

KDDCUP 2017 Volume Prediction Step by step modeling for travel volume prediction

Huan Chen

Beihang University (Master Candidate, CS)

Pan Huang
Bing Ads, Microsoft

Ke Hu

Bing Ads, Microsoft

Peng Yan

Meituan-Dianping

Problem understanding

Features

Models

Conclusion

Task 2: Volume Prediction

For every 20-minute time window, predict the entry and exit traffic volumes at tollgates 1, 2 and 3. $1 = \frac{R}{L} \left(1 = \frac{T}{L} \right) d = 0$

 $MAPE = \frac{1}{R} \sum_{r=1}^{R} \left(\frac{1}{T} \sum_{t=1}^{T} \left| \frac{d_{rt} - p_{rt}}{d_{rt}} \right| \right)$

Total:

5 tollgate-direction

Tollgate 3

Problem definition

Problem understanding

Problem definition

Stage1: 4 weeks training data + 1 week test data

Stage2: 5 weeks training data + 1 week test data

Differences from Average Travel Time Prediction Task

- 1. Travel volume values are much noisier comparing to average travel time
- 2. Dataset is much smaller(Stage1)
 - 3 month training data for task1
 - Only 4 weeks training data for task2, and holidays' traffic is abnormal

Strategy

- 1. Multiple offline validation sets
- 2. Using multiple simple models for ensemble
 - Complex models are unstable on such dataset
- 3. Utilizing as much data as possible
 - Step by step modeling to "squeeze information from test data"

Slide Window

Stage 1 (total: 4 sets)

2016/10/08 2016/10/17

Stage 2 (total: 7 sets)

2016/10/08 2016/10/17

Problem understanding

Noise reduction

Mid-AutumnFestivalNational Day

Every day's data in 23:00-01:00

Statistical features of the corresponding window in the last n days **Statistical** Statistical features of <u>all</u> samples in the last n days **Features** Statistical features of <u>rush</u> hours in the last n days

Example (n = 5)

statistical features of the corresponding window in the last n days

Blue: unused data

Red: used data

Yellow: target sample

■ Example (n = 5)

statistical features of <u>all</u> <u>samples</u> in the last n days

Blue: unused data

Red: used data

Yellow: target sample

Example (n = 5)

3

statistical features of <u>rush</u> <u>hours</u> in the last n days

Blue: unused data

Red: used data

Yellow: target sample

Statistical features:

- 1. Statistical functions: max, min, average, medium, slope, skewness, ratio, diff, percentage, rank etc.
- 2. Statistical dimensions: forward/reverse direction, car type: etc/not etc type ...

Step by step modeling

Model 7 Updating model when new sample comes

Step by step modeling

Step by step modeling

Model 14

- 1. "Updating" model when new sample comes
- 2. Better utilize test data

predict
Training sample

Leak data(can not be used)

Models

Label

Use <u>log</u> and <u>boxcox</u> to Reduce the influence of outliers

Objective function

In Xgboost:

Use **fair**^[1] instead of rmse as the objective function

Weights of samples

Increase the weight of small samples:

weight=1/sqrt(y) y is the label of the sample.

Model ensemble

Calculate weighted mean

Conclusion

Simple model to handle noisy data

Produce diversity from model, data, feature, loss function

Fully utilize all the information in data

Don't waste any useful data points

Thanks

Q&A