Аудиторне заняття

- 1. [1.12] Визначити напруженість та потенціал електричного поля E, яке створюється рівномірно зарядженою сферою радіусом R, на відстані r від її центра. Загальний заряд кулі дорівнює Q.
- 2. [1.27] Дві паралельні заряджені площини з густинами заряду $+\sigma_1$ і $-\sigma_2$ знаходяться на відстані d одна від одної. Вважаючи, що відстані L_1 і L_2 відомі (див.рис.), знайти напруженість E поля в точках A і B, а також різницю потенціалів $\Delta \phi$ між ними.

3. [1.20] Всередині порожньої металевої сфери радіусом R знаходиться порожня металева сфера радіусом r (див.рис.). Заряд внутрішньої сфери дорівнює (-q), зовнішньої -+Q. Знайти напруженість E і потенціал поля ϕ в точках 1, 2, 3, 4 та

- 4. [\sim Пр.8] Двом концентричним тонким металевим сферам радіусами R_1 =10 см та R_2 =20 см надано електричні заряди Q_1 =3 мкКл та Q_2 =-12 мкКл відповідно? Визначити заряд q_1 внутрішньої сфери після її заземлення.
- 5. [1.25] Потенціал електричного поля в деякій області простору залежить від координати x як $\varphi = ax^3 + b$, де a та b константи. Знайти розподіл об'ємного заряду $\rho(x)$ в цій області.

Домашнє завдання

- 1. [1.13] Визначити напруженість електричного поля E, яке створюється суцільною, рівномірно зарядженою з густиною заряду ρ кулею радіусом R на відстані r від її центра. Розглянути випадки r < R та $r \ge R$.
- 2. [1.26] Відстань d між двома довгими зарядженими нитками, розміщеними паралельно один одному, дорівнює 10 см. Лінійна густина заряду ниток однакова та дорівнює $\lambda = 10^{-5}$ Кл/м. Знайти значення та напрямок вектору напруженості результуючого електричного поля в точці, що віддалена на відстань r = 10 см від кожної нитки.
- 3. [1.15] Потенціал поля, що створюється деякою системою зарядів, має вигляд $\varphi = a(x^2 + y^2) + bz^2$, де a > 0, b > 0. Знайти вектор напруженості поля E та його модуль.