

İÇERİK

- > SEGMENTASYON NEDIR?
- > NEDEN YAPILIR?
- > NASIL YAPILIR ?
- > UYGULAMALARI NELERDİR?

SEGMENTASYON NEDIR?

 Segmentasyon resmi bileşen, obje veya bölgelere ayırma işlemine denir.

NEDEN PARÇALARA AYIRIYORUZ?

NEDEN PARÇALARA AYIRIYORUZ?

IYI BIR SEGMENTASYON NASIL OLMALI?

- Bölge belirleme;
 - ✓ Basit
 - ✓İçerisinde boşluklar olmayan
- Sınırlar
 - ✓ Basit
 - ✓ Pürüzsüz
 - ✓ Doğru

NASIL?

Segmentasyon iki temel yaklaşım üzerine yapılır;

- Süreksizlik ve Benzerlik.
- Süreksizlik: Piksel değerlerindeki keskin değişikliklerden yararlanarak parçalama.
- Benzerlik: Daha önceden belirlenmiş kriterlere göre, benzerlik gösteren bölgelerin resim içinde bölümlendirilmesi.

NASIL?

- Eşikleme Yöntemi (Benzerlik)
 - Renk Bilgisi
- Sınır Bazlı Yöntemi (Süreksizlik)
 - Geçişlere bakılır.
- Bölge Bazlı Yöntem (Benzerlik)
 - Adım adım büyüyen bölge
- Şekil Bazlı Yöntem (Benzerlik)
 - Bilinen şekillerin aranması

ÖRNEK 1 (SÜREKSİZLİK) Sınır Bazlı Yöntem

ÖRNEK 2 (BENZERLİK) **Eşik Bazlı Yöntem**

ÖRNEK 3 (BENZERLİK)

Adım adım büyüyen, bölge bazlı yöntem:

- ✓ Tohum pikselden başlanır.
- ✓ O an bakılan pikselin komşu piksellerine bakılır.
- ✓ Eşiğin üzerinde olan pikseller seçilir.
- ✓ Yeni piksel eklenemeyinceye kadar devam edilir.

SÜREKSIZLİK BELİRLEME

3 çeşit süreksizlik belirlenebilir;

Nokta, doğru, sınırlar

Belirlemek için kullanılan geleneksel yöntem, maskeleme tekniğidir.

w_1	w_2	w_3
w_4	$w_{\scriptscriptstyle 5}$	w_6
w ₇	w_8	w_9

NOKTA BELIRLEME

Eğer aşağıdaki formül gerçekleşirse, maskenin

ortasında bir nokta vardır.

$$|R| \ge T$$

- T, pozitif tamsayı olan bir eşik değeridir.
- R, maskedeki katsayıların resmin o andaki bölgesindeki piksel değerleriyle çarpımlarının toplamıdır.

ÖRNEK:

b c d

FIGURE 10.2

- (a) Point detection mask.
- (b) X-ray image of a turbine blade with a porosity.
- (c) Result of point detection.
- (d) Result of using Eq. (10.1-2). (Original image courtesy of X-TEK Systems Ltd.)

DOĞRU BELİRLEME

- Yatay bir çizgi maskenin ortasından geçtiğinde en yüksek geri dönüşü verecektir.
- Diğer yönler için de benzer durumlar söylenebilir.

ÖRNEK:

BENZERLİK BELİRLEME

Eşikleme (thresholding) yöntemiyle resim içindeki birbirine benzeyen bölgeler ayrıştırılabilir.

En basit yaklaşım:

Eğer
$$f(x, y) > T ve$$

 $f(x, y) = 0$,
yoksa $f(x, y) = 255$

HATALAR

 Bu yaklaşım çok ilkel ve deneme yanıma yöntemine dayandığı için bir çok hata oluşumuna sebep olacaktır.

OTOMATİK EŞİKLEME

- Daha sağlam bir segmentasyon yapmak için, eşik değeri sistem tarafında uygun olan bir noktada ve ya noktalarda seçilmelidir.
- Obje, uygulama ve ortam hakkındaki bilgiler kullanılarak eşik otomatik olarak seçilmelidir.
 - Objenin yoğunluğu
 - Objenin büyüklüğü
 - Ayrıştırılmak istenen obje sayısı

HİSTOGRAM KULLANILARAK AYRIŞTIRMA

- Tekdüze tonlara sahip bölgeler histogramlarında yüksek tepeler yaparlar.
- Genelde yüksek tepeli ve derin vadileri olan histogramlarda bölgeler kolay ayrılır.

HİSTOGRAM KULLANILARAK AYRIŞTIRMA

Birden fazla eşik olabilir ;

Eğer
$$f(x, y) < T_1 \rightarrow f(x, y) = 255$$

Eğer $T_1 < f(x, y) < T_2 \rightarrow f(x, y) = 128$
diğer $\rightarrow f(x, y) = 0$

EŞİKLEME

Her zaman işler bu kadar kolay olmuyor.

Bazen arka plan ile ayrıştırılmak istenen objenin piksel değerlerinin bazıları ortak olmaktadır.

OTSU YÖNTEMİ

- Ayrıştırılacak bölgenin homojenitesinde yararlanır.
- Bölgenin varyansına bakılarak homojenliği belirlenir (düşük varyans —) yüksek homojenlik)
- Sınıf içi varyansın en düşük olduğu noktada eşik değeri seçilir.

ÖRNEK:

Background

8 pixels

7 pixels

2 pixels

HISTOGRAM

RESIM

Eşik değeri = 3

Weight
$$W_b = \frac{8+7+2}{36} = 0.4722$$

Mean $\mu_b = \frac{(0\times8) + (1\times7) + (2\times2)}{17} = 0.6471$
Variance $\sigma_b^2 = \frac{((0-0.6471)^2 \times 8) + ((1-0.6471)^2 \times 7) + ((2-0.6471)^2 \times 2)}{17}$
 $= \frac{(0.4187\times8) + (0.1246\times7) + (1.8304\times2)}{17}$
 $= 0.4637$

Devam...

Weight
$$W_f = \frac{6+9+4}{36} = 0.5278$$

Mean $\mu_f = \frac{(3\times6)+(4\times9)+(5\times4)}{19} = 3.8947$
Variance $\sigma_f^2 = \frac{((3-3.8947)^2\times6)+((4-3.8947)^2\times9)+((5-3.8947)^2\times4)}{19}$
 $= \frac{(4.8033\times6)+(0.0997\times9)+(4.8864\times4)}{19}$
 $= 0.5152$

Bir sonraki adım sınıf içi varyansı bulmak..

Within Class Variance
$$\sigma_W^2 = W_b \, \sigma_b^2 + W_f \, \sigma_f^2 = 0.4722 * 0.4637 + 0.5278 * 0.5152$$

= 0.4909

Devam...

 Diğer eşik değerleri için de aynı işlemler uygulandıktan sonra en düşük 'sınıf için varyans' bulunan eşik değeri seçilir.

MATLAB Kodu eşik = graythresh(I)

BUNDAN SONRA NE YAPABILIRIZ?

Chroma key:

- Etiketleme (labeling) ve sayma :
 - Bu resimde kaç tane bakteri var ?

- Hangi pikseller hangi bölgeye ait ?
- Bölgelerin boyutları ne?

ETİKETLEME NASIL YAPILIR?

- Öncelikle komşu piksel sayısını seçmeliyiz.
 - 4'lü komşular
 - 8'li komşular

4'lü komşu

8'li komşu

ÖRNEK: (4 'lü komşuluk)

- Elimizde bir resim var.
- Bütün pikselleri dolaş.
- Eğer f(x,y)=0, hiçbir şey yapma.
- Eğer f(x,y)=1 ise; 4 durum için uygulama yap

Yeni Etiket oluştur.

Üstteki etiketi al

Soldaki etiketi al

Üstteki etiketi al

Devam..

MATLAB kodu:

L = bwlabel (BW,n)

n= komşu sayısı (4 ve ya 8)

KÜÇÜK BÖLGE AYIRMA

- •Resmimizde bakteri olmayan fakat bir şekilde etiketlenmiş küçük bölgeler olabilir.
- ✓ Etiketlerin boyutlarını hesaplayıp bir eşikten geçirirsek sorunu çözmüş oluruz.

BOŞLUK DOLDURMA

BOŞLUKLU MASKE

BOŞLUKLAR DOLDURULMUŞ MASKE

MATLAB KOMUTU
l= imfill (BW, 'holes');

TEŞEKKÜRLER....