Clase # 7 de Análisis 3

Equipo clases a \LaTeX

20 de noviembre de 2020

Índice

т.	Teorema	Т
2.	Teorema	1
3.	Ejercicios	2
4.	Solución	3

1. Teorema

Condición suficiente de diferenciabilidad

Sea $f:S\subset\mathbb{R}^n\mapsto\mathbb{R},\ S$ abierto, $\vec{x}\in S.\ D_1f,\cdots,D_nf$ existen y son continuas en $B(\vec{x},r)\subset S.$ Entonces f es diferenciable en \vec{x}

2. Teorema

Regla de la cadena

Consideremos $f: S \subset \mathbb{R}^n \to \mathbb{R}$, S abierto, $\vec{r}: I \subset \mathbb{R} \to S$, y $g(t) = f(\vec{r}(t))$, $t \in I$. Sea $t \in I$ donde $\vec{r}'(t)$ existe y supongamos que f es diferenciable en $\vec{r}(t)$, entonces existe g'(t) y tenemos que

$$g'(t) = \nabla f(\vec{x}) \cdot \vec{r}'(t)$$

donde $\vec{x} = \vec{r}(t)$.

3. Ejercicios

- 1. Halle el vector gradiente si
 - a) $f(x,y) = x^2 + y^2 \sin(xy)$.
 - b) $f(x, y, z) = x^2 y^2 + 2z^2$.
- 2. Calcule la derivada direccional de $f(x,y,z)=x^2+2y^2+3z^2$ en (1,1,0) en la dirección de $\vec{e}_1-\vec{e}_2+2\vec{e}_3$.
- 3. Hallar los puntos (x,y) y las direcciones para las que la derivada direccional de $f(x,y) = 3x^2 + y^2$ tiene valor máximo, si (x,y) pertenece a la circunferencia $x^2 + y^2 = 1$.
- 4. Supóngase que f es diferenciable en cada punto de $B(\vec{x},r)$. Demuestre:
 - a) Si $\nabla f(\vec{y}) = \vec{0}$ para todo $\vec{y} \in B(\vec{x}, r)$ entonces f es constante en $B(\vec{x}, r)$.
 - b) Si $f(\vec{y}) \leq f(\vec{x})$ para todo $\vec{y}inB(\vec{x},r)$ entonces $\nabla f(\vec{x}) = \vec{0}$.
- 5. Hallar la derivada direccional de $f(x,y) = x^2 x + 2$ a lo largo de $y = x^2 x + 2$ en el punto (1,2). Use regla de la cadena.
- 6. Sea f un campo escalar no constante diferenciable en todo el plano y c una constante. Supongamos que la ecuación f(x,y) = c describe una curva C que tiene tangente en cada uno de sus puntos. Demuestre que f tiene las siguientes propiedades en cada punto de C
 - a) ∇f es un vector normal a \mathcal{C} .
 - b) La derivada direccional de f
 a lo largo de $\mathcal C$ es cero.
 - c) La derivada direccional de f
 tiene su valor máximo en la dirección del vector normal a \mathcal{C} .
- 7. Sea $f: S \subset \mathbb{R}^3 \mapsto \mathbb{R}$, S es abierto, f es diferenciable en S. Sea c una constante y consideremos la superficie de nivel $\mathcal{H} = \{\vec{y} \in S; f(\vec{y}) = c\}$. Sea \vec{a} in \mathcal{H} . Demuestre que la ecuación del plano tangente a la superficie \mathcal{H} satisface la ecuación

$$\nabla f(\vec{a}) \cdot (\vec{x} - \vec{a}) = 0$$

8. Sea $f(x,y) = \sqrt{|xy|}$. Compruebe que $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ en (0,0) ¿Tiene la superficie z = f(x,y) plano tangente en (0,0)?

4. Solución