Формальные языки

- 1. Привести три самых коротких различных строки, принадлежащих языку, описанному регулярным выражением; принадлежат ли строки *abbab* и *bababa* данному языку?
 - 1) $a((a \mid b)^*b)^*$
 - 2) $(a(a \mid b)^*)^*b$
 - 3) $(a \mid b)(a(a \mid b))^*(a \mid b)$
 - 4) $(a \mid b)((a \mid b)b)^*(a \mid b)$
 - 5) $(ba \mid b)^* \mid (bb \mid a)^*$
 - 6) $(ab \mid b)^* \mid (bb \mid a)^*$
 - 7) $(ba \mid a)^* \mid (bb \mid a)^*$
 - 8) $(ba \mid a)^* \mid (bb \mid b)^*$
 - 9) $(a | b)^*b(a | \varepsilon)b(a | b)^*$
 - 10) $(a \mid b)^*a(a \mid \varepsilon)b(a \mid b)^*$
 - 11) $(a \mid b)^*b(a \mid \varepsilon)a(a \mid b)^*$
 - 12) $(a \mid b)^*a(a \mid \varepsilon)a(a \mid b)^*$
 - 13) $(a \mid b)^*b(b \mid \varepsilon)b(a \mid b)^*$
 - 14) $(a \mid b)^*a(b \mid \varepsilon)b(a \mid b)^*$
 - 15) $(a \mid b)^*b(b \mid \varepsilon)a(a \mid b)^*$
 - 16) $(a \mid b)^*a(b \mid \varepsilon)a(a \mid b)^*$
- 2. Построить минимальный детерминированный конечный автомат, распознающий язык:
 - 1) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b=1\}$
 - 2) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ and } b = 0\}$
 - 3) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b=1\}$
 - 4) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ and } b = 0\}$
 - 5) $\{a \cdot b \cdot \omega \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b = 1\}$
 - 6) $\{a \cdot b \cdot \omega \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ and } b = 0\}$
 - 7) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a = b\}$
 - 8) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$

9)
$$\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a = b\}$$

10)
$$\{a \cdot \omega \cdot b \mid \omega \in \{0, 1\}^*, a \in \{0, 1\}, b \in \{0, 1\}, a \neq b\}$$

11)
$$\{a \cdot b \cdot \omega \mid \omega \in \{0, 1\}^*, a \in \{0, 1\}, b \in \{0, 1\}, a = b\}$$

12)
$$\{a \cdot b \cdot \omega \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$$

3. Построить регулярную грамматику, задающую язык:

1)
$$\{\alpha \cdot 100 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

2)
$$\{\alpha \cdot 100 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

3)
$$\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

4)
$$\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

5)
$$\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

6)
$$\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

7)
$$\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 100 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

8)
$$\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 100 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

9)
$$\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 010 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

10)
$$\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 010 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

11)
$$\{\alpha \cdot 011 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

12)
$$\{\alpha \cdot 011 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

13)
$$\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

14)
$$\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

15)
$$\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

16)
$$\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

17)
$$\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 011 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

18)
$$\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 011 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

19)
$$\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 101 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

20)
$$\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 101 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

4. Проверить регулярность языка (если регулярный, построить автомат, регулярное выражение или регулярную грамматику, иначе — доказать нерегулярность)

1)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a = |\omega|_b\}$$

2)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \ge |\omega|_b\}$$

3)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \le |\omega|_b\}$$

4)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \neq |\omega|_b\}$$

5)
$$\{\alpha \cdot a \cdot \beta \mid \alpha, \beta \in \{a, b\}^*, |\alpha|_b \ge |\beta|_a\}$$

6)
$$\{\alpha \cdot a \cdot \beta \mid \alpha, \beta \in \{a, b\}^*, |\alpha|_b > |\beta|_a\}$$

7)
$$\{a^m \cdot \omega \mid 1 \leq |\omega|_b \leq m\}$$

8)
$$\{\omega \cdot a^m \mid 1 \le |\omega|_b \le m\}$$

5. По регулярному выражению построить недетерминированный конечный автомат без эпсилон-переходов

1)
$$a((a \mid b)^*b)^*$$

2)
$$(a(a \mid b)^*)^*b$$

3)
$$(a \mid b)(a(a \mid b))^*(a \mid b)$$

4)
$$(a \mid b)((a \mid b)b)^*(a \mid b)$$

5)
$$(ba \mid b)^* \mid (bb \mid a)^*$$

6)
$$(ab | b)^* | (bb | a)^*$$

7)
$$(ba \mid a)^* \mid (bb \mid a)^*$$

8)
$$(ba \mid a)^* \mid (bb \mid b)^*$$

9)
$$(a \mid b)^*b(a \mid \varepsilon)b(a \mid b)^*$$

10)
$$(a \mid b)^*a(a \mid \varepsilon)b(a \mid b)^*$$

11)
$$(a \mid b)^*b(a \mid \varepsilon)a(a \mid b)^*$$

12)
$$(a \mid b)^*a(a \mid \varepsilon)a(a \mid b)^*$$

13)
$$(a \mid b)^*b(b \mid \varepsilon)b(a \mid b)^*$$

14)
$$(a | b)^*a(b | \varepsilon)b(a | b)^*$$

15)
$$(a \mid b)^*b(b \mid \varepsilon)a(a \mid b)^*$$

16)
$$(a \mid b)^* a(b \mid \varepsilon) a(a \mid b)^*$$