

BIOS14 - Processing and Analysis of Biological Data

Per-Erik Isberg, Dept of Statistics

Introduction

Litterature

Quinn & Keough (2002) – Experimental Design and Data Analysis for Biologists, Cambridge University Press (ISBN 0521009766)

$$\Rightarrow$$
 $y = f(x)$

Estimation

Example:

We sample n=20 individuals from a population

Calculate the mean in the sample $\Rightarrow \bar{x}$

Repeat the whole procedure $\Rightarrow \ \overline{x}_{\!\scriptscriptstyle 1}, \ \overline{x}_{\!\scriptscriptstyle 2}, \ \overline{x}_{\!\scriptscriptstyle 3}, \ \ldots$

Q: What distribution?

A: Next thursday!

Estimation

Keywords:

- Confidence intervals
- Standard errors
- Central Limit Theorem

Methods:

- Maximum Likelihood (ML)
- Ordinary Least Squares (OLS)
- Bootstrap
- Jackknife
- Bayesian

Hypothesis testing

Statistical tests

H₀: Null hypothesis (assumed true)

H₁: Alternative hypothesis (one-tailed/two-tailed)

 α = significance level of the test (5%)

Hypothesis testing

The statistical test

The truth	H₀ not rejected H₀ rejected	
H₀ true	Correct	type I error Pr() = α = often 5 %
H₀ false	type II error $Pr(\) = \beta$	Correct Pr() = $1 - \beta$ = power

Correlation and regression

$$y = f\left(x_1,\, x_2,\, \ldots\right)$$
 Numerical variable

If the x's are numerical \Rightarrow Regression analysis

If the x's are categorical \Rightarrow Analysis of Variance (ANOVA)

If we have both types \Rightarrow Analysis of Covariance (ANCOVA)

Correlation and regression

Of special interest ⇒ Linear models (OLS)

Correlation and regression

intercept slope (regression coefficient) $y = a + b \cdot x$ dependent independent

Correlation – measures the strength of the linear relation

Correlation and regression

Multiple linear regression

$$y = a + b_1 \cdot x_1 + b_2 \cdot x_2 + ... + b_p \cdot x_p$$

Tests, confidence intervals, predictions, ...

 \Rightarrow Non-linear regression

Analysis of Variance

$$y = f(x)$$

$$\uparrow \qquad \uparrow$$
Numerical Categorical

Keywords: between group variation – within group variation

Analysis of Variance

\Rightarrow ANOVA table

	Sum of Squares	df	Mean Square
Between Groups			
Within Groups Total			

- \Rightarrow One-way analysis of variance
- ⇒ if just two groups = t-test (for independent samples)

Analysis of Variance

Sometimes the groups consists of the same indivuals measured at several occasions

- ⇒ Repeated measurements
- \Rightarrow if measured twice = t-test (paired)

Keywords: within individual variation

Analysis of Variance

Model I - Fix effects

Conclusions are only valid for the observed levels of the factor \Rightarrow Treatment A, B, C

Model II - Random effects

The levels used are a sample from a population of levels \Rightarrow Operator 1, 2, 3, 4

Mixed models include both fix and random effects

Analysis of Variance

Generalizations

- Factorial designs
- Nested designs
- Repeated measurements
- General Linear Models (GLM)

Analysis of Variance

Assumptions

- Independence
- Equal variances
- Normality

⇒ Non-parametric methods

- Mann-Whitney
- Kruskal-Wallis
- Kolmogorov-Smirnov

Analysis of frequencies

Goodness of fit

- χ²-test
- G-test
- Fisher's exact test

Contingency tables (two-way)

Count

		Disease		
		Yes	No	Total
Exposed to riskfactor	Yes			
	No			
Total				

Analysis of frequencies

Higher order tables (Three-way and more)

⇒ Log-linear models

Keywords: Dependence - Independence

 \Rightarrow Logistic regression

$$y = f(x)$$
Probability (0/1)

Survival analysis

Special feature:

Censored observations – We can't observe the true death time. The individual is still alive at the end of the study.

Example: The time for completing a PhD!