Scilab Textbook Companion for Elements of Power System by J. B. Gupta¹

Created by
Haseen Ahmed
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Vinesh Saini
Cross-Checked by
Chaitanya Potti

July 13, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements of Power System

Author: J. B. Gupta

Publisher: S. K. Kataria & Sons

Edition: 1

Year: 2011

ISBN: 978-93-5014-043-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Power System Components	5
2	Supply System	8
3	Transmission Lines	13
4	Inductance and Capacitance of Transmission Lines	20
5	Representation and Performance of short and medium Transmission Lines	40
6	Representation and Performance of long Transmission Lines	67
7	Corona	74
8	Electrostatic and Electromagnetic Interference with Communication Lines	83
9	Overhead Line Insulators	86
10	Mechanical Design of Transmission Lines	96
11	Insulated Cables	109
12	Neutral Grounding	124

List of Scilab Codes

Exa 1.1	Base Impedence
Exa 1.2	Per unit resistance
Exa 1.3	Leakage Reactance per unit 6
Exa 1.4	Per unit impedence
Exa 1.5	Per unit Reactance
Exa 2.1	Saving in feeder
Exa 2.2	Compare amount of material
Exa 2.3	Percentage additional load
Exa 2.4	Find extra power
Exa 2.5	Percentage additional load
Exa 2.6	Weight of copper required
Exa 3.1	Weight of material required
Exa 3.2	Most Economical Cross section Area
Exa 3.3	Best Current Density
Exa 3.4	Economical current density and diameter 16
Exa 3.5	Most economical current density
Exa 3.6	Most Economical current density
Exa 3.7	Most economical size
Exa 4.1	Loop inductance and reactance
Exa 4.2	Calculate Inductance
Exa 4.3	Calculate Loop inductance
Exa 4.4	Calculate GMR
Exa 4.5	Determine total inductance
Exa 4.6	Determine total inductance
Exa 4.7	Inductance per km
Exa 4.8	Inductance per km
Exa 4.9	Inductance per km
Exa 4.10	Spacing between adjacent conductors

Exa 4.11	Inductance per phase per km
Exa 4.12	Inductance per phase per km
Exa 4.13	GMD GMR and Overall Inductance
Exa 4.14	Inductance per km
Exa 4.15	Find inductive reactance
Exa 4.16	Find out Capacitance
Exa 4.17	Calculate Capacitance
Exa 4.18	Capacitance per conductor per km
Exa 4.19	Capacitance and Charging current
Exa 4.20	Capacitance to neutral and charging per km 33
Exa 4.21	Capacitance to neutral and charging current 34
Exa 4.22	Capacitance per phase
Exa 4.23	Capacitance and charging current
Exa 4.24	Inductive and Capacitive reactances
Exa 4.25	Capacitance per km
Exa 4.26	Determine the capacitance
Exa 5.1	Voltage Regulation and Efficiency
Exa 5.2	Voltage Regulation and Efficiency 41
Exa 5.3	Sending end Voltage and Regulation 41
Exa 5.4	Voltage PF Efficiency and Regulation 42
Exa 5.5	Resistance and Inductance of line
Exa 5.6	Voltage and Efficiency of Transmission
Exa 5.7	Power output and Power factor 45
Exa 5.8	Current Voltage Regulation Efficiency 46
Exa 5.9	Voltage Efficiency Regulation
Exa 5.10	Voltage Regulation Current Efficiency 48
Exa 5.11	Voltage Current PF
Exa 5.12	Sending End Voltage
Exa 5.13	Voltage Current and PF
Exa 5.14	Sending End Voltage
Exa 5.15	Voltage Efficiency and PF
Exa 5.16	Voltage at mid point
Exa 5.17	kVA supplied and Power supplied
Exa 5.18	Rise in Voltage
Exa 5.19	Find A B C D parameters
Exa 5.20	ABCD constant Voltage and Efficiency
Exa 5.21	Voltage Current Power and efficiency
Exa 5.22	ABCD constant power and voltage 60

Exa 5.23	Voltage current power and egulation 62
Exa 5.24	Sending end voltage and current
Exa 5.25	ABCD constant and power factor 64
Exa 6.1	Determine Auxiliary constant
Exa 6.2	Sending end voltage and current
Exa 6.3	A0 B0 C0 and D0 constant
Exa 6.4	A0 B0 C0 and D0 constant
Exa 6.5	A0 B0 C0 and D0 constant
Exa 6.6	Equivalent T and Pi network
Exa 7.1	Line Voltage
Exa 7.2	Disruptive Critical Voltage
Exa 7.3	Spacing between Conductors
Exa 7.4	Minimum diameter of conductor
Exa 7.5	Presence of Corona
Exa 7.6	Critical Disruptive Voltage
Exa 7.7	Corona Loss
Exa 7.8	Disruptive voltage and corona loss
Exa 7.9	Corona Characteristics
Exa 8.1	Voltage induced per km
Exa 8.2	Induced Voltage at fundamental frequency 84
Exa 9.1	String Efficiency
Exa 9.2	Voltage Distribution and String efficiency 87
Exa 9.3	String Efficiency
Exa 9.4	Voltage Distribution and String Efficiency 89
Exa 9.5	Maximum Voltage
Exa 9.6	String Efficiency
Exa 9.7	Maximum line voltage
Exa 9.8	Voltage between conductors and string efficiency 91
Exa 9.9	Capacitance of remaining five units
Exa 9.10	Line to pin capacitance
Exa 9.11	String efficiency
Exa 9.12	Line voltage and capacitance required 94
Exa 10.1	Maximum sag
Exa 10.2	Height above ground
Exa 10.3	Horizontal component of tension and maximum sag 97
Exa 10.4	Calculate maximum sag
Exa 10.5	Calculate the sag
Exa. 10.6	Calculate the maximum sag 99

Exa 10.7	Calculate the maximum sag 100
Exa 10.8	Calculate the maximum sag
Exa 10.9	Sag in inclined and vertical direction
Exa 10.10	Lowest point of catenary curve
Exa 10.11	Sag at lower support
Exa 10.12	Determine the vertical sag
Exa 10.13	Find the clearance
Exa 10.14	Stringing Tension in the conductor
Exa 10.15	Find the clearance
Exa 10.16	sag and tension
Exa 11.1	Insulation Resistance
Exa 11.2	Insulation Resistance
Exa 11.3	Calculate the Resistivity
Exa 11.4	Find Charging current
Exa 11.5	Maximum Stress and Charging KVAR
Exa 11.6	Determine D and d
Exa 11.7	Most Economical value of diameter
Exa 11.8	Maximum safe working voltage
Exa 11.9	Thickness and working voltage
Exa 11.10	Working Voltage
Exa 11.11	Calculate Potential gradient
Exa 11.12	Determine the maximum stress
Exa 11.13	Minimum Internal Diameter
Exa 11.14	Diameter of intersheath
Exa 11.15	Maximum stress and voltage
Exa 11.16	capacitance and charging current
Exa 11.17	Calculate the KVA taken
Exa 11.18	Find the capacitance
Exa 11.19	Maximum Stress and total Charging KVAR 123
Exa 11.20	Capacitance Charging Current Loss Resistance 122
Exa 11.21	Loss angle and No load current
Exa 12.1	Reactance of coil
Exa 12.2	Inductance and kVA rating

Chapter 1

Power System Components

Scilab code Exa 1.1 Base Impedence

Base Impedence

```
1 //Exa 1.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 BaseVoltage=1100; //in Volts
7 BasekVA=10^6; //kVA
8 BasekV=BaseVoltage/1000; //kV
9 IB=BasekVA/BasekV; //in Ampere
10 ZB=BasekV*1000/IB; //in ohm
11 disp(ZB, "Base Impedence (in ohm) :");
```

Scilab code Exa 1.2 Per unit resistance

Per unit resistance

```
1 //Exa 1.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 R=5; //in ohm
7 kVA_B=10; //kVA
8 kV_B=11; //kV
9 RB=kV_B^2*1000/kVA_B; //in ohm
10 Rpu=R/RB; //in ohm
11 disp(Rpu, "Per unit resistance (pu) :");
```

Scilab code Exa 1.3 Leakage Reactance per unit

Leakage Reactance per unit

```
1 //Exa 1.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 kVA_B=2.5; //kVA
7 kV_B=0.4; //kV
8 reactance=0.96; //in ohm
9 Z_BLV=kV_B^2*1000/kVA_B; //in ohm
10 Zpu=reactance/Z_BLV; //in ohm
11 disp(Zpu, "Leakage reactance Per unit (pu) :");
```

Scilab code Exa 1.4 Per unit impedence

Per unit impedence

```
1 //Exa 1.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 Z=30+%i*110; //in ohm
8 kVA_B=100*1000; //kVA
9 kV_B=132; //kV
10 Z_BLV=kV_B^2*1000/kVA_B; //in ohm
11 Zpu=Z*kVA_B/kV_B^2/1000; //pu
12 disp(Zpu, "Leakage reactance Per unit (pu) :");
```

Scilab code Exa 1.5 Per unit Reactance

Per unit Reactance

```
1  //Exa 1.5
2  clc;
3  clear;
4  close;
5  format('v',6);
6  //Given data :
7  oldkVA_B=30000; //kVA
8  oldkV_B=11; //kV
9  oldZpu=0.2; //pu
10  newkVA_B=50000; //kVA
11  newkV_B=33; //kV
12  newZpu=oldZpu*newkVA_B/oldkVA_B*(oldkV_B/newkV_B)^2; //pu
13  disp(newZpu,"New Per unit impedence(pu) :");
```

Chapter 2

Supply System

Scilab code Exa 2.1 Saving in feeder

Saving in feeder

```
1 //Exa 2.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 VL1=220; // Volts
7 VL2=400; // Volts
8 disp("We know, W=I^2*2*R=(P/VL)^2*2*rho*l/a");
9 disp("a=(P/VL)^2*2*rho*l/(I^2*2*R)");
10 disp("v=2*(P/VL)^2*2*rho*l/(II^2*2)*l");
11 saving=(2/(VL1)^2-2/(VL2)^2)/(2/(VL1)^2)*100; //%
12 disp(saving,"% saving in copper : ");
```

Scilab code Exa 2.2 Compare amount of material

Compare amount of material

```
1 / Exa 2.2
2 clc;
3 clear;
4 close;
6 disp("Two wire dc system : ");
7 disp("I1=P/V \& W=2*I1^2*R1=2*P^2*rho*l/V^2/a1");
8 disp ("Therefore, Volume required, v1 is 2*a1*l=4*P
      ^{2} * rho * l^{2}/V^{2}/W');
9 disp("Three phase four wire system: ");
10 disp("I2=P/3/Vas Power by each phase is P/3 \& W=3*I1
      ^2*R2=P^2*rho*1/3/V^2/a2");
11 disp("Therefore, Volume required, v2 is 3.5*a2*1
     =3.5*P^2*rho*l^2/3/V^2/W');
12 v2BYv1=3.5/3/4;//
13 disp("For 3-phase four wire system material required
      is "+string(v2BYv1)+" times the material
     required in two wire system.");
```

Scilab code Exa 2.3 Percentage additional load

Percentage additional load

```
1 //Exa 2.3
2 clc;
3 clear;
4 close;
5
6 disp("For single phase ac system, P1=V*I1*cosd(fi)
        watts & W1=2*I1^2*R watts");
7 disp("Line losses=W1/P1*100=2*I1^2*R*100/V/I1/cosd(fi)");
8 disp("For three phase ac system, P2=sqrt(3)*V*I2*
        cosd(fi) watts & W2=3*I2^2*R watts");
```

Scilab code Exa 2.4 Find extra power

Find extra power

```
1 / Exa 2.4
2 clc;
3 clear;
4 close;
6 disp("For three wire dc system, line current I1=(VS-
     VL)/R \& P1=2*VL*I1=2*VL*(VS-VL)/R");
7 disp("For four wire three phase ac system, line
      current I2 = (VS-VL)/R \& P2 = 3*VL*I2*pf = 3*VL*(VS-VL)
      /R");
8 //P2=3/2*2*VL*(VS-VL)/R///It implies that P2=3/2*P1
9 P1=poly(0,'P1');
10 P2=3/2*P1;
11 Diff=P2-P1;
12 Percent_Diff=coeff(numer(Diff/P1*100)); //\%
13 disp(Percent_Diff,"Extra power that can be supplied
     in %");
```

Scilab code Exa 2.5 Percentage additional load

Percentage additional load

```
1 / Exa 2.5
2 clc;
3 clear;
4 close;
6 pf=0.9;//power factor
7 disp("Three wire dc system : ");
8 disp("P1=2*I1*V & \%P1loss=2*I1^2*R/(2*I1*V)*100=100*
      I1*R/V");
9 disp("Three phase 4-wire ac system : ");
10 disp("P2=3*I1^2*V*pf & %P2loss=3*I2^2*R/(3*I2*V*pf)
      *100=100*I12*R/pf/V");
11 //on equating P1loss=P2loss;
12 I2BYI1=100*pf/100; // ratio
13 / P2 = 3*I2*V*pf
14 P2BYI1V=3*pf*I2BYI1;
15 P2BYP1=P2BYI1V/2;
16 // \text{LoadIncrease} = (P2-P1)*100/P1;
17 LoadIncrease=(P2BYP1-1)*100; //\%
18 disp(LoadIncrease, "% Additional load: ");
```

Scilab code Exa 2.6 Weight of copper required

Weight of copper required

```
1 //Exa 2.6
2 clc;
```

```
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 Pin=100; /MW
8 \text{ VL} = 380; //\text{kV}
9 d=100; /km
10 R=0.045; //ohm/cm^2/km
11 w=0.01; //kg/cm^3
12 Eta=90; // efficiency %
13 \cos fi = 1;
14 IL=Pin*10^6/sqrt(3)/VL/10^3/cosfi;//Ampere
15 W=Pin*(1-Eta/100); /MW
16 LineLoss=W*10^6/3; // Watts/conductor
17 R1=LineLoss/IL^2; //in ohm
18 R2=R1/d;//resistance per conductor per km
19 a=R/R2; //in cm^2
20 volume=a*d*1000; //\text{cm}^3 per km run
21 weight=w*volume; //kg per km run
22 w3=3*d*weight; //kg(weight of copper required for 3
      conductors for 100 km)
23 disp(w3," Weight of copper required for 3 conductors
      of 100 km length (in kg): ");
24 //Answer in the book is not accurate.
```

Chapter 3

Transmission Lines

Scilab code Exa 3.1 Weight of material required

Weight of material required

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 P=30*10^6; /W
7 pf=0.8; //lagging power factor
8 VL = 132 * 1000; //V
9 1=120*1000; //m
10 Eta=90/100; // Efficiency
11 rho_Cu=1.78*10^-8;//ohm-m
12 D_Cu=8.9*10^3; // kg/m^3
13 rho_A1 = 2.6*10^-8; //ohm-m
14 D_Al=2*10^3; // kg/m^3
15 IL=P/(sqrt(3)*VL*pf);//A
16 / W=3*IL^2*rho*l/a=(1-Eta)*P
17 a_Cu = (3*IL^2*rho_Cu*1)/(1-Eta)/P;//m^2
18 V_Cu = 3*a_Cu*1; //m^3
19 Wt_Cu=V_Cu*D_Cu; //kg
```

```
disp(Wt_Cu,"Weight of copper required(kg)");
a_Al=(3*IL^2*rho_Al*1)/(1-Eta)/P;//m^2
V_Al=3*a_Al*1;//m^3
Wt_Al=V_Al*D_Al;//kg
disp(Wt_Al,"Weight of Alluminium required(kg)");
// Answer in the textbook is not accurate.
```

Scilab code Exa 3.2 Most Economical Cross section Area

Most Economical Cross section Area

```
1 / Exa 3.2
2 clc;
3 clear;
4 close;
5 //Given data:
6 a=poly(0, 'a');
7 cost = 90*a + 20; //Rs./m
8 i=10; //\% (interest and depreciation)
9 1=2; //km
10 cost_E=4; //paise/unit
11 Im=250; //A
12 a=1; //cm^2
13 rho_c = 0.173; //ohm/km/cm^2
14 12=1*1000; //km
15 R=rho_c*1/a;//ohm
16 W = 2 * Im^2 * R; //W
17 Eloss=W/1000*365*24/2;//per annum(kWh)
18 P3BYa = cost_E/100*Eloss; //Rs
19 Cc=90*a*1*1000; //Rs(capital cost of feeder cable)
20 P2a=Cc*i/100; //Rs
21 //P2a=P3BYa;//For most economical cross section
22 a=sqrt(P3BYa*a/(P2a/a)); //cm^2
23 disp(a," Most economical cross sectional area in cm^2
       : ");
```

Scilab code Exa 3.3 Best Current Density

Best Current Density

```
1 / Exa 3.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 t = 2600; //hour
7 Con_Cost=3; //Rs/kg(conductor cost)
8 R=1.78*10^-8; //ohm-m
9 D=6200; // \text{kg/m}^3
10 E_Cost = 10/100; //Rs/unit (energy cost)
11 i=12; //\% (interest and depreciation)
                            ///cross sectional area
12 a=poly(0, 'a');//mm^2
13 W=a*1000*D/1000/1000; //kg/km(Weight of conductor of
      1km length)
14 cost=Con_Cost*W; //Rs./km(cost of conductor of 1km
      length)
15 In_Dep=cost*i/100; //Rs(Annual interest and
      depreciation per conductor per km)
16 In_DepBYa=In_Dep/a;
17 I = poly(0, 'I'); //A
18 E_lost_aBY_Isqr=R*1000/10^-6*t/1000; //Energy lost/
     annum/km/conductor
19 E_lost_cost_aBY_Isqr=E_Cost*E_lost_aBY_Isqr; //Rs/
     annum
  //In_Dep=E_lost_cost;//For most economical cross
      section
21 IBYa=sqrt(coeff(numer(In_DepBYa)/numer(
      E_lost_cost_aBY_Isqr)));//cm^2
22 disp(IBYa, "Best current density in A/mm^2:");
23 //Answer in the textbook is not accurate.
```

Scilab code Exa 3.4 Economical current density and diameter

Economical current density and diameter

```
1 / Exa 3.4
2 clc;
3 clear;
4 close;
5 //Given data:
6 V = 11; //kV
7 P = 1500; / kW
8 pf=0.8; //lagging power factor
9 t=300*8; //hours
10 a=poly(0, 'a');//cross section area
11 Cc = 8000 + 20000 * a / / Rs / km
12 R=0.173/a; //ohm/km
13 E_lost_cost = 2/100; //Rs/unit
14 i=12; //\% (interest and depreciation)
15 Cc_var = 20000*a//Rs/km(variable cost)
16 P2a=Cc_var*i/100; //Rs/km
17 P2=P2a/a;
18 I=P/sqrt(3)/V/pf;//A
19 W = 3 * I^2 * R; //W
20 E_{loss=W/1000*t;/kWh}
21 P3BYa=E_lost_cost*E_loss;//Rs
22 //P2a=P3BYa;//For most economical cross section
23 a=sqrt(coeff((numer(P3BYa))/coeff(numer(P2))));//cm
24 d = sqrt (4*a/\%pi); //cm
25 del=I/a; //A/cm^2
26 disp(d,"Diameter of conductor in cm:");
27 disp(del," Most economical current density in A/cm<sup>2</sup>
      : ");
```

Scilab code Exa 3.5 Most economical current density

Most economical current density

```
1 / Exa 3.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 = poly(0, 'a'); // cross section area
7 I=poly(0, 'I');//Current
8 Cc = 500 + 2000 * a / / Rs / km
9 i=12; //\% (interest and depreciation)
10 E_lost_cost=5/100; //Rs/kWh
11 rho = 1.78 * 10^{-8}; //ohm-cm
12 load_factor=0.12;
13 Cc_var = 2000*a//Rs/km(variable cost)
14 P2a=Cc_var*i/100; //Rs/km
15 P2=P2a/a;
16 R_into_a=rho*1000/(10^-4);//ohm
17 W_into_a=I^2*R_into_a;//W
18 E_loss_into_a=W_into_a*load_factor/1000*8760;/kWh
19 P3BYIsqr=E_lost_cost*E_loss_into_a/I^2; //Rs
20 //P2a=P3BYa;//For most economical cross section
21 IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))))
      ; //cm^2
22 disp(IBYa," Most economical current density in A/cm<sup>2</sup>
       : ");
```

Scilab code Exa 3.6 Most Economical current density

Most Economical current density

```
1 / Exa 3.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=poly(0, 'A');//cross section area
7 I=poly(0, 'I');//Current
8 Cc = 500 + 2000 * A / / Rs / km
9 load_factor=0.12;
10 i=12; //\%(depreciation)
11 E_lost_cost=0.05; //Rs/kWh
12 R=0.17/A; //ohm/km
13
14 Cc_var = 2000*A//Rs/km(variable cost)
15 P2A=Cc_var*i/100; //Rs/km
16 P2=P2A/A;
17 R_{into_A=R*A}; //ohm
18 W_into_A_BY_Isqr=R_into_A; //W
19 E_loss_into_A_BY_Isqr=W_into_A_BY_Isqr*load_factor
      /1000*8760; //kWh
20 P3BYIsqr=E_lost_cost*E_loss_into_A_BY_Isqr; //Rs
21 //P2a=P3BYa;//For most economical cross section
22 IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))))
      \frac{1}{2}
23 disp(IBYa," Most economical current density in A/cm<sup>2</sup>
      : ");
24 //Answer in the textbook is wrong.
```

Scilab code Exa 3.7 Most economical size

Most economical size

```
1 //Exa 3.7
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 P1=1000; //kW
7 pf1=0.8;//
8 t1=10; //hours
9 P2=500; /kW
10 pf2=0.9; //
11 t2=8; //hours
12 P3=100; /kW
13 pf3=1;//
14 t3=6; //hours
15 a=poly(0, 'a');//cross section area
16 I=poly(0, 'I');//Current
17 L=poly(0, L'); //length in km
18 CcBYL = (8000*a+1500) / Rs/km(variable cost)
19 i=10; //\%(depreciation)
20 E_lost_cost=80/100; //Rs/kWh
21 rho=1.72*10^-6; //ohm-cm
22 Cc_varBYL=8000*a*i/100//Rs/km(variable cost)
23 I1=P1*1000/sqrt(3)/10000/pf1;//A
24 I2=P2*1000/sqrt(3)/10000/pf2;//A
25 I3=P3*1000/sqrt(3)/10000/pf3;//A
26 R_into_a_BY_L=rho*1000*100; //ohm
27 W_into_A_BY_Isqr=R_into_a_BY_L;//W
28 E_loss_into_A_BY_L=3*R_into_a_BY_L*[I1^2*t1+I2^2*t2+
      I3^2*t3]*365/1000;//kWh
29 E_loss_cost_into_A_BY_L=E_loss_into_A_BY_L*
      E_lost_cost; //Rs
30 //Cc_var=E_loss_cost;//For most economical cross
      section
31 a=sqrt(coeff((numer(E_loss_cost_into_A_BY_L))/coeff(
     numer(Cc_varBYL/a)));//cm^2
32 disp(a," Most economical cross sectional area in cm<sup>2</sup>
      : ");
```

Chapter 4

Inductance and Capacitance of Transmission Lines

Scilab code Exa 4.1 Loop inductance and reactance

Loop inductance and reactance

```
1 //Exa 4.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50; //Hz
7 d=1*100; //cm
8 r=1.25/2; //cm
9 r_dash=r*0.7788; //cm
10 L=0.4*log(d/r_dash); //mH
11 disp(L,"Loop inductance per km(mH)");
12 XL=2*%pi*f*L*10^-3; //ohm/Km
13 disp(XL,"Reactance of transmission line(ohm/km)");
```

Scilab code Exa 4.2 Calculate Inductance

Calculate Inductance

```
1 //Exa 4.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50;//Hz
7 a=10;//cm^2
8 l=500/1000;//km
9 r=sqrt(a/%pi);//cm
10 d=5*100;//cm
11 r_dash=r*0.7788;//cm
12 L=0.4*log(d/r_dash)*l;//mH
13 disp(L,"Loop inductance per km(mH)");
```

Scilab code Exa 4.3 Calculate Loop inductance

Calculate Loop inductance

```
1 //Exa 4.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1/2; //cm
7 d=1*100; //cm
8 mu=50; // relative permeability
9 r_dash=r*0.7788; //cm
10 L_cu=.1+0.4*log(d/r); //mH
11 disp(L_cu, "Loop inductance per km of copper conductor line(mH)");
12 L_steel=(mu+4*log(d/r))*10^-7*10^3; //mH
```

Scilab code Exa 4.4 Calculate GMR

Calculate GMR

```
1 // Exa 4.4
 2 clc;
3 clear;
4 close;
5 //Given data :
 6 \text{ r=3;} / \text{mm}
 7 d11=r;/mm
8 d12=2*r; //mm
9 d34=2*r; /mm
10 d16=2*r; //mm
11 d17 = 2 * r; //mm
12 d14=4*r; //mm
13 d13 = sqrt(d14^2 - d34^2); //mm
14 d15 = d13; //mm
15 Ds1=(0.7788*d11*d12*d13*d14*d15*d16*d17)^(1/7);/mm
16 Ds2=Ds1; /mm
17 Ds3=Ds1; //mm
18 Ds4=Ds1; //mm
19 Ds5=Ds1; /mm
20 Ds6=Ds1; /mm
21 Ds7=(2*r*0.7788*d11*d12*d13*2*r*2*r)^{(1/7)}; /mm
22 \text{ Ds} = (\text{Ds}1*\text{Ds}2*\text{Ds}3*\text{Ds}4*\text{Ds}5*\text{Ds}6*\text{Ds}7)^(1/7); //\text{mm}
23 disp(Ds, "Geometric mean radius (mm)");
24 //Answer in the book is wrong
```

Scilab code Exa 4.5 Determine total inductance

Determine total inductance

```
1 / Exa 4.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1.2; //cm
7 rdash=0.7788*r; //cm
8 d12=0.12*100; //cm
9 d11dash = (0.2+1.2)*100; //cm
10 d22dash=(0.2+1.2)*100;/cm
11 d12dash = (0.2+1.2+0.2)*100; //cm
12 d21dash = (1.2) *100; //cm
13 Dm = (d11dash*d12dash*d21dash*d22dash)^(1/4); //cm
14 d11=0.93456; //cm
15 d22=0.93456; /cm
16 d12=20; /cm
17 d21=20; /cm
18 Ds=(d11*d12*d21*d22)^(1/4);/cm
19 L=0.4*\log(Dm/Ds); //mH/km
20 disp(L, "Loop inductance of line(mH/km)");
```

Scilab code Exa 4.6 Determine total inductance

Determine total inductance

```
1 //Exa 4.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=2/2;//cm
7 rdash=0.7788*r;//cm
```

```
8 d12=0.12*100; //cm
9 d11dash=300; //cm
10 d12dash=sqrt (300^2+100^2); //cm
11 d21dash=d12dash; //cm
12 d22dash=d11dash; //cm
13 d11=rdash; //cm
14 d22=rdash; //cm
15 d12=100; //cm
16 d21=100; //cm
17 Dm=(d11dash*d12dash*d21dash*d22dash)^(1/4); //cm
18 Ds=(d11*d12*d21*d22)^(1/4); //cm
19 L=0.4*log(Dm/Ds); //mH/km
20 disp(L,"Loop inductance of line(mH/km)");
```

Scilab code Exa 4.7 Inductance per km

Inductance per km

```
1 //Exa 4.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1.24/2; //cm
7 rdash=0.7788*r; //cm
8 d=2*100; //cm
9 L=0.2*log(d/rdash); //mH
10 disp(L,"Inductance per phase per km(mH)");
```

Scilab code Exa 4.8 Inductance per km

Inductance per km

```
1 //Exa 4.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=(20/2)/10;//cm
7 d1=4*100;//cm
8 d2=5*100;//cm
9 d3=6*100;//cm
10 rdash=0.7788*r;//cm
11 L=0.2*log((d1*d2*d3)^(1/3)/rdash);//mH
12 disp(L,"Inductance per phase(mH)");
```

Scilab code Exa 4.9 Inductance per km

Inductance per km

```
1 / Exa 4.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 r = 4/2; /cm
7 rdash=0.7788*r; //cm
8 d=300; //cm
9 d3=6*100; //cm
10 LA=0.2*[\log(d/rdash)+1/2*\log(2)-\%i*0.866*\log(2)];//
11 disp(LA, "Inductance per km of phase1 (mH)");
12 LB=0.2*\log(d/rdash); //mH
13 disp(LB, "Inductance per km of phase2(mH)");
14 LC=0.2*[\log(d/rdash)+1/2*\log(2)+\%i*0.866*\log(2)];//
     mH
15 disp(LC, "Inductance per km of phase3(mH)");
```

Scilab code Exa 4.10 Spacing between adjacent conductors Spacing between adjacent conductors

```
1 //Exa 4.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1.2/2*10; //mm
7 rdash=0.7788*r; //mm
8 d=3.5*1000; //mm
9 L=2*10^-7*log(d/rdash); //H/m
10 Lav=1/3*(L+L+L); //H/m
11 d=rdash*exp(Lav/(2*10^-7)-1/3*log(2)); //mm
12 disp(d/1000, "Spacing between adjacent conductors(m)");
```

Scilab code Exa 4.11 Inductance per phase per km

Inductance per phase per km

```
1 //Exa 4.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=20; //mm
7 rdash=0.7788*r; //mm
8 d=7*1000; //mm
9 L=10^-7*log(sqrt(3)/2*d/rdash); //H/m
10 disp(L*10^3/10^-3, "Spacing between adjacent conductors(mH)");
```

Scilab code Exa 4.12 Inductance per phase per km

Inductance per phase per km

```
1 //Exa 4.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ r=0.9; } / \text{cm}
7 rdash=0.7788*r*10^-2; //m
8 daa_dash=sqrt(6^2+6^2); //m
9 dbb_dash=7;/m
10 dcc_dash=daa_dash; //m
11 daa=rdash; //m
12 d_adash_adash=rdash; //m
13 d_adash_a=daa_dash; //m
14 Dsa=(daa*daa_dash*d_adash_adash*d_adash_a)^(1/4); //m
15 Dsb=(daa*7)^(1/2);//m
16 Dsc=(daa*daa_dash)^(1/2);/m
17 Ds = (Dsa*Dsb*Dsc)^{(1/3)}; //m
18 dab=sqrt(3^2+0.5^2);//m
19 dab_dash = sqrt(3^2+6.5^2); //m
20 d_adash_b = sqrt(3^2+6.5^2); //m
21 d_adash_bdash=sqrt(3^2+0.5^2);//m
22 Dab=(dab*dab_dash*d_adash_b*d_adash_bdash)^(1/4); /m
23 Dbc=((dab*dab_dash)^2)^(1/4);/m
24 Dca=((6*6)^2)^(1/4);/m
25 Dm = (Dab*Dbc*Dca)^(1/3); //m
26 L=0.2*\log(Dm/Ds); //mH/km
27 disp(L, "Inductance per phase(mH/km)");
```

Scilab code Exa 4.13 GMD GMR and Overall Inductance

GMD GMR and Overall Inductance

```
1 / Exa 4.13
2 clc;
3 clear;
4 close;
5 format('v',5)
6 //Given data :
7 r = 5/2; /mm
8 rdash=2.176*r*10^-3; //m
9 daa_dash=sqrt(6^2+16^2);//m
10 dbb_dash=6;/m
11 dcc_dash=daa_dash; //m
12 dab=8; //m
13 dab_dash = sqrt(6^2 + 8^2); //m
14 dbc=8; //m
15 dbc_dash = sqrt(6^2+8^2); //m
16 \, dca=16; //m
17 dca_dash=6; //m
18 Dsa=sqrt(rdash*daa_dash);//m
19 Dsb=sqrt(rdash*dbb_dash);//m
20 Dsc=sqrt(rdash*dcc_dash);/m
21 Ds = (Dsa*Dsb*Dsc)^{(1/3)}; //m
22 disp(Ds, "GMD(m) : ");
23 Dab=(dab*dab_dash)(1/2); //m
24 Dbc=(dbc*dbc_dash)^(1/2); //m
25 Dca=(dca*dca_dash)^(1/2); //m
26 Dm = (Dab*Dbc*Dca)^(1/3); //m
27 \operatorname{disp}(\operatorname{Dm}, \operatorname{Deq} \operatorname{or} \operatorname{Dm}(\operatorname{m}) : \operatorname{"});
28 L=0.2*log(Dm/Ds); //mH/km
29 L=L*10^-3*100; //H(for 100 km line)
30 disp(L,"Inductance of 100 km line(H)");
31 ///Alternate method is given below
32 	 d1=dab; //m
33 d2=dca_dash;/m
```

Scilab code Exa 4.14 Inductance per km

Inductance per km

```
1 / Exa 4.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ r=} 5/2; //\text{cm}
7 rdash=0.7788*r*10^-2; //m
8 d=6.5;/m
9 \text{ s} = 0.4; //\text{m}
10 Ds=sqrt(rdash*s);//m
11 dab=6.5; //m
12 dab_dash=6.9; //m
13 d_adash_b=6.1;/m
14 d_adash_bdash=6.5;//m
15 Dab=(dab*dab_dash*d_adash_b*d_adash_bdash)^(1/4); /m
16 Dbc=Dab; //m
17 dca=13; //m
18 dca_dash=12.6; //m
19 d_cdash_a=13.4;/m
20 d_cdash_adash=13;/m
21 Dca=(dca*dca_dash*d_cdash_a*d_cdash_adash)^(1/4); //m
22 Dm = (Dab*Dbc*Dca)^(1/3); //m
23 L=0.2*log(Dm/Ds); //mH/km
24 disp(L, "Inductance per phase(mH/km)");
```

Scilab code Exa 4.15 Find inductive reactance

Find inductive reactance

```
1 // Exa 4.15
2 clc;
3 clear;
4 close;
5 //Given data:
6 f = 50; //Hz
7 r=3.5/2; //cm
8 rdash=0.7788*r*10^-2; //m
9 d=7;/m
10 s=40/100; /m
11 Ds=sqrt(rdash*s);//m
12 dab=7; //m
13 dab_dash=7.4; //m
14 d_adash_b=6.6;/m
15 d_adash_bdash=7;/m
16 Dab=(dab*dab_dash*d_adash_b*d_adash_bdash)^(1/4); //m
17 Dbc=Dab; //m
18 dca=14; //m
19 dca_dash=13.6; //m
20 d_cdash_a=14.4; //m
21 d_cdash_adash=14;/m
22 Dca=(dca*dca_dash*d_cdash_a*d_cdash_adash)^(1/4); /m
23 Dm = (Dab*Dbc*Dca)^(1/3); //m
24 L=0.2*\log(Dm/Ds); //mH/km
25 \text{ XL}=2*\%pi*f*L*10^-3; //ohm/km
26 disp(XL," Inductive reactance of bundled conductor
      line (ohm/km)");
27 // Equivalent single conductor
28 n = 2;
29 r1 = sqrt(n*\%pi*r^2/\%pi); //m
```

