CS 381 - Spring 2021

Week 1, Lecture 2
Part 1

Reminder: What is active participation?

Working with your study group

• For studying the material, working on assignments, preparing for exams, solving extra problems that you are interested in.

• Questions should be brought to TAs and instructors only **after** discussing them with your study group.

• Give meaningful answers on Piazza.

• Also point students to questions already answered. Reading questions and answers can increase understanding.

Note: Edges are undirected; i.e. no orientation.

Note: Edges are undirected; i.e. no orientation.

When can each node of a tree have degree ≥ 2 ?

Note: Edges are undirected; i.e. no orientation.

When can each node of a tree have degree ≥ 2 ?

Recall: A tree must have a node with degree 1 when n>1.

Proof: exercise.

Proof: by induction.

- Base case:
- Inductive hypothesis:
- Inductive step:

Proof: by induction.

- Base case: $n = 1 \Rightarrow$ no edges.
- Inductive hypothesis:
- Inductive step:

Proof: by induction.

- Base case: $n = 1 \Rightarrow$ no edges.
- Inductive hypothesis: claim true for all trees of size $\leq n-1$.
- Inductive step:

Proof: by induction.

- Base case: $n = 1 \Rightarrow$ no edges.
- Inductive hypothesis: claim true for all trees of size $\leq n-1$.
- Inductive step: take any tree T of size n. It can be decomposed into a tree T' of size n-1 and a separate node x, such that x is a leaf in T.

Tribonacci sequence

- Basis: f(1) = f(2) = f(3) = 1.
- Recurrence: f(n) = f(n-1) + 3f(n-2) + 9f(n-3) for n > 3.

Tribonacci sequence

- Basis: f(1) = f(2) = f(3) = 1.
- Recurrence: f(n) = f(n-1) + 3f(n-2) + 9f(n-3) for n > 3.

Claim: $f(n) \le 2 \cdot 3^{n-2}$ for all n > 1.

Tribonacci sequence

- Basis: f(1) = f(2) = f(3) = 1.
- Recurrence: f(n) = f(n-1) + 3f(n-2) + 9f(n-3) for n > 3.

Claim: $f(n) \le 2 \cdot 3^{n-2}$ for all n > 1.

Proof: by induction.

- Basis: what are the base cases?
- Inductive hypothesis: what are the IHs?
- Inductive step: how does the proof work inductively?

Analysis of Algorithms

Worst case analysis

• in an asymptotic sense, the maximum time the algorithm takes on any input of size n.

Average case analysis

- expected time; often meaningful
- may need assumptions on the statistical distribution of input data

Best case analysis

• does not mean much; generally easy to determine

For some algorithms, the three bounds are identical

- Means performance does not depend on the value of the data
- For some algorithms, average case performance is only known experimentally.

What do we count?

- Time and space
 - time in terms of number of basic operations on basic data types
- Ignore machine dependent factors, but remain realistic
- Random Access Model (RAM)
 - no concurrency
 - count instructions (arithmetic operation, comparison, data movement)
 - each instruction takes constant time
 - realistic assumption on the size of the numbers (to represent n, it takes log n bits)

Asymptotic notation: Big-O

 $O(g(n)) = \{f(n) \mid \text{ there exist positive constants}$ $c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n) \text{ or all } n \ge n_0 \}$

Asymptotic notation: Big-O

 $O(g(n)) = \{f(n) \mid \text{ there exist positive constants} c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n) \text{ or all } n \ge n_0 \}$

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Asymptotic notation: Big-O

 $O(g(n)) = \{f(n) \mid \text{ there exist positive constants} c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n) \text{ or all } n \ge n_0 \}$

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

$$4n + 23\log n - 28 = O(n)$$

- Drops low-order terms
- Ignores leading constants
- May not hold for small values of n

f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

$$f(n) = 3n^2 - 4n + 512$$

 $\leq 3n^2 + 512$
 $\leq 4n^2 \text{ for } n \geq 23$

- $f(n) = O(n^2)$
- $f(n) = O(n^3)$ also holds
- f(n) = O(n) is false

CLRS, Figure 3.1

Which statements are true?

$$3n^{3} + 90n^{2} - 5n = O(n^{3})$$

 $3n^{3} + 90n^{2} - 5n = O(2^{n})$
 $3n^{3} + 90n^{2} - 5n = O(n^{2})$
 $5 \log n = O(n)$
 $\sqrt{n} = O(\log n^{8})$
 $n \log n = O(n)$
 $4n = O(n \log n)$
 $n/\log n = O(\sqrt{n})$

Which statements are true?

$$3n^3 + 90n^2 - 5n = O(n^3)$$
 true
 $3n^3 + 90n^2 - 5n = O(2^n)$ true
 $3n^3 + 90n^2 - 5n = O(n^2)$ false
 $5 \log n = O(n)$ true
 $\sqrt{n} = O(\log n^8)$ false
 $n \log n = O(n)$ false
 $4n = O(n \log n)$ true
 $n/\log n = O(\sqrt{n})$ false

Asymptotic Bounds: Big Θ

 $O(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0 \}$

O captures upper bounds

Asymptotic Bounds: Big Θ

 $O(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0 \}$

O captures upper bounds

 $\Theta(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

O captures upper and lower bounds

- $3n^3 + 90n^2 5n$ is $O(n^3)$
- $3n^3 + 90n^2 5n$ is $O(2^n)$
- 5 log n is O(n)
- 4n is O(n log n)

What about the Θ relationships?

• $3n^3 + 90n^2 - 5n = O(n^3)$ and $\Theta(n^3)$ is true

• $3n^3 + 90n^2 - 5n = O(2^n)$, but $\Theta(2^n)$ false

• 5 log n = O(n), but O(n) false

• $4n = O(n \log n)$, but $\Theta(n \log n)$ false

Asymptotic Bounds: Big Ω

- $O(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0 \}$
- O captures upper bounds
- $\Theta(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
- Θ captures upper and lower bounds
- $\Omega(g(n)) = \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0 \}$
- Ω captures lower bounds

$$4n \log n = \Omega (n)$$

- $32n^2 + 17n is...$
- $32n^2 + 17n \text{ is...}$
- $32n^2 + 17n \text{ is...}$
- $32n^2 + 17n \text{ is...}$
- $6n^2 + 3n^{3/2}$ is...

- $32n^2 + 17n$ is
- $6n^2 + 3n^{3/2}$ is

- $\Theta(n^2)$, $O(n^3)$, $\Omega(n)$
- $\Omega(\log n), \ \Omega(n \log n)$
- not $\Omega(n^3)$
- $\Omega(n^2)$ and $O(n^2)$ and thus also $\Theta(n^2)$
- not $\Theta(n^{3/2})$, not $O(n^{3/2})$, $\Theta(n^2)$


```
• 32n^2 + 17n is
                               \Theta(n^2), O(n^3), \Omega(n)
• 32n^2 + 17n is
                               \Omega(\log n), \Omega(n \log n)
• 32n^2 + 17n is
                              not \Omega(n^3)
• 32n^2 + 17n is
                               \Omega(n^2) and O(n^2) and thus also \Theta(n^2)
• 6n^2 + 3n^{3/2} is
                              not \Theta(n^{3/2}), not O(n^{3/2}), \Theta(n^2)
\sqrt{n} = \Omega(\log n)
         n^{1/2} \ge c \log n \quad (\text{set c}=1)
        \log n \ge 2 \log \log n
         c=1, n_0=16
```

Exercise: Show that $n^{3/2} + 6n^{3/4} + n \log n = \Theta(n^{3/2})$

Exercise: Show that $n^{3/2} + 6n^{3/4} + n \log n = \Theta(n^{3/2})$

i.e. $c_1 n^{3/2} \le n^{3/2} + 6n^{3/4} + n \log n \le c_2 n^{3/2}$ for some $c_1, c_2, n > n_0$

Exercise: Show that $n^{3/2} + 6n^{3/4} + n \log n = \Theta(n^{3/2})$

i.e. $c_1 n^{3/2} \le n^{3/2} + 6n^{3/4} + n \log n \le c_2 n^{3/2}$ for some $c_1, c_2, n > n_0$

(1)
$$n^{3/2} + 6n^{3/4} + n \log n \le 7n^{3/2} + n \log n \le 8n^{3/2}$$

show that $n \log n \le n^{3/2}$

 $\log n \le n^{1/2}$

 $\log \log n \le (\log n)/2$ true for all $n > 2^4$

$$(2) c_1 n^{3/2} \le n^{3/2} + 6n^{3/4} + n \log n$$
$$n^{3/2} \le n^{3/2} + 6n^{3/4} + n \log n$$

Note

- We will generally assume that n is "nice"
 - E.g., power of 2
 - We are not implementing the algorithms and only need to consider crucial the boundary/special cases
- When asked to design an efficient algorithm
 - sometimes you will be given a target asymptotic bound
 - other times you need to find the "best" one
- You can use known data structures
 - State how they are implemented and give time bounds of operations