UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

1ª PROVA DE CIRCUITOS ELÉTRICOS II – ELT221 - PER VALOR: 35 PONTOS - DATA: 06/10/2020

(Prof. Tarcísio Pizziolo) - Horário: 14 h às 17 h

ALUNO:	Mat.:
--------	-------

QUESTÕES

1) (8 pts) Seja o circuito a seguir.

- a) (6 pts) Determine a Função de Transferência $F(s) = I_0(s)/I_i(s)$.
- b) (1 pts) Considerando $R = 1 \Omega$, L = 1 H e C = 1 F, quais são os zeros de F(s)?
- c) (1 pts) Considerando $R = 1 \Omega$, L = 1 H e C = 1 F, quais são os polos de F(s)?

2) (8 pts) Seja o circuito linear generalizado dado a seguir.

Considerando as condições iniciais nulas, quando uma tensão de entrada $v_i(t) = 4 \ u(t) \ (V)$ é aplicada neste circuito a resposta completa $v_o(t)$ na impedância Z_L é dada por:

$$v_0(t) = (1 - 2e^{-t} + e^{-2t}) u(t) (V).$$

- a) (3 pts) Determine a Função de Transferência $F(s) = V_0(s)/V_i(s)$ para o circuito linear dado acima.
- b) (5 pts) Determine a resposta completa $v_0(t)$ para o mesmo circuito linear quando a entrada for $v_1(t) = 2e^{-t}sen(t 45^0) u(t)$ (V).

3) (8 pts) Uma LT (Linha de Transmissão) trifásica com D=300~km de comprimento tem sua configuração monofásica representada abaixo por um modelo π onde $r=0,01~\Omega/km$, L=0,03537~mH/km, $C=4,421~\mu F/km$ e f=60~Hz. Dados: R=r.D, $X_L=wLD$ e $X_C=(wCD)^{-1}$ e $w=2\pi f$.

Determine os parâmetros da Matriz de Transmissão T (ABCD).

4) (5 pts) Um circuito linear **resistivo** é representado a seguir contendo um resistor variável R_0 como carga. O **Quadriplo** Q é composto apenas por resistores.

Foram realizadas as seguintes medições no Quadripolo Q dadas na Tabela abaixo.

Tabela		
Variáveis	Medição 1	Medição 2
\mathbf{V}_1	4 V	20 V
\mathbf{I}_1	1 A	2 A
V_2	0 V	10 V
I_2	-500 mA	0 A

- a) (2 pts) Determine os parâmetros Z's para o Quadripolo Q.
- **b**) (2 pts) Determine o valor do resistor R_0 para que haja a máxima transferência de potência para o mesmo.
- c) (1 pts) Determine o valor da máxima potência que se pode transferir ao resistor R₀.

5) (6 pts) Dois Quadripolos idênticos Q_1 e Q_2 estão ligados em cascata conforme o esquema dado. Cada Quadripolo possui os parâmetros h's com os seguintes valores: $h_{II} = 1,5 \text{ k}\Omega$, $h_{I2} = 1$, $h_{2I} = -0,5 \text{ e}$ $h_{22} = 1 \text{ mS}$.

- a) (3 pts) Determine os parâmetros de um Quadripolo QT equivalente a Q1 e Q2 em cascata.
- b) (3 pts) Determine a Função de Transferência $F(s) = V_2(s)/V_g(s)$.

Table des transformées de Laplace

	F(s)	f(t)
P1	$\frac{1}{s}$	1 ou u(t)
P2	$\frac{1}{s^2}$	` t
Р3	<u>n!</u> sn+1	t ^{II} (n entier positif)
P4	1 s+a	e-at
P5	$\frac{1}{(s+a)^2}$	te-at
P6	$\frac{\omega}{s^2+\omega^2}$	sin ωt
P7	$\frac{s}{s^2+\omega^2}$	cos ωt
P8	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin ωt
P9	$\frac{s+a}{(s+a)^2+\omega^2}$	e ^{-at} cos ωt
P10	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$	t sin ωt
P11	$\frac{s^2-\omega^2}{\left(s^2+\omega^2\right)^2}$	t cos ωt
P12	$\frac{\Gamma(n+1)}{s^{n+1}}$	t ^{fl} (n∈R, n>-1)
P13	e-as s	u(t-a)