Outlier Detection with Space Transformation and Spectral Analysis

Xuan-Hong Dang, Barbora Micenková, Ira Assent* Raymond Ng[†]

Abstract

Detecting a small number of outliers from a set of data observations is always challenging. In this paper, we present an approach that exploits space transformation and uses spectral analysis in the newly transformed space for outlier detection. Unlike most existing techniques in the literature which rely on notions of distances or densities, this approach introduces a novel concept based on local quadratic entropy for evaluating the similarity of a data object with its This information theoretic quantity is used neighbors. to regularize the closeness amongst data instances and subsequently benefits the process of mapping data into a usually lower dimensional space. Outliers are then identified by spectral analysis of the eigenspace spanned by the set of leading eigenvectors derived from the mapping procedure. The proposed technique is purely data-driven and imposes no assumptions regarding the data distribution, making it particularly suitable for identification of outliers from irregular, non-convex shaped distributions and from data with diverse, varying densities.

1 Introduction

Outlier detection aims at discovering anomalous or inconsistent patterns from a dataset and it is one of the major tasks in data mining [9, 15]. Detecting outliers is particularly important in a number of practical domains ranging from fraud detection, network intrusion identification to public health applications [5]. For example, an insurance company that maintains a database of incoming invoices may automatically identify anomalous documents that are suspect of having been tampering. Such fraudulent invoices will be characterized by unusual features compared to other invoices coming from the same source. Although having been widely studied in the past [2], outlier detection remains challenging since not only the number of outliers is significantly smaller than that of normal data, but also measuring outlierness of an object in its original space is usually difficult and imprecise. That makes the task often under-specified.

Existing data mining approaches to outlier detection usually rely on notions of *distance* and *density*. Distance-based approaches [9] define an instance to be an outlier in case that it is sufficiently far from the ma-

jority of other instances in the dataset (a global outlier). Density-based approaches [4] consider an instance to be an outlier if its density is sufficiently small relative to the average density of its neighboring instances. This concept enables detection of outliers which are deviated from local subsets. Techniques based on these approaches typically explore outliers in their original data spaces (or sometimes in projected subspaces) and have demonstrated to work well on linearly separable distributions with stable densities. However, they tend to underperform when data distributions do not follow convex Gaussian but nonlinear structures with variation in densities.

In this paper, we present an algorithm that exploits space transformation and uses spectral analysis in the new transformed space for outlier detection. As in density-based approaches, the proposed algorithm is capable of detecting *local* outliers, yet unlike existing algorithms that rely on notions of (Euclidean) distance or density, our technique develops a novel concept of local quadratic entropy for assessing the similarity of a data object with its nearby instances. The advantage of this information theoretic approach is that it imposes no assumptions regarding the data distribution and thus can closely approximate the local properties of the data whose distribution can be complex. Such an appealing property enables our technique to adaptively regularize the closeness amongst instances and subsequently benefits the procedure of mapping data into a novel (eigen)space. Through spectral theory, we demonstrate that both global and local outliers can be effectively identified by analyzing the eigenspace spanned by the set of the leading eigenvectors derived from the transformation procedure.

The overall detection technique is completely datadriven, placing no assumptions on data distributions, which makes it suitable for identification of outliers from non-convex shaped distributions and even from data with great variation in densities. We demonstrate the effectiveness of our algorithm via a number of experiments on synthetic and real world benchmark datasets and compare its performance against state-ofthe-art algorithms in the literature.

^{*}Aarhus University, Denmark ({dang,barbora,ira}@cs.au.dk).

[†]University of British Columbia, Canada (rng@cs.ubc.ca).

2 Related work

Outlier detection algorithms can be grouped into two large categories: (i) statistical and (ii) data mining algorithms. Most statistical methods assume that the observed data are governed by some statistical process to which a standard probability distribution (e.g., Binomial, Gaussian, Poisson etc.) with appropriate parameters can be fitted to. An object is identified as an outlier based on how unlikely it could have been generated by that distribution [2]. Data mining techniques, on the other hand, attempt to avoid model assumptions; relying on the concepts of distance and density, as stated earlier. For most distance-based methods [9, 18], two parameters called distance d and data fraction p are required. Following that, an outlier has at least fraction p of all instances farther than d from it [9]. As both d and p are parameters defined over the entire data, methods based on distance can only find global outliers. In contrast, techniques relying on density go further by seeking local outliers, whose outlying degrees ("local outlier factor"—LOF) are defined w.r.t. their neighborhoods rather than the entire dataset [4, 19]. LOF-based techniques [4, 19], although they can uncover local outliers effectively in low dimensionality, are susceptible to the problem of density variations and the detection results usually degrade as dimensionality increases. This is aggravated by the fact that, in practice, data often have a lower intrinsic dimensionality than that in which they are represented. Detecting outliers in the original space, therefore, can be hard since many feature many features may be irrelevant for the detection objective.

There are several recent studies that attempt to find outliers in spaces with reduced dimensionality. Some of them [16, 8] consider subspaces as sets of principal components extracted by PCA, which work well with convex shaped distributions but can only uncover global outliers. SOD [10] and OUTRES [13] explore outliers in different projections of the original feature space. An outlying degree for each object is computed in each subspace which are then aggregated to derive the overall degree [13]. ABOD [11] pursues a different approach where variance of angles among objects is taken into account to compute outlierness. That makes the method suitable for high dimensional data. We provide experimental comparisons with state-of-the-art algorithms in Section 5.

