プライバシーを保護する特許 検索

中川研 M2 胡 瀚林 指導教員:中川 裕志 教授

2016年月日

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- 5 参考文献

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- 6 参考文献

特許

特許とは?

- 特許法第1条には、「この法律は、発明の保護及び利用を図ることにより、発明を奨励し、もつて産業の発達に寄与することを目的とする」とある。
- 特許制度は、発明者には一定期間、一定の条件の もとに特許権という独占的な権利を与えて発明の 保護を図る一方、その発明を公開して利用を図る ことにより新しい技術を人類共通の財産としてい くことを定めて、これにより技術の進歩を促進 し、産業の発達に寄与しようというものである。

特許

特許請求の範囲

【請求項1】植物の種子をパルプ繊維の水懸濁液に混合して抄紙する播種シートの製造方法。

【請求項2】水懸濁液にさらに水溶性接着剤を添加する請求項1記載の播種シートの製造方法。

【請求項3】あらかじめ種子を低粘度多価アルコールで被覆する請求項1記載の播種シートの製造方法。

特許請求の範囲の作成方法

- 8技術用語は、学術用語を用いる。
- 9 用語は、その有する普通の意味で使用し、かつ、明 細書及び特許請求の範囲全体を通じて統一して使用 する

特許検索

検索タイプー	検索対象 (specification)	検索目的
技術水準調査 (State of the Art Search)	イデア	自分の発明に関連する背景知識を得る
新規性調査 (Novelty Search)	特許文章	特許登録の可能性を判断する
侵害調査 (Infringement Search)	商品と 商品に関連する技術	権利侵害とならないかを判断する

新規性調查

新規性調查

特許検索質問

播種シートの製造方法

植物 種子 パルプ 繊維 水 液 混合 抄 紙 播種 シート 製造 方法 水溶 性 接着 剤添加 記載 度 価 アルコール 被覆

- 検索質問は単語(名詞)の集合である
- 質問に含む単語数が多い
 - ウェブ検索:2.35 特許検索:20.1
- 専門用語が多い

- 検索質問 q:単語の集合
- 質問 q の検索結果 R(Q):文章の集合

Obfuscation Search

- 真の質問とK-1個真の質問と区別できないダ ミー質問と同時に検索する
- サーバーが真の質問を見つける確率が1/k

Obfuscation Search:例

- 実践的には長い質問に対応できない
- 質問 q' を使うことより検索の精度と再現率が下がる

Obfuscation Search

ユニバーサル質問集合:Q

W を全ての単語の集合とする.ユニバーサル質問集合 Q とは W の冪集合である,つまり

$$Q = P(W) = \{X | X \subset W\} \tag{1}$$

質問-トピックスコア関数:rscore

Tを全ての可能なトピックの集合とする.質問 q とトピック t の関係を表す関数とは

rscore:
$$Q \times T \to \mathbb{R}$$
 (2)

質問間距離関数:dist

質問 q1 と質問 q2 間の距離を表す関数とは

$$dist: Q \times Q \to \mathbb{R} \tag{3}$$

目標

- 長い質問に対応できる
- 専門用語が多いダミーを生成できる
- 検索の精度と再現率を維持できる

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- ❸ 参考文献

Providing Privacy through Plausibly Deniable Search (MC09)

質問 q をユーザーが入力した質問とする.ダミー質問生成システム D が k 個の質問を含んでいる質問集合 $D(q_u) = \{q_1, \ldots, q_k\}$ を出力しサーバーに提出する. $D(q_u)$ が以下の性質を持つなら, $D(q_u)$ を PD-質問集合といい,D を k - 否認可能検索という

- ① $\exists q_i \in D(q_u), q_i \lor q_u$ が意味的に近い
- ③ $\forall q_j \in D(q_u), q_j$ が違うトピックに含まれる

