Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset. Determine the number of clusters us

import pandas as pd
import numpy as np
import seaborn as sns
import mathlatlib puol

import matplotlib.pyplot as plt

#Importing the required libraries.

from sklearn.cluster import KMeans, $k_{\rm means}$ #For clustering from sklearn.decomposition import PCA #Linear Dimensionality reduction.

 ${\tt df = pd.read_csv("/content/sales_data_sample.csv", encoding="Latin-1") ~\#Loading ~the ~dataset.}$

df.head()

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	STATUS	QTR_ID	MONTH_ID	YEAR_ID	 ADDF
0	10107	30	95.70	2	2871.00	2/24/2003 0:00	Shipped	1	2	2003	 Air
1	10121	34	81.35	5	2765.90	5/7/2003 0:00	Shipped	2	5	2003	
2	10134	41	94.74	2	3884.34	7/1/2003 0:00	Shipped	3	7	2003	 Со
3	10145	45	83.26	6	3746.70	8/25/2003 0:00	Shipped	3	8	2003	 78
4	10159	49	100.00	14	5205.27	10/10/2003 0:00	Shipped	4	10	2003	 7734

5 rows × 25 columns

df.shape

(2823, 25)

df.describe()

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	QTR_ID	MONTH_ID	YEAR_ID	MSRP
count	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	2823.00000	2823.000000
mean	10258.725115	35.092809	83.658544	6.466171	3553.889072	2.717676	7.092455	2003.81509	100.715551
std	92.085478	9.741443	20.174277	4.225841	1841.865106	1.203878	3.656633	0.69967	40.187912
min	10100.000000	6.000000	26.880000	1.000000	482.130000	1.000000	1.000000	2003.00000	33.000000
25%	10180.000000	27.000000	68.860000	3.000000	2203.430000	2.000000	4.000000	2003.00000	68.000000
50%	10262.000000	35.000000	95.700000	6.000000	3184.800000	3.000000	8.000000	2004.00000	99.000000
75%	10333.500000	43.000000	100.000000	9.000000	4508.000000	4.000000	11.000000	2004.00000	124.000000
max	10425.000000	97.000000	100.000000	18.000000	14082.800000	4.000000	12.000000	2005.00000	214.000000

df.isnull().sum()

ORDERNUMBER QUANTITYORDERED **PRICEEACH** ORDERLINENUMBER 0 SALES 0 ORDERDATE 0 STATUS QTR_ID 0 MONTH_ID YEAR ID $PROD\overline{U}CTLINE$ PRODUCTCODE 0 CUSTOMERNAME 0 PHONE 0 ADDRESSLINE1

```
ADDRESSLINE2
                         2521
    CITY
                            0
    STATE
                         1486
    POSTALCODE
                           76
    COUNTRY
                            0
    TERRITORY
                         1074
    CONTACTLASTNAME
                            0
    CONTACTFIRSTNAME
                            0
    DEALSIZE
                            0
    dtype: int64
df_drop = ['ADDRESSLINE1', 'ADDRESSLINE2', 'STATUS','POSTALCODE', 'CITY', 'TERRITORY', 'PHONE', 'STATE', 'CONTACTFIRSTNAME',
df = df.drop(df_drop, axis=1) #Dropping the categorical uneccessary columns along with columns having null values. Can't fill
df.isnull().sum()
    QUANTITYORDERED
                        0
    PRICEEACH
                        0
    ORDERLINENUMBER
                        0
    SALES
                        0
    ORDERDATE
                        0
    QTR ID
                        0
    MONTH_ID
                        0
    YEAR_ID
                        0
    PRODUCTLINE
                        0
    MSRP
                        0
    PRODUCTCODE
                        0
    COUNTRY
                        0
    DEALSIZE
                        0
    dtype: int64
df.dtypes
    QUANTITYORDERED
                          int64
    PRICEEACH
                        float64
    ORDERLINENUMBER
                          int64
    SALES
                        float64
    ORDERDATE
                         object
    QTR_ID
                          int64
    MONTH ID
                          int64
    YEAR ID
                          int64
    PRODUCTLINE
                         object
    MSRP
                          int64
    PRODUCTCODE
                         object
    COUNTRY
                         object
    DEALSIZE
                         object
    dtype: object
# Checking the categorical columns.
df['COUNTRY'].unique()
df['PRODUCTLINE'].unique()
df['DEALSIZE'].unique()
    array(['Small', 'Medium', 'Large'], dtype=object)
productline = pd.get_dummies(df['PRODUCTLINE']) #Converting the categorical columns.
Dealsize = pd.get_dummies(df['DEALSIZE'])
df = pd.concat([df,productline,Dealsize], axis = 1)
df_drop = ['COUNTRY','PRODUCTLINE','DEALSIZE'] #Dropping Country too as there are alot of countries.
df = df.drop(df_drop, axis=1)
df['PRODUCTCODE'] = pd.Categorical(df['PRODUCTCODE']).codes #Converting the datatype.
df.drop('ORDERDATE', axis=1, inplace=True) #Dropping the Orderdate as Month is already included.
df.dtypes #All the datatypes are converted into numeric
    QUANTITYORDERED
                           int64
    PRICEEACH
                         float64
    ORDERLINENUMBER
                           int64
    SALES
                         float64
    QTR ID
                           int64
    MONTH ID
                           int64
    YEAR ID
                           int64
    MSRP
                           int64
    PRODUCTCODE
```

```
Classic Cars
                       uint8
Motorcycles
                       uint8
Planes
                       uint8
                       uint8
Ships
                       uint8
Trains
Trucks and Buses
                       uint8
Vintage Cars
                       uint8
                       uint8
Large
                       uint8
Medium
Small
                       uint8
dtype: object
```

Plotting the Elbow Plot to determine the number of clusters.

distortions.append(kmeanModel.inertia_)

```
distortions = [] # Within Cluster Sum of Squares from the centroid
K = range(1,10)
for k in K:
     kmeanModel = KMeans(n_clusters=k)
     kmeanModel.fit(df)
                                                             \ensuremath{\texttt{\#}}\xspace \ensuremath{\mathsf{Appeding}}\xspace the intertia to the Distortions
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil

plt.figure(figsize=(16,8)) plt.plot(K, distortions, 'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.show()

warnings.warn(


```
\#\# As the number of k increases Inertia decreases.
print("Observations: A Elbow can be observed at 3 and after that the curve decreases gradually. ")
X_train = df.values #Returns a numpy array.
X_train.shape
    Observations: A Elbow can be observed at 3 and after that the curve decreases gradually.
    (2823, 19)
model = KMeans(n_clusters=3,random_state=2) #Number of cluster = 3
model = model.fit(X_train) #Fitting the values to create a model.
predictions = model.predict(X\_train) \ \textit{\#Predicting the cluster values (0,1,or 2)}
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil
      warnings.warn(
unique,counts = np.unique(predictions,return_counts=True)
counts = counts.reshape(1,3)
counts_df = pd.DataFrame(counts,columns=['Cluster1','Cluster2','Cluster3'])
counts_df.head()
        Cluster1 Cluster2 Cluster3
                                       \blacksquare
            1083
                      1367
                                 373
## Visualization
pca = PCA(n_components=2) #Converting all the features into 2 columns to make it easy to visualize using Principal COmponent
reduced_X = pd.DataFrame(pca.fit_transform(X_train),columns=['PCA1','PCA2']) #Creating a DataFrame.
reduced_X.head()
\Box
              PCA1
                        PCA2
                               0 -682.488323 -42.819535
     1 -787.665502 -41.694991
     2 330.732170 -26.481208
     3 193.040232 -26.285766
     4 1651.532874 -6.891196
#Plotting the normal Scatter Plot
plt.figure(figsize=(14,10))
plt.scatter(reduced_X['PCA1'], reduced_X['PCA2'])
model.cluster_centers_ #Finding the centriods. (3 Centriods in total. Each Array contains a centroids for particular feature
```

```
array([[ 3.72031394e+01, 9.52120960e+01, 6.44967682e+00, 4.13868425e+03, 2.72022161e+00, 7.09879963e+00,
             2.00379409e+03, 1.13248384e+02, 5.04469067e+01, 3.74884580e-01, 1.15420129e-01, 9.41828255e-02, 8.21791320e-02, 1.84672207e-02, 1.16343490e-01,
                              2.08166817e-17, 1.00000000e+00,
             1.98522622e-01.
            -3.38618023e-15],
                              7.00755230e+01,
           [ 3.08302853e+01,
                                               6.67300658e+00,
             2.12409474e+03,
                              2.71762985e+00,
                                              7.09509876e+00,
             2.00381127e+03,
                             7.84784199e+01, 6.24871982e+01,
             2.64813460e-01,
                              1.21433797e-01,
                                               1.29480614e-01,
             1.00219459e-01,
                              3.87710315e-02,
                                               9.21726408e-02,
             2.53108998e-01,
                              6.93889390e-18, 6.21799561e-02,
             9.37820044e-01],
           [ 4.45871314e+01, 9.98931099e+01,
                                               5.75603217e+00,
             7.09596863e+03,
                              2.71045576e+00,
                                               7.06434316e+00,
             2.00389008e+03,
                              1.45823056e+02,
                                               3.14959786e+01,
                                               7.23860590e-02,
             5.33512064e-01.
                              1.07238606e-01.
             2.14477212e-02, 1.07238606e-02,
                                               1.31367292e-01,
             1.23324397e-01,
                              4.20911528e-01,
                                               5.79088472e-01,
            -1.99840144e-15]])
      150
      100
      50
     -100
reduced_centers = pca.transform(model.cluster_centers_) #Transforming the centroids into 3 in x and y coordinates
reduced_centers
    [ 3.54247180e+03, 3.15185487e+00]])
plt.figure(figsize=(14,10))
plt.scatter(reduced_X['PCA1'], reduced_X['PCA2'])
```

<matplotlib.collections.PathCollection at 0x7ff0f518d1e0>

reduced_X['Clusters'] = predictions #Adding the Clusters to the reduced dataframe.

reduced_X.head()

	PCA1	PCA2	Clusters	\blacksquare
0	-682.488323	-42.819535	1	ılı
1	-787.665502	-41.694991	1	
2	330.732170	-26.481208	0	
3	193.040232	-26.285766	0	
4	1651.532874	-6.891196	0	

<matplotlib.collections.PathCollection at 0x7ff0f5cc5240> 150

 $\verb|plt.scatter(reduced_centers[:,0], reduced_centers[:,1], color='black', marker='x', s=300)|$

<matplotlib.collections.PathCollection at 0x7ff0f5d91f00>

