캐글 코리아 4차 대회

학습내용

- 상위 솔루션을 분석해 봅니다.(1st)
- 대회 링크: https://www.kaggle.com/c/kakr-4th-competition/overview (https://www.kaggle.com/c/kakr-4th-competition/overview)
- 참고 링크: https://www.kaggle.com/code/bestend/kakr-4th-1st-place-solution (https://www.kaggle.com/code/bestend/kakr-4th-1st-place-solution) (1st)

목차

01. 라이브러리 임포트 및 데이터 준비02. 데이터 탐색03. 모델링

01. 데이터 준비 및 라이브러리 임포트

목차로 이동하기

설치

• pip install [라이브러리명]

```
In [67]:
```

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import lightgbm as lgb
import pycaret
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
import warnings
warnings.filterwarnings('ignore')
from IPython.display import display
pd.options.display.max rows = 10000
pd.options.display.max columns = 1000
pd.options.display.max colwidth = 1000
```

In [68]:

```
print("lightgbm ver : ", lgb.__version__)
print("pycaret ver : ", pycaret.__version__)
```

lightgbm ver : 3.1.1 pycaret ver : 2.3.10

데이터 탐색

데이터 정보

```
age : 나이
workclass : 고용 형태
fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)
education : 교육 수준 (최종 학력)
education_num : 교육 수준 수치
marital_status: 결혼 상태
occupation : 업종
relationship : 가족 관계
race : 인종
sex : 성별
capital_gain : 양도 소득
capital_loss : 양도 손실
hours_per_week : 주당 근무 시간
native_country : 국적
income : 수익 (예측해야 하는 값, target variable)
```

In [69]:

```
dirname = "data/4th_kaggle"

train = pd.read_csv(os.path.join(dirname, 'train.csv'), index_col='id')
test = pd.read_csv(os.path.join(dirname, 'test.csv'), index_col='id')
train.shape, test.shape
```

Out[69]:

```
((26049, 15), (6512, 14))
```

EDA 참고 링크

https://github.com/Aditya-Mankar/Census-Income-Prediction (https://github.com/Aditya-Mankar/Census-Income-Prediction)

02. 데이터 탐색

목차로 이동하기

In [4]:

```
# 데이터 살펴보기
train.head()
```

Out[4]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship
id								
0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husband
1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-child
2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-child
3	21	Private	151158	Some- college	10	Never-married	Prof- specialty	Own-child
4	24	Private	122234	Some- college	10	Never-married	Adm- clerical	Not-in- family

In [5]:

```
# 데이터 구조
print('Rows: {} Columns: {}'.format(train.shape[0], train.shape[1]))
print('Rows: {} Columns: {}'.format(test.shape[0], test.shape[1]))
```

Rows: 26049 Columns: 15 Rows: 6512 Columns: 14

In [6]: ### 데이터 정보 확인 train.info(), test.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 26049 entries, 0 to 26048 Data columns (total 15 columns): Non-Null Count Dtype # Column _____ _____ 0 age 26049 non-null int64 1 workclass 26049 non-null object 2 fnlwgt 26049 non-null int64 26049 non-null object 3 education 4 education num 26049 non-null int64 5 marital status 26049 non-null object occupation 6 26049 non-null object 26049 non-null object 7 relationship 8 race 26049 non-null object 9 26049 non-null object sex 26049 non-null int64 10 capital gain 26049 non-null int64 11 capital_loss hours_per_week 26049 non-null int64 12 13 native country 26049 non-null object 26049 non-null object 14 income dtypes: int64(6), object(9) memory usage: 3.2+ MB <class 'pandas.core.frame.DataFrame'> Int64Index: 6512 entries, 0 to 6511 Data columns (total 14 columns): Column Non-Null Count Dtype

77	COTUILLI	Non-Null Count	рсуре
0	age	6512 non-null	int64
1	workclass	6512 non-null	object
2	fnlwgt	6512 non-null	int64
3	education	6512 non-null	object
4	education_num	6512 non-null	int64
5	marital_status	6512 non-null	object
6	occupation	6512 non-null	object
7	relationship	6512 non-null	object
8	race	6512 non-null	object
9	sex	6512 non-null	object
10	capital_gain	6512 non-null	int64
11	capital_loss	6512 non-null	int64
12	hours_per_week	6512 non-null	int64
13	native_country	6512 non-null	object

dtypes: int64(6), object(8)
memory usage: 763.1+ KB

Out[6]:

(None, None)

In [7]:

통계적 요약

display(train.describe().T)
display(test.describe().T)

	count	mean	std	min	25%	50%	75%
age	26049.0	38.569235	13.671489	17.0	28.0	37.0	48.0
fnlwgt	26049.0	190304.481708	105966.299073	13769.0	118108.0	178866.0	237735.0
education_num	26049.0	10.088372	2.567610	1.0	9.0	10.0	12.0
capital_gain	26049.0	1087.689700	7388.854690	0.0	0.0	0.0	0.0
capital_loss	26049.0	87.732734	403.230205	0.0	0.0	0.0	0.0
hours_per_week	26049.0	40.443126	12.361850	1.0	40.0	40.0	45.0

	count	mean	std	min	25%	50%	75%
age	6512.0	38.631296	13.516418	17.0	28.00	37.0	48.00
fnlwgt	6512.0	187673.824939	103849.326430	12285.0	116504.25	176882.0	235850.75
education_num	6512.0	10.049908	2.593033	1.0	9.00	10.0	12.00
capital_gain	6512.0	1037.483876	7371.453668	0.0	0.00	0.0	0.00
capital_loss	6512.0	85.588145	401.904741	0.0	0.00	0.0	0.00
hours_per_week	6512.0	40.414773	12.290491	1.0	40.00	40.0	45.00

In [8]:

