Michel Alexis

Joint work with Gevorg Mnatsakanyan and Christoph Thiele

University of Bonn

July 5

More precisely:

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^{\infty}$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_{\infty}(x, \Psi) :=$

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

 $\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

Question: Given a function $f:[0,1] \to [-1,1]$, does there exist an infinite phase factor sequence $\Psi = \{\psi_k\}_{k=0}^{\infty}$ for which f(x) is the imaginary part of the upper left entry of $U_{\infty}(x,\Psi)$?

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

Question: Given a function $f:[0,1] \to [-1,1]$, does there exist an infinite phase factor sequence $\Psi = \{\psi_k\}_{k=0}^{\infty}$ for which f(x) is the imaginary part of the upper left entry of $U_{\infty}(x,\Psi)$?

Why should we care? QSP is apparently a very simple and physically intuitive quantum algorithm.

$$\begin{split} U_d(x,\Psi) &:= e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z}\,, \\ \text{where } \theta &= \operatorname{arccos}(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \ Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \end{split}$$

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_dZ}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_dZ},\\ &\text{where }\theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and}\ \ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix} \end{split}$$

$$\begin{split} &U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,, \\ \text{where } \theta = \arccos(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \\ \text{Note } e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix} \end{split}$$

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_d Z}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0 Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_d Z}\,,\\ &\text{where }\theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and }\ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\ \text{and}\\ &e^{i\psi_j Z}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}. \end{split}$$

$$\begin{split} &U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,, \\ &\text{where } \theta = \arccos(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \\ &\text{Note } e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix} \text{ and } \\ &e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}. \ \text{Then} \\ &e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix} \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix} \end{split}$$

$$U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z},$$
 where $\theta = \arccos(x)$, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Consider the truncated product

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_dZ}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_dZ}\,,\\ &\text{where }\theta=\arccos(x),\,X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\text{ and }Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\text{ and }\\ &e^{i\psi_jZ}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}.\text{ Then }\\ &e^{i\theta X}e^{i\psi_jZ}=\begin{pmatrix}poly(x)&poly(x)\sqrt{1-x^2}\\poly(x)\sqrt{1-x^2}&poly(x)\end{pmatrix}\end{split}$$

Mutliplying two such matrices together yields another such matrix. Indeed

$$\begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix}$$

Consider the truncated product

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_d Z}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0 Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_d Z}\,,\\ &\text{where }\theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and }\ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\ \text{and}\\ &e^{i\psi_j Z}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}.\ \text{Then}\\ &e^{i\theta X}e^{i\psi_j Z}=\begin{pmatrix}poly(x)&poly(x)\\poly(x)\sqrt{1-x^2}&poly(x)\end{pmatrix}\end{split}$$

Mutliplying two such matrices together yields another such matrix. Indeed

$$\begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x)\sqrt{1-x^2} \end{pmatrix} = \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} .$$

Consider the truncated product

$$U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,,$$
 where $\theta = \arccos(x)$, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Mutliplying two such matrices together yields another such matrix.

Consider the truncated product

$$U_d(x, \Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z},$$

where
$$\theta = \arccos(x)$$
, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Mutliplying two such matrices together yields another such matrix.

So
$$U_d(x, \Psi) = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$
.

Because the truncated matrices $U_d(x,\Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1]\to[-1,1]$ by polynomials generated in this fashion.

Because the truncated matrices $U_d(x, \Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1] \to [-1,1]$ by polynomials generated in this fashion.

Theorem (A.-Mnatsakanyan-Thiele, 2023)

For each f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, there exists a unique phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$, and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + \tan^2 \psi_{|k|}) = -\frac{2}{\pi} \int_{0}^{1} \log(1 - f(x)^2) \frac{dx}{\sqrt{1 - x^2}}.$$

Because the truncated matrices $U_d(x,\Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1]\to[-1,1]$ by polynomials generated in this fashion.

Theorem (A.-Mnatsakanyan-Thiele, 2023)

For each f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, there exists a unique phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$, and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + \tan^2 \psi_{|k|}) = -\frac{2}{\pi} \int_{0}^{1} \log(1 - f(x)^2) \frac{dx}{\sqrt{1 - x^2}}.$$

The key idea here is to use nonlinear Fourier analysis!

