Методы современной прикладной статистики 4.2. Множественная проверка гипотез

Родионов Игорь Владимирович vecsell@gmail.com

Весна, 2018

Проблема баяниста

5 раз Игорь Владимирович проходил одним подземным переходом, и 5 раз там сидел баянист и не играл. Можно ли отвергнуть гипотезу о том, что баянист играет большую часть времени?

Проблема баяниста

На шестой раз баянист играл. С тех пор он гораздо чаще играет, чем нет. Т.е. была совершена ошибка первого рода. Её можно было избежать, если бы Игорь Владимирович применил метод множественной проверки гипотез.

Постановка задачи

Пусть имеются данные $X = \{X_i^{(j)}\}, \ 1 \leq i \leq n_j, \ 1 \leq j \leq m.$

По ним проверяем гипотезы $H_j: P_j \in \mathcal{P}_j$ против альтернатив $H'_j: P_j \notin \mathcal{P}_j$ с помощью статистик $T_j = T_j(X_1^{(j)}, \dots, X_{n_j}^{(j)}).$

Пусть $p_j = p_j(T_j)$ – р-значения критериев.

Постановка задачи

Обозначим $M = \{1, \ldots, m\}$, M_0 – индексы верных гипотез, $|M_0| = m_0$, R – число отвергнутых гипотез, V – число ошибок первого рода.

	\sharp верных H_j	\sharp ложных H_j	Всего
\sharp принятых H_j	U	Т	m-R
\sharp отвергнутых H_j	V	S	R
Всего	m ₀	m-m ₀	m

Групповая вероятность ошибки I рода (family-wise error rate)

$$FWER = P(V > 0).$$

Контроль над FWER на уровне lpha означает, что

$$FWER = P(V > 0) \le \alpha$$

для всех распределений из верных гипотез $H_j, j \in M_0.$

Пусть α_1,\ldots,α_m – уровни значимости критериев проверки гипотез H_1,\ldots,H_m соответственно. Хотим их выбрать таким образом, чтобы $FWER \leq \alpha$.

Метод Бонферрони

Метод Бонферрони: $\alpha_1 = \ldots = \alpha_m = \frac{\alpha}{m}$. Действительно,

FWER =
$$P(V > 0) = P(\exists j \in M_0 : p_j \le \alpha/m) \le$$

$$\sum_{j \in M_0} P(p_j \le \alpha/m) \le m_0 \cdot \frac{\alpha}{m} \le \alpha.$$

Главный недостаток метода — резкое уменьшение мощности статистической процедуры при $m o \infty$.

Метод Шидака

Метод Шидака:
$$\alpha_1 \dots \alpha_m = 1 - (1 - \alpha)^{1/m}$$
.

Метод дает $FWER \leq \alpha$ при условии, что статистики T_i независимы или выполнено свойство "положительной зависимости":

$$P(T_1 \leq t_1, \ldots, T_m \leq t_m) \geq \prod_{i=1}^m P(T_i \leq t_i) \ \forall \vec{t} \in \mathbb{R}^m.$$

Положительную зависимость, в частности, можно установить с помощью FKG-неравенства: если f(x) и g(x) – возрастающие (убывающие) функции, то $Ef(X)g(X) \geq Ef(X)Eg(X)$.

Нисходящие процедуры

Составим вариационный ряд р-значений

$$p_{(1)}\leq\ldots\leq p_{(m)},$$

где $H_{(1)}, \ldots, H_{(m)}$ – соответствующие гипотезы. Процедура выглядит так:

- $oldsymbol{1}$ Если $p_{(1)} \geq lpha_1$, то принимаем все гипотезы $H_{(1)}, \dots, H_{(m)}$ и останавливаемся, иначе отвергаем $H_{(1)}$ и продолжаем;
- $m{2}$ Если $p_{(2)} \geq lpha_2$, то принимаем все гипотезы $H_{(2)}, \dots, H_{(m)}$ и останавливаемся, иначе отвергаем $H_{(2)}$ и продолжаем;
- **3** ...

Нисходящие процедуры

Метод Холма: нисходящая процедура с уровнями значимости

$$\alpha_1 = \frac{\alpha}{m}, \dots, \alpha_i = \frac{\alpha}{m-i+1}, \dots, \alpha_m = \alpha.$$

Свойства:

- $lue{1}$ контролирует FWER на уровне значимости lpha;
- 2 равномерно мощнее метода Бонферрони;

Нисходящие процедуры

Метод Шидака-Холма: нисходящая процедура с уровнями значимости

$$\alpha_1 = 1 - (1 - \alpha)^{\frac{1}{m}}, \dots \alpha_i = 1 - (1 - \alpha)^{\frac{1}{m-i+1}}, \dots \alpha_m = \alpha.$$

Свойства:

- **1** контролирует FWER на уровне значимости α , если статистики $\{T_i\}$ независимы в совокупности;
- ② если статистики $\{T_i\}$ независимы в совокупности, то нельзя построить контролирующую FWER на уровне α процедуру мощнее, чем метод Шидака-Холма;
- при больших т мало отличается от метода Холма.

Ожидаемая доля ложных отклонений гипотез (false discovery rate)

$$FDR = E\left(\frac{V}{\max(R,1)}\right).$$

Контроль над FDR на уровне значимости α означает, что $FDR \leq \alpha$ для всех распределений из верных гипотез $H_j,$ $j \in M_0.$

Хотя $FDR = E\left(\frac{V}{\max(R,1)}\right) \leq EI(V>0) = P(V>0) = FWER$, но в рамках процедур, контролирующих FDR на уровне α , случается больше ошибок первого рода.

Пусть, как и ранее, $p_{(1)} \leq \ldots \leq p_{(m)}$ — вариационный ряд полученных р-значений, а $H_{(1)},\ldots,H_{(m)}$ — соответствующие им гипотезы.

Процедура выглядит так:

- 1 Если $p_{(m)} < \alpha_m$, то отвергаем все гипотезы $H_{(1)}, \dots, H_{(m)}$ и останавливаемся, иначе принимаем $H_{(m)}$ и продолжаем;
- 2 Если $p_{(m-1)} < \alpha_{m-1}$, то отвергаем все гипотезы $H_{(1)}, \dots, H_{(m-1)}$ и останавливаемся, иначе принимаем $H_{(2)}$ и продолжаем;
- **3** ...

Очевидно, что восходящая процедура отвергает не меньше гипотез, чем нисходящая с теми же $\{p_i\}$ и $\{\alpha_i\}$.

Метод Бенджамини-Хохберга: восходящая процедура,

для которой
$$lpha_i = lpha \cdot rac{i}{m}, \ i = 1, \dots, m.$$

Метод контролирует FDR на уровне α , если $\{T_i\}$ независимы или выполнено свойство PDRS:

$$P(X \in D | T_i = x)$$
 не убывает по $x \, \forall i \in M_0$,

где D – возрастающее множество, т.е. если $\vec{y} \in D$ и $\vec{z} \geq \vec{y},$ то $\vec{z} \in D.$

В частности, свойство PDRS выполнено, если $X \sim N(a, \Sigma)$, где все элементы ковариационной матрицы Σ неотрицательны.

Метод Бенджамини-Иекутиели: восходящая процедура с уровнями значимости

$$\alpha_i = \alpha \cdot \frac{i}{m} \left(\sum_{j=1}^m \frac{1}{j} \right)^{-1}, \ i = 1, \dots, m.$$

Метод контролирует FDR на уровне $\frac{m_0}{m} \alpha \leq \alpha$ для любых T_i .

При отсутствии информации о зависимости между статистиками T_i метод не улучшаем.

Сравнение методов

Модельный эксперимент: пусть имеется m=200 выборок размера n=20 из нормального распределения N(a,1), причем первые $m_0=150$ выборок сделаны из N(0,1), а последние 50- из N(1,1).

Проверим гипотезы H_i : a=0 против альтернатив H_i' : $a\neq 0,\ i=1,\ldots,m,$ с помощью t-критерия Стьюдента, полагая $\alpha=0.1$:

если
$$\left|\sqrt{n} \overline{\overline{X} - a} \right| > t_{1-lpha/2},$$
 то отвергнуть $H_i,$

где $t_{1-\alpha/2}$ – $(1-\alpha/2)$ -квантиль распределения Стьюдента St(n-1).

Сравнение методов

Матрицы ошибок модельного эксперимента:

Без поправки

	True	False
Accepted	142	0
Rejected	8	50

Шидак-Холм

——			
	True	False	
Accepted	150	24	
Rejected	0	26	

Бонферрони

Bondobbonn				
	True	False		
Accepted	150	27		
Rejected	0	23		

Бенджамини-Хохберг

	True	False
Accepted	148	4
Rejected	2	46

- 1 Если мы проверяем цепочку гипотез о каком-то одном наборе данных, то при отклонении одной из гипотез в рамках процедуры множественной проверки стоит остановиться и отклонить все остальные. Например, в модельном эксперименте стоит отвергнуть гипотезу о том, что данные выбраны из стандартного нормального распределения.
- Если мы последовательно проверяем гипотезы о различных наборах данных, то процедура множественной проверки гипотез также необходима, поскольку если поправки не делать, то вероятность того, что произойдет ошибка первого рода, будет расти с количеством проверяемых гипотез.

Finita!