Kap. 12

12.1. Y Divergens testen:
$$\sum a_n konv. \Rightarrow a_n \Rightarrow 0$$
 $\sum_{n=0}^{\infty} a_n tan n$
 $\sum_{n=0}^{$

Integral testen:

Anta at
$$f: [I, \infty) \rightarrow \mathbb{R}$$
 som en position, kontinualis, og autagende.

Da har vi at $\sum_{n=1}^{\infty} f(n) \text{ konv.} \iff \int f(x) dx \text{ konv.}$

12.22

Nå konverger $\sum_{n=2}^{\infty} n(f_n)^p$ $\int f$ for huilke p .

Set $f(x) = x(f_nx)^p$ Denne en posiv. kont., og autagende.

Vi mi repre ut $\int \frac{dx}{x(f_nx)^p}$ set $u = (f_nx) \Rightarrow du = \frac{1}{x} dx$
 u^p $\int \frac{du}{u^p} = \int \frac{du}{du} \int \frac{u}{-p+1} \int \frac{u}{du} \int \frac{u}{-p+1} \int \frac{u}{-p+1} \int \frac{u}{du} \int \frac{u}{-p+1} \int$

Forhuldsteter:
$$Sa_{n}$$
 kow. Sa_{n} Sa_{n}

12.3

His an har attended for tegen $|a_n| \to 0$ So er $\leq a_n$ konv.

alternation $|a_n|$ artsgende og $|a_n| \to 0$ $|a_n| = \frac{(-1)}{n^2 + 1}$ attended $|a_n|$ artsgende og $|a_n| \to 0$ $|a_n| = \frac{(-1)^n}{n^2 + 1}$ attended $|a_n| = \frac{1}{7}$ $|a_n| = \frac{(-1)^n}{n+7n^2} = \lim_{n\to\infty} \frac{1+\frac{1}{n^2}}{n+7} = \frac{1}{7}$ $|a_n| = \frac{1+\frac{1}{n^2}}{n+7n^2} = \frac{1}{n+7n}$ $|a_n| = \frac{1+\frac{1}{n^2}}{n+7n^2} = \frac{1}{n+7n}$ A where $|a_n| = \frac{1+\frac{1}{n^2}}{n+7n^2} = \frac{1}{n+7n}$ A where $|a_n| = \frac{1+\frac{1}{n^2}}{n+7n^2} = \frac{1}{n+7n}$ A songergery.

12.4

| a
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$
 alternarente, $(a_n 1 \rightarrow 0)$, autagendo

 $\Rightarrow konu$.

 $\sum |a_n| = \sum_{n=0}^{\infty} \frac{1}{n+1}$ div , forde $\sum_{n=0}^{\infty} h$ div.

Sier da at $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ or belinget konvergett

 $b = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+y}$ auterendo, ... $\Rightarrow konu$.

 $\sum |a_n| = \sum_{n=0}^{\infty} \frac{1}{n^2+y}$ konv ($\sum_{n=0}^{\infty} \frac{1}{n^2+y}$ konv ($\sum_{n=0}^{\infty} \frac{1}{n^2+y}$ konv ($\sum_{n=0}^{\infty} \frac{1}{n^2+y}$ konverged)

Sier da at $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+y}$ ar absolut konverged