

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Álgebra / Álgebra II (2015) Recuperatorio primer parcial - 16/06/2015

Nombre y Apellido:

Carrera:

Justifique todas las respuestas.

1. (30 pts.) Sea
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & -1 & -1 & -1 \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$

- a) Determinar todas las matrices $Y \in \mathbb{R}^{3 \times 1}$ tales que el sistema AX = Y tenga solución.
- b) Determinar todas las soluciones reales del sistema homogéneo AX=0.
- 2. (30 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Si $A, B \in \mathbb{R}^{2 \times 2}$, entonces $(A+B)^2 = A^2 + B^2 + 2AB$.
 - b) La matriz $\begin{pmatrix} z & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}$ es inversible, para todo $z \in \mathbb{C}$.
 - c) Sea V un espacio vectorial de dimensión n sobre un cuerpo F. Si U y W son subespacios de V tales que $\dim U + \dim W = \dim V$, entonces $V = U \oplus W$.
- 3. (30 pts.) Sea W_1 el subespacio de \mathbb{R}^4 generado por los vectores

$$(-1, -1, 1, 0), (1, -1, 0, 1), (2, 0, -1, 1),$$

y sea W_2 el subespacio de \mathbb{R}^4 definido por

$$W_2 = \{(x, y, x, t) : x + y + z = 0, x - t = 0\}.$$

- a) Caracterizar con ecuaciones el subespacio W_1 y calcular su dimensión.
- $b)\,$ Dar una base del subespacio W_2 y calcular su dimensión.
- c) Dar una base de $W_1 + W_2$ y calcular su dimensión.
- 4. (10 pts.) Sea V un espacio vectorial sobre un cuerpo F.
 - a) Dar la definición de subespacio de V.
 - b) Dar la definición de base de V.

Ejercicio	1a	1b	2a	2b	2c	3a	3b	3c	4a	4b	Total
Evaluación											