高二遗传物质练习1

一、选择题	
	iRNA 的结合,该作用直接影响的过程是()
	C. 翻译 D. 逆转录
2. 如果用 ¹⁵ N、 ¹⁴ C 标记噬菌体后,让其侵药	
A. DNA 分子中都含有放射性 B	. DNA 分子中部分含有放射性
C. 衣壳蛋白中都含有放射性 D	. 衣壳蛋白中部分含有放射性
3. 图 2 为构成 DNA 的一个核苷酸模型。要	制作一条多核苷 一个一个
酸链,增加的核苷酸应连接于部位①~④中	2
A. ①或② B. ③和④	
C. ①和③ D. ②或④	图 2
4. 化学诱变剂羟胺使胞嘧啶只能与腺嘌呤	配对。若用适宜浓度的羟胺溶液浸泡番茄叶肉细
胞,羟胺处理过的番茄叶肉细胞会改变的悬	<u>.</u> ()
①基因 ②RNA ③蛋白质	
A. 仅①② B. 仅②③	C. 仅①③ D. ①②③
5. α-珠蛋白由 141 个氨基酸组成。若相关	基因序列中一个碱基对缺失,会形成由 146 个氨
基酸组成的 α-珠蛋白突变体。该变异()
A. 属于基因重组	B. 是由染色体片段缺失引起
C. 导致终止密码子后移	D. 不改变 α-珠蛋白的空间结构
	酸) 突变为 TGC 导致甲种遗传病。根据下列所附
的部分氨基酸的密码子,推测病变基因在这	这一位点的氨基酸应该是()
A. 酪氨酸(UAC)	B. 半胱氨酸(UGC)
C. 甲硫氨酸 (AUG)	D. 苏氨酸 (ACG)
7. 核酸检测是新冠疫情期间实施"早发	见早隔离"的重要手段,其基本原理是采用被
称为"探针"的单链核酸识别新冠病毒	特征性的核酸序列。据所学知识判断,该识别
的原理属于()	
A. 核酸碱基互补配对	B. 抗体抗原特异性识别
C. 蛋白质与核酸空间结合	D. 磷酸与五碳糖之间共价结合
8. 用 32 P 标记噬菌体的 DNA,用 35 S 标记噬菌	i体的蛋白质,用这种噬菌体去侵染不含 ³² P 和 ³⁵ S
的大肠杆菌,则若干代后的子代噬菌体中	()
A. 不可能检测到 ³² P B	. 可以检测到 ³⁵ S
C. 可能检测到 ³² P 和 ³⁵ S D	. 大部分检测不到 32P
9. 在DNA分子结构中,相邻的碱基G与C之间]是通过什么结构连接而成()
A. 3个氢键	B. 一脱氧核糖一磷酸基一脱氧核糖一
C 一核糖一磷酸基一核糖一	D —磷酸某—核糠—磷酸某—

高二遗传物质练习1 2/6

A. 转录开始→转录结束

- B. 转录开始后→翻译结束前
- C. 转录开始后→翻译结束后
- D. 转录开始前→翻译结束前

18. 科学家研究发现人体生物钟机理(部分)如图 所示,下丘脑 SCN 细胞中,基因表达产物 PER 蛋白浓度以 24h 为周期呈现周期性的增加和减少。下列相关分析正确的是() per基因

- A. per 基因只存在于下丘脑 SCN 细胞中
- B. ①过程需要的原料为脱氧核苷酸
- C. ②过程中核糖体的移动方向为从左到右

19. 如图 8 是一段 DNA 分子平面结构的示意图,据图及所学知识判断,不同 DNA 片段的差异不可能表现在()

- B. ②的数目
- C. ③的排序
- D. ③的种类

PER蛋白

20. 图 5 示高等动物细胞核内某基因转录过程,①、②表示 DNA 分子的两条单链,③表示RNA,箭头表示转录方向。下列叙述**错误**的是()

- A. ①和②、②和③之间的碱基互补配对
- B. DNA 分子在甲处解旋,乙处恢复双螺旋
- C. 转录的 RNA 分子长度比 DNA 分子短
- D. 形成的 RNA 分子通过核孔进入细胞质
- 21. 白化病是基因突变引起黑色素酶先天缺陷所致,据图7判断()
 - A. ①是转录,以 DNA 的两条链为模板
 - B. ①过程中以四种脱氧核苷酸为原料
 - C. ②是翻译,在细胞核中进行

- D. 白化病是基因通过控制酶的合成而间接控制性状的实例

高二遗传物质练习1 3/6

- 23. 以"-GAATTG-"的互补链转录 mRNA,则此段 mRNA 的序列是()
 - A. -GAAUUG-
- B. -CTTAAC- C. -CUUAAC- D. -GAATTG-
- 24. 猕猴和普通小麦的体细胞都含有 42 条染色体,但它们的性状差异很大,根本原因是 ()
 - A. 生活环境不同

