

Appendix I: Alignment of SEQ ID NO: 7 with the chloramphenicol resistance gene of Borges et al.

<!--StartFragment-->RESULT 3
AAS00462
ID AAS00462 standard; DNA; 2003 BP.
XX
AC AAS00462;
XX
DT 11-JUN-2007 (revised)
DT 16-MAY-2001 (first entry)
XX
DE Plasmid pLOI2225 useful for chromosomal integration of heterologous DNA.
XX
KW Plasmid; vector; antibiotic resistance; ethanol; alcohol dehydrogenase;
KW adhB; pyruvate decarboxylase; pdc; chloramphenicol acetyl transferase;
KW cat; regulatory element; adhE; chromosomal integration; circular; cyclic;
KW pLOI2225; pLOI2222; pSG76-C; chloramphenicol resistance;
KW FRT recombining site; ds.
XX
OS Synthetic.
XX
FH Key Location/Qualifiers
FT CDS complement(1045. .1704)
FT /*tag= a
FT /note= "Chloramphenicol-resistance gene"
XX
PN WO200118222-A1.
XX
PD 15-MAR-2001.
XX
PF 18-AUG-2000; 2000WO-US022700.
XX
PR 07-SEP-1999; 99US-00390479.
XX
PA (UYFL) UNIV FLORIDA.
XX
PI Borges AC, Zaldivar J, Morales FM, Jimenez AM, Ingram LO;
XX
DR WPI; 2001-235205/24.
DR PC:NCBI; gi6467484.
XX
PT Novel nucleic acid construct for integrating heterologous nucleic acid
PT sequences into genome or chromosome of host cells, has passenger and
PT marker sequences, in which marker sequence is flanked by recombining
PT sites.
XX
PS Claim 28; Page 59-60; 85pp; English.
XX
CC The present sequence for plasmid pLOI2225 which is constructed from the
CC plasmids pLOI2222 and pSG76-C is 1 of 7 novel plasmid constructs
CC (AAS00460-AAS00466) comprising a marker sequence such as an antibiotic
CC resistance gene, in which the marker sequence is flanked by two FRT
CC recombining sites. One of these plasmids (pLOI02231) also comprises a
CC passenger sequence. The passenger sequence can include an ethanologenic
CC gene such as alcohol dehydrogenase (preferably adhB) or pyruvate
CC decarboxylase (pdc), another gene such as chloramphenicol acetyl
CC transferase (cat), a regulatory element such as a promoter or IRES
CC (internal ribosomal entry site) or a guide sequence such as adhE. All the
CC plasmids are useful for integrating a nucleic acid construct into the
CC genome of a cell. Plasmid pLOI02231 is useful for producing ethanol by,
CC transforming an ethanologenic cell with the plasmid and contacting the
CC cell with a substrate which can be fermented into ethanol, where
CC expression of the passenger sequence results in the production of

