

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2021

Práctica 6: Aplicaciones del cálculo integral.

1.	a)	Obtenga la	as coordenadas	cartesianas	de los	siguientes	puntos	(dados en	${\rm coordenadas}$	polares):
----	----	------------	----------------	-------------	--------	------------	--------	-----------	---------------------	-----------

$$(\sqrt{2}, \frac{\pi}{4})$$
 ; $(1,0)$; $(0, \frac{\pi}{2})$; $(\sqrt{2}, \frac{5\pi}{3})$

b) Obtenga las coordenadas polares, $-\pi \le \theta < \pi$ y $r \ge 0$, de los siguientes puntos dados en coordenadas cartesianas:

$$(-2,0)$$
 ; $(1,0)$; $(\sqrt{3},1)$; $(0,-4)$

2. Demuestre que el conjunto de puntos cuyas coordenadas cartesianas (x, y) satisfacen la ecuación cartesiana dada, es igual al de los puntos cuyos coordenadas polares (r, θ) satisfacen la correspondiente ecuación polar.

a)
$$(x-1)^2 + y^2 = 1$$
, $r = 2\cos \theta$, $\cos \theta > 0$;
b) $x^2 + y^2 - x = \sqrt{x^2 + y^2}$, $r = 1 + \cos \theta$;
c) $(x^2 + y^2)^2 = |x^2 - y^2|$, $r = \sqrt{|\cos 2\theta|}$.

3. Grafique los conjuntos de puntos cuyas coordenadas polares satisfacen las ecuaciones y desigualdades de los siguientes ejercicios:

$$\begin{array}{ll} a) \ r \leq 1, & \qquad b) \ r \geq 2, & \qquad c) \ 1 \leq r \leq 2, & \qquad d) \ r \leq \theta, \ 0 \leq \theta = \pi/4, \\ e) \ \theta = 1 & \qquad f) \ \theta = 1, \ 1 \leq r \leq 2 & \qquad g) \ r = 1, \ 1 \leq \theta \leq 2, & \qquad h) \ \theta \geq 1, \ r \geq 2 \end{array}$$

4. a) Esboce la curva de ecuación polar $r = \theta$, $\theta \ge 0$ (esta curva es una espiral).

b) Obtenga el área de la región limitada por la espiral $r=\theta$ para $0\leq\theta\leq\pi$.

c) Repita el ejercicio anterior para las siguientes curvas: a) Cardiode: $f(\theta) = 1 + \cos \theta$, $0 \le \theta \le 2\pi$; b) Ocho aplastado: $f(\theta) = \sqrt{|\cos \theta|}$, $0 \le \theta \le 2\pi$.

- 5. La región entre la curva $y=\sqrt{x},\,0\leq x\leq 4,\,$ y el eje x se hace girar alrededor del eje x para generar un sólido. Determine su volumen.
- 6. Determine el volumen del sólido generado al hacer girar alrededor de la recta y=1 la región acotada por $y=\sqrt{x}$ y las rectas y=1, x=4.
- 7. Determine el volumen del sólido generado al hacer girar con respecto al eje y la región comprendida entre el eje y y la curva $x=2/y,\,1\leq y\leq 4.$
- 8. Determine el volumen del sólido generado al hacer girar con respecto a la recta x=3 la región comprendida entre la parábola $x=y^2+1$ y la recta x=3.
- 9. Para generar un sólido, se hace girar alrededor del eje y la región acotada por la parábola $y=x^2$ y la recta y=2x en el primer cuadrante. Determine el volumen del sólido.
- 10. Considere la región R acotada por las gráficas de y = f(x) > 0, x = a > 0, x = b > a y y = 0. Si el volumen del sólido que se obtiene al hacer girar alrededor del eje x es 4π , y el volumen del sólido que se obtiene al hacer girar R alrededor de la recta y = -1 es 8π , determine el área de R.
- 11. Se crea una cuenta para un collar a partir de una esfera de radio 5, luego de perforar un diámetro de la esfera con un pequeño taladro de radio 3.
 - a) Determine el volumen de la cuenta.
 - b) Determine el volumen de la parte eliminada de la esfera.
- 12. a) Determine la longitud de la gráfica de $f(x) = \frac{x^3}{12} + \frac{1}{x}$ con $1 \le x \le 4$.
 - b) Determine una función que mida la longitud de la gráfica de f a partir del punto (1, 13/12) hasta el punto (x, f(x)) para un x genérico.
- 13. Determine una curva que pase por el punto (1,0), cuya integral de su longitud sea $L = \int_{1}^{2} \sqrt{1 + \frac{1}{y^4}} dy$. ¿Cuántas curvas cumplen con lo anterior? Justifique su respuesta.
- 14. La gráfica de la ecuación $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ es una familia de curvas denominada astroides (no asteroides) en virtud de su apariencia de estrella. Determine la longitud de esta astroide particular; para ello, calcule la longitud de la mitad de la parte que está en el primer cuadrante, $y = \left(1 x^{\frac{2}{3}}\right)^{\frac{3}{2}}, \frac{\sqrt{2}}{4} \le x \le 1$ y multiplique por 8.
- 15. Dadas las siguientes ecuaciones paramétricas con sus respectivos intervalos de parámetros del movimiento de una partícula en el plano xy se pide:

- i) identifique la trayectoria de la partícula determinando una ecuación cartesiana para ello;
- ii) grafique la ecuación cartesiana e indicar la dirección del movimiento de la partícula.

$$\begin{array}{ll} a) \ x = 3t, \ y = 9t^2, \ -\infty < t < +\infty; & b) \ x = -\sqrt{t}, \ y = t, \ t \geq 0; \\ c) \ x = \frac{t}{t-1}, \ y = \frac{t-2}{t+1}, \ -1 < t < 1; & d) \ x = 4\cos t, \ y = 2\sin 2t, \ 0 \leq t \leq 2\pi. \end{array}$$

- 16. Una rueda de radio a gira sin patinarse a lo largo de una recta horizontal. Determine ecuaciones paramétricas para la curva que describe el punto P ubicado sobre un rayo de la rueda a b unidades del centro ($b \le a$). Como parámetro utilice el ángulo θ que gira la rueda. La curva se denomina trocoide y es una cicloide cuando b = a.
- 17. Obtenga el área bajo un arco de la cicloide $x=a(t-\sin t),\,y=a(1-\cos t).$
- 18. Obtenga las longitudes de las siguientes curvas:

$$a)x = \cos t, \ y = t + \sin t, \ 0 \le t \le \pi \quad ; \quad b)x = t^3, \ y = \frac{3}{2}t^2, \ 0 \le t \le \sqrt{3}$$

$$c)x = \frac{t^2}{2}, \ y = \frac{(2t+1)^{\frac{3}{2}}}{3}, \ 0 \le t \le 4 \quad ; \quad d)x = 8\cos t + 8t\sin t, \ y = 8\sin t - 8t\cos t, \ 0 \le t \le \frac{\pi}{2}$$