Problem 1 (5 points)

Find the solution (x^*, y^*) to the following problem.

optimize *xy*

subject to
$$2x + 2y = 20$$

Make sure the constraint is in standard form.

Standard form

optimize *xy*

subject to
$$2x + 2y - 20 = 0$$

Lagrangian:
$$L(x, y, \beta) = xy + \beta(2x + 2y - 20)$$

Partial Derivatives:

$$\nabla_{x}L(x,y,\beta) = y + 2\beta = 0$$

$$\nabla_{y}L(x, y, \beta) = x + 2\beta = 0$$

$$\nabla_{\beta} L(x, y, \beta) = 2x + 2y - 20 = 0$$

Solve for x, y

$$x^* = 5, y^* = 5$$

Problem 2 (5 points)

Define the Lagrangian function for the following optimization problem.

minimize
$$7x_1^3 + 8x_2^2 + 9x_1$$

subject to $6x_1 + 11x_2^2 = 13x_2$
 $5x_2^2 \le 4x_1 - 7$
 $20x_1 + 5 \ge x_2$

Do not solve for the variables, i.e., do not try to compute the partial derivatives.

Make sure the constraints are in standard form.

Standard form

minimize
$$7x_1^3 + 8x_2^2 + 9x_1$$

subject to $6x_1 + 11x_2^2 - 13x_2 = 0$
 $5x_2^2 - 4x_1 + 7 \le 0$
 $-20x_1 - 5 + x_2 \le 0$

$$\begin{split} L(x_1,x_2,\alpha_1,\alpha_2,\beta_1) &= 7x_1^3 + 8x_2^2 + 9x_1 + \\ &\alpha_1\big(5x_2^2 - 4x_1 + 7\big) + \\ &\alpha_2(-20x_1 - 5 + x_2) + \\ &\beta_1\big(6x_1 + 11x_2^2 - 13x_2\big) \end{split}$$

Bonus Problem (5 points)

The SVM optimization can be defined by the primal form:

$$\min_{w} \frac{1}{2} \|\mathbf{w}\|^{2}$$
 subject to $y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \ge 1$, $i = 1, ..., N$

Or by its the dual form:

$$\max_{\alpha} J(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i^T \mathbf{x}_j \right)$$

subject to
$$\alpha_i \ge 0, i = 1, ... N$$
 and $\sum_{i=1}^{N} \alpha_i y_i = 0$

Show the objective function $J(\alpha)$ is the Lagrangian function $L(w, b, \alpha)$ evaluated at w that minimizes that function.

Hints:

- 1. Write the primal problem in standard form
- 2. Form the Lagrangian function $L(\mathbf{w}, b, \alpha)$
- 3. Find w and b that minimize $L(w, b, \alpha)$
- 4. Plug the results back into $L(\mathbf{w}, b, \alpha)$

Note $\|\mathbf{z}\|^2$ is the inner product $\langle \mathbf{z}_i, \mathbf{z}_j \rangle$ meaning $\mathbf{z}^T \mathbf{z}$ between points in the vector space. If $\mathbf{z} = \sum_i x_i$ then $\mathbf{z}^T \mathbf{z} = \sum_i x_i \sum_j x_j$

(1). Write the primal problem in standard form

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $g_i(\mathbf{w}) = -y_i(\mathbf{w}^T \mathbf{x}_i + b) + 1 \le 0$

(2). Form the Lagrangian function

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \alpha_i [-y_i(\mathbf{w}^T \mathbf{x}_i + b) + 1] \to (\text{Eq. 1})$$

- Note there is no β_i because there are no equality constraints
- (3). Find w and b that minimize $L(w, b, \alpha)$

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}, b, \alpha) = \boldsymbol{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} \boldsymbol{x}_{i} = 0 \rightarrow \boldsymbol{w} = \sum_{i=1}^{N} \alpha_{i} y_{i} \boldsymbol{x}_{i} \rightarrow (\text{Eq. 2})$$

$$\nabla_{b} L(\boldsymbol{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \rightarrow (\text{Eq. 3})$$

(4). Plug (Eq. 2) and (Eq. 3) back into (Eq. 1). Notice index *i* in each equation is only relevant for that equation.

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \sum_{i=1}^{N} \alpha_i [-y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) + 1]$$

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \sum_{i=1}^{N} \alpha_i y_i \boldsymbol{x}_i^T \cdot \sum_{j=1}^{N} \alpha_j y_j \boldsymbol{x}_j + \sum_{i=1}^{N} \alpha_i \left[-y_i \left(\left(\sum_{j=1}^{N} \alpha_j y_j \boldsymbol{x}_j^T \right) \boldsymbol{x}_i + b \right) + 1 \right]$$

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\boldsymbol{x}_i^T \boldsymbol{x}_j \right) - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\boldsymbol{x}_j^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_j y_i y_j \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_j^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i y_i y_i \left(\boldsymbol{x}_i^T \boldsymbol{x}_i \right) - \sum_{i=1}^{N} \alpha_i y_i y_i \left(\boldsymbol$$

But

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \ \left(\mathbf{x}_j^T \mathbf{x}_i \right) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \ \left(\mathbf{x}_i^T \mathbf{x}_j \right)$$

And from (Eq. 3)

$$\sum_{i=1}^{N} \alpha_i y_i b = 0$$

Thus,

$$J(\alpha) = L(w, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(x_i^T x_j \right)$$