Algoritmo (pa nome: di fibonacci)

$$F_n = \begin{cases} 1 \\ F_{n-1} + F_{n-2} \end{cases}$$
 $N = 1, 2$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$

Dimestrazia tramite passo indutivo

$$N=1 - \frac{1}{2} = \frac{1}{15} \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} \right) = \frac{1}{15} \left(\frac{2\sqrt{5}}{2} \right) = 1$$
 $N=2 - \frac{1}{15} = \frac{1}{15} \left(\frac{1+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right) = 1$

La $\frac{1}{15} = \frac{1}{15} =$

pa
$$n \ge 3$$
 lipotesi dice che le proprieté velé fino ad $n-1$ qui di se:

$$F_{n} = 1/\sqrt{5} \left(\underbrace{P}_{-} - \underbrace{P}_{-} \right) = F_{n} - F_{n-1} + F_{n-2}$$

par ipotesi indutive ellare

$$F_{n} = 1/\sqrt{5} \left(\underbrace{P}_{-} - \underbrace{P}_{-} \right) + 1/\sqrt{5} \left(\underbrace{P}_{-} - \underbrace{P}_{-} \right) - \underbrace{P}_{-} -$$

Pseudocoolice:

Fib (int n) -> int

if
$$n \le 2$$
 then veturn 1;

else voturn Fib $(n-1)$ + Fib $(n-2)$

Complessitz? Quante istruzioni sono ese quite?

 $n \mid T(n)$

1 1
2 1
3 4
4 2+4+1=7

Albano delle nicusioni (esemplo patto)

 $n=5$
 2 Fib (5) Z> oneso $n=5$
 2 estrano nell'
 2 to due chiam

2 fib (5)
$$Z > ango n = 5$$

2: artivaro nell'else, and

F(4)

F(3)

 $F(3)$
 $F(3)$

L'albero a permette di calcolare qualunque complessità T(S) = 13 \longrightarrow $Z \cdot c'(T_n) + f(T_n)$ $f(S) = 13 \longrightarrow Z \cdot c'(T_n) + f(T_n)$ $f(S) = 13 \longrightarrow Z \cdot c'(T_n) + f(T_n)$ $f(S) = 13 \longrightarrow Z \cdot c'(T_n) + f(T_n)$ $f(S) = 13 \longrightarrow Z \cdot c'(T_n) + f(T_n)$ Proprieta 1 Sia In l'alban delle monsioni relativo alla chiameta Allar il numero di loglie chi In é pri a Fn (ennesimo numero di Fiberacai Dim: indutriz so n (meylor can il disegno Fn=Fn+ Fn-2 Fib(n) = 1esimo numero di Fiboracci Proprietà 2 se ogni nodo ha estramente due fighi, allars i(T) = &(T)-1