

Support du formateur Chapitre 8 : Segmentation des réseaux IP en sousréseaux

CCNA Routing and Switching, Introduction to Networks v6.0

Cisco Networking Academy® Mind Wide Open®

Supports du formateur – Chapitre 8 Guide de planification

Cette présentation PowerPoint est divisée en deux parties :

- 1. Guide de planification du formateur
 - Informations destinées à vous familiariser avec le chapitre
 - Outils pédagogiques
- 2. Présentation en classe pour le formateur
 - Diapositives facultatives que vous pouvez utiliser en classe
 - Commence à la diapositive 15

Remarque : retirez le guide de planification de cette présentation avant de la partager avec quiconque.

Introduction to Network 6.0 Guide de planification Chapitre 8 : Segmentation des réseaux IP en sous-réseaux

Cisco Networking Academy® Mind Wide Open®

Chapitre 8 : exercices

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif?
8.0.1.2	Exercice en classe	Appelez-moi	En option
8.1.2.4	Démonstration vidéo	Masque de sous-réseau	-
8.1.2.5	Démonstration vidéo	Segmenter en sous-réseaux à l'aide du nombre magique	-
8.1.2.8	Démonstration vidéo	Création de deux sous-réseaux de même taille	-
8.1.2.11	Démonstration vidéo	Création de quatre sous-réseaux de même taille	-
8.1.2.12	Démonstration vidéo	Création de huit sous-réseaux de même taille	-
8.1.3.4	Démonstration vidéo	Création de cent sous-réseaux de même taille	-
8.1.3.6	Démonstration vidéo	Segmentation en sous-réseaux sur plusieurs octets	-
8.1.4.4	Exercice en classe	Déterminer le masque de sous-réseau	Recommandé
8.1.4.5	Exercice en classe	Déterminer le nombre de bits à emprunter	Recommandé

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est : **PT_ccna5**

Chapitre 8 : exercices

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif?	
8.1.4.6	Travaux pratiques	Calculer les sous-réseaux IPv4	En option	
8.1.4.7	Packet Tracer	Scénario de création de sous-réseaux 1	En option	
8.1.4.8	Travaux pratiques	Conception et mise en œuvre d'un schéma d'adressage IPv4 comportant des sous-réseaux	Recommandé	
8.1.5.4	Démonstration vidéo	VLSM de base	-	
8.1.5.7	Démonstration vidéo	Exemple de VLSM	-	
8.1.5.8	Exercice en classe	Utilisation de VLSM	Recommandé	
8.2.1.4	Packet Tracer	Conception et mise en œuvre d'un système d'adressage VLSM	Recommandé	
8.2.1.5	Travaux pratiques	Conception et mise en œuvre d'un système d'adressage VLSM	En option	
8.3.1.4	Packet Tracer	Mettre en œuvre un schéma d'adressage IPv6 comportant des sous-réseaux	En option	

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est : **PT_ccna5**

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif?
8.4.1.1	Exercice en classe	Peux-tu m'appeler maintenant ?	En option
8.4.1.2	Packet Tracer	Intégration des compétences	Recommandé

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est :

PT_ccna5

- Une fois qu'ils ont terminé le chapitre 8, les élèves doivent se soumettre à l'évaluation correspondante.
- Les questionnaires, les travaux pratiques, les exercices dans Packet Tracer, ainsi que les autres activités peuvent servir à évaluer, de manière informelle, les progrès des élèves.

