Non-equilibrium ionization in RH

Jie Hong

November 12, 2019

By default, RH assumes statistical equilibrium, which is not a good assumption especially for the first few seconds of flare heating and cooling. We have now modified the code to take non-equilibrium ionization into account in a very simple way. That is, to use the number densities from RADYN simulations as input, and fix them during the PRD iterations.

The normal routine to achieve this would be:

- 1. Construct a file named output_aux.ncdf. The NLTE population should be directly from the RADYN outputs. Other variables in the file (see the manual for the structure) must present, but the values can be zero.
- 2. Put the output_aux.ncdf file into the output directory.
- 3. Revise the INITIAL_SOLUTION for the ACTIVE atoms in atoms.input from ZERO_RADIATION to OLD_POPULATIONS. The population file should be specified as output/output_aux.ncdf.
- 4. Run.

If we are calculating the H lines, then the first few lines of atoms.input should be like this:

Nmetal 16

Metals

model file ACTIVE/PASSIVE INITIAL_SOLUTION population file

$Atoms/H_6.atom$	ACTIVE	OLD_POPULATIONS	output/output_aux.ncdf
Atoms/He.atom	PASSIVE	LTE_POPULATIONS	· , · ·
Atoms/C.atom	PASSIVE	LTE_POPULATIONS	
Atoms/N.atom	PASSIVE	LTE_POPULATIONS	
Atoms/O.atom	PASSIVE	LTE_POPULATIONS	

. . .