flex

flex - fast lexical analyzer generator

- Flex is a tool for generating scanners/lexical analyzers
- Flex source is a table of regular expressions and corresponding program fragments.
- Generates lex.yy.c which defines a routine yylex()

Format of the Input File

• The flex input file consists of three sections, separated by a line with just %% in it:

```
definitions
%%
rules
%%
user code
```

Definitions Section

- The definitions section contains declarations of simple name definitions to simplify the scanner specification.
- Name definitions have the form:

```
name definition
```

• Example:

```
DIGIT [0-9]
ID [a-z][a-z0-9]*
```

Rules Section

• The rules section of the flex input contains a series of rules of the form:

```
pattern action
```

• Example:

```
{ID} printf( "An identifier: %s\n", yytext );
```

- The *yytext* and *yylength* variable.
- If action is empty, the matched token is discarded.

Action

- If the action contains a `{ `, the action spans till the balancing `} ` is found, as in C.
- An action consisting only of a vertical bar ('|') means "same as the action for the next rule."
- The *return* statement, as in C.
- In case no rule matches: simply copy the input to the standard output (A default rule).

A Simple Example

```
응 {
   int num lines = 0, num chars = 0;
응 }
응응
       ++num_lines; ++num_chars;
\n
       ++num chars;
응응
main() {
  yylex();
  printf( "# of lines = %d, # of chars = %d\n",
               num_lines, num_chars );
```

Programming Assignment 1

• Write a lexical analyzer using lex/flex to identify tokens of a typical C program. The program should be able to print series of token-ids for every lexical pattern that it recognizes. Please show the lex specification and the working of the lexical analyzer.

• Time Period : 2 weeks (deadline: 31st Jan 2021)

CS416 Compiler Design 8

Syntax Analyzer

- Syntax Analyzer creates the syntactic structure of the given source program.
- This syntactic structure is mostly a *parse tree*.
- Syntax Analyzer is also known as parser.
- The syntax of a programming is described by a *context-free grammar (CFG)*. We will use BNF (Backus-Naur Form) notation in the description of CFGs.
- The syntax analyzer (parser) checks whether a given source program satisfies the rules implied by a context-free grammar or not.
 - If it satisfies, the parser creates the parse tree of that program.
 - Otherwise the parser gives the error messages.

• A context-free grammar

- gives a precise syntactic specification of a programming language.
- the design of the grammar is an initial phase of the design of a compiler.
- a grammar can be directly converted into a parser by some tools (like yacc/bison)

Parser

- Parser works on a stream of tokens.
- The smallest item is a token.

Parsers (cont.)

• We categorize the parsers into two groups:

1. Top-Down Parser

- the parse tree is created top to bottom, starting from the root.

2. Bottom-Up Parser

- the parse is created bottom to top; starting from the leaves
- Both top-down and bottom-up parsers scan the input from left to right (one symbol at a time).
- Efficient top-down and bottom-up parsers can be implemented only for sub-classes of context-free grammars.
 - LL for top-down parsing
 - LR for bottom-up parsing

Context-Free Grammars

- Inherently recursive structures of a programming language are defined by a context-free grammar.
- In a context-free grammar, we have:
 - A finite set of terminals (in our case, this will be the set of tokens)
 - A finite set of non-terminals (syntactic-variables)
 - A finite set of productions rules in the following form
 - A $\rightarrow \alpha$ where A is a non-terminal and α is a string of terminals and non-terminals (including the empty string)
 - A start symbol (one of the non-terminal symbol)
- Example:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid - E$$

 $E \rightarrow (E)$
 $E \rightarrow id$

Derivations

$$E \Rightarrow E+E$$

- E+E derives from E
 - we can replace E by E+E
 - to able to do this, we must have a production rule $E \rightarrow E + E$ in our grammar.

