Question number	Scheme	Marks
9 (a)	$x^2 - \operatorname{sum} \times x + \operatorname{product} = 0$	
	$x^2 + \frac{5}{2}x - 5 = 0$	
	$2x^2 + 5x - 10 = 0 mtext{ or integer multiples}$	M1A1 (2)
(b) (i)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (\frac{25}{4}) + 10 = \frac{65}{4}$	M1A1
(ii)	$\left(\alpha + \beta\right)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	
	$\Rightarrow \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -\frac{125}{8} + 15\left(-\frac{5}{2}\right) = -\frac{425}{8}$	M1A1A1
	ALT	(5) {M1A1A1}
	$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) = \left(-\frac{5}{2}\right)\left(\frac{73}{4} + 5\right) = -\frac{425}{8}$	{WIAIAI}
	Product	
(c)	$\left(\alpha - \frac{1}{\alpha^2}\right) \times \left(\beta - \frac{1}{\beta^2}\right) = \left(\frac{\alpha^3 - 1}{\alpha^2}\right) \left(\frac{\beta^3 - 1}{\beta^2}\right) = \frac{\alpha^3 \beta^3 - (\alpha^3 + \beta^3) + 1}{\alpha^2 \beta^2}$	M1
	$= \frac{-125\frac{425}{8} + 1}{36} = -\frac{567}{200}$	A1
	Sum $\left(\alpha - \frac{1}{\alpha^2}\right) + \left(\beta - \frac{1}{\beta^2}\right) = \left(\frac{\alpha^3 - 1}{\alpha^2}\right) + \left(\frac{\beta^3 - 1}{\beta^2}\right)$	
	$=\frac{\alpha^{3}\beta^{2}-\beta^{2}+\alpha^{2}\beta^{3}-\alpha^{2}}{\alpha^{2}\beta^{2}}=\frac{\alpha^{2}\beta^{2}(\alpha+\beta)-(\alpha^{2}+\beta^{2})}{\alpha^{2}\beta^{2}}$	M1
	$= \frac{25\left(-\frac{5}{2}\right) - \frac{65}{4}}{25} = -\frac{63}{20} \text{ oe}$	A1
	Equation	

Sum = $-\frac{63}{20}$, Product = $-\frac{567}{200}$ $\Rightarrow x^2 + \frac{63}{20}x - \frac{567}{200} (= 0)$ $x^2 + \frac{314}{100}x - \frac{567}{200} (= 0)$ M1 $200x^2 + 630x - 567 = 0$ A1	M1A1 (6) [13]
--	---------------------

Additio	Additional Notes				
Part	M	Guidance			
(a)	M1	Forms a quadratic equation with the given product and sum $\left(x^2 + \frac{3}{2}x - 5\right)$			
	= 0 not required for this mark. Allow $y =$ for this mark				
	A1	Look out for $= 0$ which must be present.			
(b) (i)	M1	Uses the correct algebra to form $\alpha^2 + \beta^2$ and substitutes the given values of the sum and product.			
	A1	For $\alpha^2 + \beta^2 = \frac{65}{4}$			
(ii)	M1	Uses the correct algebra to form an expression for $\alpha^3 + \beta^3$ For example; $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ Their algebraic expansion must be sufficiently arranged to allow substitution of $\alpha^2 + \beta^2$, $\alpha + \beta$ and $\alpha\beta$	tion		
		$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$			
	A1	Substitutes the given values for the sum and product into their form of $\alpha^3 + \beta^3$			
	A1	For $\alpha^3 + \beta^3 = -\frac{425}{8}$ oe			
(c)	M1	Product			
		For the correct algebra to achieve $\frac{\alpha^3 \beta^3 - (\alpha^3 + \beta^3) + 1}{\alpha^2 \beta^2}$ or $\alpha \beta - (\frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}) + \frac{1}{\alpha^2 \beta^2}$			
		and substitutes their (product) ³ , (product) ² and their $\alpha^3 + \beta^3$			
		Their algebra must be sufficient to substitute $\alpha\beta$, $\alpha^3 + \beta^3$ and $\alpha^2\beta^2$ in directly.			
	A1	$Product = -\frac{567}{200} \text{ oe}$			
	M1	Sum			
		For the correct algebra to achieve $\frac{\alpha^2 \beta^2 (\alpha + \beta) - (\alpha^2 + \beta^2)}{\alpha^2 \beta^2}$ or $\alpha + \beta - (\frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2})$	$\left(\frac{\beta^2}{\beta^2}\right)$		
		(but in a from where the sum and product can be substituted) and substitutes their $(\text{product})^2$ and their $\alpha^2 + \beta^2$	•		