Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Ionic Equilibrium

DPP: 2

- Q1 The pH of a 0.1M aqueous solution of a weak acid (HA) is 3 . What is its degree of dissociation?
 - (A) 1%

- (B) 10%
- (C) 50%
- (D) 25%
- **Q2** What is the pH value of N/1000KOH solution?
 - (A) 10^{-11}
- (B)3

(C) 2

- (D) 11
- **Q3** The pH of a $10^{-9}M$ solution of HCl in water is:
 - (A) 8
 - (B) 8
 - (C) Between 7 and 8
 - (D) Between 6 and 7
- **Q4** An acid solution of pH=6 is diluted hundred times. The pH the solution becomes:
 - (A) 6.95
- (B)6

(C) 4

- (D) 8
- **Q5** The number of H^+ ions present in $1 \ mL$ of a solution having pH=13 is:
 - (A) 10^{13}
 - (B) 6.023×10^{13}
 - (C) $6.023 imes 10^7$
 - (D) 6.023×10^{10}
- **Q6** The pH of a solution is increased from 3 to 6 ; its $H^+ \!\!\!\!\!$ ion concentration will be:
 - (A) Reduced to half
 - (B) Doubled
 - (C) Reduced by 1000 times
 - (D) Increased by 1000 times

- **Q7** What is the pH of a $0.015 MBa(OH)_2$ solution?
 - (A) 1.82
- (B) 1.52
- (C) 12.48
- (D) 12.18
- ${\bf Q8}~~{\rm The}~{\rm aqueous}~{\rm solution}~{\rm whose}~pH=0$ is
 - (A) Acidic
- (B) Alkaline
- (C) Amphoteric
- (D) Neutral
- **Q9** For an acid solution, the $\left[OH^{-}\right]$ is
 - (A) $> 10^{-7}$
 - (B) $< 10^{-7}$
 - (C) 10^{-14}
 - (D) 10^{-7}
- $\textbf{Q10}\quad \text{The }pH\text{ of a solution is 6.0}$. In this solution
 - (A) $\left[\mathrm{H^{+}}\right] = 100 \left[\mathrm{OH^{-}}\right]$
 - (B) $\left[\mathrm{H^{+}}\right] = 10\left[\mathrm{OH^{-}}\right]$
 - $(\mathsf{C})\left[\mathsf{H}^{+}\right] = \left[\mathsf{OH}^{-}\right]$
 - (D) $\left[\mathrm{H}^{+}\right] = \frac{1}{10} \left[\mathrm{OH}^{-}\right]$
- **Q11** pH of an aqueous solution of NaCl at $85^{\circ}C$ should be
 - (A) 7

(B) > 7

- (C) < 7
- (D) 0
- Q12 Select the correct statement
 - (A) If $\left[H^+
 ight] = y imes 10^{-x}$ then $pH = x \log y$
 - (B) If $\left[H^+\right]=rac{1}{v} imes 10^{-x}$ then $pH=x+\log y$
 - (C) pH of a solution $=14+\log \left\lceil \mathrm{OH}^{-}
 ight
 ceil$
 - (D) All of the above
- **Q13** The $\left[H^{+}\right]$ of a solution is 0.03M. The pOH of this solution is,

- (A) 12.48
- (B) 12.52
- (C) 12.54
- (D) 12.58

Q14 For a $100 \mathrm{ml}$ solution of $10^{-2} MNaOH$ the ratio

pH:pOH would be

- (A) 6:1
- (B) 1:6
- (C) 2:1
- (D) $10^{10}:1$

 ${\bf Q15} \quad 10^{-2} \ \text{mole} \ \text{of} \ KOH \ \text{is} \ \text{dissolved} \ \text{in} \ \text{10} \ \text{litres} \ \text{of}$

water. The \ensuremath{pH} of the solution is

(A) 12

(B) 2

(C) 3

(D) 11

Answer	Kev
---------------	-----

Q1	(A)	Q9	(B)
Q2	(D)	Q10	(A)
Q3	(D)	Q11	(C)
Q4	(A)	Q12	(D)
Q5	(C)	Q13	(A)
Q6	(C)	Q14	(A)
Q7	(C)	Q15	(D)
Q8	(A)		

Master NCERT with PW Books APP