

Target Detection Using FM Chirp and GNU Radio-Based FMCW Radar

Student: Vamsee Krishna Tunuguntla

Project Advisor: Yu-Dong Yao

Date: 05-30-2023

1870

Outline

- Introduction
- FMCW Radar
- FM Chirp
- FMCW Radar System Design
- Target Detection Using Chirp in FMCW Radar
- GNU Radio and FM Chirp FMCW Radar
- Simulation Results
- Accuracy Analysis of FM Chirp in GNU Radio-based FMCW Radar
- Conclusions

Introduction

- Radar technology is widely used in various applications, such as aviation, meteorology and military.
- One of the radar techniques used for target detection is FMCW radar, which uses a continuous wave signal that is modulated in frequency.
- By combining GNU Radio with SDR hardware, it is possible to implement a custom radar system that can perform radar target detection and tracking, providing a cost-effective and flexible solution for various applications.

Problem Description

- Traditional radar systems often require expensive, custom hardware, which can be a barrier to entry for many applications.
- Additionally, they are often limited in terms of flexibility and adaptability, making it difficult to modify the system for different applications.
- They often get affected by environmental factors such as weather and terrain.

Challenges

• Complex signal processing:

Requires advanced signal processing techniques. Designing an effective signal processing chain that can handle the high-frequency signals of radar systems can be challenging.

• High-frequency design:

Operate at high frequencies. Furthermore, building and testing hardware components for high-frequency applications can be expensive.

• Noise and interference:

Susceptible to noise and interference from various sources, including other radar systems, electronic devices, and natural phenomena which leads in accuracy reduction.

FMCW Radar

- Frequency-Modulated Continuous Wave.
- Measures range and velocity of the targets.
- High accuracy and reliability.
- Velocity Doppler shift.
- Range the difference between transmitted and received signals.

Advantages:

- High resolution
- Low power consumption
- Immunity to interference

https://www.renesas.com/us/en/blogs/basics-fmcw-radar

Disadvantages:

- Limited range
- Sensitive to target velocity & acceleration

FM Chirp

- Frequency changes linearly.
- Chirp a sound made by certain birds
- Measurement chirp rate
- FM chirp generation: VCOs, DDS
 & SDR

Applications: Radar, Sonar Systems, Medical Imaging

Advantages:

- High resolution
- Immunity to interference

Disadvantages:

- Limited bandwidth
- Sensitive to phase noise

FMCW Radar System Design

A. Prabaswara, A. Munir and A. B. Suksmono, "GNU Radio based software-defined FMCW radar for weather surveillance application," *2011 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA)*, Denpasar, Indonesia, 2011, pp. 227-230, doi:10.1109/TSSA.2011.6095440.

Target Detection Using Chirp in FMCW Radar

Target detection using chirp

GNU Radio and FM Chirp FMCW Radar

• Real condition simulation

GNU Radio and FM Chirp FMCW Radar

USRP based simulation

Simulation Results

• Target detection using chirp

Beat signal for 3 targets

Beat frequency spectrum for 3 targets

Simulation Results

• Real condition simulation

Beat signal scope plot

FFT beat signal

Simulation Results

USRP based simulation

Beat signal scope plot

FFT beat signal

Accuracy Analysis for FM Chirp Generator

• 3 types of waveforms are being used:

Sinusoidal - non-linear

Triangular – linear

Sawtooth - linear

• Simulations are performed using GNU Radio.

Accuracy Analysis for FM Chirp Generator

Real condition simulation

Waveforms	Time Step	Distance(Theoretical)	Distance(GNU Radio)	Accuracy
Triangular	1000	25	25.2	99.2
	250	6.25	6.36	98.2
	100	2.5	2.7	92.5
Sawtooth	1000	25	25	100
	250	6.25	6.35	98.4
	100	2.5	2.53	98.8
Sinusoidal	1000	25	25.8	96.89
	250	6.25	6.47	96.59
	100	2.5	2.68	93.28

Accuracy Analysis for FM Chirp Generator

USRP based simulation

Waveforms	Time Step	Distance(Theoretical)	Distance(GNU Radio)	Accuracy
Triangular	1000	25	25.32	98.7
	250	6.25	6.32	98.8
	100	2.5	2.6	96.15
Sawtooth	1000	25	25	100
	250	6.25	6.35	98.4
	100	2.5	2.5	100
Sinusoidal	1000	25	25.6	97.6
	250	6.25	6.38	97.9
	100	2.5	2.56	97.6

Conclusions

- Investigation of FM chirp accuracy in GNU radio-based FMCW radar for target detection.
- Characterisation of distance detection using carrier frequency of 1.5 MHz and 6 Msps sample rate.
- Results show the superiority of the USRP-based implementation method in terms of average accuracy.
- The sawtooth waveform exhibits the highest average accuracy among the three waveforms.

References

- E. J. Amin, A. B. Suksmono and A. Munir, "Accuracy analysis of FM chirp in GNU radio-based FMCW radar for multiple target detection," *2014 International Conference on Computer, Control, Informatics and Its Applications (IC3INA)*, Bandung, Indonesia, 2014, pp. 115-119, doi: 10.1109/IC3INA.2014.7042611.
- S. Aulia, A. B. Suksmono and A. Munir, "Stationary and moving targets detection on FMCW radar using GNU radio-based software defined radio," *2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)*, Nusa Dua Bali, Indonesia, 2015, pp. 468-473, doi: 10.1109/ISPACS.2015.7432817.
- Y. P. Saputera, M. Wahab and Y. Wahyu, "Linear frequency modulation continuous wave (LFM CW) radar implementation using GNU radio and USRP," *TENCON 2015 2015 IEEE Region 10 Conference*, Macao, China, 2015, pp. 1-5, doi: 10.1109/TENCON.2015.7373118.