

Camera Models

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Outline

Camera models

[Slides credit: Marc Pollefeys]

Camera Obscura: the Pre-Camera

- First idea: Mo-Ti, China (470BC to 390BC)
- First built: Alhazen, Iraq/Egypt (965 to 1039AD)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Camera Obscura

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.

Sic nos exactè Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Camera Obscura, Reinerus Gemma-Frisius, 1544

Pinhole Camera Model

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Pinhole Camera Model

Principal Point Offset

$$(X,Y,Z)^T \mapsto (fX/Z + p_x, fY/Z + p_y)^T$$

 $(p_x, p_y)^T$ principal point

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_x \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Principal Point Offset

$$x = K[I | 0]X_{cam}$$

$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix}$$
 Calibration Matrix

Camera Rotation and Translation

Camera Rotation and Translation

$$x = KR \left[I \mid -\widetilde{C} \right] X$$

$$x = PX$$

$$P = K[R \mid t] \qquad t = -R\widetilde{C}$$

Internal Camera Parameter
Internal Orientation

Intrinsic Matrix

External Camera Parameter
Exterior Orientation

Extrinsic Matrix

CCD Camera

Non-square pixels
$$\rightarrow$$
 $\begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & & p_x \\ & f & p_y \\ & & 1 \end{bmatrix}$

$$K = \begin{bmatrix} \alpha_x & p_x \\ \alpha_y & p_y \\ 1 \end{bmatrix}$$

Finite Projective Camera

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_x & p_y \\ & 1 \end{bmatrix} \qquad \begin{array}{l} \text{s: skew parameter,} \\ \text{=0 for most normal cameras} \end{array}$$

$$P = KR \left[I \mid -\widetilde{C} \right] \qquad 11 \text{ dof (5+3+3)}$$

non-singular

decompose P in K,R,C?

$$P = [M | p_4]$$
 $[K, R] = RQ(M)$ $\tilde{C} = -M^{-1}p_4$

P₄: Last column of P

{finite cameras}={ $P_{4x3} \mid det M \neq 0$ }

If rank P=3, but rank M<3, then camera at infinity

Camera Anatomy

- Camera center
- Column points
- Principal plane
- Axis plane
- Principal point
- Principal ray

Camera Center

Camera Center (C): Null-space of camera projection matrix

$$PC = 0$$

Proof:
$$X = \lambda A + (1 - \lambda)C$$

 $x = PX = \lambda PA + (1 - \lambda)PC$

For all A, all points on AC are projected on the same image point PA, therefore C is the camera center

Image of camera center is $(0,0,0)^T$, i.e. undefined

Finite cameras:
$$C = \begin{pmatrix} -M^{-1}p_4 \\ 1 \end{pmatrix}$$
Infinite cameras: $C = \begin{pmatrix} d \\ 0 \end{pmatrix}$, $Md = 0$
The camera center is a point at infinity

Column Vectors

 p_1 , p_2 , p_3 : vanishing points of the world coordinate X, Y, and Z axes Image points corresponding to X,Y,Z directions and origin

p₄ is the image of the world origin

Row Vectors

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} = \begin{bmatrix} \mathbf{P}^{1\mathsf{T}} \\ \mathbf{P}^{2\mathsf{T}} \\ \mathbf{P}^{3\mathsf{T}} \end{bmatrix}$$

Row Vectors

$$\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} p^{1}^{T} \\ p^{2}^{T} \\ p^{3}^{T} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ 0 \\ w \end{bmatrix} = \begin{bmatrix} p^{1}^{T} \\ p^{2}^{T} \\ p^{3}^{T} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

note: p¹,p² dependent on image reparametrization

The Principal Point

$$x_0 = P\hat{p}^3 = Mm^3$$

The Principal Axis Vector

vector defining front side of camera

$$x = P_{cam}X_{cam} = K[I | 0]X_{cam}$$
 $v = det(M)m^3 = (0,0,1)^T$

$$P_{cam} \mapsto kP_{cam}$$

$$v = det(M)m^3 = (0,0,1)^T$$

$$v \mapsto k^4 v$$

(direction unaffected)

$$P = kKR \left[I \mid -\widetilde{C} \right] = \left[M \mid p_4 \right]$$

Direction unaffected because det(R) > 0

The principal axis vector $\mathbf{v} = det(M)m^3$ is directed towards the front of the camera

Action of Projective Camera on Point

Forward projection

$$x = PX$$

$$x = PD = [M \mid p_4]D = Md$$

D: $(d^T, 0)^T$ point at the plane at infinity

Back-projection

$$\begin{aligned} &PC = 0 \\ &X = P^+ x & P^+ = P^\mathsf{T} \Big(P P^\mathsf{T} \Big)^{\!-\!1} & P P^+ = I \\ &X \big(\lambda \big) = P^+ x + \lambda C & \end{aligned}$$

For finite camera
$$d = M^{-1}x$$

$$X(\lambda) = \mu \binom{M^{-1}x}{0} + \binom{-M^{-1}p_4}{1} = \binom{M^{-1}(\mu x - p_4)}{1}$$

Depth of Points

$$w = \mathbf{P}^{3^{\mathrm{T}}} \mathbf{X} = \mathbf{P}^{3^{\mathrm{T}}} (\mathbf{X} - \mathbf{C}) = \mathbf{m}^{3^{\mathrm{T}}} (\widetilde{\mathbf{X}} - \widetilde{\mathbf{C}})$$
(PC=0) (dot product)

If $\det M > 0$; $\|\mathbf{m}^3\| = 1$ then \mathbf{m}^3 unit vector in positive direction

$$\operatorname{depth}(X; P) = \frac{\operatorname{sign}(\det M)w}{T \|\mathbf{m}^3\|}$$

$$X = (X, Y, Z, T)^{T}$$

Camera Matrix Decomposition

Finding the camera center

$$\begin{split} \mathbf{PC} &= 0 \quad \text{(use SVD to find null-space)} \\ X &= \det \left(\left[\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}_4 \right] \right) \quad Y = -\det \left(\left[\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}_4 \right] \right) \\ Z &= \det \left(\left[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_4 \right] \right) \quad T = -\det \left(\left[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \right] \right) \end{split}$$

Finding the camera orientation and internal parameters

$$M=KR$$
 (use RQ decomposition ~QR) (if only QR, invert)

$$= (Q R)^{-1} = R ^{-1} Q ^{-1}$$

When is Skew Non-zero?

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_x & p_y \\ & 1 \end{bmatrix}$$

for CCD/CMOS, always s=0

Image from image, s≠0 possible (non coinciding principal axis)

resulting camera: HP

Cameras at Infinity

Camera center at infinity

$$P \begin{bmatrix} d \\ 0 \end{bmatrix} = 0 \implies \det M = 0$$

Affine and non-affine cameras

Definition: affine camera has $P^{3T}=(0,0,0,1)$

points at infinity are mapped to points at infinity

Affine Cameras

$$P_{0} = KR[I|-\tilde{C}] = K\begin{bmatrix} r^{1T} & -r^{1T}\tilde{C} \\ r^{2T} & -r^{2T}\tilde{C} \end{bmatrix}$$

$$d_{0} = -r^{3T}\tilde{C}$$

$$r^{3T} - r^{3T}\tilde{C}$$

$$\mathbf{P}_{t} = \mathbf{K} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \left(\widetilde{\mathbf{C}} - t\mathbf{r}^{3} \right) \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \left(\widetilde{\mathbf{C}} - t\mathbf{r}^{3} \right) \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \widetilde{\mathbf{C}} \end{bmatrix}$$
$$\mathbf{r}^{3T} - \mathbf{r}^{3T} \left(\widetilde{\mathbf{C}} - t\mathbf{r}^{3} \right) \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \widetilde{\mathbf{C}} \end{bmatrix}$$

modifying p₃₄ corresponds to moving along principal ray

Affine Cameras

now adjust zoom to compensate

$$\mathbf{P}_{t} = \mathbf{K} \begin{bmatrix} d_{t} / d_{0} \\ d_{t} / d_{0} \end{bmatrix} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{3T} & d_{t} \end{bmatrix}$$

$$= \frac{d_t}{d_0} \mathbf{K} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{3T} d_0 / d_t & d_0 \end{bmatrix}$$

$$\mathbf{P}_{\infty} = \lim_{t \to \infty} \mathbf{P}_{t} = \mathbf{K} \begin{bmatrix} \mathbf{r}^{1T} & -\mathbf{r}^{1T} \widetilde{\mathbf{C}} \\ \mathbf{r}^{2T} & -\mathbf{r}^{2T} \widetilde{\mathbf{C}} \\ 0 & d_{0} \end{bmatrix}$$

Summary Parallel Projection

$$P_{\infty} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 canonical representation

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{2 \times 2} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

calibration matrix

principal point is not defined

A Hierarchy of Affine Cameras

$$\mathbf{P}_{\infty} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$

Orthographic projection

$$\mathbf{P}_{\infty} = \begin{bmatrix} \mathbf{r}^{1T} & t_1 \\ \mathbf{r}^{1T} & t_2 \\ 0 & 1 \end{bmatrix}$$
 (5dof)

Scaled orthographic projection

$$\mathbf{P}_{\infty} = \begin{bmatrix} \mathbf{r}^{1T} & t_1 \\ \mathbf{r}^{1T} & t_2 \\ 0 & 1/k \end{bmatrix}$$
 (6dof)

A Hierarchy of Affine Cameras

Weak perspective projection

$$\mathbf{P}_{\infty} = \begin{bmatrix} \alpha_{x} & & \\ & \alpha_{y} & \\ & & 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}^{1T} & t_{1} \\ \mathbf{r}^{1T} & t_{2} \\ 0 & 1/k \end{bmatrix}$$
 (7dof)

A Hierarchy of Affine Cameras

Affine camera (8dof)

$$\mathbf{P}_{A} = \begin{bmatrix} \alpha_{x} & s \\ & \alpha_{y} \\ & & 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}^{1T} & t_{1} \\ \mathbf{r}^{1T} & t_{2} \\ 0 & 1/k \end{bmatrix} \quad \mathbf{P}_{A} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & t_{1} \\ m_{21} & m_{22} & m_{23} & t_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{A} = \begin{bmatrix} 3 \times 3 \text{ affine} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \times 4 \text{ affine} \end{bmatrix}$$

- 1. Affine camera=camera with principal plane coinciding with Π_{∞}
- 2. Affine camera maps parallel lines to parallel lines
- 3. No center of projection, but direction of projection $P_AD=0$ (point on Π_{∞})

Pushbroom Cameras

Straight lines are not mapped to straight lines! (otherwise it would be a projective camera)