Dpto. de Matemáticas.

PROBLEMAS. HOJA 7. Sistemas Dinámicos, Caos.

- 1. Sea una ecuación dicreta unidimensional no-lineal $x_{n+1}=f(x_n)$. Supongamos que f es diferenciable y $\{x_0,\ldots,x_d\}$ es una tal que $f(x_d)=x_0$ y $f(x_i)=x_{i+1}$ para $i=0,\ldots,d-1$ (órbita periódica de periodo d+1). Llamamos a $g=f^{d+1}$. Demostrar que
 - i) $\{x_0,\ldots,x_d\}$ son puntos fijos de g. Para $i\neq d$, $g(x_i)=f^{d+1}(x_i)=f^d(x_{i+1})=\cdots=f^{d+1-(d-i)}(x_d)=f^{i+1}(x_d)=f^i(x_0)=\cdots=f(x_{i-1})=x_i$.

Finalmente, $g(x_d) = f^{d+1}(x_d) = f^d(x_0) = \dots = f(x_{d-1}) = x_d$.

ii) $g'(x_0) = \cdots = g'(x_d) = m$, ¿quién es m con respecto a f? Como $g(x_0) = f^{d+1}(x_0)$, entonces aplicando la regla de la cadena repetidas veces

$$g'(x_0) = f'(x_0)(f^d)'(f(x_0)) = f'(x_0)(f^d)'(x_1)$$

$$= f'(x_0)f'(x_1)(f^{d-1})'(f(x_1)) = f'(x_0)f'(x_1)(f^{d-1})'(x_2) = \cdots$$

$$= f'(x_0)f'(x_1)\cdots f'(x_d) = m.$$

- iii) A este valor $g'(x_0)=m$ se le llama multiplicador característico de la órbita periódica y $\lambda=\ln|m|$ es el exponente característico o de Liapunov de la misma. Dependiendo del valor de λ qué tipo de punto crítico es la órbita periódica.
 - Si $\lambda < 0$, entonces |m| < 1 y los x_i son puntos atractores de g. La órbita es atractora
 - Si $\lambda > 0$, entonces |m| > 1 y los x_i son puntos repulsores de g. la órbita es repulsora
- 2. Consideremos la ecuación discreta paramétrica

$$x_{n+1} = f(a, x_n) = a - x_n^2, \qquad \text{ con } a \in \mathbb{R}.$$

i) Identificar los puntos críticos x(a). Analizar su estabilidad. Raíces de $x^2 + x - a = 0$, entonces:

$$x_1(a) = rac{-1 - \sqrt{1 + 4a}}{2}, \qquad x_2(a) = rac{-1 + \sqrt{1 + 4a}}{2}$$

- No hay soluciones cuando a < -1/4.
- Dos soluciones cuando a > -1/4.
- Punto de bifurcación (a, x(a)) = (-1/4, -1/2).

Estabilidad. f'(x) = -2x. Entonces, $f'(x_1(a)) > 1$. $x_1(a)$ siempre es repulsor. Por otro lado,

$$|f'(x_2(a))| < 1 \Leftrightarrow 1 - \sqrt{1+4a} > -1 \Leftrightarrow a \in (-1/4, 3/4).$$

Entonces en (3/4, 1/2) es otro punto de bifurcación.

- ii) Representar en el plano los puntos (a, x(a)). Dibujar con línea continua el trazo de los atractores y con discontinua los repulsores, esto se conoce como diagrama de bifurcación.
- iii) Identificar los puntos de bifurcación del plano. Notar que uno de ellos verifica que f(a, x(a)) = x(a) y f'(x(a)) = 1. Esto se conoce como bifurcación tangente.

Son dos: (-1/4, -1/2) y (3/4, 1/2).

Efectivamente, f(-1/4,-1/2)=-1/2 y $f_x(-1/4,-1/2)=1$. En este caso, la función $y=f(-1/4,x)=-1/4-x^2$ es tangente a y=x. Esto es típico de funciones f(a,x) que no tienen cortes con x para $a< a_0$ y dos cuando $a>a_0$, o lo recíproco.

3. Consideremos la ecuación discreta paramétrica

$$x_{n+1} = f(a, x_n) = ax_n - x_n^3, \quad \text{con } a \in \mathbb{R}.$$

i) Identificar los puntos críticos x(a). Analizar su estabilidad. Los puntos críticos son las raíces de $(a-1)x-x^3=0$. Entonces son:

$$x_1(a) = 0,$$
 $x_2(a) = \sqrt{a-1},$ $x_2(a) = -\sqrt{a-1}.$

Para $a \le 1$ tiene un punto crítico $(x_1(a))$ y para a > 1 tiene tres $(x_1(a), x_2(a), x_3(a))$. Ahora, $f_x(a,x) = a - 3x^2$

- Para $f_x(a,x_1(a))=a$. $x_1(a)$ es atractor para $a\in (-1,1)$ y repulsor cuando |a|>1
- Para $f_x(a,x_2(a))=f_x(a,x_2(a))=3-2a$. Entonces son attractores para $a\in(1,2)$ y repulsores para a>2

¿Qué sucede con 0 cuando a=1? Tomo x_0 de modulo menor que 1, entonces $x_1=x_0(1-x_0^2)$ y se tiene $|x_1|<|x_0|$. 0 es ESTABLE.

- ii) Dibujar el diagrama de bifurcación (a, x(a)).
- iii) Identificar los puntos de bifurcación del plano. Este caso de bifurcación se conoce como *horca* o *tridente*

Los puntos de bifurcación son (-1,0), (1,0), (2,1) y (2,-1).

4. Sea el sistema de Lorenz:

$$\begin{cases} x' = \sigma(y - x) \\ y' = rx - y - xz \\ z' = xy - bz \end{cases}$$
 (1)

a) Supongamos r<1. Probar que $L(x,y,z)=x^2+\sigma y^2+\sigma z^2$ es una función de Lyapunov. Como consecuencia las soluciones del sistema de Lorenz tienden al origen.

Tenemos que

$$\dot{L} = 2x\sigma(y-x) + 2\sigma y(rx - y - xz) + 2\sigma z(xy - bz) = -2\sigma(x^2 + y^2 - (1+r)xy) - 2b\sigma z^2.$$

Por lo tanto $\dot{L} < 0$ fuera del origen ya que

$$g(x,y) = x^2 + y^2 - (1+r)xy > 0$$

para $(x,y) \neq (0,0)$. Esto es claramente cierto en el eje y. Ahora, a lo largo de la recta y=mx en el plano xy se tiene

$$g(x, mx) = x^{2}(1 + m^{2} - (1 + r)m).$$

El término cuadrático $m^2-(1+r)m+1$ es positivo para todo m si r<1. Así g(x,y)>0 para $(x,y)\neq (0,0)$.

b) Cuando r>1 ya no es cierto que todas las soluciones tienden al origen. Sin embargo, podemos decir que las soluciones que comienzan lejos del origen al menos se acercan. Sea

$$V(x,y,z) = rx^2 + \sigma y^2 + \sigma (z - 2r)^2.$$

Existe ν^* tal que cualquier solución de (1) que comience fuera del elipsoide $V=\nu^*$ finalmente entra en este elipsoide y luego queda atrapado en él para todo el tiempo futuro.

Se calcula

$$\dot{V} = 2rx\sigma(y-x) + 2\sigma y(rx-y-xz) + 2\sigma(z-2r)(xy-bz)$$

$$= -2\sigma(rx^2 + y^2 + b(z^2 - 2rz))$$

$$= -2\sigma(rx^2 + y^2 + b(z-r)^2 - br^2))$$

La ecuación

$$rx^2 + y^2 + b(z - r)^2 = \nu$$

define un elipsoide cuando $\nu>0$ de centro (0,0,r). Cuando $\nu>br^2$ tenemos que $\dot{V}<0$. Así cuando se elige ν^* suficientemente grande tal que el elipsoide $V(x,y,z)=\nu^*$ contiene estrictamente el elipsoide $rx^2+y^2+b(z-r)^2=br^2$ en su interior, se tiene que $\dot{V}<0$ para todo $\nu\geq\nu^*$.