

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4724

Core Mathematics 4

MARK SCHEME

Specimen Paper

© OCR 2004

MAXIMUM MARK 72

_		1	T
1	$\frac{x^4 + 1}{x^2 + 1} = x^2 - 1 + \frac{2}{x^2 + 1}$	B1 M1 A1 A1	For correct leading term x^2 in quotient For evidence of correct division process For correct quotient $x^2 - 1$ For correct remainder 2
2	(i) $(1-2x)^{-\frac{1}{2}} = 1 + (-\frac{1}{2})(-2x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2}(-2x)^2 +$		
	$+\frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-2x)^3+\dots$	M1	For 2nd, 3rd or 4th term OK (unsimplified)
	$=1+x+\frac{3}{2}x^2+\frac{5}{2}x^3$	A1	For 1+x correct
		A1	For $+\frac{3}{2}x^2$ correct
		A1	4 For $+\frac{5}{2}x^3$ correct
	(ii) Valid for $ x < \frac{1}{2}$	B1	1 For any correct expression(s)
3	$\int_{0}^{1} x e^{-2x} dx = \left[-\frac{1}{2} x e^{-2x} \right]_{0}^{1} - \int_{0}^{1} -\frac{1}{2} e^{-2x} dx$	M1	For attempt at 'parts' going the correct way
	20 20	A1	For correct terms $-\frac{1}{2}xe^{-2x} - \int -\frac{1}{2}e^{-2x} dx$
	$=\left[-\frac{1}{2}xe^{-2x}-\frac{1}{4}e^{-2x}\right]_0^1$	M1	For consistent attempt at second integration
		M1	For correct use of limits throughout
	$= \frac{1}{4} - \frac{3}{4} e^{-2}$	A1 5	5 For correct (exact) answer in any form
4		B1 B1 B1√	For <i>C</i> correctly located on sketch For <i>D</i> correctly located on sketch For <i>E</i> correctly located wrt <i>O</i> and <i>D</i>
	(ii) $\overrightarrow{AE} = \frac{1}{3}(2\mathbf{a} + \mathbf{b}) - \mathbf{a} = \frac{1}{3}(\mathbf{b} - \mathbf{a})$	M1	For relevant subtraction involving \overrightarrow{OE}
	W 451 H. 45	A1	For correct expression for $(\pm)\overline{AE}$ or \overline{EB}
	Hence AE is parallel to AB i.e. E lies on the line joining A to B	A1 A1 7	For correct recognition of parallel property For complete proof of required result
5	(i) $4x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$	B1	For correct terms $x \frac{dy}{dx} + y$
	ar ar	B1	For correct term $2y \frac{dy}{dx}$
	Hence $\frac{dy}{dx} = -\frac{4x + y}{x + 2y}$	M1	For solving for $\frac{dy}{dx}$
	$\alpha x + 2y$	A1	4 For any correct form of expression
	(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow y = -4x$	M1	For stating or using their $\frac{dy}{dx} = 0$
	Hence $2x^2 + (-4x^2) + (-4x)^2 = 14$	M1	For solving simultaneously with curve equn
	i.e. $x^2 = 1$	A1	For correct value of x^2 (or y^2)
	So the two points are $(1, -4)$ and $(-1, 4)$	A1 8	For both correct points identified
		1 -	_

