Factors affecting urban HONO interpreted with a MAX-DOAS instrument and GEOS-Chem

Knowledge of urban HONO is limited

Sources

Sinks

HONO +
$$h\nu \longrightarrow NO + OH (\lambda < 400 nm)$$

$$HONO + OH \longrightarrow H_2O + NO_2$$

Summer midday HONO detected in London with in situ instruments.

Long-term measurements are required to improve understanding of HONO production and depletion in an urban environment.

Measuring vertical profiles of HONO in Central London

A priori is an exponential decay curve using a vertical column density of 1×10^{15} molec cm⁻² and 1 km scale height.

3 optimized azimuth angles from a 60 m rooftop in Central London.

Surface sites are used to assess MAX-DOAS observations.

HONO vertical profiles and averaging kernels

The UCL MAX-DOAS has provided vertical profiles of HONO since its June 2022 deployment.

MAX-DOAS observations of HONO diurnal variability

Diurnal variations in HONO columns

Similar to Beijing (July 2008 - April 2009) [Hendrick et al., 2014].

Half of that in Madrid (winter 2016) [Garcia-Nieto et al., 2018].

MAX-DOAS HONO follows expected diurnal variability and is concentrated in the lowest 300 m. GEOS-Chem HONO is almost 2 orders of magnitude less than MAX-DOAS HONO

GEOS-Chem simulations over Central London

GEOS-Chem 14.1.0

Model Input

NASA GEOS-FP assimilated meteorology

CEDs v2

MEGAN

 $0.25^{\circ} \times 0.3125^{\circ}$ over Central London with $4^{\circ} \times 5^{\circ}$ boundary conditions.

Model and MAX-DOAS coincidence

GEOS-Chem simulations are compared to MAX-DOAS observations to assess the best understanding of urban HONO.

Meteorological conditions that favour HONO formation

Daily meteorological conditions from December 2022 to January 2023

10/01

20/01

30/01

01/12

11/12

21/12

31/12

MAX-DOAS camera shows clear days

7:30 AM

9:45 AM

Low windspeeds (<4 ms⁻¹), cold conditions (<7°C), depressed PBL (<300 m) optimal for HONO formation.

19/02

09/02

Temperature dependence of HONO formation

HONO only detected in winter (10 detect days from December 2022 to January 2023).

NO + OH is competitive with NO + O₃.

Low temperatures are kinetically favourable for HONO formation.

NO_x and O₃ determine HONO concentrations

Daily NO_x and O₃ concentrations from December 2022 to January 2023

High NO_2 (>20 ppb), NO (>20 ppb) and low O_3 (<24ppb) optimal for HONO formation.

GEOS-Chem consistently overestimates NO_2 (385 %) and O_3 (1659 %).

The effect of O₃ and NO₂ overestimation can be diagnosed by implementing an exaggerated sink.

Testing the sensitivity of HONO to O₃

Daily NO_x and O₃ concentrations from December 2022 to January 2023

 O_3 dry deposition velocity scaled up by a factor $\times 10^2$.

Scaling has minimal effect on NO₂ and NO.

O₃ concentrations decreased significantly.

HONO is not sensitive to changes in O₃ concentration in GEOS-Chem.

Testing the sensitivity of HONO to NO₂

Daily NO_x and O₃ concentrations from December 2022 to January 2023

 NO_2 dry deposition velocity scaled up by a factor $\times 10^2$.

Scaling has minimal effect on NO and O_3 .

HONO concentrations decreased by 10%.

HONO is sensitive to changes in NO₂ concentration in GEOS-Chem.

Summary and further work

HONO is only detectable in London on cold (< 7°C), clear, still (windspeeds < 4 ms⁻¹) days.

 NO_x must be high ([NO], [NO₂] > 20 ppb) and O_3 must be low (< 24 ppb).

Concentrations peak in the morning and deplete until 14:00 when concentrations increase again.

HONO is not sensitive to a large overestimate in surface O_3 in GEOS-Chem.

HONO is sensitive to a large overestimate in surface NO₂ in GEOS-Chem.

Investigate spatial variability in HONO by analysing individual azimuth angles.

Use an exaggerated source of HONO to assess its sensitivity to emissions.

Continue to test the sensitivity of HONO to NO₂.

Questions, suggestions, comments, please contact me at: eleanor.smith.18@ucl.ac.uk