Sicurezza Reti e Calcolatori

Daniel Biasiotto

[2022-03-09 Wed 17:01]

Contents

1	Cifrari Simmetrici	2			
	1.1 Cifrari a blocchi	3			
	1.2 Metodi dell'avversario	5			
2	Frari Asimmetrici 5				
3	Funzioni di Hash	6			
4	Autenticazione	7			
	4.1 Simmetrica	7			
	4.2 Firma elettronica	8			
5	Sniffing & Spoofing	9			
6	DDoS 10				
7	Firewall	11			
	7.1 Package Filter	12			
	7.2 Sofware Firewall	12			
8	VPN	13			
	8.1 IPsec	13			
	8.1.1 Transport	14			
	8.1.2 Tunnel	14			
	8.1.3 Authentication Header	15			
	8.1.4 Encapsulating Security Payload	15			
	8.1.5 Anti-Replay	16			
9	Web Security	16			

10 Blockchain 16

- Prof: Bergadano Francesco
- PDF Version

1 Cifrari Simmetrici

Cifrari sono sempre esistiti, tra i cifrari pre-informatici più famosi ci sono i cifrari simmetrici character-oriented:

- Cifrario di Cesare, cifrari monoalfabetici a 1 lettera
- Cifrario di Playfair, monoalfabetico a 2 lettere
- Cifrari monoalfabetici a N lettere
- Cifrario di Vigenére, polialfabetico

I cifrari polialfabetici sostituiscono una lettera ogni volta in modo diverso, a seconda della sua posizione nel testo.

Questi cifrari si possono ancora suddividere in base alla tecnica utilizzata:

- a sostituzione
- a permutazione

Da quest'ultimo derivano i cifrari simmetrici bit-oriented:

- Cifrario di Vernam
- One-time Pad

In questi cifrari al posto dell'operazione di sostituzione alfabetica viene utilizzato \oplus^1

I cifrari simmetrici moderni sono caratterizzati da:

- uso del calcolatore
- combinazione di permutazioni e sostituzioni
- uso di numerose fasi, round

¹Exclusive Or

Di questi ne esistono diversi:

- Macchine a Rotori
- Feistel Cipher
- DES
- AES

Una proprietá desiderabile in un encryption algorithm é chiamata avalanche effect

• un cambiamento marginale in un input (chiave o plaintext) dovrebbe produrre un grande cambiamento nel ciphertext

Queste tecniche sono utilizzate nel contesto della bulk encryption

1.1 Cifrari a blocchi

Utilizzando chiavi lunghe e testi arbitrariamente lunghi

- 1. cifrare a 2 fasi
 - suscettibile all'attacco meet in the middle
 - con known plaintext
 - conoscendo <P1,C1> <P2,C2>
 - * servono estrambe per incrociare la ricerca, i match sono diversi per blocco
 - * ci sono molte piu' chiavi che blocchi
 - $-\ brute\ force$ sulla prima fase di cifratura, su 2^{56} possibilita' su DES
- 2. cifrare a 3 fasi
 - triple DES o 3DES
 - sicuro, chiave di $3 \cdot 56 = 168$
 - normalmente si utilizza K1 = K3
 - la forza sta nelle 3 fasi, non nelle 3 chiavi
 - si puo' utilizzare 3DES-EDE con 3 chiavi uguali, che equivale a DES

Per *plaintext* lunghi si hanno diverse tecniche per creare un messaggio cifrato a partire dai blocchi:

• Electonic Codebook

- molto semplice ed efficiente ma insicuro
- divisione in blocchi esatti e criptarli tutti con la stessa chiave
 - * parti di testo uguali avranno blocco ciphertext uguali
 - * vulnerabilitá alla criptoanalisi statistica, utilizzabile solamente con testi corti

• Cipher Block Chaining

- -ogni blocco cifrato e mette in \oplus con il successivo plaintext
 - * si decifra con un \oplus tra la decrittazione del blocco corrente C_i e il blocco precedente (cifrato) C_{i-1}
- -il primo blocco é in \oplus con un initialization vector IV
 - * solitamente publico
- il piú usato, sicuro, semplice, efficiente
- un errore di 1 bit rende indecifrabile il blocco successivo

• Cipher FeedBack

- cifrario a flusso
- simile al Cifrario di Vernam
- inefficiente, viene scartato del lavoro
- un errore di un bit essendoci feedback crea effetto valanga

• Output Feedback

- molto simile al Cipher Feedback
- -il feedback é fatto utilizzando gli i bit di output del cifrario a blocchi
- di fatto si divide in 2 fasi la procedura
 - 1. prima di conoscere il testo si produce la sequenza di i bit
 - 2. utilizzare questa informazione bufferizzata per cifrare in \oplus
- simile al One-time Pad e al Cifrario di Vernam
 - * solo simile in quanto il vettore di i e' solo pseudocasuale

1.2 Metodi dell'avversario

L'avversario puó decodificare i cifrari monoalfabetici a una lettera facilmente attraverso una Crittanalisi Statistica.

Questa analisi risulta molto piú difficile con un cifrario polialfabetico:

- \bullet in conoscenza di n é possibile fare la stessa analisi per lettere che distano n posizioni nel testo
 - per cui quindi vale la stessa sostituzione

Di conseguenza un testo cifrato di questo tipo risulta tanto piú facile da decifrare tanto é piú lungo, ancor di piú in presenza di parti di testo fisse.

2 Cifrari Asimmetrici

Si utilizzano 2 chiavi, una per criptare e una per decriptare Le due chiavi non sono solo diverse nella forma, sono generate insieme e non é possibile ottenere una dall'altra La difficoltá per un avversario non é piú informativa ma **computazionale** Questi cifrari non sostituiscono quelli tradizionali, simmetrici, in quanto piú impegnativo a livello computazionale, infatti i primi sono molto recenti (Diffie-Hellman Key Exchange).

- il protocollo piú utilizzato in questo ambito é RSA.
- sono spesso combinati con cifrari simmetrici e funzioni di hash
 - vedi Digital Envelope

É possibile classificare l'uso di questi sistemi in:

1. Encryption/Decryption

• sender encrypts with recipient public key

2. Digital Signature

• sender signs with its private key

3. Key Exchange

• parts work together to exchange a common secret key

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

3 Funzioni di Hash

Una funzione di Hash H accetta un blocco di dati M di lunghezza variabile e produce un valore di hash h=H(M) di lunghezza fissa.

- una buona funzione di Hash ha la proprietá che applicata a un gran numero di input gli output siano ben distribuiti e apparentemente random
- \bullet un cambiamento a un qualsiasi bit o bits in M causa, probabilmente, un cambiamento nel codice hash generato

In crittografia si usa un particolare tipo di funzione di hash, che ha ulteriori proprietá:

- one-way property
 - infeasible to find an object mapping to a pre-specified hash
- collision-free property
 - infeasible to find two objects mapping to the same hash

Queste funzioni di hash sono utilizzate per:

- autenticare messaggi con i message digest
 - sender e recipient applicano entrambi la funzione e comparano i risultati
- digital signature
- one-way password file
- intrusion detection
- virus detection

Figure 11.8 General Structure of Secure Hash Code

La funzione di hash piú utilizzata in tempi recenti é stato il Secure Hash Algorithm

Un birthday attack é effettuato generando collissioni:

- 2^m messaggi
- $\bullet\,$ codici dic bit
- $P(\text{collision}) > 0.5 \text{ per } m > \frac{c}{2}$
 - -quindi per 64 bit bastano 2^{32} messaggi

Quindi un attaccante puó facilmente creare collisioni, ma il messaggio di cui il digest colliderá sará comunque incomprensibile, questo attacco é utile quando il ricevente si aspetta numeri o stringhe arbitrarie e non noterá nulla di strano nel messaggio ricevuto. Questi risultati impongono digest con almeno 256 bit.

4 Autenticazione

NB Un messaggio cifrato non é necessariamente autentico, un messaggio autenticato puó essere leggibile. Spesso questi ultimi non vengono cifrati.

4.1 Simmetrica

- basata su cifrari simmetrici
- chiave condivisa

$\mathrm{MAC}_K(M)$ - Message Authentication Code

- 1. DES-CBC MAC-CBC
 - si usa l'ultimo blocco cifrato (o una parte) come MAC
- 2. Keyed Hash Function HMAC
 - $\bullet\,$ MAC generato applicando Ha una combinazione di Me una chiave segreta
 - $\operatorname{HMAC}_K(M) = H((K'' \oplus \operatorname{opad})||H((K'' \oplus \operatorname{ipad})||M'))$
 - -K'': una chiave segreta K' con padding di 0 fino a j bit
 - * se maggiore di j bit K'' = H(K')
 - ipad: 00110110 ripetuto j/8 volte
 - opad: 01011010 ripetuto j/8 volte
 - \bullet efficiente quanto H
 - molto piú efficiente che MAC-CBC

4.2 Firma elettronica

- basata su cifrari asimmetrici
- firma con la chiave privata, verifica con la chiave pubblica di chi firma

In questo caso:

- 1. RSA con MD5/SHA-1
 - SHA-1(M): digest
 - $RSA(K^-(A), digest)$
- 2. DSA con SHA-1

Per far funzionare questo meccanismo é necessario risolvere il problema della distribuzione delle chiavi pubbliche. Questo in quanto rimane possibile un Man in the Middle attack.

- una terza parte C puó ricevere $\langle ID, K^+(ID) \rangle$ e restituirne un certificato
- questo poi viene condivisto da altre terze parti o dagli stessi che lo hanno richiesto

- il certificato di chiave pubblica é un documento che attesta <u>l'associazione</u> univoca tra chiave pubblica e l'identitá del soggetto
- queste operazioni sono eseguite da un ente fidato, Certification Authority o CA
 - un attaccante pur sostituendo una chiave certificata sniffata non puó sostituirla con la propria, non ha accesso alla chiave privata della CA e non puó crearsi un certificato falso

Alla fine il messaggio autenticato avrá la forma: M - FirmaElettronica - Certificato - Timestamp

5 Sniffing & Spoofing

- 1. sniffing
 - non facile su rete geografica
 - possibile su LAN
 - sia su switch che non
 - non é possibile su switch unicast
 - solo su *broadcast*
- 2. spoofing
 - ARP spoofing/poisoning
 - DHCP associa automaticamente IP di router e DNS
 - ARP associa MAC-IP
 - broadcast per la richiesta del MAC associato a un IP
 - unicast per la risposta
 - l'avversario risponde con il proprio MAC ingannando il richiedente
 - possibile tecnica per:
 - MAC
 - * scheda di rete in modalitá promiscua
 - * MAC della scheda cambiato malevolmente
 - IP
 - * non in TCP dove c'é il 3-way handshake
 - DNS

- * instradamento degli utenti verso un DNS malevolo
- * DNS malevolo serve IP falsificati
- URL
 - * indirizzi falsi

Per evitare questi attacchi:

- non usare HUB ma switch
- non usare broadcast
- cifrare a livello applicativo e a livello di trasporto

6 DDoS

- raro
- difficile da evitare per i principi costituenti della rete
 - per applicazioni critiche é utile avere reti dedicate

Possibili attacchi:

1. syn flooding

• primo messaggio dell'handshake TCP senza che questo sia poi portato a termine

2. ICMP echo request

- distibuted, zombie e reflectors
- smurf attack
 - echo request con payload consistente
 - * possibilitá pensata per testing di rete, echo in broadcast
 - * ora non piú possibile

3. relay SMTP

- flooding tramite server mail
- possibili configurazioni server per evitare questi attacchi

7 Firewall

- vulnerabilitá locali di una macchina possono permettere il controllo della rete intera
- un PC compromesso in LAN permette attacchi diretti alla rete locale
- il Firewall si interpone tra LAN e WAN come unico punto di accesso
 - servizi di
 - * filtro (direzione, servizio, utente)
 - * log (traffico, utenti)
 - * allarme
 - incluso nel router, screening router
 - * scarta i pacchetti sospetti
 - * non notifica
 - dual homed gateway
 - * tra LAN e router
 - * il router si occupa di routing
 - * spesso comunque tutte le funzioni sono concentrate in un unico dispositivo
 - * dispositivi specializzati: firewall appliance
 - screened host gateway
 - * fisicamente i pacchetti non sono forzati attraverso il FW
 - * si forza il passaggio a livello logico IP

Spesso in sicurezza, e anche per questi dispositivi, si parla di ${\it High~Avail-ability}$

- piú FW possono servire in parallelo per garantire la funzionalitá in caso di guasti
- Internet \rightarrow Router \rightarrow Switch \rightarrow FW | FW \rightarrow Switch \rightarrow LAN

Una DMZ é una cosiddetta

- DeMilitarized Zone
- \bullet server che devono poter comunicare con l'esterno senza interferenze dall'FW

7.1 Package Filter

- livello 3 e parzialmente 4
 - IP e TCP/UDP
- protegge in base alla direzione
 - interfaccia in/out
 - IP mittente e destinatario
 - porta sorgente e destinazione
- \bullet la frammentazione IP pu
ó essere usata per passare attraverso un ${\tt FW}$
 - piccoli frammenti 24-28 Byte, senza header TCP
- da bloccare il source routing
 - permette al mittente di decidere l'instradamento
 - permette IP spoofing con TCP su WAN
- ACL Access Control List
 - omonimo con sistema Windows, diversi
 - lista di regole di accesso

7.2 Sofware Firewall

- livello 5
 - applicativo e di trasporto TCP/UDP
- piú semplice attraverso un proxy-FW
 - va configurato un proxy per ogni servizio da attivare
 - non é trasparente
 - piú lento
 - sicuro, sofisticato
- mascheramento degli indirizzi tramite NAT
 - megli il NAPT
 - \ast unico indirizzo pubblico

- * indirizzi tradotti assieme alle porte
- puó anche effettuare load balancing
 - * round robin, evita attacchi di carico
- WAF Web Application FW
 - reverse proxy
 - esamina il payload applicativo
 - solo se sicura apre la connessione al nostro server web e inoltra

8 VPN

Standard: IPsec

- permette collegamento a rete privata virtualmente
 - lavorare da remoto con la stessa sicurezza che si ha all'interno della LAN
- traffico virtualmente interno passa su internet e va protetto

8.1 IPsec

IP level security

- livello 3
- RFC 1825
- layer che si va a inserire sopra quello IP
 - header annidato all'interno dell'header IP
 - PDU cifrata/autenticata assieme a info per decifrazione
 - l'header IP non viene modificato
 - * i router non si accorgono del cambiamento
- protezione da modifica e intercettazioni
- cifratura ai capi della comunicazione tra le LAN
- ovviamento non protegge da vulnerabilitá interne

Due modalitá di funzionamento:

- 1. transport
- 2. tunnel

E tecniche

- 1. AH
- 2. ESP

Queste tecniche sono annidabili

• prima applicando AH e poi ESP

8.1.1 Transport

- software VPN sui calcolatori comunicanti
- protegge da spoofing/sniffing si rete locale
- non é trasparente, necessaria configurazione
- unico metodo per una postazione mobile
 - sono possibili soluzioni miste

8.1.2 Tunnel

- cifratura/auth da parte di un agente esterno terminatore
 - spesso incluso nel router e FW
 - i pacchetti escono dal tunnel decriptati
- non protegge da spoofing/sniffing su rete locale
- nasconde gli indirizzi
 - sono solamento noti gli IP dei terminatori
- trasparente
- veloce, efficiente

8.1.3 Authentication Header

AΗ

- garantisce integritá
- posizionato tra header IP e PDU
- formato
 - Next Header
 - * 8B
 - * protocollo superiore
 - Length
 - * 8B
 - Reserved
 - * 16B
 - SPI
 - * 32B
 - * Security Parameter Index
 - * parametri (entrambi indici di una tabella interna condivisa)
 - · tipo di algoritmo
 - \cdot chiave simmetrica
 - Data
 - * \$N×\$32B
 - * dati di autenticazione MAC
 - * questo MAC coper da header IP in poi
 - \cdot ignora campi variabili TTP e checksum impostandoli a 0

8.1.4 Encapsulating Security Payload

ESP

- posizionato dopo header IP e incapsula il PDU cifrato
- formato in modalitá *Transport*
 - SPI
 - * non cifrato

- PDU, Next Header, autenticazione
 - * cifrati
- formato in modalitá Tunnel
 - SPI
 - * non cifrato
 - header IP incapsulato
 - * cifrato
 - * header originale nascosto dal terminatore VPN
 - * funzione di offuscamento del traffico
 - PDU, NH, auth
 - * cifrati

8.1.5 Anti-Replay

- individua ripetizione pacchetti
 - non é possibile escludere che non creino problemi a livello applicativo
- pacchetti IPsec numerati con un sequence number 16bit
- \bullet tecnica a sliding window con W bit
 - implementazione con un bit vector
 - -N ultimo sn ricevuto
 - -finestra da ${\cal N}-{\cal W}$ a ${\cal N}+1$
 - $\ast\,$ snricevuto a sinistra della finestra, non posso decidere
 - $\ast\,$ snricevuto a destra, sicuramente nuovo
 - * sn all'interno il vettore indica se é stato ricevuto o no

9 Web Security

10 Blockchain