

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Название: Дескриптивный анализ данных

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА **09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных**

ОТЧЕТ

по домашнему заданию № 1

Дисциплина: <u>М</u>	етоды машинного обу	<u>чения</u>	
Студент	<u>ИУ6-22М</u> (Группа)	(Подпись, дата)	С.В. Астахов (И.О. Фамилия)
Преподаватель		(Подпись, дата)	С.Ю. Папулин (И.О. Фамилия)

ДОМАШНЕЕ ЗАДАНИЕ 1. Дескриптивный анализ данных

Астахов С.В. ИУ6-22М

Цель работы

Приобрести опыт решения практических задач по анализу данных, таких как загрузка, трансформация, вычисление простых статистик и визуализация данных в виде графиков и диаграмм, посредством языка программирования Python.

Содержание

- 1. Задание 1. Анализ индикаторов качества государственного управления
 - 1.1 Загрузите данные в DataFrame
 - 1.2 Отсортируйте данные по убыванию индекса DataFrame
 - 1.3 Отобразите данные по индексу WGI за 2022 год в виде горизонтального столбчатого графика (rank)
 - 1.4 Сформируйте DataFrame из исходного для региона в соответствии с Вашим вариантом
 - 1.5 Выведите данные DataFrame'a
 - 1.6 Постройте графики индекса WGI за 1996-2022 для стран своего региона (estimate)
 - 1.7 Найдите страны с наибольшим и наименьшим значением WGI Вашего варианта региона за 2022 год (estimate)
 - 1.8 Определите средние значения региона за каждый год в период с 1996 по 2022 (estimate)
 - 1.9 Постройте графики индекса WGI за 1996-2022 для стран своего региона и выделите страны с наибольшим и наименьшим значением WGI за 2022 год, а также отобразите среднее значение по региону и РФ
 - 1.11 Определите, как изменилось значение показателя rank с 1996 по 2022 (rank)
 - 1.12 Выведите таблицу для Вашего варианта (WGI rank)
 - 1.13 Отобразите диаграмму размаха (boxplot) индекса WGI за 2022 для всех стран и для каждого региона в отдельности (на одном графике) (estimate)

- 2. Задача 2. Анализ рынка акций
 - 2.1 Загрузите данные в один dataframe из всех файлов в папке /data/stock
 - 2.2 Рассчитайте корреляционную матрицу для всех акций
 - 2.3 Отобразите корреляционную матрицу в виде диаграммы
 - 2.4 В соответствии с Вашим вариантом определите: акцию с максимальной положительной корреляцией (max) акцию с максимальной отрицательной корреляцией (min) акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none)
 - 2.5 Постройте диаграммы разброса (Ваша компания Компания с min), (Ваша компания Компания с max), (Ваша компания Компания с none)
 - 2.6 Рассчитайте среднюю цену акций для каждого месяца
 - 2.7 Постройте графики для акций из пункта 4 и средней из пункта 6
- 3. Вывод

Вариант

```
In [1]: surname = "Астахов" # Ваша фамилия

alp = 'абвгдеёжзийклмнопрстуфхцчшщьыь эюя'
w = [1, 42, 21, 21, 34, 6, 44, 26, 18, 44, 38, 26, 14, 43, 4, 49, 45,
7, 42, 29, 4, 9, 36, 34, 31, 29, 5, 30, 4, 19, 28, 25, 33]

d = dict(zip(alp, w))
variant = sum([d[el] for el in surname.lower()]) % 40 + 1

print("Задача № 1, шаг 5 - вариант: ", variant % 5 + 1)
print("Задача № 1, шаг 11 - вариант: ", variant % 2 + 1 )
print("задача № 2 - вариант: 1
Задача № 1, шаг 11 - вариант: 1
задача № 2 - вариант: 1
задача № 2 - вариант: 1
```

Задание 1. Анализ индикаторов качества государственного управления (The Worldwide Government Indicators, WGI)

1.1 Загрузите данные в DataFrame

```
In [2]: # импорт библиотек
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
```

```
In [3]: # Чтение в датафрейм с 14 строки
df = pd.read_excel("./wgidataset.xlsx", sheet_name = "ControlofCorruption
df.head() # вывод первых 5 записей
```

Out[3]: Unnamed: Unnamed: 0_level_0 1_level_0

1!

	Country/ Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Up
0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN	١
1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.043015	96.774
2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.000000	27.419
3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0.537634	27.419
4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN	١

5 rows × 146 columns

```
In [4]: # Избавление от мультииндекса и переименование колонок

df = df.rename(columns={"Unnamed: 0_level_0": "C/T", "Unnamed: 1_level_0"
    new_cols = map(lambda x: x[1]+"."+str(x[0]), list(df.columns.values)) # c
    df = df.droplevel(0, axis=1) # удаляем первую строку колоночного индекса
    df.columns = new_cols
    df = df.rename(columns={"Country/Territory.C/T": "Country/Territory", "Co
    df.head()
```

t[4]:		Country/ Territory	Code	Estimate.1996	StdErr.1996	NumSrc.1996	Rank.1996	Lower.1990
	0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN
	1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.04301!
	2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.000000
	3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0.53763
	4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN

5 rows × 146 columns

1.2 Отсортируйте данные по убыванию индекса DataFrame

```
In [5]: df_sort_desc = df.iloc[::-1] #сортировка по убыванию индекса
df_sort_desc #вывод
```

\cap		+	Γ	5	1	
U	u	L	L	J	ı,	

	Country/ Territory	Code	Estimate.1996	StdErr.1996	NumSrc.1996	Rank.1996	Lower.19
213	Zimbabwe	ZWE	-0.278847	0.244907	5.0	47.849461	30.645
212	Zambia	ZMB	-0.840641	0.262077	4.0	24.731182	5.9139
211	Congo, Dem. Rep.	ZAR	-1.647852	0.315914	3.0	0.000000	0.0000
210	South Africa	ZAF	0.732927	0.210325	6.0	76.344086	66.1290
209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.5370
•••	•••		•••	•••	•••	•••	
4	Anguilla	AIA	NaN	NaN	NaN	NaN	١
3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0.5370
2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.0000
1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.0430
0	Aruba	ABW	NaN	NaN	NaN	NaN	٨

214 rows × 146 columns

1.3 Отобразите данные по индексу WGI за 2022 год в виде горизонтального столбчатого графика (rank)

```
In [6]: df_sort_desc_fillna = df_sort_desc.copy() # 0 вместо NaN df_sort_desc_fillna["Rank.2022"] = df_sort_desc_fillna["Rank.2022"].filln #сортировка данных по столбцу Rank за 2022-ый год dfSort = df_sort_desc_fillna.sort_values("Rank.2022", ascending=True) plt.figure(figsize=(25, 40)) #размер графика plt.title('Индексы стран по убыванию') plt.barh(dfSort["Country/Territory"], dfSort['Rank.2022']) #формирование plt.show() #Отображение
```


1.4 Сформируйте DataFrame из исходного для региона в соответствии с Вашим вариантом

```
In [7]: # Чтение файла с регионами в датафрейм
df_reg = pd.read_excel("./regions.xlsx")
df_reg.head(10)
```

```
Out[7]:
               Country Code Region
         0 Afghanistan
                         AFG
                                  AΡ
         1
                Albania
                         ALB
                                 ECA
                        DZA
         2
                Algeria
                               MENA
         3
                Angola
                        AGO
                                 SSA
         4
              Argentina
                         ARG
                                AME
               Armenia
                                 ECA
         5
                        ARM
                                 ΑP
         6
               Australia
                         AUS
         7
                Austria
                         AUT WE/EU
             Azerbaijan
                                 ECA
         8
                         AZE
         9
               Bahamas
                         BHS
                                AME
```

```
In [8]: # Join df c регионами и со странами
merged_df = pd.merge(df_reg, df, on='Code')
sort_for_reg = merged_df.groupby("Region")
sort_for_reg
#создание датафрейма по региону AP
df_region = sort_for_reg.get_group("AP")
df_region = df_region.drop('Country/Territory', axis=1, inplace=False) #,
df_region = df_region.set_index("Country") # выставление столбца Country
```

1.5 Выведите данные DataFrame'a

```
In [9]: df_region
```

	Code	Region	Estimate.1996	StdErr.1996	NumSrc.1996	Rank.1996	Low
Country							
Afghanistan	AFG	AP	-1.291705	0.340507	2.0	4.301075	0.
Australia	AUS	AP	1.877356	0.210325	6.0	93.548386	90.
Bangladesh	BGD	AP	-0.969682	0.262077	4.0	17.741936	2.
Bhutan	BTN	AP	0.942838	0.340507	2.0	81.182793	66.
Cambodia	KHM	AP	-1.019842	0.275614	3.0	16.129032	2.
China	CHN	AP	-0.271190	0.188622	7.0	48.387096	32.
Fiji	FJI	AP	0.659303	0.340507	2.0	73.655914	59.
Hong Kong	HKG	AP	1.444894	0.204951	6.0	89.784943	81.
India	IND	AP	-0.381090	0.188622	7.0	43.010754	29.
Indonesia	IDN	AP	-0.864106	0.188622	7.0	22.043011	8.
Japan	JPN	AP	1.192312	0.188622	7.0	84.408600	80.
Korea, North	PRK	AP	-1.284347	0.315914	3.0	4.838710	0.
Korea, South	KOR	AP	0.382197	0.188622	7.0	65.591400	59.
Laos	LAO	AP	-0.722834	0.340507	2.0	28.494623	4.
Malaysia	MYS	AP	0.383065	0.188622	7.0	66.129036	59.
Maldives	MDV	AP	-0.322941	0.340507	2.0	46.774193	19.
Mongolia	MNG	AP	0.111758	0.315914	3.0	60.752689	41.
Myanmar	MMR	AP	-1.500767	0.262077	4.0	1.612903	0.
Nepal	NPL	AP	-0.639209	0.340507	2.0	31.720430	7.
New Zealand	NZL	AP	2.110246	0.210325	6.0	97.849464	93.
Pakistan	PAK	AP	-1.220030	0.262077	4.0	7.526882	0.
Papua New Guinea	PNG	АР	-0.433467	0.262077	4.0	40.322582	22.
Philippines	PHL	AP	-0.358872	0.188622	7.0	45.698925	30.
Singapore	SGP	AP	2.107434	0.188622	7.0	97.311829	93.
Solomon Islands	SLB	AP	0.340782	0.439480	1.0	65.053764	43.
Sri Lanka	LKA	AP	-0.056539	0.262077	4.0	54.301075	37.
Taiwan	TWN	AP	0.580821	0.188622	7.0	73.118279	62.
Thailand	THA	AP	-0.361192	0.188622	7.0	45.161289	30.
Vanuatu	VUT	AP	0.216309	0.439480	1.0	62.365593	36.

6.0 37.096775

24.

Vietnam VNM

ΑP

-0.489799

0.212363

Out[9]:

1.6 Постройте графики индекса WGI за 1996-2022 для стран своего региона (estimate)

In [10]: WGI = df_region.filter(regex='Estimate|Country')#Фильтрация по Estimate|C
WGI.columns = map(lambda x: x.split(".")[1], list(WGI.columns.values))
WGI.head()

Out[10]: Estimate.1996 Estimate.1998 Estimate.2000 Estimate.2002 Estimate.200

Country					
Afghanistan	-1.291705	-1.176012	-1.271724	-1.251137	-1.34418
Australia	1.877356	1.798130	1.862088	1.761436	1.89528
Bangladesh	-0.969682	-0.773011	-1.212083	-1.449087	-1.54172
Bhutan	0.942838	0.883641	0.574340	0.449922	1.08701
Cambodia	-1.019842	-0.988312	-0.967183	-0.990784	-0.98983

5 rows × 24 columns

```
In [11]: WGI = WGI.T #транспонирование WGI.head()
```

Out[11]:

Country	Afghanistan	Australia	Bangladesh	Bhutan	Cambodia	China	
Estimate.1996	-1.291705	1.877356	-0.969682	0.942838	-1.019842	-0.271190	0.6
Estimate.1998	-1.176012	1.798130	-0.773011	0.883641	-0.988312	-0.353955	0.6
Estimate.2000	-1.271724	1.862088	-1.212083	0.574340	-0.967183	-0.208549	0.6
Estimate.2002	-1.251137	1.761436	-1.449087	0.449922	-0.990784	-0.557898	0.6
Estimate.2003	-1.344180	1.895287	-1.541721	1.087011	-0.989836	-0.395265	0.7

