METHOD AND DEVICE FOR REPEATEDLY DRAWING WIRE ELECTRODE FOR WIRE EROSION MACHINE AUTOMATICALLY

Publication number:

JP62004523

Publication date:

1987-01-10

Inventor:

JIYOZEFU JIYOSERAN

Applicant:

CHARMILLES TECHNOLOGIES

Classification:
- international:

B23H7/10; **B23H7/08**; (IPC1-7): B23H7/10

- european:

B23H7/10

Application number:

JP19860149343 19860625

Priority number(s):

CH19850002762 19850628

Also published as:

EP0206041 (A2) US4778972 (A1)

EP0206041 (A3) CH670784 (A5)

EP0206041 (B1)

more >>

Report a data error here

Abstract not available for JP62004523
Abstract of corresponding document: **US4778972**

A method and apparatus for automatically rethreading the electrode wire of a traveling wire EDM apparatus through a pair of close tolerance wire support and guide members, one disposed on one side of a workpiece and the other on the other side of the workpiece, and for threading the end of the wire through a starting aperture in the workpiece. Prior to threading or rethreading the wire, the wire is heated in a heating zone while a pull is exerted on the wire such as to elongate the heated portion of the wire to reduce its diameter. After cutting off the wire at the beginning of its reduced diameter portion, the reduced diameter portion of the wire is threaded through the wire guide members and the aperture in the workpiece. The threading of the wire is effected by a feed mechanism disposed upstream of the first wire guide member which preferably is the same mechanism as the brake mechanism effecting a pull on the wire during normal operation of the EDM apparatus.

Data supplied from the **esp@cenet** database - Worldwide

19日本国特許庁(JP)

① 特許出願公開等

⑫ 公 開 特 許 公 報 (A)

昭62-4523

@Int_Cl_4

識別記号

庁内整理番号

④公開 昭和62年(1987)1月10日

B 23 H 7/10

A - 8308 - 3C

審査請求 未請求 発明の数 1 (全5頁)

69発明の名称

ワイヤ浸食機のワイヤ電極を反復して自動的に引込むための方法、

ならびに該方法を実施するための装置

②特 顋 昭61-149343

20出 願 昭61(1986)6月25日

優先権主張

70発 明 者

フランス国 74350 クリュセーユ ルート デユ スエ

(番地なし)

①出願人

シヤルミーユ テクノ

ジョゼフ ジョセラン

スイス国 1211 ジュネーブ 13 リユード リヨン

ロジー ソシエテ ア 109

ノニム

②代 理 人

弁理士 中 村 稔 外5名

明細書

1. 発明の名称

ワイヤ浸食機のワイヤ電極を反 復して自動的に引込むための方 法、ならびに該方法を実施する ための装置

2.特許請求の範囲

1. ワイヤ浸食機のワイヤ電極を作業域(B)を構成する閉鎖したワイヤガイド(11.21)内へ反復して自動的に引込むための方法において、ワイヤ電極(3)が作業域(B)前方の供給例で作業域の長さ(B)とを加えた長さに少なくとも等しい長さを上廻る長さだけ加熱し引延ばすことによってその厚みを均等に小さくし、その小さくなったワイヤ製品によって引込み製品(3′)を構成した後ワイヤガイド(11.21)を介して移動させることを特徴とする前記方法。

2. ワイヤ電極を更に引込んだときにその厚みが小さくなり、その後ワイヤ電極が供給側の厚さが小さくなった製品 (3 ′) の初めの領域で切断

され、この引込み製品は依然保持される一方、他 方のワイヤ部分は作業域 (B) から機去されることを特徴とする特許請求の範囲第1項に記載の方法。

3. 厚さが小さくなった製品(3′)を作業域(B)へ再び引込み、その端部を供給側に対向するワイヤガイドへ送る作用が他方のワイヤガイド(11)領域内につくり出されたそれに応じて真直ぐになった流体の流れの作用によって行われることを特徴とする特許請求の範囲第2項に記載の方法。

4. ワイヤ電極が加熱域前方に配置されたワイヤ駆動装置(7)によって固定保持され、加熱域後方に配置された第二のワイヤ駆動装置によって一定の長さだけ、前進させられることによってワイヤの引延ばしが行われることを特徴とする特許請求の範囲第1項ないし第3項の一に記載の方法。

5. ワイヤ供給側作業ヘッド (1) とワイヤ 選去側作業ヘッド (2) とを傭え、該両作業ヘッド の各々が閉鎖したワイヤガイド (11, 21)を

格納し両ヘツド間に作業域(B)を構成した特許 請求の範囲第1項ないし第4項の一に記載の方法 を実施するためのワイヤ浸食機において、ワイヤ 供給例作業ヘツド(1)前方にワイヤ加熱域(A) が設けられ、該加熱域(A)の長さが作業域(B) の長さと、該作業域から搬去側に位置するワイヤ 駆動装置(6)の間隔とを加えた長さを上廻るこ とを特徴とする前記浸食機。

6. ワイヤ電極 (3) 用の二個の接点 (81,82) 間に加熱域 (A) が構成され、両接点 (81,82) 間でワイヤ電極の流れを加熱するための電圧が印加されることを特徴とする特許請求の範囲第5項に記載のワイヤ浸食機。

7. 加熱域 (A) 内にワイヤ電極を包囲する通路 (83) が設けられ、その均一な加熱を確実に行なうことを特徴とする特許請求の範囲第5項ならびに第6項に記載のワイヤ浸食機。

8. 加熱域 (A) 前方に第一のワイヤ駆動装置 (7) が、またそのワイヤ撥去側作業へツド背後 に第二のワイヤ駆動装置 (6) が設けられた特許 請求の範囲第5項ないし第7項の一に記載のワイヤ浸食機において、第一のワイヤ駆動装置 (7)がワイヤ電極を前進させ制動するための手段

(71,72)を備えており、該制動手段がワイヤ電極(3)を固定保持しその厚みを小さくするように装備されることを特徴とする前記没食機。

9. ワイヤ供給側作業ヘッド (1) がワイヤ電 極をまくれがないように切断するためのワイヤ切 断装置 (12) を格納することを特徴とする特許 請求の範囲第5項ないし第8項の一に記載のワイ ヤ浸金機。

10. ワイヤ供給側作業ヘッド(1)内に、それに対応するワイヤガイド(11)から対向するワイヤガイド(21)へ向かう流体の流れをつくりだすための装置(14.15)が設けられていることを特徴とする特許請求の範囲第5項ないし第9項の一に記載のワイヤ浸食機。

11. 対向するワイヤガイド(21)附近に吸入装置が配置されることを特徴とする特許請求の範囲第10項に記載のワイヤ後食機。

3.発明の詳細な説明

本発明はワイヤ浸食機のワイヤ電極を作業域を 構成する閉じられたワイヤガイド内へ反復して自 動的に引込むための方法に関する。

加工品のワイヤ浸食処理を行うばあいにワイヤを加工品の通し孔から別の通し孔へ導入しなければならないばあいその都度ワイヤをまず作業域から取り去って加工品を新たに位置決めするさいに再度引込むことが必要である。ワイヤ電極の径あいたが必要である。ワイヤ電極のであって例えば閉じられたガイドの案内孔の内径が例がは正確な位置決めのための条件である250μmよりも僅かしか小さくないために(ワイヤの案内孔への)引込みは困難となる。

このことは引込み作業を自動的に行わなければ ならないばあいに特にあてはまることである。

ワイヤ駆動装置がガイドを備えた作業へツドの 外側に存在するために、そのばあいワイヤ電極の 自由な前端部をかなりの長さだけワイヤガイド内 へ移動させる必要がある。ガイド内でのワイヤの 摩擦が余り大きすぎるとワイヤがその固有剛性の ために押しつぶされる危険がある。

DB-OS第3 037 505号による公知の解決策ではワイヤを作業域内へそれぞれ新たに引入れる前に針状の尖端部を構成しているが、以上のような問題点に鑑みると十分満足のゆくものということはできない。

作業城から引き去られることが望ましい。

上記のようにワイヤの長さを引延ばし厚さを小さくするには加熱域の手前に配置されたワイヤ駆動装置によってワイヤ電極を保持し、加熱域後方に配置された第二のワイヤ駆動装置によって一定の長さだけ前方へ引っばることが有益である。

ワイヤ供給側作業へツドとワイヤ機去側作業へツドでその各々が閉鎖されたワイヤガイドを備え、しかも両作業へツド間に作業域を構成するようになったものを備えた本発明によるワイヤ機会を備えており、該加熱域の長さは作業域の長さと該作業域からそこから搬去側に位置するワイヤ駆動装置へ至る距離を加えたものよりも大きくなっている。 いできるようになっている。

以下、添附図面に即して本発明の実施例を詳しく説明する。

第1図には作業へツド1,2が描かれており、

引っぱっても精度が失われることはない。

できるだけ遊びのない案内効果を保証するため に孔径はワイヤの径よりもごく僅かしか大きくさ れていない。

ワイヤの径が 2 5 0 μmのばあい、孔径はほぼ 2 5 2 ~ 2 5 3 μmである。加工中、ワイヤ電極はワイヤ駆動装置 6 によって作業域を貫いて引っぱられる。ワイヤ電極は入口側でプレーキ 7 1 を備えた更にもう一つのワイヤ駆動装置内で制動される。そのために作業域内には必要な機械的なワイヤ応力が保証される。

加工物を処理するためにワイヤ電極3を加工物4内の新たな通路41内に導くことが必要であるから、このためにワイヤ電極をまず作業域Bから取り去り、その後新たな通路ないしワイヤガイド内に再度引込む。

ワイヤを作業城Bから取去るにはワイヤを上部作業ヘッド1内の切断装置12によって分断し、その後該ワイヤの下部分をワイヤ駆動装置6によって取去る。ワイヤを再度導き入れるばあいには、

該ヘッド1,2を買いてワイヤ電極3が走行し両ヘッド間には作業域Bが構成され該作業域B内において加工品4がワイヤ電極3によって電食処理されることになる。発電機5は接点を介して相対応する電圧インパルスを作業ヘッド1,2内のワイヤ電極3に供給する。作業ヘッド1,2は作業 域B内におけるワイヤ電極の概略位置を設定する。

下部作業へツド2は固定されたままであるが、 上部作業へツドは水平面 U. V内に位置決めする ことができる。加工品 4 はそれとは独立に同じよ うに水平面 X. Y内を移動することができるよう になっている。

処理の特度は作業域内にワイヤ電極が配置されるさいの調整の正確さにほぼ依存している。

このために作業へツド1、2内には閉鎖されたワイヤガイド11、21が設けられていて、該ガイド11、21は多くのばあい穿孔され、金属枠内に保持された宝石から構成されごく僅かしか摩耗せず、またx-y方向に大きくたわむことができるようになっているためにワイヤを斜め方向に

残った上部ワイヤ製品を上部駆動装置7の引込み モータ72によってワイヤガイド11,21と共 に加工物内の新たな通路を買いて街合させる。

この再引込みを可能にするには、ワイヤを分断するまえにワイヤに厚さの小さな引込み材3′(第2図)を構成する。関に二接点81,82間にほぼ拡かるワイヤ加熱域Aを設けて該両接点81,82を介して電源8の加熱電圧がワイヤに印加される。

このワイヤ加熱域内を、真直ぐなパイプ製品 83によって構成し対流効果ないし局部的気流の ためにワイヤが不均等に加熱されることを妨ぐ 通 路内部をワイヤ 3 が走行するようにする。ワイヤ 3 はその内部で赤熱状に加熱された後、駆動装置 6 によって一定距離だけ回転させられる一方で第 2 b 図に示されているように上部駆動装置 7 のブレーキ 7 1 によって保持される。

このようにしてワイヤが移動させられることによってワイヤの厚さが小さく設定される。ある実施例のばあい、ワイヤ加熱域の長さは500mm

特開昭62-4523 (4)

であり移動量は120mmにのぼり、そのために ワイヤの厚さは加熱域で280μmから約220 μmに減少する。

加熱域Aの長さは作業域Bのそれよりも大きいため引込製品はそれが引込まれるワイヤガイド
11.21の間隔よりも確実に長いことになる。

ワイヤの引込製品 3 ′ が形成されると、この引 込製品 (第2 C図) の開始域でワイヤ電極が分離 される一方で分離された部分は駆動装置 6 によっ て加工物 4 から引き出されることになる。

加工物 4 が新たに位置決めされ終った後、当該機はワイヤを再び引込むための準備態勢に入る。 (第2d図) このことはまずワイヤの引込製品3′を駆動装置7の引込みモータ72によって移動させることによって行われる。第一のワイヤガイド11がこの尖頭部を通過しおわると、上部作業へツド1内の、供給管14を介して供給される(略示した)ノズル15内に真直ぐな流体の流れがつくり出され、その中をワイヤの引込み製品3′の尖頭部が下方ワイヤガイド21へ案内される。

(第2 e 図) 下方ワイヤガイド 2 1 には吸入装置 (図示せず) が設けられていて引込み製品 3 ′の 先端部をこのガイドを介して引込む働きをする。

最終的にワイヤは下部駆動装置 6 により把持されて (第 2 「図) 引込まれることにより新たな処理工程が行われることになる。

上記構成と手順によって極く僅かの遊びをもってワイヤガイドが閉じていてもワイヤの自動的に引込む作用を高い機能上の信頼性を以て実現することが可能となる。

4. 図面の簡単な説明

第1図はワイヤ浸食機の要部の概略図、第2a 図ないし第2「図はその方法の異なる局面の概略 図。

- 1, 2…作業ヘッド、
- 3 … ワイヤ電極、 3 ′ … 引込み製品、
- 6. 7…ワイヤ駆動装置、
- 11.21 ... ワイヤガイド、
- 81,82…接点、
- A ···加热域、
- B …作業域、
- C …距離。

