

Chapitre 1

Annulateurs et idéaux quotients

Je veux parler de l'utilisation des annulateurs à coefficients dans différents anneaux et quotients d'idéaux dans différents anneaux. Par exemple, si j'ai I, J deux idéaux fractionnaires de A avec K = Frac(A). Je peux considérer

$$_{A}(I:J)$$

ou

 $_{K}(I:J)$

ou bien

K(A:I)

ou encore

$$S^{-1}A(I:J)$$

à noter que c'est pas clair $_K(I:J)$ vu que I et J sont pas des K-modules. Mais cet ensemble fait sens. En général si M,N sont des A-modules contenus dans un $S^{-1}A$ -module P, alors on peut faire sens de

$$S^{-1}A(M:N)$$

et ici K est un $S^{-1}A$ module pour tout S.

1.1 Arguments locaux

Considérer les (A:I) et $I.(A:I) \subset A$ permet de ramener I dans A. Mais aussi d'avoir une manière propre d'écrire des arguments communs à plusieurs localisations. Par exemple, écrire

$$_{A_{\mathfrak{p}}}(IA_{\mathfrak{p}}:JA_{\mathfrak{p}})=_{A_{\mathfrak{p}}}(JA_{\mathfrak{p}}:IA_{\mathfrak{p}})$$

se traduit en $IA_{\mathfrak{p}}=JA_{\mathfrak{p}}$. Et de cette dernière condition on peut montrer que $_{A}(I:(x))\nsubseteq \mathfrak{p}$ pour tout $x\in J$. D'où si c'est vrai pour tout \mathfrak{p} alors

$$_{A}(I:(x))=A$$

puis $x \in I$ et inversement.

Chapitre 2

Balades dans ComRing

2.1 Localisation et cloture intégrale

À savoir que la localisation commute avec clôture intégrale.

2.1.1 Si A est intégralement clos

Pour S une partie multiplicative, si A est intégralement clos, et $x^n + \sum a_i x^i = 0$ avec $a_i \in S^{-1}A$. Il existe s tel que $sx \in A$ puis $x \in S^{-1}A$.

2.1.2 Sinon

On prends \tilde{A} sa clôture dans K alors $\varphi(S)$ est multiplicative et $\varphi(S)^{-1}\tilde{A}$ est intégralement clos. Reste à voir que $S^{-1}A$ est intégralement close et égale. En gros qu'on a

$$\begin{array}{c|c}
A & \longrightarrow & S^{-1}A \\
 & & \downarrow \\
\tilde{A} & \longrightarrow & \widetilde{S^{-1}A} \\
 & & \uparrow \\
 & & i(S)^{-1}\tilde{A}
\end{array}$$

égalité au niveau du ?. On a clairement

$$S^{-1}A \subset i(S)^{-1}\tilde{A}$$

d'où

$$\widetilde{S^{-1}A} \subset i(S)^{-1}\widetilde{A}$$

par minimalité en plus on a $\tilde{A} \subset \widetilde{S^{-1}A}$ et i(S) est clairement inversible par cette flèche d'où l'égalité par propriété universelle par exemple.

2.2 Extensions entières où transmettre la dimension.

Si $A \hookrightarrow B$ est fini. Alors

$$\operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

est surjectif et a des fibres finies. En plus $\dim(A) = \dim(B)$. On peut isoler deux choses déjà

- 1. Si $\mathfrak{m} \subset B$ est maximal, $\mathfrak{m} \cap A$ aussi. Parce que $A/\mathfrak{m} \cap A \to B/\mathfrak{m}$ est entière
- 2. Si $\mathfrak{q} \subset A$ est premier. $S = (A \mathfrak{q})$ est multiplicative dans B. Et $A \subset S^{-1}B \neq 0$, d'où un idéal maximal \mathfrak{p} vérifie $\mathfrak{p} \cap A = \mathfrak{q}$. Pour le vérifier,

$$A_{\mathfrak{a}} \to S^{-1}B$$

est entière, d'où $\mathfrak{p} \cap A_{\mathfrak{q}}$ est maximal puis $\mathfrak{p} \cap A_{\mathfrak{q}} = \mathfrak{q} A_{\mathfrak{q}}$ et le résultat. $\mathfrak{p} \cap A$ est pas max parce que $A \to S^{-1}B$ est pas entière.

ensuite pour montrer que ça préserve la dimension suffit de montrer que si $(0) \neq \mathfrak{p} \in \operatorname{Spec}(B)$ alors $\mathfrak{p} \cap A \neq 0$. Suffit de prendre une relation entière minimale $x(\sum a_i x^{i-1}) = -a_0$ avec $x \in \mathfrak{p} - 0$ d'où $a_0 \in \mathfrak{p} \cap A$ et par minimalité $a_0 \neq 0$.

2.2.1 Balades

En fait on est dans le cadre de morphismes finis dominants de schémas affines

$$\operatorname{Spec}(B) \to \operatorname{Spec}(A)$$
.

Vu que c'est dominant c'est surjectif et de fibres finies. En plus la dimension est toujours préservée.

2.2.2 Normalisation

Si A est intègre, alors $A \subset \tilde{A} \subset \operatorname{Frac}(A)$ est entier et on obtient une normalisation entière dominante

$$\operatorname{Spec}(\tilde{A}) \to \operatorname{Spec}(A)$$

mais pas forcément finie! Si A est une k-algèbre de type fini c'est vrai.

Chapitre 3

Algèbre en dimension 1

Je vais quasi-toujours rajouter la noethérianité.

3.1 Anneaux de valuation discrète

Pour le contexte, moi je m'intéresse au cas intègre déjà et au cas où le DVR est un $A_{\mathfrak{p}}$ pour un anneau noethérien intègre de dimension 1. Sa clôture intégrale dans $\operatorname{Frac}(A)$ devient un anneau de Dedekind.

3.1.1 Les 2 définitions.

Y'a deux manières de les voir :

- 1. Dans un corps (K, v) muni d'une valuation discrète. Avec $A = \{x \in K | v(x) = 0\}$.
- 2. Comme un anneau principal (donc intègre) ayant un seul idéal premier non nul.

L'implication 1. implique 2. consiste juste à se placer dans l'espace ambiant K. L'autre côté consiste à construire une valuation par l'absurde, via $t \in A$ est soit dans A^{\times} soit dans \mathfrak{m} . D'où on construit $t^{(i)} = \pi t^{(i+1)}$ puis une suite

$$(t^{(i)}) \subset (t^{(i+1)})$$

et ca se déroule en rappelant que $1 + \mathfrak{m} \subset A^{\times}$.

3.1.2 Première caractérisation

Équivalences. Dans un anneau noethérien,

DVR \equiv local, noethérien, $\mathfrak{m} = (\pi)$ non nilpotent.

On veut écrire $x = \pi^n u$ de manière unique. On peut faire exactement la même chose que la partie d'avant. Dans le cas intègre c'est vraiment facile.

Note 1. Serre prouve que $\cap \mathfrak{m}^n = (0)$ ce qui est un peu plus fort en soi.

3.1.3 Deuxième caractérisation

Équivalences. DVR \equiv Noethérien, intégralement clos, un seul idéal premier $\neq 0$ (local mais pas un corps ? Non! Tu verras pq.).

Là c'est un peu plus dur. Le point c'est de montrer que \mathfrak{m} est inversible, alors \mathfrak{m} est principal. On note $\mathfrak{m}' = \{x \in K | x\mathfrak{m} \subset A\}$. On a

$$\mathfrak{mm}' \subset A \text{ et } A \subset \mathfrak{m}' \text{ implique } \mathfrak{m} \subset \mathfrak{mm}'.$$

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou A. Maintenant en fait

si
$$\mathfrak{m}\mathfrak{m}'=A$$
 alors $\sum x_iy_i=1$ d'où $u=x_{i_0}y_{i_0}\in A-\mathfrak{m}=A^{\times}$

par l'absurde. En particulier tout $z \in \mathfrak{m}$ se réécrit

$$z = x_{i_0}(u^{-1}y_{i_0}z)$$

parce que $x_{i_0}y_{i_0}u^{-1} = 1$ et $y_{i_0}z \in A!$

3.1.4 Idées de preuve de la deuxième caractérisation.

Donc a une remarque:

$$\mathfrak{m} \subseteq \mathfrak{mm}' \subseteq A$$

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou $\mathfrak{m}\mathfrak{m}'=A.$ On peut montrer que

- 1. Dans le cas intégralement clos $\mathfrak{mm}' = \mathfrak{m}$ implique $\mathfrak{m}' = A$.
- 2. Dans le cas local, $\mathfrak{m}' \neq A$.

