$\Delta^+ = -2\xi P^+$; $\tilde{F}^{\alpha\beta} \equiv \frac{1}{2}\epsilon^{\alpha\beta\gamma\delta}F_{\gamma\delta}$ is the dual gluon field strength. Throughout this paper we adopt the light-cone gauge $A^+ = 0$, so that the gauge link does not appear in the operators in definitions (2), (3).

The definition (2) differs from other definitions encountered in the literature (see [4]). For $0 \le x \le 1$:

$$H^{g}(x,\xi,t)|_{\text{here}} = H^{g}(x,\xi,t)|_{[3]} + H^{g}(-x,\xi,t)|_{[3]} = x \left(H^{g}(x,\xi,t)|_{[17]} - H^{g}(-x,\xi,t)|_{[17]}\right).$$

$$\tilde{H}^{g}(x,\xi,t)|_{\text{here}} = \tilde{H}^{g}(x,\xi,t)|_{[3]} - \tilde{H}^{g}(-x,\xi,t)|_{[3]} = x \left(\tilde{H}^{g}(x,\xi,t)|_{[17]} + \tilde{H}^{g}(-x,\xi,t)|_{[17]}\right).$$

The same relations hold for E^g and \tilde{E}^g respectively.

As the gluon itself is its own antiparticle gluon GPDs $H^g(x, \xi, t)$, $E^g(x, \xi, t)$ defined in (2) are even functions of x:

$$H^{g}(x,\xi,t) = H^{g}(-x,\xi,t); \quad E^{g}(x,\xi,t) = E^{g}(-x,\xi,t).$$
 (4)

Gluon GPDs $\tilde{H}^g(x,\xi,t)$, $\tilde{E}^g(x,\xi,t)$ defined in (3) are odd functions of x:

$$\tilde{H}^{g}(x,\xi,t) = -\tilde{H}^{g}(-x,\xi,t); \quad \tilde{E}^{g}(x,\xi,t) = -\tilde{E}^{g}(-x,\xi,t).$$
 (5)

Let us stress that in what follows we consider the gluon GPDs in nucleon (2), (3) on the interval $0 \le x \le 1$.

In the froward limit gluon GPDs H^g and \tilde{H}^g reduce to usual forward gluon distributions in the nucleon g(x) and $\Delta g(x)$, while GPD E^g and \tilde{E}^g are reduced to unknown gluon distributions, which we denote as $e^g(x)$ and $\Delta e^g(x)$:

$$H^{g}(x,0,0) = xg(x); \quad E^{g}(x,0,0) = xe^{g}(x);$$

 $\tilde{H}^{g}(x,0,0) = x\Delta g(x); \quad \tilde{E}^{g}(x,0,0) = x\Delta e^{g}(x).$ (6)

Note that the forward gluon distributions g(x), $\Delta g(x)$ and $e^g(x)$, $\Delta e^g(x)$ are continued to the negative value of their argument according to:

$$g(x) = -g(-x);$$
 $e^g(x) = -e^g(-x);$ $\Delta g(x) = \Delta g(-x);$ $\Delta e^g(x) = \Delta e^g(-x).$ (7)