VERSUCH NUMMER

TITEL

 $\label{lem:condition} \begin{tabular}{ll} Julian Hochhaus \\ julian.hochhaus @tu-dortmund.de \\ \end{tabular}$

Niko Salewski niko.salewski@tu-dortmund.de

Durchführung: 12.07.2011 Abgabe: 23.04.1234

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Fehlerrechnung	3
4	Durchführung4.1Versuchsaufbau4.2Versuchsbeschreibung	4
5	Auswertung	4
6	Diskussion	4
Lit	teratur	4

1 Zielsetzung

Zielsetzung

2 Theorie

[1]

3 Fehlerrechnung

Alle berechneten Mittelwerte werden mit folgender Formel bestimmt:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{1}$$

Der zugehörige Fehler des Mittelwerts bestimmt sich mit:

$$\label{eq:delta} \varDelta \overline{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}. \tag{2}$$

Wenn fehlerbehaftete Größen in einer späteren Formel weiter verwendet werden, so wird der sich fortpflanzende Fehler mit Hilfe der Gauß'schen Fehlerfortpflanzung berechnet:

$$\Delta f = \sqrt{\sum_{i=1}^{N} (\frac{\partial f}{\partial x_i})^2 \cdot (\Delta x_i)^2}.$$
 (3)

Haben Messgeräte baubedingte Unsicherheiten, so errechnen sich die Fehler des Mittelwerts nach der Regel zur Fehlerfortpflanzung von Gerätefehlern wie folgt:

$$\frac{\Delta z}{z} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2} \tag{4}$$

Die Regression von Polynomen und Ausgleichsgrade, sowie die Bestimmung der zugehörigen Fehler werden mit IPython 5.1.0 mittels Scipy 0.18.1 durchgeführt. Parameter eventueller Ausgleichsgeraden

$$y = a \cdot x + b. \tag{5}$$

werden bestimmt über

$$a = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2}. (6)$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x} \cdot \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2}.$$
 (7)

4 Durchführung

- 4.1 Versuchsaufbau
- 4.2 Versuchsbeschreibung

5 Auswertung

Abbildung 1: Plot.

6 Diskussion

Literatur

[1] TU Dortmund. Versuch 206: Die Wärmepumpe. 2016.