

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

syn-5,10,15-Tris(dichloromethyl)-5,10,15-trihydroxy-5H-diindeno-[1,2-a:1',2'-c]fluorene dichloromethane 0.82-solvate

Gregory W. Morrison, Frank R. Fronczek* and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA Correspondence e-mail: ffroncz@lsu.edu

Received 1 May 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 90 K, P = 0.0 kPa; mean $\sigma(C-C) = 0.0 \text{ kPa}$ 0.005 Å; some non-H atoms missing; R factor = 0.053; wR factor = 0.156; data-toparameter ratio = 16.1.

The title compound, C₃₀H₁₈Cl₆O₃·0.82CH₂Cl₂, consists of a slightly cup-shaped seven-ring truxene nucleus with hydroxy and dichloromethyl substituents at stereocenters 5R/S, 10R/S and 15R/S. C-Cl distances are in the range 1.759 (4)-1.783 (3) A. Solvent channels parallel to the b axis appear to be partially occupied by highly disordered dichloromethane solvent molecules, the contribution of which were removed from the refinement with the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148-155]. Only one of the OH groups forms a hydrogen bond, which is intermolecular to another OH group, forming centrosymmetric dimers in the crystal.

Related literature

Acta Cryst. (2012). E68, o1755-o1756

For further details of the synthesis and information on the synthesis of buckybowls, see: Abdourazak et al. (1995). For applications of truxenes, see: Diring & Ziessel (2009). Similar structures have been reported by De Frutos et al. (1999); Amsharov & Jansen (2007) and Menard et al. (2011).

Experimental

Crystal data

C₃₀H₁₈Cl₆O₃·0.82CH₂Cl₂ $\gamma = 68.798 (2)^{\circ}$ $V = 1576.88 (9) \text{ Å}^3$ $M_r = 708.78$ Triclinic, $P\overline{1}$ Z = 2a = 10.9719 (4) Å Mo $K\alpha$ radiation b = 11.6186 (3) Å $\mu = 0.72 \text{ mm}^{-1}$ c = 14.0431 (5) ÅT = 90 K $\alpha = 71.009 (2)^{\circ}$ $0.38 \times 0.13 \times 0.05 \text{ mm}$ $\beta = 85.291 (2)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Minor, 1997) with an Oxford Cryostream $T_{\min} = 0.814, \ T_{\max} = 0.972$ 10851 measured reflections cooler Absorption correction: multi-scan 5744 independent reflections (SCALEPACK; Otwinowski & 3608 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.046$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 356 parameters $wR(F^2) = 0.156$ H-atom parameters constrained S = 0.97 $\Delta \rho_{\text{max}} = 0.42 \text{ e Å}^{-1}$ $\Delta \rho_{\rm min} = -0.32~{\rm e}~{\rm \mathring{A}}^{-3}$ 5744 reflections

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1-H91···O3 ⁱ	0.84	2.04	2.834 (3)	158

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank A. H. Abdourazak and P. W. Rabideau for providing the sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2201).

References

Abdourazak, A. H., Marcinow, Z., Sygula, A., Sygula, R. & Rabideau, P. W. (1995). J. Am. Chem. Soc. 117, 6410-6411. Amsharov, K. Y. & Jansen, M. (2007). Z. Naturforsch. Teil B, 62, 1497-1508. Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. De Frutos, O., Gomez-Lor, B., Granier, T., Gutierrez-Puebla, E., Monge, M. A. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204-207. Diring, S. & Ziessel, R. (2009). Tetrahedron Lett. 50, 1203-1208. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

organic compounds

Menard, M. C., Fronczek, F. R., Watkins, S. F. & Dhar, R. K. (2011). Acta Cryst. E**67**, o1–o2.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

Acta Cryst. (2012). E68, o1755-o1756 [doi:10.1107/S1600536812020703]

syn-5,10,15-Tris(dichloromethyl)-5,10,15-trihydroxy-5*H*-diindeno[1,2-*a*:1',2'-*c*]fluorene dichloromethane 0.82-solvate

