\triangleright

$$Arr$$
 Так как $\mathbf{z}^{k+1} = (I - \tau_k A) \mathbf{z}^k$, где $\tau_k = \frac{(A\mathbf{r}^k, \mathbf{r}^k)}{(A\mathbf{r}^k, A\mathbf{r}^k)}$, то
$$\|\mathbf{r}^{k+1}\|_2^2 = \|\mathbf{z}^{k+1}\|_{A^2}^2 = (A(I - \tau_k A) \mathbf{z}^k,$$
 $A(I - \tau_k A) \mathbf{z}^k) = \|\mathbf{r}^k\|_2^2 - 2\tau_k (A\mathbf{r}^k, \mathbf{r}^k) + \tau_k^2 (A\mathbf{r}^k, A\mathbf{r}^k) = \|\mathbf{r}^k\|_2^2 - \frac{(A\mathbf{r}^k, \mathbf{r}^k)^2}{(A\mathbf{r}^k, A\mathbf{r}^k)}.$

Отсюда, учитывая неравенства

$$(A\mathbf{r}^k, A\mathbf{r}^k) \leqslant ||A||_2^2 ||\mathbf{r}^k||_2^2 \leqslant \sigma^2 ||\mathbf{r}^k||_2^2,$$

$$(A\mathbf{r}^k, \mathbf{r}^k) = \left(\frac{A + A^T}{2} \mathbf{r}^k, \mathbf{r}^k\right) + \left(\frac{A - A^T}{2} \mathbf{r}^k, \mathbf{r}^k\right) = \left(\frac{A + A^T}{2} \mathbf{r}^k, \mathbf{r}^k\right) \geqslant \mu ||\mathbf{r}^k||_2^2,$$

имеем требуемую оценку.

5.136. Пусть $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ — базис пространства \mathbf{R}^n . Доказать сходимость с произвольного начального приближения следующего итерационного метода (метода оптимального координатного спуска) решения невырожденной системы уравнений $A\mathbf{x} = \mathbf{b}$:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \frac{(\mathbf{b} - A\mathbf{x}^k, A\mathbf{e}_j)}{||A\mathbf{e}_j||_2^2} \, \mathbf{e}_j, \quad j = \arg\max_l \frac{|(\mathbf{b} - A\mathbf{x}^k, A\mathbf{e}_l)|}{||A\mathbf{e}_l||_2} \,.$$

5.6. Неявные методы

Скорость сходимости рассмотренных итерационных процессов зависела от отношения $\frac{m}{M}$ границ спектра матрицы $A=A^T>0$, т. е. от обусловленности задачи. Для «улучшения» исходной задачи можно перейти к некоторой эквивалентной системе $B^{-1}A\mathbf{x}=B^{-1}\mathbf{b}$ при условии невырожденности матрицы B

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + B^{-1}A\mathbf{x}^k = B^{-1}\mathbf{b}.$$
 (5.9)

Метод спектрально-эквивалентных операторов. Пусть $A = A^T > 0$. Перепишем итерационный алгоритм (5.9) в следующем виде:

$$B\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\mathbf{x}^k = \mathbf{b},\tag{5.10}$$

который также называют обобщенным методом простой итерации или методом c предобусловливателем B.

Неявный двухслойный итерационный алгоритм (5.10) требует на каждом шаге решения задач вида $B\mathbf{y}=\mathbf{f}$ и совпадает с рассмотренными выше методами при B=I. Известно, что алгоритм (5.10) сходится при $B>\frac{\tau}{2}\,A,\, \tau>0$. Если дополнительно $B=B^T>0$ и $m_1B\leqslant A\leqslant M_1B$, то

при $au = \frac{2}{m_1 + M_1}$ метод сходится со скоростью геометрической прогрессии

с показателем $q=\frac{M_1-m_1}{M_1+m_1}$. Неявные методы с переменными au типа минимальных невязок и наискорейшего градиентного спуска строятся аналогично и имеют скорость сходимости не хуже, чем у неявного оптимального линейного одношагового метода.

При удачном выборе оператора B можно принципиально улучшить скорость сходимости соответствующих итерационных процессов, однако необходимо учитывать трудоемкость нахождения $\mathbf{y} = B^{-1}\mathbf{f}$. Например, при $B = A, \tau = 1$ метод (5.10) сойдется за одну итерацию, но потребует решения исходной задачи $A\mathbf{x} = \mathbf{b}$.

Методы релаксации. Рассмотрим неявные методы с диагональной или треугольной матрицей B. Представим матрицу системы $A\mathbf{x}=\mathbf{b}$ в виде A=L+D+R, где D-диагональная матрица, L и R-соответственно левая нижняя и правая верхняя треугольные матрицы с нулевыми диагоналями (строго нижняя и строго верхняя треугольные матрицы). Будем предполагать, что все диагональные элементы исходной матрицы a_{ii} отличны от нуля, следовательно, любая матрица вида $D+\omega L$ с произвольным параметром ω обратима.

Методы релаксации описывают формулой (5.10) с матрицей $B=D+\omega L$. Здесь итерационный параметр ω называется параметром релаксации. Методы Якоби ($\omega=0,\tau=1$), Гаусса—Зейделя ($\omega=\tau=1$) и верхней релаксации (в англоязычной литературе — SOR) ($\omega=\tau$) удобно представить соответственно в виде

$$D(\mathbf{x}^{k+1} - \mathbf{x}^k) + A\mathbf{x}^k = \mathbf{b},$$

$$(D+L)(\mathbf{x}^{k+1} - \mathbf{x}^k) + A\mathbf{x}^k = \mathbf{b},$$

$$(D+\omega L) \frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\omega} + A\mathbf{x}^k = \mathbf{b}.$$

В случае $A=A^T>0(R=L^T)$ используют также $\mathit{симметричный}$ метод релаксации (в англоязычной литературе — SSOR):

$$\begin{split} (D+\omega L)\, \frac{\mathbf{x}^{k+1/2}-\mathbf{x}^k}{\omega} + A\mathbf{x}^k &= \mathbf{b},\\ (D+\omega R)\, \frac{\mathbf{x}^{k+1}-\mathbf{x}^{k+1/2}}{\omega} + A\mathbf{x}^{k+1/2} &= \mathbf{b}. \end{split}$$

5.137. Для решения системы $A\mathbf{x} = \mathbf{b}$ с матрицей

$$A = \begin{pmatrix} \alpha & \beta & 0 \\ \beta & \alpha & \beta \\ 0 & \beta & \alpha \end{pmatrix}$$

применяются методы Якоби и Гаусса—Зейделя. Для каждого алгоритма найти все значения параметров α , β , обеспечивающие сходимость с произвольного начального приближения.

 \triangleleft Оператор перехода B (см. (5.5)) в методе Якоби имеет вид $B=-D^{-1}\,(L+R)$. Рассмотрим задачу на собственные значения $B\,{\bf x}=\lambda\,{\bf x}$, т. е. $-D^{-1}\,(L+R)\,{\bf x}=\lambda\,{\bf x}$. Перепишем последнее уравнение в эквивалентной форме $(L+\lambda\,D+R)\,{\bf x}=0$, откуда имеем $\det(L+\lambda\,D+R)=0$. Непосредственно вычисляя, находим

$$\det \begin{pmatrix} \alpha \lambda & \beta & 0 \\ \beta & \alpha \lambda & \beta \\ 0 & \beta & \alpha \lambda \end{pmatrix} = \alpha \lambda \left(\alpha^2 \lambda^2 - 2\beta^2 \right) = 0.$$

Следовательно, $\lambda_1=0,\ \lambda_{2,3}^2=\frac{2\beta^2}{\alpha^2}.$ Отсюда получаем ответ $\left|\frac{\beta}{\alpha}\right|<\frac{1}{\sqrt{2}}$.

Оператор перехода B в методе Гаусса—Зейделя имеет вид $B=-(D+L)^{-1}\,R$. Рассмотрим задачу на собственные значения $B\,{\bf x}=\lambda\,{\bf x}$. Имеем

$$-(D+L)^{-1} R \mathbf{x} = \lambda \mathbf{x}, \ (\lambda L + \lambda D + R) \mathbf{x} = 0, \ \det(\lambda L + \lambda D + R) = 0.$$

В результате непосредственных вычислений имеем

$$\det \begin{pmatrix} \alpha \lambda & \beta & 0 \\ \beta \lambda & \alpha \lambda & \beta \\ 0 & \beta \lambda & \alpha \lambda \end{pmatrix} = \alpha \lambda^2 (\alpha^2 \lambda - 2\beta^2) = 0.$$

Следовательно, $\lambda_{1,2}=0,\ \lambda_3=2\frac{\beta^2}{\alpha^2}.$ Отсюда получаем ответ $\left|\frac{\beta}{\alpha}\right|<\frac{1}{\sqrt{2}}$.

В данном случае области сходимости методов совпадают.

5.138. Доказать, что для систем линейных уравнений второго порядка (n=2) методы Якоби и Гаусса—Зейделя сходятся и расходятся одновременно.

< Запишем матричные представления операторов перехода

$$B_{\rm J} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 \end{pmatrix}, \quad B_{\rm GZ} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} \\ 0 & \frac{a_{12}a_{21}}{a_{11}a_{22}} \end{pmatrix}.$$

Отсюда имеем следующие формулы для собственных значений:

$$\lambda_{1,2}^{\mathrm{J}} = \pm \sqrt{\frac{a_{12}a_{21}}{a_{11}a_{22}}}, \qquad \lambda_{1}^{\mathrm{GZ}} = 0, \quad \lambda_{2}^{\mathrm{GZ}} = \frac{a_{12}a_{21}}{a_{11}a_{22}},$$

приводящие к искомому утверждению.

5.139. Пусть невырожденная матрица A обладает свойством диагонального преобладания, т. е. для всех i справедливо неравенство

$$\sum_{j \neq i} |a_{ij}| \leqslant q|a_{ii}|, \quad 0 \leqslant q < 1.$$

Доказать, что для вектора ошибки в методе Гаусса—Зейделя имеет место неравенство $\|\mathbf{x} - \mathbf{x}^k\|_{\infty} \leqslant q^k \, \|\mathbf{x} - \mathbf{x}^0\|_{\infty} \, .$

 \triangleleft Обозначим вектор ошибки через \mathbf{z}^k . Для этого вектора имеет место соотношение $(D+L)\,\mathbf{z}^{k+1}+R\,\mathbf{z}^k=0$. Пусть $\|\mathbf{z}^{k+1}\|_\infty=|z_l^{k+1}|$. Запишем l-е уравнение

 $\sum_{j=1}^{l-1} a_{lj} z_j^{k+1} + a_{ll} z_l^{k+1} + \sum_{j=l+1}^n a_{lj} z_j^k = 0$

и решим его относительно z_l^{k+1} . Имеем

$$z_l^{k+1} = -\sum_{j=1}^{l-1} \frac{a_{lj}}{a_{ll}} \ z_j^{k+1} - \sum_{j=l+1}^{n} \frac{a_{lj}}{a_{ll}} \ z_j^k .$$

Отсюда получаем

$$\|\mathbf{z}^{k+1}\|_{\infty} = |z_l^{k+1}| \leqslant \alpha \, \|\mathbf{z}^{k+1}\|_{\infty} + \beta \, \|\mathbf{z}^k\|_{\infty},$$

где

$$\alpha = \sum_{j=1}^{l-1} \left| \frac{a_{lj}}{a_{ll}} \right|, \quad \beta = \sum_{j=l+1}^{n} \left| \frac{a_{lj}}{a_{ll}} \right|.$$

Найденное соотношение можно переписать в виде

$$\|\mathbf{z}^{k+1}\|_{\infty} \leqslant \frac{\beta}{1-\alpha} \|\mathbf{z}^k\|_{\infty}.$$

По условию $\alpha + \beta \leqslant q < 1$, следовательно,

$$\frac{\beta}{1-\alpha} \leqslant \frac{q-\alpha}{1-\alpha} \leqslant \frac{q-q\alpha}{1-\alpha} \leqslant q,$$

откуда имеем искомую оценку.

5.140. Исследовать сходимость метода Гаусса—Зейделя для матриц размерности $n \times n$ с элементами:

1)
$$a_{kj} = 3^{-|k-j|},$$
 2) $a_{kj} = \begin{cases} 2 & \text{при } k = j, \\ -1 & \text{при } |k-j| = 1, \\ 0 & \text{при } |k-j| > 1. \end{cases}$

Ответ: метод сходится в обоих случаях.

5.141. Показать, что выполнение неравенства $0 < \tau < 2$ является необходимым для сходимости метода верхней релаксации.

Если формулу метода релаксации

$$(D + \tau L) \mathbf{x}^{k+1} + [\tau R + (\tau - 1) D] \mathbf{x}^k = \tau \mathbf{b}$$

умножить слева на матрицу D^{-1} , то оператор перехода можно записать в следующем виде:

$$B = (I + \tau M)^{-1} ((1 - \tau) I + \tau N).$$

Здесь I — единичная, $M=D^{-1}L$ и $N=D^{-1}R$ — строго нижняя и верхняя треугольные матрицы соответственно. Рассмотрим характеристический

многочлен $d(\lambda)=\det(B-\lambda\,I)$. По теореме Виета имеет место равенство $(-1)^n\,d(0)=\prod_{i=1}^n\lambda_i(B)$. Так как у треугольных матриц M и N на главной диагонали расположены нули, то $d(0)=\det(B)=(1-\tau)^n$. Отсюда для спектрального радиуса оператора перехода получаем оценку

$$\rho(B) = \max_{i} |\lambda_i(B)| \geqslant \left| \prod_{i=1}^{n} \lambda_i(B) \right|^{1/n} = |\det(B)|^{1/n} = |1 - \tau|,$$

которая в силу необходимого неравенства $\rho(B) < 1$ приводит к искомому ответу. \triangleright

5.142. Пусть матрица A простой структуры имеет собственные значения $\lambda(A) \in [m,M], \ m>0.$ Доказать, что при любом положительном значении итерационного параметра τ сходится метод следующего вида:

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\left(\frac{\mathbf{x}^{k+1} + \mathbf{x}^k}{2}\right) = \mathbf{b}.$$

Определить оптимальное значение τ_{opt} .

√ Используя эквивалентную форму записи метода

$$\left(I + \frac{\tau}{2}A\right)\mathbf{x}^{k+1} = \left(I - \frac{\tau}{2}A\right)\mathbf{x}^k + \tau\mathbf{b}$$

и общность системы собственных векторов матриц слева и справа, выразим собственные значения оператора перехода B через собственные значения исходной матрицы

$$\lambda(B) = \frac{1 - \tau \frac{\lambda(A)}{2}}{1 + \tau \frac{\lambda(A)}{2}}.$$

Отсюда следует сходимость метода при $\tau>0$. Для определения au_{opt} рассмотрим следующую минимаксную задачу:

$$\min_{\tau>0} \max_{\lambda \in \left[\frac{m}{2},\frac{M}{2}\right]} \ \frac{|1-\tau\lambda|}{1+\tau\lambda} \, .$$

Функция $f(\lambda)=\frac{1-\tau\lambda}{1+\tau\lambda}$ при $\lambda>0$ и фиксированном $\tau>0$ является убывающей, поэтому максимального значения функция $|f(\lambda)|$ достигает на границе отрезка: при $\lambda=\frac{m}{2}$ и (или) при $\lambda=\frac{M}{2}$. Можно убедиться, что минимум по τ имеет место в случае равенства $\left|f\left(\frac{m}{2}\right)\right|=\left|f\left(\frac{M}{2}\right)\right|$, которое приводит к уравнению для оптимального параметра

$$\frac{1 - \tau_{\text{opt}} \frac{m}{2}}{1 + \tau_{\text{opt}} \frac{m}{2}} = -\frac{1 - \tau_{\text{opt}} \frac{M}{2}}{1 + \tau_{\text{opt}} \frac{M}{2}}.$$

 \triangleright

Решая это уравнение, имеем $au_{\rm opt} = \frac{2}{\sqrt{mM}}$.

5.143. При каких $\alpha \in [0,1]$ для матрицы A из 5.142 метод

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\left(\alpha \mathbf{x}^{k+1} + (1 - \alpha)\mathbf{x}^k\right) = \mathbf{b}$$

сходится при любом $\tau > 0$?

Используя идею решения 5.142, запишем условие сходимости метода

$$\max_{\lambda \in \left[\frac{m}{2}, \frac{M}{2}\right]} \ \left| \frac{1 - \tau (1 - \alpha) \lambda}{1 + \tau \alpha \lambda} \right| < 1 \quad \forall \tau > 0 \,.$$

Сделав замену $t = \tau \lambda > 0$, получим неравенство

$$|1 - t(1 - \alpha)| < 1 + t\alpha.$$

Если выражение под знаком модуля неотрицательно, то получаем верное, в силу условия, неравенство -t<0. Поэтому содержательным является другой случай: $t(1-\alpha)-1<1+t\alpha$. Из этого неравенства имеем $-\frac{2}{t}<2\alpha-1$, что, так как t>0, приводит к ответу $\alpha\geqslant\frac{1}{2}$.

- **5.144.** Невырожденная система $A\mathbf{x} = \mathbf{b}$ с матрицей $A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$ решается методом Гаусса—Зейделя. Доказать, что:
- 1) если |a| > 1, то для некоторого начального приближения итерационный процесс не сходится;
- 2) если |a|<1, то итерации сходятся при любом начальном приближении.

< Спектральный радиус матрицы перехода в методе Гаусса—Зейделя равен |a|. Если начальное приближение таково, что начальная погрешность \mathbf{z}^0 имеет ненулевую вторую координату z_2^0 , то $z_1^k = -a^{2k-1}z_2^0$, $z_2^k = a^{2k}z_2^0$ и метод не сходится при |a| > 1.

- **5.145.** Построить пример системы уравнений третьего порядка, для которой метод Якоби сходится, а метод Гаусса—Зейделя расходится.
- **5.146.** Построить пример системы уравнений третьего порядка, для которой метод Гаусса—Зейделя сходится, а метод Якоби расходится.
- 5.147. Доказать, что обобщенный метод простой итерации

$$B \frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\mathbf{x}^k = \mathbf{b}, \quad A = A^T > 0, \ \det(B) \neq 0, \ \tau > 0,$$

сходится при условии $B - \frac{\tau}{2} A > 0$ (т. е. $(B\mathbf{x}, \mathbf{x}) > \frac{\tau}{2} (A\mathbf{x}, \mathbf{x}) \ \forall \mathbf{x} \neq 0$).

< Из уравнения для ошибки

$$B\,\frac{\mathbf{z}^{k+1}-\mathbf{z}^k}{\tau}+A\mathbf{z}^k=0$$

следует, что

$$\mathbf{z}^{k+1} = (I - \tau B^{-1} A) \mathbf{z}^k, \quad A \mathbf{z}^{k+1} = (A - \tau A B^{-1} A) \mathbf{z}^k.$$
 (5.11)

Вычислим скалярное произведение, используя симметрию A,

$$(A\mathbf{z}^{k+1}, \mathbf{z}^{k+1}) = (A\mathbf{z}^k, \mathbf{z}^k) - 2\tau \left(\left[B - \frac{\tau}{2} A \right] B^{-1} A \mathbf{z}^k, B^{-1} A \mathbf{z}^k \right).$$
 (5.12)

Из первого соотношения (5.11) имеем $B^{-1}A\mathbf{z}^k = -\frac{\mathbf{z}^{k+1} - \mathbf{z}^k}{\tau}$, что позволяет переписать (5.12) в виде

$$||\mathbf{z}^{k+1}||_A^2 - ||\mathbf{z}^k||_A^2 + \frac{2}{\tau} \left(\left\lceil B - \frac{\tau}{2} \, A \right\rceil (\mathbf{z}^{k+1} - \mathbf{z}^k), \mathbf{z}^{k+1} - \mathbf{z}^k \right) = 0 \,,$$

где $||\mathbf{u}||_A = (A\mathbf{u}, \mathbf{u})^{1/2}$.

В силу конечномерности векторного пространства условие $B-\frac{\tau}{2}\,A>0$

равносильно условию $B-\frac{\tau}{2}A\geqslant \varepsilon I$ с некоторым $\varepsilon>0$ (здесь через Iобозначена единичная матрица). Имеем

$$||\mathbf{z}^{k+1}||_A^2 - ||\mathbf{z}^k||_A^2 + 2\varepsilon\tau^{-1}||\mathbf{z}^{k+1} - \mathbf{z}^k||_2^2 \leqslant 0 \quad \forall k \geqslant 0.$$

Из этого неравенства следует монотонное убывание и ограниченность последовательности $\{||\mathbf{z}^k||_A^2\}$, следовательно, сходимость $\|\mathbf{z}^k\|_A$ к некоторой величине $d\geqslant 0$. Переходя к пределу в данном неравенстве, получаем $\|\mathbf{z}^{k+1}-\mathbf{z}^k\|_2\to 0$, поэтому $\lim_{k\to\infty}||\mathbf{z}^{k+1}-\mathbf{z}^k||_2^2=\lim_{k\to\infty}||\mathbf{x}^{k+1}-\mathbf{x}^k||_2^2=0$. Таким образом, метод сходится к некоторому \mathbf{x}^∞ . Из вида итерационного процесса следует неравенство

$$\|\mathbf{b} - A\mathbf{x}^k\|_2 \leqslant \frac{1}{\tau} \|B\|_2 \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_2,$$

переходя в котором к пределу, убеждаемся, что \mathbf{x}^{∞} — решение уравнения $A\mathbf{x} = \mathbf{b}$, т. е. последовательность приближений $\{\mathbf{x}^k\}$ сходится к $\mathbf{x} = A^{-1}\mathbf{b}$.

5.148. Пусть $A = A^T > 0$. Доказать, что метод релаксации сходится с произвольного начального приближения при $\tau \in (0,2)$.

У казание. Использовать утверждение 5.147 при $B=D+\tau L$.

5.149. Пусть B = L + R, где L - нижняя треугольная матрица с нулями на диагонали, R — верхняя треугольная матрица. Пусть далее $||B||_{\infty} < 1$, так что итерационный процесс $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}$ сходится. Доказать, что метод $\mathbf{x}^{k+1} = L\mathbf{x}^{k+1} + R\mathbf{x}^k + \mathbf{c}$ также сходится.

Указание. Пусть
$$||B||_{\infty}=\max_{i}\sum_{j}|b_{ij}|=q<1,\;q_{1i}=\sum_{j< i}|b_{ij}|,\;q_{2i}=\sum_{j\geqslant i}|b_{ij}|.$$
 Доказать, что для погрешности итерационного метода $\mathbf{x}^{k+1}=$

 $=L\mathbf{x}^{k+1}+R\mathbf{x}^k+\mathbf{c}$ справедлива оценка

$$||\mathbf{z}^{k+1}||_{\infty} \leqslant \max_{i} \frac{q_{2i}}{1 - q_{1i}} ||\mathbf{z}^{k}||_{\infty} \leqslant \max_{i} \frac{q - q_{1i}}{1 - q_{1i}} ||\mathbf{z}^{k}||_{\infty} \leqslant q||\mathbf{z}^{k}||_{\infty}.$$

5.150. Для системы уравнений

$$4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = h^2 f_{ij}, \ i, j = 1, 2, ..., n-1; \ nh = 1;$$
$$u_{0,i} = u_{i,0} = u_{n,i} = u_{i,n} = 0, \ i = 0, 1, ..., n,$$

записать расчетные формулы и найти асимптотическую скорость сходимости следующих итерационных методов: 1) метода Якоби; 2) метода Гаусса—Зейделя; 3) метода релаксации с оптимальным параметром релаксации; 4) симметричного метода релаксации с оптимальным параметром релаксации.

Ответ: спектральный радиус оператора перехода, асимптотическая скорость сходимости и оптимальный параметр таковы:

1)
$$\rho(B) = \cos \pi h$$
, $R_{\infty}(B) = \pi^2 \frac{h^2}{2}$;

2)
$$\rho(B) = \cos^2 \pi h$$
, $R_{\infty}(B) = \pi^2 h^2$;

2)
$$\rho(B) = \cos^2 \pi h$$
, $R_{\infty}(B) = \pi^2 h^2$;
3) $\rho(B) = \frac{1 - \sin \pi h}{1 + \sin \pi h}$, $R_{\infty}(B) = 2\pi h$, $\omega_{\text{opt}} = \frac{2}{1 + \sin \pi h}$;

4)
$$\rho(B) = \frac{1 - \sin\frac{\pi h}{2}}{1 + \sin\frac{\pi h}{2}}, R_{\infty}(B) = \pi h, \omega_{\text{opt}} = \frac{2}{1 + \sin\left(\frac{\pi h}{2}\right)}.$$

Исследовать сходимость метода Якоби для решения системы уравнений с матрицей

$$A = \begin{pmatrix} 2 & -0.2 & 0.3 & 0.4 \\ 0.3 & -3 & 1 & -1.4 \\ 0.4 & 0.8 & 4 & 2.4 \\ -0.5 & 1.2 & -2.5 & -5 \end{pmatrix}.$$

Указание. Матрица имеет диагональное преобладание.

Найти все α , β , при которых метод Гаусса—Зейделя является сходящимся для системы уравнений с матрицей:

1)
$$\begin{pmatrix} \alpha & 0 & \beta \\ 0 & \alpha & 0 \\ \beta & 0 & \alpha \end{pmatrix}; 2) \quad \begin{pmatrix} \alpha & \beta & 0 \\ \beta & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix}; 3) \quad \begin{pmatrix} \alpha & \alpha & 0 \\ \alpha & \beta & \beta \\ 0 & \beta & \alpha \end{pmatrix}.$$

Указание. См. решение 5.137.

Ответ: для случаев 1) и 2) имеем условие $|\beta|<|\alpha|;\ 3)$ таких α и β не существует, так как имеется собственное значение оператора перехода $\lambda = \frac{\alpha^2 + \beta^2}{\alpha\beta}$, модуль которого больше единицы.

5.153. Пусть матрицы A_i , i=1,2, простой структуры имеют собственные значения $\lambda(A_i) \in [m, M], m > 0$ и $A_1A_2 = A_2A_1, A = A_1 + A_2$. Доказать, что при любом положительном значении параметра τ сходится итерационный метод решения системы уравнений $A\mathbf{x} = \mathbf{b}$ следующего вида:

$$\frac{\mathbf{x}^{k+1/2} - \mathbf{x}^k}{\tau} + A_1 \mathbf{x}^{k+1/2} + A_2 \mathbf{x}^k = \mathbf{b},$$
$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^{k+1/2}}{\tau} + A_1 \mathbf{x}^{k+1/2} + A_2 \mathbf{x}^{k+1} = \mathbf{b}.$$

Определить оптимальное значение $au_{
m opt}$.

 \lhd Обозначим $\mathbf{z}^k=\mathbf{x}-\mathbf{x}^k,\;\mathbf{z}^{k+1/2}=\mathbf{x}-\mathbf{x}^{k+1/2},$ где \mathbf{x} — решение системы $A\mathbf{x}=\mathbf{b}.$ Тогда

$$\mathbf{z}^{k+1} = (I + \tau A_2)^{-1} (I - \tau A_1) (I + \tau A_1)^{-1} (I - \tau A_2) \mathbf{z}^k \equiv P \mathbf{z}^k.$$

Матрица перехода P подобна матрице

$$B = (I - \tau A_1)(I + \tau A_1)^{-1}(I - \tau A_2)(I + \tau A_2)^{-1}.$$

Коммутирующие матрицы простой структуры A_1 и A_2 имеют общую полную систему собственных векторов. Это дает представления $A_i = QD_iQ^{-1}$, i=1,2, с диагональными матрицами D_i и совпадение собственных значений матриц A_i и D_i . Отсюда получаем оценку для спектрального радиуса матрицы B:

$$\rho(B) = \rho((I - \tau D_1)(I + \tau D_1)^{-1}(I - \tau D_2)(I + \tau D_2)^{-1}) = \max_{i} \left| \frac{1 - \tau \lambda_i(A_1)}{1 + \tau \lambda_i(A_1)} \frac{1 - \tau \lambda_i(A_2)}{1 + \tau \lambda_i(A_2)} \right| \leqslant \max_{m \leqslant t \leqslant M} \left(\frac{1 - \tau t}{1 + \tau t} \right)^2.$$

Оптимальное значение
$$\tau_{\text{opt}} = \frac{1}{\sqrt{mM}}$$
, при этом $\rho(B) \leqslant \left(\frac{\sqrt{M} - \sqrt{m}}{\sqrt{M} + \sqrt{m}}\right)^2$.

5.154. Доказать сходимость итерационного метода из 5.153, если матрицы A_1, A_2 удовлетворяют следующим условиям:

$$(A_i\mathbf{x},\mathbf{x})>0$$
 для $i=1,2,$ и $\forall x\neq 0,$ но не обязательно $A_1A_2=A_2A_1.$

5.155. Пусть матрицы A_i , i=1,2, простой структуры имеют собственные значения $\lambda(A_i) \in [m,M], m>0$ и $A_1A_2=A_2A_1, A=A_1+A_2$. Доказать, что при любом положительном значении параметра τ сходится итерационный метод решения системы уравнений $A\mathbf{x}=\mathbf{b}$ следующего вида:

$$\frac{\mathbf{x}^{k+1/2} - \mathbf{x}^k}{\tau} + A_1 \mathbf{x}^{k+1/2} + A_2 \mathbf{x}^k = \mathbf{b},$$
$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^{k+1/2}}{\tau} + A_2 (\mathbf{x}^{k+1} - \mathbf{x}^k) = 0.$$

Определить оптимальное значение $au_{
m opt}$.

 \triangleleft Обозначим $\mathbf{z}^k = \mathbf{x} - \mathbf{x}^k, \ \mathbf{z}^{k+1/2} = \mathbf{x} - \mathbf{x}^{k+1/2},$ где \mathbf{x} — решение системы $A\mathbf{x} = \mathbf{b}$. Тогда

$$\mathbf{z}^{k+1} = (I + \tau A_2)^{-1} (I + \tau A_1)^{-1} (I + \tau^2 A_1 A_2) \mathbf{z}^k \equiv B \mathbf{z}^k.$$

Коммутирующие матрицы простой структуры A_1 и A_2 имеют общую полную систему собственных векторов и представимы в виде $A_i = QD_iQ^{-1}$ с диагональными матрицами D_i , у которых те же спектры, что и A_i : $\lambda(D_i) = \lambda(A_i)$. В таком случае для спектрального радиуса матрицы B получаем следующую оценку:

$$\rho(B) = \rho\left((I + \tau D_2)^{-1} (I + \tau D_1)^{-1} (I + \tau^2 D_1 D_2)\right) =$$

$$= \max_{i} \frac{1 + \tau^2 \lambda_i(A_1) \lambda_i(A_2)}{(1 + \tau \lambda_i(A_1))(1 + \tau \lambda_i(A_2))} \leqslant \max_{t \in [m, M]} \frac{1 + \tau^2 t^2}{(1 + \tau t)^2} < 1 \ \forall \tau > 0.$$

Так как матрица A невырождена (система имеет единственное решение) и все собственные значения оператора перехода лежат в единичном круге, то итерационный процесс сходится к решению задачи $A\mathbf{x} = \mathbf{b}$.

Рассмотрим оптимизационную задачу (см. 5.153). Имеем

$$\rho(B) \leqslant \min_{\tau > 0} \max_{t \in [m,M]} \frac{1 + \tau^2 t^2}{(1 + \tau t)^2} = \min_{\tau > 0} \max \left\{ \frac{1 + \tau^2 m^2}{(1 + \tau m)^2}, \frac{1 + \tau^2 M^2}{(1 + \tau M)^2} \right\}$$

Максимальное значение на отрезке функция достигает в одной из концевых точек, так как ее производная по t равна $\left(\frac{1+\tau^2t^2}{(1+\tau t)^2}\right)'=\frac{2\tau(t\tau-1)}{(1+\tau t)^4},$ и $t=\frac{1}{\tau}$ — точка локального минимума. Из явного вида минимизируемых функций следует, что $\tau_{\rm opt}$ — решение следующего уравнения: $\frac{1+\tau^2m^2}{(1+\tau m)^2}=\frac{1+\tau^2M^2}{(1+\tau M)^2}.$ Отсюда имеем $\tau_{\rm opt}=\frac{1}{\sqrt{mM}},$ при этом

$$\rho(B) \leqslant \frac{M+m}{(\sqrt{M}+\sqrt{m})^2}.$$

- **5.156.** Доказать сходимость итерационного процесса из 5.155, если матрицы A_1,A_2 удовлетворяют следующим условиям: $(A_i\mathbf{x},\mathbf{x})>0$ для i=1,2, и $\forall x\neq 0,$ но не обязательно $A_1A_2=A_2A_1.$
- **5.157.** Показать, что если матрица A = M N вырожденная, то нельзя получить оценку $\rho(M^{-1}N) < 1$ ни для какой невырожденной матрицы M. \triangleleft Имеем $A = M N = M(I M^{-1}N)$. Если $\rho(M^{-1}N) < 1$, то существует $(I M^{-1}N)^{-1}$, как следствие существует $A^{-1} = (I M^{-1}N)^{-1}M^{-1}$. \triangleright
- **5.158.** Пусть A = M N и итерации $M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{b}$ сходятся при произвольном начальном приближении. Доказать, что $\rho(M^{-1}N) < 1$. Указание. Предположив, что $\rho(M^{-1}N) \geqslant 1$, выбрать такое начальное приближение \mathbf{x}^0 , что погрешность $\mathbf{z}^0 = \mathbf{x} \mathbf{x}^0$ пропорциональна собствен-

у казание. Предположив, что $\rho(M^{-1}N) \geqslant 1$, выорать такое начальное приближение \mathbf{x}^0 , что погрешность $\mathbf{z}^0 = \mathbf{x} - \mathbf{x}^0$ пропорциональна собственному вектору матрицы $M^{-1}N$, соответствующему собственному значению λ такому, что $|\lambda| \geqslant 1$.

5.159. Пусть решаются задачи $A_i \mathbf{x} = \mathbf{b}_i, i = 1, 2$, где

$$A_1 = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & -\frac{3}{4} \\ -\frac{1}{12} & 1 \end{pmatrix}$$

и B_1 и B_2 —соответствующие этим матрицам операторы перехода в итерационном методе Якоби. Показать, что $\rho(B_1) > \rho(B_2)$, т. е. опровергнуть мнение о том, что относительное усиление диагонального преобладания влечет за собой более быструю сходимость метода Якоби.

Otbet:
$$\rho(B_1) = \frac{1}{2}, \ \rho(B_2) = \frac{1}{4}.$$

5.7. Проекционные методы

Эффективными методами решения системы линейных алгебраических уравнений большой размерности $A\mathbf{x}^* = \mathbf{b}$ являются итерационные методы проекционного типа. На каждом шаге такого метода реализуется проекционный алгоритм: в зависимости от текущего приближения $\mathbf{x} \in \mathbf{R}^n$ и номера итерации выбирают два m-мерных $(m \leq n)$ подпространства \mathcal{K} и \mathcal{L} ; следующее приближение $\hat{\mathbf{x}}$ к точному решению \mathbf{x}^* ищут в виде $\hat{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x}$, $\delta \mathbf{x} \in \mathcal{K}$, из условия $\mathbf{r} \perp \mathcal{L}$, $\mathbf{r} = \mathbf{b} - A\hat{\mathbf{x}}$.

Таким образом, основная идея данного подхода заключается в построении вектора поправки $\delta \mathbf{x}$ из подпространства \mathcal{K} , обеспечивающего ортогональность вектора невязки \mathbf{r} подпространству \mathcal{L} . Различные правила выбора подпространств \mathcal{K} и \mathcal{L} приводят к различным расчетным формулам.

5.160. Показать, что метод Гаусса—Зейделя решения систем линейных уравнений является проекционным методом.

 \lhd Определим $\mathcal{K}=\mathcal{L}=\{\mathbf{e}_i\}$ для i=1,...,n, где \mathbf{e}_i- естественный i-й базисный вектор пространства $\mathbf{R}^n.$ Тогда последовательно находим

$$\hat{\mathbf{x}} = \mathbf{x} + c_i \mathbf{e}_i$$
 и $(\mathbf{b} - A(\mathbf{x} + c_i \mathbf{e}_i), \mathbf{e}_i) = 0$. Отсюда имеем $c_i = \frac{b_i - \sum\limits_{j=1}^n a_{ij} x_j}{a_{ii}}$ при известных компонентах $x_j, \ j = i, i+1, \ldots, n$ и найденных $x_j, \ j = 1, 2, \ldots, i-1$. Таким образом, за n шагов проекционного алгоритма имеем $\mathbf{x}^{k+1} = \mathbf{x}^k + \sum\limits_{i=1}^n c_i \mathbf{e}_i$, что соответствует шагу метода Гаусса—Зейделя:

$$a_{ii}(x_i^{k+1} - x_i^k) + \sum_{j=1}^{i-1} a_{ij}x_j^{k+1} + \sum_{j=i}^n a_{ij}x_j^k = b_i, \quad i = 1, \dots, n.$$

Пусть текущие подпространства $\mathcal{K}=\mathrm{span}\{\mathbf{k}_1,\ldots,\mathbf{k}_m\}$ и $\mathcal{L}=\mathrm{span}\{\mathbf{l}_1,\ldots,\mathbf{l}_m\}$ являются линейными оболочками наборов базисных векторов \mathbf{k}_i и \mathbf{l}_i . Определим соответствующие им матрицы $K=(\mathbf{k}_1\ldots\mathbf{k}_m)$ и $L=(\mathbf{l}_1\ldots\mathbf{l}_m)$ размерности $n\times m$. Положим $\hat{\mathbf{x}}=\mathbf{x}+K\mathbf{c}$. Тогда условие ортогональности приводит к следующей системе относительно искомого вектора коэффициентов \mathbf{c} :

$$L^T A K \mathbf{c} = L^T \mathbf{r}, \quad \mathbf{r} = \mathbf{b} - A \mathbf{x}.$$

Если матрица $L^T A K$ невырождена, то формула для очередного приближения имеет вид $\hat{\mathbf{x}} = \mathbf{x} + K (L^T A K)^{-1} L^T \mathbf{r}.$