Networks and Graphical Models

Big Data Lectures - Chapter 8

Lexin Li

Division of Biostatistics University of California, Berkeley

Outline

- ▶ list of topics:
 - introduction and basic concepts
 - network generative models
 - network enhanced analysis
 - network link analysis
 - Gaussian graphical models

©2018 Lexin Li Big Data: Chapter 8 2 / 40

Networks: Basics

Examples

- networks data are now everywhere
 - ► Facebook, LinkedIn, Epinions, Flixster, last.fm, whrrl.com, ...

Examples

social network of 12,067 people from the Framingham Heart Study (Christakis et al., 2003). Yellow circle: obese, green: non-obese; circle size proportional to BMI. Purple link: friendship or marital tie, orange: family tie

Examples

©2018 Lexin Li Big Data: Chapter 8 6 / 40

Key concepts

- graph:
 - \triangleright $\mathcal{G} = \{V, E\}$, V the vertex / node set, and E the edge / link set
 - directed graph vs undirected graph
- ▶ adjacent matrix:
 - ▶ $\mathbf{A} = \{a_{ij}\}, w_{ij}$ denotes "similarity" / inverse of "distance" between nodes i and j
 - ▶ **A** is an unweighted adjacent matrix if $a_{ij} = 0/1$
- ▶ random walk on G:
 - **transition probability** for a random walk associated with G:

$$P_{ij} = \frac{a_{ij}}{\sum_{i} a_{ij}} = \frac{a_{ij}}{a_{i+}}$$

▶ stationary probability for an irreducible and aperiodic walk on \mathcal{G} : $\pi_i = \lim_{t \to \infty} P_{ii}^{(t)}$; for undirected graph,

$$\pi_i = \frac{\sum_j a_{ij}}{\sum_i \sum_j a_{ij}}$$

© 2018 Lexin Li Big Data: Chapter 8 7 / 40

Key concepts

- degree:
 - for a directed graph:

in-degree:
$$a_{+i} = \sum_{k} a_{ki}$$
, out-degree: $a_{i+} = \sum_{j} a_{ij}$

▶ for an undirected graph: vertex degree = in-degree = out-degree

$$d_i = a_{+i} = a_{i+}$$

- ▶ degree matrix: $D = diag(d_i)$
- power-law property:
 - in words: the majority of vertices are of very low degree, while a small number of vertices are of much higher degree (two to three orders of magnitude higher)
 - the power-law distribution for degrees: $f_d \propto d^{-\alpha}$
 - (approximate) power-law degree distributions appear to be **ubiquious** in networks across many areas of the sciences

Power-law degree distribution

Internet network

proteins interaction network

©2018 Lexin Li Big Data: Chapter 8 9 / 40

Graph Laplacian

- ▶ graph Laplacian matrix for an undirected graph *G*:
 - Laplacian matrix:

$$L = D - A;$$
 $y^{T}Ly = \frac{1}{2} \sum_{i} \sum_{j} a_{ij} (y_{i} - y_{j})^{2}$

normalized Laplacian matrix:

$$\tilde{\mathbf{L}} = \mathbf{D}^{-1/2}(\mathbf{D} - \mathbf{A})\mathbf{D}^{-1/2}; \quad \mathbf{y}^{\mathsf{T}}\tilde{\mathbf{L}}\mathbf{y} = \frac{1}{2}\sum_{i}\sum_{j}a_{ij}(\frac{y_{i}}{\sqrt{d_{i}}} - \frac{y_{j}}{\sqrt{d_{j}}})^{2}$$

modified normalized Laplacian matrix:

$$\tilde{\mathbf{L}}' = \mathbf{D}'^{-1/2}(\mathbf{D}' - \mathbf{A}')\mathbf{D}'^{-1/2}; \quad \mathbf{y}^{\mathsf{T}}\tilde{\mathbf{L}}'\mathbf{y} = \frac{1}{2}\sum_{i}\sum_{j}\pi_{i}P_{ij}(\frac{y_{i}}{\sqrt{\pi_{i}}} - \frac{y_{j}}{\sqrt{\pi_{j}}})^{2}$$

