Multivariable Chain Rule

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 13.5 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to compute partial derivatives with the various versions of the multivariate chain rule.
- Be able to compare your answer with the direct method of computing the partial derivatives.

PRACTICE PROBLEMS:

1. Find $\frac{dz}{dt}$ by using the Chain Rule. Check your answer by expressing z as a function of t and then differentiating.

(a)
$$z = 2x - y$$
, $x = \sin t$, $y = 3t$

$$\frac{dz}{dt} = 2\cos t - 3$$

(b)
$$\overline{z = x \sin y}, \ x = e^t, \ y = \pi t$$

$$\overline{\frac{dz}{dt}} = e^t \sin(\pi t) + \pi e^t \cos(\pi t)$$

(c)
$$z = xy + y^2$$
, $x = t^2$, $y = t + 1$

$$\frac{dz}{dt} = 3t^2 + 4t + 2$$

(d)
$$z = \ln\left(\frac{x^2}{y}\right)$$
, $x = e^t$, $y = t^2$

$$\frac{dz}{dt} = 2 - \frac{2}{t}$$

2. Suppose $w = x^2 + y^2 + 2z^2$, x = t + 1, $y = \cos t$, $z = \sin t$. Find $\frac{dw}{dt}$ using the Chain Rule. Check your answer by expressing w as a function of t and then differentiating.

1

$$\frac{dw}{dt} = 2t + 2 + 2\sin t\cos t$$
; ; Detailed Solution: Here

3. Suppose f is a differentiable function of x & y, and define $g(u,v) = f(3u - v, u^2 + v)$. Use the table of values shown below to calculate $\frac{\partial g}{\partial u}\Big|_{(u,v)=(2,-1)}$ and $\frac{\partial g}{\partial v}\Big|_{(u,v)=(2,-1)}$.

(x,y)	f	g	f_x	f_y
(2,-1)	6	-7	1	9
(7,3)	4	2	-3	5

Hint: Decompose $f(3u - v, u^2 + v)$ into f(x, y) where x = 3u - v and $y = u^2 + v$. $g_u(2, -1) = 11; g_v(2, -1) = 8$

- 4. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ by using the appropriate Chain Rule.
 - (a) $w = xy \sin(z^2)$, x = s t, $y = s^2$, $z = t^2$ $\frac{\partial w}{\partial s} = s^2 \sin(t^4) + 2s(s t)\sin(t^4)$; $\frac{\partial w}{\partial t} = -s^2 \sin(t^4) + 4s^2 t^3 (s t)\cos(t^4)$
 - (b) w = xy + yz, x = s + t, y = st, z = s 2t $\frac{\partial w}{\partial s} = 4st t^2; \frac{\partial w}{\partial t} = 2s^2 2st$
- 5. Suppose that J=f(x,y,z,w), where $x=x(r,s,t),\ y=y(r,t),\ z=z(r,s)$ and w=w(s,t). Use the Chain Rule to find $\frac{\partial J}{\partial r}, \frac{\partial J}{\partial s}$, and $\frac{\partial J}{\partial t}$.

$$\frac{\partial J}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r};$$

$$\frac{\partial J}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial s};$$

$$\frac{\partial J}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial t}$$

6. Suppose g = f(u - v, v - w, w - u). Show that $\frac{\partial g}{\partial u} + \frac{\partial g}{\partial v} + \frac{\partial g}{\partial w} = 0$.

We can express g as g = f(x, y, z), where x = u - v, y = v - w, and z = w - u. Then, we compute the partial derivatives of g with respect to u, v, and w.

$$\frac{\partial g}{\partial u} = f_x(u - v, v - w, w - u) - f_z(u - v, v - w, w - u)$$

$$\frac{\partial g}{\partial v} = -f_x(u - v, v - w, w - u) + f_y(u - v, v - w, w - u)$$

 $\frac{\partial g}{\partial w} = -f_y(u - v, v - w, w - u) + f_z(u - v, v - w, w - u)$

Summing these three partial derivatives yields 0.

7. Suppose u = u(x, y), v = v(x, y), $x = r \cos \theta$, and $y = r \sin \theta$.

(a) Calculate $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$, $\frac{\partial v}{\partial r}$, and $\frac{\partial v}{\partial \theta}$

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\cos\theta + \frac{\partial u}{\partial y}\sin\theta; \quad \frac{\partial u}{\partial \theta} = -r\frac{\partial u}{\partial x}\sin\theta + r\frac{\partial u}{\partial y}\cos\theta;$$
$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x}\cos\theta + \frac{\partial v}{\partial y}\sin\theta; \quad \frac{\partial v}{\partial \theta} = -r\frac{\partial v}{\partial x}\sin\theta + r\frac{\partial v}{\partial y}\cos\theta$$

(b) Suppose that u(x,y) and v(x,y) satisfy the Cauchy-Riemann Equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Use this along with part (a) to derive the polar form of the Cauchy-Riemann Equations:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

From part (a), we know that $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$. We apply the Cauchy Riemann Equations to $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$. Thus,

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$$

$$= \frac{\partial v}{\partial y} \cos \theta - \frac{\partial v}{\partial x} \sin \theta$$

$$= \frac{1}{r} \left(r \frac{\partial v}{\partial y} \cos \theta - r \frac{\partial v}{\partial x} \sin \theta \right)$$

$$= \frac{1}{r} \frac{\partial v}{\partial \theta}$$

A similar argument yields the second Cauchy Riemann Equation in polar coordinates.