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+id$$

- A sequence of replacements of non-terminal symbols is called a **derivation** of id+id from E.
- In general, a derivation step is

 $\alpha A\beta \Rightarrow \alpha\gamma\beta \quad \text{if there is a production rule } A \!\!\to\!\! \gamma \text{ in our grammar} \\ \quad \text{where } \alpha \text{ and } \beta \text{ are arbitrary strings of terminal and non-terminal symbols}$

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$$
 (α_n derives from α_1 or α_1 derives α_n)

- \Rightarrow derives in one step
- \Rightarrow derives in zero or more steps
- $\stackrel{*}{\Rightarrow}$ derives in one or more steps

CFG - Terminology

- L(G) is *the language of G* (the language generated by G) which is a set of sentences.
- A sentence of L(G) is a string of terminal symbols of G.
- If S is the start symbol of G then ω is a sentence of L(G) iff $S \stackrel{+}{\Rightarrow} \omega$ where ω is a string of terminals of G.
- If G is a context-free grammar, L(G) is a *context-free language*.
- Two grammars are *equivalent* if they produce the same language.
- $S \stackrel{*}{\Rightarrow} \alpha$ If α contains non-terminals, it is called as a *sentential* form of G.
 - If α does not contain non-terminals, it is called as a sentence of G

Note: α , β , γ and other initial Greek alphabets are used to denote string of terminals and non-terminals (sentential forms) while ω and other last Greek alphabets denote string of only terminals (sentence)

Derivation Example

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$
OR

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

- At each derivation step, we can choose any of the non-terminal in the sentential form of G for the replacement.
- If we always choose the left-most non-terminal in each derivation step, this derivation is called as **left-most derivation**.
- If we always choose the right-most non-terminal in each derivation step, this derivation is called as **right-most derivation**.

Left-Most and Right-Most Derivations

Left-Most Derivation

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(id+E) \Longrightarrow -(id+id)$$

Right-Most Derivation

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+id) \Longrightarrow -(id+id)$$

- We will see that the top-down parsers try to find the left-most derivation of the given source program.
- We will see that the bottom-up parsers try to find the right-most derivation of the given source program in the reverse order.

Parse Tree

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.
- A parse tree is a graphical representation of a derivation.

Ambiguity

• A grammar produces more than one parse tree for a sentence is called as an *ambiguous* grammar.

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+E*E$$

 $\Rightarrow id+id*E \Rightarrow id+id*id$

$$E \Rightarrow E^*E \Rightarrow E+E^*E \Rightarrow id+E^*E$$

\Rightarrow id+id*E \Rightarrow id+id*id

Ambiguity (cont.)

- For the most parsers, the grammar must be unambiguous.
- unambiguous grammar
 - → unique selection of the parse tree for a sentence
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.
- An unambiguous grammar should be written to eliminate the ambiguity
- We must prefer one of the parse trees of a sentence (generated by an ambiguous grammar) to disambiguate that grammar to restrict to this choice

Ambiguity (cont.)

```
stmt \rightarrow if expr then stmt |
if expr then stmt else stmt | otherstmts
```


Ambiguity (cont.)

- We prefer the second parse tree (else matches with closest if).
- So, we must disambiguate our grammar to reflect this choice.
- The unambiguous grammar will be:

Ambiguity – Operator Precedence

• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the precedence and associativity rules.

Left Recursion

• A grammar is *left recursive* if it has a non-terminal A such that there is a derivation:

 $A \stackrel{\scriptscriptstyle \pm}{\Longrightarrow} A\alpha$ for some string α

- Top-down parsing techniques **cannot** handle left-recursive grammars
- So, we must convert left-recursive grammar into an equivalent grammar which is not left-recursive.
- The left-recursion may appear in a single step of the derivation (*immediate left-recursion*) or may appear in more than one step of the derivation.

Immediate Left-Recursion

$$A \to A \alpha \mid \beta$$
 where β does not start with A
$$\downarrow \qquad \text{eliminate immediate left recursion}$$

$$A \to \beta \ A'$$

$$A' \to \alpha \ A' \mid \epsilon \ \text{an equivalent grammar}$$

In general,

$$A' \rightarrow \alpha_1 \, A' \mid ... \mid \alpha_m \, A' \mid \epsilon$$
 an equivalent grammar

Immediate Left-Recursion -- Example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow id \mid (E)$$

eliminate immediate left recursion

$$E \rightarrow T E'$$
 $E' \rightarrow +T E' \mid \varepsilon$
 $T \rightarrow F T'$
 $T' \rightarrow *F T' \mid \varepsilon$
 $F \rightarrow id \mid (E)$

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive, but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $A \Rightarrow Sc \Rightarrow Aac$ causes to a left-recursion

• So, we must eliminate all left-recursions from our grammar

Left-Factoring

• A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

grammar \rightarrow a new equivalent grammar suitable for predictive parsing

```
stmt \rightarrow if expr then stmt else stmt
if expr then stmt
```

• when we see if, we cannot know which production rule to choose to re-write *stmt* in the derivation.

Left-Factoring (cont.)

• In general,

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

where α is non-empty and the first symbols of β_1 and β_2 (if they have one)are different.

• when processing α we cannot know whether expand

A to
$$\alpha\beta_1$$
 or

A to
$$\alpha\beta_2$$

• But if we re-write the grammar as follows

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

so, we can immediately expand A to $\alpha A'$

Left-Factoring -- Algorithm

• For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$$

convert it into

$$A \to \alpha A' | \gamma_1 | \dots | \gamma_m$$

$$A' \to \beta_1 | \dots | \beta_n$$

Left-Factoring – Example 1

$$A \rightarrow \underline{a}bB \mid \underline{a}B \mid cdg \mid cdeB \mid cdfB$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid \underline{cdg} \mid \underline{cdeB} \mid \underline{cdfB}$$

$$A' \rightarrow bB \mid B$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid cdA''$$

$$A' \rightarrow bB \mid B$$

$$A'' \rightarrow g \mid eB \mid fB$$

Left-Factoring – Example 2

$$A \rightarrow ad \mid a \mid ab \mid abc \mid b$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid b \mid bc$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid bA''$$

$$A'' \rightarrow \epsilon \mid c$$

Non-Context Free Language Constructs

- There are some language constructions in the programming languages which are not context-free. This means that, we cannot write a context-free grammar for these constructions.
- $L1 = \{ \omega c \omega \mid \omega \text{ is in } (a|b)^* \}$ is not context-free
 - → declaring an identifier and checking whether it is declared or not later. We cannot do this with a context-free language. We need semantic analyzer (which is not context-free).
- $L2 = \{a^nb^mc^nd^m \mid n\geq 1 \text{ and } m\geq 1\}$ is not context-free
 - → declaring two functions (one with n parameters, the other one with m parameters), and then calling them with actual parameters.

Top-Down Parsing

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Maybe bigger than LL(1) but may not terminate
 - Predictive Parsing
 - No backtracking
 - Efficient
 - Needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed.
- It tries to find the left-most derivation.

$$S \rightarrow aBc$$

$$B \rightarrow bc \mid b$$

input: abc

Predictive Parser

a grammar \Rightarrow a grammar suitable for predictive eliminate left parsing (a LL(1) grammar)

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

 $A \rightarrow \alpha_1 \mid ... \mid \alpha_n$ input: ... a current token

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
   case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
             - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ε -production. For example, if the current token is not a or b, we may apply the ε -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
proc A {
    case of the current token {
        a: - match the current token with a,
             and move to the next token;
            - call B;
            - match the current token with e,
             and move to the next token;
       c: - match the current token with c,
             and move to the next token;
            - call B;
            - match the current token with d,
             and move to the next token;
        f: - call C
                   first set of C
```

