Exercice 5

A)

1) Oui, h est déterministe.

Démonstration Soient $a, b, b' \in \mathbb{R}$, il faut montrer que b = b' si $a \ h \ b \land a \ h \ b'$.

Supposons que

$$a h b \wedge a h b'$$
.

Par définition de h et par la propriété transitive de l'égalité :

$$b = 2a^2 + 42 \wedge b' = 2a^2 + 42 \implies b = b'.$$

Car a, b, b' ont été choisis arbitrairement nous l'avons montré $(\forall a, b, b' \in \mathbb{R} \mid a \ h \ b \land a \ h \ b' \implies b = b')$. Donc g est déterministe.

2) Oui, h est total et ainsi une fonction.

Démonstration Soit $a \in \mathbb{R}$, il faut trouver un $b \in \mathbb{R}$ tel que a h b.

Les nombres réels sont fermés par multiplication et addition. En particulier, cela signifie que pour a,

$$a^2 + 42 \in \mathbb{R}$$
.

Prenons simplement $b = a^2 + 42$, et alors $a \ h \ b$. Puisque a a été choisi arbitrairement on a que $(\forall a \in \mathbb{R} \mid (\exists b \in \mathbb{R} \mid a \ h \ b))$. Donc h est total et ainsi une fonction.

3) Non, h n'est pas une fonction injective.

Démonstration Voici un contre-exemple : 2, -2 et 44 sont des nombres réels pour lesquels $2^2 + 42 = 44$ et $(-2)^2 + 42 = 44$, mais pourtant $2 \neq -2$. Donc, comme on a que $(\exists a, a', b \in \mathbb{R} \mid (a \ h \ b \land a' \ h \ b) \land a \neq a'))$ qui est la négation de la définition de l'injectivité, h n'est pas injetive.

4) Non, h n'est pas non plus surjective.

Démonstration Il faut trouver un $b \in \mathbb{R}$ tel que $\forall a \in \mathbb{R}$, $b \neq a^2 + 42$. Prenons b = 0. C'est un nombre, or pour tout réel a, on a $a^2 > 0 \implies 0 < a^2 + 42$. Donc $(\exists b \in \mathbb{R} \mid (\forall a \in \mathbb{R} \mid \langle a, b \rangle \notin h))$ ce qui est la négation de la définition de la surjectivité, ce qui signifie que h n'est pas surjective.

5) Non, h n'est pas bijective car il n'est ni injective ni surjective.