

Improving Sequential Latent Variable Models with Autoregressive Flows

Joseph Marino¹, Lei Chen², Jiawei He², Stephan Mandt³ ¹California Institute of Technology, ²Simon Fraser University, ³UC Irvine

introduction

Sequences, e.g. video, often contain temporally redundant structure. We would prefer to focus model capacity on learning the most complex temporal dependencies by first removing 'lower-level' correlations.

We formulate this procedure by applying affine autoregressive flows across time [Kingma et al., 2016; Papamakarios et al., 2017]. These flows act as a moving reference frame, providing less correlated sequences to downstream modeling of more complex dependencies.

background

Autoregressive / Sequential Models

fully-visible model

$$p_{\theta}(\mathbf{x}_{1:T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_t | \mathbf{x}_{< t})$$

latent variable model

$$p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t}) p_{\theta}(\mathbf{z}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{< t})$$

Normalizing Flows

base distribution
$$p_{\theta}(\mathbf{y}_{1:T})$$

transform
$$\mathbf{x}_{1:T} = f_{\theta}(\mathbf{y}_{1:T})$$

change of variables formula

$$p_{\theta}(\mathbf{x}_{1:T}) = p_{\theta}(\mathbf{y}_{1:T}) \left| \det \left(\frac{\partial \mathbf{x}_{1:T}}{\partial \mathbf{y}_{1:T}} \right) \right|^{-1}$$

Autoregressive Normalizing Flows

forward
$$\mathbf{x}_t = \boldsymbol{\mu}_{\theta}(\mathbf{x}_{< t}) + \boldsymbol{\sigma}_{\theta}(\mathbf{x}_{< t}) \odot \mathbf{y}_t$$

motivating example

<u>linear dynamical system</u>

$$\left. \begin{array}{l} \textit{position} \;\; \mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{u}_t \\ \textit{velocity} \;\; \mathbf{u}_t = \mathbf{u}_{t-1} + \mathbf{w}_t \\ \textit{noise} \;\; \mathbf{w}_t \sim \mathcal{N}(\mathbf{w}_t; \mathbf{0}, \mathbf{\Sigma}) \end{array} \right\} \longrightarrow \left. \begin{array}{l} \mathbf{u}_t \sim \mathcal{N}(\mathbf{u}_t; \mathbf{u}_{t-1}, \mathbf{\Sigma}) \\ \mathbf{x}_t \sim \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1} + \mathbf{u}_{t-1}, \mathbf{\Sigma}) \\ \sim \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1} + \mathbf{x}_{t-1} - \mathbf{x}_{t-2}, \mathbf{\Sigma}) \end{array} \right.$$

$$\mathbf{u}_t = \mathbf{x}_t - \mathbf{x}_{t-1}$$
 and $\mathbf{w}_t = \mathbf{u}_t - \mathbf{u}_{t-1}$ are special cases of $\frac{\mathbf{x}_t - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{< t})}{\boldsymbol{\sigma}_{\theta}(\mathbf{x}_{< t})}$

 $\partial {f x}_t/\partial {f u}_t={f I}$ and $\partial {f u}_t/\partial {f w}_t={f I}$, so from the change of variables formula,

$$p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_{t-2}) = p(\mathbf{u}_t|\mathbf{u}_{t-1}) = p(\mathbf{w}_t)$$

2nd order

independent 1st order

autoregressive flows on sequences

Seq. Latent Variable Model + Autoregressive Flow Conditional Likelihood

joint distribution
$$p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}) = p_{\theta}(\mathbf{y}_{1:T}, \mathbf{z}_{1:T}) \left| \det \left(\frac{\partial \mathbf{x}_{1:T}}{\partial \mathbf{y}_{1:T}} \right) \right|^{-1}$$

with
$$p_{ heta}(\mathbf{y}_{1:T}, \mathbf{z}_{1:T}) = \prod_{t=1}^{T} p_{ heta}(\mathbf{y}_t | \mathbf{y}_{< t}, \mathbf{z}_{\leq t}) p_{ heta}(\mathbf{z}_t | \mathbf{y}_{< t}, \mathbf{z}_{< t})$$

Variational Inference

filtering approx. posterior
$$q(\mathbf{z}_{1:T}|\mathbf{x}_{1:T}) = \prod_{t=0}^{T} q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})$$

$$q(\mathbf{z}_{1:T}|\mathbf{x}_{1:T}) = \prod_{t=1}^{T} q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})$$

evidence lower bound (ELBO)

$$\log p_{\theta}(\mathbf{x}_{1:T}) \ge \mathcal{L}(\mathbf{x}_{1:T}; q, \theta) \equiv \mathbb{E}_{q(\mathbf{z}_{1:T}|\mathbf{x}_{1:T})} \left[\log p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}) - \log q(\mathbf{z}_{1:T}|\mathbf{x}_{1:T})\right]$$

$$\mathcal{L} = \sum_{t=1}^{T} \mathbb{E}_{q(\mathbf{z}_{\leq t}|\mathbf{y}_{\leq t})} \left[\log p_{\theta}(\mathbf{y}_{t}|\mathbf{y}_{< t}, \mathbf{z}_{\leq t}) - \log \frac{q(\mathbf{z}_{t}|\mathbf{y}_{\leq t}, \mathbf{z}_{< t})}{p_{\theta}(\mathbf{z}_{t}|\mathbf{y}_{< t}, \mathbf{z}_{< t})} - \log \left| \det \left(\frac{\partial \mathbf{x}_{t}}{\partial \mathbf{y}_{t}} \right) \right| \right]$$

results

Visualizing Autoregressive Flows

- ullet $\mu_{ heta}$ is the prediction of the low-level model, $oldsymbol{\sigma}_{ heta}$ expresses areas of uncertainty
- y captures any remaining spatiotemporal structure
- more complex data → more remaining structure

Quantifying Temporal Decorrelation

autoregressive flows yield sequences with reduced temporal correlation

tempor	al correlation i	n adjacer	it frames
	M-MNIST	BAIR	KTH
$\operatorname{corr}_{\mathbf{x}}$	0.24	0.87	0.96
$\operatorname{corr}_{\mathbf{y}}$	0.02	0.43	0.31

Improved Model Performance

- autoregressive flows (AF) perform well as standalone models and
- improve modeling performance of a sequential latent variable model (SLVM)

test negative log-likelihood in nats / dim

	M-MNIST	BAIR	KTH
1-AF	2.15	3.05	3.34
2-AF	2.13	2.90	3.35
SLVM	≤ 1.92	≤ 3.57	
SLVM w/ 1-AF	≤ 1.86	≤ 2.35	≤ 2.39