Ejercicios sobre aritmética binaria y lógica digital

SECCIÓN 2.1 Números decimales

- 1. ¿Cuál es el peso del dígito 6 en cada uno de los siguientes números decimales?
- (a) 1386 peso = 1
- (b) 54,692 peso = 0.1
- (c) 671,920 peso = 100
- 3. Hallar el valor de cada dígito en cada uno de los siguientes números decimales:

(a)
$$471 = (4 \times 10^3) + (7 \times 10^1) + (1 \times 10^0) = (4 \times 100) + (7 \times 10) + (1 \times 1) = 400 + 70 + 1$$

(b)
$$9.356 = (9 \times 10^{0}) + (3 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3}) = (9 \times 1) + (3 \times 0.1) + (5 \times 0.01) + (6 \times 0.001) = 9 + 0.3 + 0.05 + 0.006$$

(c)
$$125.000 = (1 \times 10^2) + (2 \times 10^1) + (5 \times 10^0) + (0 \times 10^{-1}) + (0 \times 10^{-2}) + (0 \times 10^{-3}) = (1 \times 100) + (2 \times 10) + (5 \times 1) + (0 \times 0.1) + (0 \times 0.01) + (0 \times 0.001) + (0 \times 0.00$$

SECCIÓN 2.2 Números binarios

- 5. Convertir a decimal los siguientes números binarios:
- (a) 11 = 3

١.				
	8	4	2	~
	0	0	1	1

- (b) 100 = 4
- 8
 4
 2
 1

 0
 1
 0
 0
- (c) 111 = 7
- 8
 4
 2
 1

 0
 1
 1
 1
- (d) 1000 = 8
- 8 4 2 1 1 0 0 0
- (e) 1001 = 9
- 8 4 2 1
- (f) 1100 = 12
- 8 4 2 1 1 1 0 0

7. Convertir a decimal los siguientes números binarios:

(a) 110011.11 = 207

	<u>(∽)</u>	(4) 110011,11 = 01											
ĺ	128	64	32	16	8	4	2	1					
ĺ	1	1	0	0	1	1	1	1					

(b) 101010,01 = 169

<u> </u>							
128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	1

(c) 1000001,111 = 527

512	256	128	64	32	16	8	4	2	1
1	0	0	0	0	0	1	1	1	1

(d) 1111000,101 = 965

512	256	128	64	32	16	8	4	2	1
1	1	1	1	0	0	0	1	0	1

(e) 1011100,10101 = 2965

I	2048	1024	512	256	128	64	32	16	8	4	2	1
	1	0	1	1	1	0	0	1	0	1	0	1

(f) 1110001,0001 = 1809

1024	512	256	128	64	32	16	8	4	2	1
1	1	1	0	0	0	1	0	0	0	1

(g) 1011010,1010 = 1450

107										
1024										
1	0	1	1	0	1	0	1	0	1	0

(h) 1111111,11111 = 4095

(,	, .										
2048	1024	512	256	128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1	1	1	1	1

9. ¿Cuántos bits se requieren para representar los siguientes números decimales?

