Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования Кафедра компьютерных технологий

Реализация эффективного взаимодействия между платформой для анализа экспрессии генов Morpheus и библиотекой вычислительных методов R/Bioconductor

Зенкова Д.М.

Научный руководитель: Сергушичев А. А.

ОГЛАВЛЕНИЕ

		Стр.
введение	• • • • • • • • • • • • • • • • • • • •	6
ГЛАВА 1. О	БЗОР ПРЕДМЕТНОЙ ОБЛАСТИ	7
1.1.	Биоинформатика	7
1.1.	1. Анализ экспрессии генов	7
1.1.	2. Используемые методы	7
1.2.	Существующие решения для анализа экспрессии генов	7
1.2.	1. GENE-E	7
1.2.	2. morpheus.js	7
1.2.	3. R/Bioconductor	8
1.3.	Инструменты, которые могут быть применены	8
1.3.	1. Язык R и библиотека Bioconductor	8
1.3.	2. JavaScript	8
1.3.	3. R shiny	8
1.3.	4. OpenCPU	8
1.3.		8
1.3.	6. Docker	9
1.3.		9
1.3.		9
1.3.	1	9
1.3.	.10. HTML	9
1.4.	Постановка задачи	9
1.4.	.1. Цель работы	9
1.4.		9
1.4.	1 1	10
Выво	ды по главе 1	10
глава 2. А	РХИТЕКТУРА ПРОЕКТА	11
2.1.	Рассортировать по секциям	11
2.1.	1. Реализация Dataset в morpheus.js	11
2.1.	2. Стандартный класс ExpressionSet	11
2.1.	.3. opencpu.js	11
2.1.	4. Protocol Buffers	11
2.1.	5. Схема взаимодействия клиент-сервер	11
2.1.	.6. Загрузка и разбор данных из GEO	11
2.1.	7. Загрузка данных в phantasus	11
2.1.	8. Аннотации строк и столбцов матрицы	12

2.1.9. Git-репозиторий phantasus	12	
2.1.10. Запуск phantasus локально и на сервере	12	
Выводы к главе 2		
ГЛАВА 3. РЕАЛИЗАЦИЯ Выводы к главе 3	13	
ЗАКЛЮЧЕНИЕ		
СПИСОК ИСТОЧНИКОВ	15	

введение

ГЛАВА 1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

1.1. Биоинформатика

1.1.1. Анализ экспрессии генов

1.1.2. Используемые методы

1.2. Существующие решения для анализа экспрессии генов

1.2.1. **GENE-E**

GENE-E - Платформа для анализа данных и визуального исследования данных, созданная на Java и R [1]. Содержит в себе множество полезных для исследования инструментов: тепловые карты, кластеризацию, фильтрацию, построение графиков и т.д. Позволяет исследовать любые данные в виде матрицы. К тому же, содержит дополнительные инструменты для геномных данных.

Недостатки:

- Чтобы использовать, необходимо устанавливать на свой компьютер;
- Поддержка данного приложения прекратилась в связи с созданием morpheus.js;
- Не имеет открытого исходного кода, а только АРІ.

1.2.2. morpheus.js

Morpheus.js - веб-приложение для визуализации и анализа матриц от создателя GENE-E [2]. Создано уже на JavaScript и с открытым исходным кодом. Удобно для использования исследователями без навыков программирования и так же, как и GENE-E, применимо к любым матрицам.

Недостатки:

- Ограниченный набор функций, которых недостаточно для полноценного анализа;
- Для расширения биоинформатическими алгоритмами требуется реализовывать их заново на JavaScript.

1.2.3. R/Bioconductor

R - язык программирования для статистического анализа данных и работы с графикой. Bioconductor - библиотека, содержащая в себе множество реализаций биоинформатических алгоритмов и методов обработки биологических данных на R. Она постоянно обновляется, пополняется новыми библиотеками, модерируется сообществом. R и Bioconductor очень популярны в биоинформатической среде ввиду предоставляемых возможностей.

Однако для качественного и полноценного анализа с помощью этих инструментов, нужно иметь навыки программирования на R, что весьма неудобно для исследователей биологических специальностей.

1.3. Инструменты, которые могут быть применены

1.3.1. Язык R и библиотека Bioconductor

Алгоритмы, реализованные в Bioconductor, могут быть применены для анализа экспрессии генов.

1.3.2. JavaScript

JavaScript - язык программирования, широко используемый для написания веб-приложений.

1.3.3. R shiny

1.3.4. OpenCPU

OpenCPU - система для встроенных научных вычислений и воспроизводимых исследований, предоставляющая HTTP API для взаимодействия с R-серверами. Имеется также библиотека opencpu.js для интеграции JavaScript и R.

1.3.5. Gene Expression Omnibus

GEO - публичный репозиторий с геномными данными.

В библиотеке Bioconductor есть R-пакет GEOquery для удобной загрузки данных из GEO.

- **1.3.6. Docker**
- 1.3.7. **JSON**
- 1.3.8. Protocol Buffers
- **1.3.9. Apache2**
- 1.3.10. HTML

1.4. Постановка задачи

Рассмотрев существующие решения для анализа экспрессии генов и инструментов, которые могли бы пригодиться для будущих решений, можно сформулировать цель и основные задачи данной работы

1.4.1. Цель работы

Создать веб-приложение, интегрирующее существующие возможности веб-приложения morpheus.js и методы анализа, реализованные в Bioconductor.

1.4.2. Основные задачи

- а) Разработать способ взаимодействия между js-клиентом и R и встроить его в morpheus.js, чтобы избежать реализации с нуля уже существующих алгоритмов;
- б) Реализовать графический интерфейс в js-клиенте и серверную реализацию в R-пакете;
- в) Соединить все составляющие в одном веб-приложении phantasus;
- г) Запустить веб-приложение в открытый доступ для исследователей.

1.4.3. Требования к веб-приложению phantasus

Доступность

Необходимо, чтобы веб-приложение phantasus было доступно для исследователей независимо от их местоположения и времени суток. Варианты действий:

- а) Сделать его доступным по определенному веб-адресу, и тогда пользователь сможет продолжать исследования из любой точки, где есть подключение к интернету;
- б) Предоставить возможность запускать приложение локально, например, с помощью Docker или внутри R.

Возможность дальнейшего расширения функционала веб-приложения

Как уже было сказано выше, библиотека Bioconductor постоянно обновляется и пополняется новыми алгоритмами, а исследователи находят новые методы для анализа экспресси генов, так что необходимо не только реализовать дополнительные методы, но и отладить и описать алгоритм действий для добабления новых.

Выводы по главе 1

В данной главе была кратко описана предметная область и необходимые биоинформатические определения, рассмотрены существующие решения и инструменты, которые могли бы быть применены для разработки новых решений. Исходя из обзора, была сформулирована цель работы и требования к результату:

- а) доступность;
- б) возможность дальнейшего расширения функционала.

ГЛАВА 2. АРХИТЕКТУРА ПРОЕКТА

В этой главе будут подробно рассмотрены элементы проекта, их взаимосвязь и ключевые для архитектуры выдержки из исходного кода.

2.1. Рассортировать по секциям

2.1.1. Реализация Dataset в morpheus.js

В исходном коде morpheus.js имеется класс для работы с данными, позволяющий рассматривать сечения, работать с аннотациями, в целом, осуществлять любое взаимодействие с имеющимися данными. Код представлен на листинге 2.1.

Листинг 2.1 — класс Dataset

- 2.1.2. Стандартный класс ExpressionSet
- 2.1.3. opencpu.js
- 2.1.4. Protocol Buffers

На стороне клиента

На стороне сервера

- 2.1.5. Схема взаимодействия клиент-сервер
- 2.1.6. Загрузка и разбор данных из GEO
- **2.1.7.** Загрузка данных в phantasus

Из файла

- a) My computer;
- б) URL;
- в) Dropbox.

Из GEO

- 2.1.8. Аннотации строк и столбцов матрицы
- 2.1.9. Git-репозиторий phantasus
- **2.1.10.** Запуск phantasus локально и на сервере

Выводы к главе 2

глава 3. РЕАлизация

Выводы к главе 3

ЗАКЛЮЧЕНИЕ

СПИСОК ИСТОЧНИКОВ

- 1. Gould Joshua. GENE-E. [Электронный ресурс]. URL: http://www.broadinstitute.org/cancer/software/GENE-E/.
- 2. Gould Joshua. morpheus.js. [Электронный ресурс]. URL: https://clue.io/morpheus.js/.