$$varphi z = rac{1+i}{1+2i}$$
 donc $z = rac{(1+i)(1-2i)}{1^2+2^2}$ soit

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{3}{5} - \frac{1}{5}$$
i.

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{3}{5} - \frac{1}{5}i.$$

$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} =$$

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{3}{5} - \frac{1}{5}i.$$

$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = z + \overline{z}.$$

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{3}{5} - \frac{1}{5}i.$$

$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = z + \overline{z}.$$
Ainsi $\frac{1+i}{1+2i} + \frac{1-i}{1-2i} =$

$$z = \frac{1+i}{1+2i} \text{ donc } z = \frac{(1+i)(1-2i)}{1^2+2^2} \text{ soit } z = \frac{1-2i+i+2}{5}$$
 c'est-à-dire :

$$z = \frac{3}{5} - \frac{1}{5}i.$$

$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = z + \overline{z}.$$
Ainsi $\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = 2\operatorname{Re}(z) = \frac{6}{5}.$

1.
$$-i + (2i + 1)z = 4 + i$$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} =$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{8}{5} - \frac{6}{5}i \right\}.$

2. $(iz + 4 - i)(\overline{z} - 4i) = 0$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{8}{5} - \frac{6}{5}i \right\}.$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$
2. $(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0 \text{ ou } \overline{z} - 4i = 0$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i : -4i\}.$

$$\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$$

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{8}{5} - \frac{6}{5}i \right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$

3. Posons z = x + iy avec x et y réels.

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{8}{5} - \frac{6}{5}i \right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$

3. Posons z = x + iy avec x et y réels. $z - 2\overline{z} + i = 4 \iff x + iy - 2(x - iy) = 4 - i$. $\iff -x + 3iy = 4 - i$.

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{8}{5} - \frac{6}{5}i \right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$

3. Posons z = x + iy avec x et y réels. $z - 2\overline{z} + i = 4 \iff x + iy - 2(x - iy) = 4 - i$. $\iff -x + 3iy = 4 - i$.

En identifiant parties réelles et imaginaires, il vient :

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i : -4i\}.$

$$\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$$

3. Posons z = x + iy avec x et y réels. $z-2\overline{z}+i=4 \iff x+iy-2(x-iy)=4-i$. $\iff -x + 3iy = 4 - i$.

En identifiant parties réelles et imaginaires, il vient : -x = 4 et 3u = -1 donc

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i : -4i\}.$

$$\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}$$

3. Posons $z = x + iy$ avec x et y réels.

5. Posons z = x + iy avec x et y reels. $z - 2\overline{z} + i = 4 \iff x + iy - 2(x - iy) = 4 - i.$ $\iff -x + 3iy = 4 - i.$

En identifiant parties réelles et imaginaires, il vient : -x = 4 et 3y = -1 donc x = -4 et $y = -\frac{1}{3}$ d'où

1.
$$-i + (2i + 1)z = 4 + i \iff (1 + 2i)z = 4 + 2i$$

 $\iff z = \frac{4 + 2i}{1 + 2i} = z = \frac{(4 + 2i)(1 - 2i)}{1^2 + 2^2} \iff z = \frac{8}{5} - \frac{6}{5}i \text{ donc}:$
 $\mathscr{S}_{\mathbb{C}} = \left\{\frac{8}{5} - \frac{6}{5}i\right\}.$

2.
$$(iz + 4 - i)(\overline{z} - 4i) = 0 \iff iz + 4 - i = 0$$
 ou $\overline{z} - 4i = 0$
 $\iff z = \frac{-4 + i}{i}$ ou $\overline{z} = 4i$
 $\iff z = 1 + 4i$ ou $z = -4i$ donc:
 $\mathscr{S}_{\mathbb{C}} = \{1 + 4i; -4i\}.$

3. Posons z = x + iy avec x et y réels.

$$z - 2\overline{z} + i = 4 \iff x + iy - 2(x - iy) = 4 - i.$$

 $\iff -x + 3iy = 4 - i.$

En identifiant parties réelles et imaginaires, il vient : -x = 4 et 3y = -1 donc x = -4 et $y = -\frac{1}{3}$ d'où $z = -4 - \frac{1}{3}$ i.

Conclusion :
$$\mathscr{S}_{\mathbb{C}} = \left\{ -4 - \frac{1}{3}i \right\}$$
.

Soit z un complexe non réel et u un complexe différent de 1.

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
.

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. $Z \text{ r\'eel} \iff Z = \overline{Z}$. $Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}}$

$$Z = \overline{Z} \Longleftrightarrow \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}}$$

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. $Z \text{ r\'eel} \iff Z = \overline{Z}$. $Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$

Soit z un complexe non réel et u un complexe différent de 1.

Donner une condition nécessaire et suffisante sur u pour que $\frac{z - u\overline{z}}{1 - c}$ soit réel.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.

soft reel.
On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.
$$Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$$

$$\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$$

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.

$$Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$$
$$\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$$

$$\iff z - \overline{z} + u\overline{u}\overline{z} - u\overline{u}z = 0$$

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.
 $Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$
 $\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$
 $\iff z - \overline{z} + u\overline{u}\overline{z} - u\overline{u}z = 0$
 $\iff (z - \overline{z})(1 - u\overline{u}) = 0$

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.
 $Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$
 $\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$
 $\iff z - \overline{z} + u\overline{u}\overline{z} - u\overline{u}z = 0$
 $\iff (z - \overline{z})(1 - u\overline{u}) = 0$
 $\iff z = \overline{z}$

Soit z un complexe non réel et u un complexe différent de 1.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.
$$Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$$
$$\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$$
$$\iff z - \overline{z} + u\overline{u}\overline{z} - u\overline{u}z = 0$$
$$\iff (z - \overline{z})(1 - u\overline{u}) = 0$$
$$\iff z = \overline{z} \quad \text{ou} \quad 1 - u\overline{u} = 0.$$

Soit z un complexe non réel et u un complexe différent de 1.

Donner une condition nécessaire et suffisante sur u pour que $\frac{z-u\overline{z}}{1-u}$ soit réel.

On pose
$$Z = \frac{z - u\overline{z}}{1 - u}$$
. Z réel $\iff Z = \overline{Z}$.
 $Z = \overline{Z} \iff \frac{z - u\overline{z}}{1 - u} = \frac{\overline{z} - \overline{u}z}{1 - \overline{u}} \iff (z - u\overline{z})(1 - \overline{u}) = (1 - u)(\overline{z} - \overline{u}z)$
 $\iff z - \overline{u}z - u\overline{z} + u\overline{u}\overline{z} = \overline{z} - \overline{u}z - u\overline{z} + u\overline{u}\overline{z}$
 $\iff z - \overline{z} + u\overline{u}\overline{z} - u\overline{u}z = 0$
 $\iff (z - \overline{z})(1 - u\overline{u}) = 0$
 $\iff z = \overline{z} \quad \text{ou} \quad 1 - u\overline{u} = 0$.

L'énoncé précise que z n'est pas réel donc $z \neq \overline{z}$ donc la condition nécessaire et suffisante pour que Z soit réel est que $u\overline{u} = 1$ avec $u \neq 1$.