Data Set Information:

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult: [Web Link] or the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

Attribute Information:

For more information, read [Cortez et al., 2009]. Input variables (based on physicochemical tests): 1 - fixed acidity 2 - volatile acidity 3 - citric acid 4 - residual sugar 5 - chlorides 6 - free sulfur dioxide 7 - total sulfur dioxide 8 - density 9 - pH 10 - sulphates 11 - alcohol Output variable (based on sensory data): 12 - quality (score between 0 and 10)

Link for the dataset: https://archive.ics.uci.edu/ml/datasets/wine+quality

Import necessary Libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
%matplotlib inline
warnings.filterwarnings('ignore')
```

Import the dataset

```
In [2]:
```

```
df = pd.read_csv('winequalityN.csv')
df.head()
```

```
Out[2]:
```

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

```
In [3]:
```

```
# statistical info
df.describe()
```

```
Out[3]:
```

fixed acidity volatile citric acid residual chlorides free sulfur total sulfur density pH

	-	acıdıty volatile		sugar residual		aloxiae froe cultur	aioxiae total sulfur	-	-
count	fixed acidity 6487.000000	6489. 2200019	citric acid 6494.000000	6495.0 80920	chlorides 6495.000000	6497 .01200018	6497 .01000000	6497.000000	6488.000000
mean	7.216579	0.339691	0.318722	5.444326	0.056042	30.525319	115.744574	0.994697	3.218395
std	1.296750	0.164649	0.145265	4.758125	0.035036	17.749400	56.521855	0.002999	0.160748
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	0.987110	2.720000
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000000	0.992340	3.110000
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000000	0.994890	3.210000
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000000	0.996990	3.320000
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	1.038980	4.010000
4							1		.

In [4]:

df.describe().T

Out[4]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	6487.0	7.216579	1.296750	3.80000	6.40000	7.00000	7.70000	15.90000
volatile acidity	6489.0	0.339691	0.164649	0.08000	0.23000	0.29000	0.40000	1.58000
citric acid	6494.0	0.318722	0.145265	0.00000	0.25000	0.31000	0.39000	1.66000
residual sugar	6495.0	5.444326	4.758125	0.60000	1.80000	3.00000	8.10000	65.80000
chlorides	6495.0	0.056042	0.035036	0.00900	0.03800	0.04700	0.06500	0.61100

density	6497.0	0.994697	0.002999	0.98711	0.99234	0.99489	0.99699	1.03898
рН	6488.0	3.218395	0.160748	2.72000	3.11000	3.21000	3.32000	4.01000
sulphates	6493.0	0.531215	0.148814	0.22000	0.43000	0.51000	0.60000	2.00000
alcohol	6497.0	10.491801	1.192712	8.00000	9.50000	10.30000	11.30000	14.90000
quality	6497.0	5.818378	0.873255	3.00000	5.00000	6.00000	6.00000	9.00000

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	type	6497 non-null	object
1	fixed acidity	6487 non-null	float64
2	volatile acidity	6489 non-null	float64
3	citric acid	6494 non-null	float64
4	residual sugar	6495 non-null	float64
5	chlorides	6495 non-null	float64
6	free sulfur dioxide	6497 non-null	float64
7	total sulfur dioxide	6497 non-null	float64
8	density	6497 non-null	float64
9	Н	6488 non-null	float64
10	sulphates	6493 non-null	float64
11	alcohol	6497 non-null	float64
12	quality	6497 non-null	int64
dtyp	es: float64(11), int64	(1), object(1)	

In [6]:

 ${\tt df.dtypes}$

memory usage: 660.0+ KB

Out[6]:

```
type
                         object
fixed acidity
                         float64
volatile acidity
                         float64
citric acid
                         float64
residual sugar
                         float64
chlorides
                        float64
free sulfur dioxide
                        float64
total sulfur dioxide
                        float64
                         float64
density
                        float64
рΗ
sulphates
                        float64
alcohol
                        float64
quality
                          int64
dtype: object
In [7]:
df.isnull().sum()
Out[7]:
                          0
type
                         10
fixed acidity
                         8
volatile acidity
                          3
citric acid
residual sugar
                          2
chlorides
free sulfur dioxide
total sulfur dioxide
                         0
                          0
density
                          9
рΗ
sulphates
                          4
alcohol
                          0
quality
                          0
dtype: int64
In [8]:
# fill the missing values
for col, value in df.items():
    if col != 'type':
        df[col] = df[col].fillna(df[col].mean())
In [9]:
df.isnull().sum()
Out[9]:
type
fixed acidity
                         0
                         0
volatile acidity
                         0
citric acid
                         0
residual sugar
                         0
chlorides
                         0
free sulfur dioxide
total sulfur dioxide
                         0
density
                         0
                         0
рΗ
sulphates
                         0
                         0
alcohol
quality
                         0
dtype: int64
In [10]:
df.describe().T
Out[10]:
```

25%

min

count

mean

std

50%

75%

max

fixed acidity	6494nt	7.2 1837 9	1.295 751	3.80000	6.4 6500	7.0 59 %	7.7 35 %	15.9 0000 0
volatile acidity	6497.0	0.339691	0.164548	0.08000	0.23000	0.29000	0.40000	1.58000
citric acid	6497.0	0.318722	0.145231	0.00000	0.25000	0.31000	0.39000	1.66000
residual sugar	6497.0	5.444326	4.757392	0.60000	1.80000	3.00000	8.10000	65.80000
chlorides	6497.0	0.056042	0.035031	0.00900	0.03800	0.04700	0.06500	0.61100
density	6497.0	0.994697	0.002999	0.98711	0.99234	0.99489	0.99699	1.03898
рН	6497.0	3.218395	0.160637	2.72000	3.11000	3.21000	3.32000	4.01000
sulphates	6497.0	0.531215	0.148768	0.22000	0.43000	0.51000	0.60000	2.00000
alcohol	6497.0	10.491801	1.192712	8.00000	9.50000	10.30000	11.30000	14.90000
quality	6497.0	5.818378	0.873255	3.00000	5.00000	6.00000	6.00000	9.00000

In [11]:

df.corr()

Out[11]:

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	(
	fixed acidity	1.000000	0.219918	0.323349	0.112219	0.298282	0.283237	0.329409	0.458941	0.251683	0.300225	0.095560	0.0
	volatile acidity	0.219918	1.000000	0.377759	- 0.196578	0.377122	0.353055	0.414706	0.271107	0.260283	0.225313	0.038215	0.2
(citric acid	0.323349	0.377759	1.000000	0.142451	0.039310	0.133426	0.195148	0.096307	- 0.328354	0.057564	- 0.010431	0.0
	residual sugar	- 0.112219	- 0.196578	0.142451	1.000000	- 0.128887	0.403242	0.495704	0.552487	- 0.266717	-0.185716	- 0.359656	0.0
	chlorides	0.298282	0.377122	0.039310	- 0.128887	1.000000	- 0.194978	- 0.279547	0.362580	0.044754	0.395073	- 0.256844	0.2
	•••												
	density	0.458941	0.271107	0.096307	0.552487	0.362580	0.025717	0.032395	1.000000	0.011913	0.259432	0.686745	0.3
	рН	- 0.251683	0.260283	- 0.328354	- 0.266717	0.044754	- 0.145116	0.237523	0.011913	1.000000	0.191075	0.120939	0.0
:	sulphates	0.300225	0.225313	0.057564	- 0.185716	0.395073	- 0.188471	- 0.275291	0.259432	0.191075	1.000000	0.003261	0.0
	alcohol	0.095560	- 0.038215	- 0.010431	0.359656	- 0.256844	- 0.179838	- 0.265740	- 0.686745	0.120939	-0.003261	1.000000	0.4
	quality	0.076967	0.265838	0.085699	0.036819	0.200818	0.055463	0.041385	0.305858	0.019356	0.038713	0.444319	1.0
4													Þ

In [12]:

df.shape

Out[12]:

(6497, 13)

In [13]:

```
sns.set(rc={'figure.figsize':(15,10)})
sns.heatmap(df.corr(),annot=True)
```

Out[13]:

Correlation

IMPORTANT NOTE! There is 'multicollinearity' problem

Here we see that there is relatively high (0.67, positive) correlation between 'free sulfur dioxide' and 'total_sulfur_dioxide' variables. There is relatively high (-0.68, negative) correlation between "pH" and "fixed_acidity" variables. And there is about 0.5 correlation between some of other variables. That's why we must consider when build Machine Learning models.

In [14]:

sns.pairplot(df)

Out[14]:

<seaborn.axisgrid.PairGrid at 0x19053e3b340>

In [15]:

```
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(df['alcohol'])
```

Out[15]:

<AxesSubplot:xlabel='alcohol'>


```
8 9 10 11 12 13 14 15
alcohol
```

In [16]:

```
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(df['quality'])
```

Out[16]:

<AxesSubplot:xlabel='quality'>

In [17]:

```
plt.scatter(df['alcohol'], df['quality'])
plt.xlabel("Alcohol")
plt.ylabel("Quality")
```

Out[17]:

Text(0, 0.5, 'Quality')

In [18]:

```
# create box plots
fig, ax = plt.subplots(ncols=6, nrows=2, figsize=(20,10))
index = 0
ax = ax.flatten()

for col, value in df.items():
    if col != 'type':
        sns.boxplot(y=col, data=df, ax=ax[index])
        index += 1
plt.tight_layout(pad=0.5, w_pad=0.7, h_pad=5.0)
```


In [19]:

```
# create dist plot
fig, ax = plt.subplots(ncols=6, nrows=2, figsize=(20,10))
index = 0
ax = ax.flatten()

for col, value in df.items():
    if col != 'type':
        sns.distplot(value, ax=ax[index])
        index += 1
plt.tight_layout(pad=0.5, w_pad=0.7, h_pad=5.0)
```


In [20]:

log transformation Log transformation helps to make the highly skewed distribution to 1
ess skewed.
df['total sulfur dioxide'] = np.log(1 + df['total sulfur dioxide'])

In [21]:

sns.distplot(df['total sulfur dioxide'])

Out[21]:

<AxesSubplot:xlabel='total sulfur dioxide', ylabel='Density'>

total sulfur dioxide

In [22]:

```
sns.countplot(df['type'])
```

Out[22]:

<AxesSubplot:xlabel='type', ylabel='count'>

In [23]:

sns.countplot(df['quality'])

Out[23]:

<AxesSubplot:xlabel='quality', ylabel='count'>

Making binary classificaion for the response variable.

Dividing wine as good and bad by giving the limit for the quality

```
In [24]:
```

```
bins = (2, 6.5, 8)
group_names = ['bad', 'good']
df['quality'] = pd.cut(df['quality'], bins = bins, labels = group_names)
```

In [25]:

```
X = df.drop(['quality','type'],axis=1)
Y = df['quality']
```

In [26]:

```
# Encoding our dependent variable:Quality column
from sklearn.preprocessing import LabelEncoder
labelencoder_y = LabelEncoder()
Y = labelencoder_y.fit_transform(Y)
Y
```

Out[26]:

```
array([0, 0, 0, ..., 0, 0, 0])
```

Splitting the dataset into the Training set and Test set.%20 of dataset for test set,%80 for training set.

In [27]:

```
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state
= 42)
```

In [28]:

```
X_train
```

Out[28]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
1539	7.3	0.26	0.49	5.0	0.028	32.0	4.682131	0.99360	3.24	0.54	10.8
1109	9.2	0.22	0.40	2.4	0.054	18.0	5.023881	0.99520	3.04	0.46	9.3
100	7.4	0.25	0.37	13.5	0.060	52.0	5.262690	0.99750	3.00	0.44	9.1
5477	10.6	0.31	0.49	2.2	0.063	18.0	3.713572	0.99760	3.14	0.51	9.8
6416	7 4	0.47	0.46	22	N 11 <i>4</i>	7 0	2 044522	0 00647	3 33	U 83	10 5

```
v. 1 1<del>-</del>
                                                                                                                       0.00
                                                                                                                                . . . .
UT 1U
                         U.T1
                                   U.TU
                                                                                       U.UTTULL U.UUTI U.UL
           fixed
                      volatile
                                 citric
                                            residual
                                                                    free sulfur
                                                                                     total sulfur
                                                                                                  density pH sulphates alcohol
                                                     chlorides
         acidity
                      acidity
                                                                       dioxide
                                                                                        dioxide
                                  acid
                                              sugar
             6.3
                         0.24
                                  0.29
                                                13.7
                                                          0.035
                                                                           53.0
                                                                                      4.905275 0.99567 3.17
                                                                                                                       0.38
                                                                                                                                10.6
3772
5191
                                  0.25
                                                          0.098
                                                                            5.0
                                                                                      2.833213 0.99640 3.41
                                                                                                                                10.1
             6.9
                         0.36
                                                 2.4
                                                                                                                       0.60
5226
            13.4
                         0.27
                                  0.62
                                                 2.6
                                                          0.082
                                                                            6.0
                                                                                      3.091042 1.00020 3.16
                                                                                                                       0.67
                                                                                                                                 9.7
5390
             8.9
                         0.40
                                  0.51
                                                 2.6
                                                          0.052
                                                                           13.0
                                                                                      3.332205 0.99500 3.32
                                                                                                                       0.90
                                                                                                                                13.4
860
             8.1
                         0.27
                                  0.35
                                                 1.7
                                                          0.030
                                                                           38.0
                                                                                      4.644391 0.99255 3.22
                                                                                                                       0.63
                                                                                                                                10.4
```

In [29]:

y_train

Out[29]:

array([0, 0, 0, ..., 0, 1, 1])

In [30]:

X_test

Out[30]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
3103	7.0	0.25	0.45	2.3	0.045	40.0	4.779123	0.99064	3.16	0.48	11.9
1419	7.6	0.14	0.74	1.6	0.040	27.0	4.644391	0.99160	3.07	0.40	10.8
4761	6.2	0.15	0.27	11.0	0.035	46.0	4.762174	0.99602	3.12	0.38	9.1
4690	6.7	0.16	0.32	12.5	0.035	18.0	5.056246	0.99666	2.88	0.36	9.0
4032	6.8	0.27	0.22	17.8	0.034	16.0	4.762174	0.99890	3.07	0.53	9.2
4509	6.7	0.23	0.17	1.3	0.061	14.0	4.615121	0.99250	3.07	0.55	9.5
3350	7.2	0.22	0.28	7.2	0.060	41.0	4.890349	0.99350	3.08	0.59	11.3
1730	9.2	0.23	0.30	1.1	0.031	40.0	4.605170	0.99290	2.94	0.30	10.4
2225	7.6	0.23	0.26	15.3	0.067	32.0	5.117994	0.99860	3.03	0.44	9.2
5230	8.0	0.58	0.28	3.2	0.066	21.0	4.744932	0.99730	3.22	0.54	9.4

In [31]:

y_test

Out[31]:

array([1, 1, 0, ..., 0, 0, 0])

Scaling the data using StandardScaler to bring the data points closer to the best fit line

In [32]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

In [33]:

```
X_train_scaled = scaler.fit_transform(X_train)
```

In [34]:

```
X_test_scaled = scaler.fit_transform(X_test)
```

In [35]:

```
X train scaled
Out[35]:
array([[ 0.05774648, -0.48603987, 1.17497687, ..., 0.13174139,
         0.04025317, 0.25267266],
       [1.50939876, -0.72679705, 0.55539336, ..., -1.11293313,
       -0.48733115, -1.00093862],
       [0.13414923, -0.54622916, 0.34886553, ..., -1.36186804,
       -0.61922723, -1.16808679],
       [ 4.71831433, -0.42585057, 2.06993083, ..., -0.36612842,
         0.8975777 , -0.66664228],
       [ 1.28019051, 0.35661028, 1.31266209, ..., 0.6296112 ,
         2.41438262, 2.42559889],
       [0.6689685, -0.42585057, 0.2111803, ..., 0.00727394,
         0.63378553, -0.08162368]])
In [36]:
X test scaled
Out[36]:
array([[-0.15385272, -0.54212657, 0.91725851, ..., -0.35583504,
       -0.30958735, 1.20767302],
       [0.32425573, -1.23145329, 2.91603552, ..., -0.91680168,
       -0.88320424, 0.27594721],
       [-0.79133065, -1.16878722, -0.32336171, ..., -0.60515355,
       -1.02660846, -1.16399267],
       [1.5992116, -0.6674587, -0.11659167, ..., -1.72708682,
        -1.60022535, -0.06286217],
       [ 0.32425573, -0.6674587, -0.39228505, ..., -1.16612019, 
       -0.59639579, -1.07929033],
       [0.6429947, 1.52585358, -0.25443836, ..., 0.01814272,
         0.12062532, -0.90988563]])
In [37]:
from sklearn.svm import SVC
from sklearn.svm import LinearSVC,SVC
from sklearn.pipeline import make pipeline
clf = SVC()
In [38]:
clf = clf.fit(X train, y train)
In [39]:
y pred = clf.predict(X test)
In [40]:
# #Finding best parameters for our SVC model
# param = {
      'C': [0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4],
#
#
      'kernel':['linear', 'rbf'],
#
      'gamma' :[0.1,0.8,0.9,1,1.1,1.2,1.3,1.4]
# grid svc = GridSearchCV(clf, param grid=param, scoring='accuracy', cv=10)
In [41]:
# grid svc.fit(X train, y train)
In [42]:
from sklearn.metrics import accuracy score
```

```
print("Accuracy: %.2f%%" % (accuracy_score(y_pred,y_test) * 100.0))
```

Accuracy: 81.05%

Classification Report for the unscaled Data

In [51]:

```
from sklearn.metrics import confusion_matrix, classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0 1	0.81	1.00	0.90	1317 308
accuracy macro avg weighted avg	0.41	0.50 0.81	0.81 0.45 0.73	1625 1625 1625

In [43]:

```
clf_scaled = clf.fit(X_train_scaled,y_train)
```

In [44]:

```
y_pred_scaled = clf_scaled.predict(X_test_scaled)
```

In [45]:

```
print("Accuracy: %.2f%%" % (accuracy_score(y_pred_scaled,y_test) * 100.0))
```

Accuracy: 83.45%

Classification Report for the Scaled Data

In [50]:

from sklearn.metrics import confusion_matrix, classification_report
print(classification_report(y_test, y_pred_scaled))

	precision	recall	f1-score	support
0	0.85 0.65	0.96 0.28	0.90 0.39	1317 308
accuracy macro avg	0.75	0.62	0.83	1625 1625
weighted avg	0.81	0.83	0.81	1625

In [47]:

```
#k-Fold cross validation for improving our model
from sklearn.model_selection import cross_val_score
accuracy_cv = cross_val_score(estimator = clf, X = X_train, y = y_train, cv = 20)
#we can see model's average accuracy
accuracy_cv.mean()
```

Out[47]:

0.8011106051406596

In [48]:

```
#k-Fold cross validation for improving our model
from sklearn.model_selection import cross_val_score
accuracy_cv = cross_val_score(estimator = clf, X = X_train_scaled, y = y_train, cv = 20)
```

```
#we can see model's average accuracy
accuracy_cv.mean()
```

Out[48]:

0.8327152060986306

Improving the Accuracy using best params

In [52]:

```
svc2 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf')
svc2.fit(X_train, y_train)
pred_svc2 = svc2.predict(X_test)
print(classification_report(y_test, pred_svc2))
```

	precision	recall	f1-score	support
0 1	0.86 0.71	0.97 0.35	0.91 0.47	1317 308
accuracy			0.85	1625
macro avg	0.79	0.66	0.69	1625
weighted avg	0.84	0.85	0.83	1625

In [56]:

```
svc2 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf')
svc2.fit(X_train_scaled, y_train)
pred_svc2_scaled = svc2.predict(X_test_scaled)
print(classification_report(y_test, pred_svc2_scaled))
```

	precision	recall	f1-score	support
0 1	0.88 0.71	0.96 0.42	0.92 0.53	1317 308
accuracy macro avg weighted avg	0.80 0.85	0.69 0.86	0.86 0.72 0.84	1625 1625 1625

In []: