Design of an algebraic recognition engine

Group 5 Composition

- Abderrahmane Dkour
- Lucas Fernandes Martins
- João Pedro Regazzi Ferreira Da Silva
- Gabriel Souza Lima
- Salma Maazoum

- Ibrahim Rakib (Founder/Tech)
- Baptiste Vélon (Co-founder/Finance)
- Romain Beutel (Product)

Table of content

- Introduction
 - Client's need
 - Problem and its causes
- 2. Steps
 - TreeAlgo
 - Dataset generation
 - FormulaNet

3. Results

4. Created Value

1. Introduction

Who is Cleverlearn?

Make learning more **effective**, **engaging** and **tailored** to individual needs

The project

Problem

- Subjectivity
- Bias
- Time-consuming
- Error-prone

Solution

The aim of this project is to develop a platform for assessing the accuracy of students' answers in a automatic way.

- Faster
- Consistent
- More objective
- More efficient.

Quantification of the proximity of two algebraic expressions

Simple recognition

Simplified expressions

$$x^2 + 2x - 1 = 2 \times x + x^2 - 1$$

$$\frac{hk}{cm} = \frac{kh}{m \times c} = \frac{k}{m} \times \frac{h}{c}$$

Semantic recognition

Equivalent expressions

$$3x = 2x + x$$

$$\frac{Ee^2}{er} = \frac{Ee}{r}$$

Simple recognition Simplified expressions

$$\sqrt{\frac{gh}{m}} \sim \sqrt{\frac{h}{mg}}$$

Steps

Algorithmic approach

Dataset generation

FormulaNet

2. Progress

2.1 Algorithmic Approach

Core Workflow

User

Input his/her LaTex expression

System

Input correct LaTex expression

Reduce both expressions as much as possible

SymPy

Postprocessing

Transform expressions into trees

Compare trees

Use EDIT distance to compare trees

How to compare the trees?

- Quantify how many **insertions**, **deletions**, and **editions** are necessary to transform one graph into another

Dennis Sasha New York University

Kaizhong Zhang University of Ontario

On the editing distance between unordered labeled trees K. Zhang, D. Sasha (1989)

Revisiting the tree edit distance and its backtracing: A tutorial Benjamin Paaßen (2018)

1. Order assignment

- 1. Order assignment
- 2. Distance Matrix

				В		
		Λ	1	2	3	4
	Λ	0	1	2	3	4
	1	1				
A	$1\\2\\3\\4$	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$				
	3	3				
	4	4				

- 1. Order assignment
- 2. Distance Matrix
- 3. Forest Distance Calculation

				В		
		Λ	1	2	3	4
	Λ	0	1	2	3	4
	1	1				
A	$\frac{2}{3}$	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$				
	3	3				
	4	4				

$$D[i,j] = \min \{D[i-1,j] + 1, D[i,j-1] + 1, D[i-1,j-1] + (1 \text{ if } A_i \neq B_j, \text{ else } 0)\}$$

- 1. Order assignment
- 2. Distance Matrix
- 3. Forest Distance Calculation

				В		
		Λ	1	2	3	4
	Λ	0	1	2	3	4
	1	1	0	1	2	3
A	2 3	$\frac{2}{3}$	1	1	2	3
	3	3	2	2 3	2	3
	4	4	3	3	3	2

- 1. Order assignment
- 2. Distance Matrix
- 3. Forest Distance Calculation
- 4. Return tree edit distance

				\mathbf{B}		
		Λ	1	2 1 1 2 3	3	4
	Λ	0	1	2	3	4
	1	1	0	1	2	3
A	$\frac{1}{2}$	$\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$	1	1	2	3
	3	3	2	2	2 2 2 3	4
	4	4	1 0 1 2 3	3	3	2

Consistency

Other Features

Patterned Tree Construction Text Alignment Preprocessing

Custom feedback

Handling Undefined Limits Application User Interface

Feedback generation

Quantitative feedback:

$$SCORE = 1 - \frac{D_{EDIT}}{max(N1, N2)}$$

- D_{EDIT:} Tree Edit Distance, the metric used to measure differences between trees.
- N1: Number of nodes in the student's answer.
- N2: Number of nodes in the expected answer.
- Normalization: Adjusts DEDIT by dividing by N1 and N2 to ensure each mistake has an equal impact on the final score.

Feedback generation

Qualitative feedback

Main idea: given student's input, detect different types of mistakes

- Detect different types of mistakes:
- Sign error (+ or -)
- Wrong variable ('x' instead of 'y' for instance)
- Wrong unary expression

For each type of mistake, a dedicated function was developed

2.2 Dataset generation

While depth not equal to 1

Choose random function/operator/...

When at depth 1

Choose an atomic (literal/variable/...)

2.2 Dataset generation

2.2 Dataset generation

We destroy and recreate the worker when Sympy bricks at an expression

(happens with a probability of ~8% for randomly generated data, this is the best way to handle it)

The idea is to use a siamese architecture to learn embeddings for the math expressions. Then, we can use the distance to understand the similarity between two expressions

Graph Attention Networks

Graph Convolutional Networks


```
for all v \in V.
 Node n's
                              ... is just node v's
                              original features.
 initial
 embedding.
 and for k=1,2,\ldots upto K:
h_v^{(k)} = f^{(k)} \left( W^{(k)} \cdot \frac{\sum\limits_{u \in \mathcal{N}(v)} h_u^{(k-1)}}{|\mathcal{N}(v)|} + B^{(k)} \cdot h_v^{(k-1)} \right)
 Node v's
                                               Mean of n's
                                                                                Node n's
 embedding at
                                               neighbour's
                                                                                embedding at
                                                                                step k-1.
 step k.
                                               embeddings at
                                               step k-1.
 Color Codes:
      \blacksquare Embedding of node v.
      Embedding of a neighbour of node v.
      (Potentially) Learnable parameters.
```

Triplet Loss

2.3 FormulaNet

2.3.1 ConvFormulaNet

2.3.1 ConvFormulaNet

2.3.2 AttFormulaNet

2.3.2 AttFormulaNet

2.3.2 AttFormulaNet

2.4 Error messages

MathBERT

Regular word embeddings

Embeddings for math expressions obtained from FormulaNet

Finetune using pre-generated error messages (enhanced dataset generation)

3. Web site

To facilitate the presentation of results, an interactive web interface was created.

3. Added value

3.2 Added value

- Automate the correction platform, eliminating the need of human labor for correcting every single question
- Provide instant feedback to the student, allowing for a more interactive and dynamical way to learn
- Explored and experimented with the possibilities of using deep neural networks for expression comparison (research assets that can later on be utilized by the client)
- Conceived **front end platform** that allows for simple and convenient presentation

4. What we learned

4.1 Lessons learned

4.1 Lessons learned

Really difficult approach

As difficult as trying to learn "image embeddings" or "text embeddings" for a language model. Mathematical formulas can be really expressive

We ought to limit the scope of our problem

4.1 Multi-label classification

4.1 Lessons learned

Euclidean distance is the best when it comes to training, the model converges better with it

It takes 14 epochs on average to reach 60% accuracy (from 8 different runs)

Transformers/Attention yields great results when it comes to learning how to properly separate similar and dissimilar examples.

Convolution was better at learning symmetry and structure (even with low accuracy it still handled *some* examples well)

4.1 Lessons Learned

Soft Skills

Communication with the client and within the group

Team organization to separate tasks

Adaptability to change approaches and to propose new solutions

Hard Skills

Graphs for numerical expressions

Graph neural networks

React and Frontend software engineering best practices

Graphs manipulation

5. Conclusion

Demo time

A demo is worth a thousand words...

https://drive.google.com/file/d/1XLt3TL0A0QbNRIZ1w-XhLm7o8YVRRzmn/view?usp=sharing

Thank you!

∯ cleverlearn