Should probably check for correlations between only columns that are related. In Camera and Recording with other Camera and Recording stuff.

Though proctoring beliefs and cameras might have some relationship, it is less relevant and computationally infeasible because of how many codes we have. We can try to correlate between just the survey likert responses.

```
In [44]: def cramers corrected stat(confusion matrix):
                 calculate Cramers V statistic for categorial-categorial association.
                 uses correction from Bergsma and Wicher,
                 Journal of the Korean Statistical Society 42 (2013): 323-328
                 Found: https://stackoverflow.com/a/39266194/1072532
             chi2 = ss.chi2 contingency(confusion matrix)[0]
             n = confusion matrix.sum()
             phi2 = chi2/n
             r,k = confusion matrix.shape
             phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
             rcorr = r - ((r-1)**2)/(n-1)
             kcorr = k - ((k-1)**2)/(n-1)
             return np.sqrt(phi2corr / min( (kcorr-1), (rcorr-1)))
In [45]: cols = ['Age']+[c for c in data.columns if 'if' in c and 'Id' not in c and 'Used' not in c][:8]
          print(data['Age'].value counts())
         likerts = data[cols].apply(lambda x : pd.factorize(x, na sentinel=-1)[0])#+1
         #Standard Chi Squared for categorical values doesnt work. Sample size too small for some categories?
         #https://github.com/scipy/scipy/issues/14298
         \#pd.DataFrame([ss.chisquare(likerts[x].values, f exp=likerts.values.T,axis=1)[0] for x in likerts])
         18-24
                  82
         25-34
                  40
         35-44
                   9
         55-64
                   1
         Name: Age, dtype: int64
```

```
In [46]: contingencymatrices = []
         #for each column get confusion matrix with all other columns
         #if matrix does not already exist ie calculate conf[i,j] if conf[j,i] DNE
         \# probably just check whether j > i because if i < j then its transpose has been done
         for i in range (len(likerts.columns)):
             contingencymatrices.append([])
             for j in range(len(likerts.columns)):
                 if i == j:
                      contingencymatrices[i].append(1) #because the same column vs same column is just going to be 1
                 if j > i:
                      contingencymatrices[i].append(None)
                 if i > j: #if i > j then redundant
                     #drop rows where either cols value is -1
                     temp = likerts[ (likerts[likerts.columns[i]] > -1) & (likerts[likerts.columns[j]] > -1) ]
                      contingencymatrices[i].append(pd.crosstab(temp[likerts.columns[i]], temp[likerts.columns[j]]))
         #c = temp.aroupby(['ifComfortableProctor'], dropna=False, as index=False).size()
         #print(c)
         #print(contingencymatrices[8][0])
```

Cramer's V

```
In [47]: #print(pd.show versions())
         cramersV = []
         for i in range (len(contingencymatrices)):
             cramersV.append([])
             for j in contingencymatrices[i]:
                 if isinstance(j, pd.DataFrame):
                     cramersV[i].append(cramers corrected stat(j.to numpy()))
                 else:
                     cramersV[i].append(j)
         cramersVDf = pd.DataFrame(cramersV)
         print(cramersVDf)
                                                                              6 \
                                                3
                                                                    5
                             1
                                       2
                                                          4
         0 1.000000
                           NaN
                                              NaN
                                                        NaN
                                     NaN
                                                                  NaN
                                                                            NaN
         1 0.157447 1.000000
                                     NaN
                                              NaN
                                                         NaN
                                                                  NaN
                                                                            NaN
           0.133681 0.083102
                               1.000000
                                                                            NaN
                                              NaN
                                                         NaN
                                                                  NaN
           0.158726 0.143441
                               0.000000 1.000000
                                                         NaN
                                                                  NaN
                                                                            NaN
           0.081006 0.099969
                               0.083697 0.147410
                                                   1.000000
                                                                            NaN
                                                                  NaN
           0.000000 0.136129 0.215745 0.000000
                                                   0.000000
                                                             1.000000
                                                                            NaN
                               0.143827 0.000000
                                                   0.201096
           0.000000 0.204273
                                                             0.000000
                                                                       1.000000
```

0.104000

0.000000

0.109498 0.112745 0.218880

0.291882

0.152175 0.122432 0.000000 0.180479

0.000000 0.159539 0.000000 0.133478

7

NaN NaN

NaN NaN

NaN NaN

NaN NaN

NaN

NaN NaN NaN

0.245325 1.0

1.000000

0

1

2

3

4

5

8

NaN

NaN

NaN

```
In [48]: #fig = plt.subplots()
         ifg = plt.figure()
         fig, ax = plt.subplots(1,1, figsize=(5,5))
         tablecolumns=[[i, likerts.columns[i]] for i in range(len(likerts.columns))]
         #ax.axis('tight')
         ax.axis('off')
         table = ax.table(cellText=tablecolumns,loc="center", edges='open')
         table.auto set font size(False)
         table.set fontsize(12)
         table.scale(1.5, 1.5)
         plt.show()
         fig, x = plt.subplots(figsize=(10,10))
         x.matshow(cramersVDf, cmap='PuRd r', vmin=0.0000000)
         #fig.colorbar(x)
         x_ticks = np.arange(0, len(cramersVDf), 1)
         plt.xticks(x ticks)
         plt.yticks(x ticks)
         x.xaxis.set ticks position('bottom')
         for (i, j), z in np.ndenumerate(cramersVDf):
             if not np.isnan(z):
                 x.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
         plt.show()
```

<Figure size 432x288 with 0 Axes>

0	Age
1	ifMandatoryCamera
2	ifLecturesRecorded
3	ifWantRemote
4	ifWantCameraOn
5	ifWantRecording
6	ifComfortableProctor
7	ifPreferProctor
8	ifBelieveFairProctor

Chi^2 Goodness of fit

```
In [55]: likerts.corr(method='pearson', min_periods=1)
         chi2 = []
         p = []
         df = []
         for i in range (len(contingencymatrices)):
             chi2.append([])
             p.append([])
             df.append([])
             for j in contingencymatrices[i]:
                 if isinstance(j, pd.DataFrame):
                     chi2[i].append(ss.chi2_contingency(j)[0])
                     p[i].append(ss.chi2_contingency(j)[0:2])
                     df[i].append(ss.chi2_contingency(j)[2])
                 else:
                     chi2[i].append(None)
                     p[i].append(None)
                     df[i].append(None)
         chi2 = pd.DataFrame(chi2)
         p = pd.DataFrame(p)
         df = pd.DataFrame(df)
         print("chi2\n", chi2)
         print("p\n",p)
         print("df\n",df)
```

ch	i2														
		0	1 2			2		3	4	4 5			6	7	8
0	N	laN	N	laN	N	aN	NaN		NaN	J	NaN		NaN	NaN	None
1	18.5867	'11	N	laN	N	aN	NaN		NaN	J	NaN		NaN	NaN	None
2	15.9302	91	11.7206	516	N	aN	NaN		NaN	l NaN			NaN	NaN	None
3	21.7650	62	19.9918	323	10.2822	45	NaN		NaN	laN Nal			NaN	NaN	None
4	14.6116	78	15.9292	929246 14.781		37 27	27.159064		NaN	aN Nal			NaN	NaN	None
5	7.8529	79	19.2069	977	77 29.96269		8.695610		.433648		NaN	NaN NaN		NaN	None
6	5.9826	626 22.403375		17.229439 14.		1.970117 29.285		285216		14.137616		NaN	NaN	None	
7	17.9049	.904903 15.828718		718	8.2227	8.222765 26.737		53 19	19.692791				L16154	NaN	None
8	9.3328	0.332893 18.401512		512	7.0715	04 21.9 59631		31 20	072881	31 20.306532		31.8	393225	35.917308	None
р		_			_		_		_	_		_			
_		0 1							4		, ,				
0	Na		NaN		NaN		NaN		aN	NaN		NaN			
1	0.02894		NaN		NaN		NaN		aN . N	NaN		NaN			
2	0.06835		0.229522		NaN		NaN	Na		NaN		NaN			
3	0.04023		0.067241		591214		NaN	Na		NaN		NaN			
4	0.26336		0.194498		253587	0.039			aN oc	NaN		NaN			
5	0.79651		0.083654		002829	0.925		0.4931		NaN		NaN			
6	0.91695		0.033240		141169	0.526		0.02208		88462	0 000	NaN			
7 8	0.11860 0.67426		0.199208 0.104032		767489 852852	0.044 0.144		0.2343 0.2169		978592 206731	0.000				
0	8 0.074203 0.104032 0				002002	0.144	ששכּי	0.2109	00 0.2	200/31	0.010	7525			
df															
۵.	0	:	1 2		3 4	5		6 7	7 8	3					
0		NaN		NaN		NaN	NaN		None						
1		NaN	NaN	NaN		NaN	NaN		None						
2		9.0	NaN	NaN		NaN	NaN		None						
3	12.0 1	2.0	12.0	NaN	NaN	NaN	NaN	NaN	None						
4		2.0	12.0	16.0		NaN	NaN		None						
5		2.0	12.0	16.0		NaN	NaN		None						
6		2.0	12.0	16.0		16.0	NaN		None						
7		2.0	12.0	16.0		16.0	16.0	NaN	None						
8	12.0 1	2.0	12.0	16.0	16.0	16.0	16.0	16.0	None						