Deep Learning for Optical Imaging

Lecture 2a

Single neuron (continued)

Outline

- 1. Perceptron review
- 2. Adaline
- 3. Assessment with the handwritten digits database
- 4. Adaline and regression

Single Neuron

Perceptron

Training set:
$$\{x^m, y^m\}$$
 $m = 1, M$ $y^m = \pm 1$

$$w_i^{t+1} = w_i^t + Dw_i^t \qquad Dw_i^t = \begin{cases} 0 & \text{if } y^m (\sum_{i=1}^N w_i x_i^m + w_0) \ge 0 \\ y^m x_i^m & \text{otherwise} \end{cases}$$

Activation Functions

Optimization: Steepest decent

$$w_i^{t+1} = w_i^{t+1} + \Delta w_i$$
$$\Delta w_i \sim -\frac{dE}{dw_i}$$

MSE loss (energy) function

Training set. (x_i^m, y^m)

$$\bar{y}^m = g\{\sum_i^N w_i \ x_i^m\}$$

$$E(x,w) = \sum_{m}^{M} (y^m - \bar{y}^m)^2$$

$$\frac{dE}{dw_i} = 2 \sum_{m=1}^{M} (y^m - \bar{y}^m) \frac{d\bar{y}^m}{dw_i}$$

$$= 2 \sum_{m}^{M} (y^m - \bar{y}^m) \frac{dg}{ds} x_i^m$$

Adaline

Training set:
$$\{x^m, y^m\}$$
 $m = 1, M$ $y^m = \pm 1$

$$W_i^{t+1} = W_i^t + DW_i^t$$

$$DW_i^t = \partial \frac{dg}{ds} \frac{ds}{dw_i} (y^m - y^m) = \partial \frac{dg}{ds} (y^m - y^m) x_i^m$$

$$\alpha > 0$$

Perceptron versus Adaline for XNOR

Perceptron

ADALINE

ADALINE AND gate: Linear activation function

$$w_i^{t+1} = w_i^t + Dw_i^t$$

$$Dw_i^t = \frac{\partial ds}{\partial w_i} (y^m - y) = \frac{\partial (y^m - y)x_i^m}{\partial w_i^t}$$

Learning rate = 0.001 Accuracy = 100%

Learning rate = 0.4 Accuracy = 25%

Binary classification of digits-ADALINE

Accuracy of classification

Feature 2 100 - 10	•/		•	•	• • • • • • • • • • • • • • • • • • • •
Ó	50	Featu	ire1	200	250

Training accuracy	99.66%	
Test accuracy	99.95%	

12665 Training samples2115 Test samplesSigmoid activation function

Face classification accuracy on the training set (Adaline)

Sigmoid Slope = 0.00001

Accuracy = 100%

Sigmoid Slope = 0.001

Accuracy = 100%

Sigmoid Slope = 1

Accuracy = 50%

Face classification

- ADALINE train accuracy: 80 %
- Perceptron train accuracy: 88 %

Perceptron

Group 1

Group 2

ADALINE

Group 1

Group 2

ADALINE weights

Perceptron

Face classification: Long hair/Short hair

Training: Images of Students in 2021 and 2022

- ADALINE train accuracy: 100%
- Perceptron train accuracy: 100%

Perceptron (92% Accuracy)

Long Hair

Short Hair

ADALINE (93% Accuracy)

Long Hair

Short Hair

ADALINE weights

Perceptron

Face classification: Long hair/Short hair

Training: Images of Students in 2021 and 2022

- ADALINE train accuracy: 100%
- Perceptron train accuracy: 100%

Perceptron (92% Accuracy)

Long Hair

Short Hair

ADALINE (93% Accuracy)

Long Hair

Short Hair

ADALINE weights

Digits: Gaussian noise

12665 Training samples2115 Test samples

Digits: Gaussian noise

Digits: Gaussian noise (perceptron)

SNR 1.3

SNR 0.26

Eature1

Test accuracy: 98.35

Test accuracy: 79.39

12665 Training samples2115 Test samples

Digits: Shift

Images in test set are moved randomly in different locations

Perceptron - Test	61.70%
ADALINE - Test	59.95%

Including shifted images in the training

Perceptron - Test	85.72%
ADALINE - Test	88.56%

It needs more iteration when the shifted images are included in the training.

12665 Training samples2115 Test samplesSigmoid activation function is used for ADALINE

Digits: Rotation (in the test set or the training)

Images in test set are rotated randomly between 60° to 90°.

12665 Training samples
2115 Test samples
Sigmoid activation function is used for ADALINE

Perceptron - Test	51.63%
ADALINE - Test	51.54%

Including rotated images in the training

Perceptron - Test	99.67%
ADALINE - Test	99.86%

It needs more iteration when the rotated images are included in the training.

Digits: Rotation

Images in test set are rotated randomly between 60° to 90°.

11198 Training samples1984 Test samplesSigmoid activation function is used for ADALINE

Direct inversion

Weight calculation by matrix inversion

$$\underline{\underline{X}}\underline{w} = \underline{t} \Rightarrow \underline{w} = \underline{\underline{X}}^{-1}\underline{t}$$

<u>X</u> is 1024 by 1024

Images used for weight calculation	100%
Test 2000 new images	52%

Weights (\underline{w})

Database 1024 training images 2000 test images

Class 1

Class 2

Perceptron

Training accuracy: 51.00% Training accuracy: 73.44%

1000 iterations

Test accuracy: 50.50%

ADALINE

Test accuracy: 71.50%

Learning rate = 0.0001 2000 iterations

Regression

What is the difference between linear regression and ADALINE?

Regression

Regression vs. ADALINE: digit classification

ADALINE - Test	99.91%
Regression - Test	99.29%

ADALINE - Test	96.57%
Regression - Test	96.02%

ADALINE:

- Sigmoid activation function
- Sigmoid slope = 0.0001
- Learning rate = 0.0001
- Epoch = 200

A threshold function is used after the regression in order to classify the outputs.

Regression

Linear regression finds the best linear fit relationship between the input variables (x) and the single output (y).

$$y^{(m)} = \sum_{i}^{N} \beta_{i} x_{i}^{(m)} = \overrightarrow{\beta}. \overrightarrow{x^{(m)}}$$

The model parameters (β) can be calculated using least-squares estimation:

$$\vec{\beta} = \min \left(\sum_{m}^{M} (\vec{\beta}.\vec{x}^{(m)} - y_i)^2 \right)$$

We can put input and out variables in matrices X and Y.

$$\vec{\beta} = \min\left(\left(X\vec{\beta} - Y\right)^2\right)$$

The optimum model parameter (β) lies at gradient zero:

$$\frac{\partial \left[\left(X \overrightarrow{\beta} - Y \right)^{2} \right]}{\partial \overrightarrow{\beta}} = 0 \rightarrow \overrightarrow{\beta} = (X^{T} X)^{-1} X^{T} Y$$

The index *m* is used for the samples. *M* is the total number of the samples. N is the dimension of the input.