Министерство РФ по связи и информатизации Санкт-Петербургский Государственный Университет телекоммуникаций имени проф. Бонч-Бруевича

Курсовая работа

Тема: Расчет основных характеристик системы передачи сообщений

Вариант: №21

Выполнил: , гр. Р-23

Проверил: Чесноков М.Н.

Оглавление

Задание на курсовую работу	3
Расчет источника сообщений	
Расчет АЦП	7
Расчет кодера.	
Расчет модулятора.	
Выражение для модулируемого ЧМ сигнала запишем так	
Непрерывный канал.	13
Расчет демодулятора	
Анализ декодера.	
Расчет ЦАП.	
Список литературы	

Задание на курсовую работу

Рассчитать основные характеристики системы передачи сообщений, включающий в себя источник сообщений, дискретизатор, кодирующее устройство (кодер), модулятор, канал связи, демодулятор, декодер и фильтр-восстановитель.

Структурная схема системы связи имеет вид:

Таблица 1 Вариант задания

таолица т вариант задания									
$N_{\overline{0}}$	Уровень	Уровень	Верхняя	№	Вид	Энергетический	Способ		
варианта	a _{min} , B	a _{max} , B	частота	уровня	модуляции	спектр помехи	приема		
			$f_{B,}$ Гц	j		N_0 , B^2/Γ ц	ļ		
21	0	+6,4	10^{3}	54/59	ЧМ	3,73*10 ⁻⁶	1/2		

Расчет источника сообщений

Источник выдает сообщение a(t), представляющее собой непрерывный стационарный процесс, мгновенные значения которого в интервале от a_{min} до a_{max} равновероятны, а основная доля мощности сосредоточена в полосе частот от 0 до F_B.

Требуется:

- 1. Записать функцию распределения $F_a(x)$ мгновенных значений сообщения a(t), плотность распределения w_a(x) и построить графические изображения.
- 2. Рассчитать математическое ожидание $M\{a(t)\}$ и дисперсию $D\{a(t)\}$ сообщения.
- 3. Рассчитать постоянную составляющую a(t) и мощность P_a переменной составляющей сообщения. Начертить график для спектральной плотности средней мощности сообщения – энергетический спектр G_a(f)
- 4. Рассчитать дифференциальную энтропию h(A) сообщения.

Любой непрерывный случайный процесс описывается двумя функциями – функцией распределения F(x) и плотностью распределения wa(x), связанными следующим соотношением.

$$F(x,t) = \int_{-\infty}^{x} \omega(x,t) dx$$

Для расчета имеем случайный процесс – непрерывный во времени сигнал, мощность которого сосредоточена во всем диапазоне частот от 0 до F_в. Мгновенные значения сигнала равновероятны в интервале от a_{min} до a_{max}. Таким образом, рассматриваемый случайный процесс является квазибелым шумом.

Поскольку его мгновенные значения равновероятны в интервале от a_{min} до a_{max} шириной $\Delta = a_{min}$ - a_{max} , то плотность вероятности имеет вид (это легко доказать из условия нормировки плотности распределения)

$$\omega_{\mathbf{a}}(\mathbf{x}) = \begin{cases} 0 & \text{, } \mathbf{x} < \mathbf{a}_{\min} \\ \frac{1}{\Delta} & \text{, } \mathbf{a}_{\min} \leq \mathbf{x} \leq \mathbf{a}_{\max} \\ 0 & \text{, } \mathbf{x} > \mathbf{a}_{\max} \end{cases}$$