CC ethanol. The recombinant ethanologenic host transformed with the plasmid
 CC has improved properties including increased ability to produce ethanol,
 CC depolymerisation for a particular substrate and increased tolerance to a
 CC higher level of ethanol
 CC
 CC Revised record issued on 11-JUN-2007 : Enhanced with precomputed
 CC information from BOND.
 XX
 SQ Sequence 2003 BP; 558 A; 425 C; 436 G; 584 T; 0 U; 0 Other;
 Query Match 100.0%; Score 1069; DB 1; Length 2003;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 1069; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 GCACAAATTAAAAATGAAGTTAACATCAATCTAAAGTATATGAGTAAACTGGTCTG 60
 |||||||
 Db 935 GCACAAATTAAAAATGAAGTTAACATCAATCTAAAGTATATGAGTAAACTGGTCTG 994
 Qy 61 ACAGTTACCAATGCTTAATCAGTGAGGCACCAATAACTGCCTTAAAAAATTACGCCCG 120
 |||||||
 Db 995 ACAGTTACCAATGCTTAATCAGTGAGGCACCAATAACTGCCTTAAAAAATTACGCCCG 1054
 Qy 121 CCCTGCCACTCATCGCAGTACTGTTGAATTCAAGCATTCTGCCGACATGGAAGCCA 180
 |||||||
 Db 1055 CCCTGCCACTCATCGCAGTACTGTTGAATTCAAGCATTCTGCCGACATGGAAGCCA 1114
 Qy 181 TCACAGACGGCATGATGAACCTGAATGCCAGCGCATCAGCACCTGTCGCCTGCGTA 240
 |||||||
 Db 1115 TCACAGACGGCATGATGAACCTGAATGCCAGCGCATCAGCACCTGTCGCCTGCGTA 1174
 Qy 241 TAATATTTGCCCATGGTGAACGGGGCGAAGAAGTTGTCCATTGCCACGTTAAA 300
 |||||||
 Db 1175 TAATATTTGCCCATGGTGAACGGGGCGAAGAAGTTGTCCATTGCCACGTTAAA 1234
 Qy 301 TCAAAACTGGTGAACACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAATAAAC 360
 |||||||
 Db 1235 TCAAAACTGGTGAACACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAATAAAC 1294
 Qy 361 CCTTAGGGAAATAGGCCAGGTTTCACCGTAACACGCCACATCTGCCAATATATGTGT 420
 |||||||
 Db 1295 CCTTAGGGAAATAGGCCAGGTTTCACCGTAACACGCCACATCTGCCAATATATGTGT 1354
 Qy 421 AGAAAATGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTCAGTTGC 480
 |||||||
 Db 1355 AGAAAATGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTCAGTTGC 1414
 Qy 481 TCATGGAAAACGGTGTACAAGGGTGAACACTATCCCATAACCAGCTCACCGTCTTC 540
 |||||||
 Db 1415 TCATGGAAAACGGTGTACAAGGGTGAACACTATCCCATAACCAGCTCACCGTCTTC 1474
 Qy 541 ATTGCCATACGGAATTCCGGATGAGCATTCACTCAGGCGGGCAAGAATGTGAATAAGGCC 600
 |||||||
 Db 1475 ATTGCCATACGGAATTCCGGATGAGCATTCACTCAGGCGGGCAAGAATGTGAATAAGGCC 1534
 Qy 601 GGATAAAACTTGCTTATTTCTTACGGTCTTAAAAAGGCCGTAAATCCAGCTGA 660
 |||||||
 Db 1535 GGATAAAACTTGCTTATTTCTTACGGTCTTAAAAAGGCCGTAAATCCAGCTGA 1594
 Qy 661 ACGGTCTGGTTATAGGTACATTGAGCACTGACTGAAATGCCTCAAAATGTTCTTACGA 720
 |||||||
 Db 1595 ACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATGTTCTTACGA 1654

Qy	721	TGCCATTGGATATATCACGGTGGTATATCCAGTGATTTCTCCATTTAGCTCC	780
Db	1655	TGCCATTGGATATATCACGGTGGTATATCCAGTGATTTCTCCATTTAGCTCC	1714
Qy	781	TTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGTAGTGATCTTATTTCATTA	840
Db	1715	TTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGTAGTGATCTTATTTCATTA	1774
Qy	841	TGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTGCCAAAAGTTGCC	900
Db	1775	TGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTGCCAAAAGTTGCC	1834
Qy	901	CAGGGCTTCCCGTATCACAGGGACACCAGGATTATTTATTCTGCGAAGTGATCTCC	960
Db	1835	CAGGGCTTCCCGTATCACAGGGACACCAGGATTATTTATTCTGCGAAGTGATCTCC	1894
Qy	961	GTCACAGGTATTATTACGGCGCAAAGTGCCTCGGGTATGCTGCCAACTTACTGATTAG	1020
Db	1895	GTCACAGGTATTATTACGGCGCAAAGTGCCTCGGGTATGCTGCCAACTTACTGATTAG	1954
Qy	1021	TGTATGATGGTTTGAGGTGCTCCAGTGGCTCTGTTCTATCAGC	1069
Db	1955	TGTATGATGGTTTGAGGTGCTCCAGTGGCTCTGTTCTATCAGC	2003

<!--EndFragment-->