METHOD AND DETECTOR FOR IDENTIFYING SUBTYPES OF HUMAN PAPILLOMA VIRUSES

FIELD OF THE INVENTION

[0001] The present invention relates to a method and a detector for detecting human papilloma viruses, and more particularly to a method and a detector for simultaneously detecting and identifying subtype of human papilloma viruses (HPV).

BACKGROUND OF THE INVENTION

[0002] In humans, more than 70 genetically distinct strains of human papilloma virus (HPV) have been identified based on DNA hybridization studies. According to some reports, different HPV types cause distinct diseases. For example, "Low-risk" HPVs, e.g., HPV 6 and HPV 11, cause benign hyperplasias such as genital warts, while "high-risk" HPVs, e.g., HPV-16, HPV-18, HPV-31, HPV-33, HPV-54, and the like, can cause cancers such as cervical or penile carcinoma.

[0003] Cervical cancer is the most common cancer in women. The consorts are often men with penile warts. Sexual activity appears to be an important predisposing factor of the epidemic disease and precancerous lesions. In early 5 to 10 years during the development of cervical cancer, cervical cells form cervical intraepithelial neoplasm.

[0004] Recently, in order to decrease the incidence of cervical cancer, Pap smear is used for the cervical cancer screening. However, the Pap smear has a false negative rate of about 30%~40%. In addition, it is known that more that 95% of cervical carcinoma tissue contain detectable DNA sequences for known varieties of the human papilloma virus (HPV). Hence, the combination of Pap

smear and HPV detection for the cervical cancer screening is necessarily considered.

[0005] The Applicant cooperates with the hospital to do the epidemiological research in women cervical cancer by using Pap smear and HPV detection, wherein the HPV detection is proceeded by using polymerase chain reaction and nucleotide sequencing. There are 2424 women aged from 16 to 84 for the epidemiology research, wherein 1963 women provide the effective specimen. The research results are shown as follows.

- 1) 1.9% (37/1963) of the women have abnormal cytological smears.
- 2) 12.7% (244/1926) of the women with normal cytological smears but have HPV infection.
- 3) The HPV prevalence in the women with abnormal cytological smears is 51.4% (19/37) and positively relative to the degree of the abnormal cytological smears, wherein the incidence of abnormal non-typical squamous cells is 23.1%, the incidence of low abnormal epithelial cells is 41.7%, and the incidence of high abnormal epithelial cells is 75%.
- 4) The subtypes of human papilloma viruses detected in the specimens are HPV 52, HPV 58, HPV 70, HPV 16, HPV 18, HPV 68, HPV 33, HPV 66, HPV 35, HPV 37, HPV 54, HPV 59, HPV 67, HPV 72, HPV 69, HPV 82, HPV 39, HPV 31, HPV 32, HPV HLT7474-S, HPV 6, HPV CP8061, HPV 62, HPV CP8304, HPV 44, HPV 11, HPV 61, HPV 74, HPV 42 and HPV 43.

[0006] The conventional HPV detecting kits are only used for detecting 18 subtypes of human papilloma viruses including high risk HPV 16, HPV 18, HPV 31, HPV 33, HPV 35, HPV 39, HPV 45, HPV 51, HPV 52, HPV 56, HPV

58, HPV 59 and HPV 68, and detecting low risk HPV 6, HPV 11, HPV 42, HPV 43 and HPV 44.

However, according to the comparison of the epidemiology [0007] research and the conventional HPV detecting kits, several clinically-important subtypes of human papilloma viruses contained in a specimen could not be identified by the conventional HPV detecting kits. In addition, the conventional HPV detecting kits only tell the information of HPVs contained in a specimen by two categories, high risk HPVs or low HPVs, rather than tell the definite subtypes as which they are classified. Therefore, except the high risk HPVs and the low risk HPVs, if other HPV subtypes are contained in the specimen, the conventional HPV detecting kits can not identify immediately, which would seriously affects the diagnosis accuracy. Furthermore, the conventional HPV detecting kits lack the system control for checking the house-keeping genes contained in a specimen. Without the system control, it will be hard to confirm whether the detecting protocols are precisely followed. That is, the user can not tell the positive/negative result comes from the HPV subtypes presence/absence or comes from the incorrect protocols execution. Therefore, the conventional detecting kit without the system control would not be able to provide a convincing result.

[0008] From the above description, it is known that the conventional detecting kit can not identify many HPV subtypes at the same time and it does not include an internal control in the detecting system. Therefore, how to simultaneously detect many HPV subtypes contained in a biological simple and design an accurate internal control in the detecting kits have become a major problem waited to be solved. In order to overcome the foresaid drawbacks of the conventional HPV detecting kits, the present invention provides a method

and a detector for simultaneously detecting and identifying subtypes of human papilloma viruses contained in a sample.

SUMMARY OF THE INVENTION

[0009] It is therefore an object of the present invention to provide a detector for simultaneously detecting and identifying subtypes of human papilloma viruses (HPV) contained in a sample.

[0010] The main purpose of the present invention is to provide a HPV detecting kit, which is able to diagnose multiple HPV subtypes (up to 39 different subtypes) at the same time, allowing the rapid and reliable detection and identification of HPV possibly present in a biological sample.

[0011] It is another object of the present invention to provide a rapid and reliable method to detect and identify the HPV present in a biological sample.

[0012] It is another object of the present invention to provide a HPV detecting kit with high specificity and accuracy, which includes an internal control to show whether the detecting process is well handled so that the detecting result is dependable.

[0013] It is another object of the present invention to provide a number of oligonucleotides as probes for detecting and identifying the HPV present in a biological sample.

[0014] According to one aspect of the present invention, a detector for detecting and simultaneously diagnosing at least one subtype of human papilloma viruses (HPV) contained in a biological sample, comprises: a carrier, a plurality of micro-dots immobilized on the carrier, wherein each micro-dot is for identifying one particular HPV subtype, and the HPV subtype is one selected from a group consisting of (HPV 6, HPV 11, HPV 16, HPV 18, HPV 26, HPV 31, HPV 32, HPV 33, HPV 35, HPV 37, HPV 39, HPV 42, HPV 43, HPV 44,

HPV 45, HPV 51, HPV 52, HPV 53, HPV 54, HPV 55, HPV 56, HPV 58, HPV 59, HPV 61, HPV 62, HPV 66, HPV 67, HPV 68, HPV 69, HPV 70, HPV 72, HPV 74, HPV 82, HPV CP8061, HPV CP8034, HPV L1AE5, HPV MM4, HPV MM7 and HPV MM8); and at least one oligonucleotide sequence contained in each the micro-dot that is specific to the one particular HPV subtype, wherein the at least one oligonucleotide sequence serves as a detection probe that hybridizes specifically with an L1 gene sequence of the one particular HPV subtype to form a hybridization complex as a detection indicator, so that each micro-dot identifies one particular HPV subtype via a corresponding oligonucleotide of the one particular HPV subtype, and thereby detecting and simultaneously identifying subtypes of human papilloma viruses.

In accordance with the present invention, the at least one [0015]oligonucleotide that hybridizes specifically with an L1 gene sequence of the one particular HPV subtype is respectively chosen from the following list for each HPV subtype: (SEQ ID NO:1-SEQ ID NO:12) for HPV 6, (SEQ ID NO:13-SEQ ID NO:24) for HPV 11, (SEQ ID NO:25-SEQ ID NO:36) for HPV 16, (SEQ ID NO:37-SEQ ID NO:48) for HPV 18, (SEQ ID NO:49-SEQ ID NO:58) for HPV 26, (SEQ ID NO:59-SEQ ID NO:68) for HPV 31, (SEQ ID NO:69-SEQ ID NO:79) for HPV 32, (SEQ ID NO:80-SEQ ID NO:90) for HPV 33, (SEQ ID NO:91-SEQ ID NO:100) for HPV 35, (SEQ ID NO:101-SEQ ID NO:112) for HPV 37, (SEQ ID NO:113-SEQ ID NO:123) for HPV 39, (SEQ ID NO:124-SEQ ID NO:133) for HPV 42, (SEQ ID NO:134-SEQ ID NO:143) for HPV 43, (SEQ ID NO:144-SEQ ID NO:154) for HPV 44, (SEQ ID NO:155-SEQ ID NO:165) for HPV 45, (SEQ ID NO:166-SEQ ID NO:177) for HPV 51, (SEQ ID NO:178-SEQ ID NO:189) for HPV 52, (SEQ ID NO:190-SEQ ID NO:199) for HPV 53, (SEQ ID NO:200-SEQ ID NO:209) for HPV 54, (SEQ ID NO:210-SEQ ID NO:218) for HPV 55, (SEQ ID NO:219-SEQ ID NO:228) for HPV 56, (SEQ ID NO:229-SEQ ID NO:239) for HPV 58, (SEQ ID NO:240-SEQ ID NO:250) for HPV 59, (SEQ ID NO:251-SEQ ID NO:261) for HPV 61, (SEQ ID NO:262-SEQ ID NO:272) for HPV 62, (SEQ ID NO:273-SEQ ID NO:283) for HPV 66, (SEQ ID NO:284-SEQ ID NO:294) for HPV 67, (SEQ ID NO:295-SEQ ID NO:305) for HPV 68, (SEQ ID NO:306-SEQ ID NO:316) for HPV 69, (SEQ ID NO:317-SEQ ID NO:328) for HPV 70, (SEQ ID NO:329-SEQ ID NO:341) for HPV 72, (SEQ ID NO:342-SEQ ID NO:353) for HPV 74, (SEQ ID NO:354-SEQ ID NO:362) for HPV 82, (SEQ ID NO:363-SEQ ID NO:374) for HPV CP8061, (SEQ ID NO:375-SEQ ID NO:386) for HPV CP8034, (SEQ ID NO:387-SEQ ID NO:397) for HPV L1AE5, (SEQ ID NO:398-SEQ ID NO:408) for HPV MM4, (SEQ ID NO:409-SEQ ID NO:419) for HPV MM7, and (SEQ ID NO:420-SEQ ID NO:429) for HPV MM8.

[0016] Preferably, the carrier is a nylon membrane..

[0017] Preferably, the carrier is a glass plate.

[0018] Preferably, the detector is an oligonucleotide biochip.

[0019] Preferably, the at least one oligonucleotide has a length between 15-30 bases.

[0020] Preferably, the detector further comprises a micro-dot containing a Glutaldehyde-3-phosphodehydrogenase (GAPDH) gene, which is used as an internal control.

[0021] According to another aspect of the present invention, a method for detecting and simultaneously diagnosing at least one subtype of human papilloma viruses (HPV) contained in a biological sample is provided. The detecting method comprises steps of: amplifying an L1 gene fragment of human

papilloma viruses (HPV) contained in the biological sample and obtaining an amplification product by polymerase chain reaction (PCR) using primers labeled with signaling substance; hybridizing the amplification product with a detector according to Claim 1 to form a hybridization complex; removing nonhybridized the amplification product; and detecting the hybridization complex through detecting the signaling substance, thereby detecting and simultaneously identifying HPV subtypes contained in the biological sample.

[0022] Preferably, the amplification product has a length of 450 base pairs by using MY09 as sense primer and MY11 as anti-sense primer in polymerase chain reaction (PCR).

[0023] Preferably, the amplification product has a length of 190 base pairs by using MY11 as sense primer and GP6+ as anti-sense primer in polymerase chain reaction (PCR).

[0024] Preferably, the signaling substance is biotin.

[0025] Preferably, the biotin reacts with avidin-alkalinephosphatase to show the hybridization result by presenting a particular color.

[0026] Preferably, the signaling substance is a fluorescent substance.

[0027] Preferably, the fluorescent substance is Cyanine 5.

[0028] According to another aspect of the present invention, a probe which hybridizes to nucleic acid from an HPV subtype, the probe being selected from the group consisting of: SEQ ID NO:1-SEQ ID NO:12 and sequences fully complementary thereto, which hybridize with HPV 6; SEQ ID NO:13-SEQ ID NO:24 and sequences fully complementary thereto, which hybridize with HPV 11; SEQ ID NO:25-SEQ ID NO:36 and sequences fully complementary thereto, which hybridize with HPV 16; SEQ ID NO:37-SEQ ID NO:48 and sequences fully complementary thereto, which hybridize with HPV 18; SEQ ID

NO:49-SEQ ID NO:58 and sequences fully complementary thereto, which hybridize with HPV 26; SEQ ID NO:59-SEQ ID NO:68 and sequences fully complementary thereto, which hybridize with HPV 31; SEQ ID NO:69-SEQ ID NO:79 and sequences fully complementary thereto, which hybridize with HPV 32; SEQ ID NO:80-SEQ ID NO:90 and sequences fully complementary thereto, which hybridize with HPV 33; SEQ ID NO:91-SEQ ID NO:100 and sequences fully complementary thereto, which hybridize with HPV 35; SEQ ID NO:101-SEQ ID NO:112 and sequences fully complementary thereto, which hybridize with HPV 37; SEQ ID NO:113-SEQ ID NO:123 and sequences fully complementary thereto, which hybridize with HPV 39; SEQ ID NO:124-SEQ ID NO:133 and sequences fully complementary thereto, which hybridize with HPV 42; SEQ ID NO:134-SEQ ID NO:143 and sequences fully complementary thereto, which hybridize with HPV 43; SEQ ID NO:144-SEQ ID NO:154 and sequences fully complementary thereto, which hybridize with HPV 44; SEQ ID NO:155-SEQ ID NO:165 and sequences fully complementary thereto, which hybridize with HPV 45; SEQ ID NO:166-SEQ ID NO:177 and sequences fully complementary thereto, which hybridize with HPV 51; SEQ ID NO:178-SEQ ID NO:189 and sequences fully complementary thereto, which hybridize with HPV 52; SEQ ID NO:190-SEQ ID NO:199 and sequences fully complementary thereto, which hybridize with HPV 53; SEQ ID NO:200-SEQ ID NO:209 and sequences fully complementary thereto, which hybridize with HPV 54; SEQ ID NO:210-SEQ ID NO:218 and sequences fully complementary thereto, which hybridize with HPV 55; SEQ ID NO:219-SEQ ID NO:228 and sequences fully complementary thereto, which hybridize with HPV 56; SEQ ID NO:229-SEQ ID NO:239 and sequences fully complementary thereto, which hybridize with HPV 58; SEQ ID NO:240-SEQ ID NO:250 and sequences fully complementary thereto, which hybridize with HPV 59; SEQ ID NO:251-SEQ ID NO:261 and sequences fully complementary thereto, which hybridize with HPV 61; SEQ ID NO:262-SEQ ID NO:272 and sequences fully complementary thereto, which hybridize with HPV 62; SEQ ID NO:273-SEQ ID NO:283 and sequences fully complementary thereto, which hybridize with HPV 66; SEQ ID NO:284-SEQ ID NO:294 and sequences fully complementary thereto, which hybridize with HPV 67; SEQ ID NO:295-SEQ ID NO:305 and sequences fully complementary thereto, which hybridize with HPV 68; SEQ ID NO:306-SEQ ID NO:316 and sequences fully complementary thereto, which hybridize with HPV 69; SEQ ID NO:317-SEQ ID NO:328 and sequences fully complementary thereto, which hybridize with HPV 70; SEQ ID NO:329-SEQ ID NO:341 and sequences fully complementary thereto, which hybridize with HPV 72; SEQ ID NO:342-SEQ ID NO:353 and sequences fully complementary thereto, which hybridize with HPV 74; SEQ ID NO:354-SEQ ID NO:362 and sequences fully complementary thereto, which hybridize with HPV 82; SEQ ID NO:363-SEQ ID NO:374 and sequences fully complementary thereto, which hybridize with HPV CP8061; SEQ ID NO:375-SEQ ID NO:386 and sequences fully complementary thereto, which hybridize with HPV CP8034; SEQ ID NO:387-SEQ ID NO:397 and sequences fully complementary thereto, which hybridize with HPV L1AE5; SEQ ID NO:398-SEQ ID NO:408 and sequences fully complementary thereto, which hybridize with HPV MM4; SEQ ID NO:409-SEQ ID NO:419 and sequences fully complementary thereto, which hybridize with HPV MM7; and SEQ ID NO:420-SEQ ID NO:429 and sequences fully complementary thereto, which hybridize with HPV MM8.

[0029] The foregoing and other features and advantages of the present invention will be more clearly understood through the following descriptions with reference to the drawings, wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] Fig. 1 is a schematic view showing the detector according to a preferred embodiment of the present invention;

[0031] Fig. 2(a) is a schematic view showing the detector according to a preferred embodiment of the present invention;

[0032] Fig. 2(b) is a schematic view illustrating the subtype of human papilloma viruses identified by each dot shown in Fig. 2(a);

[0033] Fig. 3(a) is the electrophoresis result showing the analyzed PCR products using primer set MY09/MY11 according to a preferred embodiment of the present invention;

[0034] Fig. 3(b) is the electrophoresis result showing the analyzed PCR products using primer set MY11/GP6+ according to a preferred embodiment of the present invention;

[0035] Fig. 3(c) is the electrophoresis result showing the analyzed PCR products using GAPDH primer set according to a preferred embodiment of the present invention;

[0036] Fig. 4(a) is the detecting result on the detector of detecting the PCR products using primer set MY09/MY11 of HPV positive clones according to a preferred embodiment of the present invention;

[0037] Fig. 4(b) is detecting result on the detector of detecting the PCR products using primer set MY11/GP6+ of HPV positive clones according to a preferred embodiment of the present invention;

[0038] Fig. 5 is a view showing the detecting result on the detectors of detecting samples according to a preferred embodiment of the present invention;

[0039] Fig. 6(a) is a schematic view showing the detector according to another preferred embodiment of the present invention;

[0040] Fig. 6(b) is a schematic view illustrating the subtype of human papilloma viruses identified by each dot shown in Fig. 6(a);

[0041] Fig. 7(a) is a view showing the detector stained with SYBR Green II according to a embodiment of the present invention; and

[0042] Fig. 7(b) is a view showing the detecting result on the detectors of detecting samples according to a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0043] The present invention will now described more specifically with reference to the following embodiments. Papilloma viruses are small (50-60 nm), nonenveloped, and icosahedral DNA viruses. The DNA of many papilloma viruses, including over 50 human viruses, has been cloned and sequenced. Although there is a high degree of sequence divergence between species, all papilloma viruses share some common features of genome organization. The open reading frames (ORFs) of the virus genomes are designated an early region, a late region, and a long control region (LCR) of transcription. The early region contains genes E1-E8 (not all are present in all species), the late region contains genes L1 and L2 (where "E" denotes early and "L" denotes late), and the long control region (LCR) of transcription includes the promoter and enhancer for the viral early genes and the origin of replication. The early region encodes genes required for viral DNA replication, cellular proliferation, and, in some viruses, cellular transformation. The late region (about 3 kb) codes for the capsid proteins. L1 is the major capsid protein and

is relatively well conserved among all the papilloma virus types. The L1 protein is about 500 amino acids in size. L1 probably induces the major humoral and cell-mediated responses to viral infection. The L2 proteins are about 500 amino acids in size, account for only a small proportion of the virion mass, and their function is not yet clear. The LCR region contains an origin of replication with binding sites for E1 and E2 and other cis acting sequences in the promoter and enhancer region.

[0044] Generally, PCR has been considered to be the most sensitive method for identifying HPV subtypes in biological samples. A number of different primer combinations amplifying DNA fragment from various regions of the HPV genome have been developed and used for the detection of HPV. However, primers amplifying DNA fragments in the conserved L1 region have become the most widely used in the clinical and epidemiological studies. It is because that certain region of the L1 gene presents a high degree of sequence variability in different HPV subtypes. In other words, the sequence variability among each HPV subtype could be the specific site for identifying each different HPV subtype.

[0045] In order to identify the various HPV subtypes, the Applicant focuses on the loci near the end of L1 gene to search the specific sequence variability as mentioned above. More specifically, the PCR fragment synthesized by the primer sets MY11/MY09 (as disclosed in Weimin et al., 1997, J. Clin. Microbiol. 35(6): 1304-1310) in the L1 region is the particular loci ranges where the Applicant refers to find the specific sequence variability for each HPV subtype in the present invention. Since the specific sequence variability for each HPV subtype is not only specific to a particular HPV subtype, but also distinguished from any other HPV subtype, consequently, the

probes specifically hybridization with a particular HPV subtype could be selected for identifying or diagnosing HPV subtypes, which is also one of the main purposes of the present invention.

The PCR fragments synthesized by the primer sets MY11/MY09 in the L1 region are about 450 bp in length and had been published. The sequences of the fragments for each HPV subtype described in the invention are publicly available, for example, from the National Center for Biotechnology Information (NCBI) (e.g., www.ncbi.nih.gov). The 39 HPV subtypes identified in the invention includes HPV 6, HPV 11, HPV 16, HPV 18, HPV 26, HPV 31, HPV 32, HPV 33, HPV 35, HPV 37, HPV 39, HPV 42, HPV 43, HPV 44, HPV 45, HPV 51, HPV 52, HPV 53, HPV 54, HPV 55, HPV 56, HPV 58, HPV 59, HPV 61, HPV 62, HPV 66, HPV 67, HPV 68, HPV 69, HPV 70, HPV 72, HPV 74, HPV 82, HPV CP8061, HPV CP8034, HPV L1AE5, HPV MM4, HPV MM7 and HPV MM8. The original NCBI Accession number and the loci of the PCR fragments synthesized by the primer sets MY11/MY09 for different HPV subtypes are listed in Table 1:

	Ta	ible 1	
HPV subtype	Accession	loci / length(bp)	SEQ ID NO.
	number/length(bp)		
HPV 6	NC_000904/8012	6743 – 7151/409	430
HPV 11	NC_001525/7931	6727 – 7135/409	431
HPV 16	NC_001526/7904	6602 - 7013/412	432
HPV 18	NC_001357/7857	6578 – 6992/415	433
HPV 26	NC_001583/7855	6553 – 6967/415	434
HPV 31	NC_001527/7912	6520 - 6931/412	435
HPV 32	NC_001586/7961	6837 - 7245/409	436
HPV 33	NC_001528/7909	6559 - 6967/409	437
HPV 35	NC_001529/7851	6542 - 6953/412	438
HPV 37	NC_001687/7421	6711 – 7125/415	439

HPV 39	NC_001535/7833	6605 - 7019/415	440
HPV 42	NC_001534/7917	6802-7210/409	441
HPV 43	U12504/455	21-435/415	442
HPV 44	NC 001689/7833	6647 - 7061/415	443
HPV 45	NC 001590/7858	6582 - 6996/415	444
HPV 51	NC 001533/7808	6486 - 6897/412	445
HPV 52	NC 001592/7942	6623 - 7031/409	446
HPV 53	NC 001593/7856	6614 - 7022/409	447
HPV 54	NC_001676/7759	6561 - 6972/412	448
HPV 55	NC 001692/7822	6647-7061/415	449
HPV 56	NC 001594/7844	6559 - 6967/409	450
HPV 58	NC_001443/7824	6608 - 7016/409	451
HPV 59	NC 001635/7896	6571 - 6985/415	452
HPV 61	NC_001694/7989	6732 - 7146/415	453
HPV 62	U12499/449	21 – 429/409	454
HPV 66	NC_001695/7824	6609 - 7017/409	455
HPV 67	D21208/7801	6584 - 6992/409	456
HPV 68	M73258/6042	2582 - 2996/415	457
HPV 69	NC 002171/7700	6509 - 6923/415	458
HPV 70	NC 001711/7905	6549 – 6963/415	459
HPV 72	X94164/7988	6758 - 7172/415	460
HPV 74	U40822/3891	1613 – 2027/415	461
HPV 82	AB027021/7871	6536 – 6950/415	462
HPV CP8061	U12479/452	21 - 432/412	463
HPV CP8304	U12480/452	21 - 432/412	464
HPV L1AE5	AF039910/364	11 – 360/350	465
HPV MM4	U12488/455	21 – 435/415	466
HPV MM7	U12489/452	21 – 432/412	467
HPV MM8	U12490/452	21 – 432/412	468

[0047] The sequences of the fragments of each HPV subtype described in the invention are listed below:

[0048] Human Papilloma Virus subtype 6 (6743-7151/409 bp) SEQ ID NO 430

tattigtigg ggiaatcaac igitigitac igiggiagai accacacgca giaccaacai

60

gacattatgt	gcatccgtaa	ctacatcttc	cacatacacc	aattctgatt	ataaagagta	120
catgcgtcat	gtggaagagt	atgatttaca	atttatttt	caattatgta	gcattacatt	180
gtctgctgaa	gtaatggcct	atattcacac	aatgaatccc	tctgttttgg	aagactggaa	240
ctttgggtta	tcgcctcccc	caaatggtac	attagaagat	acctataggt	atgtgcagtc	300
acaggccatt	acctgtcaaa	agcccactcc	tgaaaaggaa	aagccagatc	cctataagaa	360
ccttagtttt	tgggaggtta	atttaaaaga	aaagttttct	agtgaattg		409
[0049]	Human Pa	pilloma Vir	us subtype	11 (6727-71	35/409 bp)	
SEQ ID NO	O 431					
tatttgctgg	ggaaaccact	tgtttgttac	tgtggtagat	accacacgca	gtacaaatat	60
gacactatgt	gcatctgtgt	ctaaatctgc	tacatacact	aattcagatt	ataaggaata	120
catgcgccat	gtggaggagt	ttgatttaca	gtttattttt	caattgtgta	gcattacatt	180
atctgcagaa	gtcatggcct	atatacacac	aatgaatcct	tctgttttgg	aggactggaa	240
ctttggttta	tcgcctccac	${\tt caaatggtac}$	actggaggat	acttatagat	atgtacagtc	300
acaggccatt	acctgtcaga	aacccacacc	tgaaaaagaa	aaacaggatc	cctataagga	360
tatgagtttt	tgggaggtta	acttaaaaga	aaagtttca	agtgaatta		409
[0050]	Human Pa	ipilloma Vir	us subtype	16 (6602-70	13/412 bp)	
SEQ ID NO	O 432					
catttgttgg	ggtaaccaac	tatttgttac	tgttgttgat	actacacgca	gtacaaatat	60
gtcattatgt	gctgccatat	ctacttcaga	aactacatat	aaaaatacta	actttaagga	120
gtacctacga	catggggagg	aatatgattt	acagtttatt	tttcaactgt	gcaaaataac	180
cttaactgca	gacgttatga	catacataca	ttctatgaat	tccactattt	tggaggactg	240
gaattttggt	ctacaacctc	ccccaggagg	cacactagaa	gatacttata	ggtttgtaac	300
ccaggcaatt	gcttgtcaaa	aacatacacc	tccagcacct	aaagaagatg	a·t cccct taa	360
aaaatacact	ttttgggaag	taaatttaaa	ggaaaagttt	tctgcagacc	t a	412
[0051]	Human Pa	pilloma Vir	us subtype	18 (6587-69	92/415 bp)	
SEQ ID NO	O 433					
tgtttgctgg	cataatcaat	tatttgttac	tgtggtagat	accactccca	gtaccaattt	60
aacaatatgt	gcttctacac	agtctcctgt	acctgggcaa	tatgatgcta	ccaaatttaa	120
gcagtatagc	agacatgttg	aggaatatga	tttgcagttt	atttttcagt	tgtgtactat	180
tactttaact	gcagatgtta	tgtcctatat	tcatagtatg	aatagcagta	ttttagagga	240
ttggaacttt	ggtgttcccc	ccccccaac	tactagtttg	gtggatacat	atcgttttgt	300
acaatctgtt	gctattacct	gtcaaaagga	tgctgcaccg	gctgaaaata	aggatcccta	360

tgataagtta	aagttttgga	atgtggattt	aaaggaaaag	ttttctttag	actta	415
[0052]	Human Pa	pilloma Vir	us subtype 2	26 (6553-69	67/415 bp)	
SEQ ID NO) 434					
tatctgttgg	ggcaatcaat	tgtttgttac	ctgtgttgat	accacccgca	gtactaacct	60
taccattagt	acattatctg	cagcatctgc	atccactcca	tttaaaccat	ctgattataa	120
acaatttata	agacatggcg	aagaatatga	attacaattt	atatttcagt	tgtgtaaaat	180
aacacttaca	acagatgtta	tggcttacat	acatttaatg	aatgcctcca	tattggagga	240
ttggaattit	ggactaacct	tacctcccac	tgctagtttg	gaagatgcct	ataggtttat	300
taaaaactct	gctactacct	gtcagcgtaa	cgcccctcct	gtgccaaagg	aagatccttt	360
tcaaaaattt	aaattttggg	atgtagattt	aaaagaaaaa	ttttctattg	atttg	415
[0053]	Human Pa	pilloma Vir	us subtype 3	31 (6520-69	31/412 bp)	
SEQ ID NO	O 435					
tatttgttgg	ggcaatcagt	tatttgttac	tgtggtagat	accacacgta	gtaccaatat	60
gtctgtttgt	gctgcaattg	caaacagtga	tactacattt	aaaagtagta	attttaaaga	120
gtatttaaga	catggtgagg	aatttgattt	acaatttata	tttcagttat	gcaaaataac	180
attatctgca	gacataatga	catatattca	cagtatgaat	cctgctattt	tggaagattg	240
gaattttgga	ttgaccacac	ctccctcagg	ttctttggag	gatacctata	ggtttgtcac	300
ctcacaggcc	attacatgtc	aaaaaactgc	ccccaaaag	cccaaggaag	atccatttaa	360
agattatgta	ttttgggagg	ttaatttaaa	agaaaagttt	tctgcagatt	ta	412
[0054]	Human Pa	pilloma Vir	us subtype 3	32 (6837-72	45/409 bp)	
SEQ ID NO	O 436				•	
tatatgttgg	ggtaatcaag	tgtttctaac	tgttgtggat	actacccgta	gtactaacat	60
gactgtgtgt	gctactgtaa	caactgaaga	cacatacaag	tctactaact	ttaaggaata	120
tctacgccat	gcagaggaat	atgatataca	gtttatattt	caattgtgca	aaattacatt	180
atctgtagag	gttatgtcat	atatccacac	catgaatcct	gacatactag	acgattggaa	240
tgttggtgta	gctccaccgc	cctctggtac	tttagaagat	agttatagat	ttgtgcagtc	300
tcaggccata	cgatgtcaag	ctaaggtaac	agcacctgaa	aaaaaggatc	ctttttctga	360
ctattcattt	tgggaagtaa	atttatctga	aaagttttct	agtgattta		409

[0055] Human Papilloma Virus subtype 33 (6559-6967/409 bp) SEQ ID NO 437

tatttgttgg	ggcaatcagg	tatttgttac	tgtggtagat	accactcgca	gtactaatat	60
gactttatgc	acacaagtaa	ctagtgacag	tacatataaa	aatgaaaatt	ttaaagaata	120
tataagacat	gtitgaagaat	atgatctaca	gtttgtttt	caactatgca	aagttacctt	180
aactgcagaa	gttatgacat	atattcatgc	tatgaatcca	gatattttag	aagattggca	240
atttggttta	$a \\ c \\ a \\ c \\ c \\ t \\ c \\ t \\ c \\$	catctgctag	tttacaggat	acctataggt	ttgttacctc	300
tcaggctatt	acgtgtcaaa	aaacagtacc	tccaaaggaa	aaggaagacc	ccttaggtaa	360
atatacattt	tgggaagtgg	atttaaagga	aaaattttca	gcagattta		409
[0056]	Human Pa	pilloma Vir	us subtype :	35 (6542-69	53/412 bp)	
SEQ ID NO	O 438					••
tatttgttgg	agtaaccaat	tgtttgttac	tgtagttgat	acaacccgta	gtacaaatat	60
gtctgtgtgt	tctgctgtgt	cttctagtga	cagtacatat	aaaaatgaca	attttaagga	120
atatttaagg	catggtgaag	aatatgattt	acagtttatt	tttcagttat	gtaaaataac	180
actaacagca	gatgttatga	${\tt catatattca}$	tagtatgaac	ccgtccattt	tagaggattg	240
gaattttggc	cttacaccac	cgccttctgg	taccttagag	gacacatatc	gctatgtaac	300
atcacaggct	gtaacttgtc	aaaaacccag	tgcaccaaaa	cctaaagatg	atccattaaa	360
aaattatact	ttttgggagg	ttgatttaaa	ggaaaagttt	tctgcagact	t a	412
[0057]	Human Pa	pilloma Vir	us subtype :	37 (6711-71	25/415 bp)	
SEQ ID NO	O 439					
cattttatgg	ggtaatcaaa	tgtttatcac	agttgctgat	aatacacgga	acacaaactt	60
ttctattagt	gtgtctactg	acaatggcga	agttacagaa	tataattctc	aaacactcag	120
agaataccta	agacatgttg	aagaatacca	gctttcaatt	attttacaac	tttgtaaagt	180
tcctttaaag	gctgaggttt	taactcagat	aaatgcaatg	aattctggta	tattggaaga	240
gtggcaatta	ggatttgtac	ctactccaga	taattcagta	catgaccttt	ataggtacat	300
taattcaaag	gctaccaagt	gtcctgatgc	agttgttgaa	aaagaaaagg	aagatccctt	360
tgcaaaatat	acattttgga	atgtagattt	aactgaaaaa	ttatcattgg	attta	415
[0058]	Human Pa	pilloma Vir	rus subtype :	39 (6605-70	17/415 bp)	
SEQ ID NO		· F ·		(-17	
•		+ 4 4 4 4 4 4	tattata====	001000001	2100000011	<i>د</i> ۸
			tgttgtggac			60 120
			accttctaca			180
			tttacaattt			240
cacattaaca	actgatgtta	+ m+ c+ + a + a +	tegegetete	9911001010	ייים בעות המיים וויים די	7/111

acagtctgca	gctgtagctc gccattacat aagttttgga	gtcaaaagga	tgctccagca	cctgaaaaga	aagatccata	300 360 415
[0059]	Human Pa	pilloma Vir	us subtype 4	12 (6802-72	10/409 bp)	
SEQ ID NO) 441					
	ggaaatcagc					60
	gccactgcaa					120
	gctgaagaat					180
					aggagtggaa	
	gcaccaccac					300
	cgctgtcagg				cttattcaga	360
cttttggttt	tgggaggtaa	atttatctga	aaagttttct	actgattta		409
[0060]	Human Pa	pilloma Vir	us subtype	43 (21-435/	415 bp)	
SEQ ID NO) 442					
catttgtttt	gggaatcagt	tgtttgttac	agtggtagat	accactcgta	gtacaaactt	60
gacgttatgt	gcctctactg	accctactgt	gcccagtaca	tatgacaatg	caaagtttaa	120
ggaatacttg	cggcatgtgg	aagaatatga	tctgcagttt	atatttcaat	tatgcataat	180
aacgctaaac	ccagaggtta	tgacatatat	tcatactatg	gatcccacat	tattagagga	240
ctggaatttt	ggtgtgtccc	cacctgcctc	tgcttctttg	gaagatactt	atcgcttttt	300
gtctaacaag	gccattgcat	gtcaaaaaaa	tgctccccca	aaggaacggg	aggatcccta	360
taaaaagtat	acattttggg	atataaatct	tacagaaaag	ttttctgcac	aactt	415
[0061]	Human Pa	ıpilloma Vir	us subtype 4	44 (6647 - 70	61/415 bp)	
		·P	ar sweety pr	(
SEQ ID NO						
tatttgttgg	ggaaatcagt	tatttgttac	tgttgtagat	actacccgta	gtacaaacat	60
gacaatatgt	gctgccacta	cacagtcccc	tccgtctaca	tatactagtg	aacaatataa	120
gcaatacatg	cgacatgttg	aggagtttga	cttacaattt	atgtttcaat	tatgtagtat	180
taccttaacg	gcggaggtaa	tggcctatct	tcatactatg	aatgctggta	ttttagaaca	240
gtggaacttt	gggttgtcgc	cgccccaaa	tggtacctta	gaggacaaat	acagatatgt	300
gcagtcccag	gccattacat	gtcaaaagcc	acccctgaa	aaggcaaagc	aggaccccta	360
tgcaaaatta	agtttttggg	aggtggatct	tagagaaaag	ttttctagtg	agttg	415

Human Papilloma Virus subtype 45 (6582-6996/415 bp) [0062] SEQ ID NO 444 60 tattigitgg cataatcagi igittgitac igiagiggac actacccgca giactaatti aacattatgt gcctctacac aaaatcctgt gccaagtaca tatgacccta ctaagtttaa 120 180 gcagtatagt agacatgtgg aggaatatga tttacagttt atttttcagt tgtgcactat tactttaact gcagaggtta tgtcatatat ccatagtatg aatagtagta tattagaaaa 240 300 tiggaatitt ggigtccctc caccacctac tacaagiitg giggatacat aicgiitigi 360 gcaatcagtt gctgttacct gtcaaaagga tactacacct ccagaaaagc aggatccata 415 tgataaatta aagttttgga ctgttgacct aaaggaaaaa ttttcctccg atttg [0063] Human Papilloma Virus subtype 51 (6486-6897/412 bp) SEQ ID NO 445 60 cattigcigg aacaatcagc tittiattac cigigitgat actaccagaa giacaaatti aactattagc actgccactg ctgcggtttc cccaacattt actccaagta actttaagca 120 atatattagg catggggaag agtatgaatt gcaatttatt tttcaattat gtaaaattac 180 tttaactaca gaggtaatgg cttatttaca cacaatggat cctaccattc ttgaacagtg 240 gaattitgga tiaacattac ciccgicigc tagtitggag gaigcatata ggitigitag 300 360 aaatgcagct actagctgtc aaaaggacac ccctccacag gctaagccag atcctttggc caaatataaa ttttgggatg ttgatttaaa ggaacgattt tctttagatt ta 412 [0064] Human Papilloma Virus subtype 52 (6623-7031/409 bp) SEQ ID NO 446 catatgttgg ggcaatcagt tgtttgtcac agttgtggat accactcgta gcactaacat 60 120 gactttatgt gctgaggtta aaaaggaaag cacatataaa aatgaaaatt ttaaggaata ccttcgtcat ggcgaggaat ttgatttaca atttattttt caattgtgca aaattacatt 180 240 aacagctgat gttatgacat acattcataa gatggatgcc actattttag aggactggca 300 attiggeett accecaceae egictgeate titiggaggae acatacagat tigicactie tactgctata acttgtcaaa aaaacacacc acctaaagga aaggaagatc ctttaaagga 360 ctatatgttt tgggaggtgg atttaaaaga aaagttttct gcagattta 409

[0065] Human Papilloma Virus subtype 53 (6614-7022/409 bp) SEQ ID NO 447

catctgttgg	aacaatcagt	tatttgtaac	tgttgtggat	accaccagga	atacaaacat	60
gactctttcc	gcaaccacac	agtctatgtc	tacatataat	tcaaagcaaa	ttaaacagta	120
tgttagacat	gcagaggaat	atgaattaca	atttgtgttt	caactatgta	aaatatccct	180
gtctgctgag	gttatggcct	atttacatac	tatgaattct	accttactgg	aagactggaa	240
tataggtttg	tcgcctcctg	ttgccactag	cttagaggac	aaatacagat	atgtgaaaag	300
tgcagctata	acctgtcaaa	aggatcagcc	ccctcctgaa	aagcaggacc	cactatctaa	360
atataạattt	tgggaggtca	atttgcaaaa	cagtttttct	gctgatttg		409
	•					
[0066]	Human Pa	ipilloma Vir	us subtype :	54 (6561-69	72/412 bp)	
SEQ ID NO	O 448					_
tatttgttgg	ggcaatcagg	tgtttttaac	agttgtagat	accacccgta	gtactaacct	60
aacattgtgt	gctacagcat	ccacgcagga	tagctttaat	aattetgact	ttagggagta	120
tattagacat	gtggaggaat	atgatttaca	gtttatattt	cagttatgta	ccataaccct	180
tacagcagat	gttatggcct	atattcatgg	aatgaatccc	actattctag	aggactggaa	240
ctttggtata	accccccag	ctacaagtag	tttggaggac	acatataggt	ttgtacagtc	300
acaggccatt	gcatgtcaaa	agaataatgc	ccctgcaaag	gaaaaggagg	atccttacag	360
taaatttaat	ttttggactg	ttgaccttaa	ggaacgattt	tcatctgacc	tt	412
[0067]	Human Pa	ipilloma Vir	us subtype :	55 (6647-70	61/415 bp)	
SEQ ID NO	O 449					
tatttgttgg	gggaatcagt	tatttgttac	tgttgtagat	actacacgta	gtacaaacat	60
gacaatatgt	gctgctacaa	ctcagtctcc	atctacaaca	tataatagta	cagaatataa	120
acaatacatg	cgacatgttg	aggagtttga	cttacagttt	atgtttcaat	tatgtagtat	180
taccttaact	gctgaggtaa	tggcctattt	acataccatg	aatcctggta	ttttggaaca	240
gtggaacttt	gggttgtcgc	caccccaaa	tggtacctta	gaagacaaat	acagatatgt	300
gcagtcacag	gccattacat	gtcaaaagcc	tcccctgaa	aaggcaaagc	aggaccccta	360
tgcaaaatta	agtttttggg	aggtagatct	cagagaaaag	ttttctagtg	agtta	415
[0068]	Human Pa	pilloma Vir	us subtype :	56 (6559-69	67/409 bp)	
SEQ ID NO	O 450					
catttgctgg	ggtaatcaat	tatttgttac	tgtagtagat	actactagaa	gtactaacat	60
gactattagt			+ + +	~~~~~	ttootcooto	120
0	actgctacag	aacagttaag	taaatatgat	gcacgaaaaa	ilaaltagia	120
			atttgttttt			180

tattgggtta.	tccccgccag	tggccaccag	cctagaagat	aaatatagat	atgttagaag	300
cacagctata	acatgtcaac	gggaacagcc	accaacagaa	aaacaggacc	cattagctaa	360
atataaattt	tggġatgtta	acttacagga	cagtttttct	acagacctg		419
[0069]	Human Pa	pilloma Vir	us subtype :	58 (6608-70	16/409 bp)	
SEQ ID NO	O 451					
catttgctgg	ggcaatcagt	tatttgttac	cgtggttgat	accactcgta	gcactaatat	60
		ctaaggaagg				120
		atgacttaca				180
aactgcagag	ataatgacat	atatacatac	tatggattcc	aatattttgg	aggactggca	240
atttggttta	acacctcctc	cgtctgccag	tttacaggac	acatatagat	ttgttacctc	300
ccaggctatt	acttgccaaa	aaacagcacc	ccctaaagaa	aaggaagatc	cattaaataa	360
atatactttt	tgggaggtta	acttaaagga	aaagtttct	gcagatcta		409
[0070]	Human Pa	pilloma Vir	us subtype :	59 (6571-69	85/415 bp)	
SEQ ID NO	O 452					
tatatgttgg	cacaatcaat	tgtttttaac	agttgtagat	actactcgca	gcaccaatct	60
ttctgtgtgt	gcttctacta	cttcttctat	tcctaatgta	tacacaccta	ccagttttaa	120
agaatatgcc	agacatgtgg	aggaatttga	tttgcagttt	atatttcaac	tgtgtaaaat	180
aacattaact	acagaggtaa	tgtcatacat	tcataatatg	aataccacta	ttttggagga	240
ttggaatttt	ggtgttacac	cacctcctac	tgctagttta	gttgacacat	accgttttgt	300
tcaatctgct	gctgtaactt	gtcaaaagga	caccgcaccg	ccagttaaac	aggaccctta	360
tgacaaacta	agattttaac	ctatagatet				415
	aagtttiggt	cigiagaici	taaggaaagg	ttttctgcag	atctt	413
	aagtitiggo	cigiagaici	taaggaaagg	ttttctgcag	atctt	713
[0071]		apilloma Vir				413
[0071] SEQ ID NO	Human Pa					413
SEQ ID NO	Human Pa O 453	ipilloma Vir	us subtype (61 (6732-71	46/415 bp)	60
SEQ ID NO	Human Pa O 453 tttaatgaat		us subtype (61 (6732-71 accacccgca	46/415 bp) gtactaattt	
SEQ ID NO tatttgttgg aaccatttgt	Human Pa O 453 tttaatgaat actgctacat	npilloma Vir tgtttgtaac	cgttgtggat atctgaatat	61 (6732-71 accaccegea aaagccacaa	46/415 bp) gtactaattt gctttaggga	60
SEQ ID NO tatttgttgg aaccatttgt atatttgcgc	Human Pa O 453 tttaatgaat actgctacat catacagagg	apilloma Vir tgtttgtaac cccccctgt	us subtype (cgttgtggat atctgaatat gcaatttatt	61 (6732-71 accaccegea aaagccacaa tttcagttat	46/415 bp) gtactaattt gctttaggga gtaaaataca	60 120
SEQ ID NO tatttgttgg aaccatttgt atatttgcgc tttaacccct	Human Pa D 453 tttaatgaat actgctacat catacagagg gaaattatgg	npilloma Vir tgtttgtaac cccccctgt agtttgattt	cgttgtggat atctgaatat gcaatttatt taatatgaat	61 (6732-71 accacccgca aaagccacaa tttcagttat aaggccttgt	46/415 bp) gtactaattt gctttaggga gtaaaataca tggatgactg	60 120 180
SEQ ID NO tatttgttgg aaccatttgt atatttgcgc tttaacccct gaactttggt	Human Pa O 453 tttaatgaat actgctacat catacagagg gaaattatgg gtggtaccac	tgtttgtaac cccccctgt agtttgattt	cgttgtggat atctgaatat gcaatttatt taatatgaat cagtttagaa	accaccegea aaagccacaa tttcagttat aaggcettgt gacacatata	gtactaattt gctttaggga gtaaaataca tggatgactg ggtttttgca	60 120 180 240
SEQ ID NO tatttgttgg aaccatttgt atatttgcgc tttaacccct gaactttggt gtccagagct	Human Pa O 453 tttaatgaat actgctacat catacagagg gaaattatgg gtggtaccac attacatgtc	tgtttgtaac cccccctgt agtttgattt cctacctaca caccctctac	cgttgtggat atctgaatat gcaatttatt taatatgaat cagtttagaa tgctgcccg	accaccegea aaagccacaa tttcagttat aaggcettgt gacacatata cegeccaagg	gtactaattt gctttagga gtaaaataca tggatgactg ggttttgca aggatcgcta	60 120 180 240 300

[0072] Human Papilloma Virus subtype 62 (21-429/409 bp) SEO ID NO 454 tattigtigg titaatgaac tgittgitac tgiggiggat actaccagaa giactaatti 60 120 tactatttgt accgcctcca ctgctgcagc agaatacacg gctaccaact ttagggaatt 180 tttgcgacac acggaggaat ttgatttgca atttatattt caattgtgca aaatacagtt 240 aacccccgaa attatggcct acctgcataa tatgaacaag gaccttttgg atgactggaa ctttggggtt ttacctccc cttccactag tttagatgag acatatcact atttcgagtc 300 360 tegggetatt acatgteaaa gggggetgee taccegteee aaggtggaee egtatgegea 409 aatgacattt tggactgtgg atcttaagga caagttgtct actgatttg Human Papilloma Virus subtype 66 (6609-7017/409 bp) [0073] SEQ ID NO 455 60 catatgctgg ggtaatcagg tatttgttac tgttgtggat actaccagaa gcaccaacat 120 gactattaat gcagctaaaa gcacattaac taaatatgat gcccgtgaaa tcaatcaata 180 ccttcgccat gtggaggaat atgaactaca gtttgtgttt caactttgta aaataacctt 240 aactgcagaa gttatggcat atttgcataa tatgaataat actttattag acgattggaa 300 tattggctta tccccaccag ttgcaactag cttagaggat aaatataggt atattaaaag 360 cacagctatt acatgtcaga gggaacagcc ccctgcagaa aagcaggatc ccctggctaa 409 atataagttt tgggaagtta atttacagga cagcttttct gcagacctg [0074] Human Papilloma Virus subtype 67 (6584-6992/409 bp) SEQ ID NO 456 60 tatatgctgg ggtaatcaaa tatttgttac tgttgtagac actacacgta gtaccaacat 120 gactttatgt tctgaggaaa aatcagaggc tacatacaaa aatgaaaact ttaaggaata 180 ccttagacat gtggaagaat atgatttgca gtttatattt cagctgtgca aaatatccct tactgcaaat gttatgcaat acatacacac catgaatcca gatatattag aggactggca 240 300 attiggeett acaccaccie etteaggiaa titacaggae acatatagat tigitaccie gcaggctatt acctgtcaaa aaacatcccc tccaacagca aaggaagatc ctcttaaaaa 360 409 gtacagtttt tgggaaatca atttaaagga aaaattttct gcagattta Human Papilloma Virus subtype 68 (2582-2996/415 bp) [0075] **SEQ ID NO 457** 60 tattigtigg cataatcaat tatticttac igitgiggat accacicgca giaccaatii

	actactactg	aatcagctgt	accaaatatt	tatgatccta	ataaatttaa	120
ggaatatatt	aggcatgttg	aggaatatga	tttgcaattt	atatttcagt	tgtgtactat	180
aacattgtcc	actgatgtaa	tgtcctatat	acatactatg	aatcctgcta	ttttggatga	240
ttggaatttt	ggtgttgccc	ctccaccatc	tgctagtctt	gtagatacat	accgctatct	300
gcaatcagca	gcaattacat	gtcaaaaaga	cgcccctgca	cctactaaaa	aggatccata	360
tgatggctta	aacttttgga	atgtaaattt	aaaggaaaag	tttagttctg	aactg	415
[0076]	Human Pa	pilloma Vir	us subtype (69 (6509 - 69	23/415 bp)	
		· F •		(
SEQ ID NO						
	ggcaaccaat					60
	actgtatctg					120
	aggcatggtg					180
	actgatgtaa					240
	ggccttacct					300
	gctactacat					360
tagtaaatta	aaattttggg	acgitgatet	taaagaaaag	ttttctattg	attia	415
F00==1	** 5	111 771		70 (6540 60	(2/4151)	
[0077]	Human Pa	ipilloma Vir	us subtype i	/0 (6549-69	63/415 bp)	
				•	= :	
SEQ ID N	O 459			·	- '	
•	O 459 cataaccagt					60
catttgttgg		tgtttattac	tgtggtggac	actacacgta	gtactaattt	60 120
catttgttgg tacattgtct	cataaccagt	tgtttattac aaacggccat	tgtggtggac acctgctgta	actacacgta tatagcccta	gtactaattt caaagtttaa	
cattigitgg tacattgict ggaatatact	cataaccagt gcctgcaccg	tgtttattac aaacggccat aggaatatga	tgtggtggac acctgctgta tttacaattt	actacacgta tatagcccta atatttcaat	gtactaattt caaagtttaa tgtgtactat	120
cattigitgg tacattgict ggaatatact cacattaact	cataaccagt gcctgcaccg aggcatgtgg	tgtttattac aaacggccat aggaatatga tggcctacat	tgtggtggac acctgctgta tttacaattt ccatactatg	actacacgta tatagcccta atatttcaat aatcctgcaa	gtactaattt caaagtttaa tgtgtactat ttttggacaa	120 180 240 300
cattigitgg tacattgict ggaatatact cacattaact tiggaatata	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt	120 180 240 300 360
cattigitgg tacattgict ggaatatact cacattaact tiggaatata acaatcagca	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta	120 180 240 300
cattigitgg tacattgict ggaatatact cacattaact tiggaatata acaatcagca	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta	120 180 240 300 360
cattigitgg tacattgict ggaatatact cacattaact tiggaatata acaatcagca	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca aaaggaaaag	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta	120 180 240 300 360
cattigitgg tacatigitg ggaatatact cacattaact tiggaatata acaatcagca tgacgattta [0078]	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta	120 180 240 300 360
cattigitgg tacatigitg ggaatatact cacattaact tiggaatata acaatcagca tgacgattta [0078] SEQ ID No	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagettg tgctcctaca aaaggaaaag	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta 72/415 bp)	120 180 240 300 360 415
cattigitgg tacatigitg ggaatatact cacattaact tiggaatata acaatcagca tgacgattta [0078] SEQ ID No	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa 0 460 tttaatgagc	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt apilloma Vin	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca aaaggaaaag rus subtype	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag 72 (6758-71	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta 72/415 bp) gtactaatgt	120 180 240 300 360 415
cattigitigg tacatigititiggaatatact cacattaact titggaatata acaatcagca tgacgattta [0078] SEQ ID No catcigitigg aactattigit	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa O 460 tttaatgagc actgccacag	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt tttttgtgac cgtcctctgt	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca aaaggaaaag rus subtype	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag 72 (6758-71 actactcgca acagcttcta	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta 72/415 bp) gtactaatgt atttcgtga	120 180 240 300 360 415
cattigitigg tacatigitigg tacatigitigg gaatatact cacattaact tiggaatata acaatcagca tigacgattta [0078] SEQ ID No catcigitigg aactattigitigitigitatcticgc	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa O 460 tttaatgagc actgccacag cacactgagg	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt tttttgtgac cgtcctctgt aatttgattt	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca aaaggaaaag rus subtype agttgtagat atcagaatat gcagtttata	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag 72 (6758-71 actactcgca acagcttcta tttcaactgt	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta 72/415 bp) gtactaatgt atttcgtga gtaaaattca	120 180 240 300 360 415
cattigiting tacating tacating tacating to gaatatact cacatina acting at tacan t	cataaccagt gcctgcaccg aggcatgtgg gctgacgtta ggagttaccc gctatagcat aaattttgga Human Pa O 460 tttaatgagc actgccacag	tgtttattac aaacggccat aggaatatga tggcctacat ctccaccatc gtcaaaagga atgttgattt tttttgtgac cgtcctctgt aatttgattt cctacttgca	tgtggtggac acctgctgta tttacaattt ccatactatg tgcaagcttg tgctcctaca aaaggaaaag rus subtype agttgtagat atcagaatat gcagtttata caatatgaat	actacacgta tatagcccta atatttcaat aatcctgcaa gtggacacgt cctgaaaaaa tttagtacag 72 (6758-71 actactcgca acagcttcta tttcaactgt aaggccttat	gtactaattt caaagtttaa tgtgtactat ttttggacaa ataggtattt aggatcccta aacta 72/415 bp) gtactaatgt attttcgtga gtaaaattca tggatgactg	120 180 240 300 360 415

gtctcgtgcc	attacctgtc	aaaagggggc	tgccacccct	cctcctaaag	aagatccata	360
tgctaactta	tccttttgga	ctgtggattt	aaaggacaaa	ttttccactg	acttg	415
	•					
[0079]	Human Pa	milloma Vir	us subtyne '	74 (1613-20	27/415 bp)	
-		ipinoma vn	us subtype	/ 1 (1013 20	277 (13 Op)	
SEQ ID NO	O 461					
tatttgttgg	ggtaatcaat	tatttgttac	agttgtggat	accacacgca	gtactaacat .	60
gactgtgtgt	gctcctacct	cacaatcgcc	ttctgctaca	tataatagtt	cagactacaa	120
acaatacatg	cgacatgtgg	aggaatttga	tttgcaattt	atttttcaat	tatgtagtat	180
taagttaact	gctgaggtta	tggcctatat	tcatactatg	a a t c c t a c a g	ttttagaaga	240
gtggaacttt	gggctaacgc	ctcccccaa	tggtacttta	gaagacacct	acagatatgt	- 300
gcagtcccag	gctattacat	gtcaaaaacc	tacgcctgat	aaagcaaagc	ccaatcccta	360
tgcaaattta	agtttttggg	aagttaatct	taaggaaaag	ttttctagtg	aatta	415
[080]	Human Pa	ipilloma Vir	us subtype	82 (6536-69	50/415 bp)	
SEQ ID NO	O 462					
catttgctgg	aataatcagc	tttttattac	ttgtgttgac	actactaaaa	gtaccaattt	60
aaccattagc	actgctgtta	ctccatctgt	tgcacaaaca	tttactccag	caaactttaa	120
gcagtacatt	aggcatgggg	aagaatatga	attgcaattt	atatttcaat	tgtgtaaaat	180
cactttaact	actgaaatta	tggcttacct	gcacaccatg	gattctacaa	ttttagaaca	240
gtggaatttt	ggattaacat	tgccccctc	cgctagtttg	gaggatgcct	atcgatttgt	300
aaaaaat gca	gcaacatcct	gtcacaagga	cagtcctcca	caggctaaag	aagacccttt	360
ggcaaaatat	aaattttgga	atgtagacct	taaggaacgc	ttttctttgg	atttg	415
[0081]	Human Pa	ipilloma Vir	us subtype	CP8061 (21	-432/412 bp)	
SEQ ID NO	O 463					
catttgttgg	ggcaatcagc	tttttgtaac	agttgtggac	acatcacgta	gtacaaatat	60
gtccatctgt	gctaccaaaa	ctgttgagtc	tacatataaa	gcctctagtt	tcatggaata	120
tttgagacat	ggagaagaat	ttgatttgca	atttatattt	caactatgtg	ttattaattt	180
aacagctgaa	attatggcct	acttacatcg	catggatgct	acattactgg	aggactggaa	240
tttttggttc	ttaccacctc	ctactgctag	tcttggtgat	acctaccgct	ttttacagtc	300
tcaggccata	acctgtcaga	aaaacagtcc	tcctcctgca	gaaaaaaagg	acccctatgc	360
agatettaca	ttttgggagg	tggatttaaa	ggagcggttt	tcactagaat	tg	412

SEQ ID NO 464 60. tattigtigg titaatgaaa igitigitac agiggiggat actaccagaa gcaccaatit 120 tactatttgc acagetacat etgetgetge agaatacaag geetetaact ttaaggaatt 180 tetgegecat acagaggaat atgatttgea gtttatttte caattatgta aaatacagtt 240 aacaccagaa attatggcct acttacataa tatgaacaag gcactgttgg atgattggaa 300 tititggtgtg tigccaccic citccaccag titagatgac acatalogci tittacagic 360 tegggecatt acetgteaaa agggtgetge tgeccetgeg eccaaagagg aceettatge 412 cgacatgtca ttttggacag ttgaccttaa ggacaagttg tctactgatt tg Human Papilloma Virus subtype L1AE5 (11-360/350 bp) [0083] SEQ ID NO 465 60 ggcacaacca attatttata actgtggtag acacaacacg tagtaccaat cttaccttat ctactgcaac tactaatcca gttccatcta tatatgaacc ttctaaattt aaggaataca 120 180 cacgccatgt agaggaatat gatttacaat ttatatttca attgtgtaaa attacactta ctactgatgt tatgtcttat atacataaca tggatcctac tattttagat agttggaatt 240 300 tiggigitag tecteceeea tetgetaget tagtagatae atataggitt tiacagicat 350 ctgccattac atgtcagaag gatgtggttg ttccacaaaa aaaggatcca [0084] Human Papilloma Virus subtype MM4 (21-435/415 bp) SEQ ID NO 466 60 cattigcigg aataatcagc tittiattac tigigtigac actactagaa giaccaatti 120 aaccattagc actgctgtta ctcaatctgt tgcacaaaca tttactccag caaactttaa 180 gcaatacatt aggcatgggg aagaatatga attgcaattt atatttcaat tgtgtaaaat cactttaact actgaaatta tggcttacct gcacaccatg gattctacaa tittagaaca 240 300 gtggaatttt ggattaacct tgccccctc agctagtttg gaggatgcct atcgatttgt 360 aaaaaatgca gcaacatcct gtcacaagga cagtcctcca caggctaaac aagacccttt 415 ggcaaaatat aaattttgga atgtagacct taaggaacgc ttttctttgg atttg [0085]Human Papilloma Virus subtype MM7 (21-432/412 bp) SEQ ID NO 467 60 cattigtigg titaatgagt tattigtiac agtigtagat actacccgca gtaccaatat 120 tactattica gctgctgcta cacaggctaa tgaatacaca gcctctaact ttaaggaata

cciccgccac accgaggaat aigacitaca ggitataitg caaciitgca aaatacaici

180

tacccctgaa attatggca	t acctacatag	tatgaatgaa	catttattgg	atgagtggaa	240
ttttggcgtg ttaccacct	c cttccaccag	ccttgatgat	acctatcgct	atctgcagtc	300
ccgtgctatt acctgccaa	a agggtccttc	cgcccctgcc	cctaaaaagg	atccttatga	360
tggccttgta ttttgggag	g ttgatttaaa	ggacaaacta	tccacagatt	tg	412

[0086] Human Papilloma Virus subtype MM8 (21-432/412 bp) SEQ ID NO 468

60	gcaccaattt	accacccgca	ggtggtggat	tgtttgtcac	tttaatcaat	tatatgctgg
120	ttaaggaata	cctaccaatt	agaatataaa	acaccgaatc	gctgctacca	tactattagt
180	aggtccgtct	cagttgtgta	gtttatattc	atgatttgca	gtggaggaat	cctaagacat
240	atgagtggaa	tccttattag	tatgaatgac	atttacatac	gtcatgtcct	gactccagag
300	acttgcagtc	acctataggt	tttagatgat	cctccacaag	gtgcccctc	ttttggtgtt
360	atccttatgc	cctaaggaag	cgccgccaag	agggggccgc	acttgccaaa	tcgcgccatt
412	tg	tctactgatt	ggacaagttt	tagatttaaa	ttttgggatg	tggcatgtcc

[0087] In order to find the specific probes for identifying or diagnosing HPV subtypes, some sequence analysis software are used for finding the variety sites among the above listed sequences of different HPV subtypes, e.g., DNASTAR. The above 450-bp sequences of 39 HPV subtypes are respectively divided into several fragments and analyzed by the software. Preferably, the genetic identify compared to other HPV subtypes must be lower than 30% for finding suitable probes with high specificity. After identifying the variety sites having low genetic identity in sequences of each HPV subtype, the probes for each HPV subtype are respectively designed to specifically hybridize with these variety sites. Then, the designed probes are tested for their specificities to the corresponding HPV subtypes respectively. Preferably, the probes are 15-30 base pairs in length. Ultimately, 9-12 probes with high specificity are found for each HPV subtype. The sequences of the probes for each HPV subtype are listed below.

HPV 6 .

5'→ 3'	Locus in HPV 6
CATCCGTAACTACATCTTCC	6814 – 6833
ATCCGTAACTACATCTTCCA	6815 – 6834
CTACATCTTCCACATACACCAA	6823 – 6844
CATCTTCCACATACACCAAT	6826 – 6845
ATCTTCCACATACACCAATT	6827 – 6846
CCACATACACCAATTCTGAT	6832 - 6851
TAGCATTACATTGTCTGCTGAAG	6911 – 6933
TCCCTCTGTTTTGGAAGAC	6959 – 6977
GTTATCGCCTCCCCAAATGGTACAT	6989 – 7014
CTATAGGTATGTGCAGTCACAG	7025 – 7046
GCCCACTCCTGAAAAGGAA	7064 – 7082
CTATAAGAACCTTAGT	7094 – 7109
	CATCCGTAACTACATCTTCC ATCCGTAACTACATCATCTTCCA CTACATCTTCCACATACACCAA CATCTTCCACATACACCAAT ATCTTCCACATACACCAATT CCACATACACCAATT CCACATACACCAATTCTGAT TAGCATTACATTGTCTGCTGAAG TCCCTCTGTTTTGGAAGAC GTTATCGCCTCCCCCAAATGGTACAT CTATAGGTATGTGCAGTCACAG GCCCACTCCTGAAAAGGAA

HPV 11

SEQ ID NO	5'→ 3'	Locus in HPV 11
13	ATCTGTGTCTAAATC	6799 –6813
14	TCTGTGTCTAAATCTGCTAC	6800 – 6819
15	ATCTGTGTCTAAATCTGCTACATACA	6799 – 6824
16	TGCATCTGTGTCTAAATCTG	6796 – 6815
17	AAATCTGCTACATACACTAA	6809 – 6828
18	CTAAATCTGCTACATACACTA	6807 - 6827
19	CTACATACACTAATTCAGAT	6816 – 6835
20	TAGCATTACATTATCTGCAGAAG	6895 – 6917
21	TCCTTCTGTTTTGGAGGAC	6943 – 6961
22	TTTATCGCCTCCACCAAATGGTACAC	6973 – 6998
23	TTATAGATATGTACAGTCACAGGCC	7009 – 7033
24	ACCCACACCTGAAAAAGAAAAC	7048 – 7070

SEQ ID NO	O 5'→ 3'	Locus in HPV 16
25	TATGTCATTATGTGCTGCCA	6659 – 6678
26	GTGCTGCCATATCTACTTCA	6670 – 6689
27	TGCCATATCTACTTC	6674 – 6688

28	TATCTACTTCAGAAACTACA	6679 – 6698
29	CTACTTCAGAAACTACATATAA	6682 – 6703
30	ATAAAAATACTAACTTTAAG	6700 – 6719
31	CAAAATAACCTTAACTGCAGACG	6773 – 6795
32	TTCCACTATTTTGGAGGAC	6821 – 6839
33	TCTACAACCTCCCCAGGAGGCACAC	6851 - 6876
34	TTATAGGTTTGTAACCCAG	6887 – 6905
35	ACATACACCTCCAGCACCT	6923 – 6941
36	CCTTAAAAAATACACT	6956 – 6971

SEQ ID NO	5'→3'	Locus in HPV 18
37	TTCTACACAGTCTCC	6650 – 6664
38	CAGTCTCCTGTACCTGGGCA	6657 – 6676
39	AGTCTCCTGTACCTGGGCAA	6658 – 6677
40	TCTCCTGTACCTGGGCAATATGA	6660 – 6682
41	CTGTACCTGGGCAATATGAT	6664 – 6683
42	ATGATGCTACCAAATTTAAG	6679 – 6698
43	TACTATTACTTTAACTGCAGATG	6752 – 6774
44	TAGCAGTATTTTAGAGGAT	6800 - 6818
45	TGTTCCCCCCCCCAACTACTAGTT	6830 - 6855
46	ATATCGTTTTGTACAATCTGTT	6866 – 6887
47	GGATGCTGCACCGGCTGAA	6905 – 6923
48	CTATGATAAGTTAAAG	6935 – 6950

SEQ ID NO	5'→3'	Locus in HPV 26
49	TAGTACATTATCTGCAGCAT	6619 – 6638
50	ATTATCTGCAGCATC	6625 – 6639
51	TGCAGCATCTGCATCCACTC	6631 – 6650
. 52	GCATCTGCATCCACTCCATTTAAA	6635 – 6658
53	CTCCATTTAAACCATCTGAT	6648 – 6667
54	TAAAATAACACTTACAACAGATG	6727 – 6749
55	TGCCTCCATATTGGAGGAT	6775 – 6793
56	ACTAACCTTACCTCCCACTGCTAGTT	6805 - 6830
57	CTATAGGTTTATTAAAAACTCT	6841 – 6862
58	TAACGCCCTCCTGTGCCA	6880 – 6898

SEQ ID NO	5'→ 3'	Locus in HPV 31
59	TGCAATTGCAAACAG	6592 – 6606
60	GCAATTGCAAACAGTGATAC	6593 – 6612
61	CAATTGCAAACAGTGATACT	6594 – 6613
62	GCAAACAGTGATACTACATTTAA	6599 – 6621
63	CTACATTTAAAAGTAGTAAT	6612 – 6631
64	CAAAATAACATTATCTGCAGACA	6691 – 6713
65	TCCTGCTATTTTGGAAGAT	6739 – 6757
66	ATTGACCACACCTCCCTCAGGTTCTT	6769 – 6794
67	CTATAGGTTTGTCACCTCACAG	6805 - 6826
68	AACTGCCCCCAAAAGCCC	6844 – 6862

HPV 32

SEQ ID NO	5'→ 3'	Locus in HPV 32
69	TGCTACTGTAACAACTGAAG	6906 – 6925
70	GCTACTGTAACAACTGAAGA	6907 – 6926
71	TACTGTAACAACTGA	6909 – 6923
72	ACTGTAACAACTGAAGACAC	6910 – 6929
73	CAACTGAAGACACATACAAGTC	6917 – 6938
74	CAAAATTACATTATCTGTAGAGG	7005 – 7027
75	TCCTGACATACTAGACGAT	7053 – 7071
76	TGTAGCTCCACCGCCCTCTGGTACTT	7083 – 7108
77	TTATAGATTTGTGCAGTCTCAG	7119 –7140
78	TAAGGTAACAGCACCTGAA	7158 – 7176
79	TTTTTCTGACTATTCA	7188 – 7203

SEQ ID NO	5'→ 3'	Locus in HPV 33
80	TATGCACACAAGTAACTAGT	6624 – 6643
81	CACACAAGTAACTAG	6628 – 6642
82	ACAAGTAACTAGTGACAGTA	6631 – 6650
83	GTAACTAGTGACAGTACATATAA	6635 – 6657
84	GTACATATAAAAATGAAAAT	6648 – 6667
85	CAAAGTTACCTTAACTGCAGAAG	6727 – 6749
86	TCCAGATATTTTAGAAGAT	6775 – 6793

87	TTTAACACCTCCTCCATCTGCTAGTT	6805 - 6830
88	CTATAGGTTTGTTACCTCTCAG	6841 - 6862
89	AACAGTACCTCCAAAGGAA	6880 - 6898
90	CTTAGGTAAATATACA	6910 – 6925

SEQ ID NO	5'→ 3'	Locus in HPV 35
91	TCTGCTGTGTCTTCTAGTGA	6612 – 6631
92	TGCTGTGTCTTCTAG	6614 – 6628
93	GTGTCTTCTAGTGACAGTAC	6618 – 6637
94	CTTCTAGTGACAGTACATATAAA	6622 – 6644
95	GTACATATAAAAATGACAAT	6634 – 6653
96	TAAAATAACACTAACAGCAGATG	6713 – 6735
97	CCCGTCCATTTTAGAGGAT	6761 – 6779
98	CCTTACACCACCGCCTTCTGGTACCT	6791 – 6816
99	ATATCGCTATGTAACATCACAG	6827 – 6848
100	ACCCAGTGCACCAAAACCT	6866 – 6884

HPV 37

		
SEQ ID NO	5'→ 3'	Locus in HPV 37
101	TGTCTACTGACAATG	6782 – 6796
102	TGTCTACTGACAATGGCGAA	6782 – 6801
103	TGACAATGGCGAAGTTACAG	6789 – 6808
104	GACAATGGCGAAGTTACAGA	6790 – 6809
105	AATGGCGAAGTTACAGAATA	6793 – 6812
106	CAGAATATAATTCTCAAACA	6806 – 6825
107	TAAAGTTCCTTTAAAGGCTGAGG	6885 – 6907
108	TTCTGGTATATTGGAAGAG	6933 – 6951
109	ATTTGTACCTACTCCAGATAATTCAG	6963 – 6988
110	TTATAGGTACATTAATTCAAAG	6999 – 7020
111	TGCAGTTGTTGAAAAAGAA	7038 – 7056
112	CTTTGCAAAATATACA	7068 – 7083

SEQ ID NO	5'→ 3'	Locus in HPV 39
113	CTCTATAGAGTCTTC	6677 – 6691
114	TAGAGTCTTCCATACCTTCT	6682 – 6701

115	ATAGAGTCTTCCATACCTTC	6681 – 6700
116	GTCTTCCATACCTTCTACATATG	6686 – 6708
117	CTACATATGATCCTTCTAAG	6700 – 6719
118	TACTGTCACATTAACAACTGATG	6779 – 6801
119	TTCCTCTATATTGGACAA	6827 – 6844
120	TGTAGCTCCTCCACCATCTGCCAGTT	6857 - 6882
121	TTACAGATACCTACAGTCTGCA	6893 – 6914
122	GGATGCTCCAGCACCTGAA	6932 – 6950
123	ATATGACGGTCTAAAG	6962 – 6977

SEQ ID NO	5'→ 3'	Locus in HPV 42
124	TATATGTTGGGGAAATCAGCTA	6802 - 6823
125	CACTGCAACATCTGGTGATA	6874 - 6893
126	GCAACATCTGGTGATACATATACAG	6878 - 6907
	CTGCT	
127	CATTAACTGTTGAAGTTATGTCA	6978 - 7000
128	CCTAACATATTAGAGGAGTGGAATG	7019 - 7044
	T	
129	CACCACCACCTTCAGGAACT	7053 - 7072
130	GTTATAGGTATGTACAATCAGAAG	7083 - 7106
131	GCTAAGGTAACAACGCCAGAAAAAA	7121 - 7150
	AGGAT	
132	CAGACTTTTGGTTTTTGGGAGGTAA	7158 - 7181
133	GAAAAGTTTTCTACTGATTTA	7190 - 7210

	SEQ ID NO	5'→ 3'	Locus in HPV 43
	134	CATTTGTTTTGGGAATCAGTTG	21 - 42
	135	TGACCCTACTGTGCCCAGTA	99 - 118
	136	ACTGTGCCCAGTACATATGACAATGC	106 - 135
_		AAAG	
	137	GTTTATATTTCAATTATGCATAA	177 - 199
	138	CCAGAGGTTATGACATATATT	211 – 231
	139	CCCACATTATTAGAGGACTGGAA	244 - 266
	140	CCACCTGCCTCTGCTTCTTTG	280 - 300
_	141	CGCTTTTTGTCTAACAAGGCCATTG	313 – 337
_			

142	CCAAAGGAACGGGAGGATCCCTA	358 - 380
143	CTTACAGAAAAGTTTTCTGCACAAC	409 - 433
HPV 44	·	
SEQ ID NO	5'→ 3'	Locus in HPV 40
144	TGCCACTACACAGTC	6719 – 6733
145	CTACACAGTCCCCTCCGTCT	6724 – 6743
146	TGCCACTACACAGTCCCCTC	6719 – 6738
147	CAGTCCCCTCCGTCTACATATA	6729 – 6750
148	CTACATATACTAGTGAACAA	6742 – 6761
149	TAGTATTACCTTAACGGCGGAGG	6821 - 6843
150	TGCTGGTATTTTAGAACAG	6869 – 6887
151	GTTGTCGCCGCCCCAAATGGTACC	6899 - 6924
	T	
152	ATACAGATATGTGCAGTCCCAG	6935 – 6956
153	GCCACCCCTGAAAAGGCA	6974 – 6992
154	CTATGCAAAATTAAGT	7004 – 7019
HPV 45		
SEQ ID NO	5'→ 3'	Locus in HPV 45
155	TGCCTCTACACAAAATCCTG	6651 - 6670
156	CTCTACACAAAATCC	6654 – 6668
157	ACAAAATCCTGTGCCAAGTA	6660 – 6679
158	CAAAATCCTGTGCCAAGTAC	6661 – 6680
159	AATCCTGTGCCAAGTACATATG	6664 – 6685
160	GTACATATGACCCTACTAAG	6677 – 6696
161	CACTATTACTTTAACTGCAGAGG	6756 – 6778
162	TAGTAGTATATTAGAAAAT	6804 - 6822
163	TGTCCCTCCACCACCTACTACAAGTT	6834 – 6859
164	ATATCGTTTTGTGCAATCAGTT	6870 - 6891
165	GGATACTACACCTCCAGAA	6909 – 6927
HPV 51		
SEQ ID NO	5'→ 3'	Locus in HPV 51
166	CACTGCCACTGCTGCGGTTT	6555 - 6574
167	TGCCACTGCTGCGGT	6558 - 6572
168	CACTGCTGCGGTTTCCCCAA	6561 - 6580
		

169	CCACTGCTGCGGTTTCCCCA	6560 – 6579
170	CTGCGGTTTCCCCAACATTTAC	6566 – 6587
171	CAACATTTACTCCAAGTAAC	6578 – 6597
172	TAAAATTACTTTAACTACAGAGG	6657 – 6679
173	TCCTACCATTCTTGAACAG	6705 – 6723
174	ATTAACATTACCTCCGTCTGCTAGTT	6735 – 6760
175	ATATAGGTTTGTTAGAAATGCA	6771 – 6792
176	GGACACCCCTCCACAGGCT	6810 - 6828
177	TTTGGCCAAATATAAA	6840 - 6855

SEQ ID NO	5'→ 3'	Locus in HPV 52
178	TGAGGTTAAAAAGGA	6695 – 6709
179	TGAGGTTAAAAAGGAAAGCA	6695 – 6714
180	GAGGTTAAAAAGGAAAGCAC	6696 – 6715
181	TTAAAAAGGAAAGCACATAT	6700 – 6719
182	AAAGGAAAGCACATATAAAAAT	6704 – 6725
183	GCACATATAAAAATGAAAAT	6712 – 6731
184	CAAAATTACATTAACAGCTGATG	6791 – 6813
185	TGCCACTATTTTAGAGGAC	6839 – 6857
186	CCTTACCCCACCACCGTCTGCATCTT	6869 - 6894
187	ATACAGATTTGTCACTTCTACT	6905 – 6926
188	AAACACACCACCTAAAGGA	6944 – 6962
189	TTTAAAGGACTATATG	6974 – 6989

SEQ ID NO	5'→ 3'	Locus in HPV 53
190	TCCGCAACCACAGTCTAT	6681 – 6700
191	CCGCAACCACAGT	6682 – 6696
192	CCGCAACCACAGTCTATG	6682 – 6701
193	CACAGTCTATGTCTACATATAA	6691 – 6712
194	CTACATATAATTCAAAGCAA	6703 – 6722
195	TAAAATATCCCTGTCTGCTGAGG	6782 – 6804
196	TTCTACCTTACTGGAAGAC	6830 - 6848
197	TTTGTCGCCTCCTGTTGCCACTAGCT	6860 - 6885
198	ATACAGATATGTGAAAAGTGCA	6896 – 6917
199	GGATCAGCCCCCTCCTGAA	6935 - 6953

SEQ ID NO	5'→ 3'	Locus in HPV 54
200	TACAGCATCCACGCA	6633 – 6647
201	CAGCATCCACGCAGGATAGC	6635 – 6654
202	ACGCAGGATAGCTTTAATAA	6643 – 6662
203	CACGCAGGATAGCTTTAATA	6642 – 6661
204	ATAGCTTTAATAATTCTGAC	6650 – 6669
205	TACCATAACCCTTACAGCAGATG	6729 – 6751
206	TCCCACTATTCTAGAGGAC	6777 – 6795
207	TATAACCCCCCCAGCTACAAGTAGT	6807 - 6832
	T	
208	ATATAGGTTTGTACAGTCACAG	6843 – 6864
209	GAATAATGCCCCTGCAAAGGAA	6882 – 6903

SEQ ID NO	5'→ 3'	Locus in HPV 55
210	TTTGTTACTGTTGTAGATACTAC	6669 - 6691
211	ATGACAATATGTGCTGCTAC	6705 - 6724
212	GACAATATGTGCTGCTACAA	6707 - 6726
213	TGCTACAACTCAGTCTCCAT	6719 - 6738
214	CTACAACTCAGTCTCCATCT	6721 - 6740
215	ACAACTCAGTCTCCATCTAC	6723 - 6742
216	ATGTTGAGGAGTTTGACTTA	6781 - 6800
217	TGTTGAGGAGTTTGACTTAC	6782 - 6801
218	TGAGGAGTTTGACTTACAGT	6785 - 6804

	SEQ ID NO	5'→ 3'	Locus in HPV 56
	219	CTGCTACAGAACAGT	6630 - 6644
	220	GCTACAGAACAGTTAAGTAA	6632 – 6651
	221	CAGAACAGTTAAGTAAATAT	6636 – 6655
	222	GAACAGTTAAGTAAATATGATGC	6638 – 6660
	223	GTAAATATGATGCACGAAAA	6648 – 6667
	224	CAAAATTACTTTGTCTGCAGAGG	6727 – 6749
	225	TGCTAACCTACTGGAGGAC	6775 – 6793
_	226	GTTATCCCCGCCAGTGGCCACCAGCC	6805 - 5830
_			

227	ATATAGATATGTTAGAAGCACA	6841 – 6862
228	GGAACAGCCACCAACAGAA	6880 – 6898
HPV 58		
SEQ ID NO	5'→3'	Locus in HPV 58
229	ATGCACTGAAGTAACTAAGG	6674 – 6693
230	CACTGAAGTAACTAAGGAAG	6677 – 6696
231	TGAAGTAACTAAGGA	6680 – 6694
232	GAAGTAACTAAGGAAGGTAC	6681 – 6700
233	CTAAGGAAGGTACATATAAAAA	6688 <i>–</i> 6709
234	ATAAAAATGATAATTTTAAG	6703 – 6722
235	CAAAATTACACTAACTGCAGAGA	6776 – 6798
236	TTCCAATATTTTGGAGGAC	6824 – 6842
237	TTTAACACCTCCTCCGTCTGCCAGTT	6854 – 6879
238	ATATAGATTTGTTACCTCCCAG	6890 – 6911
239	AACAGCACCCCTAAAGAA	6929 – 6947
HPV 59		
SEQ ID NO	5'→ 3'	Locus in HPV 59
240	TTCTACTACTTCTTC	6643 – 6657
241	ACTACTTCTTCTATTCCTAA	6647 – 6666
242	ACTTCTTCTATTCCTAATGT	6650 – 6669
243	TCTTCTATTCCTAATGTATACAC	6653 – 6675
244	ATGTATACACACCTACCAGT	6666 – 6685
245	TAAAATAACATTAACTACAGAGG	6745 – 6767
246	TACCACTATTTTGGAGGAT	6793 – 6811
247	TGTTACACCACCTCCTACTGCTAGTT	6823 - 6848
248	ATACCGTTTTGTTCAATCTGCT	6859 – 6880
249	GGACACCGCACCGCCAGTT	6898 – 6916
250	TTATGACAAACTAAAG	6928 - 6943
HPV 61		
SEQ ID NO	5'→ 3'	Locus in HPV 61
251	CTGCTACATCCCCCC	6803 – 6817
252	ACATCCCCCCTGTATCTGA	6808 – 6827
253	CATCCCCCCTGTATCTGAA	6809 - 6828

255	CTGAATATAAAGCCACAAGC	6824 - 6843
256	TAAAATACATTTAACCCCTGAAA	6903 – 6925
257	TAAGGCCTTGTTGGATGAC	6951 – 6969
258	TGTGGTACCACCACCTCTACCAGTT	6981 – 7006
259	ATATAGGTTTTTGCAGTCCAGA	7017 – 7038
260	GGGTGCTGCCCCGCCGCCC	7056 – 7077
261	CTATGCCAAGTTATCC	7089 – 7104

SEQ ID NO	. 5'→ 3'	Locus in HPV 62
262	CCGCCTCCACTGCTG	92 – 106
263	GCCTCCACTGCTGCAGCAGA	94 – 113
264	CTGCTGCAGCAGAATACACG	101 – 120
265	GCAGAATACACGGCTACCAA	109 – 128
266	CAGAATACACGGCTACCAAC	110 – 129
267	CAAAATACAGTTAACCCCCGAAA	189 – 211
268	CAAGGACCTTTTGGATGAC	237 – 255
269	GGTTTTACCTCCCCCTTCCACTAGTT	267 – 292
270	ATATCACTATTTCGAGTCTCGG	303 – 324
271	GGGGCTGCCTACCCGTCCC	342 – 360
272	GTATGCGCAAATGACA	372 – 387

HPV 66

SEQ ID N	O 5'→ 3'	Locus in HPV 66
273	CAGCTAAAAGCACAT	6680 – 6694
274	CAGCTAAAAGCACATTAACT	6680 – 6699
275	CTAAAAGCACATTAACTAAA	6683 – 6702
276	TTAACTAAATATGATGCCCG	6694 – 6713
277	CTAAATATGATGCCCGTGAA	6698 – 6717
278	TAAAATAACCTTAACTGCAGAAG	6777 – 6799
279	TAATACTTTATTAGACGAT	6825 - 6843
280	CTTATCCCCACCAGTTGCAACTAGCT	6855 – 6880
281	ATATAGGTATATTAAAAGCACA	6891 – 6912
282	GGAACAGCCCCCTGCAGAA	6930 - 6948
283	CCTGGCTAAATATAAG	6960 – 6975

SEQ ID NO	5'→ 3'	Locus in HPV 67
284	CTGAGGAAAAATCAG	6655 – 6669
285	GAGGAAAAATCAGAGGCTAC	6657 – 6676
286	ATCAGAGGCTACATACAAAAATG	6665 – 6687
287	AGGAAAAATCAGAGGCTACA	6658 - 6677
288	CTACATACAAAAATGAAAAC	6673 – 6692
289	CAAAATATCCCTTACTGCAAATG	6752 – 6774
290	TCCAGATATATTAGAGGAC	6800 - 6818
291	CCTTACACCACCTCCTTCAGGTAATT	6830 - 6855
292	ATATAGATTTGTTACCTCGCAG	6866 – 6887
293	AACATCCCCTCCAACAGCA	6905 – 6923
294	TCTTAAAAAGTACAGT	6935 – 6950

HPV 68

SEQ ID NO	5'→ 3'	Locus in HPV 68
295	CTACTACTGAATCAG	2653 – 2667
296	TGAATCAGCTGTACCAAATA	2660 – 2679
297	GAATCAGCTGTACCAAATAT	2661 – 2680
298	CAGCTGTACCAAATATTTATGA	2665 – 2686
299	ATATTTATGATCCTAATAAA	2677 – 2696
300	TCCTGCTATTTTGGATGAT	2804 - 2822
301	TACTATAACATTGTCCACTGATG	2756 – 2778
302	TGTTGCCCCTCCACCATCTGCTAGTC	2834 – 2859
303	ATACCGCTATCTGCAATCAGCA	2870 – 2891
304	AGACGCCCTGCACCTACT	2909 – 2927
305	ATATGATGGCTTAAAC	2939 – 2954

HPV 69

SEQ ID NO	5'→ 3'	Locus in HPV 69
306	TATTAGTACTGTATCTGCAC	6572 – 6591
307	CTGTATCTGCACAAT	6580 - 6594
308	CTGTATCTGCACAATCTGCA	6580 - 6599
309	TGCACAATCTGCATCTGCCA	6587 – 6606
310	CAATCTGCATCTGCCACTTTTA	6591 – 6612
311	CCACTTTTAAACCATCAGAT	6604 - 6623
312	TAAAATTACTCTTACCACTGATG	6683 – 6705
313	TTCTACTATTTTGGAAAAT	6731 – 6749

314	CCTTACCTTGCCTCCTACTGCTAGT T	6761 – 6786
315	ATATAGGTTTATTAAAAATTCA	6797 – 6818
316	CGATGCCCCTGCACAGCCC	6836 – 6854
HPV 70	,	
SEQ ID NO	5'→ 3'	Locus in HPV 70
317	TGTCTGCCTGCACCGAAACG	6614 – 6633
318	CTGCACCGAAACGGC	6621 – 6635
319	GAAACGGCCATACCTGCTGT	6628 – 6647
320	CGAAACGGCCATACCTGCTG	6627 – 6646
321	CGGCCATACCTGCTGTATATAG	6632 – 6653
322	CTGTATATAGCCCTACAAAG	6644 – 6663
323	TACTATCACATTAACTGCTGACG	6723 – 6745
324	TCCTGCAATTTTGGACAAT	6771 – 6789
325	AGTTACCCCTCCACCATCTGCAAG	6801 – 6826
	CT	
326	GTATAGGTATTTACAATCAGCA	6837 – 6858
327	GGATGCTCCTACACCTGAA	6876 – 6894
328	CTATGACGATTTAAAA	6906 – 6921
TYDY #4		
HPV 72	5'→ 3'	
SEQ ID NO		Locus in HPV 72
329	ATCTGTTGGTTTAATGAGCT	6759 – 6778
330	TTTGTGACAGTTGTAGATAC	6780 – 6799
331	CTGCCACAGCGTCCT	6829 - 6843
332	ACAGCGTCCTCTGTATCAGA	6834 – 6853
333	CCACAGCGTCCTCTGTATCA	6832 – 6851
334	AGCGTCCTCTGTATCAGAATAT	6836 – 6857
335	CAGAATATACAGCTTCTAAT	6850 – 6869
336	TAAAATTCACTTAACTCCTGAAA	6929 – 6951
337	TAAGGCCTTATTGGATGAC	6977 – 6995
338	TGTGGTGCCTCCTCCTTCTACCAGTT	
339	CTATAGGTTTTTGCAGTCTCGT	7043 - 7064
340	GGGGCTGCCACCCCTCCTC	7082 – 7103
341	ATATGCTAACTTATCC	7115 - 7130

HPV 74		
SEQ ID NO	5'→ 3'	Locus in HPV 74
342	CCTACCTCACAATCG	1686 – 1700
343	CTCACAATCGCCTTCTGCTA	1691 – 1710
344	ACCTCACAATCGCCTTCTGC	1689 – 1708
345	CAATCGCCTTCTGCTACATATA	1695 – 1716
346	ACAATCGCCTTCTGCTACATAT	1694 - 1715
347	CTACATATAATAGTTCAGAC	1708 – 1727
348	TAGTATTAAGTTAACTGCTGAGG	1787 – 1809
349	TCCTACAGTTTTAGAAGAG	1835 –1853
350	GCTAACGCCTCCCCCAATGGTACTT	1865 – 1890
351	CTACAGATATGTGCAGTCCCAG	1901 – 1922
352	ACCTACGCCTGATAAAGCA	1940 – 1958
353	CTATGCAAATTTAAGT	1970 – 1985
HPV 82		
SEQ ID NO	5'→ 3'	Locus in HPV 82
354	TGCTGTTACTCCATC	6608 - 6622
355	TGCTGTTACTCCATCTGTTG	6608 – 6627
356	ACTCCATCTGTTGCACAAAC	6615 – 6634
357	AAACATTTACTCCAGCAAAC	6631 – 6650
358	TAAAATCACTTTAACTACTGAAA	6710 – 6732
359	TTCTACAATTTTAGAACAG	6758 – 6776

_	HPV CP806	51	
	SEQ ID NO	5'→ 3'	Locus in HPV
			CP8061
	363	TCTGTGCTACCAAAACTGTT	86 – 105
_	364	CTACCAAAACTGTTG	92 – 106
	365	ACCAAAACTGTTGAGTCTAC	94 – 113
_	366	AACTGTTGAGTCTACATATAAA	99 – 120
_	367	GTTGAGTCTACATATAAAGC	103 – 122
_	368	CTACATATAAAGCCTCTAGT	110 – 129
_	369	TGTTATTAATTTAACAGCTGAAA	189 – 211

ATTAACATTGCCCCCCTCCGCTAGTT

CTATCGATTTGTAAAAAATGCA

GGACAGTCCTCCACAGGCT

6788 - 6813

6824-- 6845

6863 - 6881

360

361

362

	370	TGCTACATTACTGGAGGAC	237 – 255
	371	GTTCTTACCACCTCCTACTG	267 – 286
	372	CTACCGCTTTTTACAGTCTCAG	303 – 324
•	373	AAACAGTCCTCCTCCTGCAGAA	342 – 363
	374	CTATGCAGATCTTACA	375 – 390

HPV CP8034

SEQ ID NO	5'→ 3'	Locus in HPV
		CP8034
375	CAGCTACATCTGCTG	92 – 106
376	GCTACATCTGCTGCTGCAGA	94 – 113
377	ACATCTGCTGCTGCAGAATACA	97 – 118
378	TGCTGCAGAATACAAGGCCT	105 – 124
379	GCTGCAGAATACAAGGCCTC	106 – 125
380	CAGAATACAAGGCCTCTAAC	110 – 129
381	TAAAATACAGTTAACACCAGAAA	189 - 211
382	CAAGGCACTGTTGGATGAT	237 – 255
383	TGTGTTGCCACCTCCTTCCACCAGTT	267 – 292
384	ATATCGCTTTTTACAGTCTCGG	303 – 324
385	GGGTGCTGCCCCTGCGCCC	342 – 363
386	TTATGCCGACATGTCA	375 – 390

HPV L1AE5

SEQ ID NO	5'→ 3'	Locus in HPV
		L1AE5
387	ATCTACTGCAACTACTAATC	69 – 88
388	CTGCAACTACTAATC	74 – 88
389	CTGCAACTACTAATCCAGTT	74 – 93
390	ACTACTAATCCAGTTCCATCTA	79 – 100
391	CTAATCCAGTTCCATCTATA	83 – 102
392	CTATATATGAACCTTCTAAA	98 – 117
393	TAAAATTACACTTACTACTGATG	177 – 199
394	TCCTACTATTTTAGATAGT	225 – 243
395	TGTTAGTCCTCCCCCATCTGCTAGCT	255 – 280
396	ATATAGGTTTTTACAGTCATCT	291 – 312
397	GGATGTGGTTGTTCCACAA	330 – 348

HPV MM4		
SEQ ID NO	5'→ 3'	Locus in HPV
		MM4
398	CTGCTGTTACTCAATCTGTT	92 – 111
399	TGCTGTTACTCAATC	93 – 107
400	GTTACTCAATCTGTTGCACA	97 – 116
401	TGCACAAACATTTACTCCAG	111 – 130
402	TTACTCAATCTGTTGCACAAAC	98 – 119
403	AAACATTTACTCCAGCAAAC	116 – 135
404	TAAAATCACTTTAACTACTGAAA	195 – 217
405	TTCTACAATTTTAGAACAG	243 – 261
406	ATTAACCTTGCCCCCCTCAGCTAGTT	273 – 298
407	CTATCGATTTGTAAAAAATGCA	309 – 330
408	GGACAGTCCTCCACAGGCT	348 – 366
HPV MM7		
SEQ ID NO	5'→ 3'	Locus in HPV
		MM7
409	TGCTGCTACACAGGC	93 – 107
410	GCTGCTACACAGGCTAATGA	94 – 113
411	TGCTACACAGGCTAATGAAT	96 – 115
412	CTACACAGGCTAATGAATACAC	98 – 119
413	ATGAATACACAGCCTCTAAC	110 – 129
414	CAAAATACATCTTACCCCTGAAA	189 – 211
415	TGAACATTTATTGGATGAG	237 – 255
416	CGTGTTACCACCTCCTTCCACCAGCC	267 – 292
417	CTATCGCTATCTGCAGTCCCGT	303 – 324
418	GGGTCCTTCCGCCCCTGCCCCT	342 – 363
419	TTATGATGGCCTTGTA	375 – 390
HPV MM8		
SEQ ID NO	5'→ 3'	Locus in HPV MM8
420	TGCTACCAACACCGA	93 –107
421	CTACCAACACCGAATCAGAA	95 –114
		20 110

CCAACACCGAATCAGAATATAA

CAGAATATAAACCTACCAAT

422

423

98 –119

110 – 129

424	TAAGGTCCGTCTGACTCCAGAGG	189 – 211
425	TGACTCCTTATTAGATGAG	237 – 255
426	TGTTGTGCCCCCTCCCTCCACAAGTT	267 – 292
427	CTATAGGTACTTGCAGTCTCGC	303 – 324
428	GGGGCCGCCGCCAAGCCT	342 – 363
429	TTATGCTGGCATGTCC	375 – 390

[0088] The sequences of the probes listed above are either identical or complementary to the corresponding sequences of HPV subtypes so that the probes can hybridize with the sequences of HPV subtypes perfectly.

[0089] According to a preferred embodiment of the present invention, a detector for detecting and simultaneously diagnosing 39 subtypes of human papilloma viruses (HPV) contained in a biological sample is provided. Please refer to Fig. 1. The detector 10 is an oligonucleotide biochip. The detector 10 includes a carrier 11 and a plurality of micro-dots 12 immobilized on the carrier 11. The carrier 11 is a nylon membrane. Each micro-dot 12 is used for identifying one particular HPV subtype. There is at least one oligonucleotide sequence contained in each micro-dot 12 that is specific to one particular HPV subtype. The oligonucleotide sequences are the probes selected from the above list for each HPV subtype respectively. For example, the probe on the carrier 11 could contain at least one sequence, which is selected from SEQ ID NO 1 to SEQ ID NO 12 (shown above), for identifying the subtype 6 of human papilloma viruses (HPV 6).

[0090] As described in the above, the probes will hybridize specifically with the L1 gene sequence of the corresponding HPV subtype. Preferably, the probes have a length between 15-30 bases. The oligonucleotide sequences contained in each micro-dot 12 serve as a detection probe, which hybridizes

specifically with the L1 gene sequence of the particular HPV subtype to form a hybridization complex as a detection indicator. Therefore, each micro-dot 12 identifies a specific HPV subtype via a corresponding oligonucleotide of the specific HPV subtype, and thereby detecting and simultaneously identifying subtypes of human papilloma viruses. The sequences of the oligonucleotides provided by the present invention are specific to the epidemics of human papilloma viruses. The detector 10 is able to simultaneously identify 39 different HPV subtype that are HPV 6, HPV 11, HPV 16, HPV 18, HPV 26, HPV 31, HPV 32, HPV 33, HPV 35, HPV 37, HPV 39, HPV 42, HPV 43, HPV 44, HPV 45, HPV 51, HPV 52, HPV 53, HPV 54, HPV 55, HPV 56, HPV 58, HPV 59, HPV 61, HPV 62, HPV 66, HPV 67, HPV 68, HPV 69, HPV 70, HPV 72, HPV 74, HPV 82, HPV CP8061, HPV CP8034, HPV L1AE5, HPV MM4, HPV MM7 and HPV MM8. Furthermore, the detector 10 includes the micro-dot 12 containing a Glutaldehyde-3-phosphodehydrogenase (GAPDH) gene, which is used as an internal control.

[0091] EXAMPLE I

The method for immobilizing or mounting the above mentioned probes (oligonucleotides) on the carrier 11 (the nylon membrane) is described as follows.

[0092] 1. -TTTTTTTTTTTTTTT (SEQ ID NO 469) is added to the 3' end of the oligonucleotide provided by the present invention by terminal transferase according to the following steps 1.1 to 1.3.

1.1 Mixing the following components:

10X NEBuffer 4

 $5 \mu l$

2.5 mM CoCl₂

 $5 \mu l$

oligonucleotide	5 ~ 300 pmol
$10 \sim 300 \text{ mM dATP}$ · dCTP · dTTP or dGTP	1 μl
Terminal Transferase (20U/µl)	$0.5 \sim 5 \mu l$
(NEW English BioLabs, M0252S)	
Add M.Q. H ₂ O to final volume	50 μl

- 1.2 The components are mixed at 37°C for 15~60 minutes.
- $1.3\ 10\ \mu l$ of $0.2\ M$ EDTA (pH 8.0) is added to the mixture to stop the reaction.
- [0093] 2. The oligonucleotide having 3' end labeling is mounted on the carrier 11 according to the following steps 2.1 to 2.3.
- 2.1 The oligonucleotide having 3' end labeling is mounted on the carrier 11 by a needle having a 400 μ m wide head. The distance between each dot is 1200 μ m.
- 2.2 The carrier 11 having the dot array 12 thereon is exposed to UV light, and the detector 10 is formed.
 - 2.3 The detector 10 is preserved in a drying box.

[0094] EXAMPLE II

According to another preferred embodiment of the present invention, the carrier 11 could be a glass plate. The method for immobilizing or mounting the above mentioned probes (oligonucleotides) on the carrier 11 (glass plate) is described as follows.

- [0095] 1. The surface of the carrier 11 is treated according to the following steps 1.1 to 1.8.
 - 1.1 The carrier 11 is cleaned in non-fluorescent and soft cleaner.
 - 1.2 The clean carrier 11 is immersed in 10% NaOH.

- 1.3 The carrier 11 is oscillated in double-distilled water, 1% HCl solution and methanol in sequence for 2 minutes, and dried in an oven.
- 1.4 The carrier 11 is immersed in 1% 3-aminopropyltrimethoxysilane (APTMS) in 95% aqueous acetone at room temperature for about 2 minutes.
- 1.5 The carrier 11 is washed in acetone, and the carrier 11 is dried in the oven at 110°C for 45 minutes.
- 1.6 The dried carrier 11 is immersed in 0.2% 1,4-phenylene diisothiocyanate, wherein the solvent is 10% pyridine in dimethyl formamide), at room temperature for 2 hours.
- 1.7 The carrier 11 is washed in methanol and acetone, and then the carrier 11 is dried.
 - 1.8 The dried carrier 11 is preserved in a vacuum and dry box.
- [0096] 2. The oligonucleotides provided by the present invention are mounted on the carrier 11 (the glass plate) according to the following steps 2.1 to 2.3.
- 2.1 The oligonucleotide having 3' end labeling is mounted on the carrier 11 by a needle having a 400 μm wide head. The distance between each dot is $1200 \ \mu m$.
- 2.2 The carrier 11 is immersed in 1% NH₄OH solution for about 2 minutes, washed in double-distilled water, and then dried at room temperature. Thus, the detector 10 is formed.
 - 2.3 The detector 10 is preserved in a dried box.
- [0097] According to the above description, a biochip for specifically identifying the subtypes of human papilloma viruses contained in a biological sample is provided. Please refer to Fig. 2(a). The biochip 20 includes a carrier 21 and a plurality of micro-dots 22 immobilized on the carrier 21. The

carrier 21 is a nylon membrane. The actual length of the nylon membrane is about 1.44 cm and the actual width of the nylon membrane is about 0.96 cm. The micro-dots 22 are mounted on the carrier 21 according to the foresaid method, wherein the distance between each dot is about 1.2 mm and the diameter of each dot is about 0.4 mm. Each micro-dot 22 contains at least one oligonucleotide (15~30mer), and each micro-dot 22 is used for specifically identifying a specific HPV subtype. The sequence of the oligonucleotide is selected from the foresaid list.

[0098] The subtype of human papilloma viruses identified by each dot of the micro-dots 22 is illustrated in Fig. 2(b). SC (system control) presents the PCR product amplified from any subtype of human papilloma viruses and biotin-contained primer. NC (negative control) presents the plants DNA fragment irrelevant to HPV. IN (internal control) presents the sequence 5'-gcccagactgtgggtggcag-3' (SEQ ID NO 470) of the housekeeping gene, Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). In sum, the biochip 20 provided in the present invention is able to detect and simultaneously identify 39 different HPV subtypes contained in the biological sample.

[0099] According to another preferred embodiment of the present invention, a method for detecting and simultaneously diagnosing 39 subtypes of human papilloma viruses (HPV) contained in a biological sample is provided. The steps are generally described as follows. First, the L1 gene fragment of human papilloma viruses (HPV) contained in the biological sample is amplified by polymerase chain reaction (PCR) using primers labeled with signaling substance. After the amplification product is obtained, it is hybridized with the detector 11 as describe above to form a hybridization complex. Then, the nonhybridized amplification product is removed from the detector 11. Next,

the detector 11 is detected for the existence of the hybridization complex through detecting the signaling substance. The micro-dot 12 having the signaling substance shown thereon means a positive result that the biological sample contains the specific HPV subtypes recognized by the corresponding micro-dot 12. Ultimately, the HPV subtypes contained in the biological sample are thereby detected and simultaneously identified.

[00100] The method provided by the present invention for detecting and simultaneously identifying 39 subtypes of human papilloma viruses contained in a sample is described as follows.

[00101] EXAMPLE III

- 1. The biological sample obtained from the patient is treated according to the following steps 1.1 to 1.3.
 - 1.1 The cells are centrifuged at 1,500 rpm at 20°C for 5 minutes.
- 1.2 The cell pellet is washed in 10 mM Tris (pH 8.5) and dissolved in 8 mM NaOH. Then, the solution is transfer to 1.5 mL micro-tube.
- 1.3 A proper amount of TreTaq (1U/μl) solution is added to the micro-tube. The reaction is carried out at 95°C for 1 hour. The DNA contained in the sample is obtained after centrifugation at 13,500 rpm, 20°C for 5 minutes. The otained DNA is preserved at -20°C.

[00102] EXAMPLE IV

- 2 The L1 gene fragment of human papilloma viruses (HPV) contained in the biological sample is then amplified by polymerase chain reaction (PCR). The polymerase chain reactions are performed according to the following steps.
- [00103] 2.1 Glutaldehyde-3-phosphodehydrogenase (GAPDH) gene is used as the internal control of the polymerase chain reactions so that it could help

confirm whether the detecting protocols are precisely followed. The steps are described according to the following steps 2.1.1 to 2.1.3.

2.1.1 Mixing the following components:

Reagent	Stock	amount	Final concentration
Sterile H ₂ O		2.6	
10X Taq Buffer		0.5	1X Taq Buffer
dNTP	2.5 mM	0.4	200 μΜ
Template		1	••
GAP241-5 ¹⁾ primer	10 pmol/μl	0.2	0.4 pmol/µl
GAP241-3 ²⁾ primer	10 pmol/μl	0.2	0.4 pmol/μl
ProTaq (PROTECH)	5 U/μl	0.1	0.1 U/μl
Total volume (μl)		5	

¹⁾ Gap241-5 (SEQ ID NO 471): CCACCAACTGCTTAGCACCCC

2.1.2 The polymerase chain reaction is performed according to the following programs.

Program 1	Program 2	Program 3		
	94°C , 15 seconds			
94℃,	57℃,	72℃ [,]		
3 minutes	1 minute	5 minutes		
72°C ⋅ 30 seconds				
40 cycles				

²⁾ Gap241-3 (SEQ ID NO 472): TGCAGCGTACTCCCCACATCA

³⁾ The proper amount of mineral oil is added to prevent the evaporation.

2.1.3 The product of the polymerase chain reaction is analyzed in 2.5% agarose/EtBr (0.5×TBE).

[00104] 2.2 The DNA contained in the sample is amplified by the polymerase chain reaction according to the following steps.

2.2.1 Mixing the following components:

Reagent	Stock	Amount	Final concentration
Sterile H ₂ O		4.7-5.7	
10X Taq Buffer		1 ·	1X Taq Buffer
dNTP	2.5 mM	0.8	200 μΜ
Template		1-2	
BSA	10 mg/ml	0.1	0.1 μg/μl
Primer ^{1,2)}	10 pmol/μl	0.6	0.6 pmol/μl
Primer ^{1,2)}	10 pmol/μl	0.6	0.6 pmol/µl
ProTaq (PRO _{TECH})	5 U/μl	0.2	0.1 U/μl
Total volume (μl)		10	

¹⁾ MY09/MY11: Weimin et al., 1997, J. Clin. Microbiol. 35(6): 1304-1310

2.2.2 The polymerase chain reaction is performed according to the following programs.

Program 1	Program 2	Program 3			
					

²⁾ MY11/GP6+: Weimin et al., 1997, J. Clin. Microbiol. 35(6): 1304-1310

³⁾ The proper amount of mineral oil is added to prevent the evaporation.

⁴⁾ The 5' end of the MY09 and GP6+ primers could be labeled with biotin or Cy5 fluorescent substances.

2.2.3 The product of the polymerase chain reaction is analyzed in 2.5% agarose/EtBr (0.5×TBE).

[00105] According to the above description, the biochip 20 is used for identifying different HPV subtypes. In one embodiment of the invention, the positive clones of human papilloma viruses are used and detected according to the foresaid method. As previously mentioned, the PCR amplification product could be obtained by different primer sets. One is primer set MY09/MY11, the other is primer set MY11/GP6+. Therefore, the positive clones are respectively amplified by PCR using MY11/MY09 primers and MY11/GP6+ primers. The products of the polymerase chain reaction are analyzed in 2.5% agarose/EtBr, and the electrophoresis results are shown in Fig. 3(a)-(c). Fig. 3(a) shows the electrophoresis result of the analyzed PCR products using primer set MY09/MY11. In Fig. 3(a), M presents DNA marker. Lane 1~20 present HPV 6, HPV 11, HPV 16, HPV 18, HPV 26, HPV 31, HPV 33, HPV 35, HPV 44, HPV 45, HPV 52, HPV 53, HPV 54, HPV 56, HPV 59, HPV 61, HPV 66, HPV 70, HPV CP8061, and HPV L1AE5 in sequence. Fig. 3(b) shows the electrophoresis result of the analyzed PCR products using primer set MY11/GP6+. In Fig. 3(b), M presents DNA marker. Lane 1~39 present HPV 6, 11, 16,18, 26, 31, 32, 33, 35, 37, 39, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 61, 62, 66, 67, 68, 69, 70, 72, 74, 82, CP8061, CP8304, L1AE5, MM4, MM7, and MM8 in sequence. Fig. 3(c) shows the electrophoresis result of the PCR products using GAPDH primer set. Clearly, the electrophoresis results show the PCR products with correct sizes. That is, PCR products using primer set MY09/MY11 is about 450 bp, the PCR products using primer set MY11/GP6+ is about 190 bp, and the PCR products using GAPDH primer set is about 190 bp.

[00106] EXAMPLE V

- 3. When the carrier 11 is a nylon membrane, the detector 10 provided by the present invention is used for identifying the subtypes of human papilloma viruses according to the following hybridization steps.
 - 3.1 The detector 10 is immersed in 2x SSC solution for 5 minutes.
- 3.2 The detector 10 is immersed in a buffer containing salmon sperm DNA (50 μg/μl), and the oligonucleotides mounted on the detector 10 are pre-hybridized with the salmon sperm DNA at 35°C for 30 minutes.
- 3.3 The PCR product having biotin labeled thereon is added into and mixed with a buffer containing salmon sperm DNA (50 μg/μl) at 95°C for about 5 minutes. The denatured DNA is placed on ice.
- 3.4 The denature DNA is added to the detector 10 and hybridized with the oligonucleotides at 35°C for 4 hours or overnight.
- 3.5 The detector 10 is washed in 2x SSC/1% SDS solution at 35℃ for 15 minutes.
- 3.6 The detector 10 is washed in 0.2x SSC/0.1% SDS solution at 35°C for 15 minutes.
 - 3.7 The detector 10 is treated in 0.5% isolation reagent for 1 hour.

- 3.8 The detector 10 is treated with avidin-alkalinephosphatase for about 1 hour.
 - 3.9 The detector 10 is washed in 1x PBST solution.
 - 3.10 The detector 10 is washed in Tris/NaCl solution.
- 3.11 The detector 10 is treated with NBT/BCIP at room temperature to show the reacting dot in blue.
- 3.12 The blue dot having the specific oligonucleotide sequence presents the specific subtype of human papilloma viruses contained in the sample.

[00107] Preferably, the foresaid PCR amplified products shown in Figs. 3(a) and 3(b) are then respectively detected by the biochip 20 according to the above steps and the results are shown in Figs. 4(a) and 4(b). Fig. 4(a) shows the detecting result of detecting the PCR products using primer set MY09/MY11 of HPV positive clones. Fig. 4(b) shows the detecting result of detecting the PCR products using primer set MY11/GP6+ of HPV positive clones. When comparing the results shown in Fig. 4(a) and Fig. 3(b) based on the "SC" dot, it is very clear that the biochip 20 can precisely identify the subtype of human papilloma viruses. Take the result of HPV 6 as example. Since this biochip is hybridized with the PCR product amplified from HPV 6 positive clone, there should be 6 positive micro-dots shown on the biochip 20, including 2 SC micro-dots at the corners, 2 SC micro-dots in the central, and 2 micro-dots of HPV 6. The result clearly shows the exact 6 positive micro-dots without any other false positive micro-dot. Obviously, all the results of other biochips in Figs. 4(a) and 4(b) show a clear and clean result as well. In other words, there is no cross reaction occurred in the detection, which proves that the biochip provided in the present invention has a very high specificity.

[00108] In addition, in another embodiment of the invention, the biological sample obtained from the patient is used and detected. The biochip 20 and the detection method described in the above are used for detecting and identifying the HPV subtypes contained in the sample according to the foresaid method. The results are shown in Fig. 5. When comparing the results shown in Fig. 5 and Fig. 3(b) based on the "SC" dot, the results show that HPV 53 is contained in the sample (1), HPV 45 is contained in the sample (2), HPV 52 is contained in the sample (3), and HPV 39 is contained in the sample (4). Therefore, when detecting the biological sample obtained from a patient, it is very clear that the biochip 20 can precisely identify the subtype of human papilloma viruses.

[00109] EXAMPLE VI

According to another embodiment of the present invention, the carrier 11 could be a glass plate. When the carrier 11 is a glass plate, the detector 10 provided by the present invention is used for identifying the subtypes of human papilloma viruses according to the following hybridization steps.

- 4.1 The PCR product having Cy5 labeled thereon is purified by PCR Clean Up-M System (Viogene, USA), and the PCR product is precipitated in ethanol. Then, the PCR product is dried.
- 4.2 The precipitated DNA is dissolved in 12 μ l of the buffer (2x SSC/0.1% SDS), and centrifugated for 1 minute, and then placed on boiled water for 2 minutes. Then, the mixture is placed on ice for 5 minutes.
- 4.3 The mixture is centrifugated for 30 seconds, and 10 µl of the mixture is added to the left side of the dot array 22. A cover slice is carefully covered on the dot array from the left side of the dot array to prevent the bubble formation.

Then, the detector 10 is place in Humid Chamber (Sigma, USA), and the dot array is faces downward at 35°C for 4 hours or overnight.

- 4.4 The detector 10 is vertically placed in the solution A (2x SSC/1% SDS), and the detector is slightly oscillated apart from the cover slice. Then, the detector 20 is washed in a shaker at 160 rpm for 12 minutes.
- 4.5 The detector 10 is washed in the solution B (0.2x SSC/0.1% SDS) and oscillated at 35°C for 12 minutes. The detector 10 is washed in water. Then the detector 10 is dried.
- 4.6 The dried detector 10 is scanned by GenePixTM4000 (Axon, USA), excited by the light having 635 nm of wavelength, and analyzed by GenePixPro 3.0 (Axon, USA).
- [00110] According to the above description, a biochip for specifically identifying the subtypes of human papilloma viruses contained in a biological sample is provided. Please refer to Figs. 6(a) and (b). The biochip 30 includes a carrier 31 and a plurality of micro-dots 32 immobilized on the carrier 31. The carrier 31 is a glass plate. The micro-dots 32 are immobilized on the glass plate 31 according to the foresaid method. Each micro-dot 32 contains at least one oligonucleotide (15~30mer), and each micro-dot 32 is used for specifically identifying a specific HPV subtype. The sequence of the oligonucleotide is selected from the foresaid list. The subtype of human papilloma viruses identified by each dot of the micro-dots 32 is illustrated in Fig. 6(b).
- [00111] The biochip 30 is stained with SYBR Green II, scanned by GenePixTM 4000 (Axon, USA) and excited by the light having 635 nm of wavelength. The result is shown in Fig. 7(a). Preferably, the foresaid PCR amplified products are then detected by the biochip 30 according to the above

steps and the results are shown in Figs. 7(b). When comparing the results shown in Fig. 7(a) and Fig. 6(b), it is very clear that the biochip 30 can precisely identify the subtype of human papilloma viruses. The result clearly shows the exact positive micro-dots without any other false positive micro-dot. Besides, there is no cross reaction occurred in the detection, which proves that the biochip provided in the present invention has a very high specificity. Therefore, the biochip having different carriers (made of nylon membrane or glass plate) can obtain the same results and same specificities.

[00112] According to the above, the drawbacks in the conventional HPV detecting kit do not exist in the HPV detecting kit provided in the present invention. The HPV detecting kit of the present invention is able to diagnose multiple HPV subtypes (up to 39 different subtypes) at the same time, allowing the rapid and reliable detection and identification of HPV possibly present in a biological sample. Besides, an internal control is included in the detector to show whether the detecting process is well handled so that the detecting result is dependable. In addition, HPV detecting kit of the present invention has a high specificity and accuracy. Hence, the present invention not only has a novelty and a progressive nature, but also has an industry utility.

[00113] While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.