

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15700 N	M_{v}	= -23600 Nmm	G	$= 76000 \text{ N/mm}^2$
T_{x}	= 4350 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 13700 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	₃ =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17900 N	M_{v}	= -31000 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5080 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 10300 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20100 N	M_{v}	= -40000 Nmm	G	$= 76000 \text{ N/mm}^2$
T_{x}	= 4020 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -11800 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 15300 N
                                                                     M,
                                                                                = -50800 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 4810 N
                                                                                = 220 \text{ N/mm}^2
           = 13300 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 17600 N
                                                                     M,
                                                                                = -43200 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5700 N
                                                                                = 220 \text{ N/mm}^2
           = 14900 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 17700 N
                                                                     M,
                                                                                = -28800 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5430 N
                                                                                = 220 \text{ N/mm}^2
           = 10300 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 20000 N
Ν
                                                                     M,
                                                                                = -35900 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 4080 N
                                                                                = 220 \text{ N/mm}^2
           = -11800 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 15200 N
                                                                     M_{v}
                                                                                 = -44600 Nmm
                                                                                                                                           G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 4720 N
           = 13300 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                           \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                      \tau(T_x)_d =
                                                                                                                                           \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 17400 N
                                                                     M,
                                                                                = -37500 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5470 N
                                                                                = 220 \text{ N/mm}^2
           = 14900 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19800 N	M_{v}	= -47700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6310 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -11300 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf lls}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 19900 N
                                                                     M,
                                                                                = -38200 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5060 N
                                                                                = 220 \text{ N/mm}^2
           = 11900 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 15100 N
                                                                     M,
                                                                                = -44500 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5390 N
                                                                                = 220 \text{ N/mm}^2
           = -13400 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 17400 N
                                                                     M_{v}
                                                                                 = -35800 Nmm
                                                                                                                                           G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5880 N
                                                                                 = 220 \text{ N/mm}^2
           = -15000 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                           \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                      \tau(T_x)_d =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19700 N	M_v	= -44200 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6510 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -11300 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_{s}$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_I =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf lls}$	=	J_p	=
´					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 22200 N	M_{v}	= -54300 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4930 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_t}$	= 12900 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
v_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_{v}	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=
* .				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 15100 N
                                                                     M,
                                                                                = -49800 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 6920 N
           = 13500 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17200 N	M_{v}	= -37300 Nmm	G	$= 76000 \text{ N/mm}^2$
T_{x}	= 6980 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -15000 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
′				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 19500 N	M_{v}	= -43900 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 7250 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 11300 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21900 N	M_{v}	= -52100 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5250 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 12900 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_i =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_{v})$	=	$\sigma_{\sf lls}$	=	J_p	=
′				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16600 N
                                                                      M_{v}
                                                                                 = -62200 Nmm
                                                                                                                                           G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5890 N
                                                                                 = 220 \text{ N/mm}^2
           = 14500 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20000 N	M_{v}	= -51700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 8090 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 17600 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_{v})$) =	$\sigma_{\sf lls}$	=	J_p	=
′				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19400 N	M_v	= -48600 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 9260 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 11300 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21800 N	M_{v}	= -54600 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6230 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 12900 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_{v})$	=	$\sigma_{\sf lls}$	=	J_p	=
′				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16500 N	M_{v}	= -62500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6600 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -14500 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf lls}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 18900 N	M_v	= -49100 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 7120 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 16200 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$) =	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 14000 N	M_{v}	= -37300 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5020 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -6320 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	₃ =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16000 N
                                                                      M_{v}
                                                                                 = -49900 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 4050 N
                                                                                 = 220 \text{ N/mm}^2
           = -7320 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 12400 N
Ν
                                                                      M_{v}
                                                                                  = -65300 Nmm
                                                                                                                                             G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 4940 N
                                                                                  = 220 \text{ N/mm}^2
           = 8370 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\mathsf{mises}}
                                                                       \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 14400 N
                                                                      M_{v}
                                                                                  = -56900 Nmm
                                                                                                                                             G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5940 N
                                                                                  = 220 \text{ N/mm}^2
           = 9480 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\mathsf{mises}}
                                                                       \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16600 N
                                                                      M_{v}
                                                                                 = -74100 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 7030 N
           = 7230 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                                                                                            \sigma_{\text{Id}}
                                                                      \tau(M_t)_d =
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16000 N	M_v	= -42800 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 3980 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 7420 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$) =	$\sigma_{\sf IIs}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 12300 N
                                                                      M_{v}
                                                                                 = -55100 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 4690 N
                                                                                 = 220 \text{ N/mm}^2
           = -8480 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 14400 N	M_{v}	= -47800 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5540 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -9590 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
~ .´				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16500 N
                                                                      M_{v}
                                                                                  = -62400 Nmm
                                                                                                                                             G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 6500 N
                                                                                  = 220 \text{ N/mm}^2
           = 7310 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\mathsf{mises}}
                                                                       \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 18800 N
                                                                      M_{v}
                                                                                 = -79900 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5150 N
                                                                                 = 220 \text{ N/mm}^2
           = 8430 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                                                                                            \sigma_{\text{Id}}
                                                                      \tau(M_t)_d =
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 12400 N
                                                                      M_{v}
                                                                                 = -52700 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5210 N
                                                                                 = 220 \text{ N/mm}^2
           = 8680 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 14400 N	M_{v}	= -43700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5750 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 9800 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_d$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16600 N
                                                                      M_{v}
                                                                                 = -55500 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 6470 N
                                                                                 = 220 \text{ N/mm}^2
           = 7460 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 18900 N
                                                                      M_{v}
                                                                                 = -70100 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 5000 N
           = 8590 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 14500 N
                                                                      M_{v}
                                                                                 = -87800 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5880 N
                                                                                 = 220 \text{ N/mm}^2
           = -9770 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 14400 N	M_{v}	= -45000 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6920 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -9950 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	<u> </u>	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16500 N	M_{v}	= -53900 Nmm	G	$= 76000 \text{ N/mm}^2$
T_{x}	= 7170 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 7560 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$	<u> </u>	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 18800 N	M_v	= -65500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5230 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= 8690 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_y)$) =	$\sigma_{\sf lls}$	=	J_p	=
_ ·				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 14400 N
                                                                      M_{v}
                                                                                  = -80100 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 5940 N
           = 9880 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16700 N
                                                                      M_{v}
                                                                                 = -66500 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 6780 N
                                                                                 = 220 \text{ N/mm}^2
           = 11100 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16600 N	M_{v}	= -60700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 9580 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= -7710 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_c$	_i =	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	σ_{lls}	=	J_p	=
	.				

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 18800 N
Ν
                                                                      M_{v}
                                                                                  = -68500 Nmm
                                                                                                                                             G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 6300 N
           = 8840 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\mathsf{mises}}
                                                                       \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 14400 N
                                                                      M_{v}
                                                                                 = -79300 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 6650 N
           = 10000 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16700 N	M_{v}	= -63500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 7210 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 11200 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	$\sigma_{\sf IIs}$	=	J_p	=
´					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 19100 N
                                                                      M_{v}
                                                                                 = -78100 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 7940 N
           = -8550 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                             \sigma_{\text{ld}}
                                                                      \tau(T_{xc}) =
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                             \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                             \sigma_{\text{mises}}
                                                                      \tau(T_x)_d =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 12100 N
                                                                     M,
                                                                                = -48800 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 3550 N
                                                                                = 200000 \text{ N/mm}^2
           = -4020 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 9530 N
Ν
                                                                      M_{v}
                                                                                 = -65600 Nmm
                                                                                                                                           G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 4380 N
           = -4650 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{Id}}
                                                                      \tau(T_{xc}) =
           =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 11200 N	M_v	= -58500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5330 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
M _t	= -5320 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 13100 N
                                                                     M,
                                                                                = -77600 Nmm
                                                                                                                                         G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 6380 N
                                                                                = 200000 \text{ N/mm}^2
           = -4090 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15100 N	NA	= -100000 Nmm	G	$= 76000 \text{ N/mm}^2$
		M_y		G	= 70000 14/111111
T_x	= 5120 N	σ_{a}	= 220 N/mm ²		
M_t	= 4760 Nmm	E	= 200000 N/mm ²		
x_G	=	$\tau(M_t)_d$	_i =	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	=
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{d}$	=	r_v	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$) =	σ_{IIs}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 9700 N
Ν
                                                                     M,
                                                                                = -54600 Nmm
                                                                                                                                           G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 4140 N
                                                                                = 200000 \text{ N/mm}^2
           = -4920 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                           \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 11400 N	M_{v}	= -48500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4930 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= -5610 Nmm	Е	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 13300 N	M_{v}	= -64700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5840 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= -4310 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	₁ =	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_y)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 15300 N
                                                                     M,
                                                                                = -84500 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 4680 N
                                                                                = 200000 \text{ N/mm}^2
           = -5000 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 11800 N
                                                                     M,
                                                                                = -108000 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5650 N
                                                                                = 220 \text{ N/mm}^2
                                                                                = 200000 \text{ N/mm}^2
           = -5730 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 11700 N	M_{v}	= -44400 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5200 N		$= 220 \text{ N/mm}^2$		
$\hat{M_t}$	= 5960 Nmm	σ _a Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=
_ · ·					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 13600 N	M_{v}	= -57300 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5830 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -4560 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_{v})$	=	$\sigma_{\sf lls}$	=	J_p	=
′				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 15600 N	M_{v}	= -73500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4520 N		$= 220 \text{ N/mm}^2$		
$\hat{M_t}$	= 5280 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
v_o	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	1	= 12100 N	M_{v}	= -93600 Nmm	G	$= 76000 \text{ N/mm}^2$
Т	- ×	= 5360 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
	Λ̂ _t	= -6040 Nmm	E	= 200000 N/mm ²		
Х	G	=	$\tau(M_t)_d$	_ =	σ_{Id}	=
u		=	$\tau(T_{xc})$	=	σ_{IId}	=
٧	0	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α		=	$\tau(T_x)_s$	=	σ_{mises}	
C	, w	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J	u	=	σ	=	θ_{t}	=
J	v	=	$ au_{s}$	=	r_u	=
J		=	$ au_{\sf d}$	=	r_v	=
	(N)		$\sigma_{\sf ls}$	=	r_{o}	=
σ	(M_y)	=	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 14100 N
Ν
                                                                     M,
                                                                                = -80000 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 6310 N
                                                                                = 200000 \text{ N/mm}^2
           = -6830 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                          \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                          \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                          \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 13800 N	M_{v}	= -57100 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6760 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
	= 4770 Nmm		= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 15800 N	M_{v}	= -69400 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4840 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
	= -5500 Nmm	Е	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	_ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_{v}	=	$ au_{ extsf{s}}$	=	r_u	=
J_t	=	$ au_{d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 12200 N	M_v	= -85400 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5460 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= -6270 Nmm	Е	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	$)_{d}=$	σ_{tresca}	=
Α	=	$\tau(T_{x})_{s}$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{c}$	_d =	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v$	(i) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 14200 N	M_v	= -71700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6230 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_{t}}$	= -7090 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_{v})$) =	$\sigma_{\sf lls}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16400 N
                                                                     M,
                                                                                = -91400 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 7140 N
                                                                                = 200000 \text{ N/mm}^2
           = 5400 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                           \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16100 N	M_v	= -76400 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6320 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_{t}}$	= 5760 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	o _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v$) =	$\sigma_{\sf IIs}$	=	J_p	=
′					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 12400 N	M_{v}	= -87100 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6410 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_t}$	= 6540 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	_d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_v)$	=	$\sigma_{\sf lls}$	=	J_p	=
* .				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 14400 N	M_{v}	= -69500 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 6800 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= -7370 Nmm	E	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)	=	σ_{ls}	=	r_{o}	=
$\sigma(M_y)$	=	σ_{IIs}	=	J_p	=
•				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 16600 N
                                                                      M_{v}
                                                                                 = -85600 Nmm
                                                                                                                                            G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 7420 N
           = -5600 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
                                                                                                                                            \sigma_{\text{Id}}
                                                                      \tau(T_{xc}) =
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{xb})_d =
                                                                                                                                            \sigma_{tresca} =
                                                                      \tau(T_x)_s =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                      \tau(T_x)_d =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 18900 N
Ν
                                                                        M,
                                                                                   = -105000 Nmm
                                                                                                                                                G
\begin{matrix} T_x \\ M_t \end{matrix}
           = 5590 N
                                                                                   = 220 \text{ N/mm}^2
           = -6440 Nmm
                                                                                   = 200000 \text{ N/mm}^2
                                                                        \tau(M_t)_d =
                                                                                                                                                \sigma_{\text{Id}}
                                                                        \tau(\mathsf{T}_{\mathsf{xc}}) =
           =
                                                                                                                                                \sigma_{\text{IId}}
                                                                        \tau(T_{xb})_d =
                                                                                                                                                \sigma_{tresca} =
                                                                        \tau(T_x)_s =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                        \tau(T_x)_d =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

ŀ	N	= 6980 N	M_v	= -47500 Nmm	G	$= 76000 \text{ N/mm}^2$
-	T_x	= 3120 N		$= 220 \text{ N/mm}^2$		
	$\hat{M_{t}}$	= 2340 Nmm	σ _a Ε	= 200000 N/mm ²		
7	x _G	=	$\tau(M_t)_d$	₁ =	σ_{ld}	=
ļ	u _o	=	$\tau(T_{xc})$	=	σ_{IId}	=
١	v _o	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
1	A	=	$\tau(T_x)_s$	=	σ_{mises}	
(C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
,	J_{u}	=	σ	=	θ_{t}	=
,	J_v	=	$ au_{s}$	=	r_u	=
	J_t	=	$ au_{\sf d}$	=	r_v	=
	σ(N)		$\sigma_{\sf ls}$	=	r_o	=
($\sigma(M_{v})$	=	$\sigma_{\sf lls}$	=	J_p	=
	′ .					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 8220 N	M_v	= -42000 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 3770 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= 2650 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)$	_d =	σ_{Id}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_{x})_{x}$	_s =	σ_{mises}	
C_{w}	=	$\tau(T_x)$	_d =	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
	J) =	$\sigma_{\sf ls}$	=	r_{o}	=
σ(N	$(1_{\mathbf{y}}) =$	$\sigma_{\sf IIs}$	=	J_p	=
_					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

١	V	= 9560 N	M_{v}	= -55500 Nmm	G	$= 76000 \text{ N/mm}^2$
7	Γ _x	= 4490 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
	۸̂ _t	= -2030 Nmm	Ε	= 200000 N/mm ²		
>	(_G	=	$\tau(M_t)_d$	=	σ_{Id}	=
ι	1 ^o	=	$\tau(T_{xc})$	=	σ_{IId}	=
١	/ ₀	=	$\tau(T_{xb})$		σ_{tresca}	=
ŀ	4	=	$\tau(T_x)_s$	=	σ_{mises}	
(C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
·	J _u	=	σ	=	θ_{t}	=
·	J_v	=	$ au_{s}$	=	r_u	=
·		=	$ au_{\sf d}$	=	r_v	=
C	5(N)	=	σ_{ls}	=	r_{o}	=
C	$\sigma(M_{v})$	=	$\sigma_{\sf lls}$	=	J_p	=
	* .				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 10900 N
Ν
                                                                       M,
                                                                                  = -71600 Nmm
                                                                                                                                              G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 3590 N
                                                                                  = 200000 \text{ N/mm}^2
           = 2340 Nmm
                                                                       \tau(M_t)_d =
                                                                                                                                              \sigma_{\text{Id}}
                                                                       \tau(T_{xc}) =
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{xb})_d =
                                                                                                                                              \sigma_{tresca} =
           =
                                                                       \tau(T_x)_s =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                       \tau(T_x)_d =
                                                                                                                                              \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 8510 N
Ν
                                                                       M,
                                                                                   = -90600 Nmm
                                                                                                                                               G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                   = 220 \text{ N/mm}^2
           = 4320 N
                                                                                   = 200000 \text{ N/mm}^2
           = 2680 Nmm
                                                                       \tau(M_t)_d =
                                                                                                                                               \sigma_{\text{Id}}
                                                                       \tau(T_{xc}) =
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{xb})_d =
                                                                                                                                               \sigma_{tresca} =
                                                                       \tau(T_x)_s =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                        \tau(T_x)_d =
                                                                                                                                               \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
           = 8690 N
Ν
                                                                     M,
                                                                                = -36700 Nmm
                                                                                                                                          G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                = 220 \text{ N/mm}^2
           = 3680 N
                                                                                = 200000 \text{ N/mm}^2
           = 2990 Nmm
                                                                     \tau(M_t)_d =
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{xc}) =
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{xb})_d =
                                                                                                                                           \sigma_{tresca} =
                                                                     \tau(T_x)_s =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                     \tau(T_x)_d =
                                                                                                                                           \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
            = 10000 N
Ν
                                                                          M,
                                                                                      = -47900 Nmm
                                                                                                                                                     G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                      = 220 \text{ N/mm}^2
            = 4270 N
                                                                                      = 200000 \text{ N/mm}^2
            = -2280 Nmm
                                                                          \tau(M_t)_d =
                                                                                                                                                     \sigma_{\text{Id}}
                                                                          \tau(\mathsf{T}_{\mathsf{xc}}) =
                                                                                                                                                     \sigma_{\text{IId}}
                                                                          \tau(T_{xb})_d =
                                                                                                                                                     \sigma_{tresca} =
                                                                          \tau(T_x)_s =
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                           \tau(T_x)_d =
                                                                                                                                                     \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
            = 11500 N
                                                                          M,
                                                                                      = -61600 Nmm
                                                                                                                                                     G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                      = 220 \text{ N/mm}^2
            = 3370 N
                                                                                      = 200000 \text{ N/mm}^2
            = -2620 Nmm
                                                                          \tau(M_t)_d =
                                                                                                                                                     \sigma_{\text{Id}}
                                                                          \tau(\mathsf{T}_{\mathsf{xc}}) =
                                                                                                                                                     \sigma_{\text{IId}}
                                                                          \tau(T_{xb})_d =
                                                                                                                                                     \sigma_{tresca} =
                                                                          \tau(T_x)_s =
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                           \tau(T_x)_d =
                                                                                                                                                     \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 8910 N	M_v	= -78200 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4020 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_{t}}$	= -2980 Nmm	Ε	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_d$	_I =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$		σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
            = 10300 N
Ν
                                                                          M,
                                                                                      = -66400 Nmm
                                                                                                                                                     G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                      = 220 \text{ N/mm}^2
            = 4750 N
                                                                                      = 200000 \text{ N/mm}^2
            = -3350 Nmm
                                                                          \tau(M_t)_d =
                                                                                                                                                     \sigma_{\text{Id}}
                                                                          \tau(\mathsf{T}_{\mathsf{xc}}) =
                                                                                                                                                     \sigma_{\text{IId}}
                                                                          \tau(T_{xb})_d =
                                                                                                                                                     \sigma_{tresca} =
                                                                          \tau(T_x)_s =
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                           \tau(T_x)_d =
                                                                                                                                                     \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
            = 10600 N
Ν
                                                                            M,
                                                                                        = -46900 Nmm
                                                                                                                                                        G
\begin{matrix} T_x \\ M_t \end{matrix}
                                                                                        = 220 \text{ N/mm}^2
            = 4780 N
                                                                                        = 200000 \text{ N/mm}^2
            = 2550 Nmm
                                                                            \tau(M_t)_d =
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{Id}}
                                                                            \tau(\mathsf{T}_{\mathsf{xc}}) =
                                                                                                                                                        \sigma_{\text{IId}}
                                                                            \tau(T_{xb})_d =
                                                                                                                                                        \sigma_{tresca} =
                                                                            \tau(T_x)_s =
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                            \tau(T_x)_d =
                                                                                                                                                        \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_v) =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 12100 N	M_{v}	= -57800 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 3540 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_t}$	= 2920 Nmm	Е	= 200000 N/mm ²		
x_G	=	$\tau(M_t)_d$	=	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
v_o	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{ extsf{s}}$	=	r_u	=
J_t	=	$ au_{d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 9360 N	M_v	= -71400 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4060 N	$\sigma_{a}^{'}$	$= 220 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 3300 Nmm	Ε	= 200000 N/mm ²		
x_G	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$) =	σ_{IId}	=
v_{o}	=	$\tau(T_{xb})$	$)_{d}=$	σ_{tresca}	=
Α	=	$\tau(T_{x})_{s}$	₃ =	σ_{mises}	
C_{w}	=	$\tau(T_x)_{\alpha}$	_d =	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_v)$,) =	$\sigma_{\sf lls}$	=	J_p	=
				1.	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 10800 N	M_{v}	= -59800 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 4670 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= -3710 Nmm	Е	= 200000 N/mm ²		
x_{G}	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α	=	$\tau(T_x)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_y)$	=	σ_{lls}	=	J_p	=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 12400 N	M_{v}	= -75700 Nmm	G	$= 76000 \text{ N/mm}^2$
T_x	= 5360 N	$\sigma_{a}^{'}$	= 220 N/mm ²		
$\hat{M_t}$	= 2810 Nmm	Е	= 200000 N/mm ²		
\mathbf{x}_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	l _d =	σ_{tresca}	=
Α	=	$\tau(T_x)_s$, =	σ_{mises}	
C_{w}	=	$\tau(T_x)_c$	_i =	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_{v})$) =	$\sigma_{\sf IIs}$	=	J_p	=
´					