Chapter 2

Homework 21935004 谭焱

2.1 第三次作业

Exercise 2.1. 设 S^1 单位圆周

 $\Delta: \mathbf{S}^1 \to \mathbf{S}^1 \times \mathbf{S}^1, x \mapsto (x, x) \ \text{fil} \quad \eta: \mathbf{S}^1 \to \mathbf{S}^1 \times \mathbf{S}^1, x \mapsto (x, 1).$

证明: Δ 和 η 都不是零伦.

Solution. 假设 Δ 是零伦,令 $f_k(I,\dot{I}): m \mapsto \Delta(x^{km}) = (x^{km},x^{km})$,则 f_k 也是零伦的. 而且 f_k 是连续的. 则 存在 $\tilde{f}_k:I \to \mathbf{R}$,由 f_k 的定义得 $\tilde{f}_k:m \mapsto km$,因此 $\tilde{f}_k(1)=k$,既 $[f_k]=k$ 与零伦函数都属于 [f]=0 矛盾. η 取 $g_k(I,\dot{I})=\eta(x^{km})=(x^{km},1)$ 同上可得不是零伦.

Exercise 2.2. $D^2=\{\zeta \big| ||\zeta||\leq 1\}, \mathbf{S}^1=\partial \mathbf{D}^2$

- (i) S^1 不是 D^2 的收缩.
- (ii) $f: \mathbf{D}^2 \to \mathbf{D}^2$ 连续映射,则 f 必有不动点.

Solution.

- (i) 因为 $\pi_1(\mathbf{S}, 1)$ 同构于 \mathbb{Z} , 而 $\pi_1(\mathbf{D}^2, x_0) = \{1\}, \forall x_0 \in \mathbf{D}^2$. 收缩时保持 π_1 的性质,所以 \mathbf{S}^1 不是 \mathbf{D}^2 的收缩.
- (ii) 假设不存在不动点,则 $\forall x \in \mathbf{D}^2, x \neq f(x), f(x) \in \mathbf{D}^2$, 因此以 f(x) 为起点作一条射线过 $x \in \mathbf{S}^1$ 于一点设为 g(x). 则 $g: \mathbf{D}^2 \to \mathbf{S}^1$ 是一个满射,因为 g(x) 将 \mathbf{S}^1 上的点映射到自身.定义 $i(x): \mathbf{S}^1 \mapsto \mathbf{D}^2, x \to x$, $i \circ g = 1_{\mathbf{S}^1}$,则它们诱导的在范畴 $\pi_1(\mathbf{D}^2, 1), \pi_1(\mathbf{S}^1, 1)$ 上的函子 i_*, g_* 满足 $g_* \circ i_* = 1_{\mathbf{S}^1}$,而 $i_*: \pi_1(\mathbf{S}^1, 1) \to \pi_1(\mathbf{D}^2, 1) \iff Z \to 0$,不存在合适的函子 g_* 使得 $g_* \circ i_*: 0 \to \mathbf{Z} \iff 1_{\mathbf{Z}}$.

Exercise 2.3. 设 $\mathbf{X} = \mathbf{U} \cup \mathbf{V}$, 其中 \mathbf{U}, \mathbf{V} 是 \mathbf{X} 的道路 连通的开子集. $\mathbf{U} \cap \mathbf{V}$ 也是道路连通, $x_0 \in \mathbf{U} \cap \mathbf{V}$, 若 $\pi_1(\mathbf{U}, x_0), \pi_1(\mathbf{V}, x_0)$ 都是平凡群

证明: $\pi_1(X, x_0)$ 也是平凡群.

Solution. 对 $\forall s \in \pi_1(X, x_0)$, 若 $s \in U$ 或者 $s \in V$, 由 $\pi_1(\mathbf{U}, x_0)$, $\pi_1(\mathbf{V}, x_0)$ 都是平凡群可得, $s \simeq_p e_{x_0}$. 若 s 不同时在 U 或 V 中,取 s 每次进出 $U \cap V$ 时在 s 上和 $U \cap V$ 内并且充分接近 $U \cap V$ 边界上的点 x_i, y_i (因为连续性和开集这样的点总成对出现,一个进 x_i 一个出 y_i). 由于充分接近, x_i, y_i 之间 s 部分路径始终同时属于 U 或 V. 因此可以由 $f_U(I, \dot{I})$, $f_V(I, \dot{I})$ 表示,而 U, V 都是平凡群,所以所有 f_U, f_V 分别属于同一个 $[f]_U, [f]_V$. 所以 $\pi_1(\mathbf{X}, x_0) = \pi_1(\mathbf{U}, x_0) \times \pi_1(\mathbf{V}, x_0) = 1$,即 $\pi_1(\mathbf{X}, x_0)$ 是平凡群.

2.2 第四次作业

Exercise 2.4. G 是拓扑群, e 是单位元, α , β 是 G 中 e 处两条闭道路.

证明: $\alpha * \beta \simeq \alpha \cdot \beta$ rel İ

Solution. 由道路乘法定义和 α , β 都是 e 处闭道路, 知 $\alpha * \beta$ 是 e 处闭道路. 因此要证 $\alpha * \beta \simeq \alpha \cdot \beta$ rel $\dot{\mathbf{I}}$, 只需 $\alpha \cdot \beta$ 是 e 处闭道路.

因为 **G** 是拓扑群, 且单位元是 e. 因此存在连续映射将 $\alpha \times \beta$ 映射到 $\alpha \cdot \beta$. 又因为 $\alpha \cdot \beta$ 的原像是 $\alpha \times \beta$ 内的 (e,e) 处闭道路, 并且 $\alpha \cdot \beta$: $(\mathbf{G} \times \mathbf{G}) \mapsto \mathbf{G}$ 使得 $(\alpha \cdot \beta)(e,e) = e$ 所以 $\alpha \cdot \beta$ 是 e 点的闭道路, 得证.

Exercise 2.5. 证明两个自由 Abel 群同构, 当且仅当它们有相同的秩.

Solution. 无限自由 Abel 群与有限 Abel 群显然不同构. 只考虑有限秩. 设两个 Abel 群为 \mathbf{A}, \mathbf{B} . 基分别为 $\{a_1, a_2, \dots, a_n\}, \{b_1, b_2, \dots, b_m\}$. 则 $\forall a \in \mathbf{A}, \forall b \in \mathbf{B}, \ a = \sum_{i=1}^n k_i a_i, \ b = \sum_{j=1}^m l_j b_j$.

充分性, 若 m=n, 定义映射 $f: \mathbf{A} \to \mathbf{B}, a_i \mapsto b_i$. 显然 f 是一个双射, 否则与 a_i, b_i 分别是 \mathbf{A}, \mathbf{B} 的基矛盾.

必要性, 若 f 是 $\mathbf{A} \to \mathbf{B}$ 的一个同构双射, 不妨设 n < m, 然后令 $b'_i = f(a_i)$ i = 1, 2 ... n. 因为 f 是一个满射, 存在 x_j 满足 $f(x_j) = b_j$, 由基的定义存在 $t_i \in 0, 1$ 有 $\sum_{i=1}^n t_i a_i = x_j$, 结合 f 是同态的. $b_j = f(x_j) = f(\sum_{i=1}^n t_i a_i) = \sum_{i=1}^n t_i f(a_i) = \sum_{i=1}^n t_i b'_i$, 由 f 的任意性, 知 f 是 f 的一组基, 即 f 的基. 即 f rank f f = f 的基. 即 f rank f f f f f 的基.