Matemática Discreta

Demonstração de Teoremas Estratégias

Profa. Helena Caseli helenacaseli@ufscar.br

Objetivos desta aula

- Apresentar a estrutura de uma prova
- Apresentar as estratégias de demonstração de teoremas mais utilizadas
 - 1. Prova direta
 - 2. Prova por contraposição
 - 3. Prova indireta (por absurdo)
- Capacitar o aluno a escolher e utilizar corretamente a Estratégia mais adequada para uma Demonstração de Teorema

Problema #4

Provar/refutar

<u>Se</u> x e y são inteiros pares, <u>então</u> o produto x*y também é par.

Algumas definições úteis

Múltiplo

- Um inteiro n é múltiplo de um inteiro p se, e somente se, existe um inteiro q tal que n = pq.
 - Exemplo: 6 é múltiplo de 2, pois 6 = 2*3

Divisor

- Um inteiro b divide um inteiro a (é um divisor de a) se, e somente se, a é múltiplo de b.
- → Dizemos que a é divisível por b (b|a)
 - Exemplo: 6 é divisível por 2 (2|6) porque 6 é múltiplo de 2

Algumas definições úteis

- Par
 - Um inteiro n é par se ele é múltiplo de 2.
 - Um inteiro *n* é *par* se for divisível por 2.

• Ímpar

- Um inteiro a é *impar* desde que haja um inteiro b de modo que a = 2b + 1.
- Se um inteiro não é par, dizemos que ele é *ímpar*.

Estrutura de uma prova

AFIRMAÇÃO na forma de se-então que traz a apresentação da prova, ou seja, o que vai ser provado e qual a estrutura dessa prova.

HIPÓTESE que rege a demonstração, ou seja, a condição da parte "se" do seentão.

CORPO da prova no qual são descritos os passos que compõem a demonstração.

CONCLUSÃO verdadeira, ou seja, a condição da parte "então" do se-então se mostrou válida.

Prova direta

Fonte: https://pixabay.com/

Uma sequência de passos baseados em definições e resultados já conhecidos, que permite nos levar da hipótese (P) até a conclusão (Q) para provar

Se P então Q

Prova direta

Se-então

"A soma de dois inteiros pares é um inteiro par"

Convertendo para a forma se-então

"<u>Se</u> x e y são dois inteiros pares, <u>então</u> x+y é um inteiro par"

Prova direta

Se-então

"<u>Se</u> x e y são dois inteiros pares, <u>então</u> x+y é um inteiro par"

- Provar/refutar
 - Nesta prova serão usadas as <u>definições</u> de "par" e "múltiplo"

"Um inteiro é par se for múltiplo de 2"

"Um inteiro n é um múltiplo de um inteiro p se, e somente se, existe um inteiro q tal que n = pq"

- Prova direta
 - Se-então

- afirmação na forma se-então
- apresentação da prova
- o que vai ser provado e qual a estrutura dessa prova

"<u>Se</u> x e y são dois intei<mark>r</mark>os pares, <u>então</u> x+y é um inteiro par"

Prova direta

Se-então

"<u>Se</u> x e y são dois inteiros pares, <u>então</u> x+y é um inteiro par"

Prova:

Vamos mostrar que, se x e y são dois inteiros pares, então x+y é um inteiro par.

Sejam x e y inteiros pares.

Como x é par e y é par, pela definição de números pares temos que x é múltiplo de 2 e y é múltiplo de 2.

Pela definição de múltiplo sabemos que "um inteiro n é múltiplo de um inteiro p sse existe um inteiro q tal que n = pq" e podemos reescrever x e y como x = 2m e y = 2n, onde m e n são inteiros. Observe que x+y = 2m+2n = 2(m+n) onde m+n é um inteiro c tal que x+y = 2c. Por conseguinte, x+y é múltiplo de 2.

Portanto, x+y é par.

Prova direta

- Se-e-somente-se
 "Um inteiro x é par <u>se e somente se</u> x+1 é ímpar."
 - Provar/refutar
 - Nesta prova serão usadas as <u>definições</u> de "par", "múltiplo" e "ímpar"

"Um inteiro é par se for múltiplo de 2"

"Um inteiro n é um múltiplo de um inteiro p se, e somente se, existe um inteiro q tal que n = pq"

"Um inteiro a é ímpar desde que haja um inteiro b de modo que a = 2b + 1"

Prova direta

Se-e-somente-se

"Um inteiro x é par <u>se e somente se</u> x+1 é ímpar."

Prova:

Seja x um inteiro.

(⇒)

Suponhamos que x é par.

Isso significa que x é múltiplo de 2.

Logo, há um inteiro m tal que x = 2m.

Portanto, x+1 = 2m+1.

Sabemos que um inteiro a é ímpar se

há um inteiro b tal que a=2b+1.

Logo, x+1 é ímpar.

Portanto, x é par se e somente se x+1 é ímpar.

Prova direta

Se-e-somente-se

"Um inteiro x é par <u>se e somente se</u> x+1 é ímpar."

Prova:

Seja x um inteiro.

 $(\Rightarrow) \qquad (\Leftarrow)$

Suponhamos que x é par. S

Isso significa que x é múltiplo de 2.

Logo, há um inteiro m tal que x = 2m.

Portanto, x+1 = 2m+1.

Sabemos que um inteiro a é ímpar se

há um inteiro b tal que a=2b+1.

Logo, x+1 é ímpar.

Suponhamos que x+1 é ímpar.

Isso significa que existe um inteiro

b tal que x+1 = 2b+1.

Portanto, x = 2b, ou seja, $x \in$

múltiplo de 2.

Logo, x é par.

Portanto, x é par se e somente se x+1 é ímpar.

Prova direta

Desigualdades

"Se
$$x > 2$$
, então $x^2 > x + 1$."

Prova direta

Desigualdades

"Se
$$x > 2$$
, então $x^2 > x + 1$."

Prova:

Vamos mostrar que, se x > 2, então $x^2 > x + 1$. Seja x um inteiro tal que x > 2.

Como x é positivo, multiplicar ambos os lados por x resulta em $x^2 > 2x$.

Portanto, temos que

$$x^{2} > 2x$$

> $x + x$
> $x + 2$ porque $x > 2$
> $x + 1$ porque $2 > 1$

Portanto, $x^2 > x + 1$.

Prova por contraposição

Fonte: https://pixabay.com/

- A afirmação "Se A então B" é <u>logicamente equivalente</u> a "Se (não B) então (não A)"
- "Se (não B) então (não A)" é a contrapositiva de "Se A então B"

- Prova por contraposição
 - Para provar

"Se A então B"

 $p \rightarrow q$

é aceitável provar

"Se (não B) então (não A)"

$$\neg q \rightarrow \neg p$$

Com base na tautologia: $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$

Prova por contraposição

```
p \rightarrow q
quad impar \rightarrow inteiro impar
\neg q \rightarrow \neg p
inteiro par \rightarrow quadrado par
```

"<u>Se</u> o quadrado de um número inteiro é ímpar, <u>então</u> o inteiro é ímpar"

Prova:

Vamos mostrar por contraposição que se o quadrado de um número inteiro é ímpar, então o inteiro é ímpar. Seja x um inteiro par.

Como x é par, pela definição de números pares temos que x é múltiplo de 2.

Pela definição de múltiplo sabemos que "Um inteiro n é um múltiplo de um inteiro p sse existe um inteiro q tal que n = pq" e podemos reescrever x como x = 2m.

Observe que $x^2 = 2m2m = 2(2mm)$ onde 2mm é um inteiro c tal que $x^2 = 2c$. Por conseguinte, x^2 é múltiplo de 2. Portanto, x^2 é par.

Logo, provamos, por contraposição, que se o quadrado de um número inteiro é ímpar, então o inteiro é ímpar.

Prova indireta (por absurdo)

Fonte: https://pixabay.com/

- Para provar que "Se A então B", mostramos que é <u>impossível</u>
 - A ser verdadeiro
 ao mesmo tempo em que
 - B é falso

Prova indireta (por absurdo)

- Para provar que "Se A então B"
 - Mostramos que é impossível "A e (não B)" ser verdade ao mesmo tempo
 - Admitimos que o impossível é verdadeiro e provamos que essa suposição conduz a uma conclusão absurda
 - Se uma afirmação implica em algo errado, então a afirmação deve ser falsa
- Supomos que a <u>hipótese</u> e a <u>negação da conclusão</u> são <u>ambas verdadeiras</u>

Prova indireta

"<u>Se</u> x e y são dois inteiros pares, <u>então</u> x+y é um inteiro par"

- → Provar/refutar
 - Nesta prova serão usadas as <u>definições</u> de "par", "múltiplo" e "ímpar"

"Um inteiro é par se for múltiplo de 2"

"Um inteiro n é um múltiplo de um inteiro p se, e somente se, existe um inteiro q tal que n = pq"

"Um inteiro a é ímpar desde que haja um inteiro b de modo que a = 2b + 1"

Prova indireta

x+y é impar, logo x+y = 2b+1 x = 2m e y = 2n inteiro x+y = 2m+2n = 2(m+n) = 2c2c = 2b+1 e c = b+0,5

"<u>Se</u> x e y são dois inteiros pares, <u>então</u> x+y é um inteiro par"

Prova:

Vamos demonstrar por absurdo que, se x e y são dois inteiros pares, então x+y é um inteiro par.

Sejam x e y inteiros pares.

Suponha, para demonstrar por absurdo, que x+y é um inteiro ímpar. Se x+y é ímpar, então existe um inteiro b tal que x+y=2b+1. Como x é par e y é par, pela definição de números pares temos que x e y são múltiplos de 2 e podem ser reescritos como x=2m e y=2n. Observe que x+y=2m+2n=2(m+n) onde m+n é um inteiro c tal que x+y=2c.

Assim, x+y = 2c = 2b+1 e c = b+1/2 o que é um absurdo já que c é um inteiro.

Por conseguinte, (x par e y par) \rightarrow x+y par.

Portanto, x+y é par.

Prova indireta

Provar/refutar

"<u>Se</u> um número somado a ele mesmo é igual a ele mesmo, <u>então</u> esse número é 0."

→ Supor que a <u>hipótese</u> e a <u>negação da conclusão</u> são <u>ambas verdadeiras</u>

Prova indireta

Provar/refutar

"<u>Se</u> um número somado a ele mesmo é igual a ele mesmo, <u>então</u> esse número é 0."

Prova:

Vamos demonstrar por absurdo que se um número somado a ele mesmo é igual a ele mesmo então esse número é 0. Seja x um número qualquer tal que x = x+x.

Suponha, para demonstrar por absurdo, que $x \neq 0$.

Então $x = 2x e x \neq 0$.

Como $x \neq 0$ podemos dividir ambos os lados da equação por x, obtendo 1 = 2, uma contradição (um <u>absurdo</u>).

Por conseguinte, $(x = x + x) \rightarrow (x = 0)$.

Portanto, x = 0.

Prova por vacuidade

Fonte: https://pixabay.com/

 Se A é um <u>conjunto vazio</u>, a afirmação

$$\forall x \in A Q(x)$$

- é verdadeira, qualquer que seja o predicado Q
- Essa afirmação é verdadeira por vacuidade

Prova por vacuidade

- Assim, teoremas como
 Todos os pares primos maiores do que dois são
 - São verdadeiros por vacuidade

quadrados perfeitos.

Resumo

Estratégia de Demonstração	Abordagem para provar p → q	Observações
Demonstração por exaustão	Demonstre p → q para todos os casos possíveis	Pode ser usada apenas para provar um número finito de casos
Demonstração direta	Suponha p, deduza q	Abordagem padrão – o que se deve tentar em geral
Demonstração por contraposição	Suponha ¬q, deduza ¬p	Use essa estratégia se ¬q parece dar mais munição do que p
Demonstração por absurdo	Suponha p ∧ ¬q, deduza uma contradição	Use essa estratégia quando q disser que alguma coisa não é verdade

Problema #4

Provar/refutar

<u>Se</u> x e y são inteiros pares, <u>então</u> o produto x*y também é par.