PROGRAMMING PROJECT II

LUIZ HENRIQUE MAMEDE QUEIROZ

PEDRO HENRIQUE RIBEIRO DE OLIVEIRA

RAPHAEL MORAGAS DIAS TAVEIRA GONÇALVES

Delivery Routing Algorithms

Choose dataset

 Choose between the toy graphs, the medium graphs, the realworld graphs, and a graph provided by yourself

 Each of the classes above (except the custom) have their own submenu

```
Digite uma das seguintes op héées (0-3) para escolher o Toy Graph:

1- Shipping

2- Stadiums

3- Tourism

0- Sair
```

User interface

- Choose between the 4 functions implemented
- Other Heuristics opens a menu with 2 options
- Input 0 allows you to choose a different set to use a different dataset

```
MENU

Selecione uma das seguintes op péré des (0-3):

1- Backtracking Algorithm

2- Triangular Approximation Heuristic

3- Other Heuristics

0- Sair
```

1-Backtracking Algorithm

Backtracking Algorithm

- Too computationally heavy to be viable in larger graphs
- Guarantees most optimal path

- A "smart bruteforce"
- Recursive
- Tests every possible path
- On the first run saves the path and, length of tour
- If a route is shorter than the saved, update it
- Checks at each node if it has passed the saved value, if it does, returns to previous and keeps going
- At the end returns the value,

2-Triangular Approximation Heuristic

Triangular Approximation Heuristic

- Worst case scenario will be 2x the size the optimal path
- A lot faster than the backtracking algorithm
- Useful for small, medium and real-world graphs

- Computes MST from selected root using Prim's algorithm
- Do a preorder walk tour along the MST
- Return to the root completing the tour

3-Other Heuristics

Heuristic Approximation

- The fewer cycle are formed, the closer the approximation will be
- A lot faster than the backtracking approach

- Finds MST with Prim's Algorithm
- Traverse graph nodes by order of creation in MST and attempts to connect through the MST path
- If that path has already been used, looks for next shortest edge available
- A tour is made to check for possible cycle that may have been created
- If one is found, minimum cost connections are made to exit them

Christofides Algorithm

- Worst case scenario will be 1.5x
 the size the optimal path
- A lot faster than the backtracking approach

- Finds MST with Prim's Algorithm
- Finds all odd-degree vertices in the tree
- Finds their minimum-weight perfect match for those vertices
- Combine the edges of the tree and the matches
- Form a Eulerian circuit in the resulting graph
- Make the previous circuit into a Hamiltonian circuit by skipping repeated vertices