Gregory W. Morrison, Frank R. Fronczek and Steven F. Watkins

Comment

The nucleus of the title compound is truxene ($C_{27}H_{18}$, CAS: 548–35-6), a nearly planar seven-ring aromatic molecule. Compounds containing this ring system have been previously investigated for use in liquid crystal devices, chiral recognition systems, and fluorescent probes (Diring & Ziessel, 2009). The title compound was synthesized as an intermediate material in the formation of buckybowls (half-buckminsterfullerenes, Abdourazak *et al.*, 1995). Two isomers were separated by chromatography, and the yellow component is herein shown to be the *syn* isomer, with all three OH groups on the same side of the truxene nucleus. The molecule has a slightly cupped shape, with three hydroxy groups oriented toward the inside of the cup and three dichloromethyl groups on the outside of the cup. Relative to the mean plane of the central 6-ring (which is a slightly puckered crown, δ (r.m.s.) = 0.01 (1) Å), the three pairs of carbon atoms on the outer rim of the molecule average 0.36 (1) (C4, C5), 0.15 (1) (C13, C14) and 0.07 (1) (C22, C23) Å above the plane. Of the three OH groups available for hydrogen bond formation, only O1 forms a hydrogen bond, to OH group O3 at 2 - x, 1 - y, 1 - z, thus there are centrosymmetric dimers about 1, 1/2, 1/2, as shown in Fig. 2. A solvent channel with a unit cell volume of 330 ų, parallel to the **b** axis and centered at 1/2**a**, displays residual electron density which presumably represents remnants of disordered solvent molecules most of which have evaporated from the crystal since the original synthesis. Procedure SQUEEZE, as implemented in *PLATON* (Spek, 2009), subtracted 69 electrons from the observed structure amplitudes as an approximate solvent contribution.

Experimental

A solution of lithium dicyclohexylamine was prepared by adding 93 mmol dicyclohexeylamine and 93 mmol n-butyl-lithium to 75 ml of dried tetrahydrofuran (THF). This solution was added dropwise over one hour to a suspension of 7.3 mmol truxenone in 100 ml of THF and 6 ml of dichloromethane (DCM) at 273 K. The solution was stirred for one hour and then quenched with aqueous ammonium chloride. The THF was removed under reduced pressure and the remaining mixture was extracted with DCM. The resulting organic layer was washed with aqueous citric acid, dried and evaporated. Flash chromatography (silica gel, DCM) was used to isolate 5,10,15-tris(dichloromethyl)-5,10,15-trihydroxy-5*H*-Diindeno[1,2 - a:1',2'-c] fluorene and further chromatography (silica gel, DCM-hexane 3:1) was used to separate the compound into two components. The *syn*- component reported here crystallized from DCM as yellow blades.

Refinement

Observed structure amplitudes were modified by PLATON to eliminate diffuse electron density found in the solvent accessible channel. All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic-H) and 1.00 (alkyl-H) Å, O—H distances 0.84 Å, and displacement parameters $U_{iso}=1.2U_{eq}$ (aromatic and alkyl C) and $1.5U_{eq}$ (hydroxyl-O), and thereafter refined as riding. A torsional parameter was refined for

each OH group.

Computing details

Data collection: *COLLECT* (Bruker, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1View of the title compound (50% probability displacement ellipsoids). H atoms are not shown.

Figure 2 Hydrogen-bonded dimer with 40% probability ellipsoids. Only OH hydrogen atoms are illustrated.

syn-5,10,15-Tris(dichloromethyl)-5,10,15-trihydroxy- 5H-diindeno[1,2-a:1',2'-c]fluorene dichloromethane 0.82solvate

Crystal data

$C_{30}H_{18}Cl_6O_3 \cdot 0.82CH_2Cl_2$	Z=2
$M_r = 708.78$	F(000) = 717
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.493 \; {\rm Mg \; m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 10.9719 (4) Å	Cell parameters from 5548 reflections
b = 11.6186 (3) Å	$\theta = 2.6 - 25.4^{\circ}$
c = 14.0431 (5) Å	$\mu = 0.72 \; \mathrm{mm}^{-1}$
$\alpha = 71.009 (2)^{\circ}$	T = 90 K
$\beta = 85.291 (2)^{\circ}$	Blade, yellow
$\gamma = 68.798 (2)^{\circ}$	$0.38 \times 0.13 \times 0.05 \text{ mm}$
$V = 1576.88 (9) \text{ Å}^3$	

