Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Verification of Accuracy Improvement for CoMPACT Monitor Due to Suboptimal Inter-probe Time

Kohei Watabe

Graduate School of System Design, Tokyo Metropolitan University

July 22, 2009

Background (1)

Tokyo Metropolitan University

Background

The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Change of recent Internet

- The Internet plays an important role as infrastructure
- Various applications provide new services
- The Internet is used not only as a private tool but also a business tool

Internet service providers (ISP) need a measurement technology to produce per-flow QoS information. (e.g. one-way delay for each flow)

Background (2)

Tokvo Metropolitan University Kohei Watahe

Background

The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

 Conventional means of measuring one-way delay can be classified into passive and active measurements

- It monitors the target user packet directly by capturing the packets
- It can get accurate one-way delay for each flow
- One-point monitoring to measure volume of traffic can be conducted very easily
- Two-point monitoring to measure one-way delay lacks scalability

Background (3)

Tokyo Metropolitan University Kohei Watabe

Background

The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Traditional method

- Passive measurement has scalability problem
- Active measurement can not measure per-flow one-way delay

In large-scale network, we can not get per-flow one-way delay by using traditional method.

The ovjective (1)

Tokyo Metropolitan University

Background

The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

We have proposed change-of-measure-based passive/active monitoring (CoMPACT monitor) that achieves scalable measurement of one-way delay distribution for each flow.

- Study about inter-probe time for active measurement
- Suboptimal probing in terms of accuracy was proposed

Ш

In this study, we have applied this suboptimal probing to CoMPACT monitor and tried to improve CoMPACT monitor in accuracy.

CoMPACT monitor (1)

Tokyo Metropolitan University

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

■ In probe packets, 2 packets of 10 packets arrive in congestion

(2/10)

(4/10)

Timing of target packets

- In target packets, 4 packets of 10 packets arrive in congestion
- CoMPACT monitor transfer probe packets delay into target packets delay according to dencity of target packets

CoMPACT monitor (2)

Tokyo Metropolitan University

Kohei Watabe

Background
The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Estimator of one-way delay distribution by CoMPACT monitor

It estimate the probability for target packet delay to exceed c

m: Number of probe packets

 T_n : Arrival time of nth probe packet

V(t): Virtual one-way delay

a(t): Volume of traffic of target flow

$$\underbrace{\frac{1}{m} \sum_{n=1}^{m} 1_{\{V(T_n) > c\}} \underbrace{\frac{a(T_n)}{\sum_{l=1}^{m} a(T_l)/m}}_{\text{Delay of probe packet}} \underbrace{\frac{T_n}{\sum_{l=1}^{m} a(T_l)/m}}_{\text{(Passive)}}$$

Passive measurement to measure traffic has not scalability problem

Suboptimal probing (1)

Tokyo Metropolitan University Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

- Intervals with an exponential distribution have been widely used as probe packets arrivals
 (Probing method according to PASTA property)
- This is the only appropriate method if we can not ignore the effect of probe packets

Assumption

- We can ignore the effect of probe packets
- PASTA-based probing is not the only method
- Some other probing method can estimate true value (e.g. Intervals with a uniform or Gamma distribution etc.)

Suboptimal probing (2)

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Assumption

- The autocovariance function of the target process is convex
- Periodic-probing achieves minimum variance of the estimator
- A lower variance is connected with accuracy
- If the autocovariance function is convex, periodic-probing is optimal in accuracy

when the cycle of the target process corresponds to the cycle of the probe packet, a phase-lock phenomenon occurs and the estimator may converge on a false value.

Suboptimal probing (3)

Tokyo Metropolitan University

Kohei Watabe

Background
The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

 To solve the tradeoff, intervals with the parameterized Gamma distribution is proposed

- When $\beta = 1$, it corresponds to exponential distribution
- When $\beta \to \infty$, it converges on determinate value

Property of this Gamma-probing -

This Gamma-probing links PASTA-based probing with periodic-probing continuously.

- Variance decreases with increase of β
- Phase-lock occurs when β is so large
- We can get a suboptimal probing if we tune appropriate β

Tokyo Metropolitan University

Kohei Watabe

Background

The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Simulation (1)

- We investigated the effectiveness of Gamma-probing for CoMPACT monitor through simulations
- Each end host on the left side transfers packets by UDP to the corresponding destination end host on the right side

Simulation (2)

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

- User flows are given as ON/OFF processes and categorized into the 4 types
- Probe packet trains are categorized into the 5 types listed in the following table

Distribution of	Parameter of	Mean probe
probe intervals	Gamma distribution	intervals
Exponential	$(\beta = 1)$	0.5 s
Gamma	$\beta = 5$	0.5 s
Gamma	$\beta = 25$	0.5 s
Gamma	$\beta = 125$	0.5 s
Periodic	$(\beta \to \infty)$	0.5 s

 Parameters of Exponential and Periodic are parameters of the Gamma distribution corresponding to each probing

Simulation (3)

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

 The result of estimation by CoMPACT monitor with Gamma-probing

■ Parameter β of Gamma-probing is 25

Simulation (4)

■ We have plotted for other parameters and gotten similar results

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Simulation (5)

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

- We were able to confirm that the CoMPACT monitor with Gamma-probing gives good estimates
- We cannot judge the superiority or inferiority of any parameter
- To judge the superiority or inferiority, we should investigate variance of estimator

Kohei Watabe

Background

The ovjective

A case of flow #

CoMPACT monitor

Simulation

Suboptimal probing

Conclusion

We show the standard deviation of estimator

A case of flow #1

■ A case of flow #11

standard deviation

Simulation (7)

Tokyo Metropolitan University

Kohei Watabe

Background

The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

- The standard deviation clearly decreases as β increases from $\beta = 1$ to $\beta = 125$
- In result of flow #1, the standard deviation of periodic-probing is larger than that for $\beta = 125$
- This reversal may be a sign of incorrectness due to the phase-lock
- If we tune appropriate parameter β , we can get more accurate estimation than traditional PASTA-based probing

Conclusion

Tokyo Metropolitan University Kohei Watabe

Background
The oviective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

It was confirmed that Gamma-probing is effective when the complementary CDF of one-way delay was estimated by CoMPACT monitor.

the convexity of the autocovariance function of the target process requires special attention

Residual issues

- We should present the method to determine appropriate parameter
- Application should be verified about not only one-way delay but also packet loss

Tokyo Metropolitan University

Kohei Watabe

Background
The ovjective

CoMPACT monitor

Suboptimal probing

Simulation

Conclusion

Thank you very much for your kind attention