Predstavljanje označenih celih brojeva

Označeni celi brojevi u komplement 10 predstavi

- Sabiranje i oduzimanje brojeva sa predznakom
 - ograničen broj cifara:

- 943 trocifrena komplement 10 predstava broja -57
- n-cifarski komplement negativnog broja:
 - dodavanje 10ⁿ
 - komplementiranje

Komplementiranje

- -57
- 057 (potpuna apsolutna vrednost)
- 942 (komplement 9)
- 943 (komplement 10)
 - dodavanje jedinice na komplement 9
- +68 → 068
- $-57 \implies 057 \implies 942 \implies 943$
- prva cifra je predznak

cifra	komplement	komentar
0	9	0+9==9
1	8	1+8==9
2	7	2+7==9
3	6	3+6==9
4	5	4+5==9
5	4	5+4==9
6	3	6+3==9
7	2	7+2==9
8	1	8+1==9
9	0	9+0==9

Sabiranje i oduzimanje u komplement 10 predstavi

```
099
      (+99)
098
      (+98)
      (+97)
                 993 (-7)
                                  993
097
                                         (-7)
                                                     020 (+20)
096
      (+96)
               + 002 (+2) + 010 (+10) - 021 (+21)
002
      (+2)
      (+1)
001
000
      (0)
                 995 (-5)
                                  003
                                        (+3)
                                                     020
999
      (-1)
998
      (-2)
                                                   + 979
      (-97)
903
      (-98)
902
      (-99)
901
                                                     999
900
      (-100)
```

(-1)

Izlazak van opsega

- Posledica aritmetike ograničenog broja cifara
- Primeri za 3 cifre:

Poređenje neoznačenih celih brojeva

- relacija == važi, ako je rezultat oduzimanja 0
- relacija != važi, ako rezultat oduzimanja nije 0
- relacija < važi, ako se pri oduzimanju javi izlazak van opsega (u obliku prenosa)
- relacija >= važi, ako se pri oduzimanju ne javi izlazak van opsega ili je rezultat 0
- relacija > važi, ako se pri oduzimanju ne javi izlazak van opsega i rezultat nije 0
- relacija <= važi, ako se pri oduzimanju javi izlazak van opsega (u obliku prenosa) ili je rezultat 0

Poređenje označenih celih brojeva

- relacija == važi, ako je rezultat oduzimanja 0
- relacija != važi, ako rezultat nije 0
- relacija < važi, ako je rezultat negativan (najznačajnija cifra 9) ili se pri oduzimanju izađe van opsega (najznačajnija cifra 8)
- relacija >= važi, ako je rezultat pozitivan (najznačajnija cifra 0) ili se
 pri oduzimanju izađe van opsega (najznačajnija cifra 1) ili je rezultat 0
- relacija > važi, ako je rezultat pozitivan (najznačajnija cifra 0) ili se pri oduzimanju izađe van opsega (najznačajnija cifra 1)
- relacija <= važi, ako je rezultat negativan (najznačajnija cifra 9) ili se
 pri oduzimanju izađe van opsega (najznačajnija cifra 8) ili je rezultat 0

Relacija < u komplement 10 predstavi

levi operand	desni operand	<	razlika (komplement 10 predstava)
88	99	da	088-099 == 989
-99	99	da	901-099 == 802
-19	19	da	981-019 == 962
-99	-88	da	901-912 == 989
99	88	ne	099-088 == 011
99	-99	ne	099-901 == 198
19	-19	ne	019-981 == 038
-88	-99	ne	912-901 == 011

Aritmetika ograničenog broja cifara

- Višestruka preciznost vrednost broja veća od broja cifara lokacije
- Zbog čega nam treba višestruka preciznost?
 - Primene: kriptografija, numerička matematika, inženjerstvo
- Ne važe klasični zakoni aritmetike
- Rezultat zavisi od redosleda obavljanja operacija!

$$(200+800)-500 != 200+(800-500)$$

Predstavljanje realnih brojeva

39

Predstavljanje realnih brojeva

- Pozicioni oblik: 0.000000127
- Normalizovana forma: 1.27×10⁻⁷
- Mašinska normalizovana forma (MNF) (engl. floating point representation)
 - predznak
 - **frakcija** razlomljeni deo, signifikand
 - podešeni eksponent
 - 0031270000_{MNF10}
 - 0 03 1270000
- Gubljenje preciznosti
 - greška predstave realnih brojeva

Aritmetika MNF

- "Raspakivanje" MNF
 - Određivanje predznaka rezultata
 - Izjednačavanje eksponenata (prema većem)
- Izvršavanje operacije
- Normalizacija frakcije
- "Pakovanje" MNF

Sabiranje u aritmetici MNF

```
0031270000<sub>MNF10</sub> (1.27×10<sup>-7</sup>)

+ 0091000001<sub>MNF10</sub> (1.000001 ×10<sup>-1</sup>)

0090000001<sub>MNF10</sub> (0.000001 ×10<sup>-1</sup>)

+ 0091000001<sub>MNF10</sub> (1.000001 ×10<sup>-1</sup>)
```

- Oduzimanje, množenje, deljenje
- Izlazak van opsega samo u eksponentu, prekobrojne cifre frakcije se odbacuju

Binarni brojni sistem

Binarni brojni sistem

Binarni broj je broj predstavljen u binarnom brojnom sistemu tj. sistemu sa osnovom 2

U binarnom sistemu numeričke vrednosti se predstavljaju pomoću dva različita simbola: obično 0 i l

Pozicioni brojni sistem:

$$|3| = |*|0| + 3*|0| =$$

= $|*2^3 + |*2^2 + 0*2| + |*2^0|$

2 ⁴	2 ³	2 ²	21	20	
16	8	4	2	1	
0	0	0	0	0	0 0

Gottfried Leibnitz (1646–1716)

Postupak konverzije brojeva

Konverzija celog dela dekadnog broja u binarni

Postupak konverzije brojeva

Konverzija razlomljenog dela dekadnog broja

$$\begin{array}{lllll} d_{-1}10^{-1} + d_{-2}10^{-2} + ... & = & b_{-1}2^{-1} + b_{-2}2^{-2} + ... \\ 0.375_{10} & = & b_{-1}2^{-1} + b_{-2}2^{-2} + ... & | \times 2 \\ 0 & = & b_{-1} & (\text{celi deo proizvoda}) \\ 0.75_{10} & = & b_{-2}2^{-1} + b_{-3}2^{-2} + ... & | \times 2 & (\text{razlomljeni deo proizvoda}) \\ 1 & = & b_{-2} & (\text{celi deo proizvoda}) \\ 0.5_{10} & = & b_{-3}2^{-1} + b_{-4}2^{-2} + ... & | \times 2 & (\text{razlomljeni deo proizvoda}) \\ 1 & = & b_{-3} & (\text{celi deo proizvoda}) \\ 0 & & & (\text{razlomljeni deo proizvoda}) \\ 0.375_{10} & = & 0.011_2 \\ \end{array}$$

Beskonačna periodičnost

- 0.2₁₀
- $0.2_{10} = 0.001100110011..._2 \approx 0.0011_2$
- $0.0011_2 = 0.1875_{10}$
- Greška aproksimacije: 0.0125₁₀

Konverzija iz binarnog u dekadni brojni sistem

Konverzija celog dela binarnog broja u dekadni

Konverzija iz binarnog u dekadni brojni sistem

Konverzija razlomljenog dela binarnog broja u dekadni

Heksadecimalni brojni sistem

- Baza: 16
- Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Konverzija binarnog u heksadecimalni brojni sistem:
 - Primer: $1011111_2 == 5F_{16}$
- Konverzija heksadecimalnog u binarni brojni sistem:
 - Primer: FA09₁₆==||||||||||||||||

Aritmetika ograničenog broja cifara u binarnom brojnom sistemu

Sabiranje i oduzimanje u binarnom brojnom sistemu:

a	b	suma	prenos
0	0	0	0
0	1	I	0
I	0	I	0
		0	I

00000101 (5)

+ 00000011 (3)

a	b	razlika	pozajmica
0	0	0	0
	0	I	0
I	I	0	0
0	ı	I	I

00000101 (5)

-00000011 (3)

00001000 (8)

0000010 (2)

Komplement 2 predstava označenih celih brojeva

01111111 01111110	(+127) (+126)
 00000001 00000000 11111111	(+1) (0) (-1)
 10000001 10000000	(-127) (-128)

```
+2 \rightarrow 00000010
```

 $-2 \rightarrow 0000010$ (potpuna apsolutna vrednost)

IIIIIIII (komplement I – jedinični komplement, komplement najveće cifre)

IIIIIII (komplement 2 – dvojični komplement, komplement osnove)

Izlazak van opsega kod sabiranja označenih brojeva

najznačajniji bit prvog sabirka (S ₁)	najznačajniji bit drugog sabirka (S ₂)	najznačajniji bit zbira (Z)	izlazak van opsega
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Logička funkcija izlaska van opsega kod sabiranja označenih brojeva:

$$((\sim S_1)\&(\sim S_2)\&Z)|(S_1\&S_2\&(\sim Z))$$

$$f = \overline{S_1} \cdot \overline{S_2} \cdot Z + S_1 \cdot S_2 \cdot \overline{Z}$$

Izlazak van opsega kod oduzimanja označenih brojeva

najznačajniji bit umanjenika (U ₁)	najznačajniji bit umanjioca (U ₂)	najznačajniji bit razlike (R)	izlazak van opsega
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Logička funkcija izlaska van opsega kod oduzimanja označenih brojeva:

$$((\sim U_1)\&U_2)\&R)|(U_1\&(\sim U_2)\&(\sim R))$$

$$f = \overline{U_1} \cdot U_2 \cdot R + U_1 \cdot \overline{U_2} \cdot \overline{R}$$

Interpretacija rezultata

Neoznačeni:

$$| 1 | 1 | 1 | 1 | 1_{2} (255_{10})$$

 $+ | 1 | 1 | 1 | 1_{2} (255_{10})$

Označeni:

Poređenje celih brojeva

- Određivanje relacija se svodi na oduzimanje:
 - Da li je razlika jednaka 0 ili različita od 0?
 - Da li je razlika negativna ili pozitivna?
 - Da li se, pri oduzimanju neoznačenih celih brojeva, javlja izlazak van opsega (u obliku prenosa)?
 - Da li, pri oduzimanju označenih celih brojeva, razlika izlazi van opsega?
- Logičke promenljive za opisivanje osobina razlike:
 - N nula (I razlika je 0)
 - M minus (I razlika je negativna)
 - P prenos (I pri oduzimanju neoznačenih prenos)
 - V van opsega (I pri oduzimanju označenih van opsega)

Relacije pomoću logičkih promenljivih

Uslovi važenja relacija za neoznačene

relacija važi	ako je tačan logički izraz	
==	N	
!=	~N	
<	P	
>=	~P	
>	(~P)&(~N)	
<=	PIN	

Uslovi važenja relacija za označene

relacija važi	ako je tačan logički izraz	
==	N	
!=	~N	
<	M^V	
>=	~(M^V)	
>	~(M^V)&(~N)	
<=	(M^V)IN	

Karakteristični slučajevi važenja relacije <

levi operand	desni operand	<	M	V
+	+	da	1	0
		do	1	0
_	+	da	0	1
-	-	da	1	0
+	+	ne	0	0
		no	0	0
+	-	ne	1	1
-	-	ne	0	0

Binarni brojni sistem

- Višestruka preciznost
 - Delovi vrednosti u različitim lokacijama, operacije deo po deo
- Zakoni aritmetike
 - Ne važe klasični zakoni aritmetike
 - Rezultat zavisi od redosleda obavljanja operacija zbog mogućeg izlaska van opsega
 - $(10000100_2 + 10100000_2) 100000000_2 \neq 10000100_2 + (101000000_2 100000000_2)$

Predstavljanje vrednosti realnog tipa u binarnom brojnom sistemu

- MNF8 I cifra za znak, 4 za podešeni eksponent (konstanta podešavanja 2⁴⁻¹=8), 3 za frakciju
- Prva (najznačajnija) cifra frakcije je uvek I, izlazak van opsega moguć samo u eksponentu

$$10101000_{MNF8} == -1.000_{2} \times 2^{-3} == -0.125_{10}$$

$$00000000_{MNF8} == 0.0$$

$$01000000_{MNF8} == +1.000_{2} \times 2^{0} == +1.0_{10}$$

$$01001011_{MNF8} == +1.011_{2} \times 2^{1} == +2.75_{10}$$

$$01110001_{MNF8} == +1.001_{2} \times 2^{6} == +72.0_{10}$$

Višeznačna interpretacija celih brojeva

- $01001011 \longrightarrow 75 \longrightarrow 2.75$
- Neophodna konverzija:

$$75_{10} == 1001011_2 == 1.001011_2 \times 2^6$$
 $\approx 1.001_2 \times 2^6$
== $72.0_{10} == 01110001_{MNF8}$

i u suprotnom smeru:

$$72.0_{10} == 01110001_{MNF8} == 1.001_{2} \times 2^{6}$$

== $1001000.0_{2} == 1001000_{2} == 72_{10}$

 Konverzija nije uvek moguća – realni tip (MNF) pokriva veći opseg vrednosti od celobrojnog tipa