MTH204: Worksheet 6

March 15, 2023

Consider a RLC-circuit

 $R \to \text{Resistance (ohm, }\Omega)$: Voltage drop= $RI, L \to \text{Inductance (Henry, }H)$: Voltage drop= $L\frac{dI}{dt}$, $C \to \text{Capacitance (Farad, }F)$: Voltage drop= $\frac{Q}{C}$,

where I(t) is the current in the circuit at any time t, Q(t) is the amount of charge in capacitor at any time t and V(t) is the external voltage provided to circuit. Here, $V(t) = V_0 \sin(\omega t)$. Relationship in the capacitor between charge and current is $I = \frac{dQ}{dt}$.

- 1. Write a second order ODE model for the current I(t) in this RLC circuit.
- 2. Solve the characteristic equation of homogeneous part (find roots in terms of R, L and C). (2)

(2)

(2)

3. Start with a particular solution

$$I_p = a\cos(\omega t) + b\sin(\omega t),$$

and find a and b. (2)

4. Write your particular solution found in the previous question as

$$I_p = C \sin(\omega t - \delta).$$

Find C and δ explicitly in terms of V_0 , R, L, C and ω .

5. Find the current in an RLC circuit with $R = 13\Omega$, L = 0.3H, $C = 10^{-2}F$ which is connected to a source of EMF, $V(t) = 110\sin(100\pi t)$. Assume that current and capacitor charge are 0 at t = 0.