NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS

VOLUME II: COMPUTER PROGRAM USER'S MANUAL

by

Jay N. Levine and F. E. C. Culick

TECHNICAL REPORT, AFRPL-TR-72-88

JULY 1972

ULTRASYSTEMS, INC.
FORMERLY DYNAMIC SCIENCE
2400 Michelson Drive
Irvine, California 92664

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED."

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

AIR FORCE ROCKET PROPULSION LABORATORY
UNITED STATES AIR FORCE
EDWARDS, CALIFORNIA

"When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government hereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

ACCESSION for		
RTIS	F (** 2:**)71	05
9:.0	Duff, C. Hoa	
POST PANU POST ITEUL		
	AVAILATE HITY CO	1
Bisi. A	itali. Saujus Siici	
A		

Seci	uri	tv	CI	26	8i	fica	tion

DOCUMENT CONTROL DATA - R & D				
(Security classification of title, body of abstract and indexing a	nnotation must be e	ntered when the	overall report is classified)	
1. ORIGINATING ACTIVITY (Composate author)		1	CURITY CLASSIFICATION	
Ultrasystems, Inc. (Formerly Dynamic Scie	ence)		nclassified	
2400 Michelson Drive		2b. GROUP		
Irvine, California 92664		<u> </u>		
- Mar	~ miimiki ki	~ ~ \ 4 D I I O M I	TONE TRIOMADELEMY, INC	
NUMERICAL ANALYSIS OF NONLINEAR LONG		COMBOSL	ION INSTABILITY IN	
METALIZED PROPELLANT SOLID ROCKET MO		יותר חחרי	CDANA HODDIO MANHINI	
VOLUME I: ANALYSIS AND RESULTS; VOLUM	II. II: COMP	UTER PRO	GRAIN USER S MANUAL	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
5 AUTHOR(S) (First name, middle initial, last name)				
Jay N. Levine				
F. E. C. Culick				
	·			
6 REPORT DATE	70. TOTAL NO. 01	PAGES	7b. NO. OF REFS	
July 1972	255		70	
F04611-71-C-0060	94. ORIGINATOR'S	REPORT NUME	3ER(\$)	
1 U4011-/1-C-UU0U	Technic	al Report		
		TR-72-88		
5730	ST OTHER REPOR	T NO(5) (Any of	ther numbers that may be assigned	
	this report)		ner nambers and may be used.	
d.				
1: DISTRIBUTION STATEMENT				
"Approved for public release; distri	bution unlim	ited."		
11 SUPPLEMENTARY NOTES	17 SPONSORING A	ALLITARY ACTIV	VITY	
	i -	Air Force		
 	Edwards	s, Califorr	nia	
13 ABSTRACT	l			
Mha admana alata attau af the account affant con a the days)	

The primary objective of the current effort was the development and solution of a nonlinear analytical longitudinal instability model, which would allow all of the various governing phenomena to be accounted for in a coupled manner. The two primary elements of the current instability analysis are a method of characteristics solution of the two phase flow in the combustion chamber of the motor, and a coupled calculation of a transient burning rate. The transient burning rate analysis presented, herein, is a unique and interesting development. It is based on an extension of the most popular, linear, harmonic combustion response model. The current method allows the calculation of propellant burning response to a pressure disturbance of arbitrary waveform, for all time, including the period immediately following the initiation of the disturbance. The analysis also includes a model for velocity coupled response. Therefore, for the first time, the nonlinear effects of velocity coupling on the growth of pressure waves in a combustion chamber can be computed.

The instability solution, itself, begins with the calculation of the steady state two-phase flow in the motor. The flow in the combustion chamber is calculated by numerically integrating the equations of motion. The nozzle flow is found using the constant fractional lag approximation. The steady state conditions are then perturbed and the subsequent wave motion in the motor is calculated numerically, using the method of characteristics. The nature of the engine response is dependent upon the interaction the various gain and loss mechanisms in the ergine, which are, in turn, a function of the propellant burning response, the size and amount of particulate matter present, the magnitude and shape of the initial disturbance and the geometrical configuration of the motor.

The instability model is currently subject to the following limitations. Only motors with cylindrically perforated grain were considered. The gasdynamic flow was assumed to be one-dimensional and the particles in the gas stream were taken to be of uniform size and inert. The nozzle flow is assumed to be quasi-steady.

A series of instability solutions have been calculated, at the same of the main parameters such as particle size, burning rate constants, and initial dist . . . e waveform and magnitude have been varied, in an attempt to qualitatively assess the behavior and sandity of the present model. From all appearances, the behavior of the model is quite realistic and limited comparisons with data have been quite encouraging.

DD FORM 1473

UNCLASSIFIED Security Classification 世界の大学の世界の大学の大学の大学の人名のです。 アイ・アイ・ア

ない なけんちゅうしょ とうこうしん

11 - This She the resident of the

UNCLASSIFIED

Security Classification								
14.	KEY WORDS						LINK C	
 		ROLE	WT	ROLE	WT	ROLE	WT	
ł	~							
1	Combustion instability							
	Solid propellant combustion							
l	Nonlinear							
	Metalized propellant] }	}		
	Two phase flow	}			}			
	Velocity coupling							
	Transient burning rate							
l	Oscillatory burning				<u> </u>			
1								
		l						
				}		ļ		
1					ļ			
l								
						į Į		
1								
1			·					
]		
1								
1								
1								
1				ĺ				
1								

ib

UNCLASSIFIED
Security Classification

NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS

VOLUME II: COMPUTER PROGRAM USER'S MANUAL

TECHNICAL REPORT, AFRPL-TR-72-88

JULY 1972

Prepared by: Jay N. Levine F. E. C. Culick

ULTRASYSTEMS, INC.
FORMERLY DYNAMIC SCIENCE
2400 Michelson Drive
Irvine, California 92664

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED."

AIR FORCE ROCKET PROPULSION LABORATORY UNITED STATES AIR FORCE EDWARDS, CALIFORNIA

FOREWORD

The present report is part of a two volume set which describes a nonlinear solid rocket motor instability analysis and computer program. Volume I contains the analytical basis for the computer program and a discussion of the results obtained to date: Volume II of the set describes the computer program and serves as a user's manual.

This investigation is entitled NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS. The two volumes are additionally subtitled as follows:

Volume I - Analysis and Results

Volume II - Computer Program User's Manual

This investigation was sponsored by the

Air Force Rocket Propulsion Laboratory Director of Laboratories

Edwards, California 93523

Air Force Systems Command, United States Air Force under contract number F046II-71-C-0060 with Robert J. Schoner as technical monitor. Jay N. Levine of Ultrasystems (formerly Dynamic Science) was program manager.

This technical report has been reviewed and is approved.

Paul J. Daily, Lt. Col. USAF Chief, Technology Division

TABLE OF CONTENTS.

	Page
	FOREWORDii
	NOMENCLATURE iv
1.	INTRODUCTION,
2.	PROGRAM DESCRIPTION
3.	DICTIONARY OF CØMMØN VARIABLES 3-1
4.	DESCRIPTION OF PROGRAM INPUT, 4-1
5.	DESCRIPTION OF PROGRAM OUTPUT, 5-1
6.	SAMPLE CASE 6-1

NOMENCLATURE

```
Α
             burning rate parameter, Eq. (4-14)
Ab
             admittance function
             nozzle admittance function
An
             gas only, sound speed
а
             sound speed based on P_{\rm p} and T_{\rm p}
             burning rate parameter, Eq. (4-32)
             also, fractional lag parameter, Eq. (5-6)
В
             burning rate parameter for velocity coupling
C
             ratio of solid to gas specific heats, C_s/C_p
č
             constant in steady state burning rate, Eq. (3-5)
c^{D}
             particle drag coefficient
C_k
             erosive burning constant, Eq. (3-5)
              see 31
              specific heat of gas at constant pressure
              specific heat of solid particles
              specific heat of gas at constant volume
C_1, C_2, - defined in Eq. (7-34)
C_3, C_4
              port diameter
             normalized surface activation energy, E_w/R_o\overline{T}_w also, integral defined by Eq. (8-16)
\mathbf{E}_{\mathbf{w}}
              activation energy of surface reaction
              internal energy
е
              particle-gas interaction force per unit volume, Eq. (3-8)
             frequency
              also, as defined by Eq. (8-14)
           - defined by Eq. (7-8)
G
              defined by Eq. (6-17)
g
             defined by Eq. (4-20)
Η
h
              enthalpy
           - defined by Eq. (8-12)
h<sub>11</sub>
              fractional lag constant, Eq. (5-3)
K
              chamber fractional lag constant, Eq. (7-44)
K١
              thermal conductivity, also complex wave number
```

```
ks
             thermal conductivity of the solid particles
             length of the grain, also fractional lag constant, Eq. (5-4)
L
L'
          - chamber fractional lag constant, Eq. (7-44)
          - perimeter of the grain
l
          - Mach number, also number of points on initial line
M
          - Mach number at burning surface
             particle mass, also surface mass flux
iá
          - Nusselt number
Nu
             pressure exponent in steady state burning rate
n
             constant is velocity coupled analysis, Eq. (4-75)
n,,
             exponent of pressure dependence of surface reaction rate
P
             pressure
\mathbf{P}_{\mathsf{ref}}
             reference pressure in steady state burning rate
\mathtt{P}_{\mathtt{F}}

    chamber pressure

Pr

    Prandtl number

          - pressure, also used for Laplace transform variable
р
          - defined by Equation (8-10)
p<sub>11</sub>
Q_{\mathbf{f}}
          - heat release per unit mass
             particle-gas heat transfer rate per unit volume, Eq. (3-14)
Qp
Q_{\mathbf{w}}
          - heat of reaction for processes at burning surface
             see 1
q
R
          - gas constant, also normalized throat radius of curvature
             universal gas constant
R_{\alpha}
             response function, Eq. (4-35)
R_{\mathbf{b}}
             Reynolds number based on particle diameter and particle-gas
Re
             relative velocity
RHS
             right hand side of a characteristics compatibility relation
          - linear burning rate
r
s_{b}
          - area of burning surface
          - dimensionless Laplace transform variable, = ix v/r2
s
T
          - temperature
TF
          - adiabatic flame temperature
             time
          - defined by Eq. (7-33)
          - axial velocity
u

    threshold velocity

u<sub>+</sub>
             defined by Equation (4-28)
W
```

```
reaction rate divided by gas density
W
              axial distance
X

    growth constant

α
\alpha_{\textbf{p}}
              particle damping constant
âp
              defined in Eq. (8-35)
            particle to gas weight flow ratio
81
              ratio of particle to gas mass burning rates, w_/w
£2
           - ratio of gas specific heats, \mathrm{C_p/C_v}
              a small increment in time
δ
δ'
           - equal to t<sub>c</sub>δ
              convergence criteria for characteristics calculations, also used
\epsilon_1, \epsilon_2
              in velocity coupling analysis (Eq. 4-7).
           - thermal diffusivity of the propellant
           - defined by Eq. (4-27)
ŕ.
           - complex function of frequency, Eq. (4-8)
λ
           - viscosity
          - equals \bar{r}x/n_s
              density
           - density based on P_{_{\mathbf{F}}} and T_{_{\mathbf{F}}}
\rho_{\mathbf{F}}
           - density of the metal oxide particles
^{\circ}m
           - density of the solid propellant
           - particle radius
C
          - defined by Eq. (4-62)
\sigma_1, \sigma_2
          - nondimensional time, r^2t/4\kappa_s, also used in Section 2 to
              denote period of oscillation
              characteristic relaxation time for particle velocity, Eq. (3-1)
{}^\tau v
              characteristic relaxation time for particle temperature, Eq. (3-1)
ŤТ
          - defined by Eq. (5-10)
           - phase angle
ψ
              nondimensional frequency, Eq. (4-9)
\Omega
              mass burning rate, per unit length, per unit cross-sectional
٠,١
              area, Eq. (3-4); also occasionally used for angular frequency
```

Subscripts

- e end of the propellant grain
- f flame
- g gas
- for the ℓth mode of oscillation
- p particle
- o initial or stagnation value
- t at the nozzle throat
- w at the burning surface of the propellant

Superscripts

- ()* in Sections 3, 5 and 6 only, denotes a dimensional variable
- ()' denotes fluctuation
- in Section 4 denotes steady state variable, in Section 5 denotes an "equivalent" gas value, in Section 7 denotes an average quantity
- () pertaining to a right running characteristic
- () pertaining to a left running characteristic
- ()^(r) real part of

1. INTRODUCTION

This report describes and serves as a user's manual for a new nonlinear longitudinal solid rocket motor instability program. This program is capable of treating metallized propellants and considers both pressure and velocity coupled transient burning response.

The analysis, and assumptions, upon which this program is based, are discussed in Volume 1 of this report.

This volume contains a description of all of the subroutines and program functions used in the instability program. A dictionary of all of the variables contained in blank or labeled common is also included. Descriptions of the input required to operate the program, and the output generated, are presented; followed by a sample case which serves to illustrate the text, as well as providing a method for checking out the program.

A STATE OF THE PARTY OF THE PAR

2. PROGRAM DESCRIPTION

Functionally, the Nonlinear Longitudinal Solid Rocket Motor Instability Program can be considered to consist of two distinct sets of subroutines: those required to solve for the steady state flow in the chamber and nozzle; and those which solve the actual instability problem. All of the subroutines and program functions which, together, comprise the Instability Program, are briefly discussed, in alphabetical order, below:

SUBROUTINE AUXSUB

Part of the nest of routines for solving the steady state problem. This routine evaluates the derivatives in the differential equations

$$\frac{df_i}{dx} = g_i$$

by calling subroutine GFUNC to evaluate the

SUBROUTINE BVP (NEWTI, LEGS, AUXSUB, FDET, IREAD)

Subroutine BVP and its associated subroutines AUXSUB, FCALC, FDET, GFUNC, LEGS, NEWTI, and RKAM, constitute a general package for the solution of two point boundary value problems. This package is part of the Dynamic Science library of computer programs and detailed information on any of these subroutines is available on request.

Subroutine BVP is the overall control routine for this package. In the current usage, nominal values for all of the quantities usually input to BVP have been set. This allows the user to employ the program without becoming familiar with the whole complex BVP package. In order to provide some measure of flexibility, however, the option to modify several of the input parameters has been retained, through the IREAD option. (See the discussion in the description of input section).

FUNCTION CNUSELT (RE, PR, SM)

This function computes the Nusselt number as a function of Reynolds number (RE) and Prandte number (PR). SM in the calling sequence is not currently used.

SUBROUTINE DØPLØT

This routine calls subroutine MPLØTS to plot the pressure, velocity, particle velocity and burning rate perturbations versus axial distance.

FUNCTION DRAG (RE)

This function computes the particle drag coefficient as a function of Reynolds number (RE).

SUBROUTINE FCALC (AUXSUB, FDET)

Part of the nest of subroutines for solving the steady state two point boundary value problem. This subroutine controls the integration of the differential equations and the print out of the solution. (Controls the printing of the conserved quantities and their derivatives. The printout for the actual flow variables is controlled in Subroutine FLOVARS). The printout is controlled through the ITRIG and LTRiG parameters, as discussed in the description of input.

SUBROUTINE FDET

Part of the nest of subroutines for solving the steady state two point boundary value problem. This subroutine calculates the difference between the mach number at the end of the grain as calculated by integrating the equations of motion and the mach number calculated from the fractional lag nozzle solution. and then prints out the result.

SUBROUTINE FLOVARS

This subroutine solves for the flow variables themselves (U, T, P, U_p , T_p , p, from the conserved quantities, as required by the steady state solution package.

The flow variables are also stored according to the mesh size used in the characteristics solution. (The variables are stored every NTRIG-th step). These variables are then printed out, and some are later modified in Subroutine LINEX.

The steady state solution is achieved by integrating the chamber pressure until the mach number at the end of the grain matches that calculated in Subroutine STEDYST. The flow variables at the end of each iteration are printed out.

FUNCTION FORCE (R, RP, U, UP, T, TP, PF)

This function computes the drag force between the particles and gas as a function of local gas and particle properties.

SUBROUTINE FPT (I, J, KP)

This subroutine solves the field point unit process which makes up the bulk of the method of characteristics solution. The arguments I, J, KP correspond to points 1, 2 and 3, respectively, in the analytical description of the field point solution.

The subroutine faithfully follows the analytical description and except for the following points, does not require further discussion.

The total burning rate at point 3 (W3) is found by extrapolating from the last time a transient burning rate calculation was made (TIMTB(NK)), using the burn rate derivatives (DWD"). Linear interpolation is used to obtain the burning rate at X locations between those at which the burn rate is found directly.

In the solution for the particle density at point 3 (RHOP3) it was convenient to drop the area terms at this time. In the future, if variable area ports are considered, this portion of the program will have to be modified.

SUBROUTINE FRAKLAG (E, GBAR)

This subroutine calculates a fractional lag solution for the nozzle. In doing so it establishes compatible values of K (the fractional lag parameter and GBAR (the isentropic exponent of the equivalent ideal gas). The parameter E, which relates the actual gas mach number to the equivalent gas mach number, is also calculated. At the conclusion of the subroutine the results of the fractional lag solution are printed out.

SUBROUTINE GFUNCT (XXI, F, G, PF)

This subroutine is part of the set of steady state routines and it evaluates the derivatives in the differential equations (see subroutine AUXSUB). The variable XXI is the local value of X at which the derivatives are to be evaluated.

FUNCTION HEAT (U, UP, R RP, T, TP, PF)

This program function calculates the heat transfer between the particles and gas as a function of gas and particle properties.

SUBROUTINE INPUT

This subroutine performs the following functions:

- 1. Zeroes COMMON/CHAR/
- 2. Sets nominal values for some of the \$DATA input variables and some other constants.
- 3. Reads Title Card.
- 4. Reads \$ DATA Input
- 5. Calculates additional initial values
- 6. Writes out the \$ DATA input quantities
- 7. Changes the units of various quantities from those input to those used internally, as follows:

Nondimensional areas at the end of the grain and throat are calculated from the input diameters.

$$\Lambda_{e} = \frac{\pi D_{p}^{2}}{4L^{2}}$$

$$A_{t} = \frac{\pi D_{t}^{2}}{4L^{2}}$$

L is changed from inches to feet

f, is changed from psi to psf

 o_s is changed from g/cc to lb sec^2/ft^4 (slugs)

om is changed from g/cc to lb sec²/ft⁴ (slugs)

the particle radius in feet is calculated from the input particle diameter in in microns, by multiplying it by $\frac{3.2808}{2}$ x 10^{-6}

is converted to feet/sec and then divided by the reference pressure (in psf) to the n th power.

 C_{p} is changed from $\frac{BTU}{1bo_{R}}$ to $\frac{ft^{2}}{sec^{2}o_{R}}$

x is changed from $\frac{cm^2}{sec}$ to $\frac{ft^2}{sec}$

SUBROUTINE INT

This subroutine is the master control routine for the instabi'.y solution.

First various initial quantities and counters are set. The initial data as computed in subroutine LINEX is then printed out, and if called for, it is stored for plotting at a later time.

A cycle of the characteristics solution is then computed in two sweeps by repetitively calling subroutine FPT. The characteristics are tested for crossing. If crossing occurs, the solution is terminated. The characteristics cycle is then completed by calling the left hand and right hand boundary point routines, LHB and RHB, respectively.

At the end of each of the above cycles the mesh point having the smallest value of time (not counting the right hand boundary point) is identified. Subroutine INTERP is then called to interpolate the results back into a rectilinear mesh, at the original x locations and time = t min.

Every NBCALC characteristics cycles, a new transient burning rate calculation is obtained. After calling subroutine TRBRNA to update counters, subroutine TRBURN is called to calculate the burning rate perturbations at each of the points called for. Burning rate solutions are obtained only for every NTB th point on the initial line. The burning rate derivatives are then calculated by simple first order differencing and the mass burning rate at each location is found by adding the perturbation to the initial value. The burning rate at those points where it is not directly calculated, is then found by linear interpolation.

At this point the solution is then printed out every NPRNT characteristics cycles. The pointers K and L, used to direct storage for subroutines FPT, LHB and RHB, are then shifted back to their original values in preparation for the next cycle.

Before the next cycle is begun, however, several tests and/or operations are performed. If the last calculation carried the solution past the next plot time, the variables of interest are stored for plotting. If the number of times this information has been stored (JPLØT) is equal to the maximum specified (NPLTF), subroutine DØPLØT is called and the stored information is plotted (NPLTF curves to each graph).

In order to reduce the storage required to compute the burning response over many cycles part of the past history is dropped, periodically. After NINT burn rate calculations have been performed the burning rate perturbation is calculated as the sum of two parts (see subroutine TRBURN). The first part due to a disturbance starting at t = o and ending at the time corresponding to the NINT th calculation (^tNINT) the second part due to a pressure and/or velocity disturbance which originates at ^tNINT. After 2 * NINT calculations the effect of the disturbances during the first interval, up to ^tNINT, is dropped completely (it should have become negligible if NINT has been chosen large enough). This process is accomplished by storing

the second interval disturbances (PTB2 and VTB2) and their corresponding burn rate perturbations (EMTB2 and EMTBV2) over their respective first interval values. The storage for the time vector, TIMTB and time interval array, DTIM, is also shifted, and the counter NCYC is reset to NINT (it was 2 * NINT). The values of the running integrals (RUNI etc.) are also reset. This process is then replaced every additional NINT cycles. Hence, if desired, large times can be reached without running out of storage.

Before the storage shifts are effected pertinent variables from the first interval are printed out before the information is lost. (Future modification could allow this information to be saved on tape, disk or drum files).

After the above portion of the routine the current time is compared to TMAX. If TMAX has not been reached the whole integration procedure is repeated egain. If TMAA has been reached the program checks to see if any plots versus axial distance have been stored and not plotted. If so, DØPLØT is called. Additionally, if In NINT burn rate calculations have been made when TMAX is reached PTB1 and Image of the plotted versus TIMTB at x = 0 and x = 1. If velocity coupling is being considered VTB1 and EMTBV1 are then plotted versus TIMTB at several different x locations.

SUBROUTINE INTERP

After each cycle of the characteristics solution is completed this subroutine interpolates within the characteristics mesh to obtain a set of points at the original x locations on the initial line, all at the same time (TMIN).

As a result of the mesh geometry and the velocity at the end of the grain, the right hand boundary point always occurs at a time somewhat less that all of the other characteristics intersections. The routine, therefore, extrapolates (linearly) to establish a right hand boundary values at TMIN.

Linear interpolation is then used to find values for the variables of interest at each of the original x locations. At this stage each of the points will, in general, be at a different time. Another linear interpolation is then performed to obtain a series of points, all at TMIN.

SUBROUTINE ITER (FI, XI, XNEW, NOO)

This subroutine finds the root of an equation by the secant method.

SUBROUTINE LEGS

This subroutine is part of the set of steady state routines. It is a general matrix inversion routine and called from subroutine NEWTI to aid in calculating the next guess for the chamber pressure, PF.

SUBROUTINE LHB

This subroutine is part of the method of characteristics solution and solves for points on the left hand boundary x = o. It follows the analytical description of the solution faithfully, and as such, does not require detailed discussion. (See subroutine FPT for some additional comments).

SUBROUTINE LINEX

This subroutine performs additional computations required before the characteristics solution can be initiated, as follows:

- 1. If NSET = 1, the steady state solution is bypassed and uniform initial conditions with no mean flow are set up in subroutine LINEX. This option is used only under special circumatances when the program is being applied to something other than a solid rocket motor.
- 2. The steady state solution, calculated previously, is modified by the addition of a pressure and/or a velocity perturbation. Currently, the initial perturbations are of the form

$$P = P_0 + i P \cos(\pi x)$$

$$v = v + v \sin(\pi x)$$

P and P are normalized by the chamber pressure, PF; while v and w are normalized by the chamber sound speed, AF. In the future, the program should be modified to allow a choice between several types of initial perturbations; or the perturbation calculation could be made into a Program function, so as to be easily modifiable.

