Assignment on Binary Exponentiation, Dynamic Programming, and Hashing

1.

a. From left to right the rules are (Levin): $(b - 1) \le M(n) \le 2(b - 1)$,

binary digits of n	1	1	0	1
product accumulator	а	$a^2 \cdot a = a^3$	$(a^3)^2 = a^6$	$(a^6)^2 \cdot a = a^{13}$

Where the initial digit doesn't perform any action....

product ← product * product

If b_i =1 product ←product *a. (Levin)

Therefore,

For a¹¹, a¹², a¹³, and a¹⁴

1011, 1100, 1101, 1110 -> 4, 3, 4, 4.

From right to left the rule is:

for $i \leftarrow 1$ **to** l **do** term \leftarrow term * term **if** b_i = 1 product \leftarrow product * term

1011, 1100, 1101, 1110 -> 5, 5, 5, 6. Since we need to always square on each step

b. 3¹³ 3. $3^2 = 9 * 3 = 27$. **27*27** = 729. **729* 729** = **531441 * 3** = 1594323 Bolded calculator multiplications

c. 3^{13} 3. 3^{2} = 9. 9^{2} = 81 * 3 = 243. **81** * **81** = **6561** * **243** = 1594323

2.

- **b.** The function computes the value of the nth fibonacci number, so it's best to just pass only the nth number and have the helper function manage the memory required for computation.
- **c.** Arr holds the value of each number in the fibonacci sequence, initialized at 0 and populated recursively with dynamic programming.

- **d.** If it were valid c syntax, this assignment/declaration would only initialize the first element.
- e. When each level on the recursive stack is returned back to and ready for computation, rather than recomputing a whole stack down to the base case, the result of the dependency calls have already had their results stored at their place which means at fibArr[n] we can just grab the operands n-1 and n-2 as stored values.
- **f.** This is the return when we reach the deepest recursive call base case when fibArr[2] is assigned n-1 + n-2 which are fibArr[1] and fibArr[0] respectively. Since these terminate the recursion with the values 1 + 1, We can begin returning back up the call stack.

3.

- **b.** Although the program exits at 17!, the largest factorial that can be computed is 12!. We recognize this by seeing that 13! does not end in right-most zero where 13 > 12, where 12 ends in a 0.
- **b.** With the change to a long, the program can accurately calculate factorials up to 20!

4.

b.

Once your functions work properly, add code to determine the timing of each of these approaches. Write a brief commentary to indicate the extent to which the table in the second approach increases efficiency.

From your work in Problem 3, you know values of n for which the computation of n! fails, so the expression n! / [k! (n-k)!] fails. Determine what, if any, larger values of C(n, k) can be computed with your current program.

30	8	5852925	0.025302	5852925	0.000001
30	9	14307150	0.060695	14307150	0.000001
30	10	30045015	0.127857	30045015	0.000003
30	11	54627300	0.234457	54627300	0.000001
30	12	86493225	0.365998	86493225	0.000002
30	13	119759850	0.506745	119759850	0.000002
30	14	145422675	0.619171	145422675	0.000002
30	15	155117520	0.662985	155117520	0.000002
30	16	145422675	0.624676	145422675	0.000002
30	17	119759850	0.546148	119759850	0.000003
30	18	86493225	0.403539	86493225	0.000002
30	19	54627300	0.244003	54627300	0.000003
30	20	30045015	0.132023	30045015	0.000002
30	21	14307150	0.063616	14307150	0.000004
30	22	5852925	0.026255	5852925	0.000003
30	23	2035800	0.009162	2035800	0.000002

Execution times for n = 30 and k = 8-23 shown. On the right side the Dynamic Programming approach shows that we are able to reduce the computational runtime to only operate using the preceding array row of existing values, which means the addition operations should be constant and linearly increasing as the number of coefficients

- increases for iterating over (n,k). It should resemble Pascal's Triangle, utilizing sums of previous values to compute n and k where k = n/2 requires the most coefficient terms.
- c. Because the coefficients are summed together to represent a factorial, we don't need to directly store n!, before dividing by k!(n!-k)!. Instead the result is computed by the summation of intermediary values, which themselves have to be stored, and spread out across more sub functions. The center of the set of coefficients if visualized through Pascal's Triangle would be where the overflow occurs.

66	44	0	0.000001	182183167981760400	0.000015
66	45	0	0.000000	89067326568860640	0.000014
67	25	0	0.000001	1673497616379701112	0.000011
67	26	0	0.000001	2703342303382594104	0.000010
67	27	0	0.000001	4105075349580976232	0.000012
67	28	0	0.000000	5864393356544251760	0.000011
67	29	0	0.000002	7886597962249166160	0.000012
67	30	0	0.000000	-8457053321527274480	0.000011
67	31	0	0.000001	-6523564788846833744	0.000011

The first negative value computed representing overflow occurs at C(67,30), where we expect C(67,33) C(67,34) to represent the center of the triangle - signifying that 66 may be the highest n value supported.

0	SL		
1			
2			
3	UQ		
4	QR		
5	GD		
6	QS		
7	DT		
8	MR		
9			
10	WZ		
11	NW		
12	CY		
13	EM		
14	NZ		
15	AX		

MR		
UQ		
QR		
QD		
QS		
DT		
CY		
WZ		
NW		
NZ		
EM		
SL		
AX		

0	⇒	
1	⇒	
2	⇒	
3	⇒	UQ
4	⇒	GR, GD, MR
5	⇒	
6	⇒	QS
7	⇒	DT
8	⇒	
9	⇒	
10	⇒	WZ, CY
11	⇒	NW,NZ
12	⇒	
13	⇒	EM
14	⇒	
15	⇒	AX, SL
	-	