

Data Management Technologies

IS465: Data Management and Governance

Outline

Introduction

Introduction

Data Management Technologies: An Overview

- Data management technologies refer to the tools and systems used to collect, store, organize, and manage data across various industries and applications.
- Effective data management is crucial for making informed decisions, optimizing processes, and ensuring data security and privacy.

- Data storage technologies
 - Systems used to store and retrieve data, such as relational databases, NoSQL databases, and data warehouses. Examples include MySQL, MongoDB, and Amazon Redshift.
- Data processing technologies
 - Tools used to process, transform, and analyze data, such as data integration, data cleansing, and data mining. Examples include Apache NiFi, Talend, and RapidMiner.

- Data governance technologies
 - Systems used to manage data quality, security, and privacy, such as data catalogs, data dictionaries, and data access control. Examples include Apache Atlas, AWS Lake Formation, and DataClarity.
- Data visualization technologies
 - Tools used to create interactive and intuitive visualizations of data, such as business intelligence, data analytics, and data dashboards. Examples include Tableau, Power BI, and QlikView.

Modern database management technologies

Importance of Data Management Technologies

- Data management technologies are critical for organizations to collect, store, process, and analyze large volumes of data.
- Data-driven decision making has become a norm in today's business landscape.
- Data management technologies help organizations to make informed decisions, improve operational efficiency, and stay competitive.

Improving Business Outcomes

- Data management technologies help organizations to:
 - Improve data quality and accuracy
 - Enhance data security and privacy
 - Increase operational efficiency and productivity
 - Improve customer experience and satisfaction
 - Make informed decisions based on data insights
 - Stay competitive in the marketplace

Improving Business Outcomes

- Data management technologies also enable organizations to:
 - Identify new business opportunities
 - Optimize business processes
 - Improve financial performance
 - Enhance strategic decision making

- Data storage technologies:
 - Relational databases (e.g., MySQL, Oracle)
 - NoSQL databases (e.g., MongoDB, Cassandra)
 - Data warehouses (e.g., Amazon Redshift, Google BigQuery)
 - Data lakes (e.g., Apache Hadoop, AWS S3)
- Data processing technologies:
 - Data integration (e.g., Talend, Informatica)
 - Data cleansing (e.g., Trifacta, DataClarity)
 - Data transformation (e.g., Apache Beam, AWS Lambda)
 - Data streaming (e.g., Apache Kafka, AWS Kinesis)

- Data governance technologies:
 - Data catalogs (e.g., Apache Atlas, AWS Lake Formation)
 - Data dictionaries (e.g., Apache Hive, AWS Glue)
 - Data access control (e.g., Apache Ranger, AWS IAM)

- Data analytics technologies:
 - Business intelligence (e.g., Tableau, Power BI)
 - Data visualization (e.g., D3.js, Matplotlib)
 - Predictive analytics (e.g., R, Python)
 - Machine learning (e.g., TensorFlow, PyTorch)

Key Features and Use Cases

Technology	Key Features	Use Cases
Relational databases	SQL querying, data consistency, transaction management, data security	Traditional data storage and managementOnline transactions and e-commerceEnterprise data management
NoSQL databases	Scalability, flexible schema, high availability, big data analytics	Big data storage and processingReal-time web analyticsIoT data management
Cloud storage	Scalability, cost-effectiveness, data accessibility, collaboration	File sharing and collaborationBackup and archivingCloud-based data storage
Data warehousing	Data integration, data cleansing, data transformation, data mining	Data analysis and reportingBusiness intelligenceData-driven decision making
Data lakes	Data storage, data processing, data analytics, data visualization	Big data storage and processingData science and machine learningData-driven decision making

Key Features and Use Cases

Technology	Key Features	Use Cases
Data governance	Data quality, data security, data compliance, data accessibility	Data management and oversightData risk managementData privacy and protection
Master data management	Data integration, data cleansing, data transformation, data security	Data management and oversightData quality and consistencyData-driven decision making
Data integration	Data integration, data transformation, data mapping, data validation	Data migration and integrationData synchronization and replicationData integration for analytics
Data quality	Data validation, data cleansing, data normalization, data enrichment	Data quality and consistencyData accuracy and completenessData-driven decision making
Data security	Data encryption, data access controls, data authentication, data backup	Data protection and privacyData risk managementCompliance and regulatory requirements
Data backup	Data backup and recovery, data archiving, data restore	Data protection and recoveryData backup and archivingCompliance and regulatory requirements
Data analytics	Data visualization, data mining, data predictive analytics, data prescriptive analytics	Data-driven decision makingBusiness intelligencePredictive and prescriptive analytics