

Première année de Licence MIASHS

TD corrigé – Analyse 1¹

Julien GREPAT²

- Éléments de logique
- $\mathbf{2}$ Variations des suites

Exercice 2.1 Calculer les 4 premiers termes des suites de terme général (Pour vérification)

(i)
$$u_n = n^2 - 3n - 4$$
;

$$u_0 = -4;$$
 $u_1 = -6;$ $u_2 = -6;$ $u_3 = -4.$

(ii)
$$u_n = \frac{n}{10^n}$$
;

$$u_0 = 0;$$
 $u_1 = 0, 1;$ $u_2 = 0, 02;$ $u_3 = 0, 003.$

(iii)
$$S_n = \sum_{i=1}^n \frac{1}{i}$$
;

$$u_1 = 1;$$
 $u_2 = 1, 5;$ $u_3 = 1, 5 + 1/3 \approx 1,833333;$ $u_4 \approx 2,083333.$

(iv)
$$T_n = \sum_{i=1}^n \sum_{j=1}^i \frac{1}{j}$$
;

Correction. Notons que $T_n = \sum_{i=1}^n S_i$. D'après les calculs précédents

$$u_1 = 1$$
: $u_2 = 1 + 1.5 = 2.5$:

$$u_1 = 1;$$
 $u_2 = 1 + 1.5 = 2.5;$ $u_3 \approx 2, 5 + 1, 833333 \approx 4.333333;$

$$u_4 \approx 6.416667$$
.

(v)
$$u_n = (-1)^n + 1$$
.

$$u_0 = 2;$$
 $u_1 = 0;$ $u_2 = 2;$ $u_3 = 0.$

Exercice 2.2 Étudier les variations de la suite de terme général :

¹Reproduction et diffusion interdite sans l'accord de l'auteur

²Contact: julien.grepat@univ-grenoble-alpes.fr

(i) $u_n = n^2 + 3n - 4$;

Correction. Soit $n \in \mathbb{N}$. Alors

$$u_{n+1} - u_n = (n+1)^2 + 3(n+1) - 4 - (n^2 + 3n - 4) = 2n + 3.$$

Or $n \ge 0$, donc $2n \ge 0$ et donc $2n + 3 \ge 3 > 0$. Par conséquent $u_{n+1} - u_n > 0$ et donc (u_n) est strictement croissante.

(ii) $u_n = \frac{2^n}{n^2}$;

Correction. $u_1 = 2$, $u_2 = 1$, $u_3 = \frac{8}{9} < 1$, $u_4 = \frac{16}{16} = 1$, $u_5 = \frac{32}{25}$. En particulier, j'ai $u_2 > u_3$, et $u_3 < u_4$, donc (u_n) est non monotone

Pour autant en étudiant le signe de $u_{n+1} - u_n$ pour $n \geq 3$, on peut montrer que (u_n) est strictement croissante à partir de n = 3.

$$u_{n+1} - u_n = \frac{2^{n+1}}{(n+1)^2} - \frac{2^n}{n^2}$$

$$= 2 \times \frac{2^n}{(n+1)^2} - \frac{2^n}{n^2}$$

$$= 2^n \left(\frac{2}{(n+1)^2} - \frac{1}{n^2}\right)$$

$$= 2^n \left(\frac{2n^2}{n^2(n+1)^2} - \frac{(n+1)^2}{n^2(n+1)^2}\right)$$

$$= 2^n \times \frac{n^2 - 2n - 1}{n^2(n+1)^2}.$$

Ainsi, $u_{n+1} - u_n$ est du signe de $n^2 - 2n - 1$ qui est positif à partir de n = 3 (trinôme du second degré valant -1 pour n = 0, -2 pour n = 1 et -1 pour n = 2...).

(iii)
$$S_n = \sum_{i=1}^{i=n} \frac{1}{i^2};$$

Correction. Notons que

$$S_{n+1} - S_n = \sum_{i=1}^{i=n+1} \frac{1}{i^2} - \sum_{i=1}^{i=n} \frac{1}{i^2} = \left(\frac{1}{(n+1)^2} + \sum_{i=1}^{i=n} \frac{1}{i^2}\right) - \sum_{i=1}^{i=n} \frac{1}{i^2} = \frac{1}{(n+1)^2} \ge 0.$$

Il suit que (S_n) est croissante.

(iv) $u_n = \sqrt{n+1} - \sqrt{n-1}$.