$\gamma = 68.798 (2)^{\circ}$ $V = 1576.88 (9) \text{ Å}^3$	$0.38 \times 0.13 \times 0.05 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer with an Oxford Cryostream cooler	Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.814$, $T_{\max} = 0.972$
Radiation source: fine-focus sealed tube	10851 measured reflections
Graphite monochromator	5744 independent reflections
Detector resolution: 9 pixels mm ⁻¹	3608 reflections with $I > 2\sigma(I)$
CCD rotation images, thick slices scans	$R_{\rm int}=0.046$

$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$	$k = -13 \rightarrow 13$
$h = -13 \rightarrow 13$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

 $wR(F^2) = 0.156$ neighbouring sitesS = 0.97H-atom parameters constrained5744 reflections $w = 1/[\sigma^2(F_o^2) + (0.0932P)^2]$ 356 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$

0 restraints $(\Delta/\sigma)_{max} < 0.001$ 0 constraints $\Delta\rho_{max} = 0.42 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant $\Delta\rho_{min} = -0.32 \text{ e Å}^{-3}$ direct methods Extinction correction

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0066 (17)

Hydrogen site location: inferred from

Special details

 $R[F^2 > 2\sigma(F^2)] = 0.053$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9165 (3)	0.2835 (3)	0.4130(2)	0.0263 (8)	
C2	1.0278 (3)	0.2228 (3)	0.3532(2)	0.0285 (8)	
C3	1.0854 (4)	0.0926(3)	0.3608(3)	0.0350 (9)	
H3	1.0534	0.0294	0.405	0.042*	
C4	1.1916 (4)	0.0571 (3)	0.3017(3)	0.0456 (10)	
H4	1.2323	-0.0319	0.3059	0.055*	
C5	1.2389 (4)	0.1469 (3)	0.2375 (3)	0.0457 (10)	
H5	1.31	0.1198	0.1967	0.055*	
C6	1.1834 (4)	0.2786 (3)	0.2315 (3)	0.0364 (9)	
H6	1.217	0.3409	0.1879	0.044*	
C7	1.0783 (3)	0.3157 (3)	0.2909(2)	0.0290 (8)	
C8	1.0065 (3)	0.4414 (3)	0.3096 (2)	0.0256 (8)	
C9	1.0110(3)	0.5655 (3)	0.2661 (2)	0.0287 (8)	
C10	1.0801 (4)	0.6173 (3)	0.1721 (3)	0.0354 (9)	
C11	1.0489 (4)	0.7564(3)	0.1689(2)	0.0373 (9)	
C12	1.1007 (5)	0.8464 (4)	0.1053 (3)	0.0513 (11)	
H12	1.1611	0.8243	0.056	0.062*	
C13	1.0610 (5)	0.9699 (4)	0.1163 (3)	0.0573 (12)	
H13	1.0946	1.0329	0.0739	0.069*	
C14	0.9740 (5)	1.0007 (3)	0.1877 (3)	0.0511 (11)	
H14	0.9473	1.0856	0.1934	0.061*	

C15	0.9236 (4)	0.9111 (3)	0.2522 (3)	0.0393 (9)
H15	0.864	0.9338	0.3018	0.047*
C16	0.9621 (4)	0.7877 (3)	0.2427 (2)	0.0341 (9)
C17	0.9350(3)	0.6691 (3)	0.3023 (2)	0.0290 (8)
C18	0.8517 (3)	0.6459 (3)	0.3803 (2)	0.0268 (8)
C19	0.7502(3)	0.7421 (3)	0.4248 (2)	0.0286 (8)
C20	0.6942 (3)	0.6552 (3)	0.5068 (2)	0.0306 (8)
C21	0.6064 (4)	0.6882 (3)	0.5771 (3)	0.0379 (9)
H21	0.5725	0.7754	0.5784	0.046*
C22	0.5674 (4)	0.5929 (4)	0.6468 (3)	0.0430 (10)
H22	0.5065	0.6146	0.6959	0.052*
C23	0.6178 (4)	0.4662 (4)	0.6442 (3)	0.0409 (9)
H23	0.5888	0.402	0.6906	0.049*
C24	0.7099 (4)	0.4311 (3)	0.5749 (2)	0.0328 (8)
H24	0.7458	0.3434	0.5751	0.039*
C25	0.7485 (3)	0.5262 (3)	0.5056 (2)	0.0273 (8)
C26	0.8442 (3)	0.5207(3)	0.4249 (2)	0.0259 (7)
C27	0.9198 (3)	0.4203 (3)	0.3888 (2)	0.0250 (7)
C28	0.7807(3)	0.2974 (3)	0.3769 (2)	0.0301 (8)
H28	0.7126	0.3475	0.4147	0.036*
C29	1.0181 (4)	0.6046 (3)	0.0826 (2)	0.0381 (9)
H29	1.0298	0.5109	0.0982	0.046*
C30	0.6479 (4)	0.8437 (3)	0.3406 (3)	0.0382 (9)
H30	0.6955	0.8851	0.2841	0.046*
Cl1	0.75059 (9)	0.38564 (9)	0.24653 (6)	0.0407 (3)
C12	0.76348 (10)	0.14417 (8)	0.40087 (7)	0.0441 (3)
C13	0.84936 (10)	0.69516 (9)	0.06527 (7)	0.0513 (3)
C14	1.09646 (12)	0.65136 (9)	-0.03237(7)	0.0540 (3)
C15	0.53505 (11)	0.96814 (9)	0.38451 (9)	0.0596 (3)
Cl6	0.56204 (12)	0.76978 (10)	0.29285 (9)	0.0644 (4)
O1	0.9273 (2)	0.21078 (19)	0.51741 (15)	0.0296 (5)
H91	1.0026	0.1931	0.5403	0.044*
O2	1.2147 (3)	0.5482 (3)	0.17035 (19)	0.0452 (7)
H92	1.2533	0.5455	0.2207	0.068*
O3	0.8099 (2)	0.8111 (2)	0.46100 (17)	0.0318 (6)
H93	0.764	0.8384	0.5054	0.048*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.030(2)	0.0224 (14)	0.0263 (17)	-0.0106 (14)	0.0010 (15)	-0.0066 (13)
C2	0.026(2)	0.0287 (16)	0.0279 (18)	-0.0063 (14)	-0.0052(15)	-0.0080(14)
C3	0.032(2)	0.0283 (16)	0.043(2)	-0.0056 (15)	-0.0052(18)	-0.0143 (15)
C4	0.039(2)	0.0364 (19)	0.059(3)	-0.0018 (18)	-0.004(2)	-0.0236 (19)
C5	0.033(2)	0.048(2)	0.053(2)	0.0002 (19)	0.001(2)	-0.029(2)
C6	0.034(2)	0.0423 (19)	0.0331 (19)	-0.0113 (17)	0.0019 (17)	-0.0151 (16)
C 7	0.027(2)	0.0331 (16)	0.0288 (18)	-0.0097(15)	0.0005 (16)	-0.0140(15)
C8	0.0245 (19)	0.0295 (16)	0.0249 (17)	-0.0098 (14)	-0.0005 (15)	-0.0107 (14)
C9	0.032(2)	0.0347 (17)	0.0242 (17)	-0.0182 (15)	0.0033 (15)	-0.0093 (14)
C10	0.038(2)	0.0448 (19)	0.0316 (19)	-0.0234(18)	0.0078 (17)	-0.0142(16)

