```
import pandas as pd

# Загрузка данных

file_path = 'Downloads/github_dataset.csv'

data = pd.read_csv(file_path)
```

Отображение первых строк датасета для определения числовых признаков data. head ()

	repositories	${\tt stars_count}$	${\tt forks_count}$	issues_count	pull_requests	contributors	language
0	octocat/Hello-World	0	0	612	316	2	NaN
1	EddieHubCommunity/support	271	150	536	6	71	NaN
2	ethereum/aleth	0	0	313	27	154	C++
3	localstack/localstack	0	0	290	30	434	Python
4	education/classroom	0	589	202	22	67	Ruby

from sklearn.preprocessing import MinMaxScaler

- # 选择一个特征进行 MinMax 缩放 feature = data[['stars_count']]
- # 初始化 MinMaxScaler scaler = MinMaxScaler()
- # 应用 MinMax 缩放 scaled_feature = scaler.fit_transform(feature)
- # 将缩放后的数据添加回原始 DataFrame
- data['stars_count_scaled'] = scaled_feature
 # 显示前几行以确认缩放效果
- # 显示前几行以确认缩放效果data.head()

\Rightarrow		repositories	stars_count	forks_count	issues_count	pull_requests	contributors	language	stars_count_scaled
	0	octocat/Hello-World	0	0	612	316	2	NaN	0.000000
	1	EddieHubCommunity/support	271	150	536	6	71	NaN	0.272362
	2	ethereum/aleth	0	0	313	27	154	C++	0.000000
	3	localstack/localstack	0	0	290	30	434	Python	0.000000
	1	adjustion/classroom		EOO	າດາ	າາ	67	Duby	0.000000

import matplotlib.pyplot as plt

```
# 绘制原始值和缩放后的值
plt.figure(figsize=(10, 6))
```

plt.subplot(1, 2, 1)
plt.hist(data['stars_count'], bins=20, color='blue', alpha=0.7)
plt.title('Original "stars_count"')

plt.subplot(1, 2, 2)

plt.hist(data['stars_count_scaled'], bins=20, color='green', alpha=0.7)

plt.title('Scaled "stars_count"')

plt.tight_layout()
plt.show()

Набор данных содержит следующие числовые характеристики: stars_count, forks_count, lssues_count, pull_requests, участники. Мы будем масштабировать одну из функций, используя масштабирование MinMax. Если взять в качестве примера stars_count, масштабирование MinMax преобразует все значения между 0 и 1.

Применив масштабирование MinMax к функции stars_count, мы успешно масштабировали ее значение до значения от 0 до 1. Например, stars_count склада EddieHubCommunity/support имеет масштабированное значение 0,272, в то время как у некоторых других складов масштабированное значение равно 0, поскольку их stars_count равно 0.

График слева показывает исходное распределение значений функции stars_count, а график справа показывает распределение значений после применения масштабирования MinMax. При масштабировании MinMax значения stars_count успешно преобразуются между 0 и 1, сохраняя при этом форму исходного распределения. Такое масштабирование часто помогает повысить производительность моделей машинного обучения, особенно в алгоритмах, включающих вычисления расстояний.

```
import pandas as pd

# Загрузка данных
file_path = 'Downloads/github_dataset.csv'
data = pd.read_csv(file_path)

# Отображение первых строк датасета для определения числовых признаков
data.head()
```

	repositories	stars_count	forks_count	issues_count	pull_request
0	octocat/Hello-World	0	0	612	31
1	EddieHubCommunity/support	271	150	536	
2	ethereum/aleth	0	0	313	2
3	localstack/localstack	0	0	290	1
A	aducation/classroom	^	EOU	202	•

```
# Исключаем категориальные признаки numeric_data = data.select_dtypes(include=['int64', 'float64'])
```

Вычисляем матрицу корреляции correlation_matrix = numeric_data.corr()

correlation_matrix

	stars_count	forks_count	issues_count	pull_requests	contributors
stars_count	1.000000	0.250037	0.060943	-0.004548	0.059866
forks_count	0.250037	1.000000	0.123204	0.048063	0.263042
issues_count	0.060943	0.123204	1.000000	0.324541	0.382578
pull_requests	-0.004548	0.048063	0.324541	1.000000	0.183981
contributors	0.059866	0.263042	0.382578	0.183981	1.000000

```
import seaborn as sns
import matplotlib.pyplot as plt

# Установим размер графика
plt.figure(figsize=(10, 8))

# Создаем тепловую карту для матрицы корреляции
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

# Установим заголовок
plt.title('Матрица корреляции признаков')

plt.show()
```


Датасет содержит следующие столбцы:

repositories: Название репозитория (категориальный признак) stars_count: Количество звезд (числовой признак) forks_count: Количество форков (числовой признак) issues_count: Количество проблем (числовой признак) pull_requests: Количество pull запросов (числовой признак) contributors: Количество участников (числовой признак) language: Язык программирования (категориальный признак) В дальнейшем, для анализа корреляции, будут использоваться только числовые признаки, так как корреляция Пирсона не применима к категориальным данным. Язык программирования и название репозитория будут исключены из анализа.

Давайте вычислим матрицу корреляции для числовых признаков.

Матрица корреляции показывает следующие взаимосвязи между числовыми признаками:

Количество звезд (stars_count) слабо коррелирует с количеством форков (forks_count) с коэффициентом корреляции 0.25. Это указывает на небольшую прямую связь между популярностью репозитория и количеством его форков. Существует умеренная корреляция между количеством проблем (issues_count) и количеством pull запросов (pull_requests), коэффициент корреляции

составляет 0.32. Это может указывать на то, что репозитории с большим количеством проблем чаще обновляются или модифицируются через pull запросы. Количество участников (contributors) умеренно коррелирует с количеством проблем (issues_count) с коэффициентом 0.38 и с количеством форков (forks_count) с коэффициентом 0.26, что может указывать на активное участие сообщества в репозиториях с большим количеством форков и проблем. В целом, данные показывают, что большая часть признаков имеет слабую или умеренную корреляцию друг с другом. Это означает, что большинство признаков могут быть полезны при моделировании, так как они не дублируют информацию друг друга. Однако выбор конкретных признаков для модели зависит от задачи и требует дополнительного анализа в контексте конкретного исследования или модели машинного обучения.

На тепловой карте матрицы корреляции представлены коэффициенты корреляции между числовыми признаками датасета. Цвета указывают на силу и направление корреляции: красные цвета обозначают положительную корреляцию, синие — отрицательную, а интенсивность цвета соответствует силе корреляции. Как видно, большинство признаков имеют положительную корреляцию друг с другом, при этом наиболее заметная корреляция наблюдается между количеством проблем (issues_count) и количеством pull запросов (pull_requests), а также между количеством участников (contributors) и количеством проблем (issues_count).

```
import matplotlib.pyplot as plt

# Построение графика "Ящик с усами (boxplot)"

plt.figure(figsize=(10, 6))

plt.boxplot(data['stars_count'], vert=False) # вертикальное отображение для лучшей визуализации

plt.title('Распределение количества звёзд у репозиториев')

plt.xlabel('Количество звёзд')

plt.yticks([]) # Убираем метки по оси Ү для чистоты визуализации

plt.show()
```


На графике "Ящик с усами" выше показано распределение количества звёзд у репозиториев. Центральная линия внутри "ящика" обозначает медиану количества звёзд. Границы "ящика" отображают первый и третий квартили, а "усы" могут расширяться до крайних точек данных, которые не считаются выбросами. Точки за пределами "усов" указывают на потенциальные выбросы в данных.