中国科学技术大学

2019--2020 学年第二学期考试试卷

考试形式: 闭卷笔试, 计算器禁用

考试科目:数据库系统及应用 得分:					
学生所在系:		姓名:	学号:		
[注意]:	: 所有答案(<mark>包括选</mark>	圣和判断题)都写到答	>题纸上。交卷时答 是	匢纸、试卷和草稿纸一起上交	•
一、单项	页选择题(10分)				
72 1.	下面哪一项是数据库技术与文件系统相比的优点?				
D	A. 支持数据共享	B. 数据一致性高	C. 数据无冗余	D. 支持海量数据存储	
△ 2.	在关系数据模型中, 现实世界中的一个实体是通过下面哪一个概念进行表示的?				
	A. 元组	B. 超码	C. 主码	D. 候选码	
3 .	现有一个 student 表,其中有个字符串类型的字段 gender 要求不能为空。因此,我们希望在插入一条 student 记录时,如果 gender 为空则自动填上"NA",请问下列哪一项技术无法实现这一功能?				
	A. 触发器	B. Default 值	C. 存储过程	D. Check 约束	
Z ⁴ .	下列哪个操作不可能。	在视图上执行?			
	A. 定义新视图	B. 通过视图修改基本	表结构 C. 聚集3	查询 D. 删除记录	
₹ 5.	下面哪一项不是数据库物理设计阶段的任务?				
	A. 设计必要的存储过	足程和触发器	B. 确定某个表的哪点	些列需要设计索引	
	C. 确定索引文件的具	体存储位置	D. 确定数据库文件的	的磁盘块大小	
二、判別	断题。正确的打√,错说	≷的打×(20 分)		phonton read	
1.	والمناف المناف والمناف والمساول والمناف				
2.	如果 DBMS 不支持多	粒度锁,则没必要实现	意向锁	commit first (V)	
3.	按照 Redo 日志,事务	MMME 1056			
4.	安全 DBMS 或者可信 DBMS 要求必须实现强制访问控制,且达到 B1 安全级别 ()				
5.	一个 SQL 基本表可以没有 Unique 约束,但不能没有 Primary Key 约束 (💢)				
6.	在数据库系统中,对用户使用的数据视图的描述称为概念模式			(<u>×</u>)	
7.	任何一个满足 BCNF 的关系模式也必定满足 3NF			· (\(\sqrt{)}	
8.	8. SQL 中的 Foreign Key 所引用的列必须要有 Unique 或者 Primary Key 约束			ey 约束 (🗸)	
9.	9. 在 ER 模型中,不允许出现只包含一个属性的实体。			(×)	
10.	如果调度中的事务都是	遵循 2PL,则该调度必定	定可串, 但不一定冲突	可串 (人)	

- 三、(10分) 回答下面关于数据库体系结构的问题:
 - 数据库三级模式结构在 SOL 数据库中是如何实现的?
 - 什么是数据的逻辑独立性?请举例说明。

四、(15分)请回答下面关于事务和日志的问题:不喜喜,等名品。保证城据一般性, Geleet等

- 事务日志是否需要记录事务的所有 DML 操作? 为什么? 吴凌台不闻记录
- 目前许多 DBMS 例如 MySQL 都默认不支持嵌套事务 (即在一个事务内部又启动了另一个事 务),请分析一下:如果 DBMS 支持嵌套事务,将面临哪些问题(至少写出 2 点并且要给出自 己的分析)?①敬喜雾含 CO mmité,外层雾雾 Nollback无法撤销己究成雾雾 Q领机制下两个事名读写同一数

Read(Art)

t= t+1

Write (Ait)

XU(A)

Co mmit

GL(A)

SU(A)

read (Art)

commit

若 DBMS 同时采用 Redo 日志和 2PL, 还会出现脏读问题吗?如果会出现.请给出 如果不会出现,请给出证明。 XL(A)

五、(15分) 已知有关系模式R(A, B, C, D, E), R上的一个函数依赖集如下:

1° O A→B, A→D, BC→D, OCE→A, D→B, E→D E-ED-PCE-DCE = CE-A CE-A (D) A-> D, D->B => A->B

 $F = \{A \rightarrow BD, BC \rightarrow D, DCE \rightarrow A, D \rightarrow B, E \rightarrow D\}$

2.9C,E)

A→D, &c→D, CE→A, D→B, E→D 1. 求出 F 的 求出F的最小函数依赖集

求R的候选码 2.

