Exercices d'oraux banque PT 2025 - Mathématiques

Table des matières

L	Mines Télécom	1
2	Maths I	4
3	Maths II	7
1	Questions de cours	12

1 Mines Télécom

exercice 1:

On définit le produit scalaire sur $\mathcal{M}_2(\mathbb{R})$ par, pour tout $M, N \in \mathcal{M}_2(\mathbb{R})$,

$$\langle M, N \rangle = \operatorname{Tr} \left(M^{\top} N \right)$$

On pose
$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \, (a,b) \in \mathbb{R}^2 \right\}$$
.

- 1. Déterminer une base orthonormée de F^{\perp} .
- 2. Déterminer le projeté de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .
- 3. Déterminer la distance de J à F.

exercice 2:

On considère les deux fonctions f et g définies par, pour tout $x,y \in \mathbb{R}$: $f(x,y) = x^2 + y^2 + xy + 1$ et $g(x,y) = x^2 + y^2 + 2xy + 2$.

- 1. Déterminer les points critiques de f et g.
- 2. En repérant le début d'un carré, déterminer la nature des extrema locaux de f.
- 3. En utilisant deux droites, déterminer la nature des extrema locaux de g.

exercice 3:

On pose, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $I_n = \int_0^{\pi} \sin^{2n}(t) dt$ et $F(x) = \int_0^{\pi} \cos(x \sin(t)) dt$.

- 1. Exprimer I_n en fonction de I_{n-1} .
- 2. Exprimer I_n en fonction de n (et de factorielles).

- 3. Montrer que $f_t: x \mapsto \cos(x\sin(t))$ est développable en série entière en 0 et donner son développement en série entière.
- 4. En utilisant d'intégration terme à terme, donner un développement en série entière en 0 de F.

exercice 4:

- 1. Diagonaliser $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 2. La matrice $B_a = \begin{pmatrix} 1+a & 1 & 1 \\ 1 & 1+a & 1 \\ 1 & 1+a \end{pmatrix}$ est-elle diagonalisable? Si oui, la diagonaliser.

exercice 5:

Déterminer le rayon de courbure, les centres de courbure et tracer la courbe paramétrée définie par :

$$\begin{cases} x(t) = t \\ y(t) = \ln(\cos(t)) \end{cases}$$

exercice 6:

Déterminer, pour $\alpha \in \mathbb{R}_+^*$, la nature de $\sum_{n \in \mathbb{N}^*} \ln \left(1 + \frac{(-1)^n}{n^{\alpha}} \right)$.

exercice 7:

Soit $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}^*$. On pose, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $u(M) = aM + bM^{\top}$.

- 1. Montrer que u est un endomorphisme.
- 2. Montrer que u est diagonalisable et donner ses valeurs propres.
- 1. Calculer tr(u) et det(u).

exercice 8:

Soit $n \in \mathbb{N}^*$ $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$. Discuter de la diagonalisabilité de $M = XY^{\top}$.

exercice 9:

1. Soit $a, b, c \in \mathbb{R}$. Trouver a, b et c tels que, pour tout $t \in \mathbb{R} \setminus \{-1, 0, 1\}$, on ait :

$$\frac{2}{t(t^2-1)} = \frac{a}{t} + \frac{b}{t-1} + \frac{c}{t+1}$$

2

2. Résoudre $t(t^2 - 1)x' + 2x = \frac{t}{t^2 - 1}$.

exercice 10:

On pose $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ et pour tout $M \in \mathcal{M}_2(\mathbb{R}), f(M) = AM$.

1. L'application f est-elle un endomorphisme?

- 2. Déterminer les dimensions de Ker(f) et Im(f).
- 3. Est-ce que f est diagonalisable?

exercice 11:

On considère l'équation différentielle :

(E):
$$2x(x-1)y'' + (x+1)y' - y = 0$$

- 1. Déterminer les solutions polynomiales de (E).
- 2. On suppose que $x \mapsto x^{\alpha}$ est une solution de (E). Déterminer α .
- 3. Résoudre complètement (E).

exercice 12:

Déterminer les plans tangents à $S: x^2 - 3y^2 + z^2 = 1$ passant par A(1,0,1) (on se place dans un espace euclidien . . .)

exercice 13:

On considère l'équation différentielle :

(E):
$$(x^2 + x)y'' + (3x - 1)y' + y = 0$$

- 1. Déterminer les solutions développables en série entière de (E).
- 2. Déterminer les solutions de (E) qui s'écrivent sous la forme $y(x) = \frac{z(x)}{1+x}$.

exercice 14:

$$\begin{cases} x(u,\theta) = e^{-u}\cos(\theta) \\ y(u,\theta) = e^{-u}\sin(\theta) \\ z(u,\theta) = \int_0^u \sqrt{1 - e^{-2t}} \, \mathrm{d} \, t \end{cases}$$

- 1. Soit $\theta \in \mathbb{R}$ fixé. Montrer que C_{θ} : $(x(u,\theta),y(u,\theta),z(u,\theta))$ est une courbe plane. Dans quel plan est-elle contenue?
- 2. Soit $u \in \mathbb{R}$. On pose $\Gamma_u : \theta \mapsto (x(u,\theta),y(u,\theta),z(u,\theta))$. Quel est le type de courbe? Donner son équation.
- 3. Trouver le point d'intersection des tangentes telles qu'elles soient orthogonales.

exercice 15:

Soit $n \in \mathbb{N}^*$. Une urne contient 2n boules numérotées de 1 à 2n. On tire n boules.

- 1. Combien existe-t-il de façons de tirer n boules?
- 2. Soit $k \in [1, 2n]$. Quelle est la probabilité de ne pas tirer la boule numérotée k?
- 2. Soit $k_1, k_2 \in [1, 2n]$ avec $k_1 \neq k_2$. Quelle est la probabilité de ne pas tirer les boules numérotées k_1 et k_2 ?

2 Maths I

exercice 1:

Soit $n \in \mathbb{N}^*$. On pose Q un polynôme tel que $\deg(Q) \leq n$. On définit alors f_Q sur $E = \mathbb{R}_n[X]$ par :

$$\forall P \in E, \quad f_Q(P) = (PQ)^{(n)}$$

- 1. Montrer que f_Q est un endomorphisme de E.
- 2. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit un automorphisme.
- 3. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit diagonalisable. Donner $\mathrm{Im}(f_Q)$ et $\mathrm{Ker}(f_Q)$.
- 4. Soit n=2. Donner les sous-espaces propres de f_Q pour :
- a) Q = X 1
- b) $Q = X^2 + X + 1$

exercice 2:

On considère la série $\sum_{n\geq 1} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

1. Montrer que pour $x \ge 0$, cette série converge.

On pose, pour tout $x \in \mathbb{R}_+$, $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$.

- 2. Montrer que S est dérivable sur \mathbb{R}_+ et que pour tout $x \in \mathbb{R}_+$, $S'(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$.
- 3. Calcular $\int_{1}^{+\infty} \left(\frac{1}{t} \frac{1}{t+x} \right) dt$.

exercice 3 : s Soit β la courbe paramétrée définie par, pour $a \in \mathbb{R}_+$:

$$\beta: \begin{cases} x(t) = a(t - \cos(t)) \\ y(t) = a(1 - \sin(t)) \end{cases}, \quad t \in]0, 2\pi[$$

- 1. Calculer la longueur de la courbe.
- 2. On cherche à trouver les courbes Γ qui vérifient les conditions suivantes : il existe une droite \mathcal{D} et une abscisse curviligne s telles que quel que soit $M \in \Gamma$, l'image de M par la translation de vecteur $-\frac{S}{2}\overrightarrow{T}$ appartient à la droite \mathcal{D} .
- a) Ceci est-il vrai pour β et $\mathcal{D}: y = ax$? Si oui, quelle est l'origine de s?

exercice 4:

Soit S une surface définie par z = f(x, y), avec f de classe \mathcal{C}^1 sur \mathbb{R} .

- 1. Déterminer le vecteur normal à S.
- 2. Montrer que si la normale à S en M_0 est parallèle à (Oz) ou coupe (Oz), alors on a la relation

$$y_0 \frac{\partial f}{\partial x}(x_0, y_0) - x_0 \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

(A stuce : trouver une relation entre $\overrightarrow{OM_0}, \ \overrightarrow{n} \ \text{et} \ \overrightarrow{k}.)$

- 3. Soit $g = f(r\cos(\theta), r\sin(\theta))$. Déterminer les dérivées partielles de g.
- 4. Montrer que S est une surface de révolution si la normale à S est parallèle à (Oz) ou sécante à (Oz).

exercice 5:

Soit $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que $\operatorname{rg}(A) = 1$. Montrer qu'il existe $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A = XY^{\top}$.
- 2. Qu'en est-il de la réciproque?

Dans toute la suite, on suppose que rg(A) = 1.

- 3. Montrer que $A^2 = \text{Tr}(A)A$.
- 4. Déterminer une expression de A^k pour $k \in \mathbb{N}^*$.
- 5. À quelle condition nécessaire et suffisante a-t-on $A^n = 0$? (condition sur la trace)
- 6. À quelle condition nécessaire et suffisante A est-elle diagonalisable?

exercice 6:

Soit $A \in \mathbb{R}$, et f une fonction continue et décroissance sur $[A, +\infty[$.

1. Soit $p \in \mathbb{N}^*$ et $N \in \mathbb{N}^*$ avec $N \leq p$. Montrer que :

$$\int_A^{\frac{(p+1)A}{N}} f(t) \, \mathrm{d} \, t \leq \frac{1}{N} \, \sum_N^p f\left(\frac{nA}{N}\right) \leq \int_A^{\frac{pA}{N}} f(t) \, \mathrm{d} \, t + f\left(\frac{A}{N}\right)$$

2. Montrer que $\sum_{n=N}^{+\infty} f\left(\frac{nA}{N}\right)$ converge.

exercice 7:

On note $(u_n)_{n\in\mathbb{N}}$ une suite de premier terme $u_0=1$ et telle que pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{2n+2}{2n+5}u_n$.

- 1. On définit $(v_n)_{n\in\mathbb{N}}$ une suite de terme général $v_n=\frac{(n+1)^{\alpha}}{n^{\alpha}}\times\frac{u_{n+1}}{u_n}$ avec $\alpha\in\mathbb{R}_+^*$. Déterminer un α_0 tel que la série $\sum_{n\in\mathbb{N}}\ln(v_n)$ converge.
- 2. Montrer qu'il existe $C \in \mathbb{R}_+^*$ tel que $u_n \underset{n \to +\infty}{\sim} \frac{C}{n^{\frac{3}{2}}}$.

exercice 8:

On définit, pour $n \in \mathbb{N}$ le polynôme T_n par $T_n : x \mapsto \cos(n \arccos(x))$. Soit $n \in \mathbb{N}$.

- 1. Avec la formule de Moivre, déterminer le degré et le coefficient dominant de T_n .
- 2. Calculer T_0, T_1, T_2, T_3 .

- 3. Discuter de la parité de T_n .
- 4. Déterminer T_{n+1} en fonction de T_n et T_{n-1} .

exercice 9:

Soit
$$f: x \mapsto \frac{1}{\sqrt{1-x^2}}$$
.

- 1. a) Déterminer $\mathcal{D}_{f'}$ le domaine de définition de la dérivée de f et calculer f'.
- b) Montrer que f est solution d'une équation différentielle.
- 2. a) On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. Déterminer une relation entre a_{n+1} et a_{n-1} .
- b) En déduire le développement en série entière de f.

exercice 10:

Soient U, V deux variables aléatoires indépendantes suivant une loi binomiale de paramètres $\left(2, \frac{1}{2}\right)$. On pose $S = (U-1)^2 + (V-1)^2$.

- 1. a) Montrer que $S \sim \mathcal{B}\left(2, \frac{1}{2}\right)$.
- b) Calculer $\sigma(S^2)$.
- 2. On pose T = (U 1)(V 1) + 1.
- a) Calculer E(S(T-1)).
- b) Donner la loi de S.

exercice 11:

Soir Z une variable aléatoire, m son espérance, σ^2 sa variance.

- 1. a) Majorer $P(|Z m| \ge \varepsilon)$ avec $\varepsilon > \sigma$.
- b) On a maintenant m = 1, $\sigma = \sqrt{2}$. Que dire de P(-2 < Z < 4)?
- 2. On a une pièce équilibrée. Soit N la variable aléatoire qui compte le nombre de piles tant que ça fait pile. Le jeu s'arrête dès que ça fait face.
- a) Soit $n \in \mathbb{N}$. Donner P(N = n).
- b) Quelle est la probabilité que le jeu ne s'arrête jamais?

exercice 12:

On considère $f: x \mapsto \sum_{n=0}^{+\infty} x^{n^2}$.

- 1. Donner \mathcal{D}_f .
- 2. Montrer que pour tout $x \in [0, 1[$ et $n \in \mathbb{N},$ on a :

$$\int_0^{N+1} x^{t^2} dt \ge \sum_{n=0}^N x^{n^2} \ge \int_0^N x^{t^2} dt + 1$$

6

3. Déterminer un équivalent de f. Que se passe-t-il en -1?

exercice 13:

Soit

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto x^2 y^2 (1+3x+2y)$

- 1. Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 . Calculer son gradient.
- 2. Donner la formule de Taylor-Young à l'ordre 2. Étudier la nature des extrema locaux.
- 3. Ces extrema sont-ils globaux?

exercice 14:

Soit $U = \mathbb{R}_+^* \times \mathbb{R}$, f de classe \mathcal{C}^1 sur U. On a, pour $t \in \mathbb{R}_+^*$,

$$(H): f(tx, ty) = t^{\alpha} f(x, y)$$

1. En dérivant la relation (H) par rapport à t, vérifier que sur U, on a :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$
 (E)

- 2. On pose, sur $V = \left[\frac{-\pi}{2}, \frac{\pi}{2} \right[$, $F(r, \theta) = f(r\cos(\theta), r\sin(\theta))$. Justifier que F est de classe C^1 sur V, déterminer $\frac{\partial F}{\partial r}$ et $\frac{\partial F}{\partial \theta}$ puis en déduire une équation aux dérivées partielles (E') vérifiée par F.
- 3. On pose $G(r,\theta) = r^{-\alpha}F(r,\theta)$. Déterminer une équation aux dérivées partielles vérifiée par G, la résoudre, puis résoudre (E') sur V et enfin (E) sur U.

3 Maths II

exercice 1:

Soit $I = \left[-\frac{\pi}{2}, \, \frac{\pi}{2} \right]$ et f la fonction définie par :

$$f: I \longrightarrow \mathbb{R}$$

 $x \longmapsto x \ln(5 + \sin(x))$

- 1. Démontrer que f est de classe \mathcal{C}^{∞} sur I.
- 2. Encadrer $h(x) = \ln(5 + \sin(x))$ et $g(x) = \frac{1}{5 + \sin(x)}$. En déduire le signe de f' et ses variations.
- 3. Montrer que f réalise une bijection de I sur J un segment à déterminer.
- 4. Déterminer un développement limité à l'ordre 4 en 0 de f.

5. Déterminer f^{-1} .

exercice 2:

Soit $f: \Omega \to \mathbb{R}$ avec $\Omega = \{(x, y) \in \mathbb{R}^2; x > |y|\}$ de classe \mathcal{C}^1 , et:

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(r,t) \longmapsto f(r \cosh(t), r \sinh(t))$

- 1. Montrer que g est définie et est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- 2. Exprimer les dérivées partielles de g en fonction de celles de f.
- 3. Trouver toutes les fonctions de classe C^2 qui vérifient

$$x\frac{\partial f}{\partial y} + y\frac{\partial f}{\partial x} = \frac{\sqrt{x^2 - y^2}}{x + \sqrt{x^2 - y^2}}$$

exercice 3:

On définit, pour $x \in \mathbb{R}_+^*$, $F(x) = -\int_x^{+\infty} \frac{\arctan(t)}{t^2} dt$.

- 1. a) Montrer que l'intégrale converge.
- b) Montrer que F est dérivable et déterminer sa dérivée.
- 2. On pose l'équation différentielle $(E): xy' y = \arctan(x)$. Exprimer les solutions de (E) en fonction de F.
- 3. Déterminer la décomposition en éléments simples de $G(X) = \frac{1}{X(X^2 + 1)}$.
- 4. Montrer que $F(x) = -\frac{1}{x}\arctan(x) + \ln(x) \frac{1}{2}\ln(x^1 + 1)$.
- 5. (E) admet-elle des solutions sur \mathbb{R}_+ ?

exercice 4:

Soit $\alpha \in \mathbb{R}$. On considère l'équation

$$z^{2} + (1 + \alpha)(1 + i)\alpha z = i\alpha^{2}(1 + \alpha^{2})$$

- 1. Déterminer les racines z_1 et z_2 en fonction de α .
- 2. Tracer les courbes décrites par M_1 et M_2 , d'affixes respectifs z_1 et z_2 , dans le plan complexe en faisant varier α .
- 3. Que représente la courbe tracée par I, le milieu du segment $[M_1M_2]$ pour α variant sur \mathbb{R} ?

exercice 5:

On considère un quiz avec des questions. Pour chaque question, il y a une probabilité p_n de succès. On pose $r_n = \prod_{k=0}^n p_k$. On note X la variable aléatoire comptant le nombre de succès avant le premier échec.

8

- 1. Donner le loi de X. Calculer $\sum_{n\in\mathbb{N}} P(X=n)$.
- 2. Justifier que X admet une espérance finie si et seulement si $\sum_{n\in\mathbb{N}} r_n$ converge. Calculer E(X) dans ce cas.
- 3. Dire si X admet une espérance finie, si oui la calculer et interpréter :

a)
$$p_n = \frac{1}{2}$$

b)
$$p_n = \frac{1}{n}$$

b)
$$p_n = \frac{1}{n}$$
 c) $p_n = 1 - \frac{1}{n+1}$

4. Dans le cas où E(X) existe, dire si V(X) existe, et si oui donner V(X).

exercice 6:

On définit un plan $S: x^2 + y^2 - z^2 = 1$.

- 1. Déterminer l'intersection de S par un plan parallèle à (Oxy). En déduire qu'aucune droite de S n'est parallèle à (Oxy).
- 2. Montrer qu'une droite \mathcal{D} n'est pas parallèle à (Oxy) si et seulement si elle est décrite par le système
- 3. Montrer qu'une droite \mathcal{D} est incluse dans \mathcal{S} si et seulement si elle est décrite par le système $\begin{cases} x = az + b \\ y = cz + d \end{cases}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ étant orthogonale.
- 4. Soit $M_0(x_0, y_0, z_0)$. Montrer qu'il existe exactement deux droites incluses dans S passant par M_0 .

exercice 7:

- 1. Soit la série $f(x) = \sum_{k=1}^{+\infty} kx^k$.
- a) Donner l'ensemble de définition \mathcal{D}_f .
- b) Trouver la (les) solution de f(x) = 1.
- 2. Soit $n \in \mathbb{N}^*$ et $f(x) = \sum_{k=1}^{n} kx^k$.
- a) Montrer que l'équation $f_n(x) = 1$ admet une unique solution α_n sur [0, 1]. Trouver α_1 et α_2 .
- b) Trouver la limite de α_n quand n tend vers $+\infty$.
- C) On note $\lim_{n\to+\infty} \alpha_n = \ell$. Déduire ℓ de la question 1.

exercice 8:

On pose
$$M = \begin{pmatrix} 0 & 0 & -\gamma \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$
.

1. Montrer que M a une unique valeur propre réelle λ et qu'elle est comprise entre 1 et 2.

9

2. Soit σ une autre valeur propre de M différente de λ . Calculer $\lambda |\sigma|^2$.

- 3. Montrer que (I_3, M, M^2) est libre dans $\mathcal{M}_2(\mathbb{R})$ et trouver une relation entre M^3 , I_3 et M.
- 4. Déterminer les réels α, β tels que, pour tout $n \in \mathbb{N}^*$, $M^{n+3} = \alpha M^{n+1} + \beta M^n$.
- 5. On pose $u_n = \text{Tr}(M^n)$ pour $n \in \mathbb{N}$. Déterminer une relation de récurrence pour u_n .

exercice 9:

On s'intéresse à la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante : pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{\pi}{2}\sin(u_n)$. Soit $n\in\mathbb{N}$.

- 1. Montrer que pour tout $u_0 \in \mathbb{R}$, $u_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Que se passe-t-il si $u_0 = 0$?
- 2. Montrer que si $u_0 \in \left]0, \frac{\pi}{2}\right]$, alors $u_n \in \left]0, \frac{\pi}{2}\right]$.
- 3. Montrer si $u_0 \in \left]0, \frac{\pi}{2}\right]$, alors $(u_n)_{n \in \mathbb{N}}$ converge.
- 4. Montrer que pour tout $u_0 \in \mathbb{R}$, $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$.
- 5. On pose $v_n = \ell u_n$. Donner la nature de la série $\sum_{n \in \mathbb{N}} v_n$.

exercice 10:

Soit F un sous-espace vectoriel défini par : $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$

- 1. Déterminer la matrice dans la base canonique de la projection orthogonale sur F.
- 2. Déterminer la matrice dans la base canonique de la projection orthogonale sur F^{\perp} .
- 3. On pose X = (1, 2, 3, 4). Déterminer la distance de $X \ge F$.

exercice 11:

Soit a, b > 0. On a deux courbes paramétrées (\mathcal{E}) : $\begin{cases} x(t) = a\cos(t) \\ y(t) = b\sin(t) \end{cases}$ et (\mathcal{E}') : $\begin{cases} x(t) = 2a\cos(t) \\ y(t) = 2b\sin(t) \end{cases}$

Soit M(t) et M(t') deux points supposés distincts $de(\mathcal{E})$. Quelles conditions sur t et t' a-t-on pour que les tangentes à \mathcal{E} aux points M(t) et M(t') se coupent en un point qui appartient à \mathcal{E}' ?

exercice 12:

On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} ((1+x)^n - 1) e^{-x} dx$.

- 1. Montrer que I_n converge.
- 2. Déterminer une relation entre I_n et I_{n-1} .
- 3. En déduire une expression de I_n .
- 4. Montrer que $\sum_{n=1}^{+\infty} \frac{I_n}{n!} x^n = \frac{xe^x}{1-x}.$

exercice 13:

Soit $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{R})$ matrice telle que pour tout $1 \le i, j \le n$ on a $a_{ij} > 0$ et $\sum_{k=1}^n a_{ik} = 1$.

1. Soit (p_k) des réels strictement positifs tels que $\sum_{k=1}^n p_k = 1$. Soit (z_k) des complexes tels que $|z_k| \le 1$.