Indication. On pourra utiliser la technique de l'expression conjuguée :
$$\sqrt{a}-\sqrt{b}=(\sqrt{a}-\sqrt{b})\times\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{(\sqrt{a})^2+(\sqrt{b})^2}{\sqrt{a}+\sqrt{b}}=\frac{a-b}{\sqrt{a}+\sqrt{b}}.$$

Correction. Notons que

$$u_{n+1} - u_n = \sqrt{n+2} - \sqrt{n} - (\sqrt{n+1} - \sqrt{n-1})$$

$$= \frac{n+2-n}{\sqrt{n+2} + \sqrt{n}} - \frac{n+1-n+1}{\sqrt{n+1} + \sqrt{n-1}}$$

$$= 2 \times \left(\frac{1}{\sqrt{n+2} + \sqrt{n}} - \frac{1}{\sqrt{n+1} + \sqrt{n-1}}\right)$$

$$= 2 \times \left(\frac{\sqrt{n+1} + \sqrt{n-1} - \sqrt{n+2} - \sqrt{n}}{(\sqrt{n+2} + \sqrt{n})(\sqrt{n+1} + \sqrt{n-1})}\right)$$

Notons que $\sqrt{n+1} - \sqrt{n+2}$ est négatif, ainsi que $\sqrt{n-1} - \sqrt{n}$. Il suit que u_n est décroissante.

Exercice 2.3 Soit $(u_n)_{n\in\mathbb{N}}$, définie par $u_0 > 2$ et $u_{n+1} = u_n^2 - 2$. Montrer par récurrence que $\forall n \in \mathbb{N}$, $u_n > 2$, et en déduire les variations de (u_n) .

Correction. Soit (P_n) la propriété définie pour tout $n \in \mathbb{N}$ par : $u_n > 2$.

Initialisation: $u_0 > 2$ donc (P_0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que (P_n) soit vraie. De l'hypothèse de récurrence (P_n) : $u_n > 2$, je déduis $u_n^2 > 4$ (car u_n et 2 sont positifs). J'obtiens alors, par addition : $u_{n+1} = u_n^2 - 2 > 4 - 2 = 2$. Donc (P_{n+1}) est vraie.

Conclusion : D'après l'axiome de récurrence, pour tout $n \in \mathbb{N}$, (P_n) est vraie.

J'étudie les variations de (u_n) . Soit $n \in \mathbb{N}$. Alors $u_{n+1} - u_n = u_n^2 - 2 - u_n = u_n^2 - u_n - 2$. Or $x^2 - x - 2$ est un trinôme du second degré, strictement positif à l'extérieur de ses racines x = -1 et x = 2. En particulier, pour tout x > 2, $x^2 - x - 2 > 0$. Puisque $u_n > 2$ et $u_{n+1} - u_n = u_n^2 - u_n - 2$, j'obtiens $u_{n+1} - u_n > 0$. Donc (u_n) est strictement croissante.

Exercice 2.4 Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2 + u_n}{2}$. Montrer par récurrence : $\forall n \in \mathbb{N}$, $0 < u_n < 1$, et en déduire les variations de (u_n) .

Correction. Soit (P_n) la propriété définie pour tout $n \in \mathbb{N}$ par : $0 < u_n < 1$.

Initialisation: $u_0 = \frac{1}{2} \ donc \ 0 < u_n < 1 \ et \ (P_0) \ est \ vraie.$

Hérédité : Soit $n \in \mathbb{N}$ tel que (P_n) soit vraie. On a

$$u_{n+1} = u_n \frac{(u_n + 1)}{2}.$$

De l'hypothèse de récurrence (P_n) : $0 < u_n < 1$, on déduit

$$\frac{1}{2} < \frac{(u_n+1)}{2} < 1$$

$$\iff 0 < u_n \times \frac{(u_n+1)}{2} < 1$$

$$\iff 0 < u_{n+1} < 1.$$

Donc (P_{n+1}) est vraie.

Conclusion : D'après l'axiome de récurrence, pour tout $n \in \mathbb{N}$, (P_n) est vraie.

J'étudie les variations de (u_n) . Soit $n \in \mathbb{N}$. Alors

$$u_{n+1} - u_n = u_n \frac{(u_n + 1)}{2} - u_n = u_n \left(\frac{(u_n + 1)}{2} - 1 \right) = u_n \frac{u_n - 1}{2}.$$

 $Donc u_{n+1} - u_n$ est du signe de

$$\frac{u_n - 1}{2} < \frac{1 - 1}{2} = 0.$$

 $Donc(u_n)$ est strictement décroissante.