\mathbf{ODE}

Hao Y.H

2024年2月16日

前言

低廉而有效的快乐.

Hao Y.H 2024 年 2 月 16 日

目录

第一章	ODE 初级解法			
1.1	conception			
1.2	一阶方程的初等解法	2		
	1.2.1 分离变量法	2		
1.3	导数未解出的一阶方程	3		
1.4	微分方程组的初等积分法与首次积分	4		
	1.4.1 转化为高阶方程	4		
	1.4.2 首次积分法	4		
第二章	常系数线性微分方程			
2.1	二阶常系数线性微分方程的求解	6		
2.2	二阶非齐次微分方程——常数变易法	6		
第三章	线性常微分方程组			
3.1	矩阵值函数与向量值	8		
	3.1.1 矩阵与向量的范数	8		
	3.1.2 线性微分方程组的矩阵表示	9		
	$3.1.3 e^{At} \dots \dots$	10		
3.2	常系数微分方程组的求解	10		
3.3	初值问题解的存在唯一性	13		

目录			II
3.4	解的结		13
	3.4.1	刘维尔公式	13
	3.4.2	常数变易公式	14

第一章 ODE 初级解法

summary.

1.1 conception

常微分方程解决的是求函数的问题,其中,未知函数的自变量唯一. 首先约定术语如下:

定义 1.1.1 (阶). 未知函数的导数的最高阶数即为 DE 的阶. 一般的 n 阶 ODE 可表示为:

$$F(t, x, \frac{df}{dt}, \cdots, \frac{df^n}{dt^n}) = 0$$
(1.1)

定义 1.1.2 (解与定义空间). 若函数 $\phi(x)$ 在某区间 [a,b] 内有 n 阶连续导数, 且将函数 $x = \phi(t)$ 代入方程 (1.1) 后, 可使得等式

$$F(t, \phi(t), \phi'(t), \cdots, \phi^{(n)}(t)) = 0$$

在 [a,b] 中恒成立, 称函数 $x = \phi(t)$ 为方程 (1.1) 的解, 称 [a,b] 为解的定义空间.

当 $x = \phi(t)$ 不易求得而 $\phi(t,x) = 0$ 易于求得时,后者确定的隐函数为方程 (1.1) 的解,则称 $\phi(t,x) = 0$ 为方程 (1) 的积分.

对于一个微分方程, 求其积分, 相当于求得其解.

定义 1.1.3 (积分曲线). 解在 t,x 平面上的几何表示—平面曲线, 称为方程 (1.1) 的积分曲线.

定义 1.1.4 (方向场—微分方程的几何解释). 当一阶 ODE 已解, 总能以 t,x 表示出积分曲线上任一一点的斜率, 因此可依据积分曲线作出有向线段, 即方向场.

欧拉折线以方向场为原理.

定义 1.1.5 (变系数线性微分方程).

1.2 一阶方程的初等解法

1.2.1 分离变量法

定义 1.2.1 (变量可分离方程).

$$\frac{dx}{dt} = f(x) \cdot g(t) \tag{1.2}$$

定义 1.2.2 (耦合可分离方程-齐次方程).

$$\frac{dx}{dt} = g(\frac{x}{t})\tag{1.3}$$

$$\frac{dx}{dy} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2} \tag{1.4}$$

对于方程 (1.4), 试作变换: $\begin{cases} x = \xi + h \\ y = \eta + k \end{cases}$

令变换后的分子分母的常数项等于零,得到 h,k,当线性方程组行列式为 0 时,ODE 退化,其解是 trivial 的,于此不作赘述.

定义 1.2.3 (线性方程).

例 1.2.4 (因果变量互易一例). $\frac{dx}{dt}(x^3 + \frac{t}{x}) = 1$

定义 1.2.5 (全微分方程和积分因子).

$$P(x,y)dx + Q(x,y)dy = 0 (1.5)$$

若满足柯西黎曼方程,则称全微分方程 (1.5) 是恰当的. 若存在形如 (1.5) 的方程不满足柯西黎曼方程, 然而乘以某适当函数后, 满足柯西黎曼方程, 称此函数为积分因子

$$\mu(x,y)[P(x,y)dx + Q(x,y)dy] = 0$$
 (1.6)

对于 (1.6), $\mu(x,y)$ 的求解通过柯西黎曼方程实现, 可令 $\mu(x,y)$ 关于 x 或 y 的偏导等于 0, 从而简化方程求解难度.

