Content:

What is a plot?

a. **Anatomy**

b. Major components:

- **Figure**: The overall window or page that everything is drawn on.
- Axis: Simply the `x-axis` and `y-axis`
- Axes: It is the area on which the data is plotted
- x-label: Name of x-axis
- **y-labe**l: Name of y-axis
- Major ticks: subdivides the axis into major units.
- Minor ticks: subdivides major tick units.
- **Title**: Title of each plot (Axes)
- **Legend**: describes the elements in the plot, blue and green curves in this case
- **Suptitle**: The common title of all the plots

Figure	plt.figure(figsize=(x,y)) E.g. plt.figure(figsize=(15,10))
Labels	plt.xlabel('x label name') plt.ylabel('y label name')
Title	plt.title('Title of the plot)
Suptitle	fig.suptitle('Title of the whole figure') # Used in case of subplots

Ticks	plt.xticks(rotation=90) # For x ticks plt.yticks(rotation=90) # For y ticks
Legend	plt.legend()

2. Types of Data:

- i. Numerical data:
 - 1. **Discrete** -> Can only take finite values (E.g. Year, 2010, 2011, etc.)
 - 2. **Continuous** > Can take any numerical value (E.g. temperature, pressure, etc.)
- ii. Categorical data:
 - 1. **Ordinal**: Categorical Data with an order (E.g. low, medium, high)
 - 2. **Non-ordinal/nominal**: Categorical Data without any order (example gender as Male/Female)

3. Installing and importing matplotlib and seaborn

Installing	pip install matplotlib pip install seaborn
Importing convention	import matplotlib.pyplot as plt import seaborn as sns

4. Univariate Data Analysis:

a. Categorical Data

b. Numerical Data

5. Bivariate

a. Numerical-Numerical

Line Plot	sns.lineplot(x='xcol', y='ycol', data=df)
	E.g.

b. Categorical-Categorical

Dodged barplot (Extension of countplot)	sns.countplot(x='xcol', hue='hueCol', data=df)
	E.g. sns.countplot(x='Publisher',hue='Platf orm',data=plat_data)

c. Categorical-Numerical

6. Multivariate

7. Subplots

```
We can plot multiple plots in a single figure
plt.figure()
plt.subplot(row,col,1)
# plot
...

E.g.
plt.figure(figsize=(20,12)).suptitle("NA Sales vs regions",fontsize=20)
# Using a 2x3 subplot
plt.subplot(2, 3, 1)
sns.scatterplot(x='NA_Sales', y='EU_Sales', data=top3_data)
```

```
plt.subplot(2, 3, 3)
sns.scatterplot(x='NA_Sales', y='JP_Sales', data=top3_data, color='red')
plt.subplot(2, 3, 4)
sns.scatterplot(x='NA_Sales', y='Other_Sales', data=top3_data, color='green')
plt.subplot(2, 3, 6)
sns.scatterplot(x='NA_Sales', y='Global_Sales', data=top3_data, color='orange')
NA_Sales vs regions
```


8. Pairplot

Displays a scatterplot for each pair of attributes, can provide a hue for each category too sns.pairplot(data=df, hue='hueCol')

E.g. sns.pairplot(data=df, hue='Genre')

9. Jointplot

Draws multiple types of plot of two variables in the same plot sns.jointplot(x='xcol', y='ycol', data=data, hue='hueCol)

E.g. sns.jointplot(x='NA_Sales', y='EU_Sales', data=top3_data, hue='Genre')

10. Correlation and Heatmaps

Plot a heatmap of correlation between various variables sns.heatmap(df.corr(), cmap='colour_map)

E.g.
sns.heatmap(top3_data.corr(), cmap= "Blues", annot=True)
plots a heatmap of the data with the correlation coefficient values annotated

11. Plotting with Pandas

Lineplot	df.plot(x='col1', y='col2')
	E.g. df.plot(x="Rank", y = "Median") 100000 80000 40000 20000 20000 25 50 75 100 125 150 175 Rank
Histogram	df['col'].plot(kind='hist')
	E.g. df['Median'].plot(kind="hist")
Barplot	df['col'].value_counts().plot(kind='bar')
	E.g. df['Major_category'].value_counts().pl ot(kind = 'bar')

