(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-209073

(43)公開日 平成10年(1998)8月7日

(51) Int.Cl.6

識別記号

H01L 21/28 301

21/3205

FΙ

H01L 21/28

21/88

301R

M

審査請求 有 請求項の数3 OL (全 7 頁)

(21)出願番号

特願平9-7644

(22)出願日

平成9年(1997)1月20日

(71) 出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72) 発明者 上野 和良

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 菅野 中

(54) 【発明の名称】 バリア膜の形成方法

(57)【要約】

【課題】 従来のプラズマCVDによるWN、膜より高 温までアモルファス状態が安定なWSi,N,WC,N, 膜をカバレージ良く維持でき、LSIの微細化に適した 超薄バリア膜を形成する。

【解決手段】 WF。ガスと、ジクロロシランあるいは メタンなどの炭化水素、それにアンモニアもしくは、窒 素プラズマなどの窒素源を基板表面の反応律速の条件で 反応させ、CVDによりWSi,N,WC,N,膜を基板 3に堆積する。窒素ブラズマは、気相中での反応を抑制 するため、基板3から離れた場所で励起し、CVD室1 とプラズマ吹き出し口22の間の圧力差で基板3に吹き 付けて、基板表面で反応させる。

【特許請求の範囲】

【請求項1】 Wを含む原料ガスをシラン,ジクロロシラン、もしくはメタン、エタン、プロバン等の炭化水素のいずれかのガスと、窒化プラズマ、NH,ブラズマ、窒素ガス、NH,ガス、ヒドラジン、ジメチルヒドラジン等の窒素供給源の少なくとも一つとを反応させて、WSi,N、あるいはWC、N、の薄膜を堆積することを特徴とするバリア膜の形成方法。

【請求項2】 Wを含むガスとして、W(N(C H_1))。もしくはW(N(C_2H_1))。を用い、 S_1H_4 10 もしくは C_1H_2 0いずれかのガスとの反応によってWS i_1N_2 0あるいはWC $_1N_2$ 0が譲渡を堆積することを特徴とするバリア膜の形成方法。

【請求項3】 前記窒素供給源となる窒素プラズマ、アンモニアプラズマ等を、基板への堆積が行われる箇所から離れた領域で発生させ、これを基板の表面に供給することを特徴とする請求項1叉は2に記載のバリア膜の形成方法。

【発明の詳細な説明】

[0001]

[発明の属する技術分野]本発明は、半導体装置に用いるバリア膜の形成方法に関するものである。

[0002]

【従来の技術】半導体装置においては、集積度の向上にともなって、サイズの縮小化が進められている。それに伴って、コンタクトホールや配線幅が縮小されるが、相対的に縦方向のサイズが縮小されないため、アスペクト比(縦/横のサイズ比)が大きくなってきている。コンタクトホールは、256MbDRAMの場合、そのアスペクト比は4以上となる。また、配線形成法としても、ダマシン法という溝埋め込みが盛んになってきている。これは、配線の溝を絶縁膜に形成し、その溝に金属を埋め込む方法であるが、微細なエッチングが難しい銅配線の形成方法として注目されている。

【0003】従来、コンタクトホールや溝に対してバリア膜として、TiNをスパッタ法で堆積するのが一般的であるが、高アスペクト比になると、十分に側面や底面に膜が堆積できないため、<math>CVD法が用いられている。例えば、特開昭63-317676号公報には、プラズマCVDによる WN_x 膜、 WSi_x 膜の堆積が示されている。また、特開平1-298717号公報には、目的は異なるが、タングステン膜の堆積の途中に窒素プラズマ処理を加えて、 WN_x 層を形成する方法が開示されている。これらの方法は、Wよりもバリア性に優れた WN_x を形成するものである。前者の例では、 WN_x 膜は、無粒構造であることが述べられている。

[0004]

【発明が解決しようとする課題】従来のWN_x膜は確か にW膜よりもバリア性が高くなるが、アモルファス構造 から700℃程度で結晶化することが知られている。ま 50

た、850℃で窒素がWから乖離することが相図からわかっている。このような膜の構造変化によって、バリア性が劣化する。

【0005】また、図7に示すような従来の方法によれ ば、マスフローコントローラ8で制御して窒素1とWF 。をCVD室1内に供給し、電極26と基板ホルダ2と に高周波電源27にて電圧を印加して基板3上にプラズ マ28を発生するプラズマCVDを用いているため、気 相中での反応が頻繁に生じる。このようなブラズマCV Dでは、気相中に生じた生成物が基板の縁側に物理的に 降り積もるため、スパッタ法と同様に一般にカバレージ が劣化し、非常に高アスペクト比のコンタクトホール や、溝にバリア膜を均一に堆積するのに適していない。 【0006】一方、デバイス面では、コンタクトホール 断面積、配線断面積の減少により、配線金属のW, Cu などに比較して高抵抗なバリア膜が厚い場合、配線抵抗 が上昇する問題がある。0.25ミクロンサイズ以下の デバイスでは、バリア膜厚は、20nm程度以下にする 必要がある。従って、従来よりも薄くて、カバレージの 20 良いバリア膜が必要となる。

【0007】本発明の目的は、従来のバリア膜の形成方法の問題を解決し、微細なコンタクトホール。配線溝にバリア膜を形成しても、実効的な抵抗値の上昇の問題がなく、かつ高温まで安定なバリア膜の形成方法を提供することにある。

[0008]

【課題を解決するための手段】前記目的を達成するため、本発明に係るバリア膜の形成方法は、Wを含む原料ガスをシラン、ジクロロシラン、もしくはメタン、エタン、ブロバン等の炭化水素のいずれかのガスと、窒化プラズマ、NH,ブラズマ、窒素ガス、NH,ガス、ヒドラジン、ジメチルヒドラジン等の窒素供給源の少なくとも一つとを反応させて、WSi_xN_vあるいはWC_xN_vの薄膜を堆積する。

【0009】また本発明に係るバリア膜の形成方法は、Wを含むガスとして、 $W(N(CH_1))$ 。もしくはW(N(C,H,))。を用い、SiH、もしくはCH、のいずれかのガスとの反応によってWSi、N、あるいはWC、N、Nの薄膜を堆積する。

【0010】また前記窒素供給源となる窒素プラズマ, アンモニアプラズマ等を、基板への堆積が行われる箇所 から離れた領域で発生させ、これを基板の表面に供給す る。

[0011]

【作用】本発明に係るバリア膜の形成方法によれば、W S i_*N_* 膜,あるいは WC_*N_* 膜を堆積する。これらの 膜は、従来の WN_* に比較して、S i , Cの存在によって結晶化が阻害されるため、より高温までアモルファス 状態が安定で、拡散バスがなくバリア性が向上する。

【OO12】また従来のプラズマCVDでは、気相反応

によって形成したWN、が堆積するため、カバレージが 良くないが、本発明によれば、カバレージ劣化の要因と なる気相中での反応を抑制し、表面でSiH., CH.な どを反応させる表面反応律速領域の条件を使うことによ って、カバレージ良くアモルファス状のWSi,Nv膜. WC. N、膜を堆積することが可能となる。

【0013】さらに、本発明によれば、プラズマを反応 チャンバーから離れたところで発生させ、表面近傍に直 接供給することで、カバレージを劣化させる気相中での 反応を抑制することにより、従来のプラズマCVDより 10 た。 もカバレージを向上することができる。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に より説明する。

【0015】(実施形態1)図1は、本発明の実施形態 1に係るバリア膜の形成方法を実施するために用いた成 膜装置を示す構成図である。

【0016】図1において、本発明の実施形態1に係る バリア膜の形成方法は、Wを含む原料ガスをシラン、ジ クロロシラン、もしくはメタン、エタン、プロパン等の 20 炭化水素のいずれかのガスと、窒化プラズマ、NH,ブ ラズマ、窒素ガス、NH、ガス、ヒドラジン、ジメチル ヒドラジン等の窒素供給源の少なくとも一つとを反応さ せて、WSixN,あるいはWCxN,の薄膜を基板に堆積 することを特徴とするものである。

【0017】図1において、本発明の実施形態1に係る バリア膜の形成方法を実施するため、CVD室1に設置 した基板ホルダ2上に基板3を固定し、基板3を基板ホ ルダ2により650℃に加熱する。そして、CVD室1 内をポンプ4により一旦真空排気した後、マスフローコ 30 ントローラ8により流量を制御して、WF。ガス5、ジ クロロシラン6, アンモニア7をそれぞれ流量1.5 s ccm, 100sccm, 100sccmでCVD室1 内に導入する。プロセス中におけるCVD室1内の圧力 は、50 P a に設定したとき、基板3への膜堆積の堆積 速度は、100nm/分であった。

【0018】実施形態1において、基板3上に堆積した 膜を組成分析した結果、その組成は、WSixN、(x= 1. 7, y = 0. 3) であり、その膜はアモルファス状 であった。

【0019】 このWS i, N, 膜を図2に示すような、直 径0.3ミクロンのn型Si拡散層9のコンタクトとし て堆積する場合について説明する。

【0020】図2(a)に示すように、n型Si拡散層 9に達するスルーホールの内側壁及び底部に、コンタク トメタルとしてTilOを付着させる。 CCで、スルー ホールの底部には、Tilloをlonmの膜厚に堆積さ せる。

【0021】次に図2(b)に示すように、前述のWS

1の膜厚は、スルーホールの底部で20nmになるよう にする。

【0022】次に図2(c)に示すように、Cu膜12 をスルーホールの部分にCVDにより堆積し、配線加工 する。Cu膜12は、WSixNx膜11及びTil0を 介してn型Si拡散層9に接続する構造になっている。 図2(c)に示す構造のものをサンブルとして用いて、 接合リーク電流特性を、熱処理温度を変化させて測定し た。また、コンタクト抵抗の熱処理による変化を測定し

【0023】 このWSixNv膜11のカバレージ(底の 膜厚/上面の膜厚)は70パーセントであった。一方、 比較対象としての従来のプラズマCVDによるWN、膜 では、40パーセントのカバレージであった。

【0024】図3は、本発明の実施形態1に係るバリア 膜を用いた抵抗13の熱処理温度依存性を表している。 比較のため、WF。ガスと窒素ガスのプラズマCVDに よって堆積した従来のWN、膜を用いた抵抗14を示し ている。従来のWNx膜では、800℃から(コンタク ト)抵抗14が上昇した。850℃では、急激に抵抗1 4が増加した。同時にリーク電流特性も劣化した。

【0025】一方、本発明の実施形態1に係る方法で作 成したWSi,N,膜の場合、850℃でも(コンタク ト)抵抗13の上昇は、見られなかった。また、リーク 電流特性も変化しなかった。

【0026】850℃で熱処理した本発明の実施形態1 に係るWSiN膜をX線回折で調べたところ、アモルフ ァス構造が保たれていた。一方、従来のWN_{*}膜は、7 00℃で結晶化しており、850℃では、Wのピークが 観察され、膜の分解が生じていた。

【0027】本実施形態1では、WF。を用いている が、これに代えて、W (N (CH,) ,) ,, W (N (C, H,),)。を用いても良い。また、ジクロロシランを用 いているが、これに代えてシランを用いても良く、さら には、これらに代えて、メタン、エタン、プロパン等の 炭化水素のいずれかのガスを用いてもよい。また、アン モニア (NH,ガス) を用いているが、これに代えて、 窒化プラズマ、NH₃プラズマ、窒素ガス、ヒドラジ ン、ジメチルヒドラジン等の窒素供給源の少なくとも一 40 つとを用いてもよい。また、Wを含むガスとして、W $(N(CH_1))_{s}$ もしくは $W(N(C_2H_2))_{s}$ を用 い、SiH。もしくはCH。のいずれかのガスとの反応に よって、WSixNxの薄膜を基板に堆積するようにして もよい。

【0028】(実施形態2)次に本発明の実施形態2に ついて説明する。実施形態2における成膜には、実施形 態1と同様、図1のCVD装置を用いた。CVD室1内 に設置した基板ホルダ2上に基板3を固定し、基板3を 基板ホルダ2により600℃に加熱する。CVD室1を i、N、膜11をTi10上に堆積する。WSi、N、膜1 50 一旦真空排気した後、WF。ガス、メタン、アンモニア

をそれぞれ流量1.2sccm、80sccm、100sccmでCVD室1内に導入する。プロセス中のCVD室1内の圧力は、40Paに設定したとき、基板3への膜の堆積速度は、70nm/分であった。

