OBJETIVOS:

- Identificar los diferentes teoremas más usuales para calcular el área de una región cuadrangular.
- Reconocer los teoremas para calcular la razón de áreas de regiones cuadrangulares.
- Conocer el cálculo del área de un círculo .
- Identificar las distintas partes notables de un círculo.
- Aplicar lo aprendido en la resolución de problemas.

TEOREMA: FÓRMULA TRIGONOMÉTRICA

El área de una región cuadrangular es igual al semiproducto entre las longitudes de sus diagonales por el seno de la medida angular que éstas determinan.

Región cuadrangular convexa

$$\mathbb{A}_{\triangle ABCD} = \frac{(d_1)(d_2)}{2} sen\theta$$

Región cuadrangular no convexa

$$\mathbb{A}_{\bowtie MNPL} = \frac{(d_1)(d_2)}{2} sen\omega$$

Para cualquiera de los dos casos planteados la idea es calcular el área como la adición de dos áreas de regiones triangulares.

Sea
$$Q = \overline{AC} \cap \overline{BD}$$

Sabemos:
$$\mathbb{A}_{\triangle BCD} = \frac{(d_2)(m)}{2} sen\theta$$

$$\mathbb{A}_{\triangle ABD} = \frac{(d_2)(n)}{2} sen\theta$$

$$\mathbb{A}_{\triangle ABCD} = \frac{(d_2)(m+n)}{2} sen\theta$$

Pero: $m + n = d_1$

Reemplazamos: $\therefore \mathbb{A}_{\triangle ABCD} = \frac{(d_1)(d_2)}{2} sen\theta$

TEOREMA: FÓRMULA GEOMÉTRICA (M. DONAIRE)

El área de una región cuadrangular es igual al producto de la longitud de uno de sus lados con las distancias a él desde los vértices opuestos, todo esto divido entre el doble de la distancia del punto de intersección de las diagonales hacia el mismo lado.

Región cuadrangular convexa

Demostración

Del gráfico:

$$\mathbb{A}_{\triangle ABCD} = \frac{(BD)(AC)}{2} sen\alpha$$
 ÷

$$\mathbb{A}_{\triangle ABD} = \frac{(BD)(AQ)}{2} sen\alpha$$

$$\frac{\mathbb{A}_{\triangle ABCD}}{\mathbb{A}_{\triangle ABD}} = \frac{AC}{AQ} \cdots (i)$$

Luego: $\triangle ACS \sim \triangle AQL \rightarrow \frac{AC}{AQ} = \frac{h_2}{h} \dots (ii)$

 n_2

Reemplazamos (ii) en (i): $\frac{\mathbb{A}_{\triangle ABCD}}{\mathbb{A}_{\triangle ABD}} = \frac{h_2}{h} \dots (iii)$

Además: $\mathbb{A}_{\triangle ABD} = \frac{b \cdot h_1}{2} \dots (iv)$

Finalmente (iv) en (iii): $\frac{\mathbb{A}_{\triangle ABCD}}{\left(\frac{b \cdot h_1}{2}\right)} = \frac{h_2}{h}$ $\therefore \mathbb{A}_{\triangle ABCL}$

PRACTICANDO LO **APRENDIDO**

APLICACIÓN

En un triángulo rectángulo ABC, recto en B, los catetos \overline{AB} y \overline{BC} tienen longitudes 5 cm y 12 cm respectivamente, si I es el incentro del triángulo y las rectas *AI*, *CI* intersecan a los catetos \overline{AB} y \overline{BC} en My en Nrespectivamente, calcule la razón de las áreas de las regiones MBN y AMNC.

R 0 R D A

Como *I* es incentro, entonces:

$$\overline{AN}$$
 bisectriz: $NB = NS = b$

$$\overline{CM}$$
 bisectriz: $MB = MH = a$

$$\rightarrow \mathbb{A}_{\triangle AMNC} = \frac{13(a \cdot b)}{2r} \dots (ii)$$

De (*i*) y (*ii*):

(i)
$$\gamma$$
 (ii):
$$\frac{\mathbb{A}_{\triangle MBN}}{\mathbb{A}_{\triangle AMNC}} = \frac{\frac{a \cdot b}{2}}{\frac{13(a \cdot b)}{2r}} = \frac{r}{13} \dots (iii)$$

En el triángulo *ABC*: T. Poncelet

$$5 + 12 = 13 + 2r \rightarrow r = 2$$

Reemplazando en (iii):

$$\frac{\mathbb{A}_{\triangle MBN}}{\mathbb{A}_{\triangle AMNC}} = \frac{2}{13}$$

PRACTICANDO LO APRENDIDO

APLICACIÓN

En el gráfico calcule el área de la región ANMC, si AM=2(MD) y CN=2(BN), además AC=10, AB=6 y CD=9.

R E C O R D A

Resolución:

Piden $\mathbb{A}_{\triangle ANMC}$

- Trazamos \overline{NL} y \overline{MS} perpendiculares a \overline{AC} .
- Luego notamos que: $\triangle AMS \sim \triangle ADC \rightarrow \frac{h_2}{9} = \frac{2a}{3a}$ $\rightarrow h_2 = 6$ $\triangle CNL \sim \triangle CBA \rightarrow \frac{h_1}{6} = \frac{2b}{3b}$
- Además por teorema de semejanza:

 $\rightarrow h_1 = 4$

$$h = \frac{6 \cdot 9}{6 + 9} \rightarrow h = \frac{18}{5}$$

• Finalmente, tenemos:

$$\mathbb{A}_{\triangle ANMC} = \frac{10 \cdot 4 \cdot 6}{2 \cdot \left(\frac{18}{5}\right)}$$

$$\therefore \mathbb{A}_{\triangle ANMC} = \frac{100}{3}$$

REGIÓN TRAPECIAL

 $\triangle ABCD$ es un trapecio de bases \overline{AD} y \overline{BC}

Se cumple:

$$\mathbb{A}_{\triangle ABCD} = \left(\frac{a+b}{2}\right) \cdot (h)$$

Donde: h, es la longitud de la altura.

RELACIÓN DE ÁREAS EN LA REGIÓN TRAPECIAL

Si CM = MD

Se cumple:

 $S = \frac{\mathbb{A}_{\square}}{\mathbb{A}_{\square}}$

M

 \boldsymbol{a}

EXAMEN UNI

2011 – *II*

Las diagonales de un trapecio dividen a este en cuatro triángulos. Si las áreas de los triángulos adyacentes a las bases son A_1 y A_2 , entonces el área total del trapecio en función de A_1 y A_2 es:

A)
$$A_1 + A_2 + \sqrt{A_1 A_2}$$

$$B) 2\sqrt{A_1A_2}$$

Sabemos

 $C) A_1 A_2$

$$D)\left(\sqrt{A_1} + \sqrt{A_2}\right)^2$$

E) $A_1 + A_2 - \sqrt{A_1 A_2}$

 $S_1 = \sqrt{\mathbb{A} \cdot \mathbb{B}}$

Resolución:

Piden A_{△ABCD}

• En el problema:

$$\mathbb{A}_{\triangle ABO} = \mathbb{A}_{\triangle COD} = M$$

Con ello:

$$\mathbb{A}_{\triangle ABCD} = 2M + A_1 + A_2$$

• Pero: $M = \sqrt{A_1 \cdot A_2}$

• Reemplazamos:

$$\mathbb{A}_{\triangle ABCD} = 2\sqrt{A_1 \cdot A_2} + A_1 + A_2$$

Luego:

$$A_1 = \sqrt{A_1}^2$$

$$A_2 = \sqrt{A_2}^2$$

Entonces:

$$\mathbb{A}_{\triangle ABCD} = 2\sqrt{A_1 \cdot A_2} + \sqrt{A_1}^2 + \sqrt{A_2}^2$$

$$\therefore \mathbb{A}_{\triangle ABCD} = \left(\sqrt{A_1} + \sqrt{A_2}\right)^2$$

REGIÓN PARALELOGRÁMICA

RELACIÓN DE ÁREAS EN LA REGIÓN PARALELOGRÁMICA

OBSERVACIÓN

FÓRMULA ADICIONAL

 $\mathbb{A}_{\square ABCD} = a \cdot b \cdot sen\alpha$

Las regiones triangulares determinadas por las diagonales son equivalentes.

Punto cualquiera

 S_2

$$S_1 + S_3 = S_2 + S_4 = \frac{\mathbb{A}_{\varnothing}}{2}$$

S₄.

Se cumple:

$$S_1 + S_2 = \frac{\mathbb{A}_{\mathbb{Z}}}{2}$$

REGIÓN PARALELOGRÁMICA: Casos particulares

Región rectangular \boldsymbol{a} Región cuadrada

Se cumple:

$$\mathbb{A} = (a)(b)$$

a

Se cumple:

$$A \square = a^2$$

Se cumple:

$$\mathbb{A} \Leftrightarrow = \frac{(AC)(BD)}{2}$$

EXAMEN UNI

2019 - I

El perímetro de un triángulo es 50m y sobre cada lado del triángulo se forma un cuadrado cuyo lado coincida con el lado del triángulo. Como resultado, la suma de las áreas de los cuadrados formados es $900m^2$ y el lado del primer cuadrado es al del segundo como, el lado del tercero es a la mitad del primero. La relación del mayor y menor de los lados del triángulo es de (considere que los lados del triángulo son números naturales)

- A) 2 a 1
- B) 5 a 2
- *i*) $2p_{\Delta} = a + b + c = 50$
- C) 3 a 1
- ii) $\sum \text{áreas} = a^2 + b^2 + c^2 = 900$ b = 10, c = 20
- D) 5 a 1
- E) 11 a 2
- $iii) \frac{a}{b} = \frac{c}{\left(\frac{a}{2}\right)}$

$$\rightarrow a^2 = 2bc \dots (iv)$$

Resolución:

Nos piden relación entre el lado mayor y menor

Reemplazamos (iv) en (ii):

$$2bc + b^2 + c^2 = 900$$
$$(b+c)^2 = 900$$

$$\rightarrow b + c = 30$$

$$(v)$$

- Reemplazamos en (i): $\rightarrow a = 20$
- Reemplazamos en (iv): $\rightarrow bc = 200$
- (vi) • De (v) y (vi):

$$b = 10$$
 , $c = 20$

 Tenemos que el lado mayor es 20m y el menor es 10m

CÁLCULO DEL ÁREA EN FUNCIÓN DE LA LONGITUD DE SUS LADOS

CUADRILÁTERO CIRCUNSCRITO

Se cumple:

$$\mathbb{A}_{\triangle ABCD} = p \cdot r$$

Donde: $p = \frac{a+b+c+d}{2}$

CUADRILÁTERO INSCRITO

Se cumple:

$$\mathbb{A}_{\triangle ABCD} = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

Donde: $p = \frac{a+b+c+d}{2}$

NOTA: Esta es la fórmula de **Brahmagupta.** También es válido para cuadriláteros inscriptibles.

CUADRILÁTERO BICÉNTRICO

Se cumple:

$$\mathbb{A}_{\triangle ABCD} = \sqrt{a \cdot b \cdot c \cdot d}$$

PRACTICANDO LO APRENDIDO

PRÁCTICA CEPRE UNI

ABCD es un cuadrilátero bicéntrico, donde $AB=a,\ BC=b,\ CD=c$ y AD=d . Calcular el área de la región triangular ABC.

$$A) \frac{(a+b)\sqrt{abcd}}{c+d}$$

$$B) \frac{ab\sqrt{abcd}}{ab+cd}$$

ab + ca $ac\sqrt{abcd}$

C)
$$\frac{ac \vee ab ca}{ac + bd}$$

$$D) \frac{bd\sqrt{abcd}}{ad+bc}$$

$$E)\left(\frac{a}{c} + \frac{b}{d}\right)\sqrt{abcd}$$

Sabemos

si
$$\omega = \phi$$

6 $\omega + \phi = 180^{\circ}$

$$\frac{S_1}{S_2} = \frac{a \cdot b}{c \cdot d}$$

Resolución:

Nos piden
$$\mathbb{A}_{\triangle ABC} = S$$

• En el problema

$$\frac{S}{S_1} = \frac{a \cdot b}{c \cdot d} \dots (i)$$

Se observa que:

$$S_1 = A_{\triangle ABDC} - S$$

$$\sqrt{abcd}$$

Área de la región limitada por un cuadrilátero bicéntrico

• Reemplazamos en (i):

$$\frac{S}{\sqrt{abcd} - S} = \frac{a \cdot b}{c \cdot d}$$

$$\to S(cd) = ab\sqrt{abcd} - S(ab)$$

• Luego: $S(ab + cd) = ab\sqrt{abcd}$

$$\therefore S = \frac{ab\sqrt{abcd}}{ab+cd}$$

ÁREAS DE REGIONES CIRCULARES

ÁREA DEL CÍRCULO

El círculo es la región plana cuyo borde es una circunferencia.

