Àlgebra (Grau en Enginyeria Informàtica) Solucions dels exercicis de la lliçó 4 **Robert Fuster**

Exercici 4.1. Classifiqueu les equacions següents (és a dir, dieu si són consistents o inconsistents) i, en cas que siguen consistents, trobeu-ne totes les solucions. En tots els casos, les incògnites són x_1 , x_2 i

(a)
$$x_1 + x_2 + x_3 = 1$$

(b)
$$x_2 + x_3 = 0$$

(c)
$$x_1 - x_3 = -1$$

(d)
$$x_2 = 0$$

(e)
$$0x_2 = 0$$

(a)
$$x_1 + x_2 + x_3 = 1$$
 (b) $x_2 + x_3 = 0$ (c) $x_1 - x_3 = -1$ (d) $x_2 = 0$ (e) $0x_3 = 0$ (f) $0x_1 + 0x_2 + 0x_3 = 1$

- (a) Consistent. La solució general és $\vec{x} = (1, 0, 0) + \alpha_1(-1, 1, 0) + \alpha_2(-1, 0, 1)$.
- (b) Consistent. La solució general és $\vec{x} = \alpha_1(1, 0, 0) + \alpha_2(0, -1, 1)$.
- (c) Consistent. La solució general és $\vec{x} = (-1, 0, 0) + \alpha_1(0, 1, 0) + \alpha_2(1, 0, 1)$.
- (d) Consistent. La solució general és $\vec{x} = \alpha_1(1, 0, 0) + \alpha_2(0, 0, 1)$.
- (e) Consistent. La solució general és $\vec{x} = \alpha 1(1, 0, 0) + \alpha 2(0, 1, 0) + \alpha 3(0, 0, 1)$.
- (f) Inconsistent.

Exercici 4.2. Discutiu i resoleu, en cas que siguen compatibles, els sistemes lineals següents. Utilitzeu l'algorisme de Gauss-Jordan tal com ho hem fet als exemples d'aquesta unitat.

(a)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 10 \\ 2x_1 + x_2 = 4 \\ x_1 - x_3 = -2 \end{cases}$$
 (b)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 10 \\ 2x_1 + x_2 = 4 \\ x_1 - x_3 = 0 \end{cases}$$
 (c)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 10 \\ 2x_1 + x_2 = 4 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$

(b)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 1\\ 2x_1 + x_2 = 4\\ x_1 - x_3 = 0 \end{cases}$$

(c)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 10 \\ 2x_1 + x_2 = 4 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$

(a) La matriu ampliada del sistema és

$$\begin{bmatrix} 3 & 2 & 1 & | & 10 \\ 2 & 1 & 0 & | & 4 \\ 1 & 0 & -1 & | & -2 \end{bmatrix}$$

En primer lloc, a la segona fila hi restem 2/3 vegades la primera i a la tercera, 1/3 de la primera:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & -2/3 & -4/3 & -16/3 \end{bmatrix}$$

Ara restem a la tercera fila el doble de la segona:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Com que x_3 ha desaparegut de la tercera equació no podem eliminar aquesta incògnita e les dues primeres equacions. Eliminarem x_2 a la primera equació, sumant-hi la segona multiplicada per 6:

$$\begin{bmatrix} 3 & 0 & -3 & | & -6 \\ 0 & -1/3 & -2/3 & | & -8/3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Per acabar, multipliquem la primera fila per 1/3 i la segona per -3:

$$\begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 8 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

de manera que el sistema original és equivalent a aquest:

$$\begin{cases} x_1 - x_3 = -2 \\ x_2 + 2x_3 = 8 \end{cases}$$

i la solució general serà

$$\vec{x} = (-2, 8, 0) + \alpha(1, -2, 1)$$

(b) La matriu ampliada del sistema és

$$\begin{bmatrix} 3 & 2 & 1 & | & 10 \\ 2 & 1 & 0 & | & 4 \\ 1 & 0 & -1 & | & 0 \end{bmatrix}$$

En primer lloc, restem a la segona fila 2/3 de la primera i a la tercera, 1/3 de la primera:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & -2/3 & -4/3 & -10/3 \end{bmatrix}$$

Ara a la tercera, hi restem el doble de la segona:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

La tercera equació del sistema associat a aquesta matriu ampliada és 0 = 2, així que el sistema lineal no té cap solució.

