Materi

- 1. Konsep dasar, pembuatan dan aplikasi multimedia
- 2. Organisasi pengembang multimedia
- 3. Perangkat pembuatan aplikasi multimedia
- 4. Kerangka bangun multimedia
- 5. Metodologi pengembangan multimedia
- 6. Piranti authoring multimedia
- 7. Pengembangan/perancangan multimedia
- 8. Konsep dasar toolbox
- 9. Pembuatan proyek, menu bar

KERANGKA BANGUN MULTIMEDIA

Kerangka Bangun Multimedia

- · Kerangka bangun multimedia terdiri dari:
 - 1. Teks
 - 2. Gambar
 - 3. Suara
 - 4. Animasi
 - 5. Video

- Suara adalah
 - -Fenomena fisik yang dihasilkan oleh getaran benda
 - -Getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah secara kontinyu terhadap waktu
 - -Vibrasi (getraan) cepat yang ditransmisikan sebagai variasi dalam tekanan udara

- Suara vibrasi merupakan suara yang membentur molekul dari media yang ada disekitarnya yang menyebabkan tekanan gelombang berpencar ke semua arah
- Suara terdiri dari kata-kata yang diucapkan, suara manusia, musik dan bahkan suara gangguan (noise)
- · Suara berhubungan dengan rasa "mendengar"
- Suara/bunyi biasa merambat melalui udara

- Suara/bunyi tidak dapat merambat melalui hampa udara
- Semua suara memiliki durasi dan suara musikal yang mengikuti yang disebut sebagai rhythm (irama)
- Tipe-tipe suara dalam Multimedia
 - Ucapan (Speech)
 - Musik
 - Efek suara

- Konsep Dasar Suara
 - Suara dihasilkan oleh getaran suatu benda
 - Selama bergetar, perbedaan tekanan terjadi di udara sekitarnya
 - Pola osilasi yang terjadi dinamakan sebagai "Gelombang"
 - Gelombang mempunyai pola sama yang berulang pada interval tertentu, yang disebut sebagai "Periode"
 - Contoh suara periodik
 - Instrumen musik, nyanyian burung, dan lain-lain
 - Contoh suara nonperiodik
 - Batuk, percikan, ombak, dan lain-lain

- · Suara berkaitan erat dengan :
 - 1. Frekuensi
 - 2. Amplitudo
 - 3. Velocity

- Banyaknya periode
- Satuan: Hertz (hz) atau cycless per second (cps)
- Panjang gelombang suara (wavelength) dirumuskan = c/f; dimana c=kecepatan rambat bunyi dan f=frekuensi
- Menentukan jangkauan (pitch) suara yang didengar oleh telinga kita

- Banyaknya periode dalam 1 detik / Hertz (Hz)
- Satuan: Hertz (hz) atau cycless per second (cps)
- Panjang gelombang suara (wavelength) dirumuskan = c/f;
 dimana c=kecepatan rambat bunyi dan f=frekuensi
- · Contoh:
 - Berapa panjang gelombang untuk gelombang suara yang memiliki kecepatan rambat 343 m/s dan frekuensi 20 kHz?
 - Jawab:
 - Panjang gelombang = c/f = 343/20 = 17,15 mm

· Berdasarkan frekuesi, suara dibagi menjadi :

-Infrasound : OHz - 20Hz

Pendengaran manusia : 20Hz - 20KHz

Ultrasound : 20KHz - 1GHz

Hypersound : 1GHz - 10THz

- · Manusia membuat suara dengan frekuensi:
 - 50Hz 10KHz
- · Sinyal suara musik memiliki frekuensi
 - 20Hz 20KHz
- Sistem multimedia menggunakan suara yang berada dalam range pendengaran manusia yaitu : 20HZ - 20KHz

- Suara yang berada pada range pendengaran manusia sebagai "audio" dan gelombangnya sebagai "Accoustic Signals"
- Suara diluar range pendengaran manusia dapat dikatakan sebagai "Noise" (getaran yang tidak teratur dan tidak berurutan dalam berbagai frekuensi, tidak dapat didengar manusia)
- Fourier Analysis?
 - Suatu sinyal analog yang terdiri dari sebuah frekuensi sinusoida dimana amplitudonya serta fasanya berubah secara "**relatif**" antara satu dengan lainnya

2. Amplitudo

- · Amplitudo adalah keras lemahnya bunyi atau tinggi rendahnya gelombang.
- Satuan yang digunakan: decibel (db)
- Bunyi mulai dapat merusak telinga jika tingkat volumenya lebih besar dari 85db dan pada ukuran 130db mampu membuat hancur gendang telinga

2. Amplitudo

- Merupakan intensitas suara atau loudness (tingkat kekuatan)
- Semakin kuat suara, semakin lebar amplitudo

3. Velocity

- Velocity adalah kecepatan perambatan gelombang bunyi sampai ke telinga pendengar
- · Satuan yang digunakan: m/s
- Pada udara kering dengan suhu 20°C
 (68°F) m kecepatan rambat suara sekitar
 343 m/s

Representasi Suara

- Gelombang suara analog tidak dapat langsung direpresentasikan pada komputer
- Komputer mengukur amplitudo pada satuan waktu tertentu untuk menghasilkan sejumlah angka
- Tiap satuan pengukuran ini dinamakan "Sample"

Menangkap & Memainkan Digital Audio

Analog To Digital Conversion (ADC)

- Merupakan proses mengubah amplitudo gelombang bunyi ke dalam waktu interval tertentu (disebut juga sampling), sehingga menghasilkan representasi digital dari suara.
- Merupakan suatu alat yang mengkonversi sinyal analog ke sinyal digital
- Sebuah sinyal analog adalah sebuah continuous value (nilai yang berkelanjutan): dapat berupa nilai manapun dalam skala yang tak terbatas
- Sebuah sinyal digital adalah sebuah discrete value (nilai yang terpisah/terputus) - memiliki nilai yang pasti (biasanya sebuah integer)

Contoh Sinyal Digital

Analog To Digital Conversion (ADC)

- Sampling rate: beberapa gelombang yang diambil dalam satu detik
- Sampling rate merupakan frekuensi dari sampling
- Sampling rate diukur dalam Hertz
- Semakin tinggi sampling rate, semakin tinggi kualitas suara tetapi tempat penyimpanan juga semakin besar

Analog To Digital Conversion (ADC)

- Standar sampling rate:
 - 48.000 kHz (DAT) Digital Audio Tape, DVD
 - 44.100 kHz (CD) Compact Disk typical quality of most sound cards
 - 22.255 kHz Medium quality
 - 11.025 kHz Low quality (banyak digunakan untuk speech)
- Contoh: jika kualitas CD Audio dikatakan memiliki frekuensi sebesar 44100 Hz, berarti jumlah sample sebesar 44100 per detik

Representasi Suara

- Gelombang suara analog tidak dapat langsung direpresentasikan pada komputer
- Komputer mengukur amplitudo pada satuan waktu tertentu untuk menghasilkan sejumlah angka

Representasi Suara

- Tiap satuan pengukuran ini dinamakan "Sample"
- Resolusi dari suatu sample adalah jumlah bit yang digunakan untuk menyimpan nilai amplitudo, contoh:
 - 8 bits (256 nilai/level yang berbeda)
 - 16 bits (65.536 nilai/level yang berbeda)
- Semakin tinggi resolusi akan menghasilkan suara dengan kualitas yang semakin tinggi tetapi membutuhkan lebih banyak memory (disk storage)

Contoh resolusi dari suatu sample

SOFTWARE - SOFTWARE SUARA

Winamp, RealPlayer, Windows Media Player, KMPlayer, QuickTime,XMMS, ZoomPlayer, JetAuido, SoundForge, dbPowerAmp,MusicMatchJukeBox, ITunes.

Format File Audio/ Suara

- Macam-macam format file audio/suara
 - 1. Developed by IBM and Microsoft (.WAV)
 - 2. Unix (.AU)
 - 3. Audio Interchange File Format (.AIFF)
 - 4. MPEG Layer 3 (.MP3)
 - 5. Mac (.SND)
 - 6. Real Audio (.RA)
 - 7. Windows Media Audio (.WMA)
 - 8. Sound Blaster (.VOC)

PERKEMBANGAN FORMAT AUDIO

YEAR	PHYSICAL FORMAT	CONTENTFORMAT
1979	Compact Disc (CD)	
1985		Audio Interchange File Format (AIFF)
1987	Digital audio tape (DAT)	
1990s Digital Compact Cassette		
1991	MiniDisc	ATRAC
1992		WAVEform (WAV)
E	6	Dolby Digital surround cinema sound
1993	8	Digital Theatre System (DTS)
1995		MP3
1996	DVD	
1999	SuperAudio CD (SACD)	Windows Media Audio (WMA)
2000		Free Lossless Audio Codec (FLAC)
2001	6	Advanced audio coding (AAC)
2002		Ogg Vorbis
2003	DualDisc	

Convert>>

Cancel

Musical Instrument Digital Interface (MIDI)

- Merupakan sebuah standar untuk mengidentifikasi sebuah musical performance
- Memungkinkan berbagai alat elektronik untuk berkomunikasi bersama
- Daripada mengirimkan file digital audio mentah, MIDI dapat mengirimkan instruksi ke alat musik dan memberitahu note yang akan diamainkan, seberapa besar volume, menggunakan suara apa dan sebaginya
- Synthesizer yang menerimaMIDI events bertanggungjawab untuk men-generate suara yang sebenarnya. Contoh: Keyboard Piano
- Data MIDI bukan merupakan suara yang terdigitasi : datanya berupa representasi pendek dari musik dalam bentuk numerik

MIDI Setup

Keuntungan MIDI

- File MIDI sangat padat (compact); ukuran file sangat tergantung dengan kualitas playback
- Dalam beberapa hal, MIDI mungkin terdengar lebih baik daripada digital audio (jika suara sumber MIDI memiliki kualitas yang baik)
- Data MIDI dapat diedit; Anda dapat mengubah panjang file MIDI dengan memvariasikan tempo tanpa mengubah pitch
- Masih banyak digunakan di lingkungan studio untuk menghubungkan synthesizers dan alat lainnya

Kerugian MIDI

- · MIDI tidak merepresentasikan suara tetapi alat musik, sehingga playback sering kurang akurat (biasanya score yang sama, instrument yang salah)
- MIDI tidak dapat digunakan dengan mudah untuk memainkan komunikasi (spoken dialog)
- · Format lama, sudah mulai dilupakan

Keuntungan dan Kerugian Menggunakan Audio

- Suara menambah nyata suatu aplikasi multimedia dan memainkan peranan yang penting dalam presentasi marketing
- Keuntungan
 - Memastikan kepentingan informasi terlihat
 - Menambah minat
 - Dapat berkomunikasi lebih langsung daripada media lain
- Kerugian
 - Mudah disalahgunakan
 - Membutuhkan peralatan khusus untuk produksi yang berkualitas
 - Media visual lebih mudah diingat

Menambah Suara Pada Proyek Multimedia

- Tentukan jenis suara yang dibutuhkan dan kapan akan digunakan
- Tentukan kapan menggunakan MIDI dan kapan menggunakan digital audio
- Dapatkan materi sumber
- Edit suara sesuaikan dengan proyek
- Tes suara untuk memastikan digunakan (secara waktu) dengan tepat

