Übungsaufgaben Mathematik 2 Analysis für die Übungen am 7.11 und 8.11. 2024

27. Oktober 2024

Aufgabe 1

Es sei f auf dem Intervall (-r, r) in eine Taylorreihe um 0 entwickelbar (r > 0). Beweisen Sie:

- a) Ist f eine gerade Funktion, d.h. f(x) = f(-x) für alle $x \in (-r, r)$, so kommen in der Taylorreihe von f nur gerade Exponenten vor, d.h. sie hat die Form $\sum_{k=0}^{\infty} a_{2k}x^{2k}$.
- b) Ist f eine ungerade Funktion, d.h. f(x) = -f(-x) für alle $x \in (-r, r)$, so kommen in der Taylorreihe von f nur ungerade Exponenten vor, d.h. sie hat die Form $\sum_{k=0}^{\infty} a_{2k+1}x^{2k+1}$.

Lösung zu Aufgabe 1

a) Wenn f sich in eine Taylorreihe entwickeln läßt, gilt

$$f(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} a_{2k} x^{2k} + \sum_{k=0}^{\infty} a_{2k+1} x^{2k+1}$$

und

$$f(-x) = \sum_{k=0}^{\infty} a_k (-x)^k = \sum_{k=0}^{\infty} a_{2k} x^{2k} - \sum_{k=0}^{\infty} a_{2k+1} x^{2k+1}$$

f(x) = f(-x) liefert

$$\sum_{k=0}^{\infty} a_{2k+1} x^{2k+1} = -\sum_{k=0}^{\infty} a_{2k+1} x^{2k+1}$$

woraus $\sum_{k=0}^{\infty} a_{2k+1}x^{2k+1} = 0$ und damit $\forall k \ a_{2k+1} = 0$ folgt. Damit kommen in der Taylorreihe von f nur gerade Exponenten vor.

Aufgabe 2

Berechnen Sie die Taylorreihe der Funktion arctan in $x_0 = 0$. Benutzen Sie das Ergebnis zur näherungsweisen Berechnung der Zahl π . (Verwenden Sie hierzu z.B. $\tan(\pi/4) = 1$.)

Lösung zu Aufgabe 2

n	1	2	3	4	5
n -te Abl. von $\arctan(x)$	$\frac{1}{1+x^2}$	$\frac{-2x}{(1+x^2)^2}$	$\frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2}$	$\frac{-48 x^3}{(1+x^2)^4} + \frac{24 x}{(1+x^2)^3}$	$\frac{384 x^4}{(1+x^2)^5} - \frac{288 x^2}{(1+x^2)^4} + \frac{24}{(1+x^2)^3}$
in x = 0	1	0	-2	0	24

n	6	7
n -te Abl. von $\arctan(x)$	$\frac{-3840 x^5}{(1+x^2)^6} + \frac{3840 x^3}{(1+x^2)^5} - \frac{720 x}{(1+x^2)^4}$	$\frac{46080 x^{6}}{(1+x^{2})^{7}} - \frac{57600 x^{4}}{(1+x^{2})^{6}} + \frac{17280 x^{2}}{(1+x^{2})^{5}} - \frac{720}{(1+x^{2})^{4}}$

Taylorreihe von arctan:

$$T_{\arctan,0}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + O(x)^8$$

$$T_{\arctan,0}(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} \pm \dots$$

Approximation $(\tan(\Pi/4) = 1)$:

$$n=23:$$
 4 $T_{\rm arctan,0}(1)\approx\Pi\approx 3.0584$

$$n=25$$
: $4 T_{\rm arctan,0}(1) \approx \Pi \approx 3.2184$

$$n = 25: \quad 4 \; T_{\rm arctan,0}(1) \approx \Pi \; \approx \; 3.2184$$

 Mittelwert:
$$\frac{3.0584 + 3.2184}{2} \; = \; 3.1384$$

Mathematica: $4*N[Sum[(-1)^n n 1/(2n+1), n,0,11]] = 3.0584$

Aufgabe 3

Berechnen Sie die Taylorreihe der Funktion

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{falls } x \neq 0\\ 0 & \text{falls } x = 0 \end{cases}$$

in $x_0 = 0$ und untersuchen Sie die Reihe auf Konvergenz. Begründen Sie das Ergebnis!

Lösung zu Aufgabe 3

Ableitungen in $x_0 = 0$:

$$f'(x) = \begin{cases} e^{-\frac{1}{x^2}} \frac{2}{x^3} & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$
$$f''(x) = \begin{cases} e^{-\frac{1}{x^2}} \frac{2}{x^3} \frac{2}{x^3} + e^{-\frac{1}{x^2}} (-\frac{6}{x^4}) & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$

Daher ist die Taylorreihe von f identisch Null und konvergiert, jedoch nicht gegen f.

Aufgabe 4

Beweisen Sie, daß das Skalarprodukt eines Vektors \vec{x} mit sich selbst gleich dem Quadrat seines Betrags (Norm) ist.

Lösung zu Aufgabe 4

Die Definition des Skalarproduktes zweier Vektoren \vec{x} und $\vec{y} \in \mathbb{R}^n$ lautet:

$$\vec{x} \cdot \vec{y} = x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$
 und damit gilt:

$$\vec{x} \cdot \vec{x} = x_1 \cdot x_1 + x_2 \cdot x_2 + \dots + x_n \cdot x_n$$

Andererseits ist die Euklidische Norm wie folgt definiert:

| Definition 1 (Euklidische Norm) Die Funktion | | : $\mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}, \vec{x} \mapsto \sqrt{x_1^2 + \dots + x_n^2}$ heisst Euklidische Norm des Vektors \vec{x} .

Und damit gilt:
$$(|\vec{x}|)^2 = (\sqrt{x_1^2 + \dots + x_n^2})^2 = x_1^2 + \dots + x_n^2 = x_1 \cdot x_1 + x_2 \cdot x_2 + \dots + x_n \cdot x_n = \vec{x} \cdot \vec{x}$$