Injecting Hamiltonian Architectural Bias into Deep Graph Networks

Al4Science Talk by Simon Heilig¹ & Alessio Gravina²

RUHR UNIVERSITÄT BOCHUM

¹ ELLIS Ph.D. Student, Ruhr University Bochum

² Ph.D. Candidate, University of Pisa

Outline

- Background
 - ML on Graphs
 - Message Passing Neural Networks
 - Neural ODEs and Hamiltonian Dynamics
- Contribution
 - (Port-)Hamiltonian Graph Neural ODE
 - Theoretical Properties
- Experimental Validation
 - Graph Transfer
 - Graph Property Prediction
 - Long Range Graph Benchmark

Background

Motivation: ML on Graphs

Message Passing Neural Networks

Ref: [1]

Graph Coupled Neural ODEs

$$rac{\mathrm{d}\mathbf{x}_{u}(t)}{\mathrm{d}t} = \sigma\left(\mathbf{W}_{\mathsf{self}}\left(t\right)\mathbf{x}_{u}(t) + \varPhi_{\mathcal{G}}(\left\{\mathbf{x}_{v}(t) \,:\, v \in \mathcal{N}_{u}
ight\}, t) + \mathbf{b}(t)
ight)$$

Ref: [4]

The Long-Range Regime

Under Reaching

Over Squashing

Over Smoothing

Hamiltonian Dynamics

Example (Equations of Motion)

$$H(\mathbf{p}, \mathbf{q}) = T(\mathbf{p}) + U(\mathbf{q}), \quad \text{with } T = \frac{1}{2} \sum_{i=1,\dots,n} \frac{\|\mathbf{p}_i\|^2}{m_i}, U = -\sum_{1 \leq i < j \leq n} \frac{Gm_i m_j}{\|\mathbf{q}_j - \mathbf{q}_i\|}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^{3n}$$

Definition (Hamiltonian Dynamics)

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial H}{\partial \mathbf{q}}(\mathbf{p}, \mathbf{q}), \ \frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{p}, \mathbf{q})$$

$$\Leftrightarrow \frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} = \mathcal{J}\nabla_{\mathbf{y}}H(\mathbf{y}(t)),$$

where
$$\mathbf{y} = (\mathbf{p}, \mathbf{q})^{ op} \in \mathbb{R}^{2d}$$
 and $\mathcal{J} = \begin{pmatrix} \mathbf{0} & -\mathbf{I}_d \\ \mathbf{I}_d & \mathbf{0} \end{pmatrix}$

Ref: [5]

(Port-)Hamiltonian DGN

Hamiltonian Inspired Message Passing

$$\text{Step 1)} \quad \mathbf{y} \coloneqq \begin{pmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_n \\ \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_n \end{pmatrix} = \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} \in \mathbb{R}^{nd}, \text{ with } \begin{pmatrix} \mathbf{p}_u \\ \mathbf{q}_u \end{pmatrix} \coloneqq \mathbf{x}_u \in \mathbb{R}^d, \text{ and } H_{\mathcal{G}}(\mathbf{y}) \coloneqq \sum_{u \in \mathcal{V}} \tilde{\sigma}(\mathbf{W}\mathbf{x}_u + \varPhi_{\mathcal{G}}(\mathbf{y}, \mathcal{N}_u) + \mathbf{b})^\top \mathbf{1}_d$$

Step 2)
$$\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} = \mathcal{J}\nabla_{\mathbf{y}}H_{\mathcal{G}}(\mathbf{y}(t)) \Leftrightarrow \frac{\mathrm{d}\mathbf{p}(t)}{\mathrm{d}t} = -\nabla_{\mathbf{q}}H_{\mathcal{G}}(\mathbf{y}(t)), \frac{\mathrm{d}\mathbf{q}(t)}{\mathrm{d}t} = \nabla_{\mathbf{p}}H_{\mathcal{G}}(\mathbf{y}(t))$$
$$\Leftrightarrow \frac{\mathrm{d}\mathbf{x}_{u}(t)}{\mathrm{d}t} = \begin{pmatrix} -\nabla_{\mathbf{q}_{u}}H_{\mathcal{G}}(\mathbf{y}(t)) \\ \nabla_{\mathbf{p}_{u}}H_{\mathcal{G}}(\mathbf{y}(t)) \end{pmatrix} = \mathcal{J}_{u}\nabla_{\mathbf{x}_{u}}H_{\mathcal{G}}(\mathbf{y}(t)) \quad , \forall u \in \mathcal{V}$$

