Верификация параллельных программных и аппаратных систем

Шошмина Ирина Владимировна Карпов Юрий Глебович

План курса

- Введение
- 2. Метод Флойда-Хоара доказательства корректности программ
- 3. Исчисление взаимодействующих систем (CCS) Р.Милнера
- 4. Темпоральные логики
- 5. Алгоритм model checking для проверки формул CTL
- 6. Автоматный подход к проверке выполнения формул LTL
- 7. Система верификации Spin и язык Promela. Примеры верификации
- 8. Структура Крипке как модель реагирующих систем
- 9. Темпоральные свойства систем
- 10. Применения метода верификации model checking
- 11. BDD и их применение
- 12. Символьная проверка моделей
- 13. Количественный анализ дискретных систем
- 14. Верификация систем реального времени
- 15. Консультации по курсовой работе

Лекция 13

Количественный анализ дискретных систем. Probability and time

Требования к поведению систем. Model checking: проверка качественных свойств

Обычные алгоритмы Model checking - проверка ДОСТИЖИМОСТИ:

Примеры (LTL):

(a U b) — "когда-то в будущем придем в состояние, из которого можно достичь b, а до этого во всех состояниях будет выполняться d".

 $G(r \rightarrow Fg)$ — "всегда после того, как будет выставлен запрос r (request), разрешение g (grant) на доступ k ресурсу когда-нибудь в будущем будет получено".

Никаких количественных гарантий эти свойства не имеют!

Ю.Г.Карпов

Pacширения Model checking: количественный анализ

Последнее время разработано много расширений и различных приложений Model Checking.

Одна из групп — в Университете Бирмингема (а сейчас в Оксфордском Университете), исследует возможность комбинации **МС с вероятностным анализом и дискретным временем.**

"Количественные" методы верификации дают ответы типа:

Для протокола выбора лидера:

"С вероятностью p=0.9 процесс выбора лидера завершится в течение 25 шагов".

Для протокола передачи мультимедийной информации:

"Вероятность доставки кадра в течение 10 временных шагов ≥ 89%".

Для системы управления автомобиля: "*максимальная вероятность того, что система открытия подушек безопасности не сработает в интервале 0.02 сек составляет 10*⁻¹⁰".

Некоторые свойства поведения дискретных систем удобно выражать LTLформулами

Формулы LTL строятся как $\mathbf{A}\alpha$, где α - формула пути.

$$a := p \mid \neg a \mid a \lor a \mid a \cup a \mid Xa$$

G и F выражаются через Until:

$$\mathbf{Fp} = \text{True } \mathbf{U} \mathbf{p}; \quad \mathbf{G} \mathbf{p} = \neg \mathbf{F} \neg \mathbf{p}.$$

Формулы LTL понятны и удобны для выражения требований к поведению!

Формула LTL выполняется на структуре Крипке М, если она выполняется *на любом пути (вычислении)*, начинающемся в начальном состоянии М

Проверка формулы LTL для M требует рассмотрения всех вычислений M, а таких вычислений *бесконечное* число, и каждое из них *бесконечно*.

Ю.Г.Карпов

Общая логика ветвящегося времени – CTL* Computational Tree Logic*

Темпоральные логики ветвящегося времени рассматривают ДЕРЕВЬЯ вычислений на развертке структуры Крипке.

Как построить темпоральную логику ветвящегося времени?

CTL* – одна из таких логик

Грамматика. Формула СТL* - это формула состояний ф:

- формулы состояний
$$\phi := p \mid \neg \phi \mid \phi \lor \phi \mid E a \mid Aa$$

- формулы путей
$$a := \phi \mid \neg a \mid a \lor a \mid a \cup a \mid Xa$$

формула ϕ состояния s является формулой пути σ , если состояние ѕ является начальным состоянием пути о.

Формула пути – подобна формуле LTL!

Формула пути имеет смысл, только если зафиксирован путь!

В состояниях могут стоять только формулы состояний (state formulas)!

Ю.Г.Карпов

Вероятностная мера. Подход Ханссона - Джонссона

 Можно построить "простую" логику СТL, в которой вместо кванторов пути стоит вероятность того, что из данного состояния будет выбран путь, на котором данная LTL формула выполнится:

Грамматика. Формула РСТL - это формула состояний ф:

- Формулы состояний

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \triangleright \alpha \mid \triangleright \alpha \mid P\alpha$$

- Формулы путей

$$a ::= \phi \cup \phi \mid X \phi$$

в р: $P(\phi U \psi) = 0.2$

На вероятностной структуре Крипке в каждом ее состоянии можем подсчитать вероятности выполнения формул Хф и фUψ

>0.1 вероятностная мера

КАК СВЯЗАТЬ ЛОГИКУ и ВЕРОЯТНОСТЬ?

Ханссон и Джонссон (1994) ввели "вероятностную меру". Теперь можем говорить об истинности и ложности формул: если вероятностная мера выполняется, то формула истинна.

Model checking и вероятностный анализ

Модификация дискретной Марковской цепи (время считается неявно дискретными переходами из состояния в состояние, как и в структуре Крипке)

Помеченная дискретная Марковская цепь (S, s_0, P, L) – это:

S – конечное множество состояний,

 s_0 — начальное состояние;

L: $S \to 2^{AP}$ (с состоянием s из S связывается некоторое множество атомов, истинных в s).

Pr: S×S→[0,1] – вероятностная матрица, такая, что (\forall s∈S) $\Sigma_{\mathbf{q} \in \mathbf{S}}$ Pr(s,q) = 1

Можно считать эту модель расширением структуры Крипке – к структуре Крипке просто добавляются вероятности переходов Pr(s,q) из р в q. Переходы считаем независимыми событиями.

Оценка вероятности выбора вычисления о

Путь $\sigma = s^0 s^1 s^2 s^3 \dots s^n$ — конечная цепочка состояний

$$Pr(\sigma) = Pr(s^0s^1s^2 \dots s^n) = Pr(s^0, s^1) \times Pr(s^1, s^2) \times Pr(s^2, s^3) \times \dots \times Pr(s^{n-1}, s^n)$$

Пример: $Pr(s^0s^1s^2s^2s^0) = 1 \times 0.4 \times 0.8 \times 0.2 = 0.064$

H. Hansson, B. Johnsson. A Logic for Reasoning about Time and Reliability // Formal Aspects of Comput. 6,1994)

Вероятностная CTL – PCTL (Hansson & Jonsson'94)

PCTL (Probabilistic CTL) заменяет кванторы E и A в CTL вероятностным оператором $Pr_{\sim p}(\alpha)$, где $p \in [0,1]$, $\sim \in \{\le, <, =, \ge, >\}$, например, $P_{>0,3}$ (Xq)

Формула состояния: $\phi ::= q \mid \phi_1 \lor \phi_2 \mid \neg \phi \mid P_{\sim p}(\alpha)$ где α -формула пути: $\alpha ::= X \phi \mid \phi_1 U \phi_2$

~р вероятностная мера

Семантика вероятностного оператора:

(α - формула пути, s – состояние, Paths – все пути из состояния s, σ – путь)

 $s = P_{\sim p}(\alpha)$ iff $Prob \{ \sigma \in Paths_s \mid \sigma \mid = \alpha \} \sim p$

 $P_{\sim p}(\alpha)$ — можно считать *утверждением, истинным или ложным для состояния S:* "вероятностная мера $\sim p$ выполняется для формулы пути α , iff с мерой $\sim p$ из s может быть выбран путь, на котором выполняется формула α ". Состояния можно ПОМЕЧАТЬ подформулами формулы ϕ .

 $P_{>0.7}$ (ϕ U $\neg \psi$) – УТВЕРЖДЕНИЕ: *вероятность того, что на вычислениях из данного состояния выполнится формула пути* (ϕ U $\neg \psi$), *больше* 0.7.

 $P_{< 0.1}((P_{>0.2} X_{\phi}) U_{\neg \psi})$ УТВЕРЖДЕНИЕ: *вероятность* того, что на вычислениях из данного состояния выполнится формула пути $(P_{>0.2} X_{\phi}) U_{\neg \psi}$, меньше 0.1.

