Résumé de cours : Semaine 26, du 11 avril au 15.

Première partie

Les fractions rationnelles

1 Corps des fractions d'un anneau intègre

Théorème. Soit A un anneau intègre. Il existe un corps K, unique à un isomorphisme près, tel que A est un sous-anneau de K, et tel que tout élément de K peut s'écrire sous la forme $\frac{a}{b}$ où $(a,b) \in A^2$ avec $b \neq 0$. a est appelé le numérateur et b le dénominateur de l'écriture $\frac{a}{b}$. K est appelé le **corps des fractions** de A. C'est le plus petit corps contenant A.

2 Forme irréductible

Notation. K désigne un corps quelconque.

Définition. On note $\mathbb{K}(X)$ le corps des fractions de l'anneau intègre $\mathbb{K}[X]$. Les éléments de $\mathbb{K}(X)$ sont appelés des fractions rationnelles en l'indéterminée X.

Définition. Soit $F \in \mathbb{K}(X)$.

 $\frac{P}{Q}$ est un représentant irréductible de F si et seulement si $F=\frac{P}{Q}$ et si $P\wedge Q=1.$ $\frac{P}{Q}$ est un représentant unitaire de F si et seulement si $F=\frac{P}{Q}$ et si S est unitaire.

Propriété. Soit $F \in \mathbb{K}(X)$.

F possède un unique représentant irréductible et unitaire. Si on le note $\frac{P}{Q}$, alors

les représentants irréductibles de F sont les $\frac{\lambda P}{\lambda Q}$ où $\lambda \in \mathbb{K}^*,$

et les représentants quelconques de F sont les $\frac{LP}{LQ}$ où $L \in \mathbb{K}[X] \setminus \{0\}$.

Il faut savoir le démontrer.

3 Degré

$$\textbf{D\'efinition.} \ \deg\Bigl(\frac{P}{Q}\Bigr) \stackrel{\Delta}{=} \deg(P) - \deg(Q) \in \mathbb{Z} \cup \{-\infty\}.$$

Propriété. Soit $F, G \in \mathbb{K}(X)$.

- $\deg(F+G) \leq \max(\deg(F), \deg(G))$, avec égalité lorsque $\deg(F) \neq \deg(G)$. Il faut savoir le démontrer.
- $-- \deg(FG) = \deg(F) + \deg(G)).$
- $-- \deg(FG^{-1}) = \deg(F) \deg(G)).$

4 Racines et pôles

Définition. Soit $F \in \mathbb{K}(X)$ une fraction rationnelle admettant pour représentant irréductible $\frac{A}{B}$.

- Les racines de F sont les racines de F. Pour tout $a \in \mathbb{K}$ et f et f de multiplicité f si et seulement si f est racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f f est une racine de f de multiplicité f est une racine de f est une racine de f de multiplicité f est une racine de f est une
- Les pôles de F sont les racines de B. Pour tout $a \in \mathbb{K}$ et $m \in \mathbb{N}$, a est un pôle de F de multiplicité m si et seulement si a est racine de B de multiplicité m.

Définition. Si
$$F = \frac{P}{Q} \in \mathbb{C}[X]$$
, on note $\overline{F} = \frac{\overline{P}}{\overline{Q}}$.

Propriété. L'application $P \mapsto D(X) \longrightarrow D(X)$ est un isomorphisme de corps.

Propriété. Soit $F \in \mathbb{C}(X)$, $\alpha \in \mathbb{C}$ et $m \in \mathbb{N}$. α est racine (resp : pôle) de F de multiplicité m si et seulement si $\overline{\alpha}$ est racine (resp : pôle) de \overline{F} de multiplicité m.

Corollaire. Si $F \in \mathbb{R}(X)$ et si α est racine de F (resp : racine de multiplicité m), alors $\overline{\alpha}$ est aussi une racine de F (resp : racine de multiplicité m).

5 Fonctions rationnelles

Définition. Soit $F \in \mathbb{K}(X)$ une fraction rationnelle admettant pour représentant **irréductible** $\frac{A}{B}$ Notons \mathcal{P} l'ensemble de ses pôles.

La fonction rationnelle associée à F est l'application $x \longmapsto \frac{\tilde{A}(x)}{\tilde{B}(x)}.$

Propriété. Si deux fractions rationnelles coïncident pour une infinité de valeurs de \mathbb{K} , elles sont égales.

Il faut savoir le démontrer.

6 Composition

Définition. Si
$$P = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{K}[X]$$
 et $F \in \mathbb{K}(X)$, $P \circ F = P(F) \stackrel{\Delta}{=} \sum_{n \in \mathbb{N}} a_n F^n$.

Propriété. Pour tout $F \in \mathbb{K}(X)$,

l'application $P \longmapsto P(F)$ est un morphisme d'anneaux de $\mathbb{K}[X]$ dans $\mathbb{K}(X)$.

Lemme : Soit $P \in \mathbb{K}[X]$ et $F \in \mathbb{K}(X)$. Si $P \neq 0$ et si $F \notin \mathbb{K}$, alors $P \circ F \neq 0$.

Définition. Soit $F \in \mathbb{K}(X)$ et $G \in \mathbb{K}(X) \setminus \mathbb{K}$. Si $F = \frac{P}{Q}$, alors on pose $F \circ G = F(G) = \frac{P(G)}{Q(G)}$.

Q Q(G) Propriété. Pour tout $G \in \mathbb{K}(X) \setminus \mathbb{K}$, $F \longmapsto F(G)$ est un endomorphisme du corps $\mathbb{K}(X)$.

1 Topilete: Total total of C ma(1) (ma, 1 . . . / 1 (o) est thi endomorphisme du corps ma(1).

7 Dérivation

Définition. Soit $F = \frac{P}{Q} \in \mathbb{K}(X)$. On pose $F' \stackrel{\Delta}{=} \frac{P'Q - Q'P}{Q^2} \in \mathbb{K}(X)$.

Définition. Par récurrence, on peut définir la dérivée n-ième formelle d'une fraction rationnelle.

Propriété. Pour tout $F \in \mathbb{R}(X)$ et $n \in \mathbb{N}$, $\widetilde{F^{(n)}} = \widetilde{F}^{(n)}$.

Propriété. Pour tout $F \in \mathbb{K}[X]$, $\deg(F') \leq \deg(F) - 1$, avec égalité lorsque $\operatorname{car}(\mathbb{K}) = 0$ et $\deg(F) \notin \{0, -\infty\}$.

Il faut savoir le démontrer.

Propriété. Soit $F, G \in \mathbb{K}(X)$, $a \in \mathbb{K}$ et $n \in \mathbb{N}$.

- F'(F+G)' = F'+G', et plus généralement, $(F+G)^{(n)} = F^{(n)}+G^{(n)}$.
- (aF)' = aF', et plus généralement, $(aF)^{(n)} = aF^{(n)}$.
- -(FG)' = F'G + FG'.
- Si $G \neq 0$, $\left(\frac{F}{G}\right)' = \frac{F'G G'F}{G^2}$.

Propriété. Pour tout $n \in \mathbb{N}$ et $F_1, \ldots, F_n \in \mathbb{K}(X)$, $(F_1 \times \cdots \times F_n)' = \sum_{i=1}^n F_i' \prod_{i \neq i} F_j$.

Formule de Leibniz : $(FG)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} F^{(k)} G^{(n-k)}$.

Propriété. Pour tout $F, G \in \mathbb{K}(X)$, avec $G \notin \mathbb{K}$, $(F \circ G)' = G' \times (F' \circ G)$.

8 Décomposition en éléments simples.

8.1 Partie entière

Définition. Un élément simple de $\mathbb{K}(X)$ est une fraction rationnelle de la forme $\frac{P}{Q^m}$, où $m \in \mathbb{N}^*$ et $P, Q \in \mathbb{K}[X]$, avec Q irréductible et $\deg(P) < \deg(Q)$.

Propriété de la partie entière : Soit $F = \frac{A}{S} \in \mathbb{K}(X)$. Il existe un unique couple $(E, B) \in \mathbb{K}[X]^2$ tel que $F = E + \frac{B}{S}$ avec $\deg(B) < \deg(S)$. De plus, si $\frac{A}{S}$ est irréductible alors $\frac{B}{S}$ l'est également. E est la partie entière de F. Il faut savoir le démontrer.

8.2 Divisions successives

Méthode des divisions successives pour décomposer en éléments simples une fraction de la forme $\frac{B}{S^m}$ où S est un polynôme irréductible de $\mathbb{K}[X]$:

A connaître.

8.3 Le théorème

Théorème de décomposition en éléments simples :

Soit $F \in \mathbb{K}(X)$. On peut toujours écrire F sous la forme $F = \frac{A}{S_1^{m_1} S_2^{m_2} \cdots S_n^{m_n}}$, où S_1, S_2, \dots, S_n sont des polynômes irréductibles dans $\mathbb{K}[X]$, $m_1, \ldots, m_n \in \mathbb{N}^*$ et $A \in \mathbb{K}[X]$. Alors il existe un unique $E \in \mathbb{K}[X]$ et une unique famille $(T_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m_i}}$ de polynômes de $\mathbb{K}[X]$ tels que

$$F = E + \sum_{i=1}^{n} \left(\sum_{j=1}^{m_i} \frac{T_{i,j}}{S_i j} \right) \text{ avec pour tout } i \in [1; n] \text{ et } j \in [1; m_i], \deg(T_{i,j}) < \deg(S_i).$$

Cette égalité s'appelle la décomposition en éléments simples de F sur \mathbb{K} Le polynôme E est la partie entière de F.

Pour $i \in [1; n]$, la somme $\sum_{i=1}^{m_i} \frac{T_{i,j}}{S_i^{j}}$ s'appelle la partie polaire de F relative au polynôme S_i .

8.4 Dérivée logarithmique

Propriété. Soit P un polynôme scindé dans $\mathbb{K}[X]$. Alors, en notant $\alpha_1, \ldots, \alpha_n$ les racines de P et m_1, \ldots, m_n leurs multiplicités respectives, $\frac{P'}{P} = \sum_{i=1}^{n} \frac{m_i}{X - \alpha_i}$.

Il faut savoir le démontrer.

Dans $\mathbb{C}(X)$ et $\mathbb{R}(X)$ 8.5

Théorème de décomposition en éléments simples dans $\mathbb{C}(X)$:

Soit $F \in \mathbb{C}(X)$. On peut toujours écrire F sous la forme $F = \frac{A}{(X - \alpha_1)^{m_1} \cdots (X - \alpha_n)^{m_n}}$, où α_1,\ldots,α_n sont des poles de $F,\,m_1,\ldots,m_n\in\mathbb{N}^*$ sont leurs multiplicités et $A \in \mathbb{K}[X]$. Alors il existe un unique $E \in \mathbb{K}[X]$ et une unique famille $(\lambda_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m_i}}$ de complexes tels

que
$$F = E + \sum_{i=1}^{n} \left(\sum_{i=1}^{m_i} \frac{\lambda_{i,j}}{(X - \alpha_i)^j} \right).$$

Pour $i \in [1, n]$, la somme $\sum_{i=1}^{m_i} \frac{\lambda_{i,j}}{(X - a_i)^j}$ est la partie polaire de F relative au pôle α_i .

Théorème de décomposition en éléments simples dans $\mathbb{R}(X)$:

Soit $F \in \mathbb{R}(X)$. On peut toujours écrire F sous la forme

$$F = \frac{A}{\left(\prod_{i=1}^{n} (X - a_i)^{m_i}\right) \times \left(\prod_{i=1}^{p} (X^2 + b_i X + c_i)^{k_i}\right)},$$

où a_1,\ldots,a_n sont des poles réels de $F,\ m_1,\ldots,m_n\in\mathbb{N}^*$ sont leurs multiplicités, où pour tout $i \in \{1, \dots, p\}, \ b_i, c_i \in \mathbb{R} \text{ avec } b_i^2 - 4c_i < 0 \text{ et où } A \in \mathbb{K}[X].$ Alors il existe un unique $E \in \mathbb{K}[X]$ et trois uniques familles $(\lambda_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m_i}}, \ (f_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq k_i}}$ et $(g_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq k_i}}$

de réels tels que
$$F = E + \sum_{i=1}^{n} \left(\sum_{j=1}^{m_i} \frac{\lambda_{i,j}}{(X - \alpha_i)^j} \right) + \sum_{i=1}^{p} \left(\sum_{j=1}^{k_i} \frac{f_{i,j}X + g_{i,j}}{(X^2 + b_iX + c_i)^j} \right).$$

Méthode: En pratique, pour décomposer une fraction rationnelle F en éléments simples dans $\mathbb{R}(X)$ ou dans $\mathbb{C}(X)$,

- 1. on commence par l'écrire sous forme irréductible unitaire, $F = \frac{A}{B}$.
- 2. En effectuant la division euclidienne de A par B, on écrit $F = E + \frac{C}{B}$, où E est la partie entière de F. Lorsque $\deg(F) < 0$, il est évident que E = 0, donc on peut supprimer cette étape.
- 3. On scinde B en produit de polynômes irréductibles unitaires.
- 4. On écrit la DES de $\frac{C}{B}$ à l'aide de coefficients indéterminés.
- 5. On calcule ces coefficients indéterminés.

8.6 Quelques techniques de DES

Remarque. La technique des divisions euclidiennes successives est adaptée à la DES de fractions de la forme $\frac{P}{Q^m}$, où Q est irréductible.

Propriété. Soit $F \in \mathbb{K}(X)$ et soit $\alpha \in \mathbb{K}$ un pôle de F de multiplicité $m \in \mathbb{N}^*$. Alors le coefficient λ de l'élément simple $\frac{1}{(X-\alpha)^m}$ dans la DES de F vérifie $\lambda = [(\widetilde{X-\alpha})^m F](\alpha)$.

Il faut savoir le démontrer

Propriété. Soit $F \in \mathbb{K}(X)$ une fraction rationnelle admettant un pôle simple α . Si $\frac{A}{S}$ est un représentant irréductible de F, alors le coefficient λ de l'élément simple $\frac{1}{X-\alpha}$ dans la DES de F vérifie $\lambda = \frac{\tilde{A}(\alpha)}{\tilde{S}'(\alpha)}$.

Il faut savoir le démontrer.

Généralisation : (hors programme) On suppose que $\operatorname{car}(\mathbb{K}) = 0$. Soit $F \in \mathbb{K}(X)$ dont $a \in \mathbb{K}$ est l'un des pôles, de multiplicité m. Si $\frac{A}{S}$ est un représentant irréductible de F, alors le coefficient λ de l'élément simple $\frac{1}{(X-\alpha)^m}$ dans la DES de F vérifie $\lambda = \frac{m!\tilde{A}(\alpha)}{\widetilde{S(m)}(\alpha)}$.

Utilisation d'un développement limité : Soit $F \in \mathbb{C}(X)$ et a un pôle de F de multiplicité m. On peut écrire la DES de F sous la forme $F(X) = \sum_{i=1}^m \frac{\lambda_i}{(X-a)^i} + G(X)$. La fonction rationnelle associée à G est continue en a, donc au voisinage de a, $(t-a)^m F(t) = \sum_{i=1}^m \lambda_i (t-a)^{m-i} + O((t-a)^m)$. On peut donc calculer les λ_i en effectuant un développement limité de $(t-a)^m F(t)$ au voisinage de a puis en invoquant l'unicité du développement limité.

9 Application des fractions rationnelles au calcul intégral

9.1 Primitives d'une fraction rationnelle

Si $F \in \mathbb{R}(X)$, pour calculer $\int F(t)dt$, on décompose F en éléments simples dans $\mathbb{R}(X)$. On est ainsi ramené au problème du calcul des primitives des éléments simples de $\mathbb{R}(X)$: Lorsque $F(X) = \frac{aX + b}{(X^2 + cX + d)^{\alpha}}$, avec $\Delta = c^2 - 4d < 0$, $\overset{\wedge}{\mathbf{A}}$ connaître: on décompose le calcul de $\int F(t)dt$ en celui de $\int \frac{u'(t)}{u(t)^{\alpha}} dt$, où $u(t) = t^2 + ct + d$, et celui de $\int \frac{dt}{u(t)^{\alpha}}$. Pour ce dernier, on écrit $X^2 + cX + d = (X + \frac{c}{2})^2 + d - \frac{c^2}{4} = (X - p)^2 + q^2$ et on se ramène au calcul de $\int \frac{dt}{(1 + t^2)^{\alpha}}$, que l'on réalise en posant $t = \tan u$.

9.2 Fonctions rationnelles de sin et cos : hors programme

Pour calculer $\int R(\sin t, \cos t) dt$, où $R \in \mathbb{R}(X, Y)$:

Cas particulier. $\int \sin^p t \cos^q t \ dt$, avec p et q pairs. C'est le seul cas où on linéarise.

Cas général. On pose $u = \tan \frac{t}{2}$ pour se ramener à une primitive de fraction rationnelle.

Les règles de Bioche. Notons $f: t \longmapsto R(\sin t, \cos t)$.

```
Si f(-t)d(-t) = f(t)dt, on posera x = \cos t (On a \cos(-t) = \cos t)
```

Si
$$f(\pi - t)d(\pi - t) = f(t)dt$$
, on posera $x = \sin t$ (On a $\sin(\pi - t) = \sin t$),

Si
$$f(\pi + t)d(\pi + t) = f(t)dt$$
, on posera $x = \tan t$ (On a $\tan(\pi + t) = \tan t$).

Si deux des trois relations précédentes sont vérifiées, alors la troisième l'est aussi. On pose alors $x = \sin^2 t$ ou $x = \cos(2t)$.

9.3 Fonctions rationnelles en sh et ch : hors programme

Pour calculer $\int R(\operatorname{sh}t,\operatorname{ch}t)\ dt$, où $R\in\mathbb{R}(X,Y)$, on regarde quel procédé serait utilisé pour le calcul de $\int R(\sin t,\cos t)\ dt$ et on le transpose en trigonométrie hyperbolique. Dans le cas général, on peut poser $x=e^t$.

Deuxième partie

Les matrices (début)

10 Vocabulaire

Définition. Soit $(n, p) \in \mathbb{N}^{*2}$. On appelle *matrice* à n lignes et à p colonnes (à coefficients dans \mathbb{K}) toute famille de scalaires indexée par $\mathbb{N}_n \times \mathbb{N}_p$.

Si $M = (m_{i,j})_{(i,j) \in \mathbb{N}_n \times \mathbb{N}_p} = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}^{1}$, on représente M sous la forme suivante :

$$M = \begin{pmatrix} m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix},$$

où le $(i,j)^{\text{ème}}$ coefficient est situé à l'intersection de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne.

Notation. L'ensemble des matrices à coefficients dans \mathbb{K} , à n lignes et p colonnes est noté $\mathcal{M}_{\mathbb{K}}(n,p)$ ou $\mathcal{M}_{n,p}(\mathbb{K})$. $\mathcal{M}_{\mathbb{K}}(n,n)$ est souvent noté $\mathcal{M}_{\mathbb{K}}(n)$ ou $\mathcal{M}_{n}(\mathbb{K})$.

Définitions:

- Une *matrice ligne* est une matrice ne possédant qu'une ligne.
- Une *matrice colonne* est une matrice ne possédant qu'une colonne.
- Une *matrice carrée* est une matrice possédant autant de lignes que de colonnes.
- $M = (m_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$ est une **matrice triangulaire supérieure** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \ (i>j \Longrightarrow m_{i,j}=0).$
- M est une **matrice triangulaire inférieure** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \ (i < j \Longrightarrow m_{i,j} = 0).$

- $M = (m_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$ est une **matrice diagonale** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \quad (i \neq j \Longrightarrow m_{i,j} = 0)$. On note alors $M = diag(m_{1,1}, \ldots, m_{n,n})$.
- Une matrice carrée et diagonale est dite *scalaire* lorsque tous ses coefficients diagonaux sont égaux. En particulier, lorsque tous ses coefficients diagonaux sont égaux à 1, on obtient la matrice identité, notée I_n .

Remarque. On identifiera \mathbb{K}^n avec $\mathcal{M}_{\mathbb{K}}(n,1)$ (ensemble des matrices colonnes).

11 Opérations sur les matrices (début)

Définition. On sait dèjà que $\mathcal{M}_{\mathbb{K}}(n,p) = \mathbb{K}^{\mathbb{N}_n \times \mathbb{N}_p}$ est un \mathbb{K} -espace vectoriel. On dispose ainsi des lois d'addition et de multiplication par un scalaire.

Propriété. Soit $n, p \in \mathbb{N}^*$. La base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ est la famille de matrices $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ définie par : Pour tout $i \in \{1, \ldots, n\}$ et $j \in \{1, \ldots, p\}$, $E_{i,j} = (\delta_{a,i}\delta_{b,j})_{\substack{1 \leq a \leq n \\ 1 \leq b \leq n}}$.

 $E_{i,j}$ est appelée la (i,j)-ième matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$. Tous ses coefficients sont nuls, sauf celui de position (i,j) qui est égal à 1.

Ainsi, pour tout $M \in \mathcal{M}_{n,p}(\mathbb{K})$, $M = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} M_{i,j} E_{i,j}$.

On en déduit que $\dim(\mathcal{M}_{n,p}(\mathbb{K})) = np$.

Convention : Lorsque A est une matrice, on notera $A_{i,j}$ son coefficient de position (i,j).

Définition du produit matriciel : Soit $(n, p, q) \in (\mathbb{N}^*)^3$. Soient $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$. On appelle **produit des matrices** A et B la matrice $C \in \mathcal{M}_{\mathbb{K}}(n, q)$ définie par

$$AB_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}$$
.

Formule pour le produit de trois matrices : Soit $(n, m, l, p) \in (\mathbb{N}^*)^4$. Soient $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{m}), B \in \mathcal{M}_{\mathbb{K}}(\mathbf{m}, \mathbf{l})$ et $C \in \mathcal{M}_{\mathbb{K}}(\mathbf{l}, p) : [(AB)C]_{i,h} = [A(BC)]_{i,h} = \sum_{\substack{1 \leq j \leq m \\ 1 \leq k \leq l}} A_{i,j}B_{j,k}C_{k,h}$.

Il faut savoir le démontrer.