CLAIMS

What is claimed is:

1	1.	A magnetic head having an air bearing surface (ABS), comprising:
2		a writing pole, comprising:
3		a pole tip for writing data to magnetic media via lines of flux emitted
4		from an ABS end of the writing pole;
5		a shaping layer coupled to the pole tip, the shaping layer being for
6		focusing flux to the pole tip;
7		a trailing shield spaced apart from the writing pole, the trailing shield causing the
8		lines of flux to enter the media at an angle from a plane perpendicular to a
9		surface of the media facing the writing pole; and
10		a non-magnetic mask layer co-planar to the trailing shield which defines the
11		height of the trailing shield.
1	2.	A magnetic head as recited in claim 1, wherein a throat height of the trailing
2		shield is less than a distance from the ABS end of the writing pole to the shaping
3		layer.
1	3.	A magnetic head as recited in claim 1, wherein a ratio of a distance between the
2		pole tip and the trailing shield, and a distance between the ABS end of the pole tip
3		and a writeable layer of the media, is between about 2:1 and about 1:2.

- 1 4. A magnetic head as recited in claim 1, wherein a distance between the pole tip
 2 and the trailing shield is less than about 50 nm.
- 1 5. A magnetic head as recited in claim 1, wherein the trailing shield is not
 2 magnetically continuous to a back gap of the magnetic head.
- 1 6. A magnetic head as recited in claim 1, wherein the trailing shield is magnetically continuous to a back gap of the magnetic head.
- 1 7. A magnetic head as recited in claim 1, further comprising a return pole, the trailing shield being positioned between the writing pole and the return pole.
- 1 8. A magnetic head as recited in claim 7, wherein the return pole is stitched to the 2 trailing shield at a position recessed from the ABS.
- 1 9. A magnetic head as recited in claim 1, wherein the head is a perpendicular head.
- 1 10. A magnetic head as recited in claim 1, wherein the trailing shield is positioned
 2 adjacent a mask material, the mask material defining a throat height of the trailing
 3 shield.
- 1 11. A magnetic head as recited in claim 10, wherein a height of the mask material is 2 greater than a distance from the trailing shield to the ABS.

HIT1P035/HSJ9-2003-0154US1

1	12.	A magnetic head structure for perpendicular recording and reading, the magnetic
2		head structure having an air bearing surface (ABS), comprising:
3		a write head portion for writing data to magnetic media, the write head portion
4		including:
5		a first pole piece, the first pole piece having a first pole tip;
6		a probe pole piece, the probe pole piece having a probe pole tip for
7		emitting magnetic flux from an ABS end thereof;
8		an insulation stack positioned between the pole pieces;
9		at least one write coil embedded in the insulation stack;
10		a shaping layer positioned between the probe pole piece and the
11		insulation stack, the shaping layer being for focusing flux
12		to the probe pole tip;
13		a trailing shield spaced apart from the pole, the trailing shield
14		causing the magnetic flux to enter the media at an angle
15		from a plane perpendicular to a surface of the media facing
16		the pole; and
17		a return pole piece; and
18		a non-magneitc mask layer which is coplanar to the trailing shield.
1	13.	A magnetic head structure as recited in claim 12, wherein a throat height of the
2		trailing shield is less than a distance from the ABS end of the probe pole tip to the
3		shaping layer.

- 1 14. A magnetic head structure as recited in claim 12, wherein a ratio of a distance
- 2 between the probe pole tip and the trailing shield, and a distance between the ABS
- end of the probe pole tip and a writeable layer of the media, is between about 2:1
- 4 and about 1:2.
- 1 15. A magnetic head structure as recited in claim 12, wherein a distance between the
- probe pole tip and the trailing shield is less than about 50 nm.
- 1 16. A magnetic head structure as recited in claim 12, wherein the trailing shield is not
- 2 magnetically continuous to a back gap of the magnetic head.
- 1 17. A magnetic head structure as recited in claim 12, wherein the trailing shield is
- 2 magnetically continuous to a back gap of the magnetic head structure.
- 1 18. A magnetic head structure as recited in claim 12, wherein the return pole is
- 2 stitched to the trailing shield at a position recessed from the ABS.
- 1 19. A magnetic head structure as recited in claim 12, wherein the trailing shield is
- 2 positioned adjacent a mask material, the mask material defining a throat height of
- 3 the trailing shield.

1 20. A magnetic head structure as recited in claim 19, wherein a height of the mask 2 material is greater than a distance from the trailing shield to the ABS. 1 21. A method for forming a head having a trailing shield, comprising: 2 forming a gap layer above a pole; 3 forming a mask above the gap layer; and forming a trailing shield above the gap layer and adjacent the mask, a throat 4 5 height of the trailing shield being defined between the mask. 1 22. A method as recited in claim 21, wherein the pole has a pole tip for writing data to 2 magnetic media via lines of flux emitted from an air bearing surface (ABS) of the pole, the pole also having a shaping layer coupled to the pole tip, the shaping 3 4 layer being for focusing flux to the pole tip. 23. A method as recited in claim 21, wherein the gap layer is a nonmagnetic metal, 1 2 wherein the trailing shield is formed by plating. A method as recited in claim 23, wherein the trailing shield is overplated such that 1 24. 2 the trailing shield covers a portion of the mask.

A method as recited in claim 21, further comprising forming a return pole such

that the trailing shield is positioned between the pole and the return pole.

HIT1P035/HSJ9-2003-0154US1

25.

1

2

1 26. A method as recited in claim 25, wherein the return pole is stitched to the trailing 2 shield. 1 27. A method as recited in claim 21, wherein the mask is not removed from the head. 1 28. A method as recited in claim 21, wherein a height of the mask is greater than a 2 distance from the trailing shield to the ABS. 1 29. A method as recited in claim 21, wherein a throat height of the trailing shield less 2 than a distance from the ABS end of the pole to the shaping layer. 30. 1 A method as recited in claim 21, wherein a ratio of a distance between the pole tip 2 and the trailing shield, and a distance between the ABS end of the pole tip and a 3 writeable layer of the media, is between about 2:1 and about 1:2. 1 31. A method as recited in claim 21, wherein a distance between the pole tip and the 2 trailing shield is less than about 50 nm. 1 32. A magnetic storage system, comprising: 2 magnetic media; 3 at least one head for reading from and writing to the magnetic media, each head 4 having:

5	a write head portion for writing data to the medium via lines of flux
6	oriented substantially perpendicular to a surface of the media
7	facing the write head portion, the write head portion including:
8	a pole tip for writing data to magnetic media via lines of
9	flux emitted from an ABS end of the pole;
10	a shaping layer coupled to the pole tip, the shaping layer
11	being for focusing flux to the pole tip; and
12	a trailing shield spaced apart from the pole, the trailing
13	shield causing the lines of flux to enter the media at
14	an angle from a plane perpendicular to a surface of
15	the media facing the pole;
16	a non-magnetic mask layer which is coplanar to the trailing sheild;
17	a slider for supporting the head; and
18	a control unit coupled to the head for controlling operation of the head.