D'où le résultat.

3.1.5 Premier point

On veut montrer que si A est intégralement clos alors $\mathfrak{m}'\mathfrak{m} = \mathfrak{m}$ implique $\mathfrak{m}' = A$. On prends $z \in \mathfrak{m}' - 0$, alors

$$z\mathfrak{m}\subset\mathfrak{m}$$

d'où $z^i\mathfrak{m}\subset\mathfrak{m}$ en itérant. Puis $\sum_{i=0}^n z^iA\subset\mathfrak{m}'$ pour tout n et on sait que \mathfrak{m}' est noethérien. D'où

$$A[z]$$
 est noethérien

d'où z est entier sur A et le résultat.

3.1.6 Second point

On veut montrer que si A a un seul idéal premier non nul alors $\mathfrak{m}' \neq A$. Un argument c'est

- 1. On montre que pour $x \in \mathfrak{m} 0$, $A_x = K$ via l'hypothèse.
- 2. En faisant varier x, $\mathfrak{m}^N \subset zA$ pour un N minimal.
- 3. Puis si $y \in \mathfrak{m}^{N-1} zA$ alors $y\mathfrak{m} \subset zA$ puis

$$y/z \in \mathfrak{m}' - A$$

Plusieurs détails où faut faire attention :

- 1. Il faut prendre $z \in \mathfrak{m} 0$, sinon on peut pas prendre $y \in \mathfrak{m}^{N-1} zA$. Par exemple si $z \in A^{\times}$ alors zA = A et $\mathfrak{m}^{N-1} zA = \emptyset$. Ducoup dans tout les autres cas c'est bon.
- 2. L'hypothèse c'est un seul idéal premier non nul. Et pour la première étape c'est nécessaire, pas juste local. Parce que si $A_x \neq K$, alors on a $\mathfrak{p} \in A_x$ maximal non nul. Et $\mathfrak{p} \cap A \neq \mathfrak{m}$ car $x \notin \mathfrak{p}$. D'où $\mathfrak{p} \cap A \neq \mathfrak{m}$ est premier non nul.

Voilà ça conclut la preuve!

3.1.7 Notes

Note 2. Le troisième point se traduit en $Spec(K) = D(x) \subset Spec(A)$ et

$$A_x = \mathcal{O}_{D(x)}(D(x))$$

$$= \mathcal{O}_{Spec(A)}(Spec(A))|_{(0)}$$

$$= \mathcal{O}_{Spec(A),(0)}$$

$$= (A \setminus 0)^{-1}A$$

$$= K$$

Aussi, cette histoire de $y\in \mathfrak{m}^{n-1}-zA$ et $y\mathfrak{m}\subset zA$ ça fait remarquer de l'arithmétique plus habituelle.

3.1.8 But de ces caractérisations

Celle qui nous intéresse c'est la deuxième qui permet de montrer que \mathfrak{m} est principal. Alors on peut utiliser la première pour montrer que c'est un DVR.

3.2 Idéaux fractionnaires

On se met dans un anneau noethérien intègre A et K = Frac(A). Y'a l'équivalence A-modules M de type fini dans K et $M = y^{-1}I$ avec $I \leq A$ un idéal. Pour gauche à droite une manière cool c'est que de $x \in (A:M)$ on obtient $M \leq x^{-1}A$. Faut montrer que c'est non vide, bon bah ça c'est que M est engendré par des fractions.

3.3 Anneaux de Dedekind

On montre que

Équivalences. $A_{\mathfrak{p}}$ est un dvr pour tout $\mathfrak{p} \equiv A$ est noethérien intégralement clos de dimension 1.

On montre que

Équivalences. $A_{\mathfrak{p}}$ est un dvr pour tout $\mathfrak{p} \equiv A$ est noethérien intégralement clos de dimension 1.

On sait que un $DVR \equiv$ noethérien intègre avec un seul idéal premier non nul. I.e. de dimension ≤ 1 . Donc faut juste Que intégralement clos équivaut à tout les $A_{\mathfrak{p}}$ sont intégralement clos.

3.3.1 Tout les $A_{\mathfrak{p}}$ sont des DVR implique de Dedekind. (instructif)

Si $x \in K$ est entier sur A, on le note x = b/c. On a pour tout \mathfrak{p} :

$$x \in A_{\mathfrak{p}}$$

d'où $b \in cA_{\mathfrak{p}}$ autrement dit il existe $s \in A - \mathfrak{p}$ tel que $sb \in cA$. En particulier (cA : bA) est contenu dans aucun idéal premier d'où $1 \in (cA : bA)!!$

3.3.2 Relever l'inversibilité pour les premiers

De l'inversibilité de \mathfrak{p} dans $A_{\mathfrak{p}}$ je veux relever dans A. En fait ça vient du fait que $_{-} \otimes_{A} A_{\mathfrak{p}}$ est un morphisme de monoides $Mod_{A, \subset K} \to Mod_{A_{\mathfrak{p}}, \subset K}$ additif et multiplicatif!

3.3.3 Spec(A) est de dimension 1, i.e. V(I) est fini pour $I \neq (0)$.

Si on prends $x \in A$, psq si $\mathfrak{p}_1, \ldots, \mathfrak{p}_k, \ldots$ le contiennent alors on a une chaine

$$A \subset (A : \mathfrak{p}_1) \subset (A : \mathfrak{p}_1 \cap \mathfrak{p}_2) \subset \ldots \subset (A : \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_k) \subset \ldots \subset x^{-1}A$$

d'où ça stationne et c'est fini.

Comme I est de type fini on obtient direct que V(I) est fini.

3.3.4 Valuations et décomposition

Étant donné $I \subset A$, on a $I_{\mathfrak{p}} = \mathfrak{p}^m$ et on peut définir $v_{\mathfrak{p}}(I) = m$, on l'étend à $I \subset K$ par $v_{\mathfrak{p}}(I.(A_{\mathfrak{p}}:I)) = 0$.

3.3.5 Relever l'inversibilité en général

Il transforme aussi (I:J) en $(I_{\mathfrak{p}}:J_{\mathfrak{p}})$. Concrètement :

$$(\mathfrak{p}.(A:\mathfrak{p}))\otimes_A A_{\mathfrak{p}}=(\mathfrak{p}A_{\mathfrak{p}}.(A_{\mathfrak{p}}:\mathfrak{p}A_{\mathfrak{p}}))=A_{\mathfrak{p}}$$

sauf que à gauche $\mathfrak{p}.(A:\mathfrak{p})\subseteq A$ est un idéal et y'a que A qui a pour image $A_{\mathfrak{p}}.$

Remarque 1. ATTENTION. On a utilisé que $\mathfrak{p} \mapsto \mathfrak{p}A_{\mathfrak{p}}$ est injectif!

Remarque 2. Ca se généralise à I un idéal fractionnaire car $I \otimes_A A_{\mathfrak{p}} = \mathfrak{p}^n$ d'où $(I\mathfrak{p}^{-n})_{\mathfrak{p}} = A_{\mathfrak{p}}$. On peut pas conclure que $\mathfrak{p}^{-n} = (A:I)$ parce que si $\mathfrak{p}' \mid I$ alors $\mathfrak{p}' \otimes_A A_{\mathfrak{p}} = A_{\mathfrak{p}}$.

Y faut maintenant remarquer que $(A:\prod \mathfrak{p}^{v_{\mathfrak{p}}(I)})_{\mathfrak{p}}=(A:I)_{\mathfrak{p}}$ pour tout \mathfrak{p} et conclure. On conclut via le fait que $IA_{\mathfrak{p}}=JA_{\mathfrak{p}}$ pour tout \mathfrak{p} implique

$$_{A}(I:J) = A =_{A} (J:I)$$

Note 3. Une première manière de le résoudre c'est de dire I et J sont des types finis donc suffit de montrer que $(J:(x_i))=A$ pour chaque générateur de I et inversement. EN FAIT, on peut montrer que pour tout $x \in I$, A(J:(x))=A d'où $x \in J$ puis $I \subset J!$ Et inversement.

Note 4. Le foncteur $_{-}\otimes_{A}A_{\mathfrak{p}}$ de Mod_{A} dans $Mod_{A_{\mathfrak{p}}}$ a surement les mêmes propriétés pour les bonnes définitions de produits et sommes.

3.3.6 Décomposition en idéaux

De la même manière que pour l'inversibilité on remarque que $\prod \mathfrak{p}^{v_{\mathfrak{p}}(I)}$ coincide avec I dans tout les $A_{\mathfrak{p}}$. Faut montrer que donc il est égal à I.

Note 5. Faire une section sur la décomposition en idéaux primaires.