# Coding Notes

Jeffrey Young

Feb 23, 2017

### Purpose

The Purpose of encodings is to systematically and formally codify real world, in the wild, explanations so that observing larger patterns becomes possible. The end goal of this is:

- 1. Generate a database of encodings
- 2. Analyze database to find patterns of explanation
- 3. 1 and 2 become formative work for exploring DSL possibilities in XOP

#### Scope

The scope of the database is restricted to explanations of common Computer Science algorithms <u>from</u> Universities only. Restricting the scope in this manner provides two benefits:

- 1. All explanatory objects have a stated, intrinsic goal to communicate the mechanics, application, and implementation of similar things
- 2. There are numerous examples of different approaches to explain the same thing, and numerous examples of like approaches to explain different things

## Some Terminology

In our terminology an explanation is called an "explanation artifact", our working model of the process of explaining is a non-linear sequence of "steps", where each "step" denotes some progress in the understanding of the explanation artifact on the part of the information receiver. More formally:

**Explanatory Artifact** The whole explanation, including all the step taken in the explanation, the language used in the explanation etc.

**Step** The steps that are taken, in an explanatory artifact, that guide the reader from non-understanding to understanding.

## Syntax

```
The syntax of an encoding is given by _ - _ - _ - _ \subseteq Location \times Level \times Role \times Notation where l \in \mathbb{N} g \in Level ::= Problem \mid Algorithm \mid Implementation
```

| Role         | Problem                                                | Algorithm                                          | Implementation                                         |
|--------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| Definition   | Mathematical definition of Problem                     | Mathematical Definition of Algorithm               | Τ                                                      |
| Example      | Display of a non-negative weighted graph               | Showing the algorithms execution on the map        | Showing requisite data structures etc.                 |
| Application  | Real World Example of the problem                      | Τ                                                  | Triage System in a Hospital                            |
| Background   | History of the Problem                                 | History, Author, etc.                              | History of Priority Queues                             |
| Variant      | Perhaps a teleporter exists, now what is shortest path | Description of Bellman-Ford                        | Description of slightly different Priority Queues      |
| An alogy     | Τ                                                      | Exposition of Prim's algorithm                     | Τ                                                      |
| Perform ance | Τ                                                      | Complexity                                         | Complexity of requisite data structs                   |
| I de a       | Τ                                                      | Τ                                                  | Τ                                                      |
| Constraint   | Depiction of the Constraints of the Problem            | Depiction of domain where Algorithm lacks validity | Requirements of internal Data Structs                  |
| Proof        | Τ                                                      | Explicit Proof of Algorithm correctness            | Explicit Proof of some requisite part of the algorithm |

 $r \in Role ::= Background \mid Definition \mid Constraint \mid Example \mid Application \mid Variant \mid Analogy \mid Idea Proof \mid Performance \mid Properties$ 

 $n \in Notation ::= English \mid Math \mid Diagram \mid List \mid Table \mid Sequence \mid Pseudocode \mid Code \mid Animation \mid Picture \mid Plot \mid Empty \mid n/n$ 

#### **Semantics**

- a location *l*, specifies the location that the encoding is referring to, this could be a slide, a number line etc.
- a Level g, Specifies the level of abstraction for a given step:

**Problem**  $\triangleq$  the purpose of a given step is to elucidate the motivating problem of the algorithm, i.e the problem that the algorithm will solve

**Algorithm**  $\triangleq$  the purpose of a given step is to explain the algorithm at hand

**Implementation** ≜ the purpose of a given step is to explain the implementation details of the algorithm, e.g. What data structures to use, What the form of the code that implements the algorithm should be

• a Role r, specifies how the Level is trying to be reached, denotes the answer to question such as "What is the step trying to convey?":

Consider the following matrix of Level Role combinations of Dijkstra's algorithm. Not all of the cells will be orthogonal to each other. In this case we would have:

**Problem:** How to traverse the shortest path in a non-negative weighted graph

Algorithm: Dijkstra's Algorithm

**Implementation**: You should use a Priority Queue that has efficient lookup, mutate operations.

 $\bullet~\perp$  used to denote cells which may be nonsensical

For example slide 2 might provide background information on the Algorithm level, then slide 3 may provide the working definition on the Algorithm Level. In general the meaning of each role is:

**Definition**  $\triangleq$  A given level is reached by a step that explicitly provides a formal definition.

**Example**  $\triangleq$  A given level is reached by a step that provides an Example

**Application**  $\triangleq$  A given level is reached by a step that explains what the algorithm is useful for

**Background**  $\triangleq$  A given level is reached by a step that describes the history, creators, genealogy of the Algorithm

Variant  $\triangleq$  A given level is reached by a step that describes things that are similar but slightly different than the algorithm. For example, describing Prim's algorithm and it's similarities to Dijkstra's or describing the similarities between a dog and a wolf

**Analogy** ≜ A given level is reached by a step that provides an Analogy to explain the algorithm at hand. For example a visual analogy for Dijkstra's could be: If you have a physical model of a graph, and you pick it up by one vertex, then the vertex with the shortest path to the "source" vertex will be the one farthest from the ground.

**Performance**  $\triangleq$  A given level is reached by a step that explicitly describes the computational complexity of the level

Idea  $\triangleq$  A given level is reached by a step that adds an abstract idea to the explanation as a way to progress. For example, the statement "Well we have this, what if we did this?"

Constraint  $\triangleq$  A given level is reached by a step that explicitly presents a limit or condition in which the level would cease to be valid, e.g. Dijkstra's only works on non-negative weighted graphs

**Proof**  $\triangleq$  A given level is reached by a formal proof

• a Notation n, specifies the form of the role:

**English**  $\triangleq$  Human language to give explanations/statements.

**Diagram**  $\triangleq$  Diagram in the manner of data structures, such as graph, list.

List  $\triangleq$  List of similar items

**OrderedList**  $\triangleq$  Step by step items

**Math**  $\triangleq$  Formulas/math style symbols.

**Pseudocode**  $\triangleq$  Algorithm presented as pseudocode

**Code**  $\triangleq$  executable code to show the algorithm explicitly

**Tables**  $\triangleq$  Explanatory information displayed in a table

**Animation**  $\triangleq$  a gif or animation of any type is used.

**Picture**  $\triangleq$  A photo/screenshot or picture is used.

for example a definition might be described in English, followed by the same definition described by geometry. Notations can be combined for a single location like so:

$$\frac{n \in \text{Notation} \quad m \in \text{Notation}}{n/m \in \text{Notation}} \tag{1}$$