MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

Exemples de base en deux dimensions

t	
x(t)	
y(t)	
$\vec{r}(t)$	

t	0		$\pi/2$	
x(t)	а	V	0	
y(t)	0	7	а	
$\vec{r}(t)$	ai		aj	

t	0		$\pi/2$		π	
x(t)	а	V	0	7	— <i>а</i>	
y(t)	0	7	а	V	0	
$\vec{r}(t)$	ai		аj		–ai ̇̃	

t	0		$\pi/2$		π		$3\pi/2$	
x(t)	а	×	0	×	— <i>а</i>	7	0	
y(t)	0	7	а	\searrow	0	7	— <i>а</i>	
$\vec{r}(t)$	ai		aj		–ai ̇		–aj̇̃	

t	0		$\pi/2$		π		$3\pi/2$		2π
x(t)	а	×	0	×	— <i>а</i>	7	0	7	а
y(t)	0	7	а	\searrow	0	\searrow	— <i>а</i>	7	0
$\vec{r}(t)$	ai		aj		–ai ̇		–aj ̇		ai

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Cercle de rayon a centré à l'origine.

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^2 + y(t)^2$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^2 + y(t)^2 = a^2 \cos^2 t + a^2 \sin^2 t$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^{2} + y(t)^{2} = a^{2} \cos^{2} t + a^{2} \sin^{2} t = a^{2} (\cos^{2} t + \sin^{2} t) = a^{2}$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^{2} + y(t)^{2} = a^{2} \cos^{2} t + a^{2} \sin^{2} t = a^{2} (\cos^{2} t + \sin^{2} t) = a^{2}$$

Les points de C vérifient l'équation $x^2 + y^2 = a^2$.

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

• $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le \pi/2$, est une paramétrisation du quart de cercle de rayon a centré à l'origine.

• $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le \pi/2$, est une paramétrisation du quart de cercle de rayon a centré à l'origine.

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

On pose x = t et y = f(t) pour obtenir la paramétrisation

$$\vec{r}(t) = t\vec{i} + f(t)\vec{j}, \ a \le t \le b.$$

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

On pose x = t et y = f(t) pour obtenir la paramétrisation

$$\vec{r}(t) = t\vec{i} + f(t)\vec{j}, \ a \le t \le b.$$

Par exemple, soit C la partie de la parabole $y = x^2$ allant de (0,0) à (2,4).

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

On pose x = t et y = f(t) pour obtenir la paramétrisation

$$\vec{r}(t) = t\vec{i} + f(t)\vec{j}, \ a \le t \le b.$$

Par exemple, soit C la partie de la parabole $y = x^2$ allant de (0,0) à (2,4).

$$C: \vec{r}(t) = t\vec{i} + t^2\vec{j}, \ 0 \le t \le 2.$$

Résumé

• Exemples de base de courbes paramétrées.

Résumé

- Exemples de base de courbes paramétrées.
- La même courbe, comme ensemble de points dans le plan, peut être paramétrée de différentes façons.

Résumé

- Exemples de base de courbes paramétrées.
- La même courbe, comme ensemble de points dans le plan, peut être paramétrée de différentes façons.
- Des paramétrisations différentes changent comment la courbe est parcourue.