From week 5 lab.
arthmetic on welficients is done
Evaluate the product polynomial.
$(2^{2}+2n+9)\cdot(2^{3}+102^{2}+2+7)$
$= \chi^{5} + 10 \chi^{4} + \chi^{3} + 7 \chi^{2}$ $= \chi^{5} + 10 \chi^{4} + \chi^{3} + 7 \chi^{2}$ $= \chi^{5} + 10 \chi^{4} + \chi^{3} + 7 \chi^{2}$
$\frac{2x^{4} + 20x^{3} + 2x^{2} + 4x + 1}{9x^{3} + 2x^{2} + 9x + 1}$
$9.10=90$ $= 2 \text{ mod } 11.$ $1.5 + x^4 + 8x^3 + x + 1$
1.7=56 = 1 mod 11 El mod 11 Officients modulo!!
30 = 8 mid l $1 = 0 mid l$

Working in GF(28) The modulus polynomial for GF(28)

 $| M(n) = \chi^{8} + \chi^{4} + \chi^{3} + \chi + 1$ Counter p(n) = n + n + n + 1 1- Confirm that g(d(m(n),p(n))=1ugug Endidean algorthm. 2. Find P'whin Gt (28). E.A. The first poly. division with remembles will book like. $fr \text{ Nome } polys \text{ } q_1, r_1 \text{ where}$ Leg(r) < dog(P) = 5 well construct quit step by step. $\frac{18 + 14 + 13 + 11 + 11}{2} = \frac{1}{2} \left(\frac{15 + 13 + 12 + 1}{1} \right) + \frac{7}{4}$ $= \chi^8 + \chi^6 + \chi^5 + \chi^6 + \chi^5 + \chi^4 + \chi + 1, (4)$ $= x^3 p + \chi (x^5 + x^3 + x^2 + 1) + \frac{7}{3}$ $= \chi_{7}^{3} + \chi_{6}^{6} + \chi_{4}^{4} + \chi_{3}^{3} + \chi_{4}^{4} + \chi_{5}^{2} + \chi_{7}^{3} + \chi_{7}^{4} + \chi_$ $=(\cancel{x}+\cancel{x})\cancel{7}+\cancel{x}+\cancel{x}+\cancel{x}+1$

 $= (x^5 + x^2 + x$ = (3 + 11)7 + 12 = m(1) = (1 + 1)7 + 12 = m(1)So we have the first polynomial = deg(p)

division fish remainder for E.A. The E.A. will coutsure with. P = 9211 + 12.There deg(12) < deg(1)Discover 92, (step-by-step) straight $\pi + \pi + 1 = (\pi^3 + \chi + 1) \chi$ + So 92 = n2 + n+1 and 12 = 1. (2) So the owe E. A ends here and the fund remember on 1 50 therefore gcd(m(n),p(n))=1.

to obtain p'und m(n), ie. p' within Cit (28), we head to carply the extended Eudidean algorithm. The From (2) we get $1 = P + (\vec{x} + \chi + 1) \chi$ $= P + (n^3 + n + 1)(m + (n^3 + n + 1))$) Sulichtuded for 27 from (1). $=(\chi^2+\chi+1)M+$ ((3+n+1)(3+2+1)+1)P. 3 + n + 1) M $+ (n^{6} + n^{4} + n^{3} + n^{4} + n^{2} + n^{4} + n^{2} + n^{4}) P$ $=(\chi^3+\eta+1)M$ $=(x^3+n+1)M+(n+x^2)$

From this so we see that $p'' = \left[\frac{1}{12} + \frac{1}{12} \right]$