

Ayudantía 5

5 de septiembre de 2025 Manuel Villablanca, Elías Ayaach, Caetano Borges

1. Consecuencia lógica

Dado un conjunto Σ de oraciones (fórmulas sin variables libres) en lógica de predicados, diremos que Σ es satisfacible si existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \varphi$ para toda $\varphi \in \Sigma$. En caso contrario, decimos que Σ es inconsistente.

Dados un conjunto de oraciones Σ y una oración φ , demuestre que

 $\Sigma \models \varphi \text{ si y solo si } \Sigma \cup \{\neg \varphi\} \text{ es inconsistente}$

Solución

Demostraremos cada dirección de la doble implicancia por separado:

- 1. \rightarrow : Por contrapositivo, supongamos que $\Sigma \cup \{\neg \varphi\}$ es satisfacible. Esto significa que existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \Sigma \cup \{\neg \varphi\}$. Por definición de satisfacibilidad, se tiene que $\mathcal{I} \models \Sigma \wedge \mathcal{I} \models \neg \varphi$. Luego, $\mathcal{I} \models \Sigma \wedge \mathcal{I} \not\models \varphi$, con lo que concluímos que $\Sigma \not\models \varphi$, que es lo que queríamos demostrar.
- 2. \leftarrow : Sea \mathcal{I} una interpretación tal que $\mathcal{I} \models \Sigma$. Como $\Sigma \cup \{\neg \varphi\}$ es inconsistente y $\mathcal{I} \models \Sigma$, necesariamente $\mathcal{I} \not\models \neg \varphi$, y luego $\mathcal{I} \models \varphi$. Concluimos entonces que $\Sigma \models \varphi$.

2. Cuantificadores

Definimos el cuantificador de existencia y unicidad (∃!) de la siguiente manera:

 $\exists !xP(x)$ es verdadero si existe solamente un elemento x del dominio tal que se cumple P(x).

Defina formalmente $\exists !xP(x)$ usando los cuantificadores \forall y \exists y determine si las siguientes fórmulas bajo los dominios dados son verdaderas, bajo las definiciones intuitivas de los predicados presentes:

- 1. Dominio = \mathbb{N} . $\exists ! x(x+3=5)$
- 2. Dominio = \mathbb{N} . $\exists ! x(x \cdot x = 4)$
- 3. Dominio = \mathbb{Z} . $\exists !x \forall y (x + y = 0 \rightarrow y = -x)$
- 4. Dominio = \mathbb{N} . $\exists ! x \forall y (x \cdot y = x \rightarrow y = 1)$

Solución Primero, definiremos formalmente el nuevo cuantificador de existencia y unicidad:

$$\exists ! x P(x) \equiv \exists x (P(x) \land \forall y (P(y) \rightarrow y = x)).$$

1. Dominio: \mathbb{N} . Fórmula: $\exists ! x(x+3=5)$. Aquí buscamos $x \in \mathbb{N}$ tal que x+3=5. El único valor posible es x=2. Además, ningún otro natural cumple la ecuación.

 \Rightarrow La proposición es **verdadera**.

2. Dominio: N. Fórmula: $\exists ! x(x \cdot x = 4)$. Buscamos $x \in \mathbb{N}$ tal que $x^2 = 4$. En los naturales solo x = 2 es solución.

⇒ La proposición es **verdadera**.

3. Dominio: \mathbb{Z} . Fórmula: $\exists !x \forall y (x+y=0 \rightarrow y=-x)$. Analizamos: $x+y=0 \implies y=-x$. Esto es siempre cierto para cualquier $x \in \mathbb{Z}$, ya que de x+y=0 se sigue directamente y=-x. Como se cumple para todos los enteros x, no existe unicidad.

 \Rightarrow La proposición es **falsa**.

4. Dominio: \mathbb{N} . Fórmula: $\exists ! x \forall y (x \cdot y = x \to y = 1)$. Analizamos: $x \cdot y = x \implies y = 1$. Si x = 0, la condición es $0 \cdot y = 0$, lo cual se cumple para todo y, pero no implica y = 1. Falla. Si x > 0, entonces $x \cdot y = x \implies y = 1$. Esto es correcto para todo x > 0. Así, cualquier $x \in \mathbb{N}, x > 0$ cumple, pero no es único.

 \Rightarrow La proposición es **falsa**.

3. Construcción de fórmulas

En esta pregunta tratamos con la lógica de primer orden. Asuma que nuestro vocabulario μ contiene un solo predicado, la relación R de aridad tres (relación ternaria).

1. Sea A un dominio. Decimos que una relación ternaria $R \subseteq A \times A \times A$ sobre A codifica una función binaria, si para todo par $(a,b) \in A \times A$ existe un, y solo un, $c \in A$ tal

que $(a,b,c) \in R$. Escriba una fórmula φ sobre el vocabulario μ , tal que para toda interpretación \mathcal{I} sobre μ se cumple lo siguiente:

$$[\![\varphi]\!]_{\mathcal{I}} = 1 \iff \mathcal{I}(R)$$
 codifica una función binaria

Recuerde que $\mathcal{I}(R)$ es la interpretación de R en \mathcal{I} .

2. Construya una fórmula ψ sobre el vocabulario μ , tal que para toda interpretación \mathcal{I} sobre μ , donde $\mathcal{I}(R)$ codifica una función binaria $f: A \times A \to A$, se cumple lo siguiente:

$$[\![\psi]\!]_{\mathcal{I}} = 1 \iff f \text{ es asociativa}$$

Solución

1. Una solución:

$$\varphi = \forall x \forall y (\exists z R(x, y, z) \land \neg \exists z_1 \exists z_2 (R(x, y, z_1) \land R(x, y, z_2) \land \neg (z_1 = z_2)))$$

2. Una solución

$$\psi = \forall x \forall y \forall z \forall r \forall s \forall t ((R(x, y, r) \land R(r, z, t) \land R(y, z, s)) \rightarrow R(x, s, t))$$