Kausalität in den Wirtschaftswissenschaften

Korrelation ist nicht gleich Kausalität

Korrelation ist nicht gleich Kausalität

Außer, wenn Korrelation gleich Kausalität!

Korrelation ist nicht gleich Kausalität

Außer, wenn Korrelation gleich Kausalität!

Woher wissen wir, dass X zu Y führt?

Korrelation ist nicht gleich Kausalität

Außer, wenn Korrelation gleich Kausalität!

Woher wissen wir, dass X zu Y führt?

X führt zu Y, wenn ...

Korrelation ist nicht gleich Kausalität

Außer, wenn Korrelation gleich Kausalität!

Woher wissen wir, dass X zu Y führt?

X führt zu Y, wenn ...

wir eingreifen und X verändern, alles andere jedoch gleich lassen und ...

Korrelation ist nicht gleich Kausalität

Außer, wenn Korrelation gleich Kausalität!

Woher wissen wir, dass X zu Y führt?

X führt zu Y, wenn ...

wir eingreifen und X verändern, alles andere jedoch gleich lassen und ...

Y sich danach verändert.

Achtung: Y "hört" jedoch nicht unbedingt nur auf X. Es gibt potentiell noch andere Einflüsse, die auf Y einwirken.

Beispiele für kausale Aussagen

- **★** Feuerwerkskörper verursachen Lärm, sobald diese angezündet werden
- **◆** Das Krähen des Hahn führt zum Sonnenaufgang
- **★** Ein Bachelor an der Uni Ulm erhöht ihr späteres Einkommen

Beispiele für kausale Aussagen

- **★** Feuerwerkskörper verursachen Lärm, sobald diese angezündet werden
- ◆ Das Krähen des Hahn führt zum Sonnenaufgang
- **★** Ein Bachelor an der Uni Ulm erhöht ihr späteres Einkommen

Kausalität = Korrelation + zeitliche Abfolge + kein Scheinzusammenhang

Woher wissen Sie, dass Sie die richtigen Faktoren betrachten (d.h. keinen Scheinzusammenhang)?

Beispiele für kausale Aussagen

- **★** Feuerwerkskörper verursachen Lärm, sobald diese angezündet werden
- ◆ Das Krähen des Hahn führt zum Sonnenaufgang
- **★** Ein Bachelor an der Uni Ulm erhöht ihr späteres Einkommen

Kausalität = Korrelation + zeitliche Abfolge + kein Scheinzusammenhang

Woher wissen Sie, dass Sie die richtigen Faktoren betrachten (d.h. keinen Scheinzusammenhang)?

Hier benötigen Sie ein Modell!

Datengenerierungsprozess

Um zu verstehen, wie wir aus experimentellen Daten oder aus Beobachtungsdaten *kausale* Zusammenhänge ableiten können müssen wir uns folgenden Fragen widmen:

- **◆** Woher stammen unsere Daten (Experiment oder Beobachtungsdaten)?
- **◆** Welcher **Datengenerierungsprozess** hat diese Daten erzeugt?
- **★** Können wir auf diesen Datengenerierungsprozess einwirken? (insbesondere durch ein Experiment)
- **◆** Gibt es zufällige Elemente in unseren Daten die wir analysieren könnten?

Kausale Graphen (DAGs)

Um uns den Datengenerierungsprozess vor Augen zu führen sollten wir diesen modellieren:

- + Hierzu verwenden wir die directed acyclic graphs (DAGs), welche vor allem von Judea Pearl entwickelt wurden
- ◆ In diesen DAGs fließt Kausalität (acyclic) nur in eine Richtung (falls Rückwärtskausalität oder Simultanität vorhanden ist sind andere Modelle besser geeignet)
- **◆** DAGs präsentieren Kausalität als Alternativszenario ("counterfactuals")
 - **★** Ein kausaler Effekt wird als Vergleich zweier Alternativen definiert:
 - **◆** Der Zustand der stattgefunden hat mit der Intervention
 - Der Zustand der nicht stattgefunden hat ohne die Intervention (das "counterfactual")

Wie sehen diese DAGs aus?

- Directed: Jede Node hat einen Pfeil der zu einer anderen Node zeigt
- **★ Acyclic**: Pfeile haben nur eine Richtung, sie können nicht zu einer Node zurück

Daher können Sie DAGs folgendermaßen interpretieren:

- ♣ Grafische Repräsentation ihres Modells
- Jeder Pfeil zeigt eine kausale Verbindung einer Variablen zur nächsten an (Richtung der Kausalität)
- → Dort wo es keine Pfeile zwischen den Variablen gibt vermuten Sie keinen kausalen Zusammenhang (Annahmen ersichtlich)

Wie sehen diese DAGs aus?

Doch woher kommt das DAG?

Wie sehen diese DAGs aus?

Doch woher kommt das DAG?

- **◆** Eine Sehr gute Frage!
- **◆** Es entsteht aus ihren Erkenntnissen aus der Literatur, den eigenen Hypothesen, ökonomische Theorie, ihren eigenen Beobachtungen ...

Zwei unterschiedliche, aber verwandte, Ansätze über Kausalität nachzudenken:

Zwei unterschiedliche, aber verwandte, Ansätze über Kausalität nachzudenken:

Directed Acyclic Graphs (DAGs)

- Grafische Modelle
- ★ Kausalität fließt immer in eine Richtung und wird durch Pfeile verdeutlicht
- Keine Rückwärtskausalität oder Simultanität abbildbar
- **★** Betrachtet Alternativszenarien
- **◆** Do-Calculus im Hintergrund (Fancy Mathe)

Verwenden wir in dieser Veranstaltung!

Zwei unterschiedliche, aber verwandte, Ansätze über Kausalität nachzudenken:

Directed Acyclic Graphs (DAGs)

- ♣ Grafische Modelle
- Kausalität fließt immer in eine Richtung und wird durch Pfeile verdeutlicht
- ★ Keine Rückwärtskausalität oder Simultanität abbildbar
- **★** Betrachtet Alternativszenarien
- **◆** Do-Calculus im Hintergrund (Fancy Mathe)

Verwenden wir in dieser Veranstaltung!

Potential Outcomes Modell (auch Rubin Kausalmodel genannt)

- Betrachtet Alternativszenarien
- ◆ Betrachten von durchschnittlichen Effekten über mehrere Individuuen oder Gruppen (ATE)
- ◆ Unterschied zwischen Gruppen wenn eine Intervention getätigt vs. nicht getätigt wurde
- Annahmen: Stable Unit Treatment Value Assumption (SUTVA)

Zwei unterschiedliche, aber verwandte, Ansätze über Kausalität nachzudenken:

Directed Acyclic Graphs (DAGs)

- **◆** Grafische Modelle
- ★ Kausalität fließt immer in eine Richtung und wird durch Pfeile verdeutlicht
- Keine Rückwärtskausalität oder Simultanität abbildbar
- **★** Betrachtet Alternativszenarien
- **◆** Do-Calculus im Hintergrund (Fancy Mathe)

Verwenden wir in dieser Veranstaltung!

Potential Outcomes Modell (auch Rubin Kausalmodel genannt)

- Betrachtet Alternativszenarien
- Betrachten von durchschnittlichen Effekten über mehrere Individuuen oder Gruppen (ATE)
- ◆ Unterschied zwischen Gruppen wenn eine Intervention getätigt vs. nicht getätigt wurde
- Annahmen: Stable Unit Treatment Value Assumption (SUTVA)

Insbesondere die DAGs helfen uns den zugrunde liegenden Datengenerierungsprozess zu modellieren.

Wie groß war der Effekt einer Intervention?

Quelle: Andrew Heiss, Programm evaluation (https://evalf20.classes.andrewheiss.com/content/01-content/)

Wie messen wir den Effekt einer Intervention?

Wie groß war der Effekt einer Intervention?

Quelle: Andrew Heiss, Programm evaluation (https://evalf20.classes.andrewheiss.com/content/01-content/)

Wie messen wir den Effekt einer Intervention?

Mit einem Experiment

Mit Beobachtungsdaten

Die Auswirkung von Bildung auf das Einkommen

Erhöht ein Jahr mehr Bildung (z.B. durch einen Bachelor an der Uni Ulm) ihr späteres Einkommen?!

Die Auswirkung von Bildung auf das Einkommen

Erhöht ein Jahr mehr Bildung (z.B. durch einen Bachelor an der Uni Ulm) ihr späteres Einkommen?!

Beispielhaftes DAG für unsere Kausalitätsfrage

Mögliche Faktoren, die die Bildungsentscheidung von Personen beeinflussen und deren Einkommen:

+ Schritt Eins: Mögliche Variablen sammeln

+ Schritt Zwei: Vereinfachen

Schritt Drei: DAG zeichnen

◆ Schritt Vier: Modell erstellen welches getestet werden kann

Schritt eins: Mögliche Variablen sammeln

Bildung (treatment) \rightarrow Einkommen (outcome)

Welche Variablen spielen möglicherweise noch eine Rolle?

