Magnetic Field

Pierls' substitution

Hoppings are modified as, $t_{ij}
ightarrow t_{ij} e^{irac{e}{\hbar} \int_i^j ec{A}\cdot dec{r}}$

$$ec{B}=B\hat{z}$$
 . We choose gauges $ec{A}_1=(-By,0,0)$ and $ec{A}_2=(0,Bx,0)$.

Since the gauge choice breaks translational symmetry, we use *Open Boundary Conditions*.

Set
$$e = \hbar = 1$$
.

Tight binding on a 2D square lattice with a single orbital per site

$$h(k_x,k_y)=cos(k_x)+cos(k_y)$$

$$B = 0.5$$

We can plot a histogram to see the density of states.

The eigenvalues are same upto 10^{-14} order for both the gauges.

The spacing increases with magnetic field

Weyl Semimetals

$$h=t\sin k_x\sigma_x+t\sin k_y\sigma_y+\sigma_z(t_1(\cos k_x+\cos k_y)-m+\cos(k_z))$$

First we fix $k_z=\frac{\pi}{2}$, so that there is no hopping along z (Chern insulator). Also, $t=t_1=m=1$.

For zero magnetic field

For B=1, the spectrum shifts towards negative energies, and there are Landau levels.

If we plot the energy eigenvalues as function of k_z , we get a plot like the following.

Chern insulator and Quasicrystal

Thin quasicrystal strip

We fix the same parameters as in the previous Hamiltonian, and turn off hopping along z. For a thin quasicrystal strip, the Landau levels are not very prominent.

$$y_{up} = rac{2}{\sqrt{5}+1}(x-1)+4$$

$$y_{up} = rac{2}{\sqrt{5}+1}(x-1)+4 \ y_{down} = rac{2}{\sqrt{5}+1}(x-2)+2$$

9.2% of sites are inside the quasicrtstal

Landau levels are not very prominent

Thick strip

$$y_{up} = rac{2}{\sqrt{5}+1}(x-1)+10$$

$$y_{down}=rac{2}{\sqrt{5}+1}(x-2)-4$$

