

The Biological Setting: A Lung-Cancer Cell

Figure: A549 Cancer Cell Model [2]

- A human cell is complex. In this project, we focus on the electrophysiological behaviour!
- Specifically, on the ion channels on the membrane of an A549 cancer cell.
- We improve simulation of the world's first electrophysiological cancer cell model [2].
- And visualise!

The Biological Setting: A Lung-Cancer Cell

Figure: A549 Cancer Cell Model [2]

- A human cell is complex. In this project, we focus on the electrophysiological behaviour!
- Specifically, on the ion channels on the membrane of an A549 cancer cell.
- We improve simulation of the world's first electrophysiological cancer cell model [2].
- And visualise!

The Biological Setting: A Lung-Cancer Cell

Figure: A549 Cancer Cell Model [2]

- A human cell is complex. In this project, we focus on the electrophysiological behaviour!
- Specifically, on the ion channels on the membrane of an A549 cancer cell.
- We improve simulation of the world's first electrophysiological cancer cell model [2].
- And visualise!

Experiment: Patch-Clamping

Figure: Patch-Clamp System [3]

- Approach in which electrophysiological behaviour of a cell can be measured in a lab (our data from TU Graz!).
- Patch-Clamping can be differentiated into two approaches:
 - the Cell-attached recording method,
 - the Whole-cell recording method.

Simulation of the Experiment

- We simulate each of the ion channels individually, once per type.
- We know the ion channel types from previous research.
- Models for each of them have been identified in long-standing collaborative effort.
- We combine the models from literature into a full Rust implementation of each.

Hidden Markov Model

The whole cell current $I: T \to \mathbb{R}$ over time $t \in T \subset \mathbb{R}^+$ is the sum of all individual channel contributions $I_k, k \in \{1, ..., M\}$ over $M \in \mathbb{N}$ channel types

$$I(t) := \sum_{k=1}^{M} N_k I_k(t) = \sum_{k=1}^{M} N_k g_k p_{o,k} \left(V(t) - E_k \right) .$$

At each time step, the next state $\mathbf{s}_{k,n+1} \in [0,1]^{N_{s,k}}$ of the k-th channel type is obtained by

$$\boldsymbol{s}_{k,n+1} = H_k\left(V(t_n), \boldsymbol{C}(t_n), t_n\right) \boldsymbol{s}_{k,n}, \quad \text{with} \quad t_n := \sum_{i=0}^n (\Delta t)_i.$$

Solution of the Inverse Problem

• We want to find the best possible match between simulation and measurement current, so we take

$$oldsymbol{N}_{ ext{opt}} = rg\min_{oldsymbol{N} \in \mathbb{N}_{0}^{n}} \int_{T} \left\| I_{ ext{sim},oldsymbol{N}}(t) - I_{ ext{meas}}(t)
ight\|^{2} \, \mathrm{d}t \, ,$$

- Where we optimise over the set \mathbb{N}_0^M (for M different channel types).
- Using some algebra, one can separate the individual models and simulate their current profiles individually.
- This makes the problem soluble much more efficiently (see later).

Runtime Optimisation

The original MatLab implementation ran the entire night, so:

- Improve what we simulate
- Improve how we simulate
- Improve the inverse solution method
- Improve the solver

Quadratic Problem Formulation I

After simulation of the individual channel currents, we want to find

$$N_{\mathrm{opt}} = \operatorname*{arg\,min}_{N \in \mathbb{N}_0^M} \frac{1}{2} \|RN - d\|^2,$$

the number of channels per type, with $d \in \mathbb{R}^{N_t}$ the experimentally measured current and $R \in \mathbb{R}^{N_t \times M}$ the matrix of all currents I_k per channel type. We find

$$oldsymbol{N}_{ ext{opt}} pprox rg \min_{oldsymbol{x} \in \mathbb{R}_{\perp}^{M}} f(oldsymbol{x}) = rg \min_{oldsymbol{x} \in \mathbb{R}_{\perp}^{M}} {}^{1}/{2} \|Roldsymbol{x} - oldsymbol{d}\|^{2} \,.$$

Quadratic Problem Formulation II

We manipulate the cost function $f: \mathbb{R}^M \to \mathbb{R}^+$,

$$f(\boldsymbol{x}) = \frac{1}{2}(R\boldsymbol{x} - \boldsymbol{d})^{T}(R\boldsymbol{x} - \boldsymbol{d})$$

$$= \frac{1}{2}\left(\boldsymbol{x}^{T}R^{T}R\boldsymbol{x} - \boldsymbol{x}^{T}R^{T}\boldsymbol{d} - \boldsymbol{d}^{T}R\boldsymbol{x} + \boldsymbol{d}^{T}\boldsymbol{d}\right)$$

$$= \frac{1}{2}\left(\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{x}^{T}\boldsymbol{q} + \boldsymbol{q}^{T}\boldsymbol{x}\right) + \mathcal{O}(1)$$

$$= \frac{1}{2}\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{q}^{T}\boldsymbol{x} + \mathcal{O}(1)$$

where we let $P := R^T R \in \mathbb{R}^{M \times M}$ and $\mathbf{q} := -R^T \mathbf{d} \in \mathbb{R}^M$ and leave out the constant $\mathbf{d}^T \mathbf{d}$ as $\mathcal{O}(1)$.

