§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to FCC §15.319(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ160503008-00FP

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)					
Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30					
1.34-30	842/f	2.19/f	*(180/f\2\)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz

MPE Calculation

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For worst case:

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
1921.536	0	1.0	15.23	33.34	20	0.007	1.0
1928.448							

Result: The device meets MPE limit at 20 cm distance.

FCC Part 15D Page 8 of 49

^{* =} Plane-wave equivalent power density