$\mathbf{\acute{I}ndice}$

1	Intr	roducción 2						
	1.1	Modelo ideal						
	1.2	Otros modelos						
	1.3	Alimentación y saturación						
	1.4	Otros parámetros del op amp						
2	Op	m Amp						
	2.1	Introducción						
	2.2	Circuito inversor						
		2.2.1 Caso A_{vol} infinito						
		2.2.2 Caso A_{vol} finito						
		2.2.3 Caso A_{vol} con polo dominante						
		2.2.4 Alinealidades del Amplificador Operacional						
	2.3	Circuito no inversor						
3	Pedal de Distorsión 8							
	3.1	Introducción						
	3.2	Consideraciones de diseño						
	3.3	Diseño del circuito						
		3.3.1 Características del amplificador						
		3.3.2 Sección de alimentación						
		3.3.3 Sección de clipping						
		3.3.4 Sección de amplificación						
	3.4	Simulaciones						
	2.5	Mediciones 14						

1 Introducción

En el presente informe se busca caracterizar el comportamiento de los amplificadores operacionales, tanto de forma analítica como empírica y con la ayuda de *software* de simulación. Se estudiará cómo su presencia afecta la respuesta en frecuencia e impedancia de entrada de varios circuitos, así como sus parámetros característicos. Por último, se diseñarán dos circuitos de aplicación que hacen uso de operacionales: un pedal de distorsión y un sensor de temperatura.

El amplificador operacional, comúnmente denominado op amp, es un componente activo que cumple la función de amplificar en su salida lo máximo posible la diferencia de potencial entre sus entradas positiva y negativa. Retroalimentando la salida al terminal positivo o negativo, pueden construirse circuitos que realicen operaciones matemáticas de gran utilidad como por ejemplo suma, multiplicación por una constante, derivación e integración. Otra aplicación que se puede mencionar de este componente es en diseño de filtros.

dibujito lindo de un opamp que tenga bien indicado que es cada terminal. Decir que así le vamos a decir a los terminales en todo el tp

La ecuación fundamental de un operacional ideal es:

$$V_{out} = A_0 \cdot (V^+ - V^-)$$

Como el propósito de este componente es amplificar la diferencia de potencial $V^+ - V^-$, la ganancia a circuito abierto del operacional A_0 debe ser lo más grande posible.

1.1 Modelo ideal

Si el objetivo de tener un op amp en un circuito es amplificar lo máximo posible la diferencia de potencial entre la entrada positiva y la negativa, entonces la primera aproximación que se puede hacer de su comportamiento es que la amplificación que se produce es infinita, es decir que $A_0 = \infty$. Para que V_{out} no diverja, surge de esta consideración que $V^- = V^+$.

Si bien en la mayoría de los casos estudiados en este trabajol este modelo no será suficiente para realizar un análsis en profundidad, puede resultar útil para tener una idea básica del comportamiento del circuito, que en la práctica se cumplirá en un cierto rango de frecuencias (por consideraciones que se mencionarán luego).

Una consecuencia interesante de esta suposición es que si una de las entradas está conectada a tierra, en la otra entrada se replicará este potencial de referencia. De esta forma, se tendrá en el circuito lo que se conoce como tierra virtual, ya que existirá un punto que si bien no está conectado con tierra, tiene su mismo potencial.

dibujo de circuito con tierra virtual, el mas boludo de todos ya fue vieja no me importa nada aguante el paco

Otra de las suposiciones necesarias para considerar al operacional como ideal es que no hay corriente entre V^+ y V^- , es decir, que la impedancia entre esos dos puntos es infinita. En general, esta suposición

no se dejará de lado incluso cuando se admita que la diferencia de potencial no es nula, ya que el valor de esta impedancia está típicamente en el orden de los $M\Omega$.

1.2 Otros modelos

Si se quisiese mejorar el modelo anterior, la primera corrección que se podría hacer es tener en cuenta que la ganancia efectivamente no es infinita, si bien su valor suele ser considerablemente grande (típicamente alrededor de los 100dB).

En algunos casos (por ejemplo, cuando se trabaja en frecuencias de cientos de kHz o superiores, o circuitos retroalimentados con ganancia alta), considerar a A_0 constante no llevará a resutados satisfactorios. Es más conveniente recurrir en este caso al modelo de polo dominante.

Si bien la respuesta en frecuencia de un op amp no presenta un único polo sino varios, en general existirá uno en particular que será el que más visiblemente altere el comportamiento del circuito. Si se quiere tener en cuenta el filtro pasabajos que impone el operacional, entonces se deberá reemplazar A_0 por $\frac{A_0}{s+\omega_p}$. En esta expresión, ω_p es la frecuencia angular del polo dominante. El valor que se puede encontrar en la hoja de datos es usualmente el del $bandwidth\ product$: $BWP = A_0 \cdot \omega_p$. Este parámetro permite obtener para una ganancia ideal G constante cuál será el valor de la frecuencia de corte ω_p' que imponga el operacional, ya que también se cumplirá que $G \cdot \omega_p' = BWP$.

Esto último es, sin embargo, una aproximación proveniente de asumir que el valor de A_0 es constante para todas las frecuencias, lo cual no siempre puede considerarse cierto. Esto se debe a que lo suele preocupar al fabricante de un operacional no es que este valor sea constante, si no que se mantenga lo suficientemente elevado como para que pueda considerarse infinito.

1.3 Alimentación y saturación

Como ya se mencionó, el amplificador operacional es un componente activo. Para que funcione se lo debe alimentar por V_{cc}^+ y V_{cc}^- con una tensión continua indicada en la hoja de datos del componente, que suele ser de alrededor de $\pm 15V$. En función del valor de V_{cc} , se deteminará el rango de tensiones que puede tener V_{out} , fuera del cual el comportamiento del operacional deja de ser lineal. Este intervalo suele tomarse como (V_{cc}^-, V_{cc}^+) , con un cierto margen en ambos extremos (por ejemplo, si $V_{cc} = 15V$, no debería considerarse que el circuito tendrá un comportamiento lineal más allá de 12V o 13V).

grafiquito de saturación vcc y bla

1.4 Otros parámetros del op amp

Si bien el modelo tratado hasta ahora es de gran utilidad para simplificar el comportamiento de un operacional, este componente posee también otras características que no están consideradas en el mismo, y que en ciertas circunstancias pueden afectar visiblemente la respuesta de un circuito.

Uno de ellos es el slew rate o velocidad de subida. Este parámetro indica la máxima $\frac{\partial V_{out}}{\partial t}$ que soporta el operacional. Si la señal que entra exige una tasa de cambio mayor que el SR del op amp, la salida estará

deformada y no podrá considerarse que se cumple el comportamiento lineal del circuito. Si consideramos que V_{out} es una función senoidal de amplitud V_{max} y frecuencia f, derivando obtenemos que debemos asegurar en todo momento que se cumpla $SR > V_{max} \cdot 2\pi f$.

Otra información que proporciona el fabricante y que en algunos casos puede resultar relevante son la corriente de bias y la tensión de offset. Estos parámetros indican respectivamente la corriente que circula entre V^+ y V^- y la tensión entre ellos. Sus valores normalmente se encuentran en el orden de los nA y de los mV.

2 OpAmp

2.1 Introducción

Se analizaron dos circuitos con Amplificadores operacionales. El primero es un circuito inversor, cuya salida es opuesta a la entrada y la aplifica o atenua, de a cuerdo a como se configure. El segundo es no inversor, igual que el primero, atenua o amplifica la señal de entrada, pero no la invierte. El objetivo es evaluar las caracteristicas lineales y no lineales de los amplificadores operacionales. Tambien la respuesta en frecuencia y la respuesta distintos valores de tensiones de entrada.

algo desir alog

2.2 Circuito inversor

 $\begin{array}{c|c}
 & I_2 & R_2 \\
\hline
 & I_1 & R_1 \\
\hline
 & I_1 & R_2 \\
\hline
 & I_2 & R_2 \\
\hline
 & I_3 & I_4 & R_4 \\
\hline
 & I_4 & I_4$

Figura 1: Esquematico del circuito Inversor

Los valores de las resistencias utilizados fueron los indicados en la Tabla 1.

4

Caso	$R_1 = R_3$	R_2	R_4
1	$5K\Omega$	$50K\Omega$	$20K\Omega$
2	$5K\Omega$	$5K\Omega$	$20K\Omega$
3	$50K\Omega$	$5K\Omega$	$100K\Omega$

Table 1: Valores de resistensias.

