Properties of Context Free Languages

Dr. Mousumi Dutt

CFL Closure Properties

Closure properties of CFL

- □ Closure properties consider operations on CFL that are guaranteed to produce a CFL
- The CFL's are closed under substitution, union, concatenation, closure (star), reversal, homomorphism and inverse homomorphism.
- □ CFL's are not closed under *intersection* (but the intersection of a CFL and a regular language is always a CFL), *complementation*, and *set-difference*.

Closure Property Results

- CFLs are closed under:
 - 。 Union
 - Concatenation
 - Kleene closure operator
 - Substitution
 - Homomorphism, inverse homomorphism
 - reversal
- CFLs are not closed under:
 - Intersection
 - Difference
 - Complementation

Note: Reg languages
are closed
under
these
operators

Strategy for Closure Property Proofs

- First prove "closure under substitution"
- Using the above result, prove other closure properties
- CFLs are closed under:
- Union
 Concatenation
 Kleene closure operator
 Substitution
 this first
 Homomorphism, inverse homomorphism
 - Reversal

Note: s(L) can use a different alphabet

The **Substitution** operation

```
For each a \in \Sigma, then let s(a) be a language
If w=a_1a_2...a_n \in L, then:
          s(w) = \{ x_1 x_2 \dots \} \in s(L), s.t., x_i \in s(a_i) \}
```

Example:

- Let $\Sigma = \{0,1\}$
- o Let: s(0) = {aⁿbⁿ | n ≥1}, s(1) = {aa,bb}
- If w=01, s(w)=s(0).s(1)
 E.g., s(w) contains a¹b¹aa, a¹b¹bb, a²b²aa, a²b²bb, ... and so on.

CFLs are closed under Substitution

IF L is a CFL and a substitution defined on L, s(L), is s.t., s(a) is a CFL for every symbol a, THEN:

o s(L) is also a CFL

What is s(L)?

Note: each s(w) is itself a set of strings

•••

CFLs are closed under Substitution

- G=(V,T,P,S) : CFG for L
- Because every s(a) is a CFL, there is a CFG for each s(a)
 - Let $G_a = (V_a, T_a, P_a, S_a)$
- Construct G'=(V',T',P',S) for s(L)

P' consists of:

- The productions of P, but with every occurrence of terminal "a" in their bodies replaced by S_a.
- ∘ All productions in any P_a , for any $a ∈ \sum$

Substitution

- ☐ Each symbol in the strings of one language is replaced by an entire CFL language
- ☐ Useful in proving some other closure properties of CFL
- \square Example: $S(0) = \{a^nb^n | n \ge 1\}$, $S(1) = \{aa, bb\}$ is a substitution on alphabet $\Sigma = \{0, 1\}$.

Substitution

Theorem: If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then s(L) is a CFL.

Proof

- Let $G = (V, \Sigma, P, S)$ be grammar for L
- Let $G_a = (V_a, T_a, P_a, S_a)$ be the grammar for each $a \in \sum \text{with } V \cap V_a$
- \Box G'= (V', T', P', S) for s(L) where

 - $V' = V \cup V_a$ $T' = \text{union of } T_a \text{ for all } a \subseteq \Sigma$
 - P' consists of
 - All productions in any P_a for $a \in \Sigma$
 - In productions of P, each terminal a is replaced by S_a
- A detailed proof that this construction works is in the reader.
 - Intuition: this replacement allows anystring in La to take the place of any occurrence of a in any string of L.

Example (1)

 $S \rightarrow 0S1 \mid 01$

 $□ L = {0ⁿ1ⁿ | n ≥1}, generated by the grammar$ S→0S1|01,

 $A \rightarrow aA \mid ab$, $S(1) = \{ab, abc\}$, generated by the grammar $S \rightarrow abA$, $A \rightarrow c$

 $s(0) = \{a^nb^m | m \le n\}$, generated by the grammar $S \rightarrow aSb|A$;

 $\mid \varepsilon \mid$ Rename second and third S's to S₀ and S₁ respectively.
Rename second A to B. Resulting grammars are:

 $S \rightarrow 0S1 \mid 01$ $S_0 \rightarrow aS_0b \mid A; A \rightarrow aA \mid ab$ $S_1 \rightarrow abB; B \rightarrow c \mid \varepsilon$

Example(1) Contd... \Box In the first grammar replace 0 by S_0 and 1 by S_1 . The combined grammar:

$$G' = (\{S, S_0, S_1, A, B\}, \{a, b\}, P', S),$$

where $P' = \{S \rightarrow S_0SS_1 \mid S_0S_1, S_0 \rightarrow aS_0b \mid A, A\}$ $\rightarrow aA \mid ab, S_1 \rightarrow abB, B \rightarrow c \mid \epsilon$

Application of Substitution

- \Box Closure under union of CFL's L₁ and L₂
- \square Closure under concatenation of CFL's L₁ and L₂
- □ Closure under Kleene's star (closure * and positive closure +) of CFL's L₁
- □ Closure under homomorphism of CFL L_i for every $a_i \in \sum$

Substitution of a CFL: example

- Let L = language of binary palindromes s.t., substitutions for 0 and 1 are defined as follows:
 - $s(0) = \{a^nb^n \mid n \ge 1\}, s(1) = \{xx,yy\}$
- Prove that s(L) is also a CFL.

CFG for L:

S=> 0S0|1S1|ε

CFG for s(0):

$$S_0 => aS_0 b \mid ab$$

CFG for s(1):

$$S_1 => xx \mid yy$$

Therefore, CFG for s(L):

$$S = S_0 S S_0 | S_1 S_1 | \epsilon$$

 $S_0 = S_0 b | ab$
 $S_1 = XX | VV$

CFLs are closed under union

Let L_1 and L_2 be CFLs <u>To show:</u> L_2 U L_2 is also a CFL

Let us show by using the result of Substitution

Make a new language:

$$L_{new} = \{a,b\} \text{ s.t., s}(a) = L_1 \text{ and s}(b) = L_2$$

==> $s(L_{new}) == same \text{ as } == L_1 \cup L_2$

A more direct, alternative proof

Let S_1 and S_2 be the starting variables of the grammars for L_1 and L_2

• Then,
$$S_{\text{new}}^2 => S_1 \mid S_2$$

Union

- \Box Use L= {a, b}, s(a) = L₁ and s(b)=L₂.s(L)= L₁ \cup L₂
- \square To get grammar for $L_1 \cup L_2$?
 - Add new start symbol S and rules $S \rightarrow S_1 | S_2$
 - We get grammar G = (V, T, P, S) where

$$V = V_1 \cup V_2 \cup \{S\}, \text{ where } S \notin V_1 \cup V_2$$

$$P = P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$$

- ☐ Example:

 - $G_1: S_1 \to aS_1b \mid \varepsilon, G_2: S_2 \to bS_2a \mid \varepsilon$
 - L1 \cup L2 is G = ({S₁, S₂, S}, {a, b}, P, S) where P = {P1 \cup P2 \cup {S \rightarrow S₁ | S₂ }}

CFLs are closed under concatenation

Let L₁ and L₂ be CFLs

Let us show by using the result of Substitution

Make L_{new} = {ab} s.t.,
 s(a) = L₁ and s(b)= L₂
 ==> L₁ L₂ = s(L_{new})

A proof without using substitution?

Concatenation

- Let $L=\{ab\}$, $s(a)=L_1$ and $s(b)=L_2$. Then $s(L)=L_1L_2$
- \Box To get grammar for L_1L_2 ?
 - Add new start symbol and rule $S \rightarrow S_1 S_2$
 - We get G = (V, T, P, S) where $V = V_1 \cup V_2 \cup \{S\}$, where $S \notin V_1 \cup V_2$
 - $\mathbf{V} \mathbf{V}_1 \cup \mathbf{V}_2 \cup \{\mathbf{S}\}, \text{ where } \mathbf{S} \notin \mathbf{V}_1 \cup \mathbf{V}_2 \cup \{\mathbf{S} \rightarrow \mathbf{S}_1 \mathbf{S}_2\}$
- $\Box \quad \text{Example:} \quad = \quad \text{I.} \quad (\circ^{\text{nle}}) \mid v > 0) \quad \text{with } C \circ C \quad \text{a.s.} \quad C \circ C = 0$

 - $L_1L_2 = \{a^nb^{\{n+m\}}a^m \mid n, m \ge 0\} \text{ with } G = (\{S, S_1, S_2\}, \{a, b\}, \{S \rightarrow S_1S_2, S_1 \rightarrow aS_1b \mid \epsilon, S_2 \rightarrow bS_2a\}, S)$

