1. INTRODUCTION

1.1 PROJECT OVERVIEW

- ➤ The New Product Development (NPD) System is a comprehensive platform designed to streamline and enhance the jewellery design process by effectively managing the workflow between the Sketch Department and the CAD Department. This system is essential for ensuring smooth project execution, tracking individual designer contributions, and maintaining an organized process from initial concept to final product development.
- ➤ The jewellery design industry requires a well-structured approach to handle new design projects efficiently. Traditionally, jewellery sketches were manually created, transferred to CAD designers for modelling, and then reviewed for final production. This manual approach often resulted in miscommunication, inefficiencies, and delays.
- The NPD System aims to eliminate these issues by automating and digitizing the workflow, ensuring better collaboration between designers, real-time tracking of design progress, and a structured approval process. The system allows designers to create, update, and manage designs effectively, ensuring that high-quality products are delivered to clients within the required timeframe.

The **key modules** of the NPD system include:

- 1. **Sketch Module:** Allows jewellery designers to create and manage initial sketches, assign tasks, and monitor progress.
- 2. **CAD Module:** Converts approved sketches into detailed computer-aided design (CAD) models for production.
- 3. **Performance Tracking:** Tracks the efficiency and contributions of individual designers.

4. **Project Management:** Assigns design tasks, manages workflows, and ensures smooth progression of projects.

5. **Approval Workflow:** Ensures that each design is reviewed and finalized before proceeding to production.

The implementation of this system significantly enhances the efficiency, accuracy, and collaboration within the jewellery design process, making it easier for companies to manage projects and ensure timely delivery of high-quality designs.

1.2 Objective

➤ The primary objective of the New Product Development (NPD) System is to create a centralized digital platform for managing jewellery design projects efficiently. The system aims to:

1. Automate the Workflow:

- Digitally manage the transition of jewellery designs from sketches to CAD models.
- o Eliminate manual tracking and paperwork.

2. Enhance Collaboration and Communication:

- o Provide real-time updates on project status to all team members.
- Enable seamless coordination between designers, project managers, and production teams.

3. Improve Design Tracking and Performance Monitoring:

- o Assign tasks to individual designers and track their performance.
- o Ensure accountability in project execution.

4. Reduce Errors and Ensure Quality:

- o Minimize errors caused by miscommunication and manual handling.
- o Implement a structured approval process for design finalization.

5. Ensure Secure Data Management:

- o Store all designs securely with role-based access control.
- o Prevent unauthorized modifications or data loss.

6. Increase Productivity and Efficiency:

- Allow designers to focus on creativity rather than administrative tasks.
- Speed up the jewellery design process, leading to faster product delivery.

By achieving these objectives, the NPD system improves the overall efficiency of jewellery design companies and ensures that high-quality designs are delivered within the required timelines.

1.3 Scope

➤ The scope of the New Product Development (NPD) System includes a wide range of functionalities to support the jewellery design lifecycle, from concept creation to final approval.

Features Covered in the Scope:

1. Jewellery Design Lifecycle Management:

 The system provides a structured workflow for handling jewellery designs from sketching to CAD modelling and finalization.

2. Project Management and Task Assignment:

 The system enables project managers to create design tasks, assign them to designers, and track their progress.

3. Sketch Module:

 Designers can create, edit, and submit jewellery sketches for approval.

 The module categorizes designs based on style, metal type, and carat weight.

4. CAD Module:

- Once sketches are finalized, they are transferred to the CAD module for further development into digital models.
- o The CAD module ensures accuracy and precision before production.

5. Approval Workflow:

- Designs go through an approval process before they are finalized for production.
- Project managers and stakeholders can review and approve/reject designs.

6. Performance Tracking and Reporting:

 The system tracks designer contributions and generates reports on project status and productivity.

7. Role-Based Access Control:

 Different user roles (Admin, Project Manager, Sketch Designer, CAD Designer) have specific access rights to ensure data security and workflow integrity.

8. Integration with Existing CAD Tools:

 The system is compatible with industry-standard CAD software to streamline the digital modelling process.

Limitations and Exclusions:

- The NPD system does not include physical jewellery manufacturing processes.
- It is limited to managing the design and approval workflow, with no direct control over production machinery.

• The system is customized for jewellery design firms and may not be suitable for other product development industries without modifications.

The system ensures efficient design management, better collaboration, and highquality output, making it an essential tool for modern jewellery design firms.

1.4 Tools & Technology Used

➤ The New Product Development (NPD) System is developed using modern software tools and technologies to ensure high performance, security, and scalability.

Table 1.1 Tools Used

Tool	Purpose
Visual Studio Code	Backend and frontend development
SQL Server Management Studio	Database management and queries
Postman	API testing and validation
IntelliJ IDEA	Java-based backend development
TestNG, Jenkins, Selenium	Automated testing
Google Chrome	Web application access and testing

Table 1.2 Technologies Used

Technology	Purpose
Angular.js	Frontend development
.NET Core	Backend development
SQL Server	Database management
Java, Selenium, TestNG	Testing and quality assurance

Why These Technologies Were Chosen?

1. .NET Core provides a secure and scalable backend architecture.

- 2. Angular.js ensures a dynamic and responsive user interface.
- 3. SQL Server offers a robust and reliable database for storing project data.
- 4. Postman is used for API testing to ensure smooth communication between system components.

5. Jenkins and Selenium facilitate automated testing, improving system reliability.

2. PROJECT MANAGEMENT

2.1 PROJECT PLANNING

➤ The New Product Development (NPD) System is designed to streamline the jewellery design process by managing the workflow between the Sketch Department and the CAD Department. It ensures that designs move efficiently from the initial concept stage to final production while tracking the contributions of individual designers.

2.1.1 Project Development Approach and Justification

➤ Workflow Process

- The Sketch Department initiates new projects, assigns designers, and tracks their progress.
- Once the sketches are finalized, they are transferred to the CAD Department, where they are converted into detailed CAD models.
- The system provides real-time updates, ensuring smooth communication and project tracking.

➤ Key Functionalities

- PD Entry Form: Maintains a record of finalized designs for reference and quality assurance.
- Card Movement History: Tracks the step-by-step progress of each design, ensuring transparency.
- Family Grouping: Organizes related designs into structured categories for easy retrieval.

➤ Performance Tracking & Role Management

- A points-based system is implemented to monitor designer performance and ensure accountability.
- Role-based access control ensures that designers, managers, and production teams have appropriate access, maintaining data security.

➤ Data Security & Integration

- The system ensures secure storage of proprietary jewellery designs.
- It seamlessly integrates with existing CAD tools to facilitate efficient transitions between design stages.

➤ Collaboration & Efficiency

- The NPD System enhances workflow efficiency by enabling real-time project tracking and structured task assignments.
- It reduces errors, improves team collaboration, and ensures timely completion of projects.

2.2 PROJECT WORK SCHEDULING

Table 2.3 Work Scheduling

Week No.	Duration	Tasks Scheduled
Week-1	01/01/2025 to 10/01/2025	Training on project related
		Technology (MySQL), SQL
		advanced topic (Join, triggers,
		history management)
Week-2	13/01/2025 to 24/01/2025	Java training, SQL
		optimization, Advanced Java
		training

Week-3	27/01/2025 to 07/02/2025	QA automation training
		(Selenium, TestNG)
Week-4	10/02/2025 to 21/02/2025	Automation of various
		website
Week-5	24/02/2025 to 07/03/2025	Documentation, SRS, project
		flow, API testing
Week-6	10/03/2025 to 21/03/2025	API automation of
		organization website
		(SRK.PURE)
Week-7	24/03/2025 to 28/03/2025	CSS module testing (UI and
		API), Research on Design
		pattern of automation (UI and
		API)

3. SYSTEM REQUIREMENT STUDY

3.1 USER CHARACTERISTICS

3.1.1 Role-Based Access & Security

- O The system restricts access based on user roles:
 - **Sketch Designers** can create, edit, and submit designs.
 - Project Managers can assign tasks, approve/reject designs, and monitor progress.
 - Admin/Management oversees the entire system and has access to all project data.
 - Sales Personnel can input client requirements for new jewellery designs.

Fig 3.1 Use Case Diagram

3.2 HARDWARE AND SOFTWARE REQUIREMENTS

➤ To ensure the successful deployment and optimal performance of the system, the following hardware and software requirements are defined. These specifications guarantee that the system operates efficiently while maintaining compatibility across different environments.

Table 3.4 Hardware and Software Requirements

Component	Minimum Specification
Processor	Intel Core i3 or above
RAM	4 GB
Hard Disk	100 GB
Operating System	Windows 10 or above
Browser	All latest browsers

3.3 ASSUMPTIONS AND CONSTRAINTS

3.3.1 Assumptions

- ➤ The following assumptions are considered during the development and deployment of the system:
 - 1. **Users Have Basic Computer Knowledge:** It is assumed that users interacting with the system have basic knowledge of operating a computer and web applications.
 - 2. **Stable Internet Connection:** The system is expected to function with a stable internet connection, especially for cloud-based features and updates.

- 3. **Latest Web Browsers Are Used:** It is assumed that users will access the system through modern and updated web browsers for security and performance reasons.
- 4. **User Authentication Is Required:** All users must have valid login credentials to access system features based on their roles.
- Regular Software Updates Will Be Applied: The system assumes
 that security patches and updates will be installed periodically to
 maintain system integrity.
- Data Backup Practices Are Followed: It is assumed that regular backups of the database and system files will be maintained to prevent data loss.

3.3.2 Constraints

The following constraints must be considered during system development and deployment:

1. Hardware Limitations:

- The system may experience slow performance on older hardware configurations that do not meet the minimum specifications.
- Limited storage capacity may restrict data retention and system expansion.

2. Software Compatibility:

- The system is designed to run on Windows 10 and above or macOS 10.15 and above. Older operating systems may not be supported.
- Some advanced features may require specific browser versions or additional plugins.

3. Security Restrictions:

- Users must have authorized access to view, modify, or delete certain data.
- Data encryption and security measures must be enforced to prevent unauthorized access.

4. Internet Dependency:

- The system requires an active internet connection for cloudbased operations, real-time updates, and remote access.
- Offline functionality is limited, and data synchronization may be required when the connection is restored.

5. Performance Constraints:

- System response time should be optimized to ensure a smooth user experience.
- High traffic or large database queries may impact processing speed and efficiency.

6. Regulatory Compliance:

- The system must adhere to data protection and privacy laws such as GDPR or other applicable regulations.
- Certain security measures, like two-factor authentication
 (2FA), may be mandatory for sensitive data access.

4. SYSTEM ANALYSIS

4.1 STUDY OF EXISTING SOLUTION

- ➤ Before developing the New Product Development (NPD) system, it is essential to evaluate existing solutions in the jewellery design industry. The majority of existing systems are disjointed, with minimal integration between departments such as Sketch and CAD. These systems typically lack seamless communication, have manual tracking of designs, and don't allow for real-time progress tracking.
 - ➤ Current Challenges in Existing Solutions:
 - Lack of integration between design and production teams, leading to errors and inefficiencies.
 - No centralized system for managing design workflows, tracking progress, or evaluating performance.
 - Limited scalability and difficulty in handling large design files and multiple designers.
- > Existing Solutions' Shortcomings: Many existing systems are either too complex or too simplistic, failing to address the specific needs of jewellery design processes. The primary weakness is that these systems often rely on external tools for CAD work and use separate platforms for project management, leading to confusion and delays.
- > Opportunity for Improvement: The NPD system seeks to bridge this gap by integrating the Sketch and CAD departments into a unified platform that allows for seamless project management, task assignment, real-time updates, and tracking of performance metrics.

4.2 REQUIREMENTS OF PROPOSED SYSTEM

4.2.1 Functional Requirements

Functional requirements define the core capabilities the NPD system must provide to meet the needs of users and stakeholders. The system needs to be flexible, efficient, and integrated across both Sketch and CAD departments to streamline the design workflow.

• Sketch Module Functionalities:

- 1. **Design Creation:** Designers must be able to create initial sketches for new jewelry pieces, defining aspects such as metal type, carat weight, and design category.
- Design Assignment: Projects are assigned to designers, with each designer's contributions tracked using a points-based system.
- Design Progress Tracking: The system should track the progress of designs, showing their current status (e.g., in progress, completed).
- 4. **Design Upload & Transition:** Sketches must be uploaded into the system and transitioned to the CAD department for further processing.

• CAD Module Functionalities:

- 1. **Design Conversion:** CAD designers receive finalized sketches and convert them into detailed 3D models, ensuring accuracy and consistency.
- 2. **Approval Workflows:** There should be structured workflows for approving/rejecting CAD designs, with feedback mechanisms.
- 3. **Card Movement History:** Maintain detailed logs of design changes, approvals, and transitions from Sketch to CAD.

- Project Management & Monitoring:
 - 1. **Progress Monitoring:** Project managers should be able to assign tasks, monitor progress, and generate reports.
 - 2. **Performance Tracking:** The system must support performance tracking for designers, giving managers insights into designer productivity and completion timelines.
- Sales Person Involvement:
 - Customer Requirements: Salespersons should be able to accept customer requirements and create design projects based on client needs.

4.2.2 Non-Functional Requirements

- Accessibility: Accessible on all major browsers.
- **Reliability:** Ensure 99.9% uptime with regular backups.
- **Performance:** Handle multiple users and large files without delay.
- Security: Secure data with SSL encryption and role-based access control.

4.3 SYSTEM WORK FLOW

➤ The Sketch Module is responsible for managing the initial jewellery design process. It allows designers to create sketches, assign projects, and track progress until the design is finalized for the CAD department.

4.3.1 Create New Design Portfolio

- Designers can create and manage multiple jewellery design portfolios.
- Portfolios categorize designs based on design type, metal type, gemstone type, and carat weight.

 The system provides a dashboard where project managers can assign design tasks and monitor progress.

4.3.2 Add/Modify Sketch Designs

- Designers can upload and edit sketches while maintaining a revision history.
- All modifications are logged to track changes and avoid duplication of effort.
- The system ensures version control for each design.

4.3.3 Submit Sketch for Approval

- Once a sketch is completed, it is submitted for approval by the project manager.
- The system provides structured workflows for approval, revision requests, or rejection with feedback.
- Approved sketches move forward to the CAD department.

4.3.4 Track Sketch Progress

- Card Movement History records each sketch's journey through different design stages.
- Project managers and designers can view real-time updates on each sketch's status.
- The system categorizes designs as In Progress, Approved, or Sent for Revision.

4.3.5 Organize Designs into Collections

- The Family Grouping feature allows grouping related sketches into collections.
- Helps organize designs for large-scale projects or collections with similar themes.

4.4 CLASS DIAGRAM

Fig 4.2 Class Diagram

4.5 ACTIVITY DIAGRAM

Fig 4.3 Activity Diagram

4.6 SEQUENCE DIAGRAM

4.6.1 Sequence Diagram (Full system)

Fig 4.4 Sequence Diagram (Full System)

4.6.2 Sequence Diagram Module wise (New project Creation)

Fig 4.5 Sequence Diagram Module wise (New project Creation)

4.6.3 Sequence Diagram Module wise (Sketch Design)

Fig 4.6 Sequence Diagram Module wise (Sketch Design)

5. SYSTEM DESIGN

The system design for the New Product Development (NPD) System outlines the architecture and structure required to support the jewellery design process, integrating the Sketch and CAD departments. It includes a robust database schema to manage project workflows, designer contributions, and design approvals, ensuring scalability, security, and efficiency. The design leverages a relational database model to maintain data integrity and enable seamless collaboration across teams.

5.1 DATABASE SCHEMA DESIGN

The NPD System's database is organized into multiple schemas to separate concerns and ensure modularity. The primary schema, Npd, contains tables related to the jewellery design process, while the Audit schema tracks historical changes, and the Control_Center schema manages system permissions and configurations. Below is an overview of the key schemas and their purposes:

• Schema Name: Npd

- Description: Contains all tables related to the new product development process, including project management, designer assignments, design uploads, and product details.
- Key Tables: Npd.Project, Npd.Project_Designs,
 Npd.Project_CAD_Designer_Mapping,
 Npd.Project_Design_Uploads,
 Npd.CARD_Movement_History.

• Schema Name: Audit

 Description: Manages audit trails for key tables, recording actions such as insertions, updates, and deletions to ensure traceability.

Key Tables: Audit.PD_Component_Mapping,
 Audit.Pd_Guide_Entry.

• Schema Name: Control_Center

- Description: Handles system-wide configurations, user roles, permissions, and stage management to enforce access control and workflow progression.
- Key Tables: Control_Center.Stages,
 Control_Center.User_master,
 Control_Center.User_Role_Mapping.

The database uses foreign key relationships to maintain referential integrity and triggers for audit logging. Common fields (e.g., is_active, created_by) are standardized across tables for consistency.

Description: common fields that will be used in all tables.

Table 5.5 Some Common Fields

Column Name	Data Type	Constraints	Description
is_active	bit	NULL	Indicates if the mapping is active (1) or inactive (0).
is_deleted	bit	NULL	Indicates if the mapping is marked as deleted (1) or not (0).
is_locked	bit	NULL	Indicates if the mapping is locked for editing (1) or not (0).
created_by	smallint	NULL	ID of the user who created the mapping record.
created_date	datetime	NULL	Date and time when the mapping was created.
modified_by	smallint	NULL	ID of the user who last modified the mapping record.
modified_date	datetime	NULL	Date and time when the mapping was last modified.

modified_iplocat	int	NULL	ID of the location from
ion_id			where the modification was
			made.
created_iplocati	int	NULL	ID of the location from
on_id			where the
			mapping was created.

Description: Project table stores new project entry and also mange old project details.

Table 5.6 NPD.Project

Column Name	Data Type	Constraints	Description
project_id	smallint	PRIMARY KEY, IDENTITY	Unique identifier for the project.
project_key	int	NOT NULL	Key for the project, used for internal tracking. It is unique key that is not change after allocation
project_name	varchar(100)	NOT NULL	Name of the project.
project_head_id	int	Foreign key references Auth.Users(User_ code)	ID of the project head, he is responsible for overall management.
start_date	datetime	NULL	Start date of the project.
final_end_date	date	NULL	Final end date of the project.(expected)
proposed_comple te_date	datetime	NULL	Proposed completion date of the project.
collection_id	smallint	Foreign key references Product.Collectio ns(Col lecti onid)	project belongs to the
sub_collection_i	smallint	Foreign key references Product.collectio ns_typ e(Collection_typ e_id)	project belongs to the project.
project_coordina tor_id	int	Foreign key references Auth.Users(User_ code)	ID of the project coordinator.

actual_complete _date	datetime	NULL	Actual completion date of the project.
head_designer_i d	int	Foreign key references Auth.Users(User_ code)	ID of the head designer. He manages all designing works
project_status_id	smallint	Foreign key references npd.Project_stat us(proj ect_status_id)	Status ID of the project, indicating the current stage.
remark	varchar (256)	NULL	Additional remarks or comments about the project.
priority_id	smallint	Foreign key references Master.Priority_ Master(Priority_id)	Priority level ID of the project.
customer_id	smallint	Foreign key references Master.Customer _Mast er(Customer _id)	ID of the customer associated with the project.
display_order	int	NULL	Display order for sorting purposes.
stage_id	smallint	Foreign key references control_center.st ages(St age id)	ID of the current stage of the project.
component_id	smallint	Foreign key references Control_center.co mpon ets(component_id)	ID of the main component of the project.
metal_type_id	smallint	Foreign key references Product.Metal_T ype_m aste r(metal_Type_id)	ID of the type of metal used in the project.

Description: Project Designs will store detailed information about the designs within a project, including their status, related designers, and relevant dates.

Table 5.7 Npd.Project_Designs

Column Name	Data Type	Constraints	Description
project_design_i	smallint	PRIMARY	Unique identifier for the
d		KEY,	design
		IDENTITY	record.
project_designer_	smallint	Foreign key	ID of the associated
details_ id		references	project designer details.
		npd.project_desig	
		ner_d	
		etails(project_des	
		igner	
		_details_id)	
project_design_ name	varchar(256)	NOT NULL	Name of the design.
total_design	int	NULL	Total number of designs.
submit_point	int	NULL	Points awarded for the submission.
receive_date	datetime	NULL	Date and time when the
			design was received.
receive_by	smallint	NULL	ID of the user who
			received the design.
approved_date	datetime	NULL	Date and time when the
			design was approved.
approved_by	smallint	NULL	ID of the user who
			approved the design.
approved_remar	varchar(256)	NULL	Remarks about the approval.
k			
status	varchar(64)	NULL	Status of the design.
is_reverse	bit	NULL	Indicates if the design is
			reversed
. • •	11'	т .	(1) or not (0).
stage_id	smallint	Foreign key references	8
		control_center.sta	is in.
		ges(st ages_id)	
		500(5t ugos_10)	

component_id	smallint	Foreign key references control_center.co mpon ents(component_id)	ID of the component the design is for.
locked_by	smallint	NULL	ID of the user who locked the design.
locked_date	datetime	NULL	Date and time when the design was locked.
reverse_by	smallint	NULL	ID of the user who reversed the design.
reverse_date	datetime	NULL	Date and time when the design was reversed.
total_point	int	NULL	Total points awarded for the design.
is_reject	bit	NULL	Indicates if the design is rejected (1) or not (0).
is_pd_entry	bit	NULL	Indicates if the design is entered in PD (1) or not (0).
is_hold	bit	NULL	Indicates if the design is on hold (1) or not (0).
hold_by	smallint	NULL	ID of the user who put the design on hold.
hold_date	datetime	NULL	Date and time when the design was put on hold.
move_type	varchar(16)	NULL	Type of move associated with the design.
is_assign_to_CA D_des igner	bit	NULL	Indicates if the design is assigned to a CAD designer (1) or not(0)

pre_approve_typ	varchar(32)	NULL	Type of pre-approval.
pre_approved_b y	smallint	NULL	ID of the user who pre- approved the design.
pre_approved_d ate	datetime	NULL	Date and time when the design was pre-approved.
is_pre_approved	bit	NULL	Indicates if the design is pre- approved (1) or not (0).
pre_approve_re mark	varchar(256)	NULL	Remarks about the preapproval.
pre_approve_sta tus	char(1)	NULL	Status of the pre- approval.
is_sketch_lock	bit	NULL	Indicates if the sketch is locked (1) or not (0).
is_cad_lock	bit	NULL	Indicates if the CAD design is locked (1) or not (0).
CAD_designer_i	smallint	Foreign key references Auth.Users(User _code)	ID of the CAD designer.
CAD_issue_by	smallint	NULL	ID of the user who issued the CAD design.
CAD_issue_date	datetime	NULL	Date and time when the CAD design was issued.
is_CAD_design	bit	NULL	Indicates if it is a CAD design (1) or not (0).
is_final_design	bit	NULL	Indicates if it is the final design (1) or not (0).
is_final_lock	bit	NULL	Indicates if the final design is locked (1) or not (0).
Is_hard_reject	bit	NULL	Indicates if the design is hard rejected (1) or not (0).

Hard_reject_by	smallint	NULL	ID of the user who hard rejected the design.
HARD_REJEC T_DATE	datetime	NULL	Date and time when the design was hard rejected.
HARD_REJECT _REM ARK	varchar(256)	NULL	Remarks about the hard rejection.
CAD_Software_id	smallint	Foreign key references npd.cad_softewar e_Ma ster(cad_softwar e_id)	ID of the CAD software used.
is_sketch_design	bit	NULL	Indicates if it is a sketch design (1) or not (0).
HARD_REJEC T_TYPE	varchar(16)	NULL	Type of hard rejection.

Description: Project cad designer mapping table will be used for storing the cad designer entry that is given on this project.

Table 5.8 Npd.Project_CAD_Designer_Mapping

Column Name	Data Type	Constraints	Description
project_cad_desig	smallint	PRIMARY	Unique identifier for the
ner_ map ping_id		KEY, NOT	mapping record.
		NULL	
project_design_i	smallint	Foreign key	ID of the associated project
d		references	design.
		npd.project_desi	
		gn(pro	
		ject_Design_id)	
cad_designer_id	int	Foreign key	ID of the CAD designer.
		references	
		Auth.Users(
		User_c ode)	
submit_point	int	NULL	Submission point.
total_point	int	NULL	Total points.
CAD_issue_by	smallint	NULL	ID of the user who issued
			the CAD.

CAD_issue_date	datetime	NULL	Date and time when the CAD was issued.
CAD_Software_i	smallint	Foreign key referencesnpd.c ad_soft ware_master(ca d_soft ware_id)	ID of the CAD software used.
Remark	varchar(256)	NULL	Remarks about the mapping.
receive_by	smallint	NULL	ID of the user who received the CAD.
receive_date	datetime	NULL	Date and time when the CAD was received.

Description: Project Design Uploads table will be used for storing image url,image detail that use in the project, uploaded by.

Table 5.9 Npd .Project_Design_Uploads

Column Name	Data Type	Constraints	Description
project_design_u	smallint	PRI	Unique identifier for the
pload_ id		MA	design
		RY	upload.
		KE	
		Υ,	
		IDE	
		NTI	
		TY	
		(1,1	
)	
upload_url	varchar(2048)	NOT NULL	URL where the design is uploaded.
upload_date	datetime	NULL	Date and time when the
			design was uploaded.
upload_by	smallint	NULL	ID of the user who
			uploaded the design.
project_design_i	smallint	Foreign key	ID of the associated
d	Smanni	references	project design.
a a		npd.project_de	project design.
		signs(Pr	
		318113(1.1	

		oject_design_i d)	
detail_url	varchar(2048)	NULL	URL for detailed view of the design.
thumbnail_url	varchar(2048)	NULL	URL for the thumbnail of the design.

Description: Card Movement history table will be used for managing the car movement history.

Table 5.10 Npd.CARD_Movement_History

Column Name	Data Type	Constraints	Description
card_movement_ histor y_id	smallint	PRIMAR Y KEY, IDENTIT Y	Unique identifier for the card movement history.
card_movement _descri pt ion	nvarchar(max)	NULL	Description of the card movement.
card_action_id	smallint	Foreign key references Npd.card_action (card_ acti on_id)	Reference to the card action ID.
component_id	smallint	Foreign key references product.Compo nent(co mpo nent_id)	Identifier for the component.
project_id	smallint	Foreign key references npd.project(p roject _id)	Identifier for the project.
project_design_ id	smallint	Foreign key references npd.project_ design s(project _design_id)	Identifier for the project design.

from_stage_id	smallint	Foreign key	Identifier for the source
		references	stage.
		control_cent	
		er.stag	
		es(stage_id)	
to_stage_id	smallint	Foreign key	Identifier for the destination
		references	stage.
		control_cent	
		er.stag	
		es(stage_id)	
sp_name	varchar(256)	NULL	Name of the stored procedure.

Table 5.11 Audit. Pd_Guide_Entry

Column Name	Data Type	Constraints	Description
audit_pd_guide_ entry _id	bigint	PRIMARY KEY, IDENTITY	Unique identifier for the audit record.
Action	varchar(64)	NOT NULL	Description of the action performed (e.g., insert, update, delete).
pd_guide_entry_id	int	Foreign key references npd.pd_guide_ent ry(pd_g uide_entry_id)	Unique identifier for the PD guide entry.
design_id	smallint	Foreign key references npd.project_desig ns(projec t_design_id)	Identifier for the design.
designfolio_type _id	int	Foreign key references npd.designfolio_ty pe(desi gn_folio_id)	Identifier for the designfolio type.
product_size	decimal(12, 3)	NULL	Size of the product.
product_type_id	smallint	Foreign key references product.product_t ype(prod uct_type_id)	Identifier for the product type.

refrence_no	varchar(128)	NULL	Reference number for the product.
product_length	varchar(64)	NULL	Length of the product.
product_width	varchar(64)	NULL	Width of the product.
product_height	varchar(64)	NULL	Height of the product.
product_guage	varchar(64)	NULL	Gauge of the product.
gender_id	smallint	NOT NULL	Identifier for the gender.
design_source	varchar(256)	NULL	Source of the design.
design_mechani sm	varchar(64)	NULL	Mechanism used in the design.
remark	varchar(1024)	NULL	Remarks or notes.
stud_part_length	varchar(64)	NULL	Length of the stud part.
customer_exclus ive	varchar(64)	NULL	Customer-specific exclusive details.
customer_not_al low	varchar(64)	NULL	Customer-specific restrictions.
is_invalid	bit	NULL	Indicates if the record is invalid.
invalid_remark	varchar(1024)	NULL	Remarks for invalid records.
is_locked	bit	NULL	Indicates if the record is locked.
is_photo_locked	bit	NULL	Indicates if the photo is locked.
is_video_locked	bit	NULL	Indicates if the video is locked.
changes_json	text	NULL	JSON data representing changes
image_remark	varchar(2048)	NULL	Remarks related to images.
hallmark_qty	smallint	NULL	Quantity of hallmarks.
other_specificati on_id	varchar(64)	NULL	Identifier for other specifications.
is_request	bit	NOT NULL	Indicates if a request was made.
is_approved	bit	NOT NULL	Indicates if the record is approved.
is_rejected	bit	NOT NULL	Indicates if the record is rejected.

approved_date	datetime	NULL	Timestamp when the record
			was approved.
approve_reject_ by	smallint	NULL	Identifier for the user who approved/rejected the record.
reject_remark	varchar(256)	NULL	Remarks for rejection.
request_by	smallint	NULL	Identifier for the user who made the request.
request_date	datetime	NULL	Timestamp when the request was made.

Description: Stages is mater table. It's provided different types of stages of project and product.

Table 5.12 Control_Center.Stages

Column Name	Data Type	Constraints	Description
stage_id	smallint	PRIMARY	Unique identifier for the
		KEY,	stage.
		IDENTIT	
		Y	
stage_type	varchar(255)	NOT NULL	Type of the stage.
stage_name	varchar(255)	NOT NULL	Name of the stage.
display_order	int	NULL	Order in which the stage is
			displayed.
stage_key	varchar(128)	NULL	Key for the stage.
color_code	varchar(16)	NULL	Color code for the stage.
1 1	1 (16)	NULL	
text_color_code	varchar(16)	NULL	Text color code for the stage.

Description: User master table is a master table that stores a user information.

Table 5.13 Control_Center.User_master

Column Name	Data Type	Constraints	Description	
user_id	smallint	PRIMAR Y KEY, IDENTIT Y	Unique identifier for the user.	
employee_code	varchar(128)	NOT NULL	Code for the employee.	
first_name	varchar(32)	NOT NULL	First name of the user.	
middle_name	varchar(32)	NULL	Middle name of the user.	
last_name	varchar(32)	NULL	Last name of the user.	
user_name	varchar(512)	NOT NULL	Username of the user.	
date_of_birthdat	date	NULL	Date of birth of the user.	
user_email	varchar(256)	NULL	Email of the user.	
contact_number	varchar(10)	NULL	Contact number of the user.	
date_of_joining	date	NULL	Date of joining of the user.	
user_password	varchar(512)	NULL	Password of the user.	

5.2 SCREEN LAYOUT

Fig 5.7 Dashboard

Fig 5.8 Sketch Dashboard

Fig 5.9 New Project Detail

Fig 5.10 Enter Details

Fig 5.11 Designer Assign Page

Fig 5.12 Enter Designer Assign Detail

Fig 5.13 Sketch Dashboard Show New Project

Fig 5.14 Widget View

Fig 5.15 Card Move in Progress Stage

Fig 5.16 Card Move in Hold Stage

Fig 5.17 Hold Validation

Fig 5.18 Hold Page

Fig 5.19 Un-hold Validation

Fig 5.20 Card Move Done Stage

Fig 5.21 Card in Reject Stage

Fig 5.22 Rejected Design Popup

Fig 5.23 Add Rejected Detail in Popup

Fig 5.24 Reject Design Validation

Fig 5.25 Hard Reject Page

Fig 5.26 Un-Rejected Page

Fig 5.27 Unrejected Validation

Fig 5.28 Image Upload

Fig 5.29 Card Move to Approved Stage

Fig 5.30 PD Entry Detail

Fig 5.31 Component Detail

Fig 5.32 Stone Detail

Fig 5.33 Material Details

Fig 5.34 Labour Detail

Fig 5.35 Save PD Entry

Fig 5.36 PD Entry Page

Fig 5.37 Add Point

Fig 5.38 Card Move to CAD

6. SYSTEM IMPLEMENTATION AND TESTING

> System implementation and testing play a crucial role in ensuring the system operates efficiently, meets user requirements, and is free from critical defects. This chapter outlines the coding standards, testing methodologies, test suite design, and test cases used to validate the system.

6.1 CODING STANDARDS

To ensure consistency, maintainability, and readability of the code, the following coding standards are followed:

6.1.1 General Coding Guidelines

- Code Readability Code should be well-structured with proper indentation and meaningful variable names.
- Commenting and Documentation Every function or module should include comments explaining its purpose and usage.
- Naming Conventions Use camelCase for variables and functions (e.g., calculateTotalPrice()), and PascalCase for classes (e.g., UserProfile).
- Error Handling Proper error handling mechanisms should be implemented using try-catch blocks or validation checks.
- Modularization Code should be divided into reusable functions and modules to enhance maintainability.
- Security Best Practices Avoid hardcoding sensitive information, use encryption where necessary, and follow secure coding practices.

6.1.2 Language-Specific Standards

- For JavaScript: Use ESLint to maintain code quality.
- For SQL Queries: Use proper indentation and avoid using SELECT
 * for better query performance.

6.2 TESTING METHODS

Testing is performed to ensure the system functions correctly and meets the requirements. The following testing methods are used:

6.2.1 Unit Testing

- Individual components and functions are tested independently to verify their correctness.
- Automated testing frameworks like JUnit (for Java) may be used.

6.2.2 Integration Testing

- Verifies the interaction between different modules of the system.
- Ensures seamless data flow and proper communication between system components.

6.2.3 System Testing

- A complete system test is conducted to verify that the entire application functions as intended.
- Includes both functional and non-functional testing.

6.2.4 User Acceptance Testing (UAT)

- Real users test the system to validate that it meets their needs and expectations.
- Feedback is collected and necessary modifications are made before final deployment.

6.3 TEST CASES AND RESULT

Table 6.14 Sketch Module

Test	Method	Description	Input Data	Expected	Actual Result	Status
Case ID	Name			Result		
TC01	Upsert	New	Valid data	New project	New project	Pass
	Project	project	entry	created	created	
	master	entry.	fields	successfully.	successfully.	
TC02	Upsert	New	Valid data	New project	New project	Pass
	Project	project	enter	not created	not created	
	master	entry	except			
		with	some			
		missing fields	mandatory fields			
TC03	Upsert	Inserts or	Valid	Designer	Designer	Pass
	Project	updates	designe	Assign	Assign	
	AssignTo	project	r name	Successfully	Successfully	
	Designer	assignments				
TFC0.4		to a designer	0.1	A . 1	A ' 1	D
TC04	Assign	Deletes a	Select	Assigned	Assigned	Pass
	Design Delete	design	the	Design	Design	
	Delete	assignment	design to delete	removed	removed	
TC05	Project	Hard	Select	Design	Design	Pass
	Design	rejects a	the	Rejected	Rejected	
	Hard	project	design to	successfully	successfully	
	Reject	design	reject			
TC06	Get PD	Retrieve the	Access	Entry Details	Entry Details	Pass
	Entry	new Added	the PD	display	display	
	Details	Product	section	successfully	successfully	
TC07	T	details	0.1.4	T	T1	D
TC07	Image	Upload	Select	Image upload successfully	Image upload	Pass
	Upload	the image of	an imaga ta	successiumy	successfully	
		the	image to upload			
		designs	upload			
TC08	Project	Holds a	Select	Design hold	Design	Pass
	Design	project	the	successfully	hold	
	Hold_	design.	design		successfully	
	Unho		to hold			
	ld					
TC09	Upsert	Upsert	Valid	PD entry	PD	Pass
	PD	the PD	project_	saved	entry	
		entry	id with	successfully	saved	

	Entry	detail	other		succes	
	Details	With	detail		sfully	
		projectid				
TC10	Project	Moves a	Select	Design	Design	Pass
	Design	project	design	moved	moved	
	MoveTo	design to	to move	successfully	succes	
	CAD_F	the final			sfully	
	inal	CAD			-	
		stage				

6.3.1 Testing Report

Fig 6.39 Cucumber Report

Fig 6.40 Scenario Overview

Fig 6.41 Login Scenario

Fig 6.42 Open Sketch Dashboard Page Scenario

Fig 6.43 Add New Project Scenario

Fig 6.44 Add Project Details Scenario

Fig 6.45 Project Assign Designer Scenario

Fig 6.46 Move Card in Widget View Scenario

Fig 6.47 PD Entry Scenario

PRJ/2025/IT/146 Future Enhancement

7. FUTURE ENHANCEMENT

Sketch Module:

1. AI-Assisted Sketching

- Implement AI-powered tools to suggest design improvements, symmetry corrections, and pattern recommendations.
- o Auto-generate sketch variations based on predefined styles.

2. Real-Time Collaboration

- o Introduce a multi-user sketching environment where multiple designers can work on the same design simultaneously.
- o Allow real-time commenting and feedback from project managers.

3. Automated Colour & Material Suggestions

- Implement AI to suggest suitable gemstones, metals, and colour combinations based on design themes.
- o Allow designers to apply suggested materials with a single click.

PRJ/2025/IT/146 Conclusion

8. CONCLUSION

8.1 SELF ANALYSIS OF PROJECT VIABILITIES

- This project has been carefully evaluated in terms of its feasibility, usability, and overall effectiveness. Throughout the development process, I ensured that the system was designed to meet user needs while maintaining efficiency and reliability. Here's how the project proves to be viable:
 - Technical Viability: The system is built using modern technologies, ensuring it is scalable, efficient, and capable of handling real-world operations smoothly.
 - **Operational Viability:** The interface is user-friendly, making it accessible to end-users with minimal learning curves.
 - **Economic Viability:** The project was developed within a reasonable budget, ensuring cost-effectiveness without compromising functionality.
 - Performance Viability: The system delivers fast response times, manages data effectively, and operates smoothly without major delays.

8.2 PROBLEMS ENCOUNTERED AND THEIR SOLUTIONS

➤ Like any development process, this project had its fair share of challenges. However, each problem was tackled with a structured approach. Below are some key challenges and their solutions:

1. Integration Issues

- Problem: Connecting different modules and ensuring a seamless data flow was tricky.
- Solution: Implemented modular programming and API integrations to ensure smooth communication between system components.

PRJ/2025/IT/146 Conclusion

2. Performance Optimization

 Problem: The system initially faced slow response times due to heavy database queries.

 Solution: Optimized database queries using indexing and caching techniques, significantly improving performance.

3. User Experience Challenges

- Problem: Some users found certain features of the interface difficult to navigate.
- Solution: Collected user feedback and improved the UI/UX design, making the system more intuitive and user-friendly.

8.3 SUMMARY OF PROJECT WORK

- ➤ Overall, this project successfully meets the intended goals, delivering a well-structured and efficient system. The major milestones achieved during development include:
 - **Requirement Analysis:** Conducted a detailed study to understand user needs and system functionalities.
 - **System Design:** Designed a modular and structured architecture that allows easy scalability and maintenance.
 - **Development & Implementation:** Followed coding best practices to ensure a stable and efficient system.
 - **Testing & Debugging:** Performed thorough testing to identify and fix any bugs, ensuring system reliability.
 - **Deployment:** Successfully implemented the system on the required hardware and software platforms.