IOWA STATE UNIVERSITY

Department of Computer Science

Spreading Information in Social Networks containing Adversarial Users

Madhavan Rajagopal Padmanabhan

Major Professor: Dr. Pavan Aduri, Dr. Samik Basu

Supported in part by NSF grants CCF 1421163 and CCF 1555780

Outline

- Overview of Influence Maximization
- CIM Problem
- Greedy Algorithm
- MultiGreedy Algorithm
- Experimental Results

OVERVIEW OF INFLUENCE MAXIMIZATION

Social Networks

Influence Maximization Problem

- Find a set of highly influential users (seed) in the network
- Posed as an optimization problem by Kempe et. Al.

Applications

 Political Campaigning – How can I get people to vote for me?

Viral Marketing – Who do I ask to advertise a product?

Information Diffusion

- 1. An "idea" originates from a user or a set of users in the network. These users are called the "Seed" users.
- 2. Users connected to the *Seed* are exposed to the idea.
- 3. The exposed users, if they choose to, further propagate the idea to users connected to them.

Diffusion – A Probabilistic Process

- Alice posts about something!
- What's the chance that Alice influences Bob?
- What's the chance Alice influences Bob's friends?

Diffusion Models

- Models of *Diffusion* Characterizes the spread of information from one user to the next
- Models mirror the diffusion in real world social networks.
- 2 popular models:
 - Independent Cascade (IC) Model
 - Linear Threshold (LT) Model

Independent Cascade Model

- The network is modelled as a graph G = (V, E).
- Every edge (u, v) has an associated probability p(uv).
- u has exactly one chance to convince v to adopt the idea. u succeeds with probability p(uv).
- If successful, v is considered to be "activated".

$$t = 3$$

Linear Threshold Model

- The network is modelled as a graph G = (V, E).
- Every edge (u, v) has an associated weight w(u, v).
- Each node v is assigned a random threshold $\theta_v \in [0,1]$.
- v is considered to be "activated" if sufficient neighbors of v are activated:
 - $\sum_{Active u} w(u, v) \geq \theta_v$

Influence Function

- $\sigma(S)$ Expected number of users influenced by a set of users S
- Under the IC Model, $\sigma(S)$ is monotone, submodular
- Submodular:

$$\forall X \subset Y \subseteq V \ and \ a \notin Y:$$

$$\sigma(X \cup \{a\}) - \sigma(X) \ge \sigma(Y \cup \{a\}) - \sigma(Y)$$

Influence Maximization

- Input: G=(V,E), a budget k
- $\sigma(S)$ Expected number of users influenced by a set of users S
- Objective:

Find S of size k that maximizes $\sigma(S)$

- An NP-Hard problem
- Greedy algorithm gives a 0.63-approximate solution

What if there are adversaries?

What if there are adversaries?

- Political Campaigning Can rally opposing candidate supporters
- Marketing: Advertisements for products such as alcohol, tobacco must not be shown to children
- Can cause a negative reaction to the information being spread
- How to approach this problem?

CIM PROBLEM

Constrained Influence Maximization(CIM)

- Label users as "Targets" or "Non-Targets"
- Given: G=(V,E,L), budget k, threshold θ
- $\sigma_T(S)$ Expected number of "Target" users influenced by S
- $\sigma_N(S)$ Expected number of "Non-Target" users influenced by S
- $\sigma^{\theta}(S) = \begin{cases} \sigma_{T}(S), \, \sigma_{N}(S) \leq \theta \\ 0, \, otherwise \end{cases}$
- Objective:

Find S of size k that maximizes $\sigma^{\theta}(S)$

IM vs. CIM

Influence Maximization Problem

Maximize
$$\sigma(S)$$

 $s.t.|S| \leq k$

- $\sigma(S)$ is a monotone, submodular function.
- Greedy Algorithm gives a 0.63-approximate solution.

IM vs. CIM

Constrained Influence Maximization Problem

Maximize
$$\sigma_T(S)$$

 $s.t. \ \sigma_N(S) \leq \theta$
 $|S| \leq k$

- $\sigma_T(S)$, $\sigma_N(S)$ are monotone, submodular functions.
- Maximize under a submodular constraint and a cardinality constraint!

IM vs. CIM

IM Problem

- NP-Hard
- Submodular Maximization
- Cardinality Constraint
- Greedy algorithm gives a 0.63-approximate solution.

CIM Problem

- NP-Hard
- Submodular Maximization
- Submodular Constraint
- Cardinality Constraint

Theoretical Challenges of CIM

• **Theorem**: For every $0 \le c \le 1$, if there is a polynomial time c-approximation algorithm for the CIM problem under the IC model, then every problem in NP can be solved in $O\left(n^{(\log n)^k}\right)$ time, for some $k \ge 1$.

Obtaining a constant factor approximation algorithm is quasi NP-hard!

NATURAL GREEDY ALGORITHM

Natural Greedy Algorithm

Start with an empty Set

Find the best vertex v that when added, the set influences at most θ Non Targets

Repeat until a set of size k is obtained

Theorem:

$$\sigma_T^{\theta}(S) \ge 0.63 \ OPT - Additive \ Loss$$

The Greedy solution has an approximation guarantee that depends on an additive error!

Runtime: $O(k \times |V| \times Time \ taken \ to \ compute \ \sigma)$

Proof Idea:

Let S^* be the set that has the optimum value $OPT_{k,\theta}$. $gain_{S_i}(\{e\}, \theta)$ — The gain achieved by adding $\{e\}$ to S_i such that at most θ Non-Targets are influenced.

$$OPT_{k,\theta} \leq \sigma^{2\theta}(S^* \cup S_i)$$

$$OPT_{k,\theta} \leq \sigma^{\theta}(S_i) + \sum_{e \in S^*} gain_{S_i}(\{e\}, 2\theta)$$

$$OPT_{k,\theta} \leq \sigma^{\theta}(S_i) + k \times \sigma^{2\theta}(S'_{i+1}) - k \times \sigma^{\theta}(S_i)$$

 $BG(S_i, \theta)$ – The maximum gain achieved by adding an element to S_i such that at most θ Non-Targets are influenced

$$\begin{aligned} &OPT_{k,\theta} - \sigma^{\theta}(S_{i+1}) \\ &\leq \left(1 - \frac{1}{k}\right) (OPT_{k,\theta} - \sigma^{\theta}(S_i)) + BG(S_i, 2\theta) - BG(S_i, 2\theta) \end{aligned}$$

$$\sigma_T^{\theta}(S_k) \ge 0.63 \ OPT_{k,\theta} - \left(\sum_{i=0}^{k-1} BG(S_i, 2\theta) - \sigma^{\theta}(S_k)\right)$$

Additive Loss:

$$\sum_{i=0}^{k-1} BESTG(S_i, 2\theta) - \sigma_T^{\theta}(S_k)$$

Approximately difference of targets influenced between by the greedy solution with threshold θ and threshold 2θ

Runtime: $O(k \times |V| \times Time \ taken \ to \ compute \ \sigma)$

Can we improve on Greedy?

Can we improve on Greedy?

Can we improve on Greedy?

Can we improve on Greedy?

MULTIGREEDY ALGORITHM

MultiGreedy Algorithm

Keeps track of multiple seed sets

Proceed till depth *k* and return the best path from root to leaf

MultiGreedy Algorithm

- The greedy solution will be in one of the branches
- Theorem:

$$\sigma_T^{\theta}(MultiGreedy) \geq \sigma_T^{\theta}(Greedy)$$

- Runtime: At least $O(\theta^k)$
- Computationally infeasible!
- Let's prune the tree!

Efficient MultiGreedy with IMTree

Both hit 1 Non Target, but u_2^1 hits 8 Targets!

Efficient MultiGreedy with IMTree

ESTIMATING INFLUENCE FUNCTION $\sigma(S)$

Estimating Influence Function

- Exact computation of $\sigma_T(S)$, $\sigma_N(S)$ is #P-Hard
- Several techniques exists: Monte Carlo Simulations, Forward Influence Sketching, Reverse Influence Sketching(RIS)
- We've used RIS based estimation.
- Our algorithms can be adapted to different methodologies of estimating the influence function

Reverse Influence Sampling

- Let $g \sim G$ be a graph sampled from the random graph distribution
- $P[u influencing v] = P[\exists path from u to v in g]$

- Look at transpose g^T !
- $P[u influencing v] = P[\exists path from v to u in g^T]$

Random Reverse Reachable Set

- Randomly Select a vertex u.
- Generate a set R by performing a Random Reverse BFS starting from u
- $\sigma(S) = n \times P[S \cap R \neq \phi]$
- This observation was made by Borgs et. al.
- If sufficient samples are generated, $\sigma(S)$ can be accurately estimated with high probability.
- To estimate $\sigma_T(S)$, $\sigma_N(S)$, we randomly select a Target, Non-Target respectively.

EXPERIMENTS

Datasets

Network Name	# Nodes	# Edges
NetHept	15 k	62 k
Epinions	75 k	508 k
Amazon	334 k	925 k
DBLP	613 k	1.99 M
Youtube	1.13 M	2.98 M
Pokec	1.63 M	30.62 M

Budget Vs. Influence

Threshold Vs. Influence

Additive Loss in Natural Greedy

 $\sigma_T^{\theta}(S) \geq 0.63 \ OPT - Additive \ Loss$

$$k = 20$$

Our Contributions

- Formulated the Constrained Influence Maximization (CIM) Problem
- Provided a theoretical analysis on hardness of CIM
- Studied the Greedy algorithm and proved its approximation guarantee involving an additive error
- Designed a novel MultiGreedy algorithm with an efficient implementation
- Experimentally evaluated Greedy, MultiGreedy algorithms on real world datasets

Future Work

- Can we design an algorithm that can tighten the additive error?
- Study how the additive error depends on the structure of the graph.

Thank you!

Presenter: Madhavan R.P

Email: madhavrp@iastate.edu