Low Earth Orbit Collision Risk

Karolina Benkova, Andrew Cleary, Katerina Karoni, Jinlu Liu, Ted Snowdon, Peter Whalley

Supervised by: William Lee¹

20th May 2021

¹University of Huddersfield

Introduction to the Problem

- Low Earth Orbit describes orbits between 160km and 1000km above the Earth's surface.
- The risk of collision between satellites is increasing with more and more satellites being deployed, e.g. in satellite constellations
- Repeat collisions will make the orbit shells unstable (Kessler effect)
- Aim: to estimate the frequency and probability of collisions with satellites from constellation deployments

Starlink Initial Phase 1,584 satellites into 72 orbital planes of 22 satellites each

Approaches Considered

Item	Name	Foster-Estes	Chan	Patera	Alfano	Serra et al.	Pelayo-Ayuso
1	Characteristic Main Feature	Polar Coordinates	Rice Integral/MECSA	"Line" Integral	Error Function	Laplace Transform	Hermite Polynomials
2	Solution Nature	Numerical	Analytical	Numerical	Numerical	Analytical	Analytical
3	No. of Terms if Analytical	N/A	4	N/A	N/A	15	2
4	Accuracy (Digits)	8 to 9	6 to 7	5 to 6	5 to 6	6 to 7	1 to 2
5	Percentage Error	10 ⁻⁶ %	10 ⁻⁵ %	10 ⁴ %	10 ⁻⁴ %	10 ⁻⁵ %	10%
6	Computation Times (ms)	1.1	0.00018	0.08	0.003	0.00016	0.00014

Figure: Comparison of the Existing Approaches for Computing Collision Probability

Model for collision of two satellites

Foster-Estes model, 1992

$$\mathsf{P} = \beta \int_0^{r_{\!A}} r \int_0^{2\pi} \mathrm{e}^{-\frac{1}{2}r^2 \left[\left(\frac{\sin\theta}{\sigma_{\chi'}}\right)^2 + \left(\frac{\cos\theta}{\sigma_{z'}}\right)^2 \right] + r \mathsf{x}_{\mathsf{e}} \left[\frac{\sin\theta\sin\varphi}{\sigma_{\chi'}^2} + \frac{\cos\theta\cos\varphi}{\sigma_{z'}^2} \right]} \, d\theta \, dr$$

where

$$\beta = \frac{1}{2\pi\sigma_{\mathsf{X}'}\sigma_{\mathsf{Z}'}} \mathrm{e}^{-\frac{1}{2}\mathsf{X}_{e}^{2} \left[\left(\frac{\sin\varphi}{\sigma_{\mathsf{X}'}} \right)^{2} + \left(\frac{\cos\varphi}{\sigma_{\mathsf{Z}'}} \right)^{2} \right]}$$

The variables have the following meanings:

- P = Probability of $0 \le r \le r_A$.
- $\sigma_{x'}$ = Uncertainty in the *x*-direction.
- $\sigma_{z'} = \text{Uncertainty in the } z\text{-direction}.$
- r_A = Threshold for calculating collision probability, distance between the centers of the two satellites
- r and θ = **Actual** relative spatial position when the satellites are the closest (distance and angle).
- x_e and $\varphi =$ **Anticipated** miss location (distance and angle).

Our Model

Kepler's Third law: Computation of a period of an orbit of the Earth

$$T = \sqrt{\frac{4\pi^2 r_W^3}{GM}}$$

where

- *G* = gravitational constant
- \bullet M =mass of the Earth
- r_W = radius of the orbit, i.e. radius of the Earth + height of the orbit above the surface of the Earth.

Expected number of collisions = $2\frac{N}{T}\alpha P$, where

- ullet $\alpha=$ scaling factor depending on the period of time considered
- N = total number of target orbital planes.
- multiplication by 2 as two distinct orbits cross twice

Monte Carlo Method

Assumption 1

The only contribution to the probability of a collision comes from the closest satellite in the target orbital.

Figure: Closest satellite lies in the range [0,S/2]

Figure: Probability becomes negligible outside [0,S/2] range

Monte Carlo Method

Assumption 2

The expected miss distance x_e follows the uniform distribution: $x_e \sim U([0, S/2])$.

Algorithm 1: Monte Carlo Averaging of Probability of Collision

```
Result: \mathbb{E}[P(\text{collision})|x_e \sim U([0, S/2])]

\text{sum} = 0;

\text{for } n = 0, 1, \dots, N-1 \text{ do}

|\text{Sample from } U([0, S/2])];

|\text{Calculate } P(\text{collision}), \text{ with this sample of } x_e;

|\text{sum } += P(\text{collision});

|\text{end}

|\text{return } sum/N|
```

Monte Carlo Method

- We now have $\mathbb{E}[P(\text{collision})|x_e \sim U([0, S/2])]$.
- We also know the expected number of interactions per some time period, $2\frac{N}{T}\alpha$.
- We can compute the probability of survival after this time period:

$$P(\text{survival}) = (1 - P(\text{collision}))^{2\frac{N}{T}\alpha}$$

Example 1

- Orbital plane A (green) has one satellite and orbital plane B (purple) has 1,000 equally spaced satellites, i.e. we assume N=1
- ullet S = distance between the neighbouring satellites on orbital plane B.
- The angle between the 2 orbital planes is 90 degrees ($\varphi = 0.5\pi$).
- We set threshold $r_A = 10$, i.e.: collision will occur if $r \le 10$ (radius of each satellite (8m) + extra distance (2m)).
- We set the height of the orbits to be 500 km above ground.

Example 2 - Monte Carlo Results

The following result assumes 72 target orbits with 1000 equally spaced satellites each.

Figure: How the probability of survival changes over the course of 2 years 200

Example 2 - Monte Carlo Results

Figure: The dependence of the satellite survival time on the threshold distance between the two satellites.

Example 3

Figure: Is it better to deploy 200000 satellites total on a) 1000 orbits with 200 satellites each or b) on 200 orbits with 1000 satellites each?

Conclusions¹

- The smaller the satellites deployed are going to be, the smaller the probability of collision (smaller satellite \rightarrow smaller r_A).
- Advise to use less busy orbital shells (i.e. different altitudes).
- Better to populate more orbits with less satellites than less orbits with more satellites.
- Automated collision probability calculation is necessary to protect the space infrastructure in the years to come.

Reference

K. Chan, Comparison of Methods For Spacecraft Collision Probability Computations, 2020.

J. L. Foster and H. S. Estes, *A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles*, NASA/JSC-25898, August 1992.