heaps & hashing

slides bit.ly/abhi-disc

attendance bit.ly/abhi-attendance

1. Homework 6 due Tuesday 3/29

- 1. Homework 6 due Tuesday 3/29

- 2. Week 9 Survey due Tuesday 3/29

- 1. Homework 6 due Tuesday 3/29
- 2. Week 9 Survey due Tuesday 3/29
- 3. Project 2 due Friday 4/01

- 1. Homework 6 due Tuesday 3/29
- 2. Week 9 Survey due Tuesday 3/29
- 3. Project 2 due Friday 4/01
- 4. Test 2 Review Sessions
 - a. Wednesday 3/30
 - b. Friday 4/01

- 1. Homework 6 due Tuesday 3/29
- 2. Week 9 Survey due Tuesday 3/29
- 3. Project 2 due Friday 4/01
- 4. Test 2 Review Sessions
 - a. Wednesday 3/30
 - b. Friday 4/01
- 5. Test 2 on Wednesday 4/06

general questions, lecture, etc.

- special trees following two basic rules

- special trees following two basic rules
- 1) heap property
 - a) each node in a min heap is <= all of its child nodes. each node in a max heap is >= than all of its child nodes

- special trees following two basic rules
- 1) heap property
 - a) each node in a min heap is <= all of its child nodes. each node in a max heap is >= than all of its child nodes
- 2) completeness
 - a) the only empty parts of a heap are in the bottom row, towards the right

heap rules, exemplified

heap rules, exemplified

1) heap property

a) each node in a min heap is smaller than all of its child nodes. each node in a max heap is larger than all of its child nodes

heap rules, exemplified

2) completeness

a) the only empty parts of a heap are in the bottom row, towards the right

valid min heap

invalid min heap (incomplete)

invalid max heap (heap property)

invalid max heap (heap property)

deletion from heaps

"bubble down"

- hash functions represent objects using ints

- hash functions represent objects using ints
- figure out which bucket object goes in via hashcode (mod number of buckets)

- $\left(\frac{n}{N}\right)$
- hash functions represent objects using ints
- figure out which bucket object goes in via hashcode (mod number of buckets)

worksheet (on 61B website)

bit.ly/abhi-attendance

bit.ly/abhi-feedback

slides: bit.ly/abhi-disc