

LECD 2023-2024

Carlos Lisboa Bento

- Depois de determinarmos a correcção de um algoritmo o passo seguinte é determinar:
 - o tempo
 - o espaço
- requeridos para a sua execução.

Exemplo: consideremos o problema de carregar um ficheiro via INTERNET.

Consideremos que o tempo de ligação são 5ms e que o carregamento se processa a 300 Mb/s.

Sendo a dimensão do ficheiro N Mbits temos:

T(N) = N/300 + 0.005

(complexidade linear! É o que em geral desejamos... ou ainda melhor logarítmica)

Conceitos

Exemplo de função cúbica $10N^3 + N^2 + 40N + 80$

Consideremos os caso de

N=2

 $10N^3 + N^2 + 40N + 80 = 244$ $10N^3 = 80$

N = 10

 $10N^3 + N^2 + 40N + 80 = 10.580$ $10N^3 = 10.000$

N=1000

 $10N^3 + N^2 + 40N + 80 = 10.001.040.080$ $10N^3 = 10.000.000.000$

CONCLUSÃO: para valores elevados de N o termo N³ domina o valor da função >> interessa-nos então ter uma medida de complexidade assimptótica.

A notação O-grande é usada para representar a taxa de crescimento.

Conceitos

Funções por ordem crescente de taxa de crescimento

C	constante	
log N	logaritmica	
log² N	logaritmica quadr	
N	linear	
N log N	N log N	
N ²	quadrática	
N ₃	cúbica	
2 N	exponencial	

Algoritmos de complexidade quadrática são impraticáveis para entradas que excedam alguns milhares de elementos

Algoritmos de complexidade cúbica são impraticáveis para entradas que excedam algumas centenas de elementos

CONCLUSÃO: antes de consumir tempo optimizando o código é mais importante procurar optimizar o algoritmo

O - Grande (Paul Bachmann 1894)

Definição

 $f(n) \notin O(g(n))$ se existirem valores $c \in N$ tais que $f(n) \le cg(n)$ para todo o $n \ge N$.

Conceitos

O – Grande (propriedades)

- Se f(n) é O(g(n)) e g(n) é O(h(n)), então f(n) é O(h(n)).
- Se f(n) é O(h(n)) e g(n) é O(h(n)), então f(n)+g(n) é O(h(n)).
- A função an^k é O(n^k).
- A função n^k é O(n^{k+j}) para todo o j positivo.

Segue-se que

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0 \text{ \'e } O(n^k)$$

Conceitos

O – Grande (cálculo)

- Se f(n) é um polinómio de grau d, então f(n) é O(nd):
 - o eliminar no polinómio termos de ordem inferior;
 - o eliminar no polinómio constantes
- Usar as classes de funções de ordem mais baixa possível:
 - o considerar "2n é O(N) e não "2n é O(N2)"
- Usar a expressão mais simples da classe de funções:
 - o considerar "3n+5 é O(N) e não "3n+5 é O(3N)"

Prob #1: MENOR ELEMENTO NUM ARRAY

Dado um array de N elementos encontrar o mínimo elemento.

(Este problema é de grande importância nas ciências da computação)

Um possível algoritmo:

- 1. Criar uma variável min que guarda o menor elemento.
- 2. Inicializar min com o primeiro elemento do array.
- 3. Fazer uma pesquisa sequencial no array e actualizar a variável min de acordo.

Tempo de execução?

■ Linear O(N)

Exemplos

Prob #2: PONTO MAIS PRÓXIMO NUM PLANO

Dados N pontos num plano (um sistema de coordenadas x-y) encontrar o par de pontos mais próximos.

(Este problema é de grande importância em processamento gráfico)

Um possível algoritmo:

- 1. Calcular a distância entre cada par de pontos.
- 2. Guardar a distância mínima.

Tempo de execução?

3 mediators 3(3-1)/2 3 links

4 mediators 4(4-1)/2 6 links 5 mediators 5(5-1)/2 10 links 6 mediators 6(6-1)/2 15 links

Exemplos

Prob #2: PONTO MAIS PRÓXIMO NUM PLANO

Dados N pontos num plano (um sistema de coordenadas x-y) encontrar o par de pontos mais próximos.

(Este problema é de grande importância em processamento gráfico)

Um possível algoritmo:

- 1. Calcular a distância entre cada par de pontos.
- 2. Guardar a distância mínima.

Tempo de execução?

- Existem N (N-1) / 2 pares de pontos -> Complexidade quadrática O(N²)
- Existe um algoritmo melhorado que corre em O(N log N)
- Existe ainda um algoritmo cujo tempo esperado é de O(N)

Cálculo da Complexidade Assimptótica → Análise assimptótica

- A análise assimptótica de um algoritmo determina o tempo de execução na notação O-grande.
- Para realizar a análise assimptótica:
 - Calculamos a função que descreve o número de operações primitivas.
 - Exprimimos esta função em termos da notação O-grande.
- Exemplo: um determinado algoritmo executa 6n²-3n-2 operações primitivas. Dizemos então que o algoritmo tem complexidade O-grande O(N²).
- Como constantes e termos de ordem inferior não são considerados podemos não os tomar em conta quando da contagem do número de funções primitivas.

