PSYC 2317 - Lecture 6

Last time - We translated research questions to statistical questions about some population mean μ .

Two approaches:

- (1) estimate 95% confidence interval for pe
 "We are 95% confident that pe is between

 X and Y."
- (2) define competing models for μ (H_o, H_o) and compute probability of observing sample mean \overline{X} if H_o is true.

Technical note - you may have noticed that every example we've done includes the population standard deviation or

What happens if we are not given o?

Example: A population has a mean of 23. A sample of N=4 is given an experimental treatment and had scores of 20, 22, 22, and 20. Does the treatment result in a significantly lower score?

We are not given or - what can we do?

Is we need a new technique!

How do we get o?

- maybe we can estimate it from the observed data $S = \int_{N}^{1} \frac{x}{2} (x_{i} x^{2})^{2}$
- · Problem: s tends to be too small! It systematically underestimates or.
- · Solution: let's correct the formula to fix the bias

$$\hat{\sigma} = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

$$= \sqrt{\frac{55}{N-1}}$$

$$= \sqrt{\frac{55}{N-1}}$$
Temember.

OK, fine... but the distribution of "z-scores" $(\frac{\bar{x}-\mu}{3/\sqrt{N}})$ is no longer normal, but something else entirely!

- · details worked out by Gosset (1908)

 5 Biometrika paper written under pseudonym "Student"

 6 nice history of this paper given in

 2 abell (2008) Journal of the Amer. Stat. Assoc.
- shape of the distribution depends on sample size

 by parameter = "degrees of freedom"

 by df = N-1
- . the smaller the sample size, the fatter the tails

. so, sample size (i.e., degrees of freedom) must be specified when we calculate probabilities.

Lo T- distribution is built into the probability app we've been using in this course

https://tomfaulkenberry.shinyapps.io/dist_ealc

Back to ow example:

A population has a mean of 23. A sample of N=4 is given on experimental treatment and had scores of 20, 22, 22, and 20. Does the treatment result in a significantly lower score?

Let μ = mean of the treatment population. Note that X=21.

Define: 74: $\mu = 23$ Assume 14_0 is true. 14: $\mu < 23$. Find probability of observing X < 21if 14_0 is true.

To proceed, we need to compute an estimate of of the population standard deviation.

- from above, we have $\hat{\sigma} = \sqrt{\frac{55}{N-1}}$

X	Xi -x	$(x_i - \overline{x})^2$	
20		1	
22	1	(SS = 4
22	1	1	
Zo	-1	1	$\longrightarrow \partial = \sqrt{\frac{55}{2-1}}$
= 21	•	•	

 $= \sqrt{\frac{4}{3}} = 1.15$

$$t = \frac{\overline{x} - \mu}{\hat{\sigma}/\sqrt{N}} = \frac{21 - 23}{1.15/\sqrt{4}} = \frac{-2}{0.575} = -3.48$$

Is from app (with
$$df = 4-1=3$$
)
we get $P = 0.02$

Since P < 0.05, our data is <u>rare</u> if Ho is true.

So we reject Ho in favor of H, (i.e., µ < 23)

and conclude that the treatment results in significantly lower scores.

Take home;

- in problems where or is unknown, we must estimate it from the data.
- when using estimate &, the distribution of sample means depends on sample size.
- result: t-test.