The initial gas temperature and density are modified isentropically, to reflect the initial pressure change. The initial particle /elocity, temperature and density are currently not perturbed.

nnen eil konsuten kannankan erana altamikasikasi kahisasikan kendan kendarakan kili kannan kili kannan kili ka

3. The next portion of the subroutine performs a series of initial calculations required for the transient burning rate calculation. First, blank common is zeroed. The transient burning rate parameters A, B and $B_{\rm V}$ are then tested to see if they are compatible with the constraint

$$\Lambda < \frac{B+1}{(B-1)}r$$

If not, the solution is terminated. The remainder of the routine either calculates initial values of quantities at t=o, or quantities which need only be calculated once.

PROGRAM MAIN

The main program calls:

Subroutine: Input to read in and process the input data;

Subroutine: STEDYST to solve for the steady state solution;

Subroutine: LINEX to prepare the initial line data and,

Subroutine: INT to carry out the method of characteristic solution.

SUBROUTINE MPLØTS

This subroutine is a general CALCOMP plot routine and is used as follows: CALL MPLØTS (X,Y,N,M,NØ,LEN,TITLX,TITLY,HEAD,NX,NY,NH,FAC,LABL) where

x	=	vector or doubly dimensioned array (N \times 1 minimum) of independent variables (see M for usage)					
Y	=		doubly dimensioned array of the dependent variables to be plotted. (N \times N \emptyset minimum)				
N	=	actual dimensioned length of the columns for the X and Y arrays. N <u>must</u> be at least 2 cells longer than the used dimensions of the X and Y arrays.					
M	=	a flag such that i	f				
		M > 0	there is an X vector corresponding to each Y vector curve, i.e., the Y(l, J) vector would be plotted versus the X(l, J) vector.				
		M < 0	there is only one X vector corresponding to all of the Y(1,J) curves.				
		M = 0	same as $M > 0$ except no legends will be plotted out.				
		M = 1	<pre>legends will be plotted out with LABL(1) = Hollerith header LABL(J) = numerical value corresponding</pre>				
		M = 2	legends will be plotted out with LABL(I) = Hollerith name for the Ith curve				

		M = 3 no legends will be plotted out M = 10,20 or 30 same as M = 1,2, or 3 except that a border will be put on the plot frame
NØ	=	number of curves to be plotted per frame
LEN(I)	=	a vector of length NO containing the length of the Ith curve (i.e., number of data points stored in the Ith column of the $Y(J,I)$ array).
TITLX(I)	=	a vector containing the Hollerith label for the $X-axis$.
TITLY(I)	=	a vector containing the Hollerith label for the Y-axis.
HEAD(I)	=	a vector containing the Hollerith label for the master heading.
NX	=	number of characters in the X-axis label.
NY	=	number of characters in the Y-axis label.
NH	=	number of characters in the master heading label.
FAC	=	the factor by which the plot will be scaled. FAC = .8 will produce a plot compatible with an 8 $1/2 \times 11$ page size.
LABL(I)	=	vector containing either Hollerith and/or floating point numerical data (see M-description).

an enemerate exercise an enemerate enemerate enemerate en encasa en enemerate en enemerate en en en en en en e

Common Linkage

In addition to the calling sequence, a labeled common area exists through which the user can exercise additional control over the plots. The label common area is

CØMMØN/RRIL/AXL, AYL, FT, ISYM, INC, LNTYP, NLPC, NDEC where

AXL =	10.0	lenght of the X-axis
AYL =	8.0	lenght of the Y-axis
HT =	.14	character height for header labels
ISYM =	<u>4</u>	ISYM+1 is the number for the starting symbol on the graphs
INC =	<u>1</u>	increment at which data points within a vector will be plotted.
I.N TYP =	1	see the CALCØMP write up for subroutine LINE for the usage of this variable
NLPC=	<u>4</u>	number of curve legends per column
NDED =	<u>5</u>	used when $M := 1$ or 10. Controls the number of digits to the right of the decimal point on the values used in the legends.

Note: The values underlined are the nominal values and have been set via DATA STATEMENTS. Therefore in order to change these values, you should use an execute statement in your program.

SUBROUTINE NEW'II

This subroutine is part of the next of subroutines for solving the steady state two point boundary value problem. It uses Newton's method to generate new guesses for those initial values which must established in order to satisfy the boundary condition(s). In the current application, NEWTl generates guesses for the chamber pressure, PF, until the mach number at the end of the grain matches that calculated from a fractional lag lozzle solution.

SUBROUTINE PHIF

This subroutine is called from subroutine FRAKLAG and is used in conjunction with subroutine ITER to insure that the calculated values of K and GBAR $(\bar{\gamma})$ are compatible.

If $\gamma = \bar{\gamma}$ there are no particles, and the flag KTEST is set equal to 1. This flag is used elsewhere in the program to determine which calculations may be skipped when there are no particles.

SUBROUTINE PRNT

This subroutine prints out the initial line, as well as the solution.

- O After each NPRNT cycles of the characteristics calculation.
- At each time when the variables are stored for plotting.
- ° At the final time.

The header card containing case information is printed at the top of each page.

FUNCTION RATE (PF, RI, UI, TI, G, A)

This function computes the steady state mass burning rate, $\overline{\omega}$, in nondimensional form.

SUBROUTINE RHB

This subroutine is part of the method of characteristics solution and solves for points on the right hand boundary x=1. It follows the analytical description of the solution faithfully, and does not require detailed discussion. (See subroutine FPT for some additional comments).

FUNCTION RHS (FG, A, RHO, RHOP, U, UP, T, TP, W, DTIM, X)

This function is called by FPT, RHB and LHB to evaluate the right hand sides of the compatibility relations for both the momentum and energy equations.

The parameter FG is used to control which characteristics line is being considered, as shown below:

- FG = -1 Right running characteristic
- FG = 1 Left running characteristic
- FG = 2 Energy equation elong gas streamline

SUBROUTINE RKAM

This subroutine is part of the set of subroutines which solves the steady state two point boundary value problem. RKAM is a general subroutine for integrating simultaneous ordinary differential equations. It allows a choice between the Adams-Moulton and 4th Order Runge-Kutta methods. In the present program the Adams-Moulton method is used to integrate the six simultaneous differential equations which describe the steady state flow in the chamber.

SUBROUTINE SCAL

Subroutine SCAL is used in conjunction with the plot subroutine MPLOTS. It is used to optimize the selection of a plot scale.

SUBROUTINE STEDYST

This subroutine does the following:

- 1. Call subroutine FRAKLAG to find the fractional lag nozzle solution.
- 2. Solves a transcedental equation to find the mach number at the end of the grain as a function of port to throat area ratio. (Uses the results of the fractional lag solution).
- 3. Sets the boundary values at x = 0 for each of the six variables FI(1) ... FI(6).
- 4. Calculates <u>chamber</u> fractional lag parameters, AK and AL. These parameters are used to obtain an approximate solution for the particle flow in the chamber when the flow is near dynamic equilibrium, and hence is subject to numerical difficulties when treated in the regular manner.

5. Subroutine BVP (which is actually a nest of subroutines) is called to solve for the steady state flow conditions in the chamber.

SUBROUTINE TFUNC

This subroutine computes gas viscosity as a function of temperature. The relationship currently contained in the program is actually Sutherland's law for air. This functional relationship should be changed to more occurately reflect the viscosity of the gas mixtures found in solid rocket motors.

SUBROUTINE TRBRNA(TMIN)

Each time a new set of transient burning rate calculations is to be made this subroutine: updates the required counters; stores the current time in the TIMTB array; calculates the size of the latest interval, DELTA, and stores it in the DTIM array. The TEM(I) array used in the trapezoidal integration procedure, is also calculated.

SUBROUTINE TRBURN (IK)

This subroutine calculates the transient burning rate response at the IK th \times location.

The subroutine is actually divided into two distinct parts. Each part is structured identically: the first part calculates pressure coupled response; if KPRES \neq 0; the second part calculates velocity coupled response, if KVEL \neq 0.

Each of these parts is further divided into subsections. When MCYC < NINT the burning rate is calculated normally as a function of a single pressure (PTB1) and/or velocity (VTB1) perturbation.

MCYC < NINT (only pressure coupling is illustrated)

THE SECTION OF THE SE

When MCYC is between NINT and 2 NINT the burning rate is calculated as the sum of the response to two perturbations, as shown below.

$\frac{MCYC > NINT}{\text{(only pressure coupling is illustrated)}}$

THE PARTY OF THE P

Number of cycles

Number of cycles

In an effort to minimize the computation time associated with the calculation of the burning rate, the numerical evaluation of the quadratures* is broken into two parts. The integrals in which τ is a parameter must be evaluated from t=0 to $t=t_{min}-\delta$, each time (unless part of the past history has been dropped (see subroutine INT). These integrals are calculated using the Trapezoidal Rule. The integrals involving ξ only can be evaluated in a running manner; the contribution from each successive interval being added to the sum of the previous ones (RUNI, RUNVI etc.).

FUNCTION VPERT (ARG1, ARG2)

The calculation of the velocity coupled transient burn rate perturbation required the following expression to be evaluated

$$\nu_1(1u1 - u_t) - \nu_2(\bar{u} - u_t)$$

With ARG1 = 1ul and ARG2 = u_t the first part of this expression is evaluated. ARG1 = \bar{u}_0 and ARG2 = u_t yields the latter part of the expression.

3. DICTIONARY OF COMMON VARIABLES

All of the variables which appear in Common* (blank or labeled) are defined in this section. Blank Common is considered first, followed by the labeled Commons in alphabetical order.

COMMON	NAME	MATH. SYM.	DESCRIPTION
BLANK	PTB1(I,J)	$(\frac{p'}{\overline{p}})_1$	first pressure perturbation
	PTB2(I,J)	$(\frac{P'}{P})_2$	second pressure perturbation
	EMTB1(I,J)	(<u>m</u> ') ₁	burning rate response to first pressure perturbation
	EMTB2(I,J)		burning rate response to second pressure perturbation
	TIMTB(I)		time of Ith set of burning rate calculations
	DTIM (I)	Δt	TIMTB(I) - TIMTB(I-1)
	TEM (I)		multiplier used in calculating burning rate integrals
	EMTB(I,J)		total burning rate perturbation, J=1 next to last time, J=2 current time
	MTB		total number of X locations at which transient burn rate is calculated
	DXTB		distance between locations at which transient burn rate is calculated
	TCØN(I)	$r^2/4x$	
	VTB1(I,J)	$[e_1 (U - U_t) - e_2 (\vec{U})]$	- U _t)] ₁ first velocity perturbation
	VTB2(I,J)	$[\epsilon_1 (U - U_t) - \epsilon_2 (\overline{U})]$	- U _t)] ₂ second velocity perturbation
	EMTBV1(I,J)	$(\frac{m'v}{m})$	burning rate response to first velocity perturbation
	EMTBV2(I,J)	$(\frac{m^*v}{\overline{m}})_2$	burning rate response to second velocity perturbation

^{*}With the exception of some common blocks used entirely within the confines of the BVP rest of subroutines for solving the steady state two point boundary value problem.

COMMON	<u>NAME</u>	MATH SYM.	DESCRIPTION
BLANK	C1(I), C2(I), C3(I), C4(I)		constants in pressure coupled burning rate integral
	CV1(I), CV2(I), CV3(I), CV4(I)		constants in velocity coupled burning rate integral
	RUN1(I)		part of pressure coupled burning rate response integral that is evaluated in running manner
	RUN2(1)		see RUN1 but for second pressure disturbance
	RUNVI (I)		part of velocity coupled burning rate response integral that is evaluated in running manner
	RUNV2 (1)		see RUNV1 but for second velocity disturbance
	DWDT (I)	d u dt	time derivative of burning rate

ACE This common contains all of the quantities which can be input to the steady state solution package (subroutine BVP). Those of interest in the current program are discussed in the description of input.

BNDS	k	storage pointer in characteristics solution
	L, ELL	storage pointer in characteristics solution
	NS1	set equal to 1
	NEI	sct equal to N
	NS2	set equal to 2
	NE2	set equal to N
	FLAG	not used
	N	M-1
	M	number of axial locations in characteristics mesh

COMMON	NAME	MATH SYM,	DESCRIPTION
CHAR	TIM(I,J)	t	time
	X(I, J)	x	axial distance
	' U(I,J)	U	velocity point
	UP(I,J)	Up	particle velocity
	T(I, J)	T	temperature
	TP(I,J)	Tp	particle temperature
	RHØ(I,J)	O	density
	RHØP(I,J)	9 p	particle density
	P(I, J)	P	pressure
	W(I,J)	ω	mass burning rate
	WP(I, J)	ω _p	particle mass burning rate
	A(I,J,ADUM(I,J)	а	sound speed
fløs	UI	U	velocity
	UIP	Up	particle velocity
	RHØI	٥	density
	RHØIP	9 p	particle density
	TI	T	temperature
	TIP	Tp	particle temperature
FPLØT	NPI.TF		maximum number of plots that can be drawn on one curve
	TPLØT(I)		plot times (see input descrip.)
	HEADER(I)	3-3	contains case title (see input descrip.)

energy of the source of the second of the se

的情况,我们就是一个人,我们就是一个人,我们就是我们的,我们就是我们的,我们的,我们的,我们也不是一个人,我们的,我们的,我们的,我们的,我们的,我们的,我们的

THE THE PARTY OF T

COMMON	NAME	MATH SYM.	DESCRIPTION
FRAK	МЕВ	$\overline{\mathtt{M}}_{\mathtt{e}}$	
	E	E	mach number of equivalent gas relates \overline{M}_{e} to M_{e}
DOM:			e to We
FSTART	FI(6)	f _i	vector of steady state variables (conserved quantities)
	PF	${\sf P_f}$	chamber pressure (psf)
JAG	MCVO		- ·
J., G	MCYC		number of times transient burn- ing rate has been calculated
	MK		MCYC + 1
	NCYC		number of cycles over which burning rate integral must be integrated
	NK		NCYC + 1
	NKM2		NK - 2
	NCYC2		NCYC - NINT
	NK2		NCYC2 + 1
	NK2M2		NK2 - 2
	JK		indicates which x location is being considered
	DEL TA SQDEL		time interval between current and last burning rate solution
			$\sqrt{\delta}$
NPRNT, UTH, NINT, KVEL, KPRES, CNV, BV, DPV			see description of input

COMMON	NAME	MATH SYM.	DESCRIPTION
LBDRY	XIO		head end, $x = 0$
•	UIO		velocity at $x = 0$
	UIP0		particle velocity at $x = 0$
	RHØ10		density at $x = 0$
	RHØIPO		particle density at $x = 0$
	TIO		temperature at $x = 0$
	TIP0		particle temperature at $x = 0$
	ucøni		not used
MARKET	DP, NSET		see Description of Input
MWWTI	Dr, Nobi		see Description of Input
MATCH	ME	M _e	mach number at the end of the
			grain
MAX	TMAX, MAXIT		see Description of Input
MIZ	LCYC		number of complete characteristics cycles computed
			•

HANDER STATES AND STATES OF THE SECOND SECON

,这一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

COMMON	<u>NAME</u>	MATH SYM.	DESCRIPTION
NTERP	All of these arra	ys contain the quant	ities calculated at the end
	of the second ch	aracteristics sweep	, but before interpolation
	TIM T(I)		time
	XI(I)		axial distance
	UT(I)		velocity
	UPT(I)		particle velocity
	TT(I)		temperature
	TPT(I)		particle temperature
	RHØPT(I)		density
	PT(I)		pressure
	WT(I)		mass burning rate
	TMIN		time at the end of the last characteristics cycle
PLØTQ	XPLØT(I,J)		axial distance
	PPLØT(I,J)	P-P	pressure perturbation
	UPLØT(I, J)	\overline{U}	velocity perturbation
	UPPLØT(I,J)	Up- Up	particle velocity perturbation
	WPLØT(I, J)	W-W	mass burning rate perturbation
	LEN(I)		number of points stored for plotting
	XLABL(I)		see subroutine MPLØTS
	NH		number of Hollerith characters in Header Title
	JPLØT		number of curves stored for plot- ting on each graph

COMMON	NAME	MATH SYM.	DESCRIPTION
PRØX	AK	K	velocity fractional lag parameter in chamber
	AL	r ·	temperature fractional lag parameter in chamber
PRS	PFE	$\mathtt{P_f}$	chamber pressure (psf)
RR1L	see subroutine	MPLØTS description	
TESTING	KTEST		KTEST = 1 if there are no par- ticles
TØL	EPS1,EPS2	c ₁ , c ₂	convergence criteria for char-
		1 2	acteristics solution
TZERØ	PZERØ(I)	$\overline{P} + P'_{t} = 0$	perturbed pressure at t = 0
	uzerø(I)	$\overline{U} + U'_{t=0}$	perturbed velocity at $t = 0$
	UPZERØ(I)	$\overline{\overline{v}}_{\mathbf{p}}$	particle velocity at $t = 0$
	wzerø(i)	$\overline{\mathbf{w}}$	burning rate at $t = 0$

,这里,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们们是一个人

COMMON NAME MATH SYM. DESCRIPTION

VARS see Description of Input

ZIN IREAD see Description of Input

4. DESCRIPTION OF PROGRAM INPUT

Program input for the instability program consists of two distinct groups. The first set of input controls the instability solution, while the second set controls the steady state solution which provides initial conditions for the instability solution. Many of the input quantities have been assigned preset nominal values; these quantities need be input only if it is desired to alter the preset value. Nominal values are indicated where applicable. In many cases, the second set of input can be eliminated completely, since nominal values have been preset for all of these quantities (see discussion of IREAD, below).

4.1 <u>Instability Program Input</u>

The first card of this set contains the case title in columns 1-70. This title will appear at the top of each page of output and on each computer plot. The input, itself, follows the title card, and follows the standard NAMELIST format. The first card of this set must contain \$DATA starting in column 2. The last card must contain \$END starting in column 2.

The input variables in the DATA namelist are described below in functional sub-groups.

Engine Geometry

DPØ RT	Chamber port diameter, Dp, in inches.
DTHRØT	Nozzle throat diameter, D_t , in inches.
L	Length of the grain, L, in inches.
RC	Nondimensional throat radius of curvature, R, R_c/r_t . (Nominal value = 1.0).
SK	Area = $SK(X-1)$ + Ae, currently only $SK=0$ (constant area) should be used.

Steady State Burning Rate Constants

The steady state burning rate is specified as $\vec{r} = \widetilde{C}(P/P_{ref})^n(1 + C_k u)$

CTILDA

Constant in burning rate expression, \tilde{C} , in/sec.

CK

Erosive burning constant, C_k , sec/ft.

CN

Pressure exponent, n.

PREF

Normalizing pressure, psia (nominal value = 500)

Gas Constants

CP

Gas specific heat, C_p , Btu/lb ^{O}R .

Gamma

Gas isentropic exponent, ...

Pr

Prandtl number, Pr. (Nominal value = 1.0).

TF

Adiabatic flame temperature, T_F , OR .

Propellant Constants

RHØS

Density of the solid propellant, $\frac{1}{5}$, $\frac{g}{cc}$.

RHØM

Density of the metal oxide, r_m , g/cc (Nominal value = 4).

CKAPA

Thermal diffusivity of the propellant,

K_s, cm²/sec.

PDIA

Particle diameter in microns.

Transient burning rate parameter.

В

Transient burning rate parameter.

 B_{v}

Velocity coupling transient burn rate parameter (currently set equal to B in

Subroutine Input).

C

Ratio of particle to cas specific heats,

C_s/C_P.

CNV

Velocity coupling transient burn rate parameter (currently set equal to CN

in Subroutine Input).

BETA1

Particle to gas weight flow ratio, B_1 . (To run a case with no particles requires only that B_1 be set equal to zero).

UTH

Threshold velocity to erosive burning response (Nominal value = 0).

Program Constants

Н

Integration step size for steady state solution (Nominal value = .01).

IM

Total number of points at which steady solution is obtained, = 1/H+1 (Nominal value = 101).

EPS1

Convergence criteria for 503 and 364. (Nominal value = 1×10^{-5}).

EPS2

Convergence criteria for o_{P_3} , ϵ_2 . (Nominal value = 1 x 10-5).

TMAX

Final value of time. Computation ceases when $t > T_{max}$. (Nominal value = 0.1). Currently the value of TMAX must be selected such that not more than 500 of the characteristics calculation cycles (not wave cycles) will be computed. In the nondimensional coordinate system used, the time increment for one computation cycle is approximately equal to the distance between points on the initial line. For this reason the total computation time goes up with the square of the number of points on the initial line.

THE STATE OF THE PARTY OF THE P

PFO

Initial guess for chamber pressure, psia.

DP

Magnitude of the initial pressure pulse,

 $\Delta P/P_F$.

DPV

Magnitude of the initial velocity pulse, $\Delta U/a_f$. (Nominal value = 0).

Flags and Counters

NPRNT

Solution is printed every NPRNT-th calculational cycle, (Nominal value = 10).

MAXIT

Maximum number of iterations allowed for the characteristics solution at a given point. The solution continues, even if it has not converged. : Iominal value = 3). **NSET**

Provides an option for bypassing the steady state solution. NSET = 0 is the nominal value, and a steady state solution is obtained. NSET = 1 provides for the generation of uniform initial conditions. This option should not be used. It was set up specifically for some check out runs and is not now currently operational.

IREAD

This flag determines whether the \$INPUT NAMELIST SET must be included in the input deck. If IREAD = 1 (Nominal value), the \$INPUT Namelist data is not required and no attempt will be made to read it. The nominal value specified for each of the quantities is used by the program. Use IREAD = 0, if it is desired to change one or more of the \$INPUT nominal values. With IREAD = 0, the \$INPUT is read, in Subroutine BVP.

NPLTF

Sets the maximum number of curves that will be drawn on one computer plot. (Nominal value = 4, can be set less than 4, but not higher, unless the necessary array dimensions are increased).

NTRIG

The steady state solution at every NTRIG-th point is stored for use on the initial line for the method of characteristics. The maximum total number of points allowed on the initial line is 200. The number of points on the initial line is given by M = 1+IM/NTRIG, done in integer arithmetic. NTRIG has been assigned a nominal value of 2, which provides 51 points on the initial line when IM = 101.

NTB

The transient burning rate integrals are evaluated starting at every NTB-th location on the initial line. Burning rate values at other locations are computed by interpolation. The total number of points on the initial line, less one, must be exactly divisible by NTB, i.e., (M-1)/NTB must be a whole number. The program will automatically terminate if there is an improper correspondence between the values of M and NTB. The maximum number of locations at which the burning rate integrals may be evaluated is currently 26.

NINT

After one transient burning rate calculations have been performed NINT times, the burning rate is calculated as the sum of one response to two perturbations. After 2 NINT calculations the response to the first disturbance is deleted and storage is shifted. (Nominal value = 1,000,000).

KVEL

#0 velocity coupling included, = 0 no velocity coupling (Nominal value = 0).

KPRES

≠0 pressure coupling included, = 0 no pressure coupling (Nominal value = 1).

In addition to the above quantities, an array must be specified to govern the times at which the variables will be stored for computing plotting. This array is denoted by TPLØT(I) and has the maximum dimension of 20. The variables $P' = P - P_0$, $u' = u - u_0$, $u'_p = u_p - u_p$ and $\omega' = \omega_0$ are stored at each x location, the first time a calculation cycle ends at a time greater than or equal to each successive value of TPLØT(I). Each time the variables have been stored at NPLTF different times Subroutine MPLØTS is called; which then processes the stored information and writes out the plotting instructions on tape. If 19 or less plot times are specified the program automatically inserts t = 1,000,000 as the last plot time. Therefore, if plotting is not desired TPLØT need not be input, as TPLØT(1) will be set to ..,000,000 and will never be reached.

If $TPLØT(1) \le 99$ the program also plots the pressure and transient burning rate histories at x = 0 and x = 1. One can choose to have these latter plots, and not the aforementioned set, by choosing a value for TPLØT(1) greater than TMAX, but less than 99.

