УО «Белорусский государственный университет информатики и радиоэлектроники» Кафедра ПОИТ

Отчет по лабораторной работе №4 по предмету Численные методы Вариант 15

Выполнил: Крутько А.А.

Проверил: Самсонов П.А. Группа 251004

1.15.
$$f(x) = \left(\frac{5}{11}x + \cos\frac{3x}{2} - \sqrt{x} \operatorname{sh} \frac{x}{6}\right) \cdot \log_2(x^2 + 4x + 5).$$

Задание 1:

a)
$$n = 6$$

Таблица значений:

X	Y
0	2.32192
1	1.18872
2	-2.29341
3	1.17641
4	7.00168
5	3.00641
6	-6.39877

Other: $Pn = 2.3219 + 4.9048x - 8.0348x^2 + 1.2896x^3 + 1.0015x^4 - 0.3191x^5 + 0.0247x^6$.

Lagr[2.4316] = -1.7132; Newton[2.4316] = -1.7132; Pn[2.4316] = -1.7132

Абсолютная погрешность:

 $\Delta = 1.0836$, при $x \to 5.6718$

б)
$$n = 10$$

Таблица значений

X	Y
0	2.32192
0.6	2.41435
1.2	0.34102
1.8	-1.95237
2.4	-1.92246
3	1.17641
3.6	5.33261
4.2	7.18002
4.8	4.69664
5.4	-1.01176
6.0	-6.39877

Ответ: Pn = $2.3219 + 2.2283x - 3.3206x^2 - 0.2553x^3 - 0.3381 + 0.7877x^5 - 0.2538x^6 + 0.0133x^7 + 0.0055x^8 - 0.0009x^9 + 0.00004x^{10}$

Lagr[2.4316] = -1.8294; Newton[2.4316] = -1.8294; Pn[2.4316] = -1.8294

Абсолютная погрешность:

 Δ =0.0151, при $x \rightarrow$ 5.8286

Задание 2:

A)
$$n = 6$$

Таблица значений

X	Y
0.0752	2.4664
0.6545	2.3002
1.6983	-1.6685
3.	1.1764
4.3016	7.0763
5.3454	-0.4455
5.9247	-5.8728

Newton[x] = $2.2036 + 4.0053x - 6.8727 + 0.9965x^3 + 0.9430x^4 - 0.2912x^5 + 0.0223x^6$

f[2.4316] = -1.8295; Newton[2.4316] = -1.5353; Intf[2.4316] = -0.7945 Абсолютные погрешности:

 $Int[x]: \Delta = 1.0504$, при $x \to 2.3585$

Newton[x]: $\Delta = 0.3757$, при $x \to 4.8681$

Таблица значений

X	Y
0.03053	2.3851
0.27110	2.67
0.73275	2.1039
1.37807	-0.4425
2.1548	-2.326
3.	1.1764
3.84519	6.5404
4.6219	5.8839
5.2672	0.3658
5.7288	-4.2571
5.9694	-6.1922

Newton[x] = $2.3223 + 2.151x - 3.0326x^2 - 0.6601x^3 - 0.0591x^4 + 0.689x^5 - 0.2394x^6 + 0.0145x^7 + 0.0048x^8 - 0.0008x^9 + 0.00004x^{10}$

f[2.4316] = -1.8295; Newton[2.4316] = -1.8284; Intf[2.4316] = -1.63163 Абсолютные погрешности:

Int[x]: $\Delta = 0.2253$, при $x \to 2.5701$

Newton[x]: $\Delta = 0.00159$, при $x \to 5.8784$

Задание 3:

Максимальная погрешность интерполирования при равноотстоящих узлах:

- $\Delta = 1.0836$, при n = 6;
- $\Delta = 0.0151$, при n = 10.

Максимальная погрешность интерполирования при неравноотстоящих узлах (т. Чебышева):

- $\Delta = 0.3757$, при n = 6;
- $\Delta = 0.00159$, при n = 10.

Наиболее точное значение дает метод Ньютона при неравноотстоящих узлах и n = 10:

$$f[x] = -1.8295$$

Newton[x] = -1.8284

Можно сделать вывод, что на уменьшение погрешности влияет количество узлов интерполяции. Также можно видеть, что «чебышевские узлы интерполяции» дают наименьшую погрешность при интерполяции функции. Однако стоит не забывать, что при увеличении общего числа узлов, возрастает и общее количество вычислений.

Задание 4:

Spl[2.4316] = -0.7906; CubicSpline[2.4316] = -1.82941; Sf[x] = -1.82911. Абсолютная погрешность:

Sf[x]: $\Delta = 0.0731$, при $x \to 0.2208$

CubicSpline[x]: $\Delta = 0.2078$, при $x \to 5.7670$

Задание 5:

$$Q1[x] = 1.958 - 0.2836x;$$

$$Q2[x] = -0.3426 + 2.2726x - 0.4260x^2;$$

$$Q3[x] = 4.1923 - 9.7367x + 4.8227x^2 - 0.5832x^3;$$

$$Q4[x] = 3.1931 - 3.954x + 0.0038x^2 + 0.7018x^3 - 0.107x^4.$$

$$Q1[2.4316] = 1.26828$$

$$Q2[2.4316] = 2.66436$$

$$Q3[2.4316] = 0.64728$$

$$Q4[2.4316] = -0.05176$$