Towards Realistic Matter Spectra in F-theory

Muyang Liu

University of Pennsylvania

December 8, 2020

With M. Bies, M. Cvetič, R. Donagi, M. Ong - ongoing project

Muyang Liu

- Construct string vacua whose effective field theory reproduce (MS)SM.
- In particular: need to fix vector-like pairs to accommodate the Higgs and avoid exotic vector-like matter.
- Vector-like spectra: Characteristic features of 4d vacua.

- Construct string vacua whose effective field theory reproduce (MS)SM.
- In particular: need to fix vector-like pairs to accommodate the Higgs and avoid exotic vector-like matter.
- Vector-like spectra: Characteristic features of 4d vacua.
- F-theory is interesting due to capabilities of cf. 2017 TASI lectures by Weigand and Cvetič, ...
 - describing strongly coupled IIB-string theory including non-perturbative effects.
 - translating physics concepts to geometric subjects in elliptic 4-fold $\pi: CY_4 \rightarrow B_3$.
 - realizing one quadrillion (MS)SM constructions. [Cvetič Halverson Lin Liu Tian '19]

- Construct string vacua whose effective field theory reproduce (MS)SM.
- In particular: need to fix vector-like pairs to accommodate the Higgs and avoid exotic vector-like matter.
- Vector-like spectra: Characteristic features of 4d vacua.
- F-theory is interesting due to capabilities of cf. 2017 TASI lectures by Weigand and Cvetič, ...
 - describing strongly coupled IIB-string theory including non-perturbative effects.
 - translating physics concepts to geometric subjects in elliptic 4-fold $\pi: CY_4 \rightarrow B_3$.
 - realizing one quadrillion (MS)SM constructions. [Cvetič Halverson Lin Liu Tian '19]
- Global F-theory compactifications: vector-like spectra hard to get from topological data.

- Construct string vacua whose effective field theory reproduce (MS)SM.
- In particular: need to fix vector-like pairs to accommodate the Higgs and avoid exotic vector-like matter.
- Vector-like spectra: Characteristic features of 4d vacua.
- F-theory is interesting due to capabilities of cf. 2017 TASI lectures by Weigand and Cvetič, ...
 - describing strongly coupled IIB-string theory including non-perturbative effects.
 - translating physics concepts to geometric subjects in elliptic 4-fold $\pi: CY_4 \rightarrow B_3$.
 - realizing one quadrillion (MS)SM constructions. [Cvetič Halverson Lin Liu Tian '19]
- Global F-theory compactifications: vector-like spectra hard to get from topological data.
- ⇒ How can we control the vector-like spectra in F-theory?

Outline

- Ohiral and vector-like spectra in F-theory
- Vector-like spectra in realistic F-theory geometries:
 - The appearance of root bundles.
 - Limit roots constructions.
- Apply limit roots constructions to realistic F-theory geometry.
- Outlook and strategy.

• Gauge group $SU(3) \times SU(2) \times U(1)$

- Gauge group $SU(3) \times SU(2) \times U(1)$
- ② 3 generations of matter particles (↔ exact chiral spectra)

- Gauge group $SU(3) \times SU(2) \times U(1)$
- $oldsymbol{\circ}$ 3 generations of matter particles (\leftrightarrow exact *chiral* spectra)
- \bullet 1 Higgs (\leftrightarrow *vector-like* spectra)

- Gauge group $SU(3) \times SU(2) \times U(1)$
- ② 3 generations of matter particles (↔ exact chiral spectra)
- **3** 1 Higgs (\leftrightarrow *vector-like* spectra)
- Yukawa interactions, particle masses and hierarchy

- Gauge group $SU(3) \times SU(2) \times U(1)$
- ② 3 generations of matter particles (← exact chiral spectra)
- **3** 1 Higgs (\leftrightarrow *vector-like* spectra)
- Yukawa interactions, particle masses and hierarchy
- BSM, dark energy, . . .

- Gauge group $SU(3) \times SU(2) \times U(1)$
- $oldsymbol{\circ}$ 3 generations of matter particles (\leftrightarrow exact *chiral* spectra)

[Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19]

- 1 Higgs (
 → vector-like spectra) [M.B. Cvetič Donagi Lin Liu Ruehle '20]
 https://github.com/homalg-project/ToricVarieties_project
- Yukawa interactions, particle masses and hierarchy [Cvetič Lin Liu Zhang Zoccarato '19], ...
- BSM, dark energy, . . .

Find (MS)SM in F-theory – exact chiral spectra

- F-theory compactification is described by singular elliptic Calabi-Yau fibration $\pi\colon Y_4 \twoheadrightarrow \mathcal{B}_3$. In practise, we focus on smooth \hat{Y}_4 from the resolution of singular Y_4 .
- Chiral matter states are represented by fibrations over localized curves $C_R \subset \mathcal{B}_3$.
- Turn on non-trival field strength $G_4 = dC_3 \in H^{2,2}_{\mathbb{Z}}(\hat{Y}_4)$: \Rightarrow Chiral spectra: $\chi = n - \overline{n}$

Find (MS)SM in F-theory – exact chiral spectra

- F-theory compactification is described by singular elliptic Calabi-Yau fibration $\pi: Y_4 \to \mathcal{B}_3$. In practise, we focus on smooth \hat{Y}_4 from the resolution of singular Y_4 .
- Chiral matter states are represented by fibrations over localized curves $C_R \subset \mathcal{B}_3$.
- Turn on non-trival field strength $G_4 = dC_3 \in H^{2,2}_{\mathbb{Z}}(\hat{Y}_4)$: \Rightarrow Chiral spectra: $\chi = n - \overline{n}$

Past string constructions with exact chiral spectra

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], . . .
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00],
 [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Mayorga Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], [Taylor Turner '19], [Raghuram Taylor Turner '19], . . .

Muyang Liu 5 / 17

• Massless (anti-)chiral modes depend on the F-theory equivalent M-theory 3-form gauge potential $C_3 \in H^4_D\left(\widehat{Y}_4,\mathbb{Z}(2)\right)$:

$$0 \to J^2(\hat{Y}_4) \to H^4_D\left(\hat{Y}_4,\mathbb{Z}(2)\right) \to H^{2,2}(\hat{Y}_4,\mathbb{Z}) \to 0\,.$$

• $J^2(\hat{Y}_4)$: intermediate Jacobian, corresponds to the space of flat 3-form connections.

• Massless (anti-)chiral modes depend on the F-theory equivalent M-theory 3-form gauge potential $C_3 \in H^4_D\left(\widehat{Y}_4,\mathbb{Z}(2)\right)$:

$$0 \to J^2(\hat{Y}_4) \to H^4_D\left(\widehat{Y}_4,\mathbb{Z}(2)\right) \to H^{2,2}(\widehat{Y}_4,\mathbb{Z}) \to 0\,.$$

- $J^2(\hat{Y}_4)$: intermediate Jacobian, corresponds to the space of flat 3-form connections.
- On \hat{Y}_4 , Chow ring $CH^2(\hat{Y}_4)$ provides parameterization of (subset of) $H_D^4(\hat{Y}_4,\mathbb{Z}(2))$ and is computationally more feasible. [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

• Massless (anti-)chiral modes depend on the F-theory equivalent M-theory 3-form gauge potential $C_3 \in H^4_D\left(\widehat{Y}_4,\mathbb{Z}(2)\right)$:

$$0 \to J^2(\hat{Y}_4) \to H^4_D\left(\widehat{Y}_4,\mathbb{Z}(2)\right) \to H^{2,2}(\widehat{Y}_4,\mathbb{Z}) \to 0\,.$$

- $J^2(\hat{Y}_4)$: intermediate Jacobian, corresponds to the space of flat 3-form connections.
- On \hat{Y}_4 , Chow ring $CH^2(\hat{Y}_4)$ provides parameterization of (subset of) $H^4_D(\hat{Y}_4,\mathbb{Z}(2))$ and is computationally more feasible. [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]
- The full gauge information $A \in CH^2(\hat{Y}_4, \mathbb{Z})$ define line bundles \mathcal{L}_R over C_R .
- $\Rightarrow h^i(C_R, \mathcal{L}_R)$ count the vector-like spectra: chiral $\leftrightarrow h^0(C_R, \mathcal{L}_R)$, anti-chiral $\leftrightarrow h^1(C_R, \mathcal{L}_R)$.