```
# null 값이 존재하는지 확인
dat = (train.isnull().sum() / train.shape[0]) * 100
round(dat, 2).astype(str) + ' %'
```

Out[8]:

age	0.0	용
workclass	0.0	용
fnlwgt	0.0	8
education	0.0	8 8
education_num	0.0	8 8
marital_status	0.0	8 8
occupation	0.0	8 8
relationship	0.0	8 8
race	0.0	8 8
sex	0.0	용
capital_gain	0.0	8 8
capital_loss	0.0	8 8
hours_per_week	0.0	8 8
native_country	0.0	8 8
income	0.0	8 8
dtype: object		

```
In [9]:
dat = (train.isin(['?']).sum() / train.shape[0])
round(dat, 2).astype(str) + ' %'
Out[9]:
                   0.0 %
age
workclass
                  0.06 %
fnlwgt
                   0.0 %
                   0.0 %
education
education num
                    0.0 %
marital_status
                   0.0 %
occupation
                   0.06 %
                   0.0 %
relationship
                    0.0 %
race
                   0.0 %
sex
capital_gain
                    0.0 %
                    0.0 %
capital loss
hours_per_week
                   0.0 %
                   0.02 %
native country
                    0.0 %
income
dtype: object
In [10]:
dat = (test.isin(['?']).sum() / train.shape[0])
round(dat, 2).astype(str) + ' %'
Out[10]:
                   0.0 %
age
workclass
                   0.01 %
fnlwgt
                   0.0 %
education
                    0.0 %
education num
                   0.0 %
marital status
                    0.0 %
                  0.01 %
occupation
relationship
                   0.0 %
                   0.0 %
race
sex
                    0.0 %
capital_gain
                    0.0 %
capital_loss
                    0.0 %
hours_per_week
                    0.0 %
native_country
                    0.0 %
dtype: object
In [11]:
# 소득 비율
income = train['income'].value_counts(normalize=True)
round(income * 100, 2).astype('str') + ' %'
Out[11]:
<=50K
         75.8 %
>50K
         24.2 %
```

Name: income, dtype: object

In [12]:

Distribution of Income

In [13]:

In [14]:

Distribution of Education

In [15]:

Distribution of Years of Education

In [16]:

In [17]:

```
# Creating a donut chart for 'Age'
relation = train['relationship'].value counts()
plt.style.use('bmh')
plt.figure(figsize=(20, 10))
plt.pie(relation.values,
        labels=relation.index,
        startangle=50, autopct='%1.1f%%')
centre_circle = plt.Circle((0, 0), 0.7, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Relationship distribution',
          fontdict={
          'fontname': 'Monospace', 'fontsize': 30, 'fontweight': 'bold'})
plt.axis('equal')
plt.legend(prop={'size': 15})
plt.show()
```

Relationship distribution

In [18]:

Distribution of Sex


```
In [19]:
```

```
# Creating a Treemap for 'Race'
import squarify
```

In [20]:

Race distribution

In [21]:

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

In [27]:

In [28]:

```
# Creating a pairplot of dataset
sns.pairplot(train)
plt.savefig('multi1.png')
plt.show()
```


In [30]:

03. 모델링 - pycaret를 활용

<u>목차로 이동하기</u>

PyCaret은 무엇일까?

• PyCaret은 Python의 오픈 소스 로우 코드 머신러닝 라이브러리로, ML 실험에서 가설을 인사이트주기 시간으로 줄이는 것을 목표로합니다.

- 이를 통해 데이터 과학자는 종단 간 실험을 빠르고 효율적으로 수행 할 수 있습니다.
- 다른 오픈 소스 기계 학습 라이브러리와 비교하여 PyCaret은 코드 몇 줄만으로 복잡한 기계 학습 작업을 수행하는 데 사용할 수 있는 대체 로우 코드 라이브러리입니다.
- PyCaret은 간단하고 사용하기 쉽습니다.
- PyCaret에서 수행되는 모든 작업 은 배포를 위해 완전히 조정 된 사용자 지정 파이프 라인 에 자동으로 저장됩니다.
- PyCaret은 본질적으로 scikit-learn, XGBoost, LightGBM, spaCy 등과 같은 여러 기계 학습 라이브러리 및 프레임 워크를 둘러싼 Python 래퍼입니다.
- https://pycaret.org/ (https://pycaret.org/)

설치 및 작업 순서

· pip install pycaret

순서

- 01 setup module를 사용하여 setup
- 02 데이터를 지정하고 preprocessing을 적용.(setup)
- 03 필요시 모델 추가. 모델 확인 후, 커스텀 모델을 추가하거나 모델 튜닝 add_metric, create_models
- 04 모델 학습 및 비교. compare models()
- 05 실험 로그를 찍고, 여러가지로 확인

In [70]:

```
import pycaret
print(pycaret.__version__)
```

2.3.10

In [71]:

	Description	Value
0	session_id	999
1	Target	income
2	Target Type	Binary
3	Label Encoded	<=50K: 0, >50K: 1
4	Original Data	(26049, 15)
5	Missing Values	False
6	Numeric Features	5
7	Categorical Features	9
8	Ordinal Features	False
9	High Cardinality Features	True
10	High Cardinality Method	frequency
11	Transformed Train Set	(18234, 64)
12	Transformed Test Set	(7815, 64)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	2901
22	Imputation Type	simple
23	Iterative Imputation Iteration	None
24	Numeric Imputer	mean
25	Iterative Imputation Numeric Model	None
26	Categorical Imputer	constant

27 Iterative Imputation Categorical Model None 28 Unknown Categoricals Handling least_frequent 29 Normalize True 30 Normalize Method zscore 31 Transformation Method None 32 Transformation Method None 33 PCA False 34 PCA Components None 35 PCA Components None 36 Ignore Low Variance False 37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Dutliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering Iteration None 47 Polynomial Peatures False 48 Polynomial Thres		Description	Value
Normalize True Normalize Method zscore Transformation False Transformation False Transformation Method None Transformation None Transformation Method None Transformation None Transfo	27	Iterative Imputation Categorical Model	None
30 Normalize Method zscore 31 Transformation False 32 Transformation Method None 33 PCA False 34 PCA Method None 35 PCA Components None 36 Ignore Low Variance False 37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None	28	Unknown Categoricals Handling	least_frequent
Transformation False Transformation Method None	29	Normalize	True
Transformation Method None Telse Transformation Method None Telse	30	Normalize Method	zscore
33 PCA False 34 PCA Method None 35 PCA Components None 36 Ignore Low Variance False 37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	31	Transformation	False
34 PCA Method None 35 PCA Components None 36 Ignore Low Variance False 37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection Method classic 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None	32	Transformation Method	None
35 PCA Components None 36 Ignore Low Variance False 37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection Method classic 53 Feature Selection Method Classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	33	PCA	False
136 Ignore Low Variance False 137 Combine Rare Levels False 138 Rare Level Threshold None 139 Numeric Binning False 140 Remove Outliers False 141 Outliers Threshold None 142 Remove Multicollinearity False 143 Multicollinearity Threshold None 144 Remove Perfect Collinearity True 145 Clustering False 146 Clustering Iteration None 147 Polynomial Features False 148 Polynomial Degree None 149 Trignometry Features False 150 Polynomial Threshold None 151 Group Features False 152 Feature Selection False 153 Feature Selection Method classic 154 Features Selection Threshold None 155 Feature Interaction False 156 Feature Ratio False 157 Interaction Threshold None 158 Fix Imbalance False	34	PCA Method	None
37 Combine Rare Levels False 38 Rare Level Threshold None 39 Numeric Binning False 40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Ratio False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	35	PCA Components	None
Remove Outliers Remove Outliers Remove Multicollinearity Remove Perfect Collinearity R	36	Ignore Low Variance	False
Numeric Binning Remove Outliers Remove Outliers Remove Outliers Remove Multicollinearity Remove Multicollinearity Remove Perfect Collinearity	37	Combine Rare Levels	False
40 Remove Outliers False 41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	38	Rare Level Threshold	None
41 Outliers Threshold None 42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	39	Numeric Binning	False
42 Remove Multicollinearity False 43 Multicollinearity Threshold None 44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	40	Remove Outliers	False
Multicollinearity Threshold None Remove Perfect Collinearity True Clustering False Clustering Iteration None Polynomial Features False Polynomial Degree None Polynomial Threshold None Feature Selection False Feature Selection Method Features Selection Threshold None Feature Ratio False Interaction Threshold None False False False False False False Feature Ratio False Fa	41	Outliers Threshold	None
44 Remove Perfect Collinearity True 45 Clustering False 46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	42	Remove Multicollinearity	False
Clustering False Clustering Iteration None Clustering Iteration None Polynomial Features False Polynomial Degree None Polynomial Degree None Polynomial Threshold None Classic Feature Selection False Feature Selection Method Classic Feature Selection Threshold None Feature Ratio False Interaction Threshold None Interaction Threshold None False Interaction Threshold None False Feature Ratio False Feature Ratio False Fix Imbalance False	43	Multicollinearity Threshold	None
46 Clustering Iteration None 47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	44	Remove Perfect Collinearity	True
47 Polynomial Features False 48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	45	Clustering	False
48 Polynomial Degree None 49 Trignometry Features False 50 Polynomial Threshold None 51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	46	Clustering Iteration	None
Trignometry Features False Polynomial Threshold None Group Features False False Feature Selection False Feature Selection Method Features Selection Threshold None Feature Interaction False Interaction Threshold None Feature Ratio False Feature Ratio False France False Feature Ratio False	47	Polynomial Features	False
Feature Selection Method None Features Selection False Feature Selection Method Classic Feature Selection Threshold None Feature Selection Threshold None Feature Interaction False Interaction Threshold None Feature Ratio False Feature Ratio False Feature Ratio False Feature Threshold None Feature Ratio False Feature Ratio False Feature Ratio False	48	Polynomial Degree	None
51 Group Features False 52 Feature Selection False 53 Feature Selection Method classic 54 Features Selection Threshold None 55 Feature Interaction False 56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	49	Trignometry Features	False
Feature Selection False Feature Selection Method classic Features Selection Threshold None Feature Interaction False Feature Ratio False Interaction Threshold None False Fraction Threshold False Fraction Threshold False Fraction Threshold False Fraction Threshold False False Fix Imbalance False	50	Polynomial Threshold	None
Feature Selection Method classic Features Selection Threshold None Feature Interaction False Feature Ratio False Interaction Threshold None Fix Imbalance False	51	Group Features	False
Features Selection Threshold None False Feature Interaction False Interaction Threshold None False False Fix Imbalance False	52	Feature Selection	False
Feature Interaction False Feature Ratio False Interaction Threshold None False Fix Imbalance False	53	Feature Selection Method	classic
56 Feature Ratio False 57 Interaction Threshold None 58 Fix Imbalance False	54	Features Selection Threshold	None
57 Interaction Threshold None 58 Fix Imbalance False	55	Feature Interaction	False
58 Fix Imbalance False	56	Feature Ratio	False
	57	Interaction Threshold	None
59 Fix Imbalance Method SMOTE	58	Fix Imbalance	False
	59	Fix Imbalance Method	SMOTE

In [72]:

```
# compare_models \dot{n} \dot{r} \dot{r}
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
catboost	CatBoost Classifier	0.8727	0.9259	0.6495	0.7839	0.7102	0.6296	0.6343	3.9980
lightgbm	Light Gradient Boosting Machine	0.8705	0.9243	0.6500	0.7750	0.7069	0.6246	0.6287	0.2450
xgboost	Extreme Gradient Boosting	0.8674	0.9218	0.6468	0.7653	0.7010	0.6166	0.6202	5.9620
ada	Ada Boost Classifier	0.8597	0.9138	0.6165	0.7553	0.6787	0.5902	0.5952	0.5140
gbc	Gradient Boosting Classifier	0.8631	0.9187	0.5847	0.7912	0.6724	0.5883	0.5991	1.7380
rf	Random Forest Classifier	0.8547	0.9031	0.6153	0.7368	0.6705	0.5782	0.5822	1.3770
lr	Logistic Regression	0.8524	0.9062	0.5991	0.7373	0.6610	0.5679	0.5730	0.7980
svm	SVM - Linear Kernel	0.8483	0.0000	0.5624	0.7450	0.6398	0.5463	0.5556	0.1080
et	Extra Trees Classifier	0.8323	0.8788	0.6014	0.6681	0.6329	0.5246	0.5259	1.7020
lda	Linear Discriminant Analysis	0.8406	0.8926	0.5649	0.7125	0.6300	0.5302	0.5361	0.1720
knn	K Neighbors Classifier	0.8310	0.8539	0.5900	0.6683	0.6265	0.5179	0.5197	2.5570
dt	Decision Tree Classifier	0.8130	0.7469	0.6194	0.6096	0.6143	0.4910	0.4911	0.1150
ridge	Ridge Classifier	0.8395	0.0000	0.5063	0.7442	0.6025	0.5065	0.5213	0.0380
nb	Naive Bayes	0.5641	0.8128	0.9491	0.3501	0.5115	0.2470	0.3511	0.0380
qda	Quadratic Discriminant Analysis	0.4942	0.5509	0.6602	0.2738	0.3853	0.0699	0.0895	0.1180
dummy	Dummy Classifier	0.7596	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0280

Out[72]:

```
subsample=1.0, subsample for bin=200000, subsample fr
eq=0),
XGBClassifier(base score=0.5, booster='gbtree', callbacks=None,
               colsample bylevel=1, colsample bynode=1, colsample byt
ree=1,
               early stopping rounds=None, enable categorical=False,
               eval metric=None, gamma=0, gpu id=-1, grow policy='dep
thwise',
               importance type=None, interaction constraints='',
               learning rate=0.300000012, max bin=256, max cat to one
hot=4,
               max delta step=0, max depth=6, max leaves=0, min child
weight=1,
               missing=nan, monotone_constraints='()', n_estimators=1
00,
               n jobs=-1, num parallel tree=1, objective='binary:logi
stic',
               predictor='auto', random state=999, reg alpha=0, ...),
AdaBoostClassifier(algorithm='SAMME.R', base estimator=None, learnin
g rate=1.0,
                    n estimators=50, random state=999),
 GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse',
init=None,
                            learning rate=0.1, loss='deviance', max d
epth=3,
                            max features=None, max leaf nodes=None,
                            min impurity decrease=0.0, min impurity s
plit=None,
                            min samples leaf=1, min samples split=2,
                            min weight fraction leaf=0.0, n estimator
s=100,
                            n iter no change=None, presort='deprecate
d',
                            random state=999, subsample=1.0, tol=0.00
01,
                            validation fraction=0.1, verbose=0,
                            warm start=False)]
```

사용 가능한 모델

https://pycaret.gitbook.io/docs/)

In [73]:

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
catboost	CatBoost Classifier	0.8727	0.9259	0.6495	0.7839	0.7102	0.6296	0.6343	3.6070
lightgbm	Light Gradient Boosting Machine	0.8705	0.9243	0.6500	0.7750	0.7069	0.6246	0.6287	0.2720
xgboost	Extreme Gradient Boosting	0.8674	0.9218	0.6468	0.7653	0.7010	0.6166	0.6202	6.6840
gbc	Gradient Boosting Classifier	0.8631	0.9187	0.5847	0.7912	0.6724	0.5883	0.5991	1.8350
ada	Ada Boost Classifier	0.8597	0.9138	0.6165	0.7553	0.6787	0.5902	0.5952	0.5630
rf	Random Forest Classifier	0.8547	0.9031	0.6153	0.7368	0.6705	0.5782	0.5822	1.5600
et	Extra Trees Classifier	0.8323	0.8788	0.6014	0.6681	0.6329	0.5246	0.5259	1.8330

In [74]:

```
### 5개의 모델을 앙상블하여 성능 개선
blended = blend_models(estimator_list=best_5, fold=5, method='auto')
```

	Accuracy	AUC	Recall	Prec. F1		Kappa	мсс
Fold							
0	0.8783	0.9289	0.6587	0.7992	0.7222	0.6451	0.6501
1	0.8711	0.9256	0.6431	0.7822	0.7059	0.6244	0.6293
2	0.8634	0.9214	0.6135	0.7719	0.6836	0.5980	0.6044
3	0.8684	0.9269	0.6271	0.7824	0.6962	0.6135	0.6196
4	0.8697	0.9232	0.6279	0.7868	0.6984	0.6167	0.6231
Mean	0.8702	0.9252	0.6340	0.7845	0.7013	0.6195	0.6253
Std	0.0048	0.0027	0.0155	0.0088	0.0127	0.0154	0.0149

