• Si consideri la formula:

Piove ∧ Vento

• È vera oppure falsa?

• Si consideri la formula:

Piove ∧ Vento

• È vera oppure falsa?

Cristina Baroglio

47

Cristina Baroglio

Semantica della logica proposizionale

• Premesse:

- La <u>semantica</u> definisce le <u>regole</u> con cui <u>si calcolano i valori di verità</u> di tutte le formule
- Nella logica proposizionale i valori di verità delle formule sono calcolati a partire da un modello e un modello è un assegnamento di un valore di verità a ciascuno dei simboli proposizionali specificati
- N simboli proposizionali, che possono valere vero o falso, possono produrre 2^N diversi modelli
- La semantica è calcolata <u>ricorsivamente</u>

Regole per il calcolo della semantica

- Le formule atomiche
 - True e False sono rispettivamente vera e falsa in ogni modello
 - I valori di verità di tutti gli altri simboli proposizionali vanno specificati esplicitamente dal modello
- Formule complesse

Siano P e Q due formule della logica proposizionale:

- ¬Q: è vera se e solo se Q è falsa nel modello
- $(Q \land P)$: è vera se e solo se sia P che Q sono vere nel modello
- (Q ∨ P): è vera se e solo se o P o Q è vera nel modello
- (Q \Rightarrow P): è sempre vera a meno che P sia vera e Q falsa nel modello
- (Q ⇔ P): è vera se P e Q sono entrambe vere o entrambe false nel modello
- Per le formule complesse si possono usare le tabelle di verità degli operatori

Tabelle di verità degli operatori

¬Р

Т

PΛQ

٧

PVQ

F

Т

Т

Т

P⇒O

Т

Т

F.

Т

Q

F

Т

F

Т

P

F

Т

Implicazione

P⇒Q

E' equivalente a $\neg P \lor Q$ Va interpretata nel seguente modo:

- se P è falsa, non mi interessa affermare il valore di Q;
- se P è vera, affermo che anche Q è vera
- Quindi Q deve essere vera nei casi in cui P lo è. Quando P non lo è la verità di Q non interessa.

P Q ⇒
F F T
F T T
T F F
T T T

Cristina Baroglio

5 1

P⇔O

Т

F

F

Τ

Cristina Baroglio

Esempio: background knowledge proposizionale

Spiegazione dell'implicazione

R1) Piove ⇒ Atmosfera_umida (¬Piove ∨ Atmosfera_umida)

Piove	Atmosfera_umida	\Rightarrow
Τ	T	Τ
Τ	F	F
F	T	Τ
F	F	Τ

Serve per catturare quelle situazioni in cui il conseguente è vero ogni volta che lo è l'antecedente

Altri tipi di implicazione

Tanti tipi di implicazione

- Esistono molti tipi di implicazione
- L' implicazione logica è un tipo di relazione che dipende dalle leggi della logica (non dipende dal significato delle parole)
- Altri tipi di implicazione dipendono dal significato delle parole:
 - Fido è un cane → fido è un mammifero
 - John ha vinto la partita → John ha giocato la partita
 - John è stato condannato per furto → il furto è un crimine

- Esistono molti tipi di implicazione
- L' implicazione logica è un tipo di relazione che dipende dalle leggi della logica (non dipende dal significato delle parole)
- Altri tipi di implicazione dipendono dal significato delle parole:
 - Fido è un cane → fido è un mammifero ragionamento ontologico
 - John ha vinto la partita → John ha giocato la partita ragionamento temporale
 - John è stato condannato per furto → il furto è un crimine ragionamento causale

Cristina Baroglio

5 5

Cristina Baroglio

E [2

L'implicazione non è una relazione causale

Biimplicazione

Esempi:

l'implicazione può essere vera in casi poco intuitivi perché istintivamente le attribuiamo una valenza causale, quindi ci sembra sensato:

piove ⇒ strada bagnata

Mentre ci sembra assurdo:

Torino è in Lombardia ⇒ Giulio Cesare governò Roma

Invece questa implicazione è vera perché la premessa è falsa

P⇔O

Viene anche letta "se e solo se" perché è vera quando P e Q hanno lo stesso valore

Conseguenza logica?

Theorem Proving: $KB \models P$?

Come dimostrare che KB = P?

1) Model Checking:

- Enumero i possibili modelli
- Seleziono quelli in cui KB è vera
- Verifico che in tutti questi P sia vera
- **Costoso**: dati N simboli proposizionali esistono 2^N modelli

2) Theorem proving:

 Permette di usare <u>regole di inferenza</u> per cercare una derivazione, senza costruire i modelli (più efficiente perché <u>ignora le</u> <u>proposizioni irrilevanti</u>, che possono essere numerose)

Cristina Baroglio

5 9

• È possibile grazie a due risultati fondamentali:

- Teorema di deduzione
 permette di rispondere vero se si dimostra l'equivalenza
 (KB ⇒ P) ≡ True
- Dimostrazione per refutazione
 permette di rispondere vero se si dimostra l'equivalenza
 (KB ∧ ¬P) ≡ False

Cristina Baroglio

6

Teorema di deduzione

Date due formule R e Q, (R = Q) se e solo se $(R \Rightarrow Q)$ è valida

- cioè: "Q è conseguenza logica di R" **se e solo se** "R implica Q" è valida (cioè è una tautologia)
- Quindi per verificare che KB ⊨ P:
 - 1) Posso dimostrare che KB ⇒ P è una *formula valida*, cioè vera in ogni modello, enumerando i modelli (costoso)
 - 2) Equivalentemente, per definizione di tautologia, posso dimostrare per inferenza sintattica (cioè manipolando la forma delle formule, senza costruire i modelli) che (KB ⇒ P) ≡ True
 - qual è il procedimento?

