```
In [67]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
In [68]:
         df=pd.read_csv('Iris.csv')
In [84]:
         ##remember this
         datagrp=df.groupby(df['Species'])
         df['Species'].unique()
         array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
Out[84]:
         setosa=datagrp.get_group('Iris-setosa')
In [85]:
         setosa.drop('Species',axis=1)
In [87]:
```

Out[87]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
5	6	5.4	3.9	1.7	0.4
6	7	4.6	3.4	1.4	0.3
7	8	5.0	3.4	1.5	0.2
8	9	4.4	2.9	1.4	0.2
9	10	4.9	3.1	1.5	0.1
10	11	5.4	3.7	1.5	0.2
11	12	4.8	3.4	1.6	0.2
12	13	4.8	3.0	1.4	0.1
13	14	4.3	3.0	1.1	0.1
14	15	5.8	4.0	1.2	0.2
15	16	5.7	4.4	1.5	0.4
16	17	5.4	3.9	1.3	0.4
17	18	5.1	3.5	1.4	0.3
18	19	5.7	3.8	1.7	0.3
19	20	5.1	3.8	1.5	0.3
20	21	5.4	3.4	1.7	0.2
21	22	5.1	3.7	1.5	0.4
22	23	4.6	3.6	1.0	0.2
23	24	5.1	3.3	1.7	0.5
24	25	4.8	3.4	1.9	0.2
25	26	5.0	3.0	1.6	0.2
26	27	5.0	3.4	1.6	0.4
27	28	5.2	3.5	1.5	0.2
28	29	5.2	3.4	1.4	0.2
29	30	4.7	3.2	1.6	0.2
30	31	4.8	3.1	1.6	0.2
31	32	5.4	3.4	1.5	0.4
32	33	5.2	4.1	1.5	0.1
33	34	5.5	4.2	1.4	0.2
34	35	4.9	3.1	1.5	0.1
35	36	5.0	3.2	1.2	0.2

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
36	37	5.5	3.5	1.3	0.2
37	38	4.9	3.1	1.5	0.1
38	39	4.4	3.0	1.3	0.2
39	40	5.1	3.4	1.5	0.2
40	41	5.0	3.5	1.3	0.3
41	42	4.5	2.3	1.3	0.3
42	43	4.4	3.2	1.3	0.2
43	44	5.0	3.5	1.6	0.6
44	45	5.1	3.8	1.9	0.4
45	46	4.8	3.0	1.4	0.3
46	47	5.1	3.8	1.6	0.2
47	48	4.6	3.2	1.4	0.2
48	49	5.3	3.7	1.5	0.2
49	50	5.0	3.3	1.4	0.2

```
In [88]: import math
```

```
In [106...
```

```
def show(series):
    summ=0
    count=0
    mean=0
    stdsum=0
    variance=0
    std=0
    for i in series:
        summ += i
        count+=1
    mean=summ/count
    print("Mean: ",mean)
    for i in series:
        dist=(i-mean)*(i-mean)
        stdsum+=dist
    variance=stdsum/count
    print("Variance: ",variance)
    std=math.sqrt(variance)
    print("Standard deviation: ",std)
    q1=np.percentile(series, 0.25)
    print("Q1: ",q1)
    print("\n")
```

In [107...

setosa.apply(show,0)

Mean: 25.5 Variance: 208.25

Standard deviation: 14.430869689661812

Q1: 1.1225

Standard deviation: 0.348946987377739

Q1: 4.31225

Mean: 3.4180000000000006

Variance: 0.142276

Standard deviation: 0.37719490982779713

Q1: 2.3735

Mean: 1.464

Variance: 0.02950400000000001

Standard deviation: 0.17176728442867115

Q1: 1.01225

Mean: 0.243999999999999

Variance: 0.01126399999999996

Standard deviation: 0.10613199329137278

Q1: 0.1

```
TypeError
                                           Traceback (most recent call last)
Input In [107], in <cell line: 1>()
----> 1 setosa.apply(show,0)
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:8839, in DataFrame.apply(s
elf, func, axis, raw, result_type, args, **kwargs)
   8828 from pandas.core.apply import frame_apply
   8830 op = frame_apply(
   8831
            self,
            func=func,
   8832
   (\ldots)
   8837
            kwargs=kwargs,
   8838 )
-> 8839 return op.apply().__finalize__(self, method="apply")
File ~\anaconda3\lib\site-packages\pandas\core\apply.py:727, in FrameApply.apply(s
elf)
    724 elif self.raw:
            return self.apply raw()
    725
--> 727 return self.apply_standard()
File ~\anaconda3\lib\site-packages\pandas\core\apply.py:851, in FrameApply.apply_s
tandard(self)
    850 def apply_standard(self):
--> 851
            results, res_index = self.apply_series_generator()
    853
            # wrap results
    854
            return self.wrap results(results, res index)
File ~\anaconda3\lib\site-packages\pandas\core\apply.py:867, in FrameApply.apply_s
eries generator(self)
    864 with option_context("mode.chained_assignment", None):
    865
            for i, v in enumerate(series_gen):
                # ignore SettingWithCopy here in case the user mutates
    866
--> 867
                results[i] = self.f(v)
                if isinstance(results[i], ABCSeries):
    868
    869
                    # If we have a view on v, we need to make a copy because
    870
                    # series_generator will swap out the underlying data
    871
                    results[i] = results[i].copy(deep=False)
Input In [106], in show(series)
      7 std=0
      8 for i in series:
---> 9
            summ+=i
            count+=1
     10
     11 mean=summ/count
TypeError: unsupported operand type(s) for +=: 'int' and 'str'
```

In []: