1734	RESTRICTED 内部文件	MARKS	NOTES P.1	RESTRICTED 内部文件	MARKS	P.2 NOTES
2k ²	$f(x) = 3x^{2} - kx - 2$ $f(k) = 3k^{2} - k^{2} - 2$ $= 2k^{2} - 2$ $- 2 = 0$ $k = 1 \text{ or } -1$ ALTERNATIVELY, By long division, $f(x) = (3x + 2k)(x - k) + (2k^{2} - 2)$ $remainder = 2k^{2} - 2$ $2k^{2} - 2 = 0$ $k = 1 \text{ or } -1$	1M 1A 1M 1A+1A	For sub. x = k Remainder = 0 Divisor must be corre	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2A 1A 1A 2A	ALTERNATIVELY, \(\lambda \text{BDC} = 30^\circ 2A \) \(\lambda \text{ADB} = 180^\circ -30^\circ -80^\circ } = 70^\circ \text{x} = 70 \) \(\text{x} = 70 \) \(\text{y} = \text{x} \) \(= 180 - 70 - 70 \) \(= 40 \) \(\text{Accept } \text{x} = 70^\circ \), etc.
Tota 125 45	1 Marks = (1)(10)+(2)(10)+(3)(5)+(4)(20)+(5)(x) = 125 + 5x 1 number of students = 10 + 10 + 5 + 20 + x = 45 + x + 5x = (45 + x)3 2x = 10 x = 5	1A 1A 1M	Awarded only when the appropriate data are given in numerator a denominator.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1A 1M 1A - 1A+1A	ALTERNATIVELY, $x - 5 \sqrt{x} - 6 = 0$ $(\sqrt{x})^2 - 5\sqrt{x} - 6 = 0$ IM $(\sqrt{x} - 6)(\sqrt{x} + 1) = 0$ 2A $\sqrt{x} = 6$ or -1 1A rejecting $\sqrt{x} = -1$ 1A x = 36 1A
(1 4 = 1 = 1 = 1; (Sy (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2A 2A 1A 3A	ALTERNATIVELY, $(1 + \sqrt{2})^4 = (1 + 2\sqrt{2} + 2)^2 = (3 + 2\sqrt{2})^2 - 2$. $= (9 + 12\sqrt{2} + 8) = 2$. $= 17 + 12\sqrt{2} - 1$. For wrong units, withhold 1 mark for whole question.	(a) $\tan \theta = \frac{1 + \cos \theta}{\sin \theta}$ $\frac{\sin^2 \theta}{\cos \theta} = 1 + \cos \theta$ $\frac{1 - \cos^2 \theta}{\cos \theta} = 1 + \cos \theta$ $2\cos^2 \theta + \cos \theta - 1 = 0$	- 1M - 1A	For sub tan $\theta = \frac{\sin \theta}{\cos \theta}$ For sub $\sin^2 \theta = 1 - \cos^2 \theta$
	$x^{2}y + 2xy + y$ $= y(x^{2} + 2x + 1)$ $= y(x + 1)^{2}$ $= x^{2}y + 2xy + y - y^{3}$ $= y(x^{2} + 2x + 1 - y^{2})$ $= y[(x + 1)^{2} - y^{2}]$ $= y(x + 1 - y)(x + 1 + y)$	- 1A - 2A - 1A		(b) $(2\cos\theta - 1)(\cos\theta + 1) = 0$ or $\cos\theta = -1\pm\sqrt{1^2-4(-1)(2^2-4)(2^2-4)(2^2-4)(2^2-4(-1)(2^2-4)(2^2-4)(2^2)(2^2-4)(2^$	1A 	Accept $\cos \theta = \frac{1}{2}$. Accept $\theta = 60$. Do not accept $\theta = \frac{\pi}{3}$.
	TP CITCIOTES OF	50 ()		Compared the state of the state	سالوا مدد	ì

