

Arquitectura de alta disponibilidad

ONTAP Select

NetApp February 09, 2024

This PDF was generated from https://docs.netapp.com/es-es/ontap-select-9101/concept_ha_config.html on February 09, 2024. Always check docs.netapp.com for the latest.

Tabla de contenidos

Arquitectura de alta disponibilidad	
Configuraciones de alta disponibilidad	
HA RSM y agregados reflejados	
HA añadido más detalles	

Arquitectura de alta disponibilidad

Configuraciones de alta disponibilidad

Descubra opciones de alta disponibilidad para seleccionar la mejor configuración de alta disponibilidad para su entorno.

Aunque los clientes están empezando a mover las cargas de trabajo de las aplicaciones de almacenamiento de clase empresarial a soluciones basadas en software que se ejecutan en hardware genérico, las expectativas y necesidades en cuanto a resiliencia y tolerancia a fallos no han cambiado. Una solución de alta disponibilidad que proporciona un objetivo de punto de recuperación (RPO) cero protege al cliente de la pérdida de datos debido a un fallo de cualquier componente de la pila de la infraestructura.

Una gran parte del mercado de SDS está basado en la noción de almacenamiento sin elementos compartidos, con la replicación de software que proporciona resiliencia de datos al almacenar varias copias de datos de usuario en diferentes silos de almacenamiento. ONTAP Select se basa en esta premisa mediante las funciones de replicación síncrona (RAID SyncMirror) que proporciona ONTAP para almacenar una copia adicional de los datos de usuario en el clúster. Esto ocurre en el contexto de un par de alta disponibilidad. Cada par de alta disponibilidad almacena dos copias de los datos de usuario: Una en el almacenamiento proporcionado por el nodo local y otra en el almacenamiento proporcionado por el partner de alta disponibilidad. Dentro de un clúster de ONTAP Select, la alta disponibilidad y la replicación síncrona están Unidas entre sí y la funcionalidad de los dos no se puede desacoplar ni utilizar de forma independiente. Por lo tanto, las funciones de replicación sincrónica solo están disponibles en los nodos de varios nodos.

En un clúster ONTAP Select, la funcionalidad de replicación síncrona es una función de una implementación de alta disponibilidad, no de los motores de replicación asíncronos de SnapMirror o SnapVault. La replicación síncrona no se puede utilizar independientemente de alta disponibilidad.

Existen dos modelos de puesta en marcha de alta disponibilidad de ONTAP Select: Los clústeres multinodo (cuatro, seis u ocho nodos) y los clústeres de dos nodos. La característica más destacada de un clúster ONTAP Select de dos nodos es el uso de un servicio de mediador externo para resolver situaciones de cerebro dividido. La máquina virtual de puesta en marcha de ONTAP actúa como mediador predeterminado para todas las parejas de alta disponibilidad de dos nodos que configura.

Las dos arquitecturas se representan en las siguientes figuras.

Cluster ONTAP Select de dos nodos con mediador remoto y utilizando almacenamiento conectado local

El clúster ONTAP Select de dos nodos está compuesto por un par de alta disponibilidad y un mediador. Dentro de la pareja de alta disponibilidad, los agregados de datos de cada nodo de clúster se duplican de forma síncrona y, en caso de una conmutación por error, no se perderán datos.

Clúster ONTAP Select de cuatro nodos que utiliza almacenamiento con conexión local

- El clúster ONTAP Select de cuatro nodos se compone de dos parejas de alta disponibilidad. Los clústeres
 de seis y ocho nodos están compuestos por tres y cuatro parejas de alta disponibilidad, respectivamente.
 Dentro de cada pareja de alta disponibilidad, los agregados de datos de cada nodo de clúster se duplican
 de forma síncrona y, en caso de una conmutación por error, no hay pérdida de datos.
- Solo puede haber una instancia de ONTAP Select en un servidor físico cuando utiliza almacenamiento DAS. ONTAP Select requiere acceso no compartido a la controladora RAID local del sistema y está

diseñada para gestionar los discos de conexión local, lo cual sería imposible sin conectividad física al sistema de almacenamiento.

Alta disponibilidad de dos nodos frente a la alta disponibilidad de varios nodos

A diferencia de las cabinas FAS, los nodos ONTAP Select de un par de alta disponibilidad se comunican de forma exclusiva a través de la red IP. Esto significa que la red IP es un único punto de error (SPOF), y la protección contra particiones de red y escenarios de cerebro dividido se convierte en un aspecto importante del diseño. El clúster de varios nodos puede admitir fallos de un solo nodo, porque los tres o más nodos supervivientes pueden establecer el quórum del clúster. El clúster de dos nodos confía en el servicio mediador alojado en la puesta en marcha de la máquina virtual de ONTAP para obtener el mismo resultado.

