1.1 Brief review of differentiation

The function $f: R \to R$ is differentiable at the point $x \in \mathbb{R}$ if the limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, in which case the derivative f'(x) is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The function f(x) is called differentiable if it is differentiable at all points x.

Theorem 1.1. (Product Rule.)

The product f(x)g(x) of two differentiable functions f(x) and g(x) is differentiable, and

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Theorem 1.2. (Quotient Rule.)

The quotient $\frac{f(x)}{g(x)}$ of two differentiable functions f(x) and g(x) is differentiable at every point x where the function $\frac{f(x)}{g(x)}$ is well defined, and

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Theorem 1.3. (Chain Rule.)

The composite function $(g \circ f) = g(f(x))$ of two differentiable functions f(x) and g(x) is differentiable at every point x where g(f(x)) is well defined and

$$(q(f(x)))' = q'(f(x))f'(x)$$

Example: Chain Rule is often used for power functions, exponential functions, and logarithmic functions.

$$\frac{d}{dx}((f(x))^n) = n(f(x))^{n-1}f'(x)$$

$$\frac{d}{dx}(e^{f(x)}) = e^{f(x)}f'(x)$$

$$\frac{d}{dx}(\ln(f(x))) = \frac{f'(x)}{\ln(f(x))}$$

Lemma 1.1.

Let $f:[a,b] \to [c,d]$ be a differentiable function, and assume that f(x) has an inverse function denoted by $f^{-1}(x)$ with $f^{-1}:[c,d] \to [a,b]$. The function $f^{-1}(x)$ is differentiable at every point $x \in [c,d]$ where $f'(f^{-1}(x)) \neq 0$ and

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

$$\left(\frac{1}{f(x)}\right)' = \frac{1}{f'(f^{-1}(x))}$$

Reuse the Chain Rule

$$(g(f(z)))' = g'(f(z))f'(z)$$

With $g = f^{-1}$, we have

$$\begin{split} \left(f^{-1}(f(z))\right)' &= \left(f^{-1}\right)'(f(z))f'(z) \\ z' &= \left(f^{-1}\right)'(f(z))f'(z) \\ 1 &= \left(f^{-1}\right)'(f(z))f'(z) \end{split}$$

Let $z = f^{-1}(x)$, then $f(z) = f(f^{-1}(x)) = x$ and

$$1 = (f^{-1})'(x)f'(f^{-1}(x))$$
$$\frac{1}{f'(f^{-1}(x))} = (f^{-1})'(x)$$
$$= (f^{-1}(x))'$$

Examples:

$$\frac{d}{dx}\left(xe^{3x^2-1}\right) = x'e^{3x^2-1} + x\left(e^{3x^2-1}\right)'$$

$$= e^{3x^2-1} + x(3x^2 - 1)'\left(e^{3x^2-1}\right)$$

$$= e^{3x^2-1} + 6x^2\left(e^{3x^2-1}\right)$$

$$= (1+6x^2)\left(e^{3x^2-1}\right)$$

$$\frac{d}{dx}\left(\frac{\sqrt{3x^2-1}}{\sqrt{3x^2-1}+4}\right) = \frac{d}{dx}\left(\frac{\sqrt{3x^2-1}+4-4}{\sqrt{3x^2-1}+4}\right)$$

$$= \frac{d}{dx}\left(1 - \frac{4}{\sqrt{3x^2-1}+4}\right)'$$

$$= \left(\frac{4}{\sqrt{3x^2-1}+4}\right)'$$

Let $f(x) = \sqrt{3x^2 - 1} + 4$, then

$$\begin{split} f^{-1}(x) &= \frac{1}{\sqrt{3x^2 - 1} + 4} \\ \left(f^{-1}(x)\right)^2 &= \left(\frac{1}{\sqrt{3x^2 - 1} + 4}\right)^2 \\ &= \frac{1}{(3x^2 - 1) + 2\sqrt{3x^2 - 1} \cdot 4 + 16} \\ &= \frac{1}{3x^2 + 8\sqrt{3x^2 - 1} + 15} \end{split}$$

$$f'(x) = \left(\sqrt{3x^2 - 1} + 4\right)'$$

$$= \sqrt{3x^2 - 1}'$$

$$= \left(\left(3x^2 - 1\right)^{\frac{1}{2}}\right)'$$

$$= \frac{1}{2}\left(3x^2 - 1\right)'\left(3x^2 - 1\right)^{-\frac{1}{2}}$$

$$= \frac{1}{2}6x \div \sqrt{3x^2 - 1}$$

$$= \frac{3x}{\sqrt{3x^2 - 1}}$$

and

$$\begin{split} \left(f^{-1}(x)\right)' &= \frac{1}{f'(f^{-1}(x))} \\ &= \frac{1}{3(f^{-1}(x)) \div \sqrt{3(f^{-1}(x))^2 - 1}} \\ &= \frac{\sqrt{3(f^{-1}(x))^2 - 1}}{3(f^{-1}(x))} \\ &= \frac{\sqrt{3(f^{-1}(x))^2 - 1}}{3(f^{-1}(x))} \end{split}$$