Sujet de mathématiques II

Exercice

1) Soit p est un projecteur orthogonal.

L'égalité $p \circ p = p$ est évidente.

De plus, soit $x \in E$. Pour tout $y \in E$, on peut écrire

$$\langle p(x), y \rangle = \langle p(x), y - p(y) \rangle + \langle p(x), p(y) \rangle = \langle p(x), p(y) \rangle$$

et

$$\langle x, p(y) \rangle = \langle x - p(x), p(y) \rangle + \langle p(x), p(y) \rangle = \langle p(x), p(y) \rangle.$$

On en déduit que $\langle p(x), y \rangle = \langle p^*(x), y \rangle$ pour tout $y \in E$. Il en résulte que $p = p^*$.

Réciproquement, soit un endomorphisme p de E tel que $p \circ p = p$ et $p^* = p$.

Montrons que $ker(p) = (Im(p))^{\perp}$.

Pour tous $x \in \ker(p)$ et $y = p(z) \in \operatorname{Im}(p)$, on a $\langle x, p(z) \rangle = \langle p^*(x), z \rangle = \langle p(x), z \rangle = 0$. Il en résulte que p est un projecteur orthogonal.

2) a) Les égalités

$$(g^{-1}\circ p_F\circ g)\circ (g^{-1}\circ p_F\circ g)=g^{-1}\circ p_F\circ g\text{ et }(g^{-1}\circ p_F\circ g)^*=g^{-1}\circ p_F\circ g$$

impliquent que $g^{-1} \circ p_F \circ g$ est un projecteur orthogonal.

De plus, l'égalité $g^{-1} \circ p_F \circ g(E) = g^{-1}(F)$ implique que $g^{-1} \circ p_F \circ g = p_{g^{-1}(F)}$.

b) Si $f = p_F \circ g$ alors, on déduit de 1) que

$$(p_F \circ g) \circ (p_F \circ g)^* \circ (p_F \circ g) = p_F \circ g \circ g^{-1} \circ p_F \circ p_F \circ g = p_F \circ g.$$

c) L'égalité $p_F \circ g = g \circ p_F$ est équivalente à $g^{-1} \circ p_F \circ g = p_F$.

Le résultat découle alors de 2) a).

3) a) Il est évident que l'on a

$$(f^* \circ f)^* = f^* \circ f$$
 et $f^* \circ f \circ f^* \circ f = f^* \circ f$.

Par suite, $f^* \circ f$ est un projecteur orthogonal.

Montrons que $\operatorname{Im}(f^* \circ f) = (\ker(f))^{\perp}$.

L'inclusion $\ker(f) \subset \ker(f^* \circ f)$ est triviale.

De plus, pour tout $x \in \ker(f^* \circ f)$ on peut écrire

$$||f(x)||^2 = \langle f(x), f(x) \rangle = \langle x, f^* \circ f(x) \rangle = 0.$$

Ce qui implique l'inclusion $\ker(f^* \circ f) \subset \ker(f)$.

On déduit alors de ce qui précède que $\ker(f) = \ker(f^* \circ f)$ et $\operatorname{Im}(f^* \circ f) = (\ker(f))^{\perp}$.

b) Pour tout $x \in (\ker f)^{\perp}$, $f^* \circ f(x) = x$. Par suite,

$$||x||^2 = \langle f^* \circ f(x), f^* \circ f(x) \rangle = \langle f(x), f(x) \rangle = ||f(x)||^2.$$

Le résultat en découle.

c) Les sous-espaces $\ker(f)$ et $(\operatorname{Im} f)^{\perp}$ ont même dimension puisque $(\operatorname{Im} f) \oplus (\operatorname{Im} f)^{\perp} = E$.

Par suite, toute application linéaire g_1 qui envoie une base orthonormée de $\ker(f)$ sur une base orthonormée de $(\operatorname{Im} f)^{\perp}$ convient.

d) Soit $F = (\ker f)^{\perp}$. L'endomorphisme défini par g(x) = f(x) si $x \in (\ker f)^{\perp}$ et $g(x) = g_1(x)$ si $x \in (\ker f)$ convient.

Problème

Partie I

1) On peut écrire

$$||AB|| = p \sup_{1 \leq h,j \leq p} \left(\sum_{l=1}^{l=p} |a_{kl}b_{lj}| \right) \leq p^2 \sup_{1 \leq h,l \leq p} |a_{kl}| \sup_{1 \leq j,l \leq p} |b_{lj}| = ||A|| \, ||B||.$$

2) D'après 1), $||A^k|| \le ||A||^k$.