после подстановки
$$\varpi_{\mathbf{a}}(\mathbf{x}) = \begin{cases} 0 & \text{, } \mathbf{x} < \mathbf{a}_{\min} \\ \frac{1}{6A} & \text{, } \mathbf{a}_{\min} \leqslant \mathbf{x} \leqslant \mathbf{a}_{\max} \\ 0 & \text{, } \mathbf{x} \geq \mathbf{a}_{\max} \end{cases}$$

$$\int_{-\infty}^{\infty} W_a(x) dx = 1 \qquad \qquad \int_{a \min}^{\infty} W_a(x) dx = 1 \qquad \qquad W(a) \cdot (a \max - a \min) = 1$$

$$\int_{-\infty}^{\infty} W_a(x)dx = 1$$

$$\int_{-\infty}^{a \max} W(a) \cdot (a_{\max} - a_{\min}) = 1$$

$$\lim_{a \min} W(a) \cdot (a_{\max} - a_{\min}) = 1$$

рис. 1.1

Функция распределения будет иметь тогда такой вид

$$F_{a}(x) = \begin{cases} 0 & \text{, } x < a_{min} \\ \frac{x - a_{min}}{\Delta} & \text{, } a_{min} \le x \le a_{max} \\ 1 & \text{, } x > a_{max} \end{cases}$$

График $F_a(x)$ представлен на рисунке 1.2.

рис. 1.2

Математическое ожидание и дисперсию найдем по формулам.

$$M\{x\} = \int_{a \min}^{a \max} x \times \varpi(x) dx = \frac{a \max - a \min}{2} = \frac{6.4 - 0}{2} = 3.2\hat{A}$$

$$D\{x\} = \int_{a \min}^{a \max} (x - M\{x\})^2 \times \varpi(x) dx = \frac{1}{6.4} \int (x^2 - 6.4x + 10.24) dx = \frac{1}{6.4} (\frac{x^3}{3} - \frac{6.4x^2}{2} + 10.24x) = 3.27\hat{A}^2$$

Отметим, что рассматриваемый случайный процесс является эргодическим усреднение какой-либо одной его реализации равно усреднению ансамбля (множества) реализаций. Для эргодического процесса математическое ожидание характеризует постоянную составляющую, а дисперсия - мощность переменной составляющей. Спектральная плотность средней мощности имеет равномерное распределение в интервале частот от 0 до F_B величиной N_a . Тогда

$$\widetilde{a}(t)=3.2~\mathrm{B}$$
 - постоянная составляющая сигнала источника $\mathrm{Pa}=\mathrm{D}\{a(t)\}=3.27~\mathrm{B}^2$ - мощность переменной составляющей сигнала $\mathrm{Na}=\frac{\mathrm{Pa}}{\mathrm{F}_\mathrm{B}}=3.27\cdot10^{-3}~\frac{\mathrm{B}^2}{\mathrm{\Gamma}_\mathrm{U}}$ - величина односторонней спектральной плотности средней мощности Функция односторонней спектральной плотности средней мощности будет имет

Функция односторонней спектральной плотности средней мощности будет иметь вид

$$G_{\mathbf{a}}(\mathtt{x}) = \left\{ \begin{array}{ll} 0 & \text{, } f < 0 \\ \\ \text{Na , } 0 \leqslant f \leqslant \mathtt{FB} \end{array} \right. \quad \text{после подстановки} \quad G_{\mathbf{a}}(\mathtt{x}) = \left\{ \begin{array}{ll} 0 & \text{, } f < 0 \\ \\ 3.27 \cdot 10^{-3} \; \frac{B^2}{\Gamma_{\mathrm{H}}} \; , 0 \leqslant f \leqslant \mathtt{FB} \\ \\ 0 & \text{, } f > \mathtt{FB} \end{array} \right.$$

График односторонней спектральной плотности средней мощности представлен на рисунке 1.3.

Определим дифференциальную энтропию сигнала – источника сообщений

$$h(A) = M\{\log_2 \frac{1}{\varpi(x)}\} = \int_{a \min}^{a \max} \varpi(x) \log_2 \frac{1}{\varpi(x)} dx = \frac{1}{\Delta} \log_2 \Delta = 2.68$$

Расчет АЦП.

