MACS203b

1 Convergence de variables aléatoires

Un peu de calcul sur les événements

Prop. $Si(A_n)_n$ est croissante, $\mathbf{P}(\bigcup_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$. $Si(A_n)_n$ est décroissante, $\mathbf{P}(\bigcap_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$. **Def.** $\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$.

Donc $\omega \in \limsup_n A_n \iff \forall n, \exists k \geqslant n, \omega \in A_k$. Donc $\limsup_n A_n$ est réalisé ssi une infinité de A_n est réalisé.

Lem (de Borel-Cantelli). $Si \sum_{n} \mathbf{P}(A_n) < \infty$, alors $\mathbf{P}(\limsup_{n} A_n) = 0$.

Autrement dit, il y a une proba 1 pour que seulement un nombre fini de A_n soient réalisés.

Démonstration. Soit $B_n = \bigcup_{k \geqslant N} A_k$, $\mathbf{P}(\limsup A_n) = \mathbf{P}(\bigcap_n B_n) = \lim_n \pi(B_n)$. Or $\mathbf{P}(B_n) = \mathbf{P}(\bigcup_{k \geqslant n} A_k) \leqslant \sum_{k \geqslant n} \mathbf{P}(A_k) \xrightarrow{n \to \infty} 0$ (par hypothèse).

Convergence p.s., en probabilité et dans L^p

- **Def.** (i) On dit que $X_n \xrightarrow{p.s.} X$ (converge presque sûrement), si $\forall \omega \mathbf{P}$ -p.p, $X_n(\omega) \to X(\omega)$. Cela signifie qu'il existe $A \in \mathcal{F}$ tel que $\mathbf{P}(A) = 1$ et $\forall \omega \in A, \lim_n X_n(\omega) = X(\omega)$.
- (ii) On dit que X_n converge en probabilité vers X si $\forall \epsilon > 0$, $\mathbf{P}(\|X_n X\| > \epsilon)n \to \infty$ 0.
- (iii) On dit que X_n converge vers X dans $L^p(\Omega, \mathbf{R}^d)$ si $X_n, X \in L^p$ et $\mathbf{E}(\|X_n X\|^p) \xrightarrow[n \to \infty]{} 0$.

Prop. On note $X_n = \begin{pmatrix} X_n^1 \\ \vdots \\ X_n^d \end{pmatrix}$ où X_n^k est la k^e composante de X_n . Alors $X_n \longrightarrow X_n$ p.s. (resp. en probabilité, dans L^p)

 $ssi \ \forall k \in \llbracket 1 \ ; d
rbracket, X_n^k \longrightarrow X^k \ p.s. \ (resp. \ en \ probabilité, \ dans \ L^p).$

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \text{Soit} \ X_n \stackrel{\mathbf{P}}{\longrightarrow} X. \ \text{On fixe} \ k \in \llbracket 1 \, ; d \rrbracket. \ \text{Soit} \ \epsilon > 0. \ \text{On sait que} \ \left| X_n^k - X^k \right|^2 < \|X_n - X\|^2. \ \text{Donc} \ \text{l\'{e}v\'{e}nement} \ \left| X_n^k - X^k \right| > \epsilon \ \text{implique} \ \mathbf{P}(\left| X_n^k - X^k \right| > \epsilon) \leqslant \mathbf{P}(\|X_n - X\| > \epsilon) \longrightarrow 0. \ \text{Donc} \ \forall k, X_n^k \stackrel{\mathbf{P}}{\longrightarrow} X^k. \ \text{R\'{e}ciproquement, soit} \ \epsilon > 0. \ \text{On a} \ \|X_n - X\|^2 = \sum_k \left| X_n^k - X^k \right|^2 \leqslant d \cdot \max_k \left| X_n^k - X^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| \geqslant 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \ \mathbf{P}(\|X_n - X\| > 1) = \sum_k \left| X_n^k - X_n^k \right|^2. \ \text{Donc} \$

Réciproquement, soit $\epsilon > 0$. On a $||X_n - X||^2 = \sum_k |X_n^k - X^k| \le d \cdot \max_k |X_n^k - X^k|$. Donc $\mathbf{P}(||X_n - X|| \ge \epsilon) \le \mathbf{P}(\sqrt{d} \max_n |X_n^k - X^k| > \epsilon) = \mathbf{P}\left(\exists k, |X_n^k - X^k| > \frac{\epsilon}{\sqrt{d}}\right) \le \sum_{k=1}^d \mathbf{P}\left(|X_n^k - X^k| > \frac{\epsilon}{\sqrt{d}}\right) \longrightarrow 0$.

Prop. La convergence p.s. et la convergence L^p impliquent toutes les deux la convergence en probabilité.

Démonstration. (i) Supposons $X_n \xrightarrow{\text{p.s.}} X$. Soit $\epsilon > O$. On a $\mathbf{P}(\|X_n - X\| > \epsilon) = \mathbf{E}(\mathbf{1}_{\|X_n - X\| > \epsilon})$. Or $\|X_n - X\| \longrightarrow 0$ p.p. donc $\mathbf{1}_{\|X_n - X\| > \epsilon} \longrightarrow 0$ p.p.

$$\lim_n \mathbf{E}(\mathbf{1}_{\|X_n - X\| > \epsilon}) = \mathbf{E}(\lim_n \mathbf{1}_{\|X_n - X\| > \epsilon}) = \mathbf{E}(0) .$$

(ii)
$$\mathbf{P}(\|X_n - X\| > \epsilon) \leqslant \frac{\mathbf{E}(\|X_n - X\|^p)}{\epsilon^p} \longrightarrow 0.$$

Prop. $Si \ \forall \epsilon > 0, \sum_{n} \mathbf{P}(\|X_n - X\| > \epsilon) < \infty \ alors \ X_n \xrightarrow{p.s.} X.$

Démonstration.

$$\forall \epsilon > 0\mathbf{P}(\limsup\{\|X_n - X\| > \epsilon\}) = 0$$

$$\implies \forall \epsilon > 0\mathbf{P}(\forall n, \exists k \ge n, \|X_k - X\| > \epsilon) = 0$$

$$\forall q \in \mathbf{N}^*\mathbf{P}(\exists n, \forall k \ge n, \|X_k - X\| \le 1/q) = 1$$

Donc $\mathbf{P}(\bigcap_{q \in \mathbf{N}^*} A_q) = 1$, ce qui se lit

$$\mathbf{P}(\forall q \in \mathbf{N}^*, \exists n, \forall k \geqslant n, ||X_k - X|| \leqslant 1/q) = \mathbf{P}(\lim_n ||X_n - X|| = 0) = 1$$

d'où
$$X_n \stackrel{\text{p.s.}}{\longrightarrow} X$$
.

Prop. $X_n \xrightarrow{p.s.} X$ ssi on peut extraire une sous-suite φ_n telle que $X_{\varphi_n} \xrightarrow{p.s.} X$.

Prop. $X_n \xrightarrow{\mathbf{P}} X \implies \text{on peut extraire } X_{\varphi_n} \xrightarrow{p.s.} X.$

Prop. $X_n \xrightarrow{\mathbf{P}} X$ ssi de toute sous-suite X_{φ_n} on peut extraire une autre sous-suite $X_{\varphi_{\psi_n}}$ telle que $X_{\varphi_{\psi_n}} \xrightarrow{p.s.} X$.

Th (de continuité). X_n, X v.a. sur \mathbf{R}^d . Soit $h \colon \mathbf{R}^d \to \mathbf{R}^p$ mesurable et continue sur C tel que $\mathbf{P}(X \in C) = 1$, alors

(i) Si
$$X_n \xrightarrow{p.s.} X$$
 alors $h(X_n) \xrightarrow{p.s.} h(X)$

(ii) Si
$$X_n \xrightarrow{\mathbf{P}} X$$
 alors $h(X_n) \xrightarrow{\mathbf{P}} h(X)$.

Th (Loi forte des grands nombres). *Soit* (X_n) *i.i.d. telle que* $\mathbf{E}(\|X_1\|) < \infty$. *Alors* $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p.s.} \mathbf{E}(X_1)$.

Th (Loi faible des grands nombres). *Soit* (X_n) *i.i.d. telle que* $\mathbf{E}(\|X_1\|^2) < \infty$. *On* $a \xrightarrow{1}_n \sum_{i=1}^n X_i \xrightarrow{\mathbf{P}} \mathbf{E}(X_1)$.

Convergence en loi

Rappels : une mesure de proba μ sur $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d)))$ est caractérisée par sa fonction de répartition F_{μ} . $F_{\mu}(x_1, \dots, x_d) = \mu(\prod_i] - \infty \, ; x_i]).$

On a:

• F_{μ} croissante.

•
$$F_{\mu}(-\infty) = 0, F_{\mu}(+\infty) = 1$$

• F_{μ} est continue à droite et $\mu(x_0) = F_{\mu}(x_0) - F_{\mu}(x_0^-)$

Soit $X: \Omega \to \mathbf{R}^d$ une v.a. On note $P_X = \mathbf{P} \circ X^{-1}$ la loi de X. P_X est une mesure de proba sur \mathbf{R}^d . On note F_X sa fonction de répartition. Pour d = 1, $F_X(x) = \mathbf{P}(X \le x)$.

Def. Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d . On dit que μ_n converge faiblement (ou étroitement) vers μ si $F_{\mu_n}(x) \longrightarrow F_{\mu}(x)$ en tout x point de continuité de F_{μ} . On note $\mu_n \Rightarrow \mu$.

Def. $(X_n)_n, X$ v.a. sur \mathbf{R}^d . On dit que X_n converge en loi vers X (noté $X_n \xrightarrow{\mathcal{L}} X$) si $P_{X_n} \implies P_X$.

Exemple trivial : $X_n = \frac{1}{n}$ (v.a. constantes). Alors $X_n \stackrel{\mathcal{L}}{\longrightarrow} 0$.

$$\begin{array}{ccc} & cv \ ps \\ & ou \\ & cv \ L^p \end{array} \right\} \implies cv \ proba \implies cv \ loi$$

Th (de représentation de Skorohod). Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d telles que $\mu_n \implies \mu$. Il existe un espace de proba et des v.a. (Y_n) , Y sur cet espace telles que :

•
$$Y \sim \mu, \forall n, Y_n \sim \mu_n$$

•
$$\forall \omega, Y_n(\omega) \longrightarrow Y(\omega)$$

Démonstration. (pour d=1) Soit F, F_n les fonctions de répartition de μ , μ_n / Cas simple : supposons que F et F_n sont continues et strictement coissantes. On choisit $\Omega=[0\,;1]$, $\mathbf P$ la mesure de Lebesgue sur Ω et $\mathcal F=\mathcal B([0\,;1])$. On pose $Y(\omega)=F^{-1}(\omega), Y_n(\omega)=F_n^{-1}(\omega)$.

1. Montrons que $Y \sim \mu$:

$$\mathbf{P}(Y \leqslant t) = \mathbf{P}(\{\omega \mid F^{-1}(\omega) \leqslant t\})$$

$$= \mathbf{P}(\{\omega \mid \omega \leqslant F(t)\})$$

$$= \lambda([0; F(t)])$$

$$= F(t)$$

$$= \lambda([0; F(t)])$$

De même $Y_n \sim \mu_n$.

2. Exercice: montrer $F_n^{-1}(\omega) \longrightarrow F^{-1}(\omega)$. Dans le cas où F_n, F ne sont pas bijectives, définir $F^{-1}(\omega) := \inf\{t \mid F(t) \geqslant \omega\}$.

Th (de continuité). Soit $X_n \xrightarrow{\mathcal{L}} X$ définie sur $(\Omega, \mathcal{F}, \mathbf{P})$. $h \colon \mathbf{R}^d \to \mathbf{R}^p$ continue sur C telle que $\mathbf{P}(X \in C) = 1$. Alors $h(X_n) \xrightarrow{\mathcal{L}} h(X)$.

Démonstration. Il existe un autre espace de proba $(\Omega', \mathcal{F}', \mathbf{P}')$ et d'autres v.a. Y_n, Y sur Ω' telles que :

• Y_n, Y ont même loi que X_n, X

•
$$\forall \omega \in \Omega', Y_n(\omega) \longrightarrow \hat{Y}(\omega)$$

Comme $Y_n \xrightarrow{\mathrm{p.s.}} Y$ on a $h(Y_n) \xrightarrow{\mathrm{p.s.}} h(Y)$, donc $h(Y_n) \xrightarrow{\mathcal{L}} h(Y)$ signifie que $F_{h(Y_n)}(x) \longrightarrow F_{h(Y)}(x)$. Or $F_{h(Y_n)}(x) = \mathbf{P}'(h(Y_n) \leqslant x) = \mathbf{P}(h(X_n) \leqslant x)$ puisque X_n est égal en loi à Y_n . Donc $F_{h(X_n)}(x) \longrightarrow F_{h(X)}(x)$. \square

Th (de Portmanteau). *On a équivalence entre :*

(i)
$$X_n \xrightarrow{\mathcal{L}} X$$
,

(ii) $\forall f \colon \mathbf{R}^d \to \mathbf{R}$ continue bornée, $\mathbf{E}(f(X_n)) \longrightarrow \mathbf{E}(f(X))$,

(iii)
$$\forall A \subset \mathbf{R}^d$$
 tel que $\mathbf{P}(X \in \delta A) = 0$, on a $\mathbf{P}(X_n \in A) \longrightarrow P(X \in A)$ où $\delta A = \bar{A} \setminus \mathring{A}$

2

Lem (d'Helly). Soit $(F_n)_n$ une suite de fonctions de répartition. Il existe une sous-suite φ_n et $F \colon \mathbf{R} \to [0\,;1]$ croissante, continue à droite, telle que $F_{\varphi_n}(x) \longrightarrow_n F(x)$ en tout x point de continuité de F.

Démonstration. On indexe \mathbf{Q} sur \mathbf{N} de sorte que $\mathbf{Q} = \{x_1, \dots, x_n\}$. De $(F_n(x_1))_n$ on peut extraire une sous-suite $(F_{\varphi_+^1}(x_1))_n$ qui converge vers un certain $F(x_1) \in [0;1]$.

De $(F_{\varphi_n^1}(x_2))_n$ on peut trouver une extraction le long de laquelle la suite converge vers un certain $F(x_2)$. De la sorte pour tout $k \in \mathbb{N}^*$ on construit $(\varphi_n^k)_n$ extrait de $(\varphi_n^{k-1})_n$ tel que $\forall i \leq k, F_{\varphi_n^k}(x_i) \longrightarrow_n F(x_i)$.

Posons maintenant $\psi_n = \varphi_n^n$. On a $\lim_n \psi_n = +\infty$ et $\forall n, \forall i, n \geqslant i \implies \psi_i \in \{\varphi_{n'}^i \mid n' \in \mathbf{N}^*\}$. Donc $\lim_n F_{\psi_n}(x_i) = F(x_i)$.

On pose, pour tout x dans $\mathbf{R} \setminus \mathbf{Q}$, $F(x) := \inf\{F(t) \mid t \geqslant x, t \in \mathbf{Q}\}$.

On montre que F est croissante (exercice). On montre enfin que pour tout point de continuité x de F, $\lim_n F_{\psi_n}(x) = F(x)$. C'est vrai par construction pour x rationnel. Pour x non-rationnel on a

$$F_{\psi_n}(r^-) \leqslant F_{\psi_n}(x) \leqslant F_{\psi_n}(r^+)$$

donc

$$F(r^{-}) \leqslant \underline{\lim}_{n} F_{\psi_{n}}(x) \leqslant \overline{\lim}_{n} F_{\psi_{n}}(x) \leqslant F(r^{+})$$

et pour $\varepsilon \downarrow 0$,

$$F(x-\varepsilon) \leqslant \underline{\lim}_n F_{\psi_n}(x) \leqslant \overline{\lim}_n F_{\psi_n}(x) \leqslant F(x+\varepsilon)$$

d'où,

$$F(x^{-}) \leqslant \underline{\lim}_{n} F_{\psi_{n}}(x) \leqslant \overline{\lim}_{n} F_{\psi_{n}}(x) \leqslant F(x)$$
.

On ajoute une condition pour que la limite vérifie $\lim_{x\to -\infty} F(x)=0$ et $\lim_{x\to +\infty} F(x)=1$.

Def. $(\mu_n)_n$ est dite **tendue** si $\forall \varepsilon > 0, \exists \mathcal{K}$ compact, $\forall n, \mu_n(\mathcal{K}) \ge 1 - \varepsilon$.

Dans le cas d = 1 on peut prendre $\mathcal{K} = [-K; K]$.

Def. $(X_n)_n$ est tendue si $\forall \varepsilon > 0, \exists \mathcal{K} \text{ compact}, \forall n, \mathbf{P}(X_n \in \mathcal{K}) \geqslant 1 - \varepsilon.$

Th (de Prokhorov). Soit $(\mu_n)_n$ tendue. Il existe une mesure de probabilité μ sur \mathbf{R}^d et une suite $(\varphi_n)_n$ telle que $\mu_{\varphi_n} \Longrightarrow \mu$.

Prop. Si toute sous-suite faiblement convergente de $(\mu_n)_n$ tendue converge vers μ^* , alors $\mu_n \implies \mu^*$.

Démonstration. Supposons par l'absurde $\mu_n \not \Longrightarrow \mu^*$. Alors $\exists f \in \mathcal{C}_b, \int f \, \mathrm{d}\mu_n \not \longrightarrow \int f \, \mathrm{d}\mu^*$. Donc $\left| \int f \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\mu^* \right| \not \longrightarrow 0$. Il existe $\varepsilon > 0$ et $(\varphi_n)_n$ tels que $\forall n, \left| \int f \, \mathrm{d}\mu_{\varphi_n} \int f \, \mathrm{d}\mu^* \right| > \varepsilon$. D'après Prokhorov, puisque $(\mu_n)_n$ est tendue, on peut extraire de $(\varphi_n)_n$ une autre sous-suite $(\psi_n)_n$ telle que $\mu_{\psi_n} \Longrightarrow \mu^*$. Comme $f \in \mathcal{C}_b, \int f \, \mathrm{d}\mu_{\psi_n} \longrightarrow \int f \, \mathrm{d}\mu^*$, ce qui contredit le fait que $\forall n, \left| \int f \, \mathrm{d}\mu_{\psi_n} \int f \, \mathrm{d}\mu^* \right| > \varepsilon$.

Fonction caractéristique, TCL

La fonction caractéristique d'une mesure de proba μ sur \mathbf{R}^d est

$$\varphi_{\mu} \colon \begin{array}{ccc} \mathbf{R}^{d} & \to & \mathbf{C} \\ t & \mapsto & \int e^{i\langle t|x\rangle} \, \mathrm{d}\mu(x) \end{array}$$

Rappel: $\varphi_{\mu} = \varphi_{\nu} \implies \mu = \nu$.

Ex. $\varphi_{\mathcal{N}(0,1)}(t) = e^{-t^2/2}$.

Pour Y = AX + b on a $\varphi_Y(t) = e^{i\langle t|b\rangle} \varphi_X(A^\mathsf{T} t)$.

Prop. φ_{μ} est continue en zéro.

Th (de Lévy). Soit $(\mu_n)_n$, μ des mesures de probabilité sur \mathbf{R}^d . $\mu_n \implies \mu$ ssi $\forall t \in \mathbf{R}^d$, $\varphi_{\mu_n}(t) \longrightarrow \varphi_{\mu}(t)$.

Démonstration. Première implication : Si $X_n \xrightarrow{\mathcal{L}} X$ signifie $\forall f \in \mathcal{C}_b(\mathbf{R}^d), \mathbf{E}(f(X_n)) \longrightarrow \mathbf{E}(f(X))$. Soit $t \in \mathbf{R}^d$ fixé. $f \colon x \mapsto e^{i\langle t|t\rangle}$ est continue bornée. Donc

$$\mathbf{E}(f(X_n)) \longrightarrow \mathbf{E}(f(X))$$

$$\mathbf{E}(e^{i\langle t|X_n\rangle}) \longrightarrow \mathbf{E}(e^{i\langle t|X\rangle})$$
.

$$\forall t, \phi_{X_n}(t) \longrightarrow \phi_X(t) \quad (*)$$

On note $\mu_n = \mathbf{P} \circ X_n^{-1}$ et $\mu = \mathbf{P} \circ X^{-1}$ les lois de X_n et X. (*) implique que (μ_n) est tendue.

Conclusion de la preuve : montrons que $\mu_n \longrightarrow \mu$. Choisissons (μ_{ϕ_n}) convergeant faiblement, disons $\mu_{\phi_n} \Longrightarrow \nu$. Il suffit de montrer $\mu = \nu$. Si $\mu_{\phi_n} \Longrightarrow \nu$, alors $\forall t, \phi_{\mu_{\phi_n}}(t) \longrightarrow \phi_{\nu}(t)$. Or $\forall t, \phi_{\mu_n}(t) \longrightarrow \phi_{\mu}(t)$ par hypothèse. Donc $\forall t, \phi_{\mu}(t) = \phi_{\nu}(t)$. Donc $\mu = \nu = \lim_n \mu_n$.

Reste à montrer que $\forall t, \phi_{\mu_n}(t) \longrightarrow \phi_{\mu}(t)$ implique que (μ_n) est tendue. Dans le cas d=1, pour tout $\mathcal{A} \subset \mathbf{R}$ on a :

$$\frac{1}{a} \int_{-a}^{a} (1 - \phi_{\mu_n}(t)) dt = \frac{1}{a} \int_{-a}^{a} \left(1 - \int e^{itx} d\mu_n(x) \right) dt$$

$$= \frac{1}{a} \int_{-a}^{a} \int (1 - e^{itx}) d\mu_n(x) dt$$

$$= \int \frac{1}{a} \int_{-a}^{a} (1 - e^{itx}) dt d\mu_n(x)$$

$$= \int \frac{1}{a} \left[t - \frac{e^{itx}}{ix} \right]_{-a}^{a} d\mu_n(x)$$

$$= \int \left(2 - \frac{e^{iax} - e^{-iax}}{iax} \right) d\mu_n(x)$$

$$= 2 \int \underbrace{\left(1 - \frac{\sin(|ax|)}{|ax|} \right)}_{\geqslant 0} d\mu_n(x)$$

$$\geqslant 2 \int_{\mathcal{A}} \left(1 - \frac{\sin(|ax|)}{|ax|} \right) d\mu_n(x)$$

$$\geqslant \int_{\mathcal{A}} 2 \left(1 - \frac{1}{|ax|} \right) d\mu_n(x)$$

On choisit $\mathcal{A} = \left\{ x \in \mathbf{R} \mid 2\left(1 - \frac{1}{|ax|}\right) > 1 \right\}$. Alors

$$2\left(1 - \frac{1}{|ax|}\right) \iff 1 - \frac{1}{a|x|} > \frac{1}{2}$$
$$\iff \frac{1}{a|x|} < \frac{1}{2}$$

Th (Procédé de Cramer-Wold). *Soit* X_n , X *des v.a. sur* \mathbf{R}^d . *On a* $X_n \xrightarrow{\mathcal{L}} X \iff \forall t, \langle t \mid X_n \rangle \xrightarrow{\mathcal{L}} \langle t \mid X \rangle$.

Démonstration. La première implication est donnée par le théorème de continuité.

Implication réciproque : Soit $t \in \mathbf{R}^d$ tel que $\langle t \mid X_n \rangle \xrightarrow{\mathcal{L}} \langle t \mid X \rangle$. Par le théorème de Lévy on a : $\forall u \in \mathbf{R}, \phi_{\langle t \mid X_n \rangle}(u) \longrightarrow \phi_{\langle t \mid X \rangle}(u)$. Donc $\phi_{\langle t \mid X_n \rangle}(u) \longrightarrow \phi_{\langle t \mid X_n \rangle}(u)$. Donc $\phi_{\langle t \mid X_n \rangle}(u) \longrightarrow \phi_{\langle t \mid X_n \rangle}(u)$. $\phi_{\langle t \mid X_n \rangle}(u) \longrightarrow \phi_{\langle t \mid X_n \rangle}(u)$.

Théorème centrale limite

Not. $\mathcal{N}(m,\sigma^2)$ désigne la loi de densite $\rho(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}}$, et si $\sigma^2=0$ c'est la loi δ_m .

Pour X un vecteur gaussien, sa fonction caractéristique vérifie $\phi_X(t)=e^{i\langle t|m\rangle}e^{-\frac{t^T\Sigma t}{2}}$ où ... Th (central limite). ...