

RSA

Cryptography, Autumn 2021

Lecturers: J. Daemen, B. Mennink

December 7, 2021

Institute for Computing and Information Sciences Radboud University

Outline

Euler totient function

The RSA cryptosystem

Chinese remainder theorem

RSA key pair generation

Security strength of RSA

Using RSA

RSA vs ECC [for info only]

Conclusions

Euler totient function

$((\mathbb{Z}/n\mathbb{Z})^*, \times)$ with n not prime

Remember

Invertibility criterion

m has multiplicative inverse modulo n (i.e., in $\mathbb{Z}/n\mathbb{Z}$) iff $\gcd(m,n)=1$

- ▶ We define $(\mathbb{Z}/n\mathbb{Z})^* = \{m \mid m \in \mathbb{Z}/n\mathbb{Z} \text{ and } \gcd(m,n) = 1\}$
- \blacktriangleright $((\mathbb{Z}/n\mathbb{Z})^*, \times)$ is an abelian group
 - closed: if gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1
 - 1 is neutral element
 - each element in $(\mathbb{Z}/n\mathbb{Z})^*$ has an inverse
 - associativity and commutativity follow from multiplication in Z
- ▶ But what is the order of $(\mathbb{Z}/n\mathbb{Z})^*$? (We will need that!)

This is Euler's totient function

Computing the order of $(\mathbb{Z}/n\mathbb{Z})^*$

Definition: Euler's totient function

Euler's totient function of an integer n, denoted $\varphi(n)$, is the number of integers smaller than n and coprime to n

- ▶ For prime p, all integers 1 to p-1 are coprime to p: $\varphi(p)=p-1$
- ▶ If $n = a \cdot b$ with a and b coprime: $\varphi(a \cdot b) = \varphi(a)\varphi(b)$
- ▶ For the power of a prime p^k : $\varphi(p^k) = (p-1)p^{k-1}$
- ▶ Computing $\varphi(n)$:
 - factor *n* into primes and their powers
 - apply $\varphi(p^k) = (p-1)p^{k-1}$ to each of the factors
- Example: $\varphi(2021) = \varphi(47 \cdot 43) = 46 \cdot 42 = 1932$

Fact: hardness of computing the Euler totient function

Computing $\varphi(n)$ is as hard as factoring n (see lecture notes)

Euler's theorem

Euler's theorem (Leonhard Euler, 1736)

If gcd(x, n) = 1, then $x^{\varphi(n)} \equiv 1 \mod n$

We can use this for computing inverses in $(\mathbb{Z}/n\mathbb{Z})^*$ with exponentiation:

$$x^{-1} = x^{\varphi(n)-1} \bmod n$$

... just as we did in $(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}$

The RSA cryptosystem

Ron Rivest, Adi Shamir, Leonard Adleman

Designed their famous cryptosystem in 1977

Textbook RSA encryption and signing

Keys: public key (n, e) and private key (n, d) with

- ightharpoonup modulus n = pq with p and q two large primes
- ightharpoonup public exponent e that satisfies $\gcd(e, \varphi(n)) = 1$
- ightharpoonup private exponent d with $ed \equiv 1 \mod \varphi(n)$

Bob encrypts a message $m \in (\mathbb{Z}/n\mathbb{Z})^*$ for Alice

Bob		Alice
Alice's public key (n, e)		Alice's private key (n, d)
$c \leftarrow m^e \mod n$	<i>− C</i> →	$m' \leftarrow c^{d} \mod n$

Alice signs a message $m \in (\mathbb{Z}/n\mathbb{Z})^*$

Alice		Bob (or anyone)
Alice's private key (n, d)		Alice's public key (n, e)
$s \leftarrow m^{\mathbf{d}} \mod n$	$\xrightarrow{Alice, m, s}$	$m \stackrel{?}{=} s^e \mod n$

Note: RSA has no domain parameters

How does RSA work?

- ▶ Why is $x = y^d$ when $y = x^e$? (We omit mod n for brevity)
 - (1) substitution gives $y^d = (x^e)^d = x^{ed}$
 - (2) Euler's theorem says $x^{\varphi(n)} = 1$ so $x^{ed} = x^{ed \mod \varphi(n)}$
 - (3) by the definition of d we have $ed \mod \varphi(n) = 1$
 - (4) it follows $x^{ed \mod \varphi(n)} = x$
- \triangleright Computation of d from e and p, q
 - inverse of e modulo $\varphi(n) = (p-1)(q-1)$
 - it only exists if gcd(e, p 1) = 1 and gcd(e, q 1) = 1
 - ullet just apply extended Euclidean alg. to (p-1)(q-1) and e

Quiz questions:

- (1) can we compute d by exponentiation?
- (2) if so, what would be the base, exponent and modulus?

Security of textbook RSA

Security of textbook RSA:

- ▶ Encryption breaks down if Eve can find the eth root of c
- \triangleright Signing breaks down if Eve can find the e^{th} root of some chosen m
- ▶ We call this inverting RSA

Security of textbook RSA requires factoring to be hard

- ▶ Having the factorization of n allows computing $\varphi(n)$
- \blacktriangleright Knowing $\varphi(n)$ allows computing d and hence inverting RSA

Converse is not true: textbook RSA is actually non-secure even if factoring is hard

Chinese remainder theorem

Something uneasy with our usage of RSA

- ▶ When encrypting m we must take $m \in (\mathbb{Z}/n\mathbb{Z})^*$
 - but we don't know $(\mathbb{Z}/n\mathbb{Z})^*$
 - that would require knowing p and q and hence the private key
 - best we can do is choose $m \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}$
 - this set has (pq-1)-(p-1)(q-1)=p+q elements that are not in the group
- ▶ What happens when we compute $c \leftarrow m^e$ with m one of these?
 - choosing such an m only happens with probability (p+q)/pq
 - still interesting to know: what if?
- ▶ It turns out to be no problem: c^d will yield the original m
 - are we lucky or is this coincidence?
 - the world of algebra knows no luck or coincidence
- ▶ It can be explained with the help of the Chinese Remainder Theorem

Product of rings

Definition of product of groups

```
Given groups (G,*) and (H,\circ), the product group (G\times H,\cdot) has set: \{(g,h)\mid g\in G,h\in H\} group operation: (g,h)\cdot(g',h')=(g*g',h\circ h')
```

The same can be applied to product of rings, in particular

Product of rings of integers modulo n

```
Given (\mathbb{Z}/n_1\mathbb{Z}, +, \times) and (\mathbb{Z}/n_2\mathbb{Z}, +, \times), the product ring (\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}, +, \times) has set: \{(g,h) \mid g \in \mathbb{Z}/n_1\mathbb{Z}, h \in \mathbb{Z}/n_2\mathbb{Z}\} addition: (g,h) + (g',h') = (g+g' \mod n_1, h+h' \mod n_2) multiplication: (g,h) \times (g',h') = (g \times g' \mod n_1, h \times h' \mod n_2)
```

This generalizes to the product of more than two groups or rings

Chinese Remainder Theorem (specific for RSA)

Chinese Remainder Theorem (CRT)

Let $n = p \cdot q$ with p, q primes, then the map

$$x \mapsto (x_1, x_2)$$
 with $x \in \mathbb{Z}/n\mathbb{Z}$, $x_1 = x \mod p$ and $x_2 = x \mod q$

defines a ring isomorphism:

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$

Informally, any sum or product of elements in $\mathbb{Z}/n\mathbb{Z}$ is matched by that of the corresponding elements in $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$

Usually the term CRT is used for computing x from (x_1, x_2)

CRT visually for n = 77, p = 11, q = 7

	0	1	2	3	4	5	6	7	8	9	10
0	0			14				7			21
1	22	1			15				8		
2			2			16				9	
3				3			17				10
4	11				4			18			
5		12				5			19		
6			13				6			20	

CRT visually for n = 77, p = 11, q = 7, complete

	0	1	2	3	4	5	6	7	8	9	10
0	0	56	35	14	70	49	28	7	63	42	21
1	22	1	57	36	15	71	50	29	8	64	43
2	44	23	2	58	37	16	72	51	30	9	65
3	66	45	24	3	59	38	17	73	52	31	10
4	11	67	46	25	4	60	39	18	74	53	32
5	33	12	68	47	26	5	61	40	19	75	54
6	55	34	13	69	48	27	6	62	41	20	76

