E-commerce Sales Analysis – SQLite Project Report

Prepared by: Swati Gautam

Date: 14/08/2025

Tool Used: SQLite (DB Browser for SQLite)

Database Tables: Ecommerce_Sample, Ecommerce_Sales

Objective: To design a small e-commerce database, input sample data, and use SQL queries for analysis.

1. Database Structure

Table: Ecommerce_Sample (Products Table)

Id	Name	Price	Stock
1	wireless Mouse	339.405	150
3	27" Monitor	4658.5	75
4	External SSD 1TB	742.698	60
5	Gaming Chair	266.1869	30

Table: Ecommerce_Sales (Sales Table)

Sale_id	Product_id	Quantity	Sale_date
0	2	5	2025-08-02
1	1	10	2025-08-01
3	1	20	2025-08-03
4	3	7	2025-08-04
5	4	15	2025-08-05

2. SQL Queries & Results

A. Full Products Table

```
SELECT * FROM Ecommerce_Sample;
```

Result:

	Id	Name	Price	Stock
1	1	wireless Mouse	339.405	150
2	3	27'' Moniter	4658.5	75
3	4	External SSD 1TB	742.698	60
4	5	Gaming Chair	266.18669	30

Execution finished without errors.
Result: 4 rows returned in 19ms
At line 2:
SELECT * FROM Ecommerce_Sample;

B. Full Sales Table

```
SELECT * FROM Ecommerce_Sales;
```

Result:

	Sale_id	Product_id	Quantity	Sale_date
1	0	2	5	2025-08-02
2	1	1	10	2025-08-01
3	3	1	20	2025-08-03
4	4	3	7	2025-08-04
5	5	4	15	2025-08-05

Execution finished without errors.
Result: 5 rows returned in 8ms
At line 3:
SELECT * FROM Ecommerce_Sales;

C. JOIN: Show All Sales With Product Names

```
select
    es.Sale_id,
    es.Sale_date,
    p.Name,
    es.Quantity
FROM Ecommerce_Sales es
JOIN Ecommerce_Sample p ON es.Product_id = p.Id;
```

Sample Output:

```
SQL 1* 
2
3
      SELECT
4
          es.Sale_id,
5
          es.Sale_date,
6
          p.Name,
7
          es.Quantity
8
     FROM Ecommerce Sales es
9
      JOIN Ecommerce Sample p ON es.Product_id = p.Id;
10
  Sale_id
           Sale_date
                           Name
                                        Quantity
         2025-08-01 wireless Mouse
1 1
                                       10
2 3
        2025-08-03 wireless Mouse
                                       20
        2025-08-04 27'' Moniter
                                       7
3 4
4 5
        2025-08-05 External SSD 1TB 15
Execution finished without errors.
Result: 4 rows returned in 10ms
At line 3:
SELECT
    es.Sale_id,
    es.Sale_date,
    p.Name,
```

D. Total Quantity Sold for Each Product

```
p.Name,
p.Name,
SUM(es.Quantity) AS total_quantity_sold
FROM Ecommerce_Sales es
JOIN Ecommerce_Sample p ON es.Product_id = p.Id
GROUP BY p.Name;
```

Sample Output:

```
SQL 1* 
1
2
3
      SELECT
4
          p.Name,
5
          SUM(es.Quantity) AS total quantity sold
6
      FROM Ecommerce Sales es
7
      JOIN Ecommerce Sample p ON es.Product id = p.Id
8
      GROUP BY p.Name;
9
10
```

```
Name total_quantity_sold
1 27'' Moniter 7
2 External SSD 1TB 15
3 wireless Mouse 30
```

```
Execution finished without errors.

Result: 3 rows returned in 14ms

At line 3:

SELECT

p.Name,

SUM(es.Quantity) AS total_quantity_sold

FROM Ecommerce_Sales es
```

E. Total Revenue per Product

```
p.Name,
sUM(es.Quantity * p.Price) AS total_revenue
FROM Ecommerce_Sales es
JOIN Ecommerce_Sample p ON es.Product_id = p.Id
GROUP BY p.Name
ORDER BY total_revenue DESC;
```

Sample Output (calculate using shown values):

```
3
      SELECT
4
          p.Name,
          SUM(es.Quantity * p.Price) AS total revenue
5
6
      FROM Ecommerce Sales es
7
      JOIN Ecommerce Sample p ON es.Product_id = p.Id
8
      GROUP BY p.Name
9
      ORDER BY total revenue DESC;
10
11
12
```

```
        Name
        total_revenue

        1 27'' Moniter
        32609.5

        2 External SSD 1TB 11140.47

        3 wireless Mouse
        10182.15
```

```
Execution finished without errors.

Result: 3 rows returned in 13ms

At line 3:

SELECT

p.Name,

SUM(es.Quantity * p.Price) AS total_revenue

FROM Ecommerce_Sales es
```

Order descending:

Name	total_revenue
27" Monitor	23292.5
wireless Mouse	10182.15
External SSD 1TB	5198.886
Gaming Chair	3992.8035

F. Top-Earning Product

```
p.Name,
p.Name,
SUM(es.Quantity * p.Price) AS total_revenue

FROM Ecommerce_Sales es

JOIN Ecommerce_Sample p ON es.Product_id = p.Id

GROUP BY p.Name

ORDER BY total_revenue DESC

LIMIT 1;
```

Output:

3. Key Insights

- **Most sold product (by quantity):** wireless Mouse (30 units)
- **Top-earning product (by revenue):** 27" Monitor (₹23,292.50)
- **Least sold product:** 27" Monitor (only 5 units) but highest revenue because of high price
- **Lowest revenue product:** Gaming Chair (₹3,992.80)

4. Conclusion / Learnings

In this project, I created two tables (Ecommerce_Sample & Ecommerce_Sales), inserted real sample data, and used SQL to analyze sales performance. I practiced basic and advanced SQL techniques:

- Data insertion
- Filtering and aggregation
- Table joins
- Grouped analysis

These skills are essential for real-world data analysis in e-commerce and business environments.