1 Komponenty pozorovacího kalendáře

V této části je popsáno s čím se lze v aplikaci při jejím používání setkat na výstupu z prohlížeče. Každá kapitola kromě první popisuje jednu stranu, ke které se dá přistoupit z horního menu webové aplikace. V první kapitole je popsáno nastavení místa a času, které je součástí každé další komponenty.

1.1 Místo a čas

Pro pozorovací výpočty je potřeba nejdříve nastavit některé údaje týkající se místa a času.

- Zeměpisná šířka vodorovné linky kolem obvodu Země vyjadřující úhel mezi bodem na povrchu a rovníkem, procházejícím středem planety. V aplikaci je potřebný k výpočtu hodinového úhlu, azimutu a výšky (příslušné rovnice budou uvedeny dále). Kladnou částí značím sever, takže spodní hranice -90° přísluší jižnímu pólu a horní hranice +90° pólu severnímu.
- Zeměpisná délka svislé linky kolem obvodu Země vyjadřující úhel mezi bodem na povrchu a rovinou Greenwichského (nultého) poledníku. V aplikaci je potřebný pro výpočet hvězdného času. Kladnou částí značím západ, což není v našich končinách zvykem. Je to způsobeno tím, že javascriptové aplikace, na kterých jsem porovnával výpočty časů, jsou od amerických autorů. Později jsem to už nepřehazoval, abych snížil možnost chyby.
- Časové pásmo u nás, včetně sousedního Slovenska, se čas od Greenwichského liší o 1 hodinu na celém území Česka a Slovenska. V aplikaci je tedy čas GMT nastaven na +1. Interně se počítá s časem UTC, bez časového pásma. Ten je přičtěn až k výsledku. Jen bych si snad dovolil zmínit, že právě časové pásmo bylo v průběhu programování nejčastějším zdrojem chyb a několikrát jsem chybu ve špatném výsledku hledal hodiny, než jsem příčinu odhalil v posunutí časovým pásmem.
- Letní čas pokud je zapnut letní čas, s GMT se nakládá jako by se rovnal
 +2. V případě, že není nalezena uložená hodnota v Cookies, letní čas se automaticky zapne, pokud je nastaven počáteční čas na duben až říjen.
- Datum nastavuje požadované rozmezí nebo v některých případech jen jeden konkrétní den pro výpočty. Grafické rozhraní je zajišťováno javascriptovou knihovnou JSCalendar.

1.2 Východ / západ Slunce

Tato strana vypisuje východy a západy Slunce i s kulminací podle výše definovaných typů podle definovaného rozmezí dat den po dni. V polárních oblastech může dojít k situaci, že Slunce v daný vůbec nevyjde nebo naopak nezapadne. Tyto situace jsou označeny jako NR (never rises) a NS (never sets). Několik dalších webových stránek práce zobrazuje barvy v závislosti na platnosti dvou hraničních bodů — oficiálního západu (východu) a astronomického soumraku (úsvitu).

1.3 Nejjasnější hvězdy s časy

Pro rychlý přehled jasných hvězd jsem zpracoval tabulku 50 nejjasnějších hvězd ze zdroje na adrese http://www.cosmobrain.com/cosmobrain/res/brightstar.html. Vedle vlastního názvu hvězdy je zobrazena její Bayer / Flamsteedova identifikace, zdánlivá magnituda, rektascenze, deklinace a východ / střed / západ objektu. Přehled je uveden pouze pro jeden den kvůli zjednodušení.

Pozadí řádku v tabulce je obarveno podle možnosti pozorování. Pokud nám naše zeměpisná šířka pozorování vůbec neumožňuje, protože hvězda nevychází, barva je červená. Dále už záleží na zeměpisné délce. Červená, pokud hvězda vychází a zapadá ve dne. Oranžová, pokud lze hvězdu pozorovat alespoň během občanského soumraku. A zelená, pokud můžeme hvězdu pozorovat za noci téměř nerušené rozptylem slunečního světla. Pro rychlý přehled východu a západu Slunce jsou jejich časy pro daný den vypsány nad tabulkou.

Slunce dokáže občas výrazně znepříjemnit pozorování prostřednictvím Měsíce i za astronomické noci. Proto aplikace vypočítává jeho aktuální fázi, kterou zobrazuje nad tabulkou jako png obrázek.

1.4 Bright Star Catalogue

Na první stránce se nachází vyhledávací tlačítko pro zúžení výběru, načtení celého katalogu by zabíralo poměrně dost času. Po porovnání řetězce s katalogovými označeními se objeví tabulka objektů, které vyhovují danému řetězci. Jednotlivé řádky zobrazují identifikace, jak je zobrazují různé katalogy a přidává k tomu i údaj o rektascenzi a deklinaci. Protože není zatím možnost přenastavit datum, dal jsem je raději zobrazit v epoše J2000, jak leží v databázi. Poslední

sloupec "upravit" slouží pro úpravu údajů o hvězdě. Spolu s možností "přidat hvězdu" představují administrační rozhraní této části aplikace.

Po výběru objektů k zobrazení zaškrtávacím tlačítkem se zobrazí podobná tabulka jako u 50 nejjasnějších hvězd. Zde je navíc obohacena o možnost zobrazení podle jednotlivých dní v daném intervalu a ne pouze pro jeden.

