Exercise 2.2.3.

Is the product of two topologically transitive systems topologically transitive? (1)

Is a factor of a topologically transitive system topologically transitive? (2)

Proof + reasoning:

I think the statement is false. Let's construct a counterexample, by starting with the simplest non-trivial product of topologically transitive systems, and iterating from there.

Let R_{α} be the circle translation, where α is irrational. (4)

(3)

(6)

(10)

(11)

(13)

It is known that R_{α} is topologically transitive. (5)

 $R_{\alpha} \times R_{\alpha}$ already seems to form a counterexample, since $R_{\alpha} \times R_{\alpha}$ preserves the distance between the components of points in $S^1 \times S^1$.

Let $(a,b) \in S^1 \times S^1$. (7)

If $a \geq b$, then the orbit of (a,b) under $R_{\alpha} \times R_{\alpha}$ is contained in $l_1 \cup l_2$ where

$$l_1 = \{t(a-b,0) + (1-t)(1,b-a+1) : t \in [0,1]\},$$

$$l_2 = \{t(1,b-a+1) + (1-t)(1,b-a+1) : t \in [0,1]\}.$$
(8)

If $b \geq a$, then the same holds with

$$l_1 = \{t(0, a - b + 1) + (1 - t)(b - a, 1) : t \in [0, 1]\},$$

$$l_2 = \{t(b - a, 0) + (1 - t)(1, a - b + 1) : t \in [0, 1]\}.$$
(9)

In both cases, l_1 and l_2 are lines contained in $[0,1) \times [0,1)$. Since these lines are clearly not dense in $S^1 \times S^1$, the forward orbit of (a,b) is not dense in $S^1 \times S^1$. Hence, $R_{\alpha} \times R_{\alpha}$ is not topologically transitive.

Suppose $f: X \to X$ and $g: Y \to Y$ are topological dynamical systems, that π is a topological semiconjugacy from f to g, and that f is topologically transitive with point $x \in X$ with dense forward orbit.

We want to show that the forward orbit of $\pi(x)$ is dense. (12)

Let $U \subseteq Y$ be open. Since π is continuous, $\pi^{-1}(U)$ is open, so by (11), there exists a $k \in \mathbb{N}$ such that $f^k(x) \in \pi^{-1}(U)$.

By (11), $\pi \circ f^k(x) = g^k(\pi(x))$. (14)

By (13) and (14), $g^k(\pi(x)) \in U$, so $\pi(x)$ is dense, hence a factor of a topologically transitive system is topologically transitive. (15)