LECTURE 4: CLUSTERING IN SAMPLING AND IN

ASSIGNMENT

Guido Imbens – Stanford University

Economics 272, GSB 507, Spring 2025

OUTLINE

- 1. The Robust and Cluster Robust Variances
- 2. Asymptotics
- 3. An Example
- 4. The Variance for the General Case
- 5. Comparison with Robust and Cluster Robust Variance Estimators
- 6. The Causal Cluster Variance Estimator
- 7. A Bootstrap Version

ROBUST AND CLUSTER-ROBUST STANDARD ERRORS

Linaer Model (here with binary covariate)

$$Y_i = \beta_0 + \beta_1 W_i + \varepsilon_i = X_i^\top \beta + \varepsilon_i$$

$$\hat{\beta} = \left(\sum_{i=1}^{N} X_i X_i^{\top}\right)^{-1} \left(\sum_{i=1}^{N} X_i Y_i\right), \qquad \hat{\varepsilon} = Y_i - X_i^{\top} \hat{\beta}$$

Neyman / Eicker-Huber-White / robust Standard errors

$$\hat{\mathbb{V}}^{\mathsf{EHW}} = \left(\sum_{i=1}^{N} X_i X_i^{\top}\right)^{-1} \left(\sum_{i=1}^{N} X_i X_i^{\top} \hat{\varepsilon}_i^2\right) \left(\sum_{i=1}^{N} X_i X_i^{\top}\right)^{-1}$$

Liang-Zeger/ cluster-robust Standard errors

$$\hat{\mathbb{V}}^{\mathsf{LZ}} = \left(\sum_{i=1}^{N} X_i X_i^{\mathsf{T}}\right)^{-1} \sum_{g=1}^{G} \left\{ \left(\sum_{i:G_i = g} X_i \hat{\varepsilon}_i\right) \left(\sum_{i:G_i = g} X_i \hat{\varepsilon}_i\right)^{\mathsf{T}} \right\} \left(\sum_{i=1}^{N} X_i X_i^{\mathsf{T}}\right)^{-1} \right\}$$

ROBUST AND CLUSTER-ROBUST STANDARD ERRORS FOR THE BINARY TREATMENT CASE

• With $W_i \in \{0, 1\}$ the two variance estimators for the treatment effect estimator $\hat{\tau}$ simplify to

$$\hat{\mathbb{V}}^{\mathsf{EHW}}(\hat{\tau}) = \frac{1}{\overline{W}^2 (1 - \overline{W})^2} \left\{ \frac{1}{N} \sum_{i=1}^{N} \hat{\varepsilon}_i^2 (W_i - \overline{W})^2 \right\}$$

$$\hat{\mathbb{V}}^{\mathsf{LZ}}(\hat{\tau}) = \frac{1}{\overline{W}^2 (1 - \overline{W})^2} \left\{ \frac{1}{N} \sum_{g=1}^{g_k} \left(\sum_{i \mid G_i = g} \hat{\varepsilon}_i (W_i - \overline{W}) \right)^2 \right\}$$

where $\overline{W} = \sum_{i=1}^{N} W_i/N$ is the average value for the treatment.

ASYMPTOTICS TO INCLUDE BOTH CLUSTERED SAMPLING AND CLUSTERED ASSIGNMENT, FORMAL SET UP (AS LAST TIME)

- Sequence of populations, $k = 1, 2, 3, \ldots$,
- In population k
 - there are g_k clusters,
 - $n_{k,q}$ units in cluster $g, n_k = \sum_{q=1}^{g_k} n_{k,q}$ units total in population.
- · Sampling:
 - Cluster g is sampled with probability q_k .
 - Units from the sampled clusters are sampled with probability p_k .
- Assignment:
 - For each cluster a (random) probability $A_{k,g}$ is drawn randomly from a distribution with mean μ_k and variance σ_k^2 .
 - Units in cluster g are assigned to the treatment with probability $A_{k,g}$.
- Observed is treatment assignment $W_{k,i} \in \{0,1\}$ and outcome $Y_{k,i} = y_{k,i}(W_{k,i})$
- Interest in population average effect $\tau = \sum_{i=1}^{n_k} (y_i(T) y_{k,i}(C))/n_k$

NOTATION

- Population quantities lower case, n_k , g_k .
- Sample quantities upper case, N_k, G_k

SPECIAL CASES

- Asymptotics generally use $n_k \to \infty$, sometimes $g_k \to \infty$, sometimes $g_k = g, \forall k$.
- Random sampling of clusters from a large population of clusters, q_k is small (clustered sampling, not that common in economics, more common in survey sampling literature)
- Random sampling from a large population, $q_k = 1$, p_k is small.
- Completely random assignment, $A_{k,q} = A_k \forall g$ (first two classes)
 - robust standard errors
- Clustered random assignment, $A_{k,q} \in \{0,1\}, \forall k, g \text{ (last two classes)}$
 - cluster-robust standard errors
- How do we decide what case we are interested in given a sample (W_i, Y_i, G_i) ?
 - This is not purely a statistical question, cannot be answered on the basis of the data. We cannot see whether $q_k = 1$ or $q_k < 1$ (clustered sampling). We can test whether $\sigma_k^2 = 0$ or $\sigma_k^2 > 0$ (clustered assignment).
- Challenge: what to do if $A_{k,q}$ has a distribution with positive variance that has

EXAMPLE

- A sample from the 2000 US decennial census containing information for 2,632,838 individuals on
 - the logarithm of earnings
 - an indicator for attending college (years of education exceeding twelve years).
- 52 clusters: 50 states plus Puerto Rico and DC.
- Two regressions, in both cases with a single binary regressor (once varing at unit level, once varying at cluster level).
 - In the first regression the sole regressor is a binary variable indicating whether the fraction of individuals in the state has at least some college exceeds 0.55
 - In the second regression the sole regressor is the individual-level indicator for attending college.

VARIANCE CALCULATION BASED ON ABADIE ET AL (2023)

- Two Estimators
 - least squares estimator
 - fixed effect estimator (fixed effects for each cluster)
- four standard errors,
 - robust (EHW, eicker-huber-white)
 - cluster-robust (LZ, liang-zeger)
 - new standard error (CCV, causal cluster variance),
 - bootstrap version of new standard error (TSCB, two-stage causal bootstrap).

ROBUST, CLUSTER-ROBUST AND CAUSAL CLUSTER VARIANCE (CCV) STANDARD ERRORS, FOR THE CENSUS SAMPLE

	OLS Estimator				
	Est	robust	CCV	cluster robust	tscb
Ave Coll > 0.55	0.102	(0.001)	(0.031)	(0.031)	(0.031)
Some Coll	0.466	(0.001)	(0.004)	(0.027)	(0.004)
	Fixed Effect Estimator				
	Est	robust	CCV	cluster robust	tscb
Ave Coll > 0.55	-	-	-	-	_
Some Coll	0.457	(0.001)	(0.001)	(0.028)	(0.001)

VARIANCE CALCULATION BASED ON ABADIE ET AL (2023)

- In population k we sample clusters with probability q_k , and units with probability p_k .
- assign cluster g to treatment probability A_{gk} , with mean μ_k and variance σ_k^2 , independently across clusters.
- We estimate the average effect τ_{pop} as $\hat{\tau}_{pop} = \overline{Y}_T \overline{Y}_C$.
- Assign unit i to treatment with probability A_{kai}.
- Define the residuals

$$\varepsilon_{ki}(C) \equiv y_{ki}(C) - \frac{1}{n_k} \sum_{j=1}^{n_k} y_{kj}(C)$$
 $\varepsilon_{ki}(T) \equiv y_{ki}(T) - \frac{1}{n_k} \sum_{j=1}^{n_k} y_{kj}(T)$

$$\varepsilon_{ki} \equiv \varepsilon_{ki}(W_{ki})$$

• $g_{k,i}$ indicates which cluster a unit is from.

VARIANCE CALCULATION BASED ON ABADIE ET AL (2023)

Result in Abadie et al:

$$\sqrt{n_k}(\widehat{\tau}_k - \tau_k)/v_k^{1/2} \stackrel{d}{\longrightarrow} N(0, 1),$$

where for the (general case) we get a very messy expression:

$$v_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \left(\frac{\varepsilon_{k,i}^2(1)}{\mu_k} + \frac{\varepsilon_{k,i}^2(0)}{1 - \mu_k} \right) \tag{1}$$

$$- p_{k} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right)^{2} - p_{k} \sigma_{k}^{2} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{\varepsilon_{k,i}(1)}{\mu_{k}} + \frac{\varepsilon_{k,i}(0)}{1 - \mu_{k}} \right)^{2}$$
 (2)

$$+ p_k(1 - q_k) \frac{1}{n_k} \sum_{g=1}^{g_k} \left(\sum_{i:G_{k,i}=g} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right) \right)^2$$

$$(3)$$

$$+ p_k \sigma_k^2 \frac{1}{n_k} \sum_{q=1}^{g_k} \left(\sum_{i:G_k = q} \left(\frac{\varepsilon_{k,i}(1)}{\mu_k} + \frac{\varepsilon_{k,i}(0)}{1 - \mu_k} \right) \right)^2. \tag{4}$$

How do we unpack / interpret this expression?

THE VARIANCE UNDER RANDOM SAMPLING, RANDOM ASSIGNMENT

• Consider the case with random sampling $(q_k = 1)$, and random assignment $(\sigma_k^2 = 0)$. Then the variance simplifies to

$$v_k(q_k=1,\sigma_k^2=0) = \frac{1}{n_k} \sum_{i=1}^{n_k} \left(\frac{\varepsilon_{k,i}^2(1)}{\mu_k} + \frac{\varepsilon_{k,i}^2(0)}{1-\mu_k} \right) - p_k \frac{1}{n_k} \sum_{i=1}^{n_k} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right)^2.$$

- The first term in this variance is what is estimated by the robust variance estimator VEHW.
- The second term is a finite sample correction in the Neyman variance that is familiar from the literature on randomized experiments
- This finite sample correction vanishes if either there is no heterogeneity in the treatment effects, neithe within or between clusters ($\varepsilon_{k,i}(1) \varepsilon_{k,j}(0)$), or if the sample is a small fraction of the population ($p_k \to 0$).

THE ROBUST VARIANCE ESTIMATOR

robust variance estimator

$$\hat{\mathbb{V}}_k^{\mathsf{EHW}} = \frac{1}{\overline{W}_k^2 (1 - \overline{W}_k)^2} \left\{ \frac{1}{N_k} \sum_{i=1}^{N_k} \hat{\epsilon}_{k,i}^2 (W_{k,i} - \overline{W}_k)^2 \right\},$$

Define the estimand corresponding to the EHW variance estimator:

$$\mathbf{v}_{k}^{\mathsf{EHW}} = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{\varepsilon_{k,i}^{2}(1)}{\mu_{k}} + \frac{\varepsilon_{k,i}^{2}(0)}{1 - \mu_{k}} \right),$$

(same as first term in v_k)

• Then $\hat{\mathbb{V}}_{k}^{\text{EHW}}$ and v_{k}^{EHW} are close in the sense that

$$\frac{\hat{\mathbb{V}}_{k}^{\mathsf{EHW}} - \mathbf{v}_{k}^{\mathsf{EHW}}}{\mathbf{v}_{k}} =_{\mathfrak{O}_{p}(1)}.$$

In general the difference between the estimands v_k^{EHW} – v_k can be positive or Guido Imbelli gegative, so the robust variance estimator can be invalid even in large samples.

THE CLUSTER ROBUST VARIANCE

$$\hat{\mathbb{V}}_k^{\text{cluster}} = \frac{1}{\overline{W}_k^2 (1 - \overline{W}_k)^2} \left\{ \frac{1}{N_k} \sum_{g=1}^{g_k} \left(\sum_{i: G_{ki} = g} \hat{\varepsilon}_{ki} (W_{k,i} - \overline{W}_k) \right)^2 \right\}.$$

Define the estimand corresponding to the LZ variance estimator:

$$\begin{split} v_{k}^{\text{cluster}} &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{\varepsilon_{k,i}^{2}(1)}{\mu_{k}} + \frac{\varepsilon_{k,i}^{2}(0)}{1 - \mu_{k}} \right) \\ &- p_{k} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right)^{2} - p_{k} \sigma_{k}^{2} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{\varepsilon_{k,i}(1)}{\mu_{k}} + \frac{\varepsilon_{k,i}(0)}{1 - \mu_{k}} \right)^{2} \\ &+ p_{k} \frac{1}{n_{k}} \sum_{g=1}^{g_{k}} \left(\sum_{i:G_{k}:=g} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right) \right)^{2} \\ &+ p_{k} \sigma_{k}^{2} \frac{1}{n_{k}} \sum_{g=1}^{g_{k}} \left(\sum_{i:G_{k}:=g} \left(\frac{\varepsilon_{k,i}(1)}{\mu_{k}} + \frac{\varepsilon_{k,i}(0)}{1 - \mu_{k}} \right) \right)^{2}. \end{split}$$

Guido Imbens

THE CLUSTER ROBUST VARIANCE

• Then $\hat{\mathbb{V}}_k^{\text{cluster}}$ gets close to v_k^{cluster} :

$$\frac{\sqrt[\infty]{\text{cluster}} - V_k^{\text{cluster}}}{V_k} =_{\mathcal{O}_p(1)}$$

- The difference $v_k^{\text{cluster}} v_k$ is always nonnegative so that the cluster-robust variance can be conservative, but cannot underestimate the variance.
- The difference is

$$v_k^{\text{cluster}} - v_k = p_k q_k \frac{1}{n_k} \sum_{q=1}^{g_k} \left(\sum_{i:G_{ki}=q} \left(\varepsilon_{k,i}(1) - \varepsilon_{k,i}(0) \right) \right)^2$$

coming from variation in the treatment effects $\varepsilon_{k,j}(1) - \varepsilon_{k,j}(0)$

CHALLENGE

- If $0 < \sigma_k^2 < \mu_k(1 \mu_k)$ (so $A_{k,g}$ takes on values outside of $\{0, 1\}$ and is not constant), and $pq_k = 1$, what to do?
 - Neither $\hat{\mathbb{V}}^{\mathsf{EHW}}$ nor $\hat{\mathbb{V}}^{\mathsf{cluster}}_k$ is appropriate
 - If σ_k^2 close to zero, variance estimator should be close to $\hat{\mathbb{V}}^{\mathsf{EHW}}$
 - If σ_k^2 is close to $\mu_k(1-\mu_k)$, variance estimator should be close to $\hat{\mathbb{V}}_k^{\text{cluster}}$

NEW CAUSAL CLUSTER VARIANCE

- Focus on case with $q_k = p_k = 1$, all unit sampled.
- The first step is to approximate the normalized error of the least squares estimator $\widehat{\tau}_k$ by a normalized sample average over clusters:

$$\sqrt{n_k} \frac{\widehat{\tau}_k - \tau_k}{\sqrt{v_k}} = \frac{1}{\sqrt{n_k \, p_k}} \mu_k (1 - \mu_k) \sqrt{v_k} \, \sum_{g=1}^{g_k} C_{k,g} +_{\mathcal{O}_{p}(1),}$$

• the g_k cluster terms $C_{k,q}$, independent across clusters, are defined as

$$C_{k,g} = \sum_{i=1}^{n_k} 1\{G_{ki} = g\} \varepsilon_{k,i} (W_{k,i} - \mu_k),$$

 The cluster-robust variance estimator is approximately equal to the sum of squares of these terms:

$$\hat{\mathbb{V}}^{\text{cluster}} = \frac{1}{n_k v_k \mu_k^2 (1 - \mu_k)^2} \sum_{\substack{g=1 \\ \text{Clustering in Sampling and in Assignment}}} C_{k,g}^2 +_{\mathfrak{O}_p(1)}.$$

Guido Imbens

THE NEW CAUSAL CLUSTER VARIANCE

- Note: the sum of the expectations of $C_{k,g}$ is equal to zero, $\sum_{m=1}^{m_k} \mathbb{E}[C_{k,g}] = 0$,
- But for each cluster separately the expectation of the cluster terms is not equal to zero:

$$\mathbb{E}[C_{k,g}] = n_{k,m} \, p_k \mu_k (1-\mu_k) (\tau_{k,g} - \tau_k) \not = 0.$$

Because $\sum_{m=1}^{m_k} \mathbb{E}[C_{k,g}] = 0$, we can replace the $C_{k,g}$ by deviations from mean $\dot{C}_{k,g} \equiv C_{k,g} - E[C_{k,g}]$, where

$$\dot{C}_{k,g} = \sum_{i=1}^{N_k} 1\{G_{ki} = g\} \Big\{ \varepsilon_{ki} (W_{k,i} - \mu_k) - (\tau_{k,g} - \tau_k) \mu_k (1 - \mu_k) \Big\},\,$$

so that

$$\sqrt{N_k}\frac{\widehat{\tau}_k-\tau_k}{\sqrt{v_k}}=\frac{1}{\sqrt{n_kp_k}\mu_k(1-\mu_k)\sqrt{v_k}}\sum_{g=1}^{g_k}\dot{C}_{k,g}+_{\mathcal{O}_{P}(1)}.$$

THE NEW CAUSAL CLUSTER VARIANCE ESTIMATOR

 A naive way to estimate the variance of the second sum is to put in estimated counterparts:

$$\frac{1}{N_k (\hat{\mu}_k (1 - \hat{\mu}_k))^2} \sum_{g=1}^{g_k} \left(\sum_{i \mid G_{ki} = g} \left\{ \hat{\varepsilon}_{k,i} (W_{k,i} - \hat{\mu}_k) - (\widehat{\tau}_{k,g} - \widehat{\tau}_k) \hat{\mu}_k (1 - \hat{\mu}_k) \right\} \right)^2$$

- The problem is that the estimation error in $\widehat{\tau}_{k,g}$ is positively correlated with the estimation error in $\sum_{i|G_{ki}=g} \widehat{\varepsilon}_{k,i} (W_{k,i} \widehat{\mu}_k)$, leading to a downward bias in this variance estimator.
- To get a variance estimator with better properties we use sample splitting.

THE NEW CAUSAL CLUSTER VARIANCE

- Let $Z_{k,j} \in \{0,1\}$ be a binomial random variable with probability 1/2.
- Estimate the normalized variance for the case with $q_k = 1$ as $\hat{\mathbb{V}}_k^{CCV}$, equal to

$$\frac{4}{N_k(\hat{\mu}_k(1-\hat{\mu}_k))^2} \sum_{g=1}^{g_k} \left\{ \left(\sum_{i:G_{ki}=g,Z_{ki}=0} \left\{ \hat{\epsilon}_{k,i}(W_{k,i}-\hat{\mu}_k) - (\widehat{\tau}_{k,g}^1-\widehat{\tau}_k^1)\hat{\mu}_k(1-\hat{\mu}_k) \right\} \right)^2 \right.$$

$$-2\sum_{i:G_{k},-g}(1-Z_{k,i})\left\{\hat{\varepsilon}_{k,i}(W_{k,i}-\hat{\mu}_{k})-(\widehat{\tau}_{k,g}^{1}-\widehat{\tau}_{k}^{1})\hat{\mu}_{k}(1-\hat{\mu}_{k})\right\}^{2}$$

$$+(1-p_k)\sum_{k=1}^{g_k}\frac{N_{k,m}}{N_k}(\widehat{\tau}_{k,g}^1-\widehat{\tau}_k^1)^2\right\}.$$

• The factor 4 in the first term of the variance expression accounts for the fact that we only use half the observations to estimate the sum.

A RESAMPLING-BASED VARIANCE ESTIMATOR

- Two-stage-cluster-bootstrap (tscb), consists of two resampling stages and a couple of additional steps:
 - Calculate for each cluster $g = 1, \dots, g_k$, the fraction treated units, $\overline{W}_{k,a} = N_{k,a,1}/N_{k,a}$.
 - Next draw for cluster g a fraction treated $\overline{W}_{k,q}^b$ from the empirical distribution of these g_k fractions $\{\overline{W}_{k,q'}\}_{q'=1}^{g_k}$, with replacement.
 - Given the sample cluster size for this cluster, $N_{k,a}$, draw $N_{k,a} \times \overline{W}_{k,a}^b$ units with replacement from the set of $N_{k,a,1}$ treated units in this cluster.
 - Similarly draw $N_{k,a} \times (1 \overline{W}_{k,a}^b)$ units with replacement from the set of $N_{k,q,0}$ control units in this cluster. Add these $N_{k_{q,1}}$ treated and $N_{k_{q,0}}$ control units to the bootstrap sample.
 - We do this for all g_k clusters to create the bootstrap sample.
 - Then for each bootstrap sample we calculate the least squares and fixed effect estimators, and we use these bootstrap estimates to calculate bootstrap standard errors in Sampling and in Assignment

REFERENCES

 ABADIE, ALBERTO, SUSAN ATHEY, GUIDO W. IMBENS, AND JEFFREY M. WOOLDRIDGE. "WHEN SHOULD YOU ADJUST STANDARD ERRORS FOR CLUSTERING?." The Quarterly Journal of Economics 138, No. 1 (2023): 1-35.