hw Qviz 67 + 14 = **** 92

Name: Sylvia Le

Course: COM219

Homework 4

Question 1

Let memory access time = t, h_i = hit ratio

Cache L2 access time = 0.2 t

Cache L1 access time = 0.1t

During memory reference, L1 is searched, if fail the L2 is searched. If both L1 and L2 fail then main memory will be searched

Average access time will include success in cache L1, failure in L1 but success in L2, failure in L1 and 2 but success in memory

Average access time = $h_1 \times 0.1t + (1 - h_1) \times h_2 \times 0.2t + (1 - h_1)(1 - h_2) \times 1 \times t$ = $0.8 \times 0.1t + 0.2 \times 0.9 \times 0.2t + 0.2 \times 0.1 \times 1 \times t$ Sylvia, you are using a different formula. Tc=c+(1-h)m 17/20

Ratio of main memory access time to system of two cache memory = t/0.136t = 7.35

The memory access time is about 7.35 times slower without the cache system described above

Question 2

Type Total effective disk size		Per TB cost of usable	Fault tolerance	
		(effective) data storage		
RAID 0	Data is distributed over	Cost of 12 drives = 100 x 12 =	Data is distributed	
	every drives	\$1200	Can't lose any disk	
	Effective disk size = 12x8 =	Per TB cost = 1200/96 = \$12.5	Fault tolerance = 0	
	96 TB			
RAID 1	Exact copy on all drives	Cost of 12 drives = 100 x 12 =	Every drive keep the	
	Effective disk size = 8 TB	\$1200	same copies	
		Per TB cost = 1200/8 = \$150		

			Can lose up to 11
			drives
			Fault tolerance = 11
RAID 1+0	Two groups of RAID 1 that	Cost of 12 drives = 100 x 12 =	Every drive in RAID 1
	together make up RAID 0	\$1200	keep the same copies
	Each RAID 1 group has 12/2	Per TB cost = 1200/16 = \$75	Each child can lose up
	= 6 drives	·	to 6-1 = 5 drives
	Each RAID 1 group capacity		Fault tolerance = 5x2
	= 8 TB (as explained above)		= 18 (
	Effective disk size = 8 + 8 =		
	16 TB		
RAID 100	Two groups of RAID 1+0	Cost of 12 drives = 100 x 12 =	Every drive in RAID 1
	that together make up	\$1200	keep the same copies
	RAID 0	Per TB cost = 1200/32 = \$37.5	Each child can lose up
	Each RAID 1+0 group has		to 3-1 = 2 drives
	12/2 = 6 drives		Fault tolerance = 2x2
	Each RAID 1 group has 6/2		=4/
	= 3 drives		,
	Each RAID 1 group capacity		
	= 8 TB (as explained above)		
	Each RAID 1+0 group		
	capacity = 8 + 8 = 16 TB		
	Effective disk size: 16+16 =		
	32 TB		
RAID 5	Data is distributed but one	Cost of 12 drives = 100 x 12 =	One drive added for
	drive is used for parity	\$1200	parity, but parity is
	Effective disk size:	Per TB cost = 1200/88 = \$13.63	distributed
	(12-1)x8 = 88 TB		Fault tolerance = 1
RAID 6	Data is distributed but two	Cost of 12 drives = 100 x 12 =	Two drive added for
	drive is used for parity	\$1200	parity, but parity is
	Effective disk size:	Per TB cost = 1200/80 = \$15	distributed
	(12-2)x8 = 80 TB		Each child ault
			tolerance = 2 (the

			course note)
RAID 6+0	Two groups of RAID 6 that	Cost of 12 drives = 100 x 12 =	Each RAID 6 group has
	together make up RAID 0	\$1200	fault tolerance = 2
	Each RAID 6 group has 12/2	Per TB cost = 1200/64 = \$18.75	(the course note)
	= 6 drives		Fault tolerance = 2
	Each RAID 6 group capacity		
	= (6-2)x8 = 32 TB (two		
	drives for parity)		
	Effective disk size = 32 + 32		
	= 64 TB		
1	I		

18/20

Question 3

Truth table:

x	У	z	w	Out
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

a) The Boolean expression: consider the rows that has the output 1 (in red)

 $\mathbf{f} = xy'z'w' + xy'zw' + xyz'w' + xyzw'$

b) The circuit for part (a):

4/4

c) Simplification of part (a) f

Question 4

- i) Truth tables
- For part a: $\mathbf{f} = xy'z + xyz' + x'y' + xz'$. Rows with output = 1 are
 - + Rows that has the value of x, y, z of 101 or 110
 - + Rows that has the value of x, y, z of 00° or 1° 0 (* means it can be either value)

x	У	z	Out	Check
0	0	0	1	1
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

- For part b: $\mathbf{f} = x'yz + y'z'w + x'(y'z' + y'zw') + y'zw = x'yz + y'z'w + x'y'z' + x'y'zw' + y'zw$ Rows with output = 1 are:
 - + Rows that has the value of x, y, z, w of 0010
 - + Rows that has the value of x, y, z, w of 011*, *001, 000*, *011

х	у	z	w	Out	Check	
0	0	0	0	1	1	
0	0	0	1	1	1	
0	0	1	0	1	1	
0	0	1	1	1	1	
0	1	0	0	0	0	
0	1	0	1	0	0	
0	1	1	0	1	1	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	0	1	1	1	
1	0	1	0	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	0	1	0	0	
1	1	1	0	0	0	

Correct but watch the order

4/4/

1	1	1	1	0	0
	l				

- ii) Simplification:
- For part a:

correct but no minimal 5/6

8 18

- iii) Check: The column title Check above is added for this part
- For part a: rows with out put = 0 are rows that have value of x, y, x of 1*0, 00* and *01
- For part b: rows with out put = 0 are rows that have value of x, y, x, w of 0*1*, 00**, *0*1