# Tropical Volume by Tropical Ehrhart Polynomials

Georg Loho
London School of Economics

Matthias Schymura École Polytechnique Fédérale de Lausanne

September 24, 2019

Discrete Geometry with a View on Symplectic and Tropical Geometry Köln, Deutschland

*Tropical semiring* is  $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$  with  $a \oplus b = \max\{a, b\}$  and  $a \odot b = a + b$ .

 $-\infty$ 

Tropical semiring is  $\mathbb{T}=(\mathbb{R}\cup\{-\infty\},\oplus,\odot)$  with  $a\oplus b=\max\{a,b\}$  and  $a\odot b=a+b$ .

The tropical convex hull of  $V=(v_1,\ldots,v_m)\in\mathbb{T}^{d\times m}$  is given by

$$\mathsf{tconv}(V) = \Big\{ igoplus_{j=1}^m \lambda_j \odot v_j : \lambda_1, \dots, \lambda_m \in \mathbb{T}, igoplus_{j=1}^m \lambda_j = 0 \Big\}.$$

 $-\infty$ 

Tropical semiring is  $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$  with  $a \oplus b = \max\{a, b\}$  and  $a \odot b = a + b$ .

The tropical convex hull of  $V=(v_1,\ldots,v_m)\in\mathbb{T}^{d\times m}$  is given by

$$\mathsf{tconv}(V) = \Big\{ igoplus_{j=1}^m \lambda_j \odot v_j : \lambda_1, \dots, \lambda_m \in \mathbb{T}, igoplus_{j=1}^m \lambda_j = 0 \Big\}.$$

P := tconv(V) is called a *tropical polytope*.







Tropical semiring is  $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$  with  $a \oplus b = \max\{a, b\}$  and  $a \odot b = a + b$ . The tropical convex hull of  $V = (v_1, \dots, v_m) \in \mathbb{T}^{d \times m}$  is given by

$$\mathsf{tconv}(V) = \Big\{ igoplus_{j=1}^m \lambda_j \odot v_j : \lambda_1, \dots, \lambda_m \in \mathbb{T}, igoplus_{j=1}^m \lambda_j = 0 \Big\}.$$

P := tconv(V) is called a *tropical polytope*.







Recent studies show that metric tropical concepts are useful:

- log-barrier methods (Allamigeon, Benchimol, Gaubert & Joswig, 2018)
- tropical Voronoi diagrams (Criado, Joswig & Santos, 2019)
- tropical isodiametric inequality (Depersin, Gaubert & Joswig, 2017)

Tropical semiring is  $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$  with  $a \oplus b = \max\{a, b\}$  and  $a \odot b = a + b$ . The tropical convex hull of  $V = (v_1, \dots, v_m) \in \mathbb{T}^{d \times m}$  is given by

$$\mathsf{tconv}(V) = \Big\{ igoplus_{j=1}^m \lambda_j \odot v_j : \lambda_1, \dots, \lambda_m \in \mathbb{T}, igoplus_{j=1}^m \lambda_j = 0 \Big\}.$$

P := tconv(V) is called a *tropical polytope*.







Recent studies show that metric tropical concepts are useful:

- log-barrier methods (Allamigeon, Benchimol, Gaubert & Joswig, 2018)
- tropical Voronoi diagrams (Criado, Joswig & Santos, 2019)
- tropical isodiametric inequality (Depersin, Gaubert & Joswig, 2017)

Main goal: Identify an instrinsic volume concept for tropical polytopes.

Let  $P\subseteq\mathbb{R}^d$  be a polytope. The classical volume concept for P is the Lebesgue measure:

$$\operatorname{vol}(P) := \int_{P} 1 dx.$$

Let  $P\subseteq\mathbb{R}^d$  be a polytope. The classical volume concept for P is the Lebesgue measure:

$$\operatorname{vol}(P) := \int_{P} 1 dx.$$

First discretization:

$$\operatorname{vol}(P) = \lim_{k \to \infty} \frac{\# \left( P \cap \frac{1}{k} \mathbb{Z}^d \right)}{k^d} = \lim_{k \to \infty} \frac{\# \left( kP \cap \mathbb{Z}^d \right)}{k^d}$$

π

Let  $P \subseteq \mathbb{R}^d$  be a polytope. The classical volume concept for P is the Lebesgue measure:

$$\operatorname{vol}(P) := \int_{P} 1 dx.$$

First discretization:

$$\operatorname{vol}(P) = \lim_{k \to \infty} \frac{\# \left( P \cap \frac{1}{k} \mathbb{Z}^d \right)}{k^d} = \lim_{k \to \infty} \frac{\# \left( kP \cap \mathbb{Z}^d \right)}{k^d}$$

Second discretization:

### Theorem (Ehrhart, 1967)

If P is an integral polytope, that is, all vertices are from  $\mathbb{Z}^d$ , then

$$\#\Big(kP\cap \mathbb{Z}^d\Big) = c_d(P)k^d + c_{d-1}(P)k^{d-1} + \ldots + c_1(P)k + c_0(P), \quad \text{for } k\in \mathbb{N}.$$

In particular,  $c_d(P) = \text{vol}(P)$ .