Latent Semantic Indexing

潜在的意味インデキシング

単語・文書行列 A の (i,j) 番目の要素は i 番目の単語が j 番目の文章に出現した回数である

A を特異値分解 $A = USV^T$ し、U、S、V の各列ベクトルを特異値が大きい順に K 個用いて A の低ランク近似 $A_K = U_K S_K V_K^T$ を得るこのように低ランク分解によって、単語とトピックの関係を分析できる

 A_K の(i,j)番目の要素はi番目の単語とj番目のトピックの関係を表す

Providing Privacy through Plausibly Deniable Search (MC09)

質問-トピックスコア関数:rscore_{LSI}

 S_K を単語 · 文書行列 A の低ランク近似の結果とし, $S_K(i,j)$ を S_K の (i,j) 番目の要素とする.LSI による質問 q とトピック t の関係を表す関数とは

$$rscore_{LSI}(q,t) = \sum_{w \in q} S_K(w,t)$$
 (4)

質問間距離関数:distLSI

LSI による質問 q_1 と質問 q_2 のを表す関数とは

$$dist_{LSI}(q_1, q_2) = \frac{\sum_{t \in T} rscore_{LSI}(q_1, t) \cdot rscore_{LSI}(q_2, t)}{\sum_{t \in T} (rscore_{LSI}(q_1, t))^{1/2} + \sum_{t \in T} (rscore_{LSI}(q_2, t))^{1/2}}$$
(5)

Embellishing Text Search Queries to Protect User Privacy (PDX10)

真の質問である可能性がある質問数:K

Embellishing Text Search Queries to Protect User Privacy (PDX10)

On masking topical intent in keyword search (WR14)

真の質問である可能性がある質問数:K

既存研究

	潜在意味分析手法	質問列への対応	長い質問への対応
(MC09)	LSI	X	X
(PDX10)	WordNet	0	0
(WR14)	LDA	0	0

ETS

ETS

真の質問である可能性がある質問数: $K \rightarrow K^n$

文章 id
1,3
1,2,3
2,4
4

転置フィル

ユーザー質問:モーツァルト 交響曲 検索結果:R = {1,3} ∪ {1,2,3} = {1,3}

単語	〈文章 id, 単語と文章の関係値〉
モーツァルト	$\langle 1, 1 \rangle, \langle 3, 2 \rangle$
交響曲	$\langle 1, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle$
パン	$\langle 2, 1 \rangle, \langle 4, 1 \rangle$
飛行機	$\langle 4,2 \rangle$

転置フィル

ユーザー質問:モーツァルト 交響曲 質問単語の転置リストに存在する各文章の関係値を計算する: $\{\langle 1,1+1\rangle,\langle 2,3\rangle,\langle 3,2+2\rangle\}=\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle\}$ 関係値により並び替える: $R=\{3,2,1\}$

 $Q ext{W1} ext{W2} ext{Wn}$

単語 W_i に対して文章 d_j のスコア: s_{ij} 質問 Q に対して文章 d_j のスコア: $s_j = \sum_{i \in Q} s_{ij}$ スコアが上位 m 個にある文章を質問 Q の検索結果として返す

準同型暗号

定義 (凖同型暗号)

二つの暗号文 $Enc(m_1)$, $Enc(m_2)$ が与えられた時に、 平文や秘密鍵なしで $Enc(m_1 \circ m_2)$ を計算できる暗号

例 (加算ができる凖同型暗号)

E(·): 暗号化 D(·): 復号

- ランダム性:E(m) ≠ E(m)
- $E(m_1) \cdot E(m_2) = E(m_1 + m_2)$
- $E(m)^q = E(m \cdot q), q \in \mathbb{Z}^+$

