Code: 21P03601 SR21 SET-1

SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC – Autonomous Institution

III B.Tech II Semester II MID Examinations, MAY- 2025 ARTIFICIAL INTELLIGENCE & MACHINE LEARNING MECH

Time: 20 Mins	Max. Marks:20		Date: 01-05-2025
Roll No:	Sign of the Student:		Marks Obtained:
Name:	Sign of invigilator:		Sign of Valuator:
СО	CO 3	CO 4	Marks Obtained:
UNIT	III	IV	Total Marks

1. What does Bayes' Theorem describe?	[]
A) A method for clustering dataB) The probability of an event based on prior knowledgeC) The relationship between dependent variablesD) A function for dimensionality reduction		
2. What is the primary assumption of the Naïve Bayes classifier?	[]
A) All features are dependentB) All features are independent given the classC) Data must be normally distributedD) Only categorical features are allowed		
3. The Gibbs Algorithm is mainly used for:	[]
A) Optimizing machine learning modelsB) Bayesian probability estimationC) Image classificationD) Time series forecasting		
4. What is Maximum Likelihood Estimation (MLE) used for?	[]
A) Minimizing feature space B) Finding parameters that maximize the probability of observed data C) Reducing variance in predictions D) Clustering large datasets		

5. The Minimum Description Length (MDL) principle aims to:]
A) Find the most complex explanation for a datasetB) Find the simplest explanation for a datasetC) Increase the number of featuresD) Reduce computation speed		
6. In Naïve Bayes, the probability of an event given evidence is known as:	[]
A) Prior probabilityB) Posterior probabilityC) LikelihoodD) Marginal probability		
7. What is the role of the prior probability in Bayes' Theorem?	[]
A) It represents initial beliefs before new evidence is consideredB) It is the probability of the evidenceC) It is the final classification outputD) It is always equal to 1		
8. What type of learning is K-Nearest Neighbors (KNN)?	[]
A) Supervised Learning B) Unsupervised Learning C) Reinforcement Learning D) Semi-supervised Learning		
9. How does KNN classify a new data point?	[]
A) By assigning the majority class of its nearest neighborsB) By learning parameters during trainingC) By computing probability distributionsD) By reducing dataset size		
10. Which distance metric is commonly used in KNN?	[]
A) Euclidean Distance B) Hamming Distance C) Jaccard Similarity D) Cosine Similarity		
11. What is the main goal of supervised learning?	[]
A) To find hidden patterns in dataB) To learn a mapping from inputs to outputs using labeled dataC) To cluster similar data pointsD) To reduce the dimensionality of data		

12. In which of the following methods does the algorithm store all training i	nstance	es and
classify new data based on similarity?	[]
A) Decision Trees B) K-Nearest Neighbors (KNN) C) Support Vector Machines (SVM) D) Random Forest		
13. What is the primary limitation of KNN?	[]
A) It is difficult to implementB) It requires large amounts of labeled dataC) It has high computational cost for large datasetsD) It cannot handle non-numeric data		
14. Which of the following is a distance-based method?	[]
A) Support Vector Machines B) K-Means Clustering C) K-Nearest Neighbors D) Neural Networks		
15. Which of the following statements about Decision Trees is true?	[]
A) They perform well with non-linear relationshipsB) They are sensitive to missing dataC) They do not require labeled dataD) They use support vectors for classification		
16. Which of the following is a key advantage of Decision Trees?	[]
A) High accuracy for large datasets B) Easy interpretability C) Requires no hyperparameter tuning D) Works well with high-dimensional data		
17. Which of the following methods is based on finding a hyperplane that m margin between two classes?	aximiz [es the
A) KNN B) Decision Trees C) Support Vector Machines (SVM) D) K-Means Clustering		
18. What is the kernel trick used for in SVM?	[]
 A) To convert categorical features into numerical values B) To transform non-linearly separable data into higher-dimensional space C) To reduce the number of training examples D) To optimize hyperparameters 		

19. Which of the following is NOT a kernel function in SVM?]
A) Linear Kernel		
B) Polynomial Kernel		
C) Gaussian Kernel		
D) K-Means Kernel		
20. In which type of learning is clustering used?	[]
A) Supervised Learning		
B) Unsupervised Learning		
C) Reinforcement Learning		
D) Semi-supervised Learning		