 - Automatische Abgabe der Frage nach Ablauf der Zeit
 - Serverzeiten und Zeiten des Gerätes abgleichen
- Erstellen von partiellen Open-Book Klausuren

Generelle Validität ii

Figure 1: Answer Field, with Timer (Bottom Left)

Anfechtungsschutz i

Meint:

Digitale Klausuren werden unter *unsicheren* Umständen geschrieben. Gerade weil der Prüfer diese Umstände schlechter beeinflussen kann, müssen die Aspekte, die er beeinflussen kann besonders stabil sein. D.h.: **Technische und Formale Defekte**, die die Validität einer Klausur in Frage stellen, müssen **minimiert** werden.

Lässt sich erreichen mit:

- Klare Kommunikation und Einblicke, wie die Klausur abläuft
- Fähigkeiten mit Verbindungsabbrüchen umzugehen

Anfechtungsschutz ii

Bedeutet in der Umsetzung:

- Informationsfenster vor jeder Klausur
- Einführung in das Tool vor der Klausur, z.B. anhand einer Testklausur
- Offline F\u00e4higkeiten der Software. Lokales Speichern von Antworten

Anfechtungsschutz iii

Figure 2: Start Screen of an Exam with Important User Information

Gleichbehandlung i

Meint:

Prüflinge müssen über den Verlauf des Klausur-Prozesses **gleich behandelt** werden.

Lässt sich erreichen mit:

- Elektronische Klausursysteme müssen Gerät agnostisch sein.
 D.h. auf allen gängigen Betriebssystemen laufen.
- Ungleichheiten, die im Korrekturprozess auftreten müssen eliminiert werden

Gleichbehandlung ii

Bedeutet in der Umsetzung:

- Nutzung von Web-Technologien, um ein Klausursystem auszuliefern
- Verwendung von Automation, um die Last auf Korrektoren zu mindern
- Angleichung der zu korrigierenden Klausuren durch einheitliches Schriftbild

Schutz vor Betrugsversuchen i

Meint:

Einer der entscheiden Punkte im Prüfungsprozess ist das Sicherstellen, der **authentizität der Antwort**. Der Student, der die Antwort gegeben haben soll, muss sie auch in Wirklichkeit gegeben haben und zwar unter den festgelegten Bedingungen.

Schutz vor Betrugsversuchen ii

Lässt sich erreichen mit:

- Verwendung von großen Fragen-Pools; Einzelne Fragen sind somit für Prüflinge nicht gut vorbereitbar
- Zeitbeschränkung auf Fragenbasis
- Zufälligkeit der Fragenreinfolge und Einschränkung der Navigationsmöglichkeiten; Erschwert Zusammenarbeit unter Prüflingen
- Erzeugung eines Überwachungs- und Konsequenzgefühls

Schutz vor Betrugsversuchen iii

Bedeutet in der Umsetzung:

- Kooperation mit anderen Lehrstühlen; Nutzung von Crowd Collaboration, um Fragen-Pools zu füllen
- Nutzung von Kamera- & Tondaten; nicht um eine Live-Überwachung möglich zu machen, sondern um ein Überwachungsgefühl zu schaffen
- [Einbinden von Kontrollzeiten in der Benutzeroberfläche]

Transperenz

Meint:

Der Klausurprozess muss **Nachvollziehbar** sein, das bezieht sich vor allem auf das Zustandekommen einer Note.

Lässt sich erreichen mit:

■ Digitale Einsicht in Korrektur und Bewertung → Prüfer muss in der Klausursoftware die Möglichkeit haben ein solches Feedback zu geben.

Bedeutet in der Umsetzung:

 Durchdachtes Design des Userinterfaces, das vor allem für Korrektoren die Klickzahl minimiert.

Daten Schutz, Integrität und Zuordbarkeit i

Meint:

Digitale Klausursystem sind **informationsstechnische Systeme** und müssen demnach nach gleichen Standards und Prinzipien gestaltet werden. Besondere Beachtung muss hier der **DSGVO** zuteil werden, denn Klausurdaten sind Personendaten. Auch der **Schutz vor Veränderung** von außen muss gegeben sein.

Daten Schutz, Integrität und Zuordbarkeit ii

Lässt sich erreichen mit:

- Konsequente Nutzerrechte Verwaltung; wer darf wo lesen/schreiben/löschen?
- Ausgeführte Aktionen müssen Nachvollziehbar sein. Welcher Nutzer ist dafür verantwortlich, dass ein Datenpunkt so aussieht, wie er es tut?
- Programmfehler müssen minimiert werden, der Programmcode muss damit Nachvollziehbar sein. Codebasen sollten also quelloffen sein.

Vielen Dank für Ihre

Aufmerksamkeit. Fragen?

Datenstruktur

Figure 3: Data Model of the Prototype