432 Class 3 Slides

github.com/THOMASELOVE/2020-432

2020-01-21

Today's Agenda

- Creating the smart1 and smart1_sh data sets
 - Working with factors
 - Working with simple imputation (naniar tools)
 - Creating a "shadow" to track what is imputed
- A few words on PPDAC and the combination of knowledge
- What is the effect of a diabetes diagnosis on BMI?
 - One-way analysis of variance (linear model)
- Does whether you have health insurance matter?
 - Two-way analysis of variance (linear model)
 - Thinking meaningfully about interaction
- Adjusting for a covariate: poor physical health days
 - Analysis of Covariance

Setup

```
library(here); library(magrittr); library(janitor)
library(broom); library(simputation); library(patchwork)
library(naniar); library(visdat)
library(tidyverse)

theme_set(theme_bw())
smart0 <- read_csv(here("data/smart_ohio.csv"))</pre>
```

BRFSS and SMART (Creating smart1)

smart1 Variables, by Type

Variable	Туре	Description
landline	Binary (1/0)	survey conducted by landline? (vs. cell)
healthplan	Binary $(1/0)$	subject has health insurance?
age_imp	Quantitative	age (imputed from groups - see Notes)
fruit_day	Quantitative	mean servings of fruit / day
drinks_wk	Quantitative	mean alcoholic drinks / week
bmi	Quantitative	body-mass index (in kg/m^2)
physhealth	Count (0-30)	of last 30 days, $\#$ in poor physical health
dm_status	Categorical	diabetes status (4 levels, we'll collapse to 2)
activity	Categorical	physical activity level (4 levels, we'll re-level)
smoker	Categorical	smoking status (4 levels, we'll collapse to 3)
genhealth	Categorical	self-reported overall health (5 levels)

Collapsing Two Factors, Re-leveling another

```
smart1 <- smart1 %>% type.convert() %>%
    mutate(SEQNO = as.character(SEQNO)) %>%
    mutate(dm_status =
           fct collapse(factor(dm status),
                        Yes = "Diabetes".
                        No = c("No-Diabetes",
                                "Pre-Diabetes".
                                "Pregnancy-Induced"))) %>%
    mutate(smoker =
           fct collapse(factor(smoker),
                        Current = c("Current not daily",
                                     "Current_daily"))) %>%
    mutate(activity =
             fct_relevel(factor(activity),
                         "Highly_Active", "Active",
                         "Insufficiently_Active",
                         "Inactive"))
```

The naniar and visdat packages

add functions to:

- display missing data, in many useful ways, often with ggplot approaches that you can modify as desired
- replace existing values with NA
- visualize imputed values
- numerically summarize imputed values
- model missingness

See Getting Started with naniar vignette linked at our Class 3 README.

How many missing values in smart1?

miss_var_table(smart1)

```
A tibble: 11 x 3
  n_miss_in_var n_vars pct_vars
           <int> <int> <dbl>
                            28.6
               0
               14
                             7.14
3
              15
                           7.14
              20
                             7.14
5
              68
                             7.14
6
             138
                             7.14
             242
                             7.14
8
             392
                             7.14
9
                             7.14
             493
10
             557
                             7.14
11
             723
                             7.14
```

How many missing values in smart1?

miss_var_summary(smart1)

```
A tibble: 14 \times 3
  variable n_miss pct_miss
  <chr>
              <int>
                       <dbl>
1 activity
                723
                      9.75
2 fruit_day
                557
                      7.51
3 bmi
                493
                      6.65
4 drinks_wk
                392
                      5.29
5 smoker
                242
                       3.26
                138
                       1.86
6 physhealth
                 68
                       0.917
7 age imp
              20
                       0.270
  healthplan
9 genhealth
               15
                       0.202
10 dm status
                 14
                       0.189
11 SEQNO
                  0
12 mmsa
                  0
                       0
  mmsa wt.
```

Visualizing Missingness in Variables

```
gg_miss_var(smart1) +
labs(title = "Lots of NAs in smart1 (n = 7412)")
```


prop_miss_case and pct_miss_case

```
prop_miss_case(smart1)
[1] 0.1891527
smart1 %>% select(genhealth) %>% pct_miss_case(.)
```

[1] 0.2023745

Obtain the proportion or percentage of missing values in the data frame, or any piece of it.

prop_miss_var or pct_miss_var

```
prop_miss_var(smart1)
[1] 0.7142857
```

pct_miss_var(smart1)

[1] 71.42857

This is the proportion (or percentage) of variables in the data frame with missing values.

miss_case_table

```
miss_case_table(smart1)
```

```
# A tibble: 7 x 3
 n_miss_in_case n_cases pct_cases
          <int>
                  <int> <dbl>
              0
                   6010 81.1
                    830 11.2
3
              2
                    223 3.01
4
              3
                    119
                           1.61
5
              4
                    133
                           1.79
6
              5
                    85
                           1.15
              6
                     12
                           0.162
```

miss_case_summary

miss_case_summary(smart1)

```
# A tibble: 7,412 x 3
   case n_miss pct_miss
  <int> <int> <dbl>
   336
           6
              42.9
2 786
           6 42.9
3
  1102
           6
            42.9
4
  1389
           6
             42.9
5
           6
             42.9
  2788
6
  3094
           6
             42.9
  3373
           6
            42.9
8
  5524
           6
            42.9
9
  5733
           6
            42.9
10
   6422
           6
                42.9
# ... with 7,402 more rows
```

Creating a "Shadow" to track what is imputed

```
smart1_sh <- smart1 %>% bind_shadow()
```

smart1_sh creates new variables, ending in _NA

names(smart1_sh)

```
"SEQNO"
                                      "mmsa wt"
 Г17
                     "mmsa"
 [4] "landline"
                                      "healthplan"
                     "age imp"
 [7] "dm status"
                     "fruit day"
                                      "drinks wk"
[10] "activity"
                     "smoker"
                                      "physhealth"
[13] "bmi"
                     "genhealth"
                                      "SEQNO NA"
[16] "mmsa_NA"
                     "mmsa wt NA"
                                      "landline NA"
[19] "age_imp_NA"
                     "healthplan_NA" "dm_status_NA"
                                      "activity_NA"
[22] "fruit_day_NA"
                     "drinks_wk_NA"
[25] "smoker NA"
                     "physhealth_NA" "bmi_NA"
[28] "genhealth_NA"
```

What are the new variables tracking?

```
smart1_sh %>% count(smoker, smoker_NA)
```

2 Former !NA 1999

3 Never !NA 3881

4 <NA> NA 242

The fct_explicit_na warning: A pain point

My general preference is to not use fct_explicit_na in general, and I typically suppress this warning from printing by labeling the code chunk with {r, warning = FALSE}

What do new variables track? (with warning = FALSE)

	genneartn	gennealtn_NA	n
	<fct></fct>	<fct></fct>	<int></int>
1	1_Excellent	! NA	1057
2	2_VeryGood	! NA	2406
3	3_Good	! NA	2367
4	4_Fair	! NA	1139
5	5_Poor	! NA	428
6	<na></na>	NA	15

"Simple" Imputation of Missing Factor Values

Let's impute some of the factors by random draws from their distributions. . .

Did this work? (Code Chunk has warning = FALSE)

```
smart1 %>% count(dm status)
# A tibble: 3 x 2
 dm_status n
 <fct> <int>
1 Yes 1098
2 No 6300
3 <NA> 14
smart1 sh %>% count(dm status)
# A tibble: 2 x 2
 dm status n
 <fct> <int>
```

1 Yes 1102 2 No 6310

What happens if you impute a 1/0 variable this way?

Look at whether this worked...

```
healthplan n percent
0 399 0.05383162
1 7013 0.94616838
```

Looks OK

```
smart1_sh %$% n_distinct(healthplan)
```

[1] 2

Another Sanity Check

```
smart1 %>%
 select(healthplan, dm_status, smoker, activity) %>%
  summarize_each(list(n_miss))
# A tibble: 1 x 4
 healthplan dm_status smoker activity
      <int> <int> <int> <int>
         20 14 242
                                 723
smart1_sh %>%
  select(healthplan, dm_status, smoker, activity) %>%
  summarize_each(list(n_miss))
# A tibble: 1 x 4
 healthplan dm status smoker activity
```

<int>

<int> <int> <int>

"Simple" Imputation with Robust Linear Models

"Simple" Imputation with Other Methods

Sanity Check 2

```
Before imputation...

pct_miss_var(smart1)

[1] 71.42857

After imputation ...

pct_miss_var(smart1_sh)

[1] 0
```

Resulting smart1 and smart1_sh tibbles saved to .Rds

```
saveRDS(smart1, "data/smart1.Rds")
saveRDS(smart1_sh, "data/smart1_sh.Rds")
```

The Art of Statistics: How to Learn From Data

Introduction: Why We Need Statistics / Turning the World into Data

- Turning experiences into data is not straightforward, and data is inevitably limited in its capacity to describe the world.
- Statistical science has a long and successful history, but is now changing in the light of increased availability of data.
- The PPDAC cycle provides a convenient framework...
 - Problem Plan Data Analysis Conclusion and communication.

