

Sumário

- 1. Revisão de Polinômios
- 2. Fatoração e Divisão de Polinômios

Revisão de Polinômios

Definição[1]

Definição 1

Um **polinômio em x** é qualquer expressão que pode ser escrita na forma

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

onde n é um número natural e os coeficientes a_i 's (i = 0, 1, ..., n) são números reais.

Exemplo 1

São polinômios as expressões abaixo:

- 1. 2x + 1
- 2. $-\sqrt{5}x^3 + x^2 + 3$
- 3. $\pi x^{10} + 2$

Exemplo 2

Não são polinômios as expressões abaixo:

- 1. $\sqrt{x} + 2$: raízes são potências da forma $\frac{p}{q}$ que não são números naturais.
- 2. $5x^{-3} + x^2$: a potência negativa não é um número natural.

Operações com Polinômios

Adição e Subtração: agrupamos termos semelhantes (em que a variável possui a mesma potência) e então os combinamos, usando a propriedade distributiva.

Exemplo 3

Vamos somar os polinômios $2x^3 - 3x^2 + \sqrt{11}x - 1$ *e* $2x^2 - 5x + 3$ *:*

agrupamos os termos em que as potências de x coincidem:

$$2x^3 - 3x^2 + \sqrt{11}x - 1 + 2x^2 - 5x + 3 = 2x^3 + (-3x^2 + 2x^2) + (\sqrt{11}x - 5x) + (-1 + 3)$$

aplicamos a propriedade distributiva e efetuamos as operações possíveis:

$$=2x^3+(-3+2)x^2+(\sqrt{11}-5)x+(-1+3)=2x^3-x^2+(\sqrt{11}-5)x+2$$

Operações com Polinômios

Produto: basta aplicar a propriedade distributiva.

Exemplo 4

Vamos calcular o produto entre ps polinômios 3x + 2 e 4x - 5:

como é um produto entre vários termos, é importante inserir parênteses para separar os polinômios. Aplica-se a distributiva:

$$(3x+2)(4x-5) = 3x(4x-5) + 2(4x-5)$$
$$= (3x)(4x) - (3x) \cdot 5 + 2(4x) - 2 \cdot 5$$
$$= 12x^2 - 15x + 8x - 10$$

Produtos notáveis

$$(u+v)^2 = (u+v)(u+v) = u^2 + 2uv + v^2$$

Quadrado de uma diferença de dois termos (Quadrado Perfeito):

$$(u-v)^2 = (u-v)(u-v) = u^2 - 2uv + v^2$$

Produto da soma pela diferença:

$$(u+v)(u-v) = u^2 - v^2$$

Fatoração e Divisão de Polinômios

Fatoração

Fatorar polinômios corresponde ao processo inverso das leis de distributividade da multiplicação, colocando os fatores comuns em evidência. Podemos também usar os produtos notáveis para fatorar um polinômio.

Exemplo 5

Vamos fatorar os polinômios a seguir:

1.
$$2x^3 + 2x^2 - 6x$$

(2x está na fatoração de todos os termos)

$$2x^3 + 2x^2 - 6x = (2x)x^2 + (2x)x - 3(2x)$$
$$= 2x(x^2 + x - 3)$$

2.
$$3x^5 - 24x^4 + 12x^3$$

 $(3x^3 \text{ está na fatoração de todos os termos})$

$$3x^5 - 24x^4 + 12x^3 = (3x^3)x^2 - (3x^3)(8x) + 4(3x^3)$$
$$= 3x^3(x^2 - 8x + 4)$$

3.
$$25x^2 - 36$$

(Diferença de dois quadrados)

$$25x^{2} - 36 = (5x)^{2} - 6^{2}$$
$$= (5x + 6)(5x - 6)$$

4.
$$4x^2 - (x^3 + 3)^2$$

(Diferença de dois quadrados)

$$4x^{2} - (x^{3} + 3)^{2} = (2x)^{2} - (x^{3} + 3)^{2}$$

$$= (2x + x^{3} + 3)(2x - (x^{3} + 3))$$

$$= (2x + x^{3} + 3)(2x - x^{3} - 3)$$

5.
$$9x^2 + 6x + 1$$

(Quadrado Perfeito)

$$9x^{2} + 6x + 1 = (3x)^{2} + 2(3x) \cdot 1 + 1^{2}$$
$$= (3x + 1)^{2}$$

6.
$$4x^2 - 12x + 9$$

(Quadrado Perfeito)

$$4x^{2} - 12x + 9 = (2x)^{2} - 2(2x) \cdot 3 + 3^{2}$$
$$= (2x - 3)^{2}$$

Fatoração por Agrupamento

Considere o polinômio $3x^3 + x^2 - 6x - 2$.

Nenhuma das fatorações anteriores podem ser aplicadas nesse exemplo. Vamos fatorar por agrupamento.

Para tanto, procuramos termos que tenham algum fator em comum:

- i) $3x^3 e x^2$ possuem o fator x^2 em comum e 6x e 2 possuem o -2;
- ii) $3x^3$ e -6x possuem o fator 3x em comum, porém x^2 e -2 não possuem fator em comum;
- iii) x^2 e -6x possuem o fator x em comum, porém $3x^3$ e -2não possuem fator em comum.