1.5 Proměnné hvězdy

Katalog proměnných hvězd v této aplikaci vznikl z katalogu na URL adrese http://www.as.up.krakow.pl/ephem/ a doplněním údaji z GCVS katalogu, jako jsou rektascenze, deklinace nebo vlastní pohyby hvězd. Cílem této části aplikace je zobrazovat minima proměnných hvězd s přihlédnutím k pozorovacím podmínkám, jako je sluneční svit, výška nad obzorem nebo měsíční fáze.

Po specifikaci názvu hvězdy se ukážou hvězdy obsahující hledaný řetězec. Vedle standardních hodnot, které jsem už zmínil v jiných částech, přibyly tři nové. Použitá minima nabývají hodnot PRI, pokud má hvězda v periodě pouze jedno minimum a ALL, pokud nastávají minima primární i sekundární. Sloupec m_0 obsahuje juliánský čas prvního minima od JD = 2452500. Perioda je délka jednoho cyklu ve dnech.

Po kliknutí na jméno hvězdy se zobrazuje podobná tabulka jako v jiných částech aplikace. Hlavní rozdíl spočívá v tom, že řádky nejsou oddělené po dnech, ale po jednotlivých okamžicích minima. Zatímco sloupce východů a západů zůstaly, přibyly údaje o typu minima, výšce nad obzorem a azimutu pro daný okamžik. Nad tabulkou se zobrazuje i pořadové číslo cyklu od okamžiku m_0 a aktuální fáze na křivce podle vzorce $f = frac(\frac{JD-m_0}{P})$, kde P značí periodu a frac funkci pro navrácení desetinné části.

Časy minim lze zobrazit i do mapky a to zaškrtnutím vybraných hvězd a stiskem tlačítka "vykreslit". Takto lze zobrazit až 5 hvězd naráz v časovém intervalu až 3 dní. Na mapě se zobrazí průběh výšky požadovaného objektu v čase. Primární minima se vyznačí kotoučky o průměru 10 pixelů, sekundární 6 pixelů. V těchto časech se navíc zobrazí aktuální fáze Měsíce i s jeho výškou. Podmínkou pro vyznačení minima je i minimální výška dříve definovaná v aplikaci. K názvu hvězdy, které není vyznačeno žádné minimum, je připsáno "(x)".

Čas je vyznačen nespojitě tak, aby zobrazoval především noc. Nejtmavší částí je astronomická noc, kdy je Slunce více než 18° pod obzorem. Světlejší je čas mezi západem a astronomickým soumrakem a nejsvětlejší je den, jehož pás na jedné straně nepřesahuje více než hodinu a půl. Hranice mezi jednotlivými dny je vyznačena modrým pruhem. Mapa je generována jako png obrázek a veškeré údaje se předávají přes url get metodou, lze ji tedy zobrazovat i externě. Navíc lze obrázek vygenerovat pro tisk, kde se podklad vykresluje jako čistě bílý.

1.6 Planety a Měsíc

Rektascenze a deklinace se u planet vzhledem k jejich blízkosti mění, podobně jako u Slunce, poměrně rychle. K jejich výpočtům jsem využil části PHP knihovny pro výpočet poloh od autora Jiřího Jozifa. Ta do výpočtů zahrnuje i korekce gravitačního působení hmotných objektů sluneční soustavy. Po získání rektascenze a deklinace se už spočítá východ a západ jednoduše. Odchylka nepřesahuje více než 2 minuty (případ Merkuru, který se každý den posune se Sluncem o 4 minuty).

Problém představuje Měsíc. Ten je natolik blízko, že se u něj každý den posune čas východu o zhruba 50 minut. Některé dny k východu nebo západu ani

nedochází. Pokud jeden den zapadá např. ve 23:40, zapadne přibližně v 0:30 o dva dny později. Výpočet je prováděn iterativně. V prvním kroku se standardně nastaví čas na 0:00 požadovaného dne. Po získání hodnoty času se tento čas nastaví a výpočet se opakuje. Takto se provedou 3 kroky postupně pro východ, průchod a západ, tedy dohromady 9 výpočtů polohy. Pokud některý z těchto časů vyskakuje z počítaného dne, místo času se napíše "***". Tento formát jsem převzal z hvězdářské ročenky Hvězdárny a planetária hl. m. Prahy, podle které jsem prováděl i kontroly vypočtených časů.

1.7 Nastavení

Zde se nastavují parametry místa, případně času globálně pro celou aplikaci, které byly popsány už výše v sekci Místo a čas. Ve formuláři je navíc jen minimální výška, která slouží jako spodní hodnota pro vykreslení kotoučků na mapce minim proměnných hvězd. Měsíc v této mapce touto hodnotou ovlivněn není, protože i když je kousek pod požadovaným obzorem, stále může svým svitem ovlivňovat blízké okolí.

Další částí je administrace předem definovaných lokací, která umožňuje jejich přidávání, úpravu a mazání. K místu se váže jen zeměpisná délka a zeměpisná šířka, čas je součástí stálého, globálního nastavení.