Izpit

25. januar 2017

Ime in priimek:	Vpisna št.:
Študijski program:	Letnik:

1. (20 points) For the following logical statement draw the truth table, write down the canonical disjunctive and conjunctive forms and the logical circuit for this statement.

$$(A \lor B) \Rightarrow \neg(C \land B \Rightarrow A)$$

2.(15 points) Draw teh diagrams for the following categories

- a. Category A: Objects: A,B,C,D,E, Maps: 1_A , 1_B , 1_C , 1_D , 1_E , $f:A \rightarrow B$, $g:B \rightarrow C$, $h:C \rightarrow D$, $i:D \rightarrow A$
- b. Category \mathbb{B} : Objects: A,B,C,D,E, Maps: 1_A , 1_B , 1_C , 1_D , 1_E $f:A\to B$, $g:B\to A$, $h:C\to D$, $i:D\to E$
- c. For the diagram below answer the following questions (note that the identities are not drawn). Write down the following images for the functor.

i.
$$F(a) =$$

iii.
$$F(g) =$$

v.
$$F(h) =$$

ii.
$$F(f) =$$

iv.
$$F(f \circ i) =$$

- **3.** (15 points) Prove $A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- **4.** (15 points) Prove $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$
- 5. (15 points) Prove $(A \Rightarrow B) \Rightarrow (A \lor C) \Rightarrow (B \lor C)$

- 6. (12 points) Determine whether the following statements are true or false
 - (a) If f is an injective function then $f^{-1}|_{\lim f}$ is a function.

YES NO

- (b) If the consequence is a tautology then we can infer that the antecedent is a contradiction. YES NO
- (c) If f is and injective function and g is an injective function then $g \circ f$ and $f \circ g$ are injective. YES NO

(d)
$$E = f^{-1}(f(E))$$
 YES NO

- 7. (12 points)Draw the following Venn diagrams
 - a. $A \cap B \cap C \neq \emptyset$
 - b. $(A \cup B) \subseteq C$
 - c. $A \cap B \neq \emptyset$, $A \subset C$, $B \subset C$ and mark $\overline{C} \setminus (A \cap B)$
- **8.** (15 points) Draw the Hasse diagram for the power set $\mathcal{P}(A)$, $A = \{1, 2, 3\}$ for teh following ordering relations
 - a. $xRy \Leftrightarrow x \subseteq y$
 - b. $xRy \Leftrightarrow y \backslash x = y$
 - c. $xRy \Leftrightarrow (|x| = |y|) \land (\sum_{i \in x} i \le \sum_{j \in y} j)$. (Here $|\cdot|$ is the number of elements of a set and $\sum_{i \in x} i$ is the sum of the elements in set x. For example, if x = A, then $\sum_{i \in x} i = 1 + 2 + 3 = 6$)

9.(12 points) For the following Hasse diagrams mark $\inf(x, y)$, $\sup(x, y)$ if they exist and the immediate ancestors of x. Also mark the first element (initial element) if it exists and say whether the diagram represents a lattice (mreža)?

10.(12 points) How many possible functions are there $f:A\to B$ between the sets and also write how many bijections there are.

- a. $A = \{0, 1, 2\}, B = \{0, 1, 2\}$
- b. $A = \{0, 1, 2, 3\}, B = \{1, 2\}$
- c. $A = \{0, 2\}$, $B = \{1, 2, 3\}$
- 11. (12 points) Write the negation of each statement with qualifiers:
 - a. $(\forall x)(\exists y)(x \in S \land y \in S \land x > y)$
 - b. $(\exists!x)(x \in S \land x \neq 2)$
 - c. $(\forall)(x \in S \land (x \le 0 \Rightarrow x \le -1))$
- **12.** (9 points) Write down the definition of the intersection $\cap_{\lambda \in J} A_{\lambda}$ for the family if sets $\{A_{\lambda}; \lambda \in J\}$, where J is an arbitrary indexing set.