In [1]: from IPython.display import Image
Image(url= "https://www.mbusa.com/content/dam/mb-nafta/us/eq/design/eqs580x4/interior/hotspots/MY23-EQS-SUV-TP-Hyperscreen-XL.j

Required Modules

```
import pandas as pd
In [2]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import re
        import plotly
        import plotly.figure_factory as ff
        from plotly.offline import iplot
        import plotly.express as px
        import plotly.graph_objs as go
        from sklearn.linear_model import LinearRegression
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        from xgboost import XGBRegressor
        from sklearn.svm import SVR
        from sklearn.ensemble import ExtraTreesRegressor
        from sklearn.ensemble import AdaBoostRegressor
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.metrics import r2_score, mean_squared_error
        from sklearn.model_selection import KFold
        from sklearn.model_selection import cross_val_score
        from sklearn.preprocessing import MinMaxScaler, StandardScaler
```

```
from sklearn.model_selection import GridSearchCV
from math import sqrt
from tabulate import tabulate
from numpy import mean
from numpy import absolute
plotly.offline.init_notebook_mode()
%matplotlib inline
sns.set()

C:\Users\Mehul\anaconda3\Lib\site-packages\paramiko\transport.py:219: CryptographyDeprecationWarning: Blowfish has been deprecated
```

Data Description

"class": algorithms.Blowfish,

```
In [3]: df_train = pd.read_csv(r'C:\Users\Mehul\Mercedes Task\train.csv')
    df_test = pd.read_csv(r'C:\Users\Mehul\Mercedes Task\test.csv')
```

VIN (1-10) - The 1st 10 characters of each vehicle's Vehicle Identification Number (VIN).

County- The county in which the registered owner resides.

City - The city in which the registered owner resides.

State- The state in which the registered owner resides.

ZIP Code - The 5-digit zip code in which the registered owner resides.

Model Year - The model year of the vehicle is determined by decoding the Vehicle Identification Number (VIN).

Make- The manufacturer of the vehicle, determined by decoding the Vehicle Identification Number (VIN).

Model- The model of the vehicle is determined by decoding the Vehicle Identification Number (VIN).

Electric Vehicle Type - This distinguishes the vehicle as all-electric or a plug-in hybrid.

Clean Alternative Fuel Vehicle (CAFV) Eligibility - This categorizes vehicles as Clean Alternative Fuel Vehicles (CAFVs) based on the fuel requirement and electric-only range requirement.

Electric Range - Describes how far a vehicle can travel purely on its electric charge.

Base MSRP - This is the lowest Manufacturer's Suggested Retail Price (MSRP) for any trim level of the model in question.

Legislative District - The specific section of Washington State that the vehicle's owner resides in, as represented in the state legislature.

DOL Vehicle ID - Unique number assigned to each vehicle by the Department of Licensing for identification purposes.

Vehicle Location - The center of the ZIP Code for the registered vehicle.

Electric Utility - This is the electric power retail service territory serving the address of the registered vehicle.

Expected Price - This is the expected price of the vehicle.

Data Overview

In [4]:	df_train	ı.he	ead()														
Out[4]:	ı	D	VIN (1-10)	County	City	State	ZIP Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	DOL Vehicle ID	V Loi
	0 EV6773	34	5YJSA1E29J	Clallam	SEQUIM	WA	98382.0	2018.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	24.0	474843043	(-123.0 48.05
	1 EV4186	66	JTDKARFPXL	Island	OAK HARBOR	WA	98277.0	2020.0	ТОУОТА	PRIUS PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	25	0	10.0	112793138	(-122. 48.31

