GAZETA MATEMATICĂ SERIA A

ANUL XXVII(CVI)

Nr. 4 / 2009

ARTICOLE ŞTIINŢIFICE ŞI DE INFORMARE ŞTIINŢIFICĂ

What can Sine Function do for us?

CONSTANTIN CORDUNEANU¹⁾

Abstract. This article contains, in a concise form, an introduction in the Theory of Almost Periodic Functions, as well as some illustrative examples. This class of functions appears in the applications (describing oscillatory systems) much more frequently than the class of periodic functions. The author is convinced that the class of Almost Periodic Functions, even though more complex than the class of periodic ones, must get itsplace in the Mathematical and the Science-Engineering Literature. The authors' books under nos. 4 and 5 in the references, constitute a contribution in this direction.

Keywords: Almost periodic functions

MSC: 42A75

1. Introduction

The trigonometric Sine function, denoted by $\sin x$, x being an arbitrary angle measured usually in radians, has penetrated in the common everyday language by the word sinuous. According to the Reader's Digest Great Encyclopedic Dictionary (ed. 1977), sinuous stands for some path or object which has "bends, curves or folds; something winding or ondulating". In Mathematics we call sinusoid the graph of the function $y = \sin x$, in the xOy plane.

By means of the Sine function we can express many relationships encountered in everyday life, and in the elementary branches of Mathematics (Trigonometry, first of all).

In Physics, in the Classical Mechanics as well as in Quantum Mechanics, a very useful model is the so-called *harmonic oscillator*. This system consists of a material point moving on a straight line, the unique acting force being the attraction exerted on it by a fixed point of the line with a force propositional

¹⁾Department of Mathematics, University of Texas, Arlington, U. S. A., membru corespondent al Academiei Române.

to the distance (to the fixed point). Taking the fixed point as origin on the line, and denoting by x(t) the coordinate of the moving point at the moment t, the Newton's law of dynamics leads to the equation of motion $m\ddot{x} = -kx(t)$, with k > 0, $\ddot{x}(t) = \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\right)x(t)$, m = 1 the mass of the moving point.

If we denote $\omega^2 = \frac{k}{m}$, then the equation of the harmonic oscillator is

$$\ddot{x}(t) + \omega^2 x(t) = 0, \ t > 0. \tag{1}$$

Equation (1) is a second order linear differential equation, while $\omega^2 > 0$ is a constant. Since $\sin \omega t$ and $\cos \omega t$ are linearly independent solutions of (1), there results that any solution of (1) is given by the formula

$$x(t) = A\sin\omega t + B\cos\omega t,\tag{2}$$

where A and B are arbitrary constants. An equivalent form to (2) is

$$x(t) = C\sin(\omega t + \delta),\tag{3}$$

with
$$C = (A^2 + B^2)^{1/2}$$
, $\delta = \arctan\left(\frac{A}{B}\right)$ for $B \neq 0$ and $\delta = \frac{\pi}{2}$, when $B = 0$, $A > 0$, or $\delta = -\frac{\pi}{2}$, when $B = 0$, $A < 0$. The case $A = B = 0$ leads to the zero solution $x(t) \equiv 0$, which also means $C = 0$ in (3).

As we can read from (3), by means of the sine function we can describe any motion of the harmonic oscillator. In this scheme we encounter the motion of the simple (mathematical) pendulum, the oscillations of a suspended spring to which a weight is attached at the free end, the acting force being the gravitation. For details and other physical realizations of the harmonic oscillator, including Quantum Mechanics and connection with *Schroedinger* equation, see the book [9] by P.M. Fishbone et al.

If we consider the *resistance* force, which often appears during the motion of a material point, and assume it is proportional to the velocity of motion, then *Newton*'s law is conducing to an equation a bit more complex than the one of the harmonic oscillator. Namely, we obtain $m\ddot{x}(t) = -kx(t) - R\dot{x}(t)$, with R > 0, the resistance being opposed to the velocity. If we admit one external force, say f(t), then the second order linear equation

$$m\ddot{x}(t) + R\dot{x}(t) + kx(t) = f(t), \quad t > 0,$$
 (4)

which is describing the damped harmonic motion when $f(t) \equiv 0$, and the forced motion of the oscillator when $f(t) \not\equiv 0$.

It is interesting to point out that equation (4) appears also in the theory of *electrical circuits* in the equivalent form

$$L\ddot{q}(t) + R\dot{q}(t) + C^{-1}q(t) = V(t),$$
 (5)

where q(t) represents the *charge* at the moment t, L is the *self-inductance*, R is the resistance of the circuit, opposed to the flow of current $i(t) = \dot{q}(t)$, C is the *capacitance* and V(t) is the applied *voltage*.

The analogy of these two models, one mechanical and another electrical, is known as the *electrical-mechanical* analogy. This analogy plays an important role in the applications (acoustics, mechanical vibrations).

For more details related to the concept of analogy of models, see the book [6] by C. L. Dym and E. S. Ivey.

Let us conclude this introduction by pointing out that the oscillatory motion of a harmonic oscillator, under the influence of a forcing term of sinusoidal type, can be also described by means of the Sine function.

Indeed, the equation

$$\ddot{x}(t) + \omega^2 x(t) = C \cos \omega_0 t, \tag{6}$$

with $\omega \neq \omega_0$, which is of the above mentioned type because $\cos \alpha = -\sin \left(\alpha - \frac{\pi}{2}\right)$, has as solutions the functions of the form:

$$x(t) = C_1 \sin(\omega t + \delta) + C_2 \cos \omega_0 t, \tag{7}$$

with:

$$C_2 = \frac{C}{m(\omega^2 - \omega_0^2)} \,. \tag{8}$$

In other words, the general solution of (6) is representable as a sum of two Sine functions. In (7), C_1 and δ are arbitrary constants. The same thing can be said about C_2 , because C is arbitrary.

For a more detailed discussion of the harmonic oscillator and its motions, see the Introduction to our book [5], where more general cases are discussed.

2. Trigonometric polynomials

A $trigonometric\ polynomial$ is a function which can be represented in the form

$$T(t) = a_0 + \sum_{k=1}^{n} (a_k \cos \lambda_k t + b_k \sin \lambda_k t), \tag{9}$$

for $t \in \mathbb{R}$, with $a_k \in \mathbb{R}$, for $k \geq 0$, and $b_k \in \mathbb{R}$ for $k \geq 1$, both a_k and b_k being arbitrary real or complex numbers. Also, $\lambda_k \in \mathbb{R}$, for $k \geq 1$, arbitrarily chosen.

Formula (5) represents a partial sum of the trigonometric series

$$a_0 + \sum_{k=1}^{\infty} (a_k \cos \lambda_k t + b_k \sin \lambda_k t), \tag{10}$$

with the same assumptions as above for a_k , b_k and λ_k .

The classical case corresponds to the particular choice $\lambda_k = k$, $k \in \mathcal{L}_+$, and leads to classical trigonometric and *Fourier* series.

In the complex field \mathbb{C} , we call a *trigonometric polynomial* a function of the form

$$T_1(t) = \sum_{k=0}^n A_k \exp(i\lambda_k t), \ t \in \mathbb{R},$$
(11)

with $A_k = a_k + \mathrm{i} b_k \in \mathbb{C}$, and $\lambda_k \in \mathbb{R}$, $k \geq 0$. If we take into account the well known formula

$$\exp(i\lambda_k t) = \cos \lambda_k t + i \sin \lambda_k t, \tag{12}$$

one obtains easily that $ReT_1(t)$ and $ImT_1(t)$ are real trigonometric polynomials of the form (9). This fact may explain why the terminology has been extended from the real field, to the complex one.

It is also a simple matter the fact that any real trigonometric polynomial (9) can be written in the form

$$T(t) = \sum_{k=0}^{n} c_k \sin(\lambda_k t + \delta_k), \tag{13}$$

where $c_0 = 0 = \lambda_0$, $c_k = (a_k^2 + b_k^2)^{1/2}$, $\delta_k = \arctan\left(\frac{a_k}{b_k}\right)$, $b_k \neq 0$. $\delta_k = \frac{\pi}{2}$, when $b_k = 0$ and $a_k > 0$, or $\delta_k = -\frac{\pi}{2}$ for $b_k = 0$, $a_k < 0$.

The equivalence of (9) and $(\bar{13})$ is a consequence of formulas (2) and (3).

The set of Trigonometric polynomials is denoted by \mathcal{T} , and we agree to specify each time whether we deal with the real ones, like (9) or (13), or with the complex ones like (11). We shall prefer the complex form, due to the convenience resulting from simpler formulas.

Let us make precise the fact that, when using the complex form (11), we assume all λ_k 's to be distinct $\lambda_k \neq \lambda_j$, $k \neq j$.

It is a very useful feature the property of the set \mathcal{T} , of complex trigonometric polynomials of the form (11), to form a linear or vector space over the complex field \mathbb{C} . The two basic operations, addition and scalar multiplication are defined in the usual manner: for $T_1, T_2 \in \mathcal{T}$, we let $(T_1 + T_2)(t) = T_1(t) + T_2(t)$, and it is obvious that the sum of two trigonometric polynomials of the form (11) is also in \mathcal{T} ; moreover, if $\lambda \in \mathbb{C}$ and $T_1(t)$ has the form (11), then $(\lambda T_1)(t) = \lambda T_1(t)$ is of the same form.

It is useful to notice the fact that \mathcal{T} has infinite algebraic dimension. For instance, in the classical theory of *Fourier* series, the infinite system $\{1, \sin mt, \cos mt; m \geq 1\}$ consists of linearly independent functions. This property is the same as saying that the complex system $\{e^{imt}; m \in \mathbb{Z}\}$ consists of linearly independent functions. The problem of linear independence is related to the uniqueness of *Fourier* series, and a short proof of this fact is given in the Introduction to our book [4].

It is also possible to define on \mathcal{T} several *norms*, to transform it into a linear normed space. Examples of norms on \mathcal{T} are the following:

If $T \in \mathcal{T}$ has the form (11), then we can define for each $p \in [1, 2]$

$$||T||_p = \left(\sum_{k=1}^n |A_k|^p\right)^{1,p},\tag{14}$$

or

$$||T|| = \sup\{|T(t)|; \ t \in \mathbb{R}\}.$$
 (15)

For the map $\|\cdot\|$ defined by (15) it is a very simple exercise to check the validity of the conditions:

- (a) $||T|| \geq 0$ for each $T \in \mathcal{T}$, with the equal sign valid only for T = 0(i.e., all $A_k = 0$);
- (b) $||T_1 + T_2|| \le ||T_1|| + ||T_2||$, for any $T_1, T_2 \in \mathcal{T}$; (c) $||\lambda T|| = |\lambda| ||T||$, for each $\lambda \in \mathbb{C}$ and $T \in \mathcal{T}$.

In case of the norms defined by (14), we notice that the usual conditions are obvious for p = 1 and p = 2; for p = 2 obtaining the usual Euclidean norm, while for $p \in (1,2)$ the validity of the triangle inequality is a classical inequality which appears in many sources.

Besides the norms (14) and (15), we can also introduce integral norms. As a first example, we can consider

$$|T|_{M} = \sup \left\{ \int_{t}^{t+1} |T(s)| \, \mathrm{d}s; \ t \in \mathbb{R} \right\}. \tag{16}$$

The supremum in (16) is finite for each trigonometric polynomial of the form (11), namely

$$|T|_M \le \sum_{k=1}^n |A_k|.$$

We mention another integral norm on \mathcal{T} , which is defined by the formula

$$|T|_{\mathcal{M}} = \left[\limsup_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} |T(t)|^2 dt \right]^{1/2}.$$
 (17)

The limsup in the right hand side is finite because $[T(t)]^2$ is also a trigonometric polynomial, while for real λ

$$\lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} \exp(i\lambda t) dt = \begin{cases} 1, & \lambda = 0, \\ 0, & \lambda \neq 0. \end{cases}$$

If one takes into account this relationship and the fact that $|T(t)|^2 = T(t)\overline{T}(t)$, then we easily obtain

$$|T|_{\mathcal{M}}^2 = |T|_2^2 = \sum_{k=1}^n |A_k|^2.$$
 (18)

In other words, the \mathcal{M} -norm on the set \mathcal{T} is the same as the Euclidean norm. This remark will play a role in better understanding the construction of larger classes of oscillatory motions.

In regard to the notations (16) and (17) for the integral norms on \mathcal{T} , we mention the fact that $|\cdot|_M$ is defined and used systematically in the book by J. L. Massera and J. J. $Sch\"{a}fer$ [15]. It will help us to introduce the class of almost periodic functions known under Stepanov's name (see our book [5]). The norm denoted by $|\cdot|_M$, with \mathcal{M} coming from the name of the Polish mathematician J. Marcinkiewicz and the function space containing the almost periodic functions of Besicovitch [2] is based on this norm. The definition of this space can be found in our book [5].

To summarize, we defined on \mathcal{T} four types of norms, (14)-(17), each one leading to a specific kind of convergence on \mathcal{T} . By adding new functions to \mathcal{T} , as limits of sequences from \mathcal{T} , using various kinds of convergence, we shall obtain spaces of almost periodic functions. These functions describe oscillatory motions.

3. Almost periodic functions

The method of introducing and investigating various classes of almost periodic functions is based on the procedure of *completing* metric spaces. We shall start from the set \mathcal{T} of trigonometric polynomials, and attach a metric structure (besides the algebraic one, of a vector space), given by one of the norms (14)–(17). The metric is defined by the formula d(x,y) = |x - y|, where $|\cdot|$ denotes any of the norms (14)–(17).

For the details concerning metric spaces, convergence and completion see our book [5] for a concise presentation or any other book dealing with the concept of metric space.

Historically, the concept of almost periodicity we shall introduce, as well as related terminology, appeared with $Harald\ Bohr$ in the early 1920's. But special classes of almost periodic functions made the object of investigation, with conspicuous results, by $P.\ Bohl$ and $E.\ Esclangon$. They studied a class of almost periodic functions known as quasiperiodic functions. Also, $H.\ Poincar\'e$ [16] has dealt with the functions that can be represented in the form

$$f(t) = \sum_{k=1}^{\infty} A_k \exp\{i\lambda_k t\}, \ t \in \mathbb{R},$$
(19)

with the coefficients A_k such that $\sum_{k=1}^{\infty} |A_k| < \infty$. He has indicated the formula

$$A_k = \lim_{\ell \to \infty} \left[(2\ell)^{-1} \int_{-\ell}^{\ell} f(t) \exp\{-i\lambda_k t\} dt \right]$$
 (20)

for calculating the coefficients, which means that the basic concept of *mean* value for almost periodic functions has been used.

Remark. Actually, *Poincaré* dealt with the sine series similar to (19), namely $\sum_{k=1}^{\infty} A_k \sin \lambda_k t$.

For detailed references concerning the evolution of the concept of almost periodicity, regarded always as a generalization of the periodicity (insufficient for describing the most oscillatory motions encountered in applied fields), we send the reader to the book of *Harald Bohr* [3], our books [4], [5], and the book [2] of *A.S. Besicovitch*.

We shall start with the almost periodic functions as defined by H. Bohr. This type of almost periodicity is easily defined by an approximation property. Namely, we shall call a map $t \to f(t)$, from \mathbb{R} into \mathbb{C} , almost periodic (Bohr), if for every $\varepsilon > 0$, there exists a complex trigonometric polynomial of the form (11), say $T_{\varepsilon}(t)$, such that

$$|f(t) - T_{\varepsilon}(t)| < \varepsilon, \quad t \in \mathbb{R}.$$
 (21)

It is obvious that the definition above can be reformulated as follows:

The map $f: \mathbb{R} \to \mathbb{C}$ is called *almost periodic* in the sense of *Bohr*, if for each $\varepsilon > 0$ one can find a trigonometric polynomial of the form (11), say $T_{\varepsilon}(t) \in \mathcal{T}$, such that

$$f(t) = T_{\varepsilon}(t) + r_{\varepsilon}(t), \quad t \in \mathbb{R},$$
 (22)

with the remainder $r_{\varepsilon}(t)$ satisfying:

$$|r_{\varepsilon}(t)| < \varepsilon, \quad t \in \mathbb{R}.$$
 (23)

 $H.\ Bohr\ [3]$ has constructed his theory of almost periodicity, restricting the considerations to the case of continuous functions. We shall discuss below two generalizations, for functions within the class of locally integrable functions on \mathbb{R} .

From the representation (22), taking into account the boundedness and uniform continuity of $T_{\varepsilon}(t)$ on \mathbb{R} , one obtains the fact that any almost periodic function (Bohr) is also bounded and uniformly continuous on \mathbb{R} .

Hence, the space of almost periodic functions (Bohr) is a subspace of the space $BC(\mathbb{R},\mathbb{C})$, consisting from all maps $f:\mathbb{R}\to\mathbb{C}$, such that f is

bounded and continuous on \mathbb{R} . It is well known (and easy to check!) that $BC(\mathbb{R}, \mathbb{C})$ is a Banach space on \mathbb{C} , with the norm

$$|f|_{BC} = \sup\{|f(t)|; \ t \in \mathbb{R}\}. \tag{24}$$

The set of almost periodic functions (Bohr) is itself a Banach space with the supremum norm given by (24), and it is denoted by $AP(\mathbb{R},\mathbb{C})$. Actually, taking into account the uniform continuity of functions from $AP(\mathbb{R},\mathbb{C})$, we can infer that $AP(\mathbb{R},\mathbb{C}) \subset BUC(\mathbb{R},\mathbb{C})$, where $BUC(\mathbb{R},\mathbb{C})$ denotes the Banach space of bounded and uniformly continuous functions, which is a closed subspace of $BC(\mathbb{R},\mathbb{C})$.

From the definition of almost periodic functions, there results immediately that $AP(\mathbb{R},\mathbb{C})$ is a closed subspace of $BUC(\mathbb{R},\mathbb{C})$, as well as of $BC(\mathbb{R},\mathbb{C})$.

For more properties of functions in $AP(\mathbb{R}, \mathbb{C})$, we send the reader to the references [1], [2], [3], [4], [5], [8], [13], each containing the basic properties of almost periodic functions (Bohr).

The discussions carried above about the space $AP(\mathbb{R}, \mathbb{C})$, including the definition of almost periodicity, leads to the following new definition of the space $AP(\mathbb{R}, \mathbb{C})$. Namely, $AP(\mathbb{R}, \mathbb{C})$ is the *closure* in $BC(\mathbb{R}, \mathbb{C})$ of the linear manifold \mathcal{T} -complex, with respect to the norm (24).

This last definition (or characteristic property) of almost periodicity (Bohr), is conducing us to various generalizations of the space $AP(\mathbb{R}, \mathbb{C})$.

The space of almost periodic functions in the sense of *Stepanov* is the closure in the space $M(\mathbb{R}, \mathbb{C})$ of locally integrable functions from \mathbb{R} into \mathbb{C} , such that

$$\sup \left\{ \int_{t}^{t+1} |f(s)| \, \mathrm{d}s; \ t \in \mathbb{R} \right\} \le M_f < \infty, \tag{25}$$

with respect to the norm (16) that, so far, has been used only on \mathcal{T} .

The properties of the norm (16) are easily established on $M(\mathbb{R}, \mathbb{C})$. It turns out that this closure is identical to the *complete* metric space obtained by completing the normed space \mathcal{T} -complex, with respect to the norm (16).

The space of *Stepanov* almost periodic functions, as defined above, is denoted by $S(\mathbb{R}, \mathbb{C})$, and its norm by $|\cdot|_S$. It is understood that $|f|_S = |f|_M$, for each $f \in S(\mathbb{R}, \mathbb{C})$.

Another space of almost periodic functions, known as *Besicovitch'* space, can be obtained by taking the closure in $\mathcal{M}(\mathbb{R},\mathbb{C})$ of the linear manifold \mathcal{T} -complex. Equivalently, we can say that we take the completion of the normed space \mathcal{T} -complex, with respect to the Euclidean norm $\|\cdot\|_2$, given by (14). But our \mathcal{T} -complex $\|\cdot\|_2$ is the same as $\|\cdot\|_{\mathcal{M}}$, and $\|\cdot\|_{\mathcal{M}}$ makes sense on the whole Marcinkiewicz space, which consists of classes of equivalent locally integrable functions, such that $f \cong g$ iff $\|f - g\|_{\mathcal{M}} = 0$.

The details in regard to the Marcinkiewicz space can be found in our book [5]. The elements of the space $\mathcal{M}_2(\mathbb{R}, \mathbb{C})$, obtained from $\mathcal{M}(\mathbb{R}, \mathbb{C})$ as the factor space with respect to the manifold \mathcal{L} given by $|x|_{\mathcal{M}} = 0$ are actually the elements of the the Besicovitch space, also denoted by $AP_2(\mathbb{R}, \mathbb{C})$ or $B^2(\mathbb{R}, \mathbb{C})$.

The norm on $B^2(\mathbb{R},\mathbb{C})$ is given by extending (17), i.e.:

$$|f|_{\mathcal{M}} = \left\{ \lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} |f(t)|^2 dt \right\}^{\frac{1}{2}}.$$
 (26)

There are other generalizations of almost periodicity. For instance, one can use instead of the number 2 in (26), any number p, $1 \le p$, obtaining the spaces $B^p(\mathbb{R}, \mathbb{C})$.

Also, in case of Stepanov almost periodicity, as defined above, one can use the norm:

$$|f|_{S^p} = \sup \left\{ \int\limits_t^{t+1} |f(s)|^p \mathrm{d}s; \ t \in \mathbb{R} \right\}^{1/p},$$

obtaining the Stepanov space $S^p(\mathbb{R},\mathbb{C})$. It is easily checked that $S^p \subset S$, p > 1, which allows us to concentrate the investigation on the space S, the richest among the Stepanov's spaces of almost periodic functions.

We will return now to the norms defined by formula (14). We have examined above the case p=2, which leads to the *Besicovitch* type of almost periodicity, i.e., the space $B^2(\mathbb{R},\mathbb{C})=AP_2(\mathbb{R},\mathbb{C})$, corresponding to p=2.

The case p=1, leads to the space $AP_1(\mathbb{R},\mathbb{C})$ which, I think, it should bear the name of *Henri Poincaré*, due to the fact that in his treatise [16] one finds the series

$$f(t) = \sum_{k=1}^{\infty} A_k \sin \lambda_k t, \quad t \in \mathbb{R},$$
 (27)

similar to the complex one (19), for which the coefficients f_k , $h \geq 1$, one determined by (see (20)) the formula

$$f_k = \lim_{\ell \to \infty} \left[\ell^{-1} \int_0^\ell f(t) \sin \lambda_k t \, \mathrm{d}t \right]. \tag{28}$$

Of course, a convergence requirement must be made for the series in (27), and the most common case encountered in applications is

$$\sum_{k=1}^{\infty} |f_k| < \infty, \tag{29}$$

similar to (20), assuring the uniform convergence for (27) on the whole \mathbb{R} .

The space $AP_1(\mathbb{R}, \mathbb{C})$ of almost periodic functions, corresponding to p=1 in the norms (14), being representable by the series (19), with absolute convergence and $\{A_k; k \geq 1\} \subset \ell^1(\mathbb{C})$, is endowed with the norm

$$|f(t)|_1 = \sum_{k=1}^{\infty} |A_k| < \infty.$$
 (30)

What about the spaces obtained by choosing $p \in (1,2)$ in formula (14)? The space $AP_r(\mathbb{R},\mathbb{C})$, 0 < r < 1, will be the closure of \mathcal{T} -complex, with respect to the norm (14), for p = r.

These spaces are contained in $AP_2(\mathbb{R}, \mathbb{C})$, and everything true for AP_2 will be also true for AP_r , $1 \leq r < 2$. But such spaces have not been investigated so far, and their investigation is an open field. For instance, by the completion of \mathcal{T} -complex with respect to the norm $|f|_r$, do we obtain functions (which is obviously true for r = 1), or classes of functions like in the case r = 2 (the Besicovitch space $B^2(\mathbb{R}, \mathbb{C})$). Further considerations will be subsequently made when sketching the Fourier Analysis of the almost periodic functions.

4. Fourier series of an almost periodic function

An important aspect of the theory of almost periodic functions is the fact that to each almost periodic function, belonging to the classes/spaces we have defined, one can associate a *Fourier* series which allows the construction of the generating function.

The key ingredient in defining the *Fourier* series corresponding to an almost periodic function is the existence of the *mean value* attached to such functions. The mean value is introduced by means of the formula

$$M\{f\} = \lim_{\ell \to \infty} \left[(2\ell)^{-1} \int_{-\ell}^{\ell} f(t) dt \right], \tag{31}$$

and the proof of the existence of the limit relies on the representation formula (repetition)

$$f(t) = T_{\varepsilon}(t) + r_{\varepsilon}(t), \quad t \in \mathbb{R}, \tag{32}$$

in which $T_{\varepsilon}(t)$ is a trigonometric polynomial of the form (11) – in complex notation. When we deal with real valued almost periodic functions, $T_{\varepsilon}(t)$ will be of the form (13), involving only the sine function.

As seen in Section 3 above, we obtain various classes of almost periodic functions, depending on the manner we request the property $r_{\varepsilon} \to 0$ (i.e., what norm/seminorm we are using to "measure" r_{ε}). In formula (23) we assumed $\sup\{|r_{\varepsilon}(t)|; r \in \mathbb{R}\} \to 0$ as $\varepsilon \to 0+$, obtaining the *Bohr* almost periodic functions. In case of *Stepanov* almost periodic functions the required

condition for $r_{\varepsilon}(t)$ is written in the form (25)

$$|r_{\varepsilon}|_{M} = \sup \left\{ \int_{t}^{t+1} |r_{\varepsilon}(s)| ds; \ t \in \mathbb{R} \right\} \to 0 \text{ as } \varepsilon \to 0+.$$

For Besicovitch almost periodic functions the condition will look

$$|r_{\varepsilon}|_{\mathcal{M}} \to 0 \text{ as } \varepsilon \to 0+,$$

which means that we are using the norm in *Marcinkiewicz* space (see (26)).

Actually, the discussion can be simplified if we consider the *Besicovitch* space B corresponding to p = 1, in which

$$|f|_B = \limsup_{\ell \to \infty} \left\{ (2\ell)^{-1} \int_{-\ell}^{\ell} |f(t)| dt \right\}.$$
 (33)

This space is richer than B^2 , and contains the Stepanov space S.

Therefore, if one proofs that the existence of the limit in (31) follows from (33), one obtains the existence of the *mean value* for all classes of almost periodic functions introduced in this paper. The proof is rather elementary and can be found in the references [2] and [5].

Remark. The inclusion $B^2 \subset B$ follows from the integral inequality

$$(2\ell)^{-1} \int_{-\ell}^{\ell} |f(s)| ds \leq (2\ell)^{-1} \left[(2\ell) \int_{-\ell}^{\ell} |f(s)|^2 ds \right]^{\frac{1}{2}} =$$

$$= \left[(2\ell)^{-1} \int_{\ell}^{\ell} |f(s)|^2 ds \right]^{\frac{1}{2}}.$$

The inclusion $S \subset B$ can be easily established and we invite the reader to prove its validity.

Hence, for each $f \in B$, there exists the *mean value* $M\{f\}$, defined by (31). $M\{f\}$ is a linear function defined on B, and a basic property is the following:

For each $f \in B$, $M\{f(t)\exp(-i\lambda t)\} \neq 0$ only for a set of values of $\lambda \in \mathbb{R}$ which is at most countable.

The real numbers λ_k , $k \geq 1$, such that

$$a_k = M\{f(t)\exp(-i\lambda_k t)\} \neq 0, \tag{34}$$

are called Fourier exponents of the function f, and a_k , $k \geq 1$, are called Fourier coefficients of the function f.

One writes

$$f(t) \simeq \sum_{k=1}^{\infty} a_k \exp\{i\lambda_k t\},$$
 (35)

with $\lambda_k, a_k, k \geq 1$, as defined above, the series in the right hand side of (35) being called the *Fourier series* associated to f(t).

When the series in (35) is uniformly convergent on \mathbb{R} , then the sign \simeq can be replaced by the = sign. This situation occurs for sure when $f \in AP_1(\mathbb{R}, \mathbb{C})$.

The *Fourier* series of an almost periodic function has numerous properties, among them being the following ones:

- 1. The Fourier series is uniquely determined by the generating function.
- 2. The Fourier series of an almost periodic function f(t) allows to "construct" the function (or the class of equivalent functions in case like B or B^2).

Actually, one proves the existence of a sequence of trigonometric polynomials, formed by using the *Fourier* coefficients and exponents of the series in (35), which converges (uniformly or in another norm) to the generating function f(t). See references [4], [5], [8], [13] for details.

As a historical note, we point out that the prototype of this kind of result is the well-known $Fej\acute{e}r$ theorem, stating that the sequence of arithmetic means $(Ces\grave{a}ro)$ of the Fourier series, attached to a continuous periodic function, converges uniformly to the generating function.

3. The *Fourier* series can be associated to many generalized types of almost periodic functions, being always sufficient to characterize the generating function.

We shall mention the functions with values in a Banach space, the generalized functions (distributions) and the functions defined on groups (other than \mathbb{R}). The references [1], [2], [4], [8], [13] contain a wealth of results on the Fourier series and their role in the theory of almost periodic functions (in various senses).

The centuries old problem of convergence of trigonometric series is certainly strongly related to the general theory of almost periodicity. Progress is still to be expected in this direction.

5. Almost periodic oscillations and waves

In this last section of the paper we want to answer the question formulated in the title of this paper: what can Sine function do for us?

Besides the elementary examples, presented in the Introduction, in which the motion of the harmonic oscillator has been shown to be fully described by means of Sine function, there are examples of more complex dynamical systems possessing almost periodic motions. We shall illustrate this feature by considering systems described by quasi-linear ordinary differential equations, of the form

$$\dot{x}(t) = Ax(t) + f(t, x(t)), \ t \in \mathbb{R}, \tag{36}$$

where $x : \mathbb{R} \to \mathbb{R}^n$, $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, the term f in (36) being "small" in a precise sense.

The following result can be found, with full proof, in many sources. See, for instance, [4], [5], [7], [10], [13], [14]. In [5], a more general case is considered, when $A = A(t) \in AP$ and f is an operator acting on $AP(\mathbb{R}, \mathbb{R}^n)$.

Consider the differential equation (36), under the following assumptions on A and f:

1) $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ satisfies the condition

$$\det(A - \lambda I) = 0 \Longrightarrow \lambda \neq i\omega, \ \omega \in \mathbb{R}; \tag{37}$$

2) f(t,x) is Lipschitz continuous in x,

$$|f(t,x) - f(t,y)| \le L|x-y|, \tag{38}$$

for any $x, y \in \mathbb{R}^n$, with L > 0 sufficiently small;

3) $f(t,x) \in AP(\mathbb{R},\mathbb{R}^n)$ for each $x \in \mathbb{R}^n$, the dependency on x being uniform in any bounded set of \mathbb{R}^n .

Then equation (36) has a unique solution $x \in AP(\mathbb{R}, \mathbb{R}^n)$.

Remark. The proof of the result above can be carried out by the classical method of iteration (successive approximations), the process being defined by the relation

$$\dot{x}_{k+1}(t) = Ax_{k+1}(t) + f(t, x_k(t)), \ k \ge 1.$$

Each approximant $x_k(t)$ satisfies a linear equation of the form

$$\dot{y}(t) = Ay(t) + f_k(t),$$

with $f_k \in AP(\mathbb{R}, \mathbb{R}^n)$ (one can start with $x_1(t) = \theta$).

Equation (36) describes a kind of motion in which we have n degrees of freedom in the system. The above result illustrates the fact that oscillations are present in the motions of such systems. Obviously, they can be represented by *Fourier* series of the form (see formula (13))

$$x(t) = \sum_{k=1}^{\infty} a_k \sin(\lambda_k t + \delta_k),$$

i.e., the Sine function helps us again to describe the oscillators motion.

A valuable reference in regard to the almost periodic oscillations is the book [12] by *C. Hayashi*, in which a whole chapter is dedicated to electrical circuits. Such a reference is seldom encountered in technical literature where almost periodic oscillations are avoided. Experimental data are dealt with.

We shall illustrate now the occurrence of almost periodic waves, considering the classical wave equation

$$u_{tt} = a^2 u_{xx}, \quad t, x \in \mathbb{R},\tag{39}$$

with a single spatial dimension $(x \in \mathbb{R})$.

In (39), u = u(t, x) can be interpreted in many ways. If we consider the transversal vibrations of an elastic string, which at rest occupies the segment $0 \le x \le \ell$ on the x-axis, then u(t, x) represents the elongation of the point with abscissa x, at the moment t. The domain in which we consider the equation (39) is then given by

$$D = \{(t, x); \ t \in \mathbb{R}, \ x \in [0, \ell]\}. \tag{40}$$

Physically, we should look only at $t \geq 0$, but it does not make any analytical difference if we let $t \in \mathbb{R}$.

It is generally known that a solution of (39) will be determined by the initial conditions

$$u(0,x) = f(x), \ u_t(0,x) = g(x), \ x \in [0,\ell],$$
 (41)

as well as by some boundary conditions at the end points x = 0 and $x = \ell$. We shall associate to (39) the boundary value conditions

$$u(t,0) = 0, \ u_x(t,\ell) + hu(t,\ell) = 0, \ t \in \mathbb{R},$$
 (42)

where h > 0 is a constant.

The usual method of separation of variables leads to the solution (formally)

$$u(t,x) = \sum_{k=1} \left(A_k \cos a \sqrt{\lambda_k} t + B_k \sin a \sqrt{\lambda_k} t \right) \sin \sqrt{\lambda_k} x, \tag{43}$$

where $\lambda_k, A_k, B_k, k \ge 1$, have the following meaning:

- $-\lambda_k$ are the eigenvalues of the *Sturm-Liouville* problem $y'' + \lambda y = 0$, y(0) = 0, y'(0) + hy(0) = 0;
- $-A_k$, B_k , $\sqrt{\lambda_k}$ are the coefficients of f and g, with respect to the (orthogonal) system of eigenfunctions of the *Sturm-Liouville* problem, i.e., $\{\sin\sqrt{\lambda_k} x; k \geq 1\}$.

Let us point out that the series (43) can be rewritten in the form

$$u(t,x) = \sum_{k=1}^{\infty} C_k \sin\left(a\sqrt{\lambda_k} t + \delta_k\right) \sin\sqrt{\lambda_k} x.$$

Under adequate conditions which we do not mention here, the series (43) has convergence properties that allow us to claim that u(t, x) from (43) is a solution (or a generalized solution!) of our problem. For details and validity of the above statement, see our book [5].

It remains to examine the almost periodicity of the function u(t,x), given by (43), regarded as a function of t. More precisely, we need to deal

with the map $t \to u(\cdot, x)$, from \mathbb{R} into the function space consisting (for instance) of all L^2 -functions on $[0, \ell]$, with real values. This is known as

Lebesgue's space
$$L^2([0,\ell],\mathbb{R})$$
, with the norm $x \to \left(\int\limits_0^\ell |x(s)|^2 ds\right)^{\frac{1}{2}}$.

Since any partial sum of the series (43) is a trigonometric polynomial with coefficients in $L^2([0,\ell],\mathbb{R})$, and

$$\int_{0}^{\ell} \left\{ \sum_{k=m}^{n} \left(A_k \cos \sqrt{\lambda_k} \, at + B_k \sin a \sqrt{\lambda_k} \, t \right) \sin \sqrt{\lambda_k} \, x \right\}^2 \mathrm{d}x \le \sum_{k=m}^{n} (A_k^2 + B_k^2),$$

there results, on behalf of the Bessel inequality for the coefficients A_k respectively B_k , that the series in (43) is convergent in the space $L^2([0,\ell],\mathbb{R})$. Therefore, the sum of the series is an almost periodic function (Bohr-Bochner) in t, with values in $L^2([0,\ell],\mathbb{R})$.

Remark. A somewhat stronger result is given in our books [4], [5], where equation (39) is substituted by a more general one, namely

$$u_{tt} = \frac{\partial}{\partial x} \left[p(x) \frac{\partial u}{\partial x} \right] - q(x)u.$$

The above considerations, on equation (39), can be summarized as follows:

Assume that equation (39), under initial conditions (41) and boundary conditions (42), is such that $f, g \in L^2([0, \ell], \mathbb{R})$.

Then the solution u(t,x), given by the series (43), is an almost periodic map from \mathbb{R} into $L^2([0,\ell],\mathbb{R})$.

Finally, in concluding this paper, we can infer the fact that the Sine functions is the primary ingredient in describing mathematically almost periodic oscillations and waves.

This last sentence is the answer to the question we formulated in the title of this paper.

REFERENCES

- [1] L. Amerio and G. Prouie, Almost Periodic Functions and Functional Equations, Van Nostrand Reinhold, New York, 1970.
- [2] A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.
- [3] H. Bohr: Almost Periodic Functions, Chelsea, N.Y., 1947.
- [4] C. Corduneanu, Almost Periodic Functions (2nd English ed.), Chelsea Publ. Co., 1989 (currently distributed by AMS and Oxford Univ. Press).
- [5] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer Verlag, 2009.
- [6] C. L. Dym and E. S. Ivey, Principles of Mathematical Modelling, Academic Press, 1980.
- [7] J. Favard, Leçons sur les Fonctions Presque Périodiques, Paris, Gauthier-Villars, 1935.

- [8] A. M. Fink: Almost Periodic Differential Equations, Springer Verlag, New York, 1974.
- [9] P. M. Fishbone, S. G. Gasiorowicz and S. T. Thornton, *Physics for Scientists and Engineers*, Pearson/Prentice Hall, 2005.
- [10] A. Halanay, Differential Equations: Stability, Oscillations, Time-Lags, Academic Press, New York, 1966.
- [11] J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Co., New York, 1963.
- [12] C. Hayashi, Nonlinear Oscillations in Physical Systems, Princeton University Press, 1985.
- [13] B. M. Levitan, Almost Periodic Functions (Russian), Moscow, 1953.
- [14] I. G. Malkin, Problems in the Theory of Nonlinear Oscillations (Russian), Tekhno-Theoretical Literature Press, Moscow, 1956.
- [15] J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, Boston, 1966.
- [16] H. Poincaré, Les Nouvelles Méthodes de la Mécanique Céleste, Paris, 1893.

Proprietăți ale punctului intermediar din teorema de medie a lui Lagrange

Dorel I. Duca¹⁾

Abstract. If the function $f: I \to \mathbb{R}$ is differentiable on the interval $I \subseteq \mathbb{R}$, and $a \in I$, then for each $x \in I \setminus \{a\}$, according to the mean value theorem, there exists a point c(x) belonging to the open interval determined by x and a, and there exists a real number $\theta(x) \in (0,1)$ such that

$$f(x) - f(a) = (x - a) f^{(1)}(c(x))$$

and

$$f(x) - f(a) = (x - a) f^{(1)} (a + (x - a)\theta(x)).$$

In this paper we shall study the behaviour of the numbers c and θ , when x approaches a.

Keywords: intermediate point, mean-value theorem.

MSC: 26A24.

1. Teorema de medie a lui Lagrange

Teorema de medie a calculului diferențial sau teorema creșterilor finite sau teorema de medie a lui Lagrange este una din teoremele de bază ale calculului diferențial; ea este frecvent atribuită lui Joseph Louis Lagrange (1736-1813) în special în cărțile din Europa. Oricum prima afirmație – în forma modernă – a teoremei de medie apare în lucrarea [4] a renumitului fizician André-Marie Ampère (1775-1836). În acea lucrare, Ampère folosește ideile lui Lagrange relative la reprezentarea funcțiilor prin serii Taylor. Trebuie, de asemenea, făcută observația că Ampère folosește în demonstrația teoremei de medie afirmația, care astăzi se cunoaște a fi falsă, și anume că orice funcție

¹⁾Profesor univ. dr., Facultatea de Matematică şi Informatică, Universitatea Babeş-Bolyai, Cluj-Napoca, dorelduca@yahoo.com

continuă este derivabilă, cu excepția, eventual, a unui număr finit de puncte. După 15 ani, Augustin-Louis Cauchy (1789-1857) demonstrează teorema de medie aproximativ în aceleași condiții (vezi [15], pag. 113). Astăzi teorema de medie a lui Lagrange se enunță, de obicei, în următoarea formulare:

Teorema 1 (teorema de medie, teorema creșterilor finite, teorema lui Lagrange, teorema de medie a lui Lagrange). Fie a și b două numere reale astfel încât a < b și $f : [a, b] \to \mathbb{R}$. Dacă:

- (i) funcția f este continuă pe [a, b];
- (ii) funcția f este derivabilă pe (a,b), atunci există cel puțin un punct $c \in (a,b)$ astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(c). \qquad \Box$$
 (1)

Egalitatea (1) se numește formula creșterilor finite.

Punctul c se numește punct intermediar.

Exemplul 2. Fie $a,b \in \mathbb{R}$ cu a < b. Pentru funcția $f:[a,b] \to \mathbb{R}$ definită prin

$$f(x) = x^2$$
, oricare ar fi $x \in [a, b]$,

există un singur punct $c \in (a,b)$, și anume $c = \frac{a+b}{2}$ astfel încât (1) să fie adevărată. \square

Exemplul 3. Fie $a, b \in \mathbb{R}$ cu 0 < a < b. Pentru funcția $f : [a, b] \to \mathbb{R}$ definită prin

$$f(x) = \frac{1}{x}$$
, oricare ar fi $x \in [a, b]$,

există un singur punct $c \in (a,b)$, și anume $c = \sqrt{ab}$, astfel încât (1) să fie adevărată. \square

Exemplul 4. Pentru funcția $f: [-1,1] \to \mathbb{R}$ definită prin

$$f(x) = x^3$$
, oricare ar fi $x \in [-1, 1]$,

există exact două puncte $c \in (-1,1)$, și anume $c_1 = \frac{-1}{\sqrt{3}}$ și $c_2 = \frac{1}{\sqrt{3}}$, astfel încât (1) să fie adevărată. \square

Exemplul 5. Dacă $n \ge 1$ este un număr întreg, atunci pentru funcția $f: [-n\pi, n\pi] \to \mathbb{R}$ definită prin

$$f(x) = \cos x$$
, oricare ar fi $x \in [-n\pi, n\pi]$,

există exact 2n-1 puncte $c \in (-n\pi, n\pi)$, și anume

$$c_k = k\pi, \quad k \in [-n+1, n-1],$$

astfel încât (1) să fie adevărată. □

Exemplul 6. Pentru funcția $f: \left[0, \frac{2}{\pi}\right] \to \mathbb{R}$ definită prin

$$f(x) = \begin{cases} 0, & \operatorname{dac} x = 0 \\ x \sin \frac{1}{x}, & \operatorname{dac} x \in \left(0, \frac{2}{\pi}\right], \end{cases}$$

există o infinitate de puncte $c \in \left(0, \frac{2}{\pi}\right]$, printre care

$$c_k = \frac{2}{(4k+1)\pi}, \ k \in \mathbb{N},$$

astfel încât (1) să fie adevărată. □

Relativ la unicitatea punctului intermediar, are loc următoarea afirmație.

Teorema 7 (teorema de unicitate a punctului intermediar). Fie a şi b numere reale astfel încât a < b şi $f : [a,b] \to \mathbb{R}$ o funcție continuă pe [a,b] şi derivabilă pe (a,b). Dacă funcția $f^{(1)}$ este injectivă pe (a,b), atunci există un singur punct $c \in (a,b)$ astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(c).$$

Demonstrație. Folosim metoda reducerii la absurd. Presupunem că există două puncte diferite c_1 și c_2 , aparținând intervalului (a, b), astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(c_1)$$

şi

$$f(b) - f(a) = (b - a)f^{(1)}(c_2).$$

De aici urmează că $f^{(1)}(c_1) = f^{(1)}(c_2)$. Deoarece $f^{(1)}$ este injectivă deducem că $c_1 = c_2$, care contrazice $c_1 \neq c_2$.

Să observăm că dacă notăm cu

$$\theta = \frac{c - a}{b - a},$$

atunci

$$\theta \in (0,1), \quad c = a + (b-a)\theta$$

şi obţinem

$$f(b) - f(a) = (b - a)f^{(1)}(a + (b - a)\theta).$$

Urmează că teorema de medie a lui $Lagrange\,$ poate fi formulată și în modul următor:

Teorema 8 (teorema de medie, teorema creșterilor finite, teorema lui Lagrange, teorema de medie a lui Lagrange). Fie a și b numere reale cu a < b și $f: [a,b] \to \mathbb{R}$ o funcție care satisface următoarele condiții:

(i) funcția f este continuă pe [a, b];

(ii) funcția f este derivabilă pe (a,b).

Atunci există cel puțin un număr real $\theta \in (0,1)$, astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(a + (b - a)\theta). \square$$
 (2)

Exemplul 9. Fie $a,b \in \mathbb{R}$ cu a < b. Pentru funcția $f:[a,b] \to \mathbb{R}$ definită prin

$$f(x) = x^2$$
, oricare ar fi $x \in [a, b]$,

există un singur număr real $\theta \in (0,1)$, și anume $\theta = \frac{1}{2}$, astfel încât (2) să fie adevărată. \square

Exemplul 10. Pentru funcția $f:[-1,1] \to \mathbb{R}$ definită prin

$$f(x) = x^3$$
, oricare ar fi $x \in [-1, 1]$

există exact două numere reale $\theta \in (0,1)$, şi anume $\theta_1 = \frac{3-\sqrt{3}}{6}$ şi $\theta_2 = \frac{3+\sqrt{3}}{6}$, astfel încât (2) să fie adevărată. \square

Exemplul 11. Dacă n este un număr natural, atunci pentru funcția $f:[-n\pi,n\pi]\to\mathbb{R}$ definită prin

$$f(x) = \cos x$$
, oricare ar $f(x) \in [-n\pi, n\pi]$,

există exact 2n-1 numere reale $\theta \in (0,1)$, și anume

$$\theta_k = \frac{k+n}{2n}, \ k \in [-n+1, n-1],$$

astfel încât (2) să fie adevărată. □

Exemplul 12. Pentru funcția $f: \left[0, \frac{2}{\pi}\right] \to \mathbb{R}$ definită prin

$$f(x) = \left\{ \begin{array}{ll} 0, & \operatorname{dac} \check{a} \ x = 0 \\ x \sin \frac{1}{x}, & \operatorname{dac} \check{a} \ x \in \left(0, \frac{2}{\pi}\right], \end{array} \right.$$

există o infinitate de numere reale $\theta \in (0,1)$, printre care

$$\theta_k = \frac{1}{4k+1}, \ k \in \mathbb{N},$$

astfel încât (2) să fie adevărată. □

Următoarea teoremă dă o condiție suficientă pentru ca numărul real $\theta \in (0,1)$ din teorema 8 să fie unic.

Teorema 13. Fie a şi b numere reale astfel încât a < b şi $f : [a,b] \to \mathbb{R}$ o funcție continuă pe [a,b] şi derivabilă pe (a,b). Dacă funcția $f^{(1)}$ este injectivă pe (a,b), atunci există un singur număr real $\theta \in (0,1)$ astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(a + (b - a)\theta).$$

Demonstrație. Folosim metoda reducerii la absurd. Presupunem că există două numere reale $\theta_1, \theta_2 \in (0,1), \theta_1 \neq \theta_2$ astfel încât

$$f(b) - f(a) = (b - a)f^{(1)}(a + (b - a)\theta_1)$$

şi

$$f(b) - f(a) = (b - a)f^{(1)}(a + (b - a)\theta_2).$$

De aici urmează că $f^{(1)}(a+(b-a)\theta_1)=f^{(1)}(a+(b-a)\theta_2)$. Intrucât $f^{(1)}$ este injectivă deducem că $a+(b-a)\theta_1=a+(b-a)\theta_2$, de unde obţinem că $\theta_1=\theta_2$ care contrazice $\theta_1\neq\theta_2$.

2. Precizări ale poziției punctului intermediar

Pentru anumite clase de funcții $f:[a,b]\to\mathbb{R}$, continue pe [a,b] și derivabile pe (a,b), poziția punctului intermediar $c\in(a,b)$ din teorema de medie a lui Lagrange se poate preciza. Astfel

Lema 14. Dacă a şi b sunt numere reale astfel încât a < b, atunci pentru funcția $f : [a,b] \to \mathbb{R}$, definită prin

$$f(x) = x^2$$
, oricare ar fi $x \in [a, b]$,

avem

$$a < c = \frac{a+b}{2} < b.$$

Demonstrație. Afirmația se verifică imediat (vezi exemplul 2).

Prin urmare, pentru funcția din lema 14, punctul intermediar din teorema de medie a lui *Lagrange* este media aritmetică a capetelor intervalului pe care considerăm funcția.

Lema 15. Dacă a şi b sunt numere reale astfel încât 0 < a < b, atunci pentru funcția $f:[a,b] \to \mathbb{R}$, definită prin

$$f(x) = \frac{1}{x}$$
, oricare ar fi $x \in [a, b]$,

avem

$$a < c = \sqrt{ab} < \frac{a+b}{2}$$
.

Demonstrație. Afirmația se verifică imediat (vezi exemplul 3).

Merită să reținem că pentru funcția din lema 15, punctul intermediar din teorema de medie a lui *Lagrange* este media geometrică a capetelor intervalului pe care considerăm funcția.

Lema 16. Dacă a şi b sunt numere reale astfel încât 0 < a < b, atunci pentru funcția $f : [a, b] \to \mathbb{R}$, definită prin

$$f(x) = \ln x$$
, oricare ar fi $x \in [a, b]$,

avem

$$\frac{a\sqrt[3]{b} + b\sqrt[3]{a}}{\sqrt[3]{b} + \sqrt[3]{a}} < c < \frac{a+b}{2}.$$
(3)

Demonstrație. În baza teoremei de medie a lui *Lagrange*, există un punct $c \in (a, b)$ astfel încât (1) să aibă loc, adică să avem

$$\ln b - \ln a = (b - a) \frac{1}{c},$$

de unde deducem că

$$c = \frac{b - a}{\ln b - \ln a}.$$

Urmează că inegalitățile (3) sunt echivalente cu relațiile

$$\frac{a\sqrt[3]{b}+b\sqrt[3]{a}}{\sqrt[3]{b}+\sqrt[3]{a}}<\frac{b-a}{\ln b-\ln a}<\frac{a+b}{2},$$

adică cu relațiile

$$\frac{\sqrt[3]{\frac{b}{a}} + \frac{b}{a}}{\sqrt[3]{\frac{b}{a}} + 1} < \frac{\frac{b}{a} - 1}{\ln \frac{b}{a}} < \frac{1}{2} \left(1 + \frac{b}{a} \right).$$

Întrucât $\frac{b}{a} > 1$, deducem că este suficient să arătăm că

$$\frac{\sqrt[3]{t}+t}{\sqrt[3]{t}+1} < \frac{t-1}{\ln t} < \frac{1}{2} (1+t)$$
, oricare ar fi $t \in (1, +\infty)$.

Vom demonstra că, pentru orice $t \in (1, +\infty)$ avem

$$2\frac{t-1}{t+1} < \ln t$$
 și $3 \ln t < \frac{(t^3-1)(t+1)}{t^3+t}$.

Pentru aceasta considerăm funcțiile $g,h:[1,+\infty)\to\mathbb{R}$ definite prin

$$g(t) = \ln t - 2\frac{t-1}{t+1},$$

$$h(t) = \frac{(t^3 - 1)(t + 1)}{t^3 + t} - 3\ln t,$$

oricare ar fi $t \in [1, +\infty)$. Deoarece

$$g'(t) = \frac{(t-1)^2}{2t(t+1)^2} > 0$$
, oricare ar fi $t > 1$,

$$h'(t) = \frac{t^6 + 6t^4 + t^3 + 3t^2 + 1}{(t^3 + t)^2} > 0$$
, oricare ar fi $t > 1$,

deducem că funcțiile g și h sunt strict crescătoare pe $[1,+\infty)$. Așadar, pentru orice $t\in(1,+\infty)$, avem

$$q(t) > q(1) = 0$$
 si $h(t) > h(1) = 0$.

Lema este demonstrată.

Merită să reținem că pentru funcția logaritm natural punctul intermediar din teorema de medie a lui Lagrange este în prima jumătate a intervalului $[a,b]\subseteq (0,+\infty)$ pe care considerăm funcția.

Lema 17. Dacă a şi b sunt numere reale astfel încât $0 < a < b \le \frac{\pi}{2}$, atunci pentru funcția $f: [a,b] \to \mathbb{R}$ definită prin

$$f(x) = \sin x$$
, oricare ar fi $x \in [a, b]$,

avem

$$\frac{a+b}{2} < c < \frac{a+b}{2} + \frac{b-a}{\sqrt{12}}. (4)$$

Demonstrație. În baza teoremei de medie a lui *Lagrange*, există un punct $c \in (a, b)$ astfel încât (1) să aibă loc, adică să avem

$$\sin b - \sin a = (b - a)\cos c,$$

de unde deducem că

$$\cos c = \frac{\sin b - \sin a}{b - a} = \frac{\sin d}{d} \cos \frac{a + b}{2}, \text{ unde } d := \frac{b - a}{2} \in \left(0, \frac{\pi}{4}\right].$$

Întrucât

$$\cos \frac{u}{\sqrt{3}} < \frac{\sin u}{u} < 1$$
, oricare ar fi $u \in \left(0, \frac{\pi}{2}\right)$,

obţinem

$$\cos\frac{b-a}{2\sqrt{3}}\cos\frac{a+b}{2} < \cos c < \cos\frac{a+b}{2}.$$

Deoarece

$$\cos\frac{b-a}{2\sqrt{3}}\cos\frac{a+b}{2} = \cos\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}}\right),\,$$

ținând seama de faptul că funcția cosinus este strict descrescătoare pe $\left[0,\frac{\pi}{2}\right]$, rezultă (4).

Merită să reținem că pentru funcția sinus punctul intermediar din teorema de medie a lui Lagrange este în a doua jumătate a intervalului $[a,b]\subseteq \left(0,\frac{\pi}{2}\right)$ pe care considerăm funcția.

Următoarea afirmație, datorată lui Al. Lupaș, [17], precizează poziția punctului intermediar într-un cadru mai general:

Teorema 18. Fie a, b numere reale cu a < b si $f: [a, b] \to \mathbb{R}$ o funcție care satisface următoarele proprietăți:

- (i) funcția f este derivabilă de trei ori pe [a, b];
- (ii) funcția $f^{(3)}$ este continuă pe [a,b];
- (iii) $f^{(2)}(x) \neq 0 \neq f^{(3)}(x)$, oricare ar fi $x \in (a, b)$.

 $Dacă\ c\in(a,b)$ este un punct intermediar din teorema de medie a lui Lagrange, atunci următoarele afirmații sunt adevărate:

 $1^0 Dac \breve{a}$

$$f^{(2)}(x) f^{(3)}(x) > 0$$
, oricare ar $f(x) \in (a, b)$, (5)

atunci

$$\frac{a+b}{2} < c < \left(f^{(1)}\right)^{-1} \left(\frac{f^{(1)}(a) + f^{(1)}(b)}{2}\right).$$

 $2^0 Dacă$

$$f^{(2)}(x) f^{(3)}(x) < 0$$
, oricare ar fi $x \in (a, b)$,

atunci

$$\left(f^{(1)}\right)^{-1} \left(\frac{f^{(1)}(a) + f^{(1)}(b)}{2}\right) < c < \frac{a+b}{2}.$$

Demonstrație. 1^0 Fie $c \in (a,b)$ un punct pentru care avem

$$\frac{f(b) - f(a)}{b - a} = f^{(1)}(c)$$
.

i) Să presupunem că pentru orice $x \in [a, b]$ avem $f^{(2)}(x) > 0$. Atunci funcția $f^{(1)}$ este strict crescătoare pe [a, b] și deci injectivă pe [a, b].

Pe de altă parte, din (5), deducem că $f^{(3)}(x) > 0$, oricare ar fi $x \in [a, b]$ şi deci funcția $f^{(1)}$ este strict convexă. Urmează că funcția $f^{(1)}$ satisface inegalitățile lui Jensen-Hadamard pentru funcțiile convexe

$$f^{(1)}\left(\frac{a+b}{2}\right) < \frac{1}{b-a} \int_{a}^{b} f^{(1)}(x) dx < \frac{f^{(1)}(a) + f^{(1)}(b)}{2}.$$

Întrucât

$$\frac{1}{b-a} \int_{a}^{b} f^{(1)}(x) dx = \frac{f(b) - f(a)}{b-a} = f^{(1)}(c),$$

deducem că

$$f^{(1)}\left(\frac{a+b}{2}\right) < f^{(1)}\left(c\right) < \frac{f^{(1)}\left(a\right) + f^{(1)}\left(b\right)}{2}.$$

De aici urmează că

$$\frac{a+b}{2} < c < \left(f^{(1)}\right)^{-1} \left(\frac{f^{(1)}(a) + f^{(1)}(b)}{2}\right).$$

ii) Dacă pentru orice $x \in [a, b]$ avem $f^{(2)}(x) < 0$, atunci $f^{(1)}$ este strict concavă și $f^{(3)}(x) < 0$, oricare ar fi $x \in [a, b]$ etc.

2⁰ Această afirmație se demonstrează similar.

Merită reținut că, în ipotezele teoremei 18, punctul intermediar c din teorema de medie a lui Lagrange este în a doua jumătate a intervalului [a,b]

dacă are loc ipoteza de la afirmația 1^0 , respectiv în prima jumătate a intervalului [a,b] dacă are loc ipoteza de la afirmația 2^0 .

Lema 19. Dacă a şi b sunt numere reale astfel încât $0 < a < b \le \frac{\sqrt{3}}{3}$, atunci pentru funcția $f: [a,b] \to \mathbb{R}$ definită prin

$$f(x) = \arctan x$$
, oricare ar fi $x \in [a, b]$,

punctul intermediar $c \in (a,b)$ din teorema de medie a lui Lagrange are proprietatea $c\check{a}$

$$\frac{a+b}{2} < c < \frac{\sqrt{a^2+b^2}}{2}.$$

Demonstrație. Se aplică teorema 18.

Lema 20. Fie $n \geq 2$ un număr natural, $a,b \in \mathbb{R}$ cu 0 < a < b şi $f:[a,b] \to \mathbb{R}$ definită prin

$$f(x) = x^{n+2}$$
, oricare ar $f(x) \in [a, b]$.

Punctul intermediar $c \in (a,b)$ din teorema de medie a lui Lagrange are proprietatea $c\breve{a}$

$$\frac{a+b}{2} < c < \sqrt[n]{\frac{a^n + b^n}{2}}.$$

Demonstrație. Se aplică teorema 18.

Lema 21 (D. Pompeiu). Fie $a, b \in \mathbb{R}$ cu a < b și $a_3, a_2, a_1, a_0 \in \mathbb{R}$. Pentru funcția $f : \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$
, oricare ar fi $x \in \mathbb{R}$,

există un subinterval $[a^*, b^*] \subseteq (a, b)$ astfel încât $a^* \le c \le b^*$. Mai mult, subintervalul care are cea mai mică lungime are extremitățile

$$a^* = \frac{a+b}{2} - \frac{b-a}{2}w, \ b^* = \frac{a+b}{2} + \frac{b-a}{2}w, \ unde \ w = \frac{\sqrt{3}}{3}. \ \Box$$
 (6)

Intervalul $[a^*, b^*]$, unde a^* şi b^* sunt daţi de (6), se numeşte *intervalul* de contracție pentru polinoame de gradul al treilea.

Semnificația geometrică este următoarea: intervalul în care se găsește punctul intermediar c se contractă de la b-a la w(b-a). Numărul $w=\frac{\sqrt{3}}{3}$ se numește $coeficientul\ de\ contracție\ al\ polinoamelor\ de\ gradul\ al\ treilea.$

Observația 22. Intervalul de contracție pentru polinoamele de gradul al treilea nu poate fi îmbunătățit. Într-adevăr pentru funcția polinomială $f: \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = \left(x - \frac{a+b}{2}\right)^3$$
, oricare ar fi $x \in \mathbb{R}$,

există exact două puncte intermediare c care verifică formula creșterilor finite; acestea sunt $c_1 = a^*$ și $c_2 = b^*$, unde a^* și b^* sunt date de (6).

Problema determinării intervalului de contracție, a fost abordată de mai mulți matematicieni: P. Sergescu [26], L. Teodoriu [31], L. Tchakaloff [28], [29], Gh. Mihoc [19], [18], N. Ciorănescu [7], E. Abason [1], [2], [3] etc.

Lema 23 (I. Tchakaloff). Fie $a, b \in \mathbb{R}$ cu a < b și $a_n, a_{n-1}, ..., a_1, a_0 \in \mathbb{R}$. Pentru funcția $f : \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, oricare ar fi $x \in \mathbb{R}$,

există un subinterval $[a^*, b^*] \subseteq (a, b)$ astfel încât punctul c din teorema de medie a lui Lagrange este în intervalul $[a^*, b^*]$. Mai mult, subintervalul care are cea mai mică lungime are extremitățile

$$a^* = \frac{a+b}{2} - \frac{b-a}{2}w, \quad b^* = \frac{a+b}{2} + \frac{b-a}{2}w,$$

unde w este cea mai mare rădăcină a polinomului P_m a lui Legendre, de gradul $m=\left[\frac{n+1}{2}\right]$. \square

BIBLIOGRAFIE

- [1] E. Abason, Sur le théorème des accroissements finis, Bulletin de Mathématiques et de Physique Pures et Appliquées de l'Ecole Polytechnique de Bucharest, 1(1929), no. 1, 4-10.
- [2] E. Abason Sur le théorème des accroissements finis, Bulletin de Mathématiques et de Physique Pures et Appliquées de l'Ecole Polytechnique de Bucharest, 1(1930), no. 2, 81-86.
- [3] E. Abason, Sur le théorème des accroissements finis, Bulletin de Mathématiques et de Physique Pures et Appliquées de l'Ecole Polytechnique de Bucharest, 1(1930), no. 3, 149-152.
- [4] A.M. Ampère, Rechèrche sur quelques points de la théorie des functions, J. Ecole Polyt., Cah. 13, 6(1806), 148-181.
- [5] D. Andrica, D. I. Duca, I. Purdea şi I. Pop, Matematica de bază, Editura Studium, Cluj-Napoca, 2004.
- [6] Th. Angheluță, Sur une équation algébrique: application à la formule de Taylor, Mathematica (Cluj), 6(1932), 140-145.
- [7] N. Ciorănescu, L'intervalle de contraction pour les équations algebriques aux différences finites, Bulletin de Mathématiques et de Physique Pures et Appliquées de l'Ecole Polytechnique de Bucharest, 4(1933-1934), no. 2-3, 97-99.
- [8] D. I. Duca, A Note on the Mean Value Theorem, Didactica Matematicii, 19(2003), 91-102.
- [9] D. I. Duca și E. Duca, Exerciții și probleme de analiză matematică, vol. 1, Casa Cărții de Stiință, Cluj-Napoca, 2007.
- [10] D. I. Duca şi E. Duca, Exerciții şi probleme de analiză matematică, vol. 2, Casa Cărții de Știință, Cluj-Napoca, 2009.
- [11] D. I. Duca şi O. Pop: On the Intermediate Point in Cauchy's Mean-Value Theorem, Mathematical Inequalities & Applications, 9(2006), no. 3, 375-389.
- [12] D. I. Duca and O.T. Pop, Concerning the Intermediate Point in the Mean Value Theorem, Mathematical Inequalities & Applications, 12 (2009), no. 3, 499-512.

- [13] T. M. Flett, A Mean Value Theorem, Math. Gazette, 42(1958), 38-39.
- [14] A. Froda, Existența intervalului de contracție în clasa polinoamelor de grad n, Buletin Stiințific Acad. R.P.R., Ser. Mat. Fiz. Chim., Bucureşti, 2(1950), no. 5, 461-465.
- [15] I. Grattan-Guiness, From the Calculus to Set Theory, 1630-1910, Duckworth, London, 1980.
- [16] J.J. Koliha, Mean, Meaner, and the Meanest Mean Value Theorem, The American Mathematical Monthly, 116(2009), no. 4, 356-361.
- [17] Al. Lupas, Asupra teoremei creşterilor finite, Revista de matematică a elevilor din Timișoara, XIV (1983), no. 2, 6-13.
- [18] Gh. Mihoc, Sur la formule de la moyenne, Bull. Math. Phys Pures Appl. Ecole Polytechn. Bucarest, 3(1931-1932), no. 2, 102-104.
- [19] Gh. Mihoc, Sur la détermination de l'intervalle de contraction de la formule de la moyenne, C.R. Acad Sci. Paris, 200 (1935), 1654-1655.
- [20] Gh. Mihoc, Formula mediei pentru polinoame, Gazeta Matematică, 43 (1937/1938), 573-577.
- [21] Gh. Mihoc, Formula mediei pentru polinoame, Gazeta Matematică, 43 (1937/1938), 626-633.
- [22] E.C. Popa, Continuity Properties Relative to the Intermediate Point in a Mean Value Theorem, Gen. Math., 12 (2004), no. 3, 53-59.
- [23] D. Pompeiu, Sur la théorème des accroissements finis, Ann. Scient. Univ. Jassy, 15(1928), no. 3-4, 335-337.
- [24] D. Pompeiu, Opera matematică, Editura Academiei, Bucureşti, 1959, pp. 273-275, pp. 293-298.
- [25] T. Popoviciu, Asupra unor formule de medie, Revista de analiză numerică şi teoria aproximației, 1(1972), 97-107.
- [26] P. Sergescu, Remarques sur les zéros de l'équation cubique, Bulletin Scientifique de L'École Polytechnique de Timisoara, 2(1929), no. 3-4, 181-182.
- [27] P. Sergescu, Sur les modules des racines des équations algébriques, Mathematica (Cluj), 2(1929), 140-153.
- [28] L. Tchakaloff, Sur la structure des ensemble linéaires définis par un certaine propriété minimale, Acta Mathematica, 63(1934), 77-97.
- [29] L. Tchakaloff, Über den Rolleschen Satz angewandt auf lineare Kombinationen, endlich viller Funktionen, C.R. du Premièr Congrés des mathematiciens hongrois Budapest, 27.08-2.09.1950, Budapest,1952, pp. 591-594.
- [30] L. Teodoriu: Sur une équation aux dérivées partielle qui s'introduit dans un probleme de moyenne, C.R. Acad. Sci. Paris, 191 (1930), 431-433.
- [31] L. Teodoriu, Cercetări asupra teoremei creșterilor finite, Facultatea de Stiințe din București, Teză de doctorat, nr. 71, București, 1931.
- [32] A. Vernescu, Numărul e şi matematica exponențialei, Editura Universității din București, București, 2004.

Inequalities Derived Using Telescopic Sums

J. L. DIAZ-BARRERO and J. GIBERGANS-BÁGUENA¹⁾

Abstract. Telescopic sums and classical inequalities are used to derive some discrete inequalities. Finally, a rational sum is considered and a numerical inequality is also obtained.

 ${\bf Keywords:}\ {\bf Classical\ inequalities},\ {\bf telescopic\ sums},\ {\bf discrete\ inequalities}.$

MSC: 26D15

1. Introduction

Many occasions in everyday life as well as in mathematics require to compute the sum of the first n terms of a given sequence $\{a_n\}_{n\geq 1}$. What

is wanted is a close expression for $\sum_{k=1}^{n} a_k$, but there is no formula for the

preceding sum unless the terms of the sequence are formed according to some pattern. A sum in which subsequent terms cancel each other, leaving only initial and final terms is called a telescopic sum [1]. Telescopic sums have many applications in Analysis, Topology, Probability and Statistics ([2], [3], [4]). Our goal in this paper is to use them jointly with classical inequalities to derive some elementary discrete inequalities.

2. The Inequalities

In what follows, telescopic sums are used as a technique to obtain new inequalities. We begin with

Theorem 1. Let n be a positive integer and let a_1, a_2, \ldots, a_n be positive numbers. Then

$$1 + \left(\sum_{k=1}^{n} \frac{a_k C(n,k)^{\frac{1}{2}}}{1 + a_1^2 + \dots + a_k^2}\right)^2 < 2^n,$$

where $C(n,k) = \binom{n}{k}$, $1 \le k \le n$.

Proof. Let
$$\overrightarrow{u} = \left(\frac{a_1}{1+a_1^2}, \frac{a_2}{1+a_1^2+a_2^2}, \dots, \frac{a_n}{1+a_1^2+a_2^2+\dots+a_n^2}\right)$$

and $\overrightarrow{v} = \left(C(n,1)^{\frac{1}{2}}, C(n,2)^{\frac{1}{2}}, \dots, C(n,n)^{\frac{1}{2}}\right)$. Applying the inequality of Cauchy-Buniakovski-Schwarz we obtain

$$\left(\sum_{k=1}^{n} \frac{a_k C(n,k)^{\frac{1}{2}}}{1 + a_1^2 + \dots + a_k^2}\right)^2 \le \left(\sum_{k=1}^{n} \frac{a_k^2}{\left(1 + a_1^2 + \dots + a_k^2\right)^2}\right) \left(\sum_{k=1}^{n} C(n,k)\right). \tag{1}$$

¹⁾Applied Mathematics III, Universidad Politécnica de Catalunia, Barcelona, Spain, jose.luis.diaz@upc.edu, jose.gibergans@upc.edu

We claim that

$$\left(\frac{a_1}{1+a_1^2}\right)^2 + \left(\frac{a_2}{1+a_1^2+a_2^2}\right)^2 + \dots + \left(\frac{a_n}{1+a_1^2+a_2^2+\dots+a_n^2}\right)^2 < 1.$$
In fact, $\frac{a_1^2}{\left(1+a_1^2\right)^2} = 1 - \frac{1}{1+a_1^2}$, and for $2 \le k \le n$,
$$\frac{a_k^2}{\left(1+a_1^2+\dots+a_k^2\right)^2} \le \frac{a_k^2}{\left(1+a_1^2+\dots+a_{k-1}^2\right)\left(1+a_1^2+\dots+a_k^2\right)} = \frac{1}{1+a_1^2+\dots+a_{k-1}^2} - \frac{1}{1+a_1^2+\dots+a_k^2}.$$

Adding the preceding expressions, we get

$$\sum_{k=1}^{n} \frac{a_k^2}{\left(1 + a_1^2 + \dots + a_k^2\right)^2} \le 1 - \frac{1}{1 + a_1^2 + a_2^2 + \dots + a_n^2} \le 1$$

as claimed. From (1) and taking into account the well-known identity

$$\sum_{k=1}^{n} C(n,k) = 2^{n} - 1,$$

we get

$$\left(\sum_{k=1}^{n} \frac{a_k C(n,k)^{\frac{1}{2}}}{1 + a_1^2 + \dots + a_k^2}\right)^2 \le \left(\sum_{k=1}^{n} \frac{a_k^2}{\left(1 + a_1^2 + \dots + a_k^2\right)^2}\right) \left(\sum_{k=1}^{n} C(n,k)\right) < 2^n - 1$$

from which the statement follows and the proof is complete.

An inequality involving the terms of a recurrent sequence is given in the following:

Theorem 2. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers defined by $a_1=3,\ a_2=5$ and for all $n\geq 3,\ a_{n+1}=\frac{1}{2}\left(a_n^2+1\right)$. Then

$$\left(\sum_{k=1}^{n} \frac{a_k}{\sqrt{a_k + 1}}\right)^2 < \frac{1}{2} \sum_{k=1}^{n} a_k^2.$$

Proof. We claim that $\sum_{k=1}^{n} \frac{1}{a_k + 1} < \frac{1}{2}$ for $1 \le k \le n$. Indeed, from

$$a_{k+1} - 1 = \frac{1}{2} (a_k^2 - 1) = \frac{1}{2} (a_k + 1) (a_k - 1)$$

valid for all $k \geq 1$, we have

$$\frac{1}{a_{k+1} - 1} = \frac{2}{(a_k + 1)(a_k - 1)} = \frac{1}{a_k - 1} - \frac{1}{a_k + 1}$$

and

$$\frac{1}{a_k+1} = \frac{1}{a_k-1} - \frac{1}{a_{k+1}-1}.$$

Adding up the preceding identities for $1 \le k \le n$ yields

$$\sum_{k=1}^{n} \frac{1}{a_k + 1} = \left(\frac{1}{a_1 - 1} - \frac{1}{a_2 - 1}\right) + \left(\frac{1}{a_2 - 1} - \frac{1}{a_3 - 1}\right) + \dots + \left(\frac{1}{a_n - 1} - \frac{1}{a_{n+1} - 1}\right) = \frac{1}{2} - \frac{1}{a_{n+1} - 1} < \frac{1}{2}.$$

Applying Cauchy-Buniakovski-Schwarz inequality to the vector

$$\overrightarrow{u} = (a_1, a_2, \dots, a_n)$$
 and $\overrightarrow{v} = \left(\frac{1}{\sqrt{a_1 + 1}}, \frac{1}{\sqrt{a_2 + 1}}, \dots, \frac{1}{\sqrt{a_n + 1}}\right)$ we get

$$\left(\sum_{k=1}^{n} \frac{a_k}{\sqrt{a_k+1}}\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} \frac{1}{a_k+1}\right) < \frac{1}{2} \sum_{k=1}^{n} a_k^2$$

and the proof is complete.

Now, an inequality with constraints is presented.

Theorem 3. Let $a_1, a_2, \ldots, a_{n+1}$ be positive numbers such that

$$\sum_{k=1}^{n} \frac{1}{a_{k+1}^2} = 1.$$

Then

$$\left(\sum_{k=1}^{n} \prod_{j=1}^{k} a_{j}^{2}\right)^{\frac{1}{2}} \ge 4a_{1} \left(1 - a_{2}a_{3} \cdot \ldots \cdot a_{n+1}\right).$$

Proof. Applying Cauchy-Buniakovski-Schwarz inequality to the vector $\overrightarrow{u} = (a_1, a_1 a_2, \dots, a_1 a_2 \dots a_n)$ and $\overrightarrow{v} = \left(\frac{1}{a_2}, \frac{1}{a_2}, \dots, \frac{1}{a_{n+1}}\right)$ yields

$$\sum_{k=1}^{n} \frac{a_1 a_2 \cdot \dots \cdot a_k}{a_{k+1}} \le \left(\sum_{k=1}^{n} \left(a_1 \cdot \dots \cdot a_k\right)^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \frac{1}{a_{k+1}^2}\right)^{\frac{1}{2}}.$$
 (2)

On the other hand, from $(2a_{k+1}-1)^2 \ge 0$, we have $\frac{1}{a_{k+1}} \ge 4(1-a_{k+1})$. Multiplying both sides of the last inequality by $a_1a_2...a_k$ yields

$$\frac{a_1 a_2 \dots a_k}{a_{k+1}} \ge 4 (a_1 a_2 \dots a_k - a_1 a_2 \dots a_{k+1})$$

valid for $1 \le k \le n$. Adding up the preceding inequalities, we get

$$\sum_{k=1}^{n} \frac{a_1 a_2 \dots a_k}{a_{k+1}} \ge 4 \sum_{k=1}^{n} \left(a_1 a_2 \dots a_k - a_1 a_2 \dots a_{k+1} \right) = 4 \left(a_1 - a_1 a_2 \dots a_{n+1} \right).$$

Taking into account the last inequality and the constraint condition, from (2), the statement follows and tge proof is complete.

In the sequel, two numerical inequalities are derived. We begin with **Theorem 4.** Let n be a positive integer. Then

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n-1}{k}^{2}} \ge \frac{4}{n+1}.$$

Proof. Let $\overrightarrow{u} = (a_0, a_1, \dots, a_n)$ and $\overrightarrow{v} = (1, 1, \dots, 1)$, where for $0 \le k \le n$ is $a_k = \frac{\binom{n}{k}}{\binom{2n-1}{k}}$. Taking into account *Cauchy-Buniakovski*-

Schwarz inequality we get

$$(a_0 + a_1 + \dots + a_n)^2 \le (n+1) (a_0^2 + a_1^2 + \dots + a_n^2)$$

from which immediately follows that:

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n-1}{k}^{2}} \ge \frac{1}{n+1} \left[\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{2n-1}{k}} \right]^{2}.$$
 (3)

On the other hand, we have

$$\frac{\binom{n}{k}}{\binom{2n}{k}} - \frac{\binom{n}{k+1}}{\binom{2n}{k+1}} = \frac{n!(2n-k)!}{(n-k)!(2n)!} - \frac{n!(2n-k-1)!}{(n-k-1)!(2n)!} = \frac{n!(2n-k-1)!}{\binom{n}{k}} = \frac{n!(2n-k-1)!}{\binom{n}{k}} = \frac{\binom{n}{k}}{\binom{n}{k}}$$

$$= \frac{n!(2n-k-1)!}{(n-k)!(2n-1)!} \left[\frac{2n-k}{2n} - \frac{n-k}{2n} \right] = \frac{1}{2} \frac{\binom{n}{k}}{\binom{2n-1}{k}}.$$

Therefore

$$\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{2n-1}{k}} = 2\sum_{k=0}^{n} \left[\frac{\binom{n}{k}}{\binom{2n}{k}} - \frac{\binom{n}{k+1}}{\binom{2n}{k+1}} \right] = 2\left[\frac{\binom{n}{0}}{\binom{2n}{0}} - \frac{\binom{n}{n+1}}{\binom{2n}{n+1}} \right] = 2$$
because $\binom{n}{n+1} = 0$. Thus (3) becomes

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n-1}{k}^{2}} \ge \frac{4}{n+1}.$$

Equality holds when n = 1 and the proof is complete.

Theorem 5. Let n be a positive integer and let a > 1. Then

$$\frac{2^{n+1}}{a^{2^{n+1}} - 1} + \frac{1}{n+1} \left[\sum_{k=0}^{n} \left(\frac{2^k}{a^{2^k} + 1} \right)^{\frac{1}{2}} \right]^2 \le \frac{1}{a-1}.$$

Proof. Let $\overrightarrow{u}=(a_0,a_1,\ldots,a_n)$ and $\overrightarrow{v}=(1,1,\ldots,1)$, where for $0 \le k \le n$ is $a_k=\left(\frac{2^k}{a^{2^k}+1}\right)^{\frac{1}{2}}$. Again applying *Cauchy-Buniakovski-Schwarz*, inequality we get

$$\frac{(a_0 + a_1 + \dots + a_n)^2}{n+1} \le a_0^2 + a_1^2 + \dots + a_n^2.$$

Since, for all k, $0 \le k \le n$, is

$$\frac{2^k}{a^{2^k}+1} = \frac{2^k \left(a^{2^k}-1\right)}{a^{2^{k+1}}-1} = \frac{2^k \left(a^{2^k}+1\right)-2^{k+1}}{a^{2^{k+1}}-1} = \frac{2^k}{a^{2^k}-1} = \frac{2^{k+1}}{a^{2^{k+1}}-1},$$

then the sum $a_0^2 + a_1^2 + \ldots + a_n^2$ telescopes. That is

$$\sum_{k=0}^{n} \frac{2^k}{a^{2^k} + 1} = \frac{1}{a - 1} - \frac{2^{n+1}}{a^{2^{n+1}} - 1}$$

from which the statement immediately follows.

Finally, using identities similar to the ones appeared in [5] we give a numerical inequality involving rational sums.

Theorem 6. Let n be a positive integer. Then

$$\frac{1}{2} \left[\left(\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} \right)^{\frac{1}{2}} + \left(\sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} \right)^{\frac{1}{2}} + \dots \right]$$

$$\dots + \left(\sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} \right)^{\frac{1}{2}} \right]^2 \le \binom{n+1}{2}.$$

Proof. To prove the preceding statement we need the following Lemma:

Lemma 1. Let n be a positive integer. Then

$$\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} + \sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} + \dots + \sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} =$$

$$= (n+1) - \frac{1}{(n+1)!}.$$

Proof. Let us denote by S the following sum:

$$S = 1 + \sum_{1 \le i_1 \le n+1} \frac{1}{i_1} + \sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 \cdot i_2} + \dots + \frac{1}{1 \cdot 2 \cdot \dots \cdot n+1} =$$

$$= \prod_{k=1}^{n+1} \left(1 + \frac{1}{k} \right) = \prod_{k=1}^{n+1} \frac{k+1}{k} = \frac{(n+2)!}{(n+1)!} = n+2.$$

Ther

$$\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} + \sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} + \dots + \sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} =$$

$$= S - \left(1 + \frac{1}{1 \cdot 2 \cdot \dots \cdot n+1}\right) = n + 1 - \frac{1}{(n+1)!}.$$

Putting

$$\overrightarrow{u} = \left[\left(\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} \right)^{\frac{1}{2}}, \left(\sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} \right)^{\frac{1}{2}}, \dots \right]$$

$$\dots, \left(\sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} \right)^{\frac{1}{2}}$$

and $\overrightarrow{v} = (1, 1, \dots, 1)$ into Cauchy-Buniakovski-Schwarz inequality and taking into account the Lemma yields

$$\left[\left(\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} \right)^{\frac{1}{2}} + \left(\sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} \right)^{\frac{1}{2}} + \dots + \right. \\
+ \left(\sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} \right)^{\frac{1}{2}} \right]^{2} \le \\
\le n \left(\sum_{1 \le i_1 \le n+1} \frac{1}{i_1} + \sum_{1 \le i_1 < i_2 \le n+1} \frac{1}{i_1 i_2} + \dots + \sum_{1 \le i_1 < \dots < i_n \le n+1} \frac{1}{i_1 i_2 \cdot \dots \cdot i_n} \right) \le$$

$$\leq n(n+1) - \frac{n}{(n+1)!} < 2\binom{n+1}{2}$$

from which the statement follows.

Acknowledgements. The authors thank to Ministry of Education of Spain that has supported this research by grant MTM2006-03040.

References

- [1] T. M. Apostol, Calculus, Vol. 1, 2nd. ed. Blaisdell Publishing Company, 1967.
- [2] K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.
- [3] B. Mazur, On the structure of certain semi-groups of spherical knot classes, Publications Mathématiques de l'I. H.É. S., 3 (1959), 19-27.
- [4] H. A. David and H. N. Nagaraja, Order Statistics, 3rd. ed. Wiley, New Jersey, 1973.
- [5] J. L. Diaz-Barrero and J. Gibergans-Báguena, Some Identities Involving Rational Sums. Applicable Analysis and Discrete Mathematics, Vol. I, (2007) 397-402.

Approximations for a generalization of Euler's constant

ALINA SÎNTĂMĂRIAN¹⁾

Abstract. The purpose of this paper is to give some sequences that converge to a generalization of Euler's constant and to evaluate the speed of convergence.

Keywords: sequence, convergence, *Euler*'s constant, approximation. **MSC:** 11Y60, 40A05.

1. Introduction

It is known that the sequence $(D_n)_{n\in\mathbb{N}}$ defined by $D_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \ln n$, for each $n \in \mathbb{N}$, is convergent and $\gamma = \lim_{n \to \infty} D_n$ is called *Euler's* constant $(\gamma = 0.5772...)$.

From the many results given in the literature regarding *Euler*'s constant γ , we recall one presented by A. Vernescu [10] in Gazeta Matematică, Seria B. He proved that $\frac{1}{2n+1} < D_n - \gamma < \frac{1}{2n}$, for each $n \in \mathbb{N}$.

I. Nedelcu, [3], proposed in Gazeta Matematică, Seria B, the following problem:

Show that the sequence $\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r} \ln a_n\right)_{n \in \mathbb{N}}$ is convergent, where $(a_n)_{n \in \mathbb{N}}$ is a sequence defined by $a_n = a + (n-1)r$, for each $n \in \mathbb{N}$, with $a, r \in (0, +\infty)$.

¹⁾Department of Mathematics, Technical University of Cluj-Napoca, Romania, Alina.Sintamarian@math.utcluj.ro

In Section 2 we consider the sequence $\left(\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} - \frac{1}{r} \ln \frac{a_n}{a}\right)_{n \in \mathbb{N}}$ and we denote its limit by $\gamma(a,r)$. This sequence, for a=1 and r=1, becomes the sequence $(D_n)_{n \in \mathbb{N}}$. In this section we establish the existence of $\gamma(a,r)$.

In Section 3 we give sequences that converge to $\gamma(a,r)$ quicker than those presented in Section 2.

2. The number $\gamma(a,r)$

Theorem 2.1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence defined by $a_n = a + (n-1)r$, for each $n \in \mathbb{N}$, where $a, r \in (0, +\infty)$. We consider the sequences $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ and $(z_n)_{n\in\mathbb{N}}$ defined by

$$u_n = \left(1 + \frac{r}{a_n}\right)^{\frac{a_n}{r}}, \qquad v_n = \left(1 + \frac{r}{a_n}\right)^{\frac{a_{n+1}}{r}},$$

$$x_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r}\ln\frac{a_{n+1}}{a},$$

$$y_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r}\ln\frac{a_n}{a},$$

$$z_n = \frac{x_n + y_n}{2} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r}\ln\frac{\sqrt{a_n a_{n+1}}}{a},$$

for each $n \in \mathbb{N}$. Then

(i) $u_n < u_{n+1} < e < v_{n+1} < v_n$, for any $n \in \mathbb{N}$;

(ii)
$$\frac{1}{a_{n+1}} < \frac{1}{r} (\ln a_{n+1} - \ln a_n) < \frac{1}{a_n}$$
, for any $n \in \mathbb{N}$;

(iii) the sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are convergent to the same number, which we denote by $\gamma(a,r)$, and satisfy the inequalities

$$x_n < x_{n+1} < \gamma(a,r) < y_{n+1} < y_n$$
, for each $n \in \mathbb{N}$;

(iv)
$$0 < \frac{1}{a} - \frac{1}{r} \ln \left(1 + \frac{r}{a} \right) < \gamma(a, r) < \frac{1}{a};$$

(v)
$$\lim_{n\to\infty} n(\gamma(a,r) - x_n) = \frac{1}{2r}$$
, $\lim_{n\to\infty} n(y_n - \gamma(a,r)) = \frac{1}{2r}$ and $\lim_{n\to\infty} n^2(z_n - \gamma(a,r)) = \frac{1}{6r}$.

Proof. (i) It is well-known the *Bernoulli*'s inequality $(1+t)^{\alpha} > 1 + \alpha t$, for each $t \in (-1, +\infty) \setminus \{0\}$ and for any $\alpha \in (1, +\infty)$.

We have

$$\frac{u_{n+1}}{u_n} = \frac{\left(1 + \frac{r}{a_{n+1}}\right)^{\frac{a_{n+1}}{r}}}{\left(1 + \frac{r}{a_n}\right)^{\frac{a_n}{r}}} = \left(\frac{a_n + 2r}{a_n + r}\right)^{\frac{a_n + r}{r}} \left(\frac{a_n}{a_n + r}\right)^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n} = \frac{\left(1 + \frac{r}{a_{n+1}}\right)^{\frac{a_n}{r}}}{a_n} = \frac{\left(1 + \frac$$

$$= \left[\frac{a_n(a_n + 2r)}{(a_n + r)^2} \right]^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n} = \left[1 - \left(\frac{r}{a_n + r} \right)^2 \right]^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n} >$$

$$> \left[1 - \frac{a_n + r}{r} \left(\frac{r}{a_n + r} \right)^2 \right] \frac{a_n + r}{a_n} = 1,$$

for each $n \in \mathbb{N}$, taking into account the Bernoulli's inequality.

Using also the Bernoulli's inequality, we are able to write that

$$\frac{v_n}{v_{n+1}} = \frac{\left(1 + \frac{r}{a_n}\right)^{\frac{a_{n+1}}{r}}}{\left(1 + \frac{r}{a_{n+1}}\right)^{\frac{a_{n+2}}{r}}} = \left(\frac{a_n + r}{a_n}\right)^{\frac{a_n + r}{r}} \left(\frac{a_n + r}{a_n + 2r}\right)^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n + 2r} =$$

$$= \left[\frac{(a_n + r)^2}{a_n(a_n + 2r)}\right]^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n + 2r} = \left[1 + \frac{r^2}{a_n(a_n + 2r)}\right]^{\frac{a_n + r}{r}} \frac{a_n + r}{a_n + 2r} >$$

$$> \left[1 + \frac{a_n + r}{r} \cdot \frac{r^2}{a_n(a_n + 2r)}\right] \frac{a_n + r}{a_n + 2r} = \frac{a_n(a_n + 2r)^2 + r^3}{a_n(a_n + 2r)^2} > 1,$$

Of course we have that $\lim_{n \to \infty} u_n = e$ and $\lim_{n \to \infty} v_n = e$. Now we are able to write that $u_n < u_{n+1} < e < v_{n+1} < v_n$, for any $n \in \mathbb{N}$.

(ii) According to part (i) we have the inequalities

$$\left(1 + \frac{r}{a_n}\right)^{\frac{a_n}{r}} < e < \left(1 + \frac{r}{a_n}\right)^{\frac{a_{n+1}}{r}},$$

for each $n \in \mathbb{N}$. Taking logarithms we obtain

$$\frac{a_n}{r}\ln\left(1+\frac{r}{a_n}\right) < 1 < \frac{a_{n+1}}{r}\ln\left(1+\frac{r}{a_n}\right),$$

for each $n \in \mathbb{N}$. It follows that

$$\frac{1}{a_{n+1}} < \frac{1}{r} (\ln a_{n+1} - \ln a_n) < \frac{1}{a_n},$$

for any $n \in \mathbb{N}$.

(To these inequalities we can get in the following way as well. We consider the function $f: [\alpha, \beta] \to \mathbb{R}$ defined by $f(x) = \ln x$, for each $x \in [\alpha, \beta]$, where $0 < \alpha < \beta$. It follows, according to Lagrange's formula of finite increments, that there exists $c \in (\alpha, \beta)$ such that $f(\beta) - f(\alpha) = f'(c)(\beta - \alpha)$,

i.e. $\ln \beta - \ln \alpha = \frac{1}{c}(\beta - \alpha)$. Therefore $\frac{1}{\beta} < \frac{1}{\beta - \alpha}(\ln \beta - \ln \alpha) < \frac{1}{\alpha}$. From here, choosing $\alpha = a_n$ and $\beta = a_{n+1}$, we obtain that

$$\frac{1}{a_{n+1}} < \frac{1}{r} (\ln a_{n+1} - \ln a_n) < \frac{1}{a_n},$$

for each $n \in \mathbb{N}$.)

(iii) According to part (ii) we have the inequalities

$$\frac{1}{r}(\ln a_{n+2} - \ln a_{n+1}) < \frac{1}{a_{n+1}}$$

and

$$\frac{1}{a_{n+1}} < \frac{1}{r} (\ln a_{n+1} - \ln a_n),$$

for each $n \in \mathbb{N}$.

Using these inequalities we get that

$$x_{n+1} - x_n = \frac{1}{a_{n+1}} - \frac{1}{r} \ln \frac{a_{n+2}}{a_{n+1}} > 0,$$

for any $n \in \mathbb{N}$, and

$$y_{n+1} - y_n = \frac{1}{a_{n+1}} - \frac{1}{r} \ln \frac{a_{n+1}}{a_n} < 0,$$

for any $n \in \mathbb{N}$.

At the same time

$$y_n - x_n = \frac{1}{r} \ln \frac{a_{n+1}}{a_n} > 0,$$

for each $n \in \mathbb{N}$.

So, the sequence $(x_n)_{n\in\mathbb{N}}$ is strictly increasing and upper bounded, hence convergent, and the sequence $(y_n)_{n\in\mathbb{N}}$ is strictly decreasing and lower bounded, hence convergent.

Because $\lim_{n \to \infty} (y_n - x_n) = 0$, it follows that the sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ have the same limit. Denoting by $\gamma(a,r)$ this limit, we can write that $x_n < x_{n+1} < \gamma(a,r) < y_{n+1} < y_n$, for any $n \in \mathbb{N}$.

(iv) From part (iii) we have that

$$\frac{1}{a} - \frac{1}{r} \ln\left(1 + \frac{r}{a}\right) = x_1 < \gamma(a, r) < y_1 = \frac{1}{a}.$$

Clearly $\frac{1}{a} - \frac{1}{r} \ln \left(1 + \frac{r}{a} \right) > 0$, because $\ln(1+t) < t$, for any t > 0.

$$\lim_{n \to \infty} \frac{\gamma(a,r) - x_{n+1} - (\gamma(a,r) - x_n)}{\frac{1}{n+1} - \frac{1}{n}} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\frac{1}{n(n+1)}} =$$

$$= \lim_{n \to \infty} \frac{\frac{1}{a_{n+1}} - \frac{1}{r} \ln \frac{a_{n+2}}{a_{n+1}}}{\frac{1}{n(n+1)}} = \lim_{n \to \infty} \frac{\frac{1}{a+nr} - \frac{1}{r} \ln \left(1 + \frac{r}{a+nr}\right)}{\frac{1}{n(n+1)}} = \frac{1}{2r},$$

taking into account that

$$\lim_{x \to \infty} \frac{\frac{1}{a+rx} - \frac{1}{r} \ln\left(1 + \frac{r}{a+rx}\right)}{\frac{1}{x(x+1)}} = \lim_{x \to \infty} \frac{-\frac{r}{(a+rx)^2} - \frac{1}{r} \cdot \frac{-\frac{r^2}{(a+rx)^2}}{1 + \frac{r}{a+rx}}}{-\frac{2x+1}{(x^2+x)^2}} =$$

$$= r^2 \lim_{x \to \infty} \frac{(x^2+x)^2}{(2x+1)(a+rx)^2(a+r+rx)} = \frac{1}{2r}.$$

Now, according to the *Stolz-Cesáro* theorem ([1, pp. 72–74], [5, p. 81], [7]), we can write that

$$\lim_{n \to \infty} n(\gamma(a, r) - x_n) = \lim_{n \to \infty} \frac{\gamma(a, r) - x_n}{\frac{1}{n}} =$$

$$= \lim_{n \to \infty} \frac{\gamma(a, r) - x_{n+1} - (\gamma(a, r) - x_n)}{\frac{1}{n+1} - \frac{1}{n}} = \frac{1}{2r}.$$

The others two limits can be obtained in a similar way.

Remark 2.1. If we choose a = 1 and r = 1 in Theorem 2.1, then we obtain results contained in [8] and [2].

3. Approximations for the number $\gamma(a,r)$

Approximations for the number $\gamma(a,r)$ can be obtained using the inequalities from part (iii) of Theorem 2.1. Further on we shall prove finer inequalities which will allow us to give better approximations for $\gamma(a,r)$.

Theorem 3.1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence defined by $a_n = a + (n-1)r$, for each $n \in \mathbb{N}$, where $a, r \in (0, +\infty)$.

We consider the sequences $(\alpha_n)_{n\in\mathbb{N}}$ and $(\beta_n)_{n\in\mathbb{N}}$ defined by

$$\alpha_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r} \ln \left(\frac{a_n}{a} + \frac{r}{2a} + \frac{r^2}{24aa_n} \right),$$

$$\beta_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r} \ln \left(\frac{a_n}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+1}} \right),$$

for each $n \in \mathbb{N}$.

306 Articole

Also, we consider the sequence $(\theta_n)_{n\in\mathbb{N}}$ defined so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} - \frac{1}{r} \ln\left(\frac{a_n}{a} + \theta_n\right) = \gamma(a,r)$, for each $n \in \mathbb{N}$, where $\gamma(a,r)$ is the limit of the sequence $\left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} - \frac{1}{r} \ln \frac{a_n}{a}\right)_{n\in\mathbb{N}}$.

Then

(i)
$$\alpha_n < \alpha_{n+1} < \gamma(a,r) < \beta_{n+1} < \beta_n$$
, for each $n \in \mathbb{N}$;

(ii)
$$\lim_{n \to \infty} n^3(\gamma(a,r) - \alpha_n) = \frac{1}{48r}$$
 and $\lim_{n \to \infty} n^3(\beta_n - \gamma(a,r)) = \frac{1}{48r}$;

(iii)
$$\lim_{n \to \infty} n^4 \left(\gamma(a, r) - \frac{\alpha_n + \beta_n}{2} \right) = \frac{97}{5760r};$$

(iv) the sequence $(\theta_n)_{n\in\mathbb{N}}$ is strictly decreasing, bounded and $\lim_{n\to\infty}\theta_n=\frac{r}{2a}$.

Proof. (i) We have

$$\alpha_{n+2} - \alpha_{n+1} = \frac{1}{a_{n+2}} - \frac{1}{r} \ln \left(\frac{a_{n+2}}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+2}} \right) + \frac{1}{r} \ln \left(\frac{a_{n+1}}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+1}} \right) = \frac{1}{a + (n+1)r} - \frac{1}{r} \ln \left(\frac{a + (n+1)r}{a} + \frac{r}{2a} + \frac{r^2}{24a(a + (n+1)r)} \right) + \frac{1}{r} \ln \left(\frac{a + nr}{a} + \frac{r}{2a} + \frac{r^2}{24a(a + nr)} \right),$$

for any $n \in \mathbb{N} \cup \{0\}$.

We consider the function $f:[0,+\infty)\to\mathbb{R}$, defined by

$$f(x) = \frac{1}{a+r+rx} - \frac{1}{r} \ln \left(\frac{a+r+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+r+rx)} \right) + \frac{1}{r} \ln \left(\frac{a+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+rx)} \right),$$

for each $x \in [0, +\infty)$. We have $f'(x) = -\frac{r}{(a+r+rx)^2}$

$$-\frac{24(a+r+rx)^2-r^2}{(a+r+rx)[24(a+r+rx)^2+12r(a+r+rx)+r^2]} + \frac{24(a+rx)^2-r^2}{(a+rx)[24(a+rx)^2+12r(a+rx)+r^2]} =$$

$$= -\frac{144r^6x^2+(288ar^5+194r^6)x+144a^2r^4+194ar^5+37r^6}{(a+rx)(a+r+rx)^2[24(a+rx)^2+12r(a+rx)+r^2]}.$$

$$\frac{1}{24(a+r+rx)^2+12r(a+r+rx)+r^2} < 0,$$

for any $x \in [0, +\infty)$. It follows that the function f is strictly decreasing on $[0, +\infty)$. Also, we have that $\lim_{x \to \infty} f(x) = 0$. Therefore f(x) > 0, for any $x \in [0, +\infty)$, which means that $\alpha_{n+2} - \alpha_{n+1} > 0$, for each $n \in \mathbb{N} \cup \{0\}$, i.e. the sequence $(\alpha_n)_{n \in \mathbb{N}}$ is strictly increasing.

We have

$$\beta_{n+1} - \beta_n = \frac{1}{a_{n+1}} - \frac{1}{r} \ln \left(\frac{a_{n+1}}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+2}} \right) + \frac{1}{r} \ln \left(\frac{a_n}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+1}} \right) = \frac{1}{a+nr} - \frac{1}{r} \ln \left(\frac{a+nr}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+(n+1)r)} \right) + \frac{1}{r} \ln \left(\frac{a+(n-1)r}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+nr)} \right),$$

for any $n \in \mathbb{N}$.

We consider the function $g:[1,+\infty)\to\mathbb{R}$, defined by

$$g(x) = \frac{1}{a+rx} - \frac{1}{r} \ln \left(\frac{a+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+r+rx)} \right) + \frac{1}{r} \ln \left(\frac{a-r+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+rx)} \right),$$

for each $x \in [1, +\infty)$. We have

$$\begin{split} g'(x) &= -\frac{r}{(a+rx)^2} - \\ &- \frac{24(a+r+rx)^2 - r^2}{(a+r+rx)[24(a+rx)(a+r+rx) + 12r(a+r+rx) + r^2]} + \\ &+ \frac{24(a+rx)^2 - r^2}{(a+rx)[24(a-r+rx)(a+rx) + 12r(a+rx) + r^2]} = \\ &= \frac{144r^6x^2 + (288ar^5 + 94r^6)x + 144a^2r^4 + 94ar^5 - 13r^6}{(a+rx)^2(a+r+rx)[24(a-r+rx)(a+rx) + 12r(a+rx) + r^2]} \cdot \\ &\cdot \frac{1}{24(a+rx)(a+r+rx) + 12r(a+r+rx) + r^2} > 0, \end{split}$$

for any $x \in [1, +\infty)$. It follows that the function g is strictly increasing on $[1, +\infty)$. Also, we have that $\lim_{x \to \infty} g(x) = 0$. Therefore g(x) < 0, for any $x \in [1, +\infty)$, which means that $\beta_{n+1} - \beta_n < 0$, for each $n \in \mathbb{N}$, i.e. the sequence $(\beta_n)_{n \in \mathbb{N}}$ is strictly decreasing.

We have $\lim_{n\to\infty} \alpha_n = \gamma(a,r)$ and $\lim_{n\to\infty} \beta_n = \gamma(a,r)$.

308 Articole

Now we can write that $\alpha_n < \alpha_{n+1} < \gamma(a,r) < \beta_{n+1} < \beta_n$, for any $n \in \mathbb{N}$.

(ii) We have

$$\lim_{n \to \infty} \frac{\gamma(a,r) - \alpha_{n+2} - (\gamma(a,r) - \alpha_{n+1})}{\frac{1}{(n+2)^3} - \frac{1}{(n+1)^3}} = \lim_{n \to \infty} \frac{-(\alpha_{n+2} - \alpha_{n+1})}{\frac{1}{(n+2)^3} - \frac{1}{(n+1)^3}} = \frac{1}{48r},$$

taking into account that

$$\lim_{x \to \infty} \frac{-f(x)}{\frac{1}{(x+2)^3} - \frac{1}{(x+1)^3}} = \lim_{x \to \infty} \frac{-f'(x)}{-\frac{3}{(x+2)^4} + \frac{3}{(x+1)^4}} =$$
$$= \lim_{x \to \infty} \frac{-(x+1)^4 (x+2)^4 f'(x)}{3[(x+2)^4 - (x+1)^4]} = \frac{1}{48r}.$$

Now, according to the *Stolz-Cesáro* theorem ([1, pp. 72–74], [5, p. 81], [7]), we can write that

$$\lim_{n \to \infty} n^3 (\gamma(a, r) - \alpha_n) = \lim_{n \to \infty} (n+1)^3 (\gamma(a, r) - \alpha_{n+1}) = \lim_{n \to \infty} \frac{\gamma(a, r) - \alpha_{n+1}}{\frac{1}{(n+1)^3}} = \lim_{n \to \infty} \frac{\gamma(a, r) - \alpha_{n+1}}{\frac{1}{(n+2)^3} - \frac{1}{(n+1)^3}} = \frac{1}{48r}.$$

The other limit can be obtained in a similar way.

(iii) We have

$$\frac{\alpha_{n+1} + \beta_{n+1}}{2} - \frac{\alpha_n + \beta_n}{2} = \frac{1}{a_{n+1}} - \frac{1}{2r} \ln \left(\frac{a_{n+1}}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+2}} \right) - \frac{1}{2r} \ln \left(\frac{a_{n+1}}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+2}} \right) + \frac{1}{2r} \ln \left(\frac{a_n}{a} + \frac{r}{2a} + \frac{r^2}{24aa_{n+1}} \right) = \frac{1}{a+nr} - \frac{1}{2r} \ln \left(\frac{a+nr}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+nr)} \right) - \frac{1}{2r} \ln \left(\frac{a+nr}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+(n+1)r)} \right) + \frac{1}{2r} \ln \left(\frac{a+(n-1)r}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+(n-1)r)} \right) + \frac{1}{2r} \ln \left(\frac{a+(n-1)r}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+(n-1)r)} \right) + \frac{1}{2r} \ln \left(\frac{a+(n-1)r}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+nr)} \right),$$

for any $n \in \mathbb{N}$.

We consider the function $h:[1,+\infty)\to\mathbb{R}$, defined by

$$h(x) = \frac{1}{a+rx} - \frac{1}{2r} \ln \left(\frac{a+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+rx)} \right) - \frac{1}{2r} \ln \left(\frac{a+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+r+rx)} \right) + \frac{1}{2r} \ln \left(\frac{a-r+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a-r+rx)} \right) + \frac{1}{2r} \ln \left(\frac{a-r+rx}{a} + \frac{r}{2a} + \frac{r^2}{24a(a+rx)} \right),$$

for each $x \in [1, +\infty)$. We have

$$h'(x) = -\frac{r}{(a+rx)^2} - \frac{24(a+rx)^2 - r^2}{2(a+rx)[24(a+rx)^2 + 12r(a+rx) + r^2]} - \frac{24(a+r+rx)^2 - r^2}{2(a+r+rx)[24(a+rx)(a+r+rx) + 12r(a+r+rx) + r^2]} + \frac{24(a-r+rx)^2 - r^2}{2(a-r+rx)[24(a-r+rx)^2 + 12r(a-r+rx) + r^2]} + \frac{24(a+rx)^2 - r^2}{2(a+rx)[24(a-r+rx)(a+rx) + 12r(a+rx) + r^2]} = \\ = [-223488r^{11}x^6 - 1340928ar^{10}x^5 + (-3352320a^2r^9 + 182400r^{11})x^4 + \\ + (-4469760a^3r^8 + 729600ar^{10})x^3 + \\ + (-3352320a^4r^7 + 1094400a^2r^9 - 29476r^{11})x^2 + \\ + (-1340928a^5r^6 + 729600a^3r^8 - 58952ar^{10})x - \\ -223488a^6r^5 + 182400a^4r^7 - 29476a^2r^9 + 338r^{11}] \cdot \\ \cdot [2(a+rx)^2(a-r+rx)(a+r+rx) + r^2][24(a+rx)^2 + 12r(a+rx) + r^2] \cdot \\ \cdot [24(a+rx)(a+r+rx) + 12r(a+rx) + r^2][24(a-r+rx)^2 + 12r(a-r+rx) + r^2] \cdot \\ \cdot [24(a-r+rx)(a+rx) + 12r(a+rx) + r^2] \}^{-1},$$
 for any $x \in [1, +\infty)$.

The limit can be obtained in a similar way as in the proof of part (ii).

(iv) We have
$$\theta_n = e^{r\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \gamma(a,r)\right)} - \frac{a_n}{a}$$
, for each $n \in \mathbb{N}$.

According to the inequalities from part (i) we can write that

$$\frac{r}{2a} + \frac{r^2}{24aa_{n+1}} < \theta_n < \frac{r}{2a} + \frac{r^2}{24aa_n},$$

for each $n \in \mathbb{N}$.

From here it follows that the sequence $(\theta_n)_{n\in\mathbb{N}}$ is strictly decreasing and lower bounded, and that $\lim_{n\to\infty}\theta_n=\frac{r}{2a}$.

310 ARTICOLE

Remark 3.1. If we choose a = 1 and r = 1, then in part (iv) of Theorem 3.1 we obtain a problem proposed by B. Ramazan and L. Lazarovici [6], problem which was solved by L. Tóth [9], proving that

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) < \gamma < 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln\left(n + \frac{1}{2} + \frac{1}{24(n+1)}\right),$$

for each $n \in \mathbb{N}$.

Remark 3.2. The approximations which are obtained for $\gamma(a,r)$, with the help of the inequalities from part (i) of Theorem 3.1, are quite good.

From the inequalities given in part (i) of Theorem 3.1 we obtain, from $\alpha_1 < \gamma(a,r) < \beta_1$, for example:

$$\begin{array}{ll} 1.1342\ldots<\gamma\left(\frac{1}{2},\frac{1}{2}\right)<1.1614\ldots; & 1.2268\ldots<\gamma\left(\frac{1}{2},1\right)<1.2794\ldots; \\ 1.3503\ldots<\gamma\left(\frac{1}{2},2\right)<1.4289\ldots; & 0.5371\ldots<\gamma\left(1,\frac{1}{2}\right)<0.5426\ldots; \\ 0.5671\ldots<\gamma(1,1)<0.5807\ldots; & 0.6134\ldots<\gamma(1,2)<0.6397\ldots; \\ 0.2598\ldots<\gamma\left(2,\frac{1}{2}\right)<0.2607\ldots; & 0.2685\ldots<\gamma(2,1)<0.2713\ldots; \\ 0.2835\ldots<\gamma(2,2)<0.2903\ldots. \end{array}$$

and, from $\alpha_2 < \gamma(a,r) < \beta_2$ we get, for example:

$$\begin{array}{ll} \text{from } \alpha_2 < \gamma(a,r) < \beta_2 \text{ we get, for example:} \\ 1.1508\ldots < \gamma\left(\frac{1}{2},\frac{1}{2}\right) < 1.1563\ldots; & 1.2665\ldots < \gamma\left(\frac{1}{2},1\right) < 1.2720\ldots; \\ 1.4176\ldots < \gamma\left(\frac{1}{2},2\right) < 1.4217\ldots; & 0.5395\ldots < \gamma\left(1,\frac{1}{2}\right) < 0.5414\ldots; \\ 0.5754\ldots < \gamma(1,1) < 0.5781\ldots & 0.6332\ldots < \gamma(1,2) < 0.6360\ldots; \\ 0.2600\ldots < \gamma\left(2,\frac{1}{2}\right) < 0.2605\ldots; & 0.2697\ldots < \gamma(2,1) < 0.2707\ldots; \\ 0.2877\ldots < \gamma(2,2) < 0.2890\ldots. \end{array}$$

Theorem 3.2. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence defined by $a_n = a + (n-1)r$, for each $n \in \mathbb{N}$, where $a, r \in (0, +\infty)$.

We consider the sequences $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ defined by

$$A_n = \alpha_n + \frac{r^2}{48a_{n+1}^3}$$
 and $B_n = \beta_n - \frac{r^2}{48a_{n+1}^3}$,

for each $n \in \mathbb{N}$, where $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ are the sequences from the enunciation of Theorem 3.1.

Also, we specify that $\gamma(a,r)$ is the limit of the sequence

$$\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{1}{r} \ln \frac{a_n}{a}\right)_{n \in \mathbb{N}}.$$

Then

(i)
$$A_n < A_{n+1} < \gamma(a,r) < B_{n+1} < B_n$$
, for each $n \in \mathbb{N}$;

(ii)
$$\lim_{n \to \infty} n^4(\gamma(a, r) - A_n) = \frac{277}{5760r}$$
 and $\lim_{n \to \infty} n^4(B_n - \gamma(a, r)) = \frac{83}{5760r}$.

Proof. (i) We shall use the functions $f:[0,+\infty)\to\mathbb{R}$ and $g:[1,+\infty)\to\mathbb{R}$ defined as in the proof of Theorem 3.1.

We have

$$A_{n+2} - A_{n+1} = \alpha_{n+2} - \alpha_{n+1} + \frac{r^2}{48a_{n+3}^3} - \frac{r^2}{48a_{n+2}^3} =$$

$$= \alpha_{n+2} - \alpha_{n+1} + \frac{r^2}{48(a + (n+2)r)^3} - \frac{r^2}{48(a + (n+1)r)^3},$$

for any $n \in \mathbb{N} \cup \{0\}$.

We consider the function $F:[0,+\infty)\to\mathbb{R}$, defined by

$$F(x) = f(x) + \frac{r^2}{48(a+2r+rx)^3} - \frac{r^2}{48(a+r+rx)^3},$$

for each $x \in [0, +\infty)$. We have

$$F'(x) = f'(x) - \frac{r^3}{16(a+2r+rx)^4} + \frac{r^3}{16(a+r+rx)^4} = \\ = -\left[8864r^{12}x^7 + \left(62048ar^{11} + 72336r^{12}\right)x^6 + \left(186144a^2r^{10} + 434016ar^{11} + 247520r^{12}\right)x^5 + \left(310240a^3r^9 + 1085040a^2r^{10} + 1237600ar^{11} + 456204r^{12}\right)x^4 + \\ + \left(310240a^4r^8 + 1446720a^3r^9 + 2475200a^2r^{10} + 1824816ar^{11} + 483110r^{12}\right)x^3 + \\ + \left(186144a^5r^7 + 1085040a^4r^8 + 2475200a^3r^9 + 2737224a^2r^{10} + 1449330ar^{11} + 288492r^{12}\right)x^2 + \\ + \left(62048a^6r^6 + 434016a^5r^7 + 1237600a^4r^8 + 1824816a^3r^9 + 1449330a^2r^{10} + 576984ar^{11} + 86997r^{12}\right)x + \\ + 8864a^7r^5 + 72336a^6r^6 + 247520a^5r^7 + 456204a^4r^8 + 483110a^3r^9 + 288492a^2r^{10} + 86997ar^{11} + 9472r^{12}\right] \cdot \\ \cdot \left\{16(a+rx)(a+r+rx)^4(a+2r+rx)^4\left[24(a+rx)^2 + 12r(a+rx) + r^2\right] \cdot \\ \cdot \left[24(a+r+rx)^2 + 12r(a+r+rx) + r^2\right]\right\}^{-1} < 0,$$
 for any $x \in [0, +\infty)$. It follows that the function F is strictly decreasing on

for any $x \in [0, +\infty)$. It follows that the function F is strictly decreasing on $[0, +\infty)$. Also, we have that $\lim_{x \to \infty} F(x) = 0$. Therefore F(x) > 0, for any $x \in [0, +\infty)$, which means that $A_{n+2} - A_{n+1} > 0$, for each $n \in \mathbb{N} \cup \{0\}$, i.e. the sequence $(A_n)_{n \in \mathbb{N}}$ is strictly increasing.

We have

$$B_{n+1} - B_n = \beta_{n+1} - \beta_n - \frac{r^2}{48a_{n+2}^3} + \frac{r^2}{48a_{n+1}^3} =$$

$$= \beta_{n+1} - \beta_n - \frac{r^2}{48(a + (n+1)r)^3} + \frac{r^2}{48(a + nr)^3},$$

312 ARTICOLE

for any $n \in \mathbb{N}$.

We consider the function $G: [1, +\infty) \to \mathbb{R}$, defined by

$$G(x) = g(x) - \frac{r^2}{48(a+r+rx)^3} + \frac{r^2}{48(a+rx)^3},$$

for each $x \in [1, +\infty)$. We have

$$G'(x) = g'(x) + \frac{r^3}{16(a+r+rx)^4} - \frac{r^3}{16(a+rx)^4} =$$

$$= \left[2656r^{11}x^6 + \left(15936ar^{10} + 5840r^{11}\right)x^5 + \left(39840a^2r^9 + 29200ar^{10} + 4368r^{11}\right)x^4 + \left(53120a^3r^8 + 58400a^2r^9 + 17472ar^{10} + 1356r^{11}\right)x^3 +$$

$$+ \left(39840a^4r^7 + 58400a^3r^8 + 26208a^2r^9 + 4068ar^{10} + 290r^{11}\right)x^2 +$$

$$+ \left(15936a^5r^6 + 29200a^4r^7 + 17472a^3r^8 + 4068a^2r^9 + 580ar^{10} + 68r^{11}\right)x +$$

$$+2656a^6r^5 + 5840a^5r^6 + 4368a^4r^7 + 1356a^3r^8 + 290a^2r^9 + 68ar^{10} - 13r^{11}\right] \cdot$$

$$\cdot \left\{16\left(a+rx\right)^4\left(a+r+rx\right)^4\left[24\left(a-r+rx\right)\left(a+rx\right) + 12r\left(a+rx\right) + r^2\right]\right\}^{-1} > 0.$$

$$\cdot \left[24(a+rx)(a+r+rx) + 12r(a+r+rx) + r^2 \right] \right\}^{-1} > 0,$$

for any $x \in [1, +\infty)$. It follows that the function G is strictly increasing on $[1,+\infty)$. Also, we have that $\lim_{x\to\infty}G(x)=0$. Therefore G(x)<0, for any $x \in [1, +\infty)$, which means that $B_{n+1} - B_n < 0$, for each $n \in \mathbb{N}$, i.e. the sequence $(B_n)_{n\in\mathbb{N}}$ is strictly decreasing.

We have $\lim_{n\to\infty} A_n = \gamma(a,r)$ and $\lim_{n\to\infty} B_n = \gamma(a,r)$. Now we can write that $A_n < A_{n+1} < \gamma(a,r) < B_{n+1} < B_n$, for any $n \in \mathbb{N}$.

(ii) The limits can be obtained in a similar way as in the proof of part (ii) of Theorem 3.1.

Remark 3.3. The inequality $A_n < \gamma(a,r)$, for each $n \in \mathbb{N}$, when a=1and r=1, was given by T. Negoi in [4], where $(A_n)_{n\in\mathbb{N}}$ is the sequence from the enunciation of Theorem 3.2.

Remark 3.4. From the inequalities given in part (i) of Theorem 3.2 we obtain, from $A_1 < \gamma(a,r) < B_1$, for example:

$$\begin{array}{lll} \text{1.1394} \dots < \gamma \left(\frac{1}{2},\frac{1}{2}\right) < 1.1562 \dots; & 1.2329 \dots < \gamma \left(\frac{1}{2},1\right) < 1.2732 \dots; \\ \text{1.3556} \dots < \gamma \left(\frac{1}{2},2\right) < 1.4236 \dots; & 0.5386 \dots < \gamma \left(1,\frac{1}{2}\right) < 0.5410 \dots; \\ \text{0.5697} \dots < \gamma (1,1) < 0.5781 \dots; & 0.6164 \dots < \gamma (1,2) < 0.6366 \dots; \\ \text{0.2601} \dots < \gamma \left(2,\frac{1}{2}\right) < 0.2604 \dots; & 0.2693 \dots < \gamma (2,1) < 0.2705 \dots \\ \text{0.2848} \dots < \gamma (2,2) < 0.2890 \dots \end{array}$$

and, from $A_2 < \gamma(a,r) < B_2$ we get, for example:

$$\begin{split} 1.1523\ldots &< \gamma\left(\frac{1}{2},\frac{1}{2}\right) < 1.1547\ldots; & 1.2679\ldots < \gamma\left(\frac{1}{2},1\right) < 1.2707\ldots; \\ 1.4185\ldots &< \gamma\left(\frac{1}{2},2\right) < 1.4208\ldots; & 0.5401\ldots < \gamma\left(1,\frac{1}{2}\right) < 0.5408\ldots; \\ 0.5761\ldots &< \gamma(1,1) < 0.5773\ldots; & 0.6339\ldots < \gamma(1,2) < 0.6353\ldots; \\ 0.2602\ldots &< \gamma\left(2,\frac{1}{2}\right) < 0.2603\ldots & 0.2700\ldots < \gamma(2,1) < 0.2704\ldots; \\ 0.2880\ldots &< \gamma(2,2) < 0.2886\ldots. \end{split}$$

References

- [1] D. M. Ivan, Calculus, Editura Mediamira, Cluj-Napoca, 2002.
- [2] M. Ivan, Solved Problems in Calculus, Editura U. T. PRES, Cluj-Napoca, 2004.
- [3] I. Nedelcu, Problema 21753, Gazeta Matematică, Seria B, 94 (4), 1989, 136.
- [4] T. Negoi, O convergență mai rapidă către constanta lui Euler, Gazeta Matematică, Seria A, 15 (94) (2), 1997, 111–113.
- [5] A. Ney, Curs de analiză matematică Partea I (Course of Mathematical Analysis -Part I), Babeș-Bolyai University of Cluj-Napoca, Cluj-Napoca, 1972.
- [6] B. Ramazan, L. Lazarovici, Problem C: 608, Gazeta Matematică, Seria B, 91 (6), 1986, covers III and IV.
- [7] I. Rizzoli, O teoremă Stolz-Cesaro, Gazeta Matematică, Seria B, 95 (10–11–12), 1990, 281–284.
- [8] Gh. Sireţchi, Calcul diferențial și integral, Vol. I, Noțiuni fundamentale, Editura Științifică și Enciclopedică, București, 1985.
- [9] L. Tóth, Asupra problemei C: 608, Gazeta Matematică, Seria B, 94 (8), 1989, 277-279.
- [10] A. Vernescu, Ordinul de convergență al şirului de definiție al constantei lui Euler (The convergence order of the definition sequence of Euler's constant), Gazeta Matematică, Seria B, 88 (10—11), 1983, 380—381.

O demonstrație simplă pentru inegalitățile lui Blundon

Marian Cucoaneş¹⁾

Abstract. In this note we prove Blundon's inequalities in a simple and elegant way. Our proof relies on a well-known trigonometric inequality.

Keywords: geometric inequality, Blundon's inequality, Gerretsten's inequality.

MSC: 26D15.

Forma cunoscută a inegalității lui Blundon este următoarea:

$$f(R,r) \le p^2 \le F(R,r),$$

unde

$$f(R,r) = 2R^2 + 10Rr - r^2 - 2(R - 2r)\sqrt{R(R - 2r)},$$

$$F(R,r) = 2R^2 + 10Rr - r^2 + 2(R - 2r)\sqrt{R(R - 2r)}.$$

În continuare vom demonstra aceste inegalități.

¹⁾Profesor, Gr. Şc. Mărăşeşti, jud. Vrancea.

314 Articole

Pentru început demonstrăm următoarea lemă:

Lemă. Dacă $\alpha, \beta, \gamma, x, y, z \in \mathbb{R}$ cu proprietatea $x + y + z = \pi$, atunci are loc ineglitatea $2\beta\gamma\cos x + 2\alpha\gamma\cos y + 2\alpha\beta\cos z \le \alpha^2 + \beta^2 + \gamma^2$.

Demonstrație. C
m $x+y+z=\pi$ rezultă $\cos z=-\cos(x+y)$ și are loc egalitatea

$$(\alpha \sin y - \beta \sin x)^2 + (\gamma - \alpha \cos y - \beta \cos x)^2 =$$

$$= \alpha^2 + \beta^2 + \gamma^2 - 2\beta\gamma \cos x - 2\alpha\gamma \cos y - 2\alpha\beta \cos z,$$

de unde rezultă imediat concluzia.

Demonstrăm acum următoarea teoremă:

Teoremă. Pentru orice triunghi ABC și pentru orice număr real m are loc inegalitatea

$$m \cdot p^2 + 2(m^2 - 5m + 2) \cdot R \cdot r + (m - 4)r^2 \le (m + 1)^2 \cdot R^2$$
.

Demonstrație. Fie ABC un triunghi oarecare și $t \in \mathbb{R}$. În inegalitatea din lema precedentă luăm

$$x = A; \quad y = B; \quad z = C;$$

$$\alpha = \cos A + t; \quad \beta = \cos B + t; \quad \gamma = \cos C + t.$$

Astfel obţinem

$$2\cos A(\cos B + t) \cdot (\cos C + t) + 2\cos B(\cos A + t) \cdot (\cos C + t) +$$

$$+2\cos C(\cos A + t) \cdot (\cos B + t) \leq (\cos A + t)^{2} + (\cos B + t)^{2} +$$

$$+(\cos C + t)^{2} \Leftrightarrow 2\cos A \left[\cos B \cdot \cos C + t(\cos B + \cos C) + t^{2}\right] +$$

$$+2\cos B \left[\cos A \cdot \cos C + t(\cos A + \cos C) + t^{2}\right] +$$

$$+2\cos C \left[\cos A \cdot \cos B + t(\cos A + \cos B) + t^{2}\right] \leq$$

$$\leq \sum \cos^{2} A + 2t \sum \cos A + 3t^{2} \Leftrightarrow$$

$$\Leftrightarrow 6 \prod \cos A + 4t \sum \cos A \cdot \cos B + 2t^{2} \sum \cos A \leq$$

$$\leq \sum \cos^{2} A + 2t \sum \cos A + 3t^{2} \Leftrightarrow$$

$$\Leftrightarrow 8 \prod \cos A + 4t \sum \cos A \cdot \cos B + (2t^{2} - 2t) \sum \cos A \leq 3t^{2} + 1,$$

ultima echivalență având loc în virtutea faptului că $\sum \cos^2 A = 1 - 2 \prod \cos A$. Folosim, în continuare, următoarele egalități:

$$\sum \cos A = 1 + \frac{r}{R}$$

$$\sum \cos A \cos B = \frac{p^2 + 4Rr + r^2}{4R^2} - \frac{r}{R} - 1$$

$$2 \prod \cos A = \frac{2p^2 - 8Rr - 2r^2}{4R^2} - 2.$$

Obţinem

$$4\left(\frac{2p^2 - 8Rr - 2r^2}{4R^2} - 2\right) + 4t\left(\frac{p^2 + 4Rr + r^2}{4R^2} - \frac{r}{R} - 1\right) + \left(2t^2 - 2t\right)\left(1 + \frac{r}{R}\right) \le 3t^2 + 1 \Leftrightarrow \Leftrightarrow (t+2) \cdot p^2 + 2\left(t^2 - t - 4\right)Rr + (t-2)r^2 \le (t+3)^2R^2. \tag{1}$$

Inegalitatea (1) este adevărată pentru orice triunghi ABC și pentru orice $t \in \mathbb{R}.$

În inegalitatea (1) punem t=m-2 și obținem exact inegalitatea din concluzia teoremei.

Consecința 1. Pentru orice triunghi ABC și pentru orice m>0 are loc inegalitatea

$$p^2 \le 2R^2 + 10Rr - r^2 + m \cdot R(R - 2r) + \frac{1}{m} \cdot (R - 2r)^2.$$

Demonstrație. Din teorema precedentă avem

$$mp^{2} + 2(m^{2} - 5m + 2) \cdot Rr + (m - 4)r^{2} \le (m + 1)^{2}R^{2}$$

și cum m>0 rezultă

$$p^{2} + \frac{2}{m} (m^{2} - 5m + 2) Rr + \frac{1}{m} (m - 4)r^{2} \le \frac{1}{m} (m + 1)^{2} R^{2} \Leftrightarrow$$
$$\Leftrightarrow p^{2} \le 2R^{2} + 10Rr - r^{2} + mR(R - 2r) + \frac{1}{m} (R - 2r)^{2}.$$

Consecința 2. În orice triunghi ABC și pentru orice m < 0 are loc inequlitatea

$$p^2 \ge 2R^2 + 10Rr - r^2 + m \cdot R(R - 2r) + \frac{1}{m} \cdot (R - 2r)^2.$$

Demonstrație. Din teorema precedentă avem

$$mp^2 + 2(m^2 - 5m + 2) \cdot Rr + (m - 4)r^2 \le (m + 1)^2 R^2$$

și cum m < 0 rezultă:

$$p^{2} + \frac{2}{m} (m^{2} - 5m + 2) Rr + \frac{1}{m} (m - 4)r^{2} \ge \frac{1}{m} (m + 1)^{2} R^{2} \Leftrightarrow$$
$$\Leftrightarrow p^{2} \ge 2R^{2} + 10Rr - r^{2} + mR(R - 2r) + \frac{1}{m} (R - 2r)^{2}.$$

Suntem în măsură acum să demonstrăm inegalitățile lui Blundon.

Dacă triunghiul ABC este echilateral atunci inegalitățile lui Blundon sunt evidente. De fapt, în acest caz avem egalități.

Presupunem deci că triunghiul ABC nu este echilateral. În acest caz, inegalitatea lui $Euler\ R \geq 2r$ este strictă. Deci avem R-2r>0.

316 Articole

În inegalitatea din consecința 1 luăm $m=\sqrt{\frac{R-2r}{R}}>0$ și cum pentru $m=\sqrt{\frac{R-2r}{R}} \ \text{avem}$

$$m \cdot R(R-2r) + \frac{1}{m}(R-2r)^2 = 2(R-2r)\sqrt{R(R-2r)},$$

obţinem

$$p^2 \le 2R^2 + 10Rr - r^2 + 2(R - 2r)\sqrt{R(R - 2r)}$$
.

Am obținut astfel inegalitatea din drepta a lui Blundon.

În inegalitatea din consecința 2 luăm $m=-\sqrt{\frac{R-2r}{R}}<0$ și cum

pentru
$$m = -\sqrt{\frac{R-2r}{R}}$$
 avem

$$m \cdot R(R-2r) + \frac{1}{m}(R-2r)^2 = -2(R-2r)\sqrt{R(R-2r)},$$

obţinem

$$p^2 \ge 2R^2 + 10Rr - r^2 - 2(R - 2r)\sqrt{R(R - 2r)}$$
.

Am obținut astfel inegalitatea din stânga a lui Blundon.

Observații. 1) Dacă în inegalitatea din teorema precedentă luăm m=1, atunci obținem inegalitatea $p^2 \leq 4R^2 + 4Rr + 3r^2$ (inegalitatea lui Gerretsen).

2) Dacă în inegalitatea din teorema precedentă luăm m=-1, atunci obținem inegalitatea $p^2 \geq 16Rr-5r^2$.

BIBLIOGRAFIE

- [1] P. G. Popescu, I. V. Maftei, J. L. Diaz-Barrero, M. Dincă, *Inegalități matematice*, Editura Didactică și Pedagogică, București, 2007.
- $[2]\ *\ *\ *,$ Gazeta Matematică, colecția 2000-2008.
- $[3]\ *\ *\ *$, Revista de Matematică din Timișoara, colecția 2000-2008.

DIDACTICA MATEMATICII

Noi reflecții asupra domeniului meu de entuziasm¹⁾

George Dincă²⁾

Stimate Domnule Rector, Doamnelor și Domnilor,

În cele ce urmează va fi vorba de câteva gânduri răzlețe, simțind nevoia de ordine, ieșite dintr-o călătorie lezardată făcută pe acest munte impunător al spiritualității umane care este Matematica. Muntele începe de jur împrejur, iar potecile sunt rare. Unde nu m-am putut urca, m-am uitat, mulțumindu-mă cu câteva imagini vaporoase.

"Mă găsesc printre dumneavoastră ca reprezentantul unei științe pe care, cei mai mulți, o socotesc mohorâtă, pentru care lumea are o deosebită groază, față de care chiar respectul unora nu e lipsit de un fior care ține pe om la depărtare; în scurt, reprezint o știință puțin simpatică: matematica." Așa începe discursul de recepție al lui *Gheorghe Țițeica* la Academia Română, la 29 mai 1914. Față de singurătatea în care se afla *Țițeica* în urmă cu aproape o sută de ani, s-a schimbat ceva esențial în starea de singurătate a matematicianului? Este întrebarea pe care și-o pune *Solomon Marcus* în propriul discurs de recepție, intitulat "Singurătatea matematicianului". Răspunsul său este în egală măsură dezarmant și provocator. S-a schimbat, da, în sensul agravării situației, ca urmare a faptului că limbajul matematic a devenit tot mai complicat și, vorba filozofului francez *Michel Henry*, constituie o barbarie (vezi, La Barbarie, Grasset, Paris, 1987).

Se ralia astfel lui George Steiner care în "Language and Silence" (Atheneum, New York, 1967) pleda pentru un punct de vedere similar. Nici Schopenhauer n-avea o părere prea favorabilă despre matematică și despre matematicieni, iar Göethe, pe care-l cităm din "Convorbirile cu Eckermann" zicea:

"Matematicienii sunt ca francezii; le pui o problemă, ei o trec pe limba lor și mai departe nu mai înțelegi nimic." De aici s-a dedus uneori că *Göethe* nu-i agrea pe matematicieni. Este însă mai potrivit să credem că autorul lui "Faust", cel care în ultimele clipe ale vieții simțea nevoia de lumină, de mai multă lumină, avea o profundă înțelegere a naturii activității matematice, în care se manifestă un mod specific de a distinge un enunț cu sens de unul fără sens și o percepție specială a demarcației dintre claritate și obscur.

Să-l ascultăm acum pe *Antoine de Rivarol* cel ce a jucat un rol atât de important în dezvoltarea limbii franceze. În 1784 el a devenit (alături de

 $^{^{1)} {\}rm Lec}$ ție ținută în Aula Mare a Universității din București, la 7 octombrie 2009, cu prilejul deschiderii anului academic 2009-2010.

²⁾ Prof. univ. dr., Universitatea din București

Johann Christoph Schwab) laureat al Academiei din Berlin cu al lui "Discurs asupra universalității limbii franceze". În acest "discurs", la un moment dat zice: "Des philosophes ont demandé si la pensé peut exister sans la parole ou sans quelques autres signes. Non, sans doute... C'est dans la parole que se fait la véritable génération de la pensée. Le langage est sans doute la plus fidéle image de la pensée." Dar, dacă limbajul este cea mai fidelă imagine a gândirii, atunci trebuie să acceptăm că gândirii matematice trebuie să-i corespundă un limbaj specific ("limba lor", a matematicienilor, la care făcea referire Göthe). Se poate face însă ceva pentru ca, fără a renunța la rigoare, acest limbaj să poată fi "umanizat"? Întrebarea e veche. Şi-o punea, de exemplu, matematicianul Dan Barbilian dar îi răspundea poetul Ion Barbu. Amintiți-vă poezia lui intitulată "Umanizare":

Castelul tău de ghiață l-am cunoscut Gândire; Sub tristele-i arcade mult timp am rătăcit, De noi desprinderi dornic, dar nici o oglindire În stinsele-i cristale ce-ascunzi nu mi-a vorbit.

După Henri Poincaré, unul din instrumentele principale în realizarea acestui proces de umanizare stă în cultivarea intuiției, în conjuncție cu rigoarea: "Sans elle, les jeunes esprits ne sauraient s'initier a l'intelligence des Mathématiques; ils n'apprendraient pas les aimer et n'y verraient qu'une vaine logomachie; sans elle surtout ils ne deviendraient jamais capable de les appliquer." "Făra ea (n.a. adică, fără intuiție) spiritele tinere n-ar ști să se inițieze în inteligența matematicilor; n-ar învăța să le iubească și n-ar vedea în ele decât o logomahie inutilă; fără ea, mai ales, n-ar deveni niciodată capabile să aplice matematicile."

Doamnelor şi domnilor,

Cu această introducere, un pic excesivă, încalc, de o manieră flagrantă una din regulile de bază despre structura discursului: cărțile de retorică ne învață că introducerea trebuie să fie scurtă, că trebuie mers direct la obiect. Ne mai învață, aceste cărți, că trebuie să începi cu încredere ca și când ai fi convins că oamenii cărora te adresezi au venit special pentru tine. Am văzut și am ascultat pe cineva care satisfăcea în mod natural această condiție. Ţinea, în anul universitar 1963-1964, în amfiteatrul *Odobescu* al Facultății de Limbă și Literatură Română, un curs despre *Mihai Eminescu*. Şi zice, într-una din lecțiile sale de deschidere:

"Intru la clasă cu convingerea, poate naivă, că cine a venit să mă asculte nu se poate mulțumi cu cursul scris și nici cu un suplinitor. Și mă consider, în permanență, propriul meu student veritabil." Ați ghicit. Este vorba despre G. $C\"{a}linescu$.

Mai spun aceste cărți că, doamne ferește să începi un discurs prin a te scuza (de exemplu, îmi cer scuze, nu sunt un foarte bun orator, dar...).

Fără a-mi cere scuze, mărturisesc că mă aflu într-o situație deloc confortabilă. Mai întâi, pentru că mă adresez unui public care se situează, fără îndoială, la standarde de cultură foarte înalte dar, în același timp, este foarte eterogen.

În al doilea rând pentru că nu fac matematică, nici măcar nu expun matematică ci vorbesc despre matematică.

Nu mi se întâmplă des dar, ori de câte ori mi se întâmplă, trebuie să depășesc bariera psihologică generată de spusele unui matematician important pe nume *Godfrey Harold Hardy* (1877-1947). El a publicat, în 1940, la Cambridge University Press, un eseu intitulat: "A Mathematician's Apology". Există în acest eseu un pasaj care m-a șocat:

"Nu există dispreț mai profund și, în fond, mai legitim, decât acela al oamenilor care fac pentru cei care *explică*. A expune, a critica și a aprecia reprezintă o muncă pentru minți de categoria a doua."

În urmă cu câțiva ani am avut o lungă discuție cu profesorul Solomon Marcus în legătură cu aceste zise ale lui Hardy și am ajuns la concluzia că afirmația lui este falsă. Spre justificare vom face un raționament pe care îl moștenim de la vechii greci, care era foarte drag lui Euclid și care se numește reducere la absurd.

