Major Project Synopsis

on

AIR QUALITY INDEX PREDICTOR

In partial fulfilment of requirements for the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

Submitted by:

MANAY RAWAL [20100BTCSDSI07277]

RAHUL CHOUHAN [20100BTCSDSI07287]

DIVYANSH LASHKARI [20100BTCSDSI07269]

Under the guidance of

PROF. OM KANT SHARMA

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SIIRI VAISHNAV INSTITUTE OF INFORMATION TECHNOLOGY

SIIRI VAISHNAV VIDYAPEETH VISHWAVIDYALAYA, INDORE

JUL.-DEC-2022

SHRI VAISHNAV INSTITUTE OF INFORMATION TECHNOLOGY

INTRODUCTION

Let's see what you breath.

- Clean air is one of the basic requirement for good human health and well-being of the humanity. The problem of air pollution has become a new challenge for the world.
- Air pollution continues to be a well-known environmental problem worldwide
- The quality of the air is the result of complex interaction of many factors that involve the chemistry and the meteorology of the atmosphere, as well as the emissions of variety of pollutants both from natural and man-made sources
- This project uses supervised learning to predict Air Quality Index of India.
- The air quality is measured by the Air Quality Index. Let's know what is the Air Quality Index (AQI) in India?

National Air Quality Index

91% of the World's Population Are Breathing in Polluted Air Every Day

- India uses the National Air Quality Index (AQI), Canada uses the Air Quality Health Index, Singapore uses the Pollutant Standards Index and Malaysia uses the Air Pollution Index.
- The National Air Quality Index (AQI) in India was launched on 17 September 2014 in New Delhi under the Swachh Bharat Abhiyan by the Environment Minister Shri PrakashJavadekar.
- The air quality index is composed of 8 pollutants ((PM10, PM2.5, NO2, SO2, CO, O3, NH3, and Pb).

Air Quality Index

The Quality of Air we breath

- AQI is the air quality index; it gives you the index value that what is the current pollution status in the city, how polluted the air currently is.
- The Air Quality Index (AQI) is a widely used concept to communicate with the public on air quality.
- The Air Quality Index is acquired by measuring emissions of eight major pollutants present in the air: Particulate matter (PM2.5 and PM10), Ozone (O3), Carbon Monoxide (C0), Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Lead (Pb) and Ammonia (NH3) emissions.

6 Categories air of quality index

- The Air Quality Index measures the quality of air. It shows the amount and types of gases dissolved in the air. There are 6 categories of the air have been created in this air quality index.
- These categories are based on air quality. These categories are: good, satisfactory, moderate, poor, very poor and severe.

CENTRAL POLLUTION CONTROL'S BOARD

AIR QUALITY STANDARDS

	A STATE OF THE PARTY OF THE PAR
AIR QUALITY INDEX	CATEGORY
0-50	Good
51-100	Satisfactory
101-200	Moderate
201-300	Poor
301-400	Very Poor
401-500	Severe

Supervised Machine Learning

Preface

- "Supervised learning means that a model learns from previous examples and is trained on labeled data. In other words, the dataset has tags that tell the model which patterns are related to fraud and which represent normal behavior".
- In supervised learning, models are trained using labelled dataset, where the model learns about each type of data.
 Once the training process is completed, the model is tested on the basis of test data (a subset of the training set), and then it predicts the output.

Steps Involved in Supervised Learning:

- 1. Import the libraries
- 2. Read Dataset
- 3. Data Analysis
- 4. Label encoding of the categorical columns if have
- 5. Defining x and y
- 6. Splitting x and y into train and test data
- 7. Import the model
- 8. Train the model with x_train and y_train
- Predict with x test and got predicted y
- 10. Evaluation with accuracy score and confusion matrix

Importing the libraries:

We can import libraries by following syntax:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

2. Reading the dataset:

Reading the dataset by read_csv('File_name') function

df=pd.read_csv(io.BytesIO(uploaded['city_day.csv']))

C+ city_day.csv

city_day.csv(text/csv) - 2574056 bytes, last modified: 7/28/2020 - 100% done
 Saving city_day.csv to city_day.csv

3. Data Analysis:

Extracting the first ten values from the Data Frame

pr	print(df.head(10))												
	c	ity	Date	PM2.5	PM10		NO	NO2	NOx	NH3	со		
0	Ahmeda	bad :	2015-01-01	. NaN	NaN	0.	92	18.22	17.15	NaN	0.92		
1	Ahmeda	bad :	2015-01-02	. NaN	NaN	0.	97	15.69	16.46	NaN	0.97		
2	Ahmeda	bad :	2015-01-0 3	NaN	NaN	17.	40	19.30	29.70	NaN	17.40		
3	Ahmeda	bad :	2015-01-04	NaN	NaN	1.	70	18.48	17.97	NaN	1.70		
4	Ahmeda	bad :	2015-01-05	NaN	NaN	22.	10	21.42	37.76	NaN	22.10		
5	Ahmeda	bad :	2015-01-06	NaN	NaN	45.	41	38.48	81.50	NaN	45.41		
6	Ahmeda	bad :	2015-01-07	' NaN	NaN	112.	16	40.62	130.77	NaN	112.16		
7	Ahmeda	bad :	2015-01-08	NaN	NaN	80.	87	36.74	96.75	NaN	80.87		
8	Ahmeda	bad :	2015-01-09) NaN	NaN	29.	16	31.00	48.00	NaN	29.16		
9	Ahmeda	bad :	2015-01-10) NaN	NaN	N	aN	7.04	0.00	NaN	NaN		
	S02		03 Benzer			ylene		AQI_E					
0	27.64	133.			.02	0.00	NaN		NaN				
1	24.55	34.0			.50	3.77	NaN		NaN				
2	29.07	30.			.40	2.25	NaN		NaN				
3	18.59	36.0			.14	1.00	NaN		NaN				
4	39.33	39.			.89	2.78	NaN		NaN				
5	45.76	46.			.83	1.93	NaN		NaN				
6	32.28	33.4			.00	0.00	NaN		NaN				
7	38.54	31.8			.00	0.00	NaN		NaN				
8	58.68	25.			.00	0.00	NaN		NaN				
9	8.29	4.	55 0.0	<u>ט</u>	.00	0.00	NaN		NaN				

Extracting the last ten values from the Data Frame

print(df.tail(10))											
		Cit	v	Date I	PM2.5	PM10	NO	NO2	. NOx	NH3	
29521	Visak	hapatna	-		33.17	108.22	5.58	42.45	27.06	13.70	
29522		hapatna		-06-23	25.40	83.38	2.76	34.09	19.92	13.13	
29523	Visak	hapatna	m 2020	-06-24	34.36	90.90	1.22	23.38	3 13.12	14.45	
29524	Visak	hapatna	m 2020	-06-25 :	13.45	58.54	2.30	21.60	13.09	12.27	
29525	Visak	hapatna	m 2020	-06-26	7.63	32.27	5.91	23.27	7 17.19	11.15	
29526	Visak	hapatna	m 2020	-06-27	15.02	50.94	7.68	25.06	19.54	12.47	
29527	Visak	hapatna	m 2020	-06-28	24.38	74.09	3.42	26.06	16.53	11.99	
29528	Visak	hapatna	m 2020	-06-29	22.91	65.73	3.45	29.53	18. 33	10.71	
29529	Visak	hapatna	m 2020	-06-30	16.64	49.97	4.05	29.26	18.80	10.03	
29530	Visak	hapatna	m 2020	-07-01	15.00	66.00	0.40	26.85	14.05	5.20	
				_	- 1						
20524	CO	S02	03	Benzene	Tolue		lene	AQI	AQI_Bu		
29521	0.73	13.65	34.85	3.99	10.		2.32	95.0	Satisfac		
29522	0.54	10.40	43.27	2.88	12.		1.33	100.0	Satisfac		
29523	0.56	10.92	35.12	2.99			1.60	86.0	Satisfac		
29524	0.41	8.19	29.38	1.28			3.92	77.0	Satisfac		
29525	0.46	6.87	19.90	1.45			1.45	47.0		Good	
29526	0.47	8.55	23.30	2.24	12.		3.7 3	41.0		Good	
29527	0.52	12.72	30.14	0.74			3.38	70.0	Satisfac		
29528	0.48	8.42	30.96	0.01			0.00	68.0	Satisfac		
29529	0.52	9.84	28.30	0.00			0.00	54.0	Satisfac		
29530	0.59	2.10	17.05	NaN	N	laN	NaN	50.0		Good	

