The Consequences of Financial Center Conditions for Emerging Market Sovereigns

Samuele Centorrino

Lei Li

Gabriel Mihalache

 IMF^1

Stony Brook U

Ohio State

FRB Cleveland

June 11, 2024

 $^{^{1}}$ The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Financial Center Conditions

- Consequences of *tight financial conditions* in the US for EM sovereigns?
 - In the data: recessionary, increased yield spreads
 - We focus on the sovereign borrowing and default risk *channel*
- Less known about *predictable* changes in future conditions
 - E.g. the start of a US monetary tightening cycle

Financial Center Conditions

- Consequences of *tight financial conditions* in the US for EM sovereigns?
 - In the data: recessionary, increased yield spreads
 - We focus on the sovereign borrowing and default risk *channel*
- Less known about *predictable* changes in future conditions
 - E.g. the start of a US monetary tightening cycle
- What we do...
 - Isolate incentives for borrowing and default in a tractable model
 - Ambiguity in the response of spreads
 - 2 Statistical model of US yield curve and inflation with predictable dynamics
 - 3 Sovereign default model to confront the evidence
 - Domestic financial frictions

Impact of US Short-term Real Rates on EMs

Panel IV local projection of annualized quarterly GDP growth and EMBI+ Spread using 'naive' 3mo real Tbill yield, instrumented with Bauer Swanson (2013) identified monetary policy shocks, controlling for 4 lags of shock and outcome variables.

2013 "Taper Tantrum" Episode

2022 Tightening Cycle

Roadmap

- Intuition on borrowing and spreads in the simplest default model
- 2 A statistical model of the US yield curve
- 3 A quantitative sovereign default model with domestic financial frictions

Simple Analytics of Risk-free Rate Movements in a Tractable Default Model

A Tractable Default Model

$$V\left(b|r,r'\right) = \max_{b'} \left\{ \overline{y} - b + q(b'|r,r')b' + \beta \mathbf{E}_{\nu} \max \left\{ V\left(b'|r',r'\right), V^d - \nu \right\} \right\}$$
$$q(b'|r,r') = \frac{1}{1+r} \Pr \left[\nu \ge V^d - V(b'|r',r') \right]$$

- Linear utility
- One period debt
- Constant endowment \bar{y}
- Default value shock ν , with pdf ϕ and cdf Φ
- Risk-free rate r this period, r' in all future periods

Default Behavior

$$\nu^*(b'|r') \equiv V^d - V(b'|r',r')$$

(Default Threshold)

$$V\left(b|r,r'\right) = \overline{y} - b + \max_{b'} \left\{ q(b'|r,r')b' + \beta \left[\int_{-\infty}^{\nu^*(\cdot)} \left(V^d - \nu\right) d\Phi + \int_{\nu^*(\cdot)}^{\infty} V(b'|r',r')d\Phi \right] \right\}$$

$$q(b'|r,r') = \frac{1 - \Phi\left[\nu^*(b'|r')\right]}{1 + r}$$

Borrowing Behavior

$$h\left(\nu^*(b'|\mathbf{r}')\right)b' = \underbrace{1-\beta\left(1+\mathbf{r}\right)}_{>0}$$

(Optimal Borrowing)

Borrowing Behavior

$$h\left(\nu^*(b'|\mathbf{r}')\right)b' = \underbrace{1-\beta\left(1+\mathbf{r}\right)}_{>0}$$

(Optimal Borrowing)

(Hazard)

A One Time Increase in r

Start at $r = r' = \bar{r}$ and consider a one time increase in today's r:

$$h\left(\nu^*(b'|r')\right)b' = \underbrace{1 - \beta\left(1 + r\right)}_{\downarrow}$$

(Optimal Borrowing)

A One Time Increase in *r*

Start at $r = r' = \bar{r}$ and consider a one time increase in today's r:

$$h\left(\nu^*(b'|r')\right)b' = \underbrace{1 - \beta\left(1 + r\right)}_{\downarrow}$$

(Optimal Borrowing)

- RHS \downarrow , must have LHS \downarrow , and therefore $b' \downarrow$
- r' unchanged, so $v^*(b'|r') \downarrow$
- *Lower* default probability and spread

Future Interest Rates

Start at $r = r' = \bar{r}$ and consider an increase in all future rates r':

$$h\left(v^*(b'|\mathbf{r'})\right)b' = \underbrace{1-\beta\left(1+r\right)}_{\text{no change}}$$

$$\nu^*(b'|\mathbf{r'}) \equiv V^d - V\left(b'|\mathbf{r'},\mathbf{r'}\right)$$

(Default Threshold)

Future Interest Rates

Start at $r = r' = \bar{r}$ and consider an increase in all future rates r':

$$h\left(v^*(b'|\mathbf{r'})\right)b' = \underbrace{1-\beta\left(1+\mathbf{r}\right)}_{\text{no change}}$$
 (Optimal Borrowing)

$$v^*(b'|r') \equiv V^d - V(b'|r',r')$$
 (Default Threshold)

$$\frac{\partial}{\partial r'}V(b'|r',r') < 0$$
 (Value of Market Access)

$$r'\uparrow \Rightarrow V(b'|r',r')\downarrow \Rightarrow v^*(b'|r')\uparrow \Rightarrow b'\downarrow$$

Spread and Borrowing Response to Risk-free Rate Shocks

- One Time: $r > \bar{r}$, $r' = \bar{r} = 2\%$
- Expected: $r = \bar{r}, r' > \bar{r}$
- Permanent: $r = r' > \bar{r}$

A Pricing Kernel with Predictable Dynamics

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\Pi_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1$$
 (ZC Bond Prices)

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\Pi_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1 \qquad \qquad \text{(ZC Bond Prices)}$$

$$-\log m_{t+1} = x_t + 0.5 \, \lambda_m^2 + \lambda_m \varepsilon_{t+1} \qquad \qquad \text{(Real SDF)}$$

$$x_{t+1} = (1-\rho) \nu_t + \rho_x x_t + \sigma_x \varepsilon_{t+1} \qquad \qquad \text{(Factor)}$$

$$\nu_{t+1} = \begin{cases} \nu_t, & \text{w.p. } p \\ \text{iid } N(\mu_\nu, \sigma_\nu^2), & \text{otherwise} \end{cases} \qquad \text{(Trend)}$$

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\Pi_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1 \qquad \text{(ZC Bond Prices)}$$

$$-\log m_{t+1} = x_t + 0.5 \lambda_m^2 + \lambda_m \varepsilon_{t+1} \qquad \text{(Real SDF)}$$

$$x_{t+1} = (1-\rho)\nu_t + \rho_x x_t + \sigma_x \varepsilon_{t+1} \qquad \text{(Factor)}$$

$$\nu_{t+1} = \begin{cases} \nu_t, & \text{w.p. } p \\ \text{iid } N(\mu_\nu, \sigma_\nu^2), & \text{otherwise} \end{cases} \qquad \text{(Trend)}$$

$$-\log \Pi_{t+1} = \mu_\pi + \iota_\nu \nu_t + \iota_x x_t + A_4(L) \eta_{t+1} \qquad \text{(Inflation)}$$

SDF Parameter Estimates

Estimate	95% CI			
First Stage				
0.7395	[0.6123, 0.8183]			
0.0036	[0.0000, 0.0048]			
0.0045	[0.0000, 0.0524]			
9				
0.9672				
$-8.2e^{-4}$				
0.0109				
Second Stage				
-0.7425				
-0.4676				
-0.1445				
0.0369				
-0.0578				
-0.2359				
	0.7395 0.0036 0.0045 9 0.9672 -8.2e ⁻⁴ 0.0109 I Stage -0.7425 -0.4676 -0.1445 0.0369 -0.0578			

Two stage procedure...

- Use 3mo yield and inflation to estimate and filter x_t and v_t (including breaks/jumps)
- **2** Use higher maturities to estimate Π_{t+1} equation and market price of risk λ_m

x_t and v_t Estimates

A Quantitative Sovereign Default Model

Model Outline

- Domestic private sector
 - Households
 - Financial Intermediaries
 - Producers
- The sovereign
 - Operates in international financial markets
 - Long-term defaultable bond
 - Transfers (or taxes) lump sum proceeds to household
- International lenders
 - Price and hold the sovereign's bond
 - One factor SDF with x_t and v_t
- Equilibrium default (Markov Perfect Equilibrium)

The Household and the Domestic Interest Rate

$$\max_{\{\ell_{t},b_{t+1}^{h}\}} \mathbf{E}_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t},\ell_{t}\right) \quad \text{ s.t. } \quad c_{t} = w_{t}\ell_{t} + \Pi_{t} + \Pi_{t}^{f} + T_{t} - b_{t}^{h} + \frac{1}{1+i_{t}} b_{t+1}^{h}$$

$$-u_{\ell}(c_t, \ell_t) = u_c(c_t, \ell_t)w_t$$
 (FOC ℓ_t)

$$u_c(c_t, \ell_t) = \beta(1 + i_t) \mathbf{E}_t u_c(c_{t+1}, \ell_{t+1})$$
 (FOC b_{t+1}^h)

$$b_t^h = b_{t+1}^h = 0 (Zero Net Supply)$$

Producers and the Working Capital Constraint

$$\Pi_{t} = \max_{\ell} \left\{ A_{t} \ell_{t}^{\alpha} - \left[(1 - \theta) w_{t} \ell_{t} + \theta (1 + i_{t}) w_{t} \ell_{t} \right] \right\}$$

$$\ell_t = \left(\frac{lpha}{1 + heta i_t} \cdot \frac{A_t}{w_t}\right)^{1/(1-lpha)}$$

 $\log A_{t+1} = \rho_A \log A_t + \sigma_A \varepsilon_{t+1}$

(Productivity)

(FOC ℓ_t)

Domestic Financial Intermediaries

$$\Pi_t^f = -a_t + (1+i_t) a_t = i_t a_t$$

$$a_t = \theta w_t \ell_t$$

(Working Capital Quantity)

$$i_{t} = \frac{u_{c}\left(c_{t}, \ell_{t}\right)}{\beta \mathbf{E}_{t} u_{c}\left(c_{t+1}, \ell_{t+1}\right)} - 1$$

(Domestic Rate)

The Sovereign

$$T_t = q_t \left[B_{t+1} - (1 - \delta) B_t \right] - \kappa B_t - \overline{G}$$

Transfers to household

- proceeds from sale of new issuance $B_{t+1} (1 \delta)B_t$ at market price q_t ,
- minus debt service payment κB_t ,
- minus government spending

Adding Up

Consolidate sovereign, household, and domestic firms...

$$w_t \ell_t + \Pi_t + \Pi_t^f = A_t \ell_t^{\alpha} = c_t + \overline{G} + tb_t$$
 (GDP)

$$tb_t = \kappa B_t - q_t [B_{t+1} - (1 - \delta)B_t]$$
(BoP)

Equilibrium

$$\ell_t(A_t, B_t, B_{t+1}) \Leftrightarrow i_t(A_t, B_t, B_{t+1})$$

International Lenders

$$q_{t} = \mathbf{E}_{t} \left\{ m_{t+1} \left(1 - d_{t+1} \right) \left[\kappa + (1 - \delta) q_{t+1} \right] \right\}$$

(Bond Price Schedule)

$$q_t^{\mathrm{rf}} = \mathbf{E}_t \left\{ m_{t+1} \left[\kappa + (1 - \delta) q_{t+1}^{\mathrm{rf}} \right] \right\}$$

(Risk-free Bond Price)

- m_t driven by x_t factor and trend v_t (real SDF)
- Same duration for sovereigns' and risk-free bonds
- Yield-to-maturity spread

$$sp_t = \left(\frac{1}{q_t} - \frac{1}{q_t^{\text{rf}}}\right)\kappa$$

Domestic versus Sovereign Yields

Why is the domestic rate i_t not the yield on the sovereign's bond?

$$u_c(c_t, \ell_t) = \beta(1+i_t)\mathbf{E}_t u_c(c_{t+1}, \ell_{t+1})$$
 (Household FOC)

$$u_c(c_t, \ell_t) = \beta \frac{\kappa}{q_t + \frac{\partial q_t}{\partial B_{t+1}} B_{t+1}} \mathbf{E}_t (1 - d_{t+1}) u_c(c_{t+1}, \ell_{t+1}) + \dots$$
 (Sovereign FOC)

- Sovereign as monopolist in own bonds: internalize slope of demand
- Marginal cost of borrowing only in repayment (default option)
- Difference in maturity: one period vs long-term with δ
- Use B' to alter domestic allocation

Outcomes in Default

For the government:

- Market exclusion of random duration
- Full repudiation (return without debt)
- $T_t = -\overline{G}$

For the private sector:

■ *Output* penalty: $y_t = h(A_t \ell_t^{\alpha})$

Firms demand ℓ_t based on perceived A_t^d . In equilibrium, $h(A_t\ell_t^{\alpha}) = A_t^d\ell_t^{\alpha}$

Recursive Formulation

- State variables: $s = \langle A, x, \nu \rangle$ and B
- Private domestic outcomes for arbitrary $\langle s, B, B' \rangle$
 - $c(s, B, B'), \ell(s, B, B'), i(s, B, B'), \dots$
- Sovereign policies d(s,B) and B'(s,B) Taking as given private outcomes and future policies
- Forward-looking functions (Markov):
 - Bond price schedule q(s, B')
 - Expected marginal utility H(s, B'), $H^d(s)$

$$H(s,B') = \mathbb{E}_{s'|s} \left\{ (1 - d(s',B')) u_c(s',B',B'') + d(s',B') u_c^d(s') \right\}$$
$$u_c(s,B,B') = \beta [1 + i(s,B,B')] H(s,B')$$

Functional Forms

■ Utility function. Greenwood, Hercowitz, and Huffman (1988)

$$u(c,\ell) = rac{\left(c - \psi rac{\ell^{1+\mu}}{1+\mu}
ight)^{1-\sigma} - 1}{1-\sigma}$$

■ Default output penalty, as in Aguiar et al. (2016)

$$h(y_t) = \left(1 - \lambda_0 y_t^{\lambda_1}\right) y_t$$

Work-in-Progress: Calibration

	Value	Comment
$ \begin{array}{c} \sigma \\ \beta \\ \psi \\ \mu^{-1} \\ \alpha \\ \frac{\theta}{G} \end{array} $	2.0 0.98 0.675 0.75 0.67 1.5 0.4	CRRA Discounting Normalization, mean ℓ Frisch elasticity (GHH) Returns to scale Working capital constraint Public spending
$\begin{array}{c} \delta \\ \kappa \\ \lambda_0 \\ \lambda_1 \\ \chi \end{array}$	0.063 $\delta + \mu_{\nu}$ 0.045 35.0 0.05	5 year debt Macaulay duration Normalization Penalty, level Penalty, exponent Market return probability
$ \begin{array}{c} \rho_x \\ \sigma_x \\ \mu_\nu \\ \sigma_\nu \\ p \\ \lambda_m \end{array} $	$0.74 \\ 0.0036 \\ -8.3e^{-4} \\ 0.011 \\ 0.9672 \\ -0.236$	Autocorrelation of pricing kernel factor Volatility of factor Average factor level Volatility of factor trend shocks Probability of renewal Market price of risk
$ \rho_A \\ \sigma_A $	0.9 0.005	Autocorrelation of productivity Volatility of productivity shock
η_D η_B	$1e^{-4} \ 1e^{-4}$	Default taste shock Borrowing taste shock

	Model
Mean	
Spread	2.8
Debt to GDP	6.7
Standard Deviations	
Spread	1.8
GDP .	2.5
Consumption	4.7
Domestic Rate	2.4
Correlations	
Spread and GDP	-56.7
Trade Balance/GDP and GDP	-60.3

Stochastic IRFs

- Default model ⇒ no steady state, but ergodic distribution
- Where to shock for IRFs?

- Idea, based on Koop, Pesaran, and Potter (1996), ...
 - Simulate long and wide panel of model economies (independent)
 - lacktriangle Eventually, cross section \Rightarrow ergodic distribution
 - Then, shock all panel units by the same amount
 - Trace out average responses

Equivalent to shocking everywhere and weighting by ergodic distribution

IRF: Productivity A_t

IRF: SDF Factor x_t

IRF: SDF Trend v_t

Summing Up

■ Theory highlights spreads ambiguity: shock persistence and predictability

- Preliminary evidence on anticipated movements for US yield curve
- Quantitative model
 - Financial frictions key for output response
 - Domestic interest rate volatility is a costly side-effect of sovereign borrowing

Panel VAR, Uribe Yue 2006

Impulse responses to a 1% increase in the financial center rate (Uribe Yue, 2006)

- *Depressed output* and investment
- Current Account reversal
- Higher yields *and spreads*

