Homework 4

February 5, 2017

Problem 1.

Let $A, B \in \mathbb{C}^{3\times 3}$, find in terms of A a parametric description for the set of all matrices B such that

a) det $(\mathbf{A} + \mathbf{B}) = \det \mathbf{A} \neq 0$. Use in your derivation the family of matrices with determinant equal to 1.

b) det $\mathbf{A} = \det(\mathbf{A} + \mathbf{B}) = \det \mathbf{B} \neq 0$.

Problem 2.

Prove that the rank of skew symmetric matrices is always even.

Problem 3.

Express

$$\mathbf{A} = \left(\begin{array}{ccc} a_{00} & a_{01} & 0 \\ 0 & a_{11} & a_{12} \\ a_{20} & 0 & a_{22} \end{array} \right),$$

as a product of elementary matrices.

Problem 4.

Let $\mathbf{A} \in \mathbb{C}^{n \times (n-1)}$ and $\mathbf{B} \in \mathbb{C}^{(n-1) \times n}$, show that

$$\det\left\{ \left(\mathbf{A}\cdot\mathbf{B}\right)^{2}\right\} =0$$

Problem 5.

Express the inverse of

as product of elementary matrices.