Тема 3. Арифметика классов вычетов. Шифр сдвига. Аффинный шифр

Теоретическая часть

1. Рассмотрим множество целых чисел ℤ:

 \dots -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 $7 <math>\dots$

2. Возьмём некоторое целое число N. Известно, что любое целое число x может быть представлено следующим образом:

$$x = qN + r$$
,

где N – делитель, q – (неполное) частное, r – остаток. Остаток не может быть отрицательным и не может быть больше делителя:

$$0 < r < N - 1$$
.

3. Получается, что все возможные остатки – это числа 0, 1, 2, ..., N-1.

4. Возьмём, к примеру, N = 5. Выпишем под целыми числами их остатки от деления на 5.

5. Видно, что остатки циклически повторяются. Можно разбить множество всех целых чисел на подмножества так, что в каждое подмножество попадут числа, имеющие одинаковые остатки от деления на N. Таких подмножеств будет ровно N, и они называются **классами вычетов по модулю** N. К примеру, если N=5, то можно обозначить классы вычетов по модулю 5 так:

 $\overline{0}$ $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$

так как остатки – это числа 0, 1, 2, 3, 4.

6. На классах вычетов можно определить арифметические операции. Для этого нужно выполнять обычные арифметические действия с остатками и вместо результата брать остаток от его деления на N. Так, если N=5, то таблицы сложения, вычитания и умножения классов по модулю 5 будут выглядеть следующим образом:

плидеть следующим образо						
+	$\bar{0}$	1	$\bar{2}$	3	$\bar{4}$	
$\bar{0}$	$\bar{0}$	1	2	3	4	
1	1	2	3	$\bar{4}$	Ō	
<u>2</u> <u>3</u>	2	3	4	$\bar{0}$	1	
3	3	$\bar{4}$	$\bar{0}$	1	2	
4	4	Ō	1	2	3	

-	$\bar{0}$	1	$\bar{2}$	3	$\bar{4}$
$\bar{0}$	$\bar{0}$	$\bar{4}$	3	2	1
1	1	$\bar{0}$	4	3	2
2	2	1	$\bar{0}$	4	3
3	3	2	1	$\bar{0}$	$\bar{4}$
4	4	3	2	1	Ō

_					
×	$\bar{0}$	1	2	3	$\bar{4}$
$\bar{0}$	$\bar{0}$	$\bar{0}$	<u>0</u> <u>2</u>	$\bar{0}$	Ō
1	$\bar{0}$	1	2	3	$\bar{4}$
2	$\bar{0}$	2	4	1	3
$\frac{1}{2}$	$\bar{0}$	3	1	4	2
4	Ō	4	3	2	1

7. По таблице умножения можно искать каждому классу обратный. Класс a' будет обратным к классу a, если $a \times a' = a' \times a = \bar{1}$. Получается, что к $\bar{1}$ обратный $\bar{1}$, к $\bar{2}$ обратный $\bar{3}$, к $\bar{3}$ обратный $\bar{2}$, а к $\bar{4}$ обратный $\bar{4}$, а к $\bar{0}$ обратного не существует.

8. Деление классов можно определить как умножение на обратный: $a \div b = a \times b'$. Получаем таблицу деления:

÷	1	2	3	<u>4</u>
$\overline{\bar{0}}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	Ō
1	1	2	3	4
\(\bar{2}\) \(\bar{3}\) \(\bar{4}\)	2	1	3 4	3 2
3	3 <u>ā</u>	4	1	2
4	<u>4</u>	2	3	1

9. Используем классы вычетов для того, чтобы определить подстановочные шифры. Данные шифры делятся на **шифры сдвига** и **аффинные шифры**. Представителями шифров сдвига являются шифр Цезаря и шифр Виженера.

10. К примеру, в алфавите N букв, и мы хотим создать шифр Цезаря со сдвигом h. Перенумеруем все буквы алфавита числами от 0 до N-1. Если буква имеет код x, то зашифрованная буква будет иметь код y, который вычисляется по формуле:

$$y = (x + h) \mod N$$
.

ЗАЩИТА ИНФОРМАЦИИ

11. Чтобы расшифровать букву с кодом y, пользуются формулой:

$$x = (y - h) \mod N$$
.

12. К примеру, если алфавит [A, O, У, H, T], то N=5 и буквы алфавита имеют коды:

Α	О	У	Н	T
0	1	2	3	4

Пусть h = 3, тогда соответствие букв:

A	О	У	Н	T
Н	T	Α	О	У

Вычислим, какой код у зашифрованной буквы О: $y = (1+3) \mod 5 = 4$, это код буквы Т. Чтобы выполнить расшифровку буквы Т, получаем: $x = (4-3) \mod 5 = 1$. Это код буквы О.

13. Аффинный шифр задаётся формулой

$$y = (ax + b) \mod N$$
,

где HOД(a, N) = 1 (это условие важно для однозначной расшифровки). Тогда формула расшифровки:

$$x = ((y - b)a') \bmod N.$$

14. К примеру, пусть формула шифра $y=(3x+2) \mod 5$. Буква О переводится в букву, которая имеет код $y=(3\cdot 1+2) \mod 5=0$, а это А. Расшифровка: $x=\left((0-2)\ 3'\right) \mod 5=(3\cdot 2) \mod 5=1$. Это код буквы О.

Практическая часть

Составить компьютерную программу (на любом языке программирования), которая выполняет следующие действия:

- 1. По заданной текстовой строке, состоящей из символов указанного алфавита, возвращает строку, зашифрованную с помощью аффинного шифра. Параметры a и b задаёт пользователь (не забудьте, что HOД(a,N)=1).
- 2. По заданной строке, зашифрованной с помощью аффинного шифра и состоящей из символов указанного алфавита, возвращает строку-оригинал.

В программе предусмотреть:

- 1. **Модуль**, который содержит структуры, процедуры и функции, которые реализуют арифметику классов вычетов по некоторому модулю.
- 2. Основную программу, которая реализует шифрование и расшифрование.

Дополнение к заданию. Варианты алфавитов и шифруемых строк. Выбирать вариант по последней цифре номера зачётки

Вар	Алфавит	Строка-оригинал
0.	[А, И, Н, Т, У, _]	ТУТ_АННА_И_НАТА
1.	[А, О, У, Ы, Н, Т, _]	У_АННЫ_НОТЫ
2.	[А, О, И, Н, Т, _]	НАТА_ИННА_И_АНТОН
3.	[О, И, У, Ы, Н, Т, К, _]	У_НИКИТЫ_ОКУНИ
4.	[А, О, И, У, Н, Т, К, _]	У_АНТОНА_ОКУНИ
5.	[A, O, Y, H, T, K, _]	A_KOT_TYT_KAK_TYT
6.	[О, И, У, Н, Т, К, _]	ну_и_котик_коток
7.	[О, И, Н, Т, К, _]	нитки_тонки
8.	[А, О, И, Н, Т, К, _]	нитка_и_кот
9.	[А, О, И, У, Н, Т, К, _]	КОТИК_КАТИТ_НИТКУ

При желании можно запрограммировать атаку прямым перебором по известному N, но неизвестным a и b. Программа перебирает допустимые a и b и выводит дешифрованную строку. Та строка, которая представляет собой осмысленный текст, и есть дешифрованная. К примеру, при N=8 допустимые значения a равны 1, 3, 5, 7, а значения b суть 0, 1, 2, 3, 4, 5, 6, 7. Поэтому будет 32 возможных дешифрованных варианта.