## 常微分方程(组)数值解法作业

## 2024年3月27日

## 仅需完成红字描述的内容即可。

再电离时期 (epoch of reionization, 简称 EoR) 之前  $(z \gtrsim 20-30)$ ,宇宙中的气体几乎都是中性的。后来,第一代星系开始形成并发射电离光子,在其周围形成电离泡泡(ionized bubble),再电离过程开始。随着时间的增加,第一代星系越来越多,电离泡泡也越来越多,越长越大。并且相互之间会贯通,形成更大的电离区域,这有利于电离光子的传播并进一步加速了再电离过程。最终整个宇宙的气体都再次回到电离状态(称"再次"是因为在复合时期之前,宇宙中的气体也是电离状态的),此时再电离结束( $z\sim6$ )。

这个过程中, 电离泡泡在宇宙中的体积占比满足如下常微分方程:

$$\frac{dQ_{\rm I}}{dt} = f_{\rm esc} \frac{\dot{n}_{\rm ion}}{n_{\rm H}} - C(t)\alpha_{\rm B}(t)n_{\rm H}(1+z)^3 Q_{\rm I}$$

其中  $f_{\rm esc}$  是电离光子从星系中逃逸到宇宙之中的概率, $n_{\rm H}$  是今天的宇宙中氢元素 (包括中性氢原子和氢离子) 的平均数密度,C(t) 是 clumping factor, $\alpha_{\rm B}$  是 B 型复合系数(Case B recombination coefficient),单位体积的平均电离光子发射率为

$$\dot{n}_{\mathrm{ion}} = N_{\mathrm{ion}} \times \frac{\mathrm{SFRD}(z)}{m_{\mathrm{H}}}$$

 $N_{\text{ion}}$  是恒星内部的一个原子在其一生中平均产生的电离光子数目, $m_{\text{H}}$  是氢原子质量,宇宙平均的恒星形成率密度,

$$SFRD(z) = \frac{a(1+z)^b}{1 + [(1+z)/c]^d} [M_{\odot} yr^{-1} Mpc^{-3}]$$

Madau & Dickinson (2014) 从观测中拟合出了如下的系数: a = 0.015, b = 2.7, c = 2.9, d = 5.6,对应的 SFRD 演化如下:

取 
$$N_{\rm ion}=4000$$
,  $f_{\rm esc}=0.5$ ,  $C(t)\equiv 3$ ,  $n_{\rm H}=1.9\times 10^{-7}~{\rm cm}^{-3}$ ,  $\alpha_{\rm B}=2.5\times 10^{-13}~{\rm cm}^3~{\rm s}^{-1}$ , 且有  $dz/dt=-(1+z)H(z)$ , 初值为  $z=30$  时,  $Q_{\rm I}=0$ ,



图 1: Madau & Dickinson (2014) 的 SFRD 的演化。

 $Q_{\rm I}$  随着红移的演化如下:  $(Q_{\rm I}$  必须小于 1,当计算的结果大于 1 时,将其直接设为 1)

试改变例子程序中的  $a,b,c,d,f_{\rm esc},C(t),N_{\rm ion}$  等参数的值,观察  $Q_I$  的演化会有什么不同,画出几个不同参数的  $Q_I$  图。



图 2:  $Q_I$  随着红移的演化。