هوشمصنوعی و استنتاج کاتورهای

سیاوش بیگدلی

کاظم داوودی، علیاکبر شمس، حسن کربلایی

قائده استنتاج

- A o B
- \underline{A}

B

- قائده
- پیشفرض
- نتیجهگیری
- معیار بهینگی
- فضای جستجو
 - بهینهسازی

تئوری کوچک فِرما (Fermat)

- آیا *N* یک عدد اول است؟
- روش جبری : بررسی تمام ضریبهای کوچکتر
 - روش تصادفی :
- X ویژگی عدد اول $X \sim X \sim X$ به ازای همهی اعداد طبیعی \bullet
- با تعدادی عدد تصادفی X احتمال آن را بسنجیم (توزیع یکنواخت)
 - بدون قطعیت، جواب احتمالاتی
 - بسیار سریع به طمأنینه میرسیم

ایان هکینگ (lan Hacking)

• جایگزین ضعف مدلهای جبری (قرون ۱۷و ۱۸): مدلسازی کاربردی در قمار، بیمه و تحقیقات جمعیتی

- امر تصادفی: عبور از «جهالت» به نگاه «ابزاری» و «ذاتی»
 - نگاه جبری: عدم قطعیت به مثابه جهالت
- نگاه آماری: ابزارگری احتمالات حتی آنجا که دلیل اصلی ناشناخته است
 - نگاه ذاتی: وقایع میتوانند ذات تصادفی داشته باشند

استدلال تصادفي

- استدلال تصادفی در neuroscience
 - تصادف در رفتار انسانی
- تصادف در طراحی الگوریتمها (How Randomness Improves Algorithms) •

نسبت به ابزارهای موجود هوشمصنوعی استفادهی بیشتری از امر تصادفی دارد در یادگیری و استنتاج. این باعث میشود که یک سری فرایندها را بهتر مدل کند.

ورود امر تصادفی به تعریفها و پیشفرضها

تمرین عملی

- سیب و پرتقالها را با یک خط مستقیم از هم جدا کنید
 - از روی میوهها رد نشد
 - همهی میوهها، پشت و روی برگه
 - هر چند بار بخواهید میتوانید کاغذ را تا کنید

سیب و پرتقالها را از هم جدا کنید

- کاغذ را تا کنید
- همهی سیبها یک طرف، پرتقالها طرف دیگر
 - حتى آنهايي كه پشت صفحه هستند 🏵
 - حتی سیب کوچولوهای دور برگه

سیب و پرتقالها را از هم جدا کنید

- کاغذ را تا کنید
- همهی سیبها یک طرف، پرتقالها طرف دیگر
 - حتى آنهايى كه پشت صفحه هستند 🏵
 - حتى سيب كوچولوهاى دور برگه

شبکههای عصبی عمیق

تا کردن فضا (قدر مطلق به عنوان activation)
تبدیل (مانند fully connected)

شبکههای عصبی عمیق

- مدل شما برچه اساسی دسته بندی میکند؟
- چه اتفاقاتی در فرایند مدلسازی در Pytorch/TF میافتد؟ چه نسبتی با توقعات ما دارد؟

فرض کنید شما یک تصمیم بر پایهی هوشمصنوعی میگیرید. چه توجیهی برای این تصمیم دارید؟

مانند سیستم COMPAS و توجیه تصمیم برای مدافع

شناختشناسي هوشمصنوعي

• بررسی پیشفرضها، فرایندها، محدودیتها یا فواید

Probability theory

- 1. Kolmogrov axioms
- 2. Probabilities (normalized distribution)
- 3. Conditional probability
- 4. Conditional independence
- 5. Probabilistic problems

Statistics

- 6. Bayes rule
- 7. Identically distributed
- 8. Ergodic process
- 9. Fast mixing weakly correlated samples
- 10. Exchangability
- 11. Stationarity
- 12. Independent sampling
- 13. Memoryless property
- 14. Time-reversible process

Statistical learning

- 15. [Bayesian] risk minimization
- 16. Empirical Bayes method
- 17. Non-parametric learning
- 18. Instance-based methods (lazy)
- 19. Pattern recognition
- 20. Representer theorem (RKHS)
- 21. Predictive learning (extrapolation)
- 22. Probably Approximately Correct (PAC)
- 23. Statistical Inference

Modeling

- 24. Parametrization
- 25. Selection problem
- 26. [Stochastic] optimization
- 27. Structured prediction
- 28. Exiting statistics (entering data-science)
- 29. Likelihoodism (data-independent inference)
- 30. Consequentialism (generalization capability; data-irrelevant modeling)

کجا امر تصادفی در استنتاج استفاده میشود؟ کجا این روش مقبول است؟

ورود امر تصادفی به تعریفها و پیشفرضها

تصادف را امری فرض میگیریم که از حیطهی دانش ما خارج است؛ نمیتوانیم ربط آن را بفهمیم

