Chap. 3 Data Representation

- 3-1 Data Types
 - Binary information is stored in *memory* or *processor registers*
 - Registers contain either data or control information
 - Data are numbers and other binary-coded information
 - Control information is a bit or a group of bits used to specify the sequence of command signals
 - Data types found in the registers of digital computers
 - Numbers used in arithmetic computations
 - Letters of the alphabet used in data processing
 - Other discrete symbols used for specific purpose
 - Number Systems
 - Base or Radix r system: uses distinct symbols for r digits
 - Most common number system :Decimal, Binary, Octal, Hexadecimal
 - Positional-value(weight) System : r² r ¹r⁰.r⁻¹ r⁻² r⁻³
 - » Multiply each digit by an integer power of r and then form he sum of all weighted digits

- Decimal System/Base-10 System
 - Composed of 10 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
- Binary System/Base-2 System
 - Composed of 10 symbols or numerals(0, 1)
 - Bit = Binary digit
- Hexadecimal System/Base-16 System : Tab. 3-2
 - Composed of 16 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
- Binary-to-Decimal Conversions

```
1011.101_{2} = (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})
= 8_{10} + 0 + 2_{10} + 1_{10} + 0.5_{10} + 0 + 0.125_{10}
= 11.625_{10}
```

Decimal-to-Binary Conversions

```
Repeated division(See p. 69, Fig. 3-1)
```

37/2 = 18 remainder 1 (binary number will end with 1): LSB

18/2 = 9 remainder 0

9/2 = 4 remainder 1

4/2 = 2 remainder 0

2/2 = 1 remainder 0

1 / 2 = 0 remainder 1 (binary number will start with 1): MSB

Read the result upward to give an answer of $37_{10} = 100101_2$

 $0.375 \times 2 = 0.750$ integer 0 MSB $0.750 \times 2 = 1.500$ integer 1 $0.500 \times 2 = 1.000$ integer 1 LSB Read the result downward $.375_{10} = .011_{2}$

Hex-to-Decimal Conversion

$$2AF_{16} = (2 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})$$

= $512_{10} + 160_{10} + 15_{10}$
= 687_{10}

Decimal-to-Hex Conversion

```
423_{10} / 16 = 26 remainder 7 (Hex number will end with 7) : LSB 26_{10} / 16 = 1 remainder 10 1_{10} / 16 = 0 remainder 1 (Hex number will start with 1) : MSB Read the result upward to give an answer of 423_{10} = 1A7_{16}
```

Binary-to-Hex Conversion

Hex-to-Binary Conversion

$$9F2_{16} = 9$$
 F 2
= 1001 1111 0010
= 100111110010₂

$$1110100110_{2} = \underbrace{0011}_{00110} \underbrace{1010}_{00110} \underbrace{0110}_{00110}$$

Table 3-2

Binary Decimal

$$= 3A6_{16}$$

Binary-Coded-Decimal Code

Each digit of a decimal number is represented by its binary equivalent

- Only the four bit binary numbers from 0000 through 1001 are used
- Comparison of BCD and Binary

```
137_{10} = 10001001_2 (Binary) - require only 8 bits 137_{10} = 0001 \ 0011 \ 0111_{BCD} (BCD) - require 12 bits
```

Alphanumeric Representation

- Alphanumeric character set
 - » 10 decimal digits, 26 letters, special character(\$, +, =,....)
- ASCII:
 - » Standard alphanumeric binary code.

- Complements
 - **Complements** are used in digital computers for simplifying the **subtraction operation** and for logical manipulation.
 - There are two types of complements for base r system
 - 1) r's complement 2) (r-1)'s complement
 - » Binary number: 2's or 1's complement
 - » Decimal number: 10's or 9's complement
 - (r-1)'s Complement
 - (r-1)'s Complement of $N = (r^n-1)-N$

 - » 9's complement of N=546700

= 453299

» 1's complement of N=101101

 $(2^{6}-1)-101101=(1000000-1)-101101=111111-101101$

= 010010

- r's Complement
 - r's Complement of N = rⁿ-N
 - » 10's complement of **2389**= 7610+1= **7611**
 - 2's complement of **1101100**= 0010011+1= **0010100**

N : given number

r: base

n: digit number

546700(N) + 453299(9's com)=999999

101101(N) + 010010(1's com)=1111111

* r's Complement

(r-1)'s Complement +1 = $(r^n-1)-N+1=r^n-N$

- Subtraction of Unsigned Numbers-
- (M-N), N≠0

- 1) M + (r^n-N)
- 2) M ≥ N : Discard end carry, Result = M-N
- 3) M < N : No end carry, Result = r's complement of (N-M)

```
» Decimal Example)
```


Discard

End Carry

72532(M) - 13250(N) = 59282

72532

+ 86750 (10's complement of 13250)

Result = **59282**

M < N

No End Carry

13250(M) - 72532(N) = -59282

13250

+ 27468 (10's complement of 72532)

(0) 40718

Result = -(10's complement of 40718)

$$= -(59281+1) = -59282$$

» Binary Example)

1010100(X) - 1000011(Y) = 0010001

1010100

+ 0111101 (2's complement of 1000011)

1-0010001

Result = 0010001

X < Y

1000011(X) - 1010100(Y) = -0010001

1000011

+ 0101100 (2's complement of 1010100)

(1) 11011111

Result = -(2's complement of 1101111)

$$= -(0010000+1) = -0010001$$

Integer Representation

- Signed-magnitude representation
- Signed-1's complement representation
- Signed-2's complement representation

+14	-14	
0 0001110	1 0001110	
0 0001110	1 1110001	
0 0001110	1 1110010	

Arithmetic Addition

- Addition Rules of Ordinary Arithmetic
 - » The signs are same: sign= common sign, result= add
 - The signs are different: sign= larger sign, result= larger-smaller
- (+25) + (-37)= 37 - 25 = -12

- Addition Rules of the signed 2's complement
 - » Add the two numbers including their sign bits
 - » Discard any carry out of the sign bit position

Arithmetic Subtraction

- Subtraction is changed to an Addition
 - $(\pm A) (+ B) = (\pm A) + (- B)$
 - $(\pm A) (-B) = (\pm A) + (+B)$

*Addition Exam) + 6 00000110 + 13 00001101 + 19 00010011	<u>+ 13</u>	11111010 00001101 00000111
+ 6 00000110 - 13 11110011 - 7 11111001	- 13	$11111010 \\ \frac{11110011}{11101101}$

(-12) + (-13) = -25(+12) + (+13) = +25

```
* Subtraction Exam) (-6) - (-13) = +7

11111010 - 11110011 = 11111010 + 2's comp of 11110011

= 11111010 + 00001101

• = 1000000111 = +7
```

Overflow

Discard

End Carry

- Two numbers of n digits each are added and the sum occupies n+1 digits
- n + 1 bit cannot be accommodated in a register with a standard length of n bits.

Overflow

- An overflow may occur if the two numbers added are both positive or both negative
 - » When two unsigned numbers are added
 - an overflow is detected from the end carry out of the MSB position
 - » When two signed numbers are added
 - the MSB always represents the sign
 - the sign bit is treated as part of the number
 - the end carry does not indicate an overflow

```
* Overflow Example)
                           out in
      out in
carries 0 1
                     carries 1 0
  +70
          0 1000110
                        - 70
                               1 0111010
  +80
          0 1010000
                        - 80
                               1 0110000
          1\overline{0010110} - \overline{150}
 +150
                               0 1101010
```

- 3-4 Floating-Point Representation
 - The floating-point representation of a number-
 - 1) Mantissa : signed, fixed-point number
 - 2) Exponent : position of binary(decimal) point
- * Decimal + 6132.789

 ** Fraction Exponent +0.6132789 +4
- Scientific notation: $m \times r^e$ (+0.6132789 × 10+4 Fraction 000100 000100
 - **m** : mantissa, **r** : radix, **e** : exponent
- Example : $m \times 2^e = +(.1001110)_2 \times 2^{+4}$
- Normalization
 - Most significant digit of mantissa is nonzero

- 3-6 Error Detection Codes
 - Binary information transmitted through some form of communication medium is subject to external noise

- Parity Bit
 - An extra bit included with a binary message to make the total number of 1's either odd or even.
- Even-parity method
 - The value of the parity bit is chosen so that the total number of 1s (including the parity bit) is an even number

1 1 0 0 0 0 1 1

Added parity bit

- Odd-parity method
 - Exactly the same way except that the total number of 1s is an odd number

1 1 0 0 0 0 0 1

Added parity bit