

CLAIMS

We claim:

1. A biochip comprising a solid substrate comprising an array comprising:
 - a) at least one capture probe substantially homologous to a portion of the sense strand of a nucleic acid encoding CPY1A1;
 - b) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY1A2;
 - c) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY1B1;
 - d) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY2C19;
 - e) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY2D6;
 - f) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY2E1; and
 - g) at least one capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY3A4.
2. A biochip according to claim 1 wherein said first portion of said sense strand of said nucleic acid encoding CPY2D6 is adjacent to a single nucleotide polymorphism (SNP) position of interest.
3. A biochip according to claim 1 wherein said first portion of said sense strand of said nucleic acid encoding CPY2D6 includes at a terminus a single nucleotide polymorphism (SNP) position of interest.
4. A biochip according to claim 1 wherein said array further comprises at least one capture probe substantially homologous to a portion of the antisense strand of a nucleic acid encoding a protein selected from the group consisting of CYP1A1; CYP1A2; CYP1B1; CYP2C19; CYP2D6; CYP2E1 and CYP3A4.

5. A biochip according to claim 1 wherein said array further comprises at least one capture probe substantially homologous to a portion of a CYP pseudogene.
6. A biochip according to claim 1 wherein said solid support is selected from the group consisting of glass, plastic, ceramic, and PC board.
7. A biochip according to claim 1 wherein said array comprises an array of electrodes.
8. A biochip according to claim 1 wherein said array comprises an array of polymer gel pads.
9. A method of determining the identification of a nucleotide at a detection position in at least one target sequence selected from the group consisting of CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, said method comprising:
 - a) providing an array comprising:
 - i) at least one first capture probe substantially homologous to a first portion of a nucleic acid encoding CPY1A1, wherein said first capture probe is directly adjacent to or includes at its terminus a detection position;
 - ii) at least one second capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY1A2, wherein said second capture probe is directly adjacent to or includes at its terminus a detection position;
 - iii) at least one third capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY1B1, wherein said third capture probe is directly adjacent to or includes at its terminus a detection position;
 - iv) at least one fourth capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY2C19, wherein said fourth capture probe is directly adjacent to or includes at its terminus a detection position;
 - v) at least one fifth capture probe substantially homologous to a first

portion of the sense strand of a nucleic acid encoding CPY2D6, wherein said fifth capture probe is directly adjacent to or includes at its terminus a detection position;

vi) at least one sixth capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY2E1, wherein said sixth capture probe is directly adjacent to or includes at its terminus a detection position; and

vii) at least one seventh capture probe substantially homologous to a first portion of the sense strand of a nucleic acid encoding CPY3A4, wherein said seventh capture probe is directly adjacent to or includes at its terminus a detection position;

- b) hybridizing at least one target sequence to its corresponding capture probe to form a hybridization complex;
- c) adding a polymerase and at least one dNTP comprising a label, under conditions whereby if said dNTP is perfectly complementary to a detection position, said dNTP is added to a capture probe to form an extended probe;
- d) determining the nucleotide at the interrogation position of said extended probe.

10. A method of determining the identification of a nucleotide at a detection position in a target sequence comprising:

- a) providing an array comprising:
 - i) a solid support with a first surface comprising a hydrogel layer comprising an array of capture probes;
- b) hybridizing said target sequence to at least one of said capture probes to form a hybridization complex; and
- c) determining the nucleotide at said detection position.

11. A method of determining the identification of a nucleotide at a detection position in a target sequence comprising:

- a) providing a solid support with a first surface comprising at least one non self-extension probe wherein self-extension of said non self-extension probe does not occur in the absence

of said target and wherein, said non self-extension probe includes an interrogation nucleotide;

b) hybridizing said target sequence to said non self- extension probe to form a hybridization complex;

c) contacting said surface with:

- i) an extension enzyme; and
- ii) at least one chain terminating nucleotide comprising a hapten;

under conditions whereby if said chain terminating nucleotide is perfectly complementary to the base of the target sequence immediately adjacent to the 3' end of said non self- extension probe in the hybridization complex, said chain terminating nucleotide is added to said non self-extension probe to form a modified extension probe;

d) contacting said modified extension probe with the binding partner of said hapten, wherein said hapten is labeled; and

e) detecting the presence of said label to determine the nucleotide at said detection position.

12. A method according to claim 11 wherein said interrogation nucleotide in said non self-extension probe is within two bases of its 3' terminal end and wherein, said 3' terminal end nucleotide is non-complementary to a corresponding base when a self-hybridizing structure of said non self-extension probe is formed.

13. A method according to claim 12 wherein said interrogation nucleotide is the 3' terminal nucleotide.

14. A method according to claim 12 wherein said interrogation nucleotide is the penultimate 3' terminal nucleotide.

15. A method according to claim 11 wherein said non self- extension probe comprises at least two modified nucleotides.

16. A method according to claim 15 wherein said modified nucleotides are exo-cyclic amine modified bases.
17. A method according to claim 15 wherein said modified nucleotides are terminator bases.
18. A method according to claim 16 wherein said exo-cyclic amine modified bases are selected from a group consisting of 2-thio thymine, 2-amino adenine, amine modified cytosine and amine modified guanine.
19. A method according to claim 17 wherein said terminator base is 4-methylindole .
20. A method according to claim 15 wherein said modified nucleotides alter protein binding and are present in the stem region of said non self-extension probe.
21. A method according to claim 20 wherein said modified nucleotide comprises a sugar modification.
22. A method according to claim 20 wherein said modified nucleotide comprises a phosphate modification.
23. A method according to claim 22 wherein said phosphate modifications are selected from a group consisting of phosphorothioates, phosphoramidates, methyl phosphonates, methyl phosphates, H-phosphonates.
24. A method according to claim 11 wherein self-extension of said non self-extension probe is inhibited by short complementary oligonucleotides.
25. A method of determining the identification of a nucleotide at a detection position in a target sequence comprising:

- a) amplifying the target DNA using random primers to generate DNA amplicons;
 - b) transcribing said DNA amplicons to generate RNA target sequences (*in vitro* transcription);
 - c) providing a solid support with a first surface comprising at least one extension probe wherein said extension probe includes an interrogation nucleotide;
 - b) hybridizing said RNA target sequence to said extension probe to form a hybridization complex;
 - c) contacting said surface with:
 - i) a modified reverse transcriptase; and
 - ii) at least one chain terminating nucleotide comprising a hapten;under conditions whereby if said chain terminating nucleotide is perfectly complementary to the base of the target sequence immediately adjacent to the 3' end of said non self- extension probe in the hybridization complex, said chain terminating nucleotide is added to said non self- extension probe to form a modified extension probe;
 - d) contacting said modified extension probe with the binding partner of said hapten, wherein said binding partner is labeled; and
 - e) detecting the presence of said label to determine the nucleotide at said detection position.
26. A method according to claim 25 wherein said modified reverse transcriptase only extends extension probes bound to RNA.
27. A method according to claim 11 or 25 wherein said hapten is biotin.
28. A method according to claim 11 or 25 wherein said binding partner is streptavidin.
29. A method according to claim 11 or 25 wherein said binding partner is Alexa dye labeled streptavidin.

30. A method of determining the identification of a nucleotide at a detection position in a target sequence comprising:

- a) providing a solid support with a first surface comprising a solid support with a first surface comprising a hydrogel layer comprising at least one non self-extension probe, wherein self-extension said non self-extension probe does not occur in the absence of said target and wherein, said non self-extension probe includes an interrogation nucleotide;
- b) hybridizing said target sequence to said non self-extension probe to form a hybridization complex;
- c) contacting said surface with:
 - i) an extension enzyme; and
 - ii) at least one chain terminating nucleotide comprising a hapten;

under conditions whereby if said chain terminating nucleotide is perfectly complementary to the base of the target sequence immediately adjacent to the 3' end of said non self-extension probe in the hybridization complex, said chain terminating nucleotide is added to said non self-extension probe to form a modified extension probe;
- d) contacting said modified extension probe with the binding partner of said hapten, wherein said binding partner is labeled; and
- e) detecting the presence of said label to determine the nucleotide at said detection position.

31. A method according to claim 30 wherein said interrogation nucleotide in said non self-extension probe is within two bases of its 3' terminal end and wherein, said 3' terminal end nucleotide is non-complementary to a corresponding base when a self-hybridizing structure of said non self-extension probe is formed.

32. A method according to claim 31 wherein said interrogation nucleotide is the 3' terminal nucleotide.

33. A method according to claim 31 wherein said interrogation nucleotide is the penultimate 3' terminal nucleotide.

34. A method according to claim 30 wherein said non self-extension probe comprises at least two modified nucleotides.
35. A method according to claim 34 wherein said modified nucleotides are exo-cyclic amine modified bases.
36. A method according to claim 34 wherein said modified nucleotides are terminator bases.
37. A method according to claim 35 wherein said exo-cyclic amine modified bases are selected from a group consisting of 2-thio thymine, 2-amino adenine, amine modified cytosine and amine modified guanine.
38. A method according to claim 36 wherein said terminator base is 4-methylindole .
39. A method according to claim 34 wherein said modified nucleotides alter protein binding and are present in the stem region of said non self-extension probe.
40. A method according to claim 39 wherein said modified nucleotide comprises a sugar modification.
41. A method according to claim 39 wherein said modified nucleotide comprises a phosphate modification.
42. A method according to claim 41 wherein said phosphate modifications are selected from a group consisting of phosphorothioates, phosphoramidates, methyl phosphonates, methyl phosphates, H-phosphonates.
43. A method according to claim 30 wherein self-extension of said non self-extension probe is inhibited by short complementary oligonucleotides.

44. A method of determining the identification of a nucleotide at a detection position in a target sequence comprising:
 - a) amplifying the target DNA using random primers to generate DNA amplicons;
 - b) transcribing said DNA amplicons to generate RNA target sequences (*in vitro* transcription);
 - c) providing a solid support with a first surface comprising at least one extension probe wherein said extension probe includes an interrogation nucleotide;
 - b) hybridizing said RNA target sequence to said extension probe to form a hybridization complex;
 - c) contacting said surface with:
 - i) a modified reverse transcriptase; and
 - ii) at least one chain terminating nucleotide comprising a hapten;under conditions whereby if said chain terminating nucleotide is perfectly complementary to the base of the target sequence immediately adjacent to the 3' end of said non self- extension probe in the hybridization complex, said chain terminating nucleotide is added to said non self- extension probe to form a modified extension probe;
 - d) contacting said modified extension probe with the binding partner of said hapten, wherein said binding partner is labeled; and
 - e) detecting the presence of said label to determine the nucleotide at said detection position.
45. A method according to claim 44 wherein said modified reverse transcriptase only extends extension probes bound to RNA.
46. A method according to claim 30 or 44 wherein said hapten is biotin.
47. A method according to claim 30 or 44 wherein said binding partner is streptavidin.
48. A method according to claim 30 or 44 wherein said binding partner is Alexa dye labeled

streptavidin.

Fig 1A

Fig 1B

A. Target-dependent Extension**B. Target-independent Extension**

Fig
3A

SNP ID	GENE	POSITION	FROM TRANSLATION START	SEQ SOURCE	EXON/INTRON LOCATION	MUTATION	CONSEQUENCE	ENDOME EFFECT (INFO)
205_1618	CYP 2D6	1618	-1	GB (M33161)	EXON 1		N/A	V7N
205_1630	CYP 2D6	1630	0	GB (M33161)	EXON 1		G>A	V11W
205_1633	CYP 2D6	1630	3	GB (M33161)	EXON 1		G>A	K20H
205_1695	CYP 2D6	1695	7	GB (M33161)	GB FLANK		R29C	
205_1701	CYP 2D6	1701	82	GB (M33161)	EXON 1		C>T	P34S
205_1719	CYP 2D6	1719	100	GB (M33161)	EXON 1		G>A	G42R
205_1726	CYP 2D6	1726	124	GB (M33161)	EXON 1		G>A	FRAENKEWIT
205_1743	CYP 2D6	1743	129	GB (M33161)	EXON 1		G>C	NO ACTIVITY
205_1757	CYP 2D6	1757	139	GB (M33161)	INTRON 1		G>T	SPLICING DEFECT
205_2502	CYP 2D6	2502	843	GB (M33161)	EXON 1		C>T	A15V
205_2516	CYP 2D6	2516	957	GB (M33161)	EXON 1		C>A	L91A
205_2519	CYP 2D6	2520	974	GB (M33161)	EXON 2		C>A	H94R
205_2613	CYP 2D6	2603	984	GB (M33161)	EXON 2		A>G	
205_2616	CYP 2D6	2616	997	GB (M33161)	EXON 2		D>G	SILENT
205_2642	CYP 2D6	2642	1023	GB (M33161)	EXON 2		C>T	T 107 I
205_2653	CYP 2D6	2653	1039	GB (M33161)	EXON 2		C>T	SILENT
205_2676	CYP 2D6	2676	1059	GB (M33161)	EXON 3		C>T	V155M
205_2704	CYP 2D6	2704	1061	GB (M33161)	EXON 3		C>T	SILENT
205_2720	CYP 2D6	2720	1074	GB (M33161)	EXON 3		C>T	Q 151 E
205_2726	CYP 2D6	2726	1077	GB (M33161)	EXON 3		D>G	FRAMESHIFT
205_3176	CYP 2D6	3176	1079	GB (M33161)	EXON 3		C>T	SILENT
205_3343	CYP 2D6	3343	1079	GB (M33161)	EXON 3		C>T	N154D
205_3346	CYP 2D6	3346	1079	GB (M33161)	EXON 3		A>G	G 154 S
205_3584	CYP 2D6	3584	1088	GB (M33161)	EXON 3		G>T	SPLICING DEFECT
205_3585	CYP 2D6	3585	1097	GB (M33161)	EXON 4		C>T	SILENT
205_3587	CYP 2D6	3587	1153	GB (M33161)	EXON 4		C>T	R 145 C
205_3588	CYP 2D6	3588	1164	GB (M33161)	EXON 4		C>T	
205_3645	CYP 2D6	3645	1189	GB (M33161)	EXON 4		T>C	
205_3677	CYP 2D6	3677	1195	GB (M33161)	EXON 4		T>C	
205_3688	CYP 2D6	3688	1195	GB (M33161)	EXON 4		T>C	R 149 H
205_2592	CYP 2D6	2592	1949	GB (M33161)	EXON 5		G>A	FRAMESHIFT 7
205_3592	CYP 2D6	3592	1978	GB (M33161)	EXON 5		G>A	SILENT
205_3593	CYP 2D6	3593	1978	GB (M33161)	EXON 5		G>A	G 212 E
205_3595	CYP 2D6	3595	1978	GB (M33161)	EXON 5		C>T	SILENT
205_3597	CYP 2D6	3597	1978	GB (M33161)	EXON 5		C>T	
205_3598	CYP 2D6	3598	1979	GB (M33161)	EXON 5		T>C	SILENT
205_4040	CYP 2D6	4040	2409	GB (M33161)	EXON 5		C>T	SILENT
205_4059	CYP 2D6	4059	2409	GB (M33161)	EXON 5		C>T	NORMAL
205_4103	CYP 2D6	4103	2413	GB (M33161)	EXON 5		G>A	FRAMESHIFT 7
205_4102	CYP 2D6	4102	2519	GB (M33161)	EXON 5		A>G	SILENT
205_4118	CYP 2D6	4118	2519	GB (M33161)	EXON 5		C>T	NORMAL
205_4184	CYP 2D6	4184	2519	GB (M33161)	EXON 5		C>T	NO ACTIVITY
205_4194	CYP 2D6	4194	2587	GB (M33161)	EXON 5		G>A	FRAMESHIFT DECREASED
205_4206	CYP 2D6	4206	2587	GB (M33161)	EXON 5		A>G	
205_4222	CYP 2D6	4222	2513	GB (M33161)	EXON 5		C>T	
205_4226	CYP 2D6	4226	2513	GB (M33161)	EXON 5		C>T	
205_4469	CYP 2D6	4469	2550	GB (M33161)	EXON 5		C>T	NORMAL
205_4472	CYP 2D6	4472	2663	GB (M33161)	EXON 6		A>G	FRAMESHIFT
205_4554	CYP 2D6	4554	2938	GB (M33161)	EXON 6		C>T	SILENT
205_4557	CYP 2D6	4557	2938	GB (M33161)	EXON 6		C>T	
205_4558	CYP 2D6	4558	2939	GB (M33161)	EXON 6		C>T	
205_4892	CYP 2D6	4892	3163	GB (M33161)	EXON 7		C>G	K261DEL
205_4917	CYP 2D6	4917	3168	GB (M33161)	EXON 7		C>T	R 206 C
205_4919	CYP 2D6	4919	3277	GB (M33161)	EXON 7		C>T	A 237 S
205_4926	CYP 2D6	4926	4016	GB (M33161)	EXON 7		C>T	207 L
205_4935	CYP 2D6	4935	4016	GB (M33161)	EXON 7		A>G	NONE
205_5447	CYP 2D6	5447	4928	GB (M33161)	EXON 8		C>T	H 124 P
205_5457	CYP 2D6	5457	3853	GB (M33161)	EXON 8		C>T	P 251 L
205_5458	CYP 2D6	5458	3877	GB (M33161)	EXON 8		C>A	SILENT
205_5495	CYP 2D6	5495	3163	GB (M33161)	EXON 8		T>C	V 83 L
205_5505	CYP 2D6	5505	3168	GB (M33161)	EXON 8		A>G	K 243 G
205_5506	CYP 2D6	5506	3168	GB (M33161)	EXON 8		T>C	I 209 T
205_5509	CYP 2D6	5509	4012	GB (M33161)	EXON 8		C>T	C 373 S
205_5514	CYP 2D6	5514	4115	GB (M33161)	EXON 9		C>T	SILENT
205_5515	CYP 2D6	5515	3225	GB (M33161)	EXON 9		C>T	SILENT
205_5516	CYP 2D6	5516	4103	GB (M33161)	EXON 9		C>T	E 110 K
205_5517	CYP 2D6	5517	3225	GB (M33161)	EXON 9		C>T	E 418 Q
205_5518	CYP 2D6	5518	3225	GB (M33161)	EXON 9		C>T	
205_5519	CYP 2D6	5519	3225	GB (M33161)	EXON 9		C>T	
205_5520	CYP 2D6	5520	3225	GB (M33161)	EXON 9		C>T	
205_5521	CYP 2D6	5521	3225	GB (M33161)	EXON 9		C>T	
205_5522	CYP 2D6	5522	3225	GB (M33161)	EXON 9		C>T	
205_5523	CYP 2D6	5523	3225	GB (M33161)	EXON 9		C>T	
205_5524	CYP 2D6	5524	3225	GB (M33161)	EXON 9		C>T	
205_5525	CYP 2D6	5525	3225	GB (M33161)	EXON 9		C>T	
205_5526	CYP 2D6	5526	3225	GB (M33161)	EXON 9		C>T	
205_5527	CYP 2D6	5527	3225	GB (M33161)	EXON 9		C>T	
205_5528	CYP 2D6	5528	3225	GB (M33161)	EXON 9		C>T	
205_5529	CYP 2D6	5529	3225	GB (M33161)	EXON 9		C>T	
205_5530	CYP 2D6	5530	3225	GB (M33161)	EXON 9		C>T	
205_5531	CYP 2D6	5531	3225	GB (M33161)	EXON 9		C>T	
205_5532	CYP 2D6	5532	3225	GB (M33161)	EXON 9		C>T	
205_5533	CYP 2D6	5533	3225	GB (M33161)	EXON 9		C>T	
205_5534	CYP 2D6	5534	3225	GB (M33161)	EXON 9		C>T	
205_5535	CYP 2D6	5535	3225	GB (M33161)	EXON 9		C>T	
205_5536	CYP 2D6	5536	3225	GB (M33161)	EXON 9		C>T	
205_5537	CYP 2D6	5537	3225	GB (M33161)	EXON 9		C>T	
205_5538	CYP 2D6	5538	3225	GB (M33161)	EXON 9		C>T	
205_5539	CYP 2D6	5539	3225	GB (M33161)	EXON 9		C>T	
205_5540	CYP 2D6	5540	3225	GB (M33161)	EXON 9		C>T	
205_5541	CYP 2D6	5541	3225	GB (M33161)	EXON 9		C>T	
205_5542	CYP 2D6	5542	3225	GB (M33161)	EXON 9		C>T	
205_5543	CYP 2D6	5543	3225	GB (M33161)	EXON 9		C>T	
205_5544	CYP 2D6	5544	3225	GB (M33161)	EXON 9		C>T	
205_5545	CYP 2D6	5545	3225	GB (M33161)	EXON 9		C>T	
205_5546	CYP 2D6	5546	3225	GB (M33161)	EXON 9		C>T	
205_5547	CYP 2D6	5547	3225	GB (M33161)	EXON 9		C>T	
205_5548	CYP 2D6	5548	3225	GB (M33161)	EXON 9		C>T	
205_5549	CYP 2D6	5549	3225	GB (M33161)	EXON 9		C>T	
205_5550	CYP 2D6	5550	3225	GB (M33161)	EXON 9		C>T	
205_5551	CYP 2D6	5551	3225	GB (M33161)	EXON 9		C>T	
205_5552	CYP 2D6	5552	3225	GB (M33161)	EXON 9		C>T	
205_5553	CYP 2D6	5553	3225	GB (M33161)	EXON 9		C>T	
205_5554	CYP 2D6	5554	3225	GB (M33161)	EXON 9		C>T	
205_5555	CYP 2D6	5555	3225	GB (M33161)	EXON 9		C>T	
205_5556	CYP 2D6	5556	3225	GB (M33161)	EXON 9		C>T	
205_5557	CYP 2D6	5557	3225	GB (M33161)	EXON 9		C>T	
205_5558	CYP 2D6	5558	3225	GB (M33161)	EXON 9		C>T	
205_5559	CYP 2D6	5559	3225	GB (M33161)	EXON 9		C>T	
205_5560	CYP 2D6	5560	3225	GB (M33161)	EXON 9		C>T	
205_5561	CYP 2D6	5561	3225	GB (M33161)	EXON 9		C>T	
205_5562	CYP 2D6	5562	3225	GB (M33161)	EXON 9		C>T	
205_5563	CYP 2D6	5563	3225	GB (M33161)	EXON 9		C>T	
205_5564	CYP 2D6	5564	3225	GB (M33161)	EXON 9		C>T	
205_5565	CYP 2D6	5565	3225	GB (M33161)	EXON 9		C>T	
205_5566	CYP 2D6	5566	3225	GB (M33161)	EXON 9		C>T	
205_5567	CYP 2D6	5567	3225	GB (M33161)	EXON 9		C>T	
205_5568	CYP 2D6	5568	3225	GB (M33161)	EXON 9		C>T	
205_5569	CYP 2D6	5569	3225	GB (M33161)	EXON 9		C>T	
205_5570	CYP 2D6	5570	3225	GB (M33161)	EXON 9		C>T	
205_5571	CYP 2D6	5571	3225	GB (M33161)	EXON 9		C>T	
205_5572	CYP 2D6	5572	3225	GB (M33161)	EXON 9		C>T	
205_5573	CYP 2D6	5573	3225	GB (M33161)	EXON 9		C>T	
205_5574	CYP 2D6	5574	3225	GB (M33161)	EXON 9		C>T	
205_5575	CYP 2D6	5575	3225	GB (M33161)	EXON 9		C>T	
205_5576	CYP 2D6	5576	3225	GB (M33161)	EXON 9		C>T	
205_5577	CYP 2D6	5577	3225	GB (M33161)	EXON 9		C>T	
205_5578	CYP 2D6	5578	3225	GB (M33161)	EXON 9		C>T	
205_5579	CYP 2D							

