Major Quiz-2

Duration: 45 min. Max Marks: 15

- 1. Consider the circuit alongside with $V=10\angle 0^0 V$ and the impedances corresponding to the elements given as: $R_1=4\Omega,\ R_2=8\Omega,\ Z_C=-j6\Omega$ and $Z_L=j5\Omega$.
- (a) Calculate the Thevenin equivalent as observed by the load, X. [3]

Solution:

Short voltage source to find Z_{Th} :

[1.5 marks]

$$\sum_{L} a Z_{Th} = j5 + 4||(8 - j6)| = j5 + \frac{4(8 - j6)}{4 + 8 - j6}$$
$$= 2.933 + j4.467 \Omega = 5.344 \angle 56.71^{0} \Omega$$

To find V_{Th} :

[1.5 marks]

$$V_{ab} = V_{Th} = \frac{8 - j6}{4 + 8 - j6} 10V = 49.193 - j8.944V$$

= 7.454 \angle -10.3°V

(b) Determine the load impedance, Z_X , that maximizes the average power drawn from the circuit. What is the maximum average power drawn by the load? [3]

Solution:

Load impedance for maximum average power:

$$Z_L = Z_{Th}^* = 2.933 - j4.467 \Omega$$

Maximum average power:

$$P_{max} = \frac{|V_{Th}|^2}{8Re(Z_{Th})} = \frac{(7.454)^2}{8(2.933)} = 2.368 W$$

2. Consider the circuit given below, with $R_1=2k\Omega$, $R_2=2k\Omega$, $R_3=1k\Omega$ and $C=10\mu F$.

(a) Calculate the transfer function, $H=rac{v_o}{v_i}$ [3]

Solution: Using potential divider

[2 marks for H(w)]

$$v_{0} = \frac{1/j\omega C}{R_{3} + 1/j\omega C} \times \frac{R_{2}||(R_{3} + \frac{1}{j\omega C})}{R_{1} + R_{2}||(R_{3} + \frac{1}{j\omega C})} v_{i} = \frac{v_{i}}{2(1 + 2000j\omega C)}$$
$$H(\omega) = \frac{v_{o}}{v_{i}} = \frac{0.5}{1 + j\frac{\omega}{\omega_{0}}};$$

$$\omega_0 = \frac{1}{2000C} = 50 \ rad/s$$

[1 mark for ω_0]

(b) Plot the Bode magnitude plot for the transfer function derived in (a). What sort of a filter does this circuit act as? [3]

$$20log(|H|) = 20 \log(0.5) - 20 \log \left(\sqrt{1 + \left(\frac{\omega}{50}\right)^2} \right) dB$$

$$20log(|H|) = \begin{cases} -6.02dB; for \ \omega \ll 50 \ rad/s \\ -6.02dB - 20 \log \left(\frac{\omega}{50}\right) dB; for \ \omega \gg 50 \ rad/s \end{cases}$$

[2 marks for plot]

Represents a low-pass filter

[1 mark]

3. For the circuit shown below, calculate I and V_0 , if $R=1k\Omega$. Assume that the diodes are ideal. [3]

Solution:

Case 1: if both diodes are on:

In this case, $V_0=1V$ and $V_0=3V$; which is not possible.

⇒ Initial assumption is incorrect

Case 2: if both diodes are cut-off:

In this case, $V_0 = -5V$ which is less than both 1V and 3V implying that both diodes must be on.

⇒ Contradiction ⇒ Initial assumption is incorrect

Case 3: if D_1 is on while D_2 is off:

 $V_0 = 1V \Rightarrow$ voltage across D_2 2V (forward bias) \Rightarrow D_2 is on; which contradicts the initial assumption

⇒ Initial assumption is incorrect

Case 4: if D_2 is on and D_1 is off:

[1 mark]

 $V_0 = 3V$ voltage across D_1 is $-2V \Rightarrow D_1$ is off which satisfies the initial condition.

Therefore,

$$I = \frac{(3 - (-5))V}{1k\Omega} = 8mA \text{ and } V_0 = 3V$$

[1 mark+1 mark]