Econ 139 Lecture 19 Notes

Kevin Chen, Baran Iscen, Yining Ma, Jia Tang

1 State-Price Vectors

	Asset 1	Asset 2	Asset 3	AD 1	AD 2	\mathbf{RF}
State 1	3	5	4	1	0	1
State 2	1	5	3	0	1	1
Price (P)	2	4	3	q_1	q_2	

Let
$$p = \begin{pmatrix} 2 & 4 & 3 \end{pmatrix}^T$$

$$q = \begin{pmatrix} q_1 & q_2 \end{pmatrix}^T$$

$$X = \begin{pmatrix} 3 & 5 & 4 \\ 1 & 5 & 3 \end{pmatrix}$$

*Recall: $q = (XX^T)^{-1}Xp$ if market is complete

Uniqueness of State-Price Vector: If LOOP holds and the market is complete, then a state-price vector must exist and be unique.

Options can be used to complete a market:

	Stock	C(1)	C(2)	C(3)
State 1	1	0	0	0
State 2	2	1	0	0
State 3	3	2	1	0
State 4	4	3	2	1
P	s_0	$C_0(1)$	$C_0(2)$	$C_0(3)$

*C(1) = call with strike of 1

$$p = (s_0 \quad C_0(1) \quad C_0(2) \quad C_0(3))^T$$

$$q = (q_1 \quad q_2 \quad q_3 \quad q_4)$$

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
*Recall: $p = X^T$; $q = (X^T)^{-1}p$

$$q = \begin{pmatrix} s_0 - 2C_0(1) + C_0(2) \\ C_0(1) - 2C_0(2) + C_0(3) \\ C_0(2) - 2C_0(3) \\ C_0(3) \end{pmatrix}$$

Using puts:

	Stock	P(4)	P(3)	P(4)
State 1	1	3	2	1
State 2	2	2	1	0
State 3	3	1	0	0
State 4	4	0	0	0
P	s_0	$P_0(4)$	$P_0(3)$	$P_0(2)$

$$q = \begin{pmatrix} P_0(2) \\ P_0(3) - 2P_0(2) \\ P_0(4) - 2P_0(3) + P_0(2) \\ s_0 - 2P_0(4) + P_0(3) \end{pmatrix}$$

Proposition: Provided there is a security/portfolio of securities that has a different payout in every state, and call and put options can be written on it, then the market can be completed.

2 Risk-Neutral Valuation (AKA Martingale Pricing)

One approach to valuation: $p(x) = \frac{E[X]}{1+r_f}$ Alternative approach: consider state-contigent payouts

New approach: Risk-Neutral Valuation/Martingale Pricing

Setup: 2 dates (t = 1 and t = 0)

Let π_{θ} be the probability that state θ occurs ($\pi_{\theta} > 0$ for all θ)

There are M fundamental securities

 $X_i(0)$ is the current price of security i

 $X_i(\theta,1)$ is the payoff in state θ at t=1

There is 1 risk-free asset that pays $(1 + r_f)$ in every state

No assumptions about distribution of pricing

Attempt to find risk-neutral probability measure π_{θ}^{RN} such that $X_i(0) = \frac{1}{1+r_f} \sum_{\theta=1}^N \pi_{\theta}^{RN} X(\theta,1)$ for all iGoal:

$$X_i(0) = \frac{1}{1+r_f} \sum_{\theta=1}^{N} \pi_{\theta}^{RN} X(\theta, 1)$$
 for all i

Martingale measure: In probability theory, a stochastic process $(X = x_1, x_1, ..., x_T)$ is called a martingale under a probability measure P if the conditional expectation $E[X_t|I_{t-1}] = X_{t-1}$ where I is information.

- Also known as a P-martingale

1st Fundamental Theorem of Asset Pricing: There are no arbitrage opportunities among fundamental securities iif there exists a probability measure P such that every discounted price process is a P-martingale. $E_P[\frac{\tilde{x}}{1+r_f}] = X(0)$

Finding a risk-neutral measure amounts to collecting equations $X_i(0) = \frac{1}{1+r_f} \sum_{\theta=1}^N \pi_{\theta}^{RN} X_i(\theta, 1)$ and $\sum_{\theta=1}^N \pi_{\theta}^{RN} = 1$ where $\pi_{\theta}^{RN} > 0 \forall \theta$ and solving the system of equations π_{θ} and π_{θ}^{RN} are said to be equivilent

	Bond	Stock
State 1	1.1	3
State 2	1.1	7
P	1	4

$$\begin{array}{l} \pi_1^{RN}*1+\pi_2^{RN}*1=1\\ \pi_1^{RN}*\frac{3}{1.1}+\pi_2^{RN}*\frac{7}{1.1}=4 \end{array}$$

$$\pi_1^{RN}=0.65,\,\pi_2^{RN}=0.35$$