EXERCISES FOR 520-2

1. March 28, 2017

Exercise 1. Let $E \to X$ be a smooth complex vector bundle and $\mathscr E$ be its sheaf of smooth sections. Show that if $\mathscr U = \{U_\alpha\}_{\alpha \in I}$ is a good cover for X then $\check{H}^k(\mathscr U,\mathscr E) = 0$ for k > 0. [Hint: fix a partition of unity η for $\mathscr U$ and define a contracting homotopy $s : \check{C}^k(\mathscr U,\mathscr E) \to \check{C}^{k-1}(\mathscr U,\mathscr E)$ by

(1)
$$(s\omega)_{\alpha_0\cdots\alpha_{k-1}} = \sum_{\alpha} \eta_{\alpha}\omega_{\alpha_0\cdots\alpha_{k-1}\alpha}.$$

where $\omega \in \check{C}^k(\mathscr{U},\mathscr{E})$.]

Exercise 2. Construct explicitly the long exact sequence for Čech cohomology.

Exercise 3. Check that for a good cover \mathscr{U} of X, the group $\check{\mathrm{H}}^1(\mathscr{U}, \mathrm{GL}(1,\mathbb{C}))$ is isomorphic to the group $\mathrm{Pic}\,X$ of isomorphism classes of complex line bundles on X.

Exercise 4. Recall that the Todd genus of a complex line bundle $L \to X$ is the (inhomogeneous) cohomology class $\operatorname{Td}(L) = f(c_1(L))$ where $c_1(L)$ is the first Chern class of L and $f(x) = x/(1 - e^{-x})$. Compute the Todd genus of a rank 2 complex vector bundle $E \to X$ in terms of $c_1(E)$ and $c_2(E)$.

Exercise 5. Recall that the Chern character of $E = L_1 \oplus \cdots \oplus L_r$ is defined

$$ch(E) = \sum_{i=1}^{r} ch(L_i) = \sum_{i=1}^{r} exp c_1(L_i) = \sum_{k=0}^{\infty} ch_k(E)$$

where $\operatorname{ch}_k(E) \in \operatorname{H}^{2k}(X;\mathbb{Q})$. Check that $\operatorname{ch}_0(E) = r$ and $\operatorname{ch}_1(E) = c_1(E)$, then compute ch_2 and ch_3 in terms of c_i .

Exercise 6. Let X be a compact complex manifold and $E \to X$ be a holomorphic vector bundle whose sheaf of holomorphic sections we write \mathscr{E} . The Hirzebruch-Riemann-Roch theorem is the equality

$$\sum_{k=0}^{\infty} (-1)^k \dim \mathcal{H}^k(X,\mathscr{E}) =: \chi(E) = \int_X \operatorname{ch}(E) \operatorname{Td}(X)$$

where $\mathrm{Td}(X) := \mathrm{Td}(TX)$. We will prove this theorem later in the course. First recover the Riemann-Roch theorem from this equality, then prove the theorem for $X = \mathbb{C}P^n$ and $E = \mathbb{C}P^n \times \mathbb{C}$ the trivial bundle.