1、实验名称及目的

无人机跟随圆形案板移动实验: 该例程通过生成一块圆形案板并用按键控制圆形案板移动方向。通过使用平台接口进行图像的获取,并通过视觉处理控制无人机跟随圆形案板移动。

2、实验原理

通过 Config.json 文件加载传感器,其中配置文件中的参数含义如下:

"SeqID"代表第几个传感器。此处表示第1个传感器(免费版只支持2个图)。

"TypeID"代表传感器类型 ID, 1:RGB 图 (免费版只支持 RGB 图), 2:深度图, 3:灰度图。

"TargetCopter"传感器装载的目标飞机的 ID , 可改变。

"TargetMountType"代表坐标类型, 0: 固定飞机上(相对几何中心), 1: 固定飞机上(相对底部中心), 2: 固定地面上(监控)也可变。

"DataWidth"为数据或图像宽度此处为 640, "DataHeight"为数据或图像高度此处为 48

0。 "DataCheckFreq"检查数据更新频率此处为 30HZ。

"SendProtocol[8]"为传输方式与地址, SendProtocol[0]取值 0: 共享内存(免费版只支持共享内存), 1: UDP 直传 png 压缩, 2: UDP 直传图片不压缩, 3: UDP 直传 jpg 压缩; SendProtocol[1-4]: IP 地址; SendProtocol[5]端口号。

"CameraFOV"为相机视场角(仅限视觉类传感器),单位度也可改变。

"SensorPosXYZ[3]"为传感器安装位置,单位米也可改变。

"SensorAngEular[3]"为传感器安装角度,单位度。也可改变。

然后通过共享内存的方式进行传输图像数据。并且通过调用 python 中的 keyboard 库进行键盘控制圆形案板的位置。键盘控制的程序流程可见 CameraCtrlApi 文件,最后通过图像处理和计算获得无人机控制指令。

3、实验效果

使用键盘上的(Up(↑):表示案板向上移动;

Down(↓): 表示案板向下移动;

Left(←): 表示案板向左右移动;

Right(→):表示案板向右移动;

Ctrl+Up: 表示案板向飞机前方移动,(远离飞机);

Ctrl+Down:表示案板向飞机后移动,(靠近飞机)。

飞机能够跟随运动。

4、文件目录

文件夹/文件名称	说明

circle_follow.bat	一键启动脚本
circle_follow.py	无人机跟随圆形案板移动例程

5、运行环境

 	软件要求	硬件要求		
序号		名称	数量(个)	
1	Windows 10 及以上版本	笔记本/台式电脑 [©]	1	
2	RflySim 平台免费版及以上			
3	Visual Studio Code			

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

先将 CriclePlane 解压到 RflySim3D\RflySim3D\Content 文件夹下。

Step 2:

2. 在 windows 当前文件夹中以管理员身份运行 circle_follow.bat。

名称	状态	修改日期	类型	大小
	Ø A	2023/5/8 17:39	文件夹	
circle_follow.bat	Ø₽	2023/5/6 14:17	Windows 批处理文件	5 KB
circle_follow.py	Ø A	2023/5/8 16:42	Python 源文件	6 KB
Config.json	Ø A	2023/5/6 10:38	JSON 文件	1 KB
PX4MavCtrlV4.py	⊗ 8	2022/12/5 22:15	Python 源文件	135 KB
Python38Run.bat	A	2022/8/15 15:00	Windows 批处理文件	1 KB
readme.docx	⊗ 8	2023/5/8 17:30	DOCX 文档	13 KB
VisionCaptureApi.py	⊗ ৪	2022/11/8 13:56	Python 源文件	78 KB

Step 3:

运行 PX4PSPRfySimAPIs\RflySimSDK 目录下的 ReLabPath.py 文件。

Step 4:

等待 CopterSim 出现 PX4: GPS 3D fixed & EKF initialization finished.PX4: Enter Au to Loiter Mode!

Step 5:

用 Visual Studio Code 打开 circle follow.py, 并点击调试。

Step 6:

使用键盘上的 Up(↑): 表示案板向上移动;

Down(↓):表示案板向下移动;

Left(←): 表示案板向左右移动;

Right(→):表示案板向右移动;

Ctrl+Up: 表示案板向飞机前方移动, (远离飞机);

Ctrl+Down:表示案板向飞机后移动,(靠近飞机)

无人机跟随移动。

Step 7:

在下图 VS Code 中,点击"终止终端",可以彻底退出脚本运行。

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无