1. 电路如图所示,已知 U=3V,求 R 的值。

2. 电路如图所示,求电流 I_x 及受控电流源的功率。

3. 图示对称三相电路中,已知对称三相电源的线电压有效值为 $U_l=100\sqrt{3}$ V,中线阻抗 $Z_0=(1+j1)\Omega$,星接负载 $X_c=10\Omega$,角接负载 $R=30\Omega$,求:(1) 电流表 A_1 和 A_2 的读数;(2) 功率表的读数。

4. 图示电路中,非线性电阻 R 的伏安特性为 $u=i^2$ (i>0),u、i 的单位分别为 V、A,电压源 $u_s(t)=2\times 10^{-3}\sin 10t$ V ,用小信号分析法求 u 和 i。

5. 己知 $\dot{U}=200$ $\angle 0$ °V, $R_0=R_2=50$ Ω, $L_0=0.2$ H, $L_1=0.1$ H, $L_2=0.1$ H, $C_1=10$ μF, $C_2=5$ μF,M=0.05H,电流表读数为零,求 ω 和 U_0 。

6. 非正弦电路如图所示,已知电流源电流 $i_s(t)=3+2\sqrt{2}\sin 10^3t+4.5\sqrt{2}\sin 2\times 10^3t$ A, R_1 =60 Ω , R_2 =30 Ω , $C=\frac{1}{6}\times 10^{-4}$ F, L_1 =0.02H, L_2 =0.06H,求 $i_{L2}(t)$ 及其有效值 I_{L2} 。

7. 图示电路中,换路前电路已处于稳定状态,t=0 时闭合开关 S,求 $t\ge 0$ 时的 i_L 和 i,并定性的画出其变化曲线。

8. 图示电路中,电路原来处于稳态,t=0时开关断开。已知 $u_s=21\mathrm{V}$, $R_1=1\Omega$, $R_2=0.75\Omega$, $L=(1/12)\mathrm{H}$, $C=1\mathrm{F}$ 。求开关断开后的电容电压 $u_c(t)$ 。

9. 图示电路中,已知 $\dot{U}_s=10$ $\angle 0$ °V,不含独立源电路 N 的 Z 参数为 $\begin{bmatrix} \mathbf{j} & -\mathbf{j} \\ -\mathbf{j} & \mathbf{j} \end{bmatrix}$ Ω ,求电阻 R_L 吸收的有功功率 P。

10. 图示电路中,两个电阻消耗的总的有功功率 P=15W,电源电压 $\dot{U}_s=10\angle0^\circ$ V,电压有效值 $U_L=10$ V ,且 \dot{U}_L 超前 \dot{U}_s 90° ,求元件参数 R、 X_L 和 X_C 的值。

