Python Documentation

version 1.0

February 11, 2022

Contents

NCAS Radar Data Standard	•
Overview	
WIVERN-2 Chilbolton processing routines	
Quickstart	
Radar processing	
Lidar processing	2
MWR processing	2
Model data	2
Categorize processing	2
Processing products	2
Filename conventions	2
NetCDF conventions	;
Metadata (Global Attributes)	;
Level 0a files	;
3GHz CAMRa time-series files	;
Level 0b files	6
3GHz CAMRa time-series files	
Model file	8
Mwr file	12
Radar file	12
Level 1c files	14
Categorize file	14
Level 2 files	16
Classification file	16
Drizzle file	16
lwc file	17
Lwc file	18
Developer's Guide	18
How to contribute	18
Testing	18
Testing environment	19
Unit tests	19
End-to-end test	19
Coding guidelines	19
Indices and tables	19

NCAS Radar Data Standard

Documentation for ncas-radar-data-format.

Overview

WIVERN-2 Chilbolton processing routines

wivern2_chilbolton is a collection of Python routines for processing the radar data collected during the WIVERN-2 ground-based observation campaign at Chilbolton Observatory in the UK.

These are the routines used to process raw (Level 0) time series data from the following radars:

- · 3GHz CAMRa radar
- · 35GHz Copernicus radar
- · 94GHz Galileo radar

Note

Near real-time Cloudnet data can be accessed at https://cloudnet.fmi.fi.

See also:

- Cloudnet data portal: https://cloudnet.fmi.fi/
- CloudnetPy source: https://github.com/actris-cloudnet/cloudnetpy
- · ACTRIS home: http://actris.eu/
- ACTRIS data portal: http://actris.nilu.no/

Quickstart

Processing is easy using CloudnetPy's high level APIs. You only need some measurement data from your instruments. And if you don't have it, you can always try these example files.

Radar processing

In the first example we convert a raw METEK MIRA-36 cloud radar file into Cloudnet netCDF file that can be used in further processing steps.

```
from cloudnetpy.instruments import mira2nc
uuid = mira2nc('raw_mira_radar.mmclx', 'radar.nc', {'name': 'Mace-Head'})
```

where unid is an unique identifier for the generated radar.nc file. For more information, see API reference for this function.

Lidar processing

Next we convert a raw Jenoptik CHM15k ceilometer (lidar) file into Cloudnet netCDF file and process the signal-to-noise screened backscatter. Also this converted lidar file will be needed later.

```
from cloudnetpy.instruments import ceilo2nc
uuid = ceilo2nc('raw_chm15k_lidar.nc', 'lidar.nc', {'name':'Mace-Head', 'altitude':5})
```

where unid is an unique identifier for the generated lidar.nc file. For more information, see API reference for this function.

MWR processing

Processing of multi-channel HATPRO microwave radiometer (MWR) data is not part of CloudnetPy. Thus, site operators need to run custom processing software to retrieve integrated liquid water path (LWP) from raw HATPRO measurements.

However, with a 94 GHz RPG cloud radar, a separate MWR instrument is not necessarely required. RPG radars contain single MWR channel providing a rough estimate of LWP, which can be used in CloudnetPy. Nevertheless, it is always recommended to equip a measurement site with a dedicated multi-channel radiometer if possible.

Model data

Model files needed in the next processing step can be downloaded from the Cloudnet http API. Several models may be available depending on the site and date. The list of different model models can be found here.

Categorize processing

After processing the raw radar and raw lidar files, and acquiring the model and mwr files, a Cloudnet categorize file can be created.

In the next example we create a categorize file starting from the radar.nc and lidar.nc files generated above. The required ecmwf_model.nc and hatpro_mwr.nc files are included in the provided example input files.

```
from cloudnetpy.categorize import generate_categorize
input_files = {
    'radar': 'radar.nc',
    'lidar': 'lidar.nc',
    'model': 'ecmwf_model.nc',
    'mwr': 'hatpro_mwr.nc'
    }
uuid = generate_categorize(input_files, 'categorize.nc')
```

where unid is an unique identifier for the generated categorize.nc file. For more information, see API reference for this function. Note that with a 94 GHz RPG cloud radar, the radar.nc file can be used as input for both inputs: 'radar' and 'mwr'.

Processing products

In the last example we create the smallest and simplest Cloudnet product, the classification product. The product-generating functions always use a categorize file as an input.

```
from cloudnetpy.products import generate_classification
uuid = generate_classification('categorize.nc', 'classification.nc')
```

where unid is an unique identifier for the generated classification.nc file. Corresponding functions are available for other products (see Product generation).

Filename conventions

Each radar file is named as

<instrument_name>_<platform_name>_<date>-[<time>]_<scan_type>_[<option1>_<option2>_<o
ption3>] v<version>.nc

NetCDF conventions

The NCAS-RADAR convention adheres to the CF/Radial-1.4 format, and its subconventions.

Metadata (Global Attributes)

As the NCAS RADAR convention uses CF/Radial-1.4 as its basis, all global attributes required by the latter must be included. The following global attributes are required by CF/Radial-1.4

Conventions

This indicates the conventions/vocabularies that are being followed in the generation of the data file. The core convention is that used for CF naming, that is CF-1.6.

title

This is a short description of the file contents.

Example: Moments from the NCAS Mobile X-band Radar unit 1 at Sandwith, UK

institution

This is the name of the institution employing the creator. This is added to help users of the data track down the creator if they need to.

Example: National Centre for Atmospheric Science (NCAS)

references

References that describe the data or the methods used to produce it. For example, this may be a paper describing the instrument.

Example: https://doi.org/10.5194/amt-11-6481-2018

source

This is a descriptor that uniquely identifies the source of the data.

Example: NCAS Mobile X-band Radar unit 1

history

This is freeform text that gives the history of the data from collection to the present version.

comment

This is free form text and is used to provide the user with any additional information that may be of use.

Example:

instrument_name

This should be filled with the unique NCAS instrument name

Example: ncas-mobile-x-band-radar-1

Level 0a files

3GHz CAMRa time-series files

These files are in NetCDF-3 format with the following content:

Dimensions:

Name	
time	
range	
unaveraged_range	

pulses	
samples	

			1	
latitude	float3		latitude of the antenna	Units
	2			degree_north
longitude	float3 2		longitude of the antenna	degree_east
height	float3 2		height of the elevation axis above mean sea level (Ordnance Survey Great Britain)	m
frequency	float3 2		frequency of transmitted radiation	GHz
prf	float3 2		pulse repetition frequency	Hz
beamwidthH	float3 2		horizontal angular beamwidth	degree
beamwidthV	float3 2		vertical angular beamwidth	degree
antenna_diam eter	float3 2		antenna diameter	m
pulse_period	float3 2		pulse period	us
transmit_powe r	float3 2		peak transmitted power	W
clock	float3 2		clock input to ISACTRL	Hz
range	float3 2	range	distance from the antenna to the middle of each range gate	m
unaveraged_ra nge	float3 2	unaveraged _range	distance from the antenna to the middle of each range gate	m
time	float3 2	time	time	seconds since 2020-09-22 00:00:00 +00:00
dish_time	float3 2	time	dish_time	seconds since 2020-09-22 00:00:00 +00:00
elevation	float3 2	time	elevation angle above the horizon at the start of the beamwidth	degree
azimuth	float3	time	azimuth angle clockwise from grid north at the start of the beamwidth	degree
ZLO	short	time, pulses, samples	radar reflectivity factor low	counts
ZHI	short	time, pulses, samples	radar reflectivity factor high	counts
ZCX	short	time, pulses, samples	crosspolar radar reflectivity factor	counts

ITX	short	time, pulses, samples	TX I channel	counts
QTX	short	time, pulses, samples	TX Q channel	counts
IRX	short	time, pulses, samples	RX I channel	counts
QRX	short	time, pulses, samples	RX Q channel	counts
SPR	short	time, pulses, samples	Spare channel	counts

Global attributes:

Name	Example
radar	CAMRa
source	3-GHz Advanced Meteorological Radar (CAMRa)
history	Tue Sep 22 14:58:06 2020 - /usr/local/bin/radar-camra-rec \ -fix 3600 115 90 -gates 5 201 -cellsize 1 -pulse_pairs 3050 -op rad \ -id 0 -file 8030 -scan 7530 -date 20200922145806 -tsdump -tssamples 200
file_number	8030
scan_number	7530
scantype	Fixed
experiment_id	0
operator	rad
scan_velocity	0.f
min_range	-526.7335f
max_range	14088.15f
min_angle	90.f
max_angle	90.f
scan_angle	25.f
scan_datetime	20200922145806
ADC_bits_per_sample	12
samples_per_pulse	196
pulses_per_daq_cycle	6100
ADC_channels	8
delay_clocks	8
pulses_per_ray	6100
pulse_compression	0
extra_attenuation	0.f
radar_constant	64.7f
receiver_gain	45.5f

NetCDF conventions

cable_losses	4.8f
year	2020
month	9
day	22
British_National_Grid_Referen ce	SU394386

Level 0b files

3GHz CAMRa time-series files

Level 0.5 files have been processed to remove redundant dimensions, and to make some changes to global attributes and variables. The files are in NetCDF-4 format with the following content:

Dimensions:

Name	
time	
range	
pulses	

Scalar Variables:

Name	Data type	Dimen sion	Long name	Units
latitude	float3 2	none	latitude of the antenna	degree_north
longitude	float3 2	none	longitude of the antenna	degree_east
altitude	float3 2	none	altitude of the elevation axis above mean sea level (Ordnance Survey Great Britain)	m
frequency	float3 2	none	frequency of transmitted radiation	GHz
prf	float3 2	none	pulse repetition frequency	Hz
beamwidthH	float3 2	none	horizontal angular beamwidth	degree
beamwidthV	float3 2	none	vertical angular beamwidth	degree
antenna_diame ter	float3 2	none	antenna diameter	m
pulse_width	float3 2	none	pulse width	us
transmit_power	float3 2	none	peak transmitted power	W
clock	float3 2	none	clock input to ISACTRL	Hz
samples_per_p ulse	int	none	number of samples per pulse	1
pulses_per_da q_cycle	int	none	number of pulses per data acquisition cycle	1

pulses_per_ray	int	none	number of pulses per ray	1
delay_clocks	int	none	clock cycles before sampling is initiated	1
radar_constant	float3 2	none	radar constant	dB
receiver_gain	float3 2	none	receiver gain	dB
cable_losses	float3 2	none	cable losses	dB
extra_attenuati on	float3 2	none	extra attenuation introduced to receiver chain	dB

Coordinate Variables:

Field Variables

Name	Date type	Dimensions	Long name	Units
ZLO	short	time, pulses, range	radar equivalent reflectivity factor low	dBZ
ZHI	short	time, pulses, range	radar equivalent reflectivity factor high	dBZ
ZCX	short	time, pulses, range	crosspolar radar equivalent reflectivity factor	dB
ITX	short	time, pulses, range	in-phase video signal on transmission	1
QTX	short	time, pulses, range	quadrature video signal on transmission	1
IRX	short	time, pulses, range	in-phase video signal on reception	1
QRX	short	time, pulses, range	quadrature video signal on reception	1

Field variables are stored in packed form of type short and have the following attributes:

Attribute name**	Type*
scale_factor	float32
add_offset	float32
valid_min	short
valid_max	short
_FillValue	short

For example for ZLO the packed values derive from the analogue to digital converter, and lie in the range [0,4095]. The attribute valid_max is set to 3840, and only values below this threshold should be used.

Similarly ZHI has the attribute valid_min set to 3841, and only values above this should be used.

