in which:

- R_1 is chosen from hydrogen, halogens, a nitro group and groups -NR₈R₉ in which R₈ and R₉ are chosen, independently of each other, from hydrogen and (C_1 - C_4) alkyl groups,
 - R_2 is chosen from hydrogen and halogens,
 - R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups -NR₁₀R₁₁ in which R₁₀ and R₁₁ are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups $(CH_2)_n$ -Y with Y being chosen from halogens and CN, -CH(O-Et)₂, (C_1-C_6) alkoxy, -O- $(CH_2)_2$ -N(CH₃)₂ groups and -N(CH₃)₂ and n = 1 to 3,
 - R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₅, R₆ and R₇ are chosen from: hydrogen or a halogen atom,

 C_1 - C_6 alkyl, hydroxyl, C_1 - C_6 alkoxy, $(C_1$ - $C_6)$ alkoxy $(C_1$ - $C_6)$ alkyl, $(C_1$ - $C_4)$ alkylcarbonyloxy- $(C_1$ - $C_4)$ alkyl, -CHO, -COOH, -CN, -CO₂R₁₄, -CONHR₁₄ and -CONR₁₄R₁₅ groups, -NHCOR₁₄ and -NR₁₄R₁₅ in which R₁₄ and R₁₅ are chosen, independently of each other, from hydrogen and $(C_1$ - $C_6)$ alkyl, -phenyl-CO- CH_3 and - CH_2 - CH_2 -N(CH_3)₂ groups,

-phenyl-CO-CH₃ or -phenyl-CO-CH=CH-N(CH₃)₂, morpholino, nitro or SO₃H groups, groups:

BI Cont

$$-CH_2 - N - COOR_{16}$$
, $-CH_2 - N - COOR_{16}$, I $CH_2 - COOR_{17}$ $CH_2 - Ar$

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,

with the exclusion of the compounds of formula I in which either R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H, or R_1 , R_3 , R_4 , R_5 , R_6 , R_7 = H and R_2 = Br, or R_1 , R_2 , R_4 , R_5 , R_6 , R_7 = H and R_3 = OCH₃, or R_1 , R_2 , R_3 , R_4 , R_6 , R_7 = H and R_5 = OH or OCH₃ or R_1 = NO₂ and R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H,

which consists .

a) in reacting a hydroquinone of formula

with a compound of formula

in the presence of $CeCl_3$, $7H_2O$ and ethanol to give a compound of formula II

b) in converting the compound of formula II into a compound of formula III

c) in reacting the compound of the formula TII with $HC(OC_2H_5)_2N(CH_3)_2$ in DMF at $120\,^{\circ}C$ to form a compound of formula IV