El latido del tráfico de red entre los nodos de ONTAP Select y el servicio mediador de puesta en marcha de ONTAP es mínimo y flexible para que la máquina virtual puesta en marcha de ONTAP se aloje en un centro de datos diferente al clúster de dos nodos de ONTAP Select.

La máquina virtual de puesta en marcha de ONTAP se convierte en una parte integral de un clúster de dos nodos al servir como mediador de ese clúster. Si el servicio mediador no está disponible, el clúster de dos nodos sigue proporcionando datos, pero las funcionalidades de recuperación tras fallos del almacenamiento del clúster de ONTAP Select quedan deshabilitadas. Por lo tanto, el servicio de mediador de puesta en marcha de ONTAP debe mantener una comunicación constante con cada nodo ONTAP Select del par de alta disponibilidad. Se requiere un ancho de banda mínimo de 5 Mbps y una latencia máxima de ida y vuelta (RTT) de 125 ms para permitir el funcionamiento correcto del quórum del clúster.

Si la máquina virtual de implementación de ONTAP que actúa como mediador está temporalmente o potencialmente no disponible de forma permanente, se puede utilizar una máquina virtual de implementación de ONTAP secundaria para restaurar el quórum de clúster de dos nodos. De este modo se genera una configuración en la que el nuevo equipo virtual de implementación de ONTAP no puede gestionar los nodos ONTAP Select, pero participa correctamente en el algoritmo de quórum de clúster. La comunicación entre los nodos ONTAP Select y la máquina virtual de implementación de ONTAP se realiza mediante el protocolo iSCSI mediante IPv4. La dirección IP de gestión del nodo ONTAP Select es el iniciador y la dirección IP de la máquina virtual de implementación de ONTAP es el destino. Por lo tanto, no es posible admitir direcciones IPv6 para las direcciones IP de gestión de nodos cuando se crea un clúster de dos nodos. Los discos de buzón alojados de implementación de ONTAP se crean y enmascaran automáticamente en las direcciones IP de gestión de nodos de ONTAP Select correspondientes en el momento de la creación de clústeres de dos nodos. Toda la configuración se realiza automáticamente durante la instalación y no es necesario realizar ninguna otra acción administrativa. La instancia de puesta en marcha de ONTAP que crea el clúster es el mediador predeterminado para ese clúster.

Se requiere una acción administrativa si se debe cambiar la ubicación del mediador original. Es posible recuperar un quórum de clúster incluso si se pierde la VM de despliegue de ONTAP original. Sin embargo, NetApp recomienda realizar un backup de la base de datos de implementación de ONTAP después de que se cree una instancia de cada clúster de dos nodos.

Alta disponibilidad de dos nodos frente a la gran disponibilidad de dos nodos (SDS de MetroCluster)

Es posible estirar un clúster de alta disponibilidad activo/activo de dos nodos en grandes distancias y potencialmente colocar cada nodo en un centro de datos diferente. La única distinción entre un clúster de dos nodos y un clúster extendido de dos nodos (también conocido como SDS de MetroCluster) es la distancia de conectividad de red entre nodos.

El clúster de dos nodos está definido como un clúster para el cual ambos nodos están ubicados en el mismo

centro de datos a una distancia de 300 m. En general, ambos nodos tienen vínculos superiores al mismo switch de red o conjunto de switches de red de enlace entre switches (ISL).

El SDS de MetroCluster de dos nodos se define como un clúster para el cual los nodos están físicamente separados (habitaciones diferentes, edificios y centros de datos diferentes) por más de 300 m. Además, las conexiones de enlace ascendente de cada nodo están conectadas a conmutadores de red independientes. El SDS de MetroCluster no requiere hardware dedicado. Sin embargo, el entorno debe ajustarse a los requisitos de latencia (un máximo de 5 ms en RTT y 5 ms en inestabilidad, para un total de 10 ms) y distancia física (un máximo de 10 km).

SDS de MetroCluster es una función excepcional y requiere una licencia Premium o una licencia Premium XL. Con la licencia Premium se puede crear equipos virtuales pequeños y medianos, así como discos HDD y SSD. La licencia Premium XL también permite la creación de unidades NVMe.

