```
In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
from matplotlib import pyplot as plt
import itertools

%matplotlib.style.use('ggplot')
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input di rectory

# import os
# print(os.listdir("../input"))
# Any results you write to the current directory are saved as output.
```

```
In [3]: # Reading the dataset
sales_data = pd.read_csv("SalesKaggle3.csv")
```

In [4]: sales_data.head()

Out[4]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_Release_Flag	StrengthFactor	PriceReg	ReleaseY
0	2	Historical	1737127	0.0	0.0	D	15	1	682743.0	44.99	20
1	3	Historical	3255963	0.0	0.0	D	7	1	1016014.0	24.81	20
2	4	Historical	612701	0.0	0.0	D	0	0	340464.0	46.00	20
3	6	Historical	115883	1.0	1.0	D	4	1	334011.0	100.00	20
4	7	Historical	863939	1.0	1.0	D	2	1	1287938.0	121.95	20
									_		

In [5]: #Statistical description of the dataset
 sales_data.describe()

Out[5]:

	Order	SKU_number	SoldFlag	SoldCount	ReleaseNumber	New_Release_Flag	StrengthFactor	PriceReg	ReleaseY
count	198917.000000	1.989170e+05	75996.000000	75996.000000	198917.000000	198917.000000	1.989170e+05	198917.000000	198917.0000
mean	106483.543242	8.613626e+05	0.171009	0.322306	3.412202	0.642248	1.117115e+06	90.895243	2006.0164
std	60136.716784	8.699794e+05	0.376519	1.168615	3.864243	0.479340	1.522090e+06	86.736367	9.1580
min	2.000000	5.000100e+04	0.000000	0.000000	0.000000	0.000000	6.275000e+00	0.000000	0.0000
25%	55665.000000	2.172520e+05	0.000000	0.000000	1.000000	0.000000	1.614188e+05	42.000000	2003.0000
50%	108569.000000	6.122080e+05	0.000000	0.000000	2.000000	1.000000	5.822240e+05	69.950000	2007.0000
75%	158298.000000	9.047510e+05	0.000000	0.000000	5.000000	1.000000	1.430083e+06	116.000000	2011.0000
max	208027.000000	3.960788e+06	1.000000	73.000000	99.000000	1.000000	1.738445e+07	12671.480000	2018.0000
4									>

```
In [6]: # Includes categorical variable
    sales_data.describe(include='all')
```

Out[6]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_Release_Flag	StrengthFactor
count	198917.000000	198917	1.989170e+05	75996.000000	75996.000000	198917	198917.000000	198917.000000	1.989170e+05
unique	NaN	2	NaN	NaN	NaN	2	NaN	NaN	NaN
top	NaN	Active	NaN	NaN	NaN	S	NaN	NaN	NaN
freq	NaN	122921	NaN	NaN	NaN	100946	NaN	NaN	NaN
mean	106483.543242	NaN	8.613626e+05	0.171009	0.322306	NaN	3.412202	0.642248	1.117115e+06
std	60136.716784	NaN	8.699794e+05	0.376519	1.168615	NaN	3.864243	0.479340	1.522090e+06
min	2.000000	NaN	5.000100e+04	0.000000	0.000000	NaN	0.000000	0.000000	6.275000e+00
25%	55665.000000	NaN	2.172520e+05	0.000000	0.000000	NaN	1.000000	0.000000	1.614188e+05
50%	108569.000000	NaN	6.122080e+05	0.000000	0.000000	NaN	2.000000	1.000000	5.822240e+05
75%	158298.000000	NaN	9.047510e+05	0.000000	0.000000	NaN	5.000000	1.000000	1.430083e+06
max	208027.000000	NaN	3.960788e+06	1.000000	73.000000	NaN	99.000000	1.000000	1.738445e+07
4							l		•

In [7]: sales_data.shape

Out[7]: (198917, 14)

```
In [8]: sales data.nunique()
 Out[8]: Order
                              198917
         File Type
                                   2
         SKU number
                              133360
         SoldFlag
         SoldCount
                                  37
         MarketingType
                                   2
         ReleaseNumber
                                  71
         New Release Flag
                                   2
         StrengthFactor
                              197424
         PriceReg
                               11627
         ReleaseYear
                                  85
         ItemCount
                                 501
         LowUserPrice
                               12102
         LowNetPrice
                               15403
         dtype: int64
In [9]: sales data.isnull().values.any()
 Out[9]: True
In [10]: sales data.isnull().sum()
Out[10]: Order
                                   0
         File Type
                                   0
         SKU number
                                   0
         SoldFlag
                              122921
         SoldCount
                              122921
         MarketingType
                                   0
         ReleaseNumber
                                   0
         New_Release_Flag
         StrengthFactor
                                   0
         PriceReg
                                   0
         ReleaseYear
         ItemCount
                                   0
         LowUserPrice
                                   0
         LowNetPrice
         dtype: int64
```

```
In [11]: sales data['SoldFlag'].fillna(0, inplace=True)
         sales data['SoldCount'].fillna(0, inplace=True)
In [12]: sales data.isnull().sum()
Out[12]: Order
                             0
                              0
         File Type
         SKU number
         SoldFlag
         SoldCount
         MarketingType
         ReleaseNumber
         New Release Flag
         StrengthFactor
         PriceRea
         ReleaseYear
         ItemCount
         LowUserPrice
         LowNetPrice
         dtype: int64
In [13]: | sales data[sales data['File Type'] == 'Historical']['SKU number'].count()
Out[13]: 75996
In [14]: | sales_data[sales_data['File_Type'] == 'Active']['SKU_number'].count()
Out[14]: 122921
In [15]: | sales_data_hist = sales_data[sales_data['File_Type'] == 'Historical']
         sales data act = sales data[sales data['File Type'] == 'Active']
```

In [16]: | sales_data['MarketingType'].value_counts().plot.bar(title="Freq dist of Marketing Type")

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9b991995d0>

In [17]: sales_data['File_Type'].value_counts().plot.bar(title="Freq dist of File Type")

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9b9ed9b450>

In [18]: | sales_data['New_Release_Flag'].value_counts().plot.bar(title="Freq dist of New_Release_Flag")

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9b9eb91250>

In [19]: sales_data_act['MarketingType'].value_counts().plot.bar(title="Freq dist of MarketingFile Type - active s
tates")

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9b9eb733d0>

Out[20]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9b9eb21190>


```
In [21]: col_names = ['StrengthFactor','PriceReg', 'ReleaseYear', 'ItemCount', 'LowUserPrice', 'LowNetPrice']
fig, ax = plt.subplots(len(col_names), figsize=(16,12))
for i, col_val in enumerate(col_names):
    sns.distplot(sales_data_hist[col_val], hist=True, ax=ax[i])
    ax[i].set_title('Freq dist '+col_val, fontsize=10)
    ax[i].set_xlabel(col_val, fontsize=8)
    ax[i].set_ylabel('Count', fontsize=8)
```



```
In [22]: col_names = ['StrengthFactor','PriceReg', 'ReleaseYear', 'ItemCount', 'LowUserPrice', 'LowNetPrice']
    fig, ax = plt.subplots(len(col_names), figsize=(8,40))
    for i, col_val in enumerate(col_names):
        sns.boxplot(y=sales_data_hist[col_val], ax=ax[i])
        ax[i].set_title('Box plot - '+col_val, fontsize=10)
        ax[i].set_xlabel(col_val, fontsize=8)
    plt.show()
```


PriceReg


```
In [23]: sales_data_hist = sales_data_hist.drop(['Order', 'File_Type','SKU_number','SoldFlag','MarketingType','Rel
easeNumber','New_Release_Flag'], axis=1)
sns.pairplot(sales_data_hist)
```

Out[23]: <seaborn.axisgrid.PairGrid at 0x7f9b99199850>

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9b9a65e310>


```
In [25]: # Percentile based outlier removal
def percentile_based_outlier(data, threshold=95):
    diff = (100 - threshold) / 2.0
    minval, maxval = np.percentile(data, [diff, 100 - diff])
    return (data < minval) | (data > maxval)

col_names = ['StrengthFactor', 'PriceReg', 'ReleaseYear', 'ItemCount', 'LowUserPrice', 'LowNetPrice']

fig, ax = plt.subplots(len(col_names), figsize=(8,40))

for i, col_val in enumerate(col_names):
    x = sales_data_hist[col_val][:1000]
    sns.distplot(x, ax=ax[i], rug=True, hist=False)
    outliers = x[percentile_based_outlier(x)]
    ax[i].plot(outliers, np.zeros_like(outliers), 'ro', clip_on=False)

ax[i].set_title('Outlier_detection - '+col_val, fontsize=10)
    ax[i].set_xlabel(col_val, fontsize=8)

plt.show()
```


0 100 200 300 400 500 PriceReg

In []: