

Lista 1: Conceitos sobre Sistemas Distribuídos

Professor: Emerson Ribeiro de Mello http://docente.ifsc.edu.br/mello/std

Neste documento só tem um pequeno exemplo das funcionalidades da classe examdesign. Veja a documentação da classe para conhecer todas funcionalidades e configurações: https://www.ctan.org/tex-archive/macros/latex/contrib/examdesign

Parte 1. Questões discursivas

- 1. A transparência é uma das metas para construir um Sistema Distribuído. Quais são os tipos de transparência?
- 2. O agrupamento de máquinas (cluster) é um tipo de sistemas de computação distribuídos. Quais são as principais características de um *cluster*?
- 3. O trecho abaixo é de uma implementação de sockets na linguagem C. Explique o que acontece na linha 6.

```
1 //Aceitando e tratando conexoes
2 struct sockaddr_in cliente;
4 puts("Aguardando por conexoes...");
  c = sizeof(struct sockaddr_in);
conexao = accept(socket_desc, (struct sockaddr *)&cliente, (socklen_t*)&c);
 if (conexao<0){
    perror("Erro ao receber conexao\n");
    return -1;
10
```

Parte 2. Verdade/Falso

Sistemas distribuídos podem possuir arquitetura centralizada, descentralizada ou híbrida. O cluster mais potente atualmente está no Brasil.

1 IFSC - Campus São José

Parte 3. Características das transações

raite 3. C	Laracteristicas das transações					
Relacion	ne cada característica com sua descri	ição				
At	ômica	(a)	A transação é indivisível			
Co	onsistente	` '	Toda transação leva o sistema de um estado válido para um outro estado válido			
Durável		(c) Transações concorrentes não gerem inte				
Isolada		rência entre si				
		(d)	Todas modificações feitas por uma transação são permanentes			
Parte 4. G	Questões de múltipla escolha					
Marque	a opção correta.					
4. O soc	cket					
(a)	permite a comunicação entre processos					
(b)	já foi muito usado no passado, mas atualmente não é mais usado					
(c)	permite que a execução de threads					
(d)						
No	tai					
140	ra.					

IFSC - Campus São José

Alguns exemplos extraídos e adaptados de:

• Manual da classe examdesign

Material de apoio para realização dos exercícios

Constant	Symbol	Approximate Value
Speed of light in vacuum	c	$3.00 \times 10^8 \text{m/s}$
Permeability of vacuum	μ_0	$12.6 \times 10^{-7} \text{H/m}$
Permittivity of vacuum	ϵ_0	$8.85 \times 10^{-12} \text{F/m}$
Magnetic flux quantum	$\phi_0 = \frac{h}{2e}$	$2.07 \times 10^{-15} \text{Wb}$
Electron mass	m_e	$9.11 \times 10^{-31} \text{kg}$
Proton mass	m_p	$1.673 \times 10^{-27} \text{kg}$
Neutron mass	m_n	$1.675 \times 10^{-27} \text{kg}$
Proton-electron mass ratio	$rac{m_p}{m_e}$	1836

IFSC – Campus São José

Lista 1: Conceitos sobre Sistemas Distribuídos

Professor: Emerson Ribeiro de Mello http://docente.ifsc.edu.br/mello/std

Folha de respostas

Parte 1. Questões discursivas

1. A transparência é uma das metas para construir um Sistema Distribuído. Quais são os tipos de transparência?

Resposta:

Os tipos são: acesso, localização, desempenho, mobilidade, replicação, concorrência e falhas.

2. O agrupamento de máquinas (*cluster*) é um tipo de sistemas de computação distribuídos. Quais são as principais características de um *cluster*?

Resposta:

É formado por computadores semelhantes que geralmente possuem o mesmo sistema operacional e estão conectados por meio de uma rede local.

3. O trecho abaixo é de uma implementação de *sockets* na linguagem C. Explique o que acontece na linha 6.

```
//Aceitando e tratando conexoes
struct sockaddr_in cliente;
int c;
puts("Aguardando por conexoes...");
c = sizeof(struct sockaddr_in);
conexao = accept(socket_desc, (struct sockaddr *)&cliente, (socklen_t*)&c);
if (conexao<0){
    perror("Erro ao receber conexao\n");
    return -1;
}</pre>
```

Parte 2. Verdade/Falso

Verdade Sistemas distribuídos podem possuir arquitetura centralizada, descentralizada ou híbrida.

Falso O cluster mais potente atualmente está no Brasil.

IFSC - Campus São José

Parte 3. Características das transações

Relacione cada característica com sua descrição

- (a) Atômica
- (b) Consistente
- (d) Durável
- (c) Isolada

- (a) A transação é indivisível
- (b) Toda transação leva o sistema de um estado válido para um outro estado válido
- (c) Transações concorrentes não gerem interferência entre si
- (d) Todas modificações feitas por uma transação são permanentes

Parte 4. Questões de múltipla escolha

Marque a opção correta.

- 4. O **socket** ...
 - (a) permite a comunicação entre processos
 - (b) já foi muito usado no passado, mas atualmente não é mais usado
 - (c) permite que a execução de threads
 - (d) está na camada de aplicação

Nota:

Alguns exemplos extraídos e adaptados de:

• Manual da classe examdesign

Material de apoio para realização dos exercícios

Constant	Symbol	Approximate Value
Speed of light in vacuum	c	$3.00 \times 10^8 \text{m/s}$
Permeability of vacuum	μ_0	$12.6 \times 10^{-7} \text{H/m}$
Permittivity of vacuum	ϵ_0	$8.85 \times 10^{-12} \text{F/m}$
Magnetic flux quantum	$\phi_0 = \frac{h}{2e}$	$2.07 \times 10^{-15} \text{Wb}$
Electron mass	m_e	$9.11 \times 10^{-31} \text{kg}$
Proton mass	m_p	$1.673 \times 10^{-27} \text{kg}$
Neutron mass	m_n	$1.675 \times 10^{-27} \text{kg}$
Proton-electron mass ratio	$rac{m_p}{m_e}$	1836

IFSC – Campus São José