Embedded Software Engineering Dynamic Design

ECU1:

Modules_state_Machines:

1. Speed sensor State Machine:

3.Door sensor State Machine:

2.Switch State Machine:

4. OS State Machine:

5.BCM State Machine:

ECU1 State Machine:

ECU1 Sequance Diagram:

ECU2:

Modules state Machines:

1.Car Status Control State Machine:

2.Car_Status_Update_State_Machine:

3.BCM_State_Machine:

4.OS _State_Machine:

ECU2_State_Machine:

ECU2 Sequence Diagram:

Bus Load Calculations:

Regarding CAN bus load calculation, assuming standard identifier, CAN frame consist of below field.

- 1 bit start bit
- 11 bit identifier
- 1 bit RTR
- 6 bit control field
- 0 to 64 bit data field
- 15 bit CRC
- Bit stuffing is possible in the above, for every sequence of 5 consecutive bits of same level. Somewhere around 18 bits in the worst case.
- 3 bit delimiter, ack etc.
- 7 bit end of frame
- 3 bit intermission field after frame

So 1 CAN frame contains approximately 125 bit.

Given we are using 500 kBit/s bit rate:

bit time = 1 / bit rate = 1 / (500 * 1000) s = 2 * 10^{-6} s = 2 μ s

This means 1 bit will take 2 μ s to transfer on bus when using 500 kBit/s. So the approximate time to transfer 1 frame is $(2 \mu s/bit * 125 bit) = 250 \mu s$.

Door state every 10 ms = 100 frames every 1000 ms Light switch state every 20 ms = 50 frames every 1000 ms Speed every 5 ms = 200 frame every 1000 ms

This is in total 350 frames every 1000 ms

Total time on bus is $350 * 250 \mu s$

Total time is $1000 \text{ ms} = 1000 * 1000 \mu \text{s}$

Bus load is ((350*250) / (1000*1000)) * 100 % = 8.75 %

CPU load of ECU1:(assuming execution times)

```
Task1: Update Door state {period:10ms,Execution time:8us,Deadline:10ms}
Task2: Update Speed { period:5ms,Execution time:20us,Deadline:5ms }
Task3: Update Switch state { period:20ms,Execution time:8us,Deadline:20ms}
Task4: BCM { period:1ms,Execution time:12us,Deadline:1ms}
```

Hyper period=20ms

CPU load: ((8us*2)+(20us*4)+(8us)+(12us*20))/20ms = 1.72%

CPU load of ECU2:(assuming execution times and periodicity)

Task1: Car state update {period:2ms,Execution time:8us,Deadline:2ms}
Task2: Car state control { period:10ms,Execution time:20us,Deadline:10ms }
Task3: BCM { period:500us,Execution time:20us,Deadline: 500us }

Hyper period=10ms

CPU load: ((8us*5)+(20us*2)+(20us*20))/10ms = 4.8%