ID Systematics

Manual & Plots frank.meisel@lhep.unibe.ch

ID Systematics...

- In analogy to the Energy estimation, one can try to determine if there are similar effects for the electron/gamma separation.
 - •It should be easier, since the ID output is continous (0..1), but the final decision is binary (either Type A or B).
 - •So the Question is:
 - How "stable" is the ID algorithm w.r.t. to variations in the environment (whatever that is)?

Procedure:

- For the ID algo, we are using the same input variables as for the energy
- We have different separation modes:
 - Electron Pion
 - Electron Gamma
 - Gamma Pion

Procedure:

- And we test all it for
 - Different number of plates reconstructed and
 - Different scanning efficiencies
 - Different trainingsfiles
 - Different cut modes
 - Different shape recognition modifiers

 But we wont go into more details as for the BG systematics, the information gain is limited.

Exampleplots ... distributions

Exampleplots ...eff`s and cont`s

Cutvalues

- Now it is shown the distribution
- Of the best dmin_cut to point (1/1) (which means perfect separation)
- For different shower shape analysis
- And also for the different energies
 - The negative point for the energy values is a sample of continuous energy distribution.

Dependency

- Dependency on Single Energies
- Dependency on the Number of Plates Reconstructed

Now separated ID plots for:

Gamma-Electron
Electron-Pion
Pion-Gamma

N.B.: dmin cutvalues for separation on e_g, pi_e, g_pi are obtained by substituting dmin: dmin(e_g) = 1 - dmin(g_e)

Now gamma_electron

Now electron_pion

Now pi_gamma

Now we run the ID estimations-with these adapted cutvalues. See if its better

- The d_min cut is almost independent on number of plates for e_gamma. But strongly dependendt for electron_pi and gamma_pion
- It changes for the type of separation one uses
- It changes for the energy
- Cut depending on separation method is easy to implement.
- An energy dependent cut is a priory not possible, just in a second run, after the energy estimation

Used cuts in the routines:

Npl	Separation	ShapeOnly	AndVTXIP	AndVTXDeltaZ	ShapeWOPL12
all	gamma_electron	0.58	0.55	0.50	0.50
<=10	electron_pion	0.58	0.55	0.50	0.50
<=14	electron_pion	0.45	0.45	0.45	0.45
<=18	electron_pion	0.35	0.35	0.35	0.35
>18	electron_pion	0.35	0.35	0.35	0.35
<=10	pion_gamma	0.45	0.45	0.45	0.45
<=14	pion_gamma	0.58	0.58	0.58	0.58
<=18	pion_gamma	0.6	0.6	0.6	0.6
>18	pion gamma	0.6	0.6	0.6	0.6

Now we run the ID estimations with these adapted cutvalues. See if its better

Summary

- The best min_dist cut is very well suited for general purpose ID tagging. It delivers both high efficiency and low contamination.
- Nevertheless, it does not seem to be a constant fixed value, especially around 2-4GeV, so it cannot be hardcoded in.
- But one could implement a double routing of
 - ID-Energy-ID-Energy estimations.
- In this case (not complicated to code into libShowRec) results can be improved.

Nota bene.

 These (MC)-results (with many plots and many seperate listings), will also be put into the Internal Note of the energy note.