RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 1.1

R: Ver texto (página 1).

Exercício 1.2

R: (a) Ver texto (página 2).

(b) Ver texto (página 3).

(c) Ver texto (página 3).

Exercício 1.3

R: (a) Ver texto (página 3).

(b) Ver texto (página 3).

Exercício 1.4

R: (a) $\overline{X} \approx 11.7$

(b)
$$\frac{1}{N} \times \left(\sum_{k=1}^{N} x_k^{-1}\right)^{-1} \approx 11.1$$

$$\sqrt[N]{\prod_{k=1}^{N} x_k} \approx 11.4$$

$$\sqrt{\overline{X^2}} \approx 12.0$$

Os valores obtidos confirmam que $\frac{1}{N} \times \left(\sum_{k=1}^{N} x_k^{-1}\right)^{-1} \le \sqrt[N]{\prod_{k=1}^{N} x_k} \le \overline{X} \le \sqrt[N]{\prod_{k=1}^{N} x_k}$

- (c) *mediana* ≈ 11.8
- (d) $\sigma \approx 2.7$

 $\sigma^2 \approx 7.1$

(e) Confirma-se que:

$$\frac{1}{N} \times \left(\sum_{k=1}^{N} x_k^{-1}\right)^{-1} \leq \sqrt[N]{\prod_{k=1}^{N} x_k} \leq \overline{X} \leq \sqrt[N]{\prod_{k=1}^{N} x_k}$$

(Resolução em matlab)

```
» x = [7.4,7.4,7.8,8.1,8.1,8.5,8.5,8.7,8.8,8.8,9.3,9.5,9.6,9.7,9.8,9.9,9.9,10.3,10.4,10.4,10.7,11.0,11.0,11.6,12.0,12.1,12.7,12.8,12.8,13.3,13.3,13.3,13.6,13.7,13.7,13.7,13.8,13.9,14.2,14.3,14.4,14.4,15.3,15.6,15.7,16.0,16.4,16.8];

» mean(x) 'o eco no ecrã gera a média aritmética'

» harmmean(x) 'o eco no ecrã gera a média harmónica'

» geomean(x) 'o eco no ecrã gera a média geométrica'

» N = max(size(x)) 'o eco no ecrã é o comprimento do conjunto'

» std(x) 'o eco no ecrã gera o desvio padrão'

» var(x) 'o eco no ecrã gera a variância'
```

alternativamente

 \gg std(x)^2 'o eco no ecrã gera a variância a partir do quadrado do desvio padrão'

Exercício 1.5

R: (a) Pretende-se $\Delta x \approx A.F + B$

Das equações (1.9) e (1.10) obtém-se respectivamente:

 $A \approx 2.50$

 $B \approx 5.00$

Gráfico mostrando os pontos e a recta aproximada $\Delta x \approx A.F + B$

Em termos qualitativos, a olho observa-se que a recta se ajusta bem aos pontos.

(b) O grau de concordância de A.F+B com a real relação $\Delta x(F)$ mede-se quantitativamente através do coeficiente de correlação r.

 $r \approx 1$

Portanto, a concordância de A.F+B com a real relação $\Delta x(F)$ é quase perfeita.

(c)
$$S(X_{in,k}) = \frac{dX_{out}}{dX_{in}}$$

Portanto $S = \frac{d(\Delta x)}{dF} = \frac{d(2.50F + 5.00)}{dF} = 2.50 \text{ mm.N}^{-1}$

(Resolução em matlab)

```
 \mathbf{x} = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10] ; 
y = [7.99, 10.18, 12.41, 14.65, 17.16, 19.51, 22.59, 25.02, 28.16,
 29.58,32.80,34.91,37.59,40.08,42.86,45.09,47.52,49.59,52.69];
 > N = max(size(x)) 
» plot(x,y,'rd') 'Desenha os pontos medidos'
» grid on
» xlabel('Força [N]')
» ylabel('Deslocamento [mm]')
A=((x*x')*sum(y)-(x*y')*sum(x))/(N*(x*x')-(sum(x))^2)
\Rightarrow B= (N*(x*y')-sum(x)*sum(y))/(N*(x*x')-(sum(x))^2)
» hold on
» plot(x,A+B*x) 'Desenha a recta aproximada'
» Mx=mean(x);
» My=mean(y);
eco no ecr\tilde{a} gera a o coeficiente de correlação r'
```

Exercício 1.6

R: (a) A função de transferência é H(jf)=Y(jf)/X(jf)

As diversas impedâncias são:

$$Z_1 = j.X_C = 1/(j2\pi fC)$$
 [Nota: $Z_1 = -j/(2\pi fC)$, $X_C < 0$] $Z_2 = R + j.X_L + j.X_C = R + j2\pi fL + 1/(j2\pi fC)$

A função de transferência obtém-se aplicando a regra do divisor de tensão, isto é,

$$H(jf) = \frac{Z_1}{Z_2} = \frac{(\frac{1}{j2\pi fC})}{R + j2\pi fL + \frac{1}{j2\pi fC}} = \frac{1}{LC(j2\pi f)^2 + RC(j2\pi f) + 1}$$

Existem similaridades com a equação (1.33), isto é,

$$H(jf) = \frac{k}{\left(\frac{jf}{f_n}\right)^2 + \left(\frac{2\xi jf}{f_n}\right) + 1}$$

Logo:

$$k=1$$

$$f_n = \frac{1}{2\pi\sqrt{LC}}$$

$$\xi = \frac{R}{2}\sqrt{\frac{L}{C}}$$

(b) A equação diferencial obtém-se a partir da função de transferência, isto é,

$$a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_0 x(t) \Leftrightarrow H(jf) = \frac{b_0}{a_2 (j2\pi f)^2 + a_1 (j2\pi f) + a_0}$$
A partir de $H(jf) = \frac{Y(jf)}{X(jf)} = \frac{1}{LC(j2\pi f)^2 + RC(j2\pi f) + 1}$
Obtém-se de forma imediata
$$\frac{LC \frac{d^2 y(t)}{dt^2} + RC \frac{dy(t)}{dt} + y(t) = x(t)}{dt}$$

- (c) Trata-se de um sistema de segunda ordem por uma das duas seguintes razões:
 - a equação y(t)=y[t,x(t)] que rege o funcionamento do sistema é uma equação ordinária linear de coeficientes constantes de segunda ordem (isto é, não existem parcelas d⁽ⁿ⁾y(t)/d⁽ⁿ⁾x para n>2);
 - o número de elementos reactivos contidos no circuito eléctrico é igual a dois.

Exercício 1.7

R: (a) Por ser um sistema de 1ª ordem, o circuito só deve conter um elemento reactivo. Exemplo de circuito:

- (b) Passos de resolução: (1) obter a função de transferência;
 - (2) obter a equação diferencial.

A função de transferência obtém-se aplicando a regra do divisor de tensão, isto é,

$$H(jf) = \frac{V_{out}(jf)}{V_{in}(jf)} = \frac{(\frac{1}{j2\pi fC})}{R + \frac{1}{j2\pi fC}} = \frac{1}{RC(j2\pi f) + 1}$$

Portanto:
$$RC \frac{dy(t)}{dt} + y(t) = x(t)$$

Exercício 1.8

R: Ver texto (página 15).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 2.1

$$R: GF = \frac{\left(\frac{\Delta R}{R}\right)}{\left(\frac{\Delta L}{L}\right)}$$

A resistência eléctrica de um troco cilíndrico de comprimento L e secção transversal S e resistividade ρ é:

$$R = \rho \frac{L}{S} \rightarrow R = \frac{\rho}{\pi} \times \frac{L}{r^2}$$
 (pois $S = \pi r^2$)

Adicionalmente:

$$\frac{\Delta D}{D} = -\mu \frac{\Delta L}{L} \rightarrow \text{como } D = 2r \rightarrow \Delta D = 2\Delta r \rightarrow \frac{\Delta D}{D} = \frac{2\Delta r}{2r} = \frac{\Delta r}{r} = -\mu \frac{\Delta L}{L}$$

Sabe-se que R=R(L,S), então aplicando a equação (2.6):

$$\partial R = \frac{\partial R}{\partial L} \partial L + \frac{\partial R}{\partial r} \partial r$$
, para pequenas deformações $\partial R \approx \Delta R$, $\partial L \approx \Delta L$, $\partial r \approx \Delta r$, portanto:

$$\Delta R \approx \frac{\partial R}{\partial L} \Delta L + \frac{\partial R}{\partial r} \Delta r$$

$$\begin{split} \frac{\partial R}{\partial L} &= \frac{\partial}{\partial L} \left(\frac{\rho}{\pi} \times \frac{L}{r^2} \right) = \frac{\rho}{\pi} \times \frac{1}{r^2} = \frac{R}{L} \quad \to \quad \frac{\partial R}{\partial L} \Delta L = R \frac{\Delta L}{L} \quad \to \quad \frac{\partial R}{\partial L} \Delta L = \mathcal{E} R \\ \frac{\partial R}{\partial r} &= \frac{\partial}{\partial r} \left(\frac{\rho}{\pi} \times \frac{L}{r^2} \right) = -\frac{2\rho}{\pi} \times \frac{L}{r^3} \quad \to \quad \frac{\partial R}{\partial r} \Delta r = -\frac{2\rho}{\pi} \times \frac{L}{r^2} \times \frac{\Delta r}{r} = -2R \times \frac{\Delta r}{r} \\ &\to \quad \frac{\partial R}{\partial r} \Delta r = -2R \times \frac{\Delta r}{r} \end{split}$$

A quantidade ΔR em função de ΔL e de Δr fica então:

$$\Delta R = \frac{\partial R}{\partial L} \Delta L + \frac{\partial R}{\partial r} \Delta r = \varepsilon R - 2R \times \frac{\Delta r}{r} = R(\varepsilon - 2\frac{\Delta r}{r}),$$

$$\max \frac{\Delta r}{r} = -\mu \frac{\Delta L}{L} \rightarrow \Delta R = R(\varepsilon + 2\varepsilon\mu) = R\varepsilon(1 + 2\mu) \rightarrow \frac{\Delta R}{R} = \varepsilon(1 + 2\mu)$$

O factor do extensómetro é então:

$$GF = \frac{\left(\frac{\Delta R}{R}\right)}{\left(\frac{\Delta L}{L}\right)} = \frac{\varepsilon(1+2\mu)}{\varepsilon} = 1+2\mu$$

Exercício 2.2

R: $R=R_0(1+K.\Delta L)$ K=GF.R/L $\Delta L_{max}=100 \ \mu m$ $\Delta L_{min}=0$

$$R_{min} = R(\Delta L_{min}) = 10000 \times [1 + 100 \times 10000/(10^{-3}) \times 0] = 10 \text{ k}\Omega$$

 $R_{max} = R(\Delta L_{max}) = 10000 \times [1 + 100 \times 10000/(10^{-3}) \times 10^{2} \times 10^{-6}] = 11 \text{ k}\Omega$

$$V_{out,min}$$
=0 V
 $V_{out,max}$ = V_1 - V_2 = $(11/21$ - $10/20) × 5=5/42 V ($\approx 0.12 V$)$

Exercício 2.3

R:
$$C(d) = \varepsilon_r \varepsilon_0 \frac{S}{d} = \varepsilon \frac{S}{d}$$

 $d=d_0+\Delta d$

$$C(d) = C_r(\Delta d) = \varepsilon \frac{S}{d + d_0} = \varepsilon \frac{S}{d_0} \times \frac{d_0}{d + d_0} = \varepsilon \frac{S}{d_0} \times \left(1 + \frac{\Delta d}{d_0}\right)^{-1}$$

Portanto:

$$C_r(\Delta d) = C_0 \times \left(1 + \frac{\Delta d}{d_0}\right)^{-1}$$
 (valor rigoroso)

Conforme a figura seguinte e tomando a aproximação linear $C_a(\Delta d)$ em torno de $d=d_0$ (ou em torno de $\Delta d=0$),

então tomando pequenas variações de Δd :

$$\begin{split} &C_a(\Delta d) = m.\Delta d + C_0, \text{ com } m < 0 \text{ e } m = \frac{dC_r(\Delta d)}{d(\Delta d)} \bigg|_{\Delta d = 0} \\ &m = \frac{d}{d(\Delta d)} \left[C_0 \times \left(1 + \frac{\Delta d}{d_0} \right)^{-1} \right] \bigg|_{\Delta d = 0} = -\frac{C_0}{d_0} \times \left(1 + \frac{\Delta d}{d_0} \right)^{-2} \bigg|_{\Delta d = 0} \\ &m = -\frac{C_0}{d_0} \end{split}$$

Pretende-se saber o valor máximo Δd , isto é, Δd_{\max} de modo ao desvio do valor aproximado C_a relativamente ao valor exacto C_r não exceder 5%. Por outras palavras:

$$\frac{C_r(\Delta d_{\max}) - C_a(\Delta d_{\max})}{C_r(\Delta d_{\max})} \le 0.05 \quad \text{(não \'e necess\'ario o m\'odulo porque } C_r \ge C_a)$$

$$\begin{split} &C_0 \times \frac{1}{1 + \frac{\Delta d_{\text{max}}}{d_0}} - C_0 \times \left(1 - \frac{\Delta d_{\text{max}}}{d_0}\right) \\ & \qquad \leq 0.05 \quad \Leftrightarrow \\ & \qquad \frac{1}{1 + \frac{\Delta d_{\text{max}}}{d_0}} - \left(1 - \frac{\Delta d_{\text{max}}}{d_0}\right) \leq \frac{0.05}{1 + \frac{\Delta d_{\text{max}}}{d_0}} \quad \Leftrightarrow \\ & 1 - \left[1 - \left(\frac{\Delta d_{\text{max}}}{d_0}\right)^2\right] \leq 0.05 \quad \Leftrightarrow \\ & \left(\frac{\Delta d_{\text{max}}}{d_0}\right)^2 \leq 0.05 \quad \Leftrightarrow \\ & \left(\frac{\Delta d_{\text{max}}}{d_0}\right)^2 \leq 0.05 \quad \Leftrightarrow \\ & \Delta d_{\text{max}}^2 \leq 0.05 d_0^2 \quad \Leftrightarrow \\ & - \sqrt{0.05} d_0 \leq \Delta d_{\text{max}} \leq + \sqrt{0.05} d_0 \quad \Leftrightarrow \\ & - 0.22 d_0 \leq \Delta d_{\text{max}} \leq + 0.22 d_0 \end{split}$$

Portanto, as placas podem deflectir em ambos os sentidos até um máximo de 22% do valor de repouso d_0 , isto é, $d_{max} \le \pm 0.22 d_0$.

Exercício 2.4

R: α_{al} =3.5 μVK⁻¹ α_{ni} =-15 μVK⁻¹ V_{12} =(α_{al} - α_{ni})×(θ_1 - θ_2)=18.5×(θ_1 - θ_2) μV V_{12} =[0, 370] μV para 0≤ θ_1 - θ_2 ≤20 °C

Exercício 2.5

R: Ver texto (página 43).

Exercício 2.6

R: Ver texto (página 50).

Exercício 2.7

R: Ver texto (página 51).

Exercício 2.8

R: Ver texto (página 35).

Exercício 2.9

R: Ver texto (página 33).

Exercício 2.10

R: Ver texto (página 57).

Exercício 2.11

R: Ver texto (página 58).

Exercício 2.12

R:

	Usa mais de um metal	Linearidade	Semicondutor	R baixa quando $ heta$ aumenta	Precisa de uma θ de referência
Termopar	X				X
RTD		X			
Termístor			X	X	

Exercício 2.13

R:

	Maior sensibilidade	ESPSO	Variações de temperatura	BCACEF
LVDT	X		X	
Extensómetro		X		X

Exercício 2.14

R:

(a)

	MS	MCEF	CARM	MTR
Fotodíodo em silício		X		
Tubo fotomultiplicador	X		X	X

(b) Ver texto (página 72).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 3.1

R: A tensão de saída V_o do circuito seguidor de tensão é uma versão amplificada com ganho A da tensão diferencial V_d ($V_d = V^+ - V^-$), isto é:

$$V_o = A \times (V^+ - V^-) = A \times (V_i - V^-) = A \times (V_i - V_o) = A \cdot V_i - A \cdot V_o$$

 $V_o = A. V_i - A. V_o$

 $V_o \times (1+A)=A.V_i$

A tensão na saída é então $V_o=A/(1+A) \times V_i$

Como A»1 então $A/(1+A)\approx 1$, logo para o circuito seguidor de tensão tem-se $cqd V_o \approx V_i$

Exercício 3.2

R: Num conversor I/V convencional, converter 10 nA em 3 V requer uma resistência de realimentação igual a $R=3/(10n)=3\times10^8$ Ω (=300 M Ω). Este valor por ser gigantesco é muito difícil de conseguir com elevada precisão.

No conversor I/V modificado, a resistência equivalente $R_{eq}=R\times(1+R_2/R+R_2/R_1)$ referida ao conversor I/V convencional deve ser igual ao valor anterior, isto é, $R_{eq}=300 \text{ M}\Omega$.

Um exemplo possível para se obter R_{eq} =300 M Ω utilizando componentes teóricos é:

 $R_1=1 \text{ k}\Omega$

 $R=1 \text{ M}\Omega$

R₂≈299 kΩ

Usando o componente comercial mais próximo de 299 k Ω para R_2 , isto é, R_2 =300 k Ω resulta numa resistência equivalente de R_{eq} =301.3 M Ω .

Exercício 3.3

R: Esquemático do circuito:

O ganho diferencial em malha aberta A é idealmente infinito, embora na realidade se aproxime a isso por ser muito elevado. Por exemplo, no caso do amplificador operacional de uso genérico μA741 tem-se um ganho mínimo de 100 dB ou 10⁵.

Para V_{out} =-3 $V_{in,1}$ -2 $V_{in,2}$ as resistências R_1 e R_2 devem ser:

$$R_1 = 1/3R_f$$

$$R_2 = 1/2R_f$$

Se por exemplo $R = 6 \text{ k}\Omega$ então, usando componentes comerciais tem-se:

$$R_1=2 \text{ k}\Omega$$

$$R_2=3 \text{ k}\Omega$$

Exercício 3.4

R: Esquemático do comparador:

A tensão limiar de transição obtém-se a partir da fórmula $V_{th} = V_{\sup ply} \times \frac{R_2 - R_1}{R_2 + R_1}$

Usando componentes comerciais, pretende-se respeitar as seguintes especificações:

$$V_{supply}=\pm 5 \text{ V}$$

$$V_{th}=+2 \text{ V}$$

$$V_{out}$$
=+5 V para V_{in} > V_{th}

$$V_{out}$$
=-5 V para V_{in} < V_{th}

Um exemplo possível é usar os seguintes componentes:

$$R_1=150 \text{ k}\Omega$$

$$R_2=350 \text{ k}\Omega$$

Neste caso o comparador apresenta a seguinte resposta:

Exercício 3.5

R: (a) Ver texto (página 102).

(b) Para o amplificador de instrumentação da Figura 3.12:

$$V_o = A_v \times (V_2 - V_1) = \left(\frac{R_2}{R_1}\right) \times \left(1 + \frac{2R_3}{R}\right) \times (V_2 - V_1)$$

O ganho diferencial A_{ν} vai de 1 a 1000, isto é:

$$1 \le \left(\frac{R_2}{R_1}\right) \times \left(1 + \frac{2R_3}{R}\right) \le 1000$$

Como R_1 =100 k Ω só há duas maneiras de variar o ganho: variando R, R_2 ou R_3 . Como se dispõe apenas de um potenciómetro só é prático variar o valor de R.

Existem dois termos em A_{ν} , nomeadamente o primeiro termo $A_{\nu 1}=R_2/R_1$ referente ao ganho do amplificador de diferenças implementado pelo AmpOp A_3 e o segundo termo $A_{\nu 2}=(1+2R_3/R)$ referente ao andar de entrada implementado pelos AmpOps A_1 e A_2 . Como $A_{\nu 2}>1$ então deve-se ter $A_{\nu 1}<1$ para $A_{\nu}=A_{\nu 1}$. $A_{\nu 2}$ estar compreendido dentro do intervalo [1, 1000].

Uma solução possível com R_1 =100 k Ω é usar o valor R_2 =50 k Ω , logo $A_{\nu 1}$ =1/2. Isto significa que $A_{\nu 2}$ deve estar compreendido dentro do intervalo [2, 2000].

Para um valor fixo de R_3 , se R for máxima (isto é, R=100 kΩ) então $A_{\nu 2}$ é mínimo e deve ser igual a 2. Para se ter $A_{\nu 2}$ =2 na situação R=100 kΩ, então deve-se ter R_3 = R_2 =50 kΩ.

Por outro lado, A_{v2} é máximo e igual a 2000 para R=50 Ω . Fisicamente, não é trivial obter-se uma resistência de 50 Ω num potenciómetro de 100 k Ω .

Este problema obvia-se colocando uma resistência de 50 Ω em série com o potenciómetro de 100 k Ω , pois quando o cursor estiver no ponto de resistência mínima (R=0) tem-se efectivamente a resistência de valor R'=R+50=50 Ω entre os nós C e D. Isto garante um ganho diferencial $A_{\nu 2}$ nunca superior a 2000.

Note-se que esta solução vai introduzir um erro desprezável no ganho mínimo, pois quando o cursor está na posição de máxima resistência (R=100 k Ω), vai existir entre os nós C e D a resistência R'=R+50=100×10³+50=100050 Ω (100.05 k Ω). Nesta situação o ganho mínimo vale:

$$A_{v} = \left(\frac{R_{2}}{R_{1}}\right) \times \left(1 + \frac{2R_{3}}{R''}\right) = 0.9998 \approx 1$$

Exercício 3.6

R: Circuito esquemático:

Cálculo do ganho:

Começando pela parte 1 do amplificador de instrumentação, obtém-se a tensão V_A :

$$V_{\rm A} = \left(1 + \frac{R_4}{R_3}\right) \times V_1$$

<u>Passando para a parte 2</u> do amplificador de instrumentação, a tensão V_o obtém-se por sobreposição dos efeitos das tensões V_2 (amplificador não-inversor) e V_A (amplificador inversor), isto é:

$$V_{o} = \left(1 + \frac{R_{2}}{R_{1}}\right) \times V_{2} - \frac{R_{2}}{R_{1}} \times V_{A} = \left(1 + \frac{R_{2}}{R_{1}}\right) \times V_{2} - \frac{R_{2}}{R_{1}} \times \left(1 + \frac{R_{4}}{R_{3}}\right) \times V_{1}$$

Se $R_4=R_1$ e $R_3=R_2$ então:

$$\begin{aligned} V_o &= \left(1 + \frac{R_2}{R_1}\right) \times V_2 - \left(1 + \frac{R_2}{R_1}\right) \times V_1 = \\ &= \left(1 + \frac{R_2}{R_1}\right) \times (V_2 - V_1) = \\ &= A_d \times (V_2 - V_1) \end{aligned}$$

O ganho diferencial é então $A_d=(1+R_2/R_1)$, desde que $R_4=R_1$ e $R_3=R_2$.

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 4.1

R: Função de transferência:

$$H(jf) = -\frac{1}{j(\frac{f}{f_0})}, \ f_0 = \frac{1}{2\pi RC}$$

f₀≈16 kHz (arredondamento feito às unidades). Portanto:

$$H(jf) = -\frac{16000}{jf}$$

Exercício 4.2

R: Função de transferência:

$$H(jf) = H_0 \times \frac{1}{1 + j(\frac{f}{f_0})}$$
, com $H_0 = -R_2/R_1$ e $f_0 = 1/(2\pi R_2 C_2)$.

Pretende-se $|H_0|$ =4, assim um exemplo possível é:

$$R_2=4R_1=100 \text{ k}\Omega \rightarrow R_1=25 \text{ k}\Omega$$

Também se pretende f_0 =25 kHz, logo:

 $C_2=(2\pi R_2 f_0)^{-1}=63.6$ pF, logo para se usar o componente comercial mais próximo deve-se seleccionar o condensador de $C_2'=64$ pF.

Exercício 4.3

R: Função de transferência H(jf) é tal que:

$$|H(jf)|=1$$

$$\angle H(jf) = -2\operatorname{arctg}(f/f_0)$$

Para se ter $\angle H(jf) = -\pi/2$ rad então $-2\operatorname{arctg}(f/f_0) = -\pi/2$, logo $\operatorname{arctg}(f/f_0) = \pi/4$.

A solução da equação não-linear anterior é f/f_0 =tg($\pi/4$)=1, resultando em $f=f_0$ =100 kHz.

Como $f_0=1/(2\pi RC)$ e $f_0=100$ kHz, então um solução possível é ter-se:

$$R=15.92 \text{ k}\Omega$$

Exercício 4.4

R: Esquemático após a troca dos componentes:

Começando por se obter a tensão no terminal da entrada não-inversora:

$$V^{+} = \frac{R}{R + \frac{1}{j2\pi fC}}V_{i} = \frac{j2\pi fCR}{j2\pi fCR + 1}V_{i} = \frac{j(\frac{f}{f_{0}})}{j(\frac{f}{f_{0}}) + 1}V_{i}$$

A tensão na saída é $V_o=2V^+-V_i$, ou seja:

$$V_o = 2 \times \frac{j(\frac{f}{f_0})}{j(\frac{f}{f_0}) + 1} V_i - V_i = \frac{j(\frac{f}{f_0}) - 1}{j(\frac{f}{f_0}) + 1} V_i$$

A função de transferência é então:

$$H(jf) = \frac{V_o(jf)}{V_i(jf)} = \frac{j(\frac{f}{f_0}) - 1}{j(\frac{f}{f_0}) + 1}$$

Sendo |H(jf)|=1 e $\angle H(jf)$ tal que:

$$\angle H(jf) = \angle [j(\frac{f}{f_0}) - 1] - \angle [j(\frac{f}{f_0}) + 1] =$$

$$= \pi + \arctan(-\frac{f}{f_0}) - \arctan(\frac{f}{f_0}) =$$

$$= \pi - \arctan(\frac{f}{f_0}) - \arctan(\frac{f}{f_0}) =$$

$$= \pi - 2\arctan(\frac{f}{f_0})$$

Gráficos com o comportamento da função de transferência:

Exercício 4.5

R: Pretende-se K=2 e $f_0=20$ kHz.

 $f_0=1/(2\pi RC)$ e $K=1+R_2/R_1$.

Para K=2 deve ser $R_1=R_2$, para evitar a dispersão de componentes tem-se por exemplo $R_1=R_2=R=25 \text{ k}\Omega$.

Para f_0 =20 kHz deve-se ter C=1/(2 $\pi R f_0$) \approx 318 pF.

Exercício 4.6

R: Pretende-se K=1 e $f_0=15$ kHz.

 $f_0=1/(2\pi RC)$ e $K=1+R_2/R_1$.

Para K=1, $R_2=0$, cujo esquemático é o seguinte:

Para $f_0=1/(2\pi RC)=15$ kHz, supondo R=42.5 k Ω , então C=249 pF.

Exercício 4.7

 \mathbf{R} : Pretende-se f_0 =100 kHz e Q=[0.5, 5] através de um potenciómetro de 10 kΩ.

 $f_0=1/(2\pi RC)$, Q=1/(3-K), com $K=1+R_2/R_1$.

Para f_0 =100 kHz, R=40 k Ω e C=40 pF.

O ajuste de Q faz-se ajustando K, isto é, K=(3Q-1)/Q, ou seja, para $0.5 \le Q \le 5$.

Para *Q*=5:

O ganho deve ser K=(3Q-1)/Q=2.8. Como $K=1+R_2/R_1$ e K=2.8, deve-se ter $R_2=1.8R_1$. O circuito que permite obter esta situação é o seguinte:

O potenciómetro obriga a ter-se $R_1+R_2=10$ k Ω , portanto $R_1=3.57$ k Ω e $R_2=6.43$ k Ω .

Para *Q*=0.5:

O ganho deve ser K=(3Q-1)/Q=1. Como $K=1+R_2/R_1$ e K=1, deve-se ter $R_2=2.8R_1$. O circuito que permite obter esta situação é o seguinte:

Exercício 4.8

R: Para o filtro passa-alto de 2ª ordem com R=1 k Ω , $R_1=100$ k Ω , $R_2=150$ k Ω , C=0.1 μ F.

(a)

$$f_0=1/(2\pi RC)=5000/\pi \text{ Hz}$$

 $K=1+R_2/R_1=2.5 \rightarrow Q=1/(3-K)=2$

- (b) $V_i(t)=2+\sin(10000t)=2+\sin(2\pi ft)$, com $f=f_0=5000/\pi$
 - $V_i(t)$ tem uma componente DC e uma componente AC.

Se o filtro é passa-alto, a componente DC não está presente no sinal de saída.

A função de transferência à frequência $f=f_0$ toma o valor $H(jf_0)=+jKQ=+5j$, isto é $|H(jf_0)|=5$ e $\angle H(jf_0)=+\pi/2$ rad.

Na saída tem-se o sinal $V_o(t)=5$.sen $(10000t+\pi/2)$

(b) O filtro rejeita-banda obtém-se somando as respostas de dois filtros passa-alto e passa-baixo específicos. Neste caso específico, deve-se considerar um filtro passa-baixo com frequência superior de corte f_B =500/ π e aproveitar o filtro passa-alto anterior com frequência inferior de corte f_A =5000/ π .

O circuito esquemático do filtro passa-alto de segunda ordem é:

O circuito esquemático do filtro passa-baixo com ganho de segunda ordem é:

A frequência superior de corte deste filtro passa-baixo é dada por $f_B=1/(2\pi R'C')$. Para minimizar a dispersão de componentes, supõe-se que R'=R=1 k Ω , logo para se ter $f_B=f_A/10=500/\pi$, o condensador C' deve ser dez vezes maior que o condensador C do filtro passa-alto, isto é C'=1 µF. Por sua vez, as resistências de realimentação R_1 e R_2 devem manter os valores usados no filtro passa-alto pois como $K=1+R_2/R_1$ e Q=1/(3-K) ambos os filtros possuirão os mesmos valores. O circuito esquemático final é:

Exercício 4.9

R: $Q=(R_2/R_1)^{1/2}/2=3$ → $R_2/R_1=36$ → por exemplo, $R_1=1$ kΩ e $R_2=36$ kΩ $f_0=[2\pi.(R_1R_2)^{1/2}.C]^{-1}=10$ kHz → $C=[2\pi.(R_1R_2)^{1/2}.f_0]^{-1}=2.65$ nF → C=2.7 nF Para C=2.7 nF → $f_0=9.8$ kHz (erro ε≤0.002%).

Exercício 4.10

- R: (a) Para V_H =- V_i - V_L +3/2 V_B , deve-se ter $3R_1/(R_1+R_2)$ =3/2, ou seja, $R_1/(R_1+R_2)$ =1/2. Para isso, deve-se ter R_1 = R_2 que pode ser obtido por exemplo com R_1 = R_2 =10 kΩ. A resistência R_3 só contribui com - V_i - V_L em V_H , sendo por exemplo R_3 = 10 kΩ.
 - (b) $f_0=1/(2\pi RC)=500/\pi \text{ Hz}$ e $Q=(1+R_2/R_1)/3=2/3$.
 - (c) No enunciado, o sinal de entrada é $V_i(t)$ =2+cos(1000t) Entrada no domínio dos tempos $V_i(t)$ =2+cos(2 $\pi f t$) com f= f_0 =500/ π . Resposta V_H :

Função de transferência passa-alto referida à entrada $H_{(H,i)}(jf)$:

$$H_{(H,i)}(jf) = \frac{V_H(jf)}{V_i(jf)} = \frac{(\frac{f}{f_0})^2}{1 - (\frac{f}{f_0})^2 + (\frac{j}{O}) \times (\frac{f}{f_0})}$$

Frequências de interesse: componente DC e $f=f_0$ Na saída não existe componente DC e $H_{(H,i)}(jf_0)=-jQ=-2/3j=2/3\angle-\pi/2$ $V_H(t)=2/3.\cos(1000t-\pi/2)$

Resposta V_L :

Função de transferência passa-baixo referida à entrada $H_{(L,i)}(jf)$:

$$H_{(L,i)}(jf) = \frac{V_L(jf)}{V_i(jf)} = \frac{-1}{1 - (\frac{f}{f_0})^2 + (\frac{j}{Q}) \times (\frac{f}{f_0})}$$

Frequências de interesse: componente DC e $f=f_0$ Resposta com interesse: $H_{(L,i)}(0)=-1$ e $H_{(L,i)}(jf_0)=jQ=2/3j=2/3 \angle +\pi/2$ $V_L(t)=-2+2/3.\cos(1000+\pi/2)$

Resposta V_B :

Função de transferência passa-banda referida à entrada $H_{(B,i)}(jf)$:

$$H_{(B,i)}(jf) = \frac{V_B(jf)}{V_i(jf)} = \frac{j(\frac{f}{f_0})}{1 - (\frac{f}{f_0})^2 + (\frac{j}{Q}) \times (\frac{f}{f_0})}$$

Frequências de interesse: componente DC e $f=f_0$ Resposta com interesse: $H_{(B,i)}(0)=0$ e $H_{(B,i)}(jf_0)=Q=2/3$ $V_B(t)=2/3.\cos(1000t)$

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 5.1

R: (a) Ver texto (página 138).

(b) DAC de N=4 bits com $V_{FS}=3$ V

Se ao número em decimal X_{10} corresponder o número binário $B_2B_1B_0$ então $V_{DAC}\!\!=\!\!2^{-N}\!.X_{10}.V_{FS}$

$B_2 B_1 B_0$	X_{10}	$V_{DAC}\left[\mathbf{V} ight]$
0 0 0	0	0
0 0 1	1	0.375
0 1 0	2	0.75
0 1 1	3	1.125
1 0 0	4	1.5
1 0 1	5	1.875
1 1 0	6	2.25
1 1 1	7	2.625

Exercício 5.2

R: Incerteza= $\frac{1}{2}$ LSB= $V_{min}/2=2^{-N-1}$. FS= $2^{-4} \times 3=187.5$ mV

Exercício 5.3

R: Ver texto (Tabela 5.3, página 163).

Exercício 5.4

R: Sinal: $x(t) = \cos(2\pi f_1 t) + 2\cos(2\pi f_2 t)$ [V], $\cos f_1 = 5$ KHz e $f_2 = 7.5$ kHz. Máxima componente espectral em x(t): $f_{max} = \max(f_1, f_2) = f_2 = 7.5$ kHz. Frequência de Nyquist: $f_{NY} = 2$. $f_{max} = 15$ kHz

Exercício 5.5

R: Ver texto (página 153).

Exercício 5.6

R: Árvore com todas as hipóteses possíveis, onde $V_{max}=(2^N-1)/2^N$. FS e $V_{min}=2^{-N}$. FS.

 V_{max} =4.375 V V_{min} =0.625 V

Para a evolução de V_{DAC} para a tensão V_s =1.5 V a converter: evolução ao longo da árvore.

Evolução de V_{DAC} para a tensão V_s =1.5 V a converter.

Exercício 5.7

R: Ver texto (página 157).

Exercício 5.8

R: Ver texto (página 158).

Exercício 5.9

R: (a) Ver texto (página 159).

- (b) Ver texto (página 162 e Tabela 5.3 na página 163).(c) Ver texto (página 162 e Tabela 5.3 na página 163).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 6.1

R: Ver texto (página 168).

Exercício 6.2

R: (a) Ver texto (página 181).

(b) Ver texto (página 181).

Exercício 6.3

R: Ver texto (página 191).

Exercício 6.4

R: Ver texto (página 204).

Exercício 6.5

R: (a) Ver texto (página 184).

(b) Ver texto (página 184).

Exercício 6.6

R: (a) Ver texto (página 202).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 7.1

- R: (a) Ver texto (página 213).
 - (b) Ver texto (página 220).

Exercício 7.2

- R: (a) Ver texto (página 235).
 - (b) Ver texto (página 235).

Exercício 7.3

- R: (a) Ver texto (página 239).
 - (b) Ver texto (página 240).

Exercício 7.4

- **R**: (a) Ver texto (página 224).
 - (b) Ver texto (página 224).

Exercício 7.5

- R: (a) Ver texto (página 220).
 - (b) Ver texto (página 220).

Exercício 7.6

R: Ver texto (página 241).

Exercício 7.7

R: Ver texto (páginas 246).

Exercício 7.8

R: Ver texto (página 240).

Exercício 7.9

R: Ver texto (página 241).

Exercício 7.9

R: Ver texto (página 231).