DISCRETE MATHEMATICS AND COMPUTATIONAL COMPLEXITY

1. [Compulsory]

Let \mathcal{R} be the set of all relations on a set A.

Express the predicate P(x), meaning that $x \in \mathcal{R}$ is a transitive relation, in terms of appropriate symbolic logic.

[2]

b) Prove that the proposition p given by $\forall R (P(R) \leftrightarrow (\forall n \in Z^+ R^n \subseteq R))$ is true, where the universe of discourse is \mathscr{R} .

[12]

c) Prove that the proposition q given by $\forall R (P(R) \rightarrow (\forall n \in Z^+ ((n \ge 2) \rightarrow P(R^n))))$ is true, where the universe of discourse is \mathcal{R} .

[10]

d) Replacing the implication in the definition of q by its converse yields another proposition r. Prove that r is false.

[8]

e) A relation R' is said to be the transitive closure of R when R' is the smallest transitive relation containing R. Define the connectivity relation R^* and prove that $R^* = R'$.

[8]

lere the convers of discourse is A. 1. YR P(R) (Ynezt Rns R) First prove $\forall R[P(R) \rightarrow (\forall n \in 2^+ R^n \subseteq R)]$ for 1=1, we have $\forall R[P(R) \rightarrow R \subseteq R]$ which is time as the RHS is always time. Assure true for n & use induct for n>1. Let (2,5) & R'N+1 = R. RN. =)]a (a, x) e R n (2,5) e R^] line R'ER, (a,6) & R Daniel Rntisk D record years YR [(An & Z+ R^SR) > P(R)] To be jule, we would need R s.t. ($\forall n \in \mathbb{Z}^+ \ R^n \subseteq R$) $\wedge \neg P(R)$. YNEZ RUSR => RZSR let (a, b) & R , (b, c) & R. Then (a, c) & K2 CR ⇒ (a,c) FR ⇒ P(R) D

YR (AR) → (Yn EZ* ((n>2) → P(R^n))) the will more ARP(R) > YNEZ+ P(R)], Arried for the p(R) = P(R), while is time.

Arrived for the p(R2n) and p(R2n+1) are time. First P(R2n) Let $(x,b) \in \mathbb{R}^{2n} = \mathbb{E} \mathbb{R}^n \cdot \mathbb{R}^n$ $(b,c) \in \mathbb{R}^{2n} = \mathbb{R}^n \cdot \mathbb{R}^n$ Then $\exists x \exists y \lceil (x,x) \in \mathbb{R}^n \mid (x,b) \in \mathbb{R}^n \mid (b,y) \in \mathbb{R}^n$ Λ $(\gamma, c) \in \mathbb{R}^{N}$ rince Kn is truité, (a, b) ERN , (b, c) ERN $\Rightarrow (a,c) \in \mathbb{R}^n \cdot \mathbb{R}^n = \mathbb{R}^{2n}$ xcond, P(R2n+1) Let $(a,b) \in \mathbb{R}^{2n+1} = \mathbb{R} \cdot \mathbb{R}^n \cdot \mathbb{R}^n$ at $(b,c) \in \mathbb{R}^{2n+1} = \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n$.

Let $(a,b) \in \mathbb{R}^{2n+1} = \mathbb{R} \cdot \mathbb{R}^n \cdot \mathbb{R}^n$ at $(b,c) \in \mathbb{R}^n = \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n$. 1 (5,9) ER^ 1 (7,9) ER^ 1 (9,0) ER^ me R^n is familie, $(a, p) \in R^n$ $(y, c) \in R^n$. $= (A,C) \in \mathbb{R}^n \cdot \mathbb{R} \cdot \mathbb{R}^n = \mathbb{R}^{2n+1} \square$

∀R (Hn € 2 + ((n > 2) > P(R))) > P(R)) o-sider R = {(a, b), (b, c)}. R= /(ac)? $R'' = \phi$ pr n > 2. p(R) is the 5t $p(R^2)$, $p(R^3)$, etc. are the. $\forall n \in \mathbb{Z}^+$ $(n \ni 2) \Rightarrow p(R^n)$ is $\forall R \cup E$. ~ 3R (4n ∈2+ ((n ?, 2) → P(R))) N ¬P(R)) INDE = original proposite or is take. R* = RUR2 UR3 U... ried to moe R'=R*

RIR* directly:
Need to show R'=S wherever RES, Strinte ty (a, b) ∈ R° , (b, c) ∈ R° it pllors for (+) Ht (n c) ER". Gt RES. Pu. P(S") , S" S S. RES => R* SS*. R'SS'SS D.

3