Steady State Input

The quantities which control the steady state solution are also read in using the NAMELIST format. The first card of this set should read \$INPUT, and the last card \$END. When used, the \$INPUT data immediately follows the \$END card of the \$DATA NAMELIST. The quantities that may be input are described below. Nominal values have been preset for each quantity and are indicated.

HI

Integration step size for the steady state solution (Nominal value = .01).

LTRIG

Controls the locations at which the steady state integrated values and derivatives are printed. (LTRIG controls the printing of the conserved quantities and their derivatives, not the flow variables, ρ , u, P, etc., themselves).

LTRIG = 3, (Nominal value) print only at x = 0 and x = 1.

LTRIG = 2, print at every NTRIG-th step.

ITRIG

Determines the frequency at which the conserved quantities, and their derivatives, are printed.

ITRIG = 1, the results are printed each iteration.

ITRIG = 2, the results are printed only after the final iteration.

ITRIG = 3, (Nominal value), the results are

not printed.

NTRIG

Must be identical to NTRIG in the \$DATA input set. Here it governs the printout as shown, for LTRIG = 2. (Nominal value = 2).

MAXIT

Not the same as MAXIT in \$DATA input. Here MAXIT sets the maximum number of iterating allowed for the steady state solution. If the Mach number at the end of the grain is not matched, to within the convergence tolerance, in MAXIT iterations, the solution is terminated.

(Nominal value = 10).

KB

If KR = 1 a bounding procedure is used in conjunction with the iterative solution. Otherwise KB = 0 (Nominal value). Unless the initial chamber pressure guess, PFO, is off by at least an order of magnitude, or more, the bounding option should not be required.

BSEVEN

If KB = 1, the chamber pressure will not be allowed to change by more than the value of BSEVEN on any one iteration. This bounding procedure will usually slow the convergence rate, and therefore should not always be used. However, in some cases, particularly when the initial guess is quite poor, this bounding allows a converged solution to be achieved when the iteration would, otherwise, be unstable.

A subset of the subroutines used to solve the steady state problem consists of library subroutines designed to solve a general two point boundary value problem involving up to 20 differential equations and constraints. All of the options and features of this general routine are not required in order to solve the present problem. As a result, the list of input has been restricted to the quantities shown above. The other items, normally required as input, have all been preset in subroutine BVP (and should not be changed), or are of no consequence in the present program and have been ignored.

5. DESCRIPTION OF PROGRAM OUTPUT

The printed output from the instability program is described below. The output is presented in the order in which it appears. Sample output for the test case is contained in Section 6 and should be referred to in conjunction with the text.

5.1 Printout of Program Input

The DATA namelist input quantities are printed out in sub-groups which correspond exactly to those shown in the discussion*; i.e.,

ENGINE GEOMETRY
BURNING RATE CONSTANTS
GAS CONSTANTS
PROPELLANT CONSTANTS
PROGRAM CONSTANTS
FLAGS COUNTERS

The input units for those quantities having dimensions are indicated.

5.2 Fractional Lag Solution

The next page of output contains the parameters calculated as a result of the fractional lag nozzle solution. The quantities themselves are easily related to the variables in the analytical description of the solution.

5.3 Steady State Solution

The flow variables of interest are printed out at the end of each iteration of the steady state solution. The axial spacing of this printout corresponds to the spacing of points on the characteristics initial line and does not represent all of the points calculated, unless NTRIG = 1.

At the top of the page the current value of chamber pressure is output in psi. At the end of each iteration the number of the iteration, and the error in matching the mach numbers at the end of the grain, are printed out. When convergence has

^{*}The quantities UTH, NINT, KVEL, KPRES, CNV, DPV, BV have yet to be integrated into the output format. These quantities are printed out after the plot times.

been achieved the message

STEADY STATE SOLUTION COMPLETED

is printed out.

5.4 Instability Solution

For each point on the starting line pressure, velocity, temperature, burning rate, particle velocity, particle temperature and particle density are printed out. These quantities are also printed out every time an additional NPRNT characteristics cycles have been completed.

The case title, run date, and time (in hours) are output at the top of each page, to aid in run identification.

The total number of characteristics cycles computed (LCYC) and the corresponding nondimensional time, are also printed.

The solution is also output each time quantities are stored for plotting, as well as at the end of the last cycle.

THE PROPERTY OF THE PROPERTY O

Just before the instability solution is printed at the final station a summary of the transient burning rate calculations is printed. The output quantities are as follows.

TIME	time at which the results were calculated
PW	pressure perturbation
EMW	total pressure coupled burn rate perturbation
VW	velocity perturbation (as used in calculating velocity coupled response)
EMWV	total velocity coupled burn rate perturnation
EMW1	pressure coupled response to the first pressure disturbance only
EMWV1	velocity coupled response to the first velocity disturbance only

If KVEL = 0, the aforementioned quantities are printed only at x=0 and x=1. If KVEL $\neq 0$ transient burning rate results are also printed at several intermediate x locations.

THE STATES OF THE PROPERTY OF

6. SAMPLE CASE

Portions of the output from a sample case are presented in this section to facilitate program check-out. The sample case includes both pressure and velocity coupling.

Copies of the CALCOMP plots generated by the sample case are also included so the operation of the plotting routines can be checked out.

		4.794600E-01	1.200000E-00	1.000000E+00	6.110000E+03									
10	INTS	4.7	1.2	.0	6.1	40	91	m	•		•	~	~	
12 HOURS	GAS CONSTANTS	0G-R)				UNTER								
2	GAS	CP (RTU/LR 06-R)	_		TF (DEG-R)	FLAGS AND COUNTERS				_				
082372		8) d3	GAMMA	œ.	TF (0	FLAGS	NPRNT	MAXIT	NSET	IREAD	NPLTF	NTRIG	NTR	
UTH=.04	CONSTANTS	3.400000E-01	•0	3.000000E-01	5.000000F+02	NSTANTS	1.000000E-02	101	1.000000E-05	1.000000E-05	7.460000E+00	1.400000E+03	1.000000E-01	
V AND P COUPLING UTHE. 04	RURNING RATE CONSTANTS	CTILDA (IN/SEC)	CK (SEC/FT)		PREF (PSIA)	PROGRAM CONSTANTS						PSIA		
GNA >	æ	CTILL	ž	3	PREF		I	I	EPS)	EP S2	THAX	PFO (PSIA	όΩ	
A														
A#11.5.R#.64		1,994000E+00	7.390000€ .01	2,350000E+01	5.000000E-n1	ν̈́	1.766000F+00	◆ .000000F•n0	3.000000F-03	2.000000F+00	1.1500005.01	6.400000F-01	9.00000nE-01	3.700000E-01
	TRY	1,9940	7.3900	2,3500	S.0000	NSTANT	1.7660	4.0000	3,0000	2,0000	1,1500	6.4000	9.0000	3,7000
TEST CASE Pa.JCnS(Plex)	ENGINE GEOMETRY	(14)	(1%)			PROPELLANT CONSTANTS	و/دد،	8/CC)	CKAPA (CM2/SEC)	PDIA (MICRONS)				
TFST CASE	-	DPORT (IN)	NTHROT (IN)	((IN)	e U	ā	BH05 (6/CC)	RHUM (G/CC)	CKAPA	PD14 1	⋖	Œ	U	RETAÎ

THE PROPERTY OF THE PROPERTY O

VARIABLES WILL BE STORED FOR PLOTTING WHEN TIME FIRST EXCEEDS EACH OF THE FOLLOWING VALUES OPV=0.00000 7.45000 1000000,00000 BV=.6400 CNV= .300 KPRES# 1 4.85000 UTHE .04000 NINTEROONOOO KVELE : 2.40000 0.0000.0

TO THE TO THE PROPERTY OF THE

CONVERGENT SOLUTION

A STATE OF THE STA

5.6249E-01	3.2257E-01	1.00875.00	1.24805+00	1.16175.00	3.2972E+03	5.6531E+03	1.6488E-06
	i						
×	3 5	∞	ш	GBAR	USTAR	TSTAR	MEUSTAR

CONVERGENT SOLUTION

8.19822909E-02

MEB #

美国的发展的

PSTA
1400.00000
PRESSURE
HAMBER

AHUB			_	.37113		_		•	•	_	_	_	~	•	^	~		_	_	_	•		•	•	.37044	•	ℯ	•	_		_	^	•	~ ∧	_	•	•	969	7 (260	169	066	E (233	687	980	693	684	36831	6A1	980
4	• 0000	0000	• 0000	2	0000	0000	666	6	666	999	9	999	9	9	666	8	666	666	666	666	6	•	6	6	666	666	6	•	96	œ	98	98	•	98	œ	8	9	8	866	766	997	6	166	6	766	766	6	966	0	966	96
dD.	000000	•00144	.002A7	.00431	*1500°	.0071R	-00862	• 01005	.01149	.01293	•01436	.015A0	•01724	.01868	.0201	•02155	• 02269	.02443	.02587	.02731	•02R75	•03019	•03163	.0330R	•03452	•03596	.03741	• 03AA5	• 04030	.04174	•04319	*9**0*	•04409	•04754	•	٠ خد	•05189	<u>۾</u>	• 054×0	2	05771	59	29090•	9	35	5.50	\$ 9	619	•	708	723
x	20210.	• 07202	• 07202	6	•07201	0	.0770	.07201	.07201	6	5	6	6	_	~	_	6	-	6	6	_	6	6	6	0	6	6	_	~	6	_		*6140*	_	.07193	6	•	C	6	_	6	•	6	_	- 1	6	,	_		718	
-	• 0000	•0000	• 0000	1.00000	0000	0000	000	999	666	66666*	666	666	0	666	40000	666	666	666	ŏ	96666	666	6	6666	666	6	666	666	666	998	. 999AA	998	998	998	Œ	400	400	8	•	166	0	497	6	\$2666	464	O (266	997	966	66	966	*9666
2	0.0000	•00144	C	.00432	С.	C	380	•0100	-01152	.01297	_	.01545	•01729	.01R73	•0201A	.02162	• 02306	.02451	02396	O	2 R R	•03029	3	33	6	34	37	38	ê	.041A7	6	;	•04623	7	60	•05050	S	S	16750.	ທ	S.	20	18090	Š	637	Š	999	583	69	2	•07256
α		ė	000	0	000	600	0	Q 0 D	840000	.99972	99066	995	.99951	400	.99933	600	\$1066.	10666.	99999	987	69869	84860°	9A3	983	C0466*	978	.90767	64160	.99730	.99711	æ	69966	.99647	.99425	.93402	•	95.5	952	950	047	776	276	626	936	933	0.0	926	923	*0266*	716	.99136
×	0.000.0	• 0200	.04000	æ	C C	င္ပ	3	C	ŝ	190		.22000	c	.26000	. 2R000	30000	.32000	.34000	c	0	.40000	c	C	4	4	.50000	.52000	.54000	.56000	. SPONO	S	00024.	.64000	.66000	.68000	.70000	.7200€	.74000	.76000	.78000	.80000	•82000	.84000	.86000	.84000	• •	6	-	9	800	1.0000

AND SALES OF THE PROPERTY OF T

ERRORS AT END OF GRAIN

NUMIT F(1) = ABS(ME-MEBAR)

8.17702581E-04

ERRORS AT END OF GRAIN

NUMIT F(1) = ABS(ME-MEBAR)

8.69125212E-04

的人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们也是一个人,

ERRORS AT END OF GRAIN

NUMIT F(1) = ABS(ME-MEBAR)

