Name: ______ Student No.: _____

?. Let P, Q and R be propositions defined as follows:

P: Bus 1 is late. Q: Bus 2 is late. R: It is rush hour.

The compound proposition 'If it is rush hour then bus 1 is late or bus 2 is late.' can be expressed as

(A) $[(\text{not P}) \text{ or } (\text{not Q})] \Rightarrow \text{not R}$, (B) $[(\text{not P}) \text{ or } (\text{not Q})] \Rightarrow \text{R}$,

 $(C) [(\mathbf{not} \ \underline{P}) \ \mathbf{and} \ (\mathbf{not} \ \underline{Q})] \Rightarrow \mathbf{not} \ R, \quad (D) [(\mathbf{not} \ \underline{P}) \ \mathbf{and} \ (\mathbf{not} \ \underline{Q})] \Rightarrow R$

Answer: C

The statement is of form $R \Rightarrow [P \text{ or } Q]$ so is equivalent to **not** $[P \text{ or } Q] \Rightarrow \text{ not } R$ which in turn is equivalent to $[(\text{not } P) \text{ and } (\text{not } Q)] \Rightarrow \text{ not } R$.

?. The negation of $P \Rightarrow \mathbf{not} Q$ is equivalent to

 $(A)\ P\ \textbf{and}\ Q,\ (B)\ P\ \textbf{and}\ (\textbf{not}\ Q),\ (C)\ (\textbf{not}\ P)\ \textbf{and}\ Q,\ (D)\ (\textbf{not}\ P)\ \textbf{and}\ (\textbf{not}\ Q)$ Answer: \boxed{A}

 $X \Rightarrow Y$ is equivalent to $(\mathbf{not}\ X)$ or Y so the negation of $X \Rightarrow Y$ is X and $(\mathbf{not}\ Y)$. Here the negation of $P \Rightarrow (\mathbf{not}\ Q)$ is P and Q.

- ?. The negation of the statement 'At least one test is not difficult.' is the following:
- (A) All tests are not difficult. (B) All tests are difficult.
- (C) Some tests are not difficult. (D) Some tests are difficult.

Answer: B

If t is a test and P(t) is the statement 'test t is difficult' then 'At least one test is not difficult.' is the statement $\exists t$, **not** P(t). Its negation is $\forall t$, P(t) or 'For all tests t, t is difficult'.

?. A sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ is defined inductively by $x_1 = 1$ and $x_{k+1} = 2x_k + k$ for $k \ge 1$.

The numbers x_3 and x_4 take the following values respectively:

(A) 8 and 18, (B) 8 and 19, (C) 9 and 19, (D) 9 and 21.

Answer: B

$$x_2 = (2)x_1 + 1 = (2)(1) + 1 = 3$$
, $x_3 = (2)x_2 + 2 = (2)(3) + 2 = 8$, $x_4 = (2)x_3 + 3 = (2)(8) + 3 = 19$.