Let  $P \subseteq \mathbb{R}^d$  be a polytope. The classical volume concept for P is the Lebesgue measure:

$$vol(P) := \int_{P} 1 dx$$
.

First discretization:

$$\operatorname{vol}(P) = \lim_{k \to \infty} \frac{\# \left( P \cap \frac{1}{k} \mathbb{Z}^d \right)}{k^d} = \lim_{k \to \infty} \frac{\# \left( kP \cap \mathbb{Z}^d \right)}{k^d}$$

Second discretization:

### Theorem (Ehrhart, 1967)

If P is an integral polytope, that is, all vertices are from  $\mathbb{Z}^d$ , then

$$\#\Big(kP\cap\mathbb{Z}^d\Big) = c_d(P)k^d + c_{d-1}(P)k^{d-1} + \ldots + c_1(P)k + c_0(P), \quad \text{for } k\in\mathbb{N}.$$

In particular,  $c_d(P) = \text{vol}(P)$ .

Idea: Retrieve concept of *tropical volume* by turning this around – tropically.

π

Natural idea: Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

<u>Natural idea:</u> Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

Gaubert & MacCaig, 2017:

- $\bullet$  Counting points from  $\mathbb{TN}^d$  in a tropical polytope is  $\# \mathsf{P}\text{-hard}.$
- Computing vol(P) is #P-hard.

<u>Natural idea:</u> Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

Gaubert & MacCaig, 2017:

- Counting points from  $\mathbb{TN}^d$  in a tropical polytope is #P-hard.
- Computing vol(P) is #P-hard.

### Definition (Tropical lattice polytope)

If all vertices of a tropical polytope  $P \subseteq \mathbb{T}^d$  are contained in  $\mathbb{T}\mathbb{N}^d$ , then P is called a *tropical lattice polytope*.

<u>Natural idea:</u> Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

Gaubert & MacCaig, 2017:

- ullet Counting points from  $\mathbb{TN}^d$  in a tropical polytope is # P-hard.
- Computing vol(P) is #P-hard.

### Definition (Tropical lattice polytope)

If all vertices of a tropical polytope  $P\subseteq\mathbb{T}^d$  are contained in  $\mathbb{T}\mathbb{N}^d$ , then P is called a *tropical lattice polytope*.

However, for an intrinsic volume definition and tropical Ehrhart theory,  $\mathbb{TN}^d$  is too rough.

<u>Natural idea:</u> Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

Gaubert & MacCaig, 2017:

- Counting points from  $\mathbb{TN}^d$  in a tropical polytope is #P-hard.
- Computing vol(P) is #P-hard.

### Definition (Tropical lattice polytope)

If all vertices of a tropical polytope  $P\subseteq\mathbb{T}^d$  are contained in  $\mathbb{T}\mathbb{N}^d$ , then P is called a *tropical lattice polytope*.

However, for an intrinsic volume definition and tropical Ehrhart theory,  $\mathbb{TN}^d$  is too rough.

Transition from  $(+,\cdot)$ -convexity, over  $(\max,\cdot)$ -convexity, to  $(\max,+)$ -convexity motivates:

### Definition (Tropical *b*-lattice)

For  $b \in \mathbb{N}_{\geq 2}$ , the *tropical b-lattice* in  $\mathbb{T}^d$  is defined as

$$\log_b(\mathbb{Z}_{\geq 0})^d := \left\{ \left(\log_b(x_1), \dots, \log_b(x_d)\right) : x_1, \dots, x_d \in \mathbb{Z}_{\geq 0} \right\}.$$

4:

Natural idea: Tropical integers could be  $\mathbb{TN} := \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ .

Gaubert & MacCaig, 2017:

- Counting points from  $\mathbb{TN}^d$  in a tropical polytope is #P-hard.
- Computing vol(P) is #P-hard.

### Definition (Tropical lattice polytope)

If all vertices of a tropical polytope  $P \subseteq \mathbb{T}^d$  are contained in  $\mathbb{T}\mathbb{N}^d$ , then P is called a *tropical lattice polytope*.

However, for an intrinsic volume definition and tropical Ehrhart theory,  $\mathbb{T}\mathbb{N}^d$  is too rough.