Validità e soddisfacibilità

- Validità e soddisfacibilità sono concetti collegati dalla negazione, in particolare:
 - A è valida se e solo se ¬ A è insoddisfacibile
 - A è soddisfacibile se e solo se ¬ A non è valida

Dimostreremo la validità (1) applicando la negazione e (2) dimostrando l'insoddisfacibilità della formula ottenuta

- $(R \Rightarrow Q)$ equivale a $(\neg R \lor Q)$
- negata diventa ¬ (¬ R ∨ Q)
- che è equivalente a (R ∧ ¬ Q) per le leggi di De Morgan

Dimostrazione per refutazione

Date due formule R e Q, $(R \vdash Q)$ se e solo se $(R \land \neg Q)$ è insoddisfacibile

- È stata ottenuta ricordando che una contraddizione è la negazione di una tautologia
- Corrisponde a una dimostrazione per refutazione (o per assurdo o per contraddizione):

Per verificare che KB = P:

- 1) Assumo (per assurdo) ¬ P
- 2) dimostro che KB $\land \neg P$ è *insoddisfacibile*, cioè che $\neg P$ è in contraddizione con gli assiomi noti, cioè che partendo da KB $\land \neg P$ si dimostra False
- 3) La dimostrazione è del tutto analoga a una ricerca in uno spazio degli stati

Cristina Baroglio

6 3

Inferenza e dimostrazioni

- Dalle premesse, applicare una sequenza di passi per raggiungere una determinata conclusione
- Formulazione come problema di ricerca:
 - Stato iniziale: background knowledge
 - Azioni: regole di inferenza
 - Goal: stato che contiene la formula da dimostrare
- Importante: ci focalizziamo su logiche monotóne, cioè tali che:
 - Se (KB \models P) allora (KB \land Q \models P) cioè l'aggiunta di informazione (Q) non invalida mai le conclusioni precedenti, in altri termini l'insieme delle formule conseguenti può solo crescere con l'aggiunta di informazione

Cristina Baroglio

Regole di inferenza

· Abbiamo già citato modus ponens ed eliminazione dei congiunti. Altre regole di inferenza sono date dalle seguenti equivalenze logiche:

(α ∨ β)	≡	(β ∨ α)	Commutatività v
(α∧β)	=	(β∧α)	Commutatività ∧
$((\alpha \wedge \beta) \wedge \gamma)$	=	$(\alpha \wedge (\beta \wedge \gamma))$	Associatività ∧
$((\alpha \vee \beta) \vee \gamma)$	=	$(\alpha \vee (\beta \vee \gamma))$	Associatività v
$\neg(\neg\alpha)$	≡	α	Elim. doppio negato
$(\alpha \Rightarrow \beta)$	=	$(\neg \beta \Rightarrow \neg \alpha)$	contrapposizione
$(\alpha \Rightarrow \beta)$	≡	$(\neg \alpha \lor \beta)$	Elim. implicazione
$\neg(\alpha \land \beta)$	=	$(\neg \alpha \lor \neg \beta)$	De Morgan
$\neg(\alpha \lor \beta)$	=	$(\neg \alpha \land \neg \beta)$	De Morgan
(α∧(β∨γ))	=	$((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$	distributività
$(\alpha \vee (\beta \wedge \gamma))$	=	$((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$	distributività
$(\alpha \Leftrightarrow \beta)$	=	$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$	Elim. bicondizionale
Cristina Baroglio 6			

Correttezza e completezza

- La dimostrazione avviene coniugando:
 - 1) un algoritmo di inferenza
 - 2) e un insieme di regole di inferenza
- L' insieme di tutte le regole di inferenza viste è corretto (derivano solo conseguenze vere) e completo (deriva tutte le conseguenze logiche)
- Sottoinsiemi di queste regole possono non riuscire a produrre tutte le inferenze lecite; in questi casi il metodo non sarà completo
 - Es. se non metto la regola del doppio negato non posso derivare: P $\vdash \neg \neg P$ (e guindi che $P \vDash \neg \neg P$)

Regola di risoluzione

Regola di risoluzione (o Resolution)

- Risoluzione:
 - regola di inferenza che
 - unita a qualsiasi algoritmo di ricerca completo (cioè tale per cui se esistono soluzioni ne trova una)
 - produce un algoritmo di inferenza corretto (cioè tale per cui se KB ⊢ P allora KB ⊨ P) e completo (cioè tale per cui se KB ⊨ P allora KB ⊢ P)

- La resolution permette di realizzare dimostrazioni per refutazione sia in logica proposizionale che in logica del prim' ordine
- Regola di risoluzione:

Cristina Baroglio

6 7

Cristina Baroglio

68

Resolution

• Regola di resolution:

NB: i due letterali P, e Q, sono complementari (uno è la negazione dell'altro)

La formula derivata è detta **resolvent**, in essa *ogni letterale* compare una volta sola

Tutte le formule convolte sono clausole, cioè sono disgiunzioni di letterali

Resolution

• Regola di resolution:

NB: i due letterali P, e Q, sono complementari (uno è la negazione dell'altro)

$$\frac{P_{_{1}} \vee P_{_{2}} \vee \ldots \vee P_{_{i-1}} \vee P_{_{i}} \vee P_{_{i+1}} \vee \ldots \vee P_{_{n}} \qquad Q_{_{1}} \vee Q_{_{2}} \vee \ldots \vee Q_{_{j-1}} \vee Q_{_{j}} \vee Q_{_{j+1}} \vee \ldots \vee Q_{_{m}}}{P_{_{1}} \vee P_{_{2}} \vee \ldots \vee P_{_{i-1}} \vee P_{_{i+1}} \vee \ldots \vee P_{_{n}} \vee Q_{_{1}} \vee Q_{_{2}} \vee \ldots \vee Q_{_{j-1}} \vee Q_{_{j+1}} \vee \ldots \vee Q_{_{m}}}$$

La formula derivata è detta **resolvent**, in essa *ogni letterale* compare una volta sola (**FATTORIZZAZIONE**), esempio:

A v A diventa A

Esempio

Relazione con il modus ponens

Cristina Baroglio

7 1

Cristina Baroglio

72

Agente guidato dalla conoscenza e inferenza

Prerequisito: KB in Conjunctive Normal Form

- 2. La KB viene aggiornata con l'aggiunta di fatti che dipendono dalla "percezione" e dalle "azioni" eseguite
- 3. Ask interroga la KB per ottenere l'azione da eseguire: questa richiesta attiva un processo di inferenza in cui la query, negata, viene aggiunta alla KB e, applicando iterativamente la resolution, viene ottenuta la risposta

Formule proposizionali e clausole

Esempi e controesempi

CNF: conjunctive normal form
 data una qualsiasi formula proposizionale esiste una
 congiunzione di clausole ad essa equivalente

GRAMMATICA DELLE CLAUSOLE

- $^{\circ}$ CNFsentence \rightarrow Clause $\wedge ... \wedge$ Clause
- Clause → Literal ∨ ... ∨ Literal
- Literal → Symbol | ¬Symbol
- Symbol $\rightarrow P | Q | ...$

• $\neg A \wedge (B \vee C)$

- $(A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- $A \vee B$
- \bullet $A \wedge B$

Clausole

• $\neg (B \lor C)$

- $(A \wedge B) \vee C$
- $A \wedge (B \vee (D \wedge E))$.

Formule proposizionali che sembrano ma non sono clausole

Cristina Baroglio

7 5

Cristina Baroglio

https://en.wikipedia.org/wiki/Conjunctive_normal_form

Formule proposizionali e clausole

Algoritmo di traduzione in clausole

- 1) Eliminare la biimplicazione: $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$
- 2) Eliminare l'implicazione: $(\neg \alpha \lor \beta)$
- 3) Portare il not all'interno (De Morgan ed eliminazione della doppia negazione):
- $(\neg \alpha \lor \neg \beta)$ oppure $(\neg \alpha \land \neg \beta)$
- α
- 1) Distribuire l'or sull'and dove possibile: $((\alpha \lor \beta) \land (\alpha \lor \gamma))$

Formule proposizionali e clausole

Algoritmo di traduzione in clausole

- 1) Eliminare la biimplicazione
- 2) Eliminare l'implicazione
- 3) Portare il not all'interno (De Morgan ed eliminazione della doppia negazione)
- 4) Distribuire l'or sull'and dove possibile

Esempio: da formule a clausole

La KB proposizionale vista tradotta in clausole:

- C1) ¬ Piove ∨ Atmosfera_umida
- C2) \neg Notte \lor Vento or Atmosfera_umida
- C3a) ¬ Atmosfera_umida ∨ Prato_bagnato
- C3b)¬ Atmosfera_umida ∨ Strada_Bagnata
- C4) ¬ Innaffiatore_on ∨ Prato_bagnato
- C5) \neg Piove \lor Ombrello_aperto
- C6) \neg Sole $\lor \neg$ Vento or Innaffiatore_on
- C7) \neg Sole $\lor \neg$ Vento \lor Atmosfera_asciutta
- C8) ¬ Sole ∨ ¬ Notte
- C10) ¬ Atmosfera asciutta ∨ ¬ Atmosfera umida

La traduzione in clausola della R8) e della R9) producono esattamente la stessa clausola (in particolare la C8)

Cristina Baroglio

79

