Homework 4

Due: March 30, 2022

- 1. Problem 8.1 from Cover-Thomas: Differential entropy. Evaluate the differential entropy $h(X) = -\int f \log f$ for the following:
 - (a) The exponential density, $f(x) = \lambda e^{-\lambda x}, x \ge 0$.
 - (b) The Laplace density, $f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}$.
 - (c) The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with means μ_i and variances σ_i^2 , i = 1, 2.
- 2. Differential entropy. Consider the continuous variables X, Y with joint PDF given by

$$f(x,y) = \begin{cases} 2, & 0 < x < 1, \ 0 < y < 1, \ x + y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find h(X), h(Y), h(X,Y), h(X|Y), h(Y|X), and I(X;Y).

3. Gaussian typical set. Let $A_{\epsilon}^{(n)}$ be the typical set for the zero-mean Gaussian distribution $\mathcal{N}(0, \sigma^2)$. Find constants a and b such that $x^n \in A_{\epsilon}^{(n)}$ if and only if

$$a \le \sum_{i=1}^{n} x_i^2 \le b.$$

- 4. Binary-input Gaussian noise channel. Consider a channel where $X \in \{-\sqrt{P}, \sqrt{P}\}$, and Y = X + Z where $Z \sim \mathcal{N}(0, N)$. This can be considered a model for binary phase-shift keying (BPSK) with power P used for a Gaussian noise channel. Assume that X is equally likely to be \sqrt{P} or $-\sqrt{P}$.
 - (a) Find a closed-form expression for h(Y|X).
 - (b) Find a formula for h(Y). You do not need to evaluate the integral.
 - (c) Use some numerical integration software (such as Matlab's function integral) to calculate I(X;Y) = h(Y) h(Y|X) for the following parameters: P = 2, N = 3. Compare your answer to the capacity of the standard Gaussian channel with the same power and noise variance.
- 5. Mutual information with mixed random variable. Let $X \sim \text{Bern}(1/2)$. Define a channel from X to Y as follows. Given X = x, Y is a mixed random variable with probability 1 p of being equal to x, and with probability p of being drawn from a continuous uniform distribution on the interval (0,1). Find I(X;Y).
- 6. Problem 9.2 from Cover-Thomas: Two-look Gaussian channel. Consider the ordinary Gaussian channel with two correlated looks at X, that is, $Y = (Y_1, Y_2)$, where

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2$$

with a power constraint P on X, and $(Z_1, Z_2) \sim \mathcal{N}_2(0, K)$, where

$$K = \left[\begin{array}{cc} N & N\rho \\ N\rho & N \end{array} \right].$$

Find the capacity C for

- (a) $\rho = 1$
- (b) $\rho = 0$
- (c) $\rho = -1$
- 7. Let X be a nonnegative continuous random variable with pdf g(x) and mean μ . Let Y be a random variable with exponential density and mean μ (i.e. $f(y) = \frac{1}{\mu} e^{-y/\mu}$, $y \ge 0$). Show that $h(X) \le h(Y)$. (Hint: Evaluate the relative entropy D(g||f), where f is the pdf of Y.)
- 8. Problem 9.4 from Cover-Thomas: Exponential noise channels. $Y_i = X_i + Z_i$, where Z_i is i.i.d. exponentially distributed noise with mean μ . Assume that we have a mean constraint on the signal (i.e. $EX_i \leq \lambda$). Show that the capacity of such a channel is $C = \log(1 + \frac{\lambda}{\mu})$. (Note: This problem is misstated in the book. There is an additional constraint that the input to the channel is nonnegative, i.e. $X_i \geq 0$.)