Geometric Searching

- Orthogonal Range Searching
- Point Location

Types of Searching

Range searching

Report all the objects inside an axesparallel query rectangle.

Point location

Report a face of a straight planar graph that contains the specified query point.

Range Searching

Query: $(X_{min}, Y_{min}, X_{max}, Y_{max})$

Multidimensional Query to a Database

Employee

name

date of birth

salary

sex

Points Counting

Given a set S of n points on the plane, report **how many** of them are inside the specified orthogonal query rectangle P?

Query Types

Metrics

- Query time
- Memory usage

Multiple

- Query time
- Memory usage
- Preprocessing time

Points Counting: Multiple Query

Points Counting: Multiple Query

Locus Approach

Here, locus is a set of points with the same domination number: a rectangular domain.

Required domain search: $O(\log n)$.

In total:

- Query time: $O(\log n)$
- Memory usage: $O(n^2)$
- Preprocessing time: $O(n^2)$

Points Enumeration

Given a set S of n points on the plane, **report all the points** of S inside a specified orthogonal query rectangle P.

Lower bounds:

- $\Omega(n)$ (when all the points are inside P).
- $\Omega(k)$, where k is the number of enumerated points (output-sensitive lower bound).

Our goal is to minimize the number of actions beyond reporting the output points.

Enumeration: Regular Grid

- Consider m^2 identical cells.
- The average number of points in a cell:

$$M = \frac{n}{m^2}$$

• Search of cells that intersect *P*:

$$O(1)$$
 – constant!

- Query time: $O(k + m_P)$, where m_P is the number of intersected cells.
- Memory usage: $O(n + m^2)$
- Preprocessing time: $O(n + m^2)$

Regular Grid: Worst Cases

 m^2 cells to be checked event if **no point** is enumerated.

Inefficient memory usage if the points are distributed **non-regularly**.

Points Enumeration: the Quadtree

Quadtree: Analysis

- Max points in a cell is a parameter.
- Query time, in average: $O(\log_4 n)$
- Query time, the worst case: O(n)
- Memory usage: O(n)
- Preprocessing time: $O(n \log n)$

Quadtree: Analysis

- 1. The algorithm does not consider points **position**, only the **number** of points per domain.
- 2. O(n) query time in the worst case.
- 3. In the worst case $O(\sqrt{n})$ domains will be checked even if **no point is enumerated**.

Points Enumeration: 2-d-tree

2-d-tree: Analysis

- The algorithm considers not only the number of points per domain, but also their real position.
- Query time, the worst case : $O(\log n)$
- Memory usage: O(n)
- Preprocessing time: $O(n \log n)$

2-d-tree Properties

- All the points should be specified prior to the tree is created.
- Point removal makes the tree inconsistent.
- Instead of removal, points are marked (virtual removal) to be physically removed during periodical tree reconstruction.
- In the worst case $O(\sqrt{n})$ domains will be checked even if **no point is enumerated**.

Adaptive 2-d-tree

R-tree

Point Location

1-D Case

Consider linear intervals (segments) $[x_1, y_1], ..., [x_n, y_n]$ on a straight line which can overlap. Given a point z on the line, report intervals that contain z.

Interval Tree

Is z on the left of m?

on the left of *m*

Intervals entirely on the right of *m*

Query time $O(\log n + k)$, where k is the number of reported intervals.

- Find the **median** m of the endpoints of the intervals, takes O(n) of preprocessing.
- Put the intervals that do not contain m to the left and right child trees of the root, respectively.
- The root itself contains two lists of intervals that contain m:
 - 1. Sorted by the left endpoint.
 - 2. Sorted by the right endpoint.
- If z > m, then report the intervals from the list 2 whose right endpoints are on the right of z and consider recursively the right child. Consider similarly the case z < m.

Simple Polygon

Given a simple polygon P with n vertices and a point z, determine whether z is inside P.

Case 1: single query time is O(n).

Convex polygon

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

1. Preprocessing: divide P into sectors relative to an arbitrary internal point, takes O(n).

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

- **1. Preprocessing:** divide P into sectors relative to an arbitrary internal point, takes O(n).
- 2. Find in time $O(\log n)$ the sector containing z.

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

- 1. Preprocessing: divide P into sectors relative to an arbitrary internal point, takes O(n).
- 2. Find in time $O(\log n)$ the sector containing z.
- 3. Find in O(1) the position of z relative to the corresponding edge of the polygon.

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

1. If n = 3, determine whether z belongs to the triangle, takes O(1).

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

- 1. If n = 3, determine whether z belongs to the triangle, takes O(1).
- 2. If n > 3, determine at which side z is located regarding the line $(p_0, p_{\left|\frac{n}{2}\right|})$.

Given a convex polygon P with n vertices and a point z, determine whether z is inside P.

- 1. If n = 3, determine whether z belongs to the triangle, takes O(1).
- 2. If n > 3, determine at which side z is located regarding the line $(p_0, p_{\lfloor \frac{n}{2} \rfloor})$.
- 3. Recursively apply steps 1-3 to the corresponding part of *P*.

Query time: $O(\log n)$.

Point Location on a Plane Partition

Given planar straight line graph P with n vertices and a point z, find a facet of P that contains z.

Sweep Line Technique

The idea: move a straight line across the plane and analyze the objects this line intersects.

Sweep Line Technique

The idea: move a straight line across the plane and analyze the objects this line intersects.

Complexity

- 1. Query time: $O(\log n)$
- 2. Preprocessing:
 - Sorting the vertices by X: $O(n \log n)$.
 - Sorting the edges inside each strip: $O(n^2 \log n)$, but can be improved by the sweep line technique.

Sweep Line Technique

- 1. The sweeping line (SL) is moving discreetly passing through the event points.
- In an event point some event takes place that modifies the state of the SL. NO events happen between the event points.
- 3. Here: the *state* of the SL is the set of edges intersecting the SL sorted by their *Y*-coordinate.

- Insertion and deletion of edges: $O(n \log n)$.
- Storing edges in the strips: $O(n^2)$.

C++ Implementation

SL state is dynamic STL container providing insertion, deletion and searching in time $O(\log n)$.

```
typedef std::function<bool(int, int)> SegmentComparator;
typedef std::map<double, int, SegmentComparator> SweepLineStatus;
// Returns y-coordinate of the intersection point of the segment
// iseg and the SL with x-coordinate equal to xline.
double intersection_y(int iseg, double xline);
double xline; // x-coordinate of the SL
SweepLineStatus sw([&](int 1, int r)
        return intersection_y(l, xline) < intersection_y(r, xline);</pre>
```


Point Location (continued)

Triangulation refinement technique

Kirkpatrick (1983):

- Query time: $O(\log n)$
- Preprocessing time: $O(n \log n)$
- Memory usage: O(n).

- 1. Build a triangle that encompasses the initial triangulation.
- 2. Triangulate the area between this triangle and the initial triangulation.

- S_0 is the initial triangulation.
- Remove from S_i some set of non-adjacent vertices and the corresponding incident edges.
- Build a new triangulation S_{i+1} by triangulating empty areas coming out from these deletions.

- 4. Build an oriented graph:
 - The vertices correspond to the triangles of the triangulations.
- An arc (t_i, t_j) is created if the triangles t_i u t_j overlap, t_i has been removed from the previous triangulation, and t_j has been created while triangulating the empty areas.

Запрос:

```
PointLocation (z, T)

1 v \leftarrow root[T]

2 if z \notin t(v) then

3 return NIL

4 while c(v) \neq \emptyset do

5 for (no bcem) u \in c(v) do

6 if z \in t(u) then

7 v \leftarrow u

8 return v
```

Point location on a planar straight line graph can be performed in time $O(\log n)$ using O(n) memory and $O(n \log n)$ time for preprocessing.

Questions?