(a) DIMENSION 1: THE INVESTIGATIVE CYCLE

(PPDAC)

Chris Wild

Chris Wild, https://www.stat.auckland.ac.nz/~wild/StatThink/

From inkling to plan

Using the Analysis of Variance (ANOVA) and the Analysis of Covariance (ANCOVA) to model Categorical Predictors in Linear Models

Answering Questions

- What is the effect of having a diagnosis of diabetes on body mass index (BMI)?
- ② Does whether you have health insurance affect how we think about the BMI-diabetes association?
- Ooes adjusting for physical health (as measured by the number of poor physical health days in the past 30) affect our Question 2 assessment?

Distribution of BMI? (code)

```
p1 <- ggplot(smart1_sh, aes(x = bmi)) +
    geom_histogram(binwidth = 2) +
    labs(title = "Histogram of BMI")

p2 <- ggplot(smart1_sh, aes(sample = bmi)) +
    geom_qq() + geom_qq_line(col = "red") +
    labs(title = "Normal Q-Q plot of BMI")

p1 + p2</pre>
```

Distribution of BMI? (results)

Answering Questions

What is the effect of having a diagnosis of diabetes on body mass index?

```
smart1 sh %$% mosaic::favstats(bmi ~ dm status)
Registered S3 method overwritten by 'mosaic':
 method
                                  from
 fortify.SpatialPolygonsDataFrame ggplot2
 dm status min 01 median
                                      Q3
                                          max
                                                  mean
       Yes 16.07 27.37061 30.295 35.7875 70.56 31.98108
2
        No 13.30 24.11000 27.320 30.6100 75.52 28.01261
       sd n missing
1 7.301795 1102
2 6.033544 6310
```

How can we repair this?

- r, message = FALSE in chunk name
- show only a single decimal place?

Answering Questions

• What is the effect of having a diagnosis of diabetes on body mass index?

```
smart1_sh %$% mosaic::favstats(bmi ~ dm_status) %>%
  rename(dm = dm_status) %>%
  knitr::kable(digits = 1)
```

dm	min	Q1	median	Q3	max	mean	sd	n	missing
Yes	16.1	27.4	30.3	35.8	70.6	32	7.3	1102	0
No	13.3	24.1	27.3	30.6	75.5	28	6.0	6310	0

Plot the data!

```
ggplot(smart1_sh, aes(x = dm_status, y = bmi)) +
  geom_violin() + geom_boxplot(width = 0.3, notch = TRUE) +
  coord_flip()
```

Visualizing the Data in Boxplots (with Violins)

Analysis of Variance

• What is the effect of having a diagnosis of diabetes on body mass index?

```
a1 <- smart1_sh %$% lm(bmi ~ dm_status)
anova(a1)
```

Analysis of Variance Table

Estimate effect of dm_status on bmi...

```
tidy(a1, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	31.981	0.188	31.672	32.290
dm_statusNo	-3.968	0.204	-4.304	-3.633

Is this easy to interpret?

Re-level the dm_status variable...

```
smart1 sh <- smart1 sh %>%
 mutate(dm_status = fct_relevel(dm_status, "No", "Yes"))
a1 <- smart1_sh %$% lm(bmi ~ dm_status)
anova(a1)
Analysis of Variance Table
Response: bmi
           Df Sum Sq Mean Sq F value Pr(>F)
dm_status 1 14775 14774.8 379.65 < 2.2e-16 ***
Residuals 7410 288372 38.9
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Estimate effect of re-leveled dm_status on bmi...

```
tidy(a1, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	28.013	0.079	27.883	28.142
dm_statusYes	3.968	0.204	3.633	4.304

Answering Questions

② Does whether you have health insurance affect this association?

```
smart1_sh %$%
mosaic::favstats(bmi ~ dm_status + healthplan) %>%
rename(dm_hp = dm_status.healthplan) %>%
knitr::kable(digits = 1)
```

dm_hp	min	Q1	median	Q3	max	mean	sd	n	missing
No.0	14.0	23.7	27.2	30.9	56.6	28	6.4	364	0
Yes.0	16.1	27.4	30.2	35.2	53.4	31	6.9	35	0
No.1	13.3	24.1	27.4	30.6	75.5	28	6.0	5946	0
Yes.1	16.1	27.4	30.3	35.8	70.6	32	7.3	1067	0

Visualize Three Variables (Code)

Visualize Three Variables

Direct Approach: An Interaction Plot

We'll plot the means of the bmi in the four combinations:

- two levels of dm_status combined with
- two levels of healthplan

```
summaries1 <- smart1_sh %>%
  group_by(dm_status, healthplan) %>%
  summarize(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries1 %>% knitr::kable(digits = 2)
```

dm_status	healthplan	n	mean	stdev
No	0	364	28.01	6.41
No	1	5946	28.01	6.01
Yes	0	35	31.02	6.93
Yes	1	1067	32.01	7.31

Interaction Plot for Two-Way ANOVA (code)

```
pd <- position dodge(0.2)
ggplot(summaries1, aes(x = dm status, y = mean,
                       col = factor(healthplan))) +
  geom errorbar(aes(ymin = mean - stdev,
                    ymax = mean + stdev),
                width = 0.2, position = pd) +
  geom_point(size = 2, position = pd) +
  geom_line(aes(group = healthplan), position = pd) +
  labs(v = "Body-Mass Index",
      x = "Diabetes?"
       title = "Observed Means (+/- SD) for BMI",
       subtitle = "by Diabetes Status and Insurance")
```

Interaction Plot for Two-Way ANOVA

Observed Means (+/- SD) for BMI

Two-Way (Two Factor) Analysis of Variance

```
a2 <- smart1_sh %$% lm(bmi ~ dm_status * healthplan)
anova(a2) %>% knitr::kable(digits = 3)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dm_status	1	14774.816	14774.816	379.595	0.000
healthplan	1	3.148	3.148	0.081	0.776
dm_status:healthplan	1	30.444	30.444	0.782	0.377
Residuals	7408	288338.239	38.923	NA	NA

Why am I using * rather than + to connect dm_status and healthplan?

Two-Way (Two Factor) Analysis of Variance

Model without an interaction term:

```
a2_noint <- smart1_sh %$% lm(bmi ~ dm_status + healthplan)
anova(a2_noint) %>% knitr::kable(digits = 3)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dm_status	1	14774.816	14774.816	379.606	0.000
healthplan	1	3.148	3.148	0.081	0.776
Residuals	7409	288368.683	38.921	NA	NA

Model including an interaction term:

```
a2_switch <- smart1_sh %$% lm(bmi ~ healthplan * dm_status)
anova(a2_switch) %>% knitr::kable(digits = 3)
```

Df	Sum Sq	Mean Sq	F value	Pr(>F)
1	45.436	45.436	1.167	0.280
1	14732.528	14732.528	378.509	0.000
1	30.444	30.444	0.782	0.377
7408	288338.239	38.923	NA	NA
	1 1 1	1 45.436 1 14732.528 1 30.444	1 45.436 45.436 1 14732.528 14732.528 1 30.444 30.444	1 45.436 45.436 1.167 1 14732.528 14732.528 378.509 1 30.444 30.444 0.782

I switched the order of the two factors here. Does order matter?

Model a2 tidied coefficients

```
tidy(a2, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	28.011	0.327	27.473	28.549
dm_statusYes	3.006	1.104	1.190	4.823
healthplan	0.002	0.337	-0.552	0.556
$dm_statusYes:healthplan$	0.994	1.123	-0.855	2.842

Model a2_switch coefficients

```
tidy(a2_switch, conf.int = TRUE, conf.level = 0.90) %>%
    select(term, estimate, std.error, conf.low, conf.high) %>%
    knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	28.011	0.327	27.473	28.549
healthplan	0.002	0.337	-0.552	0.556
dm_statusYes	3.006	1.104	1.190	4.823
healthplan:dm_statusYes	0.994	1.123	-0.855	2.842

We can use this model to make predictions for each of four types of people:

- Those with diabetes, but not a health plan
- Those with diabetes and a health plan
- Those without diabetes, but who have a health plan
- Those without diabetes, and also without a health plan

The Resulting Equations

The model with the interaction term is

dm_status	healthplan	Predicted BMI
Yes	1 (Yes)	28.011 + 3.006 + 0.002 + 0.994 = 32.013
Yes	0 (No)	28.011 + 3.006 = 31.017
No	1 (Yes)	28.011 + 0.002 = 28.013
No	0 (No)	28.011

These are the original means (except for rounding error) of the four groups.

Interpreting the Model with Interaction

```
tidy(a2, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	28.011	0.327	27.473	28.549
dm_statusYes	3.006	1.104	1.190	4.823
healthplan	0.002	0.337	-0.552	0.556
$dm_statusYes:healthplan$	0.994	1.123	-0.855	2.842

 Our interpretation here would involve specifying that the interaction between dm_status and healthplan is important, and focusing on what that means, perhaps by specifying what happens to the four types of people we could see (Yes/Yes, Yes/No, No/Yes and No/No) in terms of our two factors. This is where we got in Class 3. We'll start with the next slide in Class 4.

Is the interaction term important here?

- Does the interaction plot display important non-parallelism?
- 2 Does the interaction term account for a substantial fraction of the variation in our outcome?
- Ooes the interaction term's estimate/standard error/uncertainty interval meet usual standards for statistical significance?

If **all** of these things are true, then it's easy to conclude that the interaction is important, and we cannot interpret the main effects of dm_status and healthplan without thinking first about the interaction of those two factors.

• So let's walk through the decision. I've repeated the interaction plot on the next slide.

Interaction Plot (Substantial Non-Parallelism?)

Observed Means (+/- SD) for BMI

Interlude: A more substantial interaction?

We'll plot the means of the bmi in the four combinations:

- two levels of dm_status combined with
- two levels of landline

```
summaries0 <- smart1_sh %>%
  group_by(dm_status, landline) %>%
  summarize(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries0 %>% knitr::kable(digits = 2)
```

dm_status	landline	n	mean	stdev
No	0	3352	28.02	6.27
No	1	2958	28.01	5.76
Yes	0	411	33.02	8.11
Yes	1	691	31.36	6.71

Interlude: A more substantial interaction?

Observed Means (+/- SD) for BMI

Evaluation in our Two-Way ANOVA of Interaction

- Does the interaction plot display important non-parallelism?
 - No, I don't think so.
- ② Does the interaction term account for a substantial fraction of the variation in our outcome?

```
anova(a2) %>% knitr::kable(digits = 0)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dm_status	1	14775	14775	380	0
healthplan	1	3	3	0	1
dm_status:healthplan	1	30	30	1	0
Residuals	7408	288338	39	NA	NA

- SS(total) = 288,338 + 30 + 3 + 14,775 = 303,146.
- SS(interaction) = 30
- η^2 (interaction) = $\frac{30}{303146}$ = .000099, or about 0.01% of bmi variation.

Is the interaction term important here?

- Does the interaction plot display important non-parallelism?
 No.
- ② Does the interaction term account for a substantial fraction of the variation in our outcome?
 - It accounts for just under 0.01% of variation, so no.
- Ooes the interaction term's estimate/standard error/uncertainty interval meet usual standards for statistical significance?

```
tidy(a2, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	28.011	0.327	27.473	28.549
dm_statusYes	3.006	1.104	1.190	4.823
healthplan	0.002	0.337	-0.552	0.556
dm_statusYes:healthplan	0.994	1.123	-0.855	2.842

Is the interaction term important here?

- Does the interaction plot display important non-parallelism?
- No.
- ② Does the interaction term account for a substantial fraction of the variation in our outcome?
 - No.
- Ooes the interaction term's estimate/standard error/uncertainty interval meet usual standards for statistical significance?
 - No.

It's clearly easier to ignore the interaction term (and fit the no-interaction model) if none of these three things are true.

Interpreting the "No Interaction" Model

```
tidy(a2_noint, conf.int = TRUE, conf.level = 0.90) %>%
   select(term, estimate, std.error, conf.low, conf.high) %>%
   knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	27.926	0.313	27.412	28.441
dm_statusYes	3.966	0.204	3.631	4.301
healthplan	0.091	0.321	-0.437	0.620

- If Harry and Sally have the same healthplan status, but only Harry has diabetes, then Harry's BMI is estimated to be 3.97 kg/m² higher than Sally's. (90% uncertainty interval: 3.63, 4.30).
- If Harry and Sally have the same dm_status but Harry has a health plan and Sally doesn't, our model will estimate Harry's BMI as 0.09 kg/m² higher than Sally's (90% interval: -0.44, 0.62).

Adding a covariate

We saw that the no-interaction model might well be sufficient for BMI as a function of dm_status and healthplan. Would this still be true if we first adjusted for the impact of a continuous covariate, like physhealth, that is meaningfully correlated with BMI?

```
a3 <- smart1_sh %$%
lm(bmi ~ physhealth + dm_status * healthplan)
anova(a3) %>% knitr::kable(digits = 1)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
physhealth	1	4986.2	4986.2	129.2	0.0
dm_status	1	12185.9	12185.9	315.7	0.0
healthplan	1	0.3	0.3	0.0	0.9
dm_status:healthplan	1	22.1	22.1	0.6	0.4
Residuals	7407	285952.2	38.6	NA	NA

Model without the Covariate

Compare that ANOVA table to this one for our interaction model without the covariate. What changes?

anova(a2) %>% knitr::kable(digits = 1)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dm_status	1	14774.8	14774.8	379.6	0.0
healthplan	1	3.1	3.1	0.1	0.8
dm_status:healthplan	1	30.4	30.4	0.8	0.4
Residuals	7408	288338.2	38.9	NA	NA

a3 covariate model without interaction term

```
a3_noint <- smart1_sh %$%
lm(bmi ~ physhealth + dm_status + healthplan)
anova(a3_noint) %>% knitr::kable(digits = 1)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
physhealth	1	4986.2	4986.2	129.2	0.0
dm_status	1	12185.9	12185.9	315.7	0.0
healthplan	1	0.3	0.3	0.0	0.9
Residuals	7408	285974.3	38.6	NA	NA

Interpreting "No Interaction" Model + Covariate

```
tidy(a3_noint, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 2)
```

ما ۔۔ ا
nigh
3.24
0.07
4.01
0.56

- If Harry and Sally have the same healthplan status and the same physhealth, but only Harry has diabetes, then Harry's BMI is estimated to be 3.67 kg/m² higher than Sally's. (90% uncertainty interval: 3.33, 4.01).
- See next slide, too.

Interpreting "No Interaction" Model + Covariate

```
tidy(a3_noint, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 2)
```

estimate	std.error	conf.low	conf.high
27.72	0.31	27.21	28.24
0.06	0.01	0.05	0.07
3.67	0.21	3.33	4.01
0.03	0.32	-0.50	0.56
	27.72 0.06 3.67	27.72 0.31 0.06 0.01 3.67 0.21	27.72 0.31 27.21 0.06 0.01 0.05 3.67 0.21 3.33

- If Harry and Sally have the same dm_status and the same physhealth, but Harry has a health plan and Sally doesn't, our model will estimate Harry's BMI as 0.03 kg/m² higher than Sally's (90% uncertainty interval: -0.50, 0.56).
- Why aren't I talking here about the covariate's effect?

Does the model fit the data well?

We have the usual strategies applicable in any linear model:

- evaluate the R² and other summary statistics, especially in comparison to alternative specifications of models for the same outcome.
- evaluate the fit of the model to regression assumptions, mostly through diagnostics based on residuals
- cross-validate our model selection process, perhaps by partitioning the sample into a training sample (where candidate models are developed) and a holdout / test sample (where we choose between the candidates)

Summary Statistics (Whole Sample)

model	r.squared	sigma	AIC	BIC	adj.r.squared
dm_status	0.049	6.238	48176.79	48197.52	0.049
+ healthplan	0.049	6.239	48178.71	48206.35	0.048
+ physhealth	0.057	6.213	48118.91	48153.46	0.056

plot(a3_noint)

What's next?

- Building a two-factor ANOVA model with multi-categorical factors
 - again, focus on interpreting the interaction
 - add covariates, as desired
- ② Building similar models for a binary outcome using linear probability models and then generalized linear models (specifically logistic regression).