

Rob J Hyndman

Fast computation of reconciled forecasts in hierarchical and grouped time series

1

Outline

- 1 Optimally reconciled forecasts
- **2** Fast computation
- 3 hts package for R
- 4 References

Hierarchical data

Hierarchical data

Hierarchical data

 $\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{AZ,t} \\ Y_{BX,t} \\ Y_{BY,t} \\ Y_{BZ,t} \\ Y_{CX,t} \\ Y_{CZ,t} \end{pmatrix}$

 $\mathbf{Y}_t = \mathbf{SB}_t$

Grouped data

$$\mathbf{Y}_{t} = \begin{pmatrix} \mathbf{Y}_{t} \\ \mathbf{Y}_{A,t} \\ \mathbf{Y}_{B,t} \\ \mathbf{Y}_{C,t} \\ \mathbf{Y}_{X,t} \\ \mathbf{Y}_{Y,t} \\ \mathbf{Y}_{X,t} \\ \mathbf{Y}_$$

Grouped data


```
Y_t
 Y_{A,t}
                                                                               0
                                                                               0
 Y_{B,t}
 Y_{C,t}
                                                                               0
 Y_{X,t}
 Y_{Y,t}
                                                                               0
 Y_{Z,t}
Y_{AX,t}
              =
Y_{AY,t}
Y_{AZ,t}
Y_{BX,t}
Y_{BY,t}
Y_{BZ,t}
                                                                               0
                                                                               0
Y_{CX,t}
                                                                               0
Y_{CY,t}
```

 $\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{AZ,t} \\ Y_{BX,t} \\ Y_{BY,t} \\ Y_{BZ,t} \\ Y_{CX,t} \\ Y_{CZ,t} \end{pmatrix}$

Grouped data


```
Y_t
Y_{A,t}
                                                                               0
                                                                               0
 Y_{B,t}
 Y_{C,t}
                                                                               0
 Y_{X,t}
 Y_{Y,t}
                                                                               0
 Y_{Z,t}
Y_{AX,t}
              =
Y_{AY,t}
Y_{AZ,t}
Y_{BX,t}
Y_{BY,t}
Y_{BZ,t}
                                                                               0
                                                                               0
Y_{CX,t}
                                                                               0
Y_{CY,t}
```

 $\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{AZ,t} \\ Y_{BX,t} \\ Y_{BY,t} \\ Y_{BZ,t} \\ Y_{CX,t} \\ Y_{CY,t} \\ \end{pmatrix}$

 $\mathbf{Y}_t = \mathbf{SB}_t$

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
 . So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}\beta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\mathbf{\hat{Y}}_n(h) = \mathbf{S}\beta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h) + \boldsymbol{\varepsilon}_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}oldsymbol{eta}_n(h) + arepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $\hat{oldsymbol{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- $\blacksquare \beta_n(h) = \mathsf{E}[\boldsymbol{B}_{n+h} \mid \boldsymbol{Y}_1, \dots, \boldsymbol{Y}_n].$
- \blacksquare ε_h has zero mean.
- Estimate $\beta_n(h)$ using weighted least squares.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $\hat{oldsymbol{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- \blacksquare ε_h has zero mean.
- Estimate $\beta_n(h)$ using weighted least squares.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $\hat{oldsymbol{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- \blacksquare ε_h has zero mean.
- Estimate $\beta_n(h)$ using weighted least squares.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

 A weights (usually inverse of one-step forecast variances, but any choice possible

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Initial forecasts

- A weights (usually inverse of one-step forecast variances, but any choice possible)
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances
- Still difficult to compute for large numbers

Fast computation of reconciled forecasts

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{\boldsymbol{eta}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- Λ weights (usually inverse of one-step forecast variances, but any choice possible).
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- Still difficult to compute for large numbers of time series.
- Need to do calculation without explicitly forming S or (S'AS)⁻¹ or S'A.

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{\boldsymbol{eta}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- Λ weights (usually inverse of one-step forecast variances, but any choice possible).
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- Still difficult to compute for large numbers of time series.
- Need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{\boldsymbol{eta}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- Λ weights (usually inverse of one-step forecast variances, but any choice possible).
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- Still difficult to compute for large numbers of time series.
- Need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

- Λ weights (usually inverse of one-step forecast variances, but any choice possible).
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- Still difficult to compute for large numbers of time series.
- Need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

- Λ weights (usually inverse of one-step forecast variances, but any choice possible).
- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- Still difficult to compute for large numbers of time series.
- Need to do calculation without explicitly forming \boldsymbol{S} or $(\boldsymbol{S}'\Lambda\boldsymbol{S})^{-1}$ or $\boldsymbol{S}'\Lambda$.

Outline

- 1 Optimally reconciled forecasts
- **2** Fast computation
- 3 hts package for R
- 4 References

Fast computation: hierarchical data

$$\underbrace{ \begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{AZ,t} \\ Y_{BX,t} \\ Y_{BY,t} \\ Y_{BZ,t} \\ Y_{CX,t} \\ Y_{CY,t} \\ Y_{CZ,t} \end{pmatrix} }_{ \boldsymbol{B}_{t} }$$

 $Y_t = SB_t$

Think of the hierarchy as a tree of trees:

Then the summing matrix contains *k* smaller summing matrices:

$$\mathbf{S} = \left[egin{array}{ccccc} \mathbf{1}_{n_1}' & \mathbf{1}_{n_2}' & \cdots & \mathbf{1}_{n_K}' \\ \mathbf{S}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_2 & \cdots & \mathbf{0} \\ dots & dots & \ddots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}_K \end{array}
ight]$$

where $\mathbf{1}_n$ is an n-vector of ones and tree T_i has n_i terminal nodes.

Think of the hierarchy as a tree of trees:

Then the summing matrix contains k smaller summing matrices:

$$\mathbf{S} = \left[egin{array}{ccccc} \mathbf{1}_{n_1}' & \mathbf{1}_{n_2}' & \cdots & \mathbf{1}_{n_K}' \\ \mathbf{S}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_2 & \cdots & \mathbf{0} \\ dots & dots & \ddots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}_K \end{array}
ight]$$

where $\mathbf{1}_n$ is an n-vector of ones and tree T_i has n_i terminal nodes.

$$m{s}'\!\Lambdam{s} = egin{bmatrix} m{s}_1' m{\Lambda}_1 m{s}_1 & m{0} & \cdots & m{0} \ m{0} & m{s}_2' m{\Lambda}_2 m{s}_2 & \cdots & m{0} \ dash & dash & \ddots & dash \ m{0} & m{0} & \cdots & m{s}_K' m{\Lambda}_K m{s}_K \end{bmatrix} + \lambda_0 m{J}_n$$

- lacksquare λ_0 is the top left element of Λ ;
- lacksquare lacksquare
- **J**_n is a matrix of ones;
- \blacksquare $n = \sum_k n_k$.

Now apply the Sherman-Morrison formula . . .

$$m{s}'\!\Lambdam{s} = egin{bmatrix} m{s}_1' m{\Lambda}_1 m{s}_1 & m{0} & \cdots & m{0} \ m{0} & m{s}_2' m{\Lambda}_2 m{s}_2 & \cdots & m{0} \ dash & dash & \ddots & dash \ m{0} & m{0} & \cdots & m{s}_K' m{\Lambda}_K m{s}_K \end{bmatrix} + \lambda_0 m{J}_n$$

- lacksquare λ_0 is the top left element of Λ ;
- lacksquare lacksquare
- **J**_n is a matrix of ones;
- $\blacksquare n = \sum_k n_k$.

Now apply the Sherman-Morrison formula . . .

$$(\textbf{\textit{S}}'\!\boldsymbol{\Lambda}\textbf{\textit{S}})^{-1} = \begin{bmatrix} (\textbf{\textit{S}}_1'\boldsymbol{\Lambda}_1\textbf{\textit{S}}_1)^{-1} & \textbf{\textit{0}} & \cdots & \textbf{\textit{0}} \\ \textbf{\textit{0}} & (\textbf{\textit{S}}_2'\boldsymbol{\Lambda}_2\textbf{\textit{S}}_2)^{-1} & \cdots & \textbf{\textit{0}} \\ \vdots & \vdots & \ddots & \vdots \\ \textbf{\textit{0}} & \textbf{\textit{0}} & \cdots & (\textbf{\textit{S}}_K'\boldsymbol{\Lambda}_K\textbf{\textit{S}}_K)^{-1} \end{bmatrix} - c\textbf{\textit{S}}_0$$

■ S_0 can be partitioned into K^2 blocks, with the (k, ℓ) block (of dimension $n_k \times n_\ell$) being

$$(\boldsymbol{S}_k'\boldsymbol{\Lambda}_k\boldsymbol{S}_k)^{-1}\boldsymbol{J}_{n_k,n_\ell}(\boldsymbol{S}_\ell'\boldsymbol{\Lambda}_\ell\boldsymbol{S}_\ell)^{-1}$$

- **J** $_{n_k,n_\ell}$ is a $n_k \times n_\ell$ matrix of ones.
- $c^{-1} = \lambda_0^{-1} + \sum_k \mathbf{1}'_{n_k} (\mathbf{S}'_k \Lambda_k \mathbf{S}_k)^{-1} \mathbf{1}_{n_k}.$
- Each $\mathbf{S}'_k \Lambda_k \mathbf{S}_k$ can be inverted similarly.
- **S** $'\Lambda Y$ can also be computed recursively.

$$(\mathbf{S}'\!\Lambda\mathbf{S})^{-1} = egin{bmatrix} (\mathbf{S}'_1\Lambda_1\mathbf{S}_1)^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & (\mathbf{S}'_2\Lambda_2\mathbf{S}_2)^{-1} & \cdots & \mathbf{0} \\ dots & dots & \ddots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & (\mathbf{S}'_K\Lambda_K\mathbf{S}_K)^{-1} \end{bmatrix} - c\mathbf{S}_0$$

S₀ can be partitioned into K^2 blocks, with the (k, ℓ) block (of dimension $n_{\nu} \times n_{\ell}$) being

> The recursive calculations can be done in such a way that we never

- $\int_{n_k,n_\ell}^{n_k,n_\ell}$ store any of the large matrices involved.

S'AY can also be computed recursively.


```
Y_t
                                                                                  1
                                                                                  0
 Y_{A,t}
 Y_{B,t}
                                                                                  0
 Y_{C,t}
 Y_{X,t}
                                                                                  0
 Y_{Y,t}
 Y_{Z,t}
                                                                                  0
Y_{BX,t}
Y_{BY,t}
Y_{BZ,t}
                                                                                  0
                                                                                  0
Y_{CX,t}
                                                                                  0
Y_{CY,t}
```

 $\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{AZ,t} \\ Y_{BX,t} \\ Y_{BY,t} \\ Y_{BZ,t} \\ Y_{CX,t} \\ Y_{CY,t} \\ Y_{CZ,t} \end{pmatrix}$

 $\mathbf{Y}_t = \mathbf{SB}_t$

$$oldsymbol{S} = egin{bmatrix} oldsymbol{1}_m' \otimes oldsymbol{1}_n' \ oldsymbol{1}_m \otimes oldsymbol{1}_n' \ oldsymbol{I}_m \otimes oldsymbol{I}_n' \ oldsymbol{I}_m \otimes oldsymbol{I}_n \end{bmatrix}$$

m = number of rows n = number of columns

$$ag{S} ag{\Lambda} ag{S} = \lambda_{00} extbf{J}_{mn} + (extbf{\Lambda}_R \otimes extbf{J}_n) + (extbf{J}_m \otimes extbf{\Lambda}_C) + extbf{\Lambda}_U$$

- lacktriangle Λ_R , Λ_C and Λ_U are diagonal matrices corresponding to rows, columns and unaggregated series;
- λ_{00} corresponds to aggregate.

$$oldsymbol{S} = egin{bmatrix} oldsymbol{1}_m' \otimes oldsymbol{1}_n' \ oldsymbol{1}_m' \otimes oldsymbol{1}_n' \ oldsymbol{I}_m \otimes oldsymbol{1}_n' \ oldsymbol{I}_m \otimes oldsymbol{I}_n \end{bmatrix}$$

m = number of rows n = number of columns

$$m{S} m{\Lambda} m{S} = \lambda_{00} m{J}_{mn} + (m{\Lambda}_{R} \otimes m{J}_{n}) + (m{J}_{m} \otimes m{\Lambda}_{C}) + m{\Lambda}_{U}$$

- Λ_R , Λ_C and Λ_U are diagonal matrices corresponding to rows, columns and unaggregated series;
- lacksquare λ_{00} corresponds to aggregate.

$$(oldsymbol{s}\Lambdaoldsymbol{s})^{-1} = oldsymbol{A} - rac{oldsymbol{A}oldsymbol{1}_{mn}oldsymbol{A}}{1/\lambda_{00} + oldsymbol{1}_{mn}oldsymbol{A}oldsymbol{1}_{mn}}$$

$$\mathbf{A} = \mathbf{\Lambda}_U^{-1} - \mathbf{\Lambda}_U^{-1} (\mathbf{J}_m \otimes \mathbf{D}) \mathbf{\Lambda}_U^{-1} - \mathbf{E} \mathbf{M}^{-1} \mathbf{E}'.$$

D is diagonal with elements $d_j = \lambda_{0j}/(1 + \lambda_{0j} \sum_i \lambda_{ij}^{-1})$.

E has $m \times m$ blocks where \mathbf{e}_{ij} has kth element

$$(\mathbf{e}_{ij})_k = \begin{cases} \lambda_{i0}^{1/2} \lambda_{ik}^{-1} - \lambda_{i0}^{1/2} \lambda_{ik}^{-2} d_k, & i = j, \\ -\lambda_{j0}^{1/2} \lambda_{ik}^{-1} \lambda_{jk}^{-1} d_k, & i \neq j. \end{cases}$$

M is $m \times m$ with (i,j) element

$$(\mathbf{M})_{ij} = \left\{ \begin{array}{ll} 1 + \lambda_{i0} \sum_{k} \lambda_{ik}^{-1} - \lambda_{i0} \sum_{k} \lambda_{ik}^{-2} d_{k}, & i = j, \\ -\lambda_{i0}^{1/2} \lambda_{i0}^{1/2} \sum_{k} \lambda_{ik}^{-1} \lambda_{ik}^{-1} d_{k}, & i \neq j. \end{array} \right.$$

$$(oldsymbol{S}\Lambdaoldsymbol{S})^{-1} = oldsymbol{A} - rac{oldsymbol{A}oldsymbol{1}_{mn}oldsymbol{A}}{1/\lambda_{00} + oldsymbol{1}_{mn}'oldsymbol{A}oldsymbol{1}_{mn}}$$

$$\mathbf{A} = \Lambda_U^{-1} - \Lambda_U^{-1} (\mathbf{J}_m \otimes \mathbf{D}) \Lambda_U^{-1} - \mathbf{E} \mathbf{M}^{-1} \mathbf{E}'.$$

D is diagonal with elements $d_i = \lambda_{0i}/(1 + \lambda_{0i} \sum_i \lambda_{ii}^{-1})$.

E has $m \times m$ blocks where \mathbf{e}_{ij} has kth element

Again, the calculations can be done in such a way that we never store any of the large matrices involved.

M is $m \times \dots \dots \dots \dots \dots$

$$(\mathbf{M})_{ij} = \left\{ \begin{array}{l} 1 + \lambda_{i0} \sum_{k} \lambda_{ik}^{-1} - \lambda_{i0} \sum_{k} \lambda_{ik}^{-2} d_{k}, & i = j, \\ -\lambda_{i0}^{1/2} \lambda_{i0}^{1/2} \sum_{k} \lambda_{ik}^{-1} \lambda_{ik}^{-1} d_{k}, & i \neq j. \end{array} \right.$$

Fast computation

When the time series are not strictly hierarchical and have more than two grouping variables:

- Use sparse matrix storage and arithmetic.
- Use iterative approximation for inverting
 - Paige & Saunders (1982)

 ACM Trans. Math. Software

Fast computation

When the time series are not strictly hierarchical and have more than two grouping variables:

- Use sparse matrix storage and arithmetic.
- Use iterative approximation for inverting large sparse matrices.

Paige & Saunders (1982) ACM Trans. Math. Software

Fast computation

When the time series are not strictly hierarchical and have more than two grouping variables:

- Use sparse matrix storage and arithmetic.
- Use iterative approximation for inverting large sparse matrices.

Paige & Saunders (1982) ACM Trans. Math. Software

Outline

- 1 Optimally reconciled forecasts
- **2** Fast computation
- 3 hts package for R
- 4 References

hts package for R

hts: Hierarchical and grouped time series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 4.3

forecast (> 5.0) Depends:

Imports: SparseM, parallel, utils

Published: 2014-06-10

Author: Rob I Hyndman, Earo Wang and Alan Lee

Maintainer: Rob | Hyndman < Rob. Hyndman at monash.edu > https://github.com/robjhyndman/hts/issues BugReports:

License: GPL (> 2)

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

library(hts)

bts is a matrix containing the bottom level time series
nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))

Forecast 10-step-ahead using WLS combination method
ETS used for each series by default
fc <- forecast(y, h=10)</pre>

forecast.gts function

```
Usage
```

```
forecast(object, h,
 method = c("comb", "bu", "mo", "tdqsf", "tdqsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
 weights = c("sd", "none", "nseries"),
  positive = FALSE,
  parallel = FALSE, num.cores = 2, ...)
```

num.cores

Arguments	
object	Hierarchical time series object of class gts.
h	Forecast horizon
method	Method for distributing forecasts within the hierarchy.
fmethod	Forecasting method to use
positive	If TRUE, forecasts are forced to be strictly positive
weights	Weights used for "optimal combination" method. When
	weights = "sd", it takes account of the standard deviation of
	forecasts.
parallel	If TRUE, allow parallel processing

If parallel = TRUE, specify how many cores are going to be

Outline

- 1 Optimally reconciled forecasts
- **2** Fast computation
- 3 hts package for R
- 4 References

References

RJ Hyndman, RA Ahmed, G Athanasopoulos, and HL Shang (Sept. 2011). "Optimal combination forecasts for hierarchical time series".

Computational statistics & data analysis **55**(9), 2579–2589.

RJ Hyndman, AJ Lee, and E Wang (2014). Fast computation of reconciled forecasts for hierarchical and grouped time series. Working paper 17/14.

Department of Econometrics & Business Statistics, Monash University

RJ Hyndman, AJ Lee, and E Wang (2014). hts: Hierarchical and grouped time series. cran.r-project.org/package=hts. RJ Hyndman and G Athanasopoulos (2014). Forecasting: principles and practice. OTexts.

References

RJ Hyndman, RA Ahmed, G Athanasopoulos, and HL Shang (Sept. 2011). "Optimal combination forecasts for hierarchical time series".

Computational statistics & data analysis **55**(9), 2579–2589.

RJ Hyndman, AJ Lee, and E Wang (2014). Fast computation of reconciled forecasts for hierarchical and grouped time series. Working paper 17/14. Department of Econometrics & Business Statistics, Monash University

Papers and R code:

robjhyndman.com

⇒ Email: **Rob.Hyndman@monash.edu**