北京大学信息学院期末试题

2013 -2014 学年第一学期

考试科目: <u>高等数学B(上)</u>	考试时间: 2013 年 12 月 30 日
姓 名:	学 号:

本试题共8 道大题,满分100 分

求极限(12分).

1.
$$\lim_{(x,y)\to(0,0)} \frac{e^x + e^y}{\cos x + \sin y}$$

1.
$$\lim_{(x,y)\to(0,0)} \frac{e^x + e^y}{\cos x + \sin y}$$
 2. $\lim_{n\to\infty} n^3 \ln(1 + \frac{1}{n})(1 - \cos\frac{1}{n})$. 3. $\lim_{x\to 0+0} (\sin x)^{\tan x}$.

二 求积分(共18分).

$$1. \int_0^1 \ln(1+\sqrt{x})dx$$

1.
$$\int_0^1 \ln(1+\sqrt{x})dx$$
. 2. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x - \cos^3 x} dx$. 3. $\int \frac{x}{x^4 + 2x^2 + 2} dx$.

3.
$$\int \frac{x}{x^4 + 2x^2 + 2} dx$$

 Ξ (共8分)一段曲线的极坐标方程为 $r = 2(1 + \cos \theta)$, $0 \le \theta \le \pi$, 求它的弧长.

四 求偏导数或微分(10分).

1.
$$z = x + (y^2 - 1) \arcsin \sqrt{\frac{y}{x}}, \ \ \frac{\partial z}{\partial x} \Big|_{(1,1)}$$
.

2.
$$z = \sqrt{xy + \frac{x}{y}}, \ \Re dz|_{(2,1)}.$$

五 (18分) 1. 求点
$$P(3,-1,2)$$
 到直线
$$\begin{cases} x+y-z+1=0 \\ 2x-y+z-4=0 \end{cases}$$
 的距离.

2. 设一平面经过原点及 (6, -3, 2), 且与平面 4x - y + 2z = 8 垂直, 求该平面的方程。

六 (共12分)设 $f(x) = \ln(x^2 + 1)$, 求 f(x) 在 x = 0 点的带 Peano 余项的泰勒公式,并求 $f^{(n)}(0)$.

七 (共12分) 定义 \mathbb{R}^2 上的函数: $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$. 讨论函数 f(x,y) 在 原点处的连续性和可微性, 以及原点处方向导数的存在性

八 (10分) 设 f(x) 在 $[0,\pi]$ 上连续,且 $\int_0^\pi f(x)dx = 0$, $\int_0^\pi f(x)\cos x dx = 0$. 证明在 $(0,\pi)$ 内存在两点 c_1, c_2 , 使得 $f(c_1) = f(c_2) = 0$.