NEW INTRANUCLEAR RECEPTOR PROTEIN, GENE AND ITS USE

Patent Number:

JP11127872

Publication date:

1999-05-18

Inventor(s):

YAMAMOTO JUN; SAITO YUTAKA; NAITO TAKAYUKI

Applicant(s)::

JAPAN TOBACCO INC

Application

Number:

JP19980224172 19980807

Priority Number(s):

IPC Classification: C12N15/09; C07K14/72; C07K16/28; C12N1/21; C12P21/02; C12Q1/68; G01N33/53; G01N33/566

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide the subject new intranuclear receptor protein having a specific amino acid sequence, capable of being bound to lipophilic hormone to express various physiological activities, and useful as a material leading to the development of medicines and the diagnoses and treatments of diseases, and the like.

SOLUTION: This new intranuclear receptor protein contains an amino acid sequence of formula I, II or III or the substantially same amino acid sequence, can be bound to lipophilic hormones passing through cell membranes to express various physiological activities, and is useful as a material leading to the developments of medicines and the diagnoses and treatments of diseases. The intranuclear receptor protein is obtained by screening a human adult liver cDNA library with the zinc finger of a balloonfish intranuclear receptor cDNA as a probe, inserting a gene encoding a human intranuclear receptor obtained from a positive clone into a vector, transducing the obtained recombined vector into a host cell and subsequently culturing the transformant.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公園番号

特開平11-127872

(43)公開日 平成11年(1999)5月18日

(51) Int.Cl. ⁶	識別記号	F I
C 1 2 N 15/09	ZNA	C 1 2 N 15/00 Z NAA
C 0 7 K 14/72		C 0 7 K 14/72
16/28		16/28
C 1 2 N 1/21		C 1 2 N 1/21
C12P 21/02		C 1 2 P 21/02 C
		審査請求 未請求 請求項の数27 〇L (全38頁) 最終頁に続く
(21)出 順番号	特顯平10-224172	(71) 出願人 000004569
()		日本たばこ産業株式会社
(22)出 順 日	平成10年(1998) 8月7日	東京都港区虎ノ門二丁目2番1号
(<i>r</i> , ,		(72) 発明者 山本 純
(31)優先権主張番号	特顧平9-230335	神奈川県横浜市金沢区福浦1丁目13-2
(32) 優先日	平9 (1997) 8 月11日	日本たばこ産業株式会社医業探索研究所内
(33)優先権主張国	日本(JP)	(72) 発明者 斎藤 豊
		神奈川県横浜市金沢区福浦1丁目13-2
		日本たばこ産業株式会社医薬探索研究所内
		(72) 発明者 内藤 隆之
		神奈川県横浜市金沢区福浦1丁目13-2
		日本たばこ産業株式会社医薬探索研究所内

(54) 【発明の名称】 新規核内レセプター蛋白質、遺伝子及びその用途

(57)【要約】

【課題】 本発明は、ヒト核内レセプター蛋白質、該蛋 白質をコードする新規な遺伝子を提供する。

【解決手段】本発明によって、ヒト核内レセプター蛋白 質、該蛋白質をコードする遺伝子、該遺伝子を含有する ベクター並びに形質転換体、該蛋白質のアゴニスト並び にアンタゴニストのスクリーニング方法、該遺伝子より デザインされるプローブ、プライマー、アンチセンス遺 伝子並びにヒト核内レセプター蛋白に対する抗体が提供 された。

【特許請求の範囲】

【請求項1】 配列番号1、配列番号4または配列番号 うで表されるアミノ酸配列、または実質的に同一のアミノ酸配列を含むことを特徴とする核内レセプター蛋白 質

【請求項2】 配列番号1、配列番号2、配列番号3、配列番号4または配列番号5で表されるアミノ酸配列、または実質的に同一のアミノ酸配列を有する核内レセプター蛋白質。

【請求項3】 請求項1または請求項2記載の核内レセ ブター蛋白質をコードする塩基配列。

【請求項4】 請求項3の塩基配列が配列番号6、配列番号7、配列番号8、配列番号9または配列番号10である塩基配列。

【請求項5】 請求項3の塩基配列が配列番号14または 配列番号15で表される塩基配列。

【請求項6】 請求項1または請求項2で表される核内 レセプター蛋白質の部分領域を含むことを特徴とするポ リペプチド。

【請求項7】 請求項6の部分領域がリガンド結合領域、DNA結合領域、ハイパーバリアブル領域から選ばれる領域であるポリペプチド。

【請求項8】 請求項6のポリペプチドをコードする塩 基配列。

【請求項9】 請求項8の塩基配列がリガンド結合領域、DNA結合領域、ハイバーバリアブル領域から選ばれる領域をコードする塩基配列。

【請求項10】 配列番号14または配列番号15で表される塩基配列の部分配列。

【請求項11】 請求項10の部分塩基配列がアンチセンスである塩基配列。

【請求項12】 核内レセプター蛋白質に作用する物質のスクリーニング法であって、請求項1または請求項2記載の核内レセプター蛋白質もしくは請求項6記載のポリペプチドに試験試料を接触させ、該核内レセプター蛋白質または該ポリペプチドの変化を測定することを特徴とする核内レセプター蛋白質に作用する物質のスクリーニング法。

【請求項13】 核内レセプター蛋白質に作用する物質のスクリーニング法であって、請求項1または請求項2記載の核内レセプター蛋白質もしくは請求項6記載のポリペプチドを発現する細胞に試験試料を接触させ、該核内レセプター蛋白質または該ポリペプチドにより発現調節を受ける他の蛋白質の発現状態を測定し、発現の強弱から該試験試料の核内レセプターに対する作用の存否を求めることを特徴とする核内レセプター蛋白質に作用する物質のスクリーニング法。

【請求項14】 核内レセプター蛋白質に作用する物質 に対する拮抗物質のスクリーニング方法であって、

(1)請求項1または請求項2記載の核内レセプター蛋

白質もしくは請求項6記載のポリペプチドを発現する細胞にリガンドを接触させ、該核内レセプター蛋白質により発現調節を受ける他の蛋白質の発現状態を測定する工程、及び(2)請求項1または請求項2記載の核内レセプター蛋白質もしくは請求項6記載のポリペプチドを発現する細胞にリガンド及び試験試料を共に接触させ、該蛋白質する細胞にリガンド及び試験試料を共に接触させ、該蛋白質の発現状態を測定する工程、を含み、前記工程2で各々求めた該他の蛋白質の発現状態とつるを異から試験試料の拮抗作用を求めることを特徴とする核内レセプター蛋白質に作用する物質に対する拮抗物質のスクリーニング方法。

【請求項15】 請求項12または請求項13記載の方法により選択された核内レセプター蛋白質作用物質。

【請求項16】 請求項14に記載の方法により選択された核内レセプター蛋白質に作用する物質に対する拮抗物質。

【請求項17】 請求項1または請求項2記載の蛋白質 に反応性を有する抗体または抗体の一部。

【請求項18】 請求項1、請求項2記載の核内レセプター蛋白質をコードする塩基配列または請求項5記載の塩基配列もしくはそれらに相補的な塩基配列中の少なくとも15個の連続する塩基配列からなるプローブ。

【請求項19】 請求項18記載のプローブとハイブリダイズする核内レセプターをコードする遺伝子。

【請求項20】 請求項19記載の遺伝子によりコード される核内レセプター蛋白質。

【請求項21】 請求項1または請求項2記載の核内レセプター蛋白質をコードする塩基配列または請求項5記載の塩基配列もしくはそれらに相補的な塩基配列よりデザインされるプライマー。

【請求項22】 請求項21記載のプライマーを用いて PCR法によりクローニングされた核内レセプターをコードする遺伝子。

【請求項23】 請求項22記載の遺伝子によりコード される核内レセプター蛋白質。

【請求項24】 請求項3または請求項5記載の核酸を含有する組換えベクター。

【請求項25】 請求項3または請求項3記載の核酸を 含有する形質転換体。

【請求項26】 請求項8または請求項10記載の核酸を含有する組換えベクター。

【請求項27】 請求項8または請求項10記載の核酸を含有する形質転換体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ヒト由来の核内レセプター蛋白質(以下単に核内レセプターということもある)、該核内レセプター蛋白質をコードする遺伝子、該遺伝子を含有するベクター並びに形質転換体、該核内

レセプター蛋白質に作用する物質 | アゴニスト及びアンタゴニスト (拮抗物質) | のスクリーニング方法、該核内レセプター蛋白質をコードする遺伝子に由来するプローブ及びプライマーとしての利用、該核内レセプターのアンチセンス遺伝子並びに該核内レセプター蛋白質に対する抗体に関する。

[0002]

【従来の技術】生体内では多様な生理活性を発現する物質が生産されており、これら生理活性物質の一つとしてホルモンがある。ホルモンは、ペプチドホルモンに代表される水溶性ホルモンとステロイドホルモンや、甲状腺ホルモン、そしてビタミンAやビタミンDに代表される脂溶性のものに分類できる。これらのホルモンは生体内のある細胞内で生産され、血液中に分泌されて標的細胞へ移動する。標的細胞においてホルモンは、それぞれ特異的なレセプターと結合して生理作用を発現する、水溶性ホルモンは、細胞膜表面に存在するレセプター(膜レセプター)に結合し、脂溶性ホルモンは細胞膜を通過して一般に核に存在する細胞内レセプターと結合する。

【0003】核内レセプターは2つのジンクフィンガー から構成されるDNA結合領域と、そのC末端に位置す るアルファヘリックスに富んだ脂溶性ホルモン等との結 合領域(リガンド結合領域)によって特徴づけられてい る (Cell, Vol83, 835-839 (1995))。また、DNA結 合領域の5 末端からN末端側に位置する領域はハイパ ーバリアブル領域と呼ばれ、リガンドに非依存的な転写 促進機能を有すると考えられている(Science、 vol. 240, 889-895 (1988), J. B iol. Chem., vol 272, 539-550 (1997))、核内レセプターには、脂溶性ホルモン 等のリガンドがリガンド結合領域に結合することによ り、活性化されるものが多い。リガンドが結合すること により活性化される核内レセプターには、リガンドの結 合の有無に関わらず、そのDNA結合領域が標的とする DNAに結合しているものと、リガンドが結合すること により標的とするDNAに結合するものとがある。何れ の場合も、リガンドが結合することにより核内レセプタ 一は活性化され、標的DNAの転写を制御する。核内レ セプターが標的遺伝子に結合する形態は、核内レセプタ 一の種類によって異なり、ホモダイマーを形成して結合 する場合、ヘテロダイマーを形成して結合する場合、並 びにモノマーで結合する場合がある。これまでに脊椎動 物には核内レセプターが50種近く存在することが明ら かにされているが、ステロイドをリガンドとする核内レ セプターは、ホモダイマーを形成すると考えられている (Cell, vol. 83, 835-839, 199 う)。一方、ヒトビタミンDレセプターやhMB67は レチノイドXレセプターとヘテロダイマーを形成する。 なお、これらの核内レセプターの多くは、リガンド、標 的遺伝子がまだ特定されていず、これまでに、例えば、

エストロンゲン依存的乳がん細胞から単離されたPS2 遺伝子やストレメシン3遺伝子がエストロンゲンの標的 遺伝子であると考えられている。

【0004】近年、核内レセプターにより発現調節を受ける他の遺伝子(蛋白)を同定することは、各々の細胞や臓器の機能を解明することのみならず、疾患の原因を遺伝子の転写調節というレベルで解明することが可能であることから、新規な核内レセプターの探索及びその機能解析に関する研究が脚光を浴びている。

【0005】一方、核内レセプターの機能をレセプターのアンタゴニストあるいはアゴニストにより制御することで、種々疾患の治療薬を開発しようとする動きも活発化してきている。例えば、レポータージーンアッセイ等を用いたハイスループットスクリーニングにより、核内レセプターのアゴニストあるいはアンタゴニストを新たな医薬品として開発することに注目がなされてきている。

[0006]

【発明が解決しようとする課題】本発明の目的は、医薬品の開発に有用なヒト由来の新規な核内レセプターおよび該核内レセプター蛋白質をコードする遺伝子を提供することにある。また、ヒト由来の新規な核内レセプターに作用する物質(アゴニスト、アンタゴニスト)のスクリーニング方法、スクリーニングに使用する該核内遺伝子を含有するベクター並びに形質転換体を提供することも自りとする。 治療に有用な遺伝子、アンチセンス遺伝子または、抗体を提供することも目的とする。

[0007]

【課題を解決するための手段】近年、種々の核内レセプターがその構造の一部にアミノ酸配列の類似性を示すことを利用して、新規レセプターをクローニングする方法が行われるようになった。しかし、核内レセプターは発現が極めて少ない場合が多く、ヒトcDNAライブラリーから新規核内レセプターをコードするDNAを単離することは一般に困難であった。

【0008】本発明者らは、新規な核内レセプター遺伝子を単離するため、鋭意研究を重ねた、その結果、まずフグのゲノムから新規核内レセプターをクローニングし、次いでフグの核内レセプターに特徴的な構造であるジンクフィンガー領域を構成する塩基配列をもとにDNAプローブを合成し、該プローブを用いてヒト肝臓のCDNAライブラリーをスクリーニングすることにより、ヒト核内レセプターをコードする複数の新規なCDNA(hANO23およびhANO16(胎児型、成体型))の単離に成功した。

【0009】塩基配列及びアミノ酸配列の解析から、単離されたcDNAは、既知の核内レセプターに特徴的な構造であるジンクフィンガー構造 (Cell, Vol83, 835-8 39 (1995)、Trends in Biochemical Sciences, Vol16.

291-296 (1991)) を有し、既知の核内レセプターと相同性を有することから核内レセプターであると推定された。

【0010】たとえば、単離されたhAN023と命名 した核内レセプターは、配列番号3に示すアミノ酸配列 の80位から146位の領域にジンクフィンガー構造を 有することからこの領域がDNA結合領域であると推定 された。この推定DNA結合領域は、ヒトビタミンDレ セプターのDNA結合領域と67.2%のアミノ酸配列 相同性を有していた。また、hANO23は肝臓と小腸 において発現が強く認められ、またステロイド結合性を 有していた。これらのことから、核内レセプターhAN 023は、ステロイドをリガンドの1つとする核内レセ プターであり、肝機能の制御に関与している可能性や、 肝臓や小腸で発現していることからコレステロール代謝 を中心とする脂質代謝の制御に関与している可能性が示 唆される。hANO16 (胎児型)及びhANO16 (成体型)のDNA結合領域は共にラットαーフェトプ ロテイン転写因子のDNA結合領域と93.9%のアミ ノ酸配列相同性を有することが認められた。ラットαー フェトプロテインは、肝臓の発生やガン化に関与すると されている。したがって、hANO16は、例えば細胞 のガン化及び、または肝機能の制御に関与している可能 性が示唆される。

【0011】従って、本発明の核内レセプターをコードする遺伝子、蛋白質若しくはそれらの部分領域は、該核内レセプターの機能が直接的あるいは間接的に関与する病的症状の解明や疾患の予防並びに治療のための医薬品開発に極めて有用である。

【0012】すなわち、本発明は、下記の核酸、遺伝子、蛋白質、組換えベクター、形質転換体、抗体、スクリーニング方法、プローブ、プライマー、アンチセンス遺伝子等を初めて提供するものであり、詳しくは下記(1) 乃至(27) に示すとおりである。

- 【0013】(1) 配列番号1、配列番号4または配列番号5で表されるアミノ酸配列、または実質的に同一のアミノ酸配列を含むことを特徴とする核内レセプター蛋白質。
- (2) 配列番号1、配列番号2、配列番号3、配列番号4または配列番号5で表されるアミノ酸配列、または 実質的に同一のアミノ酸配列を有する核内レセプター蛋 白質。
- (3) 前記(1)または(2)記載の核内レセプター 蛋白質をコードする塩基配列。
- (4) 前記(3)の塩基配列が配列番号6、配列番号7、配列番号8、配列番号9または配列番号10である塩基配列。
- (5) 前記(3)の塩基配列が配列番号14または配列番号15で表される塩基配列。
- (6) 前記(1)または(2)で表される核内レセプ

- ター蛋白質の部分領域を含むことを特徴とするポリペプ チド
- (7) 前記(6)の部分領域がリガンド結合領域、DNA結合領域、ハイパーバリアブル領域から選ばれる領域であるポリペプチド。
- (8) 前記(6)のポリペプチドをコードする塩基配 列
- (9) 前記(8)の塩基配列がリガンド結合領域、D NA結合領域、ハイバーバリアブル領域から選ばれる領域をコードする塩基配列。
- (10) 配列番号14または配列番号15で表される 塩基配列の部分配列。
- (11) 前記(10)の部分塩基配列がアンチセンス である塩基配列。
- (12) 核内レセプター蛋白質に作用する物質のスクリーニング法であって、前記(1)または(2)記載の核内レセプター蛋白質もしくは前記(6)記載のポリペプチドに試験試料を接触させ、該核内レセプター蛋白質または該ポリペプチドの変化を測定することを特徴とする核内レセプター蛋白質に作用する物質のスクリーニング法。
- (13) 核内レセプター蛋白質に作用する物質のスクリーニング法であって、前記(1)または(2)記載の核内レセプター蛋白質もしくは前記(6)記載のポリペプチドを発現する細胞に試験試料を接触させ、該核内レセプター蛋白質または該ポリペプチドにより発現調節を受ける他の蛋白質の発現状態を測定し、発現の強弱から該試験試料の核内レセプターに対する作用の存否を求めることを特徴とする核内レセプター蛋白質に作用する物質のスクリーニング法、
- (14) 核内レセプター蛋白質に作用する物質(リガンド)に対する拮抗物質のスクリーニング方法であって、(イ)前記(1)または(2)記載の核内レセプター蛋白質もしくは前記(6)記載のボリペプチドを発現する細胞にリガンドを接触させ、該核内レセプター蛋白質により発現調節を受ける他の蛋白質の発現状態を測定する工程、及び(ロ)前記(1)または(2)記載のボリペプチドを発現する細胞にリガンド及び試験試料を共に接触させ、該蛋白質またはボリペプチドにより発現調節を受ける他の蛋白質の発現状態を測定する工程、を含み、税割工程1及び工程2で各々求めた該他の蛋白質の発現状態を測定する工程、を含み、税能との差異から試験試料の拮抗作用を求めることを特徴とするリガンドのスクリーニング方法。
- (15) 前記(12)または前記(13)記載の方法により選択された作用物質、
- (16) 前記(14)に記載の方法により選択された 拮抗物質。
- (17) 前記(1)または(2)記載の蛋白質に反応性を有する抗体または抗体の一部。

(18) 前記(1)または(2)記載の核内レセプター蛋白質をコードする塩基配列または前記(5)に記載の塩基配列もしくはそれらに相補的な塩基配列中の少なくとも15個の連続する塩基配列からなるプローブ。

(19) 前記(18)記載のプローブとハイブリダイズする核内レセプターをコードする遺伝子。

(20) 前記(19)記載の遺伝子によりコードされる核内レセプター蛋白質。

(21) 前記(1)または(2)記載の核内レセプター蛋白質をコードする塩基配列または前記(5)に記載の塩基配列もしくはそれらに相補的な塩基配列よりデザインされるプライマー。

(22) 前記(21)記載のプライマーを用いてPC R法によりクローニングされた核内レセプターをコード する遺伝子。

(23) 前記(22)記載の遺伝子によりコードされる核内レセプター蛋白質。

(24) 前記(3)または前記(5)記載の核酸を含有する組換えベクター。

(25) 前記(3)または前記(5)記載記載の核酸を含有する形質転換体。

(26) 前記(8)または前記(10)記載の核酸を 含有する組換えベクター。

(27) 前記(8)または前記(10)記載の核酸を含有する形質転換体。

【①①14】「実質的に同一のアミノ酸配列」の定義 一般に生理活性を有する蛋白質のアミノ酸配列が多少変 更された場合、例えば、該アミノ酸配列中の1または複 数のアミノ酸が欠失、置換もしくは付加された場合でも 該蛋白質の生理活性が維持される場合があることは周知 の事実である。したがって、本明細書でいう「実質的に 同一のアミノ酸配列」とは、配列番号1からうに示され るアミノ酸配列と実質的に同等の生物活性が保持される 限り、該配列中の1または複数のアミノ酸が欠失、置換 もしくは付加されたヒト核内レセプター蛋白質も本発明 の範囲に含まれることを意味する。好ましくは、配列番 号1からうで表される配列中の1個以上20個以下、好 ましくは1個以上10個以下、さらに好ましくは1個以 上5個以下のアミノ酸が欠失、置換もしくは付加された ヒト核内レセプター蛋白質である。より好ましくは、配 列番号1からうで表される配列中の1個以上20個以 下、好ましくは1個以上10個以下、さらに好ましくは 1個以上5個以下のアミノ酸が欠失、置換もしくは付加 された、脂溶性ホルモンと結合するヒト核内レセプター 蛋白質であり、さらにより好ましくは、(1)配列番号 1から配列番号3で表される配列中の1個以上20個以 下、好ましくは1個以上10個以下、さらに好ましくは 1個以上5個以下のアミノ酸が欠失、置換もしくは付加 された、ステロイドと結合するヒト核内レセプター蛋白 質、(2)配列番号4または配列番号うで表される配列 中の1個以上20個以下、好ましくは1個以上10個以下、さらに好ましくは1個以上5個以下のアミノ酸が欠失、置換もしくは付加された、α-フェトプロテインを1つの標的遺伝子とするヒト核内レセプター蛋白質、である。

【0015】アミノ酸の欠失、置換もしくは付加による変異体は、保存的に置換された配列を含んでいてもよい。これは、特定のアミノ酸残基が類似の物理化学的特徴を有する残基によって置き換えられていてもよいことを意味している。保存的置換の非限定的な例には、「1e、Val、LeuまたはAla相互の置換のような脂肪族鎖含有アミノ酸残基の間の置換、あるいはLysとArgのような極性基の置換が含まれる。

【0016】アミノ酸の欠失、置換もしくは付加による 変異体は、例えば、それをコードする遺伝子に周知技術 である部位特異的変異誘発(例えば、Nucl・Aid Research, vol. 10, No. 20, 64 87-6500, 1992) をすることにより得ること ができる、部位特異的変異誘発は、例えば、所望の変異 である特定の変異を受けるべき一本鎖ファージDNAに 相補的で一部変異を含む合成オリゴヌクレオチドプライ マーを用いて行うことができる。すなわち、プライマー として前記合成オリゴヌクレオチドを用いてファージに 相補的な鎖を合成させ、得られた二重鎖DNAで宿主細 菌を形質転換する。形質転換された宿主を寒天にプレー トし、プラークを形成させる。理論的には50%のプラ ークが変異を有し、残りの50%が元の配列を有する。 得られたプラークを、変異を有するDNAとはハイブリ ッドを形成するが元の鎖とはハイブリッドを形成しない 条件において、ラベルされた合成プローブとハイブリッ ドを形成させ、変異体を得る。

【0017】なお、アミノ酸配列の欠失、置換もしくは 付加を行う方法としては、前記の部位特異的変異誘発の ほかにも、遺伝子を変異原で処理する方法あるいは遺伝 子を制限酵素で開製し、選択した遺伝子断片を除去、付 加または置換し、ついで連結する方法もある。

【0018】また、本発明の核内レセプターをコードする核酸については、1つのアミノ酸をコードするコドンは複数存在するので、コードされるアミノ酸配列が同じであれば、どのような塩基配列の遺伝子も本発明の範囲に含まれる。したがって、本発明には配列番号1からうで示されるアミノ酸配列をコードするいずれの遺伝子、並びに該配列中の1または複数のアミノ酸が欠失、置換もしくは付加されたヒト核内レセプター蛋白質をコードする塩基配列も本発明の範囲に含まれることを意味する

【0019】さらに、本発明の範囲に入る塩基配列には、ストリンジェントな条件下で本発明のヒト核内レセ プター塩基配列にハイブリダイズし、該塩基配列中にジ ンクフィンガー構造をもつ遺伝子も含まれる、ストリン ジェントな条件は、例えば、Sambrookら、MolecularCloning: A Laboratory Manual, 2nd edition, Vol. 1, 101~104, (1986) に記載された条件を意味する。より具体的には、1XSSC、0.5% SDS、温度65度での洗浄条件が含まれる。

【0020】「実質的に同等の生物活性」の定義 ここで「実質的に同等の生物活性」とは、同じリガンド に結合し、あるいは同じ標的遺伝子の転写活性を制御す る機能を有する生物活性を意味する。

【0021】「部分領域」の定義

本明細書中でいう「部分領域」とは、本発明の核内レセアター蛋白質の一部分または、該核内レセプターの塩基配列の一部分であって、好ましくは少なくとも6個の連続するアミノ酸配列を含むポリペプチドまたは少なくとも18個の連続する塩基配列を含む塩基配列を意味する。それら塩基配列は、たとえば、そのタンパク質に特有のエピトープ(抗原決定基)や、DNA結合領域、リガンド結合領域、ハイパーバリアブル領域または非コーディング領域から選ばれる領域であってもよい。DNA結合領域とは2つのジンクフィンガーから構成される領域であって、例えば、

- (1)配列番号1に示すアミノ酸配列の約41位から約 107位の領域
- (2)配列番号2に示すアミノ酸配列の約64位から約 130位の領域
- (3)配列番号3に示すアミノ酸配列の約80位から約 146位の領域
- (4)配列番号4に示すアミノ酸配列の約24位から約89位の領域
- (5)配列番号らに示すアミノ酸配列の約40位から約 105位の領域
- であり、リガンド結合領域とは、C末端に位置するアルファヘリックスに富んだ領域であり、例えば、
- (1)配列番号1に示すアミノ酸配列の約240位から 約434位の領域
- (2)配列番号2に示すアミノ酸配列の約263位から 約457位の領域
- (3)配列番号3に示すアミノ酸配列の約279位から 約473位の領域、
- (4)配列番号4に示すアミノ酸配列の約90位から約 479位の領域
- (5)配列番号さに示すアミノ酸配列の約106位から 約495位の領域

である、ハイパーバリアブル領域とは、A - B領域とも呼ばれることもあり、DNA結合領域の5 側からN末端にかけての領域である(Science, vol. 240,889-895(1988))。なお、塩基配列の「部分領域」にはセンス配列だけでなく、アンチセンス配列も含まれるものである。

【0022】既に述べたように、本発明の核内レセプターの遺伝子、蛋白質若しくはそれらの部分領域は、該核内レセプターの機能が直接的あるいは間接的に関与する病的症状との関係解明、そしてそれら疾患の予防並びに治療のための医薬品開発に極めて有用である。

【0023】本発明の核内レセプターが直接あるいは間 接的に関与する病的症状との関連は、まず、リガンドを 特定し、ついでリガンドと本発明の核内レセプターとに より転写制御される遺伝子群を特定することによって解 明することができる。リガンドの特定は、本発明の核内 レセプターあるいはその部分領域ポリペプチドに試験試 料を接触させることにより、該核内レセプターあるいは その部分領域ポリペプチドの変化を検出することによっ て行うことができる。例えば、一般的に行われているバ インディングアッセイ等において、本発明の核内レセプ ター蛋白質あるいはその断片を用いて行うことができ る、また、本発明の核内レセプター蛋白質と該核内レセ ブターの結合する標的遺伝子の発現系を構築し、リガン ド添加による標的遺伝子産物である蛋白質の増加を検出 する方法がある。例えば、ルシフェラーゼ、エクオリ ン、CAT、Bーガラクトシダーゼのようなレポーター 蛋白質を標的遺伝子のプロモーターの支配下に発現する ようなレポーター遺伝子を用いることにより、宿主細胞 中での標的遺伝子の発現の有無を容易に検出することが できる。さらに、本発明の核内レセプター全長の代わり に、該レセプターのリガンド結合領域とDNA結合性蛋 白質とのキメラ遺伝子を発現させ、レポーター遺伝子と して、DNA結合性蛋白質が結合する塩基配列の下流に 最小活性プロモーターおよび前述のレポーター蛋白質を コードする遺伝子を連結したプラスミドを用いることが できる。DNA結合性蛋白質としては、例えば、GAL 4、テトラサイクリンリプレッサー、LexAを用いる ことができる。本発明の核内レセプター蛋白質と該核内 レセプターの結合する標的遺伝子の発現系ならびにレセ プターのリガンド結合領域とDNA結合性蛋白質とのキ メラ遺伝子を発現させるプラスミドは、遺伝子組換えの 常法により得ることができる。

【0024】本発明の核内レセプター蛋白質あるいはそのペプチド断片は遺伝子組換えの常法によって得ることができる。宿主細胞は、原核細胞、酵母又は高等真核細胞から適宜選ぶことができる。原核生物には、グラム陰性又はグラム陽性菌、例えば、大腸菌又は枯草菌が含まれる、好ましくは、動物細胞であり、さらに好ましくは哺乳動物細胞である。なお、本発明の核内レセプター蛋白質と該核内レセプターの結合する標的遺伝子の発現系も同様にして得ることができる。

【0025】細菌、酵母、及び高等真核細胞宿主で用いる適切なクローニング及び発現ベクターは、例えば、Pouwels ら、Cloning Vectors: A Laboratory Manual, Elsevier, New York, (1985)に記載されている。原核宿主

細胞内で用いる発現ベクターは、一般に1又は2以上の 表現型選択可能マーカー遺伝子を含む。表現型選択可能 マーカー遺伝子は、例えば、抗生物質耐性を付与するか 又は独立栄養要求性を付与する遺伝子である。原核宿主 細胞に適する発現ベクターの例には、pBR322(A TCC37017)のような市販のプラスミドまたはそ れらから誘導されるものが含まれる。pBR322は、 アンピシリン及びテトラサイクリン耐性のための遺伝子 を含むので、形質転換細胞を同定するのが簡単である。 適切なプロモーターが、このPBR322ベクター内に 挿入される。他の市販のベクターには、例えば、pKK 223-3 (スェーデン、ウブサラの Pharmacia Fine Chemicals) 及びpGEM1(米国、ウィスコンシン 州、マジソンの Promega Biotec) が含まれる 原核宿 主細胞用の発現ベクターに普通に用いられるプロモータ 一配列には、tacプロモーター、βーラクタマーゼ (ペニシリナーゼ)、ラクトースプロモーター(Chang ら、Nature 275:615, 1978; 及び Goeddelら、Nature 28 1:544, 1979) 等が含まれる。

【0026】また、本発明の核内レセプター遺伝子を酵母宿主細胞内で発現させてもよい。この場合、好ましくはサッカロミセス属(例えば、S. セレビシエ)を用いるが、ピキア (Pichia) の如き他の酵母の属を用いてもよい。酵母ベクターは、2μ酵母プラスミドからの複製起点の配列、自律複製配列(ARS)、プロモーター領域、ボリアデニル化のための配列、転写終結のための配列、及び選択可能なマーカー遺伝子を含むことが多い。酵母を形質転換する方法としては、例えば Hinnenらの方法 (Proc. Natl.Acad. Sci. USA 75:1929, 1978) に記載されている。

【0027】哺乳動物又は昆虫宿主細胞培養系を用い て、ヒト核内レセプター蛋白質を発現することもでき る。哺乳動物起源の細胞は、例えば、CV1細胞、NIH3T3 細胞、HeLa細胞、CHO細胞のような株化細胞系が望まし い、哺乳動物宿主細胞発現ベクターのための転写及び翻 訳制御配列は、例えばウィルスゲノムから得ることがで きる、普通に用いられるプロモーター配列及びエンハン サー配列は、CMVウィルス、ポリオーマウィルス、ア デノウィルス2等から誘導される。SV40ウィルスゲ ノム、例えば、SV40起点、初期及び後期プロモータ ー、エンハンサー、スプライス部位、及びボリアデニル 化部位から誘導されるDNA配列を用いてもよい、また 哺乳動物宿主細胞内における核内遺伝子発現のため他の 遺伝子要素を与えてもよい。哺乳動物宿主細胞内で用い るための発現ベクターは、例えばpMAMneo(Clont ech Laboratories)を使用できる

【0028】配列番号1乃至3に示される本発明の核内 レセプターは、各種ステロイド(グルココルチコイド、 ミネラルコルチコイド、アンドロゲン、エストロゲン、 黄体ホルモン、あるいはこれらの合成中間体あるいは代

謝物)をリガンドの1つとする核内レセプターである。 ステロイドをリガンドとする核内レセプターは、ホモダ イマーを形成すると考えられており、一方、ヒトビタミ ンDレセプターやhMB67はレチノイドXレセプター とヘテロダイマーを形成すると考えられている。しか し、配列番号1乃至3に示される核内レセプターは、ス テロイドをリガンドとする核内レセプターよりヒトビタ ミンDレセプターやhMB67と相同性を有している。 したがって、配列番号1乃至3に示される核内レセプタ ーは、ステロイドをリガンドの1つとするものの、ホモ ダイマーを形成する既知のステロイドレセプターとは異 なる新しいタイプの核内レセプターと考えられる。すな わち、本発明は、既知のステロイドレセプターとは異な るタイプの、ステロイドをリガンドとする核内レセプタ ーを提供するするものであり、本発明の核内レセプター は、これまでに知られているステロイドの多種多様な作 用に関与する可能性を有する。

【0029】本発明の核内レセブターが関与する病的症 状の解明は、本発明の核内レセプターを発現する細胞に アンタゴニストあるいはアゴニストを接触させた時の標 的遺伝子の発現量と、試験試料を接触させていない核内 レセプター発現細胞の標的遺伝子の発現量とを比較する ことにより、活性化される遺伝子を特定することにより 機能の解明が可能である。例えば、細胞中で発現された mRNAから標識化されたDNAを転写させ、得られた 標識DNAをDNAライブラリーチップとハイブリダイ ズさせることにより本発明の核内レセプターにより発現 制御された遺伝子を特定することもできる(Bioes says, 18.427-431(1996)), \sharp た、実験動物において、本発明の核内レセプター遺伝子 の機能を有する実験動物由来の内在性核内レセプター遺 伝子を破壊(不活性化)することによりモデル動物を作 成し、このモデル動物の物理学的、生物学的、病理学的 及び遺伝子的特徴を分析することにより、本発明の核内 レセプターの機能と疾病との関連を解明することも可能 となる。

【0030】また、前述した内在性遺伝子が破壊された モデル動物に、本発明のヒト由来の遺伝子を導入するこ とにより、本発明のヒト由来遺伝子のみを有するモデル 動物を作成し、導入されたヒト遺伝子をターゲットとし た薬剤(化合物等)を投与することにより、その薬剤の 治療学的効果を評価することも可能である。

【0031】さらに、本発明の核内レセプターの遺伝子及びその部分領域は、それ自体、核内レセプターの機能を遺伝子レベルで制御するアンチセンス医薬品として、又遺伝子治療での使用において有用である。アンチセンス遺伝子は、アミノ酸コーディング領域のみならず、アミノ酸非コーディング領域から選んで設計することができる。非コーディング領域の配列は、例えば、配列番号14および配列番号15で表される配列を用いることが

できる。

【0032】また本発明の核内レセプターをコードする 塩基配列はプローブまたはプライマーとしてさらなる核 内レセプターの探索ツールとして利用することが可能で ある。本発明のヒト核内レセプター塩基配列の断片をプ ローブとして使用するためには、配列番号もから10、 14および15のいずれかの配列に基づいてプローブを 設計すればよい。その長さは少なくとも15個の連続す る塩基配列であることが望ましい、プローブは慣用方法 により、例えば、放射性同位元素、ジゴキシゲニン、検 出可能な酵素等により標識できる。例えば放射性Pを用 いる場合、cDNA断片を用いる場合は、ランダムプラ イミングラベルにより標識し、また、合成プライマーを 使用する場合はリン酸化酵素により5、末端標識すると 都合がよい。このように標識したプローブをcDNAラ イブラリーとハイブリダイゼーションしてクローニング を行う。ハイブリダイゼーションは、慣用された方法、 条件により行うことができる。例えば、1XSSC、 O. 5%SDS、温度65度洗浄である。cDNAライ ブラリーは、哺乳類を含む動物由来のものであってもよ いが、特にヒトの組織・細胞由来のものが望ましい。 【0033】本発明のヒト核内レセプターの部分塩基配 列をプライマーとして利用することができる。プライマ ーを設計する場合には、例えば、配列番号6から10、 14および15のいずれかの配列から、例えば以下の条 件を満たすように2つを選定すればよい。

- 1) プライマーの長さが15から40塩基、好ましくは、20から30塩基であること。
- 2) プライマーの中のグアニンとシトシンの割合が、40%ないし60%、好ましくは45%ないし55%、より好ましくは50%ないし55%であること。
- 3) プライマー配列において、アデニン、チミン、グアニン、シトシンの分布が部分的に偏らないこと。たとえば、グアニン、シトシンが繰り返し分布するような領域は特異性が低いと考えられるのでプライマーとして適切ではない。
- 4)選定されるプライマーに対応するヒト核内遺伝子の塩基配列上の距離が好ましくは100ないし3000塩基、さらに好ましくは、100ないし500塩基であること。
- 5)各プライマー自身あるいは2つのプライマー間に相補的な配列が存在しないこと。