 $\chi = h^0 - h^1$ is topological invariant, and only depends on $G_4 \in H^{2,2}(\hat{Y}_4, \mathbb{Z})$.

Muyang Liu 6 / 17

Challenges to determine $h^{i}(C_{R}, \mathcal{L}_{R})$:

- In computationally simple toric surface dP₃, we use topological data to predict jumps of vector-like pairs and reach 95% accuracy. [Bies Cvetič Donagi Lin Liu Ruehle '20] https://github.com/homalg-project/ToricVarieties_project
- ullet In realistic F-theory geometries , impossible to get pullback bundle expressions of $\mathcal{L}_R.$
- Hence vector-like jumps cannot be specified by topological data only.

Challenges to determine $h^i(C_R, \mathcal{L}_R)$:

- In computationally simple toric surface dP₃, we use topological data to predict jumps of vector-like pairs and reach 95% accuracy. [Bies Cvetič Donagi Lin Liu Ruehle '20] https://github.com/homalg-project/ToricVarieties_project
- ullet In realistic F-theory geometries , impossible to get pullback bundle expressions of \mathcal{L}_R .
- Hence vector-like jumps cannot be specified by topological data only.

Past string constructions with exact vector-like spectra

- $E_8 \times E_8$: [Bouchard Donagi '05], [Braun He Ovrut Pantev '05], [Bouchard Cvetic Donagi '06], [Anderson Gray Lukas Palti '10 & '11], ...
- Heterotic [Anderson Gray Lukas Palti '10 & '11 and subsequent works]
- F-theory: Preliminary works [Bies Mayrhofer Pehle Weigand '14], [Bies Mayrhofer Weigand '17], [M.B. '18], [Bies Cvetič Donagi Lin Liu Ruehle '20]. Full construction not (yet) known.

Muyang Liu 7 / 17

• Explicit construction of quadrillion MSSM three family F-theory models presented in [Cvetič Halverson Lin Liu Tian '19] induces:

$$G_4 = -\frac{3}{\overline{K}_{B_3}^3} \left(5[e_1] \wedge [e_4] - 3[e_1] \wedge [\overline{K}_{B_3}] - 2[e_2] \wedge [\overline{K}_{B_3}] - 6[e_4] \wedge [\overline{K}_{B_3}] s \cdots \right) .$$

8 / 17

• Explicit construction of quadrillion MSSM three family F-theory models presented in [Cvetič Halverson Lin Liu Tian '19] induces:

$$G_4 = -\frac{3}{\overline{K}_{B_3}^3} \left(5[e_1] \wedge [e_4] - 3[e_1] \wedge [\overline{K}_{B_3}] - 2[e_2] \wedge [\overline{K}_{B_3}] - 6[e_4] \wedge [\overline{K}_{B_3}] s \cdots \right) .$$

- Naively G_4 lifts to $CH^2(\widehat{Y}_4,\mathbb{Q})$ with a fractional prefactor k_3^{-1} , where $k_3=\bar{K}^3_{\mathcal{B}_3}$.
- \Rightarrow Therefore, not a proper lift to $CH^2(\widehat{Y}_4,\mathbb{Z})$.

• Explicit construction of quadrillion MSSM three family F-theory models presented in [Cvetič Halverson Lin Liu Tian '19] induces:

$$G_4 = -\frac{3}{\overline{K}_{B_3}^3} \left(5[e_1] \wedge [e_4] - 3[e_1] \wedge [\overline{K}_{B_3}] - 2[e_2] \wedge [\overline{K}_{B_3}] - 6[e_4] \wedge [\overline{K}_{B_3}] s \cdots \right) .$$

- Naively G_4 lifts to $CH^2(\widehat{Y}_4,\mathbb{Q})$ with a fractional prefactor k_3^{-1} , where $k_3=\bar{K}^3_{\mathcal{B}_3}$.
- \Rightarrow Therefore, not a proper lift to $CH^2(\widehat{Y}_4,\mathbb{Z})$.
- Fix: consider $\xi := \overline{K}_{\mathcal{B}_3}^3 \cdot [G_4]$. It induces *unique* line bundle \mathcal{L}_R on matter curve C_R .

 Explicit construction of quadrillion MSSM three family F-theory models presented in [Cvetič Halverson Lin Liu Tian '19] induces:

$$G_4 = -\frac{3}{\overline{K}_{B_3}^3} \left(5[e_1] \wedge [e_4] - 3[e_1] \wedge [\overline{K}_{B_3}] - 2[e_2] \wedge [\overline{K}_{B_3}] - 6[e_4] \wedge [\overline{K}_{B_3}] s \cdots \right).$$

- Naively G_4 lifts to $CH^2(\widehat{Y}_4,\mathbb{Q})$ with a fractional prefactor k_3^{-1} , where $k_3=\bar{K}^3_{\mathcal{B}_3}$.
- \Rightarrow Therefore, not a proper lift to $CH^2(\widehat{Y}_4,\mathbb{Z})$.
- Fix: consider $\xi := \overline{K}_{\mathcal{B}_3}^3 \cdot [G_4]$. It induces *unique* line bundle \mathcal{L}_R on matter curve C_R .
- \Rightarrow Actual G_4 induces L_R subject to

$$L_{\mathsf{R}}^{\otimes \overline{K}_{\mathcal{B}_{3}}^{3}} = \mathcal{L}_{\mathsf{R}}.$$

i.e., $L_{\rm R}$ is a (special) $\overline{K}_{B_2}^3$ -root of $\mathcal{L}_{\rm R}$.

8 / 17

• Sections of root bundles count the vector-like spectra in MSSM constructions.

- Sections of root bundles count the vector-like spectra in MSSM constructions.
- ullet On a genus g curve C_{R} there are n^{2g} n-th root bundles ${\mathcal L}$ which satisfy

$$\mathcal{L}^{\otimes n} = K_{C_{\mathbf{R}}}^{\otimes m}, \quad m, n \in \mathbb{Z} > 0.$$

- Sections of root bundles count the vector-like spectra in MSSM constructions.
- ullet On a genus g curve C_{R} there are n^{2g} n-th root bundles ${\mathcal L}$ which satisfy

$$\mathcal{L}^{\otimes n} = K_{C_{\mathbf{R}}}^{\otimes m}, \quad m, n \in \mathbb{Z} > 0.$$

- ullet Realistic F-theory geometry [Cvetič Halverson Lin Liu Tian '19] \hat{Y}_4 admits $k_3=18$
- ⇒ The concerned root bundles on the quark doublet curve satisfy

$$\mathcal{L}^{\otimes 18} = \mathcal{K}_{C_{(\mathbf{3},\mathbf{2})_{\mathbf{1}/6}}}^{\otimes 12}.$$

- Sections of root bundles count the vector-like spectra in MSSM constructions.
- ullet On a genus g curve C_{R} there are n^{2g} n-th root bundles ${\mathcal L}$ which satisfy

$$\mathcal{L}^{\otimes n} = K_{C_{\mathbf{P}}}^{\otimes m}, \quad m, n \in \mathbb{Z} > 0.$$

- ullet Realistic F-theory geometry [Cvetič Halverson Lin Liu Tian '19] \hat{Y}_4 admits $k_3=18$
- ⇒ The concerned root bundles on the quark doublet curve satisfy

$$\mathcal{L}^{\otimes 18} = \mathcal{K}_{\mathcal{C}_{(\mathbf{3},\mathbf{2})_{\mathbf{1}/6}}}^{\otimes 12}.$$

• Impractical to construct 3rd root bundle on smooth and irreducible curve.