In [75]:

blended

Out[75]:

```
VotingClassifier(estimators=[('catboost',
                               <catboost.core.CatBoostClassifier object</pre>
at 0x7f8c3743e070>),
                              ('lightqbm',
                               LGBMClassifier(boosting_type='gbdt',
                                               class weight=None,
                                               colsample_bytree=1.0,
                                               importance_type='split',
                                               learning rate=0.1, max de
pth=-1,
                                               min child samples=20,
                                               min_child_weight=0.001,
                                               min_split_gain=0.0,
                                               n estimators=100, n jobs=
-1,
                                               num_leaves=31, objec...
                                                            min weight fr
action_leaf=0.0,
                                                            n estimators=
100,
                                                            n_iter_no_cha
nge=None,
                                                            presort='depr
ecated',
                                                            random state=
999,
                                                            subsample=1.
0,
                                                            tol=0.0001,
                                                            validation fr
action=0.1,
                                                            verbose=0,
                                                            warm start=Fa
lse)),
                              ('ada',
                               AdaBoostClassifier(algorithm='SAMME.R',
                                                   base estimator=None,
                                                   learning rate=1.0,
                                                   n estimators=50,
                                                   random_state=999))],
                  flatten_transform=True, n_jobs=-1, verbose=False,
                 voting='soft', weights=None)
```

```
In [81]:
```

```
# 앞서 kfold로 훈련했을때 가장 best였던 parameter를 기준으로
# train data를 전체 다사용해서 최종 학습
final = finalize_model(blended)
final
```

Out[81]:

```
VotingClassifier(estimators=[('catboost',
                               <catboost.core.CatBoostClassifier object</pre>
at 0x7f8c52815f40>),
                              ('lightgbm',
                               LGBMClassifier(boosting_type='gbdt',
                                               class weight=None,
                                               colsample bytree=1.0,
                                               importance type='split',
                                               learning_rate=0.1, max_de
pth=-1,
                                               min child samples=20,
                                               min child weight=0.001,
                                               min split gain=0.0,
                                               n estimators=100, n jobs=
-1,
                                               num_leaves=31, objec...
                                                            min weight fr
action leaf=0.0,
                                                            n estimators=
100,
                                                            n_iter_no_cha
nge=None,
                                                            presort='depr
ecated',
                                                            random state=
999,
                                                            subsample=1.
0,
                                                            tol=0.0001,
                                                            validation fr
action=0.1,
                                                            verbose=0,
                                                            warm start=Fa
lse)),
                              ('ada',
                               AdaBoostClassifier(algorithm='SAMME.R',
                                                   base estimator=None,
                                                   learning_rate=1.0,
                                                   n estimators=50,
                                                   random state=999))],
                  flatten transform=True, n jobs=-1, verbose=False,
                 voting='soft', weights=None)
```

```
In [77]:
```

```
test.columns
```

```
Out[77]:
```

In [82]:

test.head()

Out[82]:

education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss
10	Never-married	Adm- clerical	Other- relative	White	Female	0	0
9	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0
10	Never-married	Handlers- cleaners	Own-child	White	Male	0	0
11	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0
16	Married-civ- spouse	Prof- specialty	Husband	White	Male	0	0

In [83]:

```
# test set에 대해서 모델 평가
# Label라는 컬럼이 생기고, 여기
prediction_test = predict_model(final, data=test)
prediction_test
```

Out[83]:

marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_week
Never-married	Adm- clerical	Other- relative	White	Female	0	0	40
Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	50
Never-married	Handlers- cleaners	Own-child	White	Male	0	0	25
Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	50
Married-civ- spouse	Prof- specialty	Husband	White	Male	0	0	99
Married-civ- spouse	Sales	Husband	White	Male	0	0	40
Married-civ- spouse	Tech- support	Husband	White	Male	0	0	40
Married-civ- spouse	Other- service	Husband	White	Male	0	0	40
Married-civ- spouse	Craft-repair	Husband	White	Male	0	0	40
Divorced	Handlers- cleaners	Unmarried	White	Female	0	0	36

In [91]:

```
prediction_test.loc[ prediction_test['Label'] == "<=50K", "pred" ] = 0
prediction_test.loc[ prediction_test['Label'] == ">50K", "pred" ] = 1
prediction_test['pred'] = prediction_test['pred'].astype(int)
prediction_test['pred']
```

Out[91]:

```
id
0
        0
1
         1
2
        0
3
        1
4
        0
        . .
6507
        0
6508
        1
6509
        0
6510
        0
6511
Name: pred, Length: 6512, dtype: int64
```

In [93]:

```
submission = pd.read_csv(os.path.join(dirname, 'sample_submission.csv'))
display(submission.head(5))
submission['prediction'] = prediction_test['pred']
submission
```

	id	prediction
0	0	0
1	1	0
2	2	0
3	3	0
4	4	0

Out[93]:

	id	prediction
0	0	0
1	1	1
2	2	0
3	3	1
4	4	0
6507	6507	0
6508	6508	1
6509	6509	0
6510	6510	0
6511	6511	0

