MLAI 504 NEURAL NETWORKS & DEEP LEARNING

Dr. Zein Al Abidin IBRAHIM

zein.ibrahim@ul.edu.lb

Introduction to Neural Networks

Neural Networks and Deep Learning

- ➤ What is Neural Network?
- Properties of Neural Networks
- > Looking inside the human brain
- ➤ How to model a neuron in ANN?
- > Directed graph to represent a NN?
- ➤ What is Feedback and where to use it?
- ➤ How is knowledge represented?
- Learning Process and task

Outline

Brain

Brain

Brain

- ➤ Idea → inspired from human Brain
- ➤ A brain is composed of a vary large number of processing units → called *neurons*.
- \triangleright Number approximately = $10^{11} = 10$ milliard neurons
- \triangleright Neurons works in parallel \Rightarrow
 - Computational power of brain is very high
 - In addition → large connectivity of neurons
- > Connections called *synapses*
- \triangleright Neurons have connections to around 10⁴ other neurons.
- > Brain take approximately 100-200ms to perform perceptual recognition

- > NN -> massive number of parallel distributed processing units
- > Can store experiential knowledge (experiences)
- > Similar to brain in two main things:
 - 1. Knowledge → acquired from its environment through a learning phase.
 - 2. Interneuron connection weights used to store the acquired knowledge.

Input layer Hidden layers Output layer Input 1 Input 2 Input n Output 1 Output n

What is ANN?

> Several properties and capabilities of Neural Networks:

- Generalization → production of reasonable outputs for inputs not encountered during training (learning).
- Nonlinearity \rightarrow Can solve nonlinear problems.
- Input-Output Mapping → In supervised Learning, a mapping function that maps the input to the output is extracted.
 - Training example are fed to the network that updates the synaptic weights.
 - Updates done to minimize the difference between predicted and real label.
 - Finish when updating reaches stable state.

Why Neural Network?

Why Neural Network?

Prediction phase

> Several properties and capabilities of Neural Networks:

- Adaptivity → Weights in NN can be updated to take into accounts changes in the environment.
 - Not every change in the environment needs model updates. It should be a change over long period of time.
- Evidential Response → NN can give decision confidence.
- Contextual Information → Neurons are not independent. They are affected by the global activity of all other neurons in the network.

Why Neural Network?

> Several properties and capabilities of Neural Networks:

- Fault-Tolerance → ability of a NN to continue functioning even when some of its components or connections fail.
- VLSI Implementability (Very-Large Scale Integration) → process of creating integrated circuits by combining thousands or even millions of transistors on a single chip.
- Uniformity of analysis and design → use of consistent mathematical and computational methods
 throughout the process of designing, training, and testing a neural network.
- Neurobiological Analogy \rightarrow ANN tries to imitate the human brain.

Why Neural Network?

- > The human nervous system may be viewed as a three-stage system.
 - Central to the system is the brain (neural net) which continuously receives information, perceives it and make appropriate decisions.
 - Forward arrows (left to right) are information holding signals .
 - Feedback arrows (right to left).
 - Receptors convert stimuli from the human body into electrical pulses that transfer information to the brain.
 - Effectors convert the electrical impulses generated by the neural network into visible response as system outputs.

Looking Inside Human Brain

- Synapses or nerve endings are elementary structural and functional units that mediate the interaction between neurons
- > Plasticity permits the developing nervous system to adapt to its surrounding environment.
 - In an adult brain plasticity can be accounted for by two mechanisms:
 - The creation new synaptic connections between neurons.
 - The modification of existing synapses.
 - Axons are the transmission lines.
 - Dendrites are the receptive zones.
 - Information is received through the dendritic spines.

Looking Inside Human Brain

Looking Inside Human Brain

Another representation for the bias is to consider it as an additional neuron, the summation this time Starts from zero.

$$-v_k = \sum_{j=0}^m w_{kj} x_j$$
$$-y_k = \varphi(v_k)$$

$$-x_0 = +1, w_{k0} = b_k$$

How to Model a Neuron

Name +	Plot	Function, $f(x)$ $\qquad \qquad \spadesuit$	Derivative of f , $f'(x)$ \Rightarrow	Range +
Identity		x	1	$(-\infty,\infty)$
Binary step		$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array} ight.$	$\left\{egin{array}{ll} 0 & ext{if } x eq 0 \ ext{undefined} & ext{if } x = 0 \end{array} ight.$	$\{0,1\}$
Logistic, sigmoid, or soft step		$\sigma(x)=rac{1}{1+e^{-x}}$ [1]	f(x)(1-f(x))	(0,1)
tanh		$ anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$	$1-f(x)^2$	(-1,1)
Rectified linear unit (ReLU) ^[11]		$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & \max\{0,x\} = x 1_{x > 0} \end{cases}$	$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x > 0 \ ext{undefined} & ext{if } x = 0 \end{array} ight.$	$[0,\infty)$

Some activation functions

- The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.
- ➤ Inputs → Boolean
- ➤ Output → Boolean
- ➤ Activation → thresholding
- \rightarrow What we can do with \rightarrow OR, AND, >
- ➤ No learning from data
- > Just a theoretical model

McCulloch-Pitts model

- 1D pattern p
- The associated weight = w
- The bias value is b
- The output is n
- The value n passes through the activation function f to generate the output a $p \bullet w \Sigma \nearrow f \stackrel{a}{\triangleright} f$

Inputs

- Ex: w=3, p=2, b=-1.5 \Rightarrow
 - a=f(3(2)-1.5)=f(4.5)

General Neuron

One-input Neuron: Example

- > Output of the neuron can be written:
 - $-y = w^T x \text{ with } w = [w_0, w_1, ..., w_d] \& x = [1, x_1, ..., x_d]^T$
 - Weights we need to be learned from training data such that the patterns of the training data are correctly classified
- \triangleright Ex: when $d = 1 \Rightarrow$ one-dimension patterns
 - $-y = w x + w_0$ is the equation of a line
 - The line separate the space in two zones positive-side & negative-side
 - Find weights in such a way → for any new input x, assign it to one of two classes depending in which side is.

The Neuron in the Space

- **Sigmoid Function:** S shaped graph, is by far the most common form of activation used in the construction of a neural network.
 - It is defined by a strictly increasing function that exhibit a graceful balance between linear and nonlinear behavior.
 - An example of the sigmoid function is defined by:

•
$$\varphi(k) = \frac{1}{1 + \exp(-av)}$$

- Where a is the slope parameter of the sigmoid function.
 - The slop at the origin equals $\frac{a}{4}$.
- As slope parameter approaches infinity, the sigmoid function becomes the threshold function.
- Sigmoid function assumes a continuous range of values from 0 to 1
- Sigmoid is differentiable
 (better for Neural networks) while threshold function is not.

Types of Activation Function

- \triangleright The activation function can have values between +1 and -1
 - In this case the activation function is an odd function of the induced local field v.

$$-\varphi(v) = \begin{cases} +1, \ v > 0 \\ 0, \ v = 0 \\ -1 \ v < 0 \end{cases}$$

- This is commonly referred to as the **signum function**.
- For the corresponding form of a sigmoid function, we my use the hyperbolic tangent function:
 - $\varphi(v) = tang(v)$
 - ✓ This allows the sigmoid function to assume negative values.

Types of Activation Function

Name	Input/Output Relation	Icon	MATLAB Function
Hard Limit	$a = 0 \qquad n < 0$ $a = 1 \qquad n \ge 0$		hardlim
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	于	hardlims
Linear	a = n		purelin
Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$		satlin
Symmetric Saturating Linear	$a = -1 n < -1$ $a = n -1 \le n \le 1$ $a = 1 n > 1$	\neq	satlins

Activation or Transfer functions

Name	Input/Output Relation	Icon	MATLAB Function
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig
Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	£	tansig
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$		poslin
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet

Activation or Transfer functions

- > The neuron is deterministic in the model shown here.
 - That is the input-output behavior is precisely defined for all inputs.
- The McCulloch-Pitts model is given a probabilistic interpretation as follows:
 - The neuron is permitted to reside in only two state +1 and -1 (fires or no).
 - The decision to fire (from off to on) is probabilistic (a threshold is used).
 - Let x denote the sate of the neuron and P(v) denote the probability of firing where v is the induced local field of the neuron:

$$- x = \begin{cases} +1 & with probability & P(v) \\ -1, & with probability & 1 - P(v) \end{cases}$$

- Where P(v) is the sigmoid shaped function

$$- P(v) = \frac{1}{1 + \exp(\frac{-v}{T})}$$

Where T is the pseudo temperature used to control the noise level and therefore uncertainty in firing, If $T \to 0$ the model becomes deterministic.

Stochastic Model of Neuron

 $a^3 = f^3 (W^3 f^2 (W^2 f^1 (W^1 x + b^1) + b^2) + b^3)$

How to represent a Neural Networks: directed Graphs

Please note the following rules:

- Rule 1: A signal flows along a link only in the direction defined by the arrow on the link (Figures (a) and (b)).
- Rule 2: A node signal equals the algebraic sum of all signals entering the node via the incoming links (Figure (c)).
- Rule 3: The signal at a node is transmitted to each outgoing links (Figure (d))
- Rule 4: The output of a neuron is calculated after all the inputs are fed (see figure below).

- The directed graph can be complete (known as fully-connected or dense) or incomplete.
 - Fully-connected → each neuron in layer n is connected to each neuron in layer n+1 (see figure below).

Incomplete (known as partially complete) → a neuron in layer n is connected to

some neurons in layer n+1 (used in CNN, RNN, ...).

• referred to as an architectural graph

- ➤ Feedback → output of an element in the system influences in part the input applied to that particular element.
 - Plays a major role in a special class of neural networks called recurrent networks.
 - Used during back-propagation algorithm

— ...

What is Feedback and where to use it

The input-output relationships is given by:

$$-y_k(n) = A[x_j'(n)]$$

$$-x_j'(n) = x_j(n) + \mathbf{B}[y_k(n)]$$

- Where the Brackets here emphasize that \boldsymbol{A} and \boldsymbol{B} act as operators.
- Eliminating $x'_j(n)$ we get

$$-y_k(n) = \frac{A}{1-AB}[x_j(n)]$$

- Where $\frac{A}{1-AB}$ is referred to as the closed loop operator of the system, and AB as the open-loop operator.
- In general, open loop is non-commutative, that is $AB \neq BA$

What is Feedback and where to use it

- > Here are some network architectures:
 - Feedforward Neural Networks
 - CNN→ Convolutional Neural Networks
 - RNN → Recurrent Neural Networks
 - LSTM → Long Short-Term Memory Networks
 - Autoencoders
 - GAN → Generative Adversarial Networks
 - Reinforcement Learning Networks

-

Some Network Architectures

→ (i) Single Layer Feedforward networks.

- In a layered neural network, the neurons are organized in the form of layers.
- In the simplest form we have an input layer of source nodes that projects directly onto output layer of neurons (computational nodes).
 - But not vice-versa. In other words, its strictly of a **feedforward** type.
- The example here is for a single layer network, where the single layer is referring to the output layer (neurons).
 - We do not count the input layer nodes because no computation is performed there.

Some Network Architectures

→ (ii) Multilayer Feedforward Networks

- It is different by the presence of one or more hidden layers whose computation nodes are called hidden neurons.
- They are called hidden since they are not seen directly from either the input or the output of the network.
- The function of the hidden neurons is to intervene between the external input and the network output in some useful manner.
- By adding one or more hidden layers, the network is enabled to extract a global perspective despite its local connectivity.
 - This is due to the extra synaptic connection and the **extra dimension** of the neural interaction.
- The network here is Feedforward network with one hidden layer 10 4 2
 - 10 source nodes (input layer) 4 hidden neurons and 2 output neuron.
 - The terminology is m h1 h2 q

Some Network Architectures

Fully connected network

Feedforward Network

$$W = \begin{bmatrix} w_{1,1} & \cdots & w_{1,d} \\ \vdots & \ddots & \vdots \\ w_{k,1} & \cdots & w_{k,d} \end{bmatrix}$$

$$x_1 = \begin{bmatrix} w_{0,1} \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

$$x_2 = \begin{bmatrix} w_{0,1} \\ w_{0,2} \\ \vdots \\ w_{0,k} \end{bmatrix}$$

$$x_3 = f(Wx + W_0)$$

$$x_4 = f(Wx + W_0)$$

$$x_5 = f(Wx + W_0)$$

$$x_6 = f(Wx + W_0)$$

$$x_1 = f(Wx + W_0)$$

$$x_1 = f(Wx + W_0)$$

$$x_2 = f(Wx + W_0)$$

$$x_3 = f(Wx + W_0)$$

$$x_4 = f(Wx + W_0)$$

$$x_5 = f(Wx + W_0)$$

$$x_6 = f(Wx + W_0)$$

$$x_7 = f(Wx + W_0)$$

$$x_8 = f(Wx + W_0)$$

$$x_9 = f(Wx + W_0)$$

$$x_9 = f(Wx + W_0)$$

$$x_1 = f(Wx + W_0)$$

$$x_1 = f(Wx + W_0)$$

$$x_1 = f(Wx + W_0)$$

$$x_2 = f(Wx + W_0)$$

$$x_3 = f(Wx + W_0)$$

$$x_4 = f(Wx + W_0)$$

$$x_4 = f(Wx + W_0)$$

$$x_5 = f(Wx + W_0)$$

$$x_6 = f(Wx + W_0)$$

$$x_7 = f(Wx + W_0)$$

$$x_8 = f(Wx + W_0)$$

$$x_9 = f(Wx + W_0)$$

Single-layer and multi-layer

> (iii) Recurrent Networks

- Network having at least one feedback loop.
- Ex: a single layer of neurons with each neuron feeding its output back to its inputs of all other neurons (top figure).
- Ex: output of a neuron is fed back to its own input
 (bottom figure) → called self feedback loops.

Some Network Architectures

- > Consider a handwritten-digit recognition problem.
 - Input → pixels of the image each pixel as separate feature
 - Output \rightarrow one of the 10 digits

Training set → large variety of handwritten digits that are representative

of a real-world situation.

- Design of the network
 - Input dimension = number of pixels in the image.

Knowledge Representation

- ➤ When representing knowledge respect the following rules:
 - Rule 1. Similar inputs (i.e. patterns drawn) from similar classes should usually produce similar
 representations inside the network and should therefore be classified as belonging to the same class.
 - Rule 2. Items to be categorized as separate classes should be given widely different representations in the network.
 - Rule 3. If a particular feature is important, then there should be large number of neurons involved in the representation of that item in the network.
 - Rule 4. Prior information and invariances should be built into the design of a neural network whenever they are available, so as to simplify the network deign by its not having to learn them.

Knowledge Representation

- Examples of how to build prior informatic
- > We have ad hoc procedures:
 - Restricting the network architecture which _{x5}→□ use of <u>local connections</u> known as receptive x6→□
 - Constraining the choice of synaptic weights through the use of <u>weight sharing</u>.

Building prior information into Medesign work.

Example: Local connections and weights sharing

- > Problem to consider during NN design:
 - Network trained to detect objects → what if objects appear rotated, translated, scaled, different colors than during training?
 - \rightarrow The classifier should be **invariant** to these transformations.
- ➤ How to do that?
 - Invariant by structure
 - Invariance by training
 - Invariant by feature space

Building Invariances into NN Design

Invariant by structure

- Weights of neurons are created so that transformed versions of the same input are forced to produce the same output.
- Disadvantage → the number of synaptic connections becomes prohibitively large even for images of moderate size.

> Invariance by training

- Train the network to recognize the image and its rotations (different aspect) views.
- Data Augmentation → Generate more samples from your dataset by applying several type of transformations (rotated, scaled, translated, ...).
- Disadvantages → Computational cost, overfitting, ...

Building Invariances into NN Design

> Invariant by feature space

 Extract features to characterize the essential information content of patterns that are invariant to transformations of the input.

Advantages

- The number of features applied may be reduced to realistic levels.
- The requirements imposed to the network are relaxed.
- Invariance for all objects with respect to known transformation is assured.

Disadvantage

• Not easy and should pass by feature engineering step to study the set of features.

Building Invariances into NN Design

Classifier-

type neural

network

Invariant

extractor

- Learning can be with a teacher or without a teacher.
 - Learning with a teacher can be categorized into supervised and reinforced learning.
- ➤ Learning with a Teacher → Main steps
 - Pattern in dataset are fed into the network
 - The error is calculated as the difference between the predicted and real label.
 - Weights are updated in backward manner relative to their amount.
 - Updates is done until reaching an optimum value

Learning Process

> Learning with a Teacher

- Updating the weights is done in the direction of the gradient
- The update is done in one of the three ways:
 - Batch-training \rightarrow one update after processing a batch of samples.
 - Stochastic training \rightarrow one update after processing one individual sample.
 - Mini-batch training \rightarrow one update after processing a small subset of data

Learning Process

Learning Process