실력완성 | 수학 I

2-2-2.삼각함수의 주기 및 최대·최소

수학 계산력 강화

(1)삼각함수의 주기 및 최대·최소

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

$y = a \sin bx$, $y = a \cos bx$, $y = a \tan bx$ 최대, 최소와 주기

삼각함수	최댓값	최솟값	주기
$y = a \sin bx$	a	- a	$\frac{2\pi}{ b }$
$y = a \cos bx$	a	- a	$\frac{2\pi}{ b }$
y = a tan bx	없다.	없다.	$\frac{\pi}{ b }$

☑ 다음 함수의 치역과 주기를 구하여라.

1.
$$y = 4 \sin 3x$$

$$2. y=2\sin x$$

$$3. \qquad y = \frac{5}{2}\sin 4x$$

4.
$$y = \frac{1}{3} \sin\left(\frac{1}{2}x + \frac{\pi}{2}\right) - 1$$

5.
$$y = 2 \sin(2x - \pi)$$

6.
$$y = 2 |\sin \pi x|$$

7.
$$y = -3 \sin \frac{1}{2}x$$

8.
$$y = |2 \sin x - 1|$$

9.
$$y = 2 |\sin 3x|$$

10.
$$y = \left| \sin x - \frac{1}{4} \right|$$

11.
$$y = \sqrt{2} \sin \pi x - \sqrt{2}$$

12.
$$y = 4 \cos 3x$$

13.
$$y = 7 \cos 6x$$

14.
$$y = 5 \cos 2x$$

15.
$$y = \frac{5}{2} \cos x$$

16.
$$y = 3 |\cos \pi x|$$

17.
$$y = \left| \cos x + \frac{1}{3} \right|$$

18.
$$y = \frac{1}{2} |\cos 2x|$$

19.
$$y = 2 \cos \left(\frac{1}{2}x + \frac{\pi}{3}\right) - 2$$

20.
$$y = \sqrt{3} \cos \pi x - \sqrt{3}$$

21.
$$y = \frac{5}{2} \cos x - 1$$

22.
$$y = 2 \cos \left(2x + \frac{\pi}{2}\right)$$

$$23. \quad y = 3\cos\left(x - \frac{\pi}{4}\right)$$

24.
$$y = |\tan x - 1|$$

25.
$$y = 4 \tan \left(\frac{1}{3}x + \frac{\pi}{6}\right) + 5$$

26.
$$y = \frac{3}{2} \tan \left(3x + \frac{\pi}{4} \right) - 1$$

27.
$$y = \sqrt{3} |\tan \pi x|$$

28.
$$y = \sqrt{5} \tan x - 2\sqrt{5}$$

☑ 다음 함수의 점근선의 방정식과 주기를 구하여라.

29.
$$y = \tan \frac{x}{2}$$

30.
$$y = \frac{1}{2} \tan 4x$$

31.
$$y = \frac{2}{3} \tan 4x$$

32.
$$y = \frac{\sqrt{3}}{3} \left| \tan \frac{1}{2} x \right|$$

33.
$$y = -2 \tan 3x$$

$$34. \quad y = 2 \tan \frac{\pi}{2} x$$

35.
$$y = 3 \tan \frac{1}{4}x$$

36.
$$y = \frac{3}{2} \tan x$$

37.
$$y = \frac{4}{3} \tan \frac{1}{2} x$$

38.
$$y = \tan 2x$$

☑ 다음 함수의 주기, 최댓값, 최솟값을 각각 구하여라.

39.
$$y = \frac{1}{2} \sin 3x$$

40.
$$y = \frac{1}{4} \sin \left(2x - \frac{\pi}{3}\right)$$

41.
$$y = 2 \sin x$$

42.
$$y = |3 \sin x|$$

43.
$$y = -\cos x$$

44.
$$y = \cos 3x$$

45.
$$y = -2 \cos 2x$$

46.
$$y = 2 \cos \left(x + \frac{\pi}{3}\right) + 1$$

47.
$$y = \left| \frac{1}{2} \cos 2x \right|$$

 \blacksquare 다음 삼각함수의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동한 그래프의 식을 구하고, 최댓 값, 최솟값, 주기를 각각 구하여라.

48.
$$y = -\sin 2x \left[p = \frac{\pi}{3}, \ q = 2 \right]$$

49.
$$y = \sin x \left[p = \frac{\pi}{2}, \ q = -1 \right]$$

50.
$$y = -2 \cos \frac{x}{3} \left[p = \frac{\pi}{3}, \ q = -1 \right]$$

51.
$$y = \frac{1}{3} \cos x \left[p = -\pi, \ q = \frac{4}{3} \right]$$

 $oldsymbol{\square}$ 다음 조건을 만족하는 상수 $a,\ b,\ c$ 의 값을 각각 구하여 라. (단, a > 0, b > 0)

52. 함수
$$f(x) = a \sin bx + c$$
의 최댓값은 4, 주기는 $\frac{\pi}{3}$, $f\left(\frac{\pi}{36}\right) = 3$

53. 함수
$$f(x) = a \sin bx + c$$
의 주기 3π , 최댓값 5, $f(0) = 1$

54. 함수
$$f(x) = a \sin bx + c$$
의 최댓값 6 , 최솟값 0 주 기 $\frac{\pi}{2}$

55. 함수
$$f(x) = a \sin\left(bx + \frac{\pi}{3}\right) - c$$
의 주기 π , 최솟값 -2 , $f\left(-\frac{\pi}{6}\right) = 2$

56. 함수
$$f(x) = a \sin bx + c$$
의 최댓값 3, 최솟값 -1 , 주기 π

57. 함수
$$f(x) = a \sin bx + c$$
의 주기 $\frac{\pi}{4}$, 최댓값 $8, f(0) = 3$

58. 함수
$$f(x) = a \sin bx + c$$
의 주기 $\frac{\pi}{4}$, 최댓값 9, $f(0) = 4$

59. 함수
$$f(x) = a |\sin bx| + c$$
의 최댓값 $\frac{7}{2}$, 주기 $\frac{\pi}{3}$, $f\left(\frac{\pi}{18}\right) = 2$

60. 함수
$$f(x) = a \cos bx + c$$
의 최솟값 -3 , 주기 π , $f(0) = 1$

61. 함수
$$f(x) = a \cos bx + c$$
의 최댓값 3, 최솟값 -1 , 주기 3π

62. 함수
$$f(x) = a \cos\left(\pi - \frac{x}{b}\right) + c$$
의 주기 6π , 최댓값 1, $f(\pi) = -2$

63. 함수
$$f(x) = a \cos bx + c$$
의 최댓값 1, 주기 $\frac{\pi}{2}$, $f\left(\frac{\pi}{8}\right) = -2$

64. 함수
$$f(x)=a\cos bx+c$$
의 최솟값 -2 , 주기 $\frac{\pi}{6},\ f\!\left(\frac{\pi}{24}\right)\!\!=\!1$

65. 함수
$$f(x) = a \cos bx + c$$
의 최댓값 4, 최솟값 -2 , 주기 2π

- \blacksquare 다음 조건을 만족하는 상수 a, b, c의 값을 각각 구하여
- **66.** 함수 $f(x) = a \tan bx + c$ 의 주기는 $2\pi 0 \mathbf{\overline{D}}$, $f(0) = -1, f(\frac{\pi}{2}) = 1$ 이다. (단, b > 0)

67. 함수 $f(x) = a \tan bx + c$ 의 $f(0) = 1, \ f\left(\frac{\pi}{6}\right) = 4$

68. 함수 $f(x) = a \tan bx + c$ 의 주기는 $\frac{\pi}{2}$ 이고, f(0) = 2, $f\left(\frac{5}{8}\pi\right) = 5$ 이다. (단, b > 0)

69. 함수 $f(x) = a \tan bx + c \ (b > 0)$ 의 주기는 $\frac{\pi}{2}$ 이 고, $f(0) = \sqrt{3}$, $f(\frac{\pi}{6}) = 0$ 이다.

70. 함수 $f(x) = a \tan \left(x + \frac{\pi}{b}\right) + c$ 의 그래프에서 y축 에 가장 가까운 점근선의 방정식이 $x=\frac{\pi}{3}$ 이고, $f\left(\frac{\pi}{12}\right) = 3$, $f\left(-\frac{5}{12}\pi\right) = -1$ 이다. (단, b > 1)

☑ 다음 물음에 답하여라.

71. 함수 $y = a \sin(bx+c) + d$ 의 그래프가 다음과 같 을 때, 상수 a, b, c, d의 값을 각각 구하여라. (단, $a > 0, b > 0, 0 < c < \pi$

72. $y = a \sin b \left(x - \frac{\pi}{4}\right) + c$ 의 그래프가 다음 그림과 같 을 때, 상수 a, b, c에 대하여 a+b+c의 값을 구하 여라. (단, a>0, b>0)

73. 함수 $y = a \sin b \left(x - \frac{\pi}{4}\right)$ 의 그래프가 다음 그림과 같을 때, 상수 a, b의 값을 각각 구하여라. (단, a > 0, b > 0

74. 함수 $y = a \cos(bx - c)$ 의 그래프가 다음과 같을 때, 상수 a, b, c의 값을 각각 구하여라. (단, $a > 0, b > 0, 0 < c < \pi$

75. 함수 $y = a\cos(bx+c) + d$ 의 그래프가 그림과 같고 상수 a, b, c, d에 대하여 $a+16b+\frac{16}{\pi}c+d$ 의 값을 구하여라. (단, a > 0, b > 0, $-\pi < c < \pi$)

76. 함수 $y = a \cos(bx - c) + d$ 의 그래프가 다음과 같 을 때, 상수 a, b, c, d의 값을 각각 구하여라. (단, $a > 0, b > 0, 0 < c < \frac{\pi}{2}$)

77. $y = a\cos(bx + c) + d$ 의 그래프이다. 상수 a, b, c, d에 대하여 abcd의 값을 구하여라.(단, $0 < c < \pi$)

78. 다음 그림은 함수 $y = a\cos(bx - c)$ 의 그래프이다. 양수 a,b,c에 대하여 $a+b+rac{c}{\pi}$ 의 최솟값을 구하여 라.

79. 함수 $y = \tan (ax + b)$ 의 그래프가 다음과 같을 때, 상수 2ab의 값을 구하여라. (단, $0 < b < 2\pi$)

80. 그림은 두 함수 $y = \tan x$ 와 $y = a \sin \frac{b}{2} x$ 의 그래프 이다. 두 함수의 그래프가 점 $\left(\frac{\pi}{3},c\right)$ 에서 만날 때, 세 상수 a,b,c의 곱 abc의 값을 구하여라. (단, a > 0, b > 0)

정답 및 해설

- 1) 치역 : $\{y \mid -4 \le y \le 4\}$, 주기 : $\frac{2}{3}\pi$
- \Rightarrow 함수 $y=4 \sin 3x$ 의

치역 : $\{y \mid -4 \le y \le 4\}$, 주기 : $\frac{2\pi}{3} = \frac{2}{3}\pi$

- 2) 치역 : $\{y \mid -2 \le y \le 2\}$, 주기 : 2π
- \Rightarrow 함수 $y=2\sin x$ 의 그래프는 다음과 같다.

따라서 치역 : $\{y \mid -2 \le y \le 2\}$, 주기 : 2π

- 3) 치역 : $\left\{ y \mid -\frac{5}{2} \le y \le \frac{5}{2} \right\}$, 주기 : $\frac{\pi}{2}$
- 다 함수 $y=\frac{5}{2}\sin 4x$ 의 치역 : $\left\{y \mid -\frac{5}{2} \le y \le \frac{5}{2}\right\}$ 주기 : $\frac{2\pi}{4} = \frac{\pi}{2}$
- 4) 치역 : $\left\{ y \mid -\frac{4}{3} \le y \le -\frac{2}{3} \right\}$, 주기 : 4π
- \Rightarrow 함수 $y = \frac{1}{3}\sin\left(\frac{1}{2}x + \frac{\pi}{2}\right) 1$ 의 최댓값은 $\frac{1}{2}-1=-\frac{2}{3}$, 최솟값은 $-\frac{1}{3}-1=-\frac{4}{3}$ 이 므로 치역 : $\left\{y\left|-\frac{4}{3} \le y \le -\frac{2}{3}\right\}\right\}$

주기 : $\frac{2\pi}{\underline{1}} = 4\pi$

- 5) 치역 : $\{y \mid -2 \le y \le 2\}$, 주기 : π
- $\Rightarrow y = 2 \sin (2x \pi) = 2 \sin 2\left(x \frac{\pi}{2}\right)$ 의 그래표는 $y = \sin x$ 의 그래프를 x축의 방향으로 $\frac{1}{2}$ 배, y축 의 방향으로 2배한 후, x축의 방향으로 $\frac{\pi}{2}$ 만큼 평행이동한 것이므로 다음 그림과 같다.

따라서 치역은 $\{y \mid -2 \le y \le 2\}$, 주기는 $\frac{2\pi}{2} = \pi$ 이다.

- 6) 치역 : $\{y \mid 0 \le y \le 2\}$, 주기 : 1
- \Rightarrow 함수 $y = \sin \pi x$ 의 치역은 $\{y \mid -1 \le y \le 1\}$, 주기 는 $\frac{2\pi}{}$ =2이므로 함수 $y=|\sin \pi x|$ 의

치역은 $\{y \mid 0 \le y \le 1\}$, 주기는 1이다.

따라서 함수 $y=2 | \sin \pi x |$ 의

치역 : $\{y \mid 0 \le y \le 2\}$. 주기 : 1

- 7) 치역 : $\{y \mid -3 \le y \le 3\}$, 주기 : 4π
- 다 함수 $y=-3\sin\frac{1}{2}x$ 의 치역 : $\{y\mid -3\leq y\leq 3\}$

주기 : $\frac{2\pi}{\frac{1}{2}} = 4\pi$

- 8) 치역 : $\{y \mid 0 \le y \le 3\}$, 주기 : 2π
- \Rightarrow 함수 $y=2\sin x-1$ 의 최댓값은 2-1=1, 최솟값 은 -2-1=-3이므로 치역은 $y = \{y \mid -3 \le y \le 1\}$, 주기는 2π 따라서 함수 $y = |2 \sin x - 1|$ 의 치역은 $\{y \mid 0 \le y \le 3\}$, 주기는 2π
- 9) 치역 : $\{y \mid 0 \le y \le 2\}$, 주기 : $\frac{\pi}{2}$
- \Rightarrow 함수 $y = \sin 3x$ 의 치역은 $\{y \mid -1 \le y \le 1\}$, 주기는 $\frac{2\pi}{2} = \frac{2}{2}\pi$

함수 $y = |\sin 3x|$ 의 치역은 $\{y \mid 0 \le y \le 1\}$,

주기는 $\frac{\pi}{2}$

따라서 함수 $y=2 | \sin 3x |$ 의

치역 : $\{y \mid 0 \le y \le 2\}$, 주기 : $\frac{\pi}{2}$

- 10) 치역 : $\left\{ y \mid 0 \le y \le \frac{5}{4} \right\}$, 주기 : 2π
- \Rightarrow 함수 $y = \sin x \frac{1}{4}$ 의 최댓값은 $1 \frac{1}{4} = \frac{3}{4}$, 최솟값은 $-1-\frac{1}{4}=-\frac{5}{4}$ 이므로 치역은 $\left\{y \mid -\frac{5}{4} \le y \le \frac{3}{4}\right\}$, 주기는 2π 따라서 함수 $y = \left| \sin x - \frac{1}{4} \right|$ 의 치역은 $\left\{ y \mid 0 \le y \le \frac{5}{4} \right\}, \ \ 77 \ \ \vdots \ \ 2\pi$
- 11) 치역 : $\{y \mid -2\sqrt{2} \le y \le 0\}$, 주기 : 2
- \Rightarrow 함수 $y = \sqrt{2} \sin \pi x \sqrt{2}$ 의 최댓값은 $\sqrt{2} - \sqrt{2} = 0$, 최솟값은 $-\sqrt{2}-\sqrt{2}=-2\sqrt{2}$ 이므로 치역은 $\{y \mid -2\sqrt{2} \le y \le 0\}$ 주기는 $\frac{2\pi}{\pi}$ =2

- 12) 치역 : $\{y \mid -4 \le y \le 4\}$, 주기 : $\frac{2}{3}\pi$
- 13) 치역 : $\{y \mid -7 \le y \le 7\}$, 주기 : $\frac{\pi}{2}$
- \Rightarrow 함수 $y=7\cos 6x$ 의 치역 : $\{y\mid -7\leq y\leq 7\}$ 주기 : $\frac{2\pi}{6} = \frac{\pi}{3}$
- 14) 치역 : $\{y \mid -5 \le y \le 5\}$, 주기 : π
- 15) 치역 : $\left\{ y \mid -\frac{5}{2} \le y \le \frac{5}{2} \right\}$, 주기 : 2π
- 16) 치역 : $\{y \mid 0 \le y \le 3\}$, 주기 : 1
- \Rightarrow 함수 $y = \cos \pi x$ 의 치역은 $\{y \mid -1 \le y \le 1\}$, 주기는 $\frac{2\pi}{}=2$

함수 $y = |\cos \pi x|$ 의 치역은 $\{y \mid 0 \le y \le 1\}$, 주기는 1

따라서 함수 $y=3 |\cos \pi x|$ 의 치역은 $\{y \mid 0 \le y \le 3\}$, 주기는 1

- 17) 치역 : $\left\{ y \mid 0 \le y \le \frac{4}{3} \right\}$, 주기 : 2π
- \Rightarrow 함수 $y = \cos x + \frac{1}{3}$ 의 최댓값은 $1 + \frac{1}{3} = \frac{4}{3}$, 최솟값은 $-1+\frac{1}{3}=-\frac{2}{3}$ 이므로

치역은 $\left\{y \mid -\frac{2}{3} \le y \le \frac{4}{3}\right\}$, 주기는 2π 이다.

따라서 함수 $y = \left| \cos x + \frac{1}{3} \right|$ 의

치역은 $\left\{y \mid 0 \le y \le \frac{4}{3}\right\}$, 주기는 2π 이다.

- 18) 치역 : $\left\{ y \mid 0 \le y \le \frac{1}{2} \right\}$, 주기 : $\frac{\pi}{2}$
- \Rightarrow 함수 $y = \cos 2x$ 의 치역은 $\{y \mid -1 \le y \le 1\}$,

주기는 $\frac{2\pi}{2} = \pi$ 이므로 함수 $y = |\cos 2x|$ 의

치역은 $\{y \mid 0 \le y \le 1\}$, 주기는 $\frac{\pi}{2}$ 이다.

따라서 함수 $y = \frac{1}{2} |\cos 2x|$ 의

치역은 $\left\{y \mid 0 \le y \le \frac{1}{2}\right\}$, 주기는 $\frac{\pi}{2}$

- 19) 치역 : $\{y \mid -4 \le y \le 0\}$, 주기 : 4π
- \Rightarrow 함수 $y=2\cos\left(\frac{1}{2}x+\frac{\pi}{3}\right)-2$ 의 최댓값은 2-2=0, 최솟값은 -2-2=-4이므로 치역은 $\{y \mid -4 \leq y \leq 0\}$, 주기는 $\frac{2\pi}{\frac{1}{2}} = 4\pi$ 이다.
- 20) 치역 : $\{y \mid -2\sqrt{3} \le y \le 0\}$, 주기 : 2

- \Rightarrow 함수 $y = \sqrt{3} \cos \pi x \sqrt{3}$ 의 최댓값은 $\sqrt{3} - \sqrt{3} = 0$. 최솟값은 $-\sqrt{3}-\sqrt{3}=-2\sqrt{3}$ 이므로 치역은 $\{y \mid -2\sqrt{3} \le y \le 0\}$ 주기는 $\frac{2\pi}{\pi}$ =2
- 21) 치역 : $\left\{ y \mid -\frac{7}{2} \le y \le \frac{3}{2} \right\}$, 주기 : 2π
- \Rightarrow 함수 $y = \frac{5}{2} \cos x 1$ 의 최댓값은 $\frac{5}{2} 1 = \frac{3}{2}$, 최솟값은 $-\frac{5}{2}-1=-\frac{7}{2}$ 이므로 치역은 $\left\{y \;\middle|\; -\frac{7}{2} \leq y \leq \frac{3}{2} \right\}$, 주기는 2π 이다.
- 22) 치역 : $\{y \mid -2 \le y \le 2\}$, 주기 : π
- \Rightarrow $y=2\cos\left(2x+\frac{\pi}{2}\right)=2\cos\left(x+\frac{\pi}{4}\right)$ 의 그래표는 $y = \cos x$ 의 그래프를 x축의 방향으로 $\frac{1}{2}$ 배, y축 의 방향으로 2배한 후, x축의 방향으로 $-\frac{\pi}{4}$ 만큼 평행이동한 것이므로 다음 그림과 같다.

따라서 치역은 $\{y \mid -2 \le y \le 2\}$, 주기는 $\frac{2\pi}{2} = \pi$ 이다.

- 23) 치역 : $\{y \mid -3 \le y \le 3\}$, 주기 : 2π
- $\Rightarrow y = 3\cos\left(x \frac{\pi}{4}\right)$ 의 그래프는 $y = \cos x$ 의 그래프 를 y축의 방향으로 3배한 후 x축의 방향으로 $\frac{\pi}{4}$ 만큼 평행이동한 것이므로 다음 그림과 같다.

따라서 치역은 $\{y \mid -3 \le y \le 3\}$, 주기는 2π 이다.

- 24) 치역 : $\{y \mid y \ge 0\}$, 주기 : π
- \Rightarrow 함수 $y = \tan x 1$ 의 치역은 실수 전체의 집합, 주 기는 π 이므로 함수 $y = |\tan x - 1|$ 의 치역은 $\{y \mid y \ge 0\}$, 주기는 π 이다.
- 25) 치역 : 실수 전체의 집합, 주기 : 3π

- \Rightarrow 함수 $y=4\tan\left(\frac{1}{3}x+\frac{\pi}{6}\right)+5$ 의 치역은 실수 전체 의 집합, 주기는 $\frac{\pi}{\frac{1}{2}}$ = 3π 이다.
- 26) 치역 : 실수 전체의 집합, 주기 : $\frac{\pi}{3}$
- \Rightarrow 함수 $y=\frac{3}{2}\tan\left(3x+\frac{\pi}{4}\right)-1$ 의 치역은 실수 전체 의 집합, 주기는 $\frac{\pi}{3}$ 이다.
- 27) 치역 : $\{y \mid y \ge 0\}$. 주기 : 1
- \Rightarrow 함수 $y = \tan \pi x$ 의 치역은 실수 전체의 집합,

주기는
$$\frac{\pi}{\pi}$$
=1

함수 $y = |\tan \pi x|$ 의 치역은 $\{y \mid y \ge 0\}$. 주기 : 1 따라서 함수 $y = \sqrt{3} |\tan \pi x|$ 의 치역은 $\{y \mid y \ge 0\}$. 주기는 1이다.

- 28) 치역 : 실수 전체의 집합, 주기 : π
- 29) 점근선의 방정식 : $x = 2n\pi + \pi$ (n은 정수) 주기 : 2π ,
- \Rightarrow $y = \tan \frac{x}{2}$ 의 그래프는 $y = \tan x$ 의 그래프를 x축 의 방향으로 2배한 것이므로 다음 그림과 같다.

따라서 주기는 $\frac{\pi}{1} = 2\pi$, 점근선의 방정식은

- $x = 2n\pi + \pi(n)$ 은 정수)이다.
- 30) 점근선의 방정식 : $x = \frac{n}{4}\pi + \frac{\pi}{8}$ (n은 정수), 주기: $\frac{\pi}{4}$,
- \Rightarrow $y = \frac{1}{2} \tan 4x$ 의 그래프는 $y = \tan x$ 의 그래프를 x축의 방향으로 $\frac{1}{4}$ 배한 후 y축의 방향으로 $\frac{1}{2}$ 배한 것이므로 다음 그림과 같다.

