Eksamen på Økonomistudiet sommerskole 2020

Lineære Modeller

18 august 2020

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 3 sider incl. denne forside. Til dette eksamenssæt hører 0 bilag.

Syg under eksamen:

Bliver du syg under selve eksamen på Peter Bangs Vej, skal du

- kontakte en eksamensvagt for at få hjælp til registreringen i systemet som syg og til at aflevere blankt
- forlade eksamen
- kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest 5 dage efter eksamensdagen.

Pas på, du ikke begår eksamenssnyd!

Det er eksamenssnyd, hvis du under prøven

- Bruger hjælpemidler, der ikke er tilladt
- Kommunikerer med andre eller på anden måde modtager hjælp fra andre
- Kopierer andres tekster uden at sætte citationstegn eller kildehenvise, så det ser ud som om det er din egen tekst
- Bruger andres idéer eller tanker uden at kildehenvise, så det ser ud som om det er din egen idé eller dine egne tanker
- Eller hvis du på anden måde overtræder de regler, der gælder for prøven

Du kan læse mere om reglerne for eksamenssnyd på Din Uddannelsesside og i Rammestudieordningens afs. 4.12.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM August 2020

Eksamen i Lineære Modeller - Sommerskole.

Tirsdag d.18 august 2020.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^n \to \mathbf{R}^m$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 0 & 2 & 2 & 2 \\ 0 & 0 & a & 1 & 1 \end{pmatrix} .$$

Her er a et vilkårligt reelt tal.

- (1) Bestem tallene n og m.
- (2) Bestem nulrummet for L for a=0. Er L injektiv for nogen værdi af a?
- (3) Bestem en basis for nulrummet for L, for enhver værdi af a.
- (4) Er L surjektiv?
- (5) Bestem løsningsmængden til ligningen Lx = y, hvor $y = (y_1, y_2)$ tilhører billedrummet R(L).

Opgave 2.

Om en symmetrisk, 3×3 -matrix A, vides, at den har egenværdierne 1, 4, og 9, med tilhørende egenvektorer $v_1 = (1, -1, 0)$ og $v_2 = (1, 1, 0)$ og hørende til egenværdien 9, $v_3 = (x_1, x_2, x_3)$.

- (1) Bestem en mulig egenvektor v_3
- (2) Bestem det karakteristiske polynomium $p_A(\lambda)$ for matricen A.
- (3) Gør rede for, at matricen A er invertibel.
- (4) Bestem en matrix B, således at $B^2 = A$.
- (5) Bestem vektoren $B(v_1 + v_2 + v_3)$.

Opgave 3.

- (1) Beregn integralet $\int \cos(mx)\sin(2x)\sin(3x)dx$, hvor m er et naturligt tal.
- (2) Løs den komplekse førstegradsligning (z i10)(1 + i) = i8(1 i). Løsningen ønskes angivet på rektangulær form z = a + ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} (x \ln(x) - x)^n.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret. (Det kan benyttes at for x=3.6 antager $x \ln(x) x$ værdien 1 med passende nøjagtighed).
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv. (Det kan uden bevis benyttes at $x \ln(x) \to 0$ for $x \to 0+$.)
- (5) For hvilke værdier af y har ligningen f(x) = y netop en løsning?