Deep Learning in der Sprachtechnologie

Miniprojekt

Raphael Matile 12-711-222 Nicolas Diener TODO

raphael.matile@uzh.ch

nicolas.diener@uzh.ch

12th January 2017

1 Task Description

Provide url to dataset

1.1 Dataset

1.2 Architecture Overview

Elman resp. Jordan Network

2 Evaluation

In the following, we shortly outline the results of our findings in two tables.

2.1 Jordan Network

For the detailed results, please see Table 1 with the detailed explanations.

2.2 Elman Network

For the results of the Elman Network, please see the Table 2 which includes comments about each change.

2.3 Achievend Results

Provide xsl sheet Provide commented program which achieved best results

Since we did not achieve a better result than the default configuration provided already in the repository ¹, we link here to the default implementation used. For the Jordan network, please see https://github.com/herrnici/is13/blob/master/examples/jordan-forward.py respective https://github.com/herrnici/is13/blob/master/examples/elman-keras.py for the Elman Network.

¹https://github.com/herrnici/is13/

Results (F1) Comments	96.45/93.65 Baseline without changes	95.88/93.55 Goal: check whether we can reduce the time with similar results, having in mind the faster experimentation time for other parameters	95.65/95.65 Introducing Conditional Decay (halving after 10 steps with no progress) incurs overfitting	95.51/93.83 Larger hidden layers incur overfitting	95.93/93.23 More folds incur overfitting
	96.4	95.8	95.6	95.5	95.9
${f Epochs}$	20	25	25	25	25
hidden Units	100	100	100	200	100
Decay	false	false	П	false	false
Learning Rate	0.0627142536696559	0.0627142536696559	0.0627142536696559	0.0627142536696559	0.0627142536696559
\mathbf{Folds}	က	က	က	က	4

Table 1: Results for the Jordan network

Comments	Baseline without changes	Goal: check whether we can reduce the time with similar results, having in mind the faster experimentation time for other parameters	Verify, that lower learning rate requires more epochs in order to have a similar accuracy.	Since the learning rate was too low, we increase it again, but at the same time, we also increase the dimensionality for the embedding	Now, using factor 5 for epochs regarding to the beginning, we see, that no big increase was made, therefore, the minimum of the cost function was already good approximated before. Also using factor 2 for the hidden units did not change the result significantly.	Just increasing the hidden units compared to the initial configuration, does not really help: going broad without going deep could be an issue here	By using a decay, the training score already decreases, generalization is too intense, also visible in the test score. Also, using a different activation function than sigmoid (i.e. ReLu) does not improve the solution. Furthermore, we used a decay of 0.0001 which did not yield any improvement.	By using the same decay again, but the Sigmoid-Activation function and a second Layer of the SimpleRNN provided by Keras, we still can not reach an improvement but rather a deterioration in the result.	However, using sigmoid as activation function for the first and ReLu for the second layer in combination with no decay at all, we result again in a quite improvement with regards to the test set.	Interestingly enough, using a third SimpleRNN, the score performance reduces again, not only in the training but also in the evaluation set.
Results (F1)	95.41/92.54	94.01/91.58	69.36/66.88	95.64/92.22	96.44/92.56	95.67/92.4	94.29/90.24	94.28/89.83	95.56/91.3	94.94/90.5
${f Epochs}$	20	25	250	250	250	50	250	250	250	250
Embedding Dimensions	100	100	100	200	200	200	200	200	200	200
Hidden Units	100	100	100	200	200	300	200	200	200	200
Learning Rate	0.1	0.1	0.001	0.01	0.1	0.1	0.1	0.1	0.1	0.1
Folds	က	က	3	ಣ	က	4	က	က	က	က

Table 2: Results for the Elman network