German University in Cairo Department of Computer Science Assoc. Prof. Haythem O. Ismail

CSEN 1003 Compiler, Spring Term 2020 Practice Assignment 9

Exercise 9-1
Consider the following SDD:

	Pre	oduct	ion	Semantic Rule
1)	L	\rightarrow	E n	L.val = E.val
2)	E	\rightarrow	$E_1 + T$	$ig E.val = E_1.val + T.val$
3)	E	\rightarrow	T	ig E.val = T.val
4)	T	\rightarrow	$T_1 * F$	$igg \mathit{T.val} = \mathit{T_1.val} * \mathit{F.val}$
5)	T	\rightarrow	F	$igg \mathit{T.val} = \mathit{F.val}$
6)	F	\rightarrow	(E)	$\int F.val = E.val$
7)	F	\rightarrow	digit	$F.val = \mathbf{digit}.lexval$

Give the dependency graphs of the annotated parse trees for the following expressions

a)
$$3 + 4 * 5 n$$

Solution:

b)
$$(3 + 4) * (5 * 6) n$$

Solution:

Exercise 9-2
Extend the following SDD to handle expressions as in SDD given in Exercise 9-1.

	Pro	duct	ion	Semantic Rule
1)	T	\rightarrow	F T'	T'.inh = F.val
				$\int T.val = T'.syn$
2)	T'	\rightarrow	$* F T_1'$	$T_1'.inh = T'.inh * F.val$
				$egin{aligned} T'.syn &= T_1'.syn \ T'.syn &= T'.inh \end{aligned}$
3)	T'	\rightarrow	ε	$\mid T'.syn = T'.inh$
4)	F	\rightarrow	digit	$F.val = \mathbf{digit}.lexval$

Solution:

Note: .syn and .val are different names for the same synthesized attributes of the grammer variables.

	Pro	oduct	ion	Semantic Rule
1)	L	\rightarrow	E n	L.val = E.syn
2)	E	\rightarrow	T E'	E.syn = E'.syn
				E'.inh = T.val
3)	E'	\rightarrow	+ T E'_1	$ig E_1'.inh = E.inh + T.val ig $
				$E.syn = E_1'.syn$
4)	E'	\rightarrow	ε	E'.syn = E'.inh
5)	T	\rightarrow	F T'	T'.inh = F.val
				T.val = T'.syn
6)	T'	\rightarrow	$* F T_1'$	$T_1'.inh = T'.inh * F.val$
				$T'.syn = T'_1.syn$
7)	T'	\rightarrow	ε	T'.syn = T'.inh
8)	F	\rightarrow	(E)	F.val=E.val
9)	F	\rightarrow	digit	$F.val = \mathbf{digit}.lexval$

Give the dependency graphs of the annotated parse trees for the following expressions

a)
$$3 + 4 * 5 n$$

Solution:

b)
$$(3 + 4) * (5 * 6) n$$

Solution:

Do it yourself.

Exercise 9-3

Topological sort of a dependency graph

Give a topological sort for the following dependency graph:

Solution:

Post-order traversal: 4, 6, 3, 9, 5, 2, 8, 10, 7, 1

Topological sort: 1, 7, 10, 8, 2, 5, 3, 6, 4, 9

Exercise 9-4

Suppose that we have a production $A \to BCD$. Each of the four nonterminals A,B,C, and D have two attributes: s is a synthesized attribute, and i is an inherited attribute. For each of the sets of rules below, tell whether (i) the rules are consistent with an S-attributed definition (ii) the rules are consistent with an L-attributed definition, and (iii) whether the rules are consistent with any evaluation order at all?

a)
$$A.s = B.i + C.s.$$

b)
$$A.s = B.i + C.s$$
 and $D.i = A.i + B.s$.

c)
$$A.s = B.s + D.s$$
.

d)
$$A.s = D.i$$
, $B.i = A.s + C.s$, $C.i = B.s$, and $D.i = B.i + C.i$.

Solution:

- a) Consistent with an L-attributed definition, since the value of the synthesized attribute A.s of the node is computed from that of the inheritred attribute (B.i) and synthesized attribute (C.s) of its children nodes.
- b) Consistent with an L-attributed definition, since the value of the inherited attribute D.i is computed from the attributes of a parent node (A.i) and a sibling node that appears to its left (B.s).

4

- c) Consistent with an S-attributed definition, since the value of the synthesized attribute (A.s) of the node is computed from that of the attributes of its children nodes C.s and D.s.
- d) Neither, since the inherited attribute (B.i) is computed from the attribute C.s of a sibling node that appears to its right in the production, which is inconsistent with the L-attributed definition. Moreover, the value of the inherited attribute of B (B.i) is dependents on a synthesized attribute of the parent which is also inconsistent with the L-attribute definition.

Exercise 9-5

The following grammar generates binary numbers with a "decimal" point:

$$S \rightarrow L.L \mid L$$

$$L \rightarrow LB \mid B$$

$$B \rightarrow 0 \mid 1$$

Design an L-attributed SDD to compute S.val, the decimal-number value of an input string. For example, the translation of string 101.101 should be the decimal number 5.625.

Solution:

$$S \longrightarrow L_1.L_2 \qquad L_1.f = 1; L_1.p = 1; L_2.f = 0.5; L_2.p = 0.5$$

$$S.val = L_1.val + L_2.val$$

$$S \longrightarrow L \qquad L.f = 1; L.p = 1; S.val = L.val$$

$$L \longrightarrow L_1B \qquad L_1.f = L.f \times L.p; L_1.p = L.p$$

$$L.min = L_1.min; L.val = 2 \times L_1.val + L.min \times B.val$$

$$L \longrightarrow B \qquad L.min = L.f; L.val = L.min \times B.val$$

$$B \longrightarrow 0 \qquad B.val = 0$$

$$B.val = 1$$

Exercise 9-6

Convert your SDD from Exercise 9-2 to an SDT.

Solution:

Production			
1)	L	\rightarrow	E n $\{L.val = E.syn\}$
2)	E	\rightarrow	$T\left\{ E'.inh=T.val ight\} \left\{ E.syn=E'.syn ight\}$
3)	E'	\rightarrow	+ T $\{E_1'.inh=E.inh+T.val\}$ E_1' $\{E.syn=E_1'.syn\}$
4)	E'	\rightarrow	ε {E'.syn=E'.inh}
5)	T	\rightarrow	$F\left\{ T'.inh=F.val ight\} T'\left\{ T.val=T'.syn ight\}$
6)	T'	\rightarrow	* $F \{T_1'.inh = T.inh * F.val\} T_1' \{T'.syn = T_1'.syn\}$
7)	T'	\rightarrow	ε {T'.syn=T'.inh}
8)	F	\rightarrow	(E) $\{F.val=E.val\}$
9)	F	\rightarrow	$\mathbf{digit}\ \{F.val = \mathbf{digit}.lexval\}$