Будем рассматривать систему линейных уравнений $\mathbf{A}\mathbf{x} = \mathbf{b}$ с матрицей \mathbf{A} , состоящей из m строк и n столбцов и имеющей ранг r.

Однородная система $\mathbf{A}\mathbf{x} = \mathbf{O}$, полученная из неоднородной системы $\mathbf{A}\mathbf{x} = \mathbf{b}$ заменой вектор-столбца \mathbf{b} на нулевой вектор-столбец, называется *приведённой*.

Однородная система линейных уравнений всегда совместна, т.к. всегда имеет тривиальное решение $x_1 = x_2 = ... = x_n = 0$, поэтому представляет интерес ответ на вопрос: при каких условиях однородная система имеет нетривиальное решение?

Теорема (об условиях существования нетривиального решения системы Ax = O) Однородная система линейных уравнений имеет нетривиальное решение тогда и только тогда, когда ранг матрицы системы меньше числа неизвестных, т.е. r(A) < n.

Заметим, что если \mathbf{x}_1 и \mathbf{x}_2 – два различных решения системы $\mathbf{A}\mathbf{x} = \mathbf{O}$, тогда для любых чисел λ и μ вектор-столбец $\mathbf{x} = \lambda \mathbf{x}_1 + \mu \mathbf{x}_2$ также является решением этой системы. Таким образом, если у однородной системы линейных уравнений имеется нетривиальное решение, то таких решений бесконечно много.

Рассмотрим задачу описания множества всех возможных решений системы $\mathbf{A}\mathbf{x} = \mathbf{O}$ в виде линейной комбинации некоторого количества её базисных решений.

Матрица $\mathbf{F}_{n\times?} = [\mathbf{f}_1 \mid \mathbf{f}_2 \mid ... \mid \mathbf{f}_?]$, число столбцов которой будет определено далее, называется фундаментальной матрицей системы $\mathbf{A}\mathbf{x} = \mathbf{O}$, если

- 1) каждый столбец этой матрицы является решением системы, т.е. $\mathbf{Af}_k \equiv \mathbf{O}$;
- 2) матрица имеет максимально возможный ранг.

Теорема (о фундаментальной матрице однородной системы уравнений)

- 1. Ранг фундаментальной матрицы не превосходит n-r, т.е. $r(\mathbf{F}) \le n-r$.
- 2. Ранг фундаментальной матрицы равен n-r, т.е. $r(\mathbf{F}) = n-r$.

Теорема (об общем решении системы Ax = O)

Вектор-столбец ${\bf x}$ является решением системы ${\bf A}{\bf x}={\bf O}$ тогда и только тогда, когда существует вектор-столбец ${\bf c}$ такой, что ${\bf x}={\bf F}{\bf c}$, где ${\bf F}$ – фундаментальная матрица системы.

Теорема (об общем решении системы Ax = b)

Вектор-столбец ${\bf x}$ является решением системы ${\bf A}{\bf x}={\bf b}$ тогда и только тогда, когда он представим в виде ${\bf x}={\bf x}_b+{\bf x}_o$, где ${\bf x}_b$ — произвольное (*частное*) решение неоднородной системы ${\bf A}{\bf x}={\bf b}$, ${\bf x}_o$ — общее решение однородной системы ${\bf A}{\bf x}={\bf O}$, т.е. ${\bf x}_o={\bf F}{\bf c}$, где ${\bf F}$ — фундаментальная матрица однородной системы, ${\bf c}$ — произвольный вектор-столбец.

19.12.2017 11:05:53