(a)
$$17 = 2^5 - 1 = 31 = 5$$
 bits

(b)
$$35 = 2^6 - 1 = 63 = 6$$
 bits

(c)
$$49 = 2^6 - 1 = 63 = 6$$
 bits

(d)
$$68 = 2^7 - 1 = 127 = 7$$
 bits

(e)
$$81 = 2^7 - 1 = 127 = 7$$
 bits

(f)
$$114 = 2^7 - 1 = 127 = 7$$
 bits

(g)
$$132 = 2^8 - 1 = 255 = 8$$
 bits

(h)
$$205 = 2^8 - 1 = 255 = 8$$
 bits

SECCIÓN 2.3 Conversión decimal-binario

11. Convertir a binario cada uno de los números decimales indicados usando el método de la suma de pesos:

(a)
$$10 = 8+2$$

8	4	2	1
1	0	1	0

(b)
$$17 = 16+1$$

16	8	4	2	1
1	0	0	0	1

(c)
$$24 = 16 + 8$$

16	8	4	2	1
1	1	0	0	0

(d)
$$48 =$$

32	16	8	4	2	1
1	1	0	0	0	0

(e)
$$61 = 32 + 16 + 8 + 4 + 1$$

(0) 01 02:10:0:11						
32	16	8	4	2	1	
1	1	1	1	0	1	

(f)
$$93 = 64 + 16 + 8 + 4 + 1$$

64	32	16	8	4	2	1
1	0	1	1	1	0	1

64	32	16	8	4	2	1
1	1	1	1	1	0	1

(h)
$$186 = 128 + 32 + 16 + 8 + 2$$

128	64	32	16	8	4	2	1
1	0	1	1	1	0	1	0

13. Convertir a binario cada uno de los números decimales indicados usando el método de la división sucesiva por 2:

(a)
$$15 = 1111$$

$$\frac{15}{2} = 7$$

$$\frac{7}{2} = 3$$
 1

$$\frac{3}{2} = 1$$
 1

$$\frac{1}{2} = 0$$
 1

(b)
$$21 = 10101$$

$$\frac{21}{2} = 10$$
 1

$$\frac{10}{2} = 5$$
 0

$$\frac{5}{2} = 2$$
 1

$$\frac{2}{2} = 1$$
 0

$$\frac{1}{2} = 0$$
 1

(c)
$$28 = 11100$$

$$\frac{28}{2} = 14$$
 0

$$\frac{14}{2} = 7$$
 0

$$\frac{7}{2} = 3$$
 1

$$\frac{3}{2} = 1$$
 1

$$\frac{1}{2} = 0$$
 1

(d)
$$34 = 100010$$

$$\frac{34}{2} = 17$$
 0

$$\frac{17}{2} = 8$$
 1

$$\frac{8}{2} = 4$$
 0

$$\frac{4}{2} = 2$$
 0

$$\frac{2}{2} = 1$$
 0

$$\frac{1}{2} = 0$$
 1

(e)
$$40 = 101000$$

$$\frac{40}{2} = 20$$
 0

$$\frac{20}{2} = 10$$
 0

$$\frac{10}{2} = 5$$
 0

$$\frac{5}{2} = 2$$
 1

$$\frac{2}{2} = 1$$
 0

$$\frac{1}{2} = 0$$
 1

$$\frac{59}{2} = 29$$
 1

$$\frac{29}{2} = 14$$
 1

$$\frac{14}{2} = 7$$
 0

$$\frac{7}{2} = 3$$
 1

$$\frac{3}{2} = 1$$
 1

$$\frac{1}{2} = 0$$
 1

(g)
$$65 = 1000001$$

$$\frac{65}{2} = 32$$

$$\frac{32}{2} = 16$$
 0

$$\frac{16}{2} = 8$$
 0

$$\frac{8}{2} = 4$$
 0

$$\frac{4}{2} = 2$$
 0

$$\frac{2}{2} = 1$$
 0

$$\frac{2}{2} = 1$$

$$\frac{1}{2} = 0$$
 1

$$\frac{73}{2} = 36$$

$$\frac{36}{2} = 18$$
 0

$$\frac{18}{2} = 9$$
 0

$$\frac{9}{2} = 4$$
 1

$$\frac{4}{2} = 2$$
 0

$$\frac{2}{2} = 1$$
 0

$$\frac{1}{2} = 0$$
 1

SECCIÓN 2.4 Aritmética binaria

15. Sumar los números binarios:

(a)
$$11 + 01$$

$$\frac{11 + 01}{101}$$

(b)
$$10 + 10$$

$$\frac{10 + }{10}$$

$$(c) 101 + 11$$

$$101 + 11 \over 1000$$

(d)
$$111 + 110$$

$$111 + 110 \\ \hline 1101$$

$$1001 + \frac{101}{1110}$$

$$1101 + \\
1011 \\
11000$$

17. Realizar las siguientes multiplicaciones binarias:

11	x
11	
11	
11	
1001	

(b)
$$100 \times 10$$

$$\begin{array}{r}
 100 \ x \\
 \hline
 10 \\
 \hline
 000 \\
 \hline
 100 \\
 \hline
 1000 \\
 \end{array}$$

(c) 111×101

(d) 1001×110

$$\begin{array}{r}
1001 \ x \\
\underline{110} \\
0000 \\
1001 \\
\underline{1001} \\
110110
\end{array}$$

(e) 1101 × 1101

1101 x	
1101	
1101	
0000	
1101	
1101	
10101001	

$$\begin{array}{r}
1110 \ x \\
1101 \\
\hline
1110 \\
0000 \\
1110 \\
1110 \\
\hline
10110110
\end{array}$$

18. Dividir los números binarios siguientes:

$$\begin{array}{r}
 10 \\
 10 \overline{)100} \\
 10 \\
 \hline
 000
 \end{array}$$

$$\begin{array}{r}
11\\
11\overline{/1001}\\
\underline{11}\\
11\\
\underline{11}\\
00
\end{array}$$

$$\begin{array}{r}
11\\
100\overline{/1100}\\
100\\
\underline{100}\\
100\\
000
\end{array}$$

SECCIÓN 2.5 Complemento a 1 y complemento a 2 de los números binarios

19. Determinar el complemento a 1 de los siguientes números binarios:

(a)
$$101 = 010$$

(b)
$$110 = 001$$

(c)
$$1010 = 0101$$

(e)
$$1110101 = 0001010$$

(f)
$$00001 = 11110$$

SECCIÓN 2.6 Números con signo

- 21. Expresar en formato binario de 8 bits signo-magnitud los siguientes números decimales:
- (a) +29 = 0.0011100
- (b) -85 = 1 1010101
- (c) +100 = 0 1100100
- (d) -123 = 1 1111011
- 23. Expresar cada número decimal como un número de 8 bits en el sistema de complemento a 2:

(a) +12 = 0 0001100 =
$$\frac{111100111+}{11110100}$$
 = 11110100

(b)
$$-68 = 1\ 1000100 = \frac{{}^{00111011+}}{{}^{00111100}} = 00111100$$

- (c) +101 = 0 1100101 = 100110111
- (d) -125 = 1 11111101 = 000000011
- 25. Determinar el valor decimal de cada número binario con signo en el formato de complemento a 1:
- (a) 10011001 = 10011001 = 01100110 = +102
- (b) 01110100 = 01110100 = 10001011 = -11
- (c) 101111111 = 1011111111 = 010000000 = +64
- 27. Expresar cada uno de los siguientes números binarios en formato signomagnitud en formato de coma flotante de simple precisión:
- (a) $01111110000101011 = 01.111110000101011 \times 2^{14}$

0 10001101 111110000101011

(b) $100110000011000 = 1.00110000011000 \times 2^{11}$

```
11+127 = 10001010
```

1 10001010 102000011000

SECCIÓN 2.7 Operaciones aritméticas de números con signo

29. Convertir a binario cada pareja de números decimales y sumarlos usando el sistema de complemento a 2:

(a) 33 y 15 =
$$\frac{00100001+}{00110000}$$
 = 48
(b) 56 y -27 = $(-27 = \frac{1}{11100100} = \frac{00111000+}{11100100} = \frac{00111000+}{00011101} = 29$
(c) -46 y 25 = $(-46 = \frac{1}{11010001} = \frac{11010010+}{11010001} = -21$
(d) -110 y -84 = $(-110 = \frac{1}{10010010} = \frac{11010100}{1001001001} = (-84 = \frac{1}{10101100} = \frac{10010010+}{10101100} = -194$

31. Realizar las siguientes sumas utilizando el sistema de complemento a 2:

(a)
$$10001100 + 00111001 = \frac{\frac{1110100+}{0111001}}{\frac{10101101}{1010101}}$$

(b) $11011001 + 11100111 = \frac{\frac{0100111+}{1000000}}{\frac{100011001}{1000000}}$

33. Multiplicar 01101010 por 11110001 utilizando el sistema de complemento a 2.

SECCIÓN 2.8 Números hexadecimales

35. Convertir a binario los siguientes números hexadecimales:

(a)
$$38_{16} = 0011 \ 1000$$

(b)
$$59_{16} = 01011001$$

(c)
$$A14_{16} = 1010\ 0001\ 0100$$

(d)
$$5C8_{16} = 0101 \ 1100 \ 1000$$

(e)
$$4100_{16} = 0100\ 0001\ 0000\ 0000$$

(f)
$$FB17_{16} = 1111 \ 1011 \ 0001 \ 0111$$

- (q) $8A9D_{16} = 1000 1010 1001 1101$
- 37. Convertir a decimal los siguientes números hexadecimales:

(a)
$$23_{16} = 00100011 = 2^5 + 2^1 + 2^0 = 32 + 2 + 1 = 35$$

(b)
$$92_{16} = 10010010 = 2^7 + 2^4 + 2^1 = 128 + 16 + 2 = 146$$

(c)
$$1A_{16} = 00011010 = 2^7 + 2^3 + 2^2 + 2^0 = 128 + 8 + 4 + 1 = 141$$

(d)
$$8D_{16} = 10001101 = 2^5 + 2^1 + 2^0 = 32 + 2 + 1 = 35$$

(e)
$$F3_{16} = 11110011 = 2^7 + 2^6 + 2^5 + 2^4 + 2^1 + 2^0 = 128 + 64 + 32 + 16 + 2 + 1 = 243$$

(f) EB₁₆ =
$$11101011 = 2^7 + 2^6 + 2^5 + 2^3 + 2^1 + 2^0 = 128 + 64 + 32 + 8 + 2 + 1$$

= 235

(g)
$$5C2_{16} = 010111000010 = 2^{10} + 2^8 + 2^7 + 2^6 + 2^1 = 1024 + 256 + 128 + 64 + 2 = 1492$$

(h)
$$700_{16} = 0111000000000 = 2^{10} + 2^9 + 2^8 = 1024 + 512 + 256 = 1792$$

39. Realizar las siguientes sumas:

(a)
$$37_{16} + 29_{16}$$
 D: $7 + 9 = 16_{10} = 10_{16}$
$$\begin{array}{c} 37 + \\ 24 \\ 60 \end{array}$$
 l: $3 + 2 = 5_{10} = 5_{16}$

(b)
$$A0_{16} + 6B_{16} D: 0 + B = 0 + 11 = 11_{10} = B_{16}$$

$$\frac{A0 + 6B}{10B}$$

I:
$$A + 6 = 10 + 6 = 16_{10} = 10_{16}$$

(c) FF₁₆ + BB₁₆ D: F + B = 15 + 11 = 26₁₀ = 1A₁₆
$$\frac{FF + BB}{1BA}$$

I:
$$F + B = 15 + 11 = 26_{10} = 1A_{16}$$

SECCIÓN 2.9 Números octales

41. Convertir a decimal los siguientes números octales:

(a)
$$12_8 = (1x8^1) + (2x8^0) = (1x8) + (2x1) = 8 + 2 = 10$$

(b)
$$27_8 = (2x8^1) + (7x8^0) = (2x8) + (7x1) = 16 + 7 = 23$$

(c)
$$56_8 = (5x8^1) + (6x8^0) = (5x8) + (6x1) = 40 + 6 = 46$$

(d)
$$64_8 = (6x8^1) + (4x8^0) = (6x8) + (4x1) = 48 + 4 = 52$$

(e)
$$103_8 = (1x8^2) + (0x8^1) + (3x8^0) = (1x64) + (0x8) + (3x1) = 64 + 0 + 3 = 67$$

(f)
$$557_8 = (5x8^2) + (5x8^1) + (7x8^0) = (5x64) + (5x8) + (7x1) = 320 + 40 + 7 = 367$$

(g)
$$163_8 = (1x8^2) + (6x8^1) + (3x8^0) = (1x64) + (6x8) + (3x1) = 64 + 48 + 3 = 115$$

(h)
$$1024_8 = (1x8^3) + (0x8^2) + (2x8^1) + (4x8^0) = (1x512) + (0x64) + (2x8) + (4x1)$$

= $512 + 0 + 16 + 4 = 532$

(i)
$$7765_8 = (7x8^3) + (7x8^2) + (6x8^1) + (5x8^0) = (7x512) + (7x64) + (6x8) + (5x1)$$

= $35874 + 448 + 48 + 5 = 4085$

43. Convertir a binario los siguientes números octales:

- (a) $13_8 = 001 \ 011$
- (b) $57_8 = 101 \ 111$
- (c) $101_8 = 001\ 000\ 001$
- (d) $321_8 = 011\ 010\ 001$
- (e) $540_8 = 101\ 100\ 000$
- (f) $4653_8 = 100 \ 110 \ 101 \ 011$
- (g) $13271_8 = 001\ 011\ 010\ 111\ 001$
- (h) 456008 = 100 101 110 000 000
- (i) $1002138 = 001\ 000\ 000\ 010\ 001\ 011$

SECCIÓN 2.10 Código decimal binario (BCD)

- 45. Convertir los siguientes números decimales a BCD 8421:
- (a) $10 = 0001 \ 0000$
- (b) $13 = 0001 \ 0011$
- (c) $18 = 0001 \ 1000$
- (d) $21 = 0010\ 0001$
- (e) $25 = 0010 \ 0101$
- (f) $36 = 0011 \ 0110$
- (g) $44 = 0100 \ 0100$
- (h) $57 = 0101\ 0111$
- (i) $69 = 0110 \ 1001$
- (i) $98 = 1001 \ 1000$

- (k) 125 = 0001 0010 0101
- (I) $156 = 0001 \ 0101 \ 0110$
- 47. Convertir a BCD los siguientes números decimales:
- (a) $104 = 0001 \ 0000 \ 0100$
- (b) 128 = 0001 0010 1000
- (c) $132 = 0001\ 0011\ 0010$
- (d) $150 = 0001 \ 0101 \ 0000$
- (e) $186 = 0001 \ 1000 \ 0110$
- (f) $210 = 0010\ 0001\ 0000$
- (g) $359 = 0011 \ 0101 \ 1001$
- (h) $547 = 0101\ 0100\ 0111$
- (i) 1051= 0001 0000 0101 0001
- 49. Convertir a decimal los siguientes números BCD:
- (a) 10000000 = 80
- (b) 001000110111 = 237
- (c) 001101000110 = 346
- (d) 010000100001 = 421
- (e) 011101010100 = 754
- (f) 100000000000 = 800
- (g) 1001011111000 = 978
- (h) 0001011010000011 = 1683
- (i) 1001000000011000 = 9018
- (j) 0110011001100111 = 6667
- 51. Sumar los siguientes números BCD:
- (a) 1000 + 0110 = 1110
- (b) 0111 + 0101 = 1100
- (c) 1001 + 1000 = 10001
- (d) 1001 + 0111 = 10000

- (e) 00100101 + 00100111 = 01001100
- (f) 01010001 + 01011000 = 10101001
- (g) 10011000 + 10010111 = 100101111
- (h) 010101100001 + 011100001000 = 110001101001

SECCIÓN 2.11 Códigos digitales

53. En una determinada aplicación se producen ciclos de una secuencia binaria de 4 bits de 1111 a 0000 de forma periódica. Existen cuatro variaciones de bit, y debido a retrasos del circuito, estas variaciones pueden no producirse en el mismo instante. Por ejemplo, si el LSB cambia el primero, entonces durante la transición de 1111 a 0000 aparecerá el número 1110, y puede ser mal interpretado por el sistema. Ilustrar cómo resuelve este problema el código Gray.

- 55. Convertir a binario los números en código Gray:
- (a) 1010 = 1100
- (b) 00010 = 00010
- (c) 11000010001 = 1000001110
- 57. Determinar el carácter de cada uno de los siguientes códigos ASCII. Utilice la Tabla 2.7.
- (a) 0011000 = "CAN"
- (b) 1001010 = "J"
- (c) 0111101 = "="
- (d) 0100011 = "#"
- (e) 0111110 = ">"
- (f) 1000010 = "B"
- 59. Escribir en hexadecimal el mensaje del Problema 58.

```
48
                 6C
                      6F
     65
           6C
                            2E
20
     48
           6F
                 77
                      20
                            61
                      6F
72
     65
           20
                 79
                            75
3F
```

SECCIÓN 2.12 Códigos de detección y corrección de errores

- 61. Determinar cuáles de los siguientes códigos con paridad par son erróneos:
- (a) 100110010 = Par
- (b) 011101010 = Erróneo
- (c) 101111111010001010 = Par
- 63. Añadir el bit de paridad par apropiado a los siguientes bytes de datos:
- (a) 10100100 = 1
- (b) 00001001 = 0
- (c) 111111110 = 1
- 65. Determinar el código Hamming de paridad impar para los bits de datos 11001. d = 5

$$2^p = 2^4 = 16$$
 d + p +1 = 5 + 4 + 1 = 10 Num. De bits = 5 + 4 = 9

Designación	P ₁	P_2	D_1	P ₃	D_2	D_3	D_4	P ₄	P ₅
Posición	1	2	3	4	5	6	7	8	9
Binario	0001	0010	0011	0100	0101	0110	0111	1000	1001
Bits de dato			1		1	0	0		1
Bits paridad	0	0		0				0	

001010001

- 67. Corregir cualquier error que pueda haber en los siguientes códigos Hamming con paridad impar.
- (a) 110100011 = Correcto
- (b) 100001101 = 0.00001101

SECCIÓN 4.1 Operaciones y expresiones booleanas

1. Utilizando la notación booleana, escribir una expresión que sea 1 siempre que una o más de sus variables (A, B, C y D) sean 1.

A+B+C+D Siempre será 1 si una de las variables es 1

3. Escribir una expresión que sea 1 cuando una o más variables (A, B y C) son 0.

ABC Siempre será 1 si una de sus variables es 0

5. Hallar los valores de las variables que hacen que cada término producto sea 1 y que cada suma sea 0.

(a)
$$AB = A=1$$
, $B=1$

(b)
$$A\bar{B}C = A=1$$
, $B=0$, $C=1$

(c)
$$A + B = A=0$$
, $B=0$

(d)
$$\bar{A} + B + \bar{C} = A=1$$
, B=0, C=1

(e)
$$\bar{A} + \bar{B} + C = A=1$$
, B=1, C=0

(f)
$$\bar{A} + B = A=1$$
, B=0

(g)
$$A\bar{B}\bar{C} = A=1$$
, B=0, C=0

SECCIÓN 4.2 Leyes y reglas del álgebra booleana

7. Identificar la ley del álgebra de Boole en que está basada cada una de las siguientes igualdades

(a)
$$A\bar{B} + CD + A\bar{C}D + B = B + A\bar{B} + A\bar{C}D + CD = COMUTATIVIDAD$$

(b)
$$AB\bar{C}D + \overline{ABC} = D\bar{C}BA + \overline{CBA} = COMUTATIVIDAD$$

(c)
$$AB(CD + E\bar{F} + GH) = ABCD + ABE\bar{F} + ABGH = DISTRIBUTIVIDAD$$

SECCIÓN 4.3 Teoremas de DeMorgan

9. Aplicar los teoremas de DeMorgan a cada expresión:

(a)
$$\overline{A + \overline{B}} = \overline{A}\overline{\overline{B}} = \overline{A}B$$

(b)
$$\overline{A} + B = \overline{A}\overline{B} = A\overline{B}$$

(c)
$$\overline{A+B+C} = \overline{A} + \overline{B} + \overline{C}$$

(d)
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

(e)
$$\overline{A(B+C)} = \overline{A} + \overline{(B+C)} = \overline{A} + \overline{B}\overline{C}$$