	2 EV668	38 7SAYGDEF2N	King	j KENT	WA	98030.0	2022.0	TESLA	MODE	Batto EL Elec Y Vehi (BE	tric ur cle as	igibility known battery ge has not b	0	0	47.0 18	7580606	F (-122.1 47.3€
	3 EV663	43 7SAYGDEF0N	King	J RENTON	WA	98059.0	2022.0	TESLA	MODE	Batto EL Elec Y Vehi (BE	tric ur cle as	igibility known battery ge has not b	0	0	5.0 19	0762148	(-122.1 47.4§
	4 EV884	68 JHMZC5F3XJ	Snohomish	LAKE STEVENS	WA	98258.0	2018.0	HONDA	CLARIT	Plug Hyb Y Elec Vehi (PHE	orid Alte tric cle '	Clean rnative Fuel Vehicle Eligible	47	0	39.0 22	7929733	F (-122.0 48.01
In [5]:	df_test	.head()															
Out[5]:		ID VIN (1-10) County	City	State	ZIP Code			Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range		Legislativ Distric		DOL le ID
	0 EV451	81 1G1FW6S06I	N King	ENUMCLAW	WA	98022.0	2022.0	CHEVR	ROLET	BOLT EV	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	31.	0 16655	9368 (
	1 EV690	55 WVWKR7AU5	K King	SAMMAMISH	WA	98075.0	2019.0	VOLKSW	AGEN	E- GOLF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	125	0	41.	0 359	5182 (
	2 EV606	67 WDDVP9AB5I	H King	TUKWILA	WA	98188.0	2017.0	MERCE		B- CLASS	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	87	0	11.	0 18063	2266 (
	3 EV893	94 5YJSA1CG1I	O King	SEATTLE	WA	98178.0	2013.0	ī	ESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel	208	69900	37.	0 803	2475 (

Clean

Alternative

Battery

```
MODEL Electric
        4 EV79353
                    5YJ3E1EB5L
                                         SEATTLE
                                                 WA 98121.0 2020.0
                                                                           TESLA
                                                                                                            322
                                                                                                                    0
                                                                                                                            43.0 112536070
                                  Kina
                                                                                                     Fuel
                                                                                         Vehicle
                                                                                                   Vehicle
                                                                                          (BEV)
                                                                                                   Eligible
        print('Training data shape', df train.shape)
In [6]:
        print('Test data shape', df_test.shape)
        Training data shape (51482, 18)
        Test data shape (12871, 18)
        print(f"Duplicates in Train Dataset is:{df_train.duplicated().sum()},({100*df_train.duplicated().sum()/len(df_train)})%")
In [7]:
        print(f"Duplicates in Test Dataset is:{df_test.duplicated().sum()},({100*df_test.duplicated().sum()/len(df_test)})%")
        Duplicates in Train Dataset is:0,(0.0)%
        Duplicates in Test Dataset is:0,(0.0)%
In [8]:
        df_train.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 51482 entries, 0 to 51481
        Data columns (total 18 columns):
             Column
                                                                 Non-Null Count Dtvpe
             _ _ _ _ _
         0
             TD
                                                                 51482 non-null object
         1
             VIN (1-10)
                                                                 51482 non-null object
                                                                 51479 non-null object
         2
             County
                                                                 51475 non-null object
             City
                                                                 51474 non-null object
             State
             ZIP Code
                                                                 51476 non-null float64
         6
             Model Year
                                                                 51476 non-null float64
         7
             Make
                                                                 51479 non-null object
         8
             Model
                                                                 51473 non-null object
             Electric Vehicle Type
                                                                 51482 non-null object
         10 Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                                 51482 non-null object
         11 Electric Range
                                                                 51482 non-null int64
             Base MSRP
                                                                 51482 non-null int64
         13 Legislative District
                                                                 51337 non-null float64
         14 DOL Vehicle ID
                                                                 51482 non-null int64
         15 Vehicle Location
                                                                 51088 non-null object
         16 Electric Utility
                                                                 50908 non-null object
             Expected Price ($1k)
                                                                 51482 non-null object
```

dtypes: float64(3), int64(3), object(12)

memory usage: 7.1+ MB

In [9]: df_test.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 12871 entries, 0 to 12870 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	ID	12871 non-null	object
1	VIN (1-10)	12871 non-null	object
2	County	12870 non-null	object
3	City	12869 non-null	object
4	State	12868 non-null	object
5	ZIP Code	12871 non-null	float64
6	Model Year	12870 non-null	float64
7	Make	12870 non-null	object
8	Model	12867 non-null	object
9	Electric Vehicle Type	12871 non-null	object
10	Clean Alternative Fuel Vehicle (CAFV) Eligibility	12871 non-null	object
11	Electric Range	12871 non-null	int64
12	Base MSRP	12871 non-null	int64
13	Legislative District	12847 non-null	float64
14	DOL Vehicle ID	12871 non-null	int64
15	Vehicle Location	12755 non-null	object
16	Electric Utility	12723 non-null	object
17	Expected Price (\$1k)	12871 non-null	object
dtyp	es: float64(3), int64(3), object(12)		

memory usage: 1.8+ MB

In [10]: df_train.describe()

Out[10]:

	ZIP Code	Model Year	Electric Range	Base MSRP	Legislative District	DOL Vehicle ID
count	51476.000000	51476.000000	51482.000000	51482.000000	51337.000000	5.148200e+04
mean	98130.866734	2018.177714	106.757605	2509.410085	29.961918	1.973874e+08
std	3005.260280	2.729389	103.955854	12397.643780	14.658074	1.068871e+08
min	745.000000	1993.000000	0.000000	0.000000	0.000000	4.385000e+03
25%	98052.000000	2017.000000	14.000000	0.000000	19.000000	1.372688e+08
50%	98119.000000	2018.000000	73.000000	0.000000	34.000000	1.753387e+08
75%	98370.000000	2021.000000	215.000000	0.000000	43.000000	2.300245e+08
max	99567.000000	2022.000000	337.000000	845000.000000	49.000000	4.789346e+08

```
In [11]:
                     ZIP Code
                                Model Year Electric Range
                                                            Base MSRP Legislative District DOL Vehicle ID
Out[11]:
          count 12871.000000
                              12870.000000
                                            12871.000000
                                                           12871.000000
                                                                            12847.000000
                                                                                          1.287100e+04
                 98193.789682
                               2018.220202
                                                                               29.911886
                                                                                          1.969029e+08
                                              107.714474
                                                            2587.311009
          mean
                  2158.000424
                                  2.715968
                                              104.644890
                                                           12424.164249
                                                                               14.673806
                                                                                           1.071877e+08
             std
            min
                  9751.000000
                               1998.000000
                                                0.000000
                                                               0.000000
                                                                                0.000000
                                                                                           1.205000e+04
                 98052.000000
                               2017.000000
                                                               0.000000
                                               13.000000
                                                                                19.000000
                                                                                           1.373641e+08
                98121.000000
                               2019.000000
                                               75.000000
                                                               0.000000
                                                                                34.000000
                                                                                           1.755213e+08
                98370.000000
                               2021.000000
                                               215.000000
                                                               0.000000
                                                                                43.000000
                                                                                           2.290691e+08
            max 99701.000000
                               2022.000000
                                               337.000000 184400.000000
                                                                                49.000000
                                                                                           4.789263e+08
          df1 = (df_train.isnull().sum()[df_train.isnull().sum()>0]).to_frame().rename(columns={0:"Number of Missing values"})
In [12]:
          df1["% of Missing Values"] = round((100*df_train.isnull().sum()[df_train.isnull().sum()>0]/len(df_train)),3)
          df1
                            Number of Missing values % of Missing Values
Out[12]:
                                                 3
                                                                0.006
                    County
                       City
                                                 7
                                                                 0.014
                      State
                                                 8
                                                                0.016
                   ZIP Code
                                                 6
                                                                0.012
                 Model Year
                                                 6
                                                                0.012
                                                 3
                                                                0.006
                      Make
                     Model
                                                 9
                                                                0.017
          Legislative District
                                                                 0.282
                                               145
            Vehicle Location
                                                                0.765
                                               394
               Electric Utility
                                               574
                                                                1.115
          df1 = (df_test.isnull().sum()[df_test.isnull().sum()>0]).to_frame().rename(columns={0:"Number of Missing values"})
In [13]:
          df1["% of Missing Values"] = round((100*df_test.isnull().sum()[df_test.isnull().sum()>0]/len(df_test)),3)
          df1
```

Number of Missing values % of Missing Values

1

0.008

df test.describe()

Out[13]:

County

City	2	0.016
State	3	0.023
Model Year	1	0.008
Make	1	0.008
Model	4	0.031
Legislative District	24	0.186
Vehicle Location	116	0.901
Electric Utility	148	1.150

Exploratory Data Analysis

```
In [14]: fig=ff.create_distplot([df_train['Electric Range']],['Electric Range'])
fig.update_layout(title_text='Electric Range Distribtion Plot')
fig.show();
```

Electric Range Distribtion Plot


```
In [15]: plt.figure(figsize = (18, 12))
    sns.countplot(y = df_train['Make'], order=df_train.Make.value_counts().iloc[:10].index)
    plt.title("Car companies", fontsize = 20)
    plt.show()
```

Car companies


```
In [16]: plt.figure(figsize = (18, 12))
    sns.countplot(y = df_train['Model'], order=df_train.Model.value_counts().iloc[:10].index)
    plt.title("Model Distribution", fontsize = 20)
    plt.show()
```

Model Distribution


```
In [17]: plt.figure(figsize = (10, 6))
    sns.countplot(y = df_train['Clean Alternative Fuel Vehicle (CAFV) Eligibility'])
    plt.title("CAFV Distribution", fontsize = 20)
    plt.show()
```

CAFV Distribution


```
In [18]: plt.figure(figsize = (7, 4))
    sns.countplot(y = df_train['Electric Vehicle Type'])
    plt.title("Vehicle Type Distribution", fontsize = 20)
    plt.show()
```

Vehicle Type Distribution

Data Preprocessing

```
df_train['State'].value_counts()
In [19]:
           WA
                  51325
Out[19]:
           CA
                     32
           MD
                     20
           VA
                     19
           \mathsf{TX}
                     10
           0R
           FL
           NC
           GΑ
           ΙL
           NV
           РΑ
           TN
           ΗI
           СТ
           NE
           ΑP
```

```
MA
                    2
                    2
          NJ
          KS
                    2
         DC
                    2
         MT
                    2
                    2
          NY
          DE
                    1
                    1
          MO
          RΙ
                    1
          NM
                    1
          PR
                    1
          ΙN
                    1
                    1
          LA
         WI
                    1
         ΑZ
                    1
         MS
                    1
         WY
                    1
         UT
                    1
         Name: State, dtype: int64
         df_test['State'].value_counts()
In [20]:
         WA
                12843
Out[20]:
         CA
                    8
                    2
          MD
                    2
          VA
          DC
                    1
         0R
                    1
         NM
                    1
         TX
                    1
          NV
                    1
          NC
                    1
          FL
                    1
         ΑE
                    1
          SD
                    1
         ΑK
         IN
                    1
         ΗI
                    1
          NY
                    1
         Name: State, dtype: int64
          df_train.drop('State',axis=1,inplace=True)
In [21]:
          df_test.drop('State',axis=1,inplace=True)
In [22]: df_train.drop(columns = ['City', 'County', 'ZIP Code',
                                                   'ID', 'VIN (1-10)', 'Vehicle Location', 'DOL Vehicle ID',
                                                   'Electric Utility'],inplace=True)
```

```
df_test.drop(columns = ['City', 'County', 'ZIP Code',
                                       'ID', 'VIN (1-10)', 'Vehicle Location', 'DOL Vehicle ID',
                                       'Electric Utility'], inplace=True)
```

In [23]: df_train

Out[23]:

:		Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Expected Price (\$1k)
	0	2018.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	24.0	69
	1	2020.0	ТОҮОТА	PRIUS PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	25	0	10.0	40
	2	2022.0	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	47.0	78
	3	2022.0	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	5.0	78
	4	2018.0	HONDA	CLARITY	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	47	0	39.0	24.283
5	1477	2016.0	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	84	0	46.0	27
5	1478	2019.0	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	150	0	2.0	35
5	1479	2016.0	BMW	13	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	72	0	39.0	19
5	1480	2019.0	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	220	0	45.0	57
5	1481	2018.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	41.0	69

51482 rows × 9 columns

```
In [24]: def target_drop(df):
             l=df[(df['Expected Price ($1k)']=='N/')].index
             for i in 1:
                 df.drop(i,axis=0,inplace=True)
             df['Expected Price ($1k)'] = pd.to_numeric(df['Expected Price ($1k)'], downcast='float')
             df['Expected Price ($1k)'] = df['Expected Price ($1k)']*1000
             df.rename(columns = {'Expected Price ($1k)':'Expected Price'},inplace=True)
             return df
```

In [25]:	target_	_drop(df	_train)							
Out[25]:		Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Expected Price
	0	2018.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	24.0	69000.0
	1	2020.0	TOYOTA	PRIUS PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	25	0	10.0	40000.0
	2	2022.0	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	47.0	78000.0
	3	2022.0	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	5.0	78000.0
	4	2018.0	HONDA	CLARITY	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	47	0	39.0	24283.0
	51477	2016.0	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	84	0	46.0	27000.0
	51478	2019.0	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	150	0	2.0	35000.0
	51479	2016.0	BMW	13	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	72	0	39.0	19000.0
	51480	2019.0	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	220	0	45.0	57000.0
	51481	2018.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	41.0	69000.0
	51473 ro	ws × 9 cc	olumns							
In [26]:	target_	_drop(df	_test)							
Out[26]:		Model Year		Make Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Expected Price

]:		Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Expected Price
	0	2022.0	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	31.0	33500.0
	1	2019.0	VOLKSWAGEN	E-GOLF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	125	0	41.0	22200.0
	2	2017.0	MERCEDES- BENZ	B- CLASS	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	87	0	11.0	36000.0

3	2013.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	208	69900	37.0	33890.0
4	2020.0	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	322	0	43.0	50000.0
12866	2020.0	TESLA	MODEL X	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	289	0	49.0	102000.0
12867	2017.0	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	238	0	48.0	20000.0
12868	2017.0	TESLA	MODEL S	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	210	0	17.0	60000.0
12869	2013.0	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	75	0	46.0	18000.0
12870	2018.0	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	215	0	17.0	69000.0

Legislative District

```
In [27]: df1 = (df_train.isnull().sum()[df_train.isnull().sum()>0]).to_frame().rename(columns={0:"Number of Missing values"})
    df1["% of Missing Values"] = round((100*df_train.isnull().sum()[df_train.isnull().sum()>0]/len(df_train)),3)
    df1
```

Model Year Make % of Missing Values Make 3 0.006

145

```
In [28]: df1 = (df_test.isnull().sum()[df_test.isnull().sum()>0]).to_frame().rename(columns={0:"Number of Missing values"})
    df1["% of Missing Values"] = round((100*df_test.isnull().sum()[df_test.isnull().sum()>0]/len(df_test)),3)
    df1
```

0.282

Out[28]:		Number of Missing values	% of Missing Values
	Model Year	1	0.008
	Make	1	0.008
	Legislative District	24	0.187

```
In [29]: df_train = df_train[df_train['Model Year'].notna()]
df_train = df_train[df_train['Make'].notna()]
```

```
df_test = df_test[df_test['Model Year'].notna()]
         df_test = df_test[df_test['Make'].notna()]
         df_train.fillna(df_train['Legislative District'].value_counts().index[0],inplace=True)
In [30]:
         df_test.fillna(df_test['Legislative District'].value_counts().index[0],inplace=True)
         df_train.isnull().sum()
In [31]:
         Model Year
                                                               0
Out[31]:
         Make
                                                               0
         Model
         Electric Vehicle Type
         Clean Alternative Fuel Vehicle (CAFV) Eligibility
         Electric Range
         Base MSRP
         Legislative District
         Expected Price
         dtype: int64
         df_test.isnull().sum()
In [32]:
         Model Year
                                                               0
Out[32]:
         Make
         Model
         Electric Vehicle Type
         Clean Alternative Fuel Vehicle (CAFV) Eligibility
         Electric Range
         Base MSRP
         Legislative District
         Expected Price
         dtype: int64
         Feature Engineering
```

```
df_train.info()
In [33]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 51464 entries, 0 to 51481
         Data columns (total 9 columns):
              Column
                                                                 Non-Null Count Dtvpe
          0
              Model Year
                                                                 51464 non-null float64
              Make
                                                                 51464 non-null object
          1
                                                                 51464 non-null object
              Model
              Electric Vehicle Type
                                                                 51464 non-null object
              Clean Alternative Fuel Vehicle (CAFV) Eligibility 51464 non-null object
              Electric Range
                                                                 51464 non-null int64
```

```
Legislative District
                                                                           51464 non-null float64
                Expected Price
                                                                           51464 non-null float32
          dtypes: float32(1), float64(2), int64(2), object(4)
          memory usage: 3.7+ MB
In [34]:
          df test.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 12865 entries, 0 to 12870
          Data columns (total 9 columns):
                Column
                                                                           Non-Null Count Dtype
                _ _ _ _ _
           0
                Model Year
                                                                           12865 non-null float64
           1
                Make
                                                                           12865 non-null object
           2
                Model 1
                                                                           12865 non-null object
                                                                           12865 non-null object
                Electric Vehicle Type
           4
                Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                                           12865 non-null object
           5
                                                                           12865 non-null int64
                Electric Range
                Base MSRP
                                                                           12865 non-null int64
                Legislative District
                                                                           12865 non-null float64
                Expected Price
                                                                           12865 non-null float32
          dtypes: float32(1), float64(2), int64(2), object(4)
          memory usage: 954.8+ KB
          df_train.groupby('Make')['Model']
In [35]:
          for i in df_train.groupby('Make')['Model']:
               df_train.replace(list(i[1].unique()),[m+1 for m in range(len(list(i[1].unique())))],inplace=True)
In [36]:
          df_train
Out[36]:
                    Model
                                                                      Clean Alternative Fuel Vehicle (CAFV)
                                                                                                            Electric
                                                                                                                        Base
                                                                                                                                   Legislative
                                                                                                                                                  Expected
                              Make Model
                                                  Electric Vehicle Type
                      Year
                                                                                                            Range
                                                                                                                       MSRP
                                                                                                                                      District
                                                                                                                                                     Price
                                                                                             Eligibility
              0
                    2018.0
                             TESLA
                                            Battery Electric Vehicle (BEV)
                                                                       Clean Alternative Fuel Vehicle Eligible
                                                                                                               249
                                                                                                                           0
                                                                                                                                         24.0
                                                                                                                                                   69000.0
                                            Plug-in Hybrid Electric Vehicle
                                        1
              1
                    2020.0 TOYOTA
                                                                         Not eligible due to low battery range
                                                                                                                25
                                                                                                                           0
                                                                                                                                        10.0
                                                                                                                                                   40000.0
                                                             (PHEV)
                                                                      Eligibility unknown as battery range has
                             TESLA
                                           Battery Electric Vehicle (BEV)
                                                                                                                 0
                                                                                                                           0
                                                                                                                                         47.0
              2
                    2022.0
                                                                                                                                                   78000.0
                                                                                                not b...
                                                                      Eligibility unknown as battery range has
                                                                                                                 0
              3
                    2022.0
                             TESLA
                                            Battery Electric Vehicle (BEV)
                                                                                                                           0
                                                                                                                                          5.0
                                                                                                                                                   78000.0
                                                                                                not b...
                                            Plug-in Hybrid Electric Vehicle
                    2018.0
                           HONDA
                                        1
                                                                       Clean Alternative Fuel Vehicle Eligible
                                                                                                                47
                                                                                                                           0
                                                                                                                                         39.0
                                                                                                                                                   24283.0
                                                             (PHEV)
```

Clean Alternative Fuel Vehicle Eligible

84

0

46.0

27000.0

51464 non-null int64

6

51477

2016.0 NISSAN

1 Battery Electric Vehicle (BEV)

Base MSRP

51478	2019.0	NISSAN	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	150	0	2.0	35000.0
51479	2016.0	BMW	1	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	72	0	39.0	19000.0
51480	2019.0	TESLA	3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	220	0	45.0	57000.0
51481	2018.0	TESLA	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	249	0	41.0	69000.0

Out[38]:		Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Expected Price
	0	2022.0	CHEVROLET	1	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	31.0	33500.0
	1	2019.0	VOLKSWAGEN	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	125	0	41.0	22200.0
	2	2017.0	MERCEDES- BENZ	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	87	0	11.0	36000.0
	3	2013.0	TESLA	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	208	69900	37.0	33890.0
	4	2020.0	TESLA	2	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	322	0	43.0	50000.0
	12866	2020.0	TESLA	4	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	289	0	49.0	102000.0
	12867	2017.0	CHEVROLET	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	238	0	48.0	20000.0
	12868	2017.0	TESLA	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	210	0	17.0	60000.0
	12869	2013.0	NISSAN	1	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	75	0	46.0	18000.0
	12870	2018.0	TESLA	2	Battery Electric Vehicle	Clean Alternative Fuel Vehicle Eligible	215	0	17.0	69000.0

df_train.info()

In [40]:

