This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06260434 A

(43) Date of publication of application: 16 . 09 . 94

(51) Int. CI

H01L 21/205 C23C 16/50 // C23C 16/44

(21) Application number: 05071213

(22) Date of filing: 04 . 03 . 93

(71) Applicant:

NISSIN ELECTRIC CO LTD

(72) Inventor:

OTANI SATOSHI MURAKAMI HIROSHI KIRIMURA HIROYA

(54) PLASMA CVD DEVICE

(57) Abstract:

PURPOSE: To achieve the following three purposes i.e., the reduction of the damage to the surface of a substrate or a film, the control of a film composition ratio, the enhancement of plasma stability, the acceleration of film forming rate and the suppression of particles bonding onto the substrate.

CONSTITUTION: Within the plasma CVD device, an intermediate electrode 30 having multiple through holes 32 and multiple gas jetting out holes 24 on the rear surface thereof is provided between a high-frequency electrode 8 and a holder and electrode 18 so as to feed the space between this intermediate electrode 30 and the high-frequency electrode 8 with a high-frequency power from a high-frequency power supply 24. Besides, an exhaust opening 6 is to be provided on the rear side of the holder and electrode 18. Furthermore, the whole gas excluding a raw gas is led into the high-frequency electrode 8 to be jetted out of gas jetting-out ports 10 while the raw gas or a mixed gas 40 of the raw gas and a diluted gas is led into the intermediate electrode 30 to be jetted out of the other gas jetting-out ports 34.

COPYRIGHT: (C)1994.JPO&Japio

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-260434

(43)公開日 平成6年(1994)9月16日

(51) lnt. Cl. ⁵ H01L 21/205 C23C 16/50 // C23C 16/44	識別記号 D	庁内整理番号 7325-4K 7325-4K	FΙ	技術表示箇所
			審查	E請求 有 請求項の数 2 FD (全6頁)
(21)出願番号	特願平5-7121	3	(71)出顧人	000003942 日新電機株式会社
(22)出願日	平成5年(1993)3月4日	(72)発明者	京都府京都市右京区梅津高畝町47番地
•			(72)発明者	日新電機株式会社内 村上 浩 京都府京都市右京区梅津高畝町47番地
			(72)発明者	日新電機株式会社内 桐村 浩哉 京都府京都市右京区梅津高畝町47番地
	,	4	(74)代理人	日新電機株式会社内 弁理士 山本 惠二

(54) [発明の名称] プラズマCVD装置

(57) 【要約】

[目的] 基板表面および膜表面へのダメージの軽減、 膜の組成比の制御、プラズマの安定性の向上、成膜速度 の向上および基板に付着するパーティクルの抑制を可能 にしたプラズマCVD装置を提供する。

【構成】 高周波電極8とホルダ兼電極18との間に、多数の貫通孔32と下面に多数のガス噴出孔34とを有する中間電極30を設け、この中間電極30と高周波電極8との間に高周波電源24から高周波電力を供給するようにした。また、排気口6をホルダ兼電極18の裏側に位置するように設けた。そして、高周波電極8内に、原料ガスを除く全てのガス46を導入してそれをガス噴出孔10から噴出させ、かつ中間電極30内に、原料ガスまたはそれと希釈ガスとの混合ガス40を導入してそれをガス噴出孔34から噴出させるようにした。

[特許請求の範囲]

【請求項1】 真空排気される真空容器と、この真空容 器内に収納されていて、内部にガスが導入されかつ下面 にそのガスを噴出させる多数のガス噴出孔を有する高周 波電極と、前記真空容器内に高周波電極に対向するよう に収納されていて、基板を載せるホルダを兼ねるホルダ 兼電極とを備えるプラズマCVD装置において、内部に ガスが導入されるものであって、上下に貫通している多 数の貫通孔と前記ホルダ兼電極側の面に当該ガスを噴出 させる多数のガス噴出孔とを有する中間電極を、前記高 周波電極とホルダ兼電極との間に、両電極間の空間を仕 切るように設け、この中間電極と髙周波電極との間に髙 周波電力を供給するようにし、しかも前記真空容器内を 真空排気するための排気口を前記ホルダ兼電極の裏側に 位置するように設け、かつ前記高周波電極内に、膜を形 成する原料となる原料ガスを除く全てのガスを導入して それを当該電極のガス噴出孔から噴出させ、かつ前記中 間電極内に、原料ガスまたはそれと希釈ガスとの混合ガ スを導入してそれを当該電極のガス噴出孔から噴出させ るようにしたことを特徴とするプラズマCVD装置。

【請求項2】 前記中間電極を真空容器から電気的に絶 縁して設け、かつこの中間電極に前記ホルダ兼電極に対 して直流のバイアス電圧を印加する電圧可変のバイアス 電源を設けた請求項1記載のプラズマCVD装置。

[発明の詳細な説明]

[0001]

【産業上の利用分野】この発明は、例えば液晶ディスプ レイの薄膜トランジスタ、太陽電池等の半導体デバイス の半導体薄膜層や絶縁体薄膜層の形成等に使用されるプ ラズマCVD装置に関し、より具体的には、高速成膜、 膜の組成比の制御、パーティクルの抑制、基板へのダメ ージの軽減等を可能にする手段に関する。

【従来の技術】この種のプラズマCVD装置の従来例を 図3に示す。このプラズマCVD装置は、いわゆる平行 平板型の装置であり、図示しない真空排気装置によって 真空排気される真空容器4内に、高周波電極8とホルダ 兼電極18とを対向させて収納している。 髙周波電極8 は絶縁物12によって真空容器4から絶縁されている。 ホルダ兼電極18は接地されている。ホルダ兼電極18 上には、成膜しようとする基板2が載せられる。基板2 は例えばホルダ兼電極18内のヒータ20によって加熱 される。

【0003】高周波電極8は、そこに導入される混合ガ ス14を真空容器4内に噴出させる多数のガス噴出孔1 0をその下面に有している。

[0004] この混合ガス14には、従来は成膜に用い る全てのガス、即ち膜を形成する原料となる原料ガス、 この原料ガスと反応させる反応ガスおよびこれらのガスー

にa-Siの半導体薄膜層を形成する場合、原料ガスは S, H,、希釈ガスはH, であり、反応ガスは不要であ る。基板2上にa-S₁N₁やa-S₁O₁の絶縁薄膜層を 形成する場合、原料ガスは S_1H_4 、反応ガスは N_1 、NH. あるいはO.、希釈ガスはH. である。

[0005] 高周波電極8とホルダ兼電極18間には、 マッチングボックス22を介して髙周波電源24から例 えば13.56MHzの高周波電力が供給される。

【0006】このような装置において、真空容器4内に 上記のような混合ガス14を導入して真空容器4内を例 えば数百mTorr程度にすると共に、高周波電極8に 髙周波電源24から髙周波電力を供給すると、髙周波電 極8とホルダ兼電極18間で髙周波放電が生じてプラズ マ26が発生する。その際、マッチングボックス22内 には一般的にブロッキングコンデンサが含まれているの で、そこに電子が溜まり、高周波電極8は負に帯電す る。すると、プラズマ26中の正イオンが高周波電極8 に向かって加速されて高周波電極8に衝突し、これによ って電子が生成されてこの電子がプラズマ26を持続す 20 るように働く。

[0007] 上記のようにして、プラズマ26によって 混合ガス14中の原料ガスが励起されて励起活性種が作 られ、化学反応が進み、基板2の表面に所望の膜、例え ば前述したようなa-Si、a-SiNi、a-SiO,等 の膜が形成される。

[000.8]

【発明が解決しようとする課題】ところが、上記プラズ マCVD装置においては、次のような問題がある。

【0009】 ○ 基板2をプラズマ26が作られるプラ ズマ発生領域内に設置しているので、基板2の表面また 30 は基板2上の膜の表面にプラズマ26によるダメージが 生じる。

【0010】② 多数の反応種がプラズマ26中に存在 することになり、その中の特定の反応種を増やすという 反応種の割合の制御が困難であるため、膜の組成比や成 膜速度の制御が困難である。

[0011] ③ 原料ガスを含めた全てのガスを高周波 電極8とホルダ兼電極18間でプラズマ状態にしている ので、高周波電極8にも化学反応によって生成した膜が 堆積し、これが邪魔をして高周波電極8からプラズマ2 6中へ電子が供給されにくくなり、プラズマ26の維持 や安定性が悪くなる。

[0012] ④ 高周波電極8付近のプラズマ26のシ ース部分にトラップ(捕捉)されていた、気相反応によ るパーティクルが、高周波電力を切ってプラズマ26を 消滅させたときにトラップ作用が無くなって、基板2に 向かって拡散して基板2の表面に付着する。

[0013] ⑤ 髙周波電極8とホルダ兼電極18間の ほぼ全体でプラズマ26が作られ、基板表面への成膜に を希釈する希釈ガスが含まれている。例えば、基板2上 50 寄与しない所、即ち基板表面から離れた所でも励起活性で 種が作られて化学反応が進むため、基板への効率の良い 成膜、即ち高速成膜が不可能である。

【0014】そこでこの発明は、基板表面および膜表面 へのダメージの軽減、膜の組成比の制御、プラズマの安 定性の向上、成膜速度の向上および基板に付着するパー ティクルの抑制を可能にしたプラズマCVD装置を提供 することを主たる目的とする。

[0015]

【課題を解決するための手段】上記目的を達成するた め、この発明のプラズマCVD装置は、内部にガスが導 10 の従来例と同一または相当する部分には同一符号を付 入されるものであって、上下に貫通している多数の貫通 孔と前記ホルダ兼電極側の面に当該ガスを噴出させる多 数のガス噴出孔とを有する中間電極を、前記高周波電極 とホルダ兼電極との間に、両電極間の空間を仕切るよう に設け、この中間電極と高周波電極との間に高周波電力 を供給するようにし、しかも前記真空容器内を真空排気 するための排気口を前記ホルダ兼電極の裏側に位置する ように設け、かつ前記高周波電極内に、膜を形成する原 料となる原料ガスを除く全てのガスを導入してそれを当 該電極のガス噴出孔から噴出させ、かつ前記中間電極内 20 に、原料ガスまたはそれと希釈ガスとの混合ガスを導入 してそれを当該電極のガス噴出孔から噴出させるように したことを特徴とする。

【0016】また、前記中間電極を真空容器から電気的 に絶縁して設け、かつこの中間電極に前記ホルダ兼電極 に対して直流のバイアス電圧を印加する電圧可変のバイ アス電源を設けても良い。

[0017]

【作用】上記構成によれば、高周波電極と中間電極との 間は、両電極間に髙周波電力が供給されるので、プラズ 30 マが発生するプラズマ発生領域になり、中間電極とホル ダ兼電極との間は、両電極間に高周波電力が供給されな いので、プラズマが発生しないプラズマ非発生領域にな る。

【0018】高周波電極のガス噴出孔から噴出させられ た、原料ガスを除くガスは、上記プラズマ発生領域にお いてプラズマによって励起され、それによって励起活性 種が作られる。

【0019】プラズマ発生領域で生成された励起活性種 は、真空容器の排気口をホルダ兼電極の裏側に位置する ように設けているので、排気中のガスの流れによって、 中間電極の多数の貫通孔を通して、上記プラズマ非発生 領域へと導かれる。

【0020】このプラズマ非発生領域へは、中間電極の 多数のガス噴出孔から、原料ガスまたはそれと希釈ガス との混合ガスが供給され、この原料ガスと上記励起活性 種とが基板の表面近傍で化学反応を起こして基板の表面 に膜が形成される。

