

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introducão

Metodologia

Resultados

Conclusõe

Referências

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para *Playlists*

Rodrigo Cavalcanti Loreto

30 de setembro de 2022

Sumário

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introduçã

Metodologia

Resultados

Conclusões

Doforôncia

- 1 Introdução
- 2 Metodologia
- 3 Resultados
- 4 Conclusões
- 5 Referências

Introdução

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Conclusõe

Referências

A revolução digital na indústria musical afetou muito mais do que só as mídias através das quais consumimos música.

Figura: Coleção em mídia física.

Introdução

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

. . .

Conclusão

As coletâneas tinham basicamente 2 limitadores: duração e catálogo da gravadora.

Figura: Coletâneas de diferentes temas em mídias diferentes.

Introdução

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Conclusões

Referência

As coletâneas ganharam um nome novo de "*Playlist*" e os "especialistas" agora são algoritmos.

Figura: Celular acessando a plataforma de streaming Spotify.

Justificativa

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Concluções

Referências

Hoje, *playlists* têm pouquíssimas limitações e são uma das principais formas de divulgação da indústria da música.

Figura: Playlists do Spotify sem limites de duração.

Justificativa

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclusoe

Referências

Figura: Alguns exemplos de playlists.

Métodos

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Canalucão

- Método paramétrico
 - Regressão Logística.
- Métodos não paramétricos
 - Árvores de Decisão.
 - Random Forest.

Regressão Logística

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Referências

No centro da regressão logística está a tarefa de estimar o log odds de um evento, ou seja, é uma função logística para modelar a probabilidade do sucesso. Matematicamente, a regressão logística estima uma função de regressão linear múltipla definida por:

$$logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$
 (1)

Sendo
$$\pi = P(Y = 1)$$
 e $Y \sim$ Bernoulli $(1, \pi)$

Regressão Logística

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introducão

Metodologia

c . ~

D . C

Figura: Exemplo de curva de regressão logística.

Fonte: (MIGUEL, 2020)

Árvore de Decisão

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

D 1. 1

Conclusõe

Defeuên eise

Uma árvore de decisão é um modelo preditivo de aprendizado supervisionado que utiliza um conjunto de regras binárias (0,1) para calcular um alvo. Sua aplicação serve para classificação (variável-alvo categórica) ou para regressão (variável-alvo contínua), funcionando para variáveis de entrada e saída categóricas e contínuas. Sujeito a *overfit* com facilidade.

Figura: Exemplo de árvore de decisão.

(STANKEVIX, 2019)

Random Forest

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultado

Conclusõe

Referência

Combinação de preditores de árvores que controla o *overfit* através da aleatoriedade da seleção de variáveis das várias árvores.

Pode exercer a função tanto de classificação quanto de regressão. Este método neste trabalho foi utilizado apenas para classificação.

Data Splitting e Validação Cruzada

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Conclusõe

Doforôncia

- Data Splitting
- K-folds
- Leave One Out

Seleção de Playlists

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Conclusõe

D - C - - 2 - - 1 -

As *playlists* escolhidas para este estudo são editoriais sem personalização. Elas são criadas manualmente por editores do Spotify.

- Alone Again
- Beast Mode
- Life Sucks
- Piano Relaxante
- Power Hour
- Spooning

Escolha dos pares

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

.

Metodologia

Resultado

Conclusõe

- 1 O primeiro par de *playlists* escolhido foi o de maior quantidade de músicas e que aparentou ser o mais distinto. As *playlists* escolhidas para esta primeira análise foram: Piano Relaxante e Beast Mode.
- 2 Em seguida, o par que indicou maior semelhança: Alone Again e Life Sucks.
- **3** E, como terceiro par, *playlists* de propostas nem muito diferentes nem muito similares. As *playlists* escolhidas foram: Power Hour e Spooning.
- 4 Por último, o desafio maior. Estudar as 6 *playlists* anteriores em conjunto.

Variáveis

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

resurtado

Conclusoe

- O banco utilizado no estudo tem como variáveis as variáveis criadas e utilizadas pela plataforma Spotify;
- O banco de dados foi obtido através da ferramenta de API disponibilizada pelo próprio Spotify;
- A análise e tratamento dos dados foi feita com o software R;

Variáveis utilizadas

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Conclusõe

Referências

Tabela: Variáveis agrupadas

Grupo	Variável	Tipo	Escala
	Danceability	Float	Entre 0 e 1.
"Mood"	Energy	Float	Entre 0 e 1.
IVIOOU	Tempo	Integer	Valores positivos.
	Valence	Float	Entre 0 e 1.
	Instrumentalness	Float	Entre 0 e 1.
"Properties"	Loudness	Float	Entre -60 e 0.
	Speechiness	Float	Entre 0 e 1.
"Context"	Acousticness	Float	Entre 0 e 1.
Context	Liveness	Float	Entre 0 e 1.

Variáveis

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

. . .

Conclução

Referências

Tabela: Variáveis sem grupo

Variável	Tipo	Escala
Key	Integer	Entre 0 e 11.
Mode	Integer	Entre 0 e 1.
Duration_ms	Integer	Valores positivos.
Popularity	Float	Entre 0 e 100.
Playlist	Factor	Categórica.

A variável *Playlist* foi criada para identificar a qual *playlist* a faixa pertence.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

ntroducão

Metodologi

Resultados

Conclusõe

Figura: Primeiro grupo de variáveis Beast Mode vs Piano Relaxante.

\bigvee

Análise Descritiva

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

C . . . I . . ~ .

Figura: Segundo grupo de variáveis Beast Mode vs Piano Relaxante.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

c . ~

Referências

Figura: Duração Beast Mode vs Piano Relaxante.

Figura: Tempo (BPM) Beast Mode vs Piano Relaxante.

\bigvee

Análise Descritiva

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

atroducão

Metodologis

Resultados

c . ~

Doforônciac

Figura: Loudness Beast Mode vs Piano Relaxante.

Acurácia de Previsões

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Resultados

Conclusõe

Tabela: Melhores resultados validação cruzada por método.

CV	Método	Acurácia	Kappa
K-folds	Regressão logística	0.9781	0.9522
K-folds	Random forest	0.9763	0.9488
LOO	Regressão logística	0.9799	0.9566
LOO	Random forest	0.9781	0.9527

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

atroducão

Metodologia

Resultados

C

Conclusion

Figura: Primeiro grupo de variáveis Alone Again e Life Sucks.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

C l . . . ~ .

Figura: Segundo grupo de variáveis Alone Again e Life Sucks.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Concluções

Referências

Figura: Duração Alone Again e Life Sucks.

Figura: Tempo (BPM) Alone Again e Life Sucks.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Metodologia

Resultados

c . ~

Doforônciac

Figura: Loudness Alone Again e Life Sucks.

Acurácia de Previsões

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Resultados

Conclusõe

Tabela: Melhores resultados validação cruzada por método.

Método	Acurácia	Kappa
Regressão logística	0.6000	0.1282
Random forest	0.4800	-0.0860
Regressão logística	0.5886	0.1048
Random forest	0.4371	-0.1618
	Regressão logística Random forest Regressão logística	Random forest 0.4800 Regressão logística 0.5886

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

ntroducão

Metodologia

Resultados

Conclução

Figura: Primeiro grupo de variáveis Power Hour vs Spooning.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclução

Figura: Segundo grupo de variáveis Power Hour vs Spooning.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

c . ~

Referências

Figura: Duração Power Hour vs Spooning.

Figura: Tempo (BPM) Power Hour vs Spooning.

Algoritmos De Classificação Aplicados Em Recomendacões De Faixas Para **Playlists**

> Rodrigo Cavalcanti Loreto

Resultados

Figura: Loudness Power Hour vs Spooning.

Acurácia de Previsões

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclução

Tabela: Melhores resultados validação cruzada por método.

CV	Método	Acurácia	Карра
K-folds	Regressão logística	0.9320	0.8595
K-folds	Random forest	0.9640	0.9240
LOO	Regressão logística	0.9400	0.8756
LOO	Random forest	0.9640	0.9249

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Resultados

Conclução

Figura: Primeiro grupo de variáveis todas as playlists.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Resultados

Canalucão

Figura: Segundo grupo de variáveis todas as playlists.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclusões

Figura: Duração de todas as playlists.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introducão

Metodologia

Resultados

Conclusõe

Figura: Tempo (BPM) de todas as playlists.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Canalucão

Figura: Loudness de todas as playlists.

Previsões Regressão Logística

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclução

Referências

Tabela: Previsão para Alone Again vs Outras.

	Alone Again	Beast Mode	Life Sucks	Piano Relaxante	Power Hour	Spooning
Alone Again	9	0	9	0	0	1
Outras	36	59	51	99	28	37

Tabela: Previsão para Beast Mode vs Outras.

	Beast Mode	Alone Again	Life Sucks	Piano Relaxante	Power Hour	Spooning
Beast Mode	43	0	1	0	15	1
Outras	16	45	59	99	13	37

Tabela: Previsão para Life Sucks vs Outras.

	Life Sucks	Alone Again	Beast Mode	Piano Relaxante	Power Hour	Spooning
Life Sucks	11	15	0	0	0	3
Outras	49	30	59	99	28	35

Previsões Regressão Logística

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologi

Resultados

Conclusões

Referências

Tabela: Previsão para Piano Relaxante vs Outras.

	Piano Relaxante	Alone Again	Beast Mode	Life Sucks	Power Hour	Spooning
Piano Relaxante	99	1	0	1	0	0
Outras	0	44	59	59	28	38

Tabela: Previsão do modelo 2 para Power Hour vs Outras.

	Power Hour	Alone Again	Beast Mode	Life Sucks	Piano Relaxante	Spooning
Power Hour	15	0	9	0	0	0
Outras	13	45	50	60	99	38

Tabela: Previsão do modelo 1 para Spooning vs Outras.

	Spooning	Alone Again	Beast Mode	Life Sucks	Piano Relaxante	Power Hour
Outras	38	45	59	60	99	28

Previsões Random Forest

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultados

Conclusões

Tabela: Previsão random forest

	Alone Again	Beast Mode	Life Sucks	Piano Relaxante	Power Hour	Spooning
Alone Again	9	0	23	0	0	9
Beast Mode	4	43	7	0	18	3
Life Sucks	27	4	22	0	0	13
Piano Relaxante	0	0	0	99	0	0
Power Hour	0	9	0	0	10	0
Spooning	5	3	8	0	0	13

Conclusões

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Plavlists

Rodrigo Cavalcanti Loreto

Introduçã

Metodologia

Resultado

Conclusões

- De maneira geral, os métodos de regressão logística e randomforest obtiveram resultados muito interessantes. Performaram muito bem nos pares 1 e 3, mas muita dificuldade com o par 2.
- Possivel necessidade de outras variáveis.
- É possível que 2 playlists tenham propostas semelhantes e suas músicas sejam intercambiáveis, tornando a distinção entre elas ao acaso ou incorreta.

\bigvee

Referências

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

Rodrigo Cavalcanti Loreto

Introdução

Metodologia

Resultado

Conclusõe

Referências

IZBICKI, R.; SANTOS, T. M. dos. Aprendizado de máquina: uma abordagem estatística. [S.l.: s.n.], 2020. ISBN 978-65-00-02410-4.

MCINTIRE, G. A Machine Learning Deep Dive into My Spotify Data. Disponível em: https://opendatascience.com/a-machine-learning-deep-dive-into-my-spotify-data/. Acessado em 16 set. 2021.

MIGUEL, T. Arvore de Decisão em R. 2020. Disponível em: https://aprenderdatascience.com/regressao-logistica/. Acessado em 13 set. 2021.

SPOTIFY. Spotify for developers. Disponível em: https://developer.spotify.com/documentation/web-api/. Acessado em 28 ago. 2021.

STANKEVIX, G. *Arvore de Decisão em R.* 2019. Disponível em: https://medium.com/@gabriel.stankevix/arvore-de-decis%C3%A3o-em-r-85a449b296b2. Acessado em 16 set. 2021.

TEAM, R. C. et al. R: A language and environment for statistical computing. Vienna, Austria, 2013.

Algoritmos De Classificação Aplicados Em Recomendações De Faixas Para Playlists

> Rodrigo Cavalcanti Loreto

Introdução

Metodologia

D 1. 1

Conclusões

Referências

Obrigado!