(f)
$$\overline{AB} + \overline{CD} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

(g)
$$\overline{AB + CD} = \overline{AB} \ \overline{CD} = (\overline{A} + \overline{B})(\overline{C} + \overline{D})$$

(h)
$$\overline{(A+\bar{B})(\bar{C}+D)} = \overline{(A+\bar{B})} + \overline{(\bar{C}+D)} = \bar{A}\bar{B} + \bar{C}\bar{D} = \bar{A}B + C\bar{D}$$

11. Aplicar los teoremas de DeMorgan a las siguientes expresiones:

(a)
$$\overline{(ABC)} \ \overline{(EFG)} + \overline{(HIJ)} \ \overline{(KLM)} = \overline{((ABC)} \ \overline{EFG}) \ \overline{((HIJ)} \ \overline{(KLM)} = \overline{((ABC)} \ \overline{(EFG)}) ((HIJ) \ \overline{(KLM)}) =$$

$$((\bar{A}+\bar{B}+\bar{C})(\bar{E}+\bar{F}+\bar{G}))((\bar{H}+\bar{I}+\bar{J})(\bar{K}+\bar{L}+\bar{M}))$$

(b)
$$\overline{(A + \overline{BC} + CD)} + \overline{BC} = \overline{(A)} \overline{(BC)} \overline{(CD)} + BC = \overline{(A)} \overline{(BC)} \overline{(CD)} + BC$$

(c)
$$\overline{\overline{(A+B)}} \ \overline{(C+D)} \ \overline{(E+F)} \ \overline{(G+H)} = (\bar{A} \ \bar{B})(\bar{C} \ \bar{D})(\bar{E} \ \bar{F})(\bar{G} \ \bar{H})$$

SECCIÓN 4.4 Análisis booleano de los circuitos lógicos

13. Escribir la expresión booleana para cada uno de los circuitos lógicos de la Figura 4.56.

$$(a) = (ABCD) = X$$

$$(b) = AB + C = X$$

(c) =
$$\overline{AB} = X$$

$$(d) = (A+B)(C) = X$$

15. Dibujar el circuito lógico representado por cada una de las siguientes expresiones.

(a)
$$A\bar{B} + \bar{A}B$$

(b) $AB + \bar{A}\bar{B} + \bar{A}BC$

(c) $\bar{A}B(C + \bar{D})$

(d)
$$A + (B(C + D(B + \overline{C})))$$

SECCIÓN 4.5 Simplificación mediante el álgebra de Boole

17. Mediante las técnicas del álgebra de Boole, simplificar las siguientes expresiones lo máximo posible:

(a)
$$A(A + B) = A \{Absorción\}$$

(b)
$$A(\bar{A} + AB) = A(AB) \{Absorción\} = AAB = AB \{Idempotencia\}$$

(c)
$$BC + \bar{B}C = C \{Combinación\}$$

(d)
$$A(A + \overline{A}B) = A \{Absorción\}$$

(e)
$$A\bar{B}C + \bar{A}BC + \bar{A}\bar{B}C = C(A\bar{B} + \bar{A}B + \bar{A}\bar{B})\{Ditrubición\} =$$

$$C(A\overline{B} + \overline{A})\{Combinacion\} = C(\overline{A} + \overline{B})\{Absorción\}$$

19. Mediante las técnicas del álgebra de Boole, simplificar las siguientes expresiones:

(a)
$$BD + B(D + E) + \overline{D}(D + F) = B(D + E) + \overline{D}F \{Abs\} = BE + \overline{DF} \{Abs\}$$

(b)
$$\bar{A}\bar{B}C + \overline{(A+B+\bar{C})} + \bar{A}\bar{B}\bar{C}D = \bar{A}\bar{B}C + (\bar{A}\bar{B}C) + \bar{A}\bar{B}\bar{C}D \{De\ M.\} =$$

$$\bar{A} + \bar{B} + \bar{C} + \bar{D} \{Idempotancia\}$$

(c)
$$(B + BC)(B + \bar{B}C)(B + D) = B(B + C)(B + D)\{Abs.\} = B(B + D)\{Abs.\} = B\{Abs.\}$$

(d)
$$ABCD + AB\overline{(CD)} + \overline{(AB)}CD = AB + \overline{(AB)}CD\{Combinación\} = AB + CD\{Abs.\}$$

(e)
$$ABC(AB + \bar{C}(BC + AC)) = ABC(AB + \bar{C}C(A + B))\{Distribución\} = ABC(AB + 0(A + B))\{Elemento opuesto\} = ABC(AB + 0)\{Elemento opuesto\} = ABC(AB)\{Elemento neutro\} = ABC\{Idempotencia\}$$

