Université de Genève Autumn term 2022

Statistical Methods in Physics (14P058)

Prof. Federico Sánchez (federico.sancheznieto@unige.ch)
Dr. Hepeng Yao (hepeng.yao@unige.ch)
Dr. Knut Zoch (knut.zoch@unige.ch)

Exercise II – Maxwell-Boltzmann distribution

6 & 13 October 2022, 9:15, room: SCI-202

Consider a box system containing a large number of ⁸⁵Rb atoms with mass $m = 85 m_0$ at room temperature T, where m_0 is the atomic mass unit. Along each single direction, i = x, y, z, we assume the particles follow a probability density distribution

$$f(v_i) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(\frac{mv_i^2}{2k_B T}\right) \tag{1}$$

where v_i is the velocity along each direction and k_B is the Boltzmann constant. Here, we assume the $f(v_i)$ of each direction to be independent of each other. N.B. The values of the universal constants are $m_0 = 1.66 \times 10^{-27}$ kg as well as $k_B = 1.38 \times 10^{-23}$ J K⁻¹.

1. What is the average and variance of the distribution $f(v_i)$? Generate an array which contains the velocity information on the x-axis, v_x , for $N_{par} = 5000$ particles, and plot a histogram of this array.

Hint: One can draw random numbers from a Gaussian distribution in python with the function $np.random.normal(\mu, \sigma)$. Some other, possibly useful functions in this exercise are: matplotlib.pyplot.hist(), np.var(), scipy.stats.skew(), scipy.stats.kurtosis().

2. Based on the array you created, generate a histogram for the speed of the particle, $v = |\vec{v}|$, and prove that it fits the shape

$$f(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 e^{-\frac{mv^2}{2k_B T}}.$$
 (2)

- 3. Derive analytically the probability density function for the kinetic energy $E_k = \frac{1}{2}mv^2$. Then show that your numerical data follows that function. Compute its skewness and kurtosis numerically, and comment.
- 4. Generate the kinetic energy for $N_{par} = 900$ particles. Compute the expectation value and variance of your data, and check if you recover the results from statistical physics: $E(E_k) = 1.5 k_B T$, $V(E_k) = 1.5 (k_B T)^2$.
- 5. Application of the central limit theorem: we define an experiment as the following: generate the kinetic energy, E_k , for $N_{par} = 900$ particles and compute the expectation value $E(E_k)$. Repeat the experiment $N_{exp} = 400$ times and plot the obtained $E(E_k)$ in a histogram.
- 6. What should be the standard deviation of the $E(E_k)$ distribution? Fit your results from question 5 with a Gaussian, compute $\sigma_{E(E_k)}/\sigma_{E_k}$ and comment on what you get.

Hint: The python function $spo.curve_fit$ cannot work efficiently if the fitting parameters are too far from the scale of 1.