

High Speed CMOS Logic Dual 4 -Stage Binary Counter

September 1997

Features

- Fully Static Operation
- Buffered Inputs
- Common Reset
- Negative-Edge Clocking
- Typical $f_{MAX} = 60$ MHz at $V_{CC} = 5V$, $C_L = 15pF$, $T_{\Delta} = 25^{\circ}C$
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, I $_I \leq 1 \mu \text{A}$ at $\text{V}_{\mbox{OL}}, \, \text{V}_{\mbox{OH}}$

Description

The Harris CD74HC393 and CD74HCT393 are 4-stage ripple-carry binary counters. Al counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each clock pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74HC393E	-55 to 125	14 Ld PDIP	E14.3
CD74HCT393E	-55 to 125	14 Ld PDIP	E14.3
CD74HC393M	-55 to 125	14 Ld SOIC	M14.15
CD74HCT393M	-55 to 125	14 Ld SOIC	M14.15

NOTES:

- 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
- Wafer or die for this part number is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.

Pinout

CD74HC393, CD74HCT393 (PDIP, SOIC) TOP VIEW

Functional Diagram

TRUTH TABLE

		OUTI	PUTS	
CP COUNT	Q_0	Q ₁	Q ₂	Q ₃
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	Н	L	L	Н
10	L	Н	L	Н
11	Н	Н	L	Н
12	L	L	Н	Н
13	Н	L	Н	Н
14	L	Н	Н	Н
15	Н	Н	Н	Н

CP COUNT	MR	OUTPUT
1	L	No Change
\downarrow	L	Count
Х	Н	LLLL

NOTE: H = High Voltage Level, L = Low Voltage Level, X = Don't Care, \uparrow = Transition from Low to High Level, \downarrow = Transition from High to Low.

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (oC/W)
PDIP Package	90
SOIC Package	
Maximum Junction Temperature	150 ⁰ C
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300 ⁰ C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

		TES CONDI			25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	٧
			6	4.2	-	-	4.2	-	4.2	-	V	
Low Level Input V _{IL} Voltage	-	-	2	-	-	0.5	-	0.5	-	0.5	V	
			4.5	-	-	1.35	-	1.35	-	1.35	V	
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output VOH Voltage CMOS Loads	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V	
		-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V	
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
112 20000			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
OWICO Educa			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
TTE Education			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μΑ

DC Electrical Specifications (Continued)

		TE: CONDI		-		25°C			O 85°C	-55°C T		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	Ī	-	2	-	2	ı	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	Voн	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	=	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	=	0.33	=	0.4	V
Input Leakage Current	lį	V _{CC} and GND	0	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	Δl _{CC}	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE: For dual-supply systems theorectical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
nCP	0.4
nMR	1

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

Prerequisite for Switching Specifications

				25°C		-40°C T	O 85°C	-55°C T		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES										
Maximum Clock	f _{MAX}	2	6	-	-	5	-	4	-	ns
Frequency		4.5	30	-	-	24	-	20	-	ns
		6	35	-	-	28	-	24	-	ns
Clock Pulse Width	t _W	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
Reset Recovery Time	tREC	2	5	-	-	5	-	5	-	ns
		4.5	5	-	-	5	-	5	-	ns
		6	5	-	-	5	-	5	-	ns

Prerequisite for Switching Specifications (Continued)

			25°C			-40°C T	O 85°C	-55°C T		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Reset Pulse Width	t _W	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
HCT TYPES	-									
Maximum Clock Frequency	f _{MAX}	4.5	27	-	-	22	-	18	-	MHz
Clock Pulse Width	t _W	4.5	19	-	-	24	-	29	-	ns
Reset Recovery Time	t _{REC}	4.5	5	-	-	5	-	5	-	ns
Reset Pulse Width	t _W	4.5	16	-	-	20	-	24	-	ns

Switching Specifications Input t_{r} , $t_{f} = 6 \text{ns}$

		TEST	Vcc		25°C		-40°C 1	O 85°C	-55 ⁰ C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES							•				
Propagation Delay Time (Figure 1)	t _{PLH,}	C _L = 50pF	2	-	-	45	-	55	-	70	ns
Q_n to $Q_n + 1$			4.5	-	-	9	-	11	-	14	ns
		C _L =15pF	5	-	4	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	8	-	9	-	12	ns
nCP to nQ ₀	t _{PLH} ,	C _L = 50pF	2	-	-	150	-	190	-	225	ns
	t _{PHL}		4.5	-	-	30	-	38	-	59	ns
		C _L =15pF	5	-	12	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	26	-	33	-	50	ns
nCP to nQ ₁	t _{PLH,}	C _L = 50pF	2	-	-	190	-	245	-	295	ns
			4.5	-	-	38	-	49	-	59	ns
			6	-	-	33	-	42	-	50	ns
nCP to nQ ₂	t _{PLH} ,	C _L = 50pF	2	-	-	240	-	300	-	360	ns
	t _{PHL}		4.5	-	-	48	-	60	-	72	ns
			6	-	-	41	-	51	-	61	ns
nCP to nQ ₃	t _{PLH} ,	C _L = 50pF	2	-	-	285	-	355	-	430	ns
	tPHL		4.5		-	57	-	71	-	86	ns
			6	-	-	48	-	60	-	73	ns
MR to Q _n	t _{PLH} ,	C _L = 50pF	2	-	-	135	-	170	-	205	ns
	tPHL		4.5	-	-	27	-	34	-	41	ns
		C _L =15pF	5	-	11	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	23	-	29	-	35	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
Figure 1)			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	C _L =15pF	5	-	20	-	-	-	-	-	pF

Switching Specifications Input t_r , t_f = 6ns (Continued)

		TEST	Vcc		25°C			O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES										_	
Propagation Delay Time (Figure 1)	t _{PLH,} t _{PHL}	C _L = 50pF	4.5	-	ı	12	-	15	-	18	ns
Q _n to Q _n + 1		C _L =15pF	5	-	4	-	-	-	-	-	ns
nCP to nQ ₀	t _{PLH,}	C _L = 50pF	4.5	-	-	32	-	40	-	48	ns
	t _{PHL}	C _L =15pF	5	-	13	-	-	-	-	-	ns
nCP to nQ ₁	t _{PLH,}	C _L = 50pF	4.5	-	-	44	-	55	-	66	ns
nCP to nQ ₂	t _{PLH,}	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
nCP to nQ ₃	t _{PLH,}	C _L = 50pF	4.5	-	-	62	-	78	-	93	ns
MR to Q _n	t _{PLH} ,	C _L = 50pF	4.5	-	-	32	-	40	-	48	ns
	tPHL	C _L =15pF	5	-	13	-	-	-	-	-	ns
Output Transition	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	C _{IN}	C _L =15pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	C _L =15pF	5	-	21	-	-	-	-	-	pF

NOTES:

- 4. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per stage.
- 5. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC