DMSN final project: Improve LESSR model structure

TENG, LI-CHANG

Department of Electrical Engineering National Cheng Kung University n26091194@gs.ncku.edu.tw

TENG, LI-CHANG

Department of Electrical Engineering National Cheng Kung University n26091194@gs.ncku.edu.tw

TENG, LI-CHANG

Department of Electrical Engineering National Cheng Kung University n26091194@gs.ncku.edu.tw

TENG, LI-CHANG

Department of Electrical Engineering National Cheng Kung University n26091194@gs.ncku.edu.tw

Abstract

None

1 INTORDUCTION

None

2 RELAED WORK

None

3 PRELIMINARY

None

Table 1: statistics of dataset

Diginetica				
No. of Clicks	981,620			
No. of Sessions	777,029			
No. of Items	42,596			
Average length	4.80			

Table 2: Multi-head w/o pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	-
Head=1	52.65	18.25	25.85	-0.903594775
Head=2	52.58	18.27	25.84	-0.965396084
Head=4	52.6	18.28	25.85	-0.834321462
Head=8	52.63	18.28	25.87	-0.700394057
Head=16	52.62	18.28	25.86	-0.757891648
Head=32	52.64	18.29	25.87	-0.626817026

4 EXPERIMENTS

In this section, we will introduce experiment setting, dataset, and analyze the experiment result.

4.1 Dataset

We used Diginetica dataset¹ following LESSR [1] paper, which is the CIKM cup 2016 dataset provided by DIGINETICA Crop. There are 6 files in Diginetica dataset, but we only need the transaction one. As [1], we used last week sessions as test data. We got the same training and test set by following preprocessing method described in [1]. Statistics is shown in Table 1.

4.2 Baseline and metrics

We used [1] as out baseline, then we tried to improve [1] by some changes. Compare the metrics to [1], we could know the change is postive or negative influence. Following [1], the metrics we used are HR@20 (Hit Rate) and MRR@20 (Mean Reciprocal Rank).

4.3 MUTIHEADATTENTION

MUTIHEADATTENTION² is a official implemented self-attention layer by pytorch. Here we replace GRU³ layer in EOPA block in [1] by MUTIHEADATTENTION layer. All setting are the same but GRU now replaced by MUTIHEADATTENTION. We adjusted num of heads parameter in MUTIHEADATTENTION layer to see the influence of muti-head attention.

The pytorch official did not implemented positional encoding in MUTIHEADATTENTION layer, so there is no position information within layer. To handle this problem we need to do position encoding manually. We found a offical tutorial⁴ that manually implemented position encoding, so we followed the encoding method here.

4.3.1 Multi-head w/o pos encoding

Table 2 shown the experiment result, we could found that no matter what multi-head value is, the result is worse than baseline.

https://competitions.codalab.org/competitions/111610

²https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

³https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

⁴https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Table 3: Multi-head with pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	_
Head=1	52.57	18.26	25.83	-1.077538484
Head=2	52.55	18.29	25.85	-0.874337766
Head=4	52.59	18.3	25.88	-0.628267962
Head=8	52.62	18.29	25.87	-0.664681471
Head=16	52.54	18.31	25.86	-0.745415003
Head=32	52.57	18.32	25.89	-0.518277422

Table 4: dim exp w/o pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	_
Dim = 2048	52.73	18.25	25.83	-0.82926773
Dim = 1024	52.9	18.31	25.86	-0.063854988
Dim = 512	52.97	18.35	26	0.827164961
Dim = 256	52.67	18.28	25.88	-0.586099799
Dim = 128	52.88	18.34	25.94	0.370737939
Dim = 64	52.84	18.39	26.01	0.83819067
Dim = 32	52.7	18.24	25.85	-0.863578471
Dim = 16	52.68	18.3	25.88	-0.457877958

4.3.2 Multi-head with pos encoding

Table 3 shown the experiment result, we could found that no matter what multi-head value is, the result is worse than baseline.

It turns out no matter multi-head or positional encoding, can not improve the result. So in next section we decided to using more complex layer.

4.4 Transformer encoder

In this section, we use transformer encoder ⁵ to replace GRU. TransformerEncoder has a lot of hyperparameter, so we conducted 3 main experiments to tuning the model: 1) dim_feedforward 2) nhead 3) encoder_layer. Also, each main experiments have two sub experiments: 1) w/o pos encoding 2) with pos encoding.

4.4.1 dim exp w/o pos encoding

In this experiment we fix all hyperprameters but dim_feedforward without positional encoding. Result shown in Table 4.

4.4.2 dim exp with pos encoding

Same here, we fix all hyperprameters but dim_feedforward with positional encoding. Result shown in Table 5.

From Table 4 and Table 5, we found that the best dim_feedforward is seeting 512, whether with pos encoding or not, dimension 512 in both case has a good result, so finally we choose dimension 512 for our model.

4.4.3 multi-head exp w/o pos encoding

We keep fixed all hyperprameters but changing nhead without positional encoding. Also, The dim_feedforward set to 512. Result shown in Table 6.

⁵https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html

Table 5: dim exp with pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	-
Dim = 2048	52.74	18.28	25.88	-0.45357424
Dim = 1024	52.86	18.3	25.88	-0.117097951
Dim = 512	52.85	18.36	25.97	0.538926994
Dim = 256	52.7	18.26	25.86	-0.715723485
Dim = 128	52.89	18.37	25.95	0.592169956
Dim = 64	52.79	18.34	25.95	0.238913304
Dim = 32	52.74	18.29	25.9	-0.321798695
Dim = 16	52.6	18.36	25.92	-0.127205414

Table 6: multi-head exp w/o pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	_
nhead=1	52.97	18.35	26	0.827164961
nhead=2	52.77	18.37	25.95	0.364983285
nhead=4	52.98	18.35	26	0.846097184
nhead=8	52.87	18.37	25.96	0.592870879
nhead=16	52.78	18.37	25.97	0.461046244
nhead=32	52.92	18.41	25.97	0.944676596

4.4.4 multi-head exp with pos encoding

In this experiment, we keep fixed all hyperprameters but changing nhead with positional encoding. Also, The dim_feedforward set to 512. Result shown in Table 7.

Comparing Table 6 and Table 7, We found the metrics without positional encoding are better than with positional encoding one. So positional information might not a critical info in this scenario.

Note that best performance appeared when nhead set to 8 with postional encoding.

4.4.5 num-layers exp w/o pos

We keep fixed all hyperprameters but changing num_layers without positional encoding. The dim_feedforward was set to 512 and nhead was set to 1. Result shown in Table 8.

4.4.6 num-layers exp with pos

Here, we keep fixed all hyperprameters but changing num_layers with positional encoding. The dim feedforward was set to 512 and nhead was set to 1. Result shown in Table 9.

We found that whether transformer encoder with positional encoding or not, it has similar trend that performance decreased as layers increased. And we found as layers increased, models's inference time also increased.

Table 7: multi-head exp with pos encoding

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	-
nhead=1	52.85	18.36	25.97	0.538926994
nhead=2	52.7	18.31	25.91	-0.2496726
nhead=4	52.88	18.38	25.98	0.743578647
nhead=8	52.87	18.41	26.03	1.081407692
nhead=16	52.82	18.35	25.96	0.388920149
nhead=32	52.75	18.35	25.95	0.217829222

Table 8: num-layers exp w/o pos

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93 -	
layer=1	52.97	18.35	26	0.827164961
layer=2	52.72	18.41	25.93	0.41177067
layer=3	52.69	18.4	25.95	0.37745993
layer=4	52.69	18.33	25.89	-0.236445941
layer=6	52.65	18.13	25.72	-2.060682268
layer=8	52.24	17.96	25.48	-4.691433984
layer=16	52.11	17.77	25.34	-6.515719401

Table 9: num-layers exp with pos

AGG.TYPE	HR@20	MRR@20	NDCG@20	Total impv.
baseline	52.82	18.3	25.93	-
layer=1	52.85	18.36	25.97	0.538926994
layer=2	52.77	18.41	25.96	0.622127888
layer=3	52.72	18.34	25.88	-0.163569833
layer=4	52.84	18.32	25.9	0.031457958
layer=6	52.8	18.18	25.78	-1.272082675
layer=8	52.3	17.95	25.46	-4.709616194
layer=16	52.04	17.81	25.37	-6.313969619

5 CONCLUSION

None

References

[1] Tianwen Chen and Raymond Chi-Wing Wong. Handling information loss of graph neural networks for session-based recommendation. In *Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '20)*, pages 1172—1180, 2020.