Estadística e inferencia I

Primer cuatrimestre -2024

Segundo recuperatorio

APELLIDO Y NOMBRE:	 	

- 1. Sea y una variable aleatoria con distribución normal con media θ y varianza conocida σ^2
- (a) Demostrar que una distribución $\mathcal{N}(\mu_0, \tau_0^2)$ es un prior conjugado para θ y resulta en una distribución posterior $\mathcal{N}(\theta|\mu_1, \tau_1^2)$ * con $\mu_1 = (\frac{\mu_0}{\tau_0^2} + \frac{y}{\sigma^2})/(\frac{1}{\tau_0^2} + \frac{1}{\sigma^2})$ y $\frac{1}{\tau_1^2} = \frac{1}{\tau_0^2} + \frac{1}{\sigma^2}$. *Ayuda: obtener la distribución a menos de una constante de normalización.
- (b) Simular un conjunto de datos de tamaño n=10 a partir de una distribución normal con media $\theta_{true}=5$ y $\sigma=1$. A partir de estos datos, calcular y graficar la likelihood en función de θ .
- (c) Elegir un prior θ ~ N(0,1) y calcular la distribución posterior de θ. Graficar las distribuciones prior y posterior. ¿Cómo se interpretan las diferencias entre prior y posterior en cuanto a su posición y ancho? ¿Cómo se podría modificar el prior para que la posterior se le parezca más?
- 2. Sean $\{y_1,...,y_n\}$ provenientes de una distribución exponencial con parámetro θ . Usando un prior conjugado $p(\theta) = \text{Gamma}(\alpha,\beta) = \frac{e^{-\beta\theta}\beta^{\alpha}\theta^{\alpha-1}}{\Gamma(\alpha)}$, se obtiene que la posterior de θ es una distribución $\text{Gamma}(\alpha+n,\beta+n\bar{y})$.
- (a) Derivar el logaritmo de la posterior y obtener su moda.
- (b) Construir la aproximación normal de la posterior basada en la derivada segunda su logaritmo evaluado en la moda.
- 3. Generar datos sintéticos de una regresión lineal simple con ruido gaussiano, como los que generábamos cuando veíamos regresión lineal frecuentista. Por ejemplo, considerar la función $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = 2x 1, $X \sim \mathcal{U}(0,1)$, Y := f(X) y n = 100; tomar muestras x_1, \ldots, x_n de X y aplicar la función f a cada muestra para calcular $y_i = f(x_i)$, con $1 \le i \le n$.
- (a) Ajustar un modelo lineal de la forma $y \sim N(\beta_0 + \beta_1 x, \epsilon)$ usando PyMC. Graficar y describir las posterior de los parámetros de la regresión.
- (b) ¿Cuál es el valor que estimamos que tenga $f(\frac{1}{2})$? ¿Con qué error?
- (c) Graficar y dar percentiles de la distribución de $\beta_0 + \frac{1}{2}\beta_1$.
- 4. Estamos interesados en la proporción de éxito θ de una distribución Bernoulli. Tenemos una muestra observada que consiste en el número de éxitos en 30 ensayos independientes y con idéntica distribución de una binomial con parámetro θ ; en esta muestra hay precisamente 19 éxitos. Asumimos que la distribución prior viene dada por una uniforme en [0,0.5] con peso 0.3 y otra uniforme en [0.5,1] con peso 0.7.
- (a) Calcular la distribución posterior de θ y graficarla. ¿Cuál es el 90% HPDI?
- (b) Calcular la probabilidad de obtener al menos 9 éxitos en 10 experimentos.