1. Дискретизация по времени (получение отсчетов) с шагом (интервалом) квантования Δt , определяемым по теореме Котельникова из условия

$$\Delta t = \frac{1}{2Fe} = \frac{1}{2 \cdot 10^3} = 0.5 \cdot 10^{-3} c$$

2. Дискретизация по состояниям (уровням) или квантование с шагом Δa =0.1 В. Число уровней квантования определим по формуле

$$L = \frac{\Delta}{\Delta a} = \frac{6.4B}{0.1B} = 64$$

ј-й уровень квантования будем обозначать ај.

Определим далее относительную мощность шума квантования. Поскольку этот шум имеет нормальный закон распределения $W(\xi)$ в интервале от ај- $\Delta a/2 \le \xi \le aj + \Delta a/2$ (т.к.

мгновенные значения равновероятны), то $P_{u\kappa} = \int\limits_{-\Delta a}^{\frac{\Delta u}{2}} \xi^2 \cdot W(\xi) d\xi$

мгновенные значения равновероятны), то
$$P_{ux} = \int_{-\frac{\Delta a}{2}}^{\xi^2} W(\xi) d\xi$$

$$\omega_{\mathbf{c}}(\mathbf{x}) = \begin{cases} 0 & \text{, } \mathbf{x} < \mathbf{n}_{\mathbf{k}_{\min}} \\ \frac{1}{\Delta a} & \text{, } \mathbf{n}_{\mathbf{k}_{\min}} \leq \mathbf{x} \leq \mathbf{n}_{\mathbf{k}_{\max}} \\ 0 & \text{, } \mathbf{x} > \mathbf{n}_{\mathbf{k}_{\max}} \end{cases}$$

$$10$$

$$\omega_{\mathbf{c}}(\mathbf{x}) = \begin{cases} 0 & \text{, } \mathbf{x} < 0 \\ 10 & \text{, } 0 \leq \mathbf{x} \leq 0.1 \\ 0 & \text{, } \mathbf{x} > 0.1 \end{cases}$$

Мощность шума квантования определим из условия его нормального распределения в интервале от пктіп до пктах, как дисперсию

$$P\phi . \hat{e}. = D\{n_k(t_i)\} = \frac{n_{\text{rmax}}^2 + n_{\text{kmax}} \cdot n_{\text{kmin}} + n_{\text{kmin}}^2}{3} = 3.3 \cdot 10^{-3} \hat{A}^2$$

Определим относительную величину мощности шума квантования по сравнению с мощностью переменной составляющей

$$\frac{Puu.\kappa.}{Pa} = \frac{3.3 \cdot 10^{-3} B^2}{3.27 B^2} = 0.001$$
 $10 \lg(\frac{Puu.\kappa}{Pa}) = -30 Дб$

Число двоичных разрядов k, требуемое для записи любого номера из L уровней квантования

$$k \ge \log_2 L = \log_2 64 = 6$$

Номеру квантования ј = 59 соответствует двоичное число 111011 и уровень сигнала

Временная диаграмма отклика АЦП на уровень с номером J = 59 изображена на $a_j = a_{\min} + j \cdot \Delta a = 0 + 59 \cdot 0.1 = 5.9 B$

рисунке 2.1.

Все уровни квантования равновероятны, так как вероятность попадания a(t) в

$$P(a_k) = \int_{a_k}^{a_{k+1}} \omega_a(x) dx = \frac{1}{\Delta} \cdot (a_k + \Delta a - a_k) = \frac{\Delta a}{\Delta} = \frac{1}{64}$$

интервал $[a_k; a_{k+1}]$ не зависит от k

Так как все отсчеты взаимонезависимы, то энтропия АЦП вычисляется по формуле

$$H(A) = M\{\log_2 \frac{1}{P(a_k)}\} = \sum_{k=0}^{L-1} P(a_k) \cdot \log_2 \frac{1}{p(a_k)} = \sum_{k=0}^{63} \frac{1}{64} \log_2 64 = 6 \acute{a} \grave{e} \grave{o}$$

Производительность АЦП рассчитаем так

$$H'(A) = \frac{H(A)}{\Delta t} = \frac{5}{0.5 \cdot 10^{-3}} = 10000 \frac{\dot{\alpha} \dot{e} \dot{\alpha}}{\tilde{n}}$$

Расчет кодера.

