Описание проблемы

Оценка риска дефолта

Задача – оценка риска неуплаты клиента по кредиту (дефолт).

Дефолт — неуплата процентов по (обязательствам) кредиту или облигациям, непогашение займа в течение определённого времени. Обычно дефолт считают свершившимся, если клиент не совершил выплату по кредиту в течение 90 дней.

Нужная **модель позволяет** банку или другой кредитной организации **оценить текущий риск** по любым выданным займам и кредитным продуктам и с большей долей вероятности **предотвратить неисполнение** кредитных **обязательств** клиентом.

Таким образом, банк **меньше рискует понести убытки**.

Feature Preparation

Feature Engineering

OneHotEncoder (ohe) — инструмент для этапа Feature Engineering. Генерация новых характеристик с помощью ohe. Использовались все переменные, кроме 'id'.

Data Engineering .sum(), .count()

Преобразование данных с помощью агрегирующих функций sum() и count().

[5]:	rı	n_1	rn_2	rn_3	rn_4	rn_5	rn_6	rn_7	rn_8	rn_9	rn_10	 pre_loans3060_6	pre_loans6090_0	pre_loans5_10	pre_loans530_5	pre_loans530_8	rn_56	rn_57	rn_5
	0	1	1	1	1	1	1	1	1	1	1	 0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	1	 0	0	0	0	0	0	0	

2 rows × 479 columns

[17]:	pr	re_since_opened_0	pre_since_opened_1	pre_since_opened_2	pre_since_opened_3	pre_since_opened_4	pre_since_opened_5	pre_since_opened_6	pre_since_opened_7	
	id									
	0	10	10	10	10	10	10	10	10	
	1	14	14	14	14	14	14	14	14	

2 rows × 419 columns

Feature Preparation

Поиск лучших характеристик

model.feature_importances_, cv = KFold(n_splits=5)

– инструменты для поиска лучших фич в финальной модели.

Результаты эксперимента:

```
len_features=238 результаты: train_roc_auc_score=0.77343, CV_roc_auc_score=0.73257 len_features=248 результаты: train_roc_auc_score=0.78253, CV_roc_auc_score=0.74741 ... len_features=435 результаты: train_roc_auc_score=0.79577, CV_roc_auc_score=0.76173 ... len_features=448 результаты: train_roc_auc_score=0.79504, CV_roc_auc_score=0.76212 ... len_features=468 результаты: train_roc_auc_score=0.79498, CV_roc_auc_score=0.76204 len_features=477 результаты: train_roc_auc_score=0.79498, CV_roc_auc_score=0.76204
```


Поиск лучших характеристик

Не дало прироста качества модели:

- добавление к фичам (ohe+.sum()) фичи от (ohe+.count()), несмотря на явную потерю информации при преобразовании данных в схеме Data -> ohe Feature Engineering -> data.groupby(by=['id']).sum(),
- использование части наиболее весомых фич (контрольная проверка на 300 и 440 шт.),

В модели можно было использовать меньшее количество сгенерированных фич для снижения вычислительных ресурсов, при сохранении обозначенного порогового качества модели.

Итоговое решение использовать все сгенерированные фичи.

Feature Preparation

StandardScaler()

StandardScaler() – инструмент для стандартизации данных.

С использованием инструмента качество модели незначительно улучшается.

Финальный датасет

:	rn_1	rn_2	rn_3	rn_4	 pre_loans3060_6	pre_loans6090_0	pre_loans5_10	pre_loans530_5	pre_loans530_8	rn_56	rn_57	rn_58	id	flag
0	0.0	0.281688	0.419639	0.541014	 -0.001414	-0.000577	-0.000577	-0.001291	-0.001	-0.000577	-0.000577	-0.000577	0	0
1	0.0	0.281688	0.419639	0.541014	 -0.001414	-0.000577	-0.000577	-0.001291	-0.001	-0.000577	-0.000577	-0.000577	1	0
2	0.0	0.281688	0.419639	-1.848381	 -0.001414	-0.000577	-0.000577	-0.001291	-0.001	-0.000577	-0.000577	-0.000577	2	0
3 r	ows ×	479 colum	ns											
4	0113												_	

В результате ohe преобразования для дальнейшего моделирования используются все полученные 477 фич, т.о. все значения категориальных переменных становятся новыми фичами.

Результаты моделирования

Поиск лучшей модели и гиперпараметров

Разделение данных на тренировочную, валидационную и тестовую части.

```
[19]: df_train, df_test = train_test_split(df, train_size=0.8, random_state=842)
    print('Pasmephocts φaйла df_train', df_train.shape)
    print('Pasmephocts φaйла df_test', df_test.shape)

Pasmephocts φaйла df_train (2400000, 479)
Pasmephocts φaйла df_test (600000, 479)

•[25]: df_train_cut, df_train_cv = train_test_split(df_train, train_size=0.9, random_state=842)
    df_train_cv[:2]

[21]: df_train_cut.shape[0]+df_train_cv.shape[0]+df_test.shape[0]
```

[21]: 3000000

GridSearchCV, (train:0,9, val:0.1)=0.8, test=0.2							
Модель	Диапазоп исследуемых параметров	лучшие параметры	Test ROC-AUC				
LogisticRegression	{class_weight='balanced', 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'], 'C':np.arange(5.0, 15, 1)}	C=4.1, class_weight='balanced', solver='liblinear'	0.734559				
LGBMClassifier	{class_weight='balanced', early_stopping_rounds=250, verbose=-1, n_jobs=8, objective='binary', metric='auc', 'learning_rate': [0.05], 'max_depth': np.arange(5,31,5), 'num_leaves':np.arange(50,150,10), 'n_estimators': np.arange(800,3001,100)}	class_weight='balanced', early_stopping_rounds=500, verbose=0, n_jobs=8, learning_rate=0.05, max_depth=20, metric='auc', n_estimators=500, num_leaves=100, objective='binary'	0.763045				
Random Forest Classifier	{class_weight='balanced', 'n_estimators': np.arange(70,91,10), 'max_depth': np.arange(3,7,1), 'min_samples_leaf': np.arange(6,9,1), 'min_samples_split': np.arange(6,9,1)}	class_weight='balanced', max_depth=15, min_samples_leaf=8, min_samples_split=8, n_estimators=90	0.74078				

Результаты моделирования

Результаты тестов KFold

Best parameters	, best model, KFold(n_splits=5)
train_roc_auc_score	CV_roc_auc_score
0.8	0.76299

KFold(n_splits=5, random_state=842, shuffle=True)							
№ fold, mean, std	train_roc_auc_score	CV_roc_auc_score					
fold 1	0.80804	0.76321					
fold 2	0.80497	0.76308					
fold 3	0.80966	0.76365					
fold4	0.80948	0.76052					
fold 5	0.80334	0.76452					
mean	0.8071	0.763					
std	0.00282	0.0015					

Контрольная проверка для фич

best model, all/only 440 features							
val_size	all_features,	best_440_columns,					
	roc_auc_score	roc_auc_score					
0.1	0.76264	0.76227					
0.05	0.76318	0.763					
0.01	0.76337	0.763					

Результаты моделирования

График ROC-AUC

```
LGBMClassifier
(class_weight='balanced',
early_stopping_rounds=500, verbose=-1,
n_jobs=16,
learning_rate=0.05, max_depth=20,
metric='auc', n_estimators=500,
num_leaves=100, objective='binary')
roc_auc_score=0.76337
```

LGBMClassifier: ROC AUC=0.76337

Итоговый результат

Jupyter Notebook

подготовлен блокнот со всеми этапами решения задачи

fit.py

с помощью sklearn.pipeline подготовлен автоматизированный пайплан, который по вызову fit готовит данные и обучает модель на наборе данных

Файловая структура

predict.py

model.pkl

по вызову predict обученная модель осуществляет предсказание, на всех данных ROC-AUC=0.819

PS \Desktop\Git\ml-junior\final_project\model>
df_test.shape=(10, 61)
предсказание для df_test:[0]