Advanced Machine Learning

Lecture 6: Mixture models fitting

Nora Ouzir: nora.ouzir@centralesupelec.fr

Lucca Guardiola: lucca.guardiola@centralesupelec.fr

Oct. - Nov. 2020

Content

- 1. Reminders on ML
- 2. Robust regression
- 3. Hierarchical clustering
- 4. Classification and supervised learning
- 5. Non-negative matrix factorization
- 6. Mixture models fitting
- 7. Model order selection
- 8. Dimension reduction and data visualization

Mixture Models Fitting

- Data-to-knowledge
 - Statistical model fitting → model learning
 - Feature extraction: behavior, shapes...
 - Data characterisation → Complex modelling
- Complex estimation problems, e.g. many parameters, non parametric estimation...
- ► Clustering / Classification: Modes ~ clusters / classes
- Dealing with missing (latent) data: unknown labels can be generalized to unobserved data...

How to fit a mixture model to data? Inference/ Learning

Today's Lecture

- 1. The Gaussian Mixture Model
 - 1. Two component case
 - 2. Generalization

2. EM algorithm

Today's course

- 1. The Gaussian Mixture Model
 - 1. Two component case
 - 2. Generalization

2. EM algorithm

Gaussian Mixture Model

Example

Sizes of small animals coming from two different regions

Length	82	83	84	85	86	87	88	89
Observations	5	3	12	36	55	45	21	13
Length	90	91	92	93	94	95	96	98
Observations	15	34	59	48	16	12	6	1

The Gaussian Mixture Model

Whiteboard

Today's course

- 1. The Gaussian Mixture Model
 - 1. Two component case
 - Generalization

2. EM algorithm

Gaussian Mixture Model: two component case

In our previous example...

There seems to be two separate underlying regimes, so we model X as a mixture of two normal distributions:

$$Y_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

 $Y_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 $X = ZY_1 + (1 - Z)Y_2$

where $Z \sim \mathcal{B}(1, p)$

- P(Z=1) = p and P(Z=0) = 1 p.
- ▶ The data follows the first distribution / belongs to the first cluster with a probability p.
- \rightarrow Generative representation: generate $Z \in \{0,1\}$ with probability p, and then depending on the outcome, deliver either Y_1 or Y_2 .

Gaussian Mixture Model: two components

- ► Generative model P(z,x) = P(z)P(x|z)
- ightharpoonup The pdf over x is defined by marginalizing (summing out z)

$$f_X(x) = \sum_{k=1}^{2} P(Z=k)P(x|Z=k)$$

Denote $\phi_{\theta}(\mathbf{x})$ the Gaussian PDF with parameters $\theta = (\mu, \sigma^2)$:

→ PDF for **X**:

$$f_X(x) = p \phi_{\theta_1}(x) + (1-p) \phi_{\theta_2}(x)$$

 \rightarrow log-likelihood for *n* observations (X_1, \ldots, X_n)

$$\ell(\theta; \mathbf{x}) = \sum_{i=1}^{n} \log \left(p \, \phi_{\theta_1}(\mathbf{x}_i) + (1-p) \, \phi_{\theta_2}(\mathbf{x}_i) \right)$$

How to estimate the unknown parameters p, θ_1 , θ_2 ? MLE...

Gaussian Mixture Model: MLE

Maximizing $\ell(\theta; \mathbf{x})$ is difficult...

- $\theta = (p, \theta_1, \theta_2)$, 5 unknown parameters in the simplest case...
- ► The sum inside the log couples all the parameters of all the component Gaussian distributions of the mixture

Idea: consider unobserved latent variables (Z_1, \ldots, Z_n) where Z_i is the latent class of $X_i \to \text{Computing MLEs}$ becomes trivial...

$$\ell(\theta; \mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \left(z_i \log(\phi_{\theta_1}(x_i)) + (1 - z_i) \log(\phi_{\theta_2}(x_i)) \right)$$
$$+ \sum_{i=1}^{n} \left(z_i \log(p) + (1 - z_i) \log(1 - p) \right)$$

where
$$\mathbf{x} = (x_1, ..., x_n)$$
 and $\mathbf{z} = (z_1, ..., z_n)$.

Gaussian Mixture Model: MLE

Maximizing $\ell(\theta; \mathbf{x})$ is difficult...

- $\theta = (p, \theta_1, \theta_2)$, 5 unknown parameters in the simplest case...
- ➤ The sum inside the log couples all the parameters of all the component Gaussian distributions of the mixture → Unseparable!

Idea: consider unobserved latent variables $(Z_1, ..., Z_n)$ where Z_i is the latent class of $X_i \to \text{Computing MLEs}$ becomes trivial...

$$\ell(\theta; \mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} (z_i \log(\phi_{\theta_1}(x_i)) + (1 - z_i) \log(\phi_{\theta_2}(x_i))) + \sum_{i=1}^{n} (z_i \log(p) + (1 - z_i) \log(1 - p))$$

where
$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{z} = (z_1, \dots, z_n)$. \rightarrow Separable!

But Z is unknown in practice...

Gaussian Mixture Model: posterior inference

- Let's consider that the parameters are known
- ► A GMM with known parameters defines a joint distribution over $(X_i, Z_i) \rightarrow \text{probabilistic/posterior inference}$

We infer the posterior over Z using Bayes' rule (e.g., k=1):

$$P(Z_{i} = 1 | x_{i}) = \frac{P(Z_{i} = 1)P(X_{i} | Z_{i} = 1)}{P(X_{i})}$$

$$= \frac{p_{1}\phi_{\theta_{1}}(x_{i})}{p\phi_{\theta_{1}}(x_{i}) + (1 - p)\phi_{\theta_{2}}(x_{i})}$$

Responsibility γ_i

The expected value of Z_i conditional to the observed data and known parameters

$$\gamma_i^k(\theta) = E[Z_i|\theta, \mathbf{x}] = P(Z_i = k|\theta, \mathbf{x})$$

Gaussian Mixture Model: EM algorithm

- Chicken and egg problem
- Use an iterative approach: alternately fix the parameters/the latent variables

Algorithm: Expectation-Maximization (EM)

- ▶ Random initialization of $\theta^{(0)}$
- ▶ Repeat until CV for t = 0, 1, ...
 - (a) **E-Step:** Compute the responsibilities

$$\hat{\gamma}_i = \frac{\hat{p} \ \phi_{\hat{\theta}_1}(x_i)}{\hat{p} \ \phi_{\hat{\theta}_1}(x_i) + (1 - \hat{p}) \ \phi_{\hat{\theta}_2}(x_i)}, \text{ for } i = 1, \dots, n$$

(b) M-Step: Compute the parameters...

$$\hat{\mu}_1 = \frac{\sum_i \hat{\gamma}_i \, \mathbf{x}_i}{\sum_i \hat{\gamma}_i}, \hat{\sigma}_1^2 = \frac{\sum_i \hat{\gamma}_i \, (\mathbf{x}_i - \hat{\mu}_1)^2}{\sum_i \hat{\gamma}_i}, \dots \text{ and } \hat{\boldsymbol{p}} = \sum_i \hat{\gamma}_i / n.$$

Today's course

- 1. The Gaussian Mixture Model
 - 1. Two component case
 - 2. Generalization

2. EM algorithm

Mixture Model

Goal: Model the statistical behaviour of several populations, groups or classes...

- \triangleright different objects x_i in an image containing N pixels
- ▶ population of animals: x_i corresponds to the size of the i^{th} animal, classes correspond to age/sex/origin (young, old, female, male)...
- ightharpoonup observations of i.i.d. random variables/vectors (X_1, \ldots, X_n)
- ▶ K different clusters containing n_k observations with $n = \sum_{k=1}^{K} n_k$
- $ightharpoonup p_k$ the probability of belonging to the k^{th} class and f_k the PDF of r.v. in this class.

PDF of a mixture

$$f(x) = \sum_{k=1}^{K} p_k \times f_k(x)$$

Gaussian Mixture Model: GMM

Gaussian Mixture Model

$$f(x) = \sum_{k=1}^{K} p_k \times \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

with
$$\sum_{k=1}^{K} p_k = 1$$
 and $\forall k \in \{1, \dots, K\}, \mu_k \in \mathbb{R}, \sigma_k \in \mathbb{R}_+^*$.

Challenges

- Many unknown parameters $\theta = (p_k, \mu_k, \sigma_k)_{k=1,...,K}$
- ▶ What about *K* ? Known, unknown ?

But useful for modelling a wide range of distributions!