5 rows × 30 columns

Out[12]: <AxesSubplot:title={'center':'WGI 3a 1996-2022 Asia Pacific estimate'}>

1.7 Найдите страны с наибольшим и наименьшим значением WGI Вашего варианта региона за 2022 год (estimate)

```
In [13]: WGI = WGI.T

#ВЫВОД НАИМЕНЬШЕГО

min_W = WGI["Estimate.2022"].idxmin()

min_W

Out[13]: 'Korea, North'

In [14]: #ВЫВОД НАИБОЛЬШЕГО

max_W = WGI["Estimate.2022"].idxmax()

max_W

Out[14]: 'New Zealand'
```

1.8 Определите средние значения региона за каждый год в период с 1996 по 2022 (estimate)

```
In [15]: #вывод среднего значения за каждый период
mean = WGI.mean()
mean.name = "mean"
mean
```

```
Out[15]: Estimate.1996
                          0.005390
         Estimate.1998
                          0.004409
         Estimate.2000
                          -0.035114
         Estimate.2002
                          -0.043584
         Estimate.2003
                          -0.024761
         Estimate.2004
                          -0.117873
         Estimate.2005
                          -0.141014
         Estimate.2006
                          -0.154418
         Estimate.2007
                         -0.139037
         Estimate.2008
                         -0.156720
         Estimate.2009
                          -0.154840
                          -0.140798
         Estimate.2010
         Estimate.2011
                          -0.131607
         Estimate.2012
                          -0.063054
         Estimate.2013
                         -0.046824
         Estimate.2014
                          0.012366
         Estimate.2015
                         -0.049325
         Estimate.2016
                          -0.073050
         Estimate.2017
                          -0.025685
         Estimate.2018
                          -0.012606
         Estimate.2019
                          -0.013031
         Estimate.2020
                          0.016584
         Estimate.2021
                           0.016733
         Estimate.2022
                           0.012814
         Name: mean, dtype: float64
```

1.9 Постройте графики индекса WGI за 1996-2022 для стран своего региона и выделите страны с наибольшим и наименьшим значением WGI за 2022 год, а также отобразите среднее значение по региону и РФ

1.11 Определите, как изменилось значение

показателя rank с 1996 по 2022 (rank)

In [18]:		<pre>f_rank_change = pd.concat([df_region.filter(regex='Rank'), df_russia.fil f_rank_change.head()</pre>								
Out[18]:		Rank.1996	Rank.1998	Rank.2000	Rank.2002	Rank.2003	Rank.2004	Ran		
	Country									
	Afghanistan	4.301075	8.021390	4.787234	4.761905	4.761905	6.403941	1.4		
	Australia	93.548386	92.513367	93.617020	92.063492	93.650795	96.551727	95.6		
	Bangladesh	17.741936	28.877005	6.914894	1.587302	0.529101	0.985222	2.9		
	Bhutan	81.182793	81.283424	71.276596	70.899467	82.010582	80.788177	79.(
	Cambodia	16.129032	19.251337	18.085106	17.460318	14.285714	14.285714	10.2		

5 rows × 24 columns

```
In [19]: # вывод процена изменения относительно 1996-го года и 2022-го
# изменение в долях от единицы
procent_change = df_rank_change.filter(items=['Rank.1996','Rank.2022']).c
procent_change_readable = procent_change.map(lambda x: "{:.2f}%".format(x
procent_change_concat = pd.concat([df_rank_change[['Rank.1996','Rank.2022
procent_change_concat.columns = ['Rank.1996','Rank.2022', "Change.relativ
procent_change_concat
```

