

- prova 1ma141Cursao 2021

Geometria Analítica e Vetores (Universidade Estadual de Campinas)

Instruções:

Essa avaliação é a documentação do seu aprendizado. Ela deve ser feita de maneira <u>individual</u> e só é adequado consultar seus materiais de estudo. Lembre-se de manter o padrão ético que você quer poder cobrar das demais pessoas, em qualquer atitude.

Existem 10 modelos de prova, numerados, nas páginas a seguir: você deve resolver aquela correspondente ao último algarismo do seu RA.

Resolva as questões de forma clara e organizada. Não economize nos detalhes. Digitalize sua resolução e envie pelo Classroom, até 10h00 (formato pdf ou jpeg). O professor estará no GoogleMeet para qualquer necessidade, bem como emails podem ser enviados para qualquer caso de problema técnico.

Boa Prova!

Prova I MA141(<i>B</i>) — 08/04/2021
Nome:
RA:
PROVA MODELO 0

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$3x + y + 7z = 40$$

$$2x + y + 6z = 30$$

$$x + az = b + 8.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem menos equações que incógnitas, então o sistema tem infinitas soluções.
 - (b) Sejam $A \in B$ matrizes $m \times n$ tais que $A^T = B^T$. Então A = B.
 - (c) Seja A uma matriz 2×2 tal que para qualquer B matriz 2×2 temos que AB = BA. Então $A = \lambda I_2$. Aqui I_2 é a matriz identidade 2×2 .
 - (d) Seja A uma matriz $m \times m$ tal que $A^3 = I_m$. Então $A = I_m$.

Prova I MA141(<i>B</i>) — 08/04/2021	Ĭ
Nome:	\parallel
RA:	H
PROVA MODELO 1	Щ

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x + z = 10$$

$$3x + y + (6 + \alpha)z = \beta + 38$$

$$x + \alpha z = \beta + 8.$$

- (a) Para que valores de α e β o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem duas soluções diferentes então tem infinitas soluções.
 - (b) Sejam $A \in B$ matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Sejam A e B matrizes simétricas $m \times m$. Então AB é uma matriz simétrica.
 - (d) Sejam $A \in B$ matrizes $m \times m$. Então $(A+B)(A-B) = A^2 B^2$.

Prova I MA141(B) — 08/04/2021	
Nome:	-
RA:PROVA MODELO 2	
PROVA MODELO 2	

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x-y+z = 2$$

$$x+(a+1)z = b+5$$

$$y+z = 2.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem menos equações que incógnitas, então o sistema tem infintas soluções.
 - (b) Sejam $A \in B$ matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Sejam A e B matrizes simétricas $m \times m$ tais que AB = BA. Então AB é uma matriz simétrica
 - (d) Seja A uma matriz $m \times m$ tal que $A^2 = I_m$. Então $A = I_m$ ou $-I_m$.

Prova I MA141(B) — $08/04/2021$
Nome:
RA:
PROVA MODELO 3

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$\begin{array}{rcl} x-y+z & = & 2 \\ x+2z & = & 4 \\ y+\alpha z & = & \beta+3. \end{array}$$

- (a) Para que valores de α e β o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Um sistema linear com duas equações e duas incógnitas tem solução única ou não tem solução.
 - (b) Sejam $A \in B$ matrizes $m \times n$ tais que $A^T = B^T$. Então A = B.
 - (c) Sejam A matrizes $m \times n$, B e C matrizes $n \times r$, então A(B+C) = AB + AC.
 - (d) Sejam $A \in B$ matrizes $m \times m$. Então $(A + B)(A B) = A^2 B^2$.

Prova I MA141(<i>B</i>) — 08/04/2021
Nome:
RA:
PROVA MODELO 4

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x - y + z = 2$$

$$x + 2z = 4$$

$$y + \alpha z = \beta + 3.$$

- (a) Para que valores de α e β o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem duas soluções diferentes então tem infinitas soluções.
 - (b) Sejam $A \in B$ matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Sejam A e B matrizes simétricas $m \times m$. Então AB é uma matriz simétrica. (d) Seja A uma matriz $m \times m$ tal que $A^3 = I_m$. Então $A = I_m$.

Prova I MA141(<i>B</i>) — 08/04/2021	1.
Nome:	1.
RA: PROVA MODELO 5	To
I NOVA MODELO 3	

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x-y+z = 2$$

$$x+(a+1)z = b+5$$

$$y+z = 2.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem menos equações que incógnitas, então o sistema tem infinitas soluções.
 - (b) Sejam A matrizes $m \times n$, B e C matrizes $n \times r$, então A(B+C) = AB + AC.
 - (c) Sejam A e B matrizes simétricas $m \times m$. Então AB é uma matriz simétrica.
 - (d) Sejam $A \in B$ matrizes $m \times m$. Então $(A + B)(A B) = A^2 B^2$.

Prova I MA141(B) — $08/04/2021$
Nome:
RA:
PROVA MODELO 6

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x-y+z = 2$$

$$x+(a+1)z = b+5$$

$$y+z = 2.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem duas soluções diferentes então tem infinitas soluções.
 - (b) Sejam A e B matrizes $m \times n$ tais que $A^T = B^T$. Então A = B.
 - (c) Sejam A e B matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (d) Sejam $A \in B$ matrizes $m \times m$. Então $(A+B)(A-B) = A^2 B^2$.

l	
Prova I MA141(<i>B</i>) — 08/04/2021	1
	1
Nome:	2
RA:	То
PROVA MODELO 7	

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$x + z = 10$$

$$3x + y + (6 + \alpha)z = \beta + 38$$

$$x + \alpha z = \beta + 8.$$

- (a) Para que valores de α e β o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Um sistema linear com duas equações e duas incógnitas tem solução única ou não tem solução.
 - (b) Sejam A e B matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Sejam A e B matrizes simétricas $m \times m$. Então AB é uma matriz simétrica.
 - (d) Seja A uma matriz $m \times m$ tal que $A^2 = I_m$. Então $A = I_m$ ou $-I_m$.

Prova I MA141(<i>B</i>) — 08/04/2021
Nome:
RA:
PROVA MODELO 8

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$3x + y + 7z = 40$$

$$2x + y + 6z = 30$$

$$x + az = b + 8.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Se um sistema linear tem duas soluções diferentes então tem infinitas soluções.
 - (b) Sejam $A \in B$ matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Sejam A e B matrizes simétricas $m \times m$ tais que AB = BA. Então AB é uma matriz simétrica.
 - (d) Seja A uma matriz $m \times m$ tal que $A^3 = I_m$. Então $A = I_m$.

Prova I MA141(<i>B</i>) — 08/04/2021
Nome:
RA:
PROVA MODELO 9

Questões	Valores	Notas
1.a	2.0	
1.b	4.0	
2.	4.0	
Total	10.0	

$$3x + y + 7z = 40$$

$$2x + y + 6z = 30$$

$$x + az = b + 8.$$

- (a) Para que valores de a e b o sistema linear tem solução única, infinitas soluções ou não tem solução?
- (b) Exiba as soluções do sistema linear.
- (2) Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo.
 - (a) Um sistema linear com duas equações e duas incógnitas tem solução única ou não tem solução.
 - (b) Sejam A e B matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.
 - (c) Seja A uma matriz 2×2 tal que para qualquer B matriz 2×2 temos que AB=BA. Então $A=\lambda I_2$. Aqui I_2 é a matriz identidade 2×2 .
 - (d) Sejam A e B matrizes $m \times m$ tais que $A^2 = B^2$. Então A = B.