muscle_O2_delivery_CellML1_0_model

1 "environment" component

This component has no equations.

2 "muscle_O2_delivery" component

This component has no equations.

3 "M_O2_blood_supply" component

OM1

O2ARTM = OVA * BFM

4 "M_venous_O2_content" component

 $OM2_to_OM4$

$$OVS = \frac{(O2ARTM - RMO)}{HM * 5.25 * BFM}$$

 $OM5_and_OM5A$

$$PVO = 57.14*OVS*{(EXC)}^{EXCXP2}$$

${\small 5~~"metabolic_O2_consumption_by_M_tissue"~component}\\$

 $OM17_and_OM18$

$$P2O = \begin{cases} 38; & \text{if } PMO > 38, \\ PMO & \text{otherwise.} \end{cases}$$

$OM19_to_OM23$

$$MMO = AOM * OMM * EXC * \left(1 - \frac{((38.0001 - P2O))^3}{54872}\right)$$

6 "delivery_of_O2_to_M_tissues" component

 $OM6_and_OM8$

$$RMO = (PVO - PMO) * PM5 * BFM$$

7 "volume_of_O2_in_M_tissue" component

OM9

$$DO2M = (RMO - MMO)$$

OM10

$$\frac{\mathrm{d}(QOM1)}{\mathrm{d}(time)} = DO2M$$

OM11

$$QOM = \begin{cases} 0.0001; & \text{if } QOM1 < 0.0001, \\ QOM1 & \text{otherwise.} \end{cases}$$

 $8 \quad \text{``pressure_of_O2_in_M_tissue_cells''} \ component \\ \text{OM12}$

$$PMO = PK2 * QOM$$

9 "parameter_values" component

This component has no equations.