

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 7

Markus Stein
02 September 2019

Testes de Hipóteses

"O que é uma hipótese? Como testar hipóteses com base em observações?"

Experimento aleatório: Seja o vetor $\mathbf{X} = (X_1, \dots, X_n)$ uma amostra aleatória de $X \sim f(x; \theta)$, para $\theta \in \Theta$ (no caso multiparamétrico θ e Θ possui pelo menos dois pontos) e $\mathbf{X} \in \mathcal{X}$ (espaço amostral de \mathbf{X}).

Definição (**Hipóteses Estatísticas**): Qualquer afirmação sobre a distribuição de probabilidades de uma ou mais variáveis aleatórias é denominada **hipótese estatística**. As duas hipóteses complementares em um teste de hipóteses são chamadas nula e alternativa, H_0 e H_1 respectivamente.

• Exemplo 1: "A senhora consegue distinguir se o leite foi adicionado ao chá ou o chá foi adicionado ao leite", "A vacina não é eficiente" ou "o sujeito é inocente".

Definição (**Hipóteses Paramétricas**): São afirmações sobre um parâmetro θ . As duas hipóteses comlementares em um teste de hipóteses paramétrico são $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta_1$, tal que $\Theta_0 \cup \Theta_1 = \Theta$ e $\Theta_0 \cap \Theta_1 = \emptyset$.

• Exemplo 2: (Bolfarine e Sandoval, exemplo 6.2.1)

Definição (**Hipóteses Simples**): No caso em que uma hipótese, por exemplo H_0 , $\Theta_0 = \{\theta_0\}$ então dizemos que H_0 é **simples**.

• continuação Exemplo 2: (Bolfarine e Sandoval, exemplo 6.2.1)

Como testar hipóteses?

Exemplo 3: Paradoxo do corvo: "todo corvo é preto" equivale a "todo objeto não preto é não corvo"?
 Confirmação, equivalência, Definição de probabilidade?

Definição (**Teste de Hipóteses - decisão**): A função $d: \mathcal{X} \to \{a_0, a_1\}$, em que a_0 significa à ação de considerar H_0 como verdadeira e a_1 corresponde à ação de considerar H_1 como verdadeira.

• continuação Exemplo 2: (Bolfarine e Sandoval, exemplo 6.2.1)

Definição (**Região de Aceitação e Região de Rejeição**): A função d divide o espaço amostral $\mathcal{X} = A_0 \cup A_1$ e $A_0 \cap A_1 = \emptyset$ tais que

- $A_0 = \{(x_1, \dots, x_n) \in \mathcal{X}; d(x_1, \dots, x_n) = a_0\}, \text{ ou } R^c,$
- $A_1 = \{(x_1, \dots, x_n) \in \mathcal{X}; d(x_1, \dots, x_n) = a_1\}, \text{ ou } R.$
- continuação Exemplo 2: (Bolfarine e Sandoval, exemplo 6.2.1)

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

TD C 1		, .	10	1	1.	•
Tareta:	Fazer	exercício	13	ดล	lista	2.

Leitura: "Uma senora toma chá" capítulo 11.