МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Алгоритмы и структуры данных»

Тема: Алгоритмы сортировки

Студент гр. 9381	 Аухадиев А.А
Преподаватель	 Фирсов М.А.

Санкт-Петербург 2020

Цель работы.

Познакомиться с алгоритмами сортировки, реализовать алгоритм двухпутевой сортировки бинарными вставками на языке C++.

Задание.

Вариант 3.

Двухпутевая сортировка бинарными вставками.

Описание алгоритма.

Двухпутевая сортировка бинарными вставками предполагает создание из исходного массива нового массива путём добавления в него элементов из исходного. Сначала в новый массив добавляется первый элемент исходного, затем все остальные по очереди.

При очередной вставке новый элемент сравнивается с крайними элементами (первым и последним) и добавляется в начало, если он меньше либо равен первому или в конец, если он больше либо равен последнему. Если ни одно из этих условий не выполняется, элемент сравнивается с элементом, находящимся в середине отсортированного массива.

Если элемент меньше среднего элемента, то элемент добавляется в начало массива, и массив разбивается на две части с фиксацией левой и правой границ, и элемент сравнивается со средним элементом левой половины. В зависимости от результатов сравнений со средними элементами, левая и правая границы сдвигаются, пока правая не оказывается левее. Затем вся часть массива, находящаяся левее левой границы сдвигается влево, и на освободившееся место ставится новый элемент.

Если элемент больше среднего, то происходят аналогичные операции в правой части массива с требуемым сдвигом элементов вправо.

Таким образом, при каждой вставке происходит сдвиг не более половины элементов массива.

Данный алгоритм прост в реализации, эффективен на небольших наборах данных, эффективен на частично отсортированных данных (если в исходном

массиве находятся подмассивы с числами по возрастанию или убыванию, быстро добавляемые в начало или конец), устойчив (не меняется порядок отсортированной части), может сортировать список по мере его получения. Недостатком является обработка каждого символа отдельно и то, что по мере увеличения кол-ва элементов в массиве, увеличивается и время выполнения одной итерации.

Всего происходит не более $N*log_2N$ сравнений, причём значение N увеличивается с каждым шагом на 1. Кол-во пересылок не превышает $N^2/8$.

Выполнение работы.

Была написана шаблонная функция binDoubleWaySort, принимающая в качестве шаблона тип данных, которые нужно отсортировать. В данной функции из исходного массива создаётся новый массив путём переноса символа, пока исходный массив не станет пустым. Функция реализует сортировку, алгоритм которой описан выше.

Разработанный программный код см. в приложении А.

Результаты тестирования см. в приложении Б.

Выводы.

Были изучены алгоритмы сортировки, реализован алгоритм сортировки двухпутевыми бинарными вставками на языке программирования C++.

Разработана функция binDoubleWaySort, при помощи которой можно отсортировать массив данных.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp #include <iostream> #include <string> #include <vector> #include <sstream> #include <fstream> #include <algorithm> int stepNumber = 0; template <typename T> void printArray(std::vector<T> arr){ //Вывод массива на экран for(auto i : arr) std::cout << i << ' '; std::cout << '\n': } template <typename T> std::vector<T> binDoubleWaySort(std::vector<T> arr){ std::vector<T> arr1; //Новый массив для заполнения отсортированными элементами int x = arr[0];arr1.push_back(x); //Добавление в новый массив первого элемента arr.erase(arr.cbegin()); //Удаление из старого массива первого элемента while(!arr.empty()){ std::cout << "Шаг № " << ++stepNumber << " (элемент " << х << "):\ n"; printArray(arr1); //Рассматриваемый элемент x = arr[0];arr.erase(arr.cbegin()); //Удаление рассматриваемого элемента из старого массива //Если элемент больше или равен $if(x \ge arr1.back())$ { последнему элементу, arr1.push_back(x); //добавляем его в конец отсортированного массива continue: //и переходим к следующей итерации if(x <= arr1.front()){</pre> //Если элемент меньше или равен первому элементу, arr1.insert(arr1.cbegin(), x); //Добавляем его в началоотсортированного массива continue; //и переходим к следующей итерации } int midIndex = arr1.size()/2; //индекс среднего элемента отсортированного массива int midElem = arr1[midIndex]; //средний элемент отсортированного массива //Если элемент меньше среднего, if(x < midElem){</pre> arr1.insert(arr1.cbegin(), x); //добавляем его в начало массива int left = 1;//Индекс крайнего левого

do{

int right = midIndex + 1;

