4ª Lista de Exercícios de Circuitos Eletrônicos — Computação — 1º Semestre de 2018

A tabela de Butterworth, apresentada abaixo, é usada nos projetos que envolvem filtros de banda larga. Com ela é possível se projetar filtros com vários polos e garantir a linearidade do filtro na faixa de passagem.

Tabela de Butterworth

Polos	Inclinação	1ª seção	2ª seção	3ª seção
		(1 ou 2 polos)	(2 polos)	(2 polos)
1	20 dB	Opcional		
2	40 dB	1,586		
3	60 dB	Opcional	2	
4	80 dB	1,152	2,235	
5	100 dB	Opcional	1,382	2,382
6	120 dB	1,068	1,586	2,482

1- Considerando que a expressão que fornece o ganho de tensão de malha fechada de um filtro passabaixa em função da frequência e do número de polos do filtro é dada pela expressão

 $|v_{saída}/v_{entrada}| = A_{CL} / \sqrt{1 + (f_{entrada}/f_{corte})^{2n}};$ projetar um filtro passa-baixa de 1 polo, tipo Butterworth, cuja frequência de corte é de 1kHz. O ganho máximo do filtro deve ser igual a 2. Montar a tabela de valores do ganho de tensão para 4 frequências: 100Hz, 1kHz, 10kHz e 100kHz. A partir dos ganhos de tensão calculados verificar que o decaimento do filtro é de 20 dB por década, ou seja, cada vez que a frequência aumenta de 10 vezes o ganho cai de 10 vezes em relação ao valor anterior.

Fazer C = 45 nF e a resistência de realimentação R_1 igual a $1k\Omega$.

A_{CL} é o ganho de malha fechada do filtro.

n é o número de polos do filtro.

2- Considerando que a expressão que fornece o ganho de tensão de malha fechada de um filtro passaalta em função da frequência e do número de polos do filtro é dada pela expressão

 $|v_{saída}/v_{entrada}| = A_{CL} / \sqrt{1 + (f_{corte}/f_{entrada})^{2n}}$; Projetar um filtro passa-alta de 2 polos, tipo Butterworth, com frequência de corte de 800 Hz. Montar a tabela de valores do ganho de tensão para 4 frequências: 8Hz, 80Hz, 800Hz e 8kHz. A partir dos ganhos de tensão calculados verificar que a taxa de crescimento do filtro é de 40 dB por década, ou seja, cada vez que a frequência aumenta de 10 vezes o ganho cresce de 100 vezes em relação ao valor anterior.

Fazer C = 60 nF e a resistência de realimentação R_1 igual a 0.586k Ω .

A_{CL} é o ganho de malha fechada do filtro.

n é o número de polos do filtro.

3- Projetar um filtro passa-alta de 3 polos, tipo Butterworth, com frequência de corte de 2kHz e com um ganho total de tensão de 26 dB.

Fazer os capacitores do circuito iguais a 30 nF e as resistências de realimentação R_1 igual a $9k\Omega$.

- 4- Faça o que se pede:
- a) Calcular a frequência de corte do circuito mostrado na figura abaixo.
- b) Representar graficamente a relação ganho de tensão (em dB) versus frequência para o filtro.

- 5- Projetar um filtro passa-baixa de três polos cuja frequência de corte é de 10kHz e proporcionará um ganho de tensão total ao sinal injetado de 36 dB. No projeto estipular as relações entre os elementos que compõem o filtro.
- 6- No circuito apresentado na figura abaixo calcular os valores de C_A e C_B para que a resposta do filtro possa se estender desde 3kHz a 30kHz.

- 7- Projetar um filtro passa-alta de um polo cuja frequência de corte é de 8kHz e proporcionará um ganho de tensão total ao sinal injetado de 24 dB. No projeto estipular as relações entre os elementos que compõem o filtro.
- 8- Faça o que se pede:
- a) Identificar a finalidade do circuito cuja relação entre o ganho de tensão e frequência é dada abaixo.
- b) Encontrar as relações entre os elementos que compõem o circuito.
- Considerar que o ganho total de tensão do filtro é dividido igualmente entre as partes do circuito.

9- O circuito mostrado na figura abaixo é a representação de um filtro rejeita-faixa. Ele composto de um filtro passa-alta e um filtro passa-baixa em paralelos e a saída de cada estágio é acoplado a um circuito somador para que a faixa estipulada possa ser rejeitada.

Deseja-se que todas as frequências compreendidas entre 1kHz e 10kHz sejam rejeitas na saída do circuito.

- a) Calcular R_AC_A e R_BC_B para que as condições impostas ao sistema sejam obtidas.
- b) Expressar a tensão de saída em função da tensão de entrada e dos elementos que compõem o circuito.

