離散最適化基礎論 第 10 回 マトロイド交わり定理

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2016年1月8日

岡本 吉央 (雷通大)	蘇散最適化基礎論 (10)	2016年1月8日	1 / 20	岡本 吉央 (電通大)	離散最適化基礎論 (10)	2016 年
	最終更新:2016年1月14日	08:53				

スケジュール 後半 (予定)

⋆ 休講 (国内出張)	(12/11)
8 マトロイドに対する操作	(12/18)
g マトロイドの交わり	(12/25)
* 冬季休業	(1/1)
Ⅲ マトロイド交わり定理	(1/8)
* 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
ⅳ 最近のトピック	(1/29)
* 授業等調整日 (予備日)	(2/5)
* 期末試験	(2/12)

離散最適化基礎論 (10)

今日の目標

今日の目標

マトロイド交わり定理を理解し、使えるようになる

▶ 重要概念:弱双対性,強双対性 ▶ 重要概念:最適性の保証

注意: 予定の変更もありうる

岡本 吉央 (電通大)	離散最適化基礎論 (10)	2016年1月8日	5 / 39

マトロイドの交わり

非空な有限集合 E, 2つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

マトロイドの交わり (交叉, intersection) とは?

 \mathcal{I}_1 と \mathcal{I}_2 の交わりとは、次の集合族 $\mathcal{I}_1 \cap \mathcal{I}_2$ $\mathcal{I}_1 \cap \mathcal{I}_2 = \{X \mid X \in \mathcal{I}_1, X \in \mathcal{I}_2\}$

イメージ図

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

疑問

どうしてそのような違いが生まれるのか?

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

スケジュール 前半

★ 休講 (卒研準備発表会)

2 マトロイドの定義と例

4 グラフとマトロイド

* 休講 (調布祭)

3 マトロイドの基と階数関数

5 マトロイドとグラフの全域木

7 マトロイドのサーキット

6 マトロイドに対する貪欲アルゴリズム

★ 休講 (海外出張)

11 組合せ最適化問題におけるマトロイドの役割

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

ポイント

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

岡本 吉央 (電通大)

(10/2)

(10/9)

(10/16)

(10/23)

(10/30)

(11/6)

(11/13)

(11/20)

(11/27)

(12/4)

目次

● マトロイドの交わり:復習

② マトロイド交わり定理に向けて:弱双対性

3 マトロイド交わり定理

4 今日のまとめ

マトロイドの交わり:重要性

岡本 吉央 (電通大)

マトロイド $\mathcal{I}_1,\mathcal{I}_2$

マトロイドの交わりの重要性(1)

次の問題が多項式時間で解ける

maximize $e \in X$ $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ subject to

離散最適化基礎論 (10)

(マトロイドの最大重み共通独立集合問題)

注意:貪欲アルゴリズムで解けるわけではない

マトロイドの交わりの重要性 (2)

様々な問題をモデル化できる

▶ 例1:二部グラフの最大マッチング問題

▶ 例 2:最小有向木問題

例1:二部グラフの最大マッチング問題

<u>二部グラフの最</u>大マッチング問題は

分割マトロイドと分割マトロイドの交わりとしてモデル化できる

二部グラフG = (U, V; E)に対して、要素数最大のマッチングを求めたい

マッチングとは? (復習)

辺部分集合で、任意の頂点に接続する辺の数が1以下であるもの

岡本 吉央 (電通ナ

離散最適化基礎論 (10)

116年1月8日 9

例 2:最小有向木問題

最小有向木問題は

閉路マトロイドと分割マトロイドの交わりとしてモデル化できる

考えるのは有向グラフ

岡本 吉央 (電通大)

離散最適化基礎論 (1

2016年1月8日

11 / 39

例 2:最小有向木問題

最小有向木問題は

閉路マトロイドと分割マトロイドの交わりとしてモデル化できる

考えるマトロイドの1つは,

有向グラフの向きを無視してできる無向グラフの閉路マトロイド

もう1つは「r以外の各頂点に入る弧数が1以下」という分割マトロイド

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日 1

最大共通独立集合問題

E 上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$

考える問題:最大共通独立集合問題

maximize |X|

subject to $X \in \mathcal{I}_1 \cap \mathcal{I}_2$

この問題は多項式時間で解けるが, なぜ解けるのか,ということから考える

例1:二部グラフの最大マッチング問題

二部グラフの最大マッチング問題は

分割マトロイドと分割マトロイドの交わりとしてモデル化できる

頂点 v に接続する辺の集合を $\delta(v)$ として、次のマトロイドを考える

 $\mathcal{I}_1 = \{X \subseteq E \mid |X \cap \delta(u)| \le 1 \ (\forall \ u \in U)\},\$

 $\mathcal{I}_2 = \{X \subseteq E \mid |X \cap \delta(v)| \le 1 \ (\forall \ v \in V)\}$

吉央 (電通大)

2016年1月8日 10/3

例 2:最小有向木問題

最小有向木問題は

閉路マトロイドと分割マトロイドの交わりとしてモデル化できる

頂点rを根とする有向木とは、

rから各頂点へ至る有向道がちょうど1つ存在するような部分グラフ

有向木: arborescence, out-tree, branching

岡本 吉央 (電通大

離散最適化基礎論 (1

2016年1月8日 12

目次

● マトロイドの交わり:復習

② マトロイド交わり定理に向けて:弱双対性

3 マトロイド交わり定理

❹ 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日 14/39

弱双対性

▶ $\mathcal{I}_1, \mathcal{I}_2$ の階数関数をそれぞれ r_1, r_2 とする

▶ このとき、任意の $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ と任意の $S \subseteq E$ に対して、

 $|X| = |X \cap S| + |X \cap (E - S)|$

 $= r_1(X \cap S) + r_2(X \cap (E - S))$

((I2) と階数関数の性質)

 $\leq r_1(S) + r_2(E-S)$

(階数関数の単調性)

すなわち,以下が成り立つ

最大共通独立集合問題に対する弱双対定理

任意の $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ と任意の $S \subseteq E$ に対して,

 $|X| \leq r_1(S) + r_2(E-S)$

「最大共通独立集合問題に対する弱双対定理

任意の $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ と任意の $S \subset E$ に対して、

 $|X| \leq r_1(S) + r_2(E - S)$

最大共通独立集合問題に対する弱双対定理:帰結

任意の $S \subset E$ に対して

 \mathcal{I}_1 と \mathcal{I}_2 の最大共通独立集合の要素数 $\leq r_1(S) + r_2(E-S)$

他の表現:任意の $S \subseteq E$ に対して

 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} \le r_1(S) + r_2(E - S)$

【最大共通独立集合問題に対する弱双対定理:帰結 (2)

 $\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}\leq\min\{r_1(S)+r_2(E-S)\mid S\subseteq E\}$

「帰結 (2)」の式を弱双対定理と呼ぶことも多い

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日 17/39

弱双対性:使い方の例(2)

最大共通独立集合問題として定式化された最大マッチング問題において

 $S = \emptyset$ とすると,

最大共通独立集合の要素数 $\leq r_1(S) + r_2(E - S) = 0 + 3 = 3$

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日 1

19 / 39

弱双対性:使い方の例 <u>(3)</u>

最大共通独立集合問題として定式化された最大マッチング問題において

したがって

最大共通独立集合の要素数 = 3

 $X = \{e_1, e_4, e_8\}$ という共通独立集合の最大性を $S = \emptyset$ が保証する

最適性の保証

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日

21 / 39

目次

● マトロイドの交わり:復習

2 マトロイド交わり定理に向けて:弱双対性

3 マトロイド交わり定理

▲ 今日のまとめ

弱双対性:使い方の例 (1)

最大共通独立集合問題として定式化された最大マッチング問題において

 $X = \{e_1, e_4, e_8\}$ とすると, $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ なので,

最大共通独立集合の要素数 ≥ |X| = 3

岡本 吉央 (電通大)

離散最適化基礎論 (10)

016年1月8日 18/3

補足:分割マトロイドの階数関数

非空な有限集合 E, 集合 E の分割 $\{E_1, E_2, \ldots, E_k\}$, 自然数 $r_1, r_2, \ldots, r_k \ge 0$

分割マトロイド

有限集合族エを

 $\mathcal{I}=\{X\subseteq E\mid$ 任意の $i\in\{1,\ldots,k\}$ に対して, $|X\cap E_i|\leq r_i\}$ と定義すると, \mathcal{I} は E 上のマトロイド

上で定義された分割マトロイドIの階数関数をrとすると

$$r(X) = \sum_{i=1}^k \min\{|X \cap E_i|, r_i\}$$

(演習問題)

岡本 吉央 (電通大)

離散最適化基礎論 (10

2016年1月8日 20/

弱双対定理:重要性

「最大共通独立集合問題に対する弱双対定理

任意の $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ と任意の $S \subseteq E$ に対して,

 $|X| \leq r_1(S) + r_2(E - S)$

最大共通独立集合問題に対する弱双対定理:重要性

|X|=n(S)+n(E-S) を満たす $X\in\mathcal{I}_1\cap\mathcal{I}_2$ と $S\subseteq E$ が見つけられれば X が \mathcal{I}_1 と \mathcal{I}_2 の最大共通独立集合であることが分かる

- \triangleright S によって、X の最適性が保証できる
- ▶ アルゴリズムを設計するとき、X と同時にS も見つければよさそう

岡本 吉央 (電通大)

離散最適化基礎論 (10)

2016年1月8日 22/3

マトロイド交わり定理

E上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$, それらの階数関数 r_1, r_2

マトロイド交わり定理

 $\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(S)+r_2(E-S)\mid S\subseteq E\}$

別名:最大共通独立集合問題に対する強双対定理

|X|=n(S)+n(E-S) を満たす $X\in\mathcal{I}_1\cap\mathcal{I}_2$ と $S\subseteq E$ が見つけられれば X が \mathcal{I}_1 と \mathcal{I}_2 の最大共通独立集合であることが分かる

マトロイド交わり定理:重要性

そのような *X* と *S* が必ず存在する

岡本 吉央 (電通大)

マトロイド交わり定理:証明(1)

E上のマトロイド $\mathcal{I}_1,\mathcal{I}_2$, それらの階数関数 r_1,r_2

マトロイド交わり定理

 $\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(S)+r_2(E-S)\mid S\subseteq E\}$

証明:「<」は弱双対定理として証明済みなので,「>」を証明する

- ▶ 証明の方針: |E| に関する数学的帰納法
- ▶ n = |E| とおく

n = 1 のとき (基底段階)

- ▶ *E* = {*e*} とする
- ▶ I₁ として可能なものは2種類だけ(I₂も同様)

$$\mathcal{I}_1 = \{\emptyset\}, \quad \text{\sharpth} \quad \mathcal{I}_1 = \{\emptyset, \{e\}\}$$

- ▶ $\mathcal{I}_1 = \{\emptyset\}$ のとき、任意の $X \subseteq E$ に対して $r_1(X) = 0$
- ▶ $\mathcal{I}_1 = \{\emptyset, \{e\}\}$ のとき、任意の $X \subseteq E$ に対して $r_1(X) = |X|$

離散最適化基礎論 (10

マトロイド交わり定理:証明(3)

 $\overline{ | n = \ell \geq 2 }$ のとき $\overline{ | ($ 帰納段階 $) : n < \ell$ のときに成立すると仮定

- ▶ 任意の $e \in E$ が $\{e\} \notin \mathcal{I}_1$ または $\{e\} \notin \mathcal{I}_2$ を満たすときを考える
- ▶ \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}

(なぜか?)

- ▶ したがって、 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = 0$
- ▶ 一方で、 $S = \{e \mid e \in E, \{e\} \notin \mathcal{I}_1\}$ とすると、 任意の $e \in E - S$ に対して、 $\{e\} \notin \mathcal{I}_2$ が成り立つ
- ▶ つまり、 \mathcal{I}_1 における S の基は \emptyset であり、 \mathcal{I}_2 における E S の基は \emptyset
- ▶ したがって, $r_1(S) = 0, r_2(E S) = 0$
- ▶ よって、 $\min\{r_1(S) + r_2(E S) \mid S \subseteq E\} \le 0$ となる この場合,

 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} \ge \min\{r_1(S) + r_2(E - S) \mid S \subseteq E\}$

が成立

マトロイド交わり定理:証明(4)

n = ℓ ≥ 2 のとき (帰納段階): 続き (1)

▶ $\mathcal{I}_1 \setminus \{e\} \subseteq \mathcal{I}_1, \mathcal{I}_2 \setminus \{e\} \subseteq \mathcal{I}_2$ なので、仮定より、

$$\max\{|X|\mid X\in \big(\mathcal{I}_1\setminus\{e\}\big)\cap \big(\mathcal{I}_2\setminus\{e\}\big)\}\leq k-1$$

▶ $\mathcal{I}_1 \setminus \{e\}, \mathcal{I}_2 \setminus \{e\}$ の階数関数を r'_1, r'_2 とすると、帰納法の仮定より、

$$\begin{aligned} \max\{|X| \mid X \in (\mathcal{I}_1 \setminus \{e\}) \cap (\mathcal{I}_2 \setminus \{e\})\} \\ &= \min\{r'_1(S') + r'_2((E - \{e\}) - S') \mid S' \subseteq E - \{e\}\} \end{aligned}$$

すなわち、ある S' ⊆ E - {e} が存在して、

$$r_1'(S') + r_2'((E - \{e\}) - S') \le k - 1$$

▶ 除去の階数関数の公式 (第8回講義スライド 19ページ) より

$$r_1(S') + r_2((E - \{e\}) - S') \le k - 1$$

岡本 吉央 (電通大)

離散最適化基礎論 (10)

マトロイド交わり定理:証明(6)

 $| n = \ell \ge 2 \,$ のと | (帰納段階) : 続き (3)

ここまでのまとめ:背理法で進めて…

ある $S',S''\subseteq E-\{e\}$ に対して

- $r_1(S') + r_2((E \{e\}) S') \le k 1$
- ► $r_1(S'' \cup \{e\}) + r_2(((E \{e\}) S'') \cup \{e\}) \le k$
- $(E \{e\}) S' = E (S' \cup \{e\}), ((E \{e\}) S'') \cup \{e\} = E S''$
- ▶ : 2 式を足すと

$$r_1(S') + r_2(E - (S' \cup \{e\})) + r_1(S'' \cup \{e\}) + r_2(E - S'') \le 2k - 1$$

マトロイド交わり定理:証明 (2)

n=1のとき (基底段階) 続き:場合分け

- **1** $\mathcal{I}_1 = \{\emptyset\}, \mathcal{I}_2 = \{\emptyset\}$ のとき
 - $\mathcal{I}_1 \cap \mathcal{I}_2 = \{\emptyset\}$ re, $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = 0$
 - ▶ 一方, $\min\{r_1(S) + r_2(E S) \mid S \subseteq E\} = 0$
- $oxed{2}$ $\mathcal{I}_1=\{\emptyset\}$, $\mathcal{I}_2=\{\emptyset,\{e\}\}$ のとき
 - $\mathcal{I}_1\cap\mathcal{I}_2=\{\emptyset\}$ で, $\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}=0$
 - ▶ 一方, $\min\{r_1(S) + r_2(E S) \mid S \subseteq E\} = r_1(\{e\}) + r_2(\emptyset) = 0$
- 3 $\mathcal{I}_1=\{\emptyset,\{e\}\}$, $\mathcal{I}_2=\{\emptyset,\{e\}\}$ のとき
 - $\qquad \qquad \mathcal{I}_1 \cap \mathcal{I}_2 = \{\emptyset, \{e\}\} \ \texttt{\r{C}}, \ \max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = 1$
 - ▶ 一方, $\min\{r_1(S) + r_2(E S) \mid S \subseteq E\} = 1$

したがって, どの場合でも,

$$\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(S)+r_2(E-S)\mid S\subseteq E\}$$

が成立

岡本 吉央 (電通大)

離散最適化基礎論 (10)

マトロイド交わり定理:証明(3)

 $|n = \ell \ge 2$ のとき | (帰納段階): n < k のときに成立すると仮定

- ▶ ある $e \in E$ に対して、 $\{e\} \in \mathcal{I}_1$ かつ $\{e\} \in \mathcal{I}_2$ であるときを考える
- ▶ $k = \min\{r_1(S) + r_2(E S) \mid S \subseteq E\}$ とする
- ▶ | 背理法 |: 任意の $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ に対して,|X| < k であると仮定
- ightharpoonup このとき,除去 $\mathcal{I}_1\setminus\{e\}$, $\mathcal{I}_2\setminus\{e\}$ と縮約 $\mathcal{I}_1/\{e\}$, $\mathcal{I}_2/\{e\}$ を考える

マトロイドの除去 (復習)

E上のマトロイドIと $e \in E$ に対して

$$\mathcal{I} \setminus \{e\} = \{X \mid X \in \mathcal{I}, X \subseteq E - \{e\}\}\$$

マトロイドの縮約(復習)

E上のマトロイド \mathcal{I} と $e\in E$ $(ただし, \{e\}\in \mathcal{I})$ に対して $\mathcal{I}/\{e\} = \{X \mid X \cup \{e\} \in \mathcal{I}, X \subseteq E - \{e\}\}$

 $\mathcal{I}\setminus\{e\}$ と $\mathcal{I}/\{e\}$ は $E-\{e\}$ 上のマトロイド

岡本 吉央 (電通大)

マトロイド交わり定理:証明(5)

 $n = \ell \ge 2$ のとき (帰納段階):続き (2)

- ▶ 任意の $X \in (\mathcal{I}_1/\{e\}) \cap (\mathcal{I}_2/\{e\})$ に対して、 $X \cup \{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$
- ▶ ∴ 仮定より、 $\max\{|X| \mid X \in (\mathcal{I}_1/\{e\}) \cap (\mathcal{I}_2/\{e\})\} \le k-2$
- ▶ $\mathcal{I}_1/\{e\},\mathcal{I}_2/\{e\}$ の階数関数を r_1'',r_2'' とすると、帰納法の仮定より、

$$\begin{aligned} \max\{|X| \mid X \in (\mathcal{I}_1/\{e\}) \cap (\mathcal{I}_2/\{e\})\} \\ &= \min\{r_1''(S'') + r_2''((E - \{e\}) - S'') \mid S'' \subseteq E - \{e\}\}\end{aligned}$$

すなわち、ある S" ⊆ E - {e} が存在して、

$$r_1''(S'') + r_2''((E - \{e\}) - S'') \le k - 2$$

▶ 縮約の階数関数の公式 (第8回講義スライド 26ページ) より

$$(r_1(S'' \cup \{e\}) - 1) + (r_2(((E - \{e\}) - S'') \cup \{e\}) - 1) \le k - 2$$

岡本 吉央 (電通大)

離散最適化基礎論 (10)

マトロイド交わり定理:証明(7)

| n = ℓ ≥ 2 のとき | (帰納段階):続き (4)

てこまでのまとめ:背理法で進めて…

ある $S', S'' \subseteq E - \{e\}$ に対して

$$r_1(S') + r_2(E - (S' \cup \{e\})) + r_1(S'' \cup \{e\}) + r_2(E - S'') \le 2k - 1$$

階数関数の劣モジュラ性より

$$r_{1}(S')+r_{1}(S''\cup\{e\}) \geq r_{1}(S'\cup\{S''\cup\{e\}))+r_{1}(S'\cap(S''\cup\{e\}))$$

$$= r_{1}(S'\cup S''\cup\{e\})+r_{1}(S'\cap S'')$$

$$r_{2}(E-(S'\cup\{e\}))+r_{2}(E-S'') \geq r_{2}((E-(S'\cup\{e\}))\cup(E-S''))$$

$$+ r_{2}((E-(S'\cup\{e\}))\cap(E-S''))$$

$$= r_{2}(E-(S'\cap S''))+r_{2}(E-(S'\cup S''\cup\{e\}))$$

すなわち,

 $r_1(S' \cup S'' \cup \{e\}) + r_1(S' \cap S'') + r_2(E - (S' \cap S'')) + r_2(E - (S' \cup S'' \cup \{e\})) \le 2k - 1$

マトロイド交わり定理:証明(8)

 $n=\ell\geq 2$ のとき (帰納段階):続き (5)

ここまでのまとめ:背理法で進めて…

ある S', S'' ⊂ $E - \{e\}$ に対して $r_1(S' \cup S'' \cup \{e\}) + r_1(S' \cap S'') + r_2(E - (S' \cap S'')) + r_2(E - (S' \cup S'' \cup \{e\})) \le 2k - 1$

- ▶ このとき、次のいずれか一方は正しい

 - $r_1(S' \cap S'') + r_2(E (S' \cap S'')) \le k 1$
- ▶ どちらが正しくても

$$k = \min\{r_1(S) + r_2(E - S) \mid S \subseteq E\} \le k - 1$$

となり, 矛盾

岡本 吉央 (電通大)

離散最適化基礎論 (10)

マトロイド交わり定理:重要性

E上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$, それらの階数関数 r_1, r_2

マトロイド交わり定理

 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(E - S) \mid S \subseteq E\}$

マトロイド交わり定理が

最大共通独立集合問題に対するアルゴリズム設計の指針を与える

アルゴリズム設計指針

- **2** X が $\mathcal{I}_1 \cap \mathcal{I}_2$ の要素であるように「増加」させる
- **3** *X* を「増加」させられないとき, $|X| = r_1(S) + r_2(E - S)$ を満たす S を見つける

アルゴリズムが次回のテーマ

岡本 吉央 (電通大)

離散最適化基礎論 (10)

今回のまとめ

今日の目標

マトロイド交わり定理を理解し、使えるようになる

- ▶ 重要概念:弱双対性,強双対性
- ▶ 重要概念:最適性の保証

次回の予告

- ▶ マトロイド交わり問題に対する効率的アルゴリズム
- ▶ マトロイドの合併に対する効率的アルゴリズム

マトロイド交わり定理 (再掲)

E上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$, それらの階数関数 r_1, r_2

マトロイド交わり定理

 $\max\{|X|\mid X\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(S)+r_2(E-S)\mid S\subseteq E\}$

別名:最大共通独立集合問題に対する強双対定理

「最大共通独立集合問題に対する弱双対定理:重要性

 $|X| = r_1(S) + r_2(E - S)$ を満たす $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ と $S \subseteq E$ が見つけられれば X が \mathcal{I}_1 と \mathcal{I}_2 の最大共通独立集合であることが分かる

マトロイド交わり定理:重要性

そのようなXとSが必ず存在する

岡本 吉央 (電通大)

離散最適化基礎論 (10)

(再掲)

目次

- ① マトロイドの交わり:復習
- 2 マトロイド交わり定理に向けて:弱双対性
- 3マトロイド交わり定理
- 4 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (10)

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

岡本 吉央 (雷涌大) 離散最適化基礎論 (10) 岡本 吉央 (雷诵大) 離散最適化基礎論 (10)