EL6751 Configuration Using SOEM under Ubuntu Linux

NuBot team, NUDT, China For RoboCup MSL Workshop 2014.11.10, Eindhoven

nubot.nudt@gmail.com

NuBot Electrical System

◆ Industrial PC

SIZE: $(W \times H \times D) 65 \times 231 \times 116 \text{ mm} (2.6" \times 9.1" \times 4.6")$;

CPU: Intel® Core™ i7, 4 Cores;

RAM: 8G, DDR3;

HDD: 60G SSD;

POWER: DC 24V.

◆ EtherCAT Terminals

• EK1100

The EtherCAT Coupler terminal which is essential.

• EL2008

Digital Output terminal for shooting control.

EL6751

Gateway terminal to bridge EtherCAT with CANOpen.

• EL3064-0010

Analog Input terminal for ball handling position detecting.

◆ Elmo motor controller

◆ EL6751 Configuration Using SOEM

- SOEM is Simple Open-source EtherCAT Master.
- The configuration of EL6751 using SOEM is quite complex!
 - Few people have configured EL6751 successfully using SOEM.

Solution:

- Generate Startup codes and configuration codes with the help of TwinCAT, which is supported by Beckhoff.
- Configure EL6751 with the codes generated above using simple functions of SOEM.
- The following is the configuration codes generation using TwinCAT

a. Open TwinCAT System Manager application

b. Create cyclic Task (necessary to give the CANopen config a cycle time)

Create Task (name is in influent)

b. Create cyclic Task (necessary to give the CANopen config a cycle time)

•Enable task and set the desired cycle time as multiple of 1ms

b. Create cyclic Task (necessary to give the CANopen config a cycle time)

Create an Input variable of BYTE type (name is in influent)

c. Configure EtherCAT network

Append EtherCAT Master functionality

c. Configure EtherCAT network

Append EK1100 coupler

c. Configure EtherCAT network

Append EL6751

Append CANopen Master functionality

Check always correct association with EL6751

 Enable MDP mapping for EL6751 (necessary to use EL6751 with non-TwinCAT masters)

Append the desired CANopen Slaves

For CANopen slaves (Layer 7): import properties from EDS

For CAN bus slaves (Layer 2): disable Layer 7

e. Configure the CANopen properties of the master

 Configure network Baud-Rate and Master CAN address, as well as other properties

 For CANopen slaves : communication properties (will be EtherCAT objects 0x8yz0)

• For CANopen slaves: PDO properties (PDO Cob-lds are automatically set according to the node address according to the CANopen rule, will be EtherCAT objects 0x8yz6 and 0x8yz8)

For CANopen slaves: start-up SDOs (will be EtherCAT objects 0x8yz3)

For CAN bus slaves: set address

For CAN bus slaves: freely choose Cob-Id of telegrams

For CAN bus slaves : add/remove telegrams

 For CAN bus slaves: freely configure multiple of BYTE for each telegram (max 8 bytes)

g. Link CANopen variable to cyclic Task (associate timing to CANopen)

h. Validate configuration

i. Read EtherCAT Start-Up list for EL6751 (final result of the configuration)

j. Read EtherCAT Init Commands for EL6751 (final result of the configuration)