Quadratic Problem Formulation III

We can express the nonnegativity constraint $x \geq 0$ as an equality constraint using a slack variable $s \in \mathbb{R}_+^M$,

$$-x + s = 0 \Leftrightarrow Ax + s = b$$
 with $A = -1 \in \mathbb{R}^{M \times M}$ and $b = 0 \in \mathbb{R}^{M}$.

This leaves us with a constrained quadratic program,

$$\begin{split} \min_{\boldsymbol{x} \in \mathbb{R}^M} \ ^1 / 2 \, \boldsymbol{x}^T P \boldsymbol{x} + \boldsymbol{q}^T \boldsymbol{x}, \\ s.t. \ A \boldsymbol{x} + \boldsymbol{s} &= \boldsymbol{b} \,, \ \boldsymbol{s} \in \mathbb{R}^M_+ \,. \end{split}$$

Quadratic Problem Formulation IV

The integer solution can then be obtained from rounding,

$$oldsymbol{N}_{ ext{opt}} = \lfloor oldsymbol{x}
ceil \in \mathbb{N}_0^M$$
 .

One obtains:

$$N_{\text{opt}} = [13, 247, 10, 1176, 38, 7, 24, 188, 15, 10, 234],$$

for the G0 cell cycle phase.

Adaptive Timestepping

In order to accelerate the simulation in areas where there is little change to the dynamics, we choose an adaptive step size $(\Delta t)_n$ based on

$$(\Delta t)_{n+1} = (\Delta t)_n \left(\frac{\Delta^{\text{tol}}}{\sum_{k=1}^M N_k ||\boldsymbol{s}_{k,n+1} - \boldsymbol{s}_{k,n}||} \right)^{1/2},$$

where the heuristic we choose to stay fast while preventing instability of the simulation, is based on the difference in state change (and also dependent on the channel counts $\mathbf{N} \in \mathbb{N}_0^M$).

Runtime Optimisation

Figure: Relative change of the average timestep Δt (in blue), simulation runtime (in violet) and step acceptance rate (in green) when varying the delta tolerance Δ^{tol} .

Optimisation Approaches

Algorithm	Abbreviation	$\mathbf{Runtime} / \mathbf{ms}$	$\mathbf{RMSE} / \mathrm{pA}$
Particle Swarm Optimization	PSO	22571	27.69
Gradient Descent + More Thuente	$^{ m GD}$	18924	32.34
Limited-Memory BFGS + Hager Zhang	LBFGS	4845	32.20
Non-Negative Least Squares [1]	NNLS	318	28.00
Quadratic Program	QP	18	28.13

Table: Comparison of different algorithms for the solution of the inverse problem.

Visualisation Idea and Accessibility

- A complicated setup, hard to understand for non-experts
- Make the simulation accessible by providing it in multiple formats
- Rust linked library, Python (pip) package and visualisation dashboard!
 pip install in-silico-cancer-cell

Visualisation Dashboard

Compilation to WebAssembly

- Rust's compiler can target wasm architectures.
- Not all functionality is supported in a wasm environment, such as timing.
- But of course, numerical code does run and we leverage the compile-time optimisations.
- Communicate the results in-memory and visualise them using frontend libraries.

References I

- [1] Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least squares algorithm. J. Chemom. 11.5 (Sept. 1997), pp. 393-401. ISSN: 0886-9383. DOI: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L.
- 2] Sonja Langthaler, Theresa Rienmüller, Susanne Scheruebel, Brigitte Pelzmann, Niroj Shrestha, Klaus Zorn-Pauly, Wolfgang Schreibmayer, Andrew Koff and Christian Baumgartner. **A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma.** *PLoS Comput. Biol.* 17.6 (June 2021), e1009091. DOI: 10.1371/journal.pcbi.1009091.
- [3] Patch-Clamp Electrophysiology. Apr. 2025. URL: https://www.criver.com/products-services/discovery-services/pharmacology-studies/neuroscience-models-assays/neuroscience-methods-endpoints/electrophysiology/patch-clamp?region=3696 (visited on 29/04/2025).