$$\begin{bmatrix} 1a \\ 1a \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

$$|b\rangle \qquad |c| = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad |c| = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

Ly cut do 2
$$\begin{bmatrix} c \\ 2d \\ 3d \end{bmatrix}$$
 = Plane in \mathbb{R}^3 .

1c) Ly
$$\ddot{u} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
, $\ddot{\vartheta} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$, $\ddot{\varpi} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$

La All three vectors are independent

2) Descent

$$3) \quad \stackrel{\rightarrow}{\mathbb{Q}} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \quad \stackrel{\leftarrow}{\mathbb{Q}} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

4)
$$3\vec{v} + \vec{\omega} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$
, $\vec{c}\vec{v} + \vec{d}\vec{\omega} = \begin{bmatrix} 2c + d \\ c + 2d \end{bmatrix}$

5) Ly
$$\overline{u}$$
 + \overline{v} = $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$ = $-\overline{u}$ + \overline{v} + \overline{v} = 0

3 $2\overline{u}$ + $2\overline{v}$ + \overline{u} = $-(\overline{u} + \overline{v})$, \overline{u} lies in the plane

1 $2\overline{u}$ + $2\overline{v}$ + \overline{v} = $-(\overline{u} + \overline{v})$, \overline{u} lies in the plane

Since $\vec{\omega} = -(\vec{u} + \vec{v})$, $\vec{\omega}$ lies in the plane formed by linear combinations of $\vec{u} + \vec{v}$.

TLA_CH01_03

-> Components add upto Jero.

$$c\vec{0} + d\vec{0} = \begin{bmatrix} 3 \\ 3 \\ -6 \end{bmatrix} \Rightarrow c = 3, d = 9$$

cie + dis = [3] is not possible because the components do not add upto Jero.

7) a)
$$c=0$$
; $d=0$ \Rightarrow $\vec{\chi}=c\begin{bmatrix}2\\1\end{bmatrix}+d\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$

$$(b) c=0, d=1 \Rightarrow x=\begin{bmatrix}0\\1\end{bmatrix}$$

g)
$$c = 2, d = 0$$
 $\vec{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

c)
$$c=0, d=2$$
 $\Rightarrow x=\begin{bmatrix}0\\2\end{bmatrix}$

$$d$$
) $c = 1$, $d = 0 \Rightarrow \mathcal{X} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

e)
$$(21)$$
 $\sqrt{22}$ $\sqrt{22}$

i)
$$c = 2$$
, $d = 2$

$$\Rightarrow x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$f)$$
 $(=1, d=2 \Rightarrow \vec{x} = \begin{bmatrix} 2\\3 \end{bmatrix}$

(next page)

END OF PROBLEMS (1-9)