ODEs HW5 (Assessed)

Jake Ireland (1908320)

1i) We start with the ODE

$$(\dot{x}, \dot{y}) = (-\frac{1}{2}y(1+x) + x(1-4x^2-y^2), 2x(1+x) + y(1-4x^2-y^2))$$
(1)

on \mathbb{R}^2 . Take (x,y)=(0,0). Then $(\dot{x},\dot{y})=(0,0)$ so (0,0) is an equilibrium. Now suppose $(x,y)\neq(0,0)$. We know

$$(\dot{x}, \dot{y}) = (0, 0) \Rightarrow y\dot{x} - x\dot{y} = 0$$

and

$$y\dot{x} - x\dot{x} = -\frac{1}{2}y^2(1+x) - 2x^2(1+x) = -(1+x)[2x^2 + \frac{1}{2}y^2].$$

Since $(x,y) \neq (0,0)$, x=-1 is our only possible equilibrium but this leads to the ODE

$$(\dot{x}, \dot{y}) = (y^2 - 3, y(1 - 4 - y^2))$$

which has no equilibria since

$$\dot{x} = 0 \Rightarrow y = \pm \sqrt{3} \Rightarrow \dot{y} = \mp 6\sqrt{3} \neq 0.$$

So (0,0) is the unique equilibrium for ODE (1).

ii) Define $V(x,y)=(1-4x^2-y^2)^2$ for $(x,y)\in\mathbb{R}^2$. We have by the chain rule

$$\dot{V}(x,y) = \partial_x V \dot{x} + \partial_y V \dot{y} = -4(1 - 4x^2 - y^2)[4x\dot{x} + y\dot{y}].$$

Substituting ODE (1) we get

$$4x\dot{x} + y\dot{y} = (1 - 4x^2 - y^2)[y^2 + 4x^2]$$

so

$$\dot{V}(x,y) = -4(1-4x^2-y^2)^2[y^2+4x^2].$$

iii) Define $\Gamma = \{(x,y) \in \mathbb{R}^2 : 4x^2 + y^2 = 1\}$. We know that Γ will be positive invariant if it is tangent to the vector field. Let $(x,y) \in \Gamma$. So $4x^2 + y^2 = 1$. By implicit differentiation we have 8xdx + 2ydy = 0 so

$$\frac{dy}{dx} = -4\frac{x}{y}.$$

If we are on Γ then the vector field becomes

$$(\dot{x}, \dot{y}) = (-\frac{1}{2}y(1+x), 2x(1+x))$$

so

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{2x(1+x)}{-\frac{1}{2}y(1+x)} = -\frac{4x}{y}$$

assuming $x \neq -1$. However x = -1 implies $y^2 = -3$ so is not in Γ . So for all $(x, y) \in \Gamma$, Γ is tangent to the vector field so Γ is positive invariant.

iv) Define $\mathcal{M} = \{(x,y) \in \mathbb{R}^2 : V(x,y) \leq C\}$ for some C > 0. We want to show that there exists an $r \in \mathbb{R}_{>0}$ such that $\mathcal{M} \subseteq B(0,r)$. Let $(x,y) \in \mathcal{M}$. Then we have

$$V(x,y) = (1 - 4x^2 - y^2)^2 \le C \Rightarrow -\sqrt{C} \le 1 - 4x^2 - y^2 \le \sqrt{C}.$$

So

$$1 + \sqrt{C} - 3x^2 \ge x^2 + y^2 \ge 1 - \sqrt{C} - 3x^2 \Rightarrow x^2 + y^2 \le 1 + \sqrt{C} - 3x^2 \le 1 + \sqrt{C}.$$

Hence $\mathcal{M} \subseteq B(0, \sqrt{1+\sqrt{C}})$ so \mathcal{M} is bounded.

v) We have that ODE (1) is an autonomous vector field and (\dot{x},\dot{y}) is continuously differentiable. Denote it's flow by $\phi_t(\cdot)$. Define $U=\{(x,y)\in\mathbb{R}^2:V(x,y)<1\}$. Now consider \mathcal{M} with C=1>0. We have already shown that \mathcal{M} is bounded and we also have that it is closed since it's complement $\{(x,y)\in\mathbb{R}^2:V(x,y)>1\}$ is open. So \mathcal{M} is compact. Furthermore as $\dot{V}\leq 0$ for all $(x,y)\in\mathbb{R}^2$, \mathcal{M} is positive invariant. Define $E=\{(x,y)\in\mathcal{M}:\dot{V}(x,y)=0\}$ and notice that $E=\Gamma\cup\{(0,0)\}$ which is an invariant set. So by the LaSalle Invariance Principle, $\phi_t(x)\to\Gamma\cup\{(0,0)\}$ as $t\to\infty$ for all $(x,y)\in\mathcal{M}$. Now consider $U\subset\mathcal{M}$. Since $(0,0)\notin U$ as V(0,0)=1 and $\dot{V}(x,y)\leq 0$ for all $(x,y)\in\mathbb{R}^2$ which means U is positive invariant, we must have $\phi_t(x)\to\Gamma$ as $t\to\infty$ for all $(x,y)\in U$.

2i) Let $A \in \mathbb{R}^{2 \times 2}$ with ODE

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \tag{2}$$

on \mathbb{R}^2 . Suppose span $\{\mathbf{v}\}$ is an invariant set for ODE (2). Then $A\mathbf{v} \in \text{span}\{\mathbf{v}\}$ so there exists a $\lambda \in \mathbb{R}$ such that $A\mathbf{v} = \lambda \mathbf{v}$. Hence \mathbf{v} is an eigenvector by the definition.

ii) We want to sketch the function $(x,y) = e^{\lambda t}(a+bt,b)$ for $a,b \in \mathbb{R}, b \neq 0$, and $\lambda > 0$. First at t=0 we have (x,y) = (a,b). Now as $t \to -\infty$, $(x,y) \to (0,0)$ and as $t \to \infty$,

$$(x,y) \to \begin{cases} (\infty,\infty) & \text{if } b > 0 \\ (-\infty,-\infty) & \text{if } b < 0 \end{cases}$$

since $\lambda > 0$. Finally we have that the curve passes through the y-axis at $t = -\frac{a}{b}$. Hence we get the curves in Figure 1.

Figure 1: Curve

iii) Set

$$A = \begin{pmatrix} 8 & 4 \\ -1 & 4 \end{pmatrix}.$$

We have the characteristic polynomial $p(\lambda) = \lambda^2 - 12\lambda + 36 = (\lambda - 6)^2$ so we have repeated eigenvalues $\lambda = 6$. This gives us the Jordan matrix

$$J = \begin{pmatrix} 6 & 1 \\ 0 & 6 \end{pmatrix}.$$

To form the change of basis matrices we will need independent eigenvectors. Solving $(A - \lambda I)\mathbf{v} = 0$ yields

$$\begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} 2v_1 + 4v_2 \\ -v_1 - 2v_2 \end{pmatrix} = 0$$

which gives us a single eigenvector $\mathbf{v} = (-2, 1)$. For the other vector we will need a generalised eigenvector \mathbf{w} which we can find by solving

$$(A - \lambda I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2w_1 + 4w_2 \\ -w_1 - 2w_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

This gives us $\mathbf{w} = (-1, 0)$ which allows us to write

$$A = \begin{pmatrix} 8 & 4 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 6 & 1 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}^{-1}$$

in JCF.

iv) We have for $\mathbf{x}_0 = a\mathbf{v} + b\mathbf{w} = (-2a - b, a)$

$$\begin{split} \mathbf{x}(t) &= e^{At}\mathbf{x}_0 \\ &= \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} e^{Jt} \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \mathbf{x}_0 \\ &= e^{6t} \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} \mathbf{x}_0 \\ &= e^{6t} \begin{pmatrix} 1+2t & 4t \\ -t & 1-2t \end{pmatrix} \begin{pmatrix} -2a-b \\ a \end{pmatrix} \\ &= e^{6t} \begin{pmatrix} -2a-b-2bt \\ a+bt \end{pmatrix}. \end{split}$$

v) As (-2,1) is an eigenvector, we know the line $y=-\frac{1}{2}x$ will be invariant. Furthermore as the associated eigenvalue $\lambda=6>0$ we know (0,0) is a hyperbolic source. Let's write ODE (2) as

$$(\dot{x}, \dot{y}) = (8x + 4y, -x + 4y).$$

If $y > -\frac{1}{2}x$ then $\dot{x} > 6x$ and $\dot{y} > -3x$ so we know for positive x we will have x increasing and y decreasing. If $y < -\frac{1}{2}x$ then $\dot{x} < 6x$ and $\dot{y} < -3x$ so we know for negative x we will have x decreasing and y increasing. This tells us on which side we will approach $y = -\frac{1}{2}x$. Hence we get the phase portrait in Figure 2.

Figure 2: Phase Portrait for ODE (2)

I also wrote some Python code to display the vector field with some example trajectories computed using the equation in part **iv**. This is in Figure 3.

Figure 3: ODE (2) with trajectories (green) and invariant set (red)