3 Problem Definition

In this paper, we focus on the problem of identifying a set of global and local outliers from a single dataset. We are given N data observations $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ in \mathbb{R}^D that contain both regular and outlying instances. The objective is to find a set of outliers $\mathcal{A} = \{\mathbf{x}_i\}_{i=1}^n$

 $(n \ll N)$ that are considerably inconsistent or deviating from the majority of the observations in \mathcal{X} . In our work, we further divide the outlying patterns into two types: (i) global outliers—those forming a small group of data instances that are isolated and occupy no more than c% of the size of the entire dataset \mathcal{X} ; (ii) local outliers—those being inconsistent w.r.t. their nearest group of normal instances and also occupy no more than c% of the size of that group.

4 Space Transformation for Outlier Detection

In real-life applications, data are often represented in a multidimensional space which may hide the underlying inherent data structures. A natural approach is to transform the original data into a new space, usually with lower dimensionality, in which the intrinsic structure of the data can be revealed. For the challenging problem of identifying local outliers, retaining the local properties of the data under such a transformation is much more important than preserving its global properties (e.g., variances in PCA). In this work we exploit an approach similar in thought to Laplacian Eigenmaps (LE) [12], whose philosophy behind is to ensure instances close in the original space to be mapped close in the transformed space. However, it is worth emphasizing that the ultimate goal of LE is to find a single manifold embedding in the original space while our task is fundamentally different. We search for a transformation that emphasizes the difference between objects—potential outliers (or small groups of outliers) and their neighbors. The data distribution may also contain multiple groups of regular objects, not just a single manifold. Therefore, we aim to emphasize the deviation of true outliers from the normal data. Therefore, though being inspired by the mapping objective function of LE, the technique needs to be regularized such that true outliers are clearly deviated from regular inliers in the transformed space.

4.1 Preliminaries on Laplacian Eigenmaps LE is a graph-based technique for dimensionality reduction. Specifically, given the set of N data instances $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^N$ in \mathbb{R}^D , it defines an undirected graph over \mathcal{X} as $G = \{V, E\}$, where $V = \{v_i\}_{i=1}^N$ is a set of vertices and $E = \{e_{ij}\}$ is a set of edges, each connecting a pair (v_i, v_j) . A vertex v_i in the graph corresponds to an instance \mathbf{x}_i in the dataset \mathcal{X} and the edge e_{ij} between v_i and v_j exists if the respective \mathbf{x}_i and \mathbf{x}_j are close to each other. The closeness between \mathbf{x}_i and \mathbf{x}_j is defined using the concept of ℓ -nearest neighbors. In particular, \mathbf{x}_i is close to \mathbf{x}_j if it is among the ℓ -nearest neighbors of \mathbf{x}_j or vice versa. In addition to the graph, LE needs a weight matrix \mathbf{K} of size $N \times N$ whose element \mathbf{K}_{ij} denotes closeness between v_i and v_j . \mathbf{K}_{ij} can simply be

1 if \mathbf{x}_i and \mathbf{x}_j are nearest neighbors and 0 if not, or it can be the Euclidean distance between the two instances, or a value computed from a kernel function between them.

Given G and \mathbf{K} defined above, the goal in the Laplacian eigenmap is to map the original data instances $\{\mathbf{x}_i\}_{i=1}^N$ into a new set $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^d (usually $d \ll D$) so that weights and connections in graph G are retained as much as possible. Let Y be a $d \times N$ matrix having \mathbf{y}_i 's as column vectors, the mapping objective can thus be defined as:

be defined as:
$$(4.1) Y^* = \underset{Y}{\operatorname{arg \, min}} \sum_{i=1}^{N} \sum_{j=1}^{N} \|\mathbf{y}_i - \mathbf{y}_j\|^2 \mathbf{K}_{ij}$$

For later discussion, we further use F as the transposition of Y (i.e., $F = Y^T$) to denote the feature matrix in the induced mapping subspace. A column \mathbf{f}_j in F corresponds to the j-th dimension spanned in the new subspace (thus, $\mathbf{y}_i^T = [\mathbf{f}_1(i), \dots, \mathbf{f}_d(i)]$).

4.2 Closeness with Local Quadratic Entropy Similar to most kernel-based methods, the mapping results by LE are very much dependent on the weight matrix, making the definition of closeness a sensitive issue. Even when a similarity function is appropriately selected, setting the parameters for that function is not an easy task. In this work, we develop a closeness measure function that is adaptive to the local distribution properties of the data instances. Particularly, we want a mapping function that not only keeps neighboring instances with similar properties close to each other, but that also intentionally maps instances that do not share the same distribution properties far apart in the transformed subspace. In other words, if two neighbors have different distributions, their closeness should be penalized proportionally. By doing so, groups with considerably different densities are not only more separable, but the inconsistency of an outlier is also amplified and thus more prominent in the mapping space. To achieve this goal, we adopt a Gaussian kernel for quantifying

closeness: $(4.2) \ \mathbf{K}_{ij} = \left\{ \begin{array}{l} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2 \times (\beta \sigma)^2}\right) & \text{, if } v_i, \, v_j \text{ connected} \\ 0 & \text{otherwise} \end{array} \right.$

which is parameterized by β which we use to regulate the kernel width σ . Note that \mathbf{K}_{ij} is only defined for connected vertices and thus \mathbf{K} is not only symmetric but also sparse. Moreover, it is crucial to see that values of both β and σ directly affect the closeness (i.e. influence) between \mathbf{x}_i and \mathbf{x}_j . However, they are not parameters of our method since we compute them directly from the data (for σ see also Section 4.5). In this work, we propose to use entropy – an information measure based on local distribution properties – to compute β .

In information theory, entropy is a measure quantifying uncertainty or information of a random variable. Mathematically, let X be a continuous random

variable characterized by the probability distribution $p(\mathbf{x})$, then the entropy of X defined by Shannon [3] is $H(X) = -\int p(\mathbf{x}) \log p(\mathbf{x}) d\mathbf{x}$. If H(X) is high, X's purity is low and contains less information. Conversely, if H(X) is low, X's purity is large and contains lots of information. Intuitively, we can make use of the entropy concept to evaluate how different the local distribution surrounding a data instance is. We would expect that for a regular object, its local distribution is stable and close to homogeneous, the corresponding entropy is thus large. In contrast, the data distribution surrounding an outlier, or a boundary object between different distributions, is usually skewed and consequently, entropy is low. Notice that, compared to other measures relying on statistical moments (e.g., variance), a measure relying on entropy or mutual information is appealing [14] since it is a function defined over $p(\mathbf{x})$ and thus able to utilize full essential information contained in the data.

Unfortunately, without assumptions about the data distribution, it is hard to compute Shannon's entropy H(X) as we do not have access to the true probability density function $p(\mathbf{x})$. Therefore, in this work, we explore a more general form of entropy, named Renyi's entropy [14]. Specifically, with α being an order, Renyi's entropy is defined as¹:

$$H_{R_{\alpha}}(X) = \frac{1}{1-\alpha} \log \int p(\mathbf{x})^{\alpha} d\mathbf{x}, \text{ for } \alpha > 0, \ \alpha \neq 1$$

In this study we use $\alpha=2$ which allows us to proceed to computation based on the data straightforwardly. With this setting, the entropy is called quadratic entropy and has the following simple formula:

(4.3)
$$H_{R_2}(X) = -\log \int p(\mathbf{x})^2 d\mathbf{x}$$

The key idea behind this selection is that we can integrate the quadratic entropy with the well known Parzen window method [3] in kernel density estimation to enable computations. Notice that the Parzen window is a non-parametric technique and thus imposes no assumptions on the data distribution. Essentially, by placing a kernel function at each data instance, we evaluate $p(\mathbf{x})$ via the sum of kernels:

(4.4)
$$p(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} G(\mathbf{x} - \mathbf{x}_i, \sigma^2)$$
 where $G(\mathbf{x} - \mathbf{x}_i, \sigma^2) = \frac{i=1}{(2\pi\sigma)^{D/2}} \exp\left\{-\frac{||\mathbf{x} - \mathbf{x}_i||^2}{2\sigma^2}\right\}$ is a Gaussian in \mathbb{R}^D space. An important property associated with this Gaussian kernel is that the convolution of two kernels remains a Gaussian function:

 $\int_{\mathbf{x}} G(\mathbf{x} - \mathbf{x}_p, \sigma^2) G(\mathbf{x} - \mathbf{x}_q, \sigma^2) d\mathbf{x} = G(\mathbf{x}_p - \mathbf{x}_q, 2\sigma^2)$

We now give a definition of local quadratic entropy for a data instance. Consider \mathbf{x}_i and let \mathbf{x}_p , \mathbf{x}_q be any

Shannon's entropy is a special case of Renyi's for $\alpha \longrightarrow 1$

two instances within \mathbf{x}_i 's ℓ -nearest neighbors, then the local quadratic entropy with respect to \mathbf{x}_i is defined as:

(4.5)
$$QE(\mathbf{x}_i) = -\log \frac{1}{(\ell+1)^2} \sum_{p=1}^{\ell+1} \sum_{q=1}^{\ell+1} G(\mathbf{x}_p - \mathbf{x}_q, 2\sigma^2)$$

Using this local quadratic entropy, we adaptively regulate the closeness between two neighbors \mathbf{x}_i and \mathbf{x}_j , and to avoid the effect of distribution diversities, their relative (rather than absolute) difference is taken into account. We thus set β as the following ratio:

(4.6)
$$\beta = \frac{\min\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}}{\max\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}}$$

Observing that β is always in range $0 < \beta \le 1$ and if \mathbf{x}_i and \mathbf{x}_j have different local quadratic entropy, though being connected due to the ℓ -nearest neighbors setting, their closeness is penalized proportionally based on how different their local entropies are. The more different, the smaller β is and subsequently the weaker the connection between two instances. Inversely, two instances having similar entropy implies that they likely belong to the same normal group. Their β is thus close to 1, keeping their connection unchanged.

This simple setting for β can be effective in most cases, especially if data distributions exhibit constant densities. In practice, however, we may confront situations where data distributions can be diverse or even show gradual changes. Equally applying β might not be a wise strategy since it may further obscure the difference between outliers and inliers (e.g., in sparse distributions). We hence consider that two data instances are placed at different distributions if the following inequality is satisfied:

(4.7)
$$\frac{\min\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}}{\max\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}} \le \gamma$$

where γ is a threshold between (0,1]. Conversely, \mathbf{x}_i and \mathbf{x}_j are viewed having similar distribution if the above ratio is greater than γ . Furthermore, for those instances with a ratio above γ yet likely to stay in a sparse distribution, we lift up their closeness to increase their chance of being mapped close in the new space. Essentially, let $QE(\mathcal{X}) = N^{-1} \sum_i QE(\mathbf{x}_i)$ be the average local quadratic entropy over the entire dataset, \mathbf{x}_i and \mathbf{x}_j are said to be in a sparse distribution if both $QE(\mathbf{x}_i)$ and $QE(\mathbf{x}_j)$ are smaller than $QE(\mathcal{X})$. In this case, their kernel width is widened proportionally by setting β as:

(4.8)
$$\beta = \frac{QE(\mathcal{X})}{\max\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}}$$

4.3 Exploring Eigenspace for Outliers Using the above setup, connected instances with similar local entropy are expected to be mapped close in the transformed space, whereas true outliers or objects with dissimilar entropies (despite being connected) are mapped

far part due to the loose connections amongst them. However, there remains the question of how to determine the anomalous instances in the new transformed space. Fortunately, a clear advantage of our proposed scheme is that we are able to progressively explore each dimension of the transformed space to uncover outliers. Following this, let us define the degree or volume of a vertex v_i (associated with \mathbf{x}_i) by $\mathbf{D}_{ii} = \sum_j \mathbf{K}_{ij}$. Accordingly, \mathbf{D} is a diagonal matrix having \mathbf{D}_{ii} 's as its diagonal elements. For ease of discussion, first assume that the data are mapped into a 1-dimensional space,² then with little algebra, the summation in Eq.(4.1) can be reformulated as:

(4.9)
$$\sum_{i=1}^{N} \sum_{j=1}^{N} (y_i - y_j)^2 \mathbf{K}_{ij} = 2\mathbf{f}^T (\mathbf{D} - \mathbf{K}) \mathbf{f}$$

Recall that $\mathbf{f} = [y_1, \dots, y_N]^T$ is a feature vector in the induced space (as mentioned in Section 4.1) and let us denote $\mathbf{L} = \mathbf{D} - \mathbf{K}$ as the Laplacian matrix of the graph. Then, searching for the first optimal dimension \mathbf{f} in the transformed space can be rephrased as:

(4.10)
$$\arg \min_{\mathbf{f}} (\mathbf{f}^T \mathbf{L} \mathbf{f}), \text{ s.t. } \mathbf{f}^T \mathbf{f} = 1$$

with the constraint $\mathbf{f}^T \mathbf{f} = 1$ added to remove the freedom of f. Solving this constrained optimization is equivalent to solving $\mathcal{L}(\mathbf{f}, \lambda) = \mathbf{f}^T \mathbf{L} \mathbf{f} - \lambda (\mathbf{f}^T \mathbf{f} - 1)$ according to the Lagrange multipliers method, with λ as a multiplier. As such, setting the 1st-order derivative of $\mathcal{L}(\mathbf{f},\lambda)$ w.r.t. λ to zero gives us the satisfaction over the constraint whereas equating such derivative w.r.t. **f** to zero leads to $\mathbf{Lf} = \lambda \mathbf{f}$. Consequently, computing the optimal mapping subspace is equivalent to solving the eigenvalue problem. Since L is symmetric (due to the symmetry of \mathbf{D}, \mathbf{K}) and positive semi-definite (due to all $\mathbf{K}_{ij} \geq 0$), its eigenvalues are real and non-negative. Therefore, we can order its pairs of eigevalues/vectors $\{(\lambda_k, \mathbf{f}_k)\}_{k=1}^N$ according to $\lambda_1 \leq \lambda_2 \leq$ $\ldots \leq \lambda_N$. The first optimal dimension turns out to be the first eigenvector of L with the corresponding smallest eigenvalue (and with the same reasoning, we can select the first d eigenvectors as our optimal ddimensional mapping space for the general case).

Now from the perspective of spectral graph theory, we assume that $f(.): V \mapsto \mathbb{R}$ is a nonlinear function that maps the vertices of graph G into our first optimal dimension $\mathbf{f} \in \mathbb{R}$, i.e. $f(v_i) = \mathbf{f}(i) = y_i$. Then, we can view this mapping problem as a graph embedding problem. As a result, the smoothing of the function is always desirable since if two vertices v_i and v_j are similar (i.e., strongly connected), their \mathbf{K}_{ij} is large and thus the difference between two mappings $f(v_i)$ and $f(v_j)$

 $[\]overline{}^2$ The generalization to d dimensions is straightforward once we derive the solution for this case.

will be small if f(.) is smooth. In short, the smoothness of the function ensures values of nearby similar objects are mapped close to each other. We therefore rely on the smoothness property of the leading eigenvectors to identify outliers and divide the identification into two cases: searching for global outliers and searching for local outliers.

4.3.1 Global outlier search Recall that when computing closeness amongst data instances, we penalize the weight for pairs of instances with different local quadratic entropy. This is done to weaken connections between the graph components (or sets of connected vertices) if they correspond to different distributions, and especially for those vertices that correspond to truly isolated outliers. As a consequence, once different components of the graph are loosely connected or disconnected, we may observe as many zero eigenvalues of L as the number of these components. Essentially, the spectrum of L is the union of spectra of each individual connected component, whereas each component has a unique smallest eigenvalue equal to zero. Moreover, an eigenvector \mathbf{f}_k associated with a zero eigenvalue λ_k will be the indicator vector for the k-th connected component. That means this vector needs to have a nonzero constant value at the component's vertices and zero value otherwise in order to let $\mathbf{f}_k^T L \mathbf{f}_k$ vanish. Therefore, we can safely say that \mathbf{f}_k is an indicator vector for outliers if there is only a small number of nonzero values in its elements and they correspond to an isolated small group of data instances. More specifically, if there are only c% of non-zero entries in \mathbf{f}_k , i.e. $|\mathbf{f}_k(.)| \neq 0 \leq c \times |\mathbf{f}_k|$ (notice the cardinality $|\mathbf{f}_k|$ is equal to N), then we classify each \mathbf{x}_i corresponding to $\mathbf{f}_k(i) \neq 0$ as a global outlier. Moveover, as the transformed space is spanned by the set of eigenvectors (corresponding to zero-eigenvalues) and as the norm of each eigenvector is bounded by 1 (see Eq. (4.10)), global outliers are those points that lie far apart from the origin and close to 1's. For those groups of points lying close to the origin, further analysis is needed as they possibly represent groups of regular objects yet loosely connected with (local) outliers in between. We will describe this case in the following section.

