

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

(Academic Session: 2020 – 21)

PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B. Tech	Semester:	III
Paper Title :	Data Structures and Algorithms	Paper Code:	ECS42101
Maximum Marks :	40	Time duration:	3 Hrs.
Total No of questions:	22	Total No of	2
		Pages:	
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, and Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. 		
	3. Assumptions made if any, should be stated clearly at the beginning of your answer.		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. i) Define Ø with suitable graph and example.
 - ii) Define full binary tree with suitable example.
 - iii) Why stack is called LIFO list?
 - iv) Define a B-tree with suitable example.
 - v) What is the drawback of a linear queue?

GROUP-B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. i) Write a C function to insert a node at a specified position in a singly linked list.
 - ii) Evaluate the postfix expression 82 + 4 * 5 / 63 / 2 / using stack.

[3+2]

[3 + 2]

- **3.** i) Write a C function to delete a node from a doubly linked list.
 - ii) Write a C function to insert an element into a linear queue by using an array.
- **4.** i) Write a C function to implement push operation in a stack by using a singly linked list.
 - ii) Convert the following postfix expression into its equivalent infix expression by using stack:

$$A B + C * D E - F G + ^{\land}$$
 [3 + 2]

- 5. i) Convert the following infix expression into its equivalent prefix expression by using stack: $(A + B * (C \land (D / E) \$ F)) + G$
 - ii) Write a C function to delete an element from a circular queue by using an array. [3 + 2]

6. i) Insert the following keys in the order given below to build into an AVL tree.

Clearly mention different rotations used and balance factor of each node.

- ii) Prove that the maximum number of nodes on level 'i' of a binary tree is 2^i , i > 0. Hence prove that the maximum number of nodes in a binary tree of height 'h' is 2^h-1 , h> 1.
- iii) Use Prim's Algorithm to find a minimum cost spanning tree of the following weighted graph. Give the total weight of the MST. [4+3+3]

7. i) Draw the binary tree whose in-order and pre-order traversal sequence of nodes are given below:

In-order: DGBAHEICF Pre-order: ABDGCEHIF

ii) Define Expression tree. Draw the expression tree for the following expression.

$$(2x + y) * (3a - b)^3$$

- iii) Prove that the number of odd degree vertices in a graph is always even. [4+3+3]
- **8.** i) Construct a B-tree of order 3 with the following data:

- ii) Write a C function to implement merge sort algorithm.
- iii) Find out the worst-case time complexity for merge sort algorithm. [4 + 4 + 2]