

概率论与数理统计

第三节 参数的区间估计

- 一、基本概念
- 二、数学期望的置信区间
- 三、正态总体方差的区间估计
- 四、两个正态总体 均值差的区间估计
- 五、两个正态总体 方差比的区间估计

一、基本概念

定义6.7 设总体 X的分布函数为 $F(x;\theta)$, θ 为未知参数, (X_1, X_2, \dots, X_n) 是来自总体 X 的样本. 如果存在两个统计量 $\hat{\theta}_1(X_1, X_2, \dots, X_n)$ 和 $\hat{\theta}_2(X_1, X_2, \dots, X_n)$,对于给定的 α (0 < α < 1),使得

$$P\{\hat{\theta}_1(X_1, X_2, \dots, X_n) \le \theta \le \hat{\theta}_2(X_1, X_2, \dots, X_n)\} = 1 - \alpha$$
 则称区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 为参数 θ 的置信度为 $1 - \alpha$ 的置

则称区间 $[\theta_1,\theta_2]$ 为参数 θ 的宣信度为 $1-\alpha$ 的宣信区间, $\hat{\theta}_1$ 称为置信下限, $\hat{\theta}_2$,称为置信上限.

二、数学期望的置信区间

1. 正态总体 X 的方差 σ^2 已知,求 μ 的置信 区间.

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 求总体均值 μ 的区间估计. 设 (X_1, X_2, \dots, X_n) 是来自总体 X 的一个样本, 则有:

$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

则

$$P\{|U| \le u_{\alpha/2}\} = 1 - \alpha$$

其中 $u_{\alpha/2}$ 为标准正态分布的 $\alpha/2$ 上侧分位数.

 $P\left\{\left|\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\right| \leq u_{\alpha/2}\right\} = 1-\alpha$

则
$$P\left\{\overline{X} - u_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + u_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

故 μ 的置信度为 $1-\alpha$ 的置信区间为:

$$\left[\overline{X}-u_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+u_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

若给定 $\alpha = 0.05$, 查正态分布表得

 $u_{0.025} = 1.96$,于是得 μ 的置信度为95%的置

信区间为:

$$\left[\overline{X}-1.96\frac{\sigma}{\sqrt{n}}, \overline{X}+1.96\frac{\sigma}{\sqrt{n}}\right]$$

例1 某车间生产的滚珠直径 X 服从正态分布 $N(\mu,0.06)$,现从某天生产的产品中抽取6个,测得直径分别为(单位:mm).

14.6, 15.1, 14.9, 14.8, 15.2, 15.1 试求平均直径置信度为95%的置信区间.

解 置信度为 $1-\alpha=0.95$, $\alpha=0.05$ $u_{\alpha/2}=u_{0.025}=1.96$,由样本值得

$$\bar{x} = 14.95, n = 6, \sigma = \sqrt{0.06}$$

由公式有:

置信下限
$$\overline{X} - u_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 14.95 - 1.96 \frac{\sigma}{\sqrt{n}} = 14.75$$

置信上限
$$\overline{X} + u_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 14.95 + 1.96 \frac{\sigma}{\sqrt{n}} = 15.15$$

所以平均直径 μ 的置信度为95%的置信区间为

若取 $\alpha = 0.01$,可算出 μ 的置信度为 99%的置信区间为 [14.69,15.21].

2. 正态总体X的方差 σ^2 未知,求 μ 的置信区间.

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知,求总体均值 μ 的区间估计. 设(X_1, X_2, \dots, X_n) 来自总体X的一个样本,则有:

$$T = \frac{\overline{X} - \mu}{S_n^* / \sqrt{n}} \sim t(n-1)$$

从而对于给定的置信度, $1-\alpha$ 有

$$P\{|T|\leq t_{\alpha/2}(n-1)\}=1-\alpha$$

其中 $t_{\alpha/2}(n-1)$ 是自由度为 n-1 的 t 分布关于 $\alpha/2$ 的上侧分位数,于是有

$$P\left\{\left|\frac{\overline{X}-\mu}{S_n^*/\sqrt{n}}\right| \le t_{\alpha/2}(n-1)\right\} = 1-\alpha$$

$$\mathbb{P}\left\{\overline{X}-t_{\alpha/2}(n-1)\frac{S_n^*}{\sqrt{n}} \leq \mu \leq \overline{X}+t_{\alpha/2}(n-1)\frac{S_n^*}{\sqrt{n}}\right\}$$

故μ的置信度为1-α的置信区间为

$$\left[\overline{X}-t_{\alpha/2}(n-1)\frac{S_n^*}{\sqrt{n}}, \overline{X}+t_{\alpha/2}(n-1)\frac{S_n^*}{\sqrt{n}}\right]$$

例2 某糖厂用自动包装机装糖,设每包糖的重量服从正态分布 $N(\mu,\sigma^2)$, σ^2 未知 . 某日开工后测得9包糖的重量分别为(单位: kg)

99.3, 98.7, 100.5, 101.2, 98.3, 99.7, 99.5, 102.1, 100.5

试求每包糖平均重量 µ 的置信度为95%的置信区间.

解 由题设知置信度 $1-\alpha=0.95$,

查 t 分布表得 $t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.306$

由样本观测值得 $\bar{x} = 99.978$, $S_n^{*2} = 1.47$ 则总体 X 的数学期望 μ 的置信度为95%的置信区间为

$$\left[\overline{x} - t_{\alpha/2}(n-1)S_n^* / \sqrt{n}, \overline{x} + t_{\alpha/2}(n-1)S_n^* / \sqrt{n} \right]$$

$$= \left[99.978 - 2.306 \times \sqrt{1.47} / 3,99.978 + 2.306 \times \sqrt{1.47} / 3 \right]$$

$$= [99.046, 100.91]$$

三、正态总体方差的区间估计

设总体 $X \sim N(\mu, \sigma^2)$, μ , σ^2 未知, 求总体方差或标准差 σ 的区间估计. 设 (X_1, X_2, \dots, X_n) 是来自总体 X 的一个样本, 则有:

$$\chi^2 = \frac{(n-1)S_n^{*2}}{\sigma^2} \sim \chi^2 (n-1)$$

从而对于给定的置信度 $1-\alpha$,有

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) \leq \chi^{2} \leq \chi_{\alpha/2}^{2}\right\} = 1-\alpha$$

从而:
$$P\left\{\frac{(n-1)S_n^{*2}}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{(n-1)S_n^{*2}}{\chi_{1-\alpha/2}^2(n-1)}\right\} = 1-\alpha$$

故 σ^2 的置信度为 $1-\alpha$ 的置信区间为:

$$\left[\frac{(n-1)S_n^{*2}}{\chi_{\alpha/2}^2}, \frac{(n-1)S_n^{*2}}{\chi_{1-\alpha/2}^2}\right]$$

而 σ 的置信度为1- α 的置信区间为:

$$\sqrt{\frac{(n-1)S_n^{*2}}{\chi_{\alpha/2}^2}}, \sqrt{\frac{(n-1)S_n^{*2}}{\chi_{1-\alpha/2}^2}}$$

例3 从自动机床加工的同类零件中抽取16件, 测得长度分别为(单位:cm):

12.15, 12.12, 12.01, 12.08, 12.09, 12.16,

12.06, 12.13, 12.07, 12.11, 12.08, 12.01,

12.03, 12.01, 12.03, 12.06

假设零件长度服从正态分布 $N(\mu, \sigma^2)$,分别求零件长度方差 σ^2 和标准差 σ 的置信度为95%的置信区间.

解 由题意有 $n=16, 1-\alpha=0.95, \alpha=0.05$, 查 χ^2

分布表得 $\chi^2_{0.025}(15) = 27.5$, $\chi^2_{0.975}(15) = 6.26$,又

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 12.08, \quad (n-1)S_n^{*2} = 0.037$$

置信下限
$$\frac{(n-1)S_n^{*2}}{\chi_{\alpha/2}^2(n-1)} = \frac{0.037}{27.5} \approx 0.0013$$

置信上限
$$\frac{(n-1)S_n^{*2}}{\chi_{1-\alpha/2}^2(n-1)} = \frac{0.037}{6.26} \approx 0.0059$$

故 σ^2 的置信度为95%的置信区间为

[0.0013, 0.0059], σ 的置信区间为[0.036, 0.077].

四、两个正态总体均值差的区间估计

设 X与 Y 是两个独立的正态总体,且 $X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^2), (X_1, X_2, ..., X_{n_1})$ 为总体 X 的样本, $(Y_1, Y_2, ..., Y_{n_2})$ 为总体 Y 的样本, 求 $\mu_1 - \mu_2$ 的区间估计.

由于统计量
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{(n_1 - 1)S_1^{*2} + (n_2 - 1)S_2^{*2}}{n_1 + n_2 - 2}}$$

于是,对于给定的置信度 $1-\alpha$,有

$$P\{|T| \le t_{\alpha/2}(n_1+n_2-2)\} = 1-\alpha$$

其中 $t_{\alpha/2}(n_1+n_2-2)$ 是自由度为 n_1+n_2-2 的t分布关于 $\alpha/2$ 的上侧分位数.

$$\mathbb{P} p\{(\overline{X} - \overline{Y}) - t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1}} + \frac{1}{n_2} \le \mu_1 - \mu_2$$

$$\leq (\overline{X} - \overline{Y}) + t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \} = 1 - \alpha$$

故 $\mu_1 - \mu_2$ 的置信度为 $1 - \alpha$ 的置信区间为:

$$[(\overline{X}-\overline{Y})-t_{\alpha/2}(n_1+n_2-2)S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}},$$

$$(\overline{X}-\overline{Y})+t_{\alpha/2}(n_1+n_2-2)S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$$

例4 机床厂某日从两台机床加工的零件中,分别抽取若干个样品,测得零件的尺寸分别如下(单位: cm):

A台: 6.2, 5.7, 6.5, 6.0, 6.3, 5.8, 5.7,

6.0, 6.0, 5.8, 6.0

B台: 5.6, 5.9, 5.6, 5.7, 5.8, 6.0, 5.5

5.7, 5.5

假设两台机器加工的零件尺寸均服从正态分布, 且方差相等,取置信度为0.95,试求两台机器 加工的零件平均尺寸之差的区间估计。 解 设A台机器加工的零件尺寸为总体 X, B台机器加工的零件尺寸为总体 Y,由题设知置信度 $1-\alpha=0.95$, $n_1=11$, $n_2=9$

查表 t 分布表得 $t_{0.025}(18) = 2.1009$

经计算得两台机器加工的零件平均尺寸分别为

$$\bar{x}_A = 6.0, \ \bar{y}_B = 6.7$$

$$n_1 S_1^2 = \sum_{i=1}^{n_1} x_i^2 - n_1 \overline{x}_A^2 = 0.64$$

$$n_2 S_2^2 = \sum_{i=1}^{n_2} y_i^2 - n_2 \overline{y}_B^2 = 0.24$$

$$S_{w} = \sqrt{\frac{(n_{1} - 1)S_{1}^{*2} + (n_{2} - 1)S_{2}^{*2}}{n_{1} - n_{2} - 2}} = \sqrt{\frac{0.64 + 0.24}{11 + 9 - 2}} = 0.2211$$

则 $\mu_1 - \mu_2$ 的置信度为 $1 - \alpha$ 的置信上下限分别为

置信下限
$$\overline{X} - \overline{Y} - t_{0.025}(18)S_w \sqrt{\frac{1}{11}} + \frac{1}{9} = 0.0912$$

置信上限
$$\overline{X} - \overline{Y} + t_{0.025}(18)S_w \sqrt{\frac{1}{11}} + \frac{1}{9} = 0.5088$$

故 μ1 - μ2 的置信度为95%的置信区间为

[0.0912, 0.5088]

五、两个正态总体方差比的区间估计

设X与Y是两个独立的正态总体,且 $X \sim N(\mu_1, \sigma_1^2)$, $(X_1, X_2, \dots, X_{n_1})$ 为总体 X 的样本, $Y \sim N(\mu_2, \sigma_2^2)$, (Y_1, Y_2, \dots, Y_n) 为总体Y 的样本, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$, 未知. 求此两个总体的方差比 σ_1^2/σ_2^2 的区间估计. 由于统计量

$$F = \frac{S_2^{*2} \sigma_1^2}{S_1^{*2} \sigma_2^2} \sim F(n_2 - 1, n_1 - 1)$$

于是对给定的置信度1-α有:

$$P\{F_{1-\alpha/2}(n_2-1, n_1-1) \le F \le F_{\alpha/2}(n_2-1, n_1-1)\}$$

= 1-\alpha

从而可得

$$P\left\{F_{1-\alpha/2}(n_2-1,n_1-1)\frac{S_1^{*2}}{S_2^{*2}} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{\sigma_1^2}{\sigma_2^2} \le F_{\alpha/2}(n_2-1,n_1-1)\right\}$$

$$=1-a$$

故 σ_1^2/σ_2^2 的置信度为 $1-\alpha$ 的置信区间为

$$[F_{1-\alpha/2}(n_2-1,n_1-1)\frac{S_1^{*2}}{S_2^{*2}},$$

$$F_{\alpha/2}(n_2-1,n_1-1)\frac{S_1^{*2}}{S_2^{*2}}$$

例5 为了考查温度对某物体断裂强度的影响,在70°C与80°C分别重复做了8次试验,测得断裂强力的数据如下(单位: MPa):

70°C: 20.5, 18.8, 19.8, 20.9, 21.5, 19.5,

21.0, 21.2

80°C: 17.7, 20.3, 20.0, 18.8, 19.0, 20.1

20.2, 19.1

假设70°C下的断裂强度用 X 表示, $X \sim N(\mu_1, \sigma_1^2)$ 80°C下的断裂强度用 Y 表示, $Y \sim N(\mu_2, \sigma_2^2)$,且 X与 Y 相互独立. 试求方差比 σ_1^2/σ_2^2 的置信度为 度为90%的置信区间.

解 由题设知置信度为 $1-\alpha=0.9$, $n_1=n_2=8$, 查 F 分布表得 $F_{0.05}(7,7)=3.79$ 由 F 分布分位数的性质得

$$F_{0.95}(7,7) = \frac{1}{F_{0.05}(7,7)} = \frac{1}{3.79} = 0.2639$$

经计算得两正态总体的样本均值和样本修正方差 分别为

$$\bar{x} = 20.4, \quad \bar{y} = 19.4,$$

$$S_1^{*2} = 0.8857, \quad S_2^{*2} = 0.8286$$

则 σ_1^2/σ_2^2 的置信度为90%置信区间为

$$\left[F_{1-\alpha/2}(n_2-1,n_1-1)\frac{S_1^{*2}}{S_2^{*2}},F_{\alpha/2}(n_2-1,n_1-1)\frac{S_1^{*2}}{S_2^{*2}}\right]$$

$$= \left[0.2639 \times \frac{0.8857}{0.8286}, 3.79 \times \frac{0.8857}{0.8286}\right]$$

$$=[0.2821, 4.0515]$$

内容小结

点估计不能反映估计的误差和精度,因此,本节引入了区间估计.

置信区间是一个随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$,它覆盖未知参数具有预先给定的高概率(置信度),即对于任意的 $\theta \in \Theta$,有 $P(\hat{\theta}_1 \le \theta \le \hat{\theta}_2) = 1 - \alpha$. 求置信区间的一般步骤(分三步).

正态总体均值与方差的区间估计

1. 单个总体均值 µ 的置信区间

$$\begin{cases} (1) \ \sigma^2 \\ \exists \text{知}, & \left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2} \right). \\ (2) \ \sigma^2 \\ \ddagger \text{知}, & \left(\overline{X} \pm \frac{S_n^*}{\sqrt{n}} t_{\alpha/2} (n-1) \right). \end{cases}$$

2. 单个总体均值 σ^2 的置信区间

$$\left(\frac{(n-1)S_n^{*2}}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S_n^{*2}}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

3. 两个总体均值差 μ1 - μ2的置信区间

$$\sigma_1^2$$
和 σ_2^2 均为已知,
$$\left(\overline{X} - \overline{Y} \pm u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
,但 σ^2 为未知,

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right).$$

4. 两个总体方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间

总体均值 μ1, μ2 为未知,

$$\left(\frac{S_1^{*2}}{S_2^{*2}}\frac{1}{F_{\alpha/2}(n_1-1,n_2-1)},\frac{S_1^{*2}}{S_2^{*2}}\frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

备用题

例1-1 某商店每百元投资的利润服从正态分布,均值为 μ ,方差为 σ^2 ,其中 $\sigma^2=0.4$,现随机抽取的五天的利润率为-0.2,0.1,0.8,-0.6,0.9,试求 μ ,的置信水平为0.95的置信区间.为使 μ ,的置信水平为0.95的置信区间长度不超过0.4,则至少应随机抽取多少天的利润才能达到.

解 以 X 表示每天的利润率,方差 σ^2 已知,则 μ 的置信区间为 $\left[\overline{X} - u_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$.

由题意可得置信度为 $1-\alpha=0.95$, $\bar{x}=0.2$, n=5. 查标准正态分布表得 $u_{\alpha/2}=1.96$ 故 μ 的置信水平为0.95的置信区间为

[-0.354, 0.754].

当 $\alpha = 0.05$, n 未定时,置信区间长度为

$$L = 2u_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 2 \times 1.96 \times \frac{\sqrt{0.04}}{\sqrt{n}}$$

由 $L \leq 0.4$,则

$$n \ge \left(2 \times 1.96 \times \frac{\sqrt{0.4}}{4}\right)^2 = 38.46$$

所以 n≥39.

例5-1 两台机床生产同一个型号的滚珠,从甲机床生产的滚珠中抽取8个,从乙机床生产的滚珠中抽取8个,从乙机床生产的滚珠中抽取9个,测得这些滚珠的直径(mm)如下:

甲机床: 15.0, 14.8, 15.2, 15.4, 14.9,

15.1, 15.2, 14.8

乙机床: 15.2, 15.0, 14.8, 15.1, 15.6,

14.8, 15.1, 14.5, 15.0

(1) 若两台机床生产的滚珠直径的标准差分别是 $\sigma_1 = 0.18$, $\sigma_2 = 0.24$, 求这两台机床生产的滚珠直径均值差 $\mu_1 - \mu_2$ 的置信度为0.90的置信区间.

- (2) 若 $\sigma_1 = \sigma_2 = \sigma$ 未知,求 $\mu_1 \mu_2$ 的置信 度为0.90的置信区间.
- (3) 若两台机床生产的滚珠直径的均值分别是 $\mu_1 = 15.0$, $\mu_2 = 15.0$, 求方差比 σ_1^2/σ_2^2 的置信度为0.90的置信区间.
- (4) 若 μ_1 , μ_2 未知,求方差比 σ_1^2/σ_2^2 的置信度为0.90的置信区间.

$$m_1 = 8, \ \overline{x} = 15.05, \ S_1^{*2} = 0.0457$$

$$m_2 = 9, \ \overline{y} = 14.9, \ S_2^{*2} = 0.0575$$

(1) 当 $\sigma_1 = 0.18$, $\sigma_2 = 0.24$ 时, $\mu_1 - \mu_2$ 的置信度为0.90的置信区间为

$$\left[\bar{X} - \bar{Y} - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \bar{X} - \bar{Y} + u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right].$$

查标准正态分布表得 $u_{0.05} = 1.645$,从而

$$\overline{X} - \overline{Y} - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}} = -0.018$$

$$\overline{X} - \overline{Y} + u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = 0.318$$

故置信区间为[-0.018, 0.318].

(2) 当 $\sigma_1 = \sigma_2 = \sigma$ 未知时, $\mu_1 - \mu_2$ 的置信度为0.90的置信区间为

$$[(\overline{X}-\overline{Y})-t_{\alpha/2}(n_1+n_2-2)S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}},$$

$$(\overline{X} - \overline{Y}) + t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

式中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^{*2} + (n_2 - 1)S_2^{*2}}{n_1 + n_2 - 2}}$$

$$t_{0.05}(15) = 1.7531, S_w = 0.486$$
,则

$$\overline{X} - \overline{Y} - t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = -0.044,$$

$$\overline{X} - \overline{Y} + t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 0.344.$$

(3) 当 μ_1 , μ_2 已知时, σ_1^2/σ_2^2 的置信度为 $1-\alpha$ 的置信区间为

$$F_{0.05}(8,9) = 3.23, F_{0.95}(8,9) = \frac{1}{F_{0.05}(8,9)} = 0.295$$

$$\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1$$

$$\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1$$

$$F_{\alpha/2}(n_1, n_2) \sum_{i=1}^{n_2} (Y_i - \mu_2)^2 / n_2$$
 $F_{1-\alpha/2}(n_1, n_2) \sum_{i=1}^{n_2} (Y_i - \mu_2)^2 / n_2$

这里
$$\sum_{i=1}^{8} (X_i - 15.0)^2 = 0.34$$
, $\sum_{i=1}^{9} (Y_i - 14.9)^2 = 0.46$

$$F_{0.05}(8,9) = 3.23, F_{0.95}(8,9) = \frac{1}{F_{0.05}(9,8)} = 0.295$$

从而得 σ_1^2/σ_2^2 的0.90的置信区间为

$$\left[\frac{0.34/8}{3.23 \times 0.46/9}, \frac{0.34/8}{0.295 \times 0.46/9}\right] = \left[0.257, 2.918\right]$$

(4) 当 μ_1 , μ_2 未知时, σ_1^2/σ_2^2 的置信度为的0.90的置信区间为

$$\left[\frac{S_1^{*2}}{S_2^{*2}} \frac{1}{F_{\alpha/2}(n_1-1, n_2-1)}, \frac{S_1^{*2}}{S_2^{*2}} \frac{1}{F_{1-\alpha/2}(n_1-1, n_2-1)}\right]$$

这里
$$F_{0.05}(7,8) = 3.50, F_{0.95}(7,8) = \frac{1}{F_{0.05}(8,7)} = 0.268$$

从而 σ_1^2/σ_2^2 的0.90的置信区间为

$$\left[\frac{0.0457}{0.0575} \times \frac{1}{3.5}, \frac{0.0457}{0.0575} \times \frac{1}{0.268}\right] = [0.227, 2.965].$$

