

The Pumping Lemma for CFLs

Let L be a CFL.

Then there exists a constant N, s.t.,

- if $z \in L$ s.t. $|z| \ge N$, then we can write z = uvwxy, such that:
 - 1. $|\mathbf{v}\mathbf{w}\mathbf{x}| \leq N$
 - 2. **V**X≠ε
 - For all k≥0: uv^kwx^ky ∈ L

Note: we are pumping in two places (v & x)

Application of Pumping Lemma for CFLs

Example 1: $L = \{a^mb^mc^m \mid m>0\}$

Claim: L is not a CFL

Proof:

- Let N <== P/L constant</p>
- Pick $z = a^N b^N c^N$
- Apply pumping lemma to z and show that there exists at least one other string constructed from z (obtained by pumping up or down) that is ∉ L

Proof contd...

- z = uvwxy
- As $z = a^N b^N c^N$ and $|vwx| \le N$ and $|vx \ne \varepsilon|$
 - ==> v, x cannot contain all three symbols
 (a,b,c)
 - ==> we can pump up or pump down to build another string which is ∉ L

Example #2 for P/L application

- $L = \{ ww \mid w \text{ is in } \{0,1\}^* \}$
- Show that L is not a CFL
 - Try string $z = 0^N 0^N$
 - what happens?
 - Try string $z = 0^{N}1^{N}0^{N}1^{N}$
 - what happens?

Example 3

■ $L = \{ 0^{k^2} \mid k \text{ is any integer} \}$

 Prove L is not a CFL using Pumping Lemma

4

Example 4

$$L = \{a^ib^jc^k \mid i < j < k \}$$

Prove that L is not a CFL