4.b)
$$g(t) = \begin{cases} e^{-\frac{t}{k}}, t \ge 0 \\ 0, t \le 0 \end{cases}$$
, $g:(0,\infty) \Rightarrow R$
 $g^{(n)}(t) = P_n(-\frac{t}{t})e^{-\frac{t}{k}}$; $degP_n = 2n$

Conclude $g(t) \in C^{\infty}(R)$, $g: R \Rightarrow R$

Prag:

 $P_n(-\frac{t}{t}) = -\frac{t}{P_n(t)}$

Taking one-sided limit:
 $-e^{-tR}$
 $t \Rightarrow 0$
 $f(t) = \lim_{k \to \infty} \frac{1}{P_n(t)} = \lim_{k \to \infty} \frac{1}{t^{2n}} = \lim_{k \to \infty} \frac{1}{t$