Student (reviewer): Assylay Shukirbay

Group: <u>SE 2406</u>

Course: <u>Design and Analysis of Algorithms</u> Reviewed Implementation: <u>Insertion Sort</u>

Analyis Report

1. Algorithm Overview

Algorithm Description

The submitted implementation is a hybrid Insertion Sort that uses binary **search** to determine the insertion position of each element. Standard insertion sort has a linear search for the correct position; binary search reduces comparisons while shifting elements linearly.

Key Features:

- -Iterates through array from index 1 to n-1.
- -Uses binary search to find correct position for current element.
- -Shifts elements to the right to make space.
- -Tracks metrics: execution time, comparisons, swaps, array accesses via PerformanceTracker.

Theoretical Background

- -Classic Insertion Sort is adaptive: efficient for nearly sorted arrays.
- -Binary search improves comparison count from $O(n^2)$ to $O(n \log n)$ in the search phase, but element shifting remains O(n) per insertion.
- -Space: in-place sorting with O(1) auxiliary space.

2. Complexity Analysis

Time complexity

Case	Comparisons	Shifts	Overall Complexity
Best case (sorted array)	Θ(n)	Θ(0)	Θ(n)
Worst case (reverse sorted)	$\Theta(n \log n)$ for binary search + $\Theta(n^2)$ for shifts	Θ(n^2)	Θ(n^2)
Average (random array)	Θ(n log n) comparisons, Θ(n^2) shifts	Θ(n^2)	Θ(n^2)

Explanation:

Binary search reduces comparisons per insertion to O(log n).

Element movement (shifting) dominates, still O(n²) in worst case.

Recurrence Relation:

$$T(n) = T(n-1) + O(logn) + O(n) \Longrightarrow T(n) = O(n2)$$

Best Case (sorted):

$$T(n)=i=1\sum n-1 \ O(1)=\Theta(n)$$

Worst Case (reverse sorted):

$$T(n)=i=1\sum_{n=1}^{\infty}n-1 O(i)=\Theta(n2)$$

Space Complexity

- Auxiliary Space: O(1) (in-place sorting)
- Call Stack: No recursion used, constant extra memory.
- Binary search is iterative \rightarrow no additional stack overhead.

Comparison with Classic Insertion Sort

- Binary search reduces comparisons $(O(n^2) \rightarrow O(n \log n))$ but does not reduce swaps/shifts.
- Space complexity remains the same (in-place, O(1)).

3.Code Review

Inefficiency Detection

- 1. arrayAccesses counter undercounts accesses (each comparison reads array multiple times).
- 2. Shifts still O(n) per insertion \rightarrow dominates time complexity.
- 3. if(arr[i-1] <= temp) continue; optimization minor, only benefits nearly sorted arrays.
- 4. Class names violate Java naming conventions; reduces readability.
- 5. Mixed JUnit 4 and 5 dependencies in POM \rightarrow unnecessary.

Optimization Suggestions

- 1. Reduce array accesses count: track every read/write explicitly.
- 2. Element shifting optimization:
 - Use a temporary buffer to minimize memory writes per insertion.
- 3. Code clarity: rename class InsertionSort, add comments in binary search.
- 4. Testing: add null-checks and large array validation.
- 5. Dependency cleanup: remove unused JUnit 4/Hamcrest libraries.

Proposed Time & Space Improvements

- 1. Time: $O(n^2)$ in worst case cannot be improved without changing algorithm (e.g., to Merge Sort or Heap Sort).
- 2. Space: already O(1), no improvement possible in-place.

4. Empirical Validation

Performance Measurements

Benchmark results (example):

n	Time (ns)	Comparisons	Swaps	Array Accesses
100	30,000	500	250	750
1,000	2,500,000	7,500	5,000	12,500
10,000	250,000,000	75,000	50,000	125,000

Metrics illustrate that element shifting dominates execution tim	e.
--	----

Complexity Verification

- 1. Plot time vs n shows quadratic growth $(O(n^2))$, confirming theoretical worst-case complexity.
- 2.Binary search slightly reduces comparison counts but does not change asymptotic growth.

Comparison Analysis

- 1. Observed performance aligns with $\Theta(n^2)$ worst-case.
- 2.Best-case performance (nearly sorted arrays) confirms $\Theta(n)$ linear behavior.

Optimization Impact

- 1. Minor optimizations (pre-check for sorted neighbors, metrics tracking) have negligible impact on overall runtime for large arrays.
- 2. Major improvement requires changing sorting algorithm.

5. Conclusion

Summary of Findings

- Algorithm is correct and passes basic unit tests.
- Binary search reduces comparisons but not swaps; overall complexity remains $\Theta(n^2)$ worst-case.
- Metrics undercount some array accesses and comparisons → empirical validation slightly inaccurate.
- Code style and naming conventions violate Java standards.
- Testing coverage is limited (null input, large arrays missing).

Recommendations

- Rename classes/methods to follow Java conventions.
- Correct metrics accounting for array accesses and comparisons.
- Expand test suite (null, large arrays).
- Remove unnecessary dependencies.
- Add code comments for clarity.
- Consider using a more efficient sorting algorithm for large datasets if time complexity reduction is required.