

Preliminaries

Probability Theory and Linear Algebra

Probability Theory Review

Rules of Probability

Probability Theory

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Example

Probability Theory

Sum Rule

$$r_j$$
 $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$
= $\sum_{j=1}^{L} p(X = x_i, Y = y_j)$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

Probability Theory

see Bishop Chapter 1.2

- Pick a random box
- Pick a random fruit
- Observe the fruit type (orange or apple)
- Put it back in the box
- Repeat trial many times

What is the probability of picking an apple?

$$Pr(B = r) = 0.4, Pr(B = b) = 0.6$$

 $Pr(f = a|B = r) = 0.25, Pr(f = o|B = r) = 0.75$
 $Pr(f = a|B = b) = 0.75, Pr(f = o|B = b) = 0.25$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∝ likelihood × prior

Probability Theory

see Bishop Chapter 1.2

- Suppose we picked an orange
- What is the probability it came from the red box?

Probability Densities

for continuous variables

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x) f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

$$\mathbb{E}_{x}[f|y] = \sum_{x} p(x|y)f(x)$$

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Co-variances

$$\operatorname{var}[f] = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^{2} \right] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\} \right]$$

$$= \mathbb{E}_{x, y} [xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\} \{\mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}]\} \right]$$

$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

The Gaussian Distribution

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Gaussian Mean and Variance

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Linear Algebra review

Matrices and vectors

Matrix Elements (entries of matrix)

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 & 1448 \end{bmatrix}$$

$$A_{ij} =$$
 "i,jentry" in the i^{th} row, j^{th} column.

Vector: An n x 1 matrix.

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y_i=i^{th}$$
 element

1-indexed vs 0-indexed:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \qquad y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Matrix Addition

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \end{bmatrix} =$$

Scalar Multiplication

$$\begin{vmatrix}
1 & 0 \\
2 & 5 \\
3 & 1
\end{vmatrix} =$$

$$\begin{bmatrix} 4 & 0 \\ 6 & 3 \end{bmatrix} / 4 =$$

Combination of Operands

$$3 \times \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} / 3$$

Linear Algebra review

Matrix-vector multiplication

Example

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} =$$

Details:

To get y_i , multiply A's i^{th} row with elements of vector x, and add them up.

Example

$$\begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 4 \\ -1 & -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} =$$

House sizes:

$$h_{\theta}(x) = -40 + 0.25x$$

1416

1534

852

How do we get predicted price as matrix-vector product?

Linear Algebra review

Matrix-matrix multiplication

Example

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} =$$

Details:

The i^{th} column of the matrix C is obtained by multiplying A with the i^{th} column of B. (for i = 1,2,...,0)

Given house

sizes:

2104 1416 1534

852

What is the price of each house?

Have 3 competing linear functions:

1.
$$h_{\theta}(x) = -40 + 0.25x$$

2.
$$h_{\theta}(x) = 200 + 0.1x$$

3.
$$h_{\theta}(x) = -150 + 0.4x$$

Matrix

1 2104

852

Matrix

 $\times \begin{bmatrix} -40 & 200 & -150 \\ 0.25 & 0.1 & 0.4 \end{bmatrix} =$

Linear Algebra Review

Matrix multiplication properties

Let A and B be matrices. Then in general, $A\times B\neq B\times A.$ (not commutative.)

E.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

Associative

$$A \times B \times C$$
.

Let $D = B \times C$. Compute $A \times D$.

Let $E = A \times B$. Compute $E \times C$.

Identity Matrix

Denoted I (or $I_{n \times n}$). Examples of identity matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \mathbf{2} \times \mathbf{2} \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{3} \times \mathbf{3} \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For any matrix A,

$$A \cdot I = I \cdot A = A$$

In general, is AB = BA?

Linear Algebra review

Inverse and transpose

Not all numbers have an inverse

Matrix inverse:

If A is an m x m matrix, and if it has an inverse,

$$AA^{-1} = A^{-1}A = I.$$

For a 2 x 2 matrix, what is a sufficient condition for it to have an inverse?

Matrices that don't have an inverse are "singular" or "degenerate"

Matrix Transpose

 $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$ Let A be an m x n matrix, and let $B = A^T$. Then B is an n x m matrix, and

$$B_{ij} = A_{ji}$$
.