プライマーの配列が選定されれば、市販のDNA合成機器、例えば、パーキンエルマー社製によりプライマーDNAを合成すればよい。

【0034】以下、本発明を詳細に説明する。本発明者らは、フグ核内レセプターをコードする遺伝子の塩基配列をもとに設計したプローブ(配列番号11及び配列番号13)を用いてヒト肝臓 c DNAライブラリーのスクリーニングを行った。配列番号11をプローブとして、

核内レセプターをコードすると推定されるクローンが得られた。しかし、完全長をコードするクローンが得られなかったので、得られた遺伝子断片(配列番号12)をプローブとしてさらにヒト肝臓cDNAライブラリーのスクリーニングを行い、核内レセプターの完全長をコードすると推定されるクローンを2個得た。ついて、得られたクローンのシークエンス解析を行った。

【0035】得られた完全長をコードすると推定されるクローンのうちの1個(hAN023と命名する)の塩基配列を配列番号14に示す。また、アミノ酸配列をコードする塩基配列を配列番号8に、推定アミノ酸配列を配列番号3に示す。そして、この遺伝子のシークエンス解析を行った結果、hAN023は、DNA結合領域とリガンド結合領域を持つことが分かった。

【0036】核内レセプターhAN023は、公知の核内レセプターの配列との相同性からアミノ酸配列の80位Cysから146位MetsでがDNA結合領域、279位Leuから473位SersでがJがンド結合領域であると推定された。また、ヒトビタミンD3レセプター(Proc.Nat1.Acad.Sci.USA..Vol.85,3294-3298(1988))の<math>DNA結合領域とアミノ酸配列で67.2%の相同性を有していた。

【0037】もう1個の完全長をコードすると推定され るクローンの塩基配列を配列番号15に示す。この遺伝子 には、ハイパーバリアブル領域をコードすると考えられ る領域内に一般の翻訳開始コドンであるATGが存在せ ず、代わりにGTGコドンまたはCTGコドンが見出さ れた。開始コドンがATGではなく、CTGやGTGを 翻訳開始コドンとしている遺伝子はいくつか報告されて พล (Cell 52 (2), 185-195(198 8) EMBO 10(3), 655-664(199) 1), J. Virol, 66 (3) 1765-1768 (1992))。そこで、in vitroにおいて蛋白質の生 合成を調べたところ、CTGやGTGを翻訳開始コドン として翻訳された2種類の蛋白質(約48kdaと約5 Okda)の存在が確認された(推定するアミノ酸配列 を配列番号1および配列番号2に示す)、これらの遺伝 子は、核内レセプターhANO23と同じDNA結合領 域とリガンド結合領域を有することから核内レセプター hANO23のスプライシングバリアントであると結論 された。

【0038】配列番号13をプローブとした場合には、 hAN016(成体型、配列番号9)、hAN016 (胎児型、配列番号10)の2個のクローンが得られ た。これらのクローンの推定アミノ酸配列を配列番号4 (hAN016(成体型))、配列番号5(hAN016 6(胎児型))に示す、これらの遺伝子をシークエンス 解析した結果、DNA結合領域とリガンド結合領域を持 つことが分かった。核内レセプターhAN016(成体

【0039】本発明の遺伝子は下記実施例に記載されて いるように、ヒト肝臓由来のcDNAライブラリーか ら、ハイブリダイゼーション法を利用して得ることもで きるが、本発明により決定されたDNAの塩基配列に基 づいて、ヒト肝臓由来のcDNAライブラリーを鋳型と するPCR法により容易に得ることもできる。本発明核 内レセプターは、配列番号1からうに示されるアミノ酸 配列を含む蛋白質と実質的に同等の生物活性が保持され る限り、該配列中の1または複数のアミノ酸が欠失、置 換もしくは付加されたヒト核内レセプター蛋白質も本発 明の範囲に含まれる。ここでいう生物活性とは、同じリ ガンドに結合し、標的遺伝子の転写活性を制御する活性 を意味する。好ましくは、配列番号1からうで表される。 配列中の1個以上20個以下、好ましくは1個以上10 個以下、さらに好ましくは1個以上5個以下のアミノ酸 が欠失、置換もしくは付加されたヒト核内レセプター蛋 白質である。より好ましくは、配列番号1かららで表さ れる配列中の1個以上20個以下、好ましくは1個以上 10個以下、さらに好ましくは1個以上5個以下のアミ ノ酸が欠失、置換もしくは付加された、脂溶性ホルモン と結合するヒト核内レセプター蛋白質であり、さらによ り好ましくは、(1)配列番号1、配列番号2並びに配 列番号3で表される配列中の1個以上20個以下、好ま しくは1個以上10個以下、さらに好ましくは1個以上 5個以下のアミノ酸が欠失、置換もしくは付加された、 ステロイドと結合するヒト核内レセプター蛋白質、

(2)配列番号4または配列番号5で表される配列中の1個以上20個以下、好ましくは1個以上10個以下、さらに好ましくは1個以上5個以下のアミノ酸が欠失、置換もしくは付加された、αーフェトプロテインを1つの標的遺伝子とするヒト核内レセブター蛋白質、である。

【0040】アミノ酸の欠失、置換もしくは付加による 変異体は、保存的に置換された配列を含んでいてもよい、これは、特定のアミノ酸残基が類似の物理化学的特 徴を有する残基によって置き換えられていてもよいこと を意味している。保存的置換の非限定的な例には、「1 e, Val, LeuまたはAla相互の置換のような脂肪族鎖含有アミノ酸残基の間の置換、あるいはLysとArgのような極性基の置換が含まれる。

【0041】アミノ酸の欠失、置換もしくは付加による変異体は、例えば、それをコードする遺伝子に周知技術である部位特異的変異誘発(例えば、Nucl. Ald Research, vol. 10, No. 20, 6487-6500, 1992)をすることにより得ることができる。

【○○42】部位特異的変異誘発は、例えば、所望の変異である特定の変異を受けるべき一本鎖ファージDNAに相補的で一部変異を含む合成オリゴヌクレオチドプライマーを用いて行うことができる。すなわち、プライマーとして前記合成オリゴヌクレオチドを用いてファージに相補的な鎖を合成させ、得られた二重鎖DNAで宿主細菌を形質転換する。形質転換された宿主を寒天にアレートし、プラークを形成させる。理論的には50%のプラークが変異を有し、残りの50%が元の配列を有する。得られたプラークを、変異を有するDNAとはハイブリッドを形成するが元の鎖とはハイブリッドを形成するが、ラベルされた合成プローブとハイブリッドを形成させ、変異体を得る、

【0043】なお、アミノ酸配列の欠失、置換もしくは 付加を行う方法としては、前記の部位特異的変異誘発の ほかにも、遺伝子を変異原で処理する方法あるいは遺伝 子を制限酵素で開製し、選択した遺伝子断片を除去、付 加または置換し、ついで連結する方法もある。

【0044】また、本発明の核内レセプターをコードする核酸については、1つのアミノ酸をコードするコドンは複数存在するので、コードされるアミノ酸配列が同じであれば、どのような塩基配列の遺伝子も本発明の範囲に含まれる。したがって、本発明には配列番号1からうで示されるアミノ酸配列をコードするいずれの遺伝子、並びに該配列中の1または複数のアミノ酸が欠失、置換もしくは付加されたヒト核内レセプター蛋白質をコードする塩基配列も本発明の範囲に含まれることを意味する。なお、ここでいう「1または複数のアミノ酸が欠失、置換もしくは付加」とは前述の定義と同じものを意味する。

【0045】また、本発明の範囲に入る塩基配列には、ストリンジェントな条件下で本発明のヒト核内レセプター塩基配列にハイブリダイズし、該塩基配列中にジンクフィンガー構造をもつ遺伝子が含まれる。ストリンジェントな条件は、例えば、Sambrookら、MolecularCloning:A-Laboratory

Manual, 2nd edition, Vol. 1, 101~104, (1986)に記載された条件を 意味する、より具体的には、1XSSC、0.5%SD S、温度65度での洗浄条件が含まれる。

【0046】配列番号4及び配列番号5に各々示される

ヒト核内レセプター蛋白質は、既知のラット α -フェトプロテイン転写因子のDNA結合領域と高い相同性を有している。ラット α -フェトプロテイン転写因子は、 α -フェトプロテインの制御領域に結合する転写因子として単離され、 α -フェトプロテインの制御領域中のTCAAGGTCAに結合することが知られている(Molecular and Cellular Biology, Vol16, No7, 3853-3865 (1996)),また、 α -フェトプロテイン遺伝子は、胎児期から幼児期において活性化されるが、成体になると不活性になり、さらにガン化において再度活性化されることが知られている(Molecular and Cellular Biology, Vol.16 No7, 3853-3865 (1996)、Molecular and Cellular Biology, Vol.13 No3, 1619-1633 (1993))。

【0047】したがって配列番号9及び10に示される 核内レセプター蛋白質をコードする遺伝子を用い、例え ば、hAN016(成人型)のアゴニストまたはhAN 016(胎児型)のアンタゴニストをスクリーニングす ることにより、細胞のガン化制御物質を選択することが 可能である。

【0048】配列番号1乃至3で表される核内レセプター蛋白質は小腸・肝臓特異的発現であるので、該核内レセプターは小腸・肝機能調節に寄与しているものと考えられる。したがって、前述したように、本発明の核内レセプターを用いることにより初めて、小腸・肝臓に特異的な標的遺伝子の発現調節に寄与するアゴニスト、アンタゴニストをスクリーニングすることが可能となり、小腸・肝臓機能を調節する医薬品の開発に貢献することが可能となる。

【()()49】配列番号1乃至配列番号3で表される核内 レセプターは、ステロイド化合物をリガンドの1つとし ている、したがって、ステロイドの作用によって惹起さ れる疾病の治療薬の開発に利用できる可能性が高い。例 えば、コルチコステロンは、肝臓においてはグリコーゲ ン貯留、コレステロール産生等の作用を示し、腸管にお いてはCa吸収抑制作用を示すことが知られている。ま た、その他にもコルチコステロンは、抗炎症作用、糖質 代謝作用、蛋白代謝作用、脂質代謝作用、電解質代謝作 用、尿中Ca排泄促進作用等が知られている。よって、 コルチコステロンがリガンドとなる核内レセプターの活 性を制御することにより、糖尿病、高脂血症、高血圧、 骨粗鬆症、筋萎縮、浮腫、アレルギー等の治療薬開発が 可能である。さらに、配列番号1乃至配列番号3で表さ れる核内レセプターは、アンドロステンジオンの代謝物 である5βーアンドロスタン=3、17=ジオン、5β -r > r = 1ンドロスタン - 3 β - オル - 1 7 -- オンで活性化される ことから、男性ホルモンの合成・代謝を制御していると 考えられる。同様に、黄体ホルモンであるプロゲステロ ン類縁化合物である5βープレグナンー3,20~ジオ ン、 20α ージヒドロキシプロゲステロン、6, 16α ージメチルプレグネノロンおよびエストロン類緑化合物である11βーヒドロキシエステロンによって活性化されることから、これらホルモンの合成・代謝を制御していると考えられる。黄体ホルモンは性ホルモン作用以外に蛋白質、糖、脂質代謝、肝臓での排出機能、免疫抑制作用、抗うつ作用等が知られており、例えば、5βープレグナン-3、20ージオンの生理作用の一つとしてリンパ球の増殖抑制作用が報告されている。エストロゲンについては性ホルモン作用以外に、骨におけるCa次着促進、黄体ホルモン分泌、副腎皮質ホルモン産生等を調節することが知られている。

【0050】また、配列番号1乃至配列番号3で表され る核内レセプターは肝臓と小腸に高発現する核内レセプ ターである。肝臓と小腸の両者が関与することで特徴で けられる生体内での重要な機能としては、コレステロー ルやトリグリセリド等を中心とした脂質代謝があり、該 核内レセプターはその発現分布の特徴からこれら脂質代 謝に関与していると考えられる。肝臓と小腸での高発現 を特徴する蛋白質としてはアポA-I、アポA-II並 びにP450系の各種酵素がある、アポA-I、アポA - 1 1 はコレステロールやトリグリセリド代謝を中心と する脂質代謝に関与し、またP450系の酵素はステロ ールの合成。代謝、薬物代謝を調節していることが広く 知られている。なお、P450系の酵素はステロイドで 誘導されることが知られている。これらの事実に加え て、前述したように該核内レセプターが各種ステロイド をリガンドする事実は、該核内レセプターがステロール の代謝、ホメオスタシス、薬物代謝ならびにステロール を中心とした脂質代謝の調節に関与することを裏付ける ものであると考えられる。したがって、該核内レセプタ 一の機能を制御することにより、各種ステロイド作用を 調節する医薬品開発のみならず、脂質代謝に関連する高 脂血症、動脈硬化に対する医薬品開発が可能であると考 えられる。

【0051】本明細書の実施例において、ステロイドが本発明の核内レセプターのリガンドとして働くことを示したが、本発明のリガンドスクリーニング系を用いることによってステロイド以外の化合物を見出すことが可能である。また、配列番号1乃至配列番号3で表される核内レセプターは肝臓と小腸に高発現することから、前述した以外の肝臓および小腸の関与する生理作用、疾患に関与していることも容易に想像される。

【0052】配列番号1ないし配列番号うに示される本発明の核内レセプターに対する抗体は、例えば、前述の遺伝子組換えの常法により得られた、本発明の核内レセプター蛋白質あるいはそのペプチド断片を用いて、哺乳動物免疫することにより得ることができる。また、免疫した哺乳動物の脾臓細胞とミエローマ細胞を融合することによりモノクローナル抗体を得ることもできる。

[0053]

【実施例】以下、本発明を実施例により説明する。 (1)フグANO23をプローブとするヒト成人肝臓cDNAライブラリーのスクリーニング

入gt10をベクターとするヒト成人肝臓cDNAライブラリー (Clontech Laboratories, Inc., Palo Alto, CA, US A) をE. coli C600Hf1株に感染させて37℃で培養し、 形成したプラークをHybond-Nナイロン膜(Amersham Int ernational plc,Little Chalfont, England) に転写 し、アルカリ変性、中和後、UV照射により固定した。 プローブはフグ核内レセプターの一つ、ANO23 cDNAのジ ンクフィンガー183塩基対(配列番号11)を[α-³³P]d CTPでランダム標識したものを使用した。標識にはredip rime DNA labelling system (Amersham International plc, Little Chalfont, England) を使用した。ハイブ リダイゼーションは、6x SSC (900mM NaCl, 90mM クエ ン酸ナトリウム)、5x Denhardt溶液(0.1% フィコール 400, 0.1% ポリビニルピロリドン, 0.1% ウシ血清アルブ ミン)、0.5% SDS、100μg/ml 熱変性サケ精子DNAを含 む55℃の溶液中で一晩おこなった。ナイロン膜は続いて 2x SSC (300mM NaCl, 30mM クエン酸ナトリウム)、0.1 % SDSを含む溶液で室温にてリンス後、1x SSC (150mM N aCI, 15mM クエン酸ナトリウム)、0.1% SDSを含む55℃ あるいは60℃の溶液で洗浄した。洗浄したナイロン膜上 のシグナルは、Bio-imaging Analysis System 2000 (Fu ji Photo Film Co. Ltd., Tokyo, Japan)を用いて視覚 化した。一次スクリーニングで得られた陽性シグナル は、二次・三次スクリーニングをおこなうことにより単 ークローンにまで精製した。

【0054】(2)ヒト新規核内レセプターcDNAのスク リーニング

フグ核内レセプターANO23 cDNAのジンクフィンガーをプローブとして単離したクローンのうち、クローン2a245 の挿入配列(配列番号 1.2)は、完全なジンクフィンガーを有し644塩基からなるcDNA断片であることがわかった。そこで完全長 c D N A を得ることを目的として、2a 245の挿入配列全体を $\{\alpha^{-32}P\}$ dCTPとrediprime DNA labelling systemでランダム標識し、これをプローブとしてヒト成人肝臓cDNAライブラリーに対してスクリーニングをおこなった。ハイブリダイゼーションは、6x SSC(900mM NaCl,90mM クエン酸ナトリウム)、5x Denhardt溶液(0.1% フィコール400,0.1% ポリビニルピロリドン、0.1%ウシ血清アルブミン)、0.5% SDS、 100μ g/m 1 熱変性サケ精子DNAを含む65℃の溶液中で一晩おこなった。ナイロン膜の洗浄は、1x SSC(150mM NaCl,15mM クエン酸ナトリウム)、0.1% SDSを含む65℃の溶液で

おこなった、洗浄したナイロン膜上のシグナルは、Bio-imaging Analysis System 2000 (Fuji Photo Film Co. Ltd., Tokyo, Japan) を用いて視覚化した。一次スクリーニングで得られた陽性シグナルは、二次・三次スクリーニングをおこなうことにより単一クローンにまで精製した。その結果、全長をコードすると考えられる2個のクローンJTY100 (配列番号14)とJTY105 (配列番号15)が得られた。

【0055】(3)ファージ・クローンのシークエンシングとシークエンス解析

ファージの挿入配列はPCR法により増幅させた。すなわ ち、ファージの単一プラークを滅菌水中で30分間放置す ることにより拡散させ、そのうち一部を20ヵ1のPCR反応 液 (10mM Tris-HCl (pH8.3), 50mM KCl, 1.5mM MgCl2, 0.25mM dATP, 0.25mM dCTP, 0.25mM dGTP, 0.25mM dTTP, 0.1μM λgt10 forward primer, 0.1μM λgt10 rever se primer. 0.025U/µ1 recombinant TaKaRa Taq (Taka ra Shuzo, Tokyo, Japan)) 中に添加した。PCRの条件 は、95℃ 2分 ->: (95℃ 30秒 ->:55℃ 30秒 ->: 72℃ 2 分) x35サイクル → ; 72℃ 10分に設定し、PCR装置はGen eAmp PCR System 9600を使用した。増幅したDNAのシー クエンスはプライマーウォーキング法により決定した。 シークエンス反応は以下のように行った。増幅したDNA を、Sephadex G-50 (Pharmacia, Uppsala, Sweden) で 脱塩後、Dye Terminator Cycle Sequencing Kit FSによ り反応させ、DNA Sequencer Model373Aで電気泳動し た。得られたシークエンスは、BLAST法を用いてDDBJデ ータベース (National Institute of Genetics, Mishim a、Japan)に対してホモロジー検索をおこなった。Gene Amp PCR System 9600, Dye Terminator Cycle Sequenci ng Kit FS, 근토 TDNA Sequencer Model 373A/t, Perki n Elmer Applied Biosystems Division (Foster City, CA、USA)から購入した。シークエンス解析により、ク ローンJTY100がヒト新規核内レセプターhAV023の全長CD Sをコードするクローンであることがわかった(配列番 号8、対応するアミノ酸配列を配列番号3に示す)。ホ モロジー検索の結果、Cys80からMet146までがDNA結合領 域、Leu279からSer473までがリガンド結合領域であると 推定された。これら両領域のアミノ酸、塩基配列の相同 性を、ヒト・ビタミンD3レセプター(hVDR)、アフリ カツメガエル・オーファンレセプター〇NR1(xONR 1)、ヒト・オーファンレセプターMB67 (hMB67)に 対して解析した結果を表1に示す。

