Physik

Sammlung, gegliedert nach Modul

Fabian Suter, 12. Juni 2024

https://github.com/FabianSuter/Physik.git

1 Hydrostatik

1.1 Festkörper, Flüssigkeit, Gas

1.1.1 Festkörper

- kein Fluid
- festes Volumen; feste Gestalt
- Moleküle / Atome befinden sich in regelmässiger Gitter-Anordnung
- inkompressibel (sehr schlecht komprimierbar)
- Kraft: Weiterleitung (längs ihrer Wirkungslinie)
- Druck: Verstärkung

1.1.2 ideale Flüssigkeit

- Fluid
- festes Volumen; keine feste Gestalt
- Moleküle / Atome bewegen sich chaotisch aneinander vorbei
- Moleküle / Atome füllen den Raum aus / berühren sich
- inkompressibel (schlecht komprimierbar)
- reibungsfrei (keine Scherkräfte)
- Kraft: Verstärkung
- Druck: Weiterleitung (gleichmässig)

1.1.3 Gas

- Fluid
- kein festes Volumen; keine feste Gestalt
- Moleküle / Atome fliegen mit hoher Geschwindigkeit durch den Raum
- Es gibt sehr viel Zwischenraum
- Moleküle / Atome führen bei Zusammenstoss unter sich oder mit Gefässwand elestische Stösse aus
- kompressibel (gut komprimierbar)
- reibungsfrei (keine Scherkräfte)

1.2 Druck p / Schubspannung τ

Druck ist eine skalare Grösse (hat keine Richtung)

$$p = \frac{F_{\perp}}{A}$$

$$au = rac{F_{||}}{A}$$

$$\begin{array}{lll} p & \text{Druck} & [p] = \text{Pa} = \frac{\text{N}}{\text{m}^2} \\ \tau & \text{Schubspannung (Scherkraft)} & [\tau] = \text{N} \\ F_{\perp} & \text{Kraft senkrecht zu A} & [F_{\perp}] = \text{N} \\ F_{\parallel} & \text{Kraft parallel zu A} & [F_{\parallel}] = \text{N} \\ A & \text{Fläche} & [A] = \text{m}^2 \end{array}$$

In abgeschlossenen, miteinander verbundenen Systemen herrscht ein Druck-Gleichgewicht!

$$p_1 = p_2 \qquad \Rightarrow \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

1.2.1 Weitere Einheiten von Druck

1 bar = 10⁵ Pa (Absulutdruck: Vergleich zu Vakuum)

1 hPa = 100 Pa = 1 mbar

 $1 \text{ at} = 1 \text{ kp} \cdot \text{cm}^{-2} = 9.81 \cdot 10^4 \text{ Pa}$

1 atü = 1 at (Überdruck; Vergleich zu normalem Luftdruck)

 $1 \text{ Torr} = \frac{1}{760} \text{at (1mm-Hg-S\"{a}ule)}$ 1 psi = 6894.76 Pa (Britisch)

1.3 Kompression

Flüssigkeiten:
$$\Delta p = \frac{1}{\kappa} \cdot -\frac{\Delta V}{V} = K \cdot -$$

Gase:
$$\Delta p = p(h) - p_0 = \frac{1}{\kappa_T} \cdot -\frac{\Delta V}{V}$$

Δp	Druckerhöhung	$[\Delta p] = Pa = \frac{N}{m^2}$
κ	Kompressibilität (Flüssigkeit)	$[\kappa] = \frac{1}{Pa}$
$K = \frac{1}{\kappa}$	Kompressionsmodul	[K] = Pa
κ_T	Kompressibilität (Gas)	$[\kappa_T] = \frac{1}{Pa}$
$-\frac{\Delta V}{V}$	realtive Volumen-Abnahme	$\left[\frac{\Delta V}{V}\right] = 1$

1.4 Dichte ρ

$$\rho = \frac{m}{V} \qquad \Leftrightarrow \qquad \boxed{m = \rho \cdot V}$$

Dichte Masse Volumen

1.4.1 Wichtige Dichten

$$\rho_{Wasser} = 1000 \frac{\text{kg}}{\text{m}^3}$$

$$\rho_{Luft} = 1.2 \frac{\text{kg}}{\text{m}^3}$$

1.5 Boyle-Mariotte

Das Gesetz von Boyle-Mariotte beschreibt die Kompressibilität von Gasen.

⇒ Das Gesetz gilt nur bei konstanter Temperatur!

$$\boxed{p_1 \cdot V_1 = p_2 \cdot V_2 = \text{const}} \qquad \Rightarrow \boxed{\frac{p_1}{p_2} = \frac{\rho_1}{\rho_2}}$$

 $\begin{array}{ll} \text{Gas-Dichte} & [\rho_x] = \frac{\text{kg}}{\text{m}^3} \\ \text{Gas-Druck} & [p_x] = \text{Pa} \\ \text{Volumen} & [V_x] = \text{m}^3 \end{array}$

1.6 Hydrostatischer Druck (Schweredruck)

Fluid inkompressibel!

$$p = \rho \cdot g \cdot h$$

Dichte der Flüssigkeit Erdbeschleunigung $g = 9.81 \frac{\text{m}}{\text{s}^2}$

Höhe unter der Flüssigkeits-Oberfläche

Der Druck ist nur von der Höhe der darüberliegenden Flüssigkeit abhängig, nicht von deren Volumen oder Gewicht.

1.7 Barometrische Höhenformel (Gase)

Fluid kompressibel!

$$p(h) = p_0 \cdot e^{-\frac{\rho_0}{p_0} \cdot g \cdot h}$$

[p(h)] = PaSchweredruck des Gases bei Höhe h

 $[p_0] = Pa$ Luftdruck auf Meereshöhe $p_0 = 10^5 \,\mathrm{Pa}$ p_0 Luft-Dichte auf Meereshöhe $\rho_0 = 1.2 \frac{\text{kg}}{\text{m}^3}$ $[\rho_0] = \frac{\mathrm{kg}}{\mathrm{m}^3}$

Erdbeschleunigung $g = 9.81 \frac{\text{m}}{-2}$

Höhe über Meer

[h] = m

1.8 Statischer Auftrieb (Fluid)

Der Auftrieb eines Körpers entspricht dem Gewicht der von ihm verdrängten Flüssigkeit (Archimedes).

$$F_A = \rho_{Fl} \cdot V_K \cdot g$$

$$F_A = F_{G,Fl} = m_{Fl} \cdot g = \rho_{Fl} \cdot V_K \cdot g$$

F_A	Auftriebskraft	$[F_A] = N$
$ ho_{Fl}$	Dichte verdrängtes Fluid	$[\rho_{Fl}] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
V_K	verdrängtes Fluid-Volumen	$[V_K] = m^3$
g	Erdbeschleunigung $g = 9.81 \frac{\text{m}}{\text{s}^2}$	$[g] = \frac{\mathrm{m}}{\mathrm{s}^2}$
m_{Fl}	Masse des verdrängten Fluids	$[m_{Fl}] \stackrel{\circ}{=} \mathrm{kg}$
F_{G-Fl}	Gewichtskraft verdrängtes Fluid	$[F_{G FI}] = N$

1.9 Oberflächenspannung σ

$$\sigma := \frac{F}{l}$$

$$\begin{array}{ll} \sigma & \text{Oberflächenspannung} & [\sigma] = \frac{\mathbf{N}}{\mathbf{m}} = \frac{\mathbf{J}}{\mathbf{m}^2} \\ F & \text{Kraft} & [F] = \mathbf{N} \\ l & \text{Länge} & [l] = \mathbf{m} \end{array}$$

Die Länge l entspricht der gesamten Berührungslänge zwischen Flüssigkeit und Festkörper / Gas

Zylinder $l = 2 \pi r$ Lamellen l = 2 b (beidseitig!)

1.10 Grenzflächenspannung

$$\sigma_{sl} + \sigma_{lg} \cdot \cos\varphi = \sigma_{sg}$$

1.11 Kapillarität h

$$h = \frac{2 \cdot \sigma}{\rho \cdot g \cdot r} = \frac{\sigma}{\rho \cdot g \cdot d}$$

 $\begin{array}{lll} \sigma & \text{Totale Grenzfl\"{a}chenspannung} & [\sigma] = \frac{\mathrm{N}}{\mathrm{n}} \\ \rho & \text{Dichte der Fl\"{u}ssigkeit} & [\rho] = \frac{\mathrm{kg}}{\mathrm{m}^2} \\ r & \text{Radius der Kapillare} & [r] = \mathrm{m} \\ d & \text{Durchmesser der Kapillare} & [r] = \mathrm{m} \\ \end{array}$

benetzend nicht benetzend

1.12 Druck in Seifenblase p

$$p = \frac{2 \cdot \sigma}{r}$$

 σ Oberflächenspannung $[\sigma] = \frac{1}{r}$ Radius der Seifenblase [r] = r

2 Hydrodynamik - Ideale Fluide

Ideale Fluide nehmen keine Scherkräfte auf (keine Reibung) und sind inkompressibel.

2.1 Stromlinien-Modell

- Stromlinien zeigen Geschwindigkeit des Fluids
- Dichte Stromlinien bedeutet hohe Geschwindigkeit
- Dünne Stromlinien bedeutet niedrige Geschwindigkeit
- Stationär: Stromlinien = Bahnlinien ⇒ schneiden sich nicht

2.2 Kontinuitätsgleichung

$$\frac{\Delta V}{\Delta t} = \dot{V} = A \cdot v = \text{const} \qquad \Leftrightarrow \qquad \boxed{A_1 \cdot v_1 = A_2 \cdot v_2 = \frac{\Delta V}{\Delta t} = \dot{V}}$$

 $\begin{array}{lll} \Delta V & \text{Volumen\"{a}nderung} & [\Delta V] = \text{m}^3 \\ \Delta t & \text{Zeit\"{a}nderung} & [\Delta t] = \text{s} \\ \dot{V} & \text{Volumenstrom (Volumen pro Zeit)} & [\dot{V}] = \frac{\text{m}^3}{\text{s}} \\ A_x & \text{Querschnittsfl\"{a}che} & [A_x] = \text{m}^2 \\ v_x & \text{Geschwindigkeit der Fl\"{u}ssigkeit} & [v_x] = \frac{\text{m}}{\text{m}} \end{array}$

 \Rightarrow Gilt auch für Gase, wenn $v << v_{Schall}$

2.3 Bernoulli-Gleichung

Die Bernoulli-Gleichung beschreibt ein bewegtes Fluid

$$\underbrace{p + \rho \cdot g \cdot h}_{\text{statisch}} + \underbrace{\frac{1}{2} \rho \cdot v^2}_{\text{dynamisch}} = \text{const}$$

$$p_1 + \rho \cdot g \cdot h_1 + \frac{1}{2} \rho \cdot v_1^2 = p_2 + \rho \cdot g \cdot h_2 + \frac{1}{2} \rho \cdot v_2^2$$

2.3.1 Spezialfall: Horizontal

$$p + \frac{1}{2} \rho \cdot v^2 = \text{const}$$

2.3.2 Spezialfall: Statik

$$p + \rho \cdot g \cdot h = \text{const}$$

2.3.3 Hydrodynamisches Paradoxon

Je grösser die Strömungsgeschwindigkeit, desto kleiner der Druck

2.4 Bernoulli-Gleichung und Energieerhaltung

Die in der Bernoulli-Gleichung vorkommenden Terme können als Energie pro Volumen betrachtet werden

E_Mech = elast. Energie + pot. Energie + kin. Energie $= p \cdot V + m \cdot g \cdot h + \tfrac{1}{2} \, m \cdot v^2 = {\rm const}$

Wenn durch das Volumen dividiert wird erhält man:

 $\begin{array}{ll} \frac{\mathbf{E}_{\mathrm{Mech}}}{\mathrm{Volumen}} & = & \frac{\mathrm{elatischeEnergie}}{\mathrm{Volumen}} + \frac{\mathrm{pot.\ Energie}}{\mathrm{Volumen}} + \frac{\mathrm{kin.\ Energie}}{\mathrm{Volumen}} \\ \\ & = & p + \rho \cdot g \cdot h + \frac{1}{2} \ \rho \cdot v^2 = \mathrm{const} \end{array}$

Bei einer horizontalen Strömung entfällt die pot. Energie (pro Volumen)

 $\begin{array}{ll} \frac{\mathbf{E}_{\mathrm{Mech}}}{\mathrm{Volumen}} & = & \frac{\mathrm{elatischeEnergie}}{\mathrm{Volumen}} + \frac{\mathrm{kin.\ Energie}}{\mathrm{Volumen}} \\ \\ & = & p + \frac{1}{2}\ \rho \cdot v^2 = \mathrm{const} \end{array}$

3 Hydrodynamik - Reale Fluide

Reale Fluide nehmen Scherkräfte auf (Reibung)

3.1 Newton'sches Reibungs-Gesetz

Ein reales Fluid erfährt Reibung

$$\tau = \eta \cdot \frac{v}{d}$$

$$\tau = \eta \cdot \frac{dv}{dz}$$

 $[\tau] = N$

 $[\eta] = Pa \cdot s$

[z] = m

[d] = m

- Schubspannung dynmaische Zähigkeit (Viskosität) η
- Geschwindigkeitsdifferenz zw. Auflagen
- Richtung senkrecht zur Verschiebung
- $\frac{dv}{dz}$ Geschwindigkeits-Gradient in z-Richtung
- dDistand zwischen den Auflagen

3.3.2 Geschwindigkeitsverteilung von r = 0 bis R

3.3.1 Gesetz von Hagen-Poiseuille

$$v(r) = \frac{1}{4 \cdot \eta} \cdot \frac{\Delta p}{l} (R^2 - r^2)$$

 $\dot{V} = \frac{\pi \cdot \Delta \, p \cdot R^4}{8 \cdot \eta \cdot l}$

v(r)Fliessgeschwindigkeit beim Radius r $[v(r)] = \frac{\mathrm{m}}{\mathrm{s}}$ betrachteter Radius Dynamische Zähigkeit (Viskosität) $[\eta] = Pa \cdot s$ RRohr-(Innen)Radius [R] = m Δp Druckdifferenz $[\Delta p] = Pa$ $\dot{V} = \frac{dV}{dt}$ $[\dot{V}] = \frac{\mathrm{m}^3}{\mathrm{s}}$ Volumenstrom Länge des Rohrs [l] = m

Beispiele: Werte für η

$$\begin{array}{lll} \eta_{Luft} & := & 17 \cdot 10^{-6} \; \mathrm{Pa \cdot s} \\ \eta_{Wasser}(20C) & := & 10^{-2} \; \mathrm{Pa \cdot s} \\ \eta_{Oel} & := & 0.1 \; \mathrm{Pa \cdot s} \; \mathrm{bis} \; 1 \; \mathrm{Pa \cdot s} \end{array}$$

3.1.1 Kinematische Zähigkeit ν

$$\boxed{\nu = \frac{\eta}{\rho}}$$

kinematische Zähigkeit $[\nu] = \frac{m^2}{2}$ Dichte

3.2 Stokes'sche Reibung F_R

Z.B. für Kugel in Öl oder fallende Wassertropfen

$$F_R = 6 \cdot \pi \cdot \eta \cdot R \cdot v$$

Reibungskraft $[F_R] = N$ Dynamische Zähigkeit (Viskosität) $[\eta] = Pa \cdot s$

Kugelradius [R] = mR

 $[v] = \frac{\mathbf{m}}{c}$ Geschwindigkeit

3.2.1 Kugelfall-Viskosimeter

Auf eine Kugel, welche in einer Flüssigkeit hinabgleitet wirken folgende Kräfte:

Gewichtskraft statischer Auftrieb Stokes'sche Reibung

Ansatz zum Lösen von Aufgaben: Kräftegleichgewicht

3.3 Hagen-Poiseuille

Beschreibung von laminaren Strömungen in einem runden Rohr ⇒ Schichtströmung

3.4 Reynolds-Zahl Re

Gibt ein Richtmass für die Wirbelbildung

- Druck-Differenz (Bernoulli) begünstigt Wirbelbildung
- Innere Reibung (Schubspannung) verhindert Wirbelbildung

$$Re = \frac{\Delta p}{\tau} = \frac{\rho \cdot \overline{v} \cdot d}{\eta} \qquad \text{mit } \overline{v} = \frac{\dot{V}}{A}$$

Reynolds-Zahl [Re] = 1Dynamische Zähigkeit (Viskosität) $[\eta] = Pa \cdot s$ \overline{v} Mittlere Geschwindigkeit dTypische Dimension (Rohrdurchmesser) $[d] = \tilde{m}$ Druckdifferenz $[\Delta p] = Pa$ Δp Schubspannung

Sobald die Reynolds-Zahl Re grösser ist als ein kritischer Wert bilden sich Wirbel

 \Rightarrow Rohr: $Re_{kritisch} \approx 2320$

3.4.1 Ähnlichkeitsgesetz

Revnolds-Zahl dient auch richtigem Vergleich von Modellversuchen.

⇒ Gleiche Reynolds-Zahl bedeutet gleiches Verhalten

⇒ Gleiche Reynolds-Zahl bedeutet auch gleiche Relative Grenzschicht-Dicke D (siehe 3.6)

3.5 Turbulente / Laminare Rohrströmung

3.5.1 Hilfe, um Revnoldszahl zu bestimmen (laminar)

$$\Delta p = 32 \cdot \eta \cdot l \cdot \frac{v}{d^2}$$

3.5.2 Druckunterschied in laminare / turbulente Strömung

$$\lambda_{turbulent} = \frac{0.316}{\sqrt[4]{Re}}$$
 $\lambda_{laminar} = \frac{64}{Re}$

$$\Rightarrow \Delta p_x = \lambda_x \frac{l}{d} \cdot \frac{\rho}{2} \cdot v^2$$

Δp_x	Druckdifferenz (laminar/turbulent)	$[\Delta p] = Pa$
η	Dynamische Zähigkeit (Viskosität)	$[\eta] = \text{Pa} \cdot \text{s}$
i	Rohr-Länge	[l] = m
v	Fliess-Geschwindigkeit	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
d	Rohr-Durchmesser	[d] = m
ho	Dichte des Fluids	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
Re	Reynolds-Zahl	[Re] = 1

3.5.3 Unbekannt / Gemischt (Pratische Anwendung)

Vorgehen, wenn man nicht weiss, ob sich Wirbel bilden oder nicht

- 1. Laminar rechnen (um fehlenden Parameter ρ , v, d, oder η zu bestimmen)
- Aus Resultat Reynolds-Zahl berechnen
- Mit kritischer Revnolds-Zahl vergleichen
- Beim $\ddot{\mathbf{U}}$ berschreiten \Rightarrow Turbulent rechnen!

3.6 Prandl'sche Grenzschicht-Dicke D

Prandl'sche Grenzschicht-Dicke D beschreibt, in welcher **Distanz** die Geschwindigkeit eines laminar bewegten Teils (z.B. ein Flugzeugflügel) Null ist.

$$D = \sqrt{\frac{\eta}{\rho} \cdot \frac{l}{v}}$$

Prandl'sche Grenzschicht-Dicke [D] = mDynamische Zähigkeit (Viskosität) $[\eta] = Pa \cdot s$

[l] = m

 $[v] = \frac{\mathbf{m}}{2}$

- Dichte des Fluids
- Länge des bewegten Teils (in Richtung von v)
- Geschwindigkeit

Die Geschwindigkeit innerhalb der Grenzschicht D nimmt vom Teil bis hin zum äussersten Rand **linear** ab.

3.7 Bernoulli-Gleichung mit innerer Reibung

$$p_1 + \rho \cdot g \cdot h_1 + \frac{1}{2} \frac{\alpha_1}{\alpha_1} \cdot \rho \cdot v_1^2 = p_2 + \rho \cdot g \cdot h_2 + \frac{1}{2} \frac{\alpha_2}{\alpha_2} \cdot \rho \cdot v_2^2 + \Delta p_v$$

	turbulent	laminar
Korrekturfaktoren	$\alpha_1 \approx \alpha_2 \approx 2$	$\alpha_1 \approx \alpha_2 \approx 1$
Druckverlust Δp_v	$\Delta p_v = \lambda_x \frac{l}{a}$	$\frac{1}{2} \cdot \frac{\rho}{2} \cdot v^2$
	$\lambda_{turbulent} = \frac{0.316}{\sqrt[4]{Re}}$	$\lambda_{laminar} = \frac{64}{Re}$

3.8 Druckwiderstand F_D

Bezeichnet die turbulente Luftreibungskraft ${\cal F}_R$ und wird meist als Luftwiderstand bezeichnet

$$F_D = \Delta p \cdot A_s = \frac{1}{2} \cdot \rho \cdot v^2 \cdot A_s \cdot c_W$$

F_D	Druckwiderstand	$[F_D] = N$
Δp	Druckdifferenz	$[\Delta p] = Pa$
ρ	Luft-Dichte	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
v	Strömungs-Geschwindigkeit	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
c_W	Widerstandsbeiwert / Widerstandszahl	$[c_W] = 1$
A_s	projizierte Fläche senkrecht zur Strömung	$[A_s] = m^2$

Der Widerstandsbeiwert c_W ist **geometrieabhängig!**

3.9 Auftriebskraft F_A nach Kutta-Jukowski

Beschreibt Proportionalität zwischen dynamischem Auftrieb und Zirkulation

$$F_A = \rho \cdot v \cdot l \cdot \Gamma$$

F_A	dynamischer Auftrieb	$[F_A] = N$
ho	Dichte des Fluids	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
v	Geschwindigkeit	$[v] = \frac{m}{s}$
l	Länge quer zur Strömung	[l] = m
Γ	Zirkulation	$[\Gamma] = \frac{m^2}{2}$

3.9.1 Zirkulation Γ

Die Zirkulation ist ein Mass für die Rotation im Strömungsfeld

$$\Gamma = \oint \vec{v} \bullet d\vec{s}$$

 $\Gamma \qquad \text{Zirkulation} \qquad \qquad [\Gamma] = \frac{\mathbf{m}}{\mathbf{s}}$ $\vec{v} \bullet d\vec{s} \qquad \text{Geschwindigkeit entlang dem Weg} \qquad [\vec{v}] = \frac{\mathbf{m}}{\mathbf{s}}$ $(\text{Skalarprodukt: } \vec{v} \bullet d\vec{s} = a \cdot b \cdot \cos(\varphi)$

Rotierender Zylinder:

$$\Gamma = 2\pi r v_{Zyl} = 4\pi^2 r^2 f$$

3.10 Dynamischer Auftrieb F_A

$$F_A = c_A \cdot \underbrace{\frac{1}{2} \cdot \rho \cdot v^2}_{\Delta p} \cdot A$$

F_A	dynamischer Auftrieb	$[F_A] = N$
c_A	Auftriebskoeffizient	$[c_A] = 1$
ho	Luft-Dichte	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
v	Strömungsgeschwindigkeit	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
A_{II}	Projizierte Fläche parallel zur Strömung	$[A_{ }] = m^2$

3.10.1 Wissenswertes zum dynamischen Auftrieb

Ein gerade ausgerichtetes, symmetrisches Stromlinienprofil erzeugt keinen dynamischen Auftrieb

An einem asymmetrischen Flügelprofil entsteht dynamischer Auftrieb

3.11 Induzierter Widerstand F_W

Kommt durch Energieverlust (Wirbelbildung) zu Stande, welcher entsteht, wenn die Umgebungsluft in Bewegung gesetzt wird

$$F_W = c_W^* \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A_{\parallel}$$

FW	Induzierter Widerstand	$[F_W] = N$
c_W^*	Widerstands-Koeffizient	$[c*_{W}] = 1$
ρ	Luft-Dichte	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
v	Strömungsgeschwindigkeit	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
A_{\parallel}	Projizierte Fläche parallel zur Strömung	$[A_{\parallel}] = m^2$

3.12 Gleitwinkel φ

Gibt die zurückgelegte Stecke pro verbrauchte Höhe an Im Luft-Kanal ist dies der Anstell-Winkel

$$tan(\varphi) = \frac{F_W}{F_A} = \frac{c_W^*}{c_A} = \frac{v_V}{v_H}$$

φ	Gleitwinkel	$[arphi]=\degree$
F_W	Widerstandskraft	$[F_W] = N$
F_A	Auftriebskraft	$[F_A] = N$
c_W^*	Widerstands-Koeffizient	$[c_W^*] = 1$
c_A	Auftriebs-Koeffizient	$[c_A] = 1$
v_V	Vertikal-Geschwindigkeit	$[v_V] = \frac{\mathrm{m}}{\mathrm{s}}$
v_H	Horizontal-Geschwindigkeit	$[v_H] = \frac{\overline{m}}{s}$

3.12.1 Gängige Gleitzahlen

Flugobjekt	Gleitzahl
Hängegleiter	10 bis 15
Boeing 747	15
Airbus A380	20
Segelflugzeug	40 (Rekord 70)

3.13 Helmholz'sche Wirbelsätze

- . Wirbel hat kein Anfang und kein Ende
- 2. Wirbel besteht immer aus denselben Fluidteilchen
- 3. Zirkulation zeitlich konstant

Thermodynamik

4.1 Terminologie

System ist \downarrow	Materie- tausch		Energiet Arbeit	ausch Wärme
offen	erlaubt	- adiabatisch arbeitsdicht beides	erlaubt erlaubt Nein Nein	erlaubt Nein erlaubt Nein
geschlossen	Nein	- adiabatisch arbeitsdicht energiedicht	möglich möglich Nein Nein	möglich Nein möglich Nein

4.2 Absolute Temperatur T

$$T = \theta + 273.15 K = \theta - \theta_0$$

[T] = K

 $[\theta] = ^{\circ}C$

- Absolute Temperatur gemessen in Kelvin
- θ Temperatur gemessen in °C
- Absoluter Nullpunkt: = -273.15 °C = 0 K

4.3 Thermische Ausdehnung

4.3.1 Längenausdehnung Δl

$$l' = l + \Delta l = l + \alpha \cdot l \cdot \Delta T = l (1 + \alpha \cdot \Delta T)$$

- Länge nach Ausdehnung
- Anfangslänge [l] = m
- $[\Delta l] = m$ Δl Längenänderung
- Längenausdehnungskoeffizient $[\alpha] = \frac{1}{K}$ α ΔT $[\Delta T] = K$ Temperaturänderung

4.3.2 Flächenausdehnung ΔA

$$A' = A + \Delta A = A + \underbrace{\beta}_{\approx 2 \,\alpha} \cdot A \cdot \Delta T = A \left(1 + \beta \cdot \Delta T \right)$$

- $[A'] = m^2$ Länge nach Ausdehnung $[A] = m^2$ AAnfangslänge $[\Delta A] = m^2$ Längenänderung ΔA
- Flächenausdehnungskoeffizient $[\beta] = \frac{1}{K}$ β
 - Temperaturänderung $[\Delta T] = K$

4.3.3 Volumenausdehnung ΔV

$$V' = V + \Delta V = V + \underbrace{\gamma}_{\approx 3 \ \alpha} \cdot V \cdot \Delta T = V (1 + \gamma \cdot \Delta T)$$

V'Volumen nach Ausdehnung $[V'] = m^3$ V $[V] = m^3$ Anfangsvolumen ΔV Volumenänderung $[\Delta V] = m^3$ $[\gamma] = \frac{1}{K}$ Volumenausdehnungskoeffizient ΔT Temperaturänderung $[\Delta T] = K$

Material	Koeffizient $(10^{-6}K^{-1})$
Aluminium	23
Eisen	12
Stahl, unlegiert	11 13
Diamant	1.3
Silizium	2
Gummi	220
Beton	12
Polysterol	70
Zerodur	0 ± 0.007

4.4 Thermische Spannung σ

$$p = \sigma = \varepsilon \cdot E = E \cdot \frac{\Delta l}{l} = E \cdot \alpha \cdot \Delta T$$

- Thermische Spannung $[\sigma] = Pa$
- ε Dehnung $[\varepsilon] = 1$
- $[E] = \frac{N}{m^2}$ EElastizitätsmodul
- $[\alpha] = \frac{1}{K}$ α Längenausdehnungskoeffizient
- $[\Delta T] = K$ ΔT Temperaturänderung Druck [p] = Pa

5 Ideales Gas

5.1 Modell des idealen Gases

Jedes Gas ist gleich!

- Moleküle sind Massepunkte (keine Ausdehnung)
- Stösse sind elastisch (keine zwischenmolekularen Kräfte) Kein Volumen bei T=0Kein Druck bei T=0

5.1.1 Thermische Ausdehnung von Gasen

- Ausdehnung von Gasen ist sehr gross
- Bei allen Gasen ist die Ausdehnung gleich
- Volumen beim Nullpunkt ist Null

5.2 Universelle Gasgleichung

Alle Gase verhalten sich gleich, insbesondere bei gleicher Anzahl Moleküle

$$\frac{p \cdot V}{T} = \text{const}$$

$$\Rightarrow \boxed{\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2}}$$

- Absolut-Druck
- $[p_x] = Pa$

[T] = K

- Absolut-Druck: $p_0 + p$ Volumen
- $[V_x] = m^3$
- T_x Absolut-Temperatur (in K)

5.2.1 Boyle-Mariotte

Das Gesetz gilt nur bei konstanter Temperatur! ⇒ **Isotherme** Zustandsänderung

$$p \cdot V = \text{const}$$

$$\Rightarrow p_1 \cdot V_1 = p_2 \cdot V_2$$

5.2.2 Gay-Lussac

Das Gesetz gilt nur bei konstantem Druck! ⇒ **Isobare** Zustandsänderung

$$\frac{V}{T} = \text{const}$$

$$\Rightarrow \boxed{\frac{V_1}{T_1} = \frac{V_2}{T_2}}$$

5.2.3 Gay-Lussac und Amontons

Das Gesetz gilt nur bei konstantem Volumen! ⇒ **Isochore** Zustandsänderung

$$\frac{p}{T} = \text{const}$$

$$\Rightarrow \frac{p_1}{T_1} = \frac{p_2}{T_2}$$

5.3 Universelle Gasgleichung für ideale Gase

$$p \cdot V = n \cdot R \cdot T = N \cdot k \cdot T$$

- Absolut-Druck
- Absolut-Druck: $p_0 + p$ Volumen
- Mol-Zahl
- Universelle Gaskonstante: $R = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$
- Absolut-Temperatur (in K) T
- N Anzahl Moleküle

[n] = mol $[R] = \frac{J}{\text{mol K}}$ [T] = K

[p] = Pa

- [N] = 1
- Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$

5.3.1 Zusammenhänge zwischen den Konstanten

$$R = k \cdot N_A = \frac{N \cdot k}{n}$$

$$n = \frac{N}{N_A} = \frac{m}{M} = \frac{N \cdot k}{R}$$

R	Universelle Gaskonstante: $R = 8.314 \frac{J}{\text{mol.K}}$	[D] _ J
$I\iota$		$[R] = \frac{J}{\text{mol} \cdot K}$
k	Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \frac{J}{K}$	$[k] = \frac{J}{K}$
N	Anzahl Moleküle	[N] = 1
N_A	Avogadrokonstante: $N_A = 6.022 \cdot 10^{23} \frac{1}{\text{mol}}$	$[N_A] = \frac{1}{\text{mol}}$
n	Mol-Zahl	[n] = mol
m	Masse	[m] = kg
M	Mol-Masse	$[M] = \frac{\mathrm{kg}}{\mathrm{mol}}$

5.4 Mechanische Arbeit ΔW von Gasen

Folgende Formel ist für Flüssigkeiten **nicht** gültig, da diese inkompressibel sind ($\Delta V=0$)

$$\Delta W = F \cdot \Delta s = p \cdot A \cdot \Delta s = p \cdot \Delta V$$

ΔW	Mechanische Arbeit von Gas	$[\Delta W] = J$
F	Kraft	[F] = N
Δs	Wegänderung	$[\Delta s] = m$
p	Druck	[p] = Pa
A	Fläche	$[A] = m^2$
ΔV	Volumenänderung	$[\Delta V] = m^3$

5.5 Gesetz von Avogadro

Ein Mol eines Gases nimmt bei Normalbedingungen immer das gleiche Volumen ein (=Molvolumen)

Ideale Gase enthalten bei gleichem Druck p und gleicher Temperatur T immer gleich viele Moleküle (im Molvolumen)

5.6 Molmasse M, Molvolumen V_m

Für 1 Mol Teilchen gilt:

$$p \cdot V = R \cdot T = N_A \cdot k \cdot T$$

Molmasse ist die Ordnungszahl im Periodensystem

$$n = \frac{m}{M} = \frac{N}{N_A}$$

Mol-Volumen:

$$V_m = \frac{V}{n}$$

p	Absolut-Druck	[p] = Pa
	Absolut-Druck: $p_0 + p$	
V	Volumen	$[V] = m^3$
R	Universelle Gaskonstante: $R = 8.314 \frac{\text{J}}{\text{mol.K}}$	$[R] = \frac{J}{\text{mol} \cdot K}$
T	Absolut-Temperatur (in K)	$[T] = \mathbf{K}$
N_A	Avogadrokonstante: $N_A = 6.022 \cdot 10^{23} \frac{1}{\text{mol}}$	$[N_A] = \frac{1}{\text{mol}}$ $[k] = \frac{J}{K}$
k	Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$	$[k] = \frac{J}{K}$
n	Mol-Zahl	[n] = mol
m	Masse	[m] = kg
M	Mol-Masse	$[M] = \frac{\text{kg}}{\text{mol}}$
N	Anzahl Moleküle	[N] = 1
V_m	Mol-Volumen	$[V_m] = \frac{\mathrm{m}^3}{\mathrm{mol}}$

5.7 Dichte eines Gases ρ

$$\rho = \frac{m}{V} = \frac{M}{V_m} = \frac{p \cdot M}{R \cdot T}$$

ρ	Gas-Dichte	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
m	Masse	$[m] = \ker$
V	Volumen	$[V] = m^3$
M	Mol-Masse	$[M] = \frac{\text{kg}}{\text{mol}}$
V_m	Mol-Volumen (22.4 L bei 0 °C und 1000 hPa)	$[V_m] = \frac{m^3}{\text{mol}}$
p	Absolut-Druck	[p] = Pa
	Absolut-Druck: $p_0 + p$	
R	Universelle Gaskonstante: $R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$	$[R] = \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$
T	Absolut-Temperatur (in K)	[T] = K

5.8 Phänomene von idealen Gasen

5.8.1 Annomalie des Wassers

Die feste Form (Eis) ist leichter als die flüssige Form (Wasser) Die **grösste Dichte weist Wasser bei 4** $^{\circ}$ C auf, nicht beim Gefrierpunkt von 0 $^{\circ}$ C

 \Rightarrow Ein See gefriert somit nur an der Oberfläche. Am Grund des Sees beträgt die Wassertemperatur 4 °C

5.8.2 Osmotischer Druck (Zelldruck)

Grosse Moleküle innerhalb von vielen kleinen Molekülen in einer Flüssigkeit verhalten sich ähnlich wie die Moleküle eines idealen Gases, wenn die Flüssigkeit von einer für die Müleküle halb-durchlässigen (semi-permeabel) Membran umgeben ist.

Osmotischer Druck : $p = \frac{n}{V} \cdot R \cdot T$ (ideale Gasgleichung)

5.9 Partialdruck p_i

Ausgangslage: Gasgemisch (z.B. Luft: Sauerstoff-Stickstoff)

Der Partialdruck p_i ist der Druck, welcher die i-te Gaskomponete erzeugen würde, wenn ihr das gesamte Volumen zur Verfügung stehen würde.

5.10 Gesetz von Dalton

In einem Gas ist die Summe der Partialdrücke p_i gleich dem Gesamtdruck

$$\sum_{i=1}^{n} p_i = p$$

 p_i Partialdruck $[p_i] = Pa$ p (Gesamt-) Druck [p] = Pa

5.11 Volumen- und Massenkonzentration (Gasgemisch)

5.11.1 Volumen-Konzentrationen (Volumen-Anteile)

$$q_i = \frac{V_i}{V} = \frac{n_i}{n} = \frac{p_i}{p}$$

a.	Volumen-Konzentration	$[q_i] = 1$
q_i		
V_i	Volumen der i-ten Gas-Komponente	$[V_i] = m^3$
V	Gesamt-Volumen	$[V] = m^3$
n_i	Molzahl der i-ten Gas-Komponente	$[n_i] = \text{mol}$
n	Gesamt-Molzahl des Gemischs	[n] = mol
p_i	Partialdruck der i-ten Gaskomponente	$[p_i] = Pa$
p	Druck des Gemischs	[p] = Pa

5.11.2 Massen-Konzentration (Massen-Anteile)

$$\mu_i = \frac{m_i}{m} = \frac{M_i}{M} \cdot q_i$$

μ_i	Volumen-Konzentrationen	$[\mu_i] = 1$
m_i	Masse der i-ten Gas-Komponente	$[m_i] = kg$
m	Masse der Gemischs	[m] = kg
M_i	Mol-Masse der i-ten Gas-Komponete	$[M_i] = \frac{\text{kg}}{\text{mo}}$ $[M] = \frac{\text{kg}}{\text{mol}}$
M	Mol-Masse des Gemischs	$[M] = \frac{kg}{mod}$
q_i	Volumen-Konzentration	$[q_i] = 1$

5.12 Mol-Masse Gasgemisch

Die Mol-Masse des Gas-Gemischs kann als gewichteter Mittelwert berechnet werden, gewichtet mit den jeweiligen Volumen-Anteilen

$$M = \sum_{i=1}^{n} q_i \cdot M_i$$

Mol-Masse Gasgemisch MVolumen-Konzentration q_i

$$[q_i] = 1$$

$$[M_i] = \frac{\text{kg}}{\text{kg}}$$

Mol-Masse der i-ten Gas-Komponete M_i

6 Reales Gas

Im Vergleich zum idealen Gas müssen zwei Dinge berücksichtigt werden:

Eigen-Volumen:

Ideales Gas hat kleineres Volumen als gemessen (Ideal-Gas-Volumen um das Molekül-Eigenvolumen reduzieren)

Binnen-Druck:

Ideales Gas hat grösseren Druck als gemessen (Ideal-Gas-Druck um Binnendruck erhöhen)

6.1 Van der Waals-Gleichung (1 Mol)

⇒ Für nicht-ideale Gase!

$$p' \cdot V_m' = R \cdot T$$

$$p' = p + \frac{a}{V_m^2}$$

$$V_m' = V_m - b$$

p'	Korrigierter Druck	[p'] = Pa
V'_m	Korrigiertes Mol-Volumen	$[V_m] = \frac{\text{m}^3}{\text{mol}}$
R T	Universelle Gaskonstante: $R = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$ Absolut- Temperatur (in K) Druck des Gemischs	$[R] = \frac{J}{\text{mol·K}}$ $[T] = K$ $[p] = Pa$
$egin{array}{c} p \ a \end{array}$	Eigenvolumen	$[a] = \frac{J \cdot m^3}{\text{mol}^2}$
b	Binnendruck	$[b] = \frac{m^3}{\text{mol}}$
V_m	Mol-Volumen	$[V_m] = \frac{\mathrm{m}^3}{\mathrm{mol}}$

6.2 Van der Waals-Gleichung (n Mol)

Absolut-Temperatur (in K)

$$\left(p + \frac{n^2 \cdot a}{V^2}\right) \cdot (V - n \cdot b) = n \cdot R \cdot T$$

	· · · · · · · · · · · · · · · · · · ·	
p	Druck des Gemischs	[p] = Pa
n	Mol-Zahl	[n] = mol
a	Eigenvolumen	$[a] = \frac{J \cdot m^3}{\text{mol}^2}$ $[V] = m^3$
V	Volumen	$[V] = m^3$
b	Binnendruck	$[b] = \frac{m^3}{\text{mol}}$
R	Universelle Gaskonstante: $R = 8.314 \frac{J}{\text{mol.K}}$	$[R] = \frac{\text{mod.} K}{\text{mod.} K}$

6.2.1 Van der Waals-Parameter

$$a = \frac{9}{8} \cdot R \cdot T_k \cdot V_{mk} = \frac{27R^2T_k^2}{64 \cdot p_k}$$

$$b = \frac{V_{mk}}{3} = \frac{RT_k}{8 \cdot p_k}$$

$$V_{mk} = 3 \cdot b$$

$$T_k = \frac{8 \cdot a}{27 \cdot R \cdot b}$$

$$p_k = \frac{a}{27 \cdot b^2}$$

Eigenvolumen a

 Universelle Gaskonstante: $R=8.314\frac{\text{J}}{\text{mol}\cdot\text{K}}$ Kritische **Absolut-** Temperatur R T_k

Kritisches Mol-Volumen V_{mk}

 $[V_{mk}] = \frac{\text{m}^3}{\text{mol}}$ $[b] = \frac{\text{m}^3}{\text{mol}}$ $[p_k] = \text{Pa}$

Binnendruck Kritischer Druck p_k

7 Wärmelehre

b

7.1 Wärme Q

Wärme ist Energie, welche stets (von allein) von höherer zu niederigerer Temperatur fliesst

$$\Delta U \stackrel{\underbrace{1.HS\ 100\%}}{=} \Delta W + \Delta G$$

7.2 Erster Hauptsatz der Wärmelehre

Nicht nur durch Wärmezufuhr, sondern auch durch mechanische Arbeit lässt sich die Temperatur und damit die innere Energie Uerhöhen

$$\Delta U = \Delta W + \Delta Q$$

Zu-/Abgeführte Innere Energie $[\Delta U] = J$ Zu-/Abgeführte Arbeit $[\Delta W] = J$ z.B. E_{kin} , E_{pot} , W_{Gas} , W_{reib} Zu-/Abgeführte Wärme $[\Delta Q] = J$

7.2.1 Ansätze für 1. HS

$$\Delta Q = E_{kin} = \frac{1}{2} \, m \cdot v^2$$

$$\Delta Q = E_{pot} = m \cdot g \cdot h$$

$$\Delta \dot{Q} = \Delta P$$

7.2.2 Mechanische Arbeit eines Gases

Für mehr Details, siehe Abschnitt 5.4

$$\Delta W = p \cdot \Delta V$$

7.3 Mechanische Wärmeäguivalente

1 Kalorie = 4,1868 J (cal)

⇒ Energie, um 1 Gramm Wasser um 1 Grad zu erwärmen

1 kcal = 4186, 8 J

⇒ Energie, um 1 Kilogramm Wasser um 1 Grad zu erwärmen

7.3.1 Elektrisches Wärmeäguivalent c

Elektrische Energie = Wärme

$$U \cdot I \cdot t = c \cdot m \cdot \Delta T \quad \Leftrightarrow \quad c = \frac{U \cdot I \cdot t}{m \cdot \Delta T}$$

Elektrisches Wärmeäquivalent $[c] = \frac{J}{\text{kg·K}}$ Spannung [U] = VU[I] = AIStrom Zeit t. [m] = kgMasse Temperaturänderung $[\Delta T] = K$

7.4 Wärmekapazität

Die Wärmekapazität drückt das Energiespeicher-Vermögen aus.

$$Q = c \cdot m \cdot \Delta T = n \cdot c_M \cdot \Delta T = C \cdot \Delta T$$

7.4.1 Absolute Wärmekapazität C

Energiespeicher-Vermögen eines Gegenstands

$$\Delta Q = C \cdot \Delta T$$

7.4.2 Spezifische Wärmekapazität c

Energiespeicher-Vermögen einer Substanz

	Substanz	c bei 20° C
	Wasser	4182
	Ethanol	2430
$\boxed{\Delta Q = c \cdot m \cdot \Delta T}$	Glyzerin	2390
	Quecksilber	139
	Gold	129
	Stahl	480

7.4.3 Molare Wärmekapazität c_M

Energiespeicher-Vermögen einer Anzahl Moleküle

$$c_M = \frac{c}{n} = M \cdot c$$

ΔQ	Zu-/Abgeführte Wärme	$[\Delta Q] = J$
c	spezifische Wärmekapazität	$[c] = \frac{J}{\text{kg} \cdot \text{K}}$
c_M	molare Wärmekapazität	$[c_M] = \frac{J}{\text{mol} \cdot K}$
C	absolute Wärmekapazität	$[C] = \frac{J}{K}$
m	Masse	[m] = kg
ΔT	Temperaturänderung	$[\Delta T] = K$
n	Mol-Zahl	[n] = mol
M	Mol-Masse	$[M] = \frac{\text{kg}}{\text{mol}}$

7.4.4 Molare Wärmekapazität von Gasen

$$C_{mp} - C_{mV} = R$$

C_{mp}	isobare Wärme-Kapazität ($p = \text{const}$)	$[C_{mp}] = \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$
C_{mV}	isochore Wärme-Kapazität ($V = \text{const}$)	$[C_{mV}] = \frac{J}{\text{mol} \cdot K}$
R	Universelle Gaskonstante $R = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$	$[R] = \frac{J}{\text{mol} \cdot K}$

7.4.5 Molare Wärmekapazität von Festkörpern

$$T > \Theta_D: \quad C_m \approx 3 R \approx 25 \frac{J}{mol \cdot K}$$
 (Dulong – Petit)

$$T \ll \Theta_D: \quad C_m = \frac{12 \cdot \pi^4}{5} \cdot R \cdot \left(\frac{T}{\Theta_D}\right)^3$$
 (Debye)

T	Absolut-Temperatur (in K)	[T] = K
Θ_D	Debye-Temperatur $\Theta_D \approx 200 \mathrm{K}$	$[\Theta_D] = K$
C_m	molare Wärmekapazität	$[C_m] = \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$
R	Universelle Gaskonstante: $R = 8.314 \frac{J}{\text{mol.K}}$	$[R] = \frac{J}{\text{mol.}K}$

7.5 Latente Wärme, Enthalpie (Schmelz-/ Verdampfungswärme)

Beim Schmelzen und Verdampfen findet **keine** Temperaturerhöhung statt

Beim Gefrieren und oder Kondensieren wird diese versteckte Wärme wieder frei, ohne Abnahme der Temperatur

Die Schmelz-/ Verdampfungswärme ist stark druckabhängig

$$\boxed{Q_f = q_f \cdot m} \qquad \qquad q_{f_{Wasser}} := 334 \frac{\text{kJ}}{\text{kg}}$$

$$\boxed{Q_s = q_s \cdot m} \qquad \qquad q_{s_{Wasser}} := 2256 \frac{\text{kJ}}{\text{kg}}$$

$$\begin{array}{lll} Q_f & \text{Schmelz-/Erstarrungs-W\"{a}rme} & [Q_f] = \mathbf{J} \\ q_f & \text{Spezifische Schmelzw\"{a}rme} & [q_f] = \frac{\mathbf{J}}{\mathrm{kg}} \\ Q_S & \text{Verdampfungs-/Kondensations-W\"{a}rme} & [Q_S] = \mathbf{J} \\ q_s & \text{Spezifische Verdampfungs-W\"{a}rme} & [q_s] = \frac{\mathbf{J}}{\mathrm{kg}} \\ m & \text{Masse} & [m] = \mathrm{kg} \end{array}$$

7.6 Wärmebilanz

Wärmeaustausch zwischen verschiedenen Materialien

In einem abgeschlossenen System (nach aussen isoliert) muss gelten: Zugeführte Wärme = Abgeführte Wärme

$$\sum_{i=1}^{n} (\Delta Q_i + \Delta Q_{f_i} + \Delta Q_{s_i}) = 0$$

 $\begin{array}{lll} \Delta Q_i & \text{i-te W\"{a}rme-Menge aus} & [\Delta Q_i] = \mathbf{J} \\ & \text{Temperatur-Zu-/Abnahme} \\ \Delta Q_{f_i} & \text{i-te W\"{a}rme-Menge aus} & [\Delta Q_{f_i}] = \mathbf{J} \\ & \text{Schmelz-/Erstarrungs-Vorgang} \\ \Delta Q_{s_i} & \text{i-te W\"{a}rme-Menge aus} & [\Delta Q_{s_i}] = \mathbf{J} \\ & \text{Verdampfungs-/Kondensations-Vorgang} \\ & + \text{zugef\"{u}hrte W\"{a}rme-Menge} \end{array}$

8 Phasen und Phasenübergänge

- abgeführter Wärme-Menge

8.1 Phasen

• Fest

feste Gestalt; festes Volumen

Flüssig
 keine feste

keine feste Gestalt; festes Volumen

 \bullet Gasförmig

keine feste Gesalt; kein festes Volumen

Plasma

Bei sehr hoher Temperatur ist Materie ionisiert (Elektronengas)

• Mischung / Dispersion:

	flüssig	gasförmig
fest	Suspension (Sol)	Aerosol (Rauch)
flüssig	Emulsion	Aerosol (Nebel)
gasförmig	Schaum	-

8.2 Dampfdruck $p_s(T)$

Der Dampfdruck bedeutet das Gleichgewicht der Flüssigkeit mit ihrer Dampfphase

Der Dampfdruck ist das Niveau des kontanten Drucks im 2-Phasengebiet eines realen Gases nach van der Waals.

Der Dampfdruck ist nur temperaturabhängig

Bei Kompression oder Expansion ändert sich der Dampfdruck nicht,

sondern der Anteil Flüssigkeit zu Gas muss ändern

Verdunsten ⇒ Schnellste Teilchen treten aus Flüssigkeit aus

Sieden/Verdampfen Dampfdruck = Umgebungsdruck

8.3 Dampfdruck-Kurve (Clausius-Clapeyron)

Kondensieren ⇔ Verdampfen flüssig ⇔ gasförmig

$$\frac{d p_s}{d T} = \frac{q_s}{T \cdot \left(\frac{1}{\rho_g} - \frac{1}{\rho_f}\right)}$$

8.3.1 Dampfdruck $p_s(T)$ von Wasser (Clausius-Clapeyron)

$$p_s(T) = p_{s0} \cdot e^{\frac{q_s \cdot M_W}{R} \cdot (\frac{1}{T_0} - \frac{1}{T})}$$

$$p_{s0} = 610.7 \,\mathrm{Pa}$$
 $T_0 = 273 \,\mathrm{K}$ $q_s = 2420 \,\mathrm{\frac{kJ}{kg}}$ $M_W = 18.02 \,\mathrm{\frac{g}{mol}}$

8.4 Schmelzdruck-Kurve (Clausius-Clapeyron)

Erstarren ⇔ Schmelzen fest ⇔ flüssig

$$\frac{d p_f}{d T} = \frac{q_f}{T \cdot \left(\frac{1}{p_f} - \frac{1}{p_s}\right)}$$

8.5 Gasdruck-Kurve (Clausius-Clapeyron)

 $Desublimieren \Leftrightarrow Sublimieren$ fest \Leftrightarrow gasförmig

$$\frac{d p_{sub}}{d T} = \frac{q_s + q_f}{T \cdot \left(\frac{1}{\rho_g} - \frac{1}{\rho_s}\right)}$$

q_s	spezifische Verdampfungs-Wärme	$[q_s] = rac{\mathrm{J}}{\mathrm{kg}}$
q_f	spezifische Schmelz-Wärme	$[q_f] = rac{\mathrm{J}}{\mathrm{kg}}$
$q_s + q_f$	spezifische Sublimations-Wärme	
p_s	Dampfdruck	$[p_s] = Pa$
p_f	Schmelzdruck	$[p_f] = Pa$
p_g	Schmelzdruck	$[p_g] = Pa$
$ ho_g$	Dichte Gas	$[\rho_g] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
$ ho_f$	Dichte Flüssgkeit	$[\rho_f] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
$ ho_s$	Dichte Festkörper	$[\rho_s] = \frac{\text{kg}}{\text{m}^3}$
T	Temperatur	$[T] = \ddot{K}$
M	Molare Masse	$[M] = \frac{kg}{mol}$
R	Universelle Gaskonstante: $R = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$	$[M] = \frac{kg}{mol}$ $[R] = \frac{J}{\text{mol} \cdot K}$

8.6 Formeln von Magnus

Die Formeln von Magnus dienen der vereinfachten Berechnung des Dampfdrucks von Wasser = Sättigungsdruck

8.6.1 Dampfdruck von Wasser $p_s(\theta)$ $(\theta \ge 0^{\circ}C)$

$$p_s(\theta) = p_{s0} \cdot 10^{\frac{7.5 \cdot \theta}{\theta + 237}}$$

8.6.2 Schmelzdruck von Wasser $p_s(\theta)$ $(\theta \le 0^{\circ}C)$

$$p_s(\theta) = p_{s0} \cdot 10^{\frac{9.5 \cdot \theta}{\theta + 265.5}}$$

8.6.3 WMO erweiterte Lösung $p_s(\theta)~(-40^{\circ}C < \theta < 50^{\circ}C)$

$$p_s(\theta) = p_{s0} \cdot e^{\left(\frac{17.62 \cdot \theta}{243.04 + \theta}\right)}$$

 $\begin{array}{ll} p_s & \operatorname{Dampfdruck} \ / \ \operatorname{Schmelzdruck} & [p_s] = \operatorname{Pa} \\ p_{s0} & \operatorname{Dampfdruck} \ \operatorname{bei} \ 0^{\circ}C \quad p_{s0} = 610.7 \operatorname{Pa} & [p_{s0}] = \operatorname{Pa} \\ \theta & \operatorname{Temperatur} & [\theta] = {}^{\circ}\mathrm{C} \end{array}$

8.7 Umkehrformeln von Magnus

8.7.1 $\theta(p_s)$ für $p_s \geq p_{s0}$

$$\theta(p_s) = \frac{237 \cdot log(\frac{p_s}{6.107})}{7.5 - log(\frac{p_s}{6.107})}$$

8.7.2 $\theta(p_s)$ für $p_s \leq p_{s0}$

$$\theta(p_s) = \frac{265.5 \cdot log(\frac{p_s}{p_{s0}})}{9.5 - log(\frac{p_s}{p_{s0}})}$$

8.8 Luftfeuchtigkeit

8.8.1 Absolute Luftfeuchtigkeit f

$$f = \frac{m_W}{V}$$

8.8.2 Relative Luftfeuchtigkeit f_r

$$f_r = \frac{m_W}{m_S} = \frac{p_D}{p_S} = \frac{p_D}{p_S(\theta)}$$

 $[f] = \frac{kg}{m^3}$ $[f_r] = 1$ Absolute Luftfeuchtigkeit Relative Luftfeuchtigkeit f_r $[m_W] = \text{kg}$ $[m_S] = \text{kg}$ $[V] = \text{m}^3$ Masse Wasserdampf m_W m_S Masse Wasserdampf bei Sättigung VVolumen $[p_D]=\mathrm{Pa}$ Partialdruck Wasserdampf p_D Dampfdruck = Sättigungsdruck Wasserdampf p_S θ Temperatur

8.8.3 Feuchte vs. trockene Luft

Feuchte Luft ist leichter als trockene Luft!

$$\rho_f = \rho_t + \frac{p_D}{RT}(M_W - M_L)$$

 $[\rho_f] = \frac{\text{kg}}{\text{m}^3}$ Dichte feuchte Luft $[\rho_t] = \frac{\text{kg}}{-3}$ Dichte trockene Luft Partialdruck Wasserdampf $[p_D] = Pa$ p_D T[T] = KTemperatur $[M_W] = \frac{\text{kg}}{\text{mol}}$ M_W Molmasse H_2O Molmasse Luft g Universelle Gaskonstante: $R = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$ R

8.9 Taupunkts-Temperatur θ_d

Temperatur, bei welcher 100% Luftfeuchtigkeit herrscht.

Wenn die Taupunkt-Temperatur **unterschritten** wird, dann kondensiert Wasser.

$$\theta_d(\theta, f_r) = \frac{237 \cdot \left(\log(f_r) + \frac{7.5 \cdot \theta}{\theta + 237}\right)}{7.5 - \left(\log(f_r) + \frac{7.5 \cdot \theta}{\theta + 237}\right)}$$

$$\theta_d(x) = \frac{237 \cdot x}{7.5 - x} \quad \text{mit} \quad x(\theta, f_r) = \log(f_r) + \frac{7.5 \cdot \theta}{\theta + 237}$$

 θ_d Taupunkts-Temperatur $[\theta_d] = {}^{\circ}C$

 f_r relative Luftfeuchtigkeit $[f_r] = 1$ θ Temperatur $[\theta] = {}^{\circ}$ C

8.10 Relative Innen-Feuchte f_{ri}

$$f_{ri} = \frac{p_s(\theta_a)}{p_s(\theta_i)} \cdot f_{ra}$$

 f_{ri} relative Feuchte im Inneren $[f_{ri}] = 1$ f_{ra} relative Feuchte der Aussenluft $[f_{ra}] = 1$ $p_s(\theta_i)$ Dampfdruck bei Innentemperatur $[p_s(\theta_i)] = \text{Pa}$ $p_s(\theta_a)$ Dampfdruck bei Aussentemperatur $[p_s(\theta_a)] = \text{Pa}$

9 Kinetische Gas-Theorie

9.1 Aequipartitionsgesetz

Mittlere kinetische Energie

Idealisierte Annahmen:

1. Moleküle = Massenpunkte

2. Keine (bzw.) elastische Zusammenstösse

3. Keine Kräfte zwischen den Molekülen

4. Elastischer Stoss gegen Wand

5. Alle Moleküle haben gleiche Geschwindigkeit

6. 1/6 aller Moleküle fliegen gegen eine einzelne Wand

 \overline{E} Mittlere kinetische Energie

f Freiheitsgrade [f] =

k Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \frac{J}{K}$ $[k] = \frac{J}{K}$

T Absolute Temperatur

[T] = K

9.2 Geschwindigkeiten

9.2.1 Mittlere quadratische Geschwindigkeit u

$$u = \sqrt{\frac{3 \cdot k \cdot T}{m}} = \sqrt{\frac{3 \cdot R \cdot T}{M}}$$

9.2.2 Mittlere Geschwindigkeit $\overline{\boldsymbol{v}}$

$$\overline{\overline{v}} = \sqrt{\frac{8 \cdot k \cdot T}{\pi m}} = \sqrt{\frac{8 \cdot R \cdot T}{\pi M}}$$

9.2.3 Wahrscheinlichste Geschwindigkeit v_0

$$v_0 = \sqrt{\frac{2 \cdot k \cdot T}{m}} = \sqrt{\frac{2 \cdot R \cdot T}{M}}$$

- Boltzmann-Konstante $k=1.381\cdot 10^{-23}\frac{\mathrm{J}}{\mathrm{K}}$
- Tabsolute Temperatur

Masse des Teilchens mMolmasse

M

- Universelle Gaskonstante: $R=8.314\frac{\rm J}{\rm mol\cdot K}$ R

9.3 Maxwell-Boltzmann-Verteilung

$$f(m, T, v) = \sqrt{\frac{2 \cdot m^3}{\pi \cdot k^3 \cdot T^3} \cdot v^2 \cdot e^{-\frac{m \cdot v^2}{2 \cdot k \cdot T}}}$$

Masse des Teilchens

k

- Masse des Teilchens Boltzmann-Konstante $k=1.381\cdot 10^{-23} \frac{\text{J}}{\text{K}}$ $[k]=\frac{\text{J}}{\text{K}}$ [T]=KTGeschwindigkeit

9.4 Mittlere freie Weglänge $\overline{\lambda}$

Gibt an, um welche Strecke sich ein Molekül im Mittel bis zum nächsten Zusammenstoss fortbewegen kann.

$$\boxed{\overline{\lambda} = \frac{1}{\sqrt{2}} \cdot \frac{1}{n \cdot (\pi \cdot d^2)}} \qquad \text{mit Wirkungsquerschnitt } \sigma = \pi \cdot d^2$$

- Molekül-Dichte
- Molekül-Durchmesser

9.5 Dichtefunktion

Verteilungsfunktion der mittleren, freien Weglänge

$$f(x) = \frac{1}{\overline{\lambda}} \cdot e^{-\frac{x}{\overline{\lambda}}}$$

9.6 Transportvorgänge

9.6.1 Wärmeleitung

Transport von kinetischer Energie (als Wärme wahrgenommen)

$$j_Q = -\lambda_Q \cdot \frac{\mathrm{dT}}{\mathrm{dx}} \qquad \lambda_Q = \frac{1}{6} \cdot n \cdot \overline{v} \cdot \overline{\lambda} \cdot f \cdot k$$

9.6.2 Diffusion

Transport von Masse

$$j_D = -D \cdot \frac{\mathrm{dn}}{\mathrm{dx}}$$
 $D = \frac{1}{3} \cdot \overline{v} \cdot \overline{\lambda}$

9.6.3 Viskosität ($v \ll v_{therm}$)

Transport von **Impuls**

$$\tau = -\eta \cdot \frac{\mathrm{dv}}{\mathrm{dx}} \qquad \quad \eta = \frac{1}{3} \cdot \overline{v} \cdot \overline{\lambda} \cdot \rho$$

 $[j_Q] = \frac{W}{m^2}$

 $[\lambda_Q] = \frac{\mathbf{W}}{\mathbf{m} \cdot \mathbf{K}}$ $[j_D] = ?$

 $[D] = \frac{m^2}{s}$ $[\tau] = N$ $[\eta] = Pa \cdot s$

 $[n] = \frac{1}{m^3}$

 $[\overline{v}] = \frac{\mathrm{m}}{\mathrm{r}}$

 $[\overline{\lambda}] = \mathbf{m}$

[f] = 1

 $[k] = \frac{J}{K}$ [T] = K

 $[\rho] = \frac{\mathrm{kg}}{-3}$

- Wärmestrom jo
- Wärmeleitfähigkeit $\lambda_{\mathcal{O}}$
- j_D Diffusionsstrom
- DDiffusionskonstante
- Schubspannung Viskosität
- Molekül-Dichte
- Mittlere Geschwindigkeit
- Mittlere freie Weglänge
- Anzahl Freiheitsgrade
- Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$ k
- Tabsolute Temperatur

10 Temperaturstrahlung

Dichte

10.1.2 Wien'sches Verschiebungsgesetz

Verschiebung der maximalen Wellenlänge:

$$\lambda_{max} \cdot T = \text{const} = b$$

- Wellenlängen-Maximum (Planck) $[\lambda_{max}] = m$ Temperatur [T] = K
- Konstante: $b = 2.898 \cdot 10^{-3} \text{m} \cdot \text{K}$ $[b] = \mathbf{m} \cdot \mathbf{K}$

10.1.3 Planck'sches Gesetz der Quantenmechanik

Ein Oszillator, welcher auf ein anderes Energieniveau (=Elektronen-Kreisbahnen nach Bohr) wechselt, setzt die Energie
differenz ΔE in ein Lichtquant (Photon) mit entsprechender Frequenz f um.

