1º RASCore

Visão Computacional e Deep Learning

Ministrante:
Guilherme Christmann

Introdução

- O que é uma imagem?
- Resolução.
- Canais de cor.

cv2.imread() cv2.imshow()
 cv2.VideoCapture()
 cv2.waitKey()

Operações Básicas

- Dimensões de uma imagem. img.shape
- Acessando valor de um pixel. img[y, x]
- Separando e juntando canais. cv2.split cv2.merge
- ROI (Region of Interest). img[y0:y1, x0:x1]

Operações Básicas

- Dimensões de uma imagem. img.shape
- Acessando valor de um pixel. img[y, x]
- Separando e juntando canais. cv2.split cv2.merge
- ROI (Region of Interest). img[y0:y1, x0:x1]

Exercício: Aumentar o brilho de um dos canais de uma imagem RGB.

Exercício: Aumentar o brilho de apenas uma região da imagem.

Espaços de Cor

- RGB.
- GRAY.
- HSV.

cv2.cvtColor(imagem, flag_de_conversao)

Espaços de Cor

- RGB.
- GRAY.
- HSV.

cv2.cvtColor(imagem, flag_de_conversao)

Exercício: Fazer uma conversão de RGB (BGR) para Gray na "mão".

Convolução e Filtros

Convolução 2D.

1	1	1	1	1
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	1	1	1	1
		Blur		

1	1	1	1	1
1	5	5	5	1
1	5	44	5	1
1	5	5	5	1
1	1	1	1	1

1	1	2	1	1
1	2	4	2	1
2	4	8	4	2
1	2	4	2	1
1	1	2	1	1

Convolução e Filtros

- Convolução 2D. cv2.filter2D(img, -1, kernel)
- Filtro Box. cv2.blur(img, kernel_size)
- Filtro Gaussiano. cv2.GaussianBlur(img, kernel_size, sigmaX)

Convolução e Filtros

- Convolução 2D. cv2.filter2D(img, -1, kernel)
- Filtro Box. cv2.blur(img, kernel_size)
- Filtro Gaussiano. cv2.GaussianBlur(img, kernel_size, sigmaX)

Exercício: Experimente utilizar kernels diferentes com a operação Filter2D.

Processamento de Imagem x Visão Computacional

Algoritmos "Clássicos" - Deteccção de Features

- Harris-Corner
- Shi-Tomasi
- SIFT (Scale Invariant Feature Transform)

Detecção de Objetos - Homografia

Classificação por Bag of Features - Extração

Classificação por Bag of Features - Clustering

Bag of Features - Histograma

Bag of Features - Histograma

Classificação a partir dos Histogramas

- Regressão Linear
- SVMs
- Redes Neurais

Deep Learning para Visão Computacional

Classificação End-To-End

Camadas Fully-Connected (Dense)

Camadas Fully-Connected (Dense)

Número de parâmetros

```
Nº Parâmetros FC = DIM_INPUT * N_NEURONIOS + N_NEURONIOS
```

Camadas de Convolução

- Filtros
- Tamanho de Kernel
- Strides
- Padding

Camadas de Convolução

• Número de parâmetros

```
N° Parâmetros CNN = (INPUT_CHANNELS * KERNEL_SIZE *
OUT_CHANNELS + OUT_CHANNELS)
```

Camada de Pooling

- Pool Size
- Max Pooling
- Average Pooling

Topologia CNN -> Pooling -> FC

Exemplo com MNIST

Exercício

Treinar uma rede com camadas de convolução seguidas de max pooling e classificação a partir de camada Fully-Connected.

YOLO V2

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

YOLO (You Only Look Once)

Retina Net

Figure 3. The one-stage **RetinaNet** network architecture uses a Feature Pyramid Network (FPN) [19] backbone on top of a feedforward ResNet architecture [15] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [19] while running at faster speeds.

Retina Net

Mask R-CNN

Mask R-CNN