La convergence dans $\mathcal{M}(p,\mathbb{C})$ (qui est de dimension finie) de la série $\sum \frac{A^k}{k!}$ résulte de celle de la série $\sum \frac{\|A\|^k}{k!}$.

3) Si A et B commutent alors $AB^k = B^k A$.

Par suite,
$$A\left(\sum_{k=0}^{k=n} \frac{B^k}{k!}\right) = \left(\sum_{k=0}^{k=n} \frac{B^k}{k!}\right) A$$
.

Par passage à la limite, il vient

 $A \exp(B) = \exp(B) A$ et $\exp(B) \exp(A) = \exp(A) \exp(B)$.

- 4) a) Le calcul donne $A^2 + (\det A) I_2 = 0$.
- b) On déduit de 4a) que $A^k = 0$, pour tout $k \ge 2$. Il en résulte que $\exp(A) = I_2 + A$.
- c) On déduit de 4a) que pour tout entier k, $A^{2k} = \alpha^{2k}I_2$ et $A^{2k+1} = \alpha^{2k}A$ Par suite

$$\exp\left(A\right) = \left(\sum_{k=0}^{+\infty} \frac{\alpha^{2k}}{(2k)!}\right) I_2 + \frac{1}{\alpha} \left(\sum_{k=0}^{+\infty} \frac{\alpha^{2k+1}}{(2k+1)!}\right) A = ch\left(\alpha\right) I_2 + \frac{sh\left(\alpha\right)}{\alpha} A.$$

d) Si
$$(\det A) = \alpha^2 = -(i\alpha)^2$$
 alors $\exp(A) = \cos(\alpha) I_2 + \frac{\sin(\alpha)}{\alpha} A$.

- 5) a) On vérifie facilement que $\alpha_n = p_n(a)$ et $\beta_n = \frac{p_n(b) p_n(a)}{b a}$.
 - b) On peut écrire $p_n(A) = p_n(a) I_p + \frac{p_n(b) p_n(a)}{b a} [A aI_p]$.
 - c) Par passage la limite il vient $\exp(A) = e^a I_p + \frac{e^b e^a}{b-a} [A a I_p]$.
 - d) En faisant tendre b vers a dans c) on obtient $\exp(A) = e^a [(1-a)I_p + A]$.
- 6) a) La série de terme général $u_n(t) = \frac{t^n}{n!} A^n \in \mathcal{M}(p, \mathbb{C})$ converge simplement vers $\exp(tA)$ question I 2).

De plus pour tout $n \in \mathbb{N}$, la fonction $t \mapsto u_n(t) = \frac{t^n}{n!} A^n$ est dérivable sur \mathbb{R} .

et on a $u'_n(t) = \frac{t^{n-1}}{(n-1)!}A^n$ pour tout réel t.

La convergence normale sur tout segment de $\mathbb R$ de la série des dérivées $\sum u_n'(t)$ implique que

$$\left(\sum_{k=0}^{+\infty} \frac{(tA)^k}{k!}\right) = \left(\sum_{k=1}^{+\infty} \frac{(tA)^{k-1}}{(k-1)!}A\right).$$

On en déduit que pour tout réel t, $c'(t) = A \exp(tA) = \exp(tA)A$.

- b) On a d'(t) = 0, pour tout réel t. (A commute avec $\exp(A)$).
- c) Il résulte de la question précédente que d(1)=d(0), ou encore que $\exp(A)\exp(-A)=I_p$.
- 7) a) Le calcul donne

$$\gamma'(t) = \exp(t(A+B))[B\exp(-tA) - \exp(-tA)B]\exp(-tB)$$
, pour tout réel t.

b) Si AB = BA alors $B \exp(-tA) - \exp(-tA)B = 0$, d'après la question I 3). Par suite $\gamma'(t) = 0$, pour tout réel t.

Il en résulte que $\gamma(1) = \gamma(0)$ et que $\exp(A + B) = \exp(A) \exp(B)$.

8) a) En utilisant la question I 5) c), on obtient $\exp(A) = I_2$ et $\exp(B) = I_2$.

b) On a
$$A+B=\left(\begin{array}{cc} 2i\pi & 1 \\ 0 & 0 \end{array}\right)$$
,

d'après I. 5) c), il vient $\exp(A+B) = I_2 = \exp(A)\exp(B)$.

Or
$$AB = \begin{pmatrix} 0 & -2i\pi \\ 0 & 4\pi^2 \end{pmatrix} \neq BA = \begin{pmatrix} 0 & 2i\pi \\ 0 & 4\pi^2 \end{pmatrix}$$

- 9) a) Si T est triangulaire alors T^k est triangulaire et par suite $\exp(T)$ est triangulaire.
- b) Si $\lambda_1, \lambda_2,, \lambda_p$ sont les élements diagonaux de la matrice triangulaire T alors $\lambda_1^k, \lambda_2^k,, \lambda_p^k$ sont les élements diagonaux de la matrice triangulaire T^k .

Par suite, les élements diagonaux de $\exp(T)$ sont les nombres

 $\exp(\lambda_1), \exp(\lambda_2), ..., \exp(\lambda_p)$ qui sont aussi les valeurs propres de $\exp(T)$.

10) a) L'égalité $(PAP^{-1})^k = PA^kP^{-1}$ permet d'écrire que

$$\sum_{k=0}^{k=n} \frac{(PAP^{-1})^k}{k!} = \sum_{k=0}^{k=n} P \frac{A^k}{k!} P^{-1} = P \left(\sum_{k=0}^{k=n} \frac{A^k}{k!} \right) P^{-1}.$$

Par passage à la limite on obtient

$$\exp(PAP^{-1}) = P\exp(A)P^{-1}.$$

b) Toute matrice $A \in \mathcal{M}(p, \mathbb{C})$ est semblable à une matrice triangulaire

$$T \in \mathcal{M}(p, \mathbb{C})$$
.

On en déduit, au vu de 10) a), que $\exp(A)$ est semblable à la matrice triangulaire $\exp(T)$.

Or,
$$det(exp(T)) = exp(tr(T))$$
.

D'où,
$$det(exp(A)) = exp(tr(A))$$
.

Partie II

1) D'après le théorème de décomposition du noyaux,
$$\mathbb{C}^p = \bigoplus_{j=1}^{j=k} N_j$$
.

2) a) On peut écrire

$$\frac{1}{P_f} = \sum_{j=1}^{j=k} \left[\sum_{l=1}^{l=\alpha_j} \frac{\gamma_{jl}}{(\lambda_j - x)^l} \right] = \sum_{j=1}^{k} \left[\frac{r_j(x)}{(\lambda_j - x)^{\alpha_j}} \right],$$

où r_i est un polynôme de degré strictement inférieur à α_i .

En multipliant les deux membres de l'égalité précédente par P_f ,

on obtient
$$\sum_{j=1}^{j=k} r_j q_j = 1.$$

b) D'après 2a),
$$\sum_{j=1}^{j=k} (r_j q_j) (f) = 1 (f) = id_p.$$

D'où
$$\Pi_1 + \Pi_2 + ... + \Pi_k = id_p$$
.

3) a) Soit n un entier. Pour tout entier m distinct de $n, (x - \lambda_m)^{\alpha_m}$ divise q_n .

Or
$$v \in N_m$$
 équivant à $(f - \lambda_m id_p)^{\alpha_m} (v) = 0$.

Par suite, pour tout entier m distinct de n et pour tout $v \in N_m$, $\Pi_n(v) = 0$.

b) D'après les deux questions précédentes, on a pour tout $v \in N_m$,

$$\Pi_{m}(v) = v - \sum_{\substack{j=1\\j\neq m}}^{k} \Pi_{j}(v) = v.$$

c) Il découle facilement des questions précédentes que

 Π_j est le projecteur sur N_j parallélement à $\bigoplus_{\substack{l=1\\l\neq j}}^{l=k} N_l$.

4) Soit $d = \lambda_1 \Pi_1 + \dots + \lambda_k \Pi_k$.

La restriction de d à chaque sous espace vectoriel N_j est égale à $\lambda_j \Pi_j$.

Par suite la restriction de d à chaque sous espace vectoriel N_j est diagonalisable sur N_j .

On en déduit que d est diagonalisable.

5) a) La restriction de n à N_j est l'endomorphisme $f - \lambda_j id_p$.

Par suite, pour tout $v \in N_j$, $n^{\alpha_j}(v) = 0$.

b) Soit
$$\alpha = \sup_{1 \le j \le k} (\alpha_j)$$
. La décomposition $\mathbb{C}^p = \bigoplus_{l=1}^{l=k} N_l$ implique que $n^{\alpha} = 0$.

6) a) L'endomorphisme d' commute avec $(f - \lambda_j id_p)$.

Par suite, $d' \circ (f - \lambda_j id_p)^{\alpha_j} = (f - \lambda_j id_p)^{\alpha_j} \circ d'$.

Il en résulte que pour tout $v \in N_j$, $d'(v) \in N_j$,

ou encore que N_i est stable par d'.

b) D'après ce qui précède, d' induit un endomorphisme de N_j . De plus, la restriction de d à N_j est l'endomorphisme $\lambda_j id_p$.

On en déduit qu'il existe une base \mathcal{B}_j de N_j dans laquelle les restrictions de d et d' sont simultanément diagonalisables.

En raccordant les bases \mathcal{B}_j , $1 \leq j \leq k$; on obtient une base où d et d' sont simultanément diagonalisables.

7) L'existence de n et d tels que $d \circ n = n \circ d$ et f = d + n découle des questions 4) et 5).

Soit un deuxième couple (d', n') tel que $d' \circ n' = n' \circ d'$ et f = d' + n'. Montrons que n = n' et d = d'.

Remarquons tout d'abord que $f \circ d' = d' \circ f$.

On en déduit, compte tenu de 6) a), que pour tout $1 \le j \le k$, N_j est stable par d'. La question 6) b) implique alors que d et d' sont diagonalisables dans une même base.

Par suite d - d' est diagonalisable. Or n - n' = d' - d.

Il en résulte que d = d' et n = n'.

8) C'est la question 7) traduite en termes matriciels.

Partie III

I) a)
$$\ker (I_p + N) = \{x \in \mathbb{C}^p, N(x) = -x\}$$
.
Or, pour tout $x \in \ker (I_p + N)$, $N^p(x) = (-1)^p x = 0$.
On en déduit que $\ker (I_p + N) = \{0\}$.

Le résultat en découle.

b) Remarquons que N commute avec $\exp(D)$ et que

$$\exp\left(D\right)\left(\sum_{j=1}^{j=p-1}\frac{N^{j}}{j!}\right)=N\exp\left(D\right)\left(\sum_{j=1}^{j=p-1}\frac{N^{j-1}}{j!}\right).$$

On en déduit que $\exp(D)$ $\left(\sum_{j=1}^{j=p-1} \frac{N^j}{j!}\right)$ est nilpotente.

c) On a A = D + N donc $\exp(A) = \exp(D) \exp(N)$ car D et N commutent.

L'égalité
$$N^p = 0$$
 implique que $\exp(N) = \sum_{j=0}^{j=p-1} \frac{N^j}{j!}$.

On en déduit que

$$\exp(A) = \exp(D) \left(l_p + \sum_{j=1}^{j=p-1} \frac{N^j}{j!} \right) = \exp(D) + \exp(D) N \left(\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!} \right)$$

La matrice $\exp(D)$ est diagonalisable, la matrice $\exp(D) \left(\sum_{j=1}^{j=p-1} \frac{N^j}{j!} \right)$

est nilpotente et les deux matrices commutent.

Il en résulte que $\exp(A) = \exp(D) + \exp(D) N\left(\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!}\right)$ est la décomposition de Dunford de la matrice $\exp(A)$.

d) Si A est une matrice diagonalisable alors sa matrice nilpotente N, dans la décomposition de Dunfort est nulle.

On en déduit que la matrice nilpotente $\exp(D) N\left(\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!}\right)$ dans la

décomposition de Dunford de exp(A) est nulle.

Par suite, exp(A) est diagonalisable.

Inversement supposons que $\exp(A)$ est diagonalisable.

La matrice nilpotente $\exp(D) N\left(\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!}\right)$ dans la décomposition de Dunford de $\exp(A)$ est alors nulle.

Or,
$$\exp(D)$$
 et $\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!} = I_p + \sum_{j=1}^{j=p-1} \frac{N^j}{(j+1)!}$ sont inversibles d'après les questions

6) c) Partie I et 1) a) Partie III.

Il en résulte que N=0 et que A est une matrice diagonalisable.

e) Soit
$$X = D + N$$
.

$$\exp(X) = I_p \text{ équivaut à } \exp(D) = I_p \text{ et } N\left(\sum_{j=1}^{j=p-1} \frac{N^{j-1}}{j!}\right) = 0.$$

Soit
$$D = PYP^{-1}$$
 où $P \in GL(p, \mathbb{C})$ et $Y = diag(\lambda_1, ..., \lambda_p)$.

$$\exp(\dot{D}) = I_p$$
 si et seulement si $\lambda_j \in 2i\pi \mathbb{Z}$.

