CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method of IP fragmentation on a network processor comprising the steps
2	of:
3	storing the frame to be fragmented in a series of buffers, chained
4	together by a linked list;
5	associating a buffer control block with each buffer;
6	associating a frame control block with each frame;
7	receiving frames into a queue to await dispatch to a network processor;
8	associating a queue control block with a queue of frames to be
9	transmitted;
10	assigning additional buffers and additional frame control blocks for
11	each multicast target and linking these additional frame control blocks with
12	the original frame control block associated with the frame;
13	using a multicast counter to determine when all frame fragments have
14	been transmitted;
15	returning buffers and frame control blocks assigned to each fragment
16	to the free queue as each fragment is transmitted;
17	and
18	returning the original buffers and frame control block to the free
19	queues after the frame has been sent to all of the multicast targets.
1	2. The method for IP fragmentation as recited in claim 1, wherein the buffer
2	control block associated with each buffer forms a linked list for chaining
3	buffers into a frame and contains a plurality of fields, including separate fields

4	to
5	store a pointer to the next buffer in the frame;
6	store the offset of the first valid byte of data in the next buffer of a
7	frame;
8	store the offset of the last valid byte of data in the next buffer of a
9	frame; and
10	indicate whether the next buffer in the frame should be returned to the
11	free buffer or queue or retained so as to continue multicast transmission.
1	3. The method for IP fragmentation as recited in claim 1, wherein the frame
2	control block associated with each frame forms a linked list for chaining
3	frames into a queue and contains a plurality of fields, including separate fields
4	to
5	store a pointer to the next frame in the queue;
6	store a count of the total number of bytes of the next frame in the
7	queue;
8	store the address of the first buffer in a frame;
9	store the starting byte position of valid data in the first buffer of a
10	frame;
11	store the ending byte position of valid data in the first buffer of a
12	frame; and
13	store information on the format and the type of the frame to be
14	transmitted.
1	4. The method for IP fragmentation as recited in claim 1, wherein the step of
2	receiving frames into a queue comprises the further steps of:
3	popping a free buffer address from the head of the free buffer queue;
4	popping a free frame control block from the head of the free frame

5	control block queue;
6	writing frame data to the buffer;
7	writing control information, including the first buffer address, the
8	starting and ending byte positions for valid data in the first buffer, to the
9	frame control block;
10	setting a working byte count register to the number of bytes written to
11	the first buffer;
12	repeating this process until the entire frame is written to buffers; and
13	adding the frame to the tail of an input queue to await dispatch to the
14	network processor.
1	5. The method for IP fragmentation as recited in claim 1, wherein the queue
2	control block associated with the queue of frames to be transmitted includes a
3	plurality of fields, including separate fields to
4	store the address of the frame control block associated with the frame
5	at the head of the queue;
6	store a count of the total number of valid bytes in the frame at the top
7	of the queue; and
8	store the address of the frame control block associated with the frame
9	at the tail of the queue.
1	6. A method for IP reassembly on a network processor comprising the steps
1	of:
2	storing frames to be reassembled in a series of buffers chained together
3	-
4	by a linked list;
5	associating a buffer control block with each buffer;
6	associating a frame control block with each frame;
7	receiving frames into a queue to await dispatch to a network processor;

8	associating two or more received frames that are to be reassembled
9	into a single transmit frame;
10	updating the buffer control blocks to modify the linked list of buffers
11	for combining multiple frames into a single reassembled frame;
12	associating a frame control block with the reassembled frame;
13	returning unused frame control blocks to a free queue;
14	associating a queue control block with a queue of frames to be
15	transmitted; and
16	returning the buffers and frame control block of the reassembled frame
17	to the free queue as the frame is transmitted.
1	7. A network processor for processing IP fragmentation comprising:
2	means for storing the frame to be fragmented in a series of buffers,
3	chained together by a linked list;
4	means for associating a buffer control block with each buffer and
5	associating a frame control block with each frame;
6	means for receiving frames into a queue to await dispatch to a network
7	processor;
8	means for associating a queue control block with a queue of frames to
9	be transmitted;
10	means for assigning additional buffers and additional frame control
11	blocks for each multicast target and linking these additional frame control
12	blocks with the original frame control block associated with the frame;
13	means using a multicast counter for determining when all frame
14	fragments have been transmitted; and
15	means for returning buffers and frame control blocks assigned to each
16	fragment to the free queue as each fragment is transmitted and returning the
17	original buffers and frame control block to the free queues after the frame has

been sent to all of the multicast targets.

18

1	8. The network processor as recited in claim 7, wherein the buffer control
2	block associated with each buffer forms a linked list for chaining buffers into
3	a frame and contains a plurality of fields, including separate fields to
4	store a pointer to the next buffer in the frame;
5	store the offset of the first valid byte of data in the next buffer of a
6	frame;
7	store the offset of the last valid byte of data in the next buffer of a
8	frame; and
9	indicate whether the next buffer in the frame should be returned to the
10	free buffer or queue or retained so as to continue multicast transmission.
1	9. The network processor as recited in claim 7, wherein the frame control
2	block associated with each frame forms a linked list for chaining frames into a
3	queue and contains a plurality of fields, including separate fields to
4	store a pointer to the next frame in the queue;
5	store a count of the total number of bytes of the next frame in the
6	queue;
7	store the address of the first buffer in a frame;
8	store the starting byte position of valid data in the first buffer of a
9	frame;
10	store the ending byte position of valid data in the first buffer of a
11	frame; and
12	store information on the format and the type of the frame to be
13	transmitted.

10. The network processor as recited in claim 7, wherein the means for

1

2	receiving frames into a queue comprises:
3	means for popping a free buffer address from the head of the free
4	buffer queue;
5	means for popping a free frame control block from the head of the free
6	frame control block queue;
7	means for writing frame data to the buffer and writing control
8	information, including the first buffer address, the starting and ending byte
9	positions for valid data in the first buffer, to the frame control block;
10	means for setting a working byte count register to the number of bytes
11	written to the first buffer; and
12	means, responsive to the entire frame is written to buffers, for adding
13	the frame to the tail of an input queue to await dispatch to the network
14	processor.
1	11. The network processor as recited in claim 7, wherein the queue control
2	block associated with the queue of frames to be transmitted includes a
3	plurality of fields, including separate fields to
4	store the address of the frame control block associated with the frame
5	at the head of the queue;
6	store a count of the total number of valid bytes in the frame at the top
7	of the queue; and
8	store the address of the frame control block associated with the frame
9	at the tail of the queue.
1	12. A network processor for IP reassembly comprising:
2	means for storing frames to be reassembled in a series of buffers
3	chained together by a linked list;
4	means for associating a buffer control block with each buffer and

5	associating a frame control block with each frame;
6	means for receiving frames into a queue to await dispatch to a network
7	processor;
8	means for associating two or more received frames that are to be
9	reassembled into a single transmit frame;
10	means for updating the buffer control blocks to modify the linked list
11	of buffers for combining multiple frames into a single reassembled frame and
12	associating a frame control block with the reassembled frame; and
13	means for returning unused frame control blocks to a free queue,
14	associating a queue control block with a queue of frames to be transmitted,
15	and returning the buffers and frame control block of the reassembled frame to
16	the free queue as the frame is transmitted.