Out[19]:		Rank.1996	Rank.2022	Change.relative	Change.percent
	Country				
	Afghanistan	4.301075	12.264151	1.851415	185.14%
	Australia	93.548386	95.283020	0.018543	1.85%
	Bangladesh	17.741936	15.566038	-0.122641	-12.26%
	Bhutan	81.182793	90.094337	0.109771	10.98%
	Cambodia	16.129032	9.905661	-0.385849	-38.58%
	China	48.387096	55.188679	0.140566	14.06%
	Fiji	73.655914	64.622643	-0.122641	-12.26%
	Hong Kong	89.784943	92.452827	0.029714	2.97%
	India	43.010754	44.339622	0.030896	3.09%
	Indonesia	22.043011	37.735847	0.711919	71.19%
	Japan	84.408600	90.566040	0.072948	7.29%
	Korea, North	4.838710	2.358490	-0.512579	-51.26%
	Korea, South	65.591400	76.886795	0.172208	17.22%
	Laos	28.494623	19.811321	-0.304735	-30.47%
	Malaysia	66.129036	62.264153	-0.058445	-5.84%
	Maldives	46.774193	39.622643	-0.152895	-15.29%
	Mongolia	60.752689	33.018867	-0.456504	-45.65%
	Myanmar	1.612903	12.735849	6.896227	689.62%
	Nepal	31.720430	33.962265	0.070675	7.07%
	New Zealand	97.849464	99.056602	0.012337	1.23%
	Pakistan	7.526882	22.641510	2.008086	200.81%
	Papua New Guinea	40.322582	25.471699	-0.368302	-36.83%
	Philippines	45.698925	33.490566	-0.267148	-26.71%
	Singapore	97.311829	98.584908	0.013082	1.31%
	Solomon Islands	65.053764	49.056602	-0.245907	-24.59%
	Sri Lanka	54.301075	40.094341	-0.261629	-26.16%
	Taiwan	73.118279	83.018867	0.135405	13.54%
	Thailand	45.161289	35.849056	-0.206199	-20.62%
	Vanuatu	62.365593	53.301888	-0.145332	-14.53%
	Vietnam	37.096775	45.754719	0.233388	23.34%
	Duccia	15 052762	10 220622	0.204702	20 470/

1.12 Выведите таблицу для Вашего варианта (WGI - rank)

28.47%

Russia 15.053763 19.339622 0.284703

```
In [20]: # вся таблица берется из датафрейма выше по найденным ранее ключам #создание 0-го столбца таблицы
Rows = ['mean_2022', 'max_2022', 'min_2022', 'Russia_2022']
#создание 0-ой коллонки таблицы
Cols = ['Perион', 'Cтрана', 'WGI 1996', 'WGI 2022', 'Изменение']
Tabl_proc = pd.DataFrame(index=Rows,columns=Cols)

In [21]: #создание первого столбца таблицы
Tabl_proc.loc['mean_2022', 'Perион'] = "AP" # из вариантов
Tabl_proc.loc['max_2022', 'Perион'] = "AP" # из вариантов
# Получаем название региона для России
Tabl_proc.loc['Russia_2022', 'Perион'] = list(merged_df[merged_df["Countr")]

In [22]: # merged_df

In [23]: procent_change_concat
```

			-	
Country				
Afghanistan	4.301075	12.264151	1.851415	185.14%
Australia	93.548386	95.283020	0.018543	1.85%
Bangladesh	17.741936	15.566038	-0.122641	-12.26%
Bhutan	81.182793	90.094337	0.109771	10.98%
Cambodia	16.129032	9.905661	-0.385849	-38.58%
China	48.387096	55.188679	0.140566	14.06%
Fiji	73.655914	64.622643	-0.122641	-12.26%
Hong Kong	89.784943	92.452827	0.029714	2.97%
India	43.010754	44.339622	0.030896	3.09%
Indonesia	22.043011	37.735847	0.711919	71.19%
Japan	84.408600	90.566040	0.072948	7.29%
Korea, North	4.838710	2.358490	-0.512579	-51.26%
Korea, South	65.591400	76.886795	0.172208	17.22%
Laos	28.494623	19.811321	-0.304735	-30.47%
Malaysia	66.129036	62.264153	-0.058445	-5.84%
Maldives	46.774193	39.622643	-0.152895	-15.29%
Mongolia	60.752689	33.018867	-0.456504	-45.65%
Myanmar	1.612903	12.735849	6.896227	689.62%
Nepal	31.720430	33.962265	0.070675	7.07%
New Zealand	97.849464	99.056602	0.012337	1.23%
Pakistan	7.526882	22.641510	2.008086	200.81%
Papua New Guinea	40.322582	25.471699	-0.368302	-36.83%
Philippines	45.698925	33.490566	-0.267148	-26.71%
Singapore	97.311829	98.584908	0.013082	1.31%
Solomon Islands	65.053764	49.056602	-0.245907	-24.59%
Sri Lanka	54.301075	40.094341	-0.261629	-26.16%
Taiwan	73.118279	83.018867	0.135405	13.54%
Thailand	45.161289	35.849056	-0.206199	-20.62%
Vanuatu	62.365593	53.301888	-0.145332	-14.53%
Vietnam	37.096775	45.754719	0.233388	23.34%
Russia	15.053763	19.339622	0.284703	28.47%

