# Application of Quantum Computation to High Energy Physics

Quantum Error Correction –

# Masazumi Honda

(本多正純)













# Plan of the intensive lectures

## Day 1

- Lecture 1: introduction, basics of quantum computation
- Lecture 2: quantum simulation of spin system
- Hands-on 1: Basics on IBM's qiskit

## Day 2

- Lecture 3: quantum field theory (QFT)
- Lecture 4: QFT on quantum computer
- Hands-on 2: Time evolution of spin system

## Day 3

- Lecture 5: quantum error correction
- Lecture 6: some advanced topics, future prospects
- Hands-on 3: Constructing ground state of spin system

# <u>Plan</u>

- 1. Basics on quantum error correction
- 2. Classical linear code

3. A popular quantum code ("CSS code")

4. Summary

# Classical error

Suppose we'd like to send a bit:



But we have "error" in probability p due to noise:



How can we correct the "error"?

## Classical error correction: "Majority voting"



(1) Duplicate the bit (encoding):

$$0 \to 000$$
,  $1 \to 111$ 

$$1 \rightarrow 111$$

2 Error detection & correction by "majority voting":

$$001 \to 000$$
,  $011 \to 111$ , etc...

(3) But it fails if <sup>∃</sup>multiple "errors":

$$P_{\text{failed}} = 3p^2(1-p) + p^3$$
 (improved if  $p < 1/2$ )

# Quantum errors

$$|\psi\rangle$$
 — Error —  $|\psi'\rangle$ 

#### Differences from classical error:

- Errors are not only bit flips
  - can be any unitary operators (continuous)
- Measurement destroys states
  - projected to classical number (or smaller vector)
- No-cloning theorem
  - impossible to make copies

Nevertheless,

<sup>∃</sup> systematic ways to correct errors

## Classification of errors

## Let's consider single qubit + environment

Error: 
$$\begin{cases} |0\rangle \otimes |0\rangle_E \rightarrow |0\rangle \otimes |e_{00}\rangle_E + |1\rangle \otimes |e_{01}\rangle_E \\ |1\rangle \otimes |0\rangle_E \rightarrow |0\rangle \otimes |e_{10}\rangle_E + |1\rangle \otimes |e_{11}\rangle_E \end{cases}$$
For any state  $|\psi\rangle \equiv c_0|0\rangle + c_1|1\rangle$ , 
$$|\psi\rangle \otimes |0\rangle_E \rightarrow c_0(|0\rangle \otimes |e_{00}\rangle_E + |1\rangle \otimes |e_{01}\rangle_E) + c_1(|0\rangle \otimes |e_{10}\rangle_E + |1\rangle \otimes |e_{11}\rangle_E)$$

$$= (c_0|0\rangle + c_1|1\rangle) \otimes \frac{|e_{00}\rangle_E + |e_{11}\rangle_E}{2} + (c_0|0\rangle - c_1|1\rangle) \otimes \frac{|e_{00}\rangle_E - |e_{11}\rangle_E}{2} + (c_0|1\rangle + c_1|0\rangle) \otimes \frac{|e_{01}\rangle_E + |e_{10}\rangle_E}{2} + (c_0|1\rangle - c_1|0\rangle) \otimes \frac{|e_{01}\rangle_E - |e_{10}\rangle_E}{2}$$

$$\equiv |\psi\rangle \otimes |e_I\rangle_E + X|\psi\rangle \otimes |e_X\rangle_E + Z|\psi\rangle \otimes |e_Z\rangle_E + Y|\psi\rangle \otimes |e_I\rangle_E$$

$$= |\psi\rangle \otimes |e_I\rangle_E + X|\psi\rangle \otimes |e_X\rangle_E + Z|\psi\rangle \otimes |e_Z\rangle_E + Y|\psi\rangle \otimes |e_I\rangle_E$$

$$= |\phi\rangle \otimes |e_I\rangle_E + |\phi\rangle_E \otimes |\phi\rangle_E$$

# Classification of errors (cont'd)

## Single qubit case:

$$(Y = iXZ)$$

 $2 \times 2$  unitary matrix spanned by  $\{I, X, Z, Y\}$ 

## 2-qubit case:

4 ×4 unitary matrix spanned by  $\{I, X, Z, Y\} \otimes \{I, X, Z, Y\}$ 

## *n*-qubit case:

 $2^n \times 2^n$  unitary matrix spanned by  $\{I, X, Z, Y\}^{\otimes n}$ 

Error = Combination of bit flip & phase flip

## Quantum error correction for bit flip

#### Classical bit flip:



#### Quantum bit flip:

$$|\psi\rangle \to X|\psi\rangle$$
 w/ probability  $p$   $(c_0|0\rangle + c_1|1\rangle \to c_0|1\rangle + c_1|0\rangle)$ 

Can we extend the idea of "majority voting"?

# Step 1/3: encoding ("3-qubit bit flip code")

#### Quantum bit flip:

$$|\psi
angle 
ightarrow X|\psi
angle$$
 w/ probability  $p$ 

#### **Encoding:**

$$\begin{vmatrix} \psi \rangle & \bullet \\ |0 \rangle & \bullet \\ |0 \rangle & \bullet \\$$

$$|\psi\rangle \equiv c_0|0\rangle + c_1|1\rangle \longrightarrow c_0|000\rangle + c_1|111\rangle$$

# Step 2/3: Error detection



## **Encoding:**

$$|\psi\rangle \rightarrow |\psi_E\rangle \equiv c_0|000\rangle + c_1|111\rangle$$

## Bit flip error:

$$|\psi_E
angle 
ightarrow X_{1,2,3} |\psi_E
angle$$
 w/ probability  $p$ 

Can we detect the error w/o destroying the state?

## Step 2/3: Error detection (cont'd)



Errors can be detected by knowing "Syndrome measurements"

$$Z_1Z_2 \& Z_2Z_3$$

No error:  $(Z_1Z_2)|\psi_E\rangle = +|\psi_E\rangle$ ,  $(Z_2Z_3)|\psi_E\rangle = +|\psi_E\rangle$ 

Error on 1st:  $(Z_1Z_2)X_1|\psi_E\rangle = -X_1|\psi_E\rangle$ ,  $(Z_2Z_3)X_1|\psi_E\rangle = +X_1|\psi_E\rangle$ 

Error on 2nd:  $(Z_1Z_2)X_2|\psi_E\rangle = -X_2|\psi_E\rangle$ ,  $(Z_2Z_3)X_2|\psi_E\rangle = -X_2|\psi_E\rangle$ 

Error on 3rd:  $(Z_1Z_2)X_3|\psi_E\rangle = +X_3|\psi_E\rangle$ ,  $(Z_2Z_3)X_3|\psi_E\rangle = -X_3|\psi_E\rangle$ 

But is it possible to know them (w/o destroying the state)?

## Step 2/3: Error detection (cont'd)



#### Output on the 4th:

0 if 
$$Z_1Z_2 = +1$$
 & 1 if  $Z_1Z_2 = -1$ 

#### Output on the 5th:

0 if 
$$Z_2Z_3 = +1$$
 & 1 if  $Z_2Z_3 = -1$ 

Let's recover the information!!

## Step 3/3: Error recovery



As in the classical case, it fails if ∃ multiple "errors":

$$P_{\text{failed}} = 3p^2(1-p) + p^3$$
 (improved if  $p < 1/2$ )

# Quantum error correction for phase flip

### Phase flip:

no classical analog

$$|\psi\rangle o Z|\psi\rangle$$
 w/ probability  $p$   $(c_0|0\rangle+c_1|1\rangle o c_0|0\rangle-c_1|1\rangle)$ 

Note:

$$(|+\rangle \equiv H|0\rangle, |-\rangle \equiv H|1\rangle$$

$$Z|+\rangle = |-\rangle, \qquad Z|-\rangle = |+\rangle$$

phase flip = bit flip in the basis  $|\pm\rangle$ 

done by a slight modification of the bit flip case

# Step 1/3: encoding

Bit flip  $( |\psi\rangle \rightarrow X |\psi\rangle )$ 



$$|\psi\rangle \equiv c_0|0\rangle + c_1|1\rangle$$

$$\downarrow$$

$$c_0|000\rangle + c_1|111\rangle$$

Phase flip  $(|\psi\rangle o Z|\psi\rangle)$ 



$$|\psi\rangle \equiv c_0|0\rangle + c_1|1\rangle$$

$$\downarrow$$

$$c_0|+++\rangle + c_1|---\rangle$$

# Step 2/3: error detection

Bit flip

$$(|\psi\rangle \to X|\psi\rangle)$$

done by knowing

$$Z_1Z_2 \& Z_2Z_3$$



Phase flip

$$(|\psi\rangle \rightarrow Z|\psi\rangle)$$

done by knowing

$$X_1X_2 & X_2X_3$$



# Step 3/3: Error recovery



Similarly, it fails if <sup>∃</sup> multiple "errors":

$$P_{\text{failed}} = 3p^2(1-p) + p^3 \qquad \text{(improved if } p < 1/2\text{)}$$

## Correction against arbitrary error on single qubit

"Shor code" = a combination of the codes against bit flip & phase flip

#### **Encoding:**



$$|\psi\rangle \equiv c_0|0\rangle + c_1|1\rangle \rightarrow c_0 \frac{(|000\rangle + |111\rangle)^{\otimes 3}}{2\sqrt{2}} + c_1 \frac{(|000\rangle - |111\rangle)^{\otimes 3}}{2\sqrt{2}}$$

## Error detection & recovery in Shor code



#### Ex.1) Bit flip on qubit 1

- detection by  $Z_1Z_2 = -1$ ,  $Z_2Z_3 = +1$
- •recovery by applying  $X_1$

#### Ex.2) Phase flip on qubit 1 (the same for qubit 2 & 3 cases)

- detection by  $X_1X_2X_3X_4X_5X_6 = -1$ ,  $X_4X_5X_6X_7X_8X_9 = +1$
- •recovery by applying  $Z_1$ ,  $Z_2$  or  $Z_3$

# <u>Plan</u>

- 1. Basics on quantum error correction
- 2. Classical linear code

3. A popular quantum code ("CSS code")

4. Summary

# Classical linear code

(= a compact way to specify classical code)

## [n,k] code:

k bits

encoding

 $n \text{ bits } (k \leq n)$ 

It is specified by a  $n \times k$  "generator matrix" G:

$$k$$
-dim. vector  $G$   $n$ -dim. vector  $| \ | \ | \ |$   $k$  bits  $n$  bits

## Examples of classical linear code

• [3,1] code (the simplest majority voting)

encoding:  $0 \rightarrow 000$ ,  $1 \rightarrow 111$ 

generator: 
$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
  $G(x = 0,1) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$ 

• [6,2] code

## Examples of classical linear code

• [3,1] code (the simplest majority voting)

encoding:  $0 \rightarrow 000$ ,  $1 \rightarrow 111$ 

generator: 
$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
  $G(x = 0,1) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$ 

• [6,2] code

encoding:  $00 \to 000000$ ,  $01 \to 000111$ , etc...

generator: 
$$G = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$
  $\longrightarrow$   $G \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x \\ x \\ x \\ y \\ y \\ y \end{pmatrix}$ 

## An equivalent definition by "parity check matrix"

#### Generator G ( $n \times k$ matrix)

consists of k linearly independent n-dim. vectors :

$$G = (\vec{g}_1, \vec{g}_2, \cdots, \vec{g}_k)$$

Parity check matrix H ( $n - k \times n$  matrix)

consists of n-k linearly indep. n-dim. vectors orthogonal to  $\vec{g}$ 's:

$$H = \begin{pmatrix} \overrightarrow{h}_1^T \\ \overrightarrow{h}_2^T \\ \vdots \\ \overrightarrow{h}_{n-k}^T \end{pmatrix} \quad \text{w/} \quad \overrightarrow{h}_i \cdot \overrightarrow{g}_j = 0 \text{ (mod 2)}$$

Equivalently,

$$HG = \mathbf{0}_{(n-k)\times k} \pmod{2}$$

## Parity check matrix & error detection

Suppose we encode k-bits into n-bits:

encoding 
$$x$$
 (k-bits)  $y = Gx$  (n-bits)

Then, we have

$$Hy = HGx = 0$$

But if we have an error:  $y \rightarrow y' \equiv y + e$ ,

$$Hy' = He \neq 0$$
 Error is detected by H!