4.3.2 Local outlier search We view each eigenvector corresponding to a zero-eigenvalue not yet covered by the above case as an indicator for a connected subgraph and compute its eigenvalues and eigenvectors separately. Without loss of generality, let G_p denote the subgraph and assume it contains N_p vertices corresponding to $\{\mathbf{x}_i\}_{i=1}^{N_p}$ original instances. Likewise, we use $\mathbf{K}_p, \mathbf{D}_p, \mathbf{L}_p$ to denote the weight, degree and Laplacian matrices respectively for that subgraph. Obviously, \mathbf{L}_p

has a single eigenvalue $\lambda_1^{(p)} = 0$ and the corresponding constant eigenvector $\mathbf{f}_1^{(p)}$. There are three cases for this subgraph: (1) It may represent only a single group of inliers without any outliers. (2) It contains a single normal group and a few anomalous instances. (3) It comprises more than one group of inliers, yet some outliers in between make them weakly connected (this is also the most general case).

Case 1: To distinguish the first case from the other two ones, we can explore the property of the second eigenvalue $\lambda_2^{(p)}$. Specifically, it can be proven [6] that the larger the value of the second eigenvalue is, the better the connection amongst the graph's vertices, which can be used as a measure of the graph's connectivity degree. Therefore, if the gap between $\lambda_2^{(p)}$ and $\lambda_1^{(p)}$ is much larger (at least 3 times in our experiments) than the gap between $\lambda_3^{(p)}$ and $\lambda_2^{(p)}$, we consider G_p tightly connected and without any local outliers.

Case 2: To see whether subgraph G_p comprises a single group of inliers and several outliers, we may check the smoothness of its second eigenvector $\mathbf{f}_{2}^{(p)}$. In particular, we sort its entries in ascending order and find the largest gap index q between two adjacent elements, i.e., $q = \arg\max(\mathbf{f}_2^{(p)}(q+1) - \mathbf{f}_2^{(p)}(q))$. Then if $q/N_p \leq c$, this indicates that \mathbf{x}_i 's corresponding to the q smallest values of $\mathbf{f}_{2}^{(p)}(i)$ are local outliers (w.r.t. the rest instances of \bar{G}_p). Practically, we can also directly exploit the vertices' degree to identify anomalous instances in this case. Intuitively, since most vertices in G_p correspond to regular objects from the same group, those having the smallest degree will correspond to the most isolated objects. If the number of such isolated instances is less than c%, they can be safely considered local outliers.

Case 3: Analyzing the third case involves more reasoning. Let's assume that \mathbf{L}_p is an ideal Laplacian matrix where all d normal groups can be perfectly separated using the first d eigenvectors of \mathbf{L}_p . Following the perspective of perturbation theory [17], the computed \mathbf{L}_p can be considered as the result of the ideal $\widetilde{\mathbf{L}}_p$ being perturbed by a matrix A, representing a small set of anomalous points, i.e. $\mathbf{L}_p = \widetilde{\mathbf{L}}_p + \mathbf{A}$. Let F_p and $\widetilde{F_p}$ be the sets of the first d eigenvectors of \mathbf{L}_p and $\widetilde{\mathbf{L}}_p$, respectively. Then, according to the Davis-Kahan theorem [17], the distance $\mathbf{d}(F_p, F_p)$ between F_p and F_p is bounded by $\mathbf{d}(F_p, \widetilde{F_p}) \leq \delta^{-1} \|\mathbf{A}\|_{\mathcal{F}}$, of which $\|\mathbf{A}\|_{\mathcal{F}}$ is **A**'s Frobenius norm and $\delta = \min\{|\lambda^{(p)} - s|\}$ with S is a real interval, $\lambda^{(p)} \notin S, s \in S$ which should cover the first d eigenvalues of both \mathbf{L}_p and $\widetilde{\mathbf{L}}_p$. Essentially, let $\lambda^{(p)}_{d+1} > \lambda^{(p)}_{d}$ and in our case we select $\lambda^{(p)}_{d}$ as the upper bound of S, then δ receives a high value if the

Algorithm 1: OUTDST

```
Input: dataset \mathcal{X}; c, \gamma parameters;
Output: Set of outliers \mathcal{A} uncovered from \mathcal{X};
Compute QE(\mathbf{x}_i) according to Eq (4.5) and QE(\mathcal{X})
for each pair (\mathbf{x}_i, \mathbf{x}_i) do
 \beta \leftarrow \min\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\} / \max\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\}
if \beta > \gamma \wedge \max\{QE(\mathbf{x}_i), QE(\mathbf{x}_j)\} < QE(\mathcal{X})
\beta \leftarrow QE(\mathcal{X})/\max\{QE(\mathbf{x}_i), QE(\mathbf{x}_i)\}
Compute \mathbf{K}_{ij} according to Eq (4.2)
then
Compute D with \mathbf{D}_{ii} = \sum_{j} \mathbf{K}_{ij}
Compute \mathbf{L} = \mathbf{D} - \mathbf{K} and \mathbf{L}'s \{(\lambda_k, \mathbf{f}_k)\}
/*Global outliers */
if number of \lambda_k = 0 is larger than 1 then
       for each \mathbf{f}_k having \lambda_k = 0 do
              if |\mathbf{f}_k(.) \neq 0| \leq c \times |\mathbf{f}_k| then
                \mathcal{A} \leftarrow \mathbf{x}_i \cup \mathcal{A} \text{ for each } \mathbf{f}_k(i) \neq 0
               else
                      Find eigengap d and apply k-means
                      Compute \mathbf{L}_p corresponding to each graph
else
  Compute \mathbf{K}_p, \mathbf{D}_p, \mathbf{L}_p corresponds to \mathbf{f}_2
/*Local outliers */
for each L_p do
      Compute \mathbf{f}_2^{(p)} of \mathbf{L}_p and order its entries
      q \leftarrow \underset{q}{\operatorname{argmax}}_{q}(\mathbf{f}_{2}^{(p)}(q+1) - \mathbf{f}_{2}^{(p)}(q))
\mathcal{A} \leftarrow \mathbf{x}_{i} \cup \mathcal{A} \text{ for each } \mathbf{f}_{2}^{(p)}(i) \text{ with } i \leq q \text{ and } q \leq c.N_{p}
return A
```

eigengap $|\widetilde{\lambda^{(p)}}_{d+1} - \widetilde{\lambda^{(p)}}_d|$ is large. This leads to a small value of $\mathbf{d}(F_p, \widetilde{F_p})$ given our assumption of a small set of outliers encoded in $\|\mathbf{A}\|_{\mathcal{F}}$. Consequently, for a small distance $\mathbf{d}(F_p, \widetilde{F_p})$, the first d eigenvalues/vectors of the ideal $\widetilde{\mathbf{L}}_p$ and of the perturbed \mathbf{L}_p are close to each other.

Despite using this theorem for reasoning on $\widetilde{\mathbf{L}}_p$ for a selected range S, it still shows a close relationship between the computed and ideal cases, especially when the norm of \mathbf{A} is small (which is true for our study of outliers) and G_p represents a set of well pronounced groups of regular objects. Therefore, we can use a large eigengap computed from \mathbf{L}_p to estimate the number of normal groups d in the subgraph G_p . Again, we consider an eigengap to be large if it is at least 3 times larger than the preceding gap. Given the set of corresponding d-1 top eigenvectors (excluding the first eigenvector), the k-means algorithm can be applied to divide F_p 's rows into d disjoint groups, and we can view the corresponding graph components of these groups as either the first or second cases presented above.

The entire algorithm, OutDST (Outlier Detection with Space Transformation), is given in Algorithm 1.

4.4 Algorithm complexity OutDST requires the calculation of the Gaussian convolution amongst data

instances and subsequently the **K** matrix. Both these steps take $O(DN\log N)$ with the implementation of a k-d tree. The size of **L** is the same as that of **K**, so its eigendecomposition complexity is the most expensive. However, since **L** is sparse and we need to consider only the first few eigenvectors, the Lanczos method [7] can be employed to reduce the time to $O(DN\log N)$. Likewise, for each subgraph G_p , the eigendecomposition of the corresponding matrix \mathbf{L}_p amounts to $O(DN_p\log N_p)$. Thus, the overall complexity of our algorithm is $O(DN\log N)$.

4.5 Kernel parameter setting For most practical applications where data is finite, the kernel size should be selected such that it balances bias and variance, which can essentially be derived from the optimization of the mean integrated squared error between an estimator $\widehat{p}(x)$ and the true density p(x): $MISE\{\widehat{p}(x)\} = \int_x E\{[\widehat{p}(x)-p(x)]^2\}dx$. In our work, we chose $\sigma = \widehat{\sigma}\left(4/(N(2D+1))\right)^{\frac{1}{D+4}}$, 3 which is found by applying least square cross-validation and normal reference rule [20] to minimize this generalization error. As shown in the experiments, this selection works reasonably well for most examined datasets.

5 Experimental Results

In this section, we provide experimental results on synthetic and real datasets. We compare OutDST against the following algorithms: LOF (density-based technique) [4], ABOD (angle-based) [11] and SOD (axisparallel subspaces) [10]. In addition to these algorithms, we implemented the mutual ℓ -nearest neighbor graph (here called MGraph) which is known to well capture differences in data densities. We will contrast it with our adaptive entropy-based approach. For OutDST algorithm, we set c% equal to the percentage of of ground truth outlier number and vary γ from 0.5 to 0.8 until OutDST outputs the desired number of outliers. Recall that γ is the threshold that OutDST considers two objects potentially different in their distributions (Eq.(4.7)) and its small setting can be sensitive to some outliers who may not gain significant difference. For all techniques, we varied number of neighbors, like minPtsin LOF or reference points in SOD, between 8 and 20 (step 2) and reported the best results. With SOD, we further set $\alpha = 0.8$ as recommended in [10].

5.1 Synthetic Datasets We use two synthetic datasets to evaluate the performance. Syn1 contains two half-moon groups of normal data, each with 150 points, plus 20 random points as outliers. Due to the

 $^{3\}hat{\sigma} = \sum_i \sigma_i/D$, σ_i 's are diagonal elements of the sample covariance matrix after removing top 5% of the points with the largest Mahalanobis dist. from the sample mean (extreme points).

