QUESTIONS ABOUT DETERMINANTS AND **POLYNOMIALS**

STEVE FISK

This article is an exposition of some questions about determinants and polynomials. We are interested in the following classes of polynomials:

Definition 1.

 $\mathbf{U}_{d} = \begin{cases} \text{All polynomials } f(x_{1}, \dots, x_{d}) \text{ with real coefficients} \\ \text{such that } f(\sigma_{1}, \dots, \sigma_{d}) \neq 0 \text{ for all } \sigma_{1}, \dots, \sigma_{d} \text{ in the open upper half plane.} \end{cases}$

 $P_d^+ = \text{all polynomials in } \mathbf{U}_d$ with all positive coefficients.

 \mathcal{H}_1 = all polynomials with all roots in the closed left half plane.

Polynomials in \mathcal{H}_1 are called *stable polynomials* or sometimes *Hurwitz* stable polynomials. The polynomials in U_d are called $upper\ polynomials$. P_1^+ consists of polynomials with all negative roots, and so are also stable. Surveys of these classes of polynomials can be found in [2] and [3]. We say f(x) and g(x) interlace, written $f \stackrel{U}{\longleftarrow} g$, if $f + yg \in U_2$. This is equivalent to the usual definition that the roots of f and g alternate.

Question 1. Suppose that $f = \sum_{i=0}^{n} a_i y^i$ is in P_1^+ . Form the polynomial

(1)
$$F(x) = \begin{vmatrix} a_0 & a_1 \\ 0 & a_0 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 \\ a_0 & a_1 \end{vmatrix} x + \dots + \begin{vmatrix} a_n & 0 \\ a_{n-1} & a_n \end{vmatrix} x^n$$

Show that this is in P_1^+ .

Remark 1. See [4] for some recent results on this problem.

Using the criteria for stability for polynomials of small degree [1] we can show that the polynomials of degree at most 4 are stable. In the case of degree two it follows easily that the polynomials are actually in P_1^+ .

degree = 2: If we write f(x) = (x + a)(x + b) where a, b are positive then

$$F(x) = a^{2}b^{2} + (a^{2} + ba + b^{2})x + x^{2}$$

Since all coefficients are positive F(x) is stable. The discriminant is $(a^2 - ba + b^2)(a^2 + 3ba + b^2)$ which is positive for positive a, b, so F is in P_1^+ .

Date: August 13, 2008.

degree = 3: Write f(x) = (x + a)(x + b)(x + c) with positive coefficients. We find that

$$F(x) = a^{2}b^{2}c^{2} + (a^{2}b^{2} + a^{2}bc + ab^{2}c + a^{2}c^{2} + abc^{2} + b^{2}c^{2})x + (a^{2} + ab + b^{2} + ac + bc + c^{2})x^{2} + x^{3}$$

If we write $F = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + x^3$ then the criterion to be stable is $\alpha_1 \alpha_2 - \alpha_0 > 0$. If we compute this expression we get a sum of 19 monomials, all with positive coefficients, so F is stable.

degree = 4: In this case we compute the criterion to be stable, and it is a sum of 201 monomials, all with positive coefficients.

Question 2. Generalize Question 1 by considering

$$T_k(f) = \sum_{i} \begin{vmatrix} a_i & a_{i+k} \\ a_{i-k} & a_i \end{vmatrix} x^i$$

Show that $T_k(f)$ is in P_1^+ if $f \in P_1^+$.

Remark 2. A computer algebra calculation shows that $T_2(f)$ is stable when f has degree four. If f has degree n and k > n/2 then

$$T_k(f) = \sum a_i^2 x^i = f * f$$

where * is the Hadamard product. Thus, $T_k(f) \in P_1^+$ if k > n/2.

Computation shows that $T_k(f)$ and $T_j(f)$ do not generally interlace. However, it does appear that there is a $g \in P_1^+$ that interlaces every $T_k(f)$.

Question 3. Choose a positive integer d, and let $\sum_{i=0}^{n} a_i x^i \in P_1^+$. Form

(2)
$$F(x) = \sum_{i} x^{i} \begin{vmatrix} a_{i} & \dots & a_{i+d} \\ a_{i-1} & \dots & a_{i+d-1} \\ \vdots & & \vdots \\ a_{i-d} & \dots & a_{i} \end{vmatrix}$$

Show that F(x) is in P_1^+ .

Remark 3. If d = 1 this is just Question 1.

Question 4. If $\sum_{i=0}^{n} a_i x^i \in P_1^+$ then construct the matrix

$$M = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \dots \\ 0 & a_0 & a_1 & a_2 & \dots \\ 0 & 0 & a_0 & a_1 & \dots \\ \vdots & \vdots & & & \end{pmatrix}$$

For any positive integer d construct a new matrix M' by replacing each entry of M by the determinant of the d by d matrix whose upper left corner is that entry. Show that M' is totally positive.

Remark 4. By the Aissen-Schoenberg theorem, if M' is totally positive then the polynomial corresponding to the first row is in P_1^+ . Thus this question implies Questions 1 and 3.

Question 5. Suppose that $f \stackrel{U}{\longleftarrow} g$ in P_1^+ . If $f = \sum a_i x^i$, $g = \sum b_i x^i$ then show that

$$\sum_{i} \begin{vmatrix} a_i & a_{i+1} \\ b_i & b_{i+1} \end{vmatrix} x^i \in P_1^+$$

Remark 5. This implies Question 1. Since $(x+1)f(x) \stackrel{U}{\longleftarrow} f(x)$ we have

$$\sum_{i} \begin{vmatrix} a_{i} + a_{i-1} & a_{i+1} + a_{i} \\ a_{i} & a_{i+1} \end{vmatrix} x^{i} = \sum_{i} \begin{vmatrix} a_{i-1} & a_{i} \\ a_{i} & a_{i+1} \end{vmatrix} x^{i}$$

which is Question 1.

Question 6. Suppose $f = \sum a_{i,j}x^iy^j \in P_2^+$. For any positive integer d show that

$$\sum_{i} x^{i} \begin{vmatrix} a_{i,0} & \dots & a_{i,d} \\ \vdots & & \vdots \\ a_{i+d,0} & \dots & a_{i+d,d} \end{vmatrix} \in P_{1}^{+}$$

Remark 6. Since $f \stackrel{U}{\longleftarrow} g$ is equivalent to $f + yg \in U_2$ we see that Question 6 implies Question 5.

Question 7. Consider a polynomial f in P_3^+

$$f_{0,0}(x)$$
 + $f_{0,1}(x)y$ + $f_{0,2}(x)y^2$ + ...
 $f_{1,0}(x)z$ + $f_{1,1}(x)yz$ + $f_{1,2}(x)y^2z$ + ...
 $f_{2,0}(x)z^2$ + $f_{2,1}(x)yz^2$ + $f_{2,2}(x)y^2z^2$ + ...

We construct a new polynomial by replacing each term by the k by k determinant based at that term. If k = 2 then the polynomial is F(x, y, z) =

$$\begin{vmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{vmatrix} + \begin{vmatrix} f_{0,1} & f_{0,2} \\ f_{1,1} & f_{1,2} \end{vmatrix} y + \begin{vmatrix} f_{0,2} & f_{0,2} \\ f_{1,1} & f_{1,2} \end{vmatrix} y^2 + \dots$$

$$\begin{vmatrix} f_{1,0} & f_{1,1} \\ f_{2,0} & f_{2,1} \end{vmatrix} z + \begin{vmatrix} f_{1,1} & f_{1,2} \\ f_{2,1} & f_{2,2} \end{vmatrix} yz + \begin{vmatrix} f_{1,2} & f_{1,3} \\ f_{2,2} & f_{2,3} \end{vmatrix} y^2z + \dots$$

Show that if k = 2 then $F(x, \alpha, \beta)$ is stable for positive α, β . In addition, for all k all coefficients have the same sign.

Remark 7. If all $f_{i,j}(x)$ are constant, so that F(x,y,z) = G(y,z) where $G \in P_2^+$, then G(x,0) is equation (3), and so would be in P_1^+ , rather than just a stable polynomial.

Here are two simple cases. If we take $f = (x + y + z)^2$ then

$$F(x, y, z) = -2(x^2 + y + z)$$

This is not stable, but is stable for positive y, z.

If
$$f = (x + y + z)^3$$
 then

$$F(x, y, z) = -3(x^4 + 3yx^2 + 3zx^2 + y^2 + z^2 + 3yz)$$

Again, F(x, y, z) is not stable, and can be checked to be stable for positive y, z.

If we consider k=3 and $f=(x+y+z)^3$ then $F(x,y,z)=-9(x^3+y+z)$ which is not a stable polynomial and $F(x,\alpha,\beta) \notin P_1^+$ for all positive α,β , but it does have all negative coefficients.

Question 8. Suppose that $f \in P_1^+$. Show that the determinant of the matrix below is stable. We know that it is positive for positive x.

(3)
$$F(x) = \begin{pmatrix} f & f' & \dots & f^{(d)} \\ \vdots & \vdots & & \vdots \\ f^{(d)} & f^{(d+1)} & \dots & f^{(2d)} \end{pmatrix}$$

Question 9. Suppose $f \in P_2^+$, and write $f = \sum f_i(x)y^i$. Consider the polynomial

(4)
$$F(x) = \begin{vmatrix} f_i & f_{i+1} & \dots & f_{i+d} \\ f_{i+1} & f_{i+2} & \dots & f_{i+d+1} \\ \vdots & \vdots & & \vdots \\ f_{i+d} & f_{i+d+1} & \dots & f_{2d} \end{vmatrix}$$

Show that F(x) is stable for all positive integers d and non-negative integers i.

Remark 8. We know that this holds for d = 1. If we consider i = 0 and f(x + y) where $f \in P_1^+$ then from (4) we have an assertion that appears to be stronger than Question 8:

Question 10. Suppose $f \in P_2^+$, and write $f = \sum f_i(x)y^i$. Form the infinite matrix

(5)
$$\begin{pmatrix} f_0 & f_1 & f_2 & f_3 & \dots \\ 0 & f_0 & f_1 & f_2 & \dots \\ 0 & 0 & f_0 & f_1 & \dots \\ 0 & 0 & 0 & f_0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Show that the resulting matrix is totally stable. That is, every minor is a stable polynomial.

Remark 9. If we substitute a positive value for x then the resulting matrix is well known to be totally positive. Question 9 is a consequence of this question since the determinant in (4) is a minor of (5).

For example, if $f = (x + y)^n$ then it appears that all minors of (5) have the form cx^s for positive c and non-negative integer s.

Question 11. Suppose that $f = \prod (x + b_i y + c_i)$ where b_i, c_i are positive, and write $f = \sum a_{ij} x^i y^j$. Consider the matrix

$$\begin{pmatrix} a_{0d} & \dots & a_{00} \\ \vdots & & \vdots \\ a_{dd} & \dots & a_{d0} \end{pmatrix}$$

Show that the matrix is totally positive for any positive integer d.

Remark 10. f is in P_2^+ , but the assertion fails for arbitrary polynomials in P_2^+ . However, since consecutive rows are the coefficients of interlacing polynomials, all two by two determinants are positive for any $f \in P_2^+$.

If we take $\prod_{i=1}^{3} (x + b_i y + c_i)$ and d = 2 then the determinant is a sum of 7 monomials with all positive coefficients.

Here's an example where it fails for $f \in P_2^+$.

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + x \begin{pmatrix} 13 & 9 & 7 \\ 9 & 7 & 5 \\ 7 & 5 & 4 \end{pmatrix} + y \begin{pmatrix} 5 & 7 & 8 \\ 7 & 11 & 12 \\ 8 & 12 & 14 \end{pmatrix}$$

The three matrices are positive definite, so the determinant of M is in P_2^+ , and equals

$$1 + 24x + 16x^{2} + 2x^{3} + 30y + 164xy + 62x^{2}y + 22y^{2} + 64xy^{2} + 4y^{3}$$

with coefficient matrix

$$\begin{pmatrix}
4 & 0 & 0 & 0 \\
22 & 64 & 0 & 0 \\
30 & 164 & 62 & 0 \\
1 & 24 & 16 & 2
\end{pmatrix}$$

The determinant of the three by three matrix in the lower left corner is -1760. Of course, all the two by two submatrices have positive determinant.

Question 12. When is the product of two totally stable matrices a totally stable matrix?

Question 13. A totally upper matrix has the property that every minor is either zero or a polynomial with all real roots.

- (1) What are constructions of totally upper matrices and totally stable matrices?
- (2) When is the product of two totally upper matrices a totally upper matrix?

6 STEVE FISK

References

- [1] Steve Fisk, Polynomials, roots, and interlacing, available at arXiv:math.CA/0612833.
- [2] ______, An introduction to upper half plane polynomials, available at arxiv:math.CA/0711.4043.
- [3] _____, Aspects of stable polynomials, available at arxiv:math.CA/0803.0286.
- [4] Bruce E. Sagan Peter R. W. McNamara, *Infinite log-concavity: developments and conjectures*, available at arxiv:math.CO/0808.1065v1.