Appello 31/01/2019: Tema A

La polisportiva di quartiere deve organizzare la trasferta per i prossimi campionati provinciali di nuoto. Gli atleti a disposizione e i tempi in secondi nelle diverse discipline sono riassunti nella seguente tabella:

	1. libero	2. farfalla	13-	
Andrea	30		3. rana	4. dorso
Bruno		40	39	54
	35	42	40	49
Caterina	40	39	37	
Daniele	32	44		48
Elena	41		33	49
Federica	42	50	31	47
	42	40	35	52

Si seriva il modello di programmazione lineare che determini gli atleti che partecipano alle diverse discipline in modo da minimizzare la somma dei tempi, tenendo conto che:

- ogni atleta può partecipare al massimo a due gare;
- ad ogni disciplina devono partecipare esattamente due atleti:
- se un atleta partecipa alla farfalla, allora dovrà partecipare anche alla rana, e viceversa;
- è possibile, con una penalità di squadra di 10 secondi, iscrivere un atleta (e non più di uno) a tre gare; si vuole un tempo medio sul dorso inferiore a 50 secondi.

Leggendo il testo, sembra evidente creare una variabile decisionale che considera l'atleta, in quanto i vincoli pongono attenzione sull'atleta in primis, piuttosto che sulla disciplina.

 x_{ij} : tempo di squadra legato all'atleta i rispetto alla disciplina di tipo $j, \forall i \in \{1 \dots, 6\}, \forall j \in \{1, \dots, 4\}$

Dobbiamo minimizzare la somma dei tempi, quindi:

$$\min \left(30x_{11} + 35x_{21} + 40x_{31} + 32x_{41} + 41x_{51} + 42x_{61} + 40x_{21} + 42x_{22} + 39x_{23} + 44x_{24} + 50x_{25} + 40x_{26} + 39x_{31} + 40x_{32} + 37x_{33} + 33x_{34} + 31x_{35} + 35x_{36} + 54x_{41} + 49x_{42} + 48x_{43} + 49x_{44} + 47x_{45} + 52x_{46}\right)$$

$$s.t.$$

Per il primo vincolo, "ogni atleta può partecipare al massimo a due gare", si deve creare una variabile binaria apposita e si considera che sia a prescindere dal tipo di atleta-

 y_{ij} : variabile logica che vale 1 se l'atleta $i \in \{1,2,3,4,5,6\}$ partecipa ad una gara della disciplina $j \in \{1,2,3,4,5,6\}$ {1,2,3,4}, 0 altrimenti

Quindi, si introduce un vincolo logico del tipo:

$$\sum_{i} \sum_{j=1}^{4} x_{ij} \le 2$$

Ora l'attivazione:

$$\sum_{i=1}^{6} \sum_{j=1}^{4} x_{ij} \le M \sum_{i=1}^{6} \sum_{j=1}^{4} y_{ij}$$

Il fatto di avere "esattamente due atleti per una disciplina", significa che, a prescindere dalla disciplina, parteciperanno esattamente due atleti.

$$\sum_{i} \sum_{j=1}^{6} x_{ij} = 2$$

Successivamente, "se un atleta partecipa alla farfalla, allora partecipa anche alla rana" e quindi:

$$\sum_{i} \sum_{i=1}^{6} y_{i2} + y_{i3} = 2$$

Pagando una penalità di 10 secondi "di squadra", "è possibile iscrivere un atleta a tre gare", quindi a prescindere dal tipo di atleta, consideriamo le discipline.

$$\sum_{i} \sum_{j=1}^{4} y_{ij} \le 3$$

Si considera una variabile che attiva il discorso della penalità:

 z_i : variabile logica che vale 1 se si ha una penalità di tutta la squadra $i \in \{1,2,3,4,5,6\}$, 0 altrimenti Questo si deve rapportare, anche per il vincolo dopo, ad una variabile apposita che calcola i tempi per la squadra e attivarla:

 w_i : numero di secondi per tutta la squadra $i \in \{1,2,3,4,5,6\}$ L'attivazione:

$$\sum_{i} w_i \le M z_I$$

Per far pagare la penalità di squadra, quindi, si aggiunge in f.o.

Infine, "si vuole un tempo medio su dorso inferiore a 50 secondi"; considero la variabile iniziale già attivata:

$$\frac{1}{6} * \sum_{i=1}^{6} x_{i4} \le 50$$

 $\text{Domini:, } x_{ij} \in Z_+, y_{ij} \in \{0,1\}, \ w_i \in Z_+, z_i \in \{0,1\}, \forall i \in \{1 \dots, 6\}, \forall j \ \in \{1, \dots 4\}$