# Wiecej gazu!

November 28, 2014

# Diagram fazowy

$$ightharpoonup T = const.$$

$$\rho = \frac{N}{S} \sigma^2$$

• 
$$T = 0.1$$
,  $\rho = 0.25$  - solid

▶ 
$$T = 0.7$$
,  $\rho = 0.25$  - fluid



#### Bez termostatu :(

$$T = 0.1$$
,  $\rho = 0.25$ 



Potrzebujemy termostatu!

$$T = 0.7$$
,  $\rho = 0.25$ 



#### Budujemy termostat z zabka

Wykonaj pol kroku (bez sily oporu)

$$v^{u}(t) = v(t - \delta t/2) + (\frac{F(t)}{m})\frac{\delta t}{2}$$

Oblicz chwilowa temperature

$$T(t) = \frac{2}{3Nk_b} < K^u >$$

- ▶ Oblicz wspolczynnik  $\eta = \sqrt{\frac{T_{\text{ext}}}{T}}$
- Dokoncz krok

$$v(t + \delta t/2) = (2\eta - 1)v(t - \delta t/2) + \eta(\frac{F(t)}{m})\Delta t$$
$$r(t + \delta t) = r(t) + v(t + \delta t/2)\Delta t$$

## Z termostatem:)

$$T = 0.1$$
,  $\rho = 0.25$ 



$$T = 0.7$$
,  $\rho = 0.25$ 



## Z termostatem :)

$$T = 0.1$$
,  $\rho = 0.25$ 

$$T = 0.7$$
,  $\rho = 0.25$ 

## Dochodzenie do rownowagi

- ightharpoonup Obliczamy  $E_k(t)$  na podstawie predkosci czastek
- ightharpoonup Obliczamy  $E_p(t)$  na podstawie potencjalu Lennarda-Jonesa
- $E_c(t) = E_p(t) + E_k(t)$
- ightharpoonup Szukamy takiego t gdzie  $E_c$  jest z grubsza stale krok 5000



#### Rozklad predkosci

- ▶ Bierzemy wszystkie v i tworzymy znormalizowany histogram
- Im wicej probek tym lepiej (tutaj 3000 klatek)
- Nanosimy dwuwymiarowy rozklad Maxwella  $P(v) = \frac{mv}{kT}e^{-\frac{mv^2}{2kT}}$



## Radialna funkcja rozkladu

- ▶ Bierzemy wszystkie r<sub>ij</sub> i tworzymy znormalizowany histogram
- Im wiecej probek tym lepiej (tutaj 3000 klatek) u mnie dla wyroznionej czastki
- Zamiast tradycyjnego histogramu odpowiadajace mu linie

$$T = 0.1, \ \rho = 0.25$$



$$T = 0.7$$
,  $\rho = 0.25$ 



### End of file :)

Dziekuje za uwage