

Introduction to reverse engineering deeply embedded devices

Benjamin Kollenda r2con 2020, 03.09.2020

Deeply embedded devices

- No dynamic loader, no environment setup
- Architecture/MCU determines start instruction
- Very different memory types in same address space:
 - Flash/ROM
 - RAM
 - EEPROM
 - Peripherals
 - Co-processors
 - External memory
- Interrupts for async events

Peripherals as API

- Interaction with outside world (bus, network, ...)
- Interaction with chip services (timer, DMA, accelerator, ...)
- Represented as read/write memory address
- Write command to address, read back response

Peripherals as API - Timer example

????????

Control

????????

Reload

???????

Compare

???????

Prescale

???????

Current

Peripherals as API - Timer example

 00000000
 ????????
 ????????
 ????????
 ????????
 ????????

 Control
 Reload
 Compare
 Prescale
 Current

1. Stop timer: Control = 0x0

Peripherals as API - Timer example

 00001010
 ????????
 ????????
 ????????
 ????????
 ????????

 Control
 Reload
 Compare
 Prescale
 Current

- 1. Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010

Peripherals as API - Timer example

 00001010
 00000000
 ???????
 ???????
 ???????

 Control
 Reload
 Compare
 Prescale
 Current

- Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010
- 3. Set Reload: Reload = 0x0

Peripherals as API - Timer example

0000101000000000FFFFFFF????????????????ControlReloadComparePrescaleCurrent

- Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010
- 3. Set Reload: Reload = 0x0
- 4. Set Compare to max: Compare = 0xFFFFFFFF

Peripherals as API - Timer example

 00001010
 00000000
 FFFFFFF
 00008000
 ???????

 Control
 Reload
 Compare
 Prescale
 Current

- Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010
- 3. Set Reload: Reload = 0x0
- 4. Set Compare to max: Compare = 0xFFFFFFFF
- Set Prescale: Prescale = 0x8000

Peripherals as API - Timer example

 00001010
 00000000
 FFFFFFF
 00008000
 00000000

 Control
 Reload
 Compare
 Prescale
 Current

- Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010
- 3. Set Reload: Reload = 0x0
- 4. Set Compare to max: Compare = 0xFFFFFFFF
- 5. Set Prescale: Prescale = 0x8000
- 6. Reset current value: Current = 0x0

Peripherals as API - Timer example

 00001011
 00000000
 FFFFFFF
 00008000
 00000000

 Control
 Reload
 Compare
 Prescale
 Current

- 1. Stop timer: Control = 0x0
- 2. Select direction and source: Control |= 0x1010
- 3. Set Reload: Reload = 0x0
- 4. Set Compare to max: Compare = 0xFFFFFFFF
- 5. Set Prescale: Prescale = 0x8000
- 6. Reset current value: Current = 0x0
- 7. Start timer: Control |= 0x1

Peripherals as API - Timer example

 00001011
 00000000
 FFFFFFF
 00008000
 00000000

 Control
 Reload
 Compare
 Prescale
 Current

- Source: 32768 Hz clock
- Prescale: 1/32768
- -> Increment once every second
- -> Current contains the number of seconds since start

Hardware

- MCU model
- Teardowns

- Die Platine links oben ist für die Stromversorgung verantwortlich. Die Platine auf der rechten Seite ist die mit den ganzen spannenden Sachen:
 - Bluetooth Modul mit dem CSRA64110 Mono Audio Modul, dessen Antenne an der oberen Kante der Platine entlangläuft.
 - Der Chip, der in diesem Video von "This Does Not Compute" im 2018er Modell gefunden wurde, ist der CSR64215 und theoretisch aptX und Stereo-Output fähig -IKEA scheint in den späteren Modellen auf den CSRA64110 umgestiegen zu sein.
 - STM32F030 Mikrokontrolleinheit ausgestattet mit Arm® Cortex®-M0
 - TAS5731M Stereo Digital Audio Power Verstärker von Texas Instruments
- PCM1808 Stereo A/D Umwandler von Texas Instruments
- Consonance Electronic CN3704 Standalone Lithium-Ionen Ladegerät

https://de.ifixit.com/Teardown/IKEA+Lautsprecher+Teardown/130948

Hardware

MCU model

- Teardowns
- FCC for RF devices

https://fccid.io/FHO-E1730/Internal-Photos/Internal-Photos-3627246

Picture 6- Mainboard

Documentation

Datasheet

STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC. communication interfaces, 2.4-3.6 V operation

Datasheet - production data

Features

- Core: Arm[®] 32-bit Cortex[®]-M0 CPU, frequency up to 48 MHz
- Memories
- 16 to 256 Kbytes of Flash memory
- 4 to 32 Kbytes of SRAM with HW parity
- · CRC calculation unit
- · Reset and power management
 - Digital & I/Os supply: V_{DD} = 2.4 V to 3.6 V
 - Analog supply: V_{DDA} = V_{DD} to 3.6 V
 - Power-on/Power down reset (POR/PDR)
 - Low power modes: Sleep, Stop, Standby
- · Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x6 PLL option
 - Internal 40 kHz RC oscillator

LQFP64 10 × 10 mm LQFP48 7 × 7 mm LQFP32 7 × 7 mm

TSSOP20 6.4 × 4.4 mm

- · Communication interfaces
 - Up to two I²C interfaces
 - Fast Mode Plus (1 Mbit/s) support on one or two I/Fs, with 20 mA current sink
 - SMBus/PMBus support (on single I/F)
- Up to six USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection
- Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames
- Serial wire debug (SWD)
- All packages ECOPACK[®]2

Documentation

- Datasheet
- Architecture

ARM°v6-M Architecture Reference Manual

Documentation

- Datasheet
- Architecture
- Memory Map

STM32F030x4/x6/x8/xC

Memory mapping

Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses

Bus	Boundary address	Size	Peripheral Reserved	
-	0x4800 1800 - 0x5FFF FFFF	~384 MB		
AHB2	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF	
	0x4800 1000 - 0x4800 13FF	0x4800 1000 - 0x4800 13FF		
	0x4800 0C00 - 0x4800 0FFF	1 KB	KB GPIOD	
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC	
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB	
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA	

N5/06/74/2

1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x8 and STM32F030x8 devices, and 0x1FFF D8/00 for STM32F030x6 chevices.

Documentation

- Datasheet
- Architecture
- Memory Map
- Pinout

STM32F030x4/x6/x8/xC	Pinouts and pin descriptions		

4 Pinouts and pin descriptions

STM32F030x4/x6/x8/xC

Pinouts and pin descriptions

Table 11. STM32F030x4/6/8/C pin definitions (continued)

1	Pin number						Pin functions		
LQFP64	LQFP48	LQFP32	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8	12	-	ē.	PC0	I/O	ТТа	-	EVENTOUT, USART6_TX ⁽⁵⁾	ADC_IN10
9	-	070	-	PC1	I/O	ТТа	-	EVENTOUT, USART6_RX ⁽⁵⁾	ADC_IN11
10	-	17.1	-	PC2	I/O	ТТа	-	SPI2_MISO ⁽⁵⁾ , EVENTOUT	ADC_IN12
11	-	-	-	PC3	I/O	ТТа	-	SPI2_MOSI ⁽⁵⁾ , EVENTOUT	ADC_IN13
12	8	-	-	VSSA	s	-	-	Analog ground	

Documentation

- Datasheet
- Architecture
- Memory Map
- Pinout
- SDK

Step 1: Firmware Extraction

- OTA updates
- Firmware dumps
- External storage
- Serial
- Debugger
- Paid services

Step 2: Analysis

Entry Point

- Determine address (check your manuals)
- Entry point usually a short assembly stub
- Last branch usually goes to main()
- Check the SDK for the assembly stub

Demo

Step 2: Analysis Main()

- Common pattern: main loop
- Setup followed by endless loop
- Polls peripherals, processes data, writes to peripherals

Demo

Step 2: Analysis

Peripherals

- Interaction with the real world
- Know your address regions
- Provide important context
- Check the init code

Demo

Step 2: Analysis

Interrupts

- Async events (e.g. timer)
- Registered in vector table
- Commonly some stub entries with same address
- Real ISRs are implemented in C, define as function

Demo

Step 2: Analysis

Debugging

- Helps with complex dataflow
- Check peripheral state after init
- Track access to peripheral
- Well supported on ARM devices:
 - J-Link/ST-Link
 - Openocd
 - o GDB

Demo

Conclusion

- Different setting, but core skills transfer to embedded devices
- Information collection is vital and saves you a lot of time
- Take apart some devices and write about what you find:)
- Also currently looking for new opportunities

benjamin.kollenda@rub.de