Conjuntos parcialmente ordenados

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

18 de septiembre de 2018

Conjuntos parcialmente ordenados

Una relación \leq en un conjunto A es un **orden parcial** (o simplemente un **orden**) si es

- reflexiva: $\forall a, a \leq a$,
- ▶ transitiva: $\forall a, b, c, (a \le b \land b \le c \implies a \le c)$,
- ▶ antisimétrica: $\forall a, b, (a \le b \land b \le a \implies a = b)$.

Se dice que (A, \leq) es un **conjunto parcialmente ordenado** o **poset**. La noción de orden parcial es mucho más intuitiva que la noción de preorden (de hecho es un caso particular, que no admite ciclos).

Ejemplos importantes

- \blacktriangleright (\mathbb{R}, \leq), (\mathbb{Q}, \leq), (\mathbb{Z}, \leq), (\mathbb{N}, \leq), . . . son posets.
- ▶ Si X es un conjunto, $(\mathcal{P}(X), \subset)$ es un poset.
- $ightharpoonup (\mathbb{Z}, |)$ no es un poset.
- $ightharpoonup (\mathbb{N}_0, |)$ sí es un poset.
- ▶ Si (A, \leq) , (B, \leq) son dos posets (ATENCIÓN: usamos el mismo símbolo \leq para denotar dos relaciones distintas) hay dos formas naturales de definir un orden parcial en el producto cartesiano $A \times B$.
 - ▶ Orden producto $(A \times B, \leq_{prod})$

$$(a,b) \leq_{\mathsf{prod}} (a',b') \iff (a \leq a' \land b \leq b').$$

▶ Orden lexicográfico $(A \times B, \leq_{lex})$

$$(a,b) \leq_{\mathsf{lex}} (a',b') \iff (a \leq b \lor (a = a' \land b \leq b'))$$

Orden total

Es un orden parcial tal que la relación es total:

$$\forall a, b, (a \leq b \lor b \leq a).$$

Ejemplo

Si (A, \leq) y (B, \leq) tienen órdenes totales, entonces

- \blacktriangleright $(A \times B, \leq_{\mathsf{lex}})$ es un orden total.
- ► $(A \times B, \leq_{prod})$ no es un orden total: por ejemplo $(1,2) \not\leq_{prod} (2,1)$ y $(2,1) \not\leq_{prod} (1,2)$

Diferencias entre preorden y orden parcial

En un poset

- Máximos y mínimos, si existen, son únicos
- ▶ Si a es un elemento maximal y $a \le x$, entonces a = x

1 máximo (poset)

Ejemplo/Ejercicio

¿Cómo obtener un poset a partir de un conjunto preordenado?

- ▶ Dato: (A, \leq) conjunto preordenado
- ▶ Definimos una relación de equivalencia en A:

$$a \sim b \iff (a \leq b \land b \leq a)$$

(identificamos ciclos en el grafo del preorden, verifica que \sim es un relación de equivalencia)

► El orden "pasa al cociente": definimos un orden parcial en $(A/\sim, \leq)$ por

$$\bar{a} \leq \bar{b} \iff a \leq b$$

- ▶ Buena definición: $a \le b, a \sim a', b \sim b' \implies a' \le b'$
- ▶ Reflexiva ✓, transitiva ✓, ¿antisimétrica?
- $ightharpoonup \pi: A o A/\sim$ es morfismo de orden (monótona creciente)

Aplicamos la construcción anterior a algunos ejemplos de preórdenes que no son posets.

Ejemplo

- **▶** Dato: (ℤ, |).
- ▶ $(\mathbb{Z}/\sim, |) \simeq (\mathbb{N}_0, |)$ (existe una biyección que preserva el orden).

Ejemplo

- ▶ Dato: un conjunto X con una relación de equivalencia ~.
- \blacktriangleright (X, \sim) es un preorden (no es un poset, en general).
- \blacktriangleright $(X/\sim, \sim) = (X/\sim, =)$:

$$\bar{x} \sim \bar{y} \iff \bar{x} = \bar{y}$$

el orden parcial inducido es la igualdad.

Cadenas y anticadenas

Sea (A, \leq) un poset y $X \subset A$ un subconjunto.

- \blacktriangleright (X, \leq) es una cadena si el orden es total.
 - ▶ Ejemplo: (\mathbb{R}, \leq) .
- \blacktriangleright (X, \leq) es una **anticadena** si

$$\forall x, y \in X, (x \leq y \implies x = y).$$

ightharpoonup Ejemplo: $(\mathbb{R},=)$

Diagramas de Hasse

- Se usan para graficar posets finitos.
- ▶ Orden estricto: $a < b \iff (a \le b \land a \ne b)$.
 - ► *a* se dibuja debajo de *b*.
 - Se dibuja una línea entre a y b si $\nexists c$, a < c < b (no hace falta poner una flecha, pues ya sabemos que los elementos de arriba son más grandes que los de abajo).

Ejemplo $(\mathcal{P}(\{x,y,z\}),\subset)$

Ejemplo $(\{0, 1, 2, \dots, 10\}, |)$

- ▶ 1ra fila: máximo(s)
- ▶ última fila: mínimo(s)
- penúltima: átomos (primos)

Corolario

En un poset finito siempre existen elementos maximales/minimales.

Posets infinitos

Lema (Zorn)

Sea (A, \leq) un poset no vacío en el que toda cadena no vacía tiene una cota superior. Entonces existen elementos maximales.

- Es un enunciado muy profundo de la matemática.
- Es en realidad equivalente a un axioma de la teoría de conjuntos llamado el axioma de elección.
- Sirve para hacer inducción transfinita (razonamientos inductivos sobre conjuntos muy grandes, que no pueden ser indexados con números naturales).

A modo de ejemplo tratemos de probar el

Teorema (de la base de Hamel)

Todo espacio vectorial V tiene una base.

Demostración*

- Para dimensión finita ya lo sabemos (no hace falta LZ).
- ▶ Poset: $\mathcal{L} = \{B \subset V : B \text{ es LI}\} \subset \mathcal{P}(V)$ (ordenado por inclusión).
- $\triangleright \varnothing \in \mathcal{L} \implies \mathcal{L} \neq \varnothing.$
- $ightharpoonup \mathcal{C} \in \mathcal{L}$ cadena $\implies \bigcup \mathcal{C} \in \mathcal{L}$ y es cota superior de \mathcal{C} :
 - Suponer $v_1, \ldots v_k \in \bigcup C$ y $a_1v_1 + \cdots + a_kv_k = 0$ $(a_i \in \mathbb{R})$
 - $v_i \in C_i \in C$ y $\exists i_0, (\forall i, C_i \subset C_{i_0})$ (orden total en C).
 - ▶ Luego, $(\forall i, v_i \in C_{i_0}) \implies (\forall i, a_i = 0)$ (pues C_{i_0} es LI)
- ▶ LZ $\implies \exists B \subset V$ subconjunto LI y maximal en \mathcal{L} .
- ▶ B es base: si así no fuera, $\exists v \in V, v \notin \langle B \rangle$.
- ▶ $B \subseteq B'$. Absurdo.

Ejemplo

Encontrar una función $f: \mathbb{R} \to \mathbb{R}$ tal que f(x+y) = f(x) + f(y) que no sea de la forma f(x) = cx.

$$ightharpoonup f(0) = f(0+0) = f(0) + f(0) \implies f(0) = 0.$$

▶
$$0 = f(0) = f(x - x) = f(x) + f(-x) \implies f(-x) = -f(x)$$
.

$$f(nx) = f(x + \cdots + x) = f(x) + \cdots + f(x) = nf(x), n \in \mathbb{N}.$$

$$f(x) = f(\frac{x}{n} + \cdots + \frac{x}{n}) = nf(\frac{x}{n}) \implies f(\frac{1}{n}x) = \frac{1}{n}f(x), \ n \in \mathbb{N}.$$

$$f(\frac{m}{n}x) = \frac{m}{n}f(x), \, \frac{m}{n} \in \mathbb{Q}.$$

- $ightharpoonup \mathbb{R}$ es \mathbb{Q} -espacio vectorial y f es \mathbb{Q} -lineal.
- ▶ Si B es una \mathbb{Q} -base de \mathbb{R} (debe tener una cantidad no numerable de elementos), entonces cualquier elemento de \mathbb{R} se escribe como $x = \sum_{b \in B} x_b b$ (a lo sumo una cantidad finita de $x_b \neq 0$).
- ▶ Fijando $b_0 \in B$, podemos definir $f(x) = x_{b_0}$ (proyección a la coordenada b_0) y f será una transformación \mathbb{Q} -lineal.

Morfismos de posets

Los morfimos de posets son las funciones que "respetan" la estructura (es decir, el orden).

Funciones monótonas

Sea $f:(A,\leq)\to(B,\leq)$ una función entre dos posets.

- f es creciente si $x \le y \implies f(x) \le f(y)$.
- ▶ f es decreciente si $x \le y \implies f(y) \le f(x)$.

Observación

La existencia de una función biyectiva y monótona $f:(A,\leq)\to(B,\leq)$ no implica que los posets (A,\leq) y (B,\leq) sean "equivalentes" (es decir, el mismo orden pero cambiando el nombre a los elementos) desde el punto de vista de la teoría del orden. Veremos un ejemplo de esto más adelante.

Isomorfismos de orden

Una función biyectiva $f:(A, \leq) \to (B, \leq)$ entre dos posets es un

isomorfismo de orden si

$$x \le y \iff f(x) \le f(y),$$

antiisomorfismo de orden si

$$x \le y \iff f(y) \le f(x)$$
.

Ejercicio

f es un isomorfismo (resp. antiisomorfismo) de orden $\iff f, f^{-1}$ son crecientes (resp. decrecientes).

Ejemplo

- ▶ id : $(\mathbb{N}, |)$ → (\mathbb{N}, \leq) es un morfismo de orden (es creciente)
- ▶ id : $(\mathbb{N}, \leq) \to (\mathbb{N}, \mid)$ no es morfismo de orden. Por ejemplo, $2 \leq 3$, pero $2 \nmid 3$ ni $3 \nmid 2$.
- Es decir, (\mathbb{N}, \leq) y $(\mathbb{N}, |)$ no son órdenes isomorfos. Una formar más conceptual de formular la justificación anterior es observando que en (\mathbb{N}, \leq) el orden es total, en tanto que el orden en $(\mathbb{N}, |)$ es un orden parcial que no es total.

Orden total

El orden en (A, \leq) es una relación total. También se llama **orden lineal**.

El diagrama de Hasse de un orden total (si es que existe) es una línea.

Propiedades de conjuntos totalmente ordenados

- Sea (A, \leq) un conjunto totalmente ordenado y $a \in A$. Entonces a es maximal (minimal) $\iff a$ es cota superior (inferior) $\iff a$ es supremo (ínfimo) $\iff a$ es máximo (mínimo) y por consiguiente a es único con estas propiedades.
- ▶ Si $A = \{a_1, \dots a_n\}$ la cantidad de órdenes totales en A es n!.
- ► Como consecuencia, si *A* es un conjunto finito, existe un único orden total salvo isomorfismo (¿por qué?).
- ▶ ¿Vale lo mismo si A es un conjunto infinito? Rta: NO, por ejemplo $(\mathbb{N}, \leq) \not\simeq (\mathbb{N}, \geq)$ (¿por qué?).
- Now, pero hay un antiisomorfismo entre estos dos. Otro ejemplo podría ser (\mathbb{N}, \leq') , donde

$$\leq'$$
: $3 \leq' 4 \leq' 5 \leq' \cdots \leq' 1 \leq' 2$.

Luego $(\mathbb{N}, \leq') \not\simeq (\mathbb{N}, \leq)$ y $(\mathbb{N}, \leq') \not\simeq (\mathbb{N}, \geq)$ (tienen distinto diagrama de Hasse).

Ejercicio

¿Cuántos órdenes totales hay en N?

Teorema

Si (A, \leq) es un conjunto totalmente ordenado, (B, \leq) es un poset $y \ f : A \to B$ es biyectiva y creciente (resp. decreciente). Entonces f es un isomorfismo (resp. antiisomorfismo) de orden. En particular, (B, \leq) es totalmente ordenado.

Demostración.

- ▶ Debemos ver que f^{-1} es creciente.
- Sean $b, b' \in B$ tales que $b \le b'$ y sean $a, a' \in A$ tales que f(a) = b y f(a') = b'. Debemos ver que $a \le a'$.
- Si así no fuera, entonces a > a' y por ende b = f(a) > f(a') = b'. Contradicción.
- Luego, $\forall b, b' \in B, (b \le b' \implies f^{-1}(b) \le f^{-1}(b'))$. Es decir, f^{-1} es creciente, f isomorfismo y por lo tanto (B, \le) es un conjunto totalmente ordenado.

 $Ejemplo/Ejercicio \ (de \ Análisis \ I)$

 $\text{exp}: \mathbb{R} \to \mathbb{R}^{>0}$ es un isomorfismo de orden con inversa

 $\log: \mathbb{R}^{>0} o \mathbb{R}.$

Más aún, cualquier función estrictamente creciente $f : \mathbb{R} \to \mathbb{R}$ es un isomorfismo de orden sobre su imagen.

Conjuntos bien ordenados

Un poset (A, \leq) se dice un conjunto **bien ordenado (BO)** si

- $ightharpoonup (A, \leq)$ es un conjunto totalmente ordenado,
- $ightharpoonup \forall B \subset A$, $(B \neq \varnothing \implies B \text{ tiene 1er elemento } (= \text{mínimo}))$

Ejemplo/Ejercicio

- \blacktriangleright (N, \leq): $1 \leq 2 \leq 3 \leq 4 \leq \cdots$ es BO [AGII].
- ▶ (\mathbb{N}, \lesssim) : $2 \lesssim 3 \lesssim 4 \lesssim 5 \lesssim \cdots \lesssim 1$ es BO.
- \blacktriangleright (\mathbb{N}, \ge): $\cdots \ge 4 \ge 3 \ge 2 \ge 1$ no es BO
- $\blacktriangleright (\mathbb{N}, \lesssim'): 1 \lesssim' 3 \lesssim' 5 \lesssim' \cdots \lesssim' 2 \lesssim' 4 \lesssim' 6 \lesssim' \cdots \text{ es BO}.$

Ejemplo

- ▶ (\mathbb{R}, \leq) no es BO.
- $ightharpoonup (\mathbb{R}^{\geq 0}, \leq)$ no es BO.

Principio de buena ordenación

- ► El **principio de buena ordenación** es un teorema que dice que todo conjunto admite un buen orden.
- No confundir con el principio del buen orden que dice que cualquier subconjunto de N es BO (con el orden inducido).
- ► El principio de buena ordenación es un resultado fundamental de la matemática, de hecho, es equivalente al axioma de elección y por ende al lema de Zorn.

Ejemplo(?)

 \mathbb{R} admite un buen orden.