Advanced Persistent Thread (APT)

Sinem Ozden – Ozan Emre Sayilir

 Sponsored Cyber attacks targeting a specific organization to achieve a clear objective (espionage most of the time) without being detected for a long period of time.

Advanced:

- combine multiple targeting methods, tools, and techniques to reach and compromise target
- Generally take advantage of a zero day attack that has malware payloads and uses kernel rootkits and evasion detection technologies

Persistent:

- continuous monitoring and interaction to achieve objectives.
- not constant attacks and malware updates
- "low-and-slow"
- if the access lost, the attacker reattempt access, and most often, successfully
- goals is to maintain long-term access to the target, in contrast to threats who only access to execute a specific task

Threat:

- APTs are a difficult to detect threats, until detected they can stay in their host system up to years.
- attacks are executed by coordinated human actions (sponsored by nation states or organizations that can produce similar resources)
- attackers have a specific objective and are skilled, motivated, organized and well funded.

General Goals

- Espionage.
- Intellectual property theft
- Organization Embarrassment
- As a bargaining advantage

5

Examples

- GhostNet based in China, attacks were conducted by spear phishing emails containing malware. The group compromised computers in over 100 countries, focusing on gaining access to networks of government ministries and embassies. Attackers compromised machines inside these organizations, turned on their cameras and microphones and turned them into surveillance devices.
- Stuxnet a worm used to attack Iran's nuclear program, which was
 delivered via an infected USB device, and inflicted damage to
 centrifuges used to enrich Uranium. Stuxnet is malware that targets
 SCADA (industrial Supervisory Control and Data Acquisition) systems —
 it was able to disrupt the activity of machinery in the Iranian nuclear
 program without the knowledge of their operators.
- Deep Panda an APT attack against the US Government's Office of Personnel Management, probably originating from China. A prominent attack in 2015 was code named Deep Panda, and compromised over 4 million US personnel records, which may have included details about secret service staff.

CYBER KILL CHAIN®

Lockheed Martin's Cyber Kill Chain* and Intelligence Driven Defense* services identify and prevent cyber intrusion activity. The services monitor what the adversaries must complete in order to achieve their objective.

A: ADVANCED

Targeted, Coordinated, Purposeful

P : PERSISTENT

Month after Month, Year after Year

T : THREAT

Person(s) with intent, opportunity, and capability

RECONNAISSANCE

Harvesting email addresses, conference information, etc

WEAPONIZATION

Coupling exploit with backdoor into deliverable payload

Delivering weaponized hundle to

Life cycle

- Initial compromise social engineering,
 - Generally over email, using zero-day viruses.
 - Another popular infection method planting malware on a website that the victim's employees will be likely to visit.
- Establish Foothold plant remote administration software in victim's network
 - create net backdoors and tunnels allowing stealth access to its infrastructure.
- Escalate privileges use exploits and password cracking to acquire administrator privileges
 - possibly expand it to Windows domain administrator accounts.
- Internal reconnaissance collect information on surrounding infrastructure
 - trust relationships, Windows domain structure.
- Move laterally expand control to other workstations, servers and infrastructure elements and perform data harvesting on them.
- Maintain presence ensure continued control over access channels and credentials acquired in previous steps.
- **Complete mission** exfiltrate stolen data from victim's network.

Cost

- Among 29 different APT groups
- For Phishing
 - \$300+ cost of tool to create malicious file
 - \$ 2,500 monthly subscription fee for a service to create documents with malicious content
- A single exploit for a zeroday vulnerability
 - More than \$1,000,000
- Example
 - \$1.6 million cost of the FinSpy spyware framework.
 Also known as FinFisher, the FinSpy framework is
 surveillance software able to spy on users through an
 infected computer's webcam and microphone, capture
 chat messages and emails, and steal passwords and
 other sensitive data.

Avoidance: Countermeasures

- Network monitoring
- Email protection Spam filtering
- Protection against the spread of malware Antivirus
- Intrusion detection system or intrusion protection system - Antivirus
- System and network configuration
- Security awareness
- Automatic patching

Emotet is a trojan that is primarily spread through spam emails.

