WHAT IS CLAIMED IS:

substituted alkyl.

1	1. A method for preparing LXR ligands on a solid support, said
2	method comprising:
3	(a) attaching an aniline derivative to said solid support to provide a
4	support-bound aniline derivative;
5	(b) contacting said support-bound aniline derivative with an aldehyde or
6	ketone under reductively aminating conditions to provide a support-bound substituted
7	aniline derivative; and
8	(c) contacting said support-bound substituted aniline derivative with an
9	acylating agent to provide an LXR ligand on said solid support.
1	2. A method in accordance with claim 1, further comprising:
2	(d) removing said LXR ligand from said solid support.
1	3. A method in accordance with claim 1, wherein said aniline
2	derivative has the formula:
3	PG CO₂H
4	wherein PG is a protecting group, and said method further comprises a step between steps
5	(a) and (b) of removing said protecting group.
1	4. A method in accordance with claim 1, wherein said aldehyde or
2	ketone of step (b) is selected from the group consisting of an optionally substituted (C1-
3	C ₈)alkyl aldehyde and an optionally substituted dialkylketone.
1	5. A method in accordance with claim 1, wherein said aldehyde or
2	ketone of step (b) is selected from the group consisting of optionally substituted aryl
3	aldehyde and a ketone having the formula R ³ -C(O)-R ⁴
4	wherein R ³ and R ⁴ are members each independently selected form the
5	group consisting of optionally substituted aryl, optionally substituted heteroaryl,
6	optionally substituted arylalkyl, optionally substituted heteroarylalkyl and optionally

1	6. A method in accordance with claim 1, wherein said acylating agent
2	has the formula:
3	R^1 -Y
4	wherein
5	R ¹ is a member selected from the group consisting of optionally substituted (C ₈ -
6	C ₁₈)bicycloalkyl, optionally substituted (C ₈ -C ₁₈)tricycloalkyl, optionally
7	substituted (C ₈ -C ₁₈)heterobicycloalkyl and optionally substituted (C ₈ -
8	C ₁₈)heterotricycloalkyl; and
9	Y is a member selected from the group consisting of a carboxylic acid, a
10	carboxylate ester, a carboxylic acid chloride and other activated forms of
11	carboxylic acids.
•	
1	7. A method in accordance with claim 1, wherein said solid support is
2	selected from the group consisting of 4-(bromomethyl)phenoxymethyl polystyrene,
3	Merrifield resin, Rink amide resin and Sieber resin.
1	8. A method in accordance with claim 4, wherein said acylating agent
2	has the formula:
_	
3	R ¹ -Y
4	wherein
5	R^1 is a member selected from the group consisting of optionally substituted (C ₈ -
6	C_{18}) bicycloalkyl, optionally substituted (C_8 - C_{18}) tricycloalkyl, optionally
7	substituted (C ₈ -C ₁₈)heterobicycloalkyl and optionally substituted (C ₈ -
8	C ₁₈)heterotricycloalkyl; and
9	Y is a member selected from the group consisting of a carboxylic acid, a
10	carboxylate ester, a carboxylic acid chloride and other activated forms of
11	carboxylic acids.
1	9. A method in accordance with claim 2, wherein said LXR ligands
1 2	have the formula:
۷	R ¹
	<u> </u>
	$\left\ \frac{1}{2} \right\ _{2}$

4	wherein
5	R ¹ is a member selected from the group consisting of optionally substituted (C ₈ -
6	C_{18}) bicycloalkyl, optionally substituted (C_8 - C_{18}) tricycloalkyl, optionally
7	substituted (C ₈ -C ₁₈)heterobicycloalkyl and optionally substituted (C ₈ -
8	C ₁₈)heterotricycloalkyl;
9	R ² is a member selected from the group consisting of optionally substituted (C ₁ -
10	C ₈)alkyl, optionally substituted aryl, optionally substituted heteroaryl,
11	optionally substituted arylalkyl and optionally substituted heteroarylalkyl;
12	and .
13	X is a member selected from the group consisting of -CO ₂ R ¹¹ , -CH ₂ OR ¹¹ ,
14	$-C(O)R^{11}$, $-C(O)NR^{11}R^{12}$ and $-CH_2NR^{11}R^{12}$, wherein R^{11} and R^{12} are each
15	members independently selected from the group consisting of hydrogen
16	and optionally substituted (C ₁ -C ₈)alkyl.
1	10. A method in accordance with claim 9, wherein
2	R ¹ is a member selected from the group consisting of optionally
3	substituted optionally substituted tricyclo[3.3.1.1 ^{3,7}]decanyl, optionally substituted
4	bicyclo[3.2.1]octanyl, optionally substituted bicyclo[5.2.0]nonanyl,
5	bicyclo[4.3.2]undecanyl, optionally substituted tricyclo[2.2.1.01]heptanyl,
6	tricyclo[5.3.1.1 ¹]dodecanyl, optionally substituted tricyclo[5.4.0.0 ^{2,9}]undecanyl,
7	optionally substituted tricyclo[5.3.2.0 ^{4,9}]dodecanyl, optionally substituted
8	tricyclo[4.4.1.1 ^{1,5}]dodecanyl and optionally substituted tricyclo[5.5.1.0 ^{3,11}]tridecanyl
9	group.
1	11. A method in accordance with claim 9, wherein R ¹ is a substituted
2	or unsubstituted adamantyl group.

1 12. A method in accordance with claim 1, wherein said solid support is 2 selected from the group consisting of a 4-(bromomethyl)phenoxymethyl polystyrene and 3 Merrifield resin; said aniline derivative has the formula:

4

wherein PG is a protecting group, and said method further comprises a step between steps (a) and (b) of removing said protecting group; said aldehyde or ketone of step (b) is selected from the group consisting of a optionally substituted (C₁-C₅)alkyl aldehyde or ketone; and said acylating agent of step (c) has the formula:

 R^1-Y

10 wherein

R¹ is a member selected from the group consisting of optionally substituted(C₈-C₁₈)bicycloalkyl, optionally substituted(C₈-C₁₈)tricycloalkyl, optionally substituted(C₈-C₁₈)heterobicycloalkyl and optionally substituted(C₈-C₁₈)heterotricycloalkyl; and
Y is a member selected from the group consisting of a carboxylic acid, a carboxylate ester, a carboxylic acid chloride and other activated forms of carboxylic acids.

- 1 13. A method for preparing LXR ligands on a solid support, said 2 method comprising:
- (a) attaching a substituted aniline derivative to said solid support to
 provide a support-bound substituted aniline derivative; and
- (b) contacting said support-bound substituted aniline derivative with an
 acylating agent to provide an LXR ligand on a solid support.
- 1 14. A method in accordance with claim 13, further comprising:
- 2 (c) removing said LXR ligand from said solid support.
 - 15. A method in accordance with claim 13, wherein said substituted aniline derivative has the formula:

4 wherein

1 2

3

5 PG is a protecting group;

R² is a member selected from the group consisting of optionally substituted(C₁C₈)alkyl, optionally substituted aryl and optionally substituted heteroaryl;

8 and

9	said method further comprises a step between steps (a) and (b) of removing said
10	protecting group.
1	16. A method in accordance with claim 13, wherein said acylating
2	agent has the formula:
3	R^{1} -Y
4	wherein
5	R ¹ is a member selected from the group consisting of optionally substituted(C ₈ -
6	C_{18}) bicycloalkyl, optionally substituted (C_8 - C_{18}) tricycloalkyl, optionally
7	substituted(C ₈ -C ₁₈)heterobicycloalkyl and optionally substituted(C ₈ -
8	C ₁₈)heterotricycloalkyl; and
9	Y is a member selected from the group consisting of carboxylic acid, carboxylate
10	ester, carboxylic acid chloride and activated forms of carboxylic acids.
1	17. A method in accordance with claim 13, wherein said solid support
2	is selected from the group consisting of a 4-(bromomethyl)phenoxymethyl polystyrene,
3	Merrifield resin, Rink amide resin and Sieber resin.
1	18. A method in accordance with claim 15, wherein said acylating
2	agent has the formula:
3	R ¹ -Y
4	wherein
5	R ¹ is a member selected from the group consisting of optionally substituted (C ₈ -
6	C ₁₈)bicycloalkyl, optionally substituted (C ₈ -C ₁₈)tricycloalkyl, optionally
7	substituted (C ₈ -C ₁₈)heterobicycloalkyl and optionally substituted (C ₈ -
8	C ₁₈)heterotricycloalkyl; and
9	Y is a member selected from the group consisting of a carboxylic acid, a
10	carboxylate ester, a carboxylic acid chloride and other activated forms of
11	carboxylic acids.
1	19. A method in accordance with claim 14, wherein said LXR ligands
2	have the formula:

3 4

wherein

R¹ is a member selected from the group consisting of optionally substituted(C₈-5 C₁₈)bicycloalkyl, optionally substituted (C₈-C₁₈)tricycloalkyl, optionally 6 substituted (C₈-C₁₈)heterobicycloalkyl and optionally substituted (C₈-7 8 C₁₈)heterotricycloalkyl; R² is a member selected from the group consisting of optionally substituted (C₁-9 C₈)alkyl, optionally substituted aryl and optionally substituted heteroaryl; 10 11 and X is a member selected from the group consisting of -CO₂R¹¹, -CH₂OR¹¹, 12 -C(O)R¹¹, -C(O)NR¹¹R¹² and -CH₂NR¹¹R¹², wherein R¹¹ and R¹² are each 13

members independently selected from the group consisting of hydrogen and optionally substituted (C_1-C_8) alkyl.

A method in accordance with claim 13, wherein said substituted **20**. aniline derivative has the formula:

$$PG$$
 N
 CO_2H

3

9

10

13

14

14

15

1

2

4 wherein

PG is a protecting group; 5

R² is a member selected from the group consisting of optionally substituted (C₁-6 C₈)alkyl, optionally substituted aryl and optionally substituted heteroaryl; 7 8 and

said method further comprises a step between step (a) and (b) of removing said protecting group; and said acylating agent has the formula:

RI-Y 11

12 wherein

> R¹ is a member selected from the group consisting of optionally substituted (C₈-C₁₈)bicycloalkyl, optionally substituted (C₈-C₁₈)tricycloalkyl, optionally

substituted (C₈-C₁₈)heterobicycloalkyl and optionally substituted (C₈-15 16 C₁₈)heterotricycloalkyl; and Y is a member selected from the group consisting of carboxylic acid, carboxylate 17 ester, carboxylic acid chloride and activated forms of carboxylic acids. 18 21. A combinatorial library comprising compounds of the formula 1 N O 2 3 wherein R¹ is a member selected from the group consisting of optionally substituted(C₈-4 C₁₈)bicycloalkyl, optionally substituted (C₈-C₁₈)tricycloalkyl, optionally 5 substituted (C₈-C₁₈)heterobicycloalkyl and optionally substituted (C₈-6 C₁₈)heterotricycloalkyl; 7 R² is a member selected from the group consisting of optionally substituted (C₁-8 C₈)alkyl, optionally substituted aryl and optionally substituted heteroaryl; 9 10 and X is a member selected from the group consisting of -CO₂R¹¹, -CH₂OR¹¹, 11 -C(O)R¹¹, -C(O)NR¹¹R¹² and -CH₂NR¹¹R¹², wherein R¹¹ and R¹² are each members 12 independently selected from the group consisting of a solid support, hydrogen and 13 14 optionally substituted (C₁-C₈)alkyl. A method for synthesizing a combinatorial library comprising 1 22. 2 compounds of the formula: 3 wherein

30

C₁₈)heterotricycloalkyl;

R¹ is a member selected from the group consisting of optionally substituted(C₈-

C₁₈)bicycloalkyl, optionally substituted (C₈-C₁₈)tricycloalkyl, optionally

substituted (C₈-C₁₈)heterobicycloalkyl and optionally substituted (C₈-

4

5

6

7

8

9	R ² is a member selected from the group consisting of optionally substituted (C ₁ -
10	C ₈)alkyl, optionally substituted aryl and optionally substituted heteroaryl;
11	and
12	X is a member selected from the group consisting of -CO ₂ R ¹¹ , -CH ₂ OR ¹¹ ,
13	-C(O)R ¹¹ , -C(O)NR ¹¹ R ¹² and -CH ₂ NR ¹¹ R ¹² , wherein R ¹¹ and R ¹² are each members
14	independently selected from the group consisting of hydrogen and optionally substituted
15	(C ₁ -C ₈)alkyl; said method comprising:
16	(a) attaching an aniline derivative to a solid support to provide a support-
17	bound aniline derivative;
18	(b) contacting said support-bound aniline derivative with an aldehyde or
19	ketone under reductively aminating conditions to provide a support-bound substituted
20	aniline derivative; and
21	(c) contacting said support-bound substituted aniline derivative with an
22	acylating agent to provide an LXR ligand on said solid support.