MACHINE LEARNING

Pakarat Musikawan

Distance Metrics

$$\mathcal{D}(\text{red}, \text{green}) = |\text{red} - \text{green}|$$

 $\mathcal{D}(\text{blue}, \text{green}) = |\text{blue} - \text{green}|$
 $\mathcal{D}(\text{red}, \text{green}) > \mathcal{D}(\text{blue}, \text{green})$

Distance Metrics

$$\mathcal{D}(\text{red}, \text{blue}) = d(\Delta x, \Delta y)$$

$$= d(x_{\text{red}} - x_{\text{blue}}, y_{\text{red}} - x_{\text{blue}})$$

$$\mathcal{D}(\text{red}, \text{blue}) = d(\Delta x, \Delta y)$$

$$= d(x_{\text{red}} - x_{\text{blue}}, y_{\text{red}} - x_{\text{blue}})$$

$$= \sqrt{(x_{\text{red}} - x_{\text{blue}})^2 + (y_{\text{red}} - y_{\text{blue}})^2}$$

$$\mathcal{D}(\text{red}, \text{blue}) = d(\Delta x, \Delta y)$$

$$= d(x_{\text{red}} - x_{\text{blue}}, y_{\text{red}} - x_{\text{blue}})$$

$$= |x_{\text{red}} - x_{\text{blue}}| + |y_{\text{red}} - y_{\text{blue}}|$$

Distance Metrics

$$\mathcal{D}(\text{red, blue}) = d(\Delta x, \Delta y)$$

$$= d(x_{\text{red}} - x_{\text{blue}}, y_{\text{red}} - x_{\text{blue}})$$

$$= d(1 - 11, 1 - 11)$$

$$\mathcal{D}(\text{red, blue}) = d(\Delta x, \Delta y)$$
Euclidean

$$\mathcal{D}(\text{red, blue}) = d(\Delta x, \Delta y)$$

$$= d(x_{\text{red}} - x_{\text{blue}}, y_{\text{red}} - x_{\text{blue}})$$

$$= \sqrt{(1 - 11)^2 + (1 - 11)^2} = 14.14$$

$$\mathcal{D}(\mathrm{red, blue}) = d(\Delta x, \Delta y)$$
 Manhattan
$$= d(x_{\mathrm{red}} - x_{\mathrm{blue}}, y_{\mathrm{red}} - x_{\mathrm{blue}})$$

$$= |1 - 11| + |1 - 11| = 20$$

Euclidean Distance

Fuclidean Distance

$$d(\Delta x) = \sqrt{(x_A - x_B)^2}$$

$$d(\Delta x) = \sqrt{(x_A - x_B)}$$

$$d(\Delta x, \Delta y) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

$$(\Delta x, \Delta y) = \sqrt{(x_A - x_B) + (y_A - y_B)}$$

$$(\Delta x, \Delta y, \Delta z) = \sqrt{(x_A - x_B) + (y_A - y_B)}$$

$$\Delta u \Delta z = \sqrt{(x_A - x_B)^2 + (y_A - y_A)^2}$$

$$d(\Delta x, \Delta y, \Delta z) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2}$$

$$y, \Delta z) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

$$\mathbf{A} = [A_1, A_2, \dots, A_n]$$
 $\mathbf{B} = [B_1, B_2, \dots, B_n]$

$$\mathcal{D}(\boldsymbol{A}, \boldsymbol{B}) = \sqrt{(A_1 - B_1)^2 + (A_2 - B_2)^2 + \dots + (A_n - B_n)^2}$$

$$= \sum_{i=1}^{n} (A_i - B_i)^2 = \|\boldsymbol{A} - \boldsymbol{B}\|$$

$$= \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2} = \|\mathbf{A} - \mathbf{B}\|$$

Minkowski Distance

Minkowski Distance
$$d(\Delta x) = ((x_A - x_B)^q)$$

$$d(\Delta x) = ((x_A - x_B)^q)^{\frac{1}{2}}$$

$$d(\Delta x) = ((x_A - x_B)^q)^{\frac{1}{q}}$$

$$d(\Delta x) - ((x_A - x_B)^2)^4$$
$$d(\Delta x \Delta y) = ((x_A - x_B)^6)^4$$

$$d(\Delta x) = ((x_A - x_B)^2)^q$$

 $d(\Delta x, \Delta u) = ((x_A - x_B)^2)^q$

$$d(\Delta x, \Delta y) = ((x_A - x_B)^q + (y_A - y_B)^q)^{\frac{1}{q}}$$

$$((x_A - x_B)^r)^q$$

$$-x_B)^*)^q$$

 $= \left(\sum_{i=1}^{n} (A_i - B_i)^q\right)^{\frac{1}{q}}$

 $d(\Delta x, \Delta y, \Delta z) = ((x_A - x_B)^q + (y_A - y_B)^q + (z_A - z_B)^q)^{\frac{1}{q}}$

 $\mathcal{D}(\mathbf{A}, \mathbf{B}) = ((A_1 - B_1)^q + (A_2 - B_2)^q + \dots + (A_n - B_n)^q)^{\frac{1}{q}}$

 $\mathbf{A} = [A_1, A_2, \dots, A_n]$ $\mathbf{B} = [B_1, B_2, \dots, B_n]$

Manhattan Distance

$$d(\Delta x) = |x_A - x_B|$$

$$= |x_A - x_B|$$

$$\omega_B$$

$$x \leftarrow x$$

$$A = x_D$$

$$|+|n|$$

$$| + | y_A -$$

$$d(\Delta x, \Delta y) = |x_A - x_B| + |y_A - y_B|$$

$$|B| + |y_A| -$$

$$|y_B| + |y_A| -$$

$$|y_A-y_B|$$

$$-y_B$$

$$-g_{B|}$$

$$d(\Delta x, \Delta y, \Delta z) = |x_A - x_B| + |y_A - y_B| + |z_A - z_B|$$

$$\mathbf{A} = [A_1, A_2, \dots, A_n]$$
 $\mathbf{B} = [B_1, B_2, \dots, B_n]$

$$oldsymbol{\mathcal{D}}_2,\ldots,oldsymbol{\mathcal{D}}_n$$

$$\mathcal{D}(\mathbf{A}, \mathbf{B}) = |A_1 - B_1| + |A_2 - B_2| + \ldots + |A_n - B_n|$$

$$+|A_n-B_n|$$

$$3_i$$
 |

$$=\sum_{i=1}^{n}|A_i-B_i|$$

$$B_i$$

Hamming Distance

$$d(\Delta x) = x_A \oplus x_B$$

$$\omega(\underline{\hspace{1cm}}\omega)$$
 $\omega_A \cup \omega_B$

$$d(\Delta x, \Delta y) = (x_A \oplus x_B) + (y_A \oplus y_B)$$

$$(x, \Delta y, \Delta z) = (x_A \oplus x_B) + (y_A \oplus y_B)$$

$$d(\Delta x, \Delta y, \Delta z) = (x_A \oplus x_B) + (y_A \oplus y_B) + (z_A \oplus z_B)$$

$$(x, \Delta y, \Delta z) = (x_A \oplus x_B) + (y_A \oplus z_B)$$

$$A = [A_1, A_2, ..., A_n]$$
 $B = [B_1, B_2, ..., B_n]$
 $D(A, B) = (A_1 \oplus B_1) + (A_2 \oplus B_2) + ... + (A_n \oplus B_n)$

$$=\sum_{i=1}^{n}(A_{i}\oplus B_{i})$$

Hamming Distance

$$\mathcal{D}(\mathbf{A}, \mathbf{B}) = \sum_{i=1}^{5} (A_i \oplus B_i)$$
= $(0 \oplus 1) + (1 \oplus 1) + (1 \oplus 1) + (0 \oplus 0) + (1 \oplus 0)$
= 2

- k-Nearest Neighbor (kNN)
- Memory-based Reasoning
- Example-based Reasoning
- Instance-based Learning
- Lazy Learning

Customer	Age	Loan	Default
Α	25	40000	No
В	35	60000	No
С	45	80000	No
D	20	20000	No
Е	35	120000	No
F	52	18000	No
G	23	95000	Yes
Н	40	62000	Yes
I	60	100000	Yes
J	48	220000	Yes
K	33	150000	Yes
L	48	142000	?

Customer	Age	Loan	Default
Α	25	40000	No
В	35	60000	No
С	45	80000	No
D	20	20000	No
E	35	120000	No
F	52	18000	No
G	23	95000	Yes
Н	40	62000	Yes
I	60	100000	Yes
J	48	220000	Yes
K	33	150000	Yes
L	48	142000	?

Distance	
102000.003	9
82000.001	8
62000.000	5
122000.003	10
22000.004	2
124000.000	11
47000.007	4
8000.000	7
42000.002	3
78000.000	6
8000.014	1
	102000.003 82000.001 62000.000 122000.003 22000.004 124000.000 47000.007 80000.000 42000.002 78000.000

~' _	$x_{j,i} - \min(X_i)$		
$x'_{j,i} =$	$\overline{\max(X_i) - \min(X_i)}$		

Customer	Age	Loan	Default
Α	25	40000	No
В	35	60000	No
С	45	80000	No
D	20	20000	No
E	35	120000	No
F	52	18000	No
G	23	95000	Yes
Н	40	62000	Yes
I	60	100000	Yes
J	48	220000	Yes
K	33	150000	Yes
L	48	142000	?

Age	Loan	
0.125	0.109	
0.375	0.208	
0.625	0.307	
0.000	0.010	
0.375	0.505	
0.800	0.000	
0.075	0.381	
0.500	0.218	
1.000	0.406	
0.700	1.000	
0.325	0.653	
0.700	0.614	

Customer	Age	Loan	Default
Α	0.125	0.109	No
В	0.375	0.208	No
С	0.625	0.307	No
D	0.000	0.010	No
E	0.375	0.505	No
F	0.800	0.000	No
G	0.075	0.381	Yes
Н	0.500	0.218	Yes
I	1.000	0.406	Yes
J	0.700	1.000	Yes
K	0.325	0.653	Yes
L	0.700	0.614	?

	Distance	
D(L,A)	0.765	10
D(L,B)	0.520	7
D(L,C)	0.316	1
D(L,D)	0.925	11
D(L,E)	0.343	2
D(L,F)	0.622	8
D(L,G)	0.667	9
D(L,H)	0.444	6
D(L,I)	0.365	3
D(L,J)	0.386	5
D(L,K)	0.377	4

Customer	Age	Loan	Default		Distance	
Α	0.125	0.109	No	D(L,A)	0.765	10
В	0.375	0.208	No	<i>D</i> (L,B)	0.520	7
С	0.625	0.307	No	D(L,C)	0.316	1
D	0.000	0.010	No	<i>D</i> (L,D)	0.925	11
E	0.375	0.505	No	D(L,E)	0.343	2
F	0.800	0.000	No	D(L,F)	0.622	8
G	0.075	0.381	Yes	D(L,G)	0.667	9
Н	0.500	0.218	Yes	D(L,H)	0.444	6
I	1.000	0.406	Yes	D(L,I)	0.365	3
J	0.700	1.000	Yes	D(L,J)	0.386	5
K	0.325	0.653	Yes	D(L,K)	0.377	4
L	0.700	0.614	No			_

k=5

Customer	Age	Loan	Default		Distance	
Α	0.125	0.109	No	D(L,A)	0.765	10
В	0.375	0.208	No	D(L,B)	0.520	7
С	0.625	0.307	No	D(L,C)	0.316	1
D	0.000	0.010	No	<i>D</i> (L,D)	0.925	11
E	0.375	0.505	No	D(L,E)	0.343	2
F	0.800	0.000	No	D(L,F)	0.622	8
G	0.075	0.381	Yes	D(L,G)	0.667	9
Н	0.500	0.218	Yes	<i>D</i> (L,H)	0.444	6
I	1.000	0.406	Yes	D(L,I)	0.365	3
J	0.700	1.000	Yes	D(L,J)	0.386	5
K	0.325	0.653	Yes	D(L,K)	0.377	4
L	0.700	0.614	Yes			

Workshop

Given k is 5, and D(.,.) is the Euclidean distance. Scale both provided datasets into the range of [0-1]. Predict the classes for the unlabeled dataset in the right-hand table by using the training dataset in the left-hand table.

sepal length	sepal width	petal length	class
5.1	3.5	1.4	setosa
4.9	3	1.4	setosa
4.7	3.2	1.3	setosa
4.6	3.1	1.5	setosa
7	3.2	4.7	versicolor
6.4	3.2	4.5	versicolor
6.9	3.1	4.9	versicolor
5.5	2.3	4	versicolor
6.5	2.8	4.6	versicolor
6.3	3.3	6	virginica
5.8	2.7	5.1	virginica
7.1	3	5.9	virginica
6.3	2.9	5.6	virginica
6.5	3	5.8	virginica

sepal length	sepal width	petal length	class
4.8	3	1.4	?
6.6	3	4.4	?
6.7	3	5.2	?