SSN COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING COURSE ASSESSMENT PLAN

SUBJECT NAME : OPERATING SYSTEMS LAB

SUBJECT CODE : CS6413

DEGREE/YEAR/SECTIONS : B.E. CSE/II YEAR/ A & B

BATCH : 2016-2020

SEMESTER : IV (2017-18: EVEN)

NAME OF THE STAFF : S.RAJALAKSHMI & S.LAKSHMI PRIYA

OBJECTIVES:

- 1. Learn shell programming and the use of filters in the UNIX environment.
- 2. Be exposed to programming in C using system calls.
- 3. Learn to use the file system related system calls.
- 4. Be exposed to process creation and inter process communication.
- 5. Be familiar with implementation of CPU Scheduling Algorithms, page replacement algorithms and Deadlock avoidance.

Blooms Taxonomy

Remember	Understand	Apply	Analyze	Evaluate	Create
K1	K2	K3	K4	K5	K6

COURSE OUTCOMES

- 1. Create processes using basic UNIX system call (K3)
- 2. Implement IPC and analyze the various CPU Scheduling policies (K4).
- 3. Implement deadlock avoidance, and detection algorithms (K3).
- 4. Implement various page replacement algorithms (K3).
- 5. Develop applications using threads and implement file management techniques (K3).

ASSESSMENT MATRIX

	CO1	CO2	CO3	CO4	CO5
Lab Exercises	X	X	X	X	X
Model Exam	X	X	X	X	X

COURSE OUTCOMES MAPPED TO PROGRAMME OUTCOMES

COURSE OUTCOMES WHILL TO THOUGHNING OUTCOMES													
Cot					Program Outcomes								
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12
		K3	K4	K5	K4	-	K3	-	-	-	-	-	_
1	K3	3	2	0	2	0	3	0	0	2	2	0	0
2	K4	3	3	2	3	0	3	0	0	2	3	0	0
3	K3	3	2	2	2	0	3	0	0	2	3	0	0
4	К3	3	2	2	2	0	3	0	0	2	3	0	0
5	K3	3	2	2	2	0	3	0	0	2	2	0	0

Justification of CO- PO mapping

CO / PO		Knowledge level	Remarks
CO1	Create processes using basic UNIX system call (K3)	КЗ	To apply the knowledge Unix system calls and commands
CO2	Implement IPC and analyze the various CPU Scheduling policies (K4).	K4	To implement IPC and analyze the various scheduling algorithms
CO3	Implement deadlock avoidance, and detection algorithms (K3).	К3	To implement deadlock algorithms.
CO4	Implement various page replacement algorithms (K3).	К3	To implement various memory management algorithms
CO5	Develop applications using threads and implement file management techniques (K3).	K3	To implement thread and file management techniques
PO9	Contemporariness		Students will have practical knowledge in solving issues related to Operating system concepts.
PO10	Self-learning		Students will acquire the knowledge on basic concepts of OS and can learn any modern OS with ease.

Prepared By (S.RAJALAKSHMI & S.LAKSHMI PRIYA)

Verified By PAC Team

Approved By Dr. CHITRA BABU HOD-CSE