Schritt eins: Mögliche Variablen sammeln

Bildung (treatment) → Einkommen (outcome)

Welche Variablen spielen möglicherweise noch eine Rolle?

- **+** (Unbeobachtbare) Fähigkeiten
- ◆ Haushaltseinkommen
- **◆** Sozialer Status
- ◆ Bildung der Eltern
- **◆** Schulpflicht
- Netzwerk

Schritt zwei: Vereinfachen

Bildung (treatment) \rightarrow Einkommen (outcome)

Wie kann ich diese Variablen vereinfachen?

- ◆ (Unbeobachtbare) Fähigkeiten
- ◆ Haushaltseinkommen
- **◆** Sozialer Status
- ♣ Bildung der Eltern
- **◆** Schulpflicht
- ◆ Netzwerk

Schritt zwei: Vereinfachen

Bildung (treatment) \rightarrow Einkommen (outcome)

Wie kann ich diese Variablen vereinfachen?

- lacktriangle (Unbeobachtbare) Fähigkeiten ightarrow Hintergrund
- ◆ Haushaltseinkommen
- **◆** Sozialer Status → Hintergrund
- ◆ Bildung der Eltern
- **◆** Schulpflicht
- ◆ Netzwerk

Schritt drei: DAG zeichnen

Hintergrund, Haushaltseinkommen, die Bildung der Eltern und Schulpflicht

 $\rightarrow \text{Determinanten ihrer } \textbf{Bildung!}$

Schritt drei: DAG zeichnen

Haushaltseinkommen und ihr Netzwerk

→ Determinanten für ihr **Einkommen**!

Weiterhin:

➡ Bildung der Eltern ist entscheidend für das Haushaltseinkommen.

Schritt drei: DAG zeichnen

- Ihr Netzwerk wird auch von ihrer Bildungsentscheidung beeinflusst
- ★ Hintergrund hat sicherlich auch die Bildungsentscheidung ihrer Eltern beeinflusst!
- ★ Weiterhin ist dieser Hintergrund nicht beobachtbar (daher grau) und sollte mit gestrichelten Linien verdeutlicht werden.

Schritt vier: Identifikation

Nun haben Sie die einzelnen Variablen und deren Zusammenhang aufgezeigt! Alle diese Nodes sind miteinander korreliert

Wie können wir nun den Effekt von **B auf Eink** extrahieren?

Um den Effekt von **B auf Eink** zu identifizieren müssen Sie diesen von den anderen umgebenden Effekten isolieren!

Schritt vier: Identifikation

Nun haben Sie die einzelnen Variablen und deren Zusammenhang aufgezeigt! Alle diese Nodes sind miteinander korreliert

Wie können wir nun den Effekt von **B auf Eink** extrahieren?

Um den Effekt von **B auf Eink** zu identifizieren müssen Sie diesen von den anderen umgebenden Effekten isolieren!

Eine Möglichkeit wäre es auf die umgebenden Effekte in einer Regression zu "kontrollieren".

Sollten wir nun einfach auf alle Variablen unseres DAGs kontrollieren?

Welche Arten von Zusammenhang gibt es im DAG?

Confounder

Hier handelt es sich um einen gemeinsamen Ursprung

Mediator

Hier handelt es sich um einen Mittler des Gesamteffekts

Collider

Hier handelt es sich um Selektion / Endogenität

Confounder

X führt zu **Y**

lacktriangle Dies sehen wir am kausalen Pfad X \rightarrow Y

Z führt dazu, dass sich sowohl **X** als auch **Y** verändern

Wir wollen den kausalen Effekt von X auf Y isolieren.

Confounder

X führt zu Y

lacktriangle Dies sehen wir am kausalen Pfad X \rightarrow Y

Z führt dazu, dass sich sowohl **X** als auch **Y** verändern

Wir wollen den kausalen Effekt von X auf Y isolieren.

- **♦** Wir sprechen hier davon das **Z** ein *confounder* des kausalen Zusammenhangs zwischen $X \rightarrow Y$ ist
- Der Confounder ist eine dritte Variable, welche sowohl X, als auch Y beeinflusst
- ◆ Oft lesen Sie auch von der backdoor Variablen Z
- ◆ Der backdoor Pfad X ← Z → Y generiert eine Scheinkorrelation zwischen X und Y
- ★ Eine backdoor offen zu lassen generiert Bias da die Beziehung zwischen X und Y nicht isoliert wurde!

