leroy

Chiara Cimino

Christian Krause

January 1, 2025

Leroy Chapter I

1.1 F star

Definition 1 (f^* and f_*). For every continuous Function $f: X \to Y$ between topological Spaces, there exists a pair of functors (f^*, f_*).

$$f*=f^{-1}:O(Y)\to O(X)$$

$$f_*:O(X)\to O(Y):=A\mapsto \bigcup_{f^*(v)\leq A}v$$

Lemma 2 $(f^* \dashv f_*)$. f^* is the right adjoint to f_*

Proof.

Lemma 3 (triangle). (Mclane p. 485)

The triangular identities reduce to the following equalities:

$$f^*f_*f^* = f^*$$
 and $f_*f^*f_* = f_*$

Proof. This follows from the triangular identities of the adjunction.

1.2 Embedding

Lemma 4 (Embedding). (Leroy Lemme 1) The following arguments are equivalent:

- 1. f^* is surjective
- 2. f_* is injective
- 3. $f^*f_* = 1_{O(X)}$

Proof. This follows from the triangular identities.

Definition 5 (Embedding). An embedding is a morphism that satisfies the conditions of lemma 4

1.3 Sublocals

Definition 6 (Nucleus). A nucleus is a map $e: O(E) \to O(E)$ with the following three properties:

- 1. e is idempotent
- 2. $U \leq eU$
- 3. $e(U \cap V) = e(U) \cap e(V)$

Lemma 7 (Nucleus). (Leroy Lemme 3) Let $e: O(E) \to O(E)$ be monotonic. The following are equivalent:

- 1. e is a nucleus
- 2. There is a locale X and a morphism $f: X \to E$ such that $e = f_*f^*$.
- 3. Then there is a locale X and a embedding $f: X \to E$ such that $e = f_* f^*$.

Proof.

Definition 8 (Nucleus Partial Order). For two nuclei e and f on O(E), we say that $e \leq f$ if $e(U) \leq f(U)$ for all $U \in O(E)$. This relation is a partial order.

Lemma 9 (Nucleus Intersection). TODO Quelle StoneSpaces S.51 For a set S of nuclei, the intersection $\bigcap S$ can be computed by $\bigcap S(a) = \bigcap \{j(a)|j \in S\}$. This function satisfies the properties of a nucleus and of an infimum.

Proof.

Definition 10 (Sublocal). (Leroy CH 3) A sublocal $Y \subset X$ is defined by a nucleus $e_Y : O(X) \to O(X)$, such that $O(Y) = Im(e_Y) = \{U \in O(X) | e_Y(U) = U\}$. The corresponding embedding is $i_X : O(Y) \to O(X)$. $i_X^*(V) = e_X(V)$, $(i_X)_*(U) = U$ And every nucleus e on O(X) defines a sublocal Y of X by O(Y) = Im(e)

Definition 11 (Sublocal Inclusion). (Stimmt das?)(Leroy Ch 3) $X \subset Y$ if $e_Y(u) \leq e_X(u)$ for all u. This means that the Sublocals are a dual order to the nuclei.

Lemma 12 (factorisation). (Leroy Lemme 2) Let $i: X \to E$ be an embedding and $f: Y \to E$ be a morphism of spaces. To have f factor through i, it is necessary and sufficient that $i_*i^*(V) \le f_*f^*(V)$ for all $V \in O(E)$.

Proof.

1.3.1 (1.4) Sublocal Union and Intersection

Definition 13 (Union of Sublocals). (Leroy CH 1.4) Let $(X_i)_i$ be a family of sublocals of E and $(e_i)_i$ the corresponding nuclei. For all $V \in O(E)$, let e(V) be the union of all $W \in O(E)$ which are contained in all $e_i(V)$.

Lemma 14 (Union of Sublocals). (Leroy CH 4) Let X_i be a family of subframes of E and e_i be the corresponding nuclei. For every $V \in O(E)$, let e(V) be the union of all $W \in O(E)$ which are contained in every (TODO wieso every) $e_i(V)$. Then

- 1. e is the corresponding nucleus of a subframe X of E
- 2. a subframe Z of E contains x if and only if it contains all X_i . X is thus called the union of X_i denoted by $\bigcup_i X_i$

Proof. The properties of the nucleus (idempotent, increasing, preserving intersection) can be verified by unfolding the definition of e(V).

Lemma 15 (Sublocal Union equals Nucleus Intersection). For a family of sublocals X_i of E, the union $\bigcup X_i$ is the intersection of the corresponding nuclei.

Proof. The infimum of the Nuclei is a Supremum of the sublocals, because the Nuclei are a dual order to the sublocals.) This means that it suffices to show that suprema are unique.

TODO Quelle https://proofwiki.org/wiki/Infimum_is_Unique

Suppose there are two different suprema c and c' of a set S. Because of the definition of a supremum, we that they are both upper bounds of S. But we also know that the supremum is smaller than any other upper bound, so we get $c \le c'$ and $c' \le c$. This means that c = c'.

Definition 16 (Intersection of Sublocals). Let $(X_i)_i$ be a family of sublocal of E and $(e_i)_i$ the corresponding nuclei. For all $V \in O(E)$, the intersection $\bigcap X_i$ is the Union of all Nuclei w such that $w \leq x_i$ for all $x_i \in X_i$

Lemma 17 (Nucleus Complete Lattice). The Nuclei (and therefore the sublocals) form a complete lattice.

Proof. One can proove that the Nuclei are closed under arbitrary intersections by unfolding the definition of the intersection. The supremum is defined as the infimum of the upper Bound.

Lemma 18 (Nucleus Frame). The Nuclei (and therefore the sublocals) form a frame.

Proof.

1.3.2 (1.5) Direct Images

Definition 19 (Direct Images). Let $f: E \to F$ be a morphism of Frames. The map $f_*f^*: O(F) \to O(F)$ is the nucleus of the subframe Im(f) of F. By (lemma 2), Im(F) is the smallest subframe of F through which f can be factored. For any subframe X of E, we define the direct image as

$$f(x) = Im(fi_x)$$

Where i_X is the inclusion of X into E.

Lemma 20 ((4) Direct Images Transitive). (Leroy Lemme 4) Given two morphisms $f: E \to F$ and $g: F \to G$ and a subspace X of E, we have

$$(gf)(X) = g(f(X))$$

Lemma 21 ((5) Direct Images Families). (Leroy Lemme 5) For all morphisms $f: E \to F$ and a family (X_i) of subspaces of E, the following holds:

$$f(\cup_i X_i) = \cup_i f(X_i)$$

1.3.3 (6) Inverse Images

Definition 22 (Inverse Images). We have a morphism of spaces $f: E \to F$ and a subspace Y of F. The inverse image $f^{-1}(Y)$ is the biggest subspace X of E such that $f(X) \subset Y$. More generally for a morphism $h: A \to E$, the necessary and sufficient condition for h to factor through f^{-1} is that fh factors through Y.

$$Imh \subset f^{-1}(Y) \iff f(Imh) \subset Y \iff Im(fh) \subset Y$$

1.3.4 (7) Open Sublocals

Definition 23 (e_U) . Let E be a space with $U, H \in O(E)$. We denote by e_U the largest $W \in O(E)$ such that $W \cap U \subset H$. We verify that e_U is the nucleus of a subspace, which we will temporarily denote by [U].

Lemma 24 (e_U is a nucleus). The map e_U is a nucleus.

Definition 25 (Open sublocal). For any $U \in O(E)$, the sublocal [U] is called an open sublocal of E

Lemma 26 ((6,7) Open Sublocal Properties). (Leroy Lemma 6,7)

1. For all subspaces X of E and any $U \in O(E)$:

$$X \subset [U] \iff e_X(U) = 1_E$$

2. For all $U, V \in O(E)$, we have:

$$[U \cap V] = [U] \cap [V]$$

$$e_{U \cap V} = e_U e_V = e_V e_U$$

$$U \subset V \iff [U] \subset [V]$$

3. For all families V_i of elements of O(E), we have:

$$\cup_{i}[V_{i}] = [\cup_{i}V_{i}]$$

4.

Proof.

Definition 27 (Complement). The complement of an open sublocal U of X is the sublocal $X \setminus U$. (Leroy p. 12) (+ Senf brauchen wir das allgemein??)

Lemma 28 (Complement Injective). The complement is injective.

Definition 29 (Closed Sublocal). A sublocal X of E is called closed if $X = E \setminus U$ for some open sublocal U of E.

Lemma 30 (Intersection of Closed Sublocals). For any family X_i of closed sublocals of E, the intersection $\bigcap X_i$ is closed (it can be computed by taking the complement of the union of the complements).

 Γ

Lemma 31 ((1.8) Properties of Complements). For any open sublocal V of E and any sublocal X of E, we have:

$$V \cup X = E \iff E \setminus VsubsetX$$

$$V \cap X = \emptyset \iff X \subset E \setminus V$$

And thereby:

$$(E - U = E - V) \implies U = V$$

Lemma 32 ((1.9) Preimage of complements). For any morphism of spaces $g: A \to E$ and any open sublocal V of F, we have:

$$g^{-1}(E-V) = A - g^{-1}(V)$$

Lemma 33 ((1.8bis) Properties of Complements Part 2). For any open sublocal V of E and any sublocal X of E, we have:

$$V \cup (E-V) = E \iff V \subset X$$

$$V \cap (E - V) = \emptyset X \subset V$$

Lemma 34 ((1.10) Intersection of Open and Closed Sublocals). For any $U \in O(E)$, and sublocal X of E we have:

$$e_{U\cap X} = e_U e_X$$

And for a closed F

$$e_{X\cap F} = e_X e_F$$

Lemma 35 ((1.11) Distribution of Intersections over Unions). Let X, Y, L be three sub locals of E. If L is open or closed, we have:

$$L \cap (X \cap Y) = (L \cap X) \cup (L \cap Y)$$

Definition 36 (Further Topology).

- 1. IntX is the largest open sublocal contained in X
- 2. ExtX is the largest open sublocal contained in $E \setminus X$
- 3. \bar{X} is the smallest closed sublocal containing X
- 4. $\partial X = \bar{X} \cap (E IntX)$

Lemma 37 (Properties of Further Topology).

- 1. $\bar{X} = E \setminus Ext(X)$
- 2. $\partial X = E \setminus (IntX \cup ExtX)$
- 3. $IntX \cup \partial X = \bar{X}$
- 4. $ExtX \cup \partial X = E \setminus IntX$

Proof.

Leroy Chapter II

Definition 38 (Induced boolean algebra). Define $At(U_1, ..., U_n)$ as the collection of all finite nonempty intersections of opens U_i or their complements.

Define $b(U_1,\dots,U_n)$ as all unions of elements of $At(U_1,\dots,U_n)$

Define b(X) as the union of all $b(U_1,\dots,U_n)$ for finite collections of opens U_i .

Lemma 39 ((2.1) Sublocals and decompositions). For any open U the natural morphism $p: U \sqcup (E \setminus U)$ induces a bijection of sublocals.

Lemma 40 ((2.2) Induced morphism of boolean algebras). For all $H \in B(U_1, ..., U_n)$ we have $f^{-1}(H) \in b(f^{-1}(U-1), ..., f^{-1}(U_n))$ and

$$H\mapsto f^{-1}(H)$$

Is a morphism of boolean algebras

Proposition 41 (Boolean algebra). (Leroy Proposition II.1)

- 1. b(X) is the generated boolean algebra of the open and closed sublocals of X.
- 2. For all $H \in b(X)$, we have $f^{-1}(H) \in b(Y)$ and the map $H \to f^{-1}(H)$ is a homomorphism of boolean algebras $b(X) \to b(Y)$
- 3. For two sublocals A, B of X and any $H \in b(X)$, we have:

$$H \cap (A \cup B) = (H \cap A) \cup (H \cap B)$$

Lemma 42 (b(X)) generates sublocals). Every sublocal X is an intersection of elements of b(X).

