Sequential Clustering and Contextual Importance Measures for Incremental Update Summarization

Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz | Research Training Group AIPHES

SeqCluSum in a nutshell

- incremental update summarization
- combine benefits of pipeline and clustering approaches
- model importance and redundancy jointly with contextual cluster ranking
- **best results on TREC-TS dataset**

Incremental Update Summarization

Data: Stream of documents containing information nuggets

- = On 16 January 2013, at around 0800 GMT
- = A helicopter crashed into a construction crane in Vauxhall
- = Captain Pete Barnes and a pedestrian, Matthew Wood, died

Task: Find new & important information nuggets as soon as possible Application: developing events such as accidents, natural disasters, elections, etc.

Clustering Information with Sequential Clustering

prior work used either pipeline or clustering

Idea: combine benefits of both approaches

- 1. be able to publish information at any time
- 2. use clustering to detect new and important information
 - → natural fit for IUS

Publishing Updates with Contextual Cluster Ranking

new document/sentence is available in the web:

- 1. seq. clustering: assign sentence to nearest cluster or create new cluster if distance is too big
- **2. sentence scoring**: estimate sentence importance (high temporal TF-IDF → more important)
- **3. cluster scoring**: cluster score based on sentence scores (bigger cluster → more important)
- **4. publish update**: if a cluster is important enough → emit best sentence from cluster
- **5. discount sentence scores** for redundancy avoidance (sentence similar to published sentence → larger discount)
- 6. re-rank clusters according to new sentence scores

Evaluation Dataset

- dataset from TREC-TS 2015 shared task
- based on webpage snapshots +
 Wikipedia revision history

- trace driven simulation to evaluate systems
- only small subset of sentences labeled due to high annotation effort
- → only lower bound evaluation ③

Results

Type	System	${\cal H}$	Timeliness	F_1 (Prec, Rec)	Precision	Recall
Seq. clustering	SeqCluSum (lower bound)	0.1526	0.8013	0.1842	0.1485	0.2426
Pipeline	Raza, 2015; 1st@TREC-TS '15	0.0853	0.3983	0.1773	0.1840	0.1710
Clustering	McCreadie, 2015; 3rd@TREC-TS '15	0.0639	0.5335	0.1189	0.0667	0.5459
Pipeline	McCreadie, 2015	0.0508	0.6741	0.0758	0.0402	0.6590

 \mathcal{H} : combination of Timeliness, Precision, and Recall

Timeliness: estimates timeliness of updates; 1=on time with ground truth, 0=outdated **Precision:** fraction of important & novel system updates

Recall: fraction of information nuggets covered by system updates

Conclusions

- → SeqCluSum achieves **high** \mathcal{H} result derives from **both high timeliness** and **high F1 scores**
- → combination of pipeline and clustering works well for incremental update summarization
- → could be further improved with prior knowledge about information importance