	N.T	7. F 1
Comome	Nome:	Matricola:
Cognomic.		

Prova scritta di ASM - Modulo Analisi Esplorativa del 23.02.2017

 $La\ durata\ della\ prova\ \grave{e}\ di\ 60\ minuti.$

Si svolgano gli esercizi 1 e 2 riportando il risultato dove indicato.

Esercizio 1 (Punti: 7)

Decomposizione Spettrale e Analisi delle Componenti Principali

Data la matrice di varianze/covarianze $S = \left[\begin{array}{ccc} 4 & 3 & 1 \\ 3 & 9 & 2 \\ 1 & 2 & 1 \end{array} \right]$

- a. Riportare
 - varianza totale = \dots e generalizzata = \dots
 - l'indice di variabilità relativo (<u>arrotondare al secondo decimale</u>) =
- c. Determinare, arrotondando al secondo decimale, $S_{p \times p}^{1/2} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$
- d. Calcolare la correlazione tra la seconda colonna \tilde{x}_2 di \tilde{X}_p e i punteggi y_2 della seconda componente principale, arrotondando al secondo decimale.

 $= \dots \dots$

Distanze e Cluster Analysis

e.	Per una generica matrice di dati	$X_{n \times p}$, si riporti la	definizione di	distanza di I	Lagrange $d_{\infty}(u)$	(u_i, u_l) tra du	ue
	unità statistiche u_i' e u_l' .						
	$1 \times p$ $1 \times p$						

 $d_{\infty}(u_i, u_l) =$

f. Per una generica matrice di distanze $D_{n\times n}$ con elemento di posizione (i,l) pari a $d(u_i,u_l)$, si riporti la definizione di legame medio tra due gruppi G_1 e G_2 .

 $d(G_1,G_2)=$

Esercizio 2 (Punti: 6.5)

Si consideri il dataset crabs presente nella libreria MASS (per caricare la libreria si usi il comando library (MASS)), che contiene n = 200 unità statistiche (granchi Leptograpsus) relative alle seguenti 8 variabili:

- sp (specie: $B = blu \circ O = arancione$)
- sex (sesso: F = femmina o M = maschio)
- index (indice)
- FL (misura del lobo frontale in mm)
- RW (larghezza della parte posteriore in mm)
- CL (lunghezza del carapace in mm)
- CW (larghezza del carapace in mm)
- BD (profondità del corpo in mm)
- a. Si consideri la matrice $X_{200\times5}$ che contiene le seguenti variabili: FL, RW, CL, CW e BD. Per ciascuna unità statistica u_i' , si calcoli la distanza di Mahalanobis dal baricentro \bar{x}' e si riporti il numero di unità statistiche con distanza di Mahalanobis superiore a 3.33:

$$\sum_{i=1}^{n} I\{d_M(u_i, \bar{x}) > 3.33\} = \dots$$

[1] 12

b. Calcolare la matrice dei dati standardizzati $Z_{200\times 5}$. Sulla base di $Z_{200\times 5}$, calcolare la matrice delle distanze $D_{200\times 200}$ utilizzando la metrica di Lagrange, ed effettuare l'analisi dei cluster gerarchica utilizzando il legame completo, ricavandone 3 gruppi. Riportare i valori della tabella a doppia entrata che incrocia la classificazione ottenuta e la variabile sp.

```
## gruppi B 0
## 1 21 9
## 2 62 43
## 3 17 48
```

	Specie		
	В	О	
Gruppo 1			
Gruppo 2			
Gruppo 3			

- c. Calcolare, arrotondando al secondo decimale, il valore medio della silhouette per i tre gruppi individuati al punto b. (utilizzando il comando silhouette presente nella libreria cluster).
- ## Loading required package: cluster
- ## 1 2 3 ## 0.62 0.31 0.40

	Valore medio della Silhouette
Gruppo 1	valore medie della simodette
Gruppo 2	
Gruppo 3	