

LAB 5 Leituras Analógicas no Arduino

MODELO

PED

Unidade Curricular					
Microprocessadores e Sistemas Embebidos					
Curso	Mecânica e Informática Industrial				
Ano letivo	2022/23	Ano curricular	2.º	Período	2.º semestre
Data	11/04/2023				
LAB 4 – Leituras Analógicas no Arduino					

NOTA: Todos os exercícios devem ser devidamente resolvidos e submetidos (documento PDF + código)

para o repositório no GitHub.

Comunicação entre o Arduino e o PC

A comunicação entre o Arduino e o PC é feita através de um porto série, onde é possível enviar e receber dados. Para que essa troca de informação seja possível, é necessário estabelecer uma comunicação.

A função Serial.begin (speed) permite estabelecer a comunicação com a velocidade especificada em bits por segundo (bps). O valor escolhido para a velocidade está limitado a um conjunto de valores predefinidos. Os valores mais comuns são 9600 bps e 115200 bps.

As funções Serial.print() e Serial.println() são usadas para enviar dados do Arduino para o PC. No Arduino IDE os dados enviados do Arduino para o PC podem ser lidos no monitor série.

Leitura de valores analógicos

A leitura de valores analógicos no Arduino é feita usando a função analogRead (). Apenas os pinos AO – A5 podem ser usados para ler valores analógicos.

Resistências Variáveis (Potenciómetro)

As resistências variáveis são resistências especiais com 3 pinos. Os pinos das extremidades estão ligados a uma resistência constante. O pino central pode ser mecanicamente movido de forma a estabelecer contacto com a resistência entre os pinos das extremidades.

LDR Light Dependent Resistor (Fotorresistência)

A LDR é uma resistência especial que altera de acordo com a intensidade da luz que incide sobre ela. Quando a intensidade da luz aumenta, a resistência diminui.

LAB 5 Leituras Analógicas no Arduino

MODELO

PED

Recorrendo ao simulador **TinkerCAD** (https://www.tinkercad.com/), realize os seguintes exercícios:

Nota: Para todos os exercícios deve elaborar o esquema do circuito, algoritmo, circuito e código.

Exercício 1. Use o potenciómetro e conecte os pinos das extremidades ao Vcc e ao GND. Faça a leitura do pino central com o Arduino e envie o seu valor para o PC a 10Hz. Altera a posição do pino central, movendo o cursor, e observe os resultados.

Exercício 2. Use um LDR (fotorresistor) em série com uma resistência de $10k\Omega$ e efetue a leitura do valor analógico enviando o seu valor para o PC a 10Hz. Adicione um LED ao circuito e ligue-o sempre que a intensidade da luz <u>for menor</u> que a luz ambiente e desligue o LED sempre que a intensidade da luz for a luz ambiente ou superior. Considere o valor 900 como sendo o valor lido pelo sensor à luz ambiente.

