Mathematics for Political Science

Lesson 3: Calculus Solutions

- 1. (a) -4
 - (b) -5
 - (c) 1.6
 - (d) 2
- 2. (a) 9
 - (b) 3
 - (c) 1
- 3. (a) $x^{-\frac{2}{3}}$
 - (b) 14
 - (c) $3y^2 + 6y$
 - (d) $5x^4 + 3x^2 2x$
 - (e) $1 + 3y^2 + \frac{14}{y^3}$
 - (f) $2y + y^{-2} 3y^{-4}$

 - (g) $\frac{12x^2-8x+16}{x^4-8x^3+16x^2}$ (h) $e^{y^2-3y+2}(2y-3)$
 - (i) $\frac{2}{r}$
- 4. $4(8(x^4+2)-1)*8*4x^3$
- 5.

$$f(x) = 3x^2 - 7x + 2$$

$$g(x) = 8x^3 - 46x^2 + 73x - 35$$

- f(x): minimum at $x = \frac{7}{6}$
- g(x): maximum at $x = \frac{23 \sqrt{91}}{12}$, minimum at $x = \frac{23 + \sqrt{91}}{12}$
- 6. (a) $0 = \frac{2}{x} 1 \frac{2}{2x+1}$ (b) $-2x^2 + x + 2 = 0$

 - (c) Zeroes at approximately -.78 and 1.28.
- 7. $\frac{\partial(.)}{\partial e} = h(eR(\frac{f}{f+g}))^{h-1}R\frac{f}{f+g}$
 - $\frac{\partial(.)}{\partial f} = h(eR(\frac{f}{f+g}))^{h-1}eR\frac{g}{(f+g)^2}$
- 8. (a) $y^4 + C$
 - (b) $\frac{1}{3}x^3 2x^{\frac{1}{2}} + C$
 - (c) $\frac{360}{7}t^7 + C$
- 9. (a) a. 700
 - (b) $\frac{531440}{3}$
 - (c) 0
 - (d) $28\frac{2}{3}$
 - (e) $e^4 e^2$
 - (f) $\frac{16}{3} \frac{4}{3}\sqrt{2}$
- 10. $2306\frac{2}{3}$