UNIVERSIDADE FEDERAL DO MARANHÃO BACHARELADO INTERDISCIPLINAR EM CIÊNCIA E TECNOLOGIA

GUILHERME HANIEL COSTA PASSINHO - 20250020340

JÔNATHAS SILVA OLIVEIRA - 2021024590

JOSÉ AUGUSTO SANTOS LOPES - 2021066213

LIAH RENATA COLINS DA SILVA - 2023030013

WANDERSON CAMPOS SOARES - 2021052281

Modelagem de ULA com 4 Bits: Da Teoria à Simulação

GUILHERME HANIEL COSTA PASSINHO
JÔNATHAS SILVA OLIVEIRA
JOSÉ AUGUSTO SANTOS LOPES
LIAH RENATA COLINS DA SILVA
WANDERSON CAMPOS SOARES

Modelagem de ULA com 4 Bits: Da Teoria à Simulação

Trabalho apresentado à disciplina de Arquitetura de computadores do curso de Bacharelado Interdisciplinar em Ciência e Tecnologia da Universidade Federal do Maranhão.

Orientador: Prof. Luiz Henrique Neves Rodrigues

RESUMO

Este relatório apresenta o desenvolvimento e a simulação de uma Unidade Lógica e Aritmética (ULA) de 4 bits utilizando a ferramenta Logisim Evolution. A ULA é um dos componentes fundamentais da Unidade Central de Processamento (CPU), responsável por realizar operações aritméticas (como soma e subtração) e lógicas (como AND, OR, XOR e NOT). Com o objetivo de facilitar a compreensão do funcionamento interno da ULA, foi implementado um modelo elementar baseado em circuitos lógicos combinacionais, utilizando somadores completos e multiplexadores. A simulação considera entradas de 4 bits para os operandos A e B, permitindo a realização de múltiplas operações a partir da seleção de sinais de controle. A subtração é obtida por meio do complemento de dois, aplicando portas XOR ao operando B e um sinal de carry-in ao primeiro somador. As saídas são encaminhadas a um único barramento por meio de multiplexadores, simulando o comportamento típico de uma ULA real em processadores. O projeto demonstra, na prática, como operações básicas são implementadas em nível de hardware, contribuindo para a formação teórica e aplicada em arquitetura de computadores.

Palavras-chave: ULA. Lógica digital. Logisim. Circuitos combinacionais. Simulação.

SUMÁRIO

1 INTRODUÇÃO	5
1.1 Objetivos	5
1.1.1 Objetivo Geral	5
1.1.2 Objetivos Específicos	5
2 FUNDAMENTAÇÃO TEÓRICA	6
2.1 Unidade Lógica e Aritmética (ULA)	6
2.2 Logisim Evolution	7
3 METODOLOGIA	8
4 RESULTADO E DISCUSSÕES	9
4.1 Estrutura Geral do Circuito	10
4.2 Simulação das Operações Aritméticas	11
4.3 Simulação das Operações Lógicas	12
4.4 Comportamento do MUX	13
4.5 Considerações	14
5 CONCLUSÃO	14
REFERÊNCIAS	16

1 INTRODUÇÃO

Quando falamos sobre como os computadores funcionam por dentro, um dos componentes mais importantes é a ULA, ou Unidade Lógica e Aritmética. Ela é como o "cérebro do cérebro" do computador: é quem faz as contas (como somar ou subtrair) e também toma decisões simples, como comparar valores ou executar operações lógicas. Ou seja, sem ela, a CPU não conseguiria processar praticamente nada.

Neste trabalho, nosso grupo vai simular uma ULA simples de 4 bits usando o Logisim, um programa muito útil para montar e testar circuitos digitais. A ideia é entender, na prática, como uma ULA funciona e qual é o seu papel dentro da arquitetura dos computadores. Mesmo sendo um modelo básico, essa versão de 4 bits já nos permite ver de forma clara como os dados são processados dentro de um sistema computacional.

Além de ajudar a fixar os conceitos teóricos vistos em sala, essa experiência prática com o Logisim também nos aproxima de como tudo isso é usado no mundo real da tecnologia. Com isso, queremos mostrar que por trás de cada operação feita por um computador – por mais simples que pareça – existe uma lógica bem pensada e estruturada que começa justamente com a ULA.

1.1 Objetivos

1.1.1 Objetivo Geral

Desenvolver e simular uma Unidade Lógica e Aritmética (ULA) de 4 bits utilizando a ferramenta Logisim Evolution, com o propósito de compreender, na prática, o funcionamento de circuitos lógicos combinacionais aplicados à execução de operações aritméticas e lógicas em nível de hardware.

