Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Электротехника»

О Т Ч Е Т ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа *N3246*, поток *ЭЛТЕХ*. *N23 1.4.1 Вариант 28*

Работу выполнил: студент Суханкулиев М.

Дата защиты: 21.04.2025

Контрольный срок защиты: 21.04.2025

Количество баллов:

Санкт-Петербург 2025 г.

СОДЕРЖАНИЕ

Введение	3
1 Часть 1	5
1.1 Схемы исследуемых цепей (1–9)	5
1.2 Расчётные формулы и расчёты. Заполненная таблица 2	
1.3 Векторные диаграммы входных напряжений и токов для каждого	из
двухполюсников	8
1.4 Выводы по части 1 лабораторной работы	9
2 Часть 2	.10
2.1 Схема исследуемой цепи (6, 9)	.10
2.2 Расчётные формулы и расчёты. Заполненные таблицы 3 и 4	.11
2.3 Графики характеристик $I(f)$, $\varphi(f)$, $U_{RI}(f)$, $U_k(f)$, $U_C(f)$ для схемы №6	.14
2.4 Графики характеристик $I(f)$, $I_1(f)$, $I_2(f)$, $\varphi(f)$ для схемы №9	.15
2.5 Выполненные в масштабе векторные диаграммы для состояния резонанса	ιB
схемах №6 и №9.	.16
2.6 Выводы по части 2 лабораторной работы	.17
Заключение	.18
Список использованных источников	.19

ВВЕДЕНИЕ

Параметры источника и нагрузки для выполнения лабораторной работы

No		$oldsymbol{\psi}_u$, градус			R_1	, Ом			
вар	U , B	Часть	Часть	f ,Гц	Часть	Часть	R_k , Ом	$oldsymbol{L_k}$, м Γ н	С , мкФ
Бар		1	2		1	2			
28	5	0	60	159.155	20	25	30	51.962	18.199

<u>Цель работы</u> – исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Для достижения поставленной цели необходимо решить следующие задачи:

Часть 1:

 Измерение действующих значений входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника таблицы 1. Сравнение результатов с расчётными значениями.

Часть 2:

- Исследование и анализ частотных характеристик электрической цепи с последовательным соединением резистивного, индуктивного и ёмкостного элементов.
- Исследование и анализ частотных характеристик электрической цепи с параллельным соединением ветвей с индуктивным и ёмкостным элементами.

Таблина 1

Таол	ица 1	
№	Схема двухполюсника	Расчётные соотношения
1	R_1	$I = \frac{U}{Z}, R = R_1, X = 0, Z = R_1,$ $\varphi = \arctan \frac{0}{R_1} = 0$
2	C	$I = \frac{U}{Z}, R = 0, X = -X_C = -\frac{1}{\omega \cdot C},$ $Z = X_C, \varphi = \arctan{-\infty} = -\frac{\pi}{2}$
3	R_1 C	$I = \frac{U}{Z}, R = R_1, X = -X_C = -\frac{1}{\omega \cdot C},$ $Z = \sqrt{R^2 + X^2}, \varphi = \arctan \frac{X}{R}$
4	R_k L	$I = \frac{U}{Z}, R = R_k, X = X_L = \omega \cdot L,$ $Z = \sqrt{R^2 + X^2}, \varphi = \arctan \frac{X}{R}$
5	R_1 R_k L	$I = \frac{U}{Z}, R = R_1 + R_k, X = X_L = \omega \cdot L,$ $Z = \sqrt{R^2 + X^2}, \varphi = \arctan \frac{X}{R}$
6	R_1 C R_k L	$I = \frac{U}{Z}, R = R_1 + R_k,$ $X = X_L - X_C = \omega \cdot L - \frac{1}{\omega \cdot C},$ $Z = \sqrt{R^2 + X^2}, \varphi = \arctan \frac{X}{R}$
7	R	$I = U \cdot Y, G = \frac{1}{R_1}, B = -B_C = -\omega \cdot C,$ $Y = \sqrt{G^2 + B^2}, \varphi = \arctan \frac{B}{G}$
8	R _k L	$I = U \cdot Y, G = G_1 + G_k, G_1 = \frac{1}{R_1},$ $G_k = \frac{R_k}{R_k^2 + X_L^2}, B = B_k - B_1,$ $B_1 = 0, B_k = \frac{X_L}{R_k^2 + X_L^2},$ $Y = \sqrt{G^2 + B^2}, \varphi = \arctan \frac{B}{G}$
9	R_{k} C R_{k} L	$I = U \cdot Y, G = G_1 + G_k, G_1 = \frac{R_1}{R_1^2 + X_C^2},$ $G_k = \frac{R_k}{R_k^2 + X_L^2}, B = B_k - B_1,$ $B_1 = \frac{X_C}{R_1^2 + X_C^2}, B_k = \frac{X_L}{R_k^2 + X_L^2},$ $Y = \sqrt{G^2 + B^2}, \varphi = \arctan \frac{B}{G}$

1 ЧАСТЬ 1

1.1 Схемы исследуемых цепей (1-9)

Рисунок 1 – Схемы 1–9 (нумерация: слева направо, сверху вниз)

1.2 Расчётные формулы и расчёты. Заполненная таблица 2

Формулы для расчёта приведены в таблице 1.

Таблица 2

Номер	Парам	иетры дв	ухполюс	ников	Результ	гаты изм	Результаты вычислений		
	R_1	R_k	L	С	U	I	φ	I	φ
цепи	Ом		мГн	мкФ	В	A	0	A	0
1	20	-	-	-	5	0.25	0	0.25	0
2	-	-	-	18.199	5	0.091	-90	0.091	-90
3	20	-	-	18.199	5	0.086	-69.65	0.086	-70
4	-	30	51.962	-	5	0.083	59.73	0.083	60
5	20	30	51.962	-	5	0.069	45.86	0.069	46.1
6	20	30	51.962	18.199	5	0.1	-3.55	0.1	-3.42
7	20	-	-	18.199	5	0.266	-20.1	0.266	-20.1
8	20	30	51.962	-	5	0.3	14.3	0.299	13.9
9	20	30	51.962	18.199	5	0.071	-8.03	0.071	-6.6

$$I = \frac{U}{R_1} = \frac{5}{20} = \mathbf{0.25} \, [\mathrm{A}]$$

$$\Delta h = 0 \, [\mathrm{Mc}], \qquad \boldsymbol{\varphi} = 180^\circ \cdot \frac{\Delta h}{h} = \mathbf{0}^\circ$$

$$I = U \cdot 2\pi f \cdot C = 5 \cdot 2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6} \approx \mathbf{0.091} \, [\mathrm{A}]$$

$$\Delta h \approx 1.57 \, [\mathrm{Mc}], h \approx 3.14 \, [\mathrm{Mc}], \qquad \boldsymbol{\varphi} = 180^\circ \cdot \frac{1.57}{3.14} = 90^\circ$$

$$\Pi \text{ри этом ток отстаёт от напряжения} => \boldsymbol{\varphi} = -90^\circ$$

$$I = \frac{U}{\sqrt{R_1^2 + \left(-\frac{1}{2\pi f \cdot C}\right)^2}} = \frac{1}{\sqrt{20^2 + \left(-\frac{1}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6} \cdot 20\right)}}} \approx \mathbf{0.086} \, [\mathrm{A}]$$

$$\boldsymbol{\varphi} = \arctan\left(-\frac{1}{2\pi f \cdot C \cdot R_1}\right) = \arctan\left(-\frac{1}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6} \cdot 20}\right) = -70^\circ$$

$$\Delta h \approx 1.215 \, [\mathrm{Mc}], h \approx 3.14 \, [\mathrm{Mc}], \qquad \boldsymbol{\varphi} = 180^\circ \cdot \frac{1.215}{3.14} \approx 69.65^\circ, I \text{ отстаёт } => \boldsymbol{\varphi} \approx -69.65^\circ$$

$$I = \frac{U}{\sqrt{R_k^2 + (2\pi f \cdot L)^2}} = \frac{5}{\sqrt{30^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2}} \approx \mathbf{0.083} \, [\mathrm{A}]$$

$$\boldsymbol{\varphi} = \arctan\frac{2\pi f \cdot L}{R_k} = \arctan\frac{2\pi \cdot 159.155 \cdot 0.051962}{30} \approx 60^\circ$$

$$\Delta h \approx 1.042 \, [\mathrm{Mc}], h \approx 3.14 \, [\mathrm{Mc}], \qquad \boldsymbol{\varphi} = 180^\circ \cdot \frac{1.042}{3.14} \approx 59.73^\circ$$

$$I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (2\pi f \cdot L)^2}} = \frac{5}{\sqrt{(20 + 30)^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2}} \approx \mathbf{0.069} \, [\mathrm{A}]$$

$$\boldsymbol{\varphi} = \arctan\frac{2\pi f \cdot L}{R_1 + R_k} = \arctan\frac{2\pi \cdot 159.155 \cdot 0.051962}{20 + 30} \approx 46.1^\circ$$

$$\Delta h \approx 0.8 \, [\mathrm{Mc}], \qquad h \approx 3.14 \, [\mathrm{Mc}], \qquad \boldsymbol{\varphi} = 180^\circ \cdot \frac{0.8}{3.14} \approx 45.86^\circ$$

$$I = \frac{0}{\sqrt{(R_1 + R_k)^2 + \left(2\pi f \cdot L - \frac{1}{2\pi f \cdot C}\right)^2}}} = \frac{5}{\sqrt{(20 + 30)^2 + \left(2\pi \cdot 159.155 \cdot 0.051962 - \frac{1}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6}}\right)^2}}} \approx 0.1 \text{ [A]}$$

$$\varphi = \arctan \frac{\pi \cdot L - \frac{1}{2\pi f \cdot C}}{R_1 + R_k} = \arctan \frac{2\pi \cdot 159.155 \cdot 0.051962 - \frac{1}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6}}}{20 + 30}} \approx -3.42^\circ$$

$$\Delta h \approx 0.062 \text{ [bc]}, \quad h \approx 3.14 \text{ [bc]}, \quad \varphi = 180^\circ \cdot \frac{0.062}{3.14} \approx 3.55^\circ \cdot l \text{ Gravity} = 9 \approx -3.55^\circ$$

$$I = U \cdot \sqrt{\frac{1}{R_k}} + (-2\pi f \cdot C)^2 = 5 \cdot \sqrt{\frac{1}{20}} + (-2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6})^2} \approx 0.266 \text{ [A]}$$

$$\varphi = \arctan (-2\pi f \cdot C \cdot R_1) = \arctan (-2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6} \cdot 20) \approx -20.1^\circ$$

$$\Delta h \approx 2.79 \text{ [bc]}, \quad h \approx 3.14 \text{ [bc]}, \quad \varphi = 180^\circ \cdot \frac{2.79}{3.14} \approx 159.9^\circ$$

$$37 \text{ Начения } \varphi \text{ можно считать одинаховыми, так как разина между ними — это полный оборот в фазовом пространение.}$$

$$I = U \cdot \sqrt{\left(\frac{2\pi f \cdot L}{R_k^2 + (2\pi f \cdot L)^2}\right)^2 + \left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + (2\pi f \cdot L)^2}\right)^2}$$

$$= 5 \cdot \sqrt{\frac{2\pi \cdot 159.155 \cdot 0.051962}{(30^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2}} + \left(\frac{1}{20} + \frac{30}{30^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2}\right)^2}$$

$$\varphi = \arctan \frac{R_k^2 + (2\pi f \cdot L)^2}{R_k^2 + (2\pi f \cdot L)^2} = \arctan \frac{2\pi \cdot 159.155 \cdot 0.051962}{2 \cdot 30^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2} \times 13.9^\circ$$

$$Ah \approx 3.39 \text{ [bc]}, \quad h \approx 3.14 \text{ [bc]}, \quad \varphi = 180^\circ \frac{3.39}{5.7929\pi} \approx 194.3^\circ$$

$$I = U \cdot \sqrt{\left(\frac{2\pi f \cdot L}{R_k^2 + (2\pi f \cdot L)^2} - \frac{1}{R_k^2 + \left(\frac{1}{2\pi f \cdot C}\right)^2}\right)^2 + \left(\frac{R_k}{R_k^2 + \left(\frac{1}{2\pi f \cdot C}\right)^2} + \frac{R_k}{R_k^2 + \left(2\pi f \cdot L\right)^2}\right)^2}$$

