

Institutt for matematiske fag

Eksamensoppgave i TMA4120 Matematikk 4K
Faglig kontakt under eksamen: Katrin Grunert ^a , Espen Robstad Jakobsen ^b Tlf:
Eksamensdato: 14. august 2015 Eksamenstid (fra–til): 09:00–13:00
Hjelpemiddelkode/Tillatte hjelpemidler: Kode C: Bestemt, enkel kalkulator Rottmann: Matematisk formelsamling
Annen informasjon: Alle svar skal begrunnes. Du må ta med så mye mellomregning at fremgangsmåten fremgår tydelig av besvarelsen.
Målform/språk: bokmål Antall sider: 2 Antall sider vedlegg: 1
Kontrollert av:

Sign

Dato

Oppgave 1 Løs initialverdiproblemet

$$y''(t) - 4y'(t) + 3y(t) = \delta(t-5), \quad y(0) = y'(0) = 1,$$

der δ er deltafunksjonen.

Oppgave 2 La funksjonen f være definert ved $f(x) = \cos(x)$ for $0 < x < \pi$.

- a) Finn Fourier-sinusrekken til f(x).
- b) Skisser summen av Fourier-sinusrekken til f(x) på intervallet $[-2\pi, 2\pi]$. Finn verdien til Fourier-sinusrekken til f(x) i punktene $x = -\pi/4$, x = 0 og $x = \pi/2$.

Oppgave 3 La C være sirkelen $\{z \in \mathbb{C} : |z-2|=2\}$ orientert mot klokka.

Finn verdien av linjeintegralet

$$\oint_C \frac{1}{(z-1)(z-7)} \, dz.$$

Oppgave 4 Vis ved hjelp av Cauchy-Riemannligningene at

$$f(z) = ze^{iz}$$

er en hel funksjon, dvs. at f(z) er analytisk i hele \mathbb{C} .

Oppgave 5 La R > 0 og S_R være halvsirkelen med parametrisering

$$z(\theta) = Re^{i\theta}, \quad 0 \le \theta \le \pi.$$

La $x \ge 0$ og bruk ML-ulikheten til å vise at

$$\lim_{R \to \infty} \int_{S_R} \frac{1}{4 + w^4} e^{iwx} dw = 0.$$

Oppgave 6

a) Finn og klassifiser de singulære punktene til funksjonen

$$f(z) = \frac{z^{4n} - 1}{z^{2n+1}}, \quad n = 1, 2, \dots$$

Finn Laurentrekken til f(z) om z=0 og regn ut residyet i z=0.

b) Bruk residyregning for å vise at

$$\int_0^{2\pi} \cos(n\theta) \sin(n\theta) d\theta = 0, \quad n = 1, 2, \dots$$

Oppgave 7

a) Finn alle løsninger på formen u(x,t) = F(x)G(t) som tilfredsstiller den partielle differensialligningen

$$u_t(x,t) + (1+t^2)(2u(x,t) - u_{xx}(x,t)) = 0, \quad x \in [0,\frac{\pi}{2}], \quad t > 0,$$
 (1)

og randbetingelsene

$$u(0,t) = u_x(\frac{\pi}{2},t) = 0, \quad t \ge 0.$$
 (2)

b) Finn en løsning som tilfredsstiller (1) og (2) og i tillegg initialbetingelsen

$$u(x,0) = \sin(3x) + \sin(17x), \quad x \in [0, \frac{\pi}{2}].$$

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$