Syntax and Semantics: Exercise Session 1

- 1. Let us assume that we are given the sets $A = \{1, 2, 3\}$ and $B = \{2, 3\}$.
 - (a) Does $A \subseteq B$ hold true?

Solution: No, since $1 \notin B$.

(b) Does $B \subseteq A$ hold true?

Solution: Yes, since $2, 3 \in A$.

(c) In what relation stands B with respect to A?

Solution: B is a subset of A. Alternatively, A is a superset of B.

(d) Find the set $A \cup B$.

Solution: A.

(e) How does one call $A \cup B$?

Solution: The union of A and B.

(f) Find the set $A \cap B$.

Solution: B.

(g) How does one call $A \cap B$?

Solution: The intersection of A and B.

(h) Find the set $A \times B$.

Solution: $\{(a,b) \mid a \in A, b \in B\} = \{(1,2), (1,3), (2,2), (2,3), (3,2), (3,3)\}.$

(i) How does one call $A \times B$?

Solution: The product set of A and B.

(j) Find $\mathcal{P}(B)$, the power set of B.

Solution: The powerset of B is given by all subsets of B, i.e., $\mathcal{P}(B) = \{A \mid A \subseteq B\}$. Hence, the answer is $\{\emptyset, \{2\}, \{3\}, \{2,3\}\}$. Note that the elements of the powerset are sets.

(k) If E is some finite set, what is the cardinality of $\mathcal{P}(E)$? That is, how many elements does $\mathcal{P}(E)$ have?

Solution: Since there are exactly $2^{|E|}$ binary functions from E to $\{0,1\}$, where $|\cdot|$ is the cardinality of a set, it holds that $|\mathcal{P}(E)| = 2^{|E|}$.

2. Formalize the following informal statements by using predicate logic.

(a) There exists a real number x such that x+x is greater than 8. **Solution:** $\exists x.x+x>8$

(b) Every real number x is the double of some real number y. Solution: $\forall x. \exists y. x = 2y$

(c) All natural numbers are positive.

Solution: $\forall x \in \mathbb{N}.x > 0$

- 3. Consider the sets $C = \{1, 2, 17, 484\}$ and $D = \{x, y, z\}$ and consider the set of pairs $R = \{(1, x), (2, y), (17, y), (17, z)\}$.
 - (a) Does R encode a function (from C to D)? Solution: No, since 17 is mapped to both y and z.
 - (b) Does R encode a relation (among C and D)? Solution: Yes.
 - (c) Does $R \cup \{484\}$ encode a relation (among C and D)? Solution: No, since $R \cup \{484\} \not\subseteq C \times D$.
 - (d) Let $X \setminus Y$ denote the elements of X not present in Y. With this, does $R \setminus \{(17, z)\}$ encode a function (from C to D)? If so, is the function total or partial?

Solution: Yes, it encodes a function. The function is partial because 484 is not mapped to any value in D.

4. Prove by induction on k that

$$1 + \sum_{i=1}^{k} (2i+1) = (k+1)^2$$

for all $k \geq 1$.

Solution: Base case k = 1: One readily verifies that $1 + (2+1) = (1+1)^2$. Induction step $k \to k + 1$: By observing that

$$1 + \sum_{i=1}^{k+1} (2i+1) = 1 + \sum_{i=1}^{k} (2i+1) + (2(k+1)+1),$$

an application of the induction hypothesis on $1 + \sum_{i=1}^{k} (2i+1)$ yields

$$1 + \sum_{i=1}^{k+1} (2i+1) = (k+1)^2 + (2(k+1)+1).$$

This, in turn, yields the claim because:

$$1 + \sum_{i=1}^{k+1} (2i+1) = (k+1)^2 + (2(k+1)+1)$$
$$= k^2 + 2k + 1 + 2k + 2 + 1$$
$$= k^2 + 4k + 4$$
$$= (k+2)^2$$
$$= ((k+1)+1)^2$$

5. Using the formula from 1 (k), compute first the cardinality of $\mathcal{P}(\mathcal{P}(B))$, where $B = \{2, 3\}$ as in Exercise 1. Afterwards, compute $\mathcal{P}(\mathcal{P}(B))$ itself and check whether the cardinality of your answer matches the cardinality obtained in the first part of the exercise.

Solution: It holds that $|\mathcal{P}(B)| = 2^{|B|} = 4$ and $|\mathcal{P}(\mathcal{P}(B))| = 2^{|\mathcal{P}(B)|} = 2^4 = 16$. For the second part of the exercise, we note that we are asked to provide all subsets of $\mathcal{P}(B) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}$. Consequently, $\mathcal{P}(\mathcal{P}(B))$ has the following elements:

• Subsets of $\mathcal{P}(B)$ with no elements:

Ø

• Subsets of $\mathcal{P}(B)$ with exactly one element:

$$\{\emptyset\}, \{\{2\}\}, \{\{3\}\}, \{\{2,3\}\}$$

(Note that \emptyset and $\{\emptyset\}$ are two different sets!)

• Subsets of $\mathcal{P}(B)$ with exactly two elements:

$$\{\emptyset, \{2\}\}, \{\emptyset, \{3\}\}, \{\emptyset, \{2, 3\}\}, \{\{2\}, \{3\}\}, \{\{2\}, \{2, 3\}\}, \{\{3\}, \{2, 3\}\}\}$$

• Subsets of $\mathcal{P}(B)$ with exactly three elements:

$$\{\{2\}, \{3\}, \{2,3\}\}, \{\emptyset, \{3\}, \{2,3\}\}, \{\emptyset, \{2\}, \{2,3\}\}, \{\emptyset, \{2\}, \{3\}\}\}$$

• Subsets of $\mathcal{P}(B)$ with exactly four elements:

$$\{\emptyset, \{2\}, \{3\}, \{2,3\}\}$$