VE281

Data Structures and Algorithms

Minimum Spanning Tree

Learning Objectives:

- Know what a minimum spanning tree (MST) is
- Know the Prim's algorithm for finding the MST
- Know how the various choices of the supporting data structures affect the runtime of the Prim's algorithm

Outline

- Minimum Spanning Tree
 - Problem
 - Prim's Algorithm

Tree and Graph

• A tree is an acyclic, connected undirected graph.

The tree we see before

However, this is also a tree

Any node can be the root of the tree.

- For a tree, |E| = |V| 1.
- Claim: Any connected graph with N nodes and N-1 edges is a tree.

Subgraph and Spanning Tree

- G' = (V', E') is a subgraph of G = (V, E) if and only if $V' \subseteq V$ and $E' \subseteq E$.
- A spanning tree of a connected undirected graph G is a subgraph of G that
 - 1. contains all the nodes of G;
 - 2. is a tree, i.e., connected and acyclic.

Minimum Spanning Tree (MST)

• Given a weighted, connected, undirected graph G = (V, E), a minimum spanning tree T of G is a spanning tree of G whose sum of all edge weights is the minimal.

Application of MST

• A government planning a freeway system to connect all the cities.

• A power company planning where to lay down high-voltage power lines.

Minimum Spanning Tree

Algorithms

- Main idea: greedily select edges one by one and add to a growing sub-graph.
- Two standard algorithms:
 - Prim's algorithm
 - Kruskal's algorithm

Outline

- Minimum Spanning Tree
 - Problem
 - Prim's Algorithm

- Separate *V* into two sets:
 - T: the set of nodes that have been added to the MST.
 - T': those nodes that have not been added to the MST, i.e., T' = V T.
- Prim's algorithm initially sets $T = \{s\}$, where s is an **arbitrarily** picked **node**, and $T' = V \{s\}$. The algorithm moves one node from T' to T in each iteration. After the last iteration, T = V and we have constructed the MST.

Basic Version

- 1. Arbitrarily pick one node s; set $T = \{s\}$ and $T' = V \{s\}$.
- 2. While $T' \neq \emptyset$
 - Select an edge with the **smallest weight** that connects between a node in T and a node in T'. Suppose the edge connects with node v in T'. Move v from T' to T.

Selecting the Smallest Edge and Node

- For each node $v \in T'$, keep a measure D(v), storing the "current" smallest weight over all edges that connect v to a node in T.
 - Will be updated later.
- To choose the edge with the smallest weight that connects between a node in T and a node in T', we pick the node $v \in T'$ with the smallest D(v).
 - If edge (u, v) gives the smallest D(v), then (u, v) is the edge with the smallest weight across set T and T'.

Updating v's Neighbor

- If we move a node v from T' to T, then for each of v's neighbor u that is **still** in T', we update its D(u) as follows:
 - If D(u) > w(v, u), then let D(u) = w(v, u).
 - I.e., update D(u) if the weight of edge (v, u) is smaller than the weight of any other edge that connects a node in T to u.

Full Version

- We keep P(v) for each node v: (P(v), v) is the edge chosen in the MST.
- 1. Arbitrarily pick one node s. Set D(s) = 0. For any other node v, set D(v) as infinite and P(v) as unknown.
- 2. Set T' = V.
- 3. While $T' \neq \emptyset$
 - 1. Choose node v in T' such that D(v) is the smallest. Remove v from the set T'.
 - 2. For each of v's **neighbors** u that is **still** in T', if D(u) > w(v, u), then update D(u) as w(v, u) and P(u) as v.

Justification

- <u>Claim</u>: the obtained subgraph is a tree
- Proof:
 - ullet The nodes in set T are connected (can be shown by induction)
 - Furthermore, |V| = |E| + 1
 - Claim: Any connected graph with N nodes and N-1 edges is a tree

Justification

- <u>Claim</u>: the obtained subgraph is an MST
- Proof by contradiction:
 - ullet Assume the MST does not contain the cheapest edge $oldsymbol{e}$ between T and T'
 - Assume e = (u, v). Its weight is w
 - In the MST, there exists a unique path between u and v. On this path, there is an edge f across T and T'. Its weight > w
 - We replace f by e in original MST.
 - The new graph is a tree (Why?) with smaller sum of edge weights

Time Complexity

- 1. Arbitrarily pick one node s. Set D(s) = 0. For any other node v, set D(v) as infinite and P(v) as unknown.
- 2. Set T' = V.
- 3. While $T' \neq \emptyset$
 - 1. Choose node v in T' such that D(v) is the smallest. Remove v from the set T'.
 - 2. For each of v's **neighbors** u that is **still** in T', if D(u) > w(v, u), then update D(u) as w(v, u) and P(u) as v.

What is the time complexity of Prim's algorithm?

- Method 1: linear scan the set T' to find the smallest D(v).
- Number of times to find the smallest D(v): |V|.
 - Each cost: O(|V|).
- Maximal number of times to update the neighbors: |E|.
 - Since each neighbor of each node could be **potentially** updated.
 - Each cost: O(1).
- Total running time is $O(|E| + |V|^2) = O(|V|^2)$.

- Method 2: use a binary heap to store D(v)'s.
- Number of times to extract the smallest D(v): |V|.
 - Each cost: $O(\log |V|)$.
- Maximal number of times to update the neighbors: |E|.
 - Each cost is $O(\log |V|)$, since after updating D(v), we should percolate up new D(v) into right location of binary heap.
- Total running time is $O(|V| \log |V| + |E| \log |V|)$ = $O((|V| + |E|) \log |V|)$.

- Method 3: use a Fibonacci heap to store D(v)'s.
- Number of times to extract the smallest D(v): |V|.
 - Each cost: $O(\log |V|)$.
- Maximal number of times to update the neighbors: |E|.
 - Each cost is O(1) (decrease Key operation; amortized time).
- Total running time is $O(|V| \log |V| + |E|)$.

- Method 1: linear scan the set T' to find the smallest D(v)
 - Total runtime: $O(|V|^2)$
- Method 2: use a binary heap to store D(v)'s
 - Total runtime: $O((|V| + |E|) \log |V|)$
- Method 3: use a Fibonacci heap to store D(v)'s
 - Total runtime: $O(|V| \log |V| + |E|)$
- Which one is the best?
 - Answer: Fibonacci heap.
 - For sparse graphs, i.e., $|E| \approx \Theta(|V|)$, using binary heap has same runtime complexity as Fibonacci heap. The runtime complexity is $O(|V|\log|V|)$