▶ it is the normalized version of a Laplacian matrix with a_{ij} replaced with $a'_{ii} = (\pi_i P_{ii} + \pi_i P_{ii})/2$

© 2018 Lexin Li Big Data: Chapter 8 10 / 40

Network metrics

- vertex centrality:
 - measures "importance" of a vertex in a network: e.g., deletion of which genes in a gene regulatory network is likely to be lethal to the corresponding organism; how critical is a given router in an Internet network to the flow of traffic...
 - three common centrality measures:
 - ▶ closeness / weighted degree centrality: $1/\sum_{u \in V} \operatorname{dist}(u, v)$, or $\sum_{u \in V} a_{uv}$; "central" means the vertex is "close" to many other vertices
 - betweenness: $\sum_{s,t\in V} \sigma(s,t|v)/\sigma(s,t)$, where $\sigma(s,t|v)$ is the total number of shortest paths between s and t that pass through v; measures the extent to which a vertex is located "between" other pairs of vertices
 - eigenvector centrality: typically can be expressed in terms of eigenvector solutions of appropriately defined linear systems of equations

© 2018 Lexin Li Big Data: Chapter 8 11 / 40

Network metrics

- network cohesion:
 - measures the extent to which subsets of vertices are cohesive / stuck together; e.g., do friends of a given actor in a social network tend to be friends of one another as well; what collections of proteins in a cell appear to work closely together...
 - clique: subset of vertices all of which are connected; triangle
 - clustering coefficient: number of closed triplets divided by number of triplets (both open and close)
 - modularity: measure the strength of division of a network into modules (also called groups, clusters or communities); networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules
 - characteristic path length: average shortest path length between all pairs of nodes in the network
 - global network efficiency: mean of the inverse of characteristic path length between each pair of nodes within the network
 - local network efficiency

Network Generative Models

Network generative models

- network generative models:
 - random graph models as an appropriate frame of reference when testing significance of structural characteristics of an observed network
 - simple, parameterized generative models to possess and to understand some commonly observed properties in real-world networks, such as broad degree distributions or small-world effects
- classical random graph models:
 - ▶ Erdös-Rényi model: a graph of a given order (N_{ν} , number of nodes) and size ($N_{\rm e}$, number of edges), equal probability for each edge among every pair of nodes
 - ▶ Gilbert model: assign an edge independently with probability $p \in (0,1)$
 - \blacktriangleright simulating random graphs: computational tricks for large $N_{\rm v}$, noting that the graph is usually very sparse
 - (some other graph models later)

© 2018 Lexin Li Big Data: Chapter 8 14 / 40

Network generative models

- network growth models:
 - ▶ typically a simple mechanism is specified for how the network changes at any given point in time; interest then centers on what properties emerge for the network in the limit of a large number of consecutive time periods; if certain properties are found to match those observed in real-world networks, this is often taken as suggestive that the specified mechanism is perhaps a reasonable approximation to a similar, real-world mechanism.

small-world models:

- many networks in the real world display high levels of clustering, but small distances between most nodes
- Watts-Strogatz model: begin with a graph with lattice structure, and then randomly "rewiring" a small percentage of the edges

Network Enhanced Analysis

Network enhanced analysis

- problem set up:
 - the network structural (link) information is completely known
 - usually only a single snapshot of the network, i.e., only one network link structure
 - multiple samples, each has a vector of features, and each feature forms a node of the network
 - multiple samples, each sample itself forms a node of the network
- some key applications:
 - group comparison; regression estimation and prediction
 - prediction of an outcome variable on a node based on partially observed outcomes on other nodes — network vertex modeling
- case studies:
 - identification of differentially expressed genes
 - survival time prediction
 - protein function prediction
 - university research score prediction

© 2018 Lexin Li Big Data: Chapter 8 17 / 40

Network enhanced analysis

- case study 1: Wei and Li (2007, Bioinformatics)
 - breast cancer data: 286 patients, 107 cases and 179 controls
 - each subject measures 1533 genes, belonging to 33 pathways
 - classical solution: two sample t-test; ignore potential correlation among the genes
 - network enhanced analysis: each gene forms a node of the network, and the link is determined by the pathway information
 - ▶ solution: define a latent state $D = (D_j)$, with $D_j = 1$ if gene j differentially expressed and 0 o.w.

$$p(\mathbf{D}|\mathbf{y}) \propto p(\mathbf{D}|\mathbf{A})p(\mathbf{y}|\mathbf{D})$$

specify a model on p(y|D), a Markov random field model for p(D|A) given the known adjacent matrix A, then optimize over D

© 2018 Lexin Li Big Data: Chapter 8 18 / 40

Network enhanced analysis

- case study 2: Li and Li (2008, Bioinformatics)
 - glioblastoma data: training set with 55 patients (5 alive), and testing set with 65 patients (4 alive)
 - each patient measures 1533 genes, belonging to 33 pathways
 - response: log of time to death; removed the alive patients so no censoring
 - network enhanced analysis: each gene forms a node of the network, and the link is determined by the pathway information
 - solution: use graph Laplacian as penalty; penalizes β_j s that differ too much over similar nodes

$$\sum_{i=1}^{n} (y_{i} - \beta_{1}x_{1} - \dots \beta_{p}x_{p})^{2} + \lambda_{1} \sum_{j=1}^{n} |\beta_{j}| + \lambda_{2} \sum_{u,v} a_{uv} \left(\frac{\beta_{u}}{\sqrt{d_{u}}} - \frac{\beta_{v}}{\sqrt{d_{v}}} \right)^{2}$$

$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1} + \lambda_{2}\boldsymbol{\beta}^{\mathsf{T}}\tilde{\mathbf{L}}\boldsymbol{\beta}$$

© 2018 Lexin Li Big Data: Chapter 8 19 / 40

- case study 3:
 - proteins are fundamental to the complex molecular and biochemical processes taking place within organisms; understanding their roles – functions – are critical
 - data on Bakers yeast: 134 vertices proteins, and 241 edges protein interactions
 - let X denote the vertex process corresponding to the annotation, intracellular signaling cascade (ICSC), i.e., $X_i = 1$ if the protein corresponding to vertex i has the ICSC annotation, and $X_i = 0$ otherwise
 - goal: predict if a protein has ICSC annotation or not, based on the underlying belief that proteins that are nearer to each other in a network of protein interactions are to possess more similar functional roles
 - network enhanced analysis: each protein (sample) forms a node of the network, and the link is determined by the known protein-protein interaction

- network of interactions among proteins known to be responsible for cell communication in yeast
- yellow vertices denote proteins that are known to be involved in ICSD, a specific form of communication in the cell in yeast
- blue vertices denote remaining proteins

nearest neighbor prediction:

$$\frac{\sum_{j\in\mathcal{N}_i} X_j}{|\mathcal{N}_i|}$$

- prediction is simply the average of the observed vertex process in the neighborhood of i
- for the protein example where X_j s are binary, then for each vertex in the test set, if the fraction of neighbors in the training set annotated with ICSC was greater than a given threshold, that vertex is also assigned the ICSC annotation
- while nearest neighbor methods may seem rather informal and simple, they often are found to be quite competitive with more formal and complex methods

© 2018 Lexin Li Big Data: Chapter 8 22 / 40

- kernel regression:
 - fit a kernel regression, e.g., kernel least squares, kernel logistic regression and kernel support vector machines
 - ▶ the key is to design an appropriate **kernel on a network** − recall that the kernel function essentially quantifies the similarity among its arguments, and thus, a kernel on a network graph *G* should be designed to capture suspected similarity relationships among vertices in *V*
 - some commonly used kernels for graph:
 - ▶ Laplacian kernel: (pseudo)inverse of the graph Laplacian $K = L^-$
 - diffusion kernel: $K = \exp(\xi L) = \sum_{m=0}^{\infty} \frac{(-\xi)^m}{m!} L^m$
 - **.**...

© 2018 Lexin Li Big Data: Chapter 8 23 / 40

- Markov random field model:
 - ▶ definition: let $X = (X_1, ..., X_{N_v})^T$ be a collection of discrete random variables defined on V, then we say X is a Markov random field on G if

$$P(X_i = x_i | X_{-i} = x_{-i}) = P(X_i = x_i | X_{N_i} = x_{N_i})$$

and P(X = x) > 0 for any x. That is, X_i is conditionally independent of all other X_k , given the values of its neighbors

auto-logistic Markov random field model: for all binary X_i and some additional constraint

$$P(X_i = 1 | X_{\mathcal{N}_i} = x_{\mathcal{N}_i}) = \frac{1}{1 + \exp\left\{-(\alpha_i + \sum_{j \in \mathcal{N}_i} \beta_{ij} x_j)\right\}}$$

 auto-Gaussian Markov random field model: for continuous X_i and some additional constraint

$$P(X_i|X_{\mathcal{N}_i}=x_{\mathcal{N}_i})=\alpha_i+\sum_{j\in\mathcal{N}_i}\beta_{ij}(x_j-\alpha_j)$$

© 2018 Lexin Li Big Data: Chapter 8 24 / 40

Figure: nearest neighbor (black), Markov random field (red), kernel logistic regression with Laplacian kernel (green), and with a more complicated kernel (blue)

- case study 4: Xu, Dyer, and Owen (2010, AoAS)
 - ▶ UK university data: 107 universities vertices; the number of links from one university to another forms an asymmetric weighted adjacent matrix \mathbf{A} ; the distribution of a_{ij} is heavily right-tailed, and follows roughly the power law; about 15% weights are zero (no link), 50% are less than 7, and the maximum is 2,130
 - response on vertex: a research score (RAE) for each university; only a subset of RAE are available as a training data
 - network enhanced analysis: each university (sample) forms a node of the network, and the link is determined by the known university-university interaction

©2018 Lexin Li Big Data: Chapter 8 26 / 40

semi-supervised learning:

$$\min_{\boldsymbol{Z}} \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{\Delta} \boldsymbol{Z} + (\boldsymbol{Z} - \boldsymbol{Y}^*)^{\mathsf{T}} \boldsymbol{\Lambda} (\boldsymbol{Z} - \boldsymbol{Y}^*)$$

- only a subset of responses are observed, and the rest unobserved
- Y^* , imputed response, $Y_i^* = y_i$ or μ_v
- first term: a smoothness penalty wrt Δ; penalizes vectors Z that differ too much over similar nodes
- second term: error between the predicted and imputed response
- ightharpoonup an example: Tikhonov smoothing where $\Delta = L$

$$\mathbf{Z}^{\mathsf{T}} \mathbf{\Delta} \mathbf{Z} = \frac{1}{2} \sum_{i} \sum_{j} a_{ij} (z_i - z_j)^2$$

- various semi-supervised learning solutions:
 - random walk smoothing: $\mathbf{\Lambda} = \lambda \mathbf{I}$, $\mathbf{\Delta} = \tilde{\mathbf{L}}'$
 - ▶ Tikhonov smoothing: $\mathbf{\Lambda} = \operatorname{diag}(\lambda \mathbf{I}_r, 0)$, $\mathbf{\Delta} = \mathbf{L}$
 - Undirected random walk smoothing: $\mathbf{\Lambda} = \lambda \mathbf{I}$, $\mathbf{\Delta} = \tilde{\mathbf{L}}$
 - kriging: (spatial) data adaptive way to estimate Δ, while the rest of solutions take a given function of the graph Laplacian

© 2018 Lexin Li Big Data: Chapter 8 27 / 40

Network Link Analysis

Network link analysis

- problem set up:
 - the network link information is only partially known, and the rest needs to be inferred
 - usually only a single snapshot of the network
- some key applications:
 - ▶ infer the link information among the nodes; usually determine if there is a link or not between a pair of nodes
 - covariance matrix / precision matrix estimation and inference Gaussian graphical models
 - community detection
- case studies:
 - prediction of collaboration patterns among a group of lawyers and understand how are they affected by vertex and link features
 - prediction of protein-protein interactions

© 2018 Lexin Li Big Data: Chapter 8 29 / 40

- case study 1:
 - data on lawyer collaboration in a law firm: 36 vertices / partners, and edges / A = a worked together in a substantive manner
 - in addition, vertex features, including partner's seniority, gender, office location and type of practice (litigation or corporate law)
 - goal: understand collaborations among partners and the effect of vertex attributes while controlling for effects of network structure that might be anticipated
 - ▶ note that, $A = (A^{obs}; A^{miss})$

©2018 Lexin Li Big Data: Chapter 8 30 / 40

- ▶ shapes (triangle, diamond, or pentagon) indicate three office locations
- colors indicate the type of practice, litigation (red) or corporate (cyan)
- ▶ there are three female partners; the rest are male

©2018 Lexin Li Big Data: Chapter 8 31 / 40

- informal scoring method:
 - for each pair of vertices (i,j), compute a score s(i,j), then apply a threshold, or rank
 - \triangleright the larger the score value, the more likely for i and j to share an edge
 - some common score functions:

$$\begin{array}{lll} s(i,j) & = & -\mathrm{dist}_{G^{obs}}(i,j) & \text{shortest-path distance} \\ s(i,j) & = & |\mathcal{N}_i^{ons} \cap \mathcal{N}_j^{obs}| & \text{number of common neighbors} \\ s(i,j) & = & \frac{|\mathcal{N}_i^{ons} \cap \mathcal{N}_j^{obs}|}{|\mathcal{N}_i^{ons} \cup \mathcal{N}_i^{obs}|} & \text{Jaccard coefficient} \end{array}$$

© 2018 Lexin Li Big Data: Chapter 8 32 / 40

- logistic regression / classification model:
 - logistic regression:

$$\operatorname{logic}(A_{ij}^{miss} = 1 | Z_{ij} = z) = \beta^{\mathsf{T}} z$$

- \triangleright Z_{ij} includes X_{ij} , combination of attributes on both nodes, and A^{obs}
- dependencies among the observations (edges); missing value mechanism
- ▶ logistic regression with latent variables (Hoff, 2005, 2007, 2008):

$$\operatorname{logic}(A_{ii}^{miss} = 1 | Z_{ij} = z, M_{ij} = m) = \beta^{\mathsf{T}} z + m$$

- ▶ M is an unknown, random, symmetric $N_v \times N_v$ matrix of latent variables
- ▶ A_{ij} are conditionally independent, given Z_{ij} and M_{ij} , but are conditionally dependent given only Z_{ii}
- Bayesian computations

© 2018 Lexin Li Big Data: Chapter 8 33 / 40

- ► Markov random graph model:
 - ▶ a joint distribution for all elements in the random adjacency matrix A:

$$P(A = a) = \frac{1}{\kappa} \exp \left\{ \sum_{k=1}^{N_{\nu}-1} \theta_k S_k(a) + \theta_{\tau} T(a) \right\}$$

where $S_1(a) = N_e$, $S_k(a)$ is the number of k-stars, T(a) is the number of triangles, and κ is the normalizing constant

to simplify and to take into account link attributes:

$$P(A = a) = \frac{1}{\kappa} \exp \left\{ \theta_1 S_1 + \theta_2 A K T_{\lambda}(a) + \beta^{\mathsf{T}} g(a, x) \right\}$$

- $AKT_{\lambda}(a)$ is related to the number of triangles
- $g(a,x) = \sum_{1 \le i \le j \le N_v} a_{ij} h(x_i,x_j)$
- ▶ for seniority, $\overline{h(x_i; x_j)} = \text{seniority}_i + \text{seniority}_j$; for gender, office location, type of practice, $h(x_i; x_j) = I\{\text{gender}_i = \text{gender}_j\}$
- ▶ likelihood based estimation; inference on β

©2018 Lexin Li Big Data: Chapter 8 34 / 40

Figure: logistic regression (red), logistic regression with an addition covariate, the common number of neighbors $|\mathcal{N}_i^{ons} \cap \mathcal{N}_j^{obs}|$ (blue), informal scoring based on scores $s(i,j) = |\mathcal{N}_i^{ons} \cap \mathcal{N}_j^{obs}|$ (brown), and latent logistic regression (yellow).

© 2018 Lexin Li Big Data: Chapter 8 35 / 40

- case study 2: Zhao et al. (2013, arXiv)
 - protein-protein interaction data
 - nodes: 984 proteins, each protein has a 325-dimensional (node covariate) vector of gene expression
 - links: partially observed 2438 (undirected) links
 - solution: obtain a relative ranking of potential links by their probabilities, utilizing information on node covariates as well as on network topology

$$\hat{f} = \arg\min_{f} \frac{1}{p^2} \sum_{i} \sum_{j} (a_{ij} - f_{ij})^2 + \lambda \frac{1}{p^4} W_{ii'} W_{jj'} \sum_{i} \sum_{j'} \sum_{j'} (f_{ij} - f_{i'j'})^2,$$

where $\{W_{ij}\}_{i,j=1}^p$ is a similarity matrix, whose element measures the closeness between any pair of nodes. The links are predicted by choosing a threshold on the rank \hat{f}_{ij}

▶ intuition: if (i,j) is close to (i',j'), then $W_{ii'}W_{jj'}$ will be large, forcing f_{ij} to be close to $f_{i'j'}$

©2018 Lexin Li Big Data: Chapter 8 36 / 40

Community detection

- community detection:
 - clustering on a single network, such that there are many connections within the community and relatively few connections between the communities
 - stochastic block model
 - ▶ **spectral clustering**: perform *k*-means clustering on a representation of the data; the representation is typically obtained by using the first eigenvectors of theLaplacian matrix of the graph that encodes the relationships between nodes

© 2018 Lexin Li Big Data: Chapter 8 37 / 40

Gaussian Graphical Models

Gaussian graphical models

- problem set up:
 - the network link information is completely unknown and needs to be inferred
 - multiple samples, each has a vector of p features, and each feature forms a node of the network
- some key applications:
 - ▶ analysis of covariance / correlation matrix between nodes: $p \times p$; zero means the node pair are marginally independent under normality
 - analysis of precision / partial correlation matrix between nodes:
 p × p; zero means the node pair are conditionally independent under normality given other nodes
- extensions:
 - multiple graphical models; dynamic graphical models
 - binary features; ordinal features; mixture features
 - semiparametric; nonparametric

© 2018 Lexin Li Big Data: Chapter 8 39 / 40

Additional readings

- ► Kolaczyk, E.D. (2009). *Statistical Analysis of Network Data*. Chapters 2, 4, 6, 7, 8, 9, 10
- Hastie, T., Tibshirani, R., and Friedman, J. (2001). Elements of Statistical Learning. Springer. Chapter 17
- Rajaraman, A., Leskovec, J., and Ullman, J.D. (2012). Mining of Massive Datasets. Chapter 10
- Goldenberg, A., Zheng, A.X., Fienberg, S.E., and Airoldi, E.M. (2009). A survey of statistical network models. Foundations and Trends in Machine Learning, 2, 129-233
- Jordan, M.I. (2004). Graphical models. Statistical Sciences, 19, 140-155
- Zhao, Y., Levina, E. and Zhu, J. (2013), Link prediction for partially observed networks. arXiv.

