0.1 Gradient descent

• Algorithm: Gradient Descent(algo. 1)

 \bullet Input: A vector

• Complexity: None.

• Data structure compatibility: None

• Common applications: Artificial intelligence

Problem. Gradient descent

The purpose of optimization is to minimize our target function, for example,

$$\min f(x) \tag{0.1.1}$$

However, for some large scale function, analytical solution $x^* = (A^T A)^{-1} A^T Y$ is unsolvable and time consuming $(\mathcal{O}(n^3))$. So the descent method is raised to solve optimization.

Description

Descent Method

To solve equation 0.1.1, a sequence of points $x^{(k)}$ is produced to approach the optimum.

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$
 with $f(x^{(k+1)}) < f(x^{(k)})$ (0.1.2)

The general descent method is shown in Algorithm 1

Algorithm 1: General descent method

Input: a starting point $x \in \text{dom } f$

Output: optimal x to minimize f(x)

- 1 while Stopping criterion is not satisfied do
- Determine a descent direction Δx .
- Line search. Choose a step size t > 0.
- 4 Update. $x = x + t\Delta x$
- 5 end while
- $_{6}$ return $_{x}$

Gradient Descent Algorithm

In this section, we will decide the direction Δx in Algorithm 1. From convexity

$$f\left(x^{(k+1)}\right) \le f\left(x^{(k)}\right) + \nabla f\left(x^{(k)}\right) \Delta x^{(k)} \tag{0.1.3}$$

So,

$$f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right) \Rightarrow \nabla f\left(x^{(k)}\right) \Delta x^{(k)} < 0$$
 (0.1.4)

A natural choice is gradient: $\Delta x^{(k)} = \nabla f(x^{(k)})$.

Line Search: Backtracking

This section will find the step size t. t can be described by

$$t = \operatorname{argmin}_{t} f(x + t\Delta x) \tag{0.1.5}$$

We use two parameters $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$. Starting from t = 1, repeat $t = \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x \tag{0.1.6}$$

See Figure 1.

Figure 1: Backtracking

Constrained Optimization

Consider the following optimization problems that include inequality constraints,

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$ (0.1.7)
 $Ax = b$

We use central path. The equivalent problem of problem 0.1.7 is

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$ (0.1.8)

which has the same minimizers. We assume problem 0.1.8 can be solved by GD and has the unique solution for any t > 0. We use $x^*(t)$ to denote the solution to problem 0.1.8, and we call it central point. We define the set of $x^*(t)$ the central path. $x^*(t)$ should satisfy,

$$Ax^{*}(t) = b.$$
 $f_{i}(x^{*}(t)) < 0$, $i = 1, 2, \dots$, mao (0.1.9)

There exits $\hat{\nu} \in R^p$

$$0 = t\nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}$$

$$(0.1.10)$$

$$= t\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} + A^T \hat{\nu}$$
 (0.1.11)

A geometric explanation is shown in Figure 2.

Figure 2: Central path for an LP with n=2 and $m=6\,$