【0056】

【表1】

A. JTY1と既知オーファンレセプターとの相同性(アミノ	A	TTY12	既知オーフ	ファンレセプ	ターとの相同性	(アミノ酸)
-------------------------------	---	-------	-------	--------	---------	--------

	DNA結	合領域	リガンド	店合領域	
	相同性(%)	残基数	相同性(%)	残基数	
hVDR	67.2	67	41.8	201	
xONR1	71.6	67	54.4	193	
hMB67	61.2	67	49.5	190	

B. JTY1と既知オーファンレセプターとの相同性(塩基)

	DNA結	合領域	リガンド	古合領域		
	相同性(%)	残基数	相同性(%)	残基数		
hVDR	70.6	201	59.7	597		
xONR1	75.1	201	63.4	590		
hMB67	65.1	195	58.2	572		

【0057】(4)JTY105の発現

シークエンス解析の結果、JTY105(配列番号15) はJTY100の一部(配列番号14の塩基配列311 から438の領域)がスプライシングにより抜けたクロ ーンであることが明らかになった。JTY105にはハ イパーバリアブル領域をコードすると考えられる領域内 に一般の翻訳開始となるATG配列が存在しなかった が、CTGやGTGを翻訳開始コドンとしている遺伝子 が報告されているので、該遺伝子もCTGやGTGが開 始コドンとして機能している可能性が考えられた。そこ で配列番号15で表されるcDNAをテンプレートとし Tin vitro transcription &; tranlation kit(Promega 社)の系を用いて試験管内で蛋白質の生合成を検討し た。その結果、CTGやGTGを翻訳開始コドンとして 翻訳された2種類の蛋白質(約48kdaと約50kd a)の存在が確認された。CTGを開始コドンとする遺 伝子の配列を配列番号6に示す(推定アミノ酸配列を配 列番号1に示す)。GTGを開始コドンとする遺伝子の 配列を配列番号7に示す(推定アミノ酸配列を配列番号 2に示す),以上の結果より、JTY105は、JTY 100と同じDNA結合領域およびリガンド結合領域を 有し、ハイパーバリアブル領域の一部がJTY100と 異なるスプライシングバリアントと結論された。すなわ ち、hANO23にはスプライシングバリアントと考え られる2種類のcDNA (mRNA)が存在し、うち1種 類は通常のATGを翻訳開始点とする蛋白質(配列番号) 3)をコードし、他の1種類はCTGまたはGTGを翻訳 開始点とする2種類の蛋白質(配列番号1および配列番号 2)をコードし、hANO23には合計3種類の蛋白質が、 存在することが確認された。

【0058】(5) ノーザン・ブロッティングによる発 現部位の同定

hANO23の臓器ごとの発現レベルを解析するため、hANO23の臓器ごとの発現レベルを解析するため、hANO23のリガンド結合領域を含む配列(配列番号14の塩基配列797から1765)をプローブとしてノーザ

ン・ブロッティングをおこなった。ヒト・ポリ(A)+ RNA のソースはHuman Multiple Tissue Northern Blot (Clo ntech Laboratories、Inc., Palo Alto,CA, USA) を使 用した。このブロットは、心臓、脳、胎盤、肺、肝臓、 骨格筋、腎臓、膵臓、副腎髄質、甲状腺、副腎皮質、精 巣、胸腺、小腸、胃のポリ(A)+ RNAをそれぞれ2μg、 サイズ分画後ナイロン膜上に転写し固定化したものであ る。プローブは、hANO23のリガンド結合領域を含 む配列(配列番号14の塩基配列797から1765) を[α→%P]dCTPとrediprime DNA labelling systemでラ ンダム標識することにより調製した。ハイブリダイゼー ションの条件はExpressHyb Hybridization Solution (C lontech Laboratories, Inc., Palo Alto, CA, USA) の 使用マニュアルに従った。ナイロン膜の洗浄は、0.1x S SC(15mM NaCl, 1.5mM クエン酸ナトリウム)、0.1% SD Sを含む50℃の溶液でおこなった。洗浄したナイロン膜 上のシグナルは、Bio-imaging Analysis System 2000を 用いて視覚化した。その結果、hANO23は小腸と肝臓にお いて特異的に発現していることが確かめられた。そして mRNAのサイズは約3.5キロ塩基であった(図1)、小腸 と肝臓にはこのほか4.5キロ、6.5キロ塩基のバンドも弱 いながら検出された。

(6) ステロイドによるhAN023活性化

hANO23のリガンド結合領域を含む領域(配列表14の塩基配列797~1765)を、pM DNA-BD vector (CLONETECH社、Mammalian MATCHMAKER Two-Hybrid Assay Kit,#K1602-1)のGAL4のDNA結合領域の直下流に挿入し、hANO23発現プラスミド (pM-hANO23)を構築した。レポータープラスミド (pM-hANO23)は、GAL4-responsive element (UAS x5)およびHSV thymidine kinase (TK)のminimal promoterの支配下にホタルルシフェラーゼを発現する様に構築した。すなわち、pG5CATベクター(CLONETECH、Mammalian MATCHMAKER Two-Hybrid Assay Kit, #K1602-1)由来のHSVtkminimal promoterを連結し、これをpGL3-Basicvector

(Promega、#E1751)のマルチクローニングサイトに挿入 した。各プラスミドで形質転換した大腸菌JM109からの プラスミドの精製は、エンドトキシンフリープラスミド 精製キット(QUIAGEN、EndoFree Plasmid Maxi Kit #123 63)を用いて行った。CV1細胞を24穴プレート(FALCON) #3047)に、ウェル当たり0.4x105個/0.4ml播き込み、37 ℃, 5% CO₂下で培養した。培養には、活性炭処理10%牛 胎児血清、50単位/miベニシリン (GIBCO BRL)および50 дg/mlストレプトマイシン (GIBCO BRL)を含む D-MEM(L ow Glucose; 日研生物医学研究所)(以下DCC培地と略 す)を用いた。20時間培養後、リポフェクトアミン試薬 (1.6μ1 / well) (GIBCO BRL, #18324-012)を用いて、 レセプタープラスミド(pM-hAN023; 360ng / well)およ びレポータープラスミド(pG5tkLuc3; 40ng / well)を細 胞にトランスフェクションした。トランスフェクション 5時間後に、トランスフェクションに用いた培地をDCC培

地に交換した。翌日に被験化合物を添加し、37 $^{\circ}$ 、5% C 0_2 下でさらに20時間培養した。細胞をPBS(-)で2回洗浄後、細胞溶解剤 (Promega, Luciferase Cell CultureLy sis Reagent、#E1531) (100μ] /well)を加え細胞を溶解した。細胞溶解液の一部 (10μ] /well)を、ルシフェラーゼ測定プレート (10μ) /well) (ダイアヤトロン、ルシフェラーゼ基質 (10μ) /well) (ダイアヤトロン、ルミキットダイアルシフェラーゼ)を加えてルシフェラーゼ活性を測定した。なお、ルシフェラーゼ活性の測定は、ダイアヤトロンCT-9000Dを用いて、各サンプル15秒間の積算で行った。その結果、表2に示すように、各種の天然、合成ステロイドがhAN023の転写活性を増強することが明らかとなった。

【0059】

【表2】

ステロイドによるhAN023転写活性増強

化合物	化合物添加によるhAN023転写活性増強 (化合物添加時のルシフェラーゼ活性/ 溶媒添加時のルシフェラーゼ活性)
5β -pregnane-3,20-dione	5.9*
6,16 α -dimethylpregnenolone	12.1*
5β -androstan-3,17-dione	2.8
5β -androstan-3 α -ol-17-one	2.2
5 β -androstan-3 β -ol-17-one	2.0
11 β -hydroxyestrone	2.5
5β -pregnane-21-ol-3,11,20-trione	2.8
Corticosterone	6.0*
21-Hydroxyprogesterone	1.8
20 α -dihydroxyprogesterone	2.5

*印は化合物10μM添加、無印は化合物30μM添加

【0060】(7) hAN016 (胎児型) 遺伝子の単離

Agt10をベクターとするヒト胎児肝臓cDNAライブラリー (Clontech Laboratories, Inc., Palo Alto, CA. US A) をE. coli C600Hfl株に感染させて37℃で培養し、形成したプラークをHybond-Nナイロン膜 (Amersham International plc, Little Chalfont, England) に転写し、アルカリ変性、中和後、UV照射により固定した。プローブはフグ核内レセプターの一つ、ANO16 cDNAのジンクフィンガー183塩基対(配列番号13)を[α-30P]dCTPでランダム標識したものを使用した、標識にはrediprime DNA labelling system (Amersham International plc, Little Chalfont, England)を使用した。ハイブリダイゼーションは、6x SSC(900mM NaCl, 90mM クエン酸ナトリウム)、5x Denhardt溶液(0.1% フィコール400、0.1%ポリビニルピロリドン、0.1% ウシ血清アルブミン)、0.5% SDS、100丸(s/ml) 熱変性サケ精子DNAを含む5

5Cの溶液中で一晩おこなった。ナイロン膜は続いて2xS SC (300mM NaCl, 30mM クエン酸ナトリウム)、0.1% SD Sを含む溶液で室温にてリンス後、1x SSC (150mM NaCl, 15mM クエン酸ナトリウム)、0.1% SDSを含む55℃の溶液で洗浄した。洗浄したナイロン膜上のシグナルは、Bio-imaging Analysis System 2000 (Fuji Photo Film Co. Ltd., Tokyo, Japan)を用いて視覚化した。一次スクリーニングで得られた陽性シグナルは、二次・三次スクリーニングをおこなうことにより単一クローンにまで精製した。

【 0 0 6 1 】 (8) h A N 0 1 6 (胎児型) 遺伝子のシ ークエンス解析

フク核内レセプターANO16 cDNAのジンクフィンガーをプローブとして単離したファージクローンよりファーシDN Aを調製し、制限酵素EcoR 1で消化後、常法により挿入配列を分離精製した。精製した挿入配列を超音波処理により断片化し、末端を平滑化した後、制限酵素EcoR Vで

消化したプラスミドベクターpGEM 5Zf(+) (Promega Cor poration, Madison, WI, USA) に連結し、大腸菌JM109を形 質転換して、挿入配列が平均500bpのショットガンライ ブラリーとした。このショットガンライブラリーの各ク ローンについて挿入配列をPCR法により増幅させた。す なわち、ショットガンライブラリーの各クローンを20μ 1のPCR反応液(10mM Tris-HCl (pH8.3), 50mM KCl, 1.5 mM MgC12, 0.25mM dATP, 0.25mM dCTP, 0.25mM dGTP, 0.25mM dTTP, 0.1μ M M13 forward primer, 0.1μ M M13 reverse primer, 0.025U/µl recombinant TaKaRa Tag (Takara Shuzo, Tokyo, Japan)) 中に添加し、95℃ 2 分 →>: (95℃ 30秒 ->: 55℃ 30秒 ->; 72℃ 2分) x35サイ クル →>; 72℃ 10分の条件でPCRを行った。PCR装置はGen eAmp PCR System 9600を使用した。増幅したDNAは、Sep hadex G-50 (Pharmacia, Uppsala, Sweden) で脱塩後、 Dye Terminator Cycle Sequencing Kit FSにより反応さ せ、DNA Sequencer Model373Aで電気泳動した。得られ たシークエンスからコンティックを作製し、各ファージ クローンについて挿入配列の全塩基配列を決定した。得

られた塩基配列はBLAST法を用いてDDBJデータベース(N ational Institute of Genetics, Mishima, Japan) に対 してホモロジー検索をおこなった。GeneAmp PCR System 9600, Dye Terminator Cycle Sequencing Kit FS, 7 してDNA Sequencer Model 373Aは、Perkin Elmer Appli ed Biosystems Division (Foster City, CA, USA) から 購入した。シークエンス解析の結果、得られたクローン のうち、クローンab410がヒト新規核内レセプターhANO1 6 (胎児型)の全長CDSをコードするクローンであること が分かった。(配列番号10)。これに対応するアミノ酸 配列を配列番号5に示す)。ホモロジー検索の結果、Cy s40からMet105までがDNA結合ドメイン、Lys106からAla4 95までがリガンド結合ドメインであると推定された。こ れら両ドメインのアミノ酸、塩基配列の相同性を、マウ ス・オーファンレセプターLRH(mLRH)、ラット・オーフ ァンレセプターFTF (rFTF)に対して解析した結果を表3 に示す。

[0062]

【表3】

A. hAN016と既知オーファンレセプターとの相同性(アミノ酸)

	DNA結	合領域	リガンド	洁合領域
	相同性(%)	残基数	相同性(%)	残基数
mLRH	93.9	66	90.0	390
rFTF	93.9	66	*	*

*印:rFTFの配列が記載されていないため比較できず。

B hANO16と野知オーファンレセプターとの相同性(塩基)

	DNA結	合領域	リガンド	结合領域	
	相同性(%)	残基数	相同性 (%)	残基数	
mLRH	86.4	198	85.8	1170	
rFTF	87.4	198	*	*	

*印:rFTFの配列が記載されていないため比較できず。

【0063】(9)hAN016(成体型)遺伝子の単 雑

Agt10をベクターとするヒト成人肝臓cDNAライブラリー (Ciontech Laboratories, Inc., Palo Alto, CA, US A) をE. coli C600Hfl株に感染させて37℃で培養し、形成したプラークをHybond-Nナイロン膜 (Amersham International plc, Little Chalfont, England) に転写し、アルカリ変性、中和後、UV照射により固定した。プローブはフグ核内レセプターの一つ、ANO16 cDNAのジンクフィンガー183塩基対(配列番号13)を(α-2²P]dCTPでランダム標識したものを使用した、標識にはrediprime DNA labelling system (Amersham International plc, Little Chalfont, England)を使用した。スクリーニングは、hANO16 (胎児型)遺伝子の単離と同様の方法、条件で行った。一次スクリーニングで得られた陽性シグナルは、二次・三次スクリーニングをおこなうことにより単一クローンにまで精製した。

【0064】(10) hAN016 (成体型) のシーク

エンス解析

フグ核内レセプターANO16 cDNAのジンクフィンガーをプローブとして単離したファージクローンについて、胎児型hANO16のシークエンス解析と同様の方法でショットガンライブラリーを作製し、挿入配列の全塩基配列を決定した。シークエンス解析の結果、得られたクローンのうち、クローンaa814がヒト新規核内レセプターhANO16(成体型)の全長CDSをコードするクローンであることが分かった。(配列番号9。これに対応するアミノ酸配列を配列番号4に示す)、また、hANO16(成体型)のVa16以降のアミノ酸配列は、hANO16(胎児型)のVa122以降のアミノ酸配列と同一であった。ホモロジー検索の結果、Cys24からMet89までがDNA結合ドメイン、Lys90からAla479までがリガンド結合ドメインであると推定された。これら両ドメインのアミノ酸、塩基配列は、hANO16(胎児型)と同一であった。

[0065]

【発明の効果】以上述べたように、本発明によれば、ヒ

ト核内レセプター蛋白質、該蛋白質をコードする遺伝 提供された。すなわち本発明により医薬品の開発、並び に疾患の診断、治療につながる有用な材料および方法が 子、該遺伝子を含有するベクター並びに形質転換体、該 蛋白質のアゴニスト並びにアンタゴニストのスクリーニ 提供された。 ング方法、該遺伝子よりデザインされるプローブ、プラ [0066] イマー、並びにヒト核内レセプター蛋白に対する抗体が 【配列表】 SEQUENCE LISTING <:110>: JAPAN TOBACCO Inc <;120>; New nuclear receptors, genes encoding said nuclear receptors and the use thereof. <:130>; J98- 0151 <:140>; <:141>: <:150>: JP 9- 230335 <:151>: 1997-08-11 <:160>: 15 <:170>; PatentIn Ver. 2.0 [0067] <:210>: 1 <;211>: 434 <:212>: PRT <;213>; Homo sapiens <:400>: 1 Leu Glu Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His 10 1 5 Cys Glu Asp Thr Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp 25 Glu Glu Val Gly Gly Pro Gln He Cys Arg Val Cys Gly Asp Lys Ala 40 Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe 50 55 60 Phe Arg Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg 65 70 75 80 Lys Gly Ala Cys Glu He Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala 85 90 Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile 105 Met Ser Asp Glu Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys 115 120 Lys Ser Glu Arg Thr Gly Thr Gln Pro Leu Gly Val Gln Gly Leu Thr 135 Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys 155 150 Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly 170 175 165 Val Leu Ser Ser Gly Cys Glu Leu Pro Glu Ser Leu Gln Ala Pro Ser 185 180 Arg Glu Glu Ala Ala Lys Trp Ser Gln Val Arg Lys Asp Leu Cys Ser

> 195 200 205 Leu Lys Val Ser Leu Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn

215

210

Tyr Lys Pro Pro Ala Asp Ser Gly Gly Lys Glu Ile Phe Ser Leu Leu 230 235 Pro His Met Ala Asp Met Ser Thr Tyr Met Phe Lys Gly IIe IIe Ser 250 245 Phe Ala Lys Val IIe Ser Tyr Phe Arg Asp Leu Pro IIe Glu Asp Gln 265 lle Ser Leu Leu Lys Gly Ala Ala Phe Glu Leu Cys Gln Leu Arg Phe 280 Asn Thr Val Phe Asn Ala Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu 295 Ser Tyr Cys Leu Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu Leu 315 310 Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His Glu Glu Glu Tyr Val Leu Met Gln Ala IIe Ser Leu Phe Ser Pro Asp 345 Arg Pro Gly Val Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln 360 Phe Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro 375 Ala His Arg Phe Leu Phe Leu Lys IIe Met Ala Met Leu Thr Glu Leu 395 390 Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp 410 lle His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly He Thr 425 Gly Ser [0068] <:210>: 2 <:211>: 457 <:212>: PRT <:213>; Homo sapiens <:400>: 2 Val Asp Pro Arg Gly Glu Val Gly Ala Lys Asn Leu Pro Pro Ser Ser 10 Pro Arg Gly Pro Glu Ala Asn Leu Glu Val Arg Pro Lys Glu Ser Trp 25 Asn His Ala Asp Phe Val His Cys Glu Asp Thr Glu Ser Val Pro Gly 40 Lys Pro Ser Val Asn Ala Asp Glu Glu Val Gly Gly Pro Gin He Cys 55 Arg Val Cys Gly Asp Lys Ala Thr Gly Tyr His Phe Asn Val Met Thr 75 70 Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ala Met Lys Arg Asn Ala 90 Arg Leu Arg Cys Pro Phe Arg Lys Gly Ala Cys Glu Ile Thr Arg Lys 100 105 Thr Arg Arg Gln Cys Gln Ala Cys Arg Leu Arg Lys Cys Leu Glu Ser 120

```
Gly Met Lys Lys Glu Met IIe Met Ser Asp Glu Ala Val Glu Glu Arg
                      135
Arg Ala Leu IIe Lys Arg Lys Lys Ser Glu Arg Thr Gly Thr Gln Pro
                           155
                 150
Leu Gly Val Gln Gly Leu Thr Glu Glu Gln Arg Met Met Ile Arg Glu
                                 170
               165
Leu Met Asp Ala Gin Met Lys Thr Phe Asp Thr Thr Phe Ser His Phe
                            185
Lys Asn Phe Arg Leu Pro Gly Val Leu Ser Ser Gly Cys Glu Leu Pro
                          200
Glu Ser Leu Gln Ala Pro Ser Arg Glu Glu Ala Ala Lys Trp Ser Gln
                      215
Val Arg Lys Asp Leu Cys Ser Leu Lys Val Ser Leu Gln Leu Arg Gly
                 230
                                     235
Glu Asp Gly Ser Val Trp Asn Tyr Lys Pro Pro Ala Asp Ser Gly Gly
                                 250
Lys Glu IIe Phe Ser Leu Leu Pro His Met Ala Asp Met Ser Thr Tyr
                     265
           260
Met Phe Lys Gly IIe IIe Ser Phe Ala Lys Val IIe Ser Tyr Phe Arg
                        280
Asp Leu Pro IIe Glu Asp Gln IIe Ser Leu Leu Lys Gly Ala Ala Phe
                      295
Glu Leu Cys Gln Leu Arg Phe Asn Thr Val Phe Asn Ala Glu Thr Gly
                 310
                                     315
Thr Trp Glu Cys Gly Arg Leu Ser Tyr Cys Leu Glu Asp Thr Ala Gly
                                330
Gly Phe Gln Gln Leu Leu Leu Glu Pro Met Leu Lys Phe His Tyr Met
                     345
Leu Lys Lys Leu Gln Leu His Glu Glu Glu Tyr Val Leu Met Gln Ala
                         360
Ile Ser Leu Phe Ser Pro Asp Arg Pro Gly Val Leu Gln His Arg Val
                    375
Val Asp Gin Leu Gin Glu Gin Phe Ala He Thr Leu Lys Ser Tyr He
                                    395
Glu Cys Asn Arg Pro Gln Pro Ala His Arg Phe Leu Phe Leu Lys He
                        410
              405
Met Ala Met Leu Thr Glu Leu Arg Ser Ile Asn Ala Gln His Thr Gln
                             425
Arg Leu Leu Arg IIe Gln Asp IIe His Pro Phe Ala Thr Pro Leu Met
Gln Glu Leu Phe Gly Ile Thr Gly Ser
   450
                      455
<:210>: 3
<:211>: 473
<;212>: PRT
<:213>: Homo sapiens
<:400>: 3
Met Thr Val Thr Arg Thr His His Phe Lys Glu Gly Ser Leu Arg Ala
                                  10
                 5
```

[0069]

			_			_				۵.			~		
Pro	Ala	He	Pro 20	Leu	His	Ser	Ala	Ala 25	Ala	Glu	Leu	Ala	Ser 30	Asn	His
Pro	Arg	Gly 35	Pro	Glu	Ala	Asn	Leu 40	Glu	Val	Arg	Pro	Lys 45	Glu	Ser	Trp
Asn	His 50	Ala	Asp	Phe	Val	His 55	Cys	Glu	Asp	Thr	G1 u 60	Ser	Val	Pro	Gly
Lys 65		Ser	Val	Asn	Ala 70		Glu	Glu	Val	Gly 75		Pro	Gln	He	Cys 80
	Val	Cys	Gly	Asp 85	Lys	Ala	Thr	Gly	Tyr 90		Phe	Asn	Val	Met 95	
Cys	Glu	Gly	Cys 100		Gly	Phe	Phe	Arg 105		Ala	Met	Lys	Arg 110		Ala
Arg	Leu	Arg 115		Pro	Phe	Arg	Lys 120		Ala	Cys	Glu	He 125		Arg	Lys
Thr	Arg 130		Gln	Cys	Gln	Ala 135		Arg	Leu	Arg	Lys 140		Leu	Glu	Ser
C1		1	Lua	C1	Met		Wat	Sa.	len	Clu		Val	Gla	GLu	Ira
	net	Lys	Lys	uru		He	mec	Jei	дор	155	ara	• 0.1	oru	uru	160
145			т.	l	150	1	1	C	cı		The	Clu	Thu	CIA	
				165	Arg				170					175	
Leu	Gly	Val	G1n 180	Gly	Leu	Thr	Glu	Glu 185	Gln	Arg	Met	Met	11e 190	Arg	Glu
Leu	Met	Asp 195	Ala	Gln	Met	Lys	Thr 200	Phe	Asp	Thr	Thr	Phe 205	Ser	His	Phe
Lys	Asn 210	Phe	Arg	Leu	Pro	Gly 2 1 5	Val	Leu	Ser	Ser	Gly 220	Cys	Glu	Leu	Pro
Glu	Ser	Leu	Gln	Ala	Pro	Ser	Arg	Glu	Glu	Ala	Ala	Lys	Trp	Ser	Gln
225					230					235					240
Val	Arg	Lys	Asp	Leu 245	Cys	Ser	l.eu	Lys	Val 250	Ser	Leu	GIn	l.eu	Arg 255	Gly
Glu	Asp	Gly	Ser 260	Val	Trp	Asn	Tyr	Lys 265	Pro	Pro	Ala	Asp	Ser 270	Gly	Gly
Lys	Glu	He 275		Ser	Leu	Leu	Pro 280		Met	Ala	Asp	Met 285	Ser	Thr	Tyr
Mot	Phe		GIV	He	He	Ser		Ala	I vs	Val	He		Tvr	Phe	Arg
	290					295					300				
305					Asp 310					315					320
Glu	Leu	Cys	Gln	Leu 325	Arg	Phe	Asn	Thr	Va 1 330	Phe	Asn	Ala	Glu	Thr 335	Gly
Thr	Trp	Glu	Cys 340	Gly	Arg	Leu	Ser	Tyr 345		Leu	Glu	Asp	Thr 350	Ala	Gly
Gly	Phe	G1n 355	Gln	Leu	Leu	Leu	G1u 360	Pro	Met	Leu	Lys	Phe 365	His	Tyr	Met
Leu	Lys 370		Leu	Gln	Leu	His 375	Glu	Glu	Glu	Tyr	Va l 380	Leu	Yet	Gln	Ala
He		Leu	Phe	Ser	Pro		Arg	Pro	Gly	Val	Leu	Gln	His	Arg	Val
385	-				390	•				395					400
	4en	Gln	[en	Gln	Glu	Gln	Phe	41a	He	Thr	Leu	Lys	Ser	Tvr	He

405 410 Glu Cys Asn Arg Pro Gln Pro Ala His Arg Phe Leu Phe Leu Lys Ile 425 420 Met Ala Met Leu Thr Glu Leu Arg Ser Ile Asn Ala Gln His Thr Gln 440 Arg Leu Leu Arg IIe Gln Asp IIe His Pro Phe Ala Thr Pro Leu Met 455 Gln Glu Leu Phe Gly Ile Thr Gly Ser 470 [0070] <;210>; 4 <;211>; 479 <:212>; PRT <;213>; Homo sapiens <;400>; 4 Met Ser Gly Pro Arg Val Ser Gln Phe Lys Met Val Asn Tyr Ser Tyr 1 5 10 Asp Glu Asp Leu Glu Glu Leu Cys Pro Val Cys Gly Asp Lys Val Ser 25 Gly Tyr His Tyr Gly Leu Leu Thr Cys Glu Ser Cys Lys Gly Phe Phe 40 Lys Arg Thr Val Gln Asn Asn Lys Arg Tyr Thr Cys IIe Glu Asn Gln 55 60 Asn Cys Gln Ile Asp Lys Thr Gln Arg Lys Arg Cys Pro Tyr Cys Arg 65 70 75 80 Phe Gln Lys Cys Leu Ser Val Gly Met Lys Leu Glu Ala Val Arg Ala 85 90 95 Asp Arg Met Arg Gly Gly Arg Asn Lys Phe Gly Pro Met Tyr Lys Arg 105 Asp Arg Ala Leu Lys Gin Gln Lys Lys Ala Leu Ile Arg Ala Asn Gly 115 120 Leu Lys Leu Glu Ala Met Ser Gln Val IIe Gln Ala Met Pro Ser Asp 135 Leu Thr IIe Ser Ser Ala IIe Gln Asn IIe His Ser Ala Ser Lys Gly 155 150 Leu Pro Leu Asn His Ala Ala Leu Pro Pro Thr Asp Tyr Asp Arg Ser 170 Pro Phe Val Thr Ser Pro IIe Ser Met Thr Met Pro Pro His Gly Ser 185 190 Leu Gln Gly Tyr Gln Thr Tyr Gly His Phe Pro Ser Arg Ala 11e Lys 200 205 Ser Glu Tyr Pro Asp Pro Tyr Thr Ser Ser Pro Glu Ser Ile Met Gly 215 220 Tyr Ser Tyr Met Asp Ser Tyr Gln Thr Ser Ser Pro Ala Ser He Pro 230 235 His Leu IIe Leu Glu Leu Leu Lys Cys Glu Pro Asp Glu Pro Gln Val 245 250 Gln Ala Lys Ile Met Ala Tyr Leu Gln Gln Glu Gln Ala Asn Arg Ser 260 265 270

Lys His Glu Lys Leu Ser Thr Phe Gly Leu Met Cys Lys Met Ala Asp

```
280
                 Gln Thr Leu Phe Ser Ile Val Glu Trp Ala Arg Ser Ser Ile Phe Phe
                                         295
                 Arg Glu Leu Lys Val Asp Asp Gln Met Lys Leu Leu Gln Asn Cys Trp
                                    310
                                                        315
                 Ser Glu Leu Leu IIe Leu Asp His IIe Tyr Arg Gln Val Val His Gly
                                                    330
                 Lys Glu Gly Ser IIe Phe Leu Val Thr Gly Gln Gln Val Asp Tyr Ser
                                                345
                 lle lle Ala Ser Gln Ala Gly Ala Thr Leu Asn Asn Leu Met Ser His
                                             360
                 Ala Gln Glu Leu Val Ala Lys Leu Arg Ser Leu Gln Phe Asp Gln Arg
                                        375
                                                            380
                 Glu Phe Val Cys Leu Lys Phe Leu Val Leu Phe Ser Leu Asp Val Lys
                                                       395
                 Asn Leu Glu Asn Phe Gln Leu Val Glu Gly Val Gln Glu Gln Val Asn
                                                   410
                 Ala Ala Leu Leu Asp Tyr Thr Met Cys Asn Tyr Pro Gln Gln Thr Glu
                                               425
                 Lys Phe Gly Gln Leu Leu Leu Arg Leu Pro Glu Ile Arg Ala Ile Ser
                                            440
                 Met Gln Ala Glu Glu Tyr Leu Tyr Tyr Lys His Leu Asn Gly Asp Val
                                        455
                 Pro Tyr Asn Asn Leu Leu IIe Glu Met Leu His Ala Lys Arg Ala
                                    470
[0071]
                 <:210>: 5
                 <:211>: 495
                 <:212>: PRT
                 <:213>: Homo sapiens
                 <:400>: 5
                 Met Ser Ser Asn Ser Asp Thr Gly Asp Leu Gln Glu Ser Leu Lys His
                                                    10
                 Gly Leu Thr Pro IIe Val Ser Gln Phe Lys Met Val Asn Tyr Ser Tyr
                 Asp Glu Asp Leu Glu Glu Leu Cys Pro Val Cys Gly Asp Lys Val Ser
                                             40
                 Gly Tyr His Tyr Gly Leu Leu Thr Cys Glu Ser Cys Lys Gly Phe Phe
                                         รร
                 Lys Arg Thr Val Gln Asn Asn Lys Arg Tyr Thr Cys Ile Glu Asn Gln
                                     70
                                                         75
                 Ash Cys Gln IIe Asp Lys Thr Gln Arg Lys Arg Cys Pro Tyr Cys Arg
                                                     90
                 Phe Gln Lys Cys Leu Ser Val Gly Met Lys Leu Glu Ala Val Arg Ala
                                       105
                 Asp Arg Met Arg Gly Gly Arg Asn Lys Phe Gly Pro Met Tyr Lys Arg
                 Asp Arg Ala Leu Lys Gln Gln Lys Lys Ala Leu Ile Arg Ala Asn Gly
```

Leu 145	Lys	Leu	G1u	Ala	Met 150	Ser	Gln	Val	He	G1n 155	Ala	Met	Pro	Ser	Asp 160
Leu	Thr	He	Ser	Ser 165	Ala	Ile	Gln	Asn	He 170	His	Ser	Ala	Ser	Lys 175	Gly
Leu	Pro	Leu	Asn 180	His	Ala	Ala	Leu	Pro 185	Pro	Thr	Asp	Tyr	Asp 190	Arg	Ser
Pro	Phe	Val 195	Thr	Ser	Pro	He	Ser 200	Met	Thr	Met	Pro	Pro 205	His	Gly	Ser
Leu	Gl n 210	Gly	Tyr	Gln	Thr	Tyr 215	Gly	His	Phe	Pro	Ser 220	Arg	Ala	He	Lys
Ser 225	Glu	Tyr	Pro	Asp	Pro 230	Tyr	Thr	Ser	Ser	Pro 235	Glu	Ser	He	Met	Gly 240
Tyr	Ser	Tyr	Met	Asp 245	Ser	Tyr	Gln	Thr	Ser 250	Ser	Pro	Ala	Ser	11e 255	Pro
His	Leu	[le	Leu 260	G1 u	Leu	Leu	Lys	Cys 265	Glu	Pro	Asp	Glu	Pro 270	Gln	Val
Gln	Ala	Lys 275	He	Met	Ala	Tyr	Leu 280	Gln	Gln	Glu	Gln	Ala 285	Asn	Arg	Ser
Lys	His 290	Glu	Lys	Leu	Ser	Thr 295	Phe	Gly	Leu	Met	Cys 300	Lys	Met	Ala	Asp
G1n 305	Thr	Leu	Phe	Ser	11e 310	Val	Glu	Trp	Ala	Arg 315	Ser	Ser	He	Phe	Phe 320
Arg	Glu	Leu	Lys	Va.1 325	Asp	Asp	Gln	Met	Lys 330	Leu	Leu	Gln	Asn	Cys 335	Trp
Ser	Glu	Leu	Leu 340	He	Leu	Asp	His	11e 345	Tyr	Arg	Gln	Val	Val 350	His	Gly
Lys	Glu	G1y 355	Ser	He	Phe	Leu	Val 360	Thr	Gly	Gln	Gln	Val 365	Asp	Tyr	Ser
He	11e 370	Ala	Ser	GIn	Ala	Gly 375	Ala	Thr	Leu	Asn	Asn 380	Leu	Met	Ser	His
Ala 385	Gln	Glu	Leu	Val	Ala 390	Lys	Leu	Arg	Ser	Leu 395	Gln	Phe	Asp	Gln	Arg 400
			-	405	Lys				410					415	
Asn	Leu	Glu	Asn 420	Phe	Gln	Leu	Val	G1u 425	Gly	Val	Gln	Glu	Gl n 430	Val	Asn
Ala	Ala	Leu 435	Leu	Asp	Tyr	Thr	Met 440	Cys	Asn	Tyr	Pro	G1n 445	Gln	Thr	Glu
	450				Leu	455					4 60				
465					Tyr 470					475					Val 480
Pro	Tyr	Asn	Asn	Leu 485	Leu	He	Glu	Met	Leu 490	His	Ala	Lys	Arg	A1a 495	

[0072]

<:210>: 6 <:211>: 1305 <:212>: DNA

<;213>; Homo sapiens

<:220>: <:221>; CDS <;222>; (1)..(1305) <:400>: 6 cts sas sts aga ccc aaa saa agc tss aac cat sct sac ttt sta cac Leu Glu Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His 1 5 10 tgt gag gac aca gag tct gtt cct gga aag ccc agt gtc aac gca gat Cys Glu Asp Thr Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp 25 20 gag gaa gto gga ggt ooc caa ato tgo ogt gta tgt ggg gac aag goo 144 Glu Glu Val Gly Gly Pro Gln He Cys Arg Val Cys Gly Asp Lys Ala act gge tat cae the aat gte atg aca tgt gaa gga tge aag gge tit Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe 55 tte agg agg gee atg aaa ege aac gee egg etg agg tge eee tte egg 240 Phe Arg Arg Ala Met Lys Arg Ash Ala Arg Leu Arg Cys Pro Phe Arg 70 75 aag gge gee tge gag ate ace egg aag ace egg ega eag tge eag gee Lys Gly Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala tge ege etg ege aag tge etg gag age gge atg aag aag gag atg ate 336 Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile 100 105 atg tee gae gag gee gtg gag gag agg egg gee ttg ate aag egg aag 384 Met Ser Asp Glu Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys 120 ada agt gaa egg aca ggg act eag eea etg gga gtg eag ggg etg aca 432Lys Ser Glu Arg Thr Gly Thr Gln Pro Leu Gly Val Gln Gly Leu Thr 135 gag gag cag egg atg atg atc agg gag etg atg gac get cag atg aaa Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys 150 155 ace ttt gae act ace tte tee cat tte aag aat tte egg etg eea ggg Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly 170 165 gtg ctt age agt gge tge gag ttg cea gag tet etg eag gee eea teg 576 Val Leu Ser Ser Gly Cys Glu Leu Pro Glu Ser Leu Gln Ala Pro Ser 180 185 agg gaa gaa get gee aag tgg age eag gte egg aaa gat etg tge tet 624 Arg Glu Glu Ala Ala Lys Trp Ser Gln Val Arg Lys Asp Leu Cys Ser 200 205 195 ttg aag gto tot otg oag otg ogg ggg gag gat ggo agt gto tgg aac Leu Lys Val Ser Leu Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn tac aaa eee eea gee gac agt gge ggg aaa gag ate tie tee etg etg 720 Tyr Lys Pro Pro Ala Asp Ser Gly Gly Lys Glu Ile Phe Ser Leu Leu 230 235 occ cac atg get gae atg tea acc tac atg tto aaa ggo atc atc ago 768

