CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes > **NP**-Completeness Via Reductions

- Reduction Techniques:
 - Restriction
 - Example: 0,1 Knapsack

PROBLEM: 0,1 KNAPSACK

o KNAPSACK:

- Given a set S of items with weights { W1, W2, ..., Wn} and values { P1, P2, ..., Pn} , a weight bound B, a value bound V,
 - o find whether there is a subset T of S, such that
 - the sum of the weights of elements in T is <= B, and that</p>
 - the sum of values of elements in T is >=V.

KNAPSACK IS NP-HARD

- O KNAPSACK is N₱-hard

 - Proof:
 - o SUBSET-SUM is a special case of KNAPSACK
 - o with Wi = Pi for all i, and V = B
- Proof By Restriction:
 - Show that the known problem is a special case of the target problem.

REDUCTION TECHNIQUE: RESTRICTION

- Observe that the proof in the previous example:
 - is an instance of *Reduction by Restriction*:
 - o i.e. we show that the known NP -hard problem is a special case of the target problem.
 - Why does this reduction work?
 - o Will it work the other way round?

• Exercise:

 Observe the way this technique was used in reducing HAM-CIRCUIT to TSP