Caso A_{vol} infinito 2.2.1

Como A_{vol} lo consideramos infinito, $V_i = 0$ (tierra virtual). Por ende $i_3 = 0$ e $i_2 = -i_1$, Ademas no circula corriente por la entrada del amplificador operacional.

$$V_{out} = -\frac{i_1}{R_2} \tag{1}$$

$$i_1 = \frac{V_{in}}{R_1} \tag{2}$$

Reemplazando 2 en 1 y operando algebraicamente se obtine:

$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1} \tag{3}$$

2.2.2Caso A_{vol} finito

Como A_{vol} lo consideramos finito, $V^+ \neq V^-$. Se considera que no circula corriente por los terminales de entrada del amplificador operacional, devido a la alta impedancia que hay entre ellos.

$$V_{out} = -V_i \cdot A_{vol} \tag{4}$$

$$i_1 = \frac{V_{in} - Vi}{R_1} \tag{5}$$

$$i_{1} = \frac{V_{in} - Vi}{R_{1}}$$

$$i_{2} = \frac{V_{out} - V_{i}}{R_{2}}$$

$$(5)$$

$$i_3 = \frac{-V_i}{R_3} \tag{7}$$

$$i_1 + i_2 + i_3 = 0 (8)$$

Reemplazando 4,5,6,7 en 8, se obtiene:

$$\frac{V_{in}}{R_1} + \frac{V_{out}}{R_2} + \frac{V_{out}}{A_{vol}} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) = 0$$

Operando algebraicamente, se obtiene:

$$\frac{V_{out}}{V_{in}} = -\frac{A_{vol} \cdot R_2 \cdot R_3}{A_{vol} \cdot R_1 \cdot R_3 + R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}$$
(9)

Observacion

$$\lim_{A_{vol} \to \infty} (9) = -\frac{R_2}{R_1}$$

La expresion se redujo a la ganancia del circuito, con el apmlificador operacional ideal (3).

2.2.3 Caso A_{vol} con polo dominante

$$A_{vol} = \frac{A_0}{1 + \frac{s}{W_0}} \tag{10}$$

Reemplazando (10) en (9) se obtiene:

$$\frac{V_{out}}{V_{in}} = -\frac{\frac{A_0}{1 + \frac{s}{W_p}} \cdot R_2 \cdot R_3}{\frac{A_0}{1 + \frac{s}{W_p}} \cdot R_1 \cdot R_3 + R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}$$
(11)

Llamando $K = R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2$

$$\frac{V_{out}}{V_{in}} = -\frac{A_0 \cdot R_2 \cdot R_3}{A_0 \cdot R_1 \cdot R_3 + K} \cdot \frac{1}{1 + \frac{S}{\frac{W_p \cdot \left(A_0 \cdot R_1 \cdot R_3 + K\right)}{K}}}$$
(12)

Despejando se obtiene la frecuencia de corte del circuito:

$$f_P = \left(\frac{A_0 \cdot R_1 \cdot R_3 + K}{K}\right) \cdot \frac{W_P}{2 \cdot \pi} \tag{13}$$

Observacion: la ecuacion (12) posee la misma forma que la funcion transferencia de un pasabajos.

El amplificador operacional utilizado fue el LM324 de ON Semiconductor, de la hoja de datos se obtuvieron las siguientes cararacteristicas del integrado:

$$\begin{array}{|c|c|c|c|}\hline A_0 & f_P \\ \hline 10 \cdot 10^4 & 12Hz \\ \hline \end{array}$$

Table 2: Caracteristicas del LM324

Caso	Ganancia ideal	Ganancia A_{vol} finito	Frecuencia de corte
1	-10	-9,997	54,7KHz
2	-1	-0,999	386KHz
3	-0, 1	- 0,099	960KHz

Table 3: Ganancia y frecuencia de corte del circuito.La ganancias es en veces.

Donde A_0 es la ganancia del amplificador operacional a lazo abierto y f_P es la frecuencia de corte a lazo abierto. A partir de las tablas 1 y 2 y de ecuación 12, se calcularon las caracteristicas de las tres configuraciones del circuito analizadas.

Acontinuacion se graficaran los tres casos del circuito inversor, comparando la respuesta en frecuencia con A_{vol} infinito y A_{vol} con polo dominante.

El error relativo de considerar A_{vol} como infinito, se calculo $Error(w) = \frac{GananciaA_{vol}(w) - GananciaA_{vol}inifinidas}{GananciaA_{vol}(w)}$ spiuestas en frecuencias

Como se observa en los tres graficos ... el error una decada antes del polo dominante es menor que el xx %, por ende utilizando el Amplificador Operacional a una frecuencia menor que una decada antes de la frecuecia de corte, se lo puede considerar como ideal, con un error del xx%.

graficos de las 3 error relativo

2.2.4 Alinealidades del Amplificador Operacional

En esta seccion se analizaran las alinealidades del Amplificador operacional

- Saturacion, los amplificadores operacionales poseen alimentacion ($+-V_{cc}$) externa para asi poder aplificar. Por ende la salida del amplificador no puede superar a la alimentacion. Si la señal de entrada fuera tal que aplificada superara la alimentacion, el amplificador operacional entrega a la salida $+o-V_{cc}$. No todos los amplificadores operacionales saturan en $+-V_{cc}$, generalmente lo hacen por devajo de dichas tensiones y no necesariamente saturan a la misma tension, por ejemplo un Amplificador operacional es alimnetado con +- 10 v, y la saturacion se da a los -8 v y a los 9v.
- Slew Rate, es la tasa de cambio de la tension en funcion del tiempo. Los amplificadores Operacionales poseen un slew rate maximo, a partir del cual no pueden seguir la señal de entrada y la salida se distorciona. Para señales senoidales, la relacion entre la frecuencia de entrada, la ganancia y el slew rate es $SlewRate_{max} = G \cdot A \cdot 2 \cdot \pi \cdot f$, donde G es la ganancia del circuito, A es la amplitud de la señal de entrada y f es la frecuencia de la señal.
- Crossover Distortion, los amplificadores operacionales clase b y AB (ejemplo el LM324), poseen la caracteristica que la salida se encuentra en 0 v, cuando la tension de entrada del operacional se encuentra entre -0,7 v y 0,7v.

2.3 Circuito no inversor

3 Pedal de Distorsión

3.1 Introducción

Se busca implementar un pedal de distorsión para guitarra eléctrica. La distorsión a implementar será de tipo clipping, utilizando diodos para efectuar tal distorsión. Las señales de audio se manejan con niveles de tensión, que representan directamente la onda de entrada, en nuestro caso proveniente de una guitarra eléctrica. Es luego de la conversión de esta onda sonora a una eléctrica que se realizan los cambios de tensión que darán los efectos distorsionantes deseados al sonido. La señal eléctrica será nuevamente convertida a audio y será la salida de cualquier dispositivo reproductor de audio de elección que caiga dentro de las consideraciones que se enumerarán en la subsección "Consideraciones de diseño".

Malu acá podríamos tirar el link a la subsección mencionada que no se cómo ponerlo. Cuando leas esto please enseñame también.

A modo de delimitar un marco teórico y notacional a partir del cual se presentarán con mayor claridad y precisión los efectos del pedal, se procede a definir el concepto de distorsión a través de la ausencia de la misma:

• Un sistema con entrada x(t) y salida y(t) no distorsiona cuando $y(t) = A x(t+\tau)$, con A y τ dos constantes. En caso de que esta relación entre entrada y salida no se cumpla, se dice que el sistema en cuestión distorsiona.

De la definición anterior se desprende que un amplificador operacional ideal cuya entrada $V_d = V^+$ - V^- no supere los valores de saturación característicos y que tenga comportamiento lineal en amplitud y en fase podrá ser clasificado como un amplificador puro y por lo tanto comprenderá un sistema no distorsionante.

La distorsión de tipo clipping consiste en el establecimiento de un valor de tensión "techo" o límite, el cual la señal de entrada no podrá sobrepasar en su forma original (sufrirá distorsión). En general, la distorsión será en amplitud, de modo que la salida del sistema y(t) tenderá a valores de tensión cercanos a los del valor techo en aquellos casos en los que la entrada x(t) supere dicho valor. Cabe destacar que en el caso del pedal implementado, el valor techo utilizado será una cota del módulo de la señal de entrada tal que si T es el valor techo, $|x(t)| \leq T$. Este tipo de clipping se llama clipping simétrico. De esta forma, se puede diferenciar entre dos tipos de clipping, a saber:

1. Hard-Clipping: El valor techo del clipping no podrá ser excedido por la señal de salida, y en caso de que la señal de entrada sea superior al valor techo, la señal de salida adoptará el valor constante del techo. Matemáticamente:

$$y(t) = \begin{cases} T & \text{si } x(t) \ge T \\ x(t) & \text{si } -T \le x \le T \\ -T & \text{si } x(t) \le -T \end{cases}$$
 (14)

De esta definición se muestra el efecto de clipping sobre una senoidal:

Figura 2: Ejemplo de hard-clipping

2. Soft-Clipping: El valor techo del clipping podrá ser levemente excedido de manera tal que la transición entre el valor que adoptaría la señal de entrada sin distorsión y el que deberá adoptar la señal de salida sea más suave.

Figura 3: Ejemplo de soft-clipping

Figura 4: Soft-clipping vs. Hard-clipping

3.2 Consideraciones de diseño

Antes de comenzar con el diseño, se definen las asumpciones iniciales sobre las zcuales se comenzará con el diseño del circuito. Estas asumpciones son elegidas de forma tal que se pueda abarcar un gran espectro de las guitarras y aplificadores comerciales.

- La entrada será una señal de audio (20Hz a 20KHz) de amplitud menor o igual a 300mV pico a pico (dentro de esta categoria caen la mayoría de los micrófonos de guitarra eléctrica). La entrada en principio tendrá offset nulo.
- La salida debe ser adecuada para un equipo de audio, por lo que tampoco tendrá tensión de offset continuo.
- La fuente de alimentación debe ser de 9V no partida. De usar un AC ADAPTER, se debe considerar que suele tener un ripple no deseado producto de la conversión no ideal de alterna a continua.
- La salida se conectará a un amplificador de guitarra con impedancia de entrada Z_{in} mayor o igual a $200K\Omega$. Esto es el caso en la mayoría de los amplificadores de guitarra, como por ejemplo la serie Mustang GT de Fender y la serie Cube de Roland, los cuales tienen $Z_{in} = 1M\Omega$, o el Fender Rumble para bajo, con $Z_{in} = 202K\Omega$
- La señal de entrada provendrá de una guitarra eléctrica con impedancia de salida menor a quinchimil millones de ohms.

Buscar Zout guitarras

3.3 Diseño del circuito

El circuito con el cual se impondrá la distorsión, con los valores todavía sin definir, es:

Figura 5: Circuito de distorsión de clipping a implementar para el pedal de guitarra.

Este circuito cuenta con tres secciones notables a saber:

Zin: hay amplis con Zin mucho mas baja, tipo 44K. Nos falta hacer las cuentas que onda en ese caso, pero creo que nos jode

- 1. Alimentación.
- 2. Amplificación.
- 3. Clipping.

La numeración de las secciones se corresponde con la imagen anterior. Cada una puede analizarse independientemente tomando los recaudos necesarios.

3.3.1 Características del amplificador

3.3.2 Sección de alimentación

Con el objetivo de minimizar tanto el espacio ocupado por el pedal como la cantidad de baterías requeridas por el usuario para utilizarlo, se busca que el amplificador operacional (opamp) requerido para amplificar la señal de entrada sea alimentado únicamente por una batería en el extremo Vcc+, mientras que el otro extremo de alimentación esté conectado directamente a tierra, de esta manera se "ahorra" una batería, que en este caso en particular será de 9 volts por el tipo de señal con el que se trata.

El problema de este tipo de alimentación es que si la señal de entrada oscila alrededor del 0V, el opamp saturará cuando se rodee estos valores, por lo que la señal será completamente distorsionada de una manera no deseada. Como solución, se plantea montar a la señal de entrada sobre una continua de 4.5 V, por lo que si la señal original cumple con las consideraciones de diseño mencionadas en la sección anterior, el opamp no se saturará si se lograse evitar amplificar la continua sobre la cual se la monta.

Es así como para la alimentación se propone el siguiente sub-circuito:

Figura 6: Esquemático sección de alimentación

En el caso en que $R_1 = R_2$, las dos resistencias crean un divisor resistivo con el cual se obtienen nodos 9V, 4.5V, y 0V. Esto funciona correctamente siempre que la corriente que circula por ambas resistencias no sea significativamente distinta, ya que en caso contrario la tensión que debería ser de 4.5V va a tomar otro valor. La función del capacitor es eliminar cualquier ruido o ripple presente en la tensión de entrada.

explicar un poquito mejor esto de las corrientes porque no es a prueba de dummies (no aprobó la prueba "Tommy entender")

El ripple es producto del método de funcionamiento de los transformadores de alterna a continua (anexo). Una fuente de ruido es

Otra causa de ripple para la fuente de continua se dará en aquellos casos en los que el opamp demande corriente abruptamente, en cuyo caso, dado que la batería no es ideal, no podrá mantener la tensión completamente constante. Este problema se soluciona con el agregado del capacitor C_5 , que acumulará carga podrá aportar tensión cuando aparezca el riple, manteniendo la tensión continua. Es claro ver que la impedancia del camino a tierra que produce C_5 disminuye cuanta más alta sea la frecuencia, por lo que fluctuaciones más grandes en tensión irán directamente a tierrra en vez de influir en el resto del circuito.

Dado que los cambios en la demanda de corriente por parte del opamp pueden ser significativamente abruptos, se busca un capacitor que pueda acumular una carga acorde (alta capacitancia, en nuestro caso $1\mu F$).

describir
minimamente ac>dc y como
genera ripple
y poner en
el anexo,
y poner
una fuente
de ruido si
amerita.

3.3.3 Sección de clipping

Figura 7: Esquemático sección de clipping

Esta sección del circuito distorsiona la señal recortando abruptamente cualquier pico que se exceda del rango $\pm 0.6 \mathrm{V}$ (si no se excede, no se modifica). Este proceso, explicado en al introducción, se conoce como clipping (ver figura 8). El efecto de clipping genera un aumento en los armónicos de alta frecuencia ya que la señal tiende a la forma de una cuadrada en sus picos más altos. Como se mencionó en la introducción, se decidió usar clipping simétrico al elegir acotar el módulo de la señal de entrada por $T=0.6 \mathrm{V}$.

Figura 8: Dos tipos de clipping con diodos: simétrico (8a) y asimétrico (8b)

3.3.4 Sección de amplificación

Figura 9: Esquemático sección de amplificaión

Dado que la alimentación no es partida, se alimenta el amplificador con $Vcc^-=0V$ y $Vcc^+=9V$, lo cual genera la necesidad de montar la señal de audio sobre una continua de 4.5V. Para lograr esto, se conecta la entrada a 4.5V, poniendo el capacitor C_1 para que solo pase la tensión alterna de la señal y no la continua que se le suma . Dado que se quiere que este capacitor afecte lo minimo posible a cualquier frecuencia que no sea continua, se eligió un valor alto de capacidad: $1\mu F$. En el peor de los casos, tiene un impedancia no despreciable (800Ω a 20Hz), pero para XXXXXXXXXXX

Redaccion

Para no amplificar la componente continua agregada de la señal, se utiliza el capacitor C_2 . Se puede ver el efecto analizando la función transferencia del amplificador:

$$H_{amp}(s) = \frac{V_B}{V_A} = 1 + \frac{R_4}{R_3 + R_9 + X_{C_2}}$$
(15)

en donde se consideró ideal al amplificador. Para continua, $X_{C_2} = \frac{1}{sC_2} = \infty \Rightarrow |H_{amp}(0)| = 1$, por lo tanto no se amplifica. Para alterna, idealmente $X_{C_2} \ll R_3 + R_9$, entonces:

$$|H_{amp}(s)| \approx 1 + \frac{R_4}{R_3 + R_9}$$
 (16)

donde se ve que la transferencia queda determinada por R_4 , R_3 y R_9 y es independiente de la frecuencia entrante (ver figura 10).

Sin embargo, este resultado viene de asumir un modelo de amplificador ideal en el cual no se considera el slew rate (SR), o maxima taza de cambio de tensión de salida. Se considera el que amplificador tiene un comportamiento lineal si

$$SR \geqslant G \cdot A \cdot 2\pi \cdot f$$

siendo G la ganancia (en este caso $1 + \frac{R_4}{R_3 + R_9}$ si despreciamos los efectos de C_2), A la amplitud de la señal, y f su frecuencia. Para considerar el peor caso, basta tomar $G = 1 + \frac{R_4}{R_3} = 11$ y A = 0.3V (ver sección

escribir deduccion trasnferencia y mandar al anexo esta bien considerarlo ideal en todos los casos en los que trabajamos? analizar BWP

Figura 10: Transferencia del amplificador

3.2), y sabiendo que $SR=0.5V/\mu s$ se puede obtener la máxima frecuencia en la cual el comportamiento se considera lineal:

$$5 \cdot 10^5 V/s \geqslant 11 \cdot 0.3 V \cdot 2\pi f$$
$$\Rightarrow 24.1 KHz \geqslant f$$

El SR no afecta el desempeño del pedal como instrumento ya que sus efectos se notan solo en frecuencias fuera del rango audible.

 R_4 y R_3 controlan la máxima ganancia del amplificador. La función del potenciómetro R_9 es permitirle al usuario tener control sobre el nivel de distorsión variando la ganancia , pero sin permitirle aumentarla tanto que el amplificador sature.

3.4 Simulaciones

3.5 Mediciones

agregar referencia a donde expliquemos que mas ampificación implica mas distorsión