Par suite $\exp(X) = I_p$ si et seulement si X est semblable à $Y = diag(\lambda_1, ..., \lambda_p)$ avec $\lambda_j \in 2i\pi \mathbb{Z}$.

2) a) La fonction polynomiale g est de classe C^{∞} sur \mathbb{R} .

De plus pour tout réel t, la matrice g(t) est nilpotente.

On en déduit que la fonction $t \mapsto f(t) = \exp(g(t))$ est encore polynomiale donc C^{∞} sur \mathbb{R} .

b) Pour tout réel
$$t$$
, $g'(t) = \sum_{j=1}^{p-1} (-1)^{j+1} t^{j-1} N^j = N \left(\sum_{j=0}^{p-1} (-1)^j t^j N^j \right)$.

Il est facile de vérifier que $(I_p + tN)$ $\left(\sum_{j=0}^{p-1} (-1)^j t^j N^j\right) = I_p$.

On en déduit que pour tout réel t, $g'(t) = (I_p + tN)^{-1} N$.

c) L'égalité
$$f(t) = \sum_{j=0}^{p} \frac{(g(t))^{j}}{j!}$$
, valable pour tout réel t , permet d'affirmer que

$$f'(t) = g'(t) \left(\sum_{j=0}^{p-1} \frac{(g(t))^j}{j!} \right) = g'(t)f(t)$$
, pour tout réel t .

d) On déduit des questions précédentes que

$$(I_p + tN) f'(t) = Nf(t)$$
 pour tout réel t.

En dérivant l'égalité précédente, on obtient que

f''(t) = 0, pour tout réel t. Par suite la fonction f' est constante et égale à f'(0) = N.

On en déduit que pour tout réel t, $f(t) = I_p + tN$.

3) a) Soit
$$D = Pdiag(\lambda_1, ..., \lambda_k) P^{-1}$$
 où $P \in GL(p, \mathbb{C})$.

Soit
$$D' = Pdiag(\mu_1, ..., \mu_k) P^{-1}$$
,

on a
$$\exp(D') = Pdiag(e^{\mu_1},...,e^{\mu_k})P^{-1} = D$$
 car

 $e^{\mu_j} = \lambda_j$, pour tout $1 \le j \le k$.

b)
$$D = Pdiag(\lambda_1, ..., \lambda_k) P^{-1}$$
 où $P \in GL(p, \mathbb{C})$,

donc
$$L(D) = Pdiag(L(\lambda_1), ..., L(\lambda_k)) P^{-1} = Pdiag(\mu_1, ..., \mu_k) P^{-1} = D'.$$

4) a) Soit A inversible et
$$A = D + N$$
 sa décomposition de Dunford.

On a
$$I_p = A^{-1}D + A^{-1}N$$
.

Or $A^{-1}N$ est nilpotente, donc $I_p - A^{-1}N$ est inversible d'après la question 1) a) Partie III.

Par suite $A^{-1}D$ est inversible. Il en découle que D inversible.

b) D'après Partie III 2) d),

$$\begin{split} I_p + D^{-1}N &= \exp\left(\sum_{j=1}^{p-1} (-1)^{j+1} \frac{(D^{-1}N)^j}{j}\right) = \exp\left(Q(D^{-1}N)\right), \\ \text{où } Q(X) &= \sum_{j=1}^{p-1} (-1)^{j+1} \frac{X^j}{j} \in \mathbb{C}\left[X\right]. \end{split}$$

c) Soit
$$A \in \mathbb{GL}(p, \mathbb{C})$$

$$A = D \exp(Q(D^{-1}N)) = \exp(D') \exp(Q(D^{-1}N))$$

où
$$D^\prime=L(D)$$
est un polynpôme en D

donc
$$A = \exp(L(D)Q(D^{-1}N))$$
 car D et $D^{-1}N$ commutent.

Le résultat en découle.

5) Soit $X \in \mathcal{M}(2,\mathbb{C})$ et X = D + N sa décomposition de Dunford. On peut écrire

$$\exp(X) = \exp(D) + \exp(D)N = I_2 + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

car la matrice . I_2 et la matrice nilpotente $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ commutent.

On en déduit que
$$\exp(D) = I_2$$
 et $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

D'après Partie III 1) e) les solutions de l'équation $\exp(X) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ sont $X = Pdiag(\lambda_1, ..., \lambda_p)P^{-1} + N \text{ avec } \lambda_j \in 2i\pi\mathbb{Z} \text{ et } P \in \operatorname{GL}(p, \mathbb{C}).$