REGULARIZATION & GENERALIZED LINEAR MODEL

Towards Work And Life Balance Organizational Behavior

- 01 전통적 회귀분석의 과제
- 02 제약식에 의한 회귀계수의 조정
 - Ridge
 - LASSO
 - Elastic Net

REGULARIZATIO

01Regularization전통적 회귀 분석의 과제

• 다항 회귀 모형 : $y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \dots + \beta_p X_1^p$

주어진 데이터에 적합한 함수를 추정해보자!

계수	p=1	p=3	p=5	p=7	p=9
βο	0.975251	-0.12568	0.296001	-0.36812	5.906723
β_1	-1.98201	12.27827	-1.60235	28.4562	-306.064
β_2		-36.2189	63.53375	-289.686	4857.43
β_3		24.15899	-246.735	1494.172	-34459.8
β4			309.7399	-3961.34	132901.4
β_5			-125.887	5370.273	-302706
β6				-3549.17	417736
β_7				906.729	-342516
β_8					153250.7
β_9					-28762.9
MSE	0.2141	0.0166	0.0200	0.0075	0.0

Regularization전통적 회귀 분석의 과제

입력 변수의 차수가 높아지면,

 훈련 자료에의 적합도는 높아지지만, 추정된 함수의 변동성이 커지게 되어 평가자료에 측정한 모형 성능이 매우 저하되는 현상이 나타난다!

반대로 낮은 차수의 함수를 사용하면,

- 변동성을 줄일 수 있지만 모형의 왜곡도가 높아지는 상충효과가 나타난다.

- → '편의-분산 딜레마'
- → 따라서 회귀 계수들을 제한하여 분산을 제어하려는 것이 Regularized Regression의 기본 아이디어!

02 Regularization 제약식에 의한 회귀 계수의 조정

회귀 계수가 가질 수 있는 값의 범위를 제한하는 Regularized Regression 기법들 중에서 가장 많이 사용 → Ridge, LASSO, Elastic Net 회귀분석

1) Ridge Regression : 제약식을 부가하여 회귀 계수 조정

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_i z_i)^2$$
, s.t. $\sum_{j=1}^{p} \beta_j^2 \le t$

$$Min \ PRSS(\beta)_{L_2} = \sum_{i=1}^{n} (y_i - \beta_i z_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Regularization

02 제약식에 의한 회귀 계수의 조정

Ridge 회귀분석을 이용한 다항 회귀 10개의 데이터에 대하여 5차 다항 회귀식을 이용한 함수적합을 해보았다.

($\lambda = 0.0.005, 0.1, 0.5, 1.10$ 사용)

λ =0인 경우 기존과 동일 하므로 5차 다항식의 변동성이 상당히 큼. 하지만 λ가 커짐에 따라 변동성이 축소되고 있으며 λ =10이 되면 평균값으로 접근하였음을 알 수 있음. → 이러한 현상은 λ 가 페널티의 양을 조절하였기 때문 (회귀계수 수축) $\lambda = 10$ 에서는 $\lambda \rightarrow \infty$ 가 되어도 회귀계수들이 0이 되지 않는다!

λ 에 따른 Ridge 회귀분석 결과의 변화

Regularization 제약식에 의한 회귀 계수의 조정

- LASSO
- Ridge: 회귀계수의 제곱합을 제약식으로 사용
- LASSO : 회귀계수의 절대값의 합을 제약식으로 사용

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_i z_i)^2, \quad s.t. \sum_{j=1}^{p} |\beta_j| \le t$$

$$\min PRSS(\beta)_{L_1} = \sum_{i=1}^{n} (y_i - \beta_i z_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

λ 는 Ridge 회귀에서와 마찬가지로 페널티 양을 조정하는 역할 But,

 $\lambda \to \infty$ 이면 Ridge와 달리 완벽한 평균 모형이 된다. (LASSO가 필요에 따라 회귀계수의 일부를 정확히 0으로 만들어 주기 때문) →LASSO는 변수 선택의 기능이 있다!

Regularization 제약식에 의한 회귀 계수의 조정

Ridge vs. LASSO

- 회귀 계수 추정의 목적함수를 제약하는 패널티 항을 부가 > 분산 축소 효과
- 예측 성능에서는 큰 차이가 없다.
- Ridge Regression :

회귀계수들이 0이 되지는 않는다.

다중공선성이 존재할 때, 상관관계에 있는 변수들은 유사한 크기의 계수를 갖는다.

- → 그룹 선정 : 동일 변수들의 영향력은 1/k
- LASSO Regression

회귀계수들이 0이 될 수 있다.

상관관계에 있는 변수들 중에서 임의로 하나만 선택되고 나머지 계수들은 0이 된다.

→ 변수 선택 : 해석이 유리하다.

Regularization **02** Regularization 제약식에 의한 회귀 계수의 조정

- * Elastic Net
- : Ridge와 LASSO 모형을 합친 것

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{\beta}) + \lambda (\alpha \|\boldsymbol{\beta}\|_2^2 + (1 - \alpha) \|\boldsymbol{\beta}\|_1)$$

- λ & α 두가지 파라미터를 사용해서 해 찾기가 복잡해진다!

02 Regularization SUMMARY

Summary :

- 01 GLM의 필요성
 - GLM은 왜 필요한가..
- 02 GLM의 구성요소
 - Random Component
 - Systematic Component
 - Link Fucntion
- 03 포아송 회귀 모형
- 04 로지스틱 회귀모형

G I M

Generalized Linear Model 일반화 선형모형(GLM)의 필요성

- 회귀분석, 분산분석 등 선형모형 → 종속변수가 정규분포 되어 있는 연속형 변수
- 그렇지 않은 경우,
 - 종속변수가 범주형 변수인 경우

: 이항변수(합격, 불합격)인 경우나, 다형변수 (공화당/민주당/무소속 등)인 경우

- 종속변수가 COUNT인 경우

(ex. 한 주간 교통사고 발생건수, 하루에 마시는 물이 몇 잔인지)

- 확률 값을 예측 하는게 의미 있는데, 확률 값은 0과 1 사이에 존재하므로 종속변수 값의 범위가 제한이 됨.

이런 경우에서는 선형모형이 적절하지 않다! 대안 모형이 필요! GLM (일반화 선형 모형)

Generalized Linear Model GLM의 구성요소

$$\varphi(\mu) = X\beta$$

1. Random Component(임의 요소)

: 종속변수 Y의 분포를 대변한다. 이항분포, 포아송, 감마, 정규분포 등

2. Systematic Component(시스템 요소)

: 독립변수의 선형결합 부분

3. Link Function(연결 함수)

: 반응변수 Y와 시스템 요소를 연결하는 함수

Generalized Linear Model 01 GLM의 구성요소

GLM은 연결함수에 따라 회귀모형이 달라진다.

종속변수

- 이진형, 범주형 또는 서수형 변수 → 로지스틱 회귀 모형
- 개수(COUNT)

→ 포아송 회귀 모형

연결함수	회귀 모형	비고
Identity Link	$\varphi(\mu) = \mu = X\beta$	전통적 회귀모형
Log Link	$\varphi(\mu) = \log(\mu) = X\beta$	Poisson 회귀
Logit Link	$\varphi(\mu) = log \frac{\mu}{1-\mu} = X\beta \implies \mu = \frac{e^{X\beta}}{1+e^{X\beta}}$	
Probit Link	$\varphi(\mu) = \Phi^{-1}(\mu) = X\beta, \ \Phi^{-1} \sim N(0,1)$	Logistic 회귀
Complementary	$\varphi(\mu) = log(-log(1 - \mu)) = X\beta \implies \mu = 1 - exp(-e^{X\beta})$	

Generalized Linear Model 포아송회귀Poisson Regression

포아송 회귀

: 종속 변수 Y가 도수(COUNT)인 경우에 적용되는 일반화 선형 모형

$$\log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

02 포아송 회귀Poisson Regression

예시) 호주의 2002년의 당뇨병 사망 자료

표 1. 당뇨병 사망 자료 (파일명: diabetes.csv)

gender	age	deaths	popn	l_popn	agemidpt
Male	<25	3	1141100	13.9475	20
Male	25-34	0	485571	13.09308	30
Male	35-44	12	504312	13.13095	40
Male	45-54	25	447315	13.01102	50
Male	55-64	61	330902	12.70958	60
Male	65-74	130	226403	12.33007	70
Male	75-84	192	130527	11,77934	80
Male	85+	102	29785	10.30176	90
Female	<25	2	1086408	13.89839	20
Female	25-34	1	489948	13.10205	30
Female	35-44	3	504030	13.13039	40
Female	45-54	11	445763	13.00754	50
Female	55-64	30	323669	12.68748	60
Female	65-74	63	241488	12.39458	70
Female	75-84	174	179686	12.09897	80
Female	85+	159	67203	11.11547	90

deaths(사망자수)은 종속변수 Y

gender(성)은 설명변수 X1

age(연령) 은 설명변수 X2

성*나이의 조합마다 popn(인구) s가 붙어있다.

L popn은 popn의 로그

Generalized Linear Model 포아송 회귀Poisson Regression

Y가 도수이고, s에 비례하여 커지는 경향이 있을 것이므로 Y의 평균을 다음과 같이 모형화

 $Y \sim \text{Poisson}(\mu)$, 즉 평균 μ 인 포아송 분포를 따르며 $^{(3)}$

 $\log_{\epsilon} \frac{\mu}{s}$ 가 성 효과와 연령 효과의 선형결합으로 표현된다.

따라서 모형식을 아래와 같이 쓸 수 있다.

$$\log_e \mu = \log_e s +$$
 절편 + 성효과 + 연령효과

Generalized Linear Model 로지스틱 회귀Logistic Regression 모형

로지스틱 회귀는

- → 결과가 범주형일 때 사용! ex. 학생이 문제를 맞을 것인지 틀릴 것인지, 내일 비가 올지 안 올지, 과목의 학점이 A인지 B인지 C인지)
- → 로지스틱 회귀는 종속변수가 <u>이항분포 (B n, p)</u>를 따른다고 가정하므로, p = P(Y = 1|x) 인데, 베르누이 시행에 입력벡터 X가 주어졌을 때 \

성공할 확률을 의미

적용사례:

- 부도예측, 신용평가, 고객이탈예측, 목표고객 선정
- 정당 지지여부, 질병 진단

03 로지스틱 회귀Logistic Regression 모형

로지스틱 회귀 = GLM에서 Logit 연결함수를 사용한 것으로 표현.

$$\eta = \log \frac{P(Y=1|X_1, \dots, X_p)}{1 - p(Y=1|X_1, \dots, X_p)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

추정하고자하는 종속변수는 성공확률을 나타내므로 0과 1 사이에 있다. → 선형회귀 불가능

03 로지스틱 회귀Logistic Regression 모형

선형회귀가 불가능하기 때문에, 직접 성공확률을 예측하지 않고 오즈Odds를 이용한다.

- 1. Odds, 성공확률과 실패확률의 비를 예측한다.
- 2. Odds는 0과 무한대 사이의 값을 갖게 된다.
- 3. 비선형인 확률값을 선형으로 만들기 위해 자연 로그를 취한다!

$$0 \le Odds = \frac{\text{성공확률}}{\text{실패확률}} = \frac{P(Y=1|x)}{1-P(Y=1|x)} \le \infty$$
$$-\infty \le \log(Odds) = Log \frac{P(Y=1|x)}{1-P(Y=1|x)} \le \infty$$

로그를 취하면 모든 범위의 값을 취하게 하여 선형 회귀 모형의 적용이 가능하도록 한다!

03 로지스틱 회귀Logistic Regression 모형

※주의점※ - 회귀계수의 의미를 해석할 때

- 독립변수의 한 단위 증가가 조건부 확률의 선형적 증가를 가지고 오지 않는다!
- Log(오즈), 오즈와 조건부 확률의 관계를 다시한번 확인하자!

	로짓(Logits)	오즈(Odds)	조건부 확률
모형	$log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1$	$\frac{p_i}{1-p_i}=e^{\beta_0+\beta_1x_1}$	$p_i = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_0 x}}$
예	$\log(Odds) = -2 + 1.3x$	$0dds = e^{-2}e^{1.3x}$	$p = \frac{e^{-2+1.3x}}{1 + e^{-2+1.3x}}$
해석	X 값 한 단위 증가시 log(<i>Odds</i>)이 1.3 단위 증가	X 값 한 단위 증가 시 오즈(Odds)가 e ^{1.3} = 3.67 단위 증가	특정 x 값이 주어졌을 때 성공확률 $p(y = 1 x)$

03 로지스틱 회귀Logistic Regression 모형

- ※주의점※ 회귀계수의 의미를 해석할 때
- 독립변수 **X1의 한 단위**의 증가
 - = Log(오즈)의 **1.3단위** 증가 = 오즈가 **3.67배**(e^(1.3)=3.67) 증가

	로짓(Logits)	오즈(Odds)	조건부 확률
모형	$log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1$	$\frac{p_i}{1-p_i}=e^{\beta_0+\beta_1x_1}$	$p_i = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_0 x}}$
예	$\log(Odds) = -2 + 1.3x$	$0dds = e^{-2}e^{1.3s}$	$p = \frac{e^{-2+1.3x}}{1 + e^{-2+1.3x}}$
해석	X 값 한 단위 증가시 log(<i>Odds</i>)이 1.3 단위 증가	X 값 한 단위 증가 시 오즈(Odds)가 $e^{1.3}=3.67$ 단위 증가	특정 x 값이 주어졌을 때 성공확률 $p(y = 1 x)$

03 로지스틱 회귀Logistic Regression 모형

오즈(Odds)와 오즈비(Odds Ratio)의 확실한 구분이 필요해!

⇒ 오즈비는 독립변수 X가 한 단위 증가했을 때, 오즈의 변화율

$$OR = \frac{(p/(1-p))|_{X=x^{(2)}}}{(p/(1-p))|_{X=x^{(1)}}} :$$

IF
$$x \to x + 1$$
,
$$OR = \frac{exp(\beta_0 + \beta_1(x+1))}{exp(\beta_0 + \beta_1 x)} = e^{\beta_1}$$

Generalized Linear Model QUIZ-로지스틱 회귀식의 활용

심장병으로 10년 후 사망할 확률을 추정하기 위하여 100명의 연령, 성별 및 콜레스테롤 수치를 조사하여 다음과 같은 로지스틱 회귀식을 얻었다.

설명변수: $X_1 = 50$ 세 초과 연령; $X_2 = 0$ (남자), $\mathbf{1}$ (여자); $X_3 = 5.0$ 를 초과하는 콜레스테롤 수치

Risk of Death =
$$\frac{1}{1+e^{-z}}$$
,
where $z = -5.0 + 2.0X_1 - 1.0X_2 + 1.2X_3$

- 1) 50세 남성의 콜레스테롤 수치가 7.0일 경우 사망 확률을 구하라.
- 2) 콜레스테롤 수치가 한 단위 증가했을 때의 사망 확률과 오즈비를 구하라.

Generalized Linear Model QUIZ-로지스틱 회귀식의 활용

1) 50세 남성의 콜레스테롤 수치가 7.0일 경우 사망 확률을 구하라.

$$z = -5.0+2.0(50-50)-1.0(0)+1.2(7-5)=-2.6$$
 $\rightarrow 1/(1+exp(2.6))=0.069(7\%)$

2) 콜레스테롤 수치가 한 단위 증가했을 때의 사망 확률과 오즈비를 구하라.

$$z = -5.0+2.0(50-50)-1.0(0)+1.2(8-5)=-1.4$$

$$\rightarrow$$
 1/(1+exp(1.4))=0.1978(20%)

→ 따라서 사망위험이 3.32배 높아졌다는 표현은 가능해도 사망확률이 3.32로 높아진 것은 아니라는 점에 주의하자!

질문해주세요