Análise de Complexidade Exemplos

Cálculo da complexidade assimptótica

Em geral pretendemos saber a COMPLEXIDADE TEMPORAL relativa ao número de atribuições e comparações realizadas durante a execução do programa

PARA JÁ VAMOS SÓ CONSIDERAR O NÚMERO DE ATRIBUIÇÕES

Exemplo #1

```
for(i = sum = 0; i < n; i++)
sum += a[i];
```

Data Structures and Algorithms in JAVA, Adam Drozdek

Exemplos

Cálculo da complexidade assimptótica

Exemplo #2

```
for(i = 0; i < n; i++) {
    for(j = 1, sum = a[0]; j <= i; j++)
        sum += a[j];
    System.out.println ("sum for subarray 0 through "+i+" is" + sum);
}</pre>
```

Data Structures and Algorithms in JAVA, Adam Drozdek

```
T(n) = 1 + 3n + \sum_{i=1}^{n-1} 2i = 1 + 3n + 2 (1+2+... + n-1) = 1 + 3n + n (n-1)
O(1) + O(n) + O(n^2) = O(n^2)
```

Exemplos

Cálculo da complexidade assimptótica

Exemplo #3

```
for(i = 4; i < n; i++) {
    for(j = i-3, sum = a[i-4]; j <= i; j++)
n-4
    sum += a[j];
System.out.println ("sum for subarray "+(i - 4)+" through "+i+" is"+ sum);
}</pre>
```

Data Structures and Algorithms in JAVA, Adam Drozdek

$$T(n) = 1 + (3 + 2*4) (n - 4) = 1 + 11 (n - 4)$$

O (n)

Exemplos

Cálculo da complexidade assimptótica

Exemplo #1 – Soma dos n elementos de um array

```
for(i = sum = 0; i < n; i++)
    sum += a[i];
```

Data Structures and Algorithms in JAVA, Adam Drozdek

Exemplo #2 - Sequência aditiva para os elementos 0, 0..1, 0..2, ..., 0..n

```
for(i = 0; i < n; i++) {
   for(j = 1, sum = a[0]; j \le i; j++)
       sum += a[j];
   System.out.println ("sum for subarray 0 through "+i+" is" + sum);
```

Exemplo #3 - Sequência aditiva para os subarrays 0..4, 1..5, ..., n-4..n

```
for(i = 4; i < n; i++) {
    for(j = i-3, sum = a[i-4]; j <= i; j++)
        sum += a[j];
    System.out.println ("sum for subarray "+(i - 4)+" through "+i+" is"+ sum);
                                                     Data Structures and Algorithms in JAVA, Adam Drozdek
```

número de vezes que os ciclos são executados não depende da ordem porque estão os elementos no array

Nos exemplos 1 a 3 \rightarrow o

24

Data Structures and Algorithms in JAVA, Adam Drozdek

Exemplos

Cálculo da complexidade assimptótica

Exemplo #5 – busca binária num array ordenado

Data Structures and Algorithms in JAVA, Adam Drozdek

Chave no ponto central do array:

$$T(n) = cte$$

0 (1)

Chave não existente no array:

$$n, \frac{n}{2}, \frac{n}{2^2}, \dots, \frac{n}{2^m}$$
 m = log n

O (log N)

Melhor, Médio e Pior Casos

Para algoritmos como os que temos para o ex. 5 necessitamos de analisar:

Melhor Caso

- Caso Médio
- Pior Caso

Caso Médio
$$C_M = \sum_i p(entr_i) * n_passo(entr_i)$$

Procura sequencial de uma chave num array não ordenado.

Melhor Caso – chave encontrada no primeiro elemento do array.

Pior Caso - chave encontrada no último elemento do array ou inexistente no array.

Caso Médio – vamos assumir que todas as posições do array têm a mesma probabilidade de terem a chave (distribuição uniforme de probabilidades)

$$p(entr_i) = \frac{1}{n} \quad p/i = 1,...,n$$
 $n_passo(entr_i) = i$ $C_M = \frac{1+2...+n}{n} = \frac{n+1}{2}$ $O(n)$

T(N) = o(F(N))		crescimento de $T(N)$ < crescimento de $F(N)$	
			Oh pequeno
T(N) = O(F(N))		crescimento de $T(N) \le$ crescimento de $F(N)$	
		$T(N) \le c * F(N)$ $p/N \ge N_0$	Oh grande
T(N) _	$T(N) = \Theta (F(N))$	crescimento de $T(N)$ = crescimento de $F(N)$	
			Theta grande
$T(N) = \Omega (F(N))$		crescimento de <i>T(N)</i> ≥ cres	scimento de <i>F(N)</i>
20-17//A		$T(N) \ge c * F(N) p/ N \ge N_0$	Omega grande

Na definição de *F(N)* em Oh-grande eliminar constantes, termos de ordem inferior e conectivas relacionais.

