DIGITAL FINANCE

This project has received funding from the Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101119635

Basic Explainability - Feature Importance, PDP, ICE

Faizan Ahmed

Reading

Mandatory Reading Material

• Molnar, Christoph. Interpretable machine learning. 2020. [Section 23,2419,20,13] https://christophm.github.io/interpretable-ml-book/

Recommended Reading Material

- Lipton, Zachary C. "The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery." Queue 16.3 (2018): 31-57. https://arxiv.org/abs/1606.03490
- If you wanted to know a lot more:
- Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. "All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously." http://arxiv.org/abs/1801.01489 (2018).
- Wei, Pengfei, Zhenzhou Lu, and Jingwen Song. "Variable importance analysis: a comprehensive review." Reliability Engineering & System Safety 142 (2015): 399-432
- Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! Criticism for interpretability." Advances in Neural Information Processing Systems (2016). [Very mathematical]
 - The talk is interesting: https://www.youtube.com/watch?v=bQfYRcXc9F0&ab_channel=MicrosoftResearch

Libraries

- MMD-critic https://github.com/BeenKim/MMD-critic
- ALE Plots: https://github.com/blent-ai/ALEPython

Permutation Importance

- Measures the increase in the prediction error of the model after the feature values are permuted
- How: only a column (feature) of the training data is shuffled and make the prediction again but with the shuffled values.
- Note: we are creating a mismatch from the true data by shuffling only one column, i.e. the whole row is not shuffled.
- By shuffling a particular column only, if the output predictions falls significantly, then we know the feature was very important and vice versa, if the feature wasn't important then the performance does not fall.

f1	f2	f3	fn	y
2.29	3.47	2.55	3.17	0
2.86	2.38	0.72	3.37	0
0.95	0.44	0.08	1.61	0
1.28	0.48	0.10	3.12	1
0.74	1.32	1.41	3.42	1

Permutation Feature Importance

(Fisher, Rudin, and Dominici)

- Input: Trained model \hat{f} , feature matrix X, target vector y, error measure $L(y,\hat{f})$ $e_{orig} = L(y,\hat{f})$
- For each feature $j \in \{1, \dots, p\}$ do
 - Generate X_{perm} by permuting feature j
 - Estimate error $e_{perm} = L(Y, \hat{f}(X_{perm}))$
 - Computer feature importance $FI_j = \frac{e_{perm}}{e_{orig}}$ or $FI_j = e_{perm} e_{orig}$

Sort feature by descending FI_j

f1	f2	f3	fn	у
2.29	3.47	2.55	3.17	0
2.86	2.38	0.72	3.37	0
0.95	0.44	0.08	1.61	0
1.28	0.48	0.10	3.12	1
0.74	1.32	1.41	3.42	1

Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. "All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously." http://arxiv.org/abs/1801.01489 (2018).

Permutation Feature Importance

Penguin Sex Classification: Logistic Regression Models

- Trained 3 logistic regression models to predict penguin sex
- Used 2/3 of the data for training, 1/3 fo feature importance evaluation
- Measured error using log loss

Figure: Permutation feature importance values for the penguin classification task. <u>Source</u>

Permutation Feature Importance

- Nice Interpretation
- Comparable across different problems.
- Need access to the true outcome
- Can be biased by unrealistic data instances

Further reading: https://christophm.github.io/interpretable-ml-book/feature-importance.html

If you really want to know all about it: Wei, Pengfei, Zhenzhou Lu, and Jingwen Song. "Variable importance analysis: a comprehensive review." Reliability Engineering & System Safety 142 (2015): 399-432

Ceteris Paribus Plots

- Partial Dependence Plot (PDP), sketches the functional form of the relationship between an input feature and the target.
 - Show the average effect on predictions as the value of feature changes.
- **Assumption**: the feature of interest are independent from the complement features
 - this method is applied to a model which is already trained (can be used in conjunction with permutation importance)
 - use it to see "how" the predictions are changed by changes in a feature.

- **Step 0:** Select feature.
- Step 1: Define grid.
- **Step 2:** Per grid value:
 - Replace feature with grid value and
 - Average predictions.
- Step 3: Draw curve.

Study hours (x1)	Breaks (x2)	Sleep(x3)	grade
1	2	7	5
2	2	6	6
3	1	7	7
4	1	6	8
5	0	7	9
6	0	5	9

 X1	X2	ХЗ	Y_pred	X1	X2	ХЗ
1	2	7	5	2	2	7
1	2	6	4	2	2	6
1	1	7	3	2	1	7
 1	1	6	2	2	1	6
1	0	7	1	2	0	7
1	0	5	-1	2	0	5
Average			14/6	Average		
U			,			

Y pred

26/6

X1	Y(x1)
1	2.33
2	4.33
3	6.33
4	8.33
5	10.33
6	12.33

Source: https://christophm.github.io/interpretable-ml-book/pdp.html

The relationship (according to our model) between Price and a couple variables from the Melbourne Housing dataset. <u>Source</u>

Contour Map

- One-way PDPs tell us about the interaction between the target response and an input feature of interest
- Two-way PDPs show the interactions among the two features.

Two-way Partial Dependence Plot of Land Size and Distance

Two-way Partial Dependence Plot of Sepal Length and Sepal Width

See also

Property	Assessment
Completeness	Interpretability achieved with agnostic method, completeness is low, limited possibility of anticipating model predictions (we can just look at goal scored as rough indicator)
Expressive power	Good in terms of getting evidence of the most important feature but on average and without details of feature interactions (or limited)
Translucency	Low, we don't have insight into model internals
Portability	High, the method doesn't rely on the ML model specs
Algorithmic complexity	Low, no need of complex methods to generate explanations
Comprehensibility	Good level of human understandable explanations

- + Computation is intuitive
- + Interpretation is clear (Caution: Uncorrelated)
- + Causal interpretation
- Maximum number of features
- Omitting the feature distribution can be misleading
- Assumption of independence
- Heterogeneous effects might be hidden

From PDP to Accumulated Local Effects

What will happen if we have 24 (an unrealistic value) here instead of 7?

Х2

PDP

Study	Breaks	Sleep(x3)	grade	Х
hours (x1)	(x2)			1
				1
1	2	7	5	1
2	2	6	6	
3	1	7	7	1
3	1	•	•	1
4	1	6	8	1
5	0	7	9	1
	0	_	0	А
6	0	5	9	

	1	2	7	5	2	2	7	7
5	1	2	6	4	2	2	6	6
_	1	1	7	3	2	1	7	5
6	1	1	6	2	. 2	1	6	4
,	1	0	7	1	2	0	7	3
8	1	0	5	-1	2	0	5	1
9	Average			14/6	Average			26/6
9		Partial I	Dependence	Plot for Study	Hours			
	- PDB for		Dependence	Flot for Study	riours	1		

X1	Y(x1)
1	2.33
2	4.33
3	6.33
4	8.33
5	10.33
6	12.33

Conditional distribution P(x2|x1=0.75)

DIGITAL

From PDP to Accumulated Local Effects

- Solution: To find the feature effects of correlated features, we can average over the conditional distribution of the feature, meaning at a grid value of x₁, we average the predictions of instances with a similar x₁ value.
- The solution for calculating feature effects using the conditional distribution is called Marginal Plots or M-Plots.
- Issue: We are combining the effects. Which means more sleep (or less sleep) lead to worst grades.
- M-Plots avoid averaging predictions of unlikely data instances, but they mix the effect of a feature with the effects of all correlated features.
- ALE plots show how features impact predictions by accumulating the local effects of features across the data distribution.
- Focus on local effects, reducing the smearing effect seen in PDPs due to averaging over the data distribution.

Algorithm 1 Accumulated Local Effects (ALE) Plots

Require: Trained prediction model, model

Require: Feature index for ALE plot, feature_index Require: Dataset containing features and outputs, data

Require: Number of intervals, num_intervals

Ensure: ALE plot of feature x_i

- 1: Calculate quantile bounds for the feature x_j over the specified number of intervals, num_intervals
- 2: Initialize arrays local_effects and all_effects to zeros with length equal to the number of data instances
- 3: for k=1 to num_intervals do
- 4: Determine bounds $z_{k-1,j}$ and $z_{k,j}$ for the current interval
- 5: Create modified datasets data_lower and data_upper by replacing x_j in all instances with $z_{k-1,j}$ and $z_{k,j}$, respectively
- 6: Compute model predictions for both modified datasets: predictions_lower and predictions_upper
- 7: Calculate differences $\Delta \hat{f}_{i,k} = \hat{f}(z_{k,j}, x_{-j}) \hat{f}(z_{k-1,j}, x_{-j})$
- 8: for each data instance i do
- 9: if $data[i, feature_index] \ge z_{k-1,j}$ and $data[i, feature_index] < z_{k,j}$ then
- 10: Accumulate effects: $local_effects[i] + = \Delta \hat{f}_{i,k}$
- 11: end if
- 12: end for
- 13: end for
- 14: Calculate the mean of local_effects:

$$mean_effect = \frac{1}{N} \sum_{i=1}^{N} local_effects[i]$$

- 15: Adjust each element in local_effects by subtracting the mean effect: $all_effects[i] = local_effects[i] mean_effect$
- 16: Plot all_effects against feature x_j values to visualize the ALE plot

Accumulated Local Effects

Number of Intervals: More intervals can provide finer resolution but might introduce noise. Experiment with the number of intervals for the best clarity.

Quantiles: Using quantiles to define intervals ensures even distribution of data points across intervals, which is beneficial when the feature distribution is skewed.

Two steps:

o Accumulate difference for each data point where x_{ij} falls within interval K:

$$\tilde{f}_{j,ALE}(x_j) = \sum_{k: z_{k-1,j} \le x_{ij} \le z_{k,j}} \Delta \tilde{f}_{i,k}$$

Adjust ALE to have zero mean across the dataset

$$\tilde{f}_{j,ALE}(x_i)$$

$$\tilde{f}_{j,ALE}(x_i) - \frac{1}{N} \sum_{i=1}^{N} \tilde{f}_{j,ALE}(x_i) \quad N \text{ is the number of instances}$$

8	Sample Data					
age	bmi	heart_disease	P of stroke			
2	12	0	20			
3	15	0	21			
6	11	0	20			
22	24	0	30			
24	21	0	31			
27	24	0	29			
45	23	0	40			
43	25	0	41			
47	25	0	45			
66	30	1	93			
68	28	1	88			
63	29	1	95			

Accumulated Local Effects

Data Type:

- Numerical Features: ALE is calculated by dividing the feature into intervals, computing prediction differences for small changes within these intervals, and accumulating these to get the ALE curve.
- Categorical Features: Special methods like ordering categories based on similarity (using metrics like the Kolmogorov-Smirnov distance) are required since categorical data doesn't naturally fit into intervals

Age 3					
	Age inter	val 2-6 (Lower)			
age bmi heart_disease P of strok					
2	12	0	20		
2	15	0	22		
2	11	0	21		
		Average P	21		

Age 3					
Age interval 2-6 (Upper)					
age bmi heart_disease P of stroke					
6	12	0	22		
6	15	0	23		
6	11	0	20		
		Average P	22		

Difference	
2	
1	
-1	
0.67	Average Diff.

Age 24			
Age interval 22-27 (Lower)			
age bmi heart_disease P of stroke			
22	24	0	30
22	21	0	29
22	22	0	27
		Average P	29

		Age 24		
	Age inter	val 22-27 (Upper)		
age				
27	24	0	31	
27	21	0	29	
27	22	0	29	
		Average P	30	

Difference	
1	
0	
2	
1	Average Diff.

Age 45			
Age interval 43-47 (Lower)			
age bmi heart_disease P of stroke			
43	23	0	40
43	25	0	42
43	25	0	44
Average P			42

Age 45			
Age interval 43-47 (Upper)			
age bmi heart_disease P of stroke			
4	23	0	42
4	25	0	44
4	25	0	45
	Average P		

Difference	
2	
2	
1	
1.67	Average Diff.

	-	Age 66	
Age interval 63-68 (Lower)			
age bmi heart_disease P of stroke			
63	30	1	93
63	28	1	87
63	29	1	94
		Average P	91

	Age 66			
	Age interval 63-68 (Upper)			
age bmi heart_disease P of stroke				
68	30	1	96	
68	28	1	90	
68	29	1	95	
	Average P			

Difference
3
3
1
2.33 Average Diff.

5.67 Accum Diff.

0.5 Accum Diff / N

ALE Example

Limitations

- Computational Complexity:
 ALE plots require significant computational resources, particularly with large datasets or many feature intervals.
- Interpretation Challenges:

 Interpreting the results of ALE plots can be difficult, especially in complex, high-dimensional models.

Accumulated Local Effects

- Partial Dependence Plots: "Let me show you what the model predicts on average when
 each data instance has the value v for that feature. I ignore whether the value v makes
 sense for all data instances."
- **M-Plots**: "Let me show you what the model predicts on average for data instances that have values close to v for that feature. The effect could be due to that feature, but also due to correlated features."
- **ALE plots**: "Let me show you how the model predictions change in a small "window" of the feature around v for data instances in that window."

Source: https://christophm.github.io/interpretable-ml-book/ale.html

Python: https://github.com/blent-ai/ALEPython

PDP vs ALE

SOURCE: HTTPS://CHRISTOPHM.GITHUB.IO/I NTERPRETABLE-ML-BOOK/ALE.HTML

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Horizon Europe: Marie Skłodowska-Curie Actions. Neither the European Union nor the granting authority can be held responsible for them.

