

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIa
Popis sady vzdělávacích materiálů:	Mechanika III – dynamika a hydrostatika, 3. ročník.
Sada číslo:	G-20
Pořadové číslo vzdělávacího materiálu:	05
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-20-05
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Práce síly proměnné velikosti
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Práce síly proměnné velikosti

V diagramu F – s vyjadřuje plocha pod čarou mechanickou práci.

 $W = F_s \cdot s$

F_s – střední síla

Síla potřebná ke stlačení nebo natažení šroubové válcové pružiny:

Př.: Šroubová válcová pružina se při zatížení silou F = 100 N stlačí o 50 mm. Určete velikost práce vynaložené k tomuto stlačení.

$$W = \frac{1}{2} F \cdot s = \frac{1}{2} \cdot 100 \cdot 50 Nmm = \frac{1}{2} \cdot 100 \cdot 0,05 Nm = 2,5 J$$

Výkon

Výkon je mechanická práce vykonaná za jednotku času.

výkon =
$$\frac{\text{práce}}{\text{čas}}$$
 $\left[1W\right] = \left[\frac{1J}{1s}\right] = \left[N \cdot m \cdot \frac{1}{s} = \frac{kg \cdot m}{s^2} \cdot m \cdot \frac{1}{s} = \frac{kg \cdot m^2}{s^2}\right]$

$$v = r \cdot \omega$$
,

$$\omega = 2 \cdot \pi \cdot n$$
,

$$M = F \cdot r$$

$$P = \frac{W}{t} = \frac{F \cdot s}{t} = F \cdot v = F \cdot r \cdot \omega = M \cdot \omega$$

$$P = M \cdot \omega$$

Pokud ze vztahu pro výkon vyjádřím práci, pak:

$$P = \frac{W}{t} \Longrightarrow W = P \cdot t \ [W \cdot s, kWh]$$

Jednotka práce je také $1W \cdot s = 1J$

Často neprobíhá práce rovnoměrně s časem a vztahy pro výkon jsou složitější. Základní rovnice pak udává průměrný (střední) výkon, i když může být výkon v každém okamžiku jiný.

průměrný výkon =
$$\frac{\text{celková práce}}{\text{celkový čas}} = P_s = \frac{W}{t}$$

okamžitý výkon
$$P = \frac{\Delta W}{\Delta t}$$

kde ΔW je práce vykonaná v průběhu malého časového úseku Δt .

Př.: Lokomotiva vyvine při rychlosti $108\,\mathrm{km/h}\,$ tažnou sílu 25 kN. Určete její výkon.

$$F = 25kN = 25000N$$

$$v = 108 \, km/h = 30 \, m/s$$

$$P = F \cdot v = 25000 \cdot 30 = 750\ 000\ W = 750\ kW$$

Př.: Zvedací zařízení jeřábu zvedne břemeno m = 10 t (10 000 kg) do výšky 5 m za 20 s. Určete výkon.

$$P = \frac{W}{t} = \frac{G \cdot h}{t} = \frac{m \cdot g \cdot h}{t} = \frac{10\ 000 \cdot 10 \cdot 5}{20} = 25000W = 25kW$$

Př.: Čerpadlo dopraví do výšky h = 25 m za 1 hodinu V = $1.8 \, \text{m}^3$ vody. Určete výkon.

$$P = \frac{W}{t} = \frac{m \cdot g \cdot h}{t} = \frac{1800 \cdot 10 \cdot 25}{3600} = 125W$$

$$m = V \cdot \rho = 1.8 \cdot 1000 = 1800 kg$$

Účinnost

Práce se koná při překonávání odporu. U každého stroje se vyskytují kromě užitečného odporu i odpory neužitečné – škodlivé (např. tření). Proto celková přivedená práce je dána součtem práce užitečné a práce ztrátové.

$$W = W_{u\check{z}} + W_{zt}$$

Podobně tzv. příkon je dán součtem užitečného a ztrátového výkonu. Účinnost zařízení je dána podílem práce užitečné a práce celkové.

Příkon:
$$P_{Pr} = P_{uz} + P_{z}$$

$$\eta = \frac{pr\'{a}ce \ u\'{z}itecn\'{a}}{pr\'{a}ce u\'{z}itecn\'{a} + neu\'{z}itecn\'{a}}$$
 [éta]

$$\eta = \frac{W_{u\bar{z}}}{W_{u\bar{z}} + W_z} = \frac{P_{u\bar{z}}}{P_{u\bar{z}} + P_z}$$

$$P_{P\check{r}} = \frac{P}{\eta}, \qquad \eta = \frac{P}{P_{P\check{r}}}$$

η < 1 Účinnost je vždy < 1 (menší než 100 %)

U složitějších zařízení je celková účinnost dána součinem účinností jednotlivých prvků zařízení.

$$\eta_C = \eta_1 \cdot \eta_2 \cdot \eta_3$$

Př.: Vypočtěte příkon elektromotoru, který zvedá břemeno 20 t rychlostí $4\,\text{m/min}=0.067\,\text{m/s}$, je-li účinnost zvedacího zařízení $\eta_z=0.6$; $\eta_{\text{motoru}}=0.9$.

$$P = \frac{W}{t} = F \cdot v = G \cdot v = m \cdot g \cdot v = 20000 \cdot 10 \cdot 0,067 = 13400 W$$

$$\eta_C = \eta_Z \cdot \eta_{Motoru}$$

$$P_{PF} = \frac{P}{\eta_C} = \frac{13400}{0.6 \cdot 0.9} = 24815W = 24kW$$

Př.: Jaký je užitečný výkon a příkon vodní turbíny, protéká–li jí 24 m^3 vody za 1 sekundu se spádem 50 m, je–li účinnost turbíny $\eta = 80\%$?

$$V = 24 m^3 \rightarrow m = 24000 kg (m = V \cdot \rho)$$

$$P_{P_f} = \frac{W}{t} = \frac{F \cdot s}{t} = \frac{G \cdot h}{t} = \frac{m \cdot g \cdot h}{t}$$

$$P_{P_{\tilde{r}}} = \frac{m \cdot g \cdot h}{t} = \frac{24000 \cdot 10 \cdot 50}{1} = 12000000W = 12MW$$

$$P_{u\dot{z}} = P_{P\dot{z}} \cdot \eta = 12 \cdot 0.8 = 9.6 MW$$

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.

- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: *MECHANIKA Sbírka úloh*. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.