[Marks]

(8) 1. Let
$$A = \begin{bmatrix} 0 & 1 & 2 & 2 & -2 \\ 1 & 0 & 3 & 0 & 4 \\ -1 & 3 & 3 & 0 & -10 \end{bmatrix}$$
. Its row reduced echelon form $R = \begin{bmatrix} 1 & 0 & 3 & 0 & 4 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$.

- (a) Solve the linear system $A\mathbf{x} = \mathbf{0}$. Write the solution in parametric vector form.
- (b) Find a basis of Row(A).
- (c) Find a basis of Col(A).
- (d) Write the last column of A as a linear combination of the other columns of A.
- (6) 2. Use linear algebra to balance the chemical equation: $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$.

(7) 3. Let the matrix
$$A = \begin{bmatrix} 1 & -2 & -1 & -2 \\ 2 & -1 & 4 & 5 \\ 4 & 1 & 2 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$
.

- (a) Use row operations to find A^{-1} or to show that A^{-1} does not exist.
- (b) Find two elementary matrices E_1 and E_2 such that $E_2E_1A = \begin{bmatrix} 1 & -2 & -1 & -2 \\ 2 & -1 & 4 & 5 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 4 & 1 & 2 & 1 \end{bmatrix}$

(6) 4. Let
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 3 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
.

(a) Find adj(A).

- (b) Compute det(A).
- (c) Find A^{-1} using adj(A).

(5) 5. Solve for the matrix X where

$$\left(\begin{bmatrix} 2 & 5 \\ 2 & 6 \end{bmatrix} X^T \right)^{-1} = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$$

- (9) 6. Let A be a symmetric 4×4 matrix with det(A) = -3. Let B be a 4×4 matrix with det(B) = 2.
 - (a) Find $\det((A^{-1})^3)$.
- (b) Find $\det(\operatorname{adj}(A^{-1}B))$.
- (c) Find $\det(A + A^T)$.
- (8) 7. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $S\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}2\\-1\end{bmatrix}$ and $S\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\end{bmatrix}$. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation of $-\frac{\pi}{4}$ about the origin.
 - (a) Find the standard matrix of S.
 - (b) Find the standard matrix of $R \circ S$.
- (6) 8. We are given the lines \mathcal{L}_1 : $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ and \mathcal{L}_2 : $\mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. Find an equation of the plane (in the form ax + by + cz = d) that contains \mathcal{L}_2 and is parallel to \mathcal{L}_1 .
- (6) 9. Find an equation of the plane (in the form ax + by + cz = d) that contains the point M(1, -1, 2) and is perpendicular to both planes x + 2y z = 2 and x y z = 4.

[Marks]

- (8) 10. Define $H = \left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in M_{2 \times 2} : xy = zw \right\}$.
 - (a) Show that H is not closed under vector addition.
 - (b) Show that H is closed under scalar multiplication.
- (5) 11. Find a basis for the subspace $V = \{p(x) \in \mathbb{P}_2 : p(2) = p'(1)\}.$
- (5) 12. Let **u** and **v** be two vectors in \mathbb{R}^n . Suppose that **u** is a unit vector, $\|\mathbf{v}\| = 5$ and $\mathbf{u} \cdot \mathbf{v} = -3$. Find all values of k, if any, for which the vectors $\mathbf{u} + k\mathbf{v}$ and $\mathbf{v} + 2\mathbf{u}$ are orthogonal.
- (9) 13. Given a point P(8,5,0) and a line $\mathcal{L}: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$,
 - (a) find the point Q on \mathcal{L} closest to P;
- (b) find the distance from P to \mathcal{L} .
- (8) 14. Given points A(0,0,1), B(1,1,2), C(4,6,5), and D(-1,4,k),
 - (a) find the area of triangle ABC;
 - (b) find an equation of the plane (in the form ax + by + cz = d) that contains A, B and C;
 - (c) find k such that \overrightarrow{AD} is orthogonal to \overrightarrow{AC} .
- (4) 15. Fill in the blank with the word must, might, or cannot, as appropriate.
 - (a) If two vectors \mathbf{u} and \mathbf{v} are linearly independent, then $\mathrm{Span}\{\mathbf{u}+\mathbf{v},\mathbf{u}-\mathbf{v}\}$ _____ be equal to $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$.
 - (b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\1\end{bmatrix}$, then T _____ be a rotation.
 - (c) If A is a 3×3 matrix, then Col(A) and Nul(A) _____ both be planes in \mathbb{R}^3 .
 - (d) Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors. If $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent and $\{\mathbf{u}, \mathbf{w}\}$ is linearly dependent, then $\{\mathbf{v}, \mathbf{w}\}$ ______ be linearly dependent.

ANSWERS

1. (a)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = s \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ 2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (b) $\{(1 \ 0 \ 3 \ 0 \ 4), (0 \ 1 \ 2 \ 0 \ -2), (0 \ 0 \ 0 \ 1 \ 0)\}$ (c) $\{\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}\}$ (d) $\begin{bmatrix} -2 \\ 4 \\ -10 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$ 2. $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$ 3. (a) A^{-1} does not exist

Total points 100

[Marks]

(b)
$$E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, $E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ OR $E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{bmatrix}$, $E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
4. (a) $adj(A) = \begin{bmatrix} 7 & 1 & -3 \\ 4 & 8 & 2 \\ -2 & -4 & 12 \end{bmatrix}$ (b) 26 (c) $A^{-1} = \frac{1}{26} \begin{bmatrix} 7 & 1 & -3 \\ 4 & 8 & 2 \\ -2 & -4 & 12 \end{bmatrix}$

5. $X = \begin{bmatrix} -25 & 9 \\ \frac{39}{2} & -7 \end{bmatrix}$ 6. (a) $\frac{-1}{27}$ (b) $\frac{-8}{27}$ (c) -48

7. (a) $\begin{bmatrix} -2 & 2 \\ -1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} -\frac{3\sqrt{2}}{2} & \sqrt{2} \\ \frac{\sqrt{2}}{2} & -\sqrt{2} \end{bmatrix}$

9. x + z = 3

10. (a) $A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in H$ and $A_2 = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \in H$, but $A_1 + A_2 \notin H$ (for example)

(b) For any $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in H$ (so xy = zw) and any scalar λ , $\lambda A = \begin{bmatrix} \lambda x & \lambda y \\ \lambda z & \lambda w \end{bmatrix}$, $\lambda A \in H$ since

 $(\lambda x)(\lambda y) = \lambda^2(xy) = \lambda^2(zw) = (\lambda z)(\lambda w).$ 11. $\left\{-\frac{1}{2}x^2 + x, -\frac{1}{2}x^2 + 1\right\}$ (other answers possible)

12. $\vec{k} = \frac{1}{19}$

13. (a) Q(0,5,4) (b) $4\sqrt{5}$

14. (a) $\sqrt{2}$ (b) -x + z = 1 (c) k = -415. (a) MUST (b) MIGHT (c) CANNOT (d) MIGHT