ABCD is a trapezoid with median \overline{MN} .

- 30. If DC = 6 and AB = 16, find ME, FN, and EF.
- 31. Prove that $EF = \frac{1}{2}(AB DC)$.
- 32. If DC = 3x, $AB = 2x^2$, and EF = 7, find the value of x.
 - G are congruent. J, K, L, and M are the

C 33. \overline{VE} and \overline{FG} are congruent. J, K, L, and M are the midpoints of \overline{EF} , \overline{VF} , \overline{VG} , and \overline{EG} . What name best describes JKLM? Explain.

0

- **34.** When the midpoints of the sides of quad. *ABCD* are joined, rectangle *PQRS* is formed.
 - a. Draw other quadrilaterals ABCD with this property.
 - **b.** What must be true of quad. ABCD if PQRS is to be a rectangle?

- **a.** Draw other quadrilaterals *ABCD* with this property.
- **b.** What must be true of quad. ABCD if PQRS is to be a rhombus?

A

36. P, Q, R, and S are the midpoints of the sides of quad. ABCD. In this diagram \overline{PR} and \overline{SQ} have the same midpoint, point O. If you think this will be the case for *any* quad. ABCD, prove it. If not, tell what other information you need to know about quad. ABCD before you can conclude that \overline{PR} and \overline{SQ} have the same midpoint.

Challenge

The three-dimensional figure shown has six congruent edges. Draw four such figures. On your diagrams show how a plane can intersect the figure to form (a) a triangle with three congruent sides, (b) a triangle with sides not all congruent, (c) a rectangle, and (d) an isosceles trapezoid.

