INTERNATIONAL BACCALAUREATE MATH HL

EXERCISES 2.11-2.12 POLYNOMIALS – SUM AND PRODUCT OF ROOTS

Compiled by Christos Nikolaidis

POLYNOMIALS – FACTOR AND REMAINDER THEOREMS

A. Practice Questions

1.	Consider the cubic function $f(x) = ax^3 + 2x^2 + 3x + 4$. Find the value of a in each of the	
	following cases	
	(a) the graph of the function passes through the point $(1,10)$	
	(b) $f(x)$ is divisible by $(x-1)$	
	(c) when $f(x)$ is divided by $(x-1)$, the remainder is 10.	
	(d) Confirm the result in (c) by using long division.	
		• •

Consider the cubic function $f(x) = ax^3 + bx^2 + 3x + 4$. Find the values of a and b in each
following cases
(a) $f(x)$ is divisible by $(x-1)$ and leaves a remainder 6 when divided by $(x+1)$.
(b) $f(x)$ is divisible by $(x^2 - 1)$.
(c) $f(x)$ leaves a remainder $-3x + 3$ when divided by $(x^2 - 1)$.

	sider the cubic function $f(x) = 2x^3 + ax^2 + bx + c$. Find the values of a,b,c
(a)	if the graph of the function passes through the points $(1,0)$, $(-1,2)$, and $(0,3)$
(b)	if the graph of the function passes through the points $(1,0)$, $(-1,0)$, and $(3,0)$
•••••	

			u)(ox	-c)(dx $-$	c), whe	
•••••	 		 			
	 		 •••••••••••••••••••••••••••••••••••••••			
•••••	 		 		••••••	•••••
	 	•••••	 		•••••	
•••••	 		 		••••••	
	 		 		•••••	
•••••	 		 		•••••	
	 	•••••	 			

5.

Consider the following cubic polynomial

f($f(x) = (x-1)(x^2 + (2-k)x + k^2)$)
(a) Show that $x = 1$ cannot be	e a repeated root.	
(b) Find the values of k so that	at the polynomial has	
(i) Exactly one real root.	(ii) Exactly two real roots	(iii) Exactly three real roots
(c) Find the roots in each case	2.	

Past Paper questions (SHORT)

B.

	••
	 (Total 6 m
When the function $f(x) = 6x^4 + 11x^3 - 22x^2 + ax + 6$ is divided by $(x + 1)$ the remainder Find the value of a .	is –20.
	••
	(Total 4 m
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	
	e of <i>a</i> .
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	e of <i>a</i> .
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	e of <i>a</i> .
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	e of <i>a</i> .
When the polynomial $x^4 + ax + 3$ is divided by $(x - 1)$, the remainder is 8. Find the value	e of <i>a</i> .

	•••••	••••••	••••••	•••••	••••••••	••••••	
						•••••	
		•••••	•••••	•••••	••••••	•••••	
		•••••••••	••••••	••••••	••••••	••••••	
Extra question Factorise $p(x)$ a		ots					Total 6 i
Extra question Factorise $p(x)$ a		ots					Fotal 6
		ots					Total 6
	and state its roo						Cotal 6 i
Factorise $p(x)$ a	and state its roo						Cotal 6 o
Factorise $p(x)$ a	and state its roo						Cotal 6 1
Factorise $p(x)$ a	and state its roo						Cotal 6 o
Factorise $p(x)$ a	and state its roo						Cotal 6)
Factorise $p(x)$ a	and state its roo						Cotal 6 o
Factorise $p(x)$ a	and state its roo						Cotal 6)
Factorise $p(x)$ a	and state its roo						Cotal 6
Factorise $p(x)$ a	and state its roo						Cotal 6)

					•••••
			•••••	•••••	
		•••••	•••••	•••••	••••••
		•••••			•••••
					(Total 4
					(10tal 4
The polynomial $f(x)$ when divided by (x)			same remainde	er when divided	by $(x-2)$ as
			same remainde	er when divided	by (x – 2) as
			same remaind	er when divided	by (x – 2) as
	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			
when divided by (x	c + 1). Find the va	alue of a.			

Extra question	(Total 6 ma
Solve the equation $f(x) = 0$.	
1 3 ()	
The polynomial $P(x) = 2x^3 + ax^2 - 4x + b$ is divisible by of a and of b .	(x-1) and by $(x+3)$. Find the value
of a and of b .	
The polynomial $P(x) = 2x^3 + ax^2 - 4x + b$ is divisible by of a and of b .	
of a and of b .	
of a and of b.	
of a and of b. Extra question:	
of a and of b.	
of a and of b. Extra question:	

•••••		•••••
•••••		•••••
•••••		
		(Total 6
Extra questi	ion:	(Total o
	cubic polynomial	
•••••		
		•••••
		••••••
	ion (a slight modification of the question above)	
The polynom	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate	e the value of
The polynom		e the value of
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	nial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	hial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	
The polynom the constant a	hial $x^2 - 4x + 3$ is a factor of $x^3 + (a - 4)x^2 + (3 - 4a)x + b$. Calculate a and of the constant b .	

When $P(x)$ is c	ivided by (2x		4		_	
•••••						
•••••	•••••		•••••••••		•••••	•••••
						••••••
			•••••			•••••
						•••••
						(Total 6
When $P(x) = 4$		c+1 is divid	led by $(x-1)$	(2x-1) th	ne remainder	
When $P(x) = 4$		ɛ+1 is divid	led by $(x-1)$	(2x-1) th	ne remainder	
Extra question When $P(x) = 4$ Find the value o	f p and of q .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f p and of q .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$
When $P(x) = 4$ Find the value o	f <i>p</i> and of <i>q</i> .					is $\frac{-21x+17}{2}$

INEQUALITIES

A. Practice Questions

16.	(a) (b)	Indicate or	graph of the function ally the <i>x</i> -intercepts, and the the following inequality	he <i>y</i> -inter	$= (x-1)^2 (x+1)(x-2)$ rcept.	
		(i)	$(x-1)^2(x+1)(x-2)$	≥ 0		
		(ii)	$\frac{(x-1)^2(x+1)}{x-2} > 0$	(iii)	$\frac{(x-1)^2(x+1)}{x-2} \ge 0$	
	•••••			••••••		
	•••••			••••••		
	•••••					
	•••••					
	•••••	•••••				•••••
	•••••			•••••		
	•••••					
	•••••	•••••				••••••
	•••••					

(a) $\frac{5(x-1)(x-2)}{(x-3)^3}$	$\frac{0^2}{2} \ge 0$	(b) $\frac{(x-1)(x-1)}{5(x-1)}$	$\frac{(x-3)^3}{(-2)^2} \ge 0$	(c) $\frac{(x-1)^{-1}}{(x-1)^{-1}}$	$\frac{(x-3)^2(x-3)}{5(x-1)}$
	•••••				
	•••••				
	•••••				
				•••••	
	•••••				••••••
	•••••	•••••		•••••	•••••
	•••••	•••••		•••••	•••••
	••••••	•••••		•••••••••	••••••

18.	The polynomial $f(x) = x^3 - 4x^2 + 3x + a$ is divisible by $(x - 1)$.							
	(a) find the value of a							
	 (b) give full factorization of f(x). (c) sketch the corresponding graph by indicating only the x-intercepts. (d) solve the inequality f(x) ≤ 0. 							

19.

	$= x^3 - 7x^2 + ax - 9$ is divisible by $(x - 1)$.		
(a) find the value of a			
(b) give full factorizat			
(c) sketch the corresponding graph by indicating only the x- intercepts.			
(d) solve the inequalit	$ty f(x) \le 0.$		
•••••			

20.

	ynomial $f(x)$ I the value of		is divisible	by $(x-1)$).		
	e full factoriz		`(r)				
				icating on	ly the x- in	ntercents	
	 (c) sketch the corresponding graph by indicating only the x- intercepts. (d) solve the inequality f(x) ≤ 0. 						
(u) 301	re the mequa	$f(x) \leq$	0.				
			••••••	• • • • • • • • • • • • • • • • • • • •			
•••••	••••••		•••••	••••••	••••••	••••••	
•••••							
•••••			•••••		•••••		•••••
•••••	•••••		•••••	•		••••••	•••••
•••••							
•••••	••••••		•••••		••••••	••••••	••••••
					•••••		
•••••			•••••	••••••		•••••	

B. Past Paper questions (S

Solve with a GDC (sketch	a graph and give the answer)	
		•
		•
		•
		•
		Takal (
		Total 6
Solve without a GDC		
••••••		•
		•

Solve wit	h a GDC (ske	etch a grapl	h and give t	he answer)			
							•
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•
					•••••		•
	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•
						((Total 6 r
Solve wit	hout a GDC						
							· ·

(Total 6 marks)

Find the value	of x for whi	$ch \mid 5 - 3x \mid$	$\leq x+1 $.			
		•••••		 •••••		
						Γotal :
						Γotal ί
Solve the ineq						Γotal (
						Fotal (
Solve the ineq		$ \geq 2x+1 $			Γ)	Γotal (
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $			Γ)	Fotal :
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $			Γ)	Fotal :
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.		Γ)	Fotal (
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.			Γotal ί
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.			Γotal :
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.			Γotal (
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.			Γotal :
Solve the ineq	uality $ x-2 $	$ \geq 2x+1 $.			Γotal (

(Total 6 marks)

Solve the inequality $\left \frac{x+9}{x-9} \right \le 2$	
	Total 6 m
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes
Find the largest set of values of x such that the function f given by $f(x) = \sqrt{\frac{8x-4}{x-3}}$ real values.	takes

	f(x)=2x-1,	$g(x) = \frac{x}{x+1}, x \neq -1$	
Find the values of	x for which $(f \circ g)(x) \le$	$(g \circ f)(x)$	
		(8 7)(**)	
			•
			_
			•
			•
			•
•••••			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•

(Total 6 marks)

SUM AND PRODUCT OF ROOTS

A. Practice Questions

28. Complete the following table: for each polynomial find the sum and the product of the roots (allowing non-real roots and repetition of roots) as well as the remainder when the polynomial is divided by (*x*-1).

Polynomial	Sum of roots	Product of roots	Remainder by (x-1)
$f(x) = 2x^4 + 6x^3 + 5x^2 - 7x + 8$			
$f(x) = 2x^5 + 6x^3 + 5x^2 - 7x + 8$			
$f(x) = x^{10} - x^9 - 1$			

	•••••	
29.	Cons	sider the cubic function $f(x) = ax^3 + 2x^2 + 3x + 4$. Find the value of a
	(a)	if the sum of the roots of the cubic polynomial is 10
	(b)	if the product of the roots of the cubic polynomial is 10
	•••••	
	•••••	
	•••••	
30.	Cons	sider the cubic function $f(x) = ax^3 + bx^2 + 3x + 4$. Find the values of a and b given that
	the s	um of the roots is 10 and the product of the roots is 12

31.	The p	polynomial
		$f(x) = x^4 - 2x^3 + ax^2 + bx + 3$
	is div	visible by $(x-1)$ and the quotient polynomial is $q(x)$. Find
	(a)	The sum and the product of the roots of $f(x)$
	(b)	The degree of $q(x)$
	(c)	The sum of a and b .
	(d)	The sum and the product of the roots of $q(x)$.
	•••••	
	•••••	

32. Consider the polynomia	32.	Consider the polynomial
-----------------------------------	-----	-------------------------

$$f(x) = ax^4 + bx^3 + cx^2 + dx + 16$$

When f(x) is divided by (x+1) the remainder is 120, while (x-1) is a factor. The sum and the product of its roots are both 8.

(a) Find the values of a, b, c and d.

When f(x) is divided by the factor (x-1) the quotient q(x) is a cubic function. Find the sum and the product of the roots of q(x).

The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$									
	is divisible by $(x-1)$ and $(x-2)$. The sum of its roots is 7, the product of its roots is 0								
					oi its root	s is 7, the	product of	I its roots is	U
(a)		values of	<i>a</i> , <i>b</i> , <i>c</i> and	ld.					
(b	Factoriz	ef(x).							
•••									
•••									
•••				•••••	•••••				
•••				•••••					
•••									
•••									
				•••••					
				•••••					
				•••••	•••••				
				•••••	•••••				
•••									
•••				•••••	•••••				
•••									

34.	Let	α, β be the roots of the quadratic $f(x) = 5x^2 - 2x - 4$							
	Without estimating the roots $lpha,eta$, find								
	(a)	$\alpha + \beta$ and $\alpha\beta$							
		$\alpha^2 + \beta^2$ and $\alpha^3 + \beta^3$							
	(c)	a quadratic with integer coefficients which has roots α^2 , β^2 .							
	(d)	a quadratic with integer coefficients which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$.							
		α β							
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								

Remember: in a cubic function $ax^3 + bx^2 + cx + d$ with roots r_1, r_2, r_3

$$r_1 + r_2 + r_3 = -\frac{b}{a}$$
 $r_1 r_2 r_3 = -\frac{d}{a}$ and $r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{c}{a}$

35. Let α, β, γ be the roots of the cubic function

$$f(x) = x^3 - 5x^2 - 7x + 3$$

Find, without estimating the roots α, β, γ

- (a) $\alpha + \beta + \gamma$, $\alpha\beta\gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$
- (b) $\alpha^2 + \beta^2 + \gamma^2$
- (c) $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$
- (d) a cubic polynomial which has roots $\alpha^2, \beta^2, \gamma^2$
