Computer Networks Lab 10

Alisetti Sai Vamsi

19/11/2021 111801002

1. Packet Sniffer sniffing sent and received packets:

Program Name: Q1.c

Compilation: gcc Q1.c -o Q1

Invocation: sudo ./Q1

Algorithm Outline:

Initialization:

1. Initialize sockets, buffer and sockaddr ll structure.

Algorithm:

- 1. Creating raw sockets with ETH_P_ALL protocol which listens to all activity on the network card.
- 2. Loop
 - a. Receive from all the interfaces
 - b. Process the received packets to extract the ethernet header and IP header.
 - c. From the ethernet header extract source and destination MAC addresses.
 - d. From the IP header extract source and destination IP addresses.

i) Pinging r1 from h2

```
| Terminal | Deminal | Dem
```

ii) Pinging r1 from r2

iii) Pinging r1 from h1

2. Packet Sniffer sniffing received packets on eth1:

Program Name: Q2.c

Compilation: gcc Q2.c -o Q2

Invocation: sudo ./Q2

Algorithm Outline:

Initialization:

1. Initialize sockets, buffer and sockaddr ll structure.

Algorithm:

- 2. Creating raw sockets with ETH_P_IP protocol which listens to only IP packets on the network card.
- 3. Loop
 - a. Receive from all the interfaces
 - b. Filter only received packets using packet type field in sockaddr_ll structure.
 - c. Process the received packets to extract the ethernet header and IP header.
 - d. From the ethernet header extract source and destination MAC addresses.
 - e. From the IP header extract source and destination IP addresses.

i) Pinging r1 from h2

ii) Pinging r1 from r2 produces no response on r1 since r1 is listening on eth1 not eth2

iii) Pinging r1 from h1

3. Rudimentary Router:

Program Name: Q2.c

Compilation: gcc Q2.c -o Q2

Invocation: sudo ./Q2

Algorithm Outline:

Initialization:

1. Initialize sockets, buffer and sockaddr ll structure.

Algorithm:

- 2. Creating 4 raw sockets with ETH_P_IP protocol which listens to only IP packets on the network card. Two of the sockets are used for receiving packets and are created by using the following arguments socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP)). The other two sockets are used for sending and are created by using the following arguments socket(AF_INET, SOCK_RAW, IPPROTO_RAW). Here IPROTO_RAW protocol signifies that the data passed into the socket should be an IP packet with an IP header and transport layer header.
- 3. Loop
 - a. Select on the receiving sockets
 - i. If eth1 is ready on select
 - 1. Receive from interface eth1
 - 2. Filter only received packets using packet type field in sockaddr ll structure.
 - 3. Process the received packets to extract the ethernet header and IP header.
 - 4. From the ethernet header extract source and destination MAC addresses.
 - 5. From the IP header extract source and destination IP addresses.
 - 6. Filter the packets with destination ip as different from that of ip address of interface eth1

a. Send the packet to the appropriate destination IP by filling the sockaddr_in structure and passing it to the sendto() function.

i) Pinging r2 from h1

ii) Pinging h1 from r2


```
Terminal Ter
```


iii) Pinging h2 from r2

iv) Pinging r2 from h2

Note:

- 1. In Q3 r1 is only printing the received packets.
- 2. In Q2 r1 is only printing the received packets as mentioned in the question.