Overview: Question 1 [5 Marks]

These are short-answer questions. Please answer in 2-4 lines and not in paragraphs. Explain your reasoning behind the answer. Yes/no answers will not fetch you marks.

- 1. Mallory has given a bunch of messages (ciphertext) to Alice for her to sign using the RSA signature scheme, which Alice does without looking at the messages and without using a one-way hash function. What kind of attack is Mallory using here to recover the key? Assume same key is used for encryption and signature.
- 2. Why can't Bob use the pair (6, n) as an RSA public key, where n = pq, for two large primes p and q?

3. What pad sequence (vectors V_i) is generated by OFB (block mode) with a weak DES key. A weak key k is its own inverse, i.e., for any block b: $E_k(b) = D_k(b)$.

4. Can AES with fixed key (i.e. key is fixed for all and made public) be used as a hash function? Why or why not?

5. Can a MAC provide non-repudiation? Explain. (Non repudiation: Signer cannot deny the authenticity of their signature on a document)
Question 2: RSA [2 Marks] Given RSA signatures on messages m_1 and m_2 , how can one compute signature on message
$m_1{}^j$. $m_2{}^k$ for any positive integers j and k ?
Question 3: DES [3 Marks] a) In DES, how many plaintext blocks, on the average, are encrypted to the same ciphertext
block by a given key?

b)	In DES, how many keys, on the average, encrypt a particular plaintext block to a particular ciphertext block?