Actividad 2 5

Ricardo kaleb Flores Alfonso

2024-10-04

1. Designa tu variable categórica como variable dependiente para una clasificación y tus variables numéricas como variables independientes.

```
library(caret)
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice
library(MASS)
M=read.csv("kc_house_data.csv")
head(M)
##
                                   price bedrooms bathrooms sqft_living sqft_lot
                            date
## 1 7129300520 20141013T000000
                                  221900
                                                        1.00
                                                                     1180
                                                                              5650
## 2 6414100192 20141209T000000
                                  538000
                                                 3
                                                        2.25
                                                                     2570
                                                                              7242
## 3 5631500400 20150225T000000
                                                 2
                                  180000
                                                        1.00
                                                                      770
                                                                             10000
## 4 2487200875 20141209T000000
                                                        3.00
                                                                     1960
                                                                              5000
## 5 1954400510 20150218T000000 510000
                                                 3
                                                        2.00
                                                                     1680
                                                                              8080
## 6 7237550310 20140512T000000 1225000
                                                        4.50
                                                                     5420
                                                                            101930
     floors waterfront view condition grade sqft_above sqft_basement yr_built
## 1
          1
                      0
                           0
                                            7
                                                    1180
                                                                            1955
## 2
          2
                      0
                           0
                                     3
                                            7
                                                    2170
                                                                    400
                                                                            1951
                                     3
## 3
          1
                      0
                           0
                                            6
                                                     770
                                                                            1933
                                     5
                                            7
## 4
          1
                      0
                                                    1050
                                                                    910
                                                                            1965
                           0
                                     3
## 5
          1
                      0
                                                    1680
                                                                            1987
## 6
                           0
                                           11
                                                    3890
                                                                   1530
                                                                            2001
##
     yr_renovated zipcode
                               lat
                                       long sqft_living15 sqft_lot15
                    98178 47.5112 -122.257
                                                      1340
                                                                  5650
                    98125 47.7210 -122.319
                                                                  7639
## 2
             1991
                                                      1690
## 3
                    98028 47.7379 -122.233
                                                      2720
                                                                  8062
## 4
                0
                    98136 47.5208 -122.393
                                                      1360
                                                                  5000
## 5
                    98074 47.6168 -122.045
                                                      1800
                                                                  7503
## 6
                    98053 47.6561 -122.005
                                                      4760
                                                                101930
str(M)
## 'data.frame':
                    21613 obs. of 21 variables:
   $ id
                    : num 7.13e+09 6.41e+09 5.63e+09 2.49e+09 1.95e+09 ...
                           "20141013T000000" "20141209T000000" "20150225T000000" "20141209T000000" ...
## $ date
  $ price
                    : num 221900 538000 180000 604000 510000 ...
```

```
## $ bedrooms
                : int 3 3 2 4 3 4 3 3 3 3 ...
## $ bathrooms : num 1 2.25 1 3 2 4.5 2.25 1.5 1 2.5 ...
## $ sqft living : int 1180 2570 770 1960 1680 5420 1715 1060 1780 1890 ...
## $ sqft_lot : int 5650 7242 10000 5000 8080 101930 6819 9711 7470 6560 ...
## $ floors
                 : num 1 2 1 1 1 1 2 1 1 2 ...
## $ waterfront : int 0 0 0 0 0 0 0 0 0 ...
## $ view : int 0 0 0 0 0 0 0 0 0 ...
## $ condition : int 3 3 3 5 3 3 3 3 3 ...
## $ grade
                : int 77678117777...
## $ sqft_above : int 1180 2170 770 1050 1680 3890 1715 1060 1050 1890 ...
## $ sqft_basement: int 0 400 0 910 0 1530 0 0 730 0 ...
               : int 1955 1951 1933 1965 1987 2001 1995 1963 1960 2003 ...
## $ yr built
## $ yr_renovated : int 0 1991 0 0 0 0 0 0 0 ...
## $ zipcode
                : int 98178 98125 98028 98136 98074 98053 98003 98198 98146 98038 ...
## $ lat
                 : num 47.5 47.7 47.7 47.5 47.6 ...
## $ long
                 : num -122 -122 -122 -122 -122 ...
## $ sqft_living15: int 1340 1690 2720 1360 1800 4760 2238 1650 1780 2390 ...
                : int 5650 7639 8062 5000 7503 101930 6819 9711 8113 7570 ...
## $ sqft lot15
#Remover observaciones con precio mayor a $1.5M
M <- subset(M, price <= 1500000)
#Agregar una nueva variable categórica: Category
M$Category <- factor(ifelse(M$price < 500000, "low", ifelse(M$price < 1000000, "medium", "high")))
#Estructura de los datos
str(M)
## 'data.frame': 21097 obs. of 22 variables:
## $ id
               : num 7.13e+09 6.41e+09 5.63e+09 2.49e+09 1.95e+09 ...
## $ date
                : chr "20141013T000000" "20141209T000000" "20150225T000000" "20141209T000000" ...
## $ price
                : num 221900 538000 180000 604000 510000 ...
## $ bedrooms
                : int 3 3 2 4 3 4 3 3 3 3 ...
## $ bathrooms : num 1 2.25 1 3 2 4.5 2.25 1.5 1 2.5 ...
## $ sqft_living : int 1180 2570 770 1960 1680 5420 1715 1060 1780 1890 ...
## $ sqft_lot : int 5650 7242 10000 5000 8080 101930 6819 9711 7470 6560 ...
## $ floors
                : num 1211112112...
## $ waterfront : int 0 0 0 0 0 0 0 0 0 ...
           : int 00000000000...
## $ view
## $ condition : int 3 3 3 5 3 3 3 3 3 ...
                : int 77678117777...
## $ grade
## $ sqft_above : int 1180 2170 770 1050 1680 3890 1715 1060 1050 1890 ...
## $ sqft_basement: int 0 400 0 910 0 1530 0 0 730 0 ...
               : int 1955 1951 1933 1965 1987 2001 1995 1963 1960 2003 ...
## $ yr built
## $ yr_renovated : int 0 1991 0 0 0 0 0 0 0 ...
## $ zipcode
               : int 98178 98125 98028 98136 98074 98053 98003 98198 98146 98038 ...
## $ lat
                 : num 47.5 47.7 47.7 47.5 47.6 ...
## $ long
                : num -122 -122 -122 -122 -122 ...
## $ sqft_living15: int 1340 1690 2720 1360 1800 4760 2238 1650 1780 2390 ...
## $ sqft_lot15 : int 5650 7639 8062 5000 7503 101930 6819 9711 8113 7570 ...
                : Factor w/ 3 levels "high", "low", "medium": 2 3 2 3 3 1 2 2 2 2 ...
## $ Category
# Nombres de columnas del data set
all_cols <- names(M)
```

```
#Crear un data frame para la columna categoría
Category <- data.frame(M[,22])

#Se eliminan las primeras tres columnas (ID, Date, y Category)
M <-M[,-c(1:3,22)]

# Identificar variables con varianza cercana a cero: remove_cols
remove_cols <- nearZeroVar(M)

# Remover variables con varianza cercana a cero
M2 <- M[,-remove_cols]

#Agregar la variable categoría al data frame
M2$Category <- Category[,1]</pre>
```

2. Acota tu base de datos realizando un muestreo aleatorio de 300 observaciones

```
set.seed(42)
sampled_data <- M2[sample(nrow(M2), 300), ]</pre>
```

3. Gráfico de la segmentación original de los datos

¿Qué variable o variables discriminan mejor?

```
#Asignamos un color a cada categoria
color = c(high="blue", medium ="purple", low = "red")
color
##
      high medium
                          low
     "blue" "purple"
                        "red"
##
#Creamos un vector con el color corresponidente a cada observacion de acuerdo a la columna categoria
col.ind = color[sampled_data$Category]
head(col.ind)
    medium medium
                     medium
                                   low
                                            low
                                                    high
## "purple" "purple" "purple"
                                 "red"
                                          "red"
#Graficos de dispersion con el color de acuerdo a la categoria
plot(sampled_data[,c(8:14)], pch=21, bg=col.ind, col = "gray")
```


plot(sampled_data[,c(1:8)], pch=21, bg=col.ind, col = "gray")

Las variables que mejor discriminan son las de condición, medidas del la sala, la medida del techo, la cantidad de baños y habitaciones.

4. Realiza un análisis discriminante para responder las siguientes preguntas

##a) Obtenga la media para cada variable predictora en función del grupo

```
aggregate(. ~ Category, data = sampled_data, FUN = mean)
##
     Category bedrooms bathrooms sqft_living sqft_lot
                                                         floors condition
                                                                              grade
## 1
         high 4.000000 2.942308
                                    3277.846 17930.077 1.769231
                                                                 4.000000 9.307692
## 2
          low 3.115385
                       1.864011
                                    1655.643 9919.374 1.395604
                                                                 3.384615 7.120879
                        2.292857
## 3
       medium 3.561905
                                    2381.952 18127.524 1.609524
                                                                 3.447619 8.114286
##
     sqft_above yr_built zipcode
                                                long sqft_living15 sqft_lot15
                                       lat
## 1
       2787.846 1969.462 98089.38 47.59053 -122.2435
                                                           2707.692
                                                                    17787.000
## 2
       1456.907 1973.769 98080.74 47.53491 -122.2208
                                                           1691.231
                                                                      8612.533
       2014.762 1970.438 98082.90 47.60793 -122.2055
## 3
                                                           2243.857
                                                                     16651.886
```

Vemos que la que tiene cada categoria varia mucho en el tamaño de la sala, del espacio para aparcar, del espacio hacia el techo, asi como el rating.

b) Muestre las probabilidades a priori para las diferentes clases, es decir, la distribución de datos en función de la variable dependiente

```
prop.table(table(sampled_data$Category))
```

```
## ## high low medium
## 0.04333333 0.60666667 0.35000000
```

Para esta muestra de datos, se tiene una alta cantidad de casos de viviendas baratas y medianas, sin embargo de viviendas caras existen muy pocas en la muestra. ## c) Determine y escriba la(s) funcion(es) lineal(es) discriminante(s).

```
lda.model = lda(Category~., data=sampled_data)
lda.model
## Call:
## lda(Category ~ ., data = sampled_data)
##
## Prior probabilities of groups:
##
         high
                             medium
                     low
##
  0.04333333 0.60666667 0.35000000
##
## Group means:
##
          bedrooms bathrooms sqft_living sqft_lot
                                                      floors condition
## high
          4.000000
                    2.942308
                                3277.846 17930.077 1.769231
                                                              4.000000 9.307692
                   1.864011
                                1655.643 9919.374 1.395604
                                                              3.384615 7.120879
## low
          3.115385
  medium 3.561905 2.292857
                                2381.952 18127.524 1.609524
                                                              3.447619 8.114286
##
          sqft_above yr_built zipcode
                                             lat
                                                      long sqft_living15 sqft_lot15
## high
            2787.846 1969.462 98089.38 47.59053 -122.2435
                                                                2707.692
                                                                         17787.000
## low
            1456.907 1973.769 98080.74 47.53491 -122.2208
                                                                1691.231
                                                                           8612.533
            2014.762 1970.438 98082.90 47.60793 -122.2055
                                                                2243.857 16651.886
## medium
##
## Coefficients of linear discriminants:
##
                           LD1
                                          LD2
## bedrooms
                  8.764129e-02 4.690601e-01
## bathrooms
                 -3.678549e-01 -6.243953e-01
## sqft_living
                 -2.767951e-04 6.172273e-04
## sqft_lot
                 -6.154824e-06 -2.034430e-06
## floors
                 -3.667238e-01 9.449598e-01
## condition
                 -3.615611e-01 -8.024377e-01
## grade
                 -7.478038e-01 -2.671797e-01
## sqft_above
                 -2.141892e-04 -1.746022e-03
## yr_built
                  2.440716e-02 -8.572032e-03
## zipcode
                 -9.092161e-04 9.096379e-04
## lat
                 -2.202360e+00 3.440434e+00
## long
                  7.460542e-01 2.539110e+00
## sqft_living15 -6.396115e-04 1.112111e-03
## sqft_lot15
                  3.860747e-06 1.327515e-05
##
## Proportion of trace:
##
      LD1
             LD2
## 0.9492 0.0508
```

 $LD2 = 0.4690 \cdot bedrooms - 0.6243 \cdot bathrooms + 0.0006 \cdot sqft_living - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.00001 \cdot sqft_lot + 0.9450 \cdot floors - 0.8024 \cdot condition - 0.2671 \cdot gradient - 0.8024 \cdot gradi$

```
predicted = predict(lda.model)
names(predicted)
## [1] "class"
                   "posterior" "x"
head(predicted$class)
## [1] low
              low
                     low
                            medium medium high
## Levels: high low medium
#Se dan las probabilidades a posteriori de acuerdo a la clase a la que podría pertenecer
head(predicted$posterior)
                 high
                               low
                                       medium
## 19192 1.216231e-04 8.334882e-01 0.16639017
## 9497 3.023828e-06 9.208096e-01 0.07918742
## 1276 3.586538e-06 9.642340e-01 0.03576245
## 15869 3.841238e-01 1.527149e-02 0.60060475
## 9024 9.666660e-03 3.198872e-03 0.98713447
## 10512 9.059742e-01 2.786284e-05 0.09399791
#valores discriminantes lineales
head(predicted$x)
                LD1
                           LD2
## 19192 0.3743874 -0.3503483
        1.0427038 0.9336078
## 9497
        1.2804853 -0.2636748
## 1276
## 15869 -2.5289734 -0.9641605
## 9024 -2.9122935 3.1178954
## 10512 -4.6465804 0.4164552
```

d) Grafique el histograma de valores discriminantes en cada grupo.

#ldahist(data=predicted\$x[,1],g=sampled_data\$Category,type="both",main="Histograma de la función discrilation discrilation

e) Muestre gráficamente la segmentación de los datos. Realiza el gráfico de dispersión con las predicciones hechas por el modelo.

```
#Asignamos un color a cada especie
color2=c(high="brown",medium="orange",low="yellow")

#Creamos un vector con el color corresponidente a cada observacion de acuerdo a la columna Species
col.ind2=color2[predicted$class]

#Graficos de dispersion con el color de acuerdo al tipo de especie
#Graficos de dispersion con el color de acuerdo a la categoria
plot(sampled_data[,c(8:14)], pch=21, bg=col.ind, col = "gray")
```


plot(sampled_data[,c(8:14)], pch=21, bg=col.ind2, col = "gray")

plot(LD2~LD1, data=predicted\$x, pch=21,col="gray",bg=col.ind,main="Valores discriminantes en las observ

Valores discriminantes en las observaciones

Vemos que ambos componentes principales logran discriminar de una buena manera las tres categorias sin embargo si existe una mezcla importante entre las clases bajas y medias.

f) Evalúe la precisión del modelo. ¿El modelo es bueno para pronosticar? Indique el porcentaje de predicciones erróneas y la tabla de contingencia.

```
table(pred=predicted$class, true=sampled_data$Category)
##
           true
## pred
            high low medium
##
     high
##
               0 165
                         33
     low
     medium
               6
                  17
# porcentaje de observaciones clasificadas erróneamente
rate=1-mean(predicted$class==sampled_data$Category)
cat("\n El modelo tiene un porcentaje de error de: ",rate*100,"%")
##
## El modelo tiene un porcentaje de error de: 20 %
```

El modelo es bueno para pronosticar a un 20%, a pesar de que esto es un porcentaje alto, para el caso de las casas yo considero que puede ser utilizado dependiendo lo que se busque categorizar.

5) Valide los supuestos del modelo

```
library(heplots)
## Cargando paquete requerido: broom
library(MVN)
mvn(sampled_data[, c(1:14)])
## $multivariateNormality
##
              Test
                         HZ p value MVN
## 1 Henze-Zirkler 1.42539
##
  $univariateNormality
##
                  Test
                             Variable Statistic
                                                  p value Normality
## 1
     Anderson-Darling
                         bedrooms
                                        17.9044
                                                 <0.001
                                                              NO
                                                              NO
      Anderson-Darling
                         bathrooms
                                         6.5877
                                                  <0.001
      Anderson-Darling sqft_living
                                         3.0728
                                                 <0.001
                                                              NO
## 4
      Anderson-Darling
                         sqft lot
                                        67.8810
                                                  <0.001
                                                              NO
## 5
      Anderson-Darling
                          floors
                                        35.8379
                                                  <0.001
                                                              NO
      Anderson-Darling
                         condition
                                        48.9457
                                                  <0.001
                                                              NO
                                                              NO
## 7
      Anderson-Darling
                                        20.0644
                                                 <0.001
                           grade
      Anderson-Darling sqft_above
                                         7.1202
                                                 <0.001
                                                              NO
      Anderson-Darling
                         yr_built
                                         3.9199
                                                 <0.001
                                                              NO
## 10 Anderson-Darling
                                         5.9280
                                                 <0.001
                                                              NO
                          zipcode
## 11 Anderson-Darling
                             lat
                                         4.1250
                                                  <0.001
                                                              NO
## 12 Anderson-Darling
                                                              NO
                            long
                                         6.5784
                                                  <0.001
## 13 Anderson-Darling sqft_living15
                                         4.8355
                                                  <0.001
                                                              NO
## 14 Anderson-Darling sqft lot15
                                        70.8617
                                                  <0.001
                                                              NO
##
## $Descriptives
##
                   n
                              Mean
                                        Std.Dev
                                                      Median
                                                                   Min
                                                                                Max
## bedrooms
                 300
                          3.310000 8.581110e-01
                                                     3.00000
                                                                 1.000
                                                                             6.0000
## bathrooms
                 300
                          2.060833 6.835435e-01
                                                     2.12500
                                                                 1.000
                                                                             4.5000
## sqft_living
                 300
                     1980.146667 7.971343e+02 1880.00000
                                                               670.000
                                                                          4740.0000
## sqft lot
                 300 13139.356667 2.870241e+04
                                                 7038.00000
                                                               711.000 266151.0000
                                                                 1.000
## floors
                 300
                          1.486667 5.545394e-01
                                                     1.00000
                                                                             3.0000
## condition
                 300
                          3.433333 6.785452e-01
                                                     3.00000
                                                                 3.000
                                                                             5.0000
                 300
                                                     7.00000
                                                                 5.000
## grade
                          7.563333 1.011302e+00
                                                                            10.0000
## sqft_above
                 300
                      1709.830000 7.550965e+02
                                                1495.00000
                                                               590.000
                                                                          4740.0000
                      1972.416667 2.920135e+01
## yr_built
                                                 1977.00000
                                                              1900.000
                                                                          2015.0000
                 300
## zipcode
                 300 98081.873333 5.401577e+01 98073.00000 98001.000
                                                                         98199.0000
## lat
                 300
                         47.562878 1.362122e-01
                                                    47.56855
                                                                47.202
                                                                            47.7769
## long
                 300
                      -122.216440 1.521223e-01
                                                 -122.25600
                                                              -122.449
                                                                          -121.4170
## sqft_living15 300
                     1928.696667 6.355784e+02
                                                 1780.00000
                                                               806.000
                                                                          3680.0000
## sqft lot15
                 300 11823.866667 2.550011e+04
                                                 7202.50000
                                                               748.000 244372.0000
##
                         25th
                                    75th
                                                Skew
                                                        Kurtosis
## bedrooms
                     3.00000
                                  4.0000
                                         0.3445023 -0.03500722
## bathrooms
                     1.50000
                                  2.5000
                                          0.0317932 -0.30976640
                               2382.5000
## sqft_living
                  1340.00000
                                          0.7444143 0.25993400
## sqft_lot
                   4800.00000
                               9699.2500
                                          6.3598589 45.21646525
## floors
                     1.00000
                                  2.0000 0.6680909 -0.48938449
```

```
## condition
                    3.00000
                                4.0000 1.2656347 0.25024184
## grade
                    7.00000
                                8.0000 0.6399637 0.25398596
                 1150.00000 2190.0000 1.0290753 0.77075114
## sqft above
                 1951.00000 1998.0000 -0.4629483 -0.70205948
## yr_built
## zipcode
                 98034.00000 98118.0000 0.4185979 -0.77444536
## lat
                               47.6836 -0.4686872 -0.75375074
                   47.48445
## long
                                       1.2381962 2.34991395
                 -122.33825
                             -122.1255
## sqft_living15 1460.00000 2352.5000 0.7287091 -0.09824494
                  4971.00000 9073.5000 6.7435979 50.42959494
## sqft_lot15
# Homocedasticidad
boxM(sampled_data[, c(1:14)], sampled_data$Category)
## Warning in boxM.default(sampled_data[, c(1:14)], sampled_data$Category): there
## are one or more levels with less observations than variables!
## Warning in log(unlist(lapply(mats, det))): Se han producido NaNs
##
##
   Box's M-test for Homogeneity of Covariance Matrices
##
## data: sampled_data[, c(1:14)]
## Chi-Sq (approx.) = NaN, df = 210, p-value = NA
# Gráficos de dispersión para cada par de variables por grupo
pairs(sampled_data[, c(1:5)], col=sampled_data$Category)
```


