

Transistores

Eletrônica para Ciência da Computação

PROFESSOR: RUBENS T. HOCK JR.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE

Transistores Introdução

Entre os anos de 1904 e 1947, a válvula foi o dispositivo eletrônico de maior interesse e desenvolvimento.

As vantagens transistor de estado sólido e três terminais em relação à válvula:

- Menor e mais leve
- Não necessitava de aquecimento nem apresentava perda por aquecimento
- Tinha uma estrutura mais robusta e era mais eficiente porque absorvia menos potência
- Funcionava com tensões de operação mais baixas.

Os transistores possuem três terminais:

- Emissor (E)
- Base (B)
- Coletor (C)

Existem dois tipos de transistores bipolares

Polarização da junção Emissor-Base

Emissor-Base

+ Portadores majoritários

Base-Coletor

+ Portadores minoritários

O fluxo de elétrons se origina no emissor, há a contribuição da corrente de base (sinal depende se é NPN ou PNP) e são coletados pelo coletor

$$I_E = I_C + I_B$$

Transistores Configuração Emissor Comum

Configuração Emissor Comum

Essa terminologia emissor comum deriva do fato de o emissor ser comum tanto na entrada quanto

na saída da configuração

Configuração Emissor Comum

Para descrever totalmente o comportamento de um transistor como os amplificador emissor comum são necessários dois conjuntos de curvas características

- Ponto de acionamento ou parâmetros de entrada
- Ponto de acionamento ou parâmetros de saída

Configuração Emissor Comum

Na região ativa de um amplificador emissor-comum, a junção basecoletor é polarizada reversamente, enquanto a junção base-emissor é polarizada diretamente

Na região de corte, ambas as junções de um transistor estão polarizadas reversamente.

Na região de saturação, as junções base-emissor e base-coletor estão polarizadas diretamente.

Transistores Transistor Real

Transistor Real

ESPECIFICAÇÕES MÁXIMAS

Especificação	Símbolo	2N4123	Unidade
Tensão coletor-emissor	V_{CEO}	30	V_{cc}
Tensão coletor-base	V_{CBO}	40	V_{cc}
Tensão emissor-base	V_{EBO}	5,0	V_{cc}
Corrente de coletor — contínua	I_{C}	200	mA _{cc}
Dissipação total do dispositivo @ T _A = 25 °C Redução acima de 25°C	P _D	625 5,0	mW mW°C
Faixa de temperatura da junção para armazenamento e operação	T_j , T_{stg}	–55 a+150	°C

CARACTERÍSTICAS TÉRMICAS

Característica	Símbolo	Máx.	Unidade
Resistência térmica entre junção e encapsular	mento R _{0JC}	83,3	°C W
Resistência térmica entre junção e ambiente	$R_{\theta JA}$	200	°C W

Transistor Real

CARACTERÍSTICAS NO ESTADO "DESLIGADO"

Tensão de ruptura coletor-emissor $(I_C = 1.0 \text{ mA}_{CC}, I_E = 0)$	V _{(BR)CEO}	30		V _{cc}
Tensão de ruptura coletor-base ($I_C = 10 \mu A_{CC}$, $I_E = 0$)	V _{(BR)CBO}	40		V _{cc}
Tensão de ruptura emissor-base ($I_E = 10 \mu A_{CC}$, $I_C = 0$)	V _{(BR)EBO}	5,0	_	V _{cc}
Corrente de corte do coletor $(V_{CB} = 20 V_{CC}, I_E = 0)$	I_{CBO}	-	50	nA _{cc}
Corrente de corte do emissor $(V_{BE} = 3.0 V_{CC}, I_C = 0)$	I_{EBO}	-	50	nA _{cc}

CARACTERÍSTICAS NO ESTADO "LIGADO"

Ganho de corrente CC (1) $(I_C = 2.0 \text{ mA}_{CC}, V_{CE} = 1.0 \text{ V}_{CC})$ $(I_C = 50 \text{ mA}_{CC}, V_{CE} = 1.0 \text{ V}_{CC})$	h _{FE}	50 25	150 -	-
Tensão de saturação do coletor-emissor (1) $(I_C = 50 \text{ mA}_{CC}, I_B = 5,0 \text{ mA}_{CC})$	V _{CE(sat)}	-	0,3	V _{cc}
Tensão de saturação base-emissor (1) $(I_C = 50 \text{ mA}_{CC}, I_B = 5,0 \text{ mA}_{CC})$	$V_{BE(sat)}$	-	0,95	V_{cc}

Transistor Real

CARACTERÍSTICAS DE PEQUENO SINAL

Produto ganho de corrente — largura de banda $(I_C = 10 \text{ mA}_{CC}, V_{CE} = 20 \text{ V}_{CC}, f = 100 \text{ MHz})$	f_T	250		MHz
Capacitância de saída $(V_{CB} = 5,0 V_{CC}, I_E = 0, f = 100 MHz)$	C _{obo}	_	4,0	pF
Capacitância de entrada $(V_{BE} = 0.5 V_{CC}, I_C = 0, f = 100 \text{ kHz})$	C _{ibo}	_	8,0	pF
Capacitância coletor-base $(I_E = 0, V_{CB} = 5,0 \text{ V}, f = 100 \text{ kHz})$	C_{cb}	_	4,0	pF
Ganho de corrente para pequenos sinais $(I_C = 2.0 \text{ mA}_{CC}, V_{CE} = 10 \text{ V}_{CC}, f = 1.0 \text{ kHz})$	h _{fe}	50	200	-
Ganho de corrente — alta frequência $(I_C = 10 \text{ mA}_{CC}, V_{CE} = 20 \text{ V}_{CC}, f = 100 \text{ MHz})$ $(I_C = 2,0 \text{ mA}_{CC}, V_{CE} = 10 \text{ V}, f = 1,0 \text{ kHz})$	h _{fe}	2,5 50	- 200	_
Figura de ruído $(I_C = 100 \ \mu A_{CC}, V_{CE} = 5,0 \ V_{CC}, R_S = 1,0 \ k \ ohm, f = 1,0 \ kHz)$	NF	_	6,0	dB

Transistores Polarização do Transistor

A configuração mais utilizada é a configuração emissor comum, como na figura abaixo.

A relação entre a corrente de coletor e de base é dada por:

$$I_C = \beta I_B$$

Onde β é o ganho de corrente do transistor.

 ρV_{CC}

A polarização direta da base é calculada através de:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

A equação que rege o coletor é:

$$V_{CE} = V_{CC} - I_C R_C$$

- I_B e I_C
- $^{\circ}$ V_{CE}
- $^{\circ}$ V_{BC}

- I_B e I_C
- $^{\circ}$ V_{CE}
- V_{BC}

$$I_B = V_{cc} - V_{BE} / R_B$$
 $I_B = (12 - 0.7) / 240 k = 47.08 \mu A$
 $I_C = \beta I_B = 50 . 47.08 \mu = 2.35 mA$

- I_B e I_C
- V_{CE}
- V_{BC}

$$V_{CE} = V_{cc} - R_C I_C$$

 $V_{CF} = 12 - 2.2k \cdot 2.35m = 6.83 V$

- I_B e I_C
- $^{\circ}$ V_{CE}
- V_{BC}

$$V_{BC} = V_B - V_C$$

$$V_{BC} = 0.7 - 6.83 = -6.13 \text{ V}$$

A inserção de um resistor de emissor permite melhorar o nível de estabilidade da configuração com polarização fixa.

A polarização direta da base é calculada através de:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

A equação que rege o coletor é:

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

- I_B e I_C
- $^{\circ}$ V_{CE}
- $^{\circ}$ V_{BC}

- I_B e I_C
- V_{CE}
- $^{\circ}$ V_{BC}

$$I_{B} = (Vcc - V_{BE})/(R_{B} + (\beta+1)R_{E})$$

$$I_{B} = (20 - 0.7)/(430k + 51.1k) = 40.12 \mu A$$

$$I_C = \beta \cdot I_B = 50 \cdot 40,1\mu = 2,01 \text{ mA}$$

- I_B e I_C
- V_{CE}
- $^{\circ}$ V_{BC}

$$V_{CE} = Vcc - I_{C} (R_{C} + R_{E})$$

 $V_{CF} = 20 - 2,01m (2k + 1k) = 13,97 V$

- I_B e I_C
- $^{\circ}$ V_{CE}
- $^{\circ}$ V_{BC}

$$V_{BC} = V_{BE} + I_E \cdot R_E + R_C \cdot I_C - V_{cc}$$

$$V_{BC} = 0.7 + 2.01 \text{m} \cdot 1 \text{k} + 2.01 \text{m} \cdot 2 \text{k} - 20$$

$$V_{BC} = -13,27 \text{ V}$$

Transistores Portas Lógicas

Portas Lógicas

Para implementar as portas lógicas, os transistores trabalham nas regiões de corte ($I_C = 0$ A) ou

saturação ($V_{CF} = 0 V$).

Bibliografia

BOYLESTAD, R. L. Introdução à Análise de Circuitos. Prentice-Hall. São Paulo, 2004.

BOYLESTAD, R.; NASHELSKY, L. Dispositivos Eletrônicos e Teoria de Circuitos. 6ª edição, Prentice Hall do Brasil, 1998.

CIPELLI, Antonio Marco Vicari; MARKUS, Otavio; SANDRINI, Waldir João. Teoria e desenvolvimento de projetos de circuitos eletrônicos. 18 ed. São Paulo: Livros Erica, 2001. 445 p. ISBN 8571947597.