

Search Site

Go

Geometry > Plane Geometry > Triangles > Triangle Centers
 MathWorld Content Contributors > Pegg

Triangle Center

Foundations of Mathematics

Algebra
 Applied Mathematics
 Calculus and Analysis
 Discrete Mathematics

Geometry
 History and Terminology

Number Theory
 Probability and Statistics
 Recreational Mathematics

Topology

Alphabetical Index
 Interactive Entries
 Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Send a Message to the Team

Order book from Amazon

Last updated:

12.536 entries

Mon Nov 2 2006

Created, developed and

sustained by Eric Weisstein

at Wolfram Research

Other Wolfram Sites:

Wolfram Research

Integrator

Tones

Functions Site

Wolfram Science

more...

[Latest Mathematica Information >>](#)

[Download Mathematica Trial >>](#)

[Complete Mathematica](#)

[Documentation >>](#)

[Show your math savvy with a](#)

[MathWorld T-shirt.](#)

[Read the latest Technical Software](#)

[News.](#)

A triangle center (sometimes simply called a center) is a point whose trilinear coordinates are defined in terms of the side lengths and angles of a triangle and for which a triangle center function can be defined. The function giving the coordinates $\alpha : \beta : \gamma$ is called the triangle center function. The four ancient centers are the triangle centroid, incenter, circumcenter, and orthocenter.

The triangle center functions of triangles centers therefore satisfy homogeneity

$$f(\ell \alpha, \ell b, \ell c) = \ell^a f(\alpha, b, c), \quad (1)$$

bisymmetry in b and c ,

$$f(\alpha, c, b) = f(\alpha, b, c) \quad (2)$$

and cyclicity in a , b , and c ,

$$\alpha : \beta : \gamma = f(\alpha, b, c) : f(b, c, \alpha) : f(c, \alpha, b) \quad (3)$$

(Kimberling 1998, p. 46).

Note that most, but not all, special triangle points therefore qualify as triangle centers. For example, bicentric points fail to satisfy bisymmetry, and are therefore excluded. The most common examples of points of this type are the first and second Brocard points, for which triangle center-like functions can be defined that obey homogeneity and cyclicity, but

not bisymmetry.

Note also that it is common to give triangle center functions in an abbreviated form $f'(\alpha, \beta, \gamma)$ that does not explicitly satisfy bisymmetry, but rather bland symmetry, so $f'(\alpha, \beta, \gamma) = -f'(\gamma, \beta, \alpha)$. In such cases, $f'(\alpha, \beta, \gamma)$ can be converted to an equivalent form $f(\alpha, \beta, \gamma)$ that does satisfy the bisymmetry property by defining

$$f(\alpha, \beta, \gamma) = [f'(\alpha, \beta, \gamma)]^2 f'(\beta, \gamma, \alpha) f'(\gamma, \alpha, \beta). \quad (4)$$

An example of this kind is Kimberling center X_{100} , which has a tabulated center of

$$\sigma_{100} = \frac{1}{\beta - \gamma}, \quad (5)$$

which corresponds to the true triangle center function

$$\sigma_{100} = \frac{1}{(\alpha - \beta)(\beta - \gamma)^2(\gamma - \alpha)}. \quad (6)$$

A triangle center is said to be polynomial iff there is a triangle center function f that is a polynomial in α, β , and γ (Kimberling 1998, p. 46).

Similarly, a triangle center is said to be regular iff there is a triangle center function f that is a polynomial in Δ, α, β , and γ , where Δ is the area of the triangle.

A triangle center is said to be a major triangle center if the triangle center function $\alpha = f(A, B, C)$ is a function of angle A alone, and therefore β and γ of B and C alone, respectively.

C. Kimberling (1998) has extensively tabulated triangle centers and their trilinear coordinates, assigning a unique integer to each. In this work, these centers are called Kimberling centers, and the n th center is denoted X_n , the first few of which are summarized below.

X_n	center	triangle center function α
-------	--------	-----------------------------------

X_1	incenter I	$\ _1$
X_2	triangle centroid G	$1/\alpha, b c, \csc A$
X_3	circumcenter O	$\cos A, \alpha(b^2 + c^2 - a^2)$
X_4	orthocenter H	$\sec A$
X_5	nine-point center N_i	$\cos(B-C), \cos A + 2 \cos B \cos C,$ $b c [a^2 b^2 + a^2 c^2 - (b^2 - c^2)^2]$
X_6	symmedian point K	$\alpha, \sin A$
X_7	Gergonne point G_e	$b c / (b + c - \alpha), \sec^2 \left(\frac{1}{2} A \right)$
X_8	Nagel point N_a	$(b + c - \alpha)/\alpha, \csc^2 \left(\frac{1}{2} A \right)$
X_9	mittelpunkt M	$b + c - \alpha, \cot \left(\frac{1}{2} A \right)$
X_{10}	Spieker center \mathfrak{S}_P	$b c / (b + c)$
X_{11}	Feuerbach point F	$1 - \cos(B - C), \sin^2((B - C)/2)$
X_{12}	harmonic conjugate of X_{11} with respect to X_1 and X_3	$1 + \cos(B - C), \cos^2((B - C)/2),$ $b c (b + c)^2 / (b + c - \alpha)$
X_{13}	first Fermat point X'	$\csc(A + \pi/3), \sec(A - \pi/6)$
X_{14}	Second Fermat point X'	$\csc(A - \pi/3), \sec(A + \pi/6)$
X_{15}	first isodynamic point S	$\sin(A + 7\pi/3), \cos(A - \pi/6)$
X_{16}	second isodynamic point S'	$\sin(A - 7\pi/3), \cos(A + \pi/6)$
X_{17}	first Napoleon point N	$\csc(A + \pi/6), \sec(A - \pi/3)$
X_{18}	Second Napoleon point N'	$\csc(A - \pi/6), \sec(A + \pi/3)$
X_{19}	Clawson point	$\tan A, \alpha \sec A, 1/(b^2 + c^2 - a^2),$ $\sin(2B) + \sin(2C) - \sin(2A)$
X_{20}	de Longchamps point L	$\cos A - \cos B \cos C$

E. Brisse has compiled a separate list of 2001 triangle centers.

SEE ALSO: Areal Coordinates, Barycentric Coordinates, Exact Trilinear Coordinates, Kimberling Center, Major Triangle Center, Polynomial Triangle Center, Regular Triangle Center, Triangle, Triangle Center Function, Trilinear Coordinates, Trilinear Polar. [Pages Linking Here]

REFERENCES:

Birsse, E. "Triangle Centers." <http://www.maths.surrey.ac.uk/hostedwebs/kls/trig/trig.html>.

Davis, P. J. "The Rise, Fall, and Possible Transformation of Triangle Geometry: A Mini-History." *Amer. Math. Monthly* **102**, 204-214, 1995.

Dixon, R. "The Eight Centres of a Triangle." §1.5 in *Mathographics*. New York: Dover, pp. 55-61, 1991.

Gale, D. "From Euclid to Descartes to Mathematics to Oblivion?" *Math. Intell.* **14**, 68, 69, 1992.

Kimberling, C. "Encyclopedia of Triangle Centers." <http://www.fau.edu/~kimo/ctrc/ctrc.htm>.

Kimberling, C. "Triangle Centers." <http://www.fau.edu/~kimo/ctrc/ctrc.htm>.

Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." *Math. Mag.* **67**, 163-167, 1994.

Kimberling, C. "Triangle Centers and Central Triangles." *Congr. Numer.* **129**, 1-295, 1998.

LAST MODIFIED: October 25, 2003

CITE THIS AS:

Weisstein, Eric W. "Triangle Center." From *MathWorld--A Wolfram Web Resource*. <http://mathworld.wolfram.com/TriangleCenter.html>

© 1999 CRC Press LLC, © 1999-2006 Wolfram Research, Inc. | Terms of Use

Search Site

Algebra
Applied Mathematics
Calculus and Analysis
Discrete Mathematics
Foundations of Mathematics
Geometry
History and Terminology
Number Theory
Probability and Statistics
Recreational Mathematics
Topology

Geometric > Plane Geometry > Triangles > Triangle Centers
MathWorld Contributors > Gruber
MathWorld Contributors > Messier

Triangle Centroid

↳ MathWorld
↳ MathWorld on this page
↳ MathWorld's 4-dimensional Webbook.

↳ MathWorld

↳ MathWorld's 4-dimensional Webbook.

About MathWorld
Send a Message to the Team
Order book from Amazon

About MathWorld

Send a Message to the Team

Order book from Amazon

About MathWorld
Interactive Entries
Random Entry
New in MathWorld
MathWorld Classroom
About MathWorld
Send a Message to the Team
Order book from Amazon

About MathWorld

Send a Message to the Team

Order book from Amazon

Last updated:
12,636 entries
Mon Nov 27 2006

*Created, developed and
nurtured by Eric Weisstein
at Wolfram Research*

The geometric centroid (center of mass) of the polygon vertices of a triangle is the point G (sometimes also denoted M) which is also the intersection of the triangle's three triangle medians (Johnson 1929, p. 249; Wells 1991, p. 150). The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle. It has equivalent triangle center functions

$$\begin{aligned} \alpha &= \frac{1}{\alpha} & (1) \\ \alpha &= \frac{a}{bc} & (2) \\ \alpha &= \csc A, & (3) \end{aligned}$$

and homogeneous barycentric coordinates $(1, 1, 1)$. It is Kimberling center X_2 .

The centroid satisfies

$$A \tilde{G}^2 + B \tilde{G}^2 + C \tilde{G}^2 = \frac{1}{3} (a^2 + b^2 + c^2).$$

The centroid of the triangle with trilinear vertices $p_i : q_i : r_i$ for $i = 1, 2, 3$ is given by

$$\begin{aligned} & \frac{p_1}{\alpha p_1 + b q_1 + c r_1} + \frac{p_2}{\alpha p_2 + b q_2 + c r_2} + \frac{p_3}{\alpha p_3 + b q_3 + c r_3}; \\ & \frac{q_1}{\alpha p_1 + b q_1 + c r_1} + \frac{q_2}{\alpha p_2 + b q_2 + c r_2} + \frac{q_3}{\alpha p_3 + b q_3 + c r_3}; \\ & \frac{r_1}{\alpha p_1 + b q_1 + c r_1} + \frac{r_2}{\alpha p_2 + b q_2 + c r_2} + \frac{r_3}{\alpha p_3 + b q_3 + c r_3} \end{aligned} \quad (5)$$

(P. Moses, pers. comm., Sep. 7, 2005).

The following table summarizes the triangle centroids for named triangles that are Kimberling centers.

triangle	Kimberling	triangle centroid
anticomplementary triangle	X_2	triangle centroid
circumnormal triangle	X_3	circumcenter
circumtangential triangle	X_3	circumcenter
contact triangle	X_{354}	Weil point
Euler triangle	X_{391}	midpoint of X_2 and X_4
excentral triangle	X_{165}	centroid of the excentral triangle
extouch triangle	X_{110}	X_{10} -Ceva conjugate of X_{37}
first Brocard triangle	X_2	triangle centroid
first Morley triangle	X_{356}	first Morley center
first Neuberg triangle	X_2	triangle centroid
incentral triangle	X_{1962}	bicentric sum of pu(32)

inner Napoleon triangle	X_2	triangle centroid
inner Vecten triangle	X_2	triangle centroid
medial triangle	X_2	triangle centroid
orthic triangle	X_{31}	centroid of orthic triangle
outer Napoleon triangle	X_2	triangle centroid
outer Vecten triangle	X_2	triangle centroid
reference triangle	X_2	triangle centroid
Second Neuberg triangle	X_2	triangle centroid
Stamnieri triangle	X_3	circumcenter
tangential triangle	X_{154}	X_3 -Ceva conjugate of X_6

If the sides of a triangle $\Delta A_1 A_2 A_3$ are divided by points P_1, P_2 , and P_3 so that

$$\frac{\overline{A_2 P_1}}{\overline{P_1 A_3}} = \frac{\overline{A_3 P_2}}{\overline{P_2 A_1}} = \frac{\overline{A_1 P_3}}{\overline{P_3 A_2}} = \frac{p}{q}, \quad (6)$$

then the centroid G_P of the triangle $\Delta P_1 P_2 P_3$ is simply G_A , the centroid of the original triangle $\Delta A_1 A_2 A_3$ (Johnson 1929, p. 250).

One Brocard line, triangle median, and symmedian (out of the three of each) are concurrent, with $A\Omega$, $C\bar{K}$, and $B\bar{G}$ meeting at a point, where Ω is the first brocard point and \bar{K} is the symmedian point. Similarly, $A\Omega'$, $B\bar{G}'$, and $C\bar{K}'$, where Ω' is the second Brocard point, meet at a point which is the isogonal conjugate of the first (Johnson 1929, pp. 268-269).

Pick an interior point X . The triangles BXC , CXA , and AXB have equal areas iff X corresponds to the centroid. The centroid is located $2/3$ of the way from each polygon vertex to the midpoint of the opposite side. Each median divides the triangle into two equal areas; all the medians together divide it into six equal parts, and the lines from the median point to the polygon vertices divide the whole into three equivalent triangles. In general, for any line in the plane of a triangle ABC ,

$$d = \frac{1}{3} (d_A + d_B + d_C), \quad (7)$$

where d_A , d_B , and d_C are the distances from the centroid and polygon vertices to the line.

A triangle will balance at the centroid, and along any line passing through the centroid, the trilinear polar of the centroid is called the Lemniscate axis. The perpendiculars from the centroid are proportional to s_i^{-1} .

$$a_1 p_2 = a_2 p_1 = a_3 p_3 = \frac{2}{3} \Delta, \quad (8)$$

where Δ is the area of the triangle. Let P be an arbitrary point, the polygon vertices be A_1, A_2 , and A_3 , and the centroid G . Then

$$P A_1^2 + P A_2^2 + P A_3^2 = G A_1^2 + G A_2^2 + G A_3^2 + 3 P G^2. \quad (9)$$

If O is the circumcenter of the triangle's centroid, then

$$O G^2 = R^2 - \frac{1}{9} (a^2 + b^2 + c^2). \quad (10)$$

The centroid lies on the Euler line and Nagel line. The centroid of the perimeter of a triangle is the triangle's Spiecker center (Johnson 1929, p. 249). The symmedian point of a triangle is the centroid of its pedal triangle (Honsberger 1995, pp. 72-74).

The Gerono point Ge , triangle centroid G , and mitzentpunkt M are collinear, with $GeG:GM = 2:1$.

Given a triangle ΔABC , construct circles through each pair of vertices which also pass through the triangle centroid G . The triangle $\Delta A'B'C'$ determined by the center of these circles then satisfies a number of interesting properties. The first is that the circumcircle O and triangle centroid G of ΔABC are, respectively, the triangle centroid G' and symmedian point K' of the triangle $\Delta A'B'C'$ (Honsberger 1995, p. 77). In addition, the triangle medians of ΔABC and $\Delta A'B'C'$ intersect in the midpoints of the sides of $\Delta A'B'C'$.

SEE ALSO: Circumcenter, Euler Line, Exmedian Point, Incenter, Nagel Line, Orthocenter. [Pages Linking Here]

REFERENCES:

Carr, G. S. *Formulas and Theorems in Pure Mathematics*, 2nd ed. New York: Chelsea, p. 622, 1970.
Coxeter, H. S. M., and Greitzer, S. L. *Geometry Revisited*. Washington, DC: Math. Assoc. Amer., p. 7, 1967.

Dixon, R. *Martin's Gazette*. New York: Dover, pp. 55-57, 1991.

Honsberger, R. *Episodes in Nineteenth and Twentieth Century Euclidean Geometry*. Washington, DC: Math. Assoc. Amer., pp. 72-74 and 77, 1995.

Johnson, R. A. *Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle*. Boston, MA: Houghton Mifflin, pp. 173-176, 249-250, and 268-269, 1929.

Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." *Math. Mag.* **67**, 163-187, 1994.

Kimberling, C. "Centroid." <http://www.math.niu.edu/~mwood/centroids/cent.html>.

Kimberling, C. "Encyclopedia of Triangle Centers: X(2)=Centroid." <http://www.math.niu.edu/~mwood/centroids/celex.html>.

Lachlan, R. *An Elementary Treatise on Modern Pure Geometry*. London: Macmillan, pp. 62-63, 1893.

Wells, D. *The Penguin Dictionary of Curious and Interesting Geometry*. London: Penguin, p. 150, 1991.

LAST MODIFIED: November 3, 2005

CITE THIS AS:

Weisstein, Eric W. "Triangle Centroid." From *MathWorld--A Wolfram Web Resource*. <http://mathworld.wolfram.com/TriangleCentroid.html>

© 1999-2006 Wolfram Research, Inc. | Terms of Use