Chinese Remainder Theorem, alternative version (RSA-specific)

Chinese Remainder Theorem (CRT), alternative version

If $n = p \cdot q$ with p, q primes, then the system of congruence relations:

$$x \equiv x_1 \pmod{p}$$

 $x \equiv x_2 \pmod{q}$

has a unique solution $x \in \mathbb{Z}/n\mathbb{Z}$ for any couple of integers (x_1, x_2)

The mapping from x to (x_1, x_2) is injective: different values x cannot give equal tuples (x_1, x_2)

The number of possible values for x and (x_1, x_2) is both n and hence the mapping is a bijection

CRT formula (RSA-specific)

CRT formula

The solution $x \in \mathbb{Z}/n\mathbb{Z}$ with n = pq for

$$x \equiv x_1 \pmod{p}$$

 $x \equiv x_2 \pmod{q}$

with p, q primes is given by

$$x = (u_1x_1 + u_2x_2) \bmod n$$

with
$$u_1 = (q^{-1} \mod p) \cdot q$$
 and $u_2 = (p^{-1} \mod q) \cdot p$

It can be seen that:

$$u_1 \equiv 1 \pmod{p}$$
 $u_1 \equiv 0 \pmod{q}$
 $u_2 \equiv 0 \pmod{p}$ $u_2 \equiv 1 \pmod{q}$

The constants u_i can be used for any vector (x_1, x_2)

Garner's algorithm

For the two-factor case the CRT formula can be simplified

Garner's algorithm (Harvey Garner, 1959)

```
INPUT: (p,q) with p>q and (x_1,x_2),
OUTPUT: x
i_q=q^{-1} \bmod p
t=(x_1-x_2) \bmod p
x=x_2+q\cdot (t\cdot i_q \bmod p)
```

Verify that this is correct!

RSA private key exponentiation in the product ring

Given y we must compute x that satisfies $y = x^e \mod pq$

For $(x_1, x_2) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ we get $y_1 = x_1^e \mod p$ and $y_2 = x_2^e \mod q$ (with $y_1 = y \mod p$ and $y_2 = y \mod q$)

These are solved by

- $ightharpoonup x_1 \leftarrow y_1^{d_p} \mod p$ with d_p the solution of $ed_p \equiv 1 \pmod{p-1}$
- $ightharpoonup x_2 \leftarrow y_2^{d_q} mod q$ with d_q the solution of $ed_q \equiv 1 \pmod{q-1}$

This works for all values of y_1 and y_2 including 0 (Check this!)

Thanks to CRT, it follows that $x \leftarrow y^d \mod n$ always works, with

Note that it is not straightforward to compute $\frac{d}{d}$ from $\frac{d}{d}$ and $\frac{d}{d}$ using CRT (Why not?)

RSA CRT private key operation with Garner

RSA with Garner's algorithm

INPUT:

- ▶ ciphertext c
- ightharpoonup private key $p, q, d_p, d_q, i_q (= q^{-1} \mod p)$

OUTPUT: m

- $(1) c_1 \leftarrow c \bmod p, m_p \leftarrow c_1^{d_p} \bmod p$
- $(2) c_2 \leftarrow c \bmod q, m_q \leftarrow c_2^{d_q} \bmod q$
- (3) $t \leftarrow (m_p m_q) \bmod p$
- (4) $m \leftarrow m_q + q \cdot (t \cdot i_q \mod p)$

Efficiency gain from using CRT

- ▶ moving addition from $\mathbb{Z}/n\mathbb{Z}$: $x + y \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1 + y_1 \mod p$
 - $x_2 + y_2 \mod q$

similar efficiency: two short additions instead of one long

- ▶ moving multiplication from $\mathbb{Z}/n\mathbb{Z}$: $x \cdot y \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1 \cdot y_1 \mod p$
 - $x_2 \cdot y_2 \mod q$

factor 2 more efficient: two short multiplications instead of one long

- ▶ moving exponentiation from $\mathbb{Z}/n\mathbb{Z}$: $x^d \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1^d \mod p$ or $x_1^{d \mod p-1} \mod p$
 - $x_2^d \mod q$ or $x_2^{d \mod q-1} \mod q$

factor 4 more efficient: two short exponentiations instead of one long

So use of CRT speeds up RSA private key exponentiation with a factor 4

RSA key pair generation

RSA key pair generation

Generating an RSA key pair with given modulus length $|n| = \ell$:

- ightharpoonup |n| determines security of RSA key pair, but also efficiency
 - No consensus on how to choose length
 - See www.keylength.com for advice by experts

Procedure to generate an RSA key pair:

- (1) choose e: often this is fixed to $2^{16}+1$ by the context (or standard)
- (2) randomly choose prime p with $|p| = \ell/2$ and gcd(e, p 1) = 1
- (3) randomly choose prime q such that $|pq| = \ell$ and $\gcd(e, q 1) = 1$
- (4) compute modulus $n = p \cdot q$
- (5) compute the private key exponent(s)
 - no CRT: $d \leftarrow e^{-1} \mod (p-1)(q-1)$ (or lcm(p-1, q-1))
 - CRT: $d_p \leftarrow e^{-1} \mod (p-1)$, $d_q \leftarrow e^{-1} \mod (q-1)$, $d_q \leftarrow e^{-1} \mod p$

Generation of a random prime of given length [for info only]

```
Method: randomly generate \ell-bit integer x then increment until (probably) prime
  Input: length ℓ and public exponent e
  Output: (probable) prime p
  generate \ell-2 random bits, put a 1 before and after
  interpret the result as an integer x: odd integer length \ell
  repeat
     if gcd(x-1,e)=1 then
        randomly choose b \in \mathbb{Z}/x\mathbb{Z}
        if (b^{x-1} \mod x = 1) (Fermat: holds if x prime and likely not otherwise) then
           do w more Fermat tests for randomly chosen b
           if all tests pass then
              return p = x
           else
              x \leftarrow x + 2
        else
           x \leftarrow x + 2
     else
        x \leftarrow x + 2
  until false
```

This is an example, there are several other approaches

Distribution of prime numbers

There are infinitely many primes (Euclid, 300 BC)

prime counting function $\pi(n)$

 $\pi(n) = \#p_i, p_i \leq n$, where p_i is a prime

For example $\pi(100) = 25$

Prime number theorem (mathematicians, XVIII century - today)

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1 \tag{1}$$

Consequence: expected distance between ℓ -bit primes is close to $\ell \ln 2$

Generation of random primes: attention points

- ► Execution time: long and variable
 - takes multiple exponentiations
 - number of them depends on the distance from x to next prime p
 - expected value is $(\ell \ln 2)/2$ but varies a lot
- ▶ Optimization
 - trial division by small primes: 3, 5, 7, 11, · · ·
 - fixing the base b to small numbers: 2,3,...
 - variant of Fermat test: Miller-Rabin, slightly more efficient
- ► Efficiency of RSA key generation
 - expected cost \approx 30 RSA private key operations
 - in concrete cases it can be 5 but also 120
- Security
 - result may be non-prime but probability decreases with number of Miller-Rabin tests
 - unpredictability of random generator is crucial!

Security strength of RSA

RSA security: advances of factoring over time

- ▶ State of the art of factoring: two important aspects
 - reduction of computing cost: Moore's Law
 - improvements in factoring algorithms
- ► Factoring algorithms
 - Sophisticated algorithms involving many subtleties
 - Two phases:
 - distributed phase: equation harvesting
 - centralized phase: equation solving
 - Best known: general number field sieve (GNFS)
- ► These advances lead to increase of advised RSA modulus lengths make sure to check http://www.keylength.com/

For 128 bits of security, NIST currently advises 3072-bit modulus

Factoring records

number	digits	date	sievingtime	alg.
C116	116	mid 1990	275 MIPS years	mpqs
RSA-120	120	June, 1993	830 MIPS years	mpqs
RSA-129	129	April, 1994	5000 MIPS years	mpqs
RSA-130	130	April, 1996	1000 MIPS years	gnfs
RSA-140	140	Feb., 1999	2000 MIPS years	gnfs
RSA-155	155	Aug., 1999	8000 MIPS years	gnfs
C158	158	Jan., 2002	3.4 Pentium 1GHz CPU years	gnfs
RSA-160	160	March, 2003	2.7 Pentium 1GHz CPU years	gnfs
RSA-576	174	Dec., 2003	13.2 Pentium 1GHz CPU years	gnfs
C176	176	May, 2005	48.6 Pentium 1GHz CPU years	gnfs
RSA-200	200	May, 2005	121 Pentium 1GHz CPU years	gnfs
RSA-768	232	Dec., 2009	2000 AMD Opteron 2.2 Ghz CPU years	gnfs

RSA-240 795 bits Dec 2, 2019 900 core-years on 2.1 GHz Intel Xeon Gold 6130 RSA-250 829 bits Feb 28, 2020

Using RSA

Using RSA for encryption: attention points

Textbook RSA encryption:

Bob has Alice's public key (n, e)		Alice with private key (n, d)
$c \leftarrow m^e \mod n$	<i>− c →</i>	$m \leftarrow c^d \mod n$

Plaintext *m* shall have enough entropy:

▶ Otherwise, Eve can guess m and check if $c = m^e \mod n$

Example: PIN encryption in EMV (Visa, MC) contactless payment

- ▶ Requirement: protecting PIN between terminal to card
- ▶ Solution: terminal encrypts PIN with RSA for card
- ► Enhancements:
 - encryption randomized by including random $r: m \leftarrow PIN; r$
 - for freshness: include challenge c from card $m \leftarrow PIN$; r; c

It is hard to get RSA encryption of data right

Using RSA for encryption: solutions

- ► Apply a hybrid scheme:
 - use RSA for encrypting a symmetric key K
 - encrypt (and authenticate) with symmetric cryptography
- ► Sending an encrypted key
 - randomize message before encryption
 - add redundancy and verify it after decryption
 - if NOK, return error
- ▶ The dominant standard is PKCS #1
- ▶ It specifies two versions: v1.5 and v2
 - v1.5 randomizes input but has no security proof
 - v2 is RSA-OAEP: randomizes input and uses hash function h
 - ► IND-CPA secure if inverting RSA is hard and the hash function is modeled as a random oracle ($h \approx \mathcal{RO}$)
 - rather complex and hard to implement correctly
 - v1.5 most widespread

Key encapsulation with RSA

Hybrid encryption scheme using RSA-KEM:

Bob has Alice's public key (n, e) Alice with private key (n, d) $r \stackrel{\$}{\leftarrow} \mathbb{Z}/n\mathbb{Z}$ $c \leftarrow r^e \mod n$ $K \leftarrow h(\text{"KDF"}; r)$ $CT \leftarrow \mathsf{Enc}_K(m) \qquad \xrightarrow{c,CT} \qquad r \leftarrow c^d \mod n$ $K \leftarrow h(\text{"KDF"}; r)$ $m \leftarrow \mathsf{Dec}_K(CT)$

- ▶ The hybrid encryption scheme including RSA-KEM is proven IND-CPA secure if
 - inverting RSA is hard
 - $h \approx \mathcal{RO}$
 - the symmetric cryptosystem is secure
- Much simpler than RSA-OAEP
- ▶ RSA-KEM is the sound way to use RSA for exchanging a key

Problems of textbook RSA signatures

Textbook RSA signature:

Alice with private key (n, d)		Bob with Alice's public key (n, e)
$s \leftarrow m^d \mod n$	$\xrightarrow{Alice, m, s}$	$m \stackrel{?}{=} s^e \mod n$

Problems:

- ► RSA malleability
 - given signatures $s_1 = m_1^d$ and $s_2 = m_2^d$, Eve can sign $m_3 = m_1 \cdot m_2 \mod n$ by computing $s_3 = s_1 \cdot s_2 \mod n$.

$$m_3^d = (m_1 \times m_2)^d = m_1^d \times m_2^d = s_1 \times s_2$$

- this is forgery: signing without knowing private key
- ► Limitation on message length
- Several other attention points

Using RSA for signatures

Full-domain hash (FDH) RSA signature:

Alice with private key (n, d) Bob with Alice's public key (n, e) $H \leftarrow h(m)$ $s \leftarrow H^{d} \mod n$ $\xrightarrow{\text{Alice}, m, s} H \leftarrow h(m)$ $H \stackrel{?}{=} s^{e} \mod n$

