From SWAP to C-phase gate regime in single spin qubits

GDR Workshop – IQFA 28-30 November 2012 Institut Néel, Grenoble

R. THALINEAU, A. D. WIECK, C. BAUERLE, T. MEUNIER Quantum coherence group

An electron spin as a qubit candidate

An electron spin as a qubit candidate

Scalability potential

Superconducting qubits

An electron spin as a qubit candidate

A single electron spin qubit

A single electron spin qubit

Double quantum dot: two single spin qubits tunnel coupled Vg1(RF) Vg1(DC)-VQPC Tee Vg2(RF) V_{r} Bias Vg2(DC) \boxtimes \boxtimes mhm mim 200nm \boxtimes Vь

How to make them interact?

<u>Dipolar interaction</u> very weak at 100nm (~25peV~5kHz)

Outline

Manipulation region

$$|S^{(1,1)}\rangle = 1/\sqrt{2} (|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle)$$

$$|T_{+}^{(1,1)}\rangle = |\uparrow,\uparrow\rangle$$

$$|T_{0}^{(1,1)}\rangle = 1/\sqrt{2} (|\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle)$$

$$|T_{-}^{(1,1)}\rangle = |\downarrow,\downarrow\rangle$$

1) A magnetic field splits in energy the triplets states : Bext=100mT 2.5μeV

- 1) A magnetic field splits in energy the triplets states:

 Bext=100mT 2.5μeV
- 2) Tunnelling couples the two singlet statest=6μeV

3) For $\varepsilon \ll 0$, the exchange interaction vanishes : the spin are now independent

1) A magnetic field splits in energy the triplets states : Bext=100mT 2.5μeV

2) Tunnelling couples the two singlet statest=6μeV

3) For $\varepsilon \ll 0$, the exchange interaction vanishes : the spin are now independent

1) A magnetic field splits in energy the triplets states:

Bext=100mT 2.5µeV

2) Tunnelling couples the two singlet statest=6μeV

3) For $\varepsilon \ll 0$, the exchange interaction vanishes : the spin are now independent

4) Non uniformity of the nuclear magnetic field : ΔBz~4mT → 0,1μeV

1) A magnetic field splits in energy the triplets states:

Bext=100mT 2.5µeV

2) Tunnelling couples the two singlet states t=6µeV

3) For $\varepsilon \ll 0$, the exchange interaction vanishes : the spin are now independent

4) Non uniformity of the nuclear magnetic field : ΔBz~4mT → 0,1μeV

1) A magnetic field splits in energy the triplets states:

Bext=100mT 2.5µeV

2) Tunnelling couples the two singlet statest=6μeV

3) For $\varepsilon \ll 0$, the exchange interaction vanishes : the spin are now independent

4) Non uniformity of the nuclear magnetic field : ΔBz~4mT → 0,1μeV

SWAP: two qubit gate which exchange the state of two qubits

<u>Initialization in the two qubit</u> <u>subspace</u>

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} (|S\rangle + |T_0\rangle)$$

<u>Initialization in the two qubit</u> <u>subspace</u>

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} (|S\rangle + |T_0\rangle)$$

$$|\Psi(\tau)\rangle = \cos(J(\epsilon) \tau/2\hbar) |\uparrow,\downarrow\rangle + i \sin(J(\epsilon) \tau/2\hbar) |\downarrow,\uparrow\rangle$$

SWAP gate

Initialization in the two qubit subspace

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} \, (|S\rangle + |T_0\rangle)$$

Initialization in the two qubit subspace

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} (|S\rangle + |T_0\rangle)$$

Initialization in the two qubit subspace

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} (|S\rangle + |T_0\rangle)$$

<u>Initialization in the two qubit</u> <u>subspace</u>

$$|\Psi(\tau=0)\rangle=|\uparrow,\downarrow\rangle$$

Manipulation:

$$|\Psi(\tau=0)\rangle = |\uparrow,\downarrow\rangle = 1/\sqrt{2} (|S\rangle + |T_0\rangle)$$

Natural building block for quantum algorithm

Single qubit rotations

Two qubit controlled gates

Adiabatic pulse vs ΔBz

$$U_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-i\phi} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Adiabatic pulse vs ΔBz

$$P_{LZ}=e^{-2\pirac{\Delta B_z^2}{\hbarrac{dE}{dt}}}$$
 \quad \text{dE/dt~10^4 eV/s}

 $P_{LZ} \sim 1$

$$P_{LZ} = e^{-2\pi \frac{\Delta B_z^2}{\hbar \frac{dE}{dt}}}$$

ΔBz~4mT

dE/dt~10^4 eV/s

$$|\Psi(\tau)\rangle = \frac{1}{\sqrt{2}}(|\uparrow,\downarrow\rangle e^{i\frac{g^*\mu_B\Delta B_z.\tau}{2\hbar}} - |\downarrow,\uparrow\rangle e^{-i\frac{g^*\mu_B\Delta B_z.\tau}{2\hbar}})$$

Foletti et al, Nat phys (2009)

SWAP in presence of a finite gradient ΔBz

$$\begin{split} |\Psi(\tau=0)\rangle &= |\uparrow,\downarrow\rangle \\ |\Psi(\tau)\rangle &= |\uparrow,\downarrow\rangle = 1/\sqrt{2} \left(|S\rangle e^{iJ(\varepsilon)\tau/(2\mathrm{h})} + |T_0\rangle e^{-iJ(\varepsilon)\tau/(2\mathrm{h})}\right) \end{split}$$

The amplitude decreases for increasing gradient ΔBz

SWAP in presence of a finite gradient ΔBz

$$\begin{split} |\Psi(\tau=0)\rangle &= |\uparrow,\downarrow\rangle \\ |\Psi(\tau)\rangle &= |\uparrow,\downarrow\rangle = 1/\sqrt{2} \left(|S\rangle e^{iJ(\epsilon)\tau/(2\mathrm{h})} + |T_0\rangle e^{-iJ(\epsilon)\tau/(2\mathrm{h})}\right) \end{split}$$

The amplitude decreases for increasing gradient ΔBz

SWAP in presence of a finite gradient ΔBz

$$\begin{split} |\Psi(\tau=0)\rangle &= |\uparrow,\downarrow\rangle \\ |\Psi(\tau)\rangle &= |\uparrow,\downarrow\rangle = 1/\sqrt{2} \left(|S\rangle e^{iJ(\varepsilon)\tau/(2\mathrm{h})} + |T_0\rangle e^{-iJ(\varepsilon)\tau/(2\mathrm{h})}\right) \end{split}$$

The amplitude decreases for increasing gradient ΔBz

Conclusion and perspectives

Demonstration of the feasability of a Cphase gate with single spin qubit

Estimation of the C-phase gate duration :

T~80ns

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\phi_1} & 0 & 0 \\ 0 & 0 & e^{i\phi_2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \overset{\text{Control qubit}}{\underset{\text{qubit}}{\text{Target}}} - \mathbf{Z} -$$

We need to prove the entanglement : Single shot readout of each qubit

Thank you for your attention

Christopher BAUERLE Tristan MEUNIER

Andreas Wieck (Bochum university)

PhD students:

Tobias BAUTZE
Benoit BERTRAND
Hanno FLENTJE
Sylvain Hermelin (now at Geneva)
Grégoire ROUSSELY

Any questions?