Fall 2020 CS4641/CS7641 A Homework 1

Vicente Blat

August 31, 2020

- No extension of the deadline is allowed. Late submission will lead to 0 credit.
- Discussion is encouraged on Piazza as part of the Q/A. However, all assignments should be done individually.

Instructions

- This assignment has no programming, only written questions.
- We will be using Gradescope this semester for submission and grading of assignments.
- Your write up must be submitted in PDF form, you may use either Latex or markdown, whichever you prefer. We will not accept handwritten work.
- Please make sure to start answering each question on a new page. It makes it more organized to map your answers on GradeScope. When submitting your assignment, you must correctly map pages of your PDF to each question/subquestion to reflect where they appear. Improperly mapped questions may not be graded correctly.
- Please **show the calculation process** used to arrive at the answer. Submissions with only the final answer and no derivation/calculation process will receive **0 credit**

1 Linear Algebra [30pts]

1.1 Determinant and Inverse of Matrix [15pts]

Given a matrix M:

$$M = \begin{bmatrix} r & 6 & 0 \\ 2 & 3 & r \\ 4 & 7 & 3 \end{bmatrix}$$

(a) Calculate the determinant of M in terms of r. [4pts]

$$\det M = \begin{vmatrix} r & 6 & 0 \\ 2 & 3 & r \\ 4 & 7 & 3 \end{vmatrix} = r \times \begin{vmatrix} 3 & r \\ 7 & 3 \end{vmatrix} - 6 \times \begin{vmatrix} 2 & r \\ 4 & 3 \end{vmatrix} + 0 \times \begin{vmatrix} 2 & 3 \\ 4 & 7 \end{vmatrix}$$

$$\det M = r \times (3 \times 3 - r \times 7) - 6 \times (2 \times 3 - r \times 4)$$

$$\det M = r \times (9 - 7r) - 6 \times (6 - 4r)$$

$$\det M = 9r - 7r^2 - 36 + 24r$$

$$\det M = -7r^2 + 33r - 36$$

(b) For what value(s) of r does M^{-1} not exist? Why? What does it mean in terms of rank and singularity of M for these values of r? [3pts]

The inverse of M will not exist if its determinant is zero. Therefore, to find the values of r for which the inverse will not exist we solve the following equation:

$$0 = -7r^{2} + 33r - 36$$

$$r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$r = \frac{-33 \pm \sqrt{33^{2} - 4 \times -7 \times 36}}{2 \times -7}$$

$$r = \frac{-33 \pm \sqrt{1089 - 1008}}{-14}$$

$$r = \frac{-33 \pm \sqrt{81}}{-14}$$

$$r = \frac{-33 \pm 9}{-14}$$

$$r_{1} = \frac{-33 \pm 9}{-14}$$

$$r_{2} = \frac{-33 - 9}{-14}$$

$$r_{1} = \frac{-24}{-14}$$

$$r_{2} = \frac{-42}{-14}$$

$$r_{3} = \frac{12}{7}$$

$$r_{4} = \frac{12}{7}$$

$$r_{5} = \frac{21}{7}$$

We find that if r is equal to $\frac{12}{7}$ or 3 the determinant of M is equal to 0, meaning that the matrix will not be linearly independent and therefore its inverse will not exist. In terms of singularity, for both of these values of r the matrix M will be singular since its determinant is equal to zero.

In terms of rank, we would have to substitute r for each of the two values and then reduce the matrix M to row echelon form and count the number of non-zero rows:

For $r_1 = \frac{12}{7}$:

$$\begin{bmatrix} r_1 & 6 & 0 \\ 2 & 3 & r_1 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{r_1 = \frac{12}{7}} \begin{bmatrix} \frac{12}{7} & 6 & 0 \\ 2 & 3 & \frac{12}{7} \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_1 = R_1/\frac{12}{7}} \begin{bmatrix} 1 & \frac{7}{2} & 0 \\ 2 & 3 & \frac{12}{7} \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1}$$

$$\begin{bmatrix} 1 & \frac{7}{2} & 0 \\ 0 & -4 & \frac{12}{7} \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_3 = \frac{R_3 - 4R_1}{3}} \begin{bmatrix} 1 & \frac{7}{2} & 0 \\ 0 & -4 & \frac{12}{7} \\ 0 & -7 & 3 \end{bmatrix} \xrightarrow{R_2 = \frac{R_2}{3} - 4} \begin{bmatrix} 1 & \frac{7}{2} & 0 \\ 0 & 1 & \frac{-3}{7} \\ 0 & -7 & 3 \end{bmatrix} \xrightarrow{R_1 = \frac{R_1 - \frac{7}{2}R_2}{2}} \xrightarrow{R_2 = \frac{R_2}{3} - \frac{4R_1}{3}}$$

$$\begin{bmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & \frac{7}{2} \\ 0 & -7 & 3 \end{bmatrix} \xrightarrow{R_3 = R_3 + 7R_2} \begin{bmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & \frac{-3}{7} \\ 0 & 0 & 0 \end{bmatrix}$$

The rank of matrix M when $r_1 = \frac{12}{7}$ is equal to 2 because after reducing the matrix to row echelon form there are only 2 non-zero rows.

For $r_2 = 3$:

$$\begin{bmatrix} r_2 & 6 & 0 \\ 2 & 3 & r_2 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{r_2 = 3} \begin{bmatrix} 3 & 6 & 0 \\ 2 & 3 & 3 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_1 = R_1/3} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 3 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{R_3 = R_3 - 4R_1} \xrightarrow{R_3 = R_3 - 4R_2} \xrightarrow{R_3 = R_3 - 4R_3} \xrightarrow$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 0 & -1 & 3 \end{bmatrix} \xrightarrow{R_2 = R_2/-1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -3 \\ 0 & -1 & 3 \end{bmatrix} \xrightarrow{R_1 = R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & -3 \\ 0 & -1 & 3 \end{bmatrix} \xrightarrow{R_3 = R_3 + R_2}$$

$$\begin{bmatrix}
1 & 0 & 6 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{bmatrix}$$

The rank of matrix M when $r_1 = 3$ is equal to 2 because after reducing the matrix to row echelon form there are only 2 non-zero rows.