Transition from  $(+,\cdot)$ -convexity, over  $(\max,\cdot)$ -convexity, to  $(\max,+)$ -convexity motivates:

### Definition (Tropical *b*-lattice)

For  $b \in \mathbb{N}_{\geq 2}$ , the *tropical b-lattice* in  $\mathbb{T}^d$  is defined as

$$\log_b(\mathbb{Z}_{\geq 0})^d := \{(\log_b(x_1), \ldots, \log_b(x_d)) : x_1, \ldots, x_d \in \mathbb{Z}_{\geq 0}\}.$$

$$\mathbb{T}^d \subseteq \bigcap_{b \in \mathbb{N}_{\geq 2}} \log_b(\mathbb{Z}_{\geq 0})^d$$

### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

#### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$

### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$



$$b = 2, P = \mathsf{tconv}\left\{ \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right) \right\}$$

### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$



### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$



### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$



### Theorem (L & Schymura, 2019+)

Let  $b \in \mathbb{N}_{\geq 2}$  and let  $P \subseteq \mathbb{T}^d$  be a tropical lattice polytope. Then, for  $k \in \mathbb{Z}_{\geq 0}$ , the tropical lattice point enumerator  $\mathfrak{L}^b_P(k) = \# \big( (k \odot P) \cap \log_b(\mathbb{Z}_{\geq 0})^d \big)$  agrees with a polynomial in  $b^k$  of degree at most d.

We write

$$\mathfrak{L}_{P}^{b}(k) = c_{d}^{b}(P)(b^{k})^{d} + c_{d-1}^{b}(P)(b^{k})^{d-1} + \ldots + c_{1}^{b}(P)b^{k} + c_{0}^{b}(P),$$



Interpretation of a tropical polytope P as a polytopal complex (Develin & Sturmfels).

Interpretation of a tropical polytope  ${\it P}$  as a polytopal complex (Develin & Sturmfels).



Interpretation of a tropical polytope  ${\it P}$  as a polytopal complex (Develin & Sturmfels).



Interpretation of a tropical polytope  ${\it P}$  as a polytopal complex (Develin & Sturmfels).



 $\mathcal{C}_P$  the polytopal complex consisting of the bounded cells  $\ \Rightarrow\ P = \bigcup_{Q \in \mathcal{C}_P} Q$ 

Interpretation of a tropical polytope  ${\it P}$  as a polytopal complex (Develin & Sturmfels).



 $\mathcal{C}_P$  the polytopal complex consisting of the bounded cells  $\ \Rightarrow\ P = \bigcup_{Q \in \mathcal{C}_P} Q$ 

If P is a tropical lattice polytope, then  $\mathcal{C}_P$  can be refined into a triangulation  $\mathcal{T}_P$  consisting of *alcoved simplices*, which are faces and lattice translates of

$$\Delta_{\pi}(\mathbf{0}) := \mathsf{conv}\left\{\mathbf{0}, e_{\pi(1)}, e_{\pi(1)} + e_{\pi(2)}, \ldots, e_{\pi(1)} + \ldots + e_{\pi(d)} = \mathbf{1}
ight\},$$

where  $\pi \in S_d$  is a permutation on [d].

 $\underline{\mathsf{Idea:}}\ \mathsf{Do}\ \mathsf{ordinary}\ \mathsf{Ehrhart}\ \mathsf{theory}\ \mathsf{on}\ \mathsf{(transformed)}\ \mathsf{alcoved}\ \mathsf{simplices}\ \mathsf{and}\ \mathsf{stitch}\ \mathsf{together}.$ 

<u>Idea:</u> Do ordinary Ehrhart theory on (transformed) alcoved simplices and stitch together.

By symmetry we look at  $\Delta(\mathbf{0}) := \Delta_{id}(\mathbf{0}) = \operatorname{conv}\{\mathbf{0}, e_1, e_1 + e_2, \dots, e_1 + \dots + e_d\}$ .

#### Main lemma

Let  $k \in \mathbb{Z}_{\geq 0}$ . For  $a \in \mathbb{Z}_{\geq 0}^d$  and  $b \in \mathbb{N}_{\geq 2}$  write  $D_b^a = \operatorname{diag}(b^{a_1}, \dots, b^{a_d}) \in \mathbb{Z}^{d \times d}$ . Then, the map  $\phi : \mathbb{R}_{> 0}^d \to \mathbb{R}^d$  defined by  $\phi(z) = (\log_b(z_1), \dots, \log_b(z_d))$  induces a bijection between

$$\left(b^kD_b^a\mathbf{1}+(b-1)b^kD_b^a\Delta(\mathbf{0})\right)\cap\mathbb{Z}_{\geq 0}^d\quad\text{and}\quad (k\odot\Delta(a))\cap\log_b(\mathbb{Z}_{\geq 0})^d.$$

<u>Idea:</u> Do ordinary Ehrhart theory on (transformed) alcoved simplices and stitch together.

By symmetry we look at  $\Delta(\mathbf{0}) := \Delta_{id}(\mathbf{0}) = \operatorname{conv}\{\mathbf{0}, e_1, e_1 + e_2, \dots, e_1 + \dots + e_d\}.$ 

#### Main lemma

Let  $k \in \mathbb{Z}_{\geq 0}$ . For  $a \in \mathbb{Z}_{\geq 0}^d$  and  $b \in \mathbb{N}_{\geq 2}$  write  $D_b^a = \operatorname{diag}(b^{a_1}, \dots, b^{a_d}) \in \mathbb{Z}^{d \times d}$ . Then, the map  $\phi : \mathbb{R}_{> 0}^d \to \mathbb{R}^d$  defined by  $\phi(z) = (\log_b(z_1), \dots, \log_b(z_d))$  induces a bijection between  $\left(b^k D_b^a \mathbf{1} + (b-1)b^k D_b^a \Delta(\mathbf{0})\right) \cap \mathbb{Z}_{\geq 0}^d$  and  $(k \odot \Delta(a)) \cap \log_b(\mathbb{Z}_{\geq 0})^d$ .

• use 
$$\Delta(\mathbf{0}) = \left\{x \in \mathbb{R}^d : 0 \le x_d \le \ldots \le x_1 \le 1\right\}$$
 and that  $\log_b(\cdot)$  is strictly increasing

<u>Idea:</u> Do ordinary Ehrhart theory on (transformed) alcoved simplices and stitch together.

By symmetry we look at  $\Delta(\mathbf{0}) := \Delta_{id}(\mathbf{0}) = \operatorname{conv}\{\mathbf{0}, e_1, e_1 + e_2, \dots, e_1 + \dots + e_d\}$ .

#### Main lemma

Let  $k \in \mathbb{Z}_{\geq 0}$ . For  $a \in \mathbb{Z}_{\geq 0}^d$  and  $b \in \mathbb{N}_{\geq 2}$  write  $D_b^a = \operatorname{diag}(b^{a_1}, \dots, b^{a_d}) \in \mathbb{Z}^{d \times d}$ . Then, the map  $\phi : \mathbb{R}_{> 0}^d \to \mathbb{R}^d$  defined by  $\phi(z) = (\log_b(z_1), \dots, \log_b(z_d))$  induces a bijection between  $\left( b^k D_b^a \mathbf{1} + (b-1) b^k D_b^a \Delta(\mathbf{0}) \right) \cap \mathbb{Z}_{\geq 0}^d \quad \text{and} \quad (k \odot \Delta(a)) \cap \log_b(\mathbb{Z}_{\geq 0})^d.$ 

- use  $\Delta(\mathbf{0})=\left\{x\in\mathbb{R}^d:0\leq x_d\leq\ldots\leq x_1\leq 1\right\}$  and that  $\log_b(\cdot)$  is strictly increasing
- $D_b^{\mathfrak{s}}\Delta(\mathbf{0})$  is a classical lattice polytope  $\Rightarrow k \mapsto \# \big( (b-1)b^k D_b^{\mathfrak{s}}\Delta(\mathbf{0}) \cap \mathbb{Z}^d \big)$  is a polynomial in  $b^k$

<u>Idea:</u> Do ordinary Ehrhart theory on (transformed) alcoved simplices and stitch together.

By symmetry we look at  $\Delta(\mathbf{0}) := \Delta_{id}(\mathbf{0}) = \operatorname{conv}\{\mathbf{0}, e_1, e_1 + e_2, \dots, e_1 + \dots + e_d\}$ .

#### Main lemma

Let  $k \in \mathbb{Z}_{\geq 0}$ . For  $a \in \mathbb{Z}_{\geq 0}^d$  and  $b \in \mathbb{N}_{\geq 2}$  write  $D_b^a = \operatorname{diag}(b^{a_1}, \dots, b^{a_d}) \in \mathbb{Z}^{d \times d}$ . Then, the map  $\phi : \mathbb{R}_{> 0}^d \to \mathbb{R}^d$  defined by  $\phi(z) = (\log_b(z_1), \dots, \log_b(z_d))$  induces a bijection between  $\left(b^k D_b^a \mathbf{1} + (b-1)b^k D_b^a \Delta(\mathbf{0})\right) \cap \mathbb{Z}_{\geq 0}^d$  and  $(k \odot \Delta(a)) \cap \log_b(\mathbb{Z}_{\geq 0})^d$ .

- use  $\Delta(\mathbf{0})=\left\{x\in\mathbb{R}^d:0\leq x_d\leq\ldots\leq x_1\leq 1\right\}$  and that  $\log_b(\cdot)$  is strictly increasing
- $D_b^{\mathfrak{s}}\Delta(\mathbf{0})$  is a classical lattice polytope  $\Rightarrow k \mapsto \# \big( (b-1)b^k D_b^{\mathfrak{s}}\Delta(\mathbf{0}) \cap \mathbb{Z}^d \big)$  is a polynomial in  $b^k$
- decomposition of P into alcoved simplices gives polynomiality of  $k \mapsto \mathfrak{L}^b_P(k)$  and information on its coefficients  $c_i^b(P)$

### Cells of different dimensions

#### Definition (Trunk)

The trunk Trunk(P) of a tropical polytope P is defined as

$$\mathsf{Trunk}(P) := \bigcup \{ F \in \mathcal{C}_P : \exists G \in \mathcal{C}_P \text{ with } \mathsf{dim}(G) \geq d \text{ such that } F \subseteq G \}.$$



Figure: A 4-dimensional tropical polytope whose 2-trunk is disconnected.

#### Proposition (L & Schymura, 2019+)

The tropical convex hull of two full-dimensional pure tropical polytopes is a pure, full-dimensional tropical polytope.

Consequently, the d-trunk of a tropical polytope in  $\mathbb{T}^d$  is a tropical polytope.

## Tropical barycentric volume

The logarithm map of a function  $f:\mathbb{R} o \mathbb{R}_{\geq 0}$  is

$$\mathsf{Log}\,|f| := \lim_{b \to \infty} \mathsf{log}_b\,|f(b)|.$$

## Tropical barycentric volume

The logarithm map of a function  $f:\mathbb{R} \to \mathbb{R}_{\geq 0}$  is

$$\mathsf{Log}\,|f| := \lim_{b \to \infty} \mathsf{log}_b\,|f(b)|.$$

The coefficients  $c_i^b(P)$  of  $\mathfrak{L}_P^b(k)$  can be thought of as functions in b.

## Tropical barycentric volume

The logarithm map of a function  $f:\mathbb{R} \to \mathbb{R}_{\geq 0}$  is

$$Log |f| := \lim_{b \to \infty} log_b |f(b)|.$$

The coefficients  $c_i^b(P)$  of  $\mathfrak{L}_P^b(k)$  can be thought of as functions in b.

For every tropical lattice polytope  $P\subseteq \mathbb{T}^d$ , we have

$$\mathsf{Log}\,|c_d^b(P)|=\mathsf{max}\{x_1+\ldots+x_d:x\in\mathsf{Trunk}(P)\}.$$

## Tropical barycentric volume

The logarithm map of a function  $f:\mathbb{R} \to \mathbb{R}_{\geq 0}$  is

$$Log |f| := \lim_{b \to \infty} log_b |f(b)|.$$

The coefficients  $c_i^b(P)$  of  $\mathfrak{L}_P^b(k)$  can be thought of as functions in b.

For every tropical lattice polytope  $P \subseteq \mathbb{T}^d$ , we have

$$\mathsf{Log}\,|c_d^b(P)|=\mathsf{max}\{x_1+\ldots+x_d:x\in\mathsf{Trunk}(P)\}.$$

### Definition (Tropical barycentric volume)

The  $tropical\ barycentric\ volume\ of\ a\ tropical\ polytope\ P\subseteq\mathbb{T}^d$  is defined as

$$\mathsf{tbvol}(P) := \mathsf{max}\{x_1 + \ldots + x_d : x \in \mathsf{Trunk}(P)\}.$$

### Corollary

The tropical barycentric volume is the sum of the coordinates of the barycenter of its d-trunk.

Let  $\mathcal{P}^d_{\mathbb{T}}$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function tbvol :  $\mathcal{P}^d_{\mathbb{T}} o \mathbb{T}$  has the following properties:

Proposition (L & Schymura, 2019+)

Let  $\mathcal{P}_{\mathbb{T}}^d$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function thvol :  $\mathcal{P}^d_{\mathbb{T}} \to \mathbb{T}$  has the following properties:

### Proposition (L & Schymura, 2019+)

 $\underline{ \textit{Monotonicity:} } \textit{ For } P \subseteq Q \in \mathcal{P}^d_{\mathbb{T}}, \textit{ we have } \mathsf{tbvol}(P) \leq \mathsf{tbvol}(Q).$ 

Let  $\mathcal{P}^d_{\mathbb{T}}$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function thvol :  $\mathcal{P}^d_{\mathbb{T}} \to \mathbb{T}$  has the following properties:

### Proposition (L & Schymura, 2019+)

- $\underline{ \textit{Monotonicity:} } \textit{ For } P \subseteq Q \in \mathcal{P}^d_{\mathbb{T}}, \textit{ we have } \mathsf{tbvol}(P) \leq \mathsf{tbvol}(Q).$
- extstyle ext

 $\mathsf{tbvol}(P) \oplus \mathsf{tbvol}(Q) = \mathsf{tbvol}(P \cup Q) \oplus \mathsf{tbvol}(P \cap Q).$ 

