Optimization Techniques Report

Mahanth Yalla January 29, 2025

Abstract

Experimented on different optimization Techniques and findings are documented in this document.

1 Gradient Descent

Gradient descent is a way to minimize an objective function $J(\theta)$ parameterized by a model's parameters $\theta \in \mathbb{R}^d$ by updating the parameters in the opposite direction of the gradient of the objective function $\nabla_{\theta}J(\theta)$ with respect to the parameters. The learning rate η determines the size of the steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the surface created by the objective function downhill until we reach a valley. [1]

- 2 Variations of Gradient Descent
 - Stochastic (SGD)
 - Mini-batch SGD
 - Momentum
 - Nesterov Accelerated (NAG)
 - Adagrad
 - Adadelta
 - RMSprop
 - Adam
 - AdaMax
 - Nadam
 - AMSGrad
 - AdamW
 - Yogi
 - \bullet RAdam
 - Lookahead

References

 Sebastian Ruder. "An overview of gradient descent optimization algorithms". In: CoRR abs/1609.04747 (2016). arXiv: 1609.04747. URL: http://arxiv. org/abs/1609.04747.