Evaluation Metrics & Methodology

Why evaluation?

- When a learning system is deployed in the real world, we need to be able to quantify the performance of the classifier
 - How accurate will the classifier be
 - When it is wrong, why is it wrong?
- This is very important as it is useful to decide which classifier to use in which situations

Evaluating ML Algorithms

- Empirical Studies
 - Correctness on **novel** examples (inductive learning)
 - Time spent learning
 - Time needed to apply result learned
 - Speedup after learning (explanation-based learning)
 - Space required
- <u>Basic idea</u>: repeatedly use <u>train/test</u> sets to estimate future accuracy

Proper Experimental Methodology Can Have a Huge Impact!

A 2002 paper in *Nature* (a major, major journal) needed to be corrected due to "training on the testing set"

Original report: 95% accuracy (5% error rate)

Most important "thou shall not"

Corrected report (which still is buggy): 73% accuracy (27% error rate)

Error rate increased over 400%!!!

Training and Test sets

Split the available data into a training set and a test set

Train the classifier on the training set and evaluate on the test set

Classifier Accuracy

- The accuracy of a classifier on a given test set is the percentage of test set examples that are correctly classified by the classifier
 - Accuracy = (# correct classifications)/ (Total # of examples)
 - Error rate is the opposite of accuracy
 - Error rate = 1 Accuracy

Some Typical ML Experiments – Empirical Learning

(or 'amount of noise' or 'amount of missing features')

Some Typical ML Experiments – "Lesion" Studies

	Testset Performance
Full System	80%
Without Module A	75%
Without Module B	62%
<u>:</u>	:

Learning from Examples: Standard Methodology for Evaluation

- 1) Start with a dataset of labeled examples
- 2) Randomly partition into N groups
- 3a) *N* times, combine *N* -1 groups into a train set
- 3b) Provide train set to learning system
- 3c) Measure accuracy on "left out" group (the <u>test set</u>)

Called N-fold cross validation (typically N = 10)

Using **Tuning** Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
 - Set aside part of the training set
 - Measure performance on this "tuning" data to estimate future performance for a given set of parameters
 - Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

Experimental Methodology: A Pictorial Overview

collection of classified examples

Statistical techniques such as 10-fold cross validation and *t*-tests are used to get meaningful results

Parameter Setting

Notice that each train/test fold may get <u>different</u> parameter settings!

That's fine (and proper)

I.e., a "parameterless"* algorithm internally sets parameters for **each data set** it gets

* Usually, though, some parameters have to be externally fixed (e.g. knowledge of the data, range of parameter settings to try, etc)

Using Multiple Tuning Sets

Using a **single** tuning set can be unreliable predictor, plus some data "wasted." Hence, often the following is done:

- 1) For each possible set of parameters
 - a) Divide <u>training</u> data into **train** and **tune** sets, using **N-fold cross validation**
 - b) Score this set of parameter values: average **tune** set accuracy over the *N* folds
- 2) Use **best** set of parameter settings and **all** (**train**' + **tune**) examples
- 3) Apply resulting model to **test** set

Example

Expected	Predicted
Y	
N Y	Y Y Y
Υ	Υ
Y	Y
N	N
N	N
Υ	Υ
Υ	N
N	N
Υ	Υ
N	Y
Υ	Y
Υ	N
N	N
Υ	Υ
N	N
Υ	Y
Υ	N
N	Υ
N	N

False Positives & False Negatives

- Sometimes accuracy is not sufficient
- If 98% of examples are negative (for a disease), the classifying everyone as negative can get an accuracy of 98%
- When is the model wrong?
 - False positives and false negatives
- Often there is a cost associated with false positives and false negatives
 - Diagnosis of diseases
 - Sometimes better safe than sorry

Confusion Matrix

- Is a device used to illustrate how a model is performing in terms of false positives and false negatives
- It gives us more information than a single accuracy figure
- It allows us to think about the cost of mistakes
- It can be extended to any number of classes

Confusion Matrix

Model	Result		
A Non-Lapsed	B Lapsed		
True Positive (TP)	False Negative (FN)	A Non-Lapsed	
False Positive (FP)	True Negative (TN)	B Lapsed	Expected Result

Accuracy Measures

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Misclassification Rate = \frac{FP + FN}{TP + FP + TN + FN}$$

$$True Positive Rate(sensitivity) = \frac{TP}{TP + FN}$$

$$True\ Negative\ Rate(specificity) = \frac{TN}{TN + FP}$$

ROC Curves

- ROC: Receiver Operating Characteristics
- Started for radar research during WWII
- Judging algorithms on accuracy alone may not be good enough when <u>getting a positive wrong costs</u> more than getting a negative wrong (or vice versa)
 - Eg, medical tests for serious diseases
 - Eg, a movie-recommender (ala' NetFlix) system

ROC Curves Graphically

Algo for Creating ROC Curves

Step 1: Sort predictions on test set

Step 2: Locate a *threshold* between examples with opposite categories

Step 3: Compute TPR & FPR for each threshold of Step 2

Step 4: Connect the dots

Plotting ROC Curves - Example

ML Algo Output (Sorted) Correct Category

Ex 9	.99		+
Ex 7	.98	TPR=(2/5), FPR=(0/5)	+
Ex 1	.72	TPR=(2/5), FPR=(1/5)	-
Ex 2	.70		+
Ex 6	.65	TPR=(4/5), FPR=(1/5)	+
Ex 10	.51		_
LX 10	·JI		
Ex 3	.39	TPR=(4/5), FPR=(3/5)	_
		TPR=(4/5), FPR=(3/5) TPR=(5/5), FPR=(3/5)	+
Ex 3	.39		+

Area Under ROC Curve

A common metric for experiments is to numerically integrate the ROC Curve

Asymmetric Error Costs

- Assume that cost(FP) ≠ cost(FN)
- You would like to pick a threshold that mimizes

```
E(total cost) =

cost(FP) x prob(FP) x (# of neg ex's) +

cost(FN) x prob(FN) x (# of pos ex's)
```

 You could also have (maybe negative) costs for TP and TN (assumed zero in above)

Precision vs. Recall

(think about search engines)

Notice that n(0,0) is not used in either formula
 Therefore you get no credit for filtering out <u>ir</u>relevant items