Recent Developments in xia2

Strubi early 2012 update

Graeme Winter

Diamond Light Source

1 March 2012

Overview

- CCP4 2012 presentation
- Removal of frame count limitations
- Current state of multi-crystal analysis
- Other developments
- Conclusions & plans

Removal of frame count limitations

- Use Aimless in place of Scala
- Use Pointless in place of Reindex¹
- Run -3daii or -3da
- No more batch limitations

Example: 20 sweeps from insulin

- Insulin test sample from I04-1
- 20 sweeps: 0.2 degree / frame x 900: 18000 images
- Radiation damage very likely
- Substantial variation between data sets
- Processing rather time consuming, use a big workstation

High resolution limit
Low resolution limit
Completeness
Multiplicity
I/sigma
Rmerge
Rmeas(I)
Rmeas(I+/-)
<pre>Rpim(I)</pre>
Rpim(I+/-)
Wilson B factor
Total observations
Total unique

1.66 7.43 1.66 55.18 55.18 1.70 100.0 99.9 100.0 314.3 346.7 262.8 81.7 228.5 7.6 0.106 0.071 5.227 0.106 0.071 5.240 0.106 0.071 5.247 0.006 0.004 0.322 0.008 0.005 0.450 31,457 2982419 44723 180512 9488 129 687

Effects of Running Aimless

- Output effectively the same as Scala
- SD correction slightly more effective
- C++ not Fortran no need to recompile for lots of batches
- Parallel (openMP) version in development

Effects of Running Aimless in xia2

 Since scaling performed by XSCALE very little difference in results

Current state of multi-crystal analysis

- Developed over 1 year or so
- Hiatus for most of that time
- Still very rough around the edges
- Requires use of XDS processing
- Requires R (at the moment) to generate plot

Basic principles

- Assume in processing that everything comes from the same crystal
- Try to assemble a data set from everything
- Worry about isomorphism in scaling rather than from unit cell etc.
- Look at CC's between sweeps as measure of isomorphism
- Scale CC's to ersatz distance as $d = \frac{1}{CC} 1^2$

Basic Usage

xia2 -3daii /here/are/my/data

Time passes... let's talk about options

Useful options

- -microcrystal switch to microcrystal mode
- -failover ignore failure of processing individual sweeps
- -spacegroup set the spacegroup as e.g. P23
- \blacksquare -cell $a, b, c, \alpha, \beta, \gamma$ needs -spacegroup
- -min_images 3 minimum images to count as a sweep
- -xparm GXPARM.XDS refined model of experimental geometry

After processing

- > cd DEFAULT/scale
- > x1335 XSCALE.LP
- > R --no-save < x1335.R

Results


```
No. Av. CC I/sig File Name

1 0.9796 2.25 NATIVE_SWEEP11.HKL
2 0.9822 3.61 NATIVE_SWEEP22.HKL
3 0.9807 7.49 NATIVE_SWEEP33.HKL
<nip>
18 0.9925 2.64 NATIVE_SWEEP9.HKL
19 0.9930 1.69 NATIVE_SWEEP10.HKL
20 0.9826 3.39 NATIVE_SWEEP12.HKL
```


Interpretation

$$d = \frac{1}{CC} - 1$$

$$CC = \frac{1}{d+1}$$

•
$$CC = 0.95 \rightarrow d < 0.05$$

■ Up to you to decide on your limits... at least you know what they mean

Interpretation

Next steps

- Book keeping take the sweeps you wish to merge from dendogram
- Edit xinfo file
- Run again
- This needs automating, and also calculations performing to tell you how complete results will be

Trivial example - Thaumatin

- Split 450 image Thaumatin data set into 5 x 90 image chunks
- Process as usual, very good results and grouping comes in data collection order
- Distances are fantastically small indicating very high CC's

Results

Developments planned from mid April

- Apply to more cases
- Work on clustering
- Include comparison of R_{merge} as a function of batch number
- Work on incorporating radiation damage: split sweeps into blocks
- Automate analysis, also allowing for completeness
- Work towards plate screening data, ideally from lower symmetry crystals

Other developments

- Development of xia2 for small molecule crystallography
- Support for complex experimental geometry from imgCIF data
- Full scaling model search with scaling with Aimless and Scala
- Started using Phenix PHIL for parameter setting, will allow much finer grained control - any requests?

Summary

- Support now added for much more substantial experiments, no recompile scala
- Developments ongoing shortly for properly tackling multi-crystal data analysis, particularly from plates - ideas welcome

