Conversion table for the variables in the core_functions.R file

January 25, 2018

In this file it is provided a glossary for the variables defined in the core_functions.R file, using the same notation of the paper Rigon, Durante and Torelli (2017). We describe these variables following the notation of the usage choice model, as in Section 3 of the paper. The notation for the reversibility and the method choice models proceeds in a similar manner. The elements of the glossary are listed below following the order of appearance in the core_functions.R file.

- The design matrix X_1 is denoted with X_Fix.
- The binary indicators z_{ij1} are contained in the vector y.
- The number of observations n_i is denoted with n.
- The precision matrix B^{-1} is denoted with P_Fix.
- The prior hyperparameters (a_{τ_1},b_{τ_1}) are denoted with a_tau and b_tau, respectively.
- \bullet The precision hyperparameter $\sigma_{\mu k}^{-2}$ is denoted with tau_mu.
- The number of mixture components H is denoted with H.
- The prior hyperparameters $(a_{\lambda}, b_{\lambda})$ are denoted with a_lambda and b_lambda, respectively.
- The B-spline design matrix H_1 is denoted with the matrix B.
- The rank of the penalty matrix rank(D) is denoted with rankD.
- ullet The penalty matrix $oldsymbol{D}$ is denoted with DtD.
- The random intercept μ_{i1} are contained in the vector beta_RF.
- The vector of parameters β_1 is denoted with beta_Fix.
- The vector of parameters γ_1 is denoted with beta_spline.
- The spline component of the linear predictor, whose elements are $f_1(\mathsf{age}_{ij})$, is denoted $\mathsf{eta_spline}$.
- The random effect component of the linear predictor, whose elements are the corresponding random intercepts μ_{i1} , is denoted eta_RF.
- The fixed effect component of the linear predictor, whose elements are $\boldsymbol{x}_{ij}^{\intercal}\boldsymbol{\beta}_{1}$, is denoted with eta.Fix.
- The diagonal of the matrix Ω_1 is stored in the vector omega.
- The cluster indicators G_{i1} are contained in the vector S.
- The means $\bar{\mu}_{h1}$ are contained in the vector theta_RF.
- The smoothing parameter λ is denoted with lambda.

- The precision σ_1^{-2} is denoted with tau.
- The mixture weights $(\nu_{11}, \dots, \nu H1)$ are denoted with nu.

All these quantities are repeatedly replaced during the execution of the Gibbs sampler and they are stored in vectors, matrices or arrays having the same name as in the list above, but with the suffix $_$ out added. For instance, the β_1 coefficients are stored in the vector beta_Fix_out.