

Natural Language Processing using RNNs and LSTMs

Dr. Amit Sethi
IIT Bombay

Objectives

- Explain why recurrence is necessary
- Explain BPTT and its problems
- Understand what gates do in LSTM
- Draw the internal diagram of an LSTM unit
- Write the forward and BPTT equations
- Design LSTM structures to solve problems

Contents

- Need for memory to process sequential data
- Recurrent neural networks
- LSTM basics
- Some applications of LSTM in NLP
- Some advanced LSTM structures

What is sequential data?

- One-dimensional discrete index
 - Example: time instances, character position
- Each data point can be a scalar, vector, or a symbol from an alphabet

Number of data points in a series can be variable

Examples of sequential data

- Speech
- Text (NLP)
- Music

- Protein and DNA sequences
- Stock prices and other time series

Traditional ML is one-to-one

- POS tagging in NLP (input: words, output: POS tag)
- Stock trade: {Buy, NoAction, Sell}

What about taking past data into account?

Need for past data or context

- Different POS
 - It is a quick read
 - I like to read

Translation

```
l am going

मैं जा रहा हूँ (Re-ordered, ideal)

मैं हूँ जा रहा (Word by word, less than ideal)
```


Using traditional ML for sequences

Work with a fixed window

What about influence of distant past?

What if we want to do many to one

Sentiment analysis in NLP

What about taking past data into account?

Using traditional ML for sequences

Convert sequence into a feature vector

What about using the order of the data?

Introducing memory (recurrence or state) in neural networks

 A memory state is computed in addition to an output, which is sent to the next time instance

Another view of recurrence

• In the most basic form, memory state are simply the hidden neurons

Types of analysis possible on sequential data using "recurrence"

- One to one
- One to many
- Many to one
- Many to many

Examples: One to one

- POS tagging in NLP
- Stock trade: {Buy, NoAction, Sell}

Examples: Many to one

Sentiment analysis in NLP

Examples: One to many

- Generate caption based on an image
- Generate text given topic

Examples: Many to many

Language translation

Contents

- Need for memory to process sequential data
- Recurrent neural networks
- LSTM basics
- Some applications of LSTM in NLP
- Some advanced LSTM structures

Revising feedforward neural networks

Recurrent neural networks

Vanilla RNNs used the hidden layer activation as a state

Backpropagation through time (BPTT)

 Just like how forward propagation uses previous state

 Backpropagation uses derivative from future output

• • •

Use of a window length

 We need to put a limit on how long will the gradient travel back in time

Mathematical expression for BPTT

• Forward:
$$m{y}_n = m{g}m{W}_{hy}m{h}_nm{h}_n = m{g}m{W}_{hy}m{f}m{W}_{hh}m{h}_{n-1} + m{W}_{xh}m{x}_nm{h}_n$$

Backward example:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{W}_{hh}} = \mathbf{g}' \mathbf{W}_{hy} \mathbf{h}_{n}' = \mathbf{g}' \mathbf{W}_{hy} \mathbf{f}' (\mathbf{h}_{n-1} + \mathbf{W}_{hh} \mathbf{h}_{n-1}')$$

Vanishing and exploding gradient

- Gradient gets repeatedly multiplied by W_{hh}
- This can lead to vanishing or exploding gradient depending on the norm of \boldsymbol{W}_{hh}

Contents

- Need for memory to process sequential data
- Recurrent neural networks
- LSTM basics
- Some applications of LSTM in NLP
- Some advanced LSTM structures

greatlearning

Introducing a forget gate to control the gradient

©Great Learning, All Rights Reserved, Unauthorized use or distribution prohibited

- The state doesn't multiply with a constant weight
- A gate function f (usually a sigmoid) represents on or off
- State is forgotten and replaced
 by the input g if f = 0
- But, what if f = 1? How do we control the influence of input?

Legend $\rightarrow Current$ $\rightarrow Delayed$

Adding input and output gates

- On similar lines as the forget gate, an input gate decides whether the input will override the state or not
- Similarly, an output gate will decide whether the output will be passed out or not
- The input to all these gates are NN inputs, and NN hidden-layer output

Input Layerietary content © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Legend $\rightarrow Current$ $\rightarrow Delayed$

Another view

- CEC is constant error carrousel
 - No vanishing gradients
 - But, it is not always on
- Introducing gates:
 - Allow or disallow input
 - Allow or disallow <u>output</u>
 - Remember or <u>forget</u> state

A few words about the LSTM

- CEC: With the forget gate, influence of the state forward can be modulated such that it can be remembered for a long time, until the state or the input changes to make LSTM forget it. This ability or the path to pass the past-state unaltered to the future-state (and the gradient backward) is called constant error carrousel (CEC). It gives LSTM the ability to remember long term (hence, long short term memory)
- Blocks: Since there are just too many weights to be learnt for a single state bit, several state bits can be combined into a single block such that the state bits in a block share gates
- Peepholes: The state itself can be an input for the gate using peephole connections
- **GRU:** In a variant of LSTM called gated recurrent unit (GRU), input gate can simply be one-minus-forget-gate. That is, if the state is being *forgotten*, then replace it by input, and if it is being *remembered*, then block the input

Input Layer rietary rent

 $W_{h\phi}$

Backpropagation

$$\epsilon_c^t \stackrel{\text{def}}{=} \frac{\partial L}{\partial b_c^t} \qquad \epsilon_s^t \stackrel{\text{def}}{=} \frac{\partial L}{\partial s_c^t}$$

Cell output:

$$\epsilon_c^t = \sum_{k=1}^K w_{ck} \delta_k^t + \sum_{g=1}^G w_{cg} \delta_g^{t+1}$$

 $g(a_c^t)$

 W_{hc}

 W_{ic}

 W_{ii}

 S_{c}^{t-1}

CEC

Backpropagation

State:

$$\delta_{\omega}^{t} = f'(a_{\omega}^{t}) \sum_{c=1}^{c} h(s_{c}^{t}) \epsilon_{c}^{t}$$

Cell:

$$\delta_{\omega}^{t} \epsilon_{s}^{t} = b_{\omega}^{t} h'^{(s_{c}^{t})} \epsilon_{c}^{t} + b_{\emptyset}^{t+1} \epsilon_{s}^{t+1} + w_{c\emptyset} \delta_{\emptyset}^{t+1} + w_{c\omega} \delta_{\omega}^{t}$$

 W_{ic}

 $g(a_c^t)$

 W_{hc}

 W_{ii}

CEC

Backpropagation

Forget gate:

$$\delta_{\emptyset}^{t} = f'(a_{\emptyset}^{t}) \sum_{c=1}^{c} s_{c}^{t-1} \epsilon_{s}^{t}$$

Input gate:

$$\delta_l^t = f'(a_l^t) \sum_{c=1}^C g(a_c^t) \epsilon_s^t$$

 W_{ic}

 $g(a_c^t)$

 W_{hc}

 W_{ii}

 S_{c}^{t-1}

CEC

Contents

- Need for memory to process sequential data
- Recurrent neural networks
- LSTM basics
- Some applications of LSTM in NLP
- Some advanced LSTM structures

Pre-processing for NLP

 The most basic pre-processing is to convert words into an embedding using Word2Vec or GloVe

 Otherwise, a one-hot-bit input vector can be too long and sparse, and require lots on input weights

Sentiment analysis

- Very common for customer review or new article analysis
- Output before the end can be discarded (not used for backpropagation)
- This is a many-to-one task

Sentence generation

- Very common for image captioning
- Input is given only in the beginning
- This is a one-to-many task

Sentence generation

- Very common for image captioning
- Input is given only in the beginning
- This is a one-to-many task

Pre-training LSTMs

- Learning to predict the next word can imprint powerful language models in LSTMs
- This captures the grammar and syntax
- Usually, LSTMs are pre-trained on corpora

Machine translation

 A naïve model would be to use a many-tomany network and directly train it

Machine translation

 One could also feed in the output to the next instance input to predict a coherent structure

Machine translation

In actuality, one would use separate LSTMs pre-trained on two different languages

Contents

- Need for memory to process sequential data
- Recurrent neural networks
- LSTM basics
- Some applications of LSTM in NLP
- Some advanced LSTM structures

Multi-layer LSTM

More than one hidden layer can be used

Bi-directional LSTM

- Many problems require a reverse flow of information as well
- For example, POS tagging may require context from future words

LSTM with Attention Mechanism

Proprietary content. A Great Learning Alb Right East Dead. Unauthorized use or distribution prohibited

Some problems in LSTM and its troubleshooting

- Inappropriate model
 - Identify the problem: One-to-many, many-to-one etc.
 - Loss only for outputs that matter
 - Separate LSTMs for separate languages
- High training loss
 - Model not expressive
 - Too few hidden nodes
 - Only one hidden layer
- Overfitting
 - Model has too much freedom
 - Too many hidden nodes
 - Too many blocks
 - Too many layers
 - Not bi-directional