элемента (не считая добавленного)

элемента (среднего)

//Индекс крайнего правого

```
int mid = (left + right)/2; //Индекс среднего элемента
левой части массива
                       if(arr1[mid] < x)
                                                   //Если средний элемент
подмассива меньше рассматриваемого,
                           left = mid + 1:
                                                   //Левая граница смещается до
середины + 1
                                                   //Если средний элемент
                       e1se
подмассива больше рассматриваемого
                           right = mid - 1;
                                                   //Сдвигаем правую границу до
середины - 1
                  }while(left <= right);</pre>
                                                   //Сдвиги происходят, пока
левая граница не превзойдёт правую,
                                                   //так образуется место для
добавления элемента
                  for(auto i = 0; i < left - 1; i++) //Сдвиг всех элементов
                       arr1[i] = arr1[i + 1];
                                                        //для освобождения места
для добавления
                  arr1[left - 1] = x;
                                                        //Добавление элемента в
отведённое место
              }else{
                                                   //Если рассматриваемый элемент
больше среднего,
                  arr1.push_back(x);
                                                   //он добавляется в конец
массива, и в правой части производятся
                  int left = midIndex -1;
                                                   //операции, аналогичные
операциям левой
                  int right = arr1.size() - 1;
                  do{
                       int mid = (left + right) / 2;
                       if(arr1[mid] < x)
                           left = mid + 1;
                       else
                           right = mid - 1;
                  }while(left <= right);</pre>
                  for(auto i = arr1.size()-1; i > left; i--) {
                       arr1[i] = arr1[i - 1];
                  arr1[left] = x;
              }
          }
          std::cout << "Шаг № " << ++stepNumber << " (элемент " << x << "):\n";
          printArray(arr1);
          std::cout << "Конец сортировки\n";
          return arr1;
      }
      int main() {
          std::vector<int> arr;
          std::string str;
          int inputFlag;
          std::cout << "Выберите, откуда будет производиться ввод (0 - консоль,
1 - файл)\n";
          std::cin >> inputFlag;
          switch(inputFlag){
              case 0:
                  std::cout << "Введите числа\n";
                  std::cin.ignore();
                  std::getline(std::cin, str);
                  break;
```

```
case 1:
            std::string fileName;
            std::cout << "Введите имя файла\n";
            std::cin >> fileName;
            std::ifstream fin(fileName);
            if(!fin.is_open()){
                std::cout << "Файл не найден\n";
                return 0;
            }
            std::getline(fin, str);
            fin.close();
            std::cout << "Сортируемый массив\n" << str << '\n';
    }
   std::istringstream stream (str);
   int x = 0;
   while(stream >> x)
        arr.push_back(x);
    if(arr.empty())
        return 0;
    std::vector<int> arr1 = arr;
   arr = binDoubleWaySort(arr);
   std::sort(arr1.begin(), arr1.end());
   std::cout << "Результат работы библиотечнй сортировки:\n";
   printArray(arr1);
   return 0;
}
```

ПРИЛОЖЕНИЕ Б ТЕСТИРОВАНИЕ

Таблица Б.1 - Примеры тестовых случаев на некорректных данных

N _Ω Π	п/	Входные данные	Выходные данные
	1.	-121 54 345 76 0 32 -76 45 0 65 23 11 33	Шаг № 1 (элемент -121):
		65 3 5 -5 -10	-121
			Шаг № 2 (элемент 54):
			-121 54
			Шаг № 3 (элемент 345):
			-121 54 345
			Шаг № 4 (элемент 76):
			-121 54 76 345
			Шаг № 5 (элемент 0):
			-121 0 54 76 345
			Шаг № 6 (элемент 32):
			-121 0 32 54 76 345
			Шаг № 7 (элемент -76):
			-121 -76 0 32 54 76 345
			Шаг № 8 (элемент 45):
			-121 -76 0 32 45 54 76 345
			Шаг № 9 (элемент 0):
			-121 -76 0 0 32 45 54 76 345
			Шаг № 10 (элемент 65):
			-121 -76 0 0 32 45 54 65 76 345
			Шаг № 11 (элемент 23):
			-121 -76 0 0 23 32 45 54 65 76 345
			Шаг № 12 (элемент 11):
			-121 -76 0 0 11 23 32 45 54 65 76 345
			Шаг № 13 (элемент 33):
			-121 -76 0 0 11 23 32 33 45 54 65 76 345
			Шаг № 14 (элемент 65):
			-121 -76 0 0 11 23 32 33 45 54 65 65 76 345
			Шаг № 15 (элемент 3):
			-121 -76 0 0 3 11 23 32 33 45 54 65 65 76
			345
			Шаг № 16 (элемент 5):
			-121 -76 0 0 3 5 11 23 32 33 45 54 65 65 76
			345
			Шаг № 17 (элемент -5):
			-121 -76 -5 0 0 3 5 11 23 32 33 45 54 65 65
			76 345
			Шаг № 18 (элемент -10):
			-121 -76 -10 -5 0 0 3 5 11 23 32 33 45 54 65
			65 76 345

		Voyey congressory
		Конец сортировки Результат работы библиотечнй
		_
		сортировки:
		-121 -76 -10 -5 0 0 3 5 11 23 32 33 45 54 65
		65 76 345
2.	1 5 7 -3 5 12 65 -40	Шаг № 1 (элемент 1):
		1
		Шаг № 2 (элемент 5):
		15
		Шаг № 3 (элемент 7):
		157
		Шаг № 4 (элемент -3):
		-3 1 5 7
		Шаг № 5 (элемент 5):
		-3 1 5 5 7
		Шаг № 6 (элемент 12):
		-3 1 5 5 7 12
		Шаг № 7 (элемент 65):
		-3 1 5 5 7 12 65
		Шаг № 8 (элемент -40):
		-40 -3 1 5 5 7 12 65
		Конец сортировки
		Результат работы библиотечнй
		сортировки:
		-40 -3 1 5 5 7 12 65
3.	<пустая строка>	Массив пуст
4.	9876543210	Шаг № 1 (элемент 9):
		9
		Шаг № 2 (элемент 8):
		8 9
		Шаг № 3 (элемент 7):
		789
		Шаг № 4 (элемент 6):
		6789
		Шаг № 5 (элемент 5):
		56789
		Шаг № 6 (элемент 4):
		456789
		Шаг № 7 (элемент 3):
		3 4 5 6 7 8 9
		Шаг № 8 (элемент 2):
		2 3 4 5 6 7 8 9
		Шаг № 9 (элемент 1):
		1 2 3 4 5 6 7 8 9
		123730/03

		Шаг № 10 (элемент 0):
		0 1 2 3 4 5 6 7 8 9
		Конец сортировки
		Результат работы библиотечнй
		сортировки:
		0 1 2 3 4 5 6 7 8 9
5.	-10 -4 -1 0 4 8 2 -2	Шаг № 1 (элемент -10):
		-10
		Шаг № 2 (элемент -4):
		-10 -4
		Шаг № 3 (элемент -1):
		-10 -4 -1
		Шаг № 4 (элемент 0):
		-10 -4 -1 0
		Шаг № 5 (элемент 4):
		-10 -4 -1 0 4
		Шаг № 6 (элемент 8):
		-10 -4 -1 0 4 8
		Шаг № 7 (элемент 2):
		-10 -4 -1 0 2 4 8
		Шаг № 8 (элемент -2):
		-10 -4 -2 -1 0 2 4 8
		Конец сортировки
		Результат работы библиотечнй
		сортировки:
		-10 -4 -2 -1 0 2 4 8
6.	0	Шаг № 1 (элемент 0):
		0
		Конец сортировки
		Результат работы библиотечнй
		сортировки:
		0