Кодер выполняет систематическое кодирование с одной проверкой на четность, образуя код (n,k). На выходе кодера последовательность кодовых символов b_k каждого празрядного кодового слова в импульсную последовательность b(t) длительностью Dt. Сигнал b(t) является случайным синхронным телеграфным сигналом.

Так как рассматривается код с одной проверкой на четность, то n=k+1==8. Кодовая последовательность строится путем добавления к комбинации k==7 информационных символов одного проверочного, равного сумме всех информационных символов по модулю 2. То есть проверочный символ равен 0, если в коде содержится четное число единиц и 1 - если нечетное.

Избыточность кода r = 1 - k/n = 1 - 7/8 = 0.125.

Символ контроля четности $b_n=(b_1,b_2,b_3,b_4,b_5,b_6,b_7)=(1,1,1,0,1,1)=1.$ Тогда код имеет вид рис. 3.1.

Замечание: сигнал на выходе АЦП и Кодера есть последоватнльность биполярных импульсов амплитудой $1\ B$ и длительностью Dt/n для кодера и Dt/k для АЦП, причем символу «1» соответствует импульс с отрицательной полярностью, а символу «0» - с положительной.

Длительность интервала времени, отводимого на передачу каждого кодового символа

$$T = \frac{\Delta t}{n} = \frac{0.5 \cdot 10^{-3} c}{8} = 62.5 \cdot 10^{-6} c$$

Скорость следования кодовых символов

$$V_{\scriptscriptstyle K} = \frac{1}{T} = 16000 \frac{\tilde{n} \grave{e} i \hat{a} i \ddot{e} i \hat{a}}{\tilde{n}}$$

Расчет модулятора.

В модуляторе синхронная двоичная случайная последовательность биполярных импульсов b(t) осуществляет манипуляцию гармонического сигнала-переносчика $U(t) = U_0 cos2pf_0t$, где $U_0 = 1B$, $f_0 = 100V_K = 1.6$ МГц.

Запишем выражение для функции корреляции модулирующего колебания b(t) и приведем его график на рис. 4.1.

$$\mathbf{B}_{b}\!\!\left(\tau\right)\!=\!\left\{ \begin{array}{ll} 1-\frac{|\tau|}{T} & , & |\tau|\leqslant T \\ \\ 0 & , & |\tau|>T \end{array} \right.$$

Рис. 4.1

Замечание: b(t) — случайный синхронный телеграфный сигнал — центрированный случайный процесс, принимающий с равной вероятностью значения +1В и -1В, причем смена значений может происходить в любой из моментов времени, кратных тактовому интервалу Т. Значения на разных тактовых интервалах независимы. Границы тактовых интервалов у разных реализаций не совпадают.

По теореме Винера-Хинчина определим его энергетический спектр через функцию корреляции и приведем его график на рис 4.2:

$$G_b(f) = 2\int B_b(\tau)\cos 2\pi f \tau d\tau$$

$$G_b(f) = 2T \cdot \frac{\sin^2 \pi f T}{(\pi f T)^2}$$

Ограничим ширину спектра модулирующего колебания (b(t)) сверху частотой $F_B = 2/T = 2V_K = 32$ к Γ ц. После ограничения мощность модулирующего сигнала найдем как $P_i = \int\limits_0^{F_a^2} 2T \frac{\sin^2 \pi f}{(\pi f T)^2} df = 0.95 \hat{A}^2$

Далее будем пренебрегать искажениями сигнала, происходящими в результате ограничения спектра, поскольку их доля в энергетическом спектре ничтожно мала по сравнению с Рм :

$$P = \int_{F_{\hat{a}}}^{\infty} 2T \frac{\sin^2 \pi f T}{(\pi f T)^2} df = 3.25 \cdot 10^{-5} \hat{A}^2$$

Выражение для модулируемого ЧМ сигнала запишем так

А графики модулирующего и модулированного сигналов приведем на рис 4.3.

Рис. 4.3

Энергетический спектр модулированного колебания (рис. 4.4) будет содержать две симметричные относительно частоты $f0 = 1.6 \text{ M}\Gamma$ ц боковые полосы, форма которых будет повторять форму энергетического спектра модулирующего сигнала b(t) с учетом ограничения спектра частотой $FB = 32 \text{ к}\Gamma$ ц. Выражение Gs(f) запишем как

Ширина спектра сигнала-переносчика S(t) в два раза превосходит ширину спектра модулирующего сигнала b(t) и равна DFc = 2Fв = 64 кГц.

$$G_{S}(f) = \begin{cases} 0 & \text{, } 0 \le f \le fc - F_{B} \text{ if } f \ge fc + F_{B} \\ 2T \cdot \frac{\sin^{2} \pi (f - fc)T}{(\pi (f - fc)T)^{2}} & \text{, } fc - F_{B} \le f \le fc + F_{B} \end{cases}$$

Непрерывный канал.

Канал связи является непрерывным и неискажающим и осуществляет передачу сигнала s(t). При этом к передаваемому сигналу добавляется помеха — аддитивный гауссовский шум со спектральной плотностью средней мощности N_0 . То есть на выходе канала связи имеем

$$z(t) = s(t) + n(t)$$

Минимальный диапазон частот, необходимый для безыскаженной передачи равен $\Delta F \hat{e} = \Delta F c = 64 \hat{e} \tilde{A} \ddot{o}$

Определим мощность помехи на выходе исходя из того, что энергетический спектр его постоянен в полосе частот, используемой для передачи

$$Pn = \Delta F\hat{e} \cdot N_0 = 64 \cdot 10^3 \,\tilde{A}\ddot{o} \cdot 3.73 \cdot 10^{-6} \,\frac{\hat{A}^2}{\tilde{A}\ddot{o}} = 0.24 \hat{A}^2$$

Поскольку сигналы $S_1(t)$ и $S_2(t)$ (см. п. 4) равновероятны, то средняя мощность сигнала s(t), передаваемого каналом равна $Pc = \frac{E_1 + E_2}{2T}$, где E1 и E2 –энергии сигналов $S_1(t)$ и

 $S_2(t)$ соответственно, найденные как $E = \int_0^T s^2(t) dt$

$$E_1 = \int_{0}^{62.5 \cdot 10^{-6}} \cos 2\pi 1568000t dt = 2.079 \cdot 10^{-5} \frac{\hat{A}^2}{\tilde{A}\ddot{o}}$$

$$E_2 = \int_{0}^{62.5 \cdot 10^{-6}} \cos 2\pi 1632000t dt = 3.532 \cdot 10^{-5} \frac{\hat{A}^2}{\tilde{A}\ddot{o}}$$

$$E = E_1 + E_2 = 5.611 \cdot 10^{-5} \frac{\hat{A}^2}{\tilde{A}\ddot{o}}$$

Тогда мощность сигнала в канале будет равна

$$Pc = \frac{5.611 \cdot 10^{-5} \frac{\hat{A}^2}{\tilde{A}\ddot{o}}}{2 \cdot 62.5 \cdot 10^{-6} \tilde{n}} = 0.5 \hat{A}^2$$

Отношение сигнал/шум

$$\frac{Pc}{Pn} = \frac{0.5}{0.24} = 2$$
,что примерно равно 3 Дб.

