Hyperbolic problems

These are problems modelling transport phenomena and exhibiting conservation properties.

Note: stark contrast to the diffusion properties we saw for parabolic problems.

Some slides with typical equations and a few applications.

Our model problems will be

- · the advection equation: u+ + aux = 0
- · the wave equation: $u_{++} = c^2 u_{xx}$
- · nonlinear conservation laws: u++(f(u))x=0.

The advection equation

W+ aux = 0, a e TR

Trivial problem, we know the solution:

If u(0,x) = g(x), some function g,

then

u(t,x) = g(x-at)

solves the eq.

Proof: $u_{+}(t,x) = g'(x-at) \cdot (-a)$

 $u_x(t,x) = g'(x-at) \cdot 1$

Like linear test eq., good test case for our methods.

Note: solution constant along x-at = C.

Def. A curve (t(s), x(s)), $s \in [0, \infty)$, is called a <u>characteristic</u> if u(t(s), x(s)) is constant $\forall s$.

For the advection eq., the characteristics are the straight lines x-at=C.

We typically illustrate this by a 2D-plot of the characteristics, rather than a 3D-plot of the solution:

Note that this creates a boundary value issue when working on a finite spatial domain:

=> cannot specify BC at x=1
because the values there are
already determined by u(0,x) and
the equation.

But we must specify a BC at x=0.

.. Only one BC and IC for the adv. eq. rather than two BC and IC for the parabolic problems.

If a <0 we have transport in the opposite direction and need a 8C at x=1 but cannot have one at x=0.

Let
$$N(t) = \# \{ \text{cars in } [a,b] \text{ at time } t \}$$

If $u(t,x)$ is the car density, we have

$$N(t) = \int u(t,x) \, dx$$

Assume all cars move at constant speed v (for now).

Then v.ult, a) cars are entering [a,b] at time t and v. ult, b) are leaving, so N = vult, a) - vult, b)

Note that

$$N(t) = v \cdot u(t, a) - v \cdot u(t, b) = -\int_{a}^{b} v \cdot u_{x}(t, x) dx$$

But we also have $N = \frac{d}{dt} \int_{a}^{b} u(t,x) dx = \int_{a}^{b} \frac{d}{dt} u(t,x) dx$ $= \int_{a}^{b} u_{+}(t,x) dx$

$$\Rightarrow \int_{0}^{\beta} u + v \cdot u \times dx = 0$$

Conservation law property: disappear or are created

Let's make it non-trivial by assuming a non-constant speed v(u), i.e. the speed when there are many cars is different to when there are few. Typically v(u) & 0 as u7.

Same reasoning, N = Sut, but

$$\dot{N} = (v(u)u)_{x=a} - (v(u)u)_{x=b}$$

$$= -\int_{a}^{b} \frac{\partial x}{\partial x} \left(v(u)u \right) dx$$

=
$$-\int_{0}^{b} V'(u)u_{x}u + V(u)u_{x}$$
 (chain rule)

$$= \rangle \quad U_+ + \left(\sqrt{(u)} u + \sqrt{(u)} \right) U_x = 0$$

Can model phenomena such as traffic jams etc..

Method of lines

Standard approach: (with two specific choices of spatial and temporal discretizations)

$$u_t + u_x = 0$$
 discretize
continuous
problem
$$u_t + S_{ax} u = 0$$

$$v_{extor-valued}$$

$$v_{extor-valued}$$

$$\bigcup_{n+1} + \Delta + S_{\Delta x} U_n = \bigcup_n$$

Full discretization, algebraic system

"Method of lines", because
$$U_j(t)$$
 approximates $u(t, x_j)$ along the line (t, x_j) .

Can use different spatial discretizations and different temporal discretizations.

Approx.
$$U(t) \in \mathbb{R}^N$$
, $U_i(t) \approx u(t, x_i)$

• Fancy higher-order diff.:
$$\frac{\frac{1}{4} \cup_{j+1} + \frac{5}{6} \cup_{j} - \frac{3}{2} \cup_{j-1} + \frac{1}{2} \cup_{j-2} - \frac{1}{12} \cup_{j-3}}{\Delta \times} (+)$$

Which to choose?

