Homework Set #12

Due Date: Before class Friday May 4th

1) Neutrino Oscillations

(5 points)

In the two flavour approximation, work out the probability for a ν_e to be detected as a ν_μ as a function of mixing angle, mass difference, distance traveled and Energy.

Sketch the probability as a function of L/E.

2) Cosmic Rays (5 points)

What ratio of v_e and v_μ do you expect in cosmic rays at low energies? (*Treat cosmic rays as protons which produce pions.*)

What can cause this ratio to change at higher energies?

3) SNO (5 points)

SNO measured the ν flux in three different ways. Draw the corresponding Feynman diagrams and indicate if you would expect a difference in cross section between the different ν flavours.

3) v beams (5 points)

- a) How could you make a beam of vs?
- b) What ν flavours are produced?
- c) Would you expect this to make more ν or anti- ν ?
- d) How could you enhance the ν fraction?
- e) How about the anti- ν fraction?