 $\frac{\mathrm{d}H_{\mathcal{G}}}{\mathrm{d}t} = 0$

Continuous and Discrete Perspective

The Continuous Dynamic

$$\frac{\mathrm{d}\mathbf{x}_u(t)}{\mathrm{d}t} = \mathcal{J}_u \nabla_{\mathbf{x}_u} H_{\mathcal{G}}(\mathbf{y}(t)) = \mathcal{J}_u \left[\mathbf{W}^{\top} \sigma(\mathbf{W} \mathbf{x}_u(t) + \boldsymbol{\varPhi}_{\mathcal{G}}(\mathbf{y}, \mathcal{N}_u) + \mathbf{b}) + \sum_{v \in \mathcal{N}_u \cup \{u\}} \frac{\partial \boldsymbol{\varPhi}_{\mathcal{G}}(\mathbf{y}, \mathcal{N}_v)}{\partial \mathbf{x}_u(t)}^{\top} \sigma(\mathbf{W} \mathbf{x}_v(t) + \boldsymbol{\varPhi}_{\mathcal{G}}(\mathbf{y}, \mathcal{N}_v) + \mathbf{b}) \right]$$

Symplectic Integration

$$\begin{pmatrix} \mathbf{p}_{u}^{(n+1)} \\ \mathbf{q}_{u}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{u}^{(n)} \\ \mathbf{q}_{u}^{(n)} \end{pmatrix} + \epsilon \mathcal{J}_{u} \begin{pmatrix} \nabla_{\mathbf{p}_{u}} H_{\mathcal{G}}(\mathbf{p}^{(n+1)}, \mathbf{q}^{(n)}) \\ \nabla_{\mathbf{q}_{u}} H_{\mathcal{G}}(\mathbf{p}^{(n+1)}, \mathbf{q}^{(n)}) \end{pmatrix} \quad , \forall u \in \mathcal{V}$$

Assumptions on
$$\mathbf{W}$$
 and \mathbf{V} for $\Phi_{\mathcal{G}}((\mathbf{p}^{(n+1)},\mathbf{q}^{(n)}),\mathcal{N}) = \sum_{i \in \mathcal{N}} \mathbf{V} \begin{pmatrix} \mathbf{p}_i^{(n+1)} \\ \mathbf{q}_i^{(n)} \end{pmatrix}$: $\mathbf{W} = \begin{pmatrix} \mathbf{W}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_q \end{pmatrix}$ and $\mathbf{V} = \begin{pmatrix} \mathbf{V}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_q \end{pmatrix}$

Conservation and Dissipation

VS.

Port-Hamiltonian Dynamics

$$\frac{\mathrm{d}\mathbf{x}_u(t)}{\mathrm{d}t} = \left(\mathcal{J}_u - \begin{bmatrix} D(\mathbf{q}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right) \nabla_{\mathbf{x}_u} H_{\mathcal{G}}(\mathbf{y}) + \begin{bmatrix} F(\mathbf{q}, t) \\ \mathbf{0} \end{bmatrix}, \quad \forall u \in \mathcal{V}.$$

Ref: [2]

Big Picture: Port-Hamiltonian DGN

Stability Analysis

Lemma (Eigenvalues of the Jacobian)

The local dynamics possess an Jacobian with eigenvalues purely on the imaginary axis, i.e.

$$\operatorname{Re}\left(\lambda_i\left(\frac{\partial}{\partial \mathbf{x}_u}\mathcal{J}_u\nabla_{\mathbf{x}_u}H_{\mathcal{G}}(\mathbf{y}(t))\right)\right) = 0$$
, $\forall i$

Lemma (Divergence-Free Hamiltonian Vector Field)

The vector field defined by the local dynamics is divergence-free everywhere, which means:

$$\nabla \cdot \mathcal{J}_u \nabla_{\mathbf{x}_u} H_{\mathcal{G}}(\mathbf{y}(t)) = 0$$
, everywhere

Hence, no sources or sinks can exist in the nonlinear dynamic.

Allows for long-range propagation!

Sensitivity Analysis I

Theorem (Lower Bound)

Given a Hamiltonian graph ODE, the BSM for each node can not vanish. In particular, for any sub-multiplicative matrix norm $\|\cdot\|$, the lower bound is:

$$\left\| \frac{\partial \mathbf{x}_u(T)}{\partial \mathbf{x}_u(T-t)} \right\| \ge 1, \forall t \in [0, T].$$

Given a discrete Hamiltonian graph ODE obtained by a symplectic discretization scheme, the BSM can not vanish:

$$\left\| \frac{\partial \mathbf{x}_u^{(L)}}{\partial \mathbf{x}_u^{(L-j)}} \right\| \ge 1, \forall j = 0, \dots, L-1.$$

Sensitivity Analysis II

Theorem (Upper Bound)

Given a Hamiltonian graph ODE, with a nonlinearity whose derivative is bounded globally, i.e., $\exists M > 0, |\sigma'(x)| \leq M$, and a neighborhood coupling of the form $\Phi_{\mathcal{G}} = \sum_{v \in \mathcal{N}_v} \mathbf{V} \mathbf{x}_v$, the BSM can be bounded above as:

$$\left\| \frac{\partial \mathbf{x}_u(T)}{\partial \mathbf{x}_u(T-t)} \right\|_2 \leq \sqrt{d} \exp(QT), \quad \forall t \in [0,T]$$

Where $Q = \sqrt{d} M \|\mathbf{W}\|_{2}^{2} + \sqrt{d} M \max_{i \in [n]} |\mathcal{N}_{i}| \|\mathbf{V}\|_{2}^{2}$.

Experiments

Experimental outline

- Assess the efficacy in **preserving long-range information** between nodes
 - Graph transfer tasks
 - Graph property prediction tasks
 - Long Range Graph Benchmark

- Propagate a label from a source to a target node

- Propagate a label from a source to a target node

- Propagate a label from a source to a target node
 - Increasing distance k

- Propagate a label from a source to a target node
 - Increasing distance k
 - Multiple graph topologies

Line graph

Ring graph

Crossed-Ring graph

- Propagate a label from a source to a target node
 - Increasing distance *k*
 - Multiple graph topologies
 - MSE as metric

Line graph

Ring graph

Crossed-Ring graph

Line graph

Line graph

Line graph

- Introduced in [4]
- Predict 3 graph properties

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter
 - Single source shortest path (SSSP)

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter
 - Single source shortest path (SSSP)

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter
 - Single source shortest path (SSSP)
 - Node eccentricity

- Introduced in [4]
- Predict 3 graph properties
 - Graph diameter
 - Single source shortest path (SSSP)
 - Node eccentricity

Table 1: Mean test $log_{10}(MSE)$ and std average over 4 training seeds on the Graph Property Prediction. Our methods and DE-DGN baselines are implemented with weight sharing. The first, second, and third best scores are colored.

Model	Eccentricity	Diameter	SSSP
MPNNs			
GCN	$0.8468 _{\pm 0.0028}$	$0.7424_{\pm 0.0466}$	$0.9499_{\pm 9.2\cdot 10^{-5}}$
GAT	$0.7909_{\pm 0.0222}$	$0.8221_{\pm 0.0752}$	$0.6951_{\pm 0.1499}$
GraphSAGE	$0.7863_{\pm 0.0207}$	$0.8645_{\pm 0.0401}$	$0.2863 _{\pm 0.1843}$
GIN	$0.9504_{\pm0.0007}$	$0.6131_{\pm 0.0990}$	$-0.5408_{\pm 0.4193}$
GCNII	$0.7640_{\pm 0.0355}$	$0.5287 _{\pm 0.0570}$	$-1.1329_{\pm 0.0135}$
DE-DGNs			
DGC	$0.8261 _{\pm 0.0032}$	$0.6028_{\pm0.0050}$	$-0.1483_{\pm 0.0231}$
GraphCON	$0.6833_{\pm 0.0074}$	$0.0964_{\pm 0.0620}$	$-1.3836_{\pm 0.0092}$
GRAND	$0.6602_{\pm 0.1393}$	$0.6715_{\pm 0.0490}$	$-0.0942_{\pm 0.3897}$
A-DGN	$0.4296_{\pm 0.1003}$	-0.5188 $_{\pm 0.1812}$	$-3.2417_{\pm 0.0751}$
Ours			
H-DGN	-0.7248 ± 0.1068	-0.5473 ± 0.1074	$\textbf{-3.0467}_{\pm 0.1615}$
PH-DGN		$-0.5385_{\pm 0.0187}$	$-4.2993_{\pm 0.0721}$

Graph Property Prediction

Table 1: Mean test $log_{10}(MSE)$ and std average over 4 training seeds on the Graph Property Prediction. Our methods and DE-DGN baselines are implemented with weight sharing. The first, second, and third best scores are colored.

Model	Eccentricity Diameter		SSSP	
MPNNs				
GCN	$0.8468 _{\pm 0.0028}$	$0.7424_{\pm 0.0466}$	$0.9499_{\pm 9.2\cdot 10^{-5}}$	
GAT	$0.7909_{\pm 0.0222}$	$0.8221_{\pm 0.0752}$	$0.6951_{\pm 0.1499}$	
GraphSAGE		$0.8645_{\pm 0.0401}$	$0.2863 _{\pm 0.1843}$	
GIN	$0.9504_{\pm0.0007}$	$0.6131_{\pm 0.0990}$	$-0.5408_{\pm 0.4193}$	
GCNII	$0.7640_{\pm 0.0355}$	$0.5287_{\pm 0.0570}$	$-1.1329_{\pm 0.0135}$	
DE-DGNs				
DGC	$0.8261 _{\pm 0.0032}$	$0.6028_{\pm0.0050}$	$-0.1483_{\pm 0.0231}$	
GraphCON	$0.6833_{\pm 0.0074}$	$0.0964_{\pm 0.0620}$	$-1.3836_{\pm 0.0092}$	
GRAND	$0.6602_{\pm 0.1393}$	$0.6715_{\pm 0.0490}$	$-0.0942_{\pm 0.3897}$	
A-DGN	$0.4296_{\pm 0.1003}$	-0.5188 $_{\pm 0.1812}$	-3.2417 $_{\pm 0.0751}$	
Ours				
H-DGN	-0.7248 ± 0.1068	-0.5473 ± 0.1074	-3.0467 $_{\pm 0.1615}$	
PH-DGN	-0.9348 ± 0.2097	$-0.5385_{\pm 0.0187}$		

than the best baseline on average

Graph Property Prediction

Table 1: Mean test $log_{10}(MSE)$ and std average over 4 training seeds on the Graph Property Prediction. Our methods and DE-DGN baselines are implemented with weight sharing. The first, second, and third best scores are colored.

