Oplossingen Lineaire Algebra 2013 TODO

September 27, 2013

Contents

1	Oefeningen	3
2	Opdrachten	5
3	Extra bewijzen	5

1 Oefeningen

oef 1

oef 2

oef 3

Echelonvorm

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

$$R2 \longmapsto R2 - 2 \cdot R1$$

$$R3 \longmapsto R3 - 3 \cdot R1$$

$$R4 \longmapsto R4 - 4 \cdot R1$$

$$R5 \longmapsto R5 - 5 \cdot R1$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & -2 & -4 & -11 & -13 \\ 0 & -3 & -11 & -14 & -17 \\ 0 & -9 & -13 & -17 & -21 \end{pmatrix}$$

$$R3 \longmapsto R3 - 2 \cdot R2$$

$$R4 \longmapsto R4 - 2 \cdot R2$$

$$R5 \longmapsto R5 - 2 \cdot R2$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & -5 & 5 & 10 \\ 0 & 0 & 5 & 10 & 60 \end{pmatrix}$$

$$R5 \longmapsto R5 + R4$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & 0 & -5 & -5 & 10 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 75 \end{pmatrix}$$

Rij-geredeuceerde vorm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

oef 4

oef 5

oef 6

a)

$$\begin{pmatrix} 1 & 2 & 4 & 6 \\ 3 & 8 & 14 & 16 \\ 2 & 6 & 11 & 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Antwoord:

$$V = \{(4, -3, 2)\}$$

b)

$$\begin{pmatrix} 3 & 2 & 4 & 5 \\ 1 & 1 & -3 & 2 \\ 4 & 3 & 1 & 7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 10 & 1 \\ 0 & 1 & -13 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1 - 10t, 1 + 13t, t) | t \in \mathbb{R}\}\$$

c)

$$\begin{pmatrix} 1 & 2 & -3 & -1 \\ 3 & -1 & 2 & 7 \\ 5 & 3 & -4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{7} & 0 \\ 0 & 1 & \frac{-11}{7} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

d)

$$\begin{pmatrix} 1 & 1 & -2 & 1 & 2 & 1 \\ 2 & -1 & 2 & 2 & 6 & 2 \\ 3 & 2 & -4 & -3 & -9 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1, 2a, a, -3b, b) | a, b \in \mathbb{R}\}\$$

2 Opdrachten

opdracht 1.2

opdracht 1.23

opdracht 1.33

3 Extra bewijzen

1.10

1.44