Equilibrium in Misspecified Markov Decision Processes

Ignacio Esponda & Demian Pouzo TE 2021

May 30, 2025

• MDP(Q)

$$v(x) = \max_{a \in \Gamma(x)} \int \left[r(x, a, x') + \beta v(x') \right] Q(x, a, dx')$$

where Q is the true transition kernel

- ullet Consider an agent is uncertain about the true Q
- They introduce $SMDP(Q, \mathbb{Q})$
 - 1. MDP(Q) with the true Q
 - 2. a nonempty family of transition kernels $\mathbb{Q} \coloneqq \{Q_{\theta} \colon \theta \in \Theta\}$
- Each period: observe x, choose a, and then update belief $\mu \in \mathcal{D}(\Theta)$
- Research question: how to describe the agent's steady-state behavior?
- Their answer: define 'Berk-Nash equilibrium' (some $m \in \mathcal{D}(\mathsf{G})$)

My intuition

- 1. Nobody knows the true relationship between Y and X
- 2. For simplification, people study $Y = \beta X + \varepsilon$
- 3. Question: what's the best β ?
- 4. Answer: OLS is the best linear!

Definition

A distribution over state-action pairs $m \in \mathcal{D}(\mathsf{G})$ is a *Berk-Nash equilibrium* of the SMDP(Q, \mathbb{Q}) if the following conditions hold:

- 1. There exists a belief $\mu \in \mathcal{D}(\Theta)$ such that
 - 1.1 *Optimality*. (best on average)

For all $(x, a) \in G$ such that m(x, a) > 0, a is optimal given x in the MDP(\overline{Q}_{μ}), where

$$\bar{Q}_{\mu} = \int Q_{\theta} \mu(\mathrm{d}\theta)$$

- 1.2 Belief Restriction.
- 2. Stationarity.

Definition

A distribution over state-action pairs $m \in \mathcal{D}(\mathsf{G})$ is a Berk-Nash equilibrium of the SMDP(Q, \mathbb{Q}) if the following conditions hold:

- 1. There exists a belief $\mu \in \mathcal{D}(\Theta)$ such that
 - 1.1 Optimality.
 - 1.2 Belief Restriction. (closest to true)

$$\mu \in \mathscr{D}(\operatorname*{argmin}_{\theta \in \Theta} K_Q(m,\theta))$$

where

$$K_Q(m,\theta) \coloneqq \sum_{(x,a) \in \mathsf{G}} \mathbb{E}^Q_{(x,a)} \left[\log \left(\frac{Q(x,a,x')}{Q_{\theta}(x,a,x')} \right) \right] m(x,a)$$

is weighted Kullback-Leibler divergence

2. Stationarity.

Definition

A distribution over state-action pairs $m \in \mathcal{D}(\mathsf{G})$ is a Berk-Nash equilibrium of the SMDP(Q, \mathbb{Q}) if the following conditions hold:

- 1. There exists a belief $\mu \in \mathcal{D}(\Theta)$ such that
 - 1.1 Optimality.
 - 1.2 Belief Restriction.
- Stationarity. (m_X is stationary if choosing the optimal action)
 For all x' ∈ X.

$$m_{\mathsf{X}}(x') = \sum_{(x,a)\in\mathsf{G}} Q(x,a,x')m(x,a)$$
$$= \sum_{(x,a)\in\mathsf{G}} Q(x,a,x')m_{\mathsf{A}|\mathsf{X}}(a|x)m_{\mathsf{X}}(x)$$

Existence

Theorem 1

If the following regularity conditions hold

- 1. The parameter space Θ is a compact subset of an Euclidean space
- 2. The map $\theta \mapsto Q_{\theta}(x, a, x')$ is continuous for any $(x, a, x') \in G \times X$
- 3. There is a dense set $\hat{\Theta} \subseteq \Theta$ such that, for all $\theta \in \hat{\Theta}$ and $(x, a, x') \in$ $G \times X$.

$$Q(x, a, x') > 0$$
 implies $Q_{\theta}(x, a, x') > 0$

then there exists a Berk-Nash equilibrium for $SMDP(Q, \mathbb{Q})$

Identification

Proposition 2

Let m be a Berk-Nash equilibrium of the SMDP(Q, \mathbb{Q}). If the following conditions hold

- 1. $Q \in \mathbb{Q}$
- 2. for any $\theta, \theta' \in \operatorname{argmin}_{\theta \in \Theta} K_Q(m, \theta)$ and $(x, a) \in G$

$$Q_{\theta}(x, a, \cdot) = Q_{\theta'}(x, a, \cdot)$$

then for all (x,a) in the support of $m,\ a$ is optimal given x in the MDP(Q)

 $average = true \rightarrow best on average = best on true$

Question: Under which condition the agent's steady-state behavior can be represented by a Berk-Nash equilibrium?

• The Bayesian agent's problem

$$v(x,\mu) = \max_{a \in \Gamma(x)} \int \left\{ r(x,a,x') + \beta v(x',\mu') \right\} \bar{Q}_{\mu}(x,a,\mathrm{d}x')$$

- policy $\sigma: X \times \mathcal{D}(\Theta) \to \mathcal{D}(A)$
- optimal policy σ : for any $(x, \mu, a) \in X \times \mathcal{D}(\Theta) \times A$

$$\sigma(x, \mu, a) > 0$$
 implies a is a maximizer given (x, μ)

The convergence of time average

Notion of steady state: time average converges

- Let SMDP(Q, \mathbb{Q}) be regular and let σ be an optimal policy
- Let $m_t(h)$ be the frequency of state-action pairs up to time t
- Let \mathbb{P}^{σ} be the probability distribution over histories induced by σ
- Suppose that there exists a positive \mathbb{P}^{σ} -measure set \mathscr{H} such that $m_t(h) \to m$ for all histories $h \in \mathscr{H}$ (So it does not imply uniqueness!!!)

If one of the following two conditions holds, then m is a Berk-Nash equilibrium of SMDP(Q,\mathbb{Q})

1. iid \rightarrow stationary r and all Q_{θ} do not depend on current state x, and for any $\theta, \theta' \in \operatorname{argmin}_{\theta \in \Theta} K_{Q}(m, \theta)$

$$Q_{\theta}(x, a, \cdot) = Q_{\theta'}(x, a, \cdot), \quad m - a.e.$$

2. unique closest \to 100% believe \to equilibrium for any $\theta, \theta' \in \operatorname{argmin}_{\theta \in \Theta} K_Q(m, \theta)$ and $(x, a) \in \mathsf{G}$

$$Q_{\theta}(x, a, \cdot) = Q_{\theta'}(x, a, \cdot)$$