M10W1S1 - Besonderheiten des Knochenstoffwechsels

1. Die Rolle der Osteoblasten bei der Kontrolle des Knochenabbaus erklären können (Hormone, Expression von Zytokinen/Wachstumsfaktoren, RANK/RANKL/OPG-System)

Osteoblast (Vorläufer: Fibroblast)

- Inaktive Form = Osteozyten
- Stimuliert die Differenzierung von der hämatopoetischen Stammzelle zum Knochenmakrophagen über M-CSF

Osteoklast (Vorläufer: Makrophage)

Hormone:

- Parathormon (Nebenschilddrüse, Peptidhormon)
 - o Vermehrte Ausschüttung bei sinkendem Calciumspiegel
 - Erhöht die Resorption in der Niere, Stimulation der Hydroxilierung von 25-Cholecalciferol → Stimulation der Ca- Resorption
 - o Stimulation der Dünndarmmucosa zur Resorption von Ca und Mg
 - \circ HWZ = 4 Min
 - o Erniedrigt die Resorption von Phosphaten in der Niere
 - Aktiviert RANK → Aktiviert Osteoklasten
- Calcitonin (Schilddrüse)
 - o Verminderte Ausschüttung bei sinkendem Calciumspiegel
 - o Erniedrigt die Resorption in der Niere → Gegenspieler von PTH
 - Aktiviert Osteoblasten
 - o Inhibiert Osteoklasten direkt über Rezeptor
 - o Fördert Entwicklung von Osteoblasten
 - \circ HWZ = 10 Min
- Vitamin D3/Calcitriol (Haut, Blut, Leber)
 - Induktion einen Ca-Transporters zur Steigerung der Ca- Resorption in der intestinalen Mucosa
 - Induktion der Ca- und Phosphatreabsorption durch Induktion eines intrazellulären Cabindenden Proteins in der Niere
 - Wirkung über intrazelluläre Vit D
 Rezeptoren, die als
 ligandenaktivierte
 Transkriptionsfaktoren anzusehen
 sind → Immunmodulation

- Induziert Differenzierung von Zellen des hämatopoetischen Systems
 →Knochenmakrophage → Osteoklast
- T3/T4
 - o Aktiviert Osteoblasten
- Östrogene/Androgene
 - o Aktiviert Osteoblasten
 - o hemmt Osteoklasten über die Synthese von Osteoprotegrin (s.u.)

Zytokine:

- TGFß
 - Aktiviert OPG Synthese
 - Wird von Osteoklasten gebildet (regulativ)
- M-CSF
 - Stimuliert die Differenzierung von der hämatopoetischen Stammzellen zum Knochenmakrophagen
 - Wird von Osteoblasten Produziert

RANK/RANK/OPG-System

- PTH stimuliert die Synthese von RANKL (RANK-Ligand) in Osteoblasten
 - → Bindet an RANK des Osteoklasen
 - → NFkB wird frei
 - → Säure und Enzyme werden in Lakunen ausgeschüttet
 - → Abbau von Knochensubstanz
 - → Mobilisierung von Calcium
- TFGß und Östrogene stimulieren die Synthese von Osteoprotegrin (OPG) und verhindern damit die Aktivierung der Osteoklasten durch RANKL
 - OPG bindet freies RANKL → weniger Rezeptoren auf Osteoklasten werden Aktiviert
 - OPG ist Inhibitor der Osteoklasten (In der Menopause sinkt der Östrogenspielgel → weniger Hemmung der Osteoklasten → Osteoporose)

- 2. Begründen, warum und wann trotz endogener Synthesemöglichkeit eine alimentäre Zufuhr von Vitamin D bedeutsam ist
- Sonneneinstrahlung in unseren Breitengraden bei weitem nicht ausreichend, um ausreichend Vit D3 zu synthetisieren
- Melanine schützen Zellen vor UV-Schäden, hemmen aber gleichzeitig die Pr-Vit D Aktivierung in der Haut
- Abhängig von Sonnendauer, Hautfarbe, Breitengrad (Sonnenintensität), Temperatur (Bekleidung), Zeit die man in der Sonne verbringt

3. Die Schritte der endogenen Calcitriolsynthese (1,25 (OH)2 Cholecalciferol), deren Lokalisation (Gewebe) und deren Regulation beschreiben können

1,25 Dihydroxycholecalciferol = aktives Vit D3 = Calcitriiol

Synthese:

- UV- katalysierte Ringspaltung in der Haut
 - o 7-Dehydrocholesterin → Cholecalciferol
- Hydroxylierung in Leber
 - → 25-hydroxyvitamin D3 Calcidiol (Speicherform, kann im Blut nachgewiesen werden)
- Hydroxylierung in der Niere
 - → 1,25 Dihydroxyvitamin D3

Regulation:

- Hydroxylase in der Niere wird über PTH-Rezeptor und einen Calciumsensor über cAMP reguliert
- Intrazelluläres Ca²⁺ und HPO₄²⁻ hemmen die Hydroxylase
- Luminale Internalisierung von Calcidiol über Megalinrezeptor

- 4. Den Knochenumbau im Kontext der alimentären Kalziumversorgung, der enteralen Kalziumresorption, der renalen Kalziumausscheidung und des systemischen Hormonstatus darstellen können
 - Orale Aufnahme → Abgabe an das Blut (50% an Albumin gebunden, 50% frei)
 - Resorption (99%) und Ausscheidung (1%) in der Niere

Abb. 22.**30 Parathormon-Wirkung an der Niere.** Einzelheiten s. Text. ACY = Adenylatcyclase, Ca-S-R = Calciumsensing-Rezeptor, PKA = Proteinkinase A, PTH = Parathormon, PTH-R = PTH-Rezeptor.

www.laborlexikon.de

- Bildung von Vit D3 in Haut, Leber und Niere
- 99% des körpereigenen Calciums ist in Form von Hydroxylappatit (Ca₅(PO₄)₃OH) gespeichert
 - Konzentration extrazellulär: 1,2 2,5 mM (Plasma, 50% gebunden und 50% frei)
 - Konzentration intrazellulär: ca 10-7 M (nach Aktivierung 100-fache Erhöhung)
- Siehe auch LZ1

Ca/Phosphat: Werte im Serum

