

EN2550 Final Exa...

B.Sc. Engineering Semester 4 Final Examination	RI LANKA ation Engineering n
EN2550—FUNDAMENTALS OF IMAGE PROCESSI	NG AND MACHINE VISION
me Allowed: 2 hours	January 202
ADDITIONAL MATERIAL	
None.	
INSTRUCTIONS TO CANDIDATES	
This paper contains 4 questions on 12 pages.	
Answer all the questions.	
• This examination accounts for 70% of the module assessment.	
This is a closed-book examination.	
\bullet The symbols used in this paper have their usual meanings.	
Clearly state any assumptions that you may make.	
 Answer the questions in the question paper itself. You may no will be disregarded in assessing. 	ot attach extra sheets. Any extra shee
 Neat and orderly presentation is important. 	
	Marks
	Q01
	Q02
	Q03
	1
	Q04
	-

$$\frac{\partial f}{\partial x} = \underbrace{f(x+1,y)}_{1} + \underbrace{f(x,y)}_{2} - \underbrace{f(x,y)}_{2} - \underbrace{f(x,y)}_{1} - \underbrace{f(x-1,y)}_{1}$$

$$= \underbrace{f(x+1,y)}_{2} + \underbrace{f(x+1,y)}_{1} - \underbrace{f(x,y)}_{1} - \underbrace{f(x,y)}_{1} - \underbrace{f(x-1,y)}_{1}$$

$$= \underbrace{f(x+1,y)}_{1} - \underbrace{f(x+1,y)}_{1} + \underbrace{f(x-1,y)}_{1}$$

Index no. EN2550

Q2. (a) Total least squares is useful in vision problems.

i. Show how to find the line parameters expressed as ax + by = d using this method in terms of point coordinates (x_i, y_i) , i = 1, ..., N, and U, in regular notation. [3]

ii. In a particular case, $\bar{x}=5.0$, $\bar{y}=13.1$. The eigenvalues of U^TU are 21.2, 4324.1 and corresponding eigenvectors are $[-0.8974, 0.4411]^T$, and $[-0.4411, -0.8974]^T$. Find the gradient m and intercept c of the total-least-squares-fit line.

(b) Figure Q2(b) shows the image 1 and 4 from the graffiti images, and the homography that maps image 1 to 4. Note the convention of axes.

Figure Q2(b): Image 1, image 4 and homography mapping image 1 to 4.

i. State the transformation that maps image 4 to image 1.

[2]

Page 5 of 12

Index no.		EN2556
	ii. Compute the locations of the corners of image 4 when mapped onto image 1.	[2
	ii. Compute the tocations of the corners of image 4 when mapped onto image 1.	(2
	iii. What is the size of the arrays needed to accommodate the stitched image after	er this map
	ping?	[2
	iv. What are two additional steps to make the stitched result visually pleasing?	[2
(c) 1	The scale-normalized Laplacian of Gaussian (LoG) for circularly symmetric blob de $\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial \nu^2} \right),$	tection is
,	where g is the bi-variate Gaussian.	
	 Obtain an expression for the radius of a black circle in a white background that the maximum response to this operator. 	t would giv
	ii. What is the suitable value for σ , if black circles of radius 10 pixels are to be dete	cted. [2
	iii. Assume that two images of the scene—taken with two level of zoom—have	features de [2
	tected. How can the features be matched?	
	tected. Frow can the reatures be matched:	

Page 6 of 12

ndex n	0.	EN2550
	(d) A conveyor belt carries several types wrapped chocolate bars. Images of reference chocolate bars are available. The factory has the following requirements:	wrapped
	Counting the number of wrapped chocolate bars that pass along the belt.	
	 Determining if there are printing mistakes in comparison with references. 	
	i. Propose a system for counting.	[2]
	ii. Propose a method for locating printing mistakes.	[2]
Q3.	(a) A camera calibration software gave the following parameters for a particular camera:	
	$\alpha_x = 650,$ $\alpha_y = 650,$ $\beta_x = 303,$ $\beta_y = 242.$	
	The camera rotation matrix and the translation matrix with respect to the world coordin	nate sys-

tem are

 $R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and,} \quad \tilde{C} = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}^{\mathsf{T}}.$

[2]
[1]

Index no.	EN2550
iii. What will happen to the size of the image of an object when $\alpha=\alpha_x=\alpha_y$ increases	ase? [1]
(b) Consider the epilopar geometry of two cameras. Assume that the first camera C is origin with axes aligned with the world coordinate frame. The second camera C is R and a translation t with respect to the first camera. The intrinsic camera calibrat are K and K', respectively. x and x' are the images of the world point X in the first an camera, respectively.	as a rotation tion matrices d the second
i. Sketch the aforementioned epipolar geometry.	[2]
ii. Obtain an expression for the essential matrix E.	[1]
iii. Express epipolar lines associated with x and x' in terms of E.	[1]
iv. Derive an expression for the Fundamental matrix F in terms of E.	[1]
(c) Figure Q3(c) shows image I and I' , and point x_1 and x_2' . The fundamental matrix two cameras is $F = \begin{bmatrix} 0 & -0.1935 & 171.0789 \\ 0.1935 & 0 & 6850.4876 \\ -171.0789 & -6850.4876 & 0 \end{bmatrix}$	c relating the
i. Compute the epipolar line l_1' and express it in the $y = mx + c$ form.	[2]
ii. Compute the epipolar line I_2 and express it in the $y = mx + c$ form.	[2]
Page 8 of 12	

Index no. EN2550

Figure Q3(c): Image I and I', and point x_1 and x_2' .

	0	1	2	3		0	1	2	3		0	1	2	3
0	120	200	240	50	0	120	200	240	50	0	120	200	240	50
1	50	60	100	120	1	50	60	100	120	1	50	60	100	120
2	10	40	20	30	2	10	40	20	30	2	10	40	20	30
	i. Ti	resh	olding	_		ii.	k-m	eans		iii.	k-me	ans v	vith sp	patia

Figure Q3(d): Image and the grids for segmentation Q3d.

- iii. Accurately plot these epipolar lines on the given images.
- (d) Figure Q3(d) shows a 3 × 4 image.

 - i. Segment this image by thresholding with the threshold of 80.
 ii. Carry out one iteration of k-means clustering in the intensity space. Use Manhattan distance and K = 2. Select (0,3) and (2,0) as initial cluster centers.
 [3]
 - Carry out one iteration of k-means clustering in the intensity space and spatial space. Scale
 the spatial coordinated by 100. Use the parameters mentioned in Q3(d)ii.

Show the results in the grids in Figure Q3(d)

Q4.	(a)	Sate	the output of the following vision tasks:	[5]
		No.	Task	Output
		1.	Image classification	
		2,	Object detection	
		3.	Semantic segmentation	
		4.	Image captioning	
		5.	Panoptic segmentation	

Page 9 of 12

Index no. EN2550

(b) Consider a dataset of three classes of images, say, dogs, cats, and bunnies. An image is represented by a 5-dimensional vector. A liner classifier (after the learning process) is represented by

$$\mathbf{W} = \begin{bmatrix} -0.43 & 0.53 & -0.29 & -1.03 & 0.53 \\ -0.55 & -0.69 & 0.95 & -0.06 & 1.16 \\ 0.54 & -0.28 & -1.44 & -0.21 & -0.93 \end{bmatrix}, \text{ and}$$

$$\boldsymbol{b} = \begin{bmatrix} 2.64 & -0.64 & -3.27 \end{bmatrix}^{\mathsf{T}}.$$

The first row of W and \boldsymbol{b} is the one-vs-all classifier for dogs, the second for cats, and the third for bunnies

i.	State the steps for representing an image with a 5-dimensional feature vector.	[2

- ii. Determine the class of a image with feature vector $\mathbf{x} = \begin{bmatrix} 5.31 & 1.51 & 1.61 & 8.1 & -8.45 \end{bmatrix}^T$.
- (c) Consider a neural network implementation for MNIST digit recognition. Assume that each digit is 28 × 28 in grayscale. There are 10 digits, from 0 to 9. The network flattens the input first. There is a dense layer of 128 nodes, a dropout layer of 20% dropout and a 10-node dense softmax output layer.
 - i. Sketch the network.

Page 10 of 12

Index no.		EN2550
ii	i. Compute the number of learnable parameters in this network.	[2]
iii	i. If the network is altered to have, first, a convolutional layer of (3×3) convolution filters, followed by a max-pooling layer of (2×2) pooling window, and then the aftioned dense network, compute the number of learnable parameters.	
	filters, followed by a max-pooling layer of (2 × 2) pooling window, and then the af	foremen-
	filters, followed by a max-pooling layer of (2×2) pooling window, and then the at tioned dense network, compute the number of learnable parameters.	[3]
(d) Co wa an Ass 20	filters, followed by a max-pooling layer of (2 × 2) pooling window, and then the af	express- dar of di- e Q4(d))
(d) Co wa am Ass 20 izo	filters, followed by a max-pooling layer of (2 × 2) pooling window, and then the at tioned dense network, compute the number of learnable parameters. In a sider an in-vehicle vision system the recognizes speed-limit traffic signs along an any. There are several such speed limits, e.g., 50, and 100. A speed limit sign is circuneter 450 mm with a red border and black numbers in white background (e.g., Figur sume that the system has to detect these signs irrespective of the distance within a m to a maximum dictated by the camera. The resolution of the camera is 2,048 × 1,250.	express- dar of di- e Q4(d)). range ol

Index no.	50
	Figure Q4(d): A example of a speed sign.
ii.	Suggest a conventional method for detection. [3]
III.	How can the same camera be used for obstacle detection?
	Page 12 of 12