STATISTICS WITH GAUSSIANS

10.22.2018

Department of Neuroscience PIZZA WITH PROFESSORS presents:

Student Organizations... How can I (you) get involved?

Pizza and panel discussion

All are welcome!

Meet friends!

Get involved!

Monday October 22 5:00 p.m. NHB 1.720

RECAP

- * central limit theorem!
- * gaussian distribution
- * gaussian transformations
- * estimating mean & variance from sample

SCIPY.STATS.NORM

- * scipy.stats has many useful functions
- * from scipy.stats import norm
 - * norm.pdf the probability density function
 - * norm.cdf the cumulative density function
 - * norm.sf "survival function" (1 cdf)
 - * norm.isf inverse survival function
- * all functions assume a standard normal unless you give them extra arguments!

GAUSSIAN STANDARD ERROR

- * if we have samples from a Gaussian we can always use bootstrapping to find the standard error
- * but, like the binomial distribution, there is also an analytic solution for the standard error:

$$SE = \frac{s}{\sqrt{n}}$$

- * suppose we have X~N(0,1), a standard normal RV
- * what's its 95% confidence interval? (i.e.
 what is the interval [a,b] where 95% of
 the samples from X will fall between a
 and b?)

* for [a,b] we want a to be the 2.5th %-ile and b to be the 97.5th %-ile

* SO:

- * for [a,b] we want a to be the 2.5th %-ile and b to be the 97.5th %-ile
- * so: a=norm.isf(0.975), b=norm.isf(0.025)

* for a standard normal, the 95% confidence interval is almost exactly [-1.96, 1.96]

* suppose we have a sample from a gaussian RV with sample mean μ and sample variance s^2 , what's the 95% confidence interval for the true mean?

*

* suppose we have a sample from a gaussian RV with sample mean μ and sample variance s^2 , what's the 95% confidence interval for the true mean?

```
* [\mu - 1.96*SE, \mu + 1.96*SE]
```

GAUSSIAN Z-TEST

- * recall the definition of the p-value: the probability of observing a result at least as extreme as your actual result
- * to test whether a particular value is unlikely under a gaussian distribution, we can evaluate the CDF of that distribution!

GAUSSIAN Z-TEST

- * e.g. we know that a specific voxel recorded with fMRI has a background response of μ =0.5 and σ^2 =1.7
- * we record a response of x=2.4. is this significantly <u>higher</u> than the background response?

GAUSSIAN Z-TEST

- * first we compute a "z-score" for x:
 - * $z(x) = (x \mu) / \sigma$
- * then we can compute Pr[X>=x] using
 norm.sf

END