Data Literacy

University of Tübingen, Winter Term 2021/22

Exercise Sheet 7

© 2021 Prof. Dr. Jakob Macke & Marius Hobbhahn

This sheet is due on Monday, December 13, 2021 at 10am sharp (i.e. before the start of the lecture).

Regression - part II

Last week we focused on implementing linear regression on our own. This week, we will use packaged functions from scikit learn. We will start with logistic regression and then look into multi-dimensional inputs, regularization and cross validation.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Part I: 1-dimensional logistic regression

Regression can also be used to predict probabilities given binary events. For this, we will start using sklearn.

Tasks:

- 1. Import the exams.csv data and use the sklearn tool LogisticRegression
- 2. Plot the resulting values with the fitted function

0

0

1.25

1.50

```
In []:
    ### run regression and plot
    X = exam_data['hours_studied'].values.reshape(-1, 1)
    y = exam_data['exam_passed'].values
    fit = LogisticRegression().fit(X, y)
    prediction = fit.predict(X)

plt.figure(figsize=(5, 3))
    plt.scatter(X, y, color='purple', s=15, label='data')
    plt.scatter(X, prediction, color='pink', s=10, label='prediction')
    plt.xlabel('exam passed')
    plt.ylabel('hours studied')
    plt.title('log regression on exam data')
    plt.legend()
    plt.show();
```


Part II: multi-dimensional linear regression

Now that we have a good intuition, we will scale the process to multiple input dimensions.

We will use data on life expectancy which can be found here: https://www.kaggle.com/kumarajarshi/life-expectancy-who

Tasks:

- 1. Import the life_expectancy.csv data
- 2. Use sklearn's LinearRegression to fit the data
- 3. Make a plot of the coefficients. What do they mean? How can we interpret the results?
- 4. If find a problem with the coefficients, suggest and implement a solution.

```
In [ ]:
           from sklearn.linear_model import LinearRegression
In [ ]:
           ### import data
           life data = pd.read csv('life expectancy.csv', index col=0)
           life_data.sort_values(by='Life expectancy ', inplace=True)
           life data
                                                                                                under-
                        Life
                                 Adult
                                        infant
                                                          percentage
                                                                      Hepatitis
                                                                                                                      Total
                                                Alcohol
                                                                                 Measles
                                                                                          BMI
                                                                                                   five
                                                                                                        Polio
                                                                                                                            Diphtheria HIV/AIDS
                 expectancy
                             Mortality
                                       deaths
                                                         expenditure
                                                                             В
                                                                                                               expenditure
                                                                                                deaths
                                                            3.885395
                                                                                                                                                      29.979
          1583
                       44.0
                                  67.0
                                            46
                                                   1.10
                                                                           64.0
                                                                                      92
                                                                                         14.8
                                                                                                    75
                                                                                                                      4.82
                                                                                                                                  64.0
                                                                                                                                             24.7
          2933
                                                                                                                                             33.6
                       44 3
                                 723 0
                                            27
                                                   4 36
                                                            0.000000
                                                                           68.0
                                                                                      31 27 1
                                                                                                    42
                                                                                                         67.0
                                                                                                                       7 13
                                                                                                                                  65.0
                                                                                                                                                     454 366
          1484
                        44.5
                                 675.0
                                             5
                                                   2.67
                                                           57.903698
                                                                           87.0
                                                                                       0 27.4
                                                                                                     6
                                                                                                         88.0
                                                                                                                       6.30
                                                                                                                                  89.0
                                                                                                                                             34.8
                                                                                                                                                     862.946
          2934
                                                            0.000000
                                                                                                          7.0
                                                                                                                                                     453.351
                        44.5
                                 715.0
                                            26
                                                   4.06
                                                                            7.0
                                                                                     998
                                                                                          26.7
                                                                                                    41
                                                                                                                       6.52
                                                                                                                                  68.0
                                                                                                                                             36.7
          2932
                                                                                                         69.0
                        44 6
                                 717 0
                                            28
                                                            8 717409
                                                                           65.0
                                                                                     420 27 5
                                                                                                    43
                                                                                                                      6 44
                                                                                                                                  68.0
                                                                                                                                             30.3
                                                                                                                                                     444 765
                                                   4 14
           937
                       89.0
                                                         7002.785925
                                                                                                                                                  45413.657
                                  88.0
                                             3
                                                  11.90
                                                                           47.0
                                                                                     604
                                                                                          59.1
                                                                                                     3
                                                                                                         98.0
                                                                                                                       1.57
                                                                                                                                  98.0
          2056
                       89.0
                                  78.0
                                             0
                                                                           98.0
                                                                                                         98.0
                                                                                                                      9.50
                                                   9 88
                                                          271.254553
                                                                                       0
                                                                                           6.9
                                                                                                     0
                                                                                                                                  98.0
                                                                                                                                              0.1
                                                                                                                                                   2277 536
           995
                       89.0
                                  69.0
                                                  11.03
                                                          941.756291
                                                                           0.88
                                                                                     443 61.9
                                                                                                     3
                                                                                                         94.0
                                                                                                                      11.30
                                                                                                                                  95.0
                                                                                                                                              0.1
                                                                                                                                                   4792.652
           241
                       89.0
                                  76.0
                                             0
                                                  12.60
                                                        7163.348923
                                                                           98.0
                                                                                      70 63.4
                                                                                                         99.0
                                                                                                                       1.59
                                                                                                                                  99.0
                                                                                                                                              0.1
                                                                                                                                                  47439.396
          2433
                       89.0
                                  72.0
                                                  11.05
                                                          510.932701
                                                                           96.0
                                                                                         61.7
                                                                                                     2
                                                                                                         96.0
                                                                                                                      8.36
                                                                                                                                  96.0
                                                                                                                                              0.1
                                                                                                                                                   3279.414
                                                                                     267
          1649 rows × 19 columns
In [ ]:
           ### run regression
```

```
In []: ### run regression
    X = life_data.iloc[:, 1:].values
    y = life_data['Life expectancy '].values.reshape(-1, 1)
    fit = LinearRegression().fit(X, y)
    prediction = fit.predict(X)

    coefs = fit.coef_
    coefs.shape

In []: plt.figure(figsize=(12, 5))
    y = np.arange(1, 19, 1)
    plt.scatter(coefs, y, s=15, color='darkred')
    plt.yticks(y, labels=life_data.columns[1:])
    plt.vlines(0, 0, 19, color='pink')
    plt.show()
```

Schooling Income composition of resources thinness 5-9 years -

How can you interpret these results?

From these weights it would seem that income composition of resources and schooling have the highest (positive) correlation with life expectancy. HIV/Aids has the strongest negative correlation. All other feautures have a coefficient close to 0. Since the features could correlate between each other, the coefficients are hard to interpret. E.g. the positive weight of infant deaths might be caused by sick children not dying before the age of 5 due to a good health system. Moreover, the input features are not normalized, therefore it is hard to compare between them: we can only draw conclusions about positive or negative correlations.

```
In []:
    ### Fix problem
    from sklearn.preprocessing import StandardScaler
    std_scaler = StandardScaler()
    life_data_trans = pd.DataFrame(std_scaler.fit_transform(life_data.iloc[:, 1:]), columns=life_data.columns[1:])
    life_data_trans.head()
Out[]:

Adult infant and percentage Hepatitis and under-

Total problem

Total problem

Total problem

Substitute of the problem

Su
```

percentage Hepatitis Alcohol Measles BMI five Polio Diphtheria HIV/AIDS GE Mortality deaths expenditure В expenditure deaths -0.807961 0.111306 -0.852340 -0.395229 -0.594514 -0.211499 -1.181300 0.189009 -0.203379 -0.494162 -0.934296 3.766855 -0.48258 4.428626 -0.045965 -0.042998 -0.397439 -0.438245 -0.217549 -0.558461 -0.013633 -0.738049 0.510759 -0.887941 5.242678 -0.44556 4 045461 -0 228068 -0 462565 -0.364514 0.304033 -0.220624 -0.543269 -0.234697 0.197624 0.149683 0.224579 5.441666 -0.40994 4.364766 -0.054242 -0.117478 -0.397439 -2.821346 -0.121643 -0.578715 -0.019774 -3.411399 0.245390 -0.748876 5.756729 -0.44568 4.380731 -0.037688 -0.097616 -0.392482 -0.555446 -0.178969 -0.538206 -0.007492 -0.648937 0.210588 -0.748876 4.695463 -0.44639

```
In []: ### run regression
   X = life_data_trans.values
   y = life_data['Life expectancy '].values.reshape(-1, 1)
   fit = LinearRegression().fit(X, y)
   prediction = fit.predict(X)

   coefs = fit.coef_
   coefs.shape
Out[]: (1, 18)
```

```
plt.figure(figsize=(12, 5))
y = np.arange(1, 19, 1)
plt.scatter(coefs, y, s=15, color='darkred')
plt.yticks(y, labels=life_data.columns[1:])
plt.vlines(0, 0, 19, color='pink')
plt.show()
```


Part III: Regularization

We will use the data on life expectancy once again. This time, however, we will regularize our regression.

Tasks:

- 1. Use Ridge and Lasso from sklearn to fit the data.
- 2. What is supposed to change between regularized and unregularized regression? Can you see this difference in practice?

Lasso regularization is supposed to force feature weights to be set to 0. This can be seen very well from the points on the pink line. Interestingly, the under-five-deaths have been changed from a very negative coefficient to 0. This is probably due to the model not overfitting to outliers anymore.

```
In []: ### fit and plot Ridge
X = life_data_trans.values
y = life_data['Life expectancy '].values.reshape(-1, 1)
fit = Ridge().fit(X, y)
prediction = fit.predict(X)

coefs = fit.coef_

plt.figure(figsize=(12, 5))
y = np.arange(1, 19, 1)
plt.scatter(coefs, y, s=15, color='darkred')
plt.yticks(y, labels=life_data.columns[1:])
plt.vlines(0, 0, 19, color='pink')
plt.show()
```


Ridge regularization pushes weights towards a smaller value. Compared to the plot from part 2, the weights seem a bit smaller.

Part IV: cross validation

To find out how much we should optimally regularize, we use cross validation

Tasks:

- 1. Use sklearn to apply cross validation to Ridge and Lasso regression. Which values of alpha yield the best results?
- 2. Can you interpret these results? What does a small or large value of alpha imply?

A large alpha implies a strong regularization. This means the model overfits on the training data and requires a higher regularization strength in order to generalize well on the data fold used for testing.

Final questions

- 1. Which kind of pitfalls did you notice during your application of different methods of regression?
- 2. How did you solve these pitfalls?
- 3. If you come across linear regression coefficients in a paper, which kind of questions would come to your mind about these coefficients?
- 4. If you come across linear regression in a paper that claims to show a causal relationship, what do you look for in the paper?

answer final high level questions:

- 1. The features lie on different scales and possibly correlate. This leads to coefficients being hard to interpret. Moreover, the model overfitting on the data has led to some features having large weights.
- 2. We tried to facilitate the comparison between weights by z-standardizing the features. The Lasso regression might help with correlation effects since it pushes feature weights towards 0. \ However, it could also set those features to 0 that are causally connected to the data. It might be more sensible to check for correlations between features beforehand. \
 - The regularization prevents overfitting on the training data and thus improves identifying the most important coefficients.
- 3. Did they regularize? Are the features normalized? Do the features correlate? Is there a nonlinear function applied to the data?
- 4. We look for a control group that randomly includes all relevant features. If there is still an effect of the remaining feature, it can assumed to have a causal relationship.