Criptografia Assimétrica

Distribuição de Chaves

Distribuição de Chaves Públicas (1)

- Técnicas de distribuição de chaves públicas:
 - Anúncio público
 - Disponibilização de uma directoria pública
 - Autoridade de chave pública
 - Certificados de chave pública

Distribuição de Chaves Públicas (2)

- Anúncio público
 - Chave-pública de conhecimento público
 - Utilização de um algoritmo como o RSA
 - Cada utilizador pode enviar a sua chave pública para outro participante ou realizar a sua difusão
 - Exemplo
 - PGP em que muitos utilizadores difundem a sua chave pública em anexo a mensagens
 - Um anúncio pode ser facilmente forjado

Distribuição de Chaves Públicas (3)

Anúncio público (cont.)

Distribuição de Chaves Públicas (4)

- Disponibilização de uma directoria pública
 - Mais seguro que o anúncio público
 - Manutenção da responsabilidade de uma terceira entidade
 - Caracteristicas:
 - 1. Uma entrada por cada participante com o nome e chave pública
 - Cada participante regista a sua chave pessoalmente ou através de um canal seguro e autenticado
 - Os participantes podem substituir a sua chave pública em qualquer altura
 - 4. A lista completa de chaves deve ser publicada periodicamente pela entidade responsável pela directoria
 - 5. Acesso à directoria por meios electrónicos

Distribuição de Chaves Públicas (5)

- Disponibilização de uma directoria pública (cont.)
 - Se alguém conseguir obter a chave privada da entidade responsável pode forjar as chaves dos participantes e divulgá-las como válidas

Distribuição de Chaves Públicas (6)

- Autoridade de chave pública (PKA)
 - A envia envia um pedido, com timestamp, à PKA para obter a chave pública de B
 - 2. A PKA responde com uma mensagem cifrada com a sua chave privada KR_{outh} . A mensagem contém:
 - KU_b , o pedido original (para verificação) e o *timestamp*.
 - 3. A envia uma mensagem a B cifrada com KU_b contendo ID_A e N_1
 - 4. Igual ao passo 1, mas para B
 - 5. Igual ao passo 2, mas para B onde obtém KU_a
 - 6. B envia uma mensagem a A cifrada com KU_a contendo N_1 e N_2
 - 7. A envia uma mensagem a B cifrada com KU_b contendo N_2

Distribuição de Chaves Públicas (7)

Autoridade de chave pública (cont.)

Distribuição de Chaves Públicas (8)

- Autoridade de chave pública (cont.)
 - Apesar de ser necessário 7 mensagens, as primeiras
 4 ocorreram poucas vezes porque os intervenientes
 podem armazenar as chaves públicas
 - A PKA pode ser um ponto de engarrafamento
 - Se alguém conseguir obter a chave privada da PKA,
 esta fica comprometida.

Distribuição de Chaves Públicas (9)

- Certificados de chave pública (CA)
 - 1. Cada participante pode ler um certificado para determinar o nome e a chave pública do dono do certificado
 - 2. Cada participante pode verificar que um certificado foi originado na *CA* e não foi alterado
 - 3. Só a *CA* pode criar e actualizar certificados
- Uma chave privada comprometida é semelhante à perca de um cartão de crédito: o dono cancela o cartão, mas está em risco enquanto todas as comunicações não tiverem conhecimento do seu cancelamento
- O protocolo X.509 usa este tipo de distribuição de chaves

Distribuição de Chaves Públicas (10)

• Certificados de chave pública (cont.)

Conclusões

- Depois de distribuídas ou disponibilizadas as chaves, podem realizar-se comunicações seguras resistentes a ataques
- A utilização de técnicas de cifragem assimétrica são bastante pesadas, tornando pouco comum a sua utilização exclusiva
- As técnicas de cifragem assimétrica são vistas como um bom veículo de distribuição de chaves secretas utilizadas na criptografia convencional

Distribuição de Chaves Secretas (1)

- Técnicas de distribuição de chaves secretas:
 - Distribuição simples
 - Distribuição com confidencialidade e autenticidade
 - Esquema híbrido

Distribuição de Chaves Secretas (2)

- Distribuição simples
 - 1. A gera um par de chaves $\{KU_a, KR_a\}$ e envia uma mensagem a B com KU_a e um identificador ID_A
 - 2. B gera uma chave secreta K_s e envia a A cifrada com KU_a
 - Este esquema é vulnerável a ataques Man-in-the-middle

Distribuição de Chaves Secretas (3)

- Distribuição com confidencialidade e autenticidade
 - Troca de chaves públicas através de um dos esquemas anteriores
 - 1. A cifra uma mensagem para $B \operatorname{com} KU_b \operatorname{contendo} ID_A \operatorname{e} N_1$
 - 2. B cifra uma mensagem para A com KU_a contendo N_1 e N_2
 - 3. A cifra uma mensagem para B com KU_b contendo N_2
 - 4. A escolhe K_s e envia $M=E_{KUb}[E_{KRa}[K_s]]$

Distribuição de Chaves Secretas (4)

 Distribuição com confidencialidade e autenticidade (cont.)

Distribuição de Chaves Secretas (5)

- Esquema Híbrido
 - Utilizado em mainframes da IBM
 - Mantém a utilização de 1 KDC
 - Partilha de chaves mestras com cifragem assimétrica
 - Melhorias alcançadas
 - Desempenho em aplicações orientadas às transacções com trocas frequentes de chaves a distribuição de chaves através de cifras assimétricas torna-se pesada
 - Compatibilidade garante a compatibilidade com sistemas de KDC existentes através de alguns ajustes nas aplicações