- **(S1.1)** Daca T este o multime, $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ şi $A \cup (B \setminus X) = B \cup X$., atunci X = A.
- (S1.2) Nu există o funcție surjectivă cu domeniul X și codomeniul $\mathcal{P}(X)$, unde X este o multime.

(S1.3)

- (i) Orice intervale deschise (a,b),(c,d) ale lui $\mathbb R$ sunt echipotente.
- (ii) (0,1),(0,1],[0,1),[0,1] si \mathbb{R} sunt echipotente.

(S2.1)

- (i) N* este numărabilă.
- (ii) Z este numărabilă.
- (iii) $\mathbb{N} \times \mathbb{N}$ este numărabilă.
- (\$2.2) Orice multime infinită are o submultime numărabilă.
- (\$2.3) Orice submultime infinită a unei mulțimi numărabile este numărabilă.
- (S2.4) O multime A este cel mult numărabilă dacă și numai dacă există o functie injectivă de la A la o multime numărabilă (pe care o putem lua ca fiind $\mathbb N$).

(S2.5)

- (i) Produsul cartezian a două multimi cel mult numărabile este cel mult numărabil.
- (ii) Reuniunea a două multimi cel mult numărabile este cel mult numărabilă.
- (S3.2) Mulțimea Expr a expresiilor lui LP este numărabilă.
- (S3.3) Fie A o multime infinită. Pentru orice multime B_i
- (i) Dacă există o functie injectivă $f: A \rightarrow B$, atunci B este infinită.
- (ii) Dacă $A \subseteq B$, atunci B este infinită.

(S3.4)

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de multimi numărabile este numărabilă.
- (S3.5) @ este numărabilă.
- (S3.6) R nu este numărabilă.
- **(S4.2)** Pentru orice $\varphi, \psi, \chi \in$ Form, avem:
- (i) $\psi \vDash \varphi \rightarrow \psi$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$
- (iii) $\varphi \lor (\varphi \land \psi) \sim \varphi$
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi))$
- (S4.4) Pentru orice formulă φ, φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.
- (S4.5) Pentru orice formule φ, ψ ,
- (i) $\psi \vDash \varphi$ dacă şi numai dacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ dacă și numai dacă $\vDash \psi \leftrightarrow \varphi$.
- **(S5.2)** Fie $\Gamma \cup \{\varphi, \psi\} \subseteq$ Form.
- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă şi numai dacă $\Gamma \vDash \varphi$ şi $\Gamma \vDash \psi$.
- (\$5.3) Pentru orice multime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.
- Notatie. Pentru orice multime Γ de formule și orice formulă φ , notăm $cu\Gamma \vDash_{\mathrm{fin}} \varphi$ faptul că există o submultime finită Δ a lui Γ a. i. $\Delta \vDash \varphi$.
- (\$5.4) Următoarele afirmatii sunt echivalente:
- **(V1)** Pentru orice $\Gamma \subset \text{Form}$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

- (V2) Pentru orice $\Gamma\subseteq$ Form, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- **(V3)** Pentru orice $\Gamma \subseteq \text{Form}$, $\varphi \in \text{Form}$, $\Gamma \vDash \varphi$ dacă şi numai dacă $\Gamma \vDash_{\text{fin}} \varphi$.
- (S6.1) (Metoda reducerii la absurd) Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{
eg \psi \} \vdash
eg (arphi
ightarrow arphi) \Rightarrow \Gamma dash \psi$$

- **(S6.2)** Pentru orice formule φ, ψ ,
- (i) $\{\psi, \neg\psi\} \vdash \varphi$
- (ii) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$
- (iii) $\vdash \neg \neg \varphi \rightarrow \varphi$;
- (iv) $\vdash \varphi \rightarrow \neg \neg \varphi$.
- (S6.3) ("Reciproca" axiomei 3) Pentru orice formule φ, ψ ,

$$\vdash (\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi)$$

(S6.4) Pentru orice formule φ, ψ ,

$$\{\psi, \neg \varphi\} \vdash \neg (\psi o \varphi)$$

(S7.1) Să se arate că pentru orice formulă φ ,

$$\vdash (\neg \varphi \to \varphi) \to \varphi$$

- (S7.2) Să se arate că pentru orice formule φ, ψ, χ avem:
- (i) $\{\varphi \wedge \psi\} \vdash \varphi$;
- (ii) $\{\varphi \wedge \psi\} \vdash \psi$;
- (iii) $\{\varphi,\psi\} \vdash \varphi \wedge \psi$
- (iv) $\{\varphi, \psi\} \vdash \chi$ ddacă $\{\varphi \land \psi\} \vdash \chi$

(S8.5)

- (i) Multimea modelelor unei multimi satisfiabile și finite de formule este infinită.
- (S10.1) Fie $\mathcal L$ un limbaj de ordinul I, $\mathcal A$ o $\mathcal L$ -structură şi $e:V\to A$ o interpretare a lui $\mathcal L$ în $\mathcal A$. Pentru orice formule φ,ψ şi orice variabilă x:
- (i) $(\varphi \vee \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \vee \psi^{\mathcal{A}}(e)$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e)$
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- $\text{(iv) } (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1, & \text{dacă există } a \in A \text{ a.i. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \\ 0, & \text{altfel.} \end{cases}$
- **(S11.1)** Pentru orice formule φ, ψ și orice variabile x, y cu $x \neq y$ avem,
- (i) $\neg \exists x \varphi \models \forall x \neg \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \models \forall x\varphi \wedge \forall x\psi$;
- (iii) $\exists y \forall x \varphi \models \forall x \exists y \varphi$;
- (iv) $\forall x(\varphi \to \psi) \vDash \forall x\varphi \to \forall x\psi$.
- **(S11.3)** Pentru orice formule φ, ψ și orice variabilă $x \notin FV(\varphi)$,

$$\forall x(\varphi \land \psi) \quad \mid \vdash \quad \varphi \land \forall x\psi \quad (1)$$

$$\exists x(\varphi \lor \psi) \quad \mid \vdash \quad \varphi \lor \exists x\psi \quad (2)$$

$$\varphi \quad \mid \vdash \quad \exists x\varphi \quad (3)$$

$$\forall x(\varphi \to \psi) \quad \mid \quad \varphi \to \forall x\psi \quad (4)$$

$$\exists x(\psi \to \varphi) \quad \models \quad \forall x\psi \to \varphi \quad (5)$$