RESUMEN DE PROCEDIMIENTOS PARA LA PRUEBA DE HIPÓTESIS.

Caso	Hipótesis nula	Estadístico de prueba	Hipótesis alternativa	Criterio de rechazo
1	$H_0: \mu = \mu_0$ σ^2 conocida distribución normal	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$H_1: \mu \neq \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$	$ Z > z_{\alpha/2}$ $Z > z_{\alpha}$ $Z < -z_{\alpha}$
2	$H_0: \mu = \mu_0$ σ^2 desconocida distribución normal	$T = \frac{\overline{X} - \mu_0}{\sqrt[S]{\sqrt{n}}}$	$H_1: \mu \neq \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$	$egin{aligned} \left T ight > t_{lpha/2,n-1} \ T > t_{lpha,n-1} \ T < -t_{lpha,n-1} \end{aligned}$
3	$H_0: \mu = \mu_0$ σ^2 desconocida distribución NO NECESARIAMENTE normal muestra grande	$T = \frac{\overline{X} - \mu_0}{\sqrt[S]{\sqrt{n}}}$	$H_1: \mu \neq \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$	$ Z > z_{\alpha/2}$ $Z > z_{\alpha}$ $Z < -z_{\alpha}$
4	$H_0: \mu_1 - \mu_2 = \Delta_0$ σ_1^2, σ_2^2 conocidas distribuciones normales	$Z = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$H_{1}: \mu_{1} - \mu_{2} \neq \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} > \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} < \Delta_{0}$	$\begin{aligned} Z &> z_{\alpha/2} \\ Z &> z_{\alpha} \\ Z &< -z_{\alpha} \end{aligned}$
5	$H_0: \mu_1 - \mu_2 = \Delta_0$ σ_1^2, σ_2^2 desconocidas distribuciones NO NECESARIAMENTE normales muestras grandes	$Z = \frac{\overline{X}_{1} - \overline{X}_{2} - \Delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$	$H_{1}: \mu_{1} - \mu_{2} \neq \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} > \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} < \Delta_{0}$	$ Z > z_{\alpha/2}$ $Z > z_{\alpha}$ $Z < -z_{\alpha}$
6	$H_0: \mu_1 - \mu_2 = \Delta_0$ $\sigma_1^2 = \sigma_2^2$ desconocida distribuciones normales	$T = \frac{\vec{X}_1 - \vec{X}_2 - \Delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$H_{1}: \mu_{1} - \mu_{2} \neq \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} > \Delta_{0}$ $H_{1}: \mu_{1} - \mu_{2} < \Delta_{0}$	$ig Tig > t_{lpha/2,n_1+n_2-2} \ T > t_{lpha,n_1+n_2-2} \ T < -t_{lpha,n_1+n_2-2}$

7	$H_0: \mu_1 - \mu_2 = \Delta_0$ ${\sigma_1}^2 \neq {\sigma_2}^2$ desconocidas distribuciones normales	$T^* = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ $v = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^1/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$	$\begin{split} H_1 : \mu_1 - \mu_2 \neq \Delta_0 \\ H_1 : \mu_1 - \mu_2 > \Delta_0 \\ H_1 : \mu_1 - \mu_2 < \Delta_0 \end{split}$	$\left T^{*}\right > t_{\alpha/2,\nu}$ $T^{*} > t_{\alpha,\nu}$ $T^{*} < -t_{\alpha,\nu}$
8	$\begin{aligned} \textbf{Datos pareados} \\ H_0: \mu_1 - \mu_2 = \Delta_0 \\ \text{la diferencia de las} \\ \text{muestras tiene} \\ \text{distribución normal} \end{aligned}$	$T = \frac{\overline{D} - \Delta_0}{S_D / \sqrt{n}}$	$\begin{split} H_1 : \mu_1 - \mu_2 \neq \Delta_0 \\ H_1 : \mu_1 - \mu_2 > \Delta_0 \\ H_1 : \mu_1 - \mu_2 < \Delta_0 \end{split}$	$egin{aligned} \left T ight > t_{lpha/2,n-1} \ T > t_{lpha,n-1} \ T < -t_{lpha,n-1} \end{aligned}$
9	H_0 : $\sigma^2 = \sigma_0^2$ distribución normal	$X = \frac{(n-1)S^2}{\sigma_0^2}$	$H_1: \sigma^2 \neq \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$X>\chi^2_{lpha_2,n-1}$ ó $X<\chi^2_{1-lpha_2,n-1}$ $X>\chi^2_{lpha,n-1}$ $X<\chi^2_{1-lpha,n-1}$
10	$H_0: {\sigma_1}^2 = {\sigma_2}^2$ distribuciones normales	$F = \frac{S_1^2}{S_2^2}$	$H_1: \sigma_1^2 \neq \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$ $H_1: \sigma_1^2 < \sigma_2^2$	$F > f_{lpha_{\!\!\!\!/2},n_1-1,n_2-1}$ ó $F < f_{1-lpha_{\!\!\!/2},n_1-1,n_2-1}$ $F > f_{lpha,n_1-1,n_2-1}$ $F < f_{1-lpha,n_1-1,n_2-1}$
11	H_0 : $p = p_0$ muestra grande	$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$H_1: p \neq p_0$ $H_1: p > p_0$ $H_1: p < p_0$	$\begin{aligned} Z &> z_{\alpha/2} \\ Z &> z_{\alpha} \\ Z &< -z_{\alpha} \end{aligned}$
12	$H_0: p_1 - p_2 = 0$ muestras grandes	$Z = \frac{\hat{P}_{1} - \hat{P}_{2}}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$	$H_1: p_1 - p_2 \neq 0$ $H_1: p_1 - p_2 > 0$ $H_1: p_1 - p_2 < 0$	$\begin{aligned} Z &> z_{\alpha/2} \\ Z &> z_{\alpha} \\ Z &< -z_{\alpha} \end{aligned}$