Assignment 6

The standard POS Form ? - A standard POS expression is one in which all the variables in the Domain appear in each sum term in the expression.

Example: - (A+B+C+D) (A+B+C+D) (A+B+C+D)

conventing the following expression into standard FOS form:
(A+B) (B+E+D)

Now, $A+\overline{G} = A+\overline{G} + C \cdot \overline{C}$ $= (A+\overline{G}+C) (A+B+\overline{C})$ $= (A+\overline{G}+C+D \cdot \overline{D}) (A+\overline{G}+\overline{C}+D \cdot \overline{D})$ $= (A+\overline{G}+C+D) (A+\overline{G}+C+\overline{D}) (A+\overline{G}+\overline{C}+D) (A+\overline{G}+\overline{C}+D)$

B+C+D = B+C+D+A.A

= (A+B+E+D) (A+B+E+D)

(A+B+E+D) (A+B+C+D) (A+B+C+D) (A+B+E+D) (A+B+E+D) (A+B+E+D) (A+B+E+D)

Developing truth table for standard sop expression:

let, X = ABC + ABC + ABC

Inp	als		Ow	tputs	
A	B		X	1	Z
6	0	0	0		Scrate 1
0	0)	1990	1	1 1 200	0
0	7	0	O	0	100
0	1	J	10	00A	10
8 m 16	0	0	1	1	0
1	8	1	6	0	0
1	1	0	0	0	1
1	4	1	1	1	1

Conventing POS expression to truth table format: -

Determing Standard Expression from a fruth table & Standard SOP expression o

Standard Pos expression:

6

3 variable Kannaugh Map?

Map the following SOP expression In the kannaugh map.

Map the following expression on a k map:

AD C	0		18 th adjusted cells can be grouped	
00	0	1	sen have 2,4,8,16, once	
01	1	0		
11	1	0	of colouted and Definition of gam of Del	
10	0	0	D = 0.500 + 0.500	

ANCO+ ANCO+ ANCO+ ANCO+ ANCOHAL CO Map the following sop expression on a K-map;

ANC	0	
00	(, , ,
01	1	
[11]	1	0
10	1	1

k map simplification of SOP expression:

Simplified SOP expression
BHAC

ean have 2,4,8, 16. -- ones.

* Use K-map to minimize the following expressions

Simplified sop expression

AC +AB + ABD

simplify the function expressed in sum of minterns form, $F(\omega,x,y,z) = \sum (0,1,2,8,4,5,6,78,9,12,13,14)$ no. of minterns = 11 (minterns means standard product)

14/12	00	01	11	10
00		1	3	3
01	90	5	7	1
1)	171	13	15	191
10	8,	91)	n	16

Symplify the function expressed in product of maxtern form; F(n,y,z) = ØTT(0,2,5,7)

149	0	1
00	0	1
01	2	3
(1	6	70
10	4	50

$$\begin{array}{cccc}
F & 2 & \overline{\chi} & \overline{\zeta} + \chi & \overline{\zeta} \\
F & 2 & \overline{\chi} & \overline{\zeta} + \chi & \overline{\zeta} \\
& 2 & \overline{\chi} & \overline{\zeta} + \chi & \overline{\zeta} \\
& 2 & \overline{\chi} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} \\
& 2 & \overline{\chi} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} & \overline{\zeta} \\
& 2 & \overline{\chi} & \overline{\zeta} & \overline{$$