1.210400395-05

STEADY STATE SOLUTION COMPLETED

Polacione processor of the contract of the con

PSIA
73775
1377.1
*
URE
PRESSURE
CHAMBER

を表現る。 「一般のでは、一般ので

d CHB	.00000	11763711	1175. 00000	1116.	1112	.00000		01.55	0115	00000	00000	00000	99990	70779 87777 00000 70000	3708	BOLE 90000	7076	7076	A076.		3016 C1166	99994 3706	99994 • 3705 99994 • 3705 99993 • 3705	99994 99994 99994 99993 99993 9708	99994 99994 99993 99993 99992 93704 99992	99994 99994 99993 99993 99992 99992 99992 99993 99991	99994 99994 99993 99993 99992 99992 99991 99990	99994 99994 99993 99992 99992 99992 99991 99999 99999	99994 99994 99998 99998 99998 99999 99999 99999 99999	99994 99994 99992 99992 99991 99999 99989 99989 99989	99994 99994 99999 99999 99999 99999 99989 99989 99989 99989 99989	99994 99994 99999 99999 99990 99990 99989 99989 99989 99989 99989 99989	99999 99999 99999 99999 99999 99999 9999	99994 99999 99999 99999 99999 99999 99999 99989 99989 99986 99986 99986 99986 99986 99986	99994 99999 99999 99999 99999 99999 99999 99989 99986 99986 99986 99986 99986 99986 99986 99986	99999 99999 99999 99999 99999 99999 9999	99999 99999 99999 99999 99999 99999 99989 99986 99986 99986 99988 99988 99988 99988 99988 99989 99989 99989	99999 99999 99999 99999 99999 99999 99989 99989 99989 99989 99989 99989 99989 99989 99989 99989 99989 99989 99989	99994 99999 99999 99999 99999 99999 99989 99989 99989 99981 99989 99981 99980 99980 99980 99980 99980 99980 99980 99980 99980 99980	99994 99994 99999 99999 99999 99999 99989 99989 99986 99986 99989 99989 99989 99989 99989 99989 99989 99989 99989	99994 99999 99999 99999 99999 99999 99989 99989 99989 99989 99989 99989 99989 99998 99998 99978 99978 99978 99978 99978	99994 99994 99999 99999 99999 99999 99999 99998 99988 99988 99988 99988 99988 99988 99988 99988 99998 99978 99978 99978 99978 99978 99978 99978 99978 99978 99978	99994 99994 99999 99999 99999 99999 99998 99998 99988 99988 99988 99988 99988 99988 99998 99974 99974 99974 99974 99974 99974 99974 99974	99994 99999 99999 99999 99999 99999 99998 99998 99988 99988 99988 99988 99988 99998 99998 99974 99974 99974 99974 99974 99974 99998	99999999999999999999999999999999999999	99999999999999999999999999999999999999	99999999999999999999999999999999999999	99999999999999999999999999999999999999	99999999999999999999999999999999999999
	-	:	-1		005A1 1.	00726 1.	• 1/200	• '	20110			• ************************************		• ******	• •	30200	02671	1120	07450	,	02000	02908 03053	02508 03053 03053	02908 03053 03199	02908 02908 031999 03495	02908 02908 03199 03345 03491	02508 03199 03199 03491 03691	02508 03053 03169 03145 031491 03537	02508 03053 03169 03145 03691 03637 03783	027-26 02908 03199 03145 03491 03783 04229	0227088 03199088 031999 031999 031999 031929 04222	0229088 03199088 0319908 031990 031931 04229 04322 04315	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
>	.07283	.07283	.07283	.07283	.07293	.07283	01200		000000	00010	00010	28270	2270	•07786	18020	18670	10210	00000	03270			. 07280	.07280	• 07280 • 07280 • 07279	. 0.7279 . 0.7279 . 0.7279	. 0.7279 . 0.7279 . 0.7279 . 0.7279					6.00.00.00.00.00.00.00.00.00.00.00.00.00			00000000000000000000000000000000000000									F	00000000000000000000000000000000000000	00000000000000000000000000000000000000				00000000000000000000000000000000000000
-	1.0000	.00	0000	•0000	,0000	ç	0 0 0 0 0 0 0	P 0 0 0 0) () () (7 C		7 (7)	A (A (A (A (A (A (A (A (A (A (# 0000 •	700	9000	֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֝֓֡֓֓֓֡֓֡֓֓֡֓֡֓֡֓֜֝֓֡֓֡֓֡֡֡֡֡֓	0 1	040		,,,,	6666	6666	6666 6666 6666	66666 666666 6666666666666666666666666		66666666666666666666666666666666666666					\ \tau \tau \tau \tau \tau \tau \tau \ta		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0		^ 4 X X X X X X X X X X X X X X X X X X	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	//////////////////////////////////////	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44444444444444444444444444444444444444	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\frac{1}{2}\cdot\frac{1}{2}\c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
=	0.0000	~	16200	-	ır	•00128		3 6	5;	3;	7410.	5	5	01845	04070	0.1.70	07070	40400	# N N N N N N N N N N N N N N N N N N N	11111111	0/1/00	7,020.	71020 71020 03060	0300 03000 03000 03000	27201 60760 60760 60860 60860																								
۵	1.00000	1.00000	66000	666	76066	000	5 (x 100	£ 1000	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	10000	993	900		7000	2660	7 6		C		987	7866 7866	4994 4994 49984	4994 4994 49994 6993	0000 0000 0000 0000 0000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	99986 9986 9988 9998 9978	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	<i>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	<i>, , , , , , , , , , , , , , , , , , , </i>	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	<i></i>	<i></i>	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>, , , , , , , , , , , , , , , , , , , </i>	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,	<i>,</i> , , , , , , , , , , , , , , , , , ,
×	000000	00020	.0400	• 04000	• ೧೩೧၈	.1000	00021.		00041•	LIKOGG	00002	25000	24000	.74010	0000		00000	9,000	١	00000	38000	10 0 4 10 0 4 10 0 0 6	444 44000 6000 6000	44000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4															0. 4444888888888888888888888888888888888		14 4 4 4 4 4 11 11 11 11 11 11 11 11 11							

er construction of the con

P=.1C05(PT+X)	AE11.5.8=.64	V AND P COU	COUPLING NTH#.04		082372	12 HOURS	
	רנאנ •	c		TIMIT	000000		
×	۵	9	-	3	ď	4	RHOP
_	1.10000	_	910	7	00000	00	.37114
c (. 0998	700	2	070	0014	0000	97114
5 4 C		` •		7.5	•00436	0000	.37113
08080	•	Š		2	005A	.0000	.37112
100	0460	~	.0.	72	2200	0000	.37111
•12000	28	α	-0	∾	0087	666	.37110
. 14000	nou3	~	0.	270		6666 6666	
55.		.01165	6	\sim \circ	20110	**************************************	37104
- C	- U	-		7	0145	6666	.37102
22000	0766		5	072	0159	6666	.37099
24.0	0773	5	<u> </u>	072	0174	6666	37096
250	0678	-	-0-	Λ.	0188	666	3709
. 22606	06.30	S	0.	270	0203	* 6 C C C	3000
00006	6579	0 0		\sim \circ	0x100.	76666	37092
26.0	ر د د	· n		072	0247	6666	3707
36,00	2	ۍ د	00	072	0261	6666	3707
380	E	\sim	000	\sim	0276	666	.37069
490	1.02950	\sim	.00	œ.	050	666	3706
99690	2	5	ē	072	0305	0000 0000	3/07
C 4 4	26	200		r u	7150	900	37048
0000 4		ຳຕ	ē	072	.03491	6666	3704
500	č	6	,000	072	0363	666	.37036
,52000	96196	•	. 99885	072	037R	6666	3703
50040	3 6	m,	6	570	7660	8000	3075
2 6 6 6	2 6	* 4	2000.	しゅ	040	968	37009
:	40290	8	. 5	072	0436	8666	3700
420	2	•	0	072	0451	866	*3698
Ç	8	4.	ö	270	0466	8666	3648
260	0 0	204040	44000	47770	40404	96	36970
10000		5.0	ά	072	0510	9666	3696
720	9	ம		~ □	0524	9666	3692
740	. 92473	8	α (972	0539	8444 000 1000	26.46
152	6	ภแ	- 4	7 C C C	04400	766	36/26
	-	ີ ປ		ıヘ	0583	1666	3695
820	6	٠.	ď	07.2	059A	166	3693
A.4.0	6		3	S.	0613	76	3689
•85000	30	æ	1.4	072	0627	1666	3685
88.0	0	ø,		570 540	0000	7000	3676
C (8677	£Ν	X 0	2	F6740.	966	96869
2 4	220	C 4	98246	75	0687	9666	3683
, c	8026	. ~		2	0701	9666	3682
. 93	3	.07189	.98213	072	.07167	Ø 6	.36813
99	911	~	.98207	72	.07316	£9666*	10905
							•

