	$y_1 = A$.	$y_2 = B.$	TOTAL
$x_2 = Hommes$	$\frac{1406}{1755} \approx 0.8$	$\frac{349}{1755} \approx 0.2$	1

Probabilités conditionnelles

Définition

Soit A un événement d'un univers Ω .

On note \overline{A} l'événement contraire de A c'est-à-dire tous les événements élémentaires de l'univers Ω qui ne sont pas dans A. Le diagramme de Venn à gauche représente l'ensemble A celui de droite l'ensemble \overline{A} :

EXEMPLE

On considère l'expérience aléatoire du lancé de dé. On note A l'événement : « Tomber sur un 4 ou un 6 ». Donner le cardinal de A et de \overline{A} .

Réponse :

$$Card(A) = 2$$
,

 $Card(\overline{A}) = 4$.

Tableau croisé

Dans le cas où une étude porte sur deux événements A et B, on peut présenter ces deux événements dans un tableau croisé :

	A	\overline{A}	TOTAL
В	$Card(A\cap B)$	$Cardig(\overline{A}\cap Big)$	Card(B)
\overline{B}	$Cardig(A\cap \overline{B}ig)$	$Cardig(\overline{A}\cap\overline{B}ig)$	$Card(\overline{B})$
TOTAL	Card(A)	$Card(\overline{A})$	$Card(\Omega)$

Probabilité conditionnelle : formule

On appelle **probabilité de B sachant A**, la probabilité donnée par la formule suivante :

$$p_A(B) = \frac{\mathsf{Card}\,(A\cap B)}{\mathsf{Card}(A)}$$

Elle correspond à la fréquence conditionnelle du caractère B par rapport à A.

EXEMPLE

« Dans l'exemple précédent portant sur les élections, une personne déclare avoir voté pour le candidat A.. Quelle est la probabilité que cette personne soit une femme? »

Réponse : Soit A l'événement : « La personne a voté pour le candidat A. », et B l'événement « La personne interrogée est une femme ». Comme on sait que la personne interrogée a voté pour le candidat A., on doit calculer une probabilité conditionnelle. Ce que l'on cherche étant la probabilité que la personne interrogée soit une femme, **sachant** qu'elle a voté pour le candidat A.. On doit donc calculer $p_A(B)$.

On sait que:

Card $(A \cap B) = 326$ et Card (A) = 815,

on en déduit que :

$$p_A(B) = \frac{{\sf Card}\,(A\cap B)}{{\sf Card}(A)} = \frac{326}{815} = 40\%$$