1.3 导数未解出的一阶方程

本节研究的方程的一般形状为:

$$F(t, x, x') = 0 (1.7)$$

对于 (1.7), 三自变量, 可能得到三种隐函数, 本节研究导数未解出的一阶方程.

定义 1.3.1 (方程 x = g(t, x') 与 t = h(x, x')).

1. 对于方程 x = g(t, x'):

令 $p = \frac{dx}{dt}$, 方程取 t 导数, 得到:

$$p = \frac{\partial g(t, p)}{\partial t} + \frac{\partial g(t, p)}{\partial p} \cdot \frac{\mathrm{d}p}{\mathrm{d}t}$$
 (1.8)

2. 对于方程 t = h(x, x'): 令 $\frac{1}{p} = \frac{dt}{dx}$ 即可求解.

例 1.3.2.

$$x\left(\frac{dx}{dt}\right)^2 + -2t\frac{dx}{dt} + x = 0\tag{1.9}$$

Therefore, $t = \frac{x}{2p} + \frac{xp}{2}$.

Derivative of x, $\frac{1}{p} = \frac{1}{2p} + \frac{p}{2} + (\frac{x}{2} - \frac{x}{2p^2}) \frac{dp}{dx}$.

Multiply the both sides of the equation by $2p^2:(p^2-1)(x\frac{dp}{dx}+p)=0$

The rest of part is obviously trivial.

例 1.3.3. clairant equation, where f(u) is continuously derivable, and $f'(u) \neq$ constant:

$$x = t \cdot \frac{dx}{dt} + f(\frac{dx}{dt}) \tag{1.10}$$

which is equal to: x = tp + f(p).

Derivative of t, $p = p + (t + f'(p)) \frac{dp}{dt}$.

Trivial.

1.4 微分方程组的初等积分法与首次积分

1.4.1 转化为高阶方程

例 1.4.1. 对于微分方程组:

1.4.2 首次积分法

若能够通过一定的运算得到易于积分的全微分方程,可得到该微分方程的原函数, 称此原函数为首次积分。

例 1.4.2 (对称性一例).

$$\frac{dx}{cy - bz} = \frac{dy}{az - cx} = \frac{dz}{bx - ay} \tag{1.11}$$

分母求和为 0, 则:

$$\frac{xdx}{x(cy-bz)} = \frac{ydy}{y(az-cx)} = \frac{zdz}{z(bx-ay)} = \frac{xdx+ydy+zdz}{0}$$
 (1.12)

$$\frac{adx}{a(cy-bz)} = \frac{bdy}{b(az-cx)} = \frac{cdz}{c(bx-ay)} = \frac{adx+bdy+cdz}{0}$$
 (1.13)

为使等式成立,则
$$xdx + ydy + zdz = 0$$
, $adx + bdy + cdz = 0$ 积分可得:
$$\begin{cases} x^2 + y^2 + z^2 = C_1 \\ ax + by + cz = C_2 \end{cases}$$

第二章 常系数线性微分方程

2.1 二阶常系数线性微分方程的求解

特征根即可

2.2 二阶非齐次微分方程——常数变易法

与其寻找常数变易法的因果逻辑,纠结此刻的因果,不如承认常数变易法是强关联的,因为充要性都是验证过的,强关联是毋庸置疑的。二阶非 齐次常系数线性方程:

$$a_0 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_2 x = f(t)$$
 (2.1)

其不同的 2 个特征根满足:

$$a_0\lambda^2 + a_1\lambda + a_2 = a_0(\lambda - \lambda_1)(\lambda - \lambda_2) = 0$$
 (2.2)

2 特征根使得特征方程等于 0,需承认此时特征根对应的解亦然是原方程的解.

则对于方程 (2.1) 有:

$$a_0 \left\{ \frac{d^2x}{dt^2} - (\lambda_1 + \lambda_2) \frac{dx}{dt} + \lambda_1 \lambda_2 x \right\} = 0, \tag{2.3}$$

组合:

$$a_0 \left\{ \frac{d}{dt} \left(\frac{dx}{dt} - \lambda_1 x \right) - \lambda_2 \left(\frac{dx}{dt} - \lambda_1 x \right) \right\} = \mathbf{0}. \tag{2.4}$$

最后得到:

$$a_0 \left\{ \frac{dy}{dt} - \lambda_2 y \right\} = f(t), \qquad (2.5)$$

$$\frac{d}{dt}\left\{e^{-\lambda_1 t}y\right\} = \frac{1}{a_0}f\left(t\right)e^{-\lambda_2 t},\tag{2.6}$$

二特征根组合,得到最终解为:

$$x = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_1 t} + \frac{1}{a_0} \int_0^t \frac{e^{\lambda_1 (t-s)} - e^{\lambda_1 (t-s)}}{\lambda_1 - \lambda_2} f(s) ds$$
 (2.7)

此即为常数变易法.

第三章 线性常微分方程组

微分方程与矩阵的关联: remain to be done

3.1 矩阵值函数与向量值

本节研究的矩阵如下, 当行列数有为 1 时, 退化为向量值矩阵.

$$\begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix}$$

定义 3.1.1 (矩阵值函数的微分与积分). 定义矩阵值函数的微积分如下:

$$\frac{dA(t)}{dt} = \frac{d(a_{ij})}{dt} \sum_{i=1,2,3,\cdots,n; j=1,2,3,\cdots,m.} (3.1)$$

$$\int_{t_0}^t A(x)dx = \left(\int_{t_0}^t a_{ij}(x)dx\right)_{i=1,2,3,\cdots,n;j=1,2,3,\cdots,m}.$$
(3.2)

即矩阵内对应元素求微分或求微分即可.

命题 **3.1.2** (矩阵值函数微积分的性质选). $1.\frac{dA^{-1}(t)}{dt} = -A^{-1}(t) \cdot \frac{dA(t)}{dt} A^{-1}(t)$ 其原因是矩阵左右乘的不相等.

3.1.1 矩阵与向量的范数

定义 3.1.3. 假设 $A = (a_{ij})$ 与 $B = (b_{ij})$ 为 $2 \land n \times m$ 阶矩阵, 定义其内积为:

$$< A, B> = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} b_{ij}$$

矩阵 A 的范数为:
 $\|A\| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} (a_{ij})^2}$

命题 3.1.4. 关于范数与内积:

- 1. 正定性: $||A|| \ge 0$, 当且仅当 A = 0 时,||A|| = 0
- 2. 齐次性: $\|\lambda A\| = |\lambda| \|A\|$
- 3. 三角不等式: $||A + B|| \le ||A|| + ||B||$
- $4. |\langle A, B \rangle| \le ||A|| \cdot ||B||$
- 5. 若 A 为 $n \times m$ 阶矩阵,B 为 $m \times l$ 阶矩阵, 则: $\|AB\| \le \|A\| \cdot \|B\|$
- 6. $\left\| \int_a^\beta A(t)dt \right\| \le \int_a^\beta \|A(t)\|dt$

定义 3.1.5 (矩阵序列的极限). 设 $A_1,A_2,A_3,\cdots,A_k,\cdots$ 是一系列的 $n\times m$ 阶矩阵, 如果存在 A, 使得当 $k\to +\infty$ 时, 有:

$$||A_k - A|| \to 0$$

则称 A 为 $\{A_k\}$ 的极限. 其数学表示和一般极限是一致的.

3.1.2 线性微分方程组的矩阵表示

本节研究的线性常微分方程组是:

$$\begin{cases} \frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t), \\ \frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t), \\ \frac{dx_3}{dt} = a_{31}(t)x_1 + a_{32}(t)x_2 + \dots + a_{3n}(t)x_n + f_3(t), \\ \dots \\ \frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t), \end{cases}$$
(3.3)

用矩阵表示为:

$$\frac{dx}{dt} = A(t)x + f(t). (3.4)$$

3.1.3 e^{At}

定义 3.1.6 (e^{At}) . 设 A 为 n 阶矩阵, 则定义 e^{At} 为:

$$e^{At} = E + At + \frac{1}{2!}(At)^2 + \dots + \frac{1}{k!}(At)^k + \dots$$
 (3.5)

定理 3.1.7 (非齐次微分方程组解). f(t) 在 (α, β) 是 continuous 的,则非齐次微分方程组:

$$\frac{dx}{dt} = Ax + f(t) \tag{3.6}$$

满足初值条件 $x(t_0) = x_0$ 的解在 (α, β) 是唯一的, 且:

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}f(s)ds$$
(3.7)

3.2 常系数微分方程组的求解

本节给出了特征值特征向量与常系数微分方程的关系. 对于忽视代数重数与几何重数问题的学生 (我), 有重根情况下的求解是新颖的. 此处纪录一矩阵:

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ 2 & -6 & 0 \end{pmatrix}$$

同时建议注意参数的位置. 对于一个特征值而言, 解得的 x, y 有相同的参数. 这就出现了一个问题: 需要将所有的特征值与特征向量均求解出来, 而出现重根时, 是无法完成的 (或者说, 有时重根无法求得所有的向量, 导致张不成微分方程组的维度, 而此时的微分方程组的解必然有多个'线性无关'的基, 这是矛盾存在之处)

11

例 3.2.1 (齐次无重根一例). 求解线性微分方程组的解:

$$\frac{dx}{dt} = 2x + y$$
$$\frac{dy}{dt} = y$$

线性微分方程组的矩阵 A:

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

其特征值为 1,2. 对于 $\lambda_1 = 1$, 其特征向量满足关系:

$$(A - \lambda_1 E)X = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

所以 $x = -c_1 e^t$, $y = c_1 e^t$ 是方程组的一个解. 另一特征值对应的解不再赘述. 最终方程组的解为:

$$x = -c_1 e^t + c_2 e^{2t}$$
$$y = +c_1 e^t$$

从上述求解看出, 无重根时, 特征值代表指数系数大小, 特征向量代表系数的权重.

定义 3.2.2 (一般解的形式). 对于一阶常系数线性微分方程组

$$\frac{dx}{dt} = Ax\tag{3.8}$$

A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则存在 n 个循环向量系数多项式

 $p_1(t), p_2(t), \dots, p_n(t)$, 使得 $p_1(0), p_2(0), \dots, p_n(0)$ 线性无关. 且方程组解为:

$$x = \sum_{j=1}^{n} c_j p_j(t) e^{\lambda_j t}$$
(3.9)

$$\mathbf{p}(t) = \mathbf{a}_0 \frac{t^k}{k!} + \mathbf{a}_1 \frac{t^{k-1}}{(k-1)!} + \dots + \mathbf{a}_k$$
 (3.10)

$$A\mathbf{a}_0 = \lambda \mathbf{a}_0,$$

$$A\boldsymbol{a}_1 = \lambda \boldsymbol{a}_1 + \boldsymbol{a}_0,$$

$$\cdots (3.11)$$

$$A\boldsymbol{a}_k = \lambda \boldsymbol{a}_n + \boldsymbol{a}_{k-1}.$$

例 3.2.3 (有重根一例). 求常微分方程组

$$\begin{cases} \frac{dx_1}{dt} = -4x_1 + x_2 + 3x_3 + 2x_4, \\ \frac{dx_2}{dt} = -2x_1 - x_2 + 2x_3, \\ \frac{dx_3}{dt} = -3x_1 + x_2 + 2x_3 + 2x_4, \\ \frac{dx_4}{dt} = x_1 - x_8 - x_4 \end{cases}$$

方程组特征多项式为

$$|A - \lambda E| = \begin{vmatrix} -4 - \lambda & 1 & 3 & 2 \\ -2 & -1 - \lambda & 2 & 0 \\ -3 & 1 & 2 - \lambda & 2 \\ 1 & 0 & -1 & -1 - \lambda \end{vmatrix}.$$

特征值为-1.4 重根,几何重数为 2. 特征向量为:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \not= \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

值得注意的是,考虑到化简过程中存在倍乘操作,非齐次情况下失效,所以特征向量应代入原始矩阵当中.对于第一个特征向量而言,其循环向量为:

$$a_{1} = k_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + k_{2} \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

所以,
$$p_1(t) = a_0 t + a_1 = \begin{pmatrix} t \\ 1 \\ t \\ 0 \end{pmatrix}$$

最终,解为: $\mathbf{x} = \begin{pmatrix} c_1 \mathbf{p}_1(t) + c_2 \frac{d\mathbf{p}_1(t)}{dt} + c_3 \mathbf{p}_2(t) + c_4 \frac{d\mathbf{p}_2(t)}{dt} \end{pmatrix} e^{-t}$

最终,解为: $\mathbf{x} = \left(c_1 \mathbf{p}_1(t) + c_2 \frac{d\mathbf{p}_1(t)}{dt} + c_3 \mathbf{p}_2(t) + c_4 \frac{d\mathbf{p}_2(t)}{dt}\right) e^{-t}$ 解的形式说明,得到循环向量后可直接作求微分 (或许可以直到不出现 t 为止, perhaps),得到最终答案.

