Redes neuronales Análisis de partículas PM 2.5 mediante redes LSTM

Zúñiga González Daniel Iván

15 de junio, 2020

Introducción

Introducción

Objetivos

- Uso de redes neuronales artificiales (LSTM) como alternativa a los modelos estadísticos clásicos;
- Predicción año 2020

Datos (2010-2019)

Fuente: Red automática de Monitoreo Atmosférico del Gobierno de la CDMX (http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27)

Análisis exploratorio

Análisis exploratorio


```
df = pd.read_csv(r'C:/')
train, test = df[:-12], df[-12:]
scaler = MinMaxScaler()
scaler.fit(train)
train = scaler.transform(train)
test = scaler.transform(test)
n input = 12
n_features = 1
generator - TimeseriesGenerator(train,train,length - n_input,
                               batch size = 6)
model - Sequential()
model.add(LSTM(200, activation='relu', input_shape= (n_input,n_features)))
model.add(Dropout(0.15))
model.add(Dense(1))
model.compile(optimizer='Adam', loss='mse')
H-model.fit_generator(generator, epochs=180)
```



```
train - df
scaler.fit(train)
train = scaler.transform(train)
n input = 12
n features = 1
generator = TimeseriesGenerator(train,train,length = n_input,
                               batch_size = 6)
model.fit generator(generator, epochs=180)
pred list - []
batch = train[-n_input:].reshape((1, n_input, n_features))
for i in range(n_input):
   pred list.append(model.predict(batch)[0])
   batch = np.append(batch[:, 1:,:], [[pred_list[i]]], axis=1)
```

Predicción mensual 2020

Mes	Enero	Febrero	Marzo	Abril	Mayo	Junio
PM 2.5	32.1	28.9	27.0	25.9	26.7	30.3

Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
23.7	23.6	22.1	19.1	19.6	26.9

Predicción mensual 2020

Predicción mensual 2020

