This lecture will be recorded

slides + code https://dfab.link/fs2022

Review of last lecture assignment

- Define a parametric assembly based on examples 601-612.
- Goal 1: Ensure at least 20 parts are independently buildable (ie. there are trajectories for all).
- Goal 2: Ensure at least 20 parts are buildable taking into account previously built parts.

TODAY

robot control compas rrc instructions overview

Today's goal

Apply **robot control using RRC** to solve a Pick and Place task.

Right-click → Compose Up

docker/moveit-rrc-noetic

robot control

Traditional programming (offline control)

Our goal: online control

Control

Offline control

Online real-time control

Online non-real-time control

compas rrc

3D Concrete Printing

- Data streaming
- More than 300'000 points
- More than 4 hours of printing

WAAM

- Process Feedback
- Integrated Fronius welder
- Arc Weld PowerPac
- SmartTac

Mesh Mould

- Advanced Processing
- Slice positioning with
 - COMPAS RRC
- Rebar welding with
 - Externally Guided Motion

Features

Live communication

Multi-Tasking

Multi-Move

Multi-Controller

Multi-Location

Hello world

```
import compas_rrc as rrc

abb = rrc.AbbClient(ros, '/rob1')

done = abb.send_and_wait(rrc.PrintText('Hello World'))
```


Communication

Send ~75ms

Send and Wait ~150ms

Send and Wait in the Future

Send and Subscribe ~75ms

Send instruction (non-blocking)

Send an instruction without waiting for any kind of feedback
abb.send(rrc.PrintText('Hello.'))

Send instruction with feedback (blocking)

```
# Send and wait
done = abb.send_and_wait(rrc.PrintText('Sent with feedback.'))
```


Send instruction with feedback (non-blocking)

```
# Send and defer waiting
future = abb.send(rrc.PrintText('feedback',feedback_level=rrc.FeedbackLevel.DONE))
# Here you can do other stuff [..]
# Wait for feedback
done = future.result(timeout=3.0)
```


instructions overview

Instructions

Motions

Signals

Basics

Utilities

Custom

Basics

Set Tool

Set WorkObject

Set Max Speed

Set Acceleration

Motion

Get Frame

Move to Frame

Get Joints

Move to Joints

Get Robtarget Move to Robtarget

Utilities

Wait Time (Delay)

Stop (Pause)

Stop Watch

Utilities

No-op (Ping)

Print Text

Utilities

Custom Instructions

10 signals

Read analog Set analog

Read digital
Set digital
Pulse digital

Read group signal
Set group signal

Work objects

```
# Define pick positions
frame on pick = Frame(Point(50, 50, 50), Vector(0, -1, 0), Vector(-1, 0, 0))
frame on place = Frame(Point(50, 50, 50), Vector(0, -1, 0), Vector(-1, 0, 0))
# Move to frame on pickup pallet (work object)
abb.send(rrc.SetWorkObject('ob RRC Brick Pallet'))
abb.send and wait(rrc.MoveToFrame(frame on pick, speed, rrc.Zone.FINE))
# Move to frame on place (work object)
abb.send(rrc.SetWorkObject('ob RRC Build Space'))
abb.send and wait(rrc.MoveToFrame(frame on place, speed, rrc.Zone.FINE))
```


Pick & place example

```
# Create a new brick
done = abb.send and wait(rrc.PulseDigital('doNewBrick',0.2))
# [..]
# Vacuum on
abb.send(rrc.SetDigital('doVacuumOn',1))
# Motion
abb.send(rrc.MoveToFrame(pre place position, speed, rrc.Zone.Z10))
abb.send(rrc.MoveToFrame(place position, speed, rrc.Zone.FINE))
# Vacuum off
abb.send(rrc.SetDigital('doVacuumOn',0))
```


Next week

- No coding assignment
- RRC summary quiz, due next week Wed 4th May, 9AM.

https://forms.gle/em7K2M5CWsHhFVr4A

- Ask for help if needed: Slack, Forum, Office Hours (Fridays, request via Slack)
- Next lecture:
 - o im 🙌 On-site at the RFL!
 - Robot control exercise with a real robot

Thanks!

