Laboratorium Analiza Sygnałów

Temat ćwiczenia Odwzorowywanie I Modulacja Sygnałów

Wykonawca:	
Imię i Nazwisko nr indeksu, wydział	Bartłomiej Brzozowski 268746 Bartek Drzymalski 268765 Wydział Matematyki
Termin zajęć: dzień tygodnia, godzina	Czwartek, 13:15
Numer grupy ćwiczeniowej	T00-20e
Data oddania sprawozdania:	25.06.2023
Ocena końcowa	

Spis treści

1.Wprowadzenie	3
1.1 Cele Ćwiczenia	3
1.2 Spis Narzędzi	3
1.3 Sygnały do Odwzorowania	
1.4 Oznaczenia	4
2.Odwzorowanie Sygnałów	4
2.1 Kurs Dolara Kuwejckiego	5
2.1 Kurs Bitcoina	6
2.3 Przykład Odwzorowani	7
3.Modulacja Sygnałów	8
4.Wnioski	10

1. Wprowadzenie

1.1 Cele Ćwiczenia

- Zapoznanie się z podstawowymi działaniami w programie Scilab i jego graficznym edytorze Xcos'ie.
- Nauka odwzorowywania sygnałów.
- Nabycie wiedzy z zakresu modulacji sygnałów.

1.2 Spis Narzędzi

- Scilab 6.1.1
- Xcos (Zawarty w Scilab 6.1.1)

1.3 Sygnały do Odwzorowania

• Kurs Dolara Kuwejckiego

Rysunek 1 - Sygnał Jako Kurs Dolara Kuwejckiego

Kurs Bitcoina

1.4 Oznaczenia

- STEP_FUNCTION -
- INTEGRAL_m -
- BIGSOM_f Σ
- CMSCOPE -
- CLOCK_c -
- ENDBLK END

2. Odwzorowanie Sygnałów

Zgodnie z poleceniem przeanalizowano charakterystyki sygnałów podanych do odtworzenia. Następnie za pomocą Xcos'a odwzorowano sygnały jako kursy Dolara Kuwejckiego oraz Bitcoina. Kolejno za pomocą poniżej zamieszczonych struktur graficznych (Rys.3-5), przeprowadzono symulacje działania sygnału w Xcos'ie. Zapisano otrzymane wynik dla każdego z sygnałów z osobna (Rys.4-6).

2.1 Kurs Dolara Kuwejckiego

Rysunek 3 - Struktura Graficzna dla Kursu Dolara Kuwejckiego

Rysunek 4 - Wyniki Programu dla Kursu Dolara Kuwejckiego

Rysunek 5 - Struktura Graficzna dla Kursu Bitcoina

Rysunek 6 - Wyniki Programu dla Kursu Bitcoina

2.3 Przykład Odwzorowani

Przyład odwzorowania dla początku sygnału kursu Bitcoina. Odwzorowywano początek sygnąłu, znajdującego się w czerwonym kwadracie.

Rysunek 7 – Odwzorowywana Część Sygnału

Na schemacie graficznym zaznaczono część sygnału odpowiadająca odwzorowywanemu fragmentowi kursu Bitcoina oraz wypisano kolejno wartości kafelków STEP.

Rysunek 8 – Wartości Funkcji STEP_FUNCTION

Rysunek 9 – Część Schematu Odpowiadająca Odwzorowywanej Części Sygnału

3. Modulacja Sygnałów

Kolejno zgodnie z poleceniem przeprowadzono modulacje wybranego sygnału. Napisano kod w programie Scilab, który umożliwił przeprowadzone modyfikacje. Kolejno za pomocą poniżej zamieszczonego kodu, zapisano wyniki zmienionej funkcji sinusa (Rys.11). Wyniki zaprezentowano poniżej.

```
1 function f = sinus(x)
                                                 25 subplot (2,3,1)
2 - f = \sin(5 \times x)
                                                 26 xdata = linspace ( 0 , 10 , 10 **5 );
3 endfunction
                                                 27 ydata = sinus ( xdata );
1 function f = mod1(x)
                                                 28 plot ( xdata , ydata )
   - a = cos(x)
                                                 29
3 - f = \sin(5*a)
                                                 30 subplot (2, 3, 2)
4 endfunction
                                                 31 ydatal = modl ( xdata );
1 function f = mod2(x)
                                                 32 plot ( xdata , ydatal )
2 - a = cos(x)
                                                 33
                                                 34 subplot (2, 3, 3)
  - \cdot \cdot \cdot f = \sin(5 \cdot \mathbf{x}) \cdot \cdot \cdot \mathbf{a}
4 endfunction
                                                 35 ydata2 = mod2 ( xdata );
                                                 36 plot ( xdata , ydata2 )
  function f = mod3(x)
                                                 37
   - - a = -0.5 x
                                                 38 subplot (2, 3, 4)
f = \sin(5x).x
                                                 39 ydata3 = mod3 ( xdata );
4 endfunction
                                                 40 plot ( xdata , ydata3 )
1 function f = mod4(x)
                                                 41
2 --- a = floor(x/5) *5 -- x + 5;
                                                 42 subplot (2, 3, 5)
3 - f = \sin(5x).xa
                                                 43 ydata4 = mod4 ( xdata );
4 endfunction
                                                 44 plot ( xdata , ydata4 )
1 function f = mod5(x)
2 - - a = floor(x/5) *5 - x + 5;
                                                 46 subplot (2,3,6)
3 - f = \sin(5x^*x \cdot a)
                                                 47 ydata5 = mod5 ( xdata );
                                                 48 plot ( xdata , ydata5 )
4 endfunction
```

Rysunek 10 - Kod do Modulacji w Scilabie

Rysunek 11 - Wyniki Modulacji dla Funkcji Sinusa

4. Wnioski

W pierwsze części sprawozdania, przeprowadziliśmy odwzorowanie dwóch sygnałów: kursu Dolara Kuwejckiego oraz kursu Bitcoina. Analizując otrzymane graficznie sygnały pod względem najbardziej charakterystycznych momentów naszych kursów (Rys.12), możemy wnioskować o wysokiej poprawności odtworzonych sygnałów.

Rysunek 12 - Porównanie Odwzorowania z Rzeczywistym Sygnałem

W kolejnej części przeszliśmy do modulacji sygnału funkcji sinus. Wyniki modulacji były zgodne z oczekiwaniami. Sygnał sinusoidalny został zmodyfikowany, co powodowało zmiany w amplitudzie i w całym kształcie sygnału. Dzięki temu uzyskaliśmy sygnały modulowane (Rys.11), który wykazywał charakterystyczne cechy modulacji. Co nasuwa wniosek, że Scilab jest doskonałym narzędziem do modulowania sygnału.