Fakulta matematiky, fyziky a informatiky Univerzity Komenského, Bratislava

Projekt z lineárneho programovania A04 – Predikcia kvality vína, lineárna regresia pomocou ${\rm L}^1$, ${\rm L}^\infty$

Piati proti optimalizácii Tomáš Antal, 2DAV, 0.2 Erik Božík, 2DAV, 0.2 Róbert Kendereš, 2DAV, 0.2 Teo Pazera, 2DAV, 0.2 Andrej Špitalský, 2DAV, 0.2

Obsah

0	Uvod	2
1	Formulácia úloh lineárneho programovania 1.1 Minimalizovanie L^1 normy	3 3 4 5
2	Implementácia a grafické znázornenie 2.1 Prevedenie úlohy LP do tvaru pre scipy.optimize.linprog 2.2 Implementovanie regresných LP úloh	6 6
3	Predikcia kvality vína	8
4	Úloha D	10
5		11 11 12 12 13
6	Záver a diskusia	14
7	Prehľad kódu	15

0 Úvod

V našej práci sa budeme venovať implementácii lineárnej regresie ako úlohy lineárneho programovania. Lineárna regresia je spôsob odhadovania závislej premennej $y \in \mathbb{R}^n$ ako afinnej kombinácie nezávislých premenných $x_1,\ldots,x_k \in \mathbb{R}^n$. Môžeme to interpretovať ako n pozorovaní, kde pre každé pozorovanie sledujeme k atribútov a pomocou nich sa budeme snažiť čo najlepšie predikovať atribút y.

Na meranie vzdialenosti medzi vektorom y a afinnej kombinácie budeme moužívať L^1 a L^∞ normy, keďže práve pre tie sa dá tento problém naformulovať ako LP úloha. V kapitole 1 sa venujeme matematickej formulácii LP úlohy a dokazovaniu jej optimality. V kapitole 2 vizualizujeme funkčnosť modelu na arbitrárnych 2D dátach ${\tt A04plotregres.npz}$. Následne, v kapitole 3 sa venujeme predikovaniu ceny vína podľa dátového súboru ${\tt A04wine.csv}$. Pre tieto predikcie následne spočítame koeficient determinácie v 4. Na záver, sekcia 5 popisuje našu implementáciu L^1 a L^∞ regresii pre ľubovoľné dáta v programovacom jazyku ${\tt Python}$. Tiež sa tam venujeme porovnávaniu správania takýchto regresii a formulácii a implementácii minimalizovania váženej sumy týchto noriem.

1 Formulácia úloh lineárneho programovania

Máme dané vektory y, x_1, x_2, \ldots, x_k . Chceme nájsť parametre $\beta_0, \beta_1, \ldots, \beta_k$ také, ktoré pre vektor $\hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$ minimalizujú normu $||y - \hat{y}||_1$, resp. normu $||y - \hat{y}||_{\infty}$. Vyjadrime vektor \hat{y} ako súčin matice a vektora $\beta = (\beta_0, \beta_1, \ldots, \beta_k)^T$.

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = \begin{pmatrix} | & | & | & | \\ \mathbf{1}_n & x_1 & x_2 & \dots & x_k \\ | & | & | & | \end{pmatrix} \beta =: \mathbf{A}\beta$$

1.1 Minimalizovanie L^1 normy

Prevedieme problém zo zadania do tvaru:

$$\min c^T x$$
$$Ax > b$$

Zaveď me si nový vektor premenných $t \in \mathbb{R}^n$, ktorým ohraničíme vektor $y - \mathbf{A}\beta$. Úloha sa teda z minimalizovania normy $||y - \mathbf{A}\beta||_1$ prevedie na minimalizáciu $\mathbf{1}_n^T t$.

$$-t \le y - \mathbf{A}\beta \le t$$

Pre obe ohraničenia, odseparujme premenné od konštánt a prevedieme do maticového tvaru.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge -y$$

Minimalizovanie ${\cal L}^1$ normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & \mathbf{1}_{n}^{T} \end{array} \right) \left(\frac{\beta}{t} \right) \\ \left(\frac{\mathbf{A}}{-\mathbf{A}} & \mathbb{I}_{n} \end{array} \right) \left(\frac{\beta}{t} \right) \geq \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ t \geq \mathbf{0}_{n}$$
 (1)

1.1.1 Prípustnosť a optimalita

Dokážme, že (1) je úloha, ktorá nadobúda optimálne riešenie pre ľubovoľné vektory y, x_1, x_2, \ldots, x_k . Nech $|y| := (|y_1|, |y_2|, \ldots, |y_n|)^T$ pre $y = (y_1, y_2, \ldots, y_n)^T$. Ukážme prípustnosť zvolením $\beta = \mathbf{0}_{k+1}$ a t = |y|:

$$\left(\begin{array}{c|c} \mathbf{A} & \mathbb{I}_n \\ \hline -\mathbf{A} & \mathbb{I}_n \end{array}\right) \left(\begin{array}{c} \mathbf{0}_{k+1} \\ \hline |y| \end{array}\right) = \left(\begin{array}{c} |y| \\ \hline |y| \end{array}\right) \ge \left(\begin{array}{c} y \\ \hline -y \end{array}\right)$$
$$|y| \ge \mathbf{0}_n$$

Vidíme, že obe ohraničenia platia, čiže $\left(\mathbf{0}_{k+1}^T,|y|^T\right)^T$ je prípustné riešenie.

Optimalitu ukážeme zo slabej duality. Sformulujme duálnu úlohu pre duálne premenné $\alpha_1, \alpha_2 \in \mathbb{R}^n$:

$$\begin{aligned} & \max \; \left(\; y^T \; \middle| \; -y^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\; \mathbf{A}^T \; \middle| \; -\mathbf{A}^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\; \mathbb{I}_n \; \middle| \; \mathbb{I}_n \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq \mathbf{1}_n \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Vidíme, že táto úloha je prípustná pre $\alpha_1=\alpha_2=\mathbf{0}_n$. Z prípustnosti primárnej a duálnej úlohy teda vyplýva, že úloha (1) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.

1.2 Minimalizovanie L^{∞} normy

Budeme používať rovnaké značenie pre predikovaný vektor hodnôt $\hat{y} = \mathbf{A}\beta$ ako pri formulácii L^1 normy. Zaveď me si skalárnu premennú $\gamma \in \mathbb{R}$, vektorom $\gamma \mathbf{1}_n$ ohraničíme vektor $y - \mathbf{A}\beta$. Úloha sa z minimalizácie $||y - \mathbf{A}\beta||_{\infty}$ prevedie na minimalizáciu γ .

$$-\gamma \mathbf{1}_n \le y - \mathbf{A}\beta \le \gamma \mathbf{1}_n$$

Pre jednotlivé ohraničenia odseparujeme premenné od konštánt a zapíšeme v maticovom tvare.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge -y$$

Minimalizovanie L^∞ normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & 1 \end{array} \right) \left(\frac{\beta}{\gamma} \right) \\ \left(\frac{\mathbf{A}}{-\mathbf{A}} & \mathbf{1}_{n} \right) \left(\frac{\beta}{\gamma} \right) \ge \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ \gamma > 0 \end{array} \tag{2}$$

1.2.1 Prípustnosť a optimalita

Podobný spôsobom ako vyššie ukážeme optimalitu (2). Nech $\beta = \mathbf{0}_{k+1}$ a $\gamma = |\tilde{y}|$, kde $|\tilde{y}| := |\max(y_1, y_2, \dots, y_n)|$ pre $y = (y_1, y_2, \dots, y_n)^T$:

$$\left(\begin{array}{c|c}
\mathbf{A} & \mathbf{1}_n \\
-\mathbf{A} & \mathbf{1}_n
\end{array}\right) \left(\begin{array}{c|c}
\mathbf{0}_{k+1} \\
 & |\tilde{y}|
\end{array}\right) = \left(\begin{array}{c|c}
|\tilde{y}|\mathbf{1}_n \\
|\tilde{y}|\mathbf{1}_n
\end{array}\right) \ge \left(\begin{array}{c}
y \\
-y
\end{array}\right)$$

$$|\tilde{y}| \ge 0$$

Obe ohraničenia platia, čiže $(\mathbf{0}_{k+1}^T, |\tilde{y}|)^T$ je prípustné riešenie. Sformulujme duálnu úlohu s duálnymi premennými $\alpha_1, \alpha_2 \in \mathbb{R}^n$:

$$\begin{aligned} & \max \; \left(\; y^T \; \middle| \; -y^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\; \mathbf{A}^T \; \middle| \; -\mathbf{A}^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\; \mathbf{1}_n^T \; \middle| \; \mathbf{1}_n^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq 1 \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Rovnako vidíme, že táto úloha je prípustná pre $\alpha_1=\alpha_2=\mathbf{0}_n$. Teda, zo slabej duality, úloha (2) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.

2 Implementácia a grafické znázornenie

2.1 Prevedenie úlohy LP do tvaru pre scipy.optimize.linprog

Metóda linprog z modulu scipy. optimize vyžaduje nasledujúci tvar úlohy LP:

$$\begin{aligned} \min c^T x \\ A_{ub}x &\leq b_{ub} \\ A_{eq}x &= b_{eq} \\ x &\in [l, u] \end{aligned} \qquad l \leq u; \ l, u \in (\mathbb{R} \cup \{-\infty, \infty\})^n \end{aligned}$$

Hodnotami $-\infty$ a ∞ značíme neohraničenosť v danom smere, v zdrojovom kóde sa obe nahrádzajú hodnotou None. Upravme teda úlohy vyjadrené vyššie do predpísaného tvaru.

Pre L^1 lineárnu regresiu:

$$\begin{aligned} & \min \; \left(\begin{array}{c|c} \mathbf{0}_{k+1}^T \mid \mathbf{1}_n^T \end{array} \right) \left(\frac{\beta}{t} \right) \\ & \left(\frac{-\mathbf{A} \mid -\mathbb{I}_n}{\mathbf{A} \mid -\mathbb{I}_n} \right) \left(\frac{\beta}{t} \right) \leq \left(\frac{-y}{y} \right) \\ & \beta_i \in (-\infty, \infty) \\ & t_j \in [0, \infty) \end{aligned} \qquad i = 0, 1, \dots, k \\ & j = 1, \dots, n \end{aligned}$$

Pre L^{∞} regresiu:

Úlohy v zdrojovom kóde sú implementované práve v tomto tvare.

2.2 Implementovanie regresných LP úloh

Na implementáciu formulovaných LP úloh využívame tri knižnice:

- numpy tvorenie matíc a vektorov, načítanie dát
- scipy.optimize implementovaný LP solver
- matplotlib.pyplot na vykresľovanie grafov.

Dáta relevantné pre túto úlohu sú uložené v súbore $\mathtt{data/A04plotregres.npz}$. Jedná sa o 16 bodov v \mathbb{R}^2 , kde prvá súradnica reprezentuje nezávislú premennú (vektor týchto súradníc označíme x) a druhá závislú premennú (označíme y).

Vytvorme si potrebné štruktúry pre využitie metódy scipy.optimize.linprog pre LP formuláciu s L^1 normou:

Pomocou solvera získame vektor optimálnych β koeficientov:

$$\beta_0^{(1)} \approx -9.8378, \ \beta_1^{(1)} \approx 2.1297$$

Podobne implementujeme L^{∞} formuláciu:

Znovu, pomocou solvera získame vektor optimálnych β koeficientov:

$$\beta_0^{(\infty)} \approx 15.4545, \ \beta_1^{(\infty)} \approx 1.7045$$

Pomocou získaných β koeficientov vykreslíme regresné priamky spolu s pôvodnými dátami.

3 Predikcia kvality vína

V tejto úlohe sa snažíme predikovať kvalitu vína, inšpirovaní prístupom Orleya Ashenfeltera k predikcii cien vína z Bordeaux.

Využívame dáta zo súboru ${\tt A04wine.csv}$ a aplikujeme modely L^1 a L^∞ z úlohy A. Budeme využívať podobný postup ako v úlohe B. Na implementáciu formulovaných LP úloh využívame:

- pandas načítanie dát z csv súboru
- numpy tvorenie matíc a vektorov
- scipy.optimize implementovaný LP solver

Vyberieme z dát dané nezávislé premenné x a závislú premennú y:

```
y = data['Price']
x = data[['WinterRain','AGST', 'HarvestRain', 'Age', 'FrancePop']]
```

Z počtu nezávislých premenných získame rozmer vektora β (+1 kvôli konštantnému členu):

```
numberOfVariablesBeta = x.shape[1] + 1
```

Vytvoríme potrebné štruktúry pre zostavenie modelu normy L^1 :

Naformulujeme problém a vyriešime pomocou scipy.optimize.linprog

Po vyriešení vyberieme z riešenia koeficienty:

```
betas = solve.x[:numberOfVariablesBeta]
```

Čo nám dá:

```
\beta_0^{(1)} \approx -8.8801 \cdot 10^{-1}, \ \beta_1^{(1)} \approx 1.5793 \cdot 10^{-3}, \ \beta_2^{(1)} \approx 5.2130 \cdot 10^{-1}\beta_3^{(1)} \approx -4.5137 \cdot 10^{-3}, \ \beta_4^{(1)} \approx 1.1300 \cdot 10^{-2}, \ \beta_5^{(1)} \approx -2.2111 \cdot 10^{-5}
```

Z týchto výsledkov môžeme usúdiť, že najviac pozitívne vplýva na cenu vína metrika AGST - Average growing season temperature a najsignifikantnejší negatívny vplyv má dážď počas zberu.

Ďalej zostrojíme relevantné štruktúry a naformulujeme LP pre L^{∞} normu:

Vyriešime aj tento problém pomocou scipy.optimize.linprog() pre L^{∞} normu a vyberieme β koeficienty:

Po čom dostaneme:

$$\beta_0^{(\infty)} \approx 3.4841, \ \beta_1^{(\infty)} \approx 8.3399 \cdot 10^{-4}, \ \beta_2^{(\infty)} \approx 6.0027 \cdot 10^{-1}$$
$$\beta_3^{(\infty)} \approx -3.3416 \cdot 10^{-3}, \ \beta_4^{(\infty)} \approx -2.3036 \cdot 10^{-2}, \ \beta_5^{(\infty)} \approx -1.1958 \cdot 10^{-4}$$

Vidíme, že aj regresia pomocou L^{∞} normy odhaduje najväčší pozitívny vplyv meetriky AGST a najväčší negatívny vplyv dažďu počas zberu. Zmenil sa však vplyv premennej vek (oproti prechádzajúcemu modelu) z pozitívneho na negatívny.

4 Úloha D

Vytvorme funkciu $r_{squared}(x, y, beta)$ - kde x je matica vektorov nezávislých premenných, y je vektor závislej premennej, beta je vektor optimálnych β koeficientov získaných regresiou - ktorá bude počítať R^2 koeficient podľa definície:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \qquad \hat{y} = \beta_{0} + \beta_{1} x_{1} + \dots + \beta_{k} x_{k}, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

```
def r_squared(x: np.ndarray, y: np.ndarray, beta: np.ndarray) -> float:
    # calculate y-hat and mean of y vector
    y_hat = beta[0] + np.dot(x, beta[1:])
    y_mean = np.mean(y)

res1 = 0  # partial result for the numerator in the formula
    res2 = 0  # partial result for the denominator in the formula

# calculate the sums
for i in range(len(y)):
    res1 += (y[i] - y_hat[i]) ** 2
    res2 += (y[i] - y_mean) ** 2

# calculate the R^2 coefficient
    result = 1 - (res1 / res2)
    return result
```

Implementujeme metódu na dátach A04wine.csv. Načítame dáta pomocou pandas. read_csv(), rozdelíme ich do premenných (rovnako ako v predošlých úlohách):

```
data = pd.read_csv('data/A04wine.csv')
y = data['Price']
x = data[['WinterRain', 'AGST', 'HarvestRain', 'Age', 'FrancePop']]
```

Podobne ako vyššie, vyriešime potrebné LP problémy pre načítané dáta a vypočítame \mathbb{R}^2 koeficient:

```
betas = solve.x[:numberOfVariablesBeta]
betas_inf = solve_inf.x[:numberOfVariablesBeta]

r_squared(x, y, betas)
r_squared(x, y, betas_inf)
```

Vypočítané príslušné R-kvadráty teda sú:

$$R_{(1)}^2 \approx 0.78813$$

 $R_{(\infty)}^2 \approx 0.80649$

Z toho môžeme usúdiť, že náš model sa dá považovať za relatívne vhodný pre tieto dáta. Tiež vidíme, že regresia pomocou Chebyshevovej normy lepšie zachytáva rozptyl dát.

5 Úloha E

5.1 Spracovanie všeobecnej triedy pre L^1 a L^{∞} regresiu

Vypracovali sme modul \mathtt{Model} pre počítanie L^1 a L^∞ regresie z ľubovoľných číselných dát, ktorý využíva LP formulácie popísané vyššie. Konkrétne L1 \mathtt{Model} využíva formuláciu na minimalizovanie L^1 normy a LInf \mathtt{Model} minimalizuje L^∞ normu. Príklad použitia tohto modelu sa nachádza v $\mathtt{model_demonstration.ipynb}$ Následne opíšeme jednotlivé metódy jednotlivých modelov.

```
Model.__init__(dependent_vect, independent_vect)
```

Konštruktor triedy, spoločný pre oba modely, vytvorí inštanciu, ktorá si drží dáta a vie na nich vykonávať operácie popísané nižšie.

Argumenty:

- dependent_vect: np.ndarray vektor závislých premenných
- independent_vect:np.ndarray matica, ktorej riadky sú vektory nezávislých premenných

```
Model.solve()
```

Metóda, ktorá vyrieši regresnú LP úlohu na daných dátach. L1Model.solve() rieši minimalizáciou L^1 normy a LInfModel.solve(), rieši minimalizáciou L^∞ normy.

Vracia:

• np.ndarray - vektor optimálnych β premenných

Po zavolaní tejto metódy si inštancia uloží vektor optimálnych β premenných do atribútu self._beta, potrebné pre metódy popísané nižšie.

```
Model.r2()
```

Vypočíta R^2 koeficient pre dané dáta a vypočítaný vektor β . Vracia:

float - výsledný R² koeficient

```
Model.visualize()
```

Ak je počet nezávislých premenných 1 alebo 2, táto metóda vykreslí graf dát spolu s vypočítanou regresnou priamkou, resp. rovinou.

Vracia:

• bool - úspešnosť vizualizácie, kde False označuje, že nezávislých premenných je viac ako 2, čiže nie je možné vykresliť graf

5.2 Porovnanie použitia L^1 a L^∞ lineárnej regresie

Nasledujúce tvrdenia popisujú len naše pozorovania správania sa jednotlivých lineárnych regresii na generovaných dátach

Vyššie v sekcii 1 sme ukázali, že implementácie lineárnej regresie pomocou merania vzdialenost L^1 a L^∞ normou majú optimálne riešenie, pre ľubovoľné vstupné dáta. Snažili sme sa odpozorovať, ako sa jednotlivé prístupy odlišujú pre nejaké konkrétne dáta.

V dátach, v ktorých je výrazná lineárna závislosť, minimalizovanie L^1 normy veľmi dobre zachytáva práve tento lineárny vzťah, aj v prítomnosti odľahlých dát - outlierov. Toto správanie vie ale viesť aj k tzv. *overfittingu*. Model príliš tesne zachytáva takéto správanie, čo môže viesť k horším odhadom pre budúce pozorovania.

Na druhej strane minimalizovanie L^∞ normy je veľmi ovplyvňované outliermi. Aj pre "jasne" lineárne dáta s nejakými chybnými pozorovaniami, tieto dátové body výrazne odklonia regresnú priamku/nadrovinu.

5.2.1 Minimalizácia váženého súčtu

Toto správanie L^{∞} lineárnej regresie môžeme využiť na zníženie overfittingu L^1 lineárnej regresie. Jeden z možných prístupov môže byť napríklad pomocou minimalizácie váženej sumy $\omega ||y-\hat{y}||_1 + (1-\omega)||y-\hat{y}||_{\infty}, \ \omega \in [0;1].$ Formulovaná LP úloha vyzerá nasledovne (značenie sme prebrali z (1) a (2)):

$$\begin{aligned} & \min \; \left(\begin{array}{c|c} \mathbf{0}_{k+1}^T \mid \omega \mathbf{1}_n^T \mid (1-\omega) \end{array} \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right) \\ & \left(\frac{\mathbf{A}}{-\mathbf{A}} \mid \mathbf{I}_n \mid \mathbf{0}_n \\ \hline \mathbf{A} \mid \mathbf{0}_{n \times n} \mid \mathbf{1}_n \\ \hline -\mathbf{A} \mid \mathbf{0}_{n \times n} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right) \geq \left(\frac{y}{\frac{y}{-y}} \right) \\ & \beta \in \mathbb{R}^{k+1}, \; t \geq \mathbf{0}_n, \; \gamma \geq 0 \end{aligned}$$

Podobným spôsobom ukážeme, že táto úloha nadobúda optimálne riešenie. Sformulujme duálnu úlohu:

$$\begin{aligned} & \mathsf{Nech} \; \alpha = \left(\frac{\alpha_1}{\alpha_2} \over \frac{\alpha_3}{\alpha_4} \right), \; \alpha_{1,2,3,4} \in \mathbb{R}^n \\ & \mathsf{max} \; \left(\begin{array}{c} y^T \mid -y^T \mid y^T \mid -y^T \end{array} \right) \alpha \\ & \left(\begin{array}{c} \mathbf{A}^T \mid -\mathbf{A}^T \mid \mathbf{A}^T \mid -\mathbf{A}^T \end{array} \right) \alpha = \mathbf{0}_{k+1} \\ & \left(\begin{array}{c} \mathbb{I}_n \mid \mathbb{I}_n \mid \mathbf{0}_{n \times n} \mid \mathbf{0}_{n \times n} \end{array} \right) \alpha \leq \omega \mathbf{1}_n \\ & \left(\begin{array}{c} \mathbf{0}_n^T \mid \mathbf{0}_n^T \mid \mathbf{1}_n^T \mid \mathbf{1}_n^T \end{array} \right) \alpha \leq 1 - \omega \\ & \alpha > \mathbf{0}_{4n} \end{aligned}$$

Vidíme, že primárna úloha je prípustná pre $\beta=\mathbf{0}_{k+1},\ t=|y|,\ \gamma=|\hat{y}|$ (využitím značenia ako v 1.1.1 a 1.2.1) a duálna úloha je prípustná pre $\alpha=\mathbf{0}_{4n}$, teda zo silnej duality obe riešenia nadobúdajú optimálne riešenie.

5.2.2 Implementácia WeightedL1LInfModel

Takáto lineárna regresia je implementovaná v triede WeightedL1LInfModel. Jej používanie je rovnaké ako pri predchádzajúcich implementáciách. Jediná zmena je pre metódu WeightedL1LInfModel.solve(omega), ktorá teraz očakáva parameter omega: float v intervale [0;1].

Porovnanie správania sa jednotlivých regresii, prvé tri grafy zobrazujú rovnaké lineárne dáta s jedným outlierom

6 Záver a diskusia

V našom projekte sme sa venovali matematickej formulácii a implementácii lineárnej regresie minimalizovaním L^1 a L^∞ noriem. Vizualizovali sme funkčnosť implementácie na dátach A04plotregres.npz a pre dáta A04wine.csv sme regresiou predikovali budúcu cenu vína a zisťovali sme, ktoré parametre na ňu najviac vplývajú. Takisto sme pre túto predikciu spočítali R^2 koeficient, ktorý ukázal relatívnu vhodnosť nášho modelu. Nakoniec sme predstavili implementáciu týchto regresných modelov v jazyku Python pre ľubovoľné číselné dáta a mierne sme analyzovali správanie sa jednotlivých modelov. Nakoniec sme aj sformulovali a implementovali model pre minimalizovanie váženej sumy noriem.

Myslíme si, že naše modely sú jednoduchým nástrojom pre počítanie lineárnej regresie. Ich výhody oproti klasickej L^2 lineárnej regresii spočívajú aj v ich robustnosti, čiže odľahlé dáta v nich majú menšiu váhu. Ako ďalšie pokračovanie projektu by sme mohli skúmať charakteristiky jednotlivých modelov a zistiť, pre aké dáta je lepšie použiť jednotlivé normy. Tiež by sme sa mohli zaoberať ich časovou komplexitou (napríklad aj v porovnaní s L^2 lineárnou regresiou) a všeobecnou interpretáciou výsledných β koeficientov pre oba prístupy.

7 Prehľad kódu