EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 7	11 Avril 2022

Vous pouvez télécharger vos solutions à l'exercice bonus (Exercice 8) sur la page Moodle du cours avant le dimanche 24 avril, 18h.

1 Exercices

Exercice 1. 1. Soit A un anneau Euclidien. Prouvez que l'algorithme d'Euclide peut être adapté pour calculer les pgdc dans A.

- 2. Effectuez la division avec reste de 27 23i par 8 + i dans $\mathbb{Z}[i]$, et montrez que ces deux entiers de Gauss sont premiers entre eux.
- 3. Calculez un pgdc de 11 + 3i et de 1 + 8i dans $\mathbb{Z}[i]$. Ce pgdc est-il unique?

Exercice 2.

Notons $\mathcal{C} := C^0([0,1];\mathbb{R})$ l'anneau des fonctions réelles continues sur l'intervalle [0,1] (muni des opérations d'addition et de multiplication de fonctions).

- 1. Pour $x \in [0,1]$, écrivons $I_x := \{ f \in \mathcal{C} \mid f(x) = 0 \}$. Montrez que I_x est un idéal maximal.
- 2. Pour $x \neq y$, montrez que $I_x \cap I_y$ n'est pas un idéal premier.
- 3. Soit $I \subset \mathcal{C}$ un idéal. Supposons que I n'est contenu dans aucun des I_x . Montrez que $I = \mathcal{C}$. Indication: la propriété de Heine-Borel sera utile.
- 4. Montrez que tout idéal maximal de \mathcal{C} est égal à I_x pour un certain $x \in [0,1]$.

Exercice 3.

Considérons les polynômes $f = x^3 - 2x^2 + x - 2$ et $g = x^4 - 2x^3 + 7x - 14$ dans $\mathbb{Z}[x]$.

- 1. Montrez que le pgdc de f et de g dans $\mathbb{Z}[x]$ vaut x-2.
- 2. Ecrire $f = (x 2)f_0$ et $g = (x 2)g_0$ dans $\mathbb{Z}[x]$.
- 3. Pour un premier p, notons \bar{f} et \bar{g} la réduction de f et g dans $\mathbb{F}_p[x]$. Calculez le pgdc de \bar{f} et de \bar{g} pour chaque p.

Indication : Remarquez que les étapes de l'algorithme d'Euclide définissables dans $\mathbb{Z}[x]$ sont des étapes de l'algorithme d'Euclide dans $\mathbb{F}_p[x]$ après réduction modulo p.

Exercice 4. 1. Soit d>0 un entier positif. Montrez que $\mathbb{Q}[i\sqrt{d}]$ est un corps de fractions de $\mathbb{Z}[i\sqrt{d}]$.

2. Montrez que $x^3 - 2i$ est irréductible dans $(\mathbb{Z}[i])[x]$. Indication : Utilisez le lemme de Gauss, et gardez en tête qu'un élément de $\mathbb{Q}[i]$ peut s'écrire comme $\frac{a+bi}{n}$ avec $a,b,n\in\mathbb{Z}$.

Exercice 5.

Soit k un corps.

- 1. Montrez que le sous-anneau $k[t^2, t^3] \subset k[t]$ n'est pas factoriel.
- 2. De même, montrez que $k[t^2, t^5]$ et $k[t^3, t^7]$ ne sont pas factoriels.

3. Montrez que $k[x,y]/(x^2-y^3)$ n'est pas factoriel. Indication : Montrez que cet anneau est isomorphe à l'un des anneaux considérés précédemment.

Exercice 6.

Considérons l'anneau de matrices

$$A := \left\{ \begin{pmatrix} n & x \\ 0 & y \end{pmatrix} \mid n \in \mathbb{Z}, \ x, y \in \mathbb{Q} \right\}$$

ainsi que le sous-ensemble

$$I:=\left\{\begin{pmatrix}0&x\\0&0\end{pmatrix}\mid x\in\mathbb{Q}\right\}\subset A.$$

- 1. Montrez que I est un idéal bilatère, que $A/I \cong \mathbb{Z} \times \mathbb{Q}$ et que A/I est Noethérien.
- 2. Montrez que I est un idéal à droite minimal (c'est-à-dire qu'il n'existe pas d'idéal à droite J tel que $0 \subsetneq J \subsetneq I$).
- 3. Montrez que A est Noethérien à droite. Indication : Etant donnée une chaîne croissante d'idéaux, considérez son image par l'application quotient $A \to A/I$.

2 Exercice supplémentaire

Cet exercice était l'exercice bonus de l'année 2021.

Exercice 7. 1. Montrez que $x^2 + y^2$ est irréductible dans $\mathbb{Q}[x,y]$, mais pas dans $\mathbb{C}[x,y]$.

2. Montrez que $x^3 - (y^7 + 2y^5 + y^3)$ est irréductible dans $\mathbb{Q}[x,y]$.

3 Exercice bonus

Exercice 8.

Let A be a UFD (anneau factoriel), and let K = Frac(A) the fraction field of A with $car(A) = car(K) \neq 2$. Let $a, b, c \in A$ with $a \neq 0$ and pgdc = 1.

- 1. Show that $ax^2 + bx + c \in A[x]$ is not irreducible if and only if $\exists s \in A$ such that $s^2 = b^2 4ac$.
- 2. Are the following polynomials irreducible or not in $\mathbb{C}[x,y]$? If not, write down the irreducible factorization.

(a)
$$x^2 + 2yx + 1$$

(b)
$$y^2x^2 + yx^2 + yx + y^2$$

(c)
$$x^2 + yx + y^2$$