

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Current topics

- Microsoft and NIVIDIA have just announced a deep language model with 530B parameters!
 - Parallelized across thousands of GPUs
- Kunihiko Fukushima just won the 2021 Bower Award for Achievement in Science
 - ML community discusses: https://www.reddit.com/r/MachineLearnin g/comments/q76js4/schmidhuber_pays_tr ibute_to_kunihiko_fukushima/
- We are looking for a technician for a Deep Learning cluster
 - Please contact: Doris Kaiserrainer kaiserreiner@ai-lab.jku.at if you are interested!
 - Email subject "Technician"
 - Details on Moodle

Source: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Notation example: Supervised learning

\boldsymbol{X}			\boldsymbol{y}
$oldsymbol{x}^1$	0.13	0.03	0.35
$oldsymbol{x}^2$	0.15	0.14	0.57
	0.79	0.19	0.87
	0.48	0.28	1.21
	0.93	0.43	0.48
$oldsymbol{x}^n$	0.43	0.41	0.70
	0.62	0.63	-0.44
	0.69	0.69	-1.05
	0.19	0.79	-1.29
	0.23	0.85	-1.11
$oldsymbol{x}^N$	0.11	0.99	0.32

- Our supervised data set is:
 - ullet Samples are rows in the data matrix $oldsymbol{X}$:

$$oldsymbol{X} = (oldsymbol{x}^1, \dots, oldsymbol{x}^N)$$

- ullet Features are columns of $oldsymbol{X}$:
 - Single features, e.g.: $x_{21}=0.15$
 - Feature vector, e.g.: $oldsymbol{x}_{.1}$

Scalar label for each data point:

$$\mathbf{y} = (y^1, \dots, y^N)^T$$

Data objects

- $x^n \in \mathbb{R}^D$ or $x \in \mathbb{R}^D$: the *n*-th input data point or a general data point, respectively. A column vector. Sometimes also used for the inputs of a particular neural network layer, then the dimensions could be $x \in \mathbb{R}^J$.
- $y^n \in \mathbb{R}$ or $y \in \mathbb{R}$: a scalar label for the *n*-th data point or a general label y, respectively.
- $y^n \in \mathbb{R}^K$ or $y \in \mathbb{R}^K$: For multi-class of multi-task problems, this is a label vector for the n-th data point or a general label vector, respectively. A column vector.
- $\hat{y} \in \mathbb{R}$ or $\hat{y} \in \mathbb{R}^K$: the predicted scalar label or for a multi-class problem the predicted label vector, respectively.
- $p \in \mathbb{R}$ or $p \in \mathbb{R}^K$: same as above if outputs can be interpreted probabilistically, the predicted scalar label or for a multi-class problem the predicted label vector.
- $a \in \mathbb{R}^I$: activations of a neural network.
- $s \in \mathbb{R}^{I}$: pre-activations, also called netI, of a neural network.

Sizes and dimensions

- N: number of training examples, i.e. objects or samples, in the training $data\ set$. Running index: n.
- ullet D: number of input units which is also the number of features that a sample has. Running index: d
- M: number of test or validation examples, i.e. objects or samples, in the test data set. Running index: m with $N+1 \le m \le N+M$.
- K: number of output units. Running index: k.
- L: number of layers in a network without counting the input layer. Running index: l.
- J: input dimension of a general neural network layer. Running index: j.
- I: output dimension of a general neural network layer. Running index: i.

Stacked data and labels

- $X \in \mathbb{R}^{N \times D}$: input data matrix. The rows represent objects, i.e. samples. We assume that objects, i.e. samples, are represented or described by feature vectors \mathbf{x}^n .
- $y \in \mathbb{R}^N$: the scalar labels of all samples stacked to a column vector.
- $Y \in \mathbb{R}^{N \times K}$: for multi-class or multi-task problems, stacked labels yield a label matrix.

Parameter objects

- $\mathbf{w} \in \mathbb{R}^D$: a weight or parameter vector of a simple machine learning method, such as linear regression. A column vector.
- $W \in \mathbb{R}^{I \times J}$: a weight or parameter matrix of a learning method mapping from an input space with dimension J to an output space with dimension I.
- $\boldsymbol{b} \in \mathbb{R}^I$: a bias vector.
- θ : a set of parameters of a probabilistic model.

Multiple layers

- $n_h^{[l]}$: number of hidden units of the l-th layer. Thus, $D=n_h^{[0]}$ and $K=n_h^{[L+1]}$.
- $a^{[l]} \in \mathbb{R}^{n_h^{[l]}}$: activations of a neural network in the l-th layer.
- $s^{[l]} \in \mathbb{R}^{n_h^{[l]}}$: pre-activations, also called netI, of a neural network in the l-th layer.
- $\mathbf{W}^{[l]} \in \mathbb{R}^{n_h^{[l-1]} \times n_h^{[l]}}$: the weight matrix connecting the (l-1)-th layer with the l-th layer.
- $\boldsymbol{b}^{[l]} \in \mathbb{R}^{n_h^{[l]}}$: the bias vector in the *l*-th layer.

Common transformations

$$\boldsymbol{w}^T \boldsymbol{x} + b = w_1 x_1 + \dots w_D x_D + b. \tag{1}$$

$$s = Wx + b. (2)$$

$$\boldsymbol{a} = f(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}). \tag{3}$$

$$\boldsymbol{w}^T \boldsymbol{w} = \sum_{i=1}^I w_i^2 = \|\boldsymbol{w}\|^2, \tag{4}$$

Functions

- $f: \mathbb{R} \to \mathbb{R}$: a non-linear activation function that is applied element-wise to a vector or matrix. Sometimes also denoted as ϕ .
- g(x; w): a machine learning model with input x and parameters w.
- $p(x; \theta)$: a probabilistic model with data point x and set of parameters θ .
- L(y, g(x; w)) or $L(y, \hat{y})$: a loss function L.
- $R_{\text{emp}}(\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{w})$: an empirical error or risk function. Typically, the empirical error is an average of the loss function for a single training data point. For neural networks, this serves as a *cost function* that is minimized.
- $R_{\text{emp}}(\boldsymbol{w})$: an empirical error or risk function. The same as above only that occasionally the dependency on \boldsymbol{X} and \boldsymbol{y} is dropped to keep the notation uncluttered.

Derivatives and matrix layout

We use the so-called *numerator layout* of matrix calculus:

- \blacksquare $\frac{\partial R(w)}{\partial w}$: a row vector of length W according to the definition of the Jacobian.
- \bullet $\frac{\partial a}{\partial x}$: column vector
- $\blacksquare \frac{\partial a}{\partial x}$: row vector
- $\frac{\partial a}{\partial x}$: matrix with as many rows as dimension of a, as many columns as dimesion of x.
- $\frac{\partial a}{\partial X}$: dimension of transposed X

With the *Nabla operator* ∇ , we can switch to *denominator layout*:

■
$$\nabla R(\boldsymbol{w})$$
 or $\nabla_{\boldsymbol{w}} R(\boldsymbol{w})$: a column vector of length W . $\nabla_{\boldsymbol{w}} R(\boldsymbol{w}) = \left(\frac{\partial R(\boldsymbol{w})}{\partial \boldsymbol{w}}\right)^T$

Distributions

- $\mathcal{U}(a,b)$: a uniform distribution in the interval [a,b]. This distribution has mean $\frac{1}{2}(a+b)$ and variance $\frac{1}{12}(b-a)^2$.
- $\mathcal{N}(\mu, \sigma^2)$: a normal distribution with mean μ and variance σ^2 . Also commonly referred to as the Gaussian distribution.
- $\mathcal{B}(n,p)$: a binomial distribution with size parameter n and probability parameter p. Sometimes used as $\mathcal{B}(1,p)$ to denote Bernoulli distributions.