Pfade zwischen Spenden und Gewinnwahrscheinlichkeit

 $Spenden \rightarrow Gewinnwahrscheinlichkeit$

Spenden \leftarrow Qualität des/der Kandidaten/in \rightarrow Gewinnwahrscheinlichkeit

Qualität des/der Kandidaten/in ist eine backdoor

Pfade zwischen Spenden und Gewinnwahrscheinlichkeit

 $Spenden \rightarrow Gewinnwahrscheinlichkeit$

Spenden \leftarrow Qualität des/der Kandidaten/in \rightarrow Gewinnwahrscheinlichkeit

Qualität des/der Kandidaten/in ist eine backdoor

Sie schließen die backdoor indem sie auf **Z kontrollieren**

Pfade zwischen **Bildung** und **Einkommen**

 $\mathsf{Bildung} \to \mathsf{Einkommen}$

 $\mathsf{Bildung} \leftarrow \mathsf{Familieneinkommen} \rightarrow \mathsf{Einkommen}$

Familieneinkommen ist eine backdoor

Pfade zwischen Bildung und Einkommen

 $\mathsf{Bildung} \to \mathsf{Einkommen}$

 $\mathsf{Bildung} \leftarrow \mathsf{Familieneinkommen} \rightarrow \mathsf{Einkommen}$

Familieneinkommen ist eine backdoor

Sie schließen die backdoor indem sie auf **Z kontrollieren**

Türen schließen

Dadurch das Sie auf das Familieneinkommen kontrollieren:

- ◆ Eliminieren Sie den Effekt des Familieneinkommens auf die Bildung
- ➡ Eliminieren Sie den Effekt des Familieneinkommens auf das spätere Einkommen

Zusammenhang des verbleibenden Effekts der Bildung auf den verbleibenden Effekt des Einkommens ist unser kausaler Effekt von Bildung auf Einkommen.

→ Durch die Kontrolle vergleichen wir hier Personen, wie wenn diese das gleiche Familieneinkommen hätten

Kontrollieren innerhalb einer Regression

Eine Möglichkeit auf Variablen zu "kontrollieren" ist mittels einer multiplen linearen Regression:

$$Einkommen = \beta_0 + \beta_1 * Bildung + \beta_2 * Familieneinkommen + \epsilon$$

Etwas weitreichendere Methoden (diese wollen wir jedoch nicht näher besprechen):

- Matching
- **◆** Stratifizierung
- **◆** Synthetische Kontrollgruppen

Backdoor Pfade schließen

 $\mathsf{Bildung} \to \mathsf{Einkommen}$

 $\mathsf{Bildung} \leftarrow \mathsf{Familieneinkommen} \rightarrow \mathsf{Einkommen}$

 ${\sf Bildung} \leftarrow {\sf elterliche\ Bildung} \rightarrow {\sf Familieneinkommen} \rightarrow \\ {\sf Einkommen}$

 $Bildung \leftarrow Hintergrund \rightarrow elterliche Bildung \rightarrow \\ Familieneinkommen \rightarrow Einkommen$

Kontrollieren innerhalb einer Regression

Das Familieneinkommen liegt auf jeder dieser backdoor Pfade

Kontrollieren wir auf das Familieneinkommen, so können wir die jeweiligen backdoor Pfade schließen

Durch die Kontrolle auf das Familieneinkommen erfüllen wir das Backdoor Kriterium.

$$Einkommen = eta_0 + eta_1 * Bildung + eta_2 * Familieneinkommen + \epsilon$$

In diesem Fall wäre der Koeffizient von (\beta_1) kausal zu interpretieren!

Backdoor Pfade schließen

Doch was ist, wenn unser DAG nicht komplett war?

Backdoor Pfade schließen

Doch was ist, wenn unser DAG nicht komplett war?

Z.B. könnte der **Hintergrund** einer Person auch einen direkten Effekt auf dessen Einkommen haben:

 $Bildung \leftarrow Hintergrund \rightarrow Einkommen$

Hier können wir die *Backdoor* nicht schließen und dürften den Koeffizienten (\beta_1) **nicht** kausal interpretieren!

Mediator

X führt zu **Y**

X führt zu Z, welches wiederum zu Y führt

Sollten wir für **Z** kontrollieren?