- B. 细胞结构不同
- C. 蛋白质的种类和功能不同
- D. DNA 中碱基排列顺序不同
- 25. 图 7 是生长激素基因控制生长激素合成的示意图,下列相关叙述正确的是(

- A. 只有①过程中发生碱基互补配对
- B. ①②过程将遗传信息表达为生长激素的氨基酸序列
- C. ①和②过程可以发生在人体所有细胞中
- D. 若①过程发生差错,细胞一定不能合成生长激素
- 26. 结合以下图表分析,有关说法正确的是(

抗菌药物	抗菌机理	
青霉素	抑制细菌细胞壁的合成	
环丙沙星	抑制细菌 DNA 解旋酶的活性	
红霉素	能与核糖体结合	
利福平	抑制 RNA 聚合酶的活性	

- A. 青霉素和利福平能抑制 DNA 的复制 B. 环丙沙星和红霉素分别抑制细菌的①②和③
- C. 结核杆菌的④和⑤都发生在细胞质中 D. ①~⑤可发生在人体健康细胞中
- 27. 某二倍体植物细胞内的 2 号染 色体上有 M 基因和 R 基因,它们编码各自蛋白质的前 3 个氨基酸的 DNA 序列如右图,起始密码子均为 AUG。下列叙述正确的是()

- A. 基因 M 在该二倍体植物细胞中数目最多时可有两个
- B. 在减数分裂过程中等位基因随 a、b 链的分开而分离
- C. 基因 M 和基因 R 转录时都以 b 链为模板合成 mRNA
- D. 若箭头处的碱基突变为 T,则对应密码子变为 AUC

- 28. 右图为 tRNA 的结构示意图。下列有关叙述正确的是()
 - A. 图中a、b 处均可连接氨基酸
 - B. 一种 tRNA 只可以携带一种氨基酸
 - C. 人体细胞中的 tRNA 共有 64 种
 - D. 图中 c 处表示密码子,可以与 mRNA 碱基互补配对
- 29. 甲、乙两图所示真核细胞内两种物质的合成过程,下列叙述正确的是(

- A. 甲、乙所示过程通过半保留方式进行, 合成的产物是双链核酸分子
- B. 甲所示过程在细胞核内进行, 乙在细胞质基质中进行
- C. DNA 分子解旋时,甲所示过程不需要解旋酶,乙需要解旋酶
- D. 一个细胞周期中, 甲所示过程在每个起点只起始一次, 乙可起始多次
- 30. 一个转运 RNA 的一端 3 个碱基是 GUC,则该 RNA 运载的氨基酸是()
 - A. 亮氨酸 (CUG)
- B. 谷氨酰胺 (CAG)
- C. 丝氨酸 (UCG)
- D. 缬氨酸 (GUC)
- 31. 右图为 DNA 分子部分结构示意图,以下叙述正确的 是()
 - A. DNA 的稳定性与⑤有关,生物体内 DNA 解旋酶、 RNA 聚合酶、DNA 聚合酶、逆转录酶等可以断开
 - B. ④是一个胞嘧啶脱氧核苷酸
 - C. DNA 连接酶可催化⑥或⑦键形成
 - D. A 链、B 链的方向相反, 骨架是磷酸和脱氧核糖

- A 链 B链
- 32. 中心法则揭示了生物遗传信息的流动过程(如下图),相关叙述错误的是(
 - A. 细胞分裂间期发生的过程有 a、b、c
 - B. 需要 tRNA 和核糖体同时参与的过程是 c
 - C. a 和 b 两个过程发生的主要场所分别是细胞核 和细胞质
 - D. 健康的人体内不会发生 d 和 e 过程
- 33. 如图为关于某病毒的实验,该病毒 为注射式侵入类型。一段时间后, 检测 子代病毒的放射性及 S、P 元素, 从理 论上分析,下表的预测中最可能的是 ()

选项	放射性	S 元素	P 元素
A	全部无	全部 ³² S	全部 ³¹ P
В	全部有	全部 ³⁵ S	多数 ³² P,少数 ³¹ P
С	少数有	全部 ³² S	少数 ³² P,多数 ³¹ P
D	全部有	全部 ³⁵ S	少数 ³² P,多数 ³¹ P

34. 下为生物遗传信息的传递过程和方式,有关叙述正确的是()

- A. 过程①一般发生在动物细胞质中
- B. 过程②普遍存在于植物细胞中
- C. 过程③只能发生在部分病毒体内 D. 过程④一般发生在细胞核中