(8) d)
$$2a+b-c=0 \Rightarrow c=2a+b$$
 $W = \begin{cases} \binom{3}{2} & | 2a+b-c=0 \end{cases} \subseteq \mathbb{R}^{3}, \quad \binom{6}{2} \in \mathbb{W} \Rightarrow \binom{6}{2} = \binom{6}{2a+b} = a \binom{1}{0} + b \binom{1}{1} \Rightarrow \langle \binom{1}{0} \binom{1}{2}, \binom{1}{1} \rangle = W.$
 $3 = \begin{cases} \binom{1}{0} & | \binom{1}{0} - \binom{1}{0} \end{vmatrix}$ is linearly independent because if

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0}$, then $a = b = 0$.

 $3 = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0} + b \binom{1}{1} = \binom{1}{0} =$

12) L:
$$P_1 \rightarrow P_1$$
, $L(t+1) = 2t+3$, $L(t-1) = 3t-2$.

a) $L(bt-4) = ?$

S= $\frac{1}{2}t+1$, $t-1$ } is a basis for P_1 : $a(t+1)+b(t-1) = 0 \Rightarrow a+b=0$
 $\frac{a-b=0}{a=b=0}$
 $\frac{a-b=0}{a=b=0}$
 $\frac{a-b=0}{a=b=0}$

dim $P_1 = 2$ and S is A in independent. So S is a basis for P_1 .

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linear combination of $t+1$ and $t-1$:

6t-4 is a linea

15)
$$\alpha_{1} = (-1, 2, 1)$$
 , $\alpha_{2} = (2, 0, 1)$, $\alpha_{3} = (0, 1, 1) \in \mathbb{R}_{3}$ (busis).

(a) Let $(a_{1}b_{1}c) \in \mathbb{R}_{3}$ and write as a 0 -constraint of $a_{1}^{2}c_{3}^{2}$.

 $(a_{1}b_{1}c) = c_{1}x_{1} + c_{2}x_{1} + c_{3}x_{3} \Rightarrow^{2}/-c_{1}+2c_{2}=a$ $\Rightarrow 5c_{2}=2a+b$ $c_{2}=2a+b$ $c_{2}+c_{2}+c_{3}=c$.

$$c_{1}+c_{2}+c_{3}=c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c_{2}+c$$

$$c_{1}+c_{2}+c$$

$$c_{1}+c$$

$$c_{1}+c_{2}+c$$

$$c_{1}+c$$

$$c$$