Machine Learning Notes

by Mattia Orlandi

1. The Data

Issues:

- Never perfect (missing, inconsistent, duplicated, wrong).
- Outliers (small amount of data which are different from the rest due to anomalies).

Solution:

- Improve data quality using pre-processing activities to ease mining activities.
- Use mining techniques robust w.r.t. errors.
- Better data quality \Rightarrow better results.

1.1. Data Types

Data type	Description	Descriptive statistics allowed	Transformation	Numerosity
Categorical - Nominal	Values are a set of labels, it's possible to distinguish one label from another ('= ', '\neq' operators)	Mode, entropy, contingency, correlation, χ^2 test	One-to-one correspondence	Discrete, possibly binary
Categorical - Ordinal	As above, plus total ordering (' <', '>', '\le ', '\le ' operators)	As above, plus median, percentiles, rank correlation	Order-preserving transformation: $new \leftarrow f(old)$, f monotonic	Discrete, possibly binary

Data type	Description	Descriptive statistics allowed	Transformation	Numerosity
Numerical - Interval	As above, plus difference is meaningful ('+', '-' operators)	As above, plus average, standard deviation, Pearson's correlation, F and t tests	Linear functions: $new \leftarrow a + b * old$	Continuous, possibly approximated
Numerical - Ratio	As above, plus all mathematic operations on numbers, univocal definition of 0	As above, plus geometric mean, harmonic mean, percentage variation	Any mathematical function, standardization, variation in percentage	Continuous, possibly approximated

Obs.: - Asymmetric attributes are attributes in which only the presence is considered important (non-null values).

- Binary asymmetric attributes are relevant in the discovery of association rules.

General characteristics of datasets:

- **Dimensionality**: the size of the dataset (also qualitative).
- **Sparsity**: the number of zeroes or nulls.
- **Resolution**: the degree of detail in which the analysis is performed:
 - o if it's too detailed it may be affected by noise;
 - o if it's too general it can hide interesting patterns.

Obs.: when a piece of information is missing, storing zero of some special values is a bad habit.

Data representation:

- Relational tables: same set of attributes for all the records.
- Data matrix:
 - each row is a point in a vector space:
 - numeric attributes;
 - \circ *N* rows \times *D* dimensions (attributes, columns, properties).
- Document:
 - each row represents a document;
 - each column represents a term;

- each cell contains the absolute frequency of the term in the document (sequence is lost).
- Transactional: each record contains a set of objects.
- Graph data: set of nodes and (oriented) arcs.
- Ordered data: sequence of objects.

1.2. Data Quality

Noise: modification of original values.

Outliers: data whose characteristics are considerably different from most of the data in the dataset; can be generated by noise or by rare events.

Missing values: due to data not collected or inapplicable information; their management varies according to the context:

- do not consider objects with missing values;
- estimate missing values;
- provide for default values;
- insert all possible values weighted with their probabilities.

Duplicate data: data objects that are duplicated or almost duplicated, for instance due to merging data from different sources; data must be cleaned.

1.3. Data pre-processing

Aggregation

Combining two or more attributes/objects into a single one.

Purposes:

- data reduction;
- change of scale;
- more stable data.

Sampling

- Preliminary investigation and final data analysis.
- From the statistician perspective, obtaining the entire dataset could be impossible/too expensive.
- From the data processing perspective, processing the entire dataset could be too expensive/time consuming.
- Thus, using a sample will work almost as well as using the entire dataset, *if the sample is representative*.

Types:

- 1. Simple random:
 - a single random choice of an object with given probability distribution.
- 2. With replacement:

- repetition of independent extractions of type 1
- 3. Without replacement:
 - repetition of extractions, in which the extracted element is removed from the population.

4. Stratified:

- split data into several partitions according to some criteria, then draw the random samples from each partition;
- used when the dataset is split into subsets with homogeneous characteristics;
- o representativity is guaranteed inside each subset.

Sample size:

- Statistics provides techniques to assess the *optimal sample size*, and the *sample significativity*.
- Sampling is a trade-off between data reduction and precision.
- If it's too small \Rightarrow loss of information.

