Problem Set 8

Problem 1

Part a. According to BPF, $\Omega_c = \frac{1}{2}(\Omega_l + \Omega_h) = 0.25\pi$, so

$$f_c = rac{w_c}{2\pi} = rac{\Omega_c}{2\pi T} = rac{0.25\pi}{2\pi imes 0.1 us} = 1.25 MHz$$

Part b.

(1) Aliasing occurs when $2\pi < 2w_rT$, that is , $w_{aliasing} > 10\pi MHz$

Since $1.5w_r = 9.4\pi < 10\pi$, so b1 is not correct.

(2) The max frequency station broadcast $w_{max} = 2\pi (f_c + 5k) = 2\pi imes 1.255 MHz < w_r/2$

So decreasing the cutoff frequency w_r of LPF1 by a factor 2 has no effect on $y_r(t)$, (2) is correct.

(3)(4) $x_d[n]$ can not pass through BPF if sampling interval T changes, so (3)(4) are not correct.

Part c.

- (1) The unwanted signals has been cut off by BPF, so increasing Ω_d will not add these signals, (1) is not correct.
- (2) LPF2 is low pass filter, which has on effect on the occurrence of aliasing, so (2) is not correct.
- (3) Since all unwanted signals has been cut off by BPF, doubling Ω_d have no effect on $y_r(t)$, (3) is correct.
- (4) The decreasing of Ω_c can lead to the cutoff of some valid frequency such as $f=f_c+5kHz$, so (4) is not correct.

Problem 2

(a)

- $\begin{array}{ll} \bullet & 0 < w < \frac{\pi}{2} & X(jw) = 0 \\ \bullet & \frac{\pi}{2} < w < \pi & X(jw) = \frac{2}{\pi}w 1 \\ \bullet & \pi < w < \frac{3\pi}{2} & X(jw) = 0 \\ \bullet & \frac{3\pi}{2} < w < 2\pi & X(jw) = 0 \end{array}$

- **(b)** $T=\frac{2}{7}$ and K=1

Problem 3

(a) Since $x(t) \sin w_c t \cos w_c t$ are all real signals, we only need to demonstrate x(t) * h(t) is a real signal, that is

$$(X(jw)H(jw))^* = X(-jw)H(-jw)$$

Since $X^*(jw) = X(-jw)$ and $H^*(jw) = H(-jw)$, we can conclude y(t) is also real signal.

(b) x(t) can be recovered by

$$x(t) = [y(t)sin(w_ct)]*rac{2\sin w_ct}{\pi t}$$

Problem 4

(a)
$$w(t) = x(t)\cos^2(w_c t + \theta_c) = \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2w_c t + 2\theta_c)$$

$$w_{co} > w_M$$
 and $w_{co} < 2w_s - w_M$

It is easy to see that the result doesn't depend on θ_c .

Problem 5

(a)
$$Z(jw) = \frac{1}{2}(X(j(w-w_c)) + X(j(w-w_c)))$$

The Fourier coefficients of p(t)

$$a_k = rac{2\sin(\pi k/2)}{\pi k} \quad \ and \quad \ a_0 = 0$$

we can obtain

$$P(jw) = 2\pi \sum_{k=-\infty, k
eq 0}^{+\infty} rac{2\sin(\pi k/2)}{\pi k} \delta(w-w_0)$$

$$Y(jw) = \frac{1}{2\pi} (Z(jw) * P(jw))$$

(b)

Problem 6

(a)

(b) According to (a), we have to guarantee

$$w_f + w_M < 2w_c + w_f - w_T \ -w_f + w_T < w_f - w_M$$

So

$$w_T < 2w_c - w_M \ w_T < 2w_f - w_M$$

(c) To avoid the occurrence of aliasing we have to guarantee

$$G=2/K$$
 $lpha=w_f-w_M$ $eta=w_f+w_M$