Graphs of Functions

Even and Odd Functions

Terminology	Definition	Illustration	Type of symmetry of graph
f is an even function.	f(-x) = f(x) for every x in the domain.	$y = f(x) = x^2$	with respect to the y-axis
f is an odd function.	f(-x) = -f(x) for every x in the domain.	$y = f(x) = x^3$	with respect to the origin

EXAMPLE 1 Determining whether a function is even or odd

Determine whether f is even, odd, or neither even nor odd.

(a)
$$f(x) = 3x^4 - 2x^2 + 5$$
 (b) $f(x) = 2x^5 - 7x^3 + 4x$

(b)
$$f(x) = 2x^5 - 7x^3 + 4x^3$$

(c)
$$f(x) = x^3 + x^2$$

In each case the domain of f is \mathbb{R} . To determine whether f is even or odd, we begin by examining f(-x), where x is any real number.

(a)
$$f(-x) = 3(-x)^4 - 2(-x)^2 + 5$$
 substitute $-x$ for x in $f(x)$

$$= 3x^4 - 2x^2 + 5$$
 simplify
$$= f(x)$$
 definition of f

Since f(-x) = f(x), f is an even function.

(b)
$$f(-x) = 2(-x)^5 - 7(-x)^3 + 4(-x)$$
 substitute $-x$ for x in $f(x)$
 $= -2x^5 + 7x^3 - 4x$ simplify
 $= -(2x^5 - 7x^3 + 4x)$ factor out -1
 $= -f(x)$ definition of f

Since f(-x) = -f(x), f is an odd function.

(c)
$$f(-x) = (-x)^3 + (-x)^2$$
 substitute $-x$ for x in $f(x)$
= $-x^3 + x^2$ simplify

Since $f(-x) \neq f(x)$, and $f(-x) \neq -f(x)$ (note that $-f(x) = -x^3 - x^2$), the function f is neither even nor odd.

EXAMPLE 2 Sketching the graph of the absolute value function

Let f(x) = |x|.

- (a) Determine whether f is even or odd.
- (b) Sketch the graph of f.
- (c) Find the intervals on which f is increasing or is decreasing.

SOLUTION

(a) The domain of f is \mathbb{R} , because the absolute value of x exists for every real number x. If x is in \mathbb{R} , then

$$f(-x) = |-x| = |x| = f(x).$$

Thus, f is an even function, since f(-x) = f(x).

(b) Since f is even, its graph is symmetric with respect to the y-axis. If $x \ge 0$, then |x| = x, and therefore the first quadrant part of the graph coincides with the line y = x. Sketching this half-line and using symmetry gives us Figure 1.

Figure 1

(c) Referring to the graph, we see that f is decreasing on $(-\infty, 0]$ and is increasing on $[0, \infty)$.

If we know the graph of y = f(x), it is easy to sketch the graphs of

$$y = f(x) + c$$
 and $y = f(x) - c$

for any positive real number c. As in the next chart, for y = f(x) + c, we add c to the y-coordinate of each point on the graph of y = f(x). This shifts the graph of f upward a distance c. For y = f(x) - c with c > 0, we subtract c from each y-coordinate, thereby shifting the graph of f a distance c downward. These are called **vertical shifts** of graphs.

Vertically Shifting the Graph of y = f(x)

Equation	y = f(x) + c with c > 0	y = f(x) - c with c > 0	
Effect on graph	The graph of f is shifted vertically upward a distance c .	The graph of f is shifted vertically downward a distance c .	
Graphical interpretation	y = f(x) + c $(a, b + c)$ $(c > 0)$ $y = f(x)$ x	y = f(x) $y = f(x) - c$	

EXAMPLE 3 Vertically shifting a graph

Sketch the graph of f:

(a)
$$f(x) = x^2$$

(b)
$$f(x) = x^2 + 4$$

(b)
$$f(x) = x^2 + 4$$
 (c) $f(x) = x^2 - 4$

SOLUTION We shall sketch all graphs on the same coordinate plane.

(a) Since

$$f(-x) = (-x)^2 = x^2 = f(x),$$

the function f is even, and hence its graph is symmetric with respect to the y-axis. Several points on the graph of $y = x^2$ are (0,0), (1,1), (2,4), and (3, 9). Drawing a smooth curve through these points and reflecting through the y-axis gives us the sketch in Figure 2. The graph is a parabola with vertex at the origin and opening upward.

- (b) To sketch the graph of $y = x^2 + 4$, we add 4 to the y-coordinate of each point on the graph of $y = x^2$; that is, we shift the graph in part (a) upward 4 units, as shown in the figure.
- (c) To sketch the graph of $y = x^2 4$, we decrease the y-coordinates of $y = x^2$ by 4; that is, we shift the graph in part (a) downward 4 units.