During its lifecycle, it has gone through a few iterations. Early versions were delivered as a malicious JavaScript file.

Later versions evolved to use macro-enabled Office documents to retrieve a malicious payload from a C2 server.

Emotet

- The virus we selected classified as malicious after the suspicions such as:
 - Application launched itself from a word file that was infected: 21145645ac...
 - Starts itself from another location: sourcematrix.exe
 - Executable content was dropped or overwritten: the exe 21145645ac... deleted itself after creation of sourcematrix.exe

Emotet

- First, we tried to obverse the virus without unpacking it, the IDA give a warning.
- Then, we decided to run the code after creating a safe zone.
- First, we could track the second exe file that was created. However, when we cut the internet the exe file disappeared from the process monitor.
- We tried again with the active internet connection .

sourcematrix.exe

- We then started to examine the sourcematrix.exe.
- We found information of its hash code file type and other information of its appearance.

21145645ca	c74e0b590813eafd257					
Property	Value					
File Name	C:\Users\IEUser\Downloads\virus\21145645cac74e0b590813eafd257a2					
File Type	Portable Executable 32					
File Info	Microsoft Visual C++ 6.0					
File Size	137.30 KB (140600 bytes)					
PE Size	134.00 KB (137216 bytes)					
Created	Tuesday 03 December 2019, 08.28.04					
Modified	Monday 02 December 2019, 23.32.41					
Accessed	essed Tuesday 03 December 2019, 00.03.51					
MD5	A97CBBD774CA6E61CF9447D713F7CF5D					
SHA-1	588F91BB1409FE70845DBD7CF862B5EF0C53B2E8	91BB1409FE70845DBD7CF862B5EF0C53B2E8				
Property	Value					
CompanyNam	e Steganos Software GmbH					
FileDescription	Dropbox Encryption					
FileVersion	17.0.2.11443					
InternalName	DropCypher.exe					
OriginalFilenan	DropCypher.exe					
LegalCopyright	Copyright (c) 2013 Steganos Software GmbH					
LegalTrademar	ks Steganos Safe 17 is a trademark of Steganos Software GmbH					
ProductName	Steganos Safe 17					
ProductVersion	17.0.2.11443					

The Code

- This is the start point of the code. We think that the separate two subroutines are the packers.
- At the near end of the process subroutine 4012d0 is called. This subroutine then calls 4012e0 subroutine. In this subroutine the suspicious and possible malicious intended code starts.


```
sub 4012E0 proc near
              var 10= dword ptr -10h
              var 4= dword ptr -4
              arg 0= dword ptr 8
              push
                      ebp
              mov
                      ebp, esp
                      esp, 10h
              sub
              push
                      ebx
              mov
                      [ebp+var_4], 0
              call
                      sub 401670
                      edx, [ebp+arg_0]
              mov
              mov
                      dword 419EFC, edx
                      dword_419EDC, ebp
              mov
                      [ebp+var 4], 0
              mov
                      eax, RegOpenKeyA
              mov
                      dword 419F3C, eax
              mov
                      sub 4018A0
              call
                      short $+2
              jmp
             💶 🚄 🖼
             loc 40131A:
                     ecx, RegQueryValueExA
                     dword 419F48, ecx
             call
                     sub 4010A0
                     dword 419F04, eax
             mov
             call
                     sub 401440
                     dword 419EE8, 0
             mov
                     edx, dword 419EE8
             mov
                     dword 419EEC, edx
             mov
             mov
                     dword 419EE4, 1
                💶 🚄 🖼
                loc 401355:
                         [ebp+var_10], 0
                         eax. dword 419EEC
chronized with Hex View-1)
```

4012e0 Subroutine

- The RegOpenKeyA and RegQueryValueExA are win32 registry functions.
- These functions extracts the content of the registry keys.
- In the registry keys the information such as user preferences and settings kept.
- These functions probably used for get user information.
- This subroutine the calls 401440 subroutine to allocate a memory.

