Devoir Surveillé de Recherche Opérationnelle

Ines Abdeljaoued Tej - inestej@gmail.com

Cet examen comprend 3 questions sur un total de 20 points.

Question1 (8 points)

Avant l'arrivage massif de nouveaux modèles, un vendeur de téléphones portables veut écouler rapidement son stock composé de huit appareils, quatre kits 'mains libres' et dix-neuf cartes avec des communications prépayées.

Après une étude de marché, il sait très bien que dans cette période de soldes, il peut proposer aux clients un téléphone avec deux cartes et que cette offre va lui rapporter un profit net de sept dinars. Il peut aussi préparer à l'avance un coffret composé d'un téléphone, d'un kit 'mains libres' et de trois cartes, ce qui va lui rapporter un profit net de neuf dinars. Il est assuré de pouvoir vendre tranquillement n'importe quelle quantité de ces offres dans la limite du stock disponible.

- 1. Donner la fonction objectif et les trois contraintes de ce modèle.
- 2. Déterminer, grâce à l'algorithme du Simplexe, la quantité de chaque offre que notre vendeur doit préparer afin de maximiser son profit net.

Un représentant commercial d'une grande surface lui propose d'acheter son stock 'en vrac'. 3. Quels sont les prix marginaux unitaires raisonnables qu'il doit négocier pour chaque produit (téléphone, kit 'mains libres', carte prépayée)? *Indication : donner l'expression du dual de ce problème*.

Solution:

On définit tout d'abord les variables de décision suivantes : x_1 est le nombre d'offres 'un téléphone + deux cartes prépayées' préparées,

 x_2 est le nombre d'offres 'un téléphone + un kit mains libres + 3 cartes prépayées' préparées.

Puisque la première offre rapporte 7 dinars et la deuxième 9 dinars, le profit réalisé par le vendeur est : $7x_1 + 9x_2$, c'est la fonction objectif que l'on désire maximiser.

De plus, le vendeur ne peut pas vendre plus d'offres que ne le permet son stock. $x_1+x_2 \le 8$ les téléphones, $2x_1+3x_2 \le 19$ les cartes, $x_2 \le 4$ les kits mains libres, Les variables sont positives, ainsi le programme linéaire à résoudre est le suivant. Maximiser $7x_1+9x_2$ sous : $x_1+x_2 \le 8, 2x_1+3x_2 \le 19, x_2 \le 4, x_1; x_2 \ge 0$ La solution optimale de ce programme est $x_1=5$ et $x_2=3$, et la valeur optimale est 62. L'objectif de la grande surface est de minimiser le prix marginal d'achat du stock, mais il doit quand même proposer un prix intéressant pour le revendeur. On pose donc les variables suivantes :

 y_1 est le prix marginal d'achat d'un téléphone du stock,

 y_2 est le prix marginal d'achat d'une carte,

 y_3 est le prix marginal d'achat d'un kit mains libres. Le prix d'achat du stock est donc :

$$8y_1 + 19y_2 + 4y_3$$
.

Pour que les prix marginaux proposés par la grande surface soient intéressants pour le revendeur, il ne faut pas qu'il perde de l'argent par rapport aux offres qu'il aurait pu écouler, c'est à dire :

$$y_1 + 2y_3 \ge 7$$

$$y_1 + 2y_2 + 3y_3 \ge 9.$$

Les prix marginaux sont évidemment positifs. Le programme que doit résoudre la grande surface pour décider des prix qu'elle doit proposer correspond en fait au programme dual (on obtient comme prix marginaux $y_1 = 3, y_2 = 2, y_3 = 0$).

Question2 (10 points)

Soit le programme linéaire suivant :

 $Maximiser\ 3x_1 + x_2$

sous les contraintes

$$x_1 - x_2 \le -1$$

$$-x_1 - x_2 \le -3$$

$$2x_1 + x_2 \le 4$$

avec $x_1 \ge 0, x_2 \ge 0$.

- 1. Résoudre graphiquement ce programme linéaire.
- 2. Appliquer la méthode du Big M pour la résolution par le simplexe. *Indication : Attention à la dégénérescence*.

Solution:

La solution graphique est donnée par le point G:

La solution optimale est égale à (1,2) avec une fonction objectif égale à 5. On définit et on résout le problème auxiliaire suivant (en introduisant les variables d'écart et les variables artificielles) :

Maximiser
$$z' = 3x_1 + x_2 - M(x_6 + x_7)$$

sous les contraintes

$$x_1 - x_2 + x_3 - x_6 = -1$$

$$-x_1 - x_2 + x_4 - x_7 = -3$$

$$2x_1 + x_2 + x_5 = 4$$

avec $x_i \ge 0, i = 1..7$ et M >> 1.

En effet, sans les variables artificielles, la solution (0,0,-1,-3,4) n'est pas réalisable car ça viole les contraintes de positivité des variables x_3, x_4 . En revanche, avec les variables artificielles, nous obtenons une solution réalisable triviale : (0,0,0,0,4,1,3). Avec cette première solution réalisable, nous pouvons entamer l'algorithme du simplexe.

Après avoir pivoté x_6 et x_7 en fonction des variables hors base x_1, x_2, x_3, x_4 dans la fonction objectif, nous obtenons le premier dictionnaire du simplexe :

x_B	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_6	-1	1	-1	0	0	1	0	1
$\overline{x_7}$	1	1	0	-1	0	0	1	3
$\overline{x_5}$	2	1	0	0	1	0	0	4
\mathbf{z}'	3	1+2M	-M	-M	0	0	0	4M

Deux variables, x_1 et x_2 , sont candidates pour entrer en base. On choisit x_1 . x_5 sort de la base car elle a un ratio test minimal (elle borne le plus la croissance de x_1). On obtient le dictionnaire suivant :

x_B	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_6}$	0	3/2	-1	0	1/2	1	0	3
$\overline{x_7}$	0	1/2	0	-1	-1/2	0	1	1
$\overline{x_5}$	1	1/2	0	0	1/2	0	0	2
\mathbf{z}'	0	2M-1/2	-M	-M	-3/2	0	0	4M-6

On peut noter qu'une seule variable est candidate pour entre en base : x_2 . Deux variables son candidates pour quitter la base : x_6 et x_7 . On peut choisir x_6 pour sortir de la base (et on note que la solution de base associée à ce dictionnaire est dégénérée) :

x_B	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_2}$	0	1	-2/3	0	1/3	2/3	0	2
$\overline{x_7}$	0	0	1/3	-1	-2/3	-1/3	1	0
$\overline{x_1}$	1	0	1/3	0	1/3	-1/3	0	1
\mathbf{z}'	0	0	1/3M-1/3	-M	-2/3M-4/3	-4/3M+1/3	0	-5

Si x_3 entre en base alors x_7 sort de base (car le ratio-test associé est minimal, égal à zéro) :

x_B	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_2	0	1	0	-2	-1	0	2	2
$\overline{x_3}$	0	0	1	-3	-2	-1	3	0
$\overline{x_1}$	1	0	0	1	1	0	1	1
\overline{z}	0	0	0	-1	-2	-M	-M+1	-5

On constate que l'itération est dégénérée car z' n'augmente pas. Les coefficients de la fonction objectif sont tous négatifs, on a donc fini et la solution optimale est $x_1=1$, $x_2=2$.

Question3 (2 points)

Citer deux logiciels/packages permettant de résoudre numériquement des programmes linéaires.

Solution:

Le package lin
prog de R, le Solveur d'Excel, OPTMODEL sous SAS, Optim
J sous Java, etc.

Bonne Chance.