ASSOCIATION RULE MINING

BEIYU LIN

ASSOCIATION RULE MINING

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items

Market transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Beer} → {Eggs},
{Milk, Bread} → {Diaper, Beer},
```

REVIEW: SET AND SUBSET

- $\{a, b, c, d\} \Leftrightarrow a$ set (there are one or more than one items)
- Subset ⇔ possible combinations of the items in a set
 - Possible sets:
 - {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}, {b, c, d}, {b,
 - What is the total number of the subset:

ASSOCIATION RULE MINING

Itemset (set / subset)

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Support

Fraction of transactions that contain an itemset

E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

DEFINITION: ASSOCIATION RULE

- Association Rule
 - An implication expression of the form X → Y,
 where X and Y are itemsets

	Rule	Evaluation	Metrics
--	------	-------------------	---------

- Support (<u>s</u>)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$\{\text{Milk}, \text{Diaper}\} \Rightarrow \{\text{Beer}\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

= # of itemset of Xand Y/ # of

ASSOCIATION RULE MINING TASK

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally expensive / prohibitive!

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

COMPUTATIONAL COMPLEXITY

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

MINING ASSOCIATION RULES

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

$$\{ \mbox{Milk,Diaper} \} \rightarrow \{ \mbox{Beer} \} \ (s=0.4, c=0.67) \\ \{ \mbox{Milk,Beer} \} \rightarrow \{ \mbox{Diaper} \} \ (s=0.4, c=0.67) \\ \{ \mbox{Diaper,Beer} \} \rightarrow \{ \mbox{Milk} \} \ (s=0.4, c=0.67) \\ \{ \mbox{Diaper} \} \rightarrow \{ \mbox{Milk,Diaper} \} \ (s=0.4, c=0.67) \\ \{ \mbox{Diaper} \} \rightarrow \{ \mbox{Milk,Beer} \} \ (s=0.4, c=0.5) \\ \{ \mbox{Milk} \} \rightarrow \{ \mbox{Diaper,Beer} \} \ (s=0.4, c=0.5) \\$$

Observations:
$$Y = \{M, \}$$
 $(X \to Y) = \frac{\# + X \cup Y}{\# + x \cup x} = \frac{\# \{b, M, \}\}}{5} = \frac{2}{5} = 0.4$

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

MINING ASSOCIATION RULES

- Two-step approach:
 - I. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

FREQUENT ITEMSET GENERATION

Given d items, there are 2^d possible candidate itemsets

FREQUENT ITEMSET GENERATION

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

		4		
rai	182	CTI	on	S

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke
	1 2 3 4

Match each transaction against every candidate

Complexity $\sim O(NMw) => Expensive since M = 2^d!!!$

List of

FREQUENT ITEMSET GENERATION STRATEGIES

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