Describing the data frame statistically

print(df.describe()	ı			
		•			
	PM2.5	PM10	NO	NO2	NOx
count	24933.000000	18391.000000	25949.000000	25946.000000	25346.000000
mean	67.450578	118.127103	17.574730	28.560659	32.309123
std	64.661449	90.605110	22.785846	24.474746	31.646011
min	0.040000	0.010000	0.020000	0.010000	0.000000
25%	28.820000	56.255000	5.630000	11.750000	12.820000
50%	48.570000	95.680000	9.890000	21.690000	23.520000
75%	80.590000	149.745000	19.950000	37.620000	40.127500
max	949.990000	1000.000000	390.680000	362.210000	467.630000
	NH3	CO	S02	03	Benzene
count	19203.000000	27472.000000	25677.000000	25509.000000	23908.000000
mean	23.483476	2.248598	14.531977	34.491430	3.280840
std	25.684275	6.962884	18.133775	21.694928	15.811136
min	0.010000	0.000000	0.010000	0.010000	0.000000
25%	8.580000	0.510000	5.670000	18.860000	0.120000
50%	15.850000	0.890000	9.160000	30.840000	1.070000
75%	30.020000	1.450000	15.220000	45.570000	3.080000
max	352.890000	175.810000	193.860000	257.730000	455.030000
	_				
	Toluene	Xylene	AQI		
count	21490.000000	11422.000000	24850.000000		
mean	8.700972	3.070128	166.463581		
std	19.969164	6.323247	140.696585		
min	0.000000	0.000000	13.000000		
25%	0.600000	0.140000	81.000000		
50%	2.970000	0.980000	118.000000		
75%	9.150000	3.350000	208.000000		
max	454.850000	170.370000	2049.000000		

Summing the null values column wise

•	<pre>print(df.isnull().sum()</pre>

_→	City	0
	Date	0
	PM2.5	4598
	PM10	11140
	NO	3582
	NO2	3585
	NOx	4185
	NH3	10328
	CO	2059
	S02	3854
	03	4022
	Benzene	5623
	Toluene	8041
	Xylene	18109
	AQI	4681
	AQI Bucket	4681
	dtvpe: int64	

Calculating the relationship between each column in the data set.

1	0	print(df	f.corr()							
		ļ	.,,							
	С→		PM2.5	PM10	NO	NO2	NOx	NH3	со	\
	_	PM2.5	1.000000	0.846498	0.433491	0.350709	0.436792	0.275086	0.089912	
		PM10	0.846498	1.000000	0.502349	0.464380	0.527768	0.376816	0.112588	
		NO	0.433491	0.502349	1.000000	0.478070	0.794890	0.185621	0.212607	
		NO2	0.350709	0.464380	0.478070	1.000000	0.627627	0.234938	0.356521	
		NOx	0.436792	0.527768	0.794890	0.627627	1.000000	0.166224	0.226992	
		NH3	0.275086	0.376816	0.185621	0.234938	0.166224	1.000000	0.104891	
		со	0.089912	0.112588	0.212607	0.356521	0.226992	0.104891	1.000000	
		S02	0.132325	0.256974	0.170322	0.392233	0.238397	-0.038998	0.489697	
		03	0.161238	0.244919	0.014580	0.293349	0.093170	0.094972	0.041736	
		Benzene	0.023911	0.022265	0.035771	0.025260	0.039121	-0.015650	0.061861	
		Toluene	0.117080	0.169335	0.150857	0.273926	0.189386	0.013227	0.277904	
		Xylene	0.114579	0.081700	0.094237	0.171701	0.087398	-0.019813	0.154889	
		AQI	0.659181	0.803313	0.452191	0.537071	0.486450	0.252019	0.683346	
			S02	03	Benzene	Toluene	Xylene	AQI		
		PM2.5	0.132325	0.161238	0.023911	0.117080	0.114579	0.659181		
		PM10	0.256974	0.244919	0.022265	0.169335	0.081700	0.803313		
		NO	0.170322	0.014580	0.035771	0.150857	0.094237	0.452191		
		NO2	0.392233	0.293349	0.025260	0.273926	0.171701	0.537071		
		NOx	0.238397	0.093170	0.039121	0.189386	0.087398	0.486450		
		NH3	-0.038998	0.094972	-0.015650	0.013227	-0.019813	0.252019		
		co	0.489697	0.041736	0.061861	0.277904	0.154889	0.683346		
		S02	1.000000	0.162142	0.036110	0.296139	0.251195	0.490586		
		03	0.162142	1.000000	0.020255	0.130209	0.111410	0.198991		
		Benzene	0.036110	0.020255	1.000000	0.739286	0.415427	0.044407		
		Toluene	0.296139	0.130209	0.739286	1.000000	0.421432	0.279992		
		Xylene	0.251195	0.111410	0.415427	0.421432	1.000000	0.165532		
		AQI	0.490586	0.198991	0.044407	0.279992	0.165532	1.000000		

Labelling columns of the data frame

```
0
```

```
print(df.columns)
```

Replacing null values with "Good".

```
df['AQI_Bucket'].fillna('Good')
₽
                     Good
                     Good
                     Good
                     Good
                     Good
    29526
                     Good
             Satisfactory
    29527
             Satisfactory
    29528
    29529
             Satisfactory
    29530
                     Good
    Name: AQI_Bucket, Length: 29531, dtype: object
```

Printing the dataframe

	_											
0	print(df)										
	_											
₽			City		Date	PM2.5		NO	NO2	NOx	NH3	\
	0		medabad	2015-0		NaN			18.22	17.15	NaN	
	1		medabad	2015-0		NaN		0.97	15.69	16.46	NaN	
	2		medabad	2015-0		NaN		17.40	19.30	29.70	NaN	
	3		medabad	2015-0		NaN		1.70	18.48	17.97	NaN	
	4	Ah	medabad	2015-0	1-05	NaN	NaN	22.10	21.42	37.76	NaN	
	29526		apatnam	2020-0		15.02			25.06	19.54	12.47	
	29527		apatnam	2020-0		24.38		3.42	26.06	16.53	11.99	
	29528		apatnam	2020-0		22.91			29.53	18.33	10.71	
	29529		apatnam	2020-0		16.64	49.97		29.26	18.80	10.03	
	29530	Visakh	apatnam	2020-0	7-01	15.00	66.00	0.40	26.85	14.05	5.20	
		co	S02	03	Benz		oluene	Xylene	AQI	AQI_E	Bucket	
	0	0.92	27.64	133.36		.00	0.02	0.00	NaN		NaN	
	1	0.97	24.55	34.06		.68	5.50	3.77	NaN		NaN	
	2	17.40	29.07	30.70		.80	16.40	2.25	NaN		NaN	
	3	1.70	18.59	36.08	4	.43	10.14	1.00	NaN		NaN	
	4	22.10	39.33	39.31	7	.01	18.89	2.78	NaN		NaN	
	29526	0.47	8.55	23.30		.24	12.07	0.73	41.0		Good	
	29527	0.52	12.72	30.14		.74	2.21	0.38	70.0	Satisfa		
	29528	0.48	8.42	30.96		.01	0.01	0.00	68.0	Satisfa		
	29529	0.52	9.84	28.30	0	.00	0.00	0.00	54.0	Satisfa	ictory	
	29530	0.59	2.10	17.05		NaN	NaN	NaN	50.0		Good	
	[29531	rows x	16 colı	umns]								