Mediator

X führt zu **Y**

X führt zu Z, welches wiederum zu Y führt

Sollten wir für **Z** kontrollieren?

 $\mathbf{Nein} \rightarrow \mathbf{Dies}$ würde zu einer Überanpassung des Modells führen!

Ein Teil des Effekts von **X** auf **Y** würde damit außer Acht gelassen.

Überanpassung

Sollten wir in unserem Modell für Netzwerk kontrollieren?

Collider

X führt zu **Y**

X führt zu Z und Y führt zu Z

Sollten wir für **Z** kontrollieren?

Kritiker bemängeln, dass Google Frauen systematisch schlechter bezahlt.

Google entgegnet: Wenn wir den Ort, die Dauer, den Jobtitel, das Managementlevel und die Performance mit in die Betrachtung einfließen lassen, dann verdienen Frauen gleich viel wie Männer.

Doch was wenn Diskriminierung durch Auswahl bestimmter beruflicher Bereiche stattfindet?

Das DAG dazu sehen Sie links!

- **+** F = Frau
- ♣ D = Diskriminierung
- O = Beruf
- **★** Y = Einkommen
- ♣ A = Fähigkeiten

- **+** F = Frau
- **◆** D = Diskriminierung
- **◆** O = Beruf
- **★** Y = Einkommen
- **★** A = Fähigkeiten

$$\mathsf{D} \to \mathsf{O} \to \mathsf{Y}$$

$$\mathsf{D} \to \mathsf{O} \leftarrow \mathsf{A} \to \mathsf{Y}$$

Warum ist der Beruf (O) ein Collider?

- **+** F = Frau
- **◆** D = Diskriminierung
- **◆** O = Beruf
- ★ Y = Einkommen
- ♣ A = Fähigkeiten

$$\mathsf{D} \mathop{\rightarrow} \mathsf{O} \mathop{\rightarrow} \mathsf{Y}$$

$$D \rightarrow O \leftarrow A \rightarrow Y$$

Warum ist der Beruf (O) ein Collider?

Wenn wir auf den Beruf (O) kontrollieren, öffnen wir den zweiten Kanal, da O als Collider fungiert.

Collider blocken immer die *backdoor*, wenn auf den Collider kontrolliert wird, dann öffnen wir die *backdoor*!

Wir wollen uns die Auswirkungen des Collider Bias näher in einer Simulation anschauen:

Collider Bias

Dadurch, dass wir im vorherigen Beispiel auf den Beruf (occupation) kontrolliert haben scheint es so, dass Frauen nicht benachteiligt werden.

Annahmen unserer Simulation:

→ Wir haben die Fähigkeiten (ability) als Zufallsvariable simuliert, welche unabhängig vom Geschlecht ist!

```
+ ability = rnorm(10000)
```

➡ Wir haben eine Diskriminierung simuliert indem wir für "bessere" Jobs h\u00f6here F\u00e4higkeiten verlangen, aber weniger Frauen zulassen

```
\bullet occupation = 1 + 2*ability + 0*female - 2*discrimination + rnorm(10000)
```

◆ Wir haben das Gehalt so simuliert, dass es für Frauen niedriger ist (hier als discrimination deklariert), aber höher ist, je höher die berufliche Position und die Fähigkeiten

```
wage = 1 - 1*discrimination + 1*occupation + 2*ability + rnorm(10000)
```

Was ist der tatsächliche direkte Effekt der Diskriminierung auf das Einkommen?

Welche Kontrollvariablen benötigen Sie um den Collider Bias aufzuheben?

Simulationsstudie zu Collider

Wir wollen uns die Auswirkungen des Collider Bias näher in einer Simulation anschauen:

	Dependent variable:		
	Biased Unconditional (1)	wage Biased (2)	Unbiased Conditional (3)
female	-2.906***	0.594***	-0.970***
occupation	(0.085)	(0.029) 1.807*** (0.006)	(0.028) 1.016*** (0.010)
ability		(0.000)	1.967*** (0.023)
Constant	1.944*** (0.061)	0.190 ^{***} (0.020)	0.975 ^{***} (0.017)
Observations R ²	10,000 0.104	10,000 0.913	10,000 0.951
Adjusted R ²	0.104	0.913	0.951

Welche Arten von Zusammenhang gibt es im DAG?

Confounder

Hier handelt es sich um einen gemeinsamen Ursprung

Mediator

Hier handelt es sich um einen Mediator Collider

Hier handelt es sich um Selektion / Endogenität