Lista de Exercícios - Matemática

Avaliação Parcial III

Cálculo de Várias Variáveis

Departamento de Economia – CCSA/UFPE

Data: 12/08/2024

Data de Entrega: 20/08/2023

Prof. Cristiano da Silva

- 1. (Simon & Blume 14.1) Calcule todas as derivadas parciais das seguintes funções:
 - a) $4x^2y 3xy^3 + 6x$;
 - b) xy^2
 - c) $\frac{x+y}{x-y}$
 - d) e^{2x+3y}
- 2. (Simon & Blume 14.4) Considere a função da produção $Q(K,L) = 9L^{2/3}K^{1/3}$
 - a) Qual é o produto quando L = 1000 e K = 216?
 - b) Use a derivada total para estimar a variação entre Q(998; 216) e Q(1000; 217,5).
 - c) Quão grande deve ser ΔL para que a diferença entre $Q(1000 + \Delta L; 216)$ e sua aproximação linear $Q(1000; 216) + \left(\frac{\partial Q}{\partial L}\right)(1000; 216)\Delta L$ difira por mais de duas unidades? (Coloque valores crescentes de ΔL nestas duas expressões).
- 3. (Simon & Blume 14.6) Considere a função demanda de elasticidade constante $Q = 6p_1^{-2}p_2^{3/2}$, onde Q é a demanda do bem 1 e p_i é o preço do bem i, para i = 1,2. Suponha que os preços atuais são $p_1 = -6$ e $p_2 = 9$.
- a) Qual é a demanda atual para *Q*?
- b) Use diferenciais para estimar as variações na demanda quando p_1 aumenta 0,25 e p_2 diminui 0,5.
- c) Analogamente, estime a variação na demanda quando ambos os preços aumentam 0,2.

- d) Estime a demanda total nas situações b) e c) e compare suas estimativas com as variações reais.
- 4. (Simon & Blume 14.7) Uma firma tem a função de produção Cobb-Douglas $y = 10x_1^{1/3}x_2^{1/2}x_3^{1/6}$. Atualmente, ele usa a cesta de insumos (27,16,64).
 - a) Quanto está produzindo a firma?
 - b) Use diferenciais para aproximar seu novo nível de produção quando x_1 aumenta para 27,1, x_2 diminui para 15,7 e x_3 permanece igual.
 - c) Use uma calculadora para comparar sua resposta na parte *b*) com a real produção.
 - d) Repita *b*) e *c*) para $\Delta x_1 = \Delta x_2 = 0.2$ e $\Delta x_3 = -0.4$.
- 5. (Simon & Blume 14.11) Seja $f(x, y) = 3xy^2 + 2x$, onde $x(t) = -3t^2$ e $y(t) = 4t^3 + t$.
 - a) Use a Regra da Cadeia para encontrar uma expressão geral para a taxa de variação da composição f(x(t), y(t)) em relação a t.
 - b) Use substituição e derivação direta para calcular a taxa de variação da composição f(x(t),y(t)) em relação a t. Compare essa resposta com a resposta da parte a).
- 6. (Simon & Blume 14.18) Em qual direção devemos nos mover a partir do ponto (2,3) para aumentar $4x^2y$ mais rapidamente? Apresente sua resposta como um vetor de comprimento 1.
- 7. (Simon & Blume 20.1) Quais das seguintes funções são homogêneas? Quais são os graus daquelas que são homogêneas?

a)
$$3x^5y + 2x^2y^4 - 3x^2y^3$$

b)
$$\frac{x^2-y^2}{x^2+y^2}+3$$

c)
$$x^{3/4}y^{1/4} + 6x + 4$$

8. Verifique o grau homogeneidade das funções abaixo a partir do Teorema de Euler:

a)
$$f(x_1, x_2) = 30x_1^{\frac{1}{2}}x_2^{\frac{3}{2}} - 2x_1^3x_2^{-1}$$

- b) $f(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$
- 9. (Simon & Blume 20.11) Quais das seguintes são transformações monótonas de \mathbb{R}_+ ?
 - a) $z^4 + z^2$
 - b) $z^4 z^2$
 - c) $\frac{z}{z+1}$
 - d) \sqrt{z}
- 10. (Simon & Blume 20.12) Quais seguintes funções são equivalentes a *xy*? Para as que são, qual é a transformação monótona que dá esta equivalência?
 - a) $7x^2y^2 + 2$
 - b) ln(x) + ln(y) + 1
 - c) x^2y
 - d) $x^{\frac{1}{3}}y^{\frac{1}{3}}$
- 11. (Simon & Blume 20.17) Quais das seguintes funções são homotéticas? Justifique cada resposta.
 - a) $e^{x^2y}e^{xy^2}$
 - b) $2\ln(x) + 3\ln(y)$
 - c) $\frac{x^2y^2}{xy+1}$
- 12. (Simon & Blume 21.2) Qual das seguintes funções de \mathbb{R}^n é côncava ou convexa, segundo os pontos $(x_1, x_2) = (2,4) e(y_1, y_2) = (4,16)$?
 - a) $f(x_1, x_2) = -3x^2 + 2xy y^2 + 3x 4y + 1$
 - b) $f(x_1, x_2) = 4x_1^{0.25}x_2^{0.5}$
 - c) $f(x_1, x_2) = 3e^x + 5y^4$
- 13. (Simon & Blume 21.18) Para cada uma das seguintes funções de \mathbb{R}^1 , determine se é quase-côncava, quase-convexa, ambos ou nenhuma das duas:
 - a) e^x
 - b) $x^4 x^2$
 - c) $\ln(x)$
 - d) $x^3 x$
 - e) $3x^3 + 5x^2 + 7x$