Mathematische Grundlagen Zusammenfassung

Maximilian Ortwein

14. Februar 2012

Inhaltsverzeichnis

1	Logi	ik	2	
2	Bew	<i>r</i> eisregeln	2	
3	Men	ngen	2	
4	Relationen			
	4.1	Äquivalenzrelationen	4	
	4.2	Äquivalenzklassen	4	
		4.2.1 Repräsentantensystem	4	
	4.3	Ordnungsrelationen	5	
		4.3.1 HASSE-Diagramme	5	
		4.3.2 Minima, Maxima u.s.w.		
	4.4	Graphen	5	
5	Indu	ıktion	6	
	5.1	Strukturelle Induktion	6	
	5.2	transitive Hülle	6	
	5.3	Mächtigkeit von Mengen	6	
6	Ana	lysis	6	
	6.1	Konvergenz von Folgen	6	
	6.2	konvergenz von Reihen	7	
	6.3	oberer und unterer Grenzwert		
	6.4	Asymptotik von Folgen und Reihen		
	6.5	Potenzreihen		

1 Logik

- \neg geht vor \land und \land geht vor \lor
- Implikation: $A \to B = \neg A \lor B = \neg A \to \neg B$
- Äquivalenz: $A \leftrightarrow B = (A \to B) \lor (B \to A)$
- Antivalenz: $A \oplus B = (\neg A \land B) \lor (A \land \neg B)$
- KNF: $(A \lor B) \land (B \lor C)$
- DNF: $(B \wedge C) \vee (A \wedge C)$

2 Beweisregeln

- -Abtrennregel sind A und $A \to B$ allgemeingültig, dann ist auch B allgemeingültig
- Fallunterscheidung sind $A \to B$ und $\neg A \to B$ allgemeingültig, dann ist B allgemeingültig
- -Kettenschluss sind $A \to B$ und $B \to C$ allgemeingült, so ist $A \to C$ allgemeingültig
- -Kontraposition sind $A \to B$ Allgemeingültig, so ist $\neg A \to \neg B$ allgemeingültig
- -indirekter Beweis sind $A \to B$ und $A \to \neg B$ allgemeingültig, so ist $\neg A$ allgemeingültig

3 Mengen

- extensionale Darstellung: $A = \{a_1, a_2, ..., a_n\}$
- intensionale Darstellung: $A = \{a|E(a)\}$ E(a) bedeutet eine Bestimmte eigenschaft die a erfüllen Muss damit es in der Menge ist.

Mengenoperationen

- Vereinigung: $A \cup B = \{x | x \in A \lor x \in B\}$ alle Elemente aus A und B
- Durchschnitt: $A \cap B = \{x | x \in A \land x \in B\}$ nur Elemente die in A und B vorkommen
- Differenz: $A \setminus B = \{x \mid x \in A \land x \notin B\}$ Alle Elemente die nur in A enthalten sind
- Symmetrische Differenz: $A\triangle B=(A\backslash B)\cup (B\backslash A)$ Alle Elemente die nur in A und nur in B vorkommen
- Komplement: $\bar{A} = U \backslash A$ das Universum ohne A
- Zwei Mengen sind Disjunkt, wenn gilt $A \cap B = \emptyset$

Potenzmenge:

- $\mathcal{P}(A) = \{X | X \subseteq A\}$
- 1. $X \in \mathcal{P}(A) \Leftrightarrow X \subseteq A$
- $2. \emptyset, A \in \mathcal{P}(A)$
- 3. Wenn A endlich ist, gilt: $||\mathcal{P}(A)|| = 2^{||A||}$

BSP:
$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$$

Teilmengen von Potenzmengen sind Mengenfamilien

Partitionen:

Partitionen sind Mengenfamilien und stellen eine Zerlegung des Universums dar Mengenfamilie: $\mathcal{F} \subseteq \mathcal{P}(A)$

- 1. $B \cap C = \emptyset$ für Alle Mengen $B, C \in \mathcal{F}$ mit $B \neq C$
- 2. $\bigcup_{B \in \mathcal{T}} B = A$

 $B \in \mathcal{F}$ heißt Komponente der Partition

Haubersches Theorem: $\{A_1, \ldots A_n\}$ und $\{B_1 \ldots B_n\}$ sind Partitionen von U. Gilt $A_i \subseteq B_i$ dann gilt $B_i \subseteq A_i$ und $A_i = B_i$ für alle $i \in \{1 \ldots n\}$

4 Relationen

Kreuzprodukt: $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2 ... a_n | \text{ALLE ZAHLEN1}...n\} \text{ Jedes Element steht mit jedem Element aus allen Mengen in Beziehung. z.B.} \{a, b, c\} \times \{2, 3\} = \{(a, 2), (a, 3), (b, 2), (b, 3), (c, 2), (c, 3)\}$

(a,b) = Tupel; (a,b,c) = Tripel; Quadrupel für n=4

Sind alle Mengen gleich schreibt man A^n also z.B. \mathbb{N}^2 ist $\mathbb{N} \times \mathbb{N}$

Eine Menge $R \subseteq A_1 \times \ldots \times A_n$ heisst n-Stellige Relation

Eine Binäre Relation ist definiert als $R \subseteq A^2$

 $xRy \Leftrightarrow (x,y) \in R$ und bedeutet x steht in Relation R zu y

Funktionen

- 1. Linkstotal: $(\forall x \in A)(\exists y \in B)[(x,y) \in R]$
- Jedes Elemement der Menge A ist mit min. einem Element der Menge B in Relation
- 2. Rechtseindeutig: $(\forall x \in A)(\forall y, z \in B)[(x, y) \in R \land (x, z) \in R \rightarrow y = z]$

Ein Element der Menge A kann nur mit genau einem Element der Menge B in Relation stehen

- 3. Rechtstotal: $(\forall y \in B)(\exists x \in A)[(x,y) \in R]$
- Jedes Element der Menge B steht in Relation zu min. einem Element der Menge A
- 4. Linkseindeutig: $(\forall x, y \in A)(\forall z \in B)[(x, z) \in R \land (y, z) \in R \rightarrow x = y]$

Ein Element der Menge B kann nur mit einem genau Element der Menge A in Relation stehen

R ist eine (totale) Funktion wenn R linkstotal und Rechtseindeutig ist R ist eine partielle Funktion wenn R rechtseindeutig ist

Schreibweisen für Funktionen: $f \subseteq A \times B \equiv f : A \to B$ $(a,b) \in f \equiv f(a) = b$ Kompakt: $f : A \to B : a \mapsto f(a)$ Bild(menge): $f(A_0) = \{f(a) | a \in A_0\}$ $f(A_0)$ sind Bilder von A_0 von f Urbild(menge): $f^{-1}(B_0) = \{a | f(a) \in B_0\}$

Sind A und B endliche Mengen und $f:A\to B$ eine Funktion, dann gilt: $||A||=\sum_{b\in B}||f^{-1}(\{b\})||$

Eine Funktion f ist:

Surjektiv f ist rechtstotal $(\forall b \in B)[||f^{-1}(\{b\})|| \ge 1]$ es gilt: $||A|| \ge ||B||$ Injektiv: f ist linkseindeutig $(\forall b \in B)[||f^{-1}(\{b\})|| \le 1]$ es gilt: $||A|| \le ||B||$ Bijektiv: f ist injektiv und surjektiv $(\forall b \in B)[||f^{-1}(\{b\})|| = 1]$ es gilt ||A|| = ||B||

Umkehrrelation: $R^{-1} = \{(y, x) | (x, y) \in R\}$

R ist linkstotal dann R^{-1} rechtstotal; R ist rechtseindeutig, dann R^{-1} linkseindeutig; R ist rechtstotal, dann R^{-1} linkstotal; R ist Linkseindeutig, dann R^{-1} rechtseindeutig.

ist f bijektiv, dann ist f^{-1} auch bijektiv, f ist umkehrbar, wenn f^{-1} eine Funktion ist. Eine Funktion ist genau dann invertierbar, wenn sie bijektiv ist.

