DATA REPRESENTATION

Data Types

Complements

Fixed Point Representations

Floating Point Representations

Other Binary Codes

Error Detection Codes

DATA REPRESENTATION

Information that a Computer is dealing with

- * Data
 - Numeric Data Numbers(Integer, real)
 - Non-numeric Data Letters, Symbols
- * Relationship between data elements
 - Data Structures
 Linear Lists, Trees, Rings, etc
- * Program(Instruction)

NUMERIC DATA REPRESENTATION

Data

Numeric data - numbers(integer, real) Non-numeric data - symbols, letters

Number System

Nonpositional number system

- Roman number system

Positional number system

- Each digit position has a value called a *weight* associated with it
- Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

- Uses R distinct symbols for each digit
- Example $A_R = a_{n-1} a_{n-2} ... a_1 a_0 .a_{-1} ... a_{-m}$

Radix point(.) separates the integer portion and the fractional portion

R = 10 Decimal number system, R = 2 Binary R = 8 Octal, R = 16 Hexadecimal

WHY POSITIONAL NUMBER SYSTEM IN DIGITAL COMPUTERS ?

Major Consideration is the COST and TIME

- Cost of building *hardware*Arithmetic and Logic Unit, CPU, Communications
- Time to processing

Arithmetic - Addition of Numbers - Table for Addition

- * Non-positional Number System
 - Table for addition is infinite
 - --> Impossible to build, very expensive even if it can be built
- * Positional Number System
 - Table for Addition is finite
 - --> Physically realizable, but cost wise the smaller the table size, the less expensive --> Binary is favorable to Decimal

Binary Addition Table

Decimal Addition Table 0 1 2 3 4 5 6 7 8 9

_										
0	0	1	2	3	4	5	6	7	8	Ć
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	8 9 10	11
ာ	2	A	E	C	7	0	Λ	40	44	10

5

REPRESENTATION OF NUMBERS - POSITIONAL NUMBERS

Decimal	Binary	Octal	Hexadecimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
80	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, octal, and hexadecimal conversion

CONVERSION OF BASES

Base R to Decimal Conversion

$$A = a_{n-1} a_{n-2} a_{n-3} \dots a_0 \cdot a_{-1} \dots a_{-m}$$

$$V(A) = \sum a_k R^k$$

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

$$= 7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$$

$$(110.111)_2 = \dots = (54)_{10}$$

$$(110.111)_2 = \dots = (6.785)_{10}$$

$$(F3)_{16} = \dots = (243)_{10}$$

$$(0.325)_6 = \dots = (0.578703703 \dots)_{10}$$

Decimal to Base R number

- Separate the number into its *integer* and *fraction* parts and convert each part separately.
- Convert integer part into the base R number
- → successive divisions by R and accumulation of the remainders.
- Convert fraction part into the base R number
 - → successive multiplications by R and accumulation of integer digits

Inte	eger = 41
41	
20	1
10	0
5	0
2	1
1	0
0	1

Convert (1863)₁₀ to base 8:

$$(41)_{10} = (101001)_2$$
 (0.
 $(41.6875)_{10} = (101001.1011)_2$
Exercise
Convert $(63)_{10}$ to base 5: $(223)_5$

Convert $(0.63671875)_{10}$ to hexadecimal: $(0.A3)_{16}$

 $(3507)_8$

Exercise

Data Types

COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

The (R-1)'s Complement

Subtract each digit of a number from (R-1)

Example

- 9's complement of 835₁₀ is 164₁₀
- 1's complement of 1010₂ is 0101₂(bit by bit complement operation)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Example

- 10's complement of 835_{10} is $164_{10} + 1 = 165_{10}$
- 2's complement of 1010_2 is $0101_2 + 1 = 0110_2$

FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

$$X = x_n x_{n-1} x_{n-2} \dots x_1 x_0 \dots x_{-1} x_{-2} \dots x_{-m}$$

Sign Bit (x_n) : 0 for positive - 1 for negative

Remaining Bits($x_{n-1}x_{n-2} ... x_1x_0 ... x_{-1}x_{-2} ... x_{-m}$)

SIGNED NUMBERS

Need to be able to represent both positive and negative numbers

- Following 3 representations

Signed magnitude representation
Signed 1's complement representation
Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001 Three different ways to represent -9:

> In signed-magnitude: 1 001001 In signed-1's complement: 1 110110 In signed-2's complement: 1 110111

In general, in computers, fixed point numbers are represented either integer part only or fractional part only.

2's COMPLEMENT REPRESENTATION WEIGHTS

- Signed 2's complement representation follows a "weight" scheme similar to that of unsigned numbers
 - Sign bit has negative weight
 - Other bits have regular weights

$$X = x_n x_{n-1} \dots x_0$$

→
$$V(X) = -X_n \times 2^n + \sum_{i=0}^{n-1} X_i \times 2^i$$

ARITHMETIC ADDITION: SIGNED MAGNITUDE

- [1] Compare their signs
- [2] If two signs are the same,

ADD the two magnitudes - Look out for an overflow

[3] If not the same, compare the relative magnitudes of the numbers and then SUBTRACT the smaller from the larger --> need a subtractor to add

[4] Determine the sign of the result

```
- ) 6 0110

3 0011 -> 00011

-6 + (-9)

6 0110

+) 9 1001

-15 1111 -> 11111
```

-6 + 9

1001

ARITHMETIC ADDITION: SIGNED 2's COMPLEMENT

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit - Look out for an overflow

Example

0 1001

0

1010

0011

$$x'_{n-1}y'_{n-1}s_{n-1}$$

 $(c_{n-1} \oplus c_n)$

9 0 1001 +) 9 0 1001 18 1 0010

 $(\mathbf{c}_{\mathsf{n-1}}, \mathbf{y}_{\mathsf{n}}, \mathbf{s}'_{\mathsf{n-1}})$

2 operands have the same sign and the result sign changes

 $x_{n-1}y_{n-1}s'_{n-1} + x'_{n-1}y'_{n-1}s_{n-1} = C_{n-1} \oplus C_n$

ARITHMETIC ADDITION: SIGNED 1's COMPLEMENT

Add the two numbers, including their sign bits.

- If there is a carry out of the most significant (sign) bit, the result is incremented by 1 and the carry is discarded.

COMPARISON OF REPRESENTATIONS

- * Easiness of negative conversion
 - S + M > 1's Complement > 2's Complement
- * Hardware
 - S+M: Needs an adder and a subtractor for Addition
 - 1's and 2's Complement: Need only an adder
- * Speed of Arithmetic
 - 2's Complement > 1's Complement(end-around C)
- * Recognition of Zero
 - 2's Complement is fast

ARITHMETIC SUBTRACTION

Arithmetic Subtraction in 2's complement

Take the complement of the subtrahend (including the sign bit) and add it to the minuend including the sign bits.

$$(\pm A) - (-B) = (\pm A) + B$$

 $(\pm A) - B = (\pm A) + (-B)$

FLOATING POINT NUMBER REPRESENTATION

- * The location of the fractional point is not fixed to a certain location
- * The range of the representable numbers is wide

$$F = EM$$

- Mantissa Signed fixed point number, either an integer or a fractional number
- Exponent

 Designates the position of the radix point

Decimal Value

FLOATING POINT NUMBERS

Example $\begin{array}{ccc} & & & & & & & \\ & \underline{0} & .1234567 & & \underline{0} & 04 \\ \hline & & mantissa & & exponent \\ & & & & & & \end{array}$

Note:

In Floating Point Number representation, only Mantissa(M) and Exponent(E) are explicitly represented. The Radix(R) and the position of the Radix Point are implied.

Example

A binary number +1001.11 in 16-bit floating point number representation (6-bit exponent and 10-bit fractional mantissa)

CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

- There are many different floating point number representations of the same number
 - → Need for a unified representation in a given computer
- the most significant position of the mantissa contains a non-zero digit

Representation of Zero

- ZeroMantissa = 0
- Real Zero
 Mantissa = 0

Exponent

= smallest representable number which is represented as 00 ... 0

← Easily identified by the hardware

INTERNAL REPRESENTATION AND EXTERNAL REPRESENTATION

EXTERNAL REPRESENTATION

Numbers

Most of numbers stored in the computer are eventually changed by some kinds of calculations

- → Internal Representation for calculation efficiency
- → Final results need to be converted to as *External Representation* for presentability

Alphabets, Symbols, and some Numbers

Elements of these information do not change in the course of processing

- → No needs for Internal Representation since they are not used for calculations
- → External Representation for processing and presentability