Sampling with/without replacement:

- Nearly equivalent if sample size is a small fraction of dataset size.
- Sampling with replacement, in a small population, could lead to an underestimate of small subsets.
- Sampling with replacement is easier to implement and to be interpreted (extractions are independent).
- Missing class: the probability of sampling at least one element for each class (with replacement) is independent from the dataset size.

Dimensionality reduction

- *Curse of dimensionality:*
 - when dimensionality is very high the occupation of space becomes very sparse;
 - thus, discrimination on the basis of the distance becomes uneffective.
- Purposes:
 - avoid the curse of dimensionality;
 - noise reduction;
 - reduce time and memory complexity of mining algorithms;
 - o visualization.
- Techniques:
 - o principal component analysis (PCA);
 - singular values decomposition (SVD);
 - supervised techniques;
 - o non-linear techniques.
- PCA:
 - Find the projections that capture most of the data variation, by computing the eigenvectors of the covariance matrix: those vectors define the new space.
 - The new dataset will have *only the attributes* which capture most of the data variation.

Feature subset selection

- A *local* way to reduce dimensionality:
 - Redundant attributes.
 - Irrelevant attributes.
- Approaches:
 - 1. **Brute force**: try all possible feature subsets as input to data mining algorithm and measure its effectiveness with reduced dataset.
 - 2. **Embedded approach**: feature selection occurs naturally as part of data mining algorithm (e.g. Decision Tree).
 - 3. **Filter approach**: features are selected before data mining algorithm is run.
 - 4. Wrapper approach: data mining algorithm chooses the best set of attributes.

Feature creation

New features can capture more efficiently data characteristics:

- Feature extraction (e.g. from pixels of a picture of a face to eye distance).
- Mapping to a new space (e.g. signal to frequencies using Fourier).
- New features (e.g. volume and weight to density).

Discretization and binarization

Sometimes it is better to work with distinct values, therefore discretization is applied:

- some algorithms work better with categorical data;
- a small number of distinct values can let pattern emerge more clearly.
- a small number of distinct values let the algorithms be less influenced by noise.

Discretization:

- Continuous ⇒ Discrete
 - thresholds
 - binarization (single threshold)
- Discrete ⇒ Discrete with less values
 - o domain knowledge.

Attribute transformation

- The entire set of values is mapped to a new one, according to a function (in general, the distribution changes).
- Standardization: $x \to \frac{x-\mu}{\sigma}$
 - if the original values have a *gaussian* distribution, the transformed ones will have a *standard gaussian* distribution ($\mu = 0, \sigma = 1$);
 - o translation and shrinking/stretching, no change in distribution.
- Normalization: the domains are mapped to standard ranges

• e.g.
$$x \to \frac{x - x_{min}}{x_{max} - x_{min}}$$
 (0 to 1), $x \to \frac{x - \frac{x_{max} + x_{min}}{2}}{\frac{x_{max} - x_{min}}{2}}$ (-1 to 1)

o translation and shrinking/stretching, no change in distribution.

1.4. Similarity and dissimilarity

- Similarity:
 - Numerical measure of how alike two data objects are.
 - Higher when objects are more alike.
 - Often falls in range [0,1].
- Dissimilarity:
 - Numerical measure of how different two data objects are.
 - Lower when objects are more alike.
 - Minimum is often 0, upper limit varies.
- Proximity refers to similarity or dissimilarity.

Similarity and Dissimilarity by attribute type

Given p, q values of an attribute for two data objects:

Attribute type	Similarity	Dissimilarity
Nominal	$s = \left\{egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$
Ordinal (integers $\in [0, V-1]$)	$s=1-rac{ p-q }{V-1}$	$d=rac{ p-q }{V-1}$
Interval or Ratio	$s=rac{1}{1+d}$ or $s=1-rac{d-\min{(d)}}{\max{(d)}-\min{(d)}}$	d= p-q

Euclidean distance - L_2

$$dist = \sqrt{\sum_{d=1}^{D}{(p_d - q_d)^2}}$$

- D is the number of dimensions (attributes) and p_d , q_d are the d-th attributes (components) of data objects p and q, respectively.
- Standardization/normalization is necessary if scales differ.