Figure 1: Performance of OutDST on 2 synthetic datasets. Left figures show original data, middle ones show global outliers found by OutDST and right figures show its final results.

randomness, two outliers, 13th and 15th (pointed to by short arrows in Figure 1(a)), lie within the groups of normal points. The goal of using this dataset is to test whether our algorithm can distinguish outliers from non-convex, irregular shaped groups of normal instances. Syn2 uses a more complicated setup of a halfring shaped distribution and two uniform distributions. To simulate different and varying densities, the halfring's distribution is gradually faded from left to right and the right uniform disc is three times denser than the left one (see Figure 1(b)). These two uniform discs are intentionally located close to each tail of the half-ring. Similar to Syn1, 20 outliers are randomly added to Syn2. The purpose of this dataset is to verify whether our algorithm can differentiate outliers from data with different yet closely located and varying densities. We generate these data in a 2-dimensional space for the purpose of visualization. Concerning multiple dimensionality, we shortly present real world data.

The original data with ground truth outliers are shown in the left part of Figure 1, global outliers found by OutDST are shown in the middle part whereas the final set of detected outliers is shown on the right (we omit the outputs of other algorithms due to space constraints). For comparison with other techniques, we use F-measure which is the harmonic mean between precision and recall. They are reported in Figure 2. Note that, unlike other methods, OutDST assigns binary labels (outlier or not) to data instances. In addition, it uses γ to adjust the number of output outliers, which is not always equal exactly to the ground truth one. Thus, in Figure 2, we plot two consecutive results with the number of outliers closest to the desired number and denote the larger one by (*). The same situation is for MGraph where we report its best results only to save space. For other approaches, the results are based on

Figure 2: F-measure performance of all algorithms on two synthetic datasets. For OutDST, values with (*) corresponds to larger values of γ (i.e., with more outliers being reported).

the top-20 ranked outliers.

For the Syn1 dataset, it can be seen from Figures 1(a) and 2(a) that OutDST can successfully distinguish true outliers from the non-convex shaped groups of normal instances with 18 out of 20 generated outliers being found. Increasing γ does not lead to any improvement since the instances 13 and 15 lie inside the distribution and cannot be detected by any algorithm. MGraph and LOF also perform well on this dataset since they detect outliers according to differences in densities. The performance of ABOD is slightly worse, with F-measure of 75%. SOD is also less successful which can be explained by its approach based on axis-parallel projections that cannot handle non-convex shapes of data distributions.

For Syn2 dataset in Figure 1(b) and Figure 2(b), the performance of OutDST is also high. When γ is set to 0.75, it outputs 20 outliers with only one that is false (329th point in Figure 1(b) on the right), achieving F-measure of 95%. It is interesting to compare this to MGraph which lacks our adaptive entropybased approach. Its performance is much worse due to varying density distributions. MGraph selected most instances in the half-ring's sparse area as outliers while it was also unable to discover outliers close to the half-ring (e.g., number 11 or 20). Its best Fmeasure is 78% compared to 95% of OutDST which clearly demonstrates the advantage of the local adaptive entropy-based approach. ABOD and SOD also do not give good results, and LOF which works well on Syn1, performs worse on this more complex data. This happens because LOF seeks outliers in the original space and it works with densities based on distances of neighbors (which can be from different distributions). OutDST, in contrast, handles well these challenges by penalizing the data instances using local quadratic entropies and subsequently seeking the most deviated outliers in the transformed space where distributions with varying densities can be well separated. Notice that if we do not consider instances 13 and 15 in Syn1 and instance 5 in Syn2 as true outliers, then ROC curves can be plotted, which give better comparison amongst

Figure 3: ROC curves of all algorithms over two synthetic datasets computed by excluding 13th and 15th instances in Syn1 and 5th instance in Syn2 (best visualized in color).

all algorithms. Also, as plotting ROC requires outlier ordering, we keep the sequence of OutDST's outliers as they are uncovered when analyzing the subgraphs. The ROC curves of all algorithms are plotted in Figure 3 (except MGraph's on Syn2 due not discovering all remaining true outliers). As seen from this figure, except our technique, other algorithms have ranked many true outliers behind inliers, making the ROC curves take a while before reaching 100% of true positive rate.

5.2 CMU face data The first real-world dataset that we examine is the CMU face data from the UCI repository [1]. This dataset contains images of 20 people taken with different facial expressions (neutral, happy, sad, angry), head positions (left, right or straight), eye states (open or sunglasses), etc. Each person has 32 images captured in every combination of these aspects and at the resolution of 32×30 resulting in 960 dimensions. We select all images of 10 random people as normal data and instead of adding artificial outliers, randomly pick one image from each remaining person's images as an outlier. Thus, we obtain a dataset of 330 images containing 10 outliers. In Figure 4(a), we report the F-measure performance of all algorithms, and in Figure 4(b), the ROC curves are plotted.

The experiment reveals that OutDST works well on this high-dimensional dataset. It detects 9 out of 10 true outliers and when we slightly increase the value of γ , OutDST reports two more outliers of which one is indeed the last truly outlying image (its ROC curve is thus can be plotted). The performance of SOD is reasonably good but LOF and MGraph are less successful (MGraph is unable to find all true outliers which is why its ROC could not be drawn). These results are consistent with those in [10] where SOD was also superior to LOF on various high dimensional datasets. On the other hand, the performance of ABOD is not as expected. Its approach relying on angles might be inappropriate for this image data where the data distributions may have non-convex shapes (especially in the full dimensional space). Overall, as clearly observed

Figure 4: F-measure and ROC curve on CMUFace data.

from Figure 4, the performance of these techniques are all worse compared to that of our OutDST algorithm.