Ex.: $T(N) = 10N^3 + N^2 + 40N + 80$ é $O(N^3)$

Design and Analysis of Algorithms I

Aplicação

A análise da complexidade de um algoritmo permite-nos fazer algo de incontornável que é procurar algoritmos cuja complexidade seja computacionalmente aceitável.

CONSIDEREMOS UM CASO PRÁTICO

Problema: MÁXIMA SUBSEQUÊNCIA CONTINUA ADITIVA

Dada uma sequência de inteiros (eventualmente negativos) A1,A2,...,AN, encontrar (e identificar a sequência correspondente a) máximo valor de $\sum_{k=i}^{j} A_{K}$

A subsequência é zero se todos os inteiros forem negativos

Exemplo: { -2, <u>11, -4, 13, -5, 2</u> } { 1, -3, <u>4, -2, -1, 6</u> }

Aplicação

A análise da complexidade de um algoritmo permite-nos fazer algo de incontornável que é procurar algoritmos cuja complexidade seja computacionalmente aceitável.

CONSIDEREMOS UM CASO PRÁTICO

Este problema tem:

- solução óbvia em O(N3)
- ... menos óbvia em O(N2)
- ... mais elaborada em O(N)

>>> Estudar as várias soluções

Aplicação

A análise da complexidade de um algoritmo permite-nos fazer algo de incontornável que é procurar algoritmos cuja complexidade seja computacionalmente aceitável.

CONSIDEREMOS UM CASO PRÁTICO

Problema: MÁXIMA SUBSEQUÊNCIA CONTINUA ADITIVA

Dada uma sequência de inteiros (eventualmente negativos) A1,A2,...,AN, encontrar (e identificar a sequência correspondente a) máximo valor de $\sum_{k=i}^{j} A_{K}$

A subsequência é zero se todos os inteiros forem negativos

Exemplo: { -2, <u>11, -4, 13, -5, 2</u> } { 1, -3, <u>4, -2, -1, 6</u> }

Aplicação

Caracteristicas:

- □ Pesquisa exaustiva
- ☐ Tempo de execução *O(N³)*

DESAFIO: Será que conseguimos melhorar o algoritmo em termos de complexidade temporal ?

Aplicação

Em geral quando conseguimos eliminar o ciclo mais interno num algoritmo reduzimos a complexidade temporal

Hoooops !!!

Aplicação

DESAFIO PARCIALMENTE ULTRAPASSADO: conseguimos reduzir a complexidade do algoritmo para $O(N^2)$!!!

Aplicação

Obs.: o algoritmo quadrático ainda corresponde a uma pesquisa exaustiva

Questão: encontrar subsquências que não interessa calcular.

1. Todas as subsequências que confinam com a subsequência de soma máxima têm soma negativa ou igual a zero.

Mais!!

$$S_{i,j} \leq 0$$

S _{j+1,q}

2. Qualquer destas subsequências não é subsquência de soma máxima ou é igual a uma subsequência de soma máxima já encontrada.

Decorre...

Este algoritmo tem complexidade linear Uffffff!!!

Aplicação

```
public static int maxSubSum3( int [] a)
    int maxSum = 0;
    int thisSum = 0;
    for( int i = 0, j = 0; j < a.length; <math>j++)
       thisSum += a[ j ];
       if( thisSum > maxSum )
         maxSum = thisSum;
         seqStart = i;
         seqEnd = j;
       else if(thisSum < 0)
         i = j + 1;
         thisSum = 0;
    return maxSum;
```

© DEI Carlos Lisboa Bento

Aplicação

Tempos de execução em segundos numa determinada máquina para os vários algoritmos de máxima subsequência continua

N	O(N³)	O(N²)	O(N)
10	0.00103	0.00045	0.00034
100	0.47015	0.01112	0.00064
1000	448.77	1.1233	0.00333
10000	ND	111.13	0.03042
100000	ND	ND	0.29832

Outro exemplo

de uma entrevista de emprego na AMAZON :)

... fim

anexos

For any <u>base</u>, the logarithm function has a <u>singularity</u> at x = 0.

In the above plot, the blue curve is the logarithm to $\underline{\text{base}}\ 2\ (\log_2 x = \lg x)$, the black curve is the logarithm to $\underline{\text{base}}\ e$ (the $\underline{\text{natural logarithm}}\ \log_e x = \ln x$), and the red curve is the logarithm to $\underline{\text{base}}\ 10$ (the $\underline{\text{common logarithm}}$, i.e., $\underline{\log}$, $\log_{10} x = \log x$).

FONTE: http://mathworld.wolfram.com/