Institute of Actuaries of India

Subject CS2B – Risk Modelling and Survival Analysis (Paper B)

December 2022 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

```
Solution.1
      > library(MASS)
      > options(scipen = 5)
      > #set seed to 1234
      > set.seed(1234)
                                                                                                        (1)
      > x<-read.csv("CS2BQ1.csv")
      ii)
      > #Find mean and sd
      > EmpiricalMean<-mean(x$Losses)
      > EmpiricalSD<-sd(x$Losses)
      > EmpiricalMean
      [1] 49789.86
      > EmpiricalSD
      [1] 102948.2
                                                                                                        (2)
      iii)
      > MoMmu<-log(EmpiricalMean/(1+EmpiricalSD^2/EmpiricalMean^2)^0.5)
      > MoMsigma<-log(1+EmpiricalSD^2/EmpiricalMean^2)^0.5
      > MoMmu
      [1] 9.984059
      > MoMsigma
      [1] 1.28958
                                                                                                        (3)
      iv)
      > #fit a lognormal distribution to the dataset using fitdistr in the MASS package
      > fitLogNormal<-fitdistr(x$Losses,"lognormal")
      > mu1<-fitLogNormal$estimate[1]
      > sigma1<-fitLogNormal$estimate[2]
      > mu1
       meanlog
      9.989917
      > sigma1
      sdlog
      1.268845
                                                                                                        (3)
      v)
      > 'The Mu and Sigma estimates between the Method of Moments and Method of MLE approach are
      quite close'.
                                                                                                        (3)
      vi)
      > #Simulate losses from a lognormal distribution using the mu and sigma estimated above
      > SimL<-rlnorm(n=1000,mu,sigma)
      > #calculate the mean and sd for the simulated distribution
      > mean(SimL)
      [1] 47238.53
      > sd(SimL)
```

[1] 88548.16

(4)

vii)

(4)

viii)

> 'The fit of the loss distribution is fairly good till loss values of 25,000. Beyond this the qqplot indicates the data is not normally distributed for larger/tail values'

(3)

ix)

- > #using the quantile function calculate the loss percentiles for every percentile from 0 to 100% with steps of 10%
- > Empirical<-quantile(x\$Losses,probs = seq(0, 1, 0.1))
- > Simulated<-quantile(SimL,probs = seq(0, 1, 0.1))
- > Empirical

0% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 384.0 4522.9 7587.8 11050.5 15884.4 22200.0 29871.6 41800.1 63515.2 106102.3 1638436.0

> Simulated

0% 10% 20% 30% 40% 50% 60% 70% 80% 293.1955 4677.5738 7429.3605 11021.5122 15189.9273 20731.8091 27842.9382 39392.2496 57282.2480 90% 100%

118552.0676 1257982.3513

(3)

x)

- > E<-20000
- > Retained<-pmin(E,SimL)
- > Transferred<-SimL-Retained

(3)

xi)

- > #quantiles for retained and transferred losses
- > RetainedPercentile<-quantile(Retained,probs = seq(0, 1, 0.1))

```
> TransferredPercentile<-quantile(Transferred,probs = seq(0, 1, 0.1))
```

> RetainedPercentile

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 293.1955 4677.5738 7429.3605 11021.5122 15189.9273 20000.0000 20000.0000 20000.0000 20000.0000

> TransferredPercentile

0% 10% 20% 30% 40% 50% 60% 70% 80% 0.0000 0.0000 0.0000 0.0000 0.0000 731.8091 7842.9382 19392.2496 37282,2480 90% 100% 98552.0676 1237982.3513

(3)

xii)

> #Combine the quantiles for Empirical, Simulated, Retained and Transferred losses into a data frame with the first column

> #reflecting the quantile value

>c<-as.data.frame(cbind(seq(0,1,0.1),Empirical,Simulated,RetainedPercentile,TransferredPercentile)) > c

% Empirical Simulated RetainedPercentile TransferredPercentile

0.0	384.0	293.1955	293.1955	0.0000
10% 0.1	4522.9	4677.5738	4677.5738	0.0000
20% 0.2	7587.8	7429.3605	7429.3605	0.0000
30% 0.3	11050.5	11021.5122	11021.5122	0.0000
40% 0.4	15884.4	15189.9273	15189.9273	0.0000
50% 0.5	22200.0	20731.8091	20000.0000	731.8091
60% 0.6	29871.6	27842.9382	20000.0000	7842.9382
70% 0.7	41800.1	39392.2496	20000.0000	19392.2496
80% 0.8	63515.2	57282.2480	20000.0000	37282.2480
90% 0.9	106102.3	118552.0676	20000.0000	98552.0676
100% 1.0	1638436.	0 1257982.3513	20000.0000	1237982.3513

(3)

xiii)

'Comment on the difference in percentile loss values

There are differences at the higher percentiles with the simulated losses being higher than the empirical this reflects the lack of empirical data related to larger losses. The retained losses get capped at 20k at the 50th percentile suggesting that 1 out of 2 claims will get capped by the current policy Excess.'

(2)

xiv)

- > LossVolatility<-quantile(Transferred,0.9)
- > TechnicalPremium<-(mean(Transferred)+LossVolatility*0.1)
- > TechnicalPremium 90%

42229.48

(2)

xv)

- > Premium<-70000
- > EfficiencyRatio<-TechnicalPremium/Premium
- > 'The Actual Premium is higher than the Technical Premium and the efficiency ratio is 60%.'

(2)

xvi)

Solution.2

library(survival)

```
i)cph1r<-coxph(Surv(futime,fustat)~rx,ovarian)</li>[1 mark for each correct variable and 1 for overall formula]
```

ii)

> summary(cph1r)

Call:

 $coxph(formula = Surv(futime, fustat) \sim rx, data = ovarian)$

n=26, number of events= 12

coef exp(coef) se(coef) z Pr(>|z|) rx -0.5964 0.5508 0.5870 -1.016 0.31

exp(coef) exp(-coef) lower .95 upper .95 rx 0.5508 1.816 0.1743 1.74

Concordance= 0.608 (se = 0.07)

Likelihood ratio test= 1.05 on 1 df, p=0.3

Wald test = 1.03 on 1 df, p=0.3

Score (logrank) test = 1.06 on 1 df, p=0.3

[45 Marks]

(4)

(4)

(2)

```
iii)
```

> 'the p-value of rx is 0.31 which is greater than a significance level of 0.05 and hence is not a significant predictor'

> 'The hazard ratio indicates that an rx value of 2 has a 0.5508 or ~50% lower hazard rate than rx value of 1'

(3)

```
iv)
```

- > KM<-survfit(Surv(futime,fustat)~rx,ovarian)
- > km <- Surv(time = ovarian[['futime']], event = ovarian[['fustat']])
- > km_treatment<-survfit(km~rx,data=ovarian,type='kaplan-meier',conf.type='log')
- > KM or km_treatment [Either approach is fine]

Call: survfit(formula = Surv(futime, fustat) ~ rx, data = ovarian)

n events median 0.95LCL 0.95UCL

> km_treatment

(3)

v)

> summary(KM)

Call: survfit(formula = Surv(futime, fustat) ~ rx, data = ovarian)

rx=1

time n.risk n.event survival std.err lower 95% CI upper 95% CI

59	13	1	0.923 0.0739	0.789	1.000
115	12	1	0.846 0.1001	0.671	1.000
156	11	1	0.769 0.1169	0.571	1.000
268	10	1	0.692 0.1280	0.482	0.995
329	9	1	0.615 0.1349	0.400	0.946
431	8	1	0.538 0.1383	0.326	0.891
638	5	1	0.431 0.1467	0.221	0.840

rx=2

time n.risk n.event survival std.err lower 95% CI upper 95% CI

353	13	1	0.923 0.0739	0.789	1.000
365	12	1	0.846 0.1001	0.671	1.000
464	9	1	0.752 0.1256	0.542	1.000
475	8	1	0.658 0.1407	0.433	1.000
563	7	1	0.564 0.1488	0.336	0.946

(2)

vi)

> plot(KM,col=c("red","green"),main="Kaplan-Meier Survival Curve",xlab="Time",ylab="Survival Probability")

Kaplan-Meier Survival Curve

(5)

vii)

> 'rx 2 seems to perform better than rx 1 initially upto time 353 post which there is a decline in the Survival Probability. There is a steep decline in the numbers at risk between times 365 and 464 for rx at 2'

(3) **[22 marks]**

(4)

Solution.3

i)

> #Generate time series

> set.seed(1234)

> x <- 1:1000

 $> y <- \sin(x/40) + \text{rnorm}(1000,\text{sd}=.1)$

ii)

> # Plot the unsmoothed data (gray)

- > plot(x, y, type="l", col=grey(.5))
- > # add gridlines
- > grid()

Page **7** of **11**

iii)

> # Smoothed with lag:

> # average of current sample and 39 previous samples (red)

> f40 < -rep(1/40, 40)

> f40

 $\begin{bmatrix} 1 \end{bmatrix} \ 0.025 \ 0.0$

 $[21] \ 0.025 \ 0.02$

> y_lag <- filter(y, f40, sides=1)

> lines(x, y_lag, col="red")

(2)

iv)

> # Smoothed symmetrically:

> # average of current sample, 20 future samples, and 20 past samples (blue)

> f41 < -rep(1/41,41)

> f41

 $\begin{bmatrix} 11 \end{bmatrix} \quad 0.02439024 \quad 0.0243$

[41] 0.02439024

> y_sym <- filter(y, f41, sides=2)

> lines(x, y_sym, col="blue")

(3)

[13 Marks]

Solution.4

```
> fraud <- read.csv("C:/ fraud.csv", stringsAsFactors=TRUE)
```

i)
> x<-prop.table(table(fraud\$Fraudulent))[2]
> x
 Yes

 $0.057 \tag{2}$

> y<-sum(fraud\$State == "C3"& fraud\$Sum_insured =="Medium")/nrow(fraud)
> y
[1] 0.199

1] 0.199

iii)
>fraud_claims<-fraud[fraud\$Fraudulent=="Yes",]
>z<-sum(fraud_claims\$State=="C3"&fraud_claims\$Sum_insured =="Medium")/nrow(fraud_claims)
> z
[1] 0.4035088
(4)

iv) > prob<-x*z/y

> prob Yes 0.1155779

(4)

v)

> subset2<-fraud[fraud\$Sum_insured=="Medium"&fraud\$State == "C3",] > sum(subset2\$Fraudulent == "Yes")/nrow(subset2) [1] 0.1155779

(3)

vi)

> 'The values need to be equal as this is an application of Bayes Theorem'

(2)

vii)

>'(a) Assumes that all the variables are independent'

>'(b) If your test data set has a categorical variable of a category that wasn not present in the training data set, the Naive Bayes model will assign it zero probability and will not be able to make any predictions in this regard'

(2)

[20 Marks]
