Variable Length Subnet Mask (VLSM)	

Variable Length Subnet Mask (VLSM)

- Zmienna Długość Maski Podsieci
- Dzielenie sieci na podsieci o różnej długości maski w celu uzyskania sieci o różnych rozmiarach
- Zalety:
 - Lepsze dostosowanie budowy sieci do narzuconych wymagań
 - Czasami jedyna możliwość zaadresowania wymaganej liczby urządzeń

VLSM - przykład

- Wymagania:
 - Dysponujemy adresem klasy C: 192.168.1.0
 - 2 sieci zawierające co najmniej 60 hostów (dwa działy w firmie)
 - 4 sieci zawierające co najmniej 10 hostów (podsieci dla serwerów)
 - Jak najwięcej sieci dla dwóch hostów (połączenia punkt-punkt dla pracowników pracujących w domu)
- Suma: $2*60 + 4*10 = 160 < 254 \rightarrow O.K.$

VLSM — przykład: bez VLSM

- Co najmniej 60 hostów -> co najmniej 6 bitów na podsieć: 2⁶ > 60 > 2⁵
- Co jeśli wszystkie podsieci mają identyczną maskę? (Brak VLSM)

Podsieć 1	192.168.1.00000000	192.168.1.0/26	Serwery 1
Podsieć 2	192.168.1. <mark>01</mark> 000000	192.168.1.64/26	Dział 1
Podsieć 3	192.168.1. <mark>10</mark> 000000	192.168.1.128/26	Dział 2
Podsieć 4	192.168.1. <mark>11</mark> 000000	192.168.1.192/26	Serwery 2

VLSM — przykład: c.d. 1

 Co najmniej 60 hostów -> co najmniej 6 bitów na podsieć: 2⁶ > 60 > 2⁵

Podsieć 1	192.168.1.00000000	192.168.1.0/26	Do dalszego podziału
Podsieć 2	192.168.1. <mark>01</mark> 000000	192.168.1.64/26	Dział 1
Podsieć 3	192.168.1. <mark>10</mark> 000000	192.168.1.128/26	Dział 2
Podsieć 4	192.168.1. <mark>11</mark> 000000	192.168.1.192/26	Do dalszego podziału

VLSM — przykład: c.d. 2

- Dzielimy niewykorzystane podsieci
- Co najmniej 10 hostów -> co najmniej 4 bity na podsieć: 2⁴ > 10 > 2³

Podsieć 1.1	192.168.1. <u>00</u> 0000000	192.168.1.0/28	Serwery 1
Podsieć 1.2	192.168.1. <u>00</u> 010000	192.168.1.16/28	Serwery 2
Podsieć 1.3	192.168.1. <u>00</u> 100000	192.168.1.32/28	Serwery 3
Podsieć 1.4	192.168.1. <u>00</u> 110000	192.168.1.48/28	Serwery 4

VLSM — przykład: c.d. 3

- Po dwa hosty -> 2 bity na podsieć: 2²-2=2
 Wszystkie pozostałe niewykorzystane podsieci dzielimy używając maski 30 bitowej np.:

Podsieć 4.1	192.168.1. <u>11</u> 000000	192.168.1.192/30	Punkt-punkt 1
Podsieć 4.2	192.168.1. <u>11</u> 000100	192.168.1.196/30	Punkt-punkt 2
Podsieć 4.3	192.168.1. <u>11</u> 001000	192.168.1.200/30	Punkt-punkt 3
Podsieć 4.4	192.168.1. <u>11</u> 001100	192.168.1.204/30	Punkt-punkt 4

	VLSM — przykład: całość
	Podsieć 2: 192.168.1.128 Maska: /26
	Podsieć 3: 192.168.1.64 Maska: /26
19	Podsieć 1.1: 192.168.1.0 Maska: /28
192.1	Podsieć 1.2: 192.168.1.16 Maska: /28
68.1.0	Podsieć 1.3: 192.168.1.32 Maska: /28
1.0	Podsieć 1.4: 192.168.1.48 Maska: /28
	Podsieć 4.1: 192.168.1.192 Maska: /30
	Podsieć 4.2: 192.168.1.196 Maska: /30
	 Podsieć 4.16: 192.168.1.252 Maska: /30

VLSM - przykład: podsumowanie

- Adresy zostały przydzielone zgodnie z wymogami protokołu IP
- Sieć została podzielona pomiędzy odpowiednie hosty zgodnie z założeniami
- Zostało stworzone 2+4+16 sieci o odpowiednio 26/28/30 bitowej masce.

VLSM — łącza szeregowe: realizacja

- Wybierz jedną podsieć 'normalnego' rozmiaru
- Podziel ją na podsieci zwiększając długość maski
- Wszystkie pod-podsieci utrzymuj w jednym obszarze

172.16.0.0 255.255.255.0 172.16.1.0 255.255.255.252 Klasa B 256 podsieci Wybrano podsieć 1 64 dodatkowe podsieci

Wyznaczanie tras w sieci IP

Routing statyczny

Funkcje warstwy sieciowej

- Wprowadzenie jednolitej adresacji niezależnej od niższych warstw (IP)
- Współpraca z niższymi warstwami modelu OSI/ISO
- Udostępnienie funkcjonalności wyższym warstwom modelu OSI/ISO

Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)

Dostarczenie pakietu - plan

- Dostarczenie pakietu od odbiorcy do nadawcy wymaga posiadania zdolności wyznaczania trasy (ang. routing) od odbiorcy do nadawcy.
 - Informacje, które muszą posiadać urządzenia w celu wyznaczenia drogi
 - Sposób wykorzystania tych informacji
 - Sposób uzyskania tych informacji

Rodzaje dostarczania: bezpośrednie i pośrednie

- Dostarczanie bezpośrednie
 - przesyłanie datagramu do hosta znajdującego się w tej samej sieci fizycznej (ten sam numer sieci w adresach IP)
 - enkapsulacja danych w ramkę warstwy łącza danych
 - powiązanie adresu odbiorcy z adresem sprzętowym
 - dostarczenie za pośrednictwem sieci fizycznej
- Dostarczanie pośrednie
 - przesyłanie datagramu do hosta znajdującego się w innej sieci fizycznej (różne numery sieci w adresach IP)
 - potrzebny jest pośrednik router
 - enkapsulacja danych w ramkę warstwy łącza danych
 - sprzętowym adresem docelowym jest adres routera
 - przekazanie ramki do routera tak jak dostarczaniu bezpośrednim

Tablica routingu

- Zawiera skojarzenie pomiędzy
 - adresem przeznaczenia
 - · adres hosta
 - adres grupy hostów
 - grupa wszystkich komputerów o tym samym adresie sieci
 - minimalizacja tablicy routingu
 - adresem interfejsu następnego urządzenia na trasie do hosta(grupy) o podanym wcześniej adresie
 - routowanie odbywa się etapami
 - jeden z interfejsów następnego urządzenia jest dołączony do tej samej sieci fizycznej co jeden z interfejsów bieżącego urządzenia
 - przekazywanie datagramów odbywa się metodą bezpośrednią
- Jeśli masz do wysłania pakiet skierowany pod adres przeznaczenia to przekaż go podanemu interfejsowi

Jak skorzystać z tablicy routingu?

- 1. Jeśli istnieje w tablicy routingu wpis dla pojedynczego urządzenia prześlij pakiet do interfejsu o adresie skojarzonym z tym wpisem
- 2. Jeśli istnieje w tablicy routingu wpis dla całej sieci prześlij pakiet do interfejsu o adresie skojarzonym z tym wpisem
- 3. Jeśli istnieje w tablicy routingu informacja o trasie domyślnej prześlij pakiet do interfejsu o adresie skojarzonym z tą trasą
- 4. Odrzuć pakiet i wyślij komunikat *ICMP* destination unreachable

Jak skorzystać z tablicy routingu?

- 1. Wybierz z tablicy routingu te wpisy, w których grupa docelowa zgadza się z adresem docelowym znajdującym się w przekazywanym pakiecie
- 2. Wybierz spośród nich ten, który ma najdłuższą maskę
- 3. Prześlij pakiet do interfejsu o adresie skojarzonym z tym wpisem
- 4. Odrzuć pakiet i wyślij komunikat ICMP destination ureachable

Por. trasa domyślna

Tablica routingu — wnioski

- Routing IP jest dokonywany na podstawie kolejnych przejść.
- IP nie zna pełnej trasy do żadnego z punktów przeznaczenia.
- Routing jest możliwy dzięki przekazywaniu datagramu do interfejsu następnego urządzenia. Zakłada się, że kolejne urządzenie jest "bliżej" punktu przeznaczenia niż bieżące urządzenie (komputer lub router).

Kto podejmuje decyzję?

• Router

• Komputer

Przykładowa tablica routingu komputera (Windows)

Aktywne trasy:							
Miejsce docelowe w	sieci	Maska	sieci	Brama	Interfejs		
0.0.0.0	C	0.0.0	192.1	.93.34.15	192.193.34.16		
127.0.0.0	255	0.0.0	1	.27.0.0.1	127.0.0.1		
192.193.34.0	255.255	.255.0	192.1	.93.34.16	192.193.34.16		
192.193.34.16	255.255.2	55.255	1	.27.0.0.1	127.0.0.1		
255.255.255.255	255.255.2	55.255	192.1	.93.34.16	192.193.34.16		
Domyślna brama:	192.193.3	4.15.					
		.======					

Minimalizacja tablicy routingu

- Switch wpis dla każdego urządzenia
- Router wykorzystuje powiązanie adresu z położeniem geograficznym
 - Wpis dla podsieci
 - Wpis dla sieci
 - Trasa domyślna
 - Nie musi odwzorowywać budowy fizycznej sieci
- Zwiększa wydajność routera

Optymalizacja adresacji

- Po co wprowadzamy nowy schemat adresacji?
- Problemy:
 - Brak wolnych adresów sieci
 - Sieć klasy A (126): zbyt duża (ponad 16mln hostów)
 - Sieć klasy C(2 mln): zbyt mała (254 hosty)
 - Sieć klasy B(16 tys): ok., ale jest ich tylko 16384!
 - Wzrost wielkości tablic routingu
 - Dużo sieci klasy C

Problemy adresacji

- Praktyka:
 - Wiele firm ma więcej niż 254 hosty, ale nie wiele więcej niż kilka tysięcy – można przydzielać kilka adresów sieci klasy C.
 - < 256 1 sieć klasy C
 - < 512 2 sieci klasy C
 - ...
 - Duży rozmiar tablic routingu ⊗

Problemy adresacji

- Rozwiązanie:
 - Numery klas C nie są przyznawane losowo. Sieci umieszczone w tym samym geograficznym położeniu mają takie same prefiksy.
 - Routery mają świadomość istnienia prefiksów
 - Rezygnujemy z pojęcia 'Klasy sieci'.

Classless Inter-Domain Routing (CIDR)

Schemat adresacji - po co go wprowadzamy?

- Problem 1: brak wolnych adresów sieci
 - np. tylko 16384 sieci klasy B
 - rozwiązanie: "dzielenie" adresów klasy B na mniejsze (odpowiadające klasie C)
- Problem 2: wzrost wielkości tablic routingu
 - rozwiązanie: agregacja tablic routingu w zależności od providera lub od lokalizacji geograficznej

Classless Inter-Domain Routing (CIDR)

Struktura adresu CIDR (by Regional Internet Registries)

Prefix 13 do 27 bitów - numer sieci Numer hosta

Nie mówimy o klasach adresów

- Podsumowanie:
 - CIDR służy oszczędzaniu adresów przez ich gęstą alokację
 - CIDR jest analogiczny do VLSM (adresacja ze zmienną maską)
 - Techniki te są jednak środkami przejściowymi, jedynym rozwiązaniem omówionych problemów jest nowy schemat adresacji

Adresacja bezklasowa: | Część sieci | Część podsieci | Część hosta | | jedynki | zera | | Adresacja bezklasowa: | Prefiks | Część hosta | | jedynki | zera |

Routing statyczny

- Polega na ręcznym dodawaniu przez administratora wpisów w tablicach routingu wszystkich routerów
- Przewidywalny trasa po której pakiet jest przesyłany jest dobrze znana i może być kontrolowana
- Łącza nie są dodatkowo obciążone wiadomościami służącymi do routowania
- Łatwe do skonfigurowania w małych sieciach
- Nadaje się do sieci końcowych
- Zwiększa bezpieczeństwo brak wymiany komunikatów o sieciach sprawia, że nikt ich nie może podsłuchać
- Brak skalowalności
- Brak obsługi redundantnych połączeń
- Nieumiejętność dostosowania się do dynamicznych zmian w konfiguracji sieci