(BEV)

```
2
              Model
                                                                 51464 non-null int64
              Electric Vehicle Type
                                                                 51464 non-null int64
              Clean Alternative Fuel Vehicle (CAFV) Eligibility 51464 non-null int64
              Electric Range
                                                                 51464 non-null int64
              Base MSRP
                                                                 51464 non-null int64
              Legislative District
                                                                 51464 non-null float64
              Expected Price
                                                                 51464 non-null float32
         dtypes: float32(1), float64(2), int64(6)
         memory usage: 3.7 MB
         df test['Electric Vehicle Type'].replace(df test['Electric Vehicle Type'].unique(),\
In [41]:
                                                   [m+1 for m in range(len(df test['Electric Vehicle Type'].unique()))],inplace=True)
         df_test['Clean Alternative Fuel Vehicle (CAFV) Eligibility'].replace(df_test['Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                   [m+1 for m in range(len(df test['Clean Alternative Fuel Vehicle (CAFV) Eligibility'].
         df test['Make'].replace(df test['Make'].unique(),[m+1 for m in range(len(df test['Make'].unique()))],inplace=True)
         df_test.info()
In [42]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 12865 entries, 0 to 12870
         Data columns (total 9 columns):
              Column
                                                                 Non-Null Count Dtvpe
              Model Year
                                                                 12865 non-null float64
          1
              Make
                                                                 12865 non-null int64
              Model
                                                                 12865 non-null int64
          2
              Electric Vehicle Type
                                                                 12865 non-null int64
              Clean Alternative Fuel Vehicle (CAFV) Eligibility 12865 non-null int64
              Electric Range
                                                                 12865 non-null int64
              Base MSRP
                                                                 12865 non-null int64
              Legislative District
                                                                 12865 non-null float64
              Expected Price
                                                                 12865 non-null float32
         dtypes: float32(1), float64(2), int64(6)
         memory usage: 954.8 KB
         plt.figure(figsize = (10, 10))
In [43]:
         sns.heatmap(df_train.corr(), cmap="YlGnBu", annot=True)
         <Axes: >
Out[43]:
```

										1.0
Model Year	1	-0.048	0.22	-0.2	0.52	-0.077	-0.21	0.021	0.55	
Make	-0.048	1	-0.11	0.35	0.038	-0.3	0.044	-0.033	-0.42	- 0.8
Model	0.22	-0.11	1	-0.014	0.12	0.11	0.081	0.012	0.27	- 0.6
Electric Vehicle Type	-0.2	0.35	-0.014	1	-0.025	-0.43	0.051	-0.062	-0.4	- 0.4
Clean Alternative Fuel Vehicle (CAFV) Eligibility	0.52	0.038	0.12	-0.025	1	-0.72	-0.067	-0.014	0.26	- 0.2
Electric Range	-0.077	-0.3	0.11	-0.43	-0.72	1	0.048	0.045	0.22	- 0.0
Base MSRP	-0.21	0.044	0.081	0.051	-0.067	0.048	1	0.0032	-0.074	0.2
Legislative District	0.021	-0.033	0.012	-0.062	-0.014	0.045	0.0032	1	0.056	0.4
Expected Price	0.55	-0.42	0.27	-0.4	0.26	0.22	-0.074	0.056	1	0.6
	lodel Year	Make	Model	hicle Type) Eligibility	tric Range	se MSRP	ve District	cted Price	

```
In [44]: plt.figure(figsize = (20, 20))
    sns.pairplot(df_train, hue ='Expected Price')
Out[44]: <seaborn.axisgrid.PairGrid at 0x1626536c9d0>
```

<Figure size 2000x2000 with 0 Axes>

Data Normalization

In [45]: scaler = StandardScaler()
 df_train_scaled = pd.DataFrame(scaler.fit_transform(df_train),columns=df_train.columns)
 df_test_scaled = pd.DataFrame(scaler.fit_transform(df_test),columns=df_test.columns)

In [46]: df_train_scaled

Out[46]:

:		Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAF Eligibil	•	Base MSRP	Legislative District	Expected Price
	0	-0.064872	-0.751775	-0.872444	-0.588151	-0.7289	78 1.368115	-0.202356	-0.409185	0.965315
	1	0.667998	-0.552517	-0.872444	1.700244	0.4659	55 -0.786575	-0.202356	-1.364864	-0.218853
	2	1.400868	-0.751775	-0.057232	-0.588151	1.6608	88 -1.027054	-0.202356	1.160858	1.332815
	3	1.400868	-0.751775	-0.057232	-0.588151	1.6608	88 -1.027054	-0.202356	-1.706177	1.332815
	4	-0.064872	-0.353259	-0.872444	1.700244	-0.7289	78 -0.574954	-0.202356	0.614756	-0.860631
53	L459	-0.797743	-0.154001	-0.872444	-0.588151	-0.7289	78 -0.219045	-0.202356	1.092595	-0.749687
53	L460	0.301563	-0.154001	-0.872444	-0.588151	-0.7289	78 0.415819	-0.202356	-1.910966	-0.423020
53	L461	-0.797743	0.244515	-0.872444	1.700244	-0.7289	78 -0.334475	-0.202356	0.614756	-1.076354
53	L462	0.301563	-0.751775	0.757981	-0.588151	-0.7289	78 1.089159	-0.202356	1.024333	0.475314
53	L463	-0.064872	-0.751775	-0.872444	-0.588151	-0.7289	78 1.368115	-0.202356	0.751282	0.965315

51464 rows × 9 columns

Year

In [47]: df_test_scaled

Out[47]: Model Make Model Electric Vehicle Clean Alternative Fuel Vehicle (CAFV) Electric Base Legislative Expected

Eligibility

MSRP

Range

Price

District

Type

0	1.392467	-1.139327	-0.835942	-0.580193	-1.489071	-1.029595	-0.208307	0.072746	-0.479540
1	0.287682	-0.927823	-0.835942	-0.580193	0.148551	0.164835	-0.208307	0.754475	-0.919941
2	-0.448841	-0.716319	-0.835942	-0.580193	0.148551	-0.198272	-0.208307	-1.290711	-0.382106
3	-1.921887	-0.504815	-0.835942	-0.580193	0.148551	0.957937	5.416790	0.481783	-0.464340
4	0.655943	-0.504815	0.061080	-0.580193	0.148551	2.047257	-0.208307	0.890820	0.163524
12860	0.655943	-0.504815	1.855124	-0.580193	0.148551	1.731928	-0.208307	1.299858	2.190151
12861	-0.448841	-1.139327	-0.835942	-0.580193	0.148551	1.244600	-0.208307	1.231685	-1.005683
12862	-0.448841	-0.504815	-0.835942	-0.580193	0.148551	0.977048	-0.208307	-0.881674	0.553260
12863	-1.921887	0.129697	-0.835942	-0.580193	0.148551	-0.312937	-0.208307	1.095339	-1.083630
12864	-0.080580	-0.504815	0.061080	-0.580193	0.148551	1.024825	-0.208307	-0.881674	0.904023

```
X_test = df_test[[column for column in list(df_test.columns) if column!='Expected Price']]
         y_train = df_train['Expected Price']
         y_test = df_test['Expected Price']
         X_train_scaled = df_train_scaled[[column for column in list(df_train_scaled.columns) if column!='Expected Price']]
         X_test_scaled = df_test_scaled[[column for column in list(df_test_scaled.columns) if column!='Expected Price']]
         v_train_scaled = df_train_scaled['Expected Price']
         v_test_scaled = df_test_scaled['Expected Price']
In [49]:
         LM = LinearRegression()
         DTR = DecisionTreeRegressor()
         RFR = RandomForestRegressor()
         XGBR = XGBRegressor()
         SVRR = SVR()
         ETR = ExtraTreesRegressor()
         ABR = AdaBoostRegressor()
         GBR = GradientBoostingRegressor()
         regressors = [LM, DTR, RFR, XGBR, SVRR, ETR, ABR, GBR]
         Reg = ['LM', 'DTR', 'RFR', 'XGBR', 'SVRR', 'ETR', 'ABR', 'GBR']
         R = [['Method', 'r2_score', 'RMSE', 'K-fold(score)']]
         R2 = [['Method', 'r2_score', 'RMSE', 'K-fold(score)']]
         for regressor in regressors:
             regressor.fit(X_train_scaled, y_train_scaled)
             reg = regressor.predict(X_train_scaled)
             reg2 = regressor.predict(X_test_scaled)
             cv = KFold(n_splits=10, random_state=1, shuffle=True)
             scores_tr = cross_val_score(regressor, X_train_scaled, y_train_scaled, scoring='neg_mean_squared_error',cv=cv, n_jobs=-1)
```

In [48]: X_train = df_train[[column for column in list(df_train.columns) if column!='Expected Price']]

Test Data	Metrics		
Method	r2_score	RMSE	<pre>K-fold(score)</pre>
LM	0.072021	0.48	0.75
DTR	0.821736	0.67	0.38
RFR	0.675491	0.65	0.37
XGBR	0.441505	0.6	0.37
SVRR	0.785487	0.67	0.56
ETR	0.203671	0.45	0.37
ABR	0.244271	0.56	0.63
GBR	0.294826	0.57	0.46