G		A1-	······································		Aw.		H -	H-1+	A W -			***	***
	31 - cartinued	(c) $\int_{0}^{M} (\cos x \cdot \sin^2 x dx = \left[V_3 \sin^3 x \right]_{0}^{M_f}$	= 13 (sin3 14 - sin30)	- 13(托)3-0	$=\frac{12}{652}=\frac{32}{12}\approx 0.1178$.	(a) $3e^{-4x^3} + 8 = 0$	$\frac{(e^{\tau} \alpha = x^{-})}{\alpha^{2} - 4\alpha + 8 = 0}$	_	$\frac{1}{1} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial x} = 0 \frac{\partial u}{\partial x} = 1$ $\frac{\partial u}{\partial x} = 1 \frac{\partial u}{\partial x} = 1$,
	01									. ,			
Pa.1		Aw-()	A1-1	-	A1-1	,	Aw-(3)		AI-1		A1-1		Aw-3
TRIAL EXAMINATION 2000.		(a) (1) ton (A+B) = tanA + tanB	(ii) ton 105° = ton (45°+60°)	1 - ton 45 + ton60	1 + 22	EC+1 x EC+1 1		$(b) \frac{2\pi + 1}{2\pi - 1} > 2$	Critical Value when $23c-1=0$ i.e. $3c=1/2$	Now, 22+1 > 2(22-1) 22+1 > 42-2	3 × 2 × 2 × .: (21 € 32)	TEST: × O × O × O × O × O × O × O × O × O ×	(1/2 < 24 < 1/2)

J	V	A	Ar	A.
$=\frac{\sqrt{\sqrt{\sqrt{2}}}}{\sqrt{\sqrt{2}}}$	(33. (a) (1) Let $f(x) = x^2 - 4 + \log_e x$: $f(1) = 1^2 - 4 + \log_e(1) = -3$ $f(2) = 2^2 - 4 + \log_e(2) = 0.693$ Since $f(x)$ changes sign, the root lies helwan land 2.	$f(14) = 1.5^2 - 4 + \log_{\theta}(1.5) = -1.34$ Since $f(14) < 0$, the root lies between $1.5 \text{ and } 2$ Half the interval of $1.5 \text{ and } 2$ is 1.75	f (1.75) = 1.75 ² - 4 + 1cge (1.75) = -0.378 Since f (1.75) < 0, the root lies between 1.75 and 2 (iii) The root is the interestion of y=1cyex and y=1cyex and y=1cyex.	such paint.
Al-1 Aω-(2) Al-1	Aw-2)	Aw-(2)	A w - 0	A1-1 A1-1 A1-1
32. $(\alpha)(3)(x(12)(2x-x)) = (2x \cdot 12 + \log 2x \cdot 1) - 1$ $= 1 + \log 2x - 1$ $= 1 \cos 3x$ (i) $\int_{2}^{6} \log 2x dx = \left[2x \log x - 2x \right]_{2}^{6}$	= (eloge-e)-(2 log2-2) = (e-e) - 2 (log2-1) = 2 (1-log2) (b)(i) CF = CE (tangents from an external point are equal). . AFCF is isosceles.	(base 2's issc. 12) (all. segment Theorem)	(C) (i) $\cos 2\alpha = 2\cos^2\alpha = \alpha $ $ \alpha = 3\alpha$ $\cos 6\alpha = 2\cos^2 3\alpha = \alpha $	3κ dx $86\kappa + 1$) dx $8in 6\kappa$ 3κ $n \pi$) - $(6 - 16 \sin 0)$

A	A	10	<u> </u>	***************************************				**************************************	Aw.			A1.
Q4, (α) (1) AP: β-α = χ-β : 2β = α + δ	(i) d+8+8==================================	$(ii) (\alpha_{+1} x) + \beta_{1} = 4.5$ $2\beta_{1} + \beta_{2} = 4.5$ $2\beta_{2} + \beta_{3} = 4.5$, n	Also, abr = -4 = -24 : ar = -74 6	\sim	300 into (2):	(2a+1)(2a+1) = 0 $(2a+1)(2a+1) = 0$	When $\alpha = -V_2$, $S = 7/2$ }	: The rook on -12, 32, 72	$(4-6) + \cdots + (1+6+11 + \cdots + (50-4)) = (4-6+11 + \cdots + (50-4))$	$ (i) ave: 16+11++ (5n-4) = \frac{1}{2} n (5n-3) $	* Prove the for n=1:
		Aw-(1)		A-w-(2)				A1 - 1	<u>-</u>	Aw-(2)		Aw-(2)
25. continued (b) $y = \frac{x^2 - 2x - 3}{2c - 1}$	() When x = 0: y= -3 -> (y=3)	Wony=0: 22-22-3=0 (22-3)(24-1)=0 -5 (20=3-1)	(ii) Vertical Asymptotes: when 2c-1=0 =-	Oblique Asymphys: When (y= 21-1) DIVIDE: 262-+1	(3c-1) - 4 - (1-7c)	(ii) $o^{1}_{0}_{0}_{0}_{1}_{1}_{2}_{2}_{1}_{1}_{2}_{1}_{1}_{1}_{1}_{2}_{1}_{1}_{1}_{1}_{2}_{1}_{1}_{1}_{1}_{2}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1$	$= \frac{2\pi^2 - 2\pi - 2\pi + 2 - x^2 + 2\pi + 3}{(x-1)^2}$	$= \frac{x^2 - 2x + 5}{(x - i)^2}$	TP when object to		N. Track	X C E

Q4. Continued	_	i
	art Continued	
* Assume the fur n=K:	(The DIMP: ton420= 500)	A
1. ie. 1. +6+11+=== + 54-4 = 1/2 k.(5k-3)	tenulo	•
* Prove the far n=16+1:	In DINP: ton 32" = 500 (JN = 500) A.	Æ
RTP: [1+6+11++5k-4]+5(k+1)-4 = ½(k+1)(5(k+1)-3)	(i) -10 -1 B. His C. 1-0 L	1
i.e. $ +(+1) _{+-}+(5 _{+-}+)+(5 _{++1})=V_2(k+1)(5 _{+2})$		
	$\frac{1}{2}$ MN = $\frac{1}{2}$	
LT() = 22 L(5/L=5/+ [5/L+1)		
= 72 [51.4 - 31.4 + 101.42] = $82 [61.4 + 71.42]$		3
	0.02-00.2	
= 1/2 (4+1)(54+2)	(a)(i) Mpa = 200-200 = 0 (p-9)(p+9) = (p+9)	
# RHS.	(2-d)	
Since proved the far n=1k+1 and show the far	$\frac{1}{1} \frac{1}{1} \frac{1}$	
n=1; then the result must be true for n=2,3 de.		3
l	f(w) = f(w) (ii) $f(w) = f(w) = f(w) = f(w)$	
Q (2)	$ \eta-\eta =M(2L-2L)$	
/ MJN = 100°.		
200	3h-ap= -2x +2ap	,
N (32)	: (2c + py = 2ap2 + ap3) (1) Au1 -1	7
() () () () () () () () () ()	Similarly on the long of the land of the l	,
, ct/h	2C + 0u - 200 21 000 3	
W	(2)	
	$(2g^{2}-g)$: $4(p-q) = 2a(p-q) + a(p^{3}-q^{3})$	
	$V = 2\alpha + \alpha \left(\rho^{2} + \sigma^{2} + \rho^{q}\right) AI - \sigma^{q} $	1

05. Continued	(d) When t=0:	(B) When t=5:	$e^{5k} = \frac{594}{54}$ $5k = \ln (\frac{534}{54})$ $\therefore k = \frac{1}{5} \ln (\frac{594}{54})$	ie. (k = -0.0163) (3st)	4.	$e^{-0.01634} = \frac{40}{64}$ $-0.01634 = \ln(400)$	$Aw(3)$ i. $t = \frac{\ln(4964)}{-0.0163}$ i.e. $t = (28.9 \cdot 9 \cdot 9 \cdot 8 \cdot 8 \cdot 9 \cdot 9 \cdot 18 \cdot 18 \cdot 18$		Aw-(Î)	•
20. Commuec Sb into Eq. θ: x + ρ(2010ρ² + αρ² + αργ) = 20ρ + αρ³	But prg = 2 == 2000	= Coordinates of R = 2 = -2apq = 3 y = 2a+a(p2+q2+pg)-@	(i) $f_{p}(\theta)$: $y = 2\alpha + \alpha [(p+q)^{2} - pq]$ $y = 2\alpha + \alpha (4-pq)$	7 = 60-0pg.	Eq. 3): pg = -x	2 = 120 + 2 2y = 120 + 2	= (2 -2y+12a = 0) istheryn of the low's of R.	$(b)(i) T = T_0 + Aekt$ $\frac{\partial f}{\partial r} = 0 + Aekt J,$		