Arquitetura e Organização de Computadores II Medidas de Desempenho

Prof. Daniel S. Marcon danielstefani@unisinos.br

Avanços no Desempenho de Computadores

- Muito progresso em aproximadamente 65 anos
 - Avanços em tecnologias utilizadas e inovações no projeto de computadores
- Aparecimento do microprocessador no final da década de 70
- Melhoria na tecnologia de circuito integrado

Avanços no Desempenho de Computadores

Avanços no Desempenho de Computadores

Consequências

- Aumento da capacidade computacional disponível aos usuários
- Melhoria do custo-benefício dos computadores estimulou novas classes (por exemplo, desktops, servidores, dispositivos móveis e computadores embarcados)
- Melhoria contínua da fabricação de semicondutores levou ao domínio da computação baseada em microprocessadores (como previsto pela lei de Moore)
- Projeto de computadores com ênfase na inovação arquitetônica e no uso eficiente das melhorias tecnológicas

Classes de Computadores

Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Price of micro- processor	\$10–\$100	\$50–\$500	\$200–\$2000	\$50–\$250	\$0.01-\$100
Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

Perdas com a Indisponibilidade de Servidores

		Annual losses with downtime of				
Application	Cost of downtime per hour	1% (87.6 hrs/yr)	0.5% (43.8 hrs/yr)	0.1% (8.8 hrs/yr)		
Brokerage operations	\$6,450,000	\$565,000,000	\$283,000,000	\$56,500,000		
Credit card authorization	\$2,600,000	\$228,000,000	\$114,000,000	\$22,800,000		
Package shipping services	\$150,000	\$13,000,000	\$6,600,000	\$1,300,000		
Home shopping channel	\$113,000	\$9,900,000	\$4,900,000	\$1,000,000		
Catalog sales center	\$90,000	\$7,900,000	\$3,900,000	\$800,000		
Airline reservation center	\$89,000	\$7,900,000	\$3,900,000	\$800,000		
Cellular service activation	\$41,000	\$3,600,000	\$1,800,000	\$400,000		
Online network fees	\$25,000	\$2,200,000	\$1,100,000	\$200,000		
ATM service fees	\$14,000	\$1,200,000	\$600,000	\$100,000		

- SPEC (Standard Performance Evaluation Corporation): suíte de aplicações para realizar o benchmark de computadores (http://spec.org/)
- Melhores escolhas de benchmarks para medir o desempenho são aplicações reais
 - o Por quê?

- SPEC (Standard Performance Evaluation Corporation): suíte de aplicações para realizar o benchmark de computadores (http://spec.org/)
- Melhores escolhas de benchmarks para medir o desempenho são aplicações reais
 - o Por quê?
 - Compiladores e arquiteturas podem fazer com que programas simples (kerneis – pedaços de aplicações reais –, programas de exemplo e benchmarks sintéticos) pareçam mais rápidos do que realmente são

- SPEC (Standard Performance Evaluation Corporation): suíte de aplicações para realizar o benchmark de computadores (http://spec.org/)
- Melhores escolhas de benchmarks para medir o desempenho são aplicações reais
 - o Por quê?
 - Compiladores e arquiteturas podem fazer com que programas simples (kerneis – pedaços de aplicações reais –, programas de exemplo e benchmarks sintéticos) pareçam mais rápidos do que realmente são
- Vantagens de um benchmark? Desvantagens?

- SPEC (Standard Performance Evaluation Corporation): suíte de aplicações para realizar o benchmark de computadores (http://spec.org/)
- Melhores escolhas de benchmarks para medir o desempenho são aplicações reais
 - o Por quê?
 - Compiladores e arquiteturas podem fazer com que programas simples (kerneis – pedaços de aplicações reais –, programas de exemplo e benchmarks sintéticos) pareçam mais rápidos do que realmente são
- Vantagens de um benchmark? Desvantagens?
 - Condições sobre as quais os benchmarks são executados afetam os resultados (exemplo: flags e modificações no código fonte)

- Normalmente busca-se:
 - Tempo de resposta (ou tempo de execução)
 - Throughput
- Como relacionar o desempenho de dois computadores diferentes (X e Y)?
 - Por exemplo, X é n vezes mais rápido que Y

- Normalmente busca-se:
 - Tempo de resposta (ou tempo de execução)
 - Throughput
- Como relacionar o desempenho de dois computadores diferentes (X e Y)?
 - Por exemplo, X é n vezes mais rápido que Y
 n = Tempo de execução Y Tempo de execução X

Medidas de Desempenho - Speedup

- Limitado pela Lei de Amdahl
- Lei de Amdahl afirma que a melhoria de desempenho obtida com o uso de um modo de execução mais rápido é limitada pela fração do tempo que o modo mais rápido pode ser usado
- Speedup = $\frac{\text{Desempenho da tarefa sem usar o aprimoramento}}{\text{Desempenho da tarefa usando o aprimoramento quando possível}}$
- Se Speedup > 1, a versão com aprimoramento reduziu o tempo de execução (ficou mais rápida)
- Se Speedup < 1, a versão com aprimoramento aumentou o tempo de execução (ficou mais lenta)

Medidas de Desempenho – Processador

- Desempenho de um processador
 - Processadores utilizam clock que executa em uma taxa constante
 - Tempo de um período de clock é indicado por sua duração (ex: 1 ns) ou por sua taxa (ex: 1 GHz)
 - Tempo de CPU = número de ciclos de clock da CPU para um programa \times tempo do ciclo de clock \circ Tempo de CPU = $\frac{\text{número de ciclos de clock da CPU para um programa}}{\text{Numero de ciclos de clock da CPU para um programa}}$
 - taxa do clock

Medidas de Desempenho – CPI, MIPS e MFLOPS

- Instruções por ciclo de clock (clock cycles per instruction CPI)
 - \circ CPI = $\frac{\text{número de ciclos}}{\text{número de instruções}}$
 - \circ CPI=1 ightarrow cada ciclo o processador executa uma instrução
- Milhões de instruções por segundo (millions of instructions per second – MIPS)
 - $\circ \ \ \mathsf{MIPS} = \tfrac{\mathsf{numero} \ \mathsf{de} \ \mathsf{instruções} \times 10^6}{\mathsf{segundo}}$
- Milhões de instruções de ponto flutuante por segundo (mega floating-point operations per second – MFLOPS)
 - $\circ \ \ \mathsf{MFLOPS} = \tfrac{\mathsf{numero} \ \mathsf{de} \ \mathsf{instruções} \ \mathsf{de} \ \mathsf{ponto} \ \mathsf{flutuante} \times 10^6}{\mathsf{segundo}}$

Exercícios

1 Dadas 3 máquinas A, B, C, com as seguintes características:

		-		-				
		Instruções versus ciclos						
Máquina	relógio	MOV	ADD	JUMP	AND	CALL	RET	MULT
A	100 MHz	1	1	1	1	1	1	1
В	300 MHz	1	2	3	2	3	2	6
C	400 MHz	1	4	8	4	8	2	12

- a Calcule o CPI médio das 3 máquinas para um programa com 100 MOV, 50 ADD, 80 JUMP, 50 AND, 40 CALL, 40 RET e 10 MULT.
- **b** Calcule qual máquina tem o melhor desempenho para realizar o programa acima (utilize o relógio de cada máquina e o CPI).
- c Calcule o tempo para executar o programa acima para cada uma das três máquinas (suponha que as instruções a serem executadas são apenas as determinadas na letra a).

Exercícios

2 Dado 4 máquinas (A, B, C e D), com as características descritas a seguir, calcule qual tem o melhor desempenho para executar os programas 1 e 2 e qual o tempo necessário para executar os programas na máquina D.

		Instruções versus ciclos (média)						
Máquina	Relógio	MOVE	ADD	J	BEQ	DIV	MULT	
Ä	400 MHz	0,5	0,5	0,5	0,5	1	1	
В	1,2 GHz	1	2	3	2	12	12	
C	1,4 GHz	2	2	2	2	2	2	
D	1,6 GHz	1	4	8	4	8	12	

- Programa 1 composto por 100 MOVE, 12 ADD, 20 J, 16 BEQ, 4 DIV e 4 MUL.
- Programa 2 composto por 30 MOV, 60 ADD, 70 J, 70 BEQ, 56 DIV e 47 MUL.

Exercícios

3 Um programa leva 10s para ser executado numa CPU a 400 MHz. Desejamos que o programa execute em 6 segundos. Para aumentar o relógio, os arquitetos tiveram de aumentar em 20% o número total de ciclos. Qual a nova frequência de relógio que será necessária?

Referências

HENNESSY, J.L. PATTERSON, D. A. Arquitetura de Computadores: uma abordagem quantitativa. Rio de Janeiro: Campus, 2003. 827p. ISBN: 85-352-110 85-35285-3.