With u+ux=0, information
flows to the right.

=> spatial discretization must use information from the left!

With ut-ux=0, it must use information from the right.

Def. (informal) A method which looks in the appropriate direction is called an upwind method One that looks in the wrong direction is called a downwind method. (Inspired by sailing terminology.) For ut + ux = 0, flow to the right:

· Backward diff.: U; -U; Left [upwind] :

· Forward diff.: $\frac{U_{j+1}-U_{j}}{\Delta x}$ downwind :

· Symmetric diff.: $\frac{U_{j+1}-U_{j-1}}{2\Delta x}$ neither ::

• Fancy higher-order diff: $\frac{\frac{1}{4} \bigcup_{j+1} + \frac{5}{6} \bigcup_{j-2} - \frac{3}{2} \bigcup_{j-1} + \frac{1}{2} \bigcup_{j-2} - \frac{1}{12} \bigcup_{j-2}}{\triangle \times}$ more left than right: upwind:

For u+-ux=0 everything is inverted and the bud diff. is downwind!

Important: Upwind is necessary for stability.

A downwind method will never work

General <u>semidiscretization</u> (SD)

$$U_{x}(+,\times_{5}) \approx \frac{1}{\Delta \times} \sum_{k=-\ell}^{m} \alpha_{k} U_{5+k}(+)$$

Determine coefficients ax by desired order:

Def. The SD method is consistent of order P

if
$$\frac{1}{\Delta x} \sum_{k=-\ell}^{m} a_k u(t, x + k \Delta x) = u_x(t, x) + O(\Delta x^p)$$

In practice: expand in Taylor series, match terms

Can state/do this in a fancy way using forward

shift operators, see Iserles.

A full discretization where the spatial discr. is of order P, and the temporal discr. is of order P2 is sometimes said to be of order P=min(P1,P2).

But it is typically more useful to specify the separate orders (P1192).

The full disor. with U; & u(tn, x;) will have the form

$$\frac{1}{\Delta t} \sum_{i} b_{i} U_{i}^{n+1-i} + \frac{1}{\Delta x} \sum_{k} a_{k} U_{i+k}^{n} = 0$$

$$+ \frac{1}{\Delta x} \sum_{k} a_{k} U_{i+k}^{n} = 0$$

$$+ \frac{1}{\Delta x} \sum_{k} a_{k} U_{i+k}^{n} = 0$$

$$+ \frac{1}{\Delta x} \sum_{k} a_{k} U_{i+k}^{n} = 0$$

=> CFL condition for explicit methods will be of the form $\frac{\Delta t}{\Delta x} \le C$ Note: not problematic! $\Delta t \sim \Delta x$ is fine

For
$$u_{+}=u_{xx}$$
 we get a $\frac{1}{\Delta x^{2}}$ from u_{xx} and therefore instead have $\frac{\Delta t}{\Delta x^{2}} \leq C$.

Classic methods for u+ +aux = 0

Approx. U; = ultu,x;). Every approx. below at (tu,x;).

Use M= A+ .

• Upwind Euler = explicit Euler + bwd diff. $u_{+} \approx \frac{v_{+}^{**} - v_{-}^{*}}{\Delta t}$ $u_{x} \approx \frac{v_{+}^{*} - v_{-}^{*}}{\Delta x}$

- Explicit Euler + fwh diff. = downwind scheme
 Don't use!
 - Central difference scheme: explicit Euler
 + symmetric diff.

$$O_{j}^{N+1} = O_{j}^{N} + \frac{\alpha M}{2} \left(O_{j-1}^{N} - O_{j+1}^{N} \right)$$

Seems like a good idea, but is always unstable.

Don't use! (proof later)

· Lax - Friedrichs: small modification to central diff. scheme

$$U_{j}^{n+1} = \frac{U_{j-1}^{n} + U_{j+1}^{n}}{2} + \frac{\alpha \mu}{2} \left(U_{j-1}^{n} - U_{j+1}^{n} \right)$$
instead of U_{j}^{n}

Convergent, order (1,2).

· Lax-Wendroff: order 2 in both time and space

$$U_{j}^{n+1} = \frac{a_{j}h}{2} \left(1 + a_{j}h \right) U_{j-1}^{n} + \left(1 - a_{j}h^{2} \right) U_{j}^{n} - \frac{a_{j}h}{2} \left(1 - a_{j}h \right) U_{j+1}^{n}$$

Auto-upwinding: $\alpha_{1} = \frac{1}{2} \Rightarrow 0_{3}^{n+1} = \frac{3}{8} 0_{3-1}^{n} + \frac{3}{4} 0_{3}^{n} - \frac{1}{8} 0_{3+1}^{n}$

$$\alpha_{N} = -\frac{1}{2} \Rightarrow 0_{j}^{N+1} = -\frac{1}{8}0_{j-1}^{N} + \frac{3}{4}0_{j}^{N} + \frac{3}{8}0_{j+1}^{N}$$

Weights change depending on flow direction, always upwind.

Let's derive the Lax-Wendroff scheme, by expanding in Taylor series.

(In the time parameter, since we know how to discretize the spatial derivatives.)

We have everything evaluated at
$$(t,x)$$

$$u(t+\Delta t,x) = u + \Delta t u_{+} + \frac{\Delta t^{2}}{2} u_{++} + O(\Delta t^{3})$$

If our method exactly reproduces these three terms when we insert the exact solution, the temporal error is of order 2.

To ensure that, we use the equation $u_+ + au_x = 0$ to replace the temporal derivatives with spatial derivatives. These we can approximate using central differences in space, which are exact except for an error $G(\Delta x^2)$ that does not depend on Δt .

Then

$$Q = \frac{9+}{9}(n^{+} + \alpha n^{x}) = n^{+} + \alpha n^{+}$$

$$= u_{++} + \alpha \frac{3}{3} (-\alpha u_x)$$

$$= u_{++} - \alpha^2 u_{xx}$$

$$\therefore u(t+\Delta t,x) = u - a\Delta t u_x + \frac{a^2 \Delta t^2}{2} u_{xx} + O(\Delta t^3)$$

Now approx. U_{x} and U_{xx} with central difference quotients (2nd-order) $U_{x} \approx \frac{U_{j+1}^{n} - U_{j-1}^{n}}{2\delta x}, \quad U_{xx} \approx \frac{U_{j-1}^{n} - 2U_{j}^{n} + U_{j+1}^{n}}{\Delta x^{2}}$

$$\Rightarrow \bigcup_{j=1}^{n+1} = \frac{\alpha \mu}{2} \left(1 + \alpha \mu \right) \bigcup_{j=1}^{n} + \left(1 - \alpha^{2} \mu^{2} \right) \bigcup_{j}^{n} - \frac{\alpha \mu}{2} \left(1 - \alpha \mu \right) \bigcup_{j=1}^{n}$$

If we insert the exact solution, i.e. replace U_i^n by $u(t_n, x_i)$ etc., we then get

 $u(t_n+\delta t, x_i) = u + \delta t u_t + \frac{\delta t^2}{2} u_{tt}$ $+ \mathcal{O}(\delta t^3) + \mathcal{O}(\delta x^2)$ order 2 in time order 2 in space

where u, ut and utt are all evaluated at (tn, x;).

Note! Have only proved consistency, not stability. There will be a CFL condition |aµ| ≤ C, but unlike e.g. the central diff. scheme, Lax-Wendroff is well-behaved.

Lax-Wendroff computational stencil

At $a\mu = \frac{1}{2}$:

Note asymmetric coefficients due to auto-upwinding.

Value U; transported unchanged to U; .

Exactly matches what exact solution does along characteristic. At this speed a u=1, L-W is exact.

Periodic boundary conditions

Boundaries always cause issues, and for hyperbolic problems it's usually worse than for parabolic problems (like how $u_1 + u_x = 0$ and $u_1 - u_x = 0$ require different setups).

One way to avoid this: consider problem on R

- nice in theory, no boundaries!
- problematic in practice
 - · physical phenomena usually limited in size
 - · infinite grid?