	Pro	His	Met	Ala	Asp 245	Met	Ser	Thr	Tyr	Met 250	Phe	Lys	Gly	He	He 255	Ser	
	ttt	gcc	aaa	gtc	atc	tcc	tac	ttc	agg	gac	ttg	ссс	atc	gag	gac	cag	816
	Phe	Ala	Lys	Val 260	He	Ser	Tyr	Phe	Arg 265	Asp	Leu	Pro	He	Glu 270	Asp	Gln	
	atc	tcc	ctg	ctg	aag	ggg	gcc	gct	ttc	gag	ctg	tgt	caa	ctg	aga	ttc	864
	He	Ser	Leu 275	Leu	Lys	Gly	Ala	Ala 280	Phe	Glu	Leu	Cys	G1n 285	Leu	Arg	Phe	
	aac	aca	gtg	ttc	aac	gcg	gag	act	gga	acc	tgg	gag	tgt	ggc	cgg	ctg	912
	Asn	Thr 290	Val	Phe	Asn	Ala	Gl u 295	Thr	Gly	Thr	Trp	G1 u 300	Cys	Gly	Arg	Leu	
	tcc	tac	tgc	ttg	gaa	gac	act	gca	ggt	ggc	ttc	cag	caa	ctt	cta	ctg	960
	Ser	Tyr	Cys	Leu	Glu	Asp	Thr	Ala	Gly	Gly	Phe	Gln	Gln	Leu	Leu	Leu	
	305					310					315					320	
	gag	ccc	atg	ctg	aaa	ttc	cac	tac	atg	ctg	aag	aag	ctg	cag	ctg	cat	1008
				Leu	325					330					335		
	gag	gag	gag	tat	gtg	ctg	atg	cag	gcc	atc	tcc	ctc	ttc	tee	сса	gac	1056
	Glu	Glu	Glu	Tyr 3 4 0	Val	Leu	Met	Gln	Ala 345	He	Ser	Leu	Phe	Ser 350	Pro	Asp	
				gtg													1104
			355	Val				360					365				
	ttc	gcc	att	act	ctg	aag	tcc	tac	att	gaa	tgc	aat	cgg	ccc	cag	cct	1152
	Phe	Ala 370	He	Thr	Leu	Lys	Ser 375	Tyr	He	Glu	Cys	Asn 380	Arg	Pro	Gln	Pro	
				ttc													1200
		His	Arg	Phe	Leu		Leu	Lys	Пе	Met		Met	Leu	Thr	Glu		
	385					390					395					100	10.10
				aat													1248
				Asn	405					410					415		1000
				ttt												_	1296
	He	His	Pro	Phe 420	Ala	lhr	Pro	Leu	Met 425	uld	Glu	Leu	Phe	430	He	i h r	
	ggt Gly	agc Ser	tga														1305
			435														
[0073]																	
	<:21	10>:	7														
	<:21	11>;	137	1													
	<;21	12>:	DNA														
	<:21	13>;	Homo	sap	eiens	š											
	<;22	20>:															
		21>;															
	<;22	22>:	(1).	(13	374)												
	<:40)0>:	7														
		-		agg													48
	Val	4sp	Pro	Arg	GIy	Glu	Val	GIy	Ala	Lys	Asn	Leu	Pro	Pro	Ser	Ser	

1				5					10					15		
cca	aga	ggc	cca	gaa	gca	aac	ctg	gag	gtg	aga	CCC	aaa	gaa	agc	tgg	96
Pro	Arg	Gly	Pro 20	G1 u	Ala	Asn	Leu	Glu 25	Val	Arg	Pro	Lys	Glu 30	Ser	Trp	
aac	cat	gct	gac	ttt	gta	cac	tgt		gac	aca	gag	tct		cct	gga	144
Asn	His	Ala 35	Asp	Phe	Val	His	Cys 40	Glu	Asp	Thr	Glu	Ser 45	Val	Pro	Gly	
aag	ссс		gtc	aac	gca	gat	gag	gaa	gtc	gga	ggt	ссс	caa	atc	tgc	192
Lys	Pro 50	Ser	Val	Asn	Ala	Asp 55	Glu	Glu	Val	Gly	Gly 60	Pro	Gln	He	Cys	
cgt		tgt	ggg	gac	aag	gcc	act	ggc	tat	cac	ttc	aat	gtc	atg	aca	240
Arg 65	Val	Cys	Gly	Asp	Lys 70	Ala	Thr	Gly	Tyr	His 75	Phe	Asn	Val	Met	Thr 80	
tgt	gaa	gga	tgc	aag	ggc	ttt	ttc	agg	agg	gcc	atg	aaa	ege	aac	gcc	288
Cys	Glu	Gly	Суѕ	Lys 85	Gly	Phe	Phe	Arg	Arg 90	Ala	% et	Lys	Arg	Asn 95	Ala	
cgg	ctg	agg	tgc	ccc	ttc	cgg	aag	ggc	gcc	tgc	gag	atc	acc	cgg	aag	336
Arg	Leu	Arg	Cys 100	Pro	Phe	Arg	Lys	Gly 105	Ala	Cys	Glu	He	Thr 110	Arg	Lys	
acc	cgg	cga	cag	tgc	cag	gcc	tgc	cgc	ctg	cgc	aag	tgc	ctg	gag	agc	384
Thr	Arg	Arg 115	Gln	Cys	GIn	Ala	Cys 120	Arg	Leu	Arg	Lys	Cys 125	Leu	Glu	Ser	
			aag													432
Gly	Met 130	Lys	Lys	Glu	Met	He 135	Met	Ser	Asp	Glu	Al a 140	Val	G1u	Glu	Arg	
	-	_	atc	-												480
Arg	Ala	Leu	He	Lys	Arg	Lys	Lys	Ser	Glu	Arg	Thr	Gly	Thr	Gln	Pro	
145					150					155					160	7 0.0
			cag													528
Leu	Gly	Val	Gln	61 y 165	Leu	Ihr	ыu	Glu	170	Arg	Met	Met.	He	Arg 175	ti I ti	
-			gct													576
			Ala 180					185					190			
			cgg													624
		195	Arg				200					205				65 0
			cag													672
	210		Gin			215					220					= 0.0
			gat													720
225			Asp		230					235					240	
			agt													768
			Ser	245					250					255		26.5
			ttc													816
Lys	Glu	He	Phe 260	Ser	Leu	Leu	Pro	His 265	Met	Ala	Asp	Met	Ser 270	Thr	Tyr	
atg	ttc	aaa	ggc	atc	atc	age	ttt	gcc	aaa	gtc	atc	tcc	tac	ttc	agg	864

	Met	Phe		Gly	lle	Ile	Ser		Ala	Lys	Val	He		Tyr	Phe	Arg	
	dae	ttg	275	ato	gag	430	cad	280	tcc	cto	cta	aad	285	acc	act	ttc	912
		Leu															712
	лэр	290	110	110	GIG	пор	295	110	JC1	Lcu	LCu	300	Ulj	.11 0	, ii G	i iic	
	gag	ctg	tet	caa	ctø	aga		aac	aca	et.e	ttc		aca	ยลย	act.	gga	960
		Leu															,,,,
	305		-,-			310					315					320	
		tgg	gag	tgt	ggc	cgg	ctg	tec	tac	tge	ttg	gaa	gac	act	gca	ggt	1008
		Trp															
					325					330					335		
	ggc	ttc	cag	caa	ctt	cta	ctg	gag	ссс	atg	ctg	aaa	ttc	cac	tac	atg	1056
	Gly	Phe	Gln	Gln	Leu	Leu	Leu	Glu	Pro	Met	Leu	Lys	Phe	His	Tyr	Met	
				340					345					350			
	ctg	aag	aag	ctg	cag	ctg	cat	gag	gag	gag	tat	gtg	ctg	atg	cag	gcc	1104
	Leu	Lys	Lys	Leu	Gln	Leu	His	Glu	Glu	Glu	Tyr	Val	Leu	Met	Gln	Ala	
			355					360					365				
		tcc															1152
	He	Ser	Leu	Phe	Ser	Pro		Arg	Pro	Gly	Val		Gln	llis	Arg	Val	
		370					375					380			L		+200
		gac													_		1200
		Asp	GIN	Leu	uln		GIN	rne	HIA	He		Leu	Lys	эег	lyr		
	385					390					395					400	
	gaa	tgc	aat	cgg	ccc	cag	cet	get	cat	agg	ttc	ttg	ttc	ctg	aag	atc	1248
	_	Cys															
					405					410					415		
	atg	gct	atg	ctc	acc	gag	ctc	cgc	agc	atc	aat	gct	cag	cac	acc	cag	1296
	Met	Ala	Met	Leu	Thr	Glu	Leu	Arg	Ser	Пе	Asn	Ala	Gln	His	Thr	Gln	
				420					425					430			
	cgg	ctg	ctg	ege	atc	cag	gac	ata	cac	ccc	ttt	get	acg	ccc	ctc	atg	1344
	Arg	Leu	Leu	Arg	He	Gln	Asp	He	His	Pro	Phe	Ala	Thr	Pro	Leu	Met	
			435					440					445				
	_	gag								tga							1374
	Gln	Glu	Leu	Phe	Gly	He	Thr	G1y	Ser								
		450					455										
[0074]	4.0	10.	0														
		10>;)													
		11>: 12>;		í.													
		13>;		n ear	niene												
		20>;	ПОЩ	յ եպ	21 C.112												
		21>;	CDS														
		22>:		(1.	122)												
		00>:		•													
		aca		acc	agg	act	cac	cac	ttc	aag	gag	383	tcc	ctc	aga	gca	48
		Thr															
	1				5					10					15		
	cct	gcc	ata	ccc	ctg	cac	agt	gct	gcg	gct	gag	ttg	gct	tca	aac	cat	96
	Pro	Ala	He	Pro	Leu	His	Ser	Ala	41a	Ala	Glu	Leu	Ala	Ser	Asn	His	

			20					25					30			
cca	aga	ggc	cca	gaa	gca	aac	ctg	gag	gtg	aga	ссс	aaa	gaa	agc	tgg	144
Pro	Arg	Gly	Pro	Glu	Ala	Asn	Leu	Glu	Val	Arg	Pro	Lys	Glu	Ser	Trp	
		35					40					45				
aac	cat	gct	gac	ttt	gta	cac	tgt	gag	gac	aca	gag	tct	gtt	cct	gga	192
Asn	His	Ala	Asp	Phe	Val	His	Cys	${\rm Gl} u$	Asp	Thr	Glu	Ser	Val	Pro	Gly	
	50					55					60					
aag	ссс	agt	gtc	aac	gca	gat	gag	gaa	gtc	gga	ggt	ccc	caa	atc	tgc	240
Lys	Pro	Ser	Val	Asn	Ala	Asp	Glu	Glu	Val	Gly	Gly	Pro	${\tt GIn}$	He	Cys	
65					70					75					80	
cgt	gta	tgt	ggg	gac	aag	gcc	act	ggc	tat	cac	ttc	aat	gtc	atg	aca	288
Arg	Val	Cys	Gly	Asp	Lys	Ala	Thr	Gly	Tyr	His	Phe	Asn	Val	Met	Thr	
				85					90					95		
tgt	gaa	gga	tgc	aag	ggc	ttt	ttc	agg	agg	gcc	atg	aaa	cgc	aac	gcc	336
Cys	Glu	Gly	Cys	Lys	Gly	Phe	Phe	Arg	Arg	Ala	Met	Lys	Arg	Asn	Ala	
			100					105					110			
cgg	ctg	agg	tgc	CCC	ttc	cgg	aag	ggc	gcc	tgc	gag	atc	acc	cgg	aag	384
Arg	Leu	Arg	Cys	Pro	Phe	Arg	Lys	Gly	Ala	Cys	G1u	Пе	Thr	Arg	Lys	
		115					120					125				
acc	cgg	cga	cag	tgc	cag	gcc	tgc	cgc	ctg	cgc	aag	tgc	ctg	gag	agc	432
Thr	Arg	Arg	Gln	Cys	Gln	Ala	Cys	Arg	Leu	Arg	Lys	Cys	Leu	Glu	Ser	
	130					135					140					
ggc	atg	aag	aag	gag	atg	atc	atg	tcc	gac	gag	gcc	gtg	gag	gag	agg	480
Gly	Met	Lys	Lys	Glu	Met	He	Met	Ser	Asp	G1u	Ala	Val	Glu	Glu	Arg	
145					150					155					160	
cgg	gcc	ttg	atc	aag	cgg	aag	aaa	agt	gaa	cgg	aca	ggg	act	cag	cca	528
Arg	Ala	Leu	He	Lys	Arg	Lys	Lys	Ser	Glu	Arg	Thr	Gly	Thr	Gln	Pro	
				165					170					175		
ctg	gga	gtg	cag	ggg	ctg	aca	gag	gag	cag	cgg	atg	atg	atc	agg	gag	576
Leu	Gly	Val	GIn	Gly	Leu	Thr	Głu	Glu	GIn	Arg	Met	Met.	Пе	Arg	Glu	
			180					185					190			
ctg	atg	gac	gct	cag	atg	aaa	acc	ttt	gac	act	acc	ttc	tec	cat	ttc	624
Leu	Met	Asp	Ala	Gln	Met	Lys	Thr	Phe	Asp	Thr	Thr	Phe	Ser	His	Phe	
		195					200					205				
			cgg													672
Lys	Asn	Phe	Arg	Leu	Pro	Gly	Val	Leu	Ser	Ser	Gly	Cys	Glu	Leu	Pro	
	210					215					220					
			cag													720
Glu	Ser	Leu	Gin	Ala	Pro	Ser	Arg	Glu	Glu	Ala	Ala	Lys	Trp	Ser	Gln	
225					230					235					240	
			gat													768
Val	Arg	Lys	Asp	Leu	Cys	Ser	Leu	l.ys	Val	Ser	Leu	Gln	Leu	4rg	Gly	
				245					250					255		
			agt													816
Glu	Asp	Gly	Ser	Val	Trp	Asn	Tyr		Pro	Pro	Ala	Asp		Пy	Gly	
			260					265					270			
			ttc													864
Lys	Glu		Phe	Ser	Leu	Leu		His	Met	Ala	Asp		Ser	Thr	Tyr	
		275					280					285				
atg	ttc	aaa	ggc	atc	atc	agc	ttt	gcc	aaa	gtc	atc	tec	tac	ttc	agg	912

	Met	Phe 290	Lys	Gly	He	He	Ser 295		Ala	Lys	Val	11e 300	Ser	Tyr	Phe	Arg	
	ana		000	ato	asa	dae			too	o ta	o t a		dda	doo	aro t	++0	960
				atc													900
	305	Leu	Pro	He	GIU	310	GIN	He	ser	Leu	315	Lys	σιŷ	ліа	Ala	320	
	gag	ctg	tgt	caa	ctg	aga	ttc	aac	aca	gtg	ttc	aac	gcg	gag	act	gga	1008
	Glu	Leu	Cys	Gln	Leu	Arg	Phe	Asn	Thr	Val	Phe	Asn	Ala	Glu	Thr	Gly	
					325					330					335		
	acc	tgg	gag	tgt	ggc	c gg	ctg	tcc	tac	tgc	ttg	gaa	gac	act	gca	ggt	1056
	Thr	Trp	Glu	Cys	Gly	Arg	Leu	Ser	Tyr	Cys	Leu	Glu	Asp	Thr	Ala	Gly	
				340					345					350			
	ggc	ttc	cag	caa	ctt	cta	ctg	gag	ccc	atg	ctg	aaa	ttc	cac	tac	atg	1104
				Gln													
	,		355	••••		500	200	360		,,,,		2,0	365		.,.	,,,,,	
	ctg	aag		ctg	cag	ctg	cat		gag	gag	tat	gtg		atg	cag	gcc	1152
				Leu													
	LCu	370	2,5	DÇU	4111	1,00	375	G , G	4.4	4.4	1,71	380	L, Cu		3111	.,,,	
	atc		ctc	ttc	tee	cca		ር ጀር	cca	ggt	gtg		cag	cac	CAC	gt.g	1200
				Phe													1200
	385	501	Lcu	THE	501	390	۹۵.	,u S	110	ory	395	LCu	9111	ms	·us	400	
		gar.	റമർ	ctg	രമർ		caa	ttc	acc	att		cta	മമര	tee	tac		1248
				Leu													1240
	491	nsp qer:	GIII	Leu	405	ora	om	THE	HIG	410	1111	LCu	Lys	561	415	110	
	da a	tac	aat	cgg		മാത	cot	act	eat		++~	++.4	tto	eta		ato	1296
	-	-		Arg				-									1
	uru	Cys	non.	420	110	am	110	ara	425	л 5	LIIC	Leu	THE	430	Lys	116	
	a t a	act	a t a		200	สาส	cto	car		ato	2.2	act	nad		200	റാർ	13.17
				ctc													1544
	.ne t	Ald	435	Leu	1111	ara	Leu	440	oct	HE	2211	ara	445	1113	1111	0111	
	edd	cta		oge	ato	cad	da c		030	000	+++	unt		000	oto	ato	1392
				Arg													10%
	AI S		Leu	au s	116	atn		110	1115	110	riic		1111	110	Leu	riet	
		450	++	++0	aaa	ato	455	.e.et	240	+ an		460					1122
				ttc						(ga							1422
		oru	Leu	Phe	ULY		1111	Oly	ser								
	465					470											
	<;21	0>:	9														
	<:21	1>:	1440)													
	<:21	2>;	DNA														
	<:21	3>;	Ното	sap	iens	;											
	<:22	:0>;															
	<;22	: <1	CDS														
	<:22	2>:	(1).	. (14	140)												
	<:40)(>;	9														
	atg	tcg	ggt	ccc	cga	gtg	tct	caa	ttt	aaa	atg	gtg	aat	tac	tcc	tat	48
	Met	Ser	Gly	Pro	Arg	Val	Ser	GIn	Phe	Lys	Met	Va1	Asn	Tyr	Ser	Tyr	
	1				5					10					15		
;	gat	gaa	gat	ctg	gaa	gag	ctt	tgt	ccc	gtg	tgt	gga	gat	aaa	gtg	tct	96
	Asp	Glu	Asp	Leu	Glu	Glu	Leu	Cys	Pro	Val	Çys	G1y	Asp	Lys	Val	Ser	

[0075]

			20					25					30			
ggg	tac	cat	tat	g g g	ctc	ctc	acc	tgt	gaa	agc	tgc	aag	gga	ttt	ttt	144
Gly	Tyr	His 35	Tyr	Gly	Leu	Leu	Thr 40	Cys	Glu	Ser	Cys	Lys 45	Gly	Phe	Phe	
aag	cga	aca	gtc	caa	aat	aat	aaa	agg	tac	aca	tgt	ata	gaa	aac	cag	192
Lys	Arg 50	Thr	Val	Gln	Asn	Asn 55	Lys	Arg	Tyr	Thr	Cys 60	He	Glu	Asn	Gln	
aac	tgc	caa	att	gac	aaa	aca	cag	aga	aag	cgt	tgt	cct	tac	tgt	cgt	240
Asn 65	Cys	Gln	He	Asp	Lys 70	Thr	Gln	Arg	Lys	Arg 75	Cys	Pro	Tyr	Cys	Arg 80	
ttt	caa	aaa	tgt	cta	agt	gtt	gga	atg	aag	cta	gaa	gct	gta	agg	gcc	288
Phe	Gln	Lys	Cys	Leu 85	Ser	Val	Gly	Met	Lys 90	Leu	Glu	Ala	Val	Arg 95	Ala	
gac	cga	atg	cgt	gga	gga	agg	aat	aag	ttt	ggg	сса	atg	tac	aag	aga	336
Asp	Arg	Met	Arg 100	Gly	Gly	Arg	Asn	Lys 105	Phe	Gly	Pro	Met	Tyr 110	Lys	Arg	
gac	agg	gcc	ctg	aag	caa	cag	aaa	aaa	gcc	ctc	atc	cga	gcc	aat	gga	384
Asp	Arg	Ala 115	Leu	Lys	Gln	Gln	Lys 120	Lys	Ala	Leu	He	Arg 125	Ala	Asn	Gly	
ctt	aag	cta	gaa	gcc	atg	tct	cag	gtg	atc	caa	gct	atg	ccc	tct	gac	432
Leu	Lys 130	Leu	Glu	Ala	Met	Ser 135	Gln	Val	lle	Gln	Al a 140	Met	Pro	Ser	Asp	
ctg	acc	att	tcc	tct	gca	att	caa	aac	atc	cac	tct	gcc	tcc	aaa	ggc	480
Leu 145	Thr	He	Ser	Ser	Ala 150	He	GIn	Asn	He	His 155	Ser	Ala	Ser	Lys	Gly 160	
		_			gct											528
Leu	Pro	Leu	Asn	His 165	Ala	Ala	Leu	Pro	Pro 170	Thr	Asp	Tyr	Asp	Arg 175	Ser	
		_			ccc											576
			180		Pro			185					190			
_					aca											624
		195			Thr		200					205				
					ccc											672
	210				Pro	215					220					5 00
					agt											720
225					Ser 230					235					240	5 40
	_		-		ctt.											768
				245	Leu				250					255		24.6
					gcc											816
			260		Ala			265					270			a
					agc											864
Lys	His	61u 275	Lys	Leu	Ser	lhr	Phe 280	Gly	Leu	Met	US	Lys 285	Met	Ala	ASP	

																010
	a act															912
Gl	n Thr	Leu	Phe	Ser	He		Glu	Trp	Ala	Arg		Ser	He	Phe	Phe	
	290					295					300					040
	a gaa														_	960
	g Glu	Leu	Lys	Val		Asp	uln	Met	Lys		Leu	GIN	Asn	Uys		
30					310					315					320	1000
	t gag															1008
Se	r Glu	Leu	Leu		Leu	Asp	HIS	He	~~ ~	Arg	uin	vai	vai		игу	
				325					330					335	.	1056
	g gaa															1056
Ly	s Glu	ыу		пе	rne	Leu	vai		αιλ	GIII	UIII	٧dI		Tyt	ж	
. 1			340			aa.		345	at a	220	220	ete	350	aat	cat	1104
	a ata															1104
11	e Ile	355	ser	um	Ald	dry	360	1111	Leu	.non	:1011	365	. ie c	ж.	111.5	
gc	a cag		tta	gtg	gca	aaa	ctt	cgt	tet	ete	cag	ttt	gat	caa	ega	1152
	a Gln															
	370					375					380					
ga	g ttc	gta	tgt	ctg	aaa	ttc	ttg	gtg	ctc	ttt	agt	tta	gat	gtc	aaa	1200
	u Phe															
38					390					395					400	
aa	c ctt	gaa	aac	ttc	cag	ctg	gta	gaa	ggt	gtc	cag	gaa	caa	gtc	aat	1248
ak.	n Leu	Glu	Asn	Phe	Gln	Leu	Val	Glu	Gly	Val	Gln	Glu	Gln	Val	Asn	
				405					410					415		
gc	c gcc	ctg	ctg	gac	tac	aca	atg	t.gt.	aac	tac	ccg	cag	cag	aca	gag	1296
Al	a Ala	Leu	Leu	Asp	Tyr	Thr	<u>Met</u>	Cys	4sn	Tyr	Pro	Gln	GIn	Thr	Glu	
			420					425					430			
aa	a ttt	gga	cag	cta	ctt	ctt	ega	cta	CCC	gaa	atc	egg	gcc	atc	agt	1344
Ly	s Phe	Gly	GIn	Leu	Leu	Leu	Arg	Leu	Pro	Glu	Пе	Arg	Лa	He	Ser	
		435					440					445				
	g cag															1392
Ме	t Gln	Ala	Glu	Glu	Tyr	Leu	Tyr	Tyr	Lys	His	Leu	Asn	Gly	Asp	Val	
	450					455					460					
	c tat														taa	1440
Pr	o Tyr	Asn	Asn	Leu	Leu	Пе	Glu	Met	Leu		Al a	Lys	Arg	Ala		
46	5				470					475					480	
[0076]																
	210>;															
	211>:															
	212>:															
	213>:	Нот	o saj	oren:	S											
	220>;	CDC														
	221>:		/ 1	4001												
	222>:		(1	100/												
	400>; g tct		3 2 t	ton	ast	act	वतव	υn t	tto	cas	ממל	tet	tta	32.9	cac	48
	t Ser															
ле	т зе г 1	261	ااص	<i>э</i> ег 5	· ISP	1111	91.*	ال الحد .	10	-2111	u	·	u	15		
aa	ı actt	aca	cct	_	gta	tct	саа	†††		ate	ਕੂ† ਭ	aat	tac		tat	96
	y Leu															
u i	. Leu	1111	.10	.10			-,- 111		.						• -	

			20					25					30			
gat	gaa	gat	ctg	gaa	gag	ctt	tgt	ссс	gtg	tgt	gga	gat	aaa	gtg	tct	144
Asp	Glu	Asp	Leu	Glu	Glu	Leu	Cys	Pro	Val	Cys	Gly	Asp	Lys	Val	Ser	
		35					40					45				
ggg	tac	cat	tat	ggg	ctc	ctc	acc	tgt	gaa	agc	tgc	aag	gga	ttt	ttt	192
Gly	Tyr	His	Tyr	Gly	Leu	Leu	Thr	Cys	Glu	Ser	Cys	Lys	Gly	Phe	Phe	
	50					55					60					
aag	cga	aca	gtc	caa	aat	aat	aaa	agg	tac	aca	tgt	ata	gaa	aac	cag	240
Lys	Arg	Thr	Val	Gln	Asn	Asn	Lys	Arg	Tyr	Thr	Cys	Пе	Glu	Asn	Gln	
65					70					75					80	
aac	tgc	caa	att	gac	aaa	aca	cag	aga	aag	cgt	tgt	cct	tac	tgt	cgt	288
Asn	Cys	Gln	Пе	Asp	Lys	Thr	Gln	Arg	Lys	Arg	Cys	Pro	Tyr	Cys	Arg	
				85					90					95		
ttt	caa	aaa	tgt	cta	agt	gtt	gga	atg	aag	cta	gaa	gct	gta	agg	gcc	336
Phe	Gln	Lys	Cys	Leu	Ser	Val	Gly	Met	Lys	Leu	Glu	Ala	Val	Arg	Ala	
			100					105					110			
gac	cga	atg	cgt	gga	gga	agg	aat	aag	ttt	383	сса	atg	tac	aag	aga	384
Asp	Arg	Met	Arg	Gly	Gly	Arg	Asn	Lys	Phe	Gly	Pro	Met	Tyr	Lys	Arg	
		115					120					125				
gac	agg	gcc	ctg	aag	caa	cag	aaa	aaa	gcc	${\tt ctc}$	${\tt atc}$	cga	gcc	aat	gga	432
Asp	Arg	Ala	Leu	Lys	Gln	Gln	Lys	Lys	Ala	Leu	He	Arg	Ma	Asn	Gly	
	130					135					140					
ctt	aag	cta	gaa	gcc	atg	tct	cag	gtg	atc	caa	gct	atg	ссс	tct	gac	480
Leu	Lys	Leu	Glu	Ala	Met	Ser	Gln	Val	He	Gln	Ala	Met	Pro	Ser	Asp	
145					150					155					160	
ctg	acc	att	tcc	tct	gca	att	caa	aac	atc	cac	tct	gcc	tcc	aaa	ggc	528
Leu	Thr	He	Ser	Ser	Ala	Пе	Gln	Asn	He	His	Ser	Ala	Ser	Lys	Gly	
				165					170					175		
cta	cct	ctg	aac	cat	gct	gcc	ttg	cct	cct	aca	gac	tat	gac	aga	agt	576
Leu	Pro	Leu	Asn	His	Ala	Ala	Leu	Pro	Pro	Thr	Asp	Tyr	Asp	Arg	Ser	
			180					185					190			
ccc	ttt	gta	aca	tcc	ccc	att	agc	atg	aca	atg	CCC	cct	cac	ggc	age	624
Pro	Phe	Val	Thr	Ser	Pro	He	Ser	Met	Thr	Met	Pro	Pro	His	Gly	Ser	
		195					200					205				
ctg	caa	ggt	tac	caa	aca	tat	ggc	cac	ttt	cct	agc	egg	gcc	atc	aag	672
Leu	Gln	Gly	Tyr	Gln	Thr	Tyr	Gly	His	Phe	Pro	Ser	Arg	Ala	He	Lys	
tct	gag	tac	cca	gac	ccc	tat	acc	agc	tca	ccc	gag	tcc	ata	atg	ggc	720
Ser	Glu	Tyr	Pro	Asp	Pro	Tyr	Thr	Ser	Ser	Pro	Glu	Ser	He	Met	Gly	
225					230					235					240	
			atg													768
Tyr	Ser	Tyr	Met		Ser	Tyr	Gln	Thr		Ser	Pro	Ala	Ser		Pro	
				245					250					255		
			ctg													816
His	Leu	He	Leu	Glu	Leu	Leu	Lys		Glu	Pro	4sp	Glu		Gln	Val	
			260					265					270			
			atc													864
GIn	Ala		He	Met	Ala	Tyr		Gln	Gln	Glu	Gln		Asn	Arg	Ser	
		275					280					285				2.5
aag	cac	gaa	aag	ctg	age	acc	ttt	888	ctt	atg	tgc	aaa	atg	gca	gat	912

Lys	His 290	Glu	Lys	Leu	Ser	Thr 295	Phe	Gly	Leu	Met	Cys 300	Lys	Met	Ala	Asp	
caa	act	ctc	ttc	tcc	att	gtc	gag	tgg	gcc	agg	agt	agt	atc	ttc	ttc	960
Gln	Thr	Leu	Phe	Ser	He	Val	Glu	Trp	Ala	Arg	Ser	Ser	He	Phe	Phe	
305					310			-		315					320	
	gaa	ctt	aag	ot t		gac	caa	atg	aag		ctt	cag	aac	tan		1008
			Lys												_	1000
ni g	Giu	reu	Lys	325	Hen	ין כה.	U I II	.TC C	330	Leu	Leu	om	лэн	335	1117	
agt	gag	ctc	tta	atc	ctc	gac	cac	att	tac	cga	caa	gtg	gta	cat	gga	1056
Ser	Glu	Leu	Leu	Пe	Leu	Asp	His	He	Tyr	Arg	Gln	Val	Val	His	Gly	
			340					345					350			
aag	gaa	gga	tcc	atc	ttc	ctg	gtt	act	388	caa	caa	gtg	gac	tat	tcc	1104
Lys	Glu	Gly	Ser	He	Phe	Leu	Val	Thr	Gly	Gln	Gln	Val	Asp	Tyr	Ser	
		355					360					365				
ata	ata		tca	caa	gcc	gga		acc	cte	aac	aac	ctc	atg	agt	cat	1152
			Ser													
110	370	.114	50.	GI.	,,,,	375		• • • •	0.00		380	0				
dea		asa	tta	at a	dea		ott	cat	tet	ctc		+++	orat	raa	nda	1200
-	_															1200
	GIN	utu	Leu	Val		Lys	Leu	AI 8	3 C I		OTH	rue	asp	om		
385					390					395					400	1040
			tgt													1248
Glu	Phe	Val	Cys		Lys	Phe	Leu	Val		Phe	Ser	Leu	Asp		Lys	
				405					410					415		
		-	aac													1296
Asn	Leu	Glu	Asn	Phe	Gln	Leu	Val	Glu	Gly	Val	Gln	Glu	Gln	Val	Asn	
			420					425					430			
gcc	gcc	ctg	ctg	gac	tac	aca	atg	tgt	aac	tac	ccg	cag	cag	aca	gag	1344
Ala	Ala	Leu	Leu	Asp	Tyr	Thr	Met	Cys	Asn	Tyr	Pro	$G1_\Pi$	GIn	Thr	G1u	
		435					440					445				
aaa	ttt	gga	cag	cta	ctt	ctt	cga	cta	ccc	gaa	atc	egg	gcc	atc	agt	1392
Lys	Phe	Gly	Gln	Leu	Leu	Leu	Arg	Leu	Pro	Glu	Пе	Arg	Ala	Пе	Ser	
	450					455					460					
atg	cag	get	gaa	gaa	tac	ctc	tac	tac	aag	cac	ctg	aat	338	gat	gtg	1440
-	-	-	Glu													
465					470		•	•	-0	475			٠	·	480	
	tat	aat	aac	ctt		att	gaa	atg	ttσ		gee	aaa	aga	gca		1488
			Asn													1.00
110	131	. 1211	. 1511	485	Lcu		014	. 10 0	490		112 0	6,0	. 11 .5	495		
				407					470					477		
2.01	۱۸۰.	1 1														
	10>;															
	11>;															
	12>;															
			ı rub	oripe	*S											
)0>:															
															gaggga	
tgca	iaagg	gtt 1	tette	ccgg	eg ea	igogt	gact	aaa	aaas	geeg	tata	iccao	itg c	aaga	igegge	120
ggca	igcts	geg a	agats	gaca	at gt	acat	gagg	gags	gaagt	gcc	aaga	ictge	cg 3	getga	iggaag	180
tgc																183

[0077]

[0078]

<:210>: 12

<;211>; 644

<:212>: DNA <:213>: Homo sapiens <:400>: 12 gaatteegge atgeetttae tteagtggat ttteggeete ageetgeaag eeaagtgtte 60 acagtgagaa aagcaagaga ataagctaat actcctgtcc tgaaaaaggc agcggctcct 120 tggtaaaget acteettgat egateetttg eaceggattg tteaaagtgg acceeagggg 180 agaagtegga geaaagaact taccaccaag eagteeaaga ggeeeagaag eaaacetgga 240 ggtgagaccc aaagaaagct ggaaccatge tgactttgta cactgtgagg acacagagte 300 tgttcctgga aageccagtg tcaacgcaga tgaggaagte ggaggtcccc aaatctgccg 360 tgtatgtggg gacaaggcca ctggctatca cttcaatgtc atgacatgtg aaggatgcaa 420 gggettttte aggagggeea tgaaaegeaa egeeeggetg aggtgeeeet teeggaaggg 480 egectgegag ateaceegga agaceeggeg acagtgeeag geetgeegee tgegeaagtg 540 cctggagage ggcatgaaga aggagatgat catgtccgac gaggccgtgg aggagaggeg 600 ggccttgatc aageggaaga aaagtgaacg gacagccgga attc 644 [0079] <;210>; 13 <:211>: 183 <;212>; DNA <:213>: Fugu rubripes <;400>; 13 $tgtcctgtct\ gtggggacag\ ggtgtcaggg\ tatcactacg\ ggctgctcac\ ctgtgaaagc\ 60$ tgcaagggct tcttcaagcg ttcagtgcag aataacaagg attacacctg tgcagaacaa 120 cagagetgee ceatgaacet tteacagagg aaaegttgee etttetgeeg etteeaaaag 180 183 tgc [0080] <:210>: 14 <;211>: 3243 <:212>: DNA <:213>: Homo sapiens <:220>: <;221>; CDS <:222>: (344)..(1765) <:400>: 14 geogettagt geetacatet gaettggaet gaaatatagg tgagagacaa gattgtetea 60 tateegggga aateataace tatgactagg aegggaagag gaageactge etttaettea 120 gtgggaatet eggeeteage etgeaageea agtgtteaca gtgagaaaag caagagaata 180 agetaatact cetgteetga aaaaggeage ggeteettgg taaagetact eettgatega 240 teetttgeac eggattgtte aaagtggaec eeaggggaga agteggagea aagaacttae 300 caccaageag tgetggeage eccetgagge caaggacage age atg aca gte acc 355 Met Thr Val Thr agg act cac cac tte aag gag ggg tee ete aga gea eet gee ata eee 403 Arg Thr His His Phe Lys Glu Gly Ser Leu Arg Ala Pro Ala He Pro 5 10 15 451 ctg cac agt get geg get gag ttg get tea aac cat eea aga gge eea Leu His Ser Ala Ala Ala Glu Leu Ala Ser Asn His Pro Arg Gly Pro 25 30 gaa gca aac ctg gag gtg aga ccc aaa gaa agc tgg aac cat gct gac 499 Glu Ala Asn Leu Glu Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp

			40					45					50			
ttt	gta	cac	tgt	gag	gac	aca	gag	tct	gtt	cct	gga	aag	ссс	agt	gtc	547
Phe	Val		Cys	Glu	Asp	Thr		Ser	Val	Pro	Gly		Pro	Ser	Val	
		55					60					65				505
			gag													595
Asn	Ala 70	ASP	Glu	Glu	Val	61y 75	ЫУ	Pro	Gin	He	Lys 80	Arg	val	Uys	Gly	
gac	aag	gcc	act	ggc	tat	cac	ttc	aat	gtc	atg	aca	tgt	gaa	gga	tgc	643
Asp	Lys	Ala	Thr	Gly	Tyr	His	Phe	Asn	Val	Met	Thr	Cys	Glu	Gly	Cys	
85					90					95					100	
aag	ggc	ttt	ttc	agg	agg	gcc	atg	aaa	cgc	aac	gcc	cgg	ctg	agg	tgc	691
Lys	Gly	Phe	Phe	Arg	Arg	Ala	Met	Lys	Arg	Asn	Ala	Arg	Leu	Arg	Cys	
				105					110					115		
ссс	ttc	cgg	aag	ggc	gcc	tgc	gag	atc	acc	cgg	aag	acc	egg	ega	cag	739
Pro	Phe	Arg	Lys	Gly	Ala	Cys	Glu	He	Thr	Arg	Lys	Thr	Arg	Arg	Gln	
			120					125					130			
tgc	cag	gcc	tgc	cgc	ctg	cgc	aag	tgc	ctg	gag	agc	ggc	atg	aag	aag	787
Cys	G1n	Ala	Cys	Arg	Leu	Arg	Lys	Cys	Leu	Glu	Ser	Gly	Met	Lys	Lys	
		135					140					145				
gag	atg	atc	atg	tcc	gac	gag	gcc	gtg	gag	gag	agg	egg	gcc	ttg	atc	835
	_		Met											_		
	150					155					160					
aag		aag	aaa	agt	gaa		аса	ggg	act	cag	сса	ctg	gga	gtg	cag	883
			Lys													
165	0	-,-			170					175			•		180	
	ctø	aca	gag	gag		ogg	atg	atg	atc		gag	ctg	atg	gac		931
			Glu													
	204			185					190					195		
กลฮ	ate	aaa	acc		gac	act.	acc	tte		cat	ttc	aag	aat		cgg	979
			Thr													
	. 100	1,0	200		,			205				5	210		.,	
ctg	cca	388	gtg	ctt	agc	agt	ggc	tgc	gag	ttg	cca	gag	tet	ctg	cag	1027
Leu	Pro	Gly	Val	Leu	Ser	Ser	Gly	Cys	Glu	Leu	Pro	Glu	Ser	Leu	Gln	
		215					220					225				
gcc	сса	tcg	agg	gaa	gaa	get	3cc	aag	tgg	agc	cag	gtc	cgg	aaa	gat	1075
			Arg													
	230					235					240					
ctg	tgc	tct	ttg	aag	gtc	tct	ctg	cag	ctg	cgg	888	gag	gat	ggc	agt	1123
Leu	Cys	Ser	Leu	Lys	Val	Ser	Leu	Gln	Leu	Arg	Gly	Glu	Asp	GГу	Ser	
245					250					255					260	
gtc	tgg	aac	tac	aaa	ccc	cca	gcc	gac	agt	ggc	ggg	aaa	gag	atc	ttc	1171
			Tyr													
				265					270					275		
tcc	ctg	ctg	ccc	cac	atg	get	gac	atg	tca	acc	tac	atg	ttc	aaa	ggc	1219
Ser	l.eu	Leu	Pro	His	Met	Ala	Asp	Yet	Ser	Thr	Tyr	Met	Phe	Lys	Gly	
			280					285					290			
atc	atc	agc	ttt	gcc	aaa	gtc	atc	t.cc	tac	ttc	agg	gac	ttg	ccc	atc	1267
He	Пe	Ser	Phe	Ala	Lys	Val	He	Ser	Tyr	Phe	Arg	Asp	Leu	Pro	He	
		295					300					305				

gag gac cag ato too otg otg aag ggg gcc gct tto gag otg tgt caa Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala Phe Glu Leu Cys Gln 310 315 320	1315
ctg aga ttc aac aca gtg ttc aac gcg gag act gga acc tgg gag tgt	1363
Leu Arg Phe Asn Thr Val Phe Asn Ala Glu Thr Gly Thr Trp Glu Cys	.,,,,
325 330 335 340	
gge egg etg tee tae tge ttg gaa gae act gea ggt gge tte eag caa	1411
Gly Arg Leu Ser Tyr Cys Leu Glu Asp Thr Ala Gly Gly Phe Gln Gln	
345 350 355	
ett eta etg gag ecc atg etg aaa tte eac tac atg etg aag aag etg	1459
Leu Leu Leu Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu	
360 365 370	
cag etg cat gag gag gag tat gtg etg atg cag gee ate tee etc tte	1507
Gln Leu His Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe	
375 380 385	
tee eea gae ege eea ggt gtg etg eag eac ege gtg gtg gae eag etg	1555
Ser Pro Asp Arg Pro Gly Val Leu Gln His Arg Val Val Asp Gln Leu	
390 395 400	
cag gag caa tto goo att act otg aag too tac att gaa tgo aat ogg	1603
Gln Glu Gln Phe Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg	
405 410 415 420	
ecc cag cet get cat agg the thig the end aag ate and get and etc	1651
Pro Gln Pro Ala His Arg Phe Leu Phe Leu Lys IIe Met Ala Met Leu	
425 430 435	
acc gag etc ege age atc aat get eag eac acc eag egg etg etg ege	1699
Thr Glu Leu Arg Ser He Asn Ala Gln His Thr Gln Arg Leu Leu Arg	
440 445 450	
ate cag gae ata cae eee tit get acg eee ete atg eag gag tig tie	1747
lle Gln Asp lle His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe	
455 460 465	
gge ate aca ggt age tga geggetgeee ttgggtgaca ceteegagag	1795
Gly Ile Thr Gly Ser	
470	
geagecagae ceagageeet etgageegee acteeeggge caagacagat ggacactgee	1855
aagageegae aatgeeetge tggeetgtet eeetagggaa tteetgetat gacagetgge	1915
tagcatteet caggaaggae atgggtgeee eccaeeecca gtteagtetg tagggagtga	1975
agecacagae tettaegtgg agagtgeaet gaeetgtagg teaggaeeat eagagagea	2035
aggttgccct ttccttttaa aaggccctgt ggtctgggga gaaatccctc agatcccact	2095
aaagtgtcaa ggtgtggaag ggaccaagcg accaaggata ggccatctgg ggtctatgcc	2155
cacataccea egittgiteg effectgagt efficients efacetetaa tagteefgte	2215
teceactice caetegitee ecteciette egageigett igigggetee aggeeigtae	2275
teateggeag gtgeatgagt atetgtggga gteetetaga gagatgagaa geeaggagge	
etgeaceaaa tgteagaage ttggeatgae eteatteegg eeacateatt etgtgtetet	
geateeattt gaacacatta ttaageaceg ataataggta geetgetgtg gggtatacag	
cattgactca gatatagatc ctgagctcac agagtttata gttaaaaaaa caaacagaaa	
cacaaacaat ttggatcaaa aggagaaatg ataagtgaca aaagcagcac aaggaatttc	
cetgtgtgga tgetgagetg tgatggeggg caetgggtae ceaagtgaag gtteeegagg	
acatgagtet gtaggageaa gggeacaaac tgeagetgtg agtgegtgtg tgtgatttgg	
tgtaggtagg totgtttgcc acttgatggg geotgggttt gtteetgggg etggaatget	2755

[0081]

gggtatgett tgtgacaagg etaegetgae aateagttaa acacacegga gaagaaceat 2815	5
ttacatgcac ettatattte tgtgtacaca tetattetea aagetaaagg gtatgaaagt 2875	5
gcctgccttg tttatagcca cttgtgagta aaaatttttt tgcattttca caaattatac 2935	5
tttatataag gcattccaca cctaagaact agttttggga aatgtagccc tgggtttaat 2995	5
gtcaaatcaa ggcaaaagga attaaataat gtacttttgg ctagaggggt aaactttttt 3055	5
ggcctttttc tggggaaaat aatgtggggg tgtggaaata gaaacatacg caagcataca 3115	5
tatttttact acttatttta ttattateet gtataaatet gaagaeteeg gegtaagaac 3175	5
ataaaaatga attatttaac ttggcttact tataaaatga ttgttctgta taaaagttaa 3235	5
aaaaaaaa 3245	3
<;210>; 15	
<;211>; 3057	
<:212>; DNA	
<;213>; Homo sapiens	
<;220>;	
<:221>; CDS	
<;222>; (206)(1579)	
<:400>: 15	
catateeggg gaaateataa eetatgaeta ggaegggaag aggaageaet geetttaett 60	
cagtgggaat ctcggcctca gcctgcaagc caagtgttca cagtgagaaa agcaagagaa 120	
taagetaata eteetgteet gaaaaaggea geggeteett ggtaaageta eteettgate 180	
•	
gateetttge accggattgt teaaa gtg gae eee agg gga gaa gte gga gca 232	
Val Asp Pro Arg Gly Glu Val Gly Ala	
1 5	
•	
aag aac tta cca cca agc agt cca aga ggc cca gaa gca aac ctg gag 280	
Lys Asn Leu Pro Pro Ser Ser Pro Arg Gly Pro Glu Ala Asn Leu Glu	
10 15 20 25	
gtg aga occ aaa gaa ago tgg aac oat got gao ttt gta oac tgt gag 328	
Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His Cys Glu	
30 35 40	
gac aca gag tot gtt cot gga aag ooc agt gtc aac gca gat gag gaa 376	
Asp Thr Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp Glu Glu	
45 50 55	
gtc gga ggt ccc caa atc tgc cgt gta tgt ggg gac aag gcc act ggc 424	
Val Gly Pro Gln He Cys Arg Val Cys Gly Asp Lys Ala Thr Gly	
60 65 70	
tat cac ttc aat stc ats aca tst saa ssa tsc aas ssc ttt ttc ass 472	
Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg	
75 80 85	
agg see atg aaa ege aac see egg etg agg tge eee tte egg aag sge 520	
Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg Lys Gly	
ged tgd gag atd add dgg aag add dgg dga dag tgd dag gdd tgd dgc dgc dgg Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Glu Cys Glu Ala Cys Arg	
-	
Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile Met Ser	

125

130

135

gac	gag	gcc	gtg	gag	gag	agg	cgg	gcc	ttg	atc	aag	cgg	aag	aaa	agt	664
Asp	Glu		Val	Glu	Glu	Arg		Ala	Leu	He	Lys		Lys	Lys	Ser	
		140					145					150				710
_			ggg													712
Glu		Inr	Gly	inr	GIR		Leu	ыу	vai	GIN		Leu	ınr	GIU	GIU	
	155		_ 4 _			160				4	165				+++	760
			atg													760
_	Arg	чеt	Met	He		GIU	Leu	мет	ASP		GIN	лес	Lys	ınr		
170	1				175				++ -	180	~ + ~			art ar	185	000
			ttc													808
ASP	inr	ınr	Phe		MIS	rne	Lys	ASII		arg	Leu	rro	шу		Leu	
			.	190	44		ana	+~+	195	0.24	don	000	tog	200	.422	956
			tgc													856
Ser	ser	GIY	Cys	GIU	Leu	Pro	uru		Leu	UIII	ald	rro		HI K	GIU	
			205				~ + ~	210		.r.+	a tor	t an	215	++	224	904
			aag												_	304
GIU	Ara		Lys	irp	ser	GIII	225	HES	Lys	аѕр	Leu	230	pet	Leu	Lys	
	4.4	220		nt a	odd	add		ast	dan	a at	at c		220	tac	222	952
			cag													734
٧aı		Leu	Gln	Leu	arg		Gru	нар	шу	Sei	245	пр	12211	191	Lys	
	235	a00	gac	24+	440	240	222	do d	ato	tto		eta	ota	000	030	1000
			Asp													1000
	PIO	ald	ASP	ж	255	dry	Lys	Gru	He	260	.)С1	rea	Leu	110	265	
250	and t	420	2 t a	too		t 20	n+a	++0	222		ato	ato	3.00	+++		1048
			atg Met													1040
ાલા	Ard	ASP	лес		1111	tyt	.ne c	riie	275	ury	HE	HE	.561	280	ara	
2.22	at a	a to	too	270	++0	add	dae	tta		ato	ദമദ	dac	റമർ		ton	1096
			tcc Ser													1070
Lys	va.1	He	285	l y i	THE	AL 5	Yer.	290	110	111.	711.0	.up	295	1115		
a ta	nt a	224	ggg	dee	ant	ttc	ਰਤਰ		tat	C 3 3	ct a	a da		aac	aca	1144
			Gly													1111
LCu	Lou	300	urj	ara	,11G	THE	305	Lea	0,5	3711	Lea	310	1110			
art ar	tt:		gcg	ฮลฮ	act	ชฮล		too	020	t at	age		cta	tee	tac	1192
			Ala												_	11,00
, 41	315	, 1.311	.114	014	114	320			.,,,,	0,0	325		204		.,.	
tec		gaa	gac	act	gca		a ac	ttc	cag	caa		cta	ctg	gag	ccc	1240
			Asp													
330	LCu	J. u	. ш		335	4.	3.7			340					345	
	cte	aaa	ttc	cac		atg	ctg	aag	aag		cag	ctg	cat	gag		1288
			Phe													
	LC.	DJ 13		350				5,0	355	.,				360		
ฮลฮ	tat	gtg	ctg		cag	gC C	atc	tcc		ttc	too	cca	gac		cca	1336
			Leu													
			365					370					375			
ggt.	gte	cts	cag	cac	cgc	gtg	gtg		cag	ctg	cag	gag		ttc	gcc	1384
			Gln													
		380					385	•				390				
att	act		aag	tcc	tac	att		tgc	aat	cgg	ccc		cct	gct	cat	1432
			Lys													

395	400	405	
agg the thg the edg a	ag atc atg gct atg c	to acc gag etc egc age	1480
Arg Phe Leu Phe Leu L	ys IIe Met Ala Met L	eu Thr Glu Leu Arg Ser	
410 4	15 4	20 425	
atc aat gct cag cac a	cc cag egg etg etg e	go ato cag gao ata cao	1528
lle Asn Ala Gln His T	hr Gln Arg Leu Leu A	rg Ile Gln Asp Ile His	
430	435	440	
ccc ttt gct acg ccc c	to atg cag gag ttg t	to ggo ato aca ggt ago	1576
Pro Phe Ala Thr Pro L	eu Met Gln Glu Leu P	he Gly Ile Thr Gly Ser	
445	450	455	
tgagcggctg cccttgggtg	acaceteega gaggeage	ca gacceagage ectetgagee	1636
gccactcccg ggccaagaca	gatggacact gccaagag	cc gacaatgeee tgetggeetg	1696
tetecetagg gaatteetge	tatgacaget ggetagea	tt cotcaggaag gacatgggtg	1756
ecceccacce ccastteast	ctgtagggag tgaagcca	ca gactettaeg tggagagtge	1816
actgacctgt aggtcaggac	catcagagag gcaaggtt	ge cettteettt taaaaggeee	1876
tgtggtctgg ggagaaatcc	ctcagatccc actaaagt	gt caaggtgtgg aagggaccaa	1936
gcgaccaagg ataggccatc	tggggtctat gcccacat	ac ceaegittgi tegetteeig	1996
agtettttea ttgctacete	taatagteet gteteeca	ct teccaetest teccetecte	2056
ttccgagctg ctttgtgggc	tecaggeetg tactcate	gg caggtgcatg agtatctgtg	2116
ggagteetet agagagatga	gaagccagga ggcctgca	cc aaatgtcaga agcttggcat	2176
gacctcattc cggccacatc	attetgtgte tetgeate	ca tttgaacaca ttattaagca	2236
ccgataatag gtagcctgct	gtggggtata cagcattg	ac teagatatag atcetgaget	2296
cacagagttt atagttaaaa	aaacaaacag aaacacaa	ac aatttggatc aaaaggagaa	2356
atgataagtg acaaaagcag	cacaaggaat ttocotgt	gt ggatgetgag etgtgatgge	2416
gggcactggg tacccaagtg	aaggtteeeg aggacatg	ag tetgtaggag caagggcaca	2476
aactgcagct gtgagtgcgt	gtgtgtgatt tggtgtag	gt aggtotgttt gccacttgat	2536
ggggcctggg tttgttcctg	gggctggaat gctgggta	tg otttgtgada aggetadget	2596
gacaatcagt taaacacacc	ggagaagaac catttaca	tg caecttatat ttetgtgtae	2656
acatotatto toaaagotaa	agggtatgaa agtgcctg	ee tigittatag ceaetigiga	2716
gtaaaaattt ttttgcattt	tcacaaatta tactttat	at aaggeattee acaectaaga	2776
actagttttg ggaaatgtag	ccctgggttt aatgtcaa	at caaggcaaaa ggaattaaat	2836
aatgtacttt tggctagagg	ggtaaacttt tttggcct	tt ttctggggaa aataatgtgg	2896
gggtgtggaa atagaaacat	acgcaagcat acatattt	tt actacttatt ttattattat	2956
cctstataaa tctsaasact	ccggcgtaag aacataaa	aa tgaattattt aacttggett	3016
acttataaaa tgattgttct	gtataaaagt taaaaaaa	aa a	3057
	뮥 3	記載の核内レセプターの種	々組織で

[0082]

【図面の簡単な説明】

号3記載の核内レセプターの種々組織でのmRNA発現 状態を示す図である。

【図1】ノーザンブロッティングにより分析した配列番

【図1】

フロントペー	-ジの続き				
(51) Int. Cl. ⁸		識別記号	FI		
C12Q	1/68		C 1 2 Q	1/68	A.
G01N	33/53		G 0 1 N	33/53	D
	33/566			33/566	
//(C12N	15/09	ZNA			
C12R	1:91)				
(C 1 2 N	1/21				
C12R	1:19)				
(C12P	21/02				
C12R	1:19)				