Concorso STEM 2021 Classe A026 – MATEMATICA

REGIONE ABRUZZO

Traccia n°117

Trigonometria: Applicazioni dei teoremi sui triangoli rettangoli

ANNAMARIA IEZZI

Martedì 27 luglio, 2021

Contesto e durata

Contesto:

Classe terza (II biennio) di un Istituto Tecnico settore tecnologico (*Costruzioni, Ambiente e Territorio*) composta da 25 alunni, di cui due appartenenti all'area BES:

- un'alunna con DSA discalculia,
- un alunno con DSA dislessia,

per cui verranno compilati due PDP (L.170/2010, integrata dalla D.M. sui BES del 27/12/2012).

Durata:

2 ore così ripartite:

- Prima ora: applicazioni dei teoremi sui triangoli rettangoli (richiami, teoria e esercizi).
- Seconda ora: lavoro di gruppo e verifica.

Obiettivi formativi

In riferimento alle linee guida degli istituti tecnici settore tecnologico della Direttiva n. 57 del 15 luglio 2010 (Secondo biennio - matematica):

Conoscenze

 Relazioni tra lati e angoli dei triangoli (trigonometria).

Abilità

 Applicare la trigonometria alla risoluzione di problemi di varia natura riguardanti i triangoli.

Competenze

 Utilizzare il linguaggio e i metodi propri della matematica per organizzare e valutare adeguatamente informazioni qualitative e quantitative.

Prerequisiti e Obiettivi Specifici di Apprendimento

Prerequisiti

- Circonferenza goniometrica e misura degli angoli in radianti.
- Funzioni goniometriche (seno, coseno, tangente, cotangente).
- Primo e secondo teorema sui triangoli rettangoli.

Obiettivi Specifici di Apprendimento

Conoscenze

- Area di un triangolo dati due lati e l'angolo compreso tra essi.
- Teorema della corda.

Abilità

 Applicare i teoremi sui triangoli rettangoli a problemi teorici e di realtà.

Competenze

 Applicare i teoremi sui triangoli rettangoli in situazioni pratiche quali la misura delle distanze e delle altezze di oggetti del mondo reale.

Metodi e sussidi

Metodologie didattiche (in presenza/a distanza):

- Lezione frontale partecipata;
- Problem solving;
- Cooperative learning (Think-pair-share, lavoro di gruppo, peer education);
- Game-based learning (Kahoot!);
- Didattica personalizzata per gli alunni con BES.

Sussidi:

- Libro di testo.
- Piattaforme: Kahoot!, Geogebra.
- In presenza: Lavagna LIM.
- A distanza: Tablet, piattaforma Zoom, Gradescope.

Fasi della lezione

• **Prima ora**: applicazioni dei teoremi sui triangoli rettangoli (richiami, teoria e esercizi).

• Seconda ora: lavoro di gruppo e verifica.

Mappa concettuale

Quiz con 5 domande sulla piattaforma Kahoot! per verificare:

- la conoscenza delle funzioni goniometriche;
- i teoremi sui triangoli rettangoli.

Quiz con 5 domande sulla piattaforma Kahoot! per verificare:

- la conoscenza delle funzioni goniometriche;
- i teoremi sui triangoli rettangoli.

Quiz con 5 domande sulla piattaforma Kahoot! per verificare:

- la conoscenza delle funzioni goniometriche;
- i teoremi sui triangoli rettangoli.

Richiami

Teorema (Primo teorema dei triangoli rettangoli)

In un triangolo rettangolo la misura di un cateto è uguale a quella dell'ipotenusa moltiplicata per il seno dell'angolo opposto al cateto o per il coseno dell'angolo adiacente al cateto.

Teorema (Secondo teorema dei triangoli rettangoli)

In un triangolo rettangolo la misura di un cateto è uguale a quella dell'altro cateto moltiplicata per la tangente dell'angolo opposto al primo cateto o per la cotangente dell'angolo adiacente al primo cateto.

Primo $a = c \sin(\beta) = c \cos(\alpha)$ $b = c \sin(\alpha) = c \cos(\beta)$

Secondo

$$a = b \tan(\beta) = c \cot(\alpha)$$

 $b = a \tan(\alpha) = c \cot(\beta)$

La **pendenza** (media) di una salita è il rapporto tra il dislivello e la proiezione del tratto di salita sul piano dell'orizzonte:

$$m = \frac{\overline{BC}}{\overline{AB}} = \tan(\theta).$$

Problema

Vogliamo misurare la pendenza di una salita e disponiamo di:

- Un'asta lunga 1 metro
- Una livella torica
- Un metro

Come facciamo?

(5 min di brainstorming)

Ricordiamo che la pendenza è

$$m = \tan(\theta)$$

Ricordiamo che la pendenza è

$$m = \tan(\theta) = \frac{a}{1} = a.$$

Applicazioni teoriche: area di un triangolo

Vogliamo calcolare l'area di un triangolo dati due lati e l'angolo compreso fra essi:

Esempi domande guida:

- Cosa ci manca per il calcolo dell'area?
- Come possiamo applicare i teoremi sui triangoli rettangoli?

Dal primo teorema dei triangoli rettangoli otteniamo:

$$\overline{BH} = b\sin(\alpha),$$

e quindi

$$Area(ABC) = \frac{1}{2}ab\sin(\alpha).$$

Teorema (Area di un triangolo)

La misura dell'area di un triangolo è uguale al semiprodotto delle misure di due lati e del seno dell'angolo compreso fra essi.

Applicazioni teoriche: teorema della corda

Vogliamo calcolare la misura di una corda di una circonferenza, dati il raggio e la misura di un angolo alla circonferenza che insiste sulla corda:

Perché il testo parla di **un** angolo alla circonferenza? Come possiamo utilizzare l'informazione sul raggio?

Cerchiamo di capirlo con una semplice animazione su

Ge&Gebra

Sia ABC' uno dei due triangoli rettangoli inscritti nella circonferenza di cateto AB:

Abbiamo che $\overline{AC'}=2r$ e dal primo teorema dei triangoli rettangoli otteniamo:

$$\overline{AB} = 2r\sin(\alpha)$$

Teorema (Teorema della corda)

In una circonferenza la misura di una corda è uguale al prodotto della misura del diametro per il seno di uno degli angoli alla circonferenza che insistono sulla corda.

Un corollario del teorema della corda

Vogliamo calcolare il raggio della circonferenza cincoscritta a un triangolo, di cui conosciamo almeno la misura di un lato e del corrispondente angolo opposto:

Dal teorema della corda sappiamo che $a = 2r \sin(\alpha)$, quindi

$$r = \frac{a}{2\sin(\alpha)}.$$

Esercizi in classe e per casa (15 min)

Think-Pair-Share

Esercizio 1. (Area del triangolo) In un triangolo due lati sono lunghi 28 cm e 39 cm. L'angolo compreso tra essi ha il coseno uguale a $\frac{12}{13}$. Determinate l'area del triangolo.

Esercizio 2. (Teorema della corda) Utilizzando il teorema della corda, trovate le misure dei lati del triangolo equilatero, del quadrato e dell'esagono regolare inscritti in una circonferenza di raggio *r*.

Fine prima ora di lezione: assegniamo 3 o 4 esercizi per casa di difficoltà progressiva relativi alle applicazioni teoriche dei teoremi sui triangoli rettangoli.

Compito di realtà da risolvere in piccoli gruppi - I parte

Dovete misurare l'altezza di una torre e disponete soltanto di uno strumento topografico in grado di misurare gli angoli e di misurare le distanze di oggetti raggiungibili. Come fate?

Compito di realtà da risolvere in piccoli gruppi - I parte

Dovete misurare l'altezza di una torre e disponete soltanto di uno strumento topografico in grado di misurare gli angoli e di misurare le distanze di oggetti raggiungibili. Come fate?

Compito di realtà da risolvere in piccoli gruppi - II parte

Dovete misurare l'altezza di una torre e disponete soltanto di uno strumento topografico in grado di misurare gli angoli e di misurare le distanze di oggetti raggiungibili. Questa volta però c'è un fosso che non permette di raggiungere la torre. E' comunque possibile misurarne l'altezza?

Compito di realtà da risolvere in piccoli gruppi - Il parte

Dovete misurare l'altezza di una torre e disponete soltanto di uno strumento topografico in grado di misurare gli angoli e di misurare le distanze di oggetti raggiungibili. Questa volta però c'è un fosso che non permette di raggiungere la torre. E' comunque possibile misurarne l'altezza?

Verifica (25 min) + Correzione (10 min)

Verifica formativa di 20 minuti sui teoremi sui triangoli rettangoli e sulle loro applicazioni:

- Parte strutturata: 5 domande a risposta multipla (2 punti ciascuna, totale 10 punti).
- Parte semistrutturata: 2 esercizi, uno teorico e uno di realtà (10 punti ciascuno, totale 20 punti).

Totale: 30 punti

Griglia di valutazione

Punti	Voto
da 27 a 30	10
da 24 a 27	9
da 21 a 24	8
da 18 a 21	7
da 15 a 18	6
da 12 a 15	5
:	:

Recupero, approfondimento, etc.

Attività di recupero

Individuare le difficoltà, riprendere i contenuti non assimilati e prevedere attività di peer-to-peer tutoring.

Attività di approfondimento

Applicazioni alla fisica:

- lavoro di una forza,
- piano inclinato.

Competenze chiave

Competenze chiave attivate nell'ambito della lezione tra quelle raccomandate dal Consiglio dell'Unione Europea nel 2018:

- Competenza matematica e competenza in scienze, tecnologie e ingegneria: collegamenti interdisciplinari della matematica con altre discipline, quali la topografia, la fisica, etc.
- **Competenza digitale**: uso di piattaforme e softwares per l'apprendimento (Kahoot, Geogebra, etc.).
- Competenza personale, sociale e capacità di imparare a imparare: attraverso attività di cooperative learning, peer education, problem solving, etc.

Strumenti compensativi e dispensativi

Alla luce delle Linee guida per il diritto allo studio degli alunni e degli studenti con disturbi specifici di apprendimento allegate al D.M. del 12/07/2011, n. 5669:

- l'alunna con DSA **discalculia**: uso di calcolatrice e formulario personalizzato, riduzione del numero di item nelle verifiche.
- l'alunno con DSA dislessia:
 - durante le lezioni: possibilità di registrare la lezione, per trasformare la lettura in ascolto.
 - verifiche: riduzione del numero di item, formulazione semplificata delle domande.

Adattamento alla DAD

Videoconferenza Zoom:

- verifica dei prerequisiti: Kahoot;
- problem solving: Slido o Mentimeter (per proporre le proprie idee);
- lezione frontale interattiva: tablet con note-taking app;
- esercizi e lavoro di gruppo: break-out rooms di Zoom;
- verifica degli obiettivi: Gradescope;
- correzione della verifica: tablet con note-taking app.