11.9.3

EE23BTECH11053-R.Rahul*

QUESTION:

1. How many terms of G.P.3, 3^2 , 3^3 ,... are needed to give the sum 120 ?

SOLUTION:

Parameter	Description	Value
n	No. of terms in the G.P	4
x(0)	first term in the G.P	3
r	common ratio in the G.P	3
x(n)	n th term in G.P	$x(0)r^nu(n)$

TABLE I VARIABLES

$$y(n) = \frac{1}{2\pi j} \oint_C \frac{3z^2}{(z-1)(z-3)} z^{n-1} dz$$
 (7)
= $\frac{1}{2\pi j} \oint_C \frac{3}{2} \left(\frac{1}{z-3} - \frac{1}{z-1} z^{n+1} \right) dz$ (8)
= $\frac{3}{2} \left(\left(\lim_{z \to 3} \frac{z^{n+1}}{z-3} (z-3) \right) - \left(\lim_{z \to 1} \frac{z^{n+1}}{z-1} (z-1) \right) \right)$ (9)

$$=\frac{3}{2}(3^n-1)\tag{10}$$

$$120 = \frac{3}{2}(3^n - 1) \tag{11}$$

$$n = 4 \tag{12}$$

$$x(z) = \frac{x(0)}{1 - rz^{-1}} \qquad |z| > |r|$$

$$= \frac{3}{1 - 3z^{-1}}$$
(2)

$$U(z) = \frac{1}{1 - z^{-1}} \qquad |z| > 1$$

$$y(n) = x(n) * u(n)$$
 (4)

$$y(n) = x(n) * u(n)$$

$$Y(z) = X(z)U(z)$$
(5)

$$= \left(\frac{3}{1 - 3z^{-1}}\right) \left(\frac{1}{1 - z^{-1}}\right) \quad |z| > 3 \qquad (6)$$

Fig. 1. Stem plot of y(n)

(3)