.ZLO_min = -70.0, /* dB / 200 .ZLO_scale = 0.015625, / dB/count / 201 .ZHI_min = -38.0, / dB / 202 .ZHI_scale = 0.015625, / dB/count / 203 .ZCX_min = -77.0, / dB / 204 .ZCX_scale = 0.03125, / dB/count / 205 .ZLO_thresh = 3840, / 0x0F00 / / counts / 206 .Bias = 2047, / 0x07FF / / counts / 207 .ADCBits = 12 / Bits */

Global attributes:

Variables (CHM15K specific):

Name	Data	Dimension	Long name	Unit
	type			

Variables (CL51 specific):

Name	Data type	Dimension	Long name	Unit
laser_energy	float32	time	Laser pulse energy	%
detection_status	float32	time	Detection status	
range_resolutio n	float32		Range resolution	m
background_ligh t	float32	time	Background light	mV
message_numb er	float32		Message number	
warning_flags	float32	time	Warning flags	
scale	float32		Scale	%
unit_id	float32		Ceilometer unit number	
window_transmi ssion	float32		Window transmission estimate	%
message_subcl ass	float32		Message subclass number	
backscatter_su m	float32	time	Sum of detected and normalized backscatter	sr-1
software_level	float32		Software level ID	
laser_temperatu re	float32	time	Laser temperature	С
number_of_gate s	float32		Number of range gates in profile	

Model file

Dimensions:

lame	
me	
evel	
ux_level	
requency	
oil_level	

Variables (all models):

Name	Data type	Dimension	Long name	Unit
specific_liquid_a tten	float32	frequency, time, level	Specific one-way attenuation due to liquid water, per unit liquid wat	(dB km-1)/(g m-3)
sfc_pressure	float32	time	Surface pressure	Pa
qi	float32	time, level	Gridbox-mean ice water mixing ratio	1
q	float32	time, level	Specific humidity	1
sfc_wind_u_10 m	float32	time	Zonal wind at 10m	m s-1

sfc_wind_v_10 m	float32	time	Meridional wind at 10m	m s-1
ql	float32	time, level	Gridbox-mean liquid water mixing ratio	1
sfc_net_lw	float32	time	Surface net downward longwave flux	W m-2
K2	float32	frequency, time, level	Dielectric parameter (K^2) of liquid water	dB km-1
time	float32	time	Hours UTC	hours since 2021-06-21 00:00:00 +00:00
uwind	float32	time, level	Zonal wind	m s-1
specific_gas_att en	float32	frequency, time, level	Specific one-way attenuation due to atmospheric gases	dB km-1
flx_height	float32	time, flux_level	Height above ground	m
gas_atten	float32	frequency, time, level	Two-way attenuation from the ground due to atmospheric gases	dB
sfc_down_sens _heat_flx	float32	time	Sensible heat flux	W m-2
horizontal_resol ution	float32		Horizontal resolution of model	km
rh	float32	time, level	Relative humidity	1
specific_saturat ed_gas_atten	float32	frequency, time, level	Specific one-way attenuation due to atmospheric gases for saturated a	dB km-1
wwind	float32	time, level	Vertical wind	m s-1
sfc_ls_rain	float32	time	Large-scale rainfall amount	kg m-2
specific_dry_ga s_atten	float32	frequency, time, level	Specific one-way attenuation due to atmospheric gases for dry air (no	dB km-1
frequency	float32	frequency	Microwave frequency	GHz
sfc_ls_snow	float32	time	Large-scale snowfall amount	kg m-2
cloud_fraction	float32	time, level	Cloud fraction	1
pressure	float32	time, level	Pressure	Pa
sfc_net_sw	float32	time	Surface net downward shortwave flux	W m-2
vwind	float32	time, level	Meridional wind	m s-1
temperature	float32	time, level	Temperature	K
latitude	float32		Latitude of model gridpoint	degrees_N
sfc_down_lat_h eat_flx	float32	time	Latent heat flux	W m-2
longitude	float32		Longitude of model gridpoint	degrees_E
height	float32	time, level	Height above ground	m
forecast_time	float32	time	Time since initialization of forecast	hours

Variables (HARMONIE-FMI-6-11 specific):

Name	Data type	Dimension	Long name	Unit
sfc_down_sw_di rect	float32	time	Direct downwelling shortwave flux	W m-2

qs	float32	time, level	Gridbox-mean snow mixing ratio	1
qg	float32	time, level	Gridbox-mean graupel mixing ratio	1
conv_cloud_frac	float32	time, level	Convective cloud fraction	1
ls_cloud_fraction	float32	time, level	Large scale cloud fraction	1
sfc_total_cloud_ fraction	float32	time	Surface total cloud fraction	1
sfc_turb_mom_ u	float32	time	Surface zonal turbulent momentum flux	kg m-2 s-1
soil_depth	float32	time, soil_level	Depth below ground	m
qr	float32	time, level	Gridbox-mean rain mixing ratio	1
sfc_temp	float32	time	Surface temperature	K
tke	float32	time, level	Turbulent kinetic energy	J m-2
sfc_ls_graupel	float32	time	Large-scale graupel amount	kg m-2
sfc_down_lw	float32	time	Surface downwelling longwave flux	W m-2
omega	float32	time, level	Vertical wind in pressure coordinates	Pa s-1
sfc_turb_mom_ v	float32	time	Surface meridional turbulent momentum flux	kg m-2 s-1
sfc_down_sw	float32	time	Surface downwelling shortwave flux	W m-2
sfc_pressure_a msl	float32	time	Surface pressure at mean sea level	Pa
sfc_down_sw_di rect_normal	float32	time	Direct normal downwelling shortwave flux	W m-2
sfc_rh_2m	float32	time	Relative humidity at 2m	1

Variables (ICON-IGLO-12-23 specific):

Name	Data type	Dimension	Long name	Unit
ql_diag	float32	time, level	Total specific liquid water (diagnostic)	1
sfc_down_sw_di rect	float32	time	Direct downwelling shortwave flux	W m-2
conv_cloud_frac tion	float32	time, level	Convective cloud fraction	1
ls_cloud_fraction	float32	time, level	Large scale cloud fraction	1
toa_net_sw	float32	time	Top of atmosphere net downward shortwave flux	W m-2
sfc_cloud_fracti on	float32	time	Surface total cloud fraction	1
soil_depth	float32	time, soil_level	Depth below ground	m
qr	float32	time, level	Gridbox-mean rain mixing ratio	1
sfc_turb_mom_ v	float32	time	Surface meridional turbulent momentum flux	kg m-2 s-1

altitude	float32		Height of station above mean sea level	m
q_diag	float32	time, level	Total specific humidity (diagnostic)	1
turb_heat_coeff	float32	time, flux_level	Turbulent diffusion coefficients for heat	m2 s-1
soil_temperatur e	float32	time, soil_level	Soil temperature	К
sfc_wind_gust_ 10m	float32	time	Wind gust at 10m	m s-1
qs	float32	time, level	Gridbox-mean snow mixing ratio	1
sfc_turb_mom_ u	float32	time	Surface zonal turbulent momentum flux	kg m-2 s-1
sfc_conv_snow	float32	time	Convective snowfall amount	kg m-2
turb_mom_coeff	float32	time, flux_level	Turbulent diffusion coefficients for momentum	m2 s-1
sfc_temp	float32	time	Surface temperature	K
sfc_q_2m	float32	time	Specific humidity at 2m	1
sfc_up_sw_diffu se	float32	time	Diffuse upwelling shortwave flux	W m-2
sfc_roughness_l ength	float32	time	Surface roughness length	m
sfc_dewpoint_te mp_2m	float32	time	Dew point temperature at 2m	K
sfc_conv_rain	float32	time	Convective rainfall amount	kg m-2
sfc_temp_2m	float32	time	Temperature at 2m	K
toa_net_lw	float32	time	Top of atmosphere net downward longwave flux	W m-2
qi_diag	float32	time, level	Total specific ice water (diagnostic)	1
sfc_albedo	float32	time	Surface albedo	1
sfc_land_cover	float32	time	Land cover	1
sfc_height_amsl	float32	time	Surface height above mean sea level	m
sfc_down_sw_di ffuse	float32	time	Diffuse downwelling shortwave flux	W m-2

Variables (ECMWF specific):

Name	Data type	Dimension	Long name	Unit
sfc_cloud_fracti on	float32	time	Surface total cloud fraction	1
sfc_conv_snow	float32	time	Convective snowfall amount	kg m-2
sfc_bl_height	float32	time	Boundary layer height	m
sfc_geopotential	float32	time	Geopotential	m2 s-2
omega	float32	time, level	Vertical wind in pressure coordinates	Pa s-1
sfc_conv_rain	float32	time	Convective rainfall amount	kg m-2
sfc_temp_2m	float32	time	Temperature at 2m	K
sfc_down_sw	float32	time	Surface downwelling shortwave flux	W m-2

sfc_ls_precip_fr	float32	time	Large-scale precipitation fraction	1	
action					

Mwr file

Dimensions:

Name	
time	

Variables (all mwrs):

Name	Data type	Dimension	Long name	Unit
LWP	float32	time	Liquid water path	g m-2
time	int32	time	Time UTC	seconds since 2001-01-01 00:00:00

Radar file

Dimensions:

Name
time
range
chirp_sequence

Variables (all radars):

Name	Data type	Dimension	Long name	Unit
V	float32	time, range	Doppler velocity	m s-1
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00
latitude	float32		Latitude of site	degrees_north
altitude	int32		Altitude of site	m
Ze	float32	time, range	Radar reflectivity factor.	dBZ
longitude	float32		Longitude of site	degrees_east
height	float32	range	Height above mean sea level	m
nyquist_velocity	float32	chirp_seque nce	Nyquist velocity	m s-1
radar_frequency	float32		Radar transmit frequency	GHz
range	float32	range	Range from instrument	m

Variables (RPG-FMCW-94 specific):

Name	Data type	Dimension	Long name	Unit
voltage	float32	time	Voltage	V
time_ms	int32	time	Time ms	ms
pc_temperature	float32	time	PC temperature	K

azimuth	float32	time	Azimuth angle	degrees
status_flag	float32	time	Status flag for heater and blower	
brightness_tem perature	float32	time	Brightness temperature	К
if_power	float32	time	IF power at ACD	uW
quality_flag	int32	time	Quality flag	
antenna_separa tion	float32		Antenna separation	m
antenna_gain	float32		Antenna gain	dB
program_numbe r	int32		Program number	
model_number	int32		Model number	
sample_duratio n	float32		Sample duration	S
range_resolutio n	float32	chirp_seque nce	Vertical resolution of range	m
dual_polarizatio n	int32		Dual polarisation type	
chirp_start_indic es	int32	chirp_seque nce	Chirp sequences start indices	
elevation	float32	time	Elevation angle above horizon	degrees
noise_threshold	float32		Noise filter threshold factor	
wind_direction	float32	time	Wind direction	degrees
FFT_window	int32		FFT window type	
width	float32	time, range	Spectral width	m s-1
transmitted_pow er	float32	time	Transmitted power	W
transmitter_tem perature	float32	time	Transmitter temperature	К
number_of_spe ctral_samples	int32	chirp_seque nce	Number of spectral samples in each chirp sequence	
file_code	int32		File code	
pressure	float32	time	Pressure	Pa
receiver_temper ature	float32	time	Receiver temperature	К
input_voltage_r ange	int32		ADC input voltage range (+/-)	mV
lwp	float32	time	Liquid water path	
temperature	float32	time	Temperature	K
wind_speed	float32	time	Wind speed	m s-1
calibration_inter val	int32		Calibration interval in samples	
integration_time	float32	chirp_seque nce	Integration time	S

antenna_diamet er	float32		Antenna diameter	m
skewness	float32	time, range	Skewness of spectra	
half_power_bea m_width	float32		Half power beam width	degrees
number_of_aver aged_chirps	int32	chirp_seque nce	Number of averaged chirps in sequence	
rain_rate	float32	time	Rain rate	mm h-1

Variables (BASTA specific):

Name	Data	Dimension	Long name	Unit
	type			

Variables (MIRA specific):

Name	Data type	Dimension	Long name	Unit
nfft	int32		Number of FFT Points	count
zrg	int32		Number of Range Gates	count
width	float32	time, range	Spectral width	m s-1
SNR	float32	time, range	Signal-to-noise ratio	dB
ldr	float32	time, range	Linear depolarisation ratio	dB
rg0	int32		Number of Lowest Range Gates	count
prf	int32		Pulse Repetition Frequency	Hz
nave	int32		Number of Spectral Avreages	count

Level 1c files

Categorize file

Dimensions:

Name
time
height
model_time
model_height

Name	Data type	Dimension	Long name	Unit
category_bits	int32	time, height	Target categorization bits	
Z_error	float32	time, height	Error in radar reflectivity factor	dB
q	float32	model_time, model_heigh t	Specific humidity	1
Tw	float32	time, height	Wet-bulb temperature	K

model_height	float32	model_heigh t	Height of model variables above mean sea level	m
insect_prob	float32	time, height	Insect probability	
is_undetected_ melting	int32	time	Presence of undetected melting layer	
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00
uwind	float32	model_time, model_heigh t	Zonal wind	m s-1
Z	float32	time, height	Radar reflectivity factor	dBZ
beta_error	float32		Error in attenuated backscatter coefficient	dB
is_rain	int32	time	Presence of rain	
beta	float32	time, height	Attenuated backscatter coefficient	sr-1 m-1
lwp_error	float32	time	Error in liquid water path	g m-2
Z_sensitivity	float32	height	Minimum detectable radar reflectivity	dBZ
beta_bias	int32		Bias in attenuated backscatter coefficient	dB
radar_liquid_att en	float32	time, height	Approximate two-way radar attenuation due to liquid water	dB
lidar_wavelengt h	float32		Laser wavelength	nm
pressure	float32	model_time, model_heigh t	Pressure	Pa
lwp	float32	time	Liquid water path	g m-2
v	float32	time, height	Doppler velocity	m s-1
v_sigma	float32	time, height	Standard deviation of mean Doppler velocity	m s-1
vwind	float32	model_time, model_heigh t	Meridional wind	m s-1
temperature	float32	model_time, model_heigh t	Temperature	К
latitude	float32		Latitude of site	degrees_north
altitude	int32		Altitude of site	m
model_time	float32	model_time	Model time UTC	decimal hours since midnight
Z_bias	int32		Bias in radar reflectivity factor	dB
longitude	float32		Longitude of site	degrees_east
radar_gas_atten	float32	time, height	Two-way radar attenuation due to atmospheric gases	dB
quality_bits	int32	time, height	Data quality bits	
height	float32	height	Height above mean sea level	m
radar_frequency	float32		Radar transmit frequency	GHz

Level 2 files

Classification file

Dimensions:

Name	
time	
height	

Variables:

Name	Data type	Dimension	Long name	Unit
cloud_top_heigh t_amsl	float32	time	Height of cloud top above mean sea level	m
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00
detection_status	int32	time, height	Radar and lidar detection status	
latitude	float32		Latitude of site	degrees_north
altitude	int32		Altitude of site	m
cloud_base_hei ght_amsl	float32	time	Height of cloud base above mean sea level	m
longitude	float32		Longitude of site	degrees_east
target_classifica tion	int32	time, height	Target classification	
height	float32	height	Height above mean sea level	m
cloud_base_hei ght_agl	float32	time	Height of cloud base above ground level	m
cloud_top_heigh t_agl	float32	time	Height of cloud top above ground level	m

Drizzle file

Dimensions:

Name	
time	
height	

Name	Data type	Dimension	Long name	Unit
drizzle_lwf_error	float32	time, height	Random error in drizzle liquid water flux	dB
drizzle_lwf_bias	float32		Possible bias in drizzle liquid water flux	dB
drizzle_lwc_bias	float32		Possible bias in drizzle liquid water content	dB
Do_error	float32	time, height	Random error in drizzle median diameter	dB
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00

drizzle_N	float32	time, height	Drizzle number concentration	m-3
Do	float32	time, height	Drizzle median diameter	m
drizzle_N_error	float32	time, height	Random error in drizzle number concentration	dB
beta_corr	float32	time, height	Lidar backscatter correction factor	
drizzle_lwc_erro	float32	time, height	Random error in drizzle liquid water content	dB
v_drizzle	float32	time, height	Drizzle droplet fall velocity	m s-1
mu_error	float32		Random error in drizzle droplet size distribution shape parameter	dB
S	float32	time, height	Lidar backscatter-to-extinction ratio	
drizzle_lwc	float32	time, height	Drizzle liquid water content	kg m-3
Do_bias	float32		Possible bias in drizzle median diameter	dB
v_air	float32	time, height	Vertical air velocity	m s-1
mu	float32	time, height	Drizzle droplet size distribution shape parameter	
latitude	float32		Latitude of site	degrees_north
drizzle_lwf	float32	time, height	Drizzle liquid water flux	kg m-2 s-1
altitude	int32		Altitude of site	m
drizzle_retrieval _status	int32	time, height	Drizzle parameter retrieval status	
longitude	float32		Longitude of site	degrees_east
S_error	float32	time, height	Random error in lidar backscatter-to-extinction ratio	dB
v_drizzle_error	float32	time, height	Random error in drizzle droplet fall velocity	dB
height	float32	height	Height above mean sea level	m

lwc file

Dimensions:

Name	
time	
height	

Name	Data type	Dimension	Long name	Unit
iwc_inc_rain	float32	time, height	Ice water content including rain	kg m-3
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00
latitude	float32		Latitude of site	degrees_north
altitude	int32		Altitude of site	m
iwc	float32	time, height	Ice water content	kg m-3
iwc_bias	float32		Possible bias in ice water content, one standard deviation	dB

Developer's Guide

longitude	float32		Longitude of site	degrees_east
iwc_retrieval_st atus	int32	time, height	Ice water content retrieval status	
iwc_sensitivity	float32	height	Minimum detectable ice water content	kg m-3
height	float32	height	Height above mean sea level	m
iwc_error	float32	time, height	Random error in ice water content, one standard deviation	dB

Lwc file

Dimensions:

Name	
time	
height	

Variables:

Name	Data type	Dimension	Long name	Unit
lwp_error	float32	time	Error in liquid water path	g m-2
time	float32	time	Time UTC	hours since 2021-06-21 00:00:00
latitude	float32		Latitude of site	degrees_north
altitude	int32		Altitude of site	m
longitude	float32		Longitude of site	degrees_east
lwc_retrieval_st atus	int32	time, height	Liquid water content retrieval status	
lwc_error	float32	time, height	Random error in liquid water content, one standard deviation	dB
lwc	float32	time, height	Liquid water content	kg m-3
height	float32	height	Height above mean sea level	m
lwp	float32	time	Liquid water path	g m-2

Developer's Guide

CloudnetPy is hosted by Finnish Meteorological Institute (FMI) and will be used to process cloud remote sensing data in the ACTRIS research infrastructure. We are happy to welcome the cloud remote sensing community to provide improvements in the methods and their implementations, writing tests and fixing bugs.

How to contribute

Instructions can be found from CloudnetPy's Github page.

Testing

To run the CloudnetPy test suite, first clone the whole repository from GitHub:

\$ git clone https://github.com/actris-cloudnet/cloudnetpy

Testing environment

Now, create a virtual environment and install pytest and CloudnetPy:

```
$ cd cloudnetpy
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip3 install pytest .
```

Unit tests

```
(venv) $ pytest
```

End-to-end test

```
(venv) $ python3 tetsts/e2e_test.py
```

Note

Cloudnetpy performs relatively complicated scientific processing, converting noisy measurement data into higher level products. Most of the Cloudnetpy's low-level functions are unit tested, but it is difficult to write unambiguous tests for the high-level API calls. However, the quality of the processed files can be at least roughly checked using CloudnetPy's quality control functions.

Coding guidelines

- Use PEP8 standard.
- · Write Google-style docstrings.
- Check your code using, e.g., Pylint.

Indices and tables

- genindex
- modindex
- search