

FACULTAD DE CIENCIAS E INGENIERÍA CARRERA DE INGENIERÍA DE SOFTWARE

TEMA:

Proyecto calculadora

AUTORES:

Marco David Arteaga Zambrano

ASIGNATURA:

Modelos matemáticos y simulación

DOCENTE:

Ing. Isidro Fabricio Morales Torres

FECHA DE ENTREGA:

15-05-2025

PERIODO:

abril 2025 a Julio 2025

MILAGRO-ECUADOR

Índice

Manual de Usuario	3
Introducción	3
Requisitos del sistema	4
Instalación	5
Descarga del Proyecto	5
Creación de Entorno Virtual (opcional pero recomendado)	5
Activación del Entorno Virtual	5
Instalación de Dependencias	5
Ejecución de la Aplicación	5
Descripción de la Interfaz	6
Funcionalidades	7
Ejemplos de uso	9

Manual de Usuario

Proyecto	TotalMath
Versión	1.0
Autor	Marco Arteaga
Fecha	15/05/2025
Contacto	marteagaz@unemi.edu.ec

Introducción

La aplicación "**TotalMath**" es una herramienta avanzada desarrollada en Python, con una interfaz gráfica moderna y soporte para operaciones matemáticas básicas y avanzadas. Está dirigida a estudiantes, profesores y cualquier persona que requiera realizar cálculos, graficar funciones, resolver ecuaciones y explorar modelos matemáticos de manera sencilla e intuitiva.

Requisitos del sistema

- **Sistema operativo:** Windows 10 o superior
- **Python:** 3.x
- Dependencias:
 - contourpy==1.3.2
 - customtkinter==5.2.2
 - cycler==0.12.1
 - darkdetect==0.8.0
 - fonttools==4.57.0
 - kiwisolver==1.4.8
 - matplotlib==3.10.3
 - mpmath==1.3.0
 - numpy==2.2.5
 - packaging==25.0
 - pillow==11.2.1
 - pyparsing==3.2.3
 - python-dateutil==2.9.0.post0
 - six==1.17.0
 - sympy==1.14.0

Instalación

Descarga del Proyecto

Clona el repositorio o descarga el archivo ZIP y descomprímelo.

Creación de Entorno Virtual (opcional pero recomendado)

Activación del Entorno Virtual

■ En Windows:

En macOS / Linux

Instalación de Dependencias

Ejecución de la Aplicación

Descripción de la Interfaz

La interfaz de **TotalMath** está compuesta por un menú lateral con botones para cada módulo:

- Matrices
- Polinomios
- Vectores
- Gráficas 2D
- Gráficas 3D
- Derivación
- Integración
- Ecuaciones Diferenciales
- Sistemas de Ecuaciones
- Modelo Matemático
- Acerca de

Cada módulo muestra en la parte central los campos de entrada, botones de operación y el área de resultados o gráficas.

Funcionalidades

Matrices

- Crear matrices de diferentes dimensiones.
- Sumar, restar y multiplicar matrices.
- Calcular determinante, inversa y transpuesta.
- Obtener valores y vectores propios.

Polinomios

- Ingresar polinomios en notación algebraica.
- Sumar, restar y multiplicar polinomios.
- Visualizar el resultado de las operaciones.

Vectores

- Ingresar vectores.
- Suma, resta, producto escalar y vectorial.
- Calcular magnitud, vector unitario, ángulo y proyección.

Graficas 2D

- Graficar funciones de una variable y = f(x).
- Definir el rango de la variable x

Graficas 3D

- Graficar funciones de dos variables z = f(x, y).
- Definir el rango de las variables x e y.

Derivación

- Calcular la derivada simbólica de una función.
- Evaluar la derivada en un punto específico.

Integración

- Calcular la integral indefinida de una función.
- Calcular la integral definida entre dos límites.

Ecuaciones Diferenciales

• Resolver ecuaciones diferenciales ordinarias de primer orden.

- Métodos: Analítico, Euler y Runge-Kutta (RK4).
- Visualización de la solución y tabla de resultados.

Sistema de Ecuaciones

- Resolver sistemas de ecuaciones lineales de $2x^2$ hasta $6x^2$ 6.
- Ingresar coeficientes y términos independientes.

Modelo Matemático

- Simulación del modelo *SIR* para propagación de epidemias.
- Visualización de compartimentos: Susceptibles, Infectados y Recuperados.
- Parámetros configurables y gráfica de evolución.

Acerca de

• Información del autor, materia, profesor y periodo académico.

Ejemplos de uso

Suma de Matrices

- 1. Selecciona "Matrices" en el menú.
- 2. Define las dimensiones y crea las matrices \mathbf{A} y \mathbf{B} .
- 3. Ingresa los valores.
- **4.** Haz clic en "**Sumar**" para ver el resultado.

Graficar una Función 2D

- 1. Selecciona "Gráficas 2D".
- **2.** Ingresa la **función**, por ejemplo: sin(x).
- 3. Define el rango, por ejemplo: -10, 10.
- 4. Haz click en "Graficar".

Resolver una Ecuación Diferencial

- 1. Selecciona "Ecuaciones Diferenciales".
- 2. Ingresa la ecuación, condiciones iniciales y parámetros.
- 3. Elige el método (Analítico, Euler, RK4).
- 4. Visualiza la tabla y la gráfica de la solución.