CFLs are closed under *Kleene Closure*

• Let L be a CFL

O Let
$$L_{new} = \{a\}^*$$
 and $s(a) = L_1$

 $\circ \quad \text{Then, } L^* = s(L_{\text{new}})$

Kleene's star

Use
$$L=\{a\}^*$$
 or $L=\{a\}^+$, $s(a)=L_1$. Then $s(L)=L_1^*$ (or $s(L)=L_1^+$).

$$L_1 = \{a^n b^n \mid n \ge 0\} \ (L_1)^* = \{a^{\{n1\}}b^{\{n1\}} \dots a^{\{nk\}}b^{\{nk\}} \mid k \ge 0 \text{ and } ni \\ \ge 0 \text{ for all } i\}$$

■
$$L_2 = \{ a^{\{n2\}} \mid n \ge 1 \}, (L_2)^* = a^*$$

□ To get grammar for $(L_1)^*$

Add new start symbol
$$S$$
 and rules $S \rightarrow SS_1 \mid \varepsilon$.

We get
$$G = (V, T, P, S)$$
 where

$$V = V_1 \cup \{S\}, \text{ where } S \notin V_1$$

 $P = P_1 \cup \{S \rightarrow SS_1 \mid \epsilon\}$

CFLs are closed under Reversal

- Let L be a CFL, with grammar G=(V,T,P,S)
- For L^R, construct G^R=(V,T,P^R,S) s.t.,
 - \circ If A==> α is in P, then:
 - \blacksquare A==> α^R is in P^R

■ (that is, reverse every production)

Reversal

- ☐ The CFL's are closed under reversal
- \square This means then if L is a CFL, so L^R is a CFL
- It is enough to reverse each production of a CFL for L, i.e., substitute $A \rightarrow \alpha$ by $A \rightarrow \alpha^R$
- ☐ Example:
 - $L = \{ a^n b^n \mid n \ge 0 \}$ with $P : S \rightarrow aSb \mid \varepsilon$
 - $L^R = \{b^n a^n \mid n \ge 0 \} \text{ with } P^R : S \to bSa \mid \varepsilon$

CFLs are not closed under Intersection

Existential proof:

```
 L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\} 
 L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}
```

- Both L₁ and L₂ are CFLs
 - Grammars?
- But L₁ ∩ L₂ cannot be a CFL
 Why?
- We have an example, where intersection is not closed.
- Therefore, CFLs are not closed under intersection

Intersection

- ☐ The CFL's are not closed under intersection
- ☐ Example:
 - L = $\{0^n1^n2^n|n \ge 1\}$ is not context-free.
 - L1 = $\{0^n1^n2^i|n \ge 1, i \ge 1\}$, L2 = $\{0^i1^n2^n|n \ge 1, i \ge 1\}$ are CFL's with corresponding grammars for L1: S->AB; A->0A1 | 01; B->2B | 2, and for L2: S->AB; A->0A | 0; B->1B2 | 12.
 - $\blacksquare \quad \text{However, } L = L_1 \cap L_2$
 - Thus intersection of CFL's is not CFL

Intersection

□ Theorem: If L is CFL and R is a regular language, then L ∩ R is a CFL.

Intersection with RL Proof

- \square P=(Q_p, Σ, Γ, δ_p, q_p, Z₀, F_p) be PDA to accept CFL by final state
- \Box A=(Q_A, \sum , δ _A, q_A, F_A) be a DFA for RL
- \square Construct PDA P' = (Q, Σ , Γ , δ , q₀, Z₀, F) where

 - $\blacksquare \quad \mathbf{F} = (\mathbf{F}_{\mathbf{P}} \mathbf{X} \; \mathbf{F}_{\mathbf{A}})$
 - \bullet δ is in the form $\delta((q, p), a, X) = ((r, s), \gamma)$ such that
 - 1. $s = \delta_{A}(p, a)$
 - 2. (r, γ) is in $\delta_p(q, a, X)$

Proof Contd...

- □ For each move of PDA P, we make the same move in PDA P' and also we carry along the state of DFA A in a second component of P'.
- ☐ P' accepts a string w iff both P and A accept w.
- \square w is in $L \cap R$.
- The moves $((q_p, q_A), w, Z) \mid -*P'((q, p), \varepsilon, \gamma)$ are possible iff $(q_p, w, Z) \mid -*P(q, \varepsilon, \gamma)$ moves and $p = \delta*(q_A, w)$ transitions are possible.

Set Difference with RL

- ☐ For a CFL's L, and a regular language R.
 - L R is a CFL.

Proof:

- R is regular and R^C is also regular
- $L R = L \cap R^C$
- Complement of of Regular Language is regular
- Intersection of a CFL and a regular language is CFL

Set Difference

- \Box L₁ and L₂ are CFLs. L₁ L₂ is not necessarily a CFL
 - Proof:
 - $L1 = \sum^* L$

 - $\blacksquare \quad \text{But } \Sigma^* L = L^C$
 - If CFLs were closed under set difference, then Σ^* L = L^C would always be a CFL.
 - But CFL's are not closed under complementation

CFLs are not closed under difference

- Follows from the fact that CFLs are not closed under complementation
- Because, if CFLs are closed under difference, then:

$$\circ$$
 $\overline{\ }$ = \sum^* - L

- So L has to be a CFL too
- Contradiction

Complementation

- \Box L^C is not necessarily a CFL
- \square Proof:
 - Assume that CFLs were closed under complement.
 - If L is a CFL then L^C is a CFL
 - Since CFLs are closed under union, $L_1^C \cup L_2^C$ is a CFL
 - And by our assumption $(L_1^C \cup L_2^C)^C$ is a CFL
 - But $(L_1^C \cup L_2^C)^C = L_1 \cap L_2$ which we just showed isn't necessarily a CFL.
 - Contradiction!

CFLs are not closed under complementation

Follows from the fact that CFLs are not closed under intersection

 $\bullet \quad L_1 \cap L_2 = \overline{L_1 \cup L_2}$

Logic: if CFLs were to be closed under complementation

- □ the whole right hand side becomes a CFL (because CFL is closed for union)
- □ the left hand side (intersection) is also a CFL
- but we just showed CFLs are NOT closed under intersection!
- ☐ CFLs *cannot* be closed under complementation.

Homomorphism

- \square Closure under homomorphism of CFL L for every $a \in \Sigma$
- \square Suppose L is a CFL over alphabet Σ and h is a homomorphism on Σ .
- Let s be a substitution that replaces every $a \subseteq \sum$, by h(a). ie s(a) = {h(a)}.
- \Box Then h(L) = s(L).
- $\Box \ \ h(L) = \{h(a_1)...h(a_k) \mid k \ge 0\} \ \ \text{where} \ \ h(a_k) \ \ \text{is a} \\ \ \ \text{homomorphism for every} \ a_k \in \Sigma.$

Inverse homomorphism

- □ To recall: If h is a homomorphism, and L is any language, then $h^{-1}(L)$, called an *inverse* homomorphism, is the set of all strings w such that $h(w) \subseteq L$
- ☐ The CFL's are closed under inverse homomorphism.
- □ Theorem: If L is a CFL and h is a homomorphism, then $h^{-1}(L)$ is a CFL

Proof Contd...

- \square After input a is read, h(a) is placed in a buffer.
- ☐ Symbols of h(a) are used one at a time and fed to PDA being simulated.
- ☐ Only when the buffer is empty does the PDA read another of its input symbol and apply homomorphism to it.

Proof Contd...

- \square Suppose h applies to symbols of alphabet Σ and produces strings in T*.
- Let PDA P = (Q, T, Γ, δ, q_0 , Z_0 , F) that accept CFL L by final state.
- Construct a new PDA P' = $(Q', \Sigma, \Gamma, \delta', (q_0, \varepsilon), Z_0, F X \{\varepsilon\})$ to simulate language of h⁻¹(L), where
 - \blacksquare Q' is the set of pairs (q, x) such that
 - \Box q is a state in Q
 - \square x is a suffix of some string h(a) for some input string a in Σ

Proof Contd...

- \bullet δ' is defined by
 - $\square \quad \delta'((q, \varepsilon), a, X) = \{((q, h(a)), a, X)\}$
 - $□ If δ(q, b, X) = {(p, γ)} where b ∈ T or b = ε then δ'((q, bx), ε, X)$ $= {((p, x), γ)}$
- The start state of P' is (q0, ε)
- The accepting state of P' is (q, ε) , where q is an accepting state of P.
- $(q_0,h(w),Z_0)|-*P(p,\epsilon,\gamma) iff((q_0,\epsilon),w,Z_0)|-*P'((p,\epsilon),\epsilon,\gamma)$
- P accepts h(w) if and only if P' accepts w, because of the way the accepting states of P' are defined.
- Thus $L(P')=h^{-1}(L(P))$

Decision Properties

- Emptiness test
 - Generating test
 - Reachability test
- Membership test
 - PDA acceptance

$$L_3 = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0 \}$$

Let's try to design a CFG or PDA

$$S
ightarrow aBc \mid \varepsilon$$
 read a / push x read b / pop x ???

Suppose we could construct some CFG $\,G$ for L_3

	$S \Rightarrow CC$
	$\Rightarrow SBC$
e.g.	$\Rightarrow SCSC$
$S ightarrow CC \mid BC \mid$ a	$\Rightarrow SSBSC$
$B o CS \mid b$	$\Rightarrow SSBBCC$
$C o SB \mid c$	\Rightarrow a $SBBCC$
How does a long derivation look like?	\Rightarrow aa $BBCC$
	\Rightarrow aab BCC
	\Rightarrow aabb CC
	\Rightarrow aabbc C
	\Rightarrow aabbcc

Repetition in long derivations

If a derivation is long enough, some variable must appear twice on the same root-to-leave path in a parse tree

$$S \Rightarrow CC$$

$$\Rightarrow SBC$$

$$\Rightarrow SCSC$$

$$\Rightarrow SSBSC$$

$$\Rightarrow SSBBCC$$

$$\Rightarrow aSBBCC$$

$$\Rightarrow aaBBCC$$

$$\Rightarrow aabBCC$$

$$\Rightarrow aabbCC$$

$$\Rightarrow aabbcC$$

$$\Rightarrow aabbcC$$

$$\Rightarrow aabbcC$$

Then we can "cut and paste" part of parse tree

We can repeat this many times $aabbcc \Rightarrow aaabbcbccc \Rightarrow aaaabbcbcbccc \Rightarrow \dots$ $\Rightarrow a(a)^i b(bc)^i c$

Every sufficiently large derivation will have a middle part that can be repeated indefinitely

$$L_3 = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0 \}$$

If L_3 has a context-free grammar G, then for any sufficiently long $s \in L(G)$

s can be split into s=uvwxy such that L(G) also contains uv^2wx^2y , uv^3wx^3y,\dots

What happens if $s = a^m b^m c^m$

No matter how it is split, $uv^2wx^2y \notin L_3$

For every context-free language ${\cal L}$

There exists a number m such that for every long string s in $L(|s| \ge m)$, we can write s = uvwxy where

- 1. $|vwx| \leq m$
- 2. $|vx| \geqslant 1$
- 3. For every $i \ge 0$, the string $uv^i wx^i y$ is in L

To prove L is not context-free, it is enough to show that

For every m there is a long string $s \in L, |s| \geqslant m$, such that for every way of writing s = uvwxy where

- 1. $|vwx| \leq m$
- 2. $|vx| \geqslant 1$

there is $i \geqslant 0$ such that $uv^i wx^i y$ is not in L

$$L_3 = \{ \mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \geqslant 0 \}$$

- 1. for every m
- 2. there is $s = a^m b^m c^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx|\leqslant m, |vx|\geqslant 1)$
- 4. $uv^2wx^2y \notin L_3$ (but why?)

Case 1: v or x contains two kinds of symbols aa aabb bbcccc

Then $uv^2wx^2y \notin L_3$ because the pattern is wrong

Case 2: v and x both contain one kind of symbol a aaa b bb bbcccc

Then uv^2wx^2y does not have the same number of a's, b's and c's

Conclusion: $uv^2wx^2y \notin L_3$

 $L_5 = \{ zz \mid z \in \{a, b\}^* \}$

Which is context-free?

$$L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mid n \geqslant 0 \} \quad \checkmark$$

$$L_2 = \{ z \mid z \text{ has the same number of a's and b's} \} \quad \checkmark$$

$$L_3 = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0 \} \quad \mathsf{X}$$

$$L_4 = \{ z z^R \mid z \in \{ \mathbf{a}, \mathbf{b} \}^* \} \quad \checkmark$$

$$L_5 = \{ zz \mid z \in \{a, b\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \le m, |vx| \ge 1)$
- 4. Is $uv^2wx^2y \notin L_5$? aaa a aba a aaab

$$L_5 = \{ zz \mid z \in \{ a, b \}^* \}$$

- 1. for every m
- 2. there is $s = a^m b^m a^m b^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \le m, |vx| \ge 1)$
- 4. Is $uv^iwx^iy \notin L_5$ for some i?

Recall that $|vwx| \leq m$

Three cases

Case 1 aaa aabbb bbaaaaabbbbb vwx vwx is in the first half of $a^mb^ma^mb^m$

Case 2 aaaaaabb bbbaa aaabbbbb vwx is in the middle part of $a^m b^m a^m b^m$

Case 3 aaaaabbbbbbaaa aabbb bbvwx is in the second half of $a^m b^m a^m b^m$

Apply pumping lemma with i = 0

Case 1 aaa aabbb bbaaaaaabbbbb
$$uwy \text{ becomes a}^j b^k a^m b^m, \text{ where } j < m \text{ or } k < m$$
 Case 2 aaaaabb bbbaa aaabbbbb
$$uwy \text{ becomes a}^m b^j a^k b^m, \text{ where } j < m \text{ or } k < m$$
 Case 3 aaaaabbbbbbaaa aabbb bb
$$uwy \text{ becomes a}^m b^m a^j b^k, \text{ where } j < m \text{ or } k < m$$

$$uwy \text{ becomes a}^m b^m a^j b^k, \text{ where } j < m \text{ or } k < m$$

Not of the form zzThis covers all cases, so L_5 is not context-free

The Pumping Lemma for CFLs

```
Let L be a CFL.
```

Then there exists a constant N, s.t.,

- o if $z \in L$ s.t. $|z| \ge N$, then we can write z = uvwxy, such that:
 - 1. $|\mathbf{v}\mathbf{w}\mathbf{x}| \leq N$
 - 2. **v**x≠ε
 - 3. For all k≥0: $uv^kwx^ky ∈ L$

Note: we are pumping in two places (v & x)

Proof: Pumping Lemma for CFL

- If L=Φ or contains only ε, then the lemma is trivially satisfied (as it cannot be violated)
- For any other L which is a CFL:
 - Let G be a CNF grammar for L
 - Let m = number of variables in G
 - ∘ Choose N=2^m.
 - ∘ Pick any $z \in L$ s.t. $|z| \ge N$
 - □ the parse tree for z should have a height ≥ m+1 (by the parse tree theorem)

Parse tree for z

Meaning:

Extending the parse tree...

Proof contd...

Also, since A_i's subtree no taller than m+1

==> the string generated under A_i's subtree, which is vwx, cannot be longer than 2^m (=N)

But,
$$2^m = N$$

$$==> |vwx| \le N$$

This completes the proof for the pumping lemma.

Application of Pumping Lemma for CFLs

```
Example 1: L = \{a^m b^m c^m \mid m>0 \}
Claim: L is not a CFL
Proof:
```

- Let N <== P/L constant</p>
- Pick $z = a^N b^N c^N$
- Apply pumping lemma to z and show that there exists at least one other string constructed from z (obtained by pumping up or down) that is ∉ L

Proof contd...

- \circ z = uvwxy
- As $z = a^N b^N c^N$ and $|vwx| \le N$ and $vx \ne \varepsilon$
 - ==> v, x cannot contain all three symbols (a,b,c)
 - ==> we can pump up or pump down to build another string which is ∉ L

Example #2 for P/L application

- $L = \{ ww \mid w \text{ is in } \{0,1\}^* \}$
- Show that L is not a CFL

- \circ Try string $z = 0^{N}0^{N}$
 - what happens?
- Try string $z = 0^{N}1^{N}0^{N}1^{N}$
 - what happens?

Example 3

• $L = \{ 0^{k2} \mid k \text{ is any integer} \}$

Prove L is not a CFL using Pumping Lemma

Example 4

• $L = \{a^ib^jc^k \mid i < j < k \}$

Prove that L is not a CFL