	(Documento Nº			utomação talhamento	da Norma	IEC61850-6
CO	NCER'	г			D .	Especific	cação Funci	ional
TECH	IN O L O G I E	S	Revisão: R0	0	Data:	7/2008	Projeto	ig.802/04
Elaborado	SHEROMONIAN AUDIOD	46	NU	Setor:	Verificado:	72006	Cen	Setor:
	.ima Mendes			DOP	Sirlene R. R.	Magalhães		DOP
Revisado				Setor:	Aprovado:	<u> </u>		Setor:
	R. R. Magalh	ães		DOP	Sirlene R. R			DOP
Resp Téc				Crea:	Ass. do emite	nte:		Setor:
	Spyer Prate Data:		ma da Altaraçã	27169-D		NIO do S	'aliaita aão:	DOP SA XXX
Revisão R00	01/07/08		mo da Alteraçã isão inicial	0.		IN da S	Solicitação:	DOP SA XXX
Observaç	ão:							
Destino: Cemig						Projeto:	Arquivo:	

Software SCADA Sistema de Automação do Setor Elétrico

Especificação Funcional Detalhamento da Norma IEC61850-6

CONCERT - Projeto Cemig. 802/04 - XOM EF 0XX - R00 - julho/2008

Este documento é de propriedade da CONCERT, não podendo ser reproduzido total ou parcialmente, sem a expressa autorização por escrito, ou utilizado para qualquer finalidade diferente daquela para a qual está sendo fornecido. A CONCERT reserva-se o direito de alterar quaisquer informações contidas neste documento sem aviso prévio.

CONCERT Technologies S/A

Matriz Rua Haddock Lobo, 846 Cj. 702 Torre Alpha, Jd. Paulista 01414-000 – São Paulo – SP Tel.: +55 (11) 3062-8663

Filial

Rua Lauro Jacques, 20 – 9° andar – Floresta 31010-020 – Belo Horizonte – MG Tel.: +55 (31) 3224-0521 – Fax: +55 (31) 3222-0308

 $\underline{http:/\!/www.concert.com.br} \ - \ Email: \underline{concert@concert.com.br}$

SUMÁRIO

		Pagina
1	Introdução	1.1
1.1	Objetivo	
1.2	Escopo	1.1
1.3	Definições Relevantes	1.1
1.3.1	Lista de Siglas e Abreviações	1.1
1.3.2	Lista de Termos e Definições	
1.4	Documentos de Referência	
1.4.1	Visão Geral para Usuários IEC 61850	1.3
1.4.2	Normas IEC 61850	
2	Visão Geral da Norma IEC 61850	2.1
2.1	Necessidades de um Sistema de Comunicação	2.1
2.2	Escopo e Linhas Gerais	2.2
3	Modelo de Informação de Dispositivos e Funções Relacionadas	s às
	Aplicações de Subestações	
3.1	Abordagem do Modelo	
3.2	Classes de Dados	
3.3	Grupos de Nós Lógicos	
3.4	Tabelas de Nós Lógicos	
3.5	Nós Lógicos de Sistema	
3.5.1	LN: Informação de Dispositivo Físico - LPHD	
3.5.2	Nó Lógico Comum – LN comum	
3.5.3	LN: Nó Lógico Zero - LLN0	
3.6	Nós Lógicos Para Funções de Proteção	
3.6.1	LN: Diferencial – PDIF	
3.6.2	LN: Comparação de Direção – PDIF	
3.6.3	LN: Distância – PDIS	
3.6.4	LN: Alta Tensão (Sobrepotência) Direcional - PDOP	
3.6.5	LN: Baixa-tensão (subpotência) Direcional – PDUP	
3.6.6	LN: Taxa de Oscilação da Freqüência – PFRC	
3.6.7	LN: Restrição Harmônica – PHAR	
3.6.8	LN: Detector de Terra- PHIZ	
3.6.9	LN: Sobrecorrente Instantânea – PIOC	
3.6.10	LN: Inibição de Ligamento de Motor – PMRI	
3.6.11	LN: Supervisão do Tempo de Partida de Motor – PMSS	
3.6.12	LN: Fator de Sobrepotência – POPF	
3.6.13	LN: Medição do Ângulo de Fase - PPAM	3.20
3.6.14	LN: Esquema de Proteção - PSCH	
3.6.15	LN: Falta para a Terra Direcional Sensitiva – PSDE	3.22
3.6.16	LN:Falta à Terra Transiente – PTEF	
3.6.17	LN: Tempo Sobrecorrente - PTOC	
3.6.18	LN: Sobrecarregamento de Freqüência (Sobrefreqüência) - PTOF	
3.6.19	LN: Sobrecarregamento de Tensão - PTOV	3.25

3.6.20	LN: Condicionando Proteção Trip - PTRC	. 3.26
3.6.21	LN: Sobrecarregamento Termal - PTTR	
3.6.22	LN: Subcorrente - PTUC	
3.6.23	LN: Subtensão - PTUV	. 3.29
3.6.24	LN: Fator Subpotência - PUPF	
3.6.25	LN: Subfrequência - PTUF	
3.6.26	LN: Tempo Sobrecorrente Controlada por Tensão - PVOC	
3.6.27	LN: Volts por Hz - PVPH.	
3.6.28	LN: Velocidade Zero ou Subvelocidade - PZSU	
3.7	Nós Lógicos Para Funções Relacionadas à Proteção	. 3.34
3.7.1	LN: Função Gravadora de Distúrbio - RDRE	
3.7.2	LN: Gravador de Distúrbio Canal Analógico - RADR	
3.7.3	LN: Gravador de Distúrbio Canal Binário - RBDR	
3.7.4	LN: Tratamento de Gravação de Distúrbio - RDRS	
3.7.5	LN: Falha de Disjuntor - RBRF	
3.7.6	LN: Elemento Direcional - RDIR	
3.7.7	LN: Localizador de Falha - RFLO	
3.7.8	LN: Detecção/Bloqueio de Oscilação de Potência - RPSB	
3.7.9	LN: Auto-religamento - RREC	
3.7.10	LN: Verificação de Sincronismo ou Sincronização - RSYN	
3.8	Nós Lógicos para Controle	
3.8.1	LN: Tratamento de Alarme - CALH	
3.8.2	LN: Controle de Grupo de Refrigeração - CCGR	
3.8.3	LN: Intertravamento - CILO	. 3.47
3.8.4	LN: Chaveamento em Ponto na Onda - CPOW	
3.8.5	LN: Controlador de Chave – CSWI	
3.9	Nós Lógicos para Referências Genéricas	
3.9.1	LN: Controle de Processo Automático Genérico - GAPC	
3.9.2	LN: Processo Genérico I/O - GGIO	. 3.50
3.9.3	LN: Aplicação de Segurança Genérica - GSAL	. 3.51
3.10	Nós Lógicos para Interface e Arquivamento	
3.10.1	LN: Arquivamento - IARC	
3.10.2	LN: Interface Homem Máquina - IHMI	
3.10.3	LN: Interface tele-controlada - ITCI	
3.10.4	LN: Interface de Telemonitoramento - ITMI	. 3.53
3.11	Nós Lógicos para Controle Automático	. 3.53
3.11.1	LN: Regulador de Corrente Neutra – ANCR	
3.11.2	LN: Controle de Potência Reativa - ARCO	
3.11.3	LN: Controlador de Comutador de Carga Automático - ATCC	. 3.55
3.11.4	LN: Controle de Tensão - AVCO	
3.12	Nós Lógicos para Medições e Metragens	. 3.58
3.12.1	LN: Medidas Diferenciais - MDIF	. 3.58
3.12.2	LN: Harmônicos ou Inter-harmônicos	. 3.59
3.12.3	LN: Harmônicos ou Inter-harmônicos não Relacionados a Fase - MHAM.	
3.12.4	LN: Metragem - MMTR	
3.12.5	LN: Medição não Relacionada a Fase - MMXN	
3.12.6	LN: Medição - MMXU	
3.12.7	LN: Sequência e Desbalanceamento - MSQI	

3.12.8	LN: Estatísticas de Metragem - MSTA	.3.68
3.13	Nós Lógicos para Sensores e Monitoramento	.3.69
3.13.1	LN: Monitoramento e Diagnósticos para Arcos - SARC	.3.69
3.13.2	LN:Supervisão de Isolamento do Meio - SIMG	
3.13.3	LN:Supervisão de Isolamento do Meio (líquido) - SIML	.3.71
3.13.4	LN: Monitoramento e Diagnósticos para Descargas Parciais – SPDC	
3.14	Nós Lógicos para Chaves	
3.14.1	LN: Disjuntor – XCBR	
3.14.2	LN:Chave de Circuito - XSWI	.3.75
3.15	Nós Lógicos para Transformador de Instrumentação	.3.77
3.15.1	LN: Transformador de Corrente – TCTR	
3.15.2	LN: Transformador de Tensão – TVTR	
3.16	Nós Lógicos para Transformadores de Potência	
3.16.1	LN: Neutralizador de Falta para Terra (Bobina de Petersen)– YEFN	
3.16.2	LN: Comutador de Tap – YLTC	
3.16.3	LN: Bobina de Potência - YPSH	
3.16.4	LN: Transformador de Potência - YPTR	
3.17	Nós Lógicos para Equipamentos de Sistema de Potência Adicionais	
3.17.1	LN: Rede Auxiliar – ZAXN	
3.17.2	LN: Bateria - ZBAT	
3.17.3	LN: Bushing - ZBSH	
3.17.4	LN: Cabo de Força - ZCAB	
3.17.5	LN: Banco Capacitor – ZCAP	
3.17.6	LN: Conversor – ZCON	
3.17.7	LN: Gerador – ZGEN	
3.17.8	LN: Linha Isolada por Gás - ZGIL	
3.17.9	LN: Linha Sobrecarregada de Energia - ZLIN	
	LN: Motor – ZMOT	
	LN: Reator – ZREA	
	LN: Componente Reativo Rotativo – ZRRC	
	LN: Estabilizador - ZSAR	
	LN: Conversor de Frequência Controlado por Tiristor (Thyristor	
011,11	· · · · · · · · · · · · · · · · · · ·	.3.91
3.17.15	LN: Componente Reativo Controlado por Tiristor (<i>Thyristor Controlled</i>	
011,110	Reactive Component) – ZTCR	.3.92
3.18	Semântica do Nome de Dado	
0.10		
4	Linguagem de Descrição de Configuração para Comunicação em	
	Subestações Elétricas relacionada a IEDs	4.1
4.1	Introdução e Escopo da SCL	
4.2	Modelo de Objetos na SCL	4.3
4.2.1	Modelo da Subestação	
4.2.2	Modelo do Produto (IED)	
4.2.3	Modelo do Sistema de Comunicação	
4.2.4	Modelando Redundância	
4.3	Tipos de Arquivos de Descrição da SCL	
4.4	A Linguagem SCL	
4.4.1	Método de Especificação	

4.4.2	Estrutura Geral	. 4.10	
4.4.3	Designação de Sinal e Objeto		
4.5	Elementos Sintáticos SCL	. 4.12	
4.5.1	Header	. 4.12	
4.5.2	Descrição da Subestação	. 4.12	
4.5.3	Voltage Level	. 4.13	
4.5.4	Bay Level	. 4.13	
4.5.5	Equipamento de Potência	. 4.14	
4.5.6	Subequipamento	. 4.14	
4.5.7	Nós Lógicos de Função de Subestação	. 4.15	
4.5.8	Equipamento não Relacionado a Potência	. 4.15	
4.6	Descrição de um IED	. 4.16	
4.6.1	Geral	. 4.16	
4.6.2	O IED, Serviços e Pontos de Acesso	. 4.17	
4.6.3	O Servidor IED	. 4.18	
4.6.4	O Dispositivo Lógico	. 4.19	
4.6.5	LN0 e Outros Nós Lógicos	. 4.19	
4.6.6	Definição de Dado (DOI)	. 4.20	
4.6.7	Definição de Conjunto de Dados	. 4.22	
4.6.8	Bloco de Controle de Relatório	. 4.23	
4.6.9	Bloco de Controle de Log	. 4.25	
4.6.10	Bloco de Controle GSE	. 4.25	
4.6.11	Bloco de Controle de Valores Amostrados	. 4.26	
4.6.12	Bloco de Controle de Configuração	. 4.27	
4.6.13	Ligamento a Sinais Externos		
4.6.14	Associações	. 4.28	
4.7	Descrição do Sistema de Comunicação	. 4.29	
4.7.1	Geral		
4.8	Templates de Tipos de Dados	. 4.29	
4.8.1	Geral	. 4.29	
4.8.2	Definições LNodeType	. 4.31	
4.8.3	Definição de tipo DO	. 4.31	
4.9	Definição de Atributo de Dado	. 4.32	
4.9.1	Geral	. 4.32	
4.9.2	Tipos básicos de atributos	. 4.35	
4.9.3	Valores		
4.9.4	Tipo de Estrutura de Atributo de Dado	. 4.36	
4.9.5	Tipos de Enumeração		
Lista d	e Figuras		
Figura 3	3-1: Relações entre LNs.	3.4	
_	4-1: Estrutura de Modelagem das Informações e Serviços		
_	4-2 Visão geral em UML do esquema da SCL		
_	4-2 Elementos da identificação de sinal como definido em IEC 61850-7-2		
_	3		

Lista de Tabelas

Tabela 1-1: Lista de Siglas e Abreviações.	1.3
Tabela 1-2: Lista de Termos e Definições	
Tabela 2-1: Principais Seções da Norma IEC 61850.	2.2
Tabela 3-1: Categorias Principais das Classes de Dados e Quatidade de Classes	
Relacionadas	3.2
Tabela 3-2: Grupos de Nós Lógicos e Quantidade de Nós Relacionados	3.3
Tabela 3-3: Interpretação das Informações nas Tabelas de Nós Lógicos	
Tabela 3-4: LN: Informação de Dispositivo Físico: LPHD.	
Tabela 3-5: LN: Comum.	
Tabela 3-6: LN: Nó Lógico Zero - LLN0.	
Tabela 3-7: Relação entre LNs para proteção e IEEE C37.2.	
Tabela 3-8: LN: Diferencial – PDIF.	
Tabela 3-9: LN: Comparação de Direção – PDIR.	
Tabela 3-10: LN: Distância – PDIS.	
Tabela 3-11: LN: Alta Tensão (Sobrepotência) Direcional – PDOP.	3.13
Tabela 3-12: LN: Baixa-tensão (subpotência) Direcional – PDUP	
Tabela 3-13: LN: Taxa de Oscilação da Frequência – PFRC.	
Tabela 3-14: LN: Restrição Harmônica – PHAR	
Tabela 3-15: LN: Detector de Terra- PHIZ.	
Tabela 3-16: LN: Sobrecorrente Instantânea – PIOC.	
Tabela 3-17: LN: Inibição de Ligamento de Motor – PMRI.	
Tabela 3-18: LN: Supervisão do Tempo de Partida de Motor – PMSS	
Tabela 3-19: LN: Fator de Sobrepotência – POPF	
Tabela 3-20: LN: Medição do Ângulo de Fase - PPAM	
Tabela 3-21: LN: Esquema de Proteção - PSCH.	
Tabela 3-22: LN: Falta para a Terra Direcional Sensitiva – PSDE	
Tabela 3-23: LN:Falta à Terra Transiente – PTEF.	
Tabela 3-24: LN: Tempo Sobrecorrente - PTOC.	
Tabela 3-25: LN: Sobrecarregamento de Frequência (Sobrefrequência) - PTOF	
Tabela 3-26: LN: Sobrecarregamento de Tensão - PTOV.	
Tabela 3-27: LN: Condicionando Proteção Trip - PTRC	
Tabela 3-28: LN: Sobrecarregamento Termal - PTTR.	
Tabela 3-29: LN: Subcorrente - PTUC.	3.29
Tabela 3-30: LN: Subtensão - PTUV.	
Tabela 3-31: LN: Fator Subpotência - PUPF.	
Tabela 3-32: LN: Subfreqüência - PTUF.	
Tabela 3-33: LN: Tempo Sobrecorrente Controlada por Tensão - PVOC	
Tabela 3-34: LN: Volts por Hz - PVPH.	
Tabela 3-35: LN: Velocidade Zero ou Subvelocidade - PZSU	3.33
Tabela 3-36: Relação entre LNs relacionados à proteção e IEEE C37.2	
Tabela 3-37: LN: Função Gravadora de Distúrbio - RDRE	
Tabela 3-38: LN: Gravador de Distúrbio Canal Analógico - RADR	
Tabela 3-39: LN: Gravador de Distúrbio Canal Binário - RBDR	
Tabela 3-40: LN: Tratamento de Gravação de Distúrbio - RDRS.	
Tabela 3-41: LN: Falha de Disjuntor - RBRF.	
Tabela 3-42: LN: Elemento Direcional - RDIR.	

Tabela 3-43: LN: Localizador de Falha - RFLO.	. 3.41
Tabela 3-44: LN: Detecção/Bloqueio de Oscilação de Potência - RPSB	. 3.42
Tabela 3-45: LN: Auto-religamento - RREC.	. 3.43
Tabela 3-46: LN: Verificação de Sincronismo ou Sincronização - RSYN	. 3.44
Tabela 3-47: LN: Tratamento de Alarme - CALH.	. 3.45
Tabela 3-48: LN: Controle de Grupo de Refrigeração - CCGR	. 3.46
Tabela 3-49: LN: Intertravamento - CILO.	
Tabela 3-50: LN: Chaveamento em Ponto na Onda - CPOW	
Tabela 3-51: LN: Controlador de Chave – CSWI.	
Tabela 3-52: LN: Controle de Processo Automático Genérico - GAPC	
Tabela 3-53: LN: Processo Genérico I/O - GGIO.	
Tabela 3-54: LN: Aplicação de Segurança Genérica - GSAL	
Tabela 3-55: LN: Arquivamento - IARC	
Tabela 3-56: LN: Interface Homem Máquina - IHMI.	
Tabela 3-57: LN: Interface tele-controlada - ITCI.	. 3.53
Tabela 3-58: LN: Interface de Telemonitoramento - ITMI.	
Tabela 3-59: LN: Regulador de Corrente Neutra – ANCR.	
Tabela 3-60: LN: Controle de Potência Reativa - ARCO.	
Tabela 3-61: LN: Controlador de Comutador de Carga Automático - ATCC	
Tabela 3-62: LN: Controle de Tensão - AVCO	
Tabela 3-63: LN: Medidas Diferenciais - MDIF.	
Tabela 3-64: LN: Harmônicos ou Inter-harmônicos	
Tabela 3-65: LN: Harmônicos ou Inter-harmônicos não Relacionados a Fase -	. 3.02
MHAM	3 64
Tabela 3-66: LN: Metragem - MMTR.	
Tabela 3-67: LN: Medição não Relacionada a Fase - MMXN	
Tabela 3-68: LN: Medição - MMXU.	
Tabela 3-69: LN: Seqüência e Desbalanceamento - MSQI.	
Tabela 3-70: LN: Estatísticas de Metragem - MSTA	
Tabela 3-70: LN: Monitoramento e Diagnósticos para Arcos - SARC	
Tabela 3-71: LN: Monitoramento e Diagnosticos para Arcos - SARC	3.70
Tabela 3-72. LN:Supervisão de Isolamento do Meio (líquido) - SIML	
	. 3.12
Tabela 3-74: LN: Monitoramento e Diagnósticos para Descargas Parciais – SPDC	2 72
Tabela 3-75: LN: Disjuntor – XCBR	
Tabela 3-76: LN: Disjuntor – ACBR	
Tabela 3-76: LN: Chave de Circuito - ASWI. Tabela 3-77: LN: Transformador de Corrente – TCTR	
Tabela 3-78: LN: Transformador de Tensão – TVTR	
Tabela 3-79: LN: Neutralizador de Falta para Terra (Bobina de Petersen)— YEFN	
Tabela 3-80: LN: Comutador de Tap – YLTC.	
Tabela 3-81: LN: Bobina de Potência - YPSH.	
Tabela 3-82: LN: Transformador de Potência - YPTR	
Tabela 3-83: LN: Rede Auxiliar – ZAXN.	
Tabela 3-84: LN: Bateria - ZBAT.	
Tabela 3-85: LN: Bushing - ZBSH	
Tabela 3-86: LN: Cabo de Força - ZCAB.	
Tabela 3-87: LN: Banco Capacitor – ZCAP.	
Tabela 3-88: LN: Conversor – ZCON.	. 3.86

Tabela 3-89: LN: Gerador – ZGEN.	3.87
Tabela 3-90: LN: Linha Isolada por Gás - ZGIL.	3.88
Tabela 3-91: LN: Linha Sobrecarregada de Energia - ZLIN	
Tabela 3-92: LN: Motor – ZMOT	
Tabela 3-93: LN: Reator – ZREA.	3.90
Tabela 3-94: LN: Componente Reativo Rotativo – ZRRC.	3.90
Tabela 3-95: LN: Estabilizador - ZSAR	
Tabela 3-96: LN: Conversor de Freqüência Controlado por Tiristor (Thyristor	
Controlled Frequency Converter) – ZTCF.	3.92
Tabela 3-97: LN: Componente Reativo Controlado por Tiristor (Thyristor	
Controlled Reactive Component) – ZTCR	3.92
Tabela 3-98: Semântica dos Dados.	3.124
Tabela 4-1: Arquivos de definição do esquema XML	4.9
Tabela 4-2: Atributos do elemento header.	
Tabela 4-3: Atributos do elemento SubEquipment	4.14
Tabela 4-4: Atributos do elemento LNode.	
Tabela 4-5: Atributos do elemento IED.	4.17
Tabela 4-6: Atributos do elemento AccessPoint de um IED	4.18
Tabela 4-7: Atributos do elemento Server de um IED.	4.19
Tabela 4-8: Atributos do elemento LDevice de um IED	4.19
Tabela 4-9: Atributos do elemento LN0	4.20
Tabela 4-10: Atributos do elemento LN	4.20
Tabela 4-11: Atributos do elemento DOI	4.21
Tabela 4-12: Atributos do elemento DAI	4.21
Tabela 4-13: Atributos do elemento SDI.	4.22
Tabela 4-14: Atributos do elemento DataSet.	4.22
Tabela 4-15: Atributos do elemento FCDA.	4.23
Tabela 4-16: Atributos do elemento FCDA.	4.24
Tabela 4-17: Atributos do elemento RptEnabled	4.24
Tabela 4-18: Atributos do elemento ClientLn	
Tabela 4-19: Atributos do elemento LogControl.	4.25
Tabela 4-20: Atributos do elemento GSEControl.	4.26
Tabela 4-21: Atributos do elemento SampledValueControl	4.26
Tabela 4-22: Atributos do elemento SmvOpts.	4.27
Tabela 4-23: Atributos do elemento SettingControl.	4.27
Tabela 4-24: Atributos do elemento ExtRef	4.28
Tabela 4-25: Atributos do elemento Association.	4.28
Tabela 4-26: Elementos de definição template.	4.30
Tabela 4-27: Atributos do elemento LNodeType	
Tabela 4-28: Atributos do elemento DO em um LNodeType	4.31
Tabela 4-29: Atributos do elemento DOType.	
Tabela 4-30: Atributos do elemento SDO em um DOType	4.32
Tabela 4-31: Mapeamento de tipo de dados na SCL	4.33
Tabela 4-32: Significado do atributo Valkind.	
Tabela 4-33: Atributos do elemento DA.	
Tabela 4-34: Atributos do elemento BDA.	4.37
Tabela 4-35: Atributos do elemento EnumType.	4.38

ESTA PÁGINA É INTENCIONALMENTE EM BRANCO

1.1 Objetivo

Este documento apresenta o detalhamento da Norma IEC 61850-6.

Inicialmente é apresentada uma visão geral da norma IEC 61850, seguindo-se do detalhamento da estrutura da IEC 61850-6, tendo como finalidade o entendimento aprofundado da linguagem SCL descrita na norma e da representação dos dados e das funcionalidades de uma subestação na mesma.

1.2 Escopo

O escopo deste documento compreende o detalhamento da norma IEC 61850 no que tange à especificação de dados e funções em subestações. A linguagem SCL, definida na norma IEC 61850-6, será também detalhada para utilização na descrição de uma subestação, criada a partir de um software configurador a ser desenvolvido. Este software será capaz, então, de gerar arquivos SCL que descrevem uma subestação projetada por um engenheiro.

1.3 Definições Relevantes

1.3.1 Lista de Siglas e Abreviações

Para efeito deste documento são consideradas as seguintes siglas e abreviações:

Sigla	Descrição
A	Corrente em Amperes (Amps)
AC	Corrente Alternada
a. c.	Corrente Alternada
ACSI	Interface de Serviço de Comunicação Abstrata (Abstract Communication
	Service Interface)
ACT	Informação de ativação (ACTivation) de Proteção
ASDU	Unidade de Dado de Serviço de Aplicação (Aplication Service Data Unit)
ASG	Configuração Análoga (Analogue SettinG)
ASDU	Unidade de Dado de Serviço de Aplicação (Aplication Service Data Unit)
BDA	Atributo de Dado Básico (Basic Data Attribute)
СВ	Disjuntor (Circuit Breaker)
CDC	Classe de Dado Comum
CT	Tranformador/Transdutor de Corrente (Current Transformer/Transducer)
CIM	Modelo de Informação Comum (Common Information Model) para
	aplicações de manejo de energia
DA	Atributo de Dado (<i>Data Atribute</i>)
DAÍ	Atributo de Dado Instanciado (Instaciated Data Attribute)
Db	Decibéis, unidade de medida de volume de som

DO	Objeto de Dado (Data Object or Instance)	
DOI	Objeto da Dado Instanciado (Instaciated Data Object)	
DPC	Controle de Ponto Duplo (<i>Double Point Control</i>)	
DTD	Definição de Tipo de Documento para um documento XML (<i>Document</i>	
	Type Definition)	
EMS	Energy Management System	
FC	Restrição Funcional (Functional Constraint)	
FCD	Dado de Restrição Funcional (Functional Constraint Data)	
FCDA	Atributo de Dado de Restrição Funcional	
FPF	Fluxo de Potência à Frente	
GIS		
	Chave Isolado por Gás (Gas Insulated Switchgear)	
GOOSE	Eventos genéricos de subestação orientados a objetos. (Generic Object Oriented Substation Events)	
GSE	Evento Genérico de Subestação (Generic Substation Event)	
H2	Duas moléculas de Hidrogênio	
H2O	Água	
ID	Identificador	
IED	Dispositivo Eletrônico Inteligente (Intelligent Electronic Device)	
ISO	Organização de Normas Internacionais (International Standards	
	Organisation)	
LD	Dispositivo Lógico	
LDInst	Dispositivo Lógico Instanciado (Instatiated Logical Device)	
LED	Diodo de Emissão de Luz (Ligth Emitting Diode)	
LN	Nó Lógico	
LNInst	Nó Lógico Instanciado (Instatiated Logical Node)	
MMS	Especificação de Menssagem de Produção (ISO 9506) - (Manufacturing	
	Message Specification)	
ms	Milisegundos	
MSV	Valor Amostral Multicast (Multicast Sampled Value)	
MsvID	ID para MSV	
Ph	Fase	
POW	Chaveamento em ponto de onda (Point on Wave Switching)	
RCB	Bloco de Controle de Relatório (Report Control Block)	
RMS	A raiz quadrada da média de raízes quadradas de um grupo de números.	
	(Root Min Square)	
s	Segundos	
SA	Automação de Subestação (Substation Automation)	
SAS	Sistema de Automação de Subestação	
SCADA	Supervisão, Controle e Aquisição de Dados (Supervisory Control and	
	Data Acquisition).	
SCL	Linguagem de Descrição de Configuração de Subestação (Substation	
	Configuration description Language)	
SCSM	Mapeamento de Seviço de Comunicação Específico (Specific	
	Communication Service Mapping)	
SDI	Sub Dado Instanciado	
SGBD	Sistema de Gerenciamento de Banco de Dados	
SGC	Classe de controle de grupo de configuração (Setting Group Control class)	
	1	

SMV	Valor amostral medido (Sampled Measured Value)
SV	Valor amostrado (Sampled Value)
UML	Unified Modelling Language de acordo com http://www.omg.org/uml
URI	Identificador de Recurso Universal (Universal Resource Identifier)
USV	Valor Amostral Unicast (Unicast Sampled Value)
UsvID	ID para USV
XML	Linguagem de Markup Extansível (Extensible Markup Language)
XOMNI	Software SCADA da CONCERT.
	(www.concert.com.br)

Tabela 1-1: Lista de Siglas e Abreviações.

1.3.2 Lista de Termos e Definições

Para efeito deste documento são considerados os seguintes termos e definições:

Termo/Definição	Descrição
Gateway	Porta de ligação.
Drag Hands	Ponteiro que marcar o máximo e o mínimo do comutador de
	cargas.
Multicast	Multicast é a entrega de informação para múltiplos destinatários
	simultaneamente usando a estratégia mais eficiente onde as
	mensagens só passam por um link uma única vez e somente são
	duplicadas quando o link para os destinatários se divide em duas
	direções.
Proxy	É um tipo de servidor que atua nas requisições dos seus clientes
	executando os pedidos de conexão a outros servidores.
Tag	Nome dado a um elemento em um arquivo XML.
Tap	Um ponto de conexão em um enrolamento de um tranformador,
	permitindo a regulagem da tensão de saída.
Unicast	Unicast é um endereçamento para um pacote feito a um único
	destino, ou seja, endereçamento ponto-a-ponto.

Tabela 1-2: Lista de Termos e Definições.

1.4 Documentos de Referência

Este documento se baseia nos seguintes documentos de referência.

1.4.1 Visão Geral para Usuários IEC 61850

• Communication Networks and Systems in Substations: An Overview for Users, Drew Baigent, Mark Adamiak and Ralph Mackiewicz.

1.4.2 Normas IEC 61850

- Communication Networks and Systems in Substations Part 5: Communication requirements for functions and devices models, First edition, 2003-07.
- Communication Networks and Systems in Substations Part 6: Configuration description language for communication in electrical substations related to IEDs, First edition, 2004-03.
- Communication Networks and Systems in Substations Part 7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI), First edition, 2003-05.
- Communication Networks and Systems in Substations Part 7-4: Basic communication structure for substation and feeder equipment Compatible logical node classes and data classes, First edition, 2003-05.

O processo de digitalização de equipamentos eletrônicos cresce a taxas exponenciais. Com este avanço espera-se que cada equipamento, cada switch ou qualquer componente eletrônico possua algum tipo de configuração, monitoramento e/ou controle. Para manusear o grande número de dispositivos e permitir que estes se comuniquem, foi definido um novo modelo de comunicação padronizado como IEC61850 – Redes de Comunicação e Sistemas em Subestações.

Para melhor entendê-lo, é necessário conhecer os requisitos que os sistemas de comunicação devem atender, como mostrado na seção 2.1. O escopo e uma breve visão da norma IEC61850 são apresentados na seção 2.2.

2.1 Necessidades de um Sistema de Comunicação

A comunicação sempre foi considerada um ponto crucial na operação em tempo real de um sistema de potência. Quando a comunicação digital se tornou disponível, sistemas de aquisição de dados (DAS) foram instalados para coletar dados de medições das subestações de forma automática. Inicialmente, os protocolos de comunicação eram otimizados para operar em canais de comunicação com baixa largura de banda. O custo desta otimização era o tempo necessário para configurar, mapear e documentar a localizar os vários bits de dados recebidos pelos protocolos.

Após uma rápida evolução tecnológica, a largura de banda deixou de ser um fator limitante. Com isso o principal custo nos SAS passou a ser o componente de configuração e documentação. Conseqüentemente, um componente chave em um sistema de comunicação é a habilidade de cada dispositivo eletrônico inteligente (IED) se descrever do ponto de vista de serviços e dados. Outros requisitos são:

- Comunicação rápida entre IEDs;
- Capacidade de conexão a rede durante toda a vida do utilitário;
- Alta disponibilidade;
- Garantias nos tempos de entrega;
- Baseados em padrões;
- Interoperação multi-fabricantes;
- Suporte para dados de amostragem de tensão e corrente;
- Suporte para transferência de arquivos;
- Suporte para auto-configuração e configuração;
- Suporte para segurança.

O trabalho de desenvolvimento de uma nova arquitetura de comunicação que atendesse estes requisitos começou com o desenvolvimento da UCA em 1988, cujos conceitos ajudaram na definição da norma internacional IEC 616850 - Communication Networks and Systems in Substations.

2.2 Escopo e Linhas Gerais

O escopo determinado para a IEC 61850 é a comunicação nas substações. Vários aspectos desta comunicação são definidos em 10 seções principais da norma:

Parte #	Título
1	Introdução e Visão Geral
2	Glossário de termos
3	Requisitos Gerais
4	Manejo de Sistema e Projeto
5	Requisitos de Comunicação para Funções e Modelos de Dispositivos
6	Linguagem de Configuração do Sistema para Comunicação em Substações
	Elétricas Relacionadas a IEDs
7	Estrutura Básica de Comunicação e Equipamento de Alimentação
7.1	Princípios e Modelos
7.2	Interface do Serviço de Comunicação Abstrata (ACSI)
7.3	Classes de Dados Comuns (CDC)
7.4	Classes de Dados e Nós Lógicos Compatíveis
8	Mapeamento do Serviço de Comunicação Específico (SCSM)
8.1	Mapeamentos para MMS (ISO/IEC 9506 – Partes 1 e 2) e ISO/IEC 8802-3
9	Mapeamento do Serviço de Comunicação Específico (SCSM)
9.1	Valores Amostrais em um Link Ponto-a-Ponto Multidrop Serial Unidirecional
9.2	Mapeamento para processos de barramento baseados no IEE 802.3
10	Testando Conformidade

Tabela 2-1: Principais Seções da Norma IEC 61850.

As partes 3, 4 e 5 na Tabela acima começam identificando os requisitos funcionais gerais e específicos para comunicações em uma subestação (requisitos listados acima). Estes requisitos são usados na identificação de serviços e modelos de dados necessários, no protocolo de aplicação requisitado e as camadas de transporte, rede, links de dados e físicos que irão cumprir os requisitos gerais.

Um dos pilares da arquitetura da 61850 é a abstração da definição dos itens de dados e serviços, criando objetos/itens de dados e serviços que são independentes de qualquer protocolo usado. Estas definições abstratas permitem então o mapeamento dos objetos de dados e serviços para qualquer outro protocolo que satisfaça os requisitos de dados e serviços. A definição dos serviços abstratos encontra-se na parte 7.2 da norma e a abstração dos objetos de dados é encontrada na parte 7.4. Uma vez que muitos objetos de dados são feitos de pedaços comuns, o conceito de "Classes de Dados Comuns" (CDC) foi definido na parte 7.3. A seção 8.1 define o mapeamento dos objetos de dados e serviços abstratos para a Especificação de Manufatura de Mensagens – MMS e as seções 9.1 e 9.2 definem o mapeamento dos valores amostrais medidos em um frame de dados Ethernet. Finalmente, a parte 10 define uma métodologia de testes para determinar a conformidade com as inúmeras definições de protocolos e restrições definidas na norma.

