Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r (Fig. 2.9), which carries a uniform line charge λ .

So,
$$\frac{1}{E} = \frac{1}{4\pi\epsilon_0} \frac{1}{(\gamma^2 + z^2)^{3/2}} \frac{1}{z^2}$$

Problem 2.6 [Ciscular disk].

An infinite plane carries a uniform surface charge σ . Find its electric field.

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}.$$

Qene =
$$\int \sigma da = \sigma A$$

 $\sigma = Constant$

A = area of pillbox's surface parallel to the plane: $\oint \mathbf{E} \cdot d\mathbf{a} = 2A|\mathbf{E}|,$

$$2A |\mathbf{E}| = \frac{1}{\epsilon_0} \sigma A,$$

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0}\hat{\mathbf{n}}$$

Eabove =
$$\frac{0}{2E_0}$$

E below = $-\frac{\sigma}{2E_0}$

Pillbox

** What is the discontinuity of the electric field as it crosses the surface charge?

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma,$$