Given
$$f(z) = \sum_{k} c_k z^k$$
 define its reflection $f^*(z) := \sum_{k} \overline{c_{-k}} z^k$.

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$. f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ .

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$. f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ .

Need two subspaces of $L^2(\mathbb{T})$ of functions f(z) with Fourier series $\sum_k c_k z^k$.

Given
$$f(z) = \sum\limits_k c_k z^k$$
 define its reflection $f^*(z) := \sum\limits_k \overline{c_{-k}} z^k$. f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ . Need two subspaces of $L^2(\mathbb T)$ of functions $f(z)$ with Fourier series $\sum\limits_k c_k z^k$.

Given
$$f(z) = \sum_{k} c_k z^k$$
 define its reflection $f^*(z) := \sum_{k} \overline{c_{-k}} z^k$.

$$H^2(\mathbb{D})$$

$$H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$$

Given
$$f(z) = \sum_k c_k z^k$$
 define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$.

$$H^2(\mathbb{D})$$
 $H^2(\mathbb{D}^*):=H^2(\mathbb{D})^*$ $f(z)=\sum\limits_{k\geqslant 0}c_kz^k$ analytic on \mathbb{D}

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$.

$H^2(\mathbb{D})$	$H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$
$f(z) = \sum_{k\geqslant 0} c_k z^k$ analytic on $\mathbb D$	$f(z) = \sum_{k \leqslant 0} c_k z^k$ analytic on \mathbb{D}^*

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$.

$H^2(\mathbb{D})$	$H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$
$f(z)=\sum_{k\geqslant 0}c_kz^k$ analytic on $\mathbb D$ $f(0)=\int\limits_{-\pi}^{\pi}frac{d heta}{2\pi}=c_0$	$f(z) = \sum\limits_{k \leqslant 0} c_k z^k$ analytic on \mathbb{D}^*

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$.

$H^2(\mathbb{D})$	$H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$
$f(z) = \sum_{k\geqslant 0} c_k z^k$ analytic on $\mathbb D$ $f(0) = \int\limits_{-\pi}^{\pi} f rac{d heta}{2\pi} = c_0$	$f(z) = \sum_{k \leqslant 0} c_k z^k$ analytic on \mathbb{D}^* $f(\infty) = c_0$

Given $f(z) = \sum_k c_k z^k$ define its reflection $f^*(z) := \sum_k \overline{c_{-k}} z^k$.

	k
$H^2(\mathbb{D})$	$H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$
$f(z) = \sum_{k \geqslant 0} c_k z^k$ analytic on \mathbb{D} $f(0) = \int_{-\pi}^{\pi} f \frac{d\theta}{2\pi} = c_0$	$f(z) = \sum_{k \leqslant 0} c_k z^k$ analytic on \mathbb{D}^* $f(\infty) = c_0$
Have projection $P_{\mathbb{D}}:L^2(\mathbb{T})\to H^2(\mathbb{D})$	

Given $f(z) = \sum_{k} c_k z^k$ define its reflection $f^*(z) := \sum_{k} \overline{c_{-k}} z^k$.

$$H^2(\mathbb{D}) \qquad \qquad H^2(\mathbb{D}^*) := H^2(\mathbb{D})^*$$

$$f(z) = \sum_{k \geqslant 0} c_k z^k \text{ analytic on } \mathbb{D} \qquad f(z) = \sum_{k \leqslant 0} c_k z^k \text{ analytic on } \mathbb{D}^*$$

$$f(0) = \int_{-\pi}^{\pi} f \frac{d\theta}{2\pi} = c_0 \qquad f(\infty) = c_0$$
Have projection $P_{\mathbb{D}} : L^2(\mathbb{T}) \to H^2(\mathbb{D})$

$$P_{\mathbb{D}^*} : L^2(\mathbb{T}) \to H^2(\mathbb{D}^*)$$

The SU(2)-nonlinear Fourier transform (NLFT)

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform :

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto$

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform $: (F_k)_k \mapsto \operatorname{Laurent\ series\ } \sum_k F_k z^k$ nonlinear Fourier transform $: (F_k)_k \mapsto \operatorname{a\ matrix\ of\ Laurent\ series\ }$ The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^j & F_jz^j \\ -\overline{F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as j increases.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform $: (F_k)_k \mapsto \operatorname{Laurent\ series\ } \sum_k F_k z^k$ nonlinear Fourier transform $: (F_k)_k \mapsto \operatorname{a\ matrix\ of\ Laurent\ series\ }$ The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^j & F_jz^j \\ -\overline{F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as j increases. Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform $: (F_k)_k \mapsto \operatorname{Laurent\ series\ } \sum_k F_k z^k$ nonlinear Fourier transform $: (F_k)_k \mapsto \operatorname{a\ matrix\ of\ Laurent\ series\ }$ The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^j & F_jz^j \\ -\frac{1}{F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as j increases. Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

We abbreviate this SU(2) matrix as the pair (a, b).

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform $: (F_k)_k \mapsto \operatorname{Laurent\ series\ } \sum_k F_k z^k$ nonlinear Fourier transform $: (F_k)_k \mapsto \operatorname{a\ matrix\ of\ Laurent\ series\ }$ The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^j & F_jz^j \\ -\frac{1}{F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as j increases.

Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

We abbreviate this SU(2) matrix as the pair (a, b).

Note the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} = \left(\prod_j (1 + |F_j|^2)^{-\frac{1}{2}} \right) \prod_j \begin{pmatrix} \frac{1}{-\overline{F_j}} z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \frac{1}{-\overline{F_{j}}}z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$
$$= \sum_{n \geq 0} \sum_{i \in \mathcal{C}} \left(\frac{0}{-\overline{F_{j_1}}} z^{-j_1} & 0 \right) \cdots \left(\frac{0}{-\overline{F_{j_n}}} z^{-j_n} & 0 \right).$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \dots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & F_{j_1} z^{j_1} \\ -\overline{F_{j_1}} z^{-j_1} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_n} z^{j_n} \\ -\overline{F_{j_n}} z^{-j_n} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_n} z^{j_n} \\ -\overline{F_{j_n}} z^{-j_n} & 0 \end{pmatrix}$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} n = 1: & \sum_j \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \\ n = 3: \qquad \qquad \qquad n \text{ odd } : \qquad n \text{ odd } : \qquad \qquad n \text{ odd } : \qquad n \text{$$

We do an informal computation, assuming F is "small."

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & 0 \right) \cdots \left(-\frac{0}{F_{j_n}} z^{-j_n} & 0 \right) \cdot \cdots \left(-\frac{0}{F_{j_n}} z$$

n = 0:

n = 2: n = 2: a = 2

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geq 0} \sum_{j_1 < \dots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & 0 \right) \dots \left(-\frac{0}{F_{j_n}} z^{-j_n} & 0 \right) \dots \left(-\frac{0}{F_{j_n}} z^{-j_n} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & n = 1: \qquad \begin{pmatrix} 0 & \sum_j F_j z^j \\ -\sum_j \overline{F_j} z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_1 < j_2} \begin{pmatrix} -F_{j_1} \overline{F_{j_2}} z^{j_1 - j_2} & 0 \\ 0 & -\overline{F_{j_1}} F_{j_2} z^{j_2 - j_1} \end{pmatrix} & n = 3:$$

$$n \text{ even :}$$

$$a = 0: \qquad n \text{ odd :}$$

$$b = 0: \qquad n \text{ odd :}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & F_{j_1} z^{j_1} \\ -\overline{F_{j_1}} z^{-j_1} & 0 \end{pmatrix} \cdot \ldots \left(-\frac{0}{F_{j_n}} z^{-j_n} & 0 \end{pmatrix} \cdot \ldots$$

$$n = 0 : \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1 : \qquad \begin{pmatrix} 0 & \sum_j F_j z^j \\ -\sum_j \overline{F_j} z^{-j} & 0 \end{pmatrix}$$

$$n = 2 : \qquad \sum_{j_1 < j_2} \begin{pmatrix} O(F)^2 & 0 \\ 0 & O(F)^2 \end{pmatrix} \qquad \qquad n = 3 :$$

$$n \text{ even :}$$

$$a = \qquad \qquad n \text{ odd :}$$

$$b = \qquad \qquad n \text{ odd :}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{J} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \left(-\frac{0}{F_{j_{1}}}z^{-j_{1}} & 0 \right) \dots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) \dots$$

$$= 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{vmatrix} n = 1: & \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix} \\ n = 2: & \sum_{j_{1} < j_{2}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \begin{pmatrix} n = 3: & \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \begin{pmatrix} 0 & F_{j_{3}}z^{j_{3}} \\ -\overline{F_{j_{3}}}z^{-j_{3}} & 0 \end{pmatrix} \\ n \text{ odd}: \\ n \text{ odd}: \\ n \text{ odd}: \\ n \text{ odd}:$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \left(-\frac{0}{-\overline{F_{j_{1}}}}z^{-j_{1}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \binom{O(F)^{2}}{0} & O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \binom{0}{O(F)^{3}} & O(F)^{3} \end{pmatrix}$$

$$n \text{ odd } :$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{J} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 & F_{j_{n}}z^{-j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} 0 &$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{J} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} 0 & O(F)^{3} \\ O(F)^{3} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{3} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{J} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1}$$

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials a, b

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

Note that the NLFT plays well with truncations of sequences,

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials a, b

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then

$$(a,b) = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-\overline{F_j}} z^{-j} & 1 \end{pmatrix}$$

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then

$$(a,b) = \prod_{j=-\infty}^{-1} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j z^{-j}} & F_j z^j \\ -\overline{F_j} z^{-j} & 1 \end{pmatrix} \prod_{j=0}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j z^{-j}} & F_j z^j \\ -\overline{F_j} z^{-j} & 1 \end{pmatrix}$$

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials a, b

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then $(a,b)=(a_-,b_-)(a_+,b_+)$.

The Laurent series a and b

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then $(a,b)=(a_-,b_-)(a_+,b_+)$.

By mulitilinear expansion, we also have the formula $a^*(0)=rac{1}{\prod\limits_j(1+|F_j|^2)^{rac{1}{2}}}.$

7 / 13

The Laurent series a and b

A more careful multilinear expansion shows that the support of F dictates the Fourier support of Laurent polynomials $a,\ b$

Note that the NLFT plays well with truncations of sequences, e.g., if (a_-,b_-) and (a_+,b_+) are the NLFTs of $(F_j\mathbf{1}_{j<0})_j$ and $(F_j\mathbf{1}_{j\geqslant0})_j$, then $(a,b)=(a_-,b_-)(a_+,b_+)$.

By mulitilinear expansion, we also have the formula $a^*(0)=rac{1}{\prod\limits_j(1+|F_j|^2)^{rac{1}{2}}}.$

Thus $a^*(0) = a_-^*(0)a_+^*(0)$.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in \mathbb{D} .

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in \mathbb{D} . This is known as nonlinear Plancherel.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which $a^*(0)>0$.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above and b has vanishing constant Fourier coeff.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above and b has vanishing constant Fourier coeff.

Given a sequence $F \in \ell^2(\mathbb{Z})$, define its NLFT by

$$(a,b) := (a_-,b_-)(a_+,b_+)$$

where (a_-, b_-) is the NLFT of $(F_k \mathbf{1}_{k<0})_{k\in\mathbb{Z}}$, and (a_+, b_+) is the NLFT of $(F_k \mathbf{1}_{k>0})_{k\in\mathbb{Z}}$.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above and b has vanishing constant Fourier coeff.

Given a sequence $F \in \ell^2(\mathbb{Z})$, define its NLFT by

$$(a,b) := (a_-,b_-)(a_+,b_+)$$

where (a_-,b_-) is the NLFT of $(F_k\mathbf{1}_{k<0})_{k\in\mathbb{Z}}$, and (a_+,b_+) is the NLFT of $(F_k\mathbf{1}_{k\geqslant 0})_{k\in\mathbb{Z}}$. Unknown whether the NLFT is injective on $\ell^2(\mathbb{Z})$ however, and

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable.

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable. Namely, set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$.

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable. Namely, set $z=e^{2i\theta}$ where $\theta=\arccos(x)$, and define an even sequence F by $F_k:=i\tan\psi_{|k|}$. Then for the matrix $M=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable. Namely, set $z=e^{2i\theta}$ where $\theta=\arccos(x)$, and define an even sequence F by $F_k:=i\tan\psi_{|k|}$. Then for the matrix $M=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d, b_d) is the NLFT of the truncated sequence $(F_k \mathbf{1}_{-d \leqslant k \leqslant d})_k$.

Initial problem: given f with $||f||_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x, \Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable. Namely, set $z=e^{2i\theta}$ where $\theta=\arccos(x)$, and define an even sequence F by $F_k:=i\tan\psi_{|k|}$. Then for the matrix $M=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d, b_d) is the NLFT of the truncated sequence $(F_k \mathbf{1}_{-d \leqslant k \leqslant d})_k$. In particular, one gets $-ib_d(z)$ equals the imaginary part of of the upper left entry of $U_d(x, \Psi)$.

Initial problem: given f with $\|f\|_{\infty} < \frac{1}{\sqrt{2}}$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

First step: do a change of variable. Namely, set $z=e^{2i\theta}$ where $\theta=\arccos(x)$, and define an even sequence F by $F_k:=i\tan\psi_{|k|}$. Then for the matrix $M=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d, b_d) is the NLFT of the truncated sequence $(F_k \mathbf{1}_{-d \leqslant k \leqslant d})_k$. In particular, one gets $-ib_d(z)$ equals the imaginary part of of the upper left entry of $U_d(x, \Psi)$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) satisfy $b_d \to b$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a satisfying $|a|^2 + |b|^2 = 1$ that we want.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a satisfying $|a|^2 + |b|^2 = 1$ that we want. Let's choose a as nice as possible:

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a satisfying $|a|^2 + |b|^2 = 1$ that we want. Let's choose a as nice as possible: let's choose a so that a^* and $\frac{1}{a^*}$ are holomorphic on \mathbb{D} ,

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a satisfying $|a|^2 + |b|^2 = 1$ that we want. Let's choose a as nice as possible: let's choose a so that a^* and $\frac{1}{a^*}$ are holomorphic on \mathbb{D} , for instance we can choose a^* to be outer,

$$a^*(z) := \exp\left(\int\limits_{-\pi}^{\pi} rac{\mathrm{e}^{i\eta} + z}{\mathrm{e}^{i\eta} - z} \log \sqrt{1 - |b(\mathrm{e}^{i\eta})|^2} rac{d\eta}{2\pi}
ight).$$

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} < \frac{1}{\sqrt{2}}$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a satisfying $|a|^2+|b|^2=1$ that we want. Let's choose a as nice as possible: let's choose a so that a^* and $\frac{1}{a^*}$ are holomorphic on $\mathbb D$, for instance we can choose a^* to be outer,

$$a^*(z) := \exp\left(\int\limits_{-\pi}^{\pi} rac{\mathrm{e}^{i\eta} + z}{\mathrm{e}^{i\eta} - z} \log \sqrt{1 - |b(\mathrm{e}^{i\eta})|^2} rac{d\eta}{2\pi}
ight).$$

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that a^* outer, $\|b\|_\infty < \frac{1}{\sqrt{2}}$, and b "has symmetry", find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) converge to (a,b).

|ロト 4 個 ト 4 差 ト 4 差 ト | 差 | 夕 Q で

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that a^* outer, $\|b\|_\infty < \frac{1}{\sqrt{2}}$, and b "has symmetry", find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) converge to (a,b). "Solution:"

• (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) .