Model	Eccentricity	Diameter	SSSP
MPNNs			
GCN	$0.8468 _{\pm 0.0028}$	$0.7424_{\pm 0.0466}$	$0.9499_{\pm 9.2\cdot 10^{-5}}$
GAT	$0.7909_{\pm 0.0222}$	$0.8221_{\pm 0.0752}$	$0.6951_{\pm 0.1499}$
GraphSAGE	$0.7863_{\pm 0.0207}$	$0.8645_{\pm 0.0401}$	$0.2863_{\pm 0.1843}$
GIN	$0.9504_{\pm0.0007}$	$0.6131_{\pm 0.0990}$	$-0.5408_{\pm 0.4193}$
GCNII	$0.7640_{\pm 0.0355}$	$0.5287_{\pm 0.0570}$	$-1.1329_{\pm 0.0135}$
DE-DGNs			
DGC	$0.8261 _{\pm 0.0032}$	$0.6028_{\pm 0.0050}$	$-0.1483_{\pm 0.0231}$
GraphCON	$0.6833_{\pm 0.0074}$	$0.0964_{\pm 0.0620}$	$-1.3836_{\pm 0.0092}$
GRAND	$0.6602_{\pm 0.1393}$	$0.6715_{\pm 0.0490}$	$-0.0942_{\pm 0.3897}$
A-DGN	$0.4296_{\pm 0.1003}$	-0.5188 $_{\pm 0.1812}$	$-3.2417_{\pm 0.0751}$
Ours			
H-DGN	-0.7248 ± 0.1068	-0.5473 ± 0.1074	$\textbf{-3.0467}_{\pm 0.1615}$
PH-DGN		-0.5385 $_{\pm 0.0187}$	$-4.2993_{\pm 0.0721}$

u.51 log(IVISE) better than the best baseline on average

Graph Property Prediction

Table 1: Mean test $log_{10}(MSE)$ and std average over 4 training seeds on the Graph Property Prediction. Our methods and DE-DGN baselines are implemented with weight sharing. The first, second, and third best scores are colored.

Model	Eccentricity	Diameter	SSSP
MPNNs			
GCN	$0.8468 _{\pm 0.0028}$	$0.7424_{\pm 0.0466}$	$0.9499_{\pm 9.2\cdot 10^{-5}}$
GAT	$0.7909_{\pm 0.0222}$	$0.8221_{\pm 0.0752}$	$0.6951_{\pm 0.1499}$
GraphSAGE	$0.7863_{\pm 0.0207}$	$0.8645_{\pm 0.0401}$	$0.2863_{\pm 0.1843}$
GIN	$0.9504_{\pm0.0007}$	$0.6131_{\pm 0.0990}$	$-0.5408_{\pm 0.4193}$
GCNII	$0.7640_{\pm 0.0355}$	$0.5287_{\pm 0.0570}$	$-1.1329_{\pm 0.0135}$
DE-DGNs			
DGC	$0.8261 _{\pm 0.0032}$	$0.6028_{\pm 0.0050}$	$-0.1483_{\pm 0.0231}$
GraphCON	$0.6833_{\pm 0.0074}$	$0.0964_{\pm 0.0620}$	$-1.3836_{\pm 0.0092}$
GRAND	$0.6602 _{\pm 0.1393}$	$0.6715_{\pm 0.0490}$	$-0.0942_{\pm 0.3897}$
A-DGN	$0.4296_{\pm 0.1003}$	-0.5188 $_{\pm 0.1812}$	$-3.2417_{\pm 0.0751}$
Ours			
H-DGN	-0.7248 ± 0.1068	-0.5473 ± 0.1074	-3.0467 $_{\pm 0.1615}$
PH-DGN		$-0.5385_{\pm 0.0187}$	

than the best MPNN on average U.ST 10g(WSE) Detter U.ST 10g(WSE) Detter Unan the best baseline on average

- Real-world benchmark
 - Peptide-func and Peptide-struct

- Real-world benchmark
 - Peptide-func and Peptide-struct
 - Multi-label graph classif.
 - Predict the peptide **function**

Is it an antiviral peptide? Is it an antibacterial peptide?

- Multi-dim graph regression
- Predict **structural properties** of peptides

Inertia mass? Length? Sphericity?

S.Heilig, A. Gravina Port-Hamiltonian DGN 19.08.2024 41

Table 2: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. The first, second, and third best scores are colored.

Model	Peptides-func AP↑	Peptides-struct MAE↓
MPNNs		D. T. T
GCN	$0.6860_{\pm 0.0050}$	$0.2460_{\pm 0.0007}$
GCNII	$0.5543_{\pm 0.0078}$	$0.3471_{\pm 0.0010}$
GINE	$0.6621 _{\pm 0.0067}$	$0.2473_{\pm 0.0017}$
GatedGCN	$0.6765_{\pm 0.0047}$	$0.2477_{\pm 0.0009}$
Multi-hop DGNs		
DIGL+MPNN+LapPE	$0.6830_{\pm 0.0026}$	$0.2616_{\pm 0.0018}$
MixHop-GCN+LapPE	$0.6843_{\pm 0.0049}$	$0.2614_{\pm 0.0023}$
DRew-GCN+LapPE	$\pmb{0.7150}_{\pm 0.0044}$	$0.2536_{\pm 0.0015}$
Transformers		
Transformer+LapPE	$0.6326_{\pm0.0126}$	$0.2529_{\pm 0.0016}$
SAN+LapPE	$0.6384_{\pm0.0121}$	$0.2683_{\pm 0.0043}$
GraphGPS+LapPE	$0.6535_{\pm 0.0041}$	$0.2500_{\pm 0.0005}$
DE-DGNs		
GRAND	$0.5789_{\pm 0.0062}$	$0.3418_{\pm 0.0015}$
GraphCON	$0.6022_{\pm 0.0068}$	$0.2778_{\pm 0.0018}$
A-DGN	$0.5975_{\pm 0.0044}^{-}$	$0.2874_{\pm 0.0021}$
Ours		
H-DGN	$0.6961_{\pm 0.0070}$	$0.2581_{\pm0.0020}$
PH-DGN	$0.7012_{\pm 0.0045}$	$0.2465_{\pm 0.0020}$

Table 2: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. The first, second, and third best scores are colored.

nciude PE and SE

Model	Peptides-func AP ↑	Peptides-struct MAE↓
MPNNs		0.7.5
GCN	$0.6860_{\pm 0.0050}$	$0.2460_{\pm 0.0007}$
GCNII	$0.5543_{\pm 0.0078}$	$0.3471_{\pm 0.0010}$
GINE	$0.6621_{\pm 0.0067}$	$0.2473_{\pm 0.0017}$
GatedGCN	$0.6765 _{\pm 0.0047}$	$0.2477_{\pm 0.0009}$
Multi-hop DGNs		
DIGL+MPNN+LapPE	$0.6830_{\pm 0.0026}$	$0.2616_{\pm 0.0018}$
MixHop-GCN+LapPE	$0.6843_{\pm 0.0049}$	$0.2614_{\pm 0.0023}$
DRew-GCN+LapPE	$0.7150_{\pm 0.0044}$	$0.2536 _{\pm 0.0015}$
Transformers		
Transformer+LapPE	$0.6326_{\pm 0.0126}$	$0.2529_{\pm 0.0016}$
SAN+LapPE	$0.6384 _{\pm 0.0121}$	$0.2683_{\pm 0.0043}$
GraphGPS+LapPE	$0.6535_{\pm 0.0041}$	$0.2500_{\pm 0.0005}$
DE-DGNs		
GRAND	$0.5789_{\pm 0.0062}$	$0.3418_{\pm 0.0015}$
GraphCON	$0.6022 _{\pm 0.0068}$	$0.2778_{\pm 0.0018}$
A-DGN	$0.5975_{\pm 0.0044}$	$0.2874_{\pm0.0021}$
Ours		
H-DGN	$0.6961_{\pm 0.0070}$	$0.2581_{\pm 0.0020}$
PH-DGN	$0.7012_{\pm 0.0045}$	$0.2465_{\pm 0.0020}$

Table 2: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. The first, second, and third best scores are colored.

IIICIUUE PE AIIU SE

Peptides-func Peptides-struct Model AP ↑ MAE ↓ **MPNNs** GCN $0.6860_{\pm 0.0050}$ $0.2460_{\pm 0.0007}$ **GCNII** $0.5543_{\pm 0.0078}$ $0.3471_{\pm 0.0010}$ **GINE** $0.6621_{\pm 0.0067}$ $0.2473_{\pm 0.0017}$ $0.6765_{\pm 0.0047}$ $0.2477_{\pm 0.0009}$ GatedGCN Multi-hop DGNs DIGL+MPNN+LapPE $0.6830_{+0.0026}$ $0.2616_{\pm0.0018}$ MixHop-GCN+LapPE 0.6843+0.0049 0.2614+0.0023 DRew-GCN+LapPE $0.7150_{\pm 0.0044}$ $0.2536_{\pm 0.0015}$ Transformers Transformer+LapPE $0.6326_{\pm 0.0126}$ $0.2529_{\pm 0.0016}$ $0.6384_{\pm 0.0121}$ $0.2683_{\pm 0.0043}$ SAN+LapPE GraphGPS+LapPE $0.6535_{\pm 0.0041}$ **0.2500**_{± 0.0005} DE-DGNs **GRAND** $0.5789_{\pm 0.0062}$ $0.3418_{\pm 0.0015}$ $0.6022_{\pm 0.0068}^{-}$ $0.2778_{\pm 0.0018}^{-}$ GraphCON $0.5975_{\pm 0.0044}$ $0.2874_{\pm 0.0021}$ A-DGN Ours H-DGN $0.6961_{\pm 0.0070}$ $0.2581_{\pm 0.0020}$ PH-DGN $0.7012_{+0.0045}$ $0.2465_{+0.0020}$

Better than MPNN, DE-DGN, graph transformers and rewiring

Conclusions

- PH-DGN is a new framework for DGNs.
 - Non-dissipative and non-conservative behaviors equilibrium
 - Effectively explore long-range dependencies
- PH-DGN can be used to reinterpret and extend any classical DGN
- Our results show that:
 - PH-DGN outperforms state-of-the-art models
 - Data-driven forces maximize long-range propagation efficacy

References

- [1] Di Giovanni, Francesco, et al. "Understanding convolution on graphs via energies". Transactions on Machine Learning Research (2023).
- [2] Desai, Shaan A., et al. "Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems". Phys. Rev. E 104 (3 Sept. 2021): 034312.
- [3] Galimberti, Clara Lucía, et al. "Hamiltonian Deep Neural Networks Guaranteeing Nonvanishing Gradients by Design". IEEE Transactions on Automatic Control 68, no. 5 (2023): 3155–3162.
- [4] Gravina, Alessio, Davide Bacciu, and Claudio Gallicchio. "Anti-Symmetric DGN: a stable architecture for Deep Graph Networks". In The Eleventh International Conference on Learning Representations. 2023.
- [5] Meyer, Kenneth R, and Daniel C Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. 3rd ed. Springer, Cham, 2017.

The Team

Alessio Gravina

Alessandro Trenta

Claudio Gallicchio

Davide Bacciu

Thank you for your attention

Arxiv

Simon Heilig

simon99.heilig@gmail.com

https://simonheilig.github.io/

Dept. of Computer Science, Ruhr University Bochum, Germany

Alessio Gravina

alessio.gravina@phd.unipi.it

http://pages.di.unipi.it/gravina/

Dept. of Computer Science, University of Pisa, Italy

Backup I

method	H error	solution error
Forward Euler	$\mathcal{O}(t\epsilon)$	$\mathcal{O}(t^2\epsilon)$
Symplectic Euler	$\mathcal{O}(\epsilon)$	$\mathcal{O}(t\epsilon)$
Störmer-Verlet	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(t\epsilon^2)$

Backup II

Architecture

Coupling: $\Phi_{\mathbf{p}}, \Phi_{\mathbf{q}} \in \{\text{Vanilla}, \text{GCN}\}$

Decoding: $\{\mathbf{p}, \mathbf{q}, (\mathbf{p}, \mathbf{q})\}$ Dimension: $d \in \{10, 20, 30\}$

