Frühjahr 17 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x + y^2$. Bestimmen Sie für jedes r > 0 die Menge aller kritischen Punkte von f unter der Nebenbedingung $x^2 + y^2 = r^2$ und geben Sie jeweils mit Begründung an, ob es sich bei diesen um lokale Maxima oder Minima handelt.

Lösungsvorschlag:

Man könnte die Methode von Lagrange benutzen, einfacher ist es aber die Nebenbedingung nach $y^2=r^2-x^2$ aufzulösen und das in f einzusetzen. Für alle $(x,y)\in\mathbb{R}^2$ mit $x^2+y^2=r^2$ gilt nämlich $f(x,y)=x+y^2=x+r^2-x^2$. Weiterhin ist $x^2\leq x^2+y^2=r^2$ woraus durch Radizieren $|x|\leq r$ folgt. Natürlich gibt es für alle x mit $|x|\leq r$ auch ein $(x,y)\in\mathbb{R}^2$ mit $x^2+y^2=r^2$, nämlich $(x,\pm\sqrt{r^2-x^2})$. Wir bestimmen also die Extrema der Funktion $g:[-r,r]\to\mathbb{R},\ g(x)=r^2+x-x^2$. Diese besitzt als stetige Funktion auf einem kompakten, nicht leeren Intervall natürlich globale Maxima und Minima. Wegen g'(x)=1-2x ist der einzig kritische Punkt im Innern des Intervall $x=\frac{1}{2}$. Wir müssen aber auch die Randwerte betrachten. Es gilt $g(-r)=-r,g(r)=r,g(\frac{1}{2})=r^2+\frac{1}{4}$, wobei im letzten Fall noch $r>\frac{1}{4}$ gefordert werden muss. Wir werden nun zwei Fälle unterscheiden:

- $0 < r \le \frac{1}{2}$: In diesem Fall ist -r das Minimum und r das Maximum. Aus $x^2 + y^2 = r^2$, folgt dann in beiden Fällen y = 0, weshalb in diesem Fall die Funktion f genau bei (-r,0) ein Minimum mit Wert -r und bei (r,0) ein Maximum mit Wert r hat. Man beachte, dass durch $r > \frac{1}{2}$ kein zusätzliches Extremum entsteht.
 - $r=\frac{1}{2}$: Wir haben die gleichen Kandidaten wie im vorherigen Fall aber zusätzlich den Kandidaten $x=\frac{1}{2}$ mit $g(\frac{1}{2})=r^2+\frac{1}{4}>r$, denn das quadratische Polynom $h(r)=r^2-r+\frac{1}{4}$ hat als Nullstellen genau die Punkte $r=\pm\frac{1}{2}$ und positiven Leitkoeffizienten, ist für $r>\frac{1}{2}$, also strikt positiv. Hier ist also x=-r das globale Minimum für g und wieder (-r,0) das globale Minimum für f, während $x=\frac{1}{2}$ das globale Maximum für g und die Punkte $(\frac{1}{2},\pm\sqrt{r^2-\frac{1}{4}})$ sind die globalen Maxima von f unter der Nebenbedingung.

Die Aufgabe ist damit zwar gelöst, zur Probe werden wir aber noch die Lagrangemethode probieren. Die Nebenbedingung wird zu $g(x,y)=x^2+y^2-r^2=0$ aufgelöst und wir erhalten $\nabla g(x,y)=2(x,y)^{\rm T}\neq 0$ für alle $(x,y)\in\mathbb{R}^2$ mit $x^2+y^2=r^2$. Die Methode ist also anwendbar. Die Lagrangefunktion $L(x,y,\lambda)=y+x^2+\lambda g(x,y)$ hat als Gradienten $\nabla L(x,y,\lambda)=(1+2\lambda x,2y(1+\lambda),x^2+y^2-r^2)^{\rm T}$. Damit dieser verschwindet, muss $x\neq 0\neq \lambda$ gelten und wir können nach $\lambda=-\frac{1}{2x}$ auflösen. Die zweite Komponente verschwindet genau für y=0 oder $1+\lambda=0$, was mit $\lambda=-\frac{1}{2x}$ wiederum äquivalent zu $x=\frac{1}{2}$ ist. Die dritte Gleichung liefert für y=0 die Punkte $x=\pm r$ und ist für $x=\frac{1}{2}$ unlösbar, falls $x<\frac{1}{2}$ gilt, liefert für $x>\frac{1}{2}$ aber $y=\sqrt{r^2-\frac{1}{4}}$. Wir erhalten also genau die gleichen Kandidaten wie zuvor und eine analoge Diskussion reproduziert unser Ergebnis, wenn man zusätzlich beachtet, dass die Funktion x=10 globales Maximum und Minimum besitzt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$