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1}$

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1} = (a, b)(a_+^*, -b_+)$.
- So $a_- = a_+^* a + b b_+^*$ and $b_- = -b_+ a + a_+ b$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_-}{a} = a_+^* + \frac{b}{a}b_+^*$ and $b_- = -b_+a + a_+b$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_{-}}{a} = a_{+}^{*} + \frac{b}{a}b_{+}^{*}$ and $\frac{b_{-}}{a} = -b_{+} + a_{+}\frac{b}{a}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_{-}^*}{a_{-}^*} = a_{+} + \frac{b_{-}^*}{a_{-}^*} b_{+} \text{ and } \frac{b_{-}}{a} = b_{+} + a_{+} \frac{b}{a}.$

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_-^*}{a^*} = a_+ + \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_-^*}{a^*} = a_+ + \frac{b^*}{a^*}b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$. So acting on the first equation by $P_{\mathbb{D}^*}$ should give the left side is $\frac{a_-^*(0)}{a^*(0)} =$

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_-^*}{a^*} = a_+ + \frac{b^*}{a^*}b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$. So acting on the first equation by $P_{\mathbb{D}^*}$ should give the left side is $\frac{a_-^*(0)}{a^*(0)} = \frac{a_-^*(0)}{a_-^*(0)a_+^*(0)}$

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{a_{-}^{*}}{a^{*}} = a_{+} + \frac{b^{*}}{a^{*}}b_{+}$ and $\frac{b_{-}}{a} = -b_{+} + a_{+}\frac{b}{a}$. Because $1/a^{*}$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0, \infty)$. So acting on the first equation by $P_{\mathbb{D}^{*}}$ should give the left side is $\frac{a_{-}^{*}(0)}{a^{*}(0)} = \frac{a_{-}^{*}(0)}{a_{-}^{*}(0)a_{+}^{*}(0)} = \frac{1}{a_{-}^{*}(0)}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $P_{\mathbb{D}^*} \frac{a_-^*}{a^*} = P_{\mathbb{D}^*} a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$. So acting on the first equation by $P_{\mathbb{D}^*}$ should give the left side is $\frac{a_-^*(0)}{a^*(0)} = \frac{a_-^*(0)}{a_-^*(0)a_+^*(0)} = \frac{1}{a_+^*(0)}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1} = (a, b)(a_+^*, -b_+)$.
- So $\frac{1}{a_+^*(0)} = P_{\mathbb{D}^*} a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$. So acting on the first equation by $P_{\mathbb{D}^*}$ should give the left side is $\frac{a_-^*(0)}{a^*(0)} = \frac{a_-^*(0)}{a^*(0)a_+^*(0)} = \frac{1}{a_-^*(0)}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1} = (a, b)(a_+^*, -b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Because $1/a^*$ is holomorphic, so is the left side of the first equation, i.e., has Fourier support on $[0,\infty)$. So acting on the first equation by $P_{\mathbb{D}^*}$ should give the left side is $\frac{a_-^*(0)}{a^*(0)} = \frac{a_-^*(0)}{a^*(0)a_+^*(0)} = \frac{1}{a_-^*(0)}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{\dot{b}}{a}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{\dot{b}}{a}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty, 0]$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_*^+(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty, 0]$. When multiplied by b_- , which has Fourier support on $(-\infty, -1]$, the product has Fourier support on $(-\infty, -1]$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_*^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $\frac{b_-}{a} = -b_+ + a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty,0]$. When multiplied by b_- , which has Fourier support on $(-\infty,-1]$, the product has Fourier support on $(-\infty,-1]$. Thus acting on the second equation by $P_{\mathbb{D}}$ gives a left side of 0.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $P_{\mathbb{D}} \frac{b_-}{a} = -P_{\mathbb{D}} b_+ + P_{\mathbb{D}} a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty,0]$. When multiplied by b_- , which has Fourier support on $(-\infty,-1]$, the product has Fourier support on $(-\infty,-1]$. Thus acting on the second equation by $P_{\mathbb{D}}$ gives a left side of 0.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $0 = -P_{\mathbb{D}} b_+ + P_{\mathbb{D}} a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty,0]$. When multiplied by b_- , which has Fourier support on $(-\infty,-1]$, the product has Fourier support on $(-\infty,-1]$. Thus acting on the second equation by $P_{\mathbb{D}}$ gives a left side of 0.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $0 = -b_+ + P_{\mathbb{D}} a_+ \frac{b}{a}$. Again because 1/a is antiholomorphic, it has Fourier support on $(-\infty,0]$. When multiplied by b_- , which has Fourier support on $(-\infty,-1]$, the product has Fourier support on $(-\infty,-1]$. Thus acting on the second equation by $P_{\mathbb{D}}$ gives a left side of 0.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_+^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $0 = -b_+ + P_{\mathbb{D}} a_+ \frac{b}{a}$.

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+,b_+) . Indeed, once we have (a_+,b_+) , we compute $(a_-,b_-)=(a,b)(a_+,b_+)^{-1}=(a,b)(a_+^*,-b_+)$.
- So $\frac{1}{a_{+}^{*}(0)} = a_{+} + P_{\mathbb{D}^{*}} \frac{b^{*}}{a^{*}} b_{+}$ and $0 = -b_{+} + P_{\mathbb{D}} a_{+} \frac{b}{a}$.
- So a necessary condition for (a_+, b_+) is that the vector $(A, B) := a_+^*(0)(a_+, b_+)$ satisfies

- (a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-, b_-) is the NLFT of the left half of F, while (a_+, b_+) is the NLFT of the right half.
- To recover F, suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1} = (a, b)(a_+^*, -b_+)$.
- So $\frac{1}{a_*^*(0)} = a_+ + P_{\mathbb{D}^*} \frac{b^*}{a^*} b_+$ and $0 = -b_+ + P_{\mathbb{D}} a_+ \frac{b}{a}$.
- So a necessary condition for (a_+, b_+) is that the vector $(A, B) := a_{\perp}^{*}(0)(a_{\perp}, b_{\perp})$ satisfies

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

But
$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + M.$$

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

But
$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + M.$$

By the determinant identity $|a|^2+|b|^2=1$ on $\mathbb T$ and the assumption $\|b\|_{\infty}<\frac{1}{\sqrt{2}}$, we get $\|\frac{b}{a}\|_{\infty}<1$.

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

But
$$\begin{pmatrix} 1 & P_{\mathbb{D}}*\frac{b^*}{a^*} \\ -P_{\mathbb{D}}\frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}}*\frac{b^*}{a^*} \\ -P_{\mathbb{D}}\frac{b}{a} & 0 \end{pmatrix} =: I + M.$$

By the determinant identity $|a|^2 + |b|^2 = 1$ on \mathbb{T} and the assumption $||b||_{\infty} < \frac{1}{\sqrt{2}}$, we get $||\frac{b}{a}||_{\infty} < 1$.

So have the operator norm estimate $\|M\| \leq \|\frac{b}{a}\|_{\infty} < 1$ (viewing M as an operator on $H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$).

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

But
$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + M.$$

By the determinant identity $|a|^2 + |b|^2 = 1$ on \mathbb{T} and the assumption $||b||_{\infty} < \frac{1}{\sqrt{2}}$, we get $||\frac{b}{a}||_{\infty} < 1$.

So have the operator norm estimate $\|M\| \leq \|\frac{b}{a}\|_{\infty} < 1$ (viewing M as an operator on $H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$).

Thus by geometric sum, we have $(I + M)^{-1} = \sum_{k=0}^{\infty} (-M)^k$ on

$$H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$$
. So $\binom{A}{B} = \sum\limits_{k=0}^{\infty} (-M)^k \binom{1}{0}$.

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

$$\begin{pmatrix} 1 & P_{\mathbb{D}*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; ,$$

then this will basically give us (a_+, b_+) and show that (a, b) is an NLFT.

But
$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + M.$$

By the determinant identity $|a|^2 + |b|^2 = 1$ on \mathbb{T} and the assumption $||b||_{\infty} < \frac{1}{\sqrt{2}}$, we get $||\frac{b}{a}||_{\infty} < 1$.

So have the operator norm estimate $\|M\| \leq \|\frac{b}{a}\|_{\infty} < 1$ (viewing M as an operator on $H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$).

Thus by geometric sum, we have $(I + M)^{-1} = \sum_{k=0}^{\infty} (-M)^k$ on

$$H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$$
. So $\binom{A}{B} = \sum\limits_{k=0}^{\infty} (-M)^k \binom{1}{0}$.

Thank you for Listening!