PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024
Lecture 13: Force and motion-l

Chapter 5

- Learning objectives
 - Newton's three laws
 - Some particular forces: Gravitational force, normal force, friction, tension, etc.
 - Practice: Free body diagram, Atwood's machine, inclines, etc.

Learning goals for today

- Force and motion
 - Newton's three laws

A little history of forces

Aristotle: "everything moving

must be moved by someting"

Force is needed to change motion rather than to sustain it!

Galileo: (17th century)

Newton: Newton's three laws (17th century)

Force

(384–322 BC)

Article Talk

From Wikipedia, the free encyclopedia

For other uses, see Force (disambiguation). "Physical force" redirects here. For other uses, see P.

In physics, a **force** is an influence that can cause an object to change its velocity, i.e., to accelerate, meaning a change in speed or direction, unless counterbalanced by other forces. The concept of force

Demo

F changes the motion,
not to sustain it.

Which of the following is true about force?

Force

• Force is something that causes acceleration.

(a)

- Contact forces: push/pull
- Non-contact forces: e.g. gravity, electrostatic, etc.
- Force is a vector
- Force unit: N (or kg * m * s⁻²) $N \sim kg$, m · S^{-2}

Net force

• Net force: Vector addition of all forces acting *on the same object:* $ec{f F}_{
m net} \equiv \Sigma ec{f F}_{
m i}$

$$\vec{\mathbf{F}}_{\mathrm{net}} = \Sigma \vec{\mathbf{F}}_i = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots$$

Simulation demo

https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics_all.html .

Newton's first law

If
$$\overrightarrow{F}_{net} = 0$$
, then $\overrightarrow{G} = 0$.
If $\overrightarrow{A} = 0$, then $\overrightarrow{F}_{net} = 0$.

- If $\vec{F}_{net} = \sum_{i} \vec{F}_{i}$ on the object is 0, then $\vec{a} = 0$ and $\vec{v} = v_{0}$, vice versa
 - If initially at rest, object remains at rest
 - If initially moving, moves at a constant velocity

A hockey puck slides on ice at

constant velocity.

What is the *net* force acting on the puck?

Newton's First Law

C Less than its weight but more than zero

Example 1

Given: $3F_{5}$, $\alpha = 0$, F_{1} , F_{2} Food: F_{3}

• Three forces work on an object moving with a constant velocity. One force is

 $\vec{F}_1 = 1.0 \, \text{M}\hat{i} + 2.0 \, \text{M}\hat{j}$, another force is $\vec{F}_2 = -1.0 \, \text{M}\hat{j} + 3.0 \, \text{M}\hat{k}$. What is the third force?

Stepl:
$$n=0$$
, Newton's let aw : $F_{net} = F_1 + F_2 + F_3 = 0$
Rewrite: $F_3 = -F_1 - F_2$

$$\frac{1}{F_3} = -(1.0N_1^2 + 2.0N_1^2) - (-1.0N_1^2 + 3.0N_1^2)$$

$$= -1.0N_1^2 - 1.0N_1^2 - 3.0N_1^2$$

Mass

- Inertia = tendency of an object to remain at rest or to remain at const velocity
 - How much an object "resists" accelerating
- Mass = measure of inertia (units kg)
 - Example: Mass of electronic devices,

2004
Power Mac
G5
18 kg

2012 iPhone 5 0.1 kg

Simulation demo

https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics all.html

Newton's second law

• If the **net force** on an object of mass m is \vec{F}_{net} ,then:

$$N = kg \cdot m/s^2$$
New ten

- Vector equation
- Acceleration of an object is in the same direction as the net force on it

• The **net force** on a box is in the positive x direction. Which of the following statements best describes the motion of the box?

Its acceleration is parallel to the x axis.

- Both its velocity and its acceleration are parallel to the x axis.
- Neither its velocity nor its acceleration need to be parallel to the x axis.

Examples

Mrowing Dalls - --Free fall: Rising

Example

• There are only two forces on the 2.43 kg box in the following the figure. For $F1 = 26.2 \text{ N } \hat{\imath}$, and $F2 = -37.92 \text{ N } \hat{\imath}$ 25.4 N $\hat{\jmath}$.Express the acceleration, \vec{a} , in unit-vector notation.

Step 1: Newfor's 2nd (and:

First = m a

Step 2:
$$F_1 + F_2 = m a$$

$$\Rightarrow a = \frac{F_1 + F_2}{m}$$

$$= \frac{26.2 \, \text{Ni} + (-37.92 \, \text{Ni} - 25.4 \, \text{Ni})}{2.43 \, \text{kg}}$$

$$= -4.8 \, \text{2m} \, \text{S}^2 \, \hat{\text{i}} - [0.45 \, \text{ms}^2]$$

Example

Simulation demo

Force on m2 by m1 = 0.000 000 137 894 N

https://phet.colorado.edu/sims/html/gravity-force-lab/latest/gravity-force-lab_all.html_

Newton's third law

- Newton's third law: When two bodies A and B interact, if force on A by B is \vec{F}_{AB} , then Force on B by A is $\vec{F}_{BA} = -\vec{F}_{AB}$.
- Example: when the car hits the wall, the wall also pushes the car.

Force pairs in Newton's third law

- Newton's 3^{rd} law: "For every force on A by B, there is an equal but opposite force on B by A"
 - This pair of forces is called a force pair
 - The two forces in such force pair must be
 - acting on two different objects
 - and must be reciprocal.

Clicker question 4 (checkpoint)

Force pair! On two different

• A 50-kg student pushes a 2-kg box that moves at constant speed along a smooth surface, as shown. Which of the following is a force pair?

The friction between the box and the surface, and the horizontal component of the push on the box.

- The normal force on the box and the weight of the box.
- The push on the box by the student and the push on the student by the box.
 - The vertical component of the push applied by the student and the weight of the box.

• WALL-E is moving rightward and wants to slow down. Which direction is his desired acceleration?

• WALL-E wants to accelerate left. Which direction should be force on Wall-E by the fire distinguisher?

Newfords 3rd

• WALL-E is moving rightward and wants to slow down. Which way should he aim?

http://www.youtube.com/watch?v=hHXx8AmBwXg

Summary: Newton's three laws

- Newton's 1st law:
 - If $\vec{F}_{net} = 0$ on an object, then $\vec{a} = 0$ for the object, vice versa.
- Newton's 2nd law:
 - $\vec{F}_{net} = m\vec{a}$
- Newton's 3rd law:
 - "For a force on A by B, there is an equal and opposite force on B by A":

$$\vec{F}_{AB} = -\vec{F}_{BA}$$