

• Redes pensadas para extraer mejor las posibles características dependientes de la relación "temporal" o "secuencial" de un dataset

• Redes pensadas para extraer mejor las posibles características dependientes de la relación "temporal" o "secuencial" de un dataset

Red convolucional

Parte "Convolucional" Capa(s) Densa(s)

• Redes pensadas para extraer mejor las posibles características dependientes de la relación "temporal" o "secuencial" de un dataset

Red convolucional

Red Recurrente

Parte "recurrente"

Capa(s) Densa(s)

• Redes pensadas para extraer mejor las posibles características dependientes de la relación "temporal" o "secuencial" de un dataset

Red convolucional

Red Recurrente

Redes pensadas para extraer mejor las posibles características dependientes de la relación "temporal" o "secuencial" de un dataset

Red convolucional

Clasificación de imágenes Detección de objetos

Red Recurrente

Predicción series temporales Traducción textos Descripción de imágenes

. . .

• Red recurrente -> Capa recurrente -> Celda recurrente

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

- Red recurrente -> Capa recurrente -> Celda recurrente
- Son un tipo especial de unidad o neurona que da dos salidas la "esperada" (la regresión "neuronal" de sus entradas) y una salida adicional conocida como "hidden state" (estado oculto)
- Una capa recurrente utiliza como entrada la salida de la capa anterior (como cualquier otra densa) y además cada estado oculto que han devuelto sus celdas para el la instancia anterior...

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

t= 0 (primera instancia):

entrada: [0,23] + [0] (No hay valor anterior) salida: RELU(2 * 0 + 3*23 + (-0.1) * 0) = RELU(69) = 69

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

t= 1 (segunda instancia):

entrada: [1,-3] + [23] (la salida de la anterior) salida: RELU(2 * 1 + 3 * (-3) + (-0.1) * 69) = RELU(2-9-6.9) = RELU(-13.9) = 0

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

t=2 (tercera instancia):

entrada: [1,56] + [0]salida: RELU(2 * 1 + 3 * 56 + (-0.1) * 0) = RELU(2 + 168 - 0) = 170

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2
X(0)	0	23
X(1)	1	-3
X(2)	1	56
X(3)	2	12

t=3 (última instancia):

entrada: [2,12] + [170] salida: RELU(2 * 1 + 3 * 12 + (-0.1) * 170) = RELU(2 + 36 -17) = RELU(21) = 21

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2	Salida
X(0)	0	23	23
X(1)	1	-3	0
X(2)	1	56	170
X(3)	2	12	21

(*) Equivaldría cada una a un "instante" de tiempo

• Red recurrente -> Capa recurrente -> Celda recurrente

Instancia (*)	Feature 1	Feature 2	Salida
X(0)	0	23	23
X(1)	1	-3	0
X(2)	1	56	170
X(3)	2	12	21

(*) Equivaldría cada una a un "instante" de tiempo

