5.16. Ртуть, находящуюся при 0°С и давлении P=100 атм, расширяют адиабатически и квазистатически до атмосферного давления. Найти изменение температуры ртути в этом процессе, если коэффициент объемного расширения ртути в этих условиях положителен и равен $\alpha=1.81\cdot 10^{-4}\,^{\circ}\text{C}^{-1}$, удельная теплоемкость ртути $c_P=0.033$ кал/($\mathbf{r}\cdot\,^{\circ}$ С), плотность $\rho=13.6$ г/см³.

$$d = \frac{1}{\sqrt{\frac{\partial V}{\partial T}}} p \quad 1 dS = \frac{\partial S}{\partial T} dT + \frac{\partial S}{\partial P} dP = 0 \geq 0 dP = -\frac{\partial S}{\partial T} = -\frac{\partial S}{\partial P} dT + \frac{\partial S}{\partial$$

12.8. Мыльная пленка имеет толщину $h=10^{-3}$ мм и температуру $T=300~\rm K$. Вычислить понижение температуры этой пленки, если ее растянуть адиабатически настолько, чтобы площадь пленки удвоилась. Поверхностное натяжение мыльного раствора убывает на $0.15~\rm дин/cm$ при повышении температуры на $1~\rm K$, ___

12.9. В сосуде с адиабатическими стенками находится мыльный пузырь радиусом r=5 см. Общее количество воздуха в сосуде и в пузыре $\mathbf{v}=0.1$ моль, его температура T=290 К (предполагается, что она одинакова внутри и вне пузыря). При этой температуре поверхностное натяжение $\sigma=70$ дин/см, $d\sigma/dT=-0.15$ дин/(см · K). Как изменится температура воздуха в сосуде, если пузырь лопнет? Теплоемкостью образовавшихся капелек пренебречь.

на сколько изменится суммарная энтропия газа. Начальные радиусы пузырей $r_0=5$ см. Поверхностное натяжение масла $\sigma=30$ дин/см. Температура T=300 K.

Т-4. (2019) В одной из теоретических моделей теплоёмкость C_V кристалла при низких температурах равна $C_V = aVT^3$, где V — объём кристалла, a — постоянная величина. Изотермический модуль всестороннего сжатия кристалла равен K. Найдите разность теплоёмкостей $C_P - C_V$ кристалла как функцию его объёма и температуры.

сжатия кристалла равен К. Наидите разность теплоемкостей
$$C_p = C_V$$
 кристалла как функцию его объёма и температуры.

Ответ: $a^2VT^7/9K$.

 $C_p = -C_V = -T$
 $C_p = -T$