Lecture 2

Brennan Becerra

2024-01-11

Data Input

1.

```
>x <- c(1,2,3,4,5)
>x <- scan()
1:1
2:2
3:3
4:4
5:5
6:
>
Codeblock 1 (language-r )

2.

>x <- scan(file="path //datafilename")
```

- To read text-formatted data file
- 3. R Dataframe

Codeblock 2 (language-r)

```
>c1 <- c(1,2,3,4)
>c2 <- c(0.1,0.2,0.3,0.6)
>D1 <- data.frame(c1,c2)
>D1
Codeblock 3 (language-r)
```

General Definitions and Examples

Estimation

 $100 * (1 - \alpha)\%$ confidence interval for unknown θ . Test of Hypothesis: Have a claim about unknown θ .

 H_0 : Null Hypothesis

 H_1 : Alternative Hypothesis

$$egin{cases} H_0: heta = heta_0 \ H_1: heta
eq heta_0 \ ext{ or } egin{cases} H_0: heta \geq heta_0 \ H_1: heta < heta_0 \end{cases}$$

Ex1. θ = Average Height of BSU students.

• θ = Average height of BSU students is larger than 5.6 ft.

 $H_0: heta \leq 5.6$

 $H_1: heta > 5.6$

Ex2. θ = Average Height of BSU students.

• θ = Average height of BSU students is less than 5.6 ft.

 $H_0: heta \geq 5.6$

 $H_1: heta < 5.6$

Ex3. θ = Average Height of BSU students.

• $\theta = \text{Average height of BSU students is 5.6 ft.}$

 $H_0: heta
eq 5.6$

 $H_1: heta=5.6$

Recap of steps:

1. Test of Hypothesis: Have a claim about unknown θ .

 H_0 : Null Hypothesis

 H_1 : Alternative Hypothesis

- 2. Select Significant Level, I.E. the value of α , in $100 * (1 \alpha)\%$.
- 3. Under the assumption that H_0 is true, calculate *Test Statistic*(TS).

Test Statistic

- 1. A random variable
- 2. Has a probability distribution
- 4. Based on α and TS, and type of $\underbrace{H_1}_{\neq,<,>}$, most statistical programs yield a "pvalue," p.
- 5. Decision: If $p < \alpha$, then REJECT H_0 .

Population

A collection of individuals or objects, that are of interest in quantitative study.

Sample

We can define a (random) *sample* to be a subset of the population of interest.

Parameter

We can define a *parameter* as a fixed number giving descriptive characteristics to an entire *population*.

TRUTH (or Nature)

	H_1 is true	H_0 is true
H_0 is True	Correct	Type II Error $P(H_0 ext{ is true when } H_1 ext{ True}) = \beta$
H_1 is True	Type I Error $= P(H_1 \text{ is True when } H_0 \text{ is true})$ $= \alpha$	Correct

Fix α to minimize β .

Read Chapter 3 before next Tuesday.