Electronic Transition

Thursday, March 31, 2016 11:55 AM

UV/vis from an electronic transition

- A. Atomic Spectra
 - a. Flame emission/discharge tubes
 - i. Show line spectra characteristic
- 1. Hydrogen atom

$$-\frac{\hbar^2}{2\mu}\nabla^2\Phi = -\frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r}\Phi = E\Phi$$

$$\Phi_{n,l,m_l,m_s} = R_{rl}(r)Y_{l,m_l}(\theta,\phi)x \begin{Bmatrix} \alpha \\ \beta \end{Bmatrix}$$

 $R_{nl}(r)$ is a radial wavefunction

a) Energy spectrui

hergy spectrum
a.
$$E_n = \frac{-z^2 e^2}{4\pi\epsilon_0 2\alpha_0 n^2} = -\frac{Z^2}{n^2} (13.6ev)$$

Here α_0 is the bohr radius = $0.529A = \frac{4\pi\epsilon_0\hbar^2}{me^2}$

b) Angular wavefunction

$$L^{2}|Y_{l,m_{l}}\rangle = \hbar^{2}(l(l+1))|l,m_{l}\rangle$$

$$L_{z}|l,m_{l}\rangle = m_{l}\hbar|l,m_{l}\rangle$$

c)
$$S^2|\alpha\rangle = \frac{1}{2}\left(\frac{1}{2} + 1\right)\hbar^2|\alpha\rangle$$

$$S^2|\beta\rangle = \frac{1}{2}\left(\frac{1}{2} + 1\right)\hbar^2|\beta\rangle$$

$$S_z|\alpha\rangle = \frac{1}{2}\hbar|\alpha\rangle, \qquad m_S = \pm \frac{1}{2}$$

$$S_z|\beta\rangle = \frac{1}{2}\hbar|\beta\rangle$$

d)
$$g_n = 2 \sum_{l=0}^{n-1} (2l+1) = 2n^2$$

- e) Selection Rule (El-electric dipole moment)

a. Electronic electric dipole moment=
$$\hat{\vec{\mu}} = q\hat{\vec{r}} = -er \left(\sin\theta\cos\phi\,\hat{x} + \sin\theta\sin\phi\,\hat{y} + \cos\theta\,\hat{z}\right)$$

b. $\vec{\mu}_{lf} = \langle n, l, m_l, m_s | \vec{\mu} | n', l', m'_l, m'_s \rangle = -e \int_0^\infty r R^* R' r^2 dr \iint_{(0,0)}^{(\pi,2\pi)} Y^*(\theta,\phi) Y'(\theta,\phi) \begin{Bmatrix} \sin\theta\cos\phi \\ \cos\theta\cos\phi \\ \cos\theta\cos\phi \end{Bmatrix} d\theta d\phi \int S^* S' ds$

c. The integrals yields selection rules

i.
$$\delta_{m_s,m_s'} \Rightarrow \Delta m_s = 0$$

ii.
$$\int d\phi \ e^{-im_l\phi} \begin{pmatrix} \cos\phi \\ \sin\phi \\ 1 \end{pmatrix} e^{im'_l\phi}$$

iii.
$$\theta$$
 int, $\Delta l = \pm 1$

any Δn is possible

f) Transition Frequnecy

g)
$$\tilde{v} = R_H \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

h)
$$R_H = Rydberg = \frac{2\pi^2 \mu e^4}{(2\pi\epsilon_o)^2 h^3 c} = 109,737cm^{-1}$$

- 1) Lyman series UV $n_1=1$, $n_2=2,3,4$ 2) Balmber series $n_1=2$, $n_2=3,4,5$ 3) Pasichinen series , etc

1	Δl	Δm_l	$\Delta m_{\scriptscriptstyle S}$	Δn
<i>E</i> 1	±1	$0,\pm 1$	0	Any
<i>M</i> 2	0	$0,\pm 1$	0,ep12	0
E2	0,±2	$0,\pm 1,\pm 2$	0	any