Markov Chain Monte Carlo

9/10 points (90%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Select correct statements

One can obtain sample from gaussian distribution using one sample from uniform

Un-selected is correct

One can obtain n multivariate gaussian samples $x \in \mathbb{R}^n$ from n standard 1d gaussian samples.

Un-selected is correct

One can obtain sample from exponential distribution using one sample from uniform

Correct

Correct: If $X \sim \mathcal{F}$ is a random variable with CDF F(x) that can be inverted analytically then $F^{-1}(u) \sim \mathcal{F}$ where $u \sim \mathrm{U}[0,1]$. Correspondingly $-\frac{\log u}{\lambda} \sim Exp(\lambda)$.

One can obtain multivariate gaussian sample $x \in \mathbb{R}^n$ from n standard 1d gaussian samples

Correct

Correct: any multivariate gaussian $X \sim \mathcal{N}(\mu, \Sigma)$ can be represented as $\mu + \Sigma^{1/2} \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$.

Markov Chain Monte Carlo

9/10 points (90%)

Quiz, 10 questions

~	1 / 1 points
	is a time complexity of an algorithm for sampling a random number in arbitrary discrete distribution with support $\{1,\dots,N\}$
	O(log N)
	O(N log N)
0	O(N)
	ect ect: prior to sampling we need to compute cumulative sums h is O(N) operations.
0	O(1)
~	1/1 points
3.	ve can use Monte-Carlo method for?
vviiat v	ve can use Monte-Cano method for:
	Do full bayesian inference to estimate the uncertainty of you model.
Corre	ect
Corr	ect: see example in the lecture.
	Compute the exact mode of a posterior distribution (MAP-

Un-selected is correct

estimation)

Compute an integral of an arbitrary function over a simple area (e.g. a multidimensonal cube)

Markov Cha	Correct Ain Monte Carlo Correct. Just sample random points uniformly in the area and average the function values in those points. Note that usually this is not the best approach, although very scalable.	9/10 points (90%)
	Estimate the expected values of arbitrary random variables	
	Correct: this is what Monte-Carlo method is for.	
	1/1 points	
	4. Which of the statements below are correct?	
	Markov chain does not "remember" states other than current	
	Correct.	
	Any Markov chain is a sequence of discrete random variables, for example: $\{0,1,0,0,1,0,0,\ldots\}$.	
	Un-selected is correct	
	Un-selected is correct	
	Any sequence of random variables $X_n:n\in\mathbb{N}$ can be considered as a Markov chain.	
	Un-selected is correct	

Any Markov chain converges to a stationary distribution

Markov Chain Monte Carlo

9/10 points (90%)

Quiz, 10 questions

1 / 1 points 5.		
Which of the statements below are correct?		
MCMC techniques are used when ones cannot perform bayesian inference analytically		
Correct.		
MCMC provides i.i.d. samples from desired distribution		
Un-selected is correct		
MCMC can be used to sample from the distribution known up to a normalization constant Correct		
Correct.		
1/1 points		
6. Which of the statements below are correct?		
Gibbs sampling reduces multidimensional sampling to one-dimensional sampling.		
Correct.		

Markov Cha	in Monte teration of Gibbs sampling changes only one coordinate of a
Quiz, 10 questions	latent vector
	Correct.
	Gibbs sampling is a special case of a Metropolis-Hastings algorithm.
	Correct Correct. Gibbs sampling is a special case of MH with acceptance rate equal to 1.
	Gibbs sampling converges really fast because it provides very uncorrelated samples compared to Metropolis-Hastings algorithm
	Un-selected is correct
	1/1 points
	7.
	Which of the following is random in Bayesian Neural Networks?
	Weights of the network <i>w</i>
	Correct Correct
	Prediction of the network y given fixed input x
	$\begin{tabular}{ll} \textbf{Correct} \\ \textbf{Correct. Prediction of the network } y \mbox{ depends on the weights which} \\ are random variables. \\ \end{tabular}$
	Number of units on each layer of the network

9/10 points (90%)

Un-selected is correct

Markov Chain Monte Carlo

9/10 points (90%)

Quiz, 10 questions

Number of active layers of the network

Un-selected is correct

1/1 points

8.

What is a good way to train (find the posterior distribution p(w|D)) Bayesian Neural Network?

- Compute the posterior distribution p(w|D) analytically.
- Iteratively sample each weight from the conditional distribution given all other weights and the data.
- Run the stochastic gradient descent perturbing all network weights with independent Gaussian noise after each iteration.

Correct. This algorithm is called Langevin Monte Carlo and is proved to converge to the true posterior.

1/1 points

9.

What does the word "Collapsed" means in the Collapsed Gibbs Sampling algorithm?

It means that the posterior approximation *collapses* to the are posterior distribution.

It means that posterior distribution over some of the variables is computed analytically, while other variables are sampled using Markov Chain Montes Gapliog.

9/10 points (90%)

Quiz, 10 questions

Corr Corr		
	It means that we train the model on the subsample of the original data.	
×	0 / 1 points	
10. Which for LD	of the variables are randomly sampled in Collapsed Gibbs Sampling 4?	
	Z	
0	Φ,Θ	
This should not be selected Wrong		
	Φ,Θ,Z	
	Φ	

