A Wavelet Tour of Signal Processing

A Wavelet Tour of Signal Processing The Sparse Way

Stéphane Mallat

with contributions from Gabriel Peyré

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400 Burlington, MA 01803

This book is printed on acid-free paper. (∞)

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trade-marks or registered trademarks. In all instances in which Academic Press is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Application submitted

ISBN 13:978-0-12-374370-1

For information on all Academic Press publications, visit our Website at www.books.elsevier.com

Printed in the United States 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

À la mémoire de mon père, Alexandre. Pour ma mère, Francine.

Contents

		Preface	e to the Sparse Edition	$\mathbf{X}\mathbf{V}$
		Notatio	ons	xix
CHAPTER	1	Spars	e Representations	1
	1.1	Compu	ntational Harmonic Analysis	1
		1.1.1	The Fourier Kingdom	2
		1.1.2	Wavelet Bases	2
	1.2	Approx	ximation and Processing in Bases	5
		1.2.1	Sampling with Linear Approximations	7
		1.2.2	Sparse Nonlinear Approximations	8
		1.2.3	Compression	11
		1.2.4	Denoising	11
	1.3	Time-F	requency Dictionaries	14
		1.3.1	Heisenberg Uncertainty	15
		1.3.2	Windowed Fourier Transform	16
		1.3.3	Continuous Wavelet Transform	17
		1.3.4	Time-Frequency Orthonormal Bases	19
	1.4	_	y in Redundant Dictionaries	21
		1.4.1	Frame Analysis and Synthesis	21
		1.4.2	Ideal Dictionary Approximations	23
		1.4.3	Pursuit in Dictionaries	24
	1.5	Inverse	e Problems	26
		1.5.1	Diagonal Inverse Estimation	27
		1.5.2	Super-resolution and Compressive Sensing	28
	1.6		Guide	30
		1.6.1	Reproducible Computational Science	30
		1.6.2	Book Road Map	30
CHAPTER	2	The F	ourier Kingdom	33
	2.1	Linear'	Time-Invariant Filtering	33
		2.1.1	Impulse Response	33
		2.1.2	Transfer Functions	35
	2.2	Fourier	r Integrals	35
		2.2.1	Fourier Transform in $\mathbf{L}^1(\mathbb{R})$	35
		2.2.2	Fourier Transform in $L^2(\mathbb{R})$	38
		2.2.3	Examples	40
	2.3	Proper	ties	42
		2.3.1	Regularity and Decay	42
		2.3.2	Uncertainty Principle	43

vii

		2.3.3 Total Variation	46
	2.4	Two-Dimensional Fourier Transform	51
	2.5	Exercises	55
CHAPTER	2	Discrete Revolution	50
CHAPTER			59
	3.1	1 0 0 0	59
		1 0	59
		5	61
		1 0	65
	3.2		70
		r r	70
			72
	3.3	8	75
			76
		3.3.2 Discrete Fourier Transform	76
		3.3.3 Fast Fourier Transform	78
		3.3.4 Fast Convolutions	79
	3.4	Discrete Image Processing	80
		3.4.1 Two-Dimensional Sampling Theorems	80
		3.4.2 Discrete Image Filtering	82
		3.4.3 Circular Convolutions and Fourier Basis	83
	3.5	Exercises	85
CHAPTER	4	Time Meets Frequency	89
OHAI IEK	4.1		89
	4.2		92
	4.4		94
		· · · · · · · · · · · · · · · · · · ·	-
			98
	/ 2	4.2.3 Discrete Windowed Fourier Transform	
	4.3	Wavelet Transforms	
		4.3.1 Real Wavelets	
		4.3.2 Analytic Wavelets	
		4.3.3 Discrete Wavelets	
	4.4	Time-Frequency Geometry of Instantaneous Frequencies 1	
		4.4.1 Analytic Instantaneous Frequency	
		4.4.2 Windowed Fourier Ridges	.18
		4.4.3 Wavelet Ridges	.29
	4.5	Quadratic Time-Frequency Energy 1	.34
		4.5.1 Wigner-Ville Distribution	.36
		4.5.2 Interferences and Positivity	40
		4.5.3 Cohen's Class	45
		4.5.4 Discrete Wigner-Ville Computations	49
	4.6	Exercises	

CHAPTER	5	Frames 15	5
	5.1	Frames and Riesz Bases	5
		5.1.1 Stable Analysis and Synthesis Operators	5
		5.1.2 Dual Frame and Pseudo Inverse	
		5.1.3 Dual-Frame Analysis and Synthesis Computations 16	1
		5.1.4 Frame Projector and Reproducing Kernel 16	6
		5.1.5 Translation-Invariant Frames	8
	5.2	Translation-Invariant Dyadic Wavelet Transform	O
		5.2.1 Dyadic Wavelet Design	2
		5.2.2 Algorithme à Trous	5
	5.3	Subsampled Wavelet Frames	8
	5.4	Windowed Fourier Frames	1
		5.4.1 Tight Frames	3
		5.4.2 General Frames	4
	5.5	Multiscale Directional Frames for Images	8
		5.5.1 Directional Wavelet Frames	9
		5.5.2 Curvelet Frames	4
	5.6	Exercises	1
CHAPTER	6	Wavelet Zoom 20	5
OHAI IEK	6.1	Lipschitz Regularity	_
	0.1	6.1.1 Lipschitz Definition and Fourier Analysis	
		6.1.2 Wavelet Vanishing Moments	
		6.1.3 Regularity Measurements with Wavelets	
	6.2	Wavelet Transform Modulus Maxima	
	0.2	6.2.1 Detection of Singularities	
		6.2.2 Dyadic Maxima Representation	
	6.3	Multiscale Edge Detection 23	
	0.5	6.3.1 Wavelet Maxima for Images 23	
		6.3.2 Fast Multiscale Edge Computations	
	6.4	Multifractals	
	0.1	6.4.1 Fractal Sets and Self-Similar Functions	
		6.4.2 Singularity Spectrum	
		6.4.3 Fractal Noises	
	6.5	Exercises	9
CHARTER	7	Wayalat Bassa	_
CHAPTER	-	Wavelet Bases 26	-
	7.1	Orthogonal Wavelet Bases	
		7.1.1 Multiresolution Approximations	
		7.1.2 Scaling Function	
		7.1.3 Conjugate Mirror Filters 27	
	7.3	7.1.4 In Which Orthogonal Wavelets Finally Arrive 27.	
	7.2	Classes of Wavelet Bases. 28	
		7.2.1 Choosing a Wavelet	4

		7.2.2	Shannon, Meyer, Haar, and Battle-Lemarié Wavelets .	289
		7.2.3	Daubechies Compactly Supported Wavelets	292
	7.3	Wavele	ts and Filter Banks	298
		7.3.1	Fast Orthogonal Wavelet Transform	298
		7.3.2	Perfect Reconstruction Filter Banks	
		7.3.3	Biorthogonal Bases of $\ell^2(\mathbb{Z})$	306
	7.4	Biortho	ogonal Wavelet Bases	308
		7.4.1	Construction of Biorthogonal Wavelet Bases	308
		7.4.2	Biorthogonal Wavelet Design	311
		7.4.3	Compactly Supported Biorthogonal Wavelets	313
	7.5	Wavele	t Bases on an Interval	317
		7.5.1	Periodic Wavelets	318
		7.5.2	Folded Wavelets	320
		7.5.3	Boundary Wavelets	322
	7.6	Multisc	cale Interpolations	328
		7.6.1	Interpolation and Sampling Theorems	328
		7.6.2	Interpolation Wavelet Basis	333
	7.7	Separal	ble Wavelet Bases	338
		7.7.1	Separable Multiresolutions	338
		7.7.2	Two-Dimensional Wavelet Bases	340
		7.7.3	Fast Two-Dimensional Wavelet Transform	346
		7.7.4	Wavelet Bases in Higher Dimensions	348
	7.8	Lifting	Wavelets	350
		7.8.1	Biorthogonal Bases over Nonstationary Grids	350
		7.8.2	Lifting Scheme	352
		7.8.3	Quincunx Wavelet Bases	359
		7.8.4	Wavelets on Bounded Domains and Surfaces	361
		7.8.5	Faster Wavelet Transform with Lifting	367
	7.9	Exercis	ses	370
CHAPTER	8	Wavel	et Packet and Local Cosine Bases	377
	8.1	Wavele	t Packets	377
		8.1.1	Wavelet Packet Tree	
		8.1.2	Time-Frequency Localization	
		8.1.3	Particular Wavelet Packet Bases	
		8.1.4	Wavelet Packet Filter Banks	
	8.2	Image \	Wavelet Packets	
		_	Wavelet Packet Quad-Tree	395
		8.2.2	Separable Filter Banks	
	8.3	Block T	ransforms	
		8.3.1	Block Bases	401
		8.3.2	Cosine Bases	403
		8.3.3	Discrete Cosine Bases	406
		8.3.4	Fast Discrete Cosine Transforms	407

	8.4	Lapped C	Orthogonal Transforms	. 410
			apped Projectors	
		8.4.2 L	apped Orthogonal Bases	. 416
		8.4.3 L	ocal Cosine Bases	. 419
		8.4.4 D	Discrete Lapped Transforms	. 422
	8.5	Local Cos	sine Trees	. 426
		8.5.1 B	inary Tree of Cosine Bases	. 426
		8.5.2 T	ree of Discrete Bases	. 429
		8.5.3 In	nage Cosine Quad-Tree	. 429
	8.6	Exercises		. 432
CHAPTER	9	Annroxi	mations in Bases	435
VIII 1210	9.1		proximations	
	<i>)</i> .1		ampling and Approximation Error	
			inear Fourier Approximations	
			Iultiresolution Approximation Errors	. 130
			vith Wavelets	442
			farhunen-Loève Approximations	
	9.2		r Approximations	
). _		Vonlinear Approximation Error	
			Vavelet Adaptive Grids	
			pproximations in Besov and Bounded	
			ariation Spaces	459
	9.3		nage Representations	
	7.5		Vavelet Image Approximations	
			Geometric Image Models and Adaptive	
			riangulations	. 471
			Survelet Approximations	
	9.4			
				, _
CHAPTER	10	Compres		481
	10.1		n Coding	
			Compression State of the Art	
			Compression in Orthonormal Bases	
	10.2		n Rate of Quantization	
			ntropy Coding	
			calar Quantization	
	10.3	High Bit 1	Rate Compression	. 496
			it Allocation	
			Optimal Basis and Karhunen-Loève	
			ransparent Audio Code	
	10.4		gnal Compression	
		10.4.1 D	Distortion Rate and Wavelet Image Coding	. 506
		10.4.2 E	mbedded Transform Coding	. 516

	10.5	Image-Compression Standards	. 519
		10.5.1 JPEG Block Cosine Coding	. 519
		10.5.2 JPEG-2000 Wavelet Coding	. 523
	10.6	Exercises	
CHAPTER	11	Denoising	535
· · · · · · · · · · · · · · · · · · ·	11.1	Estimation with Additive Noise	
		11.1.1 Bayes Estimation	
		11.1.2 Minimax Estimation	
	11.2	Diagonal Estimation in a Basis	
		11.2.1 Diagonal Estimation with Oracles	
		11.2.2 Thresholding Estimation	
		11.2.3 Thresholding Improvements	
	11.3	Thresholding Sparse Representations	
	5	11.3.1 Wavelet Thresholding	
		11.3.2 Wavelet and Curvelet Image Denoising	
		11.3.3 Audio Denoising by Time-Frequency Thresholding.	
	11.4	Nondiagonal Block Thresholding	
		11.4.1 Block Thresholding in Bases and Frames	
		11.4.2 Wavelet Block Thresholding	
		11.4.3 Time-Frequency Audio Block Thresholding	
	11.5	Denoising Minimax Optimality	
		11.5.1 Linear Diagonal Minimax Estimation	
		11.5.2 Thresholding Optimality over	
		Orthosymmetric Sets	. 590
		11.5.3 Nearly Minimax with Wavelet Estimation	. 595
	11.6	Exercises	. 606
CHAPTER	12	Sparsity in Redundant Dictionaries	611
	12.1	Ideal Sparse Processing in Dictionaries	. 611
		12.1.1 Best <i>M</i> -Term Approximations	
		12.1.2 Compression by Support Coding	
		12.1.3 Denoising by Support Selection in a Dictionary	
	12.2	Dictionaries of Orthonormal Bases	
		12.2.1 Approximation, Compression, and Denoising	
		in a Best Basis	
		12.2.2 Fast Best-Basis Search in Tree Dictionaries	
		12.2.3 Wavelet Packet and Local Cosine Best Bases	
		12.2.4 Bandlets for Geometric Image Regularity	
	12.3	Greedy Matching Pursuits	
		12.3.1 Matching Pursuit	
		12.3.2 Orthogonal Matching Pursuit	
		12.3.3 Gabor Dictionaries	
		12.3.4 Coherent Matching Pursuit Denoising	655

	12.4	1 ¹ Pursuits	659
		12.4.1 Basis Pursuit	659
		12.4.2 1 ¹ Lagrangian Pursuit	664
		12.4.3 Computations of l ¹ Minimizations	668
		12.4.4 Sparse Synthesis versus Analysis and Total	
		Variation Regularization	673
	12.5	Pursuit Recovery	677
		12.5.1 Stability and Incoherence	677
		12.5.2 Support Recovery with Matching Pursuit	
		12.5.3 Support Recovery with 1 ¹ Pursuits	684
	12.6	Multichannel Signals	688
		12.6.1 Approximation and Denoising by Thresholding	
		in Bases	689
		12.6.2 Multichannel Pursuits	690
	12.7	Learning Dictionaries	693
	12.8	Exercises	696
CHAPTER	13	Inverse Problems	699
J.,,,, , L.,	13.1	Linear Inverse Estimation	
	13.1	13.1.1 Quadratic and Tikhonov Regularizations	
		13.1.2 Singular Value Decompositions	
	13.2	Thresholding Estimators for Inverse Problems	
	19.2	13.2.1 Thresholding in Bases of Almost Singular Vectors	
		13.2.2 Thresholding Deconvolutions	
	13.3	Super-resolution	
	13.3	13.3.1 Sparse Super-resolution Estimation	
		13.3.2 Sparse Spike Deconvolution	
		13.3.3 Recovery of Missing Data	
	13.4	Compressive Sensing	
	13.1	13.4.1 Incoherence with Random Measurements	
		13.4.2 Approximations with Compressive Sensing	
		13.4.3 Compressive Sensing Applications	
	13.5	Blind Source Separation	
	13.5	13.5.1 Blind Mixing Matrix Estimation	
		13.5.2 Source Separation	
	13.6	Exercises	
APPENDIX	х м	athematical Complements	753
		·	
Bibliogra	phy		765
Indev			705

Preface to the Sparse Edition

I cannot help but find striking resemblances between scientific communities and schools of fish. We interact in conferences and through articles, and we move together while a global trajectory emerges from individual contributions. Some of us like to be at the center of the school, others prefer to wander around, and a few swim in multiple directions in front. To avoid dying by starvation in a progressively narrower and specialized domain, a scientific community needs also to move on. Computational harmonic analysis is still very much alive because it went beyond wavelets. Writing such a book is about decoding the trajectory of the school and gathering the pearls that have been uncovered on the way. Wavelets are no longer the central topic, despite the previous edition's original title. It is just an important tool, as the Fourier transform is. Sparse representation and processing are now at the core.

In the 1980s, many researchers were focused on building time-frequency decompositions, trying to avoid the uncertainty barrier, and hoping to discover the ultimate representation. Along the way came the construction of wavelet orthogonal bases, which opened new perspectives through collaborations with physicists and mathematicians. Designing orthogonal bases with Xlets became a popular sport with compression and noise-reduction applications. Connections with approximations and sparsity also became more apparent. The search for sparsity has taken over, leading to new grounds where orthonormal bases are replaced by redundant dictionaries of waveforms.

During these last seven years, I also encountered the industrial world. With a lot of naiveness, some bandlets, and more mathematics, I cofounded a start-up with Christophe Bernard, Jérome Kalifa, and Erwan Le Pennec. It took us some time to learn that in three months good engineering should produce robust algorithms that operate in real time, as opposed to the three years we were used to having for writing new ideas with promising perspectives. Yet, we survived because mathematics is a major source of industrial innovations for signal processing. Semiconductor technology offers amazing computational power and flexibility. However, ad hoc algorithms often do not scale easily and mathematics accelerates the trial-and-error development process. Sparsity decreases computations, memory, and data communications. Although it brings beauty, mathematical understanding is not a luxury. It is required by increasingly sophisticated information-processing devices.

New Additions

Putting sparsity at the center of the book implied rewriting many parts and adding sections. Chapters 12 and 13 are new. They introduce sparse representations in redundant dictionaries, and inverse problems, super-resolution, and

compressive sensing. Here is a small catalog of new elements in this third edition:

- Radon transform and tomography
- Lifting for wavelets on surfaces, bounded domains, and fast computations
- JPEG-2000 image compression
- Block thresholding for denoising
- Geometric representations with adaptive triangulations, curvelets, and bandlets
- Sparse approximations in redundant dictionaries with pursuit algorithms
- Noise reduction with model selection in redundant dictionaries
- Exact recovery of sparse approximation supports in dictionaries
- Multichannel signal representations and processing
- Dictionary learning
- Inverse problems and super-resolution
- Compressive sensing
- Source separation

Teaching

This book is intended as a graduate-level textbook. Its evolution is also the result of teaching courses in electrical engineering and applied mathematics. A new website provides software for reproducible experimentations, exercise solutions, together with teaching material such as slides with figures and MATLAB software for numerical classes of http://wavelet-tour.com.

More exercises have been added at the end of each chapter, ordered by level of difficulty. Level¹ exercises are direct applications of the course. Level² exercises requires more thinking. Level³ includes some technical derivation exercises. Level⁴ are projects at the interface of research that are possible topics for a final course project or independent study. More exercises and projects can be found in the website.

Sparse Course Programs

The Fourier transform and analog-to-digital conversion through linear sampling approximations provide a common ground for all courses (Chapters 2 and 3). It introduces basic signal representations and reviews important mathematical and algorithmic tools needed afterward. Many trajectories are then possible to explore and teach sparse signal processing. The following list notes several topics that can orient a course's structure with elements that can be covered along the way.

Sparse representations with bases and applications:

- Principles of linear and nonlinear approximations in bases (Chapter 9)
- Lipschitz regularity and wavelet coefficients decay (Chapter 6)
- Wavelet bases (Chapter 7)
- Properties of linear and nonlinear wavelet basis approximations (Chapter 9)
- Image wavelet compression (Chapter 10)
- Linear and nonlinear diagonal denoising (Chapter 11)

Sparse time-frequency representations:

- Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter 4)
- Local cosine bases (Chapter 8)
- Linear and nonlinear approximations in bases (Chapter 9)
- Audio compression (Chapter 10)
- Audio denoising and block thresholding (Chapter 11)
- Compression and denoising in redundant time-frequency dictionaries with best bases or pursuit algorithms (Chapter 12)

Sparse signal estimation:

- Bayes versus minimax and linear versus nonlinear estimations (Chapter 11)
- Wavelet bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Thresholding estimation (Chapter 11)
- Minimax optimality (Chapter 11)
- Model selection for denoising in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)

Sparse compression and information theory:

- Wavelet orthonormal bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Compression and sparse transform codes in bases (Chapter 10)
- Compression in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)
- Source separation (Chapter 13)

Dictionary representations and inverse problems:

- Frames and Riesz bases (Chapter 5)
- Linear and nonlinear approximations in bases (Chapter 9)
- Ideal redundant dictionary approximations (Chapter 12)
- Pursuit algorithms and dictionary incoherence (Chapter 12)
- Linear and thresholding inverse estimators (Chapter 13)
- Super-resolution and source separation (Chapter 13)
- Compressive sensing (Chapter 13)

Geometric sparse processing:

- Time-frequency spectral lines and ridges (Chapter 4)
- Frames and Riesz bases (Chapter 5)
- Multiscale edge representations with wavelet maxima (Chapter 6)
- Sparse approximation supports in bases (Chapter 9)
- Approximations with geometric regularity, curvelets, and bandlets (Chapters 9 and 12)
- Sparse signal compression and geometric bit budget (Chapters 10 and 12)
- Exact recovery of sparse approximation supports (Chapter 12)
- Super-resolution (Chapter 13)

ACKNOWLEDGMENTS

Some things do not change with new editions, in particular the traces left by the ones who were, and remain, for me important references. As always, I am deeply grateful to Ruzena Bajcsy and Yves Meyer.

I spent the last few years with three brilliant and kind colleagues—Christophe Bernard, Jérome Kalifa, and Erwan Le Pennec—in a pressure cooker called a "start-up." Pressure means stress, despite very good moments. The resulting sauce was a blend of what all of us could provide, which brought new flavors to our personalities. I am thankful to them for the ones I got, some of which I am still discovering.

This new edition is the result of a collaboration with Gabriel Peyré, who made these changes not only possible, but also very interesting to do. I thank him for his remarkable work and help.

Stéphane Mallat

Notations

$\langle f,g angle$	Inner product (A.6)
f	Euclidean or Hilbert space norm
$ f _1$	\mathbf{L}^{1} or \mathbf{l}^{1} norm
$ f _{\infty}$	\mathbf{L}^{∞} norm
	Order of: there exists K such that $f[n] \leq Kg[n]$
f[n] = o(g[n])	Small order of: $\lim_{n \to +\infty} \frac{f[n]}{g[n]} = 0$
$f[n] \sim g[n]$	Equivalent to: $f[n] = O(g[n])$ and $g[n] = O(f[n])$
$A < +\infty$	A is finite
$A\gg B$	A is much bigger than B
z^*	Complex conjugate of $z \in \mathbb{C}$
$\lfloor x \rfloor$	Largest integer $n \le x$
$\lceil x \rceil$	Smallest integer $n \ge x$
$(x)_+$	$\max(x,0)$
$n \operatorname{mod} N$	Remainder of the integer division of n modulo N
Sets	
\mathbb{N}	Positive integers including 0
\mathbb{Z}	Integers
\mathbb{R}	Real numbers
\mathbb{R}^+	Positive real numbers
\mathbb{C}	Complex numbers
$ \Lambda $	Number of elements in a set Λ
Signals	
f(t)	Continuous time signal
f[n]	Discrete signal
$\delta(t)$	Dirac distribution (A.30)
$\delta[n]$	Discrete Dirac (3.32)
$1_{[a,b]}$	Indicator of a function that is 1 in $[a, b]$ and 0 outside
Spaces	
\mathbf{C}_0	Uniformly continuous functions (7.207)
\mathbf{C}_{b}	p times continuously differentiable functions
\mathbf{C}_{∞}	Infinitely differentiable functions
$\mathbf{W}^s(\mathbb{R})$	Sobolev ^s times differentiable functions (9.8)
$\mathbf{L}^2(\mathbb{R})$	Finite energy functions $\int f(t) ^2 dt < +\infty$
$\mathbf{L}^{\mathbf{p}}(\mathbb{R})$	Functions such that $\int f(t) ^p dt < +\infty$
$\ell^2(\mathbb{Z})$	Finite energy discrete signals $\sum_{n=0}^{+\infty} f[n] ^2 < +\infty$
$\ell^p(\mathbb{Z})$	Finite energy discrete signals $\sum_{n=-\infty}^{+\infty} f[n] ^2 < +\infty$ Discrete signals such that $\sum_{n=-\infty}^{+\infty} f[n] ^p < +\infty$
\mathbb{C}^N	Complex signals of size N
U⊕V	Direct sum of two vector spaces
	Direct built of two vector spaces

xix

 $U \otimes V$ Tensor product of two vector spaces (A.19)

Operators

Id	Identity
$f^{'}(t)$	Derivative $\frac{df(t)}{dt}$
$f^{(p)}(t)$	Derivative $\frac{d^{p}f(t)}{dt^{p}}$ of order p
$\vec{\nabla} f(x, y)$	Gradient vector (6.51)

 $f \star g(t)$ Continuous time convolution (2.2)

 $f \star g[n]$ Discrete convolution (3.33) $f \otimes g[n]$ Circular convolution (3.73)

Transforms

$\hat{f}(\omega)$	Fourier transform (2.6), (3.39)
$\hat{f}[k]$	Discrete Fourier transform (3.49)

Sf(u, s) Short-time windowed Fourier transform (4.11)

 $P_S f(u, \xi)$ Spectrogram (4.12) W f(u, s) Wavelet transform (4.31) $P_W f(u, \xi)$ Scalogram (4.55)

 $P_V f(u, \xi)$ Wigner-Ville distribution (4.120)

Probability

X Random variable $E\{X\}$ Expected value $\mathcal{H}(X)$ Entropy (10.4)

 $\mathcal{H}_d(X)$ Differential entropy (10.20)

 $Cov(X_1, X_2)$ Covariance (A.22) F[n] Random vector

 $R_F[k]$ Autocovariance of a stationary process (A.26)

A Wavelet Tour of Signal Processing