

Embedded Systeme 1 & 2

Klassen T-2/I-2 // 2018-2019

a.14 - Numerische Verarbeitung der Zahlen

Übung Nr. 1

Übungen zu den ganzen Zahlen ohne Vorzeichen.

- a) Wandeln Sie die folgenden Zahlen in Binärzahlen um:
 - 125 (Basis 10)
 - 0377 (Basis 8)
 - 0xADE1 (Basis 16)
- b) Wandeln Sie die folgenden Zahlen in Dezimalzahlen um:
 - 0b10011000 (Basis 2)
 - 0177 (Basis 8)
 - 0x25E1 (Basis 16)
- c) Addieren Sie die folgenden Binärzahlen und geben Sie den Zustand der Flags C und Z an:
 - 0b10011000 + 0b10011000
 - 0b11111101 + 0b00000011
 - 0b00011000 + 0b10011100
- d) Subtrahieren Sie die folgenden Binärzahlen und geben Sie den Zustand der Flags C und Z an:
 - 0b10011000 0b10011000
 - 0b11111101 0b00000011
 - 0b00011000 0b10011100
- e) Geben Sie den Zustand der Flags C und Z für die folgenden Vergleichsoperationen an:
 - cmp 125, 128
 - cmp 77, 26
 - cmp 254, 254
 - cmp 255, 0

Übungen zu den ganzen Zahlen mit Vorzeichen.

- a) Wandeln Sie die folgenden Zahlen in Binärzahlen um und geben Sie den Zustand des Flags N an:
 - -125 (Basis 10)
 - 0271 (Basis 8)
 - 0x50F1 (Basis 16)
- b) Wandeln Sie die folgenden Zahlen in Dezimalzahlen um:
 - 0b10011000 (Basis 2)
 - 0177 (Basis 8)
 - 0x85E1 (Basis 16)
- c) Addieren Sie die folgenden Binärzahlen und geben Sie den Zustand der Flags V und N und Z an:
 - 0b10011000 + 0b10011000
 - 0b11111101 + 0b00000011
 - 0b00011000 + 0b10011100
- d) Subtrahieren Sie die folgenden Binärzahlen und geben Sie den Zustand der Flags V und N und Z an:
 - 0b10011000 0b10011000
 - 0b11111101 0b00000011
 - 0b00011000 0b10011100
- e) Geben Sie den Zustand der Flags V und N und Z für die folgenden Vergleichsoperationen an:
 - cmp 127, -125
 - cmp 77, -26
 - cmp -30, -34
 - cmp 55,66

Sagen Sie den Zustand der Flags Z, C, N und V und das Ergebnis voraus, das im Register R2 nach der Ausführung der folgenden Assemblerbefehle enthalten sein wird:

(Anmerkung: Wir gehen davon aus, dass der µP in der Lage ist, 8-Bit-Worte zu verarbeiten

	ldr		r2, =	128	
a)	ldr		r1, =	-128	
	cmp		r2, r	L	
Z=	C=	N=	V=	R2 (mit Vorzeichen)=_	R2(ohne Vorzeichen)=
	ldr		r0, =6	54	
b)	ldr		r1, =	-128	
	adds		r2, r), r1	
Z=	C=	N=	V=	R2 (mit Vorzeichen)=_	R2(ohne Vorzeichen)=
	ldr		r0, =2	228	
c)			r1, =1		
			r2, r		
Z=	C=	N=	V=	R2 (mit Vorzeichen)=_	R2(ohne Vorzeichen)=
	ldr		r0, =2	240	
d)	ldr		r1, =	-16	
	subs		r2, r), r1	
Z=	C=	N=	V=	R2 (mit Vorzeichen)=_	R2(ohne Vorzeichen)=
	ldr		r2, =0)	
e)	ldr		r1, =0	9	
	cmp		r2, r	<u> </u>	
Z=	C=	N=	V=	R2 (mit Vorzeichen)=	R2(ohne Vorzeichen)=

Betrachten Sie die nachstehenden 5 Assemblercodes. Definieren Sie für jeden von ihnen den Zustand der Flags N,Z,V,C und interpretieren Sie das Ergebnis des Wertes mit und ohne Vorzeichen. (Anmerkung: Wir gehen davon aus, dass der μP in der Lage ist, 8-Bit-Worte zu verarbeiten

Stellen Sie die folgenden reellen Werte als Hexadezimalzahlen mit 32 Bit (einfache Genauigkeit) dar :