电气精品教材丛书

心於至善

"十三五"江苏省高等学校重点教材工业和信息化部"十四五"规划教材

电力电子技术 · Power Electronics

第3章 高频功率半导体器件

- 3.1 功率半导体器件分类
- ★ 3.2 功率二极管
 - 3.3 双极型功率晶体管
- ★ 3.4 功率场效应晶体管
 - 3.5 绝缘栅双极型晶体管

功率半导体器件分类

按可控性分类

不可控:

功率二极管

半控型:

晶闸管及其派生

全控型:

BJT, MOSFET, IGBT

按驱动信号分类

电压驱动型:

MOSFET, IGBT

电流驱动型:

BJT

按载流子导电情况

单极型:

MOSFET

双极型:

晶闸管、BJT、IGBT

3.2 功率二极管

- 3.2.1 基本结构与工作原理
- 3.2.2 二极管的稳态特性
- 3.2.3 二极管的动态特性
- 3.2.4 二极管类型
- 3.2.5 二极管的主要参数

- 功率二极管由一个面积较大的PN结和两端引线以及封装组成。
- 常用于整流、续流和电压箝位等。

电气符号

■ 两种半导体

- P型 (空穴型)
- N型 (电子型)

• 由不能移动的带电离子组成空间电荷区

■ 两种运动

- 由于浓度差引起多子的扩散运动。
- 在内电场作用下少子产生漂移运动。

■ 一个PN结

• 扩散运动和漂移运动的动态平衡

PN结示意图

基本结构与工作原理

■ PN 结的单向导电性

- 内电场被削弱,耗尽层变窄。
- 扩散占优势。
- PN 结呈现的电阻很小,称为正向导通。

- 内电场被加强,耗尽层变宽。
- 漂移占优势。
- PN 结呈现的电阻很大, 称为反向截止。

■ 门坎电压 U_{th}:

• 当外加电压大于 U_{th} 时,二极管导通,此后电流迅速上升。

■ 反向饱和电流*I*_s:

• 当外加反向电压时,二极管反向截止,只有微小 而恒定的反向漏电流*I*_s。

■ 击穿电压 *U*_B:

- · 当反向电压超过 $U_{\rm B}$ 后,二极管将被击穿,反向电流迅速增加。
- 雪崩击穿、齐纳击穿;可能导致热击穿。

功率二极管伏安特性曲线

	正向导通	反向截止	反向击穿
电流	正向大	微小电流I _s	反向大
电压	1V左右	反向大	反向大
阻态	低阻态	高阻态	

二极管的动态特性一反向恢复

定义: 当处于正向导通的二极管突然施加反压时,它不能立即关断,而是需经过一段时间才能恢复反向阻断能力并进入完全关断状态,这个过程称为反向恢复。

功率二极管的反向恢复过程

東南大學電氣工程學院

原理: 结电容效应

 C_J : 二极管的结电容 (势垒电容+扩散电容)

Q: 结电容存储电荷

考虑结电容的二极管模型

$[0, t_1]$

- 在 t_1 时刻之前,二极管正向导通, $u_D=U_F$ 。
- 在 t_1 时刻, U_{dc} 突然反向, i_D 开始下降。由于回路中的电感L, i_D 不会瞬时下降到零,二极管仍处于导通状态。

功率二极管的反向恢复过程

$[t_1, t_2]$

• 在 t_2 时刻, i_D 下降至零。由于结电容存储的电荷Q 并不能立即消失, u_D 仍为正向导通压降 U_F 。

功率二极管的反向恢复过程

$[t_2, t_3]$

• 在 t_3 时刻,反向电流达到最大值 I_{RP} ,该反向电流使存储电荷逐渐消失, u_D 下降至零。

功率二极管的反向恢复过程

$[t_3, t_4]$

• 二极管反向阻断能力逐渐恢复,反向等效电阻 迅速增大, u_D 反向增大到最大值 U_{RP} 后逐渐减 小至稳态值 U_{R} 。当反向电流降至约 $10\%I_{RP}$ 时 ,近似认为反向恢复过程结束。

功率二极管的反向恢复过程

■ t_{rr}: 二极管的反向恢复时间

t_d: 延迟时间

■ t_f: 下降时间

• $S_{\rm F}$: 柔度系数 $S_{\rm F}=t_{\rm f}/t_{\rm d}$

■ 电压与电流交叠区产生较大的反向恢复损耗。

■ 选择器件时,额定电压应大于电压尖峰产生的 电压应力。

功率二极管的反向恢复过程

二极管类型

	普通二极管	快恢复二极管	硅肖特基二极管	SiC肖特基二极管	GaN肖特基二极管
额定电压	数干伏	数干伏	小于150V	600V~1700V	600V
额定电流	数百安	数百安	数百安	小于50A	小于10A
导通压降	大	较大	/J\	小	小
反向恢复时间	大于5μs	50ns~5μs	小于30ns	小10~20ns	小10~20ns
工作频率	1kHz以下	数十kHz以下	数百kHz以下	数兆Hz以下	数兆Hz以下
工作温度	低	低	低	高	高
其他特点	不建议并联	不建议并联	不建议并联	可并联 漏电流最小	商业化较少 (在研)
适用场合	电压/电流任意	高压/电流任意	低压大电流	高压中等电流	中压小电流

■ 正向导通压降 U_F

在指定温度下, 二极管流过某一稳态正向电流时对应的正向导通压降。

■ 额定正向平均电流 I_F

在指定结温、规定散热条件下二极管允许流过的最大工频正弦半波电流的平均值。

■ 反向重复峰值电压 U_{RRM}

二极管工作时所能重复施加的反向最高峰值电压(即<mark>额定电压</mark>)。使用时,通常按电路中二极管电压应力的 1.5 倍来选取二极管额定电压。

■ 反向恢复时间 t_{rr}

从正向电流过零到反向电流下降到其峰值 10%的时间间隔。

■ 最高允许结温 T_{iM} 结温

PN 结不损坏所能承受的最高平均温度。

3.3 双极型功率晶体管

- 3.3.1 基本结构与工作原理
- 3.3.2 BJT的稳态特性
- 3.3.3 BJT的动态特性
- 3.3.4 BJT的主要参数

基本结构与工作原理

- BJT--Bipolar Junction transistor, 双极型功率晶体管。
- BJT由三层半导体、两个 PN 结构成, 分为 NPN 型和 PNP 型两类。

NPN型BJT结构图

NPN型

N-漂移区的电阻率和厚度决定器 件的阻断能力

■ 电阻率高、厚度大、阻断能力强

PNP型

增大了导通饱和电阻

降低了电流增益 ($\beta=5\sim20$)

NPN型BJT共射极电路

■ 基极电流

$$I_{\rm b} = (U_{\rm b} - U_{\rm be}) / R_{\rm b}$$

■ 集电极电流

$$I_{\rm c} = \beta I_{\rm b} = (U_{\rm b} - U_{\rm be})\beta / R_{\rm b}$$

■ 集-射极电压

$$u_{\rm ce} = U_{\rm c}$$
 - $I_{\rm c}R_{\rm c} = U_{\rm c}$ - $(U_{\rm b}$ - $U_{\rm be})\beta R_{\rm c}$ / $R_{\rm b}$

■ 临界饱和基极电流

$$I_{\rm bs} = I_{\rm cs} / \beta$$

■ 过驱动系数

$$ODF = I_b / I_{bs}$$

BJT的稳态特性

- 与二极管 PN 结的正向伏安特 性曲线相似。
- 当 *U*ce大于 2V 后, *U*ce数值的改变对输入 特性曲线影响很小。

- 在截止区, BJT 基极电流为零, 两个 PN 结都反偏。
- · 在放大区,基极电流大于零,b-e 结正偏,b-c 结反偏。
- 在饱和区,两个 PN 结都正偏。

南京 四牌楼2号 http://ee.seu.edu.cn

BJT的主要参数

■ 额定电压 $U_{(BR)CE}$

指集电极-发射极之间的正向击穿电压值。

- 额定电流 (最大允许电流) I_{CM}
- 一般根据最大集电极电流的 1.5 倍来选择额定电流。
- 饱和压降 U_{CES}

是指在规定集电极电流和基极电流(或 ODF)下的集-射极之间的饱和压降。

■ 最大耗散功率 P_{CM}

是指在最高工作温度下允许的耗散功率。

- 二次击穿曲线与安全工作区 (Safe Operation Area, SOA)
- 二次击穿是 BJT 特有的现象。一次击穿是雪崩击穿。二次击穿是永久性损坏。

3.4 功率场效应晶体管

- 3.4.1 基本结构与工作原理
- 3.4.2 MOSFET的稳态特性
- 3.4.3 MOSFET的动态特性
- 3.4.4 MOSFET的主要参数
- 3.4.5 宽禁带半导体场效应晶体管

BJT

- 工作频率提高,BJT开关损耗增大;
- 电流控制型器件,大功率BJT的β很低,一般 在20以下,驱动功率很大;
- 存在二次击穿问题,必须仔细设置缓冲电路。

MOSFET D

- 开关速度快, 开关损耗小;
- 电压控制型器件,驱动功率更小;
- 无二次击穿问题。

基本结构与工作原理

MOSFET--Metal Oxide Semiconductor Field Effect Transistor, 金属氧化物半导体场效应晶体管。

结型

外加电场控制场效应晶体管栅-源 之间 PN 结耗尽区的宽度来控制沟 道电导

• 绝缘栅型

栅-源之间是用硅氧化物介质将金属电极和半导体隔离,利用外加电场控制半导体中感应电荷量的变化控制沟道电导

基本结构与工作原理

MOSFET--Metal Oxide Semiconductor Field Effect Transistor, 金属氧化物半导体场效应晶体管。

耗尽型

当栅极电压为零时漏源极之间就存在导电沟道。

增强型

对于N(P)沟道器件, 栅极电压大于 (小于) 零时才存在导电沟道。

• 沟道性质

按导电沟道性质可分为P沟道和N 沟道,功率场效应晶体管主要是N 沟道增强型。

- 通常在制造时,将P型衬底和源极S短接。
- 栅极金属极板与 P 型半导体衬底之间由二氧化硅绝缘层隔离,相当于一个电容。
- U_{GS} =0时,在漏-源之间加上正或负电压,由于漏-源之间是 N-P-N 结构,总有一个 PN 结处于 反向阻断,不可能产生电流。

- 在 G-S 之间加正电压 U_{GS} ,栅极极板上存储正电荷,产生的电场将 P 型半导体中的多子--空穴 推开远离栅极,将少子--电子吸引到栅极下的 P 型半导体表面上。
- 当 U_{GS} 大于 U_{T} (开启电压)时,栅极下P型半导体表面的自由电子浓度超过空穴浓度,使 P型半导体反型为 N型半导体。
- 漏极和源极被反型层连通,形成导电沟道。

- 场效应晶体管三个电极在一个平面上,沟道不能做的很短,沟道电阻大。
- 导电沟道是由表面感应电荷形成的,沟道 电流是表面电流,载流能力差。

VMOSFET:

- ✓ 精确控制沟道长度, 使沟道电阻减少。
- ✓ 采用低掺杂的 N-漂移区(外延层),提 高了漏-源击穿电压。
- ✓ 沟道面积比平面结构大而短,提高了载流 能力。

• 在 VMOSFET 结构中,高击穿电压和低导 通电阻很难兼得。

CoolMOS:

- ✓ 超结全称为超级 PN 结, 超结器件结构的 核心在于漂移区中交替的 P/N 层结构。
- ✓ 提高了漂移区的掺杂浓度,大大降低了导通电阻,同时不改变器件的击穿电压值。
- ✓ 具有高开关速度。

CoolMOS

结电容

输入电容
$$C_{iss} = C_{GS} + C_{GD}$$
 $(C_{DS}$ 短接)

输出电容
$$C_{oss} = C_{DS} + C_{GD}$$
 $(C_{GS}$ 短接)

反馈电容
$$C_{rss} = C_{GD}$$

寄生二极管 (体二极管)

- 寄生二极管反向恢复时间一般较长。
- 如果在晶体管导通之前使寄生二极管导通,将晶体管两端电压箝位在0,可实现晶体管零电压导通。

MOSFET的稳态特性

• 可变电阻区 $u_{\rm DS} < U_{\rm GS} - U_{\rm T}$

在可变电阻区,相当于一个电阻,此电阻随 U_{GS} 的增大而减小。MOSFET 导通时即工作在 这个区域。

• 截止区 U_{GS}

在截止区,漏极电流 i_D 为零。

击穿区

当 u_{DS} 加大到一定 数值以后,漏极附近 PN 结 发生击穿,漏电流迅速增大,曲线上翘,进 入击穿区。

• 饱和区 $u_{\mathrm{DS}} > U_{\mathrm{GS}} - U_{\mathrm{T}}$

在饱和区,漏极电流近似为一个常数。

- *t*_{d(on)} 开通延迟时间
- t_r—上升时间
- t_{d(off)} 关断延迟时间
- t_f 下降时间

- 在 t_0 时刻, u_{dri} 变为高电平,并通过 R_g 为 C_{GS} 充电,栅源极电压 u_{GS} 呈指数曲线上升。
- 由于 u_{GS} 小于开启电压 U_{T} , MOSFET 尚未开通。

- 在 t_1 时刻, u_{GS} 上升到 U_T ,MOSFET 的导电沟道形成, 产生漏极电流 i_D 。
- 在 i_D 尚未达到电感电流 i_L 的过程中, D_{FW} 维持导通,漏源极电压 u_{DS} 基本保持不变, u_{GS} 继续呈指数曲线上升。

- t_2 时刻, i_D 与 i_L 相等, D_{FW} 关断, u_{DS} 开始下降。
- 中由于 u_{DS} 下降速度快,因此驱动电流中的大部分先为 C_{GD} 放电,进而再为 C_{GD} 反向充电。
- C_{GS} 所在支路电流很小,可近似忽略,因此 u_{GS} 基本保持不变,呈现一段平台波形,称为密勒平台。

 $[t_3, t_4]$

- t_3 时刻, u_{DS} 下降到零,MOSFET 完全导通,由于 u_{DS} 不再变化,因此 C_{GD} 所在支路电流很小。
- 驱动电流中的大部分继续为 C_{GS} 充电,直至 t_4 时刻 uGS达到稳态值。

■ 导通电阻 R_{DS(on)}

导通电阻的大小决定器件的导通损耗。具有正温度系数,有利于并联均流。

 $R_{\rm D} = k U_{\rm (BR)DS}^{1.8 \sim 2.7}$

■ 开启电压 U_{T}

MOSFET开通时的栅-源电压值。

■ 漏-源击穿电压 $U_{(BR)DS}$

MOSFET 的最高工作电压。按电路中 MOSFET 电压应力的 1.5 倍选取。

■ 栅-源击穿电压 $U_{(BR)GS}$

栅极和源极之间绝缘层的击穿电压,一般在栅源极间并联电阻实现静电泄放。

■ 最大允许漏极电流 I_{DM}

按MOSFET 电流应力的 1.5 倍选取。

■ 最大允许功率损耗 P_{DM}

最高结温不超过晶体管的最高允许结温时的允许功耗值。

$$P_{DM} = \left(\frac{T_{jM} - T_a}{T_{jM} - 25^{\circ}C}\right) P_{DMT}$$

 10^{3}

 10^{2}

MOSFET 导通电阻限制线,限制了器件的工作电流。

最大脉冲漏极电流 I_{DM}

等功耗线 $P_{\rm DM}$,对应不同脉冲 宽度下的功率损耗限制。

最大漏源击穿电压 $U_{(\mathrm{BR})\mathrm{DS}}$

MOSFET安全工作区

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

3.5 绝缘栅双极型晶体管

- 3.5.1 基本结构与工作原理
- 3.5.2 IGBT的基本特性
- 3.5.3 IGBT的主要参数

BJT

- 导通压降低
- 开关速度慢
- 驱动功率大

MOSFET D

- 开关速度快
- 驱动电流小
- 导通电阻大

绝缘栅双极型晶体管

Insulated Gate Bipolar Transistor

 R_{MOD} PNP

E

IGBT内部结构

等效电路图

- 在重掺杂 P+衬底上生长一层 N-漂移层,再在漂移层上制造出栅极和源极。
- 在 P+和 N- 之间增加一层 N+缓冲层,降低 IGBT的导通压降。

• 线性放大区

以BJT 特性为主, 电压和电流都很大, 损耗也大。

• 饱和区

以 MOSFET 特性为主, u_{GE} 越高, 饱和电流越大。

• 反向阻断区

当 u_{CE} <0时,IGBT 为反向工作状态,只有很小的集电极漏电流流过, U_{RM} 是 IGBT 能够承受的最高反向阻断电压。

在电力电子变换器中,IGBT工作在开关状态, 即工作在正向阻断区或饱和区。

- t_{fv1} 为 IGBT 中 MOSFET 单独工作的电压下降过程,由于 MOSFET 的密勒效应,该过程中 u_{GE} 基本保持不变。
 - t_{fi2}对应 IGBT 内部 PNP 晶体管的关断过程,由于 PNP 晶体管基区载流子高注入,存储电荷无法用外加反向抽流使其迅速消失,只能靠自然复合消失。这就出现 IGBT 关断时特有的电流拖尾现象,使得下降时间加长,造成较大的关断损耗。

■ 饱和压降 $U_{\text{CE(sat)}}$

IGBT饱和导通压降,直接决定IGBT的导通损耗。一般为 2~3V。

■ 最大开路电压 $U_{(BR)CEO}$

在实际应用中,应根据电压应力的 1.5 倍选择 IGBT 的额定电压。

■ 集电极最大电流 $I_{C(max)}$

实际设计时,按照 IGBT电流应力的 1.5 倍来选择额定电流。

■ 最大集电极功耗 P_{CM}

在室温 25°C的情况下,IGBT 工作时允许产生的最大耗散功率。

本章内容

	Diode	SCR	вјт	MOSFET	IGBT
可控性	不控	半控	全控	全控	全控
驱动类型	/	电压型	电流型	电压型	电压型
导电载流子	空穴、电子	空穴、电子	空穴、电子双极型	电子单极型	空穴、电子双极型
其他特点	负温度系数、反向 恢复	开通关断条 件	导通压降与关断速度 的矛盾	导通电阻正温度系 数	电流拖尾现象
适用场合	低频~高频 小功率~大功率	低频 大功率	低频 大功率	高频(50k以上) 中小功率	中高频 (20k-100k) 中大功率