6512 rows × 2 columns

In [94]:

```
submission.to_csv('submission_5th_pycaret.csv', index=False)
```

- 실제 모델과 달리 평가 데이터가 공개되어 있음(Data Leakage). 이에 따라 평가가 가능.
- 모델링의 중요 지표의 일반화를 내려놓고, test데이터에 대한 overfitting하는 과정을 갖는다.
- Score: 0.87482

CatBoost 모델링

- Pycaret는 좋은 모델링 도구이지만 미세한 파라미터 조정이 어려운 부분이 있음.
- pycaret에서 가장 좋은 수치를 가진 catboost를 직접 호출하여 파라미터 조정을 거친다.(submission 제출)

In [96]:

```
raw_train = train.copy()
raw_test = test.copy()
```

In [97]:

```
from catboost import CatBoostClassifier
import catboost
print(catboost.__version__)
```

1.0.4

```
def preprocess(df):
    # null값이 count 출력
    print(df.apply(lambda x: sum(x.isnull()), axis=0))
    print(' ')
    # income column을 string에서 integer로 변경
    df['income level'] = np.where(df.income == '<=50K', 0, 1)</pre>
    # 성별
    df['gender'] = df['sex'].map({'Male': 0, 'Female': 1}).astype(int)
    # 인종
    ethnicity key = {'White': 0, 'Black': 1, 'Asian-Pac-Islander': 2,
                      'Amer-Indian-Eskimo': 3, 'Other': 4}
    df['ethnicity'] = df['race'].map(ethnicity key).astype(int)
    # 국가
    origin_key = {'?': 0, 'United-States': 1, 'Mexico': 2, 'Philippines': 3,
                   'Germany': 4, 'Canada': 5, 'Puerto-Rico': 6, 'El-Salvador': 7,
                   'India': 8, 'Cuba': 9, 'England': 10, 'Jamaica': 11, 'South': 12,
                   'China': 13, 'Italy': 14, 'Dominican-Republic': 15, 'Vietnam': 16,
                   'Guatemala': 17, 'Japan': 18, 'Poland': 19, 'Columbia': 20, 'Taiwa
                   'Haiti': 22, 'Iran': 23, 'Portugal': 24, 'Nicaragua': 25, 'Peru':
                   'France': 27, 'Greece': 28, 'Ecuador': 29, 'Ireland': 30, 'Hong':
                   'Trinadad&Tobago': 32, 'Cambodia': 33, 'Laos': 34, 'Thailand': 35, 'Yugoslavia': 36, 'Outlying-US(Guam-USVI-etc)': 37, 'Hungary': 38,
                   'Honduras': 39, 'Scotland': 40, 'Holand-Netherlands': 41}
    df['native country'] = df['native country'].map(origin key).astype(int)
    # 고용형태
    work_key = {'Private': 0, 'Self-emp-not-inc': 1, 'Local-gov': 2, '?': 3,
                 'State-gov': 4, 'Self-emp-inc': 5, 'Federal-gov': 6,
                 'Without-pay': 7, 'Never-worked': 8}
    df['work'] = df['workclass'].map(work key).astype(int)
    # 결혼상태
    marital_status_key = {'Married-civ-spouse': 0, 'Never-married': 1, 'Divorced': 2
                            'Separated': 3, 'Widowed': 4, 'Married-spouse-absent': 5,
                           'Married-AF-spouse': 6}
    df['marital status'] = df['marital status'].map(marital status key).astype(int)
    # 업종
    occupation key = {'Prof-specialty': 0, 'Craft-repair': 1, 'Exec-managerial': 2,
                       'Adm-clerical': 3, 'Sales': 4, 'Other-service': 5, 
'Machine-op-inspct': 6, '?': 7, 'Transport-moving': 8,
                       'Handlers-cleaners': 9, 'Farming-fishing': 10, 'Tech-support':
                       'Protective-serv': 12, 'Priv-house-serv': 13, 'Armed-Forces':
    df['occupation'] = df['occupation'].map(occupation key).astype(int)
    # 가족관계
    relationship_key = {'Husband': 0, 'Not-in-family': 1, 'Own-child': 2, 'Unmarried
                         'Wife': 4, 'Other-relative': 5}
```

```
df['relationship'] = df['relationship'].map(relationship key).astype(int)
# raw column 삭제
df = df.drop(['income'], axis=1)
df = df.drop(['sex'], axis=1)
df = df.drop(['race'], axis=1)
# df = df.drop(['native.country'], axis=1)
df = df.drop(['workclass'], axis=1)
# df = df.drop(['marital.status'], axis=1)
df = df.drop(['education'], axis=1)
# dummy = pd.get dummies(df['education'], prefix='education')
# del df['education']
# df = pd.concat([df, dummy], axis=1)
# df = df.drop(['education num'], axis=1)
# 주당 근무 시간
df['hours_per_week'] = df['hours_per_week'].astype(int)
# df.loc[df['hours_per_week'] < 40, 'hours_per_week'] = 0</pre>
# df.loc[df['hours_per_week'] == 40, 'hours_per_week'] = 1
# df.loc[df['hours_per_week'] > 40, 'hours_per week'] = 2
# 양도소득차
df['capital_diff'] = df['capital_gain'] - df['capital_loss']
#df['fnlwgt_log'] = np.log(df['fnlwgt'])
#df['education_num'] /= 10
# df['age_log'] = np.log(df['age'])
#del df['fnlwgt']
# del df['native country']
return df
```

In [99]:

```
# 데이터 전처리
all_data = pd.concat([raw_train, raw_test])
all_data = preprocess(all_data)
train = all_data.iloc[:len(raw_train)]
test = all_data.iloc[len(raw_train):]

train_x = train.drop(['income_level'], axis=1)
train_y = train['income_level']

test_x = test.drop(['income_level'], axis=1)
```

```
0
age
workclass
                       0
                       0
fnlwgt
                       0
education
education num
                       0
                      0
marital status
occupation
                      0
relationship
                      0
race
                       0
                      0
sex
                      0
capital_gain
capital loss
                       0
                       0
hours_per_week
native country
                       0
                   6512
income
dtype: int64
```

```
In [100]:
```

```
prediction = np.zeros(len(test x))
learning_params = [
    "learning rate": 0.2,
    "iterations": 212,
    "depth": 4,
    "12 leaf reg": 3,
    "random seed": 62,
    "random strength": 1,
    "eval metric": 'Accuracy'
    },
    {
    "learning_rate": 0.2,
    "iterations": 273,
    "depth": 4,
    "12_leaf_reg": 3,
    "random seed": 8,
    "random strength": 1,
    "eval_metric": 'Accuracy'
    },
    {
    "learning rate": 0.2,
    "iterations": 277,
    "depth": 4,
    "12 leaf_reg": 3,
    "random seed": 145,
    "random strength": 1,
    "eval metric": 'Accuracy'
    }]
for param in learning params:
    model = CatBoostClassifier(**param)
    model.fit(train_x, train_y, verbose=False)
    prediction += model.predict(test x)
prediction = prediction / 3
prediction[prediction < 1] = 0</pre>
prediction = prediction.astype(np.int64)
```

In [101]:

```
from sklearn.metrics import accuracy_score
```

In [102]:

Out[102]:

```
# 학습셋의 성능
train_prediction = model.predict(train_x)
accuracy_score(train_y, train_prediction)
```

```
0.8893623555606741
```

```
In [103]:
```

• model의 예측치를 0.55 ~ 0.50, 0.45 ~ 0.50 2분류로 나눠서 임의로 지정하고 submission 제출을 통해서 best random값을 찾는다.

In [105]:

```
score_ranges = [
    (0.55, 0.50, 999, 30), # label 1 min
    (0.50, 0.45, 2000000, 9) # label 0
]
for up, down, seed, random_range in score_ranges:
    indexes = np.where(np.logical_and(score_list[:,0] < up, score_list[:,0] > down))
    np.random.seed(seed)
    rand_val = np.random.randint(0,random_range,size=len(indexes))
    rand_threshold = np.random.randint(1, random_range -1)
    rand_val[rand_val<rand_threshold] = 0;
    rand_val[rand_val>=rand_threshold] = 1
    prediction[indexes] = rand_val
```

제출

In [106]:

```
submission = pd.read_csv(os.path.join(dirname, 'sample_submission.csv'))
submission['prediction'] = prediction
submission.to_csv('submission_6th_catBoost.csv', index=False)
```

- REF
 - https://velog.io/@jee-9/PyCaret-Tutorial-Docs%EC%99%80-%ED%95%A8%EA%BB%98-%EA%B0%84%EB%8B%A8%ED%95%98%EA%B2%8C-%EC%9D%B4%EC%9A%A9%ED%95%B4%EB%B3%B4%EA%B8%B0 (https://velog.io/@jee-9/PyCaret-Tutorial-Docs%EC%99%80-%ED%95%A8%EA%BB%98-%EA%B0%84%EB%8B%A8%ED%95%98%EA%B2%8C-%EC%9D%B4%EC%9A%A9%ED%95%B4%EB%B3%B4%EA%B8%B0)

• Score: 0.87040