HOCHSCHULE BREMEN

Elektrische Mentechnik (ELMESS)

Labor versuch 1: 0.5.7

Laborgruppe (7:

1. Kelly Mbitketchie Koudjo: 5136175 (I.S.T.I)

2. Kevin Pfeifer: 5131378 (D.S.I)

Porbereitung

1.) * Einheiten der Bauteilwerte eines RC-Gliedes;

-das Ohm (1) und das Farad (F)

 $*1\Omega = \frac{\Delta V}{1A} = \frac{V}{A}$ and $1F = \frac{\Delta S}{V} = \frac{\Delta S}{V}$

* Zeitkonstante des RC-Gliedes &

T-R.C

 $=\frac{X}{A}\cdot\frac{A\cdot A}{X}$

= 1

Die Gleichung für die Zeitkonstante des RC-Gliedes ist also auch non den Einheiten her stimmig.

Herleitung des Frequenzgangs G(jw) des RC-Tiefpanes aus der komplexen Spannungsteilerregel:

Spannungsteilerregel:
$$V_{\alpha} = \frac{2c}{R+2c}$$
 $V_{\alpha} = \frac{V_{\alpha}}{V_{\alpha}} = \frac{2c}{R+2c}$ $V_{\alpha} = \frac{2c}{R+2c}$ $V_$

2.6) Herleitung der Grenzfrequenz des Tiefpasses Zg:

$$=(R.\omega_g.c)^2+1=2$$

=
$$\omega g = \frac{1}{RC}$$
 and mit $\omega g = 2.Tfg$

2.9x Zunammenhang zwischen der Grenzfrequenz und der Anstiegszeit T10/90: Im Anhang A steht: $t_r \approx 2,2T$ beziehungsweise $T \approx 0,455.tr$ und $fg = \frac{1}{211} \approx \frac{0,35}{tr}$ $=) \frac{\pm 10}{\pm 90} = \frac{0.35}{\pm 9}$ * Herleitung für die fallende Flanke: (=) ln (UH) = ln et (=) ln (U(t)) = - + (=) t = -T. ln (U(t)) Kondensatorentladung * tso=-T. ln(0,1.10) = -T.ln(0,1)=T.ln(10) = T.ln(10) $\times tg0 = -T_e ln \left(\frac{0.9 lo}{lo} \right) = -T_e ln \left(0.9 \right) = -T_e ln \left(\frac{9}{10} \right) = -T_e ln \left(\frac{9}{9} \right)$ xtf=t10-t90=T.ln(10)-T.ln(10)=T.ln(9)

tf≈2,2T begiehungsWeise T≈0,455tf und fg=1 ≈ 9,35 tg 3/x Herleitung der Lastimpedanz ZL ohne Trastkohf; Roll ICo Vo Onzillaskop Y=jwe jwa + to jwa 1 $\mathcal{Z}_{c} = -\frac{1}{x} = -\frac{1}{\omega c}$ = 1 iwe 1 + j(1 + 1) | · ho * Vorteil Der Nachteil, dan das signal um den Faktor To geschwächt wird, steht gegenüber dem Vorteil, dans die Grenzfrequenz um den Faktor 10 steigt. Je-Loch geht der Vorteil auf Korten einer geringeren

Empfindlichkeit. Somit sint die Eingangsspanhung des Oszilloskops und auch die Spannungs-Werte um den Faktor so reduziert.