MEMS Structural Reliability and DRIE: How Are They Related?

AMFitzgerald-Tegal Collaboration Alissa M. Fitzgerald, Ph.D. | July 27, 2010

Overview

- About AMFitzgerald and Tegal
- Motivation for this study
 - Deep reactive ion etch (DRIE)
 - Brittle material properties
- Fracture strength of three DRIE recipes
- Practical application of strength data

Mission

MEMS Product Development

We turn your ideas into silicon.

Fully integrated services: concept to foundry

- Complete design and project management
- Feasibility and cost analysis
- Design optimization using simulation
- Process development on 100 mm or 150 mm wafers
 - Prototype fabrication with own staff engineers at UC Berkeley's Microlab
- Test system development
- Packaging, system integration
- Technology transfer to foundries for production

Tegal ICP Product Range... From R&D to mass production

Contact Paul Werbaneth: (707) 765-5608 pwerbane@tegal.com

100 % Process Compatibility

Motivation for this study

- Many MEMS devices are fabricated by DRIE
- Trench sidewall roughness is a function of DRIE recipe
- Smoother surfaces typically exhibit higher fracture strengths
- How does fracture strength vary with DRIE recipe (sidewall scallop size)?

Deep Reactive Ion Etch (DRIE) and MEMS

- Fundamental etch process for fabricating vertical sidewalls, high-aspect ratio structures
 - MEMS
 - Gyroscopes
 - Accelerometers
 - Microphones
 - Etc.
 - 3D structures
 - Through silicon vias (TSV)
 - Electrical isolation trenches

Source: Chipworks
Bosch SMB380 3-axis accelerometer

Tegal DRIE for TSV application

The Bosch DRIE Process

A cyclic process alternating between etch and passivation

Two types of DRIE surface features

 The cyclic nature of the Bosch process forms an undulating etched sidewall

- Mask edge roughness transferred during silicon etch, forming vertical ridges
 - a.k.a "micro-masking"

Scallop depth vs. etch rate (for ~ 25% open area)

Brittle material behavior

- Ductile materials (metals) fail at yield strength
 - Well-defined limit
- Brittle materials (silicon, glass) have a fracture toughness
 - Strength is a function of flaw distribution (size, location)
 - DRIE creates surface flaws!
- MEMS structural reliability depends on etched surface properties

Ductile Behavior

Stress,

Stress,

Brittle Behavior

Theoretical stress-flaw size relationship for silicon

Measure the fracture strength of three different etch recipes

Three different etch recipes: close-up view

Shallower scallops, but more apexes

150 nm

1500 nm

Which flaws are most significant?

3500 nm

Fourth surface type: the result of poor resist prep

Resist eroded; hard mask revealed

Sidewall micromasking

Corner Erosion

Measuring surface strength: four-point bend specimens

Simple but ideal test:

- Uniform maximum stress develops on beam outer surface
- Strength calculated analytically from measured fracture load
- No need for inspection or modeling of each individual specimen
 - Cost-effective
 - Efficient

Follows ASTM D 6272-02

Test specimen fabrication

- Test specimens etched using the different DRIE recipes
 - Through-wafer etch of a double-polished wafer
- Design allows easy handling and testing in macro-scale apparatus

DRIE-etched silicon test beams L = 8 mm, b = 300 μ m, d = 310 μ m

Polished surface

Etched sidewall

Test apparatus

- Specially-designed test fixtures mounted to Instron 5542
- 90° rotation of specimen allows selection of either polished or etched surface

Measure load to fracture

Results: Fracture strength distribution vs. DRIE recipe

Weibull analysis follows ASTM C 1239-07

Observations

- Polished surface ~ 2x stronger than etched surfaces
- 40% difference in characteristic strength across three recipes
- Mask preparation influences surface strength
 - Resist recipe AND etch recipe are important
- Etch recipes have statistically distinct Weibull parameters
 - "Figures of Merit" for process control monitoring

Applications for fracture strength data

Foundry/Etch Tool Selection	 Compare fracture strengths across recipes, etch tools, foundries Make informed purchase decisions
Cost Savings	 Informed etch recipe selection to optimize wafer throughput without sacrificing reliability Reduce development time Improve yield
Quality Control	 Monitor etch process stability Across-wafer uniformity Diagnose in-process fracture failures Improve mechanical reliability
Design	 Reliability simulation, fracture prediction Performance improvements Size reduction

AMFitzgerald Fracture Prediction Methodology

- Identifies where and when a device is most likely to break
- Informed design
- Reduction of time to market: fewer design, fab, test cycles required
- Process IP stays secure: fabrication and fracture of test specimens is all that's needed

Probability of Failure Vs. Applied Force 100 Characteristic strength estimate 90 within 12% of Percent Probability of Fallure actual 63.2% 50 Characteristic strength estimate within 7% of actual Torsion Prediction Torsion Experiment --- Tension Prediction Tension Experiment 2.5 5.5 Force, N

Summary

- Fracture strength varied by 40% across recipes tested
- Mask preparation influences surface strength
 - Resist recipe AND etch recipe are important
- The methods used here have broad applicability to recipe/tool/foundry selection, quality control and design
- Contact Alissa Fitzgerald (amf@amfitzgerald.com)
 - Information on test services and fracture prediction
 - A copy of the slides

Acknowledgments

- Brent Huigens, Dawn Hilken, Carolyn White
- Tegal: Geneviève Bèïque, Florent Modica, Paul Werbaneth
- Instron Corporation: Karl Malchar

