华南理工大学《电工学》期末考试试卷

考试时间: 150 分钟

考试日期:

年 月

日

_	11	111	四	五.	六	七	八	九	+	总分
22	10	10	11	8	5	10	10	8	6	100

- 一、选择题(每小题 2 分, 共 22 分)
- 1、电路如图所示,所有二极管均为理想元件,则 \mathbf{D}_1 、 \mathbf{D}_2 、 \mathbf{D}_3 的工作状态为()。
 - (a)D₁导通, D₂、D₃截止
 - (b)D₁、D₂截止, D₃导通
 - (c)D₁、D₃截止,D₂导通
 - (d)D₁、D₂、D₃均截止

- 2、对功率放大电路的基本要求是在不失真的情况下能有()。
 - (a)尽可能高的电压放大倍数
 - (b)尽可能大的功率输出
 - (c)尽可能小的零点漂移
- 3、一般晶闸管导通后,要想关断晶闸管,其条件是()。
 - (a)阳极与阴极之间加正向电压
 - (b)阳极与阴极之间加反向电压
 - (c)控制极与阴极之间加正向电压
 - (d)控制极与阴极之间加反向电压
- 4、在运算放大器电路中,引入深度负反馈的目的之一是使运放(
 - (a)工作在线性区,降低稳定性
 - (b)工作在非线性区,提高稳定性
 - (c)工作在线性区,提高稳定性
- 5、测得某晶体管三个极的电位如图所示,则该管工作在(
 - (a)放大区 (b)饱和区 (c)截止区

6、比较电路如图所示,运算放大器 A_1 、 A_2 的饱和电压值大于双向稳压管的稳定电压值 U_Z , D_1 、 D_2 为理想二极管,当 u_i > U_{R1} 时, u_0 等于()。

7、逻辑电路如图所示,A= "1"时,C脉冲来到后 D 触发器()。

- 8、欲使放大电路的输入电阻增加,输出电阻减小,应引入(
 - (a)串联电压负反馈
- (b)串联电流负反馈
- (c)并联电压负反馈
- (d)并联电流负反馈
- 9、逻辑图和输入A,B的波形如图所示,分析当输出F为"1"的时刻应是()。
 - (a) t_1 (b) t_2 (c) t_3

)。

- 10、振荡电路如图所示,选频网络是由(
 - (a) L、C 组成的电路
 - (b) L、C 组成的电路
 - (c) L_2 、 R_2 组成的电路
- 11、在差动放大电路中,共模反馈电阻 R_E的作用是((a)对差模信号有很强的负反馈,使放大倍数稳定 (b)对共模信号有很强的负反馈,抑制零点漂移
 - (c)对任何信号均无负反馈,它可限制发射极静态电流

)。

二、(10分)

电路如图所示,已知晶体管的 $\beta=80$, $r_{\rm be}=1.3\,{\rm k}\,\Omega$, $U_{\rm BE}=0.6\,{\rm V}$, $R_{\rm B1}=150\,{\rm k}\,\Omega$,

$$R_{\rm B2} = 47\,{\rm k}\,\Omega$$
 , $R_{\rm C} = 3.3\,{\rm k}\,\Omega$, $R_{\rm E1} = 200\,\Omega$, $R_{\rm E2} = 1.3\,{\rm k}\,\Omega$, $R_{\rm L} = 5.1\,{\rm k}\,\Omega$, π

- (1) 计算静态工作点 I_B , I_C , U_{CE} ;
- (2) 画出微变等效电路;
- (3) 计算输入电阻 r_i 和输出电阻 r_0 ;
- (4) 计算电压放大倍数 A_u 。
- (5) 电路中是否存在反馈,试判断反馈极性(正,负反馈)和类型(含交直流反馈)。

三、(10分)

桥式整流、电容滤波、稳压管稳压电路如图所示,已知 U_2 =10V(有效值);稳压管的稳压值 U_Z =6V, I_z =2mA, I_{zmax} =10mA;最大负载电流为 5mA。试求下列两种情况下限流电阻是否合适。

- (1) 开关 K 断开;
- (2) 开关 K 闭合。

四、(11分)

电路如图所示,求输出电压 u_0 与输入电压 u_1 之间运算关系的表达式。

五、(8分)

逻辑电路如图所示,试写出逻辑式,并化简之,列出状态表并说明其功能。

六、(5分)

根据反馈型正弦波振荡电路的相位条件,将图示差分放大电路和RC选频网络连接成正弦波振荡电路。

七、(10分)

设 A , B 为两个一位二进制数(0 或 1),试用"与非"门实现下列比较功能,当 A > B 时则输出 F_1 为"1", F_2 为"0";A < B 时,输出 F_2 为"1", F_1 为"0";A = B 时, $F_1 = F_2 =$ "0"。要求写出逻辑式,画出逻辑图。

八、(10分)

逻辑电路如图所示,各触发器的初始状态均为 "0",已知脉冲 C 的波形,试画出 Q_0 , Q_1 , Q_2 随脉冲 C 变化的波形图,并指出该电路的功能。

九、(8分)

由 555 集成定时器组成的电路如图 1 所示。已知电容 $C=100\mu$ F,输入 u_I 和输出 u_O 的波形如图 2 所示。试说明由 555 集成定时器和 R、C 组成的是何种触发器(单稳态、双稳态、无稳态),并求电阻 R 的值。

十、(6分)

电路如图 1 所示,交流电压的波形如图 2 所示,画出当控制角 α =90 $^{\circ}$ 时,负载电阻 $R_{\rm L}$ 两端电压 $u_{\rm O}$ 的波形。

华南理工大学《电工学》期末考试试卷

答案及评分标准

考试时间: 150 分钟

考试日期: 年

月 日

_	=	=	四	五.	六	七	八	九	+	总分
22	10	10	11	8	5	10	10	8	6	100

一、选择题(每小题 2 分, 共 22 分)

1, (a); 2, (b); 3, (b); 4, (c); 5, (a); 6, (b); 7, (a); 8, (a); 9, (c); 10, (b); 11, (b)

二、(10分)

解:

(1)
$$U_{\rm B} \approx \frac{U_{\rm CC}}{R_{\rm BI} + R_{\rm B2}} \cdot R_{\rm B2} = \frac{20}{150 + 47} \times 47 \text{ V} = 4.8 \text{ V}$$

$$I_{\rm B} \approx \frac{U_{\rm B} - 0.6}{35.8 + (1 + \beta)(1.3 + 0.2)} = \frac{4.8 - 0.6}{35.8 + 81 \times 1.5} \,\text{mA} = 0.027 \,\text{mA}$$

$$I_{\rm C} \approx \beta I_{\rm B} = 2.16 \,\text{mA}$$
 $U_{\rm CE} = 20 - I_{\rm C} (R_{\rm C} + R_{\rm E1} + R_{\rm E2}) = 9.6 \,\text{V}$

(2)
$$R_{\rm B} = R_{\rm B1} / / R_{\rm B2} = 150 / / 47 \approx 35.8 \,\rm k\Omega$$

3分

2分

(3)
$$r_{\rm i} = R_{\rm B} //[r_{\rm be} + (1 + \beta)R_{\rm El}] = 11.75 \,\text{k}\Omega$$
 $r_{\rm o} = R_{\rm C} = 3.3 \,\text{k}\Omega$ 2 $\%$

$$(4) A_{u} = -\beta \frac{R_{C} // R_{L}}{r_{ha} + (1+\beta)R_{EI}} = -80 \frac{3.3 // 5.1}{1.3 + 81 \times 0.2} = -9.16$$

 $(5)R_{E1}$ 是交、直流电流串联负反馈, R_{E2} 是直流电流串联负反馈

1分

三、(10分)

解: (1) 开关 K 断开时, 无电容滤波。

$$U_A = 0.9U_2 = 0.9 \times 10 = 9V$$

$$U_B = U_Z = 6V$$

可得:
$$\frac{9-6}{10+0} \le R \le \frac{9-6}{2+5}$$
 \rightarrow $0.3K\Omega \le R \le 0.43K\Omega$

题给限流电阻 R=320KΩ, 所以是合适的。

4分

(2) 开关 K 闭合时,有电容滤波。

$$U_A = 1.2U_2 = 12V$$

$$U_B = U_Z = 6V$$

$$\pm i \frac{U_A - U_B}{I_{Z\max} + I_{R\min}} \le R \le \frac{U_A - U_B}{I_Z + I_{R\max}}$$

可得:
$$\frac{12-6}{10+0} \le R \le \frac{12-6}{2+5} \rightarrow 0.6$$
K $\Omega \le R \le 0.86$ K Ω

题给限流电阻 R=320KΩ, 所以是不合适的。

1分

四、(11分)

解:
$$A_1$$
: $u_{O1} = u_1 + \frac{u_1}{R_1} R_1 = 2u_1$ 4分

A₂:
$$\frac{u_{O1} - u_{I}}{R_{2}} = C \frac{d(u_{I} - u_{O})}{dt} = C \frac{du_{I}}{dt} - C \frac{du_{O}}{dt}$$
 5 $\%$

$$\frac{2u_{\rm I} - u_{\rm I}}{R_{\rm o}} = C \frac{\mathrm{d}u_{\rm I}}{\mathrm{d}t} - C \frac{\mathrm{d}u_{\rm o}}{\mathrm{d}t}$$

故
$$u_{\rm I} = CR_2 \frac{\mathrm{d}u_{\rm I}}{\mathrm{d}t} - CR_2 \frac{\mathrm{d}u_{\rm O}}{\mathrm{d}t}$$

$$\therefore \quad u_{\rm O} = u_{\rm I} - \frac{1}{CR_2} \int u_{\rm I} dt$$
 2 \(\frac{1}{2}\)

五、(8分)

解: $S = \overline{\overline{ABA}}\overline{\overline{BB}} = \overline{ABA} + \overline{ABB} = (A+B)\overline{AB} = (A+B)(\overline{A}+\overline{B}) = A\overline{B} + B\overline{A}$ 4分

 $C = \overline{AB} = AB$

1分

A	В	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

2分

是半加器。

1分

六、(5分)

解:

接地点连接1分,其它两个点连接各2分。

七、(10分)

$$F_1 = A\overline{B} = \overline{\overline{AB}}$$

3分

$$F_2 = \overline{A}B = \overline{\overline{B}B}$$

3分

4分

八、(10分)

解:

功能: 异步五进制加法计数器

3分

波形图:

7分

九、(8分)

解:

由 555 集成定时器和 R、C组成的是单稳态触发电路。

3分

暂稳态时间 $t_{\rm w}=1.1RC$

3分

由
$$u_{\rm O}$$
的波形可知 $t_{\rm W}=6{\rm s}$,因此 $R=\frac{t_{\rm w}}{1.1C}=\frac{6}{1.1\times100\times10^{-6}}\Omega=54.5\,{\rm k}\Omega$ 2分

十、(6分)

解:

 u_0 的波形如下图所示。

正、负半周波形各3分