(c) La matriu ampliada del sistema és

$$\begin{bmatrix} 3 & 2 & 1 & | & 10 \\ 2 & 1 & 0 & | & 4 \\ 1 & 1 & -1 & | & 0 \end{bmatrix}$$

En primer lloc, a la segona fila hi restem 2/3 de la primera i a la tercera, 1/3 de la primera:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & 1/3 & -4/3 & -10/3 \end{bmatrix}$$

Ara sumem a la tercera fila la segona:

$$\begin{bmatrix} 3 & 2 & 1 & 10 \\ 0 & -1/3 & -2/3 & -8/3 \\ 0 & 0 & -2 & -6 \end{bmatrix}$$

Sumem a la primera fila 1/2 de la tercera; i, a la segona, hi restem 1/3 de la tercera:

$$\begin{bmatrix} 3 & 2 & 0 & 7 \\ 0 & -1/3 & 0 & -2/3 \\ 0 & 0 & -2 & 6 \end{bmatrix}$$

Sumem a la primera fila sis vegades la segona:

$$\begin{bmatrix} 3 & 0 & 0 & 3 \\ 0 & -1/3 & 0 & -2/3 \\ 0 & 0 & -2 & 6 \end{bmatrix}$$

Per acabar, multipliquem la primera fila per 1/3, la segona per -3 i la tercera la dividim per -1/2:

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

i la solució (única) és

$$\vec{x} = (1, 2, 3)$$

Exercici 4.3. *Trobeu tots els vectors que són ortogonals als dos vectors* (1, -1, 0) i (1, 0, 1). Cerquem els vectors (x_1, x_2, x_3) el producte escalar dels quals per aquests dos vectors és zero:

$$(1,-1,0) \cdot (x_1, x_2, x_3) = 0$$

 $(1,0,1) \cdot (x_1, x_2, x_3) = 0$

és a dir,

$$x_1 - x_2 = 0$$
$$x_1 + x_3 = 0$$

Apliquem l'algorisme de Gauss-Jordan a la matriu ampliada d'aquest sistema lineal,

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\mathsf{E}_{2,1}(-1)} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\mathsf{E}_{1,2}(1)} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Els vectors que cerquem són les solucions d'aquest sistema, és a dir, tots els de la forma $\alpha(-1,-1,1)$.

Exercici 4.4. Escriviu el sistema lineal

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$

en forma vectorial i en forma matricial. Digueu quina és la matriu de coeficients i quina la matriu ampliada.

La forma vectorial d'aquest sistema és

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

I la forma matricial,

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \vec{x} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

La matriu de coeficients és

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

i la matriu ampliada

$$\begin{bmatrix} A \mid \vec{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \end{bmatrix}$$

Exercici 4.5. Feu el mateix amb el sistema genèric

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

La forma vectorial d'aquest sistema és

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}$$

I la forma matricial,

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \vec{x} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}$$

La matriu de coeficients i la matriu ampliada són aquestes:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \begin{bmatrix} A \mid \vec{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \mid b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} \mid b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \mid b_m \end{bmatrix}$$

Exercici 4.6. Si la matriu de coeficients d'un sistema lineal és una matriu 7×5 , quantes incògnites i quantes equacions té el sistema? Quants components té el vector de termes independents? I el vector incògnita?

El sistema té set equacions i cinc incògnites. El vector de termes independents és una matriu 7×1 , així que té set components (un per cada equació). El vector incògnita (i els vectors solució) en tenen cinc.

Exercici 4.7. Determineu si cada una d'aquestes matrius és esglaonada, esglaonada reduïda o si no és esglaonada.

(a)	$\begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ no esglaonada	(b) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ esglaonada reduïda
(c)	$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} $ esglaonada	$ (d) \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} $ esglaonada
(e)	$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} $ esglaonada	(f) $\begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ No esglaonada
(g)	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ esglaonada reduïda	(h) $\begin{bmatrix} 1 & 0 & 2 & 5 \\ 0 & 1 & 3 & -3 \end{bmatrix}$ esglaonada reduïda