# CVPR 2016 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

2022.07.28

논문 리뷰

배성훈

- Research Background:
  - Residual connection과 Inception architecture를 합치면 어떤 <u>이점</u>이 있을까?
  - Network Depth와 Width를 증가시켜 성능을 향상시키는 대표적인 방법들을 조합해 성능 향상
  - \*이점: Inception의 계산 효율성 유지 + residual block 이점
  - \*Network Depth와 Width 증가: 신경망 구조에서 Layer를 깊게 쌓고, filter 또는 channel의 수를 증가



35x35x256

71x71x192

73x73x80

73x73x64

147x147x64

147x147x32

149x149x32

299x299x3

Method: Residual Inception model vs Non-Residual Inception model



• Method: Residual Inception model vs Non-Residual Inception model



• Method: Residual Inception model vs Non-Residual Inception model





• Method: Residual Inception model vs Non-Residual Inception model











### Method:

- Inception-ResNet-v1: Inception-v3와 유사한 계산비용을 가진 하이브리드 버전
- Inception-ResNet-v2: Recognition 성능이 크게 향상된 계산 비용이 많이 드는 하이브리드 버전
- Inception-v4: Inception-ResNet-v2와 동일한 recognition 성능을 가진 Non-residual, pure Inception 버전
- \*Residual Inception Blocks: 연산할 **파라미터 수를 줄이기** 위해 1x1 Conv를 먼저 진행해 <u>입력 차원 수를 줄임</u> \*Activation Scaling: 잔차(Residual)를 Scaling해 <u>학습의 안정성을 높임</u>



# • Experiment:

Residual connection의 도입으로 Inception 구조의 <u>학습속도가 향상</u>되고, 기존의 <u>성능을 능가</u> (계산 효율성 유지 + 학습 속도 향상)

Top-1, -5 error measured on a single crop on the non-blacklist images of the ILSVRC-2012 validation set (Inception-v3 vs <a href="Inception-ResNet-v1">Inception-ResNet-v1</a>), (Inception-v4 vs <a href="Inception-ResNet-v2">Inception-ResNet-v2</a>)



## • Experiment:

**Performance** 

Residual connection의 도입으로 Inception 구조의 <u>학습속도가 향상</u>되고, 기존의 <u>성능을 능가</u> (계산 효율성 유지 + 학습 속도 향상)

Top-1, -5 error on the non-blacklisted subset of the validation set of ILSVRC 2012.

| Network             | Top-1 Error | Top-5 Error |
|---------------------|-------------|-------------|
| BN-Inception [6]    | 25.2%       | 7.8%        |
| Inception-v3 [15]   | 21.2%       | 5.6%        |
| Inception-ResNet-v1 | 21.3%       | 5.5%        |
| Inception-v4        | 20.0%       | 5.0%        |
| Inception-ResNet-v2 | 19.9%       | 4.9%        |

Ensemble results on all 50000 images of the validation set of ILSVRC 2012

| Network                                  | Models | Top-1 Error | Top-5 Error |
|------------------------------------------|--------|-------------|-------------|
| ResNet-151 [5]                           | 6      | _           | 3.6%        |
| Inception-v3 [15]                        | 4      | 17.3%       | 3.6%        |
| Inception-v4 +<br>3× Inception-ResNet-v2 | 4      | 16.5%       | 3.1%        |

**Best Performance** 

Top-1, -5 error evolution of all four models (Single model, crop)



• Experiment:
Residual connection의 유무에 상관없이 모든 이전 네트워크 성능을 능가하는 모습을 보임 (Inception-v4)

# Evaluation of various number of crop on all 50000 images of the validation set of ILSVRC 2012

| Network             | Crops | Top-1 Error | Top-5 Error |
|---------------------|-------|-------------|-------------|
| ResNet-151 [5]      | 10    | 21.4%       | 5.7%        |
| Inception-v3 [15]   | 12    | 19.8%       | 4.6%        |
| Inception-ResNet-v1 | 12    | 19.8%       | 4.6%        |
| Inception-v4        | 12    | 18.7%       | 4.2%        |
| Inception-ResNet-v2 | 12    | 18.7%       | 4.1%        |

| Network             | Crops | Top-1 Error | Top-5 Error |
|---------------------|-------|-------------|-------------|
| ResNet-151 [5]      | dense | 19.4%       | 4.5%        |
| Inception-v3 [15]   | 144   | 18.9%       | 4.3%        |
| Inception-ResNet-v1 | 144   | 18.8%       | 4.3%        |
| Inception-v4        | 144   | 17.7%       | 3.8%        |
| Inception-ResNet-v2 | 144   | 17.8%       | 3.7%        |

**한줄평:** ResNet의 이점과 Inception의 이점을 합쳐 성능이 향상하는지 확인하는 논문으로, Residual connection의 도입으로 **model의 수렴이 더 빠른 결과**를 보이지만, 성능 평가 결과 그렇게 **필수적이지 않다**는 모습을 보임