Opleiding: Minor programmeren, Universiteit van Amsterdam

Vak: Heuristics
Case: Amstelhaege

Groep: 726567756982776978

Leden: Toon van Holthe tot Echten, Luc Stefelmanns, Raoul Lieben

Experiment 1: Lower and upper bound

Inleiding

In dit experiment is er een poging tot het benaderen van de lower and upper bound van de score voor de case Amstelhaege. De lower bound zal realistisch benaderbaar zijn, omdat de worst case scenario realiseerbaar is. De upper bound daarentegen is lastig te realiseren omdat de state space voor elke map groot is en daarmee de mogelijkheden ook groot zijn. De state space hebben we ook proberen te benaderen, echter kwamen we al bij een onrealistisch groot getal en wisten we ook dat we een onderschatting gemaakt hadden.

Methode

Lower bound:

De lower bound is berekend door alle huizen op de map geen extra vrijstand te geven waardoor alleen de waarde van de huizen zelf overblijft.

De formule hiervoor is als volgt:

$$T_{low} = P_e * (perc_e * N) + P_b * (perc_b * N) + P_m * (perc_m * N)$$

T_{low} = Totale prijs lower bound
P_e = Prijs eengezinswoning
Perc_e = percentage eensgezinswoningen
P_b = Prijs bungalow
Perc_b = percentage bungalow
P_m = Prijs maison
Perc_m = percentage maison
N =totaal aantal huizen

Upper bound:

De upper bound is berekend door al het resterende oppervlakte, na het plaatsen van de huizen, toe te kennen als vrijstand aan elk huis. Het oppervlakte dat overblijft is als volgt berekend:

 $O_{rest} = O_{tot} - O_{huizen} - O_{water}$

 O_{rest} = Resterend oppervlakte(m²) O_{tot} = Totale oppervlakte(m²) O_{huizen} = Totale oppervlakte huizen O_{water} =Totale oppervlakte water (m²) Het resterende oppervlakte heeft een verhouding van $\sqrt{O_{rest}}$ * $\sqrt{O_{rest}}$. Hierdoor is de maximale vrijstand √O_{rest}, die toegekend kan worden voor elk huis. De waarde voor elk huis wordt dan als volgt berekend: T_{upper} = Totale prijs upper bound in euro

 $T_{upper} = (P_e * (P_e * (s_e * v_e)) * (perc_e * N)) +$

 $(P_m * (P_m * (s_m * v_m)) * (perc_m * N))$

 $(P_b * (P_b * (s_b * v_b)) * (perc_b * N)) +$

$$P_e$$
 = Prijs eengezinswoning in euro S_e = procentuele prijsstijging per m

S_e = procentuele prijsstijging per m vrijstand eensgezinswoning

$$v_e$$
 = vrijstand eengezinswoning in m

Perc_e = percentage eensgezinswoningen

P_b = Prijs bungalow in euro

S_b = procentuele prijsstijging per m vrijstand eensgezinswoning

v_b = vrijstand eengezinswoning in m

Perch = percentage bungalow

P_m = Prijs maison in euro

s_m = procentuele prijsstijging per m vrijstand eensgezinswoning

v_m = vrijstand eengezinswoning in m

Perc_m = percentage maison

N =totaal aantal huizen

Resultaten

	20-huizen	40-huizen	60-huizen
Lowerbound (in euro)	3.828.420	7.656.840	11.485.260
Upperbound (in euro)	1,1 * 10 ²⁴	2,2 * 10 ²⁴	3.4 * 10 ²⁴

Discussie

De lowerbound is realistisch en kan gebruikt worden voor de case. Als er een waarde onder deze komt, klopt er iets niet in de score functie.

De upperbound daarentegen is onrealistisch hoog, aangezien het onmogelijk is dat alle vrijstand aan elk huis toebedeeld wordt. Dit was al te voorzien aangezien de state space voor elke map groot is en ook lastig te benaderen.