Implementing Character Recognition Using Bidirectional RNNs

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Implement a RNN of GRU cells for OCR using a modified version of the MIT OCR dataset

Use a conventional RNN for character recognition and calculate accuracy

Manually build a bidirectional RNN

Use the TensorFlow library to build a bidirectional RNN

OCR as a Sequence Labeling Problem

OCR Word Recognition

OCR Word Recognition

Demo

Perform optical character recognition using an RNN on a modified version of the MIT OCR dataset

- Identify character images in the context of the word in which they occur

OCR Word Recognition

image 16x8 px

OCR Word Recognition

	Letter	Next ID	Word ID	Position Fold	Fold	128 columns			
ID					(1,1)	(1,2)		(16,8)	
23	С	34							
34	а	45							
45	t	-1							

C

a

t

C

a

t

C

t

Features and Labels

Labels

ID		Next ID	Word ID	Position	Fold	128 columns			
	Letter						(1,2)		(16,8)
23	С	34							
34	а	45							
45	t	-1							

C

Letter	a	b	C	 t	 Z
С			1		
a	1				
t				1	

26 elements

Letter	a	b	C	 t	 Z
C			1		
a	1				
t				1	

Letter	a	b			Z
C			1		
a	→ 1				
t				1	

Features and Labels

OCR Word Recognition

OCR Word Recognition

Softmax for Prediction

Shared Softmax

[batch_size, 14, 128]

[batch_size, 14, 128]


```
[batch_size, 14, 128]
```

```
[ ], [ ] ... ]
```

```
[batch_size, 14, 128]
```


3 actual characters

11 characters of padding


```
[ ], [ ] ... ]
```


3 predictions that we care about

11 predictions that we can ignore

OCR Word Recognition

OCR Word Recognition


```
[batch_size, 14, 128]
```

```
[ ], [ ], [ ] ... ]
```

```
[batch_size, 14, 128]
```


3 actual characters

11 characters of padding

```
used = tf.sign(tf.reduce_max(tf.abs(X),
reduction_indices=2))
```

```
length = tf.reduce_sum(used,
reduction_indices=1)
```

◆Does the image contain any non-zero element?

```
used = tf.sign(tf.reduce_max(tf.abs(X),
reduction_indices=2))
```

```
length = tf.reduce_sum(used,
reduction_indices=1)
```

◄Used contains a list of 14 elements for each word

e.g. 'cat' has 3 non zero elements

[1,1,1,0...0]

```
used = tf.sign(tf.reduce_max(tf.abs(X),
reduction_indices=2))
```

```
length = tf.reduce_sum(used,
reduction_indices=1)
```

◆Sum them

e.g. 'cat' length 3

```
used = tf.sign(tf.reduce_max(tf.abs(X),
reduction_indices=2))
```

```
length = tf.reduce_sum(used,
reduction_indices=1)
```

◆That's the sequence length

Accuracy and Error Calculations


```
[ ], [ ] ... ]
```

[batch_size, 14, 26]

3 predictions that we care about

11 predictions that we can ignore

C

a

t

Compare actual and predicted labels to calculate accuracy

Mask out while calculating accuracy

[batch_size, 14, 26]

[batch_size, 14, 26]

One-hot Encoded Predictions

One-hot Encoded Labels

Letter	a	b	С	 t	 Z
С			1		
a	1				
t				1	

26 elements

Total Mistakes

Index of largest element in actual label should match index of largest element in predicted label - if not, mistake

Total Mistakes

Mistakes ~ list of 14 elements, each either 1 (mistake) or 0

mistakes *= mask

Exclude Mistakes on Padding

Ignore any mistakes on padding characters

mistakes *= mask

Exclude Mistakes on Padding

Mistakes ~ list of 14 elements, each either 1 (real character) or 0 (padding)

```
mask = tf.sign(tf.reduce_max(tf.abs(y), reduction_indices=2))
```

Calculate Mask from Actual Labels

For each character of original word, compute max over all 128 pixels in image

```
mistakes /= tf.cast(sequence_length, tf.float64)
error = tf.reduce_mean(mistakes)
```

Calculate Error

Find average number of mistakes per word

Demo

Perform optical character recognition using a bidirectional RNN on a modified version of the MIT OCR dataset

- Build the bidirectional RNN by hand using 2 forward RNNs
- The data to the backward RNN is fed in reverse

Conventional RNN Architecture

Conventional RNN Architecture

The input sequence is **reversed** and passed in through a forward RNN

Demo

Perform optical character recognition using a bidirectional RNN on a modified version of the MIT OCR dataset

- Use the TensorFlow library to construct a bidirectional RNN

Summary

Performed optical character recognition using RNNs

Compared accuracy of a conventional RNN with a bidirectional RNNs