- ▶ Secure against forgery if
 - inverting RSA is hard and
 - ullet the hash function behaves like a random oracle ($ullet pprox \mathcal{RO}$) . . .
 - with co-domain of h equal to $\mathbb{Z}/n\mathbb{Z}$
 - this is called full-domain hash
- Can easily be realized by using XOF
 - generate output string longer than the length of n
 - interpret the result as an integer and reduce modulo n
- ► FDH did not make it to the standards (yet)

RSA signature standards

- ▶ Most widespread standards: PKCS # 1 v1.5 or v2 (RSA PSS)
 - First hashes message H = h(m) with classical hash function
 - then embeds H into the RSA input in $\mathbb{Z}/n\mathbb{Z}$...
 - ...uses padding and some messy processing
 - processing includes hash function calls to destroy malleability
 - used by the cool crowd of Silicon Valley
- ▶ Also widespread: ISO/IEC 9796-2
 - similar to PKCS # 1 but has a unique feature . . .
 - ... message recovery
 - allows to stuff part of the signed message inside the signature
 - used in payment card standard EMV (not cool)

RSA vs ECC [for info only]

Computational efficiency of RSA [for info only]

- ▶ Public exponentiation is light (assuming $e = 2^{16} + 1$))
 - 16 squarings and 1 multiplication of |n|-bit integers
 - time grows only quadratically with |n|
- ▶ Private exponentiation is heavy
 - without CRT: |n| |n|-bit squarings and multiplications
 - with CRT: |n| |n|/2-bit squarings and multiplications
 - time grows with the third power of |n|
- ▶ Key generation is a nightmare
 - its computation time is unpredictable and has huge variance
 - expected time: about 30 times that of private exponentiation
 - time grows with more than third power of |n|

RSA vs ECC [for info only]

- ▶ Disclaimer: fair comparison is probably not possible
 - worse: almost all comparisons out there have a hidden agenda
 - we try to give here advantages and downsides of both
 - keep these in mind when comparing
- ▶ For making things concrete we target 128 bits of security
 - ECC: |q| = 256 following general consensus including keylength.com
 - RSA: |n| = 3072 following advice on keylength.com

key lengths	RSA		ECC	
domain parameters	none		p, a, b, G, q, h:	≈ 1400
public key	<i>n</i> :	3072	A :	512
compressed	-		A :	257
private key	d:	3072	a:	256
with Garner	p, q, d_p, d_q, i_q :	3840	-	
compressed	<i>p</i> :	768	-	

RSA signatures vs EC Schnorr signatures [for info only]

- Computation
 - ECC faster in generation, RSA faster in verification
 - RSA best choice for
 - ► long-term certificates as in a PKI
 - broadcast signatures as in software updates
 - ECC best choice for
 - certificates over short-lived keys
 - challenge-response entity authentication
- ▶ Signature size: ECC 512 bits, RSA 3072 bits
 - but: RSA support data recovery
 - inclusion of part of signed message in the signature
 - overhead can be reduced to about 256 bits

RSA-KEM vs ECDH [for info only]

- Computation
 - RSA-KEM: light on sending side and heavy on receiving
 - ECDH has same workload on both sides and is lighter
 - ECDH is much lighter on receiving end than RSA
 - forward secrecy requires generation of fresh key pairs
 - RSA-KEM best choice if
 - sender is lightweight and receiver is not
 - ► there is some RSA legacy
 - ECDH best choice if
 - forward secrecy is a requirement
 - sender and receiver have similar CPU power
- ▶ Data exchanged:
 - there are many cases
 - RSA-KEM with receiver having authentic public key: 3072 bits
 - unilaterally authenticated forward-secret ECDH (compressed points): 770 bits

Conclusions

Conclusions

- ▶ Until recently, RSA was the most widespread public key crypto
- ▶ It remains an amazing cryptosystem
 - · underlying mathematics are very interesting
 - supports key establishment, signatures, and much more
- ▶ RSA is considered less *cool* than ECC but has unique advantages
 - faster encryption and signature verification
 - shorter signature overhead when using data recovery
- ▶ But actually, many applications can do without public key crypto
 - symmetric crypto may be sufficient
 - orders of magnitudes faster and 128-bit keys and tags
 - advice: study the requirements of the use case