CONSTANTS AND EQUATIONS PHYSICS 215 $\Delta U = q\Delta V$ $U = \frac{Kq_1q_2}{r}$ $U_C = \frac{1}{2}C(\Delta V_c)^2$ $U_c = Q^2$ $d\sin\theta_m = m\lambda$ $a\sin\theta_p = p\lambda$ $\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_i}$ Vector Identities $\left| \vec{A} \times \vec{B} \right| = AB \sin \theta$

 $\vec{A} \cdot \vec{B} = AB\cos\theta$

Circuits
$C = \frac{Q}{\Delta V_C} = \frac{\varepsilon_0 A}{d} $
$\Delta V = IR$
$P = I\Delta V$
$V(t) = V_{\text{max}} \left(1 - e^{-t/\tau} \right)$
$V(t) = V_0 e^{-t/\tau} $
$I(t) = \frac{V_0}{R} e^{-t/\tau}$
$\tau = RC$

FALL 2007

$D(x,t) = A \sin x$	$1(kx \pm \omega t + \phi_o)$
$v = \lambda f$	$k = \frac{2\pi}{\lambda}$

 $\omega = 2\pi f$

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_o}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\begin{split} \oint \vec{B} \cdot d\vec{s} &= \mu_o I_{through} + \mu_o \varepsilon_o \frac{d\Phi_E}{dt} \\ \oint \vec{E} \cdot d\vec{s} &= -\frac{d\Phi_M}{dt} \end{split}$$

Physical Constants		Order Prefixes			Unit Conversions	
Electron Mass	m _e	9.11 x 10 ⁻³¹ kg	\mathbf{T}	"tera"	10 ¹²	1 F = 1 C/V
Proton Mass	$\mathbf{m}_{\mathbf{p}}$	$1.67 \times 10^{-27} \text{ kg}$	G	"giga"	10 ⁹	1 V = 1 J/C
Elementary Charge	e	1.60 x 10 ⁻¹⁹ C	M	"mega"	10^{6}	1 A = 1 C/s
Coulomb Law Constant	\mathbf{K}	$9 \times 10^9 \text{Nm}^2/\text{C}^2$	k	"kilo"	10^{3}	$1 \Omega = 1 \text{ V/A}$
Permittivity of Free Space	€0	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{Nm}^2$	c	"centi"	10^{-2}	1 W = 1 J/s
Permeability of Free Space	μ_{o}	$4 \pi \times 10^{-7} \text{ N/A}^2$	m	"milli"	10^{-3}	$1 \text{ Wb} = 1 \text{ Tm}^2$
Planck's Constant	h	$6.63 \times 10^{-34} \text{Js}$	μ	"micro"	10-6	1 H = 1 Vs/A = 1 Wb/A
Bohr Radius	a_{B}	5.29 x 10 ⁻¹¹ m	n	"nano"	10-9	$1 \text{ T} = 1 \text{ N/Am} = 10^4 \text{ Gauss (G)}$
Speed of Light in Vacuum	c	$3.00 \times 10^8 \text{m/s}$	p	"pico"	10 ⁻¹²	$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$
Stefan-Boltzmann	σ	$5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$	f	"femto"	10^{-15}	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Boltzmann's	\boldsymbol{k}	$1.38 \times 10^{-23} \text{ J/K}$		4 × × ×		1 Angstrom (Å) = 10^{-10} m
Gravitational Acceleration	g	9.81 m/s^2				

 $\alpha = 1.22 \lambda/D$

 $M = -\frac{h'}{h} = -\frac{s'}{s}$

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$