- Sections of root bundles count the vector-like spectra in MSSM constructions.
- ullet On a genus g curve C_{R} there are n^{2g} n-th root bundles ${\mathcal L}$ which satisfy

$$\mathcal{L}^{\otimes n} = K_{C_{\mathbf{P}}}^{\otimes m}, \quad m, n \in \mathbb{Z} > 0.$$

- Realistic F-theory geometry [Cvetič Halverson Lin Liu Tian '19] \hat{Y}_4 admits $k_3=18$
- ⇒ The concerned root bundles on the quark doublet curve satisfy

$$\mathcal{L}^{\otimes 18} = \mathcal{K}_{C_{(\mathbf{3},\mathbf{2})_{\mathbf{1}/6}}}^{\otimes 12}.$$

- Impractical to construct 3rd root bundle on smooth and irreducible curve.
- Mathematicans realized that on nodal curves, such n-th root bundles can explicitly be constructed by the so-called limit roots.
 [Caporaso Casagrande Cornalba '04] Thanks Marielle for pointing out this paper!
- Nodal curve \leftrightarrow locally looks like $x \cdot y = 0$.

Root bundles on a realistic F-theory geometry $(Y_1 = V(s_3, s_5, s_9))$

curve	g	L	d	BN-th		ory
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	10	$\mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(3,2)_{1/6}}}^{\otimes 24}$	12	h ⁰ 3 4 5	h ¹ 0 1 2	ρ 10 6 0
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$	82	$\mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{C_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)_{-1/2}}}(-30 \cdot Y_1)$	84	h ⁰ 3 4 : 10	h ¹ 0 1 : 7	ρ 82 78 : 12
$C_{(\overline{3},1)_{-2/3}} = V(s_5, s_9)$						
:	٠					

• Upon special choice $s_3 = \prod_i x_i$, the original smooth and irreducible quark-doublet curve $C_{(3,2)_{1/6}} = V(s_3) \cap V(s_9)$ chops into 17 smaller pieces, such that the whole curve is nodal:

• Upon special choice $s_3 = \prod_i x_i$, the original smooth and irreducible quark-doublet curve $C_{(3,2)_{1/6}} = V(s_3) \cap V(s_9)$ chops into 17 smaller pieces, such that the whole curve is nodal:

curve	equation	genus	$\deg\left(2K_C _{C_i}\right)$
C_1	$V(x_1,s_9)$	1	6
C_3	$V(x_3, s_9)$	1	6
C_6	$V(x_6,s_9)$	0	12
C_{11}	$V(x_{11},s_9)$	0	12
C_2	$V(x_2,s_9)$	0	0
$\left\{C_8^{(i)}\right\}_{1\leq i\leq 6}$	$V(x_8,x_1-\alpha_ix_3)$	0	0
$\left\{C_{10}^{(i)}\right\}_{1\leq i\leq 6}$	$V(x_{10},x_1-\alpha_ix_3)$	0	0

Muyang Liu

11 / 17

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph. [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph.
 [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph.
 [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:
- Draw nodes to represent curve components.
- Connect nodes by lines.

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph.
 [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:
- Draw nodes to represent curve components.
- Connect nodes by lines.
- Add weights on two ends of line.

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph.

 [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:
- Draw nodes to represent curve components.
- Connect nodes by lines.
- · Add weights on two ends of line.
- Place all weights on node C1.
- $deg(C_1)^w = deg(2K_C|_{C_1}) \sum_j w_1^j$ = 6 - 2 - 2 - 2 = 0.

Example: exactly 3 quarks on the quark-doublet curve

- One-to-one correspondence between limit n-th root and the so-called weighted subgraph. [Caporaso Casagrande Cornalba '04]
- \Rightarrow A Limit 3rd root of $2K_C$ is given by the following weighted diagram:
- Draw nodes to represent curve components.
- Connect nodes by lines.
- Add weights on two ends of line.
- Place all weights on node C1.
- $deg(C_1)^w = deg(2K_C|_{C_1}) \sum_j w_1^j$ = 6 - 2 - 2 - 2 = 0.
- Extend this to the rest of the diagram.

Muyang Liu

12 / 17

• Suppose there are n_i weights attached to curve component C_i , the degree of line bundle on C_i turns into $deg(C_i)^w = deg(2K_C|_{C_i}) - \sum_i w_i^j$.

