Lecture 14: Bayesian regression

Bayesian Inference

- Idea
 - Weights with a better fit to the training data should be more probable than others
 - o Make predictions with all these weightsm scaled by their probability
- Reason under all possible parameter values
 - weighted by their posterior probability
- More robust predictions
 - less sensitive to overfitting, particularly with small training sets
 - Can give rise to more expensive model class

Frequentist v.s. Bayesian

- Frequentist: learning using point estimates, regularisation, p-values
 - backed by sophisticated theory in simplifying assumptions
 - o mostly simpler algorithms, characterises much practical machine learning research
- Bayesian: maintain uncertainty, marginalise out unknowns during inference
 - o some theory
 - o often more complex algorithms, but not always
 - o often more computationally expensive

Bayesian Regression

- ullet Application of bayesian inference to linear regression, using normal prior over w
- Consider full posterior $p(w|X,y,\sigma^2)$
- Sequential Bayesian updating
 - Can formula $p(w|X, y, \sigma^2)$ for given dataset
 - As we see more and more data:
 - 1. Start with prior p(w)
 - 2. See new labelled datapoint
 - 3. Compute posterior $p(w|X, y, \sigma^2)$
 - 4. The posterior now takes role of prior & repeat from step 2

Conjugate Prior

• Product of **likelihood** × **prior**: results in the same distribution as the prior

Stages of Training

- 1. Decide on model formulation & prior
- 2. Compute **posterior** over parameters p(w|x,y)
- 3. 3 methods:
 - 1. MAP:
 - 1. Find mode for w
 - 2. Use to make prediction on test
 - 2. Approx. Bayes:

- 1. Sample many w
- 2. Use to make ensemble average prediction on test
- 3. Exactly Bayes
 - 1. Use all w to make expected prediction on test

Prediction with uncertain \boldsymbol{w}

- Could predict using sampled regression curves
 - \circ Sample S parameters, $w^{(s)}, s \in \{1,...,S\}$
 - For each sample, compute prediction $y_*^{(s)}$ at test point x_*
 - o (Monte Carlo integration)
- For Bayesian regression, there's a simpler solution:
 - o Integration can be done analytically, for

$$\circ p(\hat{y}_*|X,y,x_*,\sigma^2) = \int p(w|X,y,\sigma^2)p(y_*|x_*,w,\sigma^2)dw$$

- Pleasant properties of Gaussian distribution means integration is tractable
 - $\circ \ p(\hat{y}_*|X,y,x_*,\sigma^2) = ... = \operatorname{Normal}(y_*|x_*'w_N,\sigma_N^2(x_*))$
 - $\circ \ \sigma_N^2 = \sigma^2 + x_*' V_N x_*$
 - Additive variance based on x_* match to training data

Caveats (Notes)

- Assumption
 - known data noise parameter \$
 - o sigma^2\$
 - o data was drawn from the model distribution

Lecture 15: Bayesian classification

Discrete Conjugate prior

- Example:
 - o Prior: Beta
 - o Likelihood: Binomial
 - Posterior: Beta (conjugacy)

Suite of useful conjugate priors

- Regression:
 - 1. For mean:
 - Likelihood: Normal
 - Prior: Normal
 - 2. For variance / covariance:
 - Likelihood: Normal
 - Prior: Inverse Gamma / Inverse Wishart
- Classification:
 - 1. Likelihood: Binomial, Prior: Beta
 - 2. Likelihood: Multinomial, Prior: Dirichlet
- Counts:

1. Likelihood: Poisson, Prior: Gamma

Bayesian Logistic Regression

- Discriminative classifier which conditions on inputs
- Similar problems with parameter uncertainty compared to regression
- ullet Need prior over w (coefficients), not q
- No known conjugacy
 - o Thus, use a Gaussian prior
- Resolve by (Laplace) approximiation:
 - \circ Assume posterior pprox Normal about mode
 - Can compute normalisation constant, draw samples, etc.