

2/8

Alpha1(I)				
alphal(II) alphal(III) alphal(FIG.	alpha2(I)	YYRADOA NVVRDRDLEV DTTLK: FYRADQPRSA PSLRPKDYEV DATLK:	SUSQQ IENIRSPEGS RENFARTORD LÆMCHSDWKS SUNNQ IETULTPEGS RENPARTORD LRUSHPEWSS SVNGQ IESUISPDGS RENPARNORD LEFCHPEUES
alpha1(II) DEFOREIGGG GSDEADVAG LITELARGIE ASONITHIEM NSVANMOCT GNERKALLER Alpha1(III) GSOFEYNE GTEKENAT LEARNILLANY ASONITHMEN INTERMEDET GNERKALLER ASONITHMEN ASONITHMEN HOLAMBOAG GNERKALER LITELARD ASONITHMEN HOLAMBOAG GNERKALER LITELARD ASONITHMEN HOLAMBOAG GNERKALER ASONITH	8045 0.G.	alpha2(I)	GEYWIDPNQG CNLDAIKVFC NMETGI GYYWIDPNQG CTMEAIKVYC DFPTGI GEYWVDPNQG CKLDAIKVFC NMETGI	STOVY PTOPSVAQKN WYISKNPKDK PHVWEGESMT STOIP AQPENIPAKN WYPSSKDK KHVWLGETIN STOIS ANFLWYPRKH WW.TDSSAEK KHVWEGESMD
alpha1(I) alpha2(I) alpha1(II) alpha1(III) GSNVELVEAG GNSPTYLVI VDGGSKYME WGRTIENT NYBSLIPFID IAPLBIGGAD GSNVELVEAG GNSPTYTUL VDGGSKYME WGRTIENT NYBSLIPFID IAPLBIGGAD GSNVELVEAG GNSPTYTUL VDGGSKYME WGRTIENT NYBSLIPFID IAPLBIGGAD GSNVELVEAG GNSPTYTUL EDGGTMEGE WSKTAFENT RAAVELTUL IAPVOIGGED alpha1(II) alpha1(III) CEFGFDVGFV CFL HEFFVOIGPV CFL GEFGVVGFV CFL	APP ORAF	alpha2(I)	DGFQFEYGGQ GSDPADVAIQ LTFLRL AGSQFEYNVE GVTSKEMATQ LAFMAL GGFQFSYGNP ELPEDVLDVQ LAFLAL	MSTE ASQNITYHOK NSVAYMOQOT GNLKKALLLK LANY ASQNITYHOK NSIAYMDEET GNLKKAVILQ LESE ASQNITYHOK NSIAYMOQAS GNVKKALKLM
alphal(I) alphal(II) Alphal(III) Alphal(III) Alphal(IIII) Alphal(IIII) Alphal(IIII) Alphal(IIIII) Alphal(IIIII) Alphal(IIIIIIIII) Alphal(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		alpha2(I)	GSNEIEIRAE GNSPFTYSVT VDGCTS GSNDVELVAE GNSPFTYTVL VDGCSK GSNEGEFKAE GNSKFTYTVL EDGCTK	KTNE WGKTIIEYKT NKPSFLPFLD IAPLDIGGAD HTGE WSKTVFEYRT RKAVRLPIVT IAPYDIGGPD
N-propeptide domain C-propeptide proa1(III)Δ1 proa2(I)Δ1 proa2(I):(III)CP proa2(I):(III)F proa2(I):(III)C proa2(I):(III)C proa2(I):(III)C proa2(I):(III)C proa2(I):(III)C		alpha2(I)	QEFGFDVGPV CFL HEFFVDIGPV CFK QEFGVDVGPV CFL	<u>FIG. 2</u>
proα2(I)Δ1 proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)A proα2(I):(III)F proα2(I):(III)B proα2(I):(III)C			domain C-proper	
proα1(III):(I)CP proα2(I):(III)CP proα2(I):(IIII)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(III)CP proα2(I):(IIII)CP proα2(I):(III)CP proα2(I)		<u> </u>		ρ ro α 1(III) Δ 1
proα2(I):(III)CP proα2(I):(III)A proα2(I):(III)F proα2(I):(III)B proα2(I):(III)C proα2(I):(III)C proα1(III):(I)C proα1(III):(I)C proα2(I):(III)BGR				proα2(I)Δ1
proα2(I):(III)A proα2(I):(III)F proα2(I):(III)B proα2(I):(III)C proα1(III):(I)C proα2(I):(III)BGR		.e sametaise in in	taalataataindiminainailin 🔉 👵	proα1(III):(I)CP
proα2(I):(III)F proα2(I):(III)B proα2(I):(III)C proα1(III):(I)C proα2(I):(III)BGR				proα2(I):(III)CP
proα2(I):(III)B proα2(I):(III)C proα1(III):(I)C proα2(I):(III)BGR				proα2(I):(III)A
proα2(I):(III)C proα1(III):(I)C proα2(I):(III)BGR				proα2(I):(III)F
proα2(I):(III)C proα1(III):(I)C proα2(I):(III)BGR			44 May 8 8 8 9 7 7	proα2(I):(III)B
proα1(III):(I)C proα2(I):(III)BGR		П	The Andrews of the Andrews	
proα2(I):(III)BGR		्र । स्थापन्य स्थापना स		
$\mathbf{I} = \mathbf{I} \cup \mathbf{J} \cup \mathbf{J}$		Ц		

G. F1G.	LASS SUBOLASS	
AFFROVE Y O	3 10-2	BRAFISHAH

reducing	non-reducing
1 2 3	4 5 6
cp cp bgr	u1 u2 u2 CP CP BGR
- ;	
66kDa —	The state of the s
<u>FIG.8</u>	1 2 3 a1 a2 a2 CP CP BGR
66kDa -	CP CP BGR
29kDa _	
FIG.9	

	redi	reducing			non-reducing			
	1		3		5			
			a2 BGR		BGR			
				**				
66kDa	-							
43kDa	9443							
		-	****					
29kDa	-							
Ì								
FIG. 12								

APPREVIO O.S. FIG.

23	Щ	>	LLI	\simeq	S	ليا	S	S
22	·-	z	1-	S	Ø	¥	Ø	>
21	S	⋖	S	S	S	V	 	S
70	x :	-1	ı	H	ı	i i	,	H
19	ы	u	H	u	H	L	1	u
18	ex.	ĸ	ĸ	æ	ĸ	ĸ	taí.	CC.
17	1	X.	ı	u	٦.	٦.	,	H
16	[4	Ĺų	£4	Ĺι	[4	ſų,	<u> </u>	[e4
15	۲	~	Ę٠	~	E٠	₽	F4	H
17	ı	H	x	H	X	ב:	> :	J
13	٥	a	ø	ø_	ø	O	C	Ø
12	F	1	>	>	>	—	>	>
11	<	Ø	Z	0	•	•	•	•
10	>	Σ	Ø		>	—	Σ	>
6		ш	—	>	9	A	Z	9
8	A	×	Z	0	>	—	•—	>
7	۵	. ~	۵	ш	م	Z	S	م
9		· -	Ø	٥	Z	۵	Z	· \
2	1	>		_	9	S	ت	ט נ
7	ے ا	0	Z	ليا	ليا	g	L	u uu
3		ىيا ۋ	0	۵	Ø	エ	>	S
7	6	>	. 0	Z) <u> </u>		
-	ا ا) Z	: 0	9	>	<u> </u>	_	< د
	(T)	()	alphal(II)	alphal(III)	(A) (BQQ(R	a) pha 2 (7)		arpuar (nr.

-16.13