C11	0.057(3)	0.0422 (19)	0.0252 (18)	-0.0323 (18)	-0.0001 (18)	-0.0098 (16)
C12	0.079(3)	0.064(2)	0.032(2)	-0.050(2)	0.018(2)	-0.0173 (19)
C13	0.098 (4)	0.054(2)	0.039(2)	-0.056(3)	0.001(3)	-0.0072(19)
C14	0.092 (4)	0.0381 (19)	0.036(2)	-0.039(2)	-0.001(2)	-0.0082(17)
C15	0.061(3)	0.0322 (17)	0.0283 (18)	-0.0247(18)	-0.0066(18)	-0.0034(15)
C16	0.044(2)	0.0349 (17)	0.0269 (18)	-0.0211 (16)	-0.0052(17)	-0.0050(15)
C17	0.035(2)	0.0275 (15)	0.0279 (18)	-0.0148(15)	-0.0020(16)	-0.0088(14)
C18	0.030(2)	0.0279 (15)	0.0244 (17)	-0.0108(14)	-0.0003 (15)	-0.0099(14)
C19	0.031(2)	0.0244 (15)	0.0323 (18)	-0.0115(14)	-0.0024 (16)	-0.0094 (14)
C20	0.027(2)	0.0344 (17)	0.0325 (19)	-0.0086(15)	-0.0002 (16)	-0.0150(15)
C21	0.030(2)	0.0397 (18)	0.047(2)	-0.0106 (16)	0.0038 (19)	-0.0201 (17)
C22	0.033 (2)	0.059(2)	0.045 (2)	-0.0178 (19)	0.0121 (19)	-0.0277 (19)
C23	0.042(2)	0.054(2)	0.037(2)	-0.0279(19)	0.0097 (19)	-0.0162(18)
C24	0.039(2)	0.0364 (17)	0.0286 (18)	-0.0171 (16)	0.0061 (17)	-0.0143(15)
C25	0.027(2)	0.0311 (16)	0.0253 (17)	-0.0093(15)	0.0008 (15)	-0.0115 (14)
C26	0.028(2)	0.0259 (15)	0.0241 (17)	-0.0112(14)	-0.0016 (15)	-0.0061 (13)
C27	0.0277 (19)	0.0213 (14)	0.0256 (17)	-0.0089(14)	0.0002 (15)	-0.0066(13)
C28	0.036(2)	0.0278 (15)	0.0273 (17)	-0.0127(15)	0.0015 (16)	-0.0082(14)
C29	0.052(3)	0.0415 (18)	0.0271 (18)	-0.0252(18)	0.0081 (18)	-0.0115 (15)
C30	0.038(2)	0.0342 (17)	0.042(2)	-0.0103 (16)	-0.0083 (18)	-0.0120 (16)
C11	0.0387 (6)	0.0539 (5)	0.0282 (5)	-0.0186(4)	-0.0025 (4)	-0.0078(4)
C12	0.0459 (6)	0.0337 (4)	0.0604 (6)	-0.0205(4)	-0.0039(5)	-0.0163 (4)
C13	0.0539 (7)	0.0569 (6)	0.0443 (6)	-0.0206(5)	-0.0086(5)	-0.0141(5)
Cl4	0.0835 (9)	0.0613 (6)	0.0301 (5)	-0.0419(6)	0.0162 (5)	-0.0163(4)
C15	0.0493 (7)	0.0383 (5)	0.0795 (8)	0.0047 (5)	-0.0130(6)	-0.0230(5)
Cl6	0.0675 (8)	0.0548 (6)	0.0770 (8)	-0.0218(5)	-0.0331 (6)	-0.0202(5)
O1	0.0374 (15)	0.0285 (11)	0.0235 (12)	-0.0147(11)	-0.0026 (11)	-0.0046(9)
O2	0.0409 (18)	0.0636 (15)	0.0411 (15)	-0.0277(14)	0.0087 (13)	-0.0209(13)
O3	0.0332 (15)	0.0343 (12)	0.0341 (13)	-0.0123 (11)	0.0019 (11)	-0.0185 (10)

Geometric parameters (Å, °)

C1—01	1.424 (4)	C16—C17	1.481 (5)
C1—C2	1.514 (5)	C17—C18	1.388 (5)
C1—C27	1.526 (4)	C18—C26	1.415 (4)
C1—C28	1.550 (5)	C18—C19	1.523 (4)
C2—C3	1.383 (4)	C19—O3	1.424 (4)
C2—C7	1.406 (5)	C19—C20	1.516 (5)
C3—C4	1.390 (5)	C19—C30	1.550 (5)
C3—H3	0.95	C20—C21	1.369 (5)
C4—C5	1.369 (6)	C20—C25	1.403 (4)
C4—H4	0.95	C21—C22	1.392 (5)
C5—C6	1.403 (5)	C21—H21	0.95
C5—H5	0.95	C22—C23	1.384 (5)
C6—C7	1.389 (5)	C22—H22	0.95
C6—H6	0.95	C23—C24	1.391 (5)
C7—C8	1.485 (4)	C23—H23	0.95
C8—C9	1.388 (4)	C24—C25	1.384 (4)
C8—C27	1.421 (4)	C24—H24	0.95
C9—C17	1.416 (4)	C25—C26	1.481 (4)

G0 G10		G- 6 G-	
C9—C10	1.525 (4)	C26—C27	1.387 (4)
C10—O2	1.406 (4)	C28—C11	1.773 (3)
C10—C11	1.512 (5)	C28—C12	1.778 (3)
C10—C29	1.549 (5)	C28—H28	1
C11—C16	1.396 (5)	C29—C13	1.759 (4)
C11—C12	1.397 (5)	C29—C14	1.783 (3)
C12—C13	1.398 (5)	C29—H29	1
C12—H12	0.95	C30—C16	1.772 (4)
C13—C14	1.370 (6)	C30—C15	1.779 (4)
C13—H13	0.95	C30—H30	1
C14—C15	1.389 (5)	O1—H91	0.84
C14—H14	0.95	O2—H92	0.84
C15—C16	1.389 (4)	O3—H93	0.84
C15—H15	0.95		
0.1 6.1 6.2	110.7 (0)	G0 G1 5 G16	100 6 (0)
O1—C1—C2	113.5 (2)	C9—C17—C16	108.6 (3)
O1—C1—C27	115.3 (3)	C17—C18—C26	121.1 (3)
C2—C1—C27	102.3 (3)	C17—C18—C19	129.2 (3)
O1—C1—C28	104.8 (3)	C26—C18—C19	109.5 (3)
C2—C1—C28	113.4 (3)	O3—C19—C20	113.9 (3)
C27—C1—C28	107.7 (2)	O3—C19—C18	110.5 (3)
C3—C2—C7	121.1 (3)	C20—C19—C18	102.7 (2)
C3—C2—C1	127.6 (3)	O3—C19—C30	107.4 (2)
C7—C2—C1	111.0 (3)	C20—C19—C30	113.4 (3)
C2—C3—C4	118.0 (3)	C18—C19—C30	108.8 (3)
C2—C3—H3	121	C21—C20—C25	121.2 (3)
C4—C3—H3	121	C21—C20—C19	128.3 (3)
C5—C4—C3	121.8 (3)	C25—C20—C19	110.5 (3)
C5—C4—H4	119.1	C20—C21—C22	119.3 (3)
C3—C4—H4	119.1	C20—C21—H21	120.3
C4—C5—C6	120.6 (4)	C22—C21—H21	120.3
C4—C5—H5	119.7	C23—C22—C21	119.8 (3)
C6—C5—H5	119.7	C23—C22—H22	120.1
C7—C6—C5	118.5 (3)	C21—C22—H22	120.1
С7—С6—Н6	120.8	C22—C23—C24	121.2 (3)
C5—C6—H6	120.8	C22—C23—H23	119.4
C6—C7—C2	120.0 (3)	C24—C23—H23	119.4
C6—C7—C8	132.0 (3)	C25—C24—C23	118.9 (3)
C2—C7—C8	107.9 (3)	C25—C24—H24	120.5
C9—C8—C27	119.1 (3)	C23—C24—H24	120.5
C9—C8—C7	132.6 (3)	C24—C25—C20	119.6 (3)
C27—C8—C7	108.4 (3)	C24—C25—C26	132.1 (3)
C8—C9—C17	121.0 (3)	C20—C25—C26	108.3 (3)
C8—C9—C10	129.1 (3)	C27—C26—C18	119.2 (3)
C17—C9—C10	109.6 (3)	C27—C26—C25	132.1 (3)
O2—C10—C11	113.4 (3)	C18—C26—C25	108.6 (3)
O2—C10—C9	116.3 (3)	C26—C27—C8	120.7 (3)
C11—C10—C9	101.9 (3)	C26—C27—C1	129.5 (3)
O2—C10—C29	104.8 (3)	C8—C27—C1	109.4 (3)
02 -010-02)	107.0 (3)	00 -02701	107.7 (3)

~ ~ ~		G. G. G.	
C11—C10—C29	113.9 (3)	C1—C28—C11	111.0 (2)
C9—C10—C29	106.7 (3)	C1—C28—C12	112.4 (2)
C16—C11—C12	121.1 (3)	C11—C28—C12	109.33 (18)
C16—C11—C10	111.7 (3)	C1—C28—H28	108
C12—C11—C10	127.2 (3)	C11—C28—H28	108
C11—C12—C13	118.1 (4)	C12—C28—H28	108
C11—C12—H12	120.9	C10—C29—C13	112.3 (2)
C13—C12—H12	120.9	C10—C29—C14	112.2 (3)
C14—C13—C12	120.5 (4)	C13—C29—C14	109.22 (19)
C14—C13—H13	119.8	C10—C29—H29	107.6
C12—C13—H13	119.8	C13—C29—H29	107.6
C12—C13—I113 C13—C14—C15		C14—C29—H29	107.6
	121.7 (3)		
C13—C14—H14	119.2	C19—C30—C16	111.6 (2)
C15—C14—H14	119.2	C19—C30—C15	111.2 (2)
C16—C15—C14	118.7 (4)	C16—C30—C15	109.7 (2)
C16—C15—H15	120.6	C19—C30—H30	108.1
C14—C15—H15	120.6	Cl6—C30—H30	108.1
C15—C16—C11	119.9 (3)	C15—C30—H30	108.1
C15—C16—C17	132.3 (3)	C1—O1—H91	109.5
C11—C16—C17	107.7 (3)	C10—O2—H92	109.5
C18—C17—C9	118.9 (3)	C19—O3—H93	109.5
C18—C17—C16	132.5 (3)		
	(-)		
O1—C1—C2—C3	42.4 (5)	C17—C18—C19—C20	-179.8 (3)
C27—C1—C2—C3	167.2 (3)	C26—C18—C19—C20	5.5 (3)
C28—C1—C2—C3	-77.1 (4)	C17—C18—C19—C30	59.8 (4)
01—C1—C2—C7	-132.3 (3)	C26—C18—C19—C30	-114.9 (3)
C27—C1—C2—C7	-7.4 (3)	O3—C19—C20—C21	54.4 (5)
C28—C1—C2—C7	108.3 (3)	C18—C19—C20—C21	174.0 (3)
C7—C2—C3—C4	-2.6(5)	C30—C19—C20—C21	-68.8(5)
C1—C2—C3—C4	-176.8(3)	O3—C19—C20—C25	-123.5(3)
C2—C3—C4—C5	0.0 (6)	C18—C19—C20—C25	-3.9(4)
C3—C4—C5—C6	1.8 (6)	C30—C19—C20—C25	113.3 (3)
C4—C5—C6—C7	-1.0(6)	C25—C20—C21—C22	-2.0(5)
C5—C6—C7—C2	-1.5(5)	C19—C20—C21—C22	-179.7(3)
C5—C6—C7—C8	173.5 (3)	C20—C21—C22—C23	0.1 (6)
C3—C2—C7—C6	3.4 (5)	C21—C22—C23—C24	1.8 (6)
C1—C2—C7—C6	178.4 (3)	C22—C23—C24—C25	-1.9(5)
C3—C2—C7—C8	-172.7(3)	C23—C24—C25—C20	0.0 (5)
C1—C2—C7—C8	2.4 (4)	C23—C24—C25—C26	178.7 (3)
C6—C7—C8—C9	8.3 (6)	C21—C20—C25—C24	2.0 (5)
C2—C7—C8—C9	-176.2 (4)	C19—C20—C25—C24	-179.9(3)
C6—C7—C8—C27	-171.2 (3)	C21—C20—C25—C26	-177.1 (3)
C2—C7—C8—C27	4.3 (4)	C19—C20—C25—C26	1.0 (4)
C27—C8—C9—C17	2.7 (5)	C17—C18—C26—C27	-1.1 (5)
C7—C8—C9—C17 C7—C8—C9—C17	-176.7 (3)	C17—C18—C20—C27 C19—C18—C26—C27	
	* /		174.1 (3)
C27—C8—C9—C10	-170.7 (3)	C17—C18—C26—C25	179.6 (3)
C7—C8—C9—C10	9.8 (6)	C19—C18—C26—C25	-5.2 (4)
C8—C9—C10—O2	-54.7 (5)	C24—C25—C26—C27	4.6 (6)

