# ALGEBRA Chapter 06



FACTORIZACION I





## HELICO MOTIVATING



#### MOTIVATING | STRATEGY



## HELICO THEORY

**CHAPTHER 06** 



#### **FACTORIZACIÓN I**

#### FACTORIZACIÓN DEFINIDO SOBRE UN CAMPO **NUMÉRICO**

Un polinomio P esta definido sobre un campo numérico si todos sus coeficientes de P pertenecen a dicho campo

**Ejemplo:** 
$$P(x) = 5x^4 + 2x^2 - 3$$

El polinomio está definido sobre los campos {N, Z, Q, R}

#### **POLINOMIO PRIMO**

Es aquel polinomio de grado no nulo, que solamente es divisible con el mismo y con constantes no nulas

**Ejemplo:** 
$$P(x) = x^2 - 3$$

El polinomio es primo en el campo  $\{Z, Q\}$  pero no en  $\{R\}$ 

Porque 
$$P(x) = x^2 - 3 = (x + \sqrt{3})(x - \sqrt{3})$$

$$(x + \sqrt{3})$$
 y  $(x - \sqrt{3})$ ; están definidos en  $\{R\}$ 

#### FACTOR ALGEBRAÍCO DE UN POLINOMIO

Es aquel polinomio que es divisible entre otro polinomio

#### **NÚMERO DE FACTORES ALGEBRAÍCOS**

Si: 
$$P(x) = (x + a)^{\alpha} (x + b)^{\beta} (x + c)^{\theta}$$



 $\#F.A. = (\alpha + 1)(\beta + 1)(\theta + 1) - 1$ 

#### > CRITERIOS DE FACTORIZACIÓN (en Z)

#### Factor Común Monomio (F.C.M.)

Para obtener el F.C.M., se debe extraer la(s) variable(s) que se encuentran en todos los términos del polinomio, esta(s) con su(s) menor(es) exponente

**Ejemplo:** 
$$P(x; y) = 5x^3y^2 + 2x^2y - x^5y^3$$



$$P(x; y) = x^{2}y (5x^{2}y + 2 - x^{3}y^{2})$$

x; y;  $(5x^2y + 2 - x^3y^2)$  son factores primes de P(x; y)

#### **HELICO | THEORY**

#### Factor Común Polinomio (F.C.P.)

Para obtener el F.C.P., se debe extraer el polinomio que se encuentra en todos los términos del polinomio, este con su menor exponente

Ejemplo: 
$$P(x; y) = 3(x + 2y)^2 - 5(x + 2y)^3$$
  
 $F. C. P. = (x + 2y)^2$   
 $P(x; y) = (x + 2y)^2 (3 - 5(x + 2y))$   
 $P(x; y) = (x + 2y)^2 (3 - 5x - 10y)$ 

(x+2y); (3-5x-10y) son factores primes de P(x; y)

#### Factor Común por Agrupación de

Para obtener el F.C.P., se debe extraer el polinomio que se encuentra en todos los términos del polinomio, este con su menor exponente

**Ejemplo:** 
$$F(x; y) = a^2xy + aby^2 + b^2xy + abx^2$$
  
**Agrupamos**  $F(x; y) = (a^2xy + abx^2) + (aby^2 + b^2xy)$ 

F. C. M. En cada paréntesis 
$$F(x; y) = ax(ay + bx) + by(ay + bx)$$

$$F(x;y) = (ay + bx)(ax + by)$$

(ay + bx); (ax + by); son factores primes de F(x; y)

#### **CRITERIO DE LAS IDENTIDADES**

A) TRINOMIO CUADRADO PERFECTO

$$P(x) = 4x^{2} + 12x + 9 = (2x + 3)^{2}$$

$$\sqrt[4]{2(2x)(3)} = 12x$$

#### **B) DIFERENCIA DE CUADRADOS**

$$P(x) = 9x^2 - 16 = (3x + 4)(3x - 4)$$
 $\sqrt{ }$ 
 $3x$  4

#### C) SUMA Y DIFERENCIA DE CUBOS

$$P(x) = x^3 \pm 27$$
 =  $(x \pm 3)(x^2 \mp 3x + 9)$   
 $x = 3$ 

**CHAPTHER 06** 



#### PROBLEMA 1.

#### Señale un factor primo de:

$$Q(x; y) = 7m(3x - 2y) - 5n(2y - 3x) - 6x + 4y$$

#### RESOLUCIÓN

#### Factoricemos el signo en -5n(2y-3x)

$$Q(x; y) = 7m(3x - 2y) + 5n(3x - 2y) - 6x + 4y$$

#### Agrupemos y factoricemos el -2 en -6x + 4y

$$Q(x; y) = 7m(3x - 2y) + 5n(3x - 2y) - 2(3x - 2y)$$

$$\underline{F.C.P}$$
  $(3x-2y)$ 

$$Q(x; y) = (3x - 2y)(7m + 5n - 2)$$

#### Nos piden un factor primo

∴ Un factor primo de 
$$Q(x; y)$$
 es  $(3x - 2y)$ 



$$(3x-2y)$$

#### PROBLEMA 2.

#### Indique los factores primos de:

$$P(a;b) = ab^4 - 5a^2b^3 + 4a^3b^2 - 20a^4b$$

#### **RESOLUCIÓN**

#### **Agrupamos**

$$P(a;b) = (ab^4 - 5a^2b^3) + (4a^3b^2 - 20a^4b)$$

#### F.C.M. En cada paréntesis

$$P(a;b) = ab^{3}(b-5a) + 4a^{3}b(b-5a)$$

**F.C.P** 
$$P(a;b) = (b-5a)(ab^3+4a^3b)$$

F.C.M.

$$P(a;b) = (b-5a)ab(b^2+4a^2)$$

#### Nos piden indicar los factores primos

: Los factores primos de P(a; b) son:  $(b-5a); a; b; (b^2+4a^2)$ 

$$(b-5a)$$
; a; b;  $(b^2+4a^2)$ 

#### PROBLEMA 3.

#### Factorice en $\mathbb{Q}(x)$ :

$$P(a;b) = a^{10}b - 16a^2b$$

#### RESOLUCIÓN

**F.C.M.** 
$$P(a;b) = a^2b(a^8 - 16)$$

Criterio de Diferencia de Cuadrados

$$P(a;b) = a^{2}b(a^{8} - 16)$$

$$(a^{4} + 4)(a^{4} - 4)$$



Criterio de Diferencia de Cuadrados

$$P(a;b) = a^{2}b(a^{4} + 4)(\underline{a^{4} - 4})$$

$$(a^{2} + 2)(a^{2} - 2)$$

$$P(a;b) = a^2b(a^4+4)(a^2+2)(a^2-2)$$

#### Nos piden factorizar

: La factorización quedaría así:  $a^2b(a^4+4)(a^2+2)(a^2-2)$ 

#### Respuesta:

$$(a^2+2)(a^2-2) \qquad P(a;b) = a^2b(a^4+4)(a^2+2)(a^2-2)$$

#### PROBLEMA 4.

Calcule un factor primo de:

$$P(a; b; x) = (ab - 5x)^2 - (bx - 5a)^2$$

#### RESOLUCIÓN

*Criterio de*Diferencia de
Cuadrados

$$P(a; b; x) = (ab - 5x)^{2} - (bx - 5a)^{2}$$

$$(ab - 5x) + (bx - 5a) \{ (ab - 5x) - (bx - 5a) \}$$

Agrupamos en cada llave

$$P(a;b;x) = \{(ab+bx) - (5x+5a)\}\{(ab-bx) + (5a-5x)\}$$

<u>F.C.M.</u> En cada paréntesis

$$P(a;b;x) = \{b(a+x) - 5(x+a)\}\{b(a-x) + 5(a-x)\}$$

#### F. C. P. En cada paréntesis

$$P(a;b;x) = \{(a+x)(b-5)\}\{(a-x)(b+5)\}$$

#### Nos piden un factor primo

: Un factor prime de P(a; b; x) es:  $(a + x) \lor (b - 5) \lor (a - x) \lor (b + 5)$ 



$$(a + x) \lor (b - 5) \lor (a - x) \lor (b + 5)$$

#### PROBLEMA 5.

#### **Factorice:**

$$m^2 - 4p^2 + 4mn + 4n^2$$



$$P(m; n; p) = \{m + 2n + 2p\}\{m + 2n - 2p\}$$

#### RESOLUCIÓN

#### Agrupamos

$$2(m)(2n) = 4mn$$

$$\sqrt{ } \sqrt{ }$$

$$P(m; n; p) = (m^2 + 4mn + 4n^2) - (4p^2)$$

Trinomio Cuadrado Perfecto



$$P(m; n; p) = (m + 2n)^2 - (2p)^2$$

#### Criterio de Diferencia de Cuadrados

$$P(m; n; p) = (m + 2n)^{2} - (2p)^{2}$$

$$\{(m + 2n) + (2p)\}\{(m + 2n) - (2p)\}$$

#### Nos piden factorizar

 $\therefore$  Luego de factorizar P(m; n; p)tenemos:

$$(m+2n+2p)(m+2n-2p)$$

$$(m+2n+2p)(m+2n-2p)$$

#### PROBLEMA 6.

El número de alumnos becados en el colegio Saco Oliveros es la cantidad de factores

primos del polinomio

$$P(x, y) = x^4 + xy^3 + x^3y + y^4$$

RESOLUCIÓN tos son los becados.

**Agrupamos** 
$$P(x, y) = (x^4 + x^3y) + (y^4 + xy^3)$$

F. C. M. En cada paréntesis

$$P(x, y) = x^{3}(x + y) + y^{3}(y + x)$$

F.C.P.

$$P(x,y) = (x + y) (x^3 + y^3)$$

Suma de Cubos

$$P(x,y) = (x+y)(x+y)(x^2-xy+y^2)$$

$$P(x,y) = (x+y)^2 (x^2 - xy + y^2)$$

Nos piden el número de becados, cantidad que es igual a el número de factores primos de P(x,y)

 $\therefore$  El número de factores primos de P(x, y) es 2

2 alumnos becados

#### PROBLEMA 7.

#### Factorice en Q

$$P(x) = (x+1)(x+2)(x+3)(x+4) + 1$$

Sea N la cantidad de factores primos. Si "4N" es el costo de 3 lapiceros ¿Cuánto se pagará por media docenas de lapiceros?

#### **RESOLUCIÓN**

El orden de los factores No altera el producto

$$P(x) = (x+1)(x+4)(x+2)(x+3) + 1$$

$$P(x) = (x^2 + 5x + 4)(x^2 + 5x + 6) + 1$$

Haremos un cambio de variable

$$m = (x^2 + 5x)$$

$$P(x) = (m+4)(m+6) + 1$$

$$P(x) = (m^2 + 10m + 24) + 1$$

$$P(x) = m^{2} + 10m + 25 = (m + 5)^{2}$$

$$\sqrt{2(m)(5)} = 10mn$$

Regresemos a la variable original

$$P(x) = (x^2 + 5x + 5)^2$$

Nos piden lo que se pagará por media docena de lapiceros, como N representa el número de factores primos este es igual a 1

∴ Si por 3 lapiceros se paga 4(1) soles, entonces por 6 lapiceros se pagará 8 soles

Respuesta:

*S*/8