GMMs: Examples

(a)
$$\frac{1}{5}\mathcal{N}(0,1) + \frac{1}{5}\mathcal{N}(1/2,(2/3)^2) + \frac{3}{5}\mathcal{N}(13/15,(5/9)^2)$$
,

(b)
$$\sum_{k=0}^{7} \mathcal{N}(3((2/3)^k - 1), (2/3)^{2k})$$

(c)
$$\frac{1}{2}\mathcal{N}(-1,(2/3)^2) + \frac{1}{2}\mathcal{N}(1,(2/3)^2)$$

(d)
$$\frac{3}{4}\mathcal{N}(0,1) + \frac{1}{4}\mathcal{N}(3/2,(1/3)^2)$$

(e)
$$\frac{9}{2}0\mathcal{N}(-6/5,(3/5)^2) + \frac{9}{2}0\mathcal{N}(6/5,(3/5)^2) + \frac{1}{1}0\mathcal{N}(0,(1/4)^2)$$

(f)
$$\frac{1}{2}\mathcal{N}(0,1) + \sum_{k=-2}^{2} \frac{2^{1-k}}{31}\mathcal{N}(k+1/2,(2^{-k}/10)^2)$$

GMMs: Examples

GMM: simulation

In order to simulate the mixture

$$f(x) = \sum_{k=1}^{K} p_k \times \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$
, one needs to introduce a

latent variable Z (or missing data) corresponding to the class of the variable X.

Now, the complete data T = (X, Z) is defined by:

▶ Z follows a discrete distribution $(p_1, ..., p_K)$ on $\{1, ..., K\}$ such that $\forall k$, one has (Multinomial distribution)

$$P(Z=k)=p_k$$
, with $\sum_k p_k=1$

 $\forall k \in \{1, ..., K\}$, conditionally to $\{Z = k\}^{\kappa}$, X has a PDF f_k :

$$\mathcal{L}\left(x|Z=k\right)=f_k(x)$$

 \rightarrow Goal: estimation of $\theta = (p_k, \mu_k, \sigma_k)_{k=1,...,K}$

Today's course

- 1. The Gaussian Mixture Model
 - 1. Two component case
 - 2. Generalization

2. EM algorithm

Reminders: Bayesian probabilities/statistics

For two events (or r. v. ...), one has:

► Conditional probabilities

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

► Bayes rule

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

▶ if $B_1, ..., B_n$ is a partition of Ω, i.e. $\bigcup_{i=1}^n B_i = \Omega$ and $\forall i \neq j, B_i \cap B_j = \emptyset$, then

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

Let us start by considering Z known

- we observe $(x_i, z_i)_{i=1,...,n}$ instead of (only) $(x_i)_{i=1,...,n}$
- ightharpoonup this is the maximum-likelihood step \rightarrow again trivial!

ML estimates of θ : K classes

Let the observations be $(x_i, z_i)_{i=1,...,n}$, then $\forall k \in \{1, ..., K\}$, one has

$$\hat{p}_{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{z_{i}=k}$$
 (1)

$$\hat{\mu}_k = \frac{1}{n\hat{p}_k} \sum_{i|z=k} x_i \tag{2}$$

$$\hat{\sigma}_{k}^{2} = \frac{1}{n \hat{\rho}_{k}} \sum_{|i|_{z_{i}=k}} (x_{i} - \hat{\mu}_{k})^{2}$$
 (3)

However one only observes (x_1, \ldots, x_n) and again...

Maximizing $\ell(x_1,...,x_n;\theta)$ is difficult

$$\ell_{obs}(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log \left(\sum_{k=1}^K p_k \times f_k(x_i) \right)$$

where $\theta = (\mathbf{p_k}, \mu_k, \sigma_k)_{k=1,...,K}$

BUT

However one only observes (x_1, \ldots, x_n) and again...

Maximizing $\ell(x_1,...,x_n;\theta)$ is difficult

$$\ell_{obs}(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log \left(\sum_{k=1}^K p_k \times f_k(x_i) \right)$$

where $\theta = (p_k, \mu_k, \sigma_k)_{k=1,...,K}$

BUT one can make assumptions on the unobserved (Z_1, \ldots, Z_n)

However one only observes (x_1, \ldots, x_n) and again...

Maximizing $\ell(x_1,...,x_n;\theta)$ is difficult

$$\ell_{obs}(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log \left(\sum_{k=1}^K p_k \times f_k(x_i) \right)$$

where $\theta = (p_k, \mu_k, \sigma_k)_{k=1,...,K}$

BUT one can make assumptions on the unobserved (Z_1, \ldots, Z_n)

For $\theta \in \Theta, x \in \mathbb{R}$ and $k \in \{1, \dots, K\}$, one has

$$P_{\theta}(Z = k | X = x) = \frac{p_k \times f_k(x)}{\sum_{l=1}^{K} p_l \times f_l(x)}$$
(4)

 \rightarrow Intuition: thanks to some θ_{old} , one can assign a z_i to each x_i (4) and thanks to (1-3), one can compute a θ_{new} ...

Whiteboard

General EM algorithm: variants

k-means

Hard assignment: Assign a class to each x_i according to

$$z_i = \arg \max_k P_{\theta_{old}} (Z = k | X_i = x_i)$$

SEM

Randomly assign a class to each x_i according to the distribution

$$P_{\theta_{old}}(Z = .|X_i = x_i)$$

More flexible!

N-SEM

Randomly assign N classes to each x_i

EM: Limit of N-SEM when $N \to \infty$ Very flexible and robust!

k-means

→ One has to make very strong assumptions:

$$p_1 = \ldots = p_K = \frac{1}{K}$$
 and $\sigma_1 = \ldots = \sigma_K$

$$\forall \theta, \forall \mathbf{x} \in \mathbb{R} \ \operatorname{arg\,max}_{\mathbf{k}} P_{\theta} \left(\mathbf{Z} = \mathbf{k} | \mathbf{X} = \mathbf{x} \right) = \operatorname{arg\,min}_{\mathbf{k}} | \mathbf{x} - \mu_{\mathbf{k}} |$$

k-means

- ▶ Randomly initialize $(z_1, ..., z_K)$
- Repeat until CV:
 - for $k \in \{1, ..., K\}$, $\mu_k = \frac{1}{n} \sum_{i=1}^n x_i \, \mathbb{1}_{z_i = k}$
 - for $i \in \{1, \dots, n\}$, $z_i = \arg\min_{k} |x \mu_k|$

Stochastic EM

 \rightarrow General idea: Stochastic version of the k-means algorithm...

SEM

- ▶ Randomly initialize $(z_1, ..., z_K)$
- ► Repeat until CV:
 - (a) Compute (MLE)

$$\hat{\theta} = \arg\max_{\theta} \ell_{obs}[(x_1, z_1), \dots, (x_n, z_n); \theta]$$

(b) for $i \in \{1, ..., n\}$, randomly choose z_i according to

$$P_{\hat{\theta}}(Z = .|X_i = x_i)$$

given by Eq. (4).

Stochastic EM

Stochastic EM - N trials

N-SEM (1)

- ▶ Replicate the observations *N* times: $(x_1,...,x_n) \rightarrow (x_i^{(j)})_{1 \le i \le n, 1 \le j \le N}$
- Apply SEM algo to this new dataset.

N-SEM (2)

- ▶ Randomly initialize **N** classes $z_i^1, ..., z_i^N \in \{1, ..., K\}, \forall i$
- Repeat until CV
 - (a) Compute (MLE) $\hat{\theta} = \arg\max_{\alpha} \ell_{obs} \left((x_i, z_i^1)_{i=1,\dots,n} \cup \dots \cup (x_i, z_i^N)_{i=1,\dots,n}; \theta \right)$
 - (b) for $i \in \{1, \dots, n\}$, randomly choose z_i^1, \dots, z_i^N (independently!) according to

given by Eq. (4).
$$P_{\hat{\theta}}(Z = .|X_i = x_i)$$

 \rightarrow General idea: **N**-SEM when $N \rightarrow +\infty$...

Given $(x_i)_{1 \le i \le n}$ and associated classes for N trials $(z_i^k)_{1 \le i \le n, 1 \le k \le K}$: $\forall \theta, \ell_{obs} \left((x_i, z_i^1)_{i=1,\dots,n} \cup \dots \cup (x_i, z_i^N)_{i=1,\dots,n} ; \theta \right) = \sum_{j=1}^N \ell_{obs} \left((x_i, z_i^j)_{i=1,\dots,n} ; \theta \right)$

Theorem [Part I]

Given the observations $(x_i)_{1 \le i \le n}$ and $\theta_{old} \in \Theta$.

(a) Let $Z_1,...,Z_n$ independent r.v. such that $Z_i \sim \mathcal{L}_{\theta_{old}}\left(Z|X=x_i\right)$. One has $\forall \theta=(p_k,\mu_k,\sigma_k)_{1\leq k\leq K}\in\Theta$,

$$E[\ell\left((x_i, z_i)_{i=1,\dots,n}; \theta\right)] = \sum_{i=1}^n \sum_{k=1}^K P_{\theta_{old}}(Z = k | X = x_i) \log\left(p_k \times f_k(x_i)\right)$$

where $P_{\theta_{old}}(Z = .|X = x_i)$ given by Eq. (4).

Theorem [Part II] Given the observations $(x_i)_{1 \le i \le n}$ and $\theta_{old} \in \Theta$,

- (b) One has that $\arg\max_{\theta} E[\ell\left((x_i, z_i)_{i=1,...,n}; \theta\right)]$ is given by:
 - ► Class probabilities: $\forall k = 1, ..., K$,

$$p_k^{argmax} = \frac{1}{n} \sum_{i=1}^{n} P_{\theta_{old}} (Z = k | X = x_i)$$

ightharpoonup Class means: $\forall k = 1, ..., K$,

$$\mu_k^{\operatorname{argmax}} = \frac{1}{n \, p_k^{\operatorname{argmax}}} \sum_{i=1}^n P_{\theta_{old}} \left(Z = k | X = x_i \right) \, x_i$$

► Class variances: $\forall k = 1, ..., K$,

$$(\sigma_k^{argmax})^2 = \frac{1}{n \, p_k^{argmax}} \sum_{i=1}^n P_{\theta_{old}} \left(Z = k | X = x_i \right) \, (x_i - \mu_k^{argmax})^2$$

Expectation-Maximization algorithm

→ So far, our theoretical algorithm looks like...

EM: Theory

- ▶ Randomly initialization of θ_0
- ▶ Repeat until CV for t = 0, 1, ...
 - (a) **E-Step:** Compute

$$L_{t}(\theta) = E\left[\ell\left(\left(X_{i}, Z_{i}^{t}\right)_{i=1,...,n}; \theta\right)\right]\left(Q(\theta, \theta_{t}) = E\left(l(\theta; t) | \mathbf{x}, \theta_{t}\right)\right)$$

where
$$Z_1^t, \ldots, Z_n^t$$
 are i.i.d. with $Z_i^t \sim \mathcal{L}_{\theta_t} \left(Z | X = x_i \right)$

- (b) **M-Step:** Maximize $L_t(\theta)$ to obtain $\theta_{t+1} = \arg \max_{\theta} L_t(\theta)$
- ► **E** for Expectation
- M for Maximization

Whiteboard

Whiteboard

A different view - Maximization-Maximization

- ► Consider the function $F(\theta, \mathbf{P}) = E_{\mathbf{P}}[I_0(\theta; \mathbf{t})] E_{\mathbf{P}}[\log(\mathbf{P}(\mathbf{z}))]$
- ▶ P can be any distribution for the *latent* variables z.
- Note that F evaluated at $P(z) = P(z|x, \theta)$ is the log-likelihood of the observed data.
- **E**M algo can be viewed as a joint maximization method for F over θ and P(z). Maximizer over P(z) for fixed θ can be shown to be $P(z) = P(z|x, \theta)$. (dist. computed at the E-step).
- ► *M*-step: Maximize $F(\theta, \mathbf{P})$ over θ for fixed $\mathbf{P}(\mathbf{z})$, \iff maximizing $E_{\mathbf{P}}[I_0(\theta; \mathbf{t}) | \mathbf{x}, \theta^*]$ (2nd term do not depend on θ).

Since $F(\theta, \mathbf{P})$ and the obs. data log-likelihood agree when $\mathbf{P}(\mathbf{z}) = P(\mathbf{z}|\mathbf{x}, \theta)$, maximization of the former accomplishes maximization of the latter.

EM algorithm: In practice

EM Algorithm

- Randomly initialization of θ_0
- Repeat until CV for $t = 0, 1, \dots$
 - (a) **E-Step:** Compute the matrix $(1 \le i \le n, 1 \le k \le K)$

$$[P_{\theta_{t}}(Z = k | X = x_{i})] = \left[\frac{p_{k}^{t} \times f_{k,t}(x_{i})}{\sum_{l=1}^{K} p_{l}^{t} \times f_{l,t}(x_{i})}\right]$$

(b) **M-Step:** Compute
$$\theta_{t+1}$$
, for all $k = 1, ..., K$,
$$\hat{p}_k^{t+1} = \frac{1}{n} \sum_{i=1}^{n} P_{\theta_t} (Z = k | X = x_i), \qquad (5)$$

$$\hat{\mu}_{k}^{t+1} = \frac{1}{n \hat{p}_{k}^{t+1}} \sum_{i=1}^{n} x_{i} P_{\theta_{t}} (Z = k | X = x_{i})$$
 (6)

$$\left(\hat{\sigma}_{k}^{t+1}\right)^{2} = \frac{1}{n\,\hat{\rho}_{k}^{t+1}}\sum_{i=1}^{n}P_{\theta_{t}}\left(Z=k|X=x_{i}\right)\,\left(x_{i}-\hat{\mu}_{k}^{t+1}\right)^{2} (7)$$

EM example

