MIDTERM, FRIDAY, 2022-02-25

You must justify all your answers to recieve full credit.

Question 1: Consider the following Boolean expression:

$$E(A, B, C) \equiv (A \rightarrow B) \land (B \rightarrow C)$$

- (A) Find the negation $\neg E(A, B, C)$ in your answer all three Boolean variables (A, B, C) and any of the operator(s) $(\neg, \land, \lor, \rightarrow, \leftrightarrow, \oplus)$ can appear, but all the negations should be only applied to variables (rather than to expressions in parentheses).
- (B) Assume that Boolean variable is assigned B = True. Express E(A, True, C) and simplify this expression. After simplification it only contains the remaining variables, but no references to the Boolean constants True or False.

Question 2: Describe the given sets using the set-builder notation (in the following form $\{x \in \dots \mid \dots\}$), where one can specify the "universe", which encloses all the elements x in this set, and some predicate – a property which must be satisfied by elements in this universe x in order to belong to this set.

- (A) $S_1 = \{-100, -98, -96, -94, \dots, 94, 96, 98, 100\}$
- **(B)** $S_2 = \{1, 81, 121, 361, 441, \dots, 1681\}$ (full squares up to 2000 ending with digit "1").

Question 3:

- (A) Find a rational number $a \in \mathbb{Q}$ for which the equation $x + \frac{1}{x} = a$ has a rational root x. Express this root as $x = \frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^+$.
- **(B)** Find a rational number $b \in \mathbb{Q}$ for which the equation $x + \frac{1}{x} = b$ has an irational root x. Prove that the root is irrational. (You can use the fact that the square root of an integer which is not a full square is an irrational number.)

Question 4: Find a closed interval of real numbers $[a, b] \subseteq \mathbb{R}$, which satisfies the following properties:

- $10 \le a < b \le 15$.
- Function $f(x) = \sin x$ is a bijection from [a; b] to the interval [-1; 1].

Also prove that for your values a and b the function $f(x) = \sin x$ is bijective mapping from [a;b] to [-1;1] using the definitions of surjective and injective functions.

Question 5: Define a binary relation on the set of plane points with integer coordinates: $(x,y) \in \mathbb{Z}^2$.

$$R = \left\{ \left((x_1, y_1), (x_2, y_2) \right) \in \mathbb{Z}^2 \times \mathbb{Z}^2 \mid \left(2 \mid (x_1 - x_2) \land 3 \mid (y_1 - y_2) \right) \lor \left(3 \mid (x_1 - x_2) \land 2 \mid (y_1 - y_2) \right) \right\}$$

In other words, either the difference of x-coordinates of both points in this relation is divisible by 2 and the difference of y-coordinates is divisible by 3, or the other way round (the difference of x-coordinates is divisible by 3 and the difference of y-coordinates is divisible by 2)

- (A) Is the relation R reflexive?
- **(B)** Is the relation R symmetric?
- (C) Is the relation R transitive?
- **(D)** Is the relation R equivalence?

Question 6: Consider the following binary relation $R \subseteq \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$ which is defined as a set of pairs (a, b):

$$R = \{(1,1), (1,2), (2,1), (2,5), (3,4), (4,3)\}.$$

- (A) Create the matrix M_R for this binary relation.
- **(B)** Draw the matrix M_{R^t} for the transitive closure of this binary relation R^t .

Question 7:

- (A) Run Euclidean algorithm to find gcd(1000, 711).
- **(B)** Find an integer solution $x, y \in \mathbb{Z}$ for the following Bézout's identity:

$$1000x + 711y = 0.$$

(C) Find an integer number that is divisible by 711 and its decimal notation ends with these three digits: 001.

Question 8:

(A) A sequence of natural numbers a_0, a_1, a_2, \ldots is defined by this recurrence:

$$\left\{ \begin{array}{l} a_0=1,\\ a_{k+1}=(10\cdot a_k) \ \mathrm{mod}\ 2624, \ \mathrm{for\ every}\ k\in\mathbb{N}. \end{array} \right.$$

Compute the first 12 members of this sequence.

(B) Consider the definition of an eventually periodic sequence:

$$\exists M \in \mathbb{N} \ \exists T \in \mathbb{N} \ \forall n \in \mathbb{N} \ (T > 0 \land (n \ge M \to a_n = a_{n+T}))$$

Show that the given sequence a_n matches the definition of an eventually periodic sequence. Find the smallest natural numbers M and also T>0 in this definition that would make it true for the sequence a_n .

(C) Consider the fraction $\frac{1}{2624}$. It is a rational number – therefore it can be expressed as a repeating/periodic decimal. Identify the *repetend* (also called the *period*) – the sequence of digits that repeats itself infinitely. Identify the *prefix* (the digits preceding the repetend).

Note: For example, the fraction $1/44 = 0.02272727272727272 \dots = 0.02\overline{27}$ has two-digit repetend $\overline{27}$ and the prefix: 02.