MATH6320 - Theory of Functions of a Real Variable Assignment 9

Joel Sleeba

December 5, 2024

1. Solution:

(a) Let $r , where <math>r, s \in E$. Then by the convexity of $[r, s] \subset \mathbb{R}$, there is a $t \in [0, 1]$ such that p = tr + (1 - t)s. Then Holder's inequality on $\frac{1}{t}$ and $\frac{1}{(1-t)}$ gives,

$$\int |f|^{p} d\mu = \int |f|^{tr} |f|^{(1-t)s} d\mu
\leq \left(\int |f|^{\frac{tr}{t}} dm \right)^{t} \left(\int |f|^{\frac{(1-t)s}{(1-t)}} dm \right)^{1-t}
= \left(\int |f|^{r} dm \right)^{t} \left(\int |f|^{s} dm \right)^{1-t}
= ||f||_{r}^{rt} ||f||_{s}^{s(1-t)}$$

Thus we get $||f||_p \le ||f||_r^{\frac{rt}{p}} ||f||_s^{\frac{s(1-t)}{p}}$

For the sake of contradiction, assume that $||f||_p > \max\{||f||_r, ||f||_s\}$. Then by the monotonicity of the function $x \to x^k$, where k > 0, we get

$$||f||_p^{\frac{rt}{p}} > ||f||_r^{\frac{rt}{p}} \quad \text{and} \quad ||f||_p^{\frac{s(1-t)}{p}} > ||f||_s^{\frac{s(1-t)}{p}}$$

Then we'll get

$$||f||_p = ||f||_p^{\frac{rt}{p}} ||f||_p^{\frac{s(1-t)}{p}} > ||f||_r^{\frac{rt}{p}} ||f||_s^{\frac{s(1-t)}{p}}$$

contradicting our previous result. Hence we see that $||f||_p \le \max\{||f||_r, ||f||_s\}$

(b) Let $0 < \epsilon$. Consider the set $A_{\epsilon} = \{x \in X : ||f||_{\infty} < |f(x)| + \epsilon\}$. Then

$$\int_{X} |f|^{p} d\mu \ge \int_{A_{\epsilon}} |f|^{p} d\mu$$

$$\ge \int_{A_{\epsilon}} (\|f\|_{\infty} - \epsilon)^{p} d\mu$$

$$= (\|f\|_{\infty} - \epsilon)^{p} \mu(A_{\epsilon})$$

Since we are given that $||f||_{\infty} \in (0, \infty]$, there is an $\varepsilon > 0$ such that $||f||_{\infty} > \varepsilon$. Moreover since $||f||_r < \infty$, the above inequality forces $\mu(A_{\varepsilon}) < \infty$. Then taking power $\frac{1}{p}$ to the above inequality, we get

$$||f||_p \ge (||f||_{\infty} - \epsilon)\mu(A_{\varepsilon})^{\frac{1}{p}}$$

Now taking limits, we get

$$\lim_{p \to \infty} \inf \|f\|_p \ge (\|f\|_{\infty} - \varepsilon)$$

since $\mu(A_{\varepsilon})^{\frac{1}{p}} \to 1$ as $p \to \infty$. Again since $\varepsilon > 0$ was arbitrary, we get

$$\lim_{p \to \infty} \inf \|f\|_p \ge \|f\|_{\infty}$$

Now to get the other inequality, observe that for p > r

$$\int |f|^p d\mu = \int |f|^r |f|^{p-r} d\mu$$

$$\leq ||f||_{\infty}^{p-r} \int |f|^r d\mu$$

Hence we get

$$||f||_p = \left(\int |f|^p \ d\mu\right)^{1/p} \le ||f||_{\infty}^{\frac{p-r}{p}} \left(\int |f|^r \ d\mu\right)^{\frac{1}{p}} = ||f||_{\infty}^{\frac{p-r}{p}} ||f||_r^{\frac{r}{p}}$$

Thus taking limits, we see that

$$\lim_{p \to \infty} \sup \|f\|_p \le \|f\|_{\infty}$$

as $||f||_r^{\frac{r}{p}} \to 0$ as $p \to \infty$ since $||f||_r < \infty$

Combining both the inequalities, we see

$$\lim_{p \to \infty} \sup \|f\|_p \le \|f\|_{\infty} \le \lim_{p \to \infty} \inf \|f\|_p$$

Thus

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$$

- 2. **Solution:** Since $f_n \to f$ in $L^p(\mu)$, there is a subsequence f_{n_k} such that $f_{n_k} \to f$ pointwise everywhere. Let $A \subset X$ such that $\mu(A) = 0$ and $f_{n_k}(x) \to f(x)$ for all $x \in A^c$. Let B be the set such that $\mu(B) = 0$ and $f_n(x) \to g(x)$ for all $x \in B^c$. Therefore $f_{n_k}(x) \to g(x)$ for all $x \in B^c$, being a subsequence of f_n . Then for all $x \in (A \cup B)^c$, we have g(x) = f(x) by the uniqueness of the pointwise limit in \mathbb{C} . Moreover $\mu(A \cup B) \leq \mu(A) + \mu(B) = 0$. Hence f = g almost everywhere.
- 3. Solution: Let's define a new measure $\nu := |f|^p \mu$ defined as

$$\nu(A) = \int_A |f|^p \ d\mu$$

for all $A \in \mathcal{M}$. Then since $||f||_p < \infty$, we get $\nu(X) < \infty$. Thus by Egorov's theorem, for all $\epsilon > 0$ there exist a set $A' \in \mathcal{M}$ such that $\nu(A') < \frac{\epsilon}{2}$ and f_n converges to f uniformly on A'^c .

Now, for r > 0, let $A_r = \{x \in X : |f(x)|^p < r\}$. Since $f \in L^p(\mu)$, and $|f|^p \chi_{A_x^c} \ge r \chi_{A_x^c}$, we get

$$\infty > \int_{A^c} |f|^p \ d\mu \ge \int r \chi_{A^c_r} \ d\mu = r \mu(A^c_r)$$

Thus we see that $\mu(A_r^c) < \infty$ for all r > 0. Again $f \in L^p(\mu)$ forces f to be finite almost everywhere. Thus $|f|^p \chi_{A_r} \to 0$ almost everywhere. Moreover $|f|^p \chi_{A_r}$ is dominated by $|f|^p \in L^1(\mu)$. Hence by the Lebesgue dominated convergence theorem, we see that

$$\lim_{r \to \infty} \int |f|^p \chi_{A_r} \ d\mu = 0$$

Hence there is a $r_{\epsilon} > 0$ such that $\int_{A_{r_{\epsilon}}} |f|^p d\mu < \frac{\epsilon}{2}$.

Let $A = A' \cup A_{r_{\epsilon}}$. Then since $\nu(A') < \epsilon/2$

$$\int_A |f|^p \ d\mu \le \int_{A'} |f|^p \ d\mu + \int_{A_{r_\epsilon}} |f|^p \ d\mu < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Then for $B = A^c$, since $B \subset A'^c$, we get $f_n \to f$ uniformly on B. Moreover since $B \subset A_{r_c}^c$, we get $\mu(B) \le \mu(A_{r_c}) < \infty$.

Now let's evaluate $||f_n - f||_p$. Since $A \cup B = X$, we see that

$$||f_n - f||_p^p = \int |f_n - f|^p d\mu = \int_A |f_n - f|^p d\mu + \int_B |f_n - f|^p d\mu \qquad (1)$$

Since $f_n \to f$ uniformly on B, there is an $N_{\epsilon} \in \mathbb{N}$ such that for all $n \geq N_{\epsilon}$, $|f_n(x) - f(x)| < \sqrt[p]{\frac{\epsilon}{\mu(B)}}$.

Then for $n \geq N_{\epsilon}$, we get

$$\int_{B} |f_n - f|^p \ d\mu \le \int_{B} \frac{\epsilon}{\mu(B)} \ d\mu = \epsilon$$

Since $X = A \cup B$, we note that

$$\int_{A} |f_n|^p \ d\mu = ||f_n||_p^p - \int_{B} |f_n|^p \ d\mu$$

Then by Fatou's lemma, and the fact that $||f_n|| \to ||f||$ we get

$$\lim_{n} \sup \int_{A} |f_{n}|^{p} d\mu = \lim_{n} \sup ||f_{n}||_{p}^{p} - \lim_{n} \inf \int_{B} |f_{n}|^{p} d\mu$$

$$\leq ||f||_{p}^{p} - \int_{B} \lim_{n} \inf |f_{n}|^{p} d\mu$$

$$= \int_{X} |f|^{p} d\mu - \int_{B} |f|^{p} d\mu$$

$$= \int_{X \setminus B} |f|^{p} d\mu$$

$$= \int_{A} |f|^{p} d\mu$$

where $\liminf |f_n|^p = |f|^p$ in B since $f_n \to f$ uniformly on B. Since we know that $\int_A |f|^p d\mu < \epsilon$, we see that there is an $M_{\epsilon} \in \mathbb{N}$ such that for all $n > M_{\epsilon}$,

$$\int_{A} |f_n|^p d\mu \le \sup_{m \ge n} \int_{A} |f_n|^p d\mu \le \int_{A} |f|^p d\mu \le \epsilon$$

Then for all $n > M_{\epsilon}$, Minkowski inequality gives

$$\int_{A} |f_{n} - f| \ d\mu \le \left[\left(\int_{A} |f_{n}|^{p} \ d\mu \right)^{1/p} + \left(\int_{A} |f|^{p} \ d\mu \right)^{1/p} \right]^{p}$$

$$\le (\epsilon^{1/p} + \epsilon^{1/p})^{p} = 2^{p} \epsilon$$

We note that $2^p \epsilon \to 0$ as $\epsilon \to 0$.

Hence we see from Equation 1 that for $n > \max\{N_{\epsilon}, M_{\epsilon}\}$,

$$||f_n - f||_p^p < (2^p + 1)\epsilon$$

Since $\epsilon > 0$ was arbitrary, and $(2^p + 1)\epsilon \to 0$ as $\epsilon \to 0$, we see that $||f_n - f||_p^p \to 0$. Now by the continuity of the function $x \to x^{1/p}$, we see that $||f_n - f|| \to 0$.