

2010 BIODIVERSITÀ

Segreteria organizzativa Valeria Spagnolo 3208050323 Teresa Nocera: 3471986459

Informazioni e prenotazioni mostra segreteria.mostra@palermoscienza.it

Informazioni e prenotazioni convegni segreteria.convegno apalermoscienza.it

www.palermoscienza.it

L'acqua come solvente

Materiali

Sale da cucina, sabbia, olio, alcol, provette coniche, porta provette, bacchettina di vetro, spatola.

Procedimento

- Versare in ciascuna delle quattro provette acqua distillata fino a riempirle a metà.
- Aggiungere nella prima provetta un punta di spatola di sale da cucina e mescolare con la bacchettina. Dopo completa solubilizzazione aggiungere altro sale ed agitare con la bacchettina.
- Aggiungere nella seconda provetta un punta di spatola di sabbia e mescolare con la bacchetta.
- Aggiungere nella terza provetta un poco di olio ed agitare con la bacchettina lasciando stratificare l'olio sull'acqua.
- Aggiungere nella quarta provetta un poco di alcol ed agitare con la bacchettina.

	Sale	sabbia	olio	alcol
Si scioglie?	Si	no	no	si

Osservazioni

Il sale "scompare" nell'acqua. L'agitazione favorisce la sua scomparsa.

La sabbia "non scompare" anche agitando e si deposita al fondo.

L'olio "non scompare" e si stratifica al di sopra dell'acqua.

L'alcol "scompare" completamente in acqua.

Conclusioni

L'acqua riesce a sciogliere il sale e l'alcol, mentre non riesce a sciogliere la sabbia e l'olio. L'acqua è un solvente per il sale e l'alcol e il processo si chiama di "solubilizzazione". L'unione tra l'acqua e il sale o l'alcol si chiama "soluzione", dove l'acqua è il "solvente", mentre il sale e l'alcol il "soluto".

Approfondimento

Perché l'acqua agisce come solvente con il sale e con l'alcol?

2010 BIODIVERSITÀ

Segreteria organizzativa Valeria Spagnolo 3208050323 Teresa Nocera: 3471986459

Informazioni e prenotazioni mostra segreteria.mostra palermoscienza.it

Informazioni e prenotazioni convegni segreteria.convegno apalermoscienza.it

www.palermoscienza.it

Le molecole dell'acqua essendo "polari" si <u>attirano e vengono attratte</u> da altre molecole simili e in particolare dalle particelle del sale (cationi ed anioni) o dalle molecole polari dell'alcol.

Allo stesso modo un magnete attira a sè un'altro magnete o chiodi di ferro da un mucchio di chiodi.

Numerose molecole dell'acqua "aggrediscono" le particelle del soluto e lo "disgregano" (sciogliere, solubilizzare) in continuazione, circondando le particelle (solvatazione) che quindi "scompaiono" ai nostri occhi.

Ciò non avviene per la sabbia e l'olio in quanto non sono sostanze "polari", pertanto esse sono dette sostanze "insolubili".

Scuola: Istituto Comprensivo "Cruillas", Palermo

Disciplina: Chimica

Parole chiave: solubilità e miscugli

Ordine di scuola: scuola primaria e secondaria di primo grado