SECCIÓN 4.6 Formas estándar de las expresiones booleanas

21. Convertir las siguientes expresiones en sumas de productos:

(a)
$$(A+B)(C+\bar{B}) = AC + A\bar{B} + BC$$

(b)
$$(A + \overline{B}C)C = AC + \overline{B}C$$

(c)
$$(A + C)(AB + AC) = AB + AC + ABC + AC$$

23. Definir el dominio de cada suma de productos del Problema 21 y convertir la expresión a su forma estándar.

(a)
$$D = A,B,C$$

$$AC(B + \bar{B}) = ABC + A\bar{B}C$$

$$A\bar{B}(C+\bar{C}) = A\bar{B}C + A\bar{B}\bar{C}$$

$$BC(A + \bar{A}) = ABC + \bar{A}BC$$

$$ABC + A\overline{B}C + A\overline{B}\overline{C} + \overline{A}BC$$

(b)
$$D = A,B,C$$

$$AC(B + \bar{B}) = ABC + A\bar{B}C$$

$$\bar{B}C(A+\bar{A}) = A\bar{B}C + \bar{A}\bar{B}C$$

$$ABC + A\overline{B}C + \overline{A}\overline{B}C$$

(c)
$$D = A,B,C$$

$$AB(C + \bar{C}) = ABC + AB\bar{C}$$

$$AC(B + \bar{B}) = ABC + A\bar{B}C$$

$$ABC + AB\overline{C} + A\overline{B}C$$

25. Determinar el valor binario de cada término en las expresiones suma de productos del Problema 23.

27. Convertir cada una de las expresiones suma de productos estándar del Problema 23 a su forma producto de sumas estándar.

(a)
$$(A + B + C)(A + B + \bar{C})(A + \bar{B} + C)(\bar{A} + \bar{B} + C)$$

(b)
$$(A + B + C)(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)(\bar{A} + \bar{B} + C)$$

(c)
$$(A + B + C)(A + B + \bar{C})(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)$$

SECCIÓN 4.7 Expresiones booleanas y tablas de verdad

29. Desarrollar la tabla de verdad de cada una de las siguientes expresiones suma de productos estándar:

(a)
$$A\bar{B}C + \bar{A}B\bar{C} + ABC$$

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(b)
$$\overline{XYZ} + \overline{X}\overline{Y}Z + XY\overline{Z} + X\overline{Y}Z + \overline{X}YZ$$

X	Y	Z	Α
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

31. Desarrollar la tabla de verdad de cada una de las siguientes expresiones suma de productos estándar:

(a)
$$\bar{A}B + AB\bar{C} + \bar{A}\bar{C} + A\bar{B}C$$

Α	В	С	Χ
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1

1	1	0	1
1	1	1	0

(b)
$$\bar{X} + Y\bar{Z} + WZ + X\bar{Y}Z$$

W	X	Υ	Z	Α
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

33. Desarrollar la tabla de verdad de cada una de las siguientes expresiones producto de sumas estándar:

(a)
$$(A + B)(A + C)(A + B + C)$$

Α	В	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

(b)
$$(A + \bar{B})(A + \bar{B} + \bar{C})(B + C + \bar{D})(\bar{A} + B + \bar{C} + D)$$

Α	В	С	D	X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

SECCIÓN 4.8 Mapas de Karnaugh

35. Dibujar un mapa de Karnaugh de 3 variables y etiquetar cada celda según su valor binario.

A\BC	00	01	11	10
0	000	001	011	010
1	100	101	111	110

37. Escribir los términos producto estándar correspondientes a cada celda de un mapa de Karnaugh de 3 variables.

A\BC	00	01	11	10
0	$ar{A}ar{B}ar{C}$	$ar{A}ar{B}$ C	ĀВС	ĀВĒ
1	$Aar{B}ar{C}$	$A\bar{B}C$	ABC	$AB\bar{C}$

SECCIÓN 4.9 Minimización de una suma de productos mediante el mapa de Karnaugh

39. Utilizar un mapa de Karnaugh para simplificar las expresiones siguientes a su forma suma de productos mínima.

(a)
$$\bar{A}\bar{B}\bar{C} + A\bar{B}C + \bar{A}BC + AB\bar{C}$$

A\BC	00	01	11	10
0	1	0	1	0
1	0	1	0	1

=INSIMPLIFICABLE

(b)
$$AC(\bar{B} + B(B + \bar{C})) = AC\{Abs.\} = AC(B + \bar{B}) = ACB + AC\bar{B}$$

A\BC	00	01	11	10
0	0	0	0	0
1	0	0	1	1

=AC

(c)
$$DE\overline{F} + \overline{D}E\overline{F} + \overline{D}\overline{E}\overline{F}$$

D\EF	00	01	11	10
0	1	0	0	1
1	0	0	0	1

$= \overline{D}\overline{F} + E\overline{F}$

41. Minimizar las expresiones del Problema 40 utilizando un mapa de Karnaugh.

(a)
$$AB + A\bar{B}C + ABC = ABC + A\bar{B}C + AB\bar{C}$$

A\BC	00	01	11	10
0	0	0	0	0
1	0	1	1	1

=AC+AB

(b)
$$A + BC = ABC + \bar{A}BC + AB\bar{C} + A\bar{B}C + A\bar{B}\bar{C}$$

A\BC	00	01	11	10
0	1	1	1	0
1	0	0	1	1

$$=\overline{A}\overline{B}+\overline{A}C+BC+AB$$

(c)
$$A\overline{B}\overline{C}D + AC\overline{D} + B\overline{C}D + \overline{A}BC\overline{D} =$$

$$ABC\overline{D} + A\overline{B}C\overline{D} + AB\overline{C}D + \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}BC\overline{D}$$

AB\CD	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

 $=B\overline{C}D + A\overline{C}D + AC\overline{D} + BC\overline{D}$

(d)
$$A\bar{B} + A\bar{B}\bar{C}D + CD + B\bar{C}D + ABCD =$$

$$ABCD + A\bar{B}CD + A\bar{B}\bar{C}D + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + AB\bar{C}D + \bar{A}B\bar{C}D + \bar{A}BCD + \bar{A}BCD + \bar{A}BCD$$

AB\CD	00	01	11	10
00			1	
01		1	1	
11		1	1	
10	1	1	1	1

 $=BD+CD+A\overline{B}$

43. Reducir la función especificada en la tabla de verdad de la Figura 4.59 a su forma suma de productos mínima mediante un mapa de Karnaugh.

A\BC	00	01	11	10		
0	1	1	1	0		
1	1	1	1	0		
=C+C=C						

En	tra	ıdas	Salida
\boldsymbol{A}	В	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

FIGURA 4.59

45. Resolver el Problema 44 para una situación en que las seis últimas combinaciones binarias no están permitidas.

AB\CD	00	01		1	1	10
00	1	1		1		1
01	1	1		1		1
11	0	()	()	0
10	1			()	0

 $=\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{A}D+\overline{A}C$

F	Inti	ada	Salida	
\boldsymbol{A}	В	C	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

FIGURA 4.60

47. Utilizar un mapa de Karnaugh para simplificar las siguientes expresiones a su forma producto de sumas mínima:

(a)
$$(A + \bar{B} + C + \bar{D})(\bar{A} + B + \bar{C} + D)(\bar{A} + \bar{B} + \bar{C} + \bar{D})$$

AB\CD	00	01	11	10
00	1	1	1	1
01	1	0	1	1
11	1	1	0	1
10	1	1	1	0

= INSIMPLIFICABLE

(b)
$$(X + \bar{Y})(W + \bar{Z})(\bar{X} + \bar{Y} + \bar{Z})(W + X + Y + Z) =$$

$$(W+X+Y+Z)(W+\bar{X}+\bar{Y}+\bar{Z})(\bar{W}+\bar{X}+\bar{Y}+\bar{Z})(W+X+Y+\bar{Z})$$

$$(W+\bar{X}+Y+\bar{Z})(W+X+\bar{Y}+\bar{Z})(W+X+\bar{Y}+Z)(\bar{W}+X+\bar{Y}+Z)$$

$$(\overline{W}+X+\overline{Y}+\overline{Z})$$

AB\CD	00	01	11	10
00	0	0	0	0
01	1	0	0	1
11	1	1	0	1
10	1	1	0	0

$$=(\overline{A}+\overline{B})(\overline{C}+D)(\overline{A}+D)(\overline{B}+C)$$

49. Determinar el producto de sumas mínimo para la función de la tabla de verdad de la Figura 4.60.

SECCIÓN 4.11 Mapa de Karnaugh de cinco variables

51. Minimizar la siguiente suma de productos utilizando un mapa de Karnaugh

$$X = \bar{A}B\bar{C}D\bar{E} + \bar{A}\bar{B}\bar{C}DE + A\bar{B}\bar{C}DE + AB\bar{C}\bar{D}\bar{E} + \bar{A}BCD\bar{E} + \bar{A}BC\bar{D}E + \bar{A}\bar{B}\bar{C}\bar{D}\bar{E} + \bar{A}\bar{B}\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E} + \bar{A}B\bar{C}D\bar{E}$$

 $= \bar{A}\bar{B}\bar{C}\bar{D}\bar{E} + \bar{A}BC\bar{D}E + \bar{B}\bar{C}DE + \bar{A}\bar{B}DE + \bar{A}BD\bar{E} + B\bar{C}D\bar{E} + AB\bar{C}D + AB\bar{C}\bar{E}$