```
30  r1dash=0.7788*r1*10^-2; //m
31  Dm1=(Dab*Dbc*Dca)^(1/3); //m
32  L1=0.2*log(Dm1/r1dash); //mH/km
33  XL1=2*%pi*f*L1*10^-3; //ohm/km
34  disp(XL1, "Inductive reactance with single conductor(ohm/km)");
```

Scilab code Exa 4.16 Find out Capacitance

Find out Capacitance

```
1 //Exa 4.16
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=15/2; //mm
7 d=1.5*1000; //mm
8 l=30; //km
9 epsilon_o=8.854*10^-12; // permitivity
10 C=%pi*epsilon_o/log(d/r)*l*1000; //F
11 disp(C*10^6, "Capacitance of line(micro F)");
```

Scilab code Exa 4.17 Calculate Capacitance

Calculate Capacitance

```
1 //Exa 4.17
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6  r=2/2; //cm
7  d=2.5*100; //cm
8  l=100; //km
9  epsilon_o=8.854*10^-12; // permitivity
10  C=2*%pi*epsilon_o/log(d/r)*l*1000; //F
11  disp(C*10^6, "Capacitance of line(micro F)");
```

Scilab code Exa 4.18 Capacitance per conductor per km

Capacitance per conductor per km

```
1 //Exa 4.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=2/2/100; //m
7 d1=3.5; //m
8 d2=5; //m
9 d3=8; //m
10 epsilon_o=8.854*10^-12; // permitivity
11 CN=2*%pi*epsilon_o*1000/log((d1*d2*d3)^(1/3)/r); //F
12 disp(CN*10^6, "Capacitance of line(micro F)");
```

Scilab code Exa 4.19 Capacitance and Charging current

Capacitance and Charging current

```
1 //Exa 4.19
2 clc;
3 clear;
4 close;
```

```
5 //Given data :
6 f=50; //Hz
7 VL=220; //KV
8 r=20/2/1000; //m
9 d1=3; //m
10 d2=3; //m
11 d3=6; //m
12 epsilon_o=8.854*10^-12; // permitivity
13 CN=2*%pi*epsilon_o/log((d1*d2*d3)^(1/3)/r); //F
14 disp(CN, "Capacitance per phase per meter line(F)");
15 Vph=VL*1000/sqrt(3); //V
16 Ic=2*%pi*f*CN*Vph; //A
17 disp(Ic*1000, "Charging current per phase(mA) : ");
```

Scilab code Exa 4.20 Capacitance to neutral and charging per km Capacitance to neutral and charging per km

```
1 / Exa 4.20
2 clc;
3 clear;
4 close;
5 //Given data :
6 f = 50; //Hz
7 VL=110; //kV
8 r=1.05/2; //cm
9 d1=3.5; //m
10 d2=3.5; //m
11 d3=7; //m
12 epsilon_o=8.854*10^-12; // permitivity
13 CN=2*\%pi*epsilon_o/log((d1*d2*d3)^(1/3)*100/r);//F
14 disp(CN, "Capacitance per phase per meter line(F)");
15 Vph=VL*1000/sqrt(3);//V
16 Ic=2*\%pi*f*CN*Vph;//A/m
17 disp(Ic/10^-3, "Charging current per phase(A/km): ")
```

Scilab code Exa 4.21 Capacitance to neutral and charging current

Capacitance to neutral and charging current

```
1 / Exa 4.21
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=2.5/2*10^-2; /m
7 \text{ VL} = 132; //\text{KV}
8 epsilon_o=8.85*10^--12; // permitivity
9 f=50; //Hz
10 dRRdash=sqrt(7^2+(4+4)^2);//m
11 dBBdash=dRRdash; //m
12 dYYdash=9;/m
13 DSR=sqrt(r*dRRdash);//m
14 DSY=sqrt(r*dYYdash);//m
15 DSB=sqrt(r*dBBdash);//m
16 Ds = (DSR*DSB*DSY)^(1/3); //m
17 dRY = sqrt(4^2+(4.5-3.5)^2); //m
18 dRYdash = sqrt((9-1)^2+4^2); //m
19 dRdashY = sqrt((9-1)^2+4^2); //m
20 dRdashYdash=sqrt(4^2+(4.5-3.5)^2);/m
21 DRY=(dRY*dRYdash*dRdashY*dRdashYdash)^(1/4);/m
22 DYB=((dRY*dRYdash)^2)^(1/4);/m
23 DBR=((8*7)^2)^(1/4); //m
24 Dm = (DRY * DYB * DBR)^(1/3); //m
25 C=2*\%pi*epsilon_o/log(Dm/Ds);//F/m
26 \text{ C=C/10}^-3; //F/\text{km}
27 X=1/(2*\%pi*f*C);//ohm
28 disp(X/1000, "Capacitive reactance too neutral(kohm)
      : ");
29 Vph=VL*1000/sqrt(3); //Volt
```

```
30 Ic=2*%pi*f*C*Vph;//A
31 disp(Ic, "Charging current(A/km)");
```

Scilab code Exa 4.22 Capacitance per phase

Capacitance per phase

Scilab code Exa 4.23 Capacitance and charging current

Capacitance and charging current

```
1 //Exa 4.23
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6 VL=132; //kV
7 f=50; //Hz
8 r=5/2; //cm
9 rdash=0.7788*r*10^-2; //m
10 d=6.5; //m
11 s=0.4; //m
12 epsilon_o=8.854*10^-12; // permitivity
13 Ds = sqrt(rdash*s); //m
14 dab=6.5; //m
15 dab_dash=6.9; //m
16 d_adash_b=6.1;/m
17 d_adash_bdash=6.5;//m
18 Dab=(dab*dab_dash*d_adash_b*d_adash_bdash)^(1/4); //m
19 Dbc=Dab;//m
20 \text{ dca=13; } / \text{m}
21 dca_dash=12.6; //m
22 \, d_cdash_a=13.4; //m
23 d_cdash_adash=13;/m
Dca=(dca*dca_dash*d_cdash_a*d_cdash_adash)^(1/4); //m
25 Dm = (Dab*Dbc*Dca)^(1/3); //m
26 L=0.2*log(Dm/Ds); //mH/km
27 C=2*\%pi*epsilon_o/log(Dm/Ds);//F/m
28 C=C/10^{-3}; //F/km
29 disp(C, "Capacitance per km(F/km) : ");
30 Vph=VL*1000/sqrt(3); //Volt
31 Ic = 2 * \%pi * f * C * Vph; //A/km
32 disp(Ic, "Charging current per km(A/km): ");
```

Scilab code Exa 4.24 Inductive and Capacitive reactances

Inductive and Capacitive reactances

```
1 //Exa 4.24
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 VL=132; //kV
7 f = 50; //Hz
8 r = 31.8/2; /mm
9 rdash=0.7788*r; /mm
10 d=10*1000; //mm
11 epsilon_o=8.854*10^-12; // permitivity
12 disp("One conductor ACSR moose conductor line: ");
13 LA=0.2*[\log(d/rdash)+1/2*\log(2)-\%i*0.866*\log(2)]; //
     mH/km
14 LB=0.2*\log(d/rdash); //mH/km
15 LC=0.2*[\log(d/rdash)+1/2*\log(2)+\%i*0.866*\log(2)]; //
     mH/km
16 Lav=(LA+LB+LC)/3; //mH/km
17 XL=2*%pi*f*Lav*10^-3;//ohm
18 disp(XL, "Inductive reactance per Km per phase (ohm):
       ");
19 d1=10; //m
20 d2=10; /m
21 d3 = 20; /m
22 \quad CN=2*\%pi*epsilon_o/log((d1*d2*d3)^(1/3)/(rdash)
      *10^-3))/10^3;//F/km
23 XC=1/(2*\%pi*f*CN*10^6); //ohm
24 disp(XC/10<sup>6</sup>, "Capacitivetive reactance per Km per
      phase (Mohm) : ");
25 disp("Three conductor bundled line: ");
26 \text{ S} = 40/100; //\text{m}
27 Ds=(rdash*10^-3*S^2)^(1/3);/m
28 Deq=(d1*d2*d3)^(1/3);/m
29 Ldash=0.2*\log(\text{Deq/Ds}); //\text{mH/km}
30 XLdash=2*\%pi*f*Ldash*10^-3;/ohm
31 disp(XLdash, "Inductive reactance per km per phase(
      ohm) : ");
32 Ds=(r*10^-3*S^2)^(1/3);/m
33 Cdash=2*%pi*epsilon_o*10^3/log(Deq/Ds);//microF/km
34 \text{ XC=1/(2*\%pi*f*Cdash)/10^6;//Mohm}
35 disp(XC," Capacitivetive reactance per km per phase(
```

```
Mohm) : ");
```

Scilab code Exa 4.25 Capacitance per km

Capacitance per km

```
1 //Exa 4.25
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1.5/2; //cm
7 d=3*100; //cm
8 h=6*100; //cm
9 epsilon_o=8.854*10^-12; //permitivity
10 C=%pi*epsilon_o/log(d/(1+d^2/4/h^2)^r)*10^3; //F
11 disp(C, "Capacitance per km of line(F) : ");
```

Scilab code Exa 4.26 Determine the capacitance

Determine the capacitance

```
1 //Exa 4.26
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=2/100;//m
7 d1=4;//m
8 d2=4;//m
9 d3=8;//m
10 epsilon_o=8.854*10^-12;//permitivity
```

```
11  CN=2*%pi*epsilon_o/log((d1*d2*d3)^(1/3)/r);//F
12  disp(CN,"Part(i) Capacitance per phase per meter
        length(F): ");
13  h1=20;//m
14  h2=20;//m
15  h3=20;//m
16  h12=sqrt(20^2+4^2);//m
17  h23=sqrt(20^2+4^2);//m
18  h31=sqrt(20^2+8^2);//m
19  Deq=(d1*d2*d3)^(1/3);//m
20  CN=2*%pi*epsilon_o/(log(Deq/r)-log((h12*h23*h31/h1/h2/h3)^(1/3)));//F
21  disp(CN,"Part(ii) Capacitance per phase per meter length(F): ");
```

Chapter 5

Representation and Performance of short and medium Transmission Lines

Scilab code Exa 5.1 Voltage Regulation and Efficiency

Voltage Regulation and Efficiency

```
1  //Exa 5.1
2  clc;
3  clear;
4  close;
5  //Given data :
6  P=1100; //kW
7  VR=11*1000; //V
8  pf=0.8; //power factor
9  R=2; //ohm
10  X=3; //ohm
11  I=P*1000/VR/pf; //A
12  cos_fi_r=pf;
13  sin_fi_r=sqrt(1-cos_fi_r^2);
14  VS=sqrt((VR*cos_fi_r+I*R)^2+(VR*sin_fi_r+I*X)^2); //V
15  disp(VS," Voltage at sending end(V)");
```

```
16 Reg=(VS-VR)/VR*100; //%
17 disp(Reg, "% Regulation");
18 LineLoss=I^2*R/1000; //kW
19 Eta_T=P*100/(P+LineLoss); //%
20 disp(Eta_T, "Transmission Efficiency(%)");
```

Scilab code Exa 5.2 Voltage Regulation and Efficiency

Voltage Regulation and Efficiency

```
1 //Exa 5.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 R=0.4; //ohm
7 \text{ X} = 0.4; //\text{ohm}
8 P = 2000; //kVA
9 pf=0.8;//power factor
10 VL = 3000; //V
11 VR=VL/sqrt(3);//V
12 cos_fi_r=pf;
13 sin_fi_r = sqrt(1 - cos_fi_r^2);
14 I=P*1000/3/VR; //A
15 VS=VR+I*(R*cos_fi_r+X*sin_fi_r);/V
16 Reg=(VS-VR)/VR*100; //\%
17 disp(Reg, "% Regulation");
18 LineLoss=3*I^2*R/1000; //kW
19 Pout=P*cos_fi_r; //kW
20 Eta_T=Pout*100/(Pout+LineLoss); //\%
21 disp(Eta_T, "Transmission Efficiency (\%)");
```

Scilab code Exa 5.3 Sending end Voltage and Regulation

Sending end Voltage and Regulation

```
1 / Exa 5.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 1=15; //km
7 \text{ P=5}; / MW
8 V = 11; //kV
9 f=50; //Hz
10 pf=0.8; //power factor
11 cos_fi_r=pf;
12 sin_fi_r=sqrt(1-cos_fi_r^2);
13 L=1.1; //mH/Km
14 VR = V * 1000 / sqrt(3); //V
15 I=P*1000/sqrt(3)/V/cos_fi_r;//A
16 LineLoss=12/100*P*10^6; /W
17 R=LineLoss/3/I^2;//ohm
18 X=2*\%pi*f*L*10^-3*l;//ohm/phase
19 VS=VR+I*(R*cos_fi_r+X*sin_fi_r);/V
20 VSL=sqrt(3)*VS/1000; //KV
21 disp(VSL, "Line voltage at sending end(kV)");
22 Reg=(VSL-V)/V*100;//%
23 disp(Reg, "% Regulation");
```

Scilab code Exa 5.4 Voltage PF Efficiency and Regulation

Voltage PF Efficiency and Regulation

```
1 //Exa 5.4
2 clc;
3 clear;
4 close;
```

```
5 //Given data :
6 1=50; //km
7 S=10000; //kVA
8 pf=0.8;//power factor
9 d=1.2*100; //cm
10 cos_fi_r=pf;
11 sin_fi_r=sqrt(1-cos_fi_r^2);
12 V = 33000; // Volts
13 VR=V/sqrt(3);//V
14 f=50; //Hz
15 I=S*1000/sqrt(3)/V;//A
16 LineLoss=10/100*S*10^3*pf;/W
17 R=LineLoss/3/I^2;//ohm
18 rho=1.73*10^-6; // \text{kg/m}^3
19 a=rho*l*1000*100/R; //cm^2
20 r=sqrt(a/%pi);//cm
21 L=0.2*\log(d/r/0.7788)*1;/mH
22 X=2*\%pi*f*L*10^-3; //ohm
23 \text{ VS=VR+I*(R*cos\_fi\_r+X*sin\_fi\_r);}/V
24 VSL = sqrt(3) * VS/1000; //kV
25 disp(VSL,"Line voltage at sending end(kV)");
26 pf_s=(VR*cos_fi_r+I*R)/VS;//lagging(sendinf end pf)
27 disp(pf_s, "Sending end pf(lagging)");
28 Eta_T=S*pf/(S*pf+LineLoss/1000)*100;
29 disp(Eta_T, "Transmission Efficiency (\%)");
30 Reg=(VSL-V/1000)/(V/1000)*100;/\%
31 disp(Reg, "% Regulation");
```

Scilab code Exa 5.5 Resistance and Inductance of line

Resistance and Inductance of line

```
1 //Exa 5.5
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 \text{ VRL} = 30000; // \text{Volts}
7 VSL=33000; // Volts
8 f = 50; //Hz
9 P=10*10^6; /W
10 pf = 0.8; //power factor
11 cos_fi_r=pf;
12 sin_fi_r=sqrt(1-cos_fi_r^2);
13 VR = VRL/sqrt(3); //V
14 I=P/sqrt(3)/VRL/pf;//A
15 Eta_T=0.96; // Efficiency
16 LineLoss=P*(1/Eta_T-1); //W
17 R=LineLoss/3/I^2;//ohm/phase
18 disp(R, "Resistance per phase(ohm/phase)");
19 VS=VSL/sqrt(3);//V
20 X=(VS-VR-I*R*cos_fi_r)/I/sin_fi_r;//V
21 L=X/2/\%pi/f;//H/phase
22 disp(L*1000, "Inductance per phase(mH/phase)");
```

Scilab code Exa 5.6 Voltage and Efficiency of Transmission

Voltage and Efficiency of Transmission

```
1 //Exa 5.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 l=3; //km
7 P=3000; //kW
8 VSL=11*10^3; // volt
9 R=1*0.4; //ohm
10 X=1*0.8; //ohm
11 VS=VSL/sqrt(3); // Volts
```

```
12  pf=0.8; // power factor
13  cos_fi_r=pf;
14  sin_fi_r=sqrt(1-cos_fi_r^2);
15  //VS=VR+I*(R*cos_fi_r+X*sin_fi_r); //V
16  I_into_VR=P*1000/3/cos_fi_r; //VA
17  //VR^2-VS*VR+I_into_VR*(R*cos_fi_r+X*sin_fi_r);
18  p=[1 -VS I_into_VR*(R*cos_fi_r+X*sin_fi_r)];
19  VR=roots(p);
20  VR=VR(1); // taking greater value
21  I=I_into_VR/VR; //A
22  VRL=sqrt(3)*VR; // volt
23  disp(VRL, "Line voltage at load end(volt): ");
24  Eta_T=P*1000/(P*1000+3*I^2*R)*100; //%
25  disp(Eta_T, "Transmission Efficiency(%): ");
```

Scilab code Exa 5.7 Power output and Power factor

Power output and Power factor

```
1 / Exa 5.7
2 clc;
3 clear;
4 close;
5 //Given data:
6 R=5; //ohm/phase
7 X=20; //ohm/phase
8 VSL = 46.85; //kV
9 VRL=33; //kV
10 VRL = VRL * 1000; //v
11 pf=0.8; //power factor
12 cos_fi_r=pf;
13 sin_fi_r=sqrt(1-cos_fi_r^2);
14 VR=VRL/sqrt(3);//V
15 I=(VSL*1000/sqrt(3)-VR)/(R*cos_fi_r+X*sin_fi_r);//A
16 Pout=sqrt(3)*VRL*I*pf/1000; //kW
```

Scilab code Exa 5.8 Current Voltage Regulation Efficiency

Current Voltage Regulation Efficiency

