

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Architetture Cloud a Supporto della Comunicazione per Scenari di Internet of Things

Cloud Architectures for Communication Support in Internet of Things Scenarios

Mirco Rosa

Relatore:

Chiar.mo Prof. Marco Picone

Correlatore:

Dott. Ing. Simone Cirani

Internet of Things

- Numero di dispositivi connessi alla rete mondiale dell'ordine di 10⁹
- Smart Objects con capacità di calcolo ridotte e consumi energetici limitati
- Interconnessione Machine to Machine (M2M) e Machine to Human (M2H) costante
- Utilizzo di protocolli ad hoc (CoAP, 6LoWPAN...)

Obiettivo della Tesi

Progettazione ed implementazione di un'architettura completa M2H in grado, tramite servizi cloud, di abilitare la comunicazione tra smart objects e utenti istantaneamente e senza restrizioni geografiche

- Traduzione delle richieste dagli standard attualmente in uso in CoAP
- Utilizzo di tecnologie Google già presenti sui dispositivi Android
- Possibilità di comunicare da qualsiasi rete anche in modalità push

Architettura

Sincronizzazione dello scenario loT

Fetcher to Cloud

- Service Discovery sui server CoAP
- Observing su "well-known/core"
- Invio degli updates al Cloud con PhantomJS

Cloud to Android

- Notifiche in tempo reale dal GCM ad ogni modifica dello scenario
- Richieste mirate dei client alla Datastore API

Richieste GET e POST (Utente → Oggetto)

Observing

Richiesta di observing tramite GET con opportuna Query String

Creazione della relazione completa di Token identificativo

Ricezione immediata del valore attuale sul client

Aggiornamenti real-time dalla risorsa via Cloud Messaging

DIPARTIMENTO

DELL' INFORMAZIONE

Test Operativo

Conclusioni

Test prestazionale: tempi di risposta su 1000 richieste GET consecutive

- Buona scalabilità
- Tempi di risposta a regime soddisfacenti
- Incremento delle prestazioni all'aumentare del numero di GET

Sviluppi Futuri

- Sicurezza e Crittografia
- Test in scenari CoAP reali
- Diversificazione delle piattaforme client

Numero GET	Latenza Media
1-10	~1000ms
10-50	~680ms
50-100	~570ms
100-200	~520ms
200-300	~490ms
300-500	~470ms
500-1000	~440ms

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Architetture Cloud a Supporto della Comunicazione per Scenari di Internet of Things

Cloud Architectures for Communication Support in Internet of Things Scenarios

Mirco Rosa

Relatore:

Chiar.mo Prof. Marco Picone

Correlatore:

Dott. Ing. Simone Cirani