Structura unui astfel de raţionament este următoarea: presupunem că teza în chestiune ar fi adevărată. O asociem cu o altă teză despre care ştim că este adevărată. Dacă din această asociere se ajunge la o contradicţie înseamnă că teza în chestiune este falsă. Aplicat la cazul nostru, acest tip de raţionament dă următoarele.

Să presupunem că teza lui *Hardy* ar fi adevărată.

Odată, rugat să explice fundamentele teoriei relativității, Einstein a spus: cunosc pe cineva care poate să le explice mai bine decât mine: profesorul Minkowski. Dacă teza lui Hardy ar fi adevărată ar rezulta că Minkowski era o minte de categoria a doua. Or, aceasta contrazice un fapt unanim recunoscut: profesorul de geometrie al lui Einstein era un matematician de prima categorie.

Să mergem, așadar, împreună mai departe. Vă promit că voi încerca să umanizez aspectele mai tehnice, inevitabile într-o astfel de expunere. Lucrurile trebuie făcute cât mai simplu cu putință însă nu mai simplu de atât. În paranteză fie spus, deși spusese că "nu înțelegi un lucru pe deplin decât dacă poți să-l explici bunicii", atunci când admitea să explice unui public mai puțin avizat ce înseamnă teoria relativității, autorul ei o făcea de maniera următoare:

"Pune mâna pe o sobă fierbinte un minut și ți se va părea o oră. Stai cu o persoană frumoasă o oră și ți se va părea un minut. Asta e relativitatea."

În raționamentul de mai sus intervin două cuvinte a căror semnificație trebuie lămurită: cuvântul geometrie și cuvântul matematician. Cu toții am învățat un pic de geometrie și, la acest stadiu al expunerii, putem rămâne

cu ceea ce ne-a rămas din ceea ce am învăţat când am învăţat. Lucrurile se complică însă când vorbim despre matematician. Cu spiritul său ludic ce l-a făcut atât de celebru, *Moisil* a spus şi a scris: "Numesc matematician pe cel care face matematică." (În particular, mi-a spus: după cum vezi, nu ştiu să spun, prin definiţie, ce înseamnă să fii matematician, dar eu ştiu cine este şi cine nu este matematician. Un coleg şi prieten filozof s-a arătat foarte interesat atunci când i-am povestit toate acestea, dar motivaţia interesului său este o altă poveste).

Revenind la "definiția" dată de Moisil matematicianului ea conduce, în mod natural, la următoarea reacție: spuneți-ne, atunci, ce înseamnă "matematică" și ce înseamnă "să faci matematică".

Să vorbim, întâi, despre matematică.

Lumea matematică este o lume inefabilă, în primul rând pentru că nu se poate defini. Când li se cere definiția, matematicienii fac un ocol și răspund prin a indica unele atribute ale domeniului lor; o definiție directă, cât de cât scurtă a matematicii este evitată. Din acest punct de vedere, matematica se află în situația artei, la fel de imposibil de definit, ba chiar a unor genuri literare.

Iată ce spune, în acest sens, *Nicolae Manolescu* în încheierea cărții sale "Arca lui Noe" (subintitulată, "Eseu despre romanul românesc"):

"Îmi rămâne să mă întreb, la sfârşitul acestei cărți, dacă putem da o definiție a romanului. Cercetătorii genului n-au propus prea multe, deși l-au descris minuțios. Poate pentru că, așa cum afirmă M. Bahtin, "el este singurul gen în devenire printre genurile finite și parțial moarte". Devenirea nu se definește. Să așteptăm ca genul literar cel mai popular al vremii noastre să-și înceteze creșterea și, odată dobândită forma finită, să înceapă să moară? Sau să ne întoarcem la prima lui copilărie, când nimeni nu știa ce se va alege de acest fiu bastard al eposului clasic, și să acceptăm definiția glumeață a lui Thibaudet, bazată pe un joc de cuvinte (în franceză le roman înseamnă deopotrivă romanul și limba romanică)? "Romanul, după cum îi arată numele, înseamnă o scriere în limba vulgară, spre deosebire de scrierea normală, de scrierea propriu-zisă, care, pe vremea clericilor-cărturari se redacta în limba latină. Mod de a recunoaște în încheiere că, dacă știu, în oarecare măsură astăzi, cum este romanul, nu știu câtuși de puțin ce este el."

Un alt argument în susţinerea caracterului inefabil al matematicii: este contrastul dintre modul în care se prezintă publicului şi cel în care arată viaţa ei ascunsă. La suprafaţă, matematica este dominată de deducţii, de formule şi de algoritmi; ea procedează de la definiţii, leme şi teoreme la demonstraţii, corolare şi exemple. În căutările şi frământările ei însă, ea este străbătută de întrebări, încercări, ezitări, greşeli, eşecuri, tatonări, analogii, asocieri de tot felul, amintiri din ce-am trăit sau ce-am visat cândva, reprezentări vizuale, testări pe exemple particulare, mirări, intuiţii şi emoţii.

Simptomatică pentru discrepanţa dintre aparenţa şi substanţa matematicii este distanţa, care poate fi foarte mare, dintre momentul găsirii unui rezultat şi cel al confirmării sale prin demonstraţie. Totul se întâmplă ca în celebra reflecţie a lui *Blaise Pascal*: pentru a porni în căutarea unui lucru, trebuie mai întâi să-l găsim. Nu este nici o contradicţie aici. Găsirea este abductivă, iar căutarea urmăreşte o confirmare deductivă.

În viziunea "Ideilor primite" în sensul lui *Flaubert*, cea mai răspândită este "matematica-știință exactă".

Dacă ne uităm, de exemplu, în Wikipedia vom vedea că acest clişeu se bazează pe alte două clişee: "matematica, știință a cantității" și "matematica, știință a naturii sau/și societății", acestea fiind atributele esențiale ale științelor exacte. Primul clișeu domină și acum percepția comună a matematicii, după cum rezultă din definiția ei în DEX: "știința care se ocupă cu studiul mărimilor, al relațiilor cantitative și al formelor spațiale (cu ajutorul raționamentului deductiv)".

Al doilea clișeu rezultă din asimilarea matematicii cu domeniile în care ea se valorifică. Conștienți de toate aceste falsificări ale naturii reale a domeniului lor, matematicienii din a doua jumătate a secolului trecut au propus versiuni alternative:

- studiu al formelor și evoluției lor (R. Thom)
- ştiință a modelelor (L. Steen)
- $-\operatorname{corp}$ de cunoștințe centrat pe conceptele de cantitate, structură, spațiu și mișcare
 - știința care dezvoltă concluzii necesare.

Fiecare dintre ele prinde câte un aspect, dar niciuna nu separă matematica de toate celelalte domenii.

Matematica are un potențial științific, are și unul artistic, are și unul filosofic; dar ea rămâne, în concertul culturii, o voce separată, inconfundabilă.

Să pătrundem acum în viața matematicianului (adică, amintiți-vă, a celui care face matematică), în măsura în care, circumstanțele în care ne aflăm și cunoștințele noastre ne-o permit.

Avem în vedere pe matematician în ipostaza sa majoră.

A te pretinde matematician este o cutezanță pe care puține persoane în cunoștință de cauză și-o pot permite. În cartea sa "La valeur de la science" *H. Poincaré* zice: "On naît mathématicien. On ne le devient pas." (Matematicienii se nasc, nu se fac).

Încă din secolul al 17-lea, *Boileau*, "legislatorul Parnasului", ne spune același lucru despre poet:

"Zadarnic vrea, prin versuri, semeţul autor S-ajungă, sus, pe culmea Parnasului, uşor: Al muzei suflu tainic din cer când n-a simţit, Iar steaua-i din născare poet nu l-a menit,

În strâmta lui gândire rămâne pururi sclav; E surd pentru el Febus, iar Pegas cu nărav."

(Boileau, "Arta Poetică", ESPLA, 1957; traducerea: Ionel Marinescu)

Norbert Wiener și-a permis să-și intituleze autobiografia "Sunt matematician". Și Moisil credea că s-a născut matematician. A spus-o într-o emisiune a televiziunii române, prin ianuarie 1970. Întrebat "cum ați devenit matematician" a răspuns: "matematician m-am născut. Dumneata vrei poate să știi cum am ajuns să mă ocup cu matematica". Paul R. Halmoș însă, cu o foarte bună reputație matematică, însă cu o clasă sub cea a lui Wiener a fost mai prudent și și-a intitulat volumul său de memorii "I want to be a mathematician".

Matematicianul, ca și pictorul sau poetul, este un creator de modele. El n-are alt material cu care să lucreze decât ideile. De aceea, modelele lui au șansa să dureze mai mult decât cele ale pictorului sau poetului, căci ideile se uzează, cu timpul, mai puţin decât vorbele sau culorile. "Să vedem cum se plimbă ideea peste veacuri" zice Noica, iar Moisil: "Imi place să urmăresc drumul fascinant când o idee devine prejudecată, când se înrăiește ca omul ajuns la bătrâneţe, când tot farmecul tinereţii lui s-a iaurţit în autoritate". Solomon Marcus crede că și Arghezi l-ar fi invidiat pentru o creaţie lexicală precum verbul "a (se) iaurţi" într-un context ce-i conferă o conotaţie atât de stranie.

Realizările matematice, oricare ar fi valoarea lor intrinsecă, sunt cele mai durabile decât toate. Putem constata acest lucru chiar la civilizațiile semiistorice.

Civilizația babiloniană și cea asiriană s-au stins.

Şi totuşi, matematica babiloniană continuă să fie interesantă. Dar cazul crucial este, fără îndoială, acela al grecilor.

De Arhimede ne vom aminti și atunci când Eschil va fi uitat, fiindcă în timp ce limbile mor, ideile matematice trăiesc.

Nicio știință nu are standarde de calitate atât de precise și unanim acceptate iar oamenii amintiți de istorie sunt aproape întotdeauna cei ce o merită. Renumele matematic, dacă ai "capitalul" necesar pentru a-l dobândi, reprezintă una din cele mai solide și mai ferme investiții. Și totuși, cât de dureros este să simți că ai putea să eșuezi.

Bertrand Russell îi povestește lui Hardy un vis groaznic.

Se afla cam prin anul 2100 e.n la etajul de sus al bibliotecii universitare. Un funcționar al bibliotecii se învârtea pe lângă rafturi cu un coş enorm în mână. Scotea carte după carte, se uita la ea, apoi o punea la loc în raft sau o arunca la coş. Ajunse la trei volume mari, pe care Russell putea să le identifice drept ultimele exemplare rămase din "Principia mathematica". Luă unul din volume, răsfoi câteva pagini, păru intrigat timp de câteva clipe de acel curios sistem de simboluri, închise cartea, o cumpăni în mână și ezită...

Desigur, găsim idei și în poezie. Probabil că *Nichita Stănescu* asta vroia să spună când spunea: "Matematica s-o fi scriind cu cifre, dar poezia nu se scrie cu cuvinte" (dar ca să înțelegem mai bine ar trebui să ne întoarcem la "Necuvintele" sale din 1969 și la "Respirări" din 1982).

Cred însă că se exagerează importanța ideilor în poezie. Poezia nu este doar lucrul pe care-l spui ci și modul în care-l spui (dar asupra acestui aspect sper să am timp să revin).

Modelele matematicianului ca și ale pictorului sau poetului trebuie să fie frumoase. În lume nu există loc durabil pentru matematica urâtă.

Se pare că nici pentru literatura plicticoasă un asemenea loc nu există:

" Nu prea citim poeții născuți să plictisească, Dacă pe-aceleași tonuri încearcă să grăiască"

(Boileau, "Arta poetică", Cântul I)

"Urăsc, din plin, sublimul greoi, plictisitor; Prefer pe Ariosto și pe eroii-i comici, Decât poeții searbezi și reci și melancolici."

(Boileau, "Arta poetică", Cântul III)

Desigur că este extrem de dificil să definim frumosul în matematică, dar lucrul acesta este tot atât de adevărat pentru orice fel de frumos.

S-ar putea să nu ne dăm seama ce înțelegem printr-un poem frumos cu toate că aceasta nu ne împiedică să recunoaștem un asemenea poem atunci când îl citim.

Realitatea este că există câteva subiecte "mai populare" decât matematica. Cea mai mare parte dintre oameni preţuiesc într-o oarecare măsură matematica, tot așa cum cei mai mulţi dintre ei pot gusta o melodie agreabilă. Probabil, însă, că oamenii pe care-i interesează cu adevărat matematica sunt mai numeroși decât cei pe care îi interesează muzica. Aparenţele sugerează, poate contrariul, dar explicaţiile sunt uşor de găsit. Muzica poate servi la stimularea emoţiei în masă, pe când matematica nu.

Lipsa de simţ muzical este considerată drept un lucru oarecum jenant. În schimb, cei mai mulţi dintre oameni sunt atât de intimidaţi de faima matematicii încât sunt gata, într-un mod cât se poate de sincer, să exagereze lipsa lor de pricepere într-ale matematicii.

Matematica cea mai bună este, în egală măsură, frumoasă și serioasă.

O problemă de şah poate fi frumoasă. Ea îţi dă un fior intelectual când o înţelegi şi o rezolvi. O problemă de şah este un imn adus matematicii iar jocul de şah este un joc (pentru că implică o componentă psihologică) dar este şi matematică. Dar este o matematică banală. Oricât ar fi de ingenioasă şi de complicată, oricât de originale şi de surprinzătoare ar fi mişcările, problemei de şah îi lipseşte ceva: importanţa (seriozitatea exprimă mai bine ceea ce vrem să spunem). Noi am gândi la fel şi dacă jocul de şah nu ar fi fost inventat, pe când ideile lui Newton şi Einstein şi modelele

matematice construite cu ele au influențat și au modificat modul de a gândi al oamenilor.

Seriozitatea unei teoreme matematice constă în semnificația ideilor matematice pe care le leagă între ele.

O idee matematică este semnificativă dacă poate fi legată într-un mod simplu și luminos cu un vast complex de idei matematice diferite.

Seriozitatea unei teoreme nu constă în consecințele ei care sunt doar dovada acestor seriozități, ci în conținutul ei.

Eminescu a avut o influență imensă asupra dezvoltării limbii române iar $Traian\ Demetrescu$ niciuna. Dar nu din cauza aceasta a fost Eminescu un poet mai bun, ci pentru că a scris poezie mult mai bună.

Frumusețea unei teoreme matematice depinde în foarte mare măsură de seriozitatea ei, după cum în poezie, frumusețea unui vers depinde, într-o oarecare măsură de semnificația ideilor pe care le conține. Îmi permit două exemple, cer scuze în fața specialiștilor pentru modul impresionist și un pic naiv în care le interpretez.

Amintiți-vă cum începe "Sara pe deal":

"Sara pe deal buciumul sună cu jale, Turmele-l urc - stele le scapără-n cale, Apele plâng clar izvorând în fântâne, Sub un salcâm, dragă, m-aștepți tu pe mine."

și comparați cu începutul poeziei "La steaua":

" La steaua care-a răsărit E-o cale-atât de lungă, Că mii de ani i-au trebuit Luminii să ne-ajungă Poate de mult s-a stins în drum În depărtări albastre, Iar raza ei abia acum Luci vederii noastre."

În ambele, modelul verbal este la fel de frumos. În cazul versurilor din "La steaua", însă, ideile au o semnificație, teza e logică astfel încât emoțiile noastre sunt mult mai profunde.

In încercarea de a oferi exemple de teoreme serioase, sunt dezavantajat de restricțiile pe care sunt obligat să mi le impun. Aceste exemple trebuie să fie simple și ușor de înțeles de către cititorii care nu au cunoștințe speciale în matematică.

Voi enunța două dintre faimoasele teoreme ale matematicienilor greci. Sunt teoreme "simple", atât ca idee cât și ca formă dar, în același timp, fără nici o îndoială, teoreme de cea mai înaltă clasă. Fiecare din ele este și astăzi tot atât de proaspătă și de semnificativă ca în vremea când a fost descoperită. Cei două mii de ani care au trecut de atunci n-au gravat nici un

rid pe fața vreunuia dintre ele. În sfârșit, atât enunțurile cât și demonstrațiile pot fi însușite fără greutate de un cititor inteligent, oricît de sărăcăcios ar fi echipamentul lui matematic.

Prima: demonstrația existenței unei infinități de numere prime (făcută de Euclid).

Sunt prime numerele:

$$(A)$$
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,...

adică acelea care nu pot fi descompuse în factori.

De exemplu, 37 şi 317 sunt prime.

Numerele prime reprezintă materialul din care sunt construite prin multiplicare toate numerele. De exemplu: $12 = 2 \times 2 \times 3$.

Orice număr care nu este el însuși prim este divizibil prin cel puțin un număr prim.

Demonstrația existenției unei infinități de numere prime se face prin reducere la absurd.

Presupunem că șirul numerelor prime ar fi finit:

$$2, 3, 5, 7, 11, 13, 17, 23, 29, \ldots, P$$

P find cel mai mare număr prim.

Fie
$$Q = (2 \times 3 \times ... \times P) + 1$$
.

Pentru că Q>P și P este cel mai mare număr prim, Q nu este prim. Rezultă că el trebuie să se dividă cu unul din numerele prime 2,3,...,P.

Pe de altă parte e clar că așa ceva nu se poate: împărțirea lui Q la oricare din numerele 2, 3, ..., P dă restul 1. Contradicție.

Observație. Demonstrația a fost făcută prin reducere la absurd, iar reducerea la absurd, pe care *Euclid* o iubea atât de mult, este unul dintre cele mai subtile instrumente ale matematicianului.

Cel de-al doilea exemplu este demonstrarea "iraţionalității lui $\sqrt{2}$ " atribuită lui Pitagora. Prin "număr raţional" înțelegem o fracție $\frac{a}{b}$ în care a și b sunt numere întregi care nu au nici un factor comun. A spune, deci, că " $\sqrt{2}$ este iraţional" înseamnă a spune că $\sqrt{2}$ nu poate fi exprimat sub forma

$$\sqrt{2} = \frac{a}{b}$$

cu a şi b numere întregi care nu au nici un factor comun.

Un model echivalent de a spune acest lucru este că ecuația:

$$a^2 = 2b^2 \tag{*}$$

nu poate fi satisfăcută prin valori întregi ale lui a și b care să nu aibă nici un factor comun.

Demonstrăm că această ultimă afirmație este adevărată, din nou, prin reducere la absurd.

Presupunem că (*) ar fi adevărată, a și b fiind numere întregi fără factor comun.

Din (*) rezultă că a^2 se divide cu 2, deci a este par (căci dacă a are fi impar, pătratul lui ar fi, de asemenea, impar). Pentru că a este par, există un număr întreg c astfel încât a=2c. De aici

$$2b^2 = a^2 = (2c)^2 = 4c^2$$
,

sau

$$b^2 = 2c^2$$
.

De aici deducem că b^2 este par, deci b este par.

În concluzie, atât a cât şi b sunt pare; au deci pe 2 ca factor comun, ceea ce contrazice ipoteza noastră de lucru care zicea că (*) e adevărată cu a şi b întregi, fără factor comun. Înseamnă că această ipoteză este falsă.

Să considerăm acum un pătrat și să notăm cu l măsura laturii și cu d măsura diagonalei lui. Din teorema (atribuită, de asemenea, lui Pitagora) deducem

$$d^2 = 2l^2$$

adică, o egalitate de același tip cu (*). Putem repeta tot ceea ce am spus mai sus, schimbând a cu d și b cu l. Așadar, raportul $\frac{d}{l}$ nu este un număr rațional (diagonala unui pătrat este incomensurabilă prin latura lui și nu există un număr întreg astfel încât d și l să se exprime ca multiplii întregi ai acestui număr).

Există multe teoreme frumoase de teoria numerelor a căror semnificație poate s-o înțeleagă oricine.

Există, de exemplu "teorema fundamentală a aritmeticii" conform căreia un număr întreg poate fi descompus numai într-un singur fel într-un produs de numere prime. De exemplu $12=2\times2\times3$ și altă descompunere nu este posibilă.

Teoreme frumoase există și în teoria mulțimilor. Una dintre ele este teorema lui Cantor asupra nenumărabilității conținutului. În cazul lor, însă, dificultatea este inversă.

După ce ai ajuns să stăpânești limbajul, demostrația este destul de ușoară, în schimb pentru ca semnificația teoremei să devină clară, sunt necesare o serie de explicații.

De ce o teoremă de felul teoremei lui Euclid e superioară unei probleme de şah?

Pentru că noi am gândi la fel cum gândim chiar dacă şahul n-ar fi fost inventat pe când teoremele lui *Euclid* și *Pitagora* au influențat profund gândirea noastră, chiar în afara matematicii.

Teorema lui *Euclid*, de exemplu, e fundamentală pentru întreaga structură a aritmeticii. Numerele prime sunt materialul brut din care construim aritmetica, iar teorema lui *Euclid* ne asigură că posedăm suficient material

pentru această operă. Spiritul ei se regăsește în foarte multe construcții fundamentale.

Iată un exemplu.

În spațiul euclidian n dimensional \mathbb{R}^n , numim multiindice, orice vector $\alpha = (\alpha_1, \dots, \alpha_n)$ cu α_i întregi ne-negativi, $\forall i = 1, \dots, n$. Pentru orice

multiindice α , notăm $|\alpha| = \sum_{i=1}^n \alpha_i$. Fie $\Omega \subset \mathbb{R}^n$ un deschis și $f: \Omega \to \mathbb{R}$. Notăm

$$D^{\alpha}f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\dots\partial x_n^{\alpha_n}} = \frac{\partial^{(\alpha_1+\dots+\alpha_n)}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\dots\partial x_n^{\alpha_n}},$$

cu condiția ca operația de derivare să aibă sens.

Prin convenție, dacă $|\alpha| = 0$, atunci $D^{\alpha}f = f$.

Introducem notațiile

i) pentru orice k = 1, 2, ...

 $C^{k}\left(\Omega,\mathbb{R}\right)=\left\{ f:\Omega\rightarrow\mathbb{R}\mid D^{\alpha}f\text{ există şi sunt continue pe }\Omega\text{ pentru orice}\right.$ multiindice α cu $|\alpha|\leq k\right\}$

ii)
$$C^{\infty}(\Omega, \mathbb{R}) = \bigcap_{k \geq 0} C^k(\Omega, \mathbb{R})$$

iii) dacă $f \in C^0(\Omega, \mathbb{R})$, adică $f : \Omega \to \mathbb{R}$ este continuă, mulțimea supp $f = \overline{\{x \in \Omega \mid f(x) \neq 0\}}$ se numește suportul funcției f.

Cu alte cuvinte, suportul lui f este cea mai mică mulțime închisă ce conține toate punctele lui Ω în care f este nenulă.

iv)
$$C_0^{\infty}(\Omega, \mathbb{R}) = \{ f \in C^{\infty}(\Omega, \mathbb{R}) \mid \text{supp } f \text{ este compact } \text{\mathfrak{g}i inclus } \hat{\mathbb{N}} \}.$$

Spațiul de funcții $C_0^\infty\left(\Omega,\mathbb{R}\right)$ constituie materialul cu care construim teoria distribuțiilor, după cum mulțimea numerelor prime constituie materialul brut cu care se construiește aritmetica. Faptul că mulțimea de funcții $C_0^\infty\left(\Omega,\mathbb{R}\right)$ este densă în $L^2\left(\Omega,\mathbb{R}\right)$, de exemplu, ne spune că avem "suficient" material pentru această construcție. Ca spirit, lucrurile stau la fel ca atunci când, faptul că există o infinitate de numere prime ne asigură că avem "suficient" material pentru construirea aritmeticii.

Teorema lui *Pitagora* ne arată însă că, după ce am construit această aritmetică, ea se va dovedi insuficientă nevoilor noastre pentru că vom întâlni multe mărimi pe care nu vom fi în stare să le măsurăm. Diagonala pătratului este exemplul cel mai elocvent.

Deoarece o teoremă "serioasă" este acea teoremă care conține idei semnificative, să analizăm care sunt calitățile ce fac ca o idee matematică să fie semnificativă.

O idee "semnificativă" o recunoaștem atunci când "o vedem" așa cum le-am recunoscut pe cele ale lui Euclid și Pitagora.

Această putere de recunoaștere implică însă un grad destul de ridicat de rafinament matematic și de familiarizare cu ideile matematice la care se ajunge după mulți ani petrecuți în tovărășia lor. În orice caz, două lucruri par a fi esențiale: o anumită generalitate și o anumită profunzime.

Ceea ce caracterizează generalitatea unei idei este, în esență, faptul că ea intră în mai multe construcții matematice și poate fi folosită la demonstrația unor teoreme de genuri foarte diferite. Teorema ce conține o idee semnificativă, datorită generalității acestei idei, chiar dacă enunțată la început într-o formă specială (precum teorema lui Pitagora), trebuie să fie susceptibilă de o mare extindere și tipică pentru o clasă întreagă din categoria ei. De exemplu, în teorema lui Pitagora, rezidă ideea de perpendicularitate. Această idee, pe care o receptăm pentru început în plan se regăsește apoi în spațiul euclidian cu trei dimensiuni, apoi se extinde la orice spațiu euclidian finit dimensional, de aici la orice spațiu hilbertian cu bază numerabilă apoi la orice spațiu hilbertian, apoi la o anumită categorie de spații Banach care nu sunt hilbertiene dar au o geometrie specială, etc.

(În paranteză, ce-o fi vrut să spună $Ion\ Barbu$ atunci când, $Saşa\ Pană$ a scos, prin anii 1930, o revistă intitulată Unu: "Şi domnului Saşa Pană nu-i dau voie să scoată o revistă cu acel nume până nu-mi explică de ce 1 este un simbol de perpendiculariate.")

Toate teoremele de matematică sunt abstracte și, din acest punct de vedere, la fel de generale. Dar nu despre acest tip de generalitate vorbim. Noi vorbim despre diferențele de generalitate dintre o teoremă de matematică și alta. E o generalitate mai subtil și mai greu de sesizat. În cartea sa "La valuer de la science" pe care am mai citat-o, H. Poincaré zice (p.30): "on ne peut faire de conquête scientifique que par la généralisation". E adevărat, și drumul parțial pe care l-am descris mai înainte, luând ca origine teorema lui Pitagora este un exemplu. Se impune însă o remarcă: realizările excepționale ale matematicii moderne nu constau din îngrămădirea de subtilități de generalizare peste alte subtilități de generalizare. Un anumit grad de generalitate trebuie să fie prezent în orice teoremă de prim rang, însă prea multă generalitate o transformă, inevitabil, în ceva insipid.

"Totul este ceea ce este și nu altceva" iar deosebirile dintre lucruri sunt tot atât de interesante ca și asemănările lor.

Același lucru se întâmplă și în matematică. O proprietate comună unui număr prea mare de obiecte nu mai este chiar așa de captivantă, iar ideile matematice încep să devină obscure dacă nu au suficientă individualitate.

"O concepție fructuoasă înseamnă generalizare largă, limitată de o particularitate fericită".

Ajuns într-un punct delicat al unei cercetări proprii, am discutat, nu de mult, aceste lucruri cu un bun prieten de la facultatea de filosofie. El mi-a indicat un articol [2] publicat în American Mathematical Monthly, în 1940. L-am citit și acum, dincolo de mulţumirile pe care le datorez prietenului

meu, sunt în poziția să recunosc câtă dreptate avea *Moisil* când spunea: "Matematica fără filosofie e seacă, filosofia fără matematică e stearpă".

A doua calitate pentru o idee semnificativă este profunzimea. Ea are ceva de-a face cu dificultatea. Cu cât ideile sunt mai "profunde" cu atât sunt, de obicei, mai greu de înțeles. Dar profunzimea și dificultatea nu înseamnă deloc același lucru. Ideile care stau la baza teoremei lui *Pitagora*, precum și generalizările acesteia, sunt cât se poate de profunde, dar niciun matematician nu le-ar putea considera dificile. S-ar putea, pe de altă parte, ca o teoremă să fie, prin esență, superficială dar foarte greu de demonstrat (cum sunt multe din teoremele diofantice, adică teoremele privind soluțiile raționale ale ecuațiilor nedeterminate cu coeficienți raționali.)

S-ar părea că ideile matematice sunt dispuse oarecum în straturi, ideile din fiecare strat fiind legate printr-un complex de relații atât între ele cât și cu cele de deasupra și de dedesubtul lor. Cu cât stratul e situat mai jos cu atât mai profunde și, în general, mai dificile sunt ideile. Astfel, ideea de "irațional" este mai profundă decât cea de număr "întreg" și de aici, Teorema lui *Pitagora* e mai profundă decât cea a lui *Euclid*.

Alt exemplu: teorema lui Euclid este importantă dar nu şi foarte profundă: o putem demonstra fără a folosi o noțiune mai profundă decât cea de divizibilitate.

Insă, imediat ce cunoaștem că există o infinitate de numere prime, în mintea noastră se prezintă o întrebare: există, într-adevăr o infinitate de numere prime; dar cum se distribuie această infinitate? Fiind dat un număr mare N, să zicem $(10^{10})^{10}$, cam câte numere prime sunt între 1 şi N?

Punând această întrebare, poziția noastră se schimbă cu totul. Putem răspunde, ba chiar cu o precizie surprinzătoare, vezi, de exemplu, *C. Popovici* [14], însă forând mai adânc, lăsând pentru moment numerele întregi deasupra noastră și folosind instrumente de teoria funcțiilor. În acest fel, teorema care răspunde la întrebare e mai profundă decât cea a lui *Euclid* și chiar decât cea a lui *Pitagora*.

Sau, iată o altă întrebare: există, într-adevăr, o infinitate de numere prime; conține această mulțime alte mulțimi infinite interesante? De exemplu: există o progresie aritmetică infinită formată din numere prime?

Răspunsul este negativ: nu există o astfel de progresie.

În 1963, Solomon Marcus a demonstrat acest rezultat cu o tehnică ce vine din teoria automatelor finite (vezi comentariul la Propoziția 5 din S. Marcus, "Automates finis, progressions arithmetiques et grammaires a un nombre fini d'états", în C.R. Acad. Sci. Paris, t.256 (1963), 3571-3574).

În schimb, pentru orice număr natural k, există o progresie aritmetică formată din k termeni, toți numere prime. Acest rezultat de existență a fost obținut în 2004 și publicat în 2008 (vezi *Green*, *Ben* și *Tao Terence* [7]). El figurează printre rezultatele citate în raportul ce recomandă acordarea

medaliei Fields lui $Terence\ Tao$. Este un rezultat de existență ce nu beneficiază de o demonstrație constructivă, adică: dat orice număr natural k, se arată că există o progresie aritmetică având k termeni (se mai spune "de lungime k") fiecare termen fiind număr prim dar nu se indică un procedeu prin care o astfel de progresie să fie construită efectiv.

"Cea mai lungă" astfel de progresie construită efectiv corespunde lui k = 25 și a fost obținută în 2008 de Jaroslav Wróblewski și Raanan Chermoni.

Cum putem caracteriza frumusețea unei teoreme (în ea includem, evident, și demonstrația)? Iată câteva atribute:

Enunțul ei se prezintă "ca un text august, ca o inscripție al cărei laconism e însăși garanția durabilității ei" dând acea impresie de "maximum de gând în minimum de cuprindere".

Demonstrația ei se aseamană cu o constelație simplă și bine conturată și nu cu un roi împrăștiat din Calea Lactee.

Găsim în ea elemente ca neașteptatul, unit cu inevitabilitatea și cu economia de mijloace. Premisele iau o formă ciudată și surprinzătoare, instrumentele folosite par copilăresc de simple în comparație cu rezultatele de mare anvergură obținute, iar concluziile sunt inevitabile.

Doamnelor și Domnilor,

Ajunși la acest punct al expunerii, logic este să ne punem următoarele întrebări:

de ce fac matematica cei ce fac matematică

şi

- care este valoarea matematicii?

În celebrele sale Scrisori către un tânăr poet, Rainer Maria Rilke îl sfătuia pe interlocutorul său, atras de magia versurilor, să scrie poezie doar dacă simte că nu ar putea trăi altfel.

Fericit cel ce poate da același răspuns în cazul matematicii. El are șansa să intre în categoria matematicienilor de primă categorie despre care am vorbit la un moment dat.

Există și alte posibile răspunsuri: fac matematică pentru că este singurul lucru pe care-l pot face cât de cât bine.

Sau, pentru că, dintre toate științele și artele, matematica este cea mai austeră și mai singuratică și, dintre toți oamenii, matematicianul este singurul care se poate refugia cu ușurință acolo unde "măcar unul dintre cele mai nobile impulsuri ale noastre poate evada cel mai bine din sumbrul exil al lumii actuale".

Toţi cei care fac matematică, indiferent de nivelul la care se situează, vor avea însă şi un răspuns comun: fac matematică pentru că asta îmi place, pentru că asta îmi produce bucurie. De ce ne place matematica? (Nu am intitulat "de ce iubim matematica" pentru că m-am temut să nu vă distrag atenția trimiţându-vă cu gândul la o întrebare cu mult mai dificilă ce a dat

titlul unei cărți a domnului *Cărtărescu*: "De ce iubim femeile"; nici "de ce ni-i dragă matematica" pentru că m-am temut să nu vă trimit cu gândul la unul din cele mai mari poeme ale lumii, "Balada închisorii din Reading" de *Oscar Wilde*:

Cu toţi ucidem ce ni-i drag Şi-ntindem morţii prada; Omoară unii măgulind Ori cu dojeni, cu sfada; Cei laşi ucid cu un sărut Iar cei viteji cu spada.

Revenind la întrebare, ne place matematica pentru că e frumoasă și e certă. Matematicianul trăiește în contact cu două realități. Una este cea fizică în care știm că e zi, e noapte, plouă sau se produce, doamne ferește, un cutremur. Cealaltă este realitatea matematică.

Simplificând foarte mult, nici matematicienii nici filozofii nu se înțeleg când este vorba să definească realitatea matematică. Pentru unii, această realitate este de natură "spirituală" noi fiind cei ce o construim.

