Introduction to Big Data

Pooya Jamshidi

pooya.jamshidi@ut.ac.ir

Ilam University

School of Engineering, Computer Group

May 9, 2025

Pooya Jamshidi Big data May 9, 2025 1/42

Data Streams: Infinite Data

Pooya Jamshidi Big data May 9, 2025 2 / 42

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

Pooya Jamshidi Big data May 9, 2025 3 / 42

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do slow updates to the model
 - SGD (SVM, Perceptron) makes small updates
 - So: First train the classifier on training data.
 - Then: For every example from the stream, we slightly update the model (using small learning rate)

5 / 42

General Stream Processing Model

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll do these today)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream

Pooya Jamshidi Big data May 9, 2025 7/42

Problems on Data Streams

- Types of queries one wants an answer on a data stream: (we'll do these next time)
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Pooya Jamshidi Big data May 9, 2025 8 / 42

Applications (1)

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

- Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample
- Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 - For all time steps k, each of k elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single day
 - Have space to store $1/10^{\text{th}}$ of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x + 2d queries)
 - Correct answer: d/(x+d)
- Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d "duplicates" 18d/100 appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
- So the sample-based answer is

$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19a}$$

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?

Hash into b = 10 buckets, take the tuple if it hashes to one of the first 3 buckets.

15 / 42

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time *n* we have seen *n* items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream: a x c y z k d g e ...

At n = 5, each of the first 5 tuples is included in the sample S with equal prob.

At n = 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen so far and out of them pick s at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- **Claim:** This algorithm maintains a sample *S* with the desired property:
 - After n elements, the sample contains each element seen so far with probability s/n

Proof: By Induction

We prove this by induction:

- Assume that after n elements, the sample contains each element seen so far with probability s/n
- We need to show that after seeing element n + 1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n = s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s=1

Proof: By Induction

- **Inductive hypothesis:** After *n* elements, the sample *S* contains each element seen so far with prob. s/n
- Now element n+1 arrives
- **Inductive step:** For elements already in *S*, probability that the algorithm keeps it in *S* is:

$$\underbrace{\left(1 - \frac{s}{n+1}\right)}_{} + \underbrace{\left(\frac{s}{n+1}\right)}_{} = \underbrace{\left(\frac{s-1}{s}\right)}_{} = \frac{n}{n+1}$$

Element n+1 discarded

Element n+1 not discarded Element in the sample not picked

- So, at time n, tuples in S were there with prob. s/n
- Time $n \to n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in S at time n+1:

$$\frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$$

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N
 - The N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product \mathbf{X} we keep 0/1 stream of whether that product was sold in the n^{th} transaction
 - We want answer queries, how many times have we sold X in the last k sales

Sliding Window: 1 Stream

Sliding Window on a singel stream:

$$N = 6$$

qwertyuiopasdfghjklzxcvbnm

qwertyuiopasdfghjklzxcvbnm

qwertyuiopas dfghjk zxcvbnm

qwertyuiopasdfghjklzxcvbnm

Counting Bits (1)

• Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N

Obvious solution:

- Store the most recent N bits
- When new bit comes in, discard the $N+1^{st}$ bit

Counting Bits (2)

- You cannot get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store *N* bits?

- **E.g.**, we're processing 1 billion streams and N=1 billion
- But we are happy with an approximate answer

An Attempt: Simple Solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem:
 Uniformity assumption

- Maintain 2 counters:
 - *S*: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

May 9, 2025

24 / 42

DGIM Method (Datar, Gionis, Indyk, Motwani)

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.
- Read more here: https: //medium.com/fnplus/dgim-algorithm-169af6bb3b0c

Pooya Jamshidi Big data May 9, 2025 25 / 42

DGIM Method Idea

- Idea: Summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

Quiz

Question

 The question is so simple, calculate the AVERAGE of an input infinite stream of data!

Pooya Jamshidi Big data May 9, 2025 28 / 42

Apache Kafka

Overview

- Kafka is a distributed event store and stream-processing platform.
- Fast
- Scalable
- Durable
- Distributed

Kafka Adoption and Use Cases

- LinkedIn: activity streams, operational metrics, data bus
 - 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s), May 2014
- Netflix: real-time monitoring and event processing
- Twitter: as part of their Storm real-time data pipelines
- Spotify: log delivery (from 4h down to 10s), Hadoop
- Mozilla: telemetry data
- Airbnb, Cisco, Square, Uber, ...

History

- Originally developed by Jay Kreps, Neha Narkhede and Jun Rao at LinkedIn and open sourced in 2011.
- Became a top level Apache project in 2012.
- Named after Franz Kafka, because it's a "a system optimized for writing."

How Fast is Kafka?

- "Up to 2 million writes/sec on 3 cheap machines"
 - Using 3 producers on 3 different machines, 3x async replication
 - Only 1 producer/machine because NIC already saturated
- Sustained throughput as stored data grows
 - Slightly different test config than 2M writes/sec above.

Why is Kafka so fast?

• Fast writes:

 While Kafka persists all data to disk, essentially all writes go to the page cache of OS, i.e., RAM.

• Fast reads:

- Very efficient to transfer data from page cache to a network socket
- Linux: sendfile() system call
- Combination of the two = fast Kafka!
 - Example (Operations): On a Kafka cluster where the consumers are mostly caught up you will see no read activity on the disks as they will be serving data entirely from cache.

A First Look

The who is who

- Producers write data to brokers.
- Consumers read data from brokers.
- All this is distributed and load balanced.

The data

- Data is stored in topics.
- Topics are split into partitions, which are replicated.

35 / 42

Kafka Implements a Pub/Sub

Pooya Jamshidi Big data May 9, 2025 36 / 42

Apache ZooKeeper and Apache Kafka

- Apache ZooKeeper is used in distributed systems for service synchronization and as a naming registry.
 - Apache Kafka depends on Apache ZooKeeper to run.
- When working with Apache Kafka, ZooKeeper is primarily used to track the status of nodes in the Kafka cluster and maintain a list of Kafka topics and messages.
- There's an experimental feature where you can run Apache Kafka without ZooKeeper.

Kafka Architeture

Pooya Jamshidi Big data

Topic Partitions

- Partition is the unit of distribution among topics across the cluster.
- Each partition's data is stored on a single broker.
- Partition is also the unit and parallelism for better scalability.

Partitions

- Number of partitions of a topic is configurable.
- Number of partitions determines max consumer (group) parallelism.

- Consumer group A, with 2 consumers, reads from a 4-partition topic.
- Consumer group B, with 4 consumers, reads from the same topic.

Partition Offsets

- Offset: messages in the partitions are each assigned a unique (per partition) and sequential ID called the offset.
 - Consumers track their pointers via (offset, partition, topic) tuples.

Replicas of a Partition

- Replicas: "backups" of a partition
 - They exist solely to prevent data loss.
 - Replicas are never read from, never written to.
 - They do NOT help to increase producer or consumer parallelism!
 - Kafka tolerates (numReplicas 1) dead brokers before losing data
 - numReplicas == 2 o 1 broker can die