Primitive Skill-based Robot Learning from Human Evaluative Feedback

Ayano Hiranaka*, Minjune Hwang*, Sharon Lee, Chen Wang, Li Fei-Fei, Jiajun Wu, Ruohan Zhang Stanford University

RL in the real world is **sample inefficient**.

RL in the real world has challenges in reward design.

RL in the real world can be dangerous.

Goal of Our Work

Robot RL in Real World

Sample Inefficiency

Sparse Rewards

Safety Concerns

Method: Network Architecture

Method: Primitive Skills

pick (x, y, z)

place (x, y, z)

push (x, y, z, δ)

Skills designed with operational space controller (OSC) and deployed on Franka arm

Method: Evaluation without Execution

Sample Rollouts for Long-Horizon Tasks

Cooking Hotdog

Sweeping

Putting Toy Away

Learned policy can recover from errors!

Result Highlights

Compared to baselines:

Training Outcome

9x higher success rate

Safety

3-7x fewer safety violations

Summary

Thank You

Visit Our Poster

10:00-11:30 am, Hall E

Contact Info

ayanoh@stanford.edu, mjhwang@stanford.edu

Website