Let  $\mathcal{P}^d_{\mathbb{T}}$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function thvol :  $\mathcal{P}^d_{\mathbb{T}} \to \mathbb{T}$  has the following properties:

### Proposition (L & Schymura, 2019+)

- $\underline{ \textit{Monotonicity:} } \textit{For } P \subseteq Q \in \mathcal{P}^d_{\mathbb{T}}, \textit{ we have } \mathsf{tbvol}(P) \leq \mathsf{tbvol}(Q).$
- extstyle ext

$$\mathsf{tbvol}(P) \oplus \mathsf{tbvol}(Q) = \mathsf{tbvol}(P \cup Q) \oplus \mathsf{tbvol}(P \cap Q).$$

**1** <u>Rotation invariance:</u> For  $P \in \mathcal{P}_{\mathbb{T}}^d$ ,  $z \in \mathbb{T}^d$  with  $\mathbf{1}^{\mathsf{T}}z = 0$ , write  $D_z = \mathsf{diag}(z_1, \ldots, z_d)$  and let  $\Sigma$  be a tropical permutation matrix. Then,

$$\mathsf{tbvol}(D_z \odot \Sigma \odot P) = \mathsf{tbvol}(P).$$

Let  $\mathcal{P}^d_{\mathbb{T}}$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function thvol :  $\mathcal{P}^d_{\mathbb{T}} \to \mathbb{T}$  has the following properties:

### Proposition (L & Schymura, 2019+)

- **Monotonicity**: For  $P \subseteq Q \in \mathcal{P}^d_{\mathbb{T}}$ , we have  $\mathsf{tbvol}(P) \leq \mathsf{tbvol}(Q)$ .
- lacktriangledown Valuation: For  $P,Q\in\mathcal{P}^d_\mathbb{T}$  such that  $P\cup Q,P\cap Q\in\mathcal{P}^d_\mathbb{T}$ , we have

$$\mathsf{tbvol}(P) \oplus \mathsf{tbvol}(Q) = \mathsf{tbvol}(P \cup Q) \oplus \mathsf{tbvol}(P \cap Q).$$

® Rotation invariance: For  $P \in \mathcal{P}_{\mathbb{T}}^d$ ,  $z \in \mathbb{T}^d$  with  $\mathbf{1}^{\mathsf{T}}z = 0$ , write  $D_z = \mathsf{diag}(z_1, \ldots, z_d)$  and let  $\Sigma$  be a tropical permutation matrix. Then,

$$\mathsf{tbvol}(D_z \odot \Sigma \odot P) = \mathsf{tbvol}(P).$$

**1** Homogeneity: For  $\lambda \in \mathbb{T}$ , we have

$$\mathsf{tbvol}(\lambda \odot P) = \lambda d \odot \mathsf{tbvol}(P).$$

Let  $\mathcal{P}^d_{\mathbb{T}}$  be the family of tropical polytopes in  $\mathbb{T}^d$ .

The function thvol :  $\mathcal{P}^d_{\mathbb{T}} \to \mathbb{T}$  has the following properties:

## Proposition (L & Schymura, 2019+)

- $\underline{ \textit{Monotonicity:} } \textit{For } P \subseteq Q \in \mathcal{P}^d_{\mathbb{T}}, \textit{ we have } \mathsf{tbvol}(P) \leq \mathsf{tbvol}(Q).$
- lacktriangledown Valuation: For  $P,Q\in\mathcal{P}^d_\mathbb{T}$  such that  $P\cup Q,P\cap Q\in\mathcal{P}^d_\mathbb{T}$ , we have

$$\mathsf{tbvol}(P) \oplus \mathsf{tbvol}(Q) = \mathsf{tbvol}(P \cup Q) \oplus \mathsf{tbvol}(P \cap Q).$$

**1** <u>Rotation invariance:</u> For  $P \in \mathcal{P}_{\mathbb{T}}^d$ ,  $z \in \mathbb{T}^d$  with  $\mathbf{1}^{\mathsf{T}}z = 0$ , write  $D_z = \mathsf{diag}(z_1, \ldots, z_d)$  and let  $\Sigma$  be a tropical permutation matrix. Then,

$$\mathsf{tbvol}(D_z \odot \Sigma \odot P) = \mathsf{tbvol}(P).$$

**1** Homogeneity: For  $\lambda \in \mathbb{T}$ , we have

$$\mathsf{tbvol}(\lambda \odot P) = \lambda d \odot \mathsf{tbvol}(P).$$

Non-singularity:  $tbvol(P) = -\infty$  if and only if  $Trunk(P) = \emptyset$ .

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $\mathsf{tvol}(A) = |\mathsf{tdet}(\bar{A}) - \mathsf{tdet}_{\sigma}(\bar{A})|$ .

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $\mathsf{tvol}(A) = |\mathsf{tdet}(\bar{A}) - \mathsf{tdet}_{\sigma}(\bar{A})|$ . Improvements to  $\mathsf{tbvol}(\cdot)$ , since  $\mathsf{tvol}(\cdot)$  is translation invariant (same for  $\mathsf{vol}(\cdot)$ ).

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $\mathsf{tvol}(A) = |\mathsf{tdet}(\bar{A}) - \mathsf{tdet}_{\sigma}(\bar{A})|$ . Improvement of  $\mathsf{twol}(\cdot)$ , since  $\mathsf{tvol}(\cdot)$  is translation invariant (same for  $\mathsf{vol}(\cdot)$ ).

### Definition (Depersin, Gaubert & Joswig, 2017)

For a matrix  $M \in \mathbb{T}^{d \times m}$  its upper dequantized tropical volume is defined as

$$\mathsf{qtvol}^+(M) := \mathsf{sup}\left\{\mathsf{val}\,\mathsf{vol}\,\mathbf{M} : \mathsf{val}\,\mathbf{M} = M, \mathbf{M} \in \mathbb{R}\{\!\!\{t\}\!\!\}^{d imes m}
ight\}.$$

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $\mathsf{tvol}(A) = |\mathsf{tdet}(\bar{A}) - \mathsf{tdet}_{\sigma}(\bar{A})|$ . Improvement of  $\mathsf{twol}(\cdot)$ , since  $\mathsf{tvol}(\cdot)$  is translation invariant (same for  $\mathsf{vol}(\cdot)$ ).

### Definition (Depersin, Gaubert & Joswig, 2017)

For a matrix  $M \in \mathbb{T}^{d \times m}$  its upper dequantized tropical volume is defined as

$$\mathsf{qtvol}^+(M) := \mathsf{sup}\left\{\mathsf{val}\,\mathsf{vol}\,\mathbf{M} : \mathsf{val}\,\mathbf{M} = M, \mathbf{M} \in \mathbb{R}\{\!\!\{t\}\!\!\}^{d \times m}\right\}.$$

They prove

$$\operatorname{\mathsf{qtvol}}^+(M) = \max_{J \in \binom{[m]}{d}} \operatorname{\mathsf{tdet}}(M_J).$$

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $tvol(A) = |tdet(\bar{A}) - tdet_{\sigma}(\bar{A})|$ . Impropriate to  $tbvol(\cdot)$ , since  $tvol(\cdot)$  is translation invariant (same for  $vol(\cdot)$ ).

### Definition (Depersin, Gaubert & Joswig, 2017)

For a matrix  $M \in \mathbb{T}^{d \times m}$  its upper dequantized tropical volume is defined as

$$\mathsf{qtvol}^+(M) := \mathsf{sup}\left\{\mathsf{val}\,\mathsf{vol}\,\mathbf{M} : \mathsf{val}\,\mathbf{M} = M, \mathbf{M} \in \mathbb{R}\{\!\!\{t\}\!\!\}^{d imes m}
ight\}.$$

They prove

$$\operatorname{\mathsf{qtvol}}^+(M) = \max_{J \in \binom{[m]}{d}} \operatorname{\mathsf{tdet}}(M_J).$$

### Theorem (L & Schymura, 2019+)

Let  $P = \mathsf{tconv}(M)$  be the tropical polytope generated by  $M \in \mathbb{T}^{d \times m}$ . Then,

$$\mathsf{tbvol}(P) \leq \mathsf{qtvol}^+(M).$$

Equality holds if and only if the tropical barycenter of P is contained in Trunk(P).

Depersin, Gaubert & Joswig: For  $A \in \mathbb{T}^{d \times (d+1)}$ , let  $\text{tvol}(A) = |\text{tdet}(\bar{A}) - \text{tdet}_{\sigma}(\bar{A})|$ . Important let  $\text{tvol}(\cdot)$ , since  $\text{tvol}(\cdot)$  is translation invariant (same for  $\text{vol}(\cdot)$ ).

## Definition (Depersin, Gaubert & Joswig, 2017)

For a matrix  $M \in \mathbb{T}^{d \times m}$  its upper dequantized tropical volume is defined as

$$\mathsf{qtvol}^+(M) := \mathsf{sup}\left\{\mathsf{val}\,\mathsf{vol}\,\mathsf{M} : \mathsf{val}\,\mathsf{M} = M, \mathsf{M} \in \mathbb{R}\{\!\!\{t\}\!\!\}^{d imes m}
ight\}.$$

They prove

$$\mathsf{qtvol}^+(M) = \max_{J \in \binom{[m]}{d}} \mathsf{tdet}(M_J).$$

## Theorem (L & Schymura, 2019+)

Let  $P=\mathsf{tconv}(M)$  be the tropical polytope generated by  $M\in\mathbb{T}^{d\times m}.$  Then,

$$\mathsf{tbvol}(P) \leq \mathsf{qtvol}^+(M).$$

Equality holds if and only if the tropical barycenter of P is contained in Trunk(P).

