

Analítica Predictiva

CARLOS A. MADRIGAL

Profesor Ocasional

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN Y DE LA DECISIÓN

Maestría en ingeniería - ingeniería de sistemas

Maestría en ingeniería - analítica

Especialización en sistemas

Nota: Este material se ha adaptado con base a diferentes fuentes de información académica

CONTENIDO

Técnicas de Validación, Regularización y Transfer Learning

- Técnicas de validación
 - generalización, train data, test data, validation data
 - matriz de confusión, tasa de error, sensibilidad, especificidad, accuracy, precision
 - Validación cruzada, leave one out.
- Regularización
 - Bias, variance
 - L1, L2, Dropout
- Transfer Learning
- Implementacion

TÉCNICAS DE VALIDACIÓN Y REGULARIZACIÓN

TÉCNICAS DE VALIDACIÓN

La validación permite conocer cómo se comporta un clasificador ante el ingreso de ejemplos nuevos, con el fin de verificar su comportamiento bajo diferentes circunstancias.

Debido a que es imposible entrenar el clasificador con todas las posibles situaciones, se corre el riesgo de un aprendizaje erróneo donde no sea capaz de generalizar.

Causas:

- Conjunto de entrenamiento escaso o no representativo.
- Arquitectura de la red inadecuada

CONJUNTOS DE DATOS

Train Data: Conjunto de ejemplos usados para el entrenamiento.

Validation Data: Conjunto de ejemplos usados para seleccionar la mejor arquitectura entre varias o para escoger los mejores hyperparámetros de una arquitectura.

Test Data: Conjunto de ejemplos para medir el desempeño.

CRITERIOS DE EVALUACIÓN DE CLASIFICADORES

• *Matriz de confusión:* muestra la distribución de los errores cometidos por un clasificador a lo largo de las distintas categorías del problema.

class

Cat Dog Rabbit

11

Cat 5

Rabbit 0

Dog 2 3 1

		Clase verdadera		
		0 (+)	1 (-)	
Clase predicha	0 (+)	a	b	p0
	1 (-)	С	d	p1
		π0	π1	N

- Tasa de error:(b+c) / N
- Sensibilidad: a/(a+c) proporción de verdaderos positivos, también conocido como recall o rata de verdaderos positivos TP.
- Especificidad: d/(b+d) proporción de verdaderos negativos o rata de verdaderos negativos TN

Criterios de Evaluación de Clasificadores

• Accuracy (AC): Es la proporción de predicciones que fueron correctas con respecto al total.

$$AC = (a + d)/(a+b+c+d)$$

• False positive rate (FP): Es la proporción de casos negativos que fueron incorrectamente clasificados como positivos.

• False negative rate (FN): Es la proporción de casos positivos que fueron incorrectamente clasificados como negativos.

• *Precision (P):* Es la proporción de los casos positivos predichos que fueron correctos.

HOLDOUT

Se divide el conjunto de casos en dos grupos: conjunto de entrenamiento (2/3) y conjunto de test (1/3). El conjunto de entrenamiento se usa para generar el clasificador y el de test para evaluarlo.

VALIDACIÓN CRUZADA

Validación cruzada (cross-validation): Se divide el conjunto de casos en K subconjuntos del mismo tamaño. Se utilizan K-1 subconjuntos como datos de entrenamiento y 1 subconjunto como datos de test. Se repite para los K subconjuntos y se calcula la media de la evaluación. Suele utilizarse K=10.

LEAVE ONE OUT

Dejar uno fuera (leave one out): validación cruzada con K igual al número de casos.

REGULARIZACIÓN

Son un conjunto de técnicas que ayudan a que los modelos de aprendizaje puedan converger con capacidades de generalización.

REGULARIZACIÓN

Typical learning curve for high variance:

Typical learning curve for high bias:

Bias: Es la diferencia entre la medida del desempeño de la predicción con respecto al valor correcto. Un alto bias puede ser corregido a través de una arquitectura más grande o entrenando por más iteraciones.

Variance: Es la variabilidad entre el desempeño con los datos de entrenamiento y los datos de test. Un alto variance puede ser corregido con un conjunto de datos más extenso y/o aplicando técnicas de regularización.

REGULARIZACIÓN

Median Squared Error

Cross Entropy Error

$$\mathcal{L}(S,Y) = e(n) = \frac{1}{2}(S-Y)^2$$
 $\mathcal{L}(S,Y) = e(n) = -(S\log Y + (1-S)\log(1-Y))$

Regularización L2

$$\mathcal{L}'(\mathbf{S}, \mathbf{Y}) = \mathcal{L} + \beta \frac{1}{2} ||\mathbf{w}||_2^2$$

Regularización L1

$$\mathcal{L}'(S,Y) = \mathcal{L} + \beta \, \frac{1}{2} |w|$$

DROPOUT

Es una técnica para generar la regularización de una red. Se basa en la desactivación de algunas neuronas de la red ya que pueden estar saturadas y no son útiles en el proceso de aprendizaje. Dropout solo se aplica en el proceso de entrenamiento.

TÉCNICAS DE VALIDACIÓN Y REGULARIZACIÓN

TRANSFER LEARNING

El transfer learning es una herramienta sumamente útil para desarrollar aplicaciones de Deep Learning aun cuando no se tienen suficientes datos.

TRANSFER LEARNING

Para hacer transfer learning se requiere lo siguiente:

- Una arquitectura entrenada con el tipo de dato que vamos a usar
- Definir cuáles capas se van a usar y cuales a entrenar
- Inicializar los pesos de las capas elegidas con la arquitectura entrenada

Se puede hacer transfer learning de dos maneras.

- Se pueden congelar los pesos pre-entrenados y entrenar el resto,
- Se pueden actualizar también los pesos ya entrenados

TRANSFER LEARNING

Para la arquitectura entrenada podemos acudir a la librería TensorNets en la que se encuentran varias redes, en su mayoría convolucionales.

- Se carga la red mediante el comando modelo=nets.arquitectura
- Se cargan los pesos preentrenados con model.pretrained()
- Se procesan datos en la arquitectura con el comando model.preprocess(batch_x)
- Y se extraen respuestas de las capas intermedias con model.get_middles()

Preguntas

