Structured Traversals for (Multiply) Recursive Algebraic Datatypes

G. Cassian Alexandru

January 18, 2021

Presentation generated from .1hs sources using 1hs2TeX

Context & Conventions

- Language: Haskell, with numerous language extensions
- Syntactic (e.g. LambdaCase)
- Clarifying (e.g. TypeApplications, InstanceSigs)
- Limited Dependent programming (e.g. DataKinds), for multiple recursion

Context & Conventions

- Language: Haskell, with numerous language extensions
- Syntactic (e.g. LambdaCase)
- Clarifying (e.g. TypeApplications, InstanceSigs)
- Limited Dependent programming (e.g. DataKinds), for multiple recursion

```
{-# LANGUAGE LambdaCase #-}
foo :: [a] → b
foo = λcase
[] → ...
(x:xs) → ...
```

Context & Conventions

- Language: Haskell, with numerous language extensions
- Syntactic (e.g. LambdaCase)
- Clarifying (e.g. TypeApplications, InstanceSigs)
- Limited Dependent programming (e.g. DataKinds), for multiple recursion

```
{-# LANGUAGE LambdaCase #-}
foo :: [a] → b
foo = λcase
[] → ...
(x:xs) → ...
```

- Composition in diagrammatic order: f; g reads "f, then g"
- Haskell: f .> g

Structure

- 1 Single Recursion
 - Motivation
 - Category Theory

```
length :: [a] \rightarrow Int

length = \lambdacase

[] \rightarrow 0

(_:xs) \rightarrow 1 + length xs

filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]

filter p = go where

go [] = []

go (x:xs) = if p x then [x] else [] ++ go xs
```

```
length :: [a] → Int
length = λcase
[] → 0
(_:xs) → 1 + length xs
filter :: (a → Bool) → [a] → [a]
filter p = go where
  go [] = []
  go (x:xs) = if p x then [x] else [] ++ go xs
```

```
length :: [a] \rightarrow Int
length = \lambdacase
[] → 0
(:xs) \rightarrow 1 + length xs
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
filter p = go where
  go [] = []
  go(x:xs) = if p x then [x] else [] ++ go xs
```

- List Design pattern?
- Design Patterns are a poor man's abstraction
- Recognize common structure & find correct abstract notion

List 2 3

Traversals

filter p


```
g p x xs =
  (if p x then [x] else []) ++ xs
 g even
    g even
          g even
```

```
g p x xs =
  (if p x then [x] else []) ++ xs
2:4:[]
```

Insight

Even though the functions were defined recursively, their behaviour can be understood non-recursively as simply replacing the two constructors for [a] by functions of the same arity.

data List a = Nil | Cons a (List a)

GADT Syntax:

data List a where

Nil :: List a

Cons :: $a \rightarrow (List \ a) \rightarrow (List \ a)$

GADT Syntax:

```
data List a where
  Nil :: List a
  Cons :: a \rightarrow (List a) \rightarrow (List a)
list :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow List a \rightarrow b
list nil cons = fold where
  fold Nil = nil
  fold (x 'Cons' xs) = x 'cons' fold xs
length' = list 0 (\ n \rightarrow 1+n)
filter' p = list []
  (\lambda x xs \rightarrow (if p x then [x] else []) ++ xs)
```

GADT Syntax:

```
data List a where
  Nil :: List a
  Cons :: a \rightarrow (List a) \rightarrow (List a)
list :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow List a \rightarrow b
list nil cons = fold where
  fold Nil = nil
  fold (x 'Cons' xs) = x 'cons' fold xs
length' = list 0 (\ n \rightarrow 1+n)
filter' p = list []
  (\lambda x xs \rightarrow (if p x then [x] else []) ++ xs)
```

Now for Expressions

```
data Expr where
  Lit :: Int → Expr
  Plus :: Expr → Expr → Expr

expr :: (Int → b) → (b → b → b) → Expr → b

expr lit plus = fold where
  fold (Lit i) = lit i
  fold (1 'Plus' r) = (fold 1) 'plus' (fold r)
```

- We want to define a polytypic "fold", subsuming list, expr, which encapsulates the whole "replace constructors with functions" pattern
- We need a deeper understanding of what the datatypes we are working with *are*
- ~> Introduce a little AnarchyCategory Theory

Category

A category $\mathcal C$ consists of collections $\mathcal C_0$ of objects and $\mathcal C_1$ of morphisms (or arrows) between them, with the following structure:

- For every two arrows $f: A \rightarrow B$, $g: B \rightarrow C$, there is a composite arrow $f; g: A \rightarrow C$
- lacksquare For every object $A:\mathcal{C}_0$ there is an identity morphism $1_A:A o A$
- Such that the following hold:
 - Composition is associative, that is: f; (g; h) = (f; g); h.
 - Composition satisfies unit laws: For every $f: A \rightarrow B$. id_A ; f = f, f; $id_B = f$.