Parity check = Syndrome measurement

# Ex.) parity check matrix for [3,1] code

 $G: n \times k \text{ matrix, } H: (n-k) \times n \text{ matrix, } HG = \mathbf{0}_{(n-k) \times k}$ 

#### Generator:

$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \Box \qquad G(x = 0,1) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

(an example of)

#### Parity check matrix:

$$H = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right) \qquad (HG = \mathbf{0}_{\mathbf{2} \times \mathbf{1}})$$

#### Error detection (for bit flip):

$$H\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = H\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad H\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad H\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \text{etc...}$$

## Correspondence to 3-qubit bit flip code

#### 3-qubit bit flip code:



Parity check in [3,1] code:

$$H = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)$$

$$H \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = H \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad Z_1 Z_2 = +1 \\ Z_2 Z_3 = +1$$
 
$$H \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = H \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad Z_1 Z_2 = -1 \\ Z_2 Z_3 = +1$$

$$H \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = H \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad Z_1 Z_2 = -1 \\ Z_2 Z_3 = -1 \qquad \qquad H \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = H \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad Z_1 Z_2 = +1 \\ Z_2 Z_3 = -1$$

# How many errors can be corrected?

```
In [3,1] code,
```

$$(0 \to 000, 1 \to 111)$$

"majority voting" can correct only 1-bit errors

$$(001 \rightarrow 000, 011 \rightarrow 111, etc...)$$

Similarly,

[2t + 1, 1] code can correct only errors on up to t-bits

```
(ex. [1,5] code: 00001 \rightarrow 00000, 00011 \rightarrow 00000, etc...)
```

How about more general [n, k] code?

→ concept of "distance" is useful (next slide)

### How many errors can be corrected? (cont'd)

#### **Hamming distance:**

 $d(x, y) \equiv (\# \text{ of different components between } x \& y)$ 

#### **Hamming weight:**

$$\operatorname{wt}(x) \equiv d(x,0)$$

In particular,

$$d(x,y) = wt(x + y)$$

#### Distance of a code C:

*C*: "[*n*, *k*, *d*] code"

$$d(C) \equiv \min_{y_1, y_2 \in C, y_1 \neq y_2} d(y_1, y_2) = \min_{y \in C, y \neq 0} wt(y)$$

## How many errors can be corrected? (cont'd)

#### **Hamming distance:**

 $d(x, y) \equiv (\# \text{ of different components between } x \& y)$ 

#### **Hamming weight:**

$$\operatorname{wt}(x) \equiv d(x,0)$$

In particular,

$$d(x,y) = wt(x + y)$$

#### Distance of a code C:

*C*: "[*n*, *k*, *d*] code"

$$d(C) \equiv \min_{y_1, y_2 \in C, y_1 \neq y_2} d(y_1, y_2) = \min_{y \in C, y \neq 0} wt(y)$$

If d(C) = 2t + 1, then we can correct errors on up to t-bits



# **Examples**

$$d(x,y) \equiv (\text{\# of different components between } x \& y), \ \text{wt}(x) \equiv d(x,0)$$
 
$$d(C) \equiv \min_{y_1,y_2 \in C, \ y_1 \neq y_2} d(y_1,y_2) = \min_{y \in C, y \neq 0} \text{wt}(y)$$

•[3, 1] code:

$$G(x = 0,1) = \begin{pmatrix} x \\ x \\ x \end{pmatrix} \qquad \qquad \Box \qquad \qquad d(C) = 3$$

