PTSI 1: mathématiques 2019-2020

Concours blanc

Première épreuve lundi 29 juin 2020 Durée: 3 heures

♦ Le candidat peut admettre le résultat d'une question et l'utiliser dans la suite à condition de l'écrire clairement sur sa copie.

♦ Si le candidat repère ce qu'il croit être une erreur d'énoncé, il l'indique sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Dérivation

- 1. Montrer que $\forall x>0, \frac{1}{x+1}<\ln\left(1+\frac{1}{x}\right)<\frac{1}{x}.$ 2. Soit $f:[a,b]\to[a,b]$ continue. Montrer que f admet au moins un point fixe.
- 3. Donner les dérivées successives de cos et sin.
- 4. Rappeler (sans démonstration) la formule de Leibniz.

Polynômes

- 1. Déterminer les racines de $X^2 + (3+i)X + 2 + 2i$.
- 2. Quels sont les facteurs irreductibles dans $\mathbb{R}[X]$ du polynôme $(X^2-1)(X-i)(X+i)$.
- 3. Développer l'expression $P \circ Q$, où $P = 1 + X + X^2$ et Q = X + 2.
- 4. Soit $x \in \mathbb{C}$. Montrer que pour tout $A \in \mathbb{K}[X]$, x est une racine d'ordre deux de A si et seulement si A(x) =A'(x) = 0 et $A''(x) \neq 0$.
- 5. Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $(P')^2 = P$.

Espaces vectoriels

- 1. Montrer que $\{(x,y,z,t) \in \mathbb{R}^4 / 2x^2 + 2y^2 + 5z^2 2xy + 2xz 4yz = 0\}$ est un espace vectoriel dont on calculera la dimension.
- 2. Donner la base canonique de $\mathcal{M}_2(\mathbb{R})$ (on explicitera tous les vecteurs de cette base en faisant attention à l'ordre).
- 3. Soit E un K-espace vectoriel. Soient F et G deux sous-espaces vectoriels de E, tels que F + G = E. Notons F'un supplémentaire de $F \cap G$ dans F. Montrer que $E = F' \oplus G$.

Applications linéaires et géométrie dans l'espace

Soit $\mathcal{C} = (e_1, e_2, e_3)$ la base canonique de \mathbb{K}^3 . Soit $\mathcal{B} = (b_1, b_2, b_3)$ la famille des vecteurs définis par

$$b_1 = (1, 0, \sqrt{3})$$
 $b_2 = (0, 2, 0)$ $b_3 = (-\sqrt{3}, 0, 1)$

- 1. Montrer que \mathcal{B} est une base de \mathbb{K}^3 et déterminer la matrice de passage $P_{\mathcal{C}\to\mathcal{B}}$.
- 2. Soit s l'application linéaire canoniquement associée à $P_{\mathcal{C} \to \mathcal{B}}$. Déterminer la matrice représentative de s dans la base (e_1, e_3, e_2) .
- 3. Montrer que s est la composée d'une rotation et d'une homothétie dont on donnera les caractéristiques.
- 4. Calculer $P_{\mathcal{C} \to \mathcal{B}}^{-1}$.
- 5. Soit u la symétrie par rapport à Vect (e_1, e_3) parallèlement à Vect (e_2) . Déterminer la matrice représentative de u dans la base \mathcal{C} puis dans la base \mathcal{B} .
- 6. On considère A(1,2,3). Calculer la distance de A au plan \mathcal{P} passant par O et dirigé par Vect (e_1,e_3) .

FIN.