

অসমতা

অনুশীলনী - ৬.১

অসমতা: অসমতা একটি সম্পর্ক। যে সমস্ত গাণিতিক সংখ্যা বা বাক্যে \neq , >, <, \le , \ge চিহ্নগুলি ব্যবহাত হয় তাকে অসমতা বলে। যেমন: a, b এর চেয়ে ছোট হলে একে a < b দ্বারা প্রকাশ করা হয়।

দ্রষ্টব্য: সংখ্যার ক্ষেত্রে কেবলমাত্র দুটি বাস্তব সংখ্যার মধ্যে > অথবা < প্রয়োগ যোগ্য। জটিল সংখ্যার ক্ষেত্রে ইহা প্রয়োগ যোগ্য নয়। দুই শ্রেণির অসমতা বিদ্যমান: (i) শর্ত সাপেক্ষ অসমতা এবং (ii) শর্তহীন অসমতা

- i. শর্ত সাপেক্ষ অসমতা: যে সমস্ত অসমতা কেবলমাত্র সম্পর্কযুক্ত চলকের একাধিক মানের জন্য সত্য তাকে শর্ত সাপেক্ষ অসমতা বলে। যেমন: x+3>5 একটি শর্ত সাপেক্ষ অসমতা কারণ ইহা কেবলমাত্র x>2 এর জন্য সত্য।
- ii. শঠহীন অসমতা: যে অসমতা সম্পর্কযুক্ত অথবা সম্পর্কযুক্ত নয় চলকের প্রত্যেক মানের জন্য সত্য তাকে শর্তহীন অসমতা বলে। যেমন: x+5>x, 8>5 এবং $(x-2)^2+3>2$ অসমতা তিনটি শর্তহীন অসমতা।

অসমতার সমাধানে লক্ষণীয় বিষয়:

	a+c < b+c	c এর যেকোনো মানের জন্য	মন্তব্য: অসমতার উভয়পক্ষে কোনো সংখ্যা যোগ করলে
			অসমতার চিহ্ন পরিবর্তন হয় না।
	a-c < b-c	c এর যেকোনো মানের জন্য	মন্তব্যঃ অসমতার উভয়পক্ষে কোনো সংখ্যা বিয়োগ করলে
			অসমতার চিহ্ন পরিবর্তন হয় না।
	ac < bc	c এর ধনাত্মক মানের জন্য	মন্তব্যঃ অসমতার উভয়পক্ষে কোনো ধনাত্মক সংখ্যা দ্বারা
সাধারণভাবে বলা যায়,			গুণ করলে অসমতার চিহ্ন পরিবর্তন হয় না।
যদি $a < b$ হয়, তবে	ac > bc	c এর ঋণাত্মক মানের জন্য	মন্তব্যঃ অসমতার উভয়পক্ষে কোনো ঋণাত্মক সংখ্যা দ্বারা
			গুণ করলে অসমতার চিহ্ন পরিবর্তন হয়।
	$\frac{a}{} < \frac{b}{}$	c এর ধনাত্মক মানের জন্য	মন্তব্যঃ অসমতার উভয়পক্ষে কোনো ধনাত্মক সংখ্যা দ্বারা
	c c		ভাগ করলে অসমতার চিহ্ন পরিবর্তন হয় না।
	$\frac{a}{b} > \frac{b}{a}$	c এর ঋণাত্মক মানের জন্য	মন্তব্যঃ অসমতার উভয়পক্ষে কোনো ঋণাত্মক সংখ্যা দ্বারা
	c c		ভাগ করলে অসমতার চিহ্ন পরিবর্তন হয়।

<u>অসমতার সমাধান</u>: সমীকরণের সমাধান যেমন একটি সমীকরণ (সমতা) দ্বারা প্রকাশ পায়, তেমনি অসমতার সমাধান একটি অসমতা দ্বারা প্রকাশ পায়। উদাহরণ: x < 3, x > -5 ইত্যাদি।

<u>অসমতার সমাধান সেট</u>: অসমতার সমাধান সেট (সাধারণত) বাস্তব সংখ্যার (Real Number) অসীম উপসেট। বাস্তব সংখ্যার সেটকে *R* দ্বারা প্রকাশ করা হয়।

উদাহরণ: অসমতার সমাধান x < 3 হলে সমাধান সেট, $S = \{x \in \mathbf{R} : x < 3\}$

সমাধান সেটের সংখ্যারেখা: অসমতার সমাধান সেট (সাধারণত) বাস্তব সংখ্যার অসীম উপসেট। ফলে অসমতার সমাধান সেটের সংখ্যারেখা সুনির্দিষ্ট দিকে বিস্তৃত থাকে।

নিম্নোক্ত উদাহরণগুলো লক্ষ কর:				
সমাধান সেট	ব্যবধি	সংখ্যারেখা		
$S = \{x \in R : -a \le x \le a\}$	[- a, a]	$-a \qquad a \qquad b \qquad $		
$S = \{x \in R : -a < x < a\}$	(- a, a) বা]- a, a[$\begin{array}{c ccccc} \bullet & & & & & & & & & & & & & & & & & & $		
$S = \{x \in R : x \le a\}$	$(-\infty,a]$	-a 0 a		
$S = \{x \in R : x < a\}$	$(-\infty,a)$ বা $]-\infty,a[$	-a 0 a		
$S = \{x \in R : x \ge a\}$	[<i>a</i> , ∞)	-a 0 a		
$S = \{x \in R : x > a\}$	(a,∞)	-a 0 a		
$S = \{x \in R : x \le -a\}$	$(-\infty, -a]$	-a 0 a		
$S = \{x \in R : x < -a\}$	$(-\infty, -a)$	-a 0 a		
$S = \{x \in R : x \ge -a\}$	[− <i>a</i> , ∞)	-a 0 a		
$S = \{x \in R : x > -a\}$	$(-a,\infty)$	-a 0 a		

লক্ষণীয়: i. সংখ্যারেখায় যেকোনো সংখ্যার অবস্থান থেকে ডার্নাদকে সংখ্যাগুলোর মান ক্রমান্বয়ে বৃদ্ধি পায় এবং বার্মাদকে সংখ্যাগুলোর মান ক্রমান্বয়ে হাস পায়।

- ii. ' \leq ' ও ' \geq ' চিহ্ন থাকলে বৃত্তটি ভরাট হবে এবং '<' ও '>' চিহ্ন থাকলে বৃত্তটি ভরাট হবে না।
- iii. ব্যব্ধির ক্ষেত্রে তৃতীয় বন্ধনী '['বা ']' চিহ্ন দ্বারা আবৃদ্ধ প্রান্তিক সংখ্যা ব্যবধির অন্তর্ভুক্ত। আবার প্রথম বন্ধনী '(' বা ')' এবং খোলা বন্ধনী ']' বা '['দারা আবদ্ধ প্রান্তিক সংখ্যাগুলো ব্যবধির অন্তর্ভুক্ত নয়।

অনুশীলনীর সমাধান

অসমতাগুলো সমাধান কর এবং সংখ্যারেখায় সমাধান সেট দেখাও:

y - 3 < 5

<u>সমাধান</u>: দেওয়া আছে, y-3<5

বা,
$$y-3+3<5+3$$
 [উভয়পক্ষে 3 যোগ করে] বা, $y<8$

- ∴ নির্ণেয় সমাধান y < 8 (Ans.)
- এখানে সমাধান সেট, $S = \{y \in \mathbf{R} : y < 8\}$
- 8 অপেক্ষা ছোট সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

3(x-2) < 6

সমাধানঃ দেওয়া আছে, 3(x-2) < 6

বা,
$$\frac{3(x-2)}{3} < \frac{6}{3}$$
 [উভয়পক্ষকে 3 দ্বারা ভাগ করে] বা, $x-2 < 2$ বা, $x-2+2 < 2+2$ [উভয়পক্ষে 2 যোগ করে] বা, $x < 4$

- ∴ নির্ণেয় সমাধান x < 4 (Ans.)
- এখানে সমাধান সেট $S = \{x \in \mathbf{R} : x < 4\}$
- 4 অপেক্ষা ছোট সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

0 3x - 2 > 2x - 1

<u>সমাধান</u>: দেওয়া আছে, 3x-2>2x-1বা, 3x-2-2x>2x-1-2x

বা
$$3x-2-2x > 2x-1-2x$$

[উভয়পক্ষ থেকে 2x বিয়োগ করে]

বা, x-2>-1 বা, x-2+2>-1+2 [উভয়পক্ষে 2 যোগ করে]

বা,
$$x > 1$$

∴ নির্ণেয় সমাধান x > 1 (Ans.)

এখানে সমাধান সেট $S = \{x \in R : x > 1\}$

1 অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

$\boxed{8} z \leq \frac{1}{2}z + 3$

<u>সমাধান</u>: দেওয়া আছে, $z \le \frac{1}{2}z + 3$

বা,
$$z - \frac{1}{2}z \le \frac{1}{2}z + 3 - \frac{1}{2}z$$
 [উভয়পক্ষ থেকে $\frac{1}{2}z$ বিয়োগ করে]

বা,
$$\frac{1}{2}z \le 3$$

বা,
$$\frac{1}{2}z \times 2 \le 3 \times 2$$
 [উভয়পক্ষকে 2 দ্বারা গুণ করে]

বা,
$$z \le 6$$

∴ নির্ণেয় সমাধান $z \le 6$ (Ans.)

এখন সমাধান সেট, $S = \{z \in \mathbf{R} : z \le 6\}$

6 এবং 6 অপেক্ষা ছোট সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

সমাধানঃ দেওয়া আছে, $8 \ge 2 - 2x$

বা,
$$8+2x \ge 2-2x+2x$$
 [উভয়পক্ষে $2x$ যোগ করে]

বা,
$$8 + 2x \ge 2$$

বা,
$$8 + 2x - 8 \ge 2 - 8$$
 [উভয়পক্ষ থেকে 8 বিয়োগ করে]

বা,
$$2x \ge -6$$

বা,
$$\frac{2x}{2} \ge \frac{-6}{2}$$
 [উভয়পক্ষকে 2 দ্বারা ভাগ করে] বা, $x \ge -3$

∴ নির্ণেয় সমাধান
$$x \ge -3$$
 (Ans.)

এখন সমাধান সেট,
$$S = \{x \in \mathbb{R} : x \ge -3\}$$

(-3) এবং (-3) অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

$$x \ge -3$$
 -4 -3 -2 -1 0 1

<u>সমাধান</u>: দেওয়া আছে, $x \le \frac{x}{3} + 4$

বা,
$$x - \frac{x}{3} \le \frac{x}{3} + 4 - \frac{x}{3}$$
 [উভয়পক্ষ থেকে $\frac{x}{3}$ বিয়োগ করে]

বা,
$$\frac{3x-x}{3} \le 4$$

বা,
$$\frac{2x}{3} \le 4$$

বা,
$$\frac{2x}{3} \times \frac{3}{2} \le 4 \times \frac{3}{2}$$
 [উভয়পক্ষকে $\frac{3}{2}$ দ্বারা গুণ করে]

বা, *x* ≤ 6

∴ নির্ণেয় সমাধান $x \le 6$ (Ans.)

এখন সমাধান সেট, $S = \{x \in \mathbf{R} : x \le 6\}$

6 এবং 6 অপেক্ষা ছোট সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

$9 5(3-2t) \le 3(4-3t)$

<u>সমাধান</u>: দেওয়া আছে, $5(3-2t) \le 3(4-3t)$

বা,
$$15 - 10t$$
 ≤ $12 - 9t$

বা,
$$15 - 10t + 9t \le 12 - 9t + 9t$$
 [উভয়পক্ষে $9t$ যোগ করে]

বা,
$$15 - t \le 12$$

বা,
$$15 - t - 15 \le 12 - 15$$
 [উভয়পক্ষ থেকে 15 বিয়োগ করে]

বা,
$$-t \le -3$$

বা, $t \ge 3$ [উভয়পক্ষকে -1 দ্বারা গুণ করে]

∴ নির্ণেয় সমাধান
$$t \ge 3$$
 (Ans.)

এখন সমাধান সেট,
$$S = \{t \in \mathbf{R} : t \ge 3\}$$

3 এবং 3 অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

📣 বি.দ্র: ঋণাত্মক সংখ্যা দিয়ে ভাগ বা গুণ করলে অসমতার দিক পাল্টে যায়।

$$\boxed{\text{b} \frac{x}{3} + \frac{x}{4} + \frac{x}{5} > \frac{47}{60}}$$

শমাধান: দেওয়া আছে,
$$\frac{x}{3} + \frac{x}{4} + \frac{x}{5} > \frac{47}{60}$$

$$\operatorname{d}, \frac{20x + 15x + 12x}{60} > \frac{47}{60}$$

$$rac{47x}{60} > rac{47}{60}$$

বা,
$$\frac{47x}{60} \times \frac{60}{47} > \frac{47}{60} \times \frac{60}{47}$$
 [উভয়পক্ষকে $\frac{60}{47}$ দারা গুণ করে]

বা, x > 1

∴ নির্ণেয় সমাধান, x > 1 (Ans.)

এখন সমাধান সেট, $S = \{x \in \mathbf{R} : x > 1\}$

1 অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান যা নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো।

পাঠ্যবইয়ের কাজের সমাধান

ক) তোমাদের শ্রেণির যে সকল ছাত্র-ছাত্রীর উচ্চতা 5 ফুটের চেয়ে বেশি

এবং 5 ফুটের চেয়ে কম তাদের উচ্চতা অসমতার মাধ্যমে প্রকাশ কর।

সমাধান: মনে করি, আমাদের শ্রেণিতে x জন ছাত্র-ছাত্রীর উচ্চতা 5 ফুটের চেয়ে বেশি। ফলে x জন ছাত্র-ছাত্রীর মোট উচ্চতা, 5x অপেক্ষা বেশি। অর্থাৎ, 5 ফুটের চেয়ে বেশি উচ্চতা বিশিষ্ট x জন ছাত্র-ছাত্রীদের মোট উচ্চতাকে অসমতায় প্রকাশ করলে,

x জন ছাত্ৰ-ছাত্ৰীর মোট উচ্চতা >5x

আবার, মনে করি, আমাদের শ্রেণিতে y জন ছাত্র-ছাত্রীর উচ্চতা 5 ফুটের চেয়ে কম। ফলে y জন ছাত্র-ছাত্রীর মোট উচ্চতা, 5y অপেক্ষা কম।

.. 5 ফুটের চেয়ে কম উচ্চতা বিশিষ্ট y জন ছাত্র-ছাত্রীর মোট উচ্চতাকে অসমতার মাধ্যমে প্রকাশ করলে,

y জন ছাত্ৰ-ছাত্ৰীর মোট উচ্চতা < 5y

খ) কোনো পরীক্ষার মোট নম্বর 1000 হলে, একজন পরীক্ষার্থীর প্রাপ্ত নম্বর অসমতার মাধ্যমে প্রকাশ কর।

সমাধানঃ এখানে, মোট নম্বর = 1000

ধরি, প্রাপ্ত নম্বর = x

এখন পরীক্ষার্থী 0 থেকে 1000 এর মধ্যে যেকোনো নম্বর পেতে পারে।

 \therefore নির্ণেয় অসমতা, $0 \le x \le 1000$ (Ans.)