Lemma 43 (Union of Intersections). (Leroy Lemme 2.4) For any family B_i of sublocals of a local E and a sublocal A, we have:

$$A \cup (\bigcap_{i} B_{i}) = \bigcap_{i} (A \cap B_{i})$$

This implies if A_i and B_j are families of sublocals of X, we have:

$$(\bigcap_i A_i) \cup (\bigcap_j B_j) = \bigcap_{ij} (A_i \cup B_j)$$

Theorem 44 (Preimage commutes with unions). (Leroy resultat principal) For any morphism f of locals, we have:

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

Leroy Chapter III

Definition 45 (Measure on Locals). TODO ggf auspalten mit extra lemma das sagt dass die Open subframes einen frame bilden A measure on a local X is a map $\mu: O(X) \to [0, \infty)$ such that:

- 1. $\mu(\emptyset) = 0$
- $2. \ U \subset V \implies \mu(U) \leq \mu(V)$
- 3. $\mu(U \cup V) = \mu(U) + \mu(V) \mu(V \cap V)$
- 4. For any increasingly filtered family V_i of open sublocals of X, we have:

$$\mu(\bigcup V_i) = \sup_i \mu(V_i)$$

this means: For all i and j there exists a k such that $V_i \cup V_j \subset V_k$ bzw. $V_i \subset V_k$ and $V_j \subset V_k$.

(Leroy III.1.)

Definition 46 (Caratheodory). For any measure on a local X, the caratheodory extension is:

$$\mu(A) = \inf\{\mu(U) | A \subset U \in O(X)\}\$$

Lemma 47 (Proptery 0 (Commutes with sup)). (Leroy lemme 3.1) The caratheodory extension of a measure on a local commutes with unions of increasing families. (Senf von noa: commutes with filtered colimits)

Definition 48 (Regular Local). A local is regular, if for all open sublocals U of E, the open sublocals V such that $V \subset U$ recover U.

Definition 49 (Neighborhood).

A neighborhood of a sublocal A of X is an open sublocal V of X such that $A \leq V$.

Lemma 50 (Regularity of Sublocals). (Leroy lemme 3.2) In a regular local, any sublocal is regular, meaning that it is the intersection of all open neighborhoods.

Lemma 51 (Property 1). (Leroy Lemme 3.3) For any open sublocal U of a local X, the caratheodory extension of a measure on X satisfies

$$\mu(U) + \mu(X \setminus U) = \mu(X)$$

Proposition 52 (Sublocals structure). Obacht TODO The sublocals of a local E form a complete (distributive vlt.) lattice with the operations of intersection and complement.

Lemma 53 (Property 2). (Leroy Lemm 3.4) For any open sublocal U and any sublocal A of a local E, the caratheodory extension of a measure on X satisfies

$$\mu(A) = \mu(A \cap U) + \mu(A \cap (E \setminus U))$$

Lemma 54 (Property 3). (Leroy Lemm 3.5) For a increasing family V_{α} of open sublocals of E and any sublocal A, we have:

$$\mu(A\cap (\bigcup V_\alpha))=\sup_\alpha \mu(A\cap V_\alpha)$$

Lemma 55 (Commutes with inf opens). (Leroy Lemme 3.6) For any measure on a local X and a decreasing family V_i of open sublocals, the caratheodory extension fulfills: $\mu(\inf V_i) = \inf \mu(V_i)$.

Lemma 56 (Caratheodory Extensions are monotonic). *The caratheodory extension is monotonic i.e.*

$$A \le B \implies \mu(A) \le \mu(B)$$

Proof. This is a direct consequence of the definition of the caratheodory extension. \Box

Proposition 57 (Elementary Properties of Caratheodory Extensions). (Leroy lemme 3.3, 3.4, Corollary 3.1, Lemme 3.5) For any measure on a local X, the caratheodory extension satisfies the following properties:

1. It is monotonic i.e.

$$A \le B \implies \mu(A) \le \mu(B)$$

- 2. Commutes with unions of increasing families
- 3. $\mu(U) + \mu(X \setminus U) = \mu(X)$
- 4. $\mu(A) = \mu(A \cap U) + \mu(A \cap (E \setminus U))$
- 5. For a increasing family V_{α} of open sublocals of E and any sublocal A, we have:

$$\mu(A\cap (\bigcup V_\alpha))=\sup_\alpha \mu(A\cap V_\alpha)$$

6. For any measure on a local X and a decreasing family V_i of open sublocals, the caratheodory extension fulfills: $\mu(\inf V_i) = \inf \mu(V_i)$.

