MEM704 - Machine Learning

1st Laboratory Exercise: The PageRank Algorithm and SVD Analysis

Submission Deadline: 07/03/2024, 18:00 Examination: 08/03/2024 in the Lab

This exercise focuses on two key numerical algorithms: the **PageRank algorithm** for ranking web pages and **Singular Value Decomposition (SVD)** for image compression. We will also explore the **power method** for computing dominant eigenvalues and eigenvectors, which is essential in both tasks.

1 Power Method

The **power method** approximates the dominant eigenvalue λ and its corresponding eigenvector x for a given matrix $A \in \mathbb{R}^{n \times n}$. The algorithm proceeds as follows:

Power Method Algorithm

1. Choose a random initial vector x_0 and normalize it:

$$x_0 = \frac{x_0}{\|x_0\|}$$

- 2. Set parameters:
 - Maximum iterations: k_{max}
 - Error threshold: $\epsilon \approx 10^{-6}$
- 3. Initialize: $k = 0, d_k = 1$
- 4. Repeat until convergence:
 - Compute $x_k = Ax_{k-1}$
 - Normalize: $x_k = \frac{x_k}{\|x_k\|}$
 - Compute difference: $d_k = ||x_k x_{k-1}||$
 - Estimate eigenvalue: $\lambda = \frac{x_k^T A x_k}{x_k^T x_k}$

Task:

- Implement this algorithm in Python using NumPy ('linalg' and 'random' packages).
- Test it on a matrix A of size $n \geq 3$ with known eigenvalues.
- Compare the convergence rate d_{k+1}/d_k with the theoretical ratio $|\lambda_2/\lambda_1|$.
- Apply it to the tridiagonal matrix:

$$T = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ 0 & -1 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & -1 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

where the eigenvalues are:

$$\lambda_k = 2 - 2\cos\left(\frac{k\pi}{n+1}\right), \quad k = 1, ..., n.$$

2 PageRank Algorithm

The **PageRank algorithm**, originally developed by Google, estimates the importance of a web page based on link structures. It finds the dominant eigenvector of a **Markov matrix**:

$$M = d \cdot A + \frac{(1-d)}{N}B,$$

where:

- $d \approx 0.85$ (damping factor)
- \bullet A is the link matrix:

$$a_{ij} = \begin{cases} \frac{1}{L(j)}, & \text{if page } j \text{ links to page } i\\ 0, & \text{otherwise} \end{cases}$$

• L(j) is the number of outbound links from page j.

Task:

- 1. Implement a Python program to construct matrix M from a file describing the web graph.
- 2. Use the power method to compute the dominant eigenvector (PageRank scores).
- 3. Sort and print the pages in descending order of importance.

Test Case:

graph0.txt:

1 2

1 3

1 4

2 3

3 1

4 1

4 3

Compare your results with 'networkx.pagerank(G, d)'.

3 SVD Analysis & Image Reconstruction

Singular Value Decomposition (SVD) decomposes a matrix \boldsymbol{A} into:

$$A = U\Sigma V^T$$

We approximate A using only the top k singular values:

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$$

where A_k is the best rank-k approximation of A.

Task:

- 1. Implement a Python program to:
 - Read an image as a matrix.
 - Compute its SVD.
 - Reconstruct the image using k singular values.
- 2. Compute error: $\epsilon_k = ||A A_k||_2$.

3. Plot:

- The sequence (k, ϵ_k) .
- Singular values σ_i .
- The original and reconstructed images.

Test Images:

• 'uoc $_logo.png$ "python $_logo.png$ ' Use 'matplotlib.image.imread' for image reading and 'numpy.linalg.svd' for SVD computation.

4 Deliverables

Submit your Python implementations and a report including:

- **1** Code explanations.
- 2. Results (convergence analysis, rankings, reconstructed images).
- 3. Comparisons with theoretical expectations.

Good luck!