THE FINAL VERSION

Capstone interview

Reporters: XingYu Li

Report time: December 15, 2021

• 0 0 0

• 0 0 0

Project proposal

Overview

What is the Why we chose How to determine the

background of China? elderly? type of product?

Rapid Development Wealth accumulation Whole life

Risk and benefit Type of risk Term life

Universal life insurance

Contents

O1
Product
Introduction

O2
Project Profile

03

Risk management

O4
PROFIT
METRICS

Product Introduction

Product introduction

Products Overview

Target Customers:

Male & Female

65 years old

Benefits & Premium:

Buy Now Pay Now

Paid at the end of each year

Available time:

2022/01/01

Pricing Criteria:

Gender & Age

Project Profile

14

15

16

17

Mortality table development

012


```
t_p_x
             43 0.99943
           1961 0.99905
          99973 0.99878
        0.99980 0.99858
                          0.00
      5 0.99984 0.99843
                          0.000
    14 0.99986 0.99829
                          0.00011
  0013 0.99987 0.99815
                          0.00010
 /.00013 0.99987 0.99803
                          0.00010
0.00013 0.99987 0.99789
                          0.00010
                                   0.9
0.00014 0.99986 0.99776
                          0.00010
                                   0.999
0.00015 0.99985 0.99761
                          0.00011
                                   0.99985
0.00016 0.99984 0.99746
                          0.00012
                                   0.99988
0.00017 0.99983 0.99729
                          0.00013
                                   0.99987
0.00018 0.99982 0.99710
                          0.00014
                                   0.99986
                                             0.9
0.00020 0.99980 0.99691
                          0.00015
                                   0.99985
                                             0.99
0.00021 0.99979 0.99670
                          0.00015
                                   0.99985
                                             0.9975
                                             0.9973
0.00022 0.99978 0.99648
                          0.00016
                                   0.99984
                                             0.99721
0.00023 0.99977 0.99625
                          0.00017
                                   0.99983
```

Data acquisition

Mortality and Other Rate Tables (soa.org)

Data prediction

https://www.macrotrends
.net/countries/CHN/china
/life-expectancy

$$tPx = \prod_{t=0}^{n} 1Px$$

$$E(x) = \sum_{t=0}^{\omega} tpx$$

$$q_{x(t)} = q_{x(t+n)} \times (1 - past mortality imp rate)^n$$

Mortality table development

Mortality assumption

Based on Taiwan's data, we can figure out that China still need at least ten years to match their life expectancy.

Past mortality improvement rate = 10-years average rate.

Discount curve development

	Residual		Yield			ZC Price		
	Maturity	Last	Chg 1M	Chg 6M	Last	Chg 1M	Chg 6M	Fx
*2111	1 year	2.126%	-7.9 bp	-41.5 bp	97.92	+0.08 %	+0.41 %	©
#2m	2 years	2.543%	-4.3 bp	-17.4 bp	95.10	+0.08 %	+0.34 %	©
#Om	3 years	2.589%	-5.5 bp	-16.0 bp	92.62	+0.16 %	+0.47 %	©
#2m	5 years	2.717%	-6.0 bp	-19.7 bp	87.46	+0.30 %	+0.97 %	©
*DIII	7 years	2.868%	-5.0 bp	-14.2 bp	82.04	+0.34 %	+0.97 %	©
*2111	10 years	2.912%	-3.2 bp	-20.0 bp	75.05	+0.31 %	+1.96 %	©
*DIII	15 years	3.107%	-10.6 bp	-26.6 bp	63.19	+1.54 %	+3.93 %	©
#2m	20 years	3.437%	-12.5 bp	-14.5 bp	50.87	+2.44 %	+2.83 %	0
#2m	30 years	3.474%	-1.6 bp	-15.8 bp	35.90	+0.48 %	+4.70 %	0

(http://www.worldgovernmentbonds.com/country/china/)

Interpolation Method

$$R_t = R_a + \frac{(R_b - R_a) \times (t - a)}{b - a}$$
, $a \le t \le b$

Convert to discount curve

$$z[k] = (\frac{1 - \frac{i[k]}{2} * \sum_{m=0.5}^{k-0.5} v[m]}{1 + \frac{i[k]}{2}})^{-\frac{1}{k}} - 1$$

Discount Curve

$$v[k] = (1 + z[k])^{\wedge} - k$$

The discount rate table will be used as a reference for all subsequent cash flows.

Liquidity premium

- 0.50%
- Can not easy converted into cash

Profit Margin

- 0.70%
- Company profit

Premium before expense

- E[Benefits = E[premiums]]
- Gross reserve = $EPV(Future\ benefit\ payments) + EPV(Future\ expense\ payments) EPV(Future\ gross\ premium\ payments)$
- Net reserve = $EPV(Future\ benefit\ payments)$ $EPV(Future\ net\ premium\ payments)$

2022						2023				
MALE	Gross	17.12386	FEMALE	Gross	18.97697	MALE	Gross	17.22456 F	emale Gross	19.06013
	Net	15.73324		Net	17.28732		Net	15.81823	Net	17.35663

Expense loads

Policy Sale Assumption

	50,000	100,000	150,000	Avg size
Male	25%	35%	40%	1111
			1000	107,500
Female	40%	35%	25%	
				92,500

	2022	2023	2024	2025	2026
Total	5,000	10,000	15,000	20,000	25,000
	% increase	200%	150%	133%	125%
55% Male	2,750	5,500	8,250	11,000	13,750
45% Female	2,250	4,500	6,750	9,000	11,250

Chinese Inflation rate

China Inflation Rate | 2021 Data | 2022 Forecast | 1986-2020 Historical | Calendar (tradingeconomics.com)

Policy issuance expense

Total expenses = number of policy * Policy issuance expens

Policy maintenance expense

Total expense

= number of policy * gross premium * increasing factor * duration

 $Premium Expense Load \\ = \frac{pv(loading premium)}{pv(all premium)} \\ + commission$

system development expense.

Total expenses = number of policy * Product and system development expenses

Risk management

GAAP reserves

What is GAAP reserves?

the aggregate amount of reserves, funds or provisions for losses, liabilities, claims, premiums, benefits, costs and expenses in respect of obligations attributable to the Policy Liabilities

Why we need that?

To ensure that financial reporting is transparent and consistent from one organization to another

When we need that?

Different amounts at different times

How to calculate?

0V = Et=0[PV of Future Benefits] Et=0[PV of Future Premiums]

GAAP reserves

Cash flow

Avarage price = $\frac{\sum_{n=1}^{3} p_1 * number of policy(n)}{total}$

 $nth\ years^{'}maintenance = maintenance * (1 + inflation)^{\land}n$

$$V_{2022}(BOY) = V_{2021}(EOY)$$

End of year:

Benefits

Maintenance fees

2022

Beginning of year:

Gross premium * (1 + expense loading factor)

Acquisition fee

Commission commission = Premium * commission factor

Negative Reserve & K factor

- Negative Reserve is a large sum of money in the first year for premiums.
- The k factor is used for the profit reserve which is a special reserve we designed as a negative balance of the original GAAP reserve, the profit reserve is used to amortize the liability we have.

Solvency requirements

Operational Risk

At the beginning of the sale of a product, due to economic depression or the company's own mismanagement. This often leads to a poorer than expected number of sales of their products. Which is a factor on GAAP reserves.

Interest Rate Risk

Interest rates on cash flows from assets and cash flows from liabilities are often not the same in life. At the same time, interest rates may also be subject to shock due to unforeseen events.

Mortality Risk

The number of claims is not as accurate as the assumption. Occasionally, there are too many claims which is much more than the original mortality table. Therefore, we need a stressed mortality table.

Credit risk / investment risk

Any company needs to take the credit risk of the insured person as well as the in-investment risk of the profits made. These are all things that insurance companies must take. However, these risks are not considered in the pricing criteria.

Solvency requirements

$$= tPx_{best\ estimate} \times (\frac{CROSS\ Reserve}{CROSS\ tPx} - \frac{GAAP\ Reserve}{GAAP\ tPx})$$

- = Int_rate shock \times duration mismatched \times (Reserve_{GAAP} Expected CF_{GAAP})
- = Operational risk rate of $1\% \times (Reserve_{GAAP} Expected CF_{GAAP})$

Calculation of risks

Mortality Risk Required Capital

Interest Rate Risk Required Capital

Operational Risk Required Capita

The technique for calculating risk correlation is similar to that for calculating variance using the matrix multiplication function.

Based on the Mortality Risk, Interest Rate Risk,

and Operational Risk correlation matrix,

those required capitals adjusted by the tax

rate charged, taking the worst case tax

factor into consideration, can be developed as

CROSS risk capital required.

	Mort Risk	Int Rate Risk	Oper Risk
Mort Risk	1	0	0.5
Int Rate Risk	0	1	0.25
Op Risk	0.5	0.25	1

Sensitivity analysis

Talk it later

PROFIT METRICS

Pricing metrics

Market consistent value(MCVNB)

definition

Two method

using higher return rate for higher risk

discount the cash flow Duration

•

 $\sum_{r} t * CF(t) / (1+r)^{r}$

• $implied\ duration = \frac{PV(CFlp)-PV(CFlp&1bp)}{PV(CFlp)*0.0001}$

Pricing metrics

Cost of capital = cost of capital excess over $r_f \times$ Target CROSS capital + cost of financing balance sheet strain × Redundant Reserve

Assets

- Redundant reserve 1%
- Solvency requirements10%

Cash flow pay-back period

Before tax

- After tax
- Profit less Strain>0
- t_p_x ratio to GAAP

sheet Balance Result • MCVNB: 27281 • MCVNB % 1.45% male Cash flow pay-back year 15 • MCVNB: 26052 • MCVNB %1.48% Female Cash flow pay-back year 15

At the end of the product design, we need to consider the impact of some possible unknown changes on the product (for MCVNB).

Female percent*MCVNB%(female)+male percent* percent*MCVNB%(male)

Sensitivity analysis

Rate of change	Margin of CFs	MCVNB%
0.00%	0.50%	1.47%
40.00%	0.70%	1.38%
40.00%	0.30%	1.55%
442.00%	2.71%	0.00%

Rate of		MCVN
change	Liquidity premium	B%
0.00%	0.50%	1.47%
40.00%	0.70%	1.30%
40.00%	0.30%	1.64%
228.00%	1.64%	0.00%

		MCVNB
Rate of change	Spread	%
0.00%	0.70%	1.47%
28.57%	0.90%	3.19%
28.57%	0.50%	-0.28%
24.29%	0.53%	0.00%

Rate of change	Commission rate	MCVNB%		
0.00%	3.00%	1.47%		
33.33%	4.00%	1.41%		
33.33%	2.00%	1.51%		
384.47%	14.53%	0.00%		

Rate of		MCVN
change	inflation rate	В%
0.00%	2.00%	1.47%
50.00%	3.00%	1.46%
50.00%	1.00%	1.47%
960.50%	21.21%	0.00%

	Mort Future		MCVNB
Rate of change	improvement		%
0.00%		2.75%	1.47%
40.00%		3.85%	1.74%
40.00%		1.65%	1.17%
90.18%		0.27%	0.00%

Financials Prediction

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
	2022	2020	2021	2020	2020	2021	2020	2020	2000
Premium	9,403.9	18,807.8	28,211.8	37,615.7	47,019.6	54,072.6	59,479.8	63,643.4	66,189.1
Investment income	331.8	975.7	1,912.8	3,124.7	4,594.1	6,221.1	7,936.6	9,689.5	11,418.5
Reserve change	(8,584.1)	(16,658.5)	(24,240.3)	(31,346.5)	(37,994.4)	(42,056.0)	(44,320.7)	(45,256.3)	(44,596.7)
System costs	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)				
Commissions	(282.1)	(564.2)	(846.4)	(1,128.5)	(1,410.6)	(1,622.2)	(1,784.4)	(1,909.3)	(1,985.7)
Acqusition expenses	(2.5)	(5.0)	(7.5)	(10.0)	(12.5)	(14.4)	(15.8)	(16.9)	(17.6)
Maintenance expenses	(0.5)	(1.5)	(3.1)	(5.2)	(7.8)	(10.8)	(14.2)	(17.8)	(21.7)
Benefits	(501.6)	(1,502.7)	(3,000.8)	(4,993.4)	(7,477.8)	(10,325.8)	(13,447.1)	(16,773.0)	(20,214.8)
Pre-tax income	363.9	1,050.7	2,025.5	3,255.9	4,709.6	6,264.5	7,834.1	9,359.5	10,771.2
Taxes	(91.0)	(262.7)	(506.4)	(814.0)	(1,177.4)	(1,566.1)	(1,958.5)	(2,339.9)	(2,692.8)
After tax income	272.9	788.0	1,519.2	2,441.9	3,532.2	4,698.4	5,875.6	7,019.7	8,078.4
BOY Required Capital	501.9	1,488.5	2,946.2	4,861.7	7,221.7	9,887.9	12,763.8	15,776.7	18,835.6
Return on Req Cap	54.4%	52.9%	51.6%	50.2%	48.9%	47.5%	46.0%	44.5%	42.9%
Return on AVG Req Cap	13.7%	17.8%	19.5%	20.2%	20.6%	20.7%	20.6%	20.3%	19.8%

Conclusion

Advantages: long-term validity (Mortality & Discount rate)

Easy to control risk (Reserves & Sensitivity)

Easy adjustment(Control table)

Drawbacks:

Small profit margin(Cash flow payback year & Finance table)

Investment of assets (Reserves & profits)