If P is pure, that is, P = Trunk(P), then  $\text{tbvol}(P) = \text{qtvol}^+(M)$ .

A matrix  $S \in \mathbb{T}^{r \times r}$  is non-singular if the value of the tropical determinant is attained at most once. The tropical rank  $\operatorname{trk}(M)$  of a matrix  $M \in \mathbb{T}^{d \times m}$  is the size of a largest non-singular square submatrix of M.

A matrix  $S \in \mathbb{T}^{r \times r}$  is non-singular if the value of the tropical determinant is attained at most once. The tropical rank  $\operatorname{trk}(M)$  of a matrix  $M \in \mathbb{T}^{d \times m}$  is the size of a largest non-singular square submatrix of M.

### Lemma (L & Schymura, 2019+)

Let  $M \in \mathbb{TN}^{d \times m}$  and let  $P = \mathsf{tconv}(M)$ . Then,

$$\operatorname{trk}(M) \geq \max \left\{ i : c_i^b(P) \neq 0 \right\}.$$

A matrix  $S \in \mathbb{T}^{r \times r}$  is non-singular if the value of the tropical determinant is attained at most once. The tropical rank  $\operatorname{trk}(M)$  of a matrix  $M \in \mathbb{T}^{d \times m}$  is the size of a largest non-singular square submatrix of M.

### Lemma (L & Schymura, 2019+)

Let  $M \in \mathbb{TN}^{d \times m}$  and let  $P = \mathsf{tconv}(M)$ . Then,

$$\operatorname{trk}(M) \geq \max \left\{ i : c_i^b(P) \neq 0 \right\}.$$

The decision problem associated to trk(M) is NP-complete (Kim & Roush, 2005). It is NP-hard to compute the tropical Ehrhart polynomial  $k \mapsto \mathfrak{L}^b_P(k)$ .

A matrix  $S \in \mathbb{T}^{r \times r}$  is *non-singular* if the value of the tropical determinant is attained at most once. The tropical rank trk(M) of a matrix  $M \in \mathbb{T}^{d \times m}$  is the size of a largest non-singular square submatrix of M.

### Lemma (L & Schymura, 2019+)

Let  $M \in \mathbb{TN}^{d \times m}$  and let P = tconv(M). Then,

$$\operatorname{trk}(M) \geq \max \left\{ i : c_i^b(P) \neq 0 \right\}.$$

The decision problem associated to trk(M) is NP-complete (Kim & Roush, 2005). If It is NP-hard to compute the tropical Ehrhart polynomial  $k \mapsto \mathfrak{L}_P^b(k)$ .

# Question

How fast can we compute the third  $|C_d(P)| = \log |C_d(P)|$ ?

If P is pure, then  $tbvol(P) = qtvol^+(M)$ .

tbvol(P) can be computed in time  $O(n^3)$  (Depersin, Gaubert & Joswig, 2017).

### Proposition

Computing the tropical barycentric volume tbvol(P) is at least as hard as checking feasibility of a tropical linear inequality system (which is in  $NP \cap coNP$ ).

### Outlook

#### Future directions:

- (tropical Ehrhart positivity) Lower bounds on  $\text{Log } |c_i^b(P)|$  in terms of (non-negative) generalized tropical volumes  $\text{tbvol}_i$ .
- (special polytopes) Tropical Ehrhart polynomials of  $k^{th}$  tropical hypersimplex  $\Delta_k^d = \operatorname{tconv}\left\{\sum_{j \in J} e_j : J \in {[d] \choose k}\right\}$ .
- (discrete tropical surface area) Find geometric interpretation of Log  $|c_{d-1}^b(P)|$ .
- How does Log  $|c_0^b(P)|$  relate to the Euler characteristic of P?
- Identify applications based on the metric information of P encoded by tbvol(P).

• ..

### Outlook

#### Future directions:

- (tropical Ehrhart positivity) Lower bounds on Log  $|c_i^b(P)|$  in terms of (non-negative) generalized tropical volumes  $\mathsf{tbvol}_i$ .
- (special polytopes) Tropical Ehrhart polynomials of  $k^{th}$  tropical hypersimplex  $\Delta_k^d = \operatorname{tconv}\left\{\sum_{i \in J} e_i : J \in \binom{[d]}{k}\right\}$ .
- (discrete tropical surface area) Find geometric interpretation of Log  $|c_{d-1}^b(P)|$ .
- How does  $\text{Log} |c_0^b(P)|$  relate to the Euler characteristic of P?
- Identify applications based on the metric information of P encoded by tbvol(P).

• ..

Thank you!