Example

Decimal Number: 4-bit Binary Code

BCD(Binary Coded Decimal)

Decimal	BCD Code				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				

OTHER DECIMAL CODES

Decimal	BCD(8421)	2421	84-2-1	Excess-3
0	0000	0000	0000	0011
1	0001	0001	0111	0100
2	0010	0010	0110	0101
3	0011	0011	0101	0110
4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	1001	1010
8	1000	1110	1000	1011
9	1001	1111	1111	1100

Note: 8,4,2,-2,1,-1 in this table is the weight associated with each bit position.

d₃ d₂ d₁ d₀: symbol in the codes

BCD: $d_3 \times 8 + d_2 \times 4 + d_1 \times 2 + d_0 \times 1$ $\Rightarrow 8421 \text{ code.}$

2421: $d_3 \times 2 + d_2 \times 4 + d_1 \times 2 + d_0 \times 1$

84-2-1: $d_3 \times 8 + d_2 \times 4 + d_1 \times (-2) + d_0 \times (-1)$

Excess-3: BCD + 3

BCD: It is difficult to obtain the 9's complement.

However, it is easily obtained with the other codes listed above.

→ Self-complementing codes

GRAY CODE

- * Characterized by having their representations of the binary integers differ in only one digit between consecutive integers
- * Useful in some applications

4-bit Gray codes

	Decimal	(Gray			Bi	nary	/		
	number	g_3	g_2	g ₁	g_0	b ₃	b ₂	b ₁	b_0	
	0	0	0	0	0	0	0	0	0	
	1	0	0	0	1	0	0	0	1	
	2	0	0	1	1	0	0	1	0	
	3	0	0	1	0	0	0	1	1	
	4	0	1	1	0	0	1	0	0	
es	5	0	1	1	1	0	1	0	1	
	6	0	1	0	1	0	1	1	0	
	7	0	1	0	0	0	1	1	1	
	8	1	1	0	0	1	0	0	0	
	9	1	1	0	1	1	0	0	1	
	10	1	1	1	1	1	0	1	0	
	11	1	1	1	0	1	0	1	1	
	12	1	0	1	0	1	1	0	0	
	13	1	0	1	1	1	1	0	1	
	14	1	0	0	1	1	1	1	0	
	15	1	0	0	0	1	1	1	1	

CHARACTER REPRESENTATION ASCII

ASCII (American Standard Code for Information Interchange) Code

MSB (3 bits)

LSB (4 bits)

		0	1	2	3	4	5	6	7
	0	NUL	DLE	SP	0	@	Р	4	Р
)	1	SOH	DC1	!	1	Α	Q	а	q
	2	STX	DC2	"	2	В	R	b	r
	3	ETX	DC3	#	3	С	S	С	S
	4	EOT	DC4	\$	4	D	Т	d	t
	5	ENQ	NAK	%	5	Ε	U	е	u
	6	ACK	SYN	&	6	F	V	f	V
	7	BEL	ETB	4	7	G	W	g	w
	8	BS	CAN	(8	Н	X	h	X
	9	HT	EM)	9	I	Υ	I	У
	Α	LF	SUB	*	:	J	Z	j	Z
	В	VT	ESC	+	;	K	[k	{
	С	FF	FS	,	<	L	1	I	ı
	D	CR	GS	-	=	M]	m	}
	Ε	SO	RS		>	N	m	n	~
	F	SI	US	1	?	0	n	0	DEL

ERROR DETECTING CODES

Parity System

- Simplest method for error detection
- One parity bit attached to the information
- Even Parity and Odd Parity

Even Parity

- One bit is attached to the information so that the total number of 1 bits is an even number

1011001 <u>0</u> 1010010 1

Odd Parity

- One bit is attached to the information so that the total number of 1 bits is an odd number

1011001 <u>1</u> 1010010 <u>0</u>

PARITY BIT GENERATION

Parity Bit Generation

For b_6b_5 ... b_0 (7-bit information); even parity bit b_{even}

$$b_{\text{even}} = b_6 \oplus b_5 \oplus ... \oplus b_0$$

For odd parity bit

$$b_{odd} = b_{even} \oplus 1 = \overline{b}_{even}$$

PARITY GENERATOR AND PARITY CHECKER

Parity Generator Circuit (even parity)

Parity Checker

