Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Shortest Path Algorithm (All Pair Shortest Path)

All Pair Shortest Path Problem

- 1. Given: A directed weighted graph G(V, E), for each edge $(v_1, v_2) \in E$ and an associated weight of an edge $w(v_1, v_2)$
- 2. Find: A shortest path from v_1 to v_2 for every pair of vertices v_1 and v_2 in V

Floyd-Warshall Algorithm: Setting up Notation

- 1. Given a directed weighted graph G(V, E), the weight of each edge $(v_1, v_2) \in E$ can be defined using an an adjacency-matrix representation W
- 2. If W is an $n \times n$ matrix,

$$w_{v_iv_j} = egin{cases} 0 & \text{if i} = \mathrm{j}, \\ \text{weight of directed edge } (v_i,\,v_j) & \text{if i}
eq \mathrm{j} \ \text{and} \ (\mathrm{i},\,\mathrm{j}) \in \mathrm{E}, \\ \infty & \text{if i}
eq \mathrm{j} \ \mathrm{OR} \ (\mathrm{i},\,\mathrm{j}) \notin \mathrm{E}. \end{cases}$$

- 3. Distance matrix $D^0 = W$
- 4. Predecessor matrix L can be defined as

$$L^0(i,j) = egin{cases} \mathsf{i} & \mathsf{if} \ (\mathsf{i},\,\mathsf{j}) \in \mathsf{E} \ \mathsf{NULL} & \mathsf{if} \ \mathsf{i} = \mathsf{j} \ \mathsf{and} \ (\mathsf{i},\,\mathsf{j})
otin \mathsf{E}. \end{cases}$$

Floyd-Warshall Algorithm

```
\begin{aligned} & \textbf{Algorithm Floyd-WarshallAPSP}(G,W) \\ & n = rows(W) \\ & D^0 = W \\ & \textbf{for } k \in n \textbf{ do} \\ & \text{let } D^k = d^k_{ij} \textbf{ be a new n \times n matrix} \\ & \textbf{for } i \in n \textbf{ do} \\ & \textbf{ for } j \in n \textbf{ do} \\ & & d^k_{ij} = min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) \\ & & \text{end for} \\ & \text{end for} \\ & \textbf{ end for} \\ & \textbf{ return } D^n \end{aligned}
```

Figure: Floyd-Warshall Algorithm

Graph

k=0

	а	b	С	d
а	0	12	4	∞
b	6	0	∞	8
С	∞	3	0	∞
d	∞	10	2	0

$$k = 1 (v_i = a)$$

	a	b	С	d
а	0	12	4	∞
b	6	0	10	8
С	∞	3	0	∞
d	∞	10	2	0

$$k = 2 (v_i = a)$$

	a	b	С	d
а	0	12	4	20
b	6	0	10	8
С	∞	3	0	∞
d	∞	10	2	0

$$k = 2 (v_i = c)$$

	a	b	С	d
а	0	12	4	20
b	6	0	10	8
С	9	3	0	11
d	∞	10	2	0

$$k = 2 (v_i = b)$$

	a	b	С	d
а	0	12	4	20
b	6	0	10	8
С	9	3	0	11
d	16	10	2	0

$$k = 3 (v_i = a, v_j = b)$$

	а	b	С	d
а	0	7	4	20
b	6	0	10	8
С	9	3	0	11
d	16	10	2	0

$$k = 3 (v_i = a, v_j = d)$$

		a	b	С	d
a	1	0	7	4	15
b)	6	0	10	8
C		9	3	0	11
c	ł	16	10	2	0

Thank you