Problem 1

When there is light, the V_1 will decrease and V_2 will increase. V_1 and V_2 always add up to the voltage of the battery (roughly). The transistor roughly acts as a variable resistor since there is light, its resistance will increase (reflected as the increase in the V_2).

Problem 2

$$V_2 = 0.06V, V_1 = 8.70V$$

the
$$R_{
m DS}^{
m (dark)}=rac{0.06
m V}{8.70
m V}\cdot 1{
m k}\Omega=0.00690{
m k}\Omega$$

Problem 3

$$V_2 = 8.55 \mathrm{V}, V_1 = 0.06 \mathrm{V}$$

the
$$R_{
m DS}^{
m (light)}=rac{8.55{
m V}}{0.06{
m V}}\cdot 1{
m k}\Omega=142.5{
m k}\Omega$$