550.420 Intro. to Probability - Spring 2017

Due: in lecture, Friday, April 28.

From the textbook:

Chapter 7 / Problems: 7.1, 7.6, 7.11, 7.14*, 7.30, 7.31, 7.41, 7.42 7.45

Theoretical exercises: 7.1, 7.4, 7.21

* Also, compute the variance. For this problem if we let N represent the number of stages needed to eliminate all the black balls, then the idea is to write N as a sum of random variables, i.e., $N = \sum_{i} X_{i}$, and apply linearity to compute the expected value.

Homework #12

Additional problems:

A.12.1. X, Y are jointly continuous with joint pdf

$$f(x,y) = e^{-y}$$
 for $0 < x < y < \infty$.

- (a) Compute the covariance between X and Y.
- (b) Compute $\rho_{X,Y}$, i.e., the correlation coefficient of X and Y.
- (c) You what you've already computed to find the value of Var(X+Y). How about Var(X-Y)?
- (d) Compute E(X|Y=y) and E(Y|X=x).
- **A.12.2.** Suppose we have a (doubly infinite) sequence ..., Z_{-2} , Z_{-1} , Z_0 , Z_1 , Z_2 , ... of independent normal rvs with mean 0 and variance σ^2 , and let θ be a real number satisfying $0 < |\theta| < 1$. Consider the following sequence of random variables generated from the Z-process: for each n, $X_n = Z_n + \theta Z_{n-1}$.
- (a) Compute the mean and variance of X_n . Notice that your answer doesn't depend on n.
- (b) Compute $Cov(X_n, X_{n-1})$ and $\rho_{X_n, X_{n-1}}$. Again, your answer shouldn't depend on n.
- (c) If $h \geq 2$ is an integer, compute $Cov(X_n, X_{n-h})$ and $\rho_{X_n, X_{n-h}}$.

In statistics, the process (X_t) is called a moving average process of lag 1.

- **A.12.3.** (a) If X and Y are independent with respective means μ_X , μ_Y and variances σ_X^2 , σ_Y^2 , then (i) find Var(X+Y).
 - (ii) find Var(X Y). Why does this not contradict A.12.1(c)?
- (b) Let X and Y be any random variables having the same variance σ^2 (but possibly different means). Compute Cov(X+Y,X-Y).
- (c) X_1, X_2, \ldots, X_n are i.i.d. random variables each having mean μ and variance σ^2 . Find $Var(\sum_{i=1}^n X_i)$ and find $Var(\overline{X})$, where the sample mean \overline{X} is defined as $(X_1 + X_2 + \cdots + X_n)/n$.
- **A.12.4.** Show that if a and b are constants, then Cov(X + a, Y + b) = Cov(X, Y).
- **A.12.5.** (The bivariate normal) Suppose X, Y are bivariate normal with parameters $\mu_X, \mu_y, \sigma_X^2, \sigma_Y^2$, and ρ . I.e., the joint pdf of X, Y is given by

$$f(x,y) = \frac{e^{-\frac{1}{2(1-\rho^2)}\left\{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right\}}}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}.$$

- (a) Show that $E(X) = \mu_X$, $E(Y) = \mu_Y$, $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$, $Cov(X, Y) = \rho\sigma_X\sigma_Y$ so that $\rho_{X,Y} = \rho$. There is an easy way without having to do any integrations.
- (b) Identify the conditional distribution of Y given X = x (details) and then from it find E(Y|X = x).
- (c) Identify the conditional distribution of X given Y = y (details) and then from it find E(X|Y = y).