Distinctive Characteristics

- · Generates or checks parity over 12 bits
- · Advanced Schottky technology

- Same delay to EVEN and ODD parity outputs
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am93S48 is a high-speed, 12-input parity checker or parity generator. The device is built using advanced Schottky technology and also incorporates PNP input transistors to reduce the input loading to only 0.4 STTL Unit Loads.

Both an ODD parity output and an EVEN parity output are obtained with the same propagation delay. This is accomplished by using an output structure that looks at the input as three 4-bit parity trees.

ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
Molded DIP	0°C to +70°C	93S48PC
Hermetic DIP	0°C to +70°C	93S48DC
Dice	0°C to +70°C	93S48XC
Hermetic DIP	-55°C to +125°C	93S48DM
Hermetic Flat Pak	-55°C to +125°C	93S48FM
Dice	-55°C to +125°C	93S48XM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

12

Am93S48

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	–65°C to +150
Temperature (Ambient) Under Bias	−55°C to +125
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} m
DC Input Voltage	0.5V to +5.
DC Output Current, Into Outputs	30r
DC Input Current	-30mA to +5.0

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am93S48XC Am93S48XM $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$

 $V_{CC} = 5.0V \pm 5\% \{COM'L\}$ $V_{CC} = 5.0V \pm 10\% \{MIL\}$

MIN. = 4.75V MIN. = 4.5V

MAX. = 5.25V MAX. = 5,5V

Тур.

Parameters	Description	Test Conditions (Note 1)		(Note 2)	Max.	Units
Vou	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -1mA XC	2.7			Volts
V _{OH}		VIN = VIH or VIL XM	2.5			VOITS
v _{OL}	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 20mA V _{IN} = V _{IH} or V _{IL}			0.5	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs	2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			0.8	Volts
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA			-1.2	Volts
I _{IL} (Note 3)	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.5V			0.8	mA
I _{IH} (Note 3)	Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.7V			20	μA
ΪΙ	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V		·	1.0	mA
Isc	Output Short Circuit Current (Note 4)	V _{CC} = MAX., V _{OUT} = 0.0V	-40		100	mA
Icc	Power Supply Current	V _{CC} = MAX. (Note 5)		57	80	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25° C ambient and maximum loading.

3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).

4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

5. Both outputs open; all inputs at 4.5V.

Switching Characteristics (T_A = +25°C)

Parameters	Description	Test Conditions Min.		Тур.	Max.	Units
tPLH	In through Int to			19	28	ns
tPHL	Even Output	V_{CC} = 5.0V, C_L = 15 pF, R_L = 280 Ω		19	28	ns
tPLH	I ₀ through I ₁₁ to		+	19	28	ns
tPHL	Odd Output			19	28	ns

TRUTH TABLE

NUMBER OF I INPUTS		OUTPUT	
LOW	HIGH	ODD	EVEN
0	12	L	н
1	11	н	L
2	10	L	н
3	9	н	L
4	8	L	н
5	7	н	L
6	6	L	н
7	5	н	L
8	4	L	н
9	3	н	L
10	2	L	н
11	1	н	L
12	0	L	н

H = HIGH

L = LOW

X = Don't Care

LOADING RULES (In Unit Loads)

			Fan-out		
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW	
15	1	0.4			
16	2	0.4	_	_	
17	3	0.4			
Ig	4	0.4	_		
19	5	0.4		-	
i ₁₀	6	0.4	_		
l ₁₁	7	0.4	_	_	
GND	8	_	-	_	
PO	9	_	20	10	
PE	10		20	10	
I ₀	11	0.4			
l ₁	12	0.4		-	
	13	0.4			
13	14	0.4	_		
14	15	0.4		_	
v _{cc}	16	_		_	

A Schottky TTL Unit Load is defined as $50\mu A$ measured at 2.7V HIGH and -2.0mA measured at 0.5V LOW.

DEFINITION OF FUNCTIONAL TERMS

In through I11 The twelve inputs to the parity tree.

ODD The ODD parity output of the device. When an ODD number of I inputs are at a HIGH level, the ODD output will be HIGH.

EVEN The EVEN parity output of the device. When an EVEN number of I inputs are at a HIGH level, the EVEN output will be HIGH.

LOGIC EQUATIONS

Odd Output = $I_0 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_3 \oplus I_3 \oplus I_4 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6 \oplus I_7 \oplus I_8 \oplus I_9 \oplus I_1 \oplus I_1 \oplus I_1 \oplus I_2 \oplus I_3 \oplus I_3 \oplus I_4 \oplus I_3 \oplus I_4 \oplus I_3 \oplus I_4 \oplus I_3 \oplus I_3 \oplus I_4 \oplus I_4$

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

DIE SIZE 0.067" X 0.072"