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们们是一个人,我们们是一个人,

TFST CASE

distriction of the contract of

en de la companya de

And the same of the same

CASE

TEST

1777 1777	=.1COS(PI+X)	A=11.5.8=.64	V AND P COU	COUPLING UTH:.04		082372	12 HOURS	
1,774, 1,000, 1		10	c			•		
1,1974, 1,19	×	۵	Þ	۰	3	đ	4	RHOP
1,7774	0	.0383	0000	-	657	.000.	.0043	3576
17771	2000	960.	500.		659	\$500.	.0043	3577
100101	6000	77E J.	.0046	5		7.000	000	3576
1,012.7	5000 8000	0750.	1000	•		7600	0041	3575
1.07147	0000		6110	•	_	.0120	• 039	3574
1.07314	2000	•	-0133		•	.0142	.0038	3574
1.7244	4000	•	.0153	-		.0163	•0036	3574
1,0,2734	16000	•	•	•	•	.01A3	.0034	3574
2007 100361 100361 100361 100361 15573 100361 15573 100361 15573 100361 15573 100361 15573 100361 15573 15573 100361 15573 15573 100361 15573 15574 100361 15574 150761 150765 15071 15071 15076 15076 15076 15077 15071 15077 15071 15077 15071 15077 15071 15077 15071 15077 <td>18000</td> <td>•</td> <td>٠</td> <td></td> <td>-</td> <td>.0201</td> <td>.0031</td> <td>3574</td>	18000	•	٠		-	.0201	.0031	3574
Section 1,07270 -003190 1,00149 -005378 -00440 1,00737 -003190 -00549 -00540 1,00723 -1,0172 -003190 -004491 -005570 1,00114 -3578	20000	.0250	٠	ç	•	.021R	.0028	3574
1007-04 1007-05 1007	22000	c.	٠,	•	•	•0233	0200	3574
	24000	0	٦.	-	~ .	•024¢	.000	37.05
10.17 10.17 10.01 10.0	26000	<u>.</u>	• `	•		1020	7100	1577
1,010.07	2000	2 2	•	-	• -	6460	4.00	
	30000	2 2	•	-	- ^	0276	0011	35A0
	2000	. 6	•			.027R	6000	3592
	34000	0051	•		633	.0277	.0006	35 A 5
	38000	7200	. ~		062A	.0274	.0003	3549
40000 40000 <th< td=""><td>40000</td><td>: . non45</td><td>٧.</td><td>÷</td><td>9670</td><td>•025A</td><td>.0001</td><td>3593</td></th<>	40000	: . non45	٧.	÷	9670	•025A	.0001	3593
44000 99667 96236 99661 98661 3604 44000 99677 96236 96237 99981 3614 50000 99714 96877 96875 99857 3614 50000 98464 96874 96875 96857 3614 50000 98464 96874 96875 96875 3614 50000 98464 96874 96875 96875 3678 50000 98465 9774 96876 96876 3678 50000 98465 96774 96774 96786 3678 5000 9874 96774 9678 9678 3678 5000 9874 9678 9678 9678 9678 3678 5000 9774 9678 9678 9678 9678 9678 9678 5000 9774 9678 9678 9678 9678 9678 9678 5000 9774 9678	42000	.99A22	•	٠	0625	• 0260	999R	3597
ACATION COCATO	44000	.99407	٦	U	E290	• 0250	9666	3603
Second	44000	20700	•	J	2290	, 520 .	7 0 0 0	3616
Second	48000	50700	•	<i>y</i> 0	7	1020	9000	3623
Senior OPARATI -01635 -01645 -01645 -01646 -01647 -01641 -09683 -3648		3000°	•	· U	1000	.01A5	9987	3629
SEAND OFFICE OFFICE </td <td>54000</td> <td>2946</td> <td></td> <td>, C</td> <td>0622</td> <td>.0163</td> <td>9985</td> <td>3636</td>	54000	2946		, C	0622	.0163	9985	3636
SROOT 98345 -01053 99794 06269 -01141 99805 3561 SROOT 98195 -01042 99745 06294 -00563 99705 3679 SACOT -01492 99745 -00534 -00563 99775 3679 SACOT -0134 99721 -06347 -00653 99775 3679 SACOT -0134 99721 -0634 -00663 99746 3679 SACOT -0743 -0147 -9978 -06440 -01367 -99748 3763 SACOT -07418 -01198 -09675 -06440 -0130 -99748 37716 SACOT -07418 -01404 -09731 -09771	56000	198501	. ~	G	0623	.0139	9663	3644
50000 99195 3561 50000 99174 06294 6086 99780 3651 52000 99175 06294 6085 99780 3679 3679 52000 99784 9978 06347 06164 99784 3679 5600 97784 06347 06346 9978 9978 3797 5600 97784 99775 06376 9978 9978 3797 7600 97747 99775 06440 9972 3795 3795 7600 9770 99661 06476 01130 9972 3775 7600 9770 99661 06476 01130 9972 3775 7600 9770 99661 06476 06476 01130 9972 3775 7600 9770 99664 06476 06476 0972 9976 9976 7600 9778 99661 99661 06476 0976 99669	SACOC	.98345	•	Ţ	625	.0114	9982	3652
52000 99755 99755 99757 <th< td=""><td>00009</td><td>. 98195</td><td>•</td><td>U</td><td>0626</td><td>• CORE</td><td>9980</td><td>3661</td></th<>	00009	. 98195	•	U	0626	• CORE	9980	3661
64000 9721 99738 99738 99731 99731 99731 99731 99731 99731 99731 99735 99735 99735 99735 99735 99735 99735 99735 99735 99735 99731 99735 99740	42000	.9A052	•	•	6290	.0057	9979	3670
6400 97784 99784	64000	.97914	٠.	5	0631	0000	77.00	3698
70000 047434 001431 09649 016476 01130 09723 3716 70000 097434 011578 09661 066476 01131 099723 3716 70000 097194 011578 09661 066476 01131 099723 3716 76000 097194 01972 09661 06549 01965 099689 3775 76000 097194 01972 09664 09673 06573 06573 099659 3776 86000 09672 06673 06673 099650 09669 03778 86000 09672 06673 099650 09967	66000	*#27.6.	9,	, ,	45.00 45.00		90074	2607
70000 97418 01198 996675 066476 01130 99723 3775 72000 97712 97751 97751 997615	64000	1476.		rc	1500	1000	6400	3707
76000 9710 9710 9710 9710 9710 9710 9710 9	0000	7 6 6	,,	ru	4440	2130	9972	3716
750.00	0000	<u></u>		. 0	647	0151	1266	3725
### 1946 ### 1946 ### 1946 ### 1946 ### 1946 ### 1946 ### 1946 ### 1946 #### 1946 #### 1946 #### 1946 ####################################	7	6		· o	0651	010	9970	3735
######################################	780	97091		v	0654	0231	8966	3744
### ### ### ### ### ##################	And	96988	_	C.	0659	9272	61966.	3753
8400 046792 03637 094602 06673 003582 09959 03770 8400 04674 09592 06757 00462 09650 03778 8600 094469 00452 06842 06469 09642 037878 8000 094469 09582 06842 06953 09642 09642 037878 80000 094469 09583 09583 09684 09683 03795 80000 09487 09585 07084 09581 099619 03817 80000 09474 06370 099550 077329 06322 099619 03817 80000 094198 06844 09956 09587	A200	. 96888	•	1966	663	0312	9966	3762
8500 96699 06757 06757 06622 99550 3778 8800 9660 06672 09582 06882 06469 99642 3787 8800 9660 0660 09582 06882 06469 99633 3795 9000 9662 09583 09583 09583 99626 3802 9200 9663 9600 96557 07084 05851 99619 3817 9600 96754 06370 99550 07329 06322 99612 3817	Aton	26296	•	9960	567	~	65966	3770
### 1955	8500	66496	•	9959	675	2040	05466	81 JE
90000 .96421 .04975 .99573 .05453 .049723 .949533 .949533 .949533 .949533 .949533 .949533 .949533 .949533 .949533 .949533 .94950 .995000 .98072 .996000 .98072 .996000 .98072 .996000 .98072 .996000 .98072 .98072 .98072 .996000 .98072 .98072 .996000 .98072 .98072 .996000 .98072 .996000 .98072 .99750 .996000 .98072 .99750 .996000 .98072 .99750 .996000 .98072 .99750 .997500 .98072 .99750 .997500 .98072 .99750	ABOOO	.	•	9958	989	445	4000	7475
92000	40004	12346.	•	9957	6595	2640	7000	3795
94000 .94354 .05900 .99557 .07209 .0352 .99517 .3817 95000 .99512 .3817 95000 .96074 .05370 .99550 .07329 .06342 .3817 95000 .38817 95000 .3817 95000 .38817 95000 .38817 95000 .38817 95000 .38817 95000 .38828 9500000 .38828 950000 .38828 950000 .38828 950000 .38828 950000 .38828 950000 .38828 950000000 .38828 95000000000000000000000000000000	8	.96436	•	926	708	5000	V .	2005
1070 21044 2770 10710 10	04000	36.96	•	0.55 10.55 10.55	0220	^ ^	707	2010
NUMBER GONDON YARANG UNDER THE STORM UNDER THE STORM THE	96000	47 C96*	~ .	֓֞֜֜֝֓֜֜֝֓֜֜֝֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	3610		96	368E
	0 E C	7150	_	ָ ה ה ה	1 t			36.65

CONTRACTOR OF THE STATE OF THE PROPERTY OF THE

to the second of the second The second of the second secon

TEST CASE

o contraction and a traction of the second s

The second statement of the second second

1

ranerdame much habroekandelsi

40420

3AA03

Ps.1CnS(Plex)	A=11.5.8=.64	V AND P COUP	COUPLING UTH: 04		082372	12 HOURS	
	רנאנ = 300			TIME .	5.982674		
×	a	a	٠	3	ч	4	QCHA
0.00000	494364	0.0000	918	φ.	0.00000	925	.33551
00020	8	.00466	.99199	072	.00470	55266	• 33596
	7 4 4 6	100.00	70	con	10410°	926	33696
08000	.0442	ነሮ	920	0728	0186	956	.33767
1000	9445	~	921	~	0232	126	.33796
1200	\$6770	~	2	.07274	720	2000	.33865
140	*	_ ,	ر د ز	•	0327 5260	2000	24444
15000	. 946.05	7,295.0	04266	0770	74010	700	43000
	, ה ה		. 99267		0450	1566	34045
2200	.04851	· cc	. 992R3	0740	1640	9933	.34101
2400	.0495A	.05252	6	.07745	0531	9634	3
_	.95080	ي ع	22866	6 0 4	0570	96.66	9
7800	ر د د د د	ů,	\$4500°	0802 0016	7090	99799	,
0.0000	8/14/4 78730		700	20170.		5 0	3446
3000		600	62766	0840	070A	9945	34534
36000	9.0	723	946	0852	0737	9948	.34631
3800	σ	748	20566	0863	1920	951	.34738
4000	. 96533	770	g L	874	*	955	.34854
•	• 96855	7.8.R	60500	₼ .	•	956	.349R2
.44000	. 97213	• 08040 • 08040	. 99643	0893 0003	0826 006	5966	.35161
. 45000		7	9469	1000		60066	95456
	ACR. 20.	2 1	09823	•	0858	626	3
5200	990	A 30	998	660	0861	986	.35811
5400	. 9953B	2	066	9260	0862	N.	.35016
5600	1.00094	A 25	000	934	^ .	6666	.36233
•	0.	•08192	.00	866	0854 1	.0000	6
6000	1.01251	.0A114	100	2460	0 H & 7	5100	5
00/0	5 6	14040		740	ۍ د	8000	147183
.66600	1.0000	.07839		9949	0R15	.0035	3
6400	1.01571	.07747	• u u •	0950	1080	.0041	.37660
2000	1.04081	07470	•	5	0794	.0048	3
7200	1.04581	08500	200	9951	47/0		5 5
04047	1,05483	67450	700	676) ac	0065	.3A567
7800	1.05876	•0740•	007	1960	1920	.0070	ä
• 67	2	• 07.369	C	1760	0756	.0074	2
BZOO	1.06453	.07342	. 0.0A	939	0751	.0078	.39156
α (5 1	• 07375		0435		1400	93636
	0 / U	71570	: O	7 V C	0747	.0087	39666
	1.07462	•07319	600	0887	0740	.0089	3
9200		.07326	000	0866	739	.0091	.39919
9400	C	•07335	600	844	738	•0092	•
960	£77	.07348	000	.08219	.0737A	1.00935	40149
9800	2770	00670) () ()	0110	10,4	4000	, (
	Ċ	7	_				•

THE SECTION OF THE PROPERTY OF

TEST CASE

Ù,	
_	
w	
82	
8	
C	

. 1COS(PI+X)	A# 11.5.8x.64	V AND P COUPLING	NG UTHE.04		082372	13 HOURS	
	7CKC = 354			TIME .	7,457553		
×	۵	=	-	3	å	4	A CHA
c	.0957	0.0000	ç	.09722	0.0000	.0110	-
.020	Ę		1.01106	.09712		1:01099	.38413
0400	.0951	0	•	-09702	•00300	•010	•••
C	4460	.00503	÷	.09470	15700.	.0109	•
S	.0933	.00670	Ç	.0963R	.00601	.0107	-
E	00.	.00836	Ç		09200	• 0106	•
C	600	65600	ë	*6560*	76400°	2010	
0001	2 K C C		5	= •	79100		~ ~
0001	£		•	3 4		7000	
1 200	7. C		•		12610	4000	•
	1,020.1		= =	, caa.	0850	1630	•
		00010			.01700	.0097	
2600	. 10 0 7 0		=	. •	.01812	.0082	
2800	240	•	-	C	21910.	.0078	•
7000	190	02260	٦,	0	.02010	.0073	_
3200	054	C	5	C	05020	.0067	
3400	120	.02453	5	.07358	.02160	.0061	-
3600	146	.07530	5	O	• 02220	• 0055	•
E	140	.02595	Ę	.06859	, 0226R	.0048	•
4000	750	*02656	ç	.06611	.02284	.0041	_
200	20	. 02498	e '	.06370	90530	*FUO*	
4400	600	25750°	5	Ç 1	916:50	0200	7705
900	2 1 0	0.4750	5		51500	1100	
0	000	.07740	•	9	66220°		
3000		16/70	= 0		4000°		
2004	7 0	034BC	r O	- 0.50 F	31000	983	_
5600	9	02456	90762		02184	99719	3565
2800	, ,	0242B	44966		92120	962	••
2	. 3	90260	99546	•	.02147	952	
6200	57	.02401	99650	Ç	• 02152	°99436	~
9400	ç	• 02602	. 99355	C	002500	934	
4600	£	.02634	.99263	.04121	15220.	976	~ .
SAOO	99769	6960	917	466E0•	\$6520°	**************************************	•
0007	۳ ا	# 1 2 D •			00160	700	~ ~
	ני נילט נילט	04000	100		02765	800	•
: 0	015	56260	49877	.03637	.02975	890	
7800	. c	03451	88	· C	.03214	884	-
Anno	907	.0369R	176	C	, 034R2	.98800	•
8200	903	£1950°	873	•	.03776	875	_
8400	E	.04270	ጸሴሴ	.03448	\$6000	871	•
600	91	.04591	863	C	.04435	98682	
800	r (.04932	926	.03745	46740	2 2 3 3 3	2337V
ב ב	֓֞֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֡֓֓֡֓	50250°	S S		2/10n•	700	
202	= (,05669	45,15		10550	5 0 5 0 5 0	~ ~
9400	0 0	04040	. CERT.	45640	486.40	10000 10000	
	470	04870	950		41890	856	3380
	7 7 0	0.000	9	04791	07244	198557	
	C C) }	•		

		EMMAJ	0.000000	0.00000	000000	0000000	0.0000.0	0.0000000	0.000000	0.000000	0.0000	0.0000.0	00000000	0000000	0.000000	0.0000.0	0.00000	0.000000	000000000000000000000000000000000000000		000000	0.000000	0.0000000	0000000	0000000		0000000	00000000	000000.0	0.00000	0.00000		0.0000.0	00000000	0.00000	0000000	000000	0.000000	00000000	0.00000	00000000		0000000	00000000	0.00000	0.00000	000000		000000	00000000
13 MOURS		Ewal	0.0000.0	.03075R	.05571	086719	101009	.113325	.123553	.131573	137276	140577	-14141.	135423	129041	.120049	.104869	204460	040140	16140.	.023465	.002379	020097	043320	067041	-114045	-138597	161686	1A3932	205053	-,724767	*********	-,272679	2H399R	95566	- 44174 - 400475	-299426	294A75	296567	274604	155457	-216992	191032	16209A	130512	096643	050495	016496	.053233	.0950.
578230		>= T	0.00000	0.00000	0000000	0000000	0.0000.0	0.00000	0.00000	0.00000	0.00000	0.00000	000000	0000000	0.00000	0.000.00	0.00000	0000000	0.00000		0000000	0.000000	0.000000	0.00000	0.0000.0		0000000	0.0000.0	0.00000	000000	0.00000		0.0000	0.00000	0.00000		0000000	0.00000	0.000000	0.00000	0000000	0000000	0000000	0.00000	0.00000	0.0000.0	000000	0000000	0.00000	0.00000
UTHE. 04	0000°0=×	*	0.00000	0000000	00000000		0.0000	0.0000	0.00000	0.00000	0.0000.0	0.00000		00000000	0.000000	0000000	0.00000	0.000000			0000000	0000000	0.00000	0.00000	000000		0.0000	0.00000	0.0000.0	00000000	0000000	000000	0000000	0000000	0.000.0	0000000	000000	0.00000	0.00000	0.00000	0000000	0.000000	0.00000	0.00000	0.00000	0.0000	0000000		0.00000	00000000
V AND D COUPLING		And												135623		20029			042040	15.440	いいまだんで			04840.	067041	575711-							272619			9×1×5×1					**************************************			14209B	-1130512		. 040893		053233	-09764
A=11.5.H=.64		à	110000	* 094944	6095 17 6096	F00580	905 180	1519200	.070748	.043776	81870.	857670	277140.	.025791	.017470	.009576	.001575	H12460-	7. PE 10.	G 7 4 4 C C	692566-	041476	047706	F05550-	- O C M & C C	- 15451H	070871	n73A76	076275	077900	3/88/0	450870.	-,076457	074123	070414	- 155 ES	-054104	0464P1	03A413	029422	C/ M > 100	941000	010246	100000	.029518	GEREU.	914840.	116040	.065848	.070438
/**!COS(P!*X)		Tluf	0.00000	. A757A4	110407	15025	1001.	.239nn1	. 27AG65	PCRAIL.	. 148775	. 198743	64447		.55AA52	*50057¢	.638474 	7 7 7 4 5	75876	707.890	0177FA.	.A77521	166616.	.457136	176466	1.076558	1.114375	5676	1,196035	1.235AR]	1.275740	719417	1.195402	1.475722	1.475758	21/414-1	1.595171	1.635177	1.675198	1.715220	**************************************	1.835115	1.875029	1.914921	1.954795	1.994652	7.034696	2,114157	2.153979	2.191799
TFST CASE		-	-	~	~ →		•	~	•	•	2	=:	25	2 ±	15	₹.	<u>-</u> :	<u>.</u>	2 0	2 5	. ~	2	2	£ ;	e r	, «	2	30	£.	C (e .	, t	9 6	37	6	P	; ;	2,4	£3	÷ •	<u>.</u>	. .	3	9	S.	5		Λ Ψ	. %	£

THE TANK OF THE PARTY OF THE PA

~	٦,	80440.	417061.	00000000	0000000	415031.	00000000
E (F 0 7 7 0	#C#9/ U*	٤;	000000**	00000000	703740	
? ;	475 15 6	01/4H/0.	65r407.	0000000		מערפונכ	
2	•	138010	171575		: C	621676	000000
5 3	2.432779	~			0000000	302500	0.00000
Ę	•				00000	.339346	0.000000
ž	7.5125n0	.074151	161756.	00000	00000	,355121	000000
ş	٠,	1473451	. 176665	.00000	8	.374665	000000
Ę		.070403	. 394756	• 00000	0.000.0	.394756	0000000
5:		.047027	400197	00000	ຣີເ	. 61604.	0.00000
E 0	7.417.197	407.00	474434	00000000	0000000		000000
		06390	606067		00000	429292	0.00000
? . .	2	648647	. ^	0000000	00000	427974	0000000
~	19114.	.043233	.422600	0.00000.0	.00000	.422600	00000
73	Ξ	*67750*	119	00000	0.000000	.413194	0.00000
2	. 2.911929	014160.	÷.	0.000000	•	• 399A16	00000
۲;	5	02550 0000	. 342586	00000	0.00000	. 347.35°	00000
٤;	~ :	2000	196146		•	190106	
- =	5 5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	661776		0000000	300000	00000
2	:=	. 0000	195875.	00000	0.00000	.274391	0.00000
. E	: ::	00547	244593	00000	0.000000	56446	.0000
ε		Ξ	.20R2n6	00000	0.00000	*20A206	00000
E	3.231174	11925	.149524.	0000000	0.000000	169524	00000
2	3.271005	1256A	128857	00000	0.00000	129957	00000
21	3.110829	-,01762	75.7.ABO.	0000000	000000000000000000000000000000000000000	>5 cost 0	
£	4. 170.61	14/41	F * * * * * * * * * * * * * * * * * * *			7000	
£ †	30.0000	40040	00040			0.0440	90
£		054764	092375	0000000	0.00000	-,092375	00000
0	3.509926	-004000	1776A3	0000000	0.00000	13768	.00000
Ç	•	064692	182473	0.00000	0.00000	182473	00000
.	3.549544	049111	224343	0000000	0.00000	2636	00000
25	7.620424	673090	268972	0.00000	0000000	2768972	00000
D 4	3.464971	076-70		50000000	0000000	- 348ADB	000000000000000000000000000000000000000
	3.74895	- 041735	- 385273	000000	0000000	385773	00000
. 6	3.78873	0A3254	418930	00000	0.000000	418930	00000
44	3. R2R764	na1431	440400	0.00000	0.00000	449400	0000000
8	J. RABA67		474307	00000	0000000	106074	
8	3.00.85.84		499777		0.00000	217940	
0.0	7.000461	-	-51041		0000000	531941	00000
. 6	4.02R422	: 6	560030	00000	0000000	3	0.00000
103	4.048399	143A9	54461A	•	0.00000	544618	00000
101	4.108 192		-,542712	0000000	0.00000		000000
105	104841.4	046746	\$ 105E4 •	0000000		50105	
101	6.2786.34	024158	501944	00000	0000000	Š	0.00000
2	4.248754	012253	#47672R	00000	0.000000	ž	0.00000
100	4.308275	000243		000	0.000000	14602	20000
000	4.14.171	.011454			000000	41014 34044	
<u> </u>	440EEL 4	174270.	6,35406.9			32496	
<u>ب</u>		904540			000000	27664	00000
 	4.507571	046070	2252AA	0.00000	0.0000.0	2252A	.00000
51.	4.547193	. nsalla	171493	00000	0.000000	17169	0000000
116	4.547210	.04495	1158AB	0000000	0.00000	586	00000
	4.627072		027240	0000000		444	
£ :	4.444E33	074011	504100-	000000000000000000000000000000000000000	0.000000	.056133	00000000
- C C C	4-746457		-113242	0000000	0000000	1324	2
121	4.7A6273	. =	.169318	00000000	00000000	16931	00000
122	4.826093	•	.223839	•	00000000	.223839	2

المراق ال

THE PROPERTY OF THE PROPERTY O

,如此是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

	4.045010	4000	111.766	000000		115476.	000000
	÷	504540.	124242	00000000	0000000	374767	0.00000
125	4.945502	.084704	~,	0.0000	0.00.00.0	.37325A	0.000000
126	4.065441	. 693410	.41443	0.00000	0.00000.0	.414PA3	00000000
127	4.024.100	BHG LBC.	.451722	0.0000	0000000	661720	0.00000
128	5.065170	.97640	*44764*	0000000	0000000	****	0.00000
120	7	\$10460.	らいれてくと 。	Ę	00000	\$523A39	0.000000
۳.	14404	161810.	646620	0000000	c	.55055°	0000000
131	•	.07076	452775	00000	00000	45274	0000000
137	? ?	• 644994	ETORES.	000000		. SAM473	00000000
	6, 304647 6, 304647	3551AB .	#04404°	•		804404	
35	ř	061400	28170A.			,4071RS	0000000
134		.045950	446046	0		.602446	0.00000.0
137	•	.040104	. 592 JAR	C	0000000	.592308	0.00000
138	•	4 " 5860.	.576A71	5		.576971	0000000
90.	4.504557	•07764	192456	00000000		192955	000000000000000000000000000000000000000
	6.504.343	121120				7 PURC .	
2		007516	465283	000000000000000000000000000000000000000	00000	.465283	0000000
143	5.564106	000513	42044	c	00,	47.05.4°	0.00000
**	5,707051	006594	.397861	0.00000	.0000	,382861	00000000
165	.7417A	013766	914039	•	0.0000.0	.336039	0.00000
144	5.783612	020076	*28595¢	00000	.0000	.2R5954	0.00000
-	5,423411	078191	Λ.	•	0.000000	.232493	0000000
¥ .	2475747 5 00100	475550°	144711.	0000000		195771	000000000000000000000000000000000000000
7	910010	004040	11010			041041	
151	5,982674	4.166337	058000	0000000		20000	
\$	6.022444	067086	216054-		2	059932	0.000000
153	4.042296	** 049 184	120923	00000000	900	120923	00000000
154	•	N75474	141592	0.000000	00000	-, 181592	0.000000
155	2619199	081190	-,741445	0000000	.0000	-,241445	0.00000
5.5	6.18]759	CP6456	086666	0000000	00000	2999R0	0000000
	• "	67650	- A11073		000000	411073	000000
50		008546					0.00000
. F3	٣.	-100001	510749		.0000	51076	0.000000
161	- 38102	~	•	0.00000		55503	0.00000
162	516029.6	-	-, 596863	5	0000000	-, 496R43	00000000
£ 4	6.500734	-100714	1.65864	0000000	000000	- 65.000 - 65.0007	
16.5	6.540665	-,001853	- 6A2046		00000	-,682046	900000
9	. SANA 1	DR4507	KOR535	0.00000	00000	69A535	0.000000
167	6.42057B	-,075066	707495		0.000000	707895	0000000
168 1	•	063729	-,709742	•	•	-,709747	000000-0
200	6.700560	050A73	70382A	0000000	0000000	703428 60011	000000
121		221.220	64875			648756	000000
172	6.4204.18	OARAIL	440056	00000	ŝ	•	0.00000.0
173	6.860334	004000	1.504450	00000	60000	60440	0000000
17.	0 0 0 0 0 V	*******	1100000			11.700.	
7 2	97990	024720	16197		00000		0000000
177	6	.04917R	40449	00000000	00000	*40464	0.000000
178	7.059546	.057605	34 3497	0000000		-,343497	00000000
92	. 19935 . 1997	*04204	.279173	00000	00000	-,279173	00000000
		A00770.	4667170			-163655	0000000
1 A 2	7.21A753	050540.	77.	0000000	, 0	073778	00000000
183	7.258548	.086084	003359		00000	-,003359	00000000
144	.29A3.	. CA9 1A6	.046940	00000	.00000	.046940	0.000000
185	7.3341.39	.091985	.176548	00000	00000	•13554B	0.00000
336	7,377939	.093906	.204793	0000000	00000	E61402*	0000000
<u> </u>	7.417743	. 005147	.771096	0000000		9601/20	
<u>.</u>	7101000	301600	C1000	*******		7	,

,这个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

Handank area e contribue de contribue de contribue de contra e contra e contra e contribue de co

THE PARTY OF THE PROPERTY OF T

THE PARTY OF THE P

The second of th

THE PARTY OF THE P

THE CONTROL OF THE STATE OF THE

THE SECTION OF THE PROPERTY OF

THE PROPERTY OF THE PROPERTY O