Problem Set Week 7 and 8

- 1. For the following:
 - a. Convert the point (-1,1, $\sqrt{2}$) from Cartesian to cylindrical coordinates
 - b. Convert the point $(4, \frac{5\pi}{6}, 3)$ from cylindrical to cartesian coordinates
- 2. Convert the point $(-1,1,\sqrt{2})$ from Cartesian to spherical coordinates
- 3. For the following:

 - a. Convert the point $(4, \frac{\pi}{4}, 0)$ from cylindrical to spherical b. Convert the point $(10, \frac{\pi}{6}, \frac{\pi}{2})$ from spherical to cylindrical
- 4. Plot the points whose polar coordinates are given by $(2,\frac{\pi}{4})$, $(3,-\frac{\pi}{4})$, $(3,\frac{7\pi}{4})$, $(2,\frac{5\pi}{2})$
- 5. Plot the point $(-3,\frac{3\pi}{4})$
- 6. Convert the following (given in polar coordinates) to Cartesian coordinates $(2, \frac{\pi}{4})$ and $(3,-\frac{\pi}{2})$
- 7. Graph the following equations r=5, $\theta=\frac{\pi}{4}$
- 8. Graph the following equation $r = 1 + \cos \theta$.
- 9. Convert polar coordinates $(r, \theta) = (2, \pi)$ to (x, y)
- 10. Convert Cartesian coordinates (x, y) = (0, -4) to (r, θ)
- 11. Sketch a graph of the polar equation $r = 3 \sin \theta$, and find an interval on which it completes one cycle.
- 12. Sketch a graph of the polar equation $r = \sin 2\theta$ is it limacon or a rose?
- 13. Rewrite the Cartesian equation y = 3x + 2 as a polar equation.
- 14. Rewrite the Cartesian equation in polar form $y = \pm \sqrt{3 x^2}$
- 15. Rewrite the polar equation in Cartesian form $r = 2\sin\theta$