Lecture 11

Sampling Distribution & Central Limit Theorem

Text: Chapters 4 & 5

STAT 8010 Statistical Methods I September 24, 2020 Sampling
Distribution &
Central Limit
Theorem

of Binomial Distribution

Central Limit Theorem

Whitney Huang Clemson University

Agenda

Sampling
Distribution &
Central Limit
Theorem

Normal approximation of Binomial Distribution

ampling Distributio

Central Limit Theorei CLT)

Normal approximation of Binomial Distribution

Sampling Distribution

Normal approximation of Binomial Distribution

 We can use a Normal Distribution to approximate a Binomial Distribution if n is large Sampling
Distribution &
Central Limit
Theorem

Normal approximation of Binomial Distribution

Camping Diotribution

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5

Sampling
Distribution &
Central Limit
Theorem

Normal approximation of Binomial Distribution

Sampling Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $P(X^* = x) = 0 \ \forall x$

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $P(X^* = x) = 0 \ \forall x$
- Continuity correction: we use $P(x 0.5 \le X^* \le x + 0.5)$ to approximate P(X = x)

- Suppose a class has 400 students (to begin with), that each student drops independently of any other student with a probability of .07. Let *X* be the number of students that finish this course
 - Find the probability that X is between 370 and 373 inclusive
 - Is an approximation appropriate for the number of students that finish the course?
 - If so, what is this distribution and what are the parameter(s)?
 - Find the probability that is between 370 and 373 inclusive by using the approximation

• Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample

Sampling Distribution & Central Limit Theorem

Normal approximation of Binomial Distribution

Control Limit Theorem

• Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample

A statistic is a function of a random sample

Example:

Sampling
Distribution &
Central Limit
Theorem

Normal approximation of Binomial Distribution

Control Limit Theorem

• Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample

A statistic is a function of a random sample

Example:

• Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$

Sampling Central Limit

• Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample

A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $\sum_{i=1}^{n} (X_i \bar{X}_n)^2 / (n-1)$

of Binomial Distribution

Central Limit Theorem

- Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $\sum_{i=1}^{n} (X_i \bar{X}_n)^2 / (n-1)$
- Sample maximum: $\max_{i=1}^{n} X_i$

- Independent random variables X_1, X_2, \dots, X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $\sum_{i=1}^{n} (X_i \bar{X}_n)^2 / (n-1)$
- Sample maximum: $\max_{i=1}^{n} X_i$
- The probability distribution of a statistic is called its sampling distribution

of Binomial Distribution

Out of the second

Example

Suppose X_1, X_2, \cdots, X_n is a random sample from a $N(\mu, \sigma^2)$ population, Find the sampling distribution of sample mean.

Sampling Distribution & Central Limit Theorem

Normal approximation of Binomial Distribution

Sampling Distribution

Example

Suppose X_1, X_2, \dots, X_n is a random sample from a $N(\mu, \sigma^2)$ population, Find the sampling distribution of sample mean.

 $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} = \sum_{i=1}^n \frac{1}{n} X_i$. From last lecture we know that sum of normal r.v.s is still a normal r.v. Hence we only need to figure its mean and variance.

$$E[\bar{X}_n] = \sum_{i=1}^n \frac{1}{n} \mu = \mu$$

$$Var[\bar{X}_n] = \sum_{i=1}^n \frac{1}{n^2} \sigma^2 = \frac{\sigma^2}{n}$$

Therefore, we have $\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n})$

Normal approximation of Binomial Distribution

Control Limit Theorem

Central Limit Theorem (CLT)

CLT

The **sampling distribution** of the **mean** will become approximately normally distributed as the sample size becomes larger, irrespective of the shape of the population distribution!

Let
$$X_1, X_2, \dots, X_n \overset{i.i.d.}{\sim} F$$
 with $\mu = \mathrm{E}[X_i]$ and $\sigma^2 = \mathrm{Var}[X_i]$.
Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \overset{d}{\to} \mathrm{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Sampling
Distribution &
Central Limit
Theorem

Normal approximation of Binomial Distribution

Control Limit Theorem

11.8

CLT: Sample Size (n) and the Normal Approximation

Sampling Distribution & Central Limit Theorem

Normal approximation of Binomial Distribution

Central Limit Theorem

Why CLT is important?

- Sampling
 Distribution &
 Central Limit
 Theorem
- CLEMSON I

Sampling Dietributi

- \bullet In many cases, we would like to make statistical inference about the population mean μ
 - The sample mean \bar{X}_n is a sensible estimator for the population mean
 - CLT tells us the **distribution** of our estimator $\Rightarrow \bar{X}_n \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$
- Applications: Confidence Interval, Hypothesis Testing