

내부 논문 Review Study 발표 : DeSTSeg

2023.08.04

Youngjae Kim

1. About the Paper

DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

Xuan Zhang¹, Shiyu Li², Xi Li², Ping Huang², Jiulong Shan², Ting Chen¹

¹Tsinghua University ²Apple

x-zhang18@mails.tsinghua.edu.cn, {shiyu.li, weston.li, huang.ping, jlshan}@apple.com, tingchen@tsinghua.edu.cn

- Accepted by CVPR 2023
- Tsinghua Univ, Apple

https://github.com/apple/ml-destseg

Importance of Visual Anomaly Detection (AD)

- 1) Industrial inspection
- 2) Medical disease screening
- 3) Video surveillance (like CCTV)

Properties of Anomalous samples

- 1) Types are enormous
- 2) Occurs rarely
- 3) Impossible to get all possible cases
- -> usually, use only "normal" samples to train

- Student Teacher Framework (knowledge distillation)
 - Proven to be effective in AD

- Pretrained on large-scale dataset (ex. ResNet50 on ImageNet)
- Large Models

- Mimic feature representations of teacher network
- Small size / but try to keep the performance same

TRAINING

data with teacher

INFERENCE

- Using multi level feature could be suboptimal
 - MVTec AD dataset (category of transistor)
 - 88.4% using only last layer feature representation
 - 81.9% on multi-level features

DeSTSeg = Denoising S + T + Segmentation

- Generated synthetic anomaly image
 - 1) Generate random two-dimensional Perlin noise
 - 2) Binarize to obtain anomaly mask (M)
 - 3) Replace mask region with anomaly-free image (*Ia*) & arbitrary image from external data source (*A*)
 - 4) Apply opacity (β) [0.15,1]

$$I_a = \beta(M \odot A) + (1 - \beta)(M \odot I_n) + (1 - M) \odot I_n$$
 (1)

• means the element-wise multiplication operation.

$\label{eq:DR-EM-A} \textbf{DR-EM-A discriminatively trained reconstruction embedding for surface} \\ \textbf{anomaly detection}$

Vitjan Zavrtanik Matej Kristan Danijel Skočaj University of Ljubljana, Faculty of Computer and Information Science {vitjan.zavrtanik, matej.kristan, danijel.skocaj}@fri.uni-lj.si

ImageNet pretrained ResNet18 with final block removed(conv5_x)

Normal

Image

- Encoder randomly initialized ResNet18
- Decoder reversed ResNet18
- Train student network to remove noise from anomalous image

Cosine Distance Loss i, j – spatial coordinates on the feature maps

$$X_k(i,j) = \frac{F_{T_k}(i,j) \odot F_{S_k}(i,j)}{\|F_{T_k}(i,j)\|_2 \|F_{S_k}(i,j)\|_2}$$
(2)

Element-wise product between feature maps of S-T

$$D_k(i,j) = 1 - \sum_{c=1}^{\infty} X_k(i,j)_c$$
 (3)

$$L_{cos} = \sum_{k=1}^{3} \left(\frac{1}{H_k W_k} \sum_{i,j=1}^{H_k, W_k} D_k(i,j) \right)$$
 (4)

3. Method

- Freeze Student & Teacher Network
- Anomalous images are used as input for both S & T networks
- Binary anomaly mask (M) which is generated before -> Ground Truth
- X hat 1~3: similarities of the paired feature maps -> calculated with (2)
- Then, concatenated as X hat -> fed into segmentation network

- Similarities of the feature maps calculated
- Element-wise product between feature maps of S-T
- + Upsample = X hat 1~3

$$X_k(i,j) = \frac{F_{T_k}(i,j) \odot F_{S_k}(i,j)}{||F_{T_k}(i,j)||_2||F_{S_k}(i,j)||_2}$$
(2)

3. Method

Loss for segmentation

$$L_{focal} = -\frac{1}{H_1 W_1} \sum_{i,j=1}^{H_1,W_1} (1 - p_{ij})^{\gamma} \log(p_{ij})$$
 (5)

$$L_{l1} = \frac{1}{H_1 W_1} \sum_{i,j=1}^{H_1, W_1} |M_{ij} - \hat{Y}_{ij}|$$
 (6)

$$L_{seq} = L_{focal} + L_{l1} \tag{7}$$

- Focal loss (5)
 - 1) Even in anomalous image, majorities are background
 - 2) Focus on the minority category
- L1 loss (6)
 - 1) Improve sparsity of the output
 - 2) Segmentation mask's boundaries are more distinct

Problem 1 : No guarantee that the outputs will be different

- 1) Training "Denoising Student Network" with encoder-decoder structure
- => Guaranteed the output features will be different

Problem 2 : Using multi level feature could be suboptimal

- 2) Training "Segmentation Network"
- => Will use multi-level feature as input of segmentation training

Dataset

MVTec AD – one of the most widely used benchmarks for anomaly detection and localization

- 15 categories
- Hundreds of normal images for training
- mixture of anomalous and normal images for evaluation

US [3]	STPM [31]	CutPaste [16]	DRAEM [36]	DSR [37]	PatchCore [24]	Ours
87.7	95.1	95.2	98.0	98.2	98.5	98.6 ±0.4

Table 1. Image-level anomaly detection AUC (%) on MVTec AD dataset. Results are averaged over all categories.

	US [3]	STPM [31]	CutPaste [16]	DRAEM [36]	DSR [37]	PatchCore [24]	Ours
bottle	97.8 / 74.2	98.8 / 80.6	97.6 / -	99.3 / 89.8	- / 91.5	98.9 / 80.1	99.2±0.2 / 90.3±1.8
cable	91.9 / 48.2	94.8 / 58.0	90.0 / -	95.4 / 62.6	- / 70.4	98.8 / 70.0	$97.3 \pm 0.4 / 60.4 \pm 2.3$
capsule	96.8 / 25.9	98.2 / 35.9	97.4 / -	94.1 / 43.5	- / 53.3	99.1 / 48.1	99.1 ±0.0 / 56.3 ±1.1
carpet	93.5 / 52.2	99.1 / 65.3	98.3 / -	96.2 / 64.4	- / 78.2	99.1 / 66.7	$96.1 \pm 2.2 \ / \ 72.8 \pm 5.8$
grid	89.9 / 10.1	99.1 / 45.4	97.5 / -	99.5 / 56.8	- / 68.0	98.9 / 41.0	$99.1 \pm 0.1 / 61.5 \pm 1.6$
hazelnut	98.2 / 57.8	98.9 / 60.3	97.3 / -	99.5 / 88.1	- / 87.3	99.0 / 61.5	99.6±0.2 / 88.4±2.2
leather	97.8 / 40.9	99.2 / 42.9	99.5 / -	98.9 / 69.9	- / 62.5	99.4 / 51.0	99.7 ±0.0 / 75.6 ±1.2
metal_nut	97.2 / 83.5	97.2 / 79.3	93.1 / -	98.7 / 91.7	- / 67.5	98.8 / 88.8	98.6±0.4 / 93.5 ±1.1
pill	96.5 / 62.0	94.7 / 63.3	95.7 / -	97.6 / 46.1	- / 65.7	98.2 / 78.7	98.7 ±0.4 / 83.1 ±4.2
screw	97.4 / 7.8	98.6 / 26.9	96.7 / -	99.7 / 71.5	- / 52.5	99.5 / 41.4	98.5±0.3 / 58.7±3.7
tile	92.5 / 65.3	96.6 / 61.7	90.5 / -	99.5 / 96.9	- / 93.9	96.6 / 59.3	98.0±0.7 / 90.0±2.5
toothbrush	97.9 / 37.7	98.9 / 48.8	98.1 / -	98.1 / 54.7	- / 74.2	98.9 / 51.6	99.3±0.1 / 75.2±1.8
transistor	73.7 / 27.1	81.9 / 44.4	93.0 / -	90.0 / 51.7	-/41.1	96.2 / 63.2	89.1±3.4 / 64.8 ±4.0
wood	92.1 / 53.3	95.2 / 47.0	95.5 / -	97.0 / 80.5	- / 68.4	95.1 / 52.3	97.7 ±0.3 / 81.9 ±1.2
zipper	95.6 / 36.1	98.0 / 54.9	99.3 / -	98.6 / 72.3	- / 78.5	99.0 / 64.0	99.1 ± 0.5 / 85.2 ± 3.3
average	93.9 / 45.5	96.6 / 54.3	96.0 / -	97.5 / 69.3	- / 70.2	98.4 / 61.2	97.9±0.3 / 75.8 ±0.8

Table 2. Pixel-level anomaly localization AUC / AP (%) on MVTec AD dataset.

Image-level anomaly detection

- -> discriminate anomaly based on the whole image
- -> if there is a anomaly region, the whole image is counted as an anomaly

Pixel-level anomaly detection

-> each pixels are discriminated as normal or anomaly

- AUC (Area under ROC curve)
- AP (Area under PR curve)

Instance-level anomaly detection
-> Calculate overlap area between the object in ground truth mask and predicted mask

IAP = (TP + TN) / (TP + TN + FP + FN)

IAP@k% = if and only if overlapped area is over k%, considered as "detected"

Using different k thresholds, obtained average precision of this curve is called IAP.

	STPM [31]	DRAEM [36]	PatchCore [24]	Ours
bottle	83.2 / 73.3	90.3 / 84.8	81.8 / 70.1	90.5 ±1.7 / 82.5±4.1
cable	54.9 / 17.2	47.0 / 10.8	69.2 / 50.6	51.1 ± 2.5 / 26.7 ± 3.7
capsule	37.2 / 17.9	50.7 / 21.4	44.2 / 26.9	49.4 ± 1.5 / 27.3 ±3.3
carpet	68.4 / 52.2	76.8 / 32.3	64.4 / 43.7	84.5 ±4.9 / 58.6 ±17.1
grid	45.7 / 21.0	55.5 / 42.3	39.1 / 15.6	61.6 ±1.8 / 47.4 ±2.9
hazelnut	64.8 / 56.2	95.7 / 89.0	63.8 / 52.5	$87.7 \pm 1.8 \ / \ 77.6 \pm 3.4$
leather	46.2 / 24.9	78.6 / 55.0	50.1 / 30.1	77.5±1.8 / 65.3 ±3.9
metal_nut	83.4 / 81.7	92.6 / 83.9	90.1 / 84.6	93.6±1.3 / 86.5±2.7
pill	72.0 / 45.5	46.9 / 41.5	82.7 / 63.5	84.8 ±3.8 / 61.1±12.4
screw	24.4 / 4.2	68.8 / 33.0	38.4 / 16.3	53.6 ± 3.6 / 8.6 ± 2.3
tile	62.9 / 55.3	98.9 / 98.2	60.0 / 52.1	$94.7{\pm}1.8 / 86.5{\pm}3.6$
toothbrush	41.9 / 23.4	44.7 / 21.5	40.4 / 22.1	59.8 ±2.9 / 32.1 ±5.1
transistor	53.4 / 8.5	59.3 / 22.8	69.9 / 36.8	78.3±2.5 / 49.6±8.4
wood	56.0 / 35.4	88.4 / 72.6	59.7 / 35.6	87.8±2.8 / 76.4 ±3.4
zipper	59.1 / 46.6	78.7 / 67.0	66.0 / 52.4	90.6 ±2.3 / 80.3 ±4.9
average	56.9 / 37.5	71.5 / 51.7	61.3 / 43.5	76.4 ±1.0 / 57.8 ±1.8

Table 3. Instance-level anomaly detection IAP / IAP@90 (%) on MVTec AD dataset.

Figure 3. Visualization examples of our method. For each example, left: input image; middle: ground truth; right: prediction map.

noise

Figure 4. Failure cases of our method. The examples are chosen from transistor, capsule, screw, and hazelnut (from top to bottom). For each example, left: input image; middle: ground truth; right: prediction map.

4. Ablation studies

Exp.	den	ed	seg	img (AUC)	pix (AP)	ins (IAP)
1				94.8	52.9	55.8
2	\checkmark			93.4	49.6	53.9
3		\checkmark		95.4	53.3	57.7
4			\checkmark	97.3	70.1	71.8
5	\checkmark	\checkmark		94.5	54.0	58.5
6	\checkmark		\checkmark	97.3	70.9	72.3
7		\checkmark	\checkmark	97.7	69.7	71.2
8	✓	✓	✓	98.6	75.8	76.4

Table 4. Ablation studies on our main designs: denoising training (den), the encoder-decoder architecture of student network (ed), and segmentation network (seg). AUC, AP, and IAP (%) are used to evaluate image-level, pixel-level, and instance-level detection, respectively. Exp. 1 uses the same architecture of [31], but different training settings to align with Exp. $2\sim$ 8.

	img (AUC)	pix (AP)	ins (IAP)
w/o L1 loss	97.9	72.2	74.4
w/L1 loss	98.6	75.8	76.4

Table 5. Ablation studies on the segmentation loss: AUC, AP, and IAP (%) are used to evaluate image-level, pixel-level, and instance-level detection, respectively.

4. Ablation studies

	img (AUC)	pix (AP)	ins (IAP)
concatenated-ST input	98.0	72.2	72.6
cosine-distance input	98.5	72.0	74.5
DeSTSeg	98.6	75.8	76.4

Table 6. Ablation studies on the input of segmentation network: AUC, AP, and IAP (%) are used to evaluate image-level, pixellevel, and instance-level detection, respectively.

Direct concatenation of feature maps of S-T networks

Computing cosine distance of S-T network's feature map

$$X_k(i,j) = \frac{F_{T_k}(i,j) \odot F_{S_k}(i,j)}{||F_{T_k}(i,j)||_2 ||F_{S_k}(i,j)||_2}$$
(2)

$$D_k(i,j) = 1 - \sum_{c=1}^{C_k} X_k(i,j)_c \tag{3}$$

Element-wise product between feature maps of S-T

$$X_k(i,j) = \frac{F_{T_k}(i,j) \odot F_{S_k}(i,j)}{||F_{T_k}(i,j)||_2||F_{S_k}(i,j)||_2}$$
(2)

