On the integral cohomology of BSpin(n)

By

Akira Kono

§1. Introduction.

In [2] Borel and Hirzebruch proved that "the torsion elements of $H^*(BO(n); \mathbb{Z})$ and $H^*(BSO(n); \mathbb{Z})$ are of order 2" (cf. 30.5 of [2]). The purpose of this paper is to show the following:

Theorem. The torsion elements of $H^*(BSpin(n); \mathbb{Z})$ are of order 2.

To prove Theorem we need the structure of $H^*(BSpin(n); \mathbb{Z}/2)$ which was determined by Quillen [3]. Therefore we review it in section 2. In section 3, we compute the Sq^1 -cohomology of $H^*(BSpin(n); \mathbb{Z}/2)$ and prove Theorem by making use of the method of 30.5 of [2].

Throughout the paper $H^*(\)$ denotes the mod 2 cohomology $H^*(\ ; \mathbb{Z}/2)$.

§2. The structure of $H^*(BSpin(n))$.

In this section we review the result of Quillen [3]. As is well known, as a graded algebra

$$H^*(BSO(n)) = \mathbb{Z}/2[w_2, \dots, w_n],$$

where $w_j \in H^j(BSO(n))$ is the j-th universal Stiefel Whitney class. Put $r_1 = w_2$ and

$$r_{j+1} = Sq^{2^{j-1}}Sq^{2^{j-2}}\cdots Sq^{1}w_{2} \qquad (j \ge 1).$$

Define a function $h: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$h(8k+1) = 4k$$
, $h(8k+2) = 4k+1$, $h(8k+3) = h(8k+4) = 4k+2$,

$$h(8k+5) = h(8k+6) = h(8k+7) = h(8k+8) = 4k+3$$
.

For a positive integer n, the number $2^{h(n)}$ is called the Radon-Hurewitz number and is equal to the dimension of the spin representation of Spin(n).

The following is Theorem 6.3 and Theorem 6.5 of [3]:

Theorem 2.1. (1) For a positive integer n, the sequence

$$r_1, r_2, \cdots, r_{h(n)}$$

is a regular sequence in $H^*(BSO(n))$.

(2) If π : $BSpin(n) \rightarrow BSO(n)$ is the natural projection, then $\text{Ker } \pi^*$ is generated by $r_1, \dots, r_{h(n)}$ and as a graded algebra

$$H^*(BSpin(n)) = H^*(BSO(n))/(r_1, r_2, \dots, r_{h(n)}) \otimes \mathbb{Z}/2[e]$$

where $e \in H^{2^{h(n)}}(BSpin(n))$ is the $2^{h(n)}$ -th Stiefel Whitney class of the spin representation $\Delta: BSpin(n) \rightarrow BO(2^{h(n)})$.

§3. The Sq^1 -cohomology of $H^*(BSpin(n))$.

The purpose of this section is to prove Theorem. Define $Q_n(t) = \sum_{k=0}^{\infty} q_{n,k} t^k \in \mathbb{Z}[[t]]$ by

$$Q_{2n}(t) = (\prod_{j=1}^{n-1} (1-t^{4j}))^{-1} \cdot (1-t^{2n})^{-1}$$

and

$$Q_{2n+1}(t) = (\prod_{j=1}^{n} (1-t^{4j}))^{-1}.$$

As is well known the coefficient of t^k in $Q_n(t)$ is equal to the k-th Betti number of BSpin(n). For a graded vector space $V = \sum_{k=0}^{\infty} V_k$ of finite type over a field $\mathbb{Z}/2$, The Poincaré series P.S.(V) is defined by

$$P.S.(V) = \sum_{k=0}^{\infty} (\dim V_k) t^k \in \mathbb{Z}[[t]].$$

Put $R_0 = H^*(BSO(n))$ and $R_k = H^*(BSO(n))/(t_1, \dots, r_k)$ and denotes the natural projection $H^*(BSO(n)) \to R_k$ by p_k . Since the sequence $r_1, \dots, r_{h(n)}$ is a regular sequence, there are exact sequences of graded vector spaces over $\mathbb{Z}/2$

$$(*)_k \qquad 0 \to \Sigma^{2^{k+1}} R_k \xrightarrow{\bullet r_{k+1}} R_k \to R_{k+1} \to 0$$

for k < h(n), where $(\Sigma^{2^{k+1}} R_k)_j = (R_k)_{j-2^k-1}$.

Lemma 3.1. If $k \le h(n)$, then

$$P.S.(R_k) = (\prod_{j=0}^{k-1} (1-t^{2^{j+1}})) \cdot (\prod_{j=2}^{n} (1-t^{j}))^{-1}.$$

Proof. By the exact sequence $(*)_k$, we have

$$P.S.(R_{k+1})+t^{2^{k+1}}P.S.(R_k)=P.S.(R_k)$$
.

Since $P.S.(R_0) = (\prod_{j=2}^{n} (1-t^j))^{-1}$, we have the result. Q.E.D.

By Theorem 2.1, Im $\pi^* = R_{h(n)}$ and as a graded algebra

$$H^*(BSpin(n)) = R_{h(n)} \otimes \mathbb{Z}/2[e]$$
,

where $e \in H^{2^{h(n)}}(BSpin(n))$.

Lemma 3.2. In
$$H^*(BSO(n))$$
, $Sq^1r_1=r_2$, $Sq^1r_2=0$ and $Sq^1r_{j+1}=r_j^2$ for $j \ge 2$.

Proof. $Sq^1r_1=r_2$ is the definition of r_2 and using the Adem relation $Sq^1Sq^1=0$, we have $Sq^1r_2=Sq^1Sq^1r_1=0$. If $j\geq 2$, then by the Adem relation, $Sq^1Sq^{2^{j-1}}=Sq^{2^{j-1}+1}$. Since $r_j\in H^{2^{j-1}+1}$, we have

$$Sq^{1}r_{i+1} = Sq^{1}Sq^{2^{i-1}}r_{i} = Sq^{2^{i-1}+1}r_{i} = r_{i}^{2}$$
. Q.E.D.

In particular, the ideal (r_1, \dots, r_k) is closed under the action of Sq^1 for $k \ge 2$ and therefore we have

Lemma 3.3. If $k \neq 1$, Sq^1 induces a derivation d_k : $R_k \rightarrow R_k$ satisfying $d_k \circ p_k = p_k \circ Sq^1$.

Moreover we have

Lemma 3.4. If $2 \le k < h(n)$, then the exact sequence $(*)_k$ is an exact sequence of cochain complexes.

The following was proved in [2] (see 30.5 of [2]):

Lemma 3.5.
$$P.S.(H^*(H^*(BSO(n)), Sq^1)) = Q_n(t).$$

Note that by Wu formula, $Sq^1w_{2j}=w_{2j+1}$ and $Sq^1w_{2j+1}=0$ for $j \ge 1$ (cf. [1]). Therefore as a cochain complex,

$$(H^*(BSO(n)), Sq^2) = (\mathbb{Z}/2[w_2, w_3], d) \otimes (R_2, d_2)$$

where $d(w_2) = w_3$ and $d(w_3) = 0$. By an easy computation we have

$$P.S.(H^*(\mathbb{Z}/2[w_2, w_3], d)) = (1-t^4)^{-1}$$

and

$$P.S.(H^*(R_2, d_2)) = (1-t^4) \cdot Q_*(t)$$
.

The exact sequence $(*)_k$ induces a long exact sequence

$$\cdots \to H(\Sigma^{2^k+1}R_k) \to H^i(R_k) \to H^i(R_{k+1}) \to H^{i+1}(\Sigma^{2^k+1}R_k) \to$$

which is equivalent to

$$\cdots \rightarrow H^{i-2^k-1}(R_k) \rightarrow H^i(R_k) \rightarrow H^i(R_{k+1}) \rightarrow H^{i-2^k}(R_k) \cdots$$

By the induction on k, we have $H^{2i+1}(R_k)=0$ and

$$H^{2i}(R_{k+1}) = H^{2i}(R_k) \oplus H^{2i-2k}(R_k)$$
.

Thus we have

Lemma 3.6. (1) If $2 \le k < h(n)$,

$$P.S.(H^*(R_{k+1}, d_{k+1})) = (1+t^{2^k}) \cdot P.S.(H^*(R_k, d_k))$$
.

(2) $P.S.(H^*(R_{h(n)}, d_{h(n)})) = (1-t^{2^{h(n)}}) \cdot Q_n(t).$

Next we prove the following:

Lemma 3.7. $Sq^{1}e=0$.

Proof. Since $e \in H^{2^{h(n)}}(BSpin(n))$ is the $2^{h(n)}$ -th Stiefel Whitney class of the spin representation $\Delta: BSpin(n) \to BO(2^{h(n)})$, we have

$$Sq^1e = Sq^1w_2h(n)(\Delta) = w_2h(n)(\Delta)w_1(\Delta)$$

by the Wu formula, where $w_j(\Delta)$ is the j-th Stiefel Whitney class of Δ . But $w_1(\Delta)=0$, since $H^1(BSpin(n))=0$. Therefore the lemma is proved. Q.E.D.

Proof of Theorem. Since $R_{h(n)}$ is $\text{Im } \pi^*$, $(R_{h(n)}, d_{h(n)})$ is a subcomplex of $(H^*(BSpin(n)), Sq^1)$. On the other hand $Sq^1e=0$ by Lemma 3.7. Therefore as a cochain complex

$$(H^*(BSpin(n), Sq^1) = (R_{h(n)}, d_{h(n)}) \otimes (\mathbb{Z}/2[e], 0)$$
.

Thus we have

$$P.S.(H^*(H^*(BSpin(n)), Sq^1)) = P.S.(H^*(R_{h(n)}, d_{h(n)}) \cdot (1 - t^{2^{h(n)}})^{-1} = Q_n(t).$$

Now Theorem is proved by making use of the method of 30.4 of [2]. Q.E.D.

Put $P_n(t) = P.S.(H^*(BSpin(n))) = P.S.(R_{h(n)}) \cdot (1 - t^{2^{h(n)}})^{-1}$. Then there exists $R_n(t) = \sum_{k=0}^{\infty} r_{n,k} t^k \in \mathbb{Z}[[t]]$ such that $r_{n,k} \ge 0$ and

$$P_n(t) = (1+1/t) \cdot R_n(t) + Q_n(t)$$

(cf. 30.4 and 30.5 of [2]). As a corollary of Theorem we have

Corollary 3.8. (1) As an abelian group

$$H^k(BSpin(n); \mathbf{Z}) = (\mathbf{Z})^{q_n,k} \oplus (\mathbf{Z}/2)^{r_n,k}$$
.

- (2) The kernel of Sq^1 on $H^*(BSpin(n))$ is the reduction mod 2 of $H^*(BSpin(n); \mathbb{Z})$ and its image is the reduction mod 2 of the torsion elements of $H^*(BSpin(n); \mathbb{Z})$.
- (3) An element of $H^*(BSpin(n); \mathbf{Z})$ is completely determined by its canonical images in $H^*(BSpin(n); \mathbf{R})$ and $H^*(BSpin(n); \mathbf{Z}/2)$.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

References

- [1] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer.
 J. Math., 76 (1954), 273-342.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math., 81 (1959), 315-382.
- [3] D. Quillen, The mod 2 cohomology rings of extra special 2-groups and the spinor groups, Math. Ann., 194 (1971), 197-212.