```
from the HW:
                                                           <u>Df</u>
                                                                      sum {i in I} W i is a direct sum
                                                                     iff [what?]
if {W i} {i in I} is a collection of linear sub.'s of V,
                                                                      every elt has a unique expression
     with I possibly infinite,
                                                                           sum_{i in I} w_i
                                                                     w_i in W_i for all i
then their sum is defined to be [what?]
                                                           s.t.
                                                                      (and w i = 0 for all but fin many i)
sum_{i in I} W_i
     = {sum {i in J} w i | J sub I finite,
                                                           [what does unique mean?]
                         w_i in W_i for all i}
     = {sum_i w_i | w_i in W_i for all i,
                                                           for any sets {w i} i, {w' i} i
                    w_i = 0 for all but fin many i })
                                                           s.t. w i, w' i in W i for all i
                                                                      and w i, w' i = 0 for all but fin many i,
     [will use second version today]
                                                           sum i w i = sum i w' i implies (w i = w' i for all i)
Prop
          sum_{i in I} W_i is the minimal lin. sub.
```

containing W i for all i

```
Prop suppose the uniqueness holds for 0: for any set {w_i}_i
```

s.t. w_i in W_i for all i (and $w_i = 0$ for all but fin many i),

sum_{i in I} w_i = **0** implies (w_i = **0** for all i)

then the uniqueness holds in general: i.e., sum_{i in I} W_i is a direct sum

Pf suppose that
sum_i w_i = v = sum_i w'_i

then sum_i (w_i - w'_i) = $\mathbf{0}$ so w_i - w'_i = $\mathbf{0}$ for all i (Axler §2A) {v_i}_{i in I} any set of vectors in V

Df {v_i}_i is said to be
a linearly independent set of vectors iff
either of these equivalent cond's:

I) **0** has a unique expression as sum_i a_iv_i: for any set {a_i}_i

s.t. a_i in F for all i, a_i = 0 for all but fin many i,

sum_i a_iv_i = **0** implies (a_i = 0 for all i)

II) sum_i Fv_i is a direct sum

else we say {v_i}_i is a <u>linearly dependent</u> set

Lem {v_i}_i is linearly dependent iff there exist finite subset {v_j}_{j in J}, i notin J

s.t. $v_i = sum_{j in J} a_{j v_j}$

in this case, we say:

v_i is a <u>linear combination</u> of the v_j's for j in J, with coeffs a_j's

also say:

v_i is <u>linearly dependent upon</u> the v_j's

[motivates next defn:]

<u>Df</u> the span of {v_i}_i is (simultaneously)

1) {sum_i a_iv_i | a_i in F for all i, a_i = 0 for all but fin many i}

2) sum_{i in I} Fv_i, where Fv_i = {av_i | a in F}

3) the minimal linear subspace of V containing v_i for all i

i.e. 1), 2), 3) are all the same and {v_i}_i is said to span [verb] it

 $\underline{\mathsf{Ex}}$ in $\mathsf{F}[\mathsf{x}] = \{\mathsf{set} \ \mathsf{of} \ \mathsf{polynomials} \ \mathsf{in} \ \mathsf{x} \ \mathsf{over} \ \mathsf{F}\}$:

 $\{x^k \mid k \ge 0\} = \{1, x, x^2, x^3, ...\} \text{ spans } F[x]$

[why? every polynomial is a sum of monomials]

let $\mathbf{N} = \{1, 2, 3, ...\}$ in $F^{\mathbf{N}} = \{\text{functions from N into F}\}:$ let $e_{\mathbf{i}} : \mathbf{N}$ to F be the function $e_{\mathbf{i}}(\mathbf{i}) = 1,$ $e_{\mathbf{i}}(\mathbf{j}) = 0$ for $\mathbf{j} \neq \mathbf{i}$

{e_i | i in **N**} does not span F^**N**

[why?] consider the function f s.t. f(i) = 1 for all i

[most striking thm thus far:]

Thm (Steinitz Exchange) if {v_1, ..., v_k} is a lin. independent set in V, {e_1, ..., e_n} spans V

then k ≤ n

[crucially, both sets of vectors are finite]

Cor if V is spanned by n vectors, then any set with > n vectors has some linear dependence

Cor if there is a linearly independent set of k vectors in V, then any set with < k vectors cannot span V

 $\underline{\mathsf{Pf}\;\mathsf{of}\;\mathsf{Thm}}\qquad\mathsf{let}\;\mathsf{S}_\mathsf{0}=\{\mathsf{e}_\mathsf{1},\,\ldots,\,\mathsf{e}_\mathsf{n}\}$

will prove that for $\ell = 1, ..., k$, we can construct S_{ℓ} from $S_{\ell} = 1$ s.t.

```
1) S_ℓ still spans V
```

2) S_ ℓ has one more v_i and one fewer e_j than S $\{\ell - 1\}$

thus $\ell \le n$ at each step [and $k \le n$ at the last step]

WLOG reindex the v_i's and e_j's s.t.

 $S_{\ell-1} = \{v_1, ..., v_{\ell-1}, e_{\ell}, ..., e_n\}$ since $S_{\ell-1}$ spans V,

 $v_{\ell} = sum_{i} = 1^{\ell} - 1 a_{i}$

+ sum_{j = l}^n b_je_j
with some coeff nonzero

if $b_i = 0$ for all j, then $\{v_i\}_i$ lin. dep.

so we can pick j s.t. b $j \neq 0$

so e $j = (1/b \ j) \ (v \ \ell - other stuff)$

build S_ℓ by appending v_ℓ and removing e_j □

(Axler §2B–2C)

<u>Df</u> a basis for V is a set of vectors {v_i}_i

s.t. 1) {v_i}_i spans V

2) {v_i}_i is a linearly independent set

<u>Cor</u> if V has a finite basis of size r, then any basis for V has size r

<u>Pf</u> if {e_1, ..., e_r} is a basis, and {f_1, ..., f_s} is another:

r ≤ s because {e_i}_i is lin. indep. and {f_j}_j is spanning s ≥ r because {f_i}_i is lin. indep. and {e_j}_j is spanning else we say V is infinite-dimensional

"the Good, the Bad, and the Ugly"

V has finite dimension
V has infinite dimension, yet has an (infinite) basis
e.g., F[x]
V has infinite dimension and no basis

e.g., F^**N**