Portanto, a única opção viável é o agrupamento em i).

Fatoração por Agrupamento

Portanto, fazemos

$$3x^{3} + x^{2} - 6x - 2 = (3x^{3} + x^{2}) + (-6x - 2)$$

$$= [x^{2}(3x) + x^{2} \cdot 1] + [(-2)(3x) - (-2) \cdot 1]$$

$$= x^{2}(3x + 1) - 2(3x + 1) \text{ (o fator } (3x + 1) \text{ \'e comum)}$$

$$= (3x + 1)(x^{2} - 2)$$

Exemplo 6

Usando a fatoração por agrupamento, fatore o polinômio $x^6 - 3x^4 + x^2 - 3$.

Solução: Analisando as possíveis combinações, vemos que podemos juntar os pares com fatores em comum x^6 com x^2 e $-3x^4$ com -3:

$$x^{6} - 3x^{4} + x^{2} - 3 = (x^{6} + x^{2}) + (-3x^{4} - 3)$$

$$= (x^{4} \cdot x^{2} + x^{2} \cdot 1) + [(-3)x^{4} + (-3) \cdot 1]$$

$$= x^{2}(x^{4} + 1) - 3(x^{4} + 1) \text{ (o fator } (x^{4} + 1) \text{ \'e comum)}$$

$$= (x^{4} + 1)(x^{2} - 3)$$

Fatoração com as raízes do polinômio

Se um polinômio $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ tem n raízes reais x_1, x_2, \ldots, x_n , podemos escrever

$$P(x) = (x - x_1)(x - x_2) \cdots (x - x_n).$$

Exemplo 7

Escreva a fatoração dos polinômios abaixo:

1.
$$2x^3 + 3x^2 - 2x$$

Divisão de Polinômios

$$\begin{array}{c|ccccc}
x^3 & +x & x-1 \\
-x^3 + x^2 & x^2 + x \\
\hline
x^2 & +x \\
-x^2 & +x \\
\hline
2x & \\
-2x + 2 & \\
\hline
2
\end{array}$$

Divisão de Polinômios

Assim como fazemos com os números, podemos reescrever o dividendo como sendo o produto do divisor pelo resultado do quociente, mais o resto:

$$x^3 + x = (x - 1)(x^2 + x + 2) + 2$$

Com isso, obtemos:

$$\frac{x^3 + x}{x - 1} = \frac{(x - 1)(x^2 + x + 2) + 2}{x - 1}$$
$$= \frac{(x - 1)}{x - 1}(x^2 + x + 2) + \frac{2}{x - 1}$$
$$= x^2 + x + 2 + \frac{2}{x - 1}$$

Exemplo 8

Calcule as divisões polinomiais a seguir.

1.
$$\frac{x^3 - 5x^2 + 7x - 9}{x - 4}$$

$$2. \ \frac{2x^4 - x^2 - 2}{x^2 + 2x - 1}$$

Solução:

3.
$$\frac{x^5 + 32}{x + 2}$$
 Solução:

$$\begin{array}{r}
x^{5} \\
-x^{5} - 2x^{4} \\
\hline
-2x^{4} \\
2x^{4} + 4x^{3} \\
\hline
4x^{3} \\
-4x^{3} - 8x^{2} \\
\hline
-8x^{2} \\
8x^{2} + 16x \\
\hline
16x + 32 \\
-16x - 32 \\
\hline
0
\end{array}$$

Podemos então escrever:

1.

$$\frac{x^3 - 5x^2 + 7x - 9}{x - 4} = \frac{(x - 4)(x^2 - x + 3) + 3}{x - 4}$$
$$= \frac{x - 4}{x - 4}(x^2 - x + 3) + \frac{3}{x - 4}$$
$$= x^2 - x + 3 + \frac{3}{x - 4}$$

2.

$$\frac{2x^4 - x^2 - 2}{x^2 + 2x - 1} = \frac{(x^2 + 2x - 1)(2x^2 - 4x + 9) - 22x + 7}{x^2 + 2x - 1}$$
$$= \frac{x^2 + 2x - 1}{x^2 + 2x - 1}(2x^2 - 4x + 9) + \frac{-22x + 7}{x^2 + 2x - 1}$$
$$= 2x^2 - 4x + 9 - \frac{22x - 7}{x^2 + 2x - 1}$$

3.

$$\frac{x^5 + 32}{x + 2} = \frac{(x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16)}{x + 2}$$
$$= \frac{x + 2}{x + 2}(x^4 - 2x^3 + 4x^2 - 8x + 16)$$
$$= x^4 - 2x^3 + 4x^2 - 8x + 16$$

Igualdade de Polinômios

Dois polinômios
$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$
 e $Q(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0$ são iguais se, e somente se,

- ightharpoonup ambos possuem o mesmo grau (m = n);
- os coeficientes correspondentes são todos iguais:

$$a_0 = b_0, a_1 = b_1, \ldots, a_n = b_n.$$

Referencias I

F. Safier.

Pré-Calculo: Coleção Schaum. Coleção Schaum. Bookman, 2009.