Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"
[LCBE] Langlands correspondence and Bezrukavnikov's equivalence
[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)
https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables:

K-(-)	pt	B TB	3×B T*(8×B)	Sŧ
G	Z[x*(T)]*	$\mathbb{Z}[x^*(T)]$	$\mathbb{Z}[x^*(\tau)] \otimes_{\mathbb{Z}[x^*(\tau)]^w} \mathbb{Z}[x^*(\tau)]$	$Z[W_{ext}]$
B	Z[x*(τ)]	$\mathbb{Z}[X^*(T)] \otimes_{\mathbb{Z}[X^*(T)]}^{\mathbf{w}} \mathbb{Z}[X^*(T)]$	$\mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]^{w}} \mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]} \mathbb{Z}[\chi^{\tau}(\tau)]$	
Id	7/			Z[x*(1)]/_~Z[W]
$G \times \mathbb{C}^*$	$\mathbb{Z}[x^*(\tau)]^{\mathbf{w}}[t$	±1]		\mathcal{H}_{ext}
B× ¢ *	Z/[x*(t)][t*	"]		
C*	Z [t±]			

We use the shorthand.

K-(-)	pt	B T*B	3×B T*(8×B)	St
G	R(T)W	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	$R(T) \otimes_{R(G)} R(T)$	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RU/1/2 Z[W]
G×C*	R(G)[t ^{±1}]			Hext
β× ¢ *	R(T)[t ^{±1}]			
C*	Z[t±]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathbb{C}) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$K^{G \times \mathbb{C}}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL ₂	Z(r)	Z [¿ ^{±'}]		$Z[W_{ext}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	$\mathbb{Z}[y^{\pm 1}]$	Z[yt',z]/(z-y)(z-y')		
Id	72	7/[2]/(2-1)2	Z[2,, 2,]/((2,-1)2,(2,-1)2)	$R(T)/_{I_{T}} \times Z[W_{f}] = \bigoplus_{w \in W} Z[z_{w}^{\pm 1}]/_{(z_{w}-1)^{2}}$
Sr xCx	Z∕[×,t [±]]			Hext = D Z[Zw ,ti]
B× C *	Z/[yt',tt]			
C*	Z(t±¹]			

This is our final task. Most of the notations are still not fixed.

K-(-)	pt	Fd Repd(Q)	Fd × Fd'	≲4 = 114. Zª.ª.
Gd	R(Td)Wa	R(T _d)	R(Ti)@ _{R(Ga)} R(Ti)	
Bu	R(T _d)	$R(T_d)\otimes_{R(C_d)}R(T_d)$	$R(T_{i})\otimes_{R(C_{kl})}R(T_{kl})\otimes_{R(C_{kl})}R(T_{kl})$	
Id	72			
C4×C*	R(Gd)[t ^{±1}]			
B _a ×¢*	R(T_i)[t*1]			
C*	Z'[t [±]]			

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F). I)
 - How does H(G(F), I) reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref. [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/0611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Repk}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot .5$
- understand $\mathcal{H}_{\mathsf{IP}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathsf{sl}}_{\mathsf{L}})$

[Lec 2-3]

$$\mathcal{H}_{p'} \cong \mathcal{U}_{\nu}(\widehat{\mathfrak{sl}},)$$

[Lec 4]

$$\mathcal{H}_{\text{Tor}(P')} \cong \bigotimes_{x \in P'} \mathcal{H}_{\text{Tor} x}$$
- define (Quantum) Kac-Moody/loop algs

[Appendix 4]

- Why is that

graded

 $K_{\circ}(Rep^{\overline{a}}(R)) = U_{9}(n(Q))$

$$R = \bigoplus_{\underline{a}} H.^{G \times G}(Z_{\underline{a}})$$
and what is
$$K_{o}\left(\operatorname{Rep}^{Z}\left(\bigoplus_{\underline{a}} K_{o}^{G \times G^{*}}(Z_{\underline{a}})\right)\right)?$$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^W \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^W[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{C}) = \mathbb{Z}[X^*(T)]^W[t^{\frac{1}{2}}]$$

$$R(G(F), \widehat{G}(F), \widehat{I})$$
It's claimed by my school mate that
$$R(G(F), \widehat{G}(F), \widehat{I})$$

$$R(G(F), \widehat{I})$$

$$R(G(F$$

Now, about Steinberg varieties. 6 Draw a picture, indicating the shape/generalization of the following spaces. (e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$) G, B,T B, T*B, St g, g, gs, gs, R, N, N, h, n gh, Oh, Mw 7. Try to understand what Kazhdan - Lusztig polynomials are [KL2], and - Compute the transformation matrix between [[Tw], weWf] and [[Ab], weWf]? - understand what standard /crystal basis is - understand the relationship between KL poly and crystal basis - see if it is related to two basis in Rep (G) (irr reps & multiplicative basis) 8 Try to understand the module part, i.e., - numbers of components of the Springer fiber
- how does Korp(St) act on Korp (Springer fiber) also act on Korp (Repola) - does that occupy "all rep" of Korp (St) 9 Ways of finding multiplication structure 1 By direct computation (with techniques) double coset calculus Hecke algebra 2 By formulas as alg-isos KG (98) induction formula 3 By geometrical computation cup product? de Rham calculus cohomology intersection theory Chow group 4 By deformation (indirect) H^ω_c(St) 10. Different views on the double coset $B \setminus G/B = (*/B) \times_{*/G} (*/B)$ - as a set - as flag variety quotient B-action

- as a stack

- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), Hsph, (Haff)	1	week
Applying for tutorials, extend the residence permit, preparation for TOEFL exam, Klein AG	2	weeks
Summer school on Langlands & ICM watch (part)	1	week
In total	11	weeks

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Oct.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - · some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.