RESTRICTED 内部文し

DECTRICTED 内部文件

,	RESIRICIED 内部文件 SOLUTION STEPS	F Imarks	P.3	
(a)	(2 marks)		•	_
	$\frac{y-10}{x-0} = \frac{0-10}{10-0}$	1M	If a candidate wrote	9
•	13 : x + y - 10 = 0 or x + y = 10	1A	$\frac{x}{10} + \frac{y}{10} = 1$ 2A	
(b)	(3 marks) Accept $\frac{3}{2}$ A: $(1, 1\frac{1}{2})$	1 A	If a candidate did not	!
	B: $(4, 6)$ C: $(8\frac{1}{2}, 1\frac{1}{2})$	1A	name the points in the the answer, deduct I mark as pp.	
(e)		1A		
	$ \begin{array}{c} 2y \ge 3 \\ x + y - 10 \le 0 \\ 3x \ge 2y \end{array} $	1A 1A 1A	If equality sign omitted, deduct 1 mark from the marks scored in this part.	
			If a candidate gave 420 1 or 2 extra ineq1, 3 extra ineq2, more than 3 extra3.	
(d)	(4 marks)		more than 3 extra3.	
•	$P(1, \frac{1}{2}) = 1 + 3 - 5 = -1$			
	P(4,6) = 4 + 12 - 5 = 11 P(8 $\frac{1}{2}$, $1\frac{1}{2}$) = $\frac{17}{2}$ + 3 - 5 = 6.5	2M	Accept graphical method.	
	Maximum of P = 11 Minimum of P = -1	1A 1A	文有答案。经 2A	
	÷			

	SOLUTION STEPS	MARKS	P.4 NOTES
(a)	(6 marks)		
	Sub. $y = k - x$ in $x^2 + y^2 = 4$ $x^2 + (k - x)^2 = 4$	1111	•
	$2x^{2} - 2kx + k^{2} - 4 = 0(*)$ $(-2k)^{2} - 8(k^{2} - 4) = 0$ $4k^{2} - 8k^{2} + 32 = 0$	1A 1M	For \(\rightarrow \)
	$4k^2 = 32$ $k^2 = 8$ $k = \sqrt{8} \text{ or } -\sqrt{8}$ $= 2\sqrt{2} \text{ or } -2\sqrt{2}$	1A 1A+1A	Accept any figure which can be rounded to 2.8 or -2.8
	ALTERNATIVELY, Distance from (0, 0) to L = $\pm \frac{k}{\sqrt{1^2 + 1^2}}$	IM+1A	IM for distance formula
	Radius of C = 2	1A	lA for ±
	$\pm \frac{k}{\sqrt{1^2 + 1^2}} = 2$	1M	
	$k = 2\sqrt{2}$ or $-2\sqrt{2}$ ($\sqrt{8}$ or $-\sqrt{8}$)	1A+1A	
(ъ)	(6 marks)		·
	(i) Sub. (2,0) in $y = k - x$ or $x = 2$ in (*)	lM ←	न ज onitted
	k = 2	1A	Stand Land 1 A very
	From (*),		
	$2x^{2} - 4x = 0$ $x = 2 \text{ or } 0$ $B = (0,2)$	1A	
	(ii) Centre = (1, 1)		
	Radius = $\sqrt{(2-1)^2+1^2}$	1A	Both must be correct
	(x - 1) ² + (y - 1) ² = 2 Eq. 1 行 でから	lm+1A	•
	ALTERNATIVELY,		
	$\frac{y-2}{x-0} \cdot \frac{y-0}{x-2} = -1$	1M+1A	lM for product of slopes = -1
	$y^2 - 2y = -(x^2 - 2x)$		
	$x^2 + y^2 - 2x - 2y = 0$	1A	
		}	

	RESTRICTED 內部文件 SOLUTION STEPS	MARKS	P.5 NOTES	RESTRICTED 内部文件 solution steps	MARKS	P.6 NOTES
	(2 marks) a, -2, b in G.P. $\frac{-2}{a} = \frac{b}{-2}$ or $(-2)^2 = ab$ ab = 4	1A 1A	This can be omitted. $4u = -2$ $6u = 4$	11. (a) (6 marks) (i) P (both balls are red) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}	1A 1A	Intermediate steps may be omitted. or any figure which can be rounded to 0.11
	(5 marks) -2, b, a in A.P. b + 2 = a - b a = 2b + 2 Sub. in ab = 4, 2(b + 1)b = 4 b ² + b - 2 = 0 (b - 1)(b + 2) = 0 b = 1 or -2 (Accept b = 1) b = 1)	1A 1A 1A 1A	ALTERNATIVELY, $a(\frac{a-2}{2}) = 4$ $a^{2} - 2a - 8 = 0 1A$ $(a - 4)(a + 2) = 0$ $a = 4 \text{ or } -2 1A$ $a = 4 1$	(iii) P (two balls of the same colour) $ \begin{array}{rcl} & & & & & & & & & & & & & & & & & \\ & & & & $	1A	For 3 x p or p ₁ +p ₂ +p ₃ or 0.33 For 1-p or p ₁ +p ₂ +p ₃ or 0.66 to 0.67
(c)	(5 marks) (1) For the G.P. 4, -2, 1, common ratio = $-\frac{1}{2}$ Sum = $\frac{4}{1 - (-\frac{1}{2})}$ = $\frac{8}{3}$	1M 1M	$\begin{bmatrix} a = 4 \\ b = 1 \end{bmatrix} - 1A$ For $S = \frac{a}{1 - r}$	(b) (6 marks) (1) P (both balls are red) = $\frac{2}{7} \times \frac{2}{7}$ = $\frac{4}{49}$ (11) P (two balls of the same colour) = $\frac{2}{7} \times \frac{2}{7} \times 2 + \frac{3}{7} \times \frac{3}{7}$ = $\frac{17}{49}$	1A 1A 1M 1A	or 0.081 to 0.082 For p ₁ +p ₂ +p ₃ or 0.34 to 0.35
	(11) For the G.P. 4, 1, $\frac{1}{4}$, common ratio = $\frac{1}{4}$ Sum = $\frac{4}{1-\frac{1}{4}}$ $\approx 2(\frac{9}{3})$ = $\frac{16}{3}$	1M		(iii)P (two balls of different colours) = 1 - \frac{17}{49} \text{ or } \frac{2}{7} \times \frac{5}{7} + \frac{2}{7} \times \frac{5}{7} + \frac{3}{7} \times \frac{4}{7} = \frac{32}{49} If "required probability" or "P" omitted in all parts, deduct one mark as pp.	1M 1A	For 1-p or p ₁ +p ₂ +p ₃ or 0.65 to 0.66

RESTRICTED 内部文件

RESTRICTED 内部文件

RESTRICTED 内部文件

RESTRICTED 内部文件		P.9 NOTES		RESTRICTED 內部	文件	P.10	
SOLUTION SIEFS	MARKS	NOTES _		SOLUTION STEPS	MARKS	NOTES	
(Syl A only)		•	1/ /0-	1.0 - 1.1			
(a) (7 marks)				1 B only)			
(i) $x^3 + x^2 + x - 4 = 0$ $x^3 + x^2 = -x + 4$ y = -x + 4			(a)	(2 marks) $n + 7 r_{00} + \frac{3}{4}$ \$7500 x $\frac{4}{3}$ or \$7500 + \$7500 x $\frac{1}{3}$	1A		
	1A 1A	This may be omitted. Labelling may be omitted.		= \$10 000	1A	For answer with no	
Graph of $y = -x + .4$ x = 1.1 or 1.2	1A	Labelling may be omitted.				units, withhold this mark.	
(ii) Testing sign of $x^3 + x^2 + x - 4$ for values of			(Ъ)	(5 marks) E = C + kN	_ IM		
x to 2 decimal places.	1M			10 000 = C + 300k 16 000 = C + 500k	— 1M — 1A — 1A		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·		200k = 6 000	— ім	Attempt to solve for k or C	
1.12 1.13 1.14 +				k = 30 C = 1000	— 1A		
1.15 1.16 +	1M	For change of sign	(c)) (2 marks)			
1.151 to 1.155 +	1 A			E = 1000 + 30N -	2A		
x = 1.15	1A		(ď) (3 marks)			
ALTERNATIVELY, Graphical Method.				E = 4750 x 4	1A		
First graph (magnified) Point of intersection lies between	1111			= 19 000	IM	For substitution	
1.15 and 1.16 Second graph (magnified).	1A 1M	1.		19 000 = 1000 + 30N	_ îA	Tot Substitution	
x = 1.15	1A	#					
(b) (5 marks)				,			
(1) $2500(1 + r\chi)^3 + 2500(1 + r\chi)^2 + 2500(1+r\chi)$ = 10 000	2A	or equivalent form	-				
$(1 + r\bar{z})^3 + (1 + r\bar{z})^2 + (1 + r\bar{z}) = 4$	1						
(ii) put x = 1 + r%	1M	This may be omitted.		•			
1.15 = 1 + rZ r = 15	1A	Accept r = 15%					
•				•			
				•			
RESTRICTED 汽部文	- :学く	ا پ		✓ RESTRICTED 内部	了文件	`	