

SITUATION

Un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

ÉNONCÉ

On considère un plan trois points A, B et C non alignés tels que :

$$A\left(1;0;4
ight)$$
 , $B\left(-3;3;8
ight)$ et $C\left(3;-1;-4
ight)$

Déterminer si le vecteur
$$\overrightarrow{n}egin{pmatrix}10\\12\\1\end{pmatrix}$$
 est normal au plan (ABC) .

Etape 1

Rappeler la définition

On rappelle qu'un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

APPLICATION

Le vecteur \overrightarrow{n} est normal au plan (ABC) si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

Etape 2

Déterminer deux vecteurs non colinéaires du plan

On détermine deux vecteurs \overrightarrow{u} et \overrightarrow{v} non colinéaires du plan P.

APPLICATION

Les points A, B et C n'étant pas alignés, on peut utiliser les vecteurs \overrightarrow{AB} et \overrightarrow{AC} . On détermine leurs coordonnées :

$$ullet \overrightarrow{AB}egin{pmatrix} x_B-x_A \ y_B-y_A \ z_B-z_A \end{pmatrix} ext{ soit } \overrightarrow{AB}egin{pmatrix} -3-1 \ 3-0 \ 8-4 \end{pmatrix} ext{ donc } \overrightarrow{AB}egin{pmatrix} -4 \ 3 \ 4 \end{pmatrix}$$

$$ullet \overrightarrow{AC}egin{pmatrix} x_C-x_A \ y_C-y_A \ z_C-z_A \end{pmatrix} ext{ soit } \overrightarrow{AC}egin{pmatrix} 3-1 \ -1-0 \ -4-4 \end{pmatrix} ext{ donc } \overrightarrow{AC}egin{pmatrix} 2 \ -1 \ -8 \end{pmatrix}$$

Etape 3

Calculer les produits scalaires

On calcule les produits scalaires $\overrightarrow{n}.\overrightarrow{u}$ et $\overrightarrow{n}.\overrightarrow{v}$.

APPLICATION

On calcule les produits scalaires $\overrightarrow{n}.\overrightarrow{AB}$ et $\overrightarrow{n}.\overrightarrow{AC}$.:

•
$$\overrightarrow{n}.\overrightarrow{AB} = 10 \times (-4) + 12 \times 3 + 1 \times 4 = -40 + 36 + 4 = 0$$

•
$$\overrightarrow{n}.\overrightarrow{AC} = 10 \times 2 + 12 \times (-1) + 1 \times (-8) = 20 - 12 - 8 = 0$$

Etape 4

Conclure

Si on obtient $\overrightarrow{n}.\overrightarrow{u}=0$ et $\overrightarrow{n}.\overrightarrow{v}=0$, alors \overrightarrow{n} est un vecteur normal au plan.

APPLICATION

On obtient:

•
$$\overrightarrow{n}.\overrightarrow{AB} = 0$$

•
$$\overrightarrow{n}.\overrightarrow{AC} = 0$$

Donc le vecteur \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires du plan (ABC). On en conclut que \overrightarrow{n} est un vecteur normal au plan.