<u>Case Study – Predict Airfare on route</u>

About data:

Several new airports are opened in major cities, opening the market for new routes (a route refers to a pair of airports) and American airlines has not announced whether it will cover routes to/from these cities. In order to price flights on these routes, a major airline collected information on 638 air routes in the United States. Some factors are known about these new routes: the distance travelled, demographics of the city where the new airport is located and whether this city is a vacation destination. Other factors are yet unknown (e.g., number of passengers who will travel this route). The goal is to predict the airfare on a route (Need not worry about it now. Focus on data cleansing of the given data.).

Perform the following:

- Read the Airfares data in Python & R
- Find the dimensions of the data and report the data types. Check if Python & R is reading the data type as desired. If not then convert it to the right data type.
- The missing value is denoted as *. Identify how many missing values are there in data. If ignored, how many records will be lost. Find the subset of data where you have complete data.
- Clean the data: remove any special characters in the data and check if the data types are consistent.
- What is the average fare if the city is a vacation destination when compared to if the city is not a vacation destination

- The cities columns have both city and state names. Split them into city and state names
- How does the average fare differ if the slot is free or controlled?
- How does the average fare differ if the gate is free or constrained?
- Does the average fare vary by starting city or by destination city?
- Do you find any outliers in the data?
- Bin the starting city and ending city's income into 10 levels
- Standardize all the numeric data or bin them
- Using visualizations, identify best insights from this data either using the raw data/processed data. Show atleast 2 insights that are of business value

•

S_CODE	Starting airport's code
S_CITY	Starting city
E_CODE	Ending airport's code
E_CITY	Ending city
COUPON	Average number of coupons (a one-coupon flight is a nonstop flight,
	a two-coupon flight is a one-stop flight, etc.) for that route
NEW	Number of new carriers entering that route between Q3-96 and Q2-97
VACATION	Whether (Yes) or not (No) a vacation route
SW	Whether (Yes) or not (No) Southwest Airlines serves that route
HI	Herfindahl index: measure of market concentration
S_INCOME	Starting city's average personal income
E_INCOME	Ending city's average personal income
S_POP	Starting city's population
E_POP	Ending city's population
SLOT	Whether or not either endpoint airport is slot controlled
	(this is a measure of airport congestion)
GATE	Whether or not either endpoint airport has gate constraints
	(this is another measure of airport congestion)
DISTANCE	Distance between two endpoint airports in miles
PAX	Number of passenge <u>rs on</u> that <mark>route</mark> during period of data collection
FARE	Average fare on that <mark>route</mark>