The order of this document:

- EDA
 - Financial Data
 - Student static data
 - Student progress data
- Comprehensive report of data analysis and predictive modeling along with the code documentation

Notes:

- This project was done using Python Data Science libraries
- The EDA was performed using Pandas-Profiling which does the entire process automatically.
- I have included the complete EDA results in HTML format inside the EDA folder. You can open it with any browser
- The Python codes are included so that you can execute them in Jupyter notebook
- To test your own set of Student IDs and verify my model, please read the instructions that I have provided on the first page after the EDA figures.

Overview

StudentID

Real number (R≥0)

Distinct	13767
Distinct (%)	> 99.9%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	317095.175
Minimum	20932
Maximum	364184
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

cohort

Categorical

Distinct	6
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	107.6 KiB

2016-17	2528	
2015-16	2351	
2011-12	2302	
2012-13	2267	
2014-15	2244	

Toggle details

cohort term

Categorical

Marital Status

Categorical

MISSING

Distinct	4
Distinct (%)	< 0.1%
Missing	2154
Missing (%)	15.6%
Memory size	107.6 KiB

Toggle details

Adjusted Gross Income

Real number (R)

MISSING

SKEWED ZEROS

Distinct	5859
Distinct (%)	50.4%
Missing	2154
Missing (%)	15.6%
Infinite	0
Infinite (%)	0.0%

Mean	13124.92363
Minimum	-24326
Maximum	2576425
Zeros	5178
Zeros (%)	37.6%
Memory size	107.6 KiB

Toggle details

Parent Adjusted Gross Income

Real number (R)

MISSING ZEROS

Distinct	6053
Distinct (%)	52.1%
Missing	2154
Missing (%)	15.6%
Infinite	0
Infinite (%)	0.0%

Mean	28101.52165
Minimum	-62979
Maximum	657631
Zeros	5145
Zeros (%)	37.4%
Memory size	107.6 KiB

Father's Highest Grade Level

Categorical

MISSING

Toggle details

Mother's Highest Grade Level

Categorical

MISSING

Distinct	4
Distinct (%)	< 0.1%
Missing	2520
Missing (%)	18.3%
Memory size	107.6 KiB

Toggle details

Housing

Categorical

MISSING

Distinct	3
Distinct (%)	< 0.1%
Missing	2164
Missing (%)	15.7%
Mamaniaira	407 C IZID

2012 Loan

Real number (R_{≥0})

HIGH CORRELATION
MISSING

Distinct	219
Distinct (%)	17.7%
Missing	12532
Missing (%)	91.0%
Infinite	0
Infinite (%)	0.0%

Mean	7169.025869
Minimum	337
Maximum	55626
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2012 Scholarship

Real number (R_{≥0})

HIGH CORRELATION
MISSING

Distinct	57
Distinct (%)	33.3%
Missing	13598
Missing (%)	98.8%
Infinite	0
Infinite (%)	0.0%

Mean	5224.741813
Minimum	283
Maximum	27631.9
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2012 Work/Study

Real number (R_{≥0})

HIGH CORRELATION MISSING

Distinct	39
Distinct (%)	37.9%
Missing	13666
Missing (%)	99.3%
Infinite	0
Infinite (%)	0.0%

1872.995146
200
3000
0
0.0%
107.6 KiB

2012 Grant

Real number (R_{≥0})

MISSING

Distinct	450
Distinct (%)	33.2%
Missing	12415
Missing (%)	90.2%
Infinite	0
Infinite (%)	0.0%

Mean	6660.931617
Minimum	79.09
Maximum	13263
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2013 Loan

Real number (R≥0)

MISSING

Distinct	339
Distinct (%)	15.5%
Missing	11582
Missing (%)	84.1%
Infinite	0
Infinite (%)	0.0%

Mean	7156.096278
Minimum	103
Maximum	50555
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2013 Scholarship

Real number (R≥0)

HIGH CORRELATION MISSING

Distinct	90
Distinct (%)	29.0%
Missing	13459
Missing (%)	97.7%
Infinite	0
Infinite (%)	0.0%

Mean	4792.646903
Minimum	23
Maximum	28737.1
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

2013 Work/Study

Real number (R_{≥0})

MISSING

Distinct	24
Distinct (%)	13.4%
Missing	13590
Missing (%)	98.7%
Infinite	0
Infinite (%)	0.0%

Mean	2084.268156
Minimum	25
Maximum	4000
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2013 Grant

Real number (R_{≥0})

MISSING

Distinct	629
Distinct (%)	27.1%
Missing	11450
Missing (%)	83.2%
Infinite	0
Infinite (%)	0.0%

Mean	7094.158098
Minimum	162
Maximum	13790
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2014 Loan

Real number (R_{≥0})

MISSING

Distinct	510
Distinct (%)	18.6%
Missing	11028
Missing (%)	80.1%
Infinite	0
Infinite (%)	0.0%

Mean	7279.854064
Minimum	128
Maximum	49845
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

2014 Scholarship

Real number (R_{≥0})

HIGH CORRELATION
MISSING

Distinct	109
Distinct (%)	26.2%
Missing	13353
Missing (%)	97.0%
Infinite	0
Infinite (%)	0.0%

Mean	4998.862332
Minimum	100
Maximum	38850.57
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2014 Work/Study

Real number (R≥0)

MISSING

Distinct	44
Distinct (%)	18.1%
Missing	13526
Missing (%)	98.2%
Infinite	0
Infinite (%)	0.0%

Mean	1932.888889
Minimum	70
Maximum	3300
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2014 Grant

Real number (R≥0)