Je nach Vorzeichen von ΔE wird das Photon emmitiert oder absorbiert.

$\Delta E = h \cdot f$

- spektrale Abstrahlung (Energie) $[\Delta E] = J$ $[h] = J \cdot s$ Planck'sches Wirkungsquantum $h = 6.628 \cdot 10^{-34} \,\mathrm{J \cdot s}$
- Frequenz des Photons
- $[f] = \frac{1}{2} = Hz$

10.2 Wärmetransport (an Beispiel Hauswand)

Beispiel: Hauswand (Temperatur verteilung)

(1) Warmeleitung (2) Warmenbergang innen - Konveltion (3) Warmenbergang anssen - Strahlung

10.2.1 Wärmeleitung

$$j = -\lambda \cdot \frac{\mathrm{d}T}{\mathrm{d}x}$$

- Wärmestromdiche
- λ Wärmeleitfähigkeit
 - Wärmeabnahme / Gradient $\left[\frac{dT}{dx}\right] = \frac{T}{m}$

10.2.2 Wärmeübergang

innen:
$$j = \alpha_i \cdot (T_i - T_{wi})$$
 mit $\alpha_i = 8 \frac{W}{m^2 \cdot F}$

aussen:
$$j = \alpha_a \cdot (T_{wa} - T_a)$$
 mit $\alpha_a = 20 \frac{W}{m^2 \cdot F}$

10.1 Strahlungs-Gesetze

seine Temperatur

10.1.1 Stefan-Boltzmann-Gesetz

- Ideal schwarzer Körper (Hohlraum) absoliert alle Wellenlängen zu 100 %
- Je mehr ein Körper absorbiert, desto mehr muss er emmitieren (Energie-Gleichgewicht)

Ein schwarzer Körper (=Hohlraumstrahler) der Temperatur T hat eine totale Abstrahlungs-Leistung pro Oberfläche K_S von:

Wärmestahlung = Berührungslose Übertragung von Wärme

Jeder Körper mit T > 0 K straht Wärme ab (Temp-strahlung)

In Form von elektromagnetischen Wellen (λ @ IR)

Für jede Wellenlänge muss ein Körper gleich viel

Energie abstahlen, wie er zuvor aufgenommen hat!

Körper absorbiert elektromagn. Strahlung und erhöht

$$K_S = \sigma \cdot T^4$$

- Schwarzkörper-Emission
- Stefan-Boltzmann-Konstante $[\sigma] = \frac{W}{W^2 K^4}$ $\sigma = 5.671 \cdot 10^{-8} \frac{W}{m^2 K^4}$
- Temperatur

[T] = K

10.2.3 Wärmedurchgang

Material + Dicke zusammengefasst

$$j = k \cdot (T_i - T_a) = k \cdot \Delta T$$
 mit $k = \frac{\lambda}{d}$

j	Wärmestromdiche	$[j] = \frac{W}{m^2}$
λ	Wärmeleitfähigkeit	$[\lambda] = \frac{W}{m \cdot K}$
$\frac{\mathrm{d}T}{\mathrm{d}x}$	Wärmeabnahme / Gradient	$\left[\frac{\mathrm{d}T}{\mathrm{d}x}\right] = \frac{\mathrm{T}}{\mathrm{m}}$
$lpha_i$	Wärmeübergangszahl innen	$[\alpha_i] = \frac{W}{m^2 \cdot K}$
α_a	Wärmeübergangszahl aussen	$[\alpha_a] = \frac{W}{m^2 \cdot K}$
T_{wa}	Temperatur Wand aussen	$[T_{wa}] \stackrel{\dots}{=} \stackrel{\dots}{\mathrm{K}}$
T_a	Aussentemperatur	$[T_a] = K$
T_{wi}	Temperatur Wand innen	$[T_{wi}] = K$
T_i	Innentemperatur	$[T_i] = K$
d	Wärmedurchgangszahl Dicke der Wand	$[k] = \frac{\mathbf{W}}{\mathbf{m}^2 \cdot \mathbf{K}}$ $[d] = \mathbf{m}$

$$P = \dot{Q} = j \cdot A$$

10.2.4 Wärmedurchgang komplett

Der komplette Wärmedurchgang leitet sich her durch die **Erhaltung** der Wärmestrondichte j und errechnet sich mit:

n Schichten:
$$\frac{1}{k_{tot}} = \frac{1}{\alpha_i} + \sum_{x} \frac{1}{k_x} + \frac{1}{\alpha_a}$$

zylindrisch:
$$\frac{1}{k_{tot}} = r_a \left(\frac{1}{\alpha_i \cdot r_i} + \sum_x \frac{1}{\lambda_x} \cdot \ln \left(\frac{r_{xa}}{r_{xi}} \right) + \frac{1}{\alpha_a \cdot r_a} \right)$$

k_x	Wärmedurchgangszahl x-te Schicht	$[k_x] = \frac{W}{m^2 \cdot K}$
$lpha_i$	Wärmeübergangszahl innen	$[\alpha_i] = \frac{W}{m^2 \cdot K}$
α_a	Wärmeübergangszahl aussen	$[\alpha_a] = \frac{W}{m^2 \cdot k}$
r_i	Innenradius Rohr	$[r_i] = \mathbf{m}$
r_a	Aussenradius Rohr	$[r_a] = \mathbf{m}$
λ_x	Wärmeleitfähigkeit	$[\lambda] = \frac{W}{m \cdot K}$

10.3 Wärme-Bedarf (Heizleistung)

Der Wärme-Bedarf (=Heizleistung) setzt sich zusammen aus Wärmeverlust durch Wärmeleitung und durch Wärmeverlust durch Luftaustausch:

$$\underbrace{W\ddot{a}rmeverlust}_{\dot{\dot{Q}}} = \underbrace{Heizleistung}_{\dot{P}}$$

$$P = \dot{Q}_{tot} = \dot{Q}_W + \dot{Q}_L$$

$$\dot{Q}_W = A \cdot j = A \cdot k \cdot \Delta T$$

$$\dot{Q}_L = c_L \cdot \rho_L \cdot \dot{V} \cdot \Delta T$$

allgemein:
$$\dot{Q}_{tot} = \sum_{i=1}^{n} \left[(A_i \cdot k_i + c_L \cdot \rho_L \cdot \dot{V}) \cdot \Delta T \right]$$

Ċ	Totaler Wärmeverlust	[O 1 – J – W
Q_{tot}	Totaler warmeverlust	$[\dot{Q}_{tot}] = \frac{\mathrm{J}}{\mathrm{s}} = \mathrm{W}$
\dot{Q}_W	Wärmeleitung	$[\dot{Q}_W] = \frac{\mathrm{J}}{\mathrm{s}} = \mathrm{W}$
\dot{Q}_L	Luftaustausch	$[\dot{Q}_L] = \frac{\mathrm{J}}{\mathrm{s}} = \mathrm{W}$
k_i	Wärmedurchgangszahl i-te Schicht	$[k_i] = \frac{W}{m^2 \cdot K}$
\dot{V}	Volumenstrom	$[\dot{V}] = \frac{\mathrm{m}^3}{\mathrm{s}}$
$ ho_L$	Dichte der Luft: $\rho_L = 1.2 \frac{\text{kg}}{\text{m}^3}$	$[ho_L] = rac{ m kg}{ m m^3}$
c_L	Wärmekapazität Luft: $c_L = 1000 \frac{\text{J}}{\text{kg} \cdot \text{K}}$	$[c_L] = \frac{J}{\text{kg·K}}$ $[A] = \text{m}^2$
A	Fläche der Wärmeleitung	$[A] = m^2$
ΔT	Temperaturdifferenz	$[\Lambda T] = K$

10.4 Wärmeverlust durch Abstrahlung

Durch Strahlung kann auch Wärme übertragen werden.

$$j_{12} = c_{12} \cdot (T_1^4 - T_2^4) = \sigma \cdot \varepsilon \cdot (T_1^4 - T_2^4)$$

j_{12}	W-Transport durch Strahlungsaustausch	$[j_{12}] = \frac{W}{m^2}$
c_{12}	Strahlungsaustauschzahl	$[c_{12}] = \frac{W}{m^2 \cdot K^4}$
σ	Stefan-Boltzmann-Konstante	$[\sigma] = \frac{W}{m^2 \cdot K^4}$
	$\sigma = 5.671 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \cdot \text{K}^4}$	
ε	Emissionsverhältnis	$[\varepsilon] = 1$

10.5 Zustandsänderungen

Erinnerung 1. Hauptsatz : $\Delta U = \Delta W + \Delta Q$

10.5.1 Isotherm

bei konstanter Temperatur

$$W_{ab} = n \cdot R \cdot T \cdot \ln\left(\frac{V_1}{V_2}\right)$$

 $\boxed{\Delta Q_{zu} = W} \quad (\Delta U = 0)$

10.5.2 Isobar

bei konstantem Druck

$$W_{ab} = p \cdot (V_2 - V_1)$$

$$\Delta Q_{zu} = n \cdot C_{mp} \cdot \Delta T$$

10.5.3 Isochor

bei konstantem Volumen

$$W = 0$$

$$\Delta Q_{zu} = n \cdot C_{mV} \cdot \Delta T \quad (\Delta U = \Delta Q)$$

10.5.4 Adiabatisch

ohne Wärme-Austausch

$$W_{ab} = n \cdot C_{mV} \cdot \Delta T$$

11 Rückwandlung innerer Energie

11.1 Zweiter Hauptsatz der Wärmelehre

Innere Energie kann **nicht zu 100** % in Arbeit umgesetzt werden ⇒ Carnot-Wirkungsgrad ist der theoretisch höchstmögliche.

Wärme kann niemals <u>von selbst</u> von einem kälteren Ort zu einem wärmeren Ort fliessen (Clausius)

Es gibt keine periodisch wirkende Maschine, die nichts anderes bewirkt als Erzeugung mechanischer Arbeit und Abkühlung eines Wärme-Reservoirs (Kelvin)

 \Rightarrow Es gibt kein Perpetuum mobile 2. Art

11.2 Kreisprozess (reversibler Prozess)

Anfangszustand = Endzustand

Rechtslaufender Kreisprozess Linkslaufender Kreisprozess

- Gibt Arbeit ab
- Wärmekraftmaschine
- Bei hoher T wird Wärme aus Prozess **zu**geführt
- Nur Bruchteil der Wärme in Arbeit verwandelbar
- Obergrenze: Carnot-Wirkungsgrad
- Verbraucht Arbeit
- Wärmepumpe
- Bei hoher T wird dem Prozess Wärmeabgeführt

 $\Delta Q = 0$

- Erzeugt mehrfaches an Wärme
- Obergrenze: Inv. Carnot-Wirkungsgrad

11.3 Carnot-Wirkungsgrad

$$\mbox{W"armekraftmaschine:} \qquad n_C = \frac{W_{ab}}{Q_{zu}} = \frac{T_{hoch} - T_{tief}}{T_{hoch}} \label{eq:nc}$$

Wärmepumpe:
$$n_{iC} = \frac{Q_{zu}}{W_{ab}} = \frac{T_{hoch}}{T_{hoch} - T_{tief}}$$

n_C	Carnot-Wirkungsgrad	$[n_C] = 1$
n_{iC}	Inverset Carnot-Wirkungsgrad	$[n_{iC}] = 1$
T_{tief}	Temperatur des Warm-Reservoirs	$[T_{tief}] = 1$
T_{hoch}	Temperatur des Kalt-Reservoirs	$[T_{hoch}] = 1$
Q_{zu}	zugeführte Wärme	$[Q_{zu}] = J$
W_{ab}	abgeführte Energie	$[W_{ab}] = J$

11.4 Adiabaten-Gleichung (Kreisprozess)

Adiabate wird beschrieben im pV- / TV- / Tp-Diagramm

$$p \cdot V^{\kappa} = \text{const}$$

$$T \cdot V^{\kappa - 1} = \text{const}$$

$$T^{\kappa} \cdot p^{1-\kappa} = \text{const}$$

$$\kappa = \frac{C_{mp}}{C_{mV}}$$

$$C_{mp} - C_{mV} = R$$

C_{mp}	Molare Wärmekapazität @ $p = \text{const}$	$[C_{mp}] = \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$
C_{mV}	Molare Wärmekapazität @ $V={\rm const}$	$[C_{mV}] = \frac{J}{\text{mol} \cdot K}$
κ	Adiabaten-Exponent	$[\kappa] = 1$
R	Universelle Caskonstante R = 8 314 J	[R] — J

11.5 Kreisprozesse (Vorgänge)

isotherme Expansion isotherme Kompression	liefert Wärme benötigt Wärme	benötigt Energie liefert Energie
adiabatische Expansion adiabatische Kompression	liefert Arbeit benötigt Arbeit	ohne Wärme ohne Wärme
isochore Erwärmung	ohne Arbeit	benötigt Wärme

11.6 Beispiel Kreisprozess

11.7 Entropie-Zunahme

11.7.1 Definition der Entropie-Zunahme

$$\Delta S = S_1 + S_2 = \int \frac{1}{T} \, \mathrm{d}Q$$

11.7.2 Boltzmann-Gleichung für Entropie-Zunahme

$$\Delta S = k \cdot \ln(W)$$

 ΔS Entropie $[\Delta S] =$

 $\begin{array}{ll} k & \text{Boltzmann-Konstante} \ k = 1.381 \cdot 10^{-23} \frac{\text{J}}{\text{K}} & [k] = \frac{\text{J}}{\text{K}} \\ W & \text{Wahrscheinlichkeit eines Zustands} & [W] = 1 \end{array}$

11.7.3 Abgeschlossenes System

 $\Delta S \geq 0$ Entropie kann nur zunehmen in abgeschl. System

 $\Delta S > 0$ Irreversibler Prozess

 $\Delta S = 0$ Reversibler Prozess

12 Molmassen wichtiger Atome

Symbol	Molekül	Molmasse
Н	Wasserstoff	$1.008 \frac{g}{mol}$
$^{\mathrm{C}}$	Kohlenstoff	$12.011 \frac{g}{mol}$
N	Stickstoff	$14.007 \frac{g}{mol}$
O	Sauerstoff	$15.999 \frac{g}{mol}$
Al	Aluminium	$26.982 \frac{g}{mol}$
Si	Silicium	$28.982 \frac{g}{mol}$

13 Ansätze zu Aufgaben

13.1 Saugheber

13.2 Barometer

$$p_1 = p_0 + \underbrace{\rho_{Fl} \cdot g \cdot h}_{p_s}$$

 p_1 gemessener Druck

p₀ Luftdruck

p_s Schweredruck

 \Rightarrow Bernoulli

⇒ Kontinuität

13.3 Pitotrohr

Prandtl'sches Staurohr; Staudruckmesser Zur Messung von Strümungsgeschwindigkeiten

 $\text{Bernoulli horizontal}: \boxed{\underbrace{p_1}_{p_L} + \frac{1}{2}\,\rho_1 \cdot \underbrace{v_1^2}_{0} = \underbrace{p_2}_{p_L - \Delta p} + \frac{1}{2}\,\underbrace{\rho_2}_{\rho_L} \cdot v_2^2}_{1}$

$$0 = -\Delta p + \frac{1}{2} \rho_L \cdot v_2^2 \qquad \Rightarrow \Delta p = \frac{1}{2} \rho_L \cdot v_2^2$$

Gleichsetzen: $\Delta p = \rho_{Fl} \cdot g \cdot h \quad \Rightarrow \quad v_2 = \sqrt{\frac{2 \cdot \rho_{Fl} \cdot g \cdot \Delta h}{\rho_L}}$

13.4 Venturirohr

$$Q = A_1 \sqrt{\frac{2\Delta p}{\rho\left(\frac{A_1^2}{A_2^2} - 1\right)}} \qquad [Q] = \frac{kg}{m^3}$$

13.5 Pumpe

$$W = P \cdot t = F \cdot \Delta s = p \cdot A \cdot \Delta s = p \cdot \Delta V$$

$$\boxed{P = \frac{W}{t} = \frac{p \cdot V}{t} = p \cdot \dot{V}} \quad \boxed{F = p \cdot A}$$

13.6 Bewegungen

$$P = F \cdot v$$

$$E_{kin} = \frac{1}{2} m \cdot v^2$$

13.7 U-Rohr

Ansatz: Druckgleichgewicht

$$p_1 = p_2$$

$$\rho_1 \cdot g \cdot h_1 = \rho_2 \cdot g \cdot h_2$$

13.8 Wasser mit Dampf erhitzen

Ein Tasse mit einer Masse m_W Wasser und einer Temperatur von T_K wird an der Wasserdampfdüse einer Kaffeemaschine mittels Wasserdampf erhitzt. Der aus der Kaffeemaschine ausströmende Wasserdampf ist T_H heiss. Am Schluss haben sie 10 % mehr Wasser in der Tasse. (entspricht m_D)

Ansatz: 1. Hauptsatz $Q_{zu} = Q_{ab}$

Wie warm ist das Wasser nun?

$$m_W \cdot c_W \left(T_M - T_K \right) = q_s \cdot m_D + m_D \cdot c_W \left(T_H - T_M \right)$$

13.9 Eis in Wasser schmelzen

In einem Gefäss beifinden sich eine Masse m_W Wasser. Dazu wird ein Eiswürfel mit Masse m_E gegeben. Das Eis hat eine Temperatur T_E und das Wasser hat eine Temperatur T_W . Die Temperatur T_0 steht für 0 °C bzw. 275.15 K

Gesucht ist die Mischtemperatur T_M

$$\Delta Q_{ab} = \Delta Q_{zu}$$

$$m_W \cdot c_W \cdot (T_W - T_M) = m_E \cdot c_E \cdot (T_E - T_0) + q_f \cdot m_E + c_W \cdot (T_M - T_0)$$

13.10 Beschlagenes Fenster

Gesucht: Aussentemperatur T_a

Gegeben: Innentemperatur T_i , Luftfeuchtigkeit f_i in %, Wärmedurchgangszahl des Fensters k und Wärmeübergangszahl α_i

Beschlag bei $p_s(T_{fi}) = f \cdot p_s(T_i) \Rightarrow T_{fi}$ mittels Magnusformel bestimmen

Wärmestromdichte in allen Schichten gleich: $k(T_a - T_i) = \alpha_i(T_{fi} - T_i)$

13.11 Luftbefeuchter

Gesucht: rel. Luftfeuchtigkeit f_{ri}

Gegeben: Volumen des Zimmers V, Menge verdampftes Wasser m, Zeit für kompletten Austausch t, Innentemperatur T_i , Aussentemperatur T_a , Luftfeuchtigkeit f_{ra}

 $\dot{m}=$ Massenfluss (ai=nach innen, b=Befeuchter, ia=nach draussen)

$$\dot{V} = \frac{V}{t} \quad \left[\frac{m^3}{s}\right], \qquad \dot{m}_b = \frac{m}{t_0} \quad \left[\frac{kg}{s}\right], \qquad M = 0.018 \frac{kg}{mol}$$

$$\rho_s = \left[\frac{kg}{m^3}\right] \text{ (S\"{attigungsdichte})}$$

$$\dot{m}_{ai} + \dot{m}_b = \dot{m}_{ia}$$

$$\dot{m} = f_r \cdot \rho_s \cdot \dot{V}$$

$$f_{ra} \cdot \rho_{sa} \cdot \dot{V} + \dot{m}_b = f_{ri} \cdot \rho_{si} \cdot \dot{V}$$

 $\rho_s = p_s(\theta) \cdot \frac{M}{R \cdot T_i}$ (Magnusformel für $p_s(T_a \text{resp.} T_i)$)