The Egg Drop Problem

- How strong are egg shells? Let's do some science!
- There is a building with 10000 floors
- Assume that:
 - The egg stays intact when dropped from floor 0
 - The egg breaks when dropped from floor 9999
 - lacktriangle An egg breaks when dropped from floor k or greater
 - But stays intact when dropped from floor less than k
- What is k?

- Try dropping at floor 0
 - If it breaks, we know that k=0
 - If it stays intact, we know that k > 0
- Try dropping at floor 1
 - If it breaks, we know that k=1
 - If it stays intact, we know that k > 1
- Try dropping at floor 2
 - If it breaks, we know that k=2
 - If it stays intact, we know that k > 2
- Etc.

- Slow in the worst case!
- Too tiring to go up and down (even with an elevator)!
- lacktriangle We want to know k in as few drops as possible

- We know k is between 0 and 9999
- Try some floor m (between 0 and 9999)
- If it breaks, we know that k is between 0 and m
 - Why?
- If it stays intact, we know that k is between m+1 and 9999
- What *m* should we choose?

- Try the middle floor $m \sim 4999$
- If it breaks, we know that k is between 0 and 4999
 - Why?
- If it stays intact, we know that k is between 5000 and 9999

The Egg Drop Problem: Solution

- In general, suppose we know k is between L and R
- Try floor $\frac{L+R}{2}$ (between L and R)
- If it breaks, we know that k is between L and $\frac{L+R}{2}$
 - Why?
- If it stays intact, we know that k is between $\frac{L+R}{2}+1$ and R
- lacktriangle Repeat until k is in a range with exactly one number
- Then *k* has to be that number!

Will This Be Fast?

- At every step, the number of floors being searched is halved
- How many times can a number n be halved before it reaches 1?
- We call this value $\log n$
- https://www.desmos.com/calculato r/tbm5cuxxoy
 - $\log n$ grows very slowly relative to n
 - Even for large n, $\log n$ is small

n	$\log_2 n$
2	I
10	3.3219
100	6.6439
1000	9.9658
10,000	13.2877
100,000	16.6096
10 ⁶	19.9315
10 ⁹	29.8973
10^{12}	39.8631
10^{15}	49.8289

Let's Call This Strategy...

The Thanos Strategy

Searching

- New problem: find the index of an item in a list
 - Assume item to find always exist: easy to modify later to handle case where item might not exist
- In general, $\Theta(n)$ time required
- But if list is sorted, there's a faster way

Thanos Search

- I. Look at the middle element
- 2. If target item = middle element, we found it
- 3. If target item < middle element, recursively search left
- 4. If target item > middle element, recursively search right

Find 17 from the array of 10 elements

2	5	7	8	11	13	17	19	23	29
2	5	7	8	11	13	17	19	23	29
2	5	7	8	11	13	17	19	23	29
2	5	7	8	11	13	17	19	23	29
2	5	7	8	11	13	17	19	23	29

Will This Be Fast?

- At every step, the size of the list being searched is halved
- How many times can a number n be halved before it reaches 1?
- Thanos search is $\Theta(\log n)$

Let's Try...

```
def tsearch(a, target):
    if len(a) == 1:
        return ???
    else:
        # something with a[:mid] and a[mid+1:] here
```


Thanos Search Implementation

- Since we need to return the index, we need to "remember" more info
- Idea: maintain the true starting index of the list we are searching

Thanos Search Implementation (in Python)

```
def tsearch(a, start, target):
    if len(a) == 1:
        return start
    else:
        mid = ???
        if target == a[mid]:
            return ???
        elif target < a[mid]:</pre>
            return tsearch(a[:mid], ???, target)
        else: # target is surely > a[mid]
            return tsearch(a[mid+1:], ???, target)
```


Thanos Search Implementation (in Python)

```
def tsearch(a, start, target):
    if len(a) == 1:
        return start
    else:
        mid = len(a) // 2
        if target == a[mid]:
            return start + mid
        elif target < a[mid]:</pre>
            return tsearch(a[:mid], start, target)
        else: # target is surely > a[mid]
            return tsearch(a[mid+1:], start + mid+1, target)
```


Now Let's Test Our Code

```
# put tsearch definition here

n = 100000
a = [i for i in range(n)]
it_works = all(tsearch(a, 0, i) == i for i in range(n))
print(it_works)
```


It's Too Slow?

- $\log 1,000,000 \times 1,000 \le 10^8$
- We expected it to finish instantly

The Issue

- Creating list slices takes too long
 - The original list must be copied
- Every step of the search must be O(1) so that entire search is $O(\log n)$
- Idea: don't literally cut lists in half
 - Keep track of sublist being considered by keeping start and end indices

Thanos Search Implementation (in Python)

```
def tsearch(a, start, end, target):
    if end - start == 1:
        return start
    else:
        mid = (start + end) // 2
        if target == a[mid]:
            return mid
        elif target < a[mid]:</pre>
            return tsearch(a, start, mid, target)
        else: # target is surely > a[mid]
            return tsearch(a, mid+1, end, target)
```


Now, Try It Again

```
# put tsearch definition here

n = 100000
a = [i for i in range(n)]
it_works = all(tsearch(a, 0, n, i) == i for i in range(n))
print(it_works)
```


Thanos Search Implementation (in C++)

- Passing vectors to function calls makes a copy of the vector
 - Declare the vector globally and avoid passing it around
 - Or, use pass by reference (if you know it)

Thanos Search Implementation (in C++)

```
int tsearch(int start, int end, int target) {
    if(end - start == 1) {
        return start;
    } else {
        int mid = (start + end) / 2;
        if(target == a[mid])
            return mid;
        else if(target < a[mid])</pre>
            return tsearch(start, mid, target);
        else
            return tsearch(mid+1, end, target);
```


Practice Problems

https://progvar.fun/problemsets/binary-search

Sorting

- Selection sort: to sort a list of items, take the smallest item,
 put it in front, and sort the remaining items
- How fast is it?
 - At every step, need to search for the smallest item
 - Takes time proportional to length of remaining list
 - $n+n-1+n-2+\cdots+1=O(n^2)$

Is There a Faster Way?

Inspiration: Copy Thanos Search Strategy

- Right now: split list into 1 and n-1
 - Feels like linear search
- Let's try: split list into $\frac{n}{2}$ and $\frac{n}{2}$

Sorting Fast

- Divide list into two halves
- Recursively sort each half
- Combine the two sorted halves
- Also known as merge sort

Sorting Fast: Merge Sort

MERGE SORT - CONQUER AND MERGE STEPS

Sorting Fast: Merge Sort

```
def sort(a):
    if len(a) == 1:
        return a
    else:
        mid = len(a) // 2
        return merge(sort(a[:mid]), sort(a[mid:]))
```


How to Combine Two Sorted Halves?

- Boys of a class are lined up by height
- Girls are separately lined up by height
- Form a line with everyone sorted by height
- Who can possibly be at the front of the line?
- At any point in time, which people do you need to look at to know who goes next in line?

How to Combine Two Sorted Halves?

- Compare front elements of two halves
- Remove the smaller element and put it in the next unoccupied position of sorted list
- Then, repeat

How to Combine Two Sorted Halves?

```
def merge(L, R):
    if min(L[0], R[0]) == L[0]:
        return [L[0]] + merge(L[1:], R)
    else:
        return [R[0]] + merge(L, R[1:])
```


Improving the Implementation

- Handle cases when L or R becomes empty
- Slicing and copying lists is expensive
 - Like thanos search implementation, there's a way to implement merge sort using start and end indices
 - Enables merge to run in O(len(L) + len(R)) time
 - ullet Enables cutting list in half to be done in O(1) time
- You can try this at home by yourself

■ Every recursive step requires O(len(a)) non-recursive work to merge

Diagram the Amount of Non-Recursive Work at Each Call

- Every level of this tree has the same total. What is it?
 - \bullet O(n)
- lacksquare So the total time is just O(n) times the number of levels
- How many levels are there?
 - This is just the number of times you divide n by 2 until you reach the base case n=1
 - \blacksquare AKA $O(\log n)$
- $O(n \log n)$ total time

Note

- You almost never have to write your own sort function
 - C++: Just do sort(a.begin(), a.end())
 - Python:a.sort() or sorted(a)
- Works in $O(n \log n)$ time using similar ideas
- But knowing how it works is still important!

The General Idea: Divide-and-Conquer

- Divide: split problem into parts
- Conquer: (recursively) solve each part independently
 - Some parts may be skipped if they don't contribute to the answer
- (Optional) Combine: combine answers from each part

Thanos Search

- Divide: look at the middle element
- Conquer:
 - If target item = middle element, we found it
 - If target item < middle element, recursively search left
 - If target item > middle element, recursively search right

Merge Sort

- Divide: list into two halves
- Conquer: recursively sort each half
- **Combine:** the two sorted halves

Exponentiation

- x^n is just repeated multiplication
- But doing it this way takes O(n) time, slow when n is large
- Is there a faster way?

Try It!

- Compute 13¹⁰²⁴ "by hand"
- You may use Python interactive shell and the * operator to help you, but nothing else

Exponentiation by Squaring

- Let's assume *n* is a power of 2
- Then instead of doing $x \cdot x \cdot x \cdot \dots \cdot x$

• We can do
$$\left(\left((x^2)^2\right)^2\right)^2 \dots\right)^2$$

Another Way to Look At It

- **Divide** the exponent *n* by 2
- **Conquer**: recursively solve for $x^{\frac{1}{2}}$ (only once!)
- Combine: reuse same "half" of the answer by squaring it

- Each step cuts the exponent in half
- lacktriangle After $\log n$ steps, base case is reached
- $O(\log n)$ time

What If *n* Not a Power of 2?

We need to handle even and odd cases

```
def power(x, n):
    if n == 0:
        return 1
    elif n \% 2 == 0:
        return square(power(x, n // 2))
    else:
        return square(power(x, n // 2)) * x
```


Fast Exponentation in Python

base ** exp and pow(base, exp) and pow(base, exp, mod) do something like this behind the scenes to compute the answer fast

A New Problem

Given a list of integers (can be negative), find a sublist of consecutive elements with the highest sum, and output this sum

A New Problem

- Given a list of integers (can be negative), find a sublist of consecutive elements with the highest sum, and output this sum
- There's a complete search solution. What and how fast?
 - $O(n^3)$ by trying all $O(n^2)$ possible sublists and computing the sum of each one in O(n)
- Can we do better?

Let's Try Divide and Conquer!

- Divide: input list into two halves
- Conquer: get the maximum sublist sum from each of the two halves
- Combine: the maximum sum for the entire list is one of the following:
 - Maximum of the left half
 - Maximum of the right half
 - = ???

Let's Try Divide and Conquer!

- Divide: input list into two halves
- Conquer: get the maximum sublist sum from each of the two halves
- Combine: the maximum sum for the entire list is one of the following:
 - Maximum of the left half
 - Maximum of the right half
 - A sublist that crosses the boundary between the two halves
 - We can try all possible sublists, but this is just fancy brute force and degrades to $O(n^3)$

What Does a Boundary-Crossing Sublist Look Like?

Must be a maximum sublist of left half BUT must also end at the tail

Must be a maximum sublist of right half BUT must also start at the head

We Need More Subproblems

```
def max_subsum(a):
    mid = len(a) // 2
    return max(
        max_subsum(a[:mid]),
        max_subsum(a[mid:]),
        max_tailsum(a[:mid]) + max_headsum(a[mid:])
)
```


A maximum tail sublist of the right half


```
def max_tailsum(a):
    mid = len(a) // 2
    return max(
        max_tailsum(a[mid:]),
        max_tailsum(a[:mid]) + sum(a[mid:])
)
```


Similarly

```
def max_headsum(a):
    mid = len(a) // 2
    return max(
        max_headsum(a[:mid]),
        sum(a[:mid]) + max_headsum(a[mid:])
    )
```


Improving the Implementation

- Slicing and copying lists is expensive: implement everything using start and end indices
 - This makes cutting the list in half doable in O(1)
- You can try this at home by yourself

• $\max_{tailsum}$ and $\max_{tailsum}$ both require O(len(a)) non-recursive work to compute sum

- Every level needs O(n) time
- There are $O(\log n)$ levels until the base case
- $O(n \log n)$ total time for one call of max_tailsum or max headsum

• max_subsum requires $O(len(a) \log len(a))$ non-recursive work to compute max_tailsum and max_headsum

• • •

Or, Since
$$O\left(\frac{n}{c}\log\frac{n}{c/2}\right) = O\left(\frac{n}{c}\log n\right)$$

- **Every level needs** $O(n \log n)$ time
- There are $O(\log n)$ levels until the base case
- $O(n \log^2 n)$ total time for max_subsum
- $O(n \log n)$ doable if we limit the amount of work done in one call of max_tailsum or max_headsum to O(n)
 - By analysis similar to merge sort
 - There are simple non-divide-and-conquer O(n) solutions for $\max_{tailsum} or \max_{tailsum} or$
 - Try thinking about it at home!

Practice Problems and Further Study

https://progvar.fun/problemsets/divide-and-conquer

Thanks!