Chapitre 8 : bonnes pratiques

Avant d'enseigner le contenu du chapitre 8, le formateur doit :

- terminer la partie « Évaluation » du chapitre 8.
- Les objectifs de ce chapitre sont les suivants :
 - Expliquer en quoi la segmentation d'un réseau permet d'améliorer la communication
 - Expliquer comment calculer les sous-réseaux IPv4 pour le préfixe /24
 - Expliquer comment calculer les sous-réseaux IPv4 pour les préfixes /16 et /8
 - Implémenter un schéma d'adressage IPv4 à partir d'un ensemble de critères de segmentation
 - Expliquer comment créer un schéma d'adressage flexible grâce au masque de sous-réseaux à longueur variable (VLSM)
 - Implémenter un schéma d'adressage VSLM
 - Expliquer comment implémenter l'attribution d'adresses IPv6 dans un réseau d'entreprise

Chapitre 8 : bonnes pratiques (suite)

- Ce chapitre décrit en détail la création de réseaux et de sous-réseaux IP et explique comment attribuer ensuite les adresses.
- Soulignez l'importance de la conception, de la mise en œuvre et de la gestion d'un plan efficace d'adressage IP pour optimiser le fonctionnement des réseaux.
- Montrez aux élèves un exemple de segmentation d'un réseau, opération qui consiste à le diviser en plusieurs espaces réseau plus petits, appelés sousréseaux.
- Expliquez que dans le cas des adresses IPv4, les bits sont empruntés à la partie hôte de l'adresse pour créer des sous-réseaux.
- Expliquez que la segmentation en sous-réseaux est effectuée en IPv6 pour créer un schéma d'adressage logique et hiérarchique, pas pour économiser les adresses.
- Assurez-vous que les élèves connaissent les valeurs binaires et hexadécimales avant de commencer ce chapitre.
- Conseillez-leur le jeu sur le système binaire à cette adresse pour tester leurs compétences dans la conversion binaire/décimale : http://forums.cisco.com/CertCom/game/binary_game_page.htm

Chapitre 8 : bonnes pratiques (suite)

- Expliquez la structure hiérarchique d'une adresse IP en utilisant des analogies telles que l'adresse postale et les numéros de téléphone.
- Proposez des scénarios pratiques qui permettent aux élèves d'utiliser la formule 2ⁿ (n = nombre de bits empruntés) pour calculer les sousréseaux.
- Rappelez aux élèves que la première et la dernière adresse de chaque sous-réseau ne peuvent pas être utilisées comme adresses d'hôte. La première correspond à l'ID de réseau et la dernière à l'adresse de diffusion du sous-réseau.
- La formule, 2ⁿ-2, est obligatoire pour calculer le nombre utilisable d'adresses.
- Encouragez les élèves à reconnaître des modèles et à trouver des raccourcis.
- Montrez comment calculer des sous-réseaux et des hôtes à l'aide du nombre magique (reportez-vous à la vidéo 8.1.2.5).

Chapitre 8: bonnes pratiques (suite)

- Des problèmes pratiques sont disponibles dans le document sur l'adressage IP et la création de sous-réseaux rédigé par Robb Jones (versions élève et formateur disponibles au format PDF).
- Montrez comment les adresses sont gaspillées dans les sous-réseaux classiques qui utilisent un seul masque de sous-réseau pour l'ensemble du réseau.
- Voici un bon exemple : créez des sous-réseaux en utilisant /27 et intégrez quelques connexions WAN dans la topologie. Les élèves voient clairement le gaspillage des adresses sur les connexions WAN.
- Voici un exemple d'utilisation de /27 avec la formule 2^n-2 pour déterminer le nombre d'hôtes :
 - 2⁵ 2 = 32 2 réservées = 30 adresses d'hôte utilisables sur chaque sous-réseau

Seules deux adresses sont nécessaires pour la connexion WAN, 28 sont gaspillées

Chapitre 8 : bonnes pratiques (suite)

- Expliquez comment économiser les adresses à l'aide de la technique VLSM.
 Utilisez VLSM pour résoudre le problème de gaspillage des adresses sur les connexions WAN de l'exemple précédent. VLSM segmente un réseau pour créer des sous-réseaux avec des nombres différents d'hôtes.
- Encouragez les élèves à regarder les vidéos du chapitre et à effectuer les activités interactives pratiques.
- En plus des problèmes de sous-réseaux théoriques, les élèves doivent réaliser les travaux pratiques qui nécessitent la conception et le calcul des schémas d'adressage et l'application des adresses aux équipements du réseau (reportez-vous aux exercices).
- Précisez qu'IPv6 est bien plus facile à segmenter en sous-réseaux qu'IPv4. Expliquez qu'avec IPv6, cette opération réalisée en utilisant un ID de sous-réseau sur 16 bits aboutit à 65 536 sous-réseaux et ne nécessite aucun emprunt de bits à l'ID d'interface.
- En savoir plus sur IPv6 :

<u>IPv6 Fundamentals: A Straightforward Approach to Understanding IPv6</u> (Principes fondamentaux d'IPv6 : les concepts IPv6 expliqués simplement) par Rick Graziani

Donner un sens à une adresse IPv6

Chapitre 8 : aide supplémentaire

- Pour obtenir davantage d'aide sur les stratégies d'enseignement, notamment les plans de cours, l'utilisation d'analogies pour expliquer des concepts difficiles et les sujets de discussion, consultez la communauté CCNA à l'adresse https://www.netacad.com/group/communities/community-home
- Les bonnes pratiques du monde entier relatives au programme CCNA Routing and Switching sont disponibles à l'adresse https://www.netacad.com/group/communities/ccna-blog
- Si vous souhaitez partager des plans de cours ou des ressources, téléchargez-les sur le site de la communauté CCNA afin d'aider les autres formateurs.
- Les élèves peuvent s'inscrire à la formation Packet Tracer Know How 1: Packet Tracer 101 (inscription en libre-service).

Cisco | Networking Academy[®] | Mind Wide Open™

Chapitre 8 : Segmentation des réseaux IP en sousréseaux

Introduction to Networks v6.0

Cisco | Networking Academy® Mind Wide Open™

Chapitre 8 – Sections et objectifs

8.0 Introduction

- 8.1 Segmentation d'un réseau IPv4 en sous-réseaux
 - Expliquer en quoi la segmentation d'un réseau permet d'améliorer la communication
 - Expliquer comment calculer les sous-réseaux IPv4 pour le préfixe /24
 - Expliquer comment calculer les sous-réseaux IPv4 pour les préfixes /16 et /8
 - Implémenter un schéma d'adressage IPv4 à partir d'un ensemble de critères de segmentation
 - Expliquer comment créer un schéma d'adressage flexible grâce au masque de sous-réseaux à longueur variable (VLSM)

8.2 Schémas d'adressage

- Implémenter un schéma d'adressage VSLM
- 8.3 Critères de conception à prendre en compte pour les réseaux IPv6
 - Expliquer comment implémenter l'attribution d'adresses IPv6 dans un réseau d'entreprise
- 8.4 Synthèse

8.1 Protocoles de couche réseau

Cisco | Networking Academy® Mind Wide Open™

La segmentation du réseau

- Domaines de diffusion
 - Chaque interface de routeur connecte un domaine de diffusion.
 - Les diffusions ne sont propagées que dans leur domaine.
- Problèmes liés aux domaines de diffusion importants
 - Ralentissement des opérations sur le réseau en raison d'une quantité importante de trafic de diffusion.
 - Ralentissement du fonctionnement de l'équipement dans la mesure où chaque périphérique doit accepter et traiter les paquets de diffusion un à un.
- Pourquoi créer des sous-réseaux ?
 - Solution : réduire la taille du réseau en créant de plus petits domaines de diffusion.
 - Comme chaque domaine de diffusion se connecte à une interface de routeur différente, chaque domaine a besoin de son propre espace d'adressage réseau.
 - Le processus qui consiste à diviser une plage d'adresses en espaces plus petits est appelé segmentation en sous-réseaux.
 - Les administrateurs réseau peuvent regrouper les appareils dans des sous-réseaux en fonction de leur emplacement, de leur type ou de l'unité organisationnelle.

