

KENYATTA UNIVERSITY UNIVERSITY EXAMINATIONS 2010/2011 INSTITUTE OF OPEN LEARNING EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND **BACHELOR OF EDUCATION (SCIENCE)**

SCH 305: CHEMICAL KINETICS

DATE: FRIDAY 4TH FEBRUARY 2011

TIME: 8.00 A.M - 10.00 A.M

INSTRUCTIONS

Answer ALL questions $R=8.314 \text{ JK}^{-1} \text{ mol}^{-1} = 0.0821 \text{ } l\text{-atm K}^{-1} \text{ mol}^{-1} \text{ (Total Marks} - 70)}$

Question 1

In the combustion of methane

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

The rate of consumption of oxygen was found to be - $\Delta[O_2] / \Delta t = 0.2 \text{ mol s}^{-1}$

- What is the average reaction rate with respect to combustion of methane? a)
- What is the rate of production of gaseous CO₂? b)
- If initially there were 10.00 mol of CH_4 , how many moles of CH_4 would be c) present after 40 s?

Ouestion 2

The formation of gaseous hydrogen iodide, HI (g), was monitored at a temperature of 298 K

 $H_2(g) + I_2(g) \rightarrow 2HI(g)$

The following data on the rate of reaction were collected,

Initial conc [H ₂] / mol dm ³	Initial conc [I2] / mol dm ⁻³	
		/ mol dm ⁻³ s ⁻¹
0.100	0.200	8.0×10^{-3}
0.200	0.200	16.0×10^{-3}
0.100	0.050	2.0×10^{-3}

- a) Derive an expression for the rate law
- b) Calculate k, the rate constant for this reaction at 298 K stating clearly its units
- c) Predict the initial rate of reaction at 298 K if Initial cone $[H_2] = 0.050 \text{ mol dm}^3$ Initial cone $[I_2] = 0.050 \text{ mol dm}^3$

Question 3

The dissociation of sulfuryl chloride, SO_2Cl_2 , is first order with respect to SO_2Cl_2 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

The reaction was performed at 298 K and the following data were obtained:

Time /s	Conc. [SO	O ₂ Cl	2] /	mol	dm	-3
0	1.000					
2500	0.947					
5000	0.895					
7500	0.848					
10000	0.803					
\ a.	1 .	. •	c	41	1.	

- a) State the rate equation for the dissociation
- b) Using a graphical method, calculate the value of the rate constant, k, giving its units
- c) Calculate the half-life for the reaction

Question 4

In the decomposition of nitrogen dioxide, NO₂, nitrous oxide and oxygen are formed as products.

$$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$$

The reaction was performed at various temperatures and the rate constants were found to be as follows:

T/°C	$k/ \operatorname{dm}^3 \operatorname{mol}^{-1}$
100	1.1×10^{-9}
200	1.8×10^{-8}
300	1.2×10^{-7}
400	4.4×10^{-7}

- Rearrange the Arrhenius equation, and, by plotting a graph, find the activation energy and Arrhenius factor for the decomposition of NO₂ (Check carefully your units for the temperature)
- b) Hence predict the value of k at a temperature of 500°C

Question 5

a) Define the term *elementary step*, and describe the difference between a *unimolecular-* and *bimolecular-elementary step*.