

Regularizacija

Regularizacija

 Koristićemo regularizaciju da penalizujemo velike vrednosti koeficijenata

- Na $\mathcal{L}(\theta)$ dodaćemo regularizacioni penal:
 - Suma kvadrata koeficijenata (L₂ norma)

$$\|\theta\|_{2}^{2} = \theta_{1}^{2} + \cdots + \theta_{D}^{2}$$

Suma apsolutnih vrednosti koeficijenata (L₁ norma)

$$\|\theta\|_1 = |\theta_1| + \dots + |\theta_D|$$

• Prema konvenciji, ne penalizujemo θ_0

Logistička regresija sa L_2 regularizacijom

Minimizovaćemo sledeću funkciju:

$$J(\theta) = \mathcal{L}(\theta) + \lambda \sum_{j=1}^{N} \theta_j^2$$

Gradijentni spust:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \left[\sum_{i=1}^N (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + 2\lambda \theta_j \right]$$

Izbor λ kod L_2 regularizacije

$$J(\theta) = \mathcal{L}(\theta) + \lambda \sum_{j=1}^{N} \theta_j^2$$

λ = 0 : Maximum Likelihood
rešenje (bez regularizacije)

$$\lambda = \infty \rightarrow \theta = 0$$
 (ignorišu se podaci)

- λ kontroliše nagodbu sistematskog odstupanja i varijanse (kompleksnost modela):
 - Malo λ malo sistematsko odstupanje, velika varijansa
 - Veliko λ veliko sistematsko odstupanje, mala varijansa

Logistička regresija sa L₁ regularizacijom

$$J(\theta) = \mathcal{L}(\theta) + \lambda \sum_{j=1}^{N} |\theta_j|$$

- Ova vrsta regularizacije dovodi do sparse rešenja
 - Za većinu koeficijenata važi $\theta_j=0$, a samo za nekolicinu važi $\theta_j \neq 0$
 - Ovim dobijamo na efikasnosti i interpretabilnosti modela

Primena logističke regresije

Gotovo svuda

Posebna popularnost u medicinskim primenama

• Standardni model za poređenje prilikom klasifikacije