03/08/2019 Provinha 3

Painel / Meus cursos / Bacharelado em Ciência e Tecnologia / Física / BCJ0203-2019.2 / Atividade Avaliada 3 / Provinha 3

Informação

As leis de Ampère e Biot-Savart nos dizem que uma corrente gera um campo magnético. No exemplo 22.6 do Serway foi demonstrado que o campo magnético no eixo de uma espira circular de raio R e com corrente I circulando é dado por

$$ec{B} = rac{\mu_0 I R^2}{2(x^2 + R^2)^{rac{3}{2}}} \hat{x}$$

com \hat{x} o eixo da espira.

Serway/Jewett; Principles of Physics, 3/e Figure 22.24

Harcourt, Inc. items and derived items copyright © 2002 by Harcourt, In

Em particular se estamos considerando $x\gg R$, essa expressão simplifica para $ec{B}=rac{\mu_0IR^2}{2x^3}\hat{x}.$

Como a área de uma espira circular é πR^2 , podemos re-escrever essa equação usando a definição do momento da espira

$$\vec{B} = \frac{1}{2\pi x^3} \mu_0 \vec{\mu}.$$

Um ímã é nada mais que um material em que pequenos dipolos magnéticos microscópicos estão arrumados espacialmente de forma a gerar um dipolo macroscópico $\vec{\mu}$. Com o resultado que você acabou de aprender podemos intuir que o campo magnético gerado por um ímã ao longo do seu eixo Sul-Norte é

$$ec{B}pprox rac{lpha}{x^3}ec{\mu},$$

onde α é uma constante de proporcionalidade e x é a distância ao longo do eixo Sul-Norte entre o meio do ímã e o ponto que se deseja calcular o campo magnético.

Serway/Jewett; Principles of Physics, 3/6 Figure 22.25c Serway/Jewett; Principles of Physics, Figure 22.25a

Na página anterior você descobriu que a energia potencial de um dipolo magnético é dada por

$$U\left(heta
ight) =-ec{\mu}.\,ec{B}.$$

Questão 2

Ainda não respondida

Vale 10,00 ponto(s).

Se você tiver dois ímãs com momentos de dipolo $\vec{\mu}_1$ e $\vec{\mu}_2$ orientados sobre o mesmo eixo, qual configuração tem a menor energia potencial? Considere que o ângulo θ entre os momentos de dipolo pode ser apenas 0 ou π .

Escolha uma:

- igorplus a. heta=0 , $ec{\mu}_1$ e $ec{\mu}_2$ são paralelos e com mesmo sentido
- ullet b. $heta=\pi$, $ec{\mu}_1$ e $ec{\mu}_2$ são paralelos e com sentidos opostos

Questão 3

Ainda não respondida

Vale 10,00 ponto(s).

Se o ímã com $\vec{\mu}_1$ é mantido fixo, e você puxa o ímã com $\vec{\mu}_2$ uma distância $\Delta x \ll x$ (desconsidere termos da ordem de Δx^2) ao longo do eixo do ímã afastando-o do ímã com $\vec{\mu}_1$, você pode calcular o trabalho realizado. Esse trabalho será $W=\int \vec{F}.\,d\vec{\ell}$, onde

F é a força exercida por você sobre o ímã. Lembre que o seu trabalho é igual a variação de energia potencial do sistema.

Qual a força que o ímã com momento de dipolo $\vec{\mu}_2$ sente devido a presença do ímã de dipolo $\vec{\mu}_1$ para quando $\Delta x \ll x$? Considere que o ângulo θ entre os momentos de dipolo pode ser apenas 0 ou π .

Dica: imagine o que você espera que aconteça e verifique se isso está refletido nas suas equações.

Escolha uma:

$$ullet$$
 a. $ec{F}_{1\,\mathrm{em}\,2}=-rac{3}{x^4}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta\hat{x}$

O b.
$$ec{F}_{1\,\mathrm{em}\,2}=rac{3}{x^4}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta\hat{x}$$

$$\bigcirc$$
 c. $ec{F}_{1\,\mathrm{em}\,2}=-rac{2}{x^3}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta\hat{x}$

O d.
$$ec{F}_{1\,\mathrm{em}\,2}=rac{2}{x^3}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta\hat{x}$$

Questão 4

Ainda não respondida

Vale 10,00 ponto(s).

Se o ímã com $\vec{\mu}_1$ é mantido fixo, e você puxa o ímã com $\vec{\mu}_2$ uma distância $\Delta x \ll x$ (desconsidere termos da ordem de Δx^2) ao longo do eixo do ímã afastando-o do ímã com $\vec{\mu}_1$, qual o trabalho realizado por você para puxar o ímã? **Considere que o ângulo** θ **entre os momentos de dipolo pode ser apenas** 0 ou π .

Escolha uma:

$$egin{array}{ll} egin{array}{ll} \odot & ext{a.} \ W_{ ext{seu}} pprox -rac{3\Delta x}{x^4}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta \end{array}$$

$$ullet$$
 b. $W_{
m seu}pprox+rac{3\Delta x}{x^4}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} rac{2\Delta x}{x^3} |ec{\mu}_1| \, |ec{\mu}_2| \cos heta \end{aligned}$$

$$igcirc$$
 d. $W_{
m seu}pprox +rac{2\Delta x}{x^3}|ec{\mu}_1|\,|ec{\mu}_2|\cos heta$

Obter o aplicativo para dispositivos móveis

03/08/2019 Provinha 3