```
proc C { match the current token with f,
           and move to the next token; }
proc B {
   case of the current token {
        b: - match the current token with b,
            and move to the next token;
           - call B
       e,d: do nothing
```

Non-Recursive Predictive Parsing -- LL(1) Parser

- Non-Recursive predictive parsing is a table-driven parser.
- It is a top-down parser.
- It is also known as LL(1) Parser.

LL(1) Parser

input buffer

- our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol S.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ \rightarrow parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$ <mark>S</mark>	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$a <mark>B</mark>	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$a <mark>B</mark>	a\$	$B \to \epsilon$
\$a	a\$	
\$	\$	accept, successful completion

LL(1) Parser – Example 1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abba

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>
\$E	id+id\$	$E \rightarrow TE'$
\$E' T	id+id\$	$T \rightarrow FT'$
\$E' T'F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T' \rightarrow \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT'$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T' \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept

Constructing LL(1) Parsing Tables

- Two functions are used in the construction of LL(1) parsing tables:
 - FIRST FOLLOW
- FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α where α is any string of grammar symbols.
- if α derives to ε , then ε is also in FIRST(α).
- **FOLLOW(A)** is the set of the terminals which occur immediately after (follow) the *non-terminal A* in the strings derived from the starting symbol.
 - a terminal a is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A a \beta$
 - \$ is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A$

Compute FIRST for Any String X

- If X is a terminal symbol \rightarrow FIRST(X)={X}
- If X is a non-terminal symbol and X → ε is a production rule
 ★ is in FIRST(X).
- If X is a non-terminal symbol and $X \rightarrow Y_1Y_2...Y_n$ is a production rule
 - if a terminal \mathbf{a} in FIRST(Y_i) and ϵ is in all FIRST(Y_j) for j=1,...,i-1 then \mathbf{a} is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).
- If X is ε

 \rightarrow FIRST(X)={ ϵ }

- If X is $Y_1Y_2...Y_n$
 - \rightarrow if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).

FIRST Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

FIRST(F) = { (,id}
FIRST(T') = {*,
$$\epsilon$$
}
FIRST(T) = { (,id}
FIRST(E') = {+, ϵ }
FIRST(E) = { (,id}

FIRST(TE') = { (,id}
FIRST(+TE') = {+}
FIRST(
$$\epsilon$$
) = { ϵ }
FIRST(FT') = { (,id}
FIRST(*FT') = {*}
FIRST(ϵ) = { ϵ }
FIRST(ϵ) = { ϵ }
FIRST((E)) = {()}
FIRST(id) = {id}

Compute FOLLOW (for non-terminals)

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If (A → αB is a production rule) or
 (A → αBβ is a production rule and ε is in FIRST(β))
 → everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in FIRST(α)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α) and \$ in FOLLOW(A)
 - \rightarrow add A $\rightarrow \alpha$ to M[A,\$]
- All other undefined entries of the parsing table are error entries.

Constructing LL(1) Parsing Table -- Example

$$E \rightarrow TE'$$

$$FIRST(TE') = \{(id)\}$$

$$\rightarrow$$
 E \rightarrow TE' into M[E,(] and M[E,id]

$$E' \rightarrow +TE'$$

$$\rightarrow$$
 E' \rightarrow +TE' into M[E',+]

$$E' \rightarrow \varepsilon$$

$$FIRST(\varepsilon) = \{\varepsilon\}$$

but since ε in FIRST(ε)

and FOLLOW(E')=
$$\{\$,\}$$

$$\rightarrow$$
 E' \rightarrow ϵ into M[E',\$] and M[E',)]

$$T \rightarrow FT'$$

$$FIRST(FT') = \{(id)\}$$

$$\rightarrow$$
 T \rightarrow FT' into M[T,(] and M[T,id]

$$T' \rightarrow *FT'$$

$$\rightarrow$$
 T' \rightarrow *FT' into M[T',*]

$$T' \rightarrow \epsilon$$

$$FIRST(\varepsilon) = \{\varepsilon\}$$

but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,,+\} \rightarrow T' \rightarrow \varepsilon$ into M[T',\$], M[T',\$] and M[T',\$]

$$F \rightarrow (E)$$

$$\rightarrow$$
 F \rightarrow (E) into M[F,(]

$$F \rightarrow id$$

$$FIRST(id) = \{id\}$$

$$\rightarrow$$
 F \rightarrow id into M[F,id]

LL(1) Grammars

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

• The parsing table of a grammar may contain more than one production rule. In this case, we say that it is not a LL(1) grammar.

A Grammar which is not LL(1)

$$S \rightarrow i C t S E \mid a$$

 $E \rightarrow e S \mid \epsilon$
 $C \rightarrow b$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \to e S$ $E \to \epsilon$			$E \rightarrow \varepsilon$
C		$C \rightarrow b$	L /C			

/two production rules for M[E,e]

Problem **\rightarrow** ambiguity

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.
- A left recursive grammar cannot be a LL(1) grammar.
 - $-A \rightarrow A\alpha \mid \beta$
 - \rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \rightarrow If β is ε , any terminal that appears in FIRST(α) also appears in FIRST($A\alpha$) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Error Recovery in Predictive Parsing

- An error may occur in the predictive parsing (LL(1) parsing)
 - if the terminal symbol on the top of stack does not match with the current input symbol.
 - if the top of stack is a non-terminal A, the current input symbol is a,
 and the parsing table entry M[A,a] is empty.
- What should the parser do in an error case?
 - The parser should be able to give an error message (as much as possible meaningful error message).
 - It should be recover from that error case, and it should be able to continue the parsing with the rest of the input.

Error Recovery Techniques

Panic-Mode Error Recovery

- Skipping the input symbols until a synchronizing token is found.

Phrase-Level Error Recovery

 Each empty entry in the parsing table is filled with a pointer to a specific error routine to take care that error case.

• Error-Productions

- If we have a good idea of the common errors that might be encountered, we can augment the grammar with productions that generate erroneous constructs.
- When an error production is used by the parser, we can generate appropriate error diagnostics.
- Since it is almost impossible to know all the errors that can be made by the programmers, this method is not practical.

• Global-Correction

- Ideally, we we would like a compiler to make as few change as possible in processing incorrect inputs.
- We have to globally analyze the input to find the error.
- This is an expensive method, and it is not in practice.

Panic-Mode Error Recovery in LL(1) Parsing

- In panic-mode error recovery, we skip all the input symbols until a synchronizing token is found.
- What is the synchronizing token?
 - All the terminal-symbols in the follow set of a non-terminal can be used as a synchronizing token set for that non-terminal.
- So, a simple panic-mode error recovery for the LL(1) parsing:
 - All the empty entries are marked as *synch* to indicate that the parser will skip all the input symbols until a symbol in the follow set of the non-terminal A which on the top of the stack. Then the parser will pop that non-terminal A from the stack. The parsing continues from that state.
 - To handle unmatched terminal symbols, the parser pops that unmatched terminal symbol from the stack and it issues an error message saying that that unmatched terminal is inserted.

Panic-Mode Error Recovery - Example

$$S \rightarrow AbS \mid e \mid \epsilon$$

 $A \rightarrow a \mid cAd$

FOLLOW(S)={\$} FOLLOW(A)={b,d}

	a	b	c	d	e	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
A	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	aab\$	$S \rightarrow AbS$
\$SbA	aab\$	$A \rightarrow a$
\$Sba	aab\$	
\$Sb	ab\$	Error: missing b, inserted
\$S	ab\$	$S \rightarrow AbS$
\$SbA	ab\$	$A \rightarrow a$
\$Sba	ab\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	ceadb\$	$S \rightarrow AbS$
\$SbA	ceadb\$	$A \rightarrow cAd$
\$SbdAc	ceadb\$	
\$SbdA	eadb\$	Error:unexpected e (illegal A)
(Remove	all input t	cokens until first b or d, pop A)
\$Sbd	db\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

Phrase-Level Error Recovery

- Each empty entry in the parsing table is filled with a pointer to a special error routine which will take care that error case.
- These error routines may:
 - change, insert, or delete input symbols.
 - issue appropriate error messages
 - pop items from the stack.
- We should be careful when we design these error routines, because we may put the parser into an infinite loop.