METADATA MATRIX

Food Forecasting Analysis

Name: Anuradha Deepak Dhavale

College: MIT Academy of Engineering

Branch: Electronics and Telecommunication

Approach to solving the problem

- 1) Analyze the dataset
- 2) Figuring out features which could be useful
- 3) Selecting the factors which are contributing more
- 4) Selecting tool for Dashboard building PowerBi
- 5) Based on selected features choosing appropriate charts
- 6) Applying slicer
- 7) Applying filter to various charts
- 8) Deriving insights from the charts

Dashboard

In this dashboard I have Food Forecasting Analysis based on the three-dataset provided. For developing this dashboard. I have made use of slicer for Centre ID, Centre Type, Cuisine, City Code and Category of different meals. Chart details and insights drawn from them are as follows

1) KPI Chart: shows the overall number of number of orders and average base price. Meal company will get the fixed value about overall number of meal orders and their average base price. Based on the demand they can increase or decrease the base price in order to increase the profit.

2) Line Chart: Shows details about the number orders week wise.

According to graph week 48 has maximum number of order.

From this insight company what was reason of increasing order in particular week and accordingly look for weeks in future to grab the opportunity of increasing the sales

3) Bar Chart: Comparison between the category of food meals based on their number of orders. This is further categorised according to type of centre. After analysing this Beverages have maximum number of orders. So we need to keep beverages in stock with maximum quantity.

4) Table Chart: To get gist from the larger dataset about region code the number of orders from that region, the average base price and the centre type. It could be observed that region 56 of type A and B are performing well as per number of orders

region_code	Sum of num_orders	Average of base_price	center_type ^
56	34843144	352.82	TYPE_A
56	17894183	354.73	TYPE_B
77	12688539	356.66	TYPE_A
34	12209875	357.80	TYPE_A
56	7782864	349.15	TYPE_C
34	6266222	363.42	TYPE_B
34	5575636	345.37	TYPE_C
77	4002981	347.74	TYPE_C
77	3838133	364.31	TYPE_B
85	3466437	347.00	TYPE_A
Total	119557485	354.16	V

5) Area Chart: Here comparison between the centre id and area occupied. Region with less region occupied could be increased further based sales of meal from that region

6) Pie Chart: Shows the cuisine and number of orders received. Thai cuisine is the most ordered cuisine. So meal coming under this category should be given more preference for storage.

