Московский физико-технический институт

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Лектор: М.Е. Жуковский

КОНСПЕКТ ЛЕКЦИЙ автор: Александр Марков 23 мая 2017 г.

Благодарности:

- М.Е. Жуковскому за проверку конспекта.
- Всем неравнодушным сокурсникам, сообщавшим об опечатках и ошибках, и в особенности Васильеву Александру, нашедшему наиболее неочевидные неточности.
- Марии Носаревой за предоставленные рукописные конспекты многих лекций.

Комментарии, предложения и найденные ошибки приветствуются по адресу $https://vk.\ com/id119012868$.

Содержание

1	Аксиоматика теории вероятностей			
	1.1	Аксиоматика Колмогорова	3	
	1.2	Наименьшие сигма-алгебры	6	
2	Условная вероятность. Независимость событий			
	2.1	Условная вероятность	8	
	2.2	Независимость событий	9	
3	Распределение вероятностей			
	3.1	Борелевские сигма-алгебры. Функция распределения	11	
	3.2	Виды распределений	12	
	3.3	Примеры распределений	14	
	3.4	Многомерные распределения	15	
4	Случайные величины			
	4.1	Измеримые функции. Случайные величины.	18	
	4.2	Примеры	20	
	4.3	Независимость случайных величин	21	
5	Математическое ожидание			
	5.1	Дискретный случай. Свойства	25	
	5.2	Абсолютно непрерывный случай	26	
	5.3	Математическое ожидание произвольной случайной величины	27	
	5.4	Свойства математического ожидания	29	
	5.5	Основные теоремы о предельном переходе под знаком интеграла Лебега	31	
6	Ди	сперсия и ковариация	35	

7	Hep	равенства в теории вероятностей	36
8	Виды сходимости случайных величин		38
	8.1	Виды сходимости. Взаимосвязть между ними	38
	8.2	Лемма Бореля-Кантелли. Критерий Коши сходимости случайных величин	41
9	Слу	учайное блуждание	45
	9.1	Определение. Закон повторного логарифма	45
	9.2	Некоторые факты о случайном блуждании	46
10	За	кон больших чисел	47
	10.1	Закон больших чисел в форме Чебышева	47
	10.2	Усиленные законы больших чисел	47
	10.3	Неравенство больших уклонений	52
11	Xa	рактеристические функции. Центральная предельная теорема	54
	11.1	Характеристические функции	54
	11.2	Гауссовские векторы	57
	11.3	Центральная предельная теорема	59

1 Аксиоматика теории вероятностей

1.1 Аксиоматика Колмогорова

Определение 1.1. Произвольное множество Ω (не обязательно конечное) называется *пространством* элементарных исходов.

Определение 1.2. \mathscr{F} — система подмножеств Ω — называется *алгеброй* на Ω , если выполнены следующие свойства:

- 1. $\Omega \in \mathscr{F}$
- 2. $A \in \mathscr{F} \Rightarrow \overline{A} \in \mathscr{F}$.
- 3. $A_1, A_2 \in \mathscr{F} \Rightarrow A_1 \cup A_2$ и $A_1 \cap A_2 \in \mathscr{F}$. (Причем достаточно лишь одного из этого).

Определение 1.3. Алгебра $\mathscr F$ называется σ -алгеброй (сигма-алгеброй), если $A_1, A_2, \ldots \in \mathscr F \Rightarrow \bigcup_{i=1}^\infty A_i \in \mathscr F$.

Замечание: Не важно, взять ли в определении сигма-алгебры объединение или пересечение множеств, т.к. они выражаются через друг друга и дополнение множеств согласно законам де Моргана.

Докажем некоторые свойства алгебр и σ -алгебр.

Утверждение 1.1.1. $\varnothing \in \mathscr{F}$

$$\square$$
оказательство. $\overline{\Omega} = \varnothing \in \mathscr{F}$

Утверждение 1.1.2. $\forall A, B \in \mathscr{F} : A \setminus B \in \mathscr{F}$

Доказательство.
$$A \setminus B = A \cap \overline{B}$$

Определение 1.4. Пусть (Ω, \mathscr{F}) — пространство элементарных событий и алгебра на нем. Тогда функция $\mu : \mathscr{F} \to \mathbb{R}_+ \cup \{+\infty\}$ называется конечно-аддитивной мерой, если $\forall A_1, A_2 \in \mathscr{F}, A_1 \cap A_2 = \varnothing$ то $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.

Если
$$\mathscr{F}$$
 — алгебра и $\forall A_1,\ A_2,\ldots\in\mathscr{F},\quad \forall i\neq j\quad A_i\cap A_j=\varnothing,\ \bigcup A_i\in\mathscr{F}\Rightarrow \mu(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^\infty \mu(A_i),$ то μ называется счетно-аддитивной мерой.

Определение 1.5. Если $\mu(\Omega)=1$, то μ называется конечно-аддитивной верятностью (в случае если μ конечно-аддитивная мера) и просто *вероятностью*, если μ — счетно-аддитивная. В таком случае, будем обозначать μ символом P.

Утверждение 1.1.3. $P(\emptyset) = 0$

Доказательство.
$$\varnothing \cap \Omega = \varnothing \Rightarrow \mathsf{P}(\varnothing \cup \Omega) = \mathsf{P}(\varnothing) + \mathsf{P}(\Omega) = \mathsf{P}(\Omega) = 1 \Rightarrow \mathsf{P}(\varnothing) = 0$$

Утверждение 1.1.4. Пусть $A, B \in \mathscr{F}$, такие, что: $A \subset B$. Тогда $\mathsf{P}(B) \geq \mathsf{P}(A)$

Доказательство. Следует из $P(B) = P(A) + P(B \setminus A)$ и того, что вероятность — неотрицательная функция.

Утверждение 1.1.5. $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$

Доказательство. Рассмотрим события $B_i = A_i \setminus (A_1 \cup \ldots \cup A_{i-1})$ $i \geq 2; B_1 = A_1$. Тогда $B_i \cap B_j = \emptyset$, $\bigcup B_i = \bigcup A_i$.

Получается, что $P(\bigcup A_i) = P(\bigcup B_i) = \sum P(B_i) \le \sum P(A_i)$.

Заметим, что ряд слева сходится, т.к. его значение ограничено 1, а все его члены положительны.

Теорема 1.1. (О непрерывности вероятностной меры в 0)

 $\mathit{Пусть}\ \Omega-\mathit{произвольноe}\ \mathit{множество},\ \mathscr{F}-\mathit{алгебра}\ \mathit{нa}\ \Omega.$ Тогда следующие условия эквивалентны:

- 1. Р вероятность на (Ω, \mathscr{F})
- 2. $P \kappa$ онечно аддитивная вероятность на (Ω, \mathscr{F}) , непрерывная сверху:

$$\forall A_1 \subset A_2 \subset \dots; \quad \bigcup A_i \in \mathscr{F} \Rightarrow \lim_{n \to \infty} \mathsf{P}(A_n) = \mathsf{P}(\bigcup A_i)$$

3. Р — конечно аддитивная вероятность на (Ω, \mathscr{F}) , непрерывная снизу:

$$\forall A_1 \supset A_2 \supset \dots; \quad \bigcap A_i \in \mathscr{F} \Rightarrow \lim_{n \to \infty} \mathsf{P}(A_n) = \mathsf{P}(\bigcap A_i)$$

4. Р — конечно аддитивная вероятность на (Ω, \mathscr{F}) , непрерывная в нуле:

$$\forall A_1 \supset A_2 \supset \dots; \quad \bigcap A_i = \varnothing \Rightarrow \lim_{n \to \infty} \mathsf{P}(A_n) = 0$$

Доказательство.

 $1) \Rightarrow 2)$:

Рассмотрим множества A_i , удовлетворяющие условию 2.

$$\bigcup_{n=1}^{\infty} A_n = A_1 + (A_2 \setminus A_1) + (A_3 \setminus A_2) + \dots$$

тогда имеем

$$P(\bigcup_{n=1}^{\infty} A_n) = P(A_1) + P(A_2 \setminus A_1) + P(A_3 \setminus A_2) + \dots =$$

$$= P(A_1) + P(A_2) - P(A_1) + P(A_3) - P(A_2) + \dots = \lim_{n \to \infty} P(A_n)$$

 $2) \Rightarrow 3)$:

Пусть $n \ge 1$, тогда

$$\mathsf{P}(A_n) = \mathsf{P}(A_1 \setminus (A_1 \setminus A_n)) = \mathsf{P}(A_1) - \mathsf{P}(A_1 \setminus A_n)$$

Последовательность множеств $\{A_1 \setminus A_n\}_{n \geq 1}$ является неубывающей ($B_i \subset B_{i+1}$) и

$$\bigcup_{n=1}^{\infty} (A_1 \setminus A_n) = A_1 \setminus \bigcap_{n=1}^{\infty} A_n$$

Имеем, в силу 2):

$$\lim_{n\to\infty} \mathsf{P}(A_1\setminus A_n) = \mathsf{P}(\bigcup_{n=1}^{\infty} (A_1\setminus A_n))$$

и, значит,

$$\begin{split} \lim_{n \to \infty} \mathsf{P}(A_n) &= \mathsf{P}(A_1) - \lim_{n \to \infty} \mathsf{P}(A_1 \setminus A_n) = \\ &= \mathsf{P}(A_1) - \mathsf{P}(\bigcup_{n=1}^{\infty} (A_1 \setminus A_n)) = \mathsf{P}(A_1) - \mathsf{P}(A_1 \setminus \bigcap_{n=1}^{\infty} A_n) = \\ &= \mathsf{P}(A_1) - \mathsf{P}(A_1) + \mathsf{P}(\bigcap_{n=1}^{\infty} A_n) = \mathsf{P}(\bigcap_{n=1}^{\infty} A_n). \end{split}$$

 $3) \Rightarrow 4)$:

Очевидно.

 $4) \Rightarrow 1)$:

Пусть множества $A_1, A_2, \ldots \in \mathscr{F}$ попарно не пересекаются и $\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$. Тогда

$$\mathsf{P}(\bigcup_{n=1}^{\infty} A_n) = \mathsf{P}(\bigcup_{i=1}^{n} A_i) + \mathsf{P}(\bigcup_{i=n+1}^{n-1} A_i)$$

и поскольку $\bigcup\limits_{i=n+1}^{\infty}A_{i}\downarrow\varnothing\quad n\to\infty,$ то

$$\begin{split} \sum_{i=1}^{\infty} \mathsf{P}(A_i) &= \lim_{n \to \infty} \sum_{i=1}^{n} \mathsf{P}(A_i) = \lim_{n \to \infty} \mathsf{P}(\bigcup_{i=1}^{n} A_i) = \\ &= \lim_{n \to \infty} \left[\mathsf{P}(\bigcup_{i=1}^{\infty} A_i) - \mathsf{P}(\bigcup_{i=n+1}^{\infty} A_i) \right] = \\ &= \mathsf{P}(\bigcup_{i=1}^{\infty} A_i) - \lim_{n \to \infty} \mathsf{P}(\bigcup_{i=n+1}^{\infty} A_i) = \mathsf{P}(\bigcup_{i=1}^{\infty} A_i) \end{split}$$

Определение 1.6. Набор объектов

$$(\Omega, \mathcal{F}, P),$$

где

- а) Ω множество точек ω ,
- b) $\mathscr{F} \sigma$ -алгебра подмножеств Ω ,
- c) $P вероятность на (\Omega, \mathscr{F}),$

называется вероятностным пространством или вероятностной моделью (эксперимента). При этом пространство исходов Ω называется пространством элементарных исходов (или элементарных событий), множества A из $\mathscr{F}-$ событиями, а $\mathsf{P}(A)-$ вероятностью события A.

Пример 1.1. Классическая вероятность:

$$\Omega$$
 конечно, $\mathscr{F} = 2^{\Omega}$, $\mathsf{P}(A) = \frac{|A|}{|\Omega|}$.

Например, пространство элементарных событий $\Omega = \{\omega : \omega = (a_1, a_2, \dots, a_n), a_i \in \{O, P\}\}$ с алгеброй $\mathscr{F} = 2^{\Omega}$ соответствует n-кратному подбрасыванию монеты.

Пример 1.2. Геометрическая вероятность

 $\Omega \subset \mathbb{R}^k$, т.ч. мера Жордана $\mu(\Omega) < \infty$ (иными словами, Ω — измеримое по Жордану подмножество \mathbb{R}^k). $\mathscr{F} \subseteq 2^\Omega$ — множество измеримых по Жордану подмножеств Ω . $\mathsf{P}(A) = \frac{\mu(A)}{\mu(\Omega)}$

Рассмотрим следующую задачу: Петя и Ваня приходят в столовую с 12 до 13 часов. Если Петя пришел раньше Вани, то он ждет его 15 минут и уходит. Аналогично поступает Ваня. Нужно найти вероятность того, что Петя и Ваня встретятся в столовой.

Пространство элементарных исходов составляет $\Omega = [0,1] \times [0,1] = [0,1]^2$, а событие $A = \{\Pi$ и В встретились $\} = \{(u,v): |u-v| \leq \frac{1}{4}\}$. Это множество на рисунке выделено красным цветом. Тогда

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{1 - 2 \cdot \frac{1}{2} \cdot \left(\frac{3}{4}\right)^2}{1} = \frac{7}{16}$$

1.2 Наименьшие сигма-алгебры

Определение 1.7. Пусть M — система подмножеств Ω . Наименьшая σ -алгебра, порожденая M, есть \mathscr{F} — σ -алгебра, т.ч. не существует σ -алгебры, содержащей M и содержащаяся в \mathscr{F} как собственное подмножество. Обозначение $\sigma(M)$.

Пример 1.3. $\mathscr{F} = \{\varnothing, \Omega\}$ — тривиальная σ -алгебра.

Пример 1.4. $\mathscr{F} = 2^{\Omega}$

Пример 1.5. $\mathscr{F}_A = \{\varnothing, A, \overline{A}, \Omega\} - \sigma$ -алгебра, порожденная событием A.

Пример 1.6. $D_1,\ D_2,\ \ldots\subseteq\Omega,\ D_i\cap D_j=\varnothing,\ \bigcup D_i=\Omega$

 $\mathscr{F} = \sigma(\{D_1, D_2, \ldots\})$ — наименьшая σ -алгебра, порожденная разбиением D_1, D_2, \ldots — все возможные объединения конечного и бесконечного числа множеств из разбиения.

Утверждение 1.2.1. Если $M \subset 2^{\Omega}$, то $\sigma(M)$ существует.

Доказательство. Пусть X — мн-во всех σ -алгебр, содержащих M (очевидно, что оно не пусто). $\mathscr{F} = \bigcap_{\varepsilon \in X} \varepsilon$ Покажем, что $\mathscr{F} = \sigma(M)$:

- 1. $\Omega \in \mathscr{F}$
- 2. Пусть $A\in\mathscr{F}\Rightarrow \, \forall \varepsilon\in X \quad A\in\varepsilon\Rightarrow\overline{A}\in\varepsilon\Rightarrow\overline{A}\in\mathscr{F}$
- 3. Для объединения счетного числа множеств доказательство аналогично 2.

Заметим, что \mathscr{F} — минимальная σ -алгебра. Действительно, предположим, что $\exists \mathscr{F}_0$ - меньше \mathscr{F} . Тогда:

$$\mathscr{F}_0 \subset \mathscr{F}, \ \mathscr{F}_0 \in X \Rightarrow \mathscr{F} \subset \mathscr{F}_0.$$

Противоречие.

2 Условная вероятность. Независимость событий

2.1 Условная вероятность

Определение 2.1. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство. $A, B \in \mathscr{F}$ — события. Вероятностью события A при условии B называется величина

$$\mathsf{P}(A \mid B) = \begin{cases} \frac{\mathsf{P}(A \cap B)}{\mathsf{P}(B)}, & \mathsf{P}(B) \neq 0 \\ 0, & \mathsf{P}(B) = 0 \end{cases}$$

Замечание 1: Если P(B) = 0, то $P(A \mid B) = 0$.

3амечание 2: В случае классической вероятности $\mathsf{P}(A) = \frac{|A|}{|\Omega|}, \; \mathsf{P}(A \cap B) = \frac{|A \cap B|}{|\Omega|},$ а значит $\mathsf{P}(B \mid A) = \frac{|A \cap B|}{|A|}.$

Установим некоторые очевидные свойства условных вероятностей:

- 1. P(A | A) = 1,
- 2. $P(\emptyset | A) = 0$,
- 3. $P(B | A) = 1, B \supset A$,
- 4. $P(B_1 \sqcup B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A)$,
- 5. $P(B | A) + P(\overline{B} | A) = 1$.

Пример 2.1. Найдем вероятность встречи Васи и Пети при условии, что хотя бы один из них приходит во вторую половину часа. Как и прежде, множество точек, удовлетворяющих событию $A = \{$ Вася и Петя встретились $\}$ выделено красным цветом, а множество точек, удовлетворяющих событию $B = \{$ хотя бы один пришел во вторую половину часа $\}$ — зелеными. Тогда ответ на задачу

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{1 - \frac{1}{2} - \frac{1}{4}}{1 - \frac{1}{4}} = \frac{1}{3}$$

Теорема 2.1. Формула полной вероятности:

Пусть $\{D_1, D_2, \dots, \}$ — некоторое разбиение множества Ω , а A — некоторое событие. Тогда:

$$P(A) = \sum_{n=1}^{\infty} P(A \mid D_n) P(D_n).$$

Доказательство. Ясно, что

$$A = (A \cap D_1) \sqcup (A \cap D_2) \sqcup \dots$$

и, значит,

$$\mathsf{P}(A) = \sum_{i=1}^{\infty} \mathsf{P}(A \cap D_i).$$

но

$$P(A \cap D_i) = P(A \mid D_i)P(D_i).$$

Пример 2.2. В ящике находиться n шаров: k черных n-k белых. Случайным образом без возвращения из ящика вытягиваются шары. Какова вероятность события $A = \{$ при j-том вытягивании достали черный шар $\}$ для $j \in \{1, 2, ..., n\}$.

Решение: $\Omega = \{ \omega \in \sigma(1, 2, ..., n) - \text{перестановки} \}$. Пусть черным шарам соотвествует цифра 1, а белым — 0.

Первый способ: Рассмотрим два события: $A_1=\{$ на 1 вытягивании достали черный шар $\}=\{(1,k_2,\ldots,k_n)\},$ а $A_j=\{$ на j вытягивании достали черный шар $\}=\{(k_1,\ldots,k_{j-1},1,k_{j+1},\ldots,k_n)\}.$ Очевидно, что между A_1 и A_j есть биекция, а значит $|A_1|=|A_j|\Rightarrow \mathsf{P}(A_j)=\mathsf{P}(A_1)=\frac{k}{n}$

Второй способ: По индукции. $P(A_1) = \frac{k}{n}$. Предположение: пусть при изначальном количестве черных шаров x и всех шаров m вероятность $P(A_{j-1}) = \frac{x}{m}$.

Тогда, если всего шаров n, а черных шаров k, то

$$\mathsf{P}(A_j) = \mathsf{P}(A_j \mid A_1) \mathsf{P}(A_1) + \mathsf{P}(A_j \mid \overline{A}_1) \mathsf{P}(\overline{A}_1) = \frac{k-1}{n-1} \cdot \frac{k}{n} + \frac{k}{n-1} \cdot \frac{n-k}{n} = \frac{k}{n}$$

Теорема 2.2. Формула Байеса:

 $\{D_1,\,D_2,\,\cdots\}$ — разбиение $\Omega.$ A — событие. Тогда справедлива формула Байеса:

$$\mathsf{P}(D_n \mid A) = \frac{\mathsf{P}(A \mid D_n)\mathsf{P}(D_n)}{\sum\limits_{i=1}^{\infty} \mathsf{P}(A \mid D_i)\mathsf{P}(D_i)}$$

 \mathcal{A} оказательство. Следует из формулы полной вероятности $\mathsf{P}(A) = \sum_{n=1}^{\infty} \mathsf{P}(A \mid D_n) \mathsf{P}(D_n)$ и того, что $\mathsf{P}(D_n \mid A) = \frac{\mathsf{P}(D_n \cap A)}{\mathsf{P}(A)}, \quad \mathsf{P}(D_n \cap A) = \mathsf{P}(A \mid D_n) \mathsf{P}(D_n)$

2.2 Независимость событий

Определение 2.2. События A и B называются *независимыми*, если $P(A \cap B) = P(A)P(B)$. Если $P(B) \neq 0$, то

$$P(A) = \frac{P(A \cap B)}{P(B)} = P(A \mid B)$$

Определение 2.3. События $A_1,\ A_2,\ \dots\ A_n$ называются независимыми в совокупности, если $\forall n_1,\ n_2,\ \dots\ ,\ n_k\ (k\geq 2,\ k\leq n)$ $\mathsf{P}(A_{n_1}\cap A_{n_2}\cap \dots \cap A_{n_k})=\prod\limits_{i=1}^k\mathsf{P}(A_{n_i})$

Утверждение 2.2.1. Попарно независимые события не обязательно независимы в совокупности.

Доказательство. Приведем контрпример (пример Бернштейна): покрасим грани тетраэдра в 3 цвета: одну во все 3 цвета (красный, зеленый и синий) и 3 других в различные.

Рассмотрим следующие события:

- $A_R =$ 'На грани тетраэдра есть красный цвет'
- $A_G =$ 'На грани тетраэдра есть зеленый цвет'
- $A_B =$ 'На грани тетраэдра есть синий цвет'

тогда:

- $P(A_R \cap A_G \cap A_B) = \frac{1}{4}$
- $P(A_R \cap A_G) = P(A_R \cap A_B) = P(A_G \cap A_B) = \frac{1}{4}$
- $P(A_R) = P(A_G) = P(A_B) = \frac{1}{2}$

Приведенные события попарно независимы, но не независимы в совокупности.

Определение 2.4. Пусть дано мн-во $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$. A_{α} называется *независимым в совокупности*, если $\forall n\in\mathbb{N}\ \forall$ различных $\alpha_1,\ \alpha_2,\ \dots,\ \alpha_n\in\Gamma:\ A_{\alpha_1},\ \dots,\ A_{\alpha_n}$ независимы в совокупности.

Определение 2.5. $\mathcal{M}_1, \ldots, \mathcal{M}_n \subset \mathscr{F}$ называются *независимыми в совокупности*, если $\forall A_i \in \mathcal{M}_i \quad A_1, \ldots, A_n$ независимы в совокупности

Утверждение 2.2.2. Пусть A_1, A_2, \ldots, A_n — независимые в совокупности события. Тогда $\mathscr{F}_{A_i} = \{\varnothing, \Omega, A_i, \overline{A}_i\}$ — независимы в совокупности.

Доказательство. Пусть $B_i \in F_i$. Докажем, что $P(B_1 \cap \ldots \cap B_n) = \prod_{i=1}^n P(B_i)$.

Случаи, когда одно из B_i равно \varnothing очевиден. Если же одно из B_i равно Ω , то это очевидным образом сводиться к случаю, когда такого B_i нет (множитель $\mathsf{P}(B_i)$ равен 1, а на пересечение событий множество \mathscr{B}_i не влияет). Предположим теперь, что $\forall i \ B_i \neq \varnothing, \ \Omega$. Пусть k это число множеств из B_i вида \overline{A}_i . Докажем утверждение индукцией по k.

База индукции при k=0 следует из условия независимости событий. Покажем переход индукции, заметив, что $\overline{A}_1=\Omega\setminus A_1.$

$$\begin{split} \mathsf{P}(\overline{A}_1 \cap \ldots \cap \overline{A}_k \cap A_{k+1} \cap \ldots \cap A_n) &= \mathsf{P}(\overline{A}_2 \cap \ldots \cap \overline{A}_k \cap A_{k+1} \cap \ldots \cap A_n) - \mathsf{P}(A_1 \cap \ldots \cap \overline{A}_k \cap A_{k+1} \cap \ldots \cap A_n) = \\ &= \mathsf{P}(\overline{A}_2) \ldots \mathsf{P}(\overline{A}_k) \mathsf{P}(A_{k+1}) \ldots \mathsf{P}(A_n) - \mathsf{P}(A_1) \mathsf{P}(\overline{A}_2) \ldots \mathsf{P}(\overline{A}_k) \mathsf{P}(A_{k+1}) \ldots \mathsf{P}(A_n) = \\ &= \mathsf{P}(\overline{A}_2) \ldots \mathsf{P}(\overline{A}_k) \mathsf{P}(A_{k+1}) \ldots \mathsf{P}(A_n) (1 - \mathsf{P}(A_1)) = \mathsf{P}(\overline{A}_1) \ldots \mathsf{P}(\overline{A}_k) \mathsf{P}(A_{k+1}) \ldots \mathsf{P}(A_n) \end{split}$$

3 Распределение вероятностей

3.1 Борелевские сигма-алгебры. Функция распределения

Определение 3.1. Пусть $\mathbb R$ действительная прямая и

$$(a, b] = \{ x \in \mathbb{R} : a < x \le b \}$$

Обозначим через \mathscr{A} систему множеств в \mathbb{R} , состоящую из *конечных* объединений непересекающихся интервалов вида (a, b]:

$$A\in\mathscr{A},\quad$$
 если $A=igcup\limits_{i=1}^n(a_i,\,b_i],\quad n<\infty$

Нетрудно проверить, что данная система множеств в объединении с пустым образует алгебру, которая, однако, не является σ -алгеброй, поскольку если положить $A_n = (0, 1 - \frac{1}{n}] \in \mathscr{A}$, то $\bigcup_n A_n = (0, 1) \notin \mathscr{A}$ Пусть $\mathscr{B}(\mathbb{R})$ — наименьшая σ -алгебра $\sigma(\mathscr{A})$, содержащая систему \mathscr{A} . Полученная σ -алгебра называется борелевской алгеброй на числовой прямой, а ее множества — борелевскими.

Замечание. 1: Заметим, что

$$(a,b) = \bigcup_{n=1}^{\infty} (a, b - \frac{1}{n}], \quad a < b, \qquad [a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b], \quad a < b,$$

$$\{a\} = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, a]$$

Таким образом, в борелевскую σ -алгебру наряду с интервалами (a, b] входят одноточечные множества $\{a\}$ а так же каждое из семи множеств вида

$$(a, b), [a, b], [a, b), (-\infty, b), (-\infty, b], (a, +\infty), [a, -\infty).$$

3амечание. 2: В общем случае борелевской σ -алгеброй называется минимальная σ -алгебра, содержащая все открытые множества топологического пространства.

Определение 3.2. Пара $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ называется измеримым пространством.

Определение 3.3. Любая вероятностная мера на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ называется распределением вероятностей.

Определение 3.4. Функцией распределения, соответствующей распределению вероятностей P, называется функция $F: \mathbb{R} \to [0, 1]$, такая, что:

$$F(x) = \mathsf{P}((-\infty, \, x]).$$

Теорема 3.1. Любая функция распределения обладает следующими свойствами:

1.
$$\lim_{x \to -\infty} F(x) = 0$$
 $u \lim_{x \to +\infty} F(x) = 1$

- 2. F —непрерывна справа: $\lim_{x \to x_0 + 0} F(x) = F(x_0)$
- 3. F неубывает

Доказательство. 1. $\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} P((-\infty, x])$

Т.к. $(-\infty, x] \downarrow \emptyset$, то по теореме о непрерывности вероятностной меры в 0:

$$\lim_{x \to -\infty} \mathsf{P}(-\infty, \, x]) = \mathsf{P}(\varnothing) = 0.$$

Далее, по той же теореме о непрерывности вероятностной меры в 0, $\lim_{x\to +\infty} F(x) = \lim_{x\to +\infty} \mathsf{P}((-\infty,x]) = 1$, т.к. $(-\infty,\,x]\uparrow\mathbb{R}$.

- 2. Пусть $x \to x_0 + 0$. Тогда $(-\infty, x] \downarrow (-\infty, x_0]$ и по теореме о непрерывности вероятностной меры в $0 \ \mathsf{P}((-\infty, x]) \to \mathsf{P}((\infty, x_0])$
- 3. Пусть x>y. Тогда $(-\infty,\ x]\supset (-\infty,\ y]\Rightarrow \mathsf{P}((-\infty,\ x])\geq \mathsf{P}(-\infty,\ y])\Rightarrow F(x)\geq F(y)$

Замечание: Функция распределения не обязательно непрерывна слева, т.к $(-\infty,x] \xrightarrow[x\to x_0-0]{} (-\infty,x_0)$,а значит $\mathsf{P}((-\infty,\,x]) \to \mathsf{P}((-\infty,\,x_0]) - \mathsf{P}(\{x_0\})$

Теорема 3.2. $(6/\partial)$

Пусть $F: \mathbb{R} \to [0, 1]$ обладает свойствами 1) - 3). Тогда существует единственное распределение вероятностей, т.ч. F — его функция распределения.

Любую функцию, обладающую этими свойствами, будем называть функцией распределения.

Пример 3.1.
$$F(x) = \begin{cases} 1, & x \geq a \\ 0, & x < a \end{cases}$$
 . $P(A) = I(a \in A) = \begin{cases} 1, & a \in A \\ 0, & a \not\in A \end{cases}$

Пример 3.2.
$$F(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1) . & 0 \le a < b \le 1 \implies \mathsf{P}((a, b)) = b - a \\ 1, & x \ge 1 \end{cases}$$

Р — мера Лебега на отрезке [0, 1]

3.2 Виды распределений

1. Дискретные

Пусть $X \subset \mathbb{R}$ — не более чем счетный набор точек, т.ч. $\mathsf{P}(X) = 1, \; \mathsf{P}(\mathbb{R} \setminus X) = 0.$

Тогда Р называется дискретным распределением.

$$X = \{x_n \mid n \in \mathbb{N}\}.$$

$$F(x) = \sum_{\substack{n \in \mathbb{N} \\ x \le x}} \mathsf{P}(\{x_n\})$$

 $F(x) = \sum_{\substack{n \in \mathbb{N} \\ x_n \leq x}} \mathsf{P}(\{x_n\})$ Обозн: $\mathsf{P}(\{x_n\}) = p_n$. Часто последовательность $\{p_n\}$ называется распределением вероятностей, т.к. распределение вероятностей в стандартном понимании однозначно восстанавливается по ней.

2. Абсолютно непрерывные

Пусть F — функция распределения. Если существует функция $p:\mathbb{R} \to \mathbb{R}_+$, такая что

$$\forall x F(x) = \int_{-\infty}^{x} p(t)dt$$

 $\forall x\, F(x) = \int\limits_{-\infty}^x p(t)dt$ то распределение вероятностей и F называются абсолютно непрерывными, а p- плотностью этого распределения.

Замечание: Приведены не все распределения из существующих.

Утверждение 3.2.1. Пусть $p:\mathbb{R}\to\mathbb{R}_+$ и $\int\limits_{-\infty}^{+\infty}p(t)dt=1.$ Тогда функция

$$F(x) = \int_{-\infty}^{x} p(t)dt$$

является функцией распределения.

Доказательство. Покажем, что определенная таким образом функция F удовлетворяет всем свойствам функции распределения:

1.

$$\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} \int_{-\infty}^{x} p(t)dt = \lim_{x \to -\infty} \int_{-\infty}^{\infty} p(t)I(t \le x)dt = \int_{-\infty}^{\infty} \lim_{x \to -\infty} p(t)I(t \le x)dt = 0$$

$$\lim_{x \to +\infty} F(x) = \int_{-\infty}^{+\infty} \lim_{x \to +\infty} p(t)I(t \in (-\infty, x])dt = \int_{-\infty}^{+\infty} p(t)dt = 1$$

2. Непрерывность справа:

$$\lim_{x \to x_0 + 0} F(x) = \lim_{x \to x_0 + 0} \int_{-\infty}^{x} p(t)dt = \int_{-\infty}^{x_0} p(t)dt = F(x_0)$$

3. Неубывание:

$$x > y \Rightarrow F(x) = \int_{-\infty}^{x} p(t)dt = \int_{-\infty}^{y} p(t)dt + \int_{y}^{x} p(t)dt = F(y) + \int_{y}^{x} p(t)dt \Rightarrow$$

неубывание функции F, т.к. p принимает только неотрицательные значения

Определение 3.5. Любую функцию, удовлетворяющую свойствам:

a) $p: \mathbb{R} \to \mathbb{R}_+$

b)
$$\int_{-\infty}^{+\infty} p(t)dt = 1$$

будем называть плотностью вероятности.

Утверждение 3.2.2. $\forall B \in \mathscr{B}(\mathbb{R})$ $\mathsf{P}(B) = \int_{B} p(x) dx$, (где интеграл понимается в смысле интеграла Лебега.)

Доказательство (идея).

1. Доказать, что определенная таким образом функция является распределением вероятностей на $\mathscr{B}(\mathbb{R})$

- 2. Понять, что $\forall x\, F(x)=\int\limits_{-\infty}^{x}p(t)dt$, где F функция распределения $\mathsf{P}.$
- 3. из теоремы о единственности распределения вероятностей следует утверждение

Упраженение: Если F — дифференцируемая функция, то p(x) = F'(x).

3.3 Примеры распределений

Пример 3.3. $Bern(p), (p \in (0, 1))$ — распределение Бернулли.

 $P(0) = 1 - p =: q, \quad P(1) = p.$ Дискретное распределение, соответствующее однократному подбрасыванию монеты.

Пример 3.4. Bin(n,p) — биномиальное распределение. $P(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0, \ldots, n\}$ — дискретное распределение, соответствующее n-кратному подбрасыванию монеты.

Пример 3.5. $Pois(\lambda)$, $P(\{k\}) = \frac{\lambda^k e^{-\lambda}}{k!}$, $k \in \mathbb{Z}_+$, $\lambda \in \mathbb{R}_+$ — распределение Пуасонна. Дискретное распределения числа успехов в испытаниях Бернулли, где число испытаний n достаточно велико, а вероятность успеха равна $\frac{\lambda}{n}$.

Пример 3.6. $U(\{1,\,2,\,\dots,\,n\})$ — Дискретное равномерное распределение, $\mathsf{P}(\{k\}) = \frac{1}{n}$

Пример 3.7. U([a, b]) — Непрерывное равномерное распределение на отрезке [a, b]. $p(x) = \frac{1}{b-a}I(a \le x \le b)$

Пример 3.8. $N(\mu, \sigma^2)$ — Нормальное распределение. $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

Пример 3.9. $exp(\lambda), \ \lambda > 0$ — экспоненциальное распределение, где $p(x) = \lambda e^{-\lambda x} I(x \ge 0)$.

Пример 3.10. $\Gamma(\alpha, \beta), \quad \alpha, \beta > 0$ - гамма распределение. $p(x) = \frac{x^{\beta-1}e^{-\alpha x}}{\Gamma(\beta)} \cdot I(x \ge 0),$ где $\Gamma(\beta)$ - гамма-функция.

Пример 3.11. $C(\theta), \ \theta > 0$ — распределение Коши. $p(x) = \frac{\theta}{\pi(x^2 + \theta^2)}$

3.4 Многомерные распределения

Определение 3.6. $\mathscr{B}(\mathbb{R}^n)$ — наименьшая σ -алгебра, такая, что:

$$\mathscr{B}(\mathbb{R}^n) = \sigma(\{(-\infty, a_1] \times (-\infty, a_2] \times \dots \times (-\infty, a_n]; a_i \in \mathbb{R}\}) =$$
$$= \sigma(\{B_1 \times B_2 \times \dots \times B_n; \forall i \ B_i \in \mathscr{B}(\mathbb{R})\})$$

Определение 3.7. Если Р — вероятностная мера на $\mathscr{B}(\mathbb{R}^n)$, то Р называется n-мерным распределением вероятностей.

Определение 3.8. $F: \mathbb{R}^n \to [0, 1]$ называется функцией распределения, соответствующей распределению $\mathsf{P},$ если

$$F(x_1, \ldots x_n) = \mathsf{P}((-\infty, x_1] \times \ldots \times (-\infty, x_n])$$

Обозначим

$$F(x_1, \ldots x_n) = F_n(x) = P((-\infty, x]),$$

где
$$x = (x_1, ..., x_n), (-\infty, x] = (-\infty, x_1] \times ... \times (-\infty, x_n].$$

Введем разностный оператор $\Delta_{a_ib_i}: \mathbb{R}^n \to \mathbb{R}$, действующий по формуле $(a_i \leq b_i)$

$$\Delta_{a_i b_i} F_n(x_1, \ldots, x_n) = F_n(x_1, \ldots, x_{i-1}, b_i, x_{i+1}, \ldots, x_n) - F_n(x_1, \ldots, x_{i-1}, a_i, x_{i+1}, \ldots, x_n).$$

По индукции можно показать, что

$$\Delta_{a_1b_1} \dots \Delta_{a_nb_n} F_n(x) = \mathsf{P}((a, b]),$$

где $(a, b] = (a_1, b_1] \times \ldots \times (a_n, b_n]$. В частности, отсюда видно, что, в отмичие от одномерного случая, вероятность P(a, b], вообще говоря, не равна разности $F_n(b) - F_n(a)$.

Теорема 3.3. Функция распределения, соответствующая распределению Р, обладает следующими свойствами:

1.
$$\lim_{\substack{x_1 \to +\infty \\ \dots \\ x_i \to +\infty}} F(x) = 1 \ u \ \forall i \in \{1, \dots n\} \lim_{\substack{x_i \to -\infty \\ \dots \\ x_i \to +\infty}} F(x) = 0$$

2. Пусть
$$x=(x_1,\ldots,x_n)\geq (y_1,\ldots,y_n)=y\iff \forall i\in\{1,\ldots,n\}\ x_i\geq y_i,$$

$$x^{(k)}\downarrow x\iff (x^{(k+1)}\leq x^{(k)}\ \land\ \forall i\in\{1,\ldots,n\}\ x_i^{(k)}\to x_i).\ \textit{Toeda:}$$

$$\lim_{k\to+\infty}F(x^{(k)})=F(x).$$

3.
$$\Delta_{a_1b_1}\ldots\Delta_{a_nb_n}F_n(x)\geq 0$$

Доказательство.

$$B_{k+1} \supset B_k$$
, $\bigcup_{k=1}^{\infty} B_k = \mathbb{R}^n$.

 $B_{k+1}\supset B_k,\ igcup_{k=1}^\infty B_k=\mathbb{R}^n.$ По теореме о непрерывности вероятностной меры в $0\lim_{k\to +\infty}\mathsf{P}(B_k)=1\Rightarrow$ $\Rightarrow \exists N \ \forall k \geq N : \ \mathsf{P}(B_k) > 1 - \varepsilon.$

Пусть
$$x \in \mathbb{R}^n$$
 такое, что: $x_1 \ge N, \ldots, x_n \ge N$. Тогда $(-\infty, x] \supset (-\infty, N]^n$ и $F_n(x) = \mathsf{P}((-\infty, x]) > \mathsf{P}(B_k) > 1 - \varepsilon$.

Для доказательства второй части, без ограничения общности предположим, что $x_1 \to -\infty$ и зафиксируем x_2, \ldots, x_n . Пусть $B_k = (-\infty, -k] \times (-\infty, x_2] \times \ldots \times (-\infty, x_n]$. Тогда:

$$B_{k+1} \subset B_k$$
, $\bigcap_{k=1}^{\infty} B_k = \emptyset$.

 $B_{k+1}\subset B_k, \bigcap_{k=1}^\infty B_k=\varnothing.$ $\lim_{k\to+\infty}F(B_k)=0\Rightarrow \exists N\, \forall k\geq N\, \mathsf{P}(B_k)<arepsilon.$ Пусть $x_1< N.$ Тогда:

$$F(x) = P((-\infty, x]) \le P((-\infty, N] \times (-\infty, x_2] \times ... \times (-\infty, x_n]) < \varepsilon$$

2. Следствие теоремы о непрерывности вероятностной меры в 0.

3.
$$\Delta_{a_1b_1} \dots \Delta_{a_nb_n} F_n(x) = P((a, b]) \ge 0$$

Teopeма 3.4. $(6/\partial)$

Eсли $F:\mathbb{R}^n \to [0,\ 1]$ обладает свойствами 1)-3), то F является функцией распределения для некоторого распределения вероятностей, причем такое распределение единственное.

Пример 3.12. Пусть F^1, \ldots, F^n — одномерные функция распределения на \mathbb{R} и

$$F_n(x_1, \ldots, x_n) = F^1(x_1)F^2(x_2)\ldots F^n(x_n).$$

Нетрудно проверить, что такая функция удовлетворяет условиям 1)-3), а значит является некоторой функцией распределения.

Особо важен случай, когда

$$F^{k}(x_{k}) = \begin{cases} 0, & x_{k} < 0, \\ x_{k}, & 0 \le x_{k} \le 1 \\ 1, & x_{k} > 1. \end{cases}$$

В этом случае для всех $0 \le x_k \le 1, \ k = 1, \dots, n$

$$F_n(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n$$

Такая F соответствует мере Лебега в $[0, 1]^n$.

Определение 3.9. Если существует $p: \mathbb{R}^n \to \mathbb{R}_+$ такая, что

$$\forall x_1, \ldots, x_n \in \mathbb{R} \ F(x_1, \ldots, x_n) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p(t_1, \ldots, t_n) dt_1 dt_2 \ldots dt_n$$

то распределение вероятностей и функция распределения называются абсолютно непрерывными, а pназывается плотностью этого распределения.

Утверждение 3.4.1. $\forall B \in \mathscr{B}(\mathbb{R}) \ \mathsf{P}(B) = \int\limits_{\mathcal{B}} p(t_1, \, \ldots, \, t_n) dt_1 dt_2 \ldots dt_n$

 $Утверждение\ 3.4.2.\ Пусть\ функция\ p:\mathbb{R}^n \to \mathbb{R}_+$ такая, что

$$\int_{\mathbb{R}^n} p(t_1, \ldots, t_n) dt_1 dt_2 \ldots dt_n = 1.$$

 $\int\limits_{\mathbb{R}^n} p(t_1,\,\ldots,\,t_n)dt_1dt_2\ldots dt_n=1.$ Тогда p — плотность некоторого абсолютно непрерывного распределения.

Утверждение 3.4.3. Если существует $\frac{\partial^n}{\partial x_1 \partial x_2 \dots \partial x_n} F(x_1, x_2, \dots, x_n)$, то она является плотностью распределения F.

Определение 3.10. Пусть $X \subset \mathbb{R}^n$ не более чем счетное множество точек n-мерного пространства. Если $\mathsf{P}(X)=1,\;\mathsf{P}(\mathbb{R}^n\setminus X)=0,\;$ то распределение P называется дискретным. Аналогичено одномерному случаю, последовательность $\{p_n\},\; p_n=P(x^{(n)}),\; X=\{x^{(1)},\;\ldots,\;x^{(n)},\;\ldots\}$ иногда называется распределением вероятностей, т.к. распределение вероятностей в стандратном смысле однозначно восстанавливается по ней.

4 Случайные величины

4.1 Измеримые функции. Случайные величины.

Определение 4.1. Пусть $(\Omega, \mathscr{F}), (E, \mathscr{E})$ — измеримые пространства и $f: \Omega \to E$. Функция f называется $(\mathscr{F}|\mathscr{E})$ -измеримой, если

$$\forall A \in \mathscr{E}: f^{-1}(A) \in \mathscr{F}.$$

Если $E=\mathbb{R},\ \mathscr{E}=\mathscr{B}(\mathbb{R}),$ то измеримая функция f называется случайной величиной.

Если $E = \mathbb{R}^n$, $\mathscr{E} = \mathscr{B}(\mathbb{R}^n)$, то измеримая функция f называется случайным вектором.

В случае, когда $(\Omega, \mathscr{F}) = (\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$, а $(E, \mathscr{E}) = (\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$, то $(\mathscr{F}|\mathscr{E})$ -измеримые функции называются борелевскими.

Случайные величины(и векторы) принято обозначать греческими буквами: ξ , η , Введем также следующие обозначения:

- $P(\xi \in B) = P(\{\omega : \xi(\omega) \in B\})$
- $P(\xi = x) = P(\{\omega : \xi(\omega) = x\})$
- $P(\xi > x) = P(\{\omega : \xi(\omega) > x\})$
- $P(\xi < x) = P(\{\omega : \xi(\omega) < x\})$
- $P(\xi \ge x) = P(\{\omega : \xi(\omega) \ge x\})$
- $P(\xi < x) = P(\{\omega : \xi(\omega) < x\})$

Утверждение 4.1.1. Пусть $\mathscr{F}_{\xi} = \{A \in \mathscr{F} : \exists B \in \mathscr{B}(\mathbb{R}^k) : A = \xi^{-1}(B)\}$. Тогда $F_{\xi} - \sigma$ -алгебра. Эта σ -алгебра называется σ -алгеброй, порожденной случайной величиной ξ . (Иногда она обозначается $\sigma(\xi)$)

Доказательство. Покажем, что система множеств \mathscr{F}_{ξ} удовлетворяет определению σ -алгебры:

1.
$$\Omega \in \mathscr{F}_{\xi}$$
, t.k. $\Omega = \xi^{-1}(\mathbb{R}^k)$

$$2. \ A \in \mathscr{F}_{\xi} \Rightarrow \exists B \in \mathscr{B}(\mathbb{R}^k): \ A = \xi^{-1}(B) \Rightarrow \overline{B} \in \mathscr{B}(\mathbb{R}^k) \Rightarrow \xi^{-1}(\overline{B}) = \overline{A} \in \mathscr{F}$$

3.
$$A_1, A_2, \ldots \in \mathscr{F}_{\xi} \Rightarrow \exists B_1, B_2, \ldots \in \mathscr{B}(\mathbb{R}^k) : \xi(A_i) = B_i \Rightarrow \xi^{-1}(\bigcup B_i) = \bigcup A_i \in \mathscr{F}$$

Утверждение 4.1.2. Пусть ξ — случайный вектор. η является \mathscr{F}_{ξ} -измеримым случайным вектором $\iff \mathscr{F}_{\eta} \subset \mathscr{F}_{\xi}.$

Доказательство.

 \Rightarrow :

Пусть $\eta - \mathscr{F}_{\xi}$ измерима. Тогда $\forall B \in \mathscr{B}(\mathbb{R}^k): \ \eta^{-1}(B) \in \mathscr{F}_{\xi} \iff \mathscr{F}_{\eta} = \{\eta^{-1}(B)\} \subset \mathscr{F}_{\xi}.$

 \Leftarrow :

Пусть
$$\mathscr{F}_{\eta} \subset \mathscr{F}_{\xi}$$
. Возьмем произвольное $B \in \mathscr{B}(\mathbb{R}^k)$. Тогда $\eta^{-1}(B) \in \mathscr{F}_{\eta} \Rightarrow \eta^{-1}(B) \in \mathscr{F}_{\xi}$

Утверждение 4.1.3. Пусть $\xi - n$ -мерный случайный вектор. η является \mathscr{F}_{ξ} измеримым k-мерным случайным вектором \iff существует борелевская функция $g: \mathbb{R}^n \to \mathbb{R}^k$, т.ч $\eta = g(\xi)$.

Доказательство. Доказательство **только** в ←.

Пусть $\eta=g(\xi)$. Покажем, что в таком случае $\mathscr{F}_{\eta}\subset\mathscr{F}_{\xi}$. Действительно, рассмотрим произвольное $A\in\mathscr{F}_{\eta}$. Для него существует $B\in\mathscr{B}(\mathbb{R}^k)$: $A=\eta^{-1}(B)=(g(\xi))^{-1}(B)=\xi^{-1}(g^{-1}(B)),\ B_g:=g^{-1}(B)\in\mathscr{B}(\mathbb{R}^n),\ \xi^{-1}(B_g)\in\mathscr{F}_{\xi}\Rightarrow\mathscr{F}_{\eta}\subset\mathscr{F}_{\xi}.$

Теорема 4.1. Критерий измеримости

Пусть даны $(\Omega, \mathscr{F}), (E, \mathscr{E})$ — измеримые пространства, $M \subset \mathscr{E}, \sigma(M) = \mathscr{E}$. Тогда для $(\mathscr{F} \mid \mathscr{E})$ измеримости функции $f: \Omega \to E$ необходимо и достаточно, чтобы $\forall B \in M \ f^{-1}(B) \in \mathscr{F}$.

Доказательство. Необходимость очевидна по определению. Для доказательства достаточности воспользуемся принципом подходящих множеств.

Рассмотрим множество $\mathscr{A} = \{B \in \mathscr{E} \mid f^{-1}(B) \in \mathscr{F}\}$. Из условия теоремы следует, что $M \subset \mathscr{A}$. Докажем, что система множеств \mathscr{A} ялвяется σ -алгеброй. Действительно:

- 1. $E \in \mathcal{A}$, t.k. $f^{-1}(E) = \Omega$
- 2. Пусть $A\in\mathscr{A}$. Тогда $f^{-1}(\overline{A})=\overline{f^{-1}(A)}\in\mathscr{F}\Rightarrow\overline{A}\in\mathscr{A}$
- 3. $A_1, A_2, \dots \in \mathscr{A}$. Тогда $f^{-1}(A_i) \in \mathscr{F}$, откуда:

$$f^{-1}(\bigcup A_i) = \bigcup f^{-1}(A_i) \Rightarrow \bigcup A_i \in \mathscr{A}$$

Мы доказали, что $\mathscr{A}-\sigma$ -алгебра, причем $M\subset\mathscr{A}\subset\mathscr{E}.$ Но $\sigma(M)=\mathscr{E}\Rightarrow\mathscr{A}=\mathscr{E}$

Следствие 4.1.1. Для того чтобы функция $\xi:\Omega\to\mathbb{R}$ была случайной величиной, необходимо и достаточно, чтобы $\forall x\in\mathbb{R}$

$$\{\omega: \, \xi(\omega) < x\} \in \mathscr{F}$$

u n u

$$\{\omega: \, \xi(\omega) \le x\} \in \mathscr{F}.$$

Доказательство следует из того, что каждая из систем множеств

$$\mathscr{E}_1 = \{x : x < c, c \in \mathbb{R}\},\$$

$$\mathscr{E}_2 = \{x : x \le c, c \in \mathbb{R}\}\$$

порождают σ -алгебру $\mathscr{B}(\mathbb{R})$.

Следствие 4.1.2. $\xi = (\xi_1, \, \xi_2, \, \dots, \, \xi_n) - c$ лучайный вектор $\iff \xi_1, \, \dots, \, \xi_n - c$ лучайные величины.

Доказательство.

⇒:

 $pr_n^i(\xi) = \xi_i$, где ξ — случайный вектор. Функция проектор — борелевская, и по утверждению 4.1.3 ξ_i — случайная величина.

⇐:

Пусть
$$B_1, \ldots, B_n \in \mathscr{B}(\mathbb{R}), \ B = B_1 \times B_2 \times \ldots \times B_n, \ \xi^{-1}(B) = \bigcap_{i=1}^n \xi_i^{-1}(B_i) \in \mathscr{F}.$$
 Рассмотрим $M = \{B_1 \times B_2 \times \ldots \times B_n : B_i \in \mathscr{B}(\mathbb{R})\}.$ Тогда $\sigma(M) = \mathscr{B}(\mathbb{R}^n) \Rightarrow$ по критерию измеримости ξ — случайная величина.

Утверждение 4.1.4. (б/д)

Любая непрерывная (кусочно-непрерывная) функция является борелевской.

Следствие 4.1.3. Пусть $\xi,\ \eta$ — случайные величины. Тогда

$$\xi + \eta, \ \xi - \eta, \ \xi \cdot \eta, \ \frac{\xi}{\eta} I(\eta \neq 0), \ \xi^n, \xi^+ = max(\xi, \ 0), \ \xi^- = -min(\xi, \ 0), \ |\xi|$$

также являются случайными величинами.

Доказательство. Из следствия 4.1.2 — (ξ, η) — случайный вектор. Из утверждения 4.1.4 функции $x+y, x-y, xy, x^n, |x|, x^+, x^-, \frac{x}{\eta}I(y\neq 0)$ — борелевские. По утверждению 4.1.3 — все доказано.

Утверждение 4.1.5. Пусть ξ_1, ξ_2, \ldots случайные величины. Тогда следующие четыре функции являются расширенными случайными величинами (т.е. случайными величинами, принимающими значения в $\mathbb{R} \cup \{\pm \infty\}$):

$$\inf_{n} \xi_n; \sup_{n} \xi_n; \underbrace{\lim_{n \to +\infty}}_{n \to +\infty} \xi_n; \underbrace{\lim_{n \to +\infty}}_{n \to +\infty} \xi_n.$$

Доказательство. Простое следствие того, что

$$\{\omega: \sup \xi_n > x\} = \bigcup_{n} \{\omega: \xi_n > x\} \in \mathscr{F}$$

$$\{\omega: \inf \xi_n < x\} = \bigcup_{n} \{\omega: \xi_n < x\} \in \mathscr{F}$$

$$\xi_n = \inf \sup \xi_n \quad \lim_{n \to \infty} \xi_n = \sup_{n \to \infty} \inf_{n \to \infty} \xi_n$$

$$\underline{\lim}_{n \to +\infty} \xi_n = \inf_n \sup_{m \ge n} \xi_m, \ \underline{\lim}_{n \to +\infty} \xi_n = \sup_n \inf_{m \ge n} \xi_m$$

Определение 4.2. Распределением случайного n-мерного вектора ξ называется такая функция $\mathsf{P}_{\xi}: \mathscr{B}(\mathbb{R}^n) \to [0, \, 1],$ что $\mathsf{P}_{\xi}(B) = \mathsf{P}(\xi \in B)$

4.2 Примеры

Пример 4.1. Рассмотрим $\Omega = \{\omega_1, \, \omega_2\}, \, \mathscr{F} = 2^{\Omega}, \, \mathsf{P}(\{\omega_1\}) = p \quad \mathsf{P}(\{\omega_2\}) = 1 - p =: q.$ Тогда случайной величиной является функция $\xi : \Omega \to \{0, \, 1\}$, такая что $\xi(\omega_1) = 1, \, \xi(\omega_2) = 0$. При этом, $\mathsf{P}(\xi = 1) = p, \, \mathsf{P}(\xi = 0) = q$

Пример 4.2. Рассмотрим $(\Omega, \mathscr{F}, \mathsf{P}), \quad A \in \mathscr{F}.$ Тогда случайной величиной является функция $\xi = I_A = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \not\in A \end{cases}$. При этом, $\mathsf{P}(\xi = 1) = \mathsf{P}(A), \; \mathsf{P}(\xi = 0) = 1 - \mathsf{P}(A)$

Пример 4.3. Если $\mathscr{F} = 2^{\Omega}$, то любая функция является случайной величиной. Если $\exists A \in 2^{\Omega} \land A \notin \mathscr{F}$, то I_A не является случайной величиной.

4.3 Независимость случайных величин

Определение 4.3. Пусть $\xi-n$ -мерный случайный вектор, $\eta-k$ -мерный. Тогда они называются независимыми (Обозначение: $\xi \perp \!\!\! \perp \eta$), если $\forall B_1 \in \mathscr{B}(\mathbb{R}^n), B_2 \in \mathscr{B}(\mathbb{R}^k)$: $\mathsf{P}(\xi \in B_1, \eta \in B_2) = \mathsf{P}(\xi \in B_1) \mathsf{P}(\eta \in B_2)$

Случайные вектора $\xi_1, \, \xi_2, \, \ldots, \, \xi_n$ называются попарно независимыми, если $\forall i \neq j \, \xi_i \perp \!\!\! \perp \xi_j$

Если для любых борелевских множеств B_1, B_2, \ldots, B_n выполнено, что $\mathsf{P}(\xi_1 \in B_1, \ldots, \xi_n \in B_n) = \mathsf{P}(\xi_1 \in B_1) \ldots \mathsf{P}(\xi_n \in B_n)$, то случайные вектора называются независимыми в совокупности.

Замечание: Взяв в определении независимости в совокупности $B_i = \mathbb{R}^k$ можно показать, что аналогичное равенство следует для любого поднабора случайных величин.

 $\{\xi_{\alpha}: \alpha \in A\}$ независимы в совокупности, если $\forall n \in \mathbb{N} \ \forall$ попарно различных $\alpha_1, \ldots, \alpha_n \in A:$ $\xi_{\alpha_1}, \ldots, \xi_{\alpha_n}$ независимы в совокупности.

Утверждение 4.3.1. Пусть ξ_1, \ldots, ξ_n — дискретные случайные величины, X_1, \ldots, X_n — множества их значений. Тогда ξ_1, \ldots, ξ_n независимы в совокупности $\iff \forall x_1 \in X_1, \ldots, x_n \in X_n \ \mathsf{P}(\xi_1 = x_1, \ldots, \xi_n = x_n) = \mathsf{P}(\xi_1 = x_1) \ldots \ \mathsf{P}(\xi_n = x_n)$

Доказательство.

⇒:

Очевидно из определения.

(=:

Пусть
$$B_i \in \mathscr{F}_{\xi_i}$$
. Положим $\{x^{(i)}\} := \xi_i^{-1}(B_i)$

$$\mathsf{P}(\xi_1 \in B_1, \dots, x_n \in B_n) = \mathsf{P}\Big(\bigcap_{j=1}^n \bigcup_{i=1}^\infty \{\xi_j = x_i^{(j)}\}\Big) = \mathsf{P}\Big(\bigcup_{i_1=1}^\infty \dots \bigcup_{i_n=1}^\infty \{\xi_1 = x_{i_1}^{(1)}\} \cap \dots \cap \{\xi_n = x_{i_n}^{(n)}\}\Big) = \lim_{\substack{k_1 \to \infty \\ k_n \to \infty}} \mathsf{P}\Big(\bigcup_{i_1=1}^k \dots \bigcup_{i_n=1}^{k_n} \{\xi_1 = x_{i_1}^{(1)}\} \cap \dots \cap \{\xi_n = x_{i_n}^{(n)}\}\Big) = \lim_{\substack{k_1 \to \infty \\ k_n \to \infty}} \left[\sum_{i_1=1}^{k_1} \dots \sum_{i_n=1}^{k_n} \mathsf{P}(\xi_1 = x_{i_1}^{(1)}) \dots \mathsf{P}(\xi_n = x_{i_n}^{(n)})\right] = \lim_{\substack{k_1 \to \infty \\ k_n \to \infty}} \left[\sum_{i_1=1}^{k_1} \mathsf{P}(\xi_1 = x_{i_1}^{(1)}) \dots \sum_{i_n=1}^{k_n} \mathsf{P}(\xi_n = x_{i_n}^{(n)})\right] = \mathsf{P}(\xi_1 \in B_1) \dots \mathsf{P}(\xi_n \in B_n)$$

Определение 4.4. Пусть Ω — некоторое пространство. Система $\mathscr P$ подмножеств Ω называется π - $cucmemo\check{u}$, если она $\mathit{замкнута}$ относительно взятия конечных пересечений: $\forall A_1, \ldots, A_n \in \mathscr P: \bigcap_{1 \le k \le n} A_k \in \mathscr P, \ n \ge 1.$

Система \mathscr{L} подмножеств Ω называется λ -системой, если

1. $\Omega \in \mathcal{L}$

2.
$$(A, B \in \mathcal{L}$$
 и $A \subseteq B) \Rightarrow (B \setminus A \in \mathcal{L})$

3.
$$(A_n \in \mathcal{L}, n \ge 1, \text{ и } A_n \uparrow A) \Rightarrow (A \in \mathcal{L})$$

Система \mathscr{D} подмножеств Ω , являющаяся *одновременно* π -системой и λ -системой, называется π - λ -*системой*.

Если \mathscr{E} — некоторая система множеств, то через $\pi(\mathscr{E})$, $\lambda(\mathscr{E})$ и $d(\mathscr{E})$ будем обозначать соответственно наименьшие π -, λ - и π - λ -системы, содержащие \mathscr{E} .

Заметим, что каждая σ -алгебра является λ -системой. Обратное же неверно. Например, если $\Omega = \{1, 2, 3, 4\}$, то система

$$\mathcal{L} = \{\varnothing, \ \Omega, \ (1, \ 2), \ (1, \ 3), \ (1, \ 4), \ (2, \ 3), \ (2, \ 4), \ (3, \ 4)\}$$

является λ -системой, но не σ -алгеброй.

Теорема 4.2. (О π - λ -системах, на лекции δ/∂)

Верны следующие утверждения:

- а) Всякая π - λ -система является σ -алгеброй
- b) Если $\mathscr E$ некоторая π -система множеств, то $\lambda(\mathscr E)=d(\mathscr E)=\sigma(\mathscr E)$

Доказательство. Сначала заметим, что следующее определение λ -системы $\mathcal L$ эквивалентно данному выше.

- 1. $\Omega \in \mathcal{L}$
- 2. $A \in \mathcal{L} \Rightarrow \overline{A} \in \mathcal{L}$
- 3. если $A_n \in \mathcal{L}$, $n \geq 1$ и $\forall i \neq j$ $A_i \cap A_j = \emptyset$, то $\bigcup A_n \in \mathcal{L}$
- а) Система $\mathscr E$ содержит Ω т.к. это λ -система. Из определения λ -систем, $\mathscr E$ замкнуто относительно взятия дополнения множества, а из определения π -систем конечного пересечения множеств, а значит, что $\mathscr E$ является алгеброй. Покажем, что это σ -алгебра. Для этого докажем, что система $\mathscr E$ замкнута относительно взятия счетного объединения множеств B_1, B_2, \ldots из $\mathscr E$.

Положим $A_1 = B_1$ и $A_n = B_n \cap \overline{A_1} \cap \ldots \cap \overline{A_{n-1}}$. Тогда $\forall i \neq j \ A_i \cap A_j = \emptyset$, а значит $\bigcup A_n \in \mathscr{E}$. Но $\bigcup A_n = \bigcup B_n \Rightarrow \bigcup B_n \in \mathscr{E}$, откуда следует а).

b) Рассмотрим λ -систему $\lambda(\mathscr{E})$ и σ -алгебру $\sigma(\mathscr{E})$. Как отмечалось, всякая σ -алгебра является λ -системой. Поскольку $\sigma(\mathscr{E}) \supseteq \mathscr{E}$, то $\sigma(\mathscr{E}) = \lambda(\sigma(\mathscr{E})) \supseteq \lambda(\mathscr{E})$. Тем самым $\lambda(\mathscr{E}) \subseteq \sigma(\mathscr{E})$

Теперь, если показать, что система $\lambda(\mathscr{E})$ является π -системой, то по утверждению а) она является и σ -алгеброй, содержащей \mathscr{E} . А т.к. $\sigma(\mathscr{E})$ — минимальная σ -алгебра, то $\lambda(\mathscr{E}) = \sigma(\mathscr{E})$

Воспользуемся принципом подходящих множеств. Пусть

$$\mathscr{E}_1 = \{ B \in \lambda(\mathscr{E}) : B \cap A \in \lambda(\mathscr{E}) \text{ для всех } A \in \mathscr{E} \}$$

Если $B \in \mathscr{E}$, то $B \cap A \in \mathscr{E}$ (т.к. $\mathscr{E} - \pi$ -система). Значит, $\mathscr{E} \subseteq \mathscr{E}_1$. Но система \mathscr{E}_1 есть λ -система (в силу своего определения). Поэтому $\lambda(\mathscr{E}) \subseteq \lambda(\mathscr{E}_1) = \mathscr{E}_1$. С другой стороны, по определнию системы \mathscr{E}_1 имеет место включение $\mathscr{E}_1 \subseteq \lambda(\mathscr{E})$.

Таким образом $\mathscr{E}_1 = \lambda(\mathscr{E})$.

Пусть теперь

$$\mathscr{E}_2 = \{ B \in \lambda(\mathscr{E}) : B \cap A \in \lambda(\mathscr{E}) \text{ для всех } A \in \lambda(\mathscr{E}) \}$$

Как и \mathscr{E}_1 , \mathscr{E}_2 является λ -системой.

Возьмем множество $B \in \mathscr{E}$. Тогда по опредлению системы \mathscr{E}_1 для всех $A \in \mathscr{E}_1 = \lambda(\mathscr{E})$ находим, что $B \cap A \in \lambda(\mathscr{E})$. Следовательно, из определния системы \mathscr{E}_2 видим, что $\mathscr{E} \subseteq \mathscr{E}_2$ и $\lambda(\mathscr{E}) \subseteq \lambda(\mathscr{E}_2) = \mathscr{E}_2$. Но $\lambda(\mathscr{E}) \supseteq \mathscr{E}_2$. Поэтому $\lambda(\mathscr{E}) = \mathscr{E}_2$, и, значит, для любых A и B из $\lambda(\mathscr{E})$ множество $A \cap B \in \lambda(\mathscr{E})$, т.е. система $\lambda(\mathscr{E})$ является π -системой. Значит, система $\lambda(\mathscr{E})$ является π - λ -системой (a, значит, $\lambda(\mathscr{E}) = d(\mathscr{E})$), a, как отмечено выше, отсюда следует, что $\lambda(\mathscr{E}) = \sigma(\mathscr{E})$.

Теорема 4.3. Критерий независимости.

Пусть ξ_1, \ldots, ξ_n — случайные величины, $u \xi = (\xi_1, \ldots, \xi_n)$. Пусть $F_{\xi}(x_1, \ldots, x_n) = \mathsf{P}(\xi_1 \le x_1, \ldots, \xi_n \le x_n)$ — функция распределения случайного вектора ξ , а $F_{\xi_i}(x)$ — функция распределения ξ_i .

Тогда для того, чтобы случайные величины ξ_1, \ldots, ξ_n были независимы, необходимо и достаточно, чтобы для всех векторов $(x_1, \ldots, x_n) \in \mathbb{R}^n$

$$F_{\xi}(x_1, \ldots, x_n) = F_{\xi_1}(x_1) \ldots F_{\xi_n}(x_n)$$

Доказательство. Необходимость очевидна.

Для доказательства достаточности положим $M = \{(-\infty, x], : x \in \mathbb{R}\}$. Очевидно, что M это π -система. Докажем индукцией по k утверждение: $\forall k \in \{1, \dots, n\}, \forall B_1, \dots, B_k \in \mathscr{B}(\mathbb{R})$ и $\forall x_{k+1}, \dots, x_n \in \mathbb{R}$ верно:

$$P(\xi_1 \in B_1, \dots, \xi_k \in B_k, \xi_{k+1} \le x_{k+1}, \dots, \xi_n \le x_n) =$$

$$= P(\xi_1 \in B_1) \dots P(\xi_k \in B_k) P(\xi_{k+1} \le x_{k+1}) \dots P(\xi_n \le x_n)$$

База индукции:

Воспользуемся методом подходящих множеств.

Положим $\mathscr{E} = \{B_1 \in \mathscr{B}(\mathbb{R}) : \mathsf{P}(\xi_1 \in B_1, \, \xi_2 \leq x_2, \, \dots, \, \xi_n \leq x_n) = \mathsf{P}(\xi_1 \in B_1) \mathsf{P}(\xi_2 \leq x_2) \dots \mathsf{P}(\xi_n \leq x_n) \}$ Заметим следующее:

$$P(\xi_1 \le x_1, \dots, \xi_n \le x_n) = F_{\xi}(x_1, \dots, x_n) =$$

$$= F_{\xi_1}(x_1) \dots F_{\xi_n}(x_n) = P(\xi_1 \le x_1) \dots P(\xi_n \le x_n)$$

а значит, $M \subset \mathscr{E} \subseteq \mathscr{B}(\mathbb{R})$. Покажем, что \mathscr{E} является λ -системой.

1. $P(\xi_1 \in \mathbb{R}, \xi_2 \leq x_2, \ldots, \xi_n \leq x_n) = \lim_{x_1 \to +\infty} P(\xi_1 \leq x_1, \xi_2 \leq x_2, \ldots, \xi_n \leq x_n) = \lim_{x_1 \to +\infty} P(\xi_1 \leq x_1) \ldots P(\xi_n \leq x_n) = P(\xi_1 \in \mathbb{R}) \ldots P(\xi_n \leq x_n) \Rightarrow \mathbb{R} \in \mathscr{E}$ (по теореме о непрерывности вероятностной меры в 0).

2. Рассмотрим $A, B \in \mathcal{E}, A \subset B$.

$$\begin{split} \mathsf{P}(\xi_{1} \in B \setminus A, \xi_{2} \leq x_{2}, \, \dots, \, \xi_{n} \leq x_{n}) &= \\ &= \mathsf{P}(\xi_{1} \in B, \xi_{2} \leq x_{2}, \, \dots, \, \xi_{n} \leq x_{n}) - \mathsf{P}(\xi_{1} \in A, \xi_{2} \leq x_{2}, \, \dots, \, \xi_{n} \leq x_{n}) = \\ &= \mathsf{P}(\xi_{1} \in B) \mathsf{P}(\xi_{2} \leq x_{2}) \dots \mathsf{P}(\xi_{n} \leq x_{n}) - \mathsf{P}(\xi_{1} \in A) \mathsf{P}(\xi_{2} \leq x_{2}) \dots \mathsf{P}(\xi_{n} \leq x_{n}) = \\ &= (\mathsf{P}(\xi_{1} \in B) - \mathsf{P}(\xi_{1} \in A)) \mathsf{P}(\xi_{2} \leq x_{2}) \dots \mathsf{P}(\xi_{n} \leq x_{n}) = \mathsf{P}(\xi_{1} \in B \setminus A) \mathsf{P}(\xi_{2} \leq x_{2}) \dots \mathsf{P}(\xi_{n} \leq x_{n}) \end{split}$$

Откуда следует, что $B \setminus A \in \mathscr{E}$

3. Пусть $A_n \uparrow A$, $\forall i \ A_i \in \mathscr{E}$. Тогда (по теореме о непрерывности вероятностной меры в 0).:

$$P(\xi_{1} \in A, \xi_{2} \leq x_{2}, \dots, \xi_{n} \leq x_{n}) = \lim_{k \to +\infty} P(\xi_{1} \in A_{k}, \xi_{2} \leq x_{2}, \dots, \xi_{n} \leq x_{n}) =$$

$$= \lim_{k \to +\infty} P(\xi_{1} \in A_{k}) P(\xi_{2} \leq x_{2}) \dots P(\xi_{n} \leq x_{n}) =$$

$$= P(\xi_{1} \in A) P(\xi_{2} \leq x_{2}) \dots P(\xi_{n} \leq x_{n})$$

а значит $A \in \mathscr{E}$

$$\Rightarrow \mathscr{B}(\mathbb{R}) \supseteq \mathscr{E} = \lambda(\mathscr{E}) \supseteq \lambda(M) = \sigma(M) = \mathscr{B}(\mathbb{R}) \Rightarrow \mathscr{E} = \mathscr{B}(\mathbb{R})$$
 (по теореме 4.2). База индукции доказана.
Шаг индукции. Доказательство аналогично доказательству базы.

Следствие 4.3.1. Пусть $\{\xi_{\alpha}, \ \alpha \in A\}$ — набор независимых в совокупности случайных величин. Пусть $\alpha_1, \ldots, \alpha_{k_1}, \alpha_{k_1+1}, \ldots, \alpha_{k_1+k_2}, \ldots, \alpha_{k_1+\ldots+k_n}$ — различные индексы из A. Тогда случайные вектора $\eta_1 := (\xi_{\alpha_1}, \ldots, \xi_{\alpha_{k_1}}), \ldots, \eta_n := (\xi_{\alpha_{k_1+\ldots+k_{n-1}+1}}, \ldots, \xi_{\alpha_{k_1+\ldots+k_n}})$ — независимы в совокупности.

Доказательство. По критерию независимости ($x_i \in \mathbb{R}^{k_i}$):

$$F_{(\eta_1,\,\ldots,\,\eta_n)}(x_1,\,\ldots x_n) = F_{\eta_1}(x_1)\ldots F_{\eta_n}(x_n) = F_{\xi_1}(x_1^1)\ldots F_{\xi_{k_1}}(x_1^{k_1})\ldots F_{\xi_{k_1+\ldots k_n}}(x_n^{k_n}),$$
а это так, т.к. критерий независимости верен для любого поднабора ξ_i

Утверждение 4.3.2. Пусть ξ_1, \ldots, ξ_n — независимые в совокупности случайные векторы размерности k_i , а g_1, \ldots, g_n — борелевские функции, $g_i : \mathbb{R}^{k_i} \to \mathbb{R}^{m_i}$. Тогда случайные вектора $g_1(\xi_1), \ldots, g_n(\xi_n)$ — независимы в совокупности.

Доказательство.
$$P(g_1(\xi_1) \in B_1, \ldots, g_n(\xi_n) \in B_n) = P(\xi_1 \in g_1^{-1}(B_1), \ldots, \xi_n \in g_n^{-1}(B_n)) = P(\xi_1 \in g_1^{-1}(B_1), \ldots, \xi_n \in g_n^{-1}(B_n)) = P(g_1(\xi_1) \in B_1) \ldots P(g_n(\xi_n) \in B_n)$$

5 Математическое ожидание

5.1 Дискретный случай. Свойства

Определение 5.1. Пусть ξ — *дискретная* случайная величина на пространстве $(\Omega, \mathscr{F}, \mathsf{P})$. X — множество ее значений. Тогда *математическим ожиданием* ξ называется число, равное $\mathsf{E}\xi = \sum_{x \in X} x \mathsf{P}(\xi = x)$, если этот ряд сходится абсолютно.

Утверждение 5.1.1. Пусть $A_1,\ A_2,\ \dots$ — разбиение $\Omega,$ такое что $\forall i\ \xi|_{A_i}=const.$ Пусть $\omega_i\in A_i.$ Тогда $\mathsf{E}\xi=\sum_i\xi(\omega_i)\mathsf{P}(A_i)$

Доказательство.
$$\mathsf{E}\xi = \sum_{x \in X} x \mathsf{P}(\xi = x) = \sum_{x \in X} x \mathsf{P}(\bigcup_{i \ : \ \xi(\omega_i) = x} A_i) = \sum x \sum_{i : \xi(\omega_i) = x} \mathsf{P}(A_i) = \sum \xi(\omega_i) \mathsf{P}(A_i)$$

Замечание: В частном случае, когда (Ω, \mathscr{F}, P) — дискретное вероятностное пространство, формула принимает вид $\mathsf{E}\xi = \sum_{\omega \in \Omega} \xi(\omega) \mathsf{P}(\{\omega\})$. В случае классической вероятности, $\mathsf{E}\xi = \frac{1}{|\Omega|} \sum_{\omega \in \Omega} \xi(\omega)$

Утверждение 5.1.2. Математическое ожидание **дискретной** случайной величины обладает следующими свойствами:

- 1. $\xi = c, c \in \mathbb{R}$. Ec = c
- 2. $EI_A = P(A)$
- 3. Если $\xi \ge 0$, то $\mathsf{E} \xi \ge 0$
- 4. Если $P(\xi = 0) = 1$, то $E\xi = 0$
- 5. (Линейность) ξ , η случайные величины, $a, b \in \mathbb{R}$. Тогда $\mathsf{E}(a\xi+b\eta)=a\mathsf{E}\xi+b\mathsf{E}\eta$
- 6. Пусть $\xi \geq \eta$. Тогда $\mathsf{E} \xi \geq \mathsf{E} \eta$
- 7. $|E\xi| \le E|\xi|$
- 8. Если $\xi \perp \!\!\! \perp \eta$, то $\mathsf{E} \xi \eta = \mathsf{E} \xi \, \mathsf{E} \eta$ (обратное неверно)
- 9. (неравенство Коши-Буняковского) (
Е $\xi\eta)^2 \leq (\mathsf{E}\xi)^2 \; (\mathsf{E}\eta)^2$

Доказательство.

