Департамент образования города Москвы

Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет»

Институт цифрового образования Департамент информатики, управления и технологий

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Инструменты для хранения и обработки больших данных» Направление подготовки 38.03.05 — бизнес-информатика Профиль подготовки «Аналитика данных и эффективное управление» (очная форма обучения)

Выполнила:

Студентка группы АДЭУ-221 Вознесенская В. Е.

Проверил:

Босенко Т. М., доцент

КОМПЛЕКСНАЯ АРХИТЕКТУРА ХРАНИЛИЩА БОЛЬШИХ ДАННЫХ ДЛЯ КРУПНОГО ОНЛАЙН-РИТЕЙЛЕРА

Цель работы: разработать комплексную архитектуру хранилища больших данных для предложенного бизнес-сценария, обосновать выбор технологического стека и визуализировать потоки данных.

Вариант 1

Крупный онлайн-ритейлер: анализ поведения пользователей в реальном времени, прогнозирование спроса, персонализация рекомендаций. Источники: кликстрим с сайта/приложения, транзакции, отзывы клиентов, данные из CRM.

1. Описание бизнес-процесса

Бизнес-процесс: «Персональные рекомендации пользователю»

1.1 Цель процесса

Показывать каждому посетителю сайта/мобильного приложения персональные товары и акции, чтобы увеличить клики, конверсии и средний чек. Рекомендации должны работать в реальном времени (или near-real-time) и улучшаться по мере получения новых данных.

- 1.2 Участники процесса
- пользователь заходит на сайт, просматривает товары, совершает покупки;
- сайт или приложение показывает товары и собирает информацию о действиях пользователя;
- команда данных собирает, хранит и анализирует информацию;
- команда маркетинга использует результаты для акций и персональных предложений;
- аналитики следят за показателями и оценивают эффективность рекомендаций

1.3 Источники данных

- кликстрим (clickstream) все действия пользователя на сайте или в приложении: какие страницы он смотрит, куда нажимает, что добавляет в корзину;
- транзакции информация о заказах: что куплено, когда и на какую сумму;
- отзывы тексты и оценки, которые пользователи оставляют о товарах;
- CRM данные о клиентах: профиль, история покупок, уровень лояльности и т. д.

1.4 Выход

- список персональных рекомендаций для каждого пользователя;
- статистика по тому, как часто пользователи кликают на рекомендации и покупают;
- отчёты и дашборды для аналитиков и менеджеров.

1.5 Основные этапы процесса

На рисунке 1.1 кратко показаны основные этапы данного бизнеспроцесса.

Рисунок 1.1 Основные этапы бизнес-процесса «Персональные рекомендации пользователю»

2. Анализ требований

2.1 Источники данных

Согласно бизнес-процессу у нас есть несколько источников данных, они представлены в таблице 2.1.

Таблица 2.1. Источники данных

Источник	Тип данных	Скорость	Объем	Примечания/Использовани
данных		поступления	данных	e
Кликстрим	Потоковые данные	Реальное	Высокий	Используется для
(clickstream	(события	время / near-	(много	формирования
)	пользователя)	real-time	действий	персональных
			на сайте)	рекомендаций в реальном
				времени
Транзакции	Структурированные	Пакетная	Средний	Используется для анализа
(заказы)	(таблицы с	загрузка		покупок, формирования
	покупками)	(batch)		моделей рекомендаций
Отзывы	Неструктурированны	Периодическ	Небольшо	Анализ отзывов для
	е (текст) +	и / batch	й —	улучшения рекомендаций и
	структурированные		средний	оценки товаров
	(оценки)			
CRM	Структурированные	Периодическ	Небольшо	Используется для
(клиенты)	(профиль, история	и / batch	й	персонализации
	покупок, уровень			предложений и
	лояльности)			сегментации пользователей

Вывод по источникам: данные разнообразные по типу и скорости поступления. Кликстрим — потоковые и высокоскоростные, остальные — чаще загружаются пакетами (batch).

2.2 Бизнес-цели

- персональные рекомендации (рекомендации должны работать в реальном времени или почти в реальном времени (near-real-time), список товаров или акций, которые интересны каждому пользователю);
- аналитика эффективности (отслеживать клики на рекомендации и покупки, строить отчеты и дашборды для команды маркетинга и аналитиков;

— использование моделей машинного обучения (ML): (ML модели будут анализировать поведение пользователей и прогнозировать, что им может понравиться, модели должны обновляться по мере поступления новых данных).

Вывод: основная цель — увеличить доход компании за счёт персональных рекомендаций, которые могут увеличить средний чек у каждого пользователя.

2.3 Резюме требований

Скорость обработки данных:

- Кликстрим real-time/near-real-time
- Транзакции, отзывы, CRM batch (обновление периодически) Типы данных:
- Структурированные: транзакции, CRM
- Потоковые: кликстрим
- Неструктурированные: тексты отзывов Цели аналитики:
- Реальные рекомендации пользователям в режиме почти реального времени
- Отчеты и дашборды для аналитиков и маркетинга
 - 3. Выбор компонентов архитектуры
 - 3.1 Слой сбора данных (Ingestion)

Выбор: Apache Kafka

Обоснование:

- позволяет собирать потоковые данные в реальном времени (кликстрим);
- надежная система, поддерживает масштабирование, легко подключается к другим инструментам обработки;
- можно интегрировать с batch-данными через коннекторы (например, для транзакций или CRM).

Альтернатива: Amazon Kinesis — хорош для облака AWS, но Kafka универсальнее и не привязана к конкретному облаку.

3.2 Слой хранения (Storage)

Выбор: MinIO+ Delta Lake

Обоснование:

- MinIO это аналог S3, который легко разворачивается в России;
- Delta Lake добавляет управление версиями, транзакции, корректные обновления данных. Поддерживает batch и streaming, что идеально для кликстрима и транзакций;
- подходит для хранения кликстрима, транзакций, отзывов, CRM.
 Плюсы: гибко, недорого, не зависит от зарубежных сервисов,
 совместимо со Spark.
 - 3.3 Слой обработки (Processing)

Выбор: Apache Spark (Databricks)

Обоснование:

- Spark позволяет обрабатывать большие объемы данных быстро;
- поддерживает и batch, и streaming (важно для кликстрима);
- Databricks упрощает работу со Spark: настройка, управление, интеграция с S3/Delta Lake, ML;

Плюсы: мощно, универсально, можно запускать модели машинного обучения.

3.4 Слой аналитики и визуализации (Analytics & Visualization)

Выбор: Metabase

Обоснование:

- простая и понятная платформа для дашбордов и отчетов;
- бесплатная и быстро настраивается;
- подходит для маркетологов и аналитиков, не требует глубоких технических знаний;

Плюсы: экономично, удобно, быстрый старт.

3.5 Слой оркестрации (Orchestration)

Выбор: Apache Airflow

Обоснование:

- управляет потоками данных и расписанием задач (например, обновление моделей, сбор batch-данных);
- популярен, много документации, легко интегрируется с Kafka, Spark и S3.

Плюсы: надежно, гибко, контроль всего процесса.

3.6 Управление данными (Data Governance)

Выбор: Amundsen

Обоснование:

- позволяет следить за качеством и структурой данных, понимать, откуда данные пришли и кто их использует;
- помогает соблюсти стандарты и ускоряет работу команды.

Плюсы: прозрачность, удобство для команды, ускоряет поиск нужных данных.

В таблице 3.1 представлен итоговый стек.

Таблица 3.1. Выбранные компоненты архитектуры

Слой / Назначение	Инструмент	Почему выбран (кратко)
Сбор данных	Apache Kafka	Реальное время, масштабируемость,
(Ingestion)		коннекторы
Хранилище (Storage)	MinIO + Delta Lake	Локально доступно, версии данных, batch +
		streaming
Обработка данных	Apache Spark	Большие объёмы, ML, поддержка потоков
	(Databricks)	
Оркестрация	Apache Airflow	Планирование задач, интеграции,
		автоматизация
Аналитика и	Metabase	Бесплатно, просто, подходит аналитикам
визуализация		
Управление данными	Amundsen	Каталог данных, поиск, контроль качества

4. Проектирование архитектуры

Распишем поток данных от источников до пользователей.

Источники данных:

- кликстрим (события пользователей на сайте и в приложении);
- транзакции (заказы);
- CRM (профили клиентов, история покупок, уровень лояльности);
- отзывы (текстовые отзывы и оценки товаров). Сбор данных (Ingestion):
- потоковые данные (кликстрим) поступают в Apache Kafka, который буферизует их и передает дальше;
- пакетные данные (транзакции, CRM, отзывы) загружаются через Apache Airflow по расписанию; Хранилище данных (Storage):
- все сырые и обработанные данные сохраняются в MinIO;
- над MinIO используется Delta Lake, который управляет версиями данных, объединяет потоковые и пакетные данные, обеспечивает обновление, очистку и хранение в одном формате, готовит данные для аналитики и моделей.

Обработка данных (Processing):

— Apache Spark (Databricks) обрабатывает данные: строит агрегированные таблицы и отчеты, тренирует модели машинного обучения для персональных рекомендаций, обновляет данные в реальном времени и пакетном режиме, обновляет данные в Delta Lake.

Аналитика и визуализация:

- результаты обработки отображаются в Metabase, где маркетологи и аналитики видят дашборды и отчеты;
- маркетинг получает информацию о том, какие рекомендации работают лучше, аналитики контролируют эффективность моделей;
- ВІ-запросы могут идти к Delta Lake. Безопасность и управление доступом:

данные шифруются при хранении и передаче:
— TLS для Kafka и MinIO,
— настройки шифрования внутри MinIO;
разграничение доступа проходит через:
— RBAC (роли) в Metabase, Airflow, Spark, MinIO;
— маркетинг видит только дашборды, аналитики — витрины и агрегаты,
инженеры — технические слои.
Мониторинг и логирование:
— Prometheus + Grafana следят за состоянием потоков данных, нагрузкой
и задержками;
— ELK Stack (Elasticsearch, Logstash, Kibana) собирает и анализирует логи
Kafka, Spark и Airflow, MinIO помогает диагностировать ошибки и
контролировать процессы.
Стратегия масштабирования и отказоустойчивости:
Масштабирование:
— добавление брокеров Kafka,
— увеличение узлов Spark,
— горизонтальное расширение MinIO.
Отказоустойчивость:
— репликация в Kafka и MinIO,
— версии данных в Delta Lake с возможностью отката,
— повторные перезапуски задач в Airflow и Spark.

5. Создание диаграммы архитектуры

На рисунке 5.1 представлена визуальная схема архитектуры.

Рисунок 5.1. Диаграмма архитектуры хранилища больших данных онлайн-ритейлера согласно выбранному бизнес-процессу

1) Источники данных (Data Sources)

Система получает данные из четырёх источников:

- Clickstream действия пользователей на сайте или в приложении;
- Transactions информация о заказах и покупках;
- CRM профили клиентов и история взаимодействий;
- Reviews отзывы и оценки товаров.

2) Сбор данных (Ingestion)

Потоковые данные (clickstream) поступают в Apache Kafka, где временно хранятся и передаются дальше. Это позволяет обрабатывать события пользователей почти в реальном времени.

3) Хранилище данных (Storage)

Все собранные данные сохраняются в MinIO.

Поверх него работает Delta Lake, обеспечивая целостность,

управление версиями и поддержку как потоковой, так и пакетной обработки.

4) Обработка данных (Processing)

B Apache Spark (Databricks) данные очищаются, объединяются и анализируются.

Здесь обучаются и обновляются модели машинного обучения, которые создают персональные рекомендации для пользователей.

5) Output (Выходные результаты)

Формируются персонализированные рекомендации для пользователей: после обработки данных в Apache Spark (Databricks) и анализа моделей машинного обучения формируется список товаров или акций, подходящих каждому пользователю. Эти рекомендации возвращаются на сайт или в мобильное приложение и отображаются в реальном времени.

6) Аналитика и визуализация (Analytics)

Обработанные результаты передаются в Metabase, где создаются дашборды и отчёты для аналитиков и менеджеров.

Этот слой позволяет отслеживать эффективность рекомендаций, конверсии и продажи.

7) Мониторинг и управление (Monitoring)

Компоненты мониторинга и access control обеспечивают стабильную работу потоков данных и своевременное реагирование на сбои.

8) Безопасность (Security)

Используется шифрование данных и контроль доступа, чтобы защитить данные и разграничить права пользователей.

9) Масштабируемость и отказоустойчивость

Kafka replication — резервирование потоковых данных;

Delta Lake versioning — возможность отката к предыдущим версиям данных;

Auto scaling — автоматическое масштабирование при росте нагрузки.

6. Описание компонентов и обоснование выбора

Apache Kafka (Ingestion)

Отвечает за сбор потоковых данных (clickstream) в реальном времени.

Выбор: обеспечивает высокую производительность, масштабируемость и надёжность; легко интегрируется с другими инструментами.

MinIO + Delta Lake (Storage)

Хранят все данные — как потоковые, так и пакетные.

Выбор: MinIO — высокопроизводительное и совместимое с S3 объектное хранилище, которое можно развернуть локально или в облаке; Delta Lake добавляет управление версиями, очистку и поддержку batch/stream обработки.

Apache Spark (Databricks) (Processing)

Используется для обработки больших объёмов данных и обучения моделей машинного обучения.

Выбор: мощный и универсальный фреймворк, поддерживает batch и streaming, Databricks упрощает управление и интеграцию.

Metabase (Analytics)

Средство визуализации и построения дашбордов.

Выбор: простое, бесплатное, не требует глубоких технических знаний, подходит аналитикам и маркетологам.

Apache Airflow (Orchestration)

Управляет процессами и расписанием задач.

Выбор: гибкий, легко интегрируется с Kafka, Spark и S3, позволяет контролировать потоки данных.

Amundsen (Data Governance)

Управляет метаданными и качеством данных.

Выбор: повышает прозрачность и ускоряет работу с данными, облегчает поиск и контроль источников.

Security и Monitoring (Encryption, Access Control, Auto Scaling)

Гарантируют безопасность, контроль доступа и устойчивость системы.

Выбор: встроенные механизмы AWS и Databricks обеспечивают защиту данных и масштабируемость без лишней сложности.

7. Анализ потенциальных проблем и их решений

В таблице 7.1 представлены потенциальные проблемы и способы их решения.

Таблица 7.1. Возможные проблемы и их решения

Потенциальная	Описание	Возможное решение
проблема		
1. Сложность	При большом объёме	Использовать Apache Airflow для
управления	событий (clickstream) может	оркестрации, Prometheus + Grafana для
потоками данных	быть трудно отслеживать	мониторинга, настроить автоматические
	сбои и задержки в Kafka и	уведомления о сбоях.
	Spark Streaming.	
2. Рост объёма	При накоплении	Ввести политику жизненного цикла
хранения данных	исторических данных объём	данных: архивировать старые данные на
(MinIO)	MinIO может быстро	менее нагруженные ноды или
	увеличиваться, что	использовать отдельные бакеты для
	потребует больше ресурсов.	архивов, хранить только актуальные
		версии в Delta Lake.
3. Обеспечение	Разные источники (CRM,	Использовать Delta Lake для
качества и	транзакции, отзывы) могут	версионирования и очистки данных, а
согласованности	содержать дубликаты или	также Amundsen для контроля качества и
данных	ошибки.	отслеживания происхождения данных.

Вывод: Анализ потенциальных проблем показывает, что основными рисками при работе с потоковыми и пакетными данными являются сложность управления потоками, рост объёма хранения и обеспечение качества данных. Для их решения предлагаются проверенные инструменты и

подходы: оркестрация через Apache Airflow и мониторинг с Prometheus + Grafana позволяют оперативно отслеживать сбои и задержки; управление жизненным циклом данных в MinIO и Delta Lake обеспечивает контроль объёма хранения и версионирование; а интеграция с Amundsen помогает поддерживать высокое качество и согласованность данных. Таким образом, комплексное применение этих решений позволяет повысить надёжность, масштабируемость и управляемость всей аналитической системы.