MATH-F211 : Topologie TP 9 - Compacité

Thomas Saillez, Andriy Haydys

Exercice 1. Démontrer que le tore et le plan projectif sont des variétés topologiques.

Exercice 2 (5.8). Parmi les sous-ensembles de \mathbb{R}, \mathbb{R}^2 suivants, décidez (sans trop justifier) lesquels sont compacts.

- (a) [0;1[
- (b) $[0; +\infty[$
- (c) $\mathbb{Q} \cap [0;1]$
- (d) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
- (e) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$
- (f) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
- (g) $\{(x,y) \in \mathbb{R}^2 : x \ge 1, 0 \le y \le 1/x\}$
- (h) $\{(x,y) \in \mathbb{R}^2 : x \ge 1, 0 \le y \le 1/x\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 100\}$

Exercice 3 (5.5). Soit (x_n) une suite dans un espace topologique X qui converge vers $x_{\infty} \in X$. Montrer que $\{x_n \mid n \in \mathbb{N}\} \cup \{x_{\infty}\}$ est compact.

Exercice 4 (5.4). Soit E un espace de Hausdorff, A et B deux sous-ensembles compacts de E.

- (a) Soit $x \notin A$, Montrer qu'il existe U et V des ouverts disjoints de E tels que $x \in U$ et $A \subseteq V$.
- (b) Supposons que A et B sont disjoints. Démontrer qu'il existe U et V des ouverts disjoints de E tels que $A \subseteq U$ et $B \subseteq V$.

Exercices frigo

Exercice 5 (5.1). Soit X un espace de Hausdorff et K_1, K_2 des sous-ensembles compacts de X. Démontrer que $K_1 \cap K_2$ est compact.

Exercice 6 (5.2). Soient K_1 et K_2 deux sous-ensembles compacts disjoints d'un espace métrique (M, d). Montrer que la distance de Hausdorff entre K_1 et K_2 définie par

$$d_H(K_1, K_2) = \inf \{ d(x_1, x_2) \mid x_1 \in K_1, \ x_2 \in K_2 \}$$

est toujours strictement positive. Trouver un exemple de sous-ensembles K_1, K_2 non-compacts et disjoints tels que $d_H(K_1, K_2) = 0$.