业 大 学 试 卷 (A) 肥 Т

共 1 页第 1 页

2015~2016 学年第<u>二</u>学期 课程代码<u>1400071B</u> 课程名称<u>线性代数</u>学分<u>2.5</u> 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑ 考试日期 2016 年 5 月 6 日 10:20-12:20 命题教师 集体 系 (所或教研室) 主任审批签名 专业班级(教学班)

一、填空题(每小题4分,共20分)

2. 已知
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, A^* 为 A 的伴随矩阵,则 $\left| (5A^*)^{-1} \right| = \underline{\qquad}$.

3. 设 A 为正交矩阵且 |A| > 0 , 则 $|A^T| = _____$.

4. 当
$$\lambda =$$
 _____ 时,方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
 有无穷解,通解为_______ $x_1 + x_2 + \lambda x_3 = \lambda^2$

5. 已知对不全为零的任何实数 $x, y, z, f(x, y, z) = -5x^2 - 6y^2 - 4z^2 + 2axy + 2axz$ 都小于零,则 a 的取值 范围是_____

二、选择题(每小题4分,共20分)

- 1. 设 $A \in n$ 阶方阵,k 是常数,若 |A| = a,则 $|kAA^T| =$ _____.
- (A) ka^2

- (B) $k^2 a$ (C) $k^2 a^2$ (D) $k^n a^2$

(D) 12

2. 设A和B都是n阶可逆矩阵,若 $C = \begin{pmatrix} O & B \\ A & O \end{pmatrix}$,则 $C^{-1} = \underline{\qquad}$.

$$\text{(A)} \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} O & A^{-1} \\ B^{-1} & O \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} B^{-1} & O \\ O & A^{-1} \end{pmatrix}$$

3. 设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, λ_1 , λ_2 , λ_3 是 $B = P^{-1}AP$ 的三个特征值,则 $\lambda_1 + \lambda_2 + \lambda_3 = \underline{\qquad}$.

- (A) 11
- (B) 5
- (C) 10

- 4. 若r维向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关, α 为任一r维向量,则______.
- (A) $\alpha_1, \alpha_2, \dots, \alpha_m, \alpha$ 线性相关
- (B) $\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha$ 线性无关
- (C) $\alpha_1, \alpha_2, \dots, \alpha_m, \alpha$ 线性相关性不确定 (D) $\alpha_1, \alpha_2, \dots, \alpha_m, \alpha$ 中一定有零向量
- 5. n 元齐次方程组 Ax = 0 有非零解的充分必要条件是
- (A) $R(A) \le n$ (B) R(A) < n
- (C) $R(A) \ge n$ (D) R(A) > n

三、(8分) 计算
$$n$$
阶行列式 $D_n = \begin{vmatrix} 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 2 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots \\ n-1 & \cdots & 0 & 0 & 0 \\ 0 & \cdots & 0 & 0 & n \end{vmatrix}$ (行列式中未写出的其余元素均为 0).

四、(10分) 已知
$$AP = PB$$
, 若 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, 求 A 和 A^5 .

五、(8分) 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
的一个特征值为3,求 y .

- 六、(8分) 设方阵 $A = (\alpha_1, \beta_1, \beta_2, \beta_3), B = (\alpha_2, \beta_1, \beta_2, \beta_3), \exists |A| = 1, |B| = 4, 求 |A + B|.$
- 七、(8分) 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,向量组 $\alpha_2,\alpha_3,\alpha_4$ 线性无关,
- (1) α_1 是否可以由 α_2 , α_3 线性表示? (2) α_4 是否可以由 α_1 , α_2 , α_3 线性表示?试证明你的结论.
- 八、(12 分) 已知二次型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3(a > 0)$ 通过正交变换化成标准形

 $f = y_1^2 + 2y_2^2 + 5y_3^2$, 试求参数 a 及所用的正交变换矩阵.

九、(6分) 设 $B = (b_{ij})_{n \times k}$, $C = (c_{ij})_{k \times n}$, A = BC, $|A| \neq 0$, 证明方程组 $B^T x = 0$ 只有零解.

合肥工业大学试卷(A)参考答案

共 1 页第 1 页

2015~2016 学年第 二 学期 课程代码 1400071B 课程名称 线性代数 学分 2.5 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑

专业班级(教学班)

考试日期

命题教师 集体 系(所或教研室)主任审批签名

一、填空题(每小题4分,共20分)

1.
$$x = 1, 2, 3;$$
 2. $\frac{1}{125};$ 3. 1; 4. 1; $k_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix};$ 5. $-2\sqrt{3} < a < 2\sqrt{3}$.

二、选择题(每小题4分,共20分)

D C D A B

三、(8分)

解:方法一:由行列式定义

$$D_{n} = \begin{vmatrix} 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 2 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots \\ n-1 & \cdots & 0 & 0 & 0 \\ 0 & \cdots & 0 & 0 & n \end{vmatrix} = \sum (-1)^{t} a_{1j_{1}} a_{2j2} \cdots a_{nj_{n}} = (-1)^{t(n-1n-2\cdots1n)} n! = (-1)^{\frac{(n-1)(n-2)}{2}} n!$$

四、(10分)

解: $|P| = -1 \neq 0, P$ 可逆,用初等行变换求出 P^{-1}

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & -4 & 1 & 1 \end{pmatrix}, \quad \downarrow \downarrow P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{pmatrix},$$

$$A = PBP^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{pmatrix}$$

 $A^5 = PB^5P^{-1} = PBP^{-1} = A$

五、(8分)

解:
$$|A-3I| = \begin{vmatrix} -3 & 1 & 0 & 0 \\ 1 & -3 & 0 & 0 \\ 0 & 0 & y-3 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = 8(2-y) = 0$$
,所以 $y = 2$.

六、(8分)

M:
$$|A+B| = |\alpha_1 + \alpha_2, 2\beta_1, 2\beta_2, 2\beta_3| = 8(|\alpha_1, \beta_1, \beta_2, \beta_3| + |\alpha_2, \beta_1, \beta_2, \beta_3|) = 8 \times (1+4) = 40.$$

七、(8分)

证明: (1) α_1 能由 α_2 , α_3 线性表示.

因为已知向量组 α_2 , α_3 , α_4 线性无关,故其部分组 α_2 , α_3 也线性无关,又知向量组 α_1 , α_2 , α_3 线性相关,所以 α_1 能由 α_2 , α_3 线性表示.

(2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

用反证法, 设 α_4 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示, 即存在常数 $\lambda_1,\lambda_2,\lambda_3$, 使得 $\alpha_4 = \lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3$,

又由(1) 知 α , 能由 α , α , 线性表示, 即有 α , = μ , α , + μ , α , 代入上式得

 $\alpha_4 = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3 = \lambda_1 (\mu_2 \alpha_2 + \mu_3 \alpha_3) + \lambda_2 \alpha_2 + \lambda_3 \alpha_3 = (\lambda_1 \mu_2 + \lambda_2) \alpha_2 + (\lambda_1 \mu_3 + \lambda_3) \alpha_3 , \quad \text{即} \quad \alpha_4 \text{ 能 由}$ $\alpha_2, \alpha_3 \text{ 线性表示, 从而向量组} \quad \alpha_2, \alpha_3, \alpha_4 \text{ 线性相关, 与己知矛盾, 所以} \quad \alpha_4 \text{ 不能由} \quad \alpha_1, \alpha_2, \alpha_3 \text{ 线性表示.}$

八、(12分)

解:
$$f(x) = x^T A x$$
, 其中 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{pmatrix}$, 特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5$, 则 $|A| = 1 \times 2 \times 5 = 10$,又

$$|A| = 18 - 2a^2$$
, 所以 $18 - 2a^2 = 10$, 得 $\alpha = \pm 2$, 又 $\alpha > 0$, 则 $\alpha = 2$,此时 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$,

$$\lambda_1 = 1$$
,解 $(A - E)x = \theta$,得 $\alpha_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$,单位化 $\beta_1 = \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$,

$$\lambda_2 = 2$$
,解 $(A - 2E)x = \theta$,得 $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$,单位化 $\beta_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$,

$$\lambda_3 = 5$$
,解 $(A - 5E)x = \theta$,得 $\alpha_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$,单位化 $\beta_3 = \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$,

合 肥 工 业 大 学 试 卷 (A) 参 考 答 案

共 1 页第 1 页

2015~2016 学年第<u>二</u>学期 课程代码 1400071B 课程名称 线性代数 学分 2.5 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑

取 $P = (\beta_1, \beta_2, \beta_3)$, 则 $P^T A P = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 5 \end{pmatrix}$, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$ 为所求正交变换矩阵。

九、(6分)

证明: 由 A = BC,则 $R(A) = R(BC) \le \min\{R(B), R(C)\}$,又 $|A| \ne 0$,所以 $R(A) = n \le R(B) \le \min(n, k)$

即 R(B) = n, B^T 为 $k \times n$ 矩阵, $R(B^T) = R(B) = n$, 所以 $B^T x = 0$ 只有零解。