Práctica 1 (5%): Estequiometría

Objetivo General

Evaluar el efecto de las cantidades de reactivos en las propiedades del slime producido mediante la aplicación de los principios de la estequiometría, la observación de textura, color y apariencia del producto y la comparación de los resultados obtenidos de las mediciones de viscosidad en forma directa y de la viscosidad dinámica del material.

Objetivos Específicos

- Determinar masa de slime producido a partir de relaciones estequiométricas de los reactivos con el producto, comparar con los cálculos teóricos y definir rendimiento de reacción.
- Determinar la proporción estequiométrica bórax PVA que produce el slime de mejor apariencia de acuerdo con el color, textura y transparencia.
- Comparar las diferentes masas de slime producido según su viscosidad indirecta y dinámica.

Información Conceptual

El Slime se forma mediante la reacción entre **bórax** (Na₂B₄O₇·8H₂O) y **alcohol polivinílico** (PVA) en medio acuoso. En este proceso, el bórax actúa como un agente reticulante, formando enlaces entre las cadenas del polímero PVA, lo que da como resultado la viscosidad característica del material.

Tomado de: chemical & engineering news

Ecuación química simplificada:

1 Bórax + 4 PVA + H₂O → 1 Slime

Reactivos y Materiales

Reactivos:

- Bórax
- Alcohol polivinílico (PVA)
- Agua destilada.

Materiales de laboratorio:

- Beaker 250 mL (4)
- Beaker de 100 mL (3)
- Plancha de calentamiento (3)
- Agitador magnético
- Espátula plana
- Balanza analítica
- Probeta 50 mL y de 15 mL
- Varilla de agitación
- Regla o pie de rey
- Cinta de enmascarar
- Marcador
- Soporte universal
- Pinza de extensión y nuez
- Varilla de vidrio
- 2 placas de vidrio
- Anilina

Metodología en el Laboratorio

- 1. Preparación de la solución de bórax:
- Anotar pureza del reactivo y masa molar.

- Pesar 1,0 g de bórax en un vidrio reloj.
- Calentar 100 mL de agua hasta 50 °C en un beaker de 250 mL.
- Disolver el bórax agitando con una varilla de vidrio hasta obtener una solución homogénea.
- Registrar el tiempo que tarda en disolverse el bórax y observar si hay partículas insolubles.

1. Preparación de soluciones de PVA:

- Anotar pureza del reactivo, masa molar y densidad.
- Tomar un beaker de 100 mL limpio y seco y pesarlo. Registrar el dato del peso del beaker vacío.
- Tomar tres beaker de 100 mL y adicionar en cada uno, 2 g, 4 g y 6 g de PVA
- Etiquetar los beaker con las masas correspondiente de PVA, disolver en 60 mL de agua y calentar hasta 85 °C.
- Agitar cada mezcla con una varilla de vidrio hasta que el PVA se disuelva completamente.
- Registrar el tiempo que tarda en disolverse.
- Adicionar entre 2 y 6 gotas de anilina una vez el PVA esté disuelto.
- Dejar enfriar las soluciones antes de utilizarlas.

1. Preparación del Slime:

- Añadir lentamente 12 mL de solución de bórax con una probeta de 15 mL a cada beaker con el PVA mientras se agita con una varilla.
- Observar y registrar los cambios físicos, como viscosidad, fluidez, formación de un gel elástico, etc.

1. Pesaje final:

- Colocar cada beaker con el slime formado sobre una balanza analítica.
- Registrar este dato como la masa total beaker + slime.
- Para determinar la masa del slime, restar la masa del beaker vacío (previamente registrada) a la masa total del conjunto beaker + slime.
- Registrar este dato como la masa de slime.
- 1. **Medición de propiedades:** para cada muestra de slime obtenido, observar y registrar las siguientes propiedades físicas:
 - 1. **Medida de viscosidad indirecta:** se puede determinar la viscosidad de un material basado en la expansión del slime entre dos placas de vidrio. Esto implica que, a mayor viscosidad, el slime se expandirá menos debido a su resistencia al flujo.

Registrar las observaciones para cada muestra.

- Tomar dos placas de vidrio limpias y secas.
- Colocar una de las placas de vidrio en la balanza y tarar (poner en cero).
- Medir aproximadamente 1,5 g de cada muestra de slime obtenido y colocarlo en el centro de la placa de vidrio que está en la balanza.
- Colocar la segunda placa de vidrio sobre el slime, asegurando no aplastarlo. La idea es que el slime se expanda de manera natural entre las dos placas.
- Una vez que el slime se haya expandido entre las placas, medir su diámetro con una regla o pie de rey.
- Registrar el diámetro medido para cada muestra.
- Analizar la proporción boráx PVA de mayor viscosidad directa y explicar

Figura 1. Medición indirecta de la viscosidad de un material. (Diseño propio)

 Medida de viscosidad dinámica: es una medida de la resistencia interna de un material a fluir, y se determina de manera experimental observando como un objeto (varilla) se mueve a través del fluido bajo la influencia de la gravedad.

Registrar las observaciones para cada muestra.

- Colocar el soporte universal en una superficie estable.
- Ajustar la pinza de extensión a una altura determinada, esta será la altura inicial desde la cual se suelta la varilla de vidrio. Tomar este dato como h₀.
- Medir el radio de la varilla de vidrio empleando una regla o pie de rey. Registrar este dato como R.
- Sujetar firmemente la varilla de vidrio en la pinza de extensión.
- Ubicar el beaker con el slime debajo de la varilla, asegurar que la punta de la varilla esté justo sobre la superficie del slime. **Tomar este dato como t₀**.
- Soltar la varilla de la pinza y con un cronómetro, medir el tiempo que tarda la varilla en tocar el fondo del beaker. **Registrar este dato como t₁.**
- Una vez la varilla haya llegado al fondo, medir la distancia entre la pinza de extensión y la parte superior de la varilla. **Registrar este dato como h₁.**

Figura 2. Medición directa de la viscosidad de un material. (Diseño propio)

Para determinar la viscosidad dinámica (), se emplea la siguiente ecuación:

- 1. **Apariencia:** para cada muestra de slime, describir sus propiedades físicas como el color (intensidad de color), transparencia y textura.
- Tocar la superficie del slime (con las manos limpias) para identificar si es pegajoso o suave.
- Comparar las tres muestras y anotar cualquier diferencia, como:
 - Si una es más opaca que las otras.
 - Si el color cambió al agregar bórax.
 - Si alguna muestra tiene grumos o partículas visibles.

a. Comparación con cálculos teóricos:

- a. Usar la masa medida de slime para comparar sus propiedades con las cantidades de reactivos utilizados y analizar si las diferencias pueden explicarse por las condiciones experimentales (pérdidas al transferir, evaporación, etc.).
- b. Si el peso real es mayor que el teórico, reflexionar sobre posibles causas de error. Si el peso es menor determinar el rendimiento de la reacción.

Formato de Registro

1. Preparación de la solución de bórax:

Masa del bórax (g)	1 gramo	Registro fotográfico solución bórax
Pureza del reactivo bórax (%)	100%	
Masa molar del bórax (g/mol)	381.38 g/mol	
Color, textura	Transparente	
Volumen de agua a calentar (mL)	60 ml	
Tiempo de disolución (min)	1min 50 sec	
¿Partículas insolubles?	Si	

1. Preparación de soluciones de PVA

a. Registro sobre el PVA

u. Rogiotio dobio di i vi		
Pureza del reactivo (%)	100%	Registro fotográfico PVA
Masa molar del PVA (g/mol)	44.05 g/mol	
Densidad (g/mL)	N/A	
Color, textura	Blanca	

a. Registro soluciones de PVA:

Muestra	Masa beaker	Masa PVA	Tiempo de disolución	Estado final	Registro
	vacío (g)	(g)	(min)	(Homogéneo/Sí/No)	fotográfico
1	48.38gr	2 gr	8 min, 30 sec	Si	29
2	48.38gr	4 gr	13 min, 40 sec	Si	4,000
3	48.38gr	6 gr	15 min	Si	63

1. Preparación del Slime

Muestra	Volumen de PVA (mL)	Volumen solución de bórax (mL)	Observación	Registro fotográfico
1	4ml	12ml	Al haber	AVA
			puesto el	
			PVA y haver	
			la mezcla,	
			esta se tarde	29
			mas tiempo	4
			en hacerse	
			denso, es	SA GA
			muy	
			transparente	
			en color y es	
			supremamen	
			te pegajoso.	
			Este es	
			relativament	
			e liviano	
			comparado	
			con la	
			mezcla de 2g	
			y 4g.	
2	8ml	12ml	Esta se tarda	
			menos	
			tiempo en	
			hacerse	49
			denso y es	
			menos	7 48
			transparente	I I I
			de color.	

		T		
			Este es	
			menos	
			pegajoso que	
			el anterior.	
			Es algo mas	
			pesado que	
			la mezcla de	
			4g.	
3	16ml	12ml	Tarda muy	
			muy poco en	
			ponerse	
			denso es	. s
			menos	09
			transparente.	
			Es el menos	- 60
			pegajoso y es	
			el mas	
			pesado de	
			todas las	
			mezclas.	

1. Pesaje final:

a. Medición de las muestras

Muestra	Masa total Beaker + slime (g)	Masa slime (g)	Masa slime (Kg)
1	113.46gr	65,38gr	0.0653kg
2	114.11gr	65.73gr	0.0657kg
3	115.19gr	66.81gr	0.0668kg

1. Propiedades del Slime

a. Viscosidad indirecta

Muestra	Masa (g)	Diámetro (cm)
1	65,38gr	4.00cm
2	65.73gr	3.60cm
3	66.81gr	3.20cm

a. Viscosidad directa

Muestra	w del slime W = masa(Kg). 9,8 m/s ²	Densidad (kg/m³)* *Asuma el volumen de la solución de PVA	Tiempo (t₁) (seg)	Altura (h₁) (m)	Registro fotográfico
1	0.63994 Kg*m/s^2	1.08833kg/m^3	52 seg	0.035m	
2	0.6438 Kg*m/s^2	1.095kg/m^3	80 seg	0.034m	
3	0.6546 Kg*m/s^2	1.113kg/m^3	150 seg	0.032m	
Radio varilla (m)	0.315 m				

a. Apariencia

Muestra	Color	Transparencia	Textura	Registro fotográfico
1	Poco	Mucha	Poco Densa	29
2	Medio	Media	Densa	49
3	Mucho	Poca	Muy Densa	63

a. Comparación con cálculos teóricos:

Muestra	Masa teórica (g)	Masa experimental (g)	Rendimiento (%)	Posibles errores
1	64.1g	65.38g	101.81%	A pesar de que fueron casi iguales, la masa teorica resulto menor que la experimental, es posible que de nuevo, se hayan añadido mas reactivos de lo necesario, o mas anilina a la hora de su preparacion, tambien es posible que hayan habido impurezas en los reactivos durante el laboratorio, lo que causo un aumento en la masa del slime que se produjo
2	61.2 g	65.73g	105.64%	El exceso de agua en la reaccion pudo haber causado que la masa real fuera mayor que la teorica, esto se pudo haber dado si el slime

				absorbio mas agua de lo
				esperado a la hora de
				pesarlo, o no se dejo
				enfriar correctamente, o
				que simplemente a la
				hora de su preparación,
				se añadio mas cantidad
				de agua que lo esperado,
				puesto que si fueran 65
				mL de agua, se acercaria
				mas a la masa
				experimental, lo que
				causo un peso mayor al
				esperado
				esperado
3	66.1g	66.81g	100.89%	En este caso, la cantidad
3	66.1g	66.81g	100.89%	
3	66.1g	66.81g	100.89%	En este caso, la cantidad
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g,
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo haber causado que la
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo haber causado que la masa real fuera mayor
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo haber causado que la masa real fuera mayor que la teórica, esto se
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo haber causado que la masa real fuera mayor que la teórica, esto se pudo haber dado si el
3	66.1g	66.81g	100.89%	En este caso, la cantidad real fue casi idéntica a la teórica. Aun así al igual que las muestras 4 g y 2 g, el exceso de agua pudo haber causado que la masa real fuera mayor que la teórica, esto se pudo haber dado si el slime absorbió mas agua

Nota: adjunte los cálculos teóricos

Conclusiones

Para concluir, en este experimento, se hicieron tres muestras de una sustancia, cada una con tres diferentes cantidades de PVA. Basándonos en la estequiometría, se pudieron medir diferentes propiedades tales como la viscosidad, la densidad y el color evidenciando la relación directa entre la cantidad de reactivos y las propiedades del producto obtenido. El aumento en la concentración de PVA generó una estructura más compacta y viscosa, mientras que menores cantidades dieron lugar a un slime más flexible y fluido. La práctica permitió aplicar conceptos como la estequiometría, el entrecruzamiento molecular y la influencia del agua como componente clave. Algunos errores en el experimento pudieron haber sido a causa de exceso de agua en el momento de llenar los contenedores o inconsistencias en el tiempo cuando se estuvieron hirviendo. Sin embargo, los resultados salieron consistentes y coherentes

con las instrucciones.En general, la experiencia facilitó la comprensión de cómo pequeñas variaciones en los reactivos pueden modificar significativamente las características físicas de un material.

Referencias

6 formas de hacer Slime Casero Buenos Aires, Ciudad - Gobierno de la Ciudad Autónoma de Buenos Aires. (n.d.)._https://buenosaires.gob.ar/coronavirus/bienestar/6-formas-de-hacer-slime-casero

The Sci Guys. (2013, February 21). *The Sci Guys: Science At Home - SE1 - EP4: Exploring Polymers by Making Borax Ooze - Borax Slime* [Video]. YouTube. https://www.youtube.com/watch?