Math 112 Chapter 6.2: Volumes

The goal of this section is to use integrals to compute volumes. We start by looking at volumes of revolution.

$$V = \int_a^b A(x) dx$$
 where $A(x)$ is the area of the cross-section at x .

EXAMPLES:

1. An area is bounded by $y=0, y=\sqrt{x}$, and x=1. Find the volume generated by rotating the area around the x-axis.

2. An area is bounded by $y=0, y=\sec x, x=-\pi/6$ and $x=\pi/6$. Find the volume generated by rotating the area around the x-axis.

3. An area is bounded by $y = x^3$, y = 8, and x = 0. Find the volume generated by rotating the area around the y-axis.

4. Find the volume of solid obtained by rotating the the area bounded by $y=x^2+1$ and $y=9-x^2$ around the x-axis.

5. Find the volume of solid obtained by rotating the the area bounded by $x=y^2+1$ and y=x-3 around the y-axis.

6. The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$. Derive this formula with an integral.

7. The volume of a cone with a height h and base radius r is $V = \frac{1}{3}\pi r^2 h$. Derive this formula with an integral.