4.. Label encoding of the categorical column if have:

Label Encoding is a popular encoding technique for handling categorical variables. In this technique, each label
is assigned a unique integer based on alphabetical ordering. We do his by following syntax:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['AQI_Bucket']=le.fit_transform(df['AQI_Bucket'])
print(df['AQI_Bucket'].value_counts())

1 8829
3 8224
6 4681
2 2781
5 2337
0 1341
4 1338
Name: AQI_Bucket, dtype: int64
```

5.Defining x and y

```
x=df.iloc[:,2:14]
y=df.iloc[:,0:16:15]
print(x)
print(y)
```

df.iloc helps us to select a specific row or column from the data set.

```
PM2.5
                PM10
                         NO
                                NO2
                                       NOx
                                               NH3
                                                       co
                                                              502
                                                                       03
         NaN
                       0.92
                             18.22
                                     17.15
                                               NaN
                                                     0.92
                                                           27.64
                                                                   133.36
                                                                    34.06
                                     29.70
                                                           29.07
                                                                    30.70
                                                                    36.08
         NaN
                      22.10
                             21.42
                                    37.76
                                                           39.33
                                                                    39.31
       15.02
                                     19.54
                                                                    30.14
                                     18.33
                                                                    30.96
                                                                    28.30
       15.00
               66.00
                       0.40
                             26.85
                                     14.05
                                                     0.59
                                                            2.10
                                                                    17.05
       Benzene
                Toluene Xvlene
          3.68
                            3.77
          6.80
                   16.40
                            2.25
          4.43
                   10.14
                            1.00
          7.01
                   18.89
                            2.78
29526
          2.24
                   12.07
                            0.73
29527
          0.74
                    2.21
                            0.38
29528
                            0.00
          0.01
                    0.01
29529
          0.00
                    0.00
                            0.00
29530
           NaN
                     NaN
                             NaN
[29531 rows x 12 columns]
                 City AOI Bucket
           Ahmedabad
           Ahmedabad
           Ahmedabad
           Ahmedabad
            Ahmedabad
       Visakhapatnam
       Visakhapatnam
       Visakhapatnam
       Visakhapatnam
29530 Visakhapatnam
```

6. Splitting the x and y in train and test:

The train-test split procedure is used to estimate the performance of machine learning algorithms when they are used to make predictions on data not used to train the model. Splitting your dataset is essential for an unbiased evaluation of prediction performance.

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x, y, test_size = .25)
print(x_train.shape, x_test.shape, y_train.shape,y_test.shape)

(22148, 12) (7383, 12) (22148, 2) (7383, 2)
```

7. Import the model:

from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
print(lr)

LogisticRegression()

8. Train the model with x_train and y_train:

from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()

lr.fit(x_train,y_train)

9. Predict with x_test and get predicted y

```
y_pred_lr = lr.predict(x_test)
print(y_pred_lr[:5],y_test.values[:5] )

print(lr.score(x_train,y_train))
print(lr.score(x_test, y_test))
```

BTIBM505

10. Evaluation

```
print(lr.score(x_train,y_train))
print(lr.score(x_test, y_test))

from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
print(confusion_matrix(y_pred_lr, y_test))
print(classification_report(y_pred_lr, y_test))
print(f'model_score- {lr.score(x_test,y_test)}')
print(f'accuracy_score- {accuracy_score(y_pred_lr, y_test)}')

0.5736583279880265
accuracy
```

```
0.5567671584348942
                 0 01
     1 0 11
                 3 16]
   3 464 71 248
   0 61 45 2
                 4 35]
  84 89 0 267
     3 6 0 11
     12 24
                 9 49]]
            precision
                        recall f1-score
                                         support
                          0.73
         0
                 0.27
                                   0.39
                                              44
                 0.74
                          0.58
                                   0.65
                                             805
                 0.31
                          0.31
                                   0.31
                                             147
                 0.50
                          0.61
                                   0.55
                                             441
                 0.41
                          0.42
                                   0.42
                                              26
         5
                 0.46
                          0.51
                                   0.48
                                              96
```

```
accuracy 0.56 1559
macro avg 0.45 0.52 0.47 1559
weighted avg 0.59 0.56 0.57 1559
```

model_score- 0.5567671584348942 accuracy_score- 0.5567671584348942

Confusion matrix and Accuracy

```
cm=confusion_matrix(y_pred_lr,y_test)
sns.heatmap(cm,annot=True)
plt.show()

ax = plt.axes(projection = '3d')
ax.scatter3D(x_test['PM2.5'],x_test['PM10'],y_test)
ax.scatter3D(x_test['N0'],x_test['N02'],y_pred_lr, 'black')
plt.plot(x_test['PM2.5'], y_pred_lr)
plt.show()
```

	28	0	0	7	0	0
	7	5e+02	89	2.5e+02	0	17
子子学者	0	45	33	2	8	28
	74	77	1	2.5e+02	0	0
	0	4	8	0	11	2
E ST	0	11	30	0	20	55

plt.scatter(x_test['PM2.5'], y_test)
plt.show()

Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(x train,y train)
y pred dtc=dtc.predict(x test)
print(f'Predicted_y{y_pred_dtc[:5]} Actual_y{y_test.values[:5]}')
print(confusion_matrix(y_pred_dtc,y_test))
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
cm=confusion_matrix(y_pred_dtc, y_test)
plt.figure(figsize=(7,5))
print(sns.heatmap(cm, annot=True))
plt.show()
print(classification report(y pred dtc, y test))
print(f'model_score- {dtc.score(x_test, y_test)} ')
print(f'accuracy_score- {accuracy_score(y_pred_dtc, y_test)}')
ax = plt.axes (projection ='3d')
ax.scatter3D(x test['PM2.5'],x test['PM10'],y test)
ax.scatter3D(x test['NO'],x test['NO2'], y pred_dtc,'black')
plt.show()
```

```
Predicted_y[0 4 0 3 1] Actual_y[[3]
 [4]
 [8]
 [3]
 [1]]
                        0]
6]
              31
               97
                       18]
           97
                        Ø]
            0 381
                        0]
                0 16 78]]
          25
AxesSubplot(0.125,0.125;0.62x0.755)
```


Random forest

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x train, y train)
y pred rfc = rfc.predict(x test)
print(f'predicted_y-{y_pred_rfc} actual_y-{y_test.values}')
print(confusion_matrix(y_pred_rfc,y_test))
cm=confusion_matrix(y_pred_rfc,y_test)
plt.figure(figsize=(7,5))
sns.heatmap(cm, annot=True)
plt.show()
print(classification_report(y_pred_rfc, y_test))
print(f'model_score- {rfc.score(x_test,y_test)}')
print(f'accuracy_score- {accuracy_score(y_pred_rfc, y_test)}')
ax = plt.axes (projection ='3d')
ax.scatter3D(x_test['PM2.5'],x_test['PM10'],y_test)
ax.scatter3D(x_test['NO'],x_test['NO2'],y_pred_rfc,'black')
plt.show()
```

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x train, y train)
y pred rfc = rfc.predict(x test)
print(f'predicted_y-{y_pred_rfc} actual_y-{y_test.values}')
print(confusion_matrix(y_pred_rfc,y_test))
cm=confusion matrix(y pred rfc,y test)
plt.figure(figsize=(7,5))
sns.heatmap(cm, annot=True)
plt.show()
print(classification report(y pred rfc, y test))
print(f'model score- {rfc.score(x test,y test)}')
print(f'accuracy_score- {accuracy_score(y_pred_rfc, y_test)}')
ax = plt.axes (projection ='3d')
ax.scatter3D(x test['PM2.5'],x test['PM10'],y test)
ax.scatter3D(x test['NO'],x test['NO2'],y pred rfc,'black')
plt.show()
```

```
/usr/local/lib/python3.7/dist-packag
 This is separate from the ipykerne
predicted y-[3 4 0 ... 3 0 3] actual
[4]
[0]
[3]
[0]
[3]]
[[ 86 0 0 22 0
   0 556 28 71 0
   0 22 120 0
                 1 181
 [ 23 60 0 417 0
      0 12
                    8311
```


K-Nearest Neighbors Classifier

```
from sklearn.neighbors import KNeighborsClassifier
knc=KNeighborsClassifier()
knc.fit(x train, y train)
y pred knc=knc.predict(x test)
print(f'Predicted_y{y_pred_knc[:5]} Actual_y{y_test.values[:5]}')
print(confusion_matrix(y_pred_knc,y_test))
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
cm=confusion_matrix(y_pred_knc,y_test)
plt.figure(figsize=(7,5))
print(sns.heatmap(cm, annot=True))
plt.show()
print(classification_report(y_pred_knc, y_test))
print(f'model_score- {dtc.score(x_test, y_test)} ')
print(f'accuracy_score- {accuracy_score(y_pred_knc, y_test)}')
ax = plt.axes(projection = '3d')
ax.scatter3D(x_test['PM2.5'],x_test['PM10'],y_test)
ax.scatter3D(x_test['PM2.5'],x_test['PM10'],y_pred_knc, 'black')
plt.show()
```


/usr/local/lib/python3.7/dist-packages/sklearn
return self._fit(X, y)

Predicted_y[0 4 0 3 1] Actual_y[[3]

[4]

L.

[0]

[3]

[1]]

[[87 1 0 30 0 0] [0525 33 65 0 1]

[0 29 117 0 0 19]

[22 83 1 415 0 01

[0 0 1 0 31 4]

[0 0 9 0 8 78]]

AxesSubplot(0.125,0.125;0.62x0.755)

200000	PERSONAL STATES	28/20	75%	1 46
	precision	recall	f1-score	support
0	0.80	0.74	0.77	118
1	0.82	0.84	0.83	624
2	0.73	0.71	0.72	165
3	0.81	0.80	0.81	521
4	0.79	0.86	0.83	36
5	0.76	0.82	0.79	95
accuracy			0.80	1559
macro avg	0.79	0.79	0.79	1559
weighted avg	0.80	0.80	0.80	1559

model_score- 0.7498396407953817 accuracy_score- 0.8037203335471456

Simple linear Regressor

```
from sklearn.linear model import LinearRegression
slr=LinearRegression()
slr.fit(x train, y train)
y_pred=slr.predict(x_test)
print(slr.score(x train,y train))
print(slr.score(x_test,y_test))
from sklearn.metrics import mean absolute error, mean squared error, r2 score
print("Mean Absolute Error:- ",mean absolute error(y test, y pred))
print("Mean Squared Error:- ",mean squared error(y test,y pred))
print("r2 score:- ",r2 score(y test,y pred))
a=slr.coef
b=slr.intercept
plt.scatter(x test['PM2.5'],y test,color='r')
plt.scatter(x test['PM2.5'],y pred)
plt.show()
```

0.1961930096682737
 0.18946593484141327
 Mean Absolute Error: - 1.0708636884898894
 Mean Squared Error: - 1.384272714993072
 r2_score: - 0.18946593484141327

Dataset: https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india?resource=download

Google Drive: https://drive.google.com/drive/folders/1j5hfguD4NrOGAMA_rhelORpP6-1Ux2gL

Google Colab 2: https://colab.research.google.com/drive/1Hi1ur89p4DdpjSAWjd0gJV-

LGjHSG7e-#scrollTo=-teNaxQN-B01

Google Colab 1:

Click on the link for the source codes

https://colab.research.google.com/drive/1G00JBNjDj_WMdzNqXu0_kbl8TKzHRsyE