Minkowsky distance - L_r

$$dist = \left(\sum_{d=1}^{D}\left|p_{d}-q_{d}
ight|^{r}
ight)^{rac{1}{r}}$$

- Same properties of Euclidean distance.
- The parameter r is chosen depending on the dataset and on the application:
 - $r = 1 \Rightarrow city \ block \ / \ Manhattan \ / \ L_1 \ norm$:
 - best way to discriminate between zero distance and near-zero distance;
 - an ϵ change on any coordinate causes an ϵ change in the distance;
 - works better than the Euclidean norm in very high dimensional spaces.
 - \circ $r=2\Rightarrow Euclidean / L_2$ norm
 - $\circ r = \infty \Rightarrow Chebyshev \mid supremum \mid L_{max} \mid L_{\infty} \text{ norm:}$
 - considers only the dimension where the difference is maximum;
 - provides a simplified evaluation, disregarding the dimensions with lower differences:

$$dist_{\infty} = \lim_{r o \infty} \left(\sum_{d=1}^{D} \left| p_d - q_d
ight|^r
ight)^{rac{1}{r}} = \max_{d} \left| p_d - q_d
ight|$$

Mahalanobis distance

Given the covariance matrix of the data set:

$$\Sigma_{ij} = rac{1}{N-1} \sum_{k=1}^{N} (e_{ki} - ar{e_i}) (e_{kj} - ar{e_j})$$

the Mahalanobis distance is defined as:

$$dist_m = \sqrt{(p-q)\Sigma^{-1}(p-q)^T}$$

It takes into account the direction of greater variation of data.

Properites of a distance

- Positive definiteness: $dist(p,q) \geq 0 \ \forall p,q \ ext{and} \ dist(p,q) = 0 \ ext{iff} \ p = q$
- Symmetry: dist(p,q) = dist(q,p)
- Triangle inequality: $dist(p,q) \leq dist(p,r) + dist(r,q) \ \forall p,q,r$

A distance satisfying all the properties above is called **metric**.

Properites of a Similarity

- sim(p,q) = 1 iff p = q
- sim(p,q) = sim(q,p)

Between binary vectors:

consider

 M_{00} : number of attributes where p=0 and q=0,

 M_{01} : number of attributes where p = 0 and q = 1,

 M_{10} : number of attributes where p = 1 and q = 0,

 M_{11} : number of attributes where p = 1 and q = 1.

• Simple Matching Coefficient

$$SMC = rac{ ext{number of matches}}{ ext{number of attributes}} = rac{M_{00} + M_{11}}{M_{00} + M_{01} + M_{10} + M_{11}}$$

• Jaccard Coefficient

$$JC = rac{ ext{number of 11 matches}}{ ext{number of non-both-zero attributes}} = rac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

Cosine similarity: cosine of the angle between two vectors

$$cos(p,q) = rac{p \cdot q}{||p|| \cdot ||q||}$$

Tanimoto (extended Jaccard Coefficient): variation of Jaccard for continuous or count attributes

$$T(p,q) = rac{p \cdot q}{\left|\left|p
ight|
ight|^2 + \left|\left|q
ight|
ight|^2 - p \cdot q}$$

The right proximity measure depends on data:

- Dense, continuous ⇒ **metric** measure, i.e. Euclidean distance.
- Sparse, asymmetric \Rightarrow cosine, Jaccard, Tanimoto.

Correlation

Measure of the linear relationship between a pair of attributes:

- Standardize the values.
- For two given attributes p, q, consider as vectors the ordered lists of the values over all the data records.
- Compute their dot product.

$$egin{aligned} \mathbf{p} &= \left[\,p_1, \ldots, p_N\,
ight] \Rightarrow^{ ext{standardize}} \mathbf{p}' \ \mathbf{q} &= \left[\,q_1, \ldots, q_N\,
ight] \Rightarrow^{ ext{standardize}} \mathbf{q}' \ &corr(p,q) &= \mathbf{p}' \cdot \mathbf{q}' \end{aligned}$$

- Independent variables \Rightarrow correlation is zero.
- Correlation is zero \Rightarrow absence of *linear relationship* between variables.
- Positive values \Rightarrow positive linear relationships.

Between nominal attributes: Symmetric Uncertainty

$$U(p,q) = 2rac{H(p) + H(q) - H(p,q)}{H(p) + H(q)} \in [0,1]$$

where $H(\cdot)$ is the entropy of a single attribute, while $H(\cdot, \cdot)$ is the joint entropy (computed from the joint probabilities).