【0021】その場合、上記バイアス電源を設けておい て、中間電極とホルダ兼電極間のバイアス電圧を制御す 50

ることにより、励起活性種中のイオン種の基板側への引 き込みを制御することができるので、基板の表面近傍に 到達するイオン種とラジカル種との割合を制御すること ができ、それによって成膜条件を変化させることも可能 である。

[0022]

【実施例】図1は、この発明の一実施例に係るプラズマ CVD装置を示す断面図である。図2は、図1中の中間 電極の下面を拡大して部分的に示す平面図である。図3 し、以下においては当該従来例との相違点を主に説明す る。

[0023] この実施例においては、前述した真空容器 4内であって高周波電極8とホルダ兼電極18との間 に、両電極間の空間を仕切るように、中間電極30を設 けている。

[0024] この中間電極30は、内部が空洞になって いて、何本かの(例えば四方からの4本の)ガス導入管 36を経由して、真空容器4外から内部にガス40が導 入される。この中間電極30の下面、即ちホルダ兼電極 18側の面には、内部の空洞部につながっていて内部に 導入されたガス40を噴出させる多数のガス噴出孔34 が設けられている。またこの中間電極30には、上下に 貫通している多数の貫通孔32が設けられている。勿 論、この各貫通孔32と中間電極30の内部の空洞部と は仕切られている。

【0025】この中間電極30と高周波電極8との間に は、前述した髙周波電源24からマッチングボックス2 2を経由して高周波電力が供給される。そのため、この 中間電極30は単に接地しておいても良い。 あるいはこ の実施例のように、ガス導入管36と真空容器4との間 に絶縁物38を設けて中間電極30を真空容器4から電 気的に絶縁しておき、かつ切換スイッチ 4 1 およびバイ アス電源42を設けて、切換スイッチ41の切り換えに よって、中間電極30をガス導入管36を介して接地し <u>たり、中間電極30にバイアス電源42からホルダ兼電</u> 極18に対して直流のバイアス電圧を印加できるように しておいても良い。

[0026] このバイアス電源42は、出力電圧が可変 であり、中間電極30に対して、正、負あるいは負から 正までの電圧を印加することができる。

[0027] 真空容器4内を真空排気するための排気口 6は、ホルダ兼電極18の裏側に位置するように設けて いる。

[0028] またこの実施例では、髙周波電極8内に、 基板2を加熱するための環状に巻かれたヒータ48を、 内側と外側の二重に設けている。50はそれらのカバー である。このヒータ48は、一重でも良いが、二重の方 が基板加熱の均一性が良い。

【0029】またこの実施例では、従来例のようにプラ

20

ズマによって原料ガスを含む全てのガス中の原子、分子 を活性化する方法を用いずに、原料ガスを除くガスをプ ラズマによって活性化するようにしている。

[0030] 即ち、高周波電極8内にガス導入管44を 経由して、膜を形成する原料となる原料ガスを除く全て のガス(即ち、希釈ガスまたはそれと反応ガスとの混合 ガス) 46を導入して、このガス46を当該電極の多数 のガス噴出孔10から、中間電極30との間の領域に噴 出させるようにしている。また、中間電極30内にガス 導入管36を経由して、原料ガスまたはそれと希釈ガス との混合ガス40を導入して、このガス40を当該電極 の多数のガス噴出孔34から、基板2との間の領域に噴 出させるようにしている。

【0031】上記構成によれば、髙周波電極8と中間電 極30との間には高周波電源24から高周波電力が供給 されるので、両電極間でプラズマ26が生成される。-方、中間電極30とホルダ兼電極18との間には、バイ アス電源42からパイアス電圧が供給されることはあっ ても、髙周波電力は供給されないので、両電極間にプラ ズマは生成されない。即ち、高周波電極8と中間電極3 0との間は、プラズマ26が発生するプラズマ発生領域 になり、中間電極30とホルダ兼電極18との間は、プ ラズマが発生しないプラズマ非発生領域になる。

【0032】高周波電極8のガス噴出孔10から噴出さ せられた原料ガスを除くガス46は、上記プラズマ発生 領域においてプラズマ26によって励起され、それによ って励起活性種が作られる。

