Geometría Diferencial

June 8, 2023

Contents

1	1 Curvas					
2	Superficies					
	2.1 Primera forma fundamental	3				
	2.2 Áreas	3				
	2.3 Segunda forma fundamental	4				
3	El teorema Egregium					
4	Ejemplos de variedades					
5 Geodésicas						
	5.1 Isometrías	5				
	5.2 Campos vectoriales y derivada covariante	6				

1 Curvas

Podemos describir una variedad de tres maneras diferentes:

- Explícita: z = f(x, y)
- Implícita: f(x,y) = 0
- Paramétrica: (x(t), y(t), z(t))

La que más usaremos en este curso es la paramétrica por su comodidad.

Definition. Una curva parametrizada en \mathbb{R}^n es una función \mathcal{C}^1

$$\beta: I \to \mathbb{R}^n$$

Se llama regular si $\|\beta'(t)\| > 0 \ \forall t$

Podemos calcular la longitud de un tramo de la curva de t_0 a t_1 con la integral

$$\int_{t_0}^{t_1} \|\beta'(t)\| dt$$

Definition. Un cambio de parámetro es una función biyectiva y \mathcal{C}^1

$$\varphi: J \to I$$
$$u \to \varphi(u) = t$$

tal que $\varphi'(u) \neq 0 \ \forall u$

Definition. El parámetro arco se define como

$$s(t) = \int_{t_0}^t \|\beta'(u)\| du$$

Es el parámetro con el que podemos recorrer la curva con el sentido físico de su longitud

Definition. Triedro de Frenet. (T, N, B) forman una base ortonormal del espacio con

$$T(t) = \frac{\beta'(t)}{\|\beta'(t)\|} \qquad N(t) = \frac{T'(t)}{\|T'(t)\|} \qquad B = T \times N$$

llamados los vectores tangente, normal y binormal

Definition. La Curvatura k y la Torsión τ de de la curva α se definen como

$$k(s) = \|T'(s)\| = \langle T'(s), N(s) \rangle \qquad \tau(s) = \langle N'(s), B(s) \rangle$$

Se deducen las siguientes fórmulas para parámetro arbitrario (completar):

$$k = \frac{\|\gamma' \times \gamma''\|}{\|\gamma'\|^3}$$

De las relaciones entre los vectores de la base de Frenet se deducen las **fórmulas** de Frenet:

$$T' = kN$$

$$N' = -kT + \tau B$$

$$B' = -\tau N$$

Theorem. Teorema de Estructura. Dados $k(s), \tau(s), \alpha(0), T(0)$ existe una única α que reconstruye la curva

2 Superficies

Definition. Una superficie parametrizada regular es una aplicación

$$\sigma: U \to \mathbb{R}^3, \quad \sigma(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix} \ tal \ que \ D\sigma = \begin{pmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{pmatrix} \ tenga \ rango \ m\'{a}ximo$$

Definition. Plano tangente. (completar)

2.1 Primera forma fundamental

La idea es codificar la superficie S en una métrica sobre U para trabajar sobre las coordenadas u,v

Para cada punto sobre la superficie cogemos (σ_u, σ_v) como base para el plano tangente. Definimos la siguiente matriz

$$P = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \langle \sigma_u, \sigma_u \rangle & \langle \sigma_u, \sigma_v \rangle \\ \langle \sigma_u, \sigma_v \rangle & \langle \sigma_v, \sigma_v \rangle \end{pmatrix}$$

2.2 Áreas

Si tenemos la parametrización σ , podemos calcular el area de la superficie como

$$A = \iint_X \|\sigma_u \times \sigma_v\| du dv = \iint_X \sqrt{EG - F^2} du dv$$

2.3 Segunda forma fundamental

Definition. Aplicación de Gauss.

$$N: S \to \mathbb{S}^2$$
 que nos devuelve el vector normal $N(q) = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}$

Definition. Aplicación de Weingarten.

$$DN: T_qS \rightarrow T_qS \quad con \ la \ matriz \ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \ matriz \ de \ DN \ en \ base \ \sigma_u, \sigma_v$$

Esta aplicación es autoadjunta (simétrica), por lo que puede definir una forma cuadrática.

Definition. Segunda Forma Fundamental. Dada la matriz

$$S = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} -\langle \sigma_u, N_u \rangle & -\langle \sigma_u, N_v \rangle \\ -\langle \sigma_v, N_u \rangle & -\langle \sigma_v, N_v \rangle \end{pmatrix} = \begin{pmatrix} \langle \sigma_{uu}, N \rangle & \langle \sigma_{uv}, N \rangle \\ \langle \sigma_{uv}, N \rangle & \langle \sigma_{vv}, N \rangle \end{pmatrix} = -PA = -A^T P$$

Tenemos la forma cuadrática asociada

$$II: T_q \to \mathbb{R}, \qquad II(w) = -\langle w, DNw \rangle = w^T S w$$

en la base σ_u, σ_v

Definition. La Curvatura de Gauss es

$$\det(DN) = \det(A) = \frac{\det(S)}{\det(P)}$$

Llamaremos a un punto elíptico si K>0 e hiperbólico si K<0

3 El teorema Egregium

Definition (Simbolos de Cristoffel). definimos los símbolos de Cristoffel como los Γ_{ij}^k tal que

$$\begin{cases} \sigma_{uu} = \Gamma_{11}^1 \sigma_u + \Gamma_{11}^2 \sigma_v + eN \\ \sigma_{uv} = \Gamma_{12}^1 \sigma_u + \Gamma_{12}^2 \sigma_v + fN \\ \sigma_{vv} = \Gamma_{12}^1 \sigma_u + \Gamma_{22}^2 \sigma_v + gN \end{cases}$$

Podemos calcular los símbolos de Cristoffel con los siguientes sistemas

$$\begin{pmatrix} \frac{1}{2}E_u \\ F_u - \frac{1}{2}E_v \end{pmatrix} = P\begin{pmatrix} \Gamma_{11}^1 \\ \Gamma_{11}^2 \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{2}E_v \\ \frac{1}{2}G_u \end{pmatrix} = P\begin{pmatrix} \Gamma_{12}^1 \\ \Gamma_{12}^2 \end{pmatrix} \qquad \begin{pmatrix} F_v - \frac{1}{2}G_u \\ \frac{1}{2}G_v \end{pmatrix} = P\begin{pmatrix} \Gamma_{22}^1 \\ \Gamma_{22}^2 \end{pmatrix}$$

O lo que viene a ser lo mismo

$$\begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & \Gamma_{22}^1 \\ \Gamma_{11}^2 & \Gamma_{12}^2 & \Gamma_{22}^2 \end{pmatrix} = P^{-1} \begin{pmatrix} \frac{1}{2}E_u & \frac{1}{2}E_v & F_v - \frac{1}{2}G_u \\ F_u - \frac{1}{2}E_v & \frac{1}{2}G_u & \frac{1}{2}G_v \end{pmatrix}$$

Definition (Fórmulas de Gauss). Las formulas de Gauss son:

1.
$$EK = (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2$$

2.
$$FK = (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^1\Gamma_{12}^2 - \Gamma_{12}^2\Gamma_{11}^2$$

3.
$$GK = (\Gamma_{22}^1)_u - (\Gamma_{12}^1)_v + \Gamma_{11}^1 \Gamma_{22}^1 + \Gamma_{12}^1 \Gamma_{22}^2 - \Gamma_{12}^1 \Gamma_{12}^1 - \Gamma_{12}^2 \Gamma_{22}^1$$

Theorem (Egregium). La curvatura de Gauss K es intrínseca

Definition (Ecuaciones de Codazzi-Mainardi). Se cumple:

1.
$$e_v - f_u = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2$$

2.
$$f_v - g_u = e\Gamma_{22}^1 + f(\Gamma_{22}^2 - \Gamma_{12}^1) - g\Gamma_{12}^2$$

Theorem (Estructura para superficies). Sean E, F, G, e, f, g funciones diferenciables tal que

1.
$$E > 0, G > 0, EG - F^2 > 0$$

2. Satisfacen las ecuaciones de Gauss y Codazzi-Mainardi

Entonces para cada punto p existe una aplicación σ que es la parametrización de una superficie regular con E, F, G, e, f, g como coeficientes de las formas fundamentales

4 Ejemplos de variedades

Variedad	Parametrización	P	A	S	K
Revolución	$\begin{pmatrix} \varphi(u)\cos v\\ \varphi(u)\sin v\\ \psi(u) \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 \\ 0 & \varphi^2 \end{pmatrix} $	$ \left \begin{pmatrix} \varphi''\psi' - \varphi'\psi'' & 0 \\ 0 & -\frac{\psi'}{\varphi} \end{pmatrix} \right $	$ \begin{pmatrix} \varphi'\psi'' - \varphi''\psi' & 0 \\ 0 & \varphi\psi' \end{pmatrix} $	$\frac{-\varphi''}{\varphi}$

5 Geodésicas

5.1 Isometrías

Definition (Isometría local). La aplicación $\varphi: S \to S'$ es una isometría local en p si $\forall p \in S, w_1, w_2 \in T_pS$ tenemos

$$\langle w_1, w_2 \rangle = \langle D\varphi(w_1), D\varphi(w_2) \rangle$$

Proposition. Sean $\sigma, \tau: U \to \mathbb{R}^3$ dos parametrizaciones. $P_{\sigma} = P_{\tau}$ (misma primera forma fundamental) $\iff \tau \circ \sigma^{-1}$ es isometría local

5.2 Campos vectoriales y derivada covariante

Definition (Campo tangente).

$$X(u,v) = a(u,v)\sigma_u + b(u,v)\sigma_v$$

Si ahora parametrizamos por la curva $\gamma: u(t), v(t)$

$$X(u(t), v(t)) = a(u(t), v(t))\sigma_u + b(u(t), v(t))\sigma_v$$

Definition (Derivada covariante). La derivada covariante de X en la dirección w es la componente tangencial de D_wX

$$\nabla_w X = \begin{bmatrix} a' + \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} \Gamma^1_{11} & \Gamma^1_{12} \\ \Gamma^1_{12} & \Gamma^1_{22} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} \sigma_u + \begin{bmatrix} b' + \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} \Gamma^2_{11} & \Gamma^2_{12} \\ \Gamma^2_{12} & \Gamma^2_{22} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} \sigma_v$$

Definition (Campo paralelo). Un campo vectorial X(t) definido sobre $\alpha(t)$ es paralelo si $\nabla_{\alpha'}X = 0$

Definition (Geodésicas). Un curva α si llama geodésica si cumple $\nabla_{\alpha'}\alpha'=0$:

$$\begin{cases} u'' + \begin{pmatrix} u' & v' \end{pmatrix} \begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 \\ \Gamma_{12}^1 & \Gamma_{22}^1 \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = 0 \\ v'' + \begin{pmatrix} u' & v' \end{pmatrix} \begin{pmatrix} \Gamma_{11}^2 & \Gamma_{12}^2 \\ \Gamma_{12}^2 & \Gamma_{22}^2 \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = 0 \end{cases}$$

Theorem (Relación de Clairut). En una superficie de revolución

$$\begin{cases} x = \varphi(u)\cos v \\ y = \varphi(u)\sin v & con \varphi'^2 + \psi'^2 = 1 \\ z = \psi(u) \end{cases}$$

Entonces una geodésica (u(t), v(t)) satisface $\varphi(u) \cos \theta = const$