STK335 Analisis Eksplorasi Data Pertemuan 05

Pendugaan Bentuk Sebaran (Fungsi Kepekatan)

Bagus Sartono 2019

Outline

- Fungsi kepekatan dari variabel kontinu
- Apa gunanya diduga?
- Metode Pendugaan
 - Penduga Naïve
 - Penduga Kernel

Fungsi Kepekatan

Masih ingat sifat-sifat fungsi kepekatan?

Fungsi Kepekatan

- Masih ingat sifat-sifat fungsi kepekatan?
 - Non Negatif
 - Integral (luas di bawah kurvanya) = 1

Normal Campuran

Kegunaan Menduga Fungsi Kepekatan

Memahami bentuk sebaran dengan lebih baik

Penting dalam proses simulasi statistika

Berguna dalam beberapa analisis statistika

Histogram

Penduga Naive

$$\hat{f}_h(x) = \frac{1}{2hn}$$
 (banyaknya data pada selang $(x - h, x + h)$)

atau

$$\hat{f}_h(x) = \frac{1}{hn} \sum_{i=1}^n w \left(\frac{x - x_i}{h} \right)$$

dengan

$$w(x) = \begin{cases} \frac{1}{2} & \text{if } |x| < 1; \\ 0 & \text{otherwise.} \end{cases}$$

Histogram of data


```
Histogram of data
data <- rnorm(700, 5, 1)
hist(data, breaks=20, col="green",
freq=FALSE)
summary(data)
                                             0.3
h = 0.8
                                         Density
x <- seq(1, 10, by=0.1)
                                             0.2
f <- 1:length(x)
                                             0.1
for (i in 1:length(x)){
f[i] = sum(ifelse(abs((data - x[i])/h) < 1,
1, 0)) / (2*h*length(data))
                                             0.0
lines(x, f, type="l", col="red", lwd=2)
                                                           2
                                                                        4
                                                                                    6
                                                                                                8
                                                                        data
```


Pengaruh Lebar Jendela (h)

- Apa yang Anda simpulkan?
- Berapa lebar jendela yang sebaiknya digunakan?

Penduga Kernel

$$\hat{f}_h(x) = \frac{1}{hn} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

- *K* adalah fungsi yang memenuhi $\int K(x) dx = 1$
- K adalah fungsi yang non-negatif
- Fungsi K disebut sebagai fungsi kernel
- h adalah bilangan positif yang biasa disebut sebagai lebar jendela (bandwidth / window width).

Some Commonly Used Kernel Functions

(a) Uniform Kernel K(t) =
$$\frac{1}{2}$$
I(|t| \le 1)

(b) Gaussian kernel
$$K(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

(c) Epanechnikov kernel

$$K(t) = \begin{cases} \frac{3}{4}(1-t^2), & |t| < 1\\ 0 & \text{otherwise} \end{cases}$$

(d) Biweight kernel

$$K(t) = \begin{cases} \frac{15}{16} (1 - t^2)^2, & |t| < 1\\ 0 & \text{otherwise} \end{cases}$$

Examples of Kernels

• 4 kernels

data <- rnorm(700, 5, 1) hist(data, breaks=20, col="green", freq=FALSE, main="")

kepekatan <- density(data)
lines(kepekatan\$x, kepekatan\$y, type="I", col="red", lwd=2)</pre>

Fungsi di R (package: stats)

```
density(x, bw = "nrd0", adjust = 1, kernel = c("gaussian",
    "epanechnikov", "rectangular", "triangular", "biweight",
    "cosine", "optcosine"), weights = NULL, window = kernel,
    width, give.Rkern = FALSE, n = 512, from, to, cut = 3, na.rm =
    FALSE, ...)
```


proc KDE data=data; univar x / plots=histdensity unistats; run;

Univariate Statistics	
	х
Mean	0.10
Variance	3.00
Standard Deviation	1.73
Range	8.82
Interquartile Range	2.61
Bandwidth	0.32

