Assignment 3: Applied Linear Algebra

1. Consider the vector space $C[-\pi,\pi]$. For $f,g\in C[-\pi,\pi]$ an inner product is defined by

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Check whether the set $B = \{\sin(x), \sin(2x), \sin(4x)\}$ is orthogonal or not (with respect to this inner product).

- 2. Using Gram-Schmidt method convert the basis $B = \{(1, 2, -2), (4, 3, 2), (1, 2, 1)\}$ to an orthogonal basis of \mathbb{R}^3 . Find the coordinate of (1, 1, 1) with respect to the orthogonal basis.
- 3. Consider the subspace $W=\{(x,y,z)|x+y-2z=0\}$ of \mathbb{R}^3 . Find a basis of W^\perp (orthogonal complement of W).
- 4. Consider the subspace $W=\{(x,y,z)|x-y-z=0\}$ of \mathbb{R}^3 . Express x=(2,3,5) as x=p+q where $p\in W$ and $\langle p,q\rangle=0$.
- 5. Consider two orthonormal bases of $B = \{(3/5, 4/5, 0), (-4/5, 3/5, 0), (0, 0, 1)\}$ and $C = \{(3/7, -6/7, -2/7), (2/7, 3/7, -6/7), (6/7, 2/7, 3/7)\}$ of \mathbb{R}^3 . Show that the transition matrix from B coordinate to C coordinate is an orthogonal matrix.
- 6. Find the QR-factorization of $A = \begin{bmatrix} 4 & -3 \\ 11 & -2 \\ 5 & -10 \end{bmatrix}$. Using this find the least square solution of Ax = b, where $b = (0, 15, -20)^T$.