Valores y vectores propios Topología en \mathbb{R}^n

Marcelo Gallardo

PUCP

April 23, 2025

- Valores y vectores propios
- Formas cuadráticas
- **3** Topología en \mathbb{R}^n
- Conjunto Walrasiano
- Convexidad
- 6 Aplicaciones

Valores y vectores propios (1)

- Sea A una matriz cuadrada de orden $n \times n$ no singular con valores propios $\lambda_1, \ldots, \lambda_n$. ¿Cuáles son los valores propios de la matriz A^{-1} ? ¿Cuáles son sus vectores propios?
- ② Dada la matriz $A = \begin{bmatrix} -2 & -3 \\ 1 & 2 \end{bmatrix}$, encuentre A^k para todo $k \in \mathbb{N}_0$.

Solución: Valores y vectores propios (1)

1) Sea A una matriz cuadrada no singular con valores propios $\lambda_1,\ldots,\lambda_n$ y vectores propios $\mathbf{v}_1,\ldots,\mathbf{v}_n$. Entonces, si $A\mathbf{v}_i=\lambda_i\mathbf{v}_i$, al aplicar A^{-1} tenemos:

$$A^{-1}A\mathbf{v}_i=A^{-1}\lambda_i\mathbf{v}_i\Rightarrow\mathbf{v}_i=\lambda_iA^{-1}\mathbf{v}_i\Rightarrow A^{-1}\mathbf{v}_i=\frac{1}{\lambda_i}\mathbf{v}_i.$$

Por tanto, los valores propios de A^{-1} son $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}$, y los vectores propios son los mismos que los de A.

2) Sea $A = \begin{bmatrix} -2 & -3 \\ 1 & 2 \end{bmatrix}$. Calculamos primero sus valores propios λ resolviendo $\det(A