

First Order Logic

Department of Electrical and Electronics Engineering Spring 2005 Dr. Afşar Saranlı

References: Artificial Intelligence: A Modern Approach, 2nd Ed., Russel & Norvig

Overview

- Why First-Order Logic (FOL)?
- Syntax and Semantics of FOL,
- Fun with sentences,
- Wumpus world in FOL

Pros and Cons of FOL

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First Order Logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . .,
 brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, end of ...

Logics in General

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of $truth$	known interval value

Syntax of FOL: Basic Elements

```
\begin{array}{llll} & Constants & KingJohn,\ 2,\ UCB, \dots \\ & Predicates & Brother,\ >, \dots \\ & Functions & Sqrt,\ LeftLegOf, \dots \\ & Variables & x,\ y,\ a,\ b, \dots \\ & Connectives & \land\ \lor\ \neg\ \Rightarrow\ \Leftrightarrow \\ & Equality & = \\ & Quantifiers & \forall\ \exists \end{array}
```


Atomic Sentences

Atomic sentence = $predicate(term_1, ..., term_n)$

```
\mathsf{Term} = function(term_1, \dots, term_n)
\mathsf{or}\ constant\ \mathsf{or}\ variable
\mathsf{E.g.},\ Brother(KingJohn, RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
```

Complex Sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1,2) \lor \le (1,2) > (1,2) \land \neg > (1,2)$$

Truth in First Order Logic

- Sentences are true with respect to a model and an interpretation
- ullet Model contains ≥ 1 objects (domain elements) and relations among them

```
Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
```

• An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

Models in FOL: An example

Truth Example

- Consider the interpretation in which $Richard \rightarrow Richard$ the Lionheart $John \rightarrow the$ evil King John $Brother \rightarrow the$ brotherhood relation
- Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

"Possible Models" for FOL: Lots!!

- Entailment in propositional logic can be computed by enumerating models
- We can enumerate the FOL models for a given KB vocabulary:
- For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary
 For each possible k-ary relation on n objects
 For each constant symbol C in the vocabulary
 For each choice of referent for C from n objects . . .
- Computing entailment by enumerating FOL models is not easy!

Properties of Sets of Objects

- Now we can represent objects...
- What if we want to express properties of entire sets of objects?
- Or... some of them?
- Does FOL allow that?

Universal Quantification

- $\forall \langle variables \rangle \langle sentence \rangle$
- Everyone at Berkeley is smart: $\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$

Universal Quantification

- $\forall \langle variables \rangle \langle sentence \rangle$
- Everyone at Berkeley is smart: $\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$
- $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn))
 \land (At(Richard, Berkeley) \Rightarrow Smart(Richard))
 \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley))
 \land \dots
```


A Common Mistake to Avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:

```
\forall x \ At(x, Berkeley) \land Smart(x)
```

What does it mean?

A Common Mistake to Avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:

```
\forall x \ At(x, Berkeley) \land Smart(x)
```

- What does it mean?
- Means: "Everyone is at Berkeley and everyone is smart".
- Is NOT what we wanted to say!

Existential Quantification

- $\exists \langle variables \rangle \langle sentence \rangle$
- Someone at Stanford is smart:

```
\exists x \ At(x, Stanford) \land Smart(x)
```


Existential Quantification

- $\exists \langle variables \rangle \langle sentence \rangle$
- Someone at Stanford is smart: $\exists x \ At(x, Stanford) \land Smart(x)$
- $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) \land Smart(KingJohn))
 \lor (At(Richard, Stanford) \land Smart(Richard))
 \lor (At(Stanford, Stanford) \land Smart(Stanford))
 \lor \dots
```


Another Common Mistake to Avoid

- Typically, ∧ is the main connective with ∃
- Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

X	У	х→у
0	0	1
0	1	1
1	0	0
1	1	1

is true if there is anyone who is not at Stanford!