Ю.Г.Карпов 10

Как разбирать формулы логики PCTL?

$$\Phi = P_{< 0.1}((P_{>0.2} X_{\phi}) U_{\neg}r)$$

Формула состояния:
$$\phi ::= q \mid \phi_1 \lor \phi_2 \mid \neg \phi \mid P_{\sim p}(\alpha)$$
 где α -формула пути: $\alpha ::= X \phi \mid \phi_1 U \phi_2$

скобки можно опускать, если это не меняет смысла

1-й шаг всегда — построение синтаксического дерева, представляющего структуру формулы PCTL

$$f_1 = P_{> 0.2} X \varphi$$

 $f_2 = \neg \psi$
 $\Phi = P_{< 0.1} (f_1 U f_2)$

Каждому отрезку пути из любого состояния S вероятностной структуры Крипке соответствует некоторая вероятность его выбора.

В логике PCTL формула состояний $P_{\sim p}(\alpha)$ ИСТИННА на тех состояниях, на которых *вероятность* выбора путей, на которых формула пути α

выполняется, удовлетворяет указанной вероятностной мере ~р.

12

Вычисление истинности формулы $P_{\sim p}$ Xµ логики PCTL

µ и ν - формулы состояний

Определим множество состояний, в которых выполняется формула $P_{\geq 0.6}$ Хµ (т.е. множество таких состояний, в которых вероятность формулы пути Хµ будет ≥ 0.6)

Вектор- столбец: единицами отмечены те состояния, в которых удовлетворяется формула µ

= 0.7 0.0 1.0 0.0 0.5

Prob (Xµ) для всех s

Вероятность того, что из S_i за один шаг попадем в какое-нибудь состояние, в котором истинно μ

Мы получили вероятность выполнения формул. Надо перейти к утверждениям. Ведь вероятностная характеристика и логическое утверждение (утверждение о выполнимости) – ДВЕ разные сущности!

Алгоритм разметки для PCTL - формулы P_{~p}Xµ

- ИДЕЯ Hansson'a и Johnsson'a состоит в том, чтобы все свести к одной сущности формулам состояний, используя вероятностную меру.
- Стандартный алгоритм разметки состояний для формул логики СТL помечает состояния, в которых выполняется формула состояний Ф этой логики.

 Для формул логики РСТІ подсчитываем для каждого состояния вероятность того, что из него существует путь, удовлетворяющий формуле пути φ. Далее смотрим, в каких состояниях выполняется утверждение о

вероятностной мере.

Сумма вероятностей того, что из s_i за один шаг попадем в какое-нибудь состояние, в котором истинно µ

= 0.7 0.0 1.0 0.0 0.5 Prob (Xµ) для всех s

Единицами отмечены состояния, в которых удовлетворяется формула µ

формула состояний $P_{\ge 0.6}$ Xµ выполняется в состояниях S_0 и S_2

 $P_{\geq 0.6} X\mu$

0

0

Вычисление истинности формулы $P_{\sim p}$ ($\mu \ U \ \nu$) логики

 S^{yes} – множество состояний, в которых выполняется v.

 S^no - множество состояний, в которых не выполняются НИ ν , ни μ , и тех, из которых недостижимы состояния, помеченные ν .

 $\mathsf{S}^{?}$ - множество состояний, в которых не выполняется v , но выполняется $\mathsf{\mu}$.

Определим: X_S — вероятность выполнения формулы μU_V в состоянии s.

$$X_s = 1 -$$
если $s \in S^{yes}$

$$X_s = 0$$
 — если $S \in S^{no}$

$$X_s = \sum_{t \in S} P(s, t) * X_t -$$
если $s \in S^?$, составляем линейное уравнение

иол тарпов

Вычисление истинности PCTL формулы $P_{\sim p}$ ($\mu \ U \ \nu$)

0.3 -- 0.7 - -- 0.8 -- 0.2

µ и V - формулы состояния

Матрица вероятностей переходов

Вычислим $P_{\geq 0.8}(\mu U V)$, т.е. в каких состояниях вероятность формулы $\Phi = \mu U V$ будет ≥ 0.8

 X_{s} – это вероятность выполнения формулы Φ = $\mu U \nu$ в состоянии s.

 $x_2 \in S^{yes}$, $x_2 = 1$; $x_4 \in S^{no}$, $x_4 = 0$ (в s_2 выполнено v, а в s_4 – не выполнены ни v, ни μ).

Вероятности Ф в других состояниях нужно считать: $x_s = \Sigma \operatorname{Prob}(s, s') * x_{s'}$

Система уравнений:

$$x_0 = 0.5x_1 + 0.2x_3 + 0.3x_4$$

 $x_1 = 0.4x_2 + 0.6x_4$

$$x_3 = 0.8x_2 + 0.2x_4$$

 $x_4 = 0$

Решаем:

$$x_0 = 0.36$$

 $x_1 = 0.4$
 $x_2 = 1$
 $x_3 = 0.8$

 \Rightarrow

Формула Ф выполняется в тех состояниях, в которых вероятность выбора "нужного" пути удовл вероятностной мере (≥0.8)

 $\Rightarrow \Big|$

ИТАК, формула состояний $P_{≥ \mathbf{0.8}}$ μUV выполняется в состояниях s_2 и s_3

Ю.Г.Карпов

ń

■ ПРИМЕР применения PCTL: игра в кости

Пример: Моделирование игральной кости одной монетой

вместо

Проблема:

Смоделировать генератор случайных чисел, эквивалентный игральной кости, имея генератор случайных чисел, выдающий 0 и 1 с вероятностью 1/2

D. E. Knuth and A. C.-C. Yao. *The complexity of nonuniform random number generation* // In J. F. Traub, ed., Algorithms and Complexity: New Directions and Recent Results. Proc. of a Symposium, NY, 1976

Пример: Моделирование игральной кости одной монетой

подсчитаем:

Вывод:

Вероятность достижения каждого из "терминальных" состояний = 1/6

орел

решка

Игра в кости в центре порока - в Лас Вегасе, Невада (казино отеля Mandalay Bay)

Ю.Г.Карпов

Анализ игры в кости (Craps)

игра - на стандартном поле, на котором определены места для ставок Всего *около 40 различных ставок*, играть могут до 20 человек

Названия бросков в игре в Craps (по осям – выпадение очков на костях)

Names of Rolls in Craps

	1	2	3	4	5	6
1	Snake Eyes	Ace Deuce	Easy Four	Five (Fever Five)	Easy Six	Natural or Seven Out
2	Ace Deuce	Hard Four	Five (Fever Five)	Easy Six	Natural or Seven Out	Easy Eight
3	Easy Four	Five (Fever Five)	Hard Six	Natural or Seven Out	Easy Eight	Nine (Nina)
4	Five (Fever Five)	Easy Six	Natural or Seven Out	Hard Eight	Nine (Nina)	Easy Ten
5	Easy Six	Natural or Seven Out	Easy Eight	Nine (Nina)	Hard Ten	Yo (Yo-leven)
6	Natural or Seven Out	Easy Eight	Nine (Nina)	Easy Ten	Yo (Yo-leven)	Boxcars or Midnight

Число благоприятных исходов:

2 ⇔ 1,1	\Rightarrow 1/36
----------------	--------------------

$$3 \Leftrightarrow 1,2; 2,1 \Rightarrow 2/36$$

$$4 \Leftrightarrow 1,3; 2,2; 3,1 \Rightarrow 3/36$$

5
$$\Leftrightarrow$$
 1,4; 2,3; 3,2; 1,4 \Rightarrow 4/36

6
$$\Leftrightarrow$$
 1,5; 2,4; 3,3; 4,2; 5,1 \Rightarrow 5/36

7
$$\Leftrightarrow$$
 1,6; 2,5; 3,4; 4,3; 5,2;6,1 \Rightarrow 6/36

8
$$\Leftrightarrow$$
 2,6; 3,5; 4,4; 5,3; 6,2 \Rightarrow 5/36

$$\mathbf{S} \Leftrightarrow 2,0,\ 3,3,\ 4,4,\ 3,3,\ 0,2 \qquad \Rightarrow 3/30$$

9
$$\Leftrightarrow$$
 3,6; 4,5; 5,4; 6,3 \Rightarrow 4/36 **10** \Leftrightarrow 4,6; 5,5; 6,4 \Rightarrow 3/36

11
$$\Leftrightarrow$$
 5,6; 6,5 \Rightarrow 2/36

12
$$\Leftrightarrow$$
 6,6 \Rightarrow 1/36

- Различных исходов бросания двух костей 11.
- Каждый исход имеет свое устоявшееся имя.
 Имена напоминают крупье о конкретных ставках выигрывают они или проигрывают
- Каждый исход результат разных наборов очков на костях, все они имеют разные вероятности.

Анализ игры в кости (Craps). Ставка Snake Eyes

~ Сорок различных ставок. "Snake Eyes", "Seven out", ...

Всего 36 вариантов

"Snake Eyes": 1:1 Каждый бросок выигрыш в игре 30:1

2 – выпадает в 1 комбинации из 36;

Казино имеет все остальные: 35 из 36

Общее число комбинаций 65: игрок имеет - 30,

казино имеет - 35

Прибыль казино 5/65, т.е. 7.6%

Анализ игры в кости (Craps)

Seven: выигр. 7 **Каждый бросок Выигрыш 4:1**

7 – выпадает в 6 комбинациях из 36;

Казино имеет 30×1 Игрок: 4×6

Прибыль казино 6/54, т.е. 11.1%

Any Craps: 2,3,12 Каждый бросок

выигрыш 7:1

Выигрыш в 4 комбинациях из 36;

Казино имеет 32×1 Игрок имеет 7×4

Прибыль казино 4/60, т.е. 6.7% Ю.Г.Карпов All Seven; Any Craps, ...

Craps: "The Pass Bet" – наиболее популярная ставка

Два этапа

I этап. Come Out Roll Первый бросок

7,11 - *выигрыш*. 2,3,12 — проигрыш 4,5,6,8,9,10 =>**Point**, и переход на II этап

Point запоминаем
– ставится фишка

II этап. *Point Roll Набери Point*

Hyжно выбросить

Point раньше, чем
выпадет 7 (seven out)

Игрок ставит свои фишки на Pass Line 461 Seven 461 PASS COME 3 - 4 - 9 - 10 - 11 - (12) Pays Double FIELD Don't Pass Bar Any Craps PASS LINE

Как оценить вероятность выигрыша? Строим структуру Крипке и считаем вероятность того, что игрок из состояния start придет в состояние WON Ю.Г.Карпов

Игра в кости. Ставка "The Pass Bet".

Анализ вероятностной структуры Крипке

I этап. *Первый бросок*

7,11 - *выигрыш*. 2,3,12 – проигрыш

4,5,6,8,9,10 =Point, и на II этап

II этап. *Hабери Point (seven out)*

Нужно выбросить Очко раньше 7

Число благоприятных исходов:

2 ⇔ 1,1

 \Rightarrow 1/36

3 ⇔ 1,2; 2,1

 \Rightarrow 2/36

4 ⇔ 1,3; 2,2; 3,1

 \Rightarrow 3/36

5 \Leftrightarrow 1,4; 2,3; 3,2; 1,4 \Rightarrow 4/36

6 \Leftrightarrow 1,5; 2,4; 3,3; 4,2; 5,1 \Rightarrow 5/36

7 \Leftrightarrow 1,6; 2,5; 3,4; 4,3; 5,2; 6,1 \Rightarrow 6/36

8 ⇔ 2,6; 3,5; 4,4; 5,3; 6,2 \Rightarrow 5/36

 \Rightarrow 4/36

9 \Leftrightarrow 3,6; 4,5; 5,4; 6,3

10 ⇔ 4,6; 5,5; 6,4 \Rightarrow 3/36

11 ⇔ 5,6; 6,5

 \Rightarrow 2/36

12 ⇔ 6,6

 \Rightarrow 1/36

Подсчитаем Pr(**F** Winner)

Вероятность выигрыша ставки "The Pass Bet"

$$Pr(Fwon) = Pr(true \cup won)$$

Решение: $x_{start} = 0.493 \dots$ против 0.507

x_{start} = 0.493 Казино 0.507 0.507-0.493 = 0.014

Craps: ставка"The Don't Pass Bet"

I этап. Первый бросок

7,11 - ПРОИГРЫШ 3,12 – выигрыш 4,5,6,8,9,10 = Point,и на II этап

Если выпала 2, то ставка возвращается игроку (ничья)

Point запоминается – ставится фишка

II этап. HE Набери Point

Нужно выбросить 7 раньше Point (seven out) Ставка "The Don't Pass Bet"

Игрок ставит свои фишки на Don't Pass Bar

Craps: ставка"The Don't Pass Bet"

I этап. *Первый бросок*

7,11 - *ПРОИГРЫШ*3,12 — выигрыш
4,5,6,8,9,10 = Point,
и на II этап

Если выпала 2, то ставка возвращается игроку (ничья)

Point запоминается ставится фишка

II этап.

HE Набери Point

Нужно выбросить 7 раньше Point (seven out)

Построение вероятностной структуры Крипке игры для *Don't Pass Bet* и вычисление на ней величины Pr(F won) - *самостоятельно*

Некоторые казино бесплатно награждают победителей футболками с напечатанным столом для ставок игры в Craps

Пример. Ненадежный канал

Model checking для вероятностной CTL

Формула РСТL–это формула состояния:
$$\phi := q \mid \phi_1 \lor \phi_2 \mid \neg \phi \mid P_{\sim p}(\alpha)$$
 где α -формула пути: $\alpha := X \phi \mid \phi_1 U \phi_2$

 $P_{>0}(\alpha)$ соответствует квантору существования пути E - потому что с вероятностью >0 может быть выбран путь, на котором формула пути α выполняется. Но это соответствие **не абсолютное**.

 $P_{=1}(\alpha)$ соответствует универсальному квантору пути **A**: с единичной вероятностью будет выбран путь, на котором формула α выполняется (т.е. формула выполняется на любом пути). Но это соответствие не абсолютное.

Алгоритм верификации для формулы φ логики PCTL работает на основе алгоритма для CTL: индукцией по подформулам ψ_i формулы φ , определяя множества Sat(ψ_i) тех состояний, которые удовлетворяют формуле ψ_i - фактически, работает "алгоритм разметки". При вычислении алгоритма, все состояния, в которых истинны подформулы заданной формулы, должны быть уже определены.

Пример: передача сообщений по ненадежному

каналу

Вычислим $Pr(F@s_4) = Pr(true \cup @s_4)$

Архитектура упрощенного протокола:

$$x_0 = 1 \times x_1$$

 $x_1 = 1 \times x_2$
 $x_2 = 0.2 \times x_1 + 0.8 \times x_3$
 $x_3 = 1 \times x_4$
 $x_4 = 1$

В s_0 выполняется формула $P_{=1}$ F@ s_4

Ho $s_0 \neq AF@s_4$

Для этого протокола A F@s₄ \neq P_{= 1}F @s₄

Существует путь, на котором из s_0 никогда не придем в s_3 , но его вероятность 0

Кванторы пути A и E (сравнение с вероятностной СТL)

Оказывается, $A\phi \neq P_{=1}\phi$

Аналогично, $E\phi \neq P_{>0} \phi$

AFa HE выполняется на М

 $P_{=1}$ Fa выполняется на M

EG—а выполняется на М $P_{>0}G$ —а НЕ выполняется на М

$$x_s = (1-p)^* x_s + 1^* p_t$$

 $x_t = 1$

$$x_s = 1$$

 $x_t = 1$

Путь σ = ssss..., его вероятность 0, но он ECTЬ!

Количественный анализ

Pacширения Model checking: количественный анализ

Этот подход позволяет подсчитать истинность или ложность того, что данная темпоральная формула станет истинной в течение **t** единиц времени (временных шагов) *с заданной вероятностью*.

B Uni. Birmingham разработана система **PRISM**, "Probabilistic Symbolic Model Checker"

M. Kwiatkowska, D. Parker and H. Qu. <u>Incremental Quantitative Verification for Markov Decision Processes</u>. In *Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks*, IEEE CS Press.June 2011

Ю.Г.Карпов

Учет времени (как числа шагов): PCTL формула $Pr_{\sim p}$

Утверждение $\Pr_{\sim p}(\mu \ \mathsf{U}^{\leq n} \nu)$: с вероятностной мерой $\sim p$, не более, чем за п временных шагов, можем достичь состояния, в котором выполняется формула ν , по пути, во всех состояниях которого выполняется формула μ

P::
$$s_0 s_1 s_2 s_3 s_4$$
 s_0 -- 0.5 - 0.2 0.3

 $s_1 0.4 -- 0.4 -- 0.2$
 s_2 -- 0.3 -- 0.7 -

 $s_3 0.2 -- 0.8 --$

Ю.Г.Карпов

 $\mu U^{\leq n} \nu$: из текущего состояния формула $\mu U \nu$ выполнится не более, чем за п временных шагов

В s_0 вероятность выполнения $\mu \cup v$ равна

$$Pr(\mu U^{\leq 2}\nu) = 0.2 \times 1.0 + 0.5 \times 0.4 = 0.4$$

Развертка вероятностной структуры по шагам времени $\Pr_{\sim n} (\mu \cup^{\leq n} \nu)$

Не более, чем за три шага:

Если уже достигли состояния, в котором выполняется v, останавливаемся с вероятностью 1

Если достигли состояния, в котором не выполняются ни μ , ни ν , останавливаемся с вероятностью 0

За время t≤0 - в s_2 с вер 1 За время t≤1 - в s_2 и s3 с вер 1, в s_1 с вер 0.4 За время t≤2 - в s2 и s3 с вер 1, в s_0 и s_1 с вер 0.5

Идея алгоритма вычисления $Pr(s, \mu U v, t)$

 $Pr(s, \mu U \nu, t)$ — Вероятность того, что из s не более, чем за t временных шагов придем в состояние, в котором выполняется ν , через состояния, в которых выполняется μ

Строим начальный вектор вероятностей p_s выполнения в состояниях s_0 , s_1 , ... формулы $\mu U \nu$ за не более, чем 0 шагов. В тех состояниях s_0 , в которых выполняется ν , $p_s=1$, в остальных $p_s=0$

Вероятность p_s выполнения формулы $\mu U \nu$ в состоянии s за t+1 шагов равна сумме произведений вероятностей r_k переходов из s в состояния s_k на вероятности p_{sk} выполнения этой формулы в состояниях s_k за t шагов

$$p^{t+1}_{s} = r1 \times p^{t}_{s1} + r2 \times p^{t}_{s2} + r3 \times p^{t}_{s3}$$

Если за t шагов вероятность выполнения формулы $\mu U \nu$ в состоянии s равна 1, то за t+1 шагов эта вероятность в состоянии s также равна 1

Алгоритм вычисления $Pr(s, \mu U v, t)$

```
begin
for all s∈S do
 if v \in L(s) then P(s, \mu U v, 0) := 1 // v выполняется в s
      else Pr(s, \mu U v, 0) = 0; // v не выполняется в s
od;
for i=1 to t do
 for all s \in S do
  if v ∈ L(s) then Pr(s, \muUv, i) := 1; // v выполняется в s
    else begin
      Pr(s, \muU\nu, i) = 0;
                                    // v не выполняется в s
      if μ∈L(s) then
                                     // если µ выполняется в s
      for all s'∈S do
      Pr(s, \mu U \nu, i) = Pr(s, \mu U \nu, i-1) + Pr(s, s') \times Pr(s', \mu U \nu, i-1)
      od
    end
 od
od
end
```

 $Pr(s, \mu U v, t)$ — Вероятность того, что из s не более, чем за t временных шагов придем в состояние, в котором выполняется v, через состояния, в которых выполняется μ

Пример: упрощенная модель протокола

Проверим выполнение утверждения:

"С вероятностью, не меньшей 0.95, сообщение будет успешно доставлено в течение 6 единиц времени"

Формально: init |= $P_{≥0.95}$ ($F^{≤6}$ succ)

Вычислим вероятность выполнения формулы: *init* $|= F^{\leq 6}$ *succ* "*вероятность того, что сообщение будет успешно доставлено в течение не более, чем 6 единиц времени",* т.е. найдем Pr (init, true U succ, 6)

Подсчитаем Pr (s, true U succ, t) для всех состояний структуры и всех t от t=0 до t=6

Эта вероятность оказалась 0.971. Следовательно, init $\models P_{\geq 0.95}$ ($F^{\leq 6}$ succ)

Пример из руководства по вероятностной логике

Example: Markov chain

probability for delivering the message within 5 steps:

Пример оценки "мягкого дедлайна"

Упрощенный протокол "альтернирующего бита"

Проверим свойство:

$$\Phi = \mathbf{AG}(\operatorname{at_s_0} \Rightarrow \mathbf{P}_{\geq 0.9} \mathbf{F}^{\leq 5} \operatorname{at_s_4}) = \\ \neg \mathbf{EF} \neg (\operatorname{at_s_0} \Rightarrow \mathbf{P}_{\geq 0.9} \mathbf{F}^{\leq 5} \operatorname{at_s_4})$$

Синтаксический анализ формулы Ф:

$$f_1 = at_s_0$$
 $f_2 = at_s_4$
 $f_3 = \mathbf{P}_{\geq 0.9} \mathbf{F}^{\leq 5} f_2$
 $f_4 = f_1 \Rightarrow f_3$
 $f_5 = \neg f_4$
 $f_6 = \mathbf{EF} f_5$
 $f_7 = \neg f_6 = \Phi$

$$f_1 : \{ s_0 \}$$
 $f_2 : \{ s_4 \}$
 $f_3 : \{ s_1, s_1 \}$
 $f_4 : \{ s_1, s_2 \}$
 $f_6 : \{ s_0, s_1 \}$

Свойство Ф НЕ выполняется для этого протокола

Символьный алгоритм Model checking для PTCL

- Вычисление вероятности выполнения формулы φUψ основано на решении систем линейных алгебраических уравнений, заданных матрицей размера n×n. Основная трудность с вероятностным model checking интеграция пакетов линейной алгебры с существующими верификаторами. Эта трудность следует из необходимости явного представления пространства состояний системы.
- Альтернатива: использование символьных вычислений, но использовать не BDD, а Multi-Terminal Binary Decision Diagrams (MTBDDs). Это обобщение BDD не только 0 и 1 в качестве пометок листьев, а любые вещественные числа
- Как и в случае применения BDD, точно оценить временную сложность алгоритмов model checking для MTBDDs трудно, но эксперименты показывают, что выигрыш существенный.

Пример: символьный алгоритм вероятностного Model checking

)::	s_0	S_1	s ₂	S ₃
S_0	0	0	0	1
S_1	0	0	0	1
s_2	1	0	0	0
S_3	.98	.01	.01	0

F($x_1x'_1x_2x'_2$)=

1, if $x_1x'_1x_2x'_2 \in \{0101, 0111, 1000\}$ 0.01, if $x_1x'_1x_2x'_2 \in \{1011, 1110\}$ 0.98, if $x_1x'_1x_2x'_2 \in \{1010\}$ 0.0, otherwise

Пример курсового проекта: Разработать самостоятельно алгоритмы оценки выполнимости формул PCTL с помощью символьных представлений

Символьная верификация для PCTL

Система верификации PRISM

Система верификации PRISM

Разработана группой проф. Martha Kwiatkowska в Uni Birmingem в2001

- Позволяет выполнить анализ систем, включающих вероятность и время
- Распространяется свободно для исследований и обучения
- Десятки тысяч скачиваний
- Сотни статей, исследующих проблемы с помощью системы Prism
- Основана на символьных алгоритмах, BDD, MTBDD, алгоритмах анализа
 Марковских цепей
- Сайт www.cs.bham.ac.uk/~dxp/prism/ методические материалы, алгоритмы, ...

Система верификации PRISM (2)

- Функциональность
 - Реализован model checking для стохастических систем,
 Probabilistic temporal logic
 - Используются модели:
 - дискретные и непрерывные цепи Маркова,
 - Марковские решающие процессы
- Высокоуровневый язык представления моделей
 - Спецификации свойств вида:
 - P<0.01 [true U ≤100 error] "вероятность того, что система достигнет состояния error в течение не более 100 временных единиц, меньше, чем 0.01"
 - P = ? [true U ≤50 terminate] "какова вероятность того, что система достигнет состояния terminate в течение не более 50 временных единиц?"

COOTH PRISN

Cooтношения между формулами, используемые в PRISM

•
$$s \mid = P_{\geq p}(\alpha) \equiv s \mid = \neg P_{<1-p}(\alpha)$$

•
$$s \mid = P_{>p}(\alpha) \equiv s \mid = \neg P_{\leq 1-p}(\alpha)$$

- $F\alpha = \text{true } U \alpha$
- $F^{\leq n}\alpha \equiv \text{true } U^{\leq n}\alpha$
- $G\alpha = \neg F \neg \alpha$
- $P_{\leq p}(G \alpha) \equiv P_{\geq 1-p}(F \neg \alpha)$
- $P_{p,q}(G \leq n \alpha) \equiv P_{[1-p,1-q]}(F \leq n \alpha)$

Пример. Моделирование игральной кости одной монетой: программа на входном языке системы PRISM

Ю.Г.Карпов

Спасибо за внимание