Name: Khushboo Chaudhari

Problem Statement: Predict the percentage of students based on no. of study hours.

We are going to use linear regression to predict the percentage of students based on no. of study hours

In [10]:

```
#importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
```

In [2]:

```
url = "https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20
data = pd.read_csv(url)
print("Data imported successfully")
```

Data imported successfully

In [5]:

```
data.head()
```

Out[5]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

In [6]:

```
data.shape
```

Out[6]:

(25, 2)

In [7]:

```
data.info()
```

In [8]:

```
#check if there are null values in dataset
data.isnull()
```

Out[8]:

	Hours	Scores
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False
24	False	False

No Null Values in our data so now we can visualize our data

In [13]:

```
sns.set_style('darkgrid')
sns.scatterplot(y= data['Scores'], x= data['Hours'])
plt.title('Marks Vs Study Hours',size=20)
plt.ylabel('Marks Percentage', size=12)
plt.xlabel('Hours Studied', size=12)
plt.show()
```


From the above scatter plot there looks to be correlation between the 'Marks Percentage' and 'Hours Studied', Lets plot a regression line to confirm the correlation.

In [15]:

```
sns.regplot(x= data['Hours'], y= data['Scores'])
plt.title('Regression Plot',size=15)
plt.ylabel('Marks Percentage', size=10)
plt.xlabel('Hours Studied', size=10)
plt.show()
print(data.corr())
```


Hours Scores Hours 1.000000 0.976191 Scores 0.976191 1.000000 It is confirmed that the variables are positively correlated.

Training Model

Spliting data

```
In [17]:
```

```
# Defining X and y from the Data
X = data.iloc[:, :-1].values
y = data.iloc[:, 1].values
# Spliting the Data in two
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0)
```

Fitting the data into model

```
In [19]:
```

```
regression = LinearRegression()
regression.fit(train_X, train_y)
print("-----")
```

-----Model Trained-----

Predicting the percentage of marks

```
In [20]:
```

```
pred_y = regression.predict(val_X)
prediction = pd.DataFrame({'Hours': [i[0] for i in val_X], 'Predicted Marks': [k for k i
prediction
```

Out[20]:

	Hours	Predicted Marks
0	1.5	16.844722
1	3.2	33.745575
2	7.4	75.500624
3	2.5	26.786400
4	5.9	60.588106
5	3.8	39.710582
6	1.9	20.821393

Comparing the Predicted Marks with the Actual Marks

In [21]:

```
compare_scores = pd.DataFrame({'Actual Marks': val_y, 'Predicted Marks': pred_y})
compare_scores
```

Out[21]:

	Actual Marks	Predicted Marks
0	20	16.844722
1	27	33.745575
2	69	75.500624
3	30	26.786400
4	62	60.588106
5	35	39.710582
6	24	20.821393

Visually Comparing the Predicted Marks with the Actual Marks

In [23]:

```
plt.scatter(x=val_X, y=val_y, color='blue')
plt.plot(val_X, pred_y, color='Black')
plt.title('Actual vs Predicted', size=20)
plt.ylabel('Marks Percentage', size=12)
plt.xlabel('Hours Studied', size=12)
plt.show()
```


Evaluating the Model

```
In [24]:
```

```
# Calculating the accuracy of the model
print('Mean absolute error: ',mean_absolute_error(val_y,pred_y))
```

Mean absolute error: 4.130879918502486

Small value of Mean absolute error states that the chances of error or wrong forecasting through the model are very less.

What will be the predicted score of a student if he/she studies for 9.25 hrs/day?

```
In [25]:
```

```
hours = [9.25]
answer = regression.predict([hours])
print("Score = {}".format(round(answer[0],3)))
```

Score = 93.893

According to the regression model if a student studies for 9.25 hours a day he/she is likely to score 93.89 marks.