pairs(sampled_data[, c(5:10)], col=sampled_data\$Category)

pairs(sampled_data[, c(10:15)], col=sampled_data\$Category)


```
## Cargando paquete requerido: carData
vif_model <- lm(Category ~ bedrooms + bathrooms + sqft_living + sqft_lot + floors + condition + grade +</pre>
```

Warning in model.response(mf, "numeric"): using type = "numeric" with a factor
response will be ignored

Warning in Ops.factor(y, z\$residuals): '-' no es significativo para factores
vif(vif_model)

Warning in Ops.factor(r, 2): '^' no es significativo para factores

Prueba de multicolinealidad

library(car)

 $\mbox{\tt \#\#}$ Warning in $\mbox{\tt cov2cor}(v)\colon\mbox{\tt diag}(V)$ had non-positive or NA entries; the non-finite $\mbox{\tt \#\#}$ result may be dubious

##	bedrooms	bathrooms	sqft_living	sqft_lot	floors
##	NaN	NaN	NaN	NaN	NaN
##	condition	grade	sqft_above	<pre>yr_built</pre>	zipcode
##	NaN	NaN	NaN	NaN	NaN
##	lat	long	sqft_living15	sqft_lot15	
##	NaN	NaN	NaN	NaN	

El modelo obtenido no pasa los supuestos de normalidad multivariada, pues tiene un valor de p menor a 0.05, tampoco las variables por separado cumplen los supuestos de normalidad. El modelo no pasa el test de homocedasticidad, pues su valor de p es menor a 0.05. El modelo tampoco pasa los supuestos de multicolinealidad. Por esto se concluye que el modelo no es significativo para describir las variables.