10.2.1

There are 6 vertices and 6 edges.

v	$\deg(v)$	Isolated?	Pendant?
\overline{a}	2		
b	4		
\boldsymbol{c}	1		Y
d	0	Y	
e	2		
f	3		

10.2.3

There are 9 vertices and 12 edges.

v	$\deg(v)$	Isolated?	Pendant?
\overline{a}	3		
b	2		
\boldsymbol{c}	4		
$d \ d$	0	Y	
e	6		
f	0	Y	
g	4		
$_{h}^{g}$	2		
i	3		

10.2.9

The are 5 vertices and 13 edges.

v	$\deg^-(v)$	$\deg^+(v)$
a	6	1
b	1	5
c	2	5
d	4	2
e	0	0

10.2.21

It is bipartite since you can assign say blue to e and red to the rest of the vertices and there will be no adjacent colorings.

10.3.3

$$egin{array}{c|c} v & N(v) \\ \hline a & \{a,b,c,d\} \\ b & \{d\} \\ c & \{a,b\} \\ d & \{b,c,d\} \\ \hline \end{array}$$

10.3.11

10.4.1

- a) Path of length 4 that isnt a circuit or simple
- b) Not a path
- c) Not a path
- d) Path of length 5 that is a circuit

10.4.3

Not connected

10.4.5

Not connected

10.5.1

No euler path or circuit exists

10.5.3

No euler circuit exists, but there is an euler path $a\to e\to c\to e\to b\to e\to d\to b\to a\to c\to d$

10.5.5

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow e \rightarrow d \rightarrow b \rightarrow e \rightarrow a \rightarrow e \rightarrow a$$

10.6.3

The path $a \to c \to d \to e \to g \to z$ is a shortest path of length 16.

11.1.1

a, c and e are trees.

11.1.3

- a) *a*
- b) a, b, c, d, f, h, j, q, t
- c) e, l, m, n, g, o, p, i, s, u, r, k
- d) q, r
- e) *c*
- f) *p*
- g) f, b, a
- h) e, f, l, m, n

11.1.7

Level	L(V)
0	a
1	b, c, d
2	e, f, g, h, i, j, k
3	l, m, n, o, p, q, r
4	s,t
5	u

11.1.17

A tree with n vertices has n-1 edges, hence there are 9999 edges.

11.4.1

Since a spanning tree must include all n vertices, and therefore the spanning tree must have n-1 edges, the question is the same as finding M such that

$$m-M=n-1 \implies M=m-n+1.$$

Therefore m - n + 1 edges must be removed.

11.4.3

11.4.5

11.5.1

Deep Springs-Oasis, Oasis-Dyer, Oasis-Silver Peak, Silver Peak-Goldfield, Lida-Gold Point, Gold Point-Beatty, Lida-Goldeld, Goldfield-Tonopah, Tonopah-Manhattan, Tonopah-Warm Springs

12.1.5

	\boldsymbol{x}	у	z	F(x, y, z)
	0	0	0	0
	1	0	0	0
	1	1	0	0
a)	1	0	1	0
	0	1	0	1
	0	1	1	1
	0	0	1	0
	1	1	1	0
	44		~	F(20 21 21)

	\boldsymbol{x}	y	z	F(x,y,z)
	0	0	0	1
	1	0	0	1
	1	1	0	1
c)	1	0	1	1
	0	1	0	1
	0	1	1	1
	0	0	1	1
	1	1	1	0
				'

	1	0	0	1
	1	1	0	0
d)	1	0	1	0
	0	1	0	0
	0	1	1	0
	0	0	1	0
	1	0 1 0 1 1 0 1	1	1

12.1.15

$$\begin{array}{c|ccc} x & x+x & x \cdot x \\ \hline 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}.$$

12.1.23

$$\begin{array}{c|cccc} x & \overline{x} & x\overline{x} \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array}.$$

12.2.1

a) $\overline{xy}z$

b) $\overline{x}y\overline{z}$

c) $\overline{x}yz$

d) \overline{xyz}

12.2.3

a)
$$F(x, y, z) = xyz + \overline{x}yz + x\overline{y}z + xy\overline{z} + \overline{x}yz + x\overline{y}z + \overline{x}y\overline{z}$$

b)
$$F(x, y, z) = xyz + xy\overline{z} + \overline{x}yz$$

c)
$$F(x, y, z) = xyz + x\overline{y}z + xy\overline{z} + x\overline{y}z$$

d)
$$F(x, y, z) = x\overline{y}z + x\overline{y}\overline{z}$$

12.2.5

$$F(x,y,z,w) = x\overline{yzw} + \overline{x}y\overline{zw} + \overline{xy}z\overline{w} + \overline{xyz}w + xyz\overline{w} + \overline{x}yzw + xy\overline{z}w + x\overline{y}zw$$

12.3.5

$$(x+y+z)+(\overline{x}+y+z)+(\overline{x}+\overline{y}+\overline{z}).$$