Análisis complejo

Taller 2

Funciones holomorfas; exp, sin, cos.

Fecha de entrega: 22 de agosto de 2024

- 1. Determine todos los puntos $z \in \mathbb{C}$ donde las siguientes funciones son diferenciables y encuentre el conjunto abierto U más grande en el que son holomorfas.
 - (a) $f(z) = \overline{z}$,
 - (b) $f(x+iy) = x^2 + y^2 + i(x^2 y^2)$ para $x, y \in \mathbb{R}$.
- 2. (a) Sea $u(x,y) = x^3 3xy^2$. Determine todas las funciones enteras f tal que u = Re(f).
 - (b) Sea $v(x,y) = x^2 + y^2$. Determine todas las funciones enteras f tal que u = Im(f).
 - (c) Sea $U \subseteq \mathbb{C}$ una región y sean $f, g: U \to \mathbb{C}$ funciones holomorfas tal que f tiene valores solo en los números reales y g tiene valores solo en $\{z \in \mathbb{C} : |z| = 1\}$. Demuestre que f y g son constantes.
- 3. Claramente se tiene que $\exp(iz) = \cos(z) + i\sin(z)$ para todo $z \in \mathbb{C}$. Muestre las siguientes propiedades de las funciones exp, sin, cos.
 - (a) $\exp(z+w) = \exp(z)\exp(w)$.
 - (b) $\exp(z) \neq 0$ para todo $z \in \mathbb{C}$.
 - (c) $|\exp(z)| = 1$ si y solo si $z \in i\mathbb{R}$.
 - (d) $\cos^2 z + \sin^2 z = 1$ para todo $z \in \mathbb{C}$.
 - (e) $\cos(z+2\pi) = \cos z$ y $\sin(z+2\pi) = \sin z$ para todo $z \in \mathbb{C}$.
 - (f) $\cos z = 0$ o $\sin z = 0 \implies z \in \mathbb{R}$.
 - (g) Para todo $x \in \mathbb{R}$, $\lim_{t \to \pm \infty} |\cos(x+it)| = \infty$ y $\lim_{t \to \pm \infty} |\sin(x+it)| = \infty$. El límite es uniforme en x.
- 4. Demuestre que
 - (a) $\sum_{n=1}^{\infty} nz^n$ no converge en ningún punto del círculo unitario.
 - (b) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converge en cada punto del círculo unitario.
 - (c) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converge en cada punto del círculo unitario excepto en 1.

Hint. Sumar por partes.¹

5. Ejercicio adicional para código 4. Un subconjunto $S \subset \mathbb{N}$ es en progresión aritmética si existen $a, d \in \mathbb{N}$ tal que

$$S = \{a + nd : n \in \mathbb{N}_0\}.$$

El número d se llama diferencia de la progresión. Demuestre que \mathbb{N} no se puede particionar en un número finito, > 1, de conjuntos en progresión aritmética con diferencias distintas. (Claramente $S = \mathbb{N}$ si a = d = 1.)

Hint. Escriba $\sum_{n=1}^{\infty} z^n$ como suma de series según la partición de \mathbb{N} en progresiones aritméticas.

¹Sean $(a_n)_{n=0}^{\infty}$ y $(b_n)_{n=0}^{\infty}$ succesiones en un espacio normado y defina $B_{-1} := 0$ y $B_k := \sum_{n=0}^k b_n$ para $k \in \mathbb{N}$. Entonces $\sum_{n=M}^N a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n$ para todo $M < N \in \mathbb{N}$.