

Distributed Micro-Services Communication Problem Statements & Future Plans

China Telecom

Main Contents

- Problems of Micro service
- Key ideas of the Distributed Micro Service Communication (DMSC) architecture
- Future plans

Requirements of Distributed Mirco Services from the Cloud

• Microservices – small, independent units of application

• General microservices communications have the following steps:

Service registration
Service discovery
Service measurement
Service scheduling

What is a Service Mesh

- A service mesh is a dedicated infrastructure layer for handling service-to-service communications
- A service mesh provides such capabilities like traffic management, security, observability etc.
- Below is the evolution history of service mesh

2: Embeded General Library

3: Sidecar

The aim of a Service Mesh

- **Service discovery:** Discover other services and route requests through the mesh accordingly.
- Load balancing: Distribute traffic evenly across instances of a service.
- **Security:** Authenticate and authorize access and encrypt data.
- Observability: Collect metrics, logs, and traces for monitoring.
- Traffic control: Use sidecars to get fine-grained control over routing and retries.

Istio Architecture

Service Mesh: Sidecars intercept pod-to-pod traffic

Since the interconnected sidecars are deployed as an overlay topology on top of all pods, the result resembles a "mesh."

Service Mesh Topology

Problem 1: High intrusiveness and potential risks.

- × Shared memory: memory leakage in the sidecar may cause the app to crash.
- × Shared lifecycle: upgrading sidecar will require a pod restart, disrupting the app.
- × Shared controller: potential misconfiguration risks.

Problem 2: Performance degradation due to extra steps.

- × Extra steps: two extra context switch, memory copy, protocol stack processing^[1].
- × Performance degradation: throughput and latency degrade by 3x~7x^[1]

[1] SPRIGHT: extracting the server from serverless computing! High-performance eBPF-based event-driven, shared- memory processing. In Proceedings of the ACM SIGCOMM 2022 Conference. 780–794.

Cluster size		Resource usage of sidecar	
Node	Pod	CPU	Memory
500 200 100 60 60	15k 8k 1k 2k 400	1500core, 10% 1000core, 8% 32core, 4% 400core, 10% 150core, 30%	5000GB, 10% 1200GB, 5% 150GB, 5% 300GB, 6% 300GB, 25%

Problem 3: Excessive resource consumption.

- × For a large K8s cluster: 1500 CPU cores and 5000 GB memory.
- × Extreme case: 3x CPU and 5.54x memory more than app.

Problem 4: High control plane overhead.

- × High orchestration overhead: O(100k) pods for a cloud service.
- × High southbound overhead: configuration delays or even losses.

Main Contents

- Problems of Micro service
- Key ideas of the Distributed Micro Service Communication (DMSC) architecture
- Future plans

China Telecom Motivations

□ Considering the above challenges, we require an innovative solution that:

- Adapt to the continually growing demands of microservices communication.
- Feature end-to-end service telemetry capabilities for real-time monitoring of communication and performance data between microservices.
- Provide robust mechanisms to ensure the high availability and performance of critical microservices.
- Offer flexible scheduling capabilities for dynamic resource allocation based on demand.
- Support information-centric communication, facilitating the evolution of our network towards information-centric networking.

Features of Distributed Micro Service Communication

- DMSC: Distributed Micro Service Communication
- A novel approach to overcome the existing challenges by leveraging of Information-Centric Networking (ICN) with the service mesh communication architecture.

Content-Centric:

 prioritize content and services

Dynamic Resource Allocation:

- optimize resource allocation
- enhancing network efficiency

Decentralization:

 distribute processing and storage capabilities

Scalability and Flexibility:

 accommodate the evolving demands of the network

Overview of DMSC

DMSC Purpose: Enhance microservice communication efficiency and reliability

Components:

- Service Gateway (SG): Default gateway for microservices; manages and controls communication traffic.
- Service Router (SR): Optimizes routing based on Prefix and topology; exchange of reachable Prefixes and topology info.
- Service Prefix Authentication (SPA): Validates
 Prefix usage by microservices.
- Service Mesh Communication Scheduling Center (SCSC): Assist in optimizing communication policies.

Benefits:

- Decentralized routing decisions via SG and SR.
- Routing Optimization based on SCSC.
- Enhanced security via Prefix authentication.

Main Contents

- Problems of Micro service
- Key ideas of the Distributed Micro Service Communication (DMSC) architecture
- Future plans

Establish one new WG within IETF

- IETF is the venue to industrilize the technology and related specification.
- Many experts from the vendors are gathered at the IETF.
- Service Mesh is the trigger point to initiate the new WG to accomplish DMSC.
- Published RFCs within IETF should be revisited to find the Gap between the existing standardizations work and implementation requirements from the vendors.
- The new WG(DMSC--Distributed Mirco Service Communication) may locate in WIT area of IETF.

IETF DMSC WG Planning

Thank you!

