Lecture -4 Karnaugh Map

Prepared By: Asif Mahfuz

The Karnaugh Map (K-Map)

- A Karnaugh map is similar to a truth table because it presents all of the possible values of input variables and the resulting output for each value.
- The main purpose of K-Map is to simplify a Boolean expression.
- A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the minimum expression.
- The effectiveness of algebraic simplification depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on your ability to apply them.
- .The Karnaugh map, on the other hand, provides a "cookbook" method for simplification.

A 4-variable K-Map

Cell Adjacency

AND THE PART OF TH

- The cells in a Karnaugh map are arranged so that there is only a single-variable change between adjacent cells.
- Adjacency is defined by a single-variable change.
- Physically, each cell is adjacent to the cells that are immediately next to it on any of the four sides.
- A cell is not adjacent to the cells that diagonally touch any of its corners.
- The cells in the top row are adjacent to the cells in the bottom row.
- The cells in the left column is adjacent to the cells in the right column.
- This is called "wrap-around" adjacency.

Truth Table to K-Map

• From the following truth table form a K-MAP

Α	В	С	F			
0	0	0	0	AB C	0	1
0	0	1	0	00	0	n
0	1	0	1	00	U	U
0	1	1	1	01	1	1
1	0	0	1	11	0	0
1	0	1	1	11	U	U
1	1	0	0	10	1	1
1	1	1	0			

Truth Table to K-Map

• From the following truth table form a K-MAP

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

AB CD	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	1	1	1
10	1	1	0	0

Forming the Groups

- To find the minimal SOP/ simplified SOP expression we must first group the 1s that are adjacent.
- To group the 1s we should follow these rules:
 - 1. A group can contain number of cells that is only a power of $2(2^n)$, i.e. 1,2,4,8 and 16.
 - 2. Each cell in a group must be adjacent to some other cell in the group, but not all cells need to be adjacent.
 - 3. Priority is to find the group containing maximum number of adjacent cells and to find the minimum no. of groups possible keeping in accordance to rule 1 and 2.
 - 4. Each 1 in the map must be included in at least one group keeping accordance to the rules above.
 - 5. The 1s included in a group can be included in another group if the overlapping group includes ungrouped 1s keeping accordance to rules 1 to 4.

Forming the Groups

Wrap-around adjacency

Forming the Groups

• Find the optimal groups for the following K-MAPs

CD AB	00		01	11	10
00	1	0	0	0	1
01	1		1	0	1
11	1		1	0	1
10	1	7	1	1	1

CD AB	00	01	11	10
00	1	0	0	1
01	1	1	0	1
11	1	1	1	1
10	1	1	1	1

AB CD	00	01	11	10	
00	1	1	1	1	
01	0	1	1	0	
11	0	1	1	0	
10	1	1	1	1	

CD AB	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	1	1	0
10	1	0	0	1

AB CD	00	01	11	10
00	1	1	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	0	0

CD AB	00	01	11	10
00	1	0		0
01	0	1	0	1
11	X	0	1	0
10	0	1	0	1

Finding the minimal SOP Form

- After the 1s in the K-Maps are grouped, the process of minimizing the expression begins.
- For each group containing the 1s, there are variables which occur only in 1 form (complemented or uncomplemented form) form a product.
- The variables that occur in both complemented and uncomplemented forms are called contradictory variables.
- These variables are eliminated.
- For a 3 variable K-Map:
 - A 1-cell group yields a 3-variable product form.
 - A 2-cell group yields a 2-variable product form.
 - A 4-cell group yields a 1-variable product form.
 - An 8-cell group yields a value of 1 for the expression.
- For a 4 variable K-Map:
 - A 1-cell group yields a 4-variable product form.
 - A 2-cell group yields a 3-variable product form.
 - A 4-cell group yields a 2-variable product form.
 - An 8-cell group yields a 1-variable product form.
 - o A 16-cell group yields a value of 1 for the expression.

Finding the minimal SOP Form

Example 1:

- First, we do the grouping.
- Then we find the products for each of the groups

CD AB	00	01	11	10	
00	1	0	0	1	
01	1	1	0	1	
11	1	1	0	1	
10	1	1	1	1	

		_			
			1		
AB CD	00	01/	11	10	_
00	1	0	0	<u>h</u>	→ D
01	1	1	0	1	
11	1	1	0	1	
10	4	1	1	P	

$$\mathbf{F} = \mathbf{A}\overline{\mathbf{B}} + \mathbf{B}\overline{\mathbf{C}} + \overline{\mathbf{D}}$$

Finding the minimal SOP Form

• Find the functions for the following K-MAPs

AB CD	00	01	11	10
00	1	0	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	1	1

CD AB	00	01	11	10	
00	1	0	0	1	
01 1		1	0	1	
11	1	1	1	1	
10	10 1		1	1	

AB CD	00	01	11	10
00	1	1	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

CD AB	00	01	11	10	
00	1	0	0	1	
01	0	1	1	0	
11	0	1	1	0	
10	10 1		0	1	

AB CD	00	01	11	10	
00	1	1	0	0	
01	01 1		1	1	
11	0	0	0	0	
10	10 1		0	0	

CD AB	00	01	11	10
00	1	0	1	0
01	01 0		0	1
11	1	0	1	0
10	0	1	0	1

K-Map with Don't Care

- Sometimes situation arises where we do not require all the input combinations, or they
 are simply not allowed.
- These are some combination that will never occur.
- These combinations can be treated as don't care.
- A don't care combination can be treated as 1 or 0, as per our simplification requirements.

Application of K-Map with Don't Care

THE PROPERTY OF THE PROPERTY O

- An application where we need to use don't cares is the design of decoder for 7 segment displays.
- There are two types of 7-segment displays, namely Common Cathode and Common Anode.
- A decoder is needed to display the digits on a 7-segment display.
- We will design the decoder based on a common cathode 7-segment display.

Application of K-Map with Don't Care

Truth-table for 7-segment display decoder logical circuit.

Display Digits							
0 : 2 3 4							
5	O		8	9			

Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

Problem Set for K-Map

- 1. For the function $F(A, B, C) = \sum (1,2,3,6)$
 - a) Construct the truth table.
 - b) Find the standard POS.
 - c) Find the simplified SOP using KMAP.
 - d) Find the simplified POS using KMAP.
 - e) Implement the simplified SOP using basic logic gates.
 - f) Implement the simplified SOP using universal NAND gates only.
- 2. For the function $F(A, B, C) = \prod (2,3,5,7)$
 - a) Construct the truth table.
 - b) Find the standard SOP.
 - c) Find the simplified SOP using KMAP.
 - d) Find the simplified POS using KMAP.
 - e) Implement the simplified POS using basic logic gates.
 - f) Implement the simplified SOP using universal NOR gates only.
- 3. For the function $F(A, B, C, D) = \sum (1,3,8,10)$ and d(A, B, C, D) = (11,12,13,14,15) where, d(A,B,C,D) represents the don't care condition.
 - a) Construct the truth table.
 - b) Find the simplified SOP using KMAP.
 - c) Find the simplified POS using KMAP.
 - d) Implement the simplified POS using basic logic gates.
 - e) Implement the simplified SOP using universal NAND gates only.

Problem Set for K-Map

- 4. For the following function $F(A, B, C, D) = \prod (2,4,7,9,11)$ and d(A, B, C, D) = (1,3,12,13,14,15) where d(A,B,C,D) represents the don't care conditions.
 - a) Construct the truth table.
 - b) Find the simplified SOP using KMAP.
 - c) Find the simplified POS using KMAP.
 - d) Implement the simplified SOP using basic logic gates.
 - e) Implement the simplified POS using universal NOR gates only.

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You