따라서 주기는 $\frac{\pi}{4}$, 점근선의 방정식은

- $x = \frac{n}{4}\pi + \frac{\pi}{8}$ (n은 정수)이다.
- 31) 점근선의 방정식: $x = \frac{n}{4}\pi + \frac{\pi}{8}(n$ 은 정수) 주기 : $\frac{\pi}{4}$
- 32) 점근선의 방정식 : $x = 2n\pi + \pi$ (n은 정수) 주기 : 2π
- \Rightarrow 함수 $y = \tan \frac{1}{2}x$ 의 점근선의 방정식은 $x = 2n\pi + \pi$ (n은 정수) 주기는 $\frac{\pi}{\frac{1}{2}} = 2\pi$ 이므로

함수
$$y=\frac{\sqrt{3}}{3}\left|\tan\frac{1}{2}x\right|$$
의 점근선의 방정식 : $x=2n\pi+\pi$ (n 은 정수) 주기 : 2π

- 33) 점근선의 방정식 : $x = \frac{\pi}{6}(2n+1)$ (n은 정수), 주기: $\frac{\pi}{2}$
- \Rightarrow $y=-2 \tan 3x$ 의 그래프는 $y=2 \tan 3x$ 의 그래프를 x축에 대하여 대칭이동한 것이므로 $y=-2 \tan 3x$ 의 그래프는 다음과 같다.

따라서 점근선의 방정식은 $3x = n\pi + \frac{\pi}{2}$ 에서 $x = \frac{\pi}{6}(2n+1)$, (단, n은 정수), 주기는 $\frac{\pi}{2}$

- 34) 점근선의 방정식 : x = 2n + 1 (n은 정수),
- \Rightarrow $y=2 \tan \frac{\pi}{2} x$ 의 그래프는 다음과 같다.

따라서 점근선의 방정식은 $\frac{\pi}{2}x = n\pi + \frac{\pi}{2}$ 에서 x=2n+1 (단, n은 정수), 주기는 2

- 35) 점근선의 방정식 : $x = 4n\pi + 2\pi$ (n은 정수)
- \Rightarrow 함수 $y=3 \tan \frac{1}{4}x$ 의 점근선의 방정식은 $x=4n\pi+2\pi$ (n은 정수), 주기는 $\frac{\pi}{\underline{1}}=4\pi$
- 36) 점근선의 방정식 : $x = n\pi + \frac{\pi}{2}$ (n은 정수)
- \Rightarrow 함수 $y = \frac{3}{2} \tan x$ 의 점근선의 방정식은 $x = n\pi + \frac{\pi}{2}$ (n은 정수), 주기는 π 이다.
- 37) 점근선의 방정식: $x = 2n\pi + \pi$ (n은 정수) 주기: 2π
- ⇒ 그래프는 다음과 같다.

- 38) 점근선의 방정식: $x = \frac{n}{2}\pi + \frac{\pi}{4}$ (n은 정수) 주기: $\frac{\pi}{2}$
- ⇒ 그래프는 다음과 같다.

- 39) 주기 : $\frac{2}{3}\pi$, 최댓값 : $\frac{1}{2}$, 최솟값 : $-\frac{1}{2}$
- $\Rightarrow y = \frac{1}{2} \sin 3x$ 의 그래프는 다음과 같다.

- \therefore 주기 : $\frac{2}{3}\pi$, 최댓값 : $\frac{1}{2}$, 최솟값 : $-\frac{1}{2}$
- 40) 주기 : π , 최댓값 : $\frac{1}{4}$, 최솟값 : $-\frac{1}{4}$
- $\Rightarrow y = \frac{1}{4} \sin \left(2x \frac{\pi}{3}\right)$ 에서 최댓값은 $\frac{1}{4}$, 최솟값은 $-\frac{1}{4}$, 주기는 $\frac{2\pi}{2}$ = π
- 41) 주기 : 2π , 최댓값 : 2, 최솟값 : -2 $\Rightarrow y = 2 \sin x$ 의 그래프는 다음과 같다.

- ∴ 주기 : 2π, 최댓값 : 2, 최솟값 : −2
- 42) 주기 : π , 최댓값 : 3, 최솟값 : 0
- $\Rightarrow y = |3 \sin x|$ 의 그래프는 다음과 같이 $y = 3 \sin x$ 의 그래프에서 x축의 아랫부분을 x축에 대하여 대칭이동한다.

- 주기 : π , 최댓값 : 3, 최솟값 : 0
- 43) 주기 : 2π , 최댓값 : 1, 최솟값 : -1 $\Rightarrow y = -\cos x$ 의 그래프는 다음과 같다.

44) 주기 : $\frac{2}{3}\pi$, 최댓값 : 1, 최솟값 : -1

 $\Rightarrow y = \cos 3x$ 의 그래프는 다음과 같다.

45) 주기 : π, 최댓값 : 2, 최솟값 : -2

 $\Rightarrow y = -2 \cos 2x$ 의 그래프는 다음과 같다.

46) 주기 : 2π, 최댓값 : 3, 최솟값 : -1,

 $\Rightarrow y = 2\cos\left(x + \frac{\pi}{3}\right) + 1$ 에서 최댓값은 2 + 1 = 3, 최솟값은 -2+1=-1, 주기는 2π

47) 주기 : $\frac{\pi}{2}$, 최댓값 : $\frac{1}{2}$, 최솟값 : 0

 $\Rightarrow y = \left| \frac{1}{2} \cos 2x \right|$ 의 그래프는 다음과 같이 $y = \frac{1}{2} \cos 2x$ 의 그래프에서 x축의 아랫부분을 x축에 대하여 대칭이동한다.

 \therefore 주기 : $\frac{\pi}{2}$, 최댓값 : $\frac{1}{2}$, 최솟값 : 0

48) $y = -\sin\left(2x - \frac{2}{3}\pi\right) + 2$, 최댓값 : 3, 최솟값 : 1, 주기 : π

 $\Rightarrow y-2 = -\sin 2\left(x-\frac{\pi}{3}\right) \text{ of } x = -\sin \left(2x-\frac{2}{3}\pi\right)+2$

∴ 최댓값 : 1+2=3, 최솟값 : -1+2=1.

주기 : $\frac{2\pi}{2} = \pi$

49) $y = \sin\left(x - \frac{\pi}{2}\right) - 1$, 최댓값 : 0

최솟값 : -2, 주기 : 2π

 $\Rightarrow y-(-1)=\sin\left(x-\frac{\pi}{2}\right)$ 에서

$$y = \sin\left(x - \frac{\pi}{2}\right) - 1$$

∴ 최댓값 : 1-1=0, 최솟값 : -1-1=-2,

50) $y = -2\cos\left(\frac{1}{3}x - \frac{\pi}{9}\right) - 1$, 최댓값 : 1,

최솟값 : -3, 주기 : 6π

 $\Rightarrow y+1=-2\cos\frac{1}{3}\left(x-\frac{\pi}{3}\right)$

$$y = -2\cos\left(\frac{1}{3}x - \frac{\pi}{9}\right) - 1$$

∴ 최댓값: 2-1=1, 최솟값: -2-1=-3,

주기:
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$

51) $y = \frac{1}{3}\cos(x+\pi) + \frac{4}{3}$, 최댓값 : $\frac{5}{3}$

 $\Rightarrow y - \frac{4}{3} = \frac{1}{3}\cos(x + \pi) \text{ odd} \quad y = \frac{1}{3}\cos(x + \pi) + \frac{4}{3}$

 \therefore 최댓값 : $\frac{1}{3} + \frac{4}{3} = \frac{5}{3}$, 최솟값 : $-\frac{1}{3} + \frac{4}{3} = 1$,

52) a=2, b=6, c=2

 $\Rightarrow f(x) = a \sin bx + c$ 의 주기가 $\frac{\pi}{3}$ 이므로

$$\frac{2\pi}{b} = \frac{\pi}{3} \qquad \therefore b = 6$$

최댓값이 4이므로 a+c=4 (: a>0) …… \bigcirc

$$f\left(\frac{\pi}{36}\right) = 3$$
이므로

 $a\sin\frac{\pi}{6}+c=3$ $\therefore \frac{1}{2}a+c=3$ \cdots \bigcirc

 \bigcirc , \bigcirc 을 연립하여 풀면 a=2, c=2

53) a=4, $b=\frac{2}{3}$, c=1

 \Rightarrow 주기가 3π 이므로 $\frac{2\pi}{b} = 3\pi$ $\therefore b = \frac{2}{3}$

f(0) = 1에서 $a \sin 0 + c = 1$

따라서 $f(x) = a \sin \frac{2}{3}x + 1$ 의 최댓값이 5이므로

a+1=5

54) a = 3, b = 4, c = 3

 \Rightarrow 주기가 $\frac{\pi}{2}$ 이므로 $\frac{2\pi}{b} = \frac{\pi}{2}$ $\therefore b=4$

최댓값이 6이므로 a+c=6

..... 🗅 최솟값이 0이므로 -a+c=0 \bigcirc , \bigcirc 을 연립하여 풀면 a=3, c=3

55)
$$a=4$$
, $b=2$, $c=-2$

다 주기가
$$\pi$$
이므로 $\frac{2\pi}{|b|} = \pi$ $\therefore b = 2 \ (\because b > 0)$
최솟값이 -2 이므로 $-|a|-c=-2$
 $-a-c=-2 \ (\because a > 0)$ $\therefore a+c=2$ $\cdots \cdots$ \bigcirc
 $f(x) = a \sin \left(2x + \frac{\pi}{3}\right) - c$ 에서 $f\left(-\frac{\pi}{6}\right) = 2$ 이므로
 $f\left(-\frac{\pi}{6}\right) = a \sin 0 - c = -c = 2$
 $\therefore c=-2, a=4 \ (\because \bigcirc)$

56)
$$a=2$$
, $b=2$, $c=1$

다 주기가
$$\pi$$
이므로 $\frac{2\pi}{b} = \pi$ $\therefore b = 2$ 최댓값이 3이므로 $a + c = 3$ \cdots ① 최솟값이 -1 이므로 $-a + c = -1$ \cdots ① ① . \bigcirc 요을 연립하여 풀면 $a = 2, c = 1$

57)
$$a=5$$
, $b=8$, $c=3$

다 주기가
$$\frac{\pi}{4}$$
이므로
$$\frac{2\pi}{|b|} = \frac{\pi}{4} \qquad \therefore b = 8 \ (\because b > 0)$$
 최댓값이 8 이므로 $|a| + c = 8$ $\therefore a + c = 8 \ (\because a > 0)$ $\cdots \bigcirc f(x) = a \sin 8x + c$ 에서 $f(0) = 3$ 이므로 $f(0) = a \sin 0 + c = c = 3$ $\therefore c = 3$ \bigcirc 에 $c = 3$ 을 대입하면 $a = 5$

58)
$$a = 5$$
, $b = 8$, $c = 4$

$$\Rightarrow$$
 주기가 $\frac{\pi}{4}$ 이므로 $\frac{2\pi}{b} = \frac{\pi}{4}$ $\therefore b = 8$ $f(0) = 4$ 에서 $a\sin 0 + c = 4$ $\therefore c = 4$ 따라서 $f(x) = a\sin 8x + 4$ 의 최댓값이 9이므로 $a + 4 = 9$ $\therefore a = 5$

59)
$$a = 3$$
, $b = 3$, $c = \frac{1}{2}$

⇒ 주기가
$$\frac{\pi}{3}$$
이고 $b>0$ 이므로 $\frac{\pi}{b}=\frac{\pi}{3}$ \therefore $b=3$ 최댓값이 $\frac{7}{2}$ 이고 $a>0$ 이므로 $a+c=\frac{7}{2}$ \bigcirc $f(x)=a\mid\sin 3x\mid+c$ 에서 $f\left(\frac{\pi}{18}\right)=2$ 이므로 $f\left(\frac{\pi}{18}\right)=a\mid\sin\frac{\pi}{6}\mid+c=2$ \therefore $\frac{1}{2}a+c=2$ \bigcirc

$$\bigcirc$$
, \bigcirc 을 연립하여 풀면 $a=3, c=\frac{1}{2}$

60)
$$a = 2$$
, $b = 2$, $c = -1$

다 주기가
$$\pi$$
이므로 $\frac{2\pi}{b} = \pi$ $\therefore b = 2$ 최솟값이 -3 이므로 $-a+c=-3$ $(\because a>0)$ $\cdots\cdots$ \bigcirc $f(0)=1$ 이므로 $a\cos 0+c=a+c=1$ $\cdots\cdots$ \bigcirc \bigcirc 연립하여 풀면 $a=2,\ c=-1$

61)
$$a=2$$
, $b=\frac{2}{3}$, $c=1$

다 주기가
$$3\pi$$
이므로 $\frac{2\pi}{b} = 3\pi$ $\therefore b = \frac{2}{3}$ 최댓값이 3 이므로 $a+c=3$ $(\because a>0)$ \cdots \bigcirc 최솟값이 -1 이므로 $-a+c=-1$ $(\because a>0)$ \cdots \bigcirc \bigcirc 연립하여 풀면 $a=2, c=1$

62)
$$a = 2$$
, $b = 3$, $c = -1$

다 주기가
$$6\pi$$
이므로 $\frac{2\pi}{\left|\frac{1}{b}\right|} = 6\pi$

$$\therefore b = 3 \ (\because b > 0)$$
 최댓값이 1 이므로 $|a| + c = 1$

$$\therefore a + c = 1 \ (\because a > 0) \qquad \cdots \bigcirc \bigcirc$$

$$f(x) = a \cos\left(\pi - \frac{x}{3}\right) + c$$
에서 $f(\pi) = -2$ 이므로
$$f(\pi) = a \cos\frac{2}{3}\pi + c = -\frac{a}{2} + c = -2 \quad \cdots \bigcirc$$

$$\bigcirc, \bigcirc \Rightarrow$$
 여립하여 풀면 $a = 2, c = -1$

63)
$$a = 3$$
, $b = 4$, $c = -2$

⇒ 주기가
$$\frac{\pi}{2}$$
이므로 $\frac{2\pi}{b} = \frac{\pi}{2}$ ∴ $b=4$ 최댓값이 1이므로 $a+c=1$ ($\because a>0$) \cdots ① $f\left(\frac{\pi}{8}\right) = -2$ 이므로 $a\cos\frac{\pi}{2} + c = c = -2$ \cdots ©을 \bigcirc 에 대입하면 $a=3$

64)
$$a = 3$$
, $b = 12$, $c = 1$

65)
$$a=3$$
, $b=1$, $c=1$

$$\Rightarrow$$
 주기가 2π 이므로 $\frac{2\pi}{b} = 2\pi$ $\therefore b = 1$ 최댓값이 4 이므로 $a+c=4$ $(\because a>0)$ \cdots \bigcirc 최솟값이 -2 이므로 $-a+c=-2$ $(\because a>0)$ \cdots \bigcirc

 \bigcirc , \bigcirc 을 연립하여 풀면 a=3, c=1

66)
$$a=2$$
, $b=\frac{1}{2}$, $c=-1$

$$\Rightarrow f(x) = a \tan bx + c \supseteq$$

주기는
$$\frac{\pi}{b} = 2\pi$$
 $\therefore b = \frac{1}{2}$

$$f(0) = -1$$
에서 $a \tan 0 + c = c = -1$

$$f\left(\frac{\pi}{2}\right) = 1$$
에서 $a \tan \frac{\pi}{4} - 1 = a - 1 = 1$ $\therefore a = 2$

67)
$$a = \sqrt{3}$$
, $b = 2$, $c = 1$

$$\Rightarrow f(x) = a \tan bx + c$$
의 주기가 $\frac{\pi}{2}$ 이므로

$$\frac{\pi}{b} = \frac{\pi}{2}$$
 $\therefore b = 2$

$$f(0) = 1$$
이므로 $a \tan 0 + c = c = 1$ ····· \bigcirc

$$f\left(\frac{\pi}{6}\right) = 4 \circ] = 2$$

$$a \tan \frac{\pi}{3} + c = 4$$
 $\therefore \sqrt{3} a + c = 4$ \cdots

- \bigcirc 을 \bigcirc 에 대입하면 $a=\sqrt{3}$
- 68) a = 3, b = 2, c = 2

$$\Rightarrow f(x) = a \tan bx + c \supseteq$$

주기는
$$\frac{\pi}{b} = \frac{\pi}{2}$$
 : $b = 2$

$$f(0) = 2$$
에서 $a \tan 0 + c = c = 2$

$$f\left(\frac{5}{8}\pi\right) = 5$$
에서

$$a \tan \frac{5}{4}\pi + 2 = a \tan \frac{\pi}{4} + 2 = a + 2 = 5$$
 $\therefore a = 3$

69)
$$a = -1$$
, $b = 2$, $c = \sqrt{3}$

$$f(x) = a \tan 2x + c$$
 $|A| \quad f(0) = \sqrt{3}, \ f\left(\frac{\pi}{6}\right) = 0$ $|A| = 0$

로
$$f(0) = a \tan 0 + c = c = \sqrt{3}$$
 $\therefore c = \sqrt{3}$

$$f\left(\frac{\pi}{6}\right) = a \tan \frac{\pi}{3} + c = \sqrt{3} a + \sqrt{3} = 0$$
 : $a = -1$

70)
$$a=2$$
, $b=6$, $c=1$

$$\Rightarrow$$
 $f(x) = a \tan \left(x + \frac{\pi}{b}\right) + c$ 의 그래프에서 점근선의

방정식은
$$x = n\pi + \frac{\pi}{2} - \frac{\pi}{b}$$

이때, y축에 가장 가까운 점근선의 방정식이

$$x = \frac{\pi}{3}$$
이므로 $\frac{\pi}{2} - \frac{\pi}{b} = \frac{\pi}{3} (\because b > 1) \therefore b = 6$

$$f\left(\frac{\pi}{12}\right) = 3$$
에서 $a+c=3$

$$f\left(-\frac{5}{12}\pi\right) = -1$$
에서 $-a+c=-1$ ····· ©

 \bigcirc . \bigcirc 을 연립하여 풀면 a=2, c=1

71)
$$a=2$$
, $b=2$, $c=\frac{\pi}{2}$, $d=-1$

$$\Rightarrow$$
 주어진 그래프에서 주기가 $\frac{3}{2}\pi - \frac{\pi}{2} = \pi$ 이고

$$b > 0$$
이므로 $\frac{2\pi}{b} = \pi$ $\therefore b = \frac{\pi}{b}$

주어진 그래프에서 함수의 최댓값이 1, 최솟값이 -3이고 a > 0이므로 a + d = 1, -a + d = -3

두 식을 연립하여 풀면 a=2, d=-1

주어진 함수의 식은 $y=2\sin(2x+c)-1$ 이고 그래프가 점 (0, 1)을 지나므로

 $1 = 2 \sin((0+c) - 1)$ 에서 $\sin c = 1$

이때,
$$0 < c < \pi$$
이므로 $c = \frac{\pi}{2}$

- 72) 6
- 73) a = 3, b = 2

$$\Rightarrow$$
 함수 $y = a \sin b \left(x - \frac{\pi}{4} \right)$ 의 주기가 $\frac{5}{4}\pi - \frac{\pi}{4} = \pi$ 이

므로
$$\frac{2\pi}{b} = \pi$$
 $\therefore b = 2$

치역이
$$\{y \mid -3 \le y \le 3\}$$
이므로 $a = 3$

74)
$$a=4$$
, $b=2$, $c=\frac{\pi}{2}$

$$\Rightarrow$$
 함수 $y = a \cos(bx - c)$ 의 주기가 $\frac{5}{4}\pi - \frac{\pi}{4} = \pi$ 이므

로
$$\frac{2\pi}{b} = \pi$$
 $\therefore b = 2$

치역이 $\{y \mid -4 \le y \le 4\}$ 이므로 a=4

따라서 함수 $y=4\cos(2x-c)$ 의 그래프가 점 (0, 0)을 지나므로 $\cos(-c) = \cos c = 0$

$$\therefore c = \frac{\pi}{2} \ (\because 0 < c < \pi)$$

- 75) 16
- ⇨ 주어진 그래프에서 최댓값 8, 최솟값이 -2이므로 $\frac{8-2}{2}$ =3으로 삼각함수를 y축 방향으로 3만큼 평

행이동 시킨 것이다. 즉
$$d=3$$

이때
$$8-3=3-(-2)=5$$

따라서 cos항의 계수는 5인 것을 알 수 있다.

주어진 그래프는 $x = \frac{3}{7}\pi$ 에서 최댓값을 가진다.

즉 \cos 함수를 x축으로 $\frac{3}{7}\pi$ 만큼 평행시킨 것이다.

$$\stackrel{\triangle}{\neg}$$
, $-\frac{c}{b} = \frac{3}{7}\pi$

주어진 그래프의 주기는 $\frac{11}{7}\pi - \left(-\frac{5}{7}\pi\right) = \frac{16}{7}\pi$ 이

$$\frac{16}{7}\pi \times b = 2\pi \qquad \therefore \quad b = \frac{7}{8}$$

$$c=rac{3}{7}\pi imes(-b)=-rac{3}{8}\pi$$

따라서 $a=5,\ b=rac{7}{8},\ c=-rac{3}{8}\pi,\ d=3$ 이므로 $a+16b+rac{16}{\pi}c+d=5+14-6+3=16$

76)
$$a=3$$
, $b=1$, $c=\frac{\pi}{6}$, $d=1$

다 주어진 그래프에서 주기가
$$\frac{13}{6}\pi - \frac{\pi}{6} = 2\pi$$
이고 $b>0$ 이므로 $\frac{2\pi}{b} = 2\pi$ $\therefore b=1$ 주어진 그래프에서 함수의 최댓값이 4 , 최솟값이 -2 이고 $a>0$ 이므로 $a+d=4$, $-a+d=-2$ 두 식을 연립하여 풀면 $a=3$, $d=1$ 주어진 함수의 식은 $y=3\cos{(x-c)}+1$ 이고 그래 프가 점 $\left(\frac{\pi}{6},\ 4\right)$ 를 지나므로 $4=3\cos{\left(\frac{\pi}{6}-c\right)}+1$ 에서 $\cos{\left(\frac{\pi}{6}-c\right)}=1$ 이때, $0< c< \frac{\pi}{2}$ 이므로 $\frac{\pi}{6}-c=0$ $\therefore c=\frac{\pi}{6}$

77)
$$-\pi$$

78)
$$\frac{13}{3}$$

79)
$$3\pi$$

당 함수
$$y = \tan (ax + b)$$
의 주기는 $\frac{\pi}{a} = \frac{\pi}{3} - \left(\frac{\pi}{3}\right) = \frac{2}{3}\pi$ $\therefore a = \frac{3}{2}$ 점 $(0, 0)$ 을 지나므로 $\tan b = 0$ $\therefore b = \pi \ (\because 0 < b < 2\pi)$ $\therefore 2ab = 2 \times \frac{3}{2} \times \pi = 3\pi$

80)
$$8\sqrt{3}$$

다
$$\tan\frac{\pi}{3} = \sqrt{3}$$
이므로 $c = \sqrt{3}$
주어진 사인함수의 주기가 π 이므로
$$\frac{b}{2} = \frac{2\pi}{\pi} \qquad \therefore \quad b = 4$$

주어진 사인함수가 점 $\left(\frac{\pi}{3}, \sqrt{3}\right)$ 을 지나므로
$$\sqrt{3} = a \sin\left(2\frac{\pi}{3}\right) = a \times \frac{\sqrt{3}}{2} \qquad \therefore \quad a = 2$$
$$\therefore \quad abc = 2 \times 4 \times \sqrt{3} = 8\sqrt{3}$$