Group Activity 09 (3인 혹은 4인으로 팀을 구성하여 아래의 문제를 푼다. 팀 구성은 매 시간마다 달라져도 된다.)

	팀원1:
	팀원2:
	팀원3:
	팀원4:
1.	다음 중 인접행렬 표현법과 비교해서 인접 리스트 표현법의 장점이라고 할 수 있는 것을 모두 고르면? (a) 희소(sparse)그래프를 표현할 때 메모리 공간이 절약된다. (b) DFS와 BFS가 인접행렬의 경우 $O(n^2)$ 시간이 필요한 반면 인접 리스트에서는 $O(n+m)$ 시간에 수행할 수 있다. 여기서 n 과 m 은 각각 정점의 개수와 에지의 개수를 나타낸다. (c) 인접행렬보다 그래프에 새로운 정점을 추가하기가 쉽다.
2.	Degree sequence란 무방향 단순(simple) 그래프의 각 정점의 차수(degree)를 내림차순으로 나열한 수열을 의미한다. 어떤 정점의 차수란 그 정점에 연결된 에지의 개수를 말하고, 단순 그래프란 자신과 자신을 연결하는 에지를 허용하지 않고, 임의의 두 노드 간에 최대 1개의 에지만을 허용하는 그래프를 말한다. 다음 중 무방향단순 그래프의 degree sequence가 될 수 없는 것을 모두 고르면? 이유는? (a) 7, 6, 5, 4, 4, 3, 2, 1 (b) 6, 6, 6, 6, 3, 3, 2, 2 (c) 7, 6, 6, 4, 4, 3, 2, 2 (d) 8, 7, 7, 6, 4, 2, 1, 1

3.	3. 정점의 집합이 $V = \{v_1, v_2,, v_n\}$ 인 서로 다른 단순(simple) 무방향 그래프의 개수는? 이유-	는?
4.	4. 무방향 단순 그래프에 대해서 다음의 두 명제는 각각 TRUE인가 FALSE인가? 이유는?	
	(a) 차수가 홀수인 정점의 개수는 짝수이다.	
	(b) 모든 정점의 차수의 합은 짝수이다.	
5.	L 5. 사이클이 존재하지 않으면서 <i>n</i> 개의 정점을 가진 무방향 그래프가 가질 수 있는 에지의 개수의] 최대값은?
6.	6. 아래의 방향 그래프를 정점 A에서 출발하여 DFS를 했을 때 정점들의 방문 문서가 될 수 없-면?	는 것을 모두 고트
	(a) ABEFCGHD	(G)
	(b) ACEFGHBD	
	(c) ABDEFCGH (d) ABCEEDCH	
	(d) ABCEFDGH	H
1		
	F	

7. 다음의 DAG에 대해서 가능한 위상순서(topological order)를 모두 제시하라.

		١
		ĺ
8	DFS 알고리즘에 기반하여 무반향 그래프에서 사이킄(cycle)이 존재하는지 검사하는 방법을 고안하라	

9. DFS 알고리즘에 기반하여 방향(directed) 그래프에서 사이클(cycle)이 존재하는지 검사하는	방법을 고안하라.