Misura della caratteristica di un transistor BJT P-N-P in configurazione a emettitore comune

Bertasi Leonardo, Perniola Davide

Quarto turno

1 Introduzione

Il transistor BJT è un dispositivo bipolare a tre terminali, costituito quindi da tre regioni di semiconduttore con drogaggio alternato p-n-p o n-p-n. Le tre regioni sono chiamate emettitore, base e collettore. In questa prova abbiamo utilizzato transistor BJT 2N3906(BU) Silicio P-N-P in configuarzione a emettitore comune e misurato, utilizzando due diverse correnti di base I_B , la caratteristica di uscita, ovvero la corrente di collettore I_C in funzione della tensione tra collettore ed emettitore V_{CE} . Inoltre durante la prova sono stati utilizzati due potenziometri da $100k\Omega$ e $1k\Omega$, un alimentatore di bassa tensione un multimetro digitale e un oscilloscopio. Il circuito realizzato è riporato in Figura 1.

2 Risultati

Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e

Tebelleee

3 Conclusioni

Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e

Figura 1: Rappresentazione schematica del circuito realizzato.

F.S(mV/div)	V(mV)	I(mA)
1000	-4000 ± 156	-37.5 ± 0.6
1000	-3800 ± 152	-36.6 ± 0.6
1000	-3600 ± 147	-36.4 ± 0.6
500	-3400 ± 114	-35.8 ± 0.5
500	-3200 ± 108	-35.6 ± 0.5
500	-3000 ± 103	-35.5 ± 0.5
500	-2800 ± 98	-35.1 ± 0.5
500	-2600 ± 93	-34.7 ± 0.5
500	-2400 ± 88	-34.5 ± 0.5
500	-2200 ± 83	-34.1 ± 0.5
500	-2000 ± 78	-33.8 ± 0.5
500	-1800 ± 74	-33.3 ± 0.5
500	-1600 ± 69	-32.8 ± 0.5
500	-1400 ± 65	-32.6 ± 0.5
500	-1200 ± 62	-32.0 ± 0.5
500	-1000 ± 58	-31.5 ± 0.5
500	-900 ± 57	-31.1 ± 0.5
500	-800 ± 55	-30.7 ± 0.5
500	-700 ± 54	-30.2 ± 0.5
500	-600 ± 53	-29.4 ± 0.5
200	-500 ± 25	-28.6 ± 0.4
100	-450 ± 17	-27.5 ± 0.4
100	-400 ± 16	-26.7 ± 0.4
100	-350 ± 15	-25.8 ± 0.4
100	-300 ± 13	-24.6 ± 0.4
100	-250 ± 13	-22.9 ± 0.4
100	-200 ± 12	-20.7 ± 0.3
100	-150 ± 11	-15.0 ± 0.2
100	-100 ± 10	-9.2 ± 0.1
50	-80 ± 6	-4.4 ± 0.1
50	-60 ± 5	-2.3 ± 0.1
50	-50 ± 5	-1.43 ± 0.1

 $\label{lem:constraint} \begin{tabular}{ll} Tabella 1: Risultati delle misure effettuate con il diodo al silicio. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura \\ \end{tabular}$

F.S(mV/div)	V(mV)	I(mA)
1000	-4000 ± 156	-19.3 ± 0.3
1000	-3800 ± 152	-19.3 ± 0.3
1000	-3600 ± 147	-19.2 ± 0.3
500	-3400 ± 114	-19.1 ± 0.3
500	-3200 ± 108	-19.1 ± 0.3
500	-3000 ± 103	-19.0 ± 0.3
500	-2800 ± 98	-18.9 ± 0.3
500	-2600 ± 93	-18.6 ± 0.3
500	-2400 ± 88	-18.5 ± 0.3
500	-2200 ± 83	-18.4 ± 0.3
500	-2000 ± 78	-18.2 ± 0.3
500	-1800 ± 74	-17.9 ± 0.3
500	-1600 ± 69	-17.7 ± 0.3
500	-1400 ± 65	-17.5 ± 0.3
500	-1200 ± 62	-17.3 ± 0.3
500	-1000 ± 58	-17.2 ± 0.3
500	-900 ± 57	-17.0 ± 0.3
500	-800 ± 55	-16.9 ± 0.3
500	-700 ± 54	-16.8 ± 0.3
500	-600 ± 53	-16.7 ± 0.3
200	-500 ± 25	-16.5 ± 0.3
100	-450 ± 17	-16.4 ± 0.3
100	-400 ± 16	-16.2 ± 0.3
100	-350 ± 15	-16.0 ± 0.3
100	-300 ± 13	-15.5 ± 0.2
100	-250 ± 13	-14.7 ± 0.2
100	-200 ± 12	-13.9 ± 0.2
100	-150 ± 11	-11.2 ± 0.2
100	-100 ± 10	-6.1 ± 0.1
50	-80 ± 6	-2.8 ± 0.1
50	-60 ± 5	-1.3 ± 0.1
50	-50 ± 5	-0.8 ± 0.1

 $\label{lem:constraint} \begin{tabular}{ll} Tabella 2: Risultati delle misure effettuate con il diodo al silicio. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura \\ \end{tabular}$