Image Classification

Based on feature extraction and logistic regression

Problem Description

- Classification of three kinds of image:
 - Photograph
 - Diagram
 - Clip

Previous Study

- Feature extraction in different color space:
 - RGB / HSV / YUV / CIELAB
 - Color Histogram / Texture / ...

- Algorithms:
 - Gaussian Classifiers
 - Multilayer Perceptrons
 - SVMs
 - •

Method Selection & Implement

- Logistic Regression
- Artificial Neural Network
- Support Vector Machine
- Decision Tree
- K-Nearest Neighbors
- K-Means

Octave

Method Selection & Implement

- Logistic Regression
- Artificial Neural Network
- Support Vector Machine
- Decision Tree
- K-Nearest Neighbors
- K-Means

- Altificial Neural Network
- (*[1]) (rigid decision boundary)
 - (compute-intensive)
 - (unsupervised)

(complex)

Octave

Logistic Regression

- Simple to implement.
- Binary classifier?
- Powerful enough?
- Overfitting?

Logistic Regression

- Simple to implement.
- Binary classifier?
- Powerful enough?
- Overfitting?

One vs All

Polynomial transform

Regularization

Dataset Collecting & Labeling

	Clip	Diagram	Photograph	Total
Training	37	31	41	108
Test	10	11	10	31
Total	47	42	51	139

Features

- Histogram of Hue^[2]
- Histogram of Saturation
- Variance of Saturation
- Mean of Value
- Variance of Value Histogram

Features

- Histogram of Hue^[2]
- Histogram of Saturation
- Variance of Saturation
- Mean of Value
- Variance of Value Histogram

Training: 84.7%

Test: 70.1%

Features

- Histogram of Hue^[2]
- Histogram of Saturation
- Variance of Saturation
- Mean of Value
- Variance of Value Histogram

Let's have a look.

Training: 84.7%

Test: 70.1%

Further Optimizing

Introducing quadratic polynomial features

Feature Scaling & Mean Normalization

- Choosing Regularization Parameter λ
 - K Fold Cross Validation
 - $\lambda = 0$ is best maybe underfitting, not overfitting
- Testing...

Conclusions

- Accuracy on training set: 98.16%
- Accuracy on test set: 93.55%

- To improve performance:
 - Add different features
 - Higher order polynomial transform
 - Other algorithms (e.g. artificial neural network)

Demonstration

Thanks for Listening