1. Integrales		2
	Integrales	2
	Integrales Impropias	2
2. Sucesiones y series		3
3. Series de Potencias		4
	Series de potencias	4
	Taylor	4
4. Cálculo Vectorial		5
	Encontrar ecuacion del plano	5
	Encontrar ecuacion de la recta tangente	5
5.	5. Funciones de varias variables	
	Calcular ecuación del plano tangente	6
	Derivada Direccional	6
	Encontrar ecuación normal del plano tangente	6
	Encontrar ángulo entre planos	6
	Puntos extremos	6
	Regla de la cadena	6
	Direcciones tasa de crecimiento	7
6.	6. Integrales dobles	
	Calcular integral	7
	Calcular volumen	7

1. Integrales

Integrales

Ejercicio 1 (20 pts.) Sea D la región comprendida entre las funciones $g(x) = x^2 - 1$ y $h(x) = 1 - x^2$.

- 1. (a) Dibuje la región D y calcule su área.
- 2. (a) Determinar el área de la región comprendida entre la parábola $y^2 = 4x$ y la recta 2x y = 0.
 - (b) Calcular $\int \frac{6x^2 3x + 1}{(4x + 1)(x^2 + 1)} dx$.

3.

Integrales Impropias

(a) Determine todos los valores de c para los cuales la integral impropia $\int_{-\infty}^{+\infty} e^{-c|x|} dx$ converge. Ayuda: analice por separado los casos c < 0, c = 0 y c > 0.

2. Sucesiones y series

(b) Demostrar que la serie dada por $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ es condicionalmente convergente.

1.

(a) Encuentre el conjunto de todos los números reales t_0 para los cuales la serie $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} e^{t_0 n}$ converge.

2.

3. Series de Potencias

Series de potencias

- (a) Represente la función $f(x) = \frac{1}{x}$ como una serie de potencias centrada en a=2. Determine el intervalo de convergencia de la serie obtenida.
 - (b) Halle el intervalo/dominio de definición de la función $g(x) = \sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n}} (x-10)^n$ y calcule su derivada g'. ¿Tienen g y g' el mismo dominio? Justifique su respuesta.
- (a) Determinar el intervalo de convergencia de la serie de potencias dada por $\sum_{n=1}^{\infty} \frac{(x+2)^n \ln n}{n3^n}$.
 - (b) Represente la función $f(x) = \frac{1}{(x-5)^2}$ como una serie de potencias centrada en a=0 y halle su radio de convergencia.

Taylor

1.

4.

2.

(a) Considere la función $f(x) = \sqrt{x}$ y sea $T_{2,4}(x)$ su polinomio de Taylor de grado 2 y centrado en a = 4. Estimar el error que se comete si se aproxima el número $\sqrt{3}$ por el valor de $T_{2,4}(x)$ en x = 3.

4. Cálculo Vectorial

1.

Encontrar ecuacion del plano

(a) Encuentre la ecuación del plano P que pasa por los puntos (0,0,10),(1,0,8) y (0,2,9).

Encontrar ecuacion de la recta tangente

(b) Considere la curva $\gamma(t) = (2\cos(t), \sin(t))$. Dibuje aproximadamente la imagen de γ para $t \geq 0$, calcule el vector tangente a la curva en $t_0 = \pi/4$ y obtenga la ecuación de la recta tangente a la imagen de γ en el punto $\gamma(t_0)$.

5. Funciones de varias variables

Calcular ecuación del plano tangente

(a) Calcular la ecuación del plano tangente y el vector normal al gráfico de $f(x,y)=\frac{x}{x^2+y^2}$ en el punto $(1,2,\frac{1}{5})$.

Derivada Direccional

1.

1.

2.

1.

1.

1.

1.

- (b) Sea $f(x,y) = 2x^4 + y^2 x^2 2y$. Encuentre el o los vectores unitarios **u** tales que la derivada direccional de f en el punto (0,2) en la dirección de **u** tiene el valor 1.
- (b) Calcular la derivada direccional de la función $f(x,y)=3x^2-2y^2$, en el punto $(-\frac{3}{4},0)$ en la dirección del segmento que va de $P=(-\frac{3}{4},0)$ a Q=(0,1).

Encontrar ecuación normal del plano tangente

(a) Sea S la superficie de nivel en \mathbb{R}^3 dada por la ecuacin $x^2 - 2y^2 - 3z^2 + xyz = 4$ y sea $P_0 = (3, -2, -1)$. Obtener la ecuacin normal del plano Π_0 tangente a S en P_0 .

Encontrar ángulo entre planos

(b) Considere el plano Π_1 definido por la ecuación x+y+z=1. Calcule el ángulo α entre los planos Π_0 y Π_1 . (Basta con dejar expresada la fórmula)

Puntos extremos

(a) Determinar los puntos extremos (máximos y/o mínimos), si los hubiere, de la función f definida por $f(x,y) = 3x^3 + y^2 - 9x + 4y$.

Regla de la cadena

- (b) Usar la Regla de la cadena para calcular $\frac{\partial \omega}{\partial s}$ y $\frac{\partial \omega}{\partial t}$ para $\omega = 2xy$ donde $x = s^2 + t^2$ e y = s/t.
- **Ejercicio 4** (20 pts.) Considere la función $f(x,y) = x^2 2xy^2$.
 - (b) Sea $h(t) = f(2 + 3t^2u_1, 3 + tu_2)$, donde $u = (u_1, u_2)$ es un vector unitario. Use la regla de la cadena y encuentre la direccin u para la cual la derivada h'(0) es máxima.

Direcciones tasa de crecimiento

Ejercicio 4 (20 pts.) Considere la función $f(x,y) = x^2 - 2xy^2$.

(a) Determine en qué direcciones v y w hay que moverse, partiendo del punto p = (0, 1), para lograr la más alta tasa y la más baja tasa de crecimiento de f, respectivamente. Luego, calcule $D_v f(p)$ y $D_w f(p)$.

6. Integrales dobles

Calcular integral

1.

Ejercicio 1 (20 pts.) Sea D la región comprendida entre las funciones $g(x) = x^2 - 1$ y $h(x) = 1 - x^2$.

- (a) Dibuje la región D y calcule su área.
- (b) Calcule la siguiente integral doble $\int \int_D x^2 y \, dx \, dy$.

Calcular volumen

Ejercicio 4 (20 pts.)

- (a) Encuentre la ecuación del plano P que pasa por los puntos (0,0,10),(1,0,8) y (0,2,9).
- (b) Calcule el volumen del prisma sólido cuya base es el rectángulo $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2\}$ y cuya tapa está contenida en el plano P del inciso anterior.