質問検索-ETS

$$\mathbf{Q} = \begin{bmatrix} W_{1}^{(1)}, E(u_{1}^{(1)}) \\ W_{1}^{(2)}, E(u_{1}^{(2)}) \\ \vdots \\ W_{1}^{(k)}, E(u_{1}^{(k)}) \end{bmatrix}$$

$$W_2^{(1)}, E(u_2^{(1)})$$
 $W_2^{(2)}, E(u_2^{(2)})$
 \vdots
 $W_2^{(k)}, \dot{E}(u_2^{(k)})$

$$\begin{array}{c} W_{n}^{(1)}, E(u_{n}^{(1)}) \\ W_{n}^{(2)}, E(u_{n}^{(2)}) \\ \vdots \\ W_{n}^{(k)}, \dot{E}(u_{n}^{(k)}) \end{array}$$

$$u_i^{(k)} = \begin{cases} 0 \ i, k \notin Q^* \\ 1 \ i, k \in Q^* \end{cases}$$

単語 $W_i^{(k)}$ に対して文章 d_j のスコア: $s_{ikj}' = E(u_i^{(k)})^{(s_{ikj})} = E(u_i \cdot (s_{ikj}))$ 質問 Q に対して文章 d_j のスコア: $s_j = \prod_{i,k \in Q} s_{ikj}' = E(\sum_{i,k \in Q^*} s_{ikj})$ スコアが 0 ではない文章を全部返す

質問検索-ETS

モーツァルト 飛行機

パン交響曲

単語	〈文章 id, 単語と文章の関係値〉
I HH	(大中に)「間と大中の気部に)
モーツァルト	$\langle 1, 1 \rangle, \langle 3, 2 \rangle$
交響曲	$\langle 1, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle$
パン	$\langle 2, 1 \rangle, \langle 4, 1 \rangle$
飛行機	$\langle 4, 2 \rangle$

ユーザー質問:モーツァルト 交響曲

スクリーンショット

- 1 synset番号(synset offset)
- 2 同義語(synonym)
- 3 定義文·例文(gloss)
- 4関連synsetとのリンク
- 5他の言語資源とのリンク
- 6 画像

単語を類義関係のセット (synset) でグループ化し、一つの synset が一つの概念に対応する 各 synset は上位下位関係などの関係で結ばれている

バケツ作り

- 全てのsynsetを関係数が多い方から小さい方への順で処理する
- 同じ単語を持つ synset を隣に並べる
- 反意関係,上位下位関係,全体部分関係を持つ synsetを隣に並べる

単語列

単語列

スクリーンショット

- 2 同義語(synonym)
 3 定義文・例文(gloss)
 4 関連synsetとのリンク
 5 他の言語資源とのリンク
 6 画像
- 実体/entity 以外全部の名詞の上位語が唯一に存在する 上下位関係を枝とすると、Wordnet 中の名詞が木の形になる

Simattack

類似度:sim

```
Input: 質問 q, ユーザープロフィール P_u, スムージングパラメータ:\alpha
1: for q_i \in P_u:
2: coef[i] \leftarrow 2 \cdot |q \cap q_i| \cdot \frac{1}{|q| + |q_i|}
3: coef \leftarrow sort(coef)
4: sim \leftarrow coef[0]
5: for i \in [1, |P_u|]:
6: sim \leftarrow \alpha \cdot coef[i] + (1 - \alpha) \cdot sim
Output: sim
```

simattack

```
Input: 質問集合 Q, ユーザープロフィール P_u, スムージングパラメータ:\alpha
1: q^* = \operatorname{argmax}_{q \in Q} \operatorname{sim}_{q, P_u}
Output: q^*
```

Simattack

類似度:sim

```
Input: 質問 q, ユーザープロフィール P_u, スムージングパラメータ:\alpha
1: for q_i \in P_u:
2: coef[i] \leftarrow 2 \cdot |q \cap q_i| \cdot \frac{1}{|q| + |q_i|}
3: coef \leftarrow sort(coef)
4: sim \leftarrow coef[0]
5: for i \in [1, |P_u|]:
6: sim \leftarrow \alpha \cdot coef[i] + (1 - \alpha) \cdot sim
Output: sim
```

simattack

```
Input: 質問集合 Q, ユーザープロフィール P_u, スムージングパラ メータ:\alpha
1: q^* = \operatorname{argmax}_{q \in Q} sim_{q, P_u}
Output: q^*
```

