

Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level in Core Mathematics C12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WMA01_01_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
 $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1(i) Way 1	$125\sqrt{5} = 5^3 \times 5^{\frac{1}{2}} = 5^{3+\frac{1}{2}}$	Writes $125\sqrt{5} = 5^p \times 5^q$ with at least one of $p = 3$ or $q = \frac{1}{2}$ and adds their p and q	M1
	$=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1
	Note that some candidates are treating	g the 125 as $\sqrt{125}$ and then writing	
	$\sqrt{125}$ as $5 \times 5^{\frac{1}{2}}$ which This is M0 as they are not w		
			(2)
Way 2	$125\sqrt{5} = 5^a \Rightarrow \log_5 125\sqrt{5} = \log_5 5^a$	Takes logs base 5 of both sides and uses power rule i.e. $\log_5 5^a = a \log_5 5$ or	M1
	$\Rightarrow \log_5 125\sqrt{5} = a \log_5 5$	$\log_5 5^a = a$	
	$=5^{\frac{3}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1
			(2)
Way 3	$125\sqrt{5} = 5^a \Rightarrow \log 125\sqrt{5} = \log 5^a$	Takes logs to the same base of both	M1
	$\Rightarrow \log 125\sqrt{5} = a \log 5$	sides and uses the power rule correctly.	1411
	$=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1
			(2)
Way 4	$125\sqrt{5} = 5^a \Longrightarrow \left(125\sqrt{5}\right)^2 = \left(5^a\right)^2$	Squares both sides and takes log base 5	M1
	$125\sqrt{5} = 5^a \implies 78125 = 5^{2a}$	or takes logs in a different base and uses the power rule correctly	171 1
	$2a = \log_5 78125$ or $\log 78125 = 2a \log 5$	The production of the producti	
	$=5^{\frac{3}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1
			(2)
	Correct answer in (i) with no income Note that in (i) if they take log		
	$125\sqrt{5} = 5^a \Rightarrow \log 12$		
į	this scor	es iviu.	

(ii)	$\frac{16(4+\sqrt{8})}{(4-\sqrt{8})(4+\sqrt{8})}$	Multiply numerator and denominator by $\pm (4 + \sqrt{8})$ or equivalent e.g. $\pm (4 + 2\sqrt{2})$ Note that this statement is sufficient. This mark may be implied by a correct	M1
	(')(')	expression in the numerator and $16 - 8$ or a full expansion in the denominator.	
	$=\frac{16(4+2\sqrt{2})}{16-8}$	$= \pm \frac{\dots}{16 - 8} \text{ or } = \pm \frac{\dots}{8} \text{ or}$ $= \pm \frac{\dots}{16 + 4\sqrt{8} - 4\sqrt{8} - 8}$ But must follow M1	A1
	Fully correct proof with an intermediate line expansion seen in the denominator and $\sqrt{8}$ = explicitly stated). Note that in this question brackets so that starting with e.g. $\frac{16(4+\sqrt{8})}{4-\sqrt{8}(4+\sqrt{8})}, \frac{16}{4-\sqrt{8}} \times \frac{4+\sqrt{8}}{4+\sqrt{8}}$	with $16 - 8$ or 8 or a full correct = $2\sqrt{2}$ used (does not need to be we are allowing recovery from invisible	A1
			(3)

(ii)	An alternative is to cancel 2 throughout then the scheme follows the same pattern:	
	$\frac{16}{\left(4-\sqrt{8}\right)} = \frac{16}{4-2\sqrt{2}} = \frac{8}{2-\sqrt{2}}$	
	$(4-\sqrt{8})$ $4-2\sqrt{2}$ $2-\sqrt{2}$	
	$= \frac{8(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}$ Multiply numerator and denominator by $\pm (2+\sqrt{2}).$ Note that this statement is sufficient. This mark may be implied by a correct expression in the numerator and $4-2$ or a full expansion in the denominator.	M1
	$= \frac{8(2+\sqrt{2})}{4-2}$ $= \pm \frac{1}{4-2} \text{or} = \pm \frac{1}{2} \text{or}$ $= \pm \frac{1}{4+2\sqrt{2}-2\sqrt{2}-2}$ But must follow M1	A1
	$= 8 + 4\sqrt{2} *$ Fully correct proof with an intermediate line with $4 - 2$ or 2 or a full correct expansion seen in the denominator and $\sqrt{8} = 2\sqrt{2}$ used. Note that in this question we are allowing recovery from invisible brackets so that starting with e.g. $\frac{8(2+\sqrt{2})}{2-\sqrt{2}(2+\sqrt{2})}, \frac{8}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}, \text{ should not be penalised.}$	A1
		(3)

Alternative	e for (ii)	
$\left(8+4\sqrt{2}\right)\left(4-\sqrt{8}\right)=\dots$	Attempt to expand to at least 3 terms	M1
$=32-8\sqrt{8}+16\sqrt{2}-4\sqrt{16}$	All terms correct	A1
$= 16 : \frac{16}{4 - \sqrt{8}} = 8 + 4\sqrt{2}$	Obtains 16 correctly with a conclusion which could be as shown or allow just a tick, #, QED etc.	A1
		Total 5

Question Number	Scheme	Notes	Marks
2	$x + y = 5 \qquad x^2 -$	$+x+y^2=51$	
	$y = 5 - x \Rightarrow x^{2} + x + (5 - x)^{2} = 51$ or $x = 5 - y \Rightarrow (5 - y)^{2} + (5 - y) + y^{2} = 51$	Attempts to rearrange the linear equation to $y =$ or $x =$ and attempts to fully substitute into the second equation.	M1
	$2x^2 - 9x - 26 = 0$ or	Collect terms together to produce a 2 or 3 term quadratic expression = 0. The '= 0' may be implied by later work.	M1
	$2y^2 - 11y - 21 = 0$	Correct quadratic equation in x or y	A1
	$(2x-13)(x+2) = 0 \Rightarrow x = \dots$ or $(2y+3)(y-7) = 0 \Rightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic and obtains at least one value of x or y. Dependent on both previous method marks. (May be implied by their values)	d M1
	x = 6.5, x = -2 or y = -1.5, y = 7	Correct answers for either both values of x or both values of y (possibly unsimplified)	A1 cso
	Substitutes their x into their $y = 5 - x$ or Substitutes their y into their $x = 5 - y$	Substitute at least one value of x to find y or vice versa. You may need to check if the substitution is not shown explicitly.	M1
	$x = 6.5 \left(\text{or } \frac{13}{2} \right), x = -2$ and $y = -1.5 \left(\text{or } -\frac{3}{2} \right), y = 7$	Fully correct solutions and simplified. Coordinates do not need to be paired.	A1 cso
	Note that some candidates solve their quadr will be the wrong way round. In such cas		
			(7)
			Total 7

Note that the following is an incorrect method but the final method mark is still available:

$$x+y=5 \Rightarrow x^2+y^2=25$$

$$x^2+y^2=25, \ x^2+x+y^2=51 \Rightarrow x=26$$
Scores M0M0A0dM0A0
But then
$$x=26 \Rightarrow y=5-26=-21$$
Scores M1A0

Question	Scheme	Notes	Marks
Number 3(a)		$x^n \to x^{n-1}$ seen at least once.	M1
		Allow $7 \rightarrow 0$ as evidence. $3 \times 2x^2$ or $-2 \times \frac{-5}{3}x^{-3}$ (One correct term unsimplified or simplified)	A1
	$6x^2 + \frac{10}{3x^3}$	Fully correct answer on one line $6x^2 + \frac{10}{3x^3}$ or $6x^2 + \frac{10}{3}x^{-3}$ Allow $3\frac{1}{3}$ or $3.\dot{3}$ (clear dot over the 3) for $\frac{10}{3}$ (If + c is present score A0) Do not allow 'double decker' fractions e.g. $\frac{3\frac{1}{3}}{x^3}$	A1
			(3)
(b)		$x^n \to x^{n+1}$ seen at least once. Allow $7 \to 7x$ as evidence. But an attempt to integrate their answer to part (a) is M0	M1
	$\frac{x^4}{2} + \frac{5}{3x} + \dots$	$2\frac{x^4}{4} \text{ or } \frac{-5}{3} \times \frac{x^{-1}}{-1} \text{ (one of the first 2 terms correct unsimplified or simplified)}$	A1
		$2\frac{x^4}{4} \text{ and } \frac{-5}{3} \times \frac{x^{-1}}{-1} \text{ (both of the first 2 terms correct unsimplified or simplified)}$	A1
	$\frac{x^4}{2} + \frac{5}{3x} + 7x + c$	Fully correct answer on one line including the $+c$. For $\frac{5}{3x}$ allow $\frac{5}{3}x^{-1}$ or $1\frac{2}{3}x^{-1}$ or $1.\dot{6}x^{-1}$ or $\frac{1.\dot{6}}{x}$ (clear dot over the 6). Do not allow x^1 for x . Do not allow 'double decker' fractions e.g. $\frac{1\frac{2}{3}}{x}$	A1
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
4(a)	$u_2 = 2k - 3^2$ or $u_4 = 4k - 3^4$	Attempts to use the given formula correctly at least once for u_2 or u_4 . So e.g. $u_2 = 4k - 3^4$ is M0	M1
	$2k - 9 = 4k - 81 \Rightarrow k = \dots$	Puts their u_2 = their u_4 and attempts to solve for k .	M1
	<i>k</i> = 36	cao	A1
			(3)
(b)	$u_1 = "36" - 3^1, \ u_2 = 2("36") - 3^2,$ $u_3 = 3("36") - 3^3, \ u_4 = 4("36") - 3^4$	Attempts to find the values of the first 4 terms <u>correctly</u> using their value of <i>k</i> . Allow slips but the method and intention should be clear.	M1
	$\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$ $(33 + 63 + 81 + 63)$	Adds their first 4 terms. Allow if in terms of k e.g. $k-3+2k-3^2+3k-3^3+4k-3^4$ (= $10k-120$)	M1
	$\left(\sum_{r=1}^{4} u_r = \right) 240$	cao	A1
			(3)
			Total 6

Question Number	Scheme	Notes	Marks
5(a)	$\left(1-\frac{1}{2}x\right)^{10}$	I	
	$\left(1 - \frac{1}{2}x\right)^{10} = 1 + \binom{10}{1}\left(-\frac{1}{2}x\right) + \binom{10}{2}\left(-\frac{1}{2}x\right) + $	$\left(-\frac{1}{2}x\right)^2 + \left(\frac{10}{3}\right)\left(-\frac{1}{2}x\right)^3 \dots$	M1
	M1: The method mark is awarded for an attempt at and/or fourth term. The correct binomial coefficient	1	
	power of x. Ignore bracket errors and omission of or	incorrect powers of $\pm \frac{1}{2}$. Accept any	
	notation for ${}^{10}C_2$ or ${}^{10}C_3$, e.g. $\binom{10}{2}$ or $\binom{10}{3}$ or 43	5 or 120 from Pascal's triangle.	
		Allow terms to be "listed". Allow equivalents for $\frac{45}{4}$ e.g. $11\frac{1}{4}$,11.25	
	$=1-5x, +\frac{45}{4}x^2, -15x^3 + \dots$	Allow $+\frac{45}{4}x^2$ to come from	B1, A1, A1
	·	$\binom{10}{2} \left(\frac{1}{2}x\right)^2$. Do not allow $1 + -5x$	
		for $1-5x$ or $+-15x^3$ for $-15x^3$.	(4)
(b)	$\left(3+5x-2x^2\right)\left(1-\frac{1}{2}\right)$	$\left(-\frac{1}{2}x\right)^{10}$	
	$\left(3+5x-2x^2\right)\left(1-\frac{1}{2}x\right)^{10} = \left(3+5x-2x^2\right)^{10}$	$\frac{e^{2}}{1-5x+\frac{45}{4}x^{2}-15x^{3}} = \dots$	
	Uses their expansion from part (a) to identify the x^3 terms or the x^3 coeff	icients together.	M1
	Look for $3 \times ("-15") + 5 \times \left("\frac{45}{4}"\right) + (-2) \times$	("-5") with or without the x^3 's	
	$\frac{85}{4}$ oe	Cao (Allow $\frac{85}{4}x^3$)	A1
			(2)
			Total 6

Question Number	Scheme	Notes	Marks
6(a)	(0, :		
	Correct shape : Look for a curve in quadrants negative gradient (<-1) becoming less negat points. Allow the curve to tend towards the vertoo far beyond the vertical and allow if it does the rhs. Or A curve or line with an intercept on the position as long as it is in the correct place. Allow if a or e.g. $x = 0$, $y = 1$ if it is. The sketch has	1 and 2 that moves smoothly from a live to approximately 0 with no turning critical on the lhs as long as it does not go a not appear asymptotic to the x -axis on live y -axis marked as 1 or $(0, 1)$ or $(1, 0)$ away from the sketch but must be $(0, 1)$	B1
	Correct shape , position and intercept : Shape look for an asymptote that is at least below a latter than the intercept and the <i>x</i> -axis.	and intercept as above. For position	B1
			(2)
(b)	h = 0.1	Correct h (Allow $h = -0.1$). May be implied by their trapezium rule and may be unsimplified e.g. $((-0.5)-(-0.9))/4$	B1
	$A = \frac{1}{2}(0.1) \Big[1.866 + 1.414 + 20 \Big]$ A correct application of the trapezium rule of the correct but may be implied by their final ansolin incorrect. Note that $1.866 + 1.414 + 20$. The 'square' brackets needs to contain first bracket to be multiplied by 2 and to be the surtable with no additional values. If the only ming value from inner bracket this may be regardled allowed (An extra repeated term for M0 if values used are x value $A = \frac{1}{2}(0.1)1.866 + 1.414 + 2(1.741 + 1.620)$. Separate trapezia may be used: B1 for $h = 0$. and trapezia added.	using their h . The bracketing must be wer. You may need to check if their h is $2(1.741+1.625+1.516)=13.044$ y value plus last y value and the inner mation of the remaining y values in the stake is a copying error or is to omit one rded as a slip and the M mark can be orfeits the M mark however). The instead of y values. $2(5+1.516)=11.2713$ scores B1M0A0 $2(5+1.516)=0.6522$ scores B1M1A1 1, M1 for $1/2h(a+b)$ used 3 or 4 times end together.	M1
	A = 0.6522 or $A = 0.652$	Allow either answer (must be positive) and allow $\frac{3261}{5000}$ if no decimal seen.	A1
			(3)
			Total 5

Question Number	Scheme	Notes	Marks
7(a)	$m = \frac{5-1}{-1-4}$	Attempts $\frac{\text{change in } y}{\text{change in } x}$. Condone one sign slip. Maybe implied by $\pm \frac{4}{5}$	M1
	$=-\frac{4}{5}$	cao	A1
	Correct answer only so	cores both marks.	
			(2)
(a) Way 2	$5 = -m + c$ $1 = 4m + c$ $\Rightarrow 5 - 1 = -m - 4m \Rightarrow m = \dots$	Correct method for the gradient	M1
-	$\Rightarrow 5 - 1 = -m - 4m \Rightarrow m = \dots$ $(m =) -\frac{4}{5}$	cao	A1
			(2)
(b)	$y-5 = "-\frac{4}{5}"(x+1)$ or $y-1 = "-\frac{4}{5}"(x-4)$ $4x+5y-21=0$	Uses A or B and their m in a correct straight line method. If using $y = mx + c$ must reach as far as $c =$ Attempting the normal is M0.	M1
<u>_</u>	4x+5y-21=0	Allow any integer multiple	A1
		7 5 1	(2)
(c)	M is $\left(\frac{3}{2},3\right)$	Correct midpoint	B1
	$MC^{2} = \left(5 - \frac{3}{2}\right)^{2}$ Correct use of Pythates. E.g. sight of $\left(5 - \frac{3}{2}\right)^{2} + h^{2}$ or $\sqrt{\left(5 - \frac{3}{2}\right)^{2}}$	agoras for MC.	M1
	$\left(5 - \frac{3}{2}\right)^2 + \left(k - \frac{3}{3}\right)^2 = 13 \Rightarrow k = \dots$	Uses $\sqrt{13}$ correctly to find a value for k . Must be a correct method so e.g. $\left(5 - \frac{3}{2}\right)^2 + \left(k - 3\right)^2 = 13^2 \text{ scores M0}$ Dependent on the first M mark.	d M1
	$(k=)3\pm\frac{\sqrt{3}}{2} \text{ oe}$	Both. Accept e.g. $\frac{24 \pm \sqrt{48}}{8}$, $\frac{6 \pm \sqrt{3}}{2}$ and ignore how they are referenced, e.g. there is no need for $k = \dots$	A1
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
8	(Mark (a) and ((b) together)	
(a)	$2(1)^3 - 3(1)^2 + p(1) + q = -6$	Attempts $f(\pm 1) = -6$	M1
	p + q = -5 *	Correct equation with no errors.	A1
			(2)
(a) Way 2	$ \frac{2x^{2} - x + p - 1}{2x^{3} - 3x^{2} + px + q} $ $ \frac{2x^{3} - 2x^{2}}{-x^{2} + px + q} $ $ \frac{-x^{2} + px + q}{-x^{2} + x} $ $ \frac{(p - 1)x + q}{(p - 1)x - (p - 1)} $ $ \Rightarrow p + q - 1 = -6 $	Attempts long division correctly (allow sign slips only) leading to a remainder in p and q which is set = -6	M1
	p + q = -5 *	Correct equation with no errors.	A1
			(2)
(b)	$2(-2)^3 - 3(-2)^2 +$ A clear attempt at $f(-2) = 0$ or $f(2) = 0$. M the equation is incorrect and no	ay be implied by a correct equation but if	M1
	$p+q=-5, q-2p=28$ $\Rightarrow p=-11, q=6$	Solves simultaneously. Must be using $p + q = -5$ and their linear equation in p and q and must reach values for both p and q . Correct values	M1
		Correct values	(3)

B(c) $\frac{2x^3 - 3x^2 - 11x + 6}{x + 2} = 2x^2 + kx +$ Divides $f(x)$ by $(x + 2)$ or compares coefficients or uses inspection and obtains at least the first 2 terms of a quadratic with $2x^2$ as the first term and an x term. Must be seen in (c). $2x^2 - 7x + 3$ Correct quadratic Attempts to factorise their 3 term quadratic expression. The usual rules apply here so if $2x^2 - 7x + 3$ is factorised as $\left(x - \frac{1}{2}\right)(x - 3)$, this scores $dM1$
Attempts to factorise their 3 term quadratic expression. The usual rules apply here so if $2x^2 - 7x + 3 = (2x - 1)(x - 3)$
quadratic expression. The usual rules apply here so if $2x^2 - 7x + 3 = (2x - 1)(x - 3)$
M0 unless the factor of 2 appears later. Dependent on the first M mark.
$f(x) = (x+2)(2x-1)(x-3)$ Or e.g. $f(x) = 2(x+2)(x-\frac{1}{2})(x-3)$ Fully correct factorisation. Must see all factors together on one line and no commas in between.
(4
Answers with no working in (c)
$2x^{3}-3x^{2}-11x+6=(x+2)(2x-1)(x-3) \text{ scores full marks}$
$2x^3 - 3x^2 - 11x + 6 = 2(x+2)(x-\frac{1}{2})(x-3)$ scores full marks
$2x^3 - 3x^2 - 11x + 6 = (x+2)(x-\frac{1}{2})(x-3)$ scores a special case M1A1M0A0
Just writing down roots of the cubic scores no marks.
Ignore any "= 0" and also ignore any subsequent attempts to solve $f(x) = 0$ once the factorised form is seen.

Question Number	Scheme	Notes	Marks
9(a)	$1000 + (N-1) \times 20 = 1500 \Rightarrow N = \dots$	Uses a correct term formula with $a = 1000$, $d = 20$ and the 1500 in an attempt to find N . Alternatively calculates $\frac{1500-1000}{20}+1$.	M1
	(N =) 26	Cao (Allow <i>n</i> or any other letter for <i>N</i>)	A1
	Uses a correct arithmetic progression, so con 1500 and so concludes $(N=)$ 26	siders 1000, 1020, 1040 etc. to reach scores M1A1 together	
	Correct answer only sco	ores both marks	(2)
(b)	1		(2)
(b)	$S_{26} = \frac{1}{2} ("26") [2(1000) + ("26"-1) \times 20]$ or $S_{26} = \frac{1}{2} ("26") [1000 + 1500]$	Correct attempt at AP sum with $n = \text{their } N, a = 1000, d = 20 \text{ or } n = \text{their } N, a = 1000, l = 1500$	M1
	=32 500	Correct sum (may be implied)	A1
	constant terms = $(50-N) \times 1500$ Or constant terms = $(50-(N-1)) \times 1500$	Attempts $(50-N)\times1500$ or $(50-(N-1))\times1500$. So if $n=26$ was used for the previous M, allow the use of 24 or 25 here.	M1
	$S_{50} = "24" \times 1500 + S_{26}$	Adds their AP sum to constant terms where 50 terms are being considered. Dependent on both previous M's.	ddM1
	= 68 500	cao	A1
			(5)
(b) Way 2	$S_{26} = \frac{1}{2} ("26"-1) [2(1000) + ("26"-1-1) \times 20]$ or $S_{26} = \frac{1}{2} ("26"-1) [1000 + 1480]$	Correct attempt at AP sum with $n = \text{their } N - 1$, $a = 1000$, $d = 20$ or $n = \text{their } N - 1$, $a = 1000$, $l = 1500$	M1
	= 31 000	Correct sum (may be implied)	A1
	constant terms = $(50-(N-1))\times1500$ Or constant terms = $(50-(N-2))\times1500$	Attempts $(50-(N-1))\times1500$ or $(50-(N-2))\times1500$. So if $n=25$ was used for the previous M, allow the use of 25 or 26 here.	M1
	$S_{50} = "25" \times 1500 + S_{26}$	Adds their AP sum to constant terms where 50 terms are being considered. Dependent on both previous M's.	ddM1
	= 68500	cao	A1
			(5)
			Total 7

Important Note: Special Case

Candidates who obtain N = 25 in part (a) are allowed a full recovery in part (b) for,

$$\frac{1}{2}(25)[2\times1000+24\times20] = 31\ 000 = M1A1$$

$$25 \times 1500 (= 37500) = M1$$

$$31\ 000 + 37\ 500 = 68\ 500 = ddM1A1$$

Listing in (b):

Week	1	2	3	4	5	6	7	8	9	10	11	12	13
Cars	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1220	1240
Total	1000	2020	3060	4120	5200	6300	7420	8560	9720	10900	12100	13320	14560

Week	14	15	16	17	18	19	20	21	22	23	24	25	26
Cars	1260	1280	1300	1320	1340	1360	1380	1400	1420	1440	1460	1480	1500
Total	15820	17100	18400	19720	21060	22420	23800	25200	26620	28060	29520	31000	32500

Week	27	28	29	 49	50
Cars	1500	1500	1500	 1500	1500
Total	34000	35500	37000	 67000	68500

M1: Attempts the sum of either 25 or 26 terms of a series with first term 1000 and d = 20

A1: S = 31000 or 32500Then follow the scheme

Question Number	Scheme	Notes	Marks		
10(a)	$\frac{1}{3}x + 5 = 4x^{\frac{1}{2}} - x + 5 \Longrightarrow x = 3x^{\frac{1}{2}}$	Sets line = curve and obtains an equation of the form $\alpha x = \beta x^{\frac{1}{2}}$ or equivalent e.g. $\alpha x - \beta x^{\frac{1}{2}} = 0$	M1		
	x = 9	Obtains $x = 9$ from a correct equation	A1		
	Note that $x-3x^{\frac{1}{2}}=0 \Rightarrow x^2-9x=0$	$= 0 \Rightarrow x = 9$ is acceptable			
	(0, 5)	Correct point. Coordinates not necessary and may be seen on the diagram.	B1		
	(9, 8)	Correct point. Coordinates not necessary and may be seen as values and/or on the diagram.	A1		
			(4)		
(b)	$x = 25 \Rightarrow 4(25)^{\frac{1}{2}} - 25 + 5 = 20 - 25 + 5 = 0$ So x-coordinate of F is 25	Shows F 's x coordinate is 25. Need to see $4(25)^{\frac{1}{2}}$ evaluated as 4×5 or 20	B1		
	Note: This may be shown by solving $4x^{\frac{1}{2}} - x + 5 = 0$ Example 1 $4x^{\frac{1}{2}} - x + 5 = 0 \Rightarrow x - 4x^{\frac{1}{2}} - 5 = 0 \Rightarrow \left(x^{\frac{1}{2}} + 1\right)\left(x^{\frac{1}{2}} - 5\right) = 0$				
	$x^{\frac{1}{2}} - 5 = 0 \Rightarrow x^{\frac{1}{2}} = 5 \Rightarrow x = 25$ Example 2 $4x^{\frac{1}{2}} - x + 5 = 0 \Rightarrow 4x^{\frac{1}{2}} = x - 5 \Rightarrow 16x = (x - 5)^{2}$				
	$x^2 - 26x + 25 = 0 \Rightarrow (x - 25)$				
	(In this case, ignore any reference to the oth	her root provided $x = 25$ is obtained)	(1)		
(c)	The first 2 marks (M1A1) in (c) are to be s method used to find th		(1)		
	$\int \left(4x^{\frac{1}{2}} - x + 5\right) dx = \frac{8}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + 5x$ or $\int \left(4x^{\frac{1}{2}} - x + 5 - \left(\frac{1}{3}x + 5\right)\right) dx = \int \left(4x^{\frac{1}{2}} - \frac{4}{3}x\right) dx = \frac{8}{3}x^{\frac{3}{2}} - \frac{2}{3}x^2$ M1: $x^n \to x^{n+1}$ seen at least once A1: Correct integration, simplified or unsimplified. Score as soon as the correct integration is seen. Can be awarded for the curve or their \pm (curve-line). Award this mark even if mistakes have been made in 'simplifying' their \pm (curve-line) as long as the subsequent integration is correct.				

$\frac{\mathbf{WAY 1}}{\mathbf{Area} B + \mathbf{Area} C}$ Requires:				
$\begin{bmatrix} \frac{8}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + 5x \end{bmatrix}_{99}^{25} = \frac{875}{6} - \frac{153}{2}$ Uses the limits 25 and "9" in their integrated (changed) curve and subtracts either way round.				
Area of trapezium = $\frac{("8"+5)}{2} \times "9" = 58.5$ or Triangle + Rectangle $= "5" \times "9" + \frac{"5" \times "9"}{2} = 58.5$ Must be correct integration and correct use of limits in this case.				
Uses process 1 or process 2	M1			
Uses process 1 and process 2 (Even if other areas have been calculated) Dependent on the previous M	dM1			
$R = \frac{208}{3} + 58.5 =$ Adds their areas. Dependent on all the previous M marks.				
$=\frac{767}{6}$ cao	A1			
	(6)			

Requires:	
$\begin{bmatrix} \frac{8}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + 5x \end{bmatrix}_0^{25} = \frac{1000}{3} - \frac{625}{2} + 125$ Uses the limits 25 and 0 in their integrated (changed) curve and subtracts either way round.	
Area between line and curve $= \int_0^{9^n} \left(4x^{\frac{1}{2}} - \frac{4}{3}x\right) dx = \left[\frac{8}{3}x^{\frac{3}{2}} - \frac{2}{3}x^2\right]_0^{9^n} = 18$ Uses the limits "9" and 0 on their integrated (changed) $\pm (\text{curve-line}) \text{ and subtracts either way round.}$	
Uses process 1 or process 2	M1
Dependent on the previous M	dM1
875 Subtracts their areas Danandant on	dM1
	A1 (6)

No algebraic integration seen:

Candidates may perform the integration on their calculators. In such cases a maximum of 2 marks is available: **M0A0M1dM0A0** if the values for the areas for the M2 and M3 follow from their values found in part (a) (you may need to check)

Question Number	Scheme	Notes	Marks		
11(a)	$7x^2 + 2kx + k^2 - k - 7 = 0$ or a	$=7, b=2k, c=k^2-k-7$			
	Attempts to collect terms to one side so lool				
	(the " $=$ 0" may be implied) or writes down value	ues for "a", "b" and "c" where "a" = 7,			
	"b" = $2k$ and "c" = $k^2 \pm k \pm 7$ which ma				
	E.g. $(21)^2 = 4.7 (12.1.7)$	Use of $b^2 - 4ac$ with $a = \pm 7$, $b = \pm 2k$ and $c = \pm k^2 \pm k \pm 7$. May be seen as			
	$(2k)^2 - 4 \times 7 \times \left(k^2 - k - 7\right)$	part of e.g. $b^2 = 4ac$ but not as part			
	$(2k)^2 - 4 \times 7 \times (k^2 - k - 7) > 0$	of the quadratic formula – the	M1		
	$(2k)^2 - 4 \times 7 \times (k^2 - k - 7) < 0$	$b^2 - 4ac$ must be 'extracted'. Condone missing brackets for this			
	$(2k)^2 = 4 \times 7 \times (k^2 - k - 7)$	mark provided the intention is clear. There must be no x 's.			
	$(2k)^2 - 4 \times 7 \times (k^2 -$	-k-7) > 0			
	Obtains a correct quadratic inequality that is no recovered from missing brackets around the "2 k " this mark if there was an incorrect rearrangement and/or incorrect values of any of " a ", " b " or " c " $k^2 - k + 7$ initially and then using " c " as $k^2 - k - 1$	k " or the " $k^2 - k - 7$ " but do not allow nt of $7x^2 + 2kx + k^2 = k + 7$ earlier stated e.g. identifying " c " as	A1		
	$\frac{k - k + 7 \text{ initially and then using } c \text{ as } k - k - 49}{6k^2 - 7k - 49}$				
	Fully correct proof with no errors. This includes bracketing errors, sign errors and e.g. identifying "c" as $k^2 - k + 7$ initially and then using "c" as $k^2 - k - 7$ Starting with e.g. $7x^2 + 2kx + k^2 - k - 7 > 0$ or $7x^2 + 2kx + k^2 - k - 7 < 0$				
	would also be a	n error.	(4)		
(b)	$6k^2 - 7k - 49 = 0 \Rightarrow k = \dots$	Attempt to solve the 3TQ from part (a) to obtain 2 values for <i>k</i> . (see general guidance for solving a 3TQ). May be implied by their values but if no working is shown and the roots are incorrect, score M0 here.	M1		
	$k = -\frac{7}{3}, \frac{7}{2}$	Correct values. May be seen as part of their inequalities. Allow $k = \frac{7 \pm 35}{12}$	A1		
	7 . 7 (7 7) . 7 7	Attempt inside region for their critical values. Do not award simply for diagram or table.	M1		
	$-\frac{7}{3} < k < \frac{7}{2} \text{ or } \left(-\frac{7}{3}, \frac{7}{2}\right) \text{ or } k > -\frac{7}{3} \text{ and } k < \frac{7}{2}$	Cao. ($k > -\frac{7}{3}$, $k < \frac{7}{2}$ is A0 i.e. must	A1		
		see "and" if regions given separately)			
	Note that $-\frac{7}{3} < k < \frac{7}{2}$ with no working scores full marks in part (b)				
	Note: Allow x to be used in (b) rather than A				
		1	(4)		
			Total 8		

Question Number	Scheme	Notes	Marks	
12(a)	$6\cos x - 5\tan x = 6\cos x - 5\frac{\sin x}{\cos x}$	Uses $\tan x = \frac{\sin x}{\cos x}$. This may be implied by e.g. $6\cos x - 5\tan x = 0 \Rightarrow 6\cos^2 x - 5\sin x = 0$	M1	
	$6\cos^2 x - 5\sin x = 6(1-\sin^2 x) - 5\sin x$	Uses $\cos^2 x = 1 - \sin^2 x$	M1	
	$6\sin^2 x + 5\sin x - 6 = 0*$	Correct proof with no notational errors, missing brackets, missing variables, $\sin x^2$ instead of $\sin^2 x$ etc. Allow the proof to be in terms of a different variable but the final equation must be in terms of x . If everything is moved to one side, allow the "= 0" to appear at the end.	A1*	
	Allow to wor			
	$6\sin^2 x + 5\sin x - 6 = 0 \Longrightarrow$	$\Rightarrow 6\left(\sin^2 x - 1\right) + 5\sin x = 0$		
	$-6\cos^2 x +$ M1: Uses $\cos^2 x$			
	$-6\cos x + \frac{5\sin x}{\cos x} = 0 \Rightarrow -6\cos x + 5\tan x = 0$			
	M1: Uses ta	$\ln x = \frac{\sin x}{\cos x}$		
	A1: $6\cos x$			
	Achieves this result with no	o errors as described above	(3)	
			(3)	

4000	T		T
12(b)		Attempt to solve the given quadratic for	
		$\sin x$ or for $\sin(2\theta-10^\circ)$ or e.g. y or	
	$6\sin^2 x + 5\sin x - 6 = 0 \Rightarrow \sin x = \dots$	even x. Allow this mark if their quadratic	M1
		is a clear mis-copy e.g. if they attempt to	1411
		solve $6\sin^2 x - 5\sin x - 6 = 0$ having	
		previously obtained $6\sin^2 x + 5\sin x - 6 = 0$	
		Correct value (Ignore how they reference	
	$\sin x = \frac{2}{3} \text{ or } \sin(2\theta - 10^{\circ}) = \frac{2}{3}$	it so just look for $\frac{2}{3}$). The other root can	A1
	3	be ignored whether it is correct or	
		incorrect.	
		Finds arcsin of their 2/3. May be implied	
		41.81 or by their value of $\sin^{-1}(\frac{2}{3})$ and	
	$2\theta - 10^{\circ} = \sin^{-1}\left(\frac{2}{3}\right) = \dots \Rightarrow \theta = \dots$	attempts $\frac{\sin^{-1}\left(\frac{2}{3}\right)\pm 10}{2}$. Their $\sin^{-1}\left(\frac{2}{3}\right)$	M1
		must be a value and not just $\sin^{-1}\left(\frac{2}{3}\right)$.	
		May be implied by sight of 25.9°	
		Awrt two correct angles	A1
		All four angles and allow awrt the	
	$(\theta = 25.9^{\circ}, 74.1^{\circ}, 205.9^{\circ}, 254.1^{\circ})$	answers shown. Ignore answers outside	
	(5) 25.5 , 7.11 , 255.5 , 25 1.1	the range (0, 360°) but withhold this	A1
		mark for extra answers in range.	
		(Degree symbols not required)	/ <u>-</u>
			(5)
			Total 8

Question	0.1	N	M 1
Number	Scheme	Notes	Marks
13(i)	$\log 4^{3x+2} = (3x+2)\log 4 (\text{allow } 3x + 2\log 4)$ $\log 3^{600} = 600\log 3$ $\log_4 4^{3x+2} = 3x + 2$ $\log_3 3^{600} = 600$ $3x + 2 = \log_4 3^{600}$	Evidence of the application of the power law of logarithms or the definition of a logarithm. This is independent of any other working – see examples. Generally this is for e.g. $\log_x y^k = k \log_x y$ or $\log_x x^k = k$ or $\log y^k = k \log y$ etc. where x, y and k are any variables/numbers.	M1
	Examples: $x = \frac{1}{3} \left(\frac{600 \log 3}{\log 4} - 2 \right)$ or $x = \frac{600 \log_4 3 - 2}{3}$ or $x = \frac{\frac{600}{\log_3 4} - 2}{3}$	This mark is for a correct expression or a correct value for x . Note that it must be an expression that can be evaluated e.g. $x = \frac{\log_4 3^{600} - 2}{3}$ is A0. May be implied by awrt 158 following correct work.	A1
	x = 157.8	Cao (Must be this value not awrt)	A1
			(3)
(ii)	$2\log_a 5 = \log_a 25 \text{ or } \log_a 5^2$		B1
	$\log_a (3b-2) - \log_a 25 = \log_a \frac{(3b-2)}{25}$ or $\log_a 25 + \log_a a^4 = \log_a 25a^4$	Correct use of subtraction or addition rule	M1
	$a^{4} = \frac{3b - 2}{25}$ $b = \frac{25a^{4} + 2}{2}$	Removes logs correctly. Dependent on the previous M.	dM1
	$b = \frac{25a^4 + 2}{3}$	Cao oe e.g. $b = \frac{25a^4}{3} + \frac{2}{3}$	A1
	Special Ca	(SQ*	(4)
	$\log_a (3b-2) - \log_a 25 = \log_a 3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Scores B1M0d	IWITAU	Total 7
		<u>l</u>	10001

Question Number	Scheme	Notes	Marks
14	Mark (a) and (b)	together (
(a)	(0, -8)	x = 0 or $y = -8$ (May be seen on a sketch)	B1
	$(0, -\delta)$	x = 0 and $y = -8(May be seen on a sketch)$	B1
			(2)
(b)	Uses 64, 100 and k (not k^2) t	o obtain a value for <i>k</i>	M1
	k = -36	cao	A1
	k = -36 scores both marks		
			(2)

14(c)	$y = -16 \Rightarrow a = 6$	Correct <i>x</i> -coordinate. Allow $x = 6$ or just sight of 6. May be seen on a sketch.	B1
	$m_{N} = \frac{-16 + 8}{6 - 0} \left(= -\frac{4}{3} \right)$ or $m_{N} = \frac{-16 + 8}{a - 0} \left(= -\frac{8}{a} \right)$	Correct attempt at gradient using the centre and their A. Allow one sign slip. If they use O for the centre, this is M0. Allow if in terms of a i.e. if they haven't found or can't find a.	M1
	$m_T = -1 \div " - \frac{4}{3}" = \dots$ or $m_T = -1 \div " - \frac{8}{a}" = \dots$	Correct use of perpendicular gradient rule. Allow if in terms of <i>a</i> .	M1
	Alternative by implicit		
	Note that there is no penalty for an incorrect value of k here.		
	$x^{2} + y^{2} + 16y + k = 0 \Rightarrow 2x + 2y \frac{dy}{dx} + 16 \frac{dy}{dx} = 0$		
	M1 for $\alpha x + \beta y \frac{dy}{dx} + c \frac{dy}{dx} = 0$		
	$2(6) + 2(-16)\frac{dy}{dx} + 16\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{12}{16}$		
	M1 for substituting $x = 6$ or $x = a$ and $y = -16$ to find the gradient		
	from differentiation that yielded 2 terms in $\frac{dy}{dx}$		
	$y+16 = \frac{3}{4}(x-"6")$ or $y+16 = \frac{a}{8}(x-"6")$	Correct straight line method using a gradient which is not the radius gradient and their A or $(a, -16)$. Allow a gradient in terms of a .	M1
	$y+16 = \frac{a}{8}(x-6)$ $x=0 \Rightarrow y=-\frac{41}{2}, y=0 \Rightarrow x=\frac{82}{3}$	Correct values	A1
	$Area = \frac{1}{2} \times \frac{41}{2} \times \frac{82}{3}$	Correct method for area using vertices of the form $(0, 0)$, $(X, 0)$ and $(0, Y)$ where X and Y are numeric and have come from the intersections of their tangent with the axes. Allow negative lengths here. Dependent on the previous M mark.	d M1
	$= \frac{1681}{6} \text{ or } 280\frac{1}{6}$ or $280.1\dot{6} \text{ (clear dot over 6)}$	Cao. Must be positive and may be recovered from sign errors on $-\frac{41}{2}$ and/or $\frac{82}{3}$ but must be from a	Al
		correct tangent equation.	
			(7)
			Total 11

Question Number	Scheme	Notes	Marks
15(a)	(Arc length =) 0.8x	Correct expression	B1
	P = 2x + 4y + 0.8x	$P = \alpha x + \beta y + 0.8x'', \alpha, \beta \neq 0$	M1
	This may be implied by e.g. $P = 2x + 4$ (their y) + 0.8 x		
	$2xy + \frac{1}{2}(0.8)x^2 = 60$	Correct equation for the area	B1
	$y = \frac{60 - 0.4x^2}{2x} \Rightarrow P = 4\left(\frac{60 - 0.4x^2}{2x}\right) + 2.8x$	Makes <i>y</i> the subject and substitutes	M1
	$P = \frac{120}{x} + 2x^*$	Obtains printed answer with no errors with $P = \dots$ or Perimeter = appearing at some point.	A1*
	Note that it is sufficient to go from $P = 4$	$\left(\frac{60-0.4x^2}{2x}\right) + 2.8x \text{ to } P = \frac{120}{x} + 2x^*$	
			(5)

15(b)	Mark (b) and (c) together			
	Allow e.g. $\frac{dy}{dx}$ for $\frac{dP}{dx}$ and/or $\frac{d^2y}{dx^2}$ for $\frac{d^2P}{dx^2}$			
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{120}{x^2}$	Correct derivative	B1	
	$2 - \frac{120}{x^2} = 0 \Rightarrow x = \sqrt{60}$	$\frac{dP}{dx} = 0$ and solves for x. Must be fully	M1	
	X	correct algebra for their $\frac{dP}{dx} = 0$ which is solvable.		
	$P = \frac{120}{\sqrt{60}} + 2\sqrt{60}$	Substitutes into P , a positive x which has come from an attempt to solve their $\frac{dP}{dx} = 0$	M1	
	$P = 4\sqrt{60} \text{ or } 8\sqrt{15} \text{ or } \sqrt{960}$	Correct exact answer. Cso.	A1	
	Note that if $\frac{dP}{dx} = 2 + \frac{120}{x^2}$ is obtained, this co	ould score a maximum of B0M0M1A0		
	if a positive value of x is		(4)	
(c)			(4)	
	$\left(\frac{\mathrm{d}^2 P}{\mathrm{d}x^2}\right) = \frac{240}{x^3} = \frac{240}{\left(\sqrt{60}\right)^3}$	Attempts the second derivative $x^n \to x^{n-1}$ seen at least once (allow $k \to 0$ as evidence) and then substitutes at least one positive value of x from their $\frac{dP}{dx} = 0$ or makes reference to the sign of the second derivative provided they have a positive x .	M1	
	$\left(\frac{\mathrm{d}^2 P}{\mathrm{d}x^2}\right) = \frac{240}{\left(\sqrt{60}\right)^3} \Rightarrow \frac{\mathrm{d}^2 P}{\mathrm{d}x^2} > 0 :: \text{minimum}$			
	Requires a correct second derivative and the correct value of x .			
	There must be a reference to the sign of the second derivative. $d^{2}P$			
	If x is substituted and then $\frac{d^2P}{dx^2}$ is evaluated incorrectly allow this mark if the other		A1	
	conditions a			
	If x is not substituted then the reference to			
	reference to the fact that x is positive.			
	Allow alternatives e.g. considers values of P either side of $\sqrt{60}$ or			
	values of $\frac{dP}{dx}$ either side of $\sqrt{60}$ can score M1 and then A1 if a full reason and conclusion is given.			
	and then AT II a lun Teason a	ing conclusion is given.	(2)	
			Total 11	

Question Number	Scheme	Notes	Marks
16(a)	Examples: $\frac{2k-24}{k} = \frac{k}{k+5}$ or $\frac{k+5}{k} = \frac{k}{2k-24}$ or $(2k-24)(k+5) = k^2$	Correct method. I.e. a method that uses the fact that the 3 terms are in geometric progression to establish an equation in k .	M1
	$(2k-24)(k+5) = 2k^2-14k-120$	Expands $(2k-24)(k+5)$. Must be an attempt at the full expansion but allow the k terms to be combined. Dependent on the first M .	dM1
	$2k^2 - 14k - 120 = k^2 \Rightarrow k^2 - 14k - 120 = 0*$	Correct solution with no errors including bracketing errors e.g. $2k-24(k+5)=$	A1*
			(3)
(b)	$(k+6)(k-20)=0 \Rightarrow k=$	Attempts to solve the given quadratic. See General Guidance.	M1
	k = -6, 20	Correct values	A1
			(2)
(c)(i)	$r = \frac{"20"}{"20"+5}$ or $r = \frac{2 \times "20"-24}{"20"}$	Correct attempt at <i>r</i> . Allow this to score for any of their <i>k</i> values.	M1
	$r = \frac{4}{5}$ oe	Correct r from using $k = 20$. Allow this mark even if the 'other' value of r is also calculated. Allow unsimplified e.g. $\frac{20}{20+5}$	A1
(ii)	$a = "20" + 5 \Rightarrow S_{\infty} = \frac{"25"}{1 - "\frac{4}{5}"}$	Attempts to find a and S_{∞} with $ r < 1$	M1
	$S_{\infty} = 125$	Cao with no other values – if other values are found they must be clearly rejected and 125 "chosen".	A1
			(4)
			Total 9