ASSIGNMENT 1 (DUE ON 6 AUGUST 2021 AT 11:59PM)

MATH2301, SEMESTER 2, 2021

INSTRUCTOR: ASILATA BAPAT

(1) Let $S = \mathbb{N} \times \mathbb{N}$. Define a relation R on S as follows:

$$R = \{((a,b),(c,d)) \mid a+d = b+c\}.$$

Is R an equivalence relation? Justify. If yes, describe its equivalence classes.

Solution. We show the three properties.

Reflexivity: Note that a + b = b + a, so $((a, b), (a, b)) \in R$ for each element $(a, b) \in S$.

Symmetry: If $((a, b), (c, d)) \in R$ then a + d = b + c. We can rewrite this as c + b = a + d, which means that $((c, d), (a, b)) \in R$. This is true for all elements $a, b, c, d \in \mathbb{N}$.

Transitivity: Suppose that ((a,b),(c,d)) and ((c,d),(e,f)) are both in R. We know that a+d=b+c and that c+f=d+e. Adding the two equations, we see that a+d+c+f=b+c+d+e. We can now cancel c+d from both sides to see that a+f=b+e, and so $((a,b),(e,f)) \in R$. Each equivalence class consists of all pairs of natural numbers (a,b) such that a-b is fixed.

This is because $(a, b) \sim (c, d)$ if and only if a - b = c - d.

(2) Let $S = \mathbb{Z} \times \mathbb{Z}$. Define a relation R on S as follows:

$$R = \{((a, b), (c, d)) \mid ad = bc\}.$$

Is R an equivalence relation? Justify. If yes, describe its equivalence classes.

Solution. No, it is not an equivalence relation. It fails transitivity. For example, $(1,3) \sim (0,0)$ and $(0,0) \sim (2,5)$ but $(1,3) \not\sim (2,5)$.

- (3) Let *R* and *T* both be relations on a set *S*. For each statement below, either justify it or give a counterexample.
 - (a) If *R* and *T* are symmetric, then $R \cup T$ is symmetric.

Solution. This is true. If $(a,b) \in R \cup T$ then either $(a,b) \in R$ or $(a,b) \in T$. Suppose $(a,b) \in R$. Then since R is symmetric, we have $(b,a) \in R$, and so $(b,a) \in R \cup T$. By a similar argument, if $(a,b) \in T$ then $(b,a) \in T$ and so $(b,a) \in R \cup T$.

(b) If *R* and *T* are transitive, then $R \cup T$ is transitive.

Solution. This is false. For example, we can have $R = \{(1,2)\}$ and $T = \{(2,3)\}$. Both R and T ar trivially transitive because they each only have one element. But $R \cup T$ is not transitive, because it does not contain $\{(1,3)\}$.

(4) Consider the following graphs. For each one, write down which of the following properties are satisfied by the relation represented by the graph: reflexivity, symmetry, anti-symmetry, transitivity, being a function. You do not have to justify your answers, but you should think about the justifications instead of guessing.

(a)

Solution.	Property	Satisfied?	Reason if not	
	Reflexivity	True	_	
	Symmetry	False	$(a,b) \in R$ but $(b,a) \notin R$	
	Anti-symmetry	True		
	Transitivity	True		
	Being a function	False	(a,b),(a,d) both in R	
	-			

(b)

Solution.	Property	Satisfied?	Reason if not	
	Reflexivity	False	$(a,a) \notin R$	
	Symmetry	True		
	Anti-symmetry	False	(c,d),(d,c) both in R	
	Transitivity	False	$(a,c),(c,a) \in R$ but $(a,a) \notin R$	
	Being a function	False	(d,a),(d,c) both in R	
	-			

(c)

Solution.	Property	Satisfied?	Reason if not	
	Reflexivity	False	$(a,a) \notin R$	
	Symmetry	False	$(a,b) \in R$ but $(b,a) \notin R$	
	Anti-symmetry	True		
	Transitivity	False	$(a,b),(b,c) \in R$ but $(a,c) \notin R$	
	Being a function	True		
	-			

2