Segmenter un réseau IPv4 en sous-réseaux

- Limites d'octet
 - Des sous-réseaux peuvent être créés en fonction des limites d'octets (/8, /16 ou /24).
- Création de sous-réseaux au niveau d'une limite d'octet
 - Egalement appelé classes IPv4.
 - Utilise les limites d'octets pour séparer le réseau des hôtes.
- Sous-réseaux sans classe
 - Utilise les bits d'adresse pour séparer le réseau des hôtes.
 - Optimise la flexibilité.
- Exemples de sous-réseaux sans classe

Longueur	Masque de sous-réseau	Masque de sous-réseau (binaire)	Nombre de	Nombre
de préfixe		(n = réseau, h = hôte)	sous-réseaux	d'hôtes
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.11111111.10000000	2	126

Segmenter un réseau IPv4 en sous-réseaux

Segmenter un réseau IPv4 en sous-réseaux (suite)

- Création de 2 sous-réseaux
 - Un masque de sous-réseau de /25 appliqué à 192.168.10.0 crée deux sous-réseaux égaux qui comptent chacun 126 hôtes.
- Formules de calcul des sous-réseaux
 - Utilisez 2ⁿ pour calculer le nombre de sous-réseaux.
 - Utilisez 2^h-2 pour calculer le nombre d'hôtes.
 - *n* représente le numéro affecté à la partie réseau de l'adresse.
 - h représente le numéro affecté à la partie hôte de l'adresse.
- Création de 4 sous-réseaux
 - Un masque de sous-réseau de /26 appliqué à 192.168.10.0 crée quatre sous-réseaux égaux qui comptent chacun 62 hôtes.
 - n = 2, donc $2^2 = 4$
 - h = 6, donc $2^6 2 = 62$

La segmentation des préfixes /16 et /8 en sous-réseaux

- Création de sous-réseaux avec le préfixe /16
 - Un masque de sous-réseau de /16 appliqué à 172.16.32.0 crée un réseau qui compte 65 534 hôtes.
 - Un masque de sous-réseau de /18 appliqué à 172.16.32.0 crée quatre réseaux qui comptent chacun 16 382 hôtes.
 - Un masque de sous-réseau de /22 appliqué à 172.16.32.0 crée 64 réseaux qui comptent chacun 1 022 hôtes.
- Création de 100 sous-réseaux avec le préfixe /16
 - Un masque de sous-réseau de /23 appliqué à 172.16.32.0 crée 128 réseaux qui comptent chacun 510 hôtes.
- Calcul du nombre d'hôtes
 - Utilisez 2^h-2 pour calculer le nombre d'hôtes.
 - h représente le numéro affecté à la partie hôte de l'adresse.
- Création de 1 000 sous-réseaux avec le préfixe /8
 - Un masque de sous-réseau de /18 appliqué à 20.0.0.0 crée 1 024 réseaux qui comptent chacun 16 382 hôtes.

La segmentation du réseau pour répondre à ses besoins

- Segmentation du réseau en sous-réseaux en fonction des besoins des hôtes
 - Deux considérations sont à prendre en compte lors de la planification de sous-réseaux :
 - Le nombre d'adresses d'hôte nécessaires pour chaque réseau.
 - Le nombre de sous-réseaux nécessaires.
- Segmentation du réseau en sous-réseaux en fonction de ses besoins
 - Les administrateurs peuvent être invités à segmenter une plage d'adresses IP en sous-réseaux pour prendre en charge un nombre spécifique de réseaux.
 - Imaginez une entreprise divisée en 7 services qui doivent avoir chacun leur propre sous-réseau.
 - Même si le nombre d'hôtes par sous-réseau est secondaire, il reste important.
- Exemple de besoin du réseau
 - Supposons que la plage 200.42.98.0/24 a été attribuée à l'administrateur.
 - 7 sous-réseaux doivent être créés.
 - Chaque service comportera 29 hôtes au maximum.
 - Un masque de sous-réseau de /27 appliqué à 200.42.98.0/24 crée 8 réseaux qui comptent chacun 30 hôtes.

Les bénéfices des masques de sous-réseau à longueur variable

- La segmentation traditionnelle en sous-réseaux n'est pas efficace
 - La segmentation en sous-réseaux reposant sur les classes n'est pas très flexible.
 - Il en résulte un gaspillage des adresses.
- Masques de sous-réseau de longueur variable
 - En changeant le masque, un administrateur dispose d'un contrôle plus poussé.
 - Moins de gaspillage.
- VLSM de base
 - Un masque de sous-réseau de /30 appliqué à 200.42.98.0 crée un réseau qui compte 2 hôtes.
 - Le réseau 200.42.98.0/30 serait idéal pour une liaison série.
- Le VLSM dans la pratique
 - Imaginez deux routeurs connectés par une liaison série :
 - RouterA serait 200.42.98.1/30 et RouterB serait 200.42.98.2/30.
 - 200.42.98.0/30 correspond à l'adresse réseau, tandis que 200.42.98.3/30 correspond à l'adresse de diffusion.

8.2 Les schémas d'adressage

Cisco | Networking Academy® Mind Wide Open®

Les schémas d'adressage

La conception structurée

- Planification de l'adressage réseau
 - La planification nécessite de prendre une décision pour chaque sous-réseau sur leur taille, le nombre d'hôtes par sous-réseau et l'attribution des adresses d'hôte.
- Préparation de l'adressage d'un réseau
 - Voici les principales considérations en matière de planification :
 - Éviter les doublons d'adresse
 - Surveiller la sécurité et les performances
 - Fournir et contrôler l'accès
- Attribution d'adresses à des périphériques
 - Les besoins différents des appareils peuvent également affecter le schéma d'adressage.
 - Les appareils suivants sont les plus répandus :
 - Appareils de l'utilisateur, serveurs, imprimantes, appareils réseau et passerelles

8.3 Critères de conception à prendre en compte pour les réseaux IPv6

Cisco Networking Academy® Mind Wide Open®

Les schémas d'adressage

La conception structurée

- Adresse de monodiffusion globale IPv6
 - L'adresse de monodiffusion globale IPv6 se compose en principe d'un préfixe de routage global /48, d'un ID de sous-réseau 16 bits et d'un ID d'interface 64 bits.
- Segmentation du réseau en sousréseaux à l'aide de l'ID de sous-réseau
 - L'ID de sous-réseau prend en charge de nombreux sous-réseaux et hôtes sur un seul sous-réseau.
 - L'ID de sous-réseau à lui seul permet de créer jusqu'à 65 536 sous-réseaux /64.
- Attribution de sous-réseaux IPv6
 - Le gaspillage d'adresses n'est pas un problème avec IPv6.
 - Les administrateurs peuvent se concentrer sur la conception d'un schéma logique pour le réseau.

8.4 Synthèse du chapitre

Cisco | Networking Academy® Mind Wide Open®

- Mettre en œuvre un schéma d'adressage IPv4 pour permettre la connectivité de bout en bout dans un réseau de PME
- Implémenter un schéma d'adressage VLSM selon un ensemble de critères pour fournir une connectivité aux utilisateurs finaux d'un réseau de PME
- Détailler les facteurs à prendre en considération pour la mise en œuvre d'IPv6 dans un réseau d'entreprise

Nouveaux termes/commandes

- Segmentation réseau
- Périphérie par classe
- Sous-réseaux sans classe
- Nombre magique
- Masque de sous-réseau à longueur variable (VLSM)
- Préfixe de routage global

Cisco | Networking Academy[®] | Mind Wide Open™

. | | 1 . 1 | 1 . CISCO