			1		
6	(i)	$\theta = 0$ at the origin	B1		For the correct value
		A is $(0, a\pi)$	B1		For the correct y-coordinate at A
		<i>B</i> is (<i>a</i> , 0)	B1	3	For the correct <i>x</i> -coordinate at <i>B</i>
	(ii)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a\cos\theta$	В1		For correct differentiation of <i>x</i>
		$\frac{\mathrm{d}y}{\mathrm{d}\theta} = a(\cos\theta - \theta\sin\theta)$	M1		For differentiating y using product rule
		Hence $\frac{dy}{dx} = \frac{\cos\theta - \theta\sin\theta}{\cos\theta} = 1 - \theta\tan\theta$	M1		For use of $\frac{dy}{dx} = \frac{dy}{d\theta} / \frac{dx}{d\theta}$
			A1		For given result correctly obtained
		Gradient of tangent at the origin is 1	M1		For using $\theta = 0$
		Hence equation is $y = x$	A1	0	For correct equation
				9	
6	(i)	$L_1: \mathbf{r} = 3\mathbf{i} + 6\mathbf{j} + \mathbf{k} + s(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$	M1		For correct RHS structure for either line
		$L_2: \mathbf{r} = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	A1	2	For both lines correct
	(ii)	3+2s=3+t, $6+3s=-1-2t$, $1-s=4+t$	M1		For at least 2 equations with two parameters
		First pair of equations give $s = -1, t = -2$	M1		For solving any relevant pair of equations
			A1		For both parameters correct
		Third equation checks: $1+1=4-2$	A1	_	For explicit check in unused equation
		Point of intersection is (1, 3, 2)	A1	5	For correct coordinates
	(iii)	$2 \times 1 + 3 \times (-2) + (-1) \times 1 = (\sqrt{14})(\sqrt{6})\cos\theta$	B1		For scalar product of correct direction vectors
			B1		For correct magnitudes $\sqrt{14}$ and $\sqrt{6}$
			M1		For correct process for $\cos \theta$ with any pair
		H		4	of vectors relevant to these lines
		Hence acute angle is 56.9°	A1	4	For correct acute angle
				11	
8	(i)	$I = \int \frac{1}{u^2 (1+u)^2} \times 2u du = \int \frac{2}{u (1+u)^2} du$	M1		For any attempt to find $\frac{dx}{du}$ or $\frac{du}{dx}$
			A1		For ' $dx = 2u du$ ' or equivalent correctly used
			A1	3	For showing the given result correctly
	(ii)	$2 \equiv A(1+u)^2 + Bu(1+u) + Cu$	M1		For correct identity stated
		A = 2	B1		For correct value stated
		C = -2	B1		For correct value stated
		0 = A + B (e.g.)	A1	_	For any correct equation involving B
		B = -2	A1	5	For correct value
	(iii)	$2\ln u - 2\ln(1+u) + \frac{2}{1+u}$	B1√		For $A \ln u + B \ln(1+u)$ with their values
		2	B1√		For $-C(1+u)^{-1}$ with their value
		Hence $I = \ln x - 2\ln(1 + \sqrt{x}) + \frac{2}{1 + \sqrt{x}} + c$	M1		For substituting back
		1 1 V X	A1	4	For completely correct answer (excluding c)
				12	

4724 Specimen Paper [Turn over

		1	I
9	$\frac{\mathrm{d}x}{\mathrm{d}t} = -k\sqrt{x}$	M1	For use of derivative for rate of change
		A1	For correct equation (neg sign optional here)
	$x = 100$ and $\frac{\mathrm{d}x}{\mathrm{d}t} = -1 \Longrightarrow k = 0.1$	M1	For use of data and their DE to find k
	Hence equation is $\frac{dx}{dt} = -0.1\sqrt{x}$	A1	For any form of correct DE
	$\int x^{-\frac{1}{2}} dx = -0.1 \int dt \Rightarrow 2x^{\frac{1}{2}} = -0.1t + c$	M1	For separation and integration of both sides
		A1 A1√ B1	For $2x^{\frac{1}{2}}$ correct For $(\pm)kt$ correct (the numerical evaluation of k may be delayed until after the DE is solved) For one arbitrary constant included (or equivalent statement of both pairs of limits)
	$x = 200, t = 0 \Rightarrow c = 2\sqrt{200}$	M1	For evaluation of <i>c</i>
	So when $x = 100$, $2\sqrt{100} = -0.1t + 2\sqrt{200}$ i.e. $t = 82.8$	M1 A1 11	For evaluation of <i>t</i> For correct value 82.8 (minutes)
		11	