Quantifying uncertainty in NFL game outcomes

Luther Landry

Summary

- Motivation and data science goals
- How the game works
- The baseline model

Future models

Motivation

- Sports initiated my interest in statistics
- Fascinating questions in probability, statistics, and uncertainty

Do Firms Maximize? Evidence from Professional Football

David Romer

University of California, Berkeley and National Bureau of Economic Research

This paper examines a single, narrow decision—the choice on fourth down in the National Football League between kicking and trying for a first down—as a case study of the standard view that competition in the goods, capital, and labor markets leads firms to make maximizing choices. Play-by-play data and dynamic programming are used to estimate the average payoffs to kicking and trying for a first down under different circumstances. Examination of actual decisions shows systematic, clear-cut, and overwhelmingly statistically significant departures from the decisions that would maximize teams' chances of winning. Possible reasons for the departures are considered.

Motivation

NFL analysts never tell you how uncertain their predictions are.

Motivation

NFL analysts never tell you how uncertain their predictions are.

		Re	cor	d	Super Bowl Winner			
Team	Conference	W	L	Т				
Eagles	NFC	8	0	0	26%			
<u>Vikings</u>	NFC	8	1	0	18%			
Chiefs	AFC	7	2	0	11%			
Ravens	AFC	6	3	0	7%			
Bills	AFC	6	3	0	7%			
<u>Dolphins</u>	AFC	7	3	0	6%			
<u>Titans</u>	AFC	6	3	0	5%			

Goals

- Quantify the true probability of NFL outcomes with robust uncertainty estimates.
- Generate robust predictions for two types of outcomes: individual game outcomes, and team season outcomes.
- More generally, treat this as an MLOps problem.

How NFL football works

How NFL football works

- The object is to get the football into your opponent's endzone and keep it out of your own.
- The team possessing the ball gets a finite number of attempts to score.
- Four tries to advance the ball ten yards. If you succeed, you get another four tries.

How NFL football works

- Football has a finite state space of discrete plays — and each play is a stepwise movement in the state space.
- The state of a game is completely described by a few variables — score, time, down, distance, and yardline.

Three key metrics

- Three key metrics
- Pythagorean expectation: where do points come from?

```
Pythagorean wins = \frac{points for^{2.37}}{points for^{2.37} + points against^{2.37}}
```

- Three key metrics
- Pythagorean expectation: where do points come from?
- Expected points (EP): what is the expected value of the current game state?

- Three key metrics
- Pythagorean expectation: where do points come from?
- Expected points (EP): what is the expected value of the current game state?

 Win probability (WP): what is the probability of winning given the current game state? Score: 40-3

Raw data

 Raw data comes in the form of play-by-play outcomes from NFLverse

```
RangeIndex: 26353 entries, 0 to 26352 Columns: 372 entries, play_id to pass_oe dtypes: float64(200), int32(7), object(165) memory usage: 74.1+ MB
None
```

	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q	R
1		play_id	game_id	old_game_id	home_team	away_team	season_type	week	posteam	posteam_type	defteam	side_of_field	yardline_100	game_date	quarter_seconds ha	f_seconds_re ga	me_seconds_	game_half
2	0		1 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1						2020-09-13	900	1800	3600	Half1
3	1		39 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	ARI	35	2020-09-13	900	1800	3600	Half1
4	2		54 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	SF	75	2020-09-13	900	1800	3600	Half1
5	3		93 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	SF	55	2020-09-13	882	1782	3582	Half1
6	4		118 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	ARI	41	2020-09-13	839	1739	3539	Half1
7	5		143 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	ARI	39	2020-09-13	801	1701	3501	Half1
8	6		165 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	ARI	45	2020-09-13	759	1659	3459	Half1
9	7		197 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	SF	home	ARI	ARI	34	2020-09-13	716	1616	3416	Half1
10	8		226 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	ARI	away	SF	SF	35	2020-09-13	710	1610	3410	Half1
11	9		245 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	ARI	away	SF	ARI	75	2020-09-13	710	1610	3410	Half1
12	10		274 2020_01_ARI_S	2020091311	1 SF	ARI	REG	1	ARI	away	SF	ARI	72	2020-09-13	684	1584	3384	Half1

- Select metrics
 - Brier score
 - Calibration curves for validation data

$$BS = rac{1}{N} \sum_{t=1}^N (f_t - o_t)^2$$

- Select metrics: Brier score and calibration curves
- Train a suitable baseline model
 - Logistic regression on
 Pythagorean expectation and home/away

- Select metrics: Brier score and calibration curves
- Train a suitable baseline model: logistic regression
- Train and compare new models
 - Xgboost with EPA and WPA features

- Select metrics: Brier score and calibration curves
- Train a suitable baseline model: logistic regression
- Train and compare new models
- Deploy the most well-calibrated model or ensemble

- Trained logistic regression on three features:
 - Object team Pythagorean expectation
 - Adversary Pythagorean expectation
 - Is object team home or away?

```
Index: 3241 entries, 2002_05_ARI_CAR to 2021_15_WAS_PHI
Data columns (total 3 columns):

# Column Non-Null Count Dtype
--- -----
0 obj_pyexp 3241 non-null float64
1 adv_pyexp 3241 non-null float64
2 is_home 3241 non-null int64
dtypes: float64(2), int64(1)
memory usage: 101.3+ KB
None
```


Pythagorean expectation is z-score normalized before training

- Held out the latest 1,000 games from the dataset for validation
- Training was cross-validated with 10,000 shuffled and split training/test sets from the remaining rows

- Held out the latest 1,000 games from the dataset for validation
- Training was cross-validated with 10,000 shuffled and split training/test sets from the remaining rows

- Held out the latest 1,000 games from the dataset for validation
- Training was cross-validated with 10,000 shuffled and split training/test sets from the remaining rows
- Retrained on training data, then tested on hold-out validation data

Predicted probabilities for last week's games

Next Steps

 Error bars for the predicted probability outputs of the baseline model

Next Steps

- Error bars for the predicted probability outputs of the baseline model
- Use a KFold cross-validation strategy over shuffle and split to identify ideal training size

Next Steps

- Error bars for the predicted probability outputs of the baseline model
- Use a KFold cross-validation strategy over shuffle and split to identify ideal training size
- Search for a better exponent to the Pythagorean expectation equation

```
Pythagorean wins = \frac{\text{points for}^{2.37}}{\text{points for}^{2.37} + \text{points against}^{2.37}}
```

Next Model

- Can gradient-boosted decision trees beat the baseline?
- How "lucky" are points? Is there a better feature to consider?

Summary

Motivation and data science goals

- How the game works
- The baseline model

Future models