Hydrology Analysis

ISTANBUL**TECHNICAL**UNIVERSITY Sp. Anly. and Alg. in GIS Week 9

Res. Assist. Ömer AKIN

Introduction & Aim of the Study

Aim of the Study:

• Find watersheds and stream networks in the European Side of Istanbul

Input Data:

Digital Elevation Model (Raster/GeoTIFF)

Study Area & Data

Fill

Fills sinks in a surface raster to remove small imperfections in the data.

- Sinks (and peaks) are often errors due to the resolution of the data or rounding of elevations to the nearest integer value.
- Sinks should be filled first to ensure proper delineation of basins and streams. If the sinks are not filled, a derived drainage network may be discontinuous.

Hillshade

Flow Direction

Creates a raster of flow direction from each cell to its downslope neighbor, or neighbors

Flow_Direction

Fill DEM

Input DEM

^{*}To get more information about the other flow direction algorithms please visit: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/flow-direction.htm

Flow Direction Results

Flow Accumulation

Creates a raster of accumulated flow into each cell.

Flow Accumulation Results

Watersheds

Create an empty point feature class to specify the start of streams.

Manually add start of the streams as a point feature to create watersheds. To detect the start points we should zoom-in to accumulation raster

Watersheds

Add created points into accumulation raster as raster cells

Watersheds

Watershed Results

Export Watersheds

Stream Networks

Apply a threshold value to generate stream networks from flow accumulation raster.

- Geometric intervals could be used to find appropriate threshold value
- Also determined by the scale and scope of the project

Threshold 1: 1000

Threshold 2: 3140

Threshold 3: 6480

Stream Order

By using stream networks and flow direction, order of the streams will be generated for each threshold value. Then, we'll convert stream order rasters to polyline to better interpret the results.

Use Stream order for each threshold

Use Stream to Feature for each threshold

Hydrology Model

Results of Analysis

Classify Stream Order

Results & Take Home

Aim of the Study:

Find watersheds and stream networks in the European Side of Istanbul

Output Data:

- Watersheds (Vector-Polygon)
- Stream Networks for 3 different threshold value (Raster)
- Stream Orders for 3 different threshold value (Vector-Polyline)

Contact:

akinom@itu.edu.tr