panda_robot Documentation

Release 0.0.1-beta

Saif Sidhik

Contents:

1	Python API Documentation 1.1 panda_robot	
2	Indices and tables	9
Рy	thon Module Index	11
Ind	dov	13

A Python interface package built over the franka_ros_interface package for controlling and handling the Franka Emika Panda robot. Also works directly with panda_simulator.

Features

- Provides simple-intuitive interface classes with methods to directly and easily control the robot.
- Get real-time robot state, joint state, controller state, kinematics, dynamics, etc.
- Provides Kinematics computation (using kdl).
- Integrated with gripper control.
- Manage frames transformation and controller switching using simple utility functions
- Works directly on simulated robot when using panda_simulator providing direct sim-to-real and real-to-sim code transfer.

Go to Project Source Code.

, Release 0.0.1	

Python API Documentation

1.1 panda_robot

1.1.1 PandaArm

class panda_robot.PandaArm(on_state_callback=None, reset_frames=True)
 Constructor class. Methods from franka_interface.ArmInterface are also available
 to this object.

Bases franka interface. ArmInterface

Parameters

- on_state_callback optional callback function to run on each state update
- reset_frames if True, EE frame is reset using franka_interface.
 ArmInteface (using franka_interface.ArmInterface and franka_tools.FrankaFramesInterface.)

angles(include gripper=False)

Returns current joint positions

Return type [float]

Parameters include_gripper (bool) - if True, append gripper joint positions to list

base_link_name()

Returns name of base link frame

Return type str

cartesian_velocity(joint angles=None)

Get cartesian end-effector velocity. To get velocity from franka_ros_interface directly, use method ee_velocity().

Returns end-effector velocity computed using kdl

Return type np.ndarray

Parameters joint_angles ([float]) - joint angles (optional)

```
ee pose()
```

Returns end-effector pose as position and quaternion in global frame

Return type np.ndarray (pose), np.quaternion (orientation)

```
ee_velocity(real robot=True)
```

Returns end effector velocity (linear and angular) computed using finite difference

Return type np.ndarray, np.ndarray

Parameters real_robot (bool) - if False, computes ee velocity using finite
 difference

If real_robot is False, this is a simple finite difference based velocity computation. Please note that this might produce a bug since self._goal_ori_old gets updated only if get ee vel is called.

enable force torque transform to base frame(boolval=True)

Enable transformation of force vector to base frame

Parameters boolval (bool) - set True to transform forces to base frame

enable_robot()

Re-enable robot if stopped due to collision or safety.

```
end effector link name()
```

Returns name of end-effector frame

Return type str

exec gripper cmd(pos, force=None)

Move gripper joints to the desired width (space between finger joints), while applying the specified force (optional)

Parameters

- pos (float) desired width [m]
- force (float) desired force to be applied on object [N]

Returns True if command was successful, False otherwise.

Return type bool

exec position cmd(cmd)

Execute position control (raw positions). Be careful while using. Send smooth commands

Parameters cmd ([float]) - desired joint postions, ordered from joint1 to joint7 (optionally, give desired gripper width as 8th element of list)

exec position cmd delta(cmd)

Execute position control based on desired change in joint position

Parameters cmd ([float]) - desired joint postion changes, ordered from joint1 to joint7

exec_torque_cmd(cmd)

Execute torque command at joint level directly

Parameters cmd ([float]) - desired joint torques, ordered from joint1 to
joint7

exec_velocity_cmd(cmd)

Execute velocity command at joint level (using internal velocity controller)

Parameters cmd ([float]) - desired joint velocities, ordered from joint1 to joint7

forward_kinematics(joint angles=None, ori type='quat')

Returns position and orientaion of end-effector for the current/provided joint angles

Return type np.ndarray, np.ndarray/np.quaternion

Parameters

- joint_angles ([float]) joint angles (optional) for which the ee pose
 is to be computed
- **ori_type** to specify the orientation representation to return

get gripper()

Returns gripper instance

Return type franka_interface.GripperInterface

gripper state()

Return Gripper state {'position', 'force'}. Only available if Franka gripper is connected.

Return type dict({str:np.ndarray (shape:(2,)),str:np.ndarray (shape:(2,))})

Returns

dict of position and force

- 'position': np.array
- 'force': np.array

has gripper

Returns True if gripper is initialised, else False

Return type bool

inertia(joint angles=None)

Returns inertia matrix of robot at current state

Return type np.ndarray

Parameters joint_angles ([float]) - joint angles (optional)

Returns get the joint positions using inverse kinematics from the provided end-effector pose

Return type bool (success), [float]

Parameters

- pos ([float]) end-effector position (x,y,z)
- **ori** ([float] or np.quaternion) end-effector orientation (quaternion)

• **seed** ([float]) - seed joints to start ik computation

```
• null space goal ([float]) - null-space joint position if required
    kwargs are to avoid breaking of sister classes for arguments that are not used in
    this class.
jacobian(joint angles=None)
       Returns jacobian matrix of robot at current state
       Return type np.ndarray
       Parameters joint angles ([float]) - joint angles (optional) for which the
          jacobian is to be computed
joint limits()
       Returns joint limits
       Return type [{'lower': float, 'upper': float}]
move to joint pos delta(cmd)
    Execute motion (trajectory controller) based on desired change in joint position
       Parameters cmd ([float]) - desired joint postion changes, ordered from
          joint1 to joint7
move_to_joint_position(joint angles)
    Move to joint position specified (using low-level position control)
       Parameters joint angles ([float]) - desired joint positions, ordered from
          joint1 to joint7
n_cmd()
       Returns number of control commands (normally same as number of joints)
       Return type int
n joints()
       Returns number of joints
       Return type int
q_mean()
       Returns mean of joint limits
       Return type [float]
set arm speed(speed)
    Set joint position speed (for joint trajectory controller [move to joint positions]
    only)
set gripper speed(speed)
    Set velocity for gripper motion
       Parameters speed (float) - speed ratio to set
state()
       Returns robot state as a dictionary
       Return type dict {str: obj}
tip_state()
```

Returns tip_state dictionary

Return type dict {str: obj}

untuck()

Move to neutral pose (using trajectory controller, or moveit (if moveit is available)) **velocities** (include gripper=False)

Returns current joint velocities

Return type [float]

Parameters include_gripper (bool) - if True, append gripper joint velocities to list

panda _.	_robot [Documen	tation, R	elease 0	.0.1-beta		

Indices and tables

- genindex
- modindex
- search

Go to Project Source Code.

LICENSE:

License Apache2.0

Copyright (c) 2019-2020, Saif Sidhik

Python Module Index

p
panda_robot, 3

panda_robot Documentation,	Release	0.0.1-beta
----------------------------	---------	------------

Index

A angles() (panda robot.PandaArm method), 3	<pre>inverse_kinematics() (panda_robot.PandaArm method), 5</pre>
	1
В	jacobian() (panda robot.PandaArm method), 6
base_link_name() (panda_robot.PandaArm method), 3	joint_limits() (panda_robot.PandaArm method), 6
С	М
<pre>cartesian_velocity() (panda_robot.PandaArm</pre>	move_to_joint_pos_delta() (panda_robot.PandaArm method), 6
E	move_to_joint_position() (panda_robot.PandaArm method), 6
<pre>ee_pose() (panda_robot.PandaArm method), 4 ee_velocity() (panda robot.PandaArm method), 4</pre>	N
<pre>enable_force_torque_transform_to_base_frame()</pre>	n_cmd() (panda robot.PandaArm method), 6
(panda_robot.PandaArm method), 4 enable_robot() (panda robot.PandaArm method), 4	n_joints() (panda_robot.PandaArm method), 6
<pre>end_effector_link_name() (panda_robot.PandaArm</pre>	P
<pre>exec_gripper_cmd() (panda_robot.PandaArm method),</pre>	panda_robot (module), 3 PandaArm (class in panda robot), 3
exec_position_cmd() (panda_robot.PandaArm	randarııı (class ili panda_robot), 5
method), 4 exec_position_cmd_delta() (panda_robot.PandaArm	Q
<pre>method), 4 exec_torque_cmd() (panda_robot.PandaArm method), 4</pre>	q_mean() (panda_robot.PandaArm method), 6
exec_velocity_cmd() (panda_robot.PandaArm method), 4	S
F	<pre>set_arm_speed() (panda_robot.PandaArm method), 6 set_gripper_speed() (panda robot.PandaArm</pre>
forward_kinematics()(panda robot.PandaArm	method), 6 state() (panda robot.PandaArm method), 6
method), 5	state() (panda_robot.randaArm method), 0
G	T
get_gripper() (panda robot.PandaArm method), 5	tip_state() (panda_robot.PandaArm method), 6
gripper_state() (panda_robot.PandaArm method), 5	U
Н	untuck() (panda_robot.PandaArm method), 7
has_gripper (panda_robot.PandaArm attribute), 5	V
I	velocities() (panda_robot.PandaArm method), 7
inertia() (panda robot.PandaArm method). 5	