【0029】実施形態2において基板3に堆積した膜を分析した結果、組成は WC_xN_v (x=1.8,y=0.2)であり、また、この膜はアモルファス状であった。次に、実施形態2に係る WC_xN_v 膜15を図4に示す酸化膜の溝に堆積する場合について説明する。

【0030】まず、図4(a)に示すように、酸化膜16に形成した幅0. 35クロン深さ0. 550ロンの溝17にWC $_x$ N $_x$ 膜150を堆積する。WC $_x$ N $_x$ 膜150膜厚は、溝170底で20n mである。

【0031】次に図4(b)に示すように、Cu膜18をCVDにより酸化膜16の全面に堆積する。

【0032】次に図4(c)に示すように、溝17から 食み出したCu膜18を化学機械研磨し、溝17内にC u溝配線19を形成する。図4(c)に示す構造のもの サンプルとして用いて、配線抵抗と配線間のリーク電流 を測定した。

【0033】実施形態2に示す WC_xN_x 膜15のカバレージ(底の膜厚/上面の膜厚)は、80パーセントであった。一方、比較対象として従来のプラズマCVDによる WN_x 膜では、60パーセントのカバレージであった。

【0034】図5は、本発明の実施形態2に係るWC、N、膜をバリア膜として用いた抵抗13の熱処理温度依存性を表している。比較のため、WF。ガスと窒素ガスのプラズマCVDによって堆積したWN、膜を用いた抵抗14も示している。従来のWN、膜では、800℃から(配線)抵抗14が上昇した。850℃では、急激に抵抗14が増加した。同時に配線間リーク電流特性も劣化した。

【0035】一方、本発明の実施形態2に係る方法で作成したWC*N*膜15の場合、850℃でも(配線)抵抗13の上昇は、見られなかった。また、リーク電流特性も変化しなかった。850℃で熱処理した実施形態2に係るWCN膜をX線回折で調べたところ、アモルファス構造が保たれていた。

【0036】本実施形態2では、WF。を用いているが、これに代えて、W(N(CH。)。)。、W(N(C, H。)。)。を用いても良い。また、メタンを用いているが、これに代えて、エタン、プロパン等の炭化水素のいずれかのガスを用いてもよく、また、シラン、ジクロロシランを用いてもよい。また、アンモニア(NH。ガス)を用いているが、これに代えて、窒化ブラズマ、NH。プラズマ、窒素ガス、ヒドラジン、ジメチルヒドラジン等の窒素供給源の少なくとも一つとを用いてもよい。また、Wを含むガスとして、W(N(CH。))。もしくはW(N(C, H。))。を用い、SiH。もしくはC50

H,のいずれかのガスとの反応によって、WC,N,の薄膜を基板に堆積するようにしてもよい。

[0037] (実施形態3)図6は、本発明の実施形態3に係る成膜装置を示す構成図である。

【0038】図6に示す本発明の実施形態3は、Wを含 む原料ガスをシラン,ジクロロシラン、もしくはメタ ン、エタン、プロバン等の炭化水素のいずれかのガス と、窒化プラズマ、NH,プラズマ、窒素ガス、NH,ガ ス、ヒドラジン、ジメチルヒドラジン等の窒素供給源の 少なくとも一つとを反応させて、WSi,N,あるいはW C、N、の薄膜を堆積するものであって、前記窒素供給源 となる窒素プラズマ、アンモニアプラズマ等を、基板へ の堆積が行われる箇所から離れた領域で発生させ、とれ を基板の表面に供給することを特徴とするものである。 【0039】本発明の実施形態3に係るバリア膜の形成 方法を実施する図6の成膜装置は、CVD室1に基板ホ ルダ2が設置されており、基板ホルダ2上に基板3が保 持されている。原料ガスであるWF。ガス5とジクロロ シラン6とを基板3の上方からガス吹き出し口20を介 して基板3の表面に供給する。ガス吹き出し口20の形 は、さまざまな形が可能である。

[0040] 実施形態3においては、窒素供給源となる窒素プラズマ、アンモニアプラズマ等を、基板3への堆積が行われる箇所から離れた領域で発生させ、これを基板3の表面に供給するものである。そこで、コーン形状をしたプラズマ吹き出し口22から離れた上流部(図中、上方の位置)にヘリカル共振器23を設置し、ヘリカル共振器23に発信機24から周波数可変の交流電圧を加えることによって、供給された窒素21を励起して窒素プラズマ25を生成する。プラズマ吹き出し口22内の圧力は、CVD室1内の圧力よりも高くなっており、圧力差によって、生成された窒素プラズマは、基板3に吹き付けられる。これによって、反応活性な種が基板3の表面に達する。

【0041】通常のプラズマCVDにおいては、気相中で活性種が反応して堆積するが、本発明では、活性種が反応する前に、基板3に到達し基板表面及びその近傍で初めて反応するため、カバレージが向上する。CVD室1内の圧力は100Paとした。また、WF。の流量は1sccm、シランの流量は50sccm、窒素の流量は100sccmとした。このとき、基板温度400℃でデポレート20nm/分であった。カバレージは、幅0.3ミクロン深さ0.5ミクロンの配線溝に対して、70パーセントであり、従来のプラズマCVDに比較すると、10パーセントのカバレージ改善が見られた。また実施形態3において基板3に堆積した膜を分析した結果、膜の組成はWSi、N、(x=1.7, y=0.3)であり、アモルファス構造であった。

【0042】実施形態3では、ジクロロシランを反応ガ

7

スとして用いたが、シランでも良い。また、窒素の代わ りに、より活性なアンモニアプラズマでも良い。アンモ ニア、ヒドセジン、ジメチルヒドラジンの場合には、反 応性が高いため、プラズマを励起しなくても効果があ

【0043】またシラン、ジクロロシランに代えて、メ タン、エタンなどの炭化水素を用いることにより、WC 、N、膜を堆積することもできる。プラズマを用いる場合 には、基板温度を低温化できるメリットもある。

【0044】また、Wを含むガスとして、W(N(CH 10 2 基板ホルダ ,)),もしくはW(N(C,H,)),を用い、SiH,も しくはCH。のいずれかのガスとの反応によって、WS i,N,の薄膜を基板に堆積するようにしてもよい。

[0045] 【発明の効果】以上説明したように本発明によれば、従 来のWN、に比較して、より高温まで安定なアモルファ ス構造のWSixNv、WCxNv膜をカバレージ良く堆積

することができる。

【0046】さらに本発明では、従来のプラズマCV D. スパッタに比べて表面反応を使っているため、カバ 20 12 Cu膜 レージを向上するることができる。これらのメリット は、さらに微細化されるコンタクト、配線溝などへのバ リア膜の形成法として必須の、超薄膜でカバレージの良 い膜(膜厚20nm以下)の形成を実現するものであ り、銅配線の採用とともに配線伝送の高速化等、LSI の性能向上を図ることができる。

【図面の簡単な説明】

【図1】本発明の実施形態1,2に係るバリア膜の形成 方法を実施するための成膜装置を示す構成図である。

【図2】本発明の実施形態1に係るバリア膜の形成方法 30 をコンタクト電極の製造方法に適用した場合を工程順に 示す断面図である。

【図3】本発明の実施形態1の効果を示すコンタクト抵 抗の熱処理温度による変化を示す図である。

【図4】本発明の実施形態2に係るバリア膜の形成方法 を溝配線の製造方法に適用した場合を工程順に示す断面* * 図である。

【図5】本発明の実施形態2の効果を示す配線抵抗の熱 処理温度による変化を示す図である。

【図6】本発明の実施形態3に係るに係るバリア膜の形 成方法を実施するための成膜装置を示す構成図である。

【図7】従来の成膜方法を説明するための成膜装置を示 す構成図である。

【符号の説明】

- CVD室
- 3 基板
- 4 ポンプ
- 5 WF。ガス
- 6 ジクロロシランガス
- 7 アンモニアガス
- 8 マスフローコントローラ
- 9 n型Si拡散層
- 10 Ti
- 11 WSi,N,
- 13 WSixNvバリア膜(本発明)の抵抗
- 14 WN,バリア膜(従来)の抵抗
- 15 WC,N,膜
- 16 酸化膜
- 17 溝
- 18 Cu膜
- 19 Cu溝配線
- 20 ガス吹き出し口
- 21 窒素
- 22 ブラズマ吹き出し口
- 23 ヘリカル共振器
- 24 発信機
- 25 窒素ブラズマ
- 26 電極
- 27 髙周波電源

[図1]

【図3】

【図7】

