Algebraic Graphs with Class

Christoph Madlener 01.06.2021

 G_1

 G_1

$$G = (V, E)$$
 s.t. $E \subseteq V \times V$

$$G_1 = (\{1,2,3\}, \{(1,2), (1,3), (2,1)\})$$

$$G = (V, E)$$
 s.t. $E \subseteq V \times V$

data G a = G { vs :: Set a, es :: Set (a,a) }

containers
adjacency lists

containers adjacency lists

fgl inductive graphs

 inductive datatype: Context of a vertex + Graph

containers adjacency lists

 $E \subseteq V \times V$?

fgl inductive graphs

 inductive datatype: Context of a vertex + Graph

containers adjacency lists

$E \subset V \times V$?

partial functions → runtime errors

fgl inductive graphs

 inductive datatype: Context of a vertex + Graph

Algebraic Graphs

- · complete and consistent graph representation
- simple construction primitives ("the core")

Algebraic Graphs

- · complete and consistent graph representation
- simple construction primitives ("the core")

Achieved by the datatype

Empty (ε) & Vertex

Empty - ε

$$\texttt{Empty} = \varepsilon = (\emptyset, \emptyset)$$

Empty (ε) & Vertex

Empty - ε

 $\texttt{Empty} = \varepsilon = (\emptyset, \emptyset)$

Vertex

Overlay (+)

$$(V_1, E_1) + (V_2, E_2) := (V_1 \cup V_2, E_1 \cup E_2)$$

Connect (\rightarrow / \ast)

$$(V_1, E_1) \rightarrow (V_2, E_2) := (V_1 \cup V_2, E_1 \cup E_2 \cup V_1 \times V_2)$$

Graph Construction

Graph Transformation

ALGEBRAIC Graphs with CLASS

Undirected Graphs & more

Formal Verification

Deep Embedding

Formal Verification

Conclusion