CS 61C

MR, Spark, WSC, RAID, ECC

Summer 2020

Discussion 14: August 10, 2020

Pre-Check

This section is designed as a conceptual check for you to determine if you conceptually understand and have any misconceptions about this topic. Please answer true/false MapReduce is more general than Spark since it is lower level.

HalseThe birty of The birty of

1.1

1.2

The higher the PUE the more efficient the datacenter is.

1.3 Hamming codes can detect any type of data corruption.

false

1.4 All RAID levels improve reliability.

en se

Hamming ECC

Recall the basic structure of a Hamming code. We start out with some bitstring, and then add parity bits at the indices that are powers of two (1, 2, 8, etc.). We don't assign values to these parity bits yet. Note that the indexing convention used for Hamming ECC is different from what you are familiar with. In particular, the 1 index represents the MSB, and we index from left-to-right. The ith parity bit $P\{i\}$ covers the bits in the new bitstring where the *index* of the bit under the aforementioned convention, j, has a 1 at the same position as i when represented as binary. For instance, 4 is 0b100 in binary. The integers j that have a 1 in the same position when represented in binary are 4, 5, 6, 7, 12, 13, etc. Therefore, P4 covers the bits at indices 4, 5, 6, 7, 12, 13, etc. A visual representation of this is:

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Encoded da	ta bits	р1	p2	d1	p4	d2	d3	d4	р8	d5	d6	d7	d8	d9	d10	d11	p16	d12	d13	d14	d15	
	p1	X		X		X		X		X		X		X		X		X		X		
Parity bit coverage	p2		X	X			X	X			X	X			X	X			X	X		
	p4				X	X	X	X					X	X	X	X					X	
	р8								X	X	X	X	X	X	X	X						
	p16																X	X	X	X	X	

Source: https://en.wikipedia.org/wiki/Hamming_code

How many bits do we need to add to 0011₂ to allow single error correction?

1234567 XOXOI

- 2.2 Which locations in 0011₂ would parity bits be included?
- 2.3 Which bits does each parity bit cover in 0011₂?
- 2.4 Write the completed coded representation for 0011_2 to enable single error correction. Assume that we set the parity bits so that the bits they cover have even parity.
- [2.5] How can we enable an additional double error detection on top of this?
- 2.6 Find the original bits given the following SEC Hamming Code: 0.10111₂. Again, assume that the parity bits are set so that the bits they cover have even parity.
- Find the original bits given the following SEC Hamming Code: $\sqrt{001000}$

3 RAID

3.1 Fill out the following table:

e following SEC Hammin	1001000_2
7 ₁ -70	1234567
72	001 00
p4 76.	

P1 ->e. P2 P2 ->e

	Configuration	Pro/Good for	Con/Bad for		
RAID 0	many disk		retrability		
RAID 1	minmed anst		expense.		127
RAID 2	Hanny Estiping	Smeller ached	reducted the		105
RAID 3	hoff charles	Smeliet	reed ell dis		ع صلی میں
RAID 4	block-less	Ligher Jos ,	SI mis 5n	211	(MMC)

5.1

5.2

5

6 Warehouse-Scale Computing

Sources speculate Google has over 1 million servers. Assume each of the 1 million servers draw an average of 200W, the PUE is 1.5, and that Google pays an average of 6 cents per kilowatt-hour for datacenter electricity.

6.1 Estimate Google's an qual power bill for its datacenters.

15 > 10 x v. zkw x 0. 06 x 876 h/y

Google reduced the PUE of a 50,000-machine datacenter from 1.5 to 1.25 without decreasing the power supplied to the servers. What's the cost savings per year?

CRAC Lignop distant upsi pou

PUE = IT equipmen power

[15-1.75]

[15-1.75]

[15-1.75]

Servers + next morters