16.317: Microprocessor Systems Design I

Spring 2013

Lecture 15: Key Questions March 1, 2013

1	Describe the	general	structure	and r	nirnose	of a	subroutine
1.	Describe me	general	Structure	anu i	Julpose	or a	Subiounie.

2. Describe the basics of subroutines specific to the 80386.

16.317: Microprocessor	Systems	Design I
Spring 2013		

3. Describe the operation of the CALL instruction.

4. Describe the operation of the RET instruction.

M. Geiger Lecture 15: Key Questions

5. **Example:** Assuming AX = 2 and BX = 4, show the results of the following sequence (Ex. 6.11). Assume the addresses of the first three instructions are CS:0005, CS:0008, and CS:0009, respectively:

CALL SUM

RET

; End main function

SUM PROC NEAR

MOV DX, AX

ADD DX, BX

RET

SUM ENDP

6. Explain the different instructions used to save state on the stack.

7. Explain the different instructions used to restore state from the stack.

16.317: Microprocessor Systems Design I Spring 2013 Lecture 15: Key Questions

8. Example: Assuming the initial state below, what is the resulting stack state of each of the following sequences?

M. Geiger

EAX: 12345678H EBX: 0000000AH ECX: FF0000FFH EDX: 00000000H ESI: 00000008H EDI: FFFF0000H EBP: 00000400H ESP: 00002000H

DS: 2110H SS: 1000H

a. PUSH BX **PUSH AX**

b. PUSH EBX **PUSH EAX**

c. PUSHA