Math 246B Lecture 1 Notes

Daniel Raban

January 7, 2019

1 Harmonic Functions

1.1 Relationship to holomorphic functions

We will denote the complex plane as both \mathbb{R}^2 with coordinates x_1, x_2 and as \mathbb{C} with complex coordinate $z = x_1 + ix_2$.

Definition 1.1. Let $\Omega \subseteq \mathbb{C}$ be open. We say that $u \in C^2(\Omega)$ is **harmonic** if $\Delta u = 0$ in Ω . Here, $\Omega = \partial_{x_1}^2 + \partial_{x_2}^2 = 4\partial_z\partial_{\overline{z}}$, where

$$\partial_z = \frac{1}{2}(\partial_{x_1} - i\partial_{x_2}), \qquad \partial_{\overline{z}} = \frac{1}{2}(\partial_{x_1} + i\partial_{x_2}).$$

Proposition 1.1. Let $\Omega \subseteq \mathbb{R}^2$ be simply connected, and let u be real and harmonic. Then u = Re(f), where $f \in \text{Hol}(\Omega)$, the set of functions $f : \Omega \to \mathbb{C}$ that are holomorphic.

Proof. Observe that $2\partial_z u$ is holomorphic. So there exists a $g \in \text{Hol}(\Omega)$ such that $g' = \partial_z g = 2\partial_z u$. Then $\partial_z (g + \overline{g}) = 2\partial_z u$. Then $\partial_z (2\operatorname{Re}(g)) = 2\partial_z (2u)$, so $2\operatorname{Re}(g) = 2u + c$ with $c \in \mathbb{R}$. So $u = \operatorname{Re}(g - c)$.

Remark 1.1. It follows that $u \in C^{\infty}(\Omega)$ and even real analytic. That is, for any $a \in \Omega$, we have in a neighborhood of a that

$$u(x) = \sum_{j,k=0}^{\infty} c_{j,k} (x_1 - a_1)^j (x_2 - a_2)^k.$$

This is an absolutely convergent power series.

1.2 The Poisson formula and Poisson kernel

Theorem 1.1. Let $\Omega \subseteq \mathbb{R}^2$ be open with u harmonic in Ω . If the disc $\{x : |x-a| \leq R\} \subseteq \Omega$, then we have the Poisson formula:

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x - a, y) u(a + y) \, ds(y), \qquad |x - a| < R.$$

Here, ds(y) is the arc length element along |y| = R, and

$$P_R(x,y) = \frac{R^2 - |x|^2}{|x - y|^2}, \qquad |x| < R, |y| = R.$$

Proof. We may assume a = 0. Now u is harmonic in $\{|x| < R_1\}$ for some $R_1 > R$. So u = Re(f), where f is holomorphic in |z| < R. Let |z| < R, |w| = R, and compute:

$$P_R(z,w) = \operatorname{Re}\left(\frac{w+z}{w-z}\right) = \frac{1}{2}\left(\frac{w+z}{w-z} + \frac{\overline{w+z}}{\overline{w}-\overline{z}}\right) = \frac{1}{2}\left(\frac{w+z}{w-z} + \frac{R^2 + w\overline{z}}{R^2 - w\overline{z}}\right).$$

Set

$$\varphi_z(w) = \frac{1}{2} \left(\frac{w+z}{w-z} + \frac{R^2 + w\overline{z}}{R^2 - w\overline{z}} \right).$$

If 0 < |z| < R, then $\varphi_z(0) = 0$. Consider the function $\psi_z(w)$ sending $w \mapsto \varphi_z(w) f(w) / w$ for |z| < R.

- 1. If 0 < |z| < R, then the singularity at w = 0 is removable and the only other singularity in the disc $|w| \le R$ occurs when w = z. It is a simple pole with the residue equals f(z)/z(1/2)2z = f(z).
- 2. If z = 0, $\psi_z(w) = f(w)/w$ has a simple pole at 0, and the residue equals f(0).

For |z| < R and $w = Re^{i\varphi}$, we get $ds(w) = |dw| = R\frac{dw}{iw}$. So we may write

$$\frac{1}{2\pi i} \int_{|w|=R} P_R(z, w) f(w) \, ds(w) = \frac{1}{2\pi i} \int_{|w|=R} \underbrace{P_R(z, w) \frac{f(w)}{w}}_{\psi_z(w)} \, dw = f(z)$$

by the residue theorem. Taking the real part, we get the result.

Remark 1.2. We can write the Poisson formula as follows:

$$u(re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{|Re^{i\tau} - re^{it}|^2} u(Re^{i\tau} d\tau) = \frac{1}{2\pi} \int_0^{2\pi} \tilde{P}_{R,r}(t-\tau) u(Re^{i\tau}) d\tau,$$

where

$$\tilde{P}_{R,r}(t) = \frac{R^2 - r^2}{R^2 - 2Rr\cos(t) + r^2}.$$

This is a convolution with the kernel $P_{R,r}(t)$. This function tends as 1/(R-r).

Proposition 1.2. The Poisson kernel $P_R(x,y)$ has the following properties:

- 1. $P_R(x,y) \geq 0$.
- 2. $x \mapsto P_R(x,y)$ is harmonic for |x| < R, |y| = R.

3. For |x| < R,

$$\frac{1}{2\pi R} \int_{|y|=R} P_R(x,y) \, ds(y) = 1.$$

4. For all $\varepsilon > 0$ and $\delta > 0$, there exists $R_1 < R$ such that if $|x-y| \ge \delta$ and $R_1 < |x| < R$, then $P_R(x,y) \le \varepsilon$.

Proof. For the second property, observe that we expressed the Poisson kernel as the real part of a holomorphic function. For the third, apply the Poisson formula to the harmonic function 1.

1.3 The Dirichlet problem in the disc

Using the Poisson kernel, we can solve the Dirichlet problem in the disc.

Theorem 1.2. Let $f \in C(\{x : |x| = R\}; \mathbb{R})$. Then there exists a unique $u \in C(\{|x| \leq \mathbb{R}\})$ such that u = f on |x| = R and u is harmonic in |x| < R. The function u is given by

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) f(y) \, ds(y), |x| < R.$$

Proof. Uniqueness: If u solves the problem, consider $u_{\rho}(x) = u(\rho(x))$ for $0 < \rho < 1$. The scaled function u_{ρ} is harmonic near $\{|x| \leq R\}$, so

$$u_{\rho} = \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) u_{\rho}(y) \, ds(y)$$

for |x| < R. Keep x fixed and let $\rho \to 1$. We get that

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) f(y) \, ds(y).$$

For existence, define

$$u(x) = \begin{cases} \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) f(y) \, ds(y) & |x| < R \\ f & x \in \partial D_R. \end{cases}$$

We will give more detail for this part of the proof next time.

Remark 1.3. We can replace this continuous function f by many things, such as a measure.