中国剩余定理简介 (CRT): 从入门到放弃

中国剩余定理 (CRT) 在公钥密码学中非常重要,是优化计算性能的一种常用技术。本次梳理一下CRT 相关的知识。

0. 从入门

CRT最早是被孙子提出,用来进行兵力统计。他发现,如果士兵:

- 1. 3人一列,则剩余2人;
- 2.5人一列,则剩余3人;
- 3.7人一列,则剩余2人;

那么士兵的总人数应该是 23 人 (人数 $< 3 \times 5 \times 7$)。

推广一下,对于给定的 x 和 互素的 p_1, p_2, p_3 ,我们有

$$egin{aligned} r_1 &= x \pmod{p_1}, \ r_2 &= x \pmod{p_2}, \ r_3 &= x \pmod{p_3} \end{aligned}$$

那么,我们在 $[0, p_1p_2p_3)$ 之内可以确定唯一的 x 满足上述要求。

1. 到放弃

1.1 定义

理论上,CRT描述了两个群之间的同构(isomorphisms, $\mathbb{G} \hookrightarrow \mathbb{H}$):对于给定的 $x \in \mathbb{G}$,我们可以找到其在群 \mathbb{H} 中的对应元素。该映射是一一对应的,并且对于 \mathbb{G} 中的操作,在 \mathbb{H} 都可以进行对应计算。而进行这种映射的主要原因则是有些计算在 \mathbb{G} 复杂度很高,却能在 \mathbb{H} 中高效计算。

接下来以两个模数 N=pq其中p,q>1且互素为例 (Case of two moduli),梳理CRT的一些重要知识点

定义: 令 N=pq,其中p,q>1且互素,那么 $\mathbb{Z}_N \hookrightarrow \mathbb{Z}_p \times \mathbb{Z}_q$ 。进一步,定义映射 f :

$$f(x) \stackrel{def}{=} ([x \pmod{p}], [x \pmod{q}]),$$

其中 $x \in \mathbb{Z}_N$ 。

另外一种常见的表述则是 $p|x-r_1,q|x-r_2$,其中 $0 \le r_1 < p$, $0 \le r_2 < q$ 。其实,此处的 r_1 和 r_2 就是模约减对应的余数。

1.2 运算

CRT支持加法、乘法和指数计算。例如对于加法,有

$$egin{aligned} f(a+_N b) &= ([a+_N b \pmod p)], [a+_N b \pmod q)] \ &= ([a+b \pmod p)], [a+b \pmod q)] \ &= ([a \pmod p)], [a \pmod q)] oxdown ([b \pmod p)], [b \pmod q)]) = f(a) oxdown f(b) \end{aligned}$$

其中 $+_N$ 表示在 \mathbb{Z}_N 中的加法, \mathbb{H} 表示 $\mathbb{Z}_p \times \mathbb{Z}_q$ 下的加法。 一般的,利用CRT计算 $g_1 \circ g_2 \ (g_1, g_2 \in \mathbb{G})$ 的步骤如下:

- 1. 计算映射 $h_1 = f(g_1), h_2 = f(g_2)$, ;
- 2. 在 \mathbb{H} 中计算 $h = h_1 \circ_{\mathbb{H}} h_2$;
- 3. 计算 $g = f^{-1}(h)$.

1.3 f^{-1}

对于 $f(x) = (x_p, x_q)$, 我们有

$$(x_p,x_q) = x_p \cdot (1,0) + x_q \cdot (0,1)$$

因此,如果能找到 $1_p,1_q\in\mathbb{Z}_N$ 满足 $f(1_p)=(1,0),f(1_q)=(0,1)$,那么则有

$$f^{-1}(x_p,x_q)=[x_p\cdot 1_p+x_q\cdot 1_q\pmod N]$$

而由于 gcd(p,q) = 1,必然存在 X, Y 满足

$$Xp + Yq = 1$$

由于 $Yq\pmod q=0$ 且 $Yq=1-Xp=1\pmod p$,所以 $[Yq\pmod N]=1_p$ 。同理 $[Xp\pmod N]=1_q$ 。故,求 $f^{-1}(x_p,x_q)$ 的算法如下:

- 1. 计算 X, Y 得到 Xp + Yq = 1;
- 2. $\Leftrightarrow 1_p = [Yq \pmod{N}], \ 1_q = [Xp \pmod{N}];$
- 3. 计算 $[x_p \cdot 1_p + x_q \cdot 1_q \pmod{N}]$ 。

上述性质都可以拓展到多个模数 (General Case), 具体可以参考链接

另一个比较重要的点则是x的存在性和唯一性。该方面的证明可以参考柯俊明整理的资料。