Other real world data We further test the performance of all algorithms on three real-world datasets from the UCI repository [1]. The first one is the letter recognition data consisting of 20000 instances characterizing 16 numerical features of 26 capital letters in the English alphabet. The second dataset is the vowel data that consists of 990 instances and is described by 14 variables of which the last one is the class label encoding 11 different vowels. The third dataset is the image segmentation data which includes 2310 instances classified into 7 classes described by 19 attributes. For the letter recognition dataset, we select at random 3 letters along with all instances as inliers and randomly select one instance from each remaining letter to form a dataset with 23 outliers. For the vowel dataset, we select instances from one randomly chosen vowel as regular objects and one from each remaining vowel as outliers, making in total 10 outliers. Likewise, instances from two randomly selected classes of segmentation data are viewed as inliers and two instances from each remaining classes are considered as outliers, forming the dataset with 10 anomalous instances. These datasets were chosen since they are known to be hard for supervised learning as well due to the non-linear separation amongst classes.

We compare the performances of all algorithms via the F-measure (reported in Table 1). For OutDST, we compute its F-measure such that the number of output outliers is as close to the ground truth number as possible. Specifically, OutDST outputs 26 outliers for Letter, 13 for Vowel and 11 for Segmentation datasets. To make fair comparisons with the other techniques that provide outlier ranking, we report two values for the F-measure. The first one is based on the top-n points in their ranking where n is the number of true outliers, and the second one (in brackets) is based on top-n points where n is the number of points detected by OutDST.

It can be observed for the Letter dataset that LOF, ABOD and SOD perform competitively with almost the same F-measures computed from the 23 top-ranking outliers. While ABOD achieves 53%, LOF and SOD perform slightly better with 57% and all of them agree

on the 7 top outliers. None of them uncover any true outlier between their 23 and 26 ranking outliers, yielding slightly decreased F-measures due to the decrement of precision. Though better than MGraph technique, their detection rates are still lower compared to that of OutDST, which can achieve 63%. Looking deeper when we increase the γ threshold, OutDST further uncovers 19 true outliers out of 29 outputs which makes both its precision and recall increased. Compared to the top 29 ranked outliers from the other methods, we see that only ABOD can uncover one more true outlier in this range. For the Vowel dataset, we observe that only LOF performs competitively with OutDST where both achieve 87% in their F-measures. Nonetheless, OutDST's performance on the Segmentation data is much better than LOF and the other techniques. In its 11 reported outliers, 9 instances are true outliers whereas only 6 true ones are found in the top ranking outliers of LOF, making the F-measures of OutDST reaching 86% compared to 60% of LOF. Similarly, the F-measures of ABOD and SOD calculated from their top highest anomalous instances are respectively at 48% and 60%, which are all much lower compared to that of our OutDST algorithm.

6 Conclusions

In this paper, we have presented OutDST, an algorithm that applies space transformation and uses spectral analysis for outlier detection. We proposed a novel concept of local quadratic entropy to quantify data similarity and exploit it to adaptively regularize the closeness amongst nearby data observations. Through spectral graph theory, we show that both global and local outliers can be effectively uncovered by spectral analysis of the eigenspace spanned by the set of leading eigenvectors induced from the transformation step. The presented algorithm is purely data-driven, placing no assumptions on the observed data, which makes it work well on data with various non-Gaussian shaped distributions, even with great variation in densities. We demonstrated its effectiveness against other techniques via a number of experiments on synthetic and real world benchmark datasets.

For future work, we plan to extend our approach to incremental fashions to process streaming data (like network flows) where distributions may change with time, i.e. concepts drifting, and also its extension to other nonlinear transformation techniques.

References

- [1] A. Asuncion and D. Newman. UCI machine learning repository, 2007.
- [2] V. Barnett and T. Lewis. Outliers in statistical data. John Wiley & Sons Ltd., 3rd edition edition, 1994.

Data	LOF	ABOD	SOD	Mgraph	OutDST
Letter	0.57 (0.53)	0.52 (0.50)	0.57 (0.53)	0.46	0.63
Vowel	$0.80 \; (0.87)$	0.80(0.70)	0.50(0.61)	0.64	0.87
Segm.	$0.60 \ (0.57)$	0.40(0.48)	0.60 (0.57)	0.40	0.86

Table 1: F-measure on three UCI datasets (values in brackets for LOF, ABOD and SOD are based on the same number of outliers as OutDST outputs).

- [3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag., 2006.
- [4] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. In SIG-MOD, 2000.
- [5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3), 2009.
- [6] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 1973.
- [7] G. Golub and C. Loan. Matrix Computations. The Johns Hopkins University Press, 3rd edition, 1996.
- [8] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft. In-network pca and anomaly detection. In NIPS, pages 617–624, 2006.
- [9] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large datasets. In VLDB, 1998.
- [10] H. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In *PAKDD*, 2009.
- [11] H. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional data. In SIGKDD, 2008.
- [12] B. Mikhail and N. Partha. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
- [13] Müller, M. Schiffer, and T. Seidl. Statistical selection of relevant subspace projections for outlier ranking. In *ICDE*, pages 434–445, 2011.
- [14] J. Principe, D. Xu, and J. Fisher. Information Theoretic Learning. John Wiley & Sons, 2000.
- [15] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, 2000.
- [16] M. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang. A novel anomaly detection schem based on pricipal component classifier. In *ICDM*, 2003.
- [17] G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.
- [18] Y. Tao, X. Xiao, and S. Zhou. Mining distance-based outliers from large databases in any metric space. In SIGKDD, 2006.
- [19] T. Vries, S. Chawla, and M. E. Houle. Finding local anomalies in very high dimensional space. In *ICDM*, 2010.
- [20] M. P. Wand and M. C. Jones. Kernel Smoothing-Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, 1994.