ورود امر تصادفی به تعریفها و پیشفرضها

فرایندهای تصادفی در پیشفرضهای هوشمصنوعی

آماری	۸. فرآیند ارگودیک۹. نمونههای ترکیب سریع با همبستگی ضعیف۱۰. قابلیت تعویض
	۱۳. ویژگی بدون حافظه
یادگیری آماری	۱۶. بهینهسازی تجربی ریسک
	۲۲. احتمالاً تقريباً صحيح (PAC)
	۲۳. استنتاج آماری (تصادفی)
مدل سازی	۲۴. پارامترگذاری
	۲۵. مسئله انتخاب مدل
	۲۶. بهینهسازی تصادفی

پیشفرضهای آماری

۸. **فرآیند ارگودیک**: میانگینهای زمانی یک فرآیند به میانگین توزیع اصلی همگرا میشوند. مثلاً میانگین مشتق دسته ابرابر میانگین مشتق همهی پایگاه داده است [Analysis of Stochastic Gradient Descent in Continuous Time]

۹. نمونههای ترکیب سریع با همبستگی ضعیف: وابستگی بین نمونهها به سرعت کاهش می یابد و برای تقریباً استقلال را تضمین می کند

۱۰. قابلیت تعویض: توزیع مشترک دادهها تحت جایگشتها تغییر نمیکند، به این معنی که ترتیب نمونهها اهمیتی ندارد

بدونحافظهگی و برگشتپذیری زمانی

• خاصیت مارکوف : فرآیندی که بدون حافظه است، تکامل آینده به تاریخچه وابسته نیست و تنها به حالت فعلی (حال) بستگی دارد

$$p(x_t|x_{t-1},x_{t-2},...x_0) = p(x_t|x_{t-1})$$

• فرآیند مارکوف <u>برگشتیذیر</u> است اگر احتمالهای مشترک در جهت رفت و برگشت برای زمانهای همسایه یکسان باشند

$$p(x_t = i, x_{t-1} = j) = p(x_t = j, x_{t-1} = i)$$

فرایندهای تصادفی در پیشفرضهای هوشمصنوعی

آماری	۸. فرآیند ارگودیک۹. نمونههای ترکیب سریع با همبستگی ضعیف۱۰. قابلیت تعویض
	۱۳. ویژگی بدون حافظه
یادگیری آماری	۱۶. بهینهسازی تجربی ریسک
	۲۲. احتمالاً تقريباً صحيح (PAC)
	۲۳. استنتاج آماری (تصادفی)
مدل سازی	۲۴. پارامترگذاری
	۲۵. مسئله انتخاب مدل
	۲۶. بهینهسازی تصادفی

یادگیری آماری

۱۶. بهینهسازی تجربی ریسک ۲۲. احتمالاً تقریباً صحیح (PAC) ۲۳. استنتاج آماری (تصادفی)

بهینهسازی تجربی ریسک

• همگرایی در احتمال (پایداری)

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$$

- قانون ضعیف اعداد بزرگ : میانگین دسته به میانگین توزیع همگرا در احتمال میشود
- قضیه حد مرکزی: جمع متغیرهای تصادفی به توزیع نرمال همگرا می شود

احتمالاً تقريباً صحيح (Probably Approximately Correct)

- p نمونه از توزیع احتمالی $x \in \{0,1\}^n$ (concept) مجموعه برچسبهای حقیقی : $c \subseteq \{0,1\}^n$ $h \subseteq \{0,1\}^n$ $h \subseteq \{0,1\}^n$ ثمان مجموعه برچسبهای فرضیه (تخمین زده شده) $h \subseteq \{0,1\}^n$ Δ : تفاوت متقارن مجموعهها
 - تعریف خطا: احتمال اختلاف فرضیه با حقیقت واقعی

$$error(h) = P_x(h(x) \neq c(x)) = \sum_{x \in h\Delta c} p(x)$$

احتمالاً تقريباً صحيح (Probably Approximately Correct)

- $\delta < 1, \epsilon > 0$ •
- الگوریتم A با پیچیدگی زمانی چندجملهای $\frac{1}{\delta}\,,\,\frac{1}{\epsilon}\,,\,n$ اندازهی پایگاهداده حداقل چندجملهای در $c\subseteq\{0,1\}^n,\,n>1$ مجموعه تمام برچسبهای ممکن $c\subseteq\{0,1\}^n$
- - $h\subseteq\{0,1\}^n$, مجموعه تمام فرضیههای ممکن $H = \{0,1\}^n$

کلاس مفاهیم C توسط فضای فرضیه H قابل یادگیری احتمالاً تقریباً صحیح است h اگر که الگوریتم آموزشی h وجود داشته باشد که با احتمال h فرضیه h فرضیه h وجود داشته باشد که با احتمال h فرضیه h وجود داشته بازگرداند به طوری که h و h برای C است. PAC

نظریههای جایگزین یادگیری محاسباتی

- •یادگیری آنلاین: مدلها در طول زمان با دریافت دادههای جدید بهروزرسانی میشوند •یادگیری دقیق: مدلها برای یافتن پاسخهای دقیق و بدون خطا بهروزرسانی میشوند (PExact)
 - يادگيري الگوريتمي : روش غير احتمالاتي براي يادگيري دقيق آنلاين
 - •یادگیری توزیعی : متمرکز بر پردازش موازی دادههای آموزش
 - •یادگیری از پرسوجوها : یادگیرنده برای بهینه تر شدن سوال جدید طراحی میکند
 - •یادگیری تعاملی

یادگیری تعاملی

- •فضاى جستجو/اعمال مانند لايههاى شبكه عصبى
 - •معیار بهینگی مانند سرعت و دقت
- •الگوریتم جستجو مبتنی بر نویز مانند ژنتیک، یادگیری تقویتی، مدل مولد

استنتاج آماری تصادفی

- **مبتنی بر نمونهگیری** : تخمین تابع توزیع با استفاده از دستهای از نمونهها (مانند MC]MC])
 - •استنتاج مکرر: بهروزرسانی تخمین بر اساس بخشی از نمونهها (مانند expectation propagation)
- •استنتاج تغییرات (وَردشی) تصادفی : جایگزینی توزیع واقعی با توزیعهای محاسبه پذیر روی دستههای کوچک تصادفی
 - •مدلسازی مولد تصادفی

فرایندهای تصادفی در پیشفرضهای هوشمصنوعی

آماری	۸. فرآیند ارگودیک۹. نمونههای ترکیب سریع با همبستگی ضعیف۱۰. قابلیت تعویض
	۱۳. ویژگی بدون حافظه
یادگیری آماری	۱۶. بهینهسازی تجربی ریسک
	۲۲. احتمالاً تقريباً صحيح (PAC)
	۲۳. استنتاج آماری (تصادفی)
مدل سازی	۲۴. پارامترگذاری
	۲۵. مسئله انتخاب مدل
	۲۶. بهینهسازی تصادفی

مدلسازی

۲۴. پارامترگذاری

۲۵. انتخاب مدل

۲۶. بهینهسازی تصادفی

۲۸. خروج از احتمالات و ورود به علومداده

پارامترگذاری

- مقداردهی تصادفی (ثابت یا بهینهشونده)
- ٪۲ تفاوت دقت در تکرارهای مختلف بر CIFAR
- پیشافکنی تصادفی (RP) در شبکههای عصبی عمیق

RP scheme constr	Matrix construction time	Projection time		Embedding quality
		Dense input	Sparse input	
Gaussian	O(dk)	O(ndk)	$\mathcal{O}(\operatorname{nnz}(\mathbf{A})k)$	$O(\epsilon^{-2}n)$
Achlioptas'	O(dk)	O(ndk)	$\mathcal{O}(\operatorname{nnz}(\mathbf{A})k)$	_a
Li's	$\mathcal{O}(\sqrt{d}k)$	$O(n\sqrt{dk})$	$\mathcal{O}(\text{nnz}(\mathbf{A})k)^b$	_a
SRHT	$O(dk + d \log d)$	$O(nd \log k)$	$O(nd \log k)$	$\mathcal{O}(\epsilon^{-2}(n+d)\log n)$
Count Sketch	$\mathcal{O}(d)$	$\mathcal{O}(nd)$	$\mathcal{O}(\operatorname{nnz}(\mathbf{A}))$	$\mathcal{O}(\epsilon^{-2}n^2)$

[&]quot; For Achlioptas' and Li's projections, we did not find any estimates of k for which the OSE property holds.

Johnson-Lindenstrauss lemma •

(همگرایی در احتمال)

• شبکههای ویژگی تصادفی

مسئله انتخاب مدل

- جستجوی معماری شبکههای عصبی (NAS) مثلاً بر پایهی یادگیری تقویتی، ژنتیک، فرایند گاس+بیز
- یادگیری گروهی (مانند Random forests, Random Projections)
 - نمونهبرداری مدل (مانند Bayesian Neural Networks, Dropout) •

بهینهسازی تصادفی

- جستجو در الگوریتم ژنتیک و یادگیری تقویتی
 - دادهافزایی (مانند Mix-out)
 - تابع بهینه تعریفشده با برونفکنی تصادفی

(Random Linear Projections Loss و GAN Training with Multiple Random Projections مانند)

• هنجارسازی (مانند Group norm, batch norm) •

Engineering Application of Data Science Non-Engineering Artificial Intelligence Application of Data Science & Machine Learning Supervised Learning Unsupervised Transfer Reinforcement **Traditional** Learning Learning Learning Statistics Neural Networks Transfer Learning Deep Neural Networks End-to-End Networks Random Forest Kohonen Networks Active Learning Recurrent Neural Networks LSTM Neural Networks Fuzzy Logic Fuzzy Cluster Analysis Convolutional Neural Networks Fuzzy Pattern Recognition vork Markov Chain **Evolutionary Computing** Vector Machine Genetic Algorithm k-mean Clustering

Shahab D. Mohaghegh, Traditional Statistics vs. Artificial Intelligence and Machine Learning

خروج از احتمالات

- آمار: فرضیه •مدلسازی •جمعآوری داده

موشمصنوعی (علوم داده):

- •فرضيه

فرضیه به تابعی از دادههای تصادفی تبدیل میشود.

Stacking ensemble model of deep learning for plant disease recognition

بهینهسازی تجربی ریسک	SGD
استنتاج آماری (تصادفی)	
فرآیند ارگودیک	
قابلیت تعویض	
مقداردهی اولیه تصادفی	پارامترگذاری
یادگیری گروهی	
مسئله انتخاب مدل	جستجوی معماری شبکههای عصبی (NAS)
بهینهسازی تصادفی	دادهافزایی
همگرایی در احتمال	احتمالاً تقريباً صحيح (PAC)
داده قبل از مدل	خروج از احتمالات

استفاده از امر تصادفی در فرایندهای هوشمصنوعی

- شروع با تصادف و بازبینی مکرر
 - پارامترهای شبکه
- مدلهای بر پایه انتشار (diffusion)
 - شروع با تصادف
- شبکههای تصادفی برای استخراج ویژگیها
 - برونفکنی تصادفی تابع خطا و مدل
 - دستهبندی برای آموزش (SGD)
- استنتاج با تصادف؛ مدلهای مولد (نمونهبرداری)
- GAN, Normalizing Flows, Denoising Diffusion •
- Autoregressive generative models (e.g. LLMs) •

تصادف برای افزودن کارآمدی

p(x) الگوریتم جستجو x در پایگاه داده وجود دارد؟ x

 $< O(\operatorname{Log} Log N)$ موتور جستجو : کدام x در پایگاه داده وجود دارد؟ x

• مدل مولد شرطی : نمونه x در پایگاه داده چیست

سرعت، دقت، تعمیم

O(d)

p(x|y)

پارادیمهای کمیسازی

- حجت الاسلام سيد مرتضى حسيني الهاشمي
 - پارادیمهای ریاضی متحول میشوند برای مدلسازی بهتر
 - ولی نقص در مدلسازی اختیار فردی و اجتماعی

• مصاحبه در آپارات

استفاده از امر تصادفی و آگاهی

- خلاقیت بیشتر انسان
 - خلق گمانه جدید
- جهتدهی با علاقهی انسان
- آنچه نمیدانیم را توکل میکنیم
- آیا در رابطهی بین دو نفر میشه این را فرض گرفت؟

استفاده از امر تصادفی و عدالت

- مناسب برخورد منصفانه (مساوات)
- منطبق با فلسفهی علمی-تکتوروژیک فمینیستی (feminism techno-science)
 - تقلیل عدالت به انصاف (justice as fairness)
 - امر تصادفی با توزیع یکسان برای همهی گههها
 - نقض نقش ارادهی فردی-اجتماعی

استفاده از امر تصادفی و آزادی

- آزادی فردی، اجتماعی، تاریخی
- امر اجتماعی و تاریخی به مثابه امر تصادفی
 - آزادی در مقابل رهایی
 - وحدت بخشی
 - رهایی انسان از زنجیرهی سرمایه داری
 - افزایش انصاف در امکانات شناختی
 - افزایش شکافت شناختی
 - کمک به افزایش اختیار انسان
 - شير يا خط
- کجا و چگونه میتوان تصادف را با خواست کاربر جایگزین کرد؟

استفاده از امر تصادفی و آزادی

- آزادی فردی، اجتماعی، تاریخی
- امر اجتماعی و تاریخی به مثابه امر تصادفی
 - آزادی در مقابل رهایی
 - وحدت بخشی
 - رهایی انسان از زنجیرهی سرمایه داری
 - افزایش انصاف در امکانات شناختی
 - افزایش شکافت شناختی
 - کمک به افزایش اختیار انسان
 - شير يا خط
- کجا و چگونه میتوان تصادف را با خواست کاربر جایگزین کرد؟

هوشمصنوعی و استنتاج کاتورهای

- آیا ما این را با جبر و یا تصادف جایگزین کردیم؟
- اختیار در چه مقطعی از هوشمصنوعی میتواند دخیل باشد؟

ارائه در صفحهی sociai.ir