CVEN5313: Environmental Fluid Mechanics

Navier-Stokes: Integral Theorems Due: 10/27/10

- 1. Let $\mathcal{R}(t)$ be a material volume bounded by the surface $\mathcal{S}(t)$. The volume of fluid within $\mathcal{R}(t)$ is V(t).
 - (a) Show from geometry that the volume V(t) evolves as

$$\frac{dV(t)}{dt} = \iint_{\mathcal{S}(t)} \vec{u} \cdot \hat{n} \ dS$$

where \vec{u} is the local flow velocity, dS is an area element on S(t), and \hat{n} is the outward-pointing unit normal on dS.

(b) Use the divergence theorem to rewrite your answer from part (a) as

$$\frac{dV(t)}{dt} = \iiint_{\mathcal{R}(t)} \nabla \cdot \vec{u} \ dV$$

- (c) Use your result from part (b) to intuit the physical interpretation of $\nabla \cdot \vec{u}$.
- 2. Derive the one-dimensional Leibnitz formula using the three-dimensional formulation given in lecture. Start by considering a function of only one dimension f(x,t) that exists in a three-dimensional space. You can use an integration volume with a convenient shape (i.e. not a generalized potato).
- 3. Consider an incompressible fluid $(\nabla \cdot \vec{u} = 0)$.
 - (a) Use Gauss' theorem to show that the integral of the velocity flux over any closed surface is zero.
 - (b) Use pictures and words to explain why the sum of the velocity fluxes over any closed surface must be zero.
- 4. Consider a vector field $\vec{u}(\vec{x},t)$ that describes the spatial and temporal variation of a fluid flow. We will see that an important kinematic (i.e. relating to motion) property of the flow is the vorticity field $\vec{\omega}(\vec{x},t)$. The vorticity is defined as the curl of the velocity, namely $\vec{\omega} = \nabla \times \vec{u}$. It can be shown that the integral of the vorticity flux vanishes over any closed surface. Note that an example of an arbitrary closed surface would be the skin of a potato.

- (a) Draw a picture of an arbitrary three-dimensional volume (a potato). Indicate (schematically) a vorticity vector on the surface, the unit normal vector, and the vorticity flux through an elemental area dS.
- (b) Use Stokes' theorem to show that the integral of the vorticity flux over the surface is zero. Hint: You might want to take a knife to your 'potato'.
- (c) Repeat the exercise using Gauss'theorem. Hint: You will make use of things you learned in the first problem set.
- 5. Using the definition for vorticity, Stokes' theorem can be written as

$$\int \vec{\omega} \cdot d\vec{A} = \int \vec{u} \cdot d\vec{l}$$

(a) Using small element of fluid in cartesian coordinates in the x_1 - x_2 plane, show that Stokes' theorem leads to the following expression for vorticity in the x_1 - x_2 plane:

$$\omega_3 = \left[\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right]$$

(b) Using a small element of fluid in polar coordinates in the r- θ plane, show that Stokes' theorem leads to the following expression for vorticity in the r- θ plane:

$$\omega_z = \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r u_\theta \right) - \frac{\partial u_r}{\partial \theta} \right]$$