CE 3372 Water Systems Design Fall 2016

- 1. The hydraulic radius in a conduit containing a flowing liquid is
 - (A) the mean radius from the center of flow to the wetted side of the conduit
 - (B) the ratio of the cross-sectional area of the conduit and the wetted perimeter
 - (C) the ratio of the wetted perimeter and the cross-sectional area of the conduit
 - (D) the ratio of the cross-sectional area of flow and the wetted perimeter
- 2. The rational runoff coefficient for a 14.81 acre parcel property is 0.35. The rainfall intensity is 4.56 inches per hour. The peak discharge from this property is anticipated to be about
 - (A) $22 ft^3/s$
 - (B) $24 ft^3/s$
 - (C) $38 ft^3/s$
 - (D) $70 ft^3/s$
 - (E) $22 ft^3/s$
 - (F) $24 ft^3/s$
 - (G) $38 ft^3/s$
 - (H) $70 \ ft^3/s$
- 3. A storm sewer (reinforced concrete pipe) is 400-feet long and 30-inches in diameter. The sewer flows partially full (not-surcharged) between a personnel access shaft (invert elevation 101.00 feet) and a lift station sump (invert elevation 100.00 feet). Assuming Manning's roughness coefficient is 0.013 for all flow depths, the sewer capacity is about
 - (A) 4.2 cfs
 - (B) 9.8 cfs
 - (C) 20.5 cfs
 - (D) 32.6 cfs
 - (E) $22 ft^3/s$
 - (F) $24 ft^3/s$
 - (G) $38 ft^3/s$
 - (H) $70 ft^3/s$

- 4. The storm sewer in the question above is flowing at $\frac{3}{4}$ full. What is the discharge in the sewer?
 - (A) 3.6 cfs
 - (B) 8.1 cfs
 - (C) 12.5 cfs
 - (D) 18.1 cfs
 - (E) $22 ft^3/s$
 - (F) $24 ft^3/s$
 - (G) $38 ft^3/s$
 - (H) $70 ft^3/s$
- 5. A pipe with a diameter of 2.4 meters is depicted in Figure 1. The pipe is flowing partially full.

Figure 1: Circular channel flowing partially full.

What is the hydraulic radius of flow in the circular section?

- (A) 0.44 m
- (B) 0.88 m
- (C) 1.30 m
- (D) 1.80 m
- (E) 0.44 m
- (F) 0.88 m
- (G) 1.30 m
- (H) 1.80 m

Name:_____

REVISION A . Page 3 of 19

14. A smooth concrete channel is depicted in Figure 2. The channel's dimensionless slope in the direction of flow is 0.005. If the flow width at the surface is 2-meter, what is the flow rate in the channel using the Hazen-Williams friction formula?

Figure 2: Triangular channel.

- (A) $0.80 \ m^3/sec$
- (B) $1.30 \ m^3/sec$
- (C) $1.45 \ m^3/sec$
- (D) $2.20~m^3/sec$
- (E) $22 ft^3/s$
- (F) $24 ft^3/s$
- (G) $38 ft^3/s$
- (H) $70 ft^3/s$
- 6. A 24-inch diameter sewer pipe, with Manning's n of 0.015 is laid on slope $S_0=0.01$ as shown in Figure 3.

Figure 3: Sewer pipe sketch

REVISION A .

Name:_____

Equation 1 is the depth-area equation and Equation 2 is the depth-perimeter equation for a circular conduit where the flow area is A, the flow depth is y, the diameter is D. and the wetted perimeter is P_w . Use Manning's equation and Equations 1 and 2 to complete Table 1.

$$A = \frac{D^2}{4} \{ [\cos^{-1}(1 - \frac{2y}{D})] - [\sin(\cos^{-1}(1 - \frac{2y}{D}))] \times [\cos(\cos^{-1}(1 - \frac{2y}{D}))] \}$$
 (1)

$$P_w = D \times \cos^{-1}(1 - \frac{2y}{D}) \tag{2}$$

Table 1: Depth-Area, Depth-Perimeter, Depth-Hyd. Radius, and Discharge for Circular Sewer

y(ft)	$A(ft^2)$	$P_w(ft)$	$R_h (ft)$	$Q(ft^3/sec)$
1.00				
2.00				

- 7. Figure 4 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The flowlines (invert elevations) match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 12 inches deep.
 - a) What is the likely flow depth in the 24 inch line (at the junction box)?
 - b) What is the discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box?
 - c) What is the discharge in the 24 inch line, assuming normal flow, when the pipe (24 inch) is full?
 - d) What is the unused flow capacity in the 24 inch line?

Figure 4: Sewer pipes connected at a junction box. Matching flow line elevations.

REVISION A . Page 6 of 19

- 8. Figure 5 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.
 - a) What is the likely flow depth in the 24 inch line (at the junction box)?
 - b) What is the discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box?
 - c) What is the discharge in the 24 inch line, assuming normal flow, when the pipe (24 inch) is full?
 - d) What is the unused flow capacity in the 24 inch line?

Figure 5: Sewer pipes connected at a junction box. Matching soffit elevations.

REVISION A . Page 7 of 19

- 9. Figure 6 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.
 - a) What is the likely flow depth in the 24 inch line (at the junction box)?
 - b) What is the discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box?
 - c) What is the discharge in the 24 inch line, assuming normal flow, when the pipe (24 inch) is full?
 - d) What is the unused flow capacity in the 24 inch line?

Figure 6: Sewer pipes connected at a junction box. Matching flow line elevations.

REVISION A . Page 8 of 19

Name:_____

REVISION A . Page 9 of 19

- 10. A circular, 60-inch diameter, reinforced concrete sewer pipe (n=0.013) carries 50 MGD of wastewater to a lift station wet well. Average slope along the flow path is 1.0%.
 - (a) Sketch the cross section, indicate the pipe diameter.

- (b) For the conditions in the problem statement, what is the flow rate in cubic feet per second?
- (c) What is the diameter of the pipe, in feet?
- (d) Use Manning's equation $(Q = \frac{1.49}{n}AR^{(2/3)}S^{(1/2)})$ and determine the **pipe-full** discharge in cubic feet per second?

- (e) What is the pipe-full discharge (Q_f) in million gallons per day (MGD)?
- (f) Compute the ratio of actual flow $(\frac{Q}{Q_f})$ to full pipe flow.
- (g) What is the ratio of depth of actual flow to full flow $(\frac{d}{D})$ using the hydraulic element chart in Figure 7? Use the highlighted curve.

♦ HYDRAULIC-ELEMENTS GRAPH FOR CIRCULAR SEWERS

Design and Construction of Sanitary and Storm Sewers, Water Pollution Control Federation and American Society of Civil Engineers, 1970.

Figure 7: Hydraulic Elements Chart

REVISION A . Page 11 of 19

- (h) What is the depth of actual flow in feet?
- (i) What is the depth of actual flow in inches?
- (j) Modify your sketch to include the water surface position and the approximate flow depth.
- (k) Is this portion of sewer close to surcharging?

REVISION A . Page 12 of 19

11. An EPA-NET simulation model for a reservoir-pump-network was constructed and operated for four (4) different operational scenarios. Figure 8 is a depiction of the network. The numbers next to the nodes are Node_ID values in the reports that follow, and the numbers next to the pipes are the Link_ID values. The network is supplied from a reservoir through a booster pump, both are depicted on Figure 8.

Figure 8: EPA-NET system topology.

Figure 9 is the a portion of the summary report for simulation 1. Figure 10 is the a portion of the summary report for simulation 2. Figure 11 is the a portion of the summary report for simulation 3. Figure 12 is the a portion of the summary report for simulation 4.

These four simulation represent different demand scenarios for the same system.

Interpret these reports, to answer the following questions:

(a) Complete the table below. Q_{pump} is the discharge in liters-per-second through the pump station, H_{Supply} is the head at the supply reservoir, H_{Node2} is the head at Node 2, and ΔH_{pump} is the added head supplied by the pump.

Table 2: Pump Discharge and Supplied Head

Simulation #	Q_{pump}	H_{Supply}	H_{Node2}	ΔH_{pump}
1				
2				
3				
-				
4				

REVISION A . Page 13 of 19

(b) Complete the table below. Q_{pump} is the discharge in liters-per-second through the pump station, $\Delta H_{Node2-to-5}$ is head loss in the system from Node 2 to Node 5.

Table 3: System Discharge and Head Loss

Simulation #	Q_{pump}	H_{Node2}	H_{Node5}	$\Delta H_{Node2-to-5}$
1				
2				
3				
4				

(c) If the pump performance curve has the mathematical structure: $H_{pump} = H_{shutoff} - K_{pipe} \times Q^2$, estimate the values of $H_{shutoff}$ and K_{pipe} .

(d) If the system frictional loss curve has the mathematical structure: $H_{pipe} = K_{loss} \times Q^2$, estimate the value of K_{loss}

(e) What effect would removing the pipe joining nodes 3 and 4 have on the system performance? Explain your reasoning.

(f) Estimate the flow distribution and head losses the the system if the the pipe joining nodes 3 and 4 are removed, and the pipe joining node 4 and 5 is removed if the nodal demands are the same as SIMULATION 2.

REVISION A . Page 15 of 19

Page 1				10/4/20	010 2:27:47 PM				
*******	******	******	******	******	******				
*		ΕΡΑΝ	ΕT		*				
*	njaraarro ana wassi quarroj								
*	imalysis for tipo nooneins								
*	* Version 2.0								
	******	******	******	******	*****				
Input File: Node Tal	SIMULATION #1 ble:								
Link	Start	End		_	Diameter				
ID	Node 	Node		m	mm 				
1	2	3		1000	124				
2	3	5		1000	124				
3	2	4		1000	124				
4	4	5		1000	124				
5	3	4		1400	124				
7	6	2		#N/A	#N/A Pump				
Node Results:									
Node	Demand	Head	Pressure	Quality					
ID	LPS	m	m						
2	0.00	20.00	20.00	0.00					
3	0.00	20.00	20.00	0.00					
4	0.00	20.00	20.00	0.00					
5	0.00	20.00	20.00	0.00					
6	0.00	0.00	0.00	0.00	Reservoir				
Link Results:									
Link	 Flow	VelocityU	nit Headlo	ss Stat	 tus				
ID	LPS	m/s	m/km						
1	0.00	0.00	0.00	 Open					
2	0.00	0.00	0.00	Open					
3	0.00	0.00	0.00	Open					
4	0.00	0.00	0.00	Open					
5	0.00	0.00	0.00	Open					
7	0.00	0.00	-20.00	_	Pump				
				_					

Figure 9: EPA-NET Summary Report, Simulation #1

REVISION A . Page 16 of 19 $\,$

age 1 *******	********	******	*******		10 2:28:15 PM ******			
*		E P A N						
*	Hydraulic and Water Quality							
* Analysis for Pipe Networks								
*		Version 2						
************* Input File: SI Link - Node Ta	MULATION 2	*****	******	******	******			
 Link	Start	End		Length	Diameter			
ID	Node	Node		m	mm			
1	2	3		1000	 124			
2	3	5		1000	124			
3	2	4		1000	124			
4	4	5		1000	124			
5	3	4		1400	124			
7	6	2		#N/A	#N/A Pum			
Node Results:								
 Node	Demand	Head	Pressure	Quality				
ID	LPS	m	m					
2	0.00	19.28	19.28	0.00				
3	1.00	19.03	19.03	0.00				
4	1.00	19.03	19.03	0.00				
5	1.00	18.99	18.99	0.00				
6	-3.00	0.00	0.00	0.00	Reservoir			
Link Results:								
 Link	Flow	VelocityU	nit Headlos	ss Sta	tus			
ID	LPS	m/s	m/km					
1	1.50	0.12	0.25	Open				
2	0.50	0.04	0.03	Open				
3	1.50	0.12	0.25	Open				
4	0.50	0.04	0.03	Open				
5	0.00	0.00	0.00	Open				
7	3.00	0.00	-19.28	_	Pump			

Figure 10: EPA-NET Summary Report, Simulation #2

REVISION A . Page 17 of 19 $\,$

Page 1					2010 2:29:		
******	*******	******** E P A N		******	*******	**** *	
*	Hydra	17		· *			
* Hydraulic and Water Quality * Analysis for Pipe Networks							
*	illarj	Version 2				>	
**************************************		******	******	******	*******	***	
Link	 Start	End		 Length	 Diameter		
ID	Node	Node		m	mm		
1	2	3		1000	124		
2	3	5		1000	124		
3	2	4		1000	124		
4	4	5		1000	124		
5	3	4		1400	124		
7	6	2		#N/A	#N/A	Pumj	
ode Results:							
Node	Demand	Head	Pressure	Quality			
ID	LPS	m	m				
2	0.00	17.12	17.12	0.00			
3	2.00	16.16	16.16	0.00			
4	2.00	16.16	16.16	0.00			
5	2.00			0.00			
6 ink Results:	-6.00	0.00	0.00	0.00	Reservoir	•	
Link	Flow	VelocityU	nit Headlos	s Stat	 tus		
ID	LPS	m/s	m/km				
1	3.00	0.25	0.96	Open			
2	1.00	0.08	0.12	Open			
3	3.00	0.25	0.96	Open			
4	1.00	0.08	0.12	Open			
5	0.00	0.00	0.00	Open			
7	6.00	0.00	-17.12	_	Pump		

Figure 11: EPA-NET Summary Report, Simulation #3

REVISION A . Page 18 of 19

Page 1				10/4/20	010 2:29:46 PM		
*******	*********	*******	******	******	******		
*		ΕΡΑΝ			*		
*	Hydraulic and Water Quality						
*	a_j = = = = = = = = = = = = = = = = = = =						
*		Version 2			*		
	*********	*******	********	******	******		
-	SIMULATION 3						
Link - Node Ta	ple:						
Link	Start	End		Length	Diameter		
ID	Node	Node		m	mm		
1	2	3		1000	124		
2	3	5		1000	124		
3	2	4		1000	124		
4	4	5		1000	124		
5	3	4		1400	124		
7	6	2		#N/A	#N/A Pump		
Node Results:					•		
Node	Demand	Head	Pressure	Quality			
ID	LPS	m	m				
2	0.00	13.52	13.52	0.00			
3	3.00	11.40	11.40	0.00			
4	3.00	11.40	11.40	0.00			
5	3.00	11.15	11.15	0.00			
6	-9.00	0.00	0.00	0.00	Reservoir		
Link Results:							
Link	Flow	VelocityU	nit Headlos	s Stat	tus		
ID	LPS	m/s	m/km				
1	4.50	0.37	2.12	Open			
2	1.50	0.12	0.25	Open			
3	4.50	0.37	2.12	Open			
4	1.50	0.12	0.25	Open			
5	0.00	0.00	0.00	Open			
7	9.00	0.00	-13.52	_	Pump		
				•	•		

Figure 12: EPA-NET Summary Report, Simulation #4

REVISION A . Page 19 of 19