1.1.2 Objetivos Específicos

- Compreender os fundamentos teóricos da Unidade Lógica e Aritmética (ULA)
 e sua função na arquitetura de processadores.
- Identificar as principais operações aritméticas e lógicas realizadas por uma
 ULA em nível binário.
- Projetar, por meio de circuitos combinacionais, uma ULA funcional de 4 bits com as operações de soma, subtração, AND, OR, XOR e NOT.

- Utilizar a ferramenta Logisim Evolution para modelar e simular o funcionamento da ULA projetada.
- Analisar os resultados da simulação, validando a execução correta das operações previstas em diferentes combinações de entrada.
- Relacionar a simulação realizada com os princípios da lógica digital e da organização interna de processadores reais.

2 FUNDAMENTAÇÃO TEÓRICA

A arquitetura de computadores é fundamentada em blocos funcionais que atuam de forma coordenada para processar informações digitais. Entre esses blocos, a Unidade Lógica e Aritmética (ULA) e os circuitos lógicos combinacionais são centrais no processamento de dados binários. A compreensão desses elementos é essencial para o entendimento da lógica interna de um processador, pois são responsáveis pela execução das instruções mais fundamentais. Para visualizar esses conceitos de forma prática, ferramentas de simulação, como o Logisim Evolution, têm sido amplamente utilizadas no ensino e aprendizagem de circuitos digitais.

2.1 Unidade Lógica e Aritmética (ULA)

A Unidade Lógica e Aritmética (ULA) é um dos principais componentes da Unidade Central de Processamento (CPU), sendo responsável pela execução das operações matemáticas e lógicas mais elementares de um sistema computacional. Conforme Stallings (2010), a ULA (figura 1) é o núcleo responsável por realizar cálculos e decisões lógicas sobre dados binários, operando diretamente com os valores armazenados nos registradores.

A ULA atua em sincronia com a unidade de controle e a memória, executando operações como soma, subtração, AND, OR, NOT e XOR, todas fundamentais para a computação moderna. A estrutura interna de uma ULA é composta, essencialmente, por circuitos combinacionais, que permitem a manipulação dos bits das entradas conforme a operação desejada. Para implementar a soma, por exemplo, utiliza-se o somador completo (full adder), que permite realizar operações com múltiplos bits, propagando os valores de carry entre as posições.

Além das operações aritméticas, a ULA executa operações lógicas bit a bit, por meio do uso de portas lógicas, como AND, OR e XOR, além da operação de negação (NOT). A subtração é implementada de forma eficiente com o uso do complemento de dois, onde o operando é invertido com XOR e somado a um bit de carry-in igual a 1.

Apesar de ULAs modernas conterem recursos mais avançados, como registradores de deslocamento e suporte a multiplicações e divisões, este trabalho concentra-se na modelagem de uma ULA elementar, com 4 bits de entrada, voltada para fins didáticos e de compreensão estrutural.

Figura 1 - Unidade Lógica e Aritmética.

Fonte: STALLINGS (2021)

2.2 Logisim Evolution

O Logisim Evolution (figura 2) é uma ferramenta de simulação digital de código aberto voltada para o ensino e experimentação de circuitos lógicos. Ele é amplamente utilizado em ambientes acadêmicos por permitir a construção visual de circuitos digitais com uma interface intuitiva, facilitando o aprendizado de conceitos complexos da eletrônica digital e da arquitetura de computadores (CHIAPPIN et al., 2020).

Figura 2 - Software Logisim Evolution.

Fonte: CHIAPPIN (2009)

Entre seus recursos, destaca-se a possibilidade de projetar e testar portas lógicas, somadores, multiplexadores, flip-flops, registradores e até sistemas completos como ULAs e pequenas CPUs. A simulação é feita em tempo real, permitindo a visualização imediata dos efeitos das alterações nos sinais de entrada, o que contribui significativamente para a assimilação dos conceitos teóricos.

A utilização do Logisim Evolution no presente trabalho se deu pela sua capacidade de representar de forma clara e prática os circuitos que compõem a ULA de 4 bits. Com ele, foi possível simular a operação de cada componente do circuito (desde os somadores completos até os multiplexadores) e verificar, passo a passo, o funcionamento do sistema como um todo. Isso proporcionou uma abordagem mais concreta e interativa no estudo da lógica digital aplicada à arquitetura de processadores.

3 METODOLOGIA

A metodologia adotada neste trabalho tem caráter prático e experimental, com base na aplicação de conceitos da lógica digital por meio da construção e simulação de circuitos combinacionais no ambiente Logisim Evolution. O objetivo principal foi modelar uma Unidade Lógica e Aritmética (ULA) de 4 bits, representando, de forma simplificada, os processos internos realizados por processadores reais em nível de hardware.

Inicialmente, foi realizada uma revisão teórica sobre o funcionamento da ULA e os principais componentes lógicos envolvidos em sua construção, com destaque

para portas lógicas (AND, OR, XOR, NOT), somadores completos (full adders) e multiplexadores. Em seguida, elaborou-se o projeto do circuito, com a definição das entradas, saídas e das operações que seriam implementadas.

O circuito desenvolvido possui duas entradas principais (A e B), cada uma composta por 4 bits, além de sinais de controle responsáveis por selecionar a operação a ser realizada. A parte aritmética da ULA foi construída utilizando quatro somadores completos conectados em cascata. O operando B passa por portas XOR controladas por um bit de subtração, permitindo alternar entre soma e subtração por meio do uso do complemento de dois. O bit de carry-in do primeiro somador foi conectado ao mesmo controle, assegurando o correto funcionamento da subtração.

As operações lógicas (AND, OR, XOR e NOT) foram implementadas com o uso direto de portas lógicas, operando bit a bit entre os operandos A e B. Para a operação NOT, foi utilizado um recurso alternativo com portas XOR fixando um nível lógico alto, de forma a inverter todos os bits de A independentemente de B.

Como a ULA deve direcionar apenas uma operação por vez ao barramento de saída, foram utilizados multiplexadores 4:1 para selecionar qual conjunto de resultados (soma/subtração, AND, OR, XOR ou NOT) seria enviado para as saídas Y3 a Y0. A seleção foi feita por meio de bits de controle conectados aos sinais de seleção dos multiplexadores.

Durante a simulação, foram aplicados diferentes conjuntos de valores binários às entradas A e B, a fim de verificar o funcionamento correto de cada operação implementada. Os resultados foram observados diretamente na interface do Logisim, permitindo validar o comportamento do circuito frente às operações esperadas. Casos específicos como 9 + 3, 8 - 2, 1010 AND 1100, entre outros, foram testados e analisados.

Ao final, a simulação demonstrou que, mesmo em sua versão reduzida, a ULA de 4 bits construída reflete fielmente os princípios de funcionamento das ULAs reais, sendo uma ferramenta eficaz para o ensino e a visualização prática da lógica digital aplicada à arquitetura de computadores.

4 RESULTADO E DISCUSSÕES

A simulação da Unidade Lógica e Aritmética (ULA) de 4 bits foi realizada com sucesso na ferramenta Logisim Evolution, demonstrando, na prática, o

funcionamento das operações lógicas e aritméticas fundamentais em nível de hardware. A construção modular do circuito permitiu validar cada parte do sistema separadamente, garantindo maior controle e clareza no desenvolvimento.

4.1 Estrutura Geral do Circuito

A ULA de 4 bits foi projetada de forma modular, facilitando a construção e o teste do circuito. O sistema é composto por quatro blocos principais:

- Somadores Completos em Cascata: quatro somadores interligados que realizam a soma binária com transporte entre bits, permitindo operações aritméticas precisas.
- Blocos de Portas Lógicas: circuitos independentes para as operações AND, OR, XOR e NOT, que operam bit a bit sobre as entradas, realizando as funções lógicas básicas.
- Multiplexadores 4:1: responsáveis pela seleção do resultado a ser enviado à saída, controlados por sinais binários que definem qual operação será exibida.
- 4. Barramento de Saída de 4 Bits: que apresenta o resultado final da operação da ULA para uso em outras partes do sistema.

O controle geral da ULA é feito através de dois sinais binários de seleção, que determinam a operação a ser executada, conforme definido na tabela de controle implementada no próprio circuito. Essa tabela relaciona combinações dos sinais de controle com as operações correspondentes, como soma, AND, OR, XOR, e negação, permitindo uma interface simples e direta para o usuário ou para outras unidades do sistema computacional.

Essa organização estrutural, além de facilitar a compreensão e a manutenção do circuito, também permite a expansão futura da ULA para incluir operações adicionais, bastando para isso a adição de novos blocos e a reconfiguração dos sinais de controle.

Figura 3 - Circuito completo da ULA de 4 bits.

Fonte: Autoria própria (2025)

4.2 Simulação das Operações Aritméticas

A simulação das operações de soma e subtração foi implementada com quatro somadores completos (full adders). A entrada A vai diretamente aos

somadores, enquanto a entrada B passa por portas XOR controladas pelo sinal ADD/SUB, permitindo a operação de subtração ao aplicar o complemento de dois.

Casos testados:

- 9 + 3 = 12 (1001 + 0011 = 1100)
- \bullet 8 2 = 6 (1000 0010 = 0110)
- 7 7 = 0 (0111 0111 = 0000)

Figura 4 - Entradas A=1001, B=0011, operação: soma → saída Y=1100.

Fonte: Autoria própria (2009)

4.3 Simulação das Operações Lógicas

As portas lógicas foram implementadas para operações bit a bit. Os testes confirmaram o funcionamento esperado de cada operação:

- AND: 1101 AND 1011 = 1001
- OR: 0101 OR 0011 = 0111
- XOR: 1111 XOR 0001 = 1110
- NOT de A (ex: A=0101 → NOT A=1010)

Figura 5 - Operação AND com A=1101, B=1011 → saída Y=1001.

4.4 Comportamento do MUX

Os multiplexadores foram essenciais para a seleção da operação realizada. Conforme os bits de controle, os MUXs direcionaram corretamente os dados processados à saída, garantindo o funcionamento de todo o circuito. Foram testadas todas as combinações de controle conforme a tabela embutida no circuito:

 Operação
 Controle (binário)

 Soma/Subtração
 00

 AND
 01

 OR
 10

 XOR/NOT
 11

Tabela 1 - Combinações de controle.

Fonte: Autoria própria (2025)

Figura 6 - MUXs com os sinais de controle ativos.

Fonte: Autoria própria (2025)

4.5 Considerações

Apesar de tratar-se de um modelo reduzido de 4 bits, o circuito simulado reflete fielmente os princípios de funcionamento das ULAs reais. A modularidade e clareza da construção facilitaram a análise e possibilitam sua expansão para ULAs de 8 ou 16 bits com alterações mínimas na estrutura. A utilização do Logisim Evolution se mostrou eficaz tanto na visualização quanto na validação do projeto.

5 CONCLUSÃO

O desenvolvimento e simulação de uma Unidade Lógica e Aritmética (ULA) de 4 bits no ambiente Logisim Evolution permitiu consolidar, de forma prática, os conhecimentos teóricos adquiridos sobre circuitos lógicos e arquitetura de

computadores. A implementação de operações aritméticas (soma e subtração) e lógicas (AND, OR, XOR e NOT), utilizando portas lógicas, somadores completos e multiplexadores, demonstrou como esses elementos fundamentais se integram para compor sistemas computacionais reais.

Durante o projeto, observou-se que, mesmo com um número reduzido de bits, é possível reproduzir com fidelidade o comportamento básico de uma ULA funcional, evidenciando a importância do estudo dos circuitos combinacionais para a formação em computação e engenharia. A simulação possibilitou testar diferentes combinações de entrada e operação, reforçando a compreensão do fluxo de dados e do controle interno de um processador.

Além disso, a escolha do Logisim Evolution como ferramenta de apoio se mostrou acertada, por oferecer recursos que aliam interatividade, simplicidade visual e rigor técnico. A experiência adquirida com a modelagem e análise do circuito contribui para o desenvolvimento de competências essenciais ao projeto de sistemas digitais, incluindo abstração lógica, depuração e validação de circuitos.

Portanto, conclui-se que a simulação da ULA de 4 bits atingiu plenamente os objetivos propostos, ao permitir uma abordagem prática, didática e funcional do tema. O modelo desenvolvido poderá servir de base para projetos mais complexos, como ULAs de maior capacidade, unidades com controle sequencial ou até mesmo arquiteturas completas de processadores em nível educacional.

REFERÊNCIAS

CHIAPPIN, Carla Andreotti et al. Logisim Evolution: uma ferramenta para o ensino e aprendizagem de circuitos digitais. *Revista de Ensino de Ciência e Tecnologia*, Ponta Grossa, v. 13, n. 2, p. 116–132, 2020. Disponível em: https://doi.org/10.3895/rbect.v13n2.10642. Acesso em: 6 jul. 2025.

DELGADO, José; RIBEIRO, Carlos. *Arquitetura de computadores*. 2. ed. Rio de Janeiro: LTC, 2009. 534 p.

ELPROCUS. *Electronics projects and tutorials*. Disponível em: https://www.elprocus.com/. Acesso em: 6 jul. 2025.

ITALOINFO. *Circuitos lógicos*. Disponível em: https://www.italoinfo.com.br/info/circuitos-logicos/index.php. Acesso em: 6 jul. 2025.