Objective:

To analyze student placement data to discover hiring patterns, salary distribution, job role trends, and company preferences using data analytics tools. This project provides insights into which branches and companies are leading in campus placements and what salary trends exist across graduation years.

Tools Used:

- Excel Data cleaning, formulas, charting
- MySQL Workbench Database creation, SQL queries
- Python (Jupyter Notebook) Exploratory data analysis
- **Tableau** Interactive dashboards
- Libraries: Pandas, Matplotlib, Seaborn

Dataset Overview:

- File: indian_student_placement_data.csv
- Total Records: 1000 students
- Key Fields:
 - o Name, Email, Course, Branch, Graduation Year
 - o Company, Job Role, Salary (INR)
 - o Location, Placement Date, Placement Month

Excel Work Summary:

- File: cleaned_file_with_formulas.xlsx
- Actions performed:
 - o Removed unwanted columns (Name, Email)
 - Created derived columns:
 - Salary_LPA = Salary_INR/100000
 - Placement Month = TEXT(Placement_Date, "mmmm")
 - o Used conditional formatting on top 10 salaries

• Built chart in Budget_Calculator.xlsx with:

o Students per Company

■ ■ **■** - + 80%

Salary Trend by Year placement_cleaned
Salary Distribution
Dashboard
+
•

Ready % Accessibility: Investigate

o Final Dashboard

SQL Work Summary:

CREATE DATABASE placement_db;

USE placement_db;

• Imported placement_cleaned.csv using MySQL Workbench

Planned to run queries (to be added in placement_queries.sql) like:

-- Branch-wise Average Salary

SELECT branch, ROUND(AVG(salary_inr)) AS avg_salary

FROM placement_db.placement_cleaned

GROUP BY branch

ORDER BY avg_salary DESC;

-- Top 5 Hiring Companies

SELECT company, COUNT(*) AS total_hired

FROM placement_db.placement_cleaned

GROUP BY company

ORDER BY total_hired DESC

LIMIT 5;

R	esult Grid	Filter R	lows:	Export:	Wrap Cell Content:	<u>‡A</u>	Fetch rows:	
	company	total_hired						
•	IBM	114						
	Infosys	112						
	Microsoft	109						
	TCS	107						
	Capgemini	106						

-- Graduation Year vs Avg Salary

SELECT graduation_year, ROUND(AVG(salary_inr)) AS avg_salary

FROM placement_db.placement_cleaned

GROUP BY graduation_year

ORDER BY graduation_year;

-- Most Common Job Roles

SELECT job_role, COUNT(*) AS total_placed

FROM placement_db.placement_cleaned

GROUP BY job_role

ORDER BY total_placed DESC

LIMIT 10;

-- Students Placed per Location

SELECT location, COUNT(*) AS total_placed

FROM placement_db.placement_cleaned

GROUP BY location

ORDER BY total_placed DESC;

-- Highest Salary Offered

SELECT *

FROM placement_db.placement_cleaned

ORDER BY salary_inr DESC

LIMIT 1;

-- Lowest Salary Offered

SELECT *

FROM placement_db.placement_cleaned

ORDER BY salary_inr ASC

LIMIT 1;

-- Company-wise Average Salary

SELECT company, ROUND(AVG(salary_inr)) AS avg_salary

FROM placement_db.placement_cleaned

GROUP BY company

ORDER BY avg_salary DESC;

-- Branch-wise Total Placements

SELECT branch, COUNT(*) AS total_placed

FROM placement_db.placement_cleaned

GROUP BY branch

ORDER BY total_placed DESC;

-- Monthly Placement Trend

SELECT placement_month, COUNT(*) AS total_placed

FROM placement_db.placement_cleaned

GROUP BY placement_month

ORDER BY FIELD(placement_month,

'January','February','March','April','May','June','July','August','September','October','November','December');

Python Work Summary:

• Notebook: placement_eda.ipynb

import data

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set(style="whitegrid")

load data

df = pd.read_csv(r'E:/student_placement_project/data/placement_cleaned.csv')

df.head()

	Course	Branch	Graduation_Year	Company	Job_Role	Salary_INR	Salary_LPA	Location	Placement_Date	Placement_Month
0	B.Sc	Civil	2020	Google	Web Developer	808813	8.08813	Delhi	2024-08-14	August
1	BCA	EEE	2022	Accenture	Support Engineer	309179	3.09179	Bangalore	2025-02-05	February
2	B.Com	IT	2023	Accenture	Software Engineer	711614	7.11614	Hyderabad	2024-03-09	March
3	BBA	Mechanical	2024	TCS	Consultant	717444	7.17444	Mumbai	2023-10-18	October
4	k	IT	2023	IBM	Data Analyst	1171796	11.71796	Hyderabad	2023-11-09	November

basic overview

Basic Info

df.info()

Summary Statistics

df.describe()

Check for null values

df.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):

Daca	COTAMMIO (COCAT I	0 0014111110/1	
#	Column	Non-Null Count	Dtype
0	Course	1000 non-null	object
1	Branch	1000 non-null	object
2	Graduation_Year	1000 non-null	int64
3	Company	1000 non-null	object
4	Job_Role	1000 non-null	object
5	Salary_INR	1000 non-null	int64
6	Salary_LPA	1000 non-null	float64
7	Location	1000 non-null	object
8	Placement_Date	1000 non-null	object
9	Placement_Month	1000 non-null	object

dtypes: float64(1), int64(2), object(7)

memory usage: 78.3+ KB

Course 0
Branch 0
Graduation_Year 0
Company 0
Job_Role 0
Salary_INR 0
Salary_LPA 0
Location 0
Placement_Date 0
Placement_Month 0
dtype: int64

Conducted exploratory data analysis (EDA) to uncover hidden patterns

Branch-wise Average Salary

branch_salary = df.groupby('Branch')['Salary_INR'].mean().sort_values(ascending=False)

plt.figure(figsize=(10,6))
sns.barplot(x=branch_salary.values, y=branch_salary.index, palette='viridis')
plt.title('Average Salary by Branch')
plt.xlabel('Average Salary_INR')
plt.ylabel('Branch')
plt.tight_layout()
plt.show()

Company-wise Student Count company_count = df['Company'].value_counts()

plt.figure(figsize=(8,8))

company_count.plot.pie(autopct='%1.1f'%%', startangle=140)

plt.title('Placement Distribution by Company')

plt.ylabel(")

plt.show()

Placement Distribution by Company


```
# Graduation Year vs Avg Salary
year_salary = df.groupby('Graduation_Year')['Salary_INR'].mean()

plt.figure(figsize=(10,5))
sns.lineplot(x=year_salary.index, y=year_salary.values, marker='o')
plt.title('Average Salary by Graduation Year')
plt.xlabel('Graduation_Year')
plt.ylabel('Average Salary_INR')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Salary Distribution

plt.figure(figsize=(8,5))

sns.histplot(df['Salary_INR'], bins=20, kde=True, color='skyblue')

plt.title('Salary Distribution')

plt.xlabel('Salary_INR')

plt.ylabel('Count')

plt.tight_layout()

plt.show()
```


Tableau Work Summary:

- File: final_dashboard.twbx
- Dashboard includes:
 - o Avg Salary by Branch

Students Placed per Company

• Year vs Salary

Salary Distribution (Histogram)

o Final Dashboard

- Added interactive filters:
 - o Branch
 - o Graduation Year
 - Company

Insights & Summary:

- IT has the highest average salary among all branches
- **IBM** hired the most students overall
- Graduation Year 2022 had the highest avg salary
- Placements spike in February and October
- Majority of salaries fall in the ₹3L to ₹7L range

Conclusion:

This project demonstrates the full data analysis lifecycle — from raw data cleaning in Excel, structured querying in SQL, EDA in Python, to interactive dashboard building in Tableau. It uncovers key insights into student placements that can help colleges, training centers, and job seekers understand current hiring patterns and salary expectations. A solid showcase of analytical thinking and tool integration.