Implementation of ADPLL Networks on FPGAs Final Presentation

Conor Dooley - 14321611

Supervisors: B. Mulkeen & Dr. E. Blokhina

3 May 2018

Motivation

- Want low power, high frequency clocking system for SoCs.
- Want closely sync'ed clocks, characterised using:

Average difference *skew*. Gaussian random process *jitter*.

- Existing solutions limited by power usage at high frequency.
- ADPLL networks can potentially solve this.
- FPGAs can be used to provide a testbed for ADPLL networks.
- Goals:

Produce such a test platform. Investigate its performance.

Existing Solutions

Branch, H, X trees

- Use buffers & delay symmetry.
- Fabrication mismatch problems
 \rightarrow skew, high power usage.

Clock Mesh

- Great timing accuracy.
- Redundancy → very high power draw.

Skew Compensation

- Centralised/Decentralised methods.
- Increases power consumption.

[Zianbetov, 2013]

ADPLL Network

ADPLL network:

ADPLLs generate clock in an area of chip.

Synced via lower freq. error signal between neighbouring PLLs.

Reduces complexity of synchronisation system.

Example node:

[Zianbetov, 2013]

Why FPGAs?

Common verification stage for conventional ASIC designs.

Hardware validation of digital circuitry. Detection of any potential flaws/errors.

- Zianbetov & Shan Used FPGA to validate ADPLL network:
 Unable to replicate mixed-signal blocks.
 Operating frequency much lower.
- Lose precise control over layout.
- Restriction placed on available hardware.
 No gates, only LUTs & primitives.
- Limited mixed-signal circuits are possible.
- Can examine system performance and dynamics.
- Rapid prototyping, minimal cost.

My ADPLL Implementations

- 3 different ADPLL designs examined.
- 5 MHz centre frequency.
- Range from entirely FPGA clock driven to entirely inverter delay based.
- Number of blocks stay the same between designs:
 Error Combiner, Loop Filter, Divider.

Design 1

- FPGA clocked oscillator and phase detector.
- Oscillator implemented by accumulator.
- Phase detector implemented by a statemachine controlling an up-down counter.
- Worst detector/period resolution of the three designs.

Design 2

- Retains FPGA clocked Phase Detector
- Oscillator replaced by inverter chain using primitives.
- Better approximation of mixed-signal circuits.
- Drawback = loss of control.
- Significant improvement in period resolution, $3.875 \text{ ns} \rightarrow \approx 1.1765 \text{ ns}.$

Design 3

- Entirely inverter based, retains RO from ADPLL2.
- SigNum phase detector using inverter primitive TDL.
- Better approximation of mixed-signal circuits.
- Loss of control affects range, not centre freq.
- Detector resolution: 3.875 ns \rightarrow ≈ 0.5883 ns.

ADPLL/Network Performance

- 2x2 & 3x3 implemented with all designs.
- Indep. PLL, uni- & bi-direction mode.
- Compared all three designs in each mode.

- Main comparators: Time Interval Error, C2C jitter & skew.
- ADPLL 3 top performer overall, but greater C2C jitter.
 - C2C jitter \rightarrow D1: 1.95 ns, D2: 0.65 ns, D3: 0.75 ns
 - Peak TIE \rightarrowtail D1: 19.7 ns, D2: 19.1 ns, D3: 9.77 ns
- ADPLL 2 has less C2C jitter as PDet has no variability.
- ADPLL design 1 suffers most from significant skew issues.
 Propagation delay due to resolution?

ADPLL/Network Performance

FPGA Clocked Oscillator

- Period distribution highlights variability missing in clocked oscillator and phase detector designs.
- Variability of inverter based designs \rightarrow ideal for behavioural investigations.

Pierre & Eugene.

- FPGA clocked \rightarrow greaater control, better for design validation.

7ianbetov & Shan.

Minor Variations

- Investigated a number of minor variations in the design.
- Some to justify decisions:
 - Lack of loop filter input delay.
 - Accumulator Width.
- Also to test for expected results:
 - DCO Width Variation
 - LF Comparison with Eugene's results.
 - Impact of feedback divider.

Impact of Divider

Summary

- FPGA based analysis platform for ADPLL network designs.
- Implemented a three ADPLL designs.
- Compared the designs and impact of minor changes.
- Implemented 2x2 and 3x3 ADPLL networks using each of the three designs.
- Proposed suitable use cases for each design.
 - Future Work:
 - Larger network.
 - TDL characterisation.
 - New FPGA clocked DCO (Period Linear).
 - Procedural network instantiation.