Step-1

Consider the matrix,

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{pmatrix}$$

and $E_{32}E_{31}E_{21}A = U$.

The objective is to determine the matrices, E_{21} , E_{32} , and multiply the matrices of E, to obtain the matrix M such that MA = U.

Step-2

Consider the matrix,

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{pmatrix}$$

Apply the row operation, $R_2 \rightarrow R_2 - 4R_1$.

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ -2 & 2 & 0 \end{pmatrix} \hat{a} \boldsymbol{\in}_{1}^{!} \hat{a} \boldsymbol{\in}_{1}^{!} (1)$$

Apply the same row operation $R_2 \rightarrow R_2 - 4R_1$ on identity matrix I, obtained as,

$$E_{21} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Apply the row operation, $R_3 \rightarrow R_3 + 2R_1$ on matrix (1), obtained as,

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 4 & 0 \end{pmatrix} \hat{a} \mathcal{E}_{1}^{l} \hat{a} \mathcal{E}_{1}^{l} (2)$$

Apply the same row operation $R_3 \rightarrow R_3 + 2R_1$ on identity matrix I, obtained as,

$$E_{31} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

Apply the row operation, $R_3 \rightarrow R_3 - 2R_2$ on matrix (2), obtained as,

$$U = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

Apply the same row operation $R_3 \rightarrow R_3 - 2R_2$ on identity matrix I, obtained as,

$$E_{32} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

Step-3

Multiply the matrices, E_{32} , E_{31} , and E_{21} , obtained as,

$$\begin{split} E_{32}E_{31}E_{21} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{pmatrix} \\ &= M \end{split}$$

Now, verify that, MA = U.

$$\begin{split} E_{32}E_{31}E_{21}A &= MA \\ &= \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{pmatrix} \\ &= U \end{split}$$

Therefore,

$$E_{32} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

$$E_{31} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$E_{21} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{31} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$E_{21} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$