Contents

0.1	Linear	forms
	0.1.1	Matrix operators
	0.1.2	Stuff
	0.1.3	Orthonormal basis

0.1 Linear forms

A linear form is a linear map from a vector space to a scalar from the vector space's underlying field.

hom(V, F)

0.1.1 Matrix operators

Linear forms can be represented as matrix operators.

$$v^T M = f$$

Where M has only one column.

0.1.2 Stuff

$$f(M)=f(v)$$

We introduce e_i , the element vector. This is 0 for all entries except for i where it is 1. Any vector can be shown as a sum of these vectors multiplied by a scalar.

$$f(M) = f(\sum_{i=1}^{m} a_i e_i)$$

$$f(M) = \sum_{i=1}^{m} f(a_i e_i)$$

$$f(M) = \sum_{i=1}^{m} a_i f(e_i)$$

$$f(M) = \sum_{i=1}^{m} a_i f(e_i)$$

0.1.3 Orthonormal basis

$$f(M) = \sum_{i=1}^{m} a_i$$