```
1 // \text{Exa} \ 5.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 1=80; //km
7 P=15; / MW
8 VR = 66 * 10^3; // Volt
9 R=1*0.3125; //ohm
10 X=1*1; //ohm
11 Y=1*17.5*10^-6; //S
12 pf=0.8; //power factor
13 cos_fi_r=pf;
14 sin_fi_r=sqrt(1-cos_fi_r^2);
15 IR=P*10^6/(VR*pf); //A
16 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
17 IC = \%i * Y * VR; //A
18 IS=IR+IC; //A
19 disp("Sending end current(A), magnitude is "+string(
      abs(IS))+" and angle in degree is "+string(atand(
      imag(IS),real(IS))));
20 VS=VR+IS*(R+\%i*X); //volt
21 disp("Sending end voltage(V), magnitude is "+string(
      abs(VS))+" and angle in degree is "+string(atand(
      imag(VS),real(VS))));
```

```
fi_s=atand(imag(VS),real(VS))-atand(imag(IS),real(IS
      ));//
23 cos_fis=cosd(fi_s);//sending end pf
24 disp(cos_fis,"Sending end power factor(lag): ");
25 Reg=(abs(VS)-VR)/VR*100;//%
26 disp(Reg,"Regulation(%): ");
27 LineLoss=abs(IS)^2*R/1000;//kW
28 disp(LineLoss,"Line Losses in kW: ");
29 Eta_T=P*1000/(P*1000+LineLoss)*100;//%
30 disp(Eta_T,"Transmission Efficiency(%): ");
```

Scilab code Exa 5.9 Voltage Efficiency Regulation

Voltage Efficiency Regulation

```
1 / Exa 5.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 1 = 100; //km
7 P = 20; / MW
8 VRL = 66*10^3; //volt
9 f = 50; //Hz
10 R=10; //ohm
11 L=111.7*10^-3; //H
12 C=0.9954*10^-6; //F
13 pf=0.8; //power factor
14 X=2*\%pi*f*L; //ohm
15 Y=2*\%pi*f*C; //S
16 cos_fi_r=pf;
17 sin_fi_r = sqrt(1 - cos_fi_r^2);
18 VR = VRL/sqrt(3); //volt
19 IR=P*10^6/(sqrt(3)*VRL*pf);//A
20 IR=IR*(cos_fi_r-%i*sin_fi_r); //A
```

```
21 Z = R + \%i * X; //ohm
22 \text{ Vdash=VR+1/2*IR*Z;}//\text{Volt}
23 IC=Vdash*\%i*Y;//A
24 IS=IR+IC; //A
25 \text{ VS=Vdash+1/2*IS*Z;}//\text{Volt}
26 VSL=abs(VS)*sqrt(3); // Volt
27 disp(VSL, "Sending end line voltage(Volt):");
28 Reg=(VSL-VRL)/VRL*100; //\%
29 disp(Reg, "Regulation(\%): ");
30 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
      ));//
31 cos_fi_s=cosd(fi_s); //sending end pf
32 Eta_T=sqrt(3)*VRL*abs(IR)*cos_fi_r/(sqrt(3)*VSL*abs(
      IS)*cos_fi_s)*100; //\%
33 disp(Eta_T, "Transmission Efficiency(\%) : ");
34 //Ans is not accurate in the book.
```

Scilab code Exa 5.10 Voltage Regulation Current Efficiency

Voltage Regulation Current Efficiency

```
1 //Exa 5.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 l=200;//km
7 P=50;//MVA
8 VRL=132*10^3;//Volt
9 f=50;//Hz
10 R=1*0.15;//ohm
11 X=1*0.50;//ohm
12 Y=1*2*10^-6;//mho
13 pf=0.85;//power factor
14 cos_fi_r=pf;
```

```
15 sin_fi_r=sqrt(1-cos_fi_r^2);
16 VR = VRL/sqrt(3); //Volt
17 IR=P*10^6/(sqrt(3)*VRL);//A
18 Z=R+\%i*X; //ohm
19 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
20 Vdash=VR+1/2*IR*Z; //Volt
21 IC=Vdash*\%i*Y;//A
22 IS=IR+IC; //A
23 disp("Sending end current(A), magnitude is "+string(
      abs(IS))+" and angle in degree is "+string(atand(
      imag(IS), real(IS))));
VS = Vdash + 1/2 * IS * Z; // Volt
25 VSL=abs(VS)*sqrt(3); //Volt
26 disp(VSL/1000, "Sending end line voltage(kV):");
27 Reg=(VSL-VRL)/VRL*100; //\%
28 disp(Reg, "Regulation(%): ");
29 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
     ));//
30 cos_fi_s=cosd(fi_s); //sending end pf
31 Eta_T=sqrt(3)*VRL*abs(IR)*cos_fi_r/(sqrt(3)*VSL*abs(
      IS)*cos_fi_s)*100; //\%
32 disp(Eta_T, "Transmission Efficiency (\%) : ");
33 //Ans is wrong in the book. Angle of VS is calculated
       wrong leads to wrong answers.
```

Scilab code Exa 5.11 Voltage Current PF

Voltage Current PF

```
1 //Exa 5.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 S=1*10^3; //kVA
```

```
7 pf=0.71; //power factor
8 VRL=22*10^3; // Volt
9 f = 50; //Hz
10 R=15; //ohm
11 L=0.2; //H
12 C=0.5*10^-6; //F
13 cos_fi_r=pf;
14 sin_fi_r=sqrt(1-cos_fi_r^2);
15 IR=S*10^3/VRL; //A
16 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
17 X=2*\%pi*f*L; //ohm
18 //Z = sqrt(R^2+X^2);//ohm
19 Z = R + \%i * X; //ohm
20 Y = 2 * \%pi * f * C; //S
21 ICR=1/2*\%i*Y*VRL;//A
22 IL=IR+ICR; //A
23 VS=VRL+IL*Z; //Volt
24 disp("Sending end voltage(Volt), magnitude is "+
      string(abs(VS))+" and angle in degree is "+string
      (atand(imag(VS), real(VS))));
25 \text{ ICS} = 1/2 * \%i * Y * VS; //A
26 \quad IS=IL+ICS; //A
27 disp("Sending end current(A), magnitude is "+string(
      abs(IS))+" and angle in degree is "+string(atand(
      imag(IS), real(IS))));
28 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
      ));//
29 cos_fi_s=cosd(fi_s); //sending end pf
30 disp(cos_fi_s, "Sending end power factor(lag): ");
```

Scilab code Exa 5.12 Sending End Voltage

Sending End Voltage

```
1 / Exa 5.12
```

```
2 clc;
3 clear;
4 close;
5 //Given data :
6 P=50*10^6; /W
7 f = 50; //Hz
8 1=150; //km
9 pf=0.8;//power factor
10 VRL=110*10^3; // Volt
11 VR=VRL/sqrt(3);//Volt
12 cos_fi_r=pf;
13 sin_fi_r=sqrt(1-cos_fi_r^2);
14 R=0.1*1; //ohm
15 XL = 0.5 * 1; //ohm
16 Z=R+\%i*XL;/ohm
17 IR=P/(sqrt(3)*VRL*pf);//A
18 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
19 Y=3*10^-6*1; //S
20 ICR=1/2*\%i*Y*VR;//A
21 IL=IR+ICR; //A
22 VS = VR + IL *Z; // Volt
23 VSL=sqrt(3)*abs(VS);//Volt
24 disp(VSL/1000, "Sending end line to line voltage(kV)
      :");
```

Scilab code Exa 5.13 Voltage Current and PF

Voltage Current and PF

```
1 //Exa 5.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50;//Hz
```

```
7 1=30; //km
8 Z=40+\%i*125; //ohm
9 Y=10^-3; //mho
10 P=50*10^6; /W
11 VRL=220*10^3; // Volt
12 VR = VRL/sqrt(3); //Volt
13 pf=0.8; //power factor
14 cos_fi_r=pf;
15 sin_fi_r=sqrt(1-cos_fi_r^2);
16 IR=P/(sqrt(3)*VRL*pf);//A
17 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
18 ICR=1/2*\%i*Y*VR; //A
19 IL=IR+ICR; //A
20 VS = VR + IL *Z; // Volt
21 VSL=sqrt(3)*abs(VS);//Volt
22 disp(VSL/1000, "Sending end line to line voltage(kV)
      :");
23 IS = IL + 1/2 * \%i * Y * VS; //A
24 disp("Sending end current(A), magnitude is "+string(
      abs(IS))+" and angle in degree is "+string(atand(
      imag(IS), real(IS))));
25 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
     ));//
26 cos_fis=cosd(fi_s);//sending end pf
27 disp(cos_fis, "Sending end power factor(lag): ");
```

Scilab code Exa 5.14 Sending End Voltage

Sending End Voltage

```
1 //Exa 5.14
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6 f=50; //Hz
7 1=30; //km
8 Z=40+\%i*125; //ohm
9 Y = 10^{-3}; //mho
10 P=50*10^6; /W
11 VRL=220*10^3; // Volt
12 VR=VRL/sqrt(3); //Volt
13 pf=0.8; //power factor
14 cos_fi_r=pf;
15 sin_fi_r=sqrt(1-cos_fi_r^2);
16 IR=P/(sqrt(3)*VRL*pf);//A
17 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
18 ICR=1/2*\%i*Y*VR; //A
19 IL=IR+ICR; //A
20 VS = VR + IL *Z; //Volt
21 VSL=sqrt(3)*abs(VS);//Volt
22 disp(VSL/1000, "Sending end line to line voltage(kV)
     :");
```

Scilab code Exa 5.15 Voltage Efficiency and PF

Voltage Efficiency and PF

```
1 //Exa 5.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50;//Hz
7 l=100;//km
8 P=50*10^6;//W
9 pf=0.8;//power factor
10 cos_fi_r=pf;
11 sin_fi_r=sqrt(1-cos_fi_r^2);
12 VRL=132*10^3;//Volt
```

```
13 VR = VRL/sqrt(3); //Volt
14 R=0.1*1; //ohm
15 XL = 0.3 * 1; //ohm
16 Z=R+\%i*XL;//ohm
17 Y=3*10^-6*1; //S
18 IR=P/(sqrt(3)*VRL*pf);/A
19 IR=IR*(cos_fi_r-%i*sin_fi_r);//A
20 ICR=1/2*\%i*Y*VR;//A
21 IL=IR+ICR; //A
22 VS = VR + IL *Z; //Volt
VSL = \mathbf{sqrt}(3) * \mathbf{abs}(VS); // Volt
24 disp(VSL/1000, "Sending end line voltage(kV):");
25 \text{ ICS} = 1/2 * \%i * Y * VS; //A
26 \text{ IS=IL+ICS}; //A
27 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
28 cos_fi_s=cosd(fi_s); //sending end pf
29 disp(cos_fi_s, "Sending end power factor(lag): ");
30 Eta_T=sqrt(3)*VRL*abs(IR)*cos_fi_r/(sqrt(3)*VSL*abs(
      IS) *\cos_{fi_s}) *100; //\%
31 disp(Eta_T, "Transmission Efficiency (%) : ");
```

Scilab code Exa 5.16 Voltage at mid point

Voltage at mid point

```
1 //Exa 5.16
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50;//Hz
7 l=10;//km
8 S1=5000*10^3;//VA
9 S2=10000*10^3;//VA
```

```
10 pf=0.8; //power factor
11 cos_fi_r=pf;
12 \sin_f_r = \sqrt{1-\cos_f_r^2};
13 pf2=0.7071; //power factor
14 cos_fi_r2=pf2;
15 sin_fi_r2=sqrt(1-cos_fi_r2^2);
16 R=0.6*1; //ohm
17 XL=1.5*1; //ohm
18 VRL=33*10^3; // Volt
19 VR = VRL/sqrt(3); //Volt
20 I1=S1/(sqrt(3)*VRL); //A
21 I1=I1*(cos_fi_r-%i*sin_fi_r); //A
22 Z1 = R + \%i * XL; //ohm
23 VB = VR + I1 * Z1; // Volt
24 VBL=sqrt(3)*abs(VB); //Volt
25 disp(VBL/1000, "Line voltage at mid point(kV): ");
26 I2=S2/(sqrt(3)*VBL); //A
27 I2=I2*(cos_fi_r2-%i*sin_fi_r2);//A
28 I = I1 + I2; //A
29 disp("Total current(A), magnitude is "+string(abs(I)
      )+" and angle in degree is "+string(atand(imag(I)
      ,real(I))));
30 Z2=R+\%i*XL;/ohm
31 VS = VB + I * Z2; // Volt
32 VSL = sqrt(3) * abs(VS); // Volt
33 disp(VSL/1000, "Sending end line voltage(kV):");
```

Scilab code Exa 5.17 kVA supplied and Power supplied

kVA supplied and Power supplied

```
1 //Exa 5.17
2 clc;
3 clear;
4 close;
```

```
5 //Given data:
6 P=10; //MWatt
7 pf=0.8;//power factor
8 VRL = 30 * 10^3; // Volt
9 R1=5.5; //ohm
10 XL1=13.5; //ohm
11 R2=6; //ohm
12 XL2=11; //ohm
13 ZA = R1 + \%i * XL1; //ohm
14 ZB=R2+\%i*XL2;/ohm
15 S=P*10^3/pf*expm(%i*%pi/180*(-36.52));/kVA
16 SA=S*ZB/(ZA+ZB); //kVA
17 disp("Load supply by line A(kVA), magnitude is "+
     string(abs(SA))+" at pf "+string(cosd(atand(imag(
     SA), real(SA))));
18 SB=S*ZA/(ZA+ZB); //kVA
19 disp("Load supply by line B(kVA), magnitude is "+
     string(abs(SB))+" and angle in degree is "+string
      (cosd(atand(imag(SB), real(SB)))));
20 PA = abs(SA)*(cosd(atand(imag(SA), real(SA)))); / kW
21 disp(PA, "Power supplied by line A(kW) : ");
22 PB=abs(SB)*(cosd(atand(imag(SB),real(SB))));/kW
23 disp(PB, "Power supplied by line B(kW): ");
24 //Answer is not accurate in the book.
```

Scilab code Exa 5.18 Rise in Voltage

Rise in Voltage

```
1 //Exa 5.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=200;//km
```

```
7  f=50; //Hz
8  omega=2*%pi*f; //rad/s
9  Rise=omega^2*L^2*10^-8/18; //%
10  disp(Rise, "Percentage rise in voltage: ");
```

Scilab code Exa 5.19 Find A B C D parameters

Find A B C D parameters

```
1 / \text{Exa} 5.19
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=80; //km
7 f=50; //Hz
8 Z=(0.15+\%i*0.78)*L;/ohm
9 Y = (\%i * 5 * 10^{-6}) * L; //mho
10 A=1+1/2*Y*Z; //parameter of 3-phase line
11 D=A; //parameter of 3-phase line
12 B=Z*(1+1/4*Y*Z); // parameter of 3-phase line
13 C=Y; //parameter of 3-phase line
14 disp(A, "Parameter A: ");
15 disp(B, "Parameter B: ");
16 disp(C, "Parameter C: ");
17 disp(D, "Parameter D: ");
18 //Answer of B is wrong in the book.
```

Scilab code Exa 5.20 ABCD constant Voltage and Efficiency

ABCD constant Voltage and Efficiency

```
1 / \text{Exa} 5.20
2 clc;
3 clear;
4 close;
5 //Given data :
6 Z=200*expm(%i*%pi/180*80);/ohm
7 Y=0.0013*expm(%i*%pi/180*90);//mho/phase
8 P=80*10^6; /W
9 pf=0.8; //power factor
10 cos_fi_r=pf;
11 sin_fi_r=sqrt(1-cos_fi_r^2);
12 VRL=220*10^3; // Volt
13 VR=VRL/sqrt(3); //Volt
14 f=50; //Hz
15 IR=P/(sqrt(3)*VRL*pf);//A
16 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
17 A=1+1/2*Y*Z; //parameter of 3-phase line
18 D=A; //parameter of 3-phase line
19 B=Z*(1+1/4*Y*Z); // parameter of 3-phase line
20 C=Y; //parameter of 3-phase line
21 disp("Parameter A, magnitude is "+string(abs(A))+"
     and angle in degree is "+string(atand(imag(A),
     real(A))));
22 disp("Parameter B, magnitude is "+string(abs(B))+"
     and angle in degree is "+string(atand(imag(B),
     real(B))));
23 disp("Parameter C, magnitude is "+string(abs(C))+"
     and angle in degree is "+string(atand(imag(C),
     real(C))));
24 disp("Parameter D, magnitude is "+string(abs(D))+"
     and angle in degree is "+string(atand(imag(D),
     real(D))));
25 VS = A * VR + B * IR; // Volt
26 VSL=sqrt(3)*abs(VS); //Volt
27 disp(VSL/1000, "Sending end Line voltage(kV): ");
28 IS=C*VR+D*IR;/A
29 disp("Sending end current(A), magnitude is "+string(
     abs(IS))+" and angle in degree is "+string(atand(
```

```
imag(IS), real(IS))));
30 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS)); //
31 cos_fis=cosd(fi_s); // sending end pf
32 disp(cos_fis, "Sending end power factor(lag): ");
33 Pin=sqrt(3)*VSL*abs(IS)*cos_fis*10^-6; //MW
34 disp(Pin, "Power Input(MW): ");
35 Eta=P/(Pin*10^6)*100; //%
36 disp(Eta, "Transmission Efficiency(%): ");
```

Scilab code Exa 5.21 Voltage Current Power and efficiency

Voltage Current Power and efficiency

```
1 //Exa 5.21
2 clc;
3 clear;
4 close;
5 //Given data :
6 P=50*10^6; /VA
7 pf=0.8;//power factor
8 cos_fi_r=pf;
9 sin_fi_r=sqrt(1-cos_fi_r^2);
10 A=0.98*expm(%i*%pi/180*3);//parameter of 3-phase
11 D=0.98*expm(%i*%pi/180*3);//parameter of 3-phase
     line
12 B=110*expm(%i*%pi/180*75);//parameter of 3-phase
13 C=0.0005*expm(%i*%pi/180*80);//parameter of 3-phase
     line
14 VRL=110*10^3; // Volt
15 VR = VRL/sqrt(3); //Volt
16 IR=P/(sqrt(3)*VRL);//A
17 IR=IR*(cos_fi_r-\%i*sin_fi_r);//A
```

```
18 VS=A*VR+B*IR; // Volt
19 VSL=sqrt(3)*abs(VS); // Volt
20 disp(VSL/1000, "Sending end Line voltage(kV) : ");
21 IS=C*VR+D*IR; //A
22 disp("Sending end current(A), magnitude is "+string(abs(IS))+" and angle in degree is "+string(atand(imag(IS), real(IS))));
23 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS)); //
24 cos_fis=cosd(fi_s); // sending end pf
25 disp(cos_fis, "Sending end power factor(lag) : ");
26 Pin=sqrt(3)*VSL*abs(IS)*cos_fis*10^-6; //MW
27 disp(Pin, "Power Input(MW) : ");
28 Eta=P*pf/(Pin*10^6)*100; //%
29 disp(Eta, "Transmission Efficiency(%) : ");
```

Scilab code Exa 5.22 ABCD constant power and voltage

ABCD constant power and voltage

```
1 //Exa 5.22
2 clc;
3 clear;
4 close;
5 //Given data :
6 f=50; //Hz
7 L=300; //km
8 r=0.15; //ohm/km
9 x=0.5; //ohm/km
10 y=3*10^-6; //mho/km
11 VRL=220*10^3; // Volt
12 VR=VRL/sqrt(3); // Volt
13 P=200*10^6; //W
14 pf=0.85; //power factor
15 cos_fi_r=pf;
```

```
16 sin_fi_r=sqrt(1-cos_fi_r^2);
17 R=r*L; //ohm
18 X=x*L; //ohm
19 Y=y*L; //mho
Z=R+\%i*X;/ohm
21 //part (i)
22 A=1+1/2*\%i*Y*Z; //parameter of 3-phase line
23 D=A; //parameter of 3-phase line
24 B=Z; //parameter of 3-phase line
25 C=\%i*Y*(1+1/4*\%i*Y*Z); //parameter of 3-phase line
26 disp("Parameter A, magnitude is "+string(abs(A))+"
      and angle in degree is "+string(atand(imag(A),
      real(A))));
27 disp("Parameter B, magnitude is "+string(abs(B))+"
      and angle in degree is "+string(atand(imag(B),
      real(B))));
28 disp("Parameter C, magnitude is "+string(abs(C))+"
      and angle in degree is "+string(atand(imag(C),
      real(C))));
29 disp("Parameter D, magnitude is "+string(abs(D))+"
      and angle in degree is "+string(atand(imag(D),
      real(D))));
30 //part (ii)
31 IR=poly(0,'IR');
32 p=0.024525*IR^2+11.427*IR-2102; //from VS=A*VR+B*IR
      ;//Volt
33 IR=roots(p);
34 IR=IR(2); // taking + ve value
35 P = sqrt(3) * VRL * IR * 10^-6; / MW
36 disp(P, "Power received in MW:");
37 ///part (iii)
38 P = 200 * 10^6; /W
39 \text{ IR=P/sqrt}(3)/\text{VRL/pf};//A
40 fi=acosd(pf);//degree
41 IR = IR * expm(%i*-fi*%pi/180);
42 VS = A * VR + B * IR; // Volt
43 VSL=sqrt(3)*abs(VS);//Volt
44 disp(VSL/1000, "Sending end Line voltage(kV): ");
```

Scilab code Exa 5.23 Voltage current power and egulation

Voltage current power and egulation

```
1 / \text{Exa} 5.23
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=0.936+%i*0.016; // parameter of 3-phase line
7 D=A; //parameter of 3-phase line
8 B=33.5+%i*138; // parameter of 3-phase line
9 C=(-0.9280+\%i*901.223)*10^-6; //parameter of 3-phase
      line
10 VRL=200*10^3; // Volt
11 VR = VRL/sqrt(3); //Volt
12 P=40*10^6; /W
13 pf=0.86; //power factor
14 cos_fi_r=pf;
15 sin_fi_r=sqrt(1-cos_fi_r^2);
16 IR=P/sqrt(3)/VRL/pf;//A
17 fi=acosd(pf);//degree
18 IR = IR * expm(%i*-fi*%pi/180);
19 VS = A * VR + B * IR; // Volt
20 VSL=sqrt(3)*abs(VS);//Volt
21 disp(VSL/1000, "Sending end Line voltage(kV): ");
22 IS=C*VR+D*IR;//A
23 disp("Sending end current(A), magnitude is "+string(
      abs(IS))+" and angle in degree is "+string(atand(
      imag(IS), real(IS))));
24 fi_s=atand(imag(IS),real(IS))-atand(imag(VS),real(VS
      ));//degree
25 disp(cosd(fi_s),fi_s, "Sending end phase angle(degree
      ) & power factor (leading): ");
```

```
26 Ps=sqrt(3)*abs(VSL)*abs(IS)*cosd(fi_s)*10^-6; //MW
27 disp(Ps, "Sending end power(MW) : ");
28 Vreg=(VSL-VRL)*100/VRL; //%
29 disp(Vreg, "Voltage regulation in % : ");
```

Scilab code Exa 5.24 Sending end voltage and current

Sending end voltage and current

```
1 / \text{Exa} \ 5.24
2 clc;
3 clear;
4 close;
5 //Given data :
6 A1=0.98*expm(%i*2*%pi/180);//parameter of 3-phase
7 D1=A1; //parameter of 3-phase line
8 B1=28*expm(%i*69*%pi/180);//parameter of 3-phase
9 C1=0.0002*expm(%i*88*%pi/180);//parameter of 3-phase
10 A2=0.95*expm(%i*3*%pi/180);//parameter of 3-phase
      line
11 D2=A2; // parameter of 3-phase line
12 B2=40*expm(%i*85*%pi/180);//parameter of 3-phase
      line
13 C2=0.0004*expm(%i*90*%pi/180);//parameter of 3-phase
       line
14 VRL=110*10^3; // Volt
15 VR = VRL/sqrt(3); //Volt
16 IR=200; //A
17 pf = 0.95; //power factor
18 cos_fi_r=pf;
19 sin_fi_r=sqrt(1-cos_fi_r^2);
20 fi=acosd(pf);//degree
```

```
21 A=A1*A2+B1*C2; // generalized parameter of 2 line
22 B=A1*B2+B1*D2; // generalized parameter of 2 line
23 C=C1*A2+D1*C2; // generalized parameter of 2 line
24 D=C1*B2+D1*D2; // generalized parameter of 2 line
25 IR=IR*expm(%i*-fi*%pi/180);
26 VS=A*VR+B*IR; // Volt
27 VSL=sqrt(3)*abs(VS); // Volt
28 disp(VSL/1000, "Sending end Line voltage(kV): ");
29 IS=C*VR+D*IR; // A
30 disp("Sending end current(A), magnitude is "+string(abs(IS))+" and angle in degree is "+string(atand(imag(IS),real(IS))));
31 // Answer for VSL is wrong in the book.
```

Scilab code Exa 5.25 ABCD constant and power factor

ABCD constant and power factor

```
1  //Exa 5.25
2  clc;
3  clear;
4  close;
5  //Given data :
6  A1=0.98*expm(%i*1*%pi/180);//parameter of 3-phase line
7  D1=A1;//parameter of 3-phase line
8  B1=100*expm(%i*75*%pi/180);//parameter of 3-phase line
9  C1=0.0005*expm(%i*90*%pi/180);//parameter of 3-phase line
10  A2=0.98*expm(%i*1*%pi/180);//parameter of 3-phase line
11  D2=A2;//parameter of 3-phase line
12  B2=100*expm(%i*75*%pi/180);//parameter of 3-phase line
```

```
13 C2=0.0005*expm(%i*90*%pi/180);//parameter of 3-phase
       line
14 P=100*10^6; /W
15 VRL=132*10^3; // Volt
16 VR = VRL/sqrt(3); //Volt
17 pf=0.8; //power factor
18 cos_fi_r=pf;
19 sin_fi_r=sqrt(1-cos_fi_r^2);
20 fi=acosd(pf);//degree
21 A = (A1*B2+A2*B1)/(B1+B2); //generalized parameter of 2
       line
22 B=B1*B2/(B1+B2);//generalized parameter of 2 line
23 C=C1+C2-(A1-A2)*(D1-D2)/(B1+B2); //generalized
      parameter of 2 line
D = (B1*D2+B2*D1)/(B1+B2); //generalized parameter of 2
25 disp ("Generalised constants of two lines combined
      are : ");
26 disp("Parameter A, magnitude is "+string(abs(A))+"
      and angle in degree is "+string(atand(imag(A),
     real(A))));
27 disp("Parameter B, magnitude is "+string(abs(B))+"
      and angle in degree is "+string(atand(imag(B),
     real(B))));
28 disp("Parameter C, magnitude is "+string(abs(C))+"
     and angle in degree is "+string(atand(imag(C),
     real(C))));
29 disp("Parameter D, magnitude is "+string(abs(D))+"
     and angle in degree is "+string(atand(imag(D),
     real(D))));
30 IR=P/sqrt(3)/VRL/pf;//A
31 IR = IR * expm(%i*-fi*%pi/180);
32 VS = A * VR + B * IR; // Volt
33 VSL=sqrt(3)*abs(VS); //Volt
34 \text{ IS=C*VR+D*IR}; //A
35 fi_s=atand(imag(VS), real(VS))-atand(imag(IS), real(IS
     ));
36 disp(cosd(fi_s), "Sending end power factor(lagging):
```

");

Chapter 6

Representation and Performance of long Transmission Lines

Scilab code Exa 6.1 Determine Auxiliary constant

Determine Auxiliary constant

```
1 //Exa 6.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 r=0.22; //ohm
8 x=0.45; //ohm
9 g=4*10^-9; //S
10 b=2.53*10^-6; //S
11 f=50; //Hz
12 l=1000; //Km
13 //Using Convergent series of complex angles
14 z=r+%i*x; //ohm
15 y=g+%i*b; //ohm
```

```
16 Z=z*1; //ohm
17 Y=y*1; //ohm
18 YZ=Y*Z; //ohm
19 Y2Z2=YZ^2; //ohm
20 Y3Z3=YZ^3;/ohm
21 A=1+YZ/2+Y2Z2/24+Y3Z3/720; //ohm
22 D=A; //oh, m
23 B=Z*(1+YZ/6+Y2Z2/120+Y3Z3/5040); //ohm
24 \text{ C=Y*}(1+\text{YZ}/6+\text{Y2Z2}/120+\text{Y3Z3}/5040); //\text{ohm}
25 disp ("Auxiliary Constants by using Convergent series
       of complex angles: ");
26 \text{ disp}(A, "A = ");
27 \text{ disp}(B, "B = ");
28 disp(C, "C = ");
29 //Using Convergent series of real angles
30 A = \cosh(\operatorname{sqrt}(YZ)); //\operatorname{ohm}
31 D=A; //ohm
32 B=sqrt(Z/Y)*sinh(sqrt(YZ));//ohm
33 C = sqrt(Y/Z) * sinh(sqrt(YZ)); //ohm
34 A = \cosh(\operatorname{sqrt}(YZ)); //\operatorname{ohm}
35 disp ("Auxiliary Constants by using Convergent series
       of real angles: ");
36 disp("A, magnitude is "+string(abs(A))+" and angle
      in degree is "+string(atand(imag(A),real(A))));
37 disp("B, magnitude is "+string(abs(B))+" and angle
      in degree is "+string(atand(imag(B),real(B))));
38 disp("C, magnitude is "+string(abs(C))+" and angle
      in degree is "+string(atand(imag(C),real(C))));
39 disp ("We obtain same result by both of the methods."
      )
```

Scilab code Exa 6.2 Sending end voltage and current

Sending end voltage and current

```
1 / Exa 6.2
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 Z=200*expm(%i*80*%pi/180);/ohm
8 Y=0.0013*expm(%i*90*%pi/180);//S/phase
9 P=80*10^6; /W
10 pf=0.8; //power factor
11 VRL=220*1000; //V
12 VR=VRL/sqrt(3);//V
13 IR=P/sqrt(3)/VRL/pf;//A
14 fi=acosd(pf);//degree
15 IR = IR * expm(%i*-fi*%pi/180); //A
16 YZ=Y*Z; //ohm
17 Y2Z2=YZ^2; //ohm
18 Y3Z3=YZ^3; //ohm
19 A=1+YZ/2+Y2Z2/24+Y3Z3/720; //ohm
20 D=A; //oh, m
B=Z*(1+YZ/6+Y2Z2/120+Y3Z3/5040); //ohm
22 \text{ C=Y*}(1+\text{YZ}/6+\text{Y2Z2}/120+\text{Y3Z3}/5040); //\text{mho}
23 VS = A * VR + B * IR; //V
24 VSL=sqrt(3)*abs(VS);//V
25 disp(VSL/1000, "Sending end line voltage in kV:");
26 \quad IS=C*VR+D*IR; //
27 disp ("Sending end current in A, magnitude is "+
      string(abs(IS))+" and angle in degree is "+string
      (atand(imag(IS), real(IS))));
```

Scilab code Exa 6.3 A0 B0 C0 and D0 constant

AO BO CO and DO constant

```
1 // Exa 6.3
```

```
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 VRL = 220; //kV
8 \text{ VR=VRL/sqrt}(3); //V
9 P=10*10^6; //VA
10 Z=1+\%i*8; //ohm(in \%)
11 Zse=Z/100*VRL^2/100; //ohm/phase
12 A=0.9*expm(%i*0.6*%pi/180);//Auxiliary constant
13 D=A; // Auxiliary constant
14 B=153.2*expm(%i*84.6*%pi/180);//Auxiliary constant
15 C=0.0012*expm(%i*90*%pi/180);//Auxiliary constant
16 A0=A+C*Zse; //constant
17 B0=B+D*Zse; //ohm//constant
18 CO=C; //mho or S//constant
19 D0=A; // constant
20 disp("Constant A0, magnitude is "+string(abs(A0))+"
      and angle in degree is "+string(atand(imag(AO),
     real(A0)));
21 disp("Constant B0(ohm), magnitude is "+string(abs(B0
      ))+" and angle in degree is "+string(atand(imag(
     B0), real(B0)));
22 disp("Constant CO(S), magnitude is "+string(abs(CO))
     +" and angle in degree is "+string(atand(imag(CO))
      ,real(C0)));
23 disp("Constant D0, magnitude is "+string(abs(D0))+"
     and angle in degree is "+string(atand(imag(D0),
     real(D0)));
```

Scilab code Exa 6.4 A0 B0 C0 and D0 constant

AO BO CO and DO constant

```
1 / Exa 6.4
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 A=0.98*expm(%i*2*%pi/180);//Auxiliary constant
8 D=A; // Auxiliary constant
9 B=28*expm(%i*69*%pi/180);//Auxiliary constant
10 Zse=12*expm(%i*80*%pi/180);/ohm
11 C=(A*D-1)/B; // Auxiliary constant
12 A0=A+C*Zse; //constant
13 B0=B+2*A*Zse+C*Zse^2; //ohm//constant
14 CO=C; //mho or S//constant
15 D0 = A0; //constant
16 disp("Constant A0, magnitude is "+string(abs(A0))+"
     and angle in degree is "+string(atand(imag(AO),
     real(A0)));
17 disp("Constant B0(ohm), magnitude is "+string(abs(B0
     ))+" and angle in degree is "+string(atand(imag(
     B0), real(B0))));
18 disp("Constant CO(S), magnitude is "+string(abs(CO))
     +" and angle in degree is "+string(atand(imag(CO))
      ,real(C0)));
19 disp("Constant D0, magnitude is "+string(abs(D0))+"
     and angle in degree is "+string(atand(imag(D0),
     real(D0)));
```

Scilab code Exa 6.5 A0 B0 C0 and D0 constant

AO BO CO and DO constant

```
1 //Exa 6.5
2 clc;
3 clear;
```

```
4 close;
5 format('v',8);
6 //Given data :
7 A=0.92*expm(%i*5.3*%pi/180);//Auxiliary constant
8 D=A; // Auxiliary constant
9 B=65.3*expm(%i*81*%pi/180);//Auxiliary constant
10 ZT = 100 * expm(%i * 70 * %pi/180); //ohm
11 YT=0.0002*expm(\%i*-75*%pi/180);//S
12 C=(A*D-1)/B; // Auxiliary constant
13 A0 = A * (1 + 2 * YT * ZT) + B * (YT) + C * ZT * (1 + YT * ZT); // constant
14 B0=2*A*ZT+B+C*ZT^2; //ohm//constant
15 C0=2*A*YT*(1+YT*ZT)+B*YT^2+C*(1+YT*ZT)^2; //mho or S
     //constant
16 D0=A0; // constant
17 disp("Constant A0, magnitude is "+string(abs(A0))+"
     and angle in degree is "+string(atand(imag(AO),
     real(A0)));
18 disp("Constant B0(ohm), magnitude is "+string(abs(B0
     ))+" and angle in degree is "+string(atand(imag(
     B0), real(B0)));
19 disp("Constant CO(S), magnitude is "+string(abs(CO))
     +" and angle in degree is "+string(atand(imag(CO))
      ,real(C0)));
20 disp("Constant D0, magnitude is "+string(abs(D0))+"
     and angle in degree is "+string(atand(imag(D0),
     real(D0)));
```

Scilab code Exa 6.6 Equivalent T and Pi network

Equivalent T and Pi network

```
1 //Exa 6.6
2 clc;
3 clear;
4 close;
```

```
5 format('v',8);
6 //Given data :
7 A=0.945*expm(%i*1.02*%pi/180);//Auxiliary constant
8 D=A; // Auxiliary constant
9 B=82.3*\expm(\%i*73.03*\%pi/180);//ohm//Auxiliary
10 C=0.001376*expm(%i*90.4*%pi/180);//S//Auxiliary
     constant
11 //part (i)
12 Y = C; //S
13 Z=2*(A-1)/C; //ohm
14 disp("For equivalent T-network: ");
15 disp("Shunt admittance in S, magnitude is "+string(
     abs(Y))+" and angle in degree is "+string(atand(
     imag(Y),real(Y))));
16 disp("Impedance in ohm, magnitude is "+string(abs(Z)
     )+" and angle in degree is "+string(atand(imag(Z)
     ,real(Z))));
17 disp("For equivalent pi-network: ");
18 Z=B; //ohm
19 disp("Series Impedance in ohm, magnitude is "+string
     (abs(Z))+" and angle in degree is "+string(atand(
     imag(Z),real(Z))));
20 Y=2*(A-1)/B;//S
21 disp("Shunt admittance in S, magnitude is "+string(
     abs(Y))+" and angle in degree is "+string(atand(
     imag(Y),real(Y)));
22 //For T-Network Value of Z is wrog in the book.
```

Chapter 7

Corona

```
Scilab code Exa 7.1 Line Voltage
```

Line Voltage

```
1 //Exa 7.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=1;//cm
7 d=4;//meter
8 g0=30/sqrt(2);//kV/cm
9 LineVoltage=sqrt(3)*g0*r*log(d*100/r);//kV
10 disp(round(LineVoltage),"Line Voltage for comencing of corena(in kV) :");
```

Scilab code Exa 7.2 Disruptive Critical Voltage

Disruptive Critical Voltage

```
1 / Exa 7.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 Ph=3; // phase
7 V = 220; //kV
8 f = 50; //Hz
9 r=1.2; //cm
10 d=2; // meter
11 mo=0.96; // Irregularity factor
12 t=20; //degree C
13 T=t+273; //K
14 b=72.2; //cm
15 go=21.1; //kV \text{ rms/cm}
16 del=3.92*b/T;//Air density factor
17 Vdo=go*del*mo*r*log(d*100/r);//in kV
18 Vdo_line=sqrt(3)*Vdo;//in kV
19 disp(round(Vdo_line), "Disruptive critical voltage
      from line to line (kV rms) : ");
```

Scilab code Exa 7.3 Spacing between Conductors

Spacing between Conductors

```
1 //Exa 7.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data:
7 V=132;//kV
8 r=2/2;//cm
9 Vexceed=210;//kV(rms)
10 go=30000/sqrt(2);//Volts/cm
```

Scilab code Exa 7.4 Minimum diameter of conductor

Minimum diameter of conductor

```
1 / Exa 7.4
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Ph=3;//phase
8 V = 132; //kV
9 f = 50; //Hz
10 d=3; //meter
11 d=d*100; //in cm
12 go = 21.21; //kV/cm : assumed
13 mo = 0.85; // assumed
14 del=0.95; //assumed air density factor
15 Vdo=V/sqrt(3);//kV
16 //Formula : Vdo=go*del*mo*r*log(d*100/r);//in kV
17 / r * log (d/r) = Vdo/go/del/mo: solving
18 //Implementing Hit & Trial method
19 for r=0.1:.1:2
       if floor(r*log(d/r)) == floor(Vdo/go/del/mo) then
20
21
           disp(2*r,"Minimum Diameter of conductor by
              Hit & Trial method(cm): ");
```

```
22 break;
23 end
24 end
```

Scilab code Exa 7.5 Presence of Corona

Presence of Corona

```
1 / Exa 7.5
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 r=2.5/2; //cm
8 epsilon_r=4; // constant
9 r1=3/2; /cm
10 r2=9/2; /cm
11 V = 20; //kV (rms)
12 / Formula : gmax=q/(2*epsilon*r)
13 g2maxBYg1max=r/epsilon_r/r1; // unitless
14 //Formula : V=g1max*r*log(r1/r)+g2max*r1*log(r2/r1)
15 g1max=V/(r*log(r1/r)+g2maxBYg1max*r1*log(r2/r1));//
      in kV/cm
16 disp(g1max, "g1max(kV/cm) = ");
17 disp("g1max > go, Corona will be present.");
```

Scilab code Exa 7.6 Critical Disruptive Voltage

Critical Disruptive Voltage

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Ph=3; // phase
8 r = 10.4/2; /mm
9 \text{ r=r/10; //in cm}
10 d=2.5; // meter
11 d=d*100; //in cm
12 t=21; //degree C
13 T=t+273; //K
14 b=73.6; //\text{cm-Hg}
15 \text{ mo} = 0.85;
16 \text{ mv}_1 = 0.7;
17 \text{ mv}_g = 0.8;
18 go = 21.21; //kV/cm : assumed
19 del=3.92*b/T;//Air density factor
20 //Formula : Vdo=go*del*mo*r*log(d*100/r);//kV
21 Vdo=go*del*mo*r*log(d/r);/kV
22 Vdo_line=sqrt(3)*Vdo;//kV
23 Vvo=go*del*mv_l*r*(1+.3/sqrt(del*r))*log(d/r); //kV
24 Vvo_line_local = Vvo*sqrt(3); //kV(rms)
25 disp(Vvo_line_local,"Line to line visual critical
      voltage for local corona(kV-rms) : ")
26 \text{ Vvo\_line\_general=Vvo\_line\_local*mv\_g/mv\_l;} //kV(rms)
27 disp(Vvo_line_general,"Line to line visual critical
      voltage for general corona(kV-rms) : ")
28 //Note: Answer in the book is not accurate.
```

Scilab code Exa 7.7 Corona Loss

Corona Loss

```
1 / Exa 7.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Pc1=53; //in kW
8 V1 = 106; //in kV
9 Pc2=98; //in kW
10 V2=110.9; //in kV
11 Vph1=V1/sqrt(3); //in kV
12 Vph2=V2/sqrt(3); //in kV
13 //Formula : Pc=3*244/del*(f+25)*sqrt(r/d)*(Vph-Vdo)
      ^2*10^-5; / \text{kW/Km}
14 disp("Using proportionality: Pc is proportional to
      (Vph-Vdo)^2");
15 disp("We have, Pc1/Pc2 = (Vph1-Vdo)^2/(Vph2-Vdo)^2")
16 Vdo=(Vph1-sqrt(Pc1/Pc2)*(Vph2))/(1-sqrt(Pc1/Pc2));
17 V3=113; //in kV
18 Vph3=V3/sqrt(3); //in kV
19 Pc3=Pc2*(Vph3-Vdo)^2/(Vph2-Vdo)^2;//in kW
20 disp(Pc3, "Corona Loss at 113 kV in kW:");
21 VLine=sqrt(3)*Vdo;//in kV
22 disp(VLine," Disruptive critical voltage between
      lines(kV): ");
```

Scilab code Exa 7.8 Disruptive voltage and corona loss

Disruptive voltage and corona loss

```
1 //Exa 7.8
2 clc;
3 clear;
4 close;
```

```
5 format('v',5);
6 //Given data :
7 f = 50; //Hz
8 1=160; //km
9 r=1.036/2; //cm
10 d=2.44*100; //cm
11 g0=21.1; //kV/cm(rms)
12 m0=0.85; //irregularity factor
13 mv=0.72; //roughness factor
14 b=73.15; /cm
15 t=26.6; //degree C
16 del=3.92*b/(273+t);//air density factor
17 Vd0=g0*del*m0*r*log(d/r); //kV(rms)
18 disp(VdO, "Critical disruptive voltage (rms) in kV:"
     );
19 Vv0=g0*del*mv*r*(1+0.3/sqrt(del*r))*log(d/r);/kV
20 disp(Vv0, "Visual Critical voltage(rms) in kV: ");
21 Vph=110/sqrt(3); //in kV
22 \text{ Pc\_dash=d/del*(f+25)*sqrt(r/d)*(Vph-0.8*Vd0)}
      ^2*10^-5; //kW/km/phase
23 T_Corona_loss=1*3*Pc_dash; //kW
24 disp(T_Corona_loss, "Total corona loss under foul
      weather condition using Peek formula in kW: ");
25 \text{ VphBYVd0=Vph/Vd0/0.8};
26 K=0.46; //constant
27 Corona_loss=21*10^-5*f*Vph^2*K/(log10(d/r))^2;/kW/
     km/phase
28 T_corona_loss=Corona_loss*3*1;/kW
29 disp(T_corona_loss,"Total corona loss under foul
      weather condition using Peterson formula in kW:
     ");
```

Scilab code Exa 7.9 Corona Characteristics

Corona Characteristics

```
1 / Example 7.9
2 clc;
3 clear;
4 close;
5 //given data :
6 f = 50; //Hz
7 1=175; //km
8 r = 1/2; //cm
9 d=3*100; //cm
10 g0=21.1; //kV/cm(rms)
11 m0=0.85; //irregularity factor
12 mv=0.72; //roughness factor
13 mv_dash=0.82; //roughness factor
14 b=74; //cm
15 t=26; //degree C
16 Vph=110/sqrt(3); //kV
17 del=3.92*b/(273+t); //air density factor
18 Vd0=g0*del*m0*r*log(d/r); //kV(rms)
19 Vvo=g0*del*mv*r*(1+0.3/sqrt(del*r))*log(d/r); //kV
      rms
20 Vvo_dash=Vvo*mv_dash/mv; //kV rms
21 Pc = 244/del*(f+25)*sqrt(r/d)*(Vph-Vd0)^2*10^-5; //kW/
     Km/phase
22 T_CoronaLoss=Pc*1*3; //kW
23 disp ("Power loss due to corona for fair weather
      condition : ");
24 disp(T_CoronaLoss," Total corona loss using Peek
      formula in kW: ");
25 K=0.0713; // constant for Vph/Vdo=1.142
26 Pc = 21*10^{-5}*f*Vph^2/(log10(d/r))^2*K; /kW/Km/phase
27 \text{ T_CoronaLoss=Pc*1*3; }/kW
28 disp(T_CoronaLoss," According Peterson formula, Total
       corona loss for 175 km 3-phase line(kW): ");
  disp("Power loss due to corona for stormy weather
      condition : ");
30 Vd0=0.8*Vd0; //kV
31 \text{ Pc\_dash=1*3*244/del*(f+25)*sqrt(r/d)*(Vph-Vd0)}
      ^2*10^-5; //kW/Km/phase
```

```
disp(Pc_dash, "Total corona loss using Peek formula
        in kW : ");

K=0.395; // constant for Vph/Vdo=1.42

Pc=21*10^-5*f*Vph^2/(log10(d/r))^2*K; //kW/Km/phase

T_CoronaLoss=Pc*1*3; //kW

disp(T_CoronaLoss, "According Peterson formula, Total
        corona loss for 175 km 3-phase line(kW): ");

//Answer is wrong in the book for corona loss fair
        weather condition using Peek formula.
```

Chapter 8

Electrostatic and Electromagnetic Interference with Communication Lines

Scilab code Exa 8.1 Voltage induced per km

Voltage induced per km

```
//Exa 8.1
clc;
clc;
clear;
close;
format('v',6);
//Given data :
f=50;//Hz
hor_con=1.2;//horizontal configuration spacing in m
x=0.85;//telephone line location below power line in meter
I=120;//current in power line in A
d=0.4;//spacing between conductors in meter
dAD=sqrt(x^2+((hor_con+d)/2)^2);//m
dAC=sqrt(x^2+((hor_con-d)/2)^2);//m
dBD=dAC;//m
```

```
15 dBC=dAD; //m
16 M=d*log(sqrt(dAD*dBC/dAC/dBD)); //mh/km
17 Vm=2*%pi*f*M*10^-3*I; //V
18 disp(Vm, "Voltage induced per Km in the line in Volt :");
```

Scilab code Exa 8.2 Induced Voltage at fundamental frequency

Induced Voltage at fundamental frequency

```
1 / Exa 8.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 f=50; //HzdAP=AO+5; //m
8 1 = 200; //km
9 V=132*1000; //V
10 Load=28000; //kW
11 pf=0.85; //lagging power factor
12 r=5/1000; //radius of conductor in m
13 //From the figure given in question
14 A0 = sqrt(4^2-2^2); //m
15 dAP=A0+5; //m
16 dAQ=dAP+1;/m
17 dBP=sqrt(5^2+2^2); //m
18 dBQ=sqrt(6^2+2^2);//m
19 MA = 0.2 * log(dAQ/dAP); //mH/km
20 MB=0.2*\log(dBQ/dBP); //mH/km
21 MC=MB; //mH/km
22 M=MB-MA; //mH/km(MA,MB) and Mc are displaced by 120
      degree)
23 I=Load*1000/sqrt(3)/V/pf;//A
24 Vm = 2 * \%pi * f * M * 10^{-3} * I; //V/km
```

Chapter 9

Overhead Line Insulators

```
Scilab code Exa 9.1 String Efficiency
   String Efficiency
1 / Exa 9.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 C1=1; //
7 C=6;
8 \text{ K=C1/C};
9 V2byV1 = (1+K);
10 V3byV1 = (1+3*K+K^2);
11 V4byV1 = (1+6*K+5*K^2+K^3);
12 //I5=I4+i4;
13 / \text{omega} * C * V5 = \text{omega} * C * V4 + \text{omega} * C1 * (V1 + V2 + V3 + V4)
14 V5byV1=1+10*K+15*K^2+7*K^3+K^4
15 VbyV1=1+V2byV1+V3byV1+V4byV1+V5byV1;
16 V1byV=1/VbyV1;
17 disp("Voltage across the first unit is "+string(
      V1byV*100) + \% \text{ of } V");
```

Scilab code Exa 9.2 Voltage Distribution and String efficiency

Voltage Distribution and String efficiency

```
1 / Exa 9.2
 2 clc;
 3 clear;
4 close;
 5 //Given data :
 6 C1=1; //
 7 C = 10;
 8 \text{ K=C1/C};
9 V2byV1 = (1+K);
10 V3byV1 = (1+3*K+K^2);
11 V4byV1 = (1+6*K+5*K^2+K^3);
12 V5byV1=1+10*K+15*K^2+7*K^3+K^4
13 / I6 = I5 + i5;
14 / \text{omega} * \text{C} * \text{V6} = \text{omega} * \text{C} * \text{V5} + \text{omega} * \text{C1} * (\text{V1} + \text{V2} + \text{V3} + \text{V4} + \text{V5})
15 \quad V6byV1 = V5byV1 + K*(1 + V2byV1 + V3byV1 + V4byV1 + V5byV1);
16 \text{ VbyV1} = 1 + \text{V2byV1} + \text{V3byV1} + \text{V4byV1} + \text{V5byV1} + \text{V6byV1};
17 V1byV=1/VbyV1;
18 disp("Voltage across the first unit is "+string(
        V1byV*100) + \% \text{ of } V");
```

Scilab code Exa 9.3 String Efficiency

String Efficiency

```
1 / Exa 9.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 V = 66; //kV
7 // Part(i)
8 n=5; //no. of uniits
9 K=1/5; //shunt to mutual capacitance ratio
10 V1=V/(5+20*K+21*K^2+8*K^3+K^4); //kV
11 V5=V1*(1+10*K+15*K^2+7*K^3+K^4); //kV
12 Strinf_eff=V/n/V5;
13 disp(Strinf_eff*100,"Part(i) Percentage String
      Efficiency (%)");
14 // Part ( i i )
15 n=5; //no. of uniits
16 K=1/6; //shunt to mutual capacitance ratio
```

```
17 V1=V/(5+20*K+21*K^2+8*K^3+K^4);//kV
18 V5=V1*(1+10*K+15*K^2+7*K^3+K^4);//kV
19 Strinf_eff=V/n/V5;
20 disp(Strinf_eff*100,"Part(ii) Percentage String Efficiency(%)");
```

Scilab code Exa 9.4 Voltage Distribution and String Efficiency

Voltage Distribution and String Efficiency

```
1 // Exa 9.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 20; //kV
7 n=3; //no. of uniits
8 K=0.1; //shunt to mutual capacitance ratio
9 V3=Vs;//kV
10 V1 = V3/(1+3*K+K^2); //kV
11 disp(V1, "Voltage across top most unit(kV)");
12 V2=V1*(1+K); //kV
13 disp(V2, "Voltage across middle unit(kV)");
14 V = V1 + V2 + V3; //kV
15 Strinf_eff=V/n/V3;
16 disp(Strinf_eff*100,"Percentage String Efficiency(%)
     ");
```

Scilab code Exa 9.5 Maximum Voltage

Maximum Voltage

```
1 //Exa 9.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs=17.5; //kV
7 n=3; //no. of uniits
8 K=1/8; //shunt to mutual capacitance ratio
9 V3=Vs; //kV
10 V1=V3/(1+3*K+K^2); //kV
11 V2=V1*(1+K); //kV
12 V=V1+V2+V3; //kV
13 //Strinf_eff=V/n/V3;
14 disp(V, "Maximum safe working voltage(kV)");
```

Scilab code Exa 9.6 String Efficiency

String Efficiency

```
1 //Exa 9.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 12; //kV
7 n=4; //no. of uniits
8 K=0.1;//shunt to mutual capacitance ratio
9 V4=Vs;/kV
10 V1=V4/(1+6*K+5*K^2+K^3); //kV
11 V2=V1*(1+K); //kV
12 V3=V1*(1+3*K+K^2); //kV
13 V = V1 + V2 + V3 + V4; //kV
14 disp(V, "Maximum safe working voltage(kV)");
15 Strinf_eff=V/n/V4;
16 disp(Strinf_eff*100,"Percentage String Efficiency(%)
      ");
```

Scilab code Exa 9.7 Maximum line voltage

Maximum line voltage

```
1 //Exa 9.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs=11; //kV
7 n=5; //no. of uniits
8 K=0.1; //shunt to mutual capacitance ratio
9 V5=Vs; //kV
10 V1=V5/(1+10*K+15*K^2+7*K^3+K^4); //kV
11 V2=V1*(1+K); //kV
12 V3=V1*(1+3*K+K^2); //kV
13 V4=V1*(1+6*K+5*K^2+K^3); //kV
14 V=V1+V2+V3+V4+V5; //kV
15 disp(V, "Maximum safe working voltage(kV)");
```

Scilab code Exa 9.8 Voltage between conductors and string efficiency

Voltage between conductors and string efficiency

```
1 //Exa 9.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 V2=15;//kV
7 V3=21;//kV
```

```
8     n=4; //no. of uniits
9     //V3/V2=(1+3*K+K^2)/(1+K)
10     //K^2*V2+K*(V3+3*V2)-V2+V3=0;
11     p=[V2 -V3+3*V2 V2-V3];
12     K=roots(p);
13     K=K(2); // Taking +ve value
14     V1=V2/(1+K); //kV
15     V4=(1+6*K+5*K^2+K^3)*V1; //kV
16     V=V1+V2+V3+V4; //kV
17     VL=sqrt(3)*V; //kV
18     disp(VL, "Voltage between conductors(kV)");
19     Strinf_eff=V/n/V4;
20     disp(Strinf_eff*100, "Percentage String Efficiency(%)");
```

Scilab code Exa 9.9 Capacitance of remaining five units

Capacitance of remaining five units

```
1 / Exa 9.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 K=0.1; //shunt to mutual capacitance ratio
7 CbyC1=10;
8 C2byC1 = (1+K) * CbyC1;
9 C3byC1 = (1+3*K)*CbyC1;
10 C4byC1 = (1+6*K)*CbyC1;
11 disp("C2 is "+string(C2byC1)+" times of C1");
12 disp("C3 is "+string(C3byC1)+" times of C1");
13 disp("C4 is "+string(C4byC1)+" times of C1");
14 //I5 = I4 + i4
15 / \text{omega} \cdot \text{C5} \cdot \text{v} = \text{omega} \cdot \text{C4} \cdot \text{v} + \text{omega} \cdot \text{C1} \cdot \text{4} \cdot \text{v}
16 C5byC1 = (1+10*K)*CbyC1;
```

```
17 disp("C5 is "+string(C5byC1)+" times of C1");
18 //I6=I5+i5
19 //omega*C6*v=omega*C5*v+omega*C1*5*v
20 C6byC1=(1+15*K)*CbyC1;
21 disp("C6 is "+string(C6byC1)+" times of C1");
```

Scilab code Exa 9.10 Line to pin capacitance

Line to pin capacitance

```
1 / Exa 9.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 n=8; //no. of units
7 p=1:8;
8 / Cp = p * C / (n-p)
9 C1byC=1/(n-p(1));
10 C2byC=2/(n-p(2));
11 C3byC=3/(n-p(3));
12 C4byC=4/(n-p(4));
13 C5byC=5/(n-p(5));
14 C6byC=6/(n-p(6));
15 C7byC=7/(n-p(7));
16 disp("C1 is "+string(C1byC)+"
                                     times of C");
17 disp("C2 is "+string(C2byC)+"
                                     times of C");
                                     times of C");
18 disp("C3 is "+string(C3byC)+"
19 disp("C4 is "+string(C4byC)+"
                                     times of C");
20 disp("C5 is "+string(C5byC)+"
                                     times of C");
21 \operatorname{disp}(\text{"C6 is "+string}(\text{C6byC})+\text{"})
                                     times of C");
22 disp("C7 is "+string(C7byC)+"
                                     times of C");
```

Scilab code Exa 9.11 String efficiency

String efficiency

```
1 //Exa 9.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 v2byv1=25/23.25; //ratio(By Kirchoff law)
7 v3byv1=1.65/1.1625; //ratio(By Kirchoff law)
8 Vbyv1=1+v2byv1+v3byv1; //ratio(Final voltage between line conductor & earth)
9 v1byV=1/Vbyv1; //ratio
10 v2byV=v2byv1*v1byV; //ratio
11 v3byV=v3byv1*v1byV; //ratio
12 eff=1/3/v3byV*100; //string efficiency in %(V/3/v3)
13 disp(eff, "String efficiency in % is ");
```

Scilab code Exa 9.12 Line voltage and capacitance required

Line voltage and capacitance required

```
1 //Exa 9.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 V=20; //kV
7 C=poly(0, 'C');
8 //Cmutual=C; //F
9 CmutualBYC=1;
10 //Cshunt=C/5; //F
11 CshuntBYC=1/5;
12 //I2=I1+i1//omega*C*V2=omega*C*V1+omega*Cshunt*V1
```

Chapter 10

Mechanical Design of Transmission Lines

Scilab code Exa 10.1 Maximum sag

```
Maximum sag
```

```
1 //Exa 10.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=200;//m
7 w=0.7;//kg
8 T=1400;//kg
9 S=w*L^2/(8*T);//,m
10 disp(S,"maximum sag(m) :");
```

Scilab code Exa 10.2 Height above ground

Height above ground

```
1  //Exa 10.2
2  clc;
3  clear;
4  close;
5  //Given data :
6  W=680; //kg/km
7  L=260; //m
8  U_strength=3100; //kg
9  SF=2; // safety factor
10  Clearance=10; //m
11  T=U_strength/SF; //kg
12  w=W/1000; //kg
13  S=w*L^2/(8*T); //, m
14  h=Clearance+S; //m
15  disp(h," Height above the ground(m) :");
```

Scilab code Exa 10.3 Horizontal component of tension and maximum sag

Horizontal component of tension and maximum sag

```
1 //Exa 10.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 w=700/1000; //kg/m
7 L=300; //m
8 Tmax=3500; //kg
9
10 S_T0=w*L^2/8; //,m
11 //Tmax=T0+w*S
12 //T0^2-T0*Tmax-w*S_T0=0
13 polynomial=[1 -Tmax w*S_T0];
14 T0=roots(polynomial); //kg
15 T0=T0(1); //+ve sign taken
```

```
disp(T0,"Horizontal component of tension in kg is :
    ");

S=S_T0/T0;//m

disp(S,"Maximum sag in m : ");

y=S/2;//m

x=sqrt(2*y*T0/w);//m

disp(x,"Sag will be half at the point where x coordinate(in m) will be : ");
```

Scilab code Exa 10.4 Calculate maximum sag

Calculate maximum sag

```
1 / Exa 10.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=150; //m
7 wc=1; // kg
8 A=1.25; //cm^2
9 U_stress=4200; // kg/cm^2
10 Pw=100; // kg/m^2 (Wind pressure)
11 SF=4; //factor of safety
12 W_stress=U_stress/SF;//kg/cm^2
13 T=W_stress*A; //kg
14 d=sqrt(A/(%pi/4));//cm
15 w_w=Pw*d*10^-2; //kg
16 wr = sqrt(wc^2 + w_w^2); //kg
17 S=wr*L^2/8/T; //m
18 disp(S, "Maximum sag(m)");
```

Scilab code Exa 10.5 Calculate the sag

Calculate the sag

```
1 / \text{Exa} 10.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=160; //m
7 d=0.95; //cm
8 wc=0.65; // kg/m
9 U_stress=4250; // kg/cm^2
10 Pw=40; // kg/m^2 (Wind pressure)
11 SF=5; // factor of safety
12 W_stress=U_stress/SF;//kg/cm^2
13 T=W_stress*\%pi/4*d^2;//kg
14 w_w=Pw*d*10^-2; //kg
15 wr = sqrt(wc^2 + w_w^2); //kg
16 S=wr*L^2/8/T;/m
17 disp(round(S), "Sag(meter)");
```

Scilab code Exa 10.6 Calculate the maximum sag

Calculate the maximum sag

```
1 //Exa 10.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=180;//m
7 D=1.27;//cm
8 Pw=33.7;//kg/m^2(Wind pressure)
9 r=1.25;//cm
10 wc=1.13;//kg/cm^2
```

```
11  U_stress=4220; //kg/cm^2
12  SF=5; //factor of safety
13  W_stress=U_stress/SF; //kg/cm^2
14  T=W_stress*%pi/4*D^2; //kg
15  S=wc*L^2/8/T; //msag in air
16  disp(S,"Sag in still air(meter)");
17  w1=2890.3*r*10^-2*(D+r)*10^-2; //kg/m
18  w_w=Pw*(D+2*r)*10^-2; //kg
19  wr=sqrt((wc+w1)^2+w_w^2); //kg
20  Smax=wr*L^2/8/T; //msag in air
21  disp(Smax,"Maximum Sag(meter)");
```

Scilab code Exa 10.7 Calculate the maximum sag

Calculate the maximum sag

```
1 / Exa 10.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 D=19.5; / mm
7 wc=0.85; // \text{kg/m}
8 L=275; //m
9 Pw=39; // kg/m^2 (Wind pressure)
10 r = 13; //mm
11 U_stress=8000; //kg/cm^2
12 SF=2; //factor of safety
13 rho_i=910; //kg/m^3(density of ice)
14 T=U_stress/SF; //kg
15 wi=rho_i*\%pi*r*10^-3*(D+r)*10^-3;//kg
16 w_w=Pw*(D+2*r)*10^-3; //kg
17 wr = sqrt((wc + wi)^2 + w_w^2); //kg
18 \operatorname{Smax=wr*L^2/8/T}; //\operatorname{msag} in air
19 disp(Smax, "Maximum Sag(meter)");
```

Scilab code Exa 10.8 Calculate the maximum sag

Calculate the maximum sag

```
1 // Exa 10.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 wc=1; // kg/m
7 L=280; //m
8 D=20; /mm
9 r = 10; /mm
10 Pw=40; // kg/m^2 (Wind pressure)
11 rho_i=910; //kg/m^3 (density of ice)
12 U_stress=10000; //kg/cm^2
13 SF=2; // factor of safety
14 wi=rho_i*%pi*r*10^-3*(D+r)*10^-3; // kg
15 w_w=Pw*(D+2*r)*10^-3; //kg
16 wr=sqrt((wc+wi)^2+w_w^2);//kg(Resultant force per m
      length of conductor)
17 T=U_stress/SF; //kg
18 \operatorname{Smax=wr*L^2/8/T}; //\operatorname{msag} in air
19 disp(Smax, "Maximum Sag(meter)");
```

Scilab code Exa 10.9 Sag in inclined and vertical direction

Sag in inclined and vertical direction

```
1 //Exa 10.9
2 clc;
```

```
3 clear;
4 close;
5 //Given data :
6 L=250; //m
7 D=1.42; //cm
8 wc=1.09; // \text{kg/m}
9 Pw=37.8; // kg/m^2 (Wind pressure)
10 r=1.25; //cm
11 Lis=1.43; //m(insulator string length)
12 Clearance=7.62; //m
13 rho_i = 913.5; //kg/m^3 (density of ice)
14 stress=1050; // kg/cm^2
15 T=stress*\%pi/4*D^2;//kg
16 wi=rho_i*%pi*r*10^-2*(D+r)*10^-2; // kg
17 w_w=Pw*(D+2*r)*10^-2;//kg
18 wr=sqrt((wc+wi)^2+w_w^2);//kg(Resultant force per m
      length of conductor)
19 \operatorname{Smax=wr*L^2/8/T}; \operatorname{//max\ sag\ in\ air}
20 disp(Smax, "Sag in inclined direction(meter)");
21 Sdash=Smax*(wc+wi)/wr;//max sag in air
22 disp(Sdash, "Sag in vertical direction (meter)");
23 h=Clearance+Sdash+Lis; //m
24 disp(h, "Height of lowest cross arm(m)");
```

Scilab code Exa 10.10 Lowest point of catenary curve

Lowest point of catenary curve

```
1 //Exa 10.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 wc=0.35; //kg/m
7 stress=800; //kg/cm^2
```

```
8 L=160; //m
9 SF=2; // safety factor
10 h=70-65; //m
11 T=stress/SF; // kg
12 x=L/2+T*h/(wc*L); //m
13 disp(x," Distance of lowest point(m)");
14 S1=wc*x^2/SF/T; // max sag in air
15 xmin=70-S1; //m
16 disp(xmin," minimum point of catenary above the ground(m)");
```

Scilab code Exa 10.11 Sag at lower support

Sag at lower support

```
1 //Exa 10.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=200; /m
7 h=10; //m
8 D=2; //cm
9 wc=2.3; // kg/m
10 Pw=57.5; // \text{kg/m}^2 \text{ (wind pressure)}
11 SF=4; //safety factor
12 stress=4220; // kg/cm^2
13 w_w = Pw * D * 10^-2; //kg
14 wr = sqrt(wc^2 + w_w^2); //kg
15 f=stress/SF; // kg/cm^2
16 T=f*\%pi/4*D^2; //kg
17 x=L/2-T*h/(wr*L);/m
18 S1=wr*x^2/2/T; //max sag in air
19 disp(S1, "Slant sag(m)");
20 Sdash=wc*x^2/2/T; // vertical sag
```

```
21 disp(Sdash, "Vertical Sag(meter)");
```

Scilab code Exa 10.12 Determine the vertical sag

Determine the vertical sag

```
1 //Exa 10.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 wc=1.925; // kg/m
7 A=2.2; //cm^2
8 f=8000; // kg/cm^2
9 L=600; //m
10 h=15; //m
11 D=2; //cm
12 SF=5; //safety factor
13 wi=1; //kg(load)
14 w=wi+wc; //kg
15 T=f*A/SF;//kg
16 x=L/2-T*h/(w*L);/m
17 S2=w*(L-x)^2/2/T;/m
18 disp(S2, "Vertical Sag(meter)");
```

Scilab code Exa 10.13 Find the clearance

Find the clearance

```
1 //Exa 10.13
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 h=80-50; //m
7 L=300; //m
8 T=2000; //kg
9 w=0.844; //kg/m
10 x=L/2-T*h/(w*L); //m
11 d_P0=L/2-x; //m
12 d_B0=L-x; //m
13 Smid=w*(L/2-x)^2/2/T; //m
14 S2=w*(L-x)^2/2/T; //m
15 Point_P=S2-Smid; //m
16 disp("Mid point P is "+string(Point_P)+" meter below point B or "+string(80-Point_P)+" meter above the water level.");
```

Scilab code Exa 10.14 Stringing Tension in the conductor

Stringing Tension in the conductor

```
1 //Exa 10.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 S1=25; //m
7 S2=75; //m
8 Point_P=45; //m
9 L1=250; //m
10 L2=125; //m(mid point)
11 w=0.7; //kg/m
12 h1=S2-S1; //m(for points A & B)
13 h2=Point_P-S1; //m(for points A & B)
14 //h1=w*L1/2/T*[L1-2*x]
15 //h2=w*L2/2/T*[L2-2*x]
```

```
16 x=(L1-h1/h2/L1*L2*L2)/(-h1/h2/L1*L2*2+2);//m

17 T=(L1-2*x)/(h1/w/L1*2);//kg

18 disp(T, "Stringing Tension(kg)");
```

Scilab code Exa 10.15 Find the clearance

Find the clearance

```
1 // Exa 10.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=300; //m
7 slope=1/20;
8 w = 0.80; // kg/m
9 h1=30; //m
10 T0=1500; // kg
11 CD=L; //m
12 tan_alfa=slope;
13 ED=CD*tan_alfa; //m
14 AC=hl; //m
15 BE=hl; //m
16 BD=BE+ED; //m
17 / S1=w*x1^2/2/T0;//m
18 / S2=w*(L-x1)^2/2/T0;//m
19 h=15; //m
20 ED=h; //m
21 x1=L/2-T0*h/w/L;/m
22 S1=w*x1^2/2/T0; //m
23 S2=w*(L-x1)^2/2/T0;/m
24 OG=AC-S1-x1*tan_alfa; //m
25 Clearance=OG; //m
26 disp(Clearance, "Clearance of the lowest point from
      ground (m)");
```

```
27 //y=x*tan_alfa-OG;//m

28 //C1=w*x^2/2/T0-(x/20-OG)

29 x=T0/20/w;//m(Byy putting dC1/dx=0)

30 C1=w*x^2/2/T0-(x/20-OG);//m

31 disp(C1, "Minimum clearance(m)");
```

Scilab code Exa 10.16 sag and tension

sag and tension

```
1 // Exa 10.16
2 clc;
3 clear;
4 close;
5 //Given data :
6 L=250; //m
7 D=19.5; //mm
8 A=2.25*10^-4; //m^2
9 wc=0.85; // kg/m
10 t1=35; //degree C
11 t2=5; //degree C
12 Pw=38.5; // kg/m^2
13 alfa=18.44*10^-6;//per degree C
14 E=9320; // \text{kg/mm}^2
15 E=9320*10^6; // \text{kg/m}^2
16 Breaking_Load=8000; //kg
17 SF=2; // Safety factor
18 T1=Breaking_Load/SF; //kg
19 f1=T1/A; // \text{kg/m}^2
20 w_w = Pw * D * 10^-2; //kg
21 w1 = sqrt(wc^2 + w_w^2); //kg
22 \text{ w}2=\text{wc};
23 //f2^2*[(f2-f1)+w1*L^2*E/24/f1^2/A^2+(t2-t1)*E]=w2*L
       ^2 * E / 24 / A^2
24 / f2^3 - f2^2 + f1 - w2 + L^2 + E/24/A^2 = 0
```

```
25 P=[1 -1.0674*10^7 0 -3463.84*10^17];
26 f2=roots(P);
27 f2=f2(1);//kg/m^2
28 S=w2*L^2/8/f2/A;//m
29 disp(S,"Sag at erection(m)");
```

Chapter 11

Insulated Cables

Scilab code Exa 11.1 Insulation Resistance

Insulation Resistance

```
1 //Exa 11.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 rho=5*10^14*10^-2; //ohm-m
7 l=5*1000; //m
8 r1=1.25; //m
9 r2=r1+1; //m
10 R_ins=rho/(2*%pi*1)*log(r2/r1); //ohm
11 disp(R_ins/10^6, "Insulation resistance of cable(Mohm ) :");
```

Scilab code Exa 11.2 Insulation Resistance

Insulation Resistance

```
1 //Exa 11.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 rho=5*10^14*10^-2; //ohm-m
7 l=5*1000; //m
8 r1=2.5; //m
9 r2=r1+1; //m
10 R_ins=rho/(2*%pi*l)*log(r2/r1); //ohm
11 disp(R_ins/10^6, "Insulation resistance of cable(Mohm ) :");
```

Scilab code Exa 11.3 Calculate the Resistivity

Calculate the Resistivity

```
1 //Exa 11.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 l=3000; //cm
7 d1=1.5; //cm
8 r1=d1/2; //cm
9 d2=5; //cm
10 r2=d2/2; //cm
11 R_INS=1800; //Mohm
12 rho=R_INS*10^6*(2*%pi*1)/log(r2/r1); //ohm-m
13 disp(rho, "Resistivity (ohm-m) :");
```

Scilab code Exa 11.4 Find Charging current

Find Charging current

```
1 //Exa 11.4
2 clc;
3 clear;
4 close;
5 // Given data :
6 V1 = 11000; //Volt
7 f = 50; //Hz
8 a=0.645; //cm^2
9 d = sqrt(4*a/\%pi); //cm
10 d=d/100; //m
11 D=2.18/100; //m
12 epsilon_r=3.5; // relative permitivity
13 V=V1*sqrt(2)/sqrt(3);//V(assuming 3 phase system)
14 gmax = 2*V/d/log(D/d); //V/m
15 gmax=gmax/10^5; //KV/cm
16 disp(gmax, "Maximum electrostatic stress(kV/cm)");
17 gmin=2*V/D/log(D/d);//V/m
18 gmin=gmin/10^5; //kV/cm
19 disp(gmin, "Minimum electrostatic stress(kV/cm)");
20 C=0.024*epsilon_r/log10(D/d);//micro F
21 disp(C*10^-6, "Capacitance per km length(F)");//
22 Vp = V1/sqrt(3); //V
23 Ic=2*\%pi*f*C*10^-6*Vp;//A
24 disp(Ic, "Charging Current per phase per km length(A)
      ");
```

Scilab code Exa 11.5 Maximum Stress and Charging KVAR

Maximum Stress and Charging KVAR

```
1 //Exa 11.5
2 clc;
```

```
3 clear;
4 close;
5 // Given data :
6 VL = 33*1000; // Volt
7 f=50; //Hz
8 1=3.4; //km
9 d=2.5; //cm
10 radial_thick=0.6;//cm
11 epsilon_r=3.1; // relative permitivity
12 V=VL*sqrt(2)/sqrt(3);//V(assuming 3 phase system)
13 D=d+2*radial_thick;//cm
14 D=D/100; //cm
15 d=d/100; //m
16 gmax = 2*V/d/log(D/d); //V/m
17 disp(gmax, "Maximum electrostatic stress(V/m)");
18 C=0.024*epsilon_r*1/log10(D/d);//micro F
19 Vp=VL/sqrt(3);//V
20 \text{ Ic}=2*\%pi*f*C*10^-6*Vp;//A
21 kVA = sqrt(3) *VL*Ic*10^-3; //kVAR
22 disp(kVA, "Total charging kVA(kVAR)");
```

Scilab code Exa 11.6 Determine D and d

Determine D and d

```
1 //Exa 11.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 VL=10*1000; // Volt
7 Emax=23; //kV/cm
8 gmax=Emax*10^5; //V/m
9 d=2*VL/gmax; //m
10 disp(d*10^3, "Diameter of conductor(mm)");
```

```
11 D=%e*d; //m
12 disp(D*10^3, "Internal diameter of sheath(mm)");
```

Scilab code Exa 11.7 Most Economical value of diameter

Most Economical value of diameter

```
1 //Exa 11.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 VL=132*1000; //Volt
7 gmax=60; //kV/cm(peak)
8 gmax=gmax/sqrt(2)*10^5; //V/m(rms)
9 V=VL/sqrt(3); //Volt
10 d=2*V/gmax; //m
11 disp(d*10^3, "Diameter of conductor(mm)");
12 D=%e*d; //m
13 disp(D*10^3, "Internal diameter of sheath(mm)");
```

Scilab code Exa 11.8 Maximum safe working voltage

Maximum safe working voltage

```
1 //Exa 11.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 r=0.5;//cm
7 R=3.5;//cm
```

```
8 r1=1; //cm
9 g1max=34; //kV/cm(peak)
10 epsilon_r=5; //relative permittivity
11 g2max=g1max*r/r1/epsilon_r; //kV/cm(peak)
12 Vpeak=r*g1max*log(r1/r)+r1*g2max*log(R/r1); //kV
13 Vrms=Vpeak/sqrt(2); //kV
14 disp(Vrms, "RMS value of max safe working voltage(kV)");
```

Scilab code Exa 11.9 Thickness and working voltage

Thickness and working voltage

```
1 ///Exa 11.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 g1max=60; //kV/cm
7 g2max=50; //kV/cm
8 epsilon_r1=4;//relative permittivity
9 epsilon_r2=2.5; // relative permitivity
10 D=5; //cm(sheat inside diameter)
11 d=1; //cm
12 //g1max/g2max = epsilon_r2*d1/(epsilon_r1*d)
13 d1=g1max/g2max/epsilon_r2*(epsilon_r1*d);//cm
14 t_inner=(d1-d)/2;//cm
15 disp(t_inner*10," Radial thickness of inner
      dielectric (mm)");
16 t_outer=(D-d1)/2; //cm
17 disp(t_outer*10," Radial thickness of outer
      dielectric (mm)");
18 Vpeak=g1max/2*d*\log(d1/d)+g2max/2*d1*\log(D/d1);//kV
19 Vrms = Vpeak/sqrt(2); //kV
20 disp(Vrms, "Maximum working voltage(rms in kV)");
```

Scilab code Exa 11.10 Working Voltage

Working Voltage

```
1 ///Exa 11.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ r=1}; //\text{cm}
7 R=2.5; //cm
8 d=2*r; //cm
9 D=2*R; //cm
10 epsilon_r1=5; // relative permitivity
11 epsilon_r2=4;//relative permitivity
12 epsilon_r3=3;//relative permitivity
13 gmax = 40; //KV/cm
14 // epsilon_r 1 *d = epsilon_r 2 *d 1 = epsilon_r 3 *d 2
15 d1=(epsilon_r1/epsilon_r2)*d;//cm
16 d2=(epsilon_r1/epsilon_r3)*d;//cm
17 Vpeak=gmax/2*(d*log(d1/d)+d1*log(d2/d1)+d2*log(D/d2)
      );//kV
18 Vrms = Vpeak/sqrt(2); //kV
19 disp(Vrms, "Working voltage(rms) for the cable (kV)")
```

Scilab code Exa 11.11 Calculate Potential gradient

Calculate Potential gradient

```
1 //Exa 11.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ Vs=}66; //\text{kV}
7 d=1; //cm
8 d1=1+2*1; //cm
9 D=3+2*1; /cm
10 epsilon_r1=3; // relative permitivity
11 epsilon_r2=2.5; // relative permitivity
12 g2maxBYg1max=d*epsilon_r1/(d1*epsilon_r2);
13 Vmax=Vs*sqrt(2)/sqrt(3);//kV
14 / V \max = g1 \max * d/2 * \log (d1/d) + g2 \max * d1/2 * \log (D/d1) ; //kV
15 g1max = Vmax/(d/2*log(d1/d)+g2maxBYg1max*d1/2*log(D/d1)
      ));//kV/cm
16 disp(g1max," Potential gradient at the surface of
      conductor (kV/cm)");
17 g2max = g1max * g2maxBYg1max; //kV/cm
18 disp(g2max, "Maximum stress in the outer dielectric(
      kV/cm)");
19 Stress=g2max*d1/D; //kV/cm
20 disp(Stress, "Stress at the surface of outer
      dielectric (kV/cm)");
```

Scilab code Exa 11.12 Determine the maximum stress

Determine the maximum stress

```
1 //Exa 11.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs=66; //kV
```

```
7 d=2;//cm
8 d1=2+2*1;//cm
9 D=4+2*1;//cm
10 epsilon_r1=5;//relative permitivity
11 epsilon_r2=3;//relative permitivity
12 g2maxBYg1max=d*epsilon_r1/(d1*epsilon_r2);
13 Vmax=Vs*sqrt(2)/sqrt(3);//kV
14 //Vmax=g1max*d/2*log(d1/d)+g2max*d1/2*log(D/d1);//kV
15 g1max=Vmax/(d/2*log(d1/d)+g2maxBYg1max*d1/2*log(D/d1));//kV/cm
16 disp(g1max, "Potential gradient at the surface of conductor(kV/cm)");
17 g2max=g1max*g2maxBYg1max;//kV/cm
18 disp(g2max, "Maximum stress in the outer dielectric(kV/cm)");
```

Scilab code Exa 11.13 Minimum Internal Diameter

Minimum Internal Diameter

```
1 //Exa 11.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 66; //kV
7 r = 0.5; //cm
8 g1max=50; //kV/cm
9 g2max=40; //kV/cm
10 g3max=30; //kV/cm
11 epsilon_r1=4; // relative permitivity
12 epsilon_r2=4; // relative permitivity
13 epsilon_r3=2.5; // relative permitivity
14 / Q=2*\%pi*epsilon0*epsilon_r1*r*g1max=2*\%pi*epsilon0
     *epsilon_r2*r*g2max=2*\%pi*epsilon0*epsilon_r3*r*
     g3max
```

Scilab code Exa 11.14 Diameter of intersheath

Diameter of intersheath

Scilab code Exa 11.15 Maximum stress and voltage

Maximum stress and voltage

```
1 //Exa 11.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 66; //kV
7 Vmax=Vs*sqrt(2)/sqrt(3);//kV
8 D=6; /cm
9 d=2.5; //cm
10 d1 = %e *d; //cm
11 gmax=2*Vmax/d/log(D/d);/kV/cm
12 disp(gmax, "Maximum stress without intersheath(kV/cm)
      ");
13 / d1/d=d2/d1=D/d2=alfa (say)
14 alfa=(D/d)^(1/3);
15 d1=alfa*d;/cm
16 d2=alfa*d1; //cm
17 gmax = Vmax/(d/2*log(d1/d)+d1/2*log(d2/d1)+d2/2*log(D/d1)
      d2));//kV/cm
18 V1max=gmax*d/2*log(d1/d);/kV
19 V2max = gmax * d1/2 * log(d2/d1); //kV
20 Vpeak1=Vmax-V1max; //kV
21 disp(Vpeak1, "Peak voltage on 1st intersheath(kV)");
22 Vpeak2 = Vpeak1 - V2max; //kV
23 disp(Vpeak2, "Peak voltage on 2nd intersheath(kV)");
```

Scilab code Exa 11.16 capacitance and charging current

capacitance and charging current

```
1 //Exa 11.16
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6  Vs=11; //kV
7  f=50; //Hz
8  l=2.5*1000; //m
9  C_all3=1.8; //micro F
10  Cdash=1.5; //micro F(2*Cc+Cs)
11  Cs=C_all3/3; //micro F
12  Cc=(Cdash-Cs)/2; //micro F
13  C_N=3*Cc+Cs; //micro F
14  disp(C_N, "Capacitance of core to neutral(micro F)");
15  C_2=C_N/2; //micro F
16  disp(C_2, "Capacitance between any two core(micro F)");
17  Vp=Vs*1000/sqrt(3); //Volt
18  Ic=2*%pi*f*Vp*C_N*10^-6; //A
19  disp(Ic, "Charging current per phase(A)");
```

Scilab code Exa 11.17 Calculate the KVA taken

Calculate the KVA taken

```
1 //Exa 11.17
2 clc;
3 clear;
4 close;
5 //Given data :
6 l=10; //km
7 Vs=10; //kV
8 f=50; //Hz
9 C=0.3; //micro F/km(between any two core)
10 C2=1*C; //micro F(between any two core)
11 C_N=2*C2; //micro F
12 Vp=Vs*1000/sqrt(3); //Volt
13 Ic=2*%pi*f*Vp*C_N*10^-6; //A
14 kVA=3*Vp*Ic/1000; //kVAR
15 disp(kVA, "kVA taken by the cable(kVAR)");
```

Scilab code Exa 11.18 Find the capacitance

Find the capacitance

```
1 //Exa 11.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 Cs3=1; //micro F/km(between shorted conductor)
7 Cs=Cs3/3;//micro F
8 Cdash=0.6; //micro F(Cdash=2*Cc+Cs: between two
      shorted conductor)
9 Cc = (Cdash - Cs)/2; //micro F
10 C2=1/2*[3*Cc+Cs]; //micro F
11 disp(C2, "Capacitance between any two cores (micro F)"
     );
12 C2dash=2*Cc+2/3*Cs;//micro F
13 disp(C2dash, "Capacitance between any two shorted
      conductors and third conductor (micro F)");
```

Scilab code Exa 11.19 Maximum Stress and total Charging KVAR

Maximum Stress and total Charging KVAR

```
1 //Exa 11.19
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs=33; //kV
```

```
7 f=50;//Hz
8 l=3.4;//km
9 d=2.5;//cm
10 D=d+2*0.6;//cm
11 epsilon_r=3.1;//relative permitivity
12 C=0.024*epsilon_r/log10(D/d)*l*1000*1000*10^-6;// F/phase
13 Vp=Vs*1000/sqrt(3);//Volt
14 Ic=2*%pi*f*C*10^-6*Vp;//A
15 kVAR=3*Vp*Ic*10^-3;//kVAR
16 disp(kVAR,"Total charging kVAR: ");
17 Emax=Vp/(d/2*log(D/d))*10^-3;//kV/cm
18 disp(Emax,"Maximum stress in the cable(kV/cm)");
```

Scilab code Exa 11.20 Capacitance Charging Current Loss Resistance

Capacitance Charging Current Loss Resistance

```
1 //Exa 11.20
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 11; //kV
7 f = 50; //Hz
8 D=2; //cm
9 d=0.5; //cm
10 epsilon_r=3.5; // relative permitivity
11 pf=0.05; //power factor
12 C=0.024*epsilon_r/log10(D/d)*10^-6; // F/km
13 disp(C*10^6, "Capacitance of the cable (micro F)");
14 Vp = Vs * 1000 / sqrt(3); // Volt
15 Ic=2*\%pi*f*C*Vp;//A
16 disp(Ic, "Charging current(A)");
17 fi=acosd(pf);//degree
```

```
18 del=90-fi;//degree(Dielectric loss angle)
19 loss_dielectric=2*%pi*f*C*Vp^2*tand(del);//W
20 disp(loss_dielectric,"Dielectric loss(W)");
21 R_INS=Vp^2/loss_dielectric;//ohm
22 disp(R_INS/10^6,"Equivalent insulation resistance(Mohm)");
```

Scilab code Exa 11.21 Loss angle and No load current

Loss angle and No load current

```
1 //Exa 11.21
2 clc;
3 clear;
4 close;
5 //Given data :
6 Vs = 11; //kV
7 f=50; //Hz
8 C_N_by_2=2.5; //micro F(between 2 core 1 core shorted
9 C_N = C_N_by_2 *2; //micro F
10 Vp = Vs * 1000 / sqrt(3); // Volt
11 Ic=2*\%pi*f*Vp*C_N*10^-6;/A
12 R_INS2=810; //kohm
13 R_{INS}=R_{INS2}/2; //kohm
14 del=atand(1/(R_INS*10^3*2*\%pi*f*C_N*10^-6)); // degree
15 disp(del, "Loss angle(degree)");
16 Ie=Vp/R_INS/1000; //A
17 I=sqrt(Ic^2+Ie^2);//A
18 disp(I,"No load current drawn by cable(A)");
```

Chapter 12

Neutral Grounding

Scilab code Exa 12.1 Reactance of coil

Reactance of coil

```
1 //Exa 12.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 f=50;//Supply frequency in Hz
8 C=4.5*10^-6;//in Farad
9 Omega_L=1/3/2/%pi/f/C;//in ohm
10 disp(Omega_L, "Reactance of coil (ohm):");
```

Scilab code Exa 12.2 Inductance and kVA rating

Inductance and kVA rating

```
1 / Exa 12.2
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 V=132*1000; //V
8 f = 50; //Hz
9 r = 10/1000; //m
10 d1=4; //m
11 d2=4; //m
12 d3=d1+d2; //m
13 epsilon_o=8.854*10^-12; // constant
14 l_tl=192*1000; //length of transmission line in m
15 C=2*\%pi*epsilon_o/log((d1*d2*d3)^(1/3)/r)*l_tl;//in
     Farad
16 L=1/3/(2*\%pi*f)^2/C;//H
17 disp(L," Necessary Inductance of peterson coil in H:
      ");
18 VP=V/sqrt(3);//V
19 IL=VP/(2*\%pi*f)/L;//A
20 Rating=VP*IL/1000; //kVA
21 disp(Rating/1000, "Rating of supressor coil in MVA:"
     );
```