

Hopper: Learning Higher-Order Logic Programs from Failures

Seminar in Knowledge Representation and Reasoning – 184.712 – 2023S

Inductive Logic Programming (ILP)

• form of symbolic machine learning that aims to learn a logic program from **background knowledge (BK)** predicates / examples

· uses First-order (FO) logic to represent hypotheses and data

• the output of an ILP system is a logic program that can be used to make predictions or perform reasoning in the given domain

Inductive Logic Programming (ILP)

- · excessively large BK can, in many cases, lead to performance loss
 - increases the search space and computational complexity
 - · higher chance of irrelevant information being present, introducing unnecessary complexity / misleading the ILP system

Large BK brings some problems!

High-order (HO) definitions

- · offer several **benefits** compared to background knowledge
 - provide increased expressiveness
 - facilitate generalization and abstraction

Allow ILP systems to capture higher-level patterns and handle new and unseen instances, enabling a more **efficient learning** and **reasoning**

High-order (HO) definitions

Predicate Invention (PI)

- The effective use of HO predicates is closely tied to **Predicate Invention (PI)**
 - · allows for the creation of new predicates

$$\begin{split} \texttt{reverse}(A,B)\text{:-}\ \texttt{empty}(C),\ \texttt{fold}(p,C,A,B).\\ \texttt{p}(A,B,C)\text{:-}\ \texttt{head}(C,B),\ \texttt{tail}(C,A). \end{split}$$

Many well-known ILP frameworks (Foil, Progol, Tilde, Aleph) do not support predicate invention

HO-enabled ILP

- existing HO-enabled ILP systems are based on Meta-interpretive Learning (MiL)
 - efficiency and performance of MiL-based systems is dependent on human guidance in the form of metarules

rules or templates that guide the search process for learning logic programs

Metarules

- · define the **higher-order relationships** and **patterns** that the ILP system should consider during the learning process
- guide the ILP system towards specific higher-order relationships or structures that are relevant to the problem domain
- Metarules act as constraints!

Definition 1 ([Cropper and Tourret, 2020]) A metarule is a second-order Horn clause of the form $A_0 \leftarrow A_1, \dots, A_n$, where A_i is a literal $P(T_1, \dots, T_m)$, s.t. P is either a predicate symbol or a HO variable and each T_i is either a constant or a FO variable.

Metarules

- In complex ILP tasks there may be a multitude of potential metarules that could be relevant to the problem domain
 - · selecting the most suitable metarules involves understanding patterns, relationships, and dependencies in the data

The expertise of a knowledgeable human expert is often necessary

Example

- · iterating over a sequence of numbers and finding the sum of all the elements
- \cdot "iterate" predicate with three arguments: the current element, the next element, and the running total
 - · updating the running total by adding the current element and passing it on as the total for the next iteration

HEXMILHO - only supports **binary** definitions - directly representing the "iterate" concept becomes challenging

"iterate" is ternary

Limit human involvement!

Higher-order Metagol

- The HO Metagol is a MiL algorithm implemented using a Prolog meta-interpreter
- · It takes as input: **predicate declarations**, sets of **positive and negative examples**, **compiled background knowledge** and a set of **metarules**
 - · Invented predicates are introduced if the background knowledge is insufficient

- · MetagolHO extends Metagol by including interpreted background knowledge (BKin)
 - · allows for the handling of additional predicates in a similar way to metarules

Higher-order Metagol

```
half_{lst}(A, B):- reverse(A, C),
                    case_{list}(p_{[]}, p_{[H|T]}, C, B).
         p_{1}(A):- empty(A).
p_{[H|T]}(A, B, C):- empty(B), empty(C).
p_{[H|T]}(A,B,C):- front(B,D)^4,
                    case_{list}(p_{[]}, p_{[H|T]}, D, E),
                    append(E, A, C).
```

Higher-order HEXMIL

- HEXMIL is an ASP encoding of MiL which uses the HEX formalism to interface with external resources
 - HEXMIL is restricted to forward-chained metarules

Definition 2 Forward-chained metarules are of the form:
$$P(A,B) := Q_1(A,C_1), Q_2(C_1,C_2), \cdots, Q_n(C_{n-1},B), R_1(D_1), \cdots, R_m(D_m)$$
 where $D_i \in \{A,C_1,\cdots,C_{n-1},B\}$.

only **Dyadic** learning task may be handled

- · based on counterexample guided inductive synthesis (CEGIS)
- · introduced in [Cropper and Morel, 2021a]
- predicate declarations (PD)
- · sets of positive (E+) and negative (E-) examples
- background knowledge (BK)

Inputs

· learning process -> generate-test-constrain loop

Generate phase

· candidate programs are chosen from the hypothesis space

· tested against the positive and negative examples in the test phase

Test phase

- the program is tested against E⁺ and E⁻
- If a candidate program correctly entails all positive examples and none of the negative examples - Popper terminates and considers it a successful solution

Constrain phase

- introduce constraints based on **negative examples**
- The choice of constraints is guided by **O-subsumption**

- · Popper iterates through the loop, gradually refining the hypothesis space
- · It aims to find the optimal solution the program containing the fewest literals

Popper utilizes a multi-shot solving framework and encodes both definite logic programs and constraints within the **Answer Set Programming (ASP)** paradigm

· incorporating the language bias and other constraints.

Logic Programming Overview

- \cdot P -> countable set of predicate symbols (p, q, r, p₁, ...)
- · V_f -> countable set of FO variables (A, B, C, ...)
- \cdot V_h -> countable set of HO variables (*P, Q, R, ...*)
- \cdot T -> set of FO terms constructed from function symbols and V_f (s, t, s₁, t₂, ...)
- · a -> atom of the form $p(T_1, T_m, t_1, t_n, ...)$

$$\cdot s_{v}(a) = p -> symbol of the atom$$

$$\cdot$$
 ag_h(a) = {T₁, ..., T_m} -> HO-arguments \rightarrow

$$\cdot ag_f(a) = \{t_1, ..., t_n\} \rightarrow FO$$
-arguments

$$\cdot ag_h(a) = \emptyset$$
 and $s_y(a) \in P \rightarrow a$ as FO

$$\cdot ag_h(a) \subset P$$
 and $s_v(a) \in P \rightarrow a$ as HO-ground

 \cdot otherwise a as HO

- · A literal is either an atom or its negation
- · A literal is HO if the atom it contains is HO

Logic Programming Overview

- · Clause set of literals:
- Horn clauses **at most one** positive literal
- Definite clauses exactly one positive literal
- · Clause positive literal -> head hd(c)
- Clause negated literals -> body bd(c)
- Theory -> a finite set of clauses
 - A theory is considered FO if all atoms are FO
- Substitution -> Replacing variables P_1 , P_n , A_1 , A_m , ... by predicate symbols p_1 , p_n , ... and terms t_1 , t_m , ... -> $(\theta, \sigma, ...)$
- A substitution θ unifies two atoms when $a\theta = b\theta$.

Hypothesis Space

• **Interpretable** theories -> principal programs - FO clausal theories encoding the relationship literals - clauses, along with HO definitions

Hopper - generates and tests these principal programs

- The encoding of principal programs ensures the validity of the pruning mechanism proposed in past work
 - · each principal program represents a unique HO program

Definition 3 A clause c is proper f if $ag_h(hd(c))$ are pairwise distinct, $ag_h(hd(c)) \subset \mathcal{V}_h$, and $\forall a \in bd(c)$,

- a) if $sy(a) \in \mathcal{V}_h$, then $sy(a) \in ag_h(hd(c))$, and
- b) if $p \in ag_h(a)$ and $p \in V_h$, then $p \in ag_h(hd(c))$.

A finite set of proper clauses d with the same head (denoted hd(d)) is referred to as a HO definition. A set of distinct HO definitions is a *library*. Let $\mathcal{P}_{PI} \subset \mathcal{P}$ be a set of predicate symbols reserved for invented predicates.

- a -> atom of the form $p(\overline{T_1}, T_m, t_1, t_n, ...)$
- $\cdot s_{v}(a) = p -> symbol of the atom$
- $\cdot ag_h(a) = \{T_1, ..., T_m\} \rightarrow HO$ -arguments
- $\cdot ag_f(a) = \{t_1, ..., t_n\} \rightarrow FO$ -arguments
- · P -> countable set of predicate symbols (p, q, r, p_1 , ...)

- Clause positive literal -> head hd(c)
- Clause negated literals -> body bd(c)
- \cdot V_f -> countable set of FO variables (A, B, C, ...)
- \cdot V_h -> countable set of HO variables (*P, Q, R, ...*)

Definition 4 A f.f.d theory \mathfrak{T} is interpretable if $\forall c \in \mathfrak{T}$, $ag_h(hd(c)) = \emptyset$ and $\forall l \in bd(c)$, l is higher-order ground,

- a) if $ag_h(l) \neq \emptyset$, then $\forall c' \in \mathfrak{T}$, $sy(hd(c')) \neq sy(l)$, and
- b) $\forall p \in ag_h(l), \exists c' \in \mathfrak{T}, s.t. \ sy(hd(c')) = p \in \mathcal{P}_{PI}.$

Atoms s.t. $ag_h(l) \neq \emptyset$ are external. The set of external atoms of an interpretable theory \mathfrak{T} is denoted by $ex(\mathfrak{T})$.

- · a -> atom of the form $p(T_1, T_m, t_1, t_n, ...)$
- $\cdot s_{v}(a) = p -> symbol of the atom$
- $\cdot ag_h(a) = \{T_1, ..., T_m\} \rightarrow HO$ -arguments
- $\cdot ag_f(a) = \{t_1, ..., t_n\} \rightarrow FO$ -arguments
- P -> countable set of predicate symbols (p, q, r, p₁, ...)

- · Clause positive literal -> head hd(c)
- Clause negated literals -> body bd(c)
- \cdot V_f -> countable set of FO variables (A, B, C, ...)
- \cdot V_h -> countable set of HO variables (*P, Q, R, ...*)

- · Generation phase $S_{PI}(\mathfrak{T}) = \{p_i \mid p_i \in ag_h(a) \land a \in ex(\mathfrak{T})\}$
 - pruning programs that contain external literals but lack clauses for their arguments

Example:

```
\mathtt{reverse}(A,B)\text{:-}\,\mathtt{empty}(C),\,\mathtt{fold}(p,C,A,B).\\ \mathtt{p}(A,B,C)\text{:-}\,\mathtt{head}(C,B),\,\mathtt{tail}(C,A).
```

```
\begin{aligned} \operatorname{half_{lst}}(A,B) &:\operatorname{reverse}(A,C), \\ &\operatorname{case_{list}}(p_{[\:]},p_{[H|T]},C,B). \\ \operatorname{p_{[\:]}}(A) &:\operatorname{empty}(A). \\ \operatorname{p_{[H|T]}}(A,B,C) &:\operatorname{empty}(B),\operatorname{empty}(C). \\ \operatorname{p_{[H|T]}}(A,B,C) &:\operatorname{front}(B,D)^4, \\ &\operatorname{case_{list}}(p_{[\:]},p_{[H|T]},D,E), \\ \operatorname{append}(E,A,C). \end{aligned}
```

$$\begin{split} & \texttt{issubtree}(A,B)\text{:-}\ A=B.\\ & \texttt{issubtree}(A,B)\text{:-}\ \texttt{children}(A,C), \texttt{any}(\texttt{cond},C,B).\\ & \texttt{cond}(A,B)\text{:-}\ \underline{\texttt{issubtree}(A,B)}. \end{split}$$

Definition 5 Let L be a library, and \mathfrak{T} an interpretable theory. \mathfrak{T} is L-compatible if $\forall l \in ex(\mathfrak{T}), \exists ! d \in L$. s.t. $hd(d)\sigma = l$ for some substitution σ . Let df(L, l) = d and $\theta(L, l) = \sigma$.

- provides the clause from the library that is compatible with the external literal
- provides the specific substitution required to match the external literal with the clause in the library

$$\begin{split} \mathtt{fold}(P,A,B,C)\text{:-}\,\mathtt{empty}(B),C &= A. \\ \mathtt{fold}(P,A,B,C)\text{:-}\,\mathtt{head}(B,H),\mathtt{P}(A,H,D), \\ \mathtt{tail}(B,T),\mathtt{fold}(P,D,T,C). \end{split}$$

Let
$$l = fold(p, C, A, B)$$
: $df(L, l) = fold(P, A, B, C)$ and $\theta(L, l) = \{P \mapsto p, A \mapsto C, B \mapsto A, C \mapsto B\}$.

- · Clause positive literal -> head hd(c)
- Clause negated literals -> body bd(c)

Atoms s.t. $ag_h(l) \neq \emptyset$ are external. The set of external atoms of an interpretable theory \mathfrak{T} is denoted by $ex(\mathfrak{T})$.

L-grounding

- When a definition takes more than one HO argument and arguments of instances partially overlap, duplicating clauses may be required during the construction of the L-grounding
- · Soundness of the pruning mechanism is preserved
 - FO literals uniquely depend on the arguments fed to HO definitions
- the pruning mechanism safely eliminates unnecessary clauses during the subsequent steps of theory evaluation and refinement

The system relies on the user to provide HO definitions (similar to MetagolHO)

• can also be in the form of templates, such as ho(P, Q, x, y):- P(Q, x, y)

$$\begin{split} \mathtt{fold}(P,A,B,C)\text{:-}\,\mathtt{empty}(B),C &= A. \\ \mathtt{fold}(P,A,B,C)\text{:-}\,\mathtt{head}(B,H),\mathtt{P}(A,H,D), \\ \mathtt{tail}(B,T),\mathtt{fold}(P,D,T,C). \end{split}$$

Let
$$l = fold(p, C, A, B)$$
: $df(L, l) = fold(P, A, B, C)$ and $\theta(L, l) = \{P \mapsto p, A \mapsto C, B \mapsto A, C \mapsto B\}$.

$$\mathtt{reverse}(A,B)$$
:- $\mathtt{empty}(C)$, $\mathtt{fold}(p,C,A,B)$. $\mathtt{p}(A,B,C)$:- $\mathtt{head}(C,B)$, $\mathtt{tail}(C,A)$.

Example 3 Using the library of Example 2 and a modified version of the program from Section 2.1 (p is replaced by fold_{p_a} for clarity purposes), we get the following L-grounding:

```
\begin{split} \operatorname{reverse}(A,B) &:\operatorname{-}\operatorname{empty}(C), \ \operatorname{fold}_a(C,A,B). \\ \operatorname{fold}_{p\_a}(A,B,C) &:\operatorname{-}\operatorname{head}(C,B), \ \operatorname{tail}(C,A). \\ \operatorname{fold}_a(A,B,C) &:\operatorname{-}\operatorname{fold}(\operatorname{fold}_{p\_a},A,B,C). \\ \operatorname{fold}(P,A,B,C) &:\operatorname{-}\operatorname{empty}(B), A = C. \\ \operatorname{fold}(P,A,B,C) &:\operatorname{-}\operatorname{head}(B,H), P(H,D), \\ \operatorname{tail}(B,T), \operatorname{fold}(P,D,T,C). \end{split}
```

 $fold_a(C, A, B)$ replaces $fold(fold_{p_a}, C, A, B)$. The first two clauses form the principal program.

Interpretable Theories and Constraints

Definition 6 (Θ -subsumption) An FO theory T_1 subsumes an FO theory T_2 , denoted by $T_1 \leq_{\theta} T_2$ iff, $\forall c_2 \in T_2 \exists c_1 \in T_1$ s.t. $c_1 \leq_{\theta} c_2$, where $c_1 \leq_{\theta} c_2$ iff, $\exists \theta$ s.t. $c_1 \theta \subseteq c_2$.

Proposition 1 if $T_1 \leq_{\theta} T_2$, then $T_1 \models T_2$

The pruning ability of *Popper*'s Generalization and specialization constraints follows from Proposition 1.

Definition 7 An FO theory T_1 is a generalization (specialization) of an FO theory T_2 iff $T_1 \leq_{\theta} T_2$ ($T_2 \leq_{\theta} T_1$).

Given a library L and a space of L-compatible theories, we can compare L-groundings using Θ -subsumption and prune generalizations (specializations), based on the **Test phase**.

Groundings and Elimination Constraints

- generate phase -> elimination constraints prune separable programs
 - · no head literal of a clause occurs as a body literal of a clause in the set
- · L-groundings are **non-separable** and do not require pruning
 - · Querying the ASP solver directly for L-groundings is **inefficient**
- query for the principal program, treating the definitions from the library as BK
 - · reintroduces the rest of the L-grounding during the "test" phase
- To efficiently implement HO synthesis, we introduce call graph constraints
 - · defines the relationship between HO literals and auxiliary clauses

Groundings and Elimination Constraints

Example 3 Using the library of Example 2 and a modified version of the program from Section 2.1 (p is replaced by $fold_{p_a}$ for clarity purposes), we get the following L-grounding:

$$\begin{split} \operatorname{reverse}(A,B) &:- \operatorname{empty}(C), \ \operatorname{fold}_a(C,A,B). \\ \operatorname{fold}_{p.a}(A,B,C) &:- \operatorname{head}(C,B), \ \operatorname{tail}(C,A). \\ \operatorname{fold}_a(A,B,C) &:- \operatorname{fold}(\operatorname{fold}_{p.a},A,B,C). \\ \operatorname{fold}(P,A,B,C) &:- \operatorname{empty}(B), A = C. \\ \operatorname{fold}(P,A,B,C) &:- \operatorname{head}(B,H), P(H,D), \\ \operatorname{tail}(B,T), \operatorname{fold}(P,D,T,C). \end{split}$$

 $fold_a(C, A, B)$ replaces $fold(fold_{p_a}, C, A, B)$. The first two clauses form the principal program.

$$\begin{split} \operatorname{fold}(P,A,B,C)\text{:-}&\operatorname{empty}(B),C \,=\, A.\\ \operatorname{fold}(P,A,B,C)\text{:-}&\operatorname{head}(B,H),\operatorname{P}(A,H,D),\\ &\operatorname{tail}(B,T),\operatorname{fold}(P,D,T,C). \end{split}$$

 $\mathtt{reverse}(A,B)$:- $\mathtt{empty}(C),\ \mathtt{fold}(C,A,B).$ $\mathtt{p}(A,B,C)$:- $\mathtt{head}(C,B),\ \mathtt{tail}(C,A).$

Negation, Generalization, and Specialization

$$E^{+}:f(b). \quad f(c). \qquad \mathbf{E}^{-}:f(a).$$

$$BK:\left\{\begin{array}{ll} p(a). & p(b). \\ q(a). & q(c). \end{array}\right\} \quad \mathbf{HO}:N(P,A):\neg P(A).$$

$$\underline{prog_{s}} \qquad \qquad \underline{prog_{f}}$$

$$f(A):-\operatorname{N}(p_{1},A). \\ \operatorname{p}_{1}(A):-\operatorname{p}(A), \operatorname{q}(A). \qquad \qquad \operatorname{f}(A):-\operatorname{N}(p_{1},A). \\ \operatorname{p}_{1}(A):-\operatorname{p}(A), \operatorname{q}(A). \qquad \qquad \operatorname{p}_{1}(A):-\operatorname{p}(A).$$

$$prog_f = \neg f(b) \land \neg f(a) \land f(c)$$

Negation, Generalization, and Specialization

$$E^+: f(a). \quad f(b).$$
 $E^-: f(c). \quad f(d).$ $BK: \{ p(d). \quad q(c). \}$ $HO: N(P, X): \neg P(X).$ $\underline{prog_s}$ $\underline{prog_f}$ $f(A): \neg N(p_1, A).$ $p_1(A): \neg p(A).$ $p_1(A): \neg q(A).$ $p_1(A): \neg q(A).$

$$prog_f = f(a) \wedge f(b) \wedge f(c)$$

Task	Popper (Opt)	#Literals	PI?	Hopper	Hopper (Opt)	#Literals	HO-Predicates	$Metagol_{ m HO}$	Metatypes?
	at the same of	Learning Pr	ograms	by learnin	g from Failures [0	Cropper and	Morel, 2021a]	2.73	
dropK	1.1s	7	no	0.5s	0.1s	4	iterate	no	no
allEven	0.2s	7	no	0.2s	0.1s	4	all	yes	no
findDup	0.25s	7	no		0.5s	10	caseList	no	yes
length	0.1s	7	no	0.2s	0.1s	5	fold	yes	no
member	0.1s	5	no	0.2s	0.1s	4	any	yes	no
sorted	65.0s	9	no	46.3s	0.4s	6	fold	yes	no
reverse	11.2s	8	no	7.7s	0.5s	6	fold	yes	no
		Learn	ing Hig	her-Order	Logic Programs [Cropper et a	l., 2020]		
dropLast	300.0s	10	no	300s	2.9s	6	map	yes	no
encryption	300.0s	12	no	300s	1.2s	7	map	yes	no
				A	dditional Tasks				
repeatN	5.0s	7	no	0.6s	0.1s	5	iterate	yes	no
rotateN	300.0s	10	no	300s	2.6s	6	iterate	yes	no
allSeqN	300.0s	25	yes	300s	5.0s	9	iterate, map	yes	no
dropLastK	300.0s	17	yes	300s	37.7s	11	map	no	no
firstHalf	300.0s	14	yes	300s	0.2s	9	iterateStep	yes	no
lastHalf	300.0s	12	no	300s	155.2s	12	caseList	no	yes
of1And2	300.0s	13	no	300s	6.9s	13	try	no	no
isPalindrome	300.0s	11	no	157s	2.4s	9	condlist	no	yes
depth	300.0s	14	yes	300s	10.1s	8	fold	yes	yes
isBranch	300.0s	17	yes	300s	25.9s	12	caseTree, any	no	yes
isSubTree	2.9s	11	yes	1.0s	0.9s	7	any	yes	yes
addN	300.0s	15	yes	300s	1.4s	9	map, caseInt	yes	no
mulFromSuc	300.0s	19	yes	300s	1.2s	7	iterate	yes	no

Table 1: We ran Popper, Hopper, Optimized Hopper, and Optimized Hopper

Conclusion

- Popper was extended to effectively incorporate HO definitions provided by the user during the learning process
- the optimized version of the extended system, **Hopper**, outperforms **Popper** on most tasks
- Hopper requires minimal guidance compared to MetagolHO
- · Although it is confirmed that Hopper can theoretically find the solution, the successful invention of an HO predicate during learning has not been achieved yet
 - Future work

Thank you for your time!

Seminar in Knowledge Representation and Reasoning – 184.712 – 2023S