MISSING

Distinct	856
Distinct (%)	29.2%
Missing	10840
Missing (%)	78.7%
Infinite	0
Infinite (%)	0.0%

Mean	7208.105896
Minimum	97.24
Maximum	14001
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

2015 Loan

Real number (R_{≥0})

MISSING

Distinct	566
Distinct (%)	18.6%
Missing	10718
Missing (%)	77.8%
Infinite	0
Infinite (%)	0.0%

Mean	7240.876106
Minimum	25
Maximum	47824
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2015 Scholarship

Real number (R_{≥0})

HIGH CORRELATION MISSING

Distinct	141
Distinct (%)	23.7%
Missing	13174
Missing (%)	95.7%
Infinite	0
Infinite (%)	0.0%

Mean	4754.907479
Minimum	200
Maximum	30477.91
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2015 Work/Study

Real number (R≥0)

HIGH CORRELATION MISSING

Distinct	71
Distinct (%)	28.5%
Missing	13520
Missing (%)	98.2%
Infinite	0
Infinite (%)	0.0%

Mean	2127.195783
Minimum	10
Maximum	4600
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

2015 Grant

Real number (R≥0)

MISSING

Distinct	917
Distinct (%)	26.9%
Missing	10365
Missing (%)	75.3%
Infinite	0
Infinite (%)	0.0%

Mean	7369.863796
Minimum	209
Maximum	19038
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2016 Loan

Real number (R_{≥0})

MISSING

Distinct	574
Distinct (%)	18.1%
Missing	10594
Missing (%)	76.9%
Infinite	0
Infinite (%)	0.0%

Mean	7625.026822
Minimum	103
Maximum	52880
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2016 Scholarship

Real number (R_{≥0})

MISSING

Distinct	159
Distinct (%)	23.2%
Missing	13084
Missing (%)	95.0%
Infinite	0
Infinite (%)	0.0%

Mean	4897.317679
Minimum	28.3
Maximum	31265.5
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

2016 Work/Study

Real number (R_{≥0})

MISSING

Distinct	46
Distinct (%)	16.9%
Missing	13497
Missing (%)	98.0%
Infinite	0
Infinite (%)	0.0%

Mean	2036.352941
Minimum	75
Maximum	4000
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2016 Grant

Real number (R≥0)

MISSING

Distinct	1094
Distinct (%)	29.6%
Missing	10075
Missing (%)	73.2%
Infinite	0
Infinite (%)	0.0%

Mean	7458.963519
Minimum	9.69
Maximum	18505
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2017 Loan

Real number (R_{≥0})

HIGH CORRELATION MISSING

Distinct	690
Distinct (%)	20.8%
Missing	10445
Missing (%)	75.9%
Infinite	0
Infinite (%)	0.0%

8256.243983
103
60118
0
0.0%
107.6 KiB

2017 Scholarship

Real number (R_{≥0})

HIGH CORRELATION MISSING

Distinct	230
Distinct (%)	23.4%
Missing	12784
Missing (%)	92.8%
Infinite	0
Infinite (%)	0.0%

Mean	5024.025198
Minimum	100
Maximum	33847.9
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2017 Work/Study

Real number (R_{≥0})

HIGH CORRELATION
MISSING

Distinct	39
Distinct (%)	10.6%
Missing	13402
Missing (%)	97.3%
Infinite	0
Infinite (%)	0.0%

Mean	1928.544441
Minimum	45
Maximum	3000
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Toggle details

2017 Grant

Real number (R≥0)

MISSING

Distinct	1104
Distinct (%)	27.3%
Missing	9732
Missing (%)	70.7%
Infinite	0
Infinite (%)	0.0%

Mean	7794.156061
Minimum	0.1
Maximum	19823
Zeros	0
Zeros (%)	0.0%
Memory size	107.6 KiB

Missing values

Overview

StudentID

Real number (R≥0)

UNIQUE

Distinct	13261
Distinct (%)	100.0%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	316150.6113
Minimum	20932
Maximum	359783
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

Toggle details

Cohort

Categorical

Distinct	6
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

2015-16	2351
2011-12	2302
2012-13	2267
2014-15	2244
2013-14	2077

Toggle details

CohortTerm

Categorical

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Campus

Unsupported

MISSING REJECTED

UNSUPPORTED

Missing	13261
Missing (%)	100.0%
Memory size	103.7 KiB

Address1

Categorical

HIGH CARDINALITY UNIFORM

Distinct	12703
Distinct (%)	96.6%
Missing	113
Missing (%)	0.9%
Memory size	103.6 KiB

Toggle details

Address2

Categorical

HIGH CARDINALITY MISSING

Distinct	290
Distinct (%)	74.6%
Missing	12872
Missing (%)	97.1%
Memory size	103.6 KiB

City Categorical

HIGH CARDINALITY

Distinct	676
Distinct (%)	5.1%
Missing	114
Missing (%)	0.9%
Memory size	103.6 KiB

Toggle details

State Categorical

Distinct	39
Distinct (%)	0.3%
Missing	113
Missing (%)	0.9%
Memory size	103.6 KiB

NJ 12840

NY 128

FL 31

CA 18

MD 16

Other values (34) | 115

Toggle details

Zip

Real number (R≥0)

MISSING

Distinct	662
Distinct (%)	5.0%
Missing	134
Missing (%)	1.0%
Infinite	0
Infinite (%)	0.0%

Mean	7790.287042
Minimum	747
Maximum	98118
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

RegistrationDate

Real number (R≥0)

Distinct	1045
Distinct (%)	7.9%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	20136109.45
Minimum	20110111
Maximum	20160912
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

oggle details

Gender

Categorical

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

BirthYear

Real number $(\mathbb{R}_{\geq 0})$

Distinct	55
Distinct (%)	0.4%
Missing	1
Missing (%)	< 0.1%
Infinite	0
Infinite (%)	0.0%

Mean	1988.916591
Minimum	1945
Maximum	2000
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

BirthMonth

Real number (R≥0)

Distinct	12
Distinct (%)	0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	6.580876254
Minimum	1
Maximum	12
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

Toggle details

Hispanic

Categorical

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

AmericanIndian

Categorical

HIGH CORRELATION

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Asian

Categorical

Toggle details

Black

Categorical

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

NativeHawaiian

Categorical

HIGH CORRELATION

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

White

Categorical

Toggle details

TwoOrMoreRace

Categorical

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

HSDip Catagoria

Categorical

Distinct	4
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

HSDipYr

Real number (R)

Distinct	39
Distinct (%)	0.3%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	557.8221854
Minimum	-1
Maximum	2016
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

Toggle details

HSGPAUnwtd

Real number (R)

Distinct	214
Distinct (%)	1.6%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	0.1624319433
Minimum	-1
Maximum	4
Zeros	0
Zeros (%)	0.0%
Memory size	103.6 KiB

Toggle details

HSGPAWtd

Categorical

CONSTANT

Distinct	1
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

-1

13261

0.0%

103.6 KiB

Missing (%)

Memory size

Toggle details

Toggle details

HighDeg

Categorical

Toggle details

MathPlacement

Categorical

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

EngPlacement

Categorical

Distinct	3
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

GatewayMathStatus

Boolean

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Toggle details

GatewayEnglishStatus Boolean

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	103.6 KiB

Overview

Dataset statistics		Variable types	
Number of variables	17	CAT	10
Number of observations	57945	NUM	6
Missing cells	0	BOOL	1
Missing cells (%)	0.0%		
Duplicate rows	0		
Duplicate rows (%)	0.0%		
Total size in memory	7.5 MiB		
Average record size in memory	136.0 B		

StudentID

Real number (R_{≥0})

Distinct	13767
Distinct (%)	23.8%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	310884.0867
Minimum	20932
Maximum	364184
Zeros	0
Zeros (%)	0.0%
Memory size	452.7 KiB

Toggle details

Cohort

Categorical

Distinct	6
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

Toggle details

CohortTerm

Categorical

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

Term

Categorical

Toggle details

AcademicYear

Categorical

Distinct	6
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

Toggle details

CompleteDevMath

Categorical

Distinct	4
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

CompleteDevEnglish

Categorical

Distinct	4
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

Toggle details

Major1

Real number (R)

ZEROS

Distinct	41
Distinct (%)	0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	36.86532498
Minimum	-1
Maximum	54.0101
Zeros	5341
Zeros (%)	9.2%
Memory size	452.7 KiB

Toggle details

Major2

Real number (R)

Distinct	30
Distinct (%)	0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	0.188326998
Minimum	-1
Maximum	54.0101
Zeros	0
Zeros (%)	0.0%
Memory size	452.7 KiB

Complete1

Categorical

HIGH CORRELATION

Toggle details

Complete2

Boolean

CONSTANT REJECTED

Distinct	1
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	452.7 KiB

0 57945

Toggle details

CompleteCIP1

Real number (R)

HIGH CORRELATION

Distinct	32
Distinct (%)	0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	1.017689335
Minimum	-2
Maximum	54.0101
Zeros	0
Zeros (%)	0.0%
Memory size	452.7 KiB

TermGPA

Real number (R≥0)

ZEROS

Distinct	382
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	2.893633273
Minimum	0
Maximum	4
Zeros	3339
Zeros (%)	5.8%
Memory size	452.7 KiB

Toggle details

CumGPA

Real number (R≥0)

ZEROS

Distinct	395
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	2.973698162
Minimum	0
Maximum	4
Zeros	1018
Zeros (%)	1.8%
Memory size	452.7 KiB

DataAnalysisCode_MJ_Sarfi

November 30, 2020

This code implements several different types of Machine Learning models, after cleaning the provided data sets, to perform a binary classification. The outcome of the code is a model with a reasonable accuracy that predicts whether a student will drop out or not given their student ID.

For Promazo evaluator: In order to test your own set of StudentIDs to verify my model, please insert your list of StudentIDs in this .*csv file:

'Student Dropout Prediction Data/Test Data/test_student_IDs.csv'

The final outcome of the model will be saved in:

'Student Dropout Prediction Data/Test Data/FinalOutcome.csv'

It will have the same format as the sample submission file that you provided.

```
[31]: # importing all the essential libraries and ML packages
      import os
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      from matplotlib.ticker import StrMethodFormatter
      import seaborn as sns
      from random import sample
      from sklearn.linear model import LogisticRegression
      from sklearn import tree
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.svm import SVC
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.naive_bayes import GaussianNB
      from sklearn import metrics
      from IPython.display import Image
      from sklearn.feature_selection import SelectKBest
      from sklearn.feature_selection import f_classif
      from sklearn.feature_selection import mutual_info_classif
      from sklearn.model_selection import train_test_split,_

→StratifiedKFold, cross_val_score

      from sklearn.metrics import classification_report, accuracy_score, __
       →confusion_matrix
```

0.1 Importing the Data and cleaning it

```
[32]: # First, import the financial data provided by Promazo
      # please note that I spotted some inconsistencies between the names of these \Box
      → three columns in the financial
      # dataset and the other data sets. ['ID with leading', 'cohort term', 'cohort'].
      → So, I had to rename them.
      financialData = pd.read_csv('Student Dropout Prediction Data/Student Financial_
      →Aid Data/2011-2017_Cohorts_Financial_Aid_and_Fafsa_Data.csv')
      financialData = financialData.rename(columns={'ID with leading': 'StudentID'})
      financialData = financialData.rename(columns={'cohort term': 'CohortTerm'})
      financialData = financialData.rename(columns={'cohort': 'Cohort'})
[33]: # Now, let's import the student static data that is stored in multiple files
      directory = 'Student Dropout Prediction Data/Student Static Data/'
      stFall2011 = pd.read_csv(directory + 'Fall 2011_ST.csv')
      stFall2012 = pd.read_csv(directory + 'Fall 2012.csv')
      stFall2013 = pd.read_csv(directory + 'Fall 2013.csv')
      stFall2014 = pd.read csv(directory + 'Fall 2014.csv')
      stFall2015 = pd.read_csv(directory + 'Fall 2015.csv')
      stFall2016 = pd.read_csv(directory + 'Fall 2016.csv')
      stSpring2012 = pd.read_csv(directory + 'Spring 2012_ST.csv')
      stSpring2013 = pd.read csv(directory + 'Spring 2013.csv')
      stSpring2014 = pd.read_csv(directory + 'Spring 2014.csv')
      stSpring2015 = pd.read_csv(directory + 'Spring 2015.csv')
      stSpring2016 = pd.read_csv(directory + 'Spring 2016.csv')
[34]: # Then, we import the student progress data that is stored in multiple files
      directory = 'Student Dropout Prediction Data/Student Progress Data/'
      spFall2011 = pd.read csv(directory + 'Fall 2011 SP.csv')
      spFall2012 = pd.read_csv(directory + 'Fall 2012_SP.csv')
      spFall2013 = pd.read_csv(directory + 'Fall 2013_SP.csv')
      spFall2014 = pd.read_csv(directory + 'Fall 2014_SP.csv')
      spFall2015 = pd.read_csv(directory + 'Fall 2015_SP.csv')
      spFall2016 = pd.read_csv(directory + 'Fall 2016_SP.csv')
      spSpring2012 = pd.read_csv(directory + 'Spring 2012_SP.csv')
      spSpring2013 = pd.read_csv(directory + 'Spring 2013_SP.csv')
      spSpring2014 = pd.read_csv(directory + 'Spring 2014_SP.csv')
      spSpring2015 = pd.read_csv(directory + 'Spring 2015_SP.csv')
      spSpring2016 = pd.read_csv(directory + 'Spring 2016_SP.csv')
      spSpring2017 = pd.read_csv(directory + 'Spring 2017_SP.csv')
      spSum2012 = pd.read_csv(directory + 'Sum 2012.csv')
      spSum2013 = pd.read csv(directory + 'Sum 2013.csv')
      spSum2014 = pd.read_csv(directory + 'Sum 2014.csv')
```

```
spSum2015 = pd.read_csv(directory + 'Sum 2015.csv')
spSum2016 = pd.read_csv(directory + 'Sum 2016.csv')
spSum2017 = pd.read_csv(directory + 'Sum 2017.csv')
```

```
[35]: # importing the student IDs that were provided by Promazo in order to be used 

→ for model training

# these IDs will be used to extract the relevant data for training

TrainLabels = pd.read_csv('Student Dropout Prediction Data/DropoutTrainLabels.

→ csv')
```

Then, I concatenate multiple pieces of student static and progress data to create one dataframes for each. This will make the future steps easier

```
[36]: studentStaticData = pd.concat([stFall2011, stFall2012, stFall2013, stFall2014, ustFall2015, stFall2016, stSpring2012, stSpring2013, stSpring2014, ustSpring2015, stSpring2016], ignore_index=True)
```

```
[37]: studentProgressData = pd.concat([spFall2011, spFall2012, spFall2013, u spFall2014, spFall2015, spFall2016, spSpring2012, spSpring2013, u spSpring2014, spSpring2015, spSpring2016, spSpring2017, spSum2012, u spSum2013, spSum2014, spSum2015, spSum2016, spSum2017], ignore_index=True)
```

0.1.1 Imputing the missing values in each data set

The exploratory data analysis shows that there are many missing values in the financial dataset. Since most of the students are single, I will replace the missing values in the marital status column with "Single". Also, the missing values in the Housing column are replaced with "Off Campus" and the NaN values in the Father and Mother Highest Grade Level are filled with "Unknown". The rest of the missing values in the financial data are related to the loan and grant data which I am going to assume they are all zero.

```
[38]: # After replacing the empty values (missing) in marital status and income with

appropriate entries

# we can securely replace all other missing values with 0. Because the rest are

numbers and not objects

financialData['Marital Status'] = financialData['Marital Status'].

fillna("Single")

financialData['Housing'] = financialData['Housing'].fillna("Off Campus")

financialData["Father's Highest Grade Level"] = financialData["Father's Highest

Grade Level"].fillna("Unknown")

financialData["Mother's Highest Grade Level"] = financialData["Mother's Highest

Grade Level"].fillna("Unknown")
```

```
financialData = financialData.fillna(0)
```

According to the EDA for the student static data, there are NaN values as well as irrelevant data that need to be accounted for as explained in the comments below:

```
[39]: # All campus data is missing for all students -> let's remove the entire campus
      → column not significant
      # All\ values\ of\ HSGPAWtd, FirstGen, DualHSSummerEnroll\ aremissing. will\ drop_{\sqcup}
      \rightarrow the columns
      # 97% of the data from Address2 is missing. Address1 has no correlation with
      ⇒student dropou. let's drop them
      # state - zip code and city are part of the address too. So, we will drop them
      # CumLoanAtEntry is either -1 or -2. remove it entirely
     studentStaticData = studentStaticData.drop(['Campus', 'HSDip', 'HSGPAWtd', __
      'DualHSSummerEnroll', _
      'Address1', 'Address2', 'Zip', ...
      # replace -1 values in HSGPAUnwtd with O
     studentStaticData['HSGPAUnwtd'] = studentStaticData['HSGPAUnwtd'].apply(lambda_
      \rightarrowx: 0 if x==-1 else x)
      # replace missing birth year with the most frequent value (mode)
     studentStaticData['BirthYear'] = studentStaticData['BirthYear'].fillna(1993)
      # negative values of NumColCredAttemptTransfer, NumColCredAcceptTransfer,
      → MathPlacement are replaced with zero
     →studentStaticData['NumColCredAttemptTransfer'].apply(lambda x: 0 if x<0 else_
      →x)
     studentStaticData['NumColCredAcceptTransfer'] =__
      →studentStaticData['NumColCredAcceptTransfer'].apply(lambda x: 0 if x<0 else_
      \hookrightarrow x)
     studentStaticData['MathPlacement'] = studentStaticData['MathPlacement'].
      \rightarrowapply(lambda x: 0 if x<0 else x)
      # Let's put all racial data into one column (Ehtnicity) so that it is easier to_{\sqcup}
      \rightarrowhandle
     studentStaticData['Ethnicity'] = ['Unknown']*len(studentStaticData)
     for i in range(len(studentStaticData)):
         if (studentStaticData['Hispanic'][i] == 1):
              studentStaticData['Ethnicity'][i] = "Hispanic"
         elif (studentStaticData['AmericanIndian'][i] == 1):
              studentStaticData['Ethnicity'][i] = "AmericanIndian"
```

```
elif (studentStaticData['Asian'][i] == 1):
        studentStaticData['Ethnicity'][i] = "Asian"
    elif (studentStaticData['Black'][i] == 1):
        studentStaticData['Ethnicity'][i] = "Black"
    elif (studentStaticData['NativeHawaiian'][i] == 1):
        studentStaticData['Ethnicity'][i] = "NativeHawaiian"
   elif (studentStaticData['White'][i] == 1):
        studentStaticData['Ethnicity'][i] = "White"
    elif (studentStaticData['TwoOrMoreRace'][i] == 1):
        studentStaticData['Ethnicity'][i] = "TwoOrMoreRace"
    else :
        studentStaticData['Ethnicity'][i] = "Unknown"
# Remove all kinds of racial data after incorporating them into Ethnicity
studentStaticData = studentStaticData.drop(['Hispanic', 'AmericanIndian', |
'White', 'TwoOrMoreRace', u

¬"NativeHawaiian"], 1)
```

C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:35:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:25: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:31: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:39: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:37: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:27: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\mjsar\anaconda3\lib\site-packages\ipykernel_launcher.py:33: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

According to the EDA for the student progress data, there are NaN values as well as irrelevant data that need to be accounted for as explained in the comments below:

Now, we need to merge all the input data sets together. The column that joins them all together is the student ID.

```
[41]: # Join student static and student progress data and financial data
static_progressData = pd.merge(studentStaticData, studentProgressData, how = □
→'inner',

on=["StudentID", "Cohort", "CohortTerm"])
static_progress_financialData = pd.merge(financialData, static_progressData,

on=["StudentID", "Cohort",□

→"CohortTerm"], how='inner')
# only use the student IDs that are provided for training. So, let's merge the□
→training labels with
```

Our data contains many columns that have categorical data in form of string or objects, such as marital status. We need to convert this data to a numerical data type because many machine learning models perform poorly with non-numerical categorical data. This process is known as label encoding, which is done using the following function. We will basically associate each Marital status condition, such Single, with an integer.

```
[42]: # objects first need to be converted from object type to category type for
      \rightarrowLabel Encoding
      def label_encoding(inputDF):
          # only perform label encoding on "object" data types not the int/float,
          inputDF['Cohort'] = inputDF['Cohort'].astype('category')
          inputDF['Marital Status'] = inputDF['Marital Status'].astype('category')
          inputDF["Father's Highest Grade Level"] = inputDF["Father's Highest Grade_
       →Level"].astype('category')
          inputDF["Mother's Highest Grade Level"] = inputDF["Mother's Highest Grade,
       →Level"].astype('category')
          inputDF['Housing'] = inputDF['Housing'].astype('category')
          inputDF['AcademicYear'] = inputDF['AcademicYear'].astype('category')
          inputDF['Ethnicity'] = inputDF['Ethnicity'].astype('category')
          inputDF["Cohort"] = inputDF["Cohort"].cat.codes
          inputDF["Marital Status"] = inputDF["Marital Status"].cat.codes
          inputDF["Father's Highest Grade Level"] = inputDF["Father's Highest Grade"]
       →Level"].cat.codes
          inputDF["Mother's Highest Grade Level"] = inputDF["Mother's Highest Grade |
       →Level"].cat.codes
          inputDF["Housing"] = inputDF["Housing"].cat.codes
          inputDF["AcademicYear"] = inputDF["AcademicYear"].cat.codes
          inputDF["Ethnicity"] = inputDF["Ethnicity"].cat.codes
          return inputDF
```

After label encoding the categorical data, we attempt to split the data into train and test portions. Also, the target variable (Dropout) is separated from the input variables.

```
# 75% of data as training and 25% of the data will be used for validating our_

→ML models

X_train, X_test, Y_train, Y_test = train_test_split(X,Y, train_size = 0.75, 
→random_state = 7)
```

0.2 Extracting preliminary insight based on Feature Importance analysis

Feature Selection is the process where you automatically or manually select those features which contribute most to your prediction variable or output in which you are interested in. Having irrelevant features in your data can decrease the accuracy of the models and make your model learn based on irrelevant features.

Because we are dealing with a simple binary classification problem here, we will use univariate feature selection methods. Univariate feature selection works by selecting the best features based on univariate statistical tests. We compare each feature to the target variable, to see whether there is any statistically significant relationship between them. When we analyze the relationship between one feature and the target variable, we ignore the other features. That is why it is called 'univariate'. Each feature has its test score. Finally, all the test scores are compared, and the features with top scores will be selected.

There three main methods for performing Univariate feature selection. One if Chi-square method which works best when both input and the target variables are categorical. Also, all values must be positive. This is not a suitable method for our case clearly. The other methods are 1) ANOVA and 2)Mutual information test. Both of these methods are agnostic with respect to the data type. Hence, I demonstrate results based on both methods here.

```
[44]: # This function performs Mutual information test for feature selection
      def mutual_select_features(X_train, y_train, X_test):
              # configure to select all features
              fs = SelectKBest(score_func=mutual_info_classif, k='all')
              # learn relationship from training data
              fs.fit(X_train, y_train)
              # transform train input data
              X train fs = fs.transform(X train)
              # transform test input data
              X_test_fs = fs.transform(X_test)
              return X_train_fs, X_test_fs, fs
      # This function performs ANOVA method for feature selection
      def ANOVA_select_features(X_train, y_train, X_test):
              # configure to select all features
              fs = SelectKBest(score_func=f_classif, k='all')
              # learn relationship from training data
              fs.fit(X_train, y_train)
              # transform train input data
              X_train_fs = fs.transform(X_train)
              # transform test input data
              X_test_fs = fs.transform(X_test)
```

```
return X_train_fs, X_test_fs, fs
```

ANOVA Feature Selection The feature selection results show a significant correlation between ['Cohot, cumGPA, TermGPA, Academic Year'] and dropping out. On the other hand, parameters such as Marital status and Gender are not that significant.

Mutual information Feature Selection This feature selection backs up the previous results from ANOVA to some extent. For example, GPA and cohort remain important factors.

```
plt.figure(figsize=(20,15))
plt.bar([i for i in range(len(fs.scores_))], fs.scores_)
ax = plt.gca()
ax.set_ylabel('Relative Feature Score', color='black', fontsize=18)
ax.set_title('mutual feature importance method', color='black', fontsize=20,

→fontweight='bold')
ax.set_xticks(np.arange(0, len(X.columns), 1.0))
ax.set_yticks(np.arange(0, 0.22, 0.025))
ax.set_yticklabels(np.arange(0, 0.22, 0.025), color='black', fontsize=15)
plt.gca().yaxis.set_major_formatter(StrMethodFormatter('{x:,.2f}')) # 2 decimal_
→places
```

```
ax.set_xticklabels(list(X.columns.values), rotation='vertical', color='black',⊔

→fontsize=15)
plt.show()
```


0.3 Applying classification ML models

I tested 5 different ML classifiers and evaluated the model performance using the test data.

1) Random forest Classifier

```
[47]: # create the Random forest Classifier

rf = RandomForestClassifier()

rf.fit(X_train, Y_train)

y_pred_rf = rf.predict(X_test)

probs = pd.DataFrame(rf.predict_proba(X_test))
```

```
# print verification metrics data
print('Accuracy\n')
print(accuracy_score(Y_test, y_pred_rf))
print('Confusion Matrix\n')
print(metrics.confusion_matrix(Y_test, y_pred_rf))
print(classification_report(Y_test, y_pred_rf))
# Store metrics
rf accuracy = metrics.accuracy score(Y test, y pred rf)
rf_roc_auc = metrics.roc_auc_score(Y_test, probs[1])
rf_fpr, rf_tpr, _ = metrics.roc_curve(Y_test, probs[1])
rf_confus_matrix = metrics.confusion_matrix(Y_test, y_pred_rf)
rf_classification_report = metrics.classification_report(Y_test, y_pred_rf)
rf_precision = metrics.precision_score(Y_test, y_pred_rf, pos_label=1)
rf_recall = metrics.recall_score(Y_test, y_pred_rf, pos_label=1)
rf_f1 = metrics.f1_score(Y_test, y_pred_rf, pos_label=1)
# Evaluate the model using 10-fold cross-validation
rf_cv_scores = cross_val_score(rf, X_test, Y_test, scoring='precision', cv=10)
rf_cv_mean = np.mean(rf_cv_scores)
```

0.9756834315058148

Confusion Matrix

[[9202 101] [221 3718]]

	precision	recall	f1-score	support
0	0.98	0.99	0.98	9303
1	0.97	0.94	0.96	3939
accuracy			0.98	13242
macro avg	0.98	0.97	0.97	13242
weighted avg	0.98	0.98	0.98	13242

2) Logestic Regression

```
[48]: # create Logestic Regression classifier. I had to increase the max iteration to

→ make it converge

logr = LogisticRegression(solver='lbfgs',max_iter=100000)

logr.fit(X_train,Y_train)

y_pred_logr = logr.predict(X_test)

probs = pd.DataFrame(logr.predict_proba(X_test))

# print verification metrics data
```

```
print('Accuracy\n')
print(accuracy_score(Y_test, y_pred_logr))
print('Confusion Matrix\n')
print(metrics.confusion_matrix(Y_test, y_pred_logr))
print(classification_report(Y_test, y_pred_logr))
# Store metrics
logit_accuracy = metrics.accuracy_score(Y_test, y_pred_logr)
logit_roc_auc = metrics.roc_auc_score(Y_test, probs[1])
logit_fpr, logit_tpr, _ = metrics.roc_curve(Y_test, probs[1])
logit_confus_matrix = metrics.confusion_matrix(Y_test, y_pred_logr)
logit_classification_report = metrics.classification_report(Y_test, y_pred_logr)
logit_precision = metrics.precision_score(Y_test, y_pred_logr, pos_label=1)
logit_recall = metrics.recall_score(Y_test, y_pred_logr, pos_label=1)
logit_f1 = metrics.f1_score(Y_test, y_pred_logr, pos_label=1)
# Evaluate the model using 10-fold cross-validation
logit_cv_scores = cross_val_score(logr, X_test, Y_test, scoring='precision',_
\hookrightarrowcv=10)
logit_cv_mean = np.mean(logit_cv_scores)
```

0.7161304938830992

Confusion Matrix

[[8928 375] [3384 555]]

		precision	recall	f1-score	support
	0	0.73	0.96	0.83	9303
	1	0.60	0.14	0.23	3939
accur	acy			0.72	13242
macro	avg	0.66	0.55	0.53	13242
weighted	avg	0.69	0.72	0.65	13242

3) Decision Tree

```
[49]: # Instantiate with a max depth of 3
tree_model = tree.DecisionTreeClassifier(max_depth=40)
# Fit a decision tree
tree_model = tree_model.fit(X_train, Y_train)
y_pred_tree = tree_model.predict(X_test)
probs = pd.DataFrame(tree_model.predict_proba(X_test))
# print verification metrics data
```

```
print('Accuracy\n')
print(accuracy_score(Y_test, y_pred_tree))
print('Confusion Matrix\n')
print(metrics.confusion_matrix(Y_test, y_pred_tree))
print(classification_report(Y_test, y_pred_tree))
# Store metrics
tree_accuracy = metrics.accuracy_score(Y_test, y_pred_tree)
tree_roc_auc = metrics.roc_auc_score(Y_test, probs[1])
tree_fpr, tree_tpr, _ = metrics.roc_curve(Y_test, probs[1])
tree_confus_matrix = metrics.confusion_matrix(Y_test, y_pred_tree)
tree_classification_report = metrics.classification_report(Y_test, y_pred_tree)
tree_precision = metrics.precision_score(Y_test, y_pred_tree, pos_label=1)
tree_recall = metrics.recall_score(Y_test, y_pred_tree, pos_label=1)
tree_f1 = metrics.f1_score(Y_test, y_pred_tree, pos_label=1)
# Evaluate the model using 10-fold cross-validation
tree_cv_scores = cross_val_score(tree_model, X_test, Y_test,__

→scoring='precision', cv=10)
tree_cv_mean = np.mean(tree_cv_scores)
```

0.9386799577103156

Confusion Matrix

[[8902 401] [411 3528]]

	precision	recall	f1-score	support
0	0.96	0.96	0.96	9303
1	0.90	0.90	0.90	3939
accuracy			0.94	13242
macro avg	0.93	0.93	0.93	13242
weighted avg	0.94	0.94	0.94	13242

4) Naive Bayes classifier

```
[50]: # create Naive Bayes classifier
bayes_model = GaussianNB()
# Fit the model
bayes_model.fit(X_train, Y_train)
y_pred_bayes = bayes_model.predict(X_test)
probs = pd.DataFrame(bayes_model.predict_proba(X_test))
# print verification metrics data
```

```
print('Accuracy\n')
print(accuracy_score(Y_test, y_pred_bayes))
print('Confusion Matrix\n')
print(metrics.confusion_matrix(Y_test, y_pred_bayes))
print(classification_report(Y_test, y_pred_bayes))
# Store metrics
bayes_accuracy = metrics.accuracy_score(Y_test, y_pred_bayes)
bayes_roc_auc = metrics.roc_auc_score(Y_test, probs[1])
bayes_fpr, bayes_tpr, _ = metrics.roc_curve(Y_test, probs[1])
bayes_confus_matrix = metrics.confusion_matrix(Y_test, y_pred_bayes)
bayes_classification_report = metrics.classification_report(Y_test,__
→y_pred_bayes)
bayes_precision = metrics.precision_score(Y_test, y_pred_bayes, pos_label=1)
bayes_recall = metrics.recall_score(Y_test, y_pred_bayes, pos_label=1)
bayes_f1 = metrics.f1_score(Y_test, y_pred_bayes, pos_label=1)
# Evaluate the model using 10-fold cross-validation
bayes_cv_scores = cross_val_score(bayes_model, X_test, Y_test,__
bayes_cv_mean = np.mean(bayes_cv_scores)
```

0.5736293611236973

Confusion Matrix

[[4039 5264] [382 3557]]

	precision	recall	f1-score	support
0	0.91	0.43	0.59	9303
1	0.40	0.90	0.56	3939
accuracy			0.57	13242
macro avg	0.66	0.67	0.57	13242
weighted avg	0.76	0.57	0.58	13242

5) Kth Nearest Neighbor

```
[51]: # instantiate learning model (k = 3)
knn_model = KNeighborsClassifier(n_neighbors=3)
# fit the model
knn_model.fit(X_train, Y_train)
y_pred_KNN = knn_model.predict(X_test)
probs = pd.DataFrame(knn_model.predict_proba(X_test))
```

```
# print verification metrics data
print('Accuracy\n')
print(accuracy_score(Y_test, y_pred_KNN))
print('Confusion Matrix\n')
print(metrics.confusion_matrix(Y_test, y_pred_KNN))
print(classification_report(Y_test, y_pred_KNN))
# Store metrics
knn_accuracy = metrics.accuracy_score(Y_test, y_pred_KNN)
knn_roc_auc = metrics.roc_auc_score(Y_test, probs[1])
knn_fpr, knn_tpr, _ = metrics.roc_curve(Y_test, probs[1])
knn_confus_matrix = metrics.confusion_matrix(Y_test, y_pred_KNN)
knn_classification_report = metrics.classification_report(Y_test, y_pred_KNN)
knn_precision = metrics.precision_score(Y_test, y_pred_KNN, pos_label=1)
knn_recall = metrics.recall_score(Y_test, y_pred_KNN, pos_label=1)
knn_f1 = metrics.f1_score(Y_test, y_pred_KNN, pos_label=1)
# Evaluate the model using 10-fold cross-validation
knn_cv_scores = cross_val_score(knn_model, X_test, Y_test, scoring='precision',_
\rightarrowcv=10)
knn_cv_mean = np.mean(knn_cv_scores)
```

0.9658661833559885 Confusion Matrix

[[9160 143] [309 3630]]

	precision	recall	f1-score	support
0	0.97	0.98	0.98	9303
1	0.96	0.92	0.94	3939
accuracy			0.97	13242
macro avg	0.96	0.95	0.96	13242
weighted avg	0.97	0.97	0.97	13242

0.3.1 Evaluate Model Performance

I evaluated the performance metrics as shown below and it is evident that the Random Forest Classifier does a decent job compared to the other methods

```
[52]: # Model comparison
models = pd.DataFrame({
```

```
'Model' : ['Logistic Regression', 'Decision Tree', 'Random Forest',

'kNN', 'Bayes'],

'Accuracy' : [logit_accuracy, tree_accuracy, rf_accuracy, knn_accuracy,

bayes_accuracy],

'Precision': [logit_precision, tree_precision, rf_precision, knn_precision,

bayes_precision],

'recall' : [logit_recall, tree_recall, rf_recall, knn_recall,

bayes_recall],

'F1' : [logit_f1, tree_f1, rf_f1, knn_f1, bayes_f1],

'cv_precision' : [logit_cv_mean, tree_cv_mean, rf_cv_mean, knn_cv_mean,

bayes_cv_mean]

})

models.sort_values(by='Precision', ascending=False, ignore_index=True)
```

```
[52]:
                      Model Accuracy Precision
                                                   recall
                                                                F1
                                                                    cv_precision
     0
                                       0.973553 0.943894 0.958494
                                                                        0.924456
              Random Forest 0.975683
     1
                        kNN 0.965866
                                       0.962099 0.921554 0.941390
                                                                        0.728532
     2
              Decision Tree 0.938680
                                       0.897938 0.895659
                                                          0.896797
                                                                        0.752195
     3 Logistic Regression 0.716130
                                       0.596774 0.140899
                                                          0.227973
                                                                        0.598625
     4
                      Bayes 0.573629
                                       0.403242 0.903021 0.557524
                                                                        0.401779
```

ROC-AUC curve is a performance measurement for classification problem at various thresholds settings. ROC is a probability curve and AUC represents degree or measure of separability. It tells how much model is capable of distinguishing between classes. Higher the AUC, better the model is at predicting 0s as 0s and 1s as 1s. By analogy, Higher the AUC, better the model is at distinguishing between patients with disease and no disease.

The results again confirm the superiority of the Random Forest model because ot has the largest AUC values. AUC is essentially the area under the ROC curve.

```
[56]: # create the dataframe for plotting the ROC curves
     AUCs = pd.DataFrame({
          'Model'
                   : ['Logistic Regression', 'Decision Tree', 'Random Forest',
      'FPR' : [logit_fpr, tree_fpr, rf_fpr, knn_fpr, bayes_fpr],
          'TPR': [logit_tpr, tree_tpr, rf_tpr, knn_tpr, bayes_tpr],
                 : [logit_roc_auc, tree_roc_auc, rf_roc_auc, knn_roc_auc, __
       →bayes_roc_auc],
         })
     plt.figure(figsize=(14,10))
     for i in AUCs.index:
         plt.plot(AUCs.loc[i]['FPR'],
                  AUCs.loc[i]['TPR'],
                  label="{}, AUC={:.3f}".format(AUCs.loc[i]['Model'], AUCs.
      →loc[i]['AUC']))
```

```
plt.plot([0,1], [0,1], color='orange', linestyle='--')

plt.xticks(np.arange(0.0, 1.1, step=0.1), color='black')
plt.xlabel("Flase Positive Rate", fontsize=15, color='black')

plt.yticks(np.arange(0.0, 1.1, step=0.1), color='white')
plt.ylabel("True Positive Rate", fontsize=15, color='black')

plt.title('ROC Curve Analysis', fontweight='bold', fontsize=15, color='black')
plt.legend(prop={'size':13}, loc='lower right')

plt.show()
```


0.3.2 Validation against Promazo test data

Promazo will provide a list of student IDs in the following file:

'Student Dropout Prediction Data/Test Data/test student IDs.csv'

```
[54]: # read in the test student IDs from the user

testStudentID = pd.read_csv('Student Dropout Prediction Data/Test Data/

→test_student_IDs.csv')
```

```
[55]: # save the output of the model in the required format
output = pd.DataFrame({'StudentID':[],'Dropout':[]})
output['StudentID'] = labelEncoded_mergedData['StudentID']
output['Dropout'] = Dropout_prediction
output = output.drop_duplicates(subset=['StudentID'])
savePath = 'Student Dropout Prediction Data/Test Data/FinalOutcome.csv'
output.to_csv(savePath, index = False)
```