The purpose of a multiple alignment is to line up all residues that were derived from the same residue position in the ancestral gene or protein in any number of sequences

The purpose of a multiple alignment is to line up all residues that were derived from the same residue position in the ancestral gene or protein in any number of sequences

From Pairwise To Multiple

And Beyond ...

- Assuming that it takes 1 kilobyte (1kb) to store one single sequence, then ...
- To do simultaneous alignment it takes for
 - 2 sequences: 1 megabyte of memory
 - 3 sequences: 1 gigabyte of memory
 - 4 sequences : 1 terabyte of memory
 - 5 sequences: 1 petabyte of memory
 - 6 sequences: 1 exabyte of memory

Iterative Approach

Or: the way we did multiple alignment in the middle ages

- First do all the easy alignments
- Then gradually add all the difficult ones
- But how do we know what alignments are easy or difficult?

Iterative Algorithm

as applied in ClustalW and similar programs

- Do a pairwise comparison of all sequences
- From this, calculate how sequences are related to each other (the more similar are easier to align)
- Perform multiple alignment in order; the most similar are aligned first, the others are saved for later

1: Pairwise Comparison

Compare every single sequence to every other sequence, using pairwise sequence alignment

```
seq 1 ↔ seq 2 ⇒ 0.91
seq 1 ↔ seq 3 ⇒ 0.23
...
seq 8 ↔ seq 9 ⇒ 0.87
```

- Record the resulting similarity scores
 - You can in fact use either similarities or differences between sequence

2: Calculate The Guide Tree

- Construct a guide tree from the matrix containing the pairwise comparison values, using a (relatively simple) clustering algorithm
 - UPGMA (PileUp & Clustal V)
 - Neighbor-Joining (Clustal W, Clustal X)

	A	В	C	D	E
A	0	6	9	11	9
В	6	0	7	9	7
C	9	7	0	8	6
D	11	9	8	0	4
E	9	7	6	4	0

	A	В	C	DE
A	0	6	9	10
В	6	0	7	8
C	9	7	0	7
DE	10	8	7	0

	AB	C	DE
AB	0	8	9
C	8	0	7
DE	9	7	0

	AB	CDE
AB	0	8.5
CDE	8.5	0

Using the guide tree, we start aligning groups of sequences

The purpose of the guide tree is to know which sequences are most alike; so we can align the "easy" ones first, and postpone the tricky ones to later in the procedure!

Input: Unaligned Sequences

- A mthislgslyshktaktingsdeaskmewhf
- **B** mthvslgsmyshktgrtingsdqaskkmewhy
- C mshisitmyshktartidgseqaskmewhy
- **D** mthipigsmyshktaravngseqasklqwhy
- **E** mthipigsmystartincseqasklewhy

Output: Aligned Sequences

- A mthislgslyshktaktingsdeas-kmewhf
- **B** mthvslgsmyshktgrtingsdqaskkmewhy
- C mshisi-tmyshktartidgseqas-kmewhy
- **D** mthipigsmyshktaravngseqas-klqwhy
- E mthipigsmys--tartincseqas-klewhy

Things To Remember

Most multiple alignment programs are GLOBAL alignment programs

The guide tree is NOT the phylogenetic tree

... no matter how beautiful it looks!

Things To Remember

- Most multiple alignment programs are GLOBAL alignment programs
- The guide tree is NOT the phylogenetic tree
- A multiple alignment program is the starting point, not the end point of producing a good, meaningful alignment

MUSCLE Algorithm

Figure 2. This diagram summarizes the flow of the MUSCLE algorithm. There are three main stages: Stage 1 (draft progressive), Stage 2 (improved progressive) and Stage 3 (refinement). A multiple alignment is available at the completion of each stage, at which point the algorithm may terminate.

