Übung 1: OLS-Regression für Autopreise

- 1. Geben Sie für die folgenden Merkmale das jeweilige Skalenniveau und mögliche Merkmalausprägungen. Unterscheiden Sie die Merkmale ferner in diskrete und stetige und diskutieren Sie dabei Probleme der Messgenauigkeit.
 - a. Gewicht
 - b. Akademischer Grad (Hochschulabschluss)
 - c. Augenfarbe
 - d. Geschlecht
 - e. Nettoeinkommen in CHF

	Merkmal	Ausprägungen	Skalenniveau	Diskret?
а				
b				
С				
d				
е				

- 2. Welche Faktoren bestimmen den Verkaufspreis eines Gebrauchtautos. Welche Vorzeichen erwarten Sie?
- 3. Welche sind davon qualitative Faktoren?
- 4. Erklären Sie was ein Streudiagramm ist.
- 5. Erstellen Sie folgende Streudiagramme
 - i. Preis gegen Alter
 - ii. Preis gegen Kilometerstand

Hinweis: Y-Achsen-Variable: Preis

- 6. Was sagen diese Streudiagramme über den statistischen Zusammenhang zwischen den Autopries und den ausgewählten Variablen (Alter, KM) aus?
- 7. Was sind der mittlere Kilometerstand, Preis und Alter von Gebrauchtautos in dieser Stichprobe?

gretl Hauptfenster: Ansicht / Grundlegende Statistiken

•		*		
	arith. Mittel	Median	Minimum	Maximum
Preis	16140,	16900,	6700,0	28400,
Alter	2,6766	2,5300	0,17000	5,4900
KM	53368,	35900,	1500,0	1,8800e+005
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
Preis	4029,8	0,24968	0,24267	0,43224
Alter	1,3761	0,51412	0,15308	-0,72132
KM	42556,	0,79742	1,0238	0,45949

- 8. Interpretieren Sie den Median für den Regressor "Kilometerstand" KM.
- 9. Welche wichtige Information gibt die Standardabweichung im Allgemeinen?
- 10. Was ist der Vorteil der Standardabweichung gegenüber der Varianz als Streuungsmass?
- 11. Welche Variable weist die geringste und höchste Standard Abweichung auf? Was können Sie über die Repräsentativität des Mittelwertes dieser Variablen sagen?
- 12. Interpretieren Sie die Standardabweichung für den Regressor Alter.
- 13. Erklären Sie was ein Histogramm ist.
- 14. Erstellen Sie das Histogramm für die Variable Autopreis

- 15. Welche ist die modale Klasse dieses Histogramms?
- 16. Erklären Sie den Hauptvorteil des Korrelationskoeffizienten gegenüber der Kovarianz.
- 17. Welche Korrelationen erwarten Sie zwischen den Variablen (Preis, Alter, KM)?
- 18. Analysieren Sie die Korrelation zwischen Preis, KM und Alter mittels gretl. Lassen sich Ihre Erwartungen bestätigen? Welches Variablen-Paar weist die höchste Korrelation auf? Ist dieses Ergebnis plausibel?

CAS Datenanalyse / Ökonometrie / Übung 1 / Dr. Raúl Gimeno

gretl Hauptfenster: Ansicht / Korrelationsmatrix

- 19. Erklären Sie kurz was der Variationskoeffizient ist.
- 20. Was ist der Vorteil des Variationskoeffizienten gegenüber der Standardabweichung?
- 21. Welche Variable weist den grössten Variationskoeffizienten auf? Wie interpretieren Sie diese Zahl?
- 22. Definieren Sie zwei neuen Variablen:
 - Preis100: gibt den Preis in Einheiten von CHF 100 an.
 - KM1000: gibt die km-Zahl in Einheiten von 1000 km an. gretl Hauptfenster: Hinzufügen / Definiere neue Variable Beispiel: KM1000 = KM / 1000

23. Vergleichen Sie die Standardabweichungen und Variationskoeffizienten für folgende Grössen: Preis – Preis100 und KM – KM1000

	Std. Abw.	Var'koeff.
Preis	4029,8	0,24968
Preis100	40,298	0,24968
KM	42556,	0,79742
KM1000	42,556	0,79742

24. Erstellen Sie einen Box-Plot für die Variable Autopreis. Welche Informationen vermitteln einen Box-Plot?

- Die untere bzw. obere Grenze der Box ist durch das untere bzw. obere _____gegeben.
- Die Länge der Box entspricht
- Die Linie innerhalb der Box gibt die Lage _____ wieder.
- Das grüne Kreuz innerhalb der Box entspricht _____
- 25. Erklären Sie was Schiefe ist.
- 26. Erklären Sie was Kurtosis (Wölbung) ist. Wie ist der Exzess definiert?
- 27. Analysieren Sie kurz die Wölbung und Kurtosis für folgende Variablen: Preis, Preis100, KM und KM1000

	Schiefe	Überwölbung
Preis	0,24267	0,43224
KM	1,0238	0,45949
Preis100	0,24267	0,43224
KM1000	1,0238	0,45949

28. Schätzen Sie folgende Regressionsmodelle:

```
Modell 1: Preis = \beta_1 + \beta_2Alter + u
```


	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	-15712,1	6664,	31	-2,358	0,0217	**
Alter	25809,2	2218,	17	11,64	6,53e-017	***
Mittel d. abh	. Var.	53367,72	Stdak	ow. d. abh. V	ar. 4255	6,40
Summe d. quad	i. Res.	3,30e+10	Stdfe	hler d. Regr	ess. 2364	3,60
R-Quadrat		0,696472	Korr	igiertes R-Qu	adrat 0,69	1328
F(1, 59)		135,3810	P-Wes	ct(F)	6,53	e-17
Log-Likelihoo	od -	699,8602	Akail	ce-Kriterium	1403	,720
Schwarz-Krite	rium	1407,942	Hanna	n-Quinn-Krit	erium 1405	,375

Model 1

	Koeffizi	ent Std	fehler	t-Quotien	nt p-Wert	
const	23183,6	377	,445	61,42	1,76e-054	***
Alter	-2202,77	217	,994	-10,10	2,11e-014	***
KM	-0,021	5039 0	,00704890	-3,051	0,0034	***
Mittel d.	abh. Var.	16140,16	Stdabw.	d. abh. Va	r. 4029,83	5
Summe d. qu	uad. Res.	95049375	Stdfehl	er d. Regre	280,14	9
R-Quadrat		0,902451	Korrigi	ertes R-Qua	drat 0,89908	7
F(2, 58)		268,2860	P-Wert (F)	4,87e-3	0
Log-Likelil	nood	-521,4558	Akaike-	Kriterium	1048,91	2
Schwarz-Kr	iterium	1055,244	Hannan-	Quinn-Krite	rium 1051,39	3

Model 2

- 29. Für was steht der Störterm u in einem Regressionsmodell? Warum sind die Regressionskoeffizienten mit griechischen Buchstaben bezeichnet?
- 30. Interpretieren Sie den Regressionskoeffizienten b2 für beide Modelle.

```
Modell 1: Preis = 23^{\circ}521.5 - 2^{\circ}757.77 Alter
```

- 31. Warum ist ein Unterschied für den Schätzer b2 zwischen beiden Modellen zu vermerken?
- 32. Interpretieren Sie den Regressionskoeffizienten b3 im Modell 2.
- 33. Sind die Regressionskoeffizienten im Modell 2 statistisch signifikant? Betrachten Sie dabei jeweils die Sternen, die t-Werte und p-Werte.

	Koeffizient	Stdfehler	t-Quotient	p-Wert	7
const	23183,6	377,445	61,42	1,76e-054 ***	
Alter	-2202,77	217,994	-10,10	2,11e-014 ***	
KM	-0,0215039	0,00704890	-3,051	0,0034 ***	

- 34. Interpretieren Sie den p-Wert für die Variable KM
- 35. Ermitteln Sie den erwarteten Preis eines Gebrauchtautos mit einem Alter von 4 Jahren und 50'000 Km.
- 36. Schätzen Sie das neue Modell 3: Preis = $\beta_1^* + \beta_2^*$ Alter + β_3^* KM1000 + u*

37. Interpretieren Sie den Koeffizienten b₃ im Modell 3.

38. Prüfen Sie den Zusammenhang zwischen b_3 und b_3^* .

Model 3

39. Schätzen Sie das neue Modell 4: Preis100 = β_1^* + β_2^* Alter + β_3^* KM + u*

Model 4

	Koeffizi	ent	Std	fehler	t-Quotient	p-Wert	
const	231,836		3,774	45	61,42	1,76e-054	***
Alter	-22,0277		2,179	94	-10,10	2,11e-014	***
KM	-0,00021	5039	7,048	90e-05	-3,051	0,0034	***
Mittel d.	abh. Var.	161,	4016	Stdabw	d. abh. Var	. 40,298	35
Summe d. q	uad. Res.	9504	937	Stdfehl	ler d. Regres:	s. 12,801	49
R-Quadrat		0,90	2451	Korrigi	iertes R-Quad	rat 0,8990	87
F(2, 58)		268,	2860	P-Wert	(F)	4,87e-	30
Log-Likeli	hood	-240,	5404	Akaike-	-Kriterium	487,08	80
Schwarz-Kr	iterium	493,	4134	Hannan-	-Ouinn-Kriter:	ium 489,56	26

Modell 2: Preis = 23'183.6 -2'202.77 Alter - 0.0215 KM

Modell 4: Preis100 = 231.836 -22.0277 Alter - 0.0002150 KM

- 40. Interpretieren Sie die Koeffizienten b2 und b3 im Modell 4.
- 41. Prüfen Sie den Zusammenhang zwischen b_i und b_i^* für i = 1, 2,3.
- 42. Schätzen Sie das neue Modell 5: Preis100 = β_1' + β_2' Alter + β_3' KM1000 + u'

Abhängige \	Variable: Prei	s100				
	Koeffizient	Stdfe	hler t-Quo	tient	p-Wert	
const	231,836	3,7744	5 61,	42	1,76e-054	***
Alter	-22,0277	2,1799	4 -10,	10	2,11e-014	***
KM1000	-0,215039	0,0704	890 -3,	051	0,0034	***
Mittel d. a	abh. Var.	161,4016	Stdabw. d.	abh. Va	r. 40,2	9835
Summe d. qu	uad. Res.	9504,937	Stdfehler o	i. Regres	ss. 12,8	0149
R-Quadrat		0,902451	Korrigierte	s R-Quad	drat 0,89	9087
F(2, 58)		268,2860	P-Wert(F)		4,87	e-30
Log-Likelih	nood -	240,5404	Akaike-Krit	erium	487,	0808
Schwarz-Kri	iterium	493,4134	Hannan-Quir	n-Krite	rium 489,	5626

Model 5

- 43. Interpretieren Sie den Regressionskoeffizienten b_3' .
- 44. Prüfen Sie den Zusammenhang zwischen b_i und b'_i für i = 1,2,3.

Modell 2: Preis = 23'183.6 -2'202.77 Alter - 0.0215 KM

Modell 5: Preis100 = 231.836 -22.027 Alter - 0.215 KM1000

- 45. Erklären Sie kurz was das Bestimmtheitsmass ist.
- 46. Interpretieren Sie das Bestimmtheitsmass für beide Extremwerte $R^2 = 0$ und $R^2 = 1$. Was ist die Implikation für die RSS und ESS?

- 47. Interpretieren Sie das Bestimmtheitsmass für Modell 2. Weist dieses Modell eine gute Anpassungsgüte auf?
- 48. Prüfen Sie die Relation für die Einfachregression 1: $r_{xy} = \pm \sqrt{R^2}$
- 49. Welche Grenzen besitzt das Bestimmtheitsmass?
- 50. Hat sich das Bestimmtheitsmass für die verschiedenen Skalierungen geändert?
- 51. Vergleichen Sie die adjustierten R²-Werte für beide Modelle 1 und 2. Welches Modell würden Sie anhand dieses Kriteriums vorziehen?

	Modell 1: Alter	Modell 2: Alter und KM
R^2	0.886	0.902
Adjust. R ²	0.884	0.899

- 52. Erklären Sie kurz warum R² durch das Hinzufügen eines weiteren Regressors nicht geringer wird.
- 53. Was ist der Vorteil des adjustierten \overline{R}^2 gegenüber R²?
- 54. Erklären Sie kurz was der Strafterm ist und wie er funktioniert.
- 55. Erstellen Sie den Residuengraph für Regressionsmodell 2: gretl Output-Fenster: Graphen / Residuengraph

- ii. Hohe Volatilität der Residuen bei geringem Alter (wenn Auto fast neu ist)
- iii. Zunehmende Streuung der Residuen bei zunehmender Preis
- 56. Erklären Sie kurz was ein QQ-Plot (Quantil-Quantil Plot) ist. gretl Output-Fenster: Graphen / Residuen QQ-Graph

57. Erstellen Sie ein QQ-Plot mittels gretl.

gretl Output-Fenster: Graphen / Residuen QQ-Graph

Wenn die Residuen
normalverteilt sind, sollten sie
auf einer Gerade liegen.

58. Testen Sie die Normalität der Residuen des Modells B. gretl Output-Fenster: Tests / Normalität der Residuen

59. Welche Kritik können Sie an diesem Model üben?