Prueba de clase 21 de Mayo de 2019¹

Alumno:______ D.N.I.:____ Grupo:____

Ejercicio 1. Sean $\alpha = \forall x \forall y \exists z P(f(x,y),g(z,a)) \ y \ \beta = \forall x \forall y (Q(x,y) \rightarrow P(g(x,y),b))$ dos fórmulas de un lenguaje de primer orden. Consideramos la estructura siguiente:

- Dominio: $D = \mathbb{Z}_{12}$.
- Asignación de constantes: a = 1, b = 0.
- Asignación de funciones: $f(x,y) = x \cdot y$, g(x,y) = x + y.
- Asignación de predicados: $P(x,y) \equiv x = y$, $Q(x,y) \equiv x^2 = y^2$.
- 1. Calcula el valor de verdad de las fórmulas α y β en la estructura dada.
- 2. ¿Es alguna de las fórmulas universalmente válida? Razona la respuesta.
- 3. Expresa en este lenguaje el siguiente enunciado:

Los únicos elementos de \mathbb{Z}_{12} que son iguales a su cuadrado son 0 y 1.

Solución:

1. Puesto que $f(x,y) = x \cdot y$ y g(z,a) = z + 1, la fórmula α significa en este caso:

$$\forall x \forall y \exists z (x \cdot y = z + 1).$$

Es decir, dados x, y cualesquiera elementos de \mathbb{Z}_{12} , existe un elemento $z \in \mathbb{Z}_{12}$ tal que $x \cdot y = z + 1$. Esto es cierto, pues basta tomar como z el elemento $x \cdot y - 1$. Por ejemplo:

Si x = 2, y = 3 tomamos z = 5.

Si x = 4, y = 5 tomamos z = 20 - 1 = 19 = 7.

Si x = 0, y = 3 tomamos z = 0 - 1 = -1 = 11.

Por tanto, $I(\alpha) = 1$.

En cuanto a β , lo que nos dice es:

$$\forall x \forall y (x^2 = y^2 \rightarrow x + y = 0).$$

Esto no es cierto, pues si tomamos x=1 e y=5 entonces, puesto que $5^2=25=1$, $x^2=y^2$, pero $x+y=1+5=6\neq 0$. Por tanto, para un valor de x e y se tiene que $I^v(Q(x,y))=1$ mientras que $I^v(P(g(x,y),b))=0$.

En conclusión, $I(\beta) = 0$.

2. Es claro que β no es universalmente válida, pues tenemos una estructura en la que se interpreta como falsa.

¹Hay que hacer cuatro ejercicios: el quinto, y tres a elegir entre los cuatro restantes.

En cuanto a α , tampoco lo es. Basta tomar cualquier estructura en la que P(x,y) = 0. Por ejemplo:

- Dominio: $D = \mathbb{N}$.
- Asignación de constantes: a = 1, b = 0.
- Asignación de funciones: $f(x,y) = x \cdot y$, g(x,y) = x + y.
- Asignación de predicados: $P(x,y) \equiv x+y < 0, \ Q(x,y) \equiv x^2 = y^2.$

Es claro que el valor de verdad de α en esta estructura es 0.

3. Lo que tenemos que decir es que si $x=x^2$ entonces x=0 ó x=1. Puesto que x^2 lo podemos poner como f(x,x), lo anterior lo podemos decir como sigue:

$$\forall x (P(x, f(x, x)) \rightarrow P(x, a) \lor P(x, b)).$$

Sin embargo, con esta fórmula estamos diciendo que de haber algún número que sea igual a su cuadrado, este número debe ser 0 ó 1. Pero no estamos diciendo que el 0 y el 1 cumplan esa condición. Para eso, podemos modificar la anterior fórmula:

$$\forall x (P(x, f(x, x)) \leftrightarrow P(x, a) \lor P(x, b)).$$

También podría decirse de la siguiente forma:

$$P(a, f(a, a)) \land P(b, f(b, b)) \land \forall x (P(x, f(x, x)) \rightarrow P(x, a) \lor P(x, b)).$$

Por último, notemos que esta fórmula es falsa, pues en \mathbb{Z}_{12} se tiene que $4^2 = 4$ y $9^2 = 9$.

Ejercicio 2. Calcula una forma normal prenexa (con el menor número posible de cuantificadores), una forma de Skolem y una forma clausulada para la fórmula

$$\alpha = \exists x \forall y (\forall x \forall y R(a, x) \to \neg \forall z (\neg R(z, y) \to \forall x S(g(x), z))).$$

Solución:

Notemos en primer lugar que el radio de acción del segundo $\forall y$ es R(a,x), donde la variable y no aparece. Por tanto, podemos suprimir ese cuantificador.

También podemos ver que en el radio de acción del $\exists x$ que hay al principio no hay ninguna aparición libre de x (todas las que hay son ligadas). Por tanto, también puede suprimirse ese cuantificador. La fórmula α es entonces equivalente a:

$$\forall y(\forall x R(a, x) \rightarrow \neg \forall z(\neg R(z, y) \rightarrow \forall x S(g(x), z)))$$

Ahora vamos transformando esta fórmula hasta llegar a la forma prenexa:

```
\begin{array}{lll} \alpha & \equiv & \forall y (\forall x R(a,x) \rightarrow \neg \forall z (\neg R(z,y) \rightarrow \forall x S(g(x),z))) \\ & \equiv & \forall y (\neg \forall x R(a,x) \vee \neg \forall z (\neg \neg R(z,y) \vee \forall x S(g(x),z))) \\ & \equiv & \forall y (\exists x \neg R(a,x) \vee \neg \forall z (R(z,y) \vee \forall x S(g(x),z))) \\ & \equiv & \forall y (\exists x \neg R(a,x) \vee \exists z \neg (R(z,y) \vee \forall x S(g(x),z))) \\ & \equiv & \forall y (\exists x \neg R(a,x) \vee \exists z (\neg R(z,y) \wedge \neg \forall x S(g(x),z))) \\ & \equiv & \forall y (\exists x \neg R(a,x) \vee \exists z (\neg R(z,y) \wedge \exists x \neg S(g(x),z))) \\ & \equiv & \forall y (\exists z \neg R(a,z) \vee \exists z (\neg R(z,y) \wedge \exists x \neg S(g(x),z))) \\ & \equiv & \forall y \exists z (\neg R(a,z) \vee (\neg R(z,y) \wedge \neg S(g(x),z))) \\ & \equiv & \forall y \exists z \exists x (\neg R(a,z) \vee (\neg R(z,y) \wedge \neg S(g(x),z))) \end{array}
```

Y ya tenemos una forma prenexa.

Para calcular una forma de Skolem tenemos que eliminar los cuantificadores existenciales y sustituir las variables z y x por dos símbolos de función monarios (distintos, y distituos de g) aplicados a la variable y. Sustituimos z por f(y) y x por h(y). Una forma de Skolem es entonces:

$$\forall y (\neg R(a, f(y)) \lor (\neg R(f(y), y) \land \neg S(g(h(y)), f(y)))).$$

Por último, para calcular una forma clausulada, aplicamos la propiedad distributiva y nos queda:

$$\forall y((\neg R(a,f(y)) \vee \neg R(f(y),y)) \wedge (\neg R(a,f(y)) \vee \neg S(g(h(y)),f(y)))).$$

Ejercicio 3. Demuestra que la fórmula

$$\alpha = \forall x (\neg P(x, x) \land \exists y P(x, y)) \land \forall x \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z))$$

es satisfacible y refutable.

Solución:

Vemos que α es la conjunción de dos fórmulas: $\forall x(\neg P(x,x) \land \exists y P(x,y))$ por una parte y $\forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z))$ por otra. Además, la primera subfórmula es equivalente a $\forall x \neg P(x,x) \land \forall x \exists y P(x,y)$.

Por tanto, podemos ver a α como la conjunción de tres fórmulas:

$$\alpha_1 = \forall x \neg P(x, x).$$

$$\alpha_2 = \forall x \exists y P(x, y).$$

$$\alpha_3 = \forall x \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z)).$$

En primer lugar, elegimos una estructura cualquiera, y calculamos su valor de verdad. Por ejemplo, tomamos:

- Dominio: $D = \mathbb{N}$.
- Asignación de predicados: $P(x,y) \equiv x = y$.

Y vemos que en esta estructura $I(\alpha_1)=0$, pues α_1 dice en este caso que para cualquier $x\in\mathbb{N},\,x\neq x$. Lo cual es falso.

Por tanto, $I(\alpha) = 0$ lo que nos dice que α es refutable.

Buscamos ahora una estructura en la que α se interprete como verdadera.

- Dominio: $D = \mathbb{N}$.
- Asignación de predicados: $P(x,y) \equiv x < y$.

En esta estructura, α_1 significa que para cualquier $x \in \mathbb{N}$, el número x no es menor que x. Claramente eso es cierto.

En cuanto a α_2 , lo que nos dice es que para cualquier $x \in \mathbb{N}$ existe $y \in \mathbb{N}$ tal que y > x. Esto también es claramente cierto (basta tomar y = x + 1).

Por último, α_3 dice que para cualesquiera $x,y,z \in \mathbb{N}$, si x < y e y < z entonces x < z. Esto último también es cierto.

Por tanto, en esta estructura, y puesto que $\alpha \equiv \alpha_1 \wedge \alpha_2 \wedge \alpha_3$, tenemos que $I(\alpha) = 1$.

Con esto vemos que α es también satisfacible.

(4) 21 de Mayo de 2019

Ejercicio 4. Estudia si los siquientes conjuntos de cláusulas son satisfacibles o insatisfacibles:

- 1. $\{P(x, f(x)) \lor P(f(z), y), \neg P(f(a), f(b))\}.$
- 2. $\{P(f(x,y),g(z,b)) \lor P(f(g(a,y),a),x), \neg P(f(x,b),z)\}.$
- 3. $\{P(f(y), x) \lor P(x, f(y)), \neg P(f(a), x) \lor \neg P(y, f(b))\}.$

Solución:

1. $\{P(x, f(x)) \lor P(f(z), y), \neg P(f(a), f(b))\}.$

Este conjunto es satisfacible, pues por resolución nunca podremos llegar a la cláusula vacía, ya que los literales P(x, f(x)) y P(f(a), f(b)) no son unificables:

$$x = f(a)$$
 $x = f(a)$ $x = f(a)$
 $f(x) = f(b)$ $x = b$ $f(a) = b$

También podemos ver que en la estructura

- Dominio: $D = \mathbb{N}$.
- Asignación de constantes: a = 2, b = 1.
- Asignación de funciones: f(x) = x + 1.
- Asignación de predicados: $P(x, y) \equiv x < y$.

ambas cláusulas se interpretan como verdaderas.

2. $\{P(f(x,y),g(z,b)) \lor P(f(g(a,y),a),x), \neg P(f(x,b),z)\}.$

Este conjunto también es satisfacible, pues los literales P(f(g(a,y),a),x) y P(f(u,b),z) no son unificables (hemos cambiado la variable x del segundo literal por u para que no coincida con ninguna variable del primero):

$$f(g(a,y),a) = f(u,b) \qquad g(a,y) = u$$

$$x = z \qquad a = b$$

$$x = z$$

Y al llegar a la ecuación a = b el sistema no tiene solución.

3. $\{P(f(y), x) \lor P(x, f(y)), \neg P(f(a), x) \lor \neg P(y, f(b))\}$

Este conjunto es insatisfacible. Vamos a verlo obteniendo una deducción de la cláusula vacía.

En primer lugar, calculamos un factor de la primera cláusula, realizando la sustitución (x|f(z);y|z). Nos queda entonces P(f(z),f(z)).

Y ahora con esta cláusula y $\neg P(f(a), x) \lor \neg P(y, f(b))$ vamos a deducir la cláusula vacía:

$$\begin{array}{c|c} \neg P(f(a),x) \lor \neg P(y,f(b)) & P(f(z),f(z)) \\ \hline (x|f(a)) & (z|a) \\ \neg P(y,f(b)) & P(f(z),f(z)) \\ \hline (y|f(b)) & (z|b) \end{array}$$

21 de Mayo de 2019

Ejercicio 5. Sean:

1.
$$\alpha_1 = \forall x (\exists y (R(x,y) \land T(x,y)) \rightarrow P(x)).$$

2.
$$\alpha_2 = \exists x (\neg Q(x) \land \forall y (\neg S(y) \rightarrow T(x,y))).$$

3.
$$\alpha_3 = \forall x (\forall y (S(y) \lor \neg R(x,y)) \to Q(x)).$$

4.
$$\alpha_4 = \exists x (P(x) \land \neg Q(x)).$$

Comprueba que α_4 es consecuencia lógica de $\{\alpha_1, \alpha_2, \alpha_3\}$ pero α_1 no es consecuencia lógica de $\{\alpha_2, \alpha_3, \alpha_4\}$.

Solución:

En primer lugar vamos a ver que el conjunto $\{\alpha_1, \alpha_2, \alpha_3, \neg \alpha_4\}$ es insatisfacible. Para eso, pasamos cada una de esas fórmulas a cláusulas:

$$\begin{array}{lll} \bullet & \alpha_1 & = & \forall x (\exists y (R(x,y) \land T(x,y)) \rightarrow P(x)) \\ & \equiv & \forall x (\neg \exists y (R(x,y) \land T(x,y)) \lor P(x)) \\ & \equiv & \forall x (\forall y \neg (R(x,y) \land T(x,y)) \lor P(x)) \\ & \equiv & \forall x (\forall y (\neg R(x,y) \lor \neg T(x,y)) \lor P(x)) \\ & \equiv & \forall x \forall y ((\neg R(x,y) \lor \neg T(x,y)) \lor P(x)) \\ & \equiv & \forall x \forall y (\neg R(x,y) \lor \neg T(x,y) \lor P(x)) \end{array}$$

•
$$\alpha_2 = \exists x (\neg Q(x) \land \forall y (\neg S(y) \rightarrow T(x, y)))$$

 $\equiv \exists x (\neg Q(x) \land \forall y (\neg \neg S(y) \lor T(x, y)))$
 $\equiv \exists x \forall y (\neg Q(x) \land (S(y) \lor T(x, y)))$
 $\forall y (\neg Q(a) \land (S(y) \lor T(a, y)))$

•
$$\alpha_3 = \forall x (\forall y (S(y) \lor \neg R(x,y)) \to Q(x))$$

 $\equiv \forall x (\neg \forall y (S(y) \lor \neg R(x,y)) \lor Q(x))$
 $\equiv \forall x (\exists y \neg (S(y) \lor \neg R(x,y)) \lor Q(x))$
 $\equiv \forall x (\exists y (\neg S(y) \land R(x,y)) \lor Q(x))$
 $\equiv \forall x \exists y ((\neg S(y) \land R(x,y)) \lor Q(x))$
 $\forall x ((\neg S(f(x)) \land R(x,f(x))) \lor Q(x))$
 $\equiv \forall x ((\neg S(f(x)) \lor Q(x)) \land (R(x,f(x)) \lor Q(x)))$

$$\bullet \neg \alpha_4 = \neg \exists x (P(x) \land \neg Q(x))$$

$$\equiv \forall x \neg (P(x) \land \neg Q(x))$$

$$\equiv \forall x (\neg P(x) \lor Q(x)).$$

Puesto que lo vamos a necesitar después calculamos una forma clausulada de $\neg \alpha_1$ y de α_4 .

$$\bullet \neg \alpha_1 = \neg \forall x (\exists y (R(x,y) \land T(x,y)) \rightarrow P(x))
\equiv \exists x \neg (\neg \exists y (R(x,y) \land T(x,y)) \lor P(x))
\equiv \exists x (\exists y (R(x,y) \land T(x,y)) \land \neg P(x))
\equiv \exists x \exists y (R(x,y) \land T(x,y) \land \neg P(x))
R(b,c) \land T(b,c) \land \neg P(b)$$

•
$$\alpha_4 = \exists x (P(x) \land \neg Q(x))$$

 $P(d) \land \neg Q(d)$

(6) 21 de Mayo de 2019

Y ahora, comprobamos que el conjunto $\{\alpha_1, \alpha_2, \alpha_3, \neg \alpha_4\}$ es insatisfacible. Para ello, tomamos las cláusulas que hemos obtenido a partir de esas fórmulas:

$$\{\neg R(x,y) \lor \neg T(x,y) \lor P(x), \neg Q(a), S(y) \lor T(a,y), \neg S(f(x)) \lor Q(x), R(x,f(x)) \lor Q(x), \neg P(x) \lor Q(x)\}.$$

Y buscamos por resolución la cláusula vacía:

Al haber llegado a la cláusula vacía concluimos que α_4 es consecuencia lógica de $\{\alpha_1, \alpha_2, \alpha_3\}$. Ahora tenemos que ver si $\{\alpha_4, \alpha_3, \alpha_2\} \models \alpha_1$. Para eso, tenemos que ver si $\{\alpha_4, \alpha_3, \alpha_2, \neg \alpha_1\}$ es o no insatisfacible, y por lo que hemos hecho antes eso es equivalente a comprobar si el conjunto de cláusulas

$$\{P(d), \ \neg Q(d), \ \neg S(f(x)) \lor Q(x), \ R(x,f(x)) \lor Q(x), \ \neg Q(a), \ S(y) \lor T(a,y), \ R(b,c), \ T(b,c), \ \neg P(b)\}$$

es o no insatisfacible.

Puesto que el predicado R y el predicado T no aparecen negados en ninguna cláusula, en una deducción de la cláusula vacía no podríamos usar la cláusula $R(x, f(x)) \vee Q(x)$ ni la cláusula R(b,c), ni la cláusula T(b,c) ni la cláusula $S(y) \vee T(a,y)$. Esto impide que se use también la cláusula $\neg S(f(x)) \vee Q(x)$ (ya que el literal $\neg S(f(x))$) no puede eliminarse con ninguno). Nos queda entonces que si queremos obtener una deducción de la cláusula vacía hemos de hacerlo con las cláusulas del conjunto

$$\{P(d), \neg Q(d), \neg Q(a), \neg P(b)\}\$$

Y con ellas no se puede hacer ninguna resolvente. Por tanto, no podemos deducir por resolución la cláusula vacía.

Esto nos dice que el conjunto $\{\alpha_4, \alpha_3, \alpha_2, \neg \alpha_1\}$ es satisfacible luego α_1 no es consecuencia lógica de $\{\alpha_2, \alpha_3, \alpha_4\}$.