C17—C9—C10—O2	131.2 (3)	C20—C25—C26—C27	-176.5 (3)
C8—C9—C10—C11	-178.6(3)	C24—C25—C26—C18	-176.3(4)
C17—C9—C10—C11	7.4 (4)	C20—C25—C26—C18	2.6 (4)
C8—C9—C10—C29	61.8 (4)	C18—C26—C27—C8	1.6 (5)
C17—C9—C10—C29	-112.2 (3)	C25—C26—C27—C8	-179.4(3)
O2—C10—C11—C16	-131.7(3)	C18—C26—C27—C1	-170.7(3)
C9—C10—C11—C16	-6.0(4)	C25—C26—C27—C1	8.4 (6)
C29—C10—C11—C16	108.5 (3)	C9—C8—C27—C26	-2.4(5)
O2—C10—C11—C12	45.7 (5)	C7—C8—C27—C26	177.2 (3)
C9—C10—C11—C12	171.4 (4)	C9—C8—C27—C1	171.3 (3)
C29—C10—C11—C12	-74.1 (5)	C7—C8—C27—C1	-9.1(4)
C16—C11—C12—C13	-1.3 (6)	O1—C1—C27—C26	-53.4 (5)
C10—C11—C12—C13	-178.4 (4)	C2—C1—C27—C26	-177.1(3)
C11—C12—C13—C14	0.1 (6)	C28—C1—C27—C26	63.2 (4)
C12—C13—C14—C15	0.9 (7)	O1—C1—C27—C8	133.7 (3)
C13—C14—C15—C16	-0.7(6)	C2—C1—C27—C8	10.0 (3)
C14—C15—C16—C11	-0.5(5)	C28—C1—C27—C8	-109.8(3)
C14—C15—C16—C17	175.1 (4)	O1—C1—C28—Cl1	-179.55(18)
C12—C11—C16—C15	1.5 (6)	C2—C1—C28—Cl1	-55.2 (3)
C10—C11—C16—C15	179.0 (3)	C27—C1—C28—C11	57.2 (3)
C12—C11—C16—C17	-175.1 (3)	O1—C1—C28—Cl2	-56.7(3)
C10—C11—C16—C17	2.4 (4)	C2—C1—C28—Cl2	67.6 (3)
C8—C9—C17—C18	-2.2(5)	C27—C1—C28—Cl2	-179.9(2)
C10—C9—C17—C18	172.3 (3)	O2—C10—C29—Cl3	-175.6(2)
C8—C9—C17—C16	179.0 (3)	C11—C10—C29—C13	-51.1 (4)
C10—C9—C17—C16	-6.4(4)	C9—C10—C29—Cl3	60.5 (3)
C15—C16—C17—C18	8.0 (7)	O2—C10—C29—C14	-52.1(3)
C11—C16—C17—C18	-176.0(4)	C11—C10—C29—C14	72.4 (4)
C15—C16—C17—C9	-173.5 (4)	C9—C10—C29—Cl4	-176.0(2)
C11—C16—C17—C9	2.5 (4)	O3—C19—C30—Cl6	-177.7(2)
C9—C17—C18—C26	1.4 (5)	C20—C19—C30—C16	-50.9(3)
C16—C17—C18—C26	179.8 (3)	C18—C19—C30—C16	62.7 (3)
C9—C17—C18—C19	-172.7(3)	O3—C19—C30—C15	-54.8(3)
C16—C17—C18—C19	5.7 (6)	C20—C19—C30—C15	71.9 (3)
C17—C18—C19—O3	-57.9 (4)	C18—C19—C30—C15	-174.5 (2)
C26—C18—C19—O3	127.4 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H91···O3 ⁱ	0.84	2.04	2.834(3)	158

Symmetry code: (i) -x+2, -y+1, -z+1.