Hintereinanderausführung

 $(g \circ f)(x) = g(f(x))$ es gilt allerdings: $g \circ f \neq f \circ g$ sind g und f injektiv, so ist $g \circ f$ injektiv; sind g und f surjektiv so ist $g \circ f$ surjektiv; sind g und f bijektiv so ist $g \circ f$ bijektiv identitätsfunktion: $id_A : A \to A : x \mapsto x$ wenn $f : A \to B$ bijektiv, dann $f^{-1} \circ f = id_A$ und $f \circ f^{-1} = id_B$

4.1 Äquivalenzrelationen

reflexiv: $(\forall a \in A)[(a, a) \in R]$

transitiv: $(\forall a, b, c \in A)[((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R]$

symmetrisch: $(\forall a, b \in A)[(a, b) \in R \to (b, a) \in R]$ Aäquivalenzrelation: reflexiv, transitiv, symmetrisch

4.2 Äquivalenzklassen

Es Gilt $R \subseteq A^2$ und $x \in A$

 $[x]_R =_{def} \{y | (x, y) \in R\} \subseteq A$ ist eine Äquivalenzklasse von x und x ist Repräsentant

- ist $(x, y) \in R$ dann $[x]_R = [y]_R$
- ist $(x, y) \notin R$ dann sind $[x]_R$ und $[y]_R$ disjunkt

4.2.1 Repräsentantensystem

für alle $k_1, k_2 \in K$ mit $k_1 \neq k_2$ gilt $(k_1, k_2) \notin R$ $A = \bigcup_{k \in K} [k]_R$

Die Äquivalenzklassen von K bilden eine Partition von A

 \mathcal{F} sei eine Partition von A, dann ist $R \subseteq A^2$ mit $(x,y) \in R \Leftrightarrow (\exists X \in \mathcal{F})[x \in X \land y \in X]$ eine Äquvalenzrelation

4.3 Ordnungsrelationen

- antisymmetrisch: $(\forall a, b \in A)[((a, b) \in R \land (b, a) \in R) \rightarrow a = b]$ wenn a und b verschieden sind, darf nur eines der paare (a,b) oder (b,a) in der Relation vorkommen
- linear: $(\forall a, b)[a \neq b \rightarrow ((a, b) \in R \lor (b, a) \in R)]$ eines der paare (a,b) oder (b,a) müssen vorkommen wenn a und b verschieden sind

Halbordnung: reflexiv transitiv und antisymmetrisch Ordnung(total) reflexiv, transitiv, antisymmetrisch und linear(total) ist R Halbordnung, so ist (A,R) Halbgeordnete Menge ist R Ordnung, so ist (A,R) geordnete Menge

4.3.1 HASSE-Diagramme

- Elemente aus der Menge A werden durch Knoten dargestellt
- $-(x,y) \in R$ für $x \neq y$ wird y oberhalb von x gezeichnet
- Wenn es kein $z \notin \{x,y\}$ mit $(x,z) \in R$ und $(z,y) \in R$ gibt werden x und y durch kante verbunden

4.3.2 Minima, Maxima u.s.w.

- Minimum bzw. Maximum: größtes bzw kleinstes Element einer Halbordnung, Min. und Max. müssen in der Halbordnung enthalten sein
- untere bzw. obere Schranke sind gleich definiert wie das Min. bzw. das Max. allerdings müssen sie nicht zur betrachteten Halbordnung gehören.
- Infimum bzw Supremum sind die kleinste bzw. größte Obere Schranke

Inf, Sup, Max und Min sind immer eindeutig!