Port-Hamiltonian

$$\begin{aligned} \mathbf{Dampening:} \ \ D_u(\mathbf{q}) = \begin{cases} \mathbf{w} \in \mathbb{R}^d \\ \operatorname{ReLU}(\mathbf{w}) \in \mathbb{R}^d \\ \operatorname{lin}(\tilde{d}, d) \circ \operatorname{ReLU} \circ \operatorname{lin}(\tilde{d}, \tilde{d}) \circ \operatorname{ReLU} \circ \operatorname{lin}(\tilde{d}, \tilde{d}) \circ \operatorname{ReLU} \circ \operatorname{lin}(\tilde{d}, \tilde{d}) \end{cases} \\ \operatorname{ReLU} \circ \sum_{i \in \mathcal{N}_v} \operatorname{lin}(d, d) \end{aligned}$$

Integration

Layers: $L \in \{1, 5, 10, 20, 30\}$ Time: $T \in \{0.1, 1, 2, 3\}$

Backup III

$$\begin{aligned} \text{H-DGN:} \qquad \mathbf{x}_{u}^{(\ell+1)} &= \begin{pmatrix} \mathbf{p}_{u}^{(\ell+1)} \\ \mathbf{q}_{u}^{(\ell+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{u}^{(\ell)} \\ \mathbf{q}_{u}^{(\ell)} \end{pmatrix} + \epsilon \mathcal{J}_{u} \begin{pmatrix} \nabla_{\mathbf{p}_{u}} H_{\mathcal{G}}(\mathbf{p}^{(\ell+1)}, \mathbf{q}^{(\ell)}) \\ \nabla_{\mathbf{q}_{u}} H_{\mathcal{G}}(\mathbf{p}^{(\ell+1)}, \mathbf{q}^{(\ell)}) \end{pmatrix}, \quad \forall u \in \mathcal{V} \\ \mathbf{p}_{u}^{(\ell+1)} &= \mathbf{p}_{u}^{(\ell)} - \epsilon \left[\mathbf{W}_{q}^{\top} \sigma(\mathbf{W}_{q} \mathbf{q}_{u}^{(\ell)} + \Phi_{\mathcal{G}}(\{\mathbf{q}_{v}^{(\ell)}\}_{v \in \mathcal{N}_{u}}) + \mathbf{b}_{q}) \right. \\ &\quad + \sum_{v \in \mathcal{N}_{u} \backslash \{u\}} \mathbf{V}_{q}^{\top} \sigma(\mathbf{W}_{q} \mathbf{q}_{v}^{(\ell)} + \Phi_{\mathcal{G}}(\{\mathbf{q}_{j}^{(\ell)}\}_{j \in \mathcal{N}_{v}}) + \mathbf{b}_{q}) \right] \\ \mathbf{q}_{u}^{(\ell+1)} &= \mathbf{q}_{u}^{(\ell)} + \epsilon \left[\mathbf{W}_{p}^{\top} \sigma(\mathbf{W}_{p} \mathbf{p}_{u}^{(\ell+1)} + \Phi_{\mathcal{G}}(\{\mathbf{p}_{v}^{(\ell+1)}\}_{v \in \mathcal{N}_{u}}) + \mathbf{b}_{p}) \right. \\ &\quad + \sum_{v \in \mathcal{N}_{u} \backslash \{u\}} \mathbf{V}_{p}^{\top} \sigma(\mathbf{W}_{p} \mathbf{p}_{v}^{(\ell+1)} + \Phi_{\mathcal{G}}(\{\mathbf{p}_{j}^{(\ell+1)}\}_{j \in \mathcal{N}_{v}}) + \mathbf{b}_{p}) \right]. \end{aligned}$$

PH-DGN:
$$\mathbf{p}_u^{(\ell+1)} = \mathbf{p}_u^{(\ell)} + \epsilon \left[-\nabla_{\mathbf{q}_u} H_{\mathcal{G}}(\mathbf{p}^{(\ell)}, \mathbf{q}^{(\ell+1)}) - D_u(\mathbf{q}^{(\ell+1)}) \nabla_{\mathbf{p}_u} H_{\mathcal{G}}(\mathbf{p}^{(\ell)}, \mathbf{q}^{(\ell+1)}) + F_u(\mathbf{q}^{(\ell+1)}, t) \right].$$