Box Num. 33 Problem Set 35

April 25, 2018

- 1. (a) $^{27}\text{Si} \rightarrow ^{27}\text{Al} + e^+ + v_e$
 - (b) $^{74}\text{As} \rightarrow ^{74}\text{Se} + \text{e}^- + \overline{\text{v}_e}$
 - (c) $^{228}U \to \alpha + ^{224}Th$
 - (d) ${}^{93}\text{Mo} + e^{-} \rightarrow {}^{93}\text{Nb}$
 - (e) $^{131}I \rightarrow ^{131}Xe + e^+ + v_e$
- 2. (a) Radioactive decay for nuclide A is described by the differential equation

$$dN_A = -N_A \lambda_A dt$$

A similar differential equation describes the decay of nuclide B, but the supply of nuclide B is also being replenished over time:

$$dN_B = (\lambda_A N_A - \lambda_B N_B)dt$$

(b) When B is stable, the differential equation is

$$dNB_B = \lambda_A N_A dt$$

When $\lambda = \lambda_A = \lambda_B$, the differential equation is

$$dN_B = (N_A - N_B)\lambda dt$$

(c) The activity of nuclide A is

$$A_A(t) = \lambda_A N_{A,0} e^{-\lambda_A t}$$

Solving the ODE above for $N_B(t)$ gives

$$N_B(t) = e^{-\lambda_B t} \left(\frac{e^{(\lambda_B - \lambda_A)t} N_{0,A} \lambda_A}{\lambda_B - \lambda_A} \right)$$

and the activity is

$$A_B(t) = e^{-\lambda_B t} \lambda_B \left(\frac{e^{(\lambda_B - \lambda_A)t} N_{0,A} \lambda_A}{\lambda_B - \lambda_A} \right)$$

When $\lambda = \lambda_A = \lambda_B$,

$$N_B(t) = N_{0,A} t \lambda e^{-\lambda t}$$

and

$$A_B(t) = N_{0,A} t \lambda^2 e^{-\lambda t}$$

(d) In the $\lambda = \lambda_A = \lambda_B$ case, we have $A_B(t) = N_{0,A}t\lambda^2 e^{-\lambda t}$. Taking the derivative,

$$\frac{dA_B(t)}{dt} = -N_{0,A}\lambda^2 e^{-\lambda t}(\lambda t - 1)$$

This function has a maximum when $t = 1/\lambda$. The maximum is $A_B = N_{0,A}\lambda/e$.

- 3. (a) The atomic mass of 149 Eu is 148.917931238u, which is smaller than the mass of 149 Gd, so β^- decay is not energetically favorable. An alpha decay would result in a total product mass of 148.915352277, so this is (barely) energetically favorable. A β^+ /neutron capture reaction would result in a product mass of 148.917184735u, so this reaction is also favorable.
 - (b) 151 Eu is stable. All of the potential decay products (147 Pm + α , 151 Gd, and 151 Sm) have a higher mass.
 - (c) 152 Eu decays via β^+ and β^- decays. The products of these reactions, 152 Gd and 152 Sm, both have lower masses than 152 Eu, making this reaction energetically favorable.
 - (d) The only decay mode this isotope can undergo is β^- . Alpha decay results in ¹⁵⁵Pm and an alpha particle, which together have a higher mass than the original. Only β^- decay results in a decrease in energy.
- 4. (a) This reaction is endothermic, with a threshold energy of $0.0045267uc^2 = 4.2 \,\mathrm{MeV}$.
 - (b) This reaction is exothermic.
 - (c) This reaction is exothermic.
 - (d) This reaction is endothermic, with a threshold energy of $0.005368007uc^2 = 5 \,\mathrm{MeV}$.