Nonconvex Distributed Optimization

Bryan Van Scoy and Laurent Lessard

University of Wisconsin–Madison

Introduction

Distributed optimization problem:

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^n f_i(x)$$

- $f_i: \mathbb{R}^d \to \mathbb{R}$ is the local objective function on agent i
- n is the number of agents
- d is the dimension of the problem

Goal: Each agent must compute the global optimizer by communicating with local neighbors and performing local computations

Communication Network

Model the communication network using a **gossip matrix**

- A matrix $W = \{w_{ij}\} \in \mathbb{R}^{n \times n}$ is a gossip matrix if $w_{ij} = 0$ whenever agent i does not receive information from agent j
- The spectral gap is $\sigma := \|W \frac{1}{n}\mathbb{1}^T\|$
- W is **stochastic** if W1 = 1 and $1^TW = 1^T$

$$W = \begin{bmatrix} 0 & \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \qquad \sigma = \frac{1}{3}$$

Algorithm

Initialization: Set $y_i^0 = 0 \in \mathbb{R}^d$ and $x_i^0 \in \mathbb{R}^d$ arbitrary

for iteration $k = 0, 1, 2, \dots$ do

for agent $i \in \{1, \ldots, n\}$ do

$$v_i^k = \mathsf{gossip}(\{x_i^k\}, \{w_{ij}\}, \rho, \sigma)$$

$$y_i^{k+1} = y_i^k + x_i^k - v_i^k$$

$$x_i^{k+1} = v_i^k - \alpha \nabla f_i(v_i^k) - \sqrt{1 - \rho^2} y_i^{k+1}$$

end for

end for

return $x_i^k \in \mathbb{R}^d$ is the estimate of x^* on agent i at iteration k

Function: gossip($\{x_i\}, \{w_{ij}\}, \rho, \sigma$)

Initialization: Set $\gamma^0 = 1$, $\gamma^1 = \frac{1}{\sigma}$, $v_i^0 = x_i$, $v_i^1 = \sum_{j=1}^n w_{ij} x_j$, and define the number of rounds of communication

$$m := \left\lceil \frac{\cosh^{-1}\left(\frac{\sqrt{1+\rho} + \sqrt{1-\rho}}{\rho}\right)}{\cosh^{-1}\left(\frac{1}{\sigma}\right)} \right\rceil$$

for communication round $\ell = 1, ..., m-1$ do

for agent $i \in \{1, \ldots, n\}$ do

$$\gamma^{\ell+1} = \frac{2}{\sigma} \gamma^{\ell} - \gamma^{\ell-1}$$

$$v_i^{\ell+1} = \frac{2}{\sigma} \frac{\gamma^{\ell}}{\gamma^{\ell+1}} \sum_{i=1}^{n} w_{ij} v_j^{\ell} - \frac{\gamma^{\ell-1}}{\gamma^{\ell+1}} v_i^{\ell-1}$$

end for

end for

return $v_i^m \in \mathbb{R}^d$ is the estimate of the average of $\{x_i\}$ on agent i

Assumptions

(1) There exists a stationary point $x^* \in \mathbb{R}^d$ such that

$$\sum_{i=1}^{n} \nabla f_i(x^*) = 0.$$

(2) The gradient descent operator $T_i := I - \alpha \nabla f_i$ with stepsize $\alpha > 0$ is a contraction with respect to x^* with contraction factor $\rho \in (0,1)$. In other words,

$$||T_i(x) - T_i(x^*)|| \le \rho ||x - x^*||$$

for all $x \in \mathbb{R}^d$ and all $i \in \{1, \dots, n\}$.

(3) Each agent $i \in \{1, ..., n\}$ has access to the i^{th} row of a stochastic gossip matrix with spectral gap $\sigma \in [0, 1)$.

Theoretical Results

Theorem (Linear convergence). The iterate sequence $\{x_i^k\}_{k>0}$ of each agent $i \in \{1,\ldots,n\}$ converges to the global optimizer x^* linearly with rate ρ . In other words,

$$||x_i^k - x^*|| = \mathcal{O}(\rho^k)$$
 for all $i \in \{1, \dots, n\}$.

Corollary (Time complexity). Suppose it takes

- τ time for communication (multiplying by W), and
- unit time for computation (evaluating $\{\nabla f_i\}$).

Then the time to obtain a solution with precision $\epsilon > 0$ is

$$\mathcal{O}\left(\kappa\left(1+\frac{\tau}{\sqrt{1-\sigma}}\right)\ln\left(\frac{1}{\epsilon}\right)\right)$$

as $\kappa \to \infty$ and $\sigma \to 1$ where $\rho = \frac{\kappa - 1}{\kappa + 1}$.

Distributed Machine Learning

- MNIST dataset of handwritten numbers
- Each agent has 1000 samples of the **same** digit
- Data is **private** to each agent (not communicated)
- Agents communicate model with **local** neighbors
- The model on agent i is

prediction = softmax
$$(A_i \cdot \text{image} + b_i)$$

• Agents learn a **global** model for predicting **all** digits

Target Localization

- Target located at position $x^* = (p^*, q^*) \in \mathbb{R}^2$
- Agent i knows its position $(p_i, q_i) \in \mathbb{R}^2$ and distance to the target

$$r_i = \sqrt{(p_i - p^*)^2 + (q_i - q^*)^2}$$

• The objective function $f_i: \mathbb{R}^2 \to \mathbb{R}$ on agent i is

$$f_i(p,q) = \frac{1}{2} \left(\sqrt{(p_i - p)^2 + (q_i - q)^2} - r_i \right)^2$$

• Each agent learns the position of the target