1.
$$\xi = c \Rightarrow P(\xi = c) = 1$$
, $E\xi = cP(\xi = c) = c$

2.
$$\xi = I_A \Rightarrow P(\xi = 1) = P(A), P(\xi = 0) = 1 - P(A), E\xi = 1 \cdot P(A) + 0 \cdot (1 - P(A)) = P(A)$$

3.
$$\xi \geq 0, \mathsf{P}(\xi = x) \geq 0 \Rightarrow$$
 каждое отдельное слагаемое в $\sum_{x \in X} x \mathsf{P}(\xi = x)$ неотрицательно $\Rightarrow \mathsf{E} \xi \geq 0$

4.
$$P(\xi = 0) = 1 \Rightarrow E\xi = 0 \cdot P(\xi = 0) + \sum_{x \in X, x \neq 0} x P(\xi = x) = 0$$

5.
$$c \in \mathbb{R}$$
. $\mathsf{E} c \xi = \sum_{x \in X} c x \mathsf{P}(\xi = x) = c \sum_{x \in X} x \mathsf{P}(\xi = x) = c \mathsf{E} \xi$

$$\mathsf{E}(\xi + \eta) = \sum_{i} (\xi(\omega_i) + \eta(\omega_i)) \mathsf{P}(\{\omega_i\}) = \sum_{i} \xi(\omega_i) \mathsf{P}(\{\omega_i\}) + \sum_{i} \eta(\omega_i) \mathsf{P}(\{\omega_i\}) = \mathsf{E} \xi + \mathsf{E} \eta$$

6. Следует из записи $\mathsf{E}\xi = \sum_{\omega \in \Omega} \xi(\omega) \mathsf{P}(\{\omega\})$

7.
$$|\mathsf{E}\xi| = |\sum_{x \in X} x \mathsf{P}(\xi = x)| \le |\sum_{x \in X} |x| \mathsf{P}(\xi = x)| = \sum_{x \in |X|} |x| \mathsf{P}(|\xi| = x) = \mathsf{E}|\xi|$$

8.
$$\mathsf{E}\xi\eta = \sum_{k,\,n} (x_k y_n) \mathsf{P}(\xi = x_k,\, \eta = y_n) = \sum_{k,\,n} (x_k y_n) \mathsf{P}(\xi = x_k) \mathsf{P}(\eta = y_n) = \sum_k x_k \mathsf{P}(\xi = x_k) \sum_n y_n \mathsf{P}(\eta = y_n) = \mathsf{E}\xi\mathsf{E}\eta$$

9. Рассмотрим функцию $f(\lambda) = \mathsf{E}(\xi + \lambda \eta)^2 \ge 0$. По линейности мат.ожидания, $f(\lambda) = \mathsf{E}\xi^2 + 2\lambda \mathsf{E}\xi\eta + \lambda^2 \mathsf{E}\eta^2$ — это всюду неотрицательный квадратный трехчлен относительно $\lambda \Rightarrow$ его дискриминант меньше либо равен нулю.

$$4(\mathsf{E}\xi\eta)^2 - 4\mathsf{E}\xi^2\mathsf{E}\eta^2 \le 0 \Rightarrow$$
 требуемое.

Утверждение~5.1.3.~ Пусть ξ — случайная величина, X — ее множество значений, а φ — борелевская функция. Тогда $\mathsf{E}\varphi(\xi) = \sum_{x \in X} \varphi(x) P(\xi = x)$

Доказательство. Пусть Y — множество значений $\varphi(\xi)$.

$$\mathsf{E}\varphi(\xi) = \sum_{y \in Y} y \mathsf{P}(\varphi(\xi) = y) = \sum_{y \in Y} y \sum_{x: \ \varphi(x) = y} \mathsf{P}(\xi = x) = \sum_{y \in Y} \sum_{x: \ \varphi(x) = y} \varphi(x) \mathsf{P}(\xi = x) = \sum_{x \in X} \varphi(x) \mathsf{P}(\xi = x) \qquad \Box$$

Пример 5.1. $\xi \sim Bern(p)$.

$$\mathsf{E}\xi = 0\mathsf{P}(\xi = 0) + 1\mathsf{P}(\xi = 1) = p$$

Пример **5.2.** $\xi \sim Bin(n, p)$.

$$\mathsf{E}\xi=\mathsf{E}(\xi_1+\ldots+\xi_n)$$
, где $\xi_i\sim Bern(p)$ — независимые с.в. Тогда $\mathsf{E}\xi=\sum\mathsf{E}\xi_i=np$

Пример 5.3.
$$\xi \sim U(\{1, \ldots, n\}), \quad \mathsf{P}(\{k\}) = \frac{1}{n}$$
 $\mathsf{E}\xi = \frac{1}{n}\sum_{k=1}^n k = \frac{n+1}{2}$

Пример 5.4. $\xi \sim Pois(\lambda)$

$$\mathsf{E}\xi = \sum_{k=0}^{\infty} k \tfrac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{\infty} \tfrac{k \lambda^k e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \tfrac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

5.2 Абсолютно непрерывный случай

Определение 5.2. Пусть ξ — абсолютно непрерывная случайная величина. F_{ξ}, p_{ξ} — ее функция распределения и плотность соответственно. Тогда ее математическим ожиданием называется величина $\mathsf{E}\xi = \int\limits_{-\infty}^{+\infty} x d(F_{\xi}(x)) = \int\limits_{-\infty}^{+\infty} x p_{\xi}(x) dx$

Пример 5.5.
$$\xi \sim U([a,\ b]).$$
 $p_{\xi}(x) = \frac{1}{b-a}I(x \in [a,\ b])$ $\mathsf{E}\xi = \frac{a+b}{2}$

Пример 5.6.
$$\xi \sim Exp(\lambda)$$
. $p_{\xi}(x) = \lambda e^{-\lambda x} I(x > 0)$ $\exists \xi \in \int_{-\infty}^{+\infty} x \lambda e^{-\lambda x} I(x > 0) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$

Пример 5.7. $\xi \sim N(a, \sigma^2)$. $p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}$

$$\mathsf{E}\xi = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{x-a}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx + a \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx + a \cdot 1 = 0 + a = a$$

т.к. интегрируемая функция нечетная и абсолютно интегрируема.

5.3 Математическое ожидание произвольной случайной величины

Определение 5.3. Пусть ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$. Если существует интеграл Лебега по пространству Ω по вероятностной мере P , то он называется математическим ожиданием ξ

$$\mathsf{E}\xi = \int\limits_{\Omega} \xi(\omega)\mathsf{P}(d\omega) = \int\limits_{\Omega} \xi d\mathsf{P}_{\xi}$$

(интеграл Лебега по вероятностной мере будет определен далее)

Определение 5.4. Случайная величина ξ называется npocmoй, если ее множество значений конечно. (частный случай дискретной с.в.)

Определение 5.5. Пусть ξ — с.в. Последовательность случайных величин $\{\xi_n\}$ монотонно сходится к ξ (обозначение: $\xi_n \uparrow \xi$), если функц. последовательность ξ_n поточечно сходится к ξ на Ω и $\forall n \in \mathbb{N} \, \forall \omega \in \Omega$: $\xi_n(\omega) \leq \xi_{n+1}(\omega)$

Определение 5.6. Пусть ξ — случайная величина. Тогда $\xi^+ = max(\xi,0), \ \xi^- = -min(\xi,0)$. Нетрудно заметить, что $\xi = \xi^+ - \xi^-$

Теорема 5.1. О приближении простыми.

- 1. Пусть ξ неотрицательная случайная величина. Тогда найдется последовательность простых P_{ξ} -измеримых случайных величин $\{\xi_n\}$, такая что $\xi_n \uparrow \xi$
- 2. Пусть ξ произвольная случайная величина. Тогда найдется последовательность простых P_{ξ} измеримых случайных величин, такая что $\xi_n \to \xi$ и $|\xi_n| \le |\xi_{n+1}|$

Доказательство.

1. Пример такой последовательности:

$$\xi_n = \begin{cases} \frac{k-1}{2^n}, & \frac{k-1}{2^n} \le \xi < \frac{k}{2^n}, & k = 1, \dots, n2^n \\ n, & \xi \ge n \end{cases}$$

Зафиксируем $\omega \in \{\xi \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]\}$. Тогда для него

$$\xi_n(\omega) = \frac{k-1}{2^n}, \ \xi_{n+1}(\omega) = \frac{k-1}{2^n} I\left(\xi(\omega) \in \left[\frac{k-1}{2^n}, \ \frac{2k-1}{2^n}\right)\right) + \frac{2k-1}{2^{n+1}} I\left(\xi(\omega) \in \left[\frac{2k-1}{2^{n+1}}, \ \frac{k}{2^n}\right)\right)$$

а значит $\xi_n \leq \xi_{n+1}$. Сходимость же следует из того, что $\{\xi \leq n\} \uparrow \Omega$ и на этом множестве $|\xi_n - \xi| \leq \frac{1}{2^n} \to 0$.

2. Сначала заметим, что $\xi = \xi^+ - \xi^-$, $|\xi| = \xi^+ + \xi^-$, где ξ^+ , ξ^- — неотрицательные случайные величины. Пусть $\eta_n \uparrow \xi^+$, $\zeta_n \uparrow \xi^-$. Положим $\xi_n = \eta_n - \zeta_n$. Тогда ξ_n сходится поточечно к ξ , а $|\xi_n| = \eta_n + \zeta_n \le \eta_{n+1} + \zeta_{n+1} = |\xi_{n+1}|$

Пусть ξ — неотрицательная случайная величина. Построим последовательность простых $\xi_n \uparrow \xi$. Т.к. $\xi_n \leq \xi_{n+1}$, то $\mathsf{E}\xi_n \leq \mathsf{E}\xi_{n+1}$, а значит существует $\lim_{n \to \infty} \mathsf{E}\xi_n$

Определение 5.7. *Математическим ожиданием* неотрицательной случайной величины ξ , или ее интегралом Лебега называется величина

$$\mathsf{E}\xi = \lim_{n \to \infty} \mathsf{E}\xi_n$$

Лемма 5.1. Пусть ξ_n , η — простые неотрицательные случайные величины, u $\xi_n \uparrow \xi \geq \eta$. Тогда:

$$\lim_{n\to+\infty}\mathsf{E}\xi_n\geq\mathsf{E}\eta$$

Доказательство. Зафиксируем $\varepsilon > 0$. Положим

$$A_n := \{ \omega \in \Omega : \xi_n \ge \eta - \varepsilon \} \in \mathscr{F}$$

Поскольку $\xi_n \uparrow \xi \geq \eta$, то $A_n \to \Omega \Rightarrow \mathsf{P}(A_n) \to 1$ и

$$\xi_n = \xi_n I_{A_n} + \xi_n I_{\overline{A}} \ge \xi_n I_{A_n} \ge (\eta - \varepsilon) I_{A_n}$$

Используя свойста мат.ожидания от простых случайных величин, находим, что

$$\begin{split} \mathsf{E}\xi_n & \geq \mathsf{E}(\eta - \varepsilon)I_{A_n} = \mathsf{E}\eta I_{A_n} - \varepsilon \mathsf{P}(A_n) = \\ & = \mathsf{E}\eta - \mathsf{E}\eta I_{\overline{A}_n} - \varepsilon \mathsf{P}(A_n) \geq \mathsf{E}\eta - C\mathsf{P}(\overline{A}_n) - \varepsilon \end{split}$$

где $C = \max \eta$. Переходя к пределу при $n \to \infty$, получаем требуемое неравенство.

Утверждение 5.3.1. Определение математического ожидание корректно, т.е. не зависит от выбора аппроксимирующей последовательности.

Доказательство. Пусть $\xi_n \uparrow \xi$, $\eta_n \uparrow \xi$. Тогда по по лемме 5.1:

$$\lim_{n} \mathsf{E} \eta_{n} \geq \mathsf{E} \xi_{n} \Rightarrow \lim_{n} \mathsf{E} \eta_{n} \geq \lim_{n} \mathsf{E} \xi_{n}.$$

Абсолютно аналогично получаем, что $\lim_n \mathsf{E} \xi_n \geq \lim_n \mathsf{E} \eta_n \Rightarrow \lim_n \mathsf{E} \xi_n = \lim_n \mathsf{E} \eta_n$

Следствие 5.1.1. *Если* $\xi \ge 0$ — *случайная величина, то*

$$\mathsf{E}\xi = \sup_{\eta:\eta \le \xi} \mathsf{E}\eta$$

 $rde \eta - npocmыe$ случайные величины.

Определение 5.8. Пусть ξ — произвольная случайная величина на (Ω, \mathscr{F}, P) . Тогда ее математическим ожиданием $\mathsf{E}\xi$, или интегралом Лебега, называется

- 1. $E\xi^+ E\xi^-$, если $E\xi^+$ и $E\xi^-$ конечны.
- 2. $+\infty$, если $\mathsf{E}\xi^{+} = \infty$, $\mathsf{E}\xi^{-}$ конечно.
- 3. $-\infty$, если $\mathsf{E}\xi^- = \infty$, $\mathsf{E}\xi^+$ конечно.
- 4. неопределено, если $\mathsf{E}\xi^+$ и $\mathsf{E}\xi^-$ бесконечны.

Свойства математического ожидания

Утверждение 5.4.1. Пусть $\xi \le \eta$. Е ξ , Е η — существуют. Тогда Е $\xi \le E\eta$.

Доказательство. Для простых доказано. Пусть $\eta \ge \xi \ge 0$. Тогда по следствию 5.1.1:

$$\mathsf{E}\xi = \sup_{\mu \le \xi} \mathsf{E}\mu \le \sup_{\mu \le \eta} \mathsf{E}\mu = \mathsf{E}\eta$$

 $\mathsf{E}\xi=\sup_{\mu\leq\xi}\mathsf{E}\mu\leq\sup_{\mu\leq\eta}\mathsf{E}\mu=\mathsf{E}\eta.$ что доказывает утверждение для неотрицательных случайных величин.

Пусть
$$\xi,\ \eta$$
 — произвольные. Тогда $\xi=\xi^+-\xi^-,\ \eta=\eta^+-\eta^-\Rightarrow \xi^+\leq \eta^+,\ \xi^-\geq \eta^-$ (т.к. $\eta\geq \xi$) \Rightarrow $\mathsf{E}\xi^+\leq\mathsf{E}\eta^+,\ \mathsf{E}\xi^-\geq\mathsf{E}\eta^-$

Разбор случаев, когда одно или оба математических ожидания бесконечны тривиален.

Ежели $|\mathsf{E}\xi| < \infty$, $|\mathsf{E}\eta| < \infty$, то:

$$\mathsf{E}\xi = \mathsf{E}\xi^+ - \mathsf{E}\xi^- \le \mathsf{E}\eta^+ - \mathsf{E}\eta^- = \mathsf{E}\eta.$$

Утверждение 5.4.2. Если $\xi \geq 0$, то $\mathsf{E} \xi \geq 0$. Дополнительно, если $\mathsf{E} \xi = 0$, то $P(\xi = 0) = 1$.

Доказательство. Взяв $\eta = 0$ и применив свойство 5.4.1 получаем требуемое.

Для простых:
$$\mathsf{E}\xi = \sum\limits_n c_n \mathsf{P}(A_n) = 0$$
 и $\forall i: \ c_i \geq 0 \Rightarrow \mathsf{P}(\xi = 0) = 1$

Пусть $\xi \ge 0$ — произвольная. Тогда существует последовательность простых $\xi_n \uparrow \xi$. Откуда:

$$0 \le \mathsf{E}\xi_n \le \mathsf{E}\xi = 0 \Rightarrow \mathsf{P}(\xi_n = 0) = 1$$

T.K.
$$\xi_n \uparrow \xi$$
, to $\{\xi_n = 0\} \downarrow \{\xi = 0\} \Rightarrow \mathsf{P}(\xi = 0) = 1$

Утверждение 5.4.3. Пусть ξ случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда, если существует $\mathsf{E}\xi$, то для любого события $A \in \mathscr{F}$ существует $\mathsf{E}\xi \cdot I_A$. Дополнительно, если $\mathsf{E}\xi$ конечно, то для любого события $A \in \mathscr{F}$ конечно $\mathsf{E}\xi \cdot I_A$.

 \mathcal{A} оказательство. Е ξ существует $\iff \min(\mathsf{E}\xi^+,\,\mathsf{E}\xi^-) < \infty$. Тогда имеем:

$$\xi^-I_A \le \xi^-,\ \xi^+I_A \le \xi^+ \Rightarrow \mathsf{E}(\xi^-I_A) \le \mathsf{E}\xi^-,\ \mathsf{E}(\xi^+I_A) \le \mathsf{E}\xi^+ \Rightarrow \min(\mathsf{E}(\xi^+I_A),\ \mathsf{E}(\xi^-I_A)) < \infty,$$
а значит $\mathsf{E}\xi I_A$ существует.

Если мат. ожидание ξ конечно, то конечно мат. ожидание ξ^+ и ξ^- . А значит:

$$\mathsf{E}(\xi I_A)^+ = \mathsf{E}\xi^+ I_A < \infty, \; \mathsf{E}(\xi I_A)^- = \mathsf{E}\xi^- I_A < \infty \Rightarrow |\mathsf{E}\xi I_A| < \infty$$

Утверждение 5.4.4. Если $P(\xi = 0) = 1$, то $E\xi = 0$

Доказательство. Для простых доказано. Пусть $\xi = \xi^+ - \xi^-$ — произвольная. Из условия следует, что $\mathsf{P}(\xi^+ = 0) = \mathsf{P}(\xi^- = 0) = 1$ Пусть $\xi_n^+ \uparrow \xi^+, \, \xi_n^- \uparrow \xi^-$ — последовательности неотрицательных простых. Тогда:

$$\mathsf{P}(\xi_n^+=0)=\mathsf{P}(\xi_n^-=0)=1\Rightarrow\mathsf{E}\xi_n^+=\mathsf{E}\xi_n^-=0\Rightarrow\mathsf{E}\xi^+=\mathsf{E}\xi^-=0\Rightarrow\mathsf{E}\xi=0$$

Утверждение 5.4.5. Если $\mathsf{E}\xi$ существует, то $|\mathsf{E}\xi| \leq \mathsf{E}|\xi|$

Доказательство. Для простых доказано. Для неотрицательных очевидно.

 $|\xi| = \xi^{+} + \xi^{-}$. Разберем случаи:

- 1. $\mathsf{E}\xi^{-} = \infty$, $\mathsf{E}\xi^{+} < \infty$. Тогда $|\mathsf{E}\xi| = \mathsf{E}|\xi| = +\infty$
- 2. Е $\xi^+=\infty$, Е $\xi^-<\infty$. Тогда аналогично |Е ξ | = Е $|\xi|=+\infty$
- 3. $\mathsf{E}\xi^+ < \infty$, $\mathsf{E}\xi^- < \infty$. Тогда $|\mathsf{E}\xi| = |\mathsf{E}\xi^+ \mathsf{E}\xi^-| \le |\mathsf{E}\xi^+| + |\mathsf{E}\xi^-| = \mathsf{E}\xi^+ + \mathsf{E}\xi^- = \mathsf{E}|\xi|$

Утверждение 5.4.6. Пусть $c \in \mathbb{R}.$ Тогда если $\mathsf{E}\xi$ существует, то $\mathsf{E}c\xi = c\mathsf{E}\xi$

Доказательство. Для простых доказано.

Пусть $\xi \geq 0$. Рассмотрим последовательность простых $\xi_n \uparrow \xi$

1. $c \ge 0 \Rightarrow c\xi_n \uparrow c\xi$ — последовательность неотрицательных простых. Тогда для нее:

$$\mathsf{E} c \xi_n \to \mathsf{E} c \xi, \quad \mathsf{E} c \xi_n = c \mathsf{E} \xi_n \to c \mathsf{E} \xi \Rightarrow \mathsf{E} c \xi = c \mathsf{E} \xi$$

2.
$$c < 0$$
 Тогда $\mathsf{E} c \xi = -\mathsf{E} (c \xi)^- = -\mathsf{E} (-c \xi) = -(-c) \mathsf{E} \xi = c \mathsf{E} \xi$

Пусть теперь $\xi = \xi^+ - \xi^-$ — произвольная случайная величина. Случаи, когда одно из мат.ожиданий $\mathsf{E}\xi^+, \, \mathsf{E}\xi^-$ бесконечно разбирается очевидно. Предположим, что $\mathsf{E}\xi^+ < \infty, \, \mathsf{E}\xi^- < \infty$. Пусть $\xi_n^+ \uparrow \xi^+, \, \xi_n^- \uparrow \xi^-$.

1. $c \ge 0$. Тогда $c\xi_n^+ \uparrow c\xi$, $c\xi_n^- \uparrow c\xi^-$. По определению мат. ожидания

$$\mathsf{E} c \xi = \mathsf{E} (c \xi)^+ - \mathsf{E} (c \xi)^- = \lim_n (\mathsf{E} c \xi_n^+ - \mathsf{E} c \xi_n^-) = c \lim_n \mathsf{E} \xi_n = c \mathsf{E} \xi$$

2. c<0. Тогда $-c\xi_n^+\uparrow -c\xi^+,\; -c\xi_n^-\uparrow -c\xi^-$. По определению мат. ожидания

$$\mathsf{E} c \xi = \mathsf{E} (c \xi)^+ - \mathsf{E} (c \xi)^- = \lim_n \mathsf{E} (-c \xi_n^-) - \mathsf{E} (-c \xi_n^+) = \lim_n -c (\mathsf{E} \xi^- - \mathsf{E} \xi^+) = c \mathsf{E} \xi$$

Утверждение 5.4.7. Если ξ , η — неотрицательные случайные величины или такие, что $\mathsf{E}|\xi|<\infty$, $\mathsf{E}|\eta|<\infty$, то

$$\mathsf{E}(\xi + \eta) = \mathsf{E}\xi + \mathsf{E}\eta$$

Доказательство. Для простых уже доказано.

Пусть ξ , η — неотрицательные. Рассмотрим последовательности простых $\xi_n \uparrow \xi$, $\eta_n \uparrow \eta$, сходящиеся к ним. Тогда $\mathsf{E}\xi_n \to \mathsf{E}\xi$, $\mathsf{E}\eta_n \to \mathsf{E}\eta$. А значит

$$\begin{bmatrix}
\mathsf{E}(\xi_n + \eta_n) = \mathsf{E}\xi_n + \mathsf{E}\eta_n \to \mathsf{E}\xi + \mathsf{E}\eta \\
\mathsf{E}(\xi_n + \eta_n) \to \mathsf{E}(\xi + \eta)
\end{bmatrix} \Rightarrow \mathsf{E}(\xi + \eta) = \mathsf{E}\xi + \mathsf{E}\eta$$

 $(6/\partial)$: Случай $\mathsf{E}|\xi| < \infty$, $\mathsf{E}|\eta| < \infty$ сводится к рассмотреному, если воспользоваться тем, что $\xi = \xi^+ - \xi^-$, $\eta = \eta^+ - \eta^-$ и тем, что $\xi^+ \le |\xi|$, $\xi^- \le |\xi|$.

Утверждение 5.4.8. Пусть математические ожидания ξ , η конечны и для всех $A \in \mathscr{F}$: $\mathsf{E}\xi I_A \leq \mathsf{E}\eta I_A$. Тогда $\mathsf{P}(\xi \leq \eta) = 1$.

Доказательство. Действительно, пусть $A = \{\omega : \xi(\omega) > \eta(\omega)\} \in \mathscr{F}$. Тогда $\mathsf{E}\eta I_A \le \mathsf{E}\xi I_A \le \mathsf{E}\eta I_A \Rightarrow \mathsf{E}\eta I_A = \mathsf{E}\xi I_A$. По линейности математического ожидания $\mathsf{E}((\xi - \eta)I_A) = 0 \Rightarrow \mathsf{P}(A) = 0 \Rightarrow \mathsf{P}(\xi \le \eta) = 1$.

Утверждение 5.4.9. Если $\xi = \eta$ почти наверное (т.е. P($\{\xi \neq \eta \}$) = 0) и $\mathsf{E}|\xi| < \infty$, то $\mathsf{E}|\eta| < \infty$ и $\mathsf{E}\xi = \mathsf{E}\eta$.

 \mathcal{A} оказательство. Пусть $N=\{\omega:\xi\neq\eta\}$. Тогда $\mathsf{P}(N)=0$ и $\xi=\xi I_N+\xi I_{\overline{N}},$ $\eta=\eta I_N+\eta I_{\overline{N}}.$ По линейности математического ожидания, $\mathsf{E}\xi=\mathsf{E}\xi I_N+\mathsf{E}\xi I_{\overline{N}}=\mathsf{E}\xi I_{\overline{N}}=\mathsf{E}\eta I_{\overline{N}}=\mathsf{E}\eta I_{\overline{N}}+\mathsf{0}=\mathsf{E}\eta I_{\overline{N}}+\mathsf{E}\eta I_N=\mathsf{E}\eta$

Утверждение 5.4.10. (б/д)

Пусть математические ожидания ξ , η конечны, а $\xi \perp \!\!\! \perp \eta$. Тогда $\mathsf{E}\xi\eta = \mathsf{E}\xi \, \mathsf{E}\eta$

5.5 Основные теоремы о предельном переходе под знаком интеграла Лебега

Теорема 5.2. (Лебега о монотонной сходимости)

 Π усть η , ξ , ξ_1 , ξ_2 , ... — случайные величины.

а) Если $\xi_n \ge \eta$ для всех $n \ge 1$, $\exists \eta \ge -\infty$ и $\xi_n \uparrow \xi$, то

$$\mathsf{E}\xi_n\uparrow\mathsf{E}\xi$$

b) Echu $\xi_n \leq \eta$ das $\sec x \ n \geq 1$, $\exists \eta < +\infty \ u \ \xi_n \downarrow \xi$, mo

$$\mathsf{E}\xi_n\downarrow\mathsf{E}\xi$$

Доказательство. (На лекции была б/д)

а) Предположим сначала, что $\eta \geq 0$. Определим для каждого $k \geq 1$ последовательность случайных величин $\{\xi_k^{(n)}\}_{n\geq 1}$ как последовательность простых случайных величин, сходящуюся к ξ_k (т.е. $\xi_k^{(n)} \uparrow \xi_k$). Обозначим за $\zeta^{(n)} = \max_{1 \le k \le n} \xi_k^{(n)}$. Тогда $\zeta^{(n-1)} \le \zeta^{(n)} = \max_{1 \le k \le n} \xi_k^{(n)} \le \max_{1 \le k \le n} \xi_k = \xi_n.$

$$\zeta^{(n-1)} \le \zeta^{(n)} = \max_{1 \le k \le n} \xi_k^{(n)} \le \max_{1 \le k \le n} \xi_k = \xi_n.$$

Пусть $\zeta = \lim_{n} \zeta^{(n)}$. Поскольку для $1 \le k \le n$

$$\xi_k^{(n)} \le \zeta^{(n)} \le \xi_n,$$

то, переходя к пределу при $n \to \infty$ получим, что для любого $k \ge 1$ верно

$$\xi_k \le \zeta \le \xi$$

а значит $\xi = \zeta$.

Случайные величины $\zeta^{(n)}$ простые и $\zeta^{(n)} \uparrow \zeta$, поэтому

$$\mathsf{E}\xi = \mathsf{E}\zeta = \lim \mathsf{E}\zeta^{(n)} \le \mathsf{E}\xi_n.$$

С другой стороны, поскольку $\xi_n \leq \xi_{n+1} \leq \xi$, то $\lim \mathsf{E} \xi_n \leq \mathsf{E} \xi$. Тем самым, $\mathsf{E} \xi = \lim \mathsf{E} \xi_n$.

Пусть теперь η — произвольная случайная величина с $\mathsf{E}\eta > -\infty$.

Если $\mathsf{E}\eta=\infty$, то в силу $\mathsf{E}\xi_n=\mathsf{E}\xi=\infty$ и утверждение доказано. Пусть теперь $\mathsf{E}\eta<\infty$. Тогда $\mathsf{E}|\eta|<\infty$. Тогда $0\leq \xi_n-\eta\uparrow\xi-\eta$ поточечно на Ω . Значит, согласно доказанному ранее, $\mathsf{E}(\xi_n - \eta) \uparrow \mathsf{E}(\xi - \eta)$ и, по линейности

$$\mathsf{E}\xi_n - \mathsf{E}\eta \uparrow \mathsf{E}\xi - \mathsf{E}\eta \Rightarrow \mathsf{E}\xi_n \uparrow \mathsf{E}\xi$$

b) Доказательство следует из a), если вместо исходных величин рассмотреть величины со знаком минус.

Теорема 5.3. (лемма Φ amy)

 $\Pi y c m v \eta, \xi_1, \xi_2, \ldots - c \Lambda y ч а \$ йные величины.

а) Если $\xi_n \geq \eta$ для всех n и $\exists \eta > -\infty$, то

$$\mathsf{E} \varliminf_{n \to \infty} \xi_n \le \varliminf_{n \to \infty} \mathsf{E} \xi_n$$

b) Echu $\xi_n \leq \eta$ das $\sec x \ n \ u \ \exists \eta < +\infty, \ mo$

$$\overline{\lim_{n\to\infty}}\,\mathsf{E}\xi_n \le \mathsf{E}\,\overline{\lim_{n\to\infty}}\,\xi_n$$

c) Если $|\xi_n| \le \eta$ для всех n и $\mathrm{E} \eta < \infty,\ mo$

$$\mathsf{E} \varliminf_{n \to \infty} \xi_n \leq \varliminf_{n \to \infty} \mathsf{E} \xi_n \leq \varlimsup_{n \to \infty} \mathsf{E} \xi_n \leq \mathsf{E} \varlimsup_{n \to \infty} \xi_n$$

Доказательство. Положим $\zeta_n = \inf_{m \geq n} \xi_m$. Тогда, очевидно, что $\zeta_n \leq \zeta_{n+1}$. Кроме этого,

$$\underline{\lim}_{n \to \infty} \xi_n = \lim_{n \to \infty} \inf_{m \ge n} \xi_m = \lim_{n \to \infty} \zeta_n \Rightarrow \zeta_n \uparrow \underline{\lim}_{n \to \infty} \xi_n$$

Т.к. $\zeta_n \geq \eta$ для всех n. Тогда из теоремы 5

$$\mathsf{E}\underbrace{\lim_{n\to\infty}}_{n\to\infty}\xi_n=\mathsf{E}\lim_{n\to\infty}\zeta_n=\lim_{n\to\infty}\mathsf{E}\zeta_n=\underbrace{\lim_{n\to\infty}}_{n\to\infty}\mathsf{E}\zeta_n\leq \underline{\lim}_{n\to\infty}\mathsf{E}\xi_n$$

 $\mathsf{E} \varliminf_{n \to \infty} \xi_n = \mathsf{E} \lim_{n \to \infty} \zeta_n = \lim_{n \to \infty} \mathsf{E} \zeta_n = \varliminf_{n \to \infty} \mathsf{E} \zeta_n \leq \varliminf_{n \to \infty} \mathsf{E} \xi_n$ что и доказывает утверждение a). Второе утверждение следует из первого, если рассмотреть величины со знаком минус. Третье утверждение это следствие первых двух.

Теорема 5.4. (Лебега о мажорируемой сходимости)

Пусть случайные величины $\eta, \xi, \xi_1, \xi_2, \dots$ таковы, что $|\xi_n| \le \eta$, $\mathsf{E}|\eta| < \infty$ и $\xi_n \to \xi$ почти наверное $(m.e.\ P(\{\omega:\,\xi_n(\omega)\to\xi(\omega)\,\}\,)=1).\ Tor\partial a\ \mathsf{E}|\xi|<\infty\ u$

$$\mathsf{E}\xi_n \to \mathsf{E}\xi$$
$$\mathsf{E}|\xi_n - \xi| \to 0$$

Доказательство. По предположению, $\lim_{n\to\infty} \xi_n = \overline{\lim}_{n\to\infty} \xi_n = \xi$ (почти наверное). Поэтому, в силу утверждения 5.4.9 и леммы Фату:

$$\mathsf{E}\xi=\mathsf{E}\varliminf_{n\to\infty}\xi_n\le\varliminf_{n\to\infty}\mathsf{E}\xi_n\le\varlimsup_{n\to\infty}\mathsf{E}\xi_n\le\mathsf{E}\varlimsup_{n\to\infty}\xi_n=\mathsf{E}\xi$$
что и доказывает первое утверждение. Ясно также, что $|\xi|\le\eta\Rightarrow\mathsf{E}|\xi|<\infty.$

Далее заметим, что $|\xi - \xi_n| \le |\xi| + |\xi_n| \le 2\eta$ и $\overline{\lim}_{n \to \infty} |\xi - \xi_n| = 0$. В силу линейности математического ожидания:

$$0 = \lim_{n \to \infty} |\mathsf{E}\xi - \mathsf{E}\xi_n| = \lim_{n \to \infty} |\mathsf{E}(\xi - \xi_n)| \le \lim_{n \to \infty} \mathsf{E}|\xi - \xi_n|.$$

Тогда, применяя лемму Фату, имеем:

$$\overline{\lim}_{n\to\infty}\operatorname{E} |\xi-\xi_n| \leq \operatorname{E} \overline{\lim}_{n\to\infty} |\xi-\xi_n| = 0 \Rightarrow \lim_{n\to\infty}\operatorname{E} |\xi-\xi_n| = 0,$$

что завершает доказательство теоремы

Теорема 5.5. (теорема о замене переменных под знаком интеграла Лебега)

 $\mathit{Пусть}\ \xi-\mathit{случайная}\ \mathit{величина}\ \mathit{c}\ \mathit{pаспределением}\ \mathit{вероятностей}\ P_{\xi},\ g-\mathit{борелевская}\ \mathit{функция}\ \mathit{u}$ существует $\mathsf{E} g(\xi)$. Тогда $\mathsf{E} g(\xi) = \int\limits_{\mathsf{D}} g(\xi(\omega)) P(d\omega) = \int\limits_{\mathsf{D}} g(x) P_{\xi}(dx)$

Доказательство. 1. для индикаторов $g(x) = I(x \in B)$

$$\mathsf{E} g(\xi) = \mathsf{P}(\xi \in B) = \int\limits_{B} \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} I(x \in B) \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} g(x) \mathsf{P}_{\xi}(dx)$$

2. для простых $g(x)=\sum\limits_{i=0}^n c_i I(x\in B_i),\ B_1\sqcup\ldots\sqcup B_n=\mathbb{R},\ B_i\in\mathscr{B}(\mathbb{R})$ имеем (по линейности мат.ожидания):

$$\begin{split} \mathsf{E}g(\xi) &= \mathsf{E}(\sum_{i=0}^n c_i I(x \in B_i)) = \sum_{i=0}^n c_i \mathsf{E}I(x \in B_i) = \\ &= \sum_{i=0}^n c_i \int\limits_{\mathbb{R}} I(x \in B_i) \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} \sum_{i=0}^n c_i I(x \in B_i) \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} g(x) \mathsf{P}_{\xi}(dx) \end{split}$$

3. Пусть g — произвольная неотрицательная. Тогда существует последовательность простых борелевских функций $g_n \uparrow g$. По пункту $2) \mathsf{E} g_n(\xi) = \int\limits_{\mathbb{R}} g_n(x) \mathsf{P}_{\xi}(dx)$. Т.к. $g_n(\xi)$ неотрицательны, то по теореме Лебега о монотонной сходимости:

$$\lim \mathsf{E} g_n(\xi) = \mathsf{E} g(\xi) = \lim_{n \to \infty} \int\limits_{\mathbb{R}} g_n(x) \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} g(x) \mathsf{P}_{\xi}(dx)$$

4. g — произвольная борелевская. Тогда $g=g^+-g^-,$ где g^+ и g^- — неотрицательные, и

$$\begin{split} \mathsf{E}g(\xi) &= \mathsf{E}g^+(\xi) - \mathsf{E}g^-(\xi) = \int\limits_{\mathbb{R}} g^+(x) \mathsf{P}_\xi(dx) - \int\limits_{\mathbb{R}} g^-(x) \mathsf{P}_\xi(dx) = \\ &= \int\limits_{\mathbb{D}} (g^+(x) - g^-(x)) \mathsf{P}_\xi(dx) = \int\limits_{\mathbb{D}} g(x) \mathsf{P}_\xi(dx) \end{split}$$

Замечание: В случае, когда ξ имеет абсолютно-непрерывное распределение, $\mathsf{P}_{\xi}(dx) = p_{\xi}(x)dx$. \square

Пример 5.8. Пусть ξ имеет нормальное распределение с параметрами (0, 1). Найдем математическое ожидание величины ξ^2 .

По теореме о замене переменных под знаком интеграла Лебега:

$$\begin{split} \mathsf{E}\xi^2 &= \int\limits_{\mathbb{R}} x^2 \mathsf{P}_\xi(dx) = \int\limits_{\mathbb{R}} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \\ &= -\int\limits_{\mathbb{D}} x \frac{1}{\sqrt{2\pi}} d(e^{-\frac{x^2}{2}}) = \int\limits_{\mathbb{D}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1 \end{split}$$

Пример 5.9. Пусть ξ имеет экспоненциальное распределение с параметром λ . Найдем математическое ожидание случайной величины e^{ξ} :

$$\begin{split} \mathsf{E} e^{\xi} &= \int\limits_{\mathbb{R}} e^x \mathsf{P}_{\xi}(dx) = \int\limits_{\mathbb{R}} e^x (\lambda e^{-\lambda x}) dx I(x \geq 0) = \\ &= \int\limits_{0}^{+\infty} \lambda e^{x(1-\lambda)} dx = \frac{\lambda e^{x(1-\lambda)}}{1-\lambda} \Big|_{0}^{\infty} = \begin{cases} \infty, & \lambda \leq 1 \\ \frac{\lambda}{\lambda-1}, & \lambda > 1 \end{cases} \end{split}$$

6 Дисперсия и ковариация

Определение 6.1. Пусть ξ — случайная величина на пространстве (Ω, \mathscr{F}, P) . Тогда ее $\partial ucnepcue \check{u}$ называется величина $\mathsf{D} \xi = \mathsf{E} (\xi - \mathsf{E} \xi)^2$.

Определение 6.2. Пусть ξ , η — две случайных величины на пространстве $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда их *кова-* риацией называется величина $\mathrm{cov}(\xi, \eta) = \mathsf{E}(\xi - \mathsf{E}\xi)(\eta - \mathsf{E}\eta)$.

Определение 6.3. Пусть ξ , η — две случайных величины на пространстве $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда их коэффицентом корреляции называется $\rho(\xi, \eta) = \frac{\mathrm{cov}(\xi, \eta)}{\sqrt{\mathsf{D}\xi\;\mathsf{D}\eta}}$.

Установим свойства дисперсии и ковариации:

 $Утверждение 6.1.1. \ \mathsf{D}\xi \ge 0$ — очевидно из определения.

Утверждение 6.1.2. $D\xi = E\xi^2 - (E\xi)^2$.

Доказательство.

$$\begin{aligned} \mathsf{D}\xi &= \mathsf{E}(\xi - \mathsf{E}\xi)^2 = \mathsf{E}(\xi^2 - 2\xi\mathsf{E}\xi + (\mathsf{E}\xi)^2) = \mathsf{E}\xi^2 - 2\mathsf{E}\xi\,\mathsf{E}\xi + \mathsf{E}(\mathsf{E}\xi)^2 \\ &= \mathsf{E}\xi^2 - 2(\mathsf{E}\xi)^2 + (\mathsf{E}\xi)^2 = \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2 \end{aligned}$$

Утверждение 6.1.3. $cov(\xi, \eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi\,\mathsf{E}\eta$

Доказательство.
$$cov(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta) = E(\xi\eta - \eta E\xi - \xi E\eta + E\eta E\xi) = E\xi\eta - E\xi E\eta$$

Утверждение 6.1.4. Если $\xi \perp \eta$, то $cov(\xi, \eta) = 0$ (обратное неверно).

Утверждение 6.1.5. $D\xi = cov(\xi, \xi)$

Утверждение 6.1.6. Ковариация — билинейна ($cov(a\xi_1 + b\xi_2, \eta) = acov(\xi_1, \eta) + bcov(\xi_2, \eta)$

Доказательство. Симметричность следует из определения.

$$\begin{aligned} \cos(a\xi_1 + b\xi_2, \ \eta) &= \mathsf{E}((a\xi_1 + b\xi_2)\eta) - \mathsf{E}\eta \mathsf{E}(a\xi_1 + b\xi_2) = \\ &= a\mathsf{E}\xi_1\eta + b\mathsf{E}\xi_2\eta - a\mathsf{E}\xi_1\mathsf{E}\eta - b\mathsf{E}\xi_2\mathsf{E}\eta = a\mathrm{cov}(\xi_1, \ \eta) + b\mathrm{cov}(\xi_2, \ \eta) \end{aligned}$$

Утверждение 6.1.7. $D(\xi_1 + \ldots + \xi_n) = \sum_{i=1}^n D\xi_i + 2 \sum_{1 \le i \le j \le n} \text{cov}(\xi_i, \, \xi_j)$

Доказательство.

$$D(\xi_1 + \ldots + \xi_n) = cov((\xi_1 + \ldots + \xi_n), (\xi_1 + \ldots + \xi_n)) = \sum_{i=1}^n \sum_{j=1}^n cov(\xi_i, \xi_j) = \sum_{i=1}^n D\xi_i + 2\sum_{1 \le i \le j \le n} cov(\xi_i, \xi_j)$$

Утверждение 6.1.8. Если ξ_1, \ldots, ξ_n — попарно независимы, то $\mathsf{D}(\xi_1 + \ldots + \xi_n) = \sum_{i=1}^n \mathsf{D}\xi_i$. Замечание: условие попарной независимости избыточное. Достаточным условием является попарная некоррелированность.

7 Неравенства в теории вероятностей

Утверждение 7.1.1. Неравенство Коши-Буняковского

Пусть $\xi,\ \eta$ — случайные величины на $(\Omega,\ \mathscr{F},\ \mathsf{P}),$ такие, что $\mathsf{E}\xi^2<+\infty,\ \mathsf{E}\eta^2<+\infty.$ Тогда $\mathsf{E}|\xi\eta|<\infty$ и $(\mathsf{E}|\xi\eta|)^2\leq\mathsf{E}\xi^2\cdot\mathsf{E}\eta^2$

Доказательство. Сначала заметим, что если $P(\xi=0)=1$, то $E\xi=0$ и $E|\xi\eta|=0$. Аналогично с η . Пусть теперь $P(\xi=0)\neq 1$; $P(\eta=0)\neq 1$. Рассмотрим случайные величины $\widetilde{\xi}:=\frac{|\xi|}{\sqrt{\mathsf{E}\xi^2}},\ \widetilde{\eta}:=\frac{|\eta|}{\sqrt{\mathsf{E}\eta^2}}.$ Тогда

$$\begin{split} \frac{\xi^2}{\mathsf{E}\xi^2} + \frac{\eta^2}{\mathsf{E}\eta^2} &= \widetilde{\xi}^2 + \widetilde{\eta}^2 \geq 2\widetilde{\xi}\widetilde{\eta} \Rightarrow \\ \Rightarrow 2 \geq 2\mathsf{E}\widetilde{\xi}\widetilde{\eta} &= 2\frac{\mathsf{E}|\xi\eta|}{\sqrt{\mathsf{E}\xi^2\mathsf{E}\eta^2}} \end{split}$$

Утверждение 7.1.2. Неравенство Йенсена

Пусть ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P}), g$ — выпуклая вниз функция и $\mathsf{E} g(\xi)$ существует, а $|\mathsf{E} \xi| < \infty$. Тогда

$$g(\mathsf{E}\xi) \leq \mathsf{E}g(\xi)$$

Доказательство. В силу выпуклости д имеем

$$\forall x_0 \in \mathbb{R} \ \exists \lambda(x_0) \ \forall x \in \mathbb{R} : g(x) - g(x_0) \ge \lambda(x_0)(x - x_0)$$

$$g(\xi) \ge g(\mathsf{E}\xi) + \lambda(\mathsf{E}\xi)(\xi - \mathsf{E}\xi)$$

$$\mathsf{E}g(\xi) \ge \mathsf{E}(g(\mathsf{E}\xi) + \lambda(\mathsf{E}\xi)(\xi - \mathsf{E}\xi)) \Rightarrow$$

$$\Rightarrow \mathsf{E}g(\xi) \ge g(\mathsf{E}\xi)$$

Утверждение 7.1.3. Неравенство Маркова

Пусть ξ — случайная величина на $(\Omega,\,\mathscr{F},\,\mathsf{P}),\,\mathsf{E}|\xi|<\infty$ и a>0. Тогда

$$P(|\xi| \ge a) \le \frac{E|\xi|}{a}$$

Доказательство. Оценим математическое ожидание $|\xi|$:

$$\mathsf{E}|\xi| = \mathsf{E}|\xi|I(|\xi| \geq a) + \mathsf{E}|\xi|I(|\xi| < a) \geq \mathsf{E}|\xi|I(|\xi| \geq a) \geq \mathsf{E}aI(|\xi| \geq a) = a\mathsf{P}(|\xi| \geq a)$$

Утверждение 7.1.4. Неравенство Чебышёва

Пусть ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P}), \, \mathsf{E} \xi^2 < \infty.$ Тогда $\forall \varepsilon > 0$

$$P(|\xi - \mathsf{E}\xi| \ge \varepsilon) \le \frac{\mathsf{D}\xi}{\varepsilon^2}$$

Доказательство. Следствие неравенства Маркова для случайной величины $\eta:=|\xi-\mathsf{E}\xi|^2$ и $a=\varepsilon^2$ $\ \square$

8 Виды сходимости случайных величин

8.1 Виды сходимости. Взаимосвязь между ними

Пусть дано вероятностное пространство $(\Omega, \mathscr{F}, \mathsf{P})$ и случайные величины $\xi, \, \xi_1, \, \xi_2, \, \dots$ на нем.

Определение 8.1. Последовательность $\{\xi_n\}$ сходится *поточечно* к ξ , если для любого $\omega \in \Omega$ числовая последовательность $\{\xi_n(\omega)\}$ сходится к $\xi(\omega)$.

Определение 8.2. Событие $A \in \mathscr{F}$ выполнено *noumu наверное*, если $\mathsf{P}(A) = 1$

Определение 8.3. Последовательность $\{\xi_n\}$ сходится к ξ *почти наверное*, если событие $\{\xi_n \to \xi\}$ выполнено почти наверное. (т.е. $P(\{\xi_n \to \xi\}) = 1$).

Обозначение: $\xi_n \stackrel{\text{п.н.}}{\to} \xi$.

Определение 8.4. Последовательность $\{\xi_n\}$ сходится к ξ по вероятности, если выполнено:

$$\forall \varepsilon > 0 : \mathsf{P}(|\xi_n - \xi| > \varepsilon) \to 0$$

Обозначение: $\xi_n \stackrel{\mathsf{P}}{\to} \xi$

Определение 8.5. Последовательность $\{\xi_n\}$ сходится к ξ в L^p , (p>0), если $\mathsf{E}|\xi_n-\xi|^p\to 0$ при $n\to\infty$. Обозначение: $\xi_n\stackrel{L^p}{\to}\xi$.

Определение 8.6. Последовательность $\{\xi_n\}$ слабо сходится к ξ (или сходится по распределению), если для любой ограниченной непрерывной функции $f: \mathbb{R} \to \mathbb{R}$ верно:

$$\mathsf{E} f(\xi_n) \to \mathsf{E} f(\xi)$$

Обозначение: $\xi_n \stackrel{d}{\to} \xi$

Хотя и кажется, что определения сходимостей (быть может, за исключением сходимости по распределнию) эквивалентны, это далеко не так. Для этого рассмотрим следующий пример:

Пример 8.1. $\Omega = [0, 1], \mathcal{F} = \mathcal{B}([0, 1]), \mathsf{P}$ — равномерное распределение. $\xi_n(\omega) = \omega^n$. Тогда последовательность ξ_n сходится поточечно к $I(\omega = 1)$, но

$$\begin{split} \xi_n &\overset{\text{п.н.}}{\to} I(\omega=1) \\ \xi_n &\overset{\text{п.н.}}{\to} 0 \text{ т.к. } \mathsf{P}(\xi_n \to 0) = \mathsf{P}([0,\ 1)) = 1 \\ \xi_n &\overset{\text{п.н.}}{\to} I(\omega \in \mathbb{Q}) \text{ т.к. } \mathsf{P}(\mathbb{Q}) = 0 \end{split}$$

Лемма 8.1. (Критерий сходимости почти наверное)

Пусть ξ , ξ_1 , ξ_2 , ... – случайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда

$$\xi_n \stackrel{n.u.}{\to} \xi \iff \forall \varepsilon > 0 : \mathsf{P}(\sup_{k \geq n} |\xi_k - \xi| > \varepsilon) \to 0 \ npu \ n \to \infty.$$

Доказательство. Для доказательства леммы рассмотрим следующие события:

$$A_k^{\varepsilon} = \{|\xi_k - \xi| > \varepsilon\}$$

$$A^{\varepsilon} = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k^{\varepsilon}$$

Заметим тогда, что

$$\begin{aligned}
&\{\sup_{k\geq n}|\xi_k-\xi|>\varepsilon\} = \{\exists k\geq n: |\xi_k-\xi|>\varepsilon\} = \bigcup_{k\geq n}A_k^{\varepsilon} \\
&\{\lim \xi_n\neq \xi\} = \{\exists \varepsilon>0: \forall n \ \exists k\geq n: |\xi_k-\xi|>\varepsilon\} = \bigcup_{m=1}^{\infty}\bigcap_{n=1}^{\infty}\bigcup_{k\geq n}A_k^{\varepsilon=\frac{1}{m}} = \bigcup_{m=1}^{\infty}A_m^{\frac{1}{m}}
\end{aligned}$$

Поэтому, имеем

$$\xi_n \overset{\text{п.н.}}{\to} \xi \Leftrightarrow \mathsf{P}(\xi_n \not\to \xi) = 0 \Leftrightarrow \mathsf{P}(\bigcup_{m=1}^\infty A^{\frac{1}{m}}) = 0$$

$$\Leftrightarrow \forall m \, \mathsf{P}(A^{\frac{1}{m}}) = 0$$

$$\Leftrightarrow \forall \varepsilon \, \mathsf{P}(A^\varepsilon) = 0$$

$$\Leftrightarrow \mathsf{P}(\bigcup_{k \geq n} A^\varepsilon_k) \to 0 \text{ (т.к. } \bigcup_{k \geq n} A^\varepsilon_k \downarrow A^\varepsilon \text{ и по теореме о непрерывности вероятностой меры)}$$

$$\Leftrightarrow \mathsf{P}(\sup_{k > n} |\xi_k - \xi| > \varepsilon) \to 0$$

Теорема 8.1. (взаимосвязь между различными видами сходимости случайных величин)

 Π усть $\xi, \xi_1, \xi_2, \ldots - c$ лучайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда верны следующие импликации:

1.
$$\xi_n \stackrel{n.n.}{\to} \xi \Rightarrow \xi_n \stackrel{P}{\to} \xi$$

2.
$$\xi_n \stackrel{L^p}{\to} \xi \Rightarrow \xi_n \stackrel{P}{\to} \xi$$

3.
$$\xi_n \stackrel{\mathsf{P}}{\to} \xi \Rightarrow \xi_n \stackrel{d}{\to} \xi$$

Доказательство. 1. Т.к. $\sup_{k\geq n} |\xi_k - \xi| < \varepsilon \Rightarrow \forall k \geq n: \ |\xi_k - \xi| < \varepsilon,$ то по критерию сходимости почти наверное получаем требуемое.

2.
$$\mathsf{P}(|\xi_n - \xi| > \varepsilon) = \mathsf{P}(|\xi_n - \xi|^p > \varepsilon^p) \le \frac{\mathsf{E}|\xi_n - \xi|^p}{\varepsilon^p} \to 0$$
 по неравенству Маркова.

3. Пусть f — ограниченная и непрерывная функция, $|f| \le C$. Зафиксируем $\varepsilon > 0$. Т.к. $\mathsf{P}(|\xi| = \infty) = 0$, то $\exists N \ \exists \delta$:

$$1)\mathsf{P}(|\xi|>N)\leq rac{arepsilon}{6C}$$
 так как $\mathsf{P}(\xi=\infty)=0$

 $2)\mathsf{P}(|\xi_n - \xi| > \delta) \le \frac{\varepsilon}{6C}$ из сходимости по вероятности (при достаточно больших n).

$$3)\forall x\ \forall y\ |x|< N,\ |x-y|<\delta\ |f(x)-f(y)|\leq \frac{\varepsilon}{3}\ \text{т.к.}\ f\ \text{равномерно непрерывна на отрезке}\ [-N,\ N]$$

Рассмотрим следующие события:

$$A_1 = \{ |\xi_n - \xi| \le \delta \} \cap \{ |\xi| < N \}$$

$$A_2 = \{|\xi_n - \xi| \le \delta\} \cap \{|\xi| \ge N\}$$

$$A_3 = \{ |\xi_n - \xi| > \delta \}$$

Очевидно, что эти события образуют разбиение $\Omega = A_1 \sqcup A_2 \sqcup A_3$. Оценим $|\mathsf{E} f(\xi_n) - \mathsf{E} f(\xi)|$:

$$\begin{split} |\mathsf{E}f(\xi_n) - \mathsf{E}f(\xi)| &= |\mathsf{E}(f(\xi_n) - f(\xi)| \leq \mathsf{E}|f(\xi_n) - f(\xi)| = \mathsf{E}|f(\xi_n) - f(\xi)|(I_{A_1} + I_{A_2} + I_{A_3}) \leq \\ &\leq \frac{\varepsilon}{3}\mathsf{P}(A_1) + 2C(\mathsf{P}(A_2) + \mathsf{P}(A_3)) \leq \frac{\varepsilon}{3} + 2C(\frac{\varepsilon}{6C} + \frac{\varepsilon}{6C}) = \varepsilon \end{split}$$

откуда следует, что $|\mathsf{E} f(\xi_n) - \mathsf{E} f(\xi)| \to 0 \Rightarrow \xi_n \stackrel{d}{\to} \xi.$

Из теоремы следует, что между видами сходимости существует следующая связь: поточечная сходимость \Rightarrow сходимость почти наверное \Rightarrow сходимость по вероятности \Rightarrow сходимость по распределнию. Кроме того, сходимость по вероятности так же следует из сходимости в смысле L^p , однако для всех остальных случаев существуют контр-примеры.

Пример 8.2. $\xi_n \stackrel{d}{\rightarrow} \xi$, но $\xi_n \not\stackrel{P}{\rightarrow} \xi$.

Пусть $\Omega = \{\omega_1, \omega_2\}$, $\mathsf{P}(\{\omega_i\}) = \frac{1}{2}$. Определим для любого $n \ \xi_n(\omega_1) = 1, \ \xi_n(\omega_2) = -1$. Положим $\xi = -\xi_n$. Тогда:

$$\mathsf{E}f(\xi_n) = \frac{f(1) + f(-1)}{2} = \mathsf{E}f(\xi) \tag{$}$$

П

но $\forall n |\xi_n - \xi| = 2 \Rightarrow \xi_n \not\xrightarrow{P} \xi$.

Пример 8.3. $\xi_n \stackrel{\mathsf{P}}{\to} \xi$, но $\xi_n \stackrel{\Pi_{\mathsf{H}}}{\not\to} \xi$.

Положим $\xi_{2^k} = I([0, \frac{1}{2^k}]), \; \xi_{2^k+p} = I([\frac{p}{2^k}, \frac{p+1}{2^k}]), \; 1 \leq p < 2^k$. Тогда $\xi_n \stackrel{\mathsf{P}}{\to} 0$, т.к. $\mathsf{P}(\xi_n > 0) \leq$ длина отрезка в индикаторе $\leq \frac{2}{n} \to 0$, но $\xi_n \stackrel{\mathsf{II},\mathsf{H}}{\to} 0$ т.к. $\forall \omega \; \exists \; \mathsf{бесконечно} \; \mathsf{много} \; n$, таких что $\xi_n(\omega) = 1$.

Пример 8.4. $\xi_n \stackrel{L^p}{\to} \xi$, но $\xi_n \stackrel{\pi, \text{H.}}{\to} \xi$. Подходит предыдущий пример.

Пример 8.5. $\xi_n \stackrel{\text{п.н.}}{\to} \xi$, но $\xi_n \not\stackrel{L^p}{\to} \xi$ и $\xi_n \stackrel{\mathsf{P}}{\to} \xi$ но $\xi_n \not\stackrel{L^p}{\to} \xi$.

 $\Omega=[0,1], \mathscr{F}=\mathscr{B}([0,1]),$ Р — равномерное распределение. Определим для $k\geq 1$ $\xi_k=2^{k-1}I([0,\frac{1}{2^{k-1}}]).$ Тогда $\forall k$ $\mathsf{E}\xi_k=1,$ но $\xi=I(\omega=0)$

Пример 8.6. $\xi_n \stackrel{\mathsf{P}}{\to} \xi$, но $\xi_n \stackrel{\mathsf{\Pi},\mathsf{H}}{\to} \xi$ и $\xi_n \stackrel{L_p^p}{\to} \xi$.

Положим $\xi_{2^k} = e^{2^k} \cdot I([0, \frac{1}{2^k}]), \; \xi_{2^k+p} = e^{2^k+p} \cdot I([\frac{p}{2^k}, \frac{p+1}{2^k}]), \; 1 \leq p < 2^k$ (т.е. случайные величины из примера 8.3, домноженные на e^n). Аналогично примеру 8.3, имеется сходимость по вероятности к $\xi = 0$, но нет сходимости почти наверное.

Заметим теперь, что $\mathsf{E}|\xi_n-\xi|^p=\mathsf{E}\xi_n^p\not\to 0$ при $n\to\infty.$

Определение 8.7. Последовательность $\{F_n\}_{n=1}^{\infty}$ функций распределения на \mathbb{R} сходится в основном к функции распределения F на \mathbb{R} , если $\forall x \in C(F): F_n(x) \to F(x)$, где C(F) — множество точек непрерывности функции F.

Обозначение: $F_n \Rightarrow F$.

Определение 8.8. Последовательность $\{P_n\}_{n=1}^{\infty}$ вероятностных мер на $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$ сходится в основном к вероятностной мере P на $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$, если $\forall A \in \mathscr{B}(\mathbb{R}^k)$, таких что $P(\partial A) = 0$ выполнено, что

 $\mathsf{P}_n(A) \to \mathsf{P}(A).$

Обозначение: $P_n \Rightarrow P$.

Теорема 8.2. (Александрова, $6/\partial$)

Следующие условия эквивалентны:

- 1. $\xi_n \stackrel{d}{\to} \xi$
- 2. $F_{\xi_n} \Rightarrow F_{\xi}$
- 3. $P_{\xi_n} \Rightarrow P_{\xi}$

8.2 Лемма Бореля-Кантелли. Критерии Коши сходимости случайных величин

Определение 8.9. Пусть $\{A_n\}_{n=1}^{\infty}$ – последовательность событий на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда событием " A_n бесконечно часто" называется событие $B = \{\omega \in \Omega : |k \in \mathbb{N} : \omega \in A_k| = \infty\}$.

Обозначение: $\{A_n \, \text{б.ч.} \, \}$.

$$\{A_n$$
 б.ч. $\}=\{\omega|\ \forall n\ \exists k\geq n\ \omega\in A_k\}=\bigcap_{n=1}^\infty\bigcup_{k\geq n}A_k$

Теорема 8.3. (лемма Бореля-Кантелли)

- 1. Если $\sum_{n=1}^{\infty} \mathsf{P}(A_n) < \infty, \ mo \ \mathsf{P}(A_n \ б.ч. \) = 0.$
- 2. Если $\sum\limits_{n=1}^{\infty}\mathsf{P}(A_n)=\infty$ и $\{A_n\}$ независимы в совокупности, то $P(A_n$ б.ч.)=1.

Доказательство. 1. $P(A_n$ б.ч. $) = P(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_k) = \lim_{n \to \infty} P(\bigcup_{k \geq n} A_k) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0$ (как остаточный член сходящегося ряда).

2.

$$\begin{split} \mathsf{P}(A_n \text{ б.ч. }) &= \mathsf{P}(\bigcap_{n=1}^\infty \bigcup_{k \geq n} A_k) \\ &= \lim_{n \to \infty} \mathsf{P}(\bigcup_{k \geq n} A_k) \\ &= 1 - \lim_{n \to \infty} \mathsf{P}(\bigcap_{k \geq n} \overline{A}_k) \\ &= 1 - \lim_{n \to \infty} (\lim_{N \to \infty} \mathsf{P}(\bigcap_{k = n}^N \overline{A}_k)) \\ &= 1 - \lim_{n \to \infty} \lim_{N \to \infty} \prod_{k = n}^N (1 - \mathsf{P}(A_k)) \\ &\geq 1 - \lim_{n \to \infty} \lim_{N \to \infty} e^{-\sum\limits_{k = n}^N \mathsf{P}(A_k)} \\ &= 1 - \lim_{n \to \infty} e^{-\sum\limits_{k = n}^\infty \mathsf{P}(A_k)} \\ &= 1 - \lim_{n \to \infty} e^{-\infty} = 1 \end{split}$$

Определение 8.10. Последовательность случайных величин $\{\xi_n\}$ на $(\Omega, \mathscr{F}, \mathsf{P})$ называется фундаментальной по вероятности, если $\forall \varepsilon > 0 : \mathsf{P}(|\xi_n - \xi_m| \ge \varepsilon) \to 0$ при $n, m \to \infty$.

Теорема 8.4. (критерий Коши сходимости случайных величин по вероятности)

 $\{\xi_n\}$ фундаментальна по вероятности $\iff \exists \xi$ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$, такая что $\xi_n \stackrel{\mathsf{P}}{\to} \xi$.

Доказательство. ⇐:

$$\{|\xi_n - \xi| \leq \frac{\varepsilon}{2}\} \cap \{|\xi_m - \xi| \leq \frac{\varepsilon}{2}\} \subseteq \{|\xi_n - \xi_m| \leq \varepsilon\} \Rightarrow \{|\xi_n - \xi_m| > \varepsilon\} \subseteq \{|\xi_n - \xi| > \frac{\varepsilon}{2}\} \cup \{|\xi_m - \xi| > \frac{\varepsilon}{2}\} \downarrow \varnothing$$

По условию вероятность каждого события стремится к 0, а значит $\mathsf{P}(|\xi_n - \xi_m| > \varepsilon) \to 0$ при $n, m \to \infty$. \Rightarrow :

Сначала докажем следующую лемму:

Лемма 8.2. Если ξ_n фундаментальна по вероятности, то существует такая случайная величина ξ и подпоследовательность ξ_{n_k} , что $\xi_{n_k} \stackrel{n.н.}{\to} \xi$ при $k \to \infty$.

Доказательство. Пусть $n_1=1,\ n_k=\min\{j>n_{k-1}\ \forall r,\ s\geq j\ \mathsf{P}(|\xi_r-\xi_s|\geq 2^{-k})<2^{-k}\}$ (это можно сделать, т.к. последовательность фундаментальна по вероятности). Далее, рассмотрим событие $\{|\xi_{n_k}-\xi_{n_{k-1}}|\geq 2^{-(k-1)}\$ 6.ч. $\}$. По лемме Бореля-Кантелли $\sum\limits_{k=2}^{\infty}\mathsf{P}(|\xi_{n_k}-\xi_{n_{k-1}}|\geq 2^{-(k-1)})<\sum\limits_{k=2}^{\infty}2^{-(k-1)}<\infty$ а

значит

$$P(|\xi_{n_k} - \xi_{n_{k-1}}| \ge 2^{-(k-1)} \text{ б.ч. }) = 0$$

$$\Rightarrow P(\sum_{k=2}^{\infty} |\xi_{n_k} - \xi_{n_{k-1}}| < \infty) = 1$$

$$\Rightarrow P(\sum_{k=2}^{\infty} \xi_{n_k} - \xi_{n_{k-1}} < \infty) = 1$$

Положим $A = \{\omega: \sum_{k=2}^{\infty} |\xi_{n_k} - \xi_{n_{k-1}}| < \infty\}$. Как было показано выше, $\mathsf{P}(A) = 1$. Определим случайную величину ξ для любого $\omega \in A$ как $\lim_{k \to \infty} \xi_{n_k}$ (опять же, выше показано, что на множестве A этот предел существует). Для $\omega \in \overline{A}$ положим, например $\xi(\omega) = 0$. На сходимость почти наверное это никак не повлияет. Лемма доказана.

Выделим сходяющуюся почти наверное подпоследовательность $\xi_{n_k} \stackrel{\text{п.н.}}{\to} \xi$. Рассмотрим событие

$$\{|\xi_n - \xi| \le \varepsilon\} \supseteq \{|\xi_{n_k} - \xi| \le \frac{\varepsilon}{2}\} \cap \{|\xi_{n_k} - \xi_n| \le \frac{\varepsilon}{2}\}$$

Вероятность каждого из событий справа стремится к 1. Значит, и $\mathsf{P}(|\xi_n - \xi| \leq \varepsilon) \to 1$.

Определение 8.11. Последовательность случайных величин ξ_n фундаментальна почти наверное, если $P(\xi_n$ фундаментальна)=1.

Теорема 8.5. (критерий Коши сходимости почти наверное)

 $\mathit{\Pi}\mathit{усть}\ \xi_1, \xi_2, \ldots - \mathit{c}\mathit{n}\mathit{y}$ чайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда следующие утверждения эквивалентны:

- 1. $\{\xi_n\}$ почти наверное фундаментальна
- 2. Существует случайная величина ξ на $(\Omega, \mathscr{F}, \mathsf{P}),$ такая что $\xi_n \overset{n.н.}{\to} \xi$

3.
$$\forall \varepsilon > 0$$
: $P(\sup_{k \ge 1} |\xi_n - \xi_{n+k}| \ge \varepsilon) \to 0 \ npu \ n \to \infty$

Доказательство. 1) \Leftrightarrow 2):

$$\xi_n$$
 п.н. фундаментальна \Leftrightarrow $\mathsf{P}(\xi_n$ фундаментальна $)=1$ \Leftrightarrow $\mathsf{P}(\xi_n \text{ сходится })=1.$

 $1) \Leftrightarrow 3)$:

$$\xi_n$$
 п.н. фундаментальна \Leftrightarrow $\mathsf{P}(\forall \varepsilon > 0 \ \exists N \ \forall n, \ m \geq N | \xi_n - \xi_m | \leq \varepsilon) = 1$ \Leftrightarrow $\mathsf{P}(\forall k \in \mathbb{N} \ \exists N \ \forall n, \ m \geq N | \xi_n - \xi_m | \leq \frac{1}{k}) = 1$ \Leftrightarrow $\forall k \in \mathbb{N} : \ \mathsf{P}(\exists N \ \forall n, \ m \geq N | \xi_n - \xi_m | \leq \frac{1}{k}) = 1$ \Leftrightarrow $\forall \varepsilon > 0 : \ \mathsf{P}(\exists N \ \forall n, \ m \geq N | \xi_n - \xi_m | \leq \varepsilon) = 1$ \Leftrightarrow $\forall \varepsilon > 0 : \ \mathsf{P}(\forall N \ \exists n, \ m \geq N | \xi_n - \xi_m | \geq \varepsilon) = 0$ \Leftrightarrow $\forall \varepsilon > 0 : \ \mathsf{P}(\forall N \ \exists n \geq N \ \exists k \in \mathbb{N} | \xi_n - \xi_{n+k} | \geq \varepsilon) = 0 - (1)$

С другой стороны,

$$\forall \varepsilon > 0: \ \mathsf{P}(\sup_{k \geq 1} |\xi_n - \xi_{n+k}| \geq \varepsilon) \to 0 \iff \forall \varepsilon > 0: \ \mathsf{P}(\exists k \geq 1: \ |\xi_{n+k} - \xi_n| \geq \varepsilon) \to 0 - (2).$$

$$(1) \Leftrightarrow \forall \varepsilon > 0: \lim_{N \to \infty} \mathsf{P}(\exists n \geq N \, \forall k \in \mathbb{N} \, |\xi_n - \xi_{n+k}| \geq \varepsilon) = 0$$

Отсюда, очевидно, следует (2). Наоборот, если (2) выполнено, то

$$\forall \varepsilon > 0 \ \forall \delta > 0 \ \exists n_0 \ \forall N > n_0 \ \ \mathsf{P} \big(\exists k \geq 1 : |\xi_{N+k} - \xi_N| \geq \varepsilon/2 \big) < \delta$$

тогда

$$\mathsf{P}(\exists n \geq N \; \exists k \geq 1 \; |\xi_{n+k} - \xi_n| \geq \varepsilon) \leq \mathsf{P}(\exists n \geq N \; \exists k \geq 1 \; |\xi_{N+k} - \xi_n| \geq \varepsilon/2)$$

или

$$P(|\xi_N - \xi_n| \ge \varepsilon/2) \le P(\exists k \ge 1 |\xi_{n+k} - \xi_n| \ge \varepsilon/2) < \delta.$$

9 Случайное блуждание

9.1 Определение. Закон повторного логарифма

Определение 9.1. Пусть $\{\xi_n\}_{n=1}^{\infty}$ — незавсимо одинаково распределенные случайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$. Обозначим за $S_0 = 0$, $S_n = \sum\limits_{k=1}^n \xi_k$. Тогда последовательность $\{S_n\}_{n=1}^{\infty}$ называется случайным блужданием. Если $\mathsf{P}(\xi_n = 1) = p$, $\mathsf{P}(\xi_n = -1) = 1 - p$, то последовательность S_n называется простейшим случайным блужданием. Если $p = \frac{1}{2}$, то случайное блуждание называется симметричным. Последовательность $\{S_n(\omega)\}$ для фиксированного $\omega \in \Omega$ называется траекторией.

Теорема 9.1. (закон повторного логарифма, δ/∂)

Пусть $\xi_1, \, \xi_2, \, \ldots \, -$ независимые одинаково распределенные случайные величины, $\mathsf{E}\xi_i = 0, \, \mathsf{D}\xi_i = \sigma, \, 0 < \sigma < +\infty.$ Тогда:

$$\mathsf{P}(\overline{\lim_{n\to\infty}} \frac{|S_n|}{\sqrt{2n\sigma \ln \ln n}} = 1) = 1$$

Утверждение 9.1.1. Пусть $\{\xi_n\}$ — последовательность независимых экспоненциально распределенных случайных величин с параметром 1. Тогда

$$\mathsf{P}(\overline{\lim_{n\to\infty}}\,\frac{\xi_n}{\ln n}=1)=1.$$

 \mathcal{A} оказательство. 1. Докажем, что $\mathsf{P}(\varlimsup_{n\to\infty}\frac{\xi_n}{\ln n}\geq 1)=1$. Для этого рассмотрим подробнее это событие:

$$\begin{split} \{\overline{\lim}_{n\to\infty}\frac{\xi_n}{\ln n} \geq 1\} &= \{\forall \varepsilon > 0 \, \frac{\xi_n}{\ln n} \geq 1 - \varepsilon \text{ б. ч. }\} \\ &= \{\forall k \in \mathbb{N} \, \frac{\xi_n}{\ln n} \geq 1 - \frac{1}{k} \text{ б. ч. }\} \\ &= \bigcap_{k \in \mathbb{N}} \{\frac{\xi_n}{\ln n} \geq 1 - \frac{1}{k} \text{ б. ч. }\} \end{split}$$

Заметим, что достаточно доказать, что вероятность каждого события под знаком пересечения равна одному. Очевидно тогда, что и вероятность всего пересечения будет равна одному. По лемме Бореля-Кантелли имеем:

$$\sum_{n=1}^{\infty} P(\frac{\xi_n}{\ln n} \ge 1 - \frac{1}{k}) = \sum_{n=1}^{\infty} e^{-(1 - \frac{1}{k}) \ln n}$$
$$= \sum_{n=1}^{\infty} n^{-(1 - \frac{1}{k})} = \infty$$

а значит $P(\{\overline{\lim_{n\to\infty}} \frac{\xi_n}{\ln n} \ge 1\}) = 1.$

2. Докажем, что $\mathsf{P}(\varlimsup_{n \to \infty} \frac{\xi_n}{\ln n} \le 1) = 1$ аналогично:

$$\begin{aligned} \{\overline{\lim} \, \frac{\xi_n}{\ln n} \leq 1\} &= \overline{\{\exists \varepsilon > 0: \, \frac{\xi_n}{\ln n} \geq 1 + \varepsilon \text{ 6.4. }\}} \\ &= \overline{\{\exists k \in \mathbb{N} \, \frac{\xi_n}{\ln n} \geq 1 + \frac{1}{k} \text{ 6.4. }\}} \\ &= \bigcap_{k \in \mathbb{N}} \overline{\{\frac{\xi_n}{\ln n} \geq 1 + \frac{1}{k} \text{ 6.4. }\}} \end{aligned}$$

Покажем, что вероятность каждого события из пересечения равна $1 \iff \mathsf{P}(\{\frac{\xi_n}{\ln n} \ge 1 + \frac{1}{k} \text{ б. ч. }\}) = 0$

$$\sum_{n=1}^{\infty} \mathsf{P}(\{\frac{\xi_n}{\ln n} \geq 1 + \frac{1}{k}\}) = \sum_{n=1}^{\infty} e^{-(1+\frac{1}{k})\ln n} = \sum_{n=1}^{\infty} n^{-(1+\frac{1}{k})} < \infty$$

откуда по лемме Бореля-Кантелли следует требуемое.

Объединяя результаты 1) и 2) получаем утверждение.

9.2 Некоторые факты о случайном блуждании

Утверждение 9.2.1. Рассмотрим простейшее случайное блуждание, $P(\xi_i=1)=p,\ P(\xi_i=0)=1-p.$ Тогда

$$\mathsf{P}(S_n = k) = \begin{cases} C_n^{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}, & |k| \leq n, \ 2 \mid n+k \\ 0, & \text{иначе} \end{cases}$$

Доказательство. Представим, что мы находимся на прямой, и должны прийти в точку k. Для начала заметим, что четность числа шагов и возможных положений за такое число шагов всегда совпадает. Теперь, чтобы прийти в точку k, мы должны сделать k шагов вправо, а потом x шагов влево и x шагов вправо. Тогда, k+2x=n и количество шагов вправо: k+x, количество шагов влево: x.

3aдача. Найти $P(S_1>0,\ S_2>0,\ \dots,\ S_{n-1}>0,\ S_n=k)$ — вероятность того, что случайное блуждание никогда не возвратиться в 0.

Решение: Найдем количество траекторий, пересекающих 0. Если траектория пересекает 0 первый раз в точке $x=x_0$, то отразим дальнейшую ее часть относительно оси x. Тогда, если раньше траектория приходила в k, то теперь она приходит в -k. Заметим, что между траекториями, где $S_1>0$ до точки k за еще n-1 шаг, касающимися 0, и траекториями где $S_1>0$ до точки -k тогда существует биекция. Обозначим за $N(n,\ k)$ количество путей из 0 в k за n шагов. По предыдущей задаче, это $C_n^{\frac{n+k}{2}}$. Тогда искомая вероятность равна

$$(N(n-1, k-1) - N(n-1, -k-1))p^{\frac{n+k}{2}}q^{\frac{n-k}{2}}$$

10 Закон больших чисел

10.1 Закон больших чисел в форме Чебышева

Теорема 10.1. (Закон больших чисел в форме Чебышева)

Пусть ξ_1, ξ_2, \ldots — независимые одинаково распределенные случайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$, такие что $\mathsf{E}\xi_i^2 < \infty$. Тогда для любого $\delta > 0$

$$\frac{S_n - \mathsf{E} S_n}{n^{1/2+\delta}} \stackrel{\mathsf{P}}{\to} 0$$

Доказательство.

$$P(|S_n - \mathsf{E} S_n| \ge \varepsilon n^{\frac{1}{2} + \delta}) \le \frac{\mathsf{D} S_n}{\varepsilon^2 n^{1 + 2\delta}} = \frac{n \mathsf{D} \xi_1}{\varepsilon^2 n^{1 + 2\delta}} = \frac{\mathsf{D} \xi_1}{\varepsilon^2 n^{2\delta}}$$

Замечание: это утверждение верно для попарно некоррелированых величин.

10.2 Усиленные законы больших чисел

Теорема 10.2. (неравенство Колмогорова)

 Π усть $\xi_1,\,\xi_2,\,\ldots\,-$ независимые случайные величины, такие что $\mathsf{E}\xi_i=0,\,\mathsf{E}\xi_i^2<\infty.$ Тогда:

1.
$$P(\sup_{1 \le k \le n} |S_k| \ge \varepsilon) \le \frac{\mathsf{E}S_n^2}{\varepsilon^2}$$

2. Если дополнительно
$$\forall i: \ \mathsf{P}(|\xi_i| \leq C) = 1, \ mo \ \mathsf{P}(\sup_{1 \leq k \leq n} |S_k| \geq \varepsilon) \geq 1 - \frac{(C + \varepsilon)^2}{\mathsf{E}S_n^2}$$

Доказательство. Определим события

$$A = \{ \sup_{1 \le k \le n} |S_k| \ge \varepsilon \}$$

$$A_k = \{ |S_1| < \varepsilon, |S_2| < \varepsilon, \dots, |S_{k-1}| < \varepsilon, |S_k| \ge \varepsilon \}.$$

Тогда $A = \bigsqcup_{k=1}^n A_k$ и

$$\mathsf{E} S_n^2 \geq \mathsf{E} S_n^2 I_A = \sum_{k=1}^n \mathsf{E} S_n^2 I_{A_k}$$

Но

$$\begin{split} \mathsf{E} S_n^2 I_{A_k} &= \mathsf{E} (S_k + (\xi_{k+1} + \ldots + \xi_n))^2 I_{A_k} = \\ &= \mathsf{E} S_k^2 I_{A_k} + 2 \mathsf{E} S_k (\xi_{k+1} + \ldots + \xi_n) I_{A_k} + \mathsf{E} (\xi_{k+1} + \ldots + \xi_n)^2 I_{A_k} \geq \mathsf{E} S_k^2 I_{A_k} \end{split}$$

поскльку $\mathsf{E} S_k(\xi_{k+1}+\ldots+\xi_n)I_{A_k}=\mathsf{E} S_kI_{A_k}\mathsf{E}(\xi_{k+1}+\ldots+\xi_n)=0$ в силу предположений независимости и $\mathsf{E} \xi_i=0$. Поэтому

$$\mathsf{E}S_n^2 \geq \sum_{k=1}^n \mathsf{E}S_n^2 I_{A_k} \geq \varepsilon^2 \sum_{k=1}^n \mathsf{P}(A_k) = \varepsilon^2 \mathsf{P}(A)$$

что и доказывает неравенство 1). Для доказательства неравенства 2) заметим, что

$$\mathsf{E} S_n^2 I_A = \mathsf{E} S_n^2 - \mathsf{E} S_n^2 I_{\overline{A}} \geq \mathsf{E} S_n^2 - \varepsilon^2 \mathsf{P}(\overline{A}) = \mathsf{E} S_n^2 - \varepsilon^2 + \varepsilon^2 \mathsf{P}(A)$$

С другой стороны, на множестве A_k выполнено $|S_{k-1}| \le \varepsilon, |S_k| \le |S_{k-1}| + |\xi_k| \le \varepsilon + C$. И значит

$$\begin{split} \mathsf{E} S_n^2 I_A &= \sum_{k=1}^n \mathsf{E} S_k^2 I_{A_k} + \sum_{k=1}^n \mathsf{E} (I_{A_k} (S_n - S_k)^2) \leq \\ &\leq (\varepsilon + C)^2 \sum_{k=1}^n \mathsf{P}(A_k) + \sum_{k=1}^n \mathsf{P}(A_k) \sum_{j=k+1}^n \mathsf{E} \xi_j^2 \\ &\leq \mathsf{P}(A) \Big[(\varepsilon + C)^2 + \sum_{j=1}^n \mathsf{E} \xi_j^2 \Big] = \mathsf{P}(A) \big[(\varepsilon + C)^2 + \mathsf{E} S_n^2 \big] \end{split}$$

Из этого находим, что

$$\mathsf{P}(A) \geq \frac{\mathsf{E}S_n^2 - \varepsilon^2}{(\varepsilon + C)^2 + \mathsf{E}S_n^2 - \varepsilon^2} = 1 - \frac{(\varepsilon + C)^2}{(\varepsilon + C)^2 + \mathsf{E}S_n^2 - \varepsilon^2} \geq 1 - \frac{(\varepsilon + C)^2}{\mathsf{E}S_n^2}$$

Теорема 10.3. (теорема Колмогорова-Хинчина)

 \varPi усть $\{\xi_n\}$ — последовательность независимых случайных величин, такая что $\mathsf{E}\xi_i=0,\,\mathsf{E}\xi_i^2<\infty.$ Tог ∂a

- 1. Из сходимости ряда $\sum\limits_{i=1}^{\infty}$ $\mathsf{E}\xi_i^2$ следует сходимость почти наверное ряда $\sum\limits_{i=1}^{\infty}\xi_i$
- 2. Если дополнительно для любого i и некоторого $c<\infty$ выполнено $\mathsf{P}(|\xi_i|\leq c)=1$ и ряд $\sum\limits_{i=1}^{\infty}\xi_i$ сходится почти наверное, то сходится и ряд $\sum ^{\infty}$ $\mathsf{E}\xi_i^2$

Доказательство. Заметим, что последовательность $\{\eta_n\}$ сходится почти наверное тогда и только тогда, когда $\forall \varepsilon > 0$: $\mathsf{P}(\sup_{k \geq 1} |\eta_{n+k} - \eta_n| > \varepsilon) \to 0$ при $n \to \infty$. Возьмем $\eta_n := \sum_{i=1}^n \xi_i$. Тогда: η_n сходится почти наверное $\iff \forall \varepsilon > 0$: $\mathsf{P}(\sup_{k \geq 1} |\xi_{n+1} + \ldots + \xi_{n+k}| > \varepsilon) \to 0$

Рассмотрим $S_k = \xi_{n+1} + \ldots + \xi_{n+k}$. По неравенству Колмогорова имеем

$$P(\sup_{1 \le k \le N} |S_k| > \varepsilon) < \frac{\mathsf{E}S_N^2}{\varepsilon^2} = \frac{\mathsf{E}(\xi_{n+1} + \dots + \xi_{n+N})^2}{\varepsilon^2} =$$

$$= \frac{\mathsf{E}\xi_{n+1}^2 + \dots + \mathsf{E}\xi_{n+N}^2}{\varepsilon^2} \le \frac{\mathsf{E}\xi_{n+1}^2 + \mathsf{E}\xi_{n+2}^2 + \dots}{\varepsilon^2} \to 0$$

как остаточный член сходящегося ряда. Но тогда сходится и ряд $\sum\limits_{i=1}^{\infty}\xi_i$ поскольку его остаточный член стремиться к 0, что и доказывает первую часть теоремы.

Для доказательства второй части заметим, что, по тому же неравенству Колмогорова, в случае когда $\mathsf{P}(|\xi_i| \le c) = 1, c < \infty$ верно следующее:

$$\mathsf{P}(\sup_{1 \le k \le N} |S_k| > \varepsilon) \ge 1 - \frac{(\varepsilon + c)^2}{\mathsf{E}S_N^2} = 1 - \frac{(\varepsilon + c)^2}{\mathsf{E}\xi_{n+1}^2 + \ldots + \mathsf{E}\xi_{n+N}^2}$$

Предположим, что ряд $\sum\limits_{i=1}^{\infty} \mathsf{E} \xi_i^2$ расходится. Тогда сумму, стоящую в знаменателе, можно сделать сколь угодно большой, а значит $\mathsf{P}(\sup_{1 \le k \le N} |S_k| > \varepsilon) \to 1.$

С другой стороны

$$\begin{split} \sum_{n=1}^{\infty} \xi_n < \infty &\Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}(\sup_{k \geq 1} |S_k| > \varepsilon) \to 0 \\ &\Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}(\lim_{N \to \infty} \sup_{1 \leq k \leq N} |S_k| > \varepsilon) \to 0 \text{ при } n \to \infty. \end{split}$$

Возьмем $\varepsilon=\frac{1}{2}$. Тогда, из выше сказанного, следует, что $\exists n: \ \mathsf{P}(\lim_{N\to\infty}\sup_{1\le k\le N}|S_k|>\frac{1}{2})<\frac{1}{2}$. Так как события $\{\sup_{1\leq k\leq N}|S_k|>\frac{1}{2}\}$ вложены друг в друга при росте N, имеем

$$\lim_{N \to \infty} \mathsf{P}(\sup_{1 \le k \le N} |S_k| > \frac{1}{2}) < \frac{1}{2}$$

что противоречит $\mathsf{P}(\sup_{1 \le k \le N} |S_k| > \varepsilon) \to 1$, а значит предположение о расходимости ряда $\sum_{i=1}^\infty \mathsf{E} \xi_i^2$ неверно.

Лемма 10.1. (лемма Теплица)

 $\Pi y cmb \ \{x_n\} - cxod ящаяся \ \kappa \ x \ nocnedoв ательность чисел, \ \{a_n\} \ maкая \ nocnedoв ательность чисел,$ umo $a_i \ge 0, \ \forall k \ge 1: \sum_{n=1}^k a_n > 0 \ u \sum_{n=1}^k a_n \to \infty \ npu \ k \to \infty.$ Torda

$$\frac{\sum_{n=1}^{k} x_n a_n}{\sum_{n=1}^{k} a_n} \to x, \ k \to \infty$$

 Доказательство. Из сходимости последовательности x_n получаем $\forall \varepsilon>0 \ \exists n_0 \ \forall n\geq n_0: \ |x_n-x|<\frac{\varepsilon}{2}.$ Кроме этого, $\exists n_1 \geq n_0 \forall n \geq n_1 : \left| \frac{\sum\limits_{i=1}^{n_0} (x_i-x)a_i}{\sum\limits_{i=1}^{n} a_i} \right| < \frac{\varepsilon}{2}$, т.к. числитель это фиксированное число, а знаменатель стремиться к бесконечности.

Тогда для $n \ge n_1$ имеем

$$\left| \frac{\sum_{i=1}^{n} x_{i} a_{i}}{\sum_{i=1}^{n} a_{i}} - x \right| = \left| \frac{\sum_{i=1}^{n} (x_{i} - x) a_{i}}{\sum_{i=1}^{n} a_{i}} \right| \le \left| \frac{\sum_{i=1}^{n} (x_{i} - x) a_{i}}{\sum_{i=1}^{n} a_{i}} \right| + \left| \frac{\sum_{i=n_{0}+1}^{n} (x_{i} - x) a_{i}}{\sum_{i=1}^{n} a_{i}} \right|$$

$$\le \frac{\varepsilon}{2} + \frac{\sum_{i=n_{0}+1}^{n} |x_{i} - x| a_{i}}{\sum_{i=1}^{n} a_{i}} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{\sum_{i=n_{0}+1}^{n} a_{i}}{\sum_{i=1}^{n} a_{i}} \le \varepsilon$$

Лемма 10.2. (лемма Кронекера)

Пусть даны две числовые последовательности: неубывающая $\{b_n\} \to +\infty$, такая что $\forall n \ b_n > 0$, и $\{x_n\}$, makas umo $\sum_{n=1}^{\infty} x_n = x < \infty$. Torda

$$\frac{1}{b_n} \sum_{k=1}^n b_k x_k \to 0 \ npu \ n \to \infty.$$

 \mathcal{A} оказательство. Положим $a_k:=b_k-b_{k-1}$ и $b_0:=0$. Тогда $b_n=\sum\limits_{k=1}^n a_k$. При этом

$$\frac{1}{b_n} \sum_{k=1}^n b_k x_k = \frac{1}{\sum_{k=1}^n a_k} \sum_{k=1}^n x_k \sum_{i=1}^k a_i = \frac{1}{\sum_{k=1}^n a_k} \sum_{i=1}^n a_i \sum_{j=i}^n x_j = \frac{1}{\sum_{k=1}^n a_k} \left(\sum_{i=1}^n a_i \left(\sum_{j=i}^\infty x_j - \sum_{j=n+1}^\infty x_j \right) \right)$$

Положим $y_{n+1}:=\sum_{k=n+1}^{\infty}x_k$. Тогда, поскольку ряд $\sum_{n=1}^{\infty}x_n$ сходится, имеем $\lim_{n\to\infty}y_n=0$, а значит $\forall \varepsilon>0$:

$$\exists n_0 \ \forall n \geq n_0 |y_{n+1}| < \varepsilon$$
. По лемме $10.1 \ \exists n_1 \geq n_0 \ \forall n \geq n_1 : \left| egin{matrix} \sum_{i=1}^n a_i y_i \\ \sum_{i=1}^n a_i \end{matrix} \right| < rac{\varepsilon}{2}.$

Тогда $\forall n \geq n_1$ имеем

$$\left| \frac{1}{b_n} \sum_{k=1}^n b_k x_k \right| \le \left| \frac{\sum_{i=1}^n a_i y_i}{\sum_{i=1}^n a_i} \right| + \left| \frac{\sum_{i=1}^n a_i y_{n+1}}{\sum_{i=1}^n a_i} \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Теорема 10.4. (Усиленный закон больших чисел 1)

Пусть $\xi_1, \, \xi_2, \, \ldots$ — независимые случайные величины $c \, \mathsf{E} \xi_i^2 < \infty$. Если существует последовательность чисел $\{b_n\}$, такая что $0 < b_1 \le b_2 \le \ldots, \, b_n \le \ldots \to \infty$ и $\sum\limits_{n=1}^\infty \frac{\mathsf{D} \xi_n}{b_n^2} < \infty$, то

$$\frac{S_n - \mathsf{E} S_n}{b_n} \stackrel{n.n.}{\to} 0$$

Доказательность $b_n := n^{1/2+\delta}$. Тогда $\sum_{n=1}^{\infty} \frac{\mathsf{D}\xi_n}{b_n^2} < C \sum_{n=1}^{\infty} \frac{1}{b_n^2} < \infty$ (т.е. для некоторых последовательностей случайных величин такая последовательность $\{b_n\}$ существует. Сравните это с ЗБЧ в форме Чебышева.).

Приступим к доказательству теоремы. Без ограничения общности предположим, что $\mathsf{E}\xi_i=0$, то есть $\mathsf{D}\xi_n=\mathsf{E}\xi_n^2$ (рассмотреть случайные величины $\eta=\xi-\mathsf{E}\xi$). Тогда

$$\sum_{n=1}^{\infty} \mathsf{E}(\frac{\xi_n}{b_n})^2$$

сходится, а значит, по теореме Колмогорова-Хинчина ряд $\sum\limits_{n=1}^{\infty} \frac{\xi_n}{b_n}$ сходится. Отсюда и из леммы Кронекера следует, что

$$\frac{1}{b_n} \sum_{k=1}^n b_k \cdot \frac{\xi_k}{b_k} = \frac{\sum_{k=1}^n \xi_k}{b_n} \stackrel{\text{\tiny II.H.}}{\longrightarrow} 0$$

Теорема 10.5. (Усиленный закон больших чисел 2)

 Π усть $\xi_1, \, \xi_2, \, \dots \, -$ независимые одинаково распредленные случайные величины, $\mathsf{E}|\xi_1| < \infty$. Тогда $\underbrace{S_n - \mathsf{E} S_n}_n \overset{n.n.}{\to} 0.$

Доказательство. Опять же, положим $\mathsf{E}\xi_n=0$. Рассмотрим ряд

$$\begin{split} \sum_{n=1}^{\infty} \mathsf{P}(|\xi_1| \geq n) &= \sum_{n=1}^{\infty} n \mathsf{P}(n \leq |\xi_1| \leq n+1) = \sum_{n=1}^{\infty} \mathsf{E} n I(n \leq |\xi_1| \leq n+1) = \\ &= \mathsf{E} \sum_{n=1}^{\infty} n I(n \leq |\xi_1| \leq n+1) = \mathsf{E} \lfloor |\xi_1| \rfloor \in \Big[\mathsf{E} |\xi_1| - 1; \; \mathsf{E} |\xi_1| \Big] \end{split}$$

а значит сходимость ряда $\sum\limits_{n=1}^{\infty}\mathsf{P}(|\xi_1|\geq n)$ эквивалентна конечности мат.ожидания $\mathsf{E}|\xi_1|<\infty.$ Однако случайные величины одинаково распределенные, а значит

$$\sum_{n=1}^\infty \mathsf{P}(|\xi_1| \ge n) < \infty \Leftrightarrow \sum_{n=1}^\infty \mathsf{P}(|\xi_n| \ge n) < \infty$$

$$\Rightarrow \mathsf{P}(|\xi_n| \ge n \text{ б. ч.}) = 0 \text{ по лемме Бореля-Кантелли}$$

Рассмотрим $ilde{\xi}_n := \xi_n I(|\xi_n| \le n)$. Из того, что $\mathsf{P}(|\xi_n| \ge n \text{ б. ч.}) = 0$ следует, что лишь конечное число членов последовательности $\{\xi_k\}$ больше n по модулю, а значит, для достаточо больших n, выполнено $\xi_n = \xi_n$ почти наверное, и поэтому

$$\underbrace{\xi_1 + \ldots + \xi_n}_{n} \stackrel{\text{\tiny II.H.}}{\to} 0 \iff \underbrace{\tilde{\xi}_1 + \ldots + \tilde{\xi}_n}_{n} \stackrel{\text{\tiny II.H.}}{\to} 0$$

Покажем, что
$$\frac{\mathsf{E}\tilde{\xi}_1+\ldots+\mathsf{E}\tilde{\xi}_n}{n} \to 0$$
. Если это так, то
$$\frac{\xi_1+\ldots+\xi_n}{n} \overset{\text{п.н.}}{\to} 0 \Leftrightarrow \frac{\tilde{\xi}_1+\ldots+\tilde{\xi}_n-\mathsf{E}\tilde{\xi}_1-\ldots-\mathsf{E}\tilde{\xi}_n}{n} \overset{\text{п.н.}}{\to} 0$$

Действительно, имеем

$$\mathsf{E}\tilde{\xi}_n = \mathsf{E}\xi_n I(|\xi_n| \le n) = \mathsf{E}\xi_1 I(|\xi_1| \le n)$$

Заметим, что $\xi_1 I(|\xi_1| \leq n) \to \xi_1$ при $n \to \infty$, а $|\xi_1 I(|\xi_1| \leq n)| \leq |\xi_1|$, $\mathsf{E}|\xi_1| < \infty$, а значит, по теореме Лебега о мажорируемой сходимости

$$\mathsf{E}\tilde{\xi}_n \to \mathsf{E}\xi_1 = 0$$

Применяя лемму Теплица для $a_n=1$ получаем, что $\frac{1}{n}(\mathsf{E}\tilde{\xi}_1+\ldots+\mathsf{E}\tilde{\xi}_n) \to 0.$ Рассмотрим теперь $\sum_{n=1}^{\infty} \frac{D\tilde{\xi_n}}{n^2}$:

$$\begin{split} \sum_{n=1}^{\infty} \frac{\mathsf{D}\tilde{\xi_n}}{n^2} &\leq \sum_{n=1}^{\infty} \frac{\mathsf{E}\tilde{\xi}_n^2}{n^2} = \sum_{n=1}^{\infty} \frac{\mathsf{E}\xi_n^2 I(|\xi_n| \leq n)}{n^2} \\ &= \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{k=1}^n \mathsf{E}\xi_n^2 I(k-1 < |\xi_n| \leq k) \\ &\leq \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{k=1}^n k \mathsf{E}|\xi_n| I(k-1 < |\xi_n| \leq k) \\ &= \sum_{k=1}^{\infty} k \sum_{n=k}^{\infty} \frac{1}{n^2} \mathsf{E}|\xi_n| I(k-1 < |\xi_n| \leq k) \\ &= \sum_{k=1}^{\infty} k \sum_{n=k}^{\infty} \frac{1}{n^2} \mathsf{E}|\xi_1| I(k-1 < |\xi_1| \leq k) \\ &= \sum_{k=1}^{\infty} k \mathsf{E}|\xi_1| I(k-1 < |\xi_1| \leq k) \sum_{n=k}^{\infty} \frac{1}{n^2} \mathsf{E}|\xi_1| I(k-1 < |\xi_1| \leq k) \end{split}$$

Для того, чтобы оценить получившуюся сумму, воспользуемся неравенством $\sum_{n=k}^{\infty} \frac{1}{n^2} \le \int_{k-1}^{+\infty} \frac{dt}{t^2} = \frac{2}{k-1}$. С учетом этого, имеем:

$$\begin{split} \sum_{k=1}^{\infty} k \mathsf{E}|\xi_1|I(k-1 < |\xi_1| \le k) \sum_{n=k}^{\infty} \frac{1}{n^2} \le 4 \mathsf{E}|\xi_1|I(0 < |\xi_1| \le 1) + \sum_{k=2}^{\infty} \frac{2k}{k-1} \mathsf{E}|\xi_1|I(k-1 < |\xi_1| \le k) \\ \le 4 \mathsf{E}|\xi_1|I(0 < |\xi_1| \le 1) + 4 \sum_{k=2}^{\infty} \mathsf{E}|\xi_1|I(k-1 < |\xi_1| \le k) = 4 \mathsf{E}|\xi_1| < \infty \end{split}$$

Мы показали, что $\sum\limits_{n=1}^{\infty} \frac{\mathsf{D}\tilde{\xi_n}}{n^2}$ сходится. Теперь, по теореме Колмогорова-Хинчина (как и в УЗБЧ-1), получаем

$$\sum_{n=1}^{\infty} \frac{\tilde{\xi_n} - \mathsf{E}\tilde{\xi_n}}{n} < \infty$$

откуда по лемме Кронекера

$$\frac{1}{n} \sum_{k=1}^{n} \tilde{\xi}_k - \mathsf{E}\tilde{\xi}_k \to 0$$

что и завершает доказательство теоремы.

10.3 Неравенство больших уклонений

Теорема 10.6. (Неравенство больших уклонений)

Пусть ξ_1, ξ_2, \ldots — последовательность независимых одинаково распределенных случайных величин. Пусть $\mathsf{E}\xi_i = \mathsf{E}\xi_1 = a$. Тогда, если у ξ_1 существуют все моменты, то $\exists c_1, \ c_2 > 0$, такие что

$$\mathsf{P}\left(\left|\frac{S_n - \mathsf{E}S_n}{n}\right| \ge \varepsilon\right) \le e^{-c_1 n} + e^{-c_2 n}$$

Доказательство. Пусть случайная величина ξ имеет такое же распределение, как и ξ_i . Рассмотрим функцию $\varphi_{\xi}(\lambda) = \ln \mathsf{E} e^{\lambda \xi}$. Пусть U это некоторая окрестность 0, в которой функция φ_{ξ} бесконечно диффференцируема (такая окрестность найдется поскольку у ξ существуют все моменты). Тогда

$$\begin{split} \varphi_\xi'(\lambda)\Big|_{\lambda=0} &= \frac{\mathsf{E}\xi e^{\lambda\xi}}{\mathsf{E}e^{\lambda\xi}}\Big|_{\lambda=0} = a \\ \varphi_\xi''(\lambda)\Big|_{\lambda=0} &= \frac{\mathsf{E}\xi^2 e^{\lambda\xi} \cdot \mathsf{E}e^{\lambda\xi} - \left(\mathsf{E}\xi e^{\lambda\xi}\right)^2}{(\mathsf{E}e^{\lambda\xi})^2}\Big|_{\lambda=0} = \mathsf{D}\xi > 0 \end{split}$$

Рассмотрим новую функцию $\psi(b) = \sup_{\lambda \in U} (b\lambda - \varphi_{\xi}(\lambda))$. Поскольку φ_{ξ} выпукла вниз, то при b > a супремум достигается при $\lambda > 0$, а при b < a соответственно при $\lambda < 0$:

$$b > a \Rightarrow \psi(b) = \sup_{\substack{\lambda \in U \\ \lambda > 0}} (b\lambda - \varphi_{\xi}(\lambda))$$
$$b < a \Rightarrow \psi(b) = \sup_{\substack{\lambda \in U \\ \lambda < 0}} (b\lambda - \varphi_{\xi}(\lambda))$$
$$\psi(a) = 0$$

Распишем по неравенству Маркова ($\lambda > 0$):

$$\begin{split} \mathsf{P}\left(\frac{S_n}{n} - a > \varepsilon\right) &= \mathsf{P}\left(\frac{S_n}{n} > a + \varepsilon\right) \\ &= \mathsf{P}\left(\exp\left(\lambda \cdot \frac{S_n}{n}\right) > \exp\left(\lambda(a + \varepsilon)\right)\right) \\ &\leq \frac{\mathsf{E}\left(\exp\left(\lambda \cdot \frac{S_n}{n}\right)\right)}{\exp(\lambda(a + \varepsilon))} \\ &= \exp\left(-\lambda(a + \varepsilon) + \ln\mathsf{E}\left(\exp(\lambda \cdot \frac{S_n}{n})\right)\right) \\ &= \exp\left(-\left(\lambda(a + \varepsilon) - \sum_{i=1}^n \ln\mathsf{E}\left(\exp\left(\frac{\lambda}{n}\xi_i\right)\right)\right)\right) \\ &= \exp\left(-n\left(\frac{\lambda}{n}(a + \varepsilon) - \exp\left(\frac{\lambda}{n}\xi_i\right)\right)\right) \end{split}$$

Так как это верно для любого положительного λ , то верно и для того, где достигается супремум (поскольку $a + \varepsilon > a$). А значит

$$\mathsf{P}\left(\frac{S_n}{n} - a > \varepsilon\right) \le e^{-n\psi(a+\varepsilon)}$$

Абсолютно аналогично

$$\mathsf{P}\left(\frac{S_n}{n} - a < -\varepsilon\right) \le e^{-n\psi(a-\varepsilon)}$$

Тогда

$$P\left(\left|\frac{S_n}{n} - a\right| > \varepsilon\right) \le e^{-n\psi(a-\varepsilon)} + e^{-n\psi(a+\varepsilon)}$$

11 Характеристические функции. Центральная предельная теорема

11.1 Характеристические функции

Определение 11.1. Пусть ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда ее характеристической функцией называется функция

$$\varphi_{\xi}(t) = \mathsf{E}e^{it\xi}$$
 (прямое преобразование Фурье)

Если ξ — случайный вектор, то

$$\varphi_{\xi}(t) = \mathsf{E}e^{i\langle t,\,\xi\rangle}, \ t \in \mathbb{R}^n$$

где $\langle t, \xi \rangle$ — скалярное произведение.

Пример 11.1. $\xi \sim Bern(p)$. Тогда $\varphi_{\xi}(t) = e^{it} \cdot p + (1-p)$.

Пример 11.2. $\xi \sim U([a, b])$. Тогда

$$\varphi_{\xi}(t) = \int_{a}^{b} e^{itx} \frac{1}{b-a} dx = \frac{e^{itx}}{(b-a)it} \Big|_{a}^{b} = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

Пример 11.3. $\xi \sim N(0, 1)$.

$$\varphi_{\xi}(t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{itx} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-it)^2}{2}} e^{-\frac{t^2}{2}} dx = e^{-\frac{t^2}{2}}$$

Пример 11.4. $\xi \sim N(a, \sigma^2)$. Тогда $\frac{\xi - a}{\sigma} \sim N(0, 1)$.

$$\varphi_{\frac{\xi-a}{2}}(t) = e^{-\frac{t^2}{2}} = \mathsf{E} e^{it\frac{\xi-a}{\sigma}}$$

сделаем замену $t' = t\sigma$ т.к. t — произвольное

$$e^{-\frac{t^2\sigma^2}{2}}=\mathsf{E} e^{-it(\xi-a)}$$

$$\varphi_{\xi}(t) = \mathsf{E}e^{it\xi} = e^{ita - \frac{1}{2}\sigma^2 t^2}$$

Теорема 11.1. (теорема о единственности, $6/\partial$)

Пусть $\varphi_{\xi_1}(t) = \varphi_{\xi_2}(t) \ \forall t \in \mathbb{R}$. Тогда у ξ_1 и ξ_2 одинаковые распределения (аналогичная теорема верна и для случайных векторов).

Теорема 11.2. (О независимости)

 Π усть $\xi = (\xi_1, \ldots, \xi_n) - c$ лучайный вектор. Тогда $\xi_1, \ldots, \xi_n -$ независимы в совокупности тогда и только тогда, когда

$$\varphi_{\xi}(t_1, \ldots, t_n) = \prod_{i=1}^n \varphi_{\xi_i}(t_i) \ \forall t_1, \ldots, t_n \in \mathbb{R}$$

 $Доказательство. \Rightarrow$:

Т.к. ξ_i независимы в совокупности, то, по утверждению 4.3.2, независимы в совокупности случайные вектора ($\cos \xi_i$, $\sin \xi_i$). Имеем

$$\varphi_{\xi}(t_1, \dots, t_n) = \mathsf{E}e^{i\sum \xi_i t_i} = \mathsf{E}(\cos \xi_1 t_1 + i\sin \xi_1 t_1) \dots (\cos \xi_n t_n + i\sin \xi_n t_n)$$

$$= \mathsf{E}(\cos \xi_1 t_1 + i\sin \xi_1 t_1) \dots \mathsf{E}(\cos \xi_n t_n + i\sin \xi_n t_n) = \varphi_{\xi_1}(t_1) \dots \varphi_{\xi_n}(t_n)$$

 \Rightarrow :

Рассмотрим независимые с.в. η_1, \ldots, η_n , такие что $\forall i: \ \eta_i \stackrel{d}{=} \xi_i \ (cyweemsosanue \ \delta/\partial)$. Тогда

$$\varphi_{(\eta_1, \dots, \eta_n)}(t_1, \dots, t_n) = \prod_{i=1}^n \varphi_{\eta_i}(t_i) = \prod_{i=1}^n \varphi_{\xi_i}(t_i) = \varphi_{\xi}(t_1, \dots, t_n)$$

и по теореме о единственности $(\eta_1, \ldots, \eta_n) \stackrel{d}{=} \xi$.

Пример 11.5 (Формула свертки). Пусть $\xi \perp \!\!\! \perp \eta$. Тогда

$$F_{\xi+\eta}(x) = \mathsf{P}(\xi+\eta \leq x) = \int\limits_{u+v < x} \mathsf{P}_{\xi}(du) \mathsf{P}_{\eta}(dv) = \int\limits_{-\infty}^{+\infty} \mathsf{P}_{\xi}(du) \int\limits_{-\infty}^{x-u} \mathsf{P}_{\eta}(dv) = \int\limits_{-\infty}^{+\infty} F_{\eta}(x-u) \mathsf{P}_{\xi}(du)$$

С другой стороны, $\varphi_{\eta+\xi}(x) = \mathsf{E} e^{i(\eta+\xi)x} = \varphi_{\xi}(x)\varphi_{\eta}(x)$. Пусть, например, $\xi \sim N(a_1, \sigma_1^2), \ \eta \sim N(a_2, \sigma_2^2)$. Для хар.функции имеем:

$$\varphi_{\xi+\eta}(t) = e^{ita_1 - \frac{1}{2}\sigma_1^2 t^2} e^{ita_2 - \frac{1}{2}\sigma_2^2 t^2} = e^{it(a_1 + a_2) - \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2}$$

а значит, по теореме о единственности, $\xi + \eta \sim N(a_1 + a_2, \ \sigma_1^2 + \sigma_2^2)$. Это удобнее, чем формула свертки.

Теорема 11.3. (формула обращения, $6/\partial$)

Пусть $\varphi_{\xi}(t)$ — характеристическая функция ξ . Тогда для любых точек a < b, в которых F_{ξ} непрерывна, выполнено

$$F_{\xi}(b) - F_{\xi}(a) = \frac{1}{2\pi} \lim_{c \to \infty} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \cdot \varphi_{\xi}(t) dt$$

Если дополнительно $\varphi_{\xi}(t)$ абсолютно интегрируема, то

$$p_{\xi}(x)=rac{1}{2\pi}\int\limits_{-\infty}^{+\infty}e^{-itx}arphi_{\xi}(t)dt$$
 (обратное преобразование Фурье)

Утверждение 11.1.1. $|\varphi(t)| \le 1$ и $\varphi(0) = 1$.

Доказательство.
$$|\mathsf{E}e^{it\xi}| \leq \mathsf{E}|e^{it\xi}| = 1$$

Утверждение 11.1.2. Характеристическая функция равномерно непрерывна на \mathbb{R} .

Доказательство.

$$\begin{split} \forall \varepsilon > 0: \;\; \left| \mathsf{E} e^{it\xi} - \mathsf{E} e^{is\xi} \right| &= \left| \mathsf{E} (e^{it\xi} - e^{is\xi}) \right| \\ &= \left| \mathsf{E} (e^{is\xi}) \cdot (e^{i(t-s)\xi} - 1)) \right| \\ &\leq \mathsf{E} |e^{i(t-s)\xi} - 1| \\ &= \mathsf{E} \sqrt{(\cos(t-s)\xi - 1)^2 + \sin^2(t-s)\xi} \\ &= \mathsf{E} \sqrt{2 - 2\cos(t-s)\xi} = 2 \cdot \mathsf{E} \left| \sin \frac{(t-s)\xi}{2} \right| \end{split}$$

Положим $\delta := t - s$. Тогда

$$\begin{vmatrix} \sin \frac{\delta \xi}{2} & \longrightarrow 0 \\ |\sin \frac{\delta \xi}{2} & \le 1 \end{vmatrix} \Rightarrow \text{По теореме Лебега: E } \left| \sin \frac{\delta \xi}{2} \right| \to 0$$

а значит, что $\forall \varepsilon>0 \ \exists \delta_0 \ \forall \delta<\delta_0: \ \mathsf{E} \sin^2\frac{\delta \xi}{2}<\varepsilon.$ Возьмем $|t-s|<\delta_0$ и все.

Утверждение 11.1.3. $\varphi_{\xi}(x)$ принимает только действительные значения $\iff \xi \stackrel{d}{=} -\xi$ (т.е. распределение ξ симметрично относительно 0).

Доказательство.

 \Rightarrow :

 $\varphi_{\xi}(t) = \mathsf{E}\cos t\xi, \ \varphi_{-\xi} = \mathsf{E}\cos(-t\xi) = \mathsf{E}\cos t\xi$. Из теоремы о единственности следует, что $\xi \stackrel{d}{=} -\xi$. =:

$$\varphi_{\xi}(t) = \mathsf{E}\left(\cos t\xi + i\sin t\xi\right) = \varphi_{-\xi}(t) = \mathsf{E}\left(\cos t\xi - i\sin t\xi\right) \Rightarrow \mathsf{E}\sin t\xi = 0 \Rightarrow \varphi_{\xi} = \mathsf{E}\cos t\xi \qquad \qquad \Box$$

 $Утверждение\ 11.1.4.\ arphi_{\xi}(-t)=\overline{arphi_{\xi}(t)}$ — очевидно по определению.

Утверждение 11.1.5. (б/д)

Пусть $\mathsf{E}|\xi|^n < +\infty$. Тогда $\varphi_\xi(t)$ n раз дифференцируема и

$$\varphi_{\xi}^{(n)}(t) = \mathsf{E}(i\xi)^n e^{it\xi}$$

$$\varphi_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^{k}}{k!} \cdot \mathsf{E}\xi^{k} + \varepsilon_{n}(t)$$

где $|\varepsilon_n(t)| \leq 3\mathsf{E}|\xi|^n, \ \varepsilon_n(t) \to 0$ при $t \to \infty$.

Утверждение 11.1.6. (б/д)

Если существует производная четного порядка $\varphi^{(2n)}$ в точке x=0, то существует $\mathsf{E}\xi^{2n}<+\infty$.

Утверждение 11.1.7. (б/д)

Пусть
$$\forall n \in \mathbb{N} \ \mathsf{E} |\xi|^n < +\infty$$
 и $\overline{\lim}_{n \to \infty} \frac{\sqrt[n]{\mathsf{E} |\xi|^n}}{n} = T < \infty$. Тогда для любого $x \in (-\frac{1}{T}; \, \frac{1}{T})$

$$\varphi_{\xi}(x) = \sum_{k=0}^{+\infty} \frac{(ix)^k}{k!} \cdot \mathsf{E}\xi^k$$

Теорема 11.4. (о непрерывности, $6/\partial$)

- 1. Пусть $\xi_n \stackrel{d}{\to} \xi$. Тогда $\forall t \in \mathbb{R} : \varphi_{\xi_n}(t) \to \varphi_{\xi}(t)$ при $n \to \infty$.
- 2. Пусть $\xi_1, \ \xi_2, \ \dots \ -$ случайные величины $u \ \forall t \in \mathbb{R} : \ \varphi_{\xi_n}(t) \to \varphi(t)$ при $n \to \infty$, причем $\varphi(t)$ непрерывна в 0. Тогда $\varphi(t) -$ характеристическая функция некоторой случайной величины ξ , причем $\xi_n \stackrel{d}{\to} \xi$.

Теорема 11.5. (Бохнера-Хинчина)

Пусть φ — непрерывна и $\varphi(0) = 1$. Тогда она является характеристической тогда и только тогда, когда она неотрицательно определена, то есть

$$\forall n \in \mathbb{N} \ \forall z_1, z_2, \ldots, z_n \in \mathbb{C} \ \forall t_1, \ldots, t_n \in \mathbb{R} : \sum_{1 \le i, j \le n} \varphi(t_i - t_j) z_i \overline{z_j} \ge 0$$

(Это условие означает, что для любых
$$t_1,\ldots,t_n\in\mathbb{R}$$
 матрица
$$\begin{pmatrix} \varphi(t_1-t_1) & \varphi(t_1-t_2) & \ldots & \varphi(t_1-t_n) \\ \varphi(t_2-t_1) & \varphi(t_2-t_2) & \ldots & \varphi(t_2-t_n) \\ \vdots & & \vdots & \ddots & \vdots \\ \varphi(t_n-t_1) & \varphi(t_n-t_2) & \ldots & \varphi(t_n-t_n) \end{pmatrix}$$

неотрицательно определена.)

Доказательство.

⇒:

Пусть φ — характеристическая. Тогда

$$\sum_{i,j} \mathsf{E} e^{i(t_i - t_j)\xi} z_i \overline{z_j} = \sum_{i,j} \mathsf{E} \left(z_i e^{it_i \xi} \right) \left(\overline{z_j e^{it_j \xi}} \right) = \mathsf{E} |\sum_j z_j e^{it_j \xi}|^2 \ge 0$$

⇐:

Без доказательства.

11.2 Гауссовские векторы

Определение 11.2. $\xi = (\xi_1, \ldots, \xi_n)^T$ — гауссовский случайный вектор, если

$$\varphi_{\varepsilon}(x) = e^{i\langle a, x \rangle - \frac{1}{2}\langle \Sigma x, x \rangle}$$

где $\langle x, y \rangle$ — скалярное произведение, Σ — неотрицательно определенная симметричная матрица $n \times n$, $a \in \mathbb{R}^n$.

Теорема 11.6. (эквивалентные определения гауссовского вектора)

Следующие определения гауссовского вектора эквиваленты:

1. Определение 11.2

2. $\xi = A\eta + b$, где $\eta = (\eta_1, \ldots, \eta_m)^T$ и $\eta_i \sim N(0, 1)$, независимые, а $A \in Mat_{n \times m}$, $b \in \mathbb{R}^n$

3. $\forall \lambda_1, \, \dots, \, \lambda_n \in \mathbb{R}: \ \lambda_1 \xi_1 + \dots + \lambda_n \xi_n \ -$ нормальная случайная величина.

Доказательство.

 $1) \Rightarrow 2)$:

 $\varphi_{\xi}(x)=e^{i\langle a,\,x\rangle-\frac{1}{2}\langle \Sigma x,\,x\rangle}$. Тогда $\varphi_{\xi-a}(x)=\mathsf{E}e^{i\langle \xi-a,\,x\rangle}=e^{-i\langle a,\,x\rangle}\varphi_{\xi}(x)=e^{-1/2\langle \Sigma x,\,x\rangle}$. Так как Σ — симметричная, то $\Sigma=R^TDR$, где R — отрогональная, а D — диагональная с неотрицательными числами на главной диагонали (спектральное разложение). Тогда Σ можно представить в виде $\Sigma=R^TDR=R^T\sqrt{D}\sqrt{D}R=(\sqrt{D}R)^T(\sqrt{D}R)$, а значит

$$\langle \Sigma x, x \rangle = (\Sigma x)^T x = x^T \Sigma^T x = x^T (\sqrt{D}R)^T (\sqrt{D}R) x = (\sqrt{D}Rx)^T (\sqrt{D}Rx)$$

Сделаем замену $x=(\sqrt{D}R)^{-1}y$. Тогда $\varphi_{\xi-a}((\sqrt{D}R)^{-1}y)=e^{-1/2\langle y,\,y\rangle}=\prod\limits_{i=1}^n e^{-\frac{y_i^2}{2}}.$ С другой стороны

$$\begin{split} \varphi_{\xi-a}((\sqrt{D}R)^{-1}y) &= \mathsf{E} e^{i\langle\xi-a,\, (\sqrt{D}R)^{-1}y\rangle} \\ &= \mathsf{E} \Big[exp\left(i(\xi-a)^T(\sqrt{D}R)^{-1}y\right) \Big] \\ &= \mathsf{E} \Big[exp\left(i(\xi-a)^TR^T(\sqrt{D})^{-1}y\right) \Big] \\ &= \mathsf{E} \Big[exp\left(i((\sqrt{D})^{-1}R(\xi-a))^Ty\right) \Big] = \varphi_{(\sqrt{D})^{-1}R(\xi-a)}(y) \end{split}$$

то есть характеристическая функция вектора $\eta:=(\sqrt{D})^{-1}R(\xi-a)$ это произведение характеристических функций стандартных нормальных распределений, а значит его компоненты $\sim N(0,\,1).$

 $2) \Rightarrow 3)$:

Пусть $\xi = A\eta + b$. Тогда

$$\langle \lambda, \xi \rangle = \lambda^T (A\eta + b) = \lambda^T A\eta + \lambda^T b \sim N(\lambda^T b, \langle \lambda^T A, \lambda^T A \rangle)$$

 $3) \Rightarrow 1)$:

Перепишем функцию распределения:

$$\varphi_{\xi}(x) = \mathsf{E} e^{i\langle \xi, \, x \rangle} = \mathsf{E} e^{i(x_1 \xi_1 + \ldots + x_n \xi_n)} = \varphi_{x_1 \xi_1 + \ldots + x_n \xi_n}(1) = e^{ia \cdot 1 - \frac{1}{2}\sigma^2 \cdot 1^2}$$

где $a = \mathsf{E}(x_1\xi_1 + \ldots + x_n\xi_n)$, а $\sigma^2 = \mathsf{D}(x_1\xi_1 + \ldots + x_n\xi_n)$ Заметим, что $a = \langle (\mathsf{E}\xi_1, \, \ldots, \, \mathsf{E}\xi_n)^T, \, x \rangle$ и

$$0 \le \sigma^2 = \sum_{1 \le j, k \le n} \operatorname{cov}(\xi_j x_j, \, \xi_k x_k) = \sum_{1 \le k, \, j \le n} x_j x_k \operatorname{cov}(\xi_j, \, \xi_k) = \langle \Sigma x, \, x \rangle$$

где Σ — матрица ковариаций вектора ξ .

Следствие 11.6.1. В условиях определения $11.2\ a-6$ вектор мат. ожиданий, а $\Sigma-$ матрица ковариаций.

Следствие 11.6.2. Пусть
$$\xi$$
 — гауссовский вектор и $\Sigma = \begin{pmatrix} \Sigma_1 & 0 & \dots & 0 \\ 0 & \Sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Sigma_k \end{pmatrix}$ имеет блочно-диагональный

вид. Обозначим за $x_i, \, \xi^i, \, a_i$ соответственно те координаты векторов $x, \, \xi, \, a$, которые отвечают Σ_i в Σ . Тогда $\xi = (\xi^1, \, \ldots, \, \xi^k)$, где ξ^i случайный вектор и $\xi^1, \, \ldots, \, \xi^k$ независимы в совокупности.

Доказательство.

$$\begin{split} \varphi_{\xi}(x) &= e^{i\langle a, \, x \rangle - \frac{1}{2}\langle \Sigma x, \, x \rangle} \\ &= \exp\left(i\langle a_1, \, x_1 \rangle + \ldots + i\langle a_k, \, x_k \rangle - \frac{1}{2}\langle \Sigma_1 x_1, \, x_1 \rangle - \ldots - \frac{1}{2}\langle \Sigma_k x_k, \, x_k \rangle\right) \\ &= \prod_{j=1}^k e^{i\langle a_j, \, x_j \rangle - \frac{1}{2}\langle \Sigma_j x_j, \, x_j \rangle} \\ &= \prod_{j=1}^k \varphi_{\xi_j}(x_j) \end{split}$$

Применяя критерий независимости получаем требуемое.

11.3 Центральная предельная теорема

Теорема 11.7. (центральная предельная теорема)

 $\Pi y cm \delta_1, \delta_2, \ldots$ — независимые одинаково распределенные случайные величины с конечным вторым моментом. Тогда

$$\frac{S_n - \mathsf{E}S_n}{\sqrt{\mathsf{D}S_n}} \stackrel{d}{\to} \eta \sim N(0, 1)$$

Доказательство. Рассмотрим $\tilde{S}_n = \frac{S_n - \mathsf{E} S_n}{\sqrt{\mathsf{D} S_n}}, \ \tilde{\xi}_k = \frac{\xi_k - \mathsf{E} \xi_k}{\sqrt{\mathsf{D} S_n}}$. Покажем, что характеристические функции \tilde{S}_n сходятся к характеристической функции случайной величины $\sim N(0, 1)$

$$\begin{split} \varphi_{\tilde{S_n}}(x) &= \varphi_{\sum\limits_{j=1}^n \tilde{\xi_j}}(x) \\ &= \prod_{j=1}^n \varphi_{\tilde{\xi_j}}(x) \quad \text{(по независимости)} \\ &= \left(\mathsf{E} e^{ix\tilde{\xi_1}} \right)^n \quad \text{(т.к. одинаково распределенные)} \\ &= \left(\mathsf{E} \left[exp \left(\frac{ix}{\sqrt{\mathsf{D}S_n}} (\xi_1 - \mathsf{E}\xi_1) \right) \right] \right)^n \\ &= \left(\varphi_{\xi_1 - \mathsf{E}\xi_1} \left(\frac{x}{\sqrt{\mathsf{D}S_n}} \right) \right)^n \\ &= \left(1 - \frac{1}{2} x^2 \frac{\mathsf{D}\xi_1}{\mathsf{D}S_n} + o \left(\frac{1}{\mathsf{D}S_n} \right) \right)^n \\ &= \left(1 - \frac{1}{2n} x^2 + o \left(\frac{1}{n} \right) \right)^n \to e^{-\frac{x^2}{2}} \end{split}$$

Теорема 11.8. (многомерная ЦПТ, δ/∂)

Пусть $\xi_1, \, \xi_2, \ldots$ — независимые одинаково распределенные векторы, второй момент каждых компонент которых конечен. Σ — матрица ковариаций ξ_1 (существует т.к. $\mathsf{E}\xi_i\xi_j \leq \sqrt{\mathsf{E}\xi_i^2 \cdot \mathsf{E}\xi_j^2}$). Тогда

$$\frac{S_n - \mathsf{E} S_n}{\sqrt{n}} \xrightarrow{d} \eta \sim N(\overline{0}, \ \Sigma)$$

где сходимость по распределению случайных векторов означает сходимость в основном, определенную выше.

Теорема 11.9. (локальная предельная теорема, $6/\partial$)

Пусть $\xi_1, \, \xi_2, \, \ldots \sim Bern(p)$ — независимые одинаково распределенные случайные величины. Пусть $\varphi(n) = o(n^{2/3})$. Тогда

$$\sup_{k: |k-np| < \varphi(n)} \left| \frac{\mathsf{P}(S_n = k)}{\frac{1}{\sqrt{2\pi npq}} exp\left(-\frac{(k-np)^2}{2npq}\right)} - 1 \right| \to 0$$

 $(Tеорема \ yтверждает,\ что\ число\ успехов\ в\ таком\ случае\ имеет\ распределение,\ почти\ равное\ N(np,npq))$

Теорема 11.10. (интегральная предельная теорема Муавра-Лапласа, δ/∂)

 $\mathit{Пусть}\ \xi_1,\ \xi_2,\ \ldots \sim \mathit{Bern}(p)$ — независимые одинаково распределенные случайные величины. Тогда

$$\sup_{-\infty < a < b < +\infty} \left| \mathsf{P}\left(a < \frac{S_n - np}{\sqrt{npq}} < b\right) - \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \right| \to 0$$

(Теорема утверждает, что выполнена ЦПТ с равномерной сходимостью)

Пример 11.6. Игральный кубик бросается 6 млн раз. Тогда вероятность того, что количество выпавших троек отличается от 1 миллиона не более чем на 3000 примерно равна 0,999.

Теорема 11.11. (предельная теорема Пуассона)

Пусть $\xi_1, \ \xi_2, \ \dots, \ \xi_n \sim Bern(p_n)$ — независимые случайные величины $u \ pn \to \lambda \in \mathbb{R}$ $npu \ n \to \infty$. Тогда

$$S_n \stackrel{d}{\to} \eta \sim Pois(\lambda)$$

 \mathcal{A} оказательство. Из условия $p_n = \frac{\lambda}{n} + o\left(\frac{\lambda}{n}\right)$. Тогда имеем

$$P(S_n = k) = C_n^k p^k (1 - p)^{n - k} = \frac{n(n - 1) \dots (n - k + 1)}{n^k} (np)^k \frac{1}{k!} (1 - p)^n (1 - p)^{-k}$$

$$\to 1 \cdot \lambda^k \cdot \frac{1}{k!} \cdot e^{-\lambda} \cdot 1$$

$$= \frac{e^{-\lambda} \lambda^k}{k!}$$