Домашнее задание №3 по курсу «Исследование операций»

Рак Алексей БГУ

Матричные игры. Графоаналитический метод.

10c

$$\begin{pmatrix}
2 & 5 & 8 & 11 \\
2 & 0 & 9 & 2 \\
7 & -3 & -2 & 0 \\
-1 & 5 & 4 & 3
\end{pmatrix}$$

Первая стратегия первого игрока доминирует четвертую: $p_4=0$; втора стратегия второго игрока доминирует третью и четвертую: $q_3=q_4=0$.

$$\begin{pmatrix} 2 & 5 \\ 2 & 0 \\ 7 & -3 \end{pmatrix}$$

Первая стратегия первого игрока доминирует вторую $p_2=0,$ получаем:

$$\begin{pmatrix} 2 & 5 \\ 7 & -3 \end{pmatrix}$$

$$I = \frac{5}{7}$$

11a

Показать, что если $h_{i-1,j} - 2h_{ij} + h_{i+1,j} \le 0, i = \overline{2,n-1}, j = \overline{1,m}$, то в игре с матрицей $H = (h_{ij})_{n \times m}$ каждый игрок имеет оптимальную стратегию, в которой используется не более двух чистых стратегий;

Из условия задачи: $(h_{i-1,j}-h_{ij})+(h_{i+1,j}-h_{ij})\leq 0$. Возможны два варианта. Либо $(h_{i+1,j}-h_{ij})\leq 0$, то есть i-ая строка доминирует (i+1)-ую и тогда $p_{i+1}=0, i=\overline{2,n-1}, j=\overline{1,m}$. Либо $(h_{i-1,j}-h_{ij})\leq 0$, то есть i-ая строка доминирует (i-1)-ую и тогда $p_{i-1}=0, i=\overline{2,n-1}, j=\overline{1,m}$. В обоих случаях матрица выигрышей сокращается до размеров 2×2 . Затем можно найти оптимальные стратегии игроков, а так как матрица имеет размеры 2×2 , то у каждого игрока для оптимальной стратегии не более двух чистых стратегий.

11b

Показать, что если $h_{i-1,j}-2h_{ij}+h_{i+1,j}\geq 0, i=\overline{2,n-1}, i=\overline{1,m},$ то в игре с матрицей $H=(h_{ij})_{n\times m}$ первый игрок имеет оптимальную стратегию p, для которой $p_i=0, i=\overline{2,n-1}.$

Из условия задачи: $(h_{i-1,j}-h_{ij})+(h_{i+1,j}-h_{ij})\geq 0$. Возможны два варианта. Либо $(h_{i+1,j}-h_{ij})$, то есть (i+1)-ая строка доминирует і-ую и тогда $p_i=0, i=\overline{2,n-1}, j=\overline{1,m}$. Либо $(h_{i-1,j}-h_{ij})\geq 0$, то есть (i-1)-ая строка доминирует i-ую и тогда $p_i=0, i=\overline{2,n-1}, j=\overline{1,m}$.

Матричные игры. Метод приближенных итераций 12b

$$H = \begin{pmatrix} 1 & 0 & 4 & 7 \\ 3 & 5 & 2 & 0 \\ 0 & 1 & 3 & 5 \end{pmatrix}$$

Решение:

Верхнее значение игры $\beta=5,$ нижнее $\alpha=0.$ Решения в чистых стратегиях нет. Доминирования по строкам и столбцам нет.

k	i	B_1	B_2	B_3	B_4	$\mid j \mid$	A_1	A_2	A_3	<u>I</u>	\overline{I}	I
1	1	1	0	4	7	2	0	$\overline{5}$	1	0	5	2.5
2	2	2	2.5	3	3.5	1	0.5	$\overline{4}$	0.5	2	4	3
3	2	2.33	3.33	2.67	<u>2.33</u>	1	0.67	$\overline{3.67}$	0.33	2.33	3.67	3
4	2	2.5	3.75	2.5	<u>1.75</u>	4	2.25	$\overline{2.75}$	1.5	1.75	2.75	2.25
5	2	2.8	5	2.4	1.4	4	$\overline{3.2}$	2.2	2.2	1.4	3.2	2.3

$$p_1 \approx \frac{1}{5}$$

$$p_2 \approx \frac{4}{5}$$

$$p_3 \approx 0$$

$$q_1 \approx \frac{2}{5}$$

$$q_2 \approx \frac{1}{5}$$

$$q_3 \approx 0$$

$$q_4 \approx \frac{2}{5}$$

$$I \approx \frac{23}{10}$$

12c

$$H = \begin{pmatrix} 2 & 3 & 1 & 0 \\ 0 & 2 & 4 & 2 \\ 3 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 \end{pmatrix}$$

Решение:

Верхнее значение игры $\beta=2$, нижнее $\alpha=0$. Решения в чистых стратегиях нет. Доминирования по строкам и столбцам нет.

	k	i	B_1	B_2	B_3	B_4	j	A_1	A_2	A_3	A_4	<u>I</u>	\overline{I}	I
	1	1	2	3	1	0	4	0	$\overline{2}$	$\overline{2}$	1	0	2	1
	2	2	1	2.5	2.5	1	1	1	1	$\overline{2.5}$	$\overline{2.5}$	1	2.5	1.75
\prod	3	3	1.67	1.67	2	1.33	4	0.67	1.33	$\overline{2.33}$	2	1.33	2.33	1.73
\mathbb{I}	4	3	2	1.25	1.75	1.5	2	1.25	1.5	$\overline{1.75}$	$\overline{1.75}$	1.25	1.75	1.5
Π	5	3	2.2	1	1.6	1.6	2	1.6	1.6	1.4	1.6	1	1.6	1.3

$$p_1 \approx \frac{1}{5}$$

$$p_2 \approx \frac{1}{5}$$

$$p_3 \approx \frac{3}{5}$$

$$p_4 \approx 0$$

$$q_1 \approx \frac{1}{5}$$

$$q_2 \approx \frac{2}{5}$$

$$q_3 \approx 0$$

$$q_4 \approx \frac{2}{5}$$

$$I \approx \frac{13}{10}$$

12d

$$H = \begin{pmatrix} 2 & 4 & 5 & 1 & 5 \\ 1 & 5 & 0 & 6 & 2 \\ 3 & 0 & 2 & 1 & 1 \\ 1 & 2 & 1 & 0 & 3 \end{pmatrix}$$

Решение:

Верхнее значение игры $\beta=6$, нижнее $\alpha=1$. Решения в чистых стратегиях нет. Стратегия A_1 доминирует над стратегией $A_4,\,p_4=0$. Получаем сокращенную матрицу:

$$H = \begin{pmatrix} 2 & 4 & 5 & 1 & 5 \\ 1 & 5 & 0 & 6 & 2 \\ 3 & 0 & 2 & 1 & 1 \end{pmatrix}$$

k	i	B_1	B_2	B_3	B_4	B_5	$\mid j \mid$	A_1	A_2	A_3	<u>I</u>	\overline{I}	I
1	1	2	4	5	<u>1</u>	5	4	1	$\overline{6}$	1	1	6	3.5
2	2	<u>1.5</u>	4.5	2.5	3.5	3.5	1	1.5	$\overline{3.5}$	2	1.5	3.5	2.5
3	2	1.33	4.67	2.67	4.33	3	1	1.67	$\overline{2.67}$	2.33	1.33	2.67	2
4	2	1.25	4.75	1.25	4.75	2.75	1	1.75	2.25	$\overline{2.5}$	1.25	2.5	1.88
5	3	1.6	3.8	<u>1.4</u>	5	2.4	3	$\overline{2.4}$	2.2	2.2	1.4	2.4	1.9

 $p_1 \approx \frac{1}{5}$ $p_2 \approx \frac{3}{5}$ $p_3 \approx \frac{1}{5}$ $p_4 \approx 0$ $q_1 \approx \frac{3}{5}$ $q_2 \approx 0$ $q_3 \approx \frac{1}{5}$ $q_4 \approx \frac{1}{5}$ $q_5 \approx 0$ $I \approx \frac{19}{10}$