Animasi

- · Animasi 2D
- . Animasi 3D

- Terdiri dari 7 tipe/jenis Animasi
 - 1. Animasi Sel (Cel Animation)
 - 2. Animasi Jalur (Path Animation)
 - 3. Animasi Frame
 - 4. Animasi Sprite
 - 5. Animasi Spline
 - 6. Animasi Vektor
 - 7. Animasi Karakter

- Terdiri dari 7 tipe/jenis Animasi
 - 1. Animasi Sel (Cel Animation)
 - Berdasarkan pada perubahan yang terjadi sari satu frame ke frame selanjutnya
 - 2. Animasi Jalur (Path Animation)
 - Menggerakkan obyek sepanjang jalur yang telah ditentukan di layar

· Terdiri dari 7 tipe/jenis Animasi

- 3. Animasi Frame
 - Bentuk animasi yang paling sederhana
 - Dalam sebuah sebuah film, serangkaian frame bergerak dengan kecepatan minimal 24 frame per detik
- 4. Animasi Sprite
 - Gambar digerakkan dengan latar belakang yang diam
 - Bagian dari animasi yang bergerak secara mandiri, seperti misalnya : burung terbang, logo yang berputar

Terdiri dari 7 tipe/jenis Animasi

- Animasi Spline
 - Merupakan representasi matematis dari kurva, sehingga gerakan obyek tidak hanya mengikuti garis lurus melainkan berbentuk kurva
- 6. Animasi Vektor
 - Garis yang memiliki ujung-pangkal, arah dan panjang
 - Animasi vektor mirip dengan animasi sprite, tetapi animasi sprite menggunakan bitmap sedangkan animasi vektor menggunakan rumus matematika untuk menggambarka sprite nya

- Terdiri dari 7 tipe/jenis Animasi
 - 7. Animasi Karakter
 - Biasanya terdapat di film kartun
 - Semua bagian film kartun selalu bergerak bersamaan
 - Contoh film kartun yang dibuat dengan menggunakan software Maya Unlimited adalah Toys Strory dan Moster Inc

Contoh Animasi Sel

Contoh Animasi Jalur

Animasi 3D

Terdiri dari 3 Tahapan Animasi

- 1. Modeling
 - Membuat gambar kasar (broad contours) dan struktur dari obyek 3D serta latar belakang
- 2. Animation
 - Menentukan pergerakan obyek 3D
- 3. Rendering
 - Memberikan atribut pada obyek seperti warna, tekstur permukaan, transparansi

Animasi 3D

Contoh Modelling dan Rendering

Spesial Efek Animasi

Terdiri dari 3 Efek Animasi

- 1. Morphing
 - Menyatukan 2 image/gambar menjadi satu image/gambar
- 2. Warping
 - Memberikan efek pergerakan perubahan pada sebuah image/gambar
- 3. Virtual Reality
 - Membuat sebuah environment yang melingkupi user dimana user menjadi bagian dari environment tersebut

Animasi

· Contoh animasi:

- 1. Animated text
 - Menggunakan perintah html <bli>blink> untuk membuat text berkedip-kedip
- 2. Animated .gif
 - Menggunakan sebuah software program untuk membuat satu file gif, seperti GIF BULDER
- 3. Director Movie
 - Animasi dimainkan menggunakan Shockwave plug-in
- 4. 3D Environment
 - Aplikasi komputer yang digunakan untuk membuat image/gambar 3D

Animasi

- Keuntungan penggunaan animasi:
 - 1. Menarik
 - 2. Memperlihatkan aksi tak terlihat (invisible actions) atau proses fisik
 - 3. Menambah daya ingat
 - 4. Mampu membuat dalam bentuk visualisasi konsep, obyek dan relasi

Animasi

- Kerugian penggunaan animasi:
 - Membutuhkan tambahan memory dan ruang penyimpanan
 - 2. Membutuhkan peralatan khusus untuk presentasi yang berkualitas
 - 3. Animasi 2 dimensi tidak dapat memperlihatkan efek "nyata" seperti pada video atau foto