【0033】真空容器4の排気口6はホルダ兼電極18 の裏側に位置するように設けているので、排気中のガス の流れは真空容器4の底部へ向かうようになり、このガ 30 ることができる。 スの流れによって、上記プラズマ発生領域で生成された 励起活性種は、図1中に矢印Aで示すように、中間電極 30の多数の貫通孔32を通して、中間電極30とホル ダ兼電極18間の上記プラズマ非発生領域へと導かれ る。

【0034】一方、このプラズマ非発生領域へは、中間 <u>電極30の多数のガス噴出孔34から、原料ガス</u>または <u>それと希釈ガスとの混合ガス40が供給され、この原料</u> ガスと上記励起活性種とが基板2の表面近傍で化学反応 を起こして基板2の表面に膜が形成される。

【0035】このプラズマCVD装置の特徴を列挙すれ ば次のとおりである。

【0036】**①** プラズマ26が作られないプラズマ非 発生領域で基板2に対して成膜を行うので、基板表面お よび基板2上の膜表面のプラズマによるダメージが軽減 される。

【0037】② 高周波電極8および中間電極30から 噴出させるガスの流量比を制御することが可能であり、 それによって反応種の割合の制御が可能であり、その結び る。

[0038] ③ 高周波電極8と中間電極30との間に は原料ガスが供給されないので、高周波電極8の近傍で 化学反応が起こって高周波電極8に膜が堆積することは なく、従って高周波電極8からプラズマ26中へ電子が 安定して供給されるので、プラズマ26の安定性が向上 する。

【0039】 ④ 高周波電極8の近傍に原料ガスが行か ないので高周波電極8の近傍で気相反応によるパーティ クルが発生しない。従って、高周波電力を切ってプラズ マ26を消滅させたときの基板2へのパーティクルの付 着を大幅に抑えることができる。

【0040】⑤ 中間電極30とホルダ兼電極18との 間でのみ、即ち基板2の表面近傍でのみ化学反応を起こ させるので、無駄な所での反応がなく、従って基板2に 対する成膜速度が向上する。

[0041] ⑥ この実施例のようにバイアス電源42 を設けておいて、中間電極30とホルダ兼電極18間の バイアス電圧を制御することにより、励起活性種中のイ オン種の基板2側への引き込みを制御することができ る。その結果、基板2の表面近傍に到達するイオン種と ラジカル種との割合を制御することができ、それによっ て成膜条件を変化させることも可能である。

【0042】⑦ 高周波電極8内には原料ガスを流さな いので、髙周波電極8内で化学反応が起こらないから、 この実施例のように髙周波電極8内に基板加熱用のヒー 夕48を内蔵することが可能である。その結果、中間電 極30を介してではあるけれども、基板2を表面側から も加熱することが可能になり、より均一な温度分布を得

[0043] 次にこの発明のより具体的な実施例を説明 する。

【0044】装置の構成として、髙周波電極8と基板2 間の距離を約300mm、中間電極30と基板2間の距 離を約15mmとした。中間電極30は、高周波電極8 <u>の寸法(700mm×700mm)よりもやや大きい寸</u> 法のものとし、その貫通孔32の開口率は約40%とし <u>た。</u>また、中間電極30のガス噴出孔34は、基板2上 にガス40をできるだけ均一に流せるように、中央部の ものは真下に向け、両外側のものは内向きに設けた。中 間電極30にガス40を導入するガス導入管36は、ガ スの流量分布および温度分布の均一性を良くするため、 4本の90度間隔に配置されたものを用いた。

[0045] 成膜に際しては、基板2の加熱に、ホルダ 兼電極18内のヒータ20と髙周波電極8内のヒータ4 8 とを用いた。モノシラン (S, H,) を用いた a -S,:H、a-S,O,;Hおよびa-S,N,:Hの成膜 において、真空容器4内の圧力(ガス圧)を300~9 00mTorrに設定し、またガスの流量は、原料ガス 果、膜の組成比および成膜速度の制御を行うことができ 50 のプラズマ発生領域への逆流を防ぐために、高周波電極 🖰

8のガス噴出孔10から噴出するガス46の流量に対し て、中間電極30のガス噴出孔34から噴出するガス4 0の流量が1/6~1/3程度になるようにした。

【0046】このとき用いたガスの種類等を表1に示

し、成膜の結果を図3に示したような従来例の装置と比 較して表2に示す。

[0047]

【表 1】

膜の種類	ガスの種類			基板温度	(°C)
	中間電極側	高周波	電極倒		
a-S,:H	S, H, Xは S, H, +H,	H ₂		約250	
a-S,O _t :H S	5, H, +H;	O ₂	*	9300	1
a-S:N::H 5	S:H:+H2	N ₂	兼	9350	l

[0048]

[表2]

	従来例の装置	実施例の装置
成膜速度(A/s) (a-S: : Hの場合)	5~12	30以上
組成比の制御 (a - S, N ₁ : Hの場合)	困難	容易
バーティクル虽 (a - S, N _z : Hの場合)	大.	従来例の 約1/3以下
膜中の水素濃度の制御	困難	容易

【0049】この表2にも示すように、実施例の装置に よれば、従来例の装置に比べて、成膜速度が約2倍以上 に向上し、基板2に付着するパーティクルの量が約1/ 3以下に抑えられている。また、実施例の装置によれ ば、ガスの流量比を変化させることができるので、膜の 組成比の制御および膜中の水素濃度の制御も容易であ る。

[0050]

【発明の効果】この発明は、上記のとおり構成されてい 40 るので、次のような効果を奏する。

【0051) ① プラズマが作られないプラズマ非発生 領域で基板に対して成膜を行うので、基板表面および基 板上の膜表面のプラズマによるダメージが軽減される。

【0052】② 高周波電極および中間電極から噴出さ せるガスの流量比を制御することが可能であり、それに よって反応種の割合の制御が可能であり、その結果、膜 の組成比および成膜速度の制御を行うことができる。

【0053】③ 高周波電極と中間電極との間には原料 ガスが供給されないので、高周波電極の近傍で化学反応 50 る。

が起こって高周波電極に膜が堆積することがなく、従っ て高周波電極からプラズマ中へ電子が安定して供給され るので、プラズマの安定性が向上する。

【0054】 ④ 高周波電極の近傍に原料ガスが行かな いので高周波電極の近傍で気相反応によるパーティクル が発生しない。従って、髙周波電力を切ってプラズマを 消滅させたときの基板へのパーティクルの付着を大幅に 抑えることができる。

【0055)⑤ 中間電極とホルダ兼電極との間での み、即ち基板の表面近傍でのみ化学反応を起こさせるの で、無駄な所での反応がなく、従って基板に対する成膜で 速度が向上する。

[0056] ⑥ バイアス電源を設けておいて、中間電 極とホルダ兼電極間のバイアス電圧を制御することによ り、励起活性種中のイオン種の基板側への引き込みを制 御することができる。その結果、基板の表面近傍に到達 するイオン種とラジカル種との割合を制御することがで き、それによって成膜条件を変化させることも可能であ

【図面の簡単な説明)

【図1】この発明の一実施例に係るプラズマCVD装置を示す断面図である。

【図2】図1中の中間電極の下面を拡大して部分的に示す平面図である。

【図3】従来のプラズマCVD装置の一例を示す概略断面図である。

[符号の説明]

- 2 基板
- 4 真空容器
- 6 排気口
- 8 高周波電極

- 10 ガス噴出孔
- 18 ホルダ兼電極
- 24 高周波電源
- 26 プラズマ
 - 30 中間電極
 - 32 貫通孔
 - 34 ガス噴出孔
 - 36 ガス導入管
 - 40 ガス
- 10 42 バイアス電源
 - 4.4 ガス導入管
 - 46 ガス

[図1]

•

[図3]

