

UTAustinX: UT.7.20x Foundations of Data Analysis - Part 2

- ▶ Important Pre-Course Survey
- Contact Us
- How To Navigate the Course
- Discussion Board
- Office Hours
- Week 0: Introduction to Data (Optional Review)
- ▼ Week 1: Sampling

Readings

Reading Check due May 03, 2016 at 18:00 UTC

Lecture Videos

Comprehension Check due May 03, 2016 at 18:00 UTC

R Tutorial Videos

Pre-Lab

Pre-Lab due May 03, 2016 at 18:00 UTC

Lab due May 03, 2016 at 18:00 UTC

Problem Set

Problem Set due May 03, 2016 at 18:00 UT 🗗 Week 1: Sampling > Lab > Analyze the Data

Analyze the Data

■ Bookmark

Primary Research Question

What percentage of the time are college students happy? How does our estimate of the true mean change as sample size increases?

Analysis

Let's break this question down into the different descriptive statistics that you will need to construct your answer. Be sure that your R output includes all of the following components.

Determine the population parameters:

- 1. Visualize the shape of the population data by making a histogram.
- 2. Calculate the "true" mean and standard deviation of the population.

Compare the sample statistics:

- 3. Draw 1,000 samples of size n=5 from the population data. Calculate the mean of each sample.
- 4. Graph these 1,000 sample means in a histogram and examine the shape.
- 5. Calculate the mean and standard deviation of the sampling distribution.
- 6. Repeat this process for samples of size n=15 and n=25.
- 7. Compare the results you get to the predictions of the Central Limit Theorem.

(4/4 points)

Population Parameters

1a) What is the	shape of the population happiness scores?
approxim	nately Normal
o positively	skewed
negativel	y skewed 🗸
	entage of the time are college students happy, on average ? decimals and no %)
78	✓ Answer: 78
78	
1c) What is the (round to 1 dec	standard deviation of the happiness percent scores? cimal place)
16.3	✓ Answer: 16.3
16.3	
	ommon for students to have high or low happiness percent to the range of percent scores in the population?
● high ✔	,
O low	
You have used	1 of 1 submissions
(3/3 points) Simulation	
For the samplir	ng distributions:
2a) The mean v	vas for all three sampling distributions.
approximately t	the same Answer: approximately the same

2b) The sample error (SE) as sample size increased.
decreased ▼
2c) The distributions became as sample size increased.
more Normal ✓ Answer: more Normal
You have used 1 of 1 submissions
(4/4 points) Central Limit Theorem
For the following questions, please use the rounded standard deviation value you provided above where necessary.
3a) According to the Central Limit Theorem, what do we expect the mean
to be for each sampling distribution (n=5, n=15 and n=25)? (round to 2 decimal places)
78.03 ✓ Answer: 78.03
78.03
3b) According to the Central Limit Theorem, what should be the standard error for the sampling distribution of n=5? (round to 2 decimal places).
7.29 Answer: 7.29
7.29
3c) According to the Central Limit Theorem, what should be the standard
error for the sampling distribution of n=15? (round to 2 decimal places).
4.21 ✓ Answer: 4.21
4.21
3d) According to the Central Limit Theorem, what should be the standard error for the sampling distribution of n=25? (round to 2 decimal places).
3.26 ✓ Answer: 3.26
3.26

You have used 1 of 1 submissions

(1/1 point)

- 4) Based on these simulations, what can you say about the relationship between the shape of the **population** and the shape of the **sampling** distribution of means?
 - The sampling distribution will be Normal only if the original population was also Normal.
 - If the population is skewed, the sampling distribution will be skewed as well, no matter how large the sample size.
 - If the sample size is large enough, the sampling distribution will be Normal no matter what the shape of the population.

You have used 1 of 1 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