In particular, for two open sublocals U and V of X and any sublocal A of X, we have

$$\mu(A\cap (U\cup V))=\mu(A\cap U)+\mu(A\cap V)-\mu(A\cap U\cap V)$$

Proposition 58 (strictly additive). (Leroy theorem 3.3.1) For any measure on a local X, the caratheodory extension is strictly additive i.e. $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$

Proposition 59 (reductive). (Proposition 3.3.1) For any measure on a local X, the caratheodory extension is reductive i.e. for all $A \leq X$ the set $\{A' \subset A, \mu(A') = \mu(A)\}$ has a minimal element

Proposition 60 (Commutes with inf). (Leroy lemme 3.7 et principal) For any measure on a local X, the caratheodory extension is regular $\mu(\inf A_i) = \inf \mu(A_i)$. For decreasing families A_i

Theorem 61 (Main Theorem (very important)). For any measure on a local X, the caratheodory extension is

- 1. strictly additive i.e. $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- 2. commutes with $\inf \mu(\inf A_i) = \inf \mu(A_i)$
- 3. reductive i.e. for all $A \leq X$ the set $\{A' \subset A, \mu(A') = \mu(A)\}$ has a minimal element

Leroy Chapter V

Lemma 62 (Regular Top to regular local). Any regular topological space induces a regular local.

Lemma 63 (Opens). (Leroy V.1 Remarque 2) The Open subsets of any good enough topological space correspond precisely to the open sublocals of the corresponding local.

Lemma 64 (Subset Sublocal). (leroy V.1 Remarque 3) Any subset X of a good enough topological space E induces a sublocal [X] of the corresponding local. This is an order preserving embedding.

Definition 65 (Good enough topological space). blackbox to mathlib?????)

Lemma 66 (Subset to sublocal Part 1). (Leroy Proposition 5.1.1)

For two subspaces X and Y of E and an open subspaces U of E, we have:

1.
$$X \subset Y \implies [X] \subset [Y]$$

2.
$$X \subset U \iff [X] \subset [U]$$

3. If E is a good enough topological space, then

$$X \subset Y \iff [X] \subset [Y]$$

Lemma 67 (Subset to sublocal Part 2). (Leroy Proposition 5.1.2, 5.1.3) For an open subspace U of E and a subspace X of E, we have:

$$[U \cap X] = [U] \cap [X]$$

$$F = E \setminus U$$

$$[F] = [E]$$

$$[U]$$

$$X \cap F] = [X] \cap [F]$$

Lemma 68 (Part 3). For any subspaces X of E, we have:

1.

$$Ext[X] = [ExtX]$$

2.

$$[\bar{X}] = [\bar{X}]$$

3.
$$[IntX] \subset Int[X]$$
 4.
$$\partial [X] \subset [Fr(X)]$$

For a good enough topological space E, we have equality in 3 and 4.

Proposition 69 (Subset to sublocal preserves structure). For two subspaces X and Y of E and an open subspaces U of E, we have:

1.
$$X \subset Y \implies [X] \subset [Y]$$

$$2. \ X \subset U \iff [X] \subset [U]$$

5. ...

3. If E is a good enough topological space, then

$$X \subset Y \iff [X] \subset [Y]$$

4. $[U\cap X]=[U]\cap [X]$

Theorem 70 (Measure top to loc). Any measure on a good enough topological space X induces a measure on the corresponding local. Furthermore, the classical caratheodory extension onto $\mathcal{P}(X)$ agrees with the restriction of the caratheodory extension of the induced measure on the local.

Theorem 71 (Goal). One can interpret any classical borel measure as a measure on locals and their life is good :)