

An Open Mathematical Knowledge Sharing Community Brought to you by Zaiku Group and Homomorphic Labs.

Lecture 4A — Friday, July 5.

Bambordé Baldé

Recap of the basic notions covered in lecture 3:

- (a) The notion of cardinality of a set
- (b) Countable and uncountable sets
- (c) Cartesian product of two sets
- (d) Alternative definition of maps

Questions:

- (a) Did anyone find it hard to grasp these basic concepts?
- (b) Did anyone find it hard to solve the assignments?

If the answer to the above is yes, then you should not proceed with the content on lecture 4 until you feel comfortable with the basics of lecture 3!

Indexed Sets and Indexed Family of Sets

Definition 1.0

We say a set X is indexed by a set I if there is surjective map $index : I \longrightarrow X$. I is then called an index set for X.

- (a) By convention, for $i \in I$ and $index(i) = x \in X$, we just write x_i .
- (b) If I is made of natural numbers, we can think of x_i as the ith element of X.

Concrete examples:

- (a) Let $I = \{1, 2, 3\}$. Then, we can say $X = \{x_1, x_2, x_3\}$ is indexed by I.
- (b) Let X be a set and I = X. We can define the indexing of X by I as $x_i = i$ for all $i \in I$. This is too trivial to be useful, but still valid! \odot
- (c) Let $X = \mathbb{N}$ and $I = \mathbb{Z}$. We can define the indexing of X by I as $x_i = |i| + 1$ for all $i \in I$.

Definition 1.1

A collection of sets $\mathcal C$ is an indexed family of sets with indexing set I if there is surjective map $index:I\longrightarrow \mathcal C$.

- (a) By convention, for $i \in I$ and $index(i) = A \in C$, we just write A_i .
- (b) If I is made of natural numbers, we can think of A_i as the ith element of the collection C.
- (c) We write $C = \{A_i\}_{i \in I}$ or just $\{A_i\}_{i \in I}$ to denote the indexed family of sets by I.

Union and Intersection of Indexed Families

Definition 1.2

Let $\{A_i\}_{i\in I}$ be an indexed family of sets. Their union is defined as $\bigcup_{i\in I}A_i=\{x\mid \text{there exists at least one }i\in I\text{ such that }x\in A_i\}$ or alternatively $\bigcup_{i\in I}A_i=\{x\mid x\in A_i\text{for at least one }i\in I\}.$

- (a) If $I = \mathbb{N}$, the we normally write $\bigcup_{i=1}^{\infty} A_i$.
- (b) If $I = \{1, ..., k\}$ for some $k \in \mathbb{N}$, we write $\bigcup_{i=1}^k A_i$.

Definition 1.3

Let $\{A_i\}_{i\in I}$ be an indexed family of sets. Their interesection is defined as $\bigcap_{i\in I}A_i=\{x\mid x\in A_i \text{ for all } i\in I\}.$

- (a) If $I = \mathbb{N}$, the we normally write $\bigcap_{i=1}^{\infty} A_i$.
- (b) If $I = \{1, ..., k\}$ for some $k \in \mathbb{N}$, we write $\bigcap_{i=1}^k A_i$.

Exercise 1.0

 $\{A_i\}_{i\in I}$ be an indexed family of sets. Prove or disprove the following:

- (a) $(\bigcup_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$.
- (b) $(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} A_i^c$.
- (c) $(\bigcap_{i \in I} A_i)^c = \bigcap_{i \in I} A_i^c$.
- (d) $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$.

Exercise 1.1

 $\{A_i\}_{i\in I}$ be an indexed family of sets and X be a set. Prove or disprove the following:

- (a) $X \cup (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (X \cup A_i)$.
- (b) $X \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (X \cap A_i)$.
- (c) $X \cap (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (X \cap A_i)$.
- (d) $X \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (X \cup A_i)$.

Thank you for listening!