Пропускная способность непрерывного канала определим по формуле

$$C' = \Delta F \hat{e} \cdot \log_2(1 + \frac{Pc}{Pn}) = 102400 \frac{\hat{a}\hat{e}\hat{o}}{\tilde{n}}$$

Коэффициент эффективности использования канала Кэ = H'/C' = 0.098.

Расчет демодулятора.

По критерию максимального правдоподобия оптимальным является приемник, у которого при заданных условиях обеспечивается максимум верности правильного приема или минимум средней вероятности ошибки.

Алгоритм решения некогерентного приемника (демодулятора) строится в предположении, что фаза приходящего сигнала неизвестна и может принимать любое значение в интервале от 0 до 2p.

Если $\ln I_0(\frac{2V_1}{N_0}) - \frac{E_1}{N_0} \ge \ln I_0(\frac{2V_2}{N_0}) - \frac{E_2}{N_0}$, то принятый сигнал расценивается модулятором как $\mathbf{S}_1(\mathbf{t})$.

Если же $\ln I_0(\frac{2V_1}{N_0})-\frac{E_1}{N_0}<\ln I_0(\frac{2V_2}{N_0})-\frac{E_2}{N_0}$, то принятый сигнал расценивается как $S_2(t)$.

Здесь $I_0(x)$ — модифицированная функция Бесселя первого рода нулевого порядка, , где $S^{\wedge}(t)$ — Гильбертово преобразованная функция S(t), Z(t) = S(t) + n(t).

Для двоичного кодирования и частотной модуляции имеем і равное 1 и 2:

$$V_{i} = \sqrt{\left(\int_{0}^{T} Z(t)S_{i}(t)dt\right)^{2} + \left(\int_{0}^{T} Z(t)\hat{S}_{i}(t)dt\right)^{2}}$$

$$V_{2} = \sqrt{\left(\int_{0}^{T} Z(t)S_{2}(t)dt\right)^{2} + \left(\int_{0}^{T} Z(t)\hat{S}_{2}(t)dt\right)^{2}}$$

Схема, реализующая этот принцип, построена на активных фильтрах (рис 6.1) и называется квадратурной. Поясним назначение компонентов, входящих в ее состав.

 $\Gamma 1$ и $\Gamma 2$ – генераторы опорных сигналов $u_1(t)$ и $u_2(t)$, которые отображают в модуляторе символы 0 и 1 соответственно.

БОМ – блок определения модуля вектора V по ортогональным компонентам.

 ${
m HY}$ – нелинейное безынерционное устройство с характеристикой $\ln I_0(\frac{2}{N_o}\cdot U))$

 90° - фазовращатель всех сигнальных компонент на 90° (преобразователь Гильберта).

Для систем с активной паузой (в т.ч. и ЧМ) $E_1 = E_2$, тогда структурная схема решающего устройства существенно упрощается (рис. 6.2). В ней используются согласованные фильтры.

Рис. 6.1

Рис 6.2

Определим вероятность того, что переданное модулятором отображение символа будет воспринято демодуляторов неверно (вероятность ошибки) как , где

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \cdot \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt \qquad x = \sqrt{\frac{\int_{0}^{T} (s_{1}(t) - s_{2}(t))^{2} dt}{2N_{0}}} = 2.654c \qquad \Phi(x) = 0.992$$

 $P = 0.5(1 - \Phi(x))$

$$P = 0.5(1 - 0.992) = 4 \cdot 10^{-3}$$

Чтобы обеспечить такую же вероятность ошибки при использовании амплитудной модуляции (AM) необходимо увеличить энергию передаваемого в канале сигнала в 2 раза, а при использовании фазовой модуляции (ФМ) – уменьшить в 2 раза. При использовании относительной фазовой модуляции (ОФМ) – уменьшить чуть более чем в 1.75 раз.

Пропускную способность демодулятора найдем, считая что его выход — выход двоичного симметричного канала связи. При этом учитем, что P(0|1) = P(1|0) = P, тогда

$$C = V_K (1 + P \log_2 P + (1 - P) \log_2 (1 - P)) = 15398 \frac{\delta um}{c}$$

Анализ декодера.

Декодер кода (g,k) анализирует принимаемые последовательности символов длины n=8 и, либо преобразует их в последовательность информационных символов длины k=7, либо отказывается от декодирования до исправления ошибки. Работа выполняется в два этапа. На первом этапе производится обнаружение ошибок. Если в принятой последовательности ошибок не обнаружается, то на втором этапе из нее выделяются k информационных символов — двоичное число, передаваемое далее в ЦАП (см. выше). Если ошибка обнаружена — возможна замена наиболее ненадежного символа.

Используемый математический код с одной проверкой на четность имеет минимальноекодовое расстояние по Хеммингу $d \ge n-k+1=9-8+1=2$ $a_{\min}=2$, обнаруживающую способность $q_o \le d-1=1$ и исправляющую способность $q_u \le (d-1)/2=0.5$. Это значит, что данный код позволяет обнаруживать ошибки нечетной кратности (1, 3, 5, 7 ошибок в слове), но не дает возможности обнаружить ошибки четной кратности (2, 4, 6, 8 ошибок). Код с одной проверкой на четность не позволяет исправить обнаруженную ошибку – ситуация с необнаружимой ошибкой.

Алгоритм обнаружения ошибок.

- 1. Поразрядно суммируется пришедшее от демодулятора слово по модулю 2.
- 2. Если результат суммирования п символов кодового слова равен нулю (четный вес ошибки), то декодер считает, что ошибки в принятом слове нет (хотя этого может и не быть необнаружимая ошибка) и выдает первые к символов на вход ЦАП.
- 3. Если результат суммирования n символов кодового слова не нулевой произошла ошибка.

Определим вероятность необнаружимой ошибки, т.е. вероятность ошибки кратностью 2.

$$\begin{split} P_{\scriptscriptstyle K} &= C_{\scriptscriptstyle N}^{\scriptscriptstyle K} P^{\scriptscriptstyle K} \left(1-P\right)^{\scriptscriptstyle N-K} \text{,где} \quad P_{\scriptscriptstyle \hat{\imath}.\hat{\imath}.} = P_2 + P_4 + P_6 + P_8 \\ \text{Вычисляя P2, P4, P6, P8, получим } P \hat{\imath}.\hat{\imath}. &= 4.37 \cdot 10^{-4} \,. \end{split}$$

Расчет ЦАП.

В ЦАП с декодера поступает k-разрядное двоичное число — восстановленный номер переданного уровня j. Это число преобразуется в короткий импульс, амплитуда которого соответствует полученному номеру уровня (отсчету). Далее последовательность таких модулированных по амплитуде импульсов поступает на фильтр-восстановитель, который вырабатывает из этой последовательности импульсов восстановленный сигнал. Период следования этих импульсов равен периоду, через который брались отсчеты в АЦП, т.е. $Dt=0.5\ mc$.

Высота импульса, соответствующего восстановленному квантованному отсчету равна $a_j^{\hat{}}(t_i) = a_{\min} + j^{\hat{}} \cdot \Delta a = (0 + 0.1 \cdot j^{\hat{}}) \hat{A}$

Список литературы.

- 1. Зюко А.Г., Кловский Д.Д., Коржик В.И., Назаров М,В. Теория электрической связи: Учебник для ВУЗов.-М.: Радио и связь, 1998
- 2. Зюко А.Г., Кловский Д.Д., Назаров М,В., Финк Л.М. Теория передачи сигналов: М.: Радио и связь, 1986
- 3. Биккенин Р.Р., Чесноков М.Н. Теория электрической связи. Случайные процессы. Помехоустойчивая передача дискретной информации. Учебное пособие.-Санкт-Петербург, 2001