# Inclusive jets in *p-Pb* and measuring Bjorken x distributions (+ towards R<sub>pPb</sub>)

Jeff Ouellette, CU Boulder 2/6/2018

### Last Time

- All triggers now acquired/ being used in analysis
  - → trigger inefficiencies were avoided by assuming 100% above p<sub>T</sub>+10GeV
  - → trigger efficiency analysis now performed, now being used to set trigger thresholds for individual triggers (somewhat arbitrarily, comments appreciated)
  - → dividing by efficiency when jet satisfies imposed Pt cut
- Triggers were prescale weighted and luminosity was "uniform"
  - → now using lumis from lumicalc (thanks to Martin this helped a lot)
- Trigger selection now based on most prescale-corrected luminosity instead of most raw counts - should be less biased

## Bootstrapping Efficiencies

- Trigger efficiencies calculated with bootstrap method
- HLT\_mb\_mbts\_L1MBTS used for minbias sample to maximize # minbias events
- Lots of triggers → long trigger bootstrap chains
- Length of bootstrap chains reduced by which ones are relevant to each run, separation in η requirements, etc.



$$\varepsilon_{\text{trig}}(p_T) = \frac{\text{Times fired}}{\text{Total times}} \sim \varepsilon_{\text{ref}}(p_T) \times \frac{\text{Times fired}}{\text{Times reference fired}}$$



$$\varepsilon_{\text{trig}}(p_T) = \frac{\text{Times fired}}{\text{Total times}} \sim \varepsilon_{\text{ref}}(p_T) \times \frac{\text{Times fired}}{\text{Times reference fired}}$$

- Shown are bootstrapped efficiencies from 15-6000 GeV (for convenience with remainder of analysis)
- Left line = listed trigger threshold
- Right line = additional threshold required in analysis
- Fitted curve is a Fermi-Dirac-esque distribution with parameters λ, p<sub>0</sub>

$$\varepsilon_{\mathrm{trig}}(p_T) = \frac{1}{1 + e^{\lambda(p_0 - p_T)}}$$

 Also tried a Gaussian error function, but the fits often missed the turn on region







#### Updated Inclusive Pt Spectrum



#### Updated Inclusive Pt Spectrum



Some lingering effect in period A? Check triggers  $p_T^{\text{Jet}}$  [GeV]







HLT\_j65\_n200eta320 seems like the culprit? Efficiency fit could be better.

- → Leads to need for systematic threshold selection. Method needs to account for:
- (1) error in the turn-on area, and
- (2) non-vanishing derivative of functional fit around/above threshold region

#### Bjorken x's binned by pseudorapidity



Event selection: Dijet ratio ≥ 0.7, leading jet trigger

Fill by leading jet, weighted by 1/(luminosity \* efficiency)

→ Still an excess in  $3.2 < \eta < 4.9$  bin? Only present in period A!



#### Excess is overwhelming in $x_a$ - $x_p$ correlation plot!



Act of despair: try dropping 3.2-4.9 bin in period A?





#### Current strategy:

- revise trigger minimum pt cuts and efficiency curve calculation
- try binning Bjorken x's in bins of hardness Q<sup>2</sup>
  instead of pseudorapidity inspired by similar plot
  from PHENIX could resolve excess by ignoring/
  spreading over other bins?
- start applying jet spectrum to a measurement of R<sub>pPb</sub> - pp reference sample taken from 2012 8TeV published spectrum (arxiv: 1706.03192)
- start requesting DAODs?