STA 250 Homework 1

Yichuan Wang

Problem 2

(i)

$$Y_i | \beta \sim \text{Binomial}(m_i, \text{logit}^{-1}(x_i^T \beta)), \beta \in \mathbb{R}^p$$

So we have

$$p(y_i|\beta) = \binom{m_i}{y_i} \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}}\right)^{y_i} \left(1 - \frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}}\right)^{m_i - y_i}$$
$$= \binom{m_i}{y_i} \frac{e^{(x_i^T \beta)y_i}}{(1 + e^{x_i^T \beta})^{m_i}}$$

Then

$$p(\mathbf{y}|\beta) \propto \frac{\exp(\sum_{i=1}^{n} (x_i^T \beta) y_i)}{\prod_{i=1}^{n} (1 + e^{x_i^T \beta})^{m_i}}$$

and

$$p(\beta) \propto \exp[-\frac{1}{2}(\beta - \mu_0)^T \Sigma_0^{-1}(\beta - \mu_0)]$$

So the posterior is, up to proportionality

$$p(\beta|\mathbf{y}) \propto \frac{\exp[\sum_{i=1}^{n} (x_i^T \beta) y_i - \frac{1}{2} (\beta - \mu_0)^T \sum_{i=1}^{n} (\beta - \mu_0)]}{\prod_{i=1}^{n} (1 + e^{x_i^T \beta})^{m_i}}$$

We may take logarithm of the proportional posterior for calculation, which is

$$\sum_{i=1}^{n} (x_i^T \beta) y_i - \frac{1}{2} (\beta - \mu_0)^T \Sigma_0^{-1} (\beta - \mu_0) - \sum_{i=1}^{n} m_i \log(1 + e^{x_i^T \beta})$$

(ii) In this problem, I used the Metropolis-Hastings-within-Gibbs to generate

the Markov chain for posterior distribution. The proposal distribution was

$$\begin{pmatrix} \beta_0^{(t)} \\ \beta_1^{(t)} \end{pmatrix} \mid \begin{pmatrix} \beta_0^{(t-1)} \\ \beta_1^{(t-1)} \end{pmatrix} \sim N(\begin{pmatrix} \beta_0^{(t-1)} \\ \beta_1^{(t-1)} \end{pmatrix}, \begin{pmatrix} v_0 & 0 \\ 0 & v_1 \end{pmatrix})$$

The algorithm was performed as the following:

- (1) Set initial values $\beta_0^{(0)} = 0$, $\beta_1^{(0)} = 0$, t = 0, $v_0 = v_1 = 1$. (2) Let $\beta_0^{(t+1)} = \beta_0^{(t)}$, $\beta_1^{(t+1)} = \beta_1^{(t)}$, sample $\beta_0^{(t+1)}$ from $N(\beta_0^{(t)}, v_0)$. (3) Compute the logarithm posterior of $\begin{pmatrix} \beta_0^{(t+1)} \\ \beta_1^{(t+1)} \end{pmatrix} | \begin{pmatrix} \beta_0^{(t)} \\ \beta_1^{(t)} \end{pmatrix}$, $\log \pi(\beta^{(t+1)} | \beta^{(t)})$, as well as the logarithm posterior of $\begin{pmatrix} \beta_0^{(t)} \\ \beta_1^{(t)} \end{pmatrix} | \begin{pmatrix} \beta_0^{(t+1)} \\ \beta_1^{(t+1)} \end{pmatrix}$, $\log \pi(\beta^{(t)} | \beta^{(t+1)})$.

- (4) Since we are using a symmetric proposal distribution, we have $\log \alpha =$ $\log \pi(\beta^{(t)}|\beta^{(t-1)}) - \log \pi(\beta^{(t-1)}|\beta^{(t)})$. (5) According to MH algorithm, when $\alpha > 1$, we always accept sample; when $\alpha < 1$, we accept with probability α .
- (6) After updating (accepting or rejecting sample) $\beta_0^{(t+1)}$, we sample $\beta_1^{(t+1)}$ from $N(\beta_1^{(t)}, v_1)$ and repeat steps (3) to (5) to update it.
- (7) Set t = t + 1, repeat steps (2) through (6) until desired iterations or convergence.

For each dataset, 10000 iterations was performed

	beta_0	beta_1
p_01	0.01	0.01
$p_{-}05$	0.07	0.03
$p_{-}10$	0.10	0.06
$p_{-}25$	0.27	0.20
$p_{-}50$	0.52	0.48
p75	0.76	0.77
$p_{-}90$	0.92	0.88
$p_{-}95$	0.94	0.95
p_99	0.99	0.99