Fig
3B

SNP ID	GENE	POSITION	FROM TRANSLATION START	SEQ SOURCE	EXON/INTRON LOCATION	MUTATION	CONSEQUENCE	ENZYME EFFECT
2E1 7592	CYP 2E1	7692	4759	GB (U02845)	EXON 4	G>A	V178I	
2E1 104469	CYP 2E1	104469	104456	GB (U02845)	INTRON 4	T>A		
2E1 121720	CYP 2E1	121720	121720	GB (U02845)	INTRON 4	G>C		NORMAL
2E1 128477	CYP 2E1	128477	102723	GB (U02845)	EXON 3	G>A	V359 I	
2E1 12945	CYP 2E1	12945	10245	GB (U02845)	EXON 8	C>T		
3A4 616	CYP 3A4	616	-392	GB (U11131)	S' FLANK	A>G		
3A4 618	CYP 3A4	618	-260	GB (U11131)	S' FLANK	G>A		
1A1 1213	CYP 1A1	1213	-2229	GB (U02845)	S' FLANK	C>T		
1A1 1222	CYP 1A1	1222	-3219	GB (U02845)	EXON 7	C>A	T 461 N	
1A1 8568	CYP 1A1	8568	2453	GB (U01406)	EXON 7	A>G	A 422 V	
1A1 8570	CYP 1A1	8570	2455	GB (U01406)	EXON 7	A>G	A 422 V	
1A1 7520	CYP 1A1	7520	3215	GB (U02845)	S' FLANK	T>C		
1A1 7918	CYP 1A1	7918	3000	GB (U02845)	INTRON (not translated)	T>C		WA
1B1 37183	CYP 1B1	37183	-13	GB (U56438)	EXON 2	G>C	R 46 G	
1B1 36447	CYP 1B1	36447	-102	GB (U56438)	EXON 2	G>C	W 57 C	
1B1 3976	CYP 1B1	3976	171	GB (U56438)	EXON 2	G>A	G 61 E	
1B1 39847	CYP 1B1	39847	182	GB (U56438)	EXON 2	G>A	L 77 P	
1B1 40325	CYP 1B1	40325	250	GB (U56438)	EXON 2	G>A	A 119 S	
1B1 41650	CYP 1B1	41650	156	GB (U56438)	EXON 2	G>T	I 119 T	
1B1 4906	CYP 1B1	4906	501	GB (U56438)	EXON 2	G>T	E 281 X	
1B1 4646	CYP 1B1	4646	641	GB (U56438)	EXON 2	G>C	FRAAMESHIFT	
1B1 4668	CYP 1B1	4668	853	GB (U56438)	EXON 3	G>C	G 65 W	
1B1 7820	CYP 1B1	7820	4175	GB (U56438)	EXON 3	G>A	R 368 H	
1B1 7940	CYP 1B1	7940	4153	GB (U56438)	EXON 3	G>A	D 274 N	
1B1 7857	CYP 1B1	7857	4152	GB (U56438)	EXON 3	G>A	F 378 I	
1B1 7973	CYP 1B1	7973	4168	GB (U56438)	EXON 3	G>A	E 357 K	
1B1 7996	CYP 1B1	7996	4181	GB (U56438)	EXON 3	G>A	H 380 K	
1B1 8026	CYP 1B1	8026	4201	GB (U56438)	EXON 3	G>C	L 432 V	
1B1 8131	CYP 1B1	8131	4136	GB (U56438)	EXON 3	G>A	P 437 L	
1B1 8147	CYP 1B1	8147	4347	GB (U56438)	EXON 3	G>A	449 SILENT	
1B1 8164	CYP 1B1	8164	4370	GB (U56438)	EXON 3	A>G	H 453 V	
1B1 8195	CYP 1B1	8195	4300	GB (U56438)	EXON 3	C>T	R 469 W	
1B1 8242	CYP 1B1	8242	4457	GB (U56438)	EXON 3	G>C		
1B1 8567	CYP 1B1	8567	4782	GB (U56438)	EXON 3	T>A		
1B1 8407	CYP 1B1	8407	5502	GB (U56438)	S' FLANK	T>G	HIGHER INDUCIBILITY	
1B1 9164	CYP 1A2	9164	5359	GB (NM_00654)	INTRON 4 (FLANK)	C>A		
1A2 28410	CYP 1A2	28410	-184	GB (NM_00654)	EXON 1	C>G	F 21 L	
1A2 28568	CYP 1A2	28568	63	GB (NM_00654)	EXON 1	C>T		
2C19 89	CYP 2C19	89	89	GB (NM_00765)	EXON 2	G>C	E 92 D	
2C19 216	CYP 2C19	216	278	GB (NM_00765)	EXON 3	G>A	R 132 Q	
2C19 395	CYP 2C19	395	395	GB (NM_00765)	EXON 3	C>T	STOP CODON	
2C19 459	CYP 2C19	459	459	GB (NM_00765)	EXON 4	G>A	STOP CODON	
2C19 656	CYP 2C19	656	656	GB (NM_00765)	EXON 5	G>A	STOP CODON	
2C19 881	CYP 2C19	881	881	GB (NM_00765)				

Fig. 3C

Fig^v
3D

ALTEI/HAPLOTYPE FAM	SNP SOURCE INFO	INPAC CODE ALLELE 1 ALLELE 2	
		INPAC CODE	SNP SOURCE INFO
"A	Fairbrother, M.; Pharmacogenomics 1998 Paterson, L.; FEBS Lett 1993 McKersie, GW; Nature Adv. Phys. 1987 Hu, Y.; Mol Pharmacology 1997	R G	A
"A, "B		W T	A
"S		S C	G
"3		R G	A
"4		Y C	T
"2C		R A	G
"3		R G	A
"1		Y T	C
"11		Y T	C
"12		Y T	C
"2		S C	G
"13		S G	C
"14		R G	A
"15		Y T	C
"16		K G	A
"17		R G	A
"18		Y T	C
"19		K G	T
"20		R G	A
"3		S C	G
"4		Y C	T
"25		R A	G
"1F		Y C	T
"2		S C	G
"3		S C	G
"5		R G	A
"3		R G	A
"2A		R G	A

Fig 4

CYP2D6 and its pseudogenes: similarity by region
 S. Kimura et al. *Am J Hum Genet* (1989) **45**:889-904

	Length, bp		
	CYP2D6	CYP2D7	CYP2D8
UPSTREAM	774	777	265
	189	186	183
	268	269	265
EXON 1	703	701	1620*
INTRON 1	172	172	172
EXON 2	550	528	546
INTRON 2	153	153	153
EXON 3	88	88	88
INTRON 3	161	161	161
EXON 4	433	425	449
INTRON 4	177	177	177
EXON 5	190	192	186
INTRON 5	142	142	142
EXON 6	207	194	204
INTRON 6	168	188	185
EXON 7	454	454	449
INTRON 7	142	142	142
EXON 8	98	98	96
INTRON 8	252	252	252
EXON 9	180	180	181
3'-FLANKING	538	528	528

* 3 Alu repeats insertion

Fig 5

P450 PRIMER LIST 02/2004

GENE SEQ ID	START POSITION	DIRECTION	SEQ SOURCE	EXON/INTRON LOCATION	SEQUENCE	PRIMER LENGTH	Tm	BLAST RESULTS	
								ACCEPTABLE	ACCEPTABLE
CYP 2B6	1270	FORWARD	GB [M33388]	5' FLANK	CCCGAGGCTTCCTGGGCTCA	23	71		
CYP 2B6	6799	REVERSE	GB [M33389]	EXON 9	GTCAGCAGGAGCAGAGACGCCAT	23	67		
CYP 2E1	1487	FORWARD	GB [J02843]	5' FLANK	TGAAGCTTGCTGCTGGGAGGAA	22	71		
CYP 2E1	4022	REVERSE	GB [J02843]	EXON 2	GAAAGCTTGCTGCTGGGAGGAA	25	65		
CYP 2E1	7445	FORWARD	GB [J02843]	INTRON 3	GCCTCTTCAGGCTGCTGGGAGA	24	69		
CYP 2E1	10659	REVERSE	GB [J02843]	INTRON 6	CAACCTGCTGGGAGGAGGTTAA	23	68		
CYP 2E1	12887	FORWARD	GB [J02843]	INTRON 8	CTTGAGCCCTGCTGGGAGGTTAA	27	68		
CYP 2E1	13030	REVERSE	GB [J02843]	INTRON 8	ACGGGGCTGGGAGGTTAACTCTCA	22	68		
CYP 3A4	747	FORWARD	GB [D11131]	5' FLANK	CTGGGGTGTGGCTGGCTGGCTTA	26	69		
CYP 3A4	841	REVERSE	GB [D11131]	5' FLANK	CCACACATTACAGACGCTCTTCA	25	67		
CYP 1A1	7080	FORWARD	GB [D04300]	EXON 7	CTCTCTTTACGGGAGGATCTGGCTTA	27	67		
CYP 1A1	8206	REVERSE	GB [D04300]	3' FLANK	CTTCCTGCTCTTACGGGAGGATADA	30	70		
CYP 1B1	3658	FORWARD	GB [U58438]	INTRON 1	CCCTGCCACCAAAGGCGCTCA	21	69		
CYP 1B1	4704	REVERSE	GB [U58438]	EXON 2	GGGGAGGCTGATGAGGCGCTCA	25	69		
CYP 1B1	7883	FORWARD	GB [U58438]	EXON 3	ATGCTGTATGTCGAGGCTGCTCA	25	70		
CYP 1B1	9256	REVERSE	GB [U58438]	EXON 3	CAAGCAAGAAGGCTACCATGCTGAGA	39	70		
CYP 1A2	2595	FORWARD	GB [NM_031664]	5' FLANK	CCAGCTCTGAGATCTGCTGCTCA	27	69		
CYP 1A2	2972	REVERSE	GB [NM_031664]	EXON 1	GGCTCACACATGGCGGCAA	22	74		
CYP 2C19	197	FORWARD	GB [NM_00769]	EXON 2	CTCTTATTTCCTGAGGAACTG	26	70		
CYP 2C19	787	REVERSE	GB [NM_00769]	EXON 5	TCCCCGCGGTTGATGCTCATC	24	70		

PROBE ID	SEQUENCE
CYP1A1_V_2_70.6568.A.S	GCAAGCGGAAGTGTATCGGTGAGAA
CYP1A1_V_2_70.6568.C.S	GCAAGCGGAAGTGTATCGGTGAGAC
CYP1A1_60.6570.A.A	TCCCAGCGGGCAAT
CYP1A1_60.6570.G.A	TCCCAGCGGGCAAC
CYP1A1_V_2_60.7320.C.A	ATAAGGGTCTTACAAGGCCG
CYP1A1_V_2_60.7320.T.A	AATAAGGGTCTTACAAGGCCA
CYP1A2_60+1.2640.A.A	CATCTACCATGCGTCCTGTG
CYP1A2_60+1.2640.C.A	ATCTACCATGCGTCCTGGG
CYP1A2_V2.2868.C.S	TGGCCTCTGCCATCTTCT
CYP1A2_V2.2868.G.S	TGGCCTCTGCCATCTTG
CYP1A2_V3.2866.C.S	TGGCCTCTGCCATCTTCT
CYP1A2_V3.2866.G.S	TGGCCTCTGCCATCTTGT
CYP1B1_60.3793.C.A	CCATGCTGGGGACAGAG
CYP1B1_60.3793.T.A	CCATGCTGGGGACAGAA
CYP1B1_60.3947.C.S	GAGGCAGCGCTCC
CYP1B1_60.3947.G.S	GAGGCAGCGCTCG
CYP1B1_60.3976.C.S	GCCCAGTTGCGTGC
CYP1B1_60.3976.G.S	GCCCAGTTGCGTGG
CYP1B1_80.3987.A.A	GCCGCCGCGTTT
CYP1B1_80.3987.G.A	GCCGCCGCGTTTC
1B1_4035.C.S	CGTTCGCTCGCCC
1B1_4035.T.S	CTCGTCGCTCGCCT
CYP1B1_60+2-1.4160.G.A	GAAGGAGGCGAAGGCCG
CYP1B1_60+2-1.4160.T.A	GAAGGAGGCGAAGGACG
1B1_V2.4306.A.A	TCAGCACGTTGGCCCT
1B1_V2.4306.T.A	CAGCACGTTGGCCAG
CYP1B1_60+1.4646.G.S	AGTTCTGAGGCACTGCGA
CYP1B1_60+1.4646.T.S	CAAGTTCTGAGGCACTGCTA
1B1_4688.C.A	TCGGGGGGGG
1B1_4688.G.A	TCGGGGGGGGC
CYP1B1_60.7930.G.S	GAATTGGATCAGGTCGTGG
CYP1B1_60.7930.T.S	AGAATTGGATCAGGTCGTGT
1B1_V2.7940.A.A	TGGTACCCATACAAGGCAGAT
1B1_V2.7940.G.A	GGTACCCATACAAGGCAGACG
CYP1B1_60+1.7957.A.S	CGTCTGCCCTGTATGGGTAA
CYP1B1_60+1.7957.G.S	CGTCTGCCCTGTATGGGTGA
CYP1B1_60.7973.C.A	GGAAGGCCAGGACATAGG
CYP1B1_60.7973.T.A	AGGAAGGCCAGGACATAGA
CYP1B1_60.7996.A.S	TATGTCCTGGCCTTCCCTTATA
CYP1B1_60.7996.G.S	GTCCTGGCCTTCCCTTATG
CYP1B1_60+1.8131.C.S	GTCTGTGAATCATGACCACT
CYP1B1_60+1.8131.G.S	GTCTGTGAATCATGACCCAGT
CYP1B1_60+1.8184.C.A	GTCCTTGITGATGAGGCCGT
CYP1B1_60+1.8184.T.A	GTCCTTGITGATGAGGCCAT
CYP1B1_60.8195.A.A	TGCTGGTCAGGTCCCTTGT
CYP1B1_60.8195.G.A	GCTGGTCAGGTCCCTTGC
CYP1B1_60.8242.C.S	TTCACTGGGCAAAGGC
CYP1B1_60.8242.T.S	TTTCAGTGGGCAAAGGT
CYP1B1_60.8587.C.S	TCAATTAGCGTTAACGGTGAGC
CYP1B1_60.8587.G.S	TCAATTAGCGTTAACGGTGAGG
CYP1B1_60.8807.A.S	CCCAAAACACTTACACCAAACA
CYP1B1_60.8807.T.S	ACCCAAAACACTTACACCAAAC
CYP1B1_60+1.9184.G.S	GAGTATAGTGGGGTCCATGAGT
CYP1B1_60+1.9184.T.S	GAGTATAGTGGGGTCCATGATT
CYP2C19EXONS_70.276.C.A	GAAATGGCCTTCCAGAAAACCG
CYP2C19EXONS_70.276.G.A	GGAAATGGCCTTCCAGAAAACCC
CYP2C19EXONS_70.395.A.A	CTCCCTTCCCCATCCAAAAATTCT
CYP2C19EXONS_70.395.G.A	CCTCTTCCCCATCCAAAAATTCC

Fig 6/

CYP2C19EXONS	70.430.T.A	AGCGGGCTTCCCTTTGAACACA
CYP2C19EXONS	60.636.A.S	GATTGTAAGCACCCCCCTGA
CYP2C19EXONS	60.636.G.S	TTGTAAGCACCCCCCTGG
CYP2C19EXONS	60.681.A.S	CCACTATCATGATTATTCCTA
CYP2C19EXONS	60.681.G.S	CCACTATCATGATTATTCCTG
CYP2D6	70.1698.A.S	AGGCAGITATGGGGCTAGAACACTGA
CYP2D6	70.1698.G.S	GGCAGITATGGGGCTAGAACACTGG
CYP2D6	70.1650.A.A	AGGAGCAGGAAGATGGCCACTATCAT
CYP2D6	70.1650.G.A	GGAGCAGGAAGATGGCCACTATCAC
CYP2D6	70.1698.A.S	GGACCTGATGCACCGGCA
CYP2D6	70.1698.G.S	GGACCTGATGCACCGGCG
CYP2D6	70.1701.C.A	TGIGTAGCGTGCAGCCCAGCG
CYP2D6	70.1701.T.A	GTGIGTAGCGTGCAGCCCAGCA
CYP2D6	60.1719.C.A	GGGGGCCTGGTGG
CYP2D6	60.1719.T.A	AGGGGGCCTGGTGA
CYP2D6	70.1743.A.S	CCCCCTGCCACTGCCCA
CYP2D6	70.1743.G.S	CCCCCTGCCACTGCCCG
2D6H.1757.G.S		CCCTGCCACTGCCIGGCTGGGAAACCTG
2D6H.1757.T.S		CCCTGCCACTGCCIGGCTGGGAAACCTT
2D6H V2.1757.G.S		CCTGCCACTGCCIGGCTGGGAAACCTGCT
2D6H V2.1757.T.S		CCTGCCACTGCCIGGCTGGGAAACCTTCT
CYP2D6	60+1.2502.C.A	CGGCGCCGCAAGT
CYP2D6	60+1.2502.G.A	CGGCGCCGCAACT
CYP2D6	60+1.2502.C.S	TGACCCCTCCCTCTGCACT
CYP2D6	60+1.2502.G.S	TGACCCCTCCCTCTGCACT
CYP2D6	60.2578.C.S	GCTCAATGGGCTGGC
CYP2D6	60.2578.T.S	GTGCTCAATGGGCTGGT
CYP2D6	80.2593.A.A	CGCCGIGGGTCACCAT
CYP2D6	80.2593.C.A	CGCCGIGGGTCACCAAG
CYP2D6	70+.2603.A.S	GAGGCGITGGTGACCCACG
CYP2D6	70+.2603.G.S	CGAGGCGITGGTGACCCCG
CYP2D6	60+2.1.2616.C.A	GCGGTGGCGGT
CYP2D6	60+2.1.2616.G.A	GGCGGTGGCGGT
CYP2D6	60+1.2642.C.S	GCCTGTGCCCATCAC
CYP2D6	60+1.2642.T.S	CGCCTGTGCCCATCATC
CYP2D6	60+2.2642.C.A	CCIAAACCCAGGATCTGGGTG
CYP2D6	60+2.2642.T.A	CCIAAACCCAGGATCTGGATG
CYP2D6	70+1.2658.C.A	TGGGAACGCCGGCCGA
CYP2D6	70+1.2658.T.A	TGGGAACGCCGGCCAA
CYP2D6	60+1.3278.A.S	CAGAGGCGCTTCTCCAT
CYP2D6	80+1.3278.G.S	CAGAGGCGCTTCTCCGT
CYP2D6	60.3280.C.S	CAGAGGCGCTTCTCCITC
CYP2D6	60.3280.G.S	CAGAGGCGCTTCTCCITG
CYP2D6	70+1.3323.C.S	TGGGCAAGAACGCTGGGAGCA
CYP2D6	70+1.3323.G.S	TGGGCAAGAACGCTGGGAGGA
2D6H.3326.G.A		GCIGCCTCCTCGGTACCCCC
2D6H.3326.T.A		GCIGCCTCCTCGGTACACCA
2D6H V2.3326.G.A		GCIGCCTCCTCGGTACCCCC
2D6H V2.3326.T.A		GCIGCCTCCTCGGTACCCCCAC
CYP2D6	70.3343.C.A	CGGCACAAAGGCAGGCG
CYP2D6	70.3343.T.A	GGGGCACAAAGGCAGGCA
CYP2D6	70.3368.A.S	TGTGCCGCCTTCGCCA
CYP2D6	70.3368.G.S	GTGCCGCCTTCGCCG
CYP2D6	70.3377.G.S	CGCCTTCGCCACCACCTCCG
CYP2D6	70.3377.T.S	CGCCTTCGCCACCACCTCT
CYP2D6	60.3465.A.S	CATCTCCCACCCCCAA
CYP2D6	60.3465.G.S	CATCTCCCACCCCCAG
CYP2D6	80.3477.C.A	AGAGICCGTGGGGCG
CYP2D6	80.3477.T.A	AAGAGICCGTGGGGCA
CYP2D6	60.3488.C.A	CGGCTTGTCCAAGAGG

Fig 6B

CYP2D6_60.3582.G.A	TCTAGCAGCCTGAGGAAGT
2D6H.3592.A.S	TCAGGCTGCTGGACCTAGCTCAGGA
2D6H.3592.G.S	CAGGCTGCTGGACCTAGCTCAGGGA
CYP2D6_60.3595.A.S	TGGACCTAGCTCAGGAGGA
CYP2D6_60.3595.G.S	GGACCTAGCTCAGGAGGG
CYP2D6_70.3597.C.S	GCTGCTGGACCTAGCTCAGGAGGIAC
CYP2D6_70.3597.T.S	GCTGCTGGACCTAGCTCAGGAGGIAT
CYP2D6_60.3598.C.A	CCCGACTCCCTCTTCG
CYP2D6_60.3598.T.A	GCCCCGACTCCCTCTTC
CYP2D6_70.4099.C.S	TCCTCCTGCAIATCCCAGCGC
CYP2D6_70.4099.T.S	GTCCCTCCTGCAIATCCCAGCGT
2D6H_V2.4168.A.S	CTGGATGAGCTGCTAACTGAGCACAGG
2D6H_V2.4168.G.S	CTGGATGAGCTGCTAACTGAGCACGGG
2D6H_V3.4168.A.S	GCTGGATGAGCTGCTAACTGAGCACAA
2D6H_V3.4168.G.S	GCTGGATGAGCTGCTAACTGAGCACGG
CYP2D6_70.4194.A.S	GGGACCCAGCCCAGCCA
CYP2D6_70.4194.C.S	GGGACCCAGCCCAGCCC
2D6H.4206.G.S	GCCCCAGCCICCCCCGAGACCTGAGG
2D6H.4206.T.S	GCCCCAGCCICCCCCGAGACCTGACT
2D6H.4232.A.A	TGGCAGCCACTCTCACCTTCT
2D6H.4232.G.A	TGGCAGCCACTCTCACCTC
CYP2D6_60.4469.C.S	GCTTCAATGATGAGAACCTGC
CYP2D6_60.4469.T.S	AGCTTCAATGATGAGAACCTGT
CYP2D6_70.4472.A.A	GCAGAGAACAGGTCAGCCACCATA
CYP2D6_70.4472.C.A	GCAGAGAACAGGTCAGCCACCATA
CYP2D6_V3.4554.C.A	TGGGCTCACGCTGCACATCIIAGG
CYP2D6_V3.4554.A.A	GCTCACGCTGCACATCIIAGT
CYP2D6_V2.4554.C.A	GCTCACGCTGCACATCIIAGG
CYP2D6_V2.4554.A.A	GCTCACGCTGCACATCIIAGT
CYP2D6_70.4557.C.S	GGCCTCCTGCTCATGATCCTACITCC
CYP2D6_70.4557.T.S	GGGCCTCCTGCTCATGATCCTACITCT
CYP2D6_70.4558.A.A	TGGGCTCACGCTGCACATCT
CYP2D6_70.4558.G.A	GGGCTCACGCTGCACATCC
CYP2D6_70.4802.A.S	GTGTCCAACAGGAGATCGACGACA
CYP2D6_70.4802.G.S	TGTCCAACAGGAGATCGACGACG
CYP2D6_70+1.4817.C.S	TCGACGACITGATAGGGCAGGTGCGG
CYP2D6_70+1.4817.G.S	ATCGACGACITGATAGGGCAGGTGGG
CYP2D6_70.4896.C.S	TGCAGCGCTTGGGACAC
CYP2D6_70.4896.T.S	TGCACTCGCTTGGGACAT
CYP2D6_60.4907.A.S	GGACAACTGCCCCCTGA
CYP2D6_60.4907.G.S	GGACAACTGCCCCCTGG
CYP2D6_70.5447.A.A	AGACGGCCTCATCCTTCAGCACT
CYP2D6_70.5447.G.A	ACGGCCTCATCCTTCAGCACC
CYP2D6_70.5472.A.S	CTGAAGGATGAGGCCGCTGG
CYP2D6_70.5472.G.S	TGAAGGATGAGGCCGCTGGG
CYP2D6_70.5496.C.S	CCTTCGGCTTCCACCCCC
CYP2D6_70.5496.G.S	CCTTCGGCTTCCACCCCC
CYP2D6_70+1.5508.C.S	CGCTTCCACCCCCAACACTTCCCG
CYP2D6_70+1.5506.T.S	CCGCTTCCACCCCCAACACTTCCG
CYP2D6_70+1.5661.A.S	CCCTCCCCACAGGCCAC
CYP2D6_70+1.5661.G.S	CCCTCCCCACAGGCCGC
CYP2D6_70.5734.C.A	CAGTGGGACCGAGAAGCTG
CYP2D6_70.5734.T.A	TCCAGTGGGACCGAGAAGCTA
CYP2E1_60-1+1.1532.C.A	CTGCACCTAACACTGCAGC
CYP2E1_60-1+1.1532.G.A	CTGCACCTAACACTGCACC
CYP2E1_60.1627.C.A	CATTCTATACCTGTATTTATACAAAAATGAGAG
CYP2E1_60.1627.G.A	CATTCTATACCTGTATTTATACAAAAATGAGAC
CYP2E1_V2.1772.C.A	TCTTAATTCTAGGTTGCAATTGT
CYP2E1_V2.1772.T.A	TTCTTAATTCTAGGTTGCAATTGTATA

Fig 6C

CYP2E1 V3.1800.T.S	TTGCAACCTATGAATTAGAACCTCTA
CYP2E1 V3.1800.C.S	ATTGCAACCTATGAATTAGAACCTCC
CYP2E1 60+1.2019.C.A	GATTGTTTACATTAGGGTAAATTGG
CYP2E1 60+1.2019.T.A	GGATTGTTTACATTAGGGTAAATTAG
2E1_2492.A.A	GTGGGGTGAGGTACCGT
2E1_2492.T.A	GTGGGGTGAGGTACCGA
2E1_2492.A.S	TGCCAAAGGGCAGGA
2E1_2492.T.S	GTGCCAAAGGGCAGGT
2E1_2473.A.A	GCCCTTGGCACTGGT
2E1_2473.G.A	CCCTTGGCACTGGC
2E1_2473.A.S	GGAGTTCCCCGTTGTCTAA
2E1_2473.G.S	GGAGTTCCCCGTTGTCTAG
CYP2E1 60.2754.G.S	GGGTCAACCTCTTCCTCAG
CYP2E1 60.2754.T.S	GGGTCAACCTCTTCCTCAT
CYP2E1 60+2.3956.A.S	GTGGGCTCGCAGCACA
CYP2E1 60+2.3956.G.S	TGGGCTCGCAGCGCA
CYP2E1 V2.3956.A.A	CCGTGCATACCACCATGT
CYP2E1 V2.3956.G.A	GTGCATACCACCATGCG
CYP2E1 60.10456.A.S	CACACCCAGCTGATTAAAAATT
CYP2E1 60.10456.T.S	CACACCCAGCTGATTAAAAATT
CYP2E1 60.12720.C.S	TCACTAAGCAACTCCCTCAACTC
CYP2E1 60.12720.G.S	TCACTAAGCAACTCCCTCAACTG
CYP2E1 60.12847.A.S	TTTCTCTAGGGCACAGTCA
CYP2E1 60.12847.G.S	TCTCCTAGGGCACAGTCG
CYP2E1 60.12945.C.A	GGCTTGAATAGTCACTGTACTTG
CYP2E1 60.12945.T.A	AATGGCTTGAATAGTCACTGTACTTA
CYP3A4 60.818.A.S	GCCATAGAGACAAGGGCAA
CYP3A4 60.818.G.S	GCCATAGAGACAAGGGCAG
CYP3A4 60.918.A.S	CCAGTAACATTGATTGAGTTGTTA
CYP3A4 60.918.G.S	CAGTAACATTGATTGAGTTGTTG
Amplicon Control Probes	
1A1.23F22R_A.X.A	GCAGGATCCCTTAGGCTTG
1A1.23F22R_B.X.S	AGCCAGGAGGCCTGCTA
1A2.5F3R_A.X.S	TATCCAGCTGGGAGCCAA
1A2.5F3R_B.X.S	CCAGCCCCATGGCTCT
1B1.2F4R_A.X.S	CACGACGACCCCGAGTT
1B1.2F4R_B.X.S	CGGTGCGCACCGTT
1B1.8F11R_A.X.A	TTGGGTTGGCCCTGAA
1B1.8F11R_B.X.S	TGGGCTATGCAGGAGCTT
2C19.3F6R_A.X.A	GCACAGCCCAGGATGAA
2C19.3F6R_B.X.A	CATGCAGCACCACCATG
2D6.1F1R_A.X.S	AGCCCATTGGTAGTGAGGCAGG
2D6.1F1R_B.X.S	GAGCCCATTGGTAGTGAGGCAGA
2E1.1F6R_A.X.A	AGGITGGTATTGAACAACCACAA
2E1.1F6R_B.X.A	ATTCAAGTAATTACAACAGGC
2E1.8F19R_A.X.S	GAATGTGGCCGACCTGTT
2E1.8F19R_B.X.S	GCACAGTGCAGAGCGCTT
2E1.11F13R_A.X.S	CCAGATGAAAGCCCACATT
2E1.11F13R_B.X.S	AAGCCCACATTGGTAAACATG
3A4.1F1R_A.X.S	GCTTGTGGATGAATTCAA
3A4.1F1R_B.X.S	CTGATAAGAACCCAGAACCCCTT

Fig 6D

Beta SNP Content List

Fig 7

Comments						
1A1						
NONE	CYP 1A1	1213	CYP1A1 V 2 60.1213.A.S	CYP1A1 V 2 60.1213.G.S	No Amplicon Coverage	
NONE	CYP 1A1	1223	CYP1A1 V 2 60.1223.G.A	CYP1A1 V 2 60.1223.T.A	No Amplicon Coverage	
23F22R	CYP 1A1	6568	CYP1A1 V 2 70.6568.A.S	CYP1A1 V 2 70.6568.C.S		
23F22R	CYP 1A1	6570	CYP1A1 80.6570.A.A	CYP1A1 80.6570.G.A		
23F22R	CYP 1A1	7320	CYP1A1 V 2 80.7320.G.A	CYP1A1 V 2 80.7320.T.A	Remove Unneeded Redundancy	
NONE	CYP 1A1	7547	CYP1A1 60+1.7547.A.S	CYP1A1 60+1.7547.T.S	No Amplicon Coverage	
23F22R	CYP 1A1	CNTRL	1A1.23F22R_A.X.A		Independent Amplicon Controls	
23F22R	CYP 1A1	CNTRL	1A1.23F22R_B.X.S		Independent Amplicon Controls	
1A2						
5F3R	CYP 1A2	2640	CYP1A2 60+1.2640.A.A	CYP1A2 60+1.2640.C.A	Redesign to overcome possible selfX	
			CYP1A2 60+1.2640.A.A	CYP1A2 60+1.2640.C.A	Remove unneeded redundancy	
5F3R	CYP 1A2	2866	CYP1A2 V2.2866.C.S	CYP1A2 V2.2866.G.S	Redesign of one Probe (CYP1A2 V2.2866.GS = CYP1A2 60.2866.G)	
5F3R	CYP 1A2		CYP1A2 V3.2866.C.S	CYP1A2 V3.2866.G.S	Independent Amplicon Controls	
5F3R	CYP 1A2	CNTRL	1A2.5F3R_A.X.S		Independent Amplicon Controls	
		CNTRL	1A2.5F3R_B.X.S		Independent Amplicon Controls	
1B1						
2F4R	CYP 1B1	3783	CYP1B1 60.3783.C.A	CYP1B1 60.3783.T.A		
2F4R	CYP 1B1	3947	CYP1B1 60.3947.C.S	CYP1B1 60.3947.G.S		
2F4R	CYP 1B1	3976	CYP1B1 60.3976.C.S	CYP1B1 60.3976.G.S		
2F4R	CYP 1B1	3987	CYP1B1 60.3987.A.A	CYP1B1 60.3987.G.A		
2F4R	CYP 1B1	4035	1B1 4035.C.S	1B1 4035.T.S	Newly Identified SNP	
2F4R	CYP 1B1	4160	CYP1B1 60+2.4160.G.A	CYP1B1 60+2.4160.T.A	Redesigned to overcome GG self extension	
2F4R	CYP 1B1	4306	1B1 V2.4306.A.A	1B1 V2.4306.T.A	Newly Identified SNP	
2F4R	CYP 1B1	4646	CYP1B1 60+1.4646.G.S	CYP1B1 60+1.4646.T.S	Newly Identified SNP	
2F4R	CYP 1B1	4668	1B1 4668.C.A	1B1 4668.G.A	Newly Identified SNP	
2F4R	CYP 1B1	CNTRL	1B1.2F4R_A.X.S		Independent Amplicon Controls	
2F4R	CYP 1B1	CNTRL	1B1.2F4R_B.X.S		Independent Amplicon Controls	

SNP_ID	PROBE_ID
2E1_1772	CYP2E1_60.1772.C.A
2E1_1772	CYP2E1_60.1772.T.A
2E1_2019	CYP2E1_60.2019.C.S
2E1_2019	CYP2E1_60.2019.T.S
2E1_2754	CYP2E1_60.2754.G.S
2E1_2754	CYP2E1_60.2754.T.S
2E1_3085	CYP2E1_60.3085.A.A
2E1_3085	CYP2E1_60.3085.T.A
2E1_3104	CYP2E1_60.3104.A.A
2E1_3104	CYP2E1_60.3104.G.A
2E1_7592	CYP2E1_60.7592.A.S
2E1_7592	CYP2E1_60.7592.G.S
2E1_10456	CYP2E1_60.10456.A.S
2E1_10456	CYP2E1_60.10456.T.S
2E1_12720	CYP2E1_60.12720.C.S
2E1_12720	CYP2E1_60.12720.G.S
2E1_12847	CYP2E1_60.12847.A.S
2E1_12847	CYP2E1_60.12847.G.S
2E1_12945	CYP2E1_60.12945.C.A
2E1_12945	CYP2E1_60.12945.T.A
2D6_4802	CYP2D6_70.4802.A.S
2D6_4802	CYP2D6_70.4802.G.S
2D6_4896	CYP2D6_70.4896.C.S
2D6_4896	CYP2D6_70.4896.T.S
2D6_4907	CYP2D6_60.4907.A.S
2D6_4907	CYP2D6_60.4907.G.S
2D6_4907	CYP2D6_70.4907.A.S
2D6_4907	CYP2D6_70.4907.G.S
2D6_5447	CYP2D6_70.5447.A.A
2D6_5447	CYP2D6_70.5447.G.A
2D6_5472	CYP2D6_70.5472.A.S
2D6_5472	CYP2D6_70.5472.G.S
2D6_3595	CYP2D6_60.3595.A.A
2D6_3595	CYP2D6_60.3595.G.A
2D6_3595	CYP2D6_70.3595.A.S
2D6_3595	CYP2D6_70.3595.G.S
2D6_3597	CYP2D6_70.3597.C.S
2D6_3597	CYP2D6_70.3597.T.S
2D6_3598	CYP2D6_60.3598.C.A
2D6_3598	CYP2D6_60.3598.T.A
2D6_4089	CYP2D6_70.4089.C.S
2D6_4089	CYP2D6_70.4089.T.S
2D6_4099	CYP2D6_70.4099.C.S
2D6_4099	CYP2D6_70.4099.T.S
2D6_4102	CYP2D6_70.4102.G.A
2D6_4102	CYP2D6_70.4102.T.A
2D6_2642	CYP2D6_60.2642.C.S
2D6_2642	CYP2D6_60.2642.T.S
2D6_2642	CYP2D6_70.2642.C.S
2D6_2642	CYP2D6_70.2642.T.S
2D6_2658	CYP2D6_70.2658.C.A

Fig 8A

2D6 2658	CYP2D6 70.2658.T.A
2D6 3278	CYP2D6 60.3278.A.S
2D6 3278	CYP2D6 60.3278.G.S
2D6 3280	CYP2D6 60.3280.C.S
2D6 3280	CYP2D6 60.3280.G.S
2D6 3343	CYP2D6 70.3343.C.A
2D6 3343	CYP2D6 70.3343.T.A
2D6 1618	CYP2D6 70.1618.A.S
2D6 1618	CYP2D6 70.1618.G.S
2D6 1638	CYP2D6 70.1638.A.S
2D6 1638	CYP2D6 70.1638.G.S
2D6 1650	CYP2D6 70.1650.A.A
2D6 1650	CYP2D6 70.1650.G.A
2D6 1696	CYP2D6 70.1696.A.S
2D6 1896	CYP2D6 70.1896.G.S
2D6 1701	CYP2D6 70.1701.T.A
2D6 1701	CYP2D6 70.1701.C.A
2D6 1719	CYP2D6 60.1719.C.A
2D6 1719	CYP2D6 60.1719.T.A
2D6 1743	CYP2D6 70.1743.A.S
2D6 1743	CYP2D6 70.1743.G.S
2D6 2502	CYP2D6 60.2502.C.A
2D6 2502	CYP2D6 60.2502.G.A
2D6 2578	CYP2D6 60.2576.T.S
2D6 2576	CYP2D6 60.2576.C.S
2D6 2593	CYP2D6 60.2593.A.A
2D6 2593	CYP2D6 60.2593.C.A
2D6 2603	CYP2D6 70.2603.A.S
2D6 2603	CYP2D6 70.2603.G.S
2D6 2616	CYP2D6 60.2616.C.A
2D6 2616	CYP2D6 60.2616.G.A
2D6 3368	CYP2D6 70.3368.A.S
2D6 3368	CYP2D6 70.3368.G.S
2D6 3377	CYP2D6 70.3377.G.S
2D6 3377	CYP2D6 70.3377.T.S
2D6 3485	CYP2D6 60.3465.A.A
2D6 3465	CYP2D6 60.3465.G.A
2D6 3465	CYP2D6 60.3465.A.S
2D6 3465	CYP2D6 60.3465.G.S
2D6 3465	CYP2D6 70.3465.A.A
2D6 3465	CYP2D6 70.3465.G.A
2D6 3465	CYP2D6 70.3465.A.S
2D6 3465	CYP2D6 70.3465.G.S
2D6 3477	CYP2D6 60.3477.C.A
2D6 3477	CYP2D6 60.3477.T.A
2D6 3488	CYP2D6 60.3488.C.A
2D6 3488	CYP2D6 60.3488.T.A
2D6 3562	CYP2D6 60.3562.A.A
2D6 3562	CYP2D6 60.3562.G.A
2D6 4194	CYP2D6 70.4194.A.S
2D6 4194	CYP2D6 70.4194.C.S
2D6 4469	CYP2D6 60.4469.C.S

Fig. 8B

2D6_4469	CYP2D6_60.4469.T.S
2D6_4472	CYP2D6_70.4472.A.A
2D6_4472	CYP2D6_70.4472.C.A
2D6_4472	CYP2D6_70.4472.A.S
2D6_4472	CYP2D6_70.4472.C.S
2D6_4554	CYP2D6_70.4554.A.A
2D6_4554	CYP2D6_70.4554.C.A
2D6_4557	CYP2D6_70.4557.C.S
2D6_4557	CYP2D6_70.4557.T.S
2D6_4558	CYP2D6_70.4558.A.A
2D6_4558	CYP2D6_70.4558.G.A
2D6_5496	CYP2D6_70.5496.C.S
2D6_5496	CYP2D6_70.5496.G.S
2D6_5506	CYP2D6_60.5506.C.A
2D6_5506	CYP2D6_60.5506.T.A
2D6_5661	CYP2D6_70.5661.A.S
2D6_5881	CYP2D6_70.5661.G.S
2D6_5734	CYP2D6_70.5734.C.A
2D6_5734	CYP2D6_70.5734.T.A
2D6_5799	CYP2D6_60.5799.C.S
2D6_5799	CYP2D6_60.5799.G.S
2E1_1627	CYP2E1_60.1627.C.A
2E1_1627	CYP2E1_60.1627.G.A
3A4_816	CYP3A4_60.816.G.S
3A4_816	CYP3A4_60.816.A.S
3A4_918	CYP3A4_60.918.A.S
3A4_918	CYP3A4_60.918.G.S
2C19_430	CYP2C19EXONS_70.430.C.A
2C19_430	CYP2C19EXONS_70.430.T.A
2C19_636	CYP2C19EXONS_60.636.A.S
2C19_636	CYP2C19EXONS_60.636.G.S
2C19_681	CYP2C19EXONS_60.681.A.S
2C19_681	CYP2C19EXONS_60.681.G.S
1B1_4160	CYP1B1_60.4160.G.A
1B1_4160	CYP1B1_60.4160.T.A
1B1_7973	CYP1B1_60.7973.C.A
1B1_7973	CYP1B1_60.7973.T.A
1B1_7996	CYP1B1_60.7996.A.S
1B1_7996	CYP1B1_60.7996.G.S
1B1_8006	CYP1B1_60.8006.A.S
1B1_8006	CYP1B1_60.8006.G.S
1B1_8195	CYP1B1_60.8195.A.A
1B1_8195	CYP1B1_60.8195.G.A
1B1_8242	CYP1B1_60.8242.C.S
1B1_8242	CYP1B1_60.8242.T.S
1B1_8587	CYP1B1_60.8587.C.S
1B1_8587	CYP1B1_60.8587.G.S
1A1_1223	CYP1A1_60.1223.C.A
1A1_1223	CYP1A1_60.1223.T.A
2D6_3326	2D6_66.3326.G.A
2D6_3326	2D6_66.3326.T.A
2D6_3326	2D6_66.3326.G.S

Fig 8C

2D6 3326	2D6 66.3326.T.S
2D6 4168	2D6 66.4168.A.A
2D6 4168	2D6 66.4168.C.A
2D6 4168	2D6 66.4168.A.S
2D6 4168	2D6 66.4168.C.S
1A1 6568	CYP1A1 60.6568.A.A
1A1 6568	CYP1A1 60.6568.C.A
1A1 6568	CYP1A1 60.6568.A.S
1A1 6568	CYP1A1 60.6568.C.S
1A1 6570	CYP1A1 60.6570.A.A
1A1 6570	CYP1A1 60.6570.G.A
1A2 2640	CYP1A2 60.2640.A.A
1A2 2640	CYP1A2 60.2640.C.A
1A2 2866	CYP1A2 60.2866.C.S
1A2 2866	CYP1A2 60.2866.G.S
1B1 3793	CYP1B1 60.3793.C.A
1B1 3793	CYP1B1 60.3793.T.A
1B1 3793	CYP1B1 60.3793.C.S
1B1 3793	CYP1B1 60.3793.T.S
1B1 3947	CYP1B1 60.3947.C.S
1B1 3947	CYP1B1 60.3947.G.S
1B1 3976	CYP1B1 60.3976.C.S
1B1 3976	CYP1B1 60.3976.G.S
1B1 3987	CYP1B1 60.3987.A.A
1B1 3987	CYP1B1 60.3987.G.A
1B1 8807	CYP1B1 60.8807.A.S
1B1 8807	CYP1B1 60.8807.T.S
2C19 276	CYP2C19EXONS 70.276.C.A
2C19 276	CYP2C19EXONS 70.276.G.A
2C19 395	CYP2C19EXONS 70.395.A.A
2C19 395	CYP2C19EXONS 70.395.G.A
CONTROL PROBES	
	PBR322WSNPS.4058.C.S
	PBR322WSNPS.4058.T.S
	WIAF-1648.107.A.A
	WIAF-1648.107.G.A
	WIAF-198.38.C.A
	WIAF-198.38.T.A
	2D7PSEUDOGENECONTROL 60.111.C.A
	2D7PSEUDOGENECONTROL 60.111.G.A
	2D7PSEUDOGENECONTROL 60.111.C.S
	2D7PSEUDOGENECONTROL 60.111.G.S
	2D7APSEUDOGENECONTROL 60.23.A.A
	2D7APSEUDOGENECONTROL 60.23.G.A
	2D7APSEUDOGENECONTROL 60.2370.A.S
	2D7APSEUDOGENECONTROL 60.2370.G.S
	2D7APSEUDOGENECONTROL 60.2592.C.S
	2D7APSEUDOGENECONTROL 60.2592.T.S
	2D7APSEUDOGENECONTROL 60.3471.C.A
	2D7APSEUDOGENECONTROL 60.3471.T.A
	2D7PSEUDOGENECONTROL 60.600.G.S

Fig 8D

	2D7PSEUDOGENECONTROL 60.600,T.S
	2D7PSEUDOGENECONTROL 60.1760,C.S
	2D7PSEUDOGENECONTROL 60.1760,T.S
	2D7PSEUDOGENECONTROL 60.2108,A.S
	2D7PSEUDOGENECONTROL 60.2108,G.S
	2D7B 60.3539,G.S
	2D7B 60.3539,T.S
	2D7B 60.3647,A.A
	2D7B 60.3647,G.A
	2D7B 60.3768,A.S
	2D7B 60.3766,C.S
	2D7B 60.4506,C.S
	2D7B 60.4506,G.S
	2D8 60.105,A.A
	2D8 60.105,G.A
	2D8 60.3080,A.S
	2D8 60.3080,G.S
	2D7PSEUDOGENECONTROL 60.1360,C.S
	2D7PSEUDOGENECONTROL 60.1360,T.S
	2D7PSEUDOGENECONTROL 60.3030,A.S
	2D7PSEUDOGENECONTROL 60.3030,G.S
	2D7PSEUDOGENECONTROL 60.3148,A.S
	2D7PSEUDOGENECONTROL 60.3148,G.S
	2D7B 60.442,C.A
	2D7B 60.442,T.A
	2D7B 60.652,G.S
	2D7B 60.652,T.S
	2D7B 60.1185,G.S
	2D7B 60.1185,T.S
	2D7B 60.1316,A.A
	2D7B 60.1316,C.A
	2D7B 60.1671,A.A
	2D7B 60.1671,T.A
	2D7B 60.3172,C.S
	2D7B 60.3172,G.S
	2D8 60.3181,A.A
	2D8 60.3181,G.A
	2D8 60.4120,A.A
	2D8 60.4120,G.A
	2D8 60.4199,C.A
	2D8 60.4199,T.A
	2D8 60.4223,C.S
	2D8 60.4223,T.S
	2D8 60.4750,C.A
	2D8 60.4750,G.A

Fig 8E

Fig 9A

GENE RELATED/MAPPED TOGETHER		DNA/mRNA/Partial	ACCESSION #
2D6	2D6	gDNA	M33388
	2D7	gDNA	M33387
	2D7A	gDNA	X58467
	2D7B	gDNA	X58468
	2D8	gDNA	M33387
2E1	2E1	gDNA	J02843
3A4	3A4	Partial	D11131
		gDNA	AF209389
3A5	3A5	gDNA	AC005020
		mRNA	NM_000777
	3A5P	Splice Variant(mRNA)	L26985
1A1	1A1	gDNA	X04300
		gDNA	X02612
		Partial	D12525
1A2	1A2	Partial gDNA	M31664
		Partial gDNA	M31665
		Partial gDNA	M31666
		Partial gDNA	M31667
1B1	1B1	gDNA	U56438
2C9	2C9	mRNA	M61855
	2C9	Partial gDNA	L16877
	2C9	Partial gDNA	L16878
	2C9	Partial gDNA	L16879
	2C9	Partial gDNA	L16880
	2C9	Partial gDNA	L16881
	2C9	Partial gDNA	L16882
	2C9	Partial gDNA	L16883

Fig. 9B

GENE	RELATED/MAPPED TOGETHER	DNA/mRNA/Partial	ACCESSION #
	2C19	mRNA	NM_000769
	2C19	Draft gDNA (Exons 8-9)	AL133513
	2C18	mRNA	M61856
	2C8	mRNA	NM_000770
2C19	2C19	mRNA	NM_000769
	2C19	Partial gDNA (Exons 8-9)	AL133513
	2C9	mRNA	M61855
	2C9	Partial gDNA	L16877
	2C9	Partial gDNA	L16878
	2C9	Partial gDNA	L16879
	2C9	Partial gDNA	L16880
	2C9	Partial gDNA	L16881
	2C9	Partial gDNA	L16882
	2C9	Partial gDNA	L16883
2C18		mRNA	M61856
	2C8	mRNA	NM_000770

Fig 10A

AMPLICON	LENGTH	SNP ID
1A1 23F 22R	1127	1A1 6568
		1A1 6570
1A2 05F 03R	378	1A1 7320
		1A2 2640
1B1 02F 04R	1007	1A2 2866
		1B1 3793
1B1 08F 11R	1353	1B1 3947
		1B1 3976
		1B1 3987
		1B1 4160
		1B1 4646
		1B1 7930
		1B1 7957
		1B1 7973
		1B1 7996
		1B1 8006
		1B1 8131
		1B1 8147
		1B1 8184
		1B1 8185
		1B1 8242
		1B1 8587
		1B1 8807
2C19 03F 06R	-6500	1B1 9164
		2C19 276
		2C19 395
		2C19 430
		2C19 636
		2D6 1618
2D6 01F 01R	4522	2D6 1638
		2D6 1650
		2D6 1696
		2D6 1701
		2D6 1719
		2D6 1743

Fig 10B

AMPLICON	LENGTH	SNP ID
		2D6 1757
		2D6 2502
		2D6 2576
		2D6 2593
		2D6 2603
		2D6 2616
		2D6 2642
		2D6 2658
		2D6 3278
		2D6 3280
		2D6 3323
		2D6 3326
		2D6 3343
		2D6 3368
		2D6 3377
		2D6 3465
		2D6 3477
		2D6 3488
		2D6 3562
		2D6 3592
		2D6 3595
		2D6 3597
		2D6 3598
		2D6 4089
		2D6 4099
		2D6 4102
		2D6 4168
		2D6 4194
		2D6 4206
		2D6 4232
		2D6 4469
		2D6 4472
		2D6 4554
		2D6 4557
		2D6 4558
		2D6 4802

Fig 10C

AMPLICON	LENGTH	SNP ID
		2D6_4817
		2D6_4896
		2D6_4907
		2D6_5447
		2D6_5472
		2D6_5496
		2D6_5506
		2D6_5661
		2D6_5734
		2D6_5799

Fig 11 The CodeLink™ SNP Bioarray for human cytochrome P450 genes.

FIG. 12 Layout of primer pairs in primer plates.

NOTE: Each sample individual will be aliquoted across 12 separate PCR reactions.

Fig 13. Addition of master mix and samples to microfuge tubes.

Fig 14 Tip orientation for loading reaction mixtures into chambers.

Fig 15 orientation of sealing strips over chamber ports.

Fig 16 · Slide placement on the Hybald Omnislide heat blocks.

Fig 17

Fig 17 : Prevention of self-extension due to base additions.

Target-Independent signal strength	Probe	Probe Sequence (5' to 3')	Length/ ⁿ GC	Predicted Stem-Loop	Predicted Stem-Loop Base Extended	Observed Base Extended
Strong	50MAPC21.TA	TACAGTGGCAAGGCA	14/8	<u>TGCGAGGCA</u>	G	G
Strong	60MAP913.114.TA	TCTCTCTCTCTCTTGCA	20/10	<u>TGTCCTTGCA</u>	G	G
Strong	60PCACC711G.111.CA	AAGTGCCTCATGGAGTAGAG	21/11	<u>GTGC(8)GGAC</u>	C	C
Strong	70PCACC711G.111.CS	CGCGAGGCGAGGCC	15/12	<u>GGG(8)GCC</u>	G	G
Strong	70UP2.150.CA	CCCGAAATGCTACACCTG	21/13	<u>CGGCGTG</u>	G	G
Strong	80MAP26.173.CS	GGCGGAATTATTATTCG	19/8	<u>GGAA(6)TGC</u>	C	C
Strong	AP0182.AA	CGGGGGGGCT	12/10	<u>GGGGGGCGT</u>	T	GC

Fig 18
Table 2 Examples of probe sequences that show a strong target-independent signal in the SBE assay. The predicted stem-loop region is underlined.

Fig 19

Fig 20

A. Target-dependent Extension**B. Target-independent Extension****Fig 21**

A. Natural A:T base-pair,
pairs equally well with target and itself

B. Non-natural 2-am-A:2-thioT base-pair,
does not form a stable base-pair

C. 2-am-A:T base-pair, (target-probe pair)
forms a very stable base-pair

D. A:2-thio-T base-pair, (target-probe pair)
forms a stable base-pair

Fig 22

A. Exo-cyclic amine modified A

Modified A

A. Exo-cyclic amine modified C

Modified C

B. Exo-cyclic amine modified G

Modified G

Fig 23

A. Target-dependent Extension**B. Target-independent Extension****Fig 24**

A. "Terminator" base**4-methyl-indole****B. "Terminator" nucleoside****2'-O-methyl-2-amino-A****Fig 25**

Fig 26

Table 26. List of modified bases/nucleosides used.

Q = abasic nucleotide; no base-pairing ability, no stacking energy; placed immediately downstream of putative stem-loop; expect A to be incorporated when Q is in template (the "A rule").

I = 4-methylindole: A analog; placed immediately downstream of putative stem-loop; terminates DNA polymerase activity.

K = 5-nitroindole: universal base; placed immediately downstream of putative stem-loop; does not form base pairs but contributes stacking energy.

Z = 2-amino-A; placed within the stem of putative stem-loop; forms 3 hydrogen-bonds with T; no base pairing with 2-thio-dT.

X = 2-thio-dT; placed with stem of putative stem-loop; stable base pairs with A; no base pairing with 2-amino-A.

Fig 26

Fig 27

Fig 28

Fig 29

Fig 30

Self-extension inhibited due to modifications
on bases in the "stem" region that prevent
extension enzyme from binding.

Fig 31

Extension due to probe - target hybridization
is not inhibited

Fig 32A modified nucleotide bases reduced the binding affinity of the SBE enzyme or extension enzyme

Fig 32B Chemical phosphodiester analogues

Fig 33

Fig 33 Results from an experiment using oligonucleotide inhibitors to prevent self extension of probes in the SGE assay.

 Method for uniplexed target prep for SNP genotyping
and primer extension without self-extension

Fig 34

Fig 35

Controls

<u>Enzyme</u>	<u>Non-extender</u>	<u>Self-extender</u>	<u>RESULTS</u>
rTth, Modified Reverse transcriptase			The self-extender shows signal only in presence of cRNA
Bacterial probe			The signal is human specific since bacteria probes do not show signal with the human cRNA

Fig 36

<u>Enzyme</u>	Non-extender	Self-extender	<u>RESULTS</u>
Modified Reverse Transcriptase Enzyme (rTth)			Modified Enzyme Eliminates Self-extension
Regular Reverse Transcriptase (Superscript II)			Self-extension Seen with Regular Enzyme
	+ cRNA	- cRNA	+ cRNA
			- cRNA

Reaction of Amino Oligonucleotides on the SurModics Surface

(an example of acyl substitution reaction on the polymer backbone)

Fig 37

Possible Structure of a SurModics Gel Matrix

Fig 38

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.