401440 Subroutine

- The VirtualAllocEx function allocates a space in memory for the program.
- In this memory that allocated information which was copied from a specific address is kept.
- Then the program jumps to instructions that extracts the address spaces of process.

401440 Subroutine as C Code

```
int32_tLoadLibraryA = 0x19054;
int32_t GetProcAddress = 0x19064;
void* fun_401440(int32_t ecx, int32_t a2) {
  int32_t v3;
  int1_t cf4;
  uint32 teax5;
  uint32_t eax6;
  uint32_t ecx7;
  int32 teax8;
  int32_t eax9;
  void* eax 10;
  v3 = ecx;
  q419f10 = 33;
  while (cf4 = g419f10 < 0x1fb451b, cf4) {
    eax5 = g419f10;
    q419f10 = eax5 + 4;
  eax6 = fun_401290(1, v3);
  q419f10 = eax6;
  ecx7 = g419f10;
  g419ec4 = ecx7;
  eax8 = reinterpret_cast<int32_t>(LoadLibraryA("kernel32", "VirtualAllocEx"));
  eax9 = reinterpret_cast<int32_t>(GetProcAddress(eax8, "kernel32", "VirtualAllocEx"));
  q419f50 = eax9;
  eax10 = fun_4011d0(2, eax8, "kernel32", "VirtualAllocEx");
  return eax 10;
```

The Internet Connection

Then we checked if the program is connected and used internet actively.

IP - Check

- While the program is working we opened the Wireshark.
- This program show the IP addresses that the all the programs communicate with.

6 9.606337	10.0.2.15	217.199.175.216	TCP	66 [TCP Retransmission] 50163 + 8080 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
7 12.337759	217.199.175.216	10.0.2.15	TCP	60 8080 → 50163 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
10 12.842773	52.177.165.30	10.0.2.15	TCP	225 [TCP Retransmission] 443 - 49681 [PSH, ACK] Seq=1 Ack=1 Win=65535 Len=171
13 16.912932	10.0.2.15	181.199.151.19	TCP	66 50164 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
14 19.930594	10.0.2.15	181.199.151.19	TCP	66 [TCP Retransmission] 50164 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
16 25.469947	52.177.165.30	10.0.2.15	TCP	225 [TCP Retransmission] 443 → 49681 [PSH, ACK] Seq=1 Ack=1 Win=65535 Len=171
17 25.935405	10.0.2.15	181.199.151.19	TCP	66 [TCP Retransmission] 50164 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
24 36.122873	13.107.246.10	10.0.2.15	TCP	60 443 → 50143 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
25 36.359677	13.107.136.254	10.0.2.15	TCP	60 443 → 50142 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
26 36.970249	204.79.197.254	10.0.2.15	TCP	60 443 → 50145 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
27 39.484559	204.79.197.222	10.0.2.15	TCP.	60 443 → 50146 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
28 39.984651	52.177.165.30	10.0.2.15	TCP	225 [TCP Retransmission] 443 + 49681 [PSH, ACK] Seq=1 Ack=1 Win=65535 Len=171
29 41.183702	10.0.2.15	85.132.96.242	TCP	66 50165 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
30 44.203352	10.0.2.15	85.132.96.242	TCP	66 [TCP Retransmission] 50165 + 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1

- > Frame 82: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
- > Ethernet II, Src: RealtekU_12:35:02 (52:54:00:12:35:02), Dst: PcsCompu_e6:e5:59 (08:00:27:e6:e5:59)
- > Internet Protocol Version 4, Src: 103.213.212.42, Dst: 10.0.2.15
- > Transmission Control Protocol, Src Port: 443, Dst Port: 50168, Seq: 1, Ack: 1196, Len: 0

Conculusion

- Generally APTs are aim is to watch, get targeted information and send it back to the attacker.
- The code we analyzed (Emotet) downloads itself to host machine. The malware tries to learn the current running processes, host names and sends it back to the attacker.
- It is hard to detect, it takes small amount of CPU and Memory.
- The attacker could send payloads through the malware.