Tópicos de Matemática Discreta

- 1. Indique, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) Se o valor lógico da fórmula proposicional $\neg(p \Leftrightarrow (q \Rightarrow \neg p)) \land r$ é o de falsidade então a proposição p é verdadeira.
 - (b) A fórmula $p \Rightarrow ((q \Rightarrow p) \lor \neg q)$ não é tautologia nem contradição.
 - (c) Dado o predicado " $n^2 > 1 \Rightarrow n-2 < 2$ " sobre os números naturais, a proposição correspondente a cada valor de n é verdadeira somente se n < 4.
 - (d) Os conjuntos $A=\left\{x\in\mathbb{R}\ :\ x^2+4x=-3\right\}$ e $B=\left\{x\in\mathbb{R}^+\ :\ x^2=9\vee x^2=1\right\}$ são iguais.
- 2. Dê exemplo de ou justifique por que não existe(m)
 - (a) conjuntos A, B e C tais que $A \cap B = A \cap C$ e $B \neq C$.
 - (b) subconjuntos $A \in B$ do universo $X = \{1, 2, 3, 4, 5, 6\}$ tais que $A \cup B = \{1, 2, 4, 5\}$ e $A \setminus B = \{1, 4, 6\}$.
 - (c) um subconjunto A de \mathbb{N} , com um número finito de elementos, para o qual a proposição $\exists_{x \in A} \forall_{y \in A} \ x^2 = y$ seja verdadeira.
- 3. Construa uma prova para cada uma das seguintes afirmações:
 - (a) Existe um natural n tal que $n^2 > 3n$ e n é primo.
 - (b) Para qualquer natural $n, n^2 + 2n + 1$ é par se e só se n é ímpar.
- 4. Considere o operador lógico binário ↑ (chamado seta de Sheffer) com a seguinte tabela de verdade:

$$\begin{array}{c|ccc} p & q & p \uparrow q \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & V \end{array}$$

- (a) Construa a tabela de verdade para $((p \uparrow q) \uparrow p)$.
- (b) Determine, justificando, uma fórmula proposional logicamente equivalente a $p \uparrow q$ que use apenas alguns dos conectivos \land , \lor , \neg , \Rightarrow e \Leftrightarrow .
- (c) Escreva a negação de uma proposição p em termos da seta de Sheffer.

Cotação: