Jacob Jashinsky Math 461-01 November 05, 2018

4.4.1, 4.4.5, 4.4.6ab Exercise 4.3.3

a) Supply a proof for Theorem 4.3.9 using the $\varepsilon - \delta$ characterization of continuity.

b) Give another proof of this theorem using the sequential characterization of continuity (thm 4.3.2 iii).

Solution:		
x<1		

Exercise 4.3.11

(CONTRACTION MAPPING THEOREM) Let f be a function defined on all of \mathbb{R} , and assume there is a constant c such that 0 < c < 1 and

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in \mathbb{R}$.

a) Show that f is continuous on \mathbb{R} .

Solution:

x<1

b) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence

$$(y_1, f(y_1), f(f(y_1)), \dots).$$

In general, if $y_{n+1} = f(y_n)$, show that the resulting sequence (y_n) is a Cauchy sequence. Hence we may let $y = \lim y_n$.

Solution:

x<1

c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.

Solution:

x<1

d) Finally, prove that if x is any arbitrary point in \mathbb{R} , then the sequence $(y_1, f(y_1), f(f(y_1)), ...)$ converges to y defined in (b).

Solution:

x<1

Exercise 4.3.13

Let f be a function defined on all of \mathbb{R} that satisfies the additive condition f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

a) Show that f(0) = 0 and that f(-x) = -f(x) for all $x \in \mathbb{R}$.

Solution:

x<1

b) Let k = f(1). Show that f(n) = kn for all $n \in \mathbb{N}$, and then prove that f(z) = kz for all $z \in \mathbb{Z}$. Now, prove that f(r) = kr for any rational number r.

Solution:

x<1

c) Show that if f is continuous at x = 0, then f is continuous at every point in \mathbb{R} and conclude that f(x) = kx for all $x \in \mathbb{R}$. Thus, any additive function that is continuous at x = 0 must necessarily be a linear function through the origin.

Solution:

x<1

	•	4	4	4
HVO	rcise	4	4	
LAU	1 (15(- 1	•т•	

a) Show that $f(x) = x^3$ is continuous on all \mathbb{R} .

Solution:

x<1

b) Argue, using them 4.4.5, that f is not uniformly continuous on \mathbb{R} .

Solution:

x<1

c) Show that f is uniformly continuous on any bounded subset of \mathbb{R} .

Solution:

x<1

Exercise 4.4.5

Assume that g is defined on an open interval (a,c) and it is known to be uniformly continuous on (a,b] and [b,c), where a < b < c. Prove that g is uniformly continuous on (a,c).

Solution:	
x<1	

Exercise 4.4.6ab

Give an example of each of the following, or state that such a request is impossible. for any that are impossible, supply a short explanation for why this is the case.

a) A continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

Solution: x<1

b) A uniformly continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

Solution: x<1