HW1 Report

0856149陳則佑 0856625郭毓梁 0856558李明峻

方法

MOG2

我們選擇OpenCV中的MOG2作為背景分割器,比起MOG以及KNN,MOG2能更加良好的處理光影變化,並且支援多線程的計算方式,處理影像的速度也就更加的快速;另外我們調整了其參數,首先是Learning rate decay,讓Learning Rate在輸入200張影像之後歸零,因為我們只想參考前面200張影像來作為判斷背景的依據,以免欲偵測的物體進來時也將其算入背景模型的運算,使進來影像一段時間的物體最後也會被當作背景而消去掉;再來我們也關掉了原本支援陰影運算的功能,因為我們只在乎實際物體的部分。

Convert HSV

經過實驗,我們將輸入的影像轉換成HSV的型態,我們觀察到,使用V Channel的影像來做前景偵測,比起RGB以及灰階影像能達到更好的結果,當然也可 能只是偶然的現象,但確實這項前處理幫助我們提升了此Dataset的Performance。

原本有針對各Channel(R,G,B or H,S,V)做historgram equlization,我們認為讓圖片數值更加均勻有助於Performance的提升,但實際卻沒有明顯的效果,於是棄用了這項前處理運算。

Morphology

型態學(Morphology)在處理影像上有許多良好的演算法,我們從中運用了Dilation以及Erosion,Dilation讓原物體的區域擴大,Erosion則會讓其變小。首先我們對跑完MOG2的影像做Opening運算(先Erosion再Dilation),藉由此運算能達到影像濾波的功用,將影像上不需要的Noise給去掉,使背景更加乾淨;再來做Closing的運算(先Dilation再Erosion),把偵測到的前景物體做輪廓的強化,讓其更符合物體的形狀,此兩種運算大大提升了Performance。

結果

下列為各個功能加上去前後圖片比較:

1. Closing

加上前: 加上後:

2. Opening

加上前: 加上後:

3. HSV

加上前: 加上後:

4. Learning Rate Decay

加上前:

下列表格中,Result為我們的結果,其餘列欄位則是做Ablation Study,拿掉此功能的分數呈現,我們分別去掉了Closing運算、HSV的輸入、Opening運算以及 Learning Rate Decay,可以看到拿掉這些功能都會使得F-Measure分數下降。

	Recall	Specificity	FPR	FNR	PWC	Precision	F-Measure
Result	0.87607	0.99307	0.00693	0.12393	1.90716	0.93603	0.90506
Closing	0.55443	0.99901	0.00099	0.44557	4.71191	0.98485	0.70946
Opening	0.92636	0.97813	0.02187	0.07364	2.72395	0.83064	0.87589
HSV	0.88145	0.96844	0.03156	0.11855	4.05859	0.76380	0.81841
Learning Rate Decay	0.75395	0.99621	0.00379	0.24605	2.89296	0.95836	0.84396

心得

Foreground Detection是車輛視覺裡非常重要的一項技術,稍有差錯就會釀成無法挽回的悲劇。在這次的作業中,我們將許多影像處理的技巧運用在了作MOG的前與後,在MOG前的處理主要是為了解決光線問題,想辦法降低相同背景在不同image間的差異。而在做完MOG後的處理則比較多樣,除了用filter處理了雜訊問題,還有利用Morphological Operations來讓結果更加接近groundtruth,最終成功讓F-Measure達到了0.9;而這次作業學到不只影像處理的技術,更學會做實驗的重要性,反覆嚴謹的實驗讓我們驗證哪些運算確實有益於分數,確定整體的演算法是最好的結果,也對電腦視覺的領域感到更加興趣。