

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu

Closed packed structures

Closed packed structures have highest density in a unit cell

Hexagonal closed packed cubic (HCP)

HCP is a closed packed structures

Hexagonal closed packed structure

Conventional unit cell Showing 3 unit cells and the rhombic prism UC

HCP

Hexagonal Lattice

Two atom Motif

- ▶ LATTICE → Hexagonal
- ► MOTIF \rightarrow Atoms at: O(0,0,0) & T($\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{2}$)

- Directions and planes in hexagonal lattices and crystals are designated by the 4-index Miller-Bravais notation.
- o In the four index notation:
 - > the first three indices are a symmetrically related set on the basal plane
 - The third index is a redundant one and is introduced to make sure that members of a family of directions or planes have a set of numbers which are identical
 - \succ the fourth index represents the 'c' axis (\bot to the basal plane).

- The redundant index can be obtained from other two.
- This is called as symmetry condition. If this condition gets satisfied then and only then the plane exists.

$$(h \ k \ i \ l)$$

 $i = -(h + k)$

$$(hkl) \rightarrow (hkil)$$

$$(110) \rightarrow (1120)$$

Basal Plane

Intercepts $\rightarrow \infty \infty \infty 1$ Plane \rightarrow (0 0 0 1)

Prism planes

$$(h k i l)$$

 $i = -(h + k)$

Intercepts $\rightarrow 1 \ 1 - \frac{1}{2} \infty$ Plane $\rightarrow (1 \ 1 \ 2 \ 0)$

Planes which have ∞ intercept along c-axis (i.e. vertical planes) are called Prism planes

Green' and 'blue' planes belong to the same family

Intercepts $\rightarrow 1 - 1 \infty \infty$ Miller $\rightarrow (1 \ \overline{1} \ 0)$ Miller-Bravais $\rightarrow (1 \ \overline{1} \ 00)$

Intercepts $\rightarrow \infty 1 - 1 \infty$ Miller $\rightarrow (0 \ 1 \ 0)$ Miller-Bravais $\rightarrow (0 \ 1 \ \overline{1} \ 0)$

Pyramidal planes

Inclined planes which have finite intercept along c-axis are called Pyramidal planes

MI for direction in HCP

- 1. Basis vectors a_1 , a_2 & a_3 are symmetrically related by a six fold axis.
- 2. The 3rd index is redundant and is included to bring out the equality between equivalent directions.

3. In the drawing of the directions we use an additional guide hexagon 3 times the unit

basis vectors (a_i).

Draw the [1120] direction Draw the [1010] direction $[10\overline{1}0]$ 1120 Shown $\overline{2}$ shifted for clarity

Remember

- Only atoms whose center of mass lies on the plane has to be count.
- o In the BCC crystal, the (111) plane partially intersects the atom at the body center (½,½,½). This atom has to be excluded from the calculation.

Summary

- 1. The HCP system have 4 index system to denote planes called as Miller-Bravais system.
- 2. The planes in HCP can be drawn by three Miller indices only. The third Miller indices is redundant in nature. It is used for symmetry.
- 3. The planes on the top and bottom are called as basal planes.
- 4. The planes parallel to c axis are called as prism planes.
- 5. The planes which have intercept on the c axis are called as pyramidal planes.
- 6. HCP has highest packing density ~ 74%
- 7. Ideal c/a ratio for HCP is 1.63

