

Gratient (hidden layer)	Rot
$\partial J = \int \partial J = \int z ^2$	- इसह
$\frac{\partial J}{\partial U} \cdot \begin{bmatrix} \frac{\partial J}{\partial U_{j\bar{i}}} \end{bmatrix} \leq J \leq P \qquad J(\theta) = \frac{1}{2} \underline{y} - \underline{0} _{2}^{2}$ $= \frac{C}{2} \cdot \frac{1}{2} \left(0_{8} - \underline{y}_{8} \right)^{2}$	$\frac{\partial J}{\partial L^2}$, $\frac{\partial J}{\partial k} = (0 \kappa^2 J_k) Z'(0 \zeta u m \kappa)$, $1 \le k \le C$
E 2 (8 0 8)	$\frac{\partial V_{kJ}}{\partial J} = \Delta U_{kJ}^{2} = \partial_{k} \zeta_{J} \qquad 0 \leq J \leq b$
$\frac{\partial U_{i}}{\partial U_{i}} = \frac{c}{c} \left(O_{\xi} - y_{\xi} \right) \frac{\partial U_{i}}{\partial O_{\xi}}$	50° D E N2U
	- 248
$= \sum_{k=1}^{c} (0_{k} - 4_{k}) \frac{\partial 0_{k}}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial u_{1}z}$	$\frac{\partial J}{\partial U} : \eta_{5} = 7'(Z_{GUM5}) \sum_{g=1}^{C} \delta_{g} U_{g5}^{2} \text{KJ} \leq p$ $\frac{\partial J}{\partial U_{51}} = \Delta U_{51}^{1} = \eta_{5} A_{1} \qquad 0 \leq \tilde{\imath} \leq d$ $ \leq \tilde{\jmath} \leq p$
	$\frac{\partial U}{\partial U} = \Delta U_{\tilde{i}\tilde{k}} = \eta_{\tilde{i}} d_{\tilde{k}} \qquad 0 \leq \tilde{i} \leq d$
= 2 (0g-4g) Z'(Quan, g) Drum, g. Z'(Zum) dzum)	IE JEP
20 0 Uqb 21 0 Uping 7) 7) De	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1. 0 4/30	
$\begin{array}{c c} 1, & \circ & U_{30}^{I} \\ \downarrow & U_{31}^{I} & & & & \\ \downarrow & U_{31}^{I} & & & & \\ \end{array}$	
14 0 451	
$= \left(\frac{c}{z} \left(O_{q} - y_{z} \right) Z'(O_{quing}) U_{q\bar{j}}^{2} \right) Z'(\bar{z}_{quin\bar{j}}) 1_{\bar{i}}$ $= 0_{\bar{k}}$	
= 0g	
$=\eta_{\bar{5}}\eta_{\bar{6}}$	