El almacenamiento SDS de MetroCluster es compatible tanto con el almacenamiento conectado local (DAS) como con el almacenamiento compartido (vNAS). Tenga en cuenta que las configuraciones de vNAS suelen tener una latencia innata más alta debido a la red entre la máquina virtual de ONTAP Select y el almacenamiento compartido. Las configuraciones de SDS de MetroCluster deben proporcionar un máximo de 10 ms de latencia entre los nodos, incluida la latencia del almacenamiento compartido. En otras palabras, no es adecuado medir la latencia entre los equipos virtuales Select, ya que la latencia del almacenamiento compartido no es mínima para estas configuraciones.

HA RSM y agregados reflejados

Evite la pérdida de datos mediante RAID SyncMirror (RSM), agregados reflejados y la ruta de escritura.

Replicación síncrona

El modelo de alta disponibilidad de ONTAP se basa en el concepto de partners de alta disponibilidad. ONTAP Select amplía esta arquitectura en el mundo de los servidores de consumo no compartidos mediante la funcionalidad RAID SyncMirror (RSM) presente en ONTAP para replicar bloques de datos entre los nodos del clúster, proporcionando dos copias de datos de usuario distribuidos por un par de alta disponibilidad.

Un clúster de dos nodos con un mediador puede abarcar dos centros de datos. Para obtener más información, consulte la sección "Prácticas recomendadas de alta disponibilidad (SDS de MetroCluster) extendidas de dos nodos".

Agregados reflejados

Un clúster de ONTAP Select se compone de entre dos y ocho nodos. Cada pareja de alta disponibilidad contiene dos copias de los datos de usuario, que se replican de forma síncrona en los nodos a través de una red IP. Este mirroring es transparente para el usuario y es una propiedad del agregado de datos, se configura automáticamente durante el proceso de creación del agregado de datos.

Todos los agregados de un clúster de ONTAP Select deben duplicarse para ofrecer disponibilidad de los datos en caso de fallo en un nodo y evitar así un SPOF en caso de fallo de hardware. Los agregados de un clúster de ONTAP Select se crean a partir de los discos virtuales proporcionados desde cada nodo de la pareja de alta disponibilidad y utilizan los siguientes discos:

Un conjunto local de discos (contribuido por el nodo ONTAP Select actual)

• Un conjunto de discos reflejado (contribuido por el partner de alta disponibilidad del nodo actual)

Los discos locales y de mirroring utilizados para crear un agregado reflejado deben tener el mismo tamaño. Estos agregados se denominan plex 0 y complejo 1 (para indicar los pares de espejo local y remoto, respectivamente). Los números plex reales pueden ser diferentes en su instalación.

Este método es fundamentalmente distinto al modo en que funcionan los clústeres estándar de ONTAP. Esto se aplica a todos los discos raíz y de datos dentro del clúster ONTAP Select. El agregado contiene copias de datos locales y de mirroring. Por tanto, un agregado que contiene N discos virtuales ofrece un almacenamiento único equivalente a 2 discos de N/2, ya que la segunda copia de datos reside en sus propios discos únicos.

En la siguiente figura se muestra una pareja de alta disponibilidad dentro de un clúster ONTAP Select de cuatro nodos. Dentro de este clúster se encuentra un único agregado (prueba) que utiliza almacenamiento de los dos partners de alta disponibilidad. Este agregado de datos está compuesto de dos conjuntos de discos virtuales: Un conjunto local, contribuido por el nodo de clúster propietario de ONTAP Select (Plex 0) y un conjunto remoto, contribuido por el partner de conmutación por error (Plex 1).

Plex 0 es el cubo que contiene todos los discos locales. Plex 1 es el bloque que mantiene los discos de reflejo, o discos responsables de almacenar una segunda copia replicada de los datos de usuario. El nodo que posee el agregado contribuye a los discos de Plex 0 y el socio de alta disponibilidad de dicho nodo contribuye a los discos de Plex 1.

En la siguiente figura, hay un agregado reflejado con dos discos. El contenido de este agregado se refleja en nuestros dos nodos de clúster, con el disco local NET-1.1 colocado en el bloque Plex 0 y el disco remoto NET-2.1 colocado en el bloque Plex 1. En este ejemplo, la prueba de agregado es propiedad del nodo de clúster a la izquierda y utiliza el disco local NET-1.1 y el disco de réplica del asociado de alta disponibilidad NET-2.1.

Agregado reflejado ONTAP Select

Cuando se implementa un clúster de ONTAP Select, todos los discos virtuales presentes en el sistema se asignan automáticamente al complejo correcto, sin necesidad de realizar un paso adicional del usuario respecto a la asignación de discos. Esto evita la asignación accidental de discos a un complejo incorrecto y proporciona una configuración óptima del disco del espejo.

Ruta de escritura

El mirroring síncrono de bloques de datos entre nodos de clúster y el requisito de no pérdida de datos con un fallo del sistema tienen un impacto significativo en la ruta que tiene una escritura entrante mientras se propaga a través de un clúster de ONTAP Select. Este proceso consta de dos fases:

- Reconocimiento
- Separación

Las escrituras en un volumen de destino se producen a través de un LIF de datos y se aplican a la partición NVRAM virtualizada, presente en un disco de sistema del nodo ONTAP Select, antes de que se vuelvan a reconocer al cliente. En una configuración de alta disponibilidad, se produce un paso adicional, ya que estas escrituras de NVRAM se duplican inmediatamente en el asociado de alta disponibilidad del propietario del volumen de destino antes de ser aceptadas. Este proceso garantiza la consistencia del sistema de archivos en el nodo del partner de alta disponibilidad, si se produce un error de hardware en el nodo original.

Una vez que la escritura se ha realizado en NVRAM, ONTAP mueve periódicamente el contenido de esta partición al disco virtual correspondiente, un proceso denominado «separación». Este proceso solo tiene lugar una vez, en el nodo de clúster al que pertenece el volumen de destino y no ocurre en el partner de alta disponibilidad.

En la figura siguiente se muestra la ruta de escritura de una solicitud de escritura entrante en un nodo ONTAP Select.

Flujo de trabajo de la ruta de escritura ONTAP Select

La confirmación de escritura entrante incluye los siguientes pasos:

- Las escrituras entran en el sistema a través de una interfaz lógica propiedad del nodo ONTAP Select A.
- Las escrituras se realizan en la NVRAM del nodo A y se reflejan en el partner de alta disponibilidad, nodo B.
- Después de que existe la solicitud de l/o en los dos nodos de alta disponibilidad, la solicitud se vuelve a confirmar al cliente.

La separación de ONTAP Select de NVRAM al agregado de datos (ONTAP CP) incluye los siguientes pasos:

- Las escrituras se separan del NVRAM virtual en el agregado de datos virtuales.
- El motor del espejo replica de forma síncrona los bloques a ambos complejos.

HA añadido más detalles

Corazón de disco DE ALTA DISPONIBILIDAD, buzón de correo de alta disponibilidad, corazón de alta disponibilidad, conmutación por error de alta disponibilidad y trabajo de restauración para mejorar la protección de datos.

Latido del disco

A pesar de que la arquitectura de alta disponibilidad de ONTAP Select aprovecha muchas de las rutas de código utilizadas por los arrays FAS tradicionales, existen algunas excepciones. Una de estas excepciones es

la implementación de la búsqueda de corazón basada en disco, un método de comunicación no basado en red utilizado por los nodos de clúster para evitar que el aislamiento de red cause un comportamiento de cerebro dividido. Una situación de cerebro dividido es el resultado de la partición de los clústeres, normalmente causada por fallos de red, en los que cada lado cree que la otra está inactiva e intenta hacerse cargo de los recursos del clúster.

Las implementaciones de alta disponibilidad para empresas deben gestionar este tipo de escenario sin problemas. ONTAP lo hace a través de un método personalizado basado en disco de latido. Esta es la tarea del buzón de alta disponibilidad, una ubicación en el almacenamiento físico que utilizan los nodos del clúster para pasar mensajes de latido. Esto ayuda al clúster a determinar la conectividad y, por lo tanto, a definir el quórum en caso de una conmutación por error.

En las cabinas FAS, que usan una arquitectura de alta disponibilidad de almacenamiento compartido, ONTAP resuelve los problemas de cerebro dividido de las siguientes maneras:

- · Reservas persistentes de SCSI
- Metadatos de alta disponibilidad persistente
- Estado DE ALTA DISPONIBILIDAD enviado a través de la interconexión de alta disponibilidad

Sin embargo, con la arquitectura nada compartida de un clúster de ONTAP Select, un nodo solo puede ver su propio almacenamiento local y no el del partner de alta disponibilidad. Por lo tanto, cuando las particiones de red aíslan cada lado de un par de alta disponibilidad, los métodos anteriores para determinar el quórum del clúster y el comportamiento de la conmutación por error no están disponibles.

Aunque no se puede utilizar el método existente de detección y evitación del cerebro dividido, todavía se requiere un método de mediación, que se ajuste a las limitaciones de un entorno sin compartir. ONTAP Select amplía aún más la infraestructura de buzones existente, lo que le permite actuar como un método de mediación en caso de partición en la red. Debido a que el almacenamiento compartido no está disponible, la mediación se logra a través del acceso a los discos de buzón a través de NAS. Estos discos se distribuyen por el clúster, incluido el mediador en un clúster de dos nodos, utilizando el protocolo iSCSI. Por lo tanto, las decisiones inteligentes sobre conmutación por error pueden tomar un nodo de clústeres en función del acceso a estos discos. Si un nodo puede acceder a los discos de buzón de otros nodos fuera de su compañero de alta disponibilidad, probablemente estará activo y en buen estado.

La arquitectura de buzones y el método de latido basado en disco para resolver problemas de quórum de clúster y de cerebro dividido son las razones por las que la variante multinodo de ONTAP Select requiere cuatro nodos independientes o un mediador para un clúster de dos nodos.

Contabilización DE buzón HA

La arquitectura de buzones de correo de alta disponibilidad utiliza un modelo de post de mensaje. A intervalos repetidos, los nodos del clúster publican mensajes a todos los demás discos del buzón en el clúster, incluido el mediador, indicando que el nodo está activo y en ejecución. Dentro de un clúster en buen estado en cualquier momento, un único disco de buzón de un nodo de clúster tiene mensajes publicados desde todos los demás nodos del clúster.

Conectado a cada nodo de clúster Select es un disco virtual que se utiliza específicamente para el acceso compartido de los buzones. Este disco se conoce como el disco del buzón de correo del mediador, porque su función principal es actuar como método de mediación en cluster en caso de fallos de nodo o partición de red. Este disco de buzón contiene particiones para cada nodo de clúster y es montado a través de una red iSCSI por otros nodos de clúster Select. Periódicamente, estos nodos publican Estados de mantenimiento en la partición adecuada del disco del buzón. El uso de discos de buzón accesibles para la red repartidos por todo

el clúster permite inferir el estado de los nodos a través de una matriz de accesibilidad. Por ejemplo, los nodos de clúster A y B pueden publicar en el buzón del nodo D del clúster, pero no en el buzón del nodo C. Además, el nodo D del clúster no puede publicar el buzón del nodo C, por lo que es probable que el nodo C esté inactivo o esté aislado de la red y que deba hacerse cargo.

Ha latido del corazón

Al igual que sucede con las plataformas FAS de NetApp, ONTAP Select envía periódicamente mensajes de latido de alta disponibilidad a través de la interconexión de alta disponibilidad. En el clúster ONTAP Select, se realiza a través de una conexión de red TCP/IP que existe entre los partners de alta disponibilidad. Además, los mensajes latido de disco se transmiten a todos los discos de buzón de alta disponibilidad, incluido el mediador de discos de buzón. Estos mensajes se transmiten cada pocos segundos y se leen periódicamente. La frecuencia con la que se envían y se reciben estos mensajes permite que el clúster de ONTAP Select detecte eventos de fallo de alta disponibilidad en un plazo aproximado de 15 segundos, es decir, la misma ventana disponible en las plataformas FAS. Cuando ya no se leen mensajes de latido, se activa un evento de conmutación por error.

La figura siguiente muestra el proceso de envío y recepción de mensajes de latido a través de los discos de interconexión y mediador de alta disponibilidad desde la perspectiva de un único nodo de clúster ONTAP Select, nodo C.

Los latidos de red se envían a través de la interconexión de alta disponibilidad al partner de alta disponibilidad, nodo D, mientras que los latidos del disco usan discos de buzón en todos los nodos del clúster, A, B, C y D.

Latidos de alta disponibilidad en un cluster de cuatro nodos: Estado estable

Conmutación al nodo primario y al nodo primario DE HA

Durante una operación de recuperación tras fallos, el nodo que aún continúa activo asume la responsabilidad de servir datos para su nodo del mismo nivel mediante la copia local de los datos de su partner de alta disponibilidad. Las operaciones de l/o del cliente pueden continuar sin interrupciones, pero los cambios en estos datos se deben replicar de nuevo antes de que se pueda producir la devolución. Tenga en cuenta que ONTAP Select no admite un retorno de la memoria forzado porque se pierden los cambios almacenados en el nodo superviviente.

La operación de repetición de sincronización se activa automáticamente cuando el nodo reiniciado se vuelve a unir al clúster. El tiempo necesario para la sincronización posterior depende de varios factores. Estos factores incluyen el número de cambios que se deben replicar, la latencia de red entre los nodos y la velocidad de los subsistemas de disco en cada nodo. Es posible que el tiempo necesario para la sincronización posterior supere la ventana de autoretorno de 10 minutos. En este caso, se necesita una devolución manual después de la sincronización. El progreso de la sincronización se puede supervisar con el siguiente comando:

storage aggregate status -r -aggregate <aggregate name>

Información de copyright

Copyright © 2024 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico, electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO, INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO, RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE. UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR 2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible, no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales de sus respectivos propietarios.