Group Theory

Arifa Alam

November 25, 2024

1 Basics

Laws of compositions:

• Associative Law: (ab)c = a(bc)

• Commutative Law: ab = ba

These two laws shown using the product operation. However, a group may have other operation such as addition.

Let $g \circ f$ denote as the composition of two functions g and f. Then for functions g, f, and h the associativity holds but comutativity necessearly doesn't (take matrix multiplication, for example). In other words—

$$(g \circ f) \circ h = g \circ (f \circ h)$$

Identity of law of compostions is defined as-

$$ae = ea = a$$

(and yes, a = e)

Definition 1.1: Groups

A group is a set ${\cal G}$ which should satisfy these following properties—

- \bullet Associative for every element in ${\cal G}.$
- Exist identity element, unique.
- ullet Exist inverse for all element in G.

A group is abelian if its law of compostion is commutative. Such as $\mathbb{Z}^+, \mathbb{R}^+, \mathbb{R}^\times, \mathbb{C}^+, \mathbb{C}^\times$ The \times and + signs are defining the operations, not the set.

Order of a group is defined as its cardinality, |G|.

Theorem 1.1: Cancellation Law

Let a, b, and c be elements of G whose law of composition is written multiplicatively. If ab = ac or ba = ca then b = c. And if ab = a and ba = a then b = 1.

Proof. Just multiply with a^{-1} in both left and right side of the term.

Definition 1.2: Subgroup

A subset H of a group G must have the following properties:

• Closure: If $a \in H \implies ab \in H$. • Identity: $1 \in H$ • Inverse: $a \in H \implies a^{-1} \in H$

A subgroup is proper subgroup if it's not trivial subgroup. And they are-

• The group itself

• The subgroup only with identity

Some examples of subgroup are-

- circle group: Let group $G=\mathbb{C}$ for which absolute value of every element in \mathbb{C} is equals to 1. The unit circle of the plane is the subgroup of G, which is the circle group.
- special linear group: G is the set of $n \times n$ matrices. Matrices with determinant 1 are subgroup of G, which is a special linear group also known as SL_n . And G is known as general linear group GL_n

Theorem 1.2

Let S be a subgraoup of the additive group of \mathbb{Z}^+ . Either S is the trivial subgroup 0, or else it has to be in the form $\mathbb{Z}a$, where a is the smallest positive integer in S.