3.3 初值问题解的存在唯一性

本节研究变系数矩阵下的解存在唯一性问题. 其大抵等价于, 当内部环境参数改变后, 系统的稳定性问题.

3.4 解的结构

微分方程组的结构与线性方程组的结构类似.

3.4.1 刘维尔公式

定义 3.4.1 (解方阵, 朗斯基行列式). 考虑 R^n 上的一阶线性微分方程 $\frac{dx}{dt} = A(t)x$ 设 $x_1(t), x_2(t), x_3(t), \cdots, x_n(t)$ 为基本解组,以基本解组为列向量的方阵 $\Phi(t)$,即为基本解方阵,其行列式即为朗斯基行列式 满足 $\frac{d\Phi(t)}{dt} = A(t)\Phi(t)$

朗斯基行列式满足: $\frac{dW(t)}{dt} \equiv \sum_{k=1}^{n} a_{kk}(t)W(t) = trA(t)W$

不采用书中的内容: 现在根据二阶齐次线性微分方程说明: 若给出其中一个 特解,则另一个线性无关的特解是唯一确定的.

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

常数变易公式 3.4.2

齐次线性方程组的解为: $x = \phi(t)c$, 合理联想非齐次解为:

$$x = \phi(t)c(t) \tag{3.12}$$

derivative of t, 运用解方阵的性质:

$$\frac{d\mathbf{x}}{dt} = \frac{d\mathbf{\Phi}(t)}{dt}\mathbf{c}(t) + \mathbf{\Phi}(t)\frac{d\mathbf{c}(t)}{dt}$$
$$= \mathbf{A}(t)\mathbf{\Phi}(t)\mathbf{c}(t) + \mathbf{\Phi}(t)\frac{d\mathbf{c}}{dt}$$

 $= \mathbf{A}(t)\mathbf{\Phi}(t)\mathbf{c}(t) + \mathbf{\Phi}(t)\frac{d\mathbf{c}}{dt}$ 由 (3.12) 知: $\frac{d\mathbf{x}}{dt} \equiv A(t)\mathbf{x}(t) + \mathbf{f}(t) \equiv \mathbf{A}(t)\mathbf{\Phi}(t)\mathbf{c}(t) + \mathbf{f}(t)$

比较系数,得到: $\Phi(t) \frac{dc}{dt} = f(t)$.

则最终解为:

$$\boldsymbol{x} = \boldsymbol{\Phi}(t)\boldsymbol{c}_0 + \int_t^t \boldsymbol{\Phi}(t)\boldsymbol{\Phi}^{-1}(\boldsymbol{s})\boldsymbol{f}(\boldsymbol{s})d\boldsymbol{s}$$
 (3.13)

称 $U(t,s) \equiv \Phi(t)\Phi^{-1}(s)$ 为转移矩阵.

例 3.4.2 (非齐次微分方程组,常数变易法一则). 求解微分方程组:

$$\begin{cases} \frac{dx}{dt} = 2x + y - e^{-t} \\ \frac{dy}{dt} = 4x + 3y + 4e^{-t} \end{cases}$$

设解为:

$$\begin{cases} x = c_1 e^{5t} + c_2 e^{-t} \\ y = 2c_1 e^{5t} - c_2 e^{-t} \end{cases}$$

将解取微分,全部代入题干方程组,得到 (原书此处十分 shabi,自己可以看 看)(此处似乎存在规律,例如等式右边与非齐次项的关系,以及等式左边与 求导项的关系):

$$\begin{cases} e^{5t}\frac{dc_1}{dt} + e^{-t}\frac{dc_2}{dt} &= -e^{-t} \\ 2e^{5t}\frac{dc_1}{dt} - e^{-t}\frac{dc_2}{dt} &= 4e^{-t} \end{cases}$$
 得到了线性方程组,易解得 c_1, c_2 ,代入到假设解即可.

3.5 二阶变系数线性微分方程