Properties of Quantifiers

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$ (why??)
- $\exists x \exists y$ is the same as $\exists y \exists x \pmod{\text{why??}}$
- $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$
- $\exists x \ \forall y \ Loves(x,y)$ "There is a person who loves everyone in the world"
- ∀y ∃x Loves(x,y)
 "Everyone in the world is loved by at least one person"

Properties of Quantifiers

Quantifier duality: each can be expressed using the other

```
\forall x \; Likes(x, IceCream) \qquad \neg \exists x \; \neg Likes(x, IceCream) \exists x \; Likes(x, Broccoli) \qquad \neg \forall x \; \neg Likes(x, Broccoli)
```

De Morgan rule applies to quantifiers

Fun with Sentences

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$$

"Sibling" is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$$

One's mother is one's female parent

```
\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).
```

- A first cousin is a child of a parent's sibling
- $\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

Equality

- Equality sign means two terms refer to the same object
- E.g., Father(John) = Henry says that...
- The object referred to by Father(John) and the object referred to by Henry are the same.
- It can also be used with negation:
- E.g., Richard has at least two brothers
 - $\exists x,y Brother(x, Richard) \land Brother(y,Richard) \land \neg(x=y)$

Interacting with FOL KBs

- Assertions and Queries in FOL.
- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

```
Tell(KB, Percept([Smell, Breeze, None], 5))
 Ask(KB, \exists a \ Action(a, 5))
```

- I.e., does KB entail any particular actions at t = 5?
- Answer: Yes, $\{a/Shoot\}$ \leftarrow substitution (binding list)

Interacting with FOL KBs

- Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$
- Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

KB for the Wumpus World

- "Perception"
 - $\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)$ $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$
- Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$
- Reflex with internal state: do we have the gold already? $\forall t \; AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$
 - Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

Deducing Hidden Properties

Properties of locations:

$$\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$$

 $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

$$\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

<u>Definition</u> for the Breezy predicate:

$$\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$$

Overview of other Knowledge Representation Issues

- We need to deal with time, change.
- Actions and their effects
- Sequence of actions? → Making plans
- Should you panic? No.

Keeping track of Change

- Facts hold in situations, rather than eternally
 E.g., |Holding(Gold, Now) rather than just Holding(Gold)
- Situation calculus is one way to represent change in FOL:
 Adds a situation argument to each non-eternal predicate
 E.g., Now in Holding(Gold, Now) denotes a situation
- Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s

Describing Actions I

- "Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$
- "Frame" axiom—describe **non-changes** due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$
- Frame problem: find an elegant way to handle non-change
 - (a) representation—avoid frame axioms
 - (b) inference—avoid repeated "copy-overs" to keep track of state
- Qualification problem: true descriptions of real actions require endless caveats what if gold is slippery or nailed down or . . .
- Ramification problem: real actions have many secondary consequences what about the dust on the gold, wear and tear on gloves, . . .

Describing Actions II

- Successor-state axioms solve the representational frame problem
- Each axiom is "about" a predicate (not an action per se):

```
P true afterwards \Leftrightarrow [an action made P true \lor P true already and no action made P false]
```

For holding the gold:

```
\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
[(a = Grab \land AtGold(s))
\lor (Holding(Gold, s) \land a \neq Release)]
```


Making Plans

Initial condition in KB:

```
At(Agent, [1, 1], S_0)

At(Gold, [1, 2], S_0)
```

- Query: Ask(KB, ∃s Holding(Gold, s))
 i.e., in what situation will I be holding the gold?
- Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold
- This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making Plans: A better way

- Represent plans as action sequences $[a_1, a_2, \dots, a_n]$ PlanResult(p, s) is the result of executing p in s
- Then the query $Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$
- Definition of PlanResult in terms of Result:

```
\forall s \ PlanResult([], s) = s \forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))
```

 Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world
- Situation calculus:
 - conventions for describing actions and change in FOL
 - can formulate planning as inference on a situation calculus KB

Reading Assignment

- Study Russel & Norvig Chapter10: "Knowledge Representation"
- Take notes and bring them to class!!