Semi-supervised Learning

Yun You, Wen Zhang, Feng Lu (Francis)

Overview

Problem Description:

$$x_n \in \mathcal{X} \subseteq \mathbb{R}^d$$

Only **m<<n** samples have labels:

Labels: $y_i = f(x_i) \in \mathcal{Y} = \{1, ..., \mathcal{C}\}$

Classifier: $f:\mathcal{X}\mapsto\mathcal{Y}$

$$err(\hat{f}) = \frac{1}{n-m} \sum_{i=m+1}^{n} \mathbb{1}\{\hat{f}(x_i) \neq f(x_i)\}.$$

Eigenvector Classifier Graph Construction (Weight and Unweighted)

Diffusion Classifier Harmonic / smoothing

KNN of 2 on 2D:

Eigenvector Classifier Simplest Construction

Step 1:

Step 2:

Step 3:

Step 4:
$$c_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$
 $c_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ $c_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$

s
$$E_{lab}$$

$$\mathbf{a} = \left(\mathbf{E}_{ ext{lab}}^T \ \mathbf{E}_{ ext{lab}} \
ight)^{-1} \mathbf{E}_{ ext{lab}}^T \ \mathbf{c}$$

Px1= PxS * SxP * PxS * Sx1

Recall Step 3:

Step 5:

Repeat for all:

The Last Step:

Binary Graph Result

MNIST COIL20

Self-tuning Weighted Matrix

Local similarity:
$$W_{\sigma}(x,y) = h\left(\frac{\rho(x,y)^2}{\sigma}\right)$$

Normalization:
$$ho_x(z,z') =
ho_x(z,z')/
ho_x(x,x_j)$$

Self-tuning

weighted matrix:

$$W_{\sigma}(x,y) = h\left(\frac{\rho_x(x,y)\rho_y(x,y)}{\sigma}\right)$$

Complexity reduced: $n^2 \rightarrow kn$

Laplacian Eigenmap-based SSL

- 1. Construct the **adjacency matrix** W and **degree matrix** D. $(D_{ij} = \Sigma_i W_{ij})$
- 2. Compute the first p eigenvectors e_{γ} , ..., e_{p} of the **Laplacian matrix** L = W D, corresponding to the p **smallest** eigenvalues.
- 3. Represent each data point x_i in the p-dimensional Laplacian eigenmap space using $(e_1(j), ..., e_p(j))$.
- 4. Train a linear **classifier** using the **labeled** data point.
- 5. Classify the **unlabeled** data points.

MNIST Results: non-adapted(Eigenfunction)

Error rate vs. number of eigenvectors with different set sizes

Error rate vs. number of eigenvectors with different labeled data sizes

Best number of eigenvectors with different labeled data sizes

COIL-20 Result: non-adapted

Error rate vs. number of eigenvectors with different set sizes

Error rate vs. number of eigenvectors with different labeled data sizes

Best number of eigenvectors with different labeled data sizes

Time Complexity-non adapted

Function-adapted Kernel

$$W_{\sigma}(x,y) = h\left(\frac{\rho_x(x,y)\rho_y(x,y)}{\sigma}\right) \qquad W^f(x,y) = \exp\left(-\frac{||x-y||^2}{\sigma_1} - \frac{|\tilde{f}(x) - \tilde{f}(y)|^2}{\sigma_2}\right)$$

Physical Distance + the closeness of the estimated function values

 σ_1 : control **geometric** similarity based on **distance**

 σ_2 : control **functional** similarity based on function values

Strengthens connections within classes maintaining class distinctions

Diffusion Process

Random Walk:

d =
$$\sum_{y \in V} W(x,y)$$

Created normalized transition matrix to make sure the sum of probability equals one

$$K(x,y) = d^{-1}(x)W(x,y)$$

K, explain how nodes are connected, probabilities of transitioning from one node to another

Diffusion process

$$\overline{\chi_i^{lab}} = K^t \chi_i^{lab}$$

Used to smooth the function over the graph

Diffusion classifiers

Harmonic Classifier/Smoothing

Similarity

Known labels initial condition Apply the diffusion processing Difference

Smoothing will re-update the initial condition at each interaction

Function adaptive-

$$c_i(x) = \frac{g_i^{250}(x)}{\sum_i |g_i^{250}(x)|}$$

Results: non-adapted(Harmonic/Diffusion)

Results: Function-adapted

COIL₂₀

MNIST

Beta * sigma 1= sigma 2

Results: Function-adapted

Time Complexity Function adapted

MNIST COIL20

THANK YOU

Yun You, Wen Zhang, Feng Lu (Francis)