

# 3100 Homework 04: Spiderman's Workout

| Created | @October 6, 2025 10:12 PM |
|---------|---------------------------|
| ⊙ Class | CSCI 3100 Algorithms      |

## Spiderman's Workout

#### **Problem Decomposition**

Variant of Subset Sum problem, with constraints

#### **Simply Put:**

Given a list of positive integers m=[m0,m1,...,mn],

choose for each element either "+" (up) or "-" (down), applied sequentially, such that:

- 1. The cumulative sum never becomes negative at any point (Spiderman can't go below ground).
- 2. The final cumulative sum equals 0 (he ends back at ground level).
- 3. Among all such valid sequences, the **maximum cumulative sum** (the highest height he reaches) is **as small as possible**.

## **Subproblem Definition**

Let

be the **minimum possible peak height** (maximum height reached so far) along the path after taking the first | moves from the movement array

$$m = [m_0, m_1, m_2, \ldots, m_{n-1}],$$

and ending at current height h.

## **Recursion & Order of Subproblems**

#### Base case

At the beginning:

$$f(0,0) = 0$$

He starts on the ground and hasn't climbed anywhere, so the highest height (peak) reached so far is 0.

All other heights are unreachable:

$$f(0, h > 0) = \infty$$

#### Recursive step (for i > 0)

For each step  $[\cdot]$ , Spiderman chooses to go **Up** or **Down** by distance  $[m[\cdot-1]]$  (moves are 1-indexed in the theory).

#### Case 1 — Up move

He was previously at height h - m[i-1].

The new height is  $\mathbf{n}$ , and his peak might increase.

$$\mathrm{new}\ \mathrm{peak} = \mathrm{max}(f(i-1,\,h-m_{i-1}),\,h)$$

#### Case 2 — Down move

He was previously at height h + m[i-1].

Descending never raises the peak:

new peak = 
$$f(i-1, h+m_{i-1})$$

#### **Combined recurrence**

If both moves are possible, choose the one with the smaller peak:

$$f(i,h) = \min \Big( f(i-1,\, h+m_{i-1}), \; \max(f(i-1,\, h-m_{i-1}),\, h) \Big)$$

With the conditions:

h - m[i-1] ≥ 0 (can't go below ground)

Ignore any terms involving unreachable states (∞).

## **Boundary & termination**

After processing all n moves:

- If f(n, 0) < ∞, that's the minimal peak.
- If f(n, 0) = ∞, output "IMPOSSIBLE".

#### summary

| Symbol  | Meaning                                                         |
|---------|-----------------------------------------------------------------|
| m_i     | size of the i-th climb (distance)                               |
| h       | current height after i moves                                    |
| f(i, h) | minimal possible maximum height after first i moves ending at h |
| max()   | ensures we update the peak when climbing up                     |
| min()   | chooses the better of up/down options                           |
| Base    | f(0,0)=0                                                        |
| Answer  | f(n,0)                                                          |

#### Conclusion

```
f(i,h) = egin{cases} 0, & 	ext{if } i=0 	ext{ and } h=0; \ \infty, & 	ext{if } i=0 	ext{ and } h>0; \ \infty, & 	ext{if both transitions are invalid (unreachable);} \ f(i-1,\,h+m_{i-1}), & 	ext{if } h-m_{i-1}<0 	ext{ (can't go below ground);} \ \min \Big(f(i-1,\,h+m_{i-1}), \, \max(f(i-1,\,h-m_{i-1}),\,h)\Big), & 	ext{otherwise.} \end{cases}
```

Formally,

```
f(i,h) = \begin{cases} 0, & \text{if } i = 0 \text{ and } h = 0; \\ \infty, & \text{if } i = 0 \text{ and } h > 0; \\ f(i-1,h+m[i-1]), & \text{if } h-m[i-1] < 0 \text{ and } f(i-1,h+m[i-1]) < \infty; \\ \min \left( f(i-1,h+m[i-1]), \max(f(i-1,h-m[i-1]),h) \right), & \text{if } h-m[i-1] \geq 0; \\ \infty, & \text{if } (h-m[i-1] < 0 \text{ or } f(i-1,h-m[i-1]) = \infty) \text{ and } f(i-1,h+m[i-1]) = \infty. \end{cases}
```

# Using Basic Example [1, 1, 1, 1] (Bottom-up), from $i = 0 \sim i = n$ Step 0 — Base case

| i=0    | h=0 | h=1 | h=2 | h=3 | h=4 |
|--------|-----|-----|-----|-----|-----|
| f(0,h) | 0   | ∞   | ∞   | ∞   | ∞   |

Start on the ground, peak = 0.

Indexing is done from 1, 0th index doesn't exist (base case)

## Step 1 — Move 1 ( $m_o = 1$ )

| h | Came Down from Above (h+1) | Came Up from Below (h-1)       | f(1,h) |
|---|----------------------------|--------------------------------|--------|
| 0 | f(0,1)=∞                   | invalid                        | ∞      |
| 1 | f(0,2)=∞                   | max(f(0,0)=0, 1)=1             | 1      |
| 2 | f(0,3)=∞                   | $\max(f(0,1)=\infty,2)=\infty$ | ∞      |
| 3 | f(0,4)=∞                   | ∞                              | ∞      |
| 4 | ∞                          | ∞                              | ∞      |

| i=1    | h=0 | h=1 | h=2 | h=3 | h=4 |
|--------|-----|-----|-----|-----|-----|
| f(1,h) | ∞   | 1   | ∞   | ∞   | ∞   |

## Step 2 — Move 2 $(m_1 = 1)$

Now use row 1 to compute row 2.

| h | Came Down from Above (h+1) | Came Up from Below (h-1)       | f(2,h) |
|---|----------------------------|--------------------------------|--------|
| 0 | f(1,1)=1                   | invalid                        | 1      |
| 1 | f(1,2)=∞                   | $\max(f(1,0)=\infty,1)=\infty$ | ∞      |
| 2 | f(1,3)=∞                   | max(f(1,1)=1,2)=2              | 2      |
| 3 | f(1,4)=∞                   | $\max(f(1,2)=\infty,3)=\infty$ | ∞      |
| 4 | ∞                          | ∞                              | ∞      |

| i=2    | h=0 | h=1 | h=2 | h=3 | h=4 |
|--------|-----|-----|-----|-----|-----|
| f(2,h) | 1   | ∞   | 2   | ∞   | ∞   |

Reachable heights: 0 (UD) and 2 (UU).

## Step 3 — Move 3 $(m_2 = 1)$

Now from row 2.

| h | Came Down from Above (h+1) | Came Up from Below (h-1) | f(3,h) |
|---|----------------------------|--------------------------|--------|
| 0 | f(2,1)=∞                   | invalid                  | ∞      |
| 1 | f(2,2)=2                   | max(f(2,0)=1,1)=1        | 1      |

| h | Came Down from Above (h+1) | Came Up from Below (h-1)       | f(3,h) |
|---|----------------------------|--------------------------------|--------|
| 2 | f(2,3)=∞                   | $\max(f(2,1)=\infty,2)=\infty$ | ∞      |
| 3 | f(2,4)=∞                   | max(f(2,2)=2,3)=3              | 3      |
| 4 | f(2,5)=∞                   | ∞                              | ∞      |

| i=3    | h=0 | h=1 | h=2 | h=3 | h=4 |
|--------|-----|-----|-----|-----|-----|
| f(3,h) | ∞   | 1   | ∞   | 3   | ∞   |

## Step 4 — Move 4 $(m_3 = 1)$

Now from row 3.

| h | Came Down from Above (h+1) | Came Up from Below (h-1)       | f(4,h) |
|---|----------------------------|--------------------------------|--------|
| 0 | f(3,1)=1                   | invalid                        | 1      |
| 1 | f(3,2)=∞                   | $\max(f(3,0)=\infty,1)=\infty$ | ∞      |
| 2 | f(3,3)=3                   | max(f(3,1)=1,2)=2              | 2      |
| 3 | f(3,4)=∞                   | $\max(f(3,2)=\infty,3)=\infty$ | ∞      |
| 4 | f(3,5)=∞                   | max(f(3,3)=3,4)=4              | 4      |

| i=4    | h=0 | h=1 | h=2 | h=3 | h=4 |
|--------|-----|-----|-----|-----|-----|
| f(4,h) | 1   | ∞   | 2   | ∞   | 4   |

### **Final Result**

• Target cell: f(4, 0) = 1

• Meaning: minimal possible peak = 1

• Optimal path example: U D U D

# **Runtime Analysis**

• Time Complexity = O(n x m)

• n = number of movements

m = sum of all movements

• Space Complexity = O(m)

• Space Complexity can be optimized by using one row at a time.

# **Further Exploration**

| Modification                  | Adaptation required             | Change in DP structure |
|-------------------------------|---------------------------------|------------------------|
| Allow negative heights        | Relax boundary condition        | Domain of h expands    |
| Minimize total climb distance | Replace max() with +            | Objective changes      |
| Add direction-change penalty  | Add direction dimension d       | State space doubles    |
| Limit max building height H   | Add transition constraint       | Same recurrence        |
| Change ending condition       | Modify final selection          | Same table             |
| Count valid paths             | Use addition instead of min/max | Switch to counting DP  |