(c) Calculate M^{-1} by hand for r=4. [5pts]

$$M = \begin{pmatrix} 4 & 6 & 0 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 4 & 7 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 = R_1/4} \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 4 & 7 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1}$$

$$M = \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 4 & \frac{-1}{2} & 1 & 0 \\ 4 & 7 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 = R_2/4} \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 1 & \frac{-1}{8} & \frac{1}{4} & 0 \\ 4 & 7 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \iff R_3}$$

$$M = \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 4 & 7 & 3 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{-1}{8} & \frac{1}{4} & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - 4R_1} \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 1 & \frac{-1}{8} & \frac{1}{4} & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - 3R_3}$$

$$M = \begin{pmatrix} 1 & 3/2 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 1 & 0 & \frac{-5}{8} & \frac{-3}{4} & 1 \\ 0 & 0 & 1 & \frac{-1}{8} & \frac{1}{4} & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - \frac{3}{2}R_2} \begin{pmatrix} 1 & 0 & 0 & \frac{19}{16} & \frac{9}{8} & \frac{-3}{2} \\ 0 & 1 & 0 & \frac{-5}{8} & \frac{-3}{4} & 1 \\ 0 & 0 & 1 & \frac{-1}{8} & \frac{1}{4} & 0 \end{pmatrix}$$

Therefore, the inverse of M is:

$$M^{-1} = \begin{bmatrix} \frac{19}{16} & \frac{9}{8} & \frac{-3}{2} \\ \frac{-5}{8} & \frac{-3}{4} & 1 \\ \frac{-1}{8} & \frac{1}{4} & 0 \end{bmatrix}$$

(**Hint 1:** Please double check your answer and make sure $MM^{-1} = I$)

$$M \times M^{-1} = I$$

$$\begin{bmatrix} 4 & 6 & 0 \\ 2 & 3 & 4 \\ 4 & 7 & 3 \end{bmatrix} \times \begin{bmatrix} \frac{19}{16} & \frac{9}{8} & \frac{-3}{2} \\ \frac{-5}{8} & \frac{-3}{4} & 1 \\ \frac{-1}{8} & \frac{1}{4} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} (4 \times \frac{19}{16} + 6 \times \frac{-5}{8} + 0 \times \frac{-1}{8}) & (4 \times \frac{9}{8} + 6 \times \frac{-3}{4} + 0 \times \frac{1}{4}) & (4 \times \frac{-3}{2} + 6 \times 1 + 0 \times 0) \\ (2 \times \frac{19}{16} + 3 \times \frac{-5}{8} + 4 \times \frac{-1}{8}) & (2 \times \frac{9}{8} + 3 \times \frac{-3}{4} + 4 \times \frac{1}{4}) & (2 \times \frac{-3}{2} + 3 \times 1 + 4 \times 0) \\ (4 \times \frac{19}{16} + 7 \times \frac{-5}{8} + 3 \times \frac{-1}{8}) & (4 \times \frac{9}{8} + 7 \times \frac{-3}{4} + 3 \times \frac{1}{4}) & (4 \times \frac{-3}{2} + 7 \times 1 + 3 \times 0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \left(\frac{19}{4} - \frac{15}{4}\right) & \left(\frac{9}{2} - \frac{9}{2}\right) & \left(-6 + 6\right) \\ \left(\frac{19}{8} - \frac{15}{8} - \frac{1}{2}\right) & \left(\frac{9}{4} - \frac{9}{4} + 1\right) & \left(-3 + 3\right) \\ \left(\frac{19}{4} - \frac{35}{8} - \frac{3}{8}\right) & \left(\frac{9}{2} - \frac{21}{4} + \frac{3}{4}\right) & \left(-6 + 7\right) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(d) Find the determinant of M^{-1} for r=4. [3pts]

$$\det M^{-1} = \begin{vmatrix} \frac{19}{16} & \frac{9}{8} & \frac{-3}{2} \\ \frac{-5}{8} & \frac{-3}{4} & 1 \\ \frac{-1}{8} & \frac{1}{4} & 0 \end{vmatrix} = \frac{19}{16} \times \begin{vmatrix} \frac{-3}{4} & 1 \\ \frac{1}{4} & 0 \end{vmatrix} - \frac{9}{8} \times \begin{vmatrix} \frac{-5}{8} & 1 \\ \frac{-1}{8} & 0 \end{vmatrix} + \frac{-3}{2} \times \begin{vmatrix} \frac{-5}{8} & \frac{-3}{4} \\ \frac{-1}{8} & \frac{1}{4} \end{vmatrix}$$
$$\det M^{-1} = \frac{19}{16} \times (\frac{-3}{4} \times 0 - 1 \times \frac{1}{4}) - \frac{9}{8} \times (\frac{-5}{8} \times 0 - 1 \times \frac{-1}{8}) - \frac{3}{2} \times (\frac{-5}{8} \times \frac{1}{4} - \frac{-3}{4} \times \frac{-1}{8})$$

$$\det M^{-1} = (\frac{19}{16} \times \frac{-1}{4}) - (\frac{9}{8} \times \frac{1}{8}) - (\frac{3}{2} \times \frac{-1}{4})$$

$$\boxed{\det M^{-1} = -\frac{1}{16}}$$

1.2 Characteristic Equation [5pts]

Consider the eigenvalue problem:

$$Ax = \lambda x, x \neq 0$$

where x is a non-zero eigenvector and λ is eigenvalue of A. Prove that the determinant $|A - \lambda I| = 0$.

 $|A-\lambda I|=0$ is true when $(A-\lambda I)$ is **not** an invertible matrix, which happens when either $(A-\lambda I)=0$ or when the matrix is linearly dependent. We can prove this is true given the initial equality:

$$Ax = \lambda x$$

$$Ax - \lambda x = 0$$

$$(A - \lambda)x = 0, \qquad \text{Multiply by identity matrix I}$$

$$(AI - \lambda I)x = 0, \qquad \qquad \text{Note that } AI = A$$

$$(A - \lambda I)x = 0$$

Given that $x \neq 0$, the set of vectors in $A - \lambda I$ must be linearly dependent or $A - \lambda I = 0$. Either way, the determinant $|A - \lambda I|$ will be equal to zero.

1.3 Eigenvalues and Eigenvectors [10pts]

Given a matrix A:

$$A = \begin{bmatrix} x & 3 \\ 1 & x \end{bmatrix}$$

(a) Calculate the eigenvalues of A as a function of x [5 pts]

$$\det\left(A - \lambda I\right) = 0$$

$$\begin{vmatrix} x - \lambda & 3 \\ 1 & x - \lambda \end{vmatrix} = 0$$

$$(x - \lambda)^2 - 3 = 0$$

$$(x - \lambda)^2 = 3$$

$$x - \lambda_1 = \sqrt{3} \qquad x - \lambda_2 = -\sqrt{3}$$

$$x - \sqrt{3} = \lambda_1$$

$$x + \sqrt{3} = \lambda_2$$

(b) Find the normalized eigenvectors of matrix A [5 pts]

$$Av = \lambda v$$

$$(A - \lambda)v = 0$$

$$(A - \lambda I)v = 0$$

$$\begin{pmatrix}
\begin{bmatrix} x & 3 \\ 1 & x
\end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda
\end{bmatrix} \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

For $\lambda_1 = x - \sqrt{3}$

$$\left(\begin{bmatrix} x & 3 \\ 1 & x \end{bmatrix} - \begin{bmatrix} x - \sqrt{3} & 0 \\ 0 & x - \sqrt{3} \end{bmatrix} \right) \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = 0$$

$$\left(\begin{bmatrix} \sqrt{3} & 3\\ 1 & \sqrt{3} \end{bmatrix} \right) \begin{bmatrix} v_{11}\\ v_{12} \end{bmatrix} = 0$$

Find the reduced echelon form of $(A - \lambda I)$

$$\begin{pmatrix} \sqrt{3} & 3 & 0 \\ 1 & \sqrt{3} & 0 \end{pmatrix} \xrightarrow{R_1 = R_1/\sqrt{3}} \begin{pmatrix} 1 & \sqrt{3} & 0 \\ 1 & \sqrt{3} & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & \sqrt{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We find that:

$$v_{11} + \sqrt{3}v_{12} = 0$$

$$v_{11} = -\sqrt{3}v_{12}$$

Let $v_{12}=1$, then $v_{11}=-\sqrt{3}$. For the eigenvalue $\lambda_1=x-\sqrt{3}$, the eigenvector is:

$$v_{1} = \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix} \to v_{1n} = \frac{v_{1}}{||v_{1}||} \to v_{1n} = \frac{\begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}}{\sqrt{(-\sqrt{3})^{2} + 1}} \to \begin{bmatrix} v_{1n} = \frac{1}{2} \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$$

For $\lambda_2 = x + \sqrt{3}$

$$\begin{pmatrix} \begin{bmatrix} x & 3 \\ 1 & x \end{bmatrix} - \begin{bmatrix} x + \sqrt{3} & 0 \\ 0 & x + \sqrt{3} \end{bmatrix} \end{pmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = 0$$
$$\begin{pmatrix} \begin{bmatrix} -\sqrt{3} & 3 \\ 1 & -\sqrt{3} \end{bmatrix} \end{pmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = 0$$

Find the reduced echelon form of $(A - \lambda I)$

$$\begin{pmatrix} -\sqrt{3} & 3 & 0 \\ 1 & -\sqrt{3} & 0 \end{pmatrix} \xrightarrow{R_1 = \underline{R_1}/-\sqrt{3}} \begin{pmatrix} 1 & -\sqrt{3} & 0 \\ 1 & -\sqrt{3} & 0 \end{pmatrix} \xrightarrow{R_2 = \underline{R_2} - R_1} \begin{pmatrix} 1 & -\sqrt{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We find that:

$$v_{21} - \sqrt{3}v_{22} = 0$$

$$v_{21} = \sqrt{3}v_{22}$$

Let $v_{22}=1$, then $v_{21}=\sqrt{3}$. For the eigenvalue $\lambda_2=x+\sqrt{3}$, the eigenvector is:

$$v_{2} = \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} \to v_{2n} = \frac{v_{2}}{||v_{2}||} \to v_{2n} = \frac{\begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}}{\sqrt{(\sqrt{3})^{2} + 1}} \to \begin{bmatrix} v_{2n} = \frac{1}{2} \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} \end{bmatrix}$$

2 Expectation, Co-variance and Independence [18pts]

Suppose X,Y and Z are three different random variables. Let X obey a Bernouli Distribution. The probability disbribution function is

$$p(x) = \begin{cases} 0.5 & x = c \\ 0.5 & x = -c. \end{cases}$$

c is a constant here. Let Y obey a standard Normal (Gaussian) distribution, which can be written as $Y \sim N(0,1)$. X and Y are independent. Meanwhile, let Z = XY.

(a) Show that Z also follows a Normal (Gaussian) distribution. Calculate the Expectation and Variance of Z. [9pts] (**Hint:** Sum rule and conditional probability formula)

$$\begin{split} P(Z \ge z) &= P(XY \ge z) \\ &= P(XY \ge z | X = c) P(X = c) + P(XY \ge z | X = c) P(X = -c) \\ &= \frac{1}{2} P(XY \ge z | X = c) + \frac{1}{2} P(XY \ge z | X = -c) \\ &= \frac{1}{2} P(cY \ge z) + \frac{1}{2} P(-cY \ge z) \\ &= \frac{1}{2} P(cY \ge z) + \frac{1}{2} P(cY \le -z) \end{split}$$

Due to symmetry $P(cY \ge z) = P(cY \le -z)$, therefore:

$$P(Z \ge z) = P(cY \ge z)$$

Then, we can say that Z = cY or $Z = \sum_{n=1}^{c} Y$. And according to one of the properties of Gaussian distributions the sum of Gaussian distributions results in another Gaussian distribution we can claim that Z does follow a Gaussian distribution.

The expected value of Z is then:

$$\begin{split} E[Z] &= E[cY] \\ &= c E[Y], \quad \text{Given that } E[Y] = 0 \end{split}$$

$$E[Z] = 0$$

The variance of Z is then:

$$Var[Z] = Var[cY]$$

$$= c^2 Var[Y], \quad \mbox{Given that } Var[Y] = 1$$

$$Var[Z] = c^2$$

(b) How should we choose c such that Y and Z are uncorrelated(which means Cov(Y,Z)=0)? [5pts]

$$Cov(Y,Z)=0$$

$$E[YZ]-E[Y]E[Z]=0$$

$$E[cY^2]-E[Y]E[cY]=0, \quad \mbox{Given that } E[Y]=0$$

$$cE[Y^2]=0$$

Therefore, in order for Y and Z to be uncorrelated we must choose c to be: c=0

(c) Are Y and Z independent? Make use of probabilities to show your conclusion. Example: $P(Y \in (-1,0))$ and $P(Z \in (2c,3c))$ [4pts]

If Y and Z are independent, then it must be true that P(Y|Z) = P(Y). Let us try to prove or disprove this statement with an example:

$$P(Y|Z) = P(Y)$$

$$P(-1 \le y \le 0 \mid 2c \le z \le 3c) = P(-1 \le y \le 0)$$

$$P(-1 \le y \le 0 \mid 2c \le cy \le 3c) = P(-1 \le y \le 0)$$

$$P(-1 \le y \le 0 \mid 2 \le y \le 3) = P(-1 \le y \le 0)$$

This statement is a contradiction because: $P(-1 \le y \le 0 \mid 2 \le y \le 3)$ is an impossible event, therefore we find that $P(Y|Z) \ne P(Y)$ and thus Y and Z are NOT independent.

3 Optimization [15 pts]

Optimization problems are related to minimizing a function (usually termed loss, cost or error function) or maximizing a function (such as the likelihood) with respect to some variable x. The Kuhn-Tucker conditions are first-order conditions that provide a unified treatment of constraint optimization. In this question, you will be solving the following optimization problem:

$$\max_{x,y} f(x,y) = 2x^{2} + 3xy$$
s.t. $g_{1}(x,y) = \frac{1}{2}x^{2} + y \le 4$

$$g_{2}(x,y) = -y \le -2$$

(a) Specify the Legrange function [2 pts]

$$\mathcal{L}(x,y) = 2x^2 + 3xy - \lambda_1(\frac{1}{2}x^2 + y - 4) - \lambda_2(-y + 2)$$
, where: $\lambda_1, \lambda_2 > 0$

(b) List the KKT conditions [2 pts]

(i)
$$\frac{\partial \mathcal{L}}{\partial x} = 4x + 3y - \lambda_1 x = 0$$

(ii)
$$\frac{\partial \mathcal{L}}{\partial y} = 3x - \lambda_1 + \lambda_2 = 0$$

(iii)
$$\lambda_1(\frac{1}{2}x^2 + y - 4) = 0$$

(iv)
$$\lambda_2(-y+2) = 0$$

(c) Solve for 4 possibilities formed by each constraint being active or inactive $[5~\mathrm{pts}]$

Case 1: constraint 1 and constraint 2 are active.

$$\frac{1}{2}x^2 + y = 4, \ \lambda_1 > 0 \qquad y = 2, \ \lambda_2 > 0$$

$$\frac{1}{2}x^2 + (2) = 4$$
$$\frac{1}{2}x^2 = 2$$
$$x^2 = 4$$
$$x = \pm 2$$

For x = 2, y = 2

(i)
$$4x + 3y - \lambda_1 x = 0$$

 $8 + 6 - 2\lambda_1 = 0$
 $-2\lambda_1 = -14$
(ii) $3x - \lambda_1 + \lambda_2 = 0$
 $6 - 7 + \lambda_2 = 0$
 $-1 + \lambda_2 = 0$
 $\lambda_1 = 7 > 0 \ acceptable$
 $\lambda_2 = 1 > 0 \ acceptable$

For x = -2, y = 2

(i)
$$4x + 3y - \lambda_1 x = 0$$

 $-8 + 6 + 2\lambda_1 = 0$
 $2\lambda_1 = 2$
(ii) $3x - \lambda_1 + \lambda_2 = 0$
 $-6 - 1 + \lambda_2 = 0$
 $-7 + \lambda_2 = 0$
 $\lambda_1 = 1 > 0 \ acceptable$

Case 2: constraint 1 is active, constraint 2 is inactive.

$$\frac{1}{2}x^2 + y = 4, \ \lambda_1 > 0 \qquad y > 2, \ \lambda_2 = 0$$

(ii)
$$3x - \lambda_1 + \lambda_2 = 0$$
 $4 = \frac{1}{2}x^2 + y$
 $3x - \lambda_1 = 0$ $y = 4 - \frac{1}{2}x^2$

$$(i) 4x + 3y - \lambda_1 x = 0 \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$4x + 3(4 - \frac{1}{2}x^2) - (3x)x = 0 \qquad x = \frac{-8 \pm \sqrt{8^2 - 4(-9)(24)}}{2(-9)}$$

$$4x + 12 - \frac{3}{2}x^2 - 3x^2 = 0 \qquad x = \frac{-8 \pm \sqrt{64 + 864}}{-18}$$

$$-\frac{9}{2}x^2 + 4x + 12 = 0 \qquad x = \frac{-8 \pm 4\sqrt{58}}{-18}$$

$$-9x^2 + 8x + 24 = 0 \qquad x = \frac{-8 \pm 4\sqrt{58}}{-18}$$

$$x = \frac{4 \pm 2\sqrt{58}}{9}$$
For $x = \frac{4 + 2\sqrt{58}}{9}$

$$y = 4 - \frac{1}{2}(\frac{4 + 2\sqrt{58}}{9})^2$$

$$y = 4 - \frac{16 + 16\sqrt{58} + 232}{(2)(9)}$$

For
$$x = \frac{4 - 2\sqrt{58}}{9}$$

$$\lambda_1 = 3x$$

$$\lambda_1 = 3(\frac{4 - 2\sqrt{58}}{9})$$

$$\lambda_1 = \frac{4 - 2\sqrt{58}}{3} \approx -3.74385 < 0 \text{ not acceptable}$$

 $y = 4 - \frac{8 + 8\sqrt{58} + 116}{9} \approx 1.71696 < 2 \text{ not acceptable}$

Case 3: Constraint 1 is inactive, constraint 2 is active.

$$\frac{1}{2}x^2 + y < 4, \ \lambda_1 = 0 \qquad y = 2, \ \lambda_2 > 0$$

(i)
$$4x + 3y - \lambda_1 x = 0$$
 (ii) $3x - \lambda_1 + \lambda_2 = 0$ $3x + \lambda_2 = 0$ $x = -\frac{6}{4}$ $\frac{-9}{2} + \lambda_2 = 0$ $\lambda_2 = \frac{9}{2} > 0 \ acceptable$

Case 4: Constraint 1 is inactive, constraint 2 is inactive.

$$\frac{1}{2}x^2 + y < 4, \ \lambda_1 = 0 \qquad y > 2, \ \lambda_2 = 0$$

(ii)
$$3x - \lambda_1 + \lambda_2 = 0$$

$$\boxed{3x = 0 \text{ not acceptable}}$$

- (d) List all candidate points [4 pts]

(e) Check for maximality and sufficiency [2 pts]

Maximality:

Candidate 1:

$$f(2,2) = 2(2)^2 + 3(2)(2)$$

$$f(2,2) = 20$$

Candidate 2:

$$f(-2,2) = 2(-2)^2 + 3(-2)(2)$$

$$f(-2,2) = -4$$

Candidate 3:

$$f(-\frac{3}{2},2) = 2(-\frac{3}{2})^2 + 3(-\frac{3}{2})(2)$$

$$f(-\frac{3}{2},2) = \frac{9}{2} - 9$$

$$f(-\frac{3}{2},2) = -\frac{9}{2}$$

We find that f(2,2) = 20 is the maximum value, we now check this candidate for sufficiency: $\mathcal{L}(x,y)$, with $\lambda_1 = 7$ and $\lambda_2 = 1$

$$\mathcal{L}(x,y) = 2x^2 + 3xy - (7)(\frac{1}{2}x^2 + y - 4) - (1)(-y + 2)$$

$$\mathcal{L}(x,y) = 2x^2 + 3xy - \frac{7}{2}x^2 - 7y + 28 + y - 2$$

$$\mathcal{L}(x,y) = -\frac{3}{2}x^2 + 3xy - 6y + 26$$

We find that this candidate point is also sufficient since the Legrange function for $\lambda_1=7$ and $\lambda_2=1$ is a concave function. Therefore, the maximum and sufficient candidate point is:

$$(x,y) = (2,2)$$
, with $(\lambda_1, \lambda_2) = (7,1)$

4 Maximum Likelihood [10 + 25 pts]

4.1 Discrete Example [10 pts]

Suppose we have two types of coins, A and B. The probability of a Type A coin showing heads is θ . The probability of a Type B coin showing heads is 2θ . Here, we have a bunch of coins of either type A or B. Each time we choose one coin and flip it. We do this experiment 10 times and the results are shown in the chart below. (**Hint:** The probabilities aforementioned are for the particular sequence below.)

Coin Type	Result
A	Tail
A	Head
A	Head
В	Head
В	Head
В	Head

(a) What is the likelihood of the result given θ ? [4pts]

Since we are dealing with coin flips, we can assume that both A and B are independent and identically distributed random variables with Bernoulli distribution objective functions:

$$f(A; p_A) = (p_A)^{a_i} (1 - p_A)^{(1-a_i)}$$
 Given that $a_i \in \{0, 1\}$ or $\{tail, head\}$, and $p_A = \theta$

$$f(B; p_B) = (p_B)^{b_i} (1 - p_B)^{(1-b_i)}$$
 Given that $b_i \in \{0, 1\}$ or $\{tail, head\}$, and $p_B = 2\theta$

Because A and B are independent of each other we can say that the likelihood of the result is:

$$\begin{split} L(p) &= L(p_A)L(p_B) \\ &= \prod_{i=1}^{n_A} f(A; p_A) \prod_{j=1}^{n_B} f(B; p_B) \text{ ,where } n_A = 7 \text{ and } n_B = 3 \\ &= \prod_{i=1}^{7} [\theta^{a_i} (1 - \theta)^{(1 - a_i)}] \prod_{j=1}^{3} [(2\theta)^{b_j} (1 - 2\theta)^{(1 - b_j)}] \\ &= [\theta^{\sum_{i=1}^{7} a_i} (1 - \theta)^{\sum_{i=1}^{7} (1 - a_i)}] [(2\theta)^{\sum_{j=1}^{3} b_j} (1 - 2\theta)^{\sum_{j=1}^{3} (1 - b_j)}] \end{split}$$

From the sequence given we find that:

$$\sum_{i=1}^{7} a_i = \{0+0+0+0+0+1+1\} = 2$$

$$\sum_{i=1}^{7} (1-a_i) = \{1+1+1+1+1+0+0\} = 5$$

$$\sum_{j=1}^{3} b_j = \{1+1+1\} = 3$$

$$\sum_{i=1}^{3} (1-b_i) = \{0+0+0\} = 0$$

Therefore, the likelihood of the result given θ is:

$$L(\theta) = [\theta^{2}(1-\theta)^{5}][(2\theta)^{3}(1-2\theta)^{0}]$$
$$= 8\theta^{5}(1-\theta)^{5}$$
$$= \log(8) + 5\log(\theta) + 5\log(1-\theta)$$

(b) What is the maximum likelihood estimation for θ ? [6pts]

$$\frac{\partial L(\theta)}{\partial \theta} = 0 \implies \frac{5}{\theta} - \frac{5}{1-\theta} = 0 \implies \frac{1}{\theta} = \frac{1}{1-\theta}$$

$$\frac{1-\theta}{\theta} = 1 \implies \frac{1}{\theta} - 1 = 1 \implies \frac{1}{\theta} = 2 \implies \qquad \boxed{\theta = \frac{1}{2}}$$

4.2 Normal distribution [15 pts] (Bonus for Undergrads)

Suppose that we observe samples of a known function $g(t) = t^3$ with unknown amplitude θ at (known) arbitrary locations t_1, \ldots, t_N , and these samples are corrupted by Gaussian noise. That is, we observe the sequence of random variables

$$X_n = \theta t_n^3 + Z_n, \quad n = 1, \dots, N$$

where the Z_n are independent and $Z_n \sim \text{Normal } (0, \sigma^2)$

(a) Given $X_1 = x_1, \dots, X_N = x_N$, compute the log likelihood function

$$\ell(\theta; x_1, \dots, x_N) = \log f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \log (f_{X_1}(x_1; \theta) f_{X_2}(x_2; \theta) \dots f_{X_N}(x_N; \theta))$$

Note that the X_n are independent (as the last equality is suggesting) but not identically distributed (they have different means). [9pts]

$$Var[X_n] = E[(X_n - E[X])^2]$$

$$E[X_n] = E[\theta t_n^3 + Z_n] \qquad = E[(\theta t_n^3 + Z_n - \theta t_n^3)^2]$$

$$= E[\theta t_n^3] + E[Z_n] \qquad = E[(Z_n)^2]$$

$$= t_n^3 E[\theta] + 0 \qquad = Var[Z_n] + (E[Z_n])^2$$

$$E[X_n] = \theta t_n^3 \qquad = \sigma^2 + 0$$

$$Var[X_n] = \sigma^2$$

We can confirm that X_n follows a Gaussian distribution since it is equal to the Gaussian distribution Z_n shifted by θt_n^3 . And according to one of the properties of Normal distributions, a Normal distribution plus a constant is a new Normal distribution.

$$L(\theta; x_1, ..., x_N) = \prod_{n=1}^{N} f_{X_n}(x_n; \theta)$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x_n - \theta t_n^3)^2}{2\sigma^2}}$$

$$= (2\pi\sigma^2)^{\frac{-N}{2}} e^{(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \theta t_n^3)^2)}$$

$$L(\theta; x_1, ..., x_N) = -\frac{N}{2}\log(2\pi) - \frac{N}{2}\log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \theta t_n^3)^2$$

(b) Compute the MLE for θ . [6pts]

$$\frac{\partial}{\partial \theta}L(\theta; x_1, ..., x_N) = 0$$

$$\left(-\frac{2}{2\sigma^2} \sum_{n=1}^{N} (x_n - \theta t_n^3)\right) (-t_n^3) = 0$$

$$\frac{t_n^3}{\sigma^2} \sum_{n=1}^{N} (x_n - \theta t_n^3) = 0$$

$$\sum_{n=1}^{N} (x_n) - N\theta t_n^3 = 0$$

$$N\theta t_n^3 = \sum_{n=1}^N (x_n)$$

$$\theta = \frac{1}{Nt_n^3} \sum_{n=1}^{N} (x_n)$$

4.3 Bonus for undergrads [10 pts]

The C.D.F of independent random variables $X_1, X_2, ..., X_n$ is

$$P(X_i \le x | \alpha, \beta) = \begin{cases} 0, & x < 0 \\ (\frac{x}{\beta})^{\alpha}, & 0 \le x \le \beta \\ 1, & x > \beta \end{cases}$$

where $\alpha \geq 0$, $\beta \geq 0$.

(a) Write down the P.D.F of above independent random variables. [4pts]

$$f_X(X_i \le x | \alpha, \beta) = \frac{d}{dx} P(X_i \le x | \alpha, \beta) = \begin{cases} \left(\frac{\alpha}{\beta^{\alpha}}\right) x^{\alpha - 1}, & 0 \le x \le \beta \\ 0, & \text{everywhere else} \end{cases}$$

(b) Find the MLEs of α and β . [6pts]

$$L(\alpha, \beta; x_1, ..., x_N) = \prod_{n=1}^N f_{Xn}(x_n; \alpha)$$

$$= \prod_{n=1}^N \frac{\alpha}{\beta^{\alpha}} x_n^{(\alpha - 1)}$$

$$= \sum_{n=1}^N \left(\log(\frac{\alpha}{\beta^{\alpha}} x_n^{(\alpha - 1)}) \right)$$

$$= \sum_{n=1}^N \left(\log(\frac{\alpha}{\beta^{\alpha}}) + \log(x_n^{(\alpha - 1)}) \right)$$

$$L(\alpha, \beta; x_1, ..., x_N) = \sum_{n=1}^N (\log(\alpha) - \alpha \log(\beta) + (\alpha - 1) \log(x_n))$$

$$\frac{\partial}{\partial \alpha} L(\alpha; x_1, ..., x_N) = 0$$

$$\frac{\partial}{\partial \beta} L(\alpha; x_1, ..., x_N) = 0$$

$$\sum_{n=1}^N (\frac{1}{\alpha} - \log(\beta) + \log(x_n)) = 0$$

$$\sum_{n=1}^N (\frac{1}{\alpha} - \log(\beta) + \log(x_n)) = 0$$

$$\sum_{n=1}^N (-\frac{\alpha}{\beta}) = 0$$

$$N \log(\beta) - \sum_{n=1}^N \log(x_n) = \frac{N}{\alpha}$$

$$-N \frac{\alpha}{\beta} = 0$$

$$\boxed{\frac{N}{N \log(\beta) - \sum_{n=1}^N \log(x_n)}} = \alpha$$

5 Information Theory [32pts]

5.1 Marginal Distribution [6pts]

Suppose the joint probability distribution of two binary random variables X and Y are given as follows.

X Y	1	2
0	$\frac{1}{3}$	$\frac{1}{3}$
1	0	$\frac{1}{3}$

(a) Show the marginal distribution of X and Y, respectively. [3pts]

For X = 0:

$$P(X = 0) = \sum_{Y} P(X = 0, Y)$$

$$= P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

$$= \frac{1}{3} + \frac{1}{3}$$

$$P(X=0) = \frac{2}{3}$$

For X = 1:

$$P(X = 1) = \sum_{Y} P(X = 1, Y)$$

$$= P(X = 1, Y = 1) + P(X = 1, Y = 2)$$

$$= 0 + \frac{1}{3}$$

$$P(X=1) = \frac{1}{3}$$

For Y = 1:

$$P(Y = 1) = \sum_{X} P(Y = 1, X)$$

$$= P(Y = 1, X = 0) + P(Y = 1, X = 1)$$

$$= \frac{1}{3} + 0$$

$$P(Y = 1) = \frac{1}{3}$$

For Y=2:

$$P(Y = 2) = \sum_{X} P(Y = 2, X)$$

$$= P(Y = 2, X = 0) + P(Y = 2, X = 1)$$

$$= \frac{1}{3} + \frac{1}{3}$$

$$P(Y=2) = \frac{2}{3}$$

(b) Find mutual information for the joint probability distribution in the previous question [3pts]

$$\begin{split} I(X,Y) &= \sum_X \sum_Y P(X,Y) \log_2 \left(\frac{P(X,Y)}{P(X)P(Y)} \right) \\ &= \sum_X \left[P(X,Y=1) \log_2 \left(\frac{P(X,Y=1)}{P(X)P(Y=1)} \right) + P(X,Y=2) \log_2 \left(\frac{P(X,Y=2)}{P(X)P(Y=2)} \right) \right] \\ &= P(X=0,Y=1) \log_2 \left(\frac{P(X=0,Y=1)}{P(X=0)P(Y=1)} \right) + P(X=1,Y=1) \log_2 \left(\frac{P(X=1,Y=1)}{P(X=1)P(Y=1)} \right) \\ &+ P(X=0,Y=2) \log_2 \left(\frac{P(X=0,Y=2)}{P(X=0)P(Y=2)} \right) + P(X=1,Y=2) \log_2 \left(\frac{P(X=1,Y=2)}{P(X=1)P(Y=2)} \right) \\ &= \frac{1}{3} \log_2 \left(\frac{\frac{1}{3}}{\frac{2}{9}} \right) + 0 \log_2 \left(\frac{0}{\frac{1}{9}} \right) + \frac{1}{3} \log_2 \left(\frac{\frac{1}{3}}{\frac{4}{9}} \right) + \frac{1}{3} \log_2 \left(\frac{\frac{1}{3}}{\frac{2}{9}} \right) \\ &= \frac{1}{3} \left(2 \log_2 \left(\frac{3}{2} \right) + \log_2 \left(\frac{3}{4} \right) \right) \\ &= \frac{1}{3} (3 \log_2(3) - 2 \log_2(2) + \log_2(3) - \log_2(4)) \\ &= \log_2(3) - \frac{4}{3} \end{split}$$

I(X,Y) = 0.25162

5.2 Mutual Information and Entropy [19pts]

Given a dataset as below.

Sr.No.	Age	Immunity	Travelled?	Underlying Conditions	Self-quarantine?
1	young	high	no	yes	no
2	young	high	no	no	no
3	middleaged	high	no	yes	yes
4	senior	medium	no	yes	yes
5	senior	low	yes	yes	yes
6	senior	low	yes	no	no
7	middleaged	low	yes	no	yes
8	young	medium	no	yes	no
9	young	low	yes	yes	no
10	senior	medium	yes	yes	yes
11	young	medium	yes	no	yes
12	middleaged	medium	no	no	yes
13	middleaged	high	yes	yes	yes
14	senior	medium	no	no	no

We want to decide whether an individual working in an essential services industry should be allowed to work or self-quarantine. Each input has four features (x_1, x_2, x_3, x_4) : Age, Immunity, Travelled, Underlying Conditions. The decision (quarantine vs not) is represented as Y.

(a) Find entropy H(Y). [3pts]

$$Y = \{yes, no\} = \{1, 0\}$$

$$P(y = 1) = \frac{8}{14} = \frac{4}{7} \qquad P(y = 0) = \frac{6}{14} = \frac{3}{7}$$

$$H(Y) = \sum_{i=1}^{n} P(Y = y_i)I(Y)$$

$$= \sum_{i=1}^{n} P(Y = y_i)\log_2\left(\frac{1}{P(y_i)}\right)$$

$$= -\sum_{i=1}^{n} P(Y = y_i)\log_2P(Y = y_i)$$

$$= -P(y = 1)\log_2P(y = 1) - P(y = 0)\log_2P(y = 0)$$

$$= -\frac{4}{7}\log_2\left(\frac{4}{7}\right) - \frac{3}{7}\log_2\left(\frac{3}{7}\right)$$

$$= -\frac{1}{7}[4\log_2(4) - 4\log_2(7) + 3\log_2(3) - 3\log_2(7)]$$

$$= -\frac{1}{7}[8 + 3\log_2(3) - 7\log_2(7)]$$

$$= -\frac{8}{7} - \frac{3}{7}\log_2(3) + \log_2(7)$$

H(Y) = 0.98523

=-1.14286-0.67926+2.80735

(b) Find conditional entropy $H(Y|x_1)$, $H(Y|x_4)$, respectively. [8pts]

For
$$H(Y|x_1)$$
:

$$Y = \{yes, no\} = \{1, 0\}$$

$$x_1 = \{young, middleage, senior\} = \{g, m, s\}$$

$$P(x_1 = g) = \frac{5}{14}$$
 $P(x_1 = m) = \frac{4}{14} = \frac{2}{7}$ $P(x_1 = s) = \frac{5}{14}$

$$P(x_1 = g, y = 1) = \frac{1}{14}$$
 $P(x_1 = g, y = 0) = \frac{4}{14} = \frac{2}{7}$

$$P(x_1 = m, y = 1) = \frac{4}{14} = \frac{2}{7}$$
 $P(x_1 = m, y = 0) = 0$

$$P(x_1 = s, y = 1) = \frac{3}{14}$$
 $P(x_1 = s, y = 0) = \frac{2}{14} = \frac{1}{7}$

$$H(Y|x_1) = \sum_{x_1 \in X} \sum_{y \in Y} P(x_1, y) \log_2 \left(\frac{P(x_1)}{P(x_1, y)} \right)$$

$$= P(x_1 = g, y = 1) \log_2 \left(\frac{P(x_1 = g)}{P(x_1 = g, y = 1)} \right) + P(x_1 = m, y = 1) \log_2 \left(\frac{P(x_1 = m)}{P(x_1 = m, y = 1)} \right)$$

$$+P(x_1=s,y=1)\log_2\left(\frac{P(x_1=s)}{P(x_1=s,y=1)}\right)+P(x_1=g,y=0)\log_2\left(\frac{P(x_1=g)}{P(x_1=g,y=0)}\right)$$

$$+P(x_1=m,y=0)\log_2\left(\frac{P(x_1=m)}{P(x_1=m,y=0)}\right)+P(x_1=s,y=0)\log_2\left(\frac{P(x_1=s)}{P(x_1=s,y=0)}\right)$$

$$=\frac{1}{14}\log_2\left(\frac{\frac{5}{14}}{\frac{1}{14}}\right)+\frac{2}{7}\log_2\left(\frac{\frac{2}{7}}{\frac{2}{7}}\right)+\frac{3}{14}\log_2\left(\frac{\frac{5}{14}}{\frac{3}{14}}\right)+\frac{2}{7}\log_2\left(\frac{\frac{5}{14}}{\frac{2}{7}}\right)+0+\frac{1}{7}\log_2\left(\frac{\frac{5}{14}}{\frac{1}{7}}\right)$$

$$=\frac{1}{14}\log_2(5)+\frac{2}{7}\log_2(1)+\frac{3}{14}\log_2\left(\frac{5}{3}\right)+\frac{2}{7}\log_2\left(\frac{5}{4}\right)+\frac{1}{7}\log_2\left(\frac{5}{2}\right)$$

$$= 0.16585 + 0 + 0.15792 + 0.09197 + 0.18884$$

 $H(Y|x_1) = 0.60458$

For $H(Y|x_4)$:

$$\begin{split} Y &= \{yes, no\} = \{1, 0\} \\ P(x_4 = 1) &= \frac{8}{14} = \frac{4}{7} \\ P(x_4 = 0) &= \frac{6}{14} = \frac{3}{7} \\ P(x_4 = 1, y = 1) &= \frac{5}{14} \\ P(x_4 = 1, y = 0) &= \frac{3}{14} \\ P(x_4 = 0, y = 1) &= \frac{3}{14} \\ P(x_4 = 0, y = 0) &= \frac{3}{14} \\ H(Y|x_4) &= \sum_{x_4 \in X} \sum_{y \in Y} P(x_4, y) \log_2 \left(\frac{P(x_4)}{P(x_4, y)} \right) \\ &= P(x_4 = 1, y = 1) \log_2 \left(\frac{P(x_4 = 1)}{P(x_4 = 1, y = 1)} \right) + P(x_4 = 0, y = 1) \log_2 \left(\frac{P(x_4 = 0)}{P(x_4 = 0, y = 1)} \right) \\ &+ P(x_4 = 1, y = 0) \log_2 \left(\frac{P(x_4 = 1)}{P(x_4 = 1, y = 0)} \right) + P(x_4 = 0, y = 0) \log_2 \left(\frac{P(x_4 = 0)}{P(x_4 = 0, y = 0)} \right) \\ &= \frac{5}{14} \log_2 \left(\frac{\frac{4}{7}}{\frac{5}{14}} \right) + \frac{3}{14} \log_2 \left(\frac{\frac{3}{7}}{\frac{3}{14}} \right) + \frac{3}{14} \log_2 \left(\frac{\frac{4}{7}}{\frac{3}{14}} \right) + \frac{3}{14} \log_2 \left(\frac{\frac{3}{7}}{\frac{3}{14}} \right) \\ &= \frac{5}{14} \log_2 \left(\frac{8}{5} \right) + \frac{3}{14} \log_2 \left(\frac{8}{3} \right) + \frac{3}{14} \log_2 \left(\frac{8}{3} \right) + \frac{3}{14} \\ &= \frac{5}{14} \log_2 \left(\frac{8}{5} \right) + \frac{3}{14} \log_2 \left(\frac{8}{3} \right) + \frac{3}{14} \\ &= \frac{5}{14} \log_2 \left(\frac{8}{5} \right) + \frac{3}{14} \log_2 \left(\frac{8}{3} \right) + \frac{3}{14} \\ &= 0.24216 + 0.30322 + 0.42857 \end{split}$$

 $H(Y|x_4) = 0.97395$

(c) Find mutual information $I(x_1, Y)$ and $I(x_4, Y)$ and determine which one $(x_1 \text{ or } x_4)$ is more informative. [4pts]

$$I(x_1, Y) = H(Y) - H(Y|x_1)$$
 $I(x_4, Y) = H(Y) - H(Y|x_4)$
 $I(x_1, Y) = 0.98523 - 0.60458$ $I(x_4, Y) = 0.98523 - 0.97395$

$$\boxed{I(x_1, Y) = 0.38065}$$

$$\boxed{I(x_4, Y) = 0.01128}$$

Because a larger mutual information value means a larger reduction in uncertainty, we can say that x_1 is more informative.

(d) Find joint entropy $H(Y, x_3)$. [4pts]

$$\begin{split} Y &= \{yes, no\} = \{1, 0\} \\ P(y &= 1, x_3 = 1) = \frac{5}{14} \\ P(y &= 1, x_3 = 0) = \frac{3}{14} \\ P(y &= 0, x_3 = 1) = \frac{2}{14} = \frac{1}{7} \\ P(y &= 0, x_3 = 0) = \frac{4}{14} = \frac{2}{7} \\ H(Y, x_3) &= \sum_{y \in Y} \sum_{x_3 \in X} P(y, x_3) \log_2 \left(\frac{1}{P(y, x_3)}\right) \\ &= -\sum_{y \in Y} \sum_{x_3 \in X} P(y, x_3) \log_2 \left(P(y, x_3)\right) \\ &= -P(y &= 1, x_3 = 1) \log_2 (P(y = 1, x_3 = 1)) - P(y &= 0, x_3 = 1) \log_2 (P(y = 0, x_3 = 1)) \\ &- P(y &= 1, x_3 = 0) \log_2 (P(y = 1, x_3 = 0)) - P(y &= 0, x_3 = 0) \log_2 (P(y = 0, x_3 = 0)) \\ &= -\frac{5}{14} \log_2 \left(\frac{5}{14}\right) - \frac{1}{7} \log_2 \left(\frac{1}{7}\right) - \frac{3}{14} \log_2 \left(\frac{3}{14}\right) - \frac{2}{7} \log_2 \left(\frac{2}{7}\right) \\ &= 0.5305 + 0.40105 + 0.47622 + 0.51638 \end{split}$$

 $H(Y, x_3) = 1.92417$

5.3 Entropy Proofs [7pts]

(a) Suppose X and Y are independent. Show that H(X|Y) = H(X). [2pts]

Since X and Y are independent, then I(X,Y)=0. Therefore:

$$I(X,Y) = H(X) - H(X|Y)$$

$$0 = H(X) - H(X|Y)$$

$$H(X|Y) = H(X)$$

(b) Suppose X and Y are independent. Show that H(X,Y) = H(X) + H(Y). [2pts]

$$H(X,Y) = H(X) + H(Y)$$

$$-\sum_{x}\sum_{y}P(x,y)\log_{2}P(x,y) = -\sum_{x}P(x)\log_{2}P(x) - \sum_{y}P(y)\log_{2}P(y)$$

Since X and Y are independent, then: $P(X) = \sum_y P(x,y), \quad P(Y) = \sum_x P(y,x)$

$$-\sum_{x}\sum_{y}P(x,y)\log_{2}P(x,y) = -\sum_{x}\sum_{y}P(x,y)\log_{2}P(x) - \sum_{y}\sum_{x}P(y,x)\log_{2}P(y)$$

Since:

$$\sum_{x} \sum_{y} P(x, y) = \sum_{y} \sum_{x} P(y, x)$$

$$-\sum_{x}\sum_{y}P(x,y)\log_{2}P(x,y) = -\sum_{x}\sum_{y}P(x,y)\log_{2}P(x)P(y)$$

Since X and Y are independent, then:

$$P(x)P(y) = P(x,y)$$

$$-\sum_{x}\sum_{y}P(x,y)\log_{2}P(x,y) = -\sum_{x}\sum_{y}P(x,y)\log_{2}P(x,y)$$

(c) Prove that the mutual information is symmetric, i.e., I(X,Y) = I(Y,X) and $x_i \in X, y_i \in Y$ [3pts]

$$I(X,Y) = I(Y,X)$$

$$H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$-\sum_{x} P(x) \log_2 P(x) + \sum_{x,y} P(x,y) \log_2 P(x|y) = -\sum_{y} P(y) \log_2 P(y) + \sum_{y,x} P(y,x) \log_2 P(y|x)$$

$$-\sum_{x,y} P(x,y) \log_2 P(x) + \sum_{x,y} P(x,y) \log_2 P(x|y) = -\sum_{y,x} P(y,x) \log_2 P(y) + \sum_{y,x} P(y,x) \log_2 P(y|x)$$

$$\sum_{x,y} P(x,y) \log_2 \left(\frac{P(x|y)}{P(x)} \right) = \sum_{y,x} P(y,x) \log_2 \left(\frac{P(y|x)}{P(y)} \right)$$

$$\overline{\sum_{x,y} P(x,y) \log_2 \left(\frac{P(x,y)}{P(x)P(y)} \right)} = \sum_{y,x} P(y,x) \log_2 \left(\frac{P(y,x)}{P(y)P(x)} \right)$$

Because joint probability is commutative P(x, y) = P(y, x)

6 Bonus for All [10 pts]

(a) If a random variable X has a Poisson distribution with mean 8, then calculate the expectation ${\rm E}[(X+2)^2]$ [2 pts]

From the definition of a Poisson distribution we know that:

 $E[X] = Var[X] = \lambda$, which in this case is equal to 8.

$$E[(X+2)^{2}] = E[X^{2} + 4X + 4]$$

$$= E[X^{2}] + 4E[X] + E[4]$$

$$= Var[X] + (E[X])^{2} + 4E[X] + E[4]$$

$$= 8 + 64 + 32 + 4$$

$$E[(X+2)^2] = 108$$

(b) A person decides to toss a fair coin repeatedly until he gets a head. He will make at most 3 tosses. Let the random variable Y denote the number of heads. Find the variance of Y. [4 pts]

Here we have a geometric distribution with $p=\frac{1}{2}.$ From the definition of a geometric series the variance is:

$$Var[Y] = \frac{p}{(1-p)^2}$$

$$Var[Y] = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2}$$

$$Var[Y] = \frac{\frac{1}{2}}{\frac{1}{4}}$$

$$\boxed{Var[Y] = \frac{4}{2} = 2}$$

(c) Two random variables X and Y are distributed according to

$$f_{x,y}(x,y) = \begin{cases} (x+y), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & otherwise \end{cases}$$

What is the probability $P(X+Y \le 1)$? [4 pts]

$$P(X+Y \le 1) = \int_0^1 \int_0^{1-x} f_{x,y}(x,y) \, dy \, dx$$

$$= \int_0^1 \int_0^{1-x} (x+y) \, dy \, dx$$

$$= \int_0^1 (xy + \frac{y^2}{2}) \Big|_0^{1-x} \, dx$$

$$= \int_0^1 (x(1-x) + \frac{(1-x)^2}{2}) \, dx$$

$$= \int_0^1 (x - x^2 + \frac{1}{2} - x + \frac{x^2}{2}) \, dx$$

$$= \int_0^1 (\frac{1}{2} - \frac{x^2}{2}) \, dx$$

$$= \frac{x}{2} - \frac{x^3}{6} \Big|_0^1$$

$$= \frac{1}{2} - \frac{1}{6}$$

$$P(X+Y\le 1) = \frac{1}{3}$$