Výroková a predikátová logika - I

Petr Gregor

KTIML MFF UK

ZS 2019/2020

K čemu je logika?

Pro matematiky: "matematika o matematice".

Pro informatiky:

- formální specifikace (viz spor EU vs. Microsoft),
- testování software i hardware (formální verifikace, model checking),
- deklarativní programování (např. Prolog),
- složitost (Booleovské funkce, obvody, rozhodovací stromy),
- vyčíslitelnost (nerozhodnutelnost, věty o neúplnosti),
- umělá inteligence (automatické odvozování, rezoluce),
- univerzální nástroje: SAT a SMT řešiče (SAT modulo theory),
- návrh databází (konečné relační struktury, Datalog), ...

Koncepce přednášky

klasická logika

- výroková logika (nejprve samostatně)
- + predikátová logika
- + teorie modelů, nerozhodnutelnost, neúplnost

logika pro informatiky

- + tablo metoda namísto Hilbertovského kalkulu
- dokazování jako forma výpočtu (systematické hledání protipříkladu)
- + rezoluce v predikátové logice, unifikace, "pozadí" Prologu
- důraz na algoritmické otázky
- + omezení na spočetné jazyky

Doporučená literatura

Knihy

- ▶ A. Nerode, R. A. Shore, Logic for Applications, Springer, 2nd edition, 1997.
- P. Pudlák, Logical Foundations of Mathematics and Computational Complexity - A Gentle Introduction, Springer, 2013.
- ▶ V. Švejdar, Logika, neúplnost, složitost a nutnost, Academia, Praha, 2002.
- A. Sochor, Klasická matematická logika, UK v Praze Karolinum, 2001.
- W. Hodges, Shorter Model Theory, Cambridge University Press, 1997.
- ▶ W. Rautenberg, A concise introduction to mathematical logic, Springer, 2009.

Elektronické zdroje

- J. Mlček, Výroková a predikátová logika, skripta k přednášce, 2012. [www]
- ▶ P. Štěpánek, *Meze formální metody*, skripta k přednášce, 2000. [pdf]
- M. Pilát, Propositional and Predicate Logic, lecture notes, 2017. [pdf]
- slidy k přednášce

Trocha historie

- Aristotelés (384-322 př.n.l.) sylogismy, např.
 z 'žádný Q není R' a 'každý P je Q' odvod' 'žádný P není R'.
- Eukleidés: Základy (asi 330 př.n.l.) axiomatický přístup ke geometrii
 "Pro každou přímku p a bod x, který neleží na p, existuje
 přímka skrze x neprotínající p." (5. postulát)
- Descartes: Geometrie (1637) algebraizace geometrie
- Leibniz sen o "lingua characteristica" a "calculus ratiocinator" (1679-90)
- De Morgan zavedení logických spojek (1847)

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

- Boole výrok jako binární funkce, algebraizace logiky (1847)
- Schröder sémantika predikátové logiky, koncept modelu (1890-1905)

Trocha historie - teorie množin

- Cantor intuitivní teorie množin (1878), např. princip zahrnutí "Pro každou vlastnost $\varphi(x)$ existuje množina $\{x \mid \varphi(x)\}$."
- Frege logika s kvantifikátory a predikáty, pojem důkazu jako odvození, axiomatická teorie množin (1879, 1884)
- Russel Fregeho teorie množin je sporná (1903)

Pro
$$a = \{x \mid \neg(x \in x)\}$$
 je $a \in a$?

- Russel, Whitehead teorie typů (1910-13)
- Zermelo (1908), Fraenkel (1922) standardní teorie množin ZFC, např. "Pro každou vlastnost $\varphi(x)$ a množinu γ existuje množina $\{x \in \gamma \mid \varphi(x)\}$."
- Bernays (1937), Gödel (1940) teorie množin založená na třídách, např. "Pro každou množinovou vlastnost $\varphi(x)$ existuje třída $\{x \mid \varphi(x)\}$."

Trocha historie - algoritmizace

- Hilbert kompletní axiomatizace Euklidovské geometrie (1899),
 formalismus striktní odproštění se od významu, mechaničnost
 "... musí být možné místo o bodu, přímce a rovině mluvit
 o stolu, židli a půllitru." (Grundlagen der Geometrie)
- Brouwer intuicionismus, důraz na konstruktivní důkazy
 "Matematické tvrzení je myšlenková konstrukce ověřitelná intuicí."
- Post úplnost výrokové logiky (1921)
- Gödel úplnost predikátové logiky (1930), věty o neúplnosti (1931)
- Kleene, Post, Church, Turing formalizace pojmu algoritmus,
 existence algoritmicky nerozhodnutelných problémů (1936)
- Robinson rezoluční metoda (1965)
- Kowalski; Colmerauer, Roussel Prolog (1972)

Jazyk matematiky

Logika formalizuje pojem důkazu a pravdivosti matematických tvrzení. Lze ji postupně rozčlenit dle prostředků jazyka.

- logické spojky výroková logika Umožňují vytvářet složená tvrzení ze základních.
- proměnné pro individua, funkční a relační symboly, kvantifikátory 1. řádu Tvrzení o individuích, jejich vlastnostech a vztazích. Teorii množin, která je "světem" (téměř) celé matematiky, lze popsat jazykem 1. řádu.

V jazyce vyšších řádů máme navíc

- proměnné pro množiny individuí (i relace a funkce)
- proměnné pro množiny množin individuí, atd.

logika 2. řádu logika 3. řádu

. . . .

Příklady tvrzení v jazycích různých řádů

• "Nebude-li pršet, nezmoknem. A když bude pršet, zmokneme, na sluníčku zase uschneme."

$$(\neg p \to \neg z) \land (p \to (z \land u))$$

"Existuje nejmenší prvek."

$$\exists x \ \forall y \ (x \leq y)$$

Axiom indukce.

2. řádu

$$\forall X ((X(0) \land \forall x(X(x) \to X(x+1))) \to \forall x X(x))$$

"Libovolné sjednocení otevřených množin je otevřená množina."
 řádu

$$\forall \mathcal{X} \forall Y ((\forall X (\mathcal{X}(X) \to \mathcal{O}(X)) \land \forall x (Y(x) \leftrightarrow \exists X (\mathcal{X}(X) \land X(x)))) \to \mathcal{O}(Y))$$

Syntax a sémantika

Budeme studovat vztahy mezi syntaxí a sémantikou:

- syntax: symboly, pravidla vytváření termů a formulí, odvozovací pravidla, dokazovací systém, důkaz, dokazatelnost,
- sémantika: přiřazení významu, struktury, modely, splnitelnost, pravdivost.

V logice zavedeme pojem důkazu jako přesný syntaktický koncept.

Formální dokazovací systém je

- korektní, pokud každé dokazatelné tvrzení je pravdivé,
- úplný, pokud každé pravdivé tvrzení je dokazatelné.

Uvidíme, že predikátová logika (1. řádu) má dokazovací systémy, které jsou korektní a zároveň úplné. Pro logiky vyšších řádů to neplatí.

Paradoxy

"Paradoxy" jsou inspirací k přesnému zadefinování základů logiky.

- paradox kréťana
 Kréťan řekl: "Všichni kréťané jsou lháři."
- paradox holiče V městě žije holič, jenž holí všechny, kteří se neholí sami. Holí sám sebe?
- paradox lháře
 Tato věta je lživá.
- Berryho paradox
 Výraz "nejmenší přirozené číslo, které nelze definovat méně než jedenácti slovy" ho definuje pomocí deseti slov.

Jazyk

Výroková logika je "logikou spojek". Vycházíme z (neprázdné) množiny ₽ výrokových proměnných (prvovýroků). Např.

$$\mathbb{P} = \{p, p_1, p_2, \dots, q, q_1, q_2, \dots\}$$

Obvykle budeme předpokládat, že ℙ je spočetná.

Jazyk výrokové logiky (nad ℙ) obsahuje symboly

- výrokové proměnné z P
- logické spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- závorky (,)

Jazyk je tedy určen množinou ℙ. Říkáme, že logické spojky a závorky jsou logické symboly, zatímco výrokové proměnné jsou mimologické symboly.

Budeme používat i konstantní symboly \(\tau \) (pravda), \(\pm \) (spor), jež zavedeme jako *zkratky* za $p \vee \neg p$, resp. $p \wedge \neg p$, kde p je pevný prvovýrok z \mathbb{P} .

Formule

 $V\acute{y}rokov\acute{e}$ formule $(v\acute{y}roky)$ (nad \mathbb{P}) isou dány induktivním předpisem

- (i) každá výroková proměnná z ℙ je výrokovou formulí,
- (*ii*) jsou-li φ , ψ výrokové formule, pak rovněž

$$(\neg \varphi) , (\varphi \land \psi) , (\varphi \lor \psi) , (\varphi \to \psi) , (\varphi \leftrightarrow \psi)$$

jsou výrokové formule,

- (iii) každá výroková formule vznikne konečným užitím pravidel (i), (ii).
- Výrokové formule jsou tedy (dobře vytvořené) konečné posloupnosti symbolů jazyka (řetězce).
- Výrokovou formuli, která je součástí jiné výrokové formule φ nazveme podformulí (podvýrokem) φ .
- Množinu všech výrokových formulí nad P značíme VFp.
- Množinu všech výrokových proměnných s výskytem ve φ značíme $\operatorname{var}(\varphi)$.

Konvence zápisu

Zavedení (obvyklých) priorit logických spojek umožňuje v zkráceném zápisu vypouštět závorky okolo podvýroku vzniklého spojkou s vyšší prioritou.

- $(1) \rightarrow \longleftrightarrow$
- $(2) \wedge, \vee$
- $(3) \neg$

Rovněž vnější závorky můžeme vynechat. Např.

$$(((\neg p) \land q) \to (\neg (p \lor (\neg q)))) \quad \text{lze zkrátit na} \quad \neg p \land q \to \neg (p \lor \neg q)$$

Poznámka Nerespektováním priorit může vzniknout nejednoznačný zápis nebo dokonce jednoznačný zápis neekvivalentní formule.

Další možnosti zjednodušení zápisu vyplývají ze sémantických vlastností spojek (asociativita \vee , \wedge).

Vytvořující strom

Vytvořující strom je konečný uspořádaný strom, jehož vrcholy jsou označeny výroky dle následujících pravidel

- listy (a jen listy) jsou označeny prvovýroky,
- je-li vrchol označen $(\neg \varphi)$, má jediného syna označeného φ ,
- je-li vrchol označen $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ nebo $(\varphi \leftrightarrow \psi)$, má dva syny, přičemž levý syn je označen φ a pravý je označen ψ .

Vytvořující strom výroku φ je vytvořující strom s kořenem označeným φ .

Tvrzení Každý výrok má jednoznačně určený vytvořující strom.

Důkaz Snadno indukcí dle počtu vnoření závorek (odpovídající hloubce vytvořujícího stromu).

Poznámka Takovéto důkazy nazýváme důkazy indukcí dle struktury formule.

Sémantika

- Uvažujeme pouze dvouhodnotovou logiku.
- Prvovýroky reprezentují atomická tvrzení, jejich význam je určen přiřazením pravdivostní hodnoty 0 (nepravda) nebo 1 (pravda).
- Sémantika logických spojek je dána jejich pravdivostními tabulkami.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Ty jednoznačně určují hodnotu každého výroku z hodnot prvovýroků.

- K výrokům tedy můžeme také přiřadit "pravdivostní tabulky". Říkáme, že reprezentují Booleovské funkce (až na určení pořadí proměnných).
- Booleovská funkce je n-ární operace na $2 = \{0,1\}$, tj. $f \colon \{0,1\}^n \to \{0,1\}$.

Hodnota výroku

- *Ohodnocení* prvovýroků je funkce $v: \mathbb{P} \to \{0, 1\}$, tj. $v \in \mathbb{P}2$.
- Hodnota $\overline{v}(\varphi)$ výroku φ při ohodnocení v je dána induktivně

$$\begin{array}{ll} \overline{v}(p) = v(p) \ \ \text{jestliže} \ \ p \in \mathbb{P} & \overline{v}(\neg \varphi) = -_1(\overline{v}(\varphi)) \\ \overline{v}(\varphi \wedge \psi) = \wedge_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \vee \psi) = \vee_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \to \psi) = \to_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \leftrightarrow \psi) = \leftrightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{array}$$

 $kde -1, \land 1, \lor 1, \rightarrow 1, \leftrightarrow 1$ jsou Booleovské funkce dané tabulkami.

Tvrzení Hodnota výroku φ závisí pouze na ohodnocení $var(\varphi)$.

Důkaz Snadno indukcí dle struktury formule.

Poznámka Jelikož funkce $\overline{v}: VF_{\mathbb{P}} \to \{0,1\}$ je jednoznačnou extenzí funkce v, můžeme psát v místo \overline{v} aniž by došlo k nedorozumění.

Sémantické pojmy

Výrok φ nad $\mathbb P$ je

- splněn (platí) při ohodnocení $v \in \mathbb{P}2$, pokud $\overline{v}(\varphi) = 1$. Pak v je splňující ohodnocení výroku φ , značíme $v \models \varphi$.
- *pravdivý* ((logicky) *platí, tautologie*), pokud $\overline{v}(\varphi) = 1$ pro každé $v \in \mathbb{P}^2$, tj. φ je splněn při každém ohodnocení, značíme $\models \varphi$.
- $l ilde{z} i v \dot{y}$ ($sporn \dot{y}$), pokud $\overline{v}(\varphi) = 0$ pro každé $v \in {}^{\mathbb{P}}2$, tj. $\neg \varphi$ je pravdiv \dot{y} .
- nezávislý, pokud $\overline{v_1}(\varphi) = 0$ a $\overline{v_2}(\varphi) = 1$ pro nějaká $v_1, v_2 \in {}^{\mathbb{P}}2$, tj. φ není ani pravdivý ani lživý.
- *splnitelný*, pokud $\overline{v}(\varphi) = 1$ pro nějaké $v \in {}^{\mathbb{P}}2$, tj. φ není lživý.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud $\overline{v}(\varphi) = \overline{v}(\psi)$ pro každé $v \in \mathbb{P}^2$, tj. výrok $\varphi \leftrightarrow \psi$ je pravdivý.

Modely

Předchozí definice ekvivalentně přeformulujeme v terminologii modelů.

Model jazyka nad \mathbb{P} je ohodnocení z \mathbb{P} 2. Třída všech modelů jazyka nad \mathbb{P} se značí $M(\mathbb{P})$, tedy $M(\mathbb{P}) = \mathbb{P}2$. Výrok φ nad \mathbb{P} (je)

- platí v modelu $v \in M(\mathbb{P})$, pokud $\overline{v}(\varphi) = 1$. Pak v je model výroku φ , značíme $v \models \varphi$ a $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$ je *třída modelů* φ .
- pravdivý ((logicky) platí, tautologie), pokud platí v každém modelu (jazyka), značíme $\models \varphi$.
- Iživý (sporný), pokud nemá model.
- nezávislý, pokud platí v nějakém modelu a neplatí v jiném.
- splnitelný, pokud má model.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud mají stejné modely.