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- **の**まとめ
- ❸ 参考文献

クエリ分析

メタノール	水蒸気	反応	水素	透過	膜	 燃料
衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングバウダー
ルシタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メタノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	黒泥土

真の質問の単語は全部燃料電池と関係あるが、ダミー 単語の意味がバラバラである まし、単語が意味によって分類できるなら、燃料電池と

もし単語が意味によって分類できるなら、燃料電池と 関係がある単語が他のクラスに属する単語の数より多 いことが考えられる

国際特許分類

A61C 5/08A

セクション:A サブセクション : 61 クラス: C メイングループ:5 サブグループ:08 健康および娯楽 医学または獣医学:衛生学 歯科:口腔または歯科衛生 歯の充填または被覆 歯冠:その製造; 口中での歯冠固定

今回は同じ分類に属する全部の文章を1文章として LSIを行った

メイントピック攻撃

メタノール	水蒸気	反応	水素	透過	膜	燃料
衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングパウダー
ルシタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メタノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	 黒泥土

メイントピック攻撃

- ダミーを含んでいる質問のメイントピックを確定 する
- 各単語バケツの中,メイントピックと一番関係強 い単語を真の質問単語にする

メイントピック攻撃:例

	t ₁ (食べ物)	t ₂ (音楽)	t ₃ (交通手段)
w₁(モーツァルト)	0	1	0
w ₂ (交響曲)	0	1.5	0
w ₃ (パン)	1.5	0	0
w ₄ (飛行機)	0	0	1

ユーザー質問:モーツァルト 交響曲

$$\ell_Q = \ell_{w_1} + \ell_{w_2} + \ell_{w_3} + \ell_{w_4} = (1.5, 2.5, 1)$$

 $Maintopic = argmax_t \ell_Q[t] = t_2$

メイントピック攻撃:例

モーツァルト	
飛行機	

	t ₁ (食べ物)	t ₂ (音楽)	t ₃ (交通手段)
w₁(モーツァルト)	0	1	0
W ₂ (交響曲)	0	1.5	0
w ₃ (パン)	1.5	0	0
w ₄ (飛行機)	0	0	1

ユーザー質問:モーツァルト交響曲

$$\ell_{w_1}[t_2] = 1 > \ell_{w_4}[t_2] = 0$$
 $\ell_{w_3}[t_2] = 0 < \ell_{w_2}[t_2] = 1.5$
 $Q^* = \{ モーツァルト, 交響曲 \}$

プライバシー分析

重複を除いた単語数	2,973,096
文章数	3, 496, 253
質問数	2,908
質問平均単語数	21.0
メイントピック攻撃成功率	90.1%

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- 6 参考文献

まとめ

- 質問を単語ごとに分割し,暗号と組み合わせする 手法
- 質問のメイントピックを保護するのは難しい
- Wordnetではなく他のダミー単語を生成するツー ルが欲しい

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 まとめ
- 5 参考文献

Bibliography I

M. Murugesan and C. Clifton.

Providing Privacy through Plausibly Deniable Search.

In *Proceedings of the 2009 SIAM International Conference on Data Mining*, Proceedings, pages 768–779. Society for Industrial and Applied Mathematics, April 2009.

HweeHwa Pang, Xuhua Ding, and Xiaokui Xiao.

Embellishing Text Search Queries to Protect User Privacy.

Proc. VLDB Endow., 3(1-2):598-607, September 2010.

Peng Wang and Chinya V. Ravishankar.

On masking topical intent in keyword search.

In 2014 IEEE 30th International Conference on Data Engineering, pages 256–267. IEEE, 2014.