LOM3256 - Tópicos em Cálculo de Estrutura Eletrônica dos Materiais

Methods of electronic structure calculation of materials

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Semestre ideal: 7 Ativação: 15/07/2015

Departamento: Engenharia de Materiais

Objetivos

Propiciar ao aluno uma visão básica sobre os principais métodos de determinação teórica da estrutura eletrônica

dos materiais, com enfoque em sólidos cristalinos, mas também em materiais bidimensionais e nanoestruturados.

O principal método de cálculo a ser empregado no curso será a Teoria do Funcional da Densidade (Density Functional Theory, DFT), em algumas de suas muitas variantes. Ao final do curso, o aluno estará apto a

determinar propriedades dos materiais como estruturas de bandas, densidades de estados, superfícies de Fermi

e constantes elásticas, usando um ou mais dos métodos e códigos computacionais apresentados em aula.

Docente(s) Responsável(eis)

1176388 - Luiz Tadeu Fernandes Eleno

Programa resumido

Revisão de mecânica quântica; Revisão de física do estado sólido; Método de Hartree-Fock; Teoria do funcional

da densidade; Métodos de ondas planas e pseudo-potenciais; Códigos computacionais

Programa

Revisão de mecânica quântica

- o Equação de Schrödinger
- o Átomo do hidrogênio e orbitais atômicos
- o Notação de Dirac
- o Princípio variacional
- o Combinação linear de orbitais atômicos

Revisão de física do estado sólido

- o Espaço direto e recíproco
- o Teorema de Bloch
- o Zona de Brillouin
- o Bandas de energia e densidade de estados
- o Energia de Fermi e superficie de Fermi

o Aproximação de elétrons livres

Método de Hartree-Fock

- o Determinantes de Slater
- o Equação de Hartree-Fock
- o Potencial de troca e correlação
- o Algoritmo autoconsistente

Teoria do funcional da densidade

- o Teoremas de Hohenberg-Kohn
- o Equações de Kohn-Sham
- o Funcionais de troca e correlação: LDA, GGA, etc.

Métodos de ondas planas e pseudo-potenciais

- o Bases de ondas planas
- o Pseudo-potenciais
- o Bases de ondas planas aumentadas e linearizadas
- o Método FP-LAPW

Códigos computacionais

- o Quantum Espresso
- o Elk
- o Wien2k
- o VASP

Avaliação

Método: Aulas expositivas, trabalhos e exercícios comentados.

Critério: Média aritmética de trabalhos propostos ao longo do curso.

Norma de recuperação: Não haverá exame de recuperação

Bibliografia

GRIFFITHS, D. J., Mecânica Quântica, Pearson.

ASHCROFT, N. W. Solid State Physics, Saunders College.

KITTEL, C. Introduction to Solid State Physics. John Wiley & Sons.

SUTTON, A. P. Electronic Structure of Materials, Oxford.

MORGON, N. H. e COUTINHO, K. (eds), Métodos de Química teórica e modelagem molecular, Livraria da Física

Editora.

VIANNA, J. D. M., FAZZIO, A., CANUTO, S., Teoria Quântica de moléculas e sólidos, Livraria da Física Editora.

COTTENIER, S. Density Functional Theory and the Family of (L)APW-methods: a step-by-step introduction

(apostila, disponível online)

THIJSSEN, J. M. Computational Physics, Cambridge.

TADMOR, E. B., MILLER, R. E. Modeling Materials Continuum, atomistic and multiscale techniques,

Cambridge.

Requisitos

LOM3215 - Física do Estado Sólido (Requisito)