Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages	2
2	Copiers data	3
3	Copiers scatterplot	4
4	Regression for copiers data	5
5	Predictions for copiers data	5
6	Soft drink bottle return data	6
7	Bottles logistic regression	6
8	Predictions for bottles data	7
9	Plot of predictions and proportions	7
10	Arthritis data (some)	8
11	Arthritis model	9
12	Arthritis predictions	9
13		0
14	Patient survival Cox model	1
15	1 / 0 /	1
16	±	2
17	Analysis of main effects for headache pain relief times 1	13
18	- P	4
19	*	5
20	Morality of eating meat data (some randomly chosen rows) 1	6
21	Mean scores by group for meat data	6
22	Testing of contrasts for meat data	7
23	Survival curves	8
24	Headache pain relief times, interaction plot	9

```
library(MASS)
library(tidyverse)
## -- Attaching packages -----
tidyverse 1.2.1 --
## v ggplot2 3.1.0 v purrr 0.3.0
## v tibble 2.0.1 v dplyr 0.7.8
## v tidyr 0.8.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.3.0
## -- Conflicts -----
tidyverse\_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks MASS::select()
library(broom)
library(survival)
library(survminer)
## Loading required package: ggpubr
## Loading required package: magrittr
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
     set\_names
## The following object is masked from 'package:tidyr':
##
## extract
```

Figure 1: Packages

minutes	machines
97.0	7.0
86.0	6.0
78.0	5.0
10.0	1.0
75.0	5.0
62.0	4.0
101.0	7.0
39.0	3.0
53.0	4.0
33.0	2.0
118.0	8.0
65.0	5.0
25.0	2.0
71.0	5.0
105.0	7.0
17.0	1.0
49.0	4.0
68.0	5.0

Figure 2: Copiers data

Figure 3: Copiers scatterplot

machines

2

```
copiers.1=lm(minutes~machines, data=copiers)
summary(copiers.1)
##
## Call:
## lm(formula = minutes ~ machines, data = copiers)
## Residuals:
             1Q Median
##
      Min
                              ЗQ
                                     Max
## -7.6309 -3.2500 -0.2383 4.0235 6.6309
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.3221 2.5644 -0.906 0.379
## machines 14.7383
                          0.5193 28.383 4.1e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.482 on 16 degrees of freedom
## Multiple R-squared: 0.9805, Adjusted R-squared: 0.9793
## F-statistic: 805.6 on 1 and 16 DF, p-value: 4.097e-15
```

Figure 4: Regression for copiers data

```
new=tibble(machines=6)
p1=predict(copiers.1, new, interval="c")
cbind(new,p1)
##
    machines
                 fit
                          lwr
                                   upr
## 1 6 86.10738 83.32504 88.88973
p2=predict(copiers.1, new, interval="p")
cbind(new,p2)
##
   machines
                 fit
                          lwr
## 1 6 86.10738 76.20721 96.00756
```

Figure 5: Predictions for copiers data

```
bottles
## # A tibble: 6 x 3
## deposit sold returned
     <dbl> <dbl>
##
                    <dbl>
         2
## 1
            500
                      72
## 2
         5
            500
                     103
## 3
        10 500
                     170
## 4
         20 500
                      296
         25
## 5
             500
                      406
## 6
         30
             500
                      449
```

Figure 6: Soft drink bottle return data

```
bottles.1=glm(y~deposit, data=bottles, family=binomial)
summary(bottles.1)
##
## Call:
## glm(formula = y ~ deposit, family = binomial, data = bottles)
##
## Deviance Residuals:
   1 2
                         3
                                          5
## 0.1754 0.4330 0.5784 -2.9193 1.2710 1.2209
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.076565   0.084839   -24.48   <2e-16 ***
## deposit
            0.135851
                         0.004772
                                   28.47
                                           <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1108.171 on 5 degrees of freedom
## Residual deviance: 12.181 on 4 degrees of freedom
## AIC: 53.419
## Number of Fisher Scoring iterations: 3
```

Figure 7: Bottles logistic regression

```
probability=predict(bottles.1, bottles, type="response")
preds=cbind(bottles, probability)
preds
##
     deposit sold returned probability
## 1
           2 500
                       72
                             0.1412601
## 2
           5 500
                       103
                             0.1982432
## 3
          10 500
                             0.3278210
                       170
## 4
          20 500
                       296
                             0.6548554
## 5
          25 500
                       406
                             0.7891326
## 6
          30
              500
                       449
                             0.8806877
```

Figure 8: Predictions for bottles data

Figure 9: Plot of predictions and proportions \cdot

```
arthritis=read_table("arthritis.txt")
## Parsed with column specification:
## cols(
## id = col_double(),
## treatment = col_character(),
## sex = col_character(),
## age = col_double(),
## impr = col_double()
## )
arthritis
## # A tibble: 85 x 5
    id treatment sex age impr
##
   <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 57 Treated Male 27 1
## 2
       46 Treated Male
                        29
                              0
## 3
       77 Treated Male 30
                               0
## 4 17 Treated Male 32
                              2
## 5 36 Treated Male 46
                              2
     23 Treated Male
                       58
                              2
## 6
## 7
                              0
      75 Treated Male 59
## 8 39 Treated Male 59
                              2
## 9 33 Treated Male
                        63
                               0
## 10
       55 Treated
                          63
                                0
                 Male
## # ... with 75 more rows
```

Figure 10: Arthritis data (some)

```
arthritis.1=polr(factor(impr)~treatment+sex+age, data=arthritis)
drop1(arthritis.1, test="Chisq")
## Single term deletions
##
## Model:
## factor(impr) ~ treatment + sex + age
   Df AIC
                     LRT Pr(>Chi)
             155.46
## <none>
## treatment 1 168.17 14.7095 0.0001254 ***
## sex 1 159.15 5.6880 0.0170812 *
           1 158.03 4.5715 0.0325081 *
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 11: Arthritis model

```
## treatment sex age 0 1 2
## 1 Placebo Female 46 0.6849211 0.15738536 0.15769352
## 2 Placebo Female 63 0.5318884 0.20439438 0.26371724
## 3 Placebo Male 46 0.8837222 0.06545116 0.05082667
## 4 Placebo Male 63 0.7988957 0.10817798 0.09292635
## 5 Treated Female 46 0.2751180 0.20743935 0.51744266
## 6 Treated Female 63 0.1655413 0.16217047 0.67228824
## 7 Treated Male 46 0.5702499 0.19503589 0.23471420
## 8 Treated Male 63 0.4095362 0.22067590 0.36978787
```

Figure 12: Arthritis predictions

```
## Parsed with column specification:
## cols(
## id = col_double(),
## survtime = col_double(),
## status = col_character(),
   treatment = col_double(),
##
##
   age = col\_double()
## )
## # A tibble: 15 x 5
         id survtime status
                              treatment
##
      <dbl>
              <dbl> <chr>
                              <chr>
                                        <dbl>
## 1
                                           75
         1
                  1 Died
                              В
##
   2
          2
                  1 Died
                              В
                                           79
## 3
          3
                   4 Died
                              В
                                           85
##
   4
          4
                   5 Died
                              В
                                           76
   5
##
          5
                   6 Unknown B
                                           66
##
   6
          6
                   8 Died
                                           75
                              Α
## 7
         7
                  9 Survived B
                                           72
                                           70
## 8
         8
                  9 Died
                              В
##
   9
         9
                  12 Died
                              Α
                                           71
## 10
         10
                  15 Unknown A
                                           73
## 11
         11
                  22 Died
                                           66
## 12
         12
                  25 Survived A
                                           73
## 13
         13
                  37 Died
                                           68
## 14
         14
                  55 Died
                                           59
                              Α
## 15
         15
                  72 Survived A
                                           61
```

Figure 13: Patient survival data

```
patients.1=coxph(y~treatment+age, data=patients)
summary(patients.1)
## Call:
## coxph(formula = y ~ treatment + age, data = patients)
   n= 15, number of events= 10
##
##
##
                coef exp(coef) se(coef)
                                          z Pr(>|z|)
## treatmentB 1.88484 6.58531 0.96833 1.946 0.05160 .
         0.21739
                     1.24283 0.08429 2.579 0.00991 **
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
             exp(coef) exp(-coef) lower .95 upper .95
## treatmentB
                6.585
                        0.1519
                                  0.987
                                             43.936
                1.243
                          0.8046
                                   1.054
## age
                                             1.466
##
## Concordance= 0.873 (se = 0.034)
## Rsquare= 0.617 (max possible= 0.933 )
## Likelihood ratio test= 14.41 on 2 df,
## Wald test = 9.03 on 2 df,
                                        p=0.01
## Score (logrank) test = 12.61 on 2 df, p=0.002
```

Figure 14: Patient survival Cox model

Treatment	Male	Female
Α	22	21
	25	19
	26	18
	27	24
	24	25
В	14	21
	17	20
	19	23
	20	27
	17	25
С	15	37
	17	34
	19	36
	14	26
	12	29

Figure 15: Headache pain relief times, original layout of data

```
## Parsed with column specification:
## cols(
## Treatment = col_character(),
## Male = col_double(),
## Female = col_double()
## )
```

```
painrelief.1=aov(Time~Treatment*Gender, data=painrelief)
summary(painrelief.1)
##
                  Df Sum Sq Mean Sq F value
                                            Pr(>F)
## Treatment
                   2 71.5 35.73 3.822
                                           0.0362 *
## Gender
                  1 313.6 313.63 33.544 5.70e-06 ***
## Treatment:Gender 2 521.9 260.93 27.907 5.46e-07 ***
## Residuals
                  24 224.4
                              9.35
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 16: ANOVA with interaction for headache pain relief times

```
painrelief.2=update(painrelief.1, .~.-Treatment:Gender)
summary(painrelief.2)
##
              Df Sum Sq Mean Sq F value Pr(>F)
               2 71.5 35.73
                                 1.245 0.30456
## Treatment
               1 313.6 313.63 10.927 0.00277 **
## Gender
## Residuals
              26 746.3
                          28.70
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.2)
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment + Gender, data = painrelief)
##
## $Treatment
##
      diff
                 lwr
                          upr
                                  p adj
## B-A -2.8 -8.753648 3.153648 0.4819497
## C-A 0.8 -5.153648 6.753648 0.9405350
## C-B 3.6 -2.353648 9.553648 0.3062075
##
## $Gender
##
                   diff
                              lwr
                                                p adj
                                        upr
## Male-Female -6.466667 -10.48785 -2.445488 0.0027695
```

Figure 17: Analysis of main effects for headache pain relief times

```
painrelief %>% filter(Gender=="Male") -> painrelief_male
painrelief.3a=aov(Time~Treatment, data=painrelief_male)
summary(painrelief.3a)
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Treatment
               2 245.2 122.60
                                 22.56 8.59e-05 ***
## Residuals
              12
                  65.2
                           5.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.3a)
    Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment, data = painrelief_male)
##
## $Treatment
##
      diff
                  lwr
                            upr
                                    p adj
## B-A -7.4 -11.333026 -3.466974 0.0008076
## C-A -9.4 -13.333026 -5.466974 0.0000968
## C-B -2.0 -5.933026 1.933026 0.3928918
```

Figure 18: Simple effects of treatment for males

```
painrelief %>% filter(Gender=="Female") -> painrelief_female
painrelief.3b=aov(Time~Treatment, data=painrelief_female)
summary(painrelief.3b)
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Treatment
               2 348.1 174.07
                                13.12 0.000955 ***
## Residuals
              12 159.2 13.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.3b)
    Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment, data = painrelief_female)
##
## $Treatment
##
      diff
                 lwr
                           upr
                                   p adj
## B-A 1.8 -4.345745 7.945745 0.7210392
## C-A 11.0 4.854255 17.145745 0.0012146
## C-B 9.2 3.054255 15.345745 0.0046858
```

Figure 19: Simple effects of treatment for females

```
## # A tibble: 20 x 2
     discipline score
##
        <fct> <dbl>
## 1 Eth
## 1 Eth 5
## 2 Eth 5
## 3 Other 5
## 4 Other 3
## 5 Phil 3
## 6 Eth 5
## 7 Eth 5
## 8 Eth 3
## 9 Eth 3
## 10 Other 5
## 11 Phil 4
## 11 Phil
                          4
                       5
## 12 Other
## 13 Phil
## 14 Phil
                         4
## 15 Eth
                          2
## 16 Phil
## 17 Phil
                          1
## 18 Phil
## 19 Other
                             5
## 20 Phil
```

Figure 20: Morality of eating meat data (some randomly chosen rows)

Figure 21: Mean scores by group for meat data

```
meat.1=lm(score~discipline, data=meat)
summary(meat.1)
##
## Call:
## lm(formula = score ~ discipline, data = meat)
## Residuals:
     Min
              1Q Median
                               3Q
## -3.6333 -0.7333 0.3667 0.8333 1.2667
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1778 0.1180 35.409 < 2e-16 ***
## disciplinec1 -0.2333
                            0.1445 -1.615 0.10999
## disciplinec2 -0.4444
                            0.1669 -2.664 0.00921 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\mbox{\tt \#\#} Residual standard error: 1.119 on 87 degrees of freedom
## Multiple R-squared: 0.1003, Adjusted R-squared: 0.07965
## F-statistic: 4.851 on 2 and 87 DF, p-value: 0.01006
```

Figure 22: Testing of contrasts for meat data

Figure 23: Predicted survival curves for ages and treatments given below plot

Figure 24: Headache pain relief times, interaction plot