Definition 0.0.1 (Galilean group). The **Galilean group** is the group of **Galilean transformations** generated by rotations in \mathbb{R}^n , translations in \mathbb{R}^{n+1} and **Galilean boosts** $(x,t) \mapsto (x+tv,t)$

$$\begin{pmatrix} R & v & w \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \\ 1 \end{pmatrix} = \begin{pmatrix} Rx + tv + w \\ t + s \\ 1 \end{pmatrix}$$

Definition 0.0.2 (Lorentz group). The **Lorentz group** is the group of **Lorentz transformations** generated by rotations in \mathbb{R}^n and **Lorentz boosts** $(x,t) \mapsto (\sinh sx - \cosh st, \sinh st - \cosh sx)$

Definition 0.0.3 (Poincaré group). The **Galilean group** is the isometry group of the Minkowski space \mathbb{R}^{n+1}

$$\textbf{Definition 0.0.4.} \ \left(x,ct\right) \ \mapsto \ \left(\gamma \left(x-vt\right),\gamma \left(t-\frac{vx}{c^2}\right)\right) \ \beta \ = \ \frac{v}{c}, \ \alpha \ = \ \sqrt{1-\beta^2}. \quad \gamma \ = \ \frac{1}{\sqrt{1-\beta^2}}.$$

is the **Lorentz factor** $\begin{cases} t' = \gamma \left(t - \frac{vx}{c^2} \right) \\ x' = \gamma \left(x - vt \right) \end{cases}$, where (x,t) and (x',t') are the coordinates of two

frames, and frame (x',t') is moving towards the positive direction of the x axis with velocity

$$v$$
, and c is the speed of light, we can find the inverse transformation
$$\begin{cases} t = \gamma \left(t' + \frac{vx'}{c^2} \right) \\ x = \gamma \left(x' + vt' \right) \end{cases}$$
 which makes perfect sense since relatively speaking, frame (x,t) is moving towards the negative

which makes perfect sense since relatively speaking, frame (x,t) is moving towards the negative direction of the x' axis with velocity v or rather moving towards the positive direction of the x' axis with velocity -v

More generally, if we consider (\vec{x},t) , (\vec{x}',t') are the coordinates of two frames, with frame (\vec{x}',t') moving with velocity \vec{v} , then the Lorentz transformation will be

Deduction 0.0.5 (Time dilation). A frame moving (x',t') is at a constant speed v, then $\Delta t = \gamma \Delta t'$. Suppose you are on the train with constant speed v and height h, and let light bouncing up and down perpendicularly, then we have

$$2\sqrt{h^2 + \left(\frac{\Delta t}{2}v\right)^2} = c\Delta t, v\Delta t' = h$$

 $\Rightarrow \Delta t = \gamma \Delta t'$

Things happen simultaneously in one frame may not be simultaneous in another frame

Deduction 0.0.6 (Length contraction). Suppose a train is moving with speed v, shed a beam light from one end to get to the other end

A in frame (x,t) send a signal when the left end of train passes, B in frame (x',t') on the right end of the train receives and return the signal, suppose the length of the train is l', and the length appears to be l in frame (x,t), then it takes time $\frac{l'}{c}$ for B to receive the signal in (x',t'), which takes time $\frac{l'\gamma}{c}$ in (x,t), when B should be in distance $l+\frac{vl'\gamma}{c}$ from A in (x,t) but distance

which takes time
$$\frac{l'\gamma}{c}$$
 in (x,t) , when B should be in distance $l + \frac{vl'\gamma}{c}$ from A in (x,t) but distance $l' + \frac{vl'}{c}$ in (x',t') which take time $\frac{l + \frac{vl'\gamma}{c}}{c}$ and $\frac{l' + \frac{vl'}{c}}{c}$ to get back to A in (x,t) and (x',t') ,

hence we should have $\frac{l + \frac{vl'\gamma}{c}}{c} = \frac{l' + \frac{vl'}{c}}{c}\gamma \Rightarrow l = \gamma l'$