BATTERY PREDICTION & OPTIMIZATION

SNU 빅데이터 핀테크 AIZEN Global팀 고 은, 권영현, 윤성규, 한준희

목차

- 1 프로젝트 소개
 - 2 데이터 설명
 - 3 최적화
 - 4 대시보드
- 5 결론

Project Background

프로젝트 배경 - 인도네시아 ESG 정책

프로젝트 배경 - 기업 ESG 정책

음식

배송

도우미

Car

Bike

Rent

Grab Working with Indonesian Government to Develop **EV Ecosystem**

Grab and the Indonesian government have launched an Electric Vehicles (EV) Ecosystem Roadma to accelerate EV adoption in Indonesia and create a more Environmentally sustainable transport network in the country. By 2025, Indonesia plans to have 2 million EVs on the road.

출처: Orissa International

Indonesia's Gojek to replace all two-wheelers with EVs by 2030

Market September 12, 2023

출처: Reccessary

프로젝트 배경 - 배터리 교체 사업

프로젝트 배경 - 배터리 교체 영상

프로젝트 목표

데이터 탐색적 분석 (EDA)

- Battery 수요 정의 및 예측
- Battery 재고 정의 및 예측
- •수요와 재고를 종합적으로 관리할 수 있는 관리지표 도출
- Scooter 이용패턴 기반 Battery 재고 최적화 방안 도출

자동화 및 시각화

- •시간대별/지역별 Scooter 혼잡도 시각화
- •시간대별/지역별 Station 재고 여유율 시각화
- •시간대별/지역별 수요재고 종합등급 시각화
- •시각화 대시보드 구성

Data Description

데이터 설명

1) 스쿠터 데이터세트

- 2,078,866 rows × 12 columns
- o SWAP 배터리를 사용하는 스쿠터 데이터

Columns	설명	비고		
ID	데이터 ID			
scooter_code	스쿠터 코드	SC1234567890		
longitude	스쿠터 경도			
latitude	스쿠터 위도			
ODO	스쿠터 총 이동거리	마일리지		
scooter_speed_km	스쿠터 이동 속도			
battery_code	배터리 코드값	BB1234567890		
SOC	배터리 SOC	배터리 잔량 (%)		
battery_temp_high	배터리 최대 온도			
battery_temp_low	배터리 최저 온도			
battery_MOS_temp	MOSFET 온도			
create_time	데이터 생성시점	2023/05/06 15:43 ~ 2023/05/13 16:40 10분 단위 데이터		

2) 스테이션 데이터세트

- 245,887 rows × 23 columns
- o SWAP 배터리 충전 및 거치하는 스테이션 데이터

Columns	설명	비고		
ID	데이터 ID			
station_code	스테이션 코드	SS1234567890		
device_code	스테이션 형태	슬롯의 개수(3 or 8)		
longitude	스테이션 경도			
latitude	스테이션 위도			
battery_count	스테이션 보유 배터리 개수			
battery_01_code	1번 배터리 코드 값	BB1234567890		
battery_01_soc	1번 배터리 SOC 값	배터리 잔량 (%)		
battery_08_code	8번 배터리 코드 값			
battery_08_soc	8번 배터리 SOC 값			
create_time	데이터 생성시점	2023/05/06 15:43 ~ 2023/05/13 16:40 10분 단위 데이터		

데이터 설명

스쿠터의 배터리 교체 직전 배터리 평균 잔량

42.87%

스쿠터의 배터리 교체 직전 배터리 평균 잔량 분포

스쿠터의 배터리 교체 직후 배터리 평균 잔량

89.35%

스쿠터의 배터리 교체 직후 배터리 평균 잔량 분포

데이터 설명 - 전처리

1) 스쿠터 코드

'SC1234567890' 형식을 벗어난 오류 데이터 제거

2) 스테이션 코드

'SS1234567890' 형식을 벗어난 오류 데이터 제거

3) 배터리 코드

'BB1234567890' 형식을 벗어난 오류 데이터 제거

4) 온도

불가능한 고온의 오류 데이터 제거

5) 위도, 경도

인도네시아 자카르타 범위를 벗어난 오류 데이터 제거

6) 접촉 불량

스테이션 배터리를 교체하지 않았으나, 접촉 불량으로 인해 배터리 코드가 사라지는 현상

→ 두 테이블을 비교하여 접촉 불량 판단 시, 배터리 개수 유지를 위하여 채워줌.

데이터 설명 - 수요

- 수요
 - 스테이션(충전소) 인근 이동중인 스쿠터 개수

데이터 설명 - 수요

• 수요

0 28 56 85 113 141 169 스쿠터 개수에 따른 구간

• 스테이션(충전소) 인근 이동중인 스쿠터 개수

데이터 설명 - 재고

- 재고
 - 。 스테이션이 보유하고 있는 배터리 개수

데이터 설명 - 종합 관리 지표

- 종합 관리 지표
 - 。 격자(Grid) 내 배터리 1개당 스쿠터 수

스쿠터 분포 (수요)

배터리 분포 (재고)

배터리 1개당 스쿠터 수 (종합 관리 지표)

Battery Optimization

최적화 방안

1. 배터리 재배치

배터리 전체를 현재 설치된 스테이션의 슬롯에 맞게 스쿠터 분포에 따른 재배치

2. 배터리 스테이션 재배치

계약 업체 위치를 파악하여 스쿠터 분포에 따른 스테이션 재배치

3. 배터리 스테이션 추가 설치

스쿠터 수가 증가함에 따라 이를 대비하여 스테이션 추가 설치

계약 업체 목록

최적화 - 배터리 재배치 (재고)

- 배터리 재고
 - 배터리 총 개수 2308개

최적화 - 배터리 재배치 (종합 관리 지표 - Grid)

- 종합 관리 지표
 - o 재배치된 배터리에 따른 배터리 1개당 스쿠터 개수

기존 배터리당 스쿠터 개수

최적화 후 배터리당 스쿠터 개수

최적화 - 배터리 재배치 (종합 관리 지표 - 3D)

기존 배터리당 스쿠터 개수

최적화 후 배터리당 스쿠터 개수

Dashboard

대시보드 - 스테이션 현황

• 스테이션 현황

스테이션 내 배터리 잔량 평균 퍼센트 (0 ~ 100) 스테이션의 배터리 보관율 (0 ~ 1)

Conclusion

결론

• 배터리 재배치를 통해 배터리 1개당 스쿠터 개수가 모든 시간과 격자 전체적으로 낮아짐.

추가 재고 필요 없이 현재 재고만으로 고객 친화적이게 배치하였음.

고객이 배터리 교체 전 스테이션내 배터리 정보를 조회할 필요성이 줄어들었음.

지속적으로 스쿠터의 개수가 늘어날 것이므로, 스테이션의 재배치 또는 추가 설치가 필요함. 이를 위해 추가 진행이 필요함.

배터리 재배치에서 사용한 Grid(격자)를 활용하여 스테이션 재배치 및 추가가 가능할 것으로 판단됨.

격자 내 스쿠터 개수, 스테이션 내 배터리 잔량, 교체 횟수 등을 모델에 학습 시켜, 추후에 스쿠터의 개수나 배터리 개수가 변동 되어도 수요 예측 및 시뮬레이션이 가능하다 생각됨.

격자 이후 행정구역 별 특성을 추가적으로 학습할 수 있도록, 행정구역별로 나눠 학습하는 방법도 계획중.

향후 계획 - 스쿠터 분포 (Grid)

향후 계획 - 스쿠터 분포 (행정구역)

No. ♦	Kode Kemendagri 🕈	Kabupaten/Kota ♦	Luas Wilayah (km²)	Penduduk (jiwa) \$	Kepadatan (jiwa/km²) ◆	2017		
						Kecamatan ♦	Kelurahan 💠	Desa ♦
1	31.01	Kab. Kepulauan Seribu	10,18	27.123	2.664,34	2	6	-
2	31.73	Kota Jakarta Barat	124,44	2.324.121	18.676,64	8	56	-
3	31.71	Kota Jakarta Pusat	52,38	1.138.346	21.732,46	8	44	-
4	31.74	Kota Jakarta Selatan	154,32	2.188.457	14.181,29	10	65	-
5	31.75	Kota Jakarta Timur	182,70	2.944.493	16.116,55	10	65	-
6	31.72	Kota Jakarta Utara	139,99	1.711.386	12.225,06	6	31	-
		TOTAL	664,01	10.333.926	15.562,91	44	267	0

THANK YOU

SNU 빅데이터 핀테크 AIZEN Global팀 고 은, 권영현, 윤성규, 한준희

