Electric Vehicle (EV) Sales Analysis Using SAS

Team Members:

Anusha Kasula, Chandra Sekhar Ankisetty, Naveen Datanagari, Santhoshi Soma, Sishira Ithigani, Chakradhara Brahma Nalla, Vineeth Goud Boda

MSBA, Northwood University

114754-MGT-683-NW MSBA Directed Capstone

Dr. Alamudun Folami

Capstone Project – EV Sales Prediction

Abstract

The paper considers the rising demand for electric vehicles and, consequently, a raised demand for effective infrastructure planning. In this paper, we used publicly available data from the Department of Energy and the Department of Transportation to build a predictive model that will allow forecasting EV sales and pinpoint optimal locations for new charging stations across U.S. states. These results from this analysis can be used to help businesses involved with EVs and improve decision-making in infrastructure development and market strategy.

Keywords: Electric Vehicles, Infrastructure Planning, Predictive Model, SAS, Charging Stations, DOE, DOT.

Introduction

As electric vehicles are becoming popular, support infrastructure needs to be in place. Efficient planning and forecasting of EV sales and charging station locations are then crucial for satisfying future demand. This work proposes a methodology for estimating EV sales and optimizing siting for charging stations based on data from the DOE and DOT. One of the main challenges is to develop an accurate predictive model that can help in assisting EV businesses and develop strategies on infrastructure development.

Problem Statement

As such, with the advance in Electric vehicles popularity, there comes a significant need for infrastructure planning and forecasting. The core objectives of this project include EV sales forecasting and giving recommendations for developing new charging stations in the United States using publicly available data provided by the Department of Energy and the Department of Transportation. Therein lies the bigger challenge: developing a predictive model that accurately projects EV sales by site and detects the optimal new charging site locations to best accommodate increasing sales. The outcome will help businesses in the EV industry and helps to enhance the decision-making processes related to infrastructure development and market strategy.

Methodology

Data Collection

We've gathered information of electric vehicles registrations along with details about charging stations.

- EV registrations by state & year Alternative Fuels Data Center: Maps and Data Electric Vehicle Registrations by State (energy.gov)
- Charging Stations Alternative Fuels Data Center: Alternative Fueling Station Counts by State (energy.gov)
- Overall Road mileage by state Bureau of Transportation Statistics

Data Merging

Combined various datasets to create a dataset for our analysis.

Normalisation

To guarantee that there are no differences between any two data sets, the data was normalised.

Tools and Techniques

SAS has been used for the project in order to take use of its powerful statistical and data management features. Regression analysis is one of the key methods we have employed to forecast sales, and clustering algorithms is another to maximise the locations of charging stations.

Analysis Procedure

- 1. Data Preprocessing: The datasets from DOT and DOE were merged and cleansed.
- 2. **Predictive Modelling:** We have used regression analysis on past sales data along with other variables to estimate EV sales over time.
- 3. Clustering Analysis: Using both current infrastructure and projected EV adoption, we have run algorithms for clustering to identify the best locations for future charging stations.

Sales Prediction of States

Figure 1:

The x-axis showing sales amounts from 0 to 60,000 and the y-axis listing states alphabetically from Alabama to Wyoming. This visual representation allows for analysing geographical sales distribution and performance by state. Based on the analysis above California has the highest sales, while South Carolina has the lowest sales.

Charging Outlets Prediction

Figure 2:

X-axis represents the number of outlets ranging from 0 to 200,000 whereas the y-axis lists states from Alabama to Wyoming. Each bar represents the number of charging outlets in a state, which shows the analysis of the distribution of charging infrastructure. California has the highest number of charging outlets, while states like North Dakota and Wyoming have the lowest.

Clustering Analysis

Observations	612	Proportion	0
Variables	9	Maxeigne	1

Table 1:

Cluster Summary for 1 Cluster					
Cluster Members Cluster Variation Variation Explained Proportion Explained Second Eigenvalue					Second Eigenvalue
1 9 9 4.597924 0.5109 1.3442					

Table 2: C

luster 1 will be split because it has the largest second eigenvalue, 1.344193, which is greater than the MAXEIGEN=1 value.

	Cluster Summary for 2 Clusters					
Cluster Members Cluster Variation Variation Explained Proportion Explained Second Eigenvalue						
1 6 6 3.962961 0.6605 1.0747				1.0747		
2 3 3 1.835179 0.6117 0.9200						
	Total variation explained $= 5.79814$ Proportion $= 0.6442$					

Table 3: Cluster Summary for 2 Clusters

	2 Clusters						
Cluster	Variable	R-squared with		1-R ² Ratio	Variable Label		
		Own Cluster	Next Closest				
Cluster 1	Year	0.1242	0.0018	0.8774	Year		
	Stations	0.9247	0.2963	0.1070	Stations		
	Charging outlets	0.9813	0.2264	0.0242	Charging outlets		
	Level 2	0.9742	0.2256	0.0333	Level 2		
	DC Fast	0.9576	0.1757	0.0515	DC Fast		
	Sales	0.0010	0.0002	0.9992	Sales		
Cluster 2	Level 1	0.1704	0.0615	0.8839	Level 1		
	Miles of public road	0.8118	0.0824	0.2051	Miles of public road		
	Highway vehicle-miles	0.8530	0.3097	0.2130	Highway vehicle-miles		

Table 4: 2 Clusters

Standardized Scoring Coefficients				
Cluster		Clu	ster	
		1	2	
Year	Year	0.088920	0.000000	
Stations	Stations	0.242648	0.000000	
Charging outlets	Charging outlets	0.249966	0.000000	
Level 1	Level 1	0.000000	0.224957	
Level 2	Level 2	0.249062	0.000000	
DC Fast	DC Fast	0.246928	0.000000	

Table 5: Standardized Scoring Coefficients

Standardized Scoring Coefficients				
Cluster Cluster				
	1	2		
Miles of public road	Miles of public road	0.000000	0.490953	
Highway vehicle-miles	Highway vehicle-miles	0.000000	0.503255	
Sales	Sales	-0.007962	0.000000	

Table 6: Standardized Scoring Coefficients

Cluster Structure				
Cluster		Clu	ster	
		1	2	
Year	Year	0.352387	0.042748	
Stations	Stations	0.961606	0.544339	
Charging outlets	Charging outlets	0.990606	0.475777	
Level 1	Level 1	0.247969	0.412836	
Level 2	Level 2	0.987024	0.474956	
DC Fast	DC Fast	0.978564	0.419184	
Miles of public road	Miles of public road	0.286972	0.909986	
Highway vehicle-miles	Highway vehicle-miles	0.556462	0.923564	
Sales	Sales	-0.031555	-0.012628	

Table 7: Cluster Structure

Cluster	1	2
1	1.00000	0.47671
2	0.47671	1.00000

Table 8:

Cluster	Members	Cluster Variation	Variation Explained	Proportion Explained	Second Eigenvalue
1	4	4	3.867032	0.9668	0.0826
2	3	3	1.835179	0.6117	0.9200

Table 9:

Cluster	Members	Cluster Variation	Variation Explained	Proportion Explained	Second Eigenvalue
3	2	2	1.11911	0.5596	0.8809

Total variation explained = 6.821322Proportion = 0.7579

Table 10:

Table 11: Standardized Scoring Coefficients

Cluster	Variable	1	2	3
	Year	0.000000	0.000000	0.668419
	Stations	0.250415	0.000000	0.000000
	Charging outlets	0.257106	0.000000	0.000000
	Level 1	0.000000	0.224957	0.000000
	Level 2	0.256322	0.000000	0.000000
	DC Fast	0.253148	0.000000	0.000000
	Miles of public road	0.000000	0.490953	0.000000
	Highway vehicle-miles	0.000000	0.503255	0.000000

Cluster		1	2	3
Sales	Sales	0.00000	0.00000	-0.668419

Table 12:

	Cluster Structur	·e		L
Cluster		1	2	3
Year	Year	0.269994	0.042748	0.748034
Stations	Stations	0.968364	0.544339	0.162411
Charging outlets	Charging outlets	0.994238	0.475777	0.189511
Level 1	Level 1	0.243675	0.412836	0.111906
Level 2	Level 2	0.991205	0.474956	0.184026
DC Fast	DC Fast	0.978931	0.419184	0.208758
Miles of public road	Miles of public road	0.294096	0.900986	0.020221
Highway vehicle-miles	Highway vehicle-miles	0.570863	0.923564	0.003802
Sales	Sales	013378	012628	748034

Inter-Cluster Correlations							
Cluster	1	2	3				
1	1.00000	0.48649	0.18941				
2	0.48649	1.00000	0.03701				
3	0.18941	0.03701	1.00000				
No cluster meets the criterion for splittin							

Number of Clusters	Total Variation Explained by Clusters	Proportion of Variation Explained by Clusters	Minimum Proportion Explained by a Cluster	Maximum Second Eigenvalue in a Cluster	Minimum R-squared for a Variable	Maximum 1-R**2 Ratio for a Variable
1	4.597924	0.5109	0.5109	1.344193	0.0008	
2	5.798140	0.6442	0.6117	1.074744	0.0010	0.9992
3	6.821322	0.7579	0.5596	0.920032	0.1704	0.8819

Figure 3:

Cluster Analysis shows the grouping of vehicle and infrastructure data based on similarity. Variables are Highway vehicle-miles, Miles of public road, Level 1 Sales, Year, DC Fast Charging, Level 2 Charging outlets, and Stations, explaining the variation from 1.0 to 0.5 on the y-axis.

Variables: Year Stations Charging outlets Level 1 Level 2 DC Fast Miles of public road Highway vehicle-miles Sales

Pearson Correlation Coefficients, N = 612									
	Year	Stations	Charging outlets	Level 1	Level 2	DC Fast	Miles of public road	Highway vehicle-miles	Sales
Year Year	1.00000	0.22723	0.26985	0.12046	0.26290	0.30151	0.01138	0.02000	-0.11911
Stations Stations	0.22723	1.00000	0.94368	0.23253	0.94061	0.92525	0.34260	0.64347	-0.01575

Figure 4:

			Pearson C	Correlation	Coefficien	ts, N = 612			
	Year	Stations	Charging outlets	Level 1	Level 2	DC Fast	Miles of public road	Highway vehicle-miles	Sales
Charging outlets Charging outlets	0.26985	0.94368	1.00000	0.24473	0.99905	0.96679	0.28388	0.55907	-0.01368
Level 1 Level 1	0.12046	0.23253	0.24473	1.00000	0.23648	0.24456	0.14509	0.23178	-0.04696
Level 2 Level 2	0.26290	0.94061	0.99905	0.23648	1.00000	0.95786	0.28393	0.56107	-0.01242
DC Fast	0.30151	0.92525	0.96679	0.24456	0.95786	1.00000	0.24705	0.48261	-0.01080
Miles of public road Miles of public road	0.01138	0.34260	0.28388	0.14509	0.28393	0.24705	1.00000	0.74990	-0.01888
Highway vehicle-miles Highway vehicle-miles	0.02000	0.64347	0.55907	0.23178	0.56107	0.48261	0.74990	1.00000	0.01431
Sales Sales	-0.11911	-0.01575	-0.01368	-0.04696	-0.01242	-0.01080	-0.01888	0.01431	1.00000

Figure 5: Enter Caption

The above result shows Pearson Correlation Coefficients, quantifying linear relationships among electric vehicle metrics such as stations, charging outlets, road miles, vehicle usage, and sales. Each coefficient, ranging from -1 to 1, signifies the strength and direction of correlation: 1 denotes perfect positive correlation, -1 perfect negative, and 0 indicates no correlation. This data shows how infrastructure development influences electric vehicle adoption and usage patterns, mainly for strategic analysis in the EV sector.

Linear Regression Model

				1	Depe			l: MO ariabl
Number of Obser	vation	s Read	612					
Number of Obser	vation	ns Used	612					
		Analysi	s of Va	riance				
Source	DF		ım of nares	Mean Square F Value Pg > F				
Model	8	10314	15466	1289	3183		1.86	0.0629
Error	603	416911	3373	691	3953			
Corrected Total	611	427225	8839					
Root MSE	262	9.43958	R-S	quare	0.02	41		
Dependent Mean	499	0.13018	Adi	R-Sq	0.01	12		
Coeff Var	5	2.69281						

Figure 6:

Parameter Estimates										
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Px > t				
Intercept	Intercept	1	10296	1867.91487	5.51	<.0001				
Highway vehicle-miles	Highway vehicle-miles	1	0.00671	0.00368	1.82	0.0687				
Miles of public road	Miles of public road	1	-0.00469	0.00313	-1.50	0.1341				
Year	Year	1	-0.25174	0.09021	-2.79	0.0054				
Stations	Stations	1	-0.43734	0.35079	-1.25	0.2130				
Charging outlets	Charging outlets	1	-1.40377	1.22871	-1.14	0.2537				
Level 1	Level 1	1	-0.34176	0.38571	-0.89	0.3759				
Level 2	Level 2	1	1.44137	1.32133	1.09	0.2758				
DC Fast	DC Fast	1	2.07641	1.19118	1.74	0.0818				

Figure 7:

Figure 8:

The multiple regression model shows that only a small portion of the variance in the dependent variable, as shown by the low R-Square value of 0.0241. The overall model is not statistically significant, with an F value of 1.86 and a p-value of 0.0629, just above the 0.05 threshold. Among the predictor variables, only "Year" is statistically significant (p = 0.0054), which shows it has an impact on the dependent variable. Other variables like "Highway vehicle-miles" and "DC Fast," are borderline significant, while the remaining predictors do not significantly contribute to the model. This shows that the model may be missing important variables or that the relationships between the predictors and the dependent variable are weak.

Data Modelling and Forecasting ARIMA

 $Figure\ 9:$

Figure 10:

Maximum Likelihood Estimation									
Parameter	Estimate	Standard Error		Approx Pr> t	Lag				
MU	4990.1	106.88886	46.69	<.0001	0				
Constant Es	stimate	4990.13							
Variance Es	stimate	6992240							

Figure 11:

Std Error Estimate	2644.284
AIC	11383.09
SBC	11387.51
Number of Residuals	612

Autocorrelation Check of Residuals										
To Lag	Chi-Square	DF	Pr > ChiSa		Autocorrelations					
6	384.42	6	<.0001	-0.542	0.155	0.053	0.045	0.152	-0.527	
12	1073.05	12	<.0001	0.895	-0.514	0.131	0.046	0.047	0.145	
18	1916.93	18	<.0001	-0.533	0.876	-0.518	0.142	0.043	0.037	
24	2776.42	24	<.0001	0.148	-0.540	0.870	-0.513	0.125	0.048	
30	3615.89	30	<.0001	0.032	0.164	-0.518	0.855	-0.508	0.139	
36	4396.52	36	<.0001	0.046	0.025	0.157	-0.504	0.821	-0.494	
42	5010.16	42	<.0001	0.119	0.040	0.015	0.134	-0.499	0.806	
48	5370.98	48	<.0001	-0.512	0.127	0.030	0.012	0.133	-0.498	

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

0	utlier D	etection Sur			
Maxi	mum ni	ımber searc	hed	5	
Num	ber four	ıd		1	
Signi	ficance	used		0.05	
		0	utlie	r Detail	s
Qbs.	Туре	Estimate	Chi	-Square	e Approx Prob>ChiSq
567	Shift	-1754.2		9.12	2 0.0025

Figure 17:

ARIMA modelling and forecasting analysis for "Sales" shows that the average sales value is 4990.13, with a standard deviation of 2642.123 across 612 observations. There are significant autocorrelations in the data, and the model's estimates show a significant mean value (MU = 4990.1). The variance is 6,992,240, and the standard error is 2644.284. However, the model does not fully capture the patterns, as such from the high Chi-Square values in the residuals up to lag 48. The sales forecasts remain consistent at 4990.13 but with wide confidence intervals, indicating a lot of uncertainty. Overall, the model gives an idea of sales trends and forecasts, it needs further improvement to be more accurate and address the significant patterns and residuals.

Model: MODEL1 Dependent Variable: Sales Sales

Number of Observations Read	612
Number of Observations Used	612

Analysis of Variance								
Source DF Squares Square F Value Pr								
Model	8	103145466	12893183	1.86	0.0629			
Error	603	4169113373	6913953					
Corrected Total	611	4272258839						

Root MSE	2629.43958	R-Square	0.0241
Dependent Mean	4990.13018	Adj R-Sq	0.0112
Coeff Var	52.69281		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	10296	1867.91487	5.51	<.0001			
Year	Year	1	-0.25174	0.09021	-2.79	0.0054			
Stations	Stations	1	-0.43734	0.35079	-1.25	0.2130			
Charging outlets	Charging outlets	1	-1.40377	1.22871	-1.14	0.2537			
Level 1	Level 1	1	-0.34176	0.38571	-0.89	0.3759			
Level 2	Level 2	1	1.44137	1.32133	1.09	0.2758			
DC Fast	DC Fast	1	2.07641	1.19118	1.74	0.0818			
Miles of public road	Miles of public road	1	-0.00469	0.00313	-1.50	0.1341			
Highway vehicle-miles	Highway vehicle-miles	1	0.00671	0.00368	1.82	0.0687			

Figure 18: Predictive Model for EV Sales

Model: MODEL1
Dependent Variable: Charging outlets Charging outlets

Number	of	Observations	Read	612
Number	of	Observations	Used	612

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	8	7082986137	885373267	116831	<.0001		
Error	603	4569674	7578.23183				
Corrected Total	611	7087555810					

Root MSE	87.05304	R-Square	0.9994
Dependent Mean	1117.13725	Adj R-Sq	0.9993
Coeff Var	7.79251		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-89.91398	63.27410	-1.42	0.1558			
Year	Year	1	0.00497	0.00300	1.66	0.0978			
Stations	Stations	1	0.00209	0.01163	0.18	0.8577			
Level 1	Level 1	1	0.06554	0.01250	5.24	<.0001			
Level 2	Level 2	1	1.06778	0.00516	206.88	<.0001			
DC Fast	DC Fast	1	0.74513	0.02534	29.40	<.0001			
Miles of public road	Miles of public road	1	-0.00019937	0.00010334	-1.93	0.0542			
Highway vehicle-miles	Highway vehicle-miles	1	0.00053402	0.00012026	4.44	<.0001			
Sales	Sales	1	-0.00154	0.00135	-1.14	0.2537			

Figure 19: Charging Station Location Optimization

Figure 20: State-wise charging outlets

Model: MODEL1 Dependent Variable: Sales Sales

Number of Observations Read 612 Number of Observations Used 612

Analysis of Variance							
Source DF Squares Square F Value Pr							
Model	8	103145466	12893183	1.86	0.0629		
Error	603	4169113373	6913953				
Corrected Total	611	4272258839					

Root MSE	2629.43958	R-Square	0.0241
Dependent Mean	4990.13018	Adj R-Sq	0.0112
Coeff Var	52.69281		

	Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	Intercept	1	10296	1867.91487	5.51	<.0001				
Year	Year	1	-0.25174	0.09021	-2.79	0.0054				
Stations	Stations	1	-0.43734	0.35079	-1.25	0.2130				
Charging outlets	Charging outlets	1	-1.40377	1.22871	-1.14	0.2537				
Level 1	Level 1	1	-0.34176	0.38571	-0.89	0.3759				
Level 2	Level 2	1	1.44137	1.32133	1.09	0.2758				
DC Fast	DC Fast	1	2.07641	1.19118	1.74	0.0818				
Miles of public road	Miles of public road	1	-0.00469	0.00313	-1.50	0.1341				
Highway vehicle-miles	Highway vehicle-miles	1	0.00671	0.00368	1.82	0.0687				

Results

1 Predictive Model for EV Sales

The regression model shows a high degree of accuracy in predicting future EV sales. The predictors we used are historical sales data, highway miles and public road miles and charging outlets. screenshots (Figure 18 and Figure 19)..

2 Charging Station Location Optimization

By using clustering algorithm, we identified the regions within each state which require new charging stations to meet the demand. The results are visualized in the provided screenshots (Figure 18 and Figure 19).

Discussion

Implications The model and optimized charging station locations provide useful insights for businesses.

These findings can help in infrastructure investments and strategic planning in the EV sales.

Conclusion

This study successfully helps in predicting EV sales using SAS from publicly available data and also optimize charging station locations. The results support infrastructure development and strategic planning in the current EV market. Future work will involve refining the model with additional data and continuous improvement for effective forecasting and planning.