

# Sri Chaitanya IIT Academy, India

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 06-12-15

 TIME : 02:00 AM TO 05: 00 PM
 2013\_P2 MODEL
 MAX MARKS : 180

### **KEY & SOLUTIONS**

## **PHYSICS**

| 1  | ACD | 2  | AD  | 3  | ABC | 4  | ABC        | 5  | ABC | 6  | ACD |
|----|-----|----|-----|----|-----|----|------------|----|-----|----|-----|
| 7  | AD  | 8  | ACD | 9  | A   | 10 | В          | 11 | A   | 12 | D   |
| 13 | С   | 14 | В   | 15 | A   | 16 | A          | 17 | A   | 18 | В   |
| 19 | D   | 20 | A   |    |     |    | The second |    |     |    |     |

### **CHEMISTRY**

| 21 | ABC | 22 | BCD  | 23 | AB | 24 | ABCD | 25 | ABC | 26 | BC |
|----|-----|----|------|----|----|----|------|----|-----|----|----|
| 27 | ABC | 28 | ABCD | 29 | C  | 30 | D    | 31 | A   | 32 | A  |
| 33 | A   | 34 | В    | В  | A  | 36 | В    | 37 | A   | 38 | D  |
| 39 | В   | 40 | В    |    |    |    |      |    |     |    |    |

# **MATHEMATICS**

| 41 | ABCD | 42 | D   | 43 | ABD | 44 | ABCD | 45 | BC | 46 | ABCD |
|----|------|----|-----|----|-----|----|------|----|----|----|------|
| 47 | ABD  | 48 | ABD | 49 | D   | 50 | D    | 51 | A  | 52 | В    |
| 53 | A    | 54 | В   | 55 | В   | 56 | C    | 57 | A  | 58 | A    |
| 59 | A    | 60 | A   |    |     |    | _    |    |    |    |      |

Sec: Sr.IPLCO Page 1

#### Sri Chaitanya IIT Academy

30. Water vapour = 0.1 : 0.5 (moles)

31. 
$$\frac{\partial \psi}{\partial x} = -\frac{2\pi}{\lambda} A \cos \frac{2\pi x}{\lambda}$$

$$\frac{\partial^2 \psi}{\partial x^2} = -\frac{4\pi^2}{\lambda^2} A \sin \frac{2\pi x}{\lambda} = \frac{-4\pi^2}{\lambda^2} \psi$$

$$\lambda = \frac{h}{p} \& P^2 = 2mKE$$

$$\therefore \frac{\partial^2 \psi}{\partial x^2} = \frac{-8\pi^2 m (KE) \psi}{h^2}$$

32. 
$$\psi = A \sin \frac{2\pi x}{\lambda}$$

 $'\sin\theta'$  range (1 to 0)

If 
$$x = \frac{\lambda}{4}$$
  $\psi = A \sin \frac{\pi}{2} = A$ 

If 
$$x = \frac{\lambda}{2}$$
,  $\frac{2\pi x}{\lambda} = \pi \Rightarrow \sin \pi = 0$ 

33. Let 
$$C_3H_8 = xcc$$

$$CO = ycc$$

$$\therefore O_2 = 100 - x - y$$

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

$$x + 5x = 0$$

$$0 \qquad 0 \qquad 3x$$

And 
$$CO + \frac{1}{2} O_2 \to CO_2$$

Loss in volume = 
$$\left(x + 5x + y + \frac{y}{2}\right) - \left(3x + y\right)$$

$$= 3x + \frac{y}{2} = 100 - 65 = 35cc$$

Left 
$$O_2 = 100 - x - y - \left(5x + \frac{y}{2}\right) = 25cc$$

$$6x + \frac{3}{2}y = 75cc$$

Sec: Sr.IPLCO

Solving: x = 10cc, y = 10cc

34. To consume  $30 \text{cc } O_2 \ 10 \text{cc } C_2 H_4$  is required

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

35. FeCl<sub>3</sub> in hot water gives a +ve sol.

$$\left[ Fe(CN)_6 \right]^{-4}$$
 is most effective

36. 
$$AS_2O_3 + 3H_2S \rightarrow As_2S_3 + 3H_2O$$
 ( - ve sol)

$$Al^{+3}$$
 is most effective

37. Farthest balmer line from  $UV \Rightarrow 3 \rightarrow 2 \Rightarrow 1.88ev$ 

Lyman line closest to visible  $\Rightarrow 2 \rightarrow 1 \Rightarrow 10.2ev$ 

$$KE = \frac{13.6 \times 2^2}{2^2} = 13.6ev \text{ in } He^+$$

Limiting Balmer line  $\alpha \rightarrow 2$ 

$$E = \frac{13.6}{2^2} = 3.4ev$$

38. a) 
$$H_2S \rightarrow SO_2(6e^-less)$$

$$Pb_3O_4 \rightarrow Pb^{+2} (2e^-gain)$$

$$\therefore O: R \Rightarrow 3:1$$

b) 
$$C_2H_2 \to C_2O_4^{-2}(-8e)$$

$$MnO_4^- \rightarrow Mn(OH)O$$
 (+4e)

c) 
$$Al \rightarrow Al^{+3} (3e^{-})$$

$$NO_2^- \rightarrow NH_4^+ (+6e^-)$$

d) 
$$P_4 \rightarrow PH_3 \left(+12e^{-}\right)$$

$$P_4 \rightarrow H_2 P O_2^- \left(-4e^-\right)$$

39. a) 
$$Cl_2 \rightarrow Cl^- + Cl^+ \left(1e^- transfer\right) \Rightarrow M$$

b) 
$$NH_4NO_3 \rightarrow N_2O + 2H_2O \left(4e^- transfer\right) \Rightarrow \frac{M}{4}, \frac{2M}{4}$$

c) 
$$OF_2 + H_2O \rightarrow 2HF + O_2 \ (2e^- transfer) \Rightarrow \frac{M}{2}$$

d) 
$$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$$
 (le transfer)  $\Rightarrow \frac{2M}{1}$ 

40. Factual curves