3.1 Abordagem do Modelo

Além de especificar elementos de protocolos (como bytes são transmitidos na rede), a IEC61850 provê um modelo compreensivo de como dispositivos do sistema de potência devem organizar dados de maneira consistente para todos os tipos e marcas de dispositivos. Isso elimina muito do esforço de configuração não relacionado ao sistema de potência, uma vez que os dispositivos podem se configurar. Alguns dispositivos usam um arquivo SCL para configurar os objetos e o engenheiro precisa apenas importar este arquivo para configurar este dispositivo. Assim a aplicação cliente pode extrair as definições de objeto do dispositivo através da rede. O resultado é uma grande economia no custo e no esforço de configuração dos dispositivos IEC 61850.

O modelo de dispositivo começa com um dispositivo físico. Um dispositivo físico é o dispositivo que conecta-se à rede. Usualmente, ele é definido pelo seu endereço na rede. Dentro de cada dispositivo físico, podem haver um ou mais dispositivos lógicos. O modelo de dispositivos lógicos IEC61850 permite que um único dispositivo físico aja como um proxy ou gateway para vários dispositivos, provendo assim uma representação padronizada de um concentrador de dados.

Cada dispositivo lógico contém um ou mais nós lógicos (LN). Um LN é um agrupamento de dados e serviços associados, sob um nome único, e que estão associados a alguma função do sistema de potência. Estes LNs são agrupados segundo sua funcionalidade. Assim, existe um grupo de nós lógicos para o controle automático de nomes, cujos nomes começam todos com a letra "A". Existe também outro grupo de nós relacionados à medida e metragem, com nomes começando com a letra M. Uma descrição detalhada de todos os grupos de nós é dada na próxima subseção.

Cada LN contém um ou mais elementos de dados. Cada elemento de dado tem um nome único. Os nomes de dados são definidos pela norma e estão relacionados ao propósito funcional destes no sistema de potência. Por exemplo, um disjuntor é modelado por um nó lógico XCBR. Ele contém uma variedade de atributos, incluindo Loc para determinar se a operação é remota ou local, OpCnt para contagem de operações, Pos para posição, BlkOpn para comando de abertura de bloco disjuntor, BlkCls para comando de fechamento de bloco disjuntor e CBOpCap para capacidade de operação do disjuntor.

3.2 Classes de Dados

Existem 355 classes de dados diferentes que são usadas para construir os nós lógicos. As classes de dados são divididas entre 7 categorias principais, como mostrado na Tabela a seguir.

Classes de dados	Quantidade
	_
Informação de Sistema	13
Informação de Dispositivo Físico	11
Medidas	66
Valores de Metragem	14
Dados Controláveis	36
Informação de Status	85
Configurações	130
TOTAL	355

Tabela 3-1: Categorias Principais das Classes de Dados e Quatidade de Classes Relacionadas.

Cada categoria de dado está relacionada aos processos nos quais estes dados estão envolvidos. As classes de dados são tipos de dados utilizados como tipos de atributos na definição dos nós lógicos. Os principais atributos de nós lógicos podem ser distribuídos nas categorias:

- Informação comum de nós lógicos: é informação independente da função dedicada representada pela classe do LN. Dados obrigatórios (M) são comuns a todas as classes de LN; dados opcionais são válidos para um subconjunto razoável de classes de nós lógicos.
- Informação de status: é um dado que mostra ou o status do processo ou a função alocada à classe de nó lógico. Essa informação é produzida localmente e não pode ser alterada remotamente, exceto quando a substituição é aplicável. Dados como "start" ou "trip" são listados nesta categoria. A maioria destes dados é obrigatório.
- Configurações: são dados que precisam da função para operar. Uma vez que muitas configurações são dependentes da implementação da função, apenas um mínimo acordado é normatizado. Eles podem ser alterados remotamente, mas normalmente não constantemente.
- Dados controláveis: são dados que podem ser mudados por comandos, como o
 estado de chave (ON/OFF), contadores reinicializáveis, etc. Eles tipicamente são
 alterados remotamente e com muito mais freqüência do que dados de configurações.
- *Medidas*: são dados analógicos medidos a partir do processo ou calculados nas funções, como correntes, voltagens, etc. Esta informação é produzida localmente e não pode ser alterada remotamente, exceto quando substituição for aplicável.
- *Metragem*: são dados analógicos representando quantidades medidas no tempo como, por exemplo, potência. Esta informação é produzida localmente e, portanto, não pode ser alterada remotamente, exceto quando substituição for aplicável.

Essas classes de dados são detalhadas no documento IEC 61850-7-3.

3.3 Grupos de Nós Lógicos

A norma IEC 61850 define um total de 13 agrupamentos de nós lógicos diferentes. A intenção é que todo dado que possa ser gerado na subestação seja atribuído a um desses grupos. A tabela a seguir apresenta os 13 grupos de nós lógicos existentes.

Grupos de Nós Lógicos	Designador do Grupo	Quantidade de Nós
	1	
Nós Lógicos de Sistema	L	2
Funções de Proteção	P	27
Funções Relacionadas à Proteção	R	10
Controle Supervisor	С	4
Referências Genéricas	G	3
Interface e Arquivamento	I	4
Controle Automático	A	4
Metragem e Medida	M	7
Equipamento de chaveamento (Switchgear)	X	2
Transformador de Instrumento	T	2
Transformador de potência	Y	4
Equipamentos adicionais do sistema de potência	Z	14
Sensores	S	3
TOTAL		86

Tabela 3-2: Grupos de Nós Lógicos e Quantidade de Nós Relacionados.

Os nomes dos nós lógicos devem começar com a letra que representa o grupo ao qual estes nós pertencem.

3.4 Tabelas de Nós Lógicos

Cada nó lógico é definido por meio de uma tabela padrão. A tabela a seguir resume as informações típicas nas colunas de uma tabela de nó lógico.

Título da coluna	Descrição
Tipo Attr.	Classe de dados comum que define a estrutura do dado. Veja IEC 61850-7-3.
Explicação	Explicação breve sobre o dado e como ele deve ser usado.
Т	Dado Transiente – o status do dado com esta designação é momentâneo e precisa ser salvo ou reportado para prover uma evidência do seu estado momentâneo. Alguns T podem ser válidos apenas em um nível de modelagem. A propriedade TRANSIENTE do dado aplica-se apenas a atributos de processo do tipo BOOLEAN deste dado. Dados transientes são idênticos a dados normais, exceto que o estado do processo pode mudar de TRUE (verdadeiro) para FALSE (falso) sem que nenhum evento seja gerado ou reportado.
M/O	Esta coluna define quais dados, conjuntos de dados, blocos de controle ou serviços são obrigatórios (M) ou opcionais (O) para a instanciação de um nó lógico específico.

Nota: os atributos para dados que são instanciados também podem ser obrigatórios ou opcionais baseados na definição do CDC (tipo de atributo) da IEC 61850-7-3.

Aonde a letra C é usada como "condicional", pelo menos um dos itens de dado nomeados com C deve ser usado de cada categoria onde C ocorre.

Tabela 3-3: Interpretação das Informações nas Tabelas de Nós Lógicos.

Cada um dos 86 nós lógicos são definidos com o uso destas tabelas. Nas próximas subseções serão definidos todos os nós lógicos, separados por seus grupos.

3.5 Nós Lógicos de Sistema

Nesta subclasse é definida a informação específica do sistema. Isso inclui a informação comum a nós lógicos (por exemplo, modo de controle do nó, informação sobre nome, contadores de operação) como também informação relacionada ao dispositivo físico (LPHD) implementando os dispositivos lógicos e nós lógicos. Esses nós lógicos (LPHD e LN comum) são independentes do domínio da aplicação. Todos os demais nós lógicos dependem do domínio, mas herdam dados obrigatórios e opcionais destes nós lógicos de sistema.

Figura 3-1: Relações entre LNs.

A Figura anterior mostra a hierarquia das classes de nós lógicos. Todas as classes de LN da norma herdam suas estruturas da classe abstrata de nó lógico (classe LN) definida na IEC 61850-7-2. Exceto pela classe "*Physical Device Information*" (LPHD), todos os nós lógicos (LLN0 e LNs específicos dos domínios) definidos na norma herdam pelo menos os dados definidos na classe de nó lógico comum (LN comum).

3.5.1 LN: Informação de Dispositivo Físico - LPHD

Este LN é introduzido para modelar características comuns de dispositivos físicos.

LPHD				
Nome do Atributo	Tipo Attr.	Explicação		M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
PhyNam	DPL	Nome (nameplate) do dispositivo físico		M
PhyHealth	INS	"Saúde" do dispositivo		M
OutOv	SPS	Indica um <i>overflow</i> do <i>buffer</i> de saída de dados		О
Proxy	SPS	Indica se este LN é um proxy		M
InOv	SPS	Indica um <i>overflow</i> do <i>buffer</i> de entrada de dados		О
NumPwrUp	INS	Número de vezes que o dispositivo foi ligado		О
WrmStr	INS	Número de partidas quentes		О
WacTrg	INS	Número de reinicializações de dispositivo "cão de guarda" (watchdog)		О
PwrUp	SPS	Ligamento do dispositivo detectado		О
PwrDn	SPS	Desligamento de dispositivo detectado		О
PwrSupAlm	SPS	Alarme de fonte de potência externa		О
RsStat	SPC	Estatísticas de reinicialização do dispositivo	T	О

Tabela 3-4: LN: Informação de Dispositivo Físico: LPHD.

3.5.2 Nó Lógico Comum - LN comum

As classes de nós lógicos compatíveis definidas na norma são especializações dessa classe de Nó Lógico Comum.

Common LN					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			

Dados					
Informação Obriga	Informação Obrigatório de Nós Lógicos (Herdada por todos LN exceto LPHD)				
Mod	INC	Modo M			
Beh	INS	Comportamento	M		
Health	INS	"Saúde"	M		
NamPlt	LPL	Nome do dispositivo (name plate)	M		
Informação Opcion	nal de Nós L	∠ógicos			
Loc	SPS	Operação local	О		
EEHealth	INS	"Saúde" de equipamento externo	О		
EEName	DPL	Nome (name plate) do Equipamento Externo	О		
OpCntRs	INC	Contador de operações reinicializável	О		
OcCnt	INS	Contador de operações	О		
OpTmh	INS	Tempo de operação	О		
Conjuntos de dado	s (veja IEC	61850-7-2)			
Herdado e especializ	zado da class	se de nó lógico (LN)			
Blocos de Controle (veja IEC 61850-7-2)					
Herdado e especializado da classe de nó lógico (LN)					
Serviços (veja IEC 61850-7-2)					
Herdado e especializado da classe de nó lógico (LN)					

Tabela 3-5: LN: Comum.

3.5.3 LN: Nó Lógico Zero - LLN0

Este LN deve ser usado para endereçar características comuns para dispositivos lógicos.

LLN0					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Informações de Nó Lógico Comum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		М	

Loc	SPS	Operação local para dispositivo lógico completo		O
OpTmh	INS	Tempo de operação		О
Controles				
Diag	SPC	Executa diagnósticos		O
LEDRs	SPS	Reinicia LED	T	О

Tabela 3-6: LN: Nó Lógico Zero - LLNO.

Nós Lógicos Para Funções de Proteção 3.6

Nesta seção é mostrada a modelagem dos Nós Lógicos de proteção do sistema. A tabela abaixo mostra a relação entre os nós lógicos de proteção definidos na norma IEC 61850-7-4 com as funções de proteção na IEEE C37.2.

Funcionalidade	Referência IEEE C37.2	Modelado no IEC 61850-7-4	Comentários
Velocidade zero e subvelocidade	14	PZSU	
Distância	21	PDIS PSCH	Use uma instância por zona. Para construir esquemas de proteção de linha.
Volt por Hz	24	PVPH	
(tempo) Subtensão	27	PTUV	
Potência direcional/ potência reversa	32	PDOP ou PDUP	Sobrepotência direcional Subpotência direcional Potência reversa modelada por PDOP mais modo direcional reverso
Subcorrente / Subpotência	37	PTUC PDUP	Subcorrente Subpotência
Perda de campo / subexcitação	40	PDUP	Subpotência direcional
Fase reversa ou corrente de balaço de fase	46	PTOC	Tempo sobrecorrente (PTOC) com informação trifásica com corrente seqüência como uma entrada ou taxa par de correntes de seqüência positiva e negativa.
Tensão de seqüência de fase	47	PTOV	Informação e processamento trifásicos

Sobrecarregamento termal	49	PTTR	
Sobrecarregamento termal do rotor	49R	PTTR	Sobrecarregamento termal
Sobrecarregamento termal do estator	49S	PTTR	Sobrecarregamento termal
Sobrecorrente ou taxa de elevação instantânea	50	PIOC	
Tempo sobrecorrente AC (Alternate Current)	51	PTOC	
Tempo sobrecorrente dependente / controlado por tensão	51V	PVOC	
Fator de potência	55	POPF PUPF	Fator de sobrepotência Fator de subpotência
(Tempo) sobrevoltagem	59	PTOV	
Supertensão DC	59DC	PTOV	Ambos para DC e AC
Balanço de corrente ou tensão	60	PTOV PTOC	Sobretensão ou sobrecorrente com relação à magnitude da diferença
Detecção falhas de aterramento (vazamento de corrente)	64	PHIZ	
Falta para a terra de rotor	64R	PTOC	Tempo sobrecorrente
Falta para a terra de estator	64S	PTOC	Tempo sobrecorrente
Falta entre espiras	64W	PTOC	Tempo sobrecorrente
Sobrecorrente direcional AC	67	PTOC	Tempo sobrecorrente
Falta para a terra direcional	67N	PTOC	Tempo sobrecorrente
Tempo sobrecorrente DC	76	PTOC	Tempo sobrecorrente para AC e DC
Ângulo de fase ou	78	PPAM	

fora de fase			
Freqüência	81	PTOF PTUF PFRC	Sobrecorrente Subcorrente Taxa de oscilação de frequência
Proteção de fio piloto ou transportador	85	PSCH	PSCH é usado para esquemas de proteção de linha ao invés de RCPW
Diferencial	87	PDIF	
Comparação de fase	87P	PDIF	
Linha diferencial	87L	PDIF	
Falta para a terra restrita	87N	PDIF	
Transformador diferencial	87T	PDIF PHAR	Transformador diferencial Retenção harmônica
Barramento	87B	PDIF ou PDIR	Barramento diferencial ou Comparação de direção de falta
Diferencial Motor	87M	PDIF	
Diferencial Gerador	87G	PDIF	
Ligamento de Motor	49R, 66 48, 51LR	PMRI PMSS	Inibição de reinicialização do motor Supervisão de tempo de ligamento de motor

Tabela 3-7: Relação entre LNs para proteção e IEEE C37.2.

LN: Diferencial - PDIF 3.6.1

Veja IEC-61850-5 (LNs PLDF, PNDF, PTDF, PBDF, PMDF e PPDF). Este LN deve ser usado para todo tipo de proteção de corrente diferencial. Amostras apropriadas de correntes devem ser providas.

PDIF						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó Lógico Comum						
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		

OpCntRs	INC	Contador de operações reinicializável		O		
Informação sobre STATUS						
Str	ACD	Inicia		O		
Op	ACT	Opera	T	M		
TmASt	CSD	Curva característica ativa		O		
Valores medidos						
DifAClc	WYE	Corrente diferencial		O		
RstA	WYE	Corrente de restrição		O		
Configurações						
LinCapac	ASG	Capacitância da linha (para correntes de carga)		О		
LoSet	ING	Valor de operação baixo, porcentagem da corrente nominal		О		
HiSet	ING	Valor de operação alto (high operate value), porcentagem da corrente nominal		О		
MinOpTms	ING	Tempo mínimo de operação		O		
MaxOpTms	ING	Tempo máximo de operação		O		
RstMod	ING	Modo restringido		O		
RsDlTmms	ING	Tempo de atraso de reinicialização		O		
TmACrv	CURVE	Tipo de curva em operação		O		

Tabela 3-8: LN: Diferencial – PDIF.

3.6.2 LN: Comparação de Direção - PDIF

Para uma descrição detalhada deste LN veja IEC 61850-5. A decisão de operação é baseada em uma acordância entre os sinais de direção da falta de todos os sensores de falta direcional ao redor da falta. A comparação direcional para linhas é feita pelo PSCH.

PDIR									
Nome do Atributo	Tipo Attr.		Explicação					T	M/O
LNName			Deve ser herdado da classe LN (veja IEC-51850-7-2)						
Dados									
Informações de Nó Lógico Comum									
		LN	deve	herdar	todos	os	dados		M

		obrigatórios da classe de Nó Lógico Comum				
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre STATUS						
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
Configurações						
RsDlTmms	ING	Tempo de atraso de reinicialização		О		

Tabela 3-9: LN: Comparação de Direção – PDIR.

3.6.3 LN: Distância - PDIS

Para uma descrição detalhada deste LN veja IEC 61850-5. O valor inicial para a fase e o valor inicial de terra (ground start value) são o mínimo necessário para liberar as medidas de impedância dependendo da característica da função distância dada pelo algoritmo e definida pelas configurações. As configurações substituem a curva de dados como usado para característica em alguns outros LNs de proteção.

PDIS						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	STATUS					
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
Valores medidos						
DifAClc	WYE	Corrente diferencial		О		
RstA	WYE	Corrente de restrição		О		
Configurações						
PoRch	ASG	Polar Reach é o diâmetro do diagrama		О		

		Mho	
PhStr	ASG	Valor inical de fase	О
GndStr	ASG	Valor inicial de terra (ground start value)	О
DirMod	ING	Modo direcional	О
PctRch	ASG	Porcentagem atingida	О
Ofs	ASG	Offset	О
PctOfs	ASG	Porcentagem Offset	О
RisLod	ASG	Resistive reach para área de carga	О
AngLod	ASG	Ângulo para área de carga	О
TmdDlMod	SPG	Modo de atraso do tempo de operação	О
OpDlTmms	ING	Tempo de atraso de operação	О
PhDlMod	SPG	Modo de atraso do tempo de operação multifase	О
PhDlTmms	ING	Tempo de atraso de operação para faltas multifase	О
GndDlMod	SPG	Modo de atraso do tempo de operação para modo fase única aterrada	О
GndDlTmms	ING	Tempo de atraso de operação para faltas de fase única aterrada	О
X1	ASG	Retângulo de linha sequencial positiva	О
LinAng	ASG	Ângulo da linha	О
RisGndRch	ASG	Aterramento resistivo atingido (Resistive Ground Reach)	О
RisPhRch	ASG	Fase resistiva atingida	О
K0Fact	ASG	Fator de compensação residual K0	О
K0FactAng	ASG	Ângulo do fator de compensação residual	О
RsDlTmms	ING	Tempo de atraso de reinicialização	О

Tabela 3-10: LN: Distância – PDIS.

3.6.4 LN: Alta Tensão (Sobrepotência) Direcional - PDOP

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PDPR). Este nó deve ser usado para a parte de sobrepotência do PDPR. Adicionalmente, PDOP é usado para modelar uma função de sobrepotência reversa (função de dispositivo número 32R da IEEE 32R.2, 1996) quando o DirMod é determinado como reverso.

	PDOP					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	STATUS					
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
Configurações						
DirMod	ING	Modo direcional		О		
StrVal	ASG	Valor inicial		О		
OpDlTmms	ING	Tempo de atraso de operação		О		
RsDlTmms	ING	Tempo de atraso de reinicialização		О		

Tabela 3-11: LN: Alta Tensão (Sobrepotência) Direcional – PDOP.

LN: Baixa-tensão (subpotência) Direcional – PDUP 3.6.5

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PDPR). Este LN deve ser usado para a parte de subpotência de PDPR.

PDUP				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О

Informação sobi	Informação sobre STATUS			
Str	ACD	Inicia		M
Op	ACT	Opera	Т	M
Configurações	·			
StrVal	ASG	Valor inicial		O
OpDlTmms	ING	Tempo de atraso de operação		О
RsDlTmms	ING	Tempo de atraso de reinicialização		О
DirMod	ING	Modo direcional		О

Tabela 3-12: LN: Baixa-tensão (subpotência) Direcional – PDUP.

3.6.6 LN: Taxa de Oscilação da Freqüência - PFRC

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PFRQ). Este LN deve ser usado para modelar a taxa de oscilação da freqüência do PFRQ. Deve ser usada uma instância por estágio.

	PFRC					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados	l.					
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	STATUS					
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
BlkV	SPS	Bloqueado por causa da tensão		О		
Configurações						
StrVal	ASG	Valor inicial		О		
BlkVal	ASG	Valor de bloqueio da tensão		О		
OpDlTmms	ING	Tempo de atraso de operação		О		

RsDlTmms ING Tempo de atraso de reinicialização		O
---	--	---

Tabela 3-13: LN: Taxa de Oscilação da Freqüência - PFRC.

3.6.7 LN: Restrição Harmônica – PHAR

Este LN deve ser usado para representar os dados de restrição harmônica da proteção diferencial do transformador (veja PDIF) em um nó dedicado. Podem haver múltiplas instanciações deste LN com configurações diferentes, especialmente com dado HaRst diferentes.

	PHAR					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Cor	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	STATUS					
Str	ACD	Inicia (ativado quando uma restrição é necessária)		M		
Configurações	1					
HaRst	ING	Número de harmônicos restringidos		О		
PhStr	ASG	Valor de disparo		О		
PhStop	ASG	Valor de parada		О		
OpDlTmms	ING	Tempo de atraso de operação		О		
RsDlTmms	ING	Tempo de atraso de reinicialização		О		

Tabela 3-14: LN: Restrição Harmônica – PHAR.

3.6.8 LN: Detector de Terra- PHIZ

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para faltas de isolação de alta impedância apenas.

		PHIZ		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó Lóg	ico Comum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre STA	TUS			
Str	ACD	Inicia		M
Op	ACT	Opera	T	M
Configurações	·			
AStr	ASG	Valor de corrente inicial		О
VStr	ASG	Valor de tensão inicial		О
HVStr	ASG	Valor inicial de tensão do terceiro harmônico		О
OpDlTmms	ING	Tempo de atraso de operação		О
RsDlTmms	ING	Tempo de atraso de reinicialização		О

Tabela 3-15: LN: Detector de Terra- PHIZ.

3.6.9 LN: Sobrecorrente Instantânea - PIOC

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado apenas para proteção de sobrecorrentes instantâneas.

		PIOC		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó Lóg	ico Comum			
		LN deve herdar todos os dados		M

		obrigatórios da classe de Nó Lógico Comum		
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre STAT	US			
Str	ACD	Inicia		О
Op	ACT	Opera	T	M
Configurações	1			
StrVal	ASG	Valor de início		O

Tabela 3-16: LN: Sobrecorrente Instantânea – PIOC.

LN: Inibição de Ligamento de Motor - PMRI 3.6.10

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PMSU). Este LN deve ser usado para modelar a parte que protege um motor contra um sobrecarregamento térmico durante o ligamento em um LN dedicado.

		PMRI		PMRI				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O				
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)						
Dados								
Informações de Nó Lógi	co Comum							
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M				
OpCntRs	INC	Contador de operações reinicializável		О				
Informação sobre STAT	TUS		•					
Op	ACT	Opera	T	О				
StrInh	SPS	Ligamento proibido		О				
StrInhTmm	INS	Tempo de proibição de ligamento		О				
Configurações			•					
SetA	ASG	Configuração de corrente para ligamento de motor		О				
SetTms	ING	Configuração de tempo para		О				

		ligamento de motor		
MaxNumStr	ING	Número máximo de ligamentos	О	,
MaxWrmStr	ING	Máximo de ligamentos quentes, número permitível de ligamentos quentes	О	1
MaxStrTmm	ING	Período de tempo para o número máximo de ligamentos	О	ı
EqTmm	ING	Tempo de equalização de temperatura	О	1
InhTmm	ING	Reinicia o tempo de proibição	О	,

Tabela 3-17: LN: Inibição de Ligamento de Motor – PMRI.

3.6.11 LN: Supervisão do Tempo de Partida de Motor - PMSS

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PMSU). Este LN deve ser usado para modelar a parte do LN PMSU que protege um motor contra um tempo de inicialização excessivo / rotor trancado, durante um ligamento em um LN dedicado.

		PMSS		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó Lógio	co Comum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre STAT	US			
Str	ACD	Inicia		О
Op	ACT	Opera	T	О
Configurações				
SetA	ASG	Configuração corrente para ligamento do motor		О
SetTms	ING	Configuração de tempo para inicialização do motor		О

MotStr	ASG	Corrente de inicialização do motor (valor de corrente recuperado do ligamento do motor)	О	
LokRotTms	ING	Tempo de trancamento do Rotor permitido (Lock Rotor Time)	0	

Tabela 3-18: LN: Supervisão do Tempo de Partida de Motor – PMSS

3.6.12 LN: Fator de Sobrepotência - POPF

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PPFR). Este LN deve ser usado para a parte do fator de sobrepotência do PPFR.

POPF				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre S	STATUS			
Str	ACD	Inicia		M
Op	ACT	Opera	T	M
BlkA	SPS	Bloqueado por estar abaixo da menor corrente de operação		О
BlkV	SPS	Bloqueado por estar abaixo da menor tensão de operação		О
Configurações	1			
StrVal	ASG	Valor inicial		О
OpDlTmms	ING	Atraso de tempo de operação		О
RsDlTmms	ING	Atraso de tempo de reinicialização		О
BlkValA	ASG	Corrente de operação mínima (<i>Block Value</i> A)		О
BlkValV	ASG	Tensão de operação mínima (block Value V)		О

Tabela 3-19: LN: Fator de Sobrepotência – POPF.

3.6.13 LN: Medição do Ângulo de Fase - PPAM

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para modelar uma proteção "descompassada" de geradores.

PPAM					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Informação sobre S	STATUS				
Str	ACD	Inicia		M	
Op	ACT	Opera	T	M	
Configurações					
StrVal	ASG	Valor de início		О	

Tabela 3-20: LN: Medição do Ângulo de Fase - PPAM.

3.6.14 LN: Esquema de Proteção - PSCH

Este LN deve ser usado para modelar o esquema lógico para coordenação das funções de proteção de linha. O esquema de proteção permite a troca das saídas "operate" de funções de proteção diferentes e condições para esquemas de proteção de linhas. Inclui dados para teleproteção se aplicável. Neste caso, todos os dados associados devem ser fornecidos.

PSCH					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					

Informações de	Nó Lógico (Comum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sob	ore STATUS			
ProTx	SPS	Sinal de teleproteção transmitido	T	M
ProRx	SPS	Sinal de teleproteção recebido	T	M
Str	ACD	Transportador enviado		M
Op	ACT	Opera	T	M
CarRx	ACT	Transportador recebido após lógica não bloqueante		О
LosOfGrd	SPS	Perda de guarda		О
Echo	ACT	Sinal ecoado a partir de função para fim de fonte fraca (weak end infeed function)		О
WeiOp	ACT	Sinal de operação de função para fim de fonte fraca (weak end infeed function)		О
RvABlk	ACT	Sinal de bloqueio da função reversa corrente		О
GrdRx	SPS	Guarda recebida		О
Configurações	,	,		
SchTyp	ING	Tipo de esquema		О
OpDlTmms	ING	Tempo de atraso de operação		О
CrdTmms	ING	Cronômetro coordenado para esquema de bloqueamento		О
DurTmms	ING	Duração mínima do sinal de envio de tranportador		О
UnBlkMod	ING	Modo de função não bloqueante para tipo esquema		О
SecTmms	ING	Pega o cronômetro de segurança na perda do sinal de guarda transportador		О
WeiMod	ING	Modo da função para fim de fonte fraca (weak end infeed function)		О
WeiTmms	ING	Tempo de coordenação para função de fim de fonte fraca (weak end infeed function)		О
PPVVal	ASG	Nível de tensão fase-fase (voltage level) para função de fonte fraca		О
PhGndVal	ASG	Nível de tensão fase-terra (voltage level) para função de fonte fraca		О

RvAMod	ING	Modo da função reversa corrente	О
RvATmms	ING	Pega o tempo para a lógica reversa corrente	О
RvRsTmms	ING	Tempo de atraso para reiniciar a saída reversa corrente	О

Tabela 3-21: LN: Esquema de Proteção - PSCH.

3.6.15 LN: Falta para a Terra Direcional Sensitiva – PSDE

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN é usado para o tratamento de falta para a terra direcional em redes compensadas e isoladas. O uso de "operate" é opcional e depende da filosofia de proteção e das capacidades de transformação do instrumento. Para redes compensadas, esta função é normalmente chamada falta direcional para a terra "wattmetric". A grande precisão necessária para medição de uma falha de corrente em uma rede compensada pode exigir a compensação do ângulo de fase. Isto deve ser feito pelo LN TCTR relacionado.

PSDE					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Cor	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Informação sobre S	STATUS				
Str	ACD	Inicia		M	
Op	ACT	Opera	T	О	
Configurações			•		
Ang	ASG	Ângulo entre tensão (U0) e corrente (I0)		О	
GndStr	ASG	Valor inicial aterramento (3 U0)		О	
GndOp	ASG	Valor de operação aterramento (3 I0)		О	
StrDlTmms	ING	Tempo de atraso na inicialização		О	
OpDlTmms	ING	Tempo de atraso de operação		О	
DirMod	ING	Modo direcional		О	

Tabela 3-22: LN: Falta para a Terra Direcional Sensitiva – PSDE.

3.6.16 LN:Falta à Terra Transiente – PTEF

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para detectar ("iniciar") uma falta para a terra transiente em redes compensadas.

PTEF					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Cor	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Informação sobre S	STATUS				
Str	ACD	Inicia		С	
Op	ACT	Opera	T	С	
Configurações					
GndStr	ASG	Valor inicial aterramento		О	
DirMod	ING	Modo direcional		О	

Tabela 3-23: LN:Falta à Terra Transiente – PTEF.

3.6.17 **LN: Tempo Sobrecorrente - PTOC**

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PTOC). Este LN também deve ser usado para modelar o Tempo Direcional sobrecorrente (PDOC/IEEE 67). O "Tempo Sobrecorrente Definido" (também PTOC/IEEE 51) deve ser modelado pelo uso de PTOC e selecionando a curva relacionada.

PTOC					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó Lógico Comum					
		LN deve herdar todos os dados obrigatórios		M	

		da classe de Nó Lógico Comum		
OpCntRs	INC	Contador de operações reinicializável		O
Informação sobr	e STATUS			
Str	ACD	Inicia		M
Op	ACT	Opera	T	M
TmASt	CSD	Curva Característica ativa		O
Configurações	1			
TmACrv	CURVE	Tipo de curva em operação (operating curve type)		О
StrVal	ASG	Valor inicial		O
TmMult	ASG	Multiplicador de mostrador de tempo		O
MinOpTms	ING	Tempo mínimo de operação		O
MaxOpTms	ING	Tempo máximo de operação		O
OpDlTmms	ING	Tempo de atraso de operação		О
TypRsCrv	ING	Tipo de curva de reinicialização		O
RsDlTmms	ING	Tempo de atraso de reinicialização		O
DriMod	ING	Modo direcional		O

Tabela 3-24: LN: Tempo Sobrecorrente - PTOC.

3.6.18 LN: Sobrecarregamento de Freqüência (Sobrefreqüência) - PTOF

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PFRQ). Este LN deve ser usado para modelar a parte de sobrecorrente do PFRQ. Uma instância deve ser usada por estágio.

PTOF				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О

Informação sobre STATUS						
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
BlkV	SPS	Bloqueado por causa da tensão		O		
Configurações						
StrVal	ASG	Valor inicial		O		
BlkVal	ASG	Valor de bloqueio de tensão		O		
OpDlTmms	ING	Tempo de atraso de operação		O		
RsDlTmms	ING	Tempo de atraso de reinicialização		O		

Tabela 3-25: LN: Sobrecarregamento de Freqüência (Sobrefreqüência) - PTOF.

LN: Sobrecarregamento de Tensão - PTOV 3.6.19

Para uma descrição detalhada deste LN veja IEC 61850-5. Para algumas aplicações como ponto de inicialização de transformador ou supervisão delta, "operate" pode não ser usado.

PTOV						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	STATUS					
Str	ACD	Inicia		M		
Op	ACT	Opera	T	О		
TmVSt	CSD	Curva Característica ativa		О		
Configurações						
TmVCrv	CURVE	Tipo de curva em operação		О		
StrVal	ASG	Valor inicial		О		
TmMult	ASG	Multiplicador de mostrador de tempo		О		

MinOpTms	ING	Tempo mínimo de operação	O
MaxOpTms	ING	Tempo máximo de operação	O
OpDlTmms	ING	Tempo de atraso de operação	О
RsDlTmms	ING	Tempo de atraso de reinicialização	O

Tabela 3-26: LN: Sobrecarregamento de Tensão - PTOV.

3.6.20 LN: Condicionando Proteção Trip - PTRC

Este LN deve ser usado para conectar as saídas de "*operate*" de uma ou mais funções de proteção para um "*trip*" comum a ser transmitido para XCBR.

PTRC						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Cor	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre	STATUS					
Tr	ACT	Disparado (trip)		C		
Op	ACT	Opera (combinação de Op encaminhado de funções de proteção)		С		
Str	ACD	Soma de todas as inicializações de todos os nós lógicos conectados		О		
Configurações	1			I		
TrMod	ING	Modo disparado (trip)		О		
TrPlsTmms	ING	Tempo de pulso disparado (trip)		О		

Tabela 3-27: LN: Condicionando Proteção Trip - PTRC.

3.6.21 **LN: Sobrecarregamento Termal - PTTR**

Para uma descrição detalhada deste LN veja IEC 61850-5 (LNs PROL, PSOL). Este LN deve ser usado para todas as funções de sobrecarga termal. Dependendo do algoritmo, o LN descreve ou a temperatura ou a corrente (modelo termal). Dados de temperatura também são fornecidos por outros LNs. Alguns exemplos são a temperatura do ponto quente (hot spot) no LN YPTR ou a temperatura de isolamento do gás no LN SIMG.

PTTR					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Cor	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Valores Medidos					
Amp	MV	Corrente para modelo de carga termal		О	
Tmp	MV	Temperatura para carga termal		О	
TmpRl	MV	Relação entre temperatura e temperatura máxima		О	
LodRsvAlm	MV	Reserva de carga para alarme		О	
LodRsvTr	MV	Reserva de carga para o disparo (trip)		О	
AgeRat	MV	Taxa de envelhecimento (ageing)		О	
Informação sobre	STATUS				
Str	ACD	Inicia		О	
Op	ACT	Opera	T	M	
AlmThm	ACT	Alarme termal		О	
TmTmpSt	CSD	Curva Característica ativa		О	
TmASt	CSD	Curva Característica ativa		О	
Configurações					
TmTmpCrv	CURVE	Curva característica para medição de temperatura		О	
TmACrv	CURVE	Curva característica para medição de corrente/Modelo termal		О	
TmpMax	ASG	Temperatura máxima permitida		О	

StrVal	ASG	Valor inicial	O
OpDlTmms	ING	Tempo de atraso de operação	О
MinOpTms	ING	Tempo mínimo de operação	О
MaxOpTms	ING	Tempo máximo de operação	О
RsDlTmms	ING	Tempo de atraso de reinicialização	О
ConsTms	ING	Constante temporal do modelo temporal	O
AlmVal	ASG	Valor alarme	О

Tabela 3-28: LN: Sobrecarregamento Termal - PTTR.

3.6.22 LN: Subcorrente - PTUC

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PUPC). Este LN deve ser usado para a parte subcorrente do PUPC. A parte subcorrente do LN PUPC já é coberta pelo PDUP. Instâncias diferentes devem ser usadas para fase e terra.

	PTUC					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Cor	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
OpCntRs	INC	Contador de operações reinicializável		О		
Informação sobre S	Informação sobre STATUS					
Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
TmASt	CSD	Curva Característica ativa		О		
Configurações						
TmACrv	CURVE	Tipo de curva em operação		О		
StrVal	ASG	Valor inicial		O		
OpDlTmms	ING	Tempo de atraso de operação		О		
TmMult	ASG	Multiplicador do mostrador de tempo		О		
MinOpTms	ING	Tempo mínimo de operação		О		

MaxOpTms	ING	Tempo máximo de operação	O
TypRsCrv	ING	Tipo de curva de reinicialização	О
RsDlTmms	ING	Tempo de atraso de reinicialização	О
DirMod	ING	Modo direcional	О

Tabela 3-29: LN: Subcorrente - PTUC.

3.6.23 LN: Subtensão - PTUV

Para uma descrição detalhada deste LN veja IEC 61850-5. Com uma curva de operação apropriadamente baixa, PTUV funciona também como um relé de tensão zero.

PTUV				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre	STATUS			
Str	ACD	Inicia		M
Op	ACT	Opera	T	M
TmVSt	CSD	Curva Característica ativa		О
Configurações				
TmCCrv	CURVE	Tipo de curva em operação		О
StrVal	ASG	Valor inicial		О
TmMult	ASG	Multiplicador de mostrador de tempo		О
MinOpTms	ING	Tempo mínimo de operação		О
MaxOpTms	ING	Tempo máximo de operação		О
OpDlTmms	ING	Tempo de atraso de operação		О
RsDlTmms	ING	Tempo de atraso de reinicialização		О

Tabela 3-30: LN: Subtensão - PTUV.

3.6.24 LN: Fator Subpotência - PUPF

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PPFR) . Este LN deve ser usado para a parte fator subpotência da PPFR.

	PUPF				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		O	
Informação sobre	STATUS				
Str	ACD	Inicia		M	
Op	ACT	Opera	T	M	
BlkA	SPS	Bloqueado abaixo da menor corrente de operação		О	
BlkV	SPS	Bloqueado abaixo da menor tensão de operação		О	
Configurações	1				
StrVal	ASG	Valor inicial		O	
OpDlTmms	ING	Atraso de tempo de operação		О	
RsDlTmms	ING	Atraso de tempo de reinicialização		O	
BlkValA	ASG	Corrente de operação mínima (Block Value A)		О	
BlkValV	ASG	Tensão de operação mínima (Block Value V)		О	

Tabela 3-31: LN: Fator Subpotência - PUPF.

3.6.25 LN: Subfreqüência - PTUF

Para uma descrição detalhada deste LN veja IEC 61850-5 (LN PFRQ) . Este LN deve ser usado para modelar a parte subfreqüência do PFRQ. Deve ser usada uma instância por estágio.

PTUF					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Informação sobre	STATUS				
Str	ACD	Inicia		M	
Op	ACT	Opera	T	M	
BlkV	SPS	Bloqueado por causa da tensão		О	
Configurações					
StrVal	ASG	Valor inicial		O	
BlkVal	ASG	Valor de bloqueio de tensão		О	
OpDlTmms	ING	Tempo de atraso de operação		О	
RsDlTmms	ING	Tempo de atraso de reinicialização		О	

Tabela 3-32: LN: Subfreqüência - PTUF.

LN: Tempo Sobrecorrente Controlada por Tensão - PVOC 3.6.26

Para uma descrição detalhada deste LN veja IEC 61850-5.

PVOC				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		O
Informação sobre STATUS				

Str	ACD	Inicia		M		
Op	ACT	Opera	T	M		
AVSt	CSD	Curva característica ativa		О		
TmASt	CSD	Curva característica ativa		O		
Configurações	Configurações					
AVCrv	CURVE	Tipo de curva em operação (para curva de corrente controlada por tensão)		О		
TmACrv	CURVE	Tipo de curva em operação (para corrente)		О		
TmMult	ASG	Multiplicador do mostrador de tempo		O		
MinOpTms	ING	Tempo mínimo de operação		О		
MaxOpTms	ING	Tempo máximo de operação		O		
OpDlTmms	ING	Tempo de atraso de operação		О		
TypRsCrv	ING	Tipo de curva de reinicialização		О		
RsDlTmms	ING	Tempo de atraso de reinicialização		О		

Tabela 3-33: LN: Tempo Sobrecorrente Controlada por Tensão - PVOC.

3.6.27 LN: Volts por Hz - PVPH

Para uma descrição detalhada deste LN veja IEC 61850-5. Deve ser usada uma instância de PVPH por estágio de proteção.

PVPH				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre S	STATUS			
Str	ACD	Inicia		M
Op	ACT	Opera	T	M
VhzSt	CSD	Curva característica ativa		О
Configurações				

VHzCrv	CURVE	Tipo de curva em operação	O
StrVal	ASG	Valor inicial para volts por hertz	O
OpDlTmms	ING	Tempo de atraso de operação	О
TypRsCrv	ING	Tipo de curva de reinicialização	O
RsDlTmms	ING	Tempo de atraso de reinicialização	О
TmMult	ASG	Multiplicador do mostrador de tempo	О
MinOpTms	ING	Tempo mínimo de operação	О
MaxOpTms	ING	Tempo máximo de operação	О

Tabela 3-34: LN: Volts por Hz - PVPH.

LN: Velocidade Zero ou Subvelocidade - PZSU 3.6.28

Para uma descrição detalhada deste LN veja IEC 61850-5.

PZSU					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Informação sobre	STATUS				
Str	ACD	Inicia		M	
Op	ACT	Opera	T	M	
Configurações					
StrVal	ASG	Valor inicial para volts por hertz		О	
OpDlTmms	ING	Tempo de atraso de operação		О	
RsDlTmms	ING	Tempo de atraso de reinicialização		О	

Tabela 3-35: LN: Velocidade Zero ou Subvelocidade - PZSU.

3.7 Nós Lógicos Para Funções Relacionadas à Proteção

Nesta seção é mostrada a modelagem dos Nós Lógicos para funções relacionadas à proteção.

Funcionalidade	Referência IEEE C37.2	Modelado no IEC 61850-7-4	Comentários
Proteção de fio piloto ou transportador	85	PSCH	PSCH é usado para esquemas de proteção de linha ao invés de RCPW
Elemento direcional		RDIR	Elemento direcional para modelar proteção direcionada com nós Pxyz
Gravação de distúrbio (aquisição)		RDRE RADR RBDR	Funcionalidade básica Canal analógico Canal binário

Tabela 3-36: Relação entre LNs relacionados à proteção e IEEE C37.2.

3.7.1 LN: Função Gravadora de Distúrbio - RDRE

A Função Gravadora de Distúrbios, descrita como necessária na IEC 61850-5, é decomposta em uma classe LN para canais analógicos (RADR) e outra para canais binários (RBDR). Gravadores de distúrbios são dispositivos lógicos constituídos por uma instância do LN RADR ou LN RBDR por canal. Uma vez que o conteúdo de dispositivos lógicos (LD) não é normatizado, outros LNs podem estar dentro do LD "gravador de distúrbio", se aplicável. Todos os canais ativos são incluídos na gravação, independentemente do modo de acionamento (TrgMod).

RDRE					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Controles	Controles				
RcdTrg	SPC	Acionamento de gravador		О	

MemRs	SPC	Reinicia memória do gravador	T	O		
MemClr	SPC	Limpa memória	T	O		
Informação sob	re STATUS	8				
RcdMade	SPS	Gravação feita		M		
FltNum	INS	Número da falta		M		
GriFltNum	INS	Número da falta na grade		O		
RcdStr	SPS	Gravação iniciada		O		
MemUsed	INS	Memória usada em %		О		
Configurações	Configurações					
TrgMod	ING	Modo de acionamento (acionamento interno, externo, ou ambos)		О		
LevMod	ING	Modo de acionamento no nível (level trigger mode)		О		
PreTmms	ING	Tempo pré-acionamento		О		
PstTmms	ING	Tempo pós-acionamento		О		
MemFull	ING	Nível de enchimento da memória		О		
MaxNumRcd	ING	Número máximo de gravações		О		
ReTrgMod	ING	Modo de redisparo (retrigger)		О		
PerTrgTms	ING	Tempo periódico de acionamento em segundos (s)		О		
ExclTmms	ING	Tempo de exclusão		O		
OpMod	ING	Modo de operação (saturação, sobrescrita)		O		

Tabela 3-37: LN: Função Gravadora de Distúrbio - RDRE.

Nota 1: Os modos de acionamento (TrgMod) RDRE, RADR e RBDR não são independentes. Se o modo de acionamento de RDRE é externo, os modos de RADR e RBDR podem ser internos ou externos, mas em caso contrário todos os modos devem ser internos.

Nota 2: A fonte do acionamento externo é uma característica local. Pode ser um contato ou um sinal de um outro LN.

Nota 3: A fonte do acionamento interno é um evento detectado pela supervisão do canal. Ele pode, para canais analógicos, ser uma violação do limite ou pode, para canais binários, ser uma mudança de STATUS. Os níveis de acionamento (High/low) para canais analógicos para disparo interno devem ser configurados por canal.

3.7.2 LN: Gravador de Distúrbio Canal Analógico - RADR

Adicionalmente ao número do canal, todos atributos requisitados pelo arquivo CONTRADE são fornecidos pelos dados do TVTR ou TCTR ou por atributos do próprio valor medido (amostras submetidas a partir de TVTR ou TCTR). O "componente de circuito" e "identificação da fase" é fornecido pela identificação da instância do LN RADR. Os canais de "1" a "n" são criados por "1" a "n" instâncias.

		RADR		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Valores medidos				
Acessado via CONTRADE apenas		Canal de entrada analógico		M
Informação sobre	STATUS			1
ChTrg	SPS	Canal disparado		M
Configurações				
ChNum	ING	Número do canal		О
TrgMod	ING	Modo de acionamento (acionamento interno, externo, ou ambos)		О
LevMod	ING	Modo de acionamento do nível (level trigger mode)		О
HiTrgLev	ASG	Nível (positivo) de acionamento alto (high trigger level)		О
LoTrgLev	ASG	Nível (negativo) de acionamento baixo (<i>low trigger level</i>)		О
PreTmms	ING	Tempo pré-acionamento		О
PstTmms	ING	Tempo pós-acionamento		О

Tabela 3-38: LN: Gravador de Distúrbio Canal Analógico - RADR.

3.7.3 LN: Gravador de Distúrbio Canal Binário - RBDR

Adicionalmente ao número do canal, todos atributos requisitados pelo arquivo CONTRADE são fornecidos por atributos da entrada binária (enviados por outro LN). O "componente de circuito" e "identificação da fase" é fornecido pela identificação da instância do LN RBDR. Os canais de "1" a "n" são criados por "1" a "n" instâncias.

	RBDR				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
OpCntRs	INC	Contador de operações reinicializável		О	
Valores medidos					
Acessado via CONTRADE apenas		Canal de entrada analógico		M	
ChTrg	SPS	Canal disparado		M	
Configurações	l				
ChNum	ING	Número do canal		О	
TrgMod	ING	Modo de acionamento (acionamento interno, externo, ou ambos)		О	
LevMod	ING	Modo de acionamento em nível (level trigger mode)		О	
PreTmms	ING	Tempo pré-acionamento		О	
PstTmms	ING	Tempo pós-acionamento		О	

Tabela 3-39: LN: Gravador de Distúrbio Canal Binário - RBDR.

3.7.4 LN: Tratamento de Gravação de Distúrbio - RDRS

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve tratar das gravações de distúrbios adquiridas por alguma função local. Este LN está normalmente localizado no nível da subestação.

	RDRS				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Controles					
AutoUpLod	SPC	Envio automático		О	
DltRcd	SPC	Apaga gravação		О	
Configurações					
ChNum	ING	Número do canal		О	
TrgMod	ING	Modo de acionamento (acionamento interno, externo, ou ambos)		О	
LevMod	ING	Modo de acionamento em nível (level trigger mode)		О	
PreTmms	ING	Tempo pré-acionamento		О	
PstTmms	ING	Tempo pós-acionamento		O	

Tabela 3-40: LN: Tratamento de Gravação de Distúrbio - RDRS.

3.7.5 LN: Falha de Disjuntor - RBRF

Para uma descrição detalhada deste LN veja IEC 61850-5.

RBRF				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum				M
OpCntRs	INC	Contador de operações reinicializável		О
Informação sobre	STATUS			

Str	ACD	Iniciado, cronômetro correndo		O
OpEx	ACT	Falha de disparo do disjuntor ("disparo externo")	T	С
OpIn	ACT	Operante, redisparo ("disparo interno")	T	С
Configurações				
FailMod	ING	Modo de detecção de falha de disjuntor (corrente, status do disjuntor, ambos, outro)		О
FailTmms	ING	Tempo de atraso de falha de disjuntor para viagem em barra de banda		О
SplTrTmms	ING	Tempo de atraso de redisparo de pólo único		O
TPTrTmms	ING	Tempo de atraso de redisparo tri-polar		O
DetValA	ASG	Valor de detector de corrente		O
ReTrMod	ING	Modo de redisparo		O

Tabela 3-41: LN: Falha de Disjuntor - RBRF.

Condição C: Ao menos um dos dados deve ser usado dependo do esquema de disparo (tripping) aplicado.

3.7.6 LN: Elemento Direcional - RDIR

Este LN deve ser usado para representar toda informação direcional em um LN dedicado utilizado para configurações direcionais de relé. A função de proteção em si é modelada pelo LN de proteção dedicado. LN RDIR pode ser usado com as funções 21, 32 ou 67 de acordo com a designação do número da função de dispositivo da IEEE.

RDIR				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Informação sobre S	STATUS			
Dir	ACD	Direção		M
Configurações				
ChrAng	ASG	Ângulo característico		О

MinFwdAng	ASG	Ângulo de fase mínimo na direção à frente (forward)	О
MinRvAng	ASG	Ângulo de fase mínimo na direção reversa	O
MaxFwdAng	ASG	Ângulo de fase máximo na direção à frente (forward)	O
MaxRvAng	ASG	Ângulo de fase máximo na direção reversa	О
BlkValA	ASG	Corrente de operação mínima	O
BlkValV	ASG	Tensão de operação mínima	О
PolQty	ING	Quantidade polarizada	О
MinPPV	ASG	Tensão fase-fase mínima	О

Tabela 3-42: LN: Elemento Direcional - RDIR.

3.7.7 LN: Localizador de Falha - RFLO

Para uma descrição detalhada deste LN veja IEC 61850-5. Em caso de falha, a localização da falha é calculada em Ω . Para converter para km, os parâmetros de linha também devem ser conhecidos.

RFLO					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Valores medidos					
FltZ	CMV	Impedância da falha		M	
FltDisKm	MV	Distância da falha em km		M	
Informação sobre	STATUS				
FltLoop	INS	Loop da falha		O	
Configurações					
LinLenKm	ASG	Comprimento da linha em km		О	
R1	ASG	Resistência da linha seqüência positiva		О	
X1	ASG	Reatância da linha sequência positiva		О	

R0	ASG	Resistência da linha sequência zero	О
X0	ASG	Reatância da linha seqüência zero	О
Z1Mod	ASG	Valor de impedância de linha sequência positiva	О
Z1Ang	ASG	Ângulo de impedância de linha seqüência positiva	О
Z0Mod	ASG	Valor de impedância de linha sequência zero	О
Z0Ang	ASG	Ângulo de impedância de linha sequência zero	
Rm0	ASG	Resistência mútua	О
Xm0	ASG	Reatância mútua	О
Zm0Mod	ASG	Valor de impedância mútua	О
Zm0Ang	ASG	Ângulo de impedância mútua	О

Tabela 3-43: LN: Localizador de Falha - RFLO.

3.7.8 LN: Detecção/Bloqueio de Oscilação de Potência - RPSB

Para uma descrição detalhada deste LN veja IEC 61850-5. Uma oscilação de potência é caracterizada por uma mudança periódica e lenta da impedância medida. Tal mudança moderada de impedância é tolerada, mas pode resultar no disparo da função de proteção de distância. Para evitar este comportamento indesejável, o disparo da função de proteção distância deve ser bloqueado na zona correlacionada. Por conveniência, as instâncias de RPSB devem ter os mesmos números de instâncias que PDIS por zona (RPSB1, PDIS1, ect.). Se o gerador está com deslizamento de pólo, mudanças transientes da impedância (uma por deslizamento) são medidas. Após um pequeno número de deslizamentos, (MaxNumSlp) em uma janela de tempo dedicado (EvTmms), o gerador deve ser disparado para evitar danos mecânicos (disparo fora de fase). O número atual de deslizamentos deve ser reiniciado pelo disparo ou pelo fim do tempo de avaliação.

			RPSI	3					
Nome do Atributo	Tipo Attr.			Expli	cação			T	M/O
LNName			e ser he (0-7-2)	rdado da	classe Ll	N (ve	ja IEC-		
Dados	Dados								
Informações de Nó Lógico Comum									
		LN	deve	herdar	todos	os	dados		M

		obrigatórios da classe de Nó Lógico Comum		
OpCntRs	INC	Contador de operações reinicializável		O
Informação sobr	e STATUS			
Str	ACD	Inicia (oscilação de potência detectada)		C1
Op	ACT	Opera (tripping fora de fase)	T	C2
BlkZn	SPS	Bloqueio da zona PDIS correlacionada		C1
Configurações				
ZeroEna	SPG	Zero habilitado		O
NgEna	SPG	Supervisão de corrente de sequência negativa habilitada		О
MaxEna	SPG	Supervisão de corrente máxima habilitada		О
SwgVal	ASG	Delta da oscilação de potência		О
SwgRis	ASG	Delta R da oscilação de potência		О
SwgReact	ASG	Delta X da oscilação de potência		О
SwgTmms	ING	Tempo da oscilação de potência		O
UnBlkTmms	ING	Tempo de desbloqueio		О
MaxNumSlp	ING	Número máximo de deslizamentos de pólo até disparo (Op, disparo fora de fase)		О
EvTmms	ING	Tempo de avaliação (janela de tempo, disparo fora de fase)		О

Tabela 3-44: LN: Detecção/Bloqueio de Oscilação de Potência - RPSB.

Condição C1: Obrigatório se RPSB é usado para bloqueio de oscilação de potência.

Condição C2: Obrigatório se RPSB é usado para disparo fora de fase.

3.7.9 LN: Auto-religamento - RREC

Para uma descrição detalhada deste LN veja IEC 61850-5. Para representar auto religadores com mais de três ciclos de religamento, o RREC deve ser estendido com tempos de religamento adicionais. O acionamento para ativação de RREC pode ser o sinal disparado do PTRC, ou o aviso "disjuntor aberto" do disjuntor, ou quaisquer outros sinais ou combinação de sinais.

RREC						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				

Dados				
Informações de	e Nó Lógico (Comum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		O
Controles				
BlkRec	SPC	Religamento (reclosing) de bloco		O
ChkRec	SPC	Checa refechamento		О
Informação sol	ore STATUS			
Auto	SPS	Operação automática (status externo da chave)		О
Op	ACT	Opera (usado para prover fechamento para XCBR)	T	M
AutoRecSt	INS	Status de auto-religamento		M
Configurações				
Rec1Tmms	ING	Tempo do primeiro refechamento		О
Rec2Tmms	ING	Tempo do segundo refechamento		O
Rec3Tmms	ING	Tempo do terceiro refechamento		O
PlsTmms	ING	Tempo de pulso fechado		O
RclTmms	ING	Tempo de recuperação		О

Tabela 3-45: LN: Auto-religamento - RREC.

3.7.10 LN: Verificação de Sincronismo ou Sincronização - RSYN

Para uma descrição detalhada deste LN veja IEC 61850-5. A diferença do fasor de tensão em ambos os lados de um disjuntor aberto é calculado e comparado com condições pré-definidas de chaveamento (synchrocheck). Está incluído o caso em que um lado é morto (exemplo: alimentando uma linha morta) e o caso em que o fasor em um lado pode ser ativamente controlado por "higher" ou "lower" (significa sincronização).

RSYN							
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados							

Informações de	TAO TORICO		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
Controles			
RHz	SPC	Aumenta Freqüência	О
LHz	SPC	Diminui freqüência	О
RV	SPC	Aumenta Tensão	О
LV	SPC	Diminui tensão	О
Informação sob	ore STATUS		·
Rel	SPS	Liberado	M
VInd	SPS	Indicador de diferença de tensão	О
AngInd	SPS	Indicador de diferença de ângulo	О
HzInd	SPS	Indicador de diferença de frequência	О
SynPrg	SPS	Sincronização em progresso	О
Valores Medido	os		"
DifVClc	MV	Diferença nominal na tensão	О
DifHzClc	MV	Diferença nominal na freqüência	О
DifAngCfc	MV	Diferença nominal do ângulo de fase	О
Configurações	1		"
DifV	ASG	Diferença de tensão	О
DifHz	ASG	Diferença de frequência	О
DifAng	ASG	Diferença de ângulo de fase	О
LivDeaMod	ING	Modo morto vivo	О
DeaLinVal	ASG	Valor de linha morta	О
LivLinVal	ASG	Valor de linha viva	О
DeaBusVal	ASG	Valor de barramento morto	О
LivBusVal	ASG	Valor de barramento vivo	О
PlsTmms	ING	Tempo de pulso fechado	О
BkrTmms	ING	Tempo de fechamento do disjuntor	О

Tabela 3-46: LN: Verificação de Sincronismo ou Sincronização - RSYN.

3.8 Nós Lógicos para Controle

3.8.1 LN: Tratamento de Alarme - CALH

Para uma descrição detalhada deste LN veja IEC 61850-5. Alarmes individuais são gerados nos nós lógicos correspondentes. Por exemplo, alarmes de metragem são encontrados no MMXU ou MMTR, etc. CALH permite a criação de avisos e alarmes agrupados. Os alarmes individuais que são usados para calcular os grupos de avisos/alarmes são enviados a partir de qualquer lugar. O cálculo é uma característica local.

CALH						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Cor	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
Informações de Sta	itus					
GrAlm	SPS	Alarme de Grupo		M		
GrWrm	SPS	Aviso de Grupo		О		
AlmLsrOv	SPS	Transbordo da lista de alarme		О		

Tabela 3-47: LN: Tratamento de Alarme - CALH.

3.8.2 LN: Controle de Grupo de Refrigeração - CCGR

Este LN deve ser usado para modelar equipamentos de refrigeração. Deve ser usada uma instância por grupo de refrigeração.

CCGR						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						

Informações de		LN deve herdar todos os dados	
		obrigatórios da classe de Nó Lógico Comum	M
EEHealth	INS	Saúde de equipamento externo	О
EEName	DPL	Nome de equipamento externo	О
OpTmh	INS	Tempo de operação	О
Valores medido	OS		
EnvTmp	MV	Temperatura do ambiente	О
OilTmpIn	MV	Entrada do refrigerador de temperatura do óleo	О
OilTmpOut	MV	Saída do refrigerador de temperatura do óleo	О
OilMotA	MV	Corrente de acionamento do motor de circulação do óleo	О
FanFlw	MV	Fluxo de ar no ventilador	О
FanA	MV	Corrente direcionada a motor de ventilador (Motor driver current fan)	О
Controles			
CECtl	SPC	Controle do grupo de refrigeração completo (bombas e ventiladores)	О
PmpCtlGen	INC	Controle de todas bombas	О
PmpCtl	INC	Controle de uma única bomba	О
FanCtlGen	INC	Controle de todos os ventiladores	О
FanCtl	INC	Controle de um único ventilador	О
Informações de	Status		
Auto	SPS	Automático ou manual	О
FanOvCur	SPS	Trip de ventilador com sobrecorrente	О
PmpOvCur	SPS	Trip de bomba com sobrecorrente	О
PmpAlm	SPS	Perda de bomba	О
Configurações			•
OilTmpSet	ASG	Ponto de configuração da temperatura do óleo	О

Tabela 3-48: LN: Controle de Grupo de Refrigeração - CCGR.

3.8.3 LN: Intertravamento - CILO

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para habilitar uma operação de chaveamento se as condições de intertravamento forem cumpridas. É necessária uma instância por dispositivo de chaveamento. Pelo menos todas as posições do equipamento de chaveamento devem ser fornecidas. O algoritmo de intertravamento é uma característica local.

CILO					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó Lógico Comum					
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Informação sobre STATUS					
EnaOpn	SPS	Habilita Abertura		M	
EnaCls	SPS	Habilita Fechamento		M	

Tabela 3-49: LN: Intertravamento - CILO.

3.8.4 LN: Chaveamento em Ponto na Onda - CPOW

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado se o disjuntor é capaz de fazer chaveamento em ponto de onda. Neste caso, o sinal de início para CPOW é OpOpn ou OpCls a ser obtido de CSWI. CPOR deve realizar todo seu algoritmo dedicado usando informações do TCTR alocado ou TVTR local e remoto (interesse local) e deve então liberar "Controle de Tempo Ativado" (veja IEC 61850-7-2) para XCBR. OpOpn e OpCls devem ser usados se nenhum dos serviços "Controle de Tempo Ativado" com capacidade de tempo real estiverem disponíveis entre CPOW e XCBR.

CPOW				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				

Informações de Nó Lógico Comum					
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Informação sobre STATUS					
TmExc	SPS	Tempo máximo permitido excedido		M	
StrPOW	SPS	CPOW iniciado		О	
OpOpn	ACT	Abre Chave	T	О	
OpCls	ACT	Fecha Chave	T	О	
Configurações					
MaxDlTmms	ING	Tempo máximo de atraso permitido		О	

Tabela 3-50: LN: Chaveamento em Ponto na Onda - CPOW.

3.8.5 LN: Controlador de Chave – CSWI

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para controlar todas as condições de chaveamento acima do nível de processo. CSWI deve enviar o dado POWCap ("capacidade de chaveamento em ponto de onda") do XCBR, se aplicável. Se um comando de chaveamento (por exemplo, selecione antes de operar) chega e a "capacidade de chaveamento em ponto de onda" é suportado pelo disjuntor, o comando deverá ser passado para CPOW. OpOpn e OpCls devem ser usados se nenhum serviço de tempo real estiver disponível entre CSWI e XCBR (veja GSE em IEC 61850-7-2).

CSWI					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó Lógico Comum					
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Loc	SPS	Operação local		О	
OpCntRs	INC	Contador de operações reinicializável		О	
Controles					
Pos	DPC	Chave geral		M	
PosA	DPC	Chave L1		О	

PosB	DPC	Chave L2		O
PosC	DPC	Chave L3		О
OpOpn	ACT	Operação "abre chave"	T	О
OpCls	ACT	Operação "fecha chave"	T	О

Tabela 3-51: LN: Controlador de Chave – CSWI.

3.9 Nós Lógicos para Referências Genéricas

LN: Controle de Processo Automático Genérico - GAPC 3.9.1

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para modelar, de forma genérica, o processamento/automação de funções que não são prédefinidas por um dos grupos A,C,M,P ou R.

		GAPC		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				1
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação local		О
OpCntRs	INC	Contador de operações reinicializável		О
Controles			•	
SPCSO	SPC	Saída controlável de status de ponto único		О
DPCSO	DPC	Saída controlável de status de ponto duplo		О
ISCSO	INC	Saída inteira de status controlável		О
Informação de Stat	tus			
Auto	SPS	Operação automática		О
Str	ACD	Início		M
Op	ACT	Opera	T	M
Configurações				

StrVal	ASG	Valor inicial	O	
Strvai	ASG	Valor inicial	O	

Tabela 3-52: LN: Controle de Processo Automático Genérico - GAPC.

3.9.2 LN: Processo Genérico I/O - GGIO

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para modelar, de forma genérica, processos de dispositivos que não são pré-definidos por um dos grupos S,T,X,Y ou Z. Todos os dados listados na cláusula 6 da IEC 61850-7-4 podem ser usados para uma aplicação dedicada do LN GGIO.

		GGIO		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHeath	INS	Saúde do dispositivo externo		О
EEName	DPL	Nome do dispositivo externo		О
Loc	SPS	Operação local		О
OpCntRs	INC	Contador de operações reinicializável		О
Controles				
SPCSO	SPC	Saída controlável de status de ponto único		О
DPCSO	DPC	Saída controlável de status de ponto duplo		О
ISCSO	INC	Saída inteira de status controlável		О
Informação de Stat	tus			
Auto	SPS	Operação automática		О
Str	ACD	Início		M
Op	ACT	Opera	T	M
Configurações				
IntIn	INS	Entrada de status inteiro		О
Alm	SPS	Alarme único geral		О
Ind	SPS	Indicação geral (entrada binária)		О

Tabela 3-53: LN: Processo Genérico I/O - GGIO.

3.9.3 LN: Aplicação de Segurança Genérica - GSAL

Para uma descrição detalhada deste LN veja IEC 61850-7-2. Este LN deve ser usado para monitorar violações de segurança, no que diz respeito a autorizações, controle de acesso, privilégios de serviço e associações inativas.

		GSAL		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
OpCntRs	INC	Contador de operações reinicializável		О
Controles				
NumCntRs	INC	Número de reinicializações do contador		M
Informação de Stat	tus			
AuthFail	SEC	Falhas de autorização		M
AcsCtlFail	SEC	Falha de controle de acesso detectada		M
SvcViol	SEC	Violação de privilégio de serviços		M
Ina	SEC	Associações Inativas		M

Tabela 3-54: LN: Aplicação de Segurança Genérica - GSAL.

3.10 Nós Lógicos para Interface e Arquivamento

3.10.1 LN: Arquivamento - IARC

IARC					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados	,				

Informações de	Nó Lógico	Comum	
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
OpCntRs	INC	Contador de operações reinicializável	M
Controles	·		
NumCntRs	INC	Número de reinicializações do contador	M
Informação de S	Status		
MemOv	SPS	Enchimento de memória	M
MemUsed	INS	Memória usada em %	О
NumRcd	INS	Número atual de gravações	О
Configurações			·
MaxNumRcd	ING	Número máximo de gravações	О
OpMod	ING	Modo de operação (saturação, sobrescrita)	О
MemFull	ING	Nível de memória cheia	О

Tabela 3-55: LN: Arquivamento - IARC.

3.10.2 LN: Interface Homem Máquina - IHMI

Para uma descrição detalhada deste LN veja IEC 61850-5.

	IHMI				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Cor	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	

Tabela 3-56: LN: Interface Homem Máquina - IHMI.

3.10.3 LN: Interface tele-controlada - ITCI

	ITCI					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		

Tabela 3-57: LN: Interface tele-controlada - ITCI.

LN: Interface de Telemonitoramento - ITMI 3.10.4

Para uma descrição detalhada deste LN veja IEC 61850-5.

	ITMI				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Con	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	

Tabela 3-58: LN: Interface de Telemonitoramento - ITMI.

3.11 Nós Lógicos para Controle Automático

LN: Regulador de Corrente Neutra - ANCR 3.11.1

		ANCR		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação Local		M
OpCntRs	INC	Contador de operações reinicializável		О
Controles				
TapChg	BSC	Muda posição do tap (para, maior, menor)		M
RCol	SPC	Aumenta posição do núcleo móvel		О
LCol	SPC	Diminui posição do núcleo móvel		О
Informação de Stat	us			
Auto	SPS	Operação automática		О

Tabela 3-59: LN: Regulador de Corrente Neutra – ANCR.

3.11.2 LN: Controle de Potência Reativa - ARCO

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para um controlador reativo independentemente do método de controle sendo usado.

ARCO					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Con	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
Loc	SPS	Operação Local		M	
OpCntRs	INC	Contador de operações reinicializável		О	

Controles				
TapChg	BSC	Muda posição do tap (para, maior, menor)		M
Informação de Status				
Auto	SPS	Operação automática		О
VOvSt	SPS	Status de sobreposição da tensão		О
NeutAlm	SPS	Alarme neutro está presente		О
Dashblk	SPS	Fechamento do <i>bank switch</i> bloqueado devido a descarga	Т	O

Tabela 3-60: LN: Controle de Potência Reativa - ARCO.

3.11.3 LN: Controlador de Comutador de Carga Automático - ATCC

		ATCC		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação Local		M
OpCntRs	INC	Contador de operações reinicializável		О
Controles				
TapChg	BSC	Muda posição do tap (para, maior, menor)		С
TapPos	ISC	Posição do tap		С
ParOp	DPC	Operação paralela/independente		M
LTCBlk	SPC	Bloqueia (inibe) o controle automático do LTC		О
LTCDragRs	SPC	Reinicia os drag hands do LTC	T	О
VRed1	SPC	Redução de tensão passo 1		О
Vred2	SPC	Redução de tensão passo 2		О
Valores Medidos				

CtlV	MV	Tensão Controle	M
LodA	MV	Corrente de carga (corrente secundária total do transformador)	О
CircA	MV	Corrente circulante	О
PhAng	MV	Ângulo de fase de LodA relativa a CtlV a um fator de potência 1.0, FPF	О
Valores de Met	ragem		
HiCtlV	MV	Maior tensão controlada	О
LoCtlV	MV	Menor tensão controlada	О
HiDmdA	MV	Maior demanda de corrente	О
Informação de	Status		
Auto	SPS	Operação automática	О
HiTapPos	INS	Maior posição de tap	О
LoTapPos	INS	Menor posição de tap	О
Configurações			
BndCrt	ASG	Tensão central de banda (FPF presumido)	О
BndWid	ASG	Tensão de largura de banda (como tensão ou porcentagem da tensão nominal, FPF presumido)	О
CtlDlTmms	ING	Controla atraso de tempo intencional (FPF presumido)	О
LDCR	ASG	Queda de tensão na linha devido ao componente de resistência da linha	О
LDCX	ASG	Queda de tensão na linha devido ao componente de reatância da linha	О
BlkLV	ASG	Tensão de controle abaixo da qual comandos de diminuição automática são bloqueados.	О
BlkRV	ASG	Tensão de controle acima da qual comandos de aumento automático são bloqueados.	О
RnbkRV	ASG	Aumento de tensão em segundo plano (Runback Raise Voltage)	О
LimLodA	ASG	Limita corrente de carga (LTC block load current)	О
LDC	SPG	Compensação de queda de linha é modelo de R&X ou Z.	О
TmDlChr	SPG	Característica linear ou inversa de atraso de tempo	О

LDCZ	ASG	Queda de tensão de linha devida à impedância total da linha	О
VredVal	ASG	Redução do centro de banda (por cento) quando tensão de passo 1 está ativo	О
TapBlkR	ING	Posição do <i>tap</i> do comutador de cargas onde comandos de aumento automáticos estão bloqueados	О
TapBlkL	ING	Posição do <i>tap</i> do comutador de cargas onde comandos de diminuição automáticos estão bloqueados	О

Tabela 3-61: LN: Controlador de Comutador de Carga Automático - ATCC.

Condição C: dependendo do método de mudança de tap, um dos dois controles TapChg e TapPos deve ser usado.

LN: Controle de Tensão - AVCO 3.11.4

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para um controlador de tensão independentemente do método de controle sendo usado.

	AVCO			
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados	Dados			
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação Local		M
OpCntRs	INC	Contador de operações reinicializável		О
Controles				
TapChg	BSC	Muda posição do tap (para, maior, menor)		M
Informação de Stat	us			
Auto	SPS	Operação automática		О
BlkEF	SPS	Bloqueado por falta para a terra		О
BlkAOv	SPS	Bloqueado por superação de corrente limite		О

BlkVOv	SPS	Bloqueado por superação de tensão limite	O
Configurações			
LimAOv	ASG	Limite de corrente para bloqueio de corrente excessiva	О
LimVOv	ASG	Limite de tensão para bloqueio de tensão excessiva	О

Tabela 3-62: LN: Controle de Tensão - AVCO.

3.12 Nós Lógicos para Medições e Metragens

Se os valores para metragem ou medição são fornecidos por um sensor externo conectado por um link de 4 a 20 mA, o alarme "zero vivo" é fornecido pelo dado saúde externa (EEHealth).

3.12.1 LN: Medidas Diferenciais - MDIF

Este LN deve ser usado para prover valores de processo calculados representando o outro lado da linha (ou de outro objeto) como usado para proteção diferencial (PDIF). O LN MDIF também é usado como a função 87 de acordo com a designação de número de função de dispositivo IEEE (IEEE 32R.2 1996).

		MDIF		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Valores Medidos				
OpARem	WYE	A corrente de operação remota (fasor)		С
Amp1	SAV	Corrente (valor amostrado) fase A		C
Amp2	SAV	Corrente (valor amostrado) fase B		C
Amp3	SAV	Corrente (valor amostrado) fase C		С

Tabela 3-63: LN: Medidas Diferenciais - MDIF.

Condição C: Um dentre OpAREM, Amp1, Amp2 e Amp3 deve ser usado.

LN: Harmônicos ou Inter-harmônicos 3.12.2

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para cálculo de harmônicos ou inter-harmônicos em um sistema trifásico. Instâncias para ambos, harmônicos (incluindo sub-harmônicos e múltiplos) e inter-harmônicos, são possíveis dependendo do valor das configurações básicas, i.e.:

- frequência f ("Hz");
- janela de avaliação ∆t ("EvTmms").

A freqüência pode ser calculada ou dada por meios como um laço de fase fechado (phased-locked loop, só possível para uma frequência dominante como a frequência de potência básica).

a) Configurações para harmônicos, sub-harmônicos e múltiplos

EvTmms = 1/HZ (16ms para 60 Hz, 20ms para 50Hz)

NumCyc = 1 resulta em apenas harmônico, i.e. em múltiples de Hz em a)

NumCyc > 1 resulta em uma adição em sub-harmônicos e múltiplos

Menor frequência = 1/EvTmms

Maior frequência = (SmpRte)/2 (veja TVTR, TCTR e IEC 61850-7-3)

b) Configurações para inter-harmônicos

EvTmms = 1/HZ (adaptado para a menor freqüência inter-harmônica esperada)

NumCyc = 1 resulta em inter-harmônicos, i.e. em múltiples de Hz em b)

NumCyc > 1 não é usado normalmente uma vez que a menor frequência é livremente ajustável pela escolha de Hz

Menor frequência = 1/EvTmms

Maior frequência = (SmpRte)/2 (veja TVTR, TCTR e IEC 61850-7-3)

Tanto harmônicos quanto inter-harmônicos carregam energia e produzem distorções. Existem diferentes métodos para calcular distorções. Para maiores informações veja IEC 61000-4-7, IEEE Std 519-1992 e IEEE Std 1459-2000.

MHAI							
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados	Dados						
Informações de Nó Lógico Comum							

		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О
EEName	DPL	Nome do equipamento externo	О
Valores Medid	os		
Hz	MV	Freqüência básica	C
НА	HWYE	Sequência de correntes harmônicos ou inter-harmônicos	О
HPhV	HWYE	Sequência de tensões fase-terra de harmônicos ou inter-harmônicos	О
HPPV	HDEL	Sequência de tensões fase-fase de harmônicos ou inter-harmônicos	О
HW	HWYE	Sequência de potência ativa de harmônicos ou inter-harmônicos	О
HVAr	HWYE	Sequência de potência reativa de harmônicos ou inter-harmônicos	О
HVA	HWYE	Sequência de potência aparente de harmônicos ou inter-harmônicos	О
HRmsA	WYE	RMS da corrente harmônica ou inter- harmônica (distorção harmônica total não normalizada, Thd)	О
HRmsPhV	DEL	RMS da tensão fase-terra harmônica ou inter-harmônica (Thd não normalizado)	О
HTuW	WYE	Soma, sem sinal, da potência ativa (não fundamental) da fase total harmônica ou inter-harmônica	О
HTsW	WYE	Soma, com sinal, da potência ativa (não fundamental) da fase total harmônica ou inter-harmônica	О
HATm	WYE	Produto tempo corrente	О
Hkf	WYE	Fator K	О
HTdf	WYE	Fator de estrangulamento de transformador	О
ThdA	WYE	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes)	О
ThdOddA	WYE	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes – componentes ímpares)	О
ThdEvnA	WYE	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes –	О

		componentes pares)	
TddA	WYE	Distorção da demanda total de corrente por IEEE 519	О
TddOddA	WYE	Distorção da demanda total de corrente por IEEE 519 (componentes ímpares)	О
TddEvnA	WYE	Distorção da demanda total de corrente por IEEE 519 (componentes pares)	О
ThdPhV	WYE	Distorção de tensão fase-terra harmônica ou inter-harmônica total (métodos diferentes)	О
ThdOddPhV	WYE	Distorção de tensão fase-terra harmônica ou inter-harmônica total (métodos diferentes, componentes ímpares)	О
ThdEvnPhV	WYE	Distorção de tensão fase-terra harmônica ou inter-harmônica total (métodos diferentes, componentes pares)	О
ThdPPV	DEL	Distorção de tensão harmônica ou inter- harmônica total (métodos diferentes) para fase-fase	О
ThdOddPPV	DEL	Distorção de tensão harmônica ou inter- harmônica total (métodos diferentes) para fase-fase (componentes ímpares)	О
ThdEvnPPV	DEL	Distorção de tensão harmônica ou inter- harmônica total (métodos diferentes) para fase-fase (componentes pares)	О
HCfPhV	WYE	Fatores pico de tensão fase-terra (valor pico da forma de onda / raiz(2) / fundamental)	О
HCfPPV	DEL	Fatores pico de tensão fase-fase (valor pico da forma de onda / raiz(2) / fundamental)	О
HCfA	WYE	Fatores pico de corrente (valor pico da forma de onda / raiz(2) / fundamental)	О
HTif	WYE	Fator de influência de tensão telefone	О
Configurações			
HzSet	ASG	Freqüência básica	C
EvTmms	ASG	Tempo de avaliação (janela de tempo) determina a menor frequência	О
NunCyc	ING	Número de ciclos da freqüência básica	О
ThdAVal	ASG	Configuração de alarme ThdA – valor entrado em %	О

ThdVVal	ASG	Configuração de alarme ThdPhV / ThdPPV – valor entrado em %	О
ThdATmms	ING	Atraso de tempo de alarme ThdA em ms	O
ThdVTmms	ING	Atraso de tempo do alarme ThdPhV / ThdPPV em ms	О
NomA	ASG	Demanda de corrente normalizadora usada no cálculo do TDD da IEEE 519	О

Tabela 3-64: LN: Harmônicos ou Inter-harmônicos.

Condição C: Hz e HzSet são exclusivos.

3.12.3 LN: Harmônicos ou Inter-harmônicos não Relacionados a Fase - MHAM

Este LN deve ser usado para cálculo de harmônicos ou inter-harmônicos em um sistema monofásico, i.e. uma linha única sem relações de fase. Instâncias para ambos, harmônicos (incluindo sub-harmônicos e múltiplos) e inter-harmônicos, são possíveis dependendo do valor das configurações básicas, i.e.:

- frequência f ("Hz");
- janela de avaliação ∆t ("EvTmms").

A freqüência também pode ser calculada ou dada por meios como um laço trancado à fase (phased-locked loop, só possível para uma freqüência dominante como a freqüência de potência básica). Para configurações de instâncias de harmônicos e inter-harmônicos veja MHAI.

		MHAM	MHAM				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados							
Informações de Nó	Lógico Con	num					
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M			
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О			
EEName	DPL	Nome do equipamento externo		О			
Valores Medidos							
Hz	MV	Freqüência básica		С			

НаАтр	HMV	Seqüência de correntes harmônicos ou inter-harmônicos para correntes	О
HaVol	HMV	Sequência de correntes harmônicos ou inter-harmônicos para tensões	О
HaWatt	HMV	Sequência de correntes de harmônicos ou inter-harmônicos para potência ativa	О
HaVolAmpr	HMV	Sequência de correntes de harmônicos ou inter-harmônicos para potência reativa	О
HaVolAmp	HMV	Sequência de correntes de harmônicos ou inter-harmônicos para potência aparente.	О
HaRmsAmp	MV	RMS da corrente harmônica ou inter- harmônica (Thd não normalizada)	О
HaRmsVol	MV	RMS da tensão harmônica ou inter- harmônica (Thd não normalizada)	О
HaTuWatt	MV	Soma, sem sinal, da potência ativa (não fundamental) total harmônica ou interharmônica	О
HaTsWatt	MV	Soma, com sinal, da potência ativa (não fundamental) total harmônica ou interharmônica	О
HaAmpTm	MV	Produto tempo corrente	О
HaKFact	MV	Fator K	О
HaTdFact	MV	Fator de estrangulamento de transformador	О
ThdAmp	MV	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes)	О
ThdOddAmp	MV	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes – componentes ímpares)	О
ThdEvnAmp	MV	Distorção de corrente harmônica ou inter- harmônica total (métodos diferentes – componentes pares)	О
TddAmp	MV	Distorção da demanda total de corrente por IEEE 519	О
TddOddAmp	MV	Distorção da demanda total de corrente por IEEE 519 (componentes ímpares)	О
TddEvnAmp	MV	Distorção da demanda total de corrente por IEEE 519 (componentes pares)	О
ThdVol	MV	Distorção de tensão harmônica ou inter- harmônica total (métodos diferentes)	О
ThdOddVol	MV	Distorção de tensão harmônica ou inter-	О

		harmônica total (métodos diferentes - componentes ímpares)	
ThdEvnVol	MV	Distorção de tensão harmônica ou inter- harmônica total (métodos diferentes - componentes pares)	О
HaCfAmp	MV	Fatores crista de corrente (valor pico da forma de onda / raiz(2) / fundamental)	О
HaCfVol	MV	Fatores pico de tensão (valor pico da forma de onda / raiz(2) / fundamental)	О
HaTiFact	MV	Fator de influência de tensão telefone	О
Configurações			-
HzSet	ASG	Freqüência básica	С
EvTmms	ASG	Tempo de avaliação (janela de tempo) determina a menor frequência	О
NunCyc	ING	Número de ciclos da freqüência básica	О
ThdAVal	ASG	Configuração de alarme ThdA – valor entrado em %	О
ThdVVal	ASG	Configuração de alarme ThdPhV / ThdPPV – valor entrado em %	О
ThdATmms	ING	Atraso de tempo de alarme ThdA em ms	О
ThdVTmms	ING	Atraso de tempo do alarme ThdPhV / ThdPPV em ms	О
NomA	ASG	Demanda de corrente normalizadora usada no cálculo do TDD da IEEE 519	О

Tabela 3-65: LN: Harmônicos ou Inter-harmônicos não Relacionados a Fase - MHAM.

Condição C: Hz e HzSet são exclusivos.

3.12.4 LN: Metragem - MMTR

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para cálculo de potência em um sistema trifásico. O principal uso é para propósitos de cobrança.

MMTR				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				

Informações de	Nó Lógico (Comum	
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О
EEName	DPL	Nome do equipamento externo	О
Valores de Met	ragem		
TotVAh	BCR	Potência aparente da rede desde a última reinicialização	О
TotWh	BCR	Potência real da rede desde a última reinicialização	О
TotVArh	BCR	Potência reativa da rede desde a última reinicialização	О
SupWh	BCR	Fonte real de potência (direção de fonte padrão: potência flui em direção ao barramento)	О
SupVArh	BCR	Fonte de potência reativa (direção de fonte padrão: potência flui em direção ao barramento)	О
DmdWh	BCR	Demanda de potência real (direção de demanda padrão: potência flui a partir do barramento)	О
DmdVArh	BCR	Demanda de potência reativa (direção de demanda padrão: energia flui a partir do barramento)	О

Tabela 3-66: LN: Metragem - MMTR.

LN: Medição não Relacionada a Fase - MMXN 3.12.5

Este LN deve ser usado para cálculo de correntes, tensões, potências e impedâncias em um sistema monofásico, i.e. em um sistema onde tensão e corrente não estão relacionados a fase. O principal uso é para aplicações operativas.

MMXN				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				

Informações de Nó Lógico Comum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M	
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О	
EEName	DPL	Nome do equipamento externo	О	
Valores Medid	os			
Amp	MV	Corrente I (RMS) não alocada a uma fase	О	
Vol	MV	Tensão V (RMS) não alocada a uma fase	О	
Watt	MV	Potência (P) não alocada a uma fase	О	
VolAmpr	MV	Potência reativa (Q) não alocada a uma fase	О	
VolAmp	MV	Potência aparente (S) não alocada a uma fase	О	
PwrFact	MV	Fator de potência não alocado a uma fase	О	
Imp	CMV	Impedância	О	
Hz	MV	Freqüência	О	

Tabela 3-67: LN: Medição não Relacionada a Fase - MMXN.

3.12.6 LN: Medição - MMXU

Para uma descrição detalhada deste LN veja IEC 61850-5. Este LN deve ser usado para cálculo de correntes, voltagens, forças e impedâncias em um sistema trifásico. O principal uso é para propósitos de operação.

MMXU				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О

Valores Medi	dos		
TotW	MV	Potência total ativa (P total)	О
TotVAr	MV	Potência reativa total (Q total)	О
TotVA	MV	Potência aparente total (S total)	О
TotPF	MV	Fator de potência médio (PF total)	О
Hz	MV	Freqüência	О
PPV	DEL	Tensões fase-fase	О
PhV	WYE	Tensões fase-terra	О
A	WYE	Correntes de fase	О
W	WYE	Potência ativa de fase.	О
VAr	WYE	Potência reativa de fase.	О
VA	WYE	Potência aparente de fase	О
PF	WYE	Fator de potência de fase	О
Z	WYE	Impedância de fase	О

Tabela 3-68: LN: Medição - MMXU.

3.12.7 LN: Seqüência e Desbalanceamento - MSQI

	MSQI				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Con	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		М	
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О	
EEName	DPL	Nome do equipamento externo		О	
Valores Medidos					
SeqA	SEQ	Corrente positiva, negativa e zero sequência		С	

SeqV	SEQ	Tensão positiva, negativa e zero sequência	C
DQ0Seq	SEQ	Seqüência DQ0	О
ImbA	WYE	Corrente desbalanceada	О
ImbNgA	MV	Corrente de seqüência negativa desbalanceada	О
ImbNgV	MV	Tensão de sequência negativa desbalanceada	О
ImbPPV	DEL	Tensão fase-fase desbalanceada	О
ImbV	WYE	Tensão desbalanceada	О
ImbZroA	MV	Corrente seqüência zero desbalanceada	О
ImbZroV	MV	Tensão seqüência zero desbalanceada	О
MaxImbA	MV	Corrente desbalanceada máxima	О
MaxImbPPV	MV	Tensão fase-fase desbalanceada máxima	О
MaxImbV	MV	Tensão desbalanceada máxima	О

Tabela 3-69: LN: Seqüência e Desbalanceamento - MSQI.

Condição C: ao menos um dos dados deve ser usado.

3.12.8 LN: Estatísticas de Metragem - MSTA

Valores de Metragem não são sempre usados diretamente, mas como valores médios, mínimos e máximos sobre um dado período de tempo. O relatório pode começar depois deste período.

	MSTA				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Cor	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
EEHealth	INS	Saúde de equipamento externo (sensor externo)		0	
EEName	DPL	Nome do equipamento externo		О	
Valores de Metrago	em				

AvAmps	MV	Corrente média	О
MaxAmps	MV	Corrente máxima	О
MinAmps	MV	Corrente mínima	О
AvVolts	MV	Tensão média	О
MaxVolts	MV	Tensão máxima	О
MinVolts	MV	Tensão mínima	О
AvVA	MV	Potência aparente média	О
MaxVA	MV	Potência aparente máxima	О
MinVA	MV	Potência aparente mínima	О
AvW	MV	Potência real média	О
MaxW	MV	Potência real máxima	О
MinW	MV	Potência real mínima	О
AvVAr	MV	Potência reativa média	О
MaxVAr	MV	Potência reativa máxima	О
MinVAr	MV	Potência reativa mínima	О
Controles			
EvStr	SPC	Início do intervalo de avaliação	О
Configurações			
EvTmms	ASG	Tempo de avaliação (janela de tempo) para médias, etc	О

Tabela 3-70: LN: Estatísticas de Metragem - MSTA.

3.13 Nós Lógicos para Sensores e Monitoramento

LN: Monitoramento e Diagnósticos para Arcos - SARC 3.13.1

SARC					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					

Informações de	Informações de Nó Lógico Comum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О		
EEName	DPL	Nome do equipamento externo	О		
OpCntRs	INC	Contador de operações reinicializável (arcos de chave e falta)	О		
Informações do	e Status				
FACntRs	INC	Contador de arcos de falta	M		
FADet	SPS	Arco de falta detectado	M		
ArcCntRs	INC	Contador de arco de chave	О		
SwArcDet	SPS	Arco de chave detectado	О		

Tabela 3-71: LN: Monitoramento e Diagnósticos para Arcos - SARC.

3.13.2 LN:Supervisão de Isolamento do Meio - SIMG

Para uma descrição detalhada deste LN veja IEC 61850-5. O meio de isolamento é um gás , por exemplo chave SF6 em dispositivos isolados por gás. Se são necessárias mais posições de medição, estas devem ser adicionadas por extensões numeradas dos dados (para Tmp use Tmp1, Tmp2, ...).

		SIMG		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		0
EEName	DPL	Nome do equipamento externo		О
Valores Medidos				
Pres	MV	Pressão do isolamento de gás		О

Den	MV	Densidade de isolamento do gás	O		
Tmp	MV	Temperatura de isolamento do gás	О		
Informações de Status					
InsAlm	SPS	Gás de isolamento crítico (reabasteça meio de isolamento)	M		
InsBlk	SPS	Gás de isolamento não seguro (bloqueia operação do dispositivo)	О		
InsTr	SPS	Gás de isolamento perigoso (trip para isolamento do dispositivo)	О		
PresAlm	SPS	Alarme de pressão de gás de isolamento	С		
DenAlm	SPS	Alarme de densidade de gás de isolamento	С		
TmpAlm	SPS	Alarme de temperatura de gás de isolamento	С		
InsLevMax	SPS	Máximo nível de gás de isolamento (relativo ao nível de recarga do gás)	О		
InsLevMin	SPS	Mínimo nível de gás de isolamento (relativo ao nível de recarga do gás)	О		

Tabela 3-72: LN:Supervisão de Isolamento do Meio - SIMG.

Condição C: dependendo das propriedades supervisionadas do gás de isolamento, pelo menos uma das informações de status deve ser usada.

3.13.3 LN:Supervisão de Isolamento do Meio (líquido) - SIML

Para uma descrição detalhada deste LN veja IEC 61850-5. O meio de isolamento é um líquido como um óleo, usado por exemplo para alguns transformadores e comutadores de cargas. Se são necessárias mais posições de medição, estas devem ser adicionadas por extensões numeradas dos dados (para Tmp use Tmp1, Tmp2, ...).

SIML				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor		О

		externo)	
EEName	DPL	Nome do equipamento externo	О
Valores Medid	os		
Tmp	MV	Temperatura de isolamento do gás	О
Lev	MV	Nível do líquido de isolamento	О
Pres	MV	Pressão do isolamento de gás	О
H2O	MV	Saturação relativa de umidade no líquido de isolamento (em %)	О
H2OTmp	MV	Temperatura do líquido de isolamento no ponto da medida H2O	О
H2	MV	Medição de hidrogênio (H2 no ppm)	О
Informações de	e Status		
InsAlm	SPS	Líquido de isolamento crítico (reabasteça meio de isolamento)	M
InsBlk	SPS	Líquido de isolamento não seguro (bloqueia operação do dispositivo)	О
InsTr	SPS	Líquido de isolamento perigoso (trip para isolamento do dispositivo)	О
TmpAlm	SPS	Alarme de temperatura de líquido de isolamento	С
PresTr	SPS	Trip de pressão do líquido de isolamento	С
PresAlm	SPS	Alarme de pressão de líquido de isolamento	С
GasInsAlm	SPS	Alarme de gás no líquido de isolamento (pode ser usado para alarme Buchholz)	О
GasInsTr	SPS	Trip de gás no líquido de isolamento (pode ser usado para trip Buchholz)	О
InsLevMax	SPS	Máximo nível de líquido de isolamento	О
InsLevMin	SPS	Mínimo nível de líquido de isolamento	О
H2Alm	SPS	Alarme H2	О
MstAlm	SPS	Alarme do sensor de umidade	О

Tabela 3-73: LN:Supervisão de Isolamento do Meio (líquido) - SIML.

Condição C: dependendo das propriedades supervisionadas do líquido de isolamento, pelo menos uma das informações de status deve ser usada.

LN: Monitoramento e Diagnósticos para Descargas Parciais -3.13.4 **SPDC**

Para uma descrição detalhada deste LN veja IEC 61850-5.

	SPDC				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О	
EEName	DPL	Nome do equipamento externo		О	
OpCnt	INC	Contador de operações		M	
Valores medidos					
AcuPaDsch	MV	Nível acústico da descarga parcial em db		С	
Informações de Sta	atus				
PaDschAlm	SPS	Alarme de descarga parcial		С	

Tabela 3-74: LN: Monitoramento e Diagnósticos para Descargas Parciais – SPDC.

Condição C: dependendo da funcionalidade, pelo menos um dos dados AcuPaDsch ou PaDschAlm deve ser usado.

3.14 Nós Lógicos para Chaves

Estes nós lógicos representam o sistema de potência. A tabela abaixo mostra a relação destes nós lógicos com a IEEE C37.2-1996.

Nó Lógico	IEC	IEEE	Descrição ou Comentários
	61850	C37.2-	
		1996	
O LN "Disjuntor"	XCBR	52	Um disjuntor AC é um dispositivo
cobre todos os tipos de			para interromper e fechar um circuito
disjuntores.			de potência AC sob condições normais
			ou para interromper o circuito sob
			falta ou condições emergenciais.
O LN "Chave" cobre	XSWI	89	A chave de linha é uma chave usada

todos os tipos de	52	como uma chave de desconexão,
dispositivos não		interrupção de carga ou isolante em
capazes de chavear		um circuito AC ou DC.
curtos-circuitos, como		
desconectores.		Se existe uma chave de fase única,
		este LN tem uma instância por fase.

Tabela 3-75: LN: Relações entre LNs disjuntores e IEEE C37.2-1996.

3.14.1 LN: Disjuntor – XCBR

Este LN deve ser usado para modelar chaves com pequena capacidade disjuntora. Alguns LNs, por exemplo SIMS, podem ser necessários para completar a modelagem lógica para o disjuntor sendo representado. Os comandos de abertura e fechamento devem ser recebidos de CSWI ou CPOW se aplicável. Se nenhum serviço com capacidade de tempo real estiver disponível entre CSWI ou CPOW e XCBR, os comandos de fechamento e abertura são realizados por uma mensagem GSE (veja IEC61850-7-2).

	XCBR			
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação local (local significa sem automação de comunicação na subestação, controle direto por fio)		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpCnt	INC	Contador de operações		M
Controles				
Pos	DPC	Posição da chave		M
BlkOpn	SPC	Bloqueia abertura		M
BlkCls	SPC	Bloqueia fechamento		M
ChaMotEna	SPC	Motor carregador habilitado		О

Valores de Metragem					
SumSwARs	BCR	Soma dos amperes chaveados (switched), reinicializável	О		
Informações de	Informações de Status				
CBOpCap	INS	Capacidade de operação do disjuntor	M		
POWCap	INS	Capacidade de chaveamento em ponto de onda (point on wave switching)	О		
MaxOpCap	INS	Capacidade do disjuntor quando totalmente carregado	О		

Tabela 3-76: LN: Disjuntor – XCBR.

3.14.2 LN:Chave de Circuito - XSWI

Este LN deve ser usado para modelar chaves sem capacidade de evitar curto-circuito, por exemplo desconectores, chaves a ar, chaves de aterramento, etc. Alguns LNs, por exemplo SIMS, podem ser necessários para completar a modelagem lógica para o disjuntor sendo representado. Os comandos de abertura e fechamento devem ser recebidos de CSWI. Se nenhum serviço com capacidade de tempo real estiver disponível entre CSWI e XCBR, os comandos de fechamento e abertura são realizados por ums mensagem GSE (veja IEC61850-7-2).

XSWI				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação local (local significa sem automação de comunicação na subestação, controle direto por fio)		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpCnt	INC	Contador de operações		M
Controles				
Pos	DPC	Posição da chave		M

BlkOpn	SPC	Bloqueia abertura	M
BlkCls	SPC	Bloqueia fechamento	M
ChaMotEna	SPC	Motor carregador habilitado	О
Informações de	Status		
SwTyp	INS	Tipo de chave	M
SwOpCap	INS	Capacidade de operação da chave	M
MaxOpCap	INS	Capacidade do disjuntor quando totalmente carregado	О

Tabela 3-77: LN:Chave de Circuito - XSWI.

3.15 Nós Lógicos para Transformador de Instrumentação

3.15.1 LN: Transformador de Corrente – TCTR

Para uma descrição detalhada deste LN veja IEC 61850-5. A corrente é fornecida através de valores amostrados. Os valores amostrais são transformados em valores de engenharia, por exemplo como valores de corrente primária "verdadeira" (corrigida). Por isso, os fatores de correção e a taxa do transformador não são de interesse dos valores amostrados transmitidos, mas para propósitos de manutenção de um transdutor externo (magnético) convencional apenas. Adicionalmente é provida informação de status e algumas outras configurações são aceitas a partir do LN TCTR.

		TCTR		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				I
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О
Valores Medidos				
Amp	SAV	Corrente (valor amostrado)		M
Configurações				
ARtg	ASG	Corrente nominal		О
HzRtg	ASG	Freqüência nominal		О
Rat	ASG	Taxa de enrolamento de um transformador (transdutor) de corrente externo se aplicável		0
Cor	ASG	Correção de magnitude de fasor corrente de um transformador de corrente externo		О
AngCor	ASG	Correção do ângulo de fasor de corrente de		О

um transformador de corrente externo			
--------------------------------------	--	--	--

Tabela 3-78: LN: Transformador de Corrente – TCTR.

3.15.2 LN: Transformador de Tensão – TVTR

Para uma descrição detalhada deste LN veja IEC 61850-5. A tensão é fornecida através de valores amostrados. Os valores amostrais são transmitidos como valores da engenharia, por exemplo como valores de tensão primária "verdadeira" (corrigida). Por isso, os fatores de correção e a taxa do transformador não são de interesse dos valores amostrados transmitidos, mas para propósitos de manutenção de um transdutor externo (magnético) convencional apenas. Adicionalmente é provida informação de status e algumas outras configurações são aceitas a partir do LN TCTR.

		TVTR		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Con	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		0
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О
Valores Medidos				
Vol	SAV	Tensão (valor amostrado)		M
Informação de stat	us			
FuFail	SPS	falha de fusível TVTR		О
Configurações				
VRtg	ASG	Tensão nominal		О
HzRtg	ASG	Freqüência nominal		О
Rat	ASG	Taxa de enrolamento de um transformador (transdutor) de tensão externo se aplicável		0
Cor	ASG	Correção de magnitude de fasor corrente de um transformador de tensão externo		О

AngCor	ASG	Correção do ângulo de fasor de corrente de um transformador de tensão externo		О	
--------	-----	---	--	---	--

Tabela 3-79: LN: Transformador de Tensão – TVTR.

Nós Lógicos para Transformadores de Potência 3.16

LN: Neutralizador de Falta para Terra (Bobina de Petersen)-3.16.1 YEFN

		YEFN		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
Loc	SPS	Operação local		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О
Valores Medidos				
ECA	MV	Corrente de Bobina terra		M
Controles				
ColTapPos	ISC	Posição do <i>tap</i> da bobina		M
ColPos	APC	Posição do núcleo móvel		O

Tabela 3-80: LN: Neutralizador de Falta para Terra (Bobina de Petersen)— YEFN.

3.16.2 LN: Comutador de Tap – YLTC

Para uma descrição detalhada deste LN veja IEC 61850-5.

	YLTC			
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О
Valores Medidos				
Torq	MV	Torque conduzido		O
MotDrvA	MV	Torque conduzido do motor		О
Controles				
TapPos	ISC	Muda posição do <i>Tap</i> para posição dedicada		С
TapChg	BSC	Muda posição do <i>Tap</i> (parado, maior, menor)		С
Informação de Sta	tus			
EndPosR	SPS	Posição final de ascensão atingida		M
EndPosL	SPS	Posição final baixa atingida		M
OilFil	SPS	Filtragem de óleo		О

Tabela 3-81: LN: Comutador de Tap – YLTC.

Condição C: dependendo do método de mudança de *tap*, pelo menos um dos controles deve ser usado.

3.16.3 LN: Bobina de Potência - YPSH

Para uma descrição detalhada deste LN veja IEC 61850-5. O LN bobina de potência também inclui a chave para fechar e abrir a bobina de potência.

		YPSH		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О
Controles				
Pos	DPC	Posição da chave		M
BlkOpn	SPC	Abertura do bloco		M
BlkCls	SPC	Fechamento bloco		M
ShOpCap	INS	Capacidade de operação		M
ChaMotEna	SPC	Motor carregador habilitado		О
MaxOpCap	INS	Capacidade de operação do bobina de potência quando totalmente carregado		О

Tabela 3-82: LN: Bobina de Potência - YPSH.

3.16.4 LN: Transformador de Potência - YPTR

		YPTR		
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Co	mum		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor		О

		externo)	
EEName	DPL	Nome do equipamento externo	О
OpTmh	INS	Tempo de operação	О
Valores Medid	os		
HPTmp	MV	Temperatura do ponto quente do enrolamento (em graus celsius)	О
Informações de	Status		
HPTmpAlm	SPS	Alarme de temperatura de ponto quente do enrolamento	О
HPTmpTr	SPS	Disparo de temperatura de ponto quente do T enrolamento	О
OANIL	SPS	Operação sem cargamento	О
OpOvA	SPS	Operação em sobrecorrente	О
OpOvV	SPS	Operação em sobretensão	О
OpUnV	SPS	Operação em subtensão	О
CGAlm	SPS	Alarme núcleo à terra (core ground)	О
Configurações			
HiVRtg	ASG	Tensão nominal (alto nível de tensão)	О
LoVRtg	ASG	Tensão nominal (baixo nível de tensão)	О
PwrRtg	ASG	Potência nominal	О

Tabela 3-83: LN: Transformador de Potência - YPTR.

3.17 Nós Lógicos para Equipamentos de Sistema de Potência Adicionais

3.17.1 LN: Rede Auxiliar - ZAXN

ZAXN				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				

Informações de N	Informações de Nó Lógico Comum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О		
EEName	DPL	Nome do equipamento externo	О		
OpTmh	INS	Tempo de operação	О		
Valores Medidos	Valores Medidos				
Vol	MV	Tensão da rede auxiliar	O		
Amp	MV	Corrente da rede auxiliar	O		

Tabela 3-84: LN: Rede Auxiliar – ZAXN.

3.17.2 LN: Bateria - ZBAT

ZBAT							
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados							
Informações de Nó Lógico Comum							
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M			
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О			
EEName	DPL	Nome do equipamento externo		О			
OpTmh	INS	Tempo de operação		О			
Valores Medidos							
Vol	MV	Tensão da bateria		M			
VolChgRte	MV	Taxa de mudança de tensão na bateria		O			
Amp	MV	Corrente de drenagem da bateria		О			
Controles	-						
BatTest	SPC	Inicia teste de bateria		О			
Informações de Status							

TestRsl	SPS	Resultados de teste da bateria		О		
BatHi	SPS	Bateria alta (tensão ou carga – sobrecarga)		О		
BatLo	SPS	Bateria baixa (tensão ou carga)		О		
Configurações						
LoBatLev	ASG	Valor de alarme de bateria baixa		О		
HiBatVal	ASG	Valor de alarme de bateria alta		О		

Tabela 3-85: LN: Bateria - ZBAT.

3.17.3 LN: Bushing - ZBSH

ZBSH							
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados				I			
Informações de Nó	Lógico Co	mum					
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M			
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О			
EEName	DPL	Nome do equipamento externo		О			
OpTmh	INS	Tempo de operação		О			
Valores Medidos							
React	MV	Capacitância relativa da bucha (bushing)		M			
LosFact	MV	Fator de perda (tan delta)		О			
Vol	MV	Tensão da bucha		О			
Configurações							
RefReact	ASG	Capacitância referência para bucha em comissionamento		О			
RefPF	ASG	Fator de potência de referência para bucha em comissionamento		0			
RefV	ASG	Tensão de referência para bucha em		О			

	c	comissionamento			
--	---	-----------------	--	--	--

Tabela 3-86: LN: Bushing - ZBSH.

LN: Cabo de Força - ZCAB 3.17.4

Para uma descrição detalhada deste LN veja IEC 61850-5.

ZCAB						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Co	mum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О		
EEName	DPL	Nome do equipamento externo		О		
OpTmh	INS	Tempo de operação		О		

Tabela 3-87: LN: Cabo de Força - ZCAB.

3.17.5 **LN: Banco Capacitor – ZCAP**

ZCAP					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Co	mum			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
EEHealth	INS	Saúde de equipamento externo (sensor		О	

		externo)				
EEName	DPL	Nome do equipamento externo	О			
OpTmh	INS	Tempo de operação	О			
Controles		·				
CapDS	SPC	Status do dispositivo banco de capacitor	M			
Informação de Status						
DschBlk	SPS	Bloqueado devido a descarga	M			

Tabela 3-88: LN: Banco Capacitor – ZCAP.

3.17.6 LN: Conversor - ZCON

Para uma descrição detalhada deste LN veja IEC 61850-5.

ZCON							
Nome do Atributo	Tipo Attr.	Explicação	T	M/O			
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)					
Dados							
Informações de Nó	Informações de Nó Lógico Comum						
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M			
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О			
EEName	DPL	Nome do equipamento externo		О			
OpTmh	INS	Tempo de operação		O			

Tabela 3-89: LN: Conversor – ZCON.

3.17.7 LN: Gerador - ZGEN

ZGEN					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	

LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)	
Dados	1		<u>'</u>
Informações de	e Nó Lógico (Comum	
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О
EEName	DPL	Nome do equipamento externo	О
OpTmh	INS	Tempo de operação	О
Controles			•
GntCtl	DPC	Controle do gerador	M
DExt	SPC	Ante-excitação	M
AuxSCO	SPC	Fim de mudança de suprimento auxiliar	О
StopVlv	SPC	Valor de parada	О
ReactPwrR	SPC	Aumenta potência reativa	О
ReactPwrL	SPC	Diminui potência reativa	О
Valores medide	os		
GnSpd	MV	velocidade	О
Informação de	Status		•
GnSt	INS	Estado do gerador (parado, iniciando, iniciado, parando, desabilitado)	M
OANL	SPS	Operação sem carga	M
ClkRot	SPS	Rotação de fase no sentido horário	M
CntClkRot	SPS	Rotação de fase no sentido anti-horário	M
OpUnExt	SPS	Operação em sub-excitação	M
OpOvExt	SPS	Operação em sobre-excitação	M
LosOil	SPS	Perda de óleo	О
LosVac	SPS	Perda de vácuo	О
PresAlm	SPS	Alarme de baixa pressão	О
Configurações			
DmdPwr	ASG	Potência demandada	О
PwrRtg	ASG	Potência nominal	О
VRtg	ASG	Tensão nominal	О

Tabela 3-90: LN: Gerador – ZGEN.

3.17.8 LN: Linha Isolada por Gás - ZGIL

Para uma descrição detalhada deste LN veja IEC 61850-5.

	ZGIL					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados	Dados					
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)		0		
EEName	DPL	Nome do equipamento externo		O		
OpTmh	INS	Tempo de operação		О		

Tabela 3-91: LN: Linha Isolada por Gás - ZGIL.

3.17.9 LN: Linha Sobrecarregada de Energia - ZLIN

ZLIN						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Con	num				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)		0		
EEName	DPL	Nome do equipamento externo		О		

OpTmh	INS	Tempo de operação	О
· F		F3	_

Tabela 3-92: LN: Linha Sobrecarregada de Energia - ZLIN.

3.17.10 LN: Motor - ZMOT

Para uma descrição detalhada deste LN veja IEC 61850-5.

ZMOT						
Nome do Atributo	Tipo Attr.	Explicação	T	M/O		
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)				
Dados						
Informações de Nó	Lógico Cor	mum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M		
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О		
EEName	DPL	Nome do equipamento externo		О		
OpTmh	INS	Tempo de operação		О		
Controles						
DExt	SPC	Ante-excitação		M		
Informação de Stat	Informação de Status					
LosOil	SPS	Perda de óleo		О		
LosVac	SPS	Perda de vácuo		О		
PresAlm	SPS	Alarme de baixa pressão		О		

Tabela 3-93: LN: Motor – ZMOT.

3.17.11 LN: Reator - ZREA

ZREA					
Nome do Atributo	Tipo Attr.	Explicação	T	M/O	

LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)	
Dados			
Informações de Nó	Lógico Cor	mum	
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum	M
EEHealth	INS	Saúde de equipamento externo (sensor externo)	О
EEName	DPL	Nome do equipamento externo	О
OpTmh	INS	Tempo de operação	О

Tabela 3-94: LN: Reator – ZREA.

3.17.12 LN: Componente Reativo Rotativo - ZRRC

Para uma descrição detalhada deste LN veja IEC 61850-5.

	ZRRC				
Nome do Atributo	Tipo Attr. Explicação		T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Informações de Nó Lógico Comum				
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О	
EEName	DPL	Nome do equipamento externo		О	
OpTmh	INS	Tempo de operação		О	

Tabela 3-95: LN: Componente Reativo Rotativo – ZRRC.

3.17.13 LN: Estabilizador - ZSAR

	ZSAR				
Nome do Atributo	e do Atributo Tipo Attr. Explicação		T	M/O	
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)			
Dados					
Informações de Nó	Lógico Con	num			
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M	
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О	
EEName	DPL	Nome do equipamento externo		О	
OpTmh	INS	Tempo de operação		О	
Informação de Stat	Informação de Status				
OPSA	SPS	Operação de estabilizador (surge arrestor)	T	M	

Tabela 3-96: LN: Estabilizador - ZSAR.

3.17.14 LN: Conversor de Freqüência Controlado por Tiristor (Thyristor Controlled Frequency Converter) - ZTCF

ZTCF				
Nome do Atributo	Tipo Attr.	Explicação		M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		M
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О

Configurações			
PwrFrq	ASG	Freqüência alvo	O

Tabela 3-97: LN: Conversor de Frequência Controlado por Tiristor (Thyristor Controlled Frequency Converter) – ZTCF.

3.17.15 LN: Componente Reativo Controlado por Tiristor (*Thyristor Controlled Reactive Component*) – ZTCR

Para uma descrição detalhada deste LN veja IEC 61850-5.

ZTCR				
Nome do Atributo	Tipo Attr.	Explicação	T	M/O
LNName		Deve ser herdado da classe LN (veja IEC-61850-7-2)		
Dados				
Informações de Nó	Lógico Cor	num		
		LN deve herdar todos os dados obrigatórios da classe de Nó Lógico Comum		М
EEHealth	INS	Saúde de equipamento externo (sensor externo)		О
EEName	DPL	Nome do equipamento externo		О
OpTmh	INS	Tempo de operação		О

Tabela 3-98: LN: Componente Reativo Controlado por Tiristor (Thyristor Controlled Reactive Component) – ZTCR.

3.18 Semântica do Nome de Dado

Na tabela a seguir são descritos os dados usados nas definições dos nós lógicos. O significado de valores lógicos (do tipo *Boolean*) são FALSE = 0, TRUE = 1.

Nome do Dado	Semântica
AcsCtlFail	Número de falhas de controle de acesso detectadas.
AcuPaDsch	Nível acústico de descarga parcial em db.
AgeRat	Taxa de envelhecimento, por exemplo do transformador.

Nome do Dado	Semântica		
Alm	Alarme único geral.		
AlmLstOv	TRUE = Indicação de que a lista de alarme transbordou (<i>overflow</i>)		
AlmThm	Alarme termal.		
AlmVal	Valor de Alarme é o valor pré-definido para a medida que, quando atingida, vai resultar em um alarme.		
Amp	Corrente de um circuito não trifásico.		
Ang	Ângulo entre tensão de fase e corrente.		
AngCor	Correção de ângulo de fase ou fasor (usado por exemplo para instrumentos Transformadores/transdutores.		
AngInd	Este dado indica o resultado checagem das diferenças entre os ângulos do barramento e tensões de linha. FALSE indica que a diferença de ângulo está abaixo do limite requerido. Os critérios de diferença de ângulo para a sincronização são cumpridos. TRUE indica que a diferença de ângulo excede o limite. O processo de sincronização deve ser abortado porque os critérios de ângulo não são cumpridos (<i>synchrocheck</i>) ou deve ser continuado com atividades de controle de atividades (<i>synchronising</i>).		
AngLod	Angulo para area de carga. Segue um exemplo da definição de encroachment de carga usado para o dado AngLod e RisLod com característica poligonal, aplicável também com MHO, PDIS1, PDIS2, e PDIS3 são0 instâncias diferentes do LN PDIS, um para cada zona. Veja também RisGndRch. PDIS1 PDIS2 PDIS3 PDIS3 PDIS3 PDIS3 PDIS3 PDIS4 AngLod RisLod RisLod Forward Forward		

Nome do Dado	Semântica				
AnIn	Entrada analógica usada para Entrada/Saída genérica.				
ArcCntRs	Contador de arco, reinicializável.				
ARtg	Corrente nominal, propriedade intrínseca pode ser configurada/mudada remotament	Corrente nominal, propriedade intrínseca do dispositivo, que não pode ser configurada/mudada remotamente.			
AStr	Nível de corrente: se este nível é excedid iniciam uma ação dedicada.	Nível de corrente: se este nível é excedido, as funções relacionadas iniciam uma ação dedicada.			
AuthFail	Número de falhas de autorização.				
Auto	Este dado é responsável pela habilitação o de saída do controlador automático; auto de saída está habilitado, não automático saída está desabilitado.	mático (TRUE) = circuito			
AutoRecSt	Esta dado representa quando ou não o aut em processo, ou completado com sucesso.	-			
	Status de Religamento Automático	Valor			
	Pronto	1			
	Em progresso	2			
	Sucesso	3			
AutoUpLod	TRUE = envio automático dos arquivos do	o gravador de distúrbios.			
AuxSCO	TRUE = mudança de comandos durante de força auxiliar.	operação a partir da fonte			
AvAmps	Corrente média em um intervalo de avalia	ção definido (período).			
AVCrv	Curva característica para operação de p onde $x = V$ (tensão) e $y = A$ (corrente). O diferentes curvas são dados na definição 61850-7-3	s inteiros representando as			
AVSt	Entrega a curva característica ativa				
AvVA	Potência aparente média em um interva (período)	alo de avaliação definido			
AvVAr	Potência reativa média em um interva (período)	lo de avaliação definido			
AvVolts	Tensão média em um intervalo de avaliação definido (período)				
AvW	Potência real média em um intervalo de avaliação definido (período)				
BatHi	TRUE = Indica que a bateria está na condição de sobrecarga				
BatLo	TRUE = Indica que a tensão da bateria configurado.	caiu abaixo do nível pré-			
BatTest	TRUE = Comando para iniciar o teste da bateria				
Beh	Uma vez que o dispositivo lógico control são partes do LD, o modo do LD ("LD				

Nome do Dado	Semântica			
	modo de um LN específico ("LNMode = XXXX.mod") estão relacionados. O comportamento de um nó lógico é então uma combinação de LLN0.mod e XXXX.mod e é descrito no "LNBeh" = XXXX.Beh. Este dado é apenas de leitura (<i>read-only</i>) e tem os mesmos valores possíveis de Mod (Modo). O valor é determinado de acordo com a seguinte tabela:			
	LNMode XXXX.mod	LDMODE LLN0.mod	LNBeh (leitura) XXXX.Beh	LNBeh Valor
	Ligado Ligado Ligado	Ligado Bloqueado Teste	Ligado Bloqueado Teste	1 2 3
	Ligado Ligado Bloqueado	Teste-bloqueado Desligado Ligado	Teste-bloqueado Desligado Bloqueado	4 5 2
	Bloqueado Bloqueado Bloqueado	Bloqueado Teste Teste-bloqueado	Bloqueado Teste-bloqueado Teste-bloqueado	2 4 4
	Bloqueado Teste Teste	Desligado Ligado Bloqueado	Teste Teste-bloqueado	5 3 4
	Teste Teste Teste	Teste Teste-bloqueado Desligado	Teste Teste-bloqueado Desligado	3 4 5
	Teste-bloqueado Teste-bloqueado Teste-bloqueado Teste-bloqueado	Ligado Bloqueado Teste Teste-bloqueado	Teste-bloqueado Teste-bloqueado Teste-bloqueado Teste-bloqueado	4 4 4
	Teste-bloqueado Desligado Desligado	Desligado Ligado Bloqueado	Desligado Desligado Desligado	5 5 5
	Desligado Desligado Desligado	Teste Teste-bloqueado Desligado	Desligado Desligado Desligado	5 5 5
BinIn	Arranjo de entrada binário usado para entrada/saída genérica, e representa um conjunto de entradas binárias.			
BkrTmms	Tempo de fechamento do disjuntor incluindo outros atrasos até a operação do disjuntor. Esta é uma propriedade do disjuntor que é sujeita ao envelhecimento.			
BlkA	TRUE = Operação bloqueada por motivos de corrente.			
BlkAOv	TURE = Operação da chave bloqueada por transbordo de limite de corrente.			
BlkCls	Este dado é usado para bloquear "operação fecha" (por exemplo,			

Nome do Dado	Semântica
	para XCBR, XSWI, YPSH) a partir de outro nó lógico, como um nó de proteção, ou de uma chave local/remota. Um exemplo poderia ser a baixa densidade de gás de isolamento. Bloquear fechamento não é refletido em capacidade de operação. TRUE = bloqueia operação 'fecha disjuntor'.
BlkEF	TRUE = atividade de chave bloqueada devido a curto-circuito para a terra.
BlkLV	Controle de tensão abaixo do qual comandos de auto abaixamento são bloqueados.
BlkOpn	Este dado é utilizado para bloquear operação de abertura (por exemplo para XCBR, XSWI, YPSH) a partir de outro nó lógico como um nó de proteção ou de um uma chave local/remota. Um exemplo pode ser um bloqueio de
BlkRec	Bloqueia Religamento
BlkRV	Tensão de controle acima do qual comandos de aumento automático são bloqueados.
BlkV	TURE = operação está bloqueada por motivos de tensão
BlkVal	Quando as medidas excedem este valor, a operação da função é bloqueada
BlkValA	Valor de bloqueio (mínima corrente de operação)
BlkValV	Valor de bloqueio (mínima tensão de operação)
BlkVOv	TRUE = Operação de chave está bloqueada pelo transbordo do limite de tensão
BlkZn	Este dado é usado pela proteção de oscilação de potência para bloquear operação de proteção para uma zona de proteção específica i.e. a instância de PDIS relacionada.
BndCtr	Centro de controle de banda, presumido fluxo de potência à frente.
BndWid	Largura de banda, i.e. a faixa definida do controle de tensão, dado como valor de tensão ou como porcentagem da tensão nominal. Fluxo de potência à frente é presumido, se aplicável.
CapDS	TRUE = banco de capacitores está online, ou fechado. FALSE = banco de capacitores fora de linha ou fechado.
CarRx	Um transportador foi recebido após iniciação de lógica desbloqueio.
CBOpCap	É uma enumeração representando as capacidades físicas do disjuntor para operar. Ele reflete a energia de chaveamento e também bloqueio central devido a algum problema centra.
	Ele é sempre menor ou igual a MaxOpCap.

Nome do Dado	Semântica			
	Capacidade de Operação do Disjuntor	Valor		
	Nenhuma	1		
	Abre	2		
	Fecha - Abre	3		
	Abre – Fecha - Abre	4		
	Fecha – Abre – Fecha - Abre	5		
	Mais valores (6n) descrevem capacidades de d Um novo valor, i.e. um novo valor na tabe alternando entre "Fecha" e "Abre" e terminar com	la deve começar		
CECtl	Controle do grupo de resfriamento completo.			
CGAlm	TRUE = Alarme core ground indica que o isolame	nto foi quebrado.		
ChaMotEna	Este dado é utilizado para habilitar o motor carre prevenir sobrecarregamento da fonte de energia barramento. TURE = habilita motor carregador, Famotor carregador.	após um trip de		
ChkRec	Verificar se o religamento está com (TRUE) o checagem de sincronismo (synch-check).	ou sem (FALSE)		
ChNum	Número do canal sendo monitorado (por COMTRADE).	exemplo para		
ChrAng	O ângulo pelo qual a corrente é deslocada da quan para obter máxima sensibilidade.	tidade polarizante		
ChTrg	Canal disparado. TRUE = canal começou gravação não começou gravação.	o, FALSE = canal		
CircA	Corrente circulante medida, a qual circula entre operados em paralelo.	Transformadores		
ClkRot	TRUE = indicação de que a circulação da fase é i (à frente ou <i>forward</i>).	no sentido horário		
CntClkRot	TRUE = indicação de que a rotação da fase esta horário (reversa).	á no sentido anti-		
ColPos	Representa o ajuste contínuo de uma bobina (p móvel) como uma bobina de Petersen.	osição do núcleo		
ColTapPos	Representa o ajuste discreto de uma bobina co Petersen.	omo a bobina de		
ConsTms	Constante de tempo, por exemplo para um modelo	termal.		
Cor	Correção de magnitude de um fasor (usado p instrumentos Transformadores/transdutores).	or exemplo para		
CrdTmms	Tempo de atraso em ms para esperar entradas ad ações foram invocadas.	icionais se outras		

Nome do Dado	Semântica	
CtlDlTmms	Controle de tempo de atraso antes de operar, após atingir ponto de controle, presumido fluxo de potência à frente.	
CtlV	Tensão no secundário do transformador, como usado para controle de tensão.	
DeaBusVal	Configuração de tensão usada par por exemplo para auto-religamento	ra detectar um barramento morto, o.
DeaLinVal	Configuração de tensão usada pa exemplo para auto-religamento.	ra detectar uma linha morta, por
Den	Densidade do meio de isolamento;	;
DenAlm	Alarme de densidade por condi TRUE = alerta)	ção anormal (FALSE = norma,
DetValA	Usado para detectar que o disjurabaixo daquela configuração.	ntor abriu quando a corrente está
DExt	TRUE = Comando para ante-excit	ar a máquina
Diag	TRUE = Diagnóstico está rodando	, FALSE = Diagnóstico inativo
DifAClc	Corrente diferencial	
DifAng	Configuração para diferença de ângulo de fase entre dois valores medidos por um LN <i>synch-check</i> .	
DifAngClc	Valor calculado para diferença do ângulo de fase entre dois valores medidos por um LN <i>synch-check</i> .	
DifHz	Configuração para a diferença de frequência entre dois valores medidos por um LN <i>synch-check</i> .	
DifHzClc	Valor calculado para a diferença de freqüência entre dois valores medidos por um LN <i>synch-check</i> .	
DifV	Configuração para a diferença de tensão entre dois valores medidos por um LN <i>synch-check</i> .	
DifVClc	Valor calculado para a diferença de tensão entre dois valores medidos por um LN <i>synch-check</i> .	
Dir	A direção de uma falha ou fluxo de potência.	
DirMod	Este dado é utilizado para habilitar operação quando as seguintes condições direcionais são atingidas:	
	Modo de Direção	Valor
	Não direcional	1
	À frente (forward)	2
	Reversa 3	
DltRcd	TRUE = apaga gravação seleciona	ida.
DmdPwr	Potência demandada.	

Nome do Dado	Semântica
DmdVArh	Demanda de energia reativa (direção de demanda padrão: energia flui do barramento para fora)
DmdWh	Demanda de energia real (direção de demanda padrão: energia flui do barramento para fora)
DPCSO	Controle de ponto duplo genérico
DQ0Seq	Quantidade direta, quadratura e eixo zero.
DschBlk	TRUE = indica que a ação de fechamento de chave para o banco de capacitores está bloqueada devido ao estado de descarga do banco.
DurTmms	Duração mínima de sinal transportador enviado por um esquema baseado em comunicação, em ms.
ECA	Essa é a corrente medida através de uma bobina de Pertersen em redes compensadas neutras.
Echo	Sinal ecoado de função para fim de fonte fraca
EEHealth	Esta informação reflete o estado de equipamento externo, por exemplo disjuntor controlado por nó lógico XCBR. Os valores são os mesmos que os para Health.
EEName	Esta informação reflete o nome de equipamento externo, por exemplo o disjuntor XCBR controlado pelo nó lógico CSWI.
EnaCls	A própria função de intertravamento determina o status deste dado de então permite o fechamento do dispositivo quando TRUE. O serviço de controle verifica este valor antes de controlar fechamento/ligamento de uma chave.
EnaOpn	A própria função de intertravamento determina o status deste dado de então permite o fechamento do dispositivo quando TRUE. O serviço de controle verifica este valor antes de controlar abertura/desligamento em uma chave.
EndPosL	TRUE = comutador de <i>tap</i> de carregador está na posição "baixa" máxima.
EndPosR	TRUE = comutador de <i>tap</i> de carregador está na posição "alta" máxima.
EnvTmp	Temperatura do ambiente.
EqTmm	Tempo de equalização da temperatura (min). Para a duração de EqTmm, a memória termal será mantida, i.e. a memória termal é congelada. Este tempo é ativado após o desligamento do motor.
EvTmms	Tempo de avaliação em ms (janela de tempo) determina a menor freqüência.
ExclTmms	Tempo de exclusão em ms em que gatilhos consecutivos de uma mesma fonte são ignorados.
FACntRs	Contador de arcos de falha, reinicializável

Nome do Dado	Semântica			
FADet	TRUE = Alarme de detecção de arco de falha.			
Fail	TRUE = Indica que um disjuntor falhou na operação e uma falha de disjuntor ocorreu.			
FailMod	Modo de detecção de falha de disjuntor.			
	Modo de Detecção Corrente Status do disjuntor Ambos, Corrente e Status de Disjuntor Outros	1 2 3 4	or	
FailTmms	O tempo de atraso em ms até que a funçã emitir um <i>trip</i> a um dispositivo alternativo		falha de disjun	tor vá
FanA	Corrente de acionamento de um ventilador	r, em '	a	
FanCltGen FanClt	FanCltGen – Cotnrole de todos os ventilador FanClt – Controle de um único ventilador	lores		
	Controle do Ventilador	V	alor	
	Inativo	1		
	Estágio 1	2		
	Estágio 2	3		
	Estágio 3	4		
	Mais estágios podem ser adicionados com	valor	es maiores que	4.
FanFlw	Fluxo de ar no ventilador.			
FanOvCur	<i>Trip</i> de sobrecorrente de ventilador.			
FltDiskm	A distância a uma falha em km.			
FltLoop	Laço de falha		Valor	
	Fase A para terra		1	
	Fase B para terra		2	
	Fase C para terra		3	
	Fase A para fase B		4	
	Fase B para fase C		5	
	Fase C para fase A		6	
	Outros		7	
FltNum	Número de falta (alocação do número é uma característica da falha)		alha)	
FltZ	Impedância da falha			
FuFail	TRUE = Indica que o fusível TVTR foi ab	erto/f	alhou	
GasFlwTr	<i>Trip</i> do fluxo do líquido de isolamento (por exemplo óleo) por causa de uma condição anormal (FALSE = normal, TRUE = alerta, talvez usado para trip Buchholz).			

Nome do Dado	Semântica	
GasInsAlm	Alarme no gás no líquido de isolamento (por exemplo óleo) devido a uma condição anormal (FALSE = normal, TRUE = alerta, talvez usado para <i>trip</i> Buchholz).	
GasInsTr	Trip de gás no líquido de isolamento por causa (talvez usado para trip Buchholz).	de condição perigosa
GnCtl	Controle do gerador.	
GndDlMod	Tempo de atraso de operação para modo de fas TRUE = ligado, FALSE = desligado.	se única aterrada.
GndDlTmms	Tempo de atraso de operação para falhas de fams.	ase única aterrada, em
GndStr	Quando as medidas de terra excedem (ou caem abaixo, no caso de uma função de abandono) este valor, a operação da função relacionada é iniciada.	
GnSpd	Velocidade do gerador	
GnSt	Estado do gerador	
	Estado do Gerador	Valor
	Parado	1
	Parando	2
	Iniciado	3
	Iniciando	4
	Desabilitado	5
GrAlm	Este dado sumariza diferentes alarmes, atribuío TURE = Indica um grupo de alarme.	dos via configuração.
GrdRx	Se TRUE: recebimento de um sinal de guarda da interface de configuração do transportador	
GriFltNum	Número de falha na grade é usado para identificação de arquivos de distúrbios de uma falha comum (alocação de número é uma característica local)	
GrWrn	Este dado sumariza diferentes avisos, atribuídos via configuração. TRUE = Indica um alarme de grupo.	
H2	Medição de Hidrogênio (H2 em ppm). Medição de gás combustível no óleo indicando o deterioração do sistema de isolamento	
H2Alm	Alarme H2 para composição do gás (FALSE = normal, TRUE = alerta).	
H2O	Saturação relativa de umidade no óleo (em %). Note que esta é uma medida usada em conjunto com H2OTmp.	
H2OTmp	Temperatura do óleo no ponto de medição de saturação relativa de umidade no óleo (em Celsius). Note que esta é uma medida usada em conjunto com H2O.	

Nome do Dado	Semântica
НА	Seqüência relacionada à fase de correntes harmônicas ou inter- harmônicas para A, B, C, N, Net, Res.
HaAmp	Seqüência não relacionada à fase de correntes harmônicas ou inter- harmônicas.
HaAmpTm	Produto do tempo de corrente não relacionada à fase
HaCfAmp	Fatores crista de corrente (valor pico da forma de onda / raiz(2) / fundamental)
HaCfVol	Fatores crista de tensão (valor pico da forma de onda / raiz(2) / fundamental)
HaKFact	Fator K não relacionado à fase.
HaRmsAmp	RMS da corrente harmônica ou inter-harmônica não relacionada à fase (Thd não normalizada)
HaRmsVol	RMS da tensão harmônica ou inter-harmônica não relacionada à fase (Thd não normalizada)
HaRst	Número de harmônicos que estão sendo monitorados para restrição.
HaTdFact	Fator de estrangulamento de transformador não relacionado à fase.
HaTiFact	Fator de influência de tensão de telefone não relacionada a fase, método 1, 2, 3
HATm	Produto de tempo de corrente relacionado à fase
HaTsWatt	Soma, com sinal, da potência ativa (não fundamental) total harmônica ou inter-harmônica não relacionada à fase.
HaTuWatt	Soma, com sinal, da potência ativa (não fundamental) total harmônica ou inter-harmônica não relacionada à fase.
HaVol	Seqüência não relacionadas à fase de correntes harmônicos ou inter- harmônicos para tensões.
HaVolAmp	Sequência não relacionada à fase de correntes de harmônicos ou inter-harmônicos para potência aparente.
HaVolAmpr	Sequência não relacionada à fase de correntes de harmônicos ou inter-harmônicos para potência reativa.
HaWatt	Seqüência não relacionada à fase de correntes de harmônicos ou inter-harmônicos para potência ativa.
HCfA	Fatores pico de corrente (valor pico da forma de onda / raiz(2) / fundamental) relacionada à fase.
HCfPhV	Fatores pico de tensão fase-terra (valor pico da forma de onda / raiz(2) / fundamental)
HCfPPV	Fatores pico de tensão fase-fase (valor pico da forma de onda / raiz(2) / fundamental)
Health	Esta informação reflete o estado do HW e SW relacionados ao nó

Nome do Dado	Semântica	
	lógico. Informações mais detalhadas relacionada à fonte do problema pode ser provida por dado específico. Para LLNO, este dado reflete o pior valor de "Health" dos nós lógicos que são parte do dispositivo lógico associado com LLNO.	
	Estado de Saúde	Valor
	Ok ("verde")- nenhum problema, operação normal	1
	Aviso ("amarelo") - problemas pequenos, mas em modo de operação seguro	2
	Alarme ("vermelho") - problema grave, nenhuma operação possível.	3
	Os estados são não ambíguos por definição. O significado estado 2 é uma característica local dependendedicada ou dispositivo.	
HiCtlV	Maior tensão controlada desde a última reinicialização)
HiDmdA	Maior demanda de corrente desde a última reinicializa	ıção
HiSet	Valor de operação alto (high operate value), porcentage corrente nominal.	gem da
HiTapPos	Maior posição de <i>tap</i> desde a última reinicialização.	
HiTrgLev	Nível (positivo) de acionamento alto.	
HiVRtg	Tensão aumentada (nível de tensão alto).	
HKf	Fator K relacionado à fase para A, B, C.	
HPhV	Sequência de harmônicos ou inter-harmônicos para tensões faseterra AN, BN, CN, NG.	
HPPV	Seqüência de harmônicos ou inter-harmônicos para tensões fase-fase AB, BC, CA.	
HPTmp	Temperatura do ponto quente do enrolamento (em gra	us Celsius)
HPTmpAlm	Alarme de temperatura de ponto quente (FALSE = no alto).	rmal, TRUE =
HPTmpTr	TRUE = Indica que um <i>trip</i> ocorreu devido a tempera quente do enrolamento.	tura de ponto
HRmsA	RMS da corrente harmônica ou inter-harmônica relaci (distorção harmônica total não normalizada, Thd) para	
HRmsPhv	RMS da tensão fase-terra harmônica ou inter-harmôni normalizado) para AN, BN, CN, NG.	ca (Thd não
HRmsPPv	RMS da tensão fase-fase harmônica ou inter-harmônica normalizado) para Ab, BC e CA.	ca (Thd não
HTdf	Fator de estrangulamento de transformador relacionad A, B e C.	o à fase para

Nome do Dado	Semântica
HTif	Fator de influência de telefone na tensão relacionada à fase, método 1, 2, 3,
HTsW	Soma, com sinal, da potência de fase ativa (não fundamental) total harmônica ou inter-harmônica para A, B, C.
HTuW	Soma, sem sinal, da potência ativa de fase (não fundamental) total harmônica ou inter-harmônica para A, B, C.
HVA	Sequência de potência aparente de harmônicos ou inter-harmônicos relacionada à fase para A,B,C.
HVAr	Sequência de potência reativa de harmônicos ou inter-harmônicos relacionada à fase para A,B,C.
HVStr	Quando a terceira tensão harmônica de fase excede este valor, o controle de operação da proteção PHIZ é iniciado.
HW	Sequência de potência ativa de harmônicos ou inter-harmônicos relacionada à fase para A, B, C.
HZ	A frequência de um sistema de potência em Hz.
HzInd	Este dado indica o resultado da verificação das diferenças entre as freqüências do barramento e tensões de linha. FALSE indica que o critério de diferença de freqüência para sincronismo são cumpridos. TRUE indica que a diferença de freqüência excede o limite. O processo de sincronização deve ser abortado porque os critérios de freqüência não são cumpridos (<i>synchrocheck</i>) ou deve ser continuado com atividades de controle de turbina (<i>synchronising</i>).
HzRtg	Frequência nominal, propriedade intrínseca do dispositivo, que não pode ser configurada ou alterada remotamente.
HzSet	Configuração de uma freqüência.
IhA	Seqüência relacionada à fase de corrente inter-harmônicas para A, B, C, N, Net, Res.
IhAmp	Seqüência não relacionada à fase de corrente inter-harmônica.
IhPhv	Seqüência de inter-harmônicos para tensões fase-terra AN, BN, CN, NG.
IhPPV	Seqüência de inter-harmônicos para tensões fase-fase AN, BN, CN, NG.
IhVA	Seqüência relacionada à fase de potência aparente inter-harmônica para A,B,C.
IhVAr	Sequência relacionada à fase de potência reativa inter-harmônica para A,B,C.
IhVol	Seqüência não relacionada à fase de tensão inter-harmônica.
IhVolAmp	Seqüência não relacionada à fase de potência aparente inter- harmônica.

Nome do Dado	Semântica	
IhVolAmpr	Seqüência não relacionada à fase de potência reativa inter- harmônica.	
IhW	Seqüência relacionada à fase de potência ativa inter-harmônica para A,B,C.	
IhWatt	Sequência não relacionada à fase de potência ativa inter-harmônica.	
ImbA	Desvio da corrente de fase média.	
ImbNgA	Método de corrente de seqüência negativa desbalanceada. ImbNgA = I2 / I1.	
ImbNgV	Método de tensão de seqüência negativa desbalanceada. ImbNgA = V2 / V1.	
ImbPPV	Desvio da tensão fase-fase média.	
ImbV	Desvio da tensão fase-neutro médio.	
ImbZroA	Método de corrente de seqüência zero desbalanceada. ImbZroA = I0 / I1.	
ImbZroA	Método de tensão de seqüência zero desbalanceada. ImbZroA = V0 / V1.	
Ina	Número de associações terminadas devido a inatividade.	
Ind	Indicação geral.	
InhTmm	Configuração de tempo para inibição de reinicialização (min). Uma vez que StrInh é ativado, o motor não deve ter permissão de iniciar até que este tempo tenha passado.	
InOv	Este dado indica que um transbordo de <i>buffer</i> ocorreu para o <i>buffer</i> de entrada e anúncios importantes podem ser perdidos (TRUE) na comunicação. Uma interrogatório geral é recomendado ou um <i>scan</i> de integridade é iniciado automaticamente.	
InsAlm	TRUE = provê um alarme após atingimento de um limite préconfigurado, por exemplo nível de isolamento baixo. A configuração dos limites é uma característica local e depende da propriedade do meio supervisionado. Uma ação apropriada pode ser recarregar o meio de isolamento.	
InsBlk	TRUE = bloqueia a operação do dispositivo isolado quando o nível é atingido onde a operação não é mais segura. A configuração dos limites é uma característica local e depende da propriedade do meio supervisionado.	
InsLevMax	TURE = Nível de isolamento do meio atingiu nível máximo prédeterminado, usado principalmente para o processo de preenchimento.	
InsLevMin	TURE = Nível de isolamento do meio atingiu nível mínimo prédeterminado, usado principalmente para o processo de preenchimento.	

Nome do Dado	Semântica	
InsTr	TRUE = o isolamento do dispositivo não é mais garantido. O dispositivo precisa ser desligado do sistema de potência, i.e. ele precisa ser isolado através de <i>tripping</i> dos disjuntores ao redor. A configuração dos limites é uma característica local e depende da propriedade do meio supervisionado.	
IntIn	Entrada de status inteira usado para entrada/s	aída genérica.
ISCSO	Saída de controle inteiro genérica.	
K0Fact	K0 é o fator de compensação seqüência zero é a impedância de seqüência zero, e Z1 é a ir positiva.	
K0FactAng	Ângulo do fator de compensação residual par	a K0.
LCol	Abaixa posição do núcleo móvel	
LDC	Compensação de queda de linha. LDC é modelo R&X ou Z. TRUE = R&X, FALSE = Z.	
LDCR	Queda de tensão de linha devido ao componente de resistência da linha (FPF presumido) na corrente nominal.	
LDCX	Queda de tensão de linha devido ao componente de reatância da linha (FPF presumido) na corrente nominal.	
LDCZ	Queda de tensão de linha devido à impedância total da linha (FPF presumido) na corrente nominal.	
LEDRs	Reinicia todos diodos de emissão de luz, TRUE provoca reinicialização.	
Lev	Nível do meio de isolamento.	
LevMod	Modo de acionamento interno para gravação de distúrbio.	
	Modo de Acionamento Interno	Valor
	Positivo ou aumentando	1
	Negativo ou caindo	2
	Ambos Outro	3
LHz	TRUE = diminui frequência, FALSE = nenhu	
LimAOv	Limite de corrente para bloqueio de transbordo.	
LimLodA	O dado corrente LodA (porcentagem) acima do qual comandos automáticos são suspensos.	
LimVOv	Limite de tensão para bloqueio de transbordo.	
LinAng	Ângulo de linha é o ângulo de impedância do alimentador/linha.	
LinCapac	Capacitância da linha.	
LinLenKm	O comprimento da linha em Km.	

Nome do Dado	Semântica	
LosOil	TURE = indica que uma perda de óleo foi detectada.	
LosVac	TRUE = indica quando o vácuo cai abaixo de um nível prédeterminado.	
LoTapPos	Menor posição do <i>tap</i> desde a última reinicialização.	
LoTrgLev	Nível (negativo) de acionamento baixo.	
LoVRtg	Tensão nominal (nível de tensão baixo).	
LTCBlk	TRUE = Controle automático de LTC bloqueado.	
LTCDragRs	TRUE = reinicia LTC <i>drag hands</i> (posições máxima e mínima para posição presente).	
LV	TRUE = diminui tensão, FALSE = nenhuma ação.	
MaxAmps	Corrente máxima em um intervalo de avaliação (período).	
MaxDlTmms	Diferença instante de operação (entre operação pretendida e realizada).	
MaxEna	Monitoramento de corrente excedendo um valor de configurado está habilitado (TRUE) para detectar uma condição de falta durante varição de potência no sistema.	
MaxFwdAng	Ângulo de fase máximo na direção à frente.	
MaxImbA	Desvio máximo da corrente média. Max(Idev_a, Idev_b, Idev_c)	
MaxImbPPV	Desvio máximo da tensão fase-fase média. Max(PPVdev_a, PPVdev_b, PPVdev_c)	
MaxImbV	Desvio máximo da tensão fase-neutro média. Max(PPVdev_a, PPVdev_b, PPVdev_c)	
MaxNumRcd	Número máximo de gravações que podem ser gravadas.	
MaxNumStr	Configuração para o número máximo de inicializações. Este dado também é utilizado para o número permitido de partidas frias. Por exemplo, o fabricante do motor pode definir que um 1 h são permitidas no máximo três partidas. Estes parâmetros servem para isso. Então MaxNumStr é definido como 3 e MaxStrTmm é definido como 60 (min).	
MaxOpCap	Este dado deve fornecer operação da capacidade de operação disponível quando o mecanismo de chave está completamente carregado. A capacidade máxima de operação dá informação sobre o máximo de CBOpCap.	
MaxOpTmms	O dado tempo de operação máximo em ms para o LN é usado ação de coordenação da função relacionada.	
MaxRvAng	Ângulo de fase máximo na direção reversa.	
MaxStrTmm	O período de tempo no qual o número máximo de partidas é	

Nome do Dado	Semântica	
	(estado normal)	
	BLOCKED	2
	Função ativa	
	Nenhuma saída (para o processo) gerada	
	Nenhum relatório	
	Serviços de controle (do cliente) rejeitados	
	Dado funcional (relacionado ao processo) visível	
	Dado de configuração (capacidade) visível	
	(Processo é supervisionado passivamente)	
	TEST	3
	Função ativa	
	Saídas (para o processo) geradas	
	Relatório (para o cliente) marcado como teste	
	Serviços de controle (do cliente) aceitados	
	Dado funcional (relacionado ao processo) visível	
	Dado de configuração (capacidade) visível	
	(A função é operada mas os resultados são	
	marcados como resultados de teste)	
	TEST/BLOCKED	4
	Função ativa	
	Nenhuma saída (para o processo) gerada	
	Relatório (para o cliente) marcado como teste	
	Serviços de controle (do cliente) aceitados	
	Dado funcional (relacionado ao processo) visível	
	Dado de configuração (capacidade) visível	
	(A função é operada em modo teste mas com	
	nenhum impacto ao processo)	
	OFF (desabilitado)	5
	Função não ativa	
	Nenhuma saída (para o processo) gera	
	Nenhum relatório	
	Serviços de controle (do cliente) rejeitados	
	Dado funcional não visívelda	
	Dado de configuração (capacidade) visível	
	(A função está inativa mas mostra suas	
	capacidades de configuração)	
MotDrvA	Corrente de arranque do motor.	
MotStr	Entrada de ligamento do motor-I. Este valor identifica de iniciação de motor.	uma condição
MstAlm	Alarme do sensor de umidade (FALSE = normal, TRU umidade).	JE = alta
NamPlt	Nome do nó lógico.	
NeutAlm	TRUE = alarme neutro está presente.	
NgEna	O monitoramento de corrente de sequência negativa e	stá habilitado

Nome do Dado	Semântica	
	(TRUE) para detectar uma condição de falha de desequilíbrio no sistema durante oscilação de potência.	
NomA	Corrente de normalização de demanda usada em IEEE 519, no cálculo TDD.	
NumCntRs	Número de vezes que um contador é reiniciado.	
NumCyc	Número de ciclos da freqüência básica.	
NumPwrUp	Número de operações de ligamento do dispositivo físico/lógico desde a última reinicialização.	
NumRcd	Número atual de gravações.	
OANL	TRUE = Provê indicação de que os dispositivos do sistema de potência estão operando sem carga.	
Ofs	Offset, para valores analógicos, o offset de zero para o valor analógico.	
OilFil	TRUE = Filtragem de óleo está operacional/funcionando.	
OilMotA	Corrente de acionamento do motor de circulação do óleo	
OilTmpIn	Entrada do cooler de temperatura do óleo.	
OilTmpOut	Saída do cooler de temperatura do óleo.	
OilTmpSet	Ponto de configuração de para temperatura do óleo.	
Op	Indica a decisão de <i>trip</i> de uma função de proteção (LN). O <i>trip</i> em si é emitido por PTRC.	
OpARem	A corrente e operação remota (fasor) usada pela função de proteção diferencial.	
OpCls	Operação fecha chave. Deve ser usado se o modelo de controle de IEC 61850-7-2 não é suportado entre CSWI ou CPOW e XCBR ou XSWI. Note que o estado deve durar tempo suficiente para que o cliente possa detectá-lo.	
OpCnt	Representa um contador de operações não reinicializável. Em geral, este tipo de contador é incluído nos seguintes LNs: XCBR, XSWI e YLTC. O contador não deve ser reinicializado remotamente, mas possivelmente localmente.	
OpCntRs	Este dado representa um contador de operações LN reinicializável. O uso da classe de dados comum INC, permite configurar o contador para algo que não seja "0".	
OpDlTmms	O atraso, em ms, antes de operação uma vez que as condições de operação já tenham sido atingidas.	
OpEx	<i>Trip</i> de uma função de falha de disjuntor para um outro disjuntor para desligar a falha de grade (" <i>trip</i> externo").	
OpIn	Retrip de uma função de falha de disjuntor depois que o trip de uma	

Nome do Dado	Semântica	
	função de proteção falhou ("trip interno").	
OpOpn	Operação abre chave. Deve ser usado se o modelo de controle de IEC 61850-7-2 não é suportado entre CSWI ou CPOW e XCBR ou XSWI. Note que o estado deve durar tempo suficiente para que o cliente possa detectá-lo.	
OpOVA	TRUE = Dispositivo operando em condição de sobrecorrente.	
OpOvExt	TRUE = Dispositivo operando em condição excitada.	
OpOvV	TRUE = Dispositivo operando em condição de sobretensão.	
OPSA	TRUE = Operação de estabilizador (<i>surge arrestor</i>) detectada.	
OpTmh	Esta dado indica o tempo de operação, em h, de um dispositivo físico, desde o início da operação. Detalhes são específicos do LN.	
OpUnExt	TRUE = Dispositivo operado em uma condição sub-excitada.	
OpUnV	TRUE = Dispositivo operando em uma condição de subtensão.	
OutOv	Este dado indica que um transbordo de <i>buffer</i> ocorreu no <i>buffer</i> de saída e anúncios importantes podem ser perdidos (TRUE) na comunicação. Uma interrogação geral é recomendado ou um verificação de integridade é iniciado automaticamente.	
PaDschAlm	TRUE = Descarga parcial atingiu um nível de alarme préconfigurado.	
ParOp	Transformadores estão operando em paralelo.	
PcfOfs	Offset da característica distância em porcentagem do comprimento da linha. PctRch PctOfs REACH	
PctRch	Alcance da característica distância em porcentagem do comprimento	

Nome do Dado	Semântica	
PmpOvCur	Trip de supercorrente de bomba.	
PolQty	Este dado indica a referência de quantidade usada para determinar direção de falha.	
	Quantidade polarizante	Valor
	Nenhuma	1
	Corrente de seqüência zero	2
	Tensão de seqüência zero	3
	Tensão de sequência negativa	4
	Tensões fase-fase (Polarização cruzada)	5
	Tensões fase-terra	6
PoRch	(Polar Reach) é o diâmetro do diagrama Mho, ve	eja PctRch
Pos	Este dado é acessado quando executa-se um compara verificar o status da chave, ou posição. Qua também usado para chave operada à mão, o atrib CtlVal não existe.	ndo este dado é
PosA	Este dado deve ser usado para chaveamento, onde fase única A pode ser operada separadamente.	
PosB	Este dado deve ser usado para chaveamento, onde fase única B pode ser operada separadamente.	
PosC	Este dado deve ser usado para chaveamento, onde fase única C pode ser operada separadamente.	
POWCap		
	Capacidade de chaveamento POW	Valor
	Nenhuma	1
	Fechado	2
	Aberto	3
	Fechado e Aberto	4
PPV	Tensões fase-fase.	
PPVVal	Nível de subtensão para condições WEI para uma medição fase- fase.	
Pres	Pressão em um volume específico.	
PresAlm	Alarme de pressão por causa de condição anormal. (FALSE = normal, TRUE = alerta).	
PresTr	Alarme de nível por causa de condição anormal. (FALSE = normal, TRUE = alerta).	
PreTmms	Este é o tempo antes do acionamento para o qual quando ocorre um disparo.	l dado é gravado
ProRx	TRUE = indica que a função de proteção receber	u informação sobre

Nome do Dado	Semântica	
Rel	Este dado indica que todos os critérios são cumprido chaveamento/operação é liberada para prosseguir se e bloqueada se valor é FALSE.	•
ReTrgMod	Se o modo é TRUE, o gravador vai começar uma nova gravação se ele é redisparado enquanto estiver coletando amostras em gravação prévia. Se FALSE, o gravador ignora o redisparo.	
ReTrMod	Modo de <i>Retrip</i>	
	Modo Retrip	Valor
	Desligado	1
	Sem checagem	2
	Sem checagem de corrente	3
	Com checagem de status de disjuntor	4
	Com checagem de status de disjuntor e corrente	5
	Outras checagens	6
RHz	TRUE = aumenta frequência, FALSE = nenhuma aç	žão.
	X1 - K0Fa - K0Fa - TimE - OpTi RisPhRch	actAng DelMod
RisLod	Alcance resistivo para área de carga veja AngLod exemplo da definição de intromissão de carga, usado AngLod e RisLod com característica poligonal, aplicom MHO.	o para o dado

Nome do Dado	Semântica			
RisPhRch	Alcance resistivo do elemento de distância de fase quadrilateral; veja RisGndRch.			
Rm0	Acoplamento de resistência mútuo da linha paralela.			
RnbkRV	É a tensão de controle acima da qual comandos de diminuição são emitidos.		0	
RsDlTmms	Tempo de atraso em ms antes de reinicialização uma vez que as condições de reinicialização tenham sido atingidas.			
RsStat	Este dado reinicia estatísticas de segurança do dispositivo se RsStat é TRUE.		tat	
RstA	Corrente de restrição.			
RstMod	Identifica o modo de restrição para o LN diferen	ncial	(differential)).
	Modo de Restrição		Valor	
	Nenhum		1	
	Segundo harmônico		2	
	Quinto harmônico		3	
	Segundo e quinto harmônicos		4	
	Análise de forma de onda		5	
	Segundo harmônico e Análise de forma de ono	da	6	
	Outro		7	
RV	TRUE = aumenta tensão, FALSE = nenhuma ação.			
RvABlk	Bloqueia sinal a partir de função reversa de cor-	rente.		
RvAMod	Este dado é o modo de função reversa de corrente.			
	Modo de Reversas de Corrente	Valo	r	1
	Ligado	1		
	Desligado	2		
RevATmms	Tempo de captação, em ms, para lógica reversa	de co	orrente.	
RvRsTmms	Depois que falta reversa desapareceu, a saída re	eversa	de corrente	
	continuará a estar ativar por este tempo.			
SchTyp	Este dado indica o tipo de esquema para proteção de linha.			
	Tipo de Esquema	V	alor	1
	Nenhum	1		
	Intertrip	2		
	Permissível abaixo de alcance	3		
	Permissível acima de alcance	4		
	Blocante	5		
SecTmms	Tempo de captação de cronômetro de segurança guarda carregador, em ms.	a na p	oerda do sinal	l de

negativa e zero. SeqV Os valores absolutos medidos das tensões de seqüência positiva, negativa e zero. SetA Configuração de um limite para corrente no ligamento de motor (po exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. SetTms Configuração de um limite para tempo no ligamento de motor (por exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. ShOpCap Esta é uma enumeração representando as capacidades de operação das bobinas de força. Capacidade de Operação da Bobina Valor Nenhuma 1 Aberta 2 Fechada 3 Aberta e Fechada 3 Aberta e Fechada 4 A SPCSO Saída de status genérico controlável de ponto único. SPITITIMMS Tempo de atraso de pólo único em ms, antes que a falha de disjunto tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC.	Nome do Dado	Semântica	
negativa e zero. SetA Configuração de um limite para corrente no ligamento de motor (po exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. SetTms Configuração de um limite para tempo no ligamento de motor (por exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. ShOpCap Esta é uma enumeração representando as capacidades de operação das bobinas de força. Capacidade de Operação da Bobina Nenhuma 1 Aberta 2 Fechada 3 Aberta e Fechada 3 Aberta e Fechada SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjunto tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE e válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) — Requisitado por CSWI ou RREC. Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	SeqA		
exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. SetTms Configuração de um limite para tempo no ligamento de motor (por exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. ShOpCap Esta é uma enumeração representando as capacidades de operação das bobinas de força. Capacidade de Operação da Bobina Valor Nenhuma 1 Aberta 2 Fechada 3 Aberta e Fechada 4 SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjunto tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) — Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	SeqV		
exemplo contando condição de operação ou stress termal). A configuração é usada na proteção de ligamento de motor. ShOpCap Esta é uma enumeração representando as capacidades de operação das bobinas de força. Capacidade de Operação da Bobina Valor Nenhuma 1 Aberta 2 Fechada 3 Aberta e Fechada 4 SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjunto tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	SetA		
das bobinas de força. Capacidade de Operação da Bobina Valor Nenhuma	SetTms	exemplo contando condição de operação ou stress termal). A	
Nenhuma	ShOpCap		
Nenhuma		Capacidade de Operação da Bobina	Valor
Fechada Aberta e Fechada SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjuntor tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização dos contador, por exemplo após manutenção dos			
Aberta e Fechada SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjuntor tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização dos contador, por exemplo após manutenção dos		Aberta	2
SPCSO Saída de status genérico controlável de ponto único. SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjuntor tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) — Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos			
SPITrTmms Tempo de atraso de pólo único em ms, antes que a falha de disjuntor tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos		Aberta e Fechada	4
tente executar um retrip do disjuntor que falhou. StopVlv Este dado é responsável pelo controle e indicação da válvula que para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	SPCSO	Saída de status genérico controlável de ponto u	ínico.
para o gerador de força motriz, por exemplo fluxo de fluido. TRUE = válvula fechada (ou fechamento de válvula). Str Indica a detecção de uma falta ou condição inaceitável. Str pode conter informação direcional e de fase. StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	SPITrTmms	Tempo de atraso de pólo único em ms, antes que a falha de disjuntor tente executar um retrip do disjuntor que falhou.	
StrInh Reinicialização de Informação de Status proibida. Depois que um limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	StopVlv	para o gerador de força motriz, por exemplo fluxo de fluido. TRUE	
limite é atingido (por exemplo maior número de inicializações ou temperatura permitidas), proibição de reinicialização é ativada. StrInhTmm Configuração de tempo para proibição de reinicialização. Uma vez que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) — Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	Str	· · · · · · · · · · · · · · · · · · ·	
que StrInh é ativado, não deve ser permitido que o motor ligue até que este tempo tenha passado. StrPOW TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	StrInh	limite é atingido (por exemplo maior número de inicializações ou	
CSWI ou RREC. StrVal Nível do valor supervisionado, que inicia uma ação dedicada da função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	StrInhTmm	que StrInh é ativado, não deve ser permitido que o motor ligue até	
função relacionada. SumSwARs Soma dos amperers chaveados, reinicializável. Este dado indica a soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	StrPOW	TRUE = inicia CPOW (por exemplo por seleção) – Requisitado por CSWI ou RREC.	
soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	StrVal		
	SumSwARs	soma ou integração de todas as correntes chaveadas desde a última reinicialização do contador, por exemplo após manutenção dos	
SupVArh Fonte de energia reativa (direção de fonte padrão: energia flui na	SupVArh	Fonte de energia reativa (direção de fonte padrão: energia flui na	

Nome do Dado	Semântica	
	direção do barramento).	
SupWh	Fonte de energia real (direção de fonte padrão: direção do barramento).	energia flui na
SvcViol	Serviço é suportado, mas não pode ser executad	o remotamente.
SwArcDet	TRUE = Alarme de que arco de chave foi detec	tado.
SwgReact	Valor da banda de reatância da oscilação de pot SwgVal.	ência, veja figura em
SwgRis	Valor da banda de resistência da oscilação de poem SwgVal.	otência, veja figura
SwgTmms	Tempo de detecção de oscilação de energia em	ms.
SwgVal	Valor da banda de oscilação de energia.	
	21	Outer Swing Line R
SwOpCap	Essa é uma enumeração representando as capac operação da chave. Inclui bloqueamento adicior problemas locais.	nal devido a
	Capacidade de Operação de Chave Nenhuma	Valor
	Aberta	2
	Fechada	3
	Aberta e Fechada	4
CurTun	Trootiu o roomaa	<u> </u>
SwTyp	Tipo de Chave	Valor
	Interruptor de Carga	1
	Desconector	2
	Chave de aterramento	3
	Chave de aterramento de alta velocidade	4

Nome do Dado	Semântica	
SynPrg	Sincronização em processo.	
TapBlkL	Posição do <i>tap</i> do comutador de carga onde comandos de diminuição automática são bloqueados.	
TapBlkR	Posição do <i>tap</i> do comutador de carga onde comandos de aumento automático são bloqueados.	
TapChg	Este dado representa o controle de um processo de aumentar ou diminuir um <i>tap</i> de passo único.	
TapPos	Representa o ajustamento discreto de um de um transformador, como o usado em um comutador de <i>tap</i> carga para uma posição de <i>tap</i> específica.	
TddA	Distorção total de demanda de corrente (de acordo com IEEE 519, relacionada à fase).	
TddAmp	Distorção total de demanda de corrente (de acordo com IEEE 519, não relacionada à fase).	
TddEvnA	Distorção total de demanda de corrente (de acordo com IEEE 519, componentes pares, relacionada à fase).	
TddEvnAmp	Distorção total de demanda de corrente (de acordo com IEEE 519, componentes pares, não relacionada à fase).	
TddOddA	Distorção total de demanda de corrente (de acordo com IEEE 519, componentes ímpares, relacionada à fase).	
TddOddAmp	Distorção de demanda total de corrente (de acordo com IEEE 519, componentes ímpares, não relacionada à fase).	
TestRsl	Valor dos resultados do teste é TRUE se passou e FALSO se falhou.	
ThdA	Distorção total de corrente harmônica ou inter-harmônica (diferentes métodos, relacionado à fase).	
ThdAmp	Distorção de corrente total harmônica ou inter-harmônica (diferentes métodos, não relacionado à fase).	
ThsATmms	Tempo de atraso de alarme de distorção de corrente total harmônica ou inter-harmônica, em ms, depois que ThdAVal foi excedido.	
ThdAVal	Configuração de alarme de amperes de distorção total harmônica ou inter-harmônica, valor entrado em %. Valores Thd acima deste limite causa alarme.	
ThdEvnA	Distorção total de corrente harmônica ou inter-harmônica (componentes pares, relacionado á fase).	
ThdEvnAmp	Distorção total de corrente harmônica ou inter-harmônica (diferentes métodos, componentes pares, não relacionado à fase).	
ThdEvnPhV	Distorção total de tensão fase-terra harmônica ou inter-harmônica (diferentes métodos, componentes pares, relacionado à fase).	
ThdEvnPPV	Distorção total de tensão fase-fase harmônica ou inter-harmônica	

Nome do Dado	Semântica	
	(diferentes métodos, componentes pares, relacionado à fase).	
ThdEvnVol	Distorção total de tensão de fase-terra harmônica ou inter-harmônica (diferentes métodos, componentes pares, não relacionado à fase).	
ThdOddA	Distorção total de corrente harmônica ou inter-harmônica (diferentes métodos, componentes ímpares, relacionado á fase).	
ThdOddAmp	Distorção total de corrente harmônica ou inter-harmônica (diferentes métodos, componentes ímpares, não relacionado á fase).	
ThdOddPhV	Distorção total de tensão fase-terra harmônica ou inter-harmônica (diferentes métodos, componentes ímpares, relacionado à fase).	
ThdOddPPV	Distorção total de tensão fase-fase harmônica ou inter-harmônica (diferentes métodos, componentes ímpares, relacionado à fase).	
ThdOddVol	Distorção total de tensão fase-terra harmônica ou inter-harmônica (diferentes métodos, componentes ímpares, não relacionado à fase).	
ThdPhV	Distorção total de tensão fase-terra harmônica ou inter-harmônica (diferentes métodos, relacionado à fase).	
ThdPPV	Distorção total de tensão fase-fase harmônica ou inter-harmônica (diferentes métodos, relacionado à fase).	
ThdVol	Distorção total de tensão harmônica ou inter-harmônica (diferentes métodos, não relacionado à fase).	
ThdVTmms	Tempo de atraso de alarme de distorção total de tensão harmônica ou inter-harmônica, em ms, depois que ThdVVal foi excedido.	
ThdVVal	Configuração de alarme de distorção total de tensão harmônica ou inter-harmônica – valor entrado em %. Valores acima deste limite causam um alarme.	
TmACRv	Curva característica para operação de proteção, da forma $y = f(x)$, onde $x = A$ (corrente) e $y = Tm$ (tempo). Os inteiros representando as diferentes curvas são dados na definição de DCD CURVE na IEC 61850-7-3.	
TmASt	Entrega curva característica ativa.	
TmDLChr	Tempo de atraso linear ou característica inversa.	
	Atraso do CronômetroValorLinear1Característica inversa2	
TmDlMod	Modo de tempo de atraso de operação. TRUE = ligado, FALSE = desligado.	
TmExc	TRUE = Tempo máximo permitido excedido (LNCPOW)	
TmMult	Este dado é o multiplicador de mostrador de tempo ou configuração de mostrador de tempo, usado principalmente para proteção.	

Nome do Dado	Semântica	
Tmp	Temperatura de um componente específico ou em um volume específico.	
TmpAlm	Alarme de temperatura por causa de condição de temperatura anormal (FALSE = normal, TRUE = alerta).	
TmpMax	Temperatura máxima.	
TmpRl	Relação entre temperatura e temperatura máxima.	
TmTmpCrv	Curva característica para operação de proteção, da forma $y = f(x)$, onde $x = \text{Tmp}$ (temperatura) e $y = \text{Tm}$ (tempo). Os inteiros representando as diferentes curvas são dados na definição de DCD CURVE na IEC 61850-7-3.	
TmTmpSt	Entrega curva característica ativa.	
TmVCrv	Curva característica para operação de proteção, da forma $y = f(x)$, onde $x = V$ (tensão) e $y = Tm$ (tempo). Os inteiros representando as diferentes curvas são dados na definição de DCD CURVE na IEC 61850-7-3.	
TmVSt	Entrega a curva característica ativa.	
Torq	Torque conduzido	
TotPf	Fator de potência médio em um circuito trifásico.	
TotVA	Potência aparente total em um circuito trifásico.	
TotVAh	Energia aparente de rede desde a última reinicialização.	
TotVAr	Potência reativa total em um circuito trifásico.	
TotVArh	Energia reativa de rede desde a última reinicialização.	
TotW	Potência real total em um circuito trifásico.	
TotWh	Energia real de rede desde a última reinicialização.	
TPTrTmms	Tempo de atraso de três pólos em ms antes que a falha de disjuntor tente o retrip do disjuntor que falhou.	
Tr	(<i>Trip</i>) É o comando para abrir o disjuntor quando emitido no caso de falta por PTRC.	
TrgMod	Modo de acionamento de gravador de distúrbio. A fonte do acionamento externo é uma característica local.	
	Modo de Acionamento Valor	
	Interno 1	
	Externo 2 Ambos 3	
TrMod		
THVIOU	Este dado representa tipos de função de trip; 3ph significa que apenas tripping trifásico é possível, 1 ou 3ph significa PTRC com possibilidade de triping de 1 e 3 fases, e primeiro trip dependendo de um tipo de falta. Específico, significa por exemplo PRTC com 1,	

Nome do Dado	Semântica		
	2ph e 3ph possibilidade de tripping e primeiro trip dependendo do tipo de falta.		
	Modo de Trip	Valor	
	Tripping 3 fases	1	
	Tripping 1 ou 3 fases	2	
	Específico	3	
TrPlsTmms	(<i>Trip pulse time</i>) é o menor tempo de pulso para o disjuntor.	operação do	
TypRsCrv	Este é o tipo da curva de inicialização que é usada com relés eletromecânicos que não reinicializam	*	
	Curva de Reinicialização	Valor	
	Nenhuma	1	
	Reinicialização com tempo de atraso definido	2	
	Reinicialização inversa	3	
UnBlkMod	Este dado é o modo da função de desbloqueio.		
	Modo de Função de Desbloqueio	Valor	
	Desligado	1	
	Permanente	2	
	Janela de tempo	3	
UnBlkTmms	Tempo de desbloqueio.		
VHzCrv	Curva característica para operação de proteção, donde $x = Hz$ (frequência) e $y = V$ (tensão). Os into as diferentes curvas são dados na definição de DC 61850-7-3.	eiros representando	
VHzSt	Entrega a curva característica ativa.		
VInd	Este dado indica o resultado da verificação das diferenças entre os valores absolutos do barramento e tensões de linha. FALSE indica que a diferença de tensão está abaixo do limite requerido. O critério de diferença de tensão para sincronização estão cumpridos. TRUE indica que a diferença de tensão excede o limite. O processo de sincronização deve ser abortado porque os critérios de banda de tensão não foram satisfeitos (synchrocheck) ou deve continuar com atividades de controle de gerador (synchronising).		
Vol	Tensão não relacionada à fase.		
VolAmp	Medição de potência aparente de um circuito não	trifásico.	
VolAmpr	Medição de potência reativa de um circuito não tr	rifásico.	
VolChgRte	Taxa de mudança de tensão (mudança no tempo).		
VOvSt	TRUE = Indica que tensão sobrescreve status do	controle.	

Nome do Dado	Semântica		
VRed	TRUE = Redução de tensão está ativa para reduzir tensão de carga abaixo da tensão normal.		
VRedVal	Redução do centro de banda (porcentagem) quando passo de tensão <i>x</i> está ativo.		ensão
VRtg	Tensão nominal, propriedade intrínseca do dispo pode ser configurada/modificada remotamente.	ositivo, que nã	lo
VStr	Valor de tensão que precisa ser atingido para qu seja iniciada da função relacionada.	e uma ação de	edicada
WacTrg	O número de vezes que o circuito watchdog rein desde a última reinicialização do contador.	niciou o dispos	sitivo
Watt	Potência real em um circuito não-trifásico.		
WeiMod	Este dado é o modo de função de fonte fraca (<i>weak end infeed function</i>). Nota: normal, são os valores 1, 3 e 4.		
	Modo de fim de Fonte Fraca	Valor	
	Desligado	1	
	Operante	2	
	Ecoante	3	
	Ecoante e Operante	4	
WeiOp	Sinal de operação de funções de fonte fraca.		
WeiTmms	Tempo de coordenação para funções de fonte fra	aca em ms.	
WrmStr	Número de partidas quentes feitas pelo dispositi desde a última reinicialização.	vo lógico/físic	co
X0	Reatância de linha de seqüência zero.		
X1	Reatância (atingida) da linha seqüência positiva.		
Xm0	Casamento de reatância mútuo da linha paralela		
Z0Ang	Ângulo de fonte de seqüência zero, fim próximo (A).		
Z0Mod	Modulo de fonte de sequência zero, fim remoto	(B).	
Z1Ang	Ângulo de linha de seqüência positiva.		
Z1Mod	Modo de linha de seqüência positiva.		
ZeroEna	Supervisão de corrente de sequência zero habilit	tada (TRUE).	
Zm0Ang	Casamento de impedância do ângulo de linha paralela.		
Zm0Mod	Casamento de impedância do módulo de linha p	aralela.	

Tabela 3-99: Semântica dos Dados.

ESTA PÁGINA É INTENCIONALMENTE EM BRANCO

4.1 Introdução e Escopo da SCL

O projeto de um sistema de automação de uma subestação pode começar tanto com a alocação de dispositivos funcionais pré-configurados para partes, produtos ou funções da subestação, mas também pode começar com o desenho da funcionalidade do processo, onde funções são alocadas a dispositivos físicos posteriormente, baseado nas capacidades funcionais dos dispositivos e nas suas capacidades de configuração. Para a SCL isso significa que ela deve ser capaz de:

- A especificação do sistema em termos de um diagrama unifilar, e alocação de LNs a partes e equipamentos do diagrama unifilar para indicar a funcionalidade necessária.
- 2. IEDs pré-configurados com um número fixado de LNs mas sem nenhum ligamento a um processo específico.
- 3. IEDs pré-configurados com semântica pré-configurada para a parte de processo de uma certa estrutura, por exemplo um barramento duplo GIS alimentador de linha.
- 4. Configuração completa de processo com todos IEDs ligados a funções de processos individuais e equipamento primário, complementado pelas conexões de pontos de acesso e possíveis caminhos de acesso em sub-redes para todos clientes possíveis.
- 5. Como no item 4 acima, mas adicionalmente com todas associações predefinidas e conexões de servidor de cliente entre LNs no nível dos dados. Isto é necessário se um IED não é capaz de dinamicamente construir associações ou reportar conexões.

O caso 5 acima é o caso completo. Os casos 4 e 5 são o resultado após o projeto do SAS, enquanto o caso 1 é uma entrada para especificação funcional para projeto do SAS, e os casos 2 e 3 são resultados possíveis após pré-projeto de IED.

O escopo da SCL é restrito aos seguintes propósitos:

- Especificação funcional SAS (ponto 1 acima),
- Descrição da capacidade de um IED (pontos 2 e 3 acima), e
- Descrição de um sistema SA (pontos 4 e 5 acima)

para os propósitos de desenho do sistema, engenharia de comunicação e a descrição do sistema de comunicação para ferramentas dos dispositivos de engenharia de forma padronizada.

Estes propósitos são atingidos através da definição de um modelo de objetos descrevendo os IEDs, as conexões de comunicação entre eles e alocação deles a uma subestação, e uma forma padronizada de como este modelo deve ser representado em um arquivo para ser trocado entre ferramentas de engenharia.

Figura 4-1: Estrutura de Modelagem das Informações e Serviços

A figura acima mostra o uso da SCL na troca de dados. As caixas de texto sombreadas indicam onde os arquivos da SCL são usados. O configurador de um IED é uma ferramenta específica do fabricante que deve ser capaz de exportar ou importar os arquivos. Assim, um IED é considerado "IEC61850 compatível" se:

- Ele é acompanhado por um arquivo SCL descrevendo suas capacidades, ou por uma ferramenta que possa gerar este arquivo a partir do IED.
- Ele pode usar um arquivo SCL para configurar sua comunicação ou ele é acompanhado por uma ferramenta que possa importar um arquivo SCL para configurar estes parâmetros.

Um configurador de sistema é um sistema independente dos IEDs que deve ser capaz de importar ou exportar arquivos de vários IEDs e pode ser usado para adicionar informação compartilhada por IEDs diferentes. O configurador de sistema também deve ser capaz de ler um arquivo de especificação do sistema.

Dados de configuração produzidos por um configurador de IED podem ser levados para o IED das seguintes maneiras (parte abaixo da linha tracejada na Figura 3):

- transferência local de arquivo de um *workstation* conectado localmente ao IED (esta transferência vai além do escopo da norma).
- transferência remota de arquivo, por exemplo por um método de transferência da IEC61850-7-2. O formato de arquivo não é definido naquela norma, mas pode ser um arquivo da SCL.

• serviços de acesso para dados de configuração e parametrização de acordo com IEC61850-7-2. Neste caso, os métodos padronizados da IEC61850-7-x devem ser usados.

4.2 Modelo de Objetos na SCL

A SCL em seu escopo completo descreve os seguintes modelos:

- Estrutura do sistema primário (sistema de potência): quais funções primárias dos instrumentos são usadas, e como os instrumentos são conectados.
- Sistema de configuração: como IEDs são conectados a sub-redes e redes e a quais de seus pontos de acesso de comunicação (portas de comunicação).
- Comunicação no nível de comunicação: como os dados são agrupados em conjuntos de dados para envio, como IEDs disparam o envio e quais serviços eles escolhem, quais dados de entrada são necessários de outros IEDs.
- Cada IED: os dispositivos lógicos configurados no IED, os nós lógicos com classe e tipo pertencente a cada dispositivo lógico, os relatórios e seu conteúdo de dados, as associações (pré-configuradas) disponíveis; e que dados devem ser registrados.
- Definições de tipos de nós lógicos instanciáveis. Os nós lógicos como definidos na IEC61850-7-x não são instanciáveis. Tipos de LNs instanciáveis e objetos de dados instanciáveis são definidos como *templates*, que contêm os objetos de dados e serviços realmente implementados.
- As relações entre os nós lógicos instanciados e os IEDs que os hospedam de um lado, e as partes da subestação (funções) do outro.

A SCL permite a especificação de objetos de dados definidos pelo usuário, assim como também permite extensões às classes de LNs ou a criação de LNs totalmente novos (de acordo com IEC61850-7-4). Isso significa que os atributos de espaço de nome apropriados devem ser definidos nos tipos de nós lógicos, e seus valores devem aparecer no arquivo SCL.

Um arquivo SCL descreve uma instância do modelo de uma forma serializada e com sintaxe padronizada. Porém sua semântica só pode ser completamente entendida por referência ao modelo em si, ou seja, ela é independente da sintaxe.

O modelo de objetos tem três partes básicas:

- 1. Subestação: esta parte descreve o equipamento da subestação (ou *switchyard*) na visão funcional, a conexão na topologia de linha simples, e a designação de equipamentos e funções.
- 2. Produto: isto representa todos os objetos de produtos relacionados à SA, como IEDs e implementações de LNs.
- 3. Comunicação: contém objetos relacionados à comunicação como sub-redes e pontos de acesso de comunicação, e descreve as conexões de comunicação entre IEDs como uma base para caminhos de comunicação entre nós lógicos como clientes e servidores.

As partes de subestação e produto formam hierarquias por si mesmas, que são usadas para nomear instâncias. A parte do modelo de comunicação contém apenas as relações de conexão dos IEDs a sub-redes, entre sub-redes por meio de roteadores e a colocação de relógios nas sub-redes para sincronização. O nó lógico é a estrutura transiente usada para conectar as diferentes estruturas.

Na SCL exige que, dentro de cada estrutura para quase todos os objetos, dois tipos de designação possíveis:

- Um nome é usado como (uma parte hierárquica de) uma chave técnica para designar o objeto. Cada objeto em uma hierarquia tem um atributo *name* que contém sua identificação neste nível da hierarquia. Chaves técnicas são usadas em documentações técnicas para construir e manter o sistema ou para processamento automático de informação relacionada à engenharia. Esta designação também é usada na SCL para descrever links entre diferentes objetos de modelo. Este *name* está relacionado e é muito idêntico ao *name* defino na IEC61850-7-2.
- Uma parte de descrição é usada como (uma parte hierárquica de) um operador ou identificação de objeto relacionado a usuário. Um objeto em uma hierarquia tem um atributo desc que contém sua parte de descrição textual na hierarquia. Identificações textuais são usadas, por exemplo, nas interfaces de operador e manuais de operador.

Uma referência na SCL é uma identificação única de um objeto, contendo como caminho a concatenação de todos os nomes nos níveis hierárquicos acima, até o nível do objeto.

4.2.1 Modelo da Subestação

O modelo da subestação é um modelo contendo uma hierarquia de objetos baseada na estrutura funcional da subestação. Embora cada objeto seja auto-contido, sua designação de referência é derivada de sua posição na hierarquia. Como LNs realizam funções no contexto completo da subestação, eles podem ser anexados como objetos funcionais em cada nível de função da subestação. Tipicamente, um LN para controlador de chave é anexado a um dispositivo de chaveamento, enquanto um LN de medição é anexado ao *bay* que entrega as medições, e LNs relacionados a transformadores são anexados ao transformador apropriado.

Os seguintes objetos da estrutura funcional (em ordem hierárquica) são usados no modelo da SCL:

Subestação o objeto que identifica toda a subestação.

VoltageLevel uma parte identificável da subestação, eletricamente

conectada, tendo um nível de tensão idêntico.

Bay uma parte identificável ou subfunção da subestação

(switchyard) que esteja em um nível de tensão.

Equipamento um equipamento na subestação (switchyard), por exemplo

um disjuntor, desconector, transformador de voltagem, etc. O

diagrama unifilar de uma subestação (switchyard) mostras as elétricas entre estes dispositivos. Nós conectividade modelam estas conexões. Assim, cada dispositivo primário pode conter, nos seus finais, referências aos nós de conectividade aos quais está conectado. No nível de linha única, um ou dois terminais são normalmente suficientes.

Subequipamento uma parte de um equipamento, que pode ser um equipamento

monofásico ou trifásico.

Nó de conectividade

Terminal

o objeto conectivo (elétrico) conectando dois dispositivos.

um ponto de conexão primário de um aparato no nível de linha única. Um terminal pode ser conectado a um ConnectivityNode. Na SCL terminais podem ter nomeados

explicitamente, ou existir implicitamente.

4.2.2 Modelo do Produto (IED)

Produtos consistindo de hardware ou software implementam as funções da subestação (switchyard). O escopo da SCL, do ponto de vista do produto, cobre apenas dispositivos de hardware (IEDs) que formam o sistema de automação da subestação. Dispositivos primários como produtos estão fora do escopo da SCL, apenas o lado funcional deles é modelado pela estrutura da subestação para propósitos de nomeação funcional.

IED um dispositivo de automação da subestação realizando funções de SA por

meio de nós lógicos (LNs). Normalmente comunica com outros IEDs por

meio do sistema de comunicação.

Servidor uma entidade de comunicação em um IED. Permite acesso via sistema de

comunicação e é ponto de acesso apenas para dados contidos em nós lógicos

e de dispositivos contidos dentro do servidor.

LDevice um dispositivo lógico contido em um servidor de um IED.

Lnode implementação de um nó lógico, contido em um dispositivo lógico de um

IED.

4.2.3 Modelo do Sistema de Comunicação

Em contraste aos demais, este modelo não é hierárquico. Ele modela as possíveis conexões entre IEDs em sub-redes por meio de pontos de acesso. Uma sub-rede, neste nível de descrição, é vista como um nó de conexão entre pontos de acesso, não como uma estrutura física. Um dispositivo lógico ou um cliente de um IED é conectado a uma sub-rede por meio de um ponto de acesso, que pode ser uma porta física ou um endereço (servidor) lógico do IED. LNs cliente usam o atributo address dos pontos de acesso para construir associações a servidores em outros IEDs respectivamente aos LNs contidos nos dispositivos lógicos destes IEDs. Uma correlação com uma sub-rede física pode ser construída a partir desse modelo lógico.

Sub-rede

um nó de conexão para comunicação direta entre pontos de acesso. Todos os pontos de acesso em uma sub-rede podem se comunicar uns com os outros com um mesmo protocolo. Várias sub-redes lógicas, com diferentes protocolos de alta camada, podem ser usadas em um mesmo barramento físico para permitir uma mistura de vários protocolos alto-nível em uma mesma camada (baixa) física.

Ponto de acesso o ponto de acesso de comunicação de um dispositivo lógico de um IED a uma sub-rede. Neste nível de modelagem lógica, existe no máximo uma conexão entre o dispositivo lógico e uma sub-rede. Um ponto de acesso pode servir vários dispositivos lógicos locais, e os nós lógicos contidos em um dispositivo lógico podem, como clientes, usar vários pontos de acesso para conectar a sub-redes diferentes. Um ponto de acesso pode ser usado por um servidos, cliente ou ambos. Além disso, um mesmo ponto de acesso (lógico) pode suportar portas de acesso físico diferentes, por exemplo uma conexão ethernet e uma conexão baseada em um PPP serial para o mesmo ponto de acesso de mais alto nível (TCP/IP) e para o mesmo servidor.

Roteador Normalmente, clientes conectados a uma sub-rede têm acesso apenas a servidores conectados a esta. A função roteador estende o acesso a servidores conectados em outras sub-redes em outro ponto de acesso daquele IED que hospeda a função roteador.

Relógio um relógio principal nesta sub-rede, que é usado para sincronizar os relógios internos de todos os (outros) IEDs conectados a esta sub-rede.

4.2.4 Modelando Redundância

Redundância pode ser introduzida para se obter disponibilidade e segurança de um sistema, e em diferentes níveis do mesmo:

- Internamente ao IED: além do escopo da norma.
- Nível de comunicação do sistema: está abaixo do nível descrito na SCL.
- Nível de aplicação: este é modelado na SCL. Um exemplo típico são os IEDs de proteção main 1 e main 2. Cada instância de IED que provê redundância de aplicação é explicitamente modelado tendo seu próprio nome, e quaisquer subredes de comunicação adicionais providas são também modeladas no arquivo SCD. Qualquer coordenação entre funções redundantes é feita entre os nós lógicos que implementam a função.

4.3 Tipos de Arquivos de Descrição da SCL

Os arquivos SCL são usados para trocar dados de configuração entre diferentes ferramentas, possivelmente de fabricantes diferentes. Existem pelo menos quatro propósitos diferentes para troca de dados SCL, e por isso existem quatro tipos de arquivos distintos para troca de dados entre ferramentas. Todavia, o conteúdo de cada arquivo deve obedecer as regras da SCL, a serem definidas (subseção 4.3). Cada

arquivo deve conter uma versão e um número de revisão para identificar diferentes versões de um mesmo arquivo. Isto significa que cada ferramenta deve manter a versão e o número de revisão do último arquivo exportado, ou ler o último arquivo existente para encontrar sua versão.

A seguir detalhamos os arquivos SCL:

- Troca de dados de uma ferramenta de configuração de um IED com a ferramenta de configuração do sistema. Este arquivo descreve as capacidades de um IED. Ele deve conter exatamente uma seção IED para o IED cujas capacidades são descritas. O nome do IED deve ser TEMPLATE. Além disso, o arquivo deve conter os templates de tipos de dados necessários, inclusive definições de tipos nós lógicos, e opcionalmente pode conter uma seção subestação, aonde o nome da subestação deve ser TEMPLATE. Se uma subestação TEMPLATE é definida, a ligação de instâncias de nós lógicos com equipamentos primários indica uma funcionalidade pré-definida. Qualquer subestação, na qual este IED deve ser usado, deve estar conforme a uma parte topológica apropriada da subestação. Pode ainda existir uma seção de comunicação (opcional) definindo os endereços padrões possíveis para o IED. A extensão deste tipo de arquivo deve ser .ICD (IED Capability Description)
- Troca de dados de uma ferramenta de especificação do sistema para uma ferramenta de configuração do sistema. Este arquivo descreve o diagrama unifilar da subestação e os nós lógicos requeridos. Ele deve conter uma seção de descrição de subestação e os templates de tipos de dados e definições de tipos de nós lógicos. Se os LNs alocados à seção da subestação ainda não estiverem alocados a algum IED, a referência nome do IED (valor do atributo iedName do elemento LN) deve ser None. Se um LN na seção de subestação não é associado a um IED e também não tem nenhum tipo de nó lógico definido, então apenas a parte obrigatória deste LN (veja a seção 3) é especificada. Se parte do sistema SA já é conhecido, este pode estar opcionalmente contido nas seções IED e comunicação. A extensão deste arquivo deve ser .SSD (System Specification Description).
- Troca de dados da ferramenta de configuração do sistema para ferramentas de configuração de IED. Este arquivo contém todos IEDs, uma seção de configuração de comunicação e uma seção de descrição da subestação. A extensão do arquivo deve ser .SCD (Substation Configuration Description).
- Troca de dados de uma ferramenta de configuração de um IED para o IED. Ele descreve um IED instanciado em um projeto. A seção de comunicação contém o endereço corrente do IED. A seção de subestação relacionada a este IED pode ser apresentada e então deve conter valores de nomes atribuídos de acordo com os nomes específicos do projeto. Trata-se de um arquivo SCD possivelmente reduzido ao que o IED em questão deve conhecer. A extensão do arquivo deve ser .CID (Configured IED Description).

Uma descrição formal das principais restrições para as dadas partes é dada no esquema de sintaxe XML fornecido na norma.

4.4 A Linguagem SCL

4.4.1 Método de Especificação

A linguagem SCL é baseada em XML. Sua definição sintática é descrita como um esquema XML W3C. A definição do esquema XML normativo completo é fornecido pela norma. Algumas restrições no modelo de objetos que não são facilmente formuláveis no esquema SCL não são descritos no esquema XML, mas em cláusulas específicas da norma.

Para manter a sintaxe compacta e extensível, a característica de tipo do esquema XML é usada onde apropriado. Isto introduz uma estrutura de herança de elementos do esquema. A estrutura de herança dos principais elementos SCL é mostrada na Figura 4 como um diagrama UML. Devido a essa hierarquia, e também a atributos e grupos de atributos, nem todos atributos são diretamente definidos na definição de um elemento.

Figura 4-2 Visão geral em UML do esquema da SCL.

Para melhor segmentação e reuso, o esquema SCL completo é divido em vários arquivos contendo definições de tipos, como mostrado na tabela abaixo.

Nome do Arquivo	Descrição
SCL_Enums.xsd	Enumerações usadas no esquema XML
SCL_BaseSimpleTypes.xsd	Os tipos simples básicos usados em outras partes
SCL_BaseTypes.xsd	Definições dos tipos básicos complexos usados em outras
	partes
SCL_Substation.xsd	Definições sintáticas relacionadas à subestação
SCL_Comunication.xsd	Definições sintáticas relacionadas à comunicação
SCL_IED.xsd	Definições sintáticas relacionadas ao IED

SCL_DataTypeDefinitions.xsd	Definições sintáticas relacionadas a templates de tipos de
	dados
SCL.xsd	Definições sintáticas do esquema principal da SCL, que
	define o elemento raiz de cada arquivo SCL.

Tabela 4-1: Arquivos de definição do esquema XML.

É assumido que um arquivo de definição de esquema começa da seguinte maneira:

onde "n.n" indica a versão SCL (1.0 na norma). O esquema então termina com

```
</xs:schema>
```

O elemento SCL básico é derivado do tipo de esquema *tBaseElement*, que permite conter por exemplo definições *Private* e *Text*. Além disso, o elemento SCL deve conter um elemento Header do tipo *tHeader*, e pode conter elementos de subestação do tipo *tSubstations*, uma seção Communication do tipo *tCommunication*, elementos IED do tipo *tIED*, e uma seção DataTypeTemplates do tipo *tDataTypeTemplates*. Todos esses tipos de elementos são tratado na norma (a serem definidos aqui).

O formato dos dados dos valores é importante. Onde é possível, o esquema define o tipo de dado e, por isso, também sua codificação (representação léxica). Mesmo em casos onde isso não é possível, a codificação do tipo de dado do esquema XML deve ser usado. Se não for expressado explicitamente, todos os valores de elementos são do tipo *string* do esquema XML, e todos valores de atributos são do tipo *normalizedString* do esquema XML, i.e., eles não podem ter *tabs*, *return* ou caracteres *line feed* (salta linha). Se algum tipo de dado do esquema XML é usado, ele é referenciado com o prefixo *xs:*, por exemplo *xs:decimal* para codificação de número decimal. A Tabela 4-31 mostra o mapeamento dos tipos de dados da norma para tipos de dados na SCL.

4.4.2 Estrutura Geral

Um documento SCL-XML começa com o elemento XML *prolog*, e então continua com elementos. O *prolog* deve conter a identificação da versão XML e a codificação de caractere usada. A codificação UTF-8 é a preferida. Toda a parte de definição da SCL está contida no elemento SCL:

```
<?xml version="1.0" enconding="UTF-8"?>
<SCL xmlns="http://www.iec.ch/61850/2003/SCL"
xmlns:xsi="www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd">
<!--aqui vem uma das seções Heaer / Substation /IED / Communication / DataTypeTemplate -->
</SCL>
```

onde SCL.xsd dá o arquivo concreto contendo a definição do esquema SCL.

Note que para um processador XML, assume-se que a definição do esquema SCL está na mesma pasta que a instância de arquivo SCL. Se este não é o caso, o caminho completo para o esquema precisa ser dado aqui.

O elemento SCL deve conter uma seção *header* e pelo menos uma das seguintes seções: *Substation, Communication, IED, DataTypeTemplates*, que serão explicados. As seções *Substation* e *IED* podem aparecer mais de uma vez.

4.4.3 Designação de Sinal e Objeto

O modelo da SCL tem dois tipos de designação de objetos:

- 1. Uma chave técnica, usadas desenhos de engenharia e para identificação de sinais. Esta chave está contida no atributo *name* como uma identificação de cada objeto.
- 2. Uma designação textual orientada a usuário, contida no atributo *desc*.

No caso de objetos hierarquicamente organizados da estrutura da subestação e do produto, os atributos *name* e *desc* contêm apenas a parte que identifica este objeto neste nível da hierarquia. A referência completa do objeto é um *pathname* e consiste da concatenação de todas as partes do nome de níveis hierárquicos maiores até este nível. É responsabilidade do engenheiro configurador garantir que as referências sejam únicas após a concatenação. Isto deve ser atingido utilizando uma convenção como a especificada no IEC 61346-1. Isso significa que nomes de todos os níveis podem ser

concatenados diretamente a um nome de caminho se o nome do nível superior termina com um número e o nome do nível inferior começa com um caractere alfa. Em caso contrário, um caractere de intervenção, preferencialmente um ponto (.), deve ser colocado entre eles. Se em um determinado nível o nome for uma string vazia, nenhum delimitador é necessário neste nível.

Objetos transitórios (i.e. que pertencem a várias estruturas hierárquicas) podem ser identificados por várias referências, uma em cada estrutura. No caso da SCL, isso aplica-se especialmente para nós lógicos, que são encontrados na estrutura funcional da subestação, assim como na estrutura de produtos IED.

Já as identificações de sinais são construídas a partir das seguintes partes:

- 1) Uma parte definida pelo usuário, identificando o dispositivo lógico LD no processo (LDName).
- 2) Uma parte (relacionada a função) para distinguir vários LNs da mesma classe em um mesmo IED/LD.
- 3) O nome padronizado da classe LN e o número de instanciação do LN, que distingue os diversos LNs de uma mesma classe e pré-fixados em um mesmo IED/LD.
- 4) A identificação de um sinal dentro de um LN consistindo de dado e nome de atributo como especificado no IEC 61850-7-3 e IEC 61850-7-4.

Figura 4-3 Elementos da identificação de sinal como definido em IEC 61850-7-2

4.5 Elementos Sintáticos SCL

4.5.1 Header

O header serve para identificar um arquivo de configuração SCL e sua versão, e para especificar opções para o mapeamento de nomes para sinais. Os atributos do elemento Header são definidos na Tabela 4.2.

Nome do Atributo	Descrição
id	Uma string identificando este arquivo SCL, obrigatório (pode ser vazio)
version	A versão deste arquivo de configuração SCL (pode ser vazio)
revision	A revisão deste arquivo de configuração SCL, por definição a string vazia significa a versão original sem revisões
toolID	A identificação específica do fabricante da ferramenta que foi usada para criar o arquivo SCL
nameStructur	Identifica se os nomes de sinais do sistema de comunicação são
е	construídos da estrutura de funções da subestação (FuncName) ou da estrutura do produto IED (IEDName)

Tabela 4-2: Atributos do elemento header.

Opcionalmente, pode-se usar um atributo de histórico de revisões

4.5.2 Descrição da Subestação

A seção *Substation* serve para descrever a estrutura funcional de uma subestação e para identificar os dispositivos primários e suas conexões elétricas. Para um processo industrial ou para descrever redes de potência inteiras, é possível ter várias seções de subestação, uma para cada subestação servida pelo SAS. Através do uso de nós lógicos anexados a elementos do sistema primário, esta seção adicionalmente define a funcionalidade do sistema SA (por exemplo em um arquivo SSD), ou, no caso em que LNs já estão alocados a IEDs (arquivo SCD), a relação das funções do IED com o sistema de potência.

Note que o atributo *name* é sempre obrigatório e não deve ser a string vazia. Se a seção Substation é usada como template dentro de um aquivo ICD, então o *name* deverá ser TEMPLATE. O valor *name* também é uma identificação global da subestação, porque deve ser único para todas subestações contidas no arquivo SCL. Se o atributo *desc* não é definido, seu valor padrão é uma string vazia.

O elemento *Substation* é do tipo *tSubstation*. Ele é um *tEquipmentContainer*, podendo conter nós lógicos Transformadores. Além disso ele contém ao menos um *voltage level* e, opcionalmente, vários elementos *Function*. Funções de sistema ou equipamento, que não pertencem ao sistema de potência, podem ser descritos pelo elemento *Function*.

O elemento *Susbtation* geral (do tipo *tSubstation*), que é referido pelo elemento SCL, inclui adicionalmente várias restrições:

- Em uma *Substation*, não podem haver dois elementos *VoltageLevel* com o mesmo nome.
- Em uma *Susbtation*, não podem haver dois elementos *PowerTransformer* com o mesmo nome.
- Em uma Substation, não podem haver dois elementos Function com o mesmo nome.
- Em uma *Substation*, não podem haver dois elementos LNode com a mesma combinação de *InInst, InClass, iedName, IdInst,* e *prefix*.
- Além disso, para evitar ambigüidades, em uma *Substation* não podem haver dois elementos filhos diretos com o mesmo nome.
- O nome da subestação deve ser único em um arquivo SCL.

4.5.3 Voltage Level

Um elemento *VoltageLevel* é do tipo *tVoltageLevel*. Ele tem opcionalmente um elemento *Voltage* do tipo *tVoltage*, que pode ser usado para determinar a tensão deste *VoltageLevel*. Além disso, como *tEquipmentContainer* ele pode conter nós lógicos, *GeneralEquipment* e tranformadores de potência, e contém um ou vários *bays*, através do elemento *Bay*.

4.5.4 Bay Level

O elemento *Bay* é do tipo *tBay*. Como um containner de equipamento, ele pode conter Transformadores de potência, equipamento geral e nós lógicos. Adicionalmente, ele pode hospedar equipamentos condutores (*ConductingEquipment*) e nós de conectividade (*ConnectivityNode*).

O elemento *ConnectivityNode* permite a definição explícita de nós de conectividade neste *bay*, e como *tLNodeContainer*, *LNs* podem ser anexados a ele. Seu sub-elemento *Text* pode ser usado para conter algumas descrições úteis livres. Seu atributo *name* identifica a instância do *ConnectivityNode* no *bay*; seu p*athName* é uma referência absoluta dentro do arquivo SCL. O pathname é constituído por todas as referências de níveis maiores até o nome dos nós de conectividade, concatenados com o caractere "/". Por exemplo, se o nó de conectividade L1 está em um *bay* Q2 com voltage level E1 da subestação Baden, então o pathname é "Baden/E1/Q2/L1".

4.5.5 Equipamento de Potência

potência 0 equipamento de é subdividido **PowerTransformer** no Conducting Equipment. O PowerTransformer pode aparecer em todo container de enrolamentos equipamento, e contém OS do transformador Conducting Equipment especial. Para cada enrolamento do transformador pode ser alocado um comutador de tap. Qualquer outro ConductingEquipment pode aparecer apenas nos bays. Todo equipamento é derivado do tipo base tEquipment, e o ConductinEquipment é derivado do tipo tAbstractConductingEquipment.

Todo equipamento do tipo *tEquipment* e todo subequipamento do tipo *tSubEquipment*, assim como todo comutador de *tap* (*tTapChanger*), têm, além dos atributos normais name e desc, um atributo opcional *virtual* (*agVirtual*). Se a seção de subestação é usada apenas para nomeação relacionada a função, este não é realmente usado. No entanto, há algumas aplicações onde funções (LNs) calculam valores pertencentes a algum equipamento "virtual", por exemplo uma corrente de fase é calculada a partir dos valores medidos das outras duas fases. Neste caso, é importante saber que a terceira fase CT está lá apenas "virtualmente". Isto pode ser indicado modificando o valor do atributo *virtual* para verdadeiro. Seu valor padrão é falso.

Terminais e suas conexões aos nós de conectividade (veja *tAbstractConductingEquipment* modelam a topologia da subestação no nível de linha única, i.e. o número de fases e conexões especiais entre fases não são consideradas aqui. O número máximo de conexões possíveis para os nós de conectividade depende dos terminais disponíveis para um tipo de função de dispositivo.

4.5.6 Subequipamento

Subequipamentos são parte de um equipamento de potência. Eles especialmente permitem a especificação de uma relação de fase dos LNs. Sendo assim, a SCL permite um SubEquipment apenas num Conducting Equipment.

Nome do Atributo	Descrição	
Name	Identificação do subequipamento relativa á designação do equipamento	
Desc	Uma descrição textual do subdispositivo relativo ao dispositivo	
Phase	A fase à qual o subdispositivo pertence. Os seguintes valores de fase	
	são permitidos: A,B,C,N (neutro), all (todas as fases) e none (padrão,	
	não relacionado a fase)	
Virtual	Configurado como true se o subequipamento (por exemplo CT de	
	fase) não existe na realidade, mas seus valores são apenas calculados.	
	Opcional, valor padrão é false.	

Tabela 4-3: Atributos do elemento SubEquipment.

4.5.7 Nós Lógicos de Função de Subestação

Todo equipamento e containers de equipamento também são containers de nós lógicos. O LN define a parte da função SA realizada no nível apropriado da hierarquia. O elemento LN identifica a função SA especificando um nó lógico. O atributo opcional *desc* pode conter algum texto relacionado a operador descrevendo o LN e seu uso.

O LN e sua função são identificados pelos atributos deste elemento. O elemento LNode pode ser usado em um SSD para especificação funcional, sem alocação a um IED. Neste caso o *iedName* deverá ser *None*. Para uma especificação mais detalhada *InType* deve referir a um tipo de LN, que por sua vez também define um dado opcional requerido por este caso especial, ou define certos valores que alguns parâmetros (configuração) devem ter.

Nome do Atributo	Descrição	
InInst	A identificação desta instância do LN	
InClass	A classe do LN, como definido na norma	
iedName	O nome do IED que contém o LN, <i>none</i> se usado para especificação	
	(padrão se o atributo não é especificado)	
IdInst	A instância LD do IED que contém este LN, vazio respectivamente	
	irrelevante se usado para especificação	
prefix	O prefixo do LN usado no IED (se necessário: padrão se não	
	especificado é a string vazia)	
InType	Definição do tipo de nó lógico contendo especificação funcional mais	
	detalhada. Pode ser vazio, se o LN é alocado a um IED.	

Tabela 4-4: Atributos do elemento LNode.

Observação: Para LLN0 o valor de Inst é a string vazia. Em todos os outros casos, é um inteiro sem sinal.

4.5.8 Equipamento não Relacionado a Potência

Para ser possível modelar a conexão de nós lógicos hospedados em IEDs para outras funções não relacionadas ao sistema de potência, como equipamento de combate ao fogo ou supervisão de porta, a seção *Substation* contém o elemento *Function*, que novamente contém um número arbitrário de elementos *SubFunction*. Ambos elementos são também containers de nós lógicos e podem também conter *GeneralEquipment*, se necessário. Ambos, *Function* e *SubFunction* têm os atributos *name* e *desc* da mesma forma como a própria *Substation*, e também pode conter os elementos *text* e *private*. No entanto não existem conexões definidas entre os equipamentos.

4.6 Descrição de um IED

4.6.1 Geral

A seção IED descreve a (pré) configuração de um IED: seus pontos de acesso, dispositivos lógicos e instanciações de nós lógicos nestes. Além disso, ela define a capacidade de um IED em termos dos serviços de comunicações oferecidos e, juntamente com seu LNType, dados instanciados (DO) e seus valores padrão ou de configuração. Deve haver uma seção IED para cada IED. Nomes de IEDs (atributo name) devem ser únicos no escopo do arquivo. Se apenas definições de IEDs préconfigurados estão contidas no arquivo, o nome deve ser TEMPLATE para indicar que o IED não foi associado a um lugar no projeto. A ferramenta de configuração do sistema deve tratar isso como um tipo IED, i.e. um tipo de produto pré-configurado, a partir do qual um número arbitrário de instâncias de produtos (hardware) pode ser produzido.

Uma função IED *Router* especial é introduzida. Um IED contendo uma função roteadora conecta sub-redes diferentes por meio de todos os seus pontos de acesso.O roteador IED pode não conter dispositivos lógicos ou nós lógicos. Neste caso, ele é manuseado e supervisionado por um sistema de manuseio de rede separado, além do escopo da norma. O roteador é uma fronteira limitante, na qual mensagens de tempo real não podem passar. Estes tipos de mensagem são:

- mensagens de sincronização de tempo,
- mensagens GSE,
- valores amostrais medidos.

Todas as outras mensagens são roteados com um certo tempo de atraso.

Adicionalmente ao roteador IED único descrito acima, a função roteador pode residir em um IED contendo servidores ou clientes adicionais.

Um ponto de acesso pode pertencer a um servidor com dispositivos lógicos, que contém nós lógicos. Neste caso, o servidor do ponto de acesso provê acesso aos LDs e LNs, enquanto os LNs como clientes podem usar todos os pontos de acesso do IED (não apenas aqueles do servidor) para acessar dado (de LNs em servidores) em outros IEDs. Um ponto de acesso sempre precisa de um servidor, se o IED for supervisionado remotamente, porque o LN0 e LPHD do dispositivo lógico do servidor são usados para supervisionar e controlar o IED. Somente quando todos os LNs de um IED usam um ponto de acesso apenas como clientes, e o IED não é supervisionado, um IED sem servidor poderá ser usado.

4.17

É recomendável que um IED tenha ao menos um servidor. Um ponto de acesso sem um servidor pode então ser usado para pegar dados de um barramentos de nível mais baixo, i.e. uma unidade *bay* do barramento de processos. No entanto, este dado não pode ser visto diretamente num barramento de nível mais alto, a não ser que uma função de roteador também resida neste IED.

Por meio da característica de endereço curto, é possível definir uma translação de nomes lógicos para endereços curtos numa base de atributos de dados. O uso e o significado de endereços curtos pode ser definido em um SCSM (mapeamento de pilha). Neste caso, a ferramenta de configuração do sistema trata deles. Todas as outras ferramentas devem apenas importar e reexportar seus conteúdos.

4.6.2 O IED, Serviços e Pontos de Acesso

A tabela abaixo mostra os atributos de um elemento IED.

Nome do Atributo	Descrição
name	Identificação do IED. Dentro de um arquivo ICD descrevendo um tipo de dispositivo, o nome deve ser TEMPLATE. O nome não pode ser uma string vazia e deve ser único em um arquivo SCL
desc	Texto de descrição
type	O tipo de produto (específico do fabricante) IED
manufacturer	Nome do fabricante
configVersio n	A versão da configuração básica desta configuração do IED

Tabela 4-5: Atributos do elemento IED.

O atributo configVersion identifica apenas a configuração básica do IED (suas capacidades como definido/entregue pelo fabricante), e não sua configuração individual depois de uma instanciação em um projeto. Este é um parâmetro do IED ou de seus nós lógicos. Ele deve estar em um arquivo SCL como um valor do atributo *LLNO.NamPlt.configRev*. O IED contém uma lista de capacidade de serviços e definições de pontos de acesso.

Restrições:

- O nome do IED deve ser único na seção IED do arquivo SCL.
- O tamanho do nome do IED deve ser pelo menos um.
- O nome para um IED template deve ser TEMPLATE.

O elemento IED geral (do tipo *tIED*), que é referenciado pelo elemento *SCL*, inclui adicionalmente várias restrições:

- Em um IED, não podem haver dois elementos *AccessPoint* com o mesmo nome.
- Em um IED, não podem haver dois elementos *LDevice* com um mesmo *Inst*. Além disso, o atributo inst de um *LDevice* age como uma chave no IED. O atributo *logName* de cada *LogControl* (um descendente indireto de um IED), refere-se a uma destas chaves.

O elemento Services (tipo *tServices*) do IED define os serviços disponíveis. Classes de serviços podem aparecer de ordem arbitrária. Se elas não aparecem, então os serviços não estão disponíveis no IED. Se um mesmo nome de serviço aparece várias vezes, isto não tem nenhum significado. Para o significado dos serviços, veja IEC 61850-7-2.

O elemento Access point (do tipo *tAccessPoint*) do IED define os pontos de acesso disponíveis. O ponto de acesso é descrito por um dos elementos: *Server* ou lista *LN*. Os atributos do elemento AccessPoint são definidos na tabela abaixo.

Nome do Atributo	Descrição
name	Referência que identifica o ponto de acesso no IED
desc	O texto de descrição
router	A presença e a definição como true indica que este IED tem a função roteadora. Por padrão, seu valor é falso.
clock	A presença e a definição como true define que este IED é um relógio mestre deste barramento. O valor padrão é falso.

Tabela 4-6: Atributos do elemento AccessPoint de um IED.

O atributo *name* do ponto de acesso juntamente com o nome do IED fornece uma referência única ao ponto de acesso no sistema SA.

Se nem um roteador, ou um relógio, ou um servidor ou nem uma lista LN é especificada, o ponto de acesso pode ser usado apenas por LNs no mesmo IED para acessar o barramento ao qual ele está conectado.

Restrições:

- O nome do ponto de acesso deve ser único em um IED.
- O nome não deve ser vazio.

4.6.3 O Servidor IED

O servidor IED contém os elementos Authentication, LDevice e Association. Os atributos são definidos como mostrado na tabela abaixo.

Nome do Atributo	Descrição
timeout	Tempo de saída (time out) em segundos: se uma transação iniciada não
timeout	é completada dentro deste tempo, ela é cancelada e reiniciada
Desc	Um texto descritivo

Tabela 4-7: Atributos do elemento Server de um IED.

O servidor é identificado no sistema pelo ponto de acesso ao qual ele pertence.

O elemento obrigatório Authentication define, no caso de uma descrição de dispositivo as possibilidades de autenticação, no caso de um dispositivo instanciado em uma planta o método a ser usado na autenticação. Se o elemento não é encontrado, o valor padrão é *none* (isto é, sem autenticação significando que o atributo *none* tem o valor *true*).

4.6.4 O Dispositivo Lógico

O elemento *LDevice* define um dispositivo lógico de um IED atingível através do ponto de acesso. Ele deve conter pelo menos um LN e o LNO, e não pode conter definições relatórios pré-configurados, GSE e SMV.

Nome do Atributo	Descrição
inst	Identificação do LDevice no IED. Seu valor não pode ser a string vazia
desc	O texto de descrição

Tabela 4-8: Atributos do elemento LDevice de um IED.

Restrições:

- O atributo inst do LD deve ser único dentro do IED;
- O nome do LD construído a partir de inst deve ser único em cada arquivo SCL;
- O tamanho do atributo *inst* deve ser ao menos um.

4.6.5 LN0 e Outros Nós Lógicos

O LN0 contém os seguintes elementos: *GSEControl*, *SampledValueControl*, *SettingControl*, *SCLControl* e *Log*. Além disso, ele herda os atributos *ReportControl* e *LogControl* do tipo base *tAnyLN*, assim como os elementos *DOI* e *Inputs*. Os atributos do LN0 são definidos na tabela a seguir.

Nome do Atributo	Descrição
inst	Identificação do LDevice no IED. Seu valor não pode ser a string vazia
desc	O texto de descrição

Tabela 4-9: Atributos do elemento LNO.

Restrições:

 A classe LN LN0 é sempre LLN0, então nenhum atributo inst é necessário. Para referenciação de links para LN0, *InInst* deve ser a string vazia e *InClass* deve ser LLN0.

O nó lógico (tipo *LN*) contém os seguintes elementos: DataSet, ReportControl, LogControl, DOI, e Inputs. Os atributos do LN são mostrados na tabela abaixo.

Nome do Atributo	Descrição
desc	O texto de descrição para o nó lógico
InType	A definição de tipo instanciável deste LN, referência a uma definição de tipo LNode
InClass	A classe LN de acordo com a norma
inst	O número identificando esta instância do LN – um inteiro sem sinal
prefix	A parte do prefixo do LN

Tabela 4-10: Atributos do elemento LN.

Restrições:

 O nome LN consistindo de prefix, InClass e inst deve ser único dentro do escopo de um dispositivo lógico, se um servidor é definido, ou senão dentro do escopo de um IED.

4.6.6 Definição de Dado (DOI)

Um dado (*tDOI*) é definido por um dos elementos: *SDI* ou *DAI*. Os atributos de *DOI* são definidos na seguinte tabela:

Nome do Atributo	Descrição
desc	O texto de descrição para o dado
name	Um nome normalizado para o DO, por exemplo de IEC 61850-7-4

ix	Índice do elemento de dado, no caso de um tipo de arranjo
accessContro	Definição de acesso de controle para este dado. A string vazia (padrão)
1	significa que aplica-se a definição de controle de acesso do maior nível

Tabela 4-11: Atributos do elemento DOI.

O atributo DAI dentro de DOI define atributos e valores relacionados a serem configurados. Novamente, todos os atributos devem também estar definidos na definição do LNodeType deste LN. Apenas aqueles são repetidos aqui, onde alguns valores individuais devem ser configurados ou individualmente sobrescritos.

O DAI permite a definição de valores de instância para um IED. Isto pode ser usado no estágio de engenharia por outros IEDs/LNs que precisam conhecer os valores relacionados à configuração, por exemplo se eles não tiverem nenhum serviço para ler os valores, ou se o IED não suporta sua leitura. Alternativamente, ele pode ser usado pelo próprio IED para configurar estes valores ou também para oferecê-los via um protocolo de comunicação, ou pelo menos considerá-los em suas funções internas. Os atributos de DAI são definidos na tabela a seguir.

Nome do Atributo	Descrição
desc	O texto de descrição para o elemento DAI
name	O nome do atributo de dado cujo valor é dado
sAddr	Endereço curto deste atributo de dado
valKind	O significado do valor das fases de engenharia, se algum nome é dado
ix	Índice do elemento de dado no caso de um tipo array

Tabela 4-12: Atributos do elemento DAI.

O elemento DAI contém um subconjunto dos atributos do DA e deve ser usado em uma especificação DOI IED se alguns valores de atributo específicos são alterados ou valores de atributos típicos são sobrescritos.

O elemento SDI significa uma parte de nome de uma subestrutura, seja de um DO (correspondendo a SDO em LnodeType) ou de um DA, exceto o nome de atributo final. O elemento SDI contém os elementos *SDI* para parte de nome de estruturas posteriores, ou *DAI* para o elemento atributo final com o(s) valore(s). Os atributos dos elementos *SDI* são mostrados na tabela abaixo.

Nome do Atributo	Descrição
desc	Um texto descritivo para a parte SDI
name	Nome do SDI (parte da estrutura)

ix Í	Índice do elemento SDI para o caso de um tipo array.
------	--

Tabela 4-13: Atributos do elemento SDI.

Restrição: o nome deve começar com uma letra minúscula.

Exemplo:

O seguinte exemplo descreve o valor de um DO estruturado como DOI.

```
<DOI name="Volts">
    <SDI name="sVC">
        <DAI name="offset"><Val>0</Val></DAI>
        <DAI name="scaleFactor"><Val>200</Val></DAI>
        </SDI>
</DOI>
```

4.6.7 Definição de Conjunto de Dados

O *DataSet* contém uma seqüência de elementos *FCDA*. A definição do conjunto de dados do LN tem os seguintes atributos:

Nome do Atributo	Descrição
name	Nome identificando este conjunto de dados no LN onde ele é definido
desc	Um texto descritivo para o conjunto de dados

Tabela 4-14: Atributos do elemento DataSet.

O elemento *FCDA* define o nome de um dado restringido funcionado ou de a um atributo de dado restringido funcional de acorde com IEC 61850-7-2 deste IED a estar contido neste conjunto de dados. A ordem dos elementos *FCDA* define a ordem dos valores de dados nas mensagens de comunicação, se nenhuma outra regra ou convenções SCSM aplicam-se. O elemento tem os seguintes atributos:

Nome do Atributo	Descrição
IdInst	O LD onde o DO reside
prefixo	Prefixos identificando, juntamente com <i>InInst</i> e <i>InClass</i> , o LN onde o DO reside
InClass	Classe de LN do LN onde o DO reside; deve ser especificado, exceto para LLN0

InInst	Número de instância do LN onde o DO reside; deve ser especificado,
	exceto para LLN0
doName	Um nome identificando o DO (dentro do LN), normalizado em IEC
	61850-7-4. Se <i>doName</i> está vazio, então <i>fc</i> pode conter um valor,
	selecionando a categoria do atributo de todos os DO do LN definido.
	Para elementos ou partes de tipos de dados estruturados (DATA), todas
	as partes do nome devem estar contidas, separadas por pontos (.)
daName	O nome do atributo – se vazio, todos os atributos com característica
	funcional dada por fc são selecionados. Para elementos ou partes de
	tipos de dados estruturados, todas as partes do nome estão contidas
	separadas por pontos (.)
Fc	Todos atributos desta restrição funcional são selecionados. Para
	possíveis valores restritos, veja IEC 61850-7-2 ou a definição de fc

Tabela 4-15: Atributos do elemento FCDA.

Se daName e fc contêm um valor não vazio, então o valor fc deve ser válido para o atributo (i.e. definido identicamente na definição LNodeType apropriada), caso contrário o processamento do arquivo SCL deve ser interrompido com uma mensagem de erro. Se todos os atributos do FCDA (exceto fc) não estão presentes ou estão vazios, então este correspondente a uma string vazia em uma definição DataLabel GSSE (valor fc deve ser ST) — em todos os outros conjuntos de dados isto não é permitido.

Todos os blocos de controle que fazem referência a um conjunto de dados devem estar contidos no mesmo LN da definição do conjunto de dados. Por isso, a referência a um conjunto de dados dentro de todos os blocos de controle contém apenas o nome do conjunto de dados relativo ao LN (atributo Name no elemento *DataSet*), e não seu nome completo (que também contém o nome do LD e do LN de acordo com IEC 61850-7-2).

Se a ordem dos dados em uma mensagem baseada neste conjunto de dados é dada, então a ordem do FCDA no conjunto de dados deve ser seguida. Se um conjunto de atributos é especificado por exemplo via fc, então a ordem dos dados é especificada pela ordem de dado (DATA) e atributo nos LNs (LnodeType) correspondentes.

4.6.8 Bloco de Controle de Relatório

Um bloco de controle de relatórios (RCB) contém os elementos: *TrgOps*, *OptFields* e *RptEnabled*. Os atributos dados na tabela abaixo são usados.

Nome do Atributo	Descrição
name	Nome do RCB. Este nome é relativo ao LN hospedeiro do RCB, e deve
	ser único no LN.
desc	O texto de descrição
datSet	O nome do conjunto de dados (dataSet) a ser enviado ao RCB; dataSet

	pode ser vazio apenas em um arquivo ICD.
intgPd	Período de integridade em milisegundos – veja IEC 61850-7-2. Só é
	relevante se a opção de disparo period é true.
rptlD	Identificador para o RCB
confRev	O número de revisão da configuração deste RCB
buffered	Especifica se relatórios são armazenados em buffer ou não – veja IEC
	61850-7-2
bufTime	Tempo de buffer – veja IEC 61850-7-2

Tabela 4-16: Atributos do elemento FCDA.

Os atributos do elemento *TrgOps* são todos lógicos (boleanos), de uso opcional e com valor padrão falso (*false*). Os valores de cada um destes atributos indicam se a opção de acionamento (disparo) correspondente deve ser usada (*true*) ou não (*false*).

Da forma análoga a *TrgOps*, o elemento *OptFields* define quais campos (atributos) devem ser incluidos no relatório (veja IEC 61850-7-2).

O elemento *RptEnabled* contém a lista de LNs clientes para os quais o relatório deve ser enviado (por exemplo na inicialização do IED em associações pré-estabelecidas). Cada LN cliente é descrito em um elemento *ClientLn*. A tabela a seguir mostra os atributos do elemento *RptEnabled* e a Tabela 4-18 os atributos de *ClientLn*.

Nome do Atributo	Descrição
desc	O texto de descrição
max	Define o número máximo de RCBs deste tipo, que são instanciados em
	tempo de configuração no LN (e então usados online)

Tabela 4-17: Atributos do elemento RptEnabled.

Nome do Atributo	Descrição
iedName	O nome do IED onde o LN reside
IdInst	A identificação da instância do LD onde o LN reside
prefix	O prefixo do LN
InClass	A classe LN de acordo com IEC 61850-7-4
InInst	A identificação da instância LN da classe LN acima no IED

Tabela 4-18: Atributos do elemento ClientLn.

4.6.9 Bloco de Controle de Log

Um bloco de controle de log tem atributos cujos significados são muito próximos aos atributos de blocos de controle apropriados definidos em IEC 61850-7-2. Para aqueles que são completamente idênticos, o mesmo nome de atributo é usado. Os atributos são definidos na tabela abaixo.

Nome do Atributo	Descrição
name	o nome do bloco de controle de log
desc	um texto de descrição
datSet	o nome do conjunto de dados cujos valores serão salvos (logados);
	dataSet só pode ser vazio em um arquivo ICD
intgPd	período de verificação de integridade em milisegundos
logName	Referência ao LD que é o dono do log
logEna	TRUE habilita registro de atividades (<i>logging</i>) imediato; FALSE proibe
	registro de atividades (<i>logging</i>) até habilitado online.
reasonCode	código da razão – veja IEC 61850-7-2

Tabela 4-19: Atributos do elemento LogControl.

Restrições: o nome do bloco de controle de log deve ser único no LN.

4.6.10 Bloco de Controle GSE

O elemento de controle GSE só é permitido no nó lógico LLNO. Ele pode, opcionalmente, conter nomes de IEDs para aqueles IEDs que têm que informar dados GSE. Seus atributos são dados na Tabela abaixo.

Nome do Atributo	Descrição
Name	o nome identificando este bloco de controle GOOSE
Desc	um texto de descrição
datSet	o nome do conjunto de dados a serem enviados pelo bloco de controle GSE. Para type=GSSE, as definições FCDA neste conjunto de dados decem ser interpretadas como dataLabels de acordo com IEC 61850-7-2. O atributo datSet só pode ser vazio em um arquivo ICD.
confRev	Número de revisão de configuração deste bloco de controle.
Type	Se o tipo é GSSE, então apenas tipos de dado indicação simples e dupla são permitidos para os tipos de dados referenciados no conjunto de dados, caso contrário todos os tipos de dados permitidos. Note que no nível da pilha, cada tipo pode ser mapeado diferentemente para formatos de mensagens. O tipo padrão é GOOSE.

appID	Uma identificação única no sistema da aplicação para a qual a	
	mensagem GOOSE pertence.	

Tabela 4-20: Atributos do elemento GSEControl.

Restrições:

- O nome do bloco de controle GSE deve ser único no LLN0, i.e. no dispositivo lógico.
- Aplicações diferentes numa mesma estação devem ter valores appl únicos. É responsabilidade do engenheiro do sistema decidir o que uma aplicação é.

4.6.11 Bloco de Controle de Valores Amostrados

O elemento de bloco de controle de valores amostrados (*SampledValueControl*) só é permitido dentro de um nó lógico LLN0. Ele contém o elemento SmvOpts, e como uma extensão do tipo de esquema *tControlWithIEDName*, podem aparecer vários nomes de IED opcionais que indicam quais IEDs devem receber as mensagens.

Os atributos na tabela abaixo são usados no elemento *SampledValueControl*. Na tabela Tabela 4-22 são mostrados os atributos do elemento *SmvOpts*.

Nome do Atributo	Descrição
name	Um nome identificando o bloco de controle SMV
desc	O texto de descrição
datSet	O nome do cojunto de dados cujos valores devem ser enviados;
	datSet só pode ser vazio em um arquivo ICD.
confRev	Número de revisão de configuração deste bloco de controle.
smvID	CB Multicast: o MsvID para a definição de valor amostral como
	definido em IEC 61850-7-2
	CB <i>Unicast</i> : o UsvID como definido em IEC 61850-7-2
multicast	false indica serviços Unicast SMV apenas, significando que
	smvID=UsvID
smpRate	Taxa amostral como definido em IEC 61850-7-2
nofASDU	Número de ASDU (Aplication service data unit – unidade de
	dado de serviço de aplicação) – veja IEC 61850-9-2.

Tabela 4-21: Atributos do elemento SampledValueControl.

Nome do Atributo	Descrição
refreshTime	O significado das opções é descrito na IEC 61850-7-2. Se
sampleSynchronize	qualquer dos atributos é configurado para true, os valores
sampleRate	apropriados devem ser incluídos no telegrama SMV

security	Veja IEC 61850-9-2 para descrição
dataRef	Se <i>true</i> , então a referência ao conjunto de dados é incluída na
	mensagem SV.

Tabela 4-22: Atributos do elemento SmvOpts.

Restrição: O nome do bloco de controle SV deve ser único no LLNO, i.e. dentro do LDevice.

4.6.12 Bloco de Controle de Configuração

O elemento *SettingControl* contém a definição de um bloco de controle de configuração (SGC). Note que o nome do SGC, i.e. sua parte de nome no LNO, é SGCB de acordo com IEC 61850-7-2. Por isso, apenas um SGC é permitido por LNO. Os atributos são definidos na tabela a seguir.

Nome do Atributo	Descrição
desc	o texto de descrição
numOfSGs	o número de grupos de configuração disponíveis
actSG	o número do grupos de configuração quando carregando a configuração. O valor padrão é 1.

Tabela 4-23: Atributos do elemento SettingControl.

4.6.13 Ligamento a Sinais Externos

A seção Inputs define todos sinais externos que são necessários para que a aplicação LN cumpra sua função. A seção também permite o ligamento do sinal a um endereço interno IntAdr.

Cada elemento ExtRef faz referência a um item externo, no nível do DO ou do DA. se IntAdr é necessário, ele deve ser usado apropriadamente a este nível. Isso significa que para um uso em nível DO ele pode conter um mapeamento de vários atributos. Os atributos mostrados na tabela abaixo são usados.

Nome do Atributo	Descrição
iedName	O nome do IED de onde a entrada vem
IdInst	O nome da instância LD de onde a entrada vem
prefix	O prefixo do LN
InClass	A classe LN segundo a norma

InInst	A identificação da instância LN da classe LN acima no IED		
doName	Um nome identificando o DO (no LN). No caso de DO estruturado, as		
	partes de nomes são concatenadas por pontos (.)		
daName	O atributo designando a entrada. A ferramenta IED deve usar um valor		
	vazio se ela tiver algum ligamento padrão (IntAdr) para todos atributos		
	de entrada do processo de um DO (fc=ST ou MX), especialmente para t		
	e q. Se o atributo pertence a uma estrutura de tipo de dado, então as		
	partes de nome da estrutura devem ser separadas por pontos (.)		
intAddr	O endereço interno ao qual a entrada está direcionada. Apenas a		
	ferramenta IED do IED em questão deve usar o valor. Todas as outras		
	ferramentas devem preservá-lo.		

Tabela 4-24: Atributos do elemento ExtRef.

4.6.14 Associações

A definição de um controle de acesso. O significado e um refinamento eventual da definição são rensposabilidades específicas de pilha (SCSM).

É recomendado que toda autorização e controle de acesso sejam feitos por implementação privada dentro dos LNs de interface. Neste caso, nenhuma definição de acesso de controle é necessária dentro da SCL.

Cada definição de associação define uma associação pré-configurada entre este servidor e um nó lógico cliente. Dois tipos de pré-configurações são possíveis. Pré-definida significa que esta associação é definida, mas ainda não aberta, o cliente tem que abri-la. Pré-estabelecida significa que a associação é definida e considerada aberta imediatamente após a inicialização do IED. A tabela abaixo mostra os atributos usados.

Nome do Atributo	Descrição	
kind	O tipo de associação pré-configurada, pré-estabelecida ou pré-definida.	
associationI D	A identificação de uma associação pré-configurada	
iedName	A referência identificando o IED no qual o cliente reside	
IdInst	A referência ao dispositivo lógico cliente	
InClass	A classe do LN cliente	
prefix	O prefixo do LN	
InInst	O número de instância do LN cliente	

Tabela 4-25: Atributos do elemento Association.

Um Id de associação vazio, como dado pelo valor padrão, significa que o Id da associação ainda não foi definido. Para um arquivo SCL completo e uma associação pré-estabelecida, a Id da associação deve ser configurada, para que os LNs clientes e o servidor possam verificá-la corretamente. O mesmo cliente pode usar a mesma associação para LNs diferentes no mesmo servidor. Requisitos de unicidade assim como intervalos válidos de valores para a Id da associação (por exemplo um inteiro de 32 bit, único no servidor, ou no IED servidor e Id cliente, ou em todo o sistema) são configurados nos SCSMs.

Restrições:

- A ID da associação deve ser única no servidor.
- O tamanho da ID da associação deve ser pelo menos um.

4.7 Descrição do Sistema de Comunicação

4.7.1 **Geral**

Esta seção descreve as possibilidades de conexão direta entre nós lógicos por meio de barramentos lógicos (sub-redes) e pontos de acesso a IEDs. As seções IED já descrevem quais LDs e LNs são alcançáveis a partir de um certo ponto de acesso. A seção de comunicação agora descreve quais pontos de acesso IED estão conectados a uma sub-rede comum. Isto é feito de uma maneira que reflete a estrutura de nomes hierárquica em um IED, que é baseada em nomes relativos para pontos de acesso, LDs e LNs.

As definições específicas dos elementos do sistema de comunicação serão omitidas neste documento.

4.8 Templates de Tipos de Dados

4.8.1 **Geral**

Esta seção descreve tipos de nós lógicos instanciáveis. Um tipo de nó lógico é uma template instanciável dos dados de um nó lógico. Um LNodeType é referenciado cada vez que este tipo instanciável é necessário em um IED. Um template de tipo de nó lógico é construído a partir de elementos DATA (DO), que novamente têm um tipo DO, que é derivado das classes DATA (CDC) definidas em IEC 61850-7-3. DOs consistem de atributos (DA) ou de elementos de tipos DO já definidos (SDO). O atributo (DA) tem uma restrição funcional, e pode ter um tipo básico, ser uma enumeração, ou uma estrutura de um DAType. O DAType é construído a partir de elementos BDA,

definindo os elementos de estrutura, que novamente podem ser elementos BDA ou ter um tipo base como um DA.

Todos os tipos são identificados unicamente por seus *id* de tipo, e por um atributo *iedType*. Na geração do arquivo SCD do sistema a partir dos arquivos IED ICD, as identificações de tipos de LN tenham talvez que mudar para manter a unicidade sobre todas as definições de IEDs. Para manter a possível informação semântica dos tipos de nomes, é recomendável usar o atributo iedType para definir a relação de um tipo específico de LN a um tipo de IED. Se isto não for suficiente, um novo nome de tipo de LN pode ser gerado concatenando o nome do IED (que deve ser único no arquivo) com o antigo nome de tipo (que deve ser único pelo menos em cada IED). Se um tipo de LN é geralmente válido para vários IEDs, então o atributo IEDType deve ser definido como a string vazia. Isto é especialmente necessário para especificação de tipos que devam ser usados em um arquivo SSD, aonde não existem IEDs e, portanto, nenhum tipo de IED.

A ordem dos elementos DO em uma definição LNodeType, e dos elementos SDO/DA em uma definição DOType também especificam a ordem dos valores de dados em uma mensagem, se esta não for especificada em nenhum outro lugar, por exemplo por definições FCDA explícitas em um conjunto de dados até o atributo. A ordem na definição LNodeType é responsabilidade da ferramenta de configuração do IED, enquanto a ordem no conjunto de dados é responsabilidade da ferramenta de configuração do sistema.

Na SCL, todos os tipos estão contidos na seção DataTypeTemplates. As definições de tipo mostradas na tabela abaixo podem aparecer nesta seção.

Nome do Elemento da parte Template	Descrição	
LNodeType	Um tipo de nó lógico instanciável, como referenciados dos IEDs e da seção de Subestação, como definido no IEC 61850-7-4.	
DOType	Um tipo DATA instanciável; referenciado de LNodeType ou de elemento SDO de outro DOType. Versão instanciável baseada nas definições CDC do IEC 61850-7-3.	
DAType	Um tipo de atributo estruturado instanciável; referenciado de dentro de um elemento DA de um DOType. Versão instanciável baseada nas definições CDC da IEC 61850-7-3.	
EnumType	Um tipo enumeração; referenciado do elemento DA de um DOType ou de um DAType, no caso em que <i>bType</i> é Enum. As definições devem seguir as definições de enumerações de IEC 61850-7-3 e IEC 61850-7-4.	

Tabela 4-26: Elementos de definição template.

4.8.2 Definições LNodeType

O tipo de LN (elemento LNodeType) contém uma lista de dados (DATA – objetos de dados, DO), seus atributos, e possivelmente valores padrão para parâmetros de configuração. Os atributos e seus significados são mostrados na tabela abaixo.

Atributo	Descrição		
id	Uma referência identificando este tipo de LN nesta seção SCL;		
	usado pelo atributo LNType do LN para referenciar sua definição		
desc	Texto adicional descrevendo este tipo de LN		
iedType	O tipo de IED (fabricante) do IED ao qual este LN pertence		
InClass	A classe LN base deste tipo como especificada em IEC 61850-7-		
	3; observe que aqui existe uma enumeração, o que permite		
	extensões (nomes contendo apenas letras maiúsculas)		

Tabela 4-27: Atributos do elemento LNodeType.

O elemento DO referencia (seqüência) referencia o tipo de dado instanciável deste DO. Os atributos dos elementos DO são mostrados na abaixo.

Atributo	Descrição		
name	O nome do dado (DATA name) como especificado na norma		
type	O <i>type</i> referencia o <i>id</i> de uma definição DOType.		
accessControl	Definição de controle de acesso para este DO. Se não definido, então qualquer definição de controle de acesso de nível superior se aplica		
transient	Se configurado para <i>true</i> , indica que a defiição Transient se aplica		

Tabela 4-28: Atributos do elemento DO em um LNodeType.

4.8.3 Definição de tipo DO

O elemento DOType referenciado pelo atributo *type* do elemento DO de um elemento LNodeType, identifica os conteúdos de um DO. Estes podem ser atributos (elementos DA), os a referência para um outro DOType (elemento SDO). Os significados dos atributos são mostrados na Tabela 4-29.

Atributo	Descrição	
id	A identificação (global) desta definição de DOType em um	
	iedType. Usado para referenciar este tipo.	

iedType	O tipo do IED ao qual este DOType pertence. A string vazia permite referências para todos os tipos de IED, ou da seção de subestação.	
	subestação.	
cdc	Este CDC básico como definido na IEC 61850-7-3.	

Tabela 4-29: Atributos do elemento DOType.

O elemento SDO referencia, como dito, outra definição de DOType. Aviso: referências recursivas não são permitidas, mas não podem ser verificadas em nível de sintaxe. Os atributos do elemento SDO são mostrados na tabela a seguir:

Atributo	Descrição	
name	O nome do SDO	
desc	Texto descritivo para o SDO	
type	Referencia o DOType que define o conteúdo do SDO	

Tabela 4-30: Atributos do elemento SDO em um DOType.

4.9 Definição de Atributo de Dado

4.9.1 Geral

O elemento DA define os atributos, seus tratamentos relacionados à pilha e descreve seus valores (padrão) se existir algum conhecido.

O elemento DA tem ou um tipo básico, ou novamente uma referência a uma definição de atributo estruturado por exemplo no caso de um atributo com uma estrutura como *SaledValueConfig*. Se o DA é um arranjo, então seu atributo count dá o número de elementos no arranjo.

A codificação sintática de valores no elemento Val do elemento DA deve seguir as definições de tipo de codificação do esquema XML para tipos básicos IEC. O mapeamento dos tipos é mostrado na tabela abaixo.

Tipos básicos IEC 61850-7-x	Tipos de dado do esquema (xs) XML	Representação do valor
INT8, INT16, INT24, INT32, INT8U, INT16U, INT24U, INT32U	integer	Um número inteiro, nenhuma fração decimal (99999)
FLOAT32, FLOAT64	double	Um número com ou sem fração

		decimal (999,99999)
BOOLEAN	boolean	false, true ou 0, 1
ENUMERATED, CODED ENUM	normalizedString	Os nomes dos elementos em uma enumeração, como valores string
Octec String	base64Binary	Codificação de acordo com 6.8 de RFC 2045
VisibleString	normalizedString	Uma string de caracteres sem <i>tabs</i> , line feeds, <i>return</i> , restrito a caracteres de 8 bits (codificação de Byte único UTF-8, ISO/IEC 8859-1)
UnicodeString	normalizedString	Uma string de caracteres sem <i>tabs</i> , line feeds ou <i>return</i> . Todos caracteres em um arquivo XML são, a priori, Unicode, por exemplo na codificação UTF-8.

Tabela 4-31: Mapeamento de tipo de dados na SCL.

O significado do valor para uma ferramenta de configuração IED pode ser diferente dependendo das capacidades do dispositivo, a característica funcional do atributo e o estágio do processo de engenharia. O atributo DA *valKind* permite a especificação deste significado. Ele é ignorado se nenhum valor é fornecido, e para todos os casos não especificado na tabela abaixo.

Valor Valkind	Restrições funcionais	Estágio de Processo de Engenharia	Significado
Spec	Não operacional (CF,DF)	Fase de especificação	O valor desejado determinado na fase de especificação tipicamente em um arquivo SCD
Conf	CF, DC atributo operacional de um CDC usado para configurações	template IED, depois da engenharia do IED	Este valor não está disponível online no IED. O IED é projetado de forma que este valor é usado
RO	Atributo de estado de processo operacional	template IED	O valor padrão para o atributo, se <i>q.source</i> é configurado como <i>defaulted</i> ou se o valor é fixo no IED
RO	CF, DC, atributo operacional de dados usados para	template IED, após configuração do IED	Valor apenas de leitura em um IED – só pode ser modificado em tempo de configuração

	configuração		
Set	CF, DC	Na configuração do IED, ou após.	Um valor de configuração determinado. O valor é/deve ser configurado no IED
Set	Valores de processo operacional (exceto tempo e qualidade)	Na configuração do IED, ou após (possivelmente RO mudado para Set)	O valor padrão para o atributo, a ser usado quado <i>q.source</i> é configurado como <i>defaulted</i>
Set	Valor de configuração operacional (SP, SG para todo dado utilizado como configuração)	Na configuração do IED. ou após	O valor de configuração para o parâmetro <i>set point</i> respectivo.

Tabela 4-32: Significado do atributo Valkind.

Isso permite, por exemplo, a definição das capacidades de um IED (que atributos estão disponíveis, quais são apenas para leitura), os valores padrão que um IED é servido (legível, modificável ou não visível), ou os valores de configuração para parâmetros operacionais (proteção por exemplo). Os atributos do elemento DA são definidos na tabela abaixo.

Atributo	Descrição
desc	Um texto descritivo para o atributo
name	O nome do atributo
fc	A restrição funcional para este atributo; fc=SG também implica sempre que fc=SE; se um atributo tem ST e CO respectivamente MX e SP, então o valor fc do status sempre deve ser pego. O segundo fc é definido por atributos relacionados a SCSM, ou seguem dos valores do ctlModel.
dchg, qchg, dupd	Define quais opções de acionamento são suportadas pelo atributo (valor <i>true</i> significa suportado)
sAddr	Um short address opcional deste atributo de DO
bType	O tipo básico do atributo, pego de tBasicTypeEnum
type	Usado apenas se $bType$ =Enum ou $bType$ = Struct para referenciar o tipo de enumeração apropriado ou definição DAType.
count	Opcional. Deve definir o número de elementos do arranjo no caso em que o atributo é um arranjo.
valKind	Determina como o valor deve ser interpretado, se algum


```
valor for dado – veja Tabela 4-31.
```

Tabela 4-33: Atributos do elemento DA.

Os atributos *name*, *fc*, e *bType* precisam sempre ser definidos. Todos atributos instanciáveis contidos em um DO devem ser definidos.

4.9.2 Tipos básicos de atributos

Os tipos básicos são (sintaticamente) definidos como segue:

```
<xs:simpleType name="tPredefinedBasicTypeEnum">
   <xs:restriction base="xs:Name">
      <xs:enumeration value = "BOOLEAN"/>
      <xs:enumeration value = "INT8"/>
      <xs:enumeration value = "INT16"/>
      <xs:enumeration value = "INT24"/>
      <xs:enumeration value = "INT32"/>
      <xs:enumeration value = "INT128"/>
      <xs:enumeration value = "INT8U"/>
      <xs:enumeration value = "INT16U"/>
      <xs:enumeration value = "INT24U"/>
      <xs:enumeration value = "INT32U"/>
      <xs:enumeration value = "FLOAT32"/>
      <xs:enumeration value = "FLOAT64"/>
      <xs:enumeration value = "Enum"/>
      <xs:enumeration value = "Dbpos"/>
      <xs:enumeration value = "Tcmd"/>
      <xs:enumeration value = "Quality"/>
      <xs:enumeration value = "Timestamp"/>
      <xs:enumeration value = "VisString32"/>
      <xs:enumeration value = "VisString64"/>
      <xs:enumeration value = "VisString255"/>
      <xs:enumeration value = "Octet64"/>
      <xs:enumeration value = "Struct"/>
      <xs:enumeration value = "EntryTime"/>
      <xs:enumeration value = "Unicode255"/>
   </xs:restriction>
</xs:simpleType>
<xs:simpleType name="tExtensionBasicTypeEnum">
   <xs:annotation>
 <xs:documentation</pre>
                     xml:lang="en">User extensible
                                                         basic
                                                                  types.
</xs:documentation>
```

tPredefinedBasicTypeEnum contém as definições como na IEC 61850-7-x. *tBasicTypeEnum* permite a extensão dos tipos básicos.

O seguinte exemplo define o atributo stVal de um DPC CDC sem valor, de acordo com IEC 61850-7-3:

```
<DA name="stVal" fc="ST" dchg="true" bType="Dbpos"/>
```

4.9.3 Valores

A definição opcional *value* contém um valor. Para atributos com fc = SG, o atributo único sGroup especifica para qual grupo de configuração este valor pertence, através do número deste grupo. Pode haver um valor para cada grupo de configuração definido. O significado *value* no processo de engenharia é definido no nível DA/DAÍ por meio do atributo valKind.

O atributo *sGroup* usado em um IED deve ser verificado as definições de grupos de configuração existentes neste IED, aonde o número máximo é especificado (SettingControl.numOfSGs). Se o atributo opcional *sGroup* é indeterminado, então o atributo de dado não está em um grupo de configuração (*fc* # SG), ou o valor do dado se aplica a todos grupos de configuração.

4.9.4 Tipo de Estrutura de Atributo de Dado

Nos casos em que o valor de DA.bType é Struct, o atributo DA.type referencia uma estrutura de atributo. Estas estruturas são definidas com elementos DAType. Ele contém uma lista de atributos com o elemento BDA. Estes atributos podem ter um tipo básico ou fazer referência a uma outra estrutura de atributo.

O elemento BDA instancia o tAbstractDataAttribute e tem, portanto, os mesmos atributos. Os atributos de um elemento BDA são definidos na tabela abaixo.

Atributo	Descrição
Desc	Um texto descritivo para o atributo
name	O nome do atributo
sAddr	Um short address opcional dete atributo BDA
bType	O tipo básico do atributo, pego de tBasicTypeEnum
Туре	Usado apenas se <i>bType</i> =Enum ou <i>bType</i> = Struct para referenciar o tipo de enumeração apropriado ou definição DAType.
Count	Opcional. Deve definir o número de elementos do arranjo no caso em que o atributo é um arranjo.
valKind	Determina como o valor deve ser interpretado, se algum valor for dado – veja tabela 4.38

Tabela 4-34: Atributos do elemento BDA.

4.9.5 Tipos de Enumeração

Enumerações são usadas, em geral, em mais de um LNodeType. Por isso, a definição de um tipo de enumeração é feita para eles.

Definições de enumerações são válidas para todos IEDs; elas não são dependentes do tipo de IED. Por isso, os nomes permitidos são normalizados da seguinte maneira:

- Enumerações da IEC 61850-7-4 são definidas no topo das classes de dados comuns. Por isso, ambos os valores de status e (para INC) controle devem ter tipo Enum ao invés de INT32. Também no nível de pilha, os mapeamentos para tipos de dados Enum devem ser aplicáveis. Para essas enumerações, o nome do dado (DATA) deve ser pego. No caso em que, para diferentes classes LN o mesmo nome de dado é pego para diferentes enumerações, então aplicam-se os seguintes casos:
 - o uma enumeração é subconjunto da outra: neste caso o superconjunto deve ser usado como enumeração,
 - o as enumerações são diferentes: então o nome da classe LN deve ser usado adicionalmente, na frente do nome do dado (DATA).

O significado dos atributos do elemento EnumType é mostrado na tabela abaixo.

Atributo	Descrição
Id	Uma referência identificando este tipo de enumeração;

	usado pelo atributo <i>type</i> dos elementos DA e BDA para referenciar esta definição no caso em que <i>bType</i> é Enum.
Desc	Um texto adicional descrevendo este tipo de LN

Tabela 4-35: Atributos do elemento EnumType.

Cada valor de uma enumeração é definido com um atributo ord contendo a ordem dos valores, começando de 0.

