EXHIBIT B

Expert Report of William E. Longo, Ph.D., Prepared on Behalf of the Property Damage Asbestos Claimants Represented by the Law Firm of Dies & Hile, LLP

Appendix B

Dust Sampling Results for Tucson Music Hall Attic

MVA Scientific Consultants

September, 2006

October 18, 2006

William E. Longo, Ph.D. Materials Analytical Services, Inc. 3945 Lakefield Court Suwanee, GA 30024

RE: Dust Sampling Results for Tucson Music Hall Attic

Dear Dr. Longo:

Attached are the results of 5 surface dust samples (and one blank) I collected from metal air ducts in the Tucson Music Hall attic on August 17, 2005. Also attached are the count sheets from MVA Scientific Consultants for these samples. Please do not hesitate to telephone me should you have any questions.

Sincerely,

William M. Ewing, CIH

Technical Director

Attachments

Xc: Mr. Martin W. Dies

Tucson Civic Center Complex – Music Hall Dust Samples

Sample Number	Sample Location/Description	Photograph Number	Results (s/cm ²)
DUST-45	Attic, northeast area, top of metal air duct, metal 100 cm ²	24	2,400,000
DUST-46	Attic, southeast area, top of metal air duct, metal 100 cm ²	23	2,000,000
DUST-47	Attic, north central, top of metal air duct,	19	17,000,000
	metal 100 cm ²		
DUST-48	Attic, northwest area, top of metal air duct, metal 100 cm ²	17	3,100,000
DUST-49	Attic, southwest area, top of metal air duct, metal 100 cm ²	15	710,000
DUST-50	Blank	NA	None Detected

Carry T	
1	

Sample ID	MVA ID#	Asbestos Loading (s/cm²)	Single Fiber Analytical Sensitivity (s/cm²)	Reported Result (s/cm²)
Dust 45	Q1453	2,355,000	157,000	2,400,000
Dust 46	Q1454	2,041,000	157,000	2,000,000
Dust 47	Q1455	17,270,000	1,570,000	17,000,000
Dust 48	Q1456	3,140,000	157,000	3,100,000
Dust 49	Q1457	706,500	15,700	710,000
Dust 50 `	Q1458	0	314*	NAD

^{*}The equivalent analytical sensitivity for a blank sample is determined by assuming a 100 square centimeter collection area.

NAD = No Asbestos Detected in blank

Case 01-01139-AMC Doc 13482 Filed 10/25/06 Page 5 of 11

MVA SCIENTIFIC CONSULTANTS Surface Dust Sample Analysis Sheet

a contract of the contract of				. .		
MVA Project#	6423	Amt Collected(cm²):	100	Analyst:	AH	
MVA Sample#	Q1453	Amt Prepped(cm²):	0.1	Date:	9/21/05	_
Client I.D.:	Dust 45	Filter Area (mm²):	1256	Page:	1 of 1	_
Instrument:	Philips 420	Filter Type:	PC 0.2	Comments:		_
Magnification:	20,600	Openings Analyzed:	10	ASTM Method:	D6480	_
Acc. Voltage:	100 KV	Grid Opening (mm²):	0.008	or	D5755 X	-

								_		
		Structure	Structure	Length**	Width**				Length***	Width***
Grid	Opening	Number*	Туре	(cm)	(cm)	SAED	EDS	Comments	(µm)	(µm)
1	D9	1	С	9.0	3.00	С	С	EDS printout	4.4	1.46
···	E7	2	M	5.0	2.50	С			2.4	1.21
		3	F	5.0	0.10	С			2.4	0.05
	B4	4	M	10.0	7.00	С			4.9	3.40
	D2	5	F	5.0	0.10	С			2.4	0.05
		6	С	4.5	3.00	С			2.2	1.46
	F3	NSD								
2	15	7	M	9.0	5.00	С			4.4	2.43
		8	F	4.0	0.10	С			1.9	0.05
	J2	9	C	8.0	6.00	С		·	3.9	2.91
		10	В	16.0	0.60	С	С	EDS printout	7.8	0.29
	F4	NSD								***************************************
	E5	11	В	15.0	0.30	С			7.3	0.15
		12	F	13.0	0.10	С			6.3	0.05
	F7	13	F	6.0	0.10	С			2.9	0.05
		14	M	22.0	8.00	С			10.7	3.88
		15	М	10.0	3.00	С			4.9	1.46
				<u> </u>						
				· * ······						· · · · · · · · · · · · · · · · · · ·
										· · · · · · · · · · · · · · · · · · ·
									-	
							,		-	
									 	
