Matemática Comentada

Livro Didático de Matemática

Gabriel Henrique Moreira Borges

Livro criado para fins didáticos.

Autor: Gabriel Henrique Moreira Borges

Ano: 2022

Atualização mais recente: 28/09/2022

TODOS OS DIREITOS RESERVADOS À "MATEMÁTICA COMENTADA ©"

COPYRIGHT Gabriel

Material didático de Matemática.

Este material didático de Matemática abrange conteúdos de diversas séries (anos letivos).

2 · ^ · D ·	~
Potências e Raizes	~
Otericias e maizes	٠ ح

Potências e Raizes

Potências

Observe a tabela abaixo e, analise cada caso, vendo que decisão tomar:

Para analisar a tabela, tenha que a é um número real e que n é um número inteiro maior que um.

"CASO"	RESULTADO	"OBSERVAÇÃO"
a^1	а	-
a^0	1	-
a^{-1}	1_	Com "a" diferente de 0
	a	
a^n	a x a x a x a	-
	→n vezes.	
a^{-n}	1	Com "a" diferente de 0
	a^n	

Explicando potência

A potência, nada mais é que multiplicar o número da base por ele mesmo pelo número definido no expoente. Veja o exemplo:

$$2^7 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$

Podemos perceber que a base (2) é multiplicada por ela mesma pelo número definido pelo expoente (7).

No caso de potências com **expoente negativo**, basta inverter o numerador pelo denominador. No caso de números Inteiros, deve-se destacar que, na forma fracionária, é ele mesmo sobre 1. Veja um exemplo abaixo:

$$2^{-1} = \left(\frac{2}{1}\right)^{-1} = \frac{1}{2^1} = \frac{1}{2}$$

Nele podemos perceber que 2^{-1} é basicamente $(2/1)^{-1}$, que, ao invertermos o numerador com o denominador, se torna $\frac{1}{2}$. Ou seja, $2^{-1} = (\frac{1}{2})$.

Veja mais um exemplo:

$$\left(-\frac{1}{3}\right)^{-3} = \left(-\frac{3}{1}\right)^3 = \left(-\frac{3^3}{1}\right) = \left(-\frac{27}{1}\right) = -27$$

Nessa situação, podemos perceber várias coisas importantes. A primeira coisa importante que podemos perceber é que $(-3^3/1)$ é exatamente o mesmo que $(-3/1)^3$,

 $(-3)^3$ e que -3^3 . Todavia, os parênteses podem ser cruciais em uma operação matemática. Veja o exemplo:

$$(-2)^2 \neq -2^2$$

Isso por que, $(-2)^2 = +4$, enquanto $-2^2 = -4$.

E outra coisa que podemos observar no exemplo da conta $(-1/3)^{-3}$ é que, quando dentro de parênteses, vale a regra dos sinais para definir se o resultado da potência (que chamaremos aqui de r.) será um valor positivo (r > 0) ou negativo (r < 0).

- $(+) \cdot (+) = (+)$
- $(+) \cdot (-) = (-)$
- $(-) \cdot (+) = (-)$
- $(-) \cdot (-) = (+)$

Ainda nesse assunto da regra dos sinais, é importante ressaltar que eles valem nos casos de **multiplicação** e **divisão**. Observe atentamente um exemplo do que foi dito:

$$(-2)^4$$

Nele, temos de (-) x (-) = (+). (+) x (-) = (-), e por fim (-) x (-) = (+). Portanto o resultado será positivo (+16, nesse caso).

> Propriedades da potenciação

Sempre que um número que estiver entre parênteses for negativo, e estiver elevado a par, seu resultado será positivo.

Ex:

a)
$$(-3)^4 = +81$$

b)
$$(-3)^{-4} = (+\frac{1}{81})$$

$$d)(-3)^3 = -27$$

o Produto de potências de mesma base

Tomemos o seguinte exemplo:

$$2^2 \cdot 2^4 \cdot 2^3 \cdot 2 \cdot 2^{10} \cdot 2^{-3}$$

É de mutua concordância que, ficaria mais simples que todas essas potências se tornassem uma só. Para isso devemos saber que:

$$2^{2} = 2 \times 2$$

$$2^{4} = 2 \times 2 \times 2 \times 2$$

$$2^{3} = 2 \times 2 \times 2$$

$$2 = 2^{1}$$

$$2^{10} = 2 \times 2 \times 2 \times ... \times 2$$

$$2^{-3} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

Note que, pela base ser a mesma em todas as potências, podemos juntar as multiplicações, nesse caso, de 2. Ou seja, podemos dizer que **quando temos potências de mesma base, basta somar os expoentes**.

$$2^2 \cdot 2^4 \cdot 2^3 \cdot 2 \cdot 2^{10} \cdot 2^{-3}$$

Então, transformando todas as potências em uma só, ficará assim:

$$2^2 \cdot 2^4 \cdot 2^3 \cdot 2 \cdot 2^{10} \cdot 2^{-3} = 2^{2+4+3+1+10-3} = 2^{17}$$

Portanto, temos que:

$$a^m \cdot a^n = a^{m+n}$$

o Quociente de potencias de mesma base

Já vimos que é mais conveniente trabalharmos com uma única potência a trabalhar com várias que, no final, exprimem o mesmo valor.

Tomemos como exemplo (10⁵:10²):

$$10^5 : 10^2 = \frac{10 \cdot 10 \cdot 10 \cdot 10 \cdot 10}{10 \cdot 10} = 10 \cdot 10 \cdot 10 = 10^3$$

Note que bastou subtrair os expoentes. Portanto, sabendo que a é diferente de 0, podemos dizer que:

$$\frac{a^m}{a^n} = a^{m-n}$$

o Potência de potência

Temos duas situações diferentes que devem ser analisadas de forma cuidadosa ao falarmos dessa propriedade.

Situação I:

 $(3^2)^3$ \rightarrow Numa situação assim, basta multiplicar os expoentes (nesse caso 2 e 3). Então, essa potência se tornará uma só: (3^6)

Então: $(a^m)^n = a^{m \cdot n}$

Situação II:

 3^{2^3} \rightarrow Basta resolvermos o quesito do expoente (2³) e, com o resultado, basta realizar o restante da conta. ($3^{2^3} = 3^{(2^3)} = 3^8$)

Então: $a^{m^n} = a^x$, sendo $x = m^n$.

Síntese:

Portanto, temos que $(3^2)^3 \neq 3^{2^3}$.

o Potência de um produto (ou de um quociente)

Para essa propriedade temos:

$$(a \cdot b)^n = a^n \cdot b^n$$
 e $(a:b)^n = \frac{a^n}{b^n}$

> Transformações e Raizes

Agora que já entendemos mais sobre as potências, nos poderemos estudar de forma mais aprofundada as **raízes** e as **transformações**.

Comecemos com as transformações com um simples exemplo. Suponha que um amigo o tenha perguntado quanto é 2³. Você provavelmente diria a resposta correta: 8.

Agora, imagine que o mesmo amigo o tenha desafiado a saber qual é o expoente de uma potência de base 2 cujo o resultado é 64. Caso tenha ficado complicado

entender a proposta de desafio de seu amigo, ele em outras palavras disse para você **transformar** 64 em uma potência de 2 (ou potência de base 2).

Evidentemente, o expoente será 6, uma vez que $2^6 = 64$, ficando fácil saber qual é o expoente.

Mas, se o problema fosse, por exemplo, transformar 2 048 em uma única potência de base 2? Ficaria muito mais complicado fazer de cabeça, ou simplesmente, ir "chutando", supondo valores. Portanto, temos que **fatorar** o número em questão em números primos. Veja os exemplos abaixo:

2[?] = 64 → 64 | 2 32 | 2 16 | 2 8 | 2 4 | 2 2 | 2 1 | ---

O número 1 296 como potência de base 6:

1 | -----

1 296 | 2 Observe que, temos dois números diferentes. Mas, podemos resolver o problema seguindo os passos: 648 | 2 324 | 2 I – Observe se os números se repetem o mesmo número de vezes; II – Se sim, basta montar uma multiplicação xⁿ. yⁿ. 162 | 2 III – Agora, basta manter o expoente (n) e multiplicar as bases (X e 81 | 3 Y). 27 | 3 Ou seja: 9 | 3 Como temos que o número 2 e 3 se repetem 4x no exemplo ao lado, basta efetuar $2^4 \times 3^4 = 6^4$. Agora, basta conferir se a 3 | 3 multiplicação das bases "bate" com o proposto nos exercícios!

ATIVIDADES

- (1) Fatorando em números primos, transforme:
 - a) 1 296 em potência de base 6.
 - b) 64 em potência de base 2.
 - c) $\frac{1}{3^4}$ em potência de base 3.
 - d) 262 144 em potência de base 4.
- (2) PARA SABER MAIS -observe atentamente o exemplo abaixo. Depois, responda em forma de síntese como simplificar contas assim. Use como exemplo, como fazer 25² se tornar uma potência de base.

$$\frac{{{100}^4} \cdot {{0,01}^{ - 2}}}{{{10^2}}} = \frac{{{{{(10^2)}^4} \cdot {{(10^{ - 2})}^{ - 2}}}}}{{{10^2}}} = \frac{{{10^8} \cdot {10^4}}}{{{10^2}}} = \frac{{{10^{12}}}}{{{10^2}}} = 10^{10}$$