Another way: consider problem on torus

- also nice in theory
- periodicity matches typical physical behaviour

Def. Periodic boundary conditions on $\times \in [0,1]$ means that u(+,0) = u(+,1) and also $u^{(k)}(+,0) = u^{(k)}(+,1), k=1,2,...$ $u^{(k)}(+,0) = u^{(k)}(+,1)$

Usually, we only write out the ult,0) = u(t,1) part.

This essentially means that there is no real boundary. The point x=1 is the same as the point x=0, and the intervals

[1,2], [2,3],... are the same as [0,1].

For u++ux=0 the situation will look like

Note how periodicity in space => periodicity in time. We are on a torus:

The way to discretize this properly is with $(X_k = (k-1)\Delta x)$

$$\int_{X} X_{k} = (k-1)\Delta X$$

$$\Delta X = \frac{1}{N}$$

I.e. we have a computational point at x=0, because we don't know the value there, but no point at x=1 since we do know that the solution there is the same as at x=0.

When we need $U_{N+1}(t) \approx u(t, x_{N+1}) = u(t, 1)$ we replace it by $U_1(t) \approx u(t, x_1) = u(t, 0)$. Similarly, $U_0(t)$ is replaced by $U_N(t)$.

On matrix-vector form with
$$U^{n} = \left[U_{1}^{n}, U_{2}^{n}, ..., U_{N}^{n} \right]^{T},$$

Lax-Wendroff becomes

i.e. also the rows of the matrix wrap around!

Periodic BC always lead to such circulant matrices. (Note: not "circular" matrices.)

Stability with periodic BC

We can write the scheme as

$$\bigcup^{n+1} = A(an) \cup^{n}$$

and we have stability if IIA(ap) II < 1.

Not hard, With periodic BC, A(a,u) is normal and therefore $\|A(a\mu)\|^2 = \max_{k} |\lambda_k[A(a\mu)]|$

where $\lambda_{\mu}[A(a\mu)]$ is the kith eigenvalue of A(a\mu).

Before we tackle the general case and compute eigenvalues, let's consider a = 1. Then

$$A(1) = \begin{bmatrix} 0 & 1 \\ 1.0. & 0 \end{bmatrix} \quad (so 0)_{3}^{n+1} = 0_{3-1}^{n}$$

This is a <u>permutation matrix</u>: A(1)U has the same components as U but in a different order.

Thus $\|A(1)U\|_{2} = \|U\|_{2}$,

so $\|A(1)\|_{2} = \sup_{U\neq 0} \frac{\|A(1)U\|}{\|U\|} = 1$.

:. Lax-Wendroff is stable at an=1.

With some more work, we could show that $\lambda_h \left[A(1)\right] = e^{\frac{2\pi i k}{N}}$, k=1,...,N, but in this simple case we don't need them.

Note that this means that $\|U^{n+1}\|_2 = \|U^n\|_2$

"i.e. the norm of the approximation is conserved.

This is true for the exact solution too, since

$$\frac{d}{dt} \|u(t,\cdot)\|_{2}^{2} = \frac{d}{dt} < u(t,\cdot), u(t,\cdot) >$$

$$= < u_{t}, u_{t} > + < u_{t}, u_{t} >$$

$$= 2 < u_{t}, u_{t} >$$

$$= -2a < u_{t}, u_{x} > .$$

Recall that $< u, v> = \int u(x)v(x) dx$ and integration by parts

$$\langle U, V_x \rangle = -\langle U_x, V \rangle + \underbrace{U(1)V(1) - U(0)V(0)}_{=0 \text{ if periodic BC}}$$

$$= > < u, u_x > = - < u_x, u > = - < u, u_x > .$$

int. by

parts

terms in the integral

If
$$z=-z$$
 then $z=0$, so $\left[\langle u,u_x \rangle = 0 \right]$

$$\therefore \frac{d}{dt} \| u(t,\cdot) \|^2 = 0 \text{ and } \| u(t,\cdot) \| = \text{constant.}$$
Conservation law!

