

Visualização Bidimensional

Rossana Baptista Queiroz

- □ Paleta de Cores (*Color index*)
- □ Tiles
- □ Tilesets
- Tilemaps
- □ Sprites

- Do ponto de vista artístico
 - Criar uma família de cores harmônicas
 - Existem diferentes tipos:
 - Cartoon, tons pastéis, noturna,...
- Do ponto de vista computacional
 - Economizar memória
 - Efetuar efeitos de cores

Imagens tipo indexed-color

Programando com imagens

Imagens tipo indexed-color

- □ Dimensão: 240x360
- 86400 pixels
- Cada pixel usa três canais (RGB).
- Cada canal requer 1 byte
- □ Resulta em 259200 bytes
- □ 253,125Kb

- □ Dimensão: 240x360
- 86400 pixels
- □ Usa uma paleta com 256 cores

- Dimensão: 240x360
- 86400 pixels
- Usa uma paleta com 256 cores
- Cada entrada da paleta tem 3 bytes (RGB)
 - 768 bytes
- Para cada pixel da imagem é usado 1 byte (índice da paleta)
 - 84,375 Kb
- Total: 85,125Kb (~3x menor)

- Como construir?
 - □ Como transformar as 2²⁴ cores em apenas 256?
 - Percorrer a imagem, e para cada pixel diferente, adicionar uma entrada na paleta e indexá-lo

- As paletas podem ser pré-definidas pelos sistemas. O que retira a necessidade de armazenamento da mesma.
 - □ Como o padrão "IBM VGA palette": http://www.fileformat.info/mirror/egff/ch02 02.htm
- Mas as melhores paletas são aquelas otimizadas a partir imagem que elas representam. As n cores que melhor representam a imagem. Chamada de paleta otimizada.
- Das 16 milhões de cores a paleta utiliza apenas 256 cores, obviamente, que há uma perda de qualidade de informação, em favorecimento a economia de armazenamento.

- É necessário fazermos um processo de quantização de cores para definir as 256 melhores cores que compõem a nossa paleta de cores de uma determinada imagem.
- Um histograma pode nos dar as cores mais frequentes, e podemos aproximar as outras pelo cálculo da distância de cores
- Muitas vezes a redução não afeta a qualidade da imagem ou o resultado é aceitável.

□ Distância de cores RGB

- □ Distância de cores RGB
 - Cálculo da distância euclidiana

$$d = \sqrt{(c_R - o_R)^2 + (c_G - o_G)^2 + (c_B - o_B)^2}$$

- c é a cor chave (que queremos comparar)
- o é a cor que está sendo testada
- R, G e B são as componentes
- d é a distância: entre c e o. Quanto maior d, mais "diferentes" as cores são

- □ Distância de cores RGB
 - Proporção:
 - dmax é a distância entre o valor mínimo e máximo (0 e 255) $\frac{dmax \sqrt{(0-255)^2 + (0-255)^2 + (0-255)^2}}{dmax \sqrt{(0-255)^2 + (0-255)^2}}$

$$d \max = \sqrt{(0-255)^2 + (0-255)^2 + (0-255)^2}$$

$$d \max = \sqrt{195075}$$

$$d \max \approx 441,673$$

■ Fazemos uma proporção entre a distância e *dmax*, e checamos se está dentro de nosso raio de tolerância

$$\Delta d = \frac{d}{d \max}$$

□ Distância de cores RGB

```
No código-fonte...:
    dd = d / dmax;
    if(dd <= tolerancia) {
        // faz alguma coisa
    }</pre>
```

■ Neste caso, dd é um número entre 0 e 1

Tiles

- Uma pequena porção de imagem
 - Metáfora: Azulejo, tijolo ou um carimbo
 - A cena é formada por uma coleção de *tiles*
 - Cada pixel do tile utiliza um índice da paleta

Tiles e Paleta de Cores

0	1	1	2	3	0	0	0	1	1	2
0	0	1	1	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	1	1
3	3	1	2	1	1	1	1	1	1	1
0	0	3	1	1	1	1	1	1	0	0

□ Cada número é um indice da paleta!

Tileset

- □ Coleção de *tiles*
- Em geral organizados em uma matriz ou um vetor
- Cada tile em um tileset possui um identificador (ID)
 - Um código numérico

Tileset

Tilemap

- Uma imagem criada através da composição de diversos tiles de um tileset.
- Objetivo: economizar memória!

Tilemap

□ Cada número é um indice do *tile no tileset*

Tilemap, Tiles e Paleta de cores

- Cada número no tilemap é um indice do tile no tileset
- Cada pixel do tile no tileset é um índice da paleta

Tilemap, Tiles e Paleta de cores

- Cada número no tilemap é um indice do tile no tileset
- Cada pixel do tile no tileset é um índice da paleta

- □ Cenário 1: Sem tilemap
 - Imagem com 2000x1000
 - Sistema de cor RGB (cada pixel com 24 bits)
 - □ Imagem com **5,72 Mb**
- Cenário 2: Com tilemap, tileset e tiles
 - Imagem com 2000x1000
 - Uma paleta com 256 cores (0,75 Kb)
 - Cada tile com as dimensões de 20x20 pixels
 - Matriz 100x50 de bytes (ID do tile) (4,88Kb)
 - Tileset com 50 tiles (19,53Kb 20x20x50)
 - Total: 25,16Kb (menor ~233 vezes)

Sprites

- □ "Fantasma", espectro, ...
- Animação clássica sequencia de quadros que serão exibidos conforme a ação do jogador ou mudança de estado de algum objeto
- Cada vez que atualiza a tela pinta um novo frame
- Usado para:

Personagem principal, inimigos, itens e artefatos no cenário

Sprites

- □ Fenômenos fuzzy
 - Nuvens, fogo, fumaça...
 - Associado a simulação de partículas

Técnicas para a animação de sprites

 Animações criadas por uma reorganização dos frames previamente gravados

Schödl, A. and Essa, I. A. 2002. Controlled animation of video sprites. In *Proceedings of the 2002 ACM*Siggraph/Eurographics Symposium on Computer
Animation (San Antonio, Texas, July 21 - 22, 2002). SCA '02. ACM, New York, NY, 121-127

15,000 usable sprite frames!

What are video sprites?

Data capture

Train similarity classifier

Constraints, e. g. motion trajectory

Extract sprites using chromakeying

Find transitions by comparing all pairs of frames

Find sequence of frames s₁...s_n that shows desired animation

Render and composite

Visão Isométrica

- Isométrico: método matemático para desenhar uma figura 3D sem o uso da perspectiva.
- Todos os tamanhos são preservados e os objetos são desenhados com uma inclinação de 30°.
- Os sprites também devem ser mudados.
- Também conhecido como "2.5D" ou "falso 3D"

Isometria

- Caso especial em que o plano de projeção forma o mesmo ângulo com os três eixos principais. As projeções dos três vetores unitários canônicos formam ângulos de 120º entre si.
- Isto permite que as medições feitas na projeção em cada eixo utilize a mesma escala

Visão Isométrica

- □ Tiles isométricos
 - Como resolver a sobreposição?
 - Como navegar??

0000025

Referências

 Materiais do professor Leandro Tonietto e João Bittencourt