

WE CLAIM:

1. A wire bonding method, comprising the steps of:
2 forming a semiconductor substrate with a copper (Cu) interconnect
3 material;
4 fabricating a copper (Cu) bond pad;
5 depositing a tantalum (Ta) layer onto the substrate;
6 patterning and etching the tantalum (Ta) layer; and
7 bonding an aluminum (Al) wire with the tantalum (Ta) layer;
8 wherein a portion of the tantalum (Ta) layer bonds with the copper (Cu)
9 bond pad, and another portion of the tantalum (Ta) layer forms a tantalum
10 aluminide ($TaAl_3$) compound.

1 2. The method of claim 1, wherein the wire is a wire selected from the
2 group consisting of an aluminum wire, an aluminum alloy wire, and an
3 aluminum-coated gold wire.

1 3. The method of claim 1, wherein thickness of the tantalum (Ta) layer is
2 controlled such that a portion of the tantalum (Ta) layer bonds with the
3 copper (Cu) bond pad, and another portion of the tantalum (Ta) layer

4 forms a tantalum aluminide ($TaAl_3$) compound.

1 4. The method of claim 1, wherein thickness of the tantalum (Ta) layer is
2 between 300 to 1000 angstroms (\AA).

1 5. The method of claim 1, wherein the aluminum (Al) wire is bonded onto
2 the tantalum (Ta) layer by wedge bonding.

1 6. The method of claim 1, further comprising the step of performing a heat
2 treatment after the bonding step.

1 7. The method of claim 1, further comprising the step of packaging the
2 substrate in a package consisting of a plastic package and a hermetic
3 package.

1 8. The method of claim 1, wherein the tantalum (Ta) layer is patterned by
2 a method consisting of negative tone pad masking, photoresist
3 patterning, and photolithography.

1 9. The method of claim 1, wherein the substrate is a multi-layered

2

Sub E

interconnect structure.

2

3

4

5

6

7

8

9

10

11

12

1

2

10. A wire bonding method, comprising the steps of:
forming a passivation layer on a semiconductor substrate;
bonding a wire onto the passivation layer; and
encapsulating a bond pad made from an interconnect material, wherein
the wire is more metallurgically stable than the interconnect material;
wherein a portion of the passivation layer forms a metallurgical bond with
the interconnect material;
wherein a mechanical and electrical connection is provided between the
interconnect material and the wire, with the passivation layer disposed
therebetween.

11. The method of claim 10, wherein the wire is a wire selected from the

2 Sub E
3

group consisting of an aluminum wire, an aluminum alloy wire, and an
aluminum-coated gold wire.

12. The method of claim 10, wherein the passivation layer is a tantalum (Ta)
layer.

1 13. The method of claim 10, wherein the wire is bonded onto the passivation
2 layer by wedge bonding.

1 14. The method of claim 10, further comprising the step of performing a heat
2 treatment after the bonding step.

1 15. The method of claim 10, wherein the substrate is a multi-layered
2 interconnect structure.

1 16. A semiconductor device, comprising:
2 a substrate;
3 a copper (Cu) bond pad formed on the substrate;
4 a tantalum (Ta) layer encapsulating the copper (Cu) bond pad;
5 wherein a portion of the tantalum (Ta) layer bonds with the copper (Cu)
6 bond pad, and another portion of the tantalum (Ta) layer forms a tantalum
7 aluminide ($TaAl_3$) compound.

1 17. The device of claim 16, wherein the substrate is a multi-layered
2 interconnect structure.

1 18. The device of claim 16, wherein the tantalum (Ta) layer is bonded with
2 the copper (Cu) bond pad using wedge bonding.

1 19. The device of claim 16, wherein the substrate is packaged in one of the
2 group consisting of a plastic package and a hermetic package.

1 20. The device of claim 16, wherein thickness of the tantalum (Ta) layer is
2 between 300 to 1000 angstroms (\AA).