The variance, selection coefficient, and allele frequency change of \boldsymbol{A} are, respectively,

$$v=p(1-p)$$
 $s=w_{\mathrm{A}}-w_{\mathrm{B}}$ $\Delta p=rac{p(1-p)s}{1+ps}$

If p=1/1000 and given that $w_{
m A}=1.2$ and $w_{
m B}=1$, we get

$$v = 0.000999$$
 $s = 0.2$ $\Delta p = 0.00019976$

If p = 0.5, we get

$$v = 0.25$$
 $s = 0.2$ $\Delta p = 0.0454545$

The fitnesses of \boldsymbol{A} and \boldsymbol{B} , and the selection coefficient on \boldsymbol{A} are, respectively

$$w_{\mathrm{A}}(n) = \frac{f_{\mathrm{A}}}{1 + \gamma_{\mathrm{A}} n}$$
 $w_{\mathrm{B}}(n) = \frac{f_{\mathrm{B}}}{1 + \gamma_{\mathrm{B}} n}$ $s(n) = w_{\mathrm{A}}(n) - w_{\mathrm{B}}(n)$

The equilibrium population size in monomorphic populations of each type is, respectively

$$n_{\mathrm{A}}^* = rac{f_{\mathrm{A}} - 1}{\gamma_{\mathrm{A}}}$$
 and $n_{\mathrm{B}}^* = rac{f_{\mathrm{B}} - 1}{\gamma_{\mathrm{B}}}$

The selection coefficients at the different population sizes are

$$s(10000) = 0.083$$
 $s(10250) = 0.073$ $s(10750) = 0.056$

Allele A is favored at all population sizes and thus goes to fixation. Hence, the long term population size is n_A^* .

The fitnesses of \boldsymbol{A} and \boldsymbol{B} for the coordination game are

$$w_{\rm A} = 1 + p(H + B)$$
 $w_{\rm B} = 1 + pH + (1 - p)H = 1 + H$

The selection coefficient is

$$s(p) = w_{\rm A} - w_{\rm B} = pB - (1-p)H$$

From the selection coefficient when H = 1 and B = 1 we have

$$s(p) = pB - (1-p)H = 2p - 1,$$

which is downward sloping in p, we see that there is only one interior equilibrium (satisfying $s(p^*)=0$)

$$p = \frac{H}{B+H} = \frac{1}{2}$$

- Near $p \approx 0$, the selection coefficient is negative, which implies $\Delta p < 0$ (hunting hare is favored).
- Near $p \approx 1$, the selection coefficient is positive, which implies $\Delta p > 0$ (Hunting stag is favored).

Hence, the interior point $p^* = 1/2$ is unstable and the two boundary points are stable.