We can also consider **horizontal shifts** of graphs. Specifically, if c > 0, consider the graphs of y = f(x) and y = g(x) = f(x - c) sketched on the same coordinate plane, as illustrated in the next chart. Since

$$g(a + c) = f([a + c] - c) = f(a),$$

we see that the point with x-coordinate a on the graph of y = f(x) has the same y-coordinate as the point with x-coordinate a + c on the graph of

y = g(x) = f(x - c). This implies that the graph of y = g(x) = f(x - c) can be obtained by shifting the graph of y = f(x) to the right a distance c. Similarly, the graph of y = h(x) = f(x + c) can be obtained by shifting the graph of f to the left a distance c, as shown in the chart.

Horizontally Shifting the Graph of y = f(x)

EXAMPLE 4 Horizontally shifting a graph

Sketch the graph of f:

(a)
$$f(x) = (x-4)^2$$
 (b) $f(x) = (x+2)^2$

SOLUTION The graph of $y = x^2$ is sketched in Figure 3.

- (a) Shifting the graph of $y = x^2$ to the right 4 units gives us the graph of $y = (x 4)^2$, shown in the figure.
- (b) Shifting the graph of $y = x^2$ to the left 2 units leads to the graph of $y = (x + 2)^2$, shown in the figure.

Figure 3

Vertically Stretching or Compressing the Graph of y = f(x)

Equation	y = cf(x) with $c > 1$	y = cf(x) with 0 < c < 1	
Effect on graph	The graph of f is stretched vertically by a factor c .	The graph of f is compressed vertically by a factor 1/c.	
Graphical interpretation	(a, cb) - y $y = cf(x)$ $with c > 1$ $y = f(x)$	y = cf(x) with $0 < c < 1$ $y = f(x)$	

EXAMPLE 5 Vertically stretching or compressing a graph

Sketch the graph of the equation:

(a)
$$y = 4x^2$$
 (b) $y = \frac{1}{4}x^2$

SOLUTION

(a) To sketch the graph of $y = 4x^2$, we may refer to the graph of $y = x^2$ in Figure 4 and multiply the y-coordinate of each point by 4. This stretches the graph of $y = x^2$ vertically by a factor 4 and gives us a narrower parabola that is sharper at the vertex, as illustrated in the figure.

(b) The graph of $y = \frac{1}{4}x^2$ may be sketched by multiplying the y-coordinates of points on the graph of $y = x^2$ by $\frac{1}{4}$. This compresses the graph of $y = x^2$ vertically by a factor $1/\frac{1}{4} = 4$ and gives us a wider parabola that is flatter at the vertex, as shown in Figure 4.

Figure 4

Replacing y with -y reflects the graph of y = f(x) through the x-axis.

We may obtain the graph of y = -f(x) by multiplying the y-coordinate of each point on the graph of y = f(x) by -1. Thus, every point (a, b) on the graph of y = f(x) that lies above the x-axis determines a point (a, -b) on the graph of y = -f(x) that lies below the x-axis. Similarly, if (c, d) lies below the x-axis (that is, d < 0), then (c, -d) lies above the x-axis. The graph of y = -f(x) is a **reflection** of the graph of y = f(x) through the x-axis.

EXAMPLE 6 Reflecting a graph through the x-axis

Sketch the graph of $y = -x^2$.

The graph may be found by plotting points; however, since the graph of $y = x^2$ is familiar to us, we sketch it as in Figure 5 and then multiply the y-coordinates of points by -1. This procedure gives us the reflection through the x-axis indicated in the figure.

Figure 5

Functions are sometimes described by more than one expression, as in the next examples. We call such functions piecewise-defined functions.

EXAMPLE 8 Sketching the graph of a plecewise-defined function

Sketch the graph of the function f if

$$f(x) = \begin{cases} 2x + 5 & \text{if } x \le -1 \\ x^2 & \text{if } |x| < 1 \\ 2 & \text{if } x \ge 1 \end{cases}$$

SOLUTION If $x \le -1$, then f(x) = 2x + 5 and the graph of f coincides with the line y = 2x + 5 and is represented by the portion of the graph to the left of the line x = -1 in Figure 7. The small dot indicates that the point (-1, 3) is on the graph.

If |x| < 1 (or, equivalently, -1 < x < 1), we use x^2 to find values of f, and therefore this part of the graph of f coincides with the parabola $y = x^2$, as indicated in the figure. Note that the points (-1, 1) and (1, 1) are *not* on the graph.

Finally, if $x \ge 1$, the values of f are always 2. Thus, the graph of f for $x \ge 1$ is the horizontal half-line in Figure 7.

Figure 7

Exercises

Exer. 1–2: Suppose f is an even function and g is an odd function. Complete the table, if possible.

1	x	-2	2
	f(x)		7
	g(x)		-6

2	x	-3	3
	f(x)		-5
	g(x)		15

Exer. 3–12: Determine whether f is even, odd, or neither even nor odd.

$$f(x) = 5x^3 + 2x$$

$$f(x) = 3x^4 + 2x^2 - 5$$
 $f(x) = 7x^5 - 4x^3$

$$f(x) = 7x^5 - 4x^3$$

7
$$f(x) = 8x^3 - 3x^2$$
 8 $f(x) = 12$

$$f(x) = 12$$

$$f(x) = \sqrt{x^2 + 4}$$

$$f(x) = \sqrt{x^2 + 4}$$
 10 $f(x) = 3x^2 - 5x + 1$

11
$$f(x) = \sqrt[3]{x^3 - x}$$

11
$$f(x) = \sqrt[3]{x^3 - x}$$
 12 $f(x) = x^3 - \frac{1}{x}$

Exer. 13-26: Sketch, on the same coordinate plane, the graphs of f for the given values of c. (Make use of symmetry, shifting, stretching, compressing, or reflecting.)

13
$$f(x) = |x| + c$$
; $c = -3, 1, 3$

$$c = -3, 1, 3$$

14
$$f(x) = |x - c|$$
; $c = -3, 1, 3$

$$c = -3, 1, 3$$

15
$$f(x) = -x^2 + c$$
; $c = -4, 2, 4$

$$c = -4, 2, 4$$

16
$$f(x) = 2x^2 - c$$
; $c = -4, 2, 4$

$$c = -4, 2, 4$$

17
$$f(x) = 2\sqrt{x} + c$$
; $c = -3, 0, 2$

$$c = -3, 0, 2$$

18
$$f(x) = \sqrt{9 - x^2} + c$$
; $c = -3, 0, 2$

$$c = -3, 0, 2$$

19
$$f(x) = \frac{1}{2}\sqrt{x-c}$$
; $c = -2, 0, 3$

$$c = -2, 0, 3$$

Exer. 27–32: If the point P is on the graph of a function f, find the corresponding point on the graph of the given function.

27
$$P(0, 5)$$
; $y = f(x + 2) - 1$

28
$$P(3, -1)$$
; $y = 2f(x) + 4$

29
$$P(3, -2)$$
; $y = 2f(x - 4) + 1$

30
$$P(-2, 4)$$
; $y = \frac{1}{2} f(x - 3) + 3$

31
$$P(3, 9)$$
; $y = \frac{1}{3} f(\frac{1}{2}x) - 1$

32
$$P(-2, 1)$$
; $y = -3f(2x) - 5$

Exer. 41-42: The graph of a function f with domain [0, 4] is shown in the figure. Sketch the graph of the given equation.

41

(a)
$$y = f(x + 3)$$

(b)
$$y = f(x - 3)$$

(c)
$$y = f(x) + 3$$
 (d) $y = f(x) - 3$

(d)
$$y = f(x) - 3$$

(e)
$$y = -3f(x)$$

(e)
$$y = -3f(x)$$
 (f) $y = -\frac{1}{3}f(x)$

(g)
$$y = f(-\frac{1}{2}x)$$
 (h) $y = f(2x)$

$$(h) y = f(2x)$$

(i)
$$y = -f(x+2) - 3$$
 (j) $y = f(x-2) + 3$

(f)
$$y = f(x-2) + 3$$

(a)
$$y = f(x - 2)$$
 (b) $y = f(x + 2)$

(b)
$$y = f(x + 2)$$

(c)
$$y = f(x) - 2$$

(c)
$$y = f(x) - 2$$
 (d) $y = f(x) + 2$

(e)
$$y = -2f(x)$$

(e)
$$y = -2f(x)$$
 (f) $y = -\frac{1}{2}f(x)$

Exer. 47–52: Sketch the graph of f.

47
$$f(x) = \begin{cases} 3 & \text{if } x \le -1 \\ -2 & \text{if } x > -1 \end{cases}$$

48
$$f(x) = \begin{cases} -1 & \text{if } x \text{ is an integer} \\ -2 & \text{if } x \text{ is not an integer} \end{cases}$$

$$\frac{49}{x} f(x) = \begin{cases}
3 & \text{if } x < -2 \\
-x + 1 & \text{if } |x| \le 2 \\
-3 & \text{if } x > 2
\end{cases}$$

50
$$f(x) = \begin{cases} -2x & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 1 \\ -2 & \text{if } x \ge 1 \end{cases}$$

51
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^3 & \text{if } |x| < 1 \\ -x+3 & \text{if } x \ge 1 \end{cases}$$

52
$$f(x) = \begin{cases} x - 3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x + 4 & \text{if } x \ge 1 \end{cases}$$