i2b2/UTHealth NLP 2014: Wrap up

Amber Stubbs, Christopher Kotfila, Hua Xu, Ozlem Uzuner

November 14, 2014

Task 1: De-identification

De-id annotation

- Time-consuming
- Doesn't matter if annotation is done in parallel (two annotators work separately) or in serial (first annotator works on file, then passes it to second)
 - Stubbs, A. and Uzuner, O. De-identification of Medical Records Through Annotation. Handbook of Linguistic Annotation, Nancy Ide and James Pustejovsky, eds. Forthcoming.

De-id system approaches

Rank	Team Name	Approach		
1	University of Nottingham	CRF + rules		
2	Harbin Institute of Technology: Shenzhen Graduate School	CRF + rules		
3	University of Manchester	CRF + rules		
4	Harbin Institute of Technology	CRF		
5	Kaiser Permanente	Combination of existing tools + rules		
6	LIMSI-CNRS	CRF + rules		
7	Memorial University of Newfoundland	Bayesian HMM		
8	East China Normal University	unknown		
9	California State University San Marcos	Decision trees + rules		
10	UC San Diego	unknown		

Comparison to 2006 HIPAA categories only

Group	F-measure			
Wellner	0.981			
Szarvas	0.98			
Aramaki	0.97			
Hara	0.949			
Wrenn	0.946			
Guo	0.909			
Guillen	0.801			

2006 token-based evaluations, best f-measure from each group

Group	F-measure
Nottingham	0.9757
UNIMAN	0.9668
Harbin-Grad	0.9662
Harbin	0.9536
Kaiser	0.9221
Newfoundland	0.8688
NIMSI-CNRS	0.8675
ECNU	0.8237
San Marcos	0.7255
UCSD	0.6043

2014 token-based evaluations, best f-measure from each group

PHI vs. non-PHI: entity-based, HIPAA categories only

Group	F-measure				
Szarvas	0.967				
Wellner	0.963				
Aramaki	0.941				
Hara	0.903				
Wrenn	0.902				
Guo	0.813				

2006 entity-based PHI/non-PHI evaluations, best f-measure from each group

Group	F-measure			
Nottingham	.9573			
Harbin-Grad	.9409			
UNIMAN	.9323			
Harbin	.9180			
Kaiser	.8429			
LIMSI-CNRS	.838			
Newfoundland	.7985			
ECNU	.7391			
San Marcos	.5733			
UCSD	.4524			

2014 entity-based PHI/non-PHI evaluations, best f-measure from each group

Comparison to 2006

- Overall numbers for 2014 appear slightly lower
 - 2006 data was cleaned and tokenized
 - 2014 included more types of medical records

De-id: PHI categories

3. F1 on Individual Categories (Strict, All)

De-id: categories

- Profession
 - Few examples in corpus (413 total)
- Location
 - Was the lowest-scoring category in 2006 challenge as well
 - Some hardly represented in the corpus
 - Other: 17
 - Country: 183
 - Organization: 206
 - The content of the organization tags varied widely

Task 2: Risk factors

RF annotation

- "Light" annotation, voted gold standard: did it work?
 - Faster than exhaustive annotations, enabled more files to be annotated
 - Roughly 10min/record
 - -High IAA
 - -Some errors in gold standard
 - -Systems achieved high scores
 - -But, imperfect annotations; lack of negative examples; very skewed examples of indicators

RF: system approaches

Rank	Team name	System			
1	NLM	Rules + SVM			
2	Harbin Institute of Technology Shenzhen Graduate School	Rules + CRF, SSVM			
3	Kaiser Permanente	Rules + ML (various)			
4	Linguamatics and Northwestern University	Rules + Decision tree			
5	University of Nottingham	ML (unspecified) + rules			
6	The Ohio State University	Rule-based			
7	TMUNSW	Rules + CRF, Naive Bayes			
8	National Central University	unknown			
9	University of Manchester	Rule-based			
10	University of Utah	ML (various)			

Common approaches

- Use high-recall systems, then remove inaccurate candidates
- Hybrid: ML + rules
- Use of existing systems

RF: accuracy of different risk factors

3. F1 on Individual Tag Types

F1 measures on risk factors

System	Overall	Hyperlip.	Obese	Med	HTN	CAD	Fam Hist	Smoker	Diabetes
NLM	0.9276	0.9366	0.9298	0.9307	0.9555	0.8303	0.9805	0.8538	0.9533
Harbin- Grad	0.9268	0.9491	0.8757	0.9293	0.9715	0.8253	0.9681	0.8861	0.9291
Kaiser	0.9185	0.9375	0.9011	0.9126	0.9591	0.8284	0.963	0.9045	0.942
Lingua matics	0.9171	0.9236	0.8902	0.9138	0.9647	0.8331	0.9767	0.8441	0.9473
Nottingh am	0.9156	0.9368	0.8961	0.9194	0.9455	0.787	0.9572	0.9162	0.9228
Ohio	0.9081	0.9204	0.8801	0.9092	0.963	0.7904	0.963	0.8264	0.9369
TMUNS W	0.8973	0.8896	0.862	0.8982	0.9567	0.7598	0.963	0.8148	0.9406
NCU	0.8909	0.8896	0.8624	0.8982	0.9289	0.7536	0.963	0.8148	0.9191
UNIMA N	0.8776	0.8669	0.8486	0.89	0.9047	0.7363	0.9591	0.8538	0.8603
Utah	0.8747	0.8903	0.8581	0.8585	0.9477	0.7603	0.9494	0.8655	0.9256

Hypertension: Indicators

Diabetes: Indicators

CAD: Indicators

Journal of Biomedical Informatics

i2b2 special issue

Deadline: January 15, 2015
All i2b2 participants are welcome to submit