

اندازه گیری و کنترل کامپیوتری

تمرین سوم دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف نیم سال دوم ۰۰-۹۹

استاد: **جناب آقای دکتر همتیار** نام و نام خانوادگی: **امیرمهدی نامجو - ۹۷۱۰۷۲۱۲**

$$27 = 1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 = (11011)_2$$

$$0.156 \times 2 = 0.312 \Rightarrow 0$$

$$0.312 \times 2 = 0.624 \Rightarrow 0$$

$$0.624 \times 2 = 1.248 \Rightarrow 1$$

$$0.248 \times 2 = 0.496 \Rightarrow 0$$

$$0.496 \times 2 = 0.992 \Rightarrow 0$$

$$0.992 \times 2 = 1.984 \Rightarrow 1$$

$$0.156 \approx (0.001001)_2$$

$$27.156 \approx (11011.001001)_2$$

مقدار دقیق عدد باینری بدست آمده: $27 + 2^{-3} + 2^{-6} = 27.140625$ است.

سوال ۸

$$(\overline{S} \cdot W \cdot R) + (S \cdot \overline{R})$$

 $360\mu V/\deg C \times 530\deg C = 0.190800$

مدار آن به صورت زیر می شود:

یکی از مقاومت ها 100 فرض شده و مقاومت دیگر با رابطه

$$0.190800 = \frac{100}{100 + R} \times 10 \to R \approx 5141\Omega$$

تعیین شده است.

سوال ۱٦

$$100101 \Rightarrow \frac{37}{64} = 0.578125$$
 (آ

$$v_{out} = 10 \times 0.578125 = 5.78128V$$

ب)
$$\Delta V = 10 \times 2^{-6} = 0.15625$$

N=1 با توجه به بازه داده شده، بازه ولتاژی ما 10 ولت است و تعداد حالتهای موردنیاز ما N=1 بازه داده شده، بازه ولتاژی ما 10 ولت است و تعداد حالتهای موردنیاز ما N=1 است. پس N=1 و نزدیک ترین عدد توان دو به N=1 عدد N=1 است. پس N=1 است. پس N=1 است. پس N=1 ولتاژ رفرنس N=1 ولتاژ و

همچنین از آن جایی که باید در زمان 2.5 میکروثانیه از 0 تا 1024 رفته و برگردد، زمان بین عوض شدن خروجی به صورت: $\delta t = \frac{2.5ms}{2048} = 1.221 \mu s$ خواهد بود.

(40 bas - 10) فلوچارت بدین صورت است (40 bas - 10)

سوال ۲۴

به نظر میرسد یک منفی در توان عبارت ورودی صورت داده شده جا افتاده است. وگرنه جواب کلا منفی میشود که منطقی نیست.

$$V(t) = 4(1 - e^{-t/\tau})$$

$$dV/dt = \frac{4}{\tau}e^{-t/\tau}$$

$$\frac{4}{\tau}e^{-t/\tau} \le \frac{5.00}{2^{10} \times \tau}$$

بیش ترین مقدار سمت چپ به ازای t=0 اتفاق می افتد.

$$\tau \ge \frac{4 \times 2^{10} \times (44 \times 10^{-6})}{5} = 36.0448 ms$$

يس حداقل مقدار au حدود 36ms است.

سوال ۲۸

عدد 100 هزار نمونه بر ثانیه به معنی این است که هر نمونه در فاصله $10\mu s$ گرفته میشود. اگر بخواهیم نمونهها را هر 5ms=5000 را میتوانیم به ازای هر نمونه صرف پردازش سیگنال و موارد مشابه بکنیم.

سوال ۳۲

برای حل این سوال باید بخشی از سوال 31 را حل کنیم. برای دما 20 تا 30 متناظر با 30 تا 4 ولت است. برای نگاشت آن به بازه 30 تا 30 ولت داریم:

$$\begin{cases} V = mV_T + V_0 \\ 0 = 0.8m + V_0 \\ 2.5 = 4m + V_0 \end{cases} \Rightarrow V = 0.78125V_T - 0.625$$

برای فشار 1 تا 100psi، بازه مد نظر 0.1 تا 10 ولت خواهد بود که برای نظیر کردن آن به 0 تا 2.5 ولت داریم:

$$\begin{cases} V = mV_P + V_0 \\ 0 = 0.1m + V_0 \\ 2.5 = 10m + V_0 \end{cases} \Rightarrow V = 0.253(V_P - 0.1)$$

