

Laporan Akhir Praktikum Jaringan Komputer

VPN dan QoS

Aaron Smeraldo Olivier Manik - 5024231070

4 Juni 2025

1 Langkah-Langkah Percobaan

1.1 Konfigurasi VPN

1. Reset router ke kondisi awal agar tidak terjadi konflik.

Gambar 1: Gambar Langkah ke-1

2. Login ke router dengan menggunakan winbox untuk mengaskses router melalui IP, lalu login dengan user admin.

Gambar 2: Gambar Langkah ke-2

3. Konfigurasi DHCP Client dilakukan untuk router mendapatkan koneksi internet secara otomatis.

Gambar 3: Gambar Langkah ke-3

4. Lakukan konfigurasi NAT pada firewall untuk memastikan bahwa perangkat yang terhubung ke jaringan lokal melalui ether3 dapat mengakses internet.

Gambar 4: Gambar Langkah ke-4

5. Lakukan konfigurasi alamat IP untuk jaringan lokal (LAN) dengan menambahkan IP pada interface ether1 sebagai penghubung ke jaringan lokal.

Gambar 5: Gambar Langkah ke-5

6. Konfigurasi DHCP Server bertujuan untuk mengatur agar perangkat klien seperti laptop atau PC yang terhubung ke port ether1.

Gambar 6: Gambar Langkah ke-6

7. Konfigurasikan DHCP Server agar perangkat klien (Laptop) yang tersambung ke ether1 dapat memperoleh alamat IP secara otomatis.

Gambar 7: Gambar Langkah ke-7

8. Aktifkan mode Proxy ARP pada interface yang terhubung ke internet untuk mendukung proses bridging dan routing jaringan.

Gambar 8: Gambar Langkah ke-8

9. Mengonfigurasi Server VPN PPTP untuk Aktifkan layanan PPTP Server.

Gambar 9: Gambar Langkah ke-9

10. Lakukan konfigurasi Server VPN PPTP dengan mengaktifkan layanan PPTP Server, kemudian tambahkan user dan password (secrets) yang akan digunakan oleh klien untuk login ke jaringan VPN.

Gambar 10: Gambar Langkah ke-10

11. Lakukan pengaturan PPTP Client pada laptop (Windows) untuk menghubungkan perangkat ke PPTP Server yang telah dikonfigurasi sebelumnya.

Gambar 11: Gambar Langkah ke-11

12. Verfikasi di PC1 yang terhubung VPN dan melakukan ping ke alamat IP Lokal router.

Gambar 12: Gambar Langkah ke-12

13. Verifikasi di PC2 yang terhubung ether1 dan lakukan uji ping

Gambar 13: Gambar Langkah ke-13

1.2 Konfigurasi QoS

1. Membuat Aturan Simple Queue bertujuan untuk mengatur batas kecepatan unggah dan unduh bagi klien yang terhubung ke jaringan.

Gambar 14: Gambar Langkah ke-1

2. Melakukan Pemantauan Traffic dan memantau lalu lintas data secara langsung untuk memastikan bahwa simple queue berjalan dengan baik.

Gambar 15: Gambar Langkah ke-2

3. Lakukan pengujian dengan membandingkan kecepatan internet sebelum dan setelah pengaktifan queue, termasuk pengujian saat queue dalam kondisi mati dan aktif.

Gambar 16: Gambar Langkah ke-3

Gambar 17: Gambar Langkah ke-4

2 Analisis Hasil Percobaan

Pada praktikum kali ini, dilakukan dua konfigurasi utama, yaitu Virtual Private Network (VPN) dan Quality of Service (QoS). Seluruh rangkaian kegiatan, mulai dari konfigurasi DHCP Client dan Server, pengaturan alamat IP, NAT, hingga implementasi VPN PPTP dan QoS, berhasil diselesaikan dengan baik. Router mampu memperoleh IP secara otomatis dari ISP melalui DHCP Client, sementara perangkat klien juga menerima IP secara otomatis dari DHCP Server yang telah disiapkan di router. Konfigurasi NAT berjalan dengan lancar dalam menyediakan akses internet bagi jaringan lokal. VPN PPTP berhasil diterapkan sehingga klien dapat tersambung secara aman ke jaringan internal melalui koneksi yang terenkripsi. Hasil pengujian konektivitas menggunakan perintah ping menunjukkan bahwa komunikasi antar perangkat berjalan tanpa kendala. Pada bagian QoS, penggunaan simple queue sukses dalam membatasi bandwidth perangkat klien sesuai dengan parameter yang telah ditentukan. Terjadi perbedaan kecepatan akses sebelum dan sesudah queue diaktifkan, yang membuktikan bahwa pengaturan QoS berfungsi dengan baik. Meskipun sempat muncul kendala dalam pengujian konektivitas dan pemblokiran konten, masalah tersebut dapat diselesaikan tanpa mengganggu jalannya praktikum secara keseluruhan.

3 Hasil Tugas Modul

 Buat simulasi jaringan di Cisco Packet Tracer dengan topologi dua router yang terhubung menggunakan protokol PPTP VPN. Masing-masing router memiliki satu PC client. Konfigurasikan IP pada setiap perangkat dan atur koneksi PPTP antar router agar kedua PC dapat saling ping secara aman. Lampirkan topologi jaringan, hasil ping test antar PC, dan penjelasan singkat fungsi PPTP.

```
C:\>ping 192.168.2.10

Pinging 192.168.2.10 with 32 bytes of data:

Reply from 192.168.2.10: bytes=32 time=7ms TTL=126
Reply from 192.168.2.10: bytes=32 time<1ms TTL=126

Ping statistics for 192.168.2.10:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 7ms, Average = 3ms
```

Gambar Ping dari PC1 ke PC2

```
C:\>ping 192.168.1.10

Pinging 192.168.1.10 with 32 bytes of data:

Reply from 192.168.1.10: bytes=32 time=6ms TTL=126

Reply from 192.168.1.10: bytes=32 time<lms TTL=126

Reply from 192.168.1.10: bytes=32 time<lms TTL=126

Reply from 192.168.1.10: bytes=32 time<lms TTL=126

Ping statistics for 192.168.1.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 6ms, Average = 1ms
```

Gambar Ping dari PC2 ke PC1

Gambar Topologi

2. PPTP (Point-to-Point Tunneling Protocol) berfungsi untuk membuat koneksi VPN yang aman melalui jaringan publik dengan mengenkripsi data antara dua titik, memungkinkan jaringan di dua lokasi berbeda terhubung seperti berada dalam satu LAN.

4 Kesimpulan

Berdasarkan hasil praktikum, dapat disimpulkan bahwa konfigurasi jaringan pada perangkat Mikro-Tik—meliputi DHCP Client dan Server, NAT, Firewall, VPN PPTP, serta Quality of Service (QoS)—berhasil dilakukan sesuai dengan target yang ditetapkan. Seluruh komponen jaringan telah diatur dengan tepat dan berfungsi sebagaimana mestinya. Pengujian membuktikan bahwa perangkat dalam jaringan mampu terhubung ke internet dan saling berkomunikasi dengan lancar. Implementasi QoS pun berjalan efektif dalam mengelola lalu lintas data sesuai kebijakan yang telah ditentukan. Secara keseluruhan, konfigurasi yang dilakukan mendukung keamanan, efisiensi, dan kestabilan jaringan sebagaimana yang diharapkan dalam praktikum ini.

5 Lampiran

5.1 Dokumentasi saat praktikum

Gambar 18: Dokumentasi Praktikum Modul 5