

Revendo os Conceitos de Outliers usando Gráficos

▼ A definição de Outliers no Boxplot

Definimos outliers como os pontos abaixo de

$$Q_1 - 1, 5 \times IQR$$

ou acima de

$$Q_3 + 1, 5 \times IQR$$

E os denotamos de forma diferenciada no boxplot.

Lembrando que quartis são robustos a (não são influenciados por) valores extremos.

▼ Outliers no Histograma

Já no histograma, valores extremos estão relacionados ao desvio padrão e à distribuição estatística dos dados, que é sensível a eles.

SE a distribuição estatística dos dados tiver um histograma similar a uma curva de sino, então podemos fazer uso da regra empírica...

▼ Caso prático: Toda a idéia do 6σ (Six-Sigma)

Com base no fato de que muitos processos se baseiam na Distribuição Estatística Normal...

A idéia é exercer o controle de qualidade com o alvo de atingir um nível de não-defeito (outliers) em 6 desvios padrão...

▼ Mas que diferença faz partir da quinta para a sétima casa depois da vírgula?

- 1. De acordo com a *National Oceanic and Atmospheric Administration*, os controladores de tráfego aéreo nos Estados Unidos gerenciam diariamente 28.537 voos comerciais. Em um ano, são aproximadamente 10,416 milhões de voos. Com base num processo de controle de tráfego aéreo 5 σ , ocorriam erros de algum tipo em aproximadamente 2.426 voos por ano. Com um processo 6 σ , esse risco diminui para 35,41 erros por ano.
- 2. O CDC relata que aproximadamente 51,4 milhões de cirurgias são realizadas anualmente nos Estados Unidos. Com base em uma taxa de precisão de 99,97%, os profissionais de saúde cometeriam erros em 11.976 cirurgias por ano, ou 230 erros por semana. Em 6 σ ,este número desce para cerca de 174 erros por ano em todo o país, ou seja, pouco

- mais de 3 erros por semana. Em 5 σ , os doentes têm 68 vezes mais probabilidade de sofrer um erro nas mãos dos profissionais de saúde.
- 3. Considere os envios de encomendas da gigante Amazon. Na *Cyber Monday* de 2013, a Amazon processou impressionantes 36,8 milhões de encomendas. Vamos assumir que cada erro de encomenda custe à empresa uma média de 35 dólares (número bem conservador, considerando que este valor pode incluir o custo de devoluções, mão de obra para responder a chamadas telefônicas ou e-mails de clientes e mão de obra e novo envio de uma encomenda enviada erroneamente...).

Nível σ do Processo	Defeitos por Milhão	Erros estimados na Cyber Monday de 2013	Custo Total (a US\$ 35 por erro)
1 σ	690.000	25.392.000	US\$ 888.720.000
2 σ	308.000	11.334.400	US\$ 396.704.000
3 σ	66.800	2.458.240	US\$ 86.038.400
4 σ	6.200	228.160	US\$ 7.985.600
5 σ	233	8.574,4	US\$ 300.104
6 σ	3,4	125,12	US\$ 4.379

 Traduzido do Six Sigma White Belt Certification - Council for Six Sigma Certification, páginas 6 a 8:

https://www.sixsigmacouncil.org/wp-content/uploads/2018/09/Six-Sigma-White-Belt-Certification-Training-Manual-CSSC-2018-06b.pdf