Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Ορολογία και αναπαραστάσεις γράφων

The metropolitan area of Milan, Italy at night. Astronaut photograph ISS026-E-28829, 2011. U.S. government image. NASA-JSC.

Γράφοι

- \Box Ένας γράφος είναι ένα ζεύγος (V, E), όπου
 - το V είναι ένα σύνολο κόμβων, που ονομάζονται κορυφές (vertices)
 - το E είναι μία συλλογή ζευγών κορυφών, που ονομάζονται ακμές (edges)
 - Οι κορυφές και οι ακμές είναι οι θέσεις στις οποίες αποθηκεύονται στοιχεία
- Παράδειγμα:
 - Μία κορυφή αναπαριστά ένα αεροδρόμιο και αποθηκεύει έναν κωδικό αεροδρομίου τριών-γραμμάτων
 - Μία ακμή αναπαριστά μία αεροπορική γραμμή μεταξύ δύο αεροδρομίων και αποθηκεύει την απόσταση μεταξύ τους.

Τύποι ακμών

- Κατευθυνόμενη ακμή
 - διατεταγμένο ζεύγος κορυφών (u,v)
 - \blacksquare η πρώτη κορυφή u είναι η αφετηρία
 - η δεύτερη κορυφή ν είναι ο προορισμός
 - π.χ. μία πτήση
- Μη κατευθυνόμενη ακμή
 - μη διατεταγμένο ζεύγος κορυφών (u,v)
 - π.χ. μία αεροπορική γραμμή
- Κατευθυνόμενος γράφος
 - όλες οι ακμές είναι κατευθυνόμενες
 - π.χ. δίκτυο διαδρομών
- Μη κατευθυνόμενος γράφος
 - όλες οι ακμές είναι μη κατευθυνόμενες
 - π.χ. δίκτυο πτήσεων

Εφαρμογές

- Ηλεκτρονικά κυκλώματα
 - Πλακέτες τυπωμένων κυκλωμάτων
 - Ολοκληρωμένα κυκλώματα
- Δίκτυα μεταφοράς
 - Οδικό δίκτυο
 - Δίκτυο πτήσεων
- Δίκτυα υπολογιστών
 - Τοπικά δίκτυα
 - Διαδίκτυο
 - Ιστός
- Βάσεις Δεδομένων
 - Μοντέλο Οντοτήτων-Συσχετίσεων

Ορολογία

- Τελικές κορυφές (ή τελικά σημεία)μίας ακμής
 - η U και η V είναι οι τελικές κορυφές της ακμής a
- Ακμές εφαπτόμενες σε κορυφή
 - οι a, d, και η b εφάπτονται στη V
- Γειτονικές κορυφές
 - η U και η V είναι γειτονικές
- Βαθμός μίας κορυφής
 - η X έχει βαθμό 5
- Παράλληλες ακμές
 - η h και η i είναι παράλληλες ακμές
- Self-loop
 - η j είναι self-loop

Ορολογία (συνέχεια)

Διαδρομή

- σειρά από εναλλασσόμενες κορυφές και ακμές
- ξεκινάει με μια κορυφή
- τελειώνει με μια κορυφή
- κάθε ακμή εφάπτεται στην προηγούμενη και την επόμενη κορυφή
- Απλή διαδρομή
 - διαδρομή όπου όλες οι ακμές και οι κορυφές είναι διακριτές
- Παραδείγματα
 - η P₁=(V,b,X,h,Z) είναι απλή διαδρομή
 - η P₂=(U,c,W,e,X,g,Y,f,W,d,V) δεν είναι απλή διαδρομή

Ορολογία (συνέχεια)

Κύκλος

- κυκλική σειρά από εναλλασσόμενες κορυφές και ακμές
- κάθε ακμή εφάπτεται στην προηγούμενη και την επόμενη κορυφή
- Απλός κύκλος
 - διαδρομή όπου όλες οι ακμές και οι κορυφές είναι διακριτές
- Παραδείγματα
 - o C₁=(V,b,X,g,Y,f,W,c,U,a,↓) εἰναι απλός κὑκλος
 - o C_2 =(U,c,W,e,X,g,Y,f,W,d,V,a, \bot) δεν είναι απλός κὑκλος

Ιδιότητες

Ιδιότητα 1

 $\Sigma_{v} \deg(v) = 2m$

Απόδειξη: κάθε κορυφή μετράται 2 φορές

Ιδιότητα 2

Σε έναν μη κατευθυνόμενο γράφο χωρίς self-loops και χωρίς παράλληλες ακμές

 $m \le n (n-1)/2$

Απόδειξη: κάθε κορυφή έχει βαθμό το πολύ (n-1)

Ποιο είναι το όριο για κατευθυνόμενο γράφο?

Συμβολισμός

m

αριθμός κορυφών

αριθμός ακμών

deg(v) βαθμός της κορυφής ν

Παράδειγμα

$$n=4$$

$$m=6$$

$$\bullet \deg(v) = 3$$

Κορυφές και ακμές

- Ένας γράφος είναι μία συλλογή από κορυφές και ακμές.
- Μία κορυφή μπορεί να είναι αφηρημένο αντικείμενο με ή χωρίς ένδειξη (π.χ. με έναν κωδικό αεροδρομίου ή έναν ακέραιο) ή μπορεί να αποθηκεύει άλλα αντικείμενα.
- Μία ακμή ομοίως μπορεί να είναι αφηρημένο αντικείμενο με ή χωρίς ένδειξη (π.χ. ένας αριθμός πτήσης, μια απόσταση, ένα κόστος) ή μπορεί επίσης να αποθηκεύει άλλα αντικείμενα.

Πράξεις σε γράφους

- Επιστροφή του αριθμού, η, των κορυφών του G.
- Επιστροφή του αριθμού, **m**, των ακμών του **G**.
- Επιστροφή του συνόλου ή της λίστας που περιέχει και τις η κορυφές του G.
- □ Επιστροφή του συνόλου ή της λίστας που περιέχει τις **m** ακμές του **G**.
- Επιστροφή κάποιας κορυφής, ν, του G.
- Επιστροφή του βαθμού, deg(v), μιας δεδομένης κορυφής, v, του G.
- Επιστροφή του συνόλου ή της λίστας που περιέχει όλες τις ακμές που εφάπτονται σε μια δεδομένη κορυφή, ν, του G.
- Επιστροφή του συνόλου ή της λίστας που περιέχει όλες τις κορυφές που γειτνιάζουν με μια συγκεκριμένη κορυφή, **v**, του **G**.
- Επιστροφή των δύο τελικών κορυφών μιας ακμής, e, του G. Αν η ακμή e είναι κατευθυνόμενη, η σειρά εμφάνισης των κορυφών δείχνει την αφετηρία και τον προορισμό του e.
- Επιστροφή του εάν δύο κορυφές, ν και w του G, γειτνιάζουν.

Πράξεις σε γράφους (συνέχεια)

- Υπόδειξη αν μια δεδομένη ακμή, e, είναι κατευθυνόμενη στον G.
- Επιστροφή του βαθμού εισόδου του v, inDegree(v).
- □ Επιστροφή του συνόλου ή της λίστας που περιέχει όλες τις εισερχόμενες (ή εξερχόμενες) ακμές που εφάπτονται σε μια δεδομένη κορυφή, **v**, του **G**.
- Επιστροφή του συνόλου ή της λίστας που περιέχει όλες τις κορυφές που γειτνιάζουν με μια δεδομένη κορυφή, **v**, μαζί με τις εισερχόμενες (ή εξερχόμενες) ακμές του **G**.
- Εισαγωγή νέας κατευθυνόμενης (ή μη κατευθυνόμενης) ακμής, **e**, μεταξύ δύο κορυφών, **v** και **w**, του **G**.
- Εισαγωγή νέας (απομονωμένης) κορυφής, **ν**, στον **G**.
- Αφαίρεση ακμής, e, από τον G.
- Αφαίρεση κορυφής, ν και όλων των ακμών που εφάπτονται σ' αυτή απ' τον
 G.

Λίστα ακμών (δομή)

- Αντικείμενο κορυφή
 - στοιχείο
 - αναφορά σε θέση στην ακολουθία κορυφών
- Αντικείμενο ακμή
 - στοιχείο
 - αντικείμενο κορυφή αφετηρίας
 - αντικείμενο κορυφή προορισμού
 - αναφορά σε θέση στην ακολουθία ακμών
- Ακολουθία κορυφών
 - ακολουθία από αντικείμενα κορυφών
- Ακολουθία ακμών
 - ακολουθία από αντικείμενα ακμών

Λίστας γειτνίασης (δομή)

- Ακολουθία ακμών που εφάπτονται σε κάθε κορυφή
 - ακολουθία αναφορών σε αντικείμενα ακμών για τις ακμές που εφάπτονται στην κορυφή

Δομή πίνακα γειτνίασης

- Δομή λίστας ακμών
- Επαυξημένα αντικείμενα κορυφών
 - Ακέραιο κλειδί (δείκτης) για την κορυφή
- 2D πίνακας γειτνίασης
 - Αναφορά στο αντικείμενο ακμής για γειτνιάζοντες κορυφές
 - Null για μη γειτνιάζουσες κορυφές
- Η "παλιομοδίτικη" ἐκδοσή
 ἐχει μόνο 0 για μη ὑπαρξη
 ακμής και 1 για ὑπαρξη.

		0	1	2	3
u	→ 0		e	g	
v	→ 1	e		f	
w	→ 2	g	f		h
z	→ 3			h	

Απόδοση (Όλα το όρια είναι big-oh χρόνοι)

 n κορυφές, m ακμές χωρίς παράλληλες ακμές χωρίς self-loops 	Λίστα ακμών	Λίστα γειτνίασης	Πίνακας γειτνίασης
Χώρος	n+m	n + m	n^2
incidentEdges(v)	m	deg(v)	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	n^2
removeEdge(e)	1	1	1