Introduction to LATEX

Author's Name

September 14, 2017

Abstract

The abstract text goes here.

1 Introduction

Here is the text of your introduction.

$$\alpha = \sqrt{\beta} \tag{1}$$

1.1 Subsection Heading Here

Write your subsection text here.

2 Conclusion

Write your conclusion here.

Expression	Code	Variable Name
v_r	1	v_r
v_{θ}	2	v_{-} theta
v_{ϕ}	3	v_phi
v_r'	4	vp_r
$v_{ heta}'$	5	vp_theta
v_ϕ'	6	vp_phi
$\langle v_r \rangle$	7	vm_r
$\langle v_{\theta} \rangle$	8	vm_theta
$\langle v_{\phi} \rangle$	9	vm_phi
$\frac{\partial v_r}{\partial r}$	10	$\mathrm{dv}_{-}\mathrm{r}_{-}\mathrm{dr}$
$\frac{\partial v_{\theta}}{\partial r}$	11	$dv_{theta}dr$
$rac{\partial v_{\phi}}{\partial r}$	12	dv_phi_dr
$\frac{\partial v_r'}{\partial r}$	13	dvp_r_dr
$\frac{\partial v_{\theta}'}{\partial r}$	14	dvp_theta_dr
$\frac{\partial v_\phi'}{\partial r}$	15	dvp_phi_dr
$rac{\partial \langle v_r angle}{\partial r}$	16	$\mathrm{dvm}_{r_{dr}}$
$rac{\partial \langle v_{ heta} angle}{\partial r}$	17	dvm_theta_dr
$rac{\partial \langle v_{\phi} angle}{\partial r}$	18	dvm_phi_dr
$\frac{\partial v_r}{\partial \theta}$	19	dv_r_dt
$rac{\partial v_{ heta}}{\partial heta}$	20	$dv_{theta}dt$
$rac{\partial v_{\phi}}{\partial heta}$	21	dv_phi_dt
$rac{\partial v_r'}{\partial heta}$	22	dvp_r_dt
$rac{\partial v_{ heta}'}{\partial heta}$	23	dvp_theta_dt
$\frac{\partial v_\phi'}{\partial \theta}$	24	dvp_phi_dt
$\frac{\partial \langle v_r \rangle}{\partial \theta}$	25	dvm_r_dt

Expression	Code	Variable Name
$\partial \langle v_{\theta} \rangle$	26	dvm_theta_dt
$\frac{\partial \theta}{\partial \theta}$		
$\frac{\partial \langle v_{\phi} \rangle}{\partial \theta}$	27	dvm_phi_dt
$\frac{\partial v_r}{\partial \phi}$	28	dv_r_dp
$\frac{\partial v_{\theta}}{\partial \phi}$	29	dv_theta_dp
$\frac{\partial v_{\phi}}{\partial \phi}$	30	dv_phi_dp
$\frac{\partial v_r'}{\partial \phi}$	31	dvp_r_dp
$\frac{\partial v_{\theta}'}{\partial \phi}$	32	dvp_theta_dp
$rac{\partial v_\phi'}{\partial \phi}$	33	dvp_phi_dp
$\frac{\partial \langle v_r \rangle}{\partial \phi}$	34	dvm_r_dp
$rac{\partial \langle v_{ heta} angle}{\partial \phi}$	35	dvm_theta_dp
$\frac{\partial \langle v_{\phi} \rangle}{\partial \phi}$	36	dvm_phi_dp
$\frac{1}{r} \frac{\partial v_r}{\partial \theta}$	37	dv_r_dtr
$\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}$	38	dv_{theta_dtr}
$\frac{1}{r} \frac{\partial v_{\phi}}{\partial \theta}$	39	dv_phi_dtr
$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	40	dvp_r_dtr
$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	41	dvp_theta_dtr
$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	42	dvp_phi_dtr
$\frac{1}{r} \frac{\partial \langle v_r \rangle}{\partial \theta}$	43	dvm_r_dtr
$\frac{1}{r} \frac{\partial \langle v_{\theta} \rangle}{\partial \theta}$	44	dvm_theta_dtr
$\frac{1}{r} \frac{\partial \langle v_{\phi} \rangle}{\partial \theta}$	45	dvm_phi_dtr
$\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi}$	46	dv_r_dprs
$\frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi}$	47	dv_{theta_dprs}
$\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$	48	dv_phi_dprs
$\frac{1}{r \mathrm{sin}\theta} \frac{\partial v_r'}{\partial \phi}$	49	dvp_r_dprs
$\frac{1}{r \mathrm{sin}\theta} \frac{\partial v_{\theta}'}{\partial \phi}$	50	dvp_theta_dprs