									-	
									-	
							*****		-	
									1 1	

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

- 22

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

Case 01-01139-AMC Doc 13482 Filed 10/25/06 Page 6 of 11

MVA SCIENTIFIC CONSULTANTS
Surface Dust Sample Analysis Shee

*		Surface Dust Saniple	Analysis Sheet		
MVA Project#	6423	Amt Collected(cm ²):	100	Analyst: \	N H
MVA Sample#	Q1454	Amt Prepped(cm ²):	0.1	-	9/21/05
Client I.D.:	Dust 46	Filter Area (mm²):	1256	Page:	1 of 1
Instrument:	Philips 120	Filter Type:	PC	Comments:	0.1
Magnification:	24,400	Openings Analyzed:	10	ASTM Method: I	06480
Acc. Voltage: _	100 KV	Grid Opening (mm²):	0.008	or I	D5755 X

Grid	Opening	Structure Number*	Structure Type	Length** (cm)	Width** (cm)	SAED	ED\$	Comments	Length*** (µm)	Width** (µm)
1	18	1	F	1.3	0.10	С	С		0.5	0.04
		2	F	6.0	0.10	С	С		2.5	0.04
	H4	3	F	5.0	0.10	С	С		2.0	0.04
		4	F	1.5	0.10	С	С		0.6	0.04
		5 🗈	В	13.0	0.50	С	С		5.3	0.20
	F2	6	С	31.2	5.00	С	С		12.8	2.05
	D1	7	В	4.5	0.30	С	С		1.8	0.12
	B3	8	F	3.0	0.10	С	С		1.2	0.04
		9	F	3.5	0.10	С	С	,	1.4	0.04
		10	С	7.5	3.00	С	С		3.1	1.23
2	B1	NSD								
	D3	11	M	2.0	0.10	С	С		0.8	0.04
		12	F	3.0	0.10	С	C		1.2	0.04
	F7	13	В	2.0	0.20	С	C		0.8	0.08
	H8	NSD								
	G4	NSD								
							7777	**************************************		
										······································

								V 1000 1000 1000 1000 1000 1000 1000 10		
					·					
								W "WALL		
		The state of the s								·
					"					
										·

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

Case 01-01139-AMC - Dec 13482---Filed-10/25/06 Page 7 of 11

		Surface Dust Sample	milalysis si	leer			
MVA Project#	6423	, Amt Collected(cm ²):	100		Analyst:	AH	
MVA Sample#	Q1455	Amt Prepped(cm ²):	0.01	. 1	Date:	9/21/05	9/22/05
Client I.D.:	Dust 47	Filter Area (mm²):	1256		Page:	1 of 1	
Instrument:	Philips 420	Filter Type:	PC 0.2	<u> </u>	Comments:		
Magnification:	20,600	Openings Analyzed:	10	AS	STM Method:	D6480	
Acc. Voltage:	100 KV	Grid Opening (mm ²):	0.008		or	D5755	Х

Grid	Opening	Structure Number*	Structure	Length**	Width**	SAED	EDC	Comments	Length***	Width***
	Y		Туре	(cm)	(cm)	*****	EDS	Comments	(µm)	(μm)
1	C4	1	F	2.0	0.10	С	С	EDS	1.0	0.05
	B3	2	F	1.5	0.10	С			0.7	0.05
		3	F	2.0	0.10	С			1.0	0.05
	F1	4	В	25.0	1.50	С			12.1	0.73
	G4	5	F	48.0	0.10	С			23.3	0.05
	F9	6	С	6.0	1.50	С			2.9	0.73
2	D5	7	F	2.0	0.10	С			1.0	0.05
	F3	8	M	12.0	10.00	С			5.8	4.85
		9	M	6.0	3.00	С			2.9	1.46
	H4	NSD								
	J6	10	F	3.0	0.10	С	С	· EDS	1.5	0.05
	H8	11	F	13.0	0.10	С		·	6.3	0.05
		***************************************	***************************************							
									-	
									-	
			·		***************************************	ļ				

									-	
			***************************************					. · · · · · · · · · · · · · · · · · · ·		

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

SAED: C = Chrysotile, A = Amphibole

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

Case 01-01139-AMC Doc 13482 Filed 10/25/06 Page 8 of 11

MVA SCIENTIFIC CONSULTANTS Surface Dust Sample Analysis Sheet

MVA Project#	6423	Amt Collected(cm ²):	100	Analyst:	AH
MVA Sample#	Q1456	Amt Prepped(cm ²):	0.1	Date:	9/19/05
Client I.D.:	Dust 48	Filter Area (mm²):	1256	Page:	1 of 1
Instrument:	Philips 420	Filter Type:	PC 0.2	Comments:	
Magnification:	20,600	Openings Analyzed:	10	ASTM Method:	D6480
Acc. Voltage:	100 KV	Grid Opening (mm²):	0.008	or	D5755 X

Grid	Opening	Structure Number*	Structure Type	Length** (cm)	Width** (cm)	SAED	EDS	Comments	Length*** (µm)	Width (µm)
1	13	1	M	28.0	7.00	С	С	EDS	13.6	3.40
		2	С	16.0	1.00	С			7.8	0.4
	J4	3	F	10.5	0.10	С			5.1	0.0
	H6	4	С	7.0	4.00	С			3.4	1.9
		5⊹	В	6.0	0.30	С			2.9	0.1
		6	F	5.0	0.10	С			2.4	0.0
		7	С	5.0	1.50	С			2.4	0.7
		8	M	15.0	9.00	С			7.3	4.3
	G8	9	F	21.0	0.10	С			10.2	0.0
		10	F	4.0	0.10	С	С	EDS	1.9	0.0
	D9	11	С	9.0	1.00	С			4.4	0.4
		12	F	13.0	0.10	С			6.3	0.0
		13	М	22.0	12.00	С			10.7	5.8
2	F8	14	F	7.0	0.10	С			3.4	0.0
		15	М	7.0	6.00	С			3.4	2.9
	C7	16	F	3.5	0.10	С			1.7	0.0
		17	F	8.0	0.10	C			3.9	0.0
	A6	18	В	11.0	0.80	С			5.3	0.3
		19	F	15.0	0.10	С			7.3	0.0
	C4	NSD								
	E2	20	F	6.0	0.10	С	С	EDS	2.9	0.0
									1	
									1 1	
									-	
	<u> </u>								+	
									- 	
									1	
									-	
									1	
									-	
-+										

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

Case 01-01139-AMC Doc 13482 Filed 10/25/06 Page 9 of 11

MVA SCIENTIFIC CONSULTANTS Surface Dust Sample Analysis Sheet

MVA Project#_	6423	Amt Collected(cm ²):	100	Analyst: AH
MVA Sample#_	Q1457	Amt Prepped(cm ²):	1	Date: 9/20/05
Client I.D.:	Dust 49	Filter Area (mm²):	1256	Page: 1 of 2
Instrument:	Philips 420	Filter Type:	PC 0.2	Comments:
Magnification:	20,600	Openings Analyzed:	10	ASTM Method: D6480
Acc. Voltage:	100 KV	Grid Opening (mm²);	0.008	or D5755 X

Grid	Opening	Structure Number*	Structure Type	Length** (cm)	Width** (cm)	SAED	EDS	Comments	Length*** (µm)	Width*** (µm)
1	B6	1	F	3.0	0.10	С	С	EDS	1.5	0.05
		2 ·	F	2.0	0.10	С			1.0	0.05
		3	F	1.5	0.10	С			0.7	0.05
		4	F	9.0	0.10	С			4.4	0.05
		5	С	5.0	4.00	С			2.4	1.94
	C4	6	F	3.5	0.10	С			1.7	0.05
<u> </u>		7	F	7.0	0.10	С			3.4	0.05
		8	М	13.0	6.00	С			6.3	2.91
<u> </u>		9	F	2.0	0.10	С	С	EDS	1.0	0.05
		10	F	11.0	0.10	С			5.3	0.05
		11	С	12.0	3.00	С			5.8	1.46
		12	В	15.0	0.30	С			7.3	0.15
	D3	13	F	5.0	0.10	С			2.4	0.05
		14	M	9.0	2.00	С			4.4	0.97
	F5	15	В	8.0	0.30	С			3.9	0.15
		16	F	6.0	0.10	С			2.9	0.05
		17	F	4.5	0.10	С			2.2	0.05
		18	F	6.0	0.10	С			2.9	0.05
	H7	19	С	5.0	3.00	С			2.4	1.46
		20	F	5.0	0.10	С	С	EDS	2.4	0.05
		21	В	6.0	0.30	С			2.9	0.15
2	H8	22	F	3.0	0.10	С			1.5	0.05
		23	С	49.0	3.00	С			23.8	1.46
		24	С	2.0	0.10	С			1.0	0.05
		25	В	16.0	0.30	С			7.8	0.15
		26	F	11.0	0.10	С			5.3	0.05
		27	F	22.0	0.10	С			10.7	0.05
	G6	28	F	3.0	0.10	С			1.5	0.05
		29	F	3.0	0.10	С			1.5	0.05
		30	М	12.0	8.00	С	С	EDS	5.8	3.88
		31	M	15.0	12.00	С			7.3	5.83
	E2	32	С	12.0	6.00	С			5.8	2.91
		33	М	13.0	10.00	С			6.3	4.85
		34	F	4.0	0.10	С			1.9	0.05
		35	F	10.0	0.10	С			4.9	0.05

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

Case 01-01139-AMC Doc 13482 Filed 10/25/06 Page 10 of 11

MVA SCIENTIFIC CONSULTANTS Surface Dust Sample Analysis Sheet

				,	
_	MVA Project#	6423	Amt Collected(cm²): 100	Analyst:	AH
•	MVA Sample#	Q1457	Amt Prepped(cm²): 1	Date:	9/20/05
-	Client I.D.:	Dust 49	Filter Area (mm²): 1256	Page:	2 of 2
_	Instrument:	Philips 420	Filter Type: PC 0.2	Comments:	-
	Magnification:	20,600	Openings Analyzed: 10	ASTM Method:	D6480
-	Acc. Voltage:	100 KV	Grid Opening (mm²): 0.008	or	D5755 X

7 0			Structure	Structure	Length**	Width**				Length***	Width***
 ,	Grid	Opening	Number*	Type	(cm)	(cm)	SAED	EDS	Comments	(µm)	(µm)
		E2 CONT	36	F	2.0	0.10	C			1.0	0.05
'est		В3	37	F	45.0	0.10	C			21.8	0.05
_			38	F	6.0	0.10	С			2.9	0.05
			39	В	10.0	0.40	С			4.9	0.19
7500			40	В	9.0	1.50	С	С	EDS	4.4	0.73
			41	F	2.0	0.10	С			1.0	0.05
733,			42	F	16.0	0.10	С			7.8	0.05
		E7	43	F	8.0	0.10	С			3.9	0.05
~			44	M	15.0	2.00	С		-	7.3	0.97
			45	М	11.0	8.00	С		·	5.3	3.88
-											
-											
_											
-											
: 100											

פוביו	VI W 40 00				W.I						
_								······································			
_					**************************************						
1,200			***************************************								
_											
Ī											
.27											
-											
_											
.*										l	
-				***************************************							
-											
:8				***************************************						 	
ŀ						· · · · · · · · · · · · · · · · · · ·					
L		L							<u> </u>		

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

^{* **} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

ਲ SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Amosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

MVA Project# MVA Sample# Client I.D.: Instrument: Magnification: Acc. Voltage:		Q1458 Dust 50 Philips 120 24,400	6423 Q1458 Dust 50 Philips 120 24,400 100 KV		MVA SCIENTIFIC CON Surface Dust Sample Amt Collected(cm²): Amt Prepped(cm²): Filter Area (mm²): Filter Type: Openings Analyzed: Grid Opening (mm²):		NTS is Sheet	Page: Comments ASTM Method	9/20/05 1 of 1 5 50 1: D6480	
Grid	Opening	Structure Number*	Structure Type	Length** (cm)	Width** (cm)	0450			r D5755 Length***	X Width***
1	15	NSD		(0.17)	(Citi)	SAED	EDS	Comments	(µm)	(µm)
	G2	NSD		······································	 			······································		
	E4	NSD								
	C3	NSD								
	B1	NSD								
1 2 1	C1 T	NICD							1	

1	15	NSD		T (0.1.7)	(City)	SAEL	EDS	Comments	(µm)	(µm)
	G2	NSD								
	E4	NSD		<u> </u>	 					
	C3	NSD				-∤				
	B1	NSD								
2	C1	NSD			+					
	B6	NSD			 		╀——			<u> </u>
	E8	NSD			 					
	G10	NSD		·						
	17	NSD			 			,		
					 					
						 	<u> </u>			
					<u> </u>					
					 	-	<u> </u>			
					 -	<u> </u>				
					<u> </u>	 				
				·····		<u> </u>				
				·						
		<u>-</u>								
						<u> </u>				
									 	
										
_										
_										
- -										
OF NC	D = No Fibe				T					

^{*}NFD or NSD = No Fibers Detected or No Structures Detected

Structure Type: B = Bundle, C = Cluster, F = Fiber, M = Matrix

SAED: C = Chrysotile, A = Amphibole

EDS: C = Chrysotile, AM = Arnosite, CR = Crocidolite, AC = Actinolite, AN = Anthophyllite, TR = Tremolite, N = Non Asbestos

^{**} On Screen Measurement

^{***} Calculated Actual Measurement (On Screen Measurement X 10,000/Magnification)