Sukanya Maiti, Roll No.- 59, MCA_1_A, (Set: 04)

Write a VHDL Program for 8 x 1 multiplexer.

=>

Truth table for 8 x 1 multiplexer: -

S2	S1	S0	Output(Y)
0	0	0	10
0	0	1	I1
0	1	0	I2
0	1	1	I3
1	0	0	I4
1	0	1	I5
1	1	0	I6
1	1	1	I7

Source code:

```
library IEEE;
use IEEE.std logic 1164.all;
entity mux_81 is
port(data: in std_logic_vector(7 downto 0); -- 8 data inputs
     select_line : in std_logic_vector(2 downto 0); -- 3 select lines
     enable: in std_logic; -- Enable signal
     output : out std_logic -- Output signal);
end mux 81;
architecture behavioral of mux_81 is
begin
process(data, select_line, enable)
begin
  if enable = '1' then
   case select line is
     when "000" => output <= data(0);
     when "001" => output <= data(1);
     when "010" => output <= data(2);
     when "011" => output <= data(3);
     when "100" => output <= data(4);
     when "101" => output <= data(5);
     when "110" => output <= data(6);
     when "111" => output <= data(7);
     when others => output <= 'X'; -- Undefined behavior for safety
   end case;
 else
   output <= 'X'; -- Output is undefined if enable is not active
 end if;
end process;
end behavioral;
```

