

Nombre:	Estado:	Nivel	2
			_

Examen Individual

NIVEL II

Instrucciones: El examen consta de dos partes. La parte A consta de 12 problemas con un valor de 5 puntos cada uno. En estos problemas solo se toma en cuenta la respuesta final, que debe ser claramente escrita en el espacio correspondiente a cada problema. La parte B consta de 3 problemas de redacción libre y con un valor de 20 puntos cada uno. En estos problemas es posible acumular puntos parciales. La duracin del examen es de 2 horas.

Parte A

Problema 1 ¿Cuántos números primos dividen a 73² – 31² – 91?

R:

Problema 2 La siguiente figura se formó con dos cuadrados de lado 1 cm, el ABCD y el AB'C'D', de manera que AB' está sobre la diagonal AC. Sea E el punto de intersección de B'C' con CD.

Encuentra el área, en cm² del cuadrilátero AB'ED.

R:

Problema 3 En un baile de la escuela, cada alumno bailó con 3 alumnas y cada alumna bailó con 6 alumnos. Si al baile asistieron 90 personas entre alumnas y alumnos, ¿cuántos alumnos fueron al baile?

R:

Nombre:	Estado:	Nivel 2	
Problema 4 Un rectángulo se divide en tres rectángula figura. Cada uno de los rectángulos más pequeño cur proporción que los lados del rectángulo grande. En cada	mple que sus lados están e a uno de los cuatro rectán	en la misma gulos, ¿cuál	D
es la razón de la longitud del lado más grande entre la	longitud del lado más peq	queño?	R:

Problema 5 Isaac y Alfredo juegan a lanzar dados de la siguiente manera. Isaac lanza un dado y apunta el número que salió en su libreta, luego vuelve a lanzar el dado y apunta el número que le salió a la derecha del número que ya había escrito, formando así un número de 2 dígitos. Luego, Alfredo hace lo mismo que hizo Isaac. ¿Cuál es la probabilidad de que el número de Alfredo sea mayor que el número de Isaac?

R:

Problema 6 Sean ABC un triángulo rectángulo con $\angle ABC = 90^{\circ}$, D un punto que cumple que BDC y ABC son triángulos semejantes, además A y D están en lados opuestos de BC. El punto E sobre CD cumple que los ángulos $\angle CAE$ y $\angle EAB$ son iguales. Si AE es paralelo a BD, ¿cuánto mide (en grados) el ángulo $\angle CAB$?

R:

Problema 7 Si un triángulo equilátero y un hexágono regular tienen el mismo perímetro y el área del hexágono es de 120 cm², ¿cuál es el área, en cm², del triángulo?

R:

Nombre: Estado: Nivel 2	
Problema 8 Sea ABCD un cuadrilátero tal que $AB = 3$ cm, $BC = 4$ cm, $CD = 13$ cm y $AD = 12$ cm. Si $\angle ABC$ es recto, calcula el área, en cm ² , de ABCD.	R:
B C D	
Problema 9 En una escuela hay 8 alumnos que desean formar equipos de tres. ¿Cuántos equipos se pueden formar si se permite que dos equipos tengan a lo más un alumno en común?	R:
Problema 10 En una competencia internacional de matemáticas, el 28% de los concursantes son de Asia, el 10% de Oceanía. Los concursantes de África junto con los de Europa son el 40% del total, además Asia tiene 66 alumnos más que los alumnos de África y entre alumnos de Europa y de Oceanía hay 187 alumnos. ?Cuántos concursantes europeos	D.
participaron? Problema 11 Sea ABCD un rectángulo con diagonal AC, sea Q un punto sobre BC tal que $\angle BAQ = \angle QAD$ y $\angle QAC = 15^{\circ}$. Encuentra la medida en grados del ángulo $\angle BOQ$,	
donde O es el punto medio de AC . Problema 12 Encuentra el mayor entero positivo n , tal que $n^2 + 2018n$ sea un cuadrado entere n	R:
perfecto.	R:

Nombre:	Estado:	Nivel	2

Parte B

Problema 13 Muestra que el siguiente número

$$\frac{4}{3} + \frac{6}{5} + \frac{8}{7} + \dots + \frac{102}{101},$$

no es un número entero.

Nombre:	Estado:		Nivel	2	
---------	---------	--	-------	---	--

Problema 14 En cada una de las 10 regiones en que se ha dividido el círculo de la figura se colocan 3 fichas. Un movimiento consiste en mover una ficha a una región vecina (es decir, a una región que comparte un radio). ¿Es posible que después de 2018 movimientos todas las fichas se encuentren en la misma región? Justifica tu respuesta.

Nombre:	Estado:	Nivel	2	

Problema 15 Sea ABCD un paralelogramo y sean E un punto sobre AB tal que los ángulos $\angle ADE$ y $\angle EDB$ son iguales, F la intersección de DE con BC y G la intersección de AD con CE. Muestra que, $BC^2 = BF \cdot AG$.