In [24]: max_W = procent_change_concat["Rank.2022"].idxmax() ${\tt max_W}$

```
Out[24]: 'New Zealand'
In [25]: min W = procent change concat["Rank.2022"].idxmin()
          min W
Out[25]: 'Korea, North'
In [26]: #создание второго столбца таблицы
          Tabl_proc.loc['mean_2022', 'Страна'] = "-"
          Tabl_proc.loc['max_2022', 'Страна'] = max_W
Tabl_proc.loc['min_2022', 'Страна'] = min_W
          Tabl proc.loc['Russia 2022', 'Страна'] = "Russian Federation"
         #создание третьего столбца таблицы
In [27]:
          Tabl_proc.loc['mean_2022', 'WGI 1996'] = \{:.2f\}".format(procent_change_c
          Tabl proc.loc['Russia 2022', 'WGI 1996'] = "{:.2f}".format(procent change
In [28]: #создание четвертого столбца таблицы
          Tabl_proc.loc['mean_2022', 'WGI 2022'] = "{:.2f}".format(procent_change_c
Tabl_proc.loc['max_2022', 'WGI 2022'] = "{:.2f}".format(procent_change_co
Tabl_proc.loc['min_2022', 'WGI 2022'] = "{:.2f}".format(procent_change_co
          Tabl proc.loc['Russia 2022', 'WGI 2022'] = "{:.2f}".format(procent change
In [29]:
         #создание пятого столбца таблицы
          Tabl_proc.loc['mean_2022', 'Изменение'] = "{:.2f}%".format(procent_change
          Tabl_proc.loc['max_2022', 'Изменение'] = procent_change_concat["Change.pe
          Tabl proc.loc['min 2022', 'Изменение'] = procent change concat["Change.pe
          Tabl proc.loc['Russia 2022', 'Изменение'] = procent change concat["Change
          Tabl proc
Out[29]:
                                         Страна WGI 1996 WGI 2022 Изменение
                       Регион
           mean_2022
                           AΡ
                                                     49.06
                                                               48.20
                                                                         29.62%
            max_2022
                           AP
                                    New Zealand
                                                     97.85
                                                               99.06
                                                                          1.23%
                           AΡ
             min_2022
                                    Korea, North
                                                      4.84
                                                               2.36
                                                                         -51.26%
```

1.13 Отобразите диаграмму размаха (boxplot) индекса WGI за 2022 для всех стран и для каждого региона в отдельности (на одном графике) (estimate)

15.05

19.34

28.47%

ECA Russian Federation

Russia 2022

```
In [30]: # получаем список регионов
  regions = list(merged_df["Region"].drop_duplicates())
  regions

Out[30]: ['AP', 'ECA', 'MENA', 'SSA', 'AME', 'WE/EU']

In [31]: merged_df.head()
```

Out[31]:		Country	Code	Region	Country/ Territory	Estimate.1996	StdErr.1996	NumSrc.1996
	0	Afghanistan	AFG	AP	Afghanistan	-1.291705	0.340507	2.0
	1	Albania	ALB	ECA	Albania	-0.893903	0.315914	3.0
	2	Algeria	DZA	MENA	Algeria	-0.566741	0.262077	4.0
	3	Angola	AGO	SSA	Angola	-1.167702	0.262077	4.0
	4	Argentina	ARG	AME	Argentina	-0.101317	0.210325	6.0

5 rows × 148 columns

```
In [33]: plt.figure(figsize=(15,7))
df_box.boxplot()
```

Out[33]: <AxesSubplot:>

Задача 2. Анализ рынка акций

2.1 Загрузите данные в один dataframe из всех файлов в папке /data/stock. Все файлы имеют одинаковую структуру, в том числе наименование столбцов. В качестве значений индекса dataframe'a необходимо указать значения столбца "Date". Название столбцов должные соответствовать названию акций (имя файла без .csv), а их значения - значениям цены закрытия (столбец "Close" в файлах .csv)

```
In [34]: #Подключение всех файлов
         import glob
         glob file = glob.glob('./stock/*.csv')
         #Объединение всех файлов
         df tmp = \{\}
         for file in glob file: #цикл по всем файлам
             end = file.find('.csv')
             data = pd.read csv(file, index col='Date') #считывание данных
             data name = file.split("/")[-1].split(".")[0] #считывание названия
             df tmp[data name] = data['Close'] # цена закрытия
         df2 = pd.concat(df tmp, axis=1, sort = True)
         df2.head()
Out[34]:
                        AAPL
                                              TSLA
                                                        HPO
                                                                  NFLX
```

SPOT

		707ti =	5. 0.		4	111 =/1	2520	
	Date							
	2022-01-01	174.779999	196.259995	312.239990	36.730000	427.140015	55.669998	37
	2022-02-01	165.119995	156.190002	290.143341	34.360001	394.519989	55.770000	36
	2022-03-01	174.610001	151.020004	359.200012	36.299999	374.589996	55.759998	35
	2022-04-01	157.649994	101.650002	290.253326	36.630001	190.360001	48.980000	31
	2022-05-01	148.839996	112.769997	252.753326	38.840000	197.440002	45.049999	23

CSCO

5 rows × 25 columns

2.2 Рассчитайте корреляционную матрицу для всех акций

```
In [35]: # корреляционная матрица
         df2.corr()
```

Out[35]:		AAPL	SPOT	TSLA	HPQ	NFLX	csco	UBER	
	AAPL	1.000000	0.687415	0.248385	0.067074	0.701937	0.589552	0.661323	0.
	SPOT	0.687415	1.000000	-0.092332	0.005774	0.920771	0.424007	0.933308	0.
	TSLA	0.248385	-0.092332	1.000000	0.568231	-0.251616	0.253808	-0.221155	0.
	HPQ	0.067074	0.005774	0.568231	1.000000	-0.203337	0.214262	-0.180970	0.
	NFLX	0.701937	0.920771	-0.251616	-0.203337	1.000000	0.497727	0.937042	0.
	csco	0.589552	0.424007	0.253808	0.214262	0.497727	1.000000	0.326346	0.
	UBER	0.661323	0.933308	-0.221155	-0.180970	0.937042	0.326346	1.000000	0.
	EBAY	0.115591	0.296858	0.434899	0.744560	0.138580	0.494938	0.085736	1.
	ORCL	0.769309	0.763100	-0.310021	-0.260316	0.859397	0.463955	0.832075	-0.
	MSFT	0.790691	0.949380	-0.117639	-0.034581	0.900263	0.391476	0.939538	0.
	NVDA	0.633114	0.925270	-0.277600	-0.160502	0.910910	0.320159	0.969790	0.
	TWLO	0.042914	0.059969	0.703872	0.728572	-0.102302	0.383777	-0.186828	0.
	ABNB	0.617430	0.753797	0.353807	0.390153	0.646901	0.594365	0.680764	0.
	MU	0.606787	0.902439	0.079944	0.308473	0.789551	0.472688	0.820809	0.
	XIACY	0.408747	0.647331	0.184629	0.378627	0.505430	0.474311	0.495835	0.
	META	0.705358	0.973401	-0.144519	-0.035611	0.897908	0.374998	0.954444	0.
	DBX	0.740429	0.525305	0.037233	-0.177013	0.635239	0.496982	0.595928	-0.
	GOOGL	0.806847	0.821587	0.326662	0.263251	0.717756	0.600025	0.737311	0.
	тсом	0.439363	0.640120	-0.586854	-0.443806	0.766681	0.257188	0.754442	-0.
	GTLB	0.282373	0.540113	0.260908	0.094128	0.452625	0.068856	0.521399	0.
	SHOP	0.465147	0.737909	0.025575	0.436406	0.852517	-0.144612	0.836565	0.
	INTC	0.507251	0.645555	0.425236	0.591406	0.447049	0.420854	0.512572	0.
	PINS	0.640294	0.842858	-0.253055	-0.285950	0.930638	0.384233	0.907751	-0.
	AMZN	0.665715	0.875779	0.302321	0.235247	0.735466	0.404820	0.796897	0.
	ADBE	0.833129	0.863827	0.071508	0.081518	0.821314	0.554172	0.834611	0.

