

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C11D 17/00, 3/22, 1/94, 3/20, 3/37, 1/66, 1/52, A61K 7/48, 7/06		A1	(11) International Publication Number: WO 99/51716 (43) International Publication Date: 14 October 1999 (14.10.99)
(21) International Application Number: PCT/EP99/01901		(72) Inventors: ARONSON, Michael, Paul; Unilever Research U.S. Inc., 45 River Road, Edgewater, NJ 07020 (US). BROWN, Charles, Rupert, Telford; Unilever Research Colworth, Colworth House, Sharnbrook, Bedford MK44 1LQ (GB). CHATFIELD, Robert, James; Unilever Research Port Sunlight, Quarry Road East, Bebington, Wirral, Merseyside L63 3JW (GB). FAIRLEY, Peter, Unilever Research Port Sunlight, Quarry Road East, Bebington, Wirral, Merseyside L63 3JW (GB). NORTON, Ian, Timothy; Unilever Research Colworth, Colworth House, Sharnbrook, Bedford MK44 1LQ (GB). WILLIAMS, Jason, Richard; Unilever Research U.S. Inc., 45 River Road, Edgewater, NJ 07020 (US).	
(22) International Filing Date: 22 March 1999 (22.03.99)		(74) Agent: MOLE, Peter, Geoffrey; Unilever plc, Patent Dept., Colworth House, Sharnbrook, Bedford MK44 1LQ (GB).	
(30) Priority Data: 9807269.7 3 April 1998 (03.04.98) GB		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
<p>(71) Applicant (for AE AU BB CA CY GB GD GH GM IE IL KE LC LK LS MN MW NZ SD SG SL SZ TT UG ZA ZW only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).</p> <p>(71) Applicant (for all designated States except AE AU BB CA CY GB GD GH GM IE IL IN KE LC LK LS MN MW NZ SD SG SL SZ TT UG ZA ZW): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).</p> <p>(71) Applicant (for IN only): HINDUSTAN LEVER LIMITED [IN/IN]; Hindustan Lever House, 165/166 Backbay Reclamation, Mumbai 400 020, Maharashtra (IN).</p>			
<p>Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</p>			

(54) Title: DETERGENT COMPOSITIONS

(57) Abstract

An aqueous detergent composition, which is in the form of a thickened, mobile fluid, comprising foaming detergent and a polymer or polymer mixture which is capable of forming a reversible gel, which polymer or mixture is present in the composition as a multiplicity of individual gel particles.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

BEST AVAILABLE COPY

WO 99/51716

- 2 -

gum are described in for example US-A-5151210 and EP-A-500423.

5 Detergent products containing other polymers have been described, for example in US-A-5286405 and GB-A-2188060.

10 EP-A-271131 discloses a number of products intended for application to skin which are thickened with carrageenan so as to form gels. Many of these do not include surfactant.

One product disclosed in this document is a cleansing composition, containing a low foaming nonionic surfactant.

15 A number of polymers of biological origin, when in aqueous solution, have the ability to form so-called reversible gels which melt when heated but revert to a gel when cooled down subsequently. One well known example of a polysaccharide which forms reversible gels is agar. An aqueous solution containing a small percentage of agar is a mobile liquid when hot, but when left to cool it forms a gel with sufficient rigidity to maintain its own shape. Other naturally occurring polymers which can form reversible gels are carrageenan, furcelleran, gellan and pectin.

20 The formation of gels by natural polysaccharides arises from interaction between the polymer molecules. Reversible gels generally display a melting temperature or temperature range, referred to as the gel point. This is the temperature at which, on slow heating, the gel is observed to melt as this interaction largely disappears. Thus, above the gel point, the hot solution of polymer is mobile. When it cools below its gel point, the interaction of polymer molecules enables them to form a continuous and branched network which extends throughout the sample. In contrast

BEST AVAILABLE COPY

DETERGENT COMPOSITIONS

This invention relates to foaming detergent compositions which may be for use in personal washing, or in other
5 applications.

A number of detergent products for personal washing are formulated as viscous liquids, creams or gels. Examples of such products are hair shampoos, shower gels and facial washes. Such products generally contain foaming surfactant which usually comprises at least 3wt% of anionic surfactant, possibly accompanied by amphoteric, zwitterionic or nonionic surfactant. It is conventional for such products to contain one or more ingredients whose function is to increase the 10 viscosity of the composition. Some other liquid detergent compositions are also required to contain foaming surfactant and to have a viscosity greater than that of water.
15

One possibility for enhancing the viscosity of a fluid 20 composition is to incorporate a sufficient quantity of electrolyte together with a sufficient quantity of selected surfactant, so that the surfactant is present in a viscous phase, and thus increases the viscosity of the resulting composition.

25 It is also known to incorporate polymeric materials to enhance viscosity. One category of synthetic polymers used for this purpose are crosslinked polyacrylates, for instance those sold under the trade mark Carbopol. Natural polymers 30 have also been used for this purpose, and in particular xanthan gum and its derivatives has been used. Personal washing products, especially shampoos, containing xanthan

- 3 -

with the formation of a continuous, branched network, some other materials which thicken water do so through merely local, transient entanglement of molecules. A discussion of polysaccharide gels, including their range of mechanical properties, is found in "Gels and Gelling" by Allan H Clark which is Chapter 5 in Physical Chemistry of Foods, Schwartzberg and Hartel, editors; published by Marcel Dekker 1992. In some instances there is hysteresis and the melting and setting temperatures are not identical.

10

The melting temperature of a gel can suitably be measured by placing a steel ball, having a diameter of approximately 1 mm, on the surface of a sample which is fully set, then raising the temperature slowly e.g. in a programmable water bath. The gel melting point is the temperature at which the ball begins to sink through the sample. Apparatus to facilitate such determinations is available, for example a Physica AMV200 rolling ball viscometer from Anton Paar KG.

20 A reversible gel also displays a transition temperature at which, upon slow temperature increase, all ordering, be it of microscopical or macroscopical extent, has disappeared completely. This transition temperature (from order to disorder) can be measured by means of differential scanning 25 calorimetry (DSC). The transition temperature of a reversible gel, as measured by DSC, usually approximately coincides with gel melting, observable visually.

30 Although xanthan gum can be incorporated as a thickener in aqueous compositions containing surfactant, the resulting products tend to have a stringy texture and a slimy feel. We have found that the gels formed on cooling of a number of other polymers of biological origin are incompatible with

BEST AVAILABLE COPY

- 4 -

foaming surfactants. The surfactant makes the gel unstable and phase separation occurs on cooling or on subsequent storage.

- 5 EP-A-355908 teaches that polysaccharides which are capable of forming a reversible gel can be used to form viscous, yet mobile, fluid compositions by subjecting the composition to shear while gel formation takes place. The resulting compositions can be termed "shear gels". This document
10 exemplifies a number of products, one of which is named a "cleanser gel" and includes a low foaming nonionic surfactant as an emulsifier.

We have now found that it is possible to form detergent
15 compositions which are shear gels and which include foaming surfactant.

According to the present invention, there is provided an aqueous detergent composition, which has a thickened fluid form, containing foaming surfactant and a polymer or polymer mixture which is capable of forming a reversible gel in water, which polymer is present in the composition as a multiplicity of separate gel particles.

- 25 In the present specification, the expression "thickened fluid" is used to denote a composition with viscosity greater than that of water.

In order that the gel particles remain stable in the presence of surfactant, it will generally be desirable that the polymer or polymer mixture does not require polyvalent cations in order to form the precursor aggregates that are subsequently capable of intermolecular association leading

- 5 -

to formation of a gel network. Consequently it is desirable that the polymer or mixture is capable of forming a reversible gel when dissolved at a sufficient concentration in hot distilled or demineralised water and allowed to cool
5 to an ambient temperature of 20°C.

The composition may consist solely of a continuous aqueous phase and the gel particles therein. However, compositions thickened with gel particles, in accordance with this
10 invention have been found to be very effective at suspending other materials and so a composition of this invention may incorporate suspended particles of a water-immiscible liquid (eg a water-immiscible oil) or of a solid other than polymer gel. The amount of such particles may lie in a range from
15 0.1 to 40% by weight, preferably 0.1 to 25% by weight, more preferably 0.5 to 20% by weight of the composition.

Compositions embodying this invention may be made with viscosities in a wide range. At one extreme, the
20 compositions may be freely mobile, self-levelling and pourable, although thicker than water. On the other hand, they may be made as viscous liquids which can be squeezed from a collapsible container, and yet which are too viscous to pour, except very slowly.

25 They are shear-thinning, which can be a useful property, notably in personal washing compositions, because the user can perceive the product as thick and viscous, and yet find it easy to apply. An advantage of viscous shear gels, as
30 compared to compositions thickened in some other way, is that they are better at retaining the shape which has been squeezed out.

- 6 -

If the compositions are heated to a temperature above the melting and transition temperatures, the individual gel particles will melt and will not reform as separate particles on cooling, but this will not be a problem in 5 ordinary use, because reversible gels generally have melting temperatures well above normal room temperatures.

Viscosity of compositions embodying this invention can be measured using the same techniques as are used to measure 10 viscosities of other thickened liquid compositions. One suitable apparatus is the Haake Rotoviscometer, another is the Carri-Med CSL 500 viscometer.

Many compositions of this invention will display a viscosity 15 in a range from 0.1 Pa.s to 100,000 Pa.s at a shear rate of 10 sec^{-1} , measured at 20°C, more preferably a viscosity in the range 0.1 Pa.s to 20,000 Pa.s at a shear rate of 10 sec^{-1} , measured at 20°C, , more preferably a viscosity in the 20 range 0.1 Pa.s to 10,000 Pa.s at a shear rate of 10 sec^{-1} , measured at 20°C, more preferably a viscosity in the range 0.1 Pa.s to 1,000 Pa.s at a shear rate of 10 sec^{-1} , measured at 20°C.

One route for the preparation of the sheared gel particles 25 required for this invention starts with the provision of an aqueous solution of the polymer or polymer mixture, at a temperature above the gel melting temperature (and probably also above its order to disorder transition temperature), then cooling the solution to a temperature below the gel 30 setting temperature, while applying shear to the

- 7 -

composition. Generally, the solution will be subjected to shear while cooling from 60°C or above to 25°C or less.

On a small scale, this may be carried out in a beaker with a
5 mechanical stirrer in the beaker, providing vigorous stirring while the contents of the beaker are allowed to cool.

We prefer to carry out the preparation using a scraped
10 surface heat exchanger, which may desirably be equipped to operate under a partial vacuum, to reduce the incorporation of air bubbles into the composition as gel formation takes place.

15 Another possibility for preparing the gel particles is to form a bulk quantity of the gel and then break this up into small particles, for instance by pumping it through a homogeniser.

20 The gel particles will typically be of a size which can be seen in a microscope. Usually their mean particle size will lie in a range from 0.1 to 250 µm, and often almost all particles will lie between particle sizes of 0.1 to 300 µm. Preferably the mean particle size is between 0.5 or 1 µm and
25 200 µm may lie in a range from 10 µm up to 200 µm.

An advantage of gel particles having this particle size, particularly in the context of cleansing compositions, is that the small particles of polymer may enhance cleansing by
30 mechanically breaking up soil on the surface being cleaned. This may be particularly so in the case of topical compositions used for make up removal.

- 8 -

Generally it will be desirable to form the gel particles by cooling an aqueous solution of the gel-forming polymer or polymer mixture in the substantial absence of surfactant, and then add surfactant subsequently. An alternative 5 approach is to incorporate surfactant into the aqueous composition before the step of cooling under shear. This is not possible for all gel-forming polymers. We have found that for many polymers gel formation is inhibited by the presence of surfactant, and yet gel particles which have 10 already been formed remain stable if surfactant is added subsequently.

Thus in a second aspect, this invention provides a method of preparing a detergent composition as set forth above which 15 comprises forming a hot, mobile aqueous solution of the polymer or polymer mixture, cooling the solution through its gel temperature, subjecting it to shear during or after cooling, and incorporating foam-forming surfactant possibly before but preferably after cooling through the gel 20 temperature.

A laboratory-scale jacketed mixing vessel with a scraped surface, which we have used successfully is the TK Agi Homo mixer available from Tokushu Kika Kogyo Co Ltd, Japan.

25 Scraped surface heat exchangers and homogenisers are used in the commercial production of margarine and other spreadable foodstuffs and such apparatus may be used to produce compositions of this invention on a larger scale. A discussion of such heat exchangers is given by Härröd in 30 Journal of Food Process Engineering 9 (1986) pages 1-62. Suppliers of such apparatus include Armfield Ltd, Ringwood, Hampshire, England, Contherm Corporation which is a division

- 9 -

of the Alfa-Laval Group, USA and APV Projects (Crepaco) Ltd, Crawley, West Sussex, England.

After the formation of gel particles, the addition of foam-forming surfactant or other ingredients, probably as a liquid concentrate but optionally as a solid surfactant or solid and/or melted acid surfactant precursor, can be carried out using conventional mixing apparatus, operating at low shear. Possibly a scraped surface heat exchanger used to form the gel particles can also be used for a subsequent mixing operation, especially if run more slowly, so as to give lower shear. A mixing operation should not be allowed to heat the composition sufficiently to cause melting of the gel particles. If necessary, a composition containing gel particles should be cooled before and/or during any subsequent mixing operation.

In a highly preferred embodiment, compositions according to the invention may comprise relatively high levels of polyol materials, which polyols have been found to confer to the compositions various benefits. These may include benefits in terms of processing, but also benefits in the resultant topical compositions.

Materials and procedures useful in this invention will now be described in greater detail by way of example only, making reference to the accompanying drawings, wherein:

Fig 1 is a cross-section of a mixer useful for preparing a shear gel particles on a batch basis,

Fig 2 diagrammatically illustrates apparatus for continuous preparation,
BEST AVAILABLE COPY

- 10 -

Fig 3 diagrammatically illustrates another form of apparatus used in Example 10 and

- 5 Fig 4 diagrammatically illustrates another form of apparatus used in Example 12.

The apparatus shown in Fig 1 is a TK Agi homo mixer. It has a containing vessel 10 with inner and outer walls spaced apart to allow a coolant to be circulated through the space between them. The vessel has an upper closure 12. A rotor 14 within the vessel is extended through the upper closure 12 and connected to a drive motor 16. The rotor 14 surrounds a central fixed stator 18. Baffles 20,22 project from the rotor and stator respectively. When the rotor is turned the liquid within the vessel 10 is subjected to shear by the movement of the rotor 14 and its baffles 20 relative to the stator 18 and its baffles 22. In addition flaps 24 made of polytetrafluoroethylene projecting from the rotor 14 scrape the inner wall of the vessel 10. The upper closure 12 includes provision at 26 for connection to a vacuum pump. Gas tight seals are provided between the rotor 14 and the upper closure 12. Consequently vacuum can be applied to the interior of the vessel 10 through the connection 26.

25

In order to make a composition according the invention using this apparatus, an aqueous solution of the polymer, heated to above its gel temperature, is placed in the vessel. The upper closure 12 is then placed on the vessel and the contents of the vessel are cooled by circulation of coolant through the space between the vessel walls. At the same time the rotor is turned and vacuum is applied to the connection 26 so that cooling of the vessel contents takes

- 11 -

place under conditions of shear, while suction through the air outlet 26 prevents formation of gas bubbles.

- In consequence, as the contents of the vessel cool to below
5 the gel point, a multiplicity of small gel particles are formed. Once the contents of the vessel have cooled below
the gel temperature and these particles have formed,
surfactant can be mixed with the vessel contents either by
removing the upper closure and adding a liquid concentrate
10 (or optionally a solid surfactant or solid and/or melted acid precursor) of the surfactant to the vessel 10, or by transferring the contents of the vessel 10 and also the surfactant, to a separate mixer.
- 15 Fig.2 illustrates a preferred form of apparatus consisting of several individual pieces of equipment connected together by pipework.

A hot aqueous solution of the polymer is prepared and held
20 in a supply vessel T1. It is delivered from this by a suitable pump P1 to a scraped surface heat exchanger A1 which is in the form of a cylinder for through flow of the polymer solution and which is surrounded by a jacket for coolant. Within this heat exchanger is located a large
25 diameter shaft fitted with scraper blades which are spring loaded to hold them against the interior surface of the cylindrical vessel wall. Rotation of this central shaft by a motor applies shear to the polymer solution as it passes through the heat exchanger A1.

30 As the polymer solution passes through the heat exchanger A1 it is cooled to below its gel temperature under conditions of shear and this leads to the formation of gel particles in

- 12 -

a continuous aqueous phase. The resulting composition passes on from heat exchanger A1 to a second heat exchanger A2 which is similar except that it operates at a lower speed. This is used to cool the composition further.

5

The composition then flows on to a mixer C which, like the units A1 and A2 performs heat exchange functions. However, within this C-unit there are stationary baffles projecting inwardly from the heat exchanger walls and a motor driven central, small diameter shaft which carries further baffles that project between the stationary baffles of the cylinder wall. There are no scrapers in this device. Here, the composition is mixed with surfactant solution delivered from a supply vessel T2 by means of a suitable pump P2. The

10 15 mixture leaving the high speed mixer C is a composition in accordance with the present invention. It may be convenient to cool it by passage through a further scraped surface heat exchanger A3 operating at low speed before the composition is delivered as finished product or packed in containers.

20 The pumps P1 and P2 may conveniently be provided as separate channels of a proportioning piston pump, which is a convenient way to ensure that constant proportions are delivered from each of the tanks T1, T2.

25 Mixing apparatus, pumps and scraped surface heat exchangers used in apparatus as above can be of types which are customarily used in the production of margarine and other edible spreads. Another name for the scraped surface heat exchanger which provides for through flow of the material is 30 a "votator". These pieces of apparatus may be manufactured in a range of sizes extending from small units which can fit on a laboratory bench to full scale production plant. Manufacturers of such apparatus include Armfield Ltd,

- 13 -

Cantherm Corporation and APV Projects (Crepaco) Ltd
mentioned above.

There are two generally preferred processes for preparing
5 shear gel compositions according to the inventions using the
above described equipment.

In the first, water, polymer, and optionally a polyol
compound are added to a main mixer vessel (with or without a
10 static homogenizer), and heated to 90°C under vacuum. The
mixture can then be cooled, under vacuum and using a high
wall scraper speed, rapidly to 50°C, and then more slowly to
20°C.

15 The composition can then be subjected to a static
homogenizer, whilst being warmed to 40°C if need be, whilst
surfactant or acid form of the surfactant is added to the
top of the mixture. Alternatively, the surfactant can be
added by dripping molten surfactant through the hopper
20 contents, which can preferably be under vacuum and high
shear from a wall scraper and/or homogenizer.

Following this, the acid form of the surfactant can be
neutralized by alkali (such as TEA or KOH) can be added as
25 required through the hopper slowly, with continued high
shear from the wall scraper and/or homogenizer. Additional
ingredients can then be added at this stage (including any
surfactant materials which are to be added by coextrusion or
injection), and the composition can then be cooled at room
30 temperature, and perfume and preservatives are then added.
The pH is checked and adjusted, and finally any suspended
particles which are required are added, optionally whilst

- 14 -

the composition is subjected to vacuum and low shear from the wall scraper only, before the composition is discharged.

Alternatively, in place of the steps above prior to the
5 initial cooling to 20°C, a micro rotator line can be used to shear the water, polymer and optionally polyol mixture, and to subsequently cool the mixture from 90°C to 20°C. The resulting polymer shear gel can then be processed according to the remainder of the steps above.

10

Polymer Types

Compositions of this invention contain a polymer or polymer mixture capable of forming a reversible gel. It is
15 desirable that the polymer should be capable of forming a gel without requiring metal salt to be present. (Polymers which require ionic species to be present as a prerequisite for gel formation are apt to be destabilised by surfactant, even if formed as shear gel particles). Generally, this
20 means that such a polymer, dissolved in demineralised water at some concentration between 0.1 and 10% by weight will form a gel on cooling the solution without agitation from an elevated temperature of 90°C to 20°C for 24 hours.

25 In this test of gel-formation, a polymer may or may not form a gel at every concentration in the range from 1 to 10% by weight. With some polymers it might be necessary to use more than 1%. With some polymers, concentrations as high as 10% by weight may not be achievable. Some polymers may form
30 gels without standing for as long as 24 hours.

The polymer or polymer mixture which is capable of forming a reversible gel will usually be of natural origin - and

- 15 -

specifically one or more polysaccharides will preferably be used. However, it is possible that the polymer, or one or more polymers in a mixture of polymers might be a chemically modified natural polymer such as a polysaccharide which has 5 been chemically treated to provide or alter substituent groups thereon. It is also conceivable that a polymer mixture might contain a synthetic polymer together with a natural polymer. Usually however, the polymer which is used will include a polysaccharide chain of natural origin.

10

One polysaccharide which may be used is agar, which is of course well known for use as a growth medium for microorganisms in vitro.

15 Agarose is a linear polysaccharide, basically made up from β -1,3 galactose residues alternating with α -1,4 galactose residues. The latter are present as the 3,6-anhydride and are the L-enantiomer.

20 Agaropectin likewise has β -1,3 galactose residues alternating with α -1,4-L-galactose residues, but includes sulphate, pyruvate and/or glucuronic acid residues.

25 The term agar covers a family of polymers containing agarose and/or agaropectin, ie polymers with backbone structure containing alternating 1,3-D-galactose and 1,4-L-galactose residues.

30 Agar is extracted from certain species of red seaweed, principally in Japan. A description of agar is given by Tetsujiro Matsuhashi as Chapter 1 in "Food Gels" edited by Peter Harris, Elsevier, 1990.

- 16 -

Another category of polysaccharide which may be used is the kappa carrageenan. Carrageenans are a class of polysaccharides which occur in some other red seaweed species. They are linear polysaccharides made up from alternating β -1,3- and α -1,4- linked galactose residues. The 1,4-linked residues are the D-enantiomer and sometimes occur as the 3,6-anhydride. Many of the galactose residues are sulphated.

10

A number of carrageenan structures have been described and commercial materials are available which approximate to the ideal structures. However, variations between these structures occur, depending on the source of the carrageenan and treatment of it after extraction.

15

A description of different carrageenan types is given in "Carrageenans" by Norman F Stanley which is Chapter 3 of "Food Gels" mentioned above.

20

Kappa carrageenan is sulphated on the 1,3-linked galactose residues, but not on the 1,4-linked residues. Iota carrageenan is sulphated on both residues. Lambda carrageenan has two sulphate groups on the 1,4-linked residues and one sulphate group on 70% of the 1,3-linked residues.

25

Other types of carrageenan may be used in mixtures with kappa. Aqueous solutions of iota carrageenan exist as reversible gels, but these appear to be self healing. Iota carrageenan can be used to form compositions in accordance with this invention, but the compositions become lumpy during storage because of the self-healing property of iota

30

BEST AVAILABLE COPY

- 17 -

carrageenan gels, and so for this invention it is desirable to use kappa carrageenan or mixtures of kappa and iota.

Lambda carrageenan on its own in aqueous solution does not 5 form gels because its higher charge density inhibits association between molecules and consequent structuring in liquids. However, some lambda carrageenan may be included in mixtures with kappa, or may be present as an impurity in commercial supplies of kappa or iota carrageenan.

10 If lambda carrageenan is included in a mixture of carrageenans, the mixture may contain a majority (more than one half of the polysaccharide) of kappa or kappa and iota carrageenan with a minority proportion of lambda 15 carrageenan.

Another polymer which may be used is furcellaran. Furcellaran is similar to kappa carrageenan, but is only partially sulphated on the 1,3-linked galactose residues. A 20 polymer of bacterial origin which may be used is gellan. It is the polymer of a tetrasaccharide repeat unit, containing glucose, glucuronic acid, and rhamnose residues. There is some substitution with acyl groups but these are often removed during production to give a low acyl gellan. 25 Gellans are the subject of Chapter 6 by G R Saunderson in "Food Gels" mentioned above. Another possibility is to use a so-called synergistic gel which relies on the interaction of two polymer types. In general these may be formed from a polysaccharide which is a glucomannan with sequences of 30 mannose residues in its polymer chain, such as locust bean gum or guar gum, and a second polymer which is xanthan or carrageenan.

- 18 -

It is possible to include an additional thickening agent, such as a small concentration of xanthan gum, or curdlan, in the composition in addition to the gel particles. This may possibly be added after gel particles have been formed along 5 with the surfactant.

A composition according to this invention will generally contain from 0.1 to 10 wt% of naturally occurring polymer. Normally, at least half the weight of this polymer will be 10 one or more polymers capable of forming a reversible gel on cooling from an elevated temperature to 20°C as a quiescent solution is demineralised water.

Polymer capable of forming a reversible gel may constitute 15 from 0.5 to 10wt% of the whole composition, often from 0.2 or 0.5wt% up to 5 or 8 wt%.

In general, the viscosity of a shear gel composition in accordance with this invention will increase with the 20 concentration of polymer contained in it.

Viscosity will also be affected by the size and shape of the gel particles, which in turn is affected by the conditions used to apply shear during cooling. In general, 25 combinations of variable cooling rates and different rotor speeds during shearing permits the optimisation of particle dispersion smoothness, suspending properties and viscosity, possibly because gel particle shapes can vary between spherical and filamentous forms.

30

Non-surfactant electrolyte

Although it is generally desirable that the polymer should be capable of forming a gel without participation of ionic species, some polymers which are capable of forming a gel in distilled or demineralised water nevertheless form gels of greater viscosity if some electrolyte is present. Notably the viscosity of kappa carrageenan gel dispersions is increased by the presence of potassium ions and the viscosity of agar gel dispersions is increased in the presence of calcium ions. Consequently, a polymer solution which is cooled under shear to form gel particles as required for this invention may include electrolyte to enhance the strength of the resulting gel particles. The amount of electrolyte required may be a small percentage of the product, e.g. 1%.

Foaming Surfactant

Compositions of this invention contain at least 3 wt% of a foaming surfactant system, preferably from 5wt% up to 30 wt%. At least half, better at least two-thirds of the surfactant present is preferably selected from anionic, amphoteric or zwitterionic surfactants, or alkylpolyglycosides or alkyl polyhydroxyamides (eg. alkyl glucamides) which are foaming nonionic surfactants. Preferably the composition contains at least 5% anionic surfactant possibly accompanied by amphoteric or zwitterionic surfactant. Conveniently the composition comprises 5 to 25% by weight anionic surfactant, preferably 5-15% anionic surfactant.

- 20 -

Ethoxylated alcohols, which are low-foaming nonionic surfactants, may be present as less than half of the surfactant present. Preferably, the amount (if any) of such surfactant is not more than a quarter of the surfactant 5 present.

One type of anionic surfactant which is frequently used in personal washing compositions, and which may be used in compositions of this invention is alkyl ether sulphate of 10 the formula:

where R^4 is alkyl or alkenyl of 8 to 18 carbon atoms, especially 11 to 15 carbon atoms, t has an average value of 15 at least 2.0 and M is a solubilising cation such as sodium, potassium, ammonium or substituted ammonium. Preferably t has an average value of 3 or more.

Other anionic surfactants may be used. Possibilities 20 include alkyl glyceryl ether sulphates, sulphosuccinates, taurates, sarcosinates, acyl isethionates, sulphoacetates, alkyl phosphates, acyl amino carboxylates, acyl lactates and soap. In certain embodiments acyl amino carboxylate surfactants are particularly preferred.

25 Sulphosuccinates may be monoalkyl sulphosuccinates having the formula:

30 and amido-MEA sulphosuccinates of the formula:

- 21 -

wherein R^5 ranges from C₈-C₂₀ alkyl, preferably C₁₂-C₁₅ alkyl and M is a solubilising cation (such as those above).

5

Sarcosinates generally have by the formula $R^5 \text{CON}(\text{CH}_3)\text{CH}_2\text{CO}_2\text{M}$, wherein R^5 ranges from C₈-C₂₀ alkyl, preferably C₁₂-C₁₅ alkyl and M is a solubilising cation (such as those above).

Taurates are generally identified by the formula

10 $R^5 \text{CONR}^6\text{CH}_2\text{CH}_2\text{SO}_3\text{M}$, wherein R^5 ranges from C₈-C₂₀ alkyl, preferably C₁₂-C₁₅ alkyl, R^6 ranges from C₁-C₄ alkyl and M is a solubilising cation (such as those above).

Fatty acyl isethionates have the formula:

15

where R is an alkyl group of 7 to 21 carbon atoms and M is a solubilising cation such as those above.

20

Another class of foaming anionic surfactants are the long chain alkyl carboxylates and alkyl ether carboxylates of general formula:

25

Where M is a monovalent akali cation such as Na and/or K, or an organic cation such as ammonium, monoethanolammonium or triethanolammonium, a is an integer from 0 to about 7, and R 30 is a straight or branched chain, saturated or unsaturated.

- 22 -

hydrocarbon group having from about 10 to about 20 carbon atoms.

A further class of suitable anionic surfactants are

5 monoalkyl phosphate and dialkyl phosphate surfactants, such as for example dioctyl phosphate, as well as ether carboxylate and ethoxylated citrate surfactants.

The anionic detergent included in the composition will
10 generally be selected to avoid harsh detergent such as primary alkane sulphonate or alkyl benzene sulphonate. The amount, if any, of these is preferably less than 3% of the detergents present.

15 Anionic surfactant may be used jointly with amphoteric/zwitterionic surfactant, notably betaine or sulphobetaine.

Amphoteric/zwitterionic surfactants for use in this
20 invention will usually comply with an overall structural formula

where R^1 is alkyl or alkenyl of 7 to 18 carbon atoms

30 R^2 and R^3 are each independently alkyl, hydroxyalkyl or carboxyalkyl of 1 to 3 carbon atoms.

m is 2 to 4

n is 0 or 1

- 23 -

X is alkylene of 1 to 3 carbon atoms optionally substituted with hydroxyl, and

Y is -CO_2^- or -SO_3^-

Suitable amphoteric/zwitterionic detergents within the above

5 general formula include simple betaines of formula:

10

and amido betaines of formula:

15

20

where m is 2 or 3.

In both formulae R^1 , R^2 and R^3 are as defined previously. R^1 may in particular be a mixture of C_{12} and C_{14} alkyl groups derived from coconut so that at least half, preferably at 25 least three quarters of the groups R^1 have 10 to 14 carbon atoms. R^2 and R^3 are preferably methyl.

A further possibility is that the zwitterionic detergent is a sulphobetaine of one of the formulae:

- 24 -

where m is 2 or 3, or variants of these in which -
 $(\text{CH}_2)_3\text{SO}_3^-$ is replaced by

Another class of amphoteric surfactants are the alkylamide
alkyl amines, especially the amfoacetates of general
15 formula:

20

where M is Na, K, ammonium or triethanolammonium, an R is
branched or straight chain saturated or unsaturated alkyl
group having about 10 to about 20 atoms.

Glycoside surfactants are nonionic in character and of
25 course includes glycoside residues. Suitably they are of
the general formula :

30 in which G is a residue of a pentose or hexose, R'O is an
alkoxy group, x is at least unity and R is an organic
hydrophobic group from 6 to 20 carbon atoms which is

- 25 -

preferably aliphatic, either saturated or unsaturated, notably straight or branched alkyl, alkenyl, hydroxyalkyl or hydroxyalkenyl. Particularly, R may be alkyl or alkenyl of 7 to 14 or 16 carbon atoms.

5

The value of t in the general formulae above is preferably zero, so that the $-(R'O)_t-$ unit of the general formulae is absent. In that case the general formulae become :

10

If t is non-zero, it is preferred that R'O is an ethylene oxide residue. Other possibilities are propylene oxide and glycerol residues. If the parameter t is non-zero so that R'O is present, the value of t (which may be an average 15 value) will preferably lie in the range from 0.5 to 10.

20

The group G is typically derived from fructose, glucose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose and/or ribose. Preferably, the G is provided substantially exclusively by glucose units.

Intersaccharide bonds may be from a 1-position to a 2, 3, 4 or 6-position of the adjoining saccharide. Hydroxyl groups on sugar residues may be substituted., e.g. etherified with short alkyl chains of 1 to 4 carbon atoms. Preferably a 25 sugar residue bears no more than one such substituent.

30

The value x, which is an average, is usually termed the degree of polymerization. Desirably x varies between 1 and 8. Values of x may lie between 1 and 3, especially 1 and 1.8.

- 26 -

Alkyl polyglycosides of formula RO(G)_x, i.e. a formula as given above in which t is zero, are available from Horizon Chemical Company, BASF and Henkel.

- 5 O-alkanoyl glucosides of formula RCO₂ - (G)_x are described in International Patent Application WO 88/10147 (Novo Industri A/S). In particular the surfactants described therein are glucose esters with the acyl group attached in the 3- or 6-position such as 3-O-acyl-D-glucose or 6-O-acyl-D-glucose. Notable are 6-O-alkanoyl glucosides, in which the alkanoyl group incorporates an alkyl or alkenyl group having from 7 to 13 carbon atoms. The glucose residue may be alkylated in its 1-position with an alkyl group having from 1 to 4 carbon atoms, such as ethyl or isopropyl.
- 10 15 Alkylation in the 1-position enables such compounds to be prepared by regiospecific enzymatic synthesis as described by Bjorkling et al. (J. Chem. Soc., Chem. Commun. 1989 p934).
- 20 Aldobionamides are amides of an aldobionic acid or aldobionolactone. Aldobionic acids are disaccharides or polysaccharides in which the aldehyde group (generally found at the C₁ position of the sugar) has been replaced by a carboxylic acid. Upon drying they cyclise to
- 25 30 aldobionolactones. The disacharide may in particular be lactose or maltose, so that the aldobionamide is a lactobionamide or maltobionamide. Further information about aldobionamides and their preparation is given in EP-A-550278.
- 30 Descriptions of alkyl polyhydroxy fatty acid amides are found in US 2965576, EP 220676, EP 550557 and documents

- 27 -

referred to therein. Polyethylene oxide-polypropylene oxide copolymers are marketed commercially, e.g. under the trademark Pluronic .

- 5 The foaming properties of surfactants may be evaluated by a test carried out using a panel of assessors. A suitable number of assessors to provide the panel is 20. Each panellist wears surgical gloves, turned inside out, which are first washed with soap to remove any powder, eg talc,
10 from their surface, and dried. Test solutions are prepared containing 2% by weight of surfactant in demineralised water. To carry out each test, 2.5ml of a test solution is dosed slowly from a syringe directly on to the dry gloves. The panellist then rubs his or her hands together both
15 during and after dosing the surfactant solution onto them, so as to generate a lather. The panellist takes care to avoid dropping solution from the hands. The panellist continues to generate lather by rubbing their hands together for about 10 to 20 seconds until the volume of lather is
20 perceived as constant after which the volume of lather on the gloves is measured by the panellist submersing their hands into a bowl of water while a calibrated collecting funnel is held above them so that the lather is swept off the hands into the collecting funnel. The results obtained
25 from each panellist are averaged.

A surfactant can be designated as a foaming surfactant if the volume of foam obtained is greater than 10 cm³. An alternative definition is to state that the volume of foam for a foaming surfactant should be at least half the volume generated from the same volume of an equivalent concentration solution of sodium lauryl ethyl sulphate containing average 3 ethylene oxide residues.

RIGHT AVAILABLE COPY

- 28 -

A number of surfactants were tested in accordance with the above procedure and the following results were obtained.

Surfactant (2wt% total surfactant)		Geometric mean of foam volumes/cm ³
Trade name	Abbreviation	
Brij 58	C ₁₆ E ₂₀	3.390
Genapol ZRO	SLES	21.500
Dehyton K	CAPB	35.726
Genapol ZRO with Dehyton K	SLES/CAPB (13:2 weight ratio)	19.303
Plantaren 2000 UP	APG	47.705
Genapol ZRO with Dehyton K and Brij 58	SLES/CAPB/C ₁₆ E ₂₀ (13:2:5 weight ratio)	14.815
Jordapon CI with Dehyton K	SCI/CAPB (13:2 weight ratio)	27.667

5

Brij 58, supplied by ICI, is C₁₆ fatty alcohol ethoxylated with average 20 ethylene oxide residues (C₁₆E₂₀).

10 Genapol ZRO, supplied by Hoechst, is sodium lauryl ether sulphate containing average 3 ethylene oxide residues (SLES).

Dehyton K, supplied by Henkel, is coconut amidopropyl betaine (CAPB).

15 Plantaren 2000 UP, supplied by Henkel, is an alkyl poly glucoside in which the alkyl chain has average 10 carbon atoms and the molecules contain an average of 1.4 glucoside

BEST AVAILABLE COPY

- 29 -

residues. Jordapon CI, supplied by PPG Mazer, is sodium cocoyl isethionate (SCI).

In a preferred embodiment the composition contains
5 relatively high levels of polyol materials. Typically,
polyol compounds may be present at levels of up to 90% by
weight, more typically 2-60% by weight, more preferably 5-
50% by weight, even more preferably 10-45% by weight of the
composition.

10

Suitable polyol materials include glycerol, sorbitol,
hexanetriol, propan-1,2 diol, 1,3 butylene glycol, hexylene
glycol and propylene glycol, as well as polyethylene glycols
and polypropylene glycols. Suitable polyethylene and
15 polypropylene glycols typically have a molecular weight in
the region 100-4000, more preferably 200-2000. A preferred
polyol material is glycerol.

The inclusion of a polyol material in compositions according
20 to the invention has been found to provide a variety of
benefits. In the first instance, compositions according to
the invention which contain relatively high levels of
polyols have been found to have improved stability when
subjected to freeze/thaw stability test cycling. In
25 addition, compositions containing high levels of polyols
have been found to have relatively good integrity, in
particular in terms of their viscosity and their ability to
suspend particles.

30 Compositions containing polyols may also have improved
clarity, in particular as the need to provide more direct
structuring of the product (for example by using clays or
carbomer polymers) is reduced. The inclusion of high levels

- 30 -

of polyols may also facilitate the inclusions and gelling of benefit agents in the composition. Also, the inclusion of high levels of polyol, together with the use of the polymer or polymer mixture may provide surprising improvements in
5 foam stability creaminess of lather.

Further, the use of relatively high levels of polyols has been found to reduce the reliance of the system on co-structurants (such as clays) with the polymer or polymer
10 mixture. Hence, it has been found that such compositions may have a reduced need for water in the system, since less water is required for hydration of the co-structurant, which in practice increases the options to the skilled practitioner in terms of the surfactant systems which may be
15 used or accommodated in the composition.

The use of high levels of polyols in systems has also been found to be advantageous from a processing perspective, since as is mentioned elsewhere in the application, it is
20 desirable that surfactants are added to the polymer mixture after it has been formed and cooled, to avoid phase separation. The addition of relatively high levels of polyols can result in the shifting of the phase boundary for the composition, meaning that low viscosity isotropic
25 liquids may form. These are relatively easy to process compared to the high viscosity liquid crystal phases (such as H1 or cubic) which can otherwise form in certain circumstances.

30 Other materials may be included in compositions of this invention. Possibilities include colouring agents, opacifying agents, organic polymers, perfumes including

- 31 -

deodorant perfumes, bactericidal agents to reduce the microflora on skin, antioxidants and other preservatives.

Compositions according to the invention can optionally 5 contain a benefit agent. The benefit agent can be an emollient oil by which is meant a substance which softens the skin (stratum corneum) directly or by increasing water content and keeping it soft by retarding decrease of water content.

10

Suitable emollients and benefit agents include:

- (a) silicone oils, gums and modifications thereof such as linear and cyclic polydimethylsiloxanes; amino, alkyl alkylaryl and aryl silicone oils;
- (b) fats and oils including natural fats and oils such as jojoba, soybean, rice bran, avocado, almond, olive, sesame, persic, castor, coconut, mink oils; cacao fat; beef tallow, lard; hardened oils obtained by hydrogenating the aforementioned oils, and synthetic mono, di and triglycerides such as myristic acid glyceride and 2-ethylhexanoic acid glyceride;
- (c) waxes such as carnauba, spermaceti, beeswax, lanolin and derivatives thereof;
- (d) hydrophobic plant extracts;
- (e) hydrocarbons such as liquid paraffins, vaseline, petrolatum, microcrystalline wax, ceresin, squalene, pristan and mineral oil;
- (f) higher fatty acids such as lauric, myristic, palmitic, stearic, behenic, oleic, linoleic, linolenic, lanolic, isostearic and poly unsaturated fatty acids (PUFA);
- (g) higher alcohols such as lauryl, cetyl, stearyl, oleyl, behenyl, cholesterol and 2-hexydecanol alcohol;

- 32 -

- (h) esters such as cetyl octanoate, myristyl lactate, cetyl lactate, isopropyl myristate, myristyl myristate, isopropyl palmitate, isopropyl adipate, butyl stearate, decyl oleate, cholesterol isostearate, glycerol monostearate, glycerol distearate, glycerol tristearate, alkyl lactate, alkyl citrate and alkyl tartrate;
- 5 (i) essential oils such as mentha, jasmine, camphor, white cedar, bitter orange peel, rya, turpentine, cinnamon, bergamot, citrus unshiu, calamus, pine, lavender, bay, clove, hiba, eucalyptus, lemon, starflower, thyme, peppermint, rose, sage, menthol, cineole, eugenol, citral, citronelle, borneol, linalool, geraniol, evening primrose, camphor, thymol, spirantol, penene, 10 limonene and terpenoid oils;
- 15 (j) lipids such as cholesterol, ceramides, sucrose esters and pseudo-ceramides as described in European Patent Specification No. 556,957;
- (k) vitamins such as vitamin A and E, and vitamin alkyl esters, including those vitamin C alkyl esters;
- 20 (l) sunscreens such as octyl methoxyl cinnamate (Parsol MCX) and butyl methoxy benzoylmethane (Parsol 1789);
- (m) phospholipids;
- (n) antimicrobial agents;
- 25 (o) hydroxy acids such as alpha and beta hydroxy acids;
- (p) catonic polymers to condition skin or aid skin benefit agent deposition; and
- (q) mixtures of any of the foregoing components.
- 30 A particularly preferred benefit agent is silicone, preferably silicones having viscosity greater than about 50,000 centipoise. One example is polydimethylsiloxane having visocosity of about 60,000 centistokes.

BEST AVAILABLE COPY

- 33 -

The benefit agent may typically be present in compositions according to the invention at levels of 0.1-20% by weight.

5 Example 1

A number of compositions were prepared containing carrageenan together with surfactant. The carrageenans which were used are set out in the following table.

10

Material Name	Trade Name	Supplier
Kappa carrageenan	Genugel X0909	Hercules
Iota carrageenan	Genuviso X0908	Hercules
Lambda carrageenan	Genugel X-3948	Hercules

Two surfactants were used:

Sodium lauryl ether sulphate, average 3EO, (SLES) and

15 coconut amidopropyl betaine (CAPB) supplied by Goldschmidt
as Tegobetaine CK.

The surfactants were used in a constant ratio of 13 parts SLES to 2 parts CAPB. The general method of preparation was

20 to dissolve the surfactants in demineralised water to make up a concentrated solution (25% wt surfactant) at 60-70°C.

The polymer in powdered form was dissolved in demineralised water at 90-100°C. Appropriate quantities of the two solutions were then mixed to form a solution containing 10% wt surfactant and a chosen concentration of polymer.

Electrolyte was added to this solution. The mixed solution was placed in the vessel of a TK Agi Homo mixer as described

- 34 -

earlier with reference to Fig 1. This mixer was run at 100 rpm, while the composition was cooled in the mixer from 75°C to 20°C over a period of 60 minutes.

- 5 The compositions prepared are set out in the following table:

No	Kappa (wt%)	Iota (wt%)	Lambda (wt%)	KCl (wt%)	CaCl ₂ (wt%)	Propan-1,2-diol (wt%)
1	1.5	-	-	0.26	-	-
2	2	-	-	0.26	-	-
3	2.5	-	-	0.26	-	-
4	3	-	-	0.26	-	-
5	4.6	-	-	0.26	-	5
6	2	-	-	0.50	-	-
7	1	1	-	0.26	0.62	-
8	2	0.3	-	0.26	-	-
9	2	-	0.3	0.26	-	-
10	2	-	0.6	0.26	-	-
11	2	-	1	0.26	-	-

- Comparison of samples 1 to 5 show a small but progressive increase in viscosity with kappa concentration up to 3% kappa. At 4.6% kappa, the system is stiff and paste-like, but still spreads easily on rubbing (the propan-1,2-diol was added to the surfactant stock solution to allow greater concentrations to be used without forming hexagonal phase).
 10 Increasing the concentration of KCl to 0.5% (sample 6), to

- 35 -

increase gel strength, does not appear to result in a more viscous system.

Samples 7 and 8, containing some iota carrageenan, had
5 similar properties to sample 2 but were somewhat more elastic as a consequence of their iota carrageenan content.

The effect of lambda (samples 9, 10 and 11) is to enhance smoothness but without greatly influencing viscosity.

10

A quantity of the shear gel of sample 4 containing 3 wt% kappa carrageenan was reheated to 70°C and then allowed to cool to room temperature without agitation. The result was a rigid gel, indicating that the mobility of the composition
15 formed under shear must be attributed to transformations of the carrageenan solution into small particles of gel during cooling.

Example 2

20

Samples 4, 8 and 10 from the previous example were packed in 150ml translucent polyethylene tubes with 1.5 mm diameter outlets.

25 These samples were assessed by 24 female panellists who were instructed to observe the visual appearance and flow of the products in the tube, then squeeze some of the composition from the tube onto a transparent plastic sheet and make a visual observation of the product, then feel the product
30 with their finger tips. Subsequently they were asked to wash their forearms using each of the products. As a comparison the panellists were provided with a conventional

BEST AVAILABLE COPY

- 36 -

shower gel in which surfactant was thickened by incorporation of salt.

The panellists generally commented that the products of this
5 invention were less sticky or stringy than the control composition and that when dispensed from the tube, the dispensed material was less prone to slump under its own weight. (That observation can be attributed to the strongly shear-thinning character of the products of the invention.)
10 When used for washing, the products of the invention were perceived as clean rinsing i.e. they were observed to leave little or no residue or tackiness on the skin after drying.

Example 3

15 Agar shear gels were prepared. The agar was "Deltagar LTS" from Quest International's facility at Kilnagleary, Carriglane, Co. Cork, Ireland. Xanthan, supplied as "Keltrol F" by Kelco was also used. The agar or mixture of
20 agar and xanthan was dissolved in demineralised water and cooled from 75°C to 20°C. The concentrations of polymers, and the viscosities of the resulting compositions were:

Agar (wt%)	Xanthan (wt%)	Viscosity at 10^{-1} sec (mPa.s)	Approx bead diameter (μm)
1	-	1800	100 - 200
2	-	3000	50 - 150
2	0.05	5000	50 - 100
4	-	18000	10 - 30

25 The compositions were examined under a microscope. Gel beads, of approximate size indicated in the table, were

- 37 -

observed. At 1% and 2% agar, the beads could be seen to have small filaments projecting from them.

Inclusion of the small concentration of xanthan led to the
5 formation of slightly smaller beads with fewer filaments projecting from them. The composition was notably smoother and less viscous.

Compositions containing 2% and 4% agar were mixed with
10 concentrated aqueous solutions of surfactant (25 wt%) in proportion to give a composition containing 10 wt% surfactant (13:2 SLES:CAPB as in Example 1). Mixing was carried out in a beaker, at 20°C using a paddle stirrer turned by an overhead motor at sufficiently low speed to avoid incorporating bubbles.
15

Example 4: Shower gel

A shower gel was made in the following way using apparatus generally shown in Fig 2, but without heat exchanger A3.
20 Agar, calcium chloride, potassium sorbate and sorbic acid were dissolved in hot water (>90°C) using a Silverson stirrer. The resulting hot agar solution (M) was transferred to tank T1 which was a 5 litre jacketed tank fitted with a bottom stirrer, baffle and hermetically sealing lid and maintained at 95°C. It was stored in this tank for 30 min. A surfactant mixture was made by diluting two parts of a 70% active sodium lauryl ether sulphate (SLES) (Manro BES) paste with one part of propylene glycol to form a 46.7% active surfactant solution. To this solution was added 100% active cocoamido propyl betaine (Tegobetaine CK) (CAPB) in an amount to achieve a ratio of 13 parts SLES to 2 parts CAPB. Colourants, perfume and antioxidant were
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
912

- 38 -

added as desired and the final surfactant solution (N) transferred to tank T2 which was a second jacketed, stirred 5 litre tank maintained at 30°C. Aeration of the mix was avoided by limiting the stirrer speed to <60 r.p.m. The 5 compositions of the solutions (M) and (N) are set out in the following table together with the compositions containing a total of 16% surfactant.

COMPOSITIONS - EXAMPLE 4

Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	4.50	-	3.00
Potassium sorbate	0.10	-	0.07
Sorbic acid	0.40	-	0.28
Calcium Chloride	3.38	-	2.30
2H ₂ O			
SLES (pure)	-	43.28	13.867
CAPB (100% active)	-	6.68	2.133
Pigments	-	0.00447	0.003
Propylene glycol	-	13.65	9.29
De-ionised water	91.62	36.39	69.06

- 10 A microvotator line with layout as illustrated by Fig 2 contained the jacketed tank T1, connected to one channel P1 of a proportioning piston pump and thereafter to two scraped surface heat exchangers A1 and A2, each of about 15 ml volume arranged in series. The jacketed feed tank T2, was

BEST AVAILABLE COPY

connected to a second channel P2 of the proportioning pump and thence to one end of a pinned crystallising mixer C of about 150 ml volume. Jacket temperatures of these units were controlled by glycol, heated or cooled by appropriately sized circulating baths.

Hot water (95°C) was pumped through the votator line to pre-warm the units and feed lines. Agar solution (M) was then pumped through the line with the pump P1 set at 100% until a shear gel was formed. This material was either fed to waste or re-worked to the feed tank T1. Meanwhile, surfactant solution (N) was pumped (P2 set at 47%) through the mixer C with its rotor stationary. When full, the rotor of the mixer C was started and set to 500 r.p.m. The shear gel formed from solution (M) was fed to a port located centrally in the barrel of the mixer C. The shower gel thus formed has a composition as set out in the table above under the heading "Product Composition". It was collected from the outlet of the mixer C and packaged in plastic bottles.

Typical run conditions are set out in the following table:

PROCESS CONDITIONS - EXAMPLE 4							
	T1	T2	P1	P2	A1	A2	C
Jacket Temperature °C	95	30	-	-	75	0	30
Product Exit Temperature °C	-	-	56.7	-	69.1	12.9	26
Rotor Speed r.p.m	<60	<60	-	-	1000	2000	500
% Pump Stroke	-	-	100	47	-	-	-

A phase stable, viscous, foaming and essentially transparent shower gel was produced exhibiting a peaking ability (ie shape sustaining character), upon being squeezed from the

- 40 -

bottle. The product had an excellent non-stringy thinning behaviour in use and left the skin feeling smooth but not sticky when dry.

5 Example 5 : Moisturising Shower gel base

A moisturising shower gel was made in a similar way to Example 4. Agar, sodium caseinate, potassium sorbate and sorbic acid were dissolved in hot water (>90°C) using a
10 Silverson stirrer. The hot solution was maintained at 90°C in tank T1 for 30 min. prior to use. An oil phase was dispersed in the agar solution using a homogeniser (Crepaco) to achieve average oil droplet sizes of around 1 micron in the resulting emulsion M. A foaming surfactant composition
15 N (approximately 50% active) was placed in a separate tank and maintained at 30°C with slow stirring (<60 r.p.m.). The compositions of the solutions M and N are set out in the following table, together with the composition of the product made from them, which contained a total of 10%
20 surfactant.

The oil droplets remained in suspension in the product composition.

- 41 -

COMPOSITIONS - EXAMPLE 5

Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	4.00	-	3.17
Potassium sorbate	0.10	-	0.08
Sorbic acid	0.40	-	0.32
Sodium Caseinate (DMV)	2.00	-	1.60
SLES (pure)	-	43.28	8.667
CAPB (100% active)	-	6.66	1.333
Oil Blend	10.00	-	7.94
Propylene glycol	-	13.65	9.29
De-ionised water	83.50	36.41	67.60

The solutions M and N were processed using the micro-votator line and procedure of Example 4. The run conditions were as set out in the table below. The product was a thick, white, foaming shower gel exhibiting good thinning but non-stringy flow properties in use. It left skin feeling smooth and moist.

PROCESS CONDITIONS - EXAMPLE 5

	T1	T2	P1	P2	A1	A2	C
Jacket Temperature °C	95	30	-	-	95	5	5
Product Exit Temperature °C	-	-	68.0	-	-	22.9	8.6
Rotor Speed r.p.m	<60	<60	-	-	1000	2000	1000
% Pump Stroke	-	-	100	26	-	-	-

- 42 -

Example 6: Moisturising shower gel base

Example 5 was repeated but omitting the emulsifier (sodium caseinate). The product was a stable, thick, white gel. It
 5 was essentially non-foaming when initially applied to the skin, behaving more like a cleansing cream but formed copious amounts of foam upon dilution with water during normal washing action, leaving skin feeling smooth and moist. The compositions of solutions M and N and the
 10 product are set out in the following table:

COMPOSITIONS - EXAMPLE 6			
Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	4.00	-	3.17
Potassium sorbate	0.10	-	0.08
Sorbic acid	0.40	-	0.32
SLES (pure)	-	43.28	8.667
CAPB (100% active)	-	6.66	1.333
Oil Blend	10.00	-	7.94
Propylene glycol	-	13.65	9.29
De-ionised water	81.50	36.41	66.03

Example 7: Thick moisturising shower gel base

15 Example 5 was repeated using a higher agar concentration, with sodium caseinate replaced by gelatin (Bloom 150) and with the addition of calcium chloride to solution M. The

Example 8: Hair shampoo base

A preparation of very high viscosity and high surfactant active concentration was made containing a typical foaming, 5 hair cleansing surfactant phase so as to permit dilution during further processing into a hair shampoo. As in Example 4, agar was dissolved together with potassium sorbate, sorbic acid and calcium chloride in hot water (>90°C) using a Silverson mixer to form agar solution M.

10

A surfactant mixture was made by diluting two parts of a 70% active sodium lauryl ether sulphate (SLES) (Manro BES) paste with one part of propylene glycol to form a 46.7% active surfactant solution. To this solution was added 100% active 15 cocoamido propyl betaine (Tegobetaine CK) (CAPB) in an amount to achieve a ratio of 13 parts SLES to 2 parts CAPB. Antioxidant was added and the final solution (N) transferred to a feed tank maintained at 30°C. Aeration of the mix was avoided by limiting the stirrer speed to <60 r.p.m. The 20 compositions of solutions M and N and of the high-viscosity composition made from them which contained 24% surfactant, are set out in the following table:

- 43 -

surfactant solution N was unchanged. The compositions are set out in the following table:

COMPOSITIONS - EXAMPLE 7			
Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	4.50	-	3.20
Potassium sorbate	0.10	-	0.08
Sorbic acid	0.40	-	0.32
Gelatin (Bloom 150, Extraco)	0.75	-	0.60
Calcium Chloride 2H ₂ O	2.876	-	2.30
SLES (pure)	-	43.28	8.667
CAPB (100% active)	-	6.66	1.333
Oil Blend	12.502	-	10.000
Propylene glycol	-	13.65	9.29
De-ionised water	81.00	36.41	63.65

- 5 The votator line process conditions were as set out in the following table:

PROCESS CONDITIONS - EXAMPLE 7							
	T1	T2	P1	P2	A1	A2	C
Jacket Temperature °C	95	30	-	-	95	5	5
Product Exit Temperature °C	-	-	64.1	-	69.1	8.7	8.3
Rotor Speed r.p.m	<60	<60	-	-	1000	2000	1000
% Pump Stroke	-	-	100	26	-	-	-

- 45 -

COMPOSITIONS - EXAMPLE 8

Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	4.5	-	2.25
Potassium sorbate	0.10	-	0.05
Sorbic acid	0.40	-	0.21
Calcium Chloride 2H ₂ O	3.38	-	1.76
SLES (pure)	-	43.28	21.00
CAPB (100% active)	-	6.24	3.00
Pigments	-	0.00	0.00
Propylene glycol	-	13.65	15.00
De-ionised water	91.62	36.83	56.73

The processing of the two solutions was carried out using the micro-votator line design and method of Example 4. The process run conditions are set out in the following table:

5

PROCESS CONDITIONS - EXAMPLE 8

	T1	T2	P1	P2	A1	A2	C
Jacket Temperature °C	95	30	-	-	75	5	5
Product Exit Temperature °C	-	-	64.1	-	69.1	8.7	8.3
Rotor Speed r.p.m	<60	<60	-	-	500	2500	1000
% Pump Stroke	-	-	100	92	-	-	-

BEST AVAILABLE COPY

Example 9: Carrageenan based surfactant gel

A stable, foaming surfactant gel was made using mixed xanthan and carrageenans. Xanthan (Keltrol F, Kelco International Ltd), pure iota-carrageenan (Genuvisco X-0908, Hercules) and pure kappa-carrageenan (Genugel X-0909, Hercules) powders were dry blended and then dissolved in hot deionised water (>80°C) using a Silverson stirrer to which potassium sorbate and sorbic acid were added. The hot solution (M) was transferred to a stirred, jacketed feed tank and maintained at 85°C. A surfactant mixture was made by diluting two parts of a 70% active sodium lauryl ether sulphate (SLES) (Manro BES) paste with one part of propylene glycol to form a 46.7% active surfactant solution. This solution was heated to 60°C and the 100% active cocoamido propyl betaine (Tegobetaine CK) (CAPB) added in an amount to achieve a ratio of 13 parts SLES to 2 parts CAPB. This solution (N) was added to the hot polymer solution M in the feed tank and processed through a micro-votator line comprising feed tank, proportioning pump and a succession of three scraped surface heat exchangers designated A1, A2, A3. The compositions and the process conditions are set out in the following two tables:

- 47 -

COMPOSITIONS - EXAMPLE 9

Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Kappa carrageenan	1.0		0.80
Iota carrageenan	1.5	-	1.20
Xanthan	0.10	-	0.08
Potassium sorbate	0.20	-	0.05
Sorbic acid	0.40	-	0.21
SLES (pure)	-	43.28	8.67
CAPB (100% active)	-	6.68	1.33
Propylene glycol	-	7.74	6.19
De-ionised water	96.80	42.30	81.47

PROCESSING CONDITIONS - EXAMPLE 9

	T1	P2	A1	A2	A3
Jacket Temperature (°C)	85	-	-5	0	0
Product Exit Temperature (°C)	-	43.1	9.4	0.7	2.8
Rotor Speed r.p.m	<60	-	2500	1000	1000
% Pump Stroke	-	100	-	-	-

Example 10: Liquid soap

5

The composition of the previous Example was processed in a different way to produce a liquid soap product.

Carrageenans, sorbic acid and potassium sorbate were dissolved in hot water (<80°C) with stirring as before to

- 48 -

form solution M which was maintained at this temperature in a stirred tank. Xanthan was dispersed in de-ionised water, heated to 95°C and maintained at this temperature in a second stirred tank T2 (solution X). Surfactant solution 5 (N) was prepared as in Example 6 and held in a third stirred tank T3 at 30°C.

A micro-votator process line as illustrated by Fig 3 was used. It was constructed such that solution X was fed from 10 tank T2 through one end of a mixer C1 while carrageenan solution M was fed from tank T1 to a centrally located port on the same mixer. Cooling and shear-gel formulation took place in this mixer. After passing through a scraped surface heat exchanger A to complete cooling, the mixture 15 was delivered to the centrally located port of a second mixer C2 through which solution N from tank T3 was already flowing.

Processing conditions are set out in the following table:

20

	PROCESS CONDITIONS - EXAMPLE 10									
	T1	T2	T3	P1	P2	P3	C1	A1	C2	
Jacket Temperature °C	95	95	30	-	-	-	75	5	5	
Product Exit Temperature °C	-	-	-	57	-	-	14.4	7.4	10.6	
Rotor Speed r.p.m	<60	<60	<60	-	-	-	2000	1000	1000	
% Pump Stroke	-	-	-	85	15	43	-	-	-	

- 49 -

Example 11: Fabric wash liquid base

A foaming surfactant preparation intended for use in machine washing of fabrics was made using a micro-votator line of
5 the type shown in Fig 2 and described in Example 4. Agar, calcium chloride, potassium sorbate and sorbic acid were dissolved in hot water (>90°C) using a Silverson stirrer.
The hot solution (M) was transferred to a jacketed tank T1 fitted with a bottom stirrer, baffle and hermetically
10 sealing lid and maintained at 95°C for 30 min. A surfactant mixture was made by diluting a 70% active sodium lauryl ether sulphate (SLES) (Manro BES) paste with propylene glycol and a mixture of non-ionic and anionic surfactants. Colourants, perfume and preservative were added as desired
15 and the resulting solution (N) with composition shown in the table below was transferred to a feed tank T2 maintained at 30°C. Aeration of the mix was avoided by limiting the stirrer speed to below 60 r.p.m. The processing was as in Example 4. The product composition was in the form of an
20 optically clear liquid capable of suspending particles of insoluble solids. It contained a total of 22.9% surfactant.

The compositions and the process conditions are set out in the following two tables:

- 50 -

COMPOSITIONS - EXAMPLE 11

Material	Solution M (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Agar (Luxara 1253)	3.00	-	1.24
SLES (pure)	0.0	18.54	10.86
Non-foaming Surfactant mixture	0.0	20.55	12.04
Propylene glycol	-	10.17	5.96
De-ionised water	97.00	50.74	69.90

PROCESS CONDITIONS - EXAMPLE 11

	T1	T2	P1	P2	A1	A2	C1
Jacket Temperature °C	95	30	-	-	95	0	30
Product Exit Temperature °C	-	-	56.3	-	91.8	18.7	-
Rotor Speed r.p.m	<60	<60	-	-	1000	4000	2000
% Pump Stroke	-	-	70	99	-	-	-

Example 12: Foaming Cleanser

5

This preparation was carried out using a micro-votator line as shown by Fig 4. Gellan (Kelcogel F, Kelco) was dissolved in hot de-ionised water (>90°C) using a Silverson mixer and transferred to a jacketed stirred tank T1 and maintained at 90°C with slow stirring (solution M). A solution of calcium

BEST AVAILABLE COPY

- 51 -

chloride was made in de-ionised water and transferred to a second stirred tank T2. The surfactant mixture N of Example 4 was prepared and transferred to a third stirred tank T3. The micro-votator line had the two feed tanks T1, T2 5 connected via separate channels P1, P2 of a proportioning pump to a Tee-piece located at the inlet to a first scraped-surface heat exchanger A1 which was followed in sequence by a mixer C1 and two further heat exchangers A2, A3. Finally, the outlet of the last heat exchanger A3 was connected to a centrally located port of a second mixer C2 which was 10 supplied from feed tank T3 via a third proportioning pump channel P3.

The three solutions (M, N and CaCl₂) were processed through 15 this line to form a stable, pourable product containing 16% surfactant which foamed well in use. The compositions and the process conditions are set out in the following two tables:

COMPOSITIONS - EXAMPLE 12				
Material	Solution M (%w/w)	CaCl ₂ Solution (%w/w)	Solution N (%w/w)	Product Composition (%w/w)
Gellan	1.875	-		0.80
Calcium chloride 2H ₂ O	-	2.7		0.50
SLES (pure)	-		43.28	8.67
CAPB (100% active)	-		6.68	1.33
Propylene glycol	-		14.55	9.90
De-ionised water	98.13	97.30	50.04	88.70

- 52 -

PROCESS CONDITIONS - EXAMPLE 12				
	Jacket Temperature (°C)	Product Exit Temperature (°C)	Rotor Speed (r.p.m)	% Pump Stroke
T1	90	83	<60	-
T2	90	-	-	-
T3	30	-	-	-
P1	-	-	-	80
P2	-	-	-	20
P3	-	-	-	47
A1	-15	15	2500	-
C1	0	-	2000	-
A2	0	6.5	1000	-
A3	0	3	1000	-
C2	5	-	1000	-

Example 13-26 - Foaming Cleansers

5

The following compositions were prepared using a water jacket surrounded wall scraping vessel similar to that described in relation to example 1, optionally under vacuum if necessary, in particular where the composition being

10 processed is relatively thick (e.g. has a relatively high agar concentration), or it is particularly required to avoid aeration. The processing conditions were those generally described in relation to example 11, where the agar, water and polyols (eg. glycerol, PEG 400, propan-1,2 diol) and

15 ethanol were prepared as a presolution, being mixed using a Silverson stirrer before being transferred to a jacketed tank T1 and being maintained at 95°C. The remainder of the components, except the perfume and preservative, are then

- 53 -

formulated with the surfactants and processed as described in relation to example 11.

Material	Example (% w/w)					
	13	14	15	16	17	18
Agar (Luxara 1253)	0.3	0.3	0.3	0.1	0.3	1.3
Cocoyl Sarcosinic acid	3.7	3.7	3.7	--	--	--
N-cocoyl DL-Alanic acid	3.8	3.8	3.8	--	3.5	--
Lauric acid	6.6	6.6	6.6	8.8	10.0	--
Cocoamide monoethanolamine	1.9	1.9	1.9	2.5	--	--
Triethanolamine	5.0	5.0	5.0	--	13.4	6.7
PEO(150) PPO (30) poloxamer	10.0	10.0	10.0	10.0	10.0	--
Glycerol	14.0	14.0	14.0	14.0	14.0	54.0
PEG 400	14.0	14.0	14.0	14.0	14.0	3.5
1mm mineral oil capsules	1.0	--	--	1.0	1.0	--
10-25µm polyester fibres	--	1.0	--	--	--	--
Opacified (TiO_2) agarop gel	--	--	1.0	--	--	--
Perfume	0.1	0.1	0.1	0.1	0.1	0.1
Kathan CG	0.05	0.05	0.05	0.05	0.05	0.04
Potassium cocoyl glycinate	--	--	--	8.8	--	--
Potassium hydroxide	--	--	--	4.9	--	--
C_9-C_{15} mono/di alkyl phosphoric acid	--	--	--	--	7.0	--
Cocoyl glutamic acid	--	--	--	--	--	11.8
Myristyl glutamic acid	--	--	--	--	--	4.0
POE sorbitan triisostearate	--	--	--	--	--	1.4
Water	To 100	To 100	To 100	To 100	To 100	To 100

Material	Example (% w/w)							
	19	20	21	22	23	24	25	26
Agar (Luxara 1253)	4.5	1.0	1.0	3.0	3.0	2.0	1.3	2.0
Potassium cocoyl glycinate	18.0	18.0	6.0	--	--	18.0	11.7	18.0
Glycerol	16.0	50.0	90.0	--	14.0	--	9.1	--
PEG 400	16.0	--	--	--	14.0	--	9.1	--
Perfume	0.1	0.1	--	0.1	--	--	--	--
Kathan CG	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1mm mineral oil microcapsules	--	0.4	--	--	--	--	--	--
C ₉ -C ₁₅ mono/dialkyl phosphoric acid	--	--	--	12.4	12.4	--	--	--
C ₁₂ /C ₁₄ alkyl (4EO mono Alkyl ether citrate	--	--	--	2.6	--	--	--	--
Potassium hydroxide	--	--	--	6.0	6.0	--	--	--
Propan-1,2 diol	--	--	--	28.0	--	--	--	--
Lauryl (10EO)ether carboxylic acid	--	--	--	--	2.9	--	--	--
Precipitated silica	--	--	--	--	3.0	--	--	--
Phoenix 3000 opt FW	--	--	--	--	--	0.1	0.1	--
Ethanol	--	--	--	--	--	--	35.0	35.0
Neosorb 70/70 (70% sorbitol solution)	--	--	--	--	--	To 100	--	--
Water	To 100	To 100	To 100	To 100	To 100	--	To 100	To 100

In compositions 25 and 26, ethanol was posted added to the
5 shear gel.

In certain embodiments including relatively high (e.g greater than about 5%, possibly greater than about 20%) of short chain monohydric alcohols such as ethanol, it is
10 possible to manufacture the shear gel in the presence of the alcohol without the surfactant, and then subsequently post-dosing the surfactant to provide the final composition. This provides a way of manufacturing compositions containing relatively high levels of short chain monohydric alcohols,
15 which compositions may otherwise be relatively difficult to make.

- 55 -

Various benefits were found to be associated with aspects of the above compositions. For example, the compositions which contained potassium cocoyl glycinate were found to have good clarity and be very shear thinning suitable for direct
5 application to eg. the face. Also, various of the compositions were found to have the surfactant in isotropic solution in a temperature range of 5-45°C, in which case the viscosity of the product is governed solely by the shear gel particles. In those instances, the viscosity is relatively
10 unaffected by temperature, which facilitates the packaging of the product, making it for example suitable for distribution in tubes.

Also, compositions comprising relatively substantial levels
15 of polyols are found to be tolerant of the coextrusion or injection into them of surfactant during manufacturing, and certainly more so than systems which were structured by eg. clay or Carbopol⁽¹⁾. It was also found that the incorporation of polyols tended to affect the gelation rate
20 and mechanism, with the result that a relatively mild shearing regime could be used to generate the shear gels, and preventing the formation of hard gel clumps in unsheared parts of the mixer on cooling. Compositions containing the polyols also tended to suffer reduced levels of syneresis
25

Examples 27-32

The following additional face wash compositions were prepared.

In the manufacturing method a thermostatically controlled wall heater vessel was used, together with a wall scraping paddle. The vessel was evacuated to prevent air entrapment.
30

- 56 -

- Into the vessel was charged water, polyol and agar to provide a pre-solution. This mixture was heated with stirring to 90°C. The resulting solution was then cooled to 50°C with rapid paddle mixing. The mixture was then further 5 cooled to 25°C with slow cooling, and rapid paddle mixing, in order to form the shear gel. Into the shear gel was added the solid surfactant, which was dissolved by warming the composition to 40°C and gently mixing.
- 10 The composition was then cooled, any perfume, preservatives and whitening agent were added, and the composition discharged.

The compositions contain relatively high levels of polyol 15 materials.

Component	% w/w					
	Example 27	Example 28	Example 29	Example 30	Example 31	Example 32
Water	38	38	28	32.8	28	28
Glycerol	40	40	40	40	40	40
Agar	2	2	2	2	2	2
Potassium Cocoglutamate	20	19.8	20	18	17.8	17.8
PEG 400	--	--	10	5	--	10
Perfume	--	0.15	--	0.15	0.15	0.15
Preservative	--	0.05	--	0.05	0.05	0.05
Whitener	--	--	--	2	2	2
PEG 1500	--	--	--	--	10	--

Examples 33 - 40 represent further suitable compositions according to the invention.

- 57 -

Material	% w/w							
	33	39	35	36	37	38	39	40
Agar	3.2	3.2	3.2	3.2				3.2
Iota Carageenan					1.2	1.2	1.2	
Kappa Carageenan					0.8	0.8	0.8	
SLES (as 100%)	10	10	10		8	3	6	10
CAPB (as 100%)	3	3	5	2	2	5		4
Sodium lauryl isethionate		2		3		3	2	2
Lauryl amphoatacetate			3	2				3
Potassium laurate				12				
Potassium myristate					6			
Jaguar 13 S		0.5	1.2	0.7	0.4	0.3		0.8
Petrolatum		13						
Sunflower seed oil							10	20
Polydimethyls iloxane	5	5						3
Glycerol	3	22		5				
Parsol MCX			6			3		
Parsol 1789			2			1		
Water to 100%								

Claims

1. An aqueous detergent composition, which is in the form of a thickened, mobile fluid, comprising foaming detergent and a polymer or polymer mixture which is capable of forming a reversible gel, which polymer or mixture is present in the composition as a multiplicity of individual gel particles.
- 10 2. A composition according to claim 1 wherein the gel particles have a particle size of less than 200 microns.
- 15 3. A composition according to claim 1 wherein the foaming detergent comprises surfactant selected from anionic, amphoteric and zwitterionic surfactants.
4. A composition according to claim 3 containing at least 3 wt% anionic surfactant.
- 20 5. A composition according to claim 3 containing 5 to 25 wt% anionic surfactant.
6. A composition according to any of claims 3 to 5 containing anionic surfactant with a lesser quantity of zwitterionic surfactant.
- 25 7. A composition according to any of claims 1-6 additionally comprising a polyol material.
- 30 8. A composition according to claim 7, wherein the polyol material is selected from glycerol, sorbitol, hexandiol, propan-1;2 diol, 1,3 butylene glycol,

- 59 -

propylene glycol, hexylene glycol, and polyethylene glycols and polypropylene glycols having molecular weights in the range 100-4,000.

- 5 9. A composition according to claim 7 or claim 8 wherein the polyol material is present in the composition at a level of 2-90% by weight.
- 10 10. A composition according to any one of claims 1 to 9 wherein the foaming surfactant contains nonionic surfactant selected from alkyl glycosides, O-alkanoyl glycosides, polyethylene oxide-polypropylene oxide block copolymers, alkyl polyhydroxyamides, alkyl aldobionamides and mixtures thereof.
- 15 11. A composition according to any one of the preceding claims wherein the polymer or polymer mixture comprises kappa carrageenan.
- 20 12. A composition according to any one of the preceding claims wherein the polymer or polymer mixture comprises agar.
- 25 13. A composition according to any one of the preceding claims which contains from 0.1 to 10 wt% of the polymer or polymer mixture.
- 30 14. A composition according to any one of the preceding claims including suspended particles of a liquid or solid other than polymer gel.
15. A method of preparing a detergent composition according to any one of claims 1 to 14 which comprises forming a

- 60 -

hot, mobile aqueous solution of the polymer or polymer mixture cooling the solution through its gel temperature while subjecting it to shear, and incorporating foam-forming surfactant before or after
5 cooling.

16. A method according to claim 15 wherein the surfactant is added to the solution after cooling to 35°C or less.
- 10 17. A method according to claim 16 wherein the polymer or polymer mixture comprises kappa carrageenan and the surfactant is present in the aqueous solution while it is cooled under shear.
- 15 18. A composition according to claim 14, wherein the suspended phase is selected from silicone oils or gums, triglyceride oils or waxes, mineral oil, petrolatum, polyethylene and mixtures thereof.
- 20 19. A composition according to claim 14 wherein the suspended particle is a sunscreen.

Fig.1.

Fig.2.

BEST AVAILABLE COPY

Fig.3.

Fig.4.

NOT AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 99/01901

A. CLASSIFICATION OF SUBJECT MATTER		C11D1/00	C11D3/22	C11D1/94	C11D3/20	C11D3/37
IPC 6	C11D1/66	C11D1/52		A61K7/48	A61K7/06	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C11D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 08601 A (UNILEVER PLC ;UNILEVER NV (NL)) 5 March 1998 see claims 1-3,9,10; examples 3,12; tables 3,4,9 --- US 5 089 269 A (YAMAGUCHI MICHIIRO ET AL) 18 February 1992 see column 19, line 50 - line 55; examples 3-3,3-10,4-4 --- GB 1 461 775 A (UNILEVER LTD) 19 January 1977 see page 2, column 2, line 100 - line 118; examples 1,2 ---	1,3,4, 6-14
X	-/-	1,2, 7-10,14, 15.18
X	-/-	1,3,11, 13

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

^ Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

30 June 1999

04/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Loiselet-Taisne, S

DECT AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 99/01901

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 12290 A (COLGATE PALMOLIVE CO) 26 March 1998 see page 8, line 15 - line 22; claims 1-3; example 1 ---	1, 3-6
A	EP 0 355 908 A (UNILEVER PLC ;UNILEVER NV (NL)) 28 February 1990 cited in the application see example 12 -----	

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/01901

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9808601	A	05-03-1998		US 5726138 A US 5759969 A AU 4300697 A EP 0920353 A	10-03-1998 02-06-1998 19-03-1998 09-06-1999
US 5089269	A	18-02-1992		JP 1238513 A JP 2639816 B JP 1265007 A JP 1266846 A JP 2700069 B JP 1268620 A JP 1268621 A JP 1268622 A JP 1125313 A JP 2097182 C JP 7121850 B DE 3882906 A DE 3882906 T EP 0316054 A	22-09-1989 13-08-1997 23-10-1989 24-10-1989 19-01-1998 26-10-1989 26-10-1989 17-05-1989 02-10-1996 25-12-1995 09-09-1993 23-12-1993 17-05-1989
GB 1461775	A	19-01-1977		NONE	
WO 9812290	A	26-03-1998		US 5866529 A AU 4489097 A	02-02-1999 14-04-1998
EP 0355908	A	28-02-1990		AT 146504 T AU 619333 B AU 3997289 A CA 1334321 A DE 68927567 D DE 68927567 T DK 403689 A FI 893815 A,B, JP 2191540 A JP 2513506 B PT 91460 A,B	15-01-1997 23-01-1992 22-02-1990 14-02-1995 30-01-1997 17-04-1997 18-02-1990 18-02-1990 27-07-1990 03-07-1996 08-03-1990

BEST AVAILABLE COPY