Página Principal ▶ Mis cursos ▶ Cálculo I 2021 ▶ Cuestionarios en Moodle. ▶ Cuestionario 1

Pregunta 1

Sin responder aún

Puntúa como 20.00

Sea la función $f(x) = (x+a)^{2/3} x^2$ definida en [-1-a,1] para 0 < a.

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

- a. La función cumple las hipótesis del Teorema de Lagrange en el intervalo dado.
- b. La función alcanza un mínimo absoluto en dos valores del intervalo dado.
- c. Si I=[c,d] es cualquier intervalo tal que f(c)=f(d), entonces es suficiente con definir I como el dominio de f para que sea posible aplicar el teorema de Rolle.
- d. Si a=2, la pendiente de la recta secante entre los puntos $\left(-1-a,f(-1-a)\right)$ y $\left(1,f(1)\right)$ es $m=\frac{(9)^{1/3}-9}{4}$.
- e. Ninguna de las opciones anteriores es correcta

Pregunta 2

Sin responder aún

Puntúa como 20,00

PROBLEMA C. Un faro L se sitúa en una pequeña isla b kilómetros al norte de un punto A sobre la costa este - oeste. Se tiende un cable desde L hasta un punto B en la costa, 10 kilómetros al este de A. El cable se despliega por el agua formando una línea recta desde L hasta un punto C en la costa entre A y B, y, desde allí hasta B, siguiendo la línea costera (ver figura). La parte del cable que se despliega en el agua cuesta \$5000 por kilómetro y la parte que se despliega por la costa cuesta \$3000 por kilómetro.

Si se desea minimizar el costo del tendido del cable.

Se pide tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

- a. El punto C debería situarse a mitad de distancia entre A y B.
- b. En el planteo de la función a optimizar, y en el contexto del problema, la variable independiente puede tomar cualquier valor real.
- d. El valor $x=rac{9}{16}\,b$ optimiza la posición del punto C en términos económicos.
- e. Eligiendo de manera óptima la ubicación del punto C, el costo total del tendido del cable será de 30000+4000*b* pesos.
- f. Ninguna de las opciones anteriores es correcta

Pregunta 3 Sin responder aún Puntúa como 20,00	Considerar la función $f(x)=ax+b(x-c)^{\frac{2}{3}}$, donde $a,b,c\in\mathbb{R}^+$ son constantes. En las alternativas siguientes, se contemplarán intervalos (a veces abiertos, a veces cerrados) centrados o con frontera en $x=c$. Tildar la(s) alternativa(s) correcta(s):
	Seleccione una o más de una:
	\square a. f es continua en el intervalo $[c-1;c+1]$. \square b. f es derivable en el intervalo $(c-1;c+1)$.
	$oxed{\Box}$ c. f es cóncava hacia abajo en el intervalo $(c-1;c+1)$.
	oxedge d. f decrece en el intervalo $(c;c+1)$
	\square e. f crece en $[c;c+1]$
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Pregunta 4	Considere la parábola $y^2=8ax$, donde a es un número real distinto de cero.
Sin responder aún	Salaggiana una a más de una:
Puntúa como 20,00	Seleccione una o más de una: a. La recta tangente a la parábola en el punto (x_0,y_0) se puede escribir como $y_0\cdot y=4a(x+x_0)$.
	$oxedge$ b. La recta tangente a la parábola en el punto (x_0,y_0) interseca al eje x en el punto $(-x_0,0)$.
	c. La parábola no tiene recta tangente en el origen de coordenadas.
	d. Si una función tiene recta tangente en un punto, entonces es derivable en él.
	\square e. La recta perpendicular a la recta tangente de la parábola en el punto (x_0,y_0) se puede escribir como $y-y_0=rac{-y_0}{4a}(x-x_0)$.
Pregunta 5	
Sin responder aún	Sean g y h funciones continuas en $[a,b]$ tales que $-1 < g(x) < 0 \ \forall x \in [a,b]$ y $h(x) = \int_a^x (g(t)-3) dt$.
Puntúa como 20,00	Ayuda: en algunos ítems puede ser útil pensar en la interpretación gráfica de la integral. Tildar la(s) alternativa(s) correcta(s).
	Seleccione una o más de una:
	\square a. $h(c) < 0$ para todo $c \in (a,b]$. \square b. La función h es creciente en $[a,b]$.
	\Box c. $-h(c) \leq 4(c-a)$ para todo $c \in [a,b]$.
	d. $h(x)$ representa el área de la región comprendida entre el intervalo [a, x] y la gráfica de la función $g(t) - 3$.
	e. Ninguna de las anteriores es correcta.
■ Un método alternativo para separar en Fracciones Parciales (Semana 6) Ir a	
Ir a	▼