

FUTURE VISION TRANSPORT

DESIGN AN AUTONOMOUS VEHICLE

Contexte

Enjeux

« Future Vision Transport cherche a mettre en place un systeme de guidage pour les vehicules autonome»

Pour cela, l'equipe IA doit:

- 1. Acquerir et pre traiter les images d'une camera embarque
- 2. Reconnaitrer les categorie d'objets presents dans les images
- **3. Decider** les ordres de guidage a envoyer au vehicule

Objectifs

Nous nous interessons a l'etape 2: **Segmentation semnatique de pixels**

Nous allos ini chercher a tester et comparer differents modeles d'apprendissage profond (deep learning):

- Architecture du modele
- Augmentation des images
- Deploiment en production (Azure) du meilleur modele

State of the Art

State of the Art

Fully Convolutional Network

U-net

EDA: images

- 2975 train images
- 595 validation images
- 500 test images
- Size: 2048 x 1024
- Format: RGB

EDA: labels

8 label categories:
"void", "flat", "construction", "object",
"nature", "sky", "human", "Vehicle"

MODEL SELECTION: AUGMENTATION

On a teste: Image augmention

Original

Blur

Flip

Rain

Snowflakes

Data Generator

- Class sequence
 - __len__
 - on_epoch_end
 - _getiment__

MODEL SELECTION: ARCHITECTURES

On a teste deux architecture different

U-Net from scratch
 2.056.648 parameters

• Segnet- mobilenet 5.528.200 parameters

LOSS AND METRICS

On a utilise:

- Cross- entropy
- Jaccard Loss
- Mean Intersection over Union (mIoU) metric

LOSS AND METRICS

On a utilise:

- Cross- entropy
- Jaccard Loss
- Mean Intersection over Union (mIoU) metric

	Loss	Metric	Intersection vs. Union	Confusion Matrix	Pros	Cons
Sparse 0	Categorical Cross-entropy	Pixel Accuracy	=,,	$\frac{TP + TN}{TP + FP + TN + FN}$	Easy to interpret	Bad with imbalanced target classes.
Dice		F1	$\frac{2 A\cap B }{ A + B }$	$\frac{2TP}{2TP+FP+FN}$	Good with imbalanced target classes.	Not easy to interpret.
Jaccard		Intersection over Union (IoU)	$\frac{ A \cap B }{ A \cup B }$	$\frac{TP}{TP+FP+FN}$	Easy to interpret. Good with imbalanced target classes.	

RESULTS OF MODEL TESTING

U-Net from scratch

RESULTS OF MODEL TESTING

Mobilenet-segnet

Flask Api

Nous déployons notre meilleur modèle comme une application web dans notre machine locale :

Model: Mobilenet-segnet

Augmentation: False

Web App

Nous déployons notre meilleur modèle comme une application web en Azure:

Model: Mobilenet-segnet

URL: https://esflaskapp.azurewebsites.net

CONCLUSION

Nous avons été en mesure d'évaluer les performances de différents modèles de segmentation d'images, avec différents paramètres, et de déployer le meilleur modèle en production.

Prochaines étapes....

Solutions:

Entraîner notre modèle sur beaucoup plus d'images afin d'améliorer la métrique et optimizer les differentes parametrers d'optimization.

