Data Mining with Weka

Agenda

- What is Weka
- Getting started with Weka
 - □ Install Weka
 - Explore the "Explorer" interface and datasets
 - □ Use filters
 - □ Visualize the data set
- Data Mining Task—Classification
 - □ Algorithms/Functions
 - Evaluation
- The Data Mining Process

What is Weka?

- What is Weka
 - --A bird found only in New Zealand
- Data mining workbench
 - Waikato Environment for Knowledge Analysis

- Machine learning algorithms for data mining tasks
 - □ 100+ algorithms for classification
 - □ 75 for data preprocessing
 - 25 to assist with feature selection
 - □ 20 for clustering, finding association rules, etc

- Download from
 - □ http://www.cs.waikato.ac.nz/ml/weka
 - □ (for Windows, Mac, Linux)
- Weka 3.8
 - (the latest stable version of Weka)
 - □ (includes datasets for the course)
 - □ (it's important to get the right version)

□ The Interface

Exploring the Explorer

Explore the Data Set

attributes

instances

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

WEKA only deals with "flat" files

- □ ARFF file (Attribute Relation File Format) is the default file type in Weka but data can also be imported from various formats.
 - ARFF has two sections:
 - the Header information defines attribute name, type and relations.
 - The Data section lists the data records
 - CSV: Comma Separated Values (text file)

- @relation weather
- @attribute outlook {sunny, overcast, rainy}
- @attribute temperature real
- @attribute humidity real
- @attribute windy {TRUE, FALSE}
- @attribute play {yes, no}
- @data

sunny,85,85,FALSE,no

sunny,80,90,TRUE,no

overcast,83,86,FALSE,yes

rainy,70,96,FALSE,yes

rainy,68,80,FALSE,yes

rainy,65,70,TRUE,no

• • • • •

- Use a filter to remove an attribute
 - □ Open weather.nominal.arff (again!)
 - □ Check the filters
 - supervised vs unsupervised
 - attribute vs instance
 - □ Choose the unsupervised attribute filter Remove
 - □ Check the More information; look at the options
 - □ Set attributeIndices to 3 and click OK
 - □ Apply the filter
 - □ Recall that you can Save the result
 - □ Press Undo

- Remove instances where humidity is high
 - Supervised or unsupervised?
 - □ Attribute or instance?
 - □ Select RemoveWithValues
 - □ Set attributeIndex
 - □ Set nominalIndices
 - Apply
 - Undo

Using the Visualize panel

- □ Open iris.arff
- □ Go to Visualize panel
- □ Click one of the plots; examine some instances
- □ Set x axis to petalwidth and y axis to petallength
- Click on Class color to change the color
- □ Bars on the right change correspond to attributes:
 - click for x axis; right-click for y axis
- Show Select Instance: Rectangle option
- Submit, Reset, Clear and Save

Classification

sometimes called "supervised learning"

Dataset: classified examples

"Model" that classifies new examples

classified example

```
attribute 1
attribute 2
...
attribute n
class
```

instance: fixed set of features

discrete ("nominal")
continuous ("numeric")

discrete: "classification" problem continuous: "regression" problem

100+ Available Algorithms/Classifiers

- □ Bayes Classifiers: bayes > NaiveBayes ...
- □ Tree Classifiers: trees>J48 ...
- □ Regression: functions>LinearRegression; Logistic ...
- □ Rule Based: rules>ZeroR; OneR ...
- □ Lazy Learner Classifiers: lazy>IBk ...
- □ SVM (Support Vector Machines): functions>LibSVM ...
- □ Ensemble Classifiers: meta>Bagging; Boosting ...

Use J48 to analyze the glass dataset

- □ Choose the J48 decision tree learner (trees>J48)
 - Open the configuration panel
 - Check the More information
 - Examine the options
- □ Run it; Examine the output
 - Look at the correctly classified instances
 - and the confusion matrix
- □ Visualize tree using right-click menu
- Look at leaf sizes
- Set minNumObj to 15 to avoid small leaves

Classification Boundaries

- Weka's Boundary Visualizer
 - WEKA GUI Chooser: Visualization>BoundaryVisualizer
 - Open iris.arff
 - Note: petallength on X, petalwidth on Y
 - Classifier: Choose rules>OneR
 - Check Plot training data
 - Click Start
 - In the Explorer, examine OneR's rule

Evaluation: Training and Testing

- Evaluation: Cross-Validation
 - Repeated holdout
 - For example: hold out 10% for testing, repeat 10 times)

- Cross-validation really is better than repeated holdout.
- It reduces the variance of the estimate.

(repeat 10 times)

□ The Data Mining Process

- Ask a question
 - what do you want to know
- Gather data
 - more data beats a clever algorithm
- Clean the data
 - real data is very messy
- Define new features
 - □ feature engineering—the key to data mining
- Deploy the result
 - technical implementation
 - □ convince your boss!

- (Selected) filters for feature engineering
 - □ AddExpression (MathExpression)
 - Apply a math expression to existing attributes to create new one (or modify existing one)
 - □ Center (Normalize) (Standardize)
 - Transform numeric attributes to have zero mean (or into a given numeric range) (or to have zero mean and unit variance)
 - □ Discretize (also supervised discretization)
 - Discretize numeric attributes to have nominal values
 - □ PrincipalComponents
 - Perform a principal components analysis/transformation of the data

• • • • •

More Weka Tutorial Resources

- Weka MOOC Youtube
 - □ https://www.youtube.com/user/WekaMOOC
- Weka—Regression Task Example
 - http://www.ibm.com/developerworks/library/osweka1/

Public Data Repositories

- Links to sites with publicly available datasets
 - □ There is overlap among the datasets provided at the different sites:
 - University of California Irvine Machine Learning Repository
 - a large repository of datasets supplied by individuals
 - ACM Data Mining and Knowledge Discovery Cup Center
 - contains links to instructions and datasets for the annual KDD contest

Questions?

Thanks!