

MAT1320-Linear Algebra Lecture Notes

Sarrus' Rule, Finding Inverse Matrices Using Adjoint Matrices

Mehmet E. KÖROĞLU Fall 2024

YILDIZ TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS ${\it mkoroglu@yildiz.edu.tr}$

Table of contents

1. Sarrus' Rule

2. Finding Inverse Matrices Using Adjoint Matrices

Let
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 be a square matrix of order 3. Then the determinant of \mathbf{A} can be computed as follows:

Let
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 be a square matrix of order 3. Then the determinant of \mathbf{A} can be computed as follows:

This method is called Sarrus' Rule.

Example

By using Sarrus' Rule, find the determinant of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

Example

By using Sarrus' Rule, find the determinant of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

Example

By using Sarrus' Rule, find the determinant of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

$$\Rightarrow (1.5.9 + 4.8.3 + 7.2.6) - (7.5.3 + 1.8.6 + 4.2.9)$$
$$= 45 + 96 + 84 - 105 - 48 - 72 = 0$$

Let $A = [a_{ij}]$ be an $n \times n$ matrix over a field K and let A_{ij} denote the cofactor of a_{ij} .

Let $A = [a_{ij}]$ be an $n \times n$ matrix over a field K and let A_{ij} denote the cofactor of a_{ij} . The adjoint or adjugate of A, denoted by adjA, is the transpose of the matrix of cofactors of A.

Let $A = [a_{ij}]$ be an $n \times n$ matrix over a field K and let A_{ij} denote the cofactor of a_{ij} . The adjoint or adjugate of A, denoted by adjA, is the transpose of the matrix of cofactors of A. Namely,

$$adj\left(A\right)=\left[A_{ij}\right]^{T}$$

Let $A = [a_{ij}]$ be an $n \times n$ matrix over a field K and let A_{ij} denote the cofactor of a_{ij} . The adjoint or adjugate of A, denoted by adjA, is the transpose of the matrix of cofactors of A. Namely,

$$adj\left(A\right) = \left[A_{ij}\right]^T$$

Theorem

Let A be any square matrix. Then

$$A(adjA) = (adjA)A = |A|I$$

where I is the identity matrix. Thus, if $|A| \neq 0$,

$$A^{-1} = \frac{1}{|A|}(adjA)$$

Example

Let
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

Example

Let
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. The cofactors of the nine elements of A

follow:

$$A_{11} = + \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = -4, \quad A_{12} = - \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = 2, \quad A_{13} = + \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = -1$$

Example

Let
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. The cofactors of the nine elements of A

follow:

$$A_{11} = + \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = -4, \quad A_{12} = - \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = 2, \quad A_{13} = + \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = -1$$

$$A_{21} = - \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = 2$$
, $A_{22} = + \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = -1$, $A_{23} = - \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = -1$

Example

Let
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. The cofactors of the nine elements of A

follow:

$$A_{11} = + \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = -4, \quad A_{12} = - \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = 2, \quad A_{13} = + \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = -1$$

$$A_{21} = - \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = 2$$
, $A_{22} = + \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = -1$, $A_{23} = - \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = -1$

$$A_{31} = + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5, \quad A_{32} = - \begin{vmatrix} 2 & 1 \\ 0 & 2 \end{vmatrix} = -4, \quad A_{33} = + \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = 2$$

Example

The transpose of the above matrix of cofactors yields the classical adjoint of A; that is,

$$adjA = \begin{pmatrix} -4 & 2 & 5 \\ 2 & -1 & -4 \\ -1 & -1 & 2 \end{pmatrix}$$

Example

The transpose of the above matrix of cofactors yields the classical adjoint of A; that is,

$$adjA = \begin{pmatrix} -4 & 2 & 5 \\ 2 & -1 & -4 \\ -1 & -1 & 2 \end{pmatrix}$$

We have

$$\det(A) = 2(-4) + 3.2 + 1.(-1) = -3$$

Example

The transpose of the above matrix of cofactors yields the classical adjoint of A; that is,

$$adjA = \begin{pmatrix} -4 & 2 & 5 \\ 2 & -1 & -4 \\ -1 & -1 & 2 \end{pmatrix}$$

We have

$$\det(A) = 2(-4) + 3.2 + 1.(-1) = -3$$

Thus, A does have an inverse, and, by Theorem 8.9,

$$A^{-1} = \frac{1}{|A|}(adjA) = -\frac{1}{3} \begin{pmatrix} -4 & 2 & 5 \\ 2 & -1 & -4 \\ -1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & -\frac{2}{3} & -\frac{5}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{4}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

?