

Tricycle Project
Dick Dastardly
Crystal Ball

Review

23/11/2021

-Sprint 2-

Pierre Calmettes Romain Choulot Yixia Liu Gautier Martin Nikita Mikhin Valentin Piqueras

Yassine Ariba Guillaume Auriol Elodie Chanthery Barbara Moore Didier Le Botlan

Presentation plan

Project Purpose

A tricycle with multiple integrated sensors and actuators. It is conscious of its surrounding.

- Equip a car with sensors
- Use AI algorithms to assist the driver
 - Warn in case of danger

Organisation

Camera

Pierre Calmettes Yixia Liu Gautier Martin

LIDAR

Romain Choulot Nikita Mikhin Valentin Piqueras

Story: Add new objects to the recognition Al

Not working on the Jetson Nano, not powerful enough

This story is optional

Story: Use ROS with the camera and the recognition Al

ROS Graph, obtained with rqt_graph

Story: Eliminate false positive

Camera output ~ 30 frames per second

Detecnet
Wrong classification during 1
or 2 frames

Solution

Use a counter:

if *Person_Detected* with duration > x frames then *alert*

DEMO

LIDAR

State machine diagram

LIDAR

Story: get the LIDAR data via ROS

ROS Graph, obtained with rqt_graph

The data processing algorithm will be connected to the /rslidar_points topic

LIDAR

Demo of story: Extend azimuth to 360°

DEMO

Tests and performances

CAMERA

What we want to know

- Accuracy of warning
- ROS

Test

- Change the counter value to find the best alarm threshold
- Test nodes of the camera
 ROS independently

Performances

- Eliminate false positive
- A slight delay to stop the alarm
- Nodes are created and connect to each other automatically at runtime

Tests and performances

LIDAR

What we want to know

- ROS
- Extend the azimuth to see the whole environnement

Tests

- Test the LIDAR ROS node
- An obstacle is detected at less than 1 meter at 360°

Performances

- Node is created automatically at runtime and data is being sent
- 360° of horizontal covering and 15° of vertical covering

Sprint 3 Main Objective: LIDAR & camera fusion **Tests & Demos Stories Planning** Pseudo-algorithm showing our of how we approach approach it **Calibration** Image from camera with dots from superimpose LIDAR, in real-time LIDAR data and camera image Use camera's recognition only when an **Priority** object was first detected by the LIDAR Give priority to (< 2m from it) LIDAR over Camera 16

Calibration

The LIDAR detects these obstacles. We get the angles and the distance.

The camera detects the books. We get their coordinates on the image.

Correlation between measurements

=>

Superimposition of the camera image with the LIDAR data

Thank you!

Pierre Calmettes Romain Choulot Yixia Liu Gautier Martin Nikita Mikhin Valentin Piqueras

Yassine Ariba
Guillaume Auriol
Elodie Chanthery
Barbara Moore
Didier Le Botlan