Data Mining, Big Data and Analytics. Lab 6 – Linear Regression

Note 1: At the end of the lab, you should submit a neat document containing all plots as well as full and clear answers to non-coding questions. The answers and plots should be in the same order as questions.

Note 2: The grade of the lab will be based on the submitted document at the end of the lab.

Part (1):

1.	Try changing the value of standard deviation (sd). How do the data points change
	for different values of standard deviation?
2.	How are the coefficients of the linear model affected by changing the value of
	standard deviation in Q1?
3.	How is the value of R-squared affected by changing the value of standard deviation
	in Q1?
4.	What do you conclude about the residual plot? Is it a good residual plot?

Part (2):

5.	What do you conclude about the residual plot? Is it a good residual plot?
6.	Now, change the coefficient of the non-linear term in the original model for (A)
	training and (B) testing to a large value instead. What do you notice about the
	residual plot?

Part (3):

7.	Import the dataset LungCapData.tsv. What are the variables in this dataset?
8.	Draw a scatter plot of Age (x-axis) vs. LungCap (y-axis). Label x-axis "Age" and y-
	axis "LungCap"
9.	Draw a pair-wise scatter plot between Lung Capacity, Age and Height.
	Hint: Check the tutorial slides for how to plot a pair-wise scatterplot
10.	Calculate the correlation between Age and LungCap , and between Height and
	LungCap.
	Hint: You can use the function cor.
11.	Which of the two input variables Age and Height are more correlated to the
	dependent variable LungCap?
12.	Do you think the two variables Height and LungCap are correlated? Why?
13.	Fit a liner regression model where the dependent variable is LungCap and use all
	other variables as the independent variables.
14.	Show a summary of this model.

15.	What is the R-squared value of this model? What does R-squared indicate?
16.	Show the coefficients of the linear model. Do they make sense? If not, which
	variables don't make sense to you? What should you do?
17.	Redraw a scatter plot between Age and LungCap . Display/Overlay the linear model
	(a line) over it.
	Hint: Use the function abline(model, col="red")
	Note (1) : A warning will be displayed that this function will display only the first two
	coefficients in the model. It's OK.
	Note (2): If you are working correctly, the line will not be displayed on the plot.
	Why?
18.	Repeat Q13 but with these variables Age , Smoke and Cesarean as the only
	independent variables.
19.	Repeat Q16, Q17 for the new model. What happened?
20.	Predict results for this regression line on the training data.
21.	Calculate the mean squared error (MSE) of the training data.