results of t' = 0, U = 4

April 9, 2015

Abstract

This report contains results of t'=0, U=4, T=0.5, 0.25, 0.125 which are simulated at fixed n=0.3, 0.6, 0.8, 0.875, 1.0. We present four physical quantities including energy density E, kinetic energy density K, double occupancy density D and chemical potential μ . Three techniques have been used including $G^2\Gamma$ -scheme, $[G^{(0)}]^2\Gamma^{(0)}$ -scheme and $[G^{(0)}]^2U$ -scheme. Extrapolation(in the order N) figures are shown in Section 2,3,4, and final results($N \to \infty$) are shown in Table 1, 2, 3.

1 Fitting table

1.1 T=0.5

Table 1: Extrapolation results: $G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$ and $[G^{(0)}]^2U$ series for $U=4,\,T=0.5$

	n	1.0	0.875	0.8	0.6	0.3
E	$G^2\Gamma$	-	-0.910(8)	-0.986(4)	-1.061(2)	-0.7946(3)
	$[G^{(0)}]^2\Gamma^{(0)}$	-0.716(8)	-	-0.986(4)	-	-0.7946(5)
	$[G^{(0)}]^2U$	-0.715(4)	-	-	-	-
K	$G^2\Gamma$	-	-1.253(20)	-1.255(10)	-1.199(5)	-0.8270(8)
	$[G^{(0)}]^2\Gamma^{(0)}$	-1.251(9)	-	-1.265(8)	-	-0.8270(5)
	$[G^{(0)}]^2U$	-1.248(6)	-	-	-	-
D	$G^2\Gamma$	-	0.086(10)	0.067(4)	0.035(1)	0.0080(2)
	$[G^{(0)}]^2\Gamma^{(0)}$	0.134(5)	-	0.069(4)	-	0.0081(2)
	$[G^{(0)}]^2U$	0.133(3)	-	-	-	-
μ	$G^2\Gamma$	-	1.16(6)	0.73(4)	-0.36(2)	-2.043(3)
	$[G^{(0)}]^2\Gamma^{(0)}$	2.0	-	0.74(2)	-	-2.043(2)
	$[G^{(0)}]^2U$	2.0	-	-	-	-

1.2 T=0.25

Table 2: Extrapolation results: $G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$ and $[G^{(0)}]^2U$ series for $U=4,\,T=0.25$

	n	1.0	0.875	0.8	0.6	0.3
\overline{E}	$G^2\Gamma$	-	-0.989(8)	-1.066(4)	-1.148(2)	-0.8574(7)
	$[G^{(0)}]^2\Gamma^{(0)}$	-0.81(2)	-	-1.068(5)	-	-0.8570(6)
	$[G^{(0)}]^2U$	-0.806(10)	-	-	-	-
K	$G^2\Gamma$	-	-1.358(20)	-1.36(1)	-1.306(4)	-0.8933(10)
	$[G^{(0)}]^2\Gamma^{(0)}$	-1.35(2)	-	-1.37(1)	-	-0.8935(9)
	$[G^{(0)}]^2U$	-1.337(10)	-	-	-	-
n_d	$G^2\Gamma$	-	0.092(8)	0.074(3)	0.039(1)	0.0090(3)
	$[G^{(0)}]^2\Gamma^{(0)}$	0.135(10)	-	0.075(4)	-	0.0091(3)
	$[G^{(0)}]^2U$	0.133(5)	-	-	-	-
μ	$G^2\Gamma$	-	1.18(6)	0.80(4)	-0.22(1)	-1.944(4)
	$[G^{(0)}]^2\Gamma^{(0)}$	2.0	-	0.83(2)	-	-1.944(4)
	$[G^{(0)}]^2U$	2.0	-	-	-	_

1.3 T=0.125

Table 3: Extrapolation results: $G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$ and $[G^{(0)}]^2U$ series for $U=4,\,T=0.125$

	n	1.0	0.875	0.8	0.6	0.3
E	$G^2\Gamma$	-	-1.015(8)	-1.096(4)	-1.175(3)	-0.8744(9)
	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-0.874(1)
	$[G^{(0)}]^2U$	-0.85(2)	-	-	-	-
K	$G^2\Gamma$	-	-1.40(2)	-1.41(1)	-1.339(4)	-0.9112(10)
	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-0.9113(10)
	$[G^{(0)}]^2U$	-1.34(3)	-	-	-	-
n_d	$G^2\Gamma$	-	0.097(6)	0.078(3)	0.041(1)	0.0092(3)
	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	0.0093(3)
	$[G^{(0)}]^2U$	0.12(2)	-	-	-	-
μ	$G^2\Gamma$	-	1.20(7)	0.83(4)	-0.169(8)	-1.924(4)
	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-1.923(4)
	$[G^{(0)}]^2U$	2.0	-	-	-	-

2 T = 0.5

2.1 T = 0.5, n = 0.3

2.2 T = 0.5, n = 0.6

2.3 T = 0.5, n = 0.8

2.4 T = 0.5, n = 0.875

1/N

2.5 T = 0.5, n = 1.0

3
$$T = 0.25$$

3.1 T = 0.25, n = 0.3

3.2 T = 0.25, n = 0.6

3.3 T = 0.25, n = 0.8

3.4 T = 0.25, n = 0.875

3.5 T = 0.25, n = 1.0

4 T = 0.125

4.1 T = 0.125, n = 0.3

4.2 T = 0.125, n = 0.6

4.3 T = 0.125, n = 0.8

4.4 T = 0.125, n = 0.875

0.075 0.07

1/6

1/3 1/2 1/N

0

4.5 T = 0.125, n = 1.0

