Tutorat 6

Eindeutigkeit des Kommplements, Boolesche Algebra, Formale Beschreibung von Schaltkreisen, Programmable Logic Arrays

Gruppe 9

Präsentator:
Jürgen Mattheis
(juergmatth@gmail.com)

Vorlesung von: Prof. Dr. Scholl

Übungsgruppenbetreuung: Tobias Seufert

15. Juni 2023

Universität Freiburg, Lehrstuhl für Rechnerarchitektur

Gliederung

Aufgabe 1

Aufgabe 2

Aufgabe 3

Appendix

Jürgen Mattheis Tutorat 6, Gruppe 9 Universität Freiburg

Aufgabe 1

Jürgen Mattheis Tutorat 6, Gruppe 9 Universität Freiburg

Aufgabe 1 I

Eindeutigkeit des Komplements, Boolesche Algebra

Lösung 1.1

- ightharpoonup Existenz und Eindeutigkeit neutraler Elemente bereits in Vorlesung gezeigt ightharpoonup Es kann $1=x+\neg x$ verwendet werden
- ightharpoonup Annahme 1: x + y = 1
- Annahme 2: $x \cdot v = 0$
- Analoges Korollar zur Vorlesung: $1 = x + \neg x$

Aufgabe 1 II

Eindeutigkeit des Komplements, Boolesche Algebra

Lösung 1.1 (Neutrales Element) $y = y \cdot 1$ $= y \cdot (x + \neg x)$ (Korollar) $= (y \cdot x) + (y \cdot \neg x)$ (Distributivität) $= (x \cdot y) + (y \cdot \neg x)$ (Kommutativität) $= 0 + (y \cdot \neg x)$ (Annahme 2) $= (x \cdot \neg x) + (y \cdot \neg x)$ (Korollar) $= \neg x \cdot (x + y)$ (Kommutativität + Distributivität) $= \neg x \cdot \mathbf{1}$ (Annahme 1) (Neutrales Element) $= \neg x$

Aufgabe 1 III

Eindeutigkeit des Komplements, Boolesche Algebra

Lösung 1.1

<u> I</u>

```
(Neutrales Element)
v = v + 0
  = v + (x \cdot \neg x)
                                                                                     (Komplement)
  = (y + x) \cdot (y + \neg x)
                                                                                   (Distributivität)
  = (x + y) \cdot (y + \neg x)
                                                                                   (Kommutativit)
  = \mathbf{1} \cdot (y + \neg x)
                                                                         (Annahme 1: x + y = 1)
  = (x + \neg x) \cdot (y + \neg x)
                                                         (Neutrales Element der Konjunktion)
  = (\neg x + x) \cdot (\neg x + y)
                                                                                   (Assoziativität)
  = \neg x + (x \cdot y)
                                                                                   (Distributivität)
  = \neg x + 0
                                                                          (Annahme 2: x \cdot y = 0)
                                                           (Neutrale Element der Disjunktion)
   = \neg x
```

Aufgabe 1 IV

Eindeutigkeit des Komplements Roolesche Algebra

Lösung 1.1

7 / 20

$$(x \cdot y) + (\neg x \cdot z) = (x \cdot y) + ((x \cdot y) \cdot z) + ((\neg x \cdot z) + ((\neg x \cdot z) \cdot y)$$
 (Absorption)
$$= (x \cdot y) + (\neg x \cdot z) + ((x \cdot y) \cdot z) + ((\neg x \cdot z) \cdot y)$$
 (Kommutativität)
$$= (x \cdot y) + (\neg x \cdot z) + (x \cdot (y \cdot z)) + (\neg x \cdot (z \cdot y))$$
 (Assoziativität)
$$= (x \cdot y) + (\neg x \cdot z) + (x \cdot (y \cdot z)) + (\neg x \cdot (y \cdot z))$$
 (Kommutativität)
$$= (x \cdot y) + (\neg x \cdot z) + ((x + \neg x) \cdot (y \cdot z))$$
 (Kommutativität + Distributivität)
$$= (x \cdot y) + (\neg x \cdot z) + (y \cdot z)$$
 (Kommutativität + Komplement)

Anmerkungen Q

Der zweite Teil geht analog durch Verweisen auf das Dualitätsprinzip oder durchrechnen mit genau derselben Axiomanwendung in genau derselben Reihenfolge

Aufgabe 2

Jürgen Mattheis Tutorat 6, Gruppe 9 Universität Freiburg

Aufgabe 2 I

Formale Beschreibung von Schaltkreisen

Aufgabe 2 II

Formale Beschreibung von Schaltkreisen

Lösung 2.2

Gatterausgang	Funktion
<i>v</i> ₀	$x_1 \wedge x_2$
v_1	$x_1 \oplus x_2$
<i>v</i> ₂	$(x_1 \oplus x_2) \wedge x_3$
<i>V</i> 3	$(x_1 \oplus x_2) \oplus x_3$
<i>V</i> 4	$(x_1 \wedge x_2) \vee ((x_1 \oplus x_2) \wedge x_3)$

Lösung 2.3

depth(C) = 3, über den Pfad v_1, v_2, v_4

Aufgabe 3

Jürgen Mattheis Tutorat 6, Gruppe 9 Universität Freiburg

Aufgabe 3 I

Programmable Logic Arrays

 $\dot{x_2}$

1

Aufgabe 3 II

Programmable Logic Arrays

Aufgabe 3.3

1

Gesucht sind die beiden Polynome $f_1, f_2 \in \mathbb{B}_4$, die durch dieses PLA implementiert werden

Lösung 3.1

Z

$$f_1 = \bar{x}_1 \bar{x}_2 \bar{x}_3 x_4 + x_1 \bar{x}_2 \bar{x}_3 x_4 + x_1 \bar{x}_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 x_3 x_4 + x_1 x_2 \bar{x}_3 x_4 + \bar{x}_1 x_2$$

Aufgabe 3.2

4

Kosten des PLA

Aufgabe 3 III

Programmable Logic Arrays

Lösung 3.2

Z

Primäre Kosten $cost_1(f_1, f_2) = 10$ (Zeilen des PLA bzw. Anzahl der Monome) Sekundäre Kosten $cost_2(f_1, f_2) = 52$ (Zahl der Transistoren im PLA)

Aufgabe 3.3

•

Hypercubes von f_1 und f_2 zeichnen

Aufgabe 3 IV

Programmable Logic Arrays

Aufgabe 3 V

Programmable Logic Arrays

Appendix

Appendix I

Kleine Korollare

$$x + 1 = (x + 1) \cdot 1$$

$$= (x + 1) \cdot (x + \neg x)$$

$$= x + (1 \cdot \neg x)$$

$$= x + \neg x$$

$$= 1$$

Neutrales Element der Konjunktion Komplement Distributivität Neutrale Element der Konjunktion Komplement

Appendix II

Kleine Korollare

$$x \cdot 0 = (x \cdot 0) + 0$$

$$= (x \cdot 0) + (x \cdot \neg x)$$

$$= x \cdot (0 + \neg x)$$

$$= x \cdot \neg x$$

$$= 0$$

Neutrales Element der Disjunktion
Komplement
Distributivität
Neutrale Element der Disjunktion
Komplement

Appendix III

Kleine Korollare

$$y \cdot y = y \cdot y + 0$$

$$= y \cdot y + y \cdot \neg y$$

$$= (y + \neg y) \cdot y$$

$$= 1 \cdot y$$

$$= y$$

Neutrales Element
Komplement
Distributivität
Komplement
Neutrales Element