• [6, 2] code:

can correct 1 error

# Examples

$$d(x,y) \equiv (\text{\# of different components between } x \& y), \text{ wt}(x) \equiv d(x,0)$$

$$d(C) \equiv \min_{y_1,y_2 \in C, \ y_1 \neq y_2} d(y_1,y_2) = \min_{y \in C, y \neq 0} \text{wt}(y)$$

• [3, 1] code:

$$G(x=0,1) = \begin{pmatrix} x \\ x \\ x \end{pmatrix}$$



$$d(C) = 3$$

can correct 1 error

• <u>[6, 2] code</u>:

[6, 2] code:
$$G\left(\begin{matrix} x_1 = 0, 1 \\ x_2 = 0, 1 \end{matrix}\right) = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \end{pmatrix}$$



$$d(C) = 3$$

# <u>Plan</u>

- 1. Basics on quantum error correction
- 2. Classical linear code

3. A popular quantum code ("CSS code")

4. Summary

# Calderbank-Shor-Steane (CSS) code

#### <u>Ingredients = 2 classical linear codes</u>

- $C_1$ :  $[n, k_1]$  code w/ parity check mat.  $H_1$
- $C_2 \subset C_1$ :  $[n, k_2]$  code w/ parity check mat.  $H_2$  ( $k_2 < k_1$ )

## CSS code = $[n, k_1 - k_2]$ quantum code

specify a codeword by equivalent class  $C_1/C_2$ :

$$|\bar{v}\rangle \equiv \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C_2} |v + w\rangle \qquad (v \in C_1)$$

$$\downarrow^{k_2 - k_1} \qquad 2^{k_1} 2^{k_2}$$

# Error correction in CSS code (bit flip)

$$|\bar{v}\rangle = \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C_2} |v + w\rangle \qquad \qquad |\bar{v}'\rangle \equiv \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C_2} |v + w + e_1\rangle$$

1. Introduce ancillary qubits:

$$|\bar{v}\rangle \otimes |0\rangle_A \qquad \Longrightarrow \qquad |\bar{v}'\rangle \otimes |0\rangle_A$$

2. Make unitary trans. s.t.  $|v\rangle \otimes |0\rangle_A \rightarrow |v\rangle \otimes |H_1v\rangle_A$ :

$$\implies \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C_2} |v + w + e_1\rangle \otimes |H_1(v + w + e_1)\rangle_A = |\bar{v}'\rangle \otimes |H_1e_1\rangle_A$$

- 3. Measure  $|H_1e_1\rangle_A$  to identify where errors occur
- 4. Recover the errors by acting X on appropriate places

### Error correction in CSS code (phase flip)

 $|\bar{v}\rangle = \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C} |v + w\rangle \qquad \qquad |\bar{v}'\rangle \equiv \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C} (-1)^{(v+w) \cdot e_2} |v + w\rangle$ 

1. Basis change by acting H on all the qubits:  $\begin{bmatrix} \text{Note } H|x\rangle \\ = \frac{1}{\sqrt{2}} \sum_{y=0,1} (-1)^{xy} |y\rangle \end{bmatrix}$ 

$$\frac{1}{\sqrt{2^{k_2}}} \sum_{u} \sum_{w \in C_2} (-1)^{(v+w) \cdot (\boldsymbol{e_2} + u)} |u\rangle = \frac{1}{\sqrt{2^{k_2}}} \sum_{u'} \sum_{w \in C_2} (-1)^{(v+w) \cdot u'} |u' + \boldsymbol{e_2}\rangle$$

bit flip in this basis!

2. Correct the "bit flip error" as in the bit flip case:

$$\frac{1}{\sqrt{2^{k_2}}} \sum_{u'} \sum_{w \in C_2} (-1)^{(v+w) \cdot u'} |u'\rangle$$

3. Go back to the original basis by acting H on all the qubits:

$$\frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C} |v + w\rangle = |\bar{v}\rangle \qquad \bigvee$$

#### The most popular case: "Steane (7-qubit) code"

#### Generic CSS = $[n, k_1 - k_2]$ quantum code:

- • $C_1$ :  $[n, k_1]$  code w/ generator  $G_1$  & parity check mat.  $H_1$
- • $C_2 \subset C_1$ :  $[n, k_2]$  code w/ generator  $G_2$  & parity check mat.  $H_2$

$$|\bar{v}\rangle \equiv \frac{1}{\sqrt{2^{k_2}}} \sum_{w \in C_2} |v + w\rangle$$

#### Steane code = [7, 1] quantum code :

$$(n = 7, k_1 = 4, k_2 = 3)$$

- $C_1$ : [7, 4] code w/ generator  $G_1$  & parity check mat.  $H_1$
- • $C_2 \subset C_1$ : [7, 3] code w/ generator  $G_2 = H_1^T$  & parity check mat.  $H_2 = G_1^T$

$$G_{1} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = H_{2}^{T}, \quad H_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} = G_{2}^{T}$$

#### Codewords in Steane code

$$\begin{cases} C_1: & [7,4] \text{ code w/ generator } G_1 \\ C_2 \subset C_1: [7,3] \text{ code w/ generator } G_2 \end{cases} \qquad |\bar{v}\rangle \equiv \frac{1}{\sqrt{8}} \sum_{w \in C_2} |v+w\rangle$$

$$G_{1} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \equiv (w_{1}, w_{2}, w_{3}, \mathbf{u}), \qquad G_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = (w_{1}, w_{2}, w_{3})$$

 $C_2 = \{0, w_1, w_2, w_3, w_1 + w_2, w_1 + w_3, w_2 + w_3, w_1 + w_2 + w_3\}$   $C_1 = \{C_2' \text{s elements}, u + C_2' \text{s elements}\}$ 



$$|\bar{0}\rangle \equiv \frac{1}{\sqrt{8}} \sum_{w \in C_2} |0000000 + w\rangle, \quad |\bar{1}\rangle \equiv \frac{1}{\sqrt{8}} \sum_{w \in C_2} |1111111 + w\rangle$$

## Bit flip error detection in Steane code

$$H_1 = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$



## Phase flip error detection in Steane code





### Prime factorization beyond supercomputer?

- •Steane code: (error probability  $\epsilon$ )  $\longrightarrow$   $\mathcal{O}(\epsilon^2)$
- 2-level Steane code: (err. prob.  $\epsilon$ )  $\longrightarrow$   $\mathcal{O}(\epsilon^4)$

=replacing each qubit in Steane code by Steane code

•L-level Steane code: (err. prob.  $\epsilon$ )  $\square \triangleright \mathcal{O}(\epsilon^{2L})$ 

#### Suppose

130-digit (=432-bit) prime factorization problem which takes a few months by (slightly earlier) supercomputer

#### Prime factorization beyond supercomputer?

- •Steane code: (error probability  $\epsilon$ )  $\longrightarrow$   $\mathcal{O}(\epsilon^2)$
- 2-level Steane code: (err. prob.  $\epsilon$ )  $\longrightarrow$   $\mathcal{O}(\epsilon^4)$ 
  - =replacing each qubit in Steane code by Steane code
- •L-level Steane code: (err. prob.  $\epsilon$ )  $\square \triangleright \mathcal{O}(\epsilon^{2L})$

#### Suppose

130-digit (=432-bit) prime factorization problem which takes a few months by (slightly earlier) supercomputer

- Shor's algorithm requires  $5 \times 432$  qubits
- need 3-level Steane code to have small errors (expected)

$$\implies$$
 5 × 432 × 7<sup>3</sup> + (ancilla) ~ 1000000 qubits!

# Summary

## <u>Summary</u>

- Real quantum computer has errors
- Error correction is important to get reliable results
- Quantum errors are not only bit flips
- Generic error can be understood as a combination of bit flips & phase flips
- Quantum error correction likely requires a huge number of qubits

(Note: this lecture doesn't include recent progress of quantum correction. The latest prospect may be quantitatively different.)

Here is the end of lecture 5!

## **Appendix**

## Propagation of errors in implementing CX



#### Bit flip error:



#### Phase flip error:

