2.7 横截性

对比一下"光滑范畴"与"线性范畴",可以发现子流形在很多方面性质不够好,例如光滑映射下子流形的原像未必是子流形,子流形的交集未必是子流形等等。本节引入的横截性概念,用于剔除那些坏情形,因而在研究子流形时非常重要。

2.7.1 横截相交

¶ 子流形的原像

令 $f:M\to N$ 为光滑映射,正则水平集定理 (以及常秩水平集定理) 给出了 $f^{-1}(q)$ 是子流形的比较便于使用的判据。对于光滑子流形 $X\subset N$,一个自然的问题是

什么时候
$$f^{-1}(X)$$
 是 M 的光滑子流形?

一方面,由子流形的定义可知,对于任意 $q \in X$,均存在邻域 V 以及由坐标卡映射所诱导的光滑映射 $g: V \to \mathbb{R}^l$ (其中 $l = \dim N - \dim X \not\in X$ 在 N 中的余维数)使得 $g^{-1}(0) = X \cap V$ 。注意由 g 的构造可知 dg 是满射,于是 0 是 g 的正则值,且它的核为

$$\ker(dg_q) = T_q X.$$

另一方面,注意到" $f^{-1}(X)$ 是否是 M 中的光滑子流形"是一个局部问题: 只需对于任意 $p \in f^{-1}(X)$, 验证是否存在 p 在 M 中的邻域 U 使得 $U \cap f^{-1}(X)$ 是 M 的光滑子流形. 不妨设 q = f(p) 并取 $U = f^{-1}(V)$,则可以将 $U \cap f^{-1}(X)$ 表示为 $g \circ f$ 的水平集:

$$U\cap f^{-1}(X)=f^{-1}\circ g^{-1}(0)=(g\circ f)^{-1}(0).$$

从而根据正则水平集定理,只要 $0 \in g \circ f$ 的正则值, $f^{-1}(X)$ 就是 M 的光滑子流形.

现在尝试寻找 f 和 S 所满足的条件 (由于对于给定的 f 和 X, 映射 g 不是唯一的,故所求的条件应该是与 g 无关的),使得 0 是 $g\circ f$ 的正则值.换句话说,要找的条件应该是使得对于任意 $p\in (g\circ f)^{-1}(0)=f^{-1}(X)\cap U$,微分 $d(g\circ f)_p$ 是满射.根据链式法则,

$$d(g \circ f)_p = dg_g \circ df_p$$
.

因为 dg_q 是核为 $\ker(dg_q) = T_q X$ 的满射, 故为了让 $d(g \circ f)_p$ 是满射, 仅需要假设

$$|\operatorname{Im}(df_p)$$
 包含某个 " T_qX 在 T_qN 的补空间".

为了更准确地描述上述性质,需要以下线性代数的引理:

引理 2.7.1

设线性映射 $L:V\to W$ 为满射,且 $V_1\subset V$ 为线性子空间,则 $L(V_1)=W$ 当且 仅当 $V_1+\ker(L)=V$.

证明 若 $V_1 + \ker(L) = V$, 则 $L(V_1) = L(V_1 + \ker(L)) = L(V) = W$.

若 $V_1 + \ker(L) \neq V$, 取 $v \in V$ 满足 $v \notin V_1 + \ker(L)$. 则 $L(v) \notin L(V_1)$ (否则存在 $v_1 \in V_1$ 使得 $L(v_1) = L(v)$, 即 $v - v_1 \in \ker(L)$, 于是 $v = v_1 + (v - v_1) \in V_1 + \ker(L)$, 矛盾). 故 $L(V_1) \neq W$.

63

¶ 光滑映射与子流形之间的横截相交

根据上述引理, $0 \neq q \circ f$ 的正则值当且仅当

$$\operatorname{Im}(df_p) + T_{f(p)}X = T_{f(p)}N, \quad \forall p \in f^{-1}(X).$$
 (2.7.1)

注意到这个条件仅依赖于 f 和 X, 不依赖于 q.

定义 2.7.2. (横截相交:映射与子流形)

令 $f:M\to N$ 为光滑映射, $X\subset N$ 为光滑子流形. 若(2.7.1)成立,则称 f 与 X 横截相交, 并记为 f \sqcap X.

注 2.7.3. 有两种极端情况:

- 如果 $f^{-1}(X) = \emptyset$, 那么 f = X 横截相交, 因为此时没有需要验证的条件.
- 如果 $X \subset N$ 是光滑子流形,使得任意 $q \in X$ 都是 $f: M \to N$ 的正则值, 那么 f 在每一点 $p \in f^{-1}(X)$ 处都是淹没, 从而横截条件(2.7.1)自动成立. 特别地,

命题 2.7.4

如果 $f: M \to N$ 是淹没, 那么 f = N 的任意光滑子流形都横截相交.

根据引理2.7.1之前的讨论,下述定理是自然的:

定理 2.7.5. (横截相交条件下子流形的原像)

设 $f: M \to N$ 为光滑映射, $X \subset N$ 为光滑子流形, 且 $f \cap X$. 则 $f^{-1}(X)$ 是 M 中的光滑子流形, 它的余维数等于 X (在 N 中) 的余维数, 并且

$$T_p(f^{-1}(X)) = df_p^{-1}(T_{f(p)}X), \quad \forall p \in f^{-1}(X).$$

证明 根据上述讨论,如果 $f \cap X$,那么 $0 \in g \circ f$ 的正则值.因此 $f^{-1}(X) = (g \circ f)^{-1}(0)$ 是 M 中的光滑子流形. $f^{-1}(X)$ 的维数是 $\dim M - l$,其中 $l = \dim N - \dim X$.因此 $\dim M - \dim f^{-1}(X) = \dim N - \dim X$,即

$$\operatorname{codim} f^{-1}(X) = \operatorname{codim} X.$$

最后,由正则水平集定理, $f^{-1}(X)$ 在p处的切空间为

$$T_p(f^{-1}(X)) = \ker(d(g \circ f)_p) = (dg_{f(p)} \circ df_p)^{-1}(0) = df_p^{-1}(dg_{f(p)}^{-1}(0)) = df_p^{-1}(T_{f(p)}X).$$
 于是定理得证.

¶ 两个子流形/映射之间的横截相交

在文献中还有两种常见的横截相交,都可以视作 $f \cap X$ 的特殊情况.

定义 2.7.6. (横截相交: 子流形与子流形)

设 X_1, X_2 是 M 的光滑子流形。若对于任意 $p \in X_1 \cap X_2$

$$T_p X_1 + T_p X_2 = T_p M,$$

则称 X_1 与 X_2 在 M 中 横截相交,记作 $X_1 \sqcap X_2$.

注 2.7.7. 根据定义,如果 $X_1 \cap X_2 = \emptyset$,那么 $X_1 \cap X_2$.

因此如果 $X_1 \sqcap X_2$, 那么 $\iota \sqcap X_2$. 所以 $X_1 \cap X_2 = \iota^{-1}(X_2)$ 是 M 的光滑子流形,且 $\dim(X_1 \cap X_2) = \dim X_1 - (\dim M - \dim X_2) = \dim X_1 + \dim X_2 - \dim M$.

此外, $X_1 \cap X_2$ 在 p 处的切空间为 $d\iota_p^{-1}(T_pX_2) = T_pX_1 \cap T_pX_2$. 于是

推论 2.7.8

令 X_1 和 X_2 为 M 中两个横截相交的光滑子流形, 那么 $X_1 \cap X_2$ 是 M 的光滑子流形, 其维数等于 $\dim X_1 + \dim X_2 - \dim M$, 且对于任意 $p \in X_1 \cap X_2$,

$$T_p(X_1 \cap X_2) = T_p X_1 \cap T_p X_2.$$

注 2.7.9. 若 $X_1 \sqcap X_2$,那么 X_1, X_2 和 $X_1 \cap X_2$ 在 M 中的余维数满足以下简单的关系 $\operatorname{codim} X_1 \cap X_2 = \operatorname{codim} X_1 + \operatorname{codim} X_2$.

从本质上来说,这表示在交点处,定义子流形 X_1 的方程组跟定义子流形 X_2 的方程组是"无关"的,从而合在一起可以定义余维数更高的子流形。

两个映射的横截相交 更一般地,还可以定义两个映射之间的横截相交关系:

定义 2.7.10. (横截相交:映射与映射)

令 $f_1: M_1 \to N$ 和 $f_2: M_2 \to N$ 为光滑映射. 如果乘积映射

$$f_1 \times f_2 : M_1 \times M_2 \to N \times N$$

与"对角线子流形"

$$\Delta_N = \{(q, q) \mid q \in N\} \subset N \times N$$

横截相交,则称 f_1 和 f_2 横截相交,并记为 f_1 f_2 .

在这个框架下, 定理2.7.5变为(验证)

推论 2.7.11

如果 $f_1 \sqcap f_2$, 那么纤维积

$$F = (f_1 \times f_2)^{-1}(\Delta_N)$$

是 $M_1 \times M_2$ 的子流形,它在 $(p_1, p_2) \in F$ 处的切空间为

$$T_{(p_1,p_2)}F = \{(X_1,X_2) \mid X_i \in T_{p_i}M_i, (df_1)_{p_1}(X_1) = (df_2)_{p_2}(X_2).\}.$$

注意如果 f_2 为嵌入映射 $\iota_2: X \hookrightarrow N$, 那么 $f_1 \sqcap f_2$ 等价于 $f_1 \sqcap X$.

2.7.2 横截相交的广泛存在性

¶ 横截性定理

下面给出在寻找横截映射时非常有用的横截性定理(M 是带边流形时也成立):

定理 2.7.12. (横截性定理)

令 $F: S \times M \to N$ 为光滑映射, $X \subset N$ 为光滑子流形. 对于每个 $s \in S$, 令

$$f_s: M \to N, \quad f_s(p) = F(s, p).$$

假设 $F \cap X$. 那么对于以下投影映射的每个正则值 $s \in S^a$

$$\pi: F^{-1}(X) \subset S \times M \to S, \quad \pi(s,p) = s,$$

有 f_s 币 X. (于是根据 Sard 定理, 对于几乎所有的 $s \in S$, 都有 f_s 币 X.)

 a 注意到因为 $F \cap X$, $F^{-1}(X)$ 的原像是 $S \times M$ 中的光滑子流形. 因此投影映射 π 是光滑映射.

证明 令 s 为 π 的任意正则值. 对于任意 $p \in f_s^{-1}(X)$, 需要证明

$$\operatorname{Im}(df_s)_p + T_q X = T_q N,$$

其中 $q=f_s(p)$. 因为 F 币 X, 对于任意 $Y_q\in T_qN$, 存在 $(Z_s,Z_p)\in T_{(s,p)}(S\times M)$ 和 $Z_q\in T_qX$ 使得

$$Y_q = (dF)_{(s,p)}(Z_s, Z_p) + Z_q.$$

由于 s 是 π 的正则值, 对于 $Z_s \in T_sS$, 存在 $Z_p' \in T_pM$ 使得 $(Z_s, Z_p') \in T_{(s,p)}F^{-1}(X)$. 因此

$$Y_q = (dF)_{(s,p)}(0, Z_p - Z_p') + (dF)_{(s,p)}(Z_s, Z_p') + Z_q.$$

最后,因为

$$(dF)_{(s,p)}(0, Z_p - Z'_p) = (df_s)_p(Z_p - Z'_p) \in \operatorname{Im}(df_s)_p,$$

以及

$$(dF)_{(s,p)}(Z_s, Z_p') \in dF_{(s,p)}(T_{(s,p)}F^{-1}(X)) \subset T_qX.$$

于是结论成立。

作为推论,可以证明横截映射是广泛存在的:

推论 2.7.13

给定任意光滑映射 $f:M\to\mathbb{R}^K$ 以及光滑子流形 $X\subset\mathbb{R}^K$,对于几乎所有的 $v\in\mathbb{R}^K$,"v-平移" 映射

$$f_v: M \to \mathbb{R}^K, \qquad p \mapsto f_v(p) = f(p) + v$$

与 X 横截相交.

证明 定义光滑映射 F:

$$F: M \times \mathbb{R}^K \to \mathbb{R}^K, \qquad (p, v) \mapsto f(p) + v.$$

那么对于任意固定的点 $p \in M$, $F(p,\cdot)$ 是淹没(事实上是微分同胚). 由此可得 F 是从 $M \times \mathbb{R}^K$ 到 \mathbb{R}^K 的淹没. 因此根据命题2.7.4, F 与 \mathbb{R}^K 中的任意光滑子流形 X 横截相交. 由以上的横截定理可以得到结论.

特别地,如果取f为嵌入映射,则有

推论 2.7.14. (一般位置引理)

今 M,N 为 \mathbb{R}^K 的光滑子流形. 则对于几乎所有 $a\in\mathbb{R}^K,M+a$ 与 N 横截相交. $_{
m cos}$

¶ 同伦横截性定理

通过管状邻域定理,可以证明:

定理 2.7.15. (同伦横截性定理)

如果 $f: M \to N$ 为光滑映射, 并且 $Y \subset N$ 为任意光滑子流形. 那么 f 同伦于某个与 Y 横截相交的光滑映射 $g: M \to N$. 此外, 如果 $X \subset M$ 是闭子流形并且 f 在 X 上与 Y 横截相交 (即 (2.7.1) 对于 $f^{-1}(Y) \cap X$ 中的点成立), 那么可以选择 g 使得 $g|_{X} = f|_{X}$.

证明 将 N 嵌入到 \mathbb{R}^K ,并令 $\pi_{\varepsilon}: N^{\varepsilon} \to N$ 为 N 的 ε -邻域,其中 $\varepsilon: N \to \mathbb{R}_{>0}$ 取为光滑函数 (例如取为 ε 邻域定理中连续函数 $\varepsilon/2$ 的光滑 $\varepsilon/2$ 逼近). 再取光滑函数 $\delta: M \to \mathbb{R}$ 使得 $0 < \delta < 1$ 且 $A = \delta^{-1}(0)$. 定义

$$F: B \times M \to N$$
 $F(s,p) = \pi_{\varepsilon}(f(p) + \delta(p)\varepsilon(f(p))s),$

其中 $B \in \mathbb{R}^K$ 中的开单位球. 下证 F = Y 横截相交: 对于任意 $(s,p) \in F^{-1}(Y)$,

- 若 $p \notin X$,则由映射 $(s,p) \mapsto f(p) + \delta(p)\varepsilon(f(p))s$ 对于任意固定的 p 都是淹没映射可知 F 在 (s,p) 处是淹没映射,从而 $\operatorname{Im}(dF_{(s,p)}) + T_{F(s,p)}Y = T_{F(s,p)}N$.
- 若 $p \in X$,则由 f 在 X 上与 Y 横截相交可知 $\operatorname{Im}(df_p) + T_{f(p)}Y = T_{f(p)}N$. 但此时由定义可知 F(s,p) = f(p),故 $\operatorname{Im}(dF_{(s,p)}) + T_{F(s,p)}Y = T_{F(s,p)}N$.

于是由横截性定理,存在 $s \in B$ 使得 $g = f_s = F(s, \cdot)$ 与 Y 横截相交。显然 $F(rs, \cdot)$ 给出了 $g = f_s = f_0$ 之间的同伦,且当 $g \in X$ 时,g(p) = f(p).

作为推论,可以证明下述"直观上很显然"的结论:

推论 2.7.16. (余维数 2 不改变连通性)

设 M 为 m 维连通光滑流形,而 $S \subset M$ 是维数 $k \leq m-2$ 的光滑子流形. 那么 补集 $M \setminus S$ 是连通的.

证明 设 $x,y \in M \setminus S$. 令 γ 为 M 中连接 x 和 y 任意的道路. 根据定理2.6.12, γ 同伦于连接 x 和 y 的光滑曲线 γ' . 再由上述推论, γ' 同伦于连接 x 和 y 且与 M 横截相交的光滑映射 γ'' . 通过计算维数,就得到 $\operatorname{Image}(\gamma'') \cap M = \emptyset$,于是 γ'' 就是一条连接 x 与 y 的道路。

类似地,还可以证明:如果从光滑流形中挖掉余维数至少为3的子流形,其基本群不改变(留作习题)。