Isomorphisms

Given a category C and two objects $A, B : C_0$, we say A and B are isomorphic via $f : A \to B$, if there exists a $g : B \to A$ which is both a leftand right-inverse:

Functors

Let C, D be Categories. A *Functor F* is a pair of maps (F_0, F_1) , on the objects and morphisms of the category respectively, such that commuting diagrams are preserved, e.g.:

In particular, this means identities & composition are preserved.

Functors

Let C, D be Categories. A *Functor F* is a pair of maps (F_0, F_1) , on the objects and morphisms of the category respectively, such that commuting diagrams are preserved, e.g.:

In particular, this means identities & composition are preserved. We will often only write out the definition of a functor on objects.

Functors

Let C, D be Categories. A *Functor F* is a pair of maps (F_0, F_1) , on the objects and morphisms of the category respectively, such that commuting diagrams are preserved, e.g.:

In particular, this means identities & composition are preserved. We will often only write out the definition of a functor on objects. When $\mathcal{C}=\mathcal{D}$, we say F is an Endofunctor.

Building the Functor kit

- Identity (IX := X) is a functor
- Constant-to-A K_A for A: C_0 , K_AX := A, is a functor

Categories can have products (\times_C) and/or coproducts $(+_C)$. Think of coproducts as indexed unions in our case. Then if F, G are functors so are:

- $(F \times G)X := FX \times GX$
- (F+G)X := FX + GX

Algebra

Let $F: \mathcal{C} \to \mathcal{C}$ be an endofunctor $A: \mathcal{C}, \varphi: FA \to A$. Then $FA \xrightarrow{\varphi} A$ (or (A, φ)) is an *Algebra*, and A its *Carrier*.

Algebra
$$FA$$
 φ

Algebra-Hom:

$$(A, \varphi) \xrightarrow{f} (B, \psi)$$

 $FA \xrightarrow{Ff} FB$
 $\downarrow^{\varphi} \qquad \downarrow^{\psi}$
 $A \xrightarrow{f} B$

Initial Algebra:
$$(A, \alpha)$$

s.t. $\forall (B, \psi)$.
 $FA \xrightarrow{Fh} FB$
 $\downarrow \alpha \qquad \qquad \downarrow \psi$

$$FA \xrightarrow{-Fh} F(FA) \xrightarrow{F\alpha} FX$$

$$\downarrow^{\alpha} \qquad \downarrow^{F\alpha} \qquad \downarrow^{\alpha}$$

$$A \xrightarrow{--h} FA \xrightarrow{\alpha} X$$

Fixed Point

The carrier A of the initial algebra (A, α) of a functor F is a least fixed point of F. Least, that is, in that there is a morphism from it to any other algebra, by initiality.

Fixed Point

The carrier A of the initial algebra (A, α) of a functor F is a least fixed point of F. Least, that is, in that there is a morphism from it to any other algebra, by initiality.

$$FA \xrightarrow{Fh} FB$$
 $\alpha^{-1} \uparrow \downarrow \alpha \quad \circlearrowleft \quad \downarrow \psi$ We get a recursive definition for h: $h = \alpha^{-1}$; Fh ; ψ
 $A \xrightarrow{h} B$

```
type Algebra f a = f a \rightarrow a
listBL :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow Algebra (ListF a) b
listBL nil cons = \lambdacase
NilF \rightarrow nil
x 'ConsF' b \rightarrow x 'cons' b
```

cata :: Functor f => Algebra f b
$$\rightarrow$$
 (Fix f) \rightarrow b cata ψ = unFix .> fmap (cata ψ) .> ψ

Structural Functors

data $ListF c x = NilF \mid ConsF c x deriving Functor$

As Program

```
newtype Fix (f :: * \rightarrow *) :: * where In :: f (Fix f) \rightarrow Fix f unFix :: Fix f \rightarrow f (Fix f) unFix (In f) = f
```