武汉大学 2019-2020 学年 第二学期期末《高等数学 A2》考试试卷(A卷)

- 一、试解下列各题(每小题5分,共50分)
- 1. 讨论二重极限 $\lim_{\substack{x\to 0\\y\to 0}} (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ 的存在性。
- 2. 设级数 $\sum_{n=1}^{\infty} (a_n a_{n-1})$ 收敛, $\sum_{n=1}^{\infty} b_n (b_n \ge 0)$ 收敛,证明: $\sum_{n=1}^{\infty} a_n b_n$ 绝对收敛。
- 3. 设 u = f(x,y,z) 有连续偏导数,函数 z = z(x,y) 由方程 $xe^x ye^y = ze^z$ 所确定,函数 y = y(x) 由 $e^x = \int_0^{x-y} \frac{\sin t}{t} dt$ 确定,求 $\frac{du}{dx}$.
- 4. 设 $z = f[x^2 y, \varphi(xy)]$, 其中 f(u,v) 具有二阶连续偏导数, $\varphi(u)$ 二阶可导,求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 5. 已知全微分 $df(x,y) = (x^2 + 2xy y^2)dx + (x^2 2xy y^2)dy$, 求 f(x,y)的表达式。
- 6. 设曲面方程为F(z-ax,z-by)=0(a,b为正常数),F(u,v)具有一阶连续的偏导数,且 $F_u^2+F_v^2\neq 0$,试证明此曲面上任一点处法线恒垂直于一常向量。
- 7. 求 $f(x,y) = x^2 + y^2 + y$ 在区域 $D: x^2 + y^2 \le 4, \frac{x^2}{2^2} + y^2 \ge 1$ 上的平均值。
- 8. 求 $\vec{F}(x,y,z) = yz\vec{i} + z^2\vec{k}$ 穿出曲面 Σ 的通量, Σ 为柱面: $y^2 + z^2 = 1, z \ge 0$ 被平面 x = 0, x = 1 截下部分。
- 9. 计算积分 $\bigoplus_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 Σ 为球面: $x^2 + y^2 + z^2 = R^2$ 的外侧。
- 10. 设 Σ 为半球面 $z = \sqrt{a^2 x^2 y^2}$, 计算 $\iint_{\Sigma} (x + 2y + 3z) dS$.
- 二、 $(10 \, f)$ 已知空间曲线 Γ : $\begin{cases} 3x^2 + y^2 z = 6 \\ x^2 2y^2 z = 0 \end{cases}$, 且空间曲线 Γ 在xoy坐标面的投影曲线
- 为L, 若取L 为顺时针方向,求曲线积分 $\int_{L} \frac{2ydx xdy}{2x^2 + 3y^2}$.
- 三、(8分)考察两直线 $l_1: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{-3}$ 和 $l_2: x = 4t + 2, y = -t + 3, z = 2t 4$,是否相交?如相交,求出其交点,如不相交,求出两直线之间的距离 d.
- 四、(本题 24 分,其中 (1) 8 分,(2) 8 分,(3) 4 分,(4) 4 分,)已知某座小山的表面形状曲面方程为 $z=75-x^2-v^2+xv$,取它的底面所在的平面为xov 坐标面。

(1)设点 $M(x_0,y_0)$ 为这座小山底部所占的区域D内的一点,问高函数h(x,y),在该点沿平面

上什么方向的方向导数最大?记此方向导数的最大值为 $g(x_0,y_0)$,试求 $g(x_0,y_0)$ 的表达式。

- (2)现欲利用此小山开展攀岩活动,为此需在山脚寻找上山坡度最大的点作为攀岩的起点,试确定攀岩起点的位置。
- (3) 试用多元函数积分式表示山体的体积V (只需给出二重积分式,不用计算积分)。
- (4) 设山的表面分布着某种物质,其质量面密度为 $\rho(x,y,z) = \frac{1}{\sqrt{5(x^2+y^2)-8xy+1}}$,试用重积分表示分布在山体表面的物质质量(只需给出重积分式,不用计算积分)。

五、(8分) 求数项级数
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n} (n^2 - n + 1)$$
 的和。