21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

15- Monday October 3, 2011.

Definition 15.1: For a group G, the *center* Z(G) is the set of elements which commute with all elements of G, so that Z(G) = G if and only if G is Abelian.

Lemma 15.2: Z(G) char G, and $N \leq Z(G)$ implies $N \triangleleft G$.¹

In the G-action on G by conjugation, Z(G) is the kernel of the homomorphism from G into S_G , and it is the set of fixed points.²

Proof. If $z \in Z(G)$ and $g \in G$, one has zg = gz, and if ψ is any automorphism of G one deduces that $\psi(z) \psi(g) = \psi(zg) = \psi(gz) = \psi(g) \psi(z)$, so that $\psi(z)$ commutes with all elements in $\psi(G)$, which is G, and this proves that $\psi(z) \in Z(G)$. Then, $\psi(Z(G)) \subset Z(G)$ for all $\psi \in Aut(G)$, implies $\psi(Z(G)) = Z(G)$ for all $\psi \in Aut(G)$, i.e. Z(G) is characteristic in G.

For $g \in G$, the conjugation ψ_g is the identity on Z(G) (since $\psi_g(x) = g x g^{-1} = x g g^{-1} = x$ for all $x \in Z(G)$), so that it is the identity on N, hence $\psi_g(N) = N$, and since it holds for all $g \in G$ it means $N \triangleleft G$.

An element $g \in G$ belongs to the kernel of the homomorphism from G into S_G if $h \mapsto h^g = g h g^{-1}$ is the identity mapping, i.e. $g h g^{-1} = h$ for all $h \in G$, which is g h = h g for all $h \in G$, i.e. $g \in Z(G)$. If an element $a \in G$ is a fixed point of the action by conjugation, it means that $g a g^{-1} = a$ for all $g \in G$, i.e. g a = a g for all $g \in G$, so that $a \in Z(G)$.

Lemma 15.3: If G/Z(G) is cyclic, then G is Abelian, so that Z(G) = G.

Proof: Z(G) is a normal subgroup of G by Lemma 15.2, and if the quotient is generated by a Z(G), then $G = \{a^n z \mid n \in \mathbb{Z}, z \in Z(G)\}$, and since $(a^n z) (a^m z') = a^{n+m} z z' = (a^m z') (a^n z)$, G is Abelian.

Definition 15.4: For a prime p, a p-group is a group (not necessarily finite) in which the order of every element is finite and is a power of p (so that the trivial group $\{e\}$ is a p-group, and a non-trivial finite p-group has order p^k for some $k \ge 1$ by Cauchy's theorem).

Lemma 15.5: If G is a non-trivial finite p-group, then p divides |Z(G)|, so that the center Z(G) is not reduced to $\{e\}$.

Proof: In the action of G by conjugation, the size of any orbit divides the order of G, so that it is a power of p. Because the size of an orbit is 1 only for the elements of Z(G) by Lemma 15.2, and all other orbits have for size a multiple of p, the order of Z(G) must be a multiple of p.

Remark 15.6: This shows the result mentioned before, that no simple group G has order p^k with p prime and $k \ge 2$, since either $Z(G) \ne G$ and it is a non-trivial and proper normal subgroup, or Z(G) = G in which case G is Abelian, and has a normal subgroup of order p by Cauchy's theorem.

Lemma 15.7: If p is a prime, and G is a group of order p^2 , then G is Abelian, and it is isomorphic to either $\mathbb{Z}_p \times \mathbb{Z}_p$ or \mathbb{Z}_{p^2} .

Proof: By Lemma 15.5, the order of Z(G) is a multiple of p, so that G/Z(G) has order 1 or p, hence it is either the trivial group or it is isomorphic to \mathbb{Z}_p , i.e. it is a cyclic group, so that G is Abelian by Lemma 15.3. By Cauchy's theorem, there is an element $a \in G$ of order p, generating a subgroup H of order p; let $b \notin H$, generating a subgroup K: if K contains H it must coincide with G, in which case G is cyclic and isomorphic to \mathbb{Z}_{p^2} , or K has size p with $H \cap K = \{e\}$, and $G = \{a^m b^n \mid m, n \in \{0, \ldots, p-1\}\}$ which is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

 $^{^1\,}$ Notice that Lemma 7.11, which says that $A \, char \, B \lhd C$ implies $A \lhd C$ does not apply here.

² An action of a group G on a set X is an homomorphism ψ from G into S_X (the group of bijections of X onto itself, with composition), so that the kernel of ψ is a (normal) subgroup of G, while the set of fixed points is a subset of X, namely those $x \in X$ for which that stabilizer $Stab_x$ is G (so that orbit of x is reduced to $\{x\}$). Here X = G.

³ Since ψ is invertible, applying ψ^{-1} to $\psi(Z(G)) \subset Z(G)$ gives $Z(G) \subset \psi^{-1}(Z(G)) \subset Z(G)$.

⁴ By Lagrange's theorem, the order of a subgroup of G can only be 1, p, or p^2 .

Remark 15.8: A group G of order p^3 is not necessarily Abelian, since there are two distinct non-Abelian groups of order 8, the dihedral group D_4 and the quaternion group Q_8 .

Remark 15.9: It was mentioned that the only simple Abelian groups are the \mathbb{Z}_p for p prime as a consequence of the structure theorem of finite Abelian groups which will be proven in another lecture, and it says that a non-trivial finite Abelian group G is isomorphic to some product $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ for some $k \geq 1$ with n_i dividing n_{i+1} for $i = 1, \ldots, k-1$: then, a product $G = K \times L$ of two non-trivial Abelian groups K, L has $K \times \{e\}$ and $\{e\} \times L$ as normal subgroups, which are different from $\{e\}$ or G, so that it is not simple.

Actually, the structure theorem of finite Abelian groups is a particular case of the structure theorem of finitely generated Abelian groups, which are of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k} \times \mathbb{Z}^r$ for an integer $r \geq 0$.

Definition 15.10: In a group G, the *commutator* of g and h is $[g,h] = g h g^{-1} h^{-1} = g (g^{-1})^h = h^g h^{-1}$. The subgroup generated by the set of commutators of G is denoted [G,G]. The *derived subgroups* of G are $G^{(0)} = [G,G]$, and then $G^{(n+1)} = [G^{(n)},G^{(n)}]$ for $n \geq 0$.

Lemma 15.11: One has [g,h]=e if and only if g and h commute. For every $g,h,a\in G$, one has $[g,h]^a=[g^a,h^a]$.

Proof: [g,h] = e means $g h g^{-1}h^{-1} = e$, so that $g h g^{-1} = h$ and g h = h g. Actually, $x \mapsto x^a = a x a^{-1}$ is an automorphism of G, and for any homomorphism ψ from G into G (endomorphism), one has $\psi([g,h]) = [\psi(g), \psi(h)]$: indeed, $\psi(xy) = \psi(x) \psi(y)$ for all $x, y \in G$, and $\psi(x^{-1}) = (\psi(x))^{-1}$ for all $x \in G$, so that $\psi(g h g^{-1}h^{-1}) = \psi(g) \psi(h) \psi(g^{-1}) \psi(h^{-1}) = \psi(g) \psi(h) (\psi(g))^{-1} (\psi(h))^{-1} = [\psi(g), \psi(h)]$.

Lemma 15.12: If $N \triangleleft G$, then [gN, hN] = [g, h]N, and G/N is Abelian if and only if N contains all commutators, i.e. $[G, G] \leq N$.

Proof: Because N is a normal subgroup, $n_1g = g n_2$ so that one can move an element of N to the right almost as if it was in the center of G, but in doing so the element of N changes name: $(g n_1) (h n_2) (g n_3)^{-1} (h n_4)^{-1} = g n_1 h n_2 n_3^{-1} g^{-1} n_4^{-1} h^{-1} = g h (n_5 n_2 n_3^{-1}) g^{-1} n_4^{-1} h^{-1} = g h g^{-1} (n_6 n_4^{-1}) h^{-1} = g h g^{-1} h^{-1} n_7 \in [g, h] N$; then, n_7 can be any element in N, by taking $n_1 = n_2 = n_3 = e$ and defining n_4 by $n_4 = n_7^{-1} h$.

G/N is Abelian if and only if $[g\,N,h\,N]=e\,N=N$ for all $g,h\in G$, i.e. if and only $[g,h]\,N=N$ for all $g,h\in G$, or $[g,h]\in N$ for all $g,h\in G$.

Lemma 15.13: [G,G] char G, so that $G^{(n)}$ char $G^{(m)}$ if $0 \le m \le n$, hence $G^{(n)}$ char G, which implies $G^{(n)} \triangleleft G$.

Proof: An element $a \in [G, G]$ has the form $a = [g_1, h_1]^{n_1} \cdots [g_k, h_k]^{n_k}$ for some $g_1, \ldots, g_k, h_1, \ldots, h_k \in G$, $n_1, \ldots, n_k \in \mathbb{Z}$, and $k \ge 1$, and for $\psi \in Aut(G)$ one has $\psi(a) = [\psi(g_1), \psi(h_1)]^{n_1} \cdots [\psi(g_k), \psi(h_k)]^{n_k} \in [G, G]$, so that $\psi([G, G]) \subset [G, G]$ for all $\psi \in Aut(G)$, hence $\psi([G, G]) = [G, G]$ for all $\psi \in Aut(G)$.

Remark 15.14: If G is a non-Abelian simple group, then [G, G] = G, since [G, G] is a normal subgroup of G, so that it must be either $\{e\}$ or G, but $[G, G] = \{e\}$ means that G is Abelian.

Since A_5 is non-Abelian and simple, one has $[A_5, A_5] = A_5$, and then $[A_5, A_5] \subset [S_5, S_5] \subset A_5$ since $A_5 \triangleleft S_5$ with S_5/A_5 Abelian (isomorphic to \mathbb{Z}_2), so that $[S_5, S_5] = A_5$.

One has $\{e\} \triangleleft N \triangleleft A_4 \triangleleft S_4$, with $N = \{e, (1\,2)\,(3\,4), (1\,3)\,23\,4), (1\,4)\,(2\,3)\}$, and N is Abelian ($\simeq \mathbb{Z}_2 \times \mathbb{Z}_2$) so that $[N,N] = \{e\}$; A_4/N is Abelian, isomorphic to \mathbb{Z}_3 , so that $[A_4,A_4] \leq N$, and S_4/A_4 is Abelian, isomorphic to \mathbb{Z}_2 , so that $[S_4,S_4] \leq A_4$, and let us show that $[A_4,A_4] = N$ and $[S_4,S_4] = A_4$. One has $[A_4,A_4] \neq \{e\}$ since A_4 is not Abelian, but because it is a characteristic subgroup of A_4 it cannot contain one element of order 2 without containing the two others since the three elements of order 2 are conjugate, hence $[A_4,A_4] = N$. One has $N = [A_4,A_4] \leq [S_4,S_4] \leq A_4$, and by Lagrange's theorem a subgroup H satisfying $N < H \leq A_4$ must coincide with A_4 , so one must only show that $N \neq [S_4,S_4]$: indeed, $N = [S_4,S_4]$ would imply that S_4/N is Abelian, while it is isomorphic to S_3 , because it cannot be isomorphic to \mathbb{Z}_6 , since there would exist $a \in S_4$ with a, \ldots, a^6 belonging to six different N-cosets, contradicting the fact that in S_4 the order of an element is 1, 2, 3, or 4.

Remark 15.15: A group G is called *solvable* if there exists a *subnormal series* $G_0 = \{e\} \triangleleft G_1 \triangleleft \cdots \triangleleft G_k = G$ with G_i/G_{i-1} Abelian for $i = 1, \ldots, k$, and it can be shown that G is solvable if and only a derived subgroup $G^{(n)}$ is $\{e\}$ (so that G_i is solvable but not G_i), and then $G^{(n)} \triangleleft \cdots \triangleleft G^{(0)} = [G, G] \triangleleft G$ provides a *normal series*, i.e. one which besides $G_{i-1} \triangleleft G_i$ and G_i/G_{i-1} Abelian for $i = 1, \ldots, k$, also satisfies $G_{i-1} \triangleleft G$ for $i = 2, \ldots, k-1$.