False

(AND True) False

$$True = (\lambda x \cdot (\lambda y \cdot x))$$
$$AND = (\lambda p \cdot (\lambda q \cdot (p \ q) \ p))$$

$$\begin{array}{ll} ((\lambda p \cdot (\lambda q \cdot (p \ q) \ p) \ True) \ False \\ ((\lambda q \cdot (p \ q) \ p)[p := True]) \ False \\ (\lambda q \cdot (True \ q) \ True) \ False \\ (\lambda q \cdot ((\lambda x \cdot (\lambda y \cdot x) \ q) \ True) \ False \\ (\lambda q \cdot ((\lambda x \cdot (\lambda y \cdot x) \ q) \ True) \ False \\ (\lambda q \cdot ((\lambda y \cdot x)[x := \ q]) \ True) \ False \\ (\lambda q \cdot ((\lambda y \cdot q) \ True) \ False \\ (\lambda q \cdot ((\lambda y \cdot q) \ True) \ False \\ (\lambda q \cdot ((\lambda y \cdot q) \ True) \ False \\ (\lambda q \cdot q) \ False \\ q[q := False] \rightarrow \beta \end{array}$$

(OR True)

$$True = (\lambda x \cdot (\lambda y \cdot x))$$
$$OR = (\lambda p \cdot (\lambda q \cdot (p \ p) \ q)$$

$$\begin{split} &((\lambda p \cdot (\lambda q \cdot (p \ p) \ q) \ True) \\ &((\lambda q \cdot (p \ p) \ q)[p := True]) \\ &\to \beta \\ &((\lambda q \cdot (True \ True) \ q) \\ &((\lambda q \cdot ((\lambda x \cdot (\lambda y \cdot x) \ True) \ q) \\ &((\lambda q \cdot ((\lambda x \cdot (\lambda y \cdot x) \ True) \ q) \\ &((\lambda q \cdot ((\lambda y \cdot x)[x := True]) \ q) \\ &((\lambda q \cdot ((\lambda y \cdot x)[x := True]) \ q) \\ &((\lambda q \cdot (True)[y := q]) \\ &\to \beta \\ &(\lambda q \cdot True) \end{split}$$

A function waiting for a parameter only to return True, ignoring the parameter.

XOR

а	b	xor
0	0	0
0	1	1
1	0	1
1	1	0

In-fix
$$(a || b) \& ! (a \& b)$$

Post-fix $-((\&)((||)ab)((!)((\&)ab)))$

Deriving NOT;

1)

NOT TRUE $\rightarrow \beta$ FALSE

TRUE FALSE TRUE $\rightarrow \beta$ FALSE

2)

NOT FALSE $\rightarrow \beta$ TRUE

FALSE FALSE TRUE $\rightarrow \beta$ TRUE

By 1) and 2) we can conclude,

NOT := $\lambda p \cdot (p \text{ FALSE TRUE})$

Now try to implement the post-fix in lambda calculus,

 $(\lambda x \cdot (\lambda y \cdot (AND (OR x y) (NOT (AND x y)))))$

Q4 *Summary*

 2^n*2^n board (Fig 2) can be covered by just V3 pieces (Fig 1) with a corner removed where, $n \in \mathbb{N}$.

Proof

Base
$$(n=1)$$

We have, $2^n * 2^n = 2^1 * 2^1$. With 1 V3 piece shown in orange.

Hypothesis
$$(n=k)$$

We have, $2^k * 2^k$ assumed to be true.

Inductive Step
$$(n=k+1)$$

By Hypothesis we have,

$$2^{k+1} * 2^{k+1} = 2^k * 2 * 2^k * 2 = 2 * (2^k * 2^k)$$

Shown true, by inserting 1, V3 piece in the center of 4 blocks of the k case.

Semester 1 2021 ~ Ather, Mohamamd Faiz (s4648481/3)