Homework for Linear Algebra September 29, 2024

Chengyu Zhang

Exercise 1. Total m*n matrices.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \cdots \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}}_{n}$$

Exercise 2. The given vector space has one basis element. Let it be **e** So for any $x \in V$, we can write x as a "scalar multiple" of **e**. That is, there exists a scalar α such that $x = \alpha \otimes \mathbf{e} = \mathbf{e}^{\alpha}$.

Exercise 3. Yes. Define a vector space

$$V = \{0, 1\}$$

with

$$x \oplus x' = (x + x') mod 2, x \otimes x' = (x * x') mod 2.$$

It only has two vectors(0),(1).

Exercise 4. $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4), (\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_5), (\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_6), (\mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6)$, those groups of vectors are each linear dependent. So the largest possible number is 3.

Exercise 5. (i)

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 + 5x_4 + 1x_5 = 0 \\ x_2 + x_4 = 0 \end{cases} \rightarrow \begin{cases} 2x_1 + 3x_3 + 2x_4 + 1x_5 = 0 \\ x_2 + x_4 = 0 \end{cases}$$

$$\mathbf{N}(A) = span \left\{ \begin{bmatrix} -2\\0\\1\\0\\0 \end{bmatrix} \begin{bmatrix} -2\\-1\\0\\2\\0 \end{bmatrix} \begin{bmatrix} -1\\0\\0\\2\\2 \end{bmatrix} \right\}, \mathbf{C}(A) = span \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$$

(ii)

$$\mathbf{N}(A) = span \left\{ \begin{bmatrix} 1\\0\\0\\2\\1 \end{bmatrix} \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}, \mathbf{C}(A) = span \left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\0\\2\\1 \end{bmatrix} \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix} \right\}$$

The null spaces and column spaces are written as a span of their basis. So the vectors above are their basis.

Exercise 6.

$$\begin{cases} x_1 + (1-k)x_2 + (1-k)x_3 + (1-k)x_4 = 0 \\ x_2 + (1-k)x_3 + (1-k)x_4 = 0 \\ x_3 + (1-k)x_4 = 0 \end{cases} \rightarrow \begin{cases} x_1 - kx_2 = 0 \\ x_2 - kx_3 = 0 \\ x_3 + (1-k)x_4 = 0 \end{cases}$$
$$-kx_1 - kx_2 - kx_3 + (1-k)x_4 = 0$$
$$-kx_1 - kx_2 - kx_3 + (1-k)x_4 = 0$$
$$\rightarrow (k^3 + k^2 + k - 1)(1 - k)x_4 = 0$$

If k=1, the equation system will have infinite many solutions. So the vectors are linear dependent.

When $k \neq 1$ the vectors are linear independent.

Exercise 7. (i)Assume $\mathbf{v} \in span(S_1)$, \mathbf{v} can be expressed by linear combination of vectors in span(S1). Since $S_1 \subseteq S_2$, $\mathbf{v} \in S_2$. So \mathbf{v} can be written in a linear combination form of vectors in $span(S_2)$, which is just how $span(S_2)$ is defined.

So every vector in $span(S_1)$ is in $span(S_2)$. $span(S_1) \subseteq span(S_2)$.

(ii)If $\operatorname{span}(S_1) \neq \operatorname{span}(\operatorname{span}(S_2))$, it means that $\operatorname{span}(S_1)$ isn't the SMALL-EST subspace of V containing S_1 . Contradict!

(iii) If
$$S_1 \subseteq \operatorname{span}(S_2)$$
, so $\operatorname{span}(S_1) \subseteq S_1 \subseteq \operatorname{span}(S_2)$

Exercise 8. (i) S_1 can be represented by $span(S_1)$. If $span(S_1) \subseteq span(S_2)$. Every $\mathbf{v} \in S_1$ can be represented by $span(S_2)$. So S_1 can be represented by S_2 , if and only if $span(S_1) \subseteq span(S_2)$.

- (ii) If S_1 can be represented by S_2 , then all the $v \in span(S_1) \subseteq S_1$ can also be represented by $span(S_2)$. Because all $\mathbf{v} \in S$ can be represented by $span(S_1)$, so it can be represented by $span(S_2)$. So S can be represented by S_2 .
- (iii) If \mathbf{v} can be represented by $S \setminus \mathbf{v}$, then $\mathbf{v} \notin span(S)$. Because any vector in span(S) cannot be represented by other vectors in span(S). So we have

$$span(S \setminus \mathbf{v}) = span(S)$$