ANN HW4 Image Generation with GAN

1. 四组实验中,batch_size=64 , num_training_steps=5000.

latent_dim, hidden_dim的设置以及与相应曲线的对应关系如图所示。

- latent_dim-100_hidden_dim-100
- latent_dim-16_hidden_dim-100
- latent_dim-100_hidden_dim-16
- latent_dim-16_hidden_dim-16

Discriminator_loss

Generator_loss

latent_dim = 16, hidden_dim = 16;

latent_dim = 16, hidden_dim = 100;

latent_dim = 100, hidden_dim = 16;

latent_dim = 100, hidden_dim = 100;

2. FID Score

(Latent_dim, hidden_dim)	(100,100)	(16,100)	(100,16)	(16,16)
FID Score	45.34	76.25	80.89	87.1

Best model: (Latent_dim, hidden_dim)=(100, 100).

- 3. 由上述四组实验可以看到,无论是提高latent_dim,还是提高hidden_dim,都能够降低FID Score。个人认为,原因是latent_dim和hidden_dim都与生成图片过程中的通道数相关,通道数越多,模型更有可能学习到real images的分布(至少不会劣于通道数较少的情况,因为可以让新增的通道不起作用,始终为0)。
- 4. 4个GAN均未收敛到纳什均衡: Discriminator "强于" Generator。
 - 1. 当训练进行到接近5000steps时,D_x 接近1,D_G_z1 & D_G_z2 接近0,Discriminator能以很高的准

确率分辨real/fake images;若达到均衡, D_x , D_G_z1 , D_G_z2 应当均接近0.5;

- 2. Discriminator_loss 较初始值有所降低,而 Generator_loss 较初始值有所升高,也可以看出二者 没有达到均衡,Generator生成的图片不能欺骗Discriminator。
- 5. 对latent representation做插值法

使用命令 python main.py --interpolation 即可得到结果。

1. 实验结果

2. 实验分析

每张图像中,左上角(第1张)图像由 z_1 生成,右下角(第12张)图像由 z_2 生成;中间的10张图像由插值法 $z_i=z_1+\frac{i}{11}(z_2-z_1)$ 生成。可以看到,插值法得到的latent representation生成的图像介于上下界生成的图像之间,且越靠近上(下)界的interpolation latent representation,生成的图像越接近上(下)界生成的图像。

6. Mode_collapse

使用命令 python main.py --mode_collapse 即可得到结果。

1. 实验结果

基于Best model生成,参数设置为

batch_size=64 , num_training_steps=5000 , latent_dim=hidden_dim=100 .

	0	1	2	3	4	5	6	7	8	9
频数	11	4	0	3	0	1	9	12	7	3

MNIST数据集的分布比较均匀,训练集中每个数字出现的频数都在6000上下;而生成结果中0、6、7、8的频率明显高于其他数字,存在mode_collapse。

7. GAN with an MLP-based generator and discriminator

使用命令 python main.py --do_train --use_mlp --latent_dim 100 即可得到结果。

1. 实验结果

FID Score: 140.168

2. 结果分析

相比于CNN-based GAN,MLP-based GAN生成的结果更加模糊,边界不够清晰。个人认为原因在于CNN-based GAN的卷积核可以捕捉到边界信息,而MLP-based GAN接触到的是被展开成一维向量的图像,丢失了一部分边界信息,因此生成的结果不具有清晰的边界。