برای شار (دبی) بازه 30 تا 90 گالن بر دقیقه نظیر 4.5 تا 3.5 ولت است که باید به 0 تا 2.5 نظیر بشود.

$$\begin{cases} V = mV_F + V_0 \\ 0 = 4.5m + V_0 \\ 2.5 = 13.5m + V_0 \end{cases} \Rightarrow V = 0.2778V_F - 1.25$$

با توجه به این موارد داریم:

$$V = 0.781(V_T - 0.8)$$

$$V = 0.253(V_P - 0.1)$$

$$V = 0.277(V_F - 4.5)$$

هر قسمت را به صورت یک مدار جدا با منبع تغذیه 10 ولت رسم میکنیم. نمودار آنها به صورت زیر میشود. در این نمودارها از تقویت کننده تفاضلی و دنباله کننده ولتاژ استفاده شده است.

سوال ۳٦

ADC است. با توجه به این که +120mV تا $2\times-10=-120mV$ است. با توجه به این که داده شده دو قطبی است داریم

$$INT(N) = 2^{12} (\frac{V_{ADC}}{5} + \frac{1}{2})$$

در نتیجه 00 متناظر با 10mm و معادل با -2.5V خواهد بود و FF معادل با 10mm و معادل با $V=5\times4095/4096-2.5=2.4988V$ با

با فرض مبدا گذر بودن ولتاژ

 $V_{out} = 20.833V_{in}$

خواهد بود. یعنی مداری با بهره 20.833 داریم. با توجه به نویز داده شده، یعنی این نویز معادل خواهد بود با:

 $5mV \times 20.83 \times \sqrt{2} \approx 0.147V$

در نتیجه یعنی نویز ± 0.147 روی همه دادهها داریم.

این معادل است با

$$\frac{0.147}{(2.5 - (-2.5))} = \times \frac{2^n}{2^1 2} \to n = 6.9$$

یعنی در اثر این نویز حدودا 7 بیت کم ارزش از 12 بیت میتوانند دچار تغییر بشوند.

ب) نرخ نوسان خود سیستم اصلی 1/1.5=0.667 است. در نتیجه فرکانس نویز بالاست و باید یک Low-Pass Filter یک Low-Pass Filter اضافه کنیم. با فرض این که کاهش 99 درصدی بخواهیم بدهیم داریم:

$$0.01 = 1/\sqrt{1 + (60/f_c)^2} \rightarrow f_c = 0.6Hz$$

با توجه به این موضوع باید ببینم سیگنال اصلی که داریم چقدر کاهش بهره دارد:

$$\frac{V_{out}}{V_{in}} = 1/\sqrt{1 + (\frac{0.667}{0.6})^2} = 0.669$$

20.83/0.669 = 31.14 . هم بدهیم Gain در نتیجه باید افزایش

در کل نیاز به یک Low-Pass Filter و یک تقویت کننده Noninverting (یا تقویت کنندههای دیگر) داریم تا سیگنال مورد نیاز برای ورودی ADC را فراهم کنیم.

با فرض استفاده از خازن $1\mu F$ ای داریم:

$$0.6 = \frac{1}{2\pi RC} \Rightarrow R = 265.258k\Omega$$

نتیحه نهایی به صورت شکل زیر خواهد بود:

فلوچارت اصلی به این شکل میشود. میتوان یکسری مرحله Initialization هم مانند مثال 70 صفحه 17 کتاب در نظر گرفت که این جا رسم نشده است. با فرض این که ADC ما دوقطیب 5 ولتی باشد و DAC ما هم 10 ولت تک قطبی بوده و هر دو 10

بیتی باشند داریم:

$$X := (V1/5 + 1/2)2^{8}$$

$$Y := (V2/5 + 1/2)2^{8}$$

$$Z := (V1/5 + 1/2)(V2/5 + 1/2)2^{16}$$

$$Z := Z/2^{8} \Rightarrow Z := (V1/5 + 1/2)(V2/5 + 1/2)2^{8}$$

$$V_{out} := 10(Z/2^8) = 10(V1/5 + 1/2)(V2/5 + 1/2)$$

قطعا با فرضهای متفاوت برای ADC و DAC های مورد استفاده، جواب متفاوتی بدست می آید و در این مورد سوال چیزی نگفته است.

سوال ۴۴