News

Magic Square for 2015

S R Sarma*

To the readers of the *Indian Journal of History of Science*, this magic square of the order 15 brings our greetings and good wishes for the Golden Jubilee year 2015. This magic square is specially designed (by using lowest number as 22 and highest number as 247) so that it yields the magic sum of 2015 when the numbers in all the cells are added in any of the fifteen columns or in any of the fifteen rows. It would be a wonderful experience.

143	160	178	195	212	229	246	22	39	56	73	90	107	124	141
159	177	194	211	228	245	36	38	55	72	89	106	123	140	142
176	193	210	227	244	35	37	54	71	88	105	122	139	156	158
192	209	226	243	34	51	53	70	87	104	121	138	155	157	175
208	225	242	33	50	52	69	86	103	120	137	154	171	174	191
224	241	32	49	66	68	85	102	119	136	153	170	173	190	207
240	31	48	65	67	84	101	118	135	152	169	187	189	206	223
30	47	64	81	83	100	117	134	151	168	186	188	205	222	239
46	63	80	82	99	116	133	150	167	185	202	204	221	238	29
62	79	96	98	115	132	149	166	184	201	203	220	237	28	45
78	95	97	114	131	148	165	183	200	217	219	236	27	44	61
94	111	113	130	147	164	182	199	216	218	235	26	43	60	77
110	112	129	146	163	181	198	215	232	234	25	42	59	76	93
126	128	145	162	180	197	214	231	233	24	41	58	75	92	109
127	144	161	179	196	213	230	247	23	40	57	74	91	108	125

If the central column is imagined to be a pillar, the flow of numbers begins at the top of the pillar (22), slides down to the bottom to take off from the next column (23) and then winds around the pillar in an upward spiral movement until it

completes a spiral; then begins another spiral and so on.

Schuyler Cammann, the historian of magic squares, names this winding pattern as the 'Hindu continuous method'. He narrates a nice anecdote about the spread of this method. In 1688 Simon de La Loubère was returning from a diplomatic mission to Siam; on the ship he was amusing himself by constructing magic squares by an old fashioned method, when a fellow-passenger showed to him a faster method, namely the 'Hindu continued method' which the latter had learned on a visit to Surat. Simon de La Loubère was delighted with the ease and speed of this method, and he spent the rest of the voyage experimenting with it. On his return to Paris, he devoted a whole chapter to the subject of magic squares in his Du Royaume de Siam ('Islamic and Indian Magic Squares, 'History of Religion, VIII (1969), No. 3, pp. 181-209; No. 4. pp. 271-299).

During the half a century of its existence, the IJHS made substantial contributions to the study of history of Indian science from diverse angles. The credit for the regular appearance of the IJHS every three months since its launching in 1966 goes entirely to Dr A. K. Bag, who nurtured it with diligent care. This magic square carries also our warmest congratulations to Dr Bag, to the officers of the Indian National Science Academy, to the members of the History of Science unit at the INSA, and to all the scholars in India and abroad who made valuable contributions to the IJHS.

^{*}Hoehenstrasse 28, 40227 Duesseldorf, Germany, Email: SR@Sarma.de