Divide-and-Conquer Algorithm: An Idea of Master Theorem

Integer Multiplication

- Let X = AB and Y = CD be the *n* bit integers, where A, B, C and D are n/2 bit integers
- Simple Method: $XY = (A.2^{n/2}+B)(C.2^{n/2}+D)$
- Running Time Recurrence Relation:

$$T(n) < 4T(n/2) + 100n$$

How do we solve it?

Substitution Method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example: T(n) = 4T(n/2) + 100n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of Substitution

$$T(n) = 4T(n/2) + 100n$$

 $\leq 4c(n/2)^3 + 100n$
 $= (c/2)n^3 + 100n$
 $= cn^3 - ((c/2)n^3 - 100n) \leftarrow Desired - Residual$
 $\leq cn^3 \leftarrow Desired$
whenever $(c/2)n^3 - 100n \geq 0$, for example,
if $c \geq 200$ and $n \geq 1$. Residual

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + 100n$$

$$\leq cn^2 + 100n$$

$$\leq cn^2$$

for **no** choice of c > 0. Lose!

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive Hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + 100n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2)) + 100n$$

$$= c_1 n^2 - 2c_2 n + 100n$$

$$= c_1 n^2 - c_2 n - (c_2 n - 100n)$$

$$\leq c_1 n^2 - c_2 n \quad \text{if } c_2 > 100.$$

Pick c_1 big enough to handle the initial conditions.

Recursion-Tree Method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition (common sense, instinct, perception).

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= \Theta(n^{2}) \qquad Geometric Series$$

Appendix: Geometric Series

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \ne 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

The Master Method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of Master Theorem

Three Common Cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log b^a}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Idea of Master Theorem

Three Common Cases

Compare f(n) with $n^{\log_b a}$:

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log ba}$ grow at similar rates.

```
Solution: T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).
```

Idea of Master Theorem

Three Common Cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Idea of Master Theorem

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.