Influence Maximization in Social Networks Project Presentation

Oscar Aguilar, Louis Gautier, Eva Zhang

Stanford University

December 12, 2023

- ▶ Paper "Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate" by Wei Chen et al.
 - ► Influence maximization defined by Kempe, Kleinberg, and Tardos (2003)
 - First in influence maximization to consider negative opinions
 - Incorporates negativity bias from social psychology

► IC-N model (Independent Cascade Model with Negative Opinions)

Simulation-based Greedy Algorithm

Algorithm 1 Greedy(k, f)

- 1: initialize $S = \emptyset$
- 2: **for** i = 1 to k **do**
- 3: select $u = \arg \max_{w \in V \setminus S} (f(S \cup \{w\}) f(S))$
- 4: $S = S \cup \{u\}$
- 5: end for
- 6: output S

Greedy algorithm, where f is a Monte Carlo simulation of the IC-N model with seed set S

MIA-N algorithm

Goal: Develop a local search heuristic that avoids evaluating the influence of each node on the whole graph at each iteration like in the greedy algorithm.

- ► Use arborescences to approximate local influence regions of every node in the graph
- Use efficient methods to compute the positive influence spread in these arborescences.

Computing influence in arborescences

Computational Complexity: Computing influence spread in general for IC model is #P-hard

Positive Influence Spread: $\sigma_A(S,q) = \sum_u pap(u)$

Positive Activation Prob: pap(u) = 0 if $path(u) = \emptyset$, else

$$pap(u) = \prod_{e \in E(path(u))} p(e) \cdot q^{\|path(u)\|+1}$$

where path(u) is the path from seed s in S to u in out-arborescence A

Insight: We can compute the positive influence spread in one traversal of *A*.

Dynamic Program to estimate influence

Idea: Recursively compute prob. each node unactivated at t

$$ap(u,t) = \begin{cases} 1 & \text{if } t = 0 \land u \in S \\ 0 & \text{if } t = 0 \land u \notin S \\ 0 & \text{if } t > 0 \land u \in S \end{cases}$$

$$\prod_{w \in N^{in}(u)} [1 - \sum_{i=0}^{t-2} ap(w,i)p(w,u)) & \text{if } t > 0 \land u \notin S$$

$$- \prod_{w \in N^{in}(u)} [1 - \sum_{i=0}^{t-1} ap(w,i)p(w,u))] & \text{if } t > 0 \land u \notin S \end{cases}$$

$$\sigma_{\mathcal{A}}(S,q) = \sum_{u \in V} \mathsf{pap}(u) = \sum_{u \in V} \sum_{t > 0} \mathsf{pap}(u,t) = \sum_{u \in V} \sum_{t > 0} \mathsf{ap}(u,t) \cdot q^{t+1}$$

Efficiency bump: Flatten out the recursion of pap(u)

MIA-N algorithm

Maximum Influence In (resp. Out)-Arborescences

$$MIIA(v, q, \theta) = \bigcup_{u \in V, ppp(MIP(u, v)) \ge \theta} MIP(u, v)$$
 $MIOA(v, q, \theta) = \bigcup_{u \in V, ppp(MIP(v, u)) > \theta} MIP(v, u)$

where MIP(u, v) is the path between u and v with highest positive propagation probability: $ppp(P) = \prod_{i=1}^{m-1} p(p_i, p_{i+1})q^m$

Critical assumption: The influence from S to v is only propagated through $MIIA(v,q,\theta)$: the positive influence spread of S is $\mu(S,q) = \sum_{u \in V} pap(v,S,MIIA(v,q,\theta),q)$.

Efficiency improvement: At each step, we only need to update the incremental influence spread of nodes $w \in MIIA(v, q, \theta)$, for $v \in MIOA(u, q, \theta)$.

Our MIA-N implementation

- ► Fully implemented the algorithm in Python with compatibility with NetworkX
- MIIAs and MIOAs computations: Uses Dijkstra algorithm to compute all shortest paths in a graph with modified edge weights
- Completely generic to the input graph and with user-friendly interaction and convenient results evaluation

Example log from the implementation

MIA-N vs Simulation: Analysis

Complexity

Given a social network with n nodes and m edges:

- ► MIA-N algorithm: $\mathcal{O}(kn_on_i^2h)$ iterations, with $h, n_o, n_i \ll n$
- ▶ Greedy simulation-based algorithm: $\mathcal{O}(knMm)$, where M is the number of times to run the Monte Carlo simulation

In practice, huge difference of run time on large graphs

Robustness

- ightharpoonup Sensitivity of MIA-N to the hyperparameter θ and to the structure of the network
- ► Sensitivity of the simulation-based algorithm to *M*

Datasets

Epinions dataset

- Graph representing a consumer review website
- Nodes: Users (|V| = 75, 879)
- ▶ Directed Edges: Trust relationships (|E| = 508, 837)

NetHPT dataset

- High Energy Physics -Theory collaboration network
- Nodes: Researchers (|V| = 9,877)
- Edges: Co-authorship links (|E| = 25, 598)

Random Walk Subgraph

The sizes of Epinions and NetHPT were too much for the scope of the project. Thus, random walk subgraphs were constructed:

- Start at a random node
- Until the desired subgraph size is reached:
 - Choose a random neighbor to add to the subgraph
 - ▶ If there are no neighbors, check the size of current subgraph. If size < 10, random node is selected from the entire graph to restart the sampling process. If size ≥ 10 , it restarts by selecting a random node from the current subgraph.

Results: Positive Influence Spread vs q

(a) Our implementation tested on a 200-node subgraph of the Epinions dataset

(b) Paper on the full NetHPT graph

Results: Influence Spread vs k, Greedy and MIA-N

(a) On a 500-node subgraph of the NetHPT graph

(b) Paper on the full NetHPT graph