ENGSCI 233 Lecture 11.1

Low-Level Networking

IT SEEMS WEIRD FROM A NETWORKING POINT OF VIEW, BUT SOMETIME IN THE LAST FEW YEARS THIS FLIPPED FOR ME.

Today's learning objectives:

- Understand the physical means used to transfer data from one computer to another
- Discuss different ways that information can be encoded

- Understand the use of error-correcting codes
- Describe the key characteristics of ethernet

How does data transfer work?

- How, exactly does that cat video get to your device?
 - Where does it come from?
 - How can you see it at home? On a train? At the top of a mountain?
 - How many engineers spent their lives figuring this out?
- Or, replace "cat video" with electrocardiograph signal, electricity price data, etc.

It's a bit like an onion...

We need something physical.

- The general idea is that we change a physical medium to communicate
- Some changes are simple
 - On/off
- Some are subtle
 - The shape of a smoke signal...
- There are limits to how fast we can change ("bandwidth")

Wires are cheapest.

- Use the same electrical signals as internal data buses
- Physically robust
- Limited bandwidth
 - Capacitance/inductance smear out signals
- Limited length
 - Signals get weaker
 - More noise enters

Optical fibres are fastest.

- Requires optical/electrical conversion
- Physically fragile
- Extremely high bandwidth
 - Limited by electronics
- Long lengths
 - Tens of kilometres
 - Across oceans with amplifiers...

Radio waves are most versatile.

- No mechanical connection
- Pass through walls, trees, people, etc.
- Lose power rapidly with distance
 - Inverse square law, 1/r²
- Broadcast to everyone!
 - Serious interference possible
- Higher bandwidth = less range
 - Also more loss from walls etc.

How do we share a medium?

- Time division
- Frequency division
- Code division

- Multiple wavelengths (optical/radio)
- Beam forming (radio)

What do we put on the medium?

- Amplitude modulation
 - Change signal strength
- Frequency modulation
 - Change signal frequency
- Phase modulation
 - Change signal timing
- Can combine these for more information at once

How do we prevent data loss?

- There will always be noise...
- Sometimes we just live with the errors
- What if the data represent a bank transaction?
 - We have to prevent errors!

Error correcting codes help.

- Use redundancy to detect and fix errors
 - Redundancy = extra data
 - Reduces total throughput
- Simple example triple redundancy
 - 0 = 000, 1 = 111
 - Any 1-bit error can be fixed
 - Only get 1/3 of total capacity
- Complex codes need less redundancy

Triplet received	Interpreted as
000	0 (error-free)
001	0
010	0
100	0
111	1 (error-free)
110	1
101	1
011	1

What else needs to be coded?

- Have to avoid long strings of zeros or ones
 - Otherwise lose track of bit position...
 - Newer tech is less sensitive
- May need extra codes to control the network device

How do we make a data link?

- We need to have an address where other computers can reach us
- We need to send our message to someone else
- We need to be connected to more than one other computer
- We need a standard for how to represent information

Ethernet originally was broadcast.

- All computers connected to the same wires
 - Everyone sees everyone else's messages
- Possible collisions if two computers transmit at the same time

We need a unique address.

- Called a MAC address
 - "Media Access Control"
- Typically 48 bits
 - Written as 12 hex digits
- Bad things happen if two devices share a MAC address

Modern networks are switched.

- Central switch knows the MAC address connected to each port
- Packets are sent only to the device expecting them
- More efficient (no collisions)

Correctness must be ensured.

- Just using error correcting codes is not enough
 - Some errors can slip through!
- We use a 32-bit cyclic redundancy check (checksum) to test for errors
 - Can't fix them, but at least we know...
- Calculated like binary long division

CRC-8 generator

It takes data to transmit data!

- (Not shown) 8 bytes before and 12 bytes after packet
- 14 byte header
- 4 byte checksum
- Maximum 1500 byte payload

Next time: beyond the local network

Image References

Slide 1: Wifi vs Cellular, by Randall Munroe, from https://xkcd.com/1865/ (CC BY-NC 2.5)

Slide 3: by Neil Drumm, from https://www.flickr.com/photos/drumm/2989736147 (CC BY-SA 2.0)

Slide 4: by Microchip Technology, from https://microchipdeveloper.com/tcpip:tcp-ip-five-layer-model

Slide 5: by Swafflemeister, from https://old.reddit.com/r/comics/comments/95an87/oc smoke signals/

Slides 6 and 14: by Raysonho @ Open Grid Scheduler / Grid Engine, from

https://commons.wikimedia.org/wiki/File:EthernetCableGreen.jpg (Public Domain CC0)

Slide 7: by Hustvedt, from https://commons.wikimedia.org/wiki/File:Fiber_optic_illuminated.jpg (CC BY-SA 3.0)

Slide 8: by CST – Computer Simulation Technology, from https://commons.wikimedia.org/wiki/File:Printed_Inverted-Fantenna_E-field.gif (CC BY-SA 4.0)

Slide 9: by UMTSWorld.com, from https://www.umtsworld.com/technology/cdmabasics.htm

Slide 10: by Saleh Faruque, from https://popularelectronics.technicacuriosa.com/2017/03/08/radio-frequency-modulation-made-easy/

Slide 11: by Mysid, from https://commons.wikimedia.org/wiki/File:TV noise.jpg (Public domain)

Slide 15: by Ilario, from https://commons.wikimedia.org/wiki/File:Ethernet.png (CC BY-SA 3.0)

Slide 16: by Raimond Spekking, from https://commons.wikimedia.org/wiki/File:Intel_Centrino_Wireless-N_1000-0659.jpg (CC BY-SA 4.0)

Slide 17: from https://stackoverflow.com/questions/41677766/get-all-possible-combinations-of-bit-flips-in-matlab-for-crc-calculation

Slide 18: by Mikm, from https://commons.wikimedia.org/wiki/File:Ethernet_Type_II_Frame_format.svg (Public domain)

Slide 19: by Rodrigo César, from https://commons.wikimedia.org/wiki/File:24-port_3Com_switch.JPG (Public domain)