Homework - ICS 2020 Problem Sheet #6

Problem 6.1

Prove that the two elementary Boolean functions \rightarrow (implication) and \neg (negation) are universal, i.e., they are sufficient to express all possible Boolean functions.

To prove that the two elementary Boolean functions, \rightarrow and \neg are universal, we need to show that they are functionally complete. This means that all formulas in propositional logic can be rewritten to an equivalent that solely uses the set $\{\rightarrow, \neg\}$. table for logical implication:

Table for negation:

Table for logical implication:

Р	¬ P
1	0
0	1

Р	Q	P → Q
1	1	1
1	0	0
0	1	1
0	0	1

Let's find a form using the two functions that will equal the AND operator, i.e.:

$$P \land Q = (P \rightarrow \neg Q) \rightarrow \neg (P \rightarrow \neg Q)$$

Р	Q	¬Q	P → ¬Q	$\neg(P \rightarrow \neg Q)$	$(P \rightarrow \neg Q) \rightarrow \neg (P \rightarrow \neg Q)$	PΛQ
0	0	1	1	0	0	0
0	1	0	1	0	0	0
1	0	1	1	0	0	0
1	1	0	0	1	1	1

We proved that the formula is equal to the AND logical operator. From the above table we can also see that $(P \to \neg Q)$ is the contrary to $P \land Q$, meaning it's equivalent to the NAND operator. Let's now find a form using the two functions that will equal the OR operator, i.e.:

$$P \lor Q = (P \rightarrow \neg P) \rightarrow \neg (Q \rightarrow \neg Q)$$

					• (/		
P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg P$	$Q \rightarrow \neg Q$	$\neg(Q \rightarrow \neg Q)$	$(P \to \neg Q) \to \neg (P \to \neg Q)$	PVQ
0	0	1	1	1	1	0	0	0
0	1	1	0	1	0	1	1	1
1	0	0	1	0	1	0	1	1
1	1	0	0	0	0	1	1	1

We now proved that the formula is equal to the OR logical operator.

Lastly, we write that the NOT operator ¬ is equivalent to itself:

$$\neg P = \neg P / \neg O = \neg O$$

Therefore, the two Boolean functions are universal.

Problem 6.2

Simplify the following Boolean formulas by repeatedly applying Boolean equivalence laws. (The simplified formulas contain at most one Λ or V.) Indicate in every step which law you have applied. You obtain points for the derivation, not for the result alone.

 $\phi(A, B) = 0$

Problem 6.3

Consider the following boolean formula:

$$\phi(P,\,Q,\,R,\,S) = (\neg P \, \vee \, Q) \, \wedge \, (\neg Q \, \vee \, R) \, \wedge \, (\neg R \, \vee \, S) \, \wedge \, (\neg S \, \vee \, P)$$

a) How many interpretations of the variables P, Q, R, S satisfy ϕ ? Provide a proof for your answer (e.g., by providing a truth table).

Р	Q	R	S	¬P V Q	Λ	¬Q V R	¬R V S	Λ	¬S V P	φ(P, Q, R, S)
0	0	0	0	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	0	0	0
0	0	1	0	1	1	1	0	0	1	0
0	0	1	1	1	1	1	1	0	0	0
0	1	0	0	1	0	0	1	1	1	0
0	1	0	1	1	0	0	1	0	0	0
0	1	1	0	1	1	1	0	0	1	0
0	1	1	1	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1	1	1	0
1	0	0	1	0	0	1	1	1	1	0
1	0	1	0	0	0	1	0	0	1	0
1	0	1	1	0	0	1	1	1	1	0
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	1	0	0	1	1	1	0
1	1	1	0	1	1	1	0	0	1	0
1	1	1	1	1	1	1	1	1	1	1

There are only 2 interpretations that satisfy ϕ :

- First Interpretation: P = 0, Q = 0, R = 0, S = 0
- Second Interpretation: P = 1, Q = 1, R = 1, S = 1
- b) Given the interpretations that satisfy ϕ , write the formula for ϕ in disjunctive normal form (DNF).

According to the table only the first and last row have 1 as their result . We logically combine them with the OR operator, and the AND operator in between the variables, negating when equal to 0:

DNF
$$(\phi) \rightarrow \gamma = (\neg P \land \neg Q \land \neg R \land \neg S) \lor (P \land Q \land R \land S)$$