APPLICATION FOR

UNITED STATES LETTERS PATENT

APPLICANT NAME: William M. Houston et al.

TITLE: USE OF AGENTS AND CONTROL DOCUMENTS TO UPDATE A DATABASE STRUCTURE

DOCKET NO.: END920010069US1

INTERNATIONAL BUSINESS MACHINES CORPORATION

5

USE OF AGENTS AND CONTROL DOCUMENTS TO UPDATE A DATABASE STRUCTURE

Background of the Invention

1. Technical Field

The present invention relates to automated updating of a database structure by one or more agents.

2. Related Art

Software tools for updating a database typically require people to manually interact with the database, such as by submitting update statements, or other database-modifying statements, to the database management software. Such manual interaction can be very time consuming if a large number of similar or correlated database updatings need to be accomplished. Thus, there is a need for a capability for updating a database automatically without manual intervention.

Summary of the Invention

The present invention provides a method for updating a database structure, comprising:

generating a dynamically changing list of control documents; and

processing by a first agent a first approved control document on the list, wherein

processing the first approved control document includes causing executing at least one task on
the first approved control document, and wherein executing a task on the first approved control

The present invention provides a system for updating a database structure, comprising: a dynamically changing list of control documents; and

a first agent adapted to process a first approved control document on the list including to cause an execution of at least one task on the first approved control document, wherein an execution of a task on the first approved control document includes an updating of the database structure.

The present invention facilitates updating a database structure automatically without manual intervention.

Brief Description of the Drawings

- FIG. 1 depicts a view into a database structure, said view disclosing a list of control documents, in accordance with embodiments of the present invention.
- FIG. 2 depicts agents and control documents which the agents are authorized to process, in accordance with embodiments of the present invention.
- FIG. 3 depicts tasks on an approved control document appearing on the list of FIG. 1, in accordance with embodiments of the present invention.
- FIG. 4 depicts agents assigned to tasks of a control document and the databases updated by the tasks, in accordance with embodiments of the present invention.
- FIG. 5 depicts a computer system for storing agents and for processing control documents by agents, in accordance with embodiments of the present invention.

20

15

5

H. 38

The second second

10

5

Detailed Description of the Invention

FIG. 1 depicts a view into a database structure, said view disclosing a list of control documents, in accordance with embodiments of the present invention. Each entry under the "Type" column in FIG. 1 corresponds to a unique control document. Said list of control documents is dynamically changing in time. A "database structure" is defined herein as an organized group of databases, spreadsheets, tables, files, etc. capable of storing data in tabular form. The database structure exists with an operating system environment. A "view into a database structure" is known in the art as a "virtual table" in which data of the database structure is represented in the form of a table, but does not actually exist as a table of the database structure. A "control document" is a document that comprises a list of tasks to be performed by an "agent." A "task" includes updating the database structure such as by, inter alia, replacing values in the database structure with new or replacement values. A task may alternatively or additionally include updating the database structure by adding new variables or fields, and data therein, to the database structure. An "agent" is a computer executable program or software that functions as a background process within the operating system environment. The agent can function concurrent with, and independent of, other software execution that is occurring within the operating system environment. The agent can interact with other agents and can examine the database structure. The agent of the present invention serves to find "approved" control documents, and to cause the tasks in said approved control documents to be performed. An "approved" control document is a control document that has been approved for having its enumerated tasks carried out immediately or as soon as possible thereafter. As an example, the

5

agent may be a LOTUS® script operating within a LOTUS DOMINO® software environment, and the database structure may comprise LOTUS NOTES® databases.

FIG. 1 shows four descriptors associated with each control document listed therein, namely: "Status", "Type", "Submitter", and "Submitted On". The various embodiments of "Status" shown in FIG. 1 are: "Draft" (i.e., created but not yet approved); "Approved" (i.e., tasks thereon may be carried out); "Disapproved" (i.e., tasks thereon may not be carried out); and "Processed" (i.e., tasks thereon have been carried out). As stated *supra*, the agents of the present invention carry out the tasks on control documents having an "Approved" status. The Status of each control document in the view of FIG. 1 is dynamically changing in time. Each entry under the "Type" column in FIG. 1 corresponds to a unique control document. The "Type" descriptor identifies the type of high-level task to be carried out. A "high-level" task associated with a control document is a broad characterization of the individual tasks that are listed on the control document. For example, the Type of "Replace Brep - All Departments" in FIG. 1 denotes a highlevel task in which a Brep (i.e., a Benefits Representative) in the database structure is replaced by another Brep in all Departments, where "Department" is a parameter in the database structure denoting departments of an organization to which the database structure pertains. As another example, the Type of "Replace Rrep - By Department" in FIG. 1 denotes a high-level task in which a Rrep (i.e., a Resources Representative) in the database structure is replaced by another Rrep in selected Departments, as will be further explained *infra* in conjunction with FIG. 3. The "Submitter" descriptor identifies a person who initially submitted the control document in "Draft" status. The "Submitted On" descriptor identifies a date and time at which the control document

5

was initially submitted in "Draft" status.

In conjunction with FIG. 1, an agent functions as a background process that "sleeps" (i.e., is inactive) and periodically "wakes up" (i.e., becomes active). Upon awakening, the agent looks at a view of control documents, such as the view of FIG. 1, to determine if there are any approved control documents for the agent to process. The agent may have authority to process an approved control document of any "Type," or alternatively to process approved control documents of specific "Types." In the latter situation, different agents may each have authority for processing different types of control documents. Each agent in the operating system environment, upon awakening and looking at a view of control documents, selects for processing only those control documents that the agent has authority to process. FIG. 2 illustrates agents a₁, a_2 , and a_3 , and the control documents d_1 , d_2 , d_3 , d_4 , d_5 , and d_6 that the agents a_1 , a_2 , and a_3 are authorized to process, in accordance with embodiments of the present invention. Some or all of the control documents d_1 , d_2 , d_3 , d_4 , d_5 , and d_6 may appear in the same view of the database structure. The agent a_1 is authorized to process the documents d_1 , d_2 , and d_3 . The agent a_2 is authorized to process the documents d_4 , d_5 , and d_6 . The agent a_3 is authorized to process the documents d_6 . FIG. 2 illustrates that two different agents may be authorized to process the same control document as illustrated by agents a₂ and a₃ each being authorized to process the same control document d₆.

An agent that processes a control document processes some or all of the tasks that exist on the control document, by executing tasks and/or by calling one or more other agents to execute some or all of the tasks. Inasmuch as a task comprises updating the database structure,

5

"executing" a task comprises executing code that actually updates the database structure. Processing a task by a first agent means causes the task to be executed by the first agent or by a second agent that is directly or indirectly called by the first agent. As an example, if a first agent calls a second agent, then the first agent has directly called the second agent. As another example, if a first agent calls a second agent and the second agent calls a third agent, then the first agent has indirectly called the third agent. Generally, an agent A_1 indirectly calls an agent A_M if agent A_1 calls agent A_2 , agent A_2 calls agent A_3 , ..., and agent A_{M-1} calls agent A_M , wherein $M \ge 3$. An agent A_1 is said to "call" an agent A_2 initiates execution of the software code of the agent A_1 .

The agents are scheduled to run periodically to access a view (i.e., to look in the view for approved control documents). Alternatively, the agents may find approved control documents in other ways than through a view, such as from a search list of control documents which identifies control documents to search for and also identifies where in the database structure the control documents are located if they exist. When an agent finds an approved control document, the agent processes the control document, which includes executing at least one task on the approved control document. Executing a task on the approved control document includes updating the database structure as discussed *infra* in conjunction with FIG. 3.

FIG. 3 depicts tasks on the approved control document of Type "Replace Rrep - By Department" appearing on the list of control documents in FIG. 1, in accordance with embodiments of the present invention. FIG. 3 lists tasks to be executed by an agent, as well as information relating to the tasks. Rrep denotes a Resource Representative who is responsible for

5

resources (e.g., computer equipment) for employees in various departments of an organization. As an example, such equipment may include laptop computers, workstations, printers, etc. FIG. 3 states that the Future Rrep of Walter W. White in relation to the Future Business Area of Emerging Products replaces the Current Rrep of Betty C. Black in relation to the Current Business Area of Interconnect Products. In the illustration of FIG. 3, a Business Area is associated with a group of departments, and a Rrep is associated with various departments. Those departments of the business area of Interconnect Products to which Betty G. Black is associated constitute the "Affected Departments" A, C, F, and H indicated in FIG. 3. The departments of A, C, F, and H include employees. Noting that an employee database includes both a Rrep field and a Business Area field, the agent replaces Betty G. Black with Walter M. White in the Rrep field, and the agent also replaces Interconnect Products with Emerging Products in the Business Area field, for those employees in the departments of A, C, F, and H.

The Rrep of FIG. 3 is responsible for equipment, and the Capital Plan tracks such equipment. Since the tasks in FIG. 3 have effectively removed employees from the Current Rrep Betty G Black to the Future Rrep Walter M. White, the agent transfers a proportionate amount of such equipment from the Current Rrep to the Future Rrep. As an example, if the Current Rrep had been allocated 100 workstations for her associated employees, and if the tasks in FIG. 3 should transfer 25% of the employees under the Current Rep to the Future Rep, then 25% of the 100 workstation will likewise be transferred from the Current Rep to the Future Rep. Thus in this example, the agent will decrement 25 workstations in all fields in the database structure that denote the number of workstations assigned to the Current Rrep. Similarly, the agent will

5

increment 25 workstations in all fields in the database structure that denote the number of workstations assigned to the Future Rrep.

The preceding tasks of FIG. 3 may all be executed by the agent G that found the approved control document of Type "Replace Rrep - By Department" appearing on the list of control documents in FIG. 1. Alternatively, the agent G may call one or more other agents to execute some or all of said tasks. In summary, FIG. 3 illustrates a control document having several tasks, each of which may be executed by the same agent or by different agents, and said task executions include updating several databases of the database structure. Generally, a given task may update one database or a plurality of databases. Thus, FIG. 3 is an example of a more general description of the present invention that is described *infra* in conjunction with FIG. 4.

FIG. 4 depicts agents A_1 , A_2 , A_3 , and A_4 assigned to tasks T_1 , T_2 , T_3 , and T_4 of a control document, and the databases D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , and D_7 updated by the tasks T_1 , T_2 , T_3 , and T_4 , in accordance with embodiments of the present invention. Agent A_1 executes the task T_1 which updates database D_1 . Agent A_1 calls agent A_2 , and agent A_2 executes the task T_2 which updates databases D_2 and D_3 , and which illustrates agent A_1 directly calling agent A_2 , and which also illustrates task T_2 updating more than one database. Agent A_1 calls agent A_2 , agent A_2 calls agent A_3 , and agent A_3 executes the task T_3 which updates databases D_4 , and which illustrates agent A_1 directly calling agent A_3 and indirectly calling agent A_4 . Agent A_1 executes the task T_4 which updates databases D_1 , D_2 , and D_3 . Note that task T_2 affects task T_3 , as shown. Thus, tasks T_2 and T_3 are not independent.

FIG. 5 depicts a computer system 90 for storing agents and for processing control

5

documents by agents 98, in accordance with embodiments of the present invention. The computer system 90 comprises a processor 91, an input device 92 coupled to the processor 91, an output device 93 coupled to the processor 91, and memory devices 94 and 95 each coupled to the processor 91. The input device 92 may be, *inter alia*, a keyboard, a mouse, etc. The output device 93 may be, *inter alia*, a printer, a plotter, a computer screen, a magnetic tape, a removable hard disk, a floppy disk, etc. The memory devices 94 and 95 may be, *inter alia*, a hard disk, a dynamic random access memory (DRAM), a read-only memory (ROM), etc. The memory device 95, which is a computer usable medium, stores the agents 98 and a database structure 97. The database structure 97 includes the control documents. The processor 91 executes the agents 98. The memory device 94 includes input data 96. The input data 96 includes input required by the agents 97. The output device 93 displays output, such as views of the database structure 97, control documents, etc.

While FIG. 5 shows the computer system 90 as a particular configuration of hardware and software, any configuration of hardware and software, as would be known to a person of ordinary skill in the art, may be utilized for the purposes stated *supra* in conjunction with the particular computer system 90 of FIG. 5. For example, the memory devices 94 and 95 may be portions of a single memory device rather than separate memory devices.

While embodiments of the present invention have been described herein for purposes of illustration, many modifications and changes will become apparent to those skilled in the art.

Accordingly, the appended claims are intended to encompass all such modifications and changes as fall within the true spirit and scope of this invention.