

NAME:

Homework 3

Sinusoidal analysis

Deadline: Wednesday, 11 May 2022, 11:55 PM

You can send your solutions in electronic version to NYU Brightspace/Assignment. **No extended deadline!**

Circuits Page 1 of 4

Exercise 1 - Equivalent impedance/admittance

- Determine the equivalent impedance of this network, as a function of the angular frequency ω .
- Which element is it equivalent to when $\omega \to 0$?
- Which element is it equivalent to when $\omega \to \infty$?
- Which element is it equivalent to when $\omega = \frac{1}{\sqrt{LC}}$?

Circuits Page 2 of 4

Exercise 2 - Thévenin equivalence

 \bullet Determine the equivalent Thévenin circuit in the phasor domain.

Circuits Page 3 of 4

Exercise 3 - Op Amp

The operational amplifier is supposed to be ideal.

Questions:

- 1. Determine the phasor \mathbf{V}_o of $v_o(t)$ as a function of R, L, C, ω , \mathbf{V}_1 (V_1/ϕ_1) , \mathbf{V}_2 (V_2/ϕ_2) and \mathbf{V}_3 (V_3/ϕ_3)
- 2. Supposing that $v_1(t) = v_2(t)$, which angular frequency leads to $v_o(t) = -v_3(t)$?
- 3. Supposing that $v_2(t) = 0$ and $v_1(t) = v_3(t)$, which frequency leads to

$$v_o(t) = \frac{\sqrt{2}}{2} V_1 \cos(\omega t + \phi_1 + 225^\circ)$$

Circuits Page 4 of 4