R属于第几范式?为什么? INF, 口部分心能依赖于主码

请将R无损连接并且保持函数依赖地分解到3NF。

R(AD) R(BCO) RCACE) BUBD) R(ED)

R(AD) RCBOD) RCAXX、(20 分)给定下面的基本表:学生(student)、课程(course)、系(department)、教师(faculty) 和选课(SC): student(sid, sname, did), course(cid, cname, room, fid), department(did, dname, location), faculty(fid, fname, sex, did), SC(sid, cid, score)

其中加下划线的字段是主键, score 字段是整型, 其它字段都是字符串类型。

请用 SQL 语句完成下列查询 (要求: 只能用一个 SQL 语句):

- 查询在"3C102"上课的所有姓"赵"的"计算机"系老师姓名;
- 查询选过课的学生中只选了"张三"老师所授课程的学生学号和姓名;
- 查询每个系选修了"DB"课程但缺少成绩的学生人数,要求返回两列:一列显示系名称 (department), 另一列显示学生人数, 并且查询结果按学生人数降序排列;
- 查询选修过"DB"和"AI"课程但"DB"课程成绩不低于"AI"成绩的学生学号和姓名;
- 查询选课数不少于4门并且各科成绩均不低于95的学生姓名、选修课程数和平均成绩。 5.

七、(10分)假设我们准备设计一个数据库用于存储高校的相关信息。已知该数据库有下面的一些特 性: 1) 每所高校需要记录校名以及一个唯一的 ID; 2) 每所高校至少要有一名学生和一位校长; 3) 每名学生需要记录姓名和唯一的 ID: 一名可以属于一个或多个高校;我们还需要记录每名学生 进入某所高校的日期以及身份人本科生还是研究生); 4) 学生可以是全日制的, 也可以是非全日制 的: 对于非全日制学生, 需要记录他们每周的最少学时数; 对于全日制学生, 需要记录他们已经取 得的总学分:5)校长需要记录其姓名和一个唯一的ID,且只能担任一所学校的校长:6)每所学 校可以设置一名学生会主席和若干名副主席,要求学生会主席或副主席只能是非全日制学生,并 且一名学生只能担任一所学校的学生会主席或副主席。

请根据上述需求画出 ER 图 (使用传统的 ER 图符号)

将ER模型转换为关系模型

A->D, BC->D, CE->A, D-B,E-DD

R(ED) RECE)

3NF

Select faculty. frome
from course, department, faulty
where course. fid = faculty. fid and
faculty. did = department. did and
department. drane = "it = th" and
faculty. frome LIKE "tex%" and
course. room = "3 C301"

2. Gelect sid, sname from student where exise I

Select x from students SC where SC. Sid = Student. Sid)

and not exist (

Select x from faculty, SC, course where course. fid = faculty. fid and student. Sid = SC. Sid and opurse. ciol = SC. ciol and faculty. frame <> "3k=")

From Gudent, SC, course, department

where Gudent, Sid = SC. Sid and

course. Cid = SC. Cid and

department. did = Gudent. did and

course. cname = "DB" and

SC. Score is NOLL

group by department. did

order by count (*) DESC

Gelect Gordent. Sid, Gordent. Sname

From Student, (Select SC. Sid as Sid, gcore
from SC, course where
Sc. cid = course. cid and
course. Chame = "AI")) as AI
(Select SC. Sid as Sid, gcore
from SC, course where
Sc. cid = course. cid and
course. Chame = "pB")) as DB

where Sendent. Gid = AI. Sid and Student. Gid = DB. Sid and AI. Score <= DB. Score

S. Select Student. Sname, TB. total, TB. ane_score

from (select sid, AVE(score) as ane_score, count(x) as total

from SC group by sid) as TB, student

where TB. Sid = student. Sid and

TB. total = 4 and

TB. owe_score >= 95