Verslag Tinlab Advanced Algorithms

J. I. Weverink

...

31 maart 2021

Inhoudsopgave

1	Inlei	ding	2	
2	Requirements 2			
	2.1	Requirements	2	
	2.2	specificaties	2	
	2.3	Het vier variabelen model	2	
			2	
		2.3.2 Controlled variabelen	2	
		2.3.3 Input variabelen	2	
		2.3.4 Output variabelen	2	
	2.4		2	
			2	
		· I'	2	
		· · · · · · · · · · · · · · · · · · ·	2	
			3	
		· · · · · · · · · · · · · · · · · · ·	3	
			3	
		2.1.0 Rump 0	0	
3	Mod	ellen	3	
	3.1	= - · · · · - · · · · · · · · · · · · ·	4	
	3.2	Soorten modellen	4	
	3.3	Tijd	4	
	3.4	Guards en invarianten	4	
	3.5	Deadlock	4	
	3.6	Zeno gedrag	4	
4	Logi	ca	4	
4	4.1		4	
	4.1	. •	4	
	4.2	<u> </u>	4	
	-			
	4.4	Dualiteiten	4	
5	Com	putation tree logic	4	
	5.1	De computation tree	4	
	5.2	Operator: AG	4	
	5.3	Operator: EG	5	
	5.4		5	
	5.5	I e	5	
	5.6	1	5	
	5.7		5	
	5.8	·	5	
	5.9	1 1	5	
		Fairness	5	
		Liveness	5	

1 Inleiding

Zie hier een referentie naar Royce [?] en nog een naar Clarke [?]...

2 Requirements

2.1 Requirements

Requirements zijn opgesteld tijdens het opzetten van een project. het systeem moet aan deze punten voldoen.

- 2.2 specificaties
- 2.3 Het vier variabelen model
- 2.3.1 Monitored variabelen
- 2.3.2 Controlled variabelen
- 2.3.3 Input variabelen
- 2.3.4 Output variabelen
- 2.4 Rampen
- 2.4.1 Ramp 1

Beschrijving

Datum en plaats

Oorzaak

2.4.2 Ramp 2

Beschrijving

Datum en plaats

Oorzaak

2.4.3 Ramp 3

Beschrijving

Datum en plaats

Oorzaak

- 2.4.4 Ramp 4
- 2.4.5 Ramp 5
- 2.4.6 Ramp 6

3 Modellen

Een goed model heeft een duidelijk object dat gemodelleerd moet worden, er is duidelijk **wat** er beschreven moet worden.

Een goed model heeft een duidelijk doel. -waarom modelleren we? (voor communicatie of verificatie, analyse, etc.)

Een goed model is traceerbaar: elk onderdeel is te herleiden tot de onderdelen van het ëchte" systeem.

Een goed model is waarheidsgetrouw: relevante onderdelebn van het model komen terug in de werkelijkheid.

een goed model is eenvoudig, maar niet te eenvoudig

Een goed model is uitbreidbaar en herbruikbaar: in de toekomst is het eenvoudig verder te werken met dit model en kunnen zelfs *klassen* van vergelijkbare systemen gemaakt worden

Een goed model deelt geen jargon/semantiek met andere documenten en modellen.

Richtlijnen (tegenstrijdig heden:

Waarheidgetrouw vs simpelheid duidelijheid vs. gedeeld jargon/semantiek

- 3.1 De Kripke structuur
- 3.2 Soorten modellen
- 3.3 Tijd
- 3.4 Guards en invarianten
- 3.5 Deadlock
- 3.6 Zeno gedrag
- 4 Logica
- 4.1 Propositielogica
- 4.2 Predicatenlogica
- 4.3 Kwantoren
- 4.4 Dualiteiten
- 5 Computation tree logic
- 5.1 De computation tree
- 5.2 Operator: AG

De betekenis van AG is makkelijk te onthouden A = Always, G = Globally. Dit houdt in dat het niet uit maakt waar je bent, je zal altijd val welke positie dan ook bij een gedefinieerd punt uitkomen.

De AG staat voor Het betekent dat het niet uit maakt welke keuze er wordt gemaakt, je zal altijd uiteindelijk erop uitkomen. Always Globally

- 5.3 Operator: EG
- 5.4 Operator: AF
- 5.5 Operator: EF
- 5.6 Operator: AX
- 5.7 Operator: EX
- 5.8 Operator: p U q
- 5.9 Operator: p R q
- 5.10 Fairness
- 5.11 Liveness