• En el gráfico, se cumple:

$$\mathbb{A}_{\mathbb{O}} = \pi \cdot R^2$$

Donde:

$$\pi \approx 3,1415 \dots$$

• Ten en cuenta que: La longitud de la circunferencia (ℓ_{\odot}) es igual a: $\ell_{\odot}=2\pi\cdot R$

Sabías que:

En la actualidad se han calculado 12.1 billones de decimales para Pi; esto gracias a una supercomputadora, para este cálculo se demoró 94 días.

PARTES NOTABLES

SECTOR CIRCULAR

La porción de círculo, $\triangle AOB$ es un sector circular.

Del gráfico, se cumple:

$$\mathbb{A} = \frac{\pi \cdot R^2 \cdot \theta}{360^{\circ}}$$

Casos particulares

$$\mathbb{A} = \frac{\pi \cdot R^2}{2}$$

$$\mathbb{A}_{\mathbb{A}} = \frac{\pi \cdot R^2}{4}$$

$$\mathbb{A} = \frac{\pi \cdot R^2}{3}$$

$$\mathbb{A}_{\triangleright} = \frac{\pi \cdot R^2}{6}$$

EXAMEN UNI

2012 - I

En el gráfico mostrado, ABCD es un cuadrado de lado L y BAD es un sector circular con centro en A. Calcule el área de la región sombreada (en u^2).

$$A) \frac{L^2}{4} (4 - \pi) \qquad B$$

$$B) \frac{L^2}{4} (4+\pi)$$

$$C) \frac{L^2}{8} (2+\pi)$$

$$D) \frac{L^2}{8} (6-\pi)$$

$$D) \frac{L^{2}}{8} (6 - \pi)$$

$$E) \frac{L^{2}}{8} (6 + \pi)$$

$$A$$

Resolución:

Piden M + N

- Primero completamos medidas angulares y longitudes conocidas.
- Notamos que, por fórmula básica:

$$M = \frac{\left(\frac{L\sqrt{2}}{2}\right)\left(\frac{L\sqrt{2}}{2}\right)}{2} \rightarrow M = \frac{L^2}{4}\dots(i)$$

Para calcular N, procedemos por diferencia de áreas.

$$N = \mathbb{A}_{\triangle ABC} - \mathbb{A}_{\triangle BAS} \rightarrow N = \frac{L^2}{2} - \frac{\pi L^2}{8}$$

$$\frac{(L)(L)}{2} \quad \frac{\pi L^2 \cdot 45^{\circ}}{360^{\circ}} \qquad \dots (ii)$$

Luego hacemos (i) + (ii):

$$M + N = \frac{L^2}{4} + \frac{L^2}{2} - \frac{\pi L^2}{8}$$

$$\therefore M + N = \frac{L^2}{8}(6 - \pi)$$

PARTES NOTABLES

SEGMENTO CIRCULAR

Es aquella porción de círculo, limitado por un arco y su cuerda correspondiente.

Se deduce:

$$A = A \triangle - A \triangle$$

PARTES NOTABLES

CORONA CIRCULAR

Es la porción de círculo, limitada por dos circunferencias concéntricas.

$$A \odot = \pi R^2 - \pi r^2$$

$$A \odot = \pi (R^2 - r^2)$$

Si T es punto de tangencia.

$$A = \pi a^2$$

OBSERVACIONES

Relación de áreas

TEOREMA

Si dos sectores circulares tienen el mismo radio, se cumple:

$$\frac{S_1}{S_2} = \frac{\theta}{\beta}$$

TEOREMA

En el gráfico, para los segmentos circulares mostrados se cumple

$$\frac{A}{B} = \frac{R^2}{r^2} = \frac{m^2}{n^2}$$

PRACTICANDO LO **APRENDIDO**

PROBLEMA DE **APLICACIÓN**

En el gráfico mostrado, calcule la relación de áreas de las regiones sombreadas.

Resolución:

Nos piden $\frac{M}{N}$

Como no tenemos una fórmula concreta para calcular las regiones, lo mejor será buscar regiones que sean más conocidas.

En el $\triangle ADC$, como AE = EC

 $\rightarrow \mathbb{A}_{ADE} = \mathbb{A}_{EDC} = S + N$

Del recordar:

$$\frac{M+S}{2S+N} = \frac{30^{\circ}}{60^{\circ}} = \frac{1}{2}$$

son

$$\therefore \frac{M}{N} = \frac{1}{2}$$

TEOREMAS ADICIONALES (Lúnulas y más)

 $A_{\triangle} = B + C$

RETO DEL TEMA

En el siguiente gráfico, calcule el área del círculo sombreado en términos de los radios a y b, considere que A y B son puntos de tangencia.

