Sentiment Analysis Machine Learning Presentation

By Timothy Chan

Agenda

- 1. Introduction to Sentiment Analysis
- 2. Pre-processing
- 3. Other steps Tokenization, Lemmatization
- 4. Models used and selection
- 5. Optimization
- 6. Test results + Live Demo
- 7. Next Steps

Sentiment Analysis for Business

What is Sentiment Analysis

Sentiment analysis is the process of analyzing the emotion expressed in a piece of text. It uses natural language processing and machine learning to categorize the sentiment as positive, negative, or neutral.

Business problems -

It is used for social media monitoring, brand reputation management, and customer feedback analysis. It is used for social media monitoring, brand reputation management, and customer feedback analysis.

- Identify and address negative sentiment
- improve customer satisfaction, based on customer feedback and market trends.

Objective of this project

Demonstrate the usage of machine learning to analyse tweets for sentiments. Explore possible prototypes/ use cases for further analysis.

Pre-processing

The data

18.7K Tweets from Twitter, sourced from Udemy

Positive tweets - 52.85% Negative tweets - 47.15%

The Cleaning

- Lower casing
- Replace all characters in the tweet_text column that are not alphabets (lowercase or uppercase) or hashtags (#) with a single whitespace character
- Stop words are common words such as "the", "and",
 "in", "of", etc. that are frequently used in a language but do not carry significant meaning on their own

```
textID
                        tweet text
                                                 sentiment
            1956967666 Layin n bed with a headad negative
            1956967696 Funeral ceremony...gloom negative
            1956967789 wants to hang out with fri positive
            1956968477 Re-pinging @ghostridah14 negative
            1956968636 Hmmm. http://www.djhe negative
            1956969035 @charviray Charlene my knegative
            1956969172 @kelcouch I'm sorry at leanegative
            1956969531 Choked on her retainers negative
            1956970047 Ugh! I have to beat this stunegative
            1956970424 @BrodyJenner if u watch inegative
            1956971206 So sleepy again and it's no negative
            1956971473 @PerezHilton lady gaga tv negative
            1956971586 How are YOU convinced th negative
            1956972444 On my way home n having negative
```

```
# Count the number of positive and negative tweets
sns.countplot(df['sentiment'])
# Print the percentage of positive and negative tweets
positive_tweets = len(df[df['sentiment'] == 'positive'])
negative_tweets = len(df[df['sentiment'] == 'negative'])
print('Percentage of positive tweets: (}%'.format(round(positive_tweets/len(df)*190, 2)))
print('Percentage of negative tweets: (}%'.format(round(negative_tweets/len(df)*190, 2)))
# Plot the distribution of tweet Lengths
df['tweet_length'] = df['tweet_text'].apply(lambda x: len(x))
sns.histplot(df['tweet_length'], kde=True)
# Print the average tweet Length
print('Average tweet length: {}'.format(round(np.mean(df['tweet_length']), 2)))

Percentage of positive tweets: 52.85%
Percentage of negative tweets: 47.15%
Average tweet length: 49.5
```

```
# Convert all text to lowercase

df['tweet_text'] = df['tweet_text'].apply(lambda x: x.lower())

# Remove unnecessary characters, numbers and symbols

df['tweet_text'] = df['tweet_text'].str.replace("[^a=zA-Ze]", " ")

# Remove stop words

stopwords_set = set(stopwords.words('english'))

def remove_stopwords(text):

text * [word for word in text.split() if word not in stopwords_set]

return ".join(text)

df['tweet_text'].apply(lambda x: remove_stopwords(x))

# Toberize the text

df['theet_text'] = df['tweet_text'].apply(lambda x: x.split())

# Print the first few rows of the cleaned data

print(df.head())
```

Other steps

Tokenization

Tokenization helps to convert unstructured text data into structured data that can be processed and analyzed by algorithms

tweet_text	text_lower	tokenized_text	lemmatized_text
Choked on her retainers	choked on her retainers	['choked', 'retainers']	choke retainer

Lemmatization

Lemmatization is the process of transforming a word into its base or dictionary form, known as the lemma. The goal of lemmatization is to reduce inflectional or variant forms of a word to a common base form, which can help to improve the accuracy of natural language processing or machine learning algorithms.

Word	Stemming	Lemmatization
information	inform	information
informative	inform	informative
computers	comput	computer
feet	feet	foot

Bag of Words (BoW)

Its used in Natural Language Processing (NLP) to convert a piece of text into numerical features that can be used in machine learning algorithms. BoW representation represents the text as a bag of its words, disregarding grammar and word order, but keeping track of the frequency of each word.

CountVectorizer from Scikit-learn, which is a BoW technique that converts the text into a matrix of token counts.

Results of different models

Naive Bayne

Accuracy: 0.8766684463427656 Precision: 0.8766429623329077 Recall: 0.8766684463427656 F1 Score: 0.8766253696557692

Optimizing the Model

- Use techniques such as grid search or random search to optimize the hyperparameters of the best performing model.
- Evaluate the optimized model on the test set to ensure that it generalizes well to new data.

```
# Define the hyperparameter grid to search over
param_grid = {
    'vect__max_features': [1000, 5000, 10000],
    'tfidf__use_idf': [True, False],
    'clf__penalty': ['l1', 'l2'],
    'clf__C': [0.1, 1, 10]
}
```

```
Best Parameters: {'clf_C': 0.1, 'clf_penalty': 'l2', 'tfidf_use_idf': False, 'vect_max_features': 1000}
Best Accuracy: 0.850476823062493
Accuracy (Logistic Regression): 0.8542445274959958
Precision (Logistic Regression): 0.8542176624399339
Recall (Logistic Regression): 0.8542445274959958
F1 Score (Logistic Regression): 0.8542271901068167
```


Test cases + Live Demo

Test sentence	Results
Today is sunday, I am going to have fun!	positive with probability 0.89.
I want to be outside having fun	positive with probability 0.86
I have wonderful plans for the weekend	positive with probability 0.87.
Today is monday, I have alot of work to do	negative with probability 0.66.
Today is a sad day as its the last day of the class	negative with probability 0.94.
I wish we had a garden, we don't have money to buy one	negative with probability 0.56.
I wish we had a garden, let's go buy one now	positive with probability 0.53.

Next steps

- Develop script for Aspect / Featured based Sentiment Analysis
- Contextualise Sentiment Analysis for prototyping in different domains (eg: Mental health, Telco, Jewellery, Winery etc)