4.4 Graphen

- G = (V, E) V sind Knoten, E sind Kanten
- Weg ist Folge von Knoten
- Kreis ist Weg mit gleichem anfangs und Endknoten
- zusammenhängend heisst, das jeder Knoten verbunden ist
- Baum: Kreisfrei und Zusammenhängend

5 Induktion

Induktionsanfang: Zeige, das Aussage gilt für Anfangswert für n (z.B. n=0) Induktionsschritt, Zeige, dass Aussage für n gilt unter der Annahme, das induktionsvorraussetzung für n-1 gilt.

5.1 Strukturelle Induktion

- IA: Zeige A(x) für alle $x \in B_0$
- IS: Zeige A(x) unter verwendung eines Allgemeinen $x \in B \setminus B_0$ Unter Annnahme, dass IV gilt.

5.2 transitive Hülle

-
$$R^+ = \Gamma_{\bowtie}(R)$$

Reflexiv Transitive Hülle: $R^* = R^+ \cup \{(a,a)|a \in A\}$
 $x \sim_{R^*} \Leftrightarrow (x,y) \in R^* \land (y,x) \in R^*$
 \sim_{R^*} ist Äquvalenzrelation
 $[x]_{\sim_{R^*}} \leq_{R^*} [y]_{\sim_{R^*}} \Leftrightarrow (x,y) \in R^*$

5.3 Mächtigkeit von Mengen

Zwei Mengen sind gleichmächtig falls es bijektive Funktion $f: A \to B$ gibt.

A ist

Abzählbar falls surjektive Funktion $f:\mathbb{N}\to A$ existiert Abzählbar unendlich falls injektive Funktion $f:\mathbb{N}\to A$ existiert überabzählbar falls A nicht Abzählbar

6 Analysis

6.1 Konvergenz von Folgen

Wenn eine Folge gegen c konvergiert, so heißt c Grenzwert. Mathematisch: $\lim_{n\to\infty} a_n = c$ Folge heißt konvergent, wenn Grenzwert existiert andernfalls divergent Grenzwert ist immer eindeutig

Gilt
$$a_n \leq b_n$$
 so gilt $\lim_{n \to \infty} a_n = c \leq \lim_{n \to \infty} b_n = c$
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n = c$ gilt wenn: $a_n \leq b_n \leq c_n$
 $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
 $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$ falls $\lim_{n \to \infty} b_n \neq 0$ und $b_n \neq 0$

6.2 konvergenz von Reihen

Reihe:
$$s_n = \sum_{k=0}^n a_k$$

Wenn
$$s_n$$
 Konvergiert so gilt $\sum_{k=0}^n a_k = \lim_{n \to \infty} s_n$

Absolut Konvergent: wenn $\sum_{k=0}^{n} |a_k|$ Konvergent ist

Majoranten Kriterium (Marihuana-Kriterium ;-)): \sim

Ist $\sum\limits_{k=0}^{\infty}b_k$ absolut konvergent und gilt $|a_n|\leq |b_n|$ für in größer n_0 so ist $\sum\limits_{k=0}^{\infty}a_k$ absolut konvergent

Wurzelkriterium:

Gibt es ein $0 \le q < 1$ und $n_0 \in \mathbb{N}$ mit $\sqrt[n]{|a_n|} \le q$ für alle $n \ge n_0$ so ist $\sum_{k=0}^{\infty} a_k$ absolut konvergent

Quotienten-Kriterium:

Gibt es ein $0 \le q < 1$ und $n_0 \in \mathbb{N}$ mit $|a_{n+1}| \le q \cdot |a_n|$ für alle $n \ge n_0$ so ist $\sum_{k=0}^{\infty} a_k$ absolut konvergent

6.3 oberer und unterer Grenzwert

oberer Grenzwert: $\lim_{n\to\infty} \sup a_n$

unterer Grenzwert: $\lim_{n\to\infty}\inf a_n$ Wenn $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n=c$ dann $\lim_{n\to\infty}a_n=c$ Gibt es $c,d\in\mathbb{R}$ mit $c\le a_n\le d$ für alle $n\ge n_0$ dann existieren $\lim_{n\to\infty}\inf a_n$ und $\lim_{n\to\infty}\sup a_n$

und es gilt $c \le \lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n \le d$ $\lim_{n \to \infty} \inf(-a_n) = -\lim_{n \to \infty} \sup a_n$ $\lim_{n \to \infty} \inf a_n^{-1} = (\lim_{n \to \infty} \sup a_n)^{-1}$

6.4 Asymptotik von Folgen und Reihen

$$f(n) \in O(g(n)) \Leftrightarrow (\exists c > 0)(\exists n_0)(\forall n \ge n_0)[f(n) \le c \cdot g(n)]$$

f(n) wächst höchstens so schnell wie g(n)

$$f(n) \in \Omega(g(n)) \Leftrightarrow (\exists c > 0)(\exists n_0)(\forall n \ge n_0)[f(n) \ge c \cdot g(n)]$$

f(n) wächst mindestens so schnell wie g(n)

$$f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \cap \Omega(g(n))$$

f(n) wächst genauso schnell wie g(n)

$$f(n) \in o(g(n)) \Leftrightarrow (\forall c > 0)(\exists n_0)(\forall n \ge n_0)[f(n) \le c \cdot g(n)]$$

f(n) wächst langsamer als g(n)

$$f(n) \in \omega(g(n)) \Leftrightarrow (\forall c > 0)(\exists n_0)(\forall n \ge n_0)[f(n) \ge c \cdot g(n)]$$

f(n) wächst schneller als g(n)

$$\begin{split} &f(n)\in O(g(n))\Leftrightarrow 0\leq \lim_{n\to\infty}\sup\frac{f(n)}{g(n)}<\infty\\ &f(n)\in \Omega(g(n))\Leftrightarrow 0\leq \lim_{n\to\infty}\sup\frac{g(n)}{f(n)}<\infty\\ &f(n)\in \Theta(g(n))\Leftrightarrow 0\leq \lim_{n\to\infty}\inf\frac{f(n)}{g(n)}\leq \lim_{n\to\infty}\sup\frac{f(n)}{g(n)}<\infty\\ &f(n)\in o(g(n))\Leftrightarrow \lim n\to\infty\frac{f(n)}{g(n)}=0\\ &f(n)\in \omega(g(n))\Leftrightarrow \lim n\to\infty\frac{g(n)}{f(n)}=0 \end{split}$$

6.5 Potenzreihen

Potenzreihe: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ mit Entwicklungspunkt x_0

Absolut Konvergent falls: $|x - x_0| < R$, R ist Konvergenzradius divergent falls $|x - x_0| > R$

Konvergiert (oder divergiert bestimmt) $\frac{|a_n|}{|a_{n+1}|}$, gilt $\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = R$ Konvergiert (oder divergiert bestimmt) $\frac{1}{\sqrt[n]{|a_n|}}$, gilt $\lim_{n\to\infty} \frac{|a_n|}{\sqrt[n]{|a_n|}} = R$ Wenn c < 0 statt c > 0 dann divergiert Folge bestimmt gegen $-\infty$

$$\sum_{n=0}^{\infty} x^n \text{ hat } R = 1$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$
, hat $R = 1$ konvergenz $x = -1$, divergenz $x = 1$

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
, hat R = 1, konvergen $|\mathbf{x}| = 1$

$$-e^x = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot x^n$$

-
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 für alle x zwischen -1 und 1 weil: $(\frac{1}{1-x})^{(n)} = \frac{n!}{(1-x)^{n+1}}$

-
$$ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^n$$
 für x zwischen -1 und 1

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) + \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k \cdot b_{n-k}\right) x^n$$

BSP:
$$\frac{1}{1+x^2} = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot x^{2n}$$