Order of Growth

In Physics, We consider

• Time

Space

In CS, we consider

- Time
 - how long it takes to run a program

- Space
 - how much memory do we need to run the program

Order of Growth Analogy

- Suppose you want to buy a Bluray movie from Amazon (~40GB)
- Two options:
 - Download
 - 2-day Prime Shipping

Which is faster?

The Infinity Saga Box Set

Order of Growth Analogy

- Buy the full set?
 - 23 movies

- Two options:
 - Download
 - 2-day Prime Shipping

THE INFINITY SAGA COLLECTOR'S EDITION All 23 Marvel Cinematic Universe Films **Exclusive Bonus Disc** Kevin Feige Letter (Not Available On Digital) -23 Individually Packed 4K UHD** And Blu-ray** Art Cases

Which is faster?

Order of Growth Analogy

• Or even more movies?

Download vs Delivery

Ultimate Question

- If the "volume" increased
- How much more resources, namely time and space, grow?

Will they grow in the same manner?

- From
 - factorial (10)
- To
 - factorial (20)
- To
 - factorial (100)
- To
 - factorial (10000)

- From
 - fib(10)
- To
 - fib(20)
- To
 - fib(100)
- To
 - fib(10000)

Order of Growth

- •is NOT...
 - The absolute time or space a program takes to run
- •is
 - the proportion of growth of the time/space of a program w.r.t. the growth of the input

Let's try it on something we know

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)
def fib(n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    else:
        return fib (n - 1) + fib (n - 2)
```

Let's try it on something we know

```
nfact, nfib = 0,0
def factorial(n):
    global nfact
    nfact +=1
    if n <= 1:
       return 1
    else:
        return n * factorial(n - 1)
def fib(n):
    global nfib
    nfib +=1
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    else:
        return fib (n - 1) + fib (n - 2)
```

Compare

>>> factorial(5)	>>> fib(5)
120	5
>>> nfact	>>> nfib
5	15
>>> nfact = 0	>>> nfib = 0
>>> factorial(10)	>>> fib(10)
3628800	55
>>> nfact	>>> nfib
10	177
>>> nfact = 0	>>> nfib = 0
>>> factorial(20)	$\Rightarrow\Rightarrow$ fib(20)
2432902008176640000	6765
>>> nfact	>>> nfib
20	21891

Order of Growth of Factorial

```
>>> factorial(5)
120
>>> nfact
>>> nfact = 0
>>> factorial(10)
3628800
>>> nfact
10
>>> nfact = 0
>>> factorial(20)
2432902008176640000
>>> nfact
20
```

- Factorial is simple
 - If the input is n, then the function is called n times
 - Because each time n reduced by 1
- So the number of times of calling the function is proportional to n

Fib

More complicated

Why?

```
>>> fib(5)
5
>>> nfib1
5
>>> nfib = 0
>>> fib(10)
55
>>> nfib
177
>>> nfib = 0
>>> fib(20)
6765
>>> nfib
21891
```

Fibonacci: Tree recursion

Compare

>>> factorial(5)	>>> fib(5)
120	5
>>> nfact	>>> nfib1
5	5
>>> nfact = 0	>>> nfib = 0
>>> factorial(10)	>>> fib(10)
3628800	55
>>> nfact	>>> nfib
10	177
>>> nfact = 0	>>> nfib = 0
>>> factorial(20)	>>> fib(20)
2432902008176640000	6765
>>> nfact	>>> nfib
20	21891

No of calls proportional to n

No of calls proportional to 2ⁿ

Searching in a list of n items

- Linear search
 - # comparisons proportional to n
 - (Because in average, the expected number of search is n/2)
- Binary search
 - # comparisons proportional to log n
 - Because, we divide the list into half for at most log n times

Bubble Sort

8	4	5	9	2	3	7	1	6	0
4	8	5	9	2	3	7	1	6	0
4	5	8	9	2	3	7	1	6	0
4	5	8	9	2	3	7	1	6	0
4	5	8	2	9	3	7	1	6	0
4	5	8	2	3	9	7	1	6	0
4	5	8	2	3	7	9	1	6	0
4	5	8	2	3	7	1	9	6	0
4	5	8	2	3	7	1	6	9	0
4	5	8	2	3	7	1	6	0	9

Bubble Sort

4	5	8	2	3	7	1	6	0	9
4	5	8	2	3	7	1	6	0	9
4	5	8	2	3	7	1	6	0	9
4	5	2	8	3	7	1	6	0	9
4	5	2	3	8	7	1	6	0	9
4	5	2	3	7	8	1	6	0	9
4	5	2	3	7	1	8	6	0	9
4	5	2	3	7	1	6	8	0	9
4	5	2	3	7	1	6	0	8	9

Bubble Sort

```
def bubble(my_list):
    for i in range(len(my_list)-1):
        if my_list[i] > my_list[i+1]:
            if my_list[i] > my_list[i+1]:
                my_list[i], my_list[i+1] = my_list[i+1], my_list[i]

def bubblesort(my_list):
    for i in range(len(my_list)-1):
        bubble(my_list)

my_list_1 = [38,2,10,3,1]

bubblesort(my_list_1)

print(my_list_1)
```

Sorting a list of n Items

- Selection/Bubble Sort
 - # comparisons proportional to n²
 - Because we looped n times, and each time you need to arrange 1 to n items

- Merge sort
 - # comparisons proportional to n log n
 - Because, we divide the list into half for at most log n times
 - And each time arrange n items

```
from random import randint
from time import time
ln = [2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000]
bstat = \square
mstat = \square
for n in ln:
    rl = [randint(1,100000)] for i in range(n)]
    st = time()
    bubbleSort(rl)
    btime = time()-st
    st = time()
    mergeSort(rl)
    mtime = time()-st
    print(f'For n = {n}, bubbleSort: {btime}s mergeSort: {mtime}s')
    bstat.append(btime)
    mstat.append(mtime)
```


Algorithm

Anyone can give some algorithms

BogoSort

- BogoSort (L)
 - Repeat:
 - Choose a random permutation of the list L.
 - If L is sorted, return L.
- If you wait enough time, L is sorted?

Bogo Sort

Randomly shuffle the list till the list is sorted

```
import random
def is_not_sorted(shuffled_list):
    for i in range(len(shuffled_list)-1):
        if shuffled_list[i] > shuffled_list[i+1]:
            return True
    return False

def bogosort(my_list):
    while is_not_sorted(my_list):
        random.shuffle(my_list)

my_list = [38,2,10,3,1]
bogosort(my_list)
print(my_list)
```

Can we do better?

Hill-Climbing for Sorting

- Optimization algorithm
 - Require an evaluation function
- Which metric is better for evaluation?
 - Let *my_list* be our list
 - Number of index pairs i, j such that such that $my_list[i] > my_list[j]$
- Example: >>> my_list = [38,2,10,3,1] >>> my_list | Value(my_list) = 4+1+2+1 = 8 |

Hill-Climbing for Sorting

- Repeat the following either till value of the list is zero or a predetermined number of times
 - Shuffle the list
 - Accept the shuffled list if its value is lower than that of current list

Algorithm

Anyone can give some algorithm

But how fast is your algorithm?

How about

```
QuantumBogoSort(A[1..n])
```

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.
- c) If A is not sorted, destroy the universe.

 Remember QuantumBogoSort when you learn about nondeterministic Turing Machines

Improvement?

Let's try fib(n)

Easy Way: Memoization

Instead of recomputing fib(3) here

We save the result when it was computed

Memoization

- Create a dictionary to remember the answer if fibm(n) is computed before
- If the *ans* was computed before, get the answer from the dictionary
- Otherwise, compute the ans and put it into the dictionary for later use

```
fibans = {}
def fibm(n):
    if n in fibans.keys():
        return fibans[n]
    if (n == 0):
        ans = 0
    elif (n == 1):
        ans = 1
    else:
        ans = fibm(n - 1) + fibm(n - 2)
    fibans[n] = ans
    return ans
```

Can you use Memoization to compute nCk?

Recursion Removal

- Store all the answers in an array
- Add a new fib(i)
 - as fib(i-1) + fib(i-2)

- Wait a min...
 - Do we need all the past numbers if we only need fib(n)?

```
def fibi(n):
    ans = [0,1,1]
    if n < 3:
        return ans[n]
    for i in range(3,n+1):
        ans.append(ans[i-1]+ans[i-2])
    return ans[n]</pre>
```

Recursion Removal 2

```
    Add a new fib(i)

     • as fib(i-1) + fib(i-2)

    And I only need to keep fib(i-1) and fib(i-2)

def fibi2(n):
    if n < 3:
         return 1
    fibminus1, fibminus2 = 1,1
    for i in range(3,n+1):
         fibminus2, fibminus1 = fibminus1, fibminus1 + fibminus2
    return fibminus1
```

Improvement

- For IT5001, you should know how to compute fib(n) with time proportional to n
 - The fastest algorithm to compute fib(n) with time proportional to log n
- To know more about this to improve human race and save the world
 - CS1231, CS2040, CS3230, etc
- What you learn today is called the Big O notation
 - O(n), $O(\log n)$, $O(n^2)$, $O(n \log n)$, $O(2^n)$, etc