3.8. a) Let Y be a real valued random variable on (Ω, \mathcal{F}, P) such that $E[|Y|] < \infty$. Define $M_t = E[Y|\mathcal{F}_t]$; Show that M_t is an \mathcal{F}_t -martingale. b) Conversely, let M_t ; $t \geq 0$ be a real valued \mathcal{F}_t -martingale such that $\sup_{t>0} E[|M_t|^p] < \infty \qquad \text{for some } p > 1 \ .$ Show that there exists $Y \in L^1(P)$ such that $M_t = E[Y|\mathcal{F}_t]$. (Hint: Use Corollary C.7.) a) · E[Ms | F+] = E[E[Y | F_5] | F+] = E[Y 15+1 = M+ · M+= E[Y|F+] = Y is F+-measurable · E[M+1] = E[IE[YIF+]] = E[IYI] < 0 Thus, M+ is an J+ mortinagle. Corollary C.7. Let M_t be a continuous martingale such that b) $\sup_{t>0} E[|M_t|^p] < \infty \qquad \text{for some } p > 1 \ .$ Then there exists $M \in L^1(P)$ such that $M_t \to M$ a.e. (P) and $\int |M_t - M| dP \to 0 \quad as \ t \to \infty .$ By the Corollary C.7, there exists MEL'(P) such that Mt-IM ar. and 1m / W+ 9b = (W 9b Given that M+ is a mortingale for all sit, for AEF+,

I M5 dP = JE[M5 | F+] dP = J M+dP Taking the limit as 5 -20, lim | ModP = | M+dP 5-20 11

1.e.,

JandP= JE[MJF+]DD YAES+	
Hence, $M_{+} = \mathbb{E}[M \mid \mathcal{F}_{+}]$	
(1) + = + (1) + +	D