11 January 2018

Test: Vectors, calculus, binomial distributions, review

1a. Consider the points A(5, 2, 1), B(6, 5, 3), and C(7, 6, a+1), $a \in \mathbb{R}$.

Find

(i)
$$\overrightarrow{AB}$$
;

$$\overrightarrow{AC}$$
. [3 marks]

1b. Let q be the angle between \overrightarrow{AB} and \overrightarrow{AC} .

Find the value of a for which $\mathrm{q}=rac{\pi}{2}$.

[4 marks]

$$\mathbf{1c}$$
. i. Show that $\cos q = rac{2a+14}{\sqrt{14a^2+280}}$.

ii. Hence, find the value of a for which ${
m q}=1.2$.

[8 marks]

 ${f 2a.}$ Let $f(x)=ax^3+bx^2+c$, where a, b and c are real numbers. The graph of f passes through the point (2, 9) .

Show that 8a + 4b + c = 9

[2 marks]

2b. The graph of f has a local minimum at (1,4).

Find two other equations in a, b and c, giving your answers in a similar form to part (a).

[7 marks]

2c. Find the value of a, of b and of c.

[4 marks]

3. Let
$$f(x)=rac{1}{4}x^2+2$$
 . The line L is the tangent to the curve of f at (4, 6) .

Find the equation of L.

[4 marks]

4a. The random variable X has the following probability distribution, with $\mathrm{P}(X>1)=0.5$.

X	0	1	2	3
P(X = x)	p	q	r	0.2

Find the value of r.

[2 marks]

4b. Given that $\mathrm{E}(X)=1.4$, find the value of p and of q .

[6 marks]

BECA / Huson / 12.1 IB Math SL

11 January 2018

Name:

5a. A box holds 240 eggs. The probability that an egg is brown is 0.05.

Find the expected number of brown eggs in the box.

[2 marks]

5b. Find the probability that there are 15 brown eggs in the box.

[2 marks]

5c. Find the probability that there are at least 10 brown eggs in the box.

[3 marks]

6a. The first three terms of a geometric sequence are $u_1=0.64,\ u_2=1.6$ and $u_3=4$.

Find the value of r.

[2 marks]

6b. Find the value of S_6 .

[2 marks]

6c. Find the least value of $n_{\rm such\ that}\,S_n > 75\,000$

[3 marks]

7a. An environmental group records the numbers of coyotes and foxes in a wildlife reserve after t years, starting on 1 January 1995.

Let c be the number of coyotes in the reserve after t years. The following table shows the number of coyotes after t years.

number of years (t)	0	2	10	15	19
number of coyotes (c)	115	197	265	320	406

The relationship between the variables can be modelled by the regression equation c=at+b.

Find the value of a and of b.

[3 marks]

7b. Use the regression equation to estimate the number of coyotes in the reserve when t=7. *[3 marks]*

7c. Let f be the number of foxes in the reserve after t years. The number of foxes can be modelled by the equation $f=rac{2000}{1+99\mathrm{e}^{-kt}}$, where k is a constant.

Find the number of foxes in the reserve on 1 January 1995.

[3 marks]

7d. During which year were the number of coyotes the same as the number of foxes?

[4 marks]

8a. Given that $2^m=8$ and $2^n=16$, write down the value of m and of n.

[2 marks]

8b. Hence or otherwise solve $8^{2x+1}=16^{2x-3}$.

[4 marks]

9a. The following diagram shows the graph of a function f.

Find
$$f^{-1}(-1)$$
. [2 marks]

9b. Find
$$(f \circ f)(-1)$$
.

9c. On the same diagram, sketch the graph of y=f(-x). [2 marks]

10a. Let
$$G(x) = 95\mathrm{e}^{(-0.02x)} + 40$$
, for $20 \le x \le 200$.

On the following grid, sketch the graph of \emph{G} .

[3 marks]

10b. Robin and Pat are planning a wedding banquet. The cost per guest, G dollars, is modelled by the function $G(n)=95\mathrm{e}^{(-0.02n)}+40$, for $20\leq n\leq 200$, where n is the number of guests.

Calculate the ${\it total}$ cost for 45 guests.

[3 marks]