25 rows × 25 columns

2.3 Отобразите корреляционную матрицу в виде диаграммы

2.4 В соответствии с Вашим вариантом определите:

```
акцию с максимальной положительной корреляцией (max) акцию с максимальной отрицательной корреляцией (min) акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none)
```

```
In [37]: # выберем строку корреляций для AAPL, удалив корреляцию с самой собой
df_aapl = df2.corr().drop(["AAPL"], axis=1)
df_aapl = df_aapl.loc[["AAPL"]].T
df_aapl.head()
```

```
Out[37]:
                 AAPL
         SPOT 0.687415
         TSLA 0.248385
          HPQ 0.067074
         NFLX 0.701937
         CSCO 0.589552
In [38]: # максимальная корреляция
         max corr key = df aapl.idxmax()[0]
         max corr key
Out[38]: 'ADBE'
In [39]: df aapl.loc[[max corr key]]
Out[39]:
                  AAPL
         ADBE 0.833129
In [40]: # минимальная корреляция (с учетом знака)
         min corr key = df aapl.idxmin()[0]
         min corr key
Out[40]: 'TWLO'
In [41]: # отрицательных значений для AAPL нет в heatmap
         df aapl.loc[[min corr key]]
Out[41]:
                  AAPL
         TWLO 0.042914
In [42]: # минимальная корреляция (без учета знака)
         abs min corr key = df aapl.fillna(0).abs().idxmin()[0]
         abs min corr key
Out[42]: 'TWLO'
In [43]: df aapl.loc[[abs min corr key]]
Out[43]:
                  AAPL
         TWLO 0.042914
         2.5 Постройте диаграммы разброса (Ваша компания -
```

Компания с min), (Ваша компания - Компания с max), (Ваша компания - Компания с none)

```
In [44]: # диаграмма разброса с max corr
         sns.set (rc = {'figure.figsize':(5, 5)})
         plt.scatter (df2["AAPL"], df2[max_corr_key])
```

Out[44]: <matplotlib.collections.PathCollection at 0x7f4209625c40>

In [45]: # диаграмма разброса с min corr (с учетом знака) plt.scatter (df2["AAPL"], df2[min_corr_key])

Out[45]: <matplotlib.collections.PathCollection at 0x7f42095e9670>


```
In [46]: # диаграмма разброса с min corr (без учета знака)
plt.scatter (df2["AAPL"], df2[abs_min_corr_key])
```

Out[46]: <matplotlib.collections.PathCollection at 0x7f420950e8e0>

2.6 Рассчитайте среднюю цену акций для каждого месяца

```
In [47]: # средняя цена акций для каждого месяца
         mean = df2.T.mean()
         mean.name = "mean"
         mean
Out[47]:
         Date
          2022-01-01
                        154.857167
          2022-02-01
                         140.774723
          2022-03-01
                        145.272287
          2022-04-01
                        115.763514
          2022-05-01
                         112.316034
          2022-06-01
                         99.256929
          2022-07-01
                         114.014999
                         107.380833
          2022-08-01
          2022-09-01
                         94.437083
          2022-10-01
                         97.227501
          2022-11-01
                         100.671666
          2022-12-01
                         92.028958
          2023-01-01
                         108.279540
          2023-02-01
                         108.613126
          2023-03-01
                         120.210832
          2023-04-01
                         115.778799
          2023-05-01
                         131.258401
          2023-06-01
                         145.426799
                        153.207200
          2023-07-01
                         152.016000
          2023-08-01
          2023-09-01
                         141.760400
          2023-10-01
                         140.454598
          2023-11-01
                        159.367601
          2023-12-01
                         164.859599
          2024-01-01
                        174.886801
          2024-02-01
                         189.609962
          2024-03-01
                         196.083201
          2024-03-12
                         196.083201
          Name: mean, dtype: float64
```

2.7 Постройте графики для акций из пункта 4 и средней из пункта 6

Out[48]: <AxesSubplot:title={'center':'Цены акций'}, xlabel='Date'>

Вывод

В процессе выполнения домашнего задания были изучены библиотеки pandas и matplotlib и их применение в практических задачах на примере задач дескриптивного анализа данных.

```
In [ ]:
```