

Multi-Dimensional Space

- multi-dimensional space is difficult to imagine
- it defies our *common sense* notions
- however, our *common sense* is *often* wrong!

DEMO: Can you imagine something with **one side**?

• a Möbius strip; draw a line down the middle...

DEMO: 2D paper & "ant"; curl paper into "U"

• ant's "world" is 2D surface of the paper, which, if *curved, requires 3D to describe (+1 dimension)*

Shape of the Universe • matter curves space

- matter & energy are interchangeable: E=mc²
- *shape* of universe depends on amount of both
- flat, closed, open: by analogy to 3D shapes, but our universe is 4D (at least!)

The Fate of the Universe

- matter & energy (shape) determines its fate
- closed: "Big Crunch"
- expansion reverses, universe collapses
- critical and open: "Big Chill" or "Heat Death"
- expansion *stops* after *infinite time*
- constant expansion *continues forever*
- accelerating: "Big Rip"
- expansion accelerates with time

CLICKER: Why might astronomers expect the expansion of the universe to **slow down**?

- (a) friction
- (b) run out of energy after 14 billion years
- (c) interactions with the non-observable universe
- (d) gravitational pull of all matter & energy

Q: Which fate is most likely to occur?

- depends on *how strong gravity is i.e.* is there enough mass so that gravitational forces can *slow*, *stop*, or *reverse* the expansion?
- need to estimate the *density* (ρ) of the *universe*
- compare to the "critical density" (ρ_c) required to exactly stop the currently observed expansion
- using current H_o , estimate $\rho_c \sim 10^{-29} \text{ g/cm}^3$ (eg) like a few H atoms in a typical closet
- *luminous matter* (stars, galaxies, gas): $\rho << \rho_c$

Dark Matter

- "rotation curves"
- gravity should decrease with increasing distance...
- ...but speed of stars stays ~ constant beyond visible edge!
- 350 NGC 4378
 NGC 3145
 NGC 1620
 NGC 7664

 150 NGC 7664

 NGC 7664

 Distance from center of galaxy (kpc) --
- from rotation speeds, $m_{MilkyWay} \sim a$ trillion Suns!

Q: How many stars do we **observe** in the **MW**? So what is the **source** of this "extra" **mass**?

- ~85% of galaxies are made of "dark matter"
- undetectable in any part of the EM spectrum
- only detectable through gravitational effects
- dark matter ~spherical about galactic core

• dark matter also appears between galaxies in clusters

MACHOs, Neutrinos & WIMPs (oh my!)

- Massive Compact Halo Objects include you & I, planets, failed stars, very small dim stars...
- neutrinos ("small neutral ones")
- estimates of *1 billion-to-1* versus protons, etc.
- fast moving ⇒"hot" dark matter
- other, massive *but as yet unknown* particles?
- Weakly Interacting Massive Particles ("WIMPs")
- slow moving \Rightarrow "cold" dark matter

CLICKER: When astronomers measured rotation curves of spiral galaxies they found

(a) galaxies did not spin

(b) gravity of the visible matter in galaxies was not enough to hold the galaxies together

(c) stars moved back & forth, not really moving

(d) galaxies rotated more slowly than expected

- regular (luminous) matter yields $\rho \sim 5\%$ of ρ_c
- adding *dark matter* yields $\rho \sim 25\%$ of ρ_c
- $\rho << \rho_c$ indicates an *open universe*
- BUT we don't observe an "open" shape...
- ...and a "flat" universe requires $\rho \sim \rho_c$
- to "flatten" the universe (as we observe) requires additional mass: ENERGY ($\sim 70\%$ of ρ_c)

Q: Evidence for existence of dark energy?

- distant supernovae are *dimmer* than their *redshift* (*velocity*) implies *ie*. they are *further away* than we *expect* them to be based on *Hubble's Law*
- slope tells us H_o (*i.e. expansion rate*) is *changing over time*
- expansion appears to be accelerating
- headed for **Big Rip?**

Dark Energy

• this additional energy is called "dark energy", "quintessence" or "cosmological constant"

• we don't know what it is... may be source of a repulsive force exceeding gravity on largest scales

Review: The Shape & Future of the Universe

- "How does the universe end?"
- depends on how much "stuff" in universe
- matter & energy determine "shape" of universe
- Crunch, Chill, Heat Death or Rip
- Big Rip looks most likely, but...
- ...depends on *Dark Matter & Dark Energy*