The general case

Def. A circulant matrix CER has the form

$$C = \begin{bmatrix} K_0 & K_1 & \cdots & K_{N-1} \\ K_{N-1} & K_0 & \cdots & K_{N-2} \\ \vdots & & & & \\ K_1 & K_2 & \cdots & K_0 \end{bmatrix}.$$

We use this on Un+1 = A(am)Un as follows:

- · Identify the non-zero x; , typically only 3.
- · Simplify Lu[A(an)] using trigonometry.
- · Identify condition on an such that | \n[Alan]] = 1.
- . For those am, IlAlam) Il & I and we have stability.

$$\bigcup_{\ell}^{n+1} = \frac{\bigcup_{\ell-1}^{n} + \bigcup_{\ell+1}^{n} + \frac{\alpha \mu}{2} \left(\bigcup_{\ell-1}^{n} - \bigcup_{\ell+1}^{n} \right)}{2}$$

$$\Rightarrow \lambda_{\mu} \left[A(a_{\mu}) \right] = \frac{1}{2} \left(\left(1 - a_{\mu} \right) e^{\frac{2k\pi i}{N}} + \left(1 + a_{\mu} \right) e^{\frac{2k\pi i (N-1)}{N}} \right)$$

Note that $e^{2k\pi i} \frac{N-1}{N} = e^{2k\pi i} \cdot e^{-\frac{2k\pi i}{N}} = e^{-\frac{2k\pi i}{N}}$.

=
$$\cos\left(\frac{2k\pi}{N}\right)$$
 - an $i\sin\left(\frac{2k\pi}{N}\right)$.

50,

$$\left| \lambda_{k} \left[A(a\mu) \right] \right|^{2} = \cos^{2} \left(\frac{2k\pi}{N} \right) + (a\mu)^{2} \sin^{2} \left(\frac{2k\pi}{N} \right)$$

$$= 1 + \left((a\mu)^{2} - 1 \right) \sin^{2} \left(\frac{2k\pi}{N} \right).$$

Since $\sin^2(\frac{2k\pi}{N}) \gg 0$, the eigenvalues are bounded by 1 iff $(a\mu)^2 - 1 \leq 0$.

.. the method is stable iff |an| = 1.

Exercise: follow this line of reasoning to show that the central difference scheme is never stable, for any au #0.

The wave equation

$$U_{++} = C^2 U_{\times \times}, \quad C \in \mathbb{R}, \quad u(0,x) = g(x), \quad u_{+}(0,x) = h(x)$$

$$g(x) = g(x), \quad u(t,0) = g(t), \quad (for example), \quad u(t,0) = g(t), \quad (for example), \quad ($$

Models e.g. vibrating strings.

Can be studied in terms of advection equations:

$$\frac{9+5}{5} - c_5 \frac{9\times 5}{5} = \left(\frac{9+}{9} - c\frac{9\times}{9}\right) \left(\frac{9+}{9} + c\frac{9\times}{9}\right)$$

(operator calculus)

so ut = c2 uxx if either ut = cux or ut = cux.

=> General solution

$$u(t,x) = g_1(x+ct) + g_2(x-ct),$$

where $u_{+}(t,x) = cg_{1}'(x+c+) - cg_{2}'(x-c+)$ and the initial conditions imply that $\begin{cases} g_{1}(x) + g_{2}(x) = g(x) \\ cg_{1}'(x) - cg_{2}'(x) = h(x) \end{cases}$ Solve for g_{1} and g_{2} !

Main point: waves traveling both to the left and to the right.

Discretization:

Can rewrite as 1st-order system

$$z_+ + Az_x = 0$$

for
$$A = \begin{bmatrix} 0 & c \\ c & 0 \end{bmatrix}$$
 and $Z = \begin{bmatrix} u \\ v \end{bmatrix}$,

where both u and v solve the wave eq.

Then apply (vector-valued) advection solver.

However, super-confusing to think about initial conditions, etc., and better, direct, methods are possible.

Direct semi-discretization of uH = c3uxx

$$\Rightarrow 0;(t) = c^{2} \frac{0;(t) - 20;(t) + 0;(t)}{\Delta x^{2}} =: f_{3}(t, 0)$$

order 2 in space, could also use other general discr. $\frac{c^2}{\Delta x^2} \sum_{k=-\ell}^{m} a_k U_{j+k}(t)$

Full discretization

Write as ODE system

$$\int \dot{O}_{3}(t) = V_{3}(t) , \quad O_{3}(0) = u(0, x_{3}),
\dot{V}_{3}(t) = f_{3}(t, U) , \quad V_{3}(0) = \dot{u}(0, x_{3}).$$

ldea: f; discr. of uxx makes Znd eq. stiff, should use implicit method.

1st eq. has no uxx, can use explicit method.

This is of course not a proper mathematical argument, but we can use it to create a method and then analyze it properly.

Explicit + implicit Euler

Will not do
this here, but
it is order 2 in
both time and
space.

Stable if $1cl \frac{\Delta t}{\Delta x} \le 1$. $V^{n+1} = V^n + \Delta + f(t_{n+1}, U^{n+1})$.

Because of the split system, the method combination is actually explicit!

$$= \Omega_{n+1} + \nabla + \left(\frac{\Omega_{n+1} - \Omega_n}{\Delta + 1} + \nabla + \left(f^{n+1} \Omega_{n+1} \right) \right)$$

$$= \Omega_{n+1} + \nabla + \left(\frac{\Omega_{n+1} - \Omega_n}{\Delta + 1} + \nabla + \left(f^{n+1} \Omega_{n+1} \right) \right)$$

$$\Omega_{n+2} = \Omega_{n+1} + \nabla + \Lambda$$

The full method is a leapfrog-type scheme often referred to as a <u>Stormer method</u> in this context:

$$\bigcup_{j}^{N+2} - 2U_{j}^{N+1} + \bigcup_{j}^{N} = \Delta t^{2} c^{2} \frac{\bigcup_{j-1}^{N+1} - 2U_{j}^{N+1} + U_{j+1}^{N+1}}{\Delta x^{2}}.$$

Nonlinear hyperbolic problems

Are hard problems. There is no general approach.

We will only look at some properties/problems with $u_+ + (f(u))_x = 0$,

in particular the inviscid Burgers equation:

$$U_{+} + \left(\frac{u^{2}}{2}\right)_{\times} = U_{+} + UU_{\times} = 0.$$

Note 1: the apostrophe position; Burgers is a surname.

Viscous Burgers': ut + uux = Euxx.

Higher & => higher viscosity => thicker fluid.

Inviscia Burgers'

More specifically, consider

$$U_{+} + U_{\times} = 0$$
 on $(+, \times) \in (0, \infty) \times (-\infty, \infty)$

(i.e. no boundary) and u(0,x) = g(x) with llgll2 < 00.

If we don't think about the details too much, we can write down the solution implicitly as u(t,x) = g(x-ut),

similarly to the advection eq. sol. g(x-a+), since then " $u_{+} = -ug'$ and $u_{\times} = g'$.

The details on how to do this formally are included later in these notes, but the main point is that:

The characteristics (where ultix) is constant)

are straight lines with slope /u:

x-ut = C

For $u_1 + au_x = 0$, the characteristics all have the same slope $\frac{1}{a}$, but now they depend on g(x) (the initial condition)

Where the characteristics collide, the solution breaks down, since it cannot take two different values simultaneously.

We call this feature a shock, and can define weaker solution concepts where such discontinuous solutions make sense.

Then two typical situations look like

Shoch described by $x = \frac{U_L + U_R}{2} + \frac{U_L$

For
$$u_1 + < x < u_R +$$
, $u(t_1 x) = x/4$.

In Project 3, you will look at viscous Burgers, ut +uux = Euxx, where the diffusion term smooths out the discontinuities. Then our usual solution concept still works, but as E->0 we get steeper and steeper gradients.

[MATLAB demo of viscous Burgers]

Solving true hyperbolic problems requires highly specialized methods, which we cannot discuss here. See other numerical analysis courses!

We called $u_{+}+(f(u))_{x}=0$ conservation laws, so as the final topic of the course, let's see some conservation.

First,
$$u_{+} + uu_{x} = 0$$
. We have
$$\frac{d}{dt} \| u(t, \cdot) \|_{L^{2}}^{2} = \frac{d}{dt} < u(t, \cdot), u(t, \cdot) > 0$$

$$0 = 2 < u, u_{+} > 0$$

$$0 = -2 < u, uu_{x} > 0$$

$$0 = -2 < u, uu_{x} > 0$$

Now

$$\langle u_{i}uu_{x}\rangle = \int u(t,x) \cdot u(t,x)u_{x}(t,x)dx$$

omit (tix)
$$= \int u^2 u_x dx$$

$$= -\int (2uu_x) u_x dx$$

$$= -2 \int u_x dx$$

$$= -2 \int u_x dx$$

$$\Rightarrow \frac{d}{dt} \| u(t,\cdot) \|_{L^2}^2 = 0 \Rightarrow \| u(t,\cdot) \|_{L^2} = constant.$$

Norm of solution ("mass") is conserved!

Same approach works for ut + uPux = 0 with integer p, since

 $\frac{d}{dt} \|u(t,\cdot)\|_{L^2}^2 = 2 < u, u_+ > = -2 < u, u^p u_x >$

and $\langle u_{i}u^{p}u_{x}\rangle = \langle u^{p+1}, u_{x}\rangle$ $\langle u_{i}u^{p}u_{x}\rangle = -\langle (p+1)u^{p}u_{x}, u\rangle$ $= -\langle (p+1)\rangle \langle u_{i}u^{p}u_{x}\rangle$

 $=> < u, u^p u_x > = 0$, unless p=-2.

But for p=-2 we have

 $\langle u, u^{-2}u_{x}\rangle = \int \frac{u_{x}}{u} dx = \int \frac{d}{dx} (\log u) dx$

if on Toil = log(u(1)) - log(u(0))

with sc 7 = 0.

Finally, same approach works for

$$u_t + (f(u))_x = 0$$
 too!

 $\frac{d}{dt} \|u(t,\cdot)\|_{L^{2}}^{2} = 2 < u, u_{+} > = -2 < u, (f(u))_{x} >$

and
$$\langle u, (f(u))_x \rangle = -\langle u_x, f(u) \rangle$$

That's all for this course!

Extra: characteristics for u+ +uux = 0, properly,

Define
$$\xi(t,x)$$
 by $x = \xi + g(\xi) +$

for those x, t where a unique solution exists.

This puts a limit on t. At e.g. a shock there is no longer a solution.

Then set $u(t,x) = g(\xi(t,x))$.

We get

$$u(t,x) = g(x - g(\xi(t,x))+)$$
$$= g(x - u(t,x)+)$$

and

$$u_{x}(t,x) = g'(\xi(t,x)) \xi_{x}(t,x),$$

where

$$\xi_{x}(t,x) = 1 - g'(\xi(t,x)) \xi_{x}(t,x) +$$

$$= \sum_{x} \xi_{x}(t,x) = \frac{1}{1 + g'(\xi(t,x)) + 1}$$

Further,
$$u_{+}(t,x) = g'(\xi(t,x)) \xi_{+}(t,x)$$
,

where $\xi_{+}(t,x) = -g'(\xi(t,x))\xi_{+}(t,x) + -g(\xi(t,x))$

$$= > \xi_{+}(+,x) = \frac{1 + + \delta_{1}(\xi(+,x))}{-\delta(\xi(+,x))}.$$

1 + + g'(\xi(+,x))

Thus,
$$U_{+} + U_{+} = -\frac{g'(\xi(t,x))g(\xi(t,x))}{1++g'(\xi(t,x))} + g(\xi(t,x))\frac{g'(\xi(t,x))}{1++g'(\xi(t,x))}$$

$$= \bigcirc$$
 .

The equation $x = \hat{\xi}(t,x) + g(\hat{\xi}(t,x)) + has$ a solution $\begin{cases} \hat{\xi}(t,x) = C \\ t = \frac{x-c}{g(c)} \end{cases}$ for any constant C.

These straight lines $t = \frac{1}{g(c)} \times -\frac{c}{g(c)}$ are the characteristies, along which $u(t, x) = g(\hat{s}(t, x)) = g(c)$ is constant.