Medición de campo magnético

M. Marziali Bermudez

1. Generalidades

Para medir una magnitud se necesita cuantificar un efecto observable de la misma. Cuando se trata de un campo magnético, algunos de los efectos de interés son:

- Un dipolo magnético en un campo magnético externo sufre un torque
- Un campo magnético variable induce una f. e. m.
- Una carga en movimiento en un campo magnético sufre una fuerza

2. Sensor de efecto Hall

2.1. El efecto Hall

Consideremos un conductor por el cual circula una densidad de corriente \bar{J} en la dirección \hat{x} . Desde un punto de vista puramente clásico se puede pensar que dentro del conductor hay cargas libres q moviéndose con alguna velocidad media $\bar{v}=v\,\hat{x}$ de manera que

$$\bar{J} = q \,\rho \,\bar{v},\tag{1}$$

donde ρ es la densidad de cargas libres. Hasta ahora no especificamos el valor de dichas cargas. Resulta intuitivo pensar que tratándose de electrones, debería ser q=-e, pero por ahora dejemos el interrogante planteado.

Si introducimos un campo magnético \bar{B} en la dirección \hat{z} , como se muestra en la figura 1, se ejercerá una fuerza sobre las cargas en movimiento en la dirección $-\hat{y}$

Muestre que la dirección de la fuerza es independiente del signo de q.

Figura 1: Esquema de un conductor en un campo magnético, para el caso q = -e.

Esta fuerza provocará una acumulación de cargas en los laterales del conductor que, a su vez, dará origen a un campo eléctrico en la dirección $\pm \hat{y}$ cuyo efecto contrarrestará a la fuerza magnética, una vez alcanzado el equilibrio.

Muestre que en el equilibrio el campo eléctrico es proporcional a $\bar{B} \times \bar{J}$.

Dicha constante de proporcionalidad se denomina coeficiente de Hall, y se nota R_H .

Bajo el supuesto de que las cargas libres son electrones libres, calcule el signo de \mathbb{R}_H .

En los metales alcalinos el valor de R_H medido experimentalmente concuerda aceptablemente con el que se obtiene de este modelo, mientras que para otros elementos difiere significativamente e incluso en algunos, como el aluminio por ejemplo, ¡tiene el signo opuesto! La razón de esto no puede explicarse en términos clásicos y requiere un análisis más profundo... a esperar hasta Estructura 2.

2.2. La sonda Hall

La sonda Hall aprovecha el efecto Hall para medir el campo magnético. El campo eléctrico debido a la distribución de cargas genera una diferencia de potencial entre los bordes del conductor. Dada una corriente fija, esta tensión resulta proporcional a la componente normal del campo magnético.

$$V(B_{\perp}) = V_0 + A \mid B_{\perp} \tag{2}$$

donde B_{\perp} es la componente perpendicular al sensor del campo magnético y V_0 es una tensión de campo nulo