UNIVERSITÄT BASEL

Lecturer Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH – 4056 Basel Assistants Sandro Schönborn <sandro.schoenborn@unibas.ch> Adam Kortylewski <adam.kortylewski@unibas.ch> Homepage http://www.cs.unibas.ch

Pattern Recognition (CS254) - Sheet 1

[10 Points]

Preliminary Discussion 26.09.2013 Deadline 02.10.2013

This theoretical exercise does not have to be presented orally.

Exercise 1 - Multivariate Normal Distribution

[4 Points]

Consider a bivariate normal population with $\mu_1 = 0, \mu_2 = -3, \sigma_{11} = 4, \sigma_{22} = 1$, and with cross correlation coefficient, $\rho_{12} = \frac{1}{2}$.

- (a) Write out the bivariate normal density.
- (b) Write out the squared generalized distance expression $(\boldsymbol{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu})$ as a function of x_1 and x_2 .
- (c) Determine the main axes and sketch the constant-density contour of one standard deviation.

Exercise 2 - Independence

[3 Points]

Consider $\mathbf{X} = [X_1, X_2, X_3]^T$ distributed according to $\mathcal{N}(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with

$$\mu = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_1 and X_3
- (c) X_2 and X_3
- (d) (X_1, X_2) and X_3
- (e) $X_1 X_2$ and $X_1 + X_2 X_3$

Exercise 3 - Conditional Distribution

3 Points

Specify the conditional distribution of X_1 , given that $X_2 = x_2$ for the joint distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Compare the conditional distribution $P(X_1 \mid X_2 = 1)$ to the marginal distribution $P(X_1)$ in a plot.

$$\mu = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}$$