$$\approx 5 \cdot \sqrt{\left(\frac{30^2 + (16.54\pi)^2}{30^2 + (16.54\pi)^2} - \frac{10^3}{5.7929\pi}\right)^2} + \frac{R_k}{2\pi \cdot 159.155 \cdot 0.051962} \times 13.9^\circ$$

$$\approx 0.071 \text{ [A]}$$

$$\approx 5 \cdot \sqrt{\left(\frac{16.54\pi}{30^2 + (16.54\pi)^2} - \frac{10^3}{5.7929\pi}\right)^2} + \left(\frac{20}{20^2 + \left(\frac{10^3}{5.7929\pi}\right)^2} + \frac{30}{30^2 + (2\pi \cdot 159.155 \cdot 0.051962)^2} \times \frac{2\pi \cdot 159.155 \cdot 0.051962}{20^2 + \left(\frac{10^3}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6}}\right)^2} \times \frac{2\pi \cdot 159.155 \cdot 0.051962}{20^2 + \left(\frac{10^3}{2\pi \cdot 159.155 \cdot 18.199 \cdot 10^{-6}}\right)^2} \times -6.58^\circ$$

$$\Delta h \approx 3 \text{ [bc]}, \quad h \approx 3.14 \text{ [bc]}, \quad \varphi = 180^\circ \frac{33.39}{3.14} \approx 171.97^\circ$$

 $\Delta h \approx 3 \,[\mathrm{Mc}],$

1.3 Векторные диаграммы входных напряжений и токов для каждого из двухполюсников

При $\varphi \approx 0^{\circ}$, то нагрузка активная – ток и напряжение совпадают по фазе.

При $\varphi > 0^{\circ}$, ток отстает от напряжения – нагрузка индуктивная.

При $\varphi < 0^{\circ}$, ток опережает напряжение — нагрузка емкостная.

Зная значения U, I и фазовый сдвиг φ (угол между U и I) нетрудно будет построить векторные диаграммы:

Рисунок 2 — Векторные диаграммы входных U и I для всех двухполюсников

1.4 Выводы по части 1 лабораторной работы

В первой части лабораторной работы были собраны схемы двухполюсников в LTspice, проведены измерения входного тока, напряжения и фазового сдвига между ними. Далее выполнены теоретические расчёты по формулам. Полученные экспериментальные и расчётные значения практически полностью совпали, что подтверждает корректность моделей и методики.

Векторные диаграммы позволяют наглядно представить соотношения между входными напряжением и током (амплитуды и фазовый сдвиг).

2 ЧАСТЬ 2

2.1 Схема исследуемой цепи (6, 9)

Для №6: Рассчитаем резонансную частоту для параметров элементов, заданных в части 1 лабораторной работы:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 Γ ц = $\frac{1}{2\pi\sqrt{0.051962} \Gamma_{\text{H}} \cdot 18.199 \cdot 10^{-6} \Phi} \approx 163.664 \Gamma$ ц

Рисунок 3 – Электрическая цепь со схемой двухполюсника №6

Для №9: Рассчитаем резонансную частоту для параметров элементов, заданных в части 1 лабораторной работы $\left(\rho = \sqrt{\frac{L}{c}} \right)$:

$$f_0' = \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{\rho^2 - R_k^2}{\rho^2 - R_1^2}} \Gamma \mathbf{u} = \frac{1}{2\pi\sqrt{0.051962 \cdot 18.199 \cdot 10^{-6}}} \cdot \sqrt{\frac{\frac{0.051962}{18.199 \cdot 10^{-6}} - 30^2}{\frac{0.051962}{18.199 \cdot 10^{-6}} - 25^2}}$$

$$\approx 153.242 \Gamma \mathbf{u}$$

Рисунок 4 – Электрическая цепь со схемой двухполюсника №9

2.2 Расчётные формулы и расчёты. Заполненные таблицы 3 и 4

Формулы для №6:

$$\varphi = \arctan \frac{2\pi f L - \frac{1}{2\pi f C}}{R_1 + R_k}$$

$$I = \frac{1}{\sqrt{(R_1 + R_k)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}}$$

$$U_{R_1} = IR_1$$

$$U_k = I \cdot \sqrt{R_k^2 + (2\pi f L)^2}$$

$$U_C = I \cdot \frac{1}{2\pi f C}$$

Таблица 3

Таолица 3	$U={f 5}$ В; ${f R_1}={f 25}$ Ом; ${f R_k}={f 30}$ Ом; ${f L}={f 51}.962$ мГн; ${f C}={f 18}.199$ мк ${f \Phi}$; ${f f}_0$									$\Phi; f_0$	
	= 163 . 664 Γιμ										
f			Расчёт		Эксперимент						
		Q_p	0.97	72		$Q_e = 0.972$					
	φ	I	U_{R1}	U_k	Uc	φ	I	U_{R1}	U_k	$U_{\mathcal{C}}$	
Гц	0	A		В		0	A	В			
$0.1 \cdot f_0$	-84,06	0,009	0,235	0,286	5,023	-84	0,009	0,24	0,29	5,02	
$0.2 \cdot f_0$	-77,90	0,019	0,477	0,607	5,093	-77,9	0,019	0,48	0,61	5,09	
$0.3 \cdot f_0$	-71,26	0,029	0,730	0,994	5,203	-71,3	0,029	0,74	1	5,18	
$0.4 \cdot f_0$	-63,89	0,040	1,000	1,474	5,345	-64,5	0,04	1,01	1,47	5,35	
$0.5 \cdot f_0$	-55,54	0,051	1,286	2,066	5,497	-55,6	0,052	1,29	2,1	5,5	
$0.6 \cdot f_0$	-46,02	0,063	1,578	2,772	5,622	-45,3	0,063	1,58	2,82	5,62	
$0.7 \cdot f_0$	-35,29	0,074	1,855	3,558	5,664	-34,6	0,075	1,88	3,58	5,63	
$0.8 \cdot f_0$	-23,61	0,083	2,082	4,350	5,564	-22,7	0,084	2,1	4,4	5,53	
$0.9 \cdot f_0$	-11,59	0,089	2,226	5,048	5,287	-10,5	0,089	2,23	5,1	5,2	
f_0	0,00	0,091	2,273	5,571	4,858	0	0,091	2,27	5,57	4,76	
$1.1 \cdot f_0$	10,51	0,089	2,235	5,899	4,342	13,8	0,089	2,22	5,86	4,26	
$1.2 \cdot f_0$	19,61	0,086	2,141	6,062	3,813	21,3	0,085	2,12	6,05	3,71	
$1.3 \cdot f_0$	27,28	0,081	2,020	6,114	3,321	28,3	0,08	1,98	6,06	3,26	
$1.4 \cdot f_0$	33,67	0,076	1,891	6,098	2,888	34,5	0,074	1,85	6,02	2,82	
$1.5 \cdot f_0$	38,99	0,071	1,766	6,047	2,517	40,6	0,069	1,73	5,98	2,45	
$1.6 \cdot f_0$	43,45	0,066	1,650	5,980	2,204	44,5	0,064	1,6	5,94	2,13	
$1.7 \cdot f_0$	47,21	0,062	1,544	5,908	1,941	48	0,061	1,53	5,88	1,9	
$1.8 \cdot f_0$	50,41	0,058	1,449	5,838	1,720	50,8	0,057	1,42	5,77	1,68	
$1.9 \cdot f_0$	53,16	0,055	1,363	5,771	1,533	52,1	0,053	1,34	5,72	1,5	
$2 \cdot f_0$	55,54	0,051	1,286	5,709	1,374	55,3	0,05	1,26	5,69	1,34	

Добротности контура:

$$Q_p = \frac{\rho}{R_1 + R_k}$$

где $\rho = \sqrt{\frac{L}{c}}$ — характеристическое сопротивление;

$$Q_e = \frac{U_{C0}}{U}$$

где U_{C0} и U — действующие значения напряжения на конденсаторе и входного напряжения измеренные в режиме резонанса.

$$Q_p = \frac{\sqrt{\frac{0.051962}{18.199 \cdot 10^{-6}}}}{25 + 30} \approx 0.972, \qquad Q_e = \frac{4.86}{5} \approx 0.972$$

Формулы для №9:

$$\varphi = \arctan \frac{\frac{2\pi fL}{R_k^2 + (2\pi fL)^2} - \frac{\frac{1}{2\pi fC}}{R_1^2 + \left(\frac{1}{2\pi fC}\right)^2}}{\frac{R_1}{R_1^2 + \left(\frac{1}{2\pi fC}\right)^2} + \frac{R_k}{R_k^2 + (2\pi fL)^2}}$$

$$I = U \cdot \sqrt{\left(\frac{R_1}{R_1^2 + \left(\frac{1}{2\pi fC}\right)^2} + \frac{R_k}{R_k^2 + (2\pi fL)^2}\right)^2 + \left(\frac{2\pi fL}{R_k^2 + (2\pi fL)^2} - \frac{\frac{1}{2\pi fC}}{R_1^2 + \left(\frac{1}{2\pi fC}\right)^2}\right)^2}$$

$$I_1 = \frac{U}{\sqrt{R_k^2 + (2\pi fL)^2}}$$

$$I_2 = \frac{U}{\sqrt{R_1^2 + \left(\frac{1}{2\pi fC}\right)^2}}$$

Таблица 4

	$\emph{U}=5\ \mathrm{B}; \emph{R}_{1}=25\ \mathrm{Om}; \emph{R}_{\emph{k}}=30\ \mathrm{Om}; \emph{L}=51.962\ \mathrm{m}$ Гн; $\emph{C}=18.199\ \mathrm{mk}$ Ф; \emph{f}'_{0}										
£		= 1	. 53 . 242 Γ	Ц							
f		Pac	чёт		Эксперимент						
	φ	I	I_1	I_2	φ	I	I_1	I ₂			
Гц	0		A		0		A	<u> </u>			
$0.1 \cdot f'_0$	6,423	0,164	0,164	0,009	6,3	0,163	0,164	0,009			
$0.2 \cdot f'_0$	12,156	0,155	0,158	0,017	12,2	0,155	0,158	0,018			
$0.3 \cdot f'_0$	16,640	0,143	0,149	0,026	16,6	0,142	0,148	0,027			
$0.4 \cdot f'_0$	19,494	0,129	0,139	0,035	19,4	0,129	0,139	0,036			
$0.5 \cdot f'_0$	20,498	0,115	0,128	0,043	20,4	0,115	0,128	0,044			
$0.6 \cdot f'_0$	19,550	0,102	0,118	0,051	19,5	0,101	0,118	0,053			
$0.7 \cdot f'_0$	16,680	0,092	0,108	0,059	16,6	0,092	0,107	0,061			
$0.8 \cdot f'_0$	12,113	0,084	0,100	0,066	12,1	0,084	0,100	0,067			
$0.9 \cdot f'_0$	6,324	0,079	0,092	0,073	6,3	0,079	0,092	0,073			
f'_0	0,000	0,076	0,086	0,080	-0,5	0,076	0,085	0,082			
$1.1 \cdot f'_0$	-6,149	0,076	0,080	0,087	-6,2	0,077	0,079	0,088			
$1.2 \cdot f'_0$	-11,606	0,078	0,074	0,093	-11,7	0,078	0,074	0,093			
$1.3 \cdot f'_0$	-16,127	0,081	0,070	0,099	-16,2	0,081	0,070	0,100			
$1.4 \cdot f'_0$	-19,695	0,086	0,066	0,105	-19,7	0,086	0,066	0,105			
$1.5 \cdot f'_0$	-22,411	0,090	0,062	0,110	-22,5	0,090	0,061	0,111			
$1.6 \cdot f'_0$	-24,419	0,095	0,058	0,115	-24,5	0,094	0,058	0,115			
$1.7 \cdot f'_0$	-25,862	0,100	0,055	0,119	-25,9	0,100	0,055	0,120			
$1.8 \cdot f'_0$	-26,861	0,105	0,053	0,124	-26,9	0,104	0,053	0,124			
1.9·f' ₀	-27,517	0,109	0,050	0,128	-27,6	0,109	0,050	0,128			
$2 \cdot f'_0$	-27,909	0,114	0,048	0,132	-28,0	0,113	0,047	0,132			

2.3 Графики характеристик I(f), $\varphi(f)$, $U_{RI}(f)$, $U_k(f)$, $U_C(f)$ для схемы №6

Штриховые линии – экспериментальные данные

Рисунок 5 — График зависимости I(f)

Рисунок 6 – График зависимости $\varphi(f)$

Рисунок 7 — Графики зависимостей $U_{R1}(f)$, $U_k(f)$, $U_C(f)$

2.4 Графики характеристик I(f), $I_1(f)$, $I_2(f)$, $\varphi(f)$ для схемы №9

Штриховые линии – экспериментальные данные

Рисунок 8 — Графики зависимостей I(f), $I_1(f)$, $I_2(f)$

Рисунок 9 – График зависимости $\varphi(f)$

2.5 Выполненные в масштабе векторные диаграммы для состояния резонанса в схемах №6 и №9.

Для №6:

В резонансе ток I и напряжение U в фазе: $\varphi = 0$, ток направлен горизонтально вправо.

Напряжение на резисторе R_1 — в фазе с током.

Напряжение на катушке (индуктивное + активное сопротивление R_k) - отстаёт на угол меньше 90° , так как катушка не идеальна.

$$U_k$$
 будет под углом $\psi_k = \arctan \frac{X_L}{R_k} = \arctan \frac{2\pi f L}{R_k} \approx \frac{53.434}{30} \approx 60.688^\circ$

Напряжение на конденсаторе – всегда противофазно току: вертикально вниз.

Рисунок 10 – Векторная диаграмма для состояния резонанса в схеме №6

Для №9:

Направление вектора напряжения U - ось X (фаза 0).

Вектор тока I_1 через индуктивность отстаёт по фазе на угол $\psi_L = \arctan \frac{X_L}{R_k} \approx 59.05^\circ$, то есть ниже оси X.

Вектор тока I_2 через конденсатор опережает по фазе на угол $\psi_{\it C}=$ arctan $\frac{X_{\it C}}{R_1}\approx 66.3^\circ$, то есть выше оси $\it X$.

Суммарный ток $I = I_1 + I_2 -$ направлен по оси X.

Рисунок 11 – Векторная диаграмма для состояния резонанса в схеме №9

2.6 Выводы по части 2 лабораторной работы

Во второй части лабораторной работы исследованы частотные характеристики двух цепей: последовательной RLC (схема №6) и параллельной (схема №9).

Выполнены расчёты резонансных частот, токов, напряжений и фазовых углов, построены графики и векторные диаграммы.

Для обеих схем подтверждён резонанс: в последовательной цепи — максимум тока и нулевой фазовый сдвиг, в параллельной — минимум тока и компенсация реактивных токов.

Экспериментальные данные совпадают с расчётными, что подтверждает точность моделей.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы было исследовано поведение линейных цепей синусоидального тока, а также особенности работы в условиях резонанса. В первой части работы была проведена оценка фазовых сдвигов и амплитудных характеристик для различных двухполюсников, что позволило детально понять взаимосвязь между входным током и напряжением. Во второй части работы были исследованы частотные характеристики для последовательных и параллельных RLC-цепей, а также исследован процесс резонанса.

Проведённый эксперимент позволил наблюдать резонансные явления, при которых ток и напряжение достигают максимума или минимума в зависимости от типа схемы. Полученные экспериментальные данные полностью совпали с теоретическими расчётами, что подтверждает правильность выбранных методов и принципов работы.

Работа дала практическое понимание процессов, происходящих в резонансных режимах, и продемонстрировала важность учета этих эффектов при проектировании и настройке электрических цепей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Усольцев А.А. Общая электротехника: Учебное пособие. СПб: НИУИТМО, 2013. 305с. URL: ОБЩАЯ ЭЛЕКТРОТЕХНИКА Учебные издания НИУ ИТМО.
- Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А.,). Никитина М.В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно методическое пособие. Санкт-Петербург: Университет ИТМО, 2019. 52 с. URL: Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. Учебные издания НИУ ИТМО.
- 3. Параметры источника и нагрузки для выполнения лабораторной работы «Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока».