HW2

T1

- (a). The smallest positive normalized number is 2^{-126} .
- (b). The largest positive subnormal number is $0.FFFFFE*2^{-126}$, where 0.FFFFFE is in hex.

T2

T3

The $\$ is $A\cdot \overline{B}+\overline{A}\cdot B.$ We can draw the transistor level circuit like this.

T4

A	В	C	OUT	
0	0	0		
0	0	1	ı	
0	1	0	_	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	0	

T5

$$0 \ OR \ X = X$$

$$0 ORX = 1$$

$$0 AND X = 0$$

$$1 ANDX = 1$$

$$1 XOR X = X$$

T6

Figure 3.39 is a simple combination circuit. The output value depends only on the input of the values. while the Figure 3.30 is a sequential logic.

T7

(a)
$$2^5=32\mathrm{bit}$$

(b) 1bit, 4bit

T8

- 1.3
- 2. Yes. The algebraic expressions is $Z = ((((A \cdot B) \cdot C) \cdot D) \cdot E)$. And it can simply

T9

T10

A NAND gates is a universal gate, meaning that any other gate can be represented as a combination of NAND gate.

NOT

AND

OR

T11

(a).

T12

T13