- Suppose there are n_i weights attached to curve component C_i , the degree of line bundle on C_i turns into $deg(C_i)^w = deg(2K_C|_{C_i}) \sum_i w_i^j$.
- The associated line bundle has multidegree $\deg(I) = (0, -3, 3, -3, -18, -18, 3)$. Consequently, the corresponding 3rd limit root has degree

$$\deg(\sqrt[3]{I}) = (0, -1, 1, -1, -6, -6, 1),$$

- Suppose there are n_i weights attached to curve component C_i , the degree of line bundle on C_i turns into $deg(C_i)^w = deg(2K_C|_{C_i}) \sum_i w_i^j$.
- The associated line bundle has multidegree deg(I) = (0, -3, 3, -3, -18, -18, 3). Consequently, the corresponding 3rd limit root has degree

$$\deg(\sqrt[3]{I}) = (0, -1, 1, -1, -6, -6, 1),$$

 We conclude that the number of global sections is given by the sum of local sections as followed:

$$h^0(C_1) = \begin{cases} 1 & \text{if } \mathcal{L}_{C_1} \equiv 0 \\ 0 & \text{otherwise} \end{cases}, \qquad h^0(C_3) = 1, \qquad h^0(C_{11}) = 2.$$

Muyang Liu

13 / 17

There exists non-trivial line bundle on C_1 such that $h^0(C_1) = 0$.

 \Rightarrow Existence of 3rd limit roots of $2K_C$ with $h^0 = 3$.

Muyang Liu

- Pick a *special*, physics viable (no gauge enhancement) 4-fold geometry \widetilde{Y}_4 , in which the Higgs curve is nodal.
- \Rightarrow Find limit roots on this nodal Higgs curve with $h^0 = 4$.

- Pick a *special*, physics viable (no gauge enhancement) 4-fold geometry \widetilde{Y}_4 , in which the Higgs curve is nodal.
- \Rightarrow Find limit roots on this nodal Higgs curve with $h^0 = 4$.
- ② Artifically deform other matter curves out of physics viable 4-fold geometry $\widetilde{Y_4}$ into nodal curves, on which we construct roots with $h^0 = 3$.
- 3 By upper semi-continuitiy, h^0 remains constant when tracing these roots back to the physics geometry \widetilde{Y}_4 .

- Pick a *special*, physics viable (no gauge enhancement) 4-fold geometry \widetilde{Y}_4 , in which the Higgs curve is nodal.
- \Rightarrow Find limit roots on this nodal Higgs curve with $h^0 = 4$.
- ② Artifically deform other matter curves out of physics viable 4-fold geometry $\widetilde{Y_4}$ into nodal curves, on which we construct roots with $h^0 = 3$.
- 3 By upper semi-continuitiy, h^0 remains constant when tracing these roots back to the physics geometry \widetilde{Y}_4 .
- \Rightarrow All other matter curves admit roots with $h^0 = 3$.

We **anticipate** that F-theory MSSMs with the exact vector-like spectra could be constructed from a combination of explicit root bundle constructions with the following steps:

- Pick a *special*, physics viable (no gauge enhancement) 4-fold geometry \widetilde{Y}_4 , in which the Higgs curve is nodal.
- \Rightarrow Find limit roots on this nodal Higgs curve with $h^0 = 4$.
- ② Artifically deform other matter curves out of physics viable 4-fold geometry $\widetilde{Y_4}$ into nodal curves, on which we construct roots with $h^0 = 3$.
- 3 By upper semi-continuitiy, h^0 remains constant when tracing these roots back to the physics geometry \widetilde{Y}_4 .
- \Rightarrow All other matter curves admit roots with $h^0 = 3$.
- \Rightarrow **If such** \widetilde{Y}_4 **exsit** \rightarrow Find MSSM vector-like spectra.

Muyang Liu

• Include the choice of spin structure to fully specify the line bundle.

- Include the choice of spin structure to fully specify the line bundle.
- 2 Interret the freedom of gauge background encoded in the intermediate Jacobian.

- Include the choice of spin structure to fully specify the line bundle.
- Intepret the freedom of gauge background encoded in the intermediate Jacobian.
- ullet Extend to construct a database of \widetilde{Y}_4 admiting MSSM vector-like spectra including full gauge data. https://github.com/homalg-project/ToricVarieties_project

Motivation and outline Vector-like spectra in F-theory Root bundles on realistic F-theory geometry Outlook and strategy

Thanks for your attention!