Pentru alţii, ce descind din *Platon*, realitatea matematică există în afara noastră, sarcina noastră fiind doar aceea de a o descoperi şi de a o observa. Teoremele pe care le demonstrăm şi pe care le descriem cu atâta emfază ca pe nişte creaţii proprii nu sunt decât notele pe care le-am luat în timpul observaţiilor noastre. Cred că marele nostru *Simion Stoilow* se înscria, fără s-o declare, în acest curent căci la un anumit moment a scris:

"Matematica nu-și dezvăluie cu ușurință tainele ei fundamentale."

Aşadar, aceste taine există, dar matematica nu și le dezvăluie cu uşurință, nu putem lua ușor "notițe" adică.

Realitatea matematică este mult mai certă decât cea fizică; 13 este un număr prim nu pentru că așa credem noi sau pentru că mințile noastre sunt conformate într-un anumit fel mai degrabă decât în altul, ci fiindcă așa este, fiindcă realitatea matematică este astfel clădită.

În schimb, un scaun sau o stea nu sunt câtuşi de puţin ceea ce par a fi. Cu cât ne gândim mai mult la ele cu atât trăsăturile lor exterioare se estompează în scurgerea senzațiilor care le însoțesc.

Cât despre bucurie, se poate scrie un tratat de psihologie a bucuriei matematice. Pe scurt:

Există o bucurie ce ne-o dau marile sisteme. Teoremele pot fi strânse în mari teorii dominate de o arhitectură, care stârnește o bucurie arhitectonică. Felul cum teoremele stau la locul lor, cum se înlănţuiesc, cum se sprijină unele pe altele, cum se pun în valoare, dă acea impresie de frumos pe care o stârnesc matematicile.

Mai e bucuria competiției: să reușești să demonstrezi ceea ce n-au reușit alții.

Mai e și o bucurie așișderea pescuitului: de a vedea și înțelege cum prin fața ta se perindă definiții și teoreme, axiome și demonstrații, mereu aceleași, mereu altele, "abia-nțelese, pline de înțelesuri".

Mă opresc la un alt tip de bucurie pe care o vom numi "bucurie interdisciplinară" (într-o terminologie mai veche – bucuria matematicilor aplicate).

Adică, să vezi cum o teoremă de cea mai pură esență precum cea care poartă numele celui ce a introdus intuiționismul în matematică (teorema de punct fix a lui *Brouwer*) este principalul instrument cu care *John Nash* a demonstrat celebra sa teoremă de existență a echilibrului. După cum unii dintre dumneavoastră știți, această teoremă i-a adus lui *Nash* premiul Nobel pentru economie, iar viața sa (evident romanțată) a inspirat un film de succes "A beautiful mind".

Cu ce trebuie să vină pe lume un om pentru a avea acces la astfel de bucurii? E drept, ursitoarele trebuie să fie darnice cu el. Sigur este că nu trebuie să-i lipsească o minte în egală măsură intuitivă și rațională (logică). Mintea intuitivă este un dar divin iar mintea rațională este servitorul acesteia. Intuiția este instrumentul descoperirii iar logica – al justificării.

Când vorbeşte despre valoarea matematicii, a ştiinței, în general, omul obișnuit o reduce la aplicații, la caracterul ei utilitar. Este adevărat, ca Janus cel cu două fețe, matematica ne arată uneori funcția ei cognitivă, alte ori pe cea utilitară. Relația dintre ele este pe cât de simplă, pe atât de paradoxală: cea mai bogată sursă de susținere a funcției utilitare a matematicii se află în avansul funcției sale de cunoaștere. Dar pentru ca acest lucru să se întâmple, matematicianul trebuie să-și dezvolte cercetările sale nestingherit, ghidat exclusiv de curiozitatea sa, de bucuria sa de a vagabonda în lumea ideilor matematice.

În 1830, Carl Gustav Jacobi, într-o scrisoare căre Adrien-Marie Legendre, zice:

"Dl. Fourier crede că scopul principal al matematicii este de a fi utilă şi de a explica fenomenele naturale; dar un filozof ca el ar fi trebuit să știe că scopul unic al științei este onoarea spiritului uman și că sub acest titlu o chestiune privind numerele nu valorează mai puţin decât una relativă la sistemul lumii".

Sloganul lui Jacobi a fost preluat ca titlu al cărții sale din 1987, de către $Jean\ Dieudonn\acute{e}$: Pour l'honneur de l'esprit humain (Hachette,Paris). Ca și pe Jacobi, pe $Dieudonn\acute{e}$ îl animă înțelegerea (pe care am moștenit-o de la vechii greci) matematicii ca artă, mai degrabă, decât înțelegerea ei ca știință; matematicianul caută frumusețea, nu utilitatea. Dar utilitatea vine și ea, la vremea ei.

Dacă atunci când *Maxwell* a scris ecuațiile celebre ce-i poartă numele cineva l-ar fi întrebat cât costă ecuațiile lui, nu cred c-ar fi știut să răspundă. Dacă ar fi fost întrebat, însă, care este semnificația acestor ecuații, evident ar fi dat cel mai competent răspuns. M-am gândit la aceste lucruri ieri, după ce,

la o adunare în care un distins coleg era sărbătorit, am citit câteva rânduri pe care *Gabriel Garcia Marquez* le-a scris într-un moment de cumpănă al existenței sale:

"Dacă Dumnezeu mi-ar dărui o fărâmă de viață Aş aprecia lucrurile nu prin ceea ce valorează Ci prin ceea ce semnifică".

Este uluitor, cum poate poezia să spună, uneori, ceea ce nici științele, nici muzica împreună cu toate artele la un loc nu pot să spună.

Probabil pentru că poetul "are un maţ de zeu în el" cum spunea Nichita Stănescu. Poetul şi matematicianul îşi cunosc bine meşteşugul dar sunt inspiraţi de un zeu de sus. "Poeţii consideră poezia o formă a geometriei spiritului, iar matematicienii trec uşor de la algebră şi geometrie la marea poezie. Vă dau două exemple care m-au tulburat. Unul se referă la un fapt curios din biografia lui Paul Valéry; după ce publică în 1896 "La soirée avec M. Teste", eseistul tace timp de 20 de ani; pînă la volumul de poeme "La jeune Parque" nu publică nimic; autorul a meditat în acest răstimp la matematici şi, în genere, la disciplinele abstracte. Cum am putea interpreta această lungă absenţă?

Ca o constrângere la asceză, desigur, ca o auto-condamnare la meditație. Monsieur Teste voia să descopere legile spiritului. Autorul lui, după ce l-a creat, se retrage în pustiu. Își alege, mai bine zis, pustiul ce se poate alege la Paris (matematicile) și-l străbate timp de 20 de ani. În termenii lui *Pascal* asta înseamnă că fuge din spațiul spiritului de finețe în spațiul spiritului geometric. O fugă care-mi amintește de rătăcirea lui *Moise* prin pustiu. A străbătut patruzeci de ani un deșert care putea fi străbătut, s-a dovedit, în câteva săptămâni. De ce? Pentru că proorocul nu voia să intre în țara făgăduită cu un popor de robi.

Orice intelectual autentic are pustiul său. Uneori și-l crează singur, (cazul lui Valéry), alteori e silit de alții să-l străbată. În acest spațiu gol (gol de scriitură) se instalează spiritul care vrea să se purifice, abandonându-se meditației. O pregătire pentru o sfințenie a intelectului. Numai astfel poemul poate deveni "o sărbătoare a spiritului". Rezumând: Valéry, a avut nevoie, pentru a reveni la poezie, să facă acest lung exercițiu spiritual (20 de ani) pentru a purifica poemul și a se lepăda de ceea ce un alt poet, un admirator al său, de altfel, născut în zona orientală a latinității, numea "poezia leneșă". O numea și, evident, o respingea. Este vorba, ați bănuit, de Ion Barbu (alias: Dan Barbilian).

El a publicat în 1930 o carte de poeme, "Joc secund", nu mai groasă decât o lamă de bărbierit, care a creat o veritabilă școală în poezia românească, după care s-a retras din poezie, dedicându-se matematicii. M-am întrebat întotdeauna și mă întreb și azi, de ce? Între alte justificări aduse de acest mare poet și, deopotrivă, mare matematician, rețin una dintr-o scrisoare

adresată în 1947 unei poete tinere de care, se pare, era îndrăgostit. Nu era prima, nici ultima oară. Căci, așa cum spune el prietenului *Tudor Vianu*, în afară de poezie și matematică, giurgiuveanul *Ion Barbu* mai are o profesiune nobilă și fericitoare: aceea de "amant universal". Revin la scrisoarea din 1947, unde strecoară ideea că matematicile îl fericesc și-l ajută să ajungă la "cunoașterea mântuitoare", iar poezia îl declasează. Ați reținut: pentru a ajunge la "cunoașterea mântuitoare" trebuie să părăsească poezia și să se întoarcă, nu în genunchi, ci mândru și țeapăn ca un pandur care spânzură scurt, la matematici ... Splendid. Deși nu-l cred pe marele *Dan Barbilian* până la capăt: poezia este, și ea, o cale spre "cunoașterea mântuitoare". Să acceptăm această alianță între două științe inefabile, frumoase și misterioase ca un antrenament de îngeri." (*Eugen Simion*)

BIBLIOGRAFIE

- [1] C. Andreian-Cazacu, Solomon Marcus, Simion Stoilow, Editura Științifică și Enciclopedică, București (1983).
- [2] H. Blumerg, On the technique of Generalization, American Mathematical Monthly, vol.47, no.7 (1940), 451-462.
- [3] N. Boileau, Arta poetică, E.S.P.L.A., București (1957) (traducere Ionel Marinescu).
- [4] A. de Rivarol, Discours sur l'universalité de la langue française, 1784.
- [5] G. Dincă, Câteva reflecții asupra domeniului meu de entuziasm, discurs rostit cu ocazia decernării titlului de Doctor Honoris Causa al Universității din Craiova (iunie, 2003).
- [6] A.Iorgulescu, S.Marcus, S.Rudeanu, D.Vaida, Eds., Profesorul Grigore C. Moisil, o amintire mereu vie în "Grigore C. Moisil and His Followers in the Field of Theoretical Computer Science, Editura Academiei Române, Bucureşti (2008).
- [7] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), 481-547.
- [8] G. H. Hardy, A Mathematician's Apology, Cambridge University Press (1967)
- [9] N. Manolescu, Arca lui Noe (Eseu despre romanul românesc), vol.3, Editura Eminescu, Bucureşti, (1991).
- [10] S. Marcus, Singurătatea matematicianului, Discurs de recepţie la Academia Română, Editura Academiei Române (2008).
- [11]* * * Dingândirea matematică românească, Editura Științifică și Enciclopedică, București (1975).
- [12] * * * Automates finis, progressions arithmétiques et grammaires a un nombre fini d'états, C.R. Acad. Sci. Paris, t256 (1963), 3571-3574.
- [13] H. Poincaré, La valeur de la science, Flammarion, Paris (1905).
- [14] C. Popovici, Aritmetică şi teoria numerelor, Editura Didactică şi Pedagogică, Bucureşti (1963).
- [15] E. Simion, Matematica, o stiință inefabilă, Academica, august-septembrie 2000.

PROPOSED PROBLEMS

290. Study the convergence of the sequence defined by

$$x_1 = a$$
, $1 + x_n = (1 + x_n)^{x_{n+1}}$, $n \ge 1$.

Radu Gologan

291. For $n, k \in \mathbb{N}$, $n \ge 1$, determine the dimension of the linear space of polynomials in n variables over some field K, of degree at most k, as a subspace of $K[x_1, x_2, \ldots, x_n]$.

Dan Schwarz

- **292.** Denote $n \geq 1$ positive integer, $I \subseteq \mathbb{R}$ an interval and $f: I \to \mathbb{R}$ a function.
- a) Assume that f is n-1 times differentiable on I and $I^{(n-1)}$ is increasing on I. Prove the following inequality:

$$f(b) - \binom{n}{1} f\left(\frac{(n-1)b+a}{n}\right) + \binom{n}{2} f\left(\frac{(n-2)b+2a}{n}\right) - \dots + (-1)^n f(n) \ge 0,$$

for all $a \leq b$ in I (if n is even, the inequality is valid for all $a, b \in I$).

b) Assume that f is n-times differentiable and $f^{(n)}$ is continuous on I. If the inequality

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} f\left(\frac{(n-k)b + ka}{n}\right) \ge 0$$

is valid for all $a \leq b$ in I, then $f^{(n)}$ is nonnegative.

Marian Tetiva

293. Prove that for any continuous function f:[-1,1] the following inequality is valid:

$$\int_{-1}^{1} f^{2}(x) dx \ge \frac{5}{2} \left(\int_{-1}^{1} x^{2} f(x) dx \right)^{2} + \frac{3}{2} \left(\int_{-1}^{1} x f(x) dx \right)^{2}.$$

Cezar Lupu and Tudorel Lupu

294. Let S(O, R) the circumscribed sphere of the tetrahedron [ABCD] and r is inscribed radius of the sphere. If x, y, z, t are the normal coordinates of O, then

$$x+y+z+t \le 4\sqrt{R^2-8r^2}.$$

Marius Olteanu

336 Probleme

SOLUŢIILE PROBLEMELOR PROPUSE

269. O pereche de numere naturale consecutive n, n+1, se numește adaptată, dacă

$$\left[(n+1)\sqrt{3} \right] - \left[n\sqrt{3} \right] = 1.$$

Care este probabilitatea ca două numere naturale consecutive, alese la întâmplare, să fie adaptate.

Radu Gologan

Soluția autorului. Probabilitatea căutată poate fi interpretată ca

$$p = \lim_{n \to \infty} \frac{P(n)}{n},$$

unde $P(n) = \text{card}\{(k, k+1) \mid \lceil (k+1)\sqrt{3} \rceil - \lceil k\sqrt{3} \rceil = 1, \ k \le n\}.$

Fie $k\sqrt{3} = N_k + \alpha_k$, unde $\alpha_k \in (0,1)$. Atunci

$$(k+1)\sqrt{3} = N_k + 1 + \sqrt{3} - 1 + \alpha_k.$$

Condiția $[(k+1)\sqrt{3}] - [k\sqrt{3}] = 1$ este echivalentă cu $0 < \sqrt{3} - 1 + \alpha_k < 1$ sau $\alpha_k < 2 - \sqrt{3}$, deci

$$2-\sqrt{3},$$
deci
$$p=\lim_{n\to\infty}\frac{\left\{k\le n\mid\left\{\sqrt{3}k\right\}<2-\sqrt{3}\right\}}{n}.$$
 Teorema lui $Weyl$ ne dă

$$p = 2 - \sqrt{3}.$$

270. Fie a, b, c numere pozitive al căror produs este egal cu 1; mai presupunem că $c = \min\{a, b, c\}.$

Să se arate că

$$a^{3} + b^{3} + c^{3} + 6 - 3(ab + ac + bc) \ge c(a - b)^{2} + c(a - c)(b - c).$$

Marian Tetiva

Soluția autorului. Deoarece abc = 1 (deci $\sqrt[3]{abc} = 1$) avem, conform inegalității mediilor, $a+b+c \geq 3$ și atunci membrul stâng al inegalității de demonstrat este cel puțin

$$a^{3} + b^{3} + c^{3} + 6abc - (a+b+c)(ab+ac+bc),$$

adică inegalitatea va fi demonstrată dacă arătăm că

$$a^{3} + b^{3} + c^{3} + 6abc - (a+b+c)(ab+ac+bc) \ge c(a-b)^{2} + c(a-c)(b-c).$$

Această inegalitate se mai scrie, după desfacerea parantezelor

$$\sum a^{3} + 3abc - \sum (a^{2}b + ab^{2}) \ge a^{2}c + b^{2}c - ac^{2} - bc^{2} + c^{3} - abc,$$

sau, echivalent

$$a^{3} + b^{3} - a^{2}b - ab^{2} + 4abc - 2a^{2}c - 2b^{2}c \ge 0 \Leftrightarrow (a - b)^{2}(a + b - 2c) \ge 0$$

 și este demonstrată (știm că $a \geq c$ și $b \geq c$). Egalitatea are loc, după cum ușor se poate vedea, dacă și numai dacă toate numerele a, b, c sunt egale.

Observație. La inegalitatea

$$a^{3} + b^{3} + c^{3} + 6 \ge 3(ab + ac + bc),$$

care rezultă de aici (valabilă pentru orice a, b, c > 0 cu abc = 1) am ajuns de la

$$a^{3} + b^{3} + c^{3} + d^{3} + 8 \ge 3(abc + abd + acd + bcd),$$

particularizând pe d=1. Faptul că această inegalitate are loc pentru orice a,b,c,d>0 cu abcd = 1l-aș propune ca problemă deschisă, deși știu că nu există o asemenea rubrică.

Soluție dată de Marius Olteanu, inginer la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea. Din $c=\min\{a,b,c\}$ rezultă $c\leq b,\,c\leq a;$ abc = 1 implică

$$c \le 1, \qquad ab \ge 1.$$
 (1)

Inegalitatea devine

$$a^{3} + b^{3} + \frac{1}{a^{3}b^{3}} + 6 - 3\left(ab + \frac{a+b}{ab}\right) \ge \frac{1}{ab}(a-b)^{2} + \frac{1}{a^{3}b^{3}}\left(a^{2}b - 1\right)\left(ab^{2} - 1\right) \Leftrightarrow$$

$$\Leftrightarrow a^{5}b^{2} + a^{2}b^{5} + 7a^{2}b^{2} - 3a^{3}b^{3} - 3a^{2}b - 3ab^{2} - a^{3}b - ab^{3} + a + b \ge 0. \tag{2}$$

Se observă că inegalitatea (2) este simetrică în a și b. Presupunem că $a \ge b$; din (1) rezultă că $a \ge 1$, iar b poate fi ori supraunitar ori subunitar.

Cazul 1. $a \ge b \ge 1$.

Fie $f:[b,\infty)\to\mathbb{R}$,

$$f(x) = x^5b^2 - x^3(3b^3 + b) + x^2(b^5 + 7b^2 - 3b) - x(3b^2 + b^3 - 1) + b,$$

cu $b \ge 1$.

Atunci

$$f'(x) = 5x^4b^2 - 3x^2(3b^3 + b) + 2x(b^5 + 7b^2 - 3b) - (3b^2 + b^3 - 1),$$

$$f''(x) = 20x^3b^2 - 6x(3b^3 + b) + 2(b^5 + 7b^2 - 3b),$$

$$f'''(x) = 60x^2b^2 - 6(3b^3 + b) = 6b(10x^2b - 3b^2 - 1) > 0$$

(deorece $x \ge b \ge 1$ implică $3x^2b \ge 3b^3$ și $x^2b \ge b$ etc.).

Din f'''(x) > 0 pentru orice $x \ge b$, rezultă că f''(x) este strict crescătoare pe $[b, \infty)$ şi deci $f''(x) \geq f''(b)$ (cu egalitate, deci, doar pentru x=b).

$$f''(b) = 22b^5 - 18b^4 + 8b^2 - 6b = 4b^5 + 18b^4(b-1) + 2b^2 + 6b(b-1) > 0$$

implică implică f''(x) > 0 pentru orice $x \ge b$; urmează că f'(x) este strict crescătoare pe $[b,\infty)$. Avem deci, $f'(x) \geq f'(b)$ (cu egalitate atunci și numai atunci când x=b). Dar

$$f'(b) = 7b^6 - 9b^5 + 10b^3 - 9b^2 + 1 = (b-1)\left[7b^5 + 8b^2 - \left(b^4 + b^3 + 2b + 2\right)\right] \ge 0, \quad \forall b \ge 1,$$

implică $f'(b) \ge 0$, pentru orice $b \ge 1$, rezultă că $f'(x) \ge 0$ pentru orice $x \ge b$, deci f(x)

este crescătoare pe $[b,\infty)$ conchidem că $f(x)\geq f(b)$. Dar $f(b)=b(b-1)\left[2b^5+4b^2-\left(b^4+b^3+2b+2\right)\right]\geq 0$ pentru orice $b\geq 1$; urmează că $f(x) \ge 0$ pentru orice $x \ge b$. Atunci, pentru $x = a \ge b$, avem $f(a) \ge 0$, adică inegalitatea (2).

Cazul 2.
$$a \ge 1, b \le 1$$
.
Din (1) rezultă $a \ge \frac{1}{b} \ge 1$; notăm $\frac{1}{b} = y \ge 1$; urmează că $a \ge y \ge 1$.

Dacă inegalitatea (2) (pe care trebuie să o demonstrăm) o împărțim prin b^5 , obținem echivalența

$$\frac{a^5}{b^3} + a^2 + 7\frac{a^2}{b^3} - 3\frac{a^3}{b^2} - 3\frac{a^2}{b^4} - 3\frac{a}{b^4} - \frac{a}{b^2} + \frac{a}{b^5} + \frac{1}{b^4} \ge 0 \Leftrightarrow$$

$$\Leftrightarrow a^5y^3 + a^2 + 7a^2y^3 - 3a^3y^2 - 3a^2y^4 - 3ay^3 - a^3y^4 - ay^2 + ay^5 + y^4 \ge 0. \tag{3}$$

Fie $q:[y,\infty)\to\mathbb{R}$, under

$$g(a_1) = a_1^5 y^3 - a_1^3 (3y^2 + y^4) + a_1^2 (1 + 7y^3 - 3y^4) - a_1 (y^2 + 3y^3 - y^5) + y^4; y \ge 1.$$

338 PROBLEME

$$g'(a_1) = 5a_1^4 y^3 - 3a_1^2 (y^4 + 3y^2) + 2a_1 (-3y^4 + 7y^3 + 1) + (y^5 - 3y^3 - y^2);$$

$$g''(a_1) = 20a_1^3 y^3 - 6a_1 (y^4 + 3y^2) + 2 (-3y^4 + 7y^3 + 1);$$

$$g'''(a_1) = 60a_1^2 y^3 - 6 (y^4 + 3y^2) = 6y^2 (10a_1^2 y - y^2 - 3) > 0,$$

deoarece $y \ge 1$ și $a_1 \ge y \Rightarrow a_1^2 y \ge y^2$ și $3a_1^2 y - 3 \ge 0$ etc. Așadar $g''(a_1)$ este strict crescătoare pe $[y, \infty)$, rezultă $g''(a_1) \ge g''(y)$ (cu egalitate dacă și numai dacă $a_1 = y$).

Dar $g''(y) = 20y^6 - 6y^5 - 6y^4 - 4y^3 + 2 > 0$, pentru orice $y \ge 1$, implică $g''(a_1) > 0$ și deci $g'(a_1)$ este strict crescătoare pe $[y,\infty)$; urmează că $g'(a_1) \geq g'(y)$ (cu egalitate numai $\operatorname{dac\check{a}} a_1 = y$).

Însă

$$g'(y) = (y-1) [3y^4 (y^2 - 1) + 2y (y^4 - 1) + 2y^3 - y^2] \ge 0, \quad \forall y \ge 1.$$

Rezultă $g'(a_1) \ge 0$ și deci $g(a_1)$ este crescătoare pe $[y, \infty)$; urmează că $g(a_1) \ge g(y)$.

Dar

$$g(y) = y^{2}(y-1)^{2} - (y^{4} + y^{3} - y^{2} + y + 1) \ge 0, \quad \forall y \ge 1,$$

implică $g(a_1) \geq 0$ pentru orice $a_1 \in [y, \infty)$.

Evident că, înlocuind $a_1 = a$, deducem că $g(a) \ge 0$, adică (3).

271. Să se arate că pentru orice $\theta \in \mathbb{R}$ are loc inegalitatea

$$\sum_{n=0}^{\infty} \frac{\cos n\theta}{(n+1)^4} \ge \frac{7\pi^4}{720}.$$

Róbert Szász

Soluţia autorului. Este suficient să demonstrăm inegalitatea pentru $\theta \in [0, 2\pi]$. Observăm că

$$\sum_{n=0}^{\infty} \frac{\cos n\theta}{(n+1)^4} = \operatorname{Re} \sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^n u^n v^n t^n e^{in\theta} dx du dv dt =$$

$$= \operatorname{Re} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(\sum_{n=0}^{\infty} x^n u^n v^n t^n e^{in\theta} \right) dx du dv dt = \operatorname{Re} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xuvt e^{i\theta}} dx du dv dt =$$

$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1 + x^2 u^2 v^2 t^2 - 2xuvt \cos \theta} dx du dv dt. \tag{1}$$

Este simplu de aratat ca are loc inegalitatea
$$\frac{1 - xuvt\cos\theta}{1 + x^2u^2v^2t^2 - 2xuvt\cos\theta} \ge \frac{1}{1 + xuvt}, \quad \forall \theta \in [0, 2\pi] \text{ si } \forall x, u, v, t \in (0, \infty), \tag{2}$$

cu egalitate dacă $\theta = \pi$.

Din (1) și (2) rezultă că

$$\sum_{n=0}^{\infty} \frac{\cos n\theta}{(n+1)^4} \ge \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+xuvt} \, \mathrm{d}x \mathrm{d}u \mathrm{d}v \mathrm{d}t = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^4} = \frac{7\pi^4}{720}.$$

272. Fie
$$x_i \in \mathbb{R}_+$$
, $i = \overline{1, n}$, astfel $\hat{i}nc\hat{a}t$

$$0 < x_1 < x_2 < \ldots < x_n \quad si \quad x_1 + x_2 + \ldots + x_n = a.$$

Să se determine multimea $\{\max x_i \mid i = \overline{1,n}\}$ și să se precizeze valorile pentru care aceste maxime sunt atinse.

Dorin Mărghidanu

Soluția autorului. Din condițiile din enunț, avem $(n-1) \cdot x_1 \leq x_2 + \ldots + x_n$, ceea ce implică $nx_1 \le x_1 + (x_2 + \ldots + x_n) = a$ și apoi $x_1 \le \frac{a}{n}$. Deci $\max x_1 = \frac{a}{n}$, atins în cazul

în care $x_1 = x_2 = \ldots = x_n = \frac{a}{n}$. Pentru variabila x_2 , avem $(n-2) \cdot x_2 \le x_3 + \ldots + x_n$, deci $x_1 + (n-1) \cdot x_2 \le a$ și cum $x_1 \ge 0$, rezultă că valoarea maximă a lui x_2 este $\frac{a}{n-1}$ și se realizează pentru $x_1 = 0$, $x_2 = \ldots = x_n = \frac{a}{n-1}.$ Se continuă apoi raționamentul.

În general, pentru variabila x_k avem $(n-k) \cdot x_k \leq x_{k+1} + \ldots + x_n$, deci

$$(x_1 + x_2 + \ldots + x_{k-1}) + (n - k + 1) \cdot x_k \le x_1 + x_2 + \ldots + x_n = a$$

și cum $0 \le x_1 \le x_2 \le \ldots \le x_{k-1} \le x_k$, valoarea maximă a lui x_k se obține când $x_1 = x_2 = \ldots = x_{k-1} = 0$ și $x_k = \frac{a}{n-k+1} = x_{k+1} = \ldots = x_n$, $k = \overline{1,n}$.

Soluție dată de Marius Olteanu, inginer la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea. Dacă $x_1 = x_2 = \ldots = x_{n-1} = 0$, atunci obtinem $x_{n \max} = a \ge 0$.

În continuare, avem $x_1 + x_2 + \ldots + x_{n-2} + (x_{n-1} + x_n) = a$. Dacă $x_1 = x_2 = x_3 = \ldots = x_{n-2} = 0$, atunci $(x_{n-1} + x_n)_{\max} = a$, deci $2x_{n-1} \le a$ $\leq (x_{n-1} + x_n)_{\max} = a, \text{ de unde } x_{n-1}_{\max} = \frac{a}{2}.$ Analog avem $x_1 + x_2 + \ldots + x_{n-3} + (x_{n-2} + x_{n-1} + x_n) = a.$

Dacă $x_1 = x_2 = x_3 = \ldots = x_{n-3} = 0$, atunci $(x_{n-2} + x_{n-1} + x_n)_{\max} = a$ implică $3x_{n-2} \le (x_{n-2} + x_{n-1} + x_n)_{\max} = a$ (deoarece $x_{n-2} \le x_{n-1} \le x_n$) și deci $x_{n-2_{\max}} = \frac{a}{3}$

Din aproape în aproape obținem, în cele din urmă, $x_{2\max} = \frac{a}{n-1}, x_{1\max} = \frac{a}{n}$.

Urmează

$$A = \left\{ \max x_i \mid i = \overline{1, n} \right\} = \left\{ \frac{a}{n}, \frac{a}{n-1}, \dots, \frac{a}{2}, a \right\}.$$

273. Dacă

$$e(x) = \left(1 + \frac{1}{x}\right)^x, \quad \forall x \in \mathbb{R}_+^*$$

 $si\ a \in \mathbb{R}_+^*$, $s\check{a}\ se\ calculeze$

$$\lim_{n \to \infty} \left(\lim_{x \to \infty} \left(\left(\frac{x}{n} \right)^2 \left(\sum_{k=1}^n e(x+ka) - ne(x) \right) \right) \right).$$

Dumitru M. Bătineţu-Giurgiu

Soluția autorului. Demonstrăm, mai întâi, următoarea Lemă. Avem

$$\lim_{x \to \infty} \left(x^2 (e(x+a) - e(x+b)) \right) = \frac{(a-b) \cdot e}{2}, \ \forall \ a, b \in \mathbb{R}_+, \ a > b.$$
 (1)

Demonstrație. Aplicăm teorema lui Lagrange funcției $f:[x+b,x+a\rightarrow\mathbb{R},$ f(x) = e(x). Prin urmare, există $c(x) \in (x + b, x + a)$ astfel încât

$$f(x+a) - f(x+b) = (a-b)e'(c(x)) = (a-b) \cdot e(c(x)) \left(\ln\left(1 + \frac{1}{c(x)}\right) - \frac{1}{c(x)+1} \right), (2)$$

340 Probleme

aceasta deoarece $e'(x)=e(x)\cdot\left(\ln\left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right)$. Deoarece $c(x)\in(x+b,x+a)$ rezultă că

$$x+b < c(x) < x+a \Leftrightarrow 1+\frac{b}{x} < \frac{c(x)}{x} < 1+\frac{a}{x};$$

atunci, din faptul că $x\to\infty$ rezultă că $\lim_{x\to\infty}\frac{c(x)}{x}=1.$ În conformitate cu (2) deducem că

$$\begin{split} &\lim_{x\to\infty} \left(x^2\cdot (e(x+a)-e(x+b))\right) = \lim_{x\to\infty} \left(x^2(a-b)\cdot e(c(x))\cdot \left(\ln\left(1+\frac{1}{c(x)}\right)-\frac{1}{c(x)+1}\right)\right) = \\ &= (a-b)\lim_{x\to\infty} \left(\frac{x}{c(x)}\right)^2\cdot \lim_{x\to\infty} e(c(x))\cdot \lim_{c(x)\to\infty} \left((c(x))^2\cdot \left(\ln\left(1+\frac{1}{c(x)}\right)-\frac{1}{c(x)+1}\right)\right) = \\ &= (a-b)\cdot 1\cdot e\cdot \lim_{t\to0} \frac{\ln(1+t)-\frac{t}{t+1}}{t^2}, \end{split}$$

unde $t = \frac{1}{c(x)}$. Prin urmare,

$$\lim_{x \to \infty} \left((e(x+a) - e(x+b)) \cdot x^2 \right) = (a-b) \cdot e \cdot \lim_{t \to 0} \frac{\frac{1}{t+1} - \frac{1}{(t+1)^2}}{2t} =$$

$$= \frac{(a-b) \cdot e}{2} \cdot \lim_{t \to 0} \frac{t+1-1}{t \cdot (t+1)^2} = \frac{(a-b) \cdot e}{2} \cdot \lim_{t \to 0} \frac{t}{t} = \frac{(a-b) \cdot e}{2}. \tag{3}$$

Cu aceasta lema este demonstra

Dacă b = 0, atunci avem

$$\lim_{x \to \infty} \left(x^2 \cdot \left(e(x+a) - e(x) \right) \right) = \frac{a \cdot e}{2}. \tag{4}$$

$$\lim_{x \to \infty} \left(\left(\sum_{k=1}^{n} e(x+k \cdot a) - n \cdot e(x) \right) \cdot x^{2} \right) = \sum_{k=1}^{n} \lim_{x \to \infty} \left(x^{2} \cdot \left(e(x+k \cdot a) - e(x) \right) \right) =$$

$$= \sum_{k=1}^{n} \frac{k \cdot a \cdot e}{2} = \frac{a \cdot e}{2} \sum_{k=1}^{n} k = \frac{n(n+1) \cdot a \cdot e}{4}.$$
 (5)

Rezultă că

$$\lim_{n \to \infty} \left(\lim_{x \to \infty} \left(\left(\frac{x}{n} \right)^2 \cdot \left(\sum_{k=1}^n e(x+k \cdot a) - n \cdot e(x) \right) \right) \right) =$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \left(\lim_{x \to \infty} \left(x^2 \left(e(x+k \cdot a) - e(x) \right) \right) \right) = \lim_{n \to \infty} \frac{n \cdot (n+1) \cdot a \cdot e}{4n^2} = \frac{a \cdot e}{4}.$$

Soluție dată de Marius Olteanu, inginer la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea. Avem

$$\left(\frac{x}{n}\right)^{2} \cdot \left(\sum_{k=1}^{n} e(x+ka) - ne(x)\right) = \frac{1}{n^{2}} \cdot x^{2} \cdot \left(\sum_{k=1}^{n} \left(e(x+ka) - e(x)\right)\right) =$$

$$= \frac{1}{n^{2}} \cdot \left(\sum_{k=1}^{n} x^{2} \left(e(x+ka) - e(x)\right)\right). \tag{1}$$

Având în vedere modul de obținere a relațiilor (4) și (5) de la pag. 152 și 153 din [1], se deduce imediat faptul că pentru orice $x \ge 1$, $x \in \mathbb{R}$, avem șirul de inegalități

$$\frac{e}{2x+2} < \frac{e}{2x+\frac{11}{6}} < e - e(x) < \frac{e}{2x+\frac{4-e}{e-2}} < \frac{e}{2x+1}, \ \forall \, x \geq 1,$$

de unde rezultă că

$$\frac{e}{2x+2} < e - e(x) < \frac{e}{2x+1}, \ \forall x \ge 1. \tag{2}$$

În plus,

$$e(x+ka) - e(x) = (e(x+ka) - e) + (e - e(x)).$$
(3)

Din (2) avem

$$\left\{ \begin{array}{l} \frac{e}{2x+2} < e - e(x) < \frac{e}{2x+1}, \ \forall \, x \geq 1, \\ -\frac{e}{2(x+ka)+1} < e(x+ka) - e < \frac{e}{2(x+ka)+2}, \ \forall \, x \geq 1, \ k \in \mathbb{N}^*, \ a \in \mathbb{R}_+^*. \end{array} \right.$$

După (3) urmează că:

$$e\left(\frac{1}{2x+2} - \frac{1}{2(x+ka)+1}\right) < e(x+ka) - e(x) < e\left(\frac{1}{2x+1} - \frac{1}{2(x+ka)+2}\right),$$

 $\forall\, x\geq 1,\ k\in\mathbb{N}^*,\ a\in\mathbb{R}_+^*,$ ceea ce este echivalent cu

$$e \cdot \frac{2ka - 1}{2(x+1)(2x+2ka+1)} < e(x+ka) - e(x) < e \cdot \frac{2ka + 1}{2(2x+1)(x+ka+1)},$$

 $\forall x \geq 1, \ k \in \mathbb{N}^*, \ a \in \mathbb{R}_+^*$ şi apoi

$$e \cdot \frac{x^2(2ka-1)}{2(x+1)(2x+2ka+1)} < x^2(e(x+ka)-e(x)) < e \cdot \frac{x^2(2ka+1)}{2(2x+1)(x+ka+1)},$$

 $\forall x \ge 1, k \in \mathbb{N}^*, a \in \mathbb{R}_+^*.$

Aplicând teorema "cleştelui" avem

$$e \cdot \lim_{x \to \infty} \frac{x^2 (2ka - 1)}{2(x+1)(2x+2ka+1)} < \lim_{x \to \infty} \left[x^2 (e(x+ka) - e(x)) \right] < e \cdot \lim_{x \to \infty} \frac{x^2 (2ka+1)}{2(2x+1)(x+ka+1)},$$

deci

$$\lim_{x \to \infty} \left[x^2 (e(x + ka) - e(x)) \right] = e \cdot \frac{ka}{2}, \quad \forall k \in \mathbb{N}^* \text{ si } a \in \mathbb{R}_+^*.$$
 (4)

Ținând cont de relațiile (1) și (4) avem

$$\lim_{x \to \infty} \left(\frac{x}{n}\right)^2 \left(\sum_{k=1}^n e(x+ka) - ne(x)\right) = \frac{1}{n^2} \sum_{k=1}^n \lim_{x \to \infty} \left[x^2 \left(e(x+ka) - e(x)\right)\right] =$$

$$= \frac{ea}{2} \cdot \frac{1}{n^2} \cdot \sum_{k=1}^n = \frac{ea}{2} \cdot \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{ea}{4} \cdot \frac{n+1}{n},$$

adică

$$\lim_{x \to \infty} \left(\frac{x}{n}\right)^2 \cdot \left(\sum_{k=1}^n e(x+ka) - ne(x)\right) = \frac{ea}{4} \lim_{n \to \infty} \left(\frac{n+1}{n}\right) = \frac{ea}{4}.$$

342 Probleme

Bibliografie

[1] E. Păltănea, Asupra vitezei de convergență a șirului $\left(1+\frac{1}{n}\right)^n$, G. M. - A nr. 3/2001.

274. Fie R şi ρ două numere strict pozitive, iar k un număr natural dat. Considerăm şirul de polinoame $(F_n)_{n>k}$ definit prin

$$F_n(X) = X^n - R^k X^{n-k} - \sum_{\substack{1 \le j \le n \\ i \ne k}} \rho^j X^{n-j}.$$

1. Să se arate că fiecare polinom F_n are o unică rădăcină reală pozitivă ξ_n .

2. Să se arate că şirul $(\xi_n)_{n>k}$ este monoton şi convergent.

Doru Ştefănescu

Soluția autorului. 1. Polinomul F_n are o singură schimbare de semn. Dintr-o cunoscută teoremă a lui *Descartes* (regula semnelor), reiese că F_n are o singură rădăcină pozitivă.

2. Considerăm $d \in \mathbb{N}, d > k$. Atunci are loc relația

$$F_{d+1}(X) = XF_d(X) - \rho^{d+1}$$

De aici obținem

$$F_{d+1}(\xi_d) = \xi_d \cdot F(\xi_d) - \rho^{d+1} = -\rho^{d+1} < 0.$$

Conform teoremei lui Cauchy reiese că numărul ξ_d este o margine superioară a modulelor rădăcinilor polinomului F_{d+1} . Prin urmare, avem

$$\xi_d \le \xi_{d+1}$$
 pentru orice $d > k$,

ceea ce arată că șirul $(\xi_d)_{d>k}$ este crescător.

Pe de altă parte, din teorema " $R+\rho$ " a lui Lagrange valorile absolute ale rădăcinilor polinomului F_d sunt mărginite superior de $R+\rho$ dacă $\rho \leq R$, respectiv de $\rho+R$ dacă $R \leq \rho$, care este (în acest caz) aceeași margine. Deci $\xi_d \leq R+\rho$. Așadar

$$0 < \xi_d \le R + \rho,$$

deci şirul $(\xi_d)_{d>k}$ este mărginit.

Cum şirul $(\xi_d)_{d>k}$ este şi monoton, rezultă convergența sa.

Soluție dată de Nicuşor Minculete, Universitatea Dimitrie Cantemir din Brașov.

1. În ecuația $F_n(x)=0$ facem substituția $x\to \frac{1}{x}$ și astfel obținem ecuația

$$\sum_{\substack{1 \le j \le n \\ s \ne k}} \rho^j x^j + R^k x^k - 1 = 0.$$

Considerăm acum funcția $f:[0,+\infty)\to\mathbb{R}$ dată de

$$f(x) = \sum_{\substack{1 \le j \le n \\ j \ne k}} \rho^j x^j + R^k x^k - 1.$$

Cum f(0)=-1 și $\lim_{x\to\infty}f(x)=+\infty$, iar f este o funcție continuă, deducem că ecuația f(x)=0 are cel puțin o soluție. Dar

$$f'(x) = \sum_{\substack{1 \le j \le n \\ j \ne k}} j \rho^j x^{j-1} + k R^k x^{k-1} > 0, \quad \forall x > 0,$$

deci funcția f este strict crescătoare pe $(0, +\infty)$, așadar f are o singură rădăcină pozitivă, ceea ce înseamnă că polinomul F_n are o singură rădăcină reală pozitivă ξ .

2. Fie ξ_n rădăcina pozitivă a polinomului $F_n(x)=0$ și ξ_{n+1} rădăcina pozitivă a polinomului $F_{n+1}(x)=0$. Vom nota $\xi_n=\frac{1}{\theta}$ și $\xi_{n+1}=\frac{1}{\delta},\ n>k$, deci avem relațiile

$$\rho^{n}\theta^{n} + \rho^{n-1}\theta^{n-1} + \ldots + \rho^{k+1}\theta^{k+1} + \rho^{k-1}\theta^{k-1} + \ldots + R^{k}\theta^{k} - 1 = 0$$

şi

$$\rho^{n+1}\delta^{n+1} + \rho^n\delta^n + \ldots + \rho^{k+1}\delta^{k+1} + \rho^{k-1}\delta^{k-1} + \ldots + R^k\delta^k - 1 = 0.$$

Din aceste relații obținem

$$\rho^{n+1}\delta^{n+1} = \rho^{n} (\theta^{n} - \delta^{n}) + \rho^{n-1} (\theta^{n-1} - \delta^{n-1}) + \dots + \rho^{k+1} (\theta^{k+1} - \delta^{k+1}) + \\ + \rho^{k-1} (\theta^{k-1} - \delta^{k-1}) + \dots + \rho(\theta - \delta) + R^{k} (\theta^{k} - \delta^{k}).$$
 (*)

Se observă uşor că $\theta \neq \delta$, din relația (*) (deoarece pentru $\theta = \delta$, obținem $\rho^{n+1}\delta^{n+1} = 0$, fals, iar

$$\theta^s - \delta^s = (\theta - \delta)E(\theta, \delta, s),$$

unde $E(\theta, \delta, s) > 0$, pentru orice $s \ge 1$.

Relaţia (*) se rescrie în modul următor:

$$\rho^{n+1}\delta^{n+1} = (\theta - \delta) \left\{ [\rho^n E(\theta, \delta, s) + \ldots + \rho] + R^k E(\theta, \delta, k) \right\},\,$$

ce
ea ce implică $\theta-\delta>0$, deoarece $p^{n+1}\delta^{n+1}>0$ și expresia dintre acolade este strict pozitivă.

Prin urmare, $\theta > \delta$, adică $\xi_{n+1} > \xi_n$, deci şirul $(\xi_n)_{n>k}$ este strict crescător.

Presupunem prin absurd că şirul $(\xi_n)_{n>k}$ este nemărginit, iar cum el este strict crescător, rezultă că $\lim_{n\to\infty}\xi_n=\infty$, adică $\lim_{n\to\infty}\frac{\xi_n}{\rho}=\infty$.

Cum

$$\xi_n^n - R^k \xi_n^{n-k} - \rho \xi_n^{n-1} - \rho^2 \xi_n^{n-2} - \dots - p\rho n - 1 \xi_n - \rho^n = 0,$$

prin împărțirea cu ρ^n obținem

$$\left(\frac{\xi_n}{\rho}\right)^n - \frac{R^k}{\rho^k} \left(\frac{\xi_n}{\rho}\right)^{n-k} - \left(\frac{\xi_n}{\rho}\right)^{n-1} - \left(\frac{\xi_n}{\rho}\right)^{n-2} - \dots - \frac{\xi_n}{\rho} - 1 = 0. \tag{**}$$

Prin trecere la limită în relația (**) deducem că $\infty = 0$, ceea ce este o contradicție. Așadar, șirul $(\xi_n)_{n>k}$ este mărginit. Cum acest șir este monoton și mărginit, rezultă că este convergent, din criteriul lui Weierstrss.

Nota redacției. O soluție corectă, similară cu cea de mai sus, a dat și domnul inginer *Marius Olteanu* de la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea.

ISTORIA MATEMATICII

Matematica în top?

Neculai Stanciu¹⁾

Abstract. The international Company Creators Synetics composed in October of 2007, the top 100 living geniuses in science, politics, art and business. On top are two mathematicians *Grigory Perelman* (Russia) and *Andrew Wiles* (UK).

Keywords: History of Mathematics.

MSC: 01A05.

Compania internațională Creators Synetics a alcătuit, în octombrie 2007, topul celor 100 de genii în viață din domeniul științei, politicii, artei și din mediul de afaceri.

Primul loc a fost împărțit de inventatorul Internetului, Sir *Tim Berners-Lee* și chimistul elvețian, *Albert Hofmann* – descoperitorul proprietăților halucinogene ale LSD. Pe ultimul loc figurează numele regizorului american *Quentin Tarantino*. În total, pe listă sunt 24 de britanici și 43 de americani. Doar 15 dintre cele 100 de genii sunt femei. Cele 100 de genii au fost alese în funcție de 5 factori – rolul jucat în schimbarea sistemului de viziune asupra lumii, recunoașterea publică, forța intelectului, succesele și importanța culturală.

În acest top sunt şi doi matematicieni, $Grigory\ Perelman\ (Rusia)$ şi $Andrew\ Wiles$ (Marea Britanie). Meritele celor doi sunt demonstrarea a două conjecturi celebre. Termenul de conjectură a fost introdus de $David\ Hilbert^2$), în formularea celor 23 de probleme supuse spre rezolvare comunității internaționale a matematicienilor la al II-lea "Congres internațional al matematicienilor" din 1900 de la Paris. În mod obișnuit, prin conjectură se înțelege orice explicație presupusă a unui fenomen (eveniment) constituită fără certitudine şi în afara oricărei dovezi (probe) plecând de la aparențe sau presupuneri. În acord cu Hilbert (autorul termenului de conjectură) se înțelege prin conjectură acea problemă deschisă care poate furniza arhitectura unei teorii în matematică (sau o direcție nouă) sau avansarea unui nou domeniu.

Pierre Fermat (părintele teoriei numerelor) a produs 48 conjecturi (trei s-au dovedit false) care au reprezentat probleme de cercetare pentru mulți matematicieni (Gauss³⁾,

¹⁾Profesor, Şc. George Emil Palade şi Şc. nr. 6, Buzău, stanciuneculai@yahoo.com

²⁾Născut la 23 inuarie 1862 la Königsberg, în Prusia (acum Kaliningrad, Rusia) – decedat la 14 februarie 1943, a fost un matematician german. Prin profunzimea ideilor şi a modului de exprimare, "Bazele geometriei " a lui *Hilbert* a devenit cartea de temelie a matematicilor moderne şi metoda axiomatizării în sensul lui *Hilbert*; ea a fost generalizată pentru toate ramurile noi ale matematicii. Totuși, pentru ușurarea înțelegerii geometriei afine şi euclidiene, astăzi se adoptă o construcție a geometriei cu ajutorul unei automatizări bazate pe algebra liniară. Acest fapt este în concordanță cu schimbările determinate de noul curriculum, de noul sistem de evaluare şi de noile manuale. (N.A.)

³⁾ Carl Friedrich Gauss, latinizat Carlo Friderico Gauss (n. 30 aprilie 1777, Braunschweig – d. 23 februarie 1855 Göttingen) a fost un matematician, fizician şi astronom german celebru. (N.A.)

 $Cauchy^1$, $Riemann^2$ etc). Ultima conjectură a lui Fermat (cunoscută ca Marea teoremă a lui Fermat) a fost că ecuația $x^n + y^n = z^n$, pentru $n \ge 3$, nu are soluții în $\mathbb{Z} \setminus \{0\}$.

Pierre de Fermat³⁾ (n.17 august 1601, Montauban, Franța - d.12 ianuarie 1665, Castres, Franța)

Sir **Andrew John Wiles**⁴⁾
(n. 11 aprilie 1953, Cambridge,
England, Residence United Kingdom)

Marea teoremă a lui Fermat a fost enunțată de Pierre de Fermat în anul 1637, iar demonstrația completă a fost găsită de-abia 357 de ani mai tîrziu, în 1994, de către matematicianul englez Andrew Wiles.

VS.

Pentru n=2, enunțul nu este adevărat. Există triplete de numere naturale (x,y,z) cu care se pot forma laturile unui triunghi dreptunghic; de aici, conform teoremei lui Pitagora, avem $x^2+y^2=z^2$. De exemplu (3,4,5) sau (5,12,13). Există chiar o infinitate de astfel de triplete, forma lor generală fiind x=2uv, $y=u^2-v^2$, $z=u^2+v^2$, unde u și v sunt numere naturale oarecare.

Pentru n>2, doar cazul n=4 admite o demonstrație elementară, schi
țată de Fermat însuși. Chiar și pentru cazul n=3 demonstrația de
pășește nivelul manualelor de

¹⁾ Augustin Louis Cauchy (n. 21 august 1789 – d. 23 mai 1857) a fost unul dintre cei mai importanți matematicieni francezi. A demarat un proiect important de reformulare și demonstrare riguroasă a teoremelor de algebră, a fost unul dintre pionierii analizei matematice și a adus o serie de contribuții și în domeniul fizicii. Datorită perspicacității și rigurozității metodelor sale, Cauchy a avut o influență extraordinară asupra contemporanilor și succesorilor săi. Catolic și roialist fervent, manifestă o prezență socială activă. (N.A.)

²⁾ Georg Friedrich Bernhard Riemann (n.17 septembrie 1826 – d.20 iulie 1866) a fost un matematician german cu importante contribuţii în analiza matematică şi geometria diferenţială, unele dintre ele deschizând drumul ulterior spre teoria relativităţii generalizate. (N.A.)

³⁾ A fost un matematician francez, precursor al calculului diferențial, geometriei analitice și calculului probabilităților. Lui îi este atribuit într-o măsură mai mică calculul modern, în special, pentru munca sa referitoare la tangente și punct staționar. El este considerat câteodată "părinte" al calculului diferențial și al teoriei numerelor. A avut contribuții și în geometria analitică și probabilitate. S-a născut în orașul Beaumont-de-Lomagne. Tatăl lui era un bogat negustor de piei. Sub presiunea familiei, Fermat s-a îndreptat spre o carieră în administrația civilă. În 1631 a fost numit consilier la Departamentul de Solicitări din Toulouse. În 1652 a fost afectat de o formă a ciumei, care bântuia Europa acelor ani. A întreținut o vastă corespondență cu Digby, Wallis, Mersenne. (N.A.)

⁴⁾Profesor de matematică la Princeton University (U.S.A.), a obținut premii notabile: Fermat Prize (1995), Wolf Prize (1995/6), Royal Medal (1996), IMU Silver Plaque (1998), Shaw Prize (2005).

liceu; primul care s-a ocupat de cazul n=3 a fost matematicianul $Leonhard\ Euler^{1)}$ în 1753.

În 1825, francezii Johann Peter Gustav Lejeune Dirichlet²⁾ și Adrien-Marie Legendre³⁾ tranșează cazul n=5, demonstrația având ca punct de plecare o idee mai veche a lui Marie-Sophie Germain⁴⁾.

După câțiva ani, este finalizată demonstrația pentru n=7,
de către francezul $Pi\`ere$ de Gabriel Lèon Jean Baptiste Lamè
5). La mijlocul secolului XIX, Academia Franceză instituie un premiu de 3000 franci (o sumă enormă atunci) pentru o demonstrație completă a teoremei.

Demonstrații pentru numere prime mai mici ca 100 au fost date aproximativ în aceeași perioadă, de către matematicianul german $Ernst\ Eduard\ Kummer^{6)}$.

În 1908, magnatul german Paul Wolfskehl alocă uriașa sumă de 100.000 de mărci celui ce va demonstra teorema ("oferta" fiind valabilă până în 2007). După apariția calculatoarelor electronice, au fost abordate cazuri particulare pentru valori tot mai mari ale lui n; prin anii 1980, erau elucidate toate cazurile în care n < 4.000.000.

În ultimii ani de dinaintea găsirii demonstrației complete pentru orice n > 2, matematicienii erau convinși că prin metode elementare nu se mai poate aduce nimic nou.

În anul 1983, matematicianul german $Gerd\ Faltings^7$). a demonstrat că există cel mult o mulțime finită de contra-exemple la marea teoremă a lui Fermat.

În septembrie 1994, matematicianul englez $Andrew\ Wiles$ a dat demonstrația completă a teoremei, după ce, în 1993, propusese o altă demonstrație, care se dovedise a fi greșită.

În anul 2000, Institutul matematic Clay (U.S.A.) a lansat în cadrul unei Conferințe aniversare a centenarului congresului internațional al matematicienilor din 1900, un număr de 7 probleme (numite *problemele mileniului trei*⁸⁾) spre rezolvare: fiecare problemă este cotată cu un premiu de 1000000 de dolari. Printre aceste șapte probleme se află și *Conjectura Poincaré*.

 $^{^{1)}}$ (n. 15 aprilie 1707, Basel, Elveţia – d. 18 septembrie 1783, Sankt Petersburg, Rusia) a fost un matematician şi fizician elveţian. Leonhard Euler este considerat a fi fost forţa dominantă a matematicii secolului al 18-lea şi unul dintre cei mai remarcabili matematicieni şi savanţi multilaterali ai omenirii. Alături de influenţa considerabilă pe care a exercitato asupra matematicii şi matematizării ştiinţelor stau atât calitatea şi profunzimea, cât şi prolificitatea extraordinară a scrierilor sale, opera sa exhausivă (dacă ar fi publicată vreodată) putând cu uşurinţă umple 70 – 80 de volume de dimensiuni standard. (N.A.)

 $^{^{2)}}$ (n. 13 februarie 1805 – d. 5 mai 1859) a fost matematician german, celebru prin contribuțiile valoroase în analiza matematică și teoria numerelor. (N.A.)

 $^{^{3)}}$ (n. 18 septembrie 1752 - d. 10 ianuarie 1833) a fost matematician francez, cunoscut pentru contribuțiile sale în domeniile: statistică, teoria numerelor, algebră abstractă și analiză matematică. (N.A.)

 $^{^{4)}}$ (n. 1 aprilie 1776 – d. 27 iunie 1831) a fost o matematiciană franceză cu contribuții importante în geometria diferențială și teoria numerelor. (N.A.)

⁵⁾(n. 22 iulie 1795 – d.1 mai 1870) a fost un matematician francez. (N.A.)

 $^{^{(6)}}$ (n.29 ianuarie 1810 – d.14 mai 1893) a fost un matematician german. (N.A.)

 $^{^{7)}\} Gerd\ Faltings$ –
n. 28 iulie 1954 în Gelsenkirchen-Buer, Germania – este un matematician german (N.A.)

⁸⁾ Cele şapte probleme ale Mileniului stabilite de Clay Institute din Cambrige, Massachussetts sunt următoarele: P versus NP, Conjectura lui Hodge, Ipoteza Riemann, Existența "golului de masă" Yang-Mills, Problema de existență Navier-Stokes, Conjectura lui Birch-Sinnerton-Dyer, Conjectura lui Poincaré – singura rezolvată. (N.A.)

Jules Henri Poincaré¹⁾ (n.29 aprilie 1854 – d.17 iulie 1912)

Grigori Perelman ²⁾ (n.13 iunie 1966, Sankt Petersburg, Rusia)

În 1904, Poincar'e enunța faimoasa sa conjectură. Enunțul ei, în cazul cel mai general, este următorul:

VS.

 ${\cal O}$ varietate simplu conexă din spatiul cu n+1 dimensiuni este homeomorfă cu o sferă n-dimensională.

Pentru cazul mai general, pentru n>4, demonstrația a fost realizată de către Zeman(1962), $Stallings^{(3)}(1960)$ și $Smale^{(4)}(1960)$, iar pentru cazul n=4 demonstrația a fost reușită de către Freedman în 1982. Rămăsese de demonstrat cazul în care n=3, adică varianta, aparent, cea mai simplă.

William Thurston ⁵⁾, un matematician de la Princeton, a propus, pe la începutul anilor 1970, o clasificare a varietăților 3-dimensionale. El considera că atât timp cât varietățile 3-dimensionale pot avea diferite forme, ele nu vor "prefera" o anumită geometrie, întocmai ca o țesătură din mătase care va lua forma manechinului pe care este așezată. El a afirmat că fiecare dintre varietățile 3-dimensionale poate fi descompusă în unul pâna la opt componente, inclusiv una de tip sferic, în sensul topologic al cuvântului. Avem acum de-a face cu o nouă conjectură, "Conjectura geometrizării", care este o generalizare a Conjecturii lui Poincaré.

 $^{^{1)}{\}rm A}$ fost considerat un matematician universal cu contibuții în toate domeniile matematicii. (N.A.)

²⁾Talentat la matematică, urmează cursurile unui prestigios liceu leningrădean renumit pentru specializarea sa în fizică și matematică. Rezultatele sale nu se lasă așteptate și, în 1982, devine membru al lotului sovietic pentru Olimpiada Internațională de Matematică și obține medalia de aur cu scorul maxim posibil: 42 de puncte.

A refuzat Medalia Fields (2006) și premiul de 1.000.000 de dolari oferit de Clay Mathematics Institute. (N.A.)

 $^{^{3)}} John\ Stallings$ (n. 22 iulie 1935 – d. 24 noiembrie 2008 în Berkeley) a fost un matematician american. A primit Medalia Fields în 1966. (N.A.)

 $^{^{4)}}$ Stephen Smale (n. 15 iulie 1930) – este un matematician american. A primit Medalia Fields în 1966.(N.A.)

⁵⁾ William Paul Thurston (n. 30 octombrie 1946) este un matematician american. A primit Medalia Fields în 1982. (N.A.)

În 1982, anul în care Thurston primea Medalia Fields¹⁾, un alt matematician, Richard Hamilton²⁾, de la Universitatea Cornell, propunea un program de demonstrare a Conjecturii geometrizării. El pleacă de la așa-numita Curgere Ricci. Hamilton își propune să arate că o suprafață simplu conexă poate fi deformată continuu astfel încât oricare punct al ei să ajungă pe suprafața unei sfere (sfera în sensul larg, topologic). Problema era că pe măsură ce se aplica deformarea, în timp, se întâmpla să apară zone cu singularități. Aceste singularități îl împiedicau pe Hamilton să realizeze deformarea continuă pe care o dorea. Aici intervine articolul genial al lui Perelman din 2002, care are 39 de pagini. În "The entropy formula for the Ricci flow and its geometric applications" Perelman indica o cale prin care singularitățile pot fi făcute să dispară. El aplică un procedeu prin care mărimile care intervin în deformare sunt "netezite".

Lucrarea lui Perelman nu a reprezentat demonstrarea completă a conjecturii $Poincar\acute{e}$, ci numai realizarea unui schelet de demonstrație. După mai multe dezvoltări, demonstrația completă a fost realizată de către $Huai\text{-}Dong~Cao^{3)}$ și $Xi\text{-}Ping~Zhu^{4)}$. Demonstrația se întinde pe 328 de pagini. $Terence~Tao^{5)}$, profesor de matematică la Universitatea din California, spune că realizarea lui Perelman este "cea mai frumoasă demonstrație pe care a văzut-o în ultimii zece ani".

Înainte de a muri, Hilbert a fost întrebat, dacă ar învia după 500 de ani, ce întrebare ar pune, și el a răspuns: dacă a fost rezolvată ipoteza lui Riemann $^{6)}$.

În ceea ce privește topul universităților (2007), există un clasament realizat de Times Higher Education Supplement (THES) și firma Quacquarelli Symonds (QS) (Universitatea din București este singura universitate din România care a intrat în topul primelor 500 din lume, pe locul 472) și un clasament realizat de Universitatea Jiao Tong din Shanghai (și în

pe drepte cu $s = \frac{1}{2} + bi$, cu $b \in \mathbb{R}$. Această conjectură reprezintă cea mai importantă şi dificilă problemă a matematicii contemporane. (N.A.)

¹⁾Medalia Fields este cea mai importantă distincție din lumea matematicii, fiind cunoscută ca un fel de Premiu Nobel pentru matematică. Medalia este datorată matematicianului John Charles Fields (1863-1932), care a propus în 1932, în cadrul unui congres internațional al matematicienilor care a avut loc la Toronto, înființarea unei distincții care să recompenseze realizările majore din matematică. La moartea sa, în 1932, a lăsat drept moștenire toate bunurile pentru a finanța medalia care avea să îi poarte numele. Spre deosebire de Premiul Nobel, care se acordă anual, Medalia Fields este atribuită la fiecare 4 ani, în cadrul unui congres internațional de matematică. De menționat că medaliații Fields trebuie să aibă o vârstă mai mică de 40 de ani. (N.A.)

²⁾ Richard Streit Hamilton (n.1943) – este un matematician american. A fost ales membru în National Academy of Sciences în 1999 şi în American Academy of Arts and Sciences în 2003. A primit premiul AMS Leroy P. Steele Prize în 2009. (N.A.)

³⁾Matematician de origine chineză – activează la Departamentul de Matematică al Universității, Lehigh, S.U.A. (N.A.)

⁴⁾Matematician de origine chineză – activează la Departamentul de Matematică al Universității Zhongshan, Guangzhou, China (N.A.)

⁵⁾ Terence Chi-Shen Tao (n. 17 iulie 1975, Adelaide, South Australia) este un matematician australian (supranumit "Mozart" în matematică). În august 2006 a primit Medalia Fields, iar o lună mai târziu a primit premiul MacArthur Fellowship. A fost ales la Fellow of the Royal Society pe 18 mai 2007 și în 2009 devine member of American Academy of Arts and Sciences. Cel mai tânăr profesor de matematică (24 de ani). (N.A.)

 $^{^{6)}}$ Ipoteza lui Riemann – Funcția $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n},$ unde $s\in\mathbb{C},$ are zerourile în \mathbb{C} situate

anul acesta topul este împânzit de universitățile americane, în primele 10 poziții ale topului, 8 sunt din Statele Unite, iar 2 din Marea Britanie). Cele mai multe universități din topul Shanghai sunt americane (159), urmate ca număr de cele britanice (42), germane (40), japoneze (31) și de cele canadiene (21). Cu ocazia congresului matematicienilor români, Institutul de Matematică "Simion Stoilow" al Academiei Române a redactat un raport în care precizează: "Toate universitățile de top din America au cel puțin un profesor de matematică român și peste 300 de profesori români de matematică predau la universitățile din Statele Unite, Franța, Noua Zeelandă, Marea Britanie, Germania, Italia".

Statistica elaborată de Institutul de Matematică, arată în continuare: "În domeniul matematicii sunt mai puțin de 500 de absolvenți de studii superioare anual, din care 10-20 intră în cercetarea matematică. De ani buni se manifestă o migrație aproape totală a "supercreierelor" din domeniu spre universitățile din S.U.A. și Europa de Vest încă din primii ani de după facultate sau chiar după liceu."

Un astfel de matematician român (după unii specialiști cel mai bine cotat tânăr matematician român) este Daniel Tătaru¹. Matematicianul a fost un pretendent român la "Nobelul matematicii". Chiar dacă l-a ratat, Tătaru rămâne un candidat serios la recunoașterea mondială. În 2002 a primit prestigiosul Premiu Bocher, distincție acordată la fel de greu, o dată la trei ani, în același timp cu Terence Tao, cel cu care a făcut echipă în cercetare la Princeton între 1995 și 1997.

BIBLIOGRAFIE

- M. Oprea, Ce este o conjectură și ce înseamnă o conjectură ?, Rev. Axioma, Nr.8/2001.
- $[2]\ *\ *\ *$ Wikipedia, enciclopedia liberă.

Ion Ionescu (Bizet) (1870 – 1946)

MIRCEA TRIFU²⁾

"A fost odată ca niciodată un inginer strașnic, $Ion\ Ionescu$, stâncă de granit, inimă de aur, om de treabă și om de ispravă" $Gh.\ Titeica$

Peste viața și activitatea lui *Ion Ionescu*, vestit inginer al Școlii Naționale de Poduri și Șosele din București și "stâlp" al *Gazetei Matematice*, s-a așternut, cu nedreptate, uitarea...

S-a născut la 22 noiembrie 1870 în cătunul Stoienoaia, comuna Creața-Leşile (astăzi, comuna Petrăchioaia) din județul Ilfov, unde tatăl său, Nicolae Ionescu, căsătorit cu Maria-Atina, născută Diamandescu, fiica unui podgorean din Valea Călugărească, era administratorul moșiei din localitate a fraților Iosif și Constantin Darvaris. Școala primară o începe în comuna natală, ,... cu mari greutăți din cauza schimbării învățătorilor. Pentru clasa a II-a am fost adus la București, la școala de la Clemența, stând la o gazdă de la care am fugit la țară, căci până și alimentele ce mi se aduceau de acasă le dădea la o ceată de căței, din părul cărora își făcea ciorapi contra reumatismului. Cu modul acesta am pierdut anul acela. "Va încheia ciclul primar la Școala nr. 1 de Roșu din București.

Pasiunea pentru matematică se formează acum. În clasa a IV-a citește o carte despre logaritmi și este fascinat de uluitoarea facilitate pe care aceștia o ofereau calculului

¹⁾(n. 6 mai 1967, Piatra Neamţ). La Princeton, unde *Daniel Tătaru* a efectuat studiile postdoctorale, lucrează englezul *Andrew Wiles* şi a lucrat începând din 1993 şi rusul *Grigori Perelman*. (N.A.)

²⁾Profesor, Secretar general al S.S.M.R.

cu numere mari. "... Am aruncat toți haiducii și toate poveștile pe care le aveam și am căutat să fiu mai aproape de matematici" va mărturisi el mai târziu.

Urmează Școala comercială din Bulevardul Domniței (azi, Bd. Hristo Botev), având bursă în toți anii de studiu. În timpul verii făcea practică de contabil, ca să strângă bani pentru anul școlar următor.

După absolvire, devine contabil al moșiei Stoienoaia. Iarna, fiind mai puțin ocupat, se pregătește singur pentru admiterea în anul preparator și apoi, ca elev la Școala de Poduri și Șosele din București, "... la trigonometrie, după cartea lui Gh. Constantinescu, fost profesor la Craiova". La examenul de admitere din 1889 este primul "la clasificație" și va absolvi școala în 1894, ca șef de promoție, cu media 18,42 (punctajul maxim fiind 20), cea mai mare medie obținută până atunci.

"Ca elev era unul din cei mai disciplinați, din cei mai inteligenți, de o stăruință fără seamăn" își va aminti, peste ani, fostul său profesor, Anghel Saligny. A fost sergentul (șeful) clasei, dar și cel care va redacta cursurile de "Mecanica rațională" a lui G. Kirilov și de "Rezistența materialelor" a lui C. Mănescu și va traduce "Tratatul de poduri" a lui Winker.

Este angajat ca inginer la Serviciul pentru construcția căii ferate (și a podului) de la Fetești-Cernavodă. Podul este inaugurat de către Regele Carol I, în uralele mulțimii, la 14 septembrie 1895. A doua zi, la 15 septembrie 1895, va apărea primul număr al *Gazetei Matematice*.

Podul de la Cernavodă a fost o mare realizare a inginerilor români, fiind, la vremea aceea, cea mai mare construcție de acest fel din Europa. *Ion Ionescu* a fost șef de șantier la primul tronson al podului, cel dinspre Fetești, peste brațul Borcea.

Ca inginer, Ion Ionescu este autorul unor construcții, studii și proiecte, unele deosebite. A elaborat, de exemplu, proiectul pentru șantierul naval din Turnu Severin, este autorul unui studiu privind transformarea Prutului într-un canal navigabil între Galați și Iași, a executat cu mare profesionalism harta hidrografică a bazinului Dunării. A construit podul de la Bobolia, pe valea Prahovei, iar în 1905 a construit primul pod în unghi pe plan orizontal din lume, care se numește Podul Bizeț și este încă în folosință.

A obținut cel mai înalt grad ingineresc, inginer inspector general, a avut funcții importante în Comisia Centrală pentru despăgubiri de război, în Consiliul Permanent al Instrucțiunii Publice. A fost chemat și la Primăria Bucureștilor, ca specialist tehnic, dar intransigența sa proverbială a produs neplăceri, așa că a fost nevoit să își dea demisia.

Ingineria n-a fost pentru Ion Ionescu o cale de a ajunge la o situație materială bună, a avut o situație materială modestă. Cu ocazia pensionării va marturisi că "... în anul în care am ieșit inginer am locuit în două odăițe mici din strada Călușei, și astăzi, după 42 de ani de practică inginerească, locuiesc tot acolo, în două camere ceva mai mici." Este strâmtorat financiar și spre bătrânețe, pe volumul "Povestiri tehnice" – face următoarea dedicație unui fost elev, care l-a ajutat la tipărirea cărții, mulțumindu-i pentru sprijin: "Scumpului meu elev, Emil Prager, în amintirea editării a 200 de exemplare din această carte, al cărei venit mi-a fost de ajutor pentru căutarea boalei mele din 1943- 1945".

A trăit modest și sobru. "... Pe mama mea am avut-o ca exemplu de muncă și de conștiință la îndeplinirea datoriei, de la ea am luat spiritul de corectitudine, de economie, de trai modest". Nu și-a permis extravaganțe, doar scurte "ieșiri" cu prietenii, la via sa de la Valea Călugărească sau la berăria "La Căpitanul" din apropierea Universității.

 ${\bf A}$ adunat cărți, multe și bune. Colecția sa de cărți de aritmetică era cea mai completă și unică în România.

În anul 1897 îșî începe cariera didactică, fiind profesor de matematici la Școala de Telegrafie din București. În anul următor este numit suplinitor la Catedra de mecanică aplicată și rezistența materialelor la Școala de Poduri și Șosele. În perioada 1909 – 1914 a fost profesor (suplinitor) la Catedra de Lucrări Grafice și Rezistența materialelor. În anul 1914 Anghel Saligny solicită retragerea de la catedră și îl recomandă ca succesor pe Ion Ionescu. Va rămâne profesor la Catedra de Poduri până la 1 octombrie 1938, când se pensionează.

Pe lângă funcția didactică, $Ion\ Ionescu$ a îndeplinit și alte funcții: președinte al Secției de Matematică a Societății Române de Științe (în anul 1910 a fost chiar președinte al acestei Societăți), membru la $Mathematical\ Society$ din Anglia .

La Societatea Politehnică a fost timp de 13 ani secretar, timp de 9 ani vicepreședinte, iar în perioada 1932-1934, a fost președinte.

În anul 1938 a fost numit, prin decret regal, președinte al Colegiului Inginerilor, funcție în care a stat până în 1941, când s-a îmbolnăvit.

În anul 1919 a fost ales membru corespondent al Academiei Române.

A avut chemare pentru învățământ, a avut vocație de dascăl. La tablă explica simplu, fără emfază, convingător, cu o logică impecabilă, pasionat, antrenând elevii în entuziasmele lui reținute, dar comunicative. Desena cu o uimitoare îndemânare. Știa să înlăture, cu puține cuvinte, dificultățile de înțelegere.

Din partea elevilor, cerea multă muncă și o disciplină de fier. Nu accepta, sub nici o formă, chiulul și abaterea de la norme odată stabilite.

A dat 36 de serii de ingineri, dar nu se cunoaște cazul vreunui fost elev care să nu fi recunoscut mai târziu, în decursul carierei, cât de profitabilă, cât de salutară a fost trecerea prin mâinile lui.

Marea lui severitate, proverbiala lui exigență, au fost socotite ca exagerate. El însă nu a cedat, a rămas integru și drept, încrezător pe convingerile lui, veșnic în minoritate, dar cerând să i se consemneze părerea în scris, "pentru vremea când o opoziție dezinteresată va fi mai folositoare decât un reptilism cu tendințe".

 ${\bf A}$ fost, după aprecierea elevilor săi, cel mai autorizat profesor de morală și cinste profesională.

La Gazeta Matematică contribuția lui Ion Ionescu a fost covârșitoare. A făcut parte din cei cinci ingineri, întemeietorii, (Victor Balaban, Vasile Cristescu, Andrei Ioachimescu, Ion Ionescu și Ioan Zottu) care, la 4 octombrie 1894, în casa din strada Manea Brutaru (astăzi, strada General C. Budișteanu), au hotărât înființarea unei reviste "... de care să profite elevii liceelor noastre".

A fost, vreme de 44 de ani, redactor activ. A scris 154 note matematice, 198 de bibliografii, a propus 626 probleme, cele mai multe de aritmetică. "Problemele lui se recunosc, dintr-o privire," – notează un fost elev – "conțin în enunț o parte de mister, nu se rezolvă numai aplicând succesiv teoreme, ci solicită mijloace proprii, de unde și emoția și plăcerea descoperirii". Problema 1364 ne cere să regăsim, numai cu compasul, diametrul unei bare cilindrice rupte neregulat; problema 597 ne cere să aflăm, fără logaritmi, prima cifră a numărului 5100. În anul 1907, când se votează legea cârciumilor, Ion Ionescu propune problema 1297, care cerea să se afle întinderea maximă a unui sat pentru ca în el să nu fie posibilă deschiderea unei cârciumi, atunci când se limitează distanțele dintre aceasta și școală, primărie, biserică. Şi exemplele pot continua

Lui i se datoresc rubricile Gazetei: Note matematice, Diverse, Cereri, Suplimentele cu recreațiuni.

În anul 1901 publică în *Biblioteca Gazetei Matematice* celebra culegere de exerciții și probleme de aritmetică, algebră, geometrie și trigonometrie, scrisă în colaborare cu *Țițeica*, *Ioachimescu* și *Cristescu* (IȚIC), care va avea 4 ediții (ar fi folositor să se reediteze și astăzi!).

Ion Ionescu a fost, ani de zile, suplinitorul lui Anghel Saligny la Catedra de poduri, dar a refuzat sistematic să primească bani pentru această muncă "... întrucât legea cumulului nu permite ca cineva să aibă o funcțiune și două catedre și ceea ce nu este permis a se face pe față, nu este bine să se facă oricât de bine deghizat". Propune Societății înființarea, cu acești bani (aproximativ 13750 lei), a Fondului Anghel Saligny și a Bibliotecii tehnice a Gazetei. Tot el va scrie prima carte din colecție, Beton armat, care va avea un frumos succes de librărie.

Este inițiatorul Concursului Gazetei Matematice, în anul 1902. Când acesta se va desfășura pe centre, Ion Ionescu este trimis la Bârlad, unde nu găsește prea multă bunăvoință. El ripostează cu calm, imperturbabil "Ministerul mi-a pus la dispoziție o sală și am delegație de la Gazeta Matematică să stau patru ore în această sală și voi sta patru ore în această sală". Concursul s-a ținut, până la urmă ...

Rigiditatea caracterului său și severitatea cu care judeca lucrările elevilor nu excludeau bunătatea suffetească și o mare generozitate. Prin testamentul său, redactat cu o lună înainte de moarte, va lăsa moștenire *Societății Gazeta Matematică* biblioteca sa matematică, de peste 900 de volume și casa sa din strada Răsuri nr. 25, pentru a se înființa o *Casă de citire* pentru elevii de liceu. Casa chiar a funcționat, până în 1950, când a fost trecută, în mod abuziv, în proprietatea statului. A fost recuperată de către S.S.M.R. în anul 1997, dar este și în prezent plină de chiriași.

Sărbătorirea ieșirii la pensie a profesorului, în anul 1938, s-a făcut în marele amfiteatru al Politehnicii. Cu acest prilej, Gheorghe Țiţeica, din partea Academiei Române, se adresează sărbătoritului cu cuvintele: "Ai fost și ești ceea ce se cheamă, de obicei, un om dintr-o bucată, om întreg, dar nu ca un număr întreg oarecare, ci ca un număr prim,

care nu se imparte decât cu el însuși și cu unitatea. Prin munca Dumitale, prin caracterul Dumitale, prin linia dreaptă a vieții Dumitale, vei rămâne legendar".

Tot atunci, cele 36 serii de ingineri, cărora le-a fost profesor de Poduri, hotărăsc ca sala A.I.1. din vechea clădire a Politehnicii bucureștene să poarte numele *Ion Ionescu*. Pe un perete al sălii a fost prinsă o placă de bronz, cu figura în basorelief a marelui profesor, realizată de *I. Jalea*. În prezent, placa se găsește la muzeul din aceeași clădire.

Opera lui, risipită în mai mult de 200 de lucrări – aproximativ 4000 de pagini – merită să fie cunoscută pentru valoarea sa științifică, educativă, moralizatoare. Ea așteaptă să fie clasificată și structurată după, eventual, natura subiectelor și publicată din nou, în întregime.

Cum este așteptată și realizarea bustului său și amplasarea lui, în septembrie 2010, la Valea Călugarească, acolo unde s-a ținut ședința de constituire a *Societății Gazeta Matematică*.

Recenzii 353

La moartea lui *Ion Ionescu*, întâmplată la 17 septembrie 1946, nu s-au ținut discursuri. Unul dintre colaboratori i-a pus în sicriu ultimul număr al Gazetei, ca pentru a se amesteca în eternitate țărâna omului cu cea a revistei...

Pentru că $Ion\ Ionescu$ a fost nu numai un "stâlp" al $Gazetei\ Matematice$, a fost și sufletul ei.

"S-a străduit" – scria atunci Octav Onicescu – "să îndrume tineretul prin disciplina aspră a științei, folosind matematica drept instrument de lucru... Şi-a împlinit destinul... A rămas pentru noi o figură unică, de ziditor temeinic al unei lumi tehnice care înfruntă orice greutate."

Bibliografie

- [1] C. Mateescu, Ion Ionescu, Editura Științifică, București, 1966.
- [2] Gazeta Matematică, 1895-1935, Istoric-Invățăminte (Volum jubiliar).

RECENZII

EDUARD DĂNCILĂ, IOAN DĂNCILĂ, Învaţă geometrie cu ... mâinile tale, Editura ERC PRESS, Bucureşti, 2009

La finele anului 2009, în prestigioasa colecție "Biblioteca Societății de Științe Matematice din România", a apărut lucrarea cu incitantul titlu: Învață geometrie cu ... mâinile tale, având ca autori pe E. Dăncilă și I. Dăncilă, nume cunoscute și recunoscute în literatura matematică românească de nivel preuniversitar. Tradițional mâinile sunt folosite în studiul matematicii pentru a manevra creionul (creta) și instrumentele geometrice. De data aceasta, cei doi autori ne arată posibilitatea de a utiliza mâinile chiar la a construi corpuri geometrice pe baza a 22 de modele, ingenios concepute, cu ajutorul cărora putem să rezolvăm probleme mai dificile din geometria în spațiu.

Lucrarea este alcătuită din două părți. Prima parte se referă la o introducere în studiul corpurilor geometrice unde sunt trecute în revistă principalele proprietăți ale acestora pe parcursul a 9 capitole.

Fiecare capitol se încheie cu exerciții și probleme bine alese și a căror rezolvare de multe ori apelează la construirea unui model.

Sunt în total 163 de probleme.

Partea a doua o constituie colecția de 22 planșe (desfășurări de corpuri geometrice) care dau posibilitatea de a se construi diverse corpuri și secțiuni în ele. Alcătuirea acestor planșe de către cei doi autori, reprezintă în esență originalitatea și ineditul lucrării, în literatura românească de matematică.

Lucrarea se deschide cu o scrisoare-apel către elev, în care autorii își mărturisesc scopul și forma alcătuirii cărții.

Consider această lucrare ca o premieră în metodica învățării geometriei în spațiu atât la nivel individual cât și la nivel de clasă, autorii demonstrând că se poate învăța matematică (geometrie) și cu mâinile, construind corpuri, secțiuni în corpuri, unghiuri, distanțe etc.

Lucrarea este binevenită și oportună în învățământul matematic preuniversitar și folosirea ei la clasă va aduce o revigorare a interesului pentru matematică a elevilor. Felicit cei doi autori pentru efortul și ingeniozitatea alcătuirii modelelor precum și pentru gama atât de bogată și variată de lucrări pe care le-au elaborat în ultimii 15 ani pentru a ușura și trezi interesul elevilor pentru studiul matematicii.

Miron Oprea

354 RECENZII

CORINA PIPOŞ, ION TODOR, Învăţământul matematic românesc în şcolile Blajului de la înfiinţare până la Marea Unire Editura Academiei Române, 2009

La Editura Academiei Române a apărut, de puţină vreme volumul Învățământul matematic românesc în școlile Blajului de la înființare până la Marea Unire, autori Corina Pipoș și Ion Todor, aceiași care, în urmă cu câțiva ani, au scris o excelentă lucrare despre Aritmetica lui Şincai din 1785.

Cartea își propune să fie – dorință mărturisită a autorilor în prefață – un modest omagiu adus acelor, mulți neștiuți, învățători și profesori, care au săpat la confluența Târnavelor acele "fântâni ale darurilor" cum sunt numite, cu recunoțință școlile Blajului.

Autorii au cercetat un imens material documentar de arhivă, de la manuscrise şi tipărituri vechi şi noi la scrisori oficiale şi particulare, anuare şcolare şi şematisme clasice aflate în Biblioteca Academiei Române de la Bucureşti şi Cluj-Napoca, în Biblioteca "Timotei Cipariu" de la Blaj şi Biblioteca "Astra" de la Sibiu şi în multe alte locuri.

Cartea este structurată pe 13 capitole la care se adaugă Glosar, Postfață și Anexe. Se începe cu o "punere în temă", prezentându-se situația românilor din Transilvania în secolul al XVIII-lea, condițiile în care s-a făcut "Unirea cu Roma" de la 1700 a unei părți a bisericii ortodoxe, lupta politică națională dusă prin arta cuvântului și a scrisului de înalți preoți și oameni de cultură, începând cu "epicurul martir" Ioan Inochenție Micu Klein și continuată de reprezentanții Școlii Ardelene și, mai departe, de Timotei Cipariu, Simion Bărnuțiu și de mulți alții.

Sunt prezentate structura și și organizarea școlilor Blajului în perioada 1754-1918, începând cu școala dintâi deschisă la 11 octombrie 1754 de Petru Pavel Aron, școală care "... va fi a tuturor, de toată vârsta, ... nicio plată de la ucenici așteptându-se", spre deosebire de școala de la "Sf. Sava" din București, deschisă în anul 1776, în al cărui hrisov domnesc care o legitimează se prevede că cei care frecventau trebuie să fie "nobili, adică fii de boieri scăpătați sau chiar săraci, nu însă și fiii de săteni și țărani."

În capitolul 3 sunt prezentați 47 de profesori care au predat matematica la școlile din Blaj în perioada 1800-1918, în marea lor majoritate absolvenți de studii teologice. Amintim câțiva dintre ei: *Ion Fekete Negruțiu, Ioan Micu Moldovan* ("Moldovănuț", primul preot din Blaj care a fost "uns" prelat papal, membru al Academiei Române), *Emil Viciu* ("rar profesor care să fi avut atâta autoritate înaintea elevilor"), *Valeriu Sucu, Traian Gherman.*

Din capitolul "Programa de matematică" aflăm că, potrivit Normei Regia, lege care reglementa numărul disciplinelor predate în școlile din imperiu, din cele 25 (mai târziu 18), iar pe săptămână, la gimnaziu,matematicii doar 2 ore erau atribuite matematicii. Şi cu toate acestea, în anii premergători revoluției de la 1848, în școlile blăjene se preda, la aritmetică și algebră, despre cele patru operații, ridicarea la putere și extragerea rădăcinii pătrate și cubice, ecuații și sisteme de ecuații, rapoarte și proporții, logaritmi, progresii aritmetice și geometrice, serii, iar la geometrie se preda longimetria, planimetria, solidometria și trigonometria.

Deosebit de interesante sunt capitolele dedicate primelor manuale folosite în școlile din Ardeal, precum și celor folosite între anii 1800-1918, un loc aparte ocupându-l prezentarea *Aritmeticii* lui *Sincai*, tipărită la Blaj în anul 1789.

Alte capitole cum sunt: "Cărți de metodică", "Tipografia blăjeană", "Bibliotecile Blajului", "Preocupări de matematică în presa blăjeană", întregesc informațiile despre preocupările dascălilor blăjeni pentru realizarea unei activități școlare susținute cu valențe educative pe măsură.

Ultimul capitol tratează despre legislația școlară, privind organizarea învățământului transilvan, prezentându-se legi importante ca *Ratio educationis* și *Norma regiae* (1781), obligatorii pe tot cuprinsul Imperiului Austro-Ungar.

Într-un Glosar sunt trecuți termenii matematici ieșiți din uz, folosiți în manualele școlare din Ardeal până în 1918, iar în altul, termenii care s-au păstrat până astăzi.

Cu respect pentru adevărul istoric, autorii s-au străduit su a evite patetismul scriiturii, să tempereze avântul condeiului, chiar dacă uneori au fost uimiți de munca fără preget și spiritul de jertfă care i-a animat pe mulți dintre acei deschizători de drumuri în didactica și pedagogia românească.

Cartea profesorilor *Corina Pipoş* și *Ion Todor* reprezintă o contribuție importantă la capitolul de istorie a matematicii românești legt de perioada când se scriau primele manuale școlare și se puneau bazele terminologiei științifice specifice.

Scrisă cu pricepere și cu dragoste, cartea se citește cu plăcere, cu interes și, mai ales, cu folos.

Mircea Trifu

TABLA DE MATERII Vol. XXVII (CVI) 2009

I. Articole științifice și	de informare științifică	
1. Magdalena Bănescu	Unele inegalități privind funcția $\pi(x)$	2 135
2. Alexandru Bobe Wladimir Boskoff	Clifford chain for equal ellipses	1 32
3. Daniela Chendrea, Cristina Flaut Mihai Polceanu	Teste de primalitate și de factorizare. Aplicații	1 37
4. C. Corduneanu	What can Sine Function do for us?,	4 269
5. C. Constantinescu	Câteva gânduri despre matematică și matematicieni	
6. Marian Cucoaneş	O demonstrație simplă pentru inegalitățile lui Blundon	4 313
7. J. L. Diaz-Barrero, J. Gibergans- Báguena	Inequalities Derived Using Telescopic Sums,	
8. Dorel Duca	Proprietăți ale punctului intermediar din teorema de medie a lui Lagrange	4 284
9. Alexandru Gica	Arround Brocard's Problem	
10. C. Mănescu- Avram	On the formulae of stirling and Wallis	2 130
11. C. P. Niculescu	Open problems in elementary geometry	2 122
12. Liviu Nicolaescu	O introducere în teoria mecanismelor $\dots \dots \dots$	1 1
13. Marius Olteanu	Asupra rafinării unor inegalități în tetraedru $\hdots\dots$	3 195
14. Vasile Pop	Metoda etichetării binare în probleme de combinatorică	3 173
15. Dumitru Popa	Asupra procedeului de evaluare asimptotică a lui	1 20
16. Adrian Reisner	De Bruijin	
	și cuvântului lui Fibonacci	3 189

17. Alina Sîntăm	ărian Approximations for a generalization of Euler's	
	constant 4	301
18. Claudia Zaha	ria Asupra teoremelor lui Aoki și Rassias de stabilitate	
	pentru ecuații funcționale	43
II. Note matema	atice, articole metodice	
1. Aurelia Cipu	În legătură cu problema 247 2	138
2. Cătălin Ghine	ea A note on some limit connected with Euler	
	constant 1	53
3. L. Homentcov	vski, Dreapta lui Euler și cercul celor 9 puncte.	
C. Homentco	vski Generalizări 1	48
4. P. Ivănescu,	Inegalități și elemente de teoria șirurilor 3	213
Florin Nichita	a	
5. Radu Gologa	n, An Olympiad problem: Zeroes of functions in the	
Cezar Lupu	image of Volterra operator 3	208
III. Examene şi	concursuri	
1. Vasile Chiria	c, Soluțiile problemelor date la examenul de titularizare	
Bogdan Chiri	iac din 16 iulie 2008	60
2. Andrei Halan	nay Concursul Traian Lalescu, 2009	148
3. Vasile Pop	Concursul internațional de matematică al studenților	
	din sud-estul Europei, Ediția a III-a,	
	Agros-Cipru, 2009	141
4. Sorin Rădules	scu, Concursul Național de ocupare a posturilor didactice	
I. V. Maftei	din municipiul București, 15 martie 2009 3	215
IV. Didactica ma	<u>atematicii</u>	
1. C. Costara,	Scurtă prezentare a programului masteral de	
Viviana Ene	Matematică Didactică	67
2. George Dincă	Noi reflecții asupra domeniului meu de entuziasm 4	317
3. Neculai Stand	ciu Metode active în didactica matematicii 3	227
V. În sprijinul cı	ursurilor opționale	
1. Dan Giurgiu	Propunere: Curs opțional de matematică la clasa	
	a VIII-a. Relații metrice	. 70
VI. Puncte de ve	$\underline{\mathrm{edere}}$	
1. Laurenţiu Mo	odan Starea actuală a învățământului superior românesc 2	119
VII. Istoria mate	<u>ematicii</u>	
1. Marioara	Centenar pentru matematicienii români 3	258
Costăchescu		
2. C. Constantin	9 (
3. Constantin R		256
Neculai Stand		
4. Neculai Stand	1	344
5. Mircea Trifu	După o sută de ani, La Valea Călugărească	
	(Societatea "Gazeta Matematică" la centenar)	
6. Mircea Trifu	Ion Ionescu (Bizeţ) (1870 – 1946) 4	349
7. Andrei Verne	escu Acei mari dascăli pe care nu trebuie să-i uităm 2	166

VIII. Manifestări	ştiinţifice						
1. Romeo Zamfir,	Elevi din România la EUROMATH 2009	. 2	169				
Vasile Berinde							
IX. Din viața Societății							
1. Mircea Trifu	A XII-a Conferință Anuală a Societății de Științe						
	Matematice din România, Bacău,						
	16-18 octombrie 2008	. 2	171				
2.	Şcoala de vară de la Buşteni	3	260				
3.	Lista cursanților de la Bușteni	. 3	263				
4.	Prima sesiune de comunicări și referate metodico-						
	științifice organizată de S.S.M.R cu ocazia						
	Şcolii de vară de la Buşteni	. 3	264				
X. Recenzii							
1. M. Ivan	Vasile Pop, Geometrie pentru gimnaziu, liceu și						
	concursuri, Editura MEDIAMIRA, Cluj, 2007	1	98				
2. R. Miculescu	Liliana Niculescu, Metoda reducerii la absurd,						
	Editura GIL, Zalău, 2006	1	87				
3. R. Miculescu	Bogdan Enescu, Arii, Editura GIL, Zalău, 2006	1	88				
4. R. Miculescu	Nicusor Minculete, Teoreme și probleme specifice de						
	geometrie, Editura EUROCARPATICA,						
	Sf. Gheorghe, 2007	1	90				
5. R. Miculescu	Dan Schwarz, Gabriel Popa, Probleme de numărare,						
00	Editura GIL, Zalău, 2006	2	160				
6. R. Miculescu	Virgil Nicula, Cosmin Pohoaţă, Diviziune armonică,	_	100				
o. 10. Wilduidsou	Editura GIL, Zalău, 2007	2	162				
7. R. Miculescu	Iurie Boreico, Marinel Teleucă, Invarianți și jocuri	_	102				
7. 10. Wilediesed	Editura GIL, Zalău, 2007	2	162				
8. M. Oprea	Eduard Dăncilă, Ioan Dăncilă, Învață geometrie	_	102				
o. wr. Oprea	cu mâinile tale, Editura ERC PRESS,						
	Bucureşti, 2009	1	353				
9. D. Radu	Ion Nedelcu, Anca Tuţescu, Lucian Tuţescu, Probleme	1	555				
g. D. Itadu							
	de matematică pentru concursuri, Editura REPROGRAPH, Craiova, 2007	1	75				
10. D. Radu	Bogdan Enescu, Polinoame, Editura GIL, Zalău, 2007		86				
		1	80				
11. D. Radu	Maria Elena Panaitopol, Laurențiu Panaitopol,						
	Probleme de geometrie plană, soluții trigonometrice,						
	Editura GIL, Zalău, 2006	1	88				
12. D. Radu	Ion Cucurezeanu, Pătrate și cuburi de numere întregi,						
	Editura GIL, Zalău, 2007	2	160				
13. D. Radu	Pantelimon George Popescu, Ioan V. Maftei, José Luis						
	Diáz Barrero, Marian Dincă, Inegalități matematice,						
	Editura Didactică și Pedagogică, București, 2007	2	161				
14. D. Radu	Gheorghe Crăciun și colaboratorii, Duelul matematic,						
	Editura TIPARG, Pitești, 2007	2	162				
15. D. Radu	Eduard Dăncilă, Ioan Dăncilă, Ghidul învățătorului,						
	Editura IULIAN, Bucureşti, 2008	3	284				

16. D. Radu	Eduard Dăncilă Ioan	Dăncilă, Matematica servește!,		
10. D. 10 00		sucurești, 2007	31	285
17. M. Trifu		or, Învățământul matematic românesc		
	= -:	a înființare până la Marea Unire,		
		omâne, 2009	4	354
18. A. Vernescu		a Duca, Exerciții și probleme		
	de Analiză matematică, vol. I, Editura			
	1.1	ΓΙΙΝΤΑ, Cluj, 2007	1	87
19. A. Vernescu	Dumitru Popa, Exerci	ții de Analiză matematică,		
	Biblioteca Societății d	e Ştiinţe Matematice din		
		RA, Bucureşti, 2007	1	89
20. A. Vernescu				
	Complex Analysis, Sec	cond Edition, AMS CHELSEA		
	PUBLISHING, Provid	lence, Rhode Island, 2007	. 3	283
XI. Probleme pro	puse – rubrică perm	anentă redactată de Radu Golog	an	
1. Dumitru Bătin	eţu-Giurgiu (283)	8. Tudorel Lupu (287, 293)		
2. Marius Cavach		9. Marius Olteanu (284, 294)		
3. Adrian Cordun	` '	10. Dumitru Popa (279)		
4. José Luis Diáz-	` '	11. Dan Schwarz (291)		
	` '	• • • • • • • • • • • • • • • • • • • •		
5. Mihai Dicu (28	(2)	12. Róbert Szász (277, 281*)		
5. Mihai Dicu (28	•	12. Róbert Szász (277, 281*) 13. Marian Tetiva (276,280,286.:	292)
6. Radu Gologan	(285, 290)	13. Marian Tetiva (276,280,286,2	292)
,	(285, 290)		292)
6. Radu Gologan 7. Cezar Lupu (28	(285, 290) 87, 293)	13. Marian Tetiva (276,280,286,2 14. Adrian Troie (288)	292)
6. Radu Gologan 7. Cezar Lupu (28	(285, 290) 87, 293)	13. Marian Tetiva (276,280,286,2	292)
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu	(285, 290) 87, 293) blemelor propuse – r	13. Marian Tetiva (276,280,286,3 14. Adrian Troie (288) ubrică permanentă redactată de	292)
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M	(285, 290) 87, 293) Dlemelor propuse – r	13. Marian Tetiva (276,280,286,3 14. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva),	292)
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Olter	(285, 290) 87, 293) Dlemelor propuse – r	13. Marian Tetiva (276,280,286,3 14. Adrian Troie (288) ubrică permanentă redactată de	292)
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete),	(285, 290) 87, 293) Dlemelor propuse – r Tarian Tetiva, Marius O anu, Ioan Ghiţă, Nicuş	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-	292)
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz	(285, 290) 87, 293) Dlemelor propuse – r Garian Tetiva, Marius O unu, Ioan Ghiţă, Nicuşor e, Ioan Ghiţă, Nicuşor	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei		,
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltes culete), 257 (Mihály Bencz Vernescu, Nicuşor B	(285, 290) 87, 293) Dlemelor propuse – r Farian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor de, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă,	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	292	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor I 259 (Dan Radu), 2	(285, 290) 87, 293) Demelor propuse – r Tarian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor de, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)		,
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M 259 (Dan Radu), 2 Giurgiu, Nicuşor M	(285, 290) 87, 293) Demelor propuse – r Jarian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Jinculete, Marius Oltearu	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)		,
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M 259 (Dan Radu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2	(285, 290) 37, 293) Demelor propuse – r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Ginculete, Marius Oltear 63 (Nicuşor Minculete)	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)		,
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2	(285, 290) 37, 293) Demelor propuse – r Jarian Tetiva, Marius O Janu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Jinculete, Marius Oltear 63 (Nicuşor Minculete) 65 (George Stoica, Marius Olteanu)	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prob Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2	(285, 290) 37, 293) Demelor propuse – r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Ginculete, Marius Oltear 63 (Nicuşor Minculete)	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M 259 (Dan Radu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu,	(285, 290) 87, 293) Demelor propuse – r Tarian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 260 (Marius Olteanu), 2 Iinculete, Marius Oltear 63 (Nicuşor Minculete) 265 (George Stoica, Marius Olteanu), 267	13. Marian Tetiva (276,280,286,214. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M 259 (Dan Radu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu, 268 (Daniel Văcăre	(285, 290) 87, 293) Demelor propuse – r Jarian Tetiva, Marius O Janu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 260 (Marius Olteanu), 261 (Minculete) Jarian Tetiva, Marius O Jarian Tetiva, Marius Olteanu), 262 (Minculete) Jarian Tetiva (Minculete)	13. Marian Tetiva (276,280,286,314. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1 2	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu, 268 (Daniel Văcăre 269 (Radu Gologae	(285, 290) 37, 293) Demelor propuse – r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Ginculete, Marius Oltear 63 (Nicuşor Minculete) 65 (George Stoica, Marius Olteanu), 267 eţu, Marian Tetiva)	13. Marian Tetiva (276,280,286,314. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1 2	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Marius Olteanu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu, 268 (Daniel Văcăre 269 (Radu Gologae Szász, Marius Olte	(285, 290) 37, 293) Demelor propuse – r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 1 260 (Marius Olteanu), 2 Ginculete, Marius Oltear 63 (Nicuşor Minculete) 65 (George Stoica, Marius Olteanu), 267 eţu, Marian Tetiva)	13. Marian Tetiva (276,280,286,314. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1 2	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Marius Olteanu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu, 268 (Daniel Văcăre 269 (Radu Gologat Szász, Marius Oltea 273 (Dumitru Băti	(285, 290) 87, 293) Demelor propuse — r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 260 (Marius Olteanu), 261 (Micuşor Minculete) 265 (George Stoica, Marius Olteanu), 267 etu, Marian Tetiva) an), 270 (Marian Tetiva, 261) anu), 272 (Dorin Mărglineţu-Giurgiu, Marius Olteanu)	13. Marian Tetiva (276,280,286,314. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1 2	74
6. Radu Gologan 7. Cezar Lupu (28 XII. Soluţiile prot Dan Radu 253 (Dan Radu, M 255 (Marius Oltea culete), 257 (Mihály Bencz Vernescu, Nicuşor M Marius Olteanu), 2 Giurgiu, Nicuşor M Marius Olteanu), 2 264 (Dan Radu), 2 Tetiva, Ilie Bulacu, 268 (Daniel Văcăre 269 (Radu Gologat Szász, Marius Oltea 273 (Dumitru Băti	(285, 290) 87, 293) Demelor propuse — r Garian Tetiva, Marius O anu, Ioan Ghiţă, Nicuşor Minculete, Ioan Ghiţă, 260 (Marius Olteanu), 261 (Micuşor Minculete) 265 (George Stoica, Marius Olteanu), 267 etu, Marian Tetiva) an), 270 (Marian Tetiva, 261) anu), 272 (Dorin Mărglineţu-Giurgiu, Marius Olteanu)	13. Marian Tetiva (276,280,286,314. Adrian Troie (288) ubrică permanentă redactată de lteanu), 254 (Marian Tetiva), sor Minculete), 256 (Nicuşor Min-Minculete), 258 (Andrei Marian Tetiva)	1 2 3	74 152 234

 $[\]overline{{}^{*)}$ A se vedea pct. $\mathbf{1}$ al eratei de la finele prezentului număr. (N.R.)

ERATĂ

- 1. Dintr-o regretabilă eroare a redacției, problema 277 din nr. 1/2009, a fost reluată și în nr. 2/2009 sub numărul 281. Totodată, facem observația că sub prima integrală din enunț se va citi " $e^{u(x)}$ " în loc de " $e^{u(c)}$ " în cadrul problemei 277 și " ≥ 4 " în loc de " ≥ 24 " în cadrul problemei 281. Nu vom modifica totuși numerotarea problemelor pentru a nu crea disfuncții în evidența autorilor și rezolvitorilor.
 - 2. La pag. 99 aliniatul 5, rândul 7 se va citi "profesorul" în loc de "profesoru".
- **3.** La pag. 99 aliniatul 6, rândul 2 se va citi "în amintirea celor 2 ani cât a fost dascăl" în loc de "în amintirea celui care i-a fost dascăl".
- **4.** La pag. 99 aliniatul 6, rândul 8 se va citi "Formator Magister. În 13" în loc de "Formator Magister în 13".
- 5. La pag. 100, primul aliniat, rândul 10 se va citi "Risoprint din Cluj, Gil din Zalău, G. Coşbuc din Bistrţa, Altip şi Star Soft din Alba-Iulia" în loc de "Risoprint Cluj, Gil Zalău,".
 - 6. La pag. 100 aliniatul 2, rândul 1 se va citi "conferințe" în loc de "conferințe".
- 7. La pag. 100 aliniatul 3, rândul 3 se va citi "noului drum al Facultății de Matematică și informatică" în loc de "la definirea informatică".
- **8.** La pag. 100 aliniatul 4, rândul 3 se va citi "Universitatea Tehnică din Cluj" în loc de "Universitatea din Cluj".
- ${\bf 9.}$ La pag. 100 aliniatul 4, rândul 4 se va citi "Facultății" în loc de "Facultu ații".
 - 10. La pag. 106 rândul 17 de sus se va citi "2002" în loc de "2006".

Redacția