On suppose que $\sum_{k=1}^{n} p_k z_k = 1$. Montrer que pour tout $1 \le k \le n$, in a $z_k = 1$ (on pourra dans un premier temps supposer que les (z_k) sont réels).

- 2. Soit $\lambda \in \operatorname{Sp}(A)$ un complexe. Montrer que $|\lambda| \leq 1$.
- 3. Montrer que $1 \in \operatorname{Sp}(A)$.
- 4. Soit $\lambda \in \operatorname{Sp}(A)$ avec $|\lambda| = 1$. Montrer que dim $(E_{\lambda}(A)) = 1$.

exercice 14:

On considère les équations différentielles suivantes :

$$(1): \quad y'' - 2y' + y = 1$$

(2):
$$f'(x) - \int_0^x \cos(x-t)f(t) dt$$

- 1. Résoudre (1) sur \mathbb{R} .
- 2. Soit f une fonction continue sur \mathbb{R} solution de (2). Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer f'(x) pour tout $x \in \mathbb{R}$.
- 3. Montrer que f est de classe C^2 sur \mathbb{R} , et montrer que f est solution de (1).
- 4. Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$, on a Tr(AB) = Tr(BA).
- 5. Pour $A, B, C \in \mathcal{M}_n(\mathbb{R})$, a-t-on $\operatorname{Tr}(ABC) = \operatorname{Tr}(ACB)$?

exercice 15:

On considère la courbe suivante :

$$\mathcal{C}: \begin{cases} x(t) = t^2 + \frac{1}{t^2} \\ y(t) = t^2 + \frac{1}{t} \end{cases}, \quad t \in \mathbb{R}$$

Étudier et tracer la courbe C. Comment déterminer le point multiple?

exercice 16:

Soit

$$E = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$$
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix} \qquad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

On pose $F = Vect(A, B, I_2)$.

- 1. Donner la dimension de F et une base de l'espace.
- 2. Donner une équation cartésienne de F.
- 3. F est-il stable par produit?
- 4.a) Soit G = Vect(C). Montrer que $E = F \oplus G$

4 Questions de cours

- 1. Développement en série entière de l'exponentielle. Théorème de dérivabilité d'un développement en série entière. Montrer que la dérivée du développement en série entière de exp vaut bien exp.
- 2. Tous les moyens disponibles pour montrer qu'une matrice est diagonalisable.
- 3. Inégalité de Bienaymé-Tchebychev. Dans quel cas est-ce intéressant (loi faible des grand nombres)?
- 4. Tout sur la loi géométrique. Est-il plus probable que le premier succès soit pair ou impair?
- 5. Énoncer le théorème des valeurs intermédiaires et le théorème des accroissements finis. Soit $f:[0,1]\to [0,1]$ continue. Montrer que f admet un point fixe.
- 6. Tout sur la loi de Poisson. Comment calculer la probabilité que X soit impaire?
- 7. Tout sur les coniques.
- 8. Théorème de Pythagore généralisé et démonstration.
- 9. Définition de l'espérance d'une variable aléatoire discrète. Toutes les propriétés de l'espérances. Définition de la variance. Toutes les propriétés de la variance. Démonstration de la linéarité de l'espérance.
- 10. Définition de produit scalaire. Expliquer chaque propriété. Définition de la norme, inégalité de Cauchy-Schwarz, inégalité triangulaire. Théorème de Pythagore en dimension n, réciproque et contre-exemple.
- 11. Théorème de comparaison série-intégrale. Application sur la série de terme général $\frac{1}{n \ln^2(n)}$.
- 12. Critère de d'Alembert pour les séries numériques et entières. Exemple de séries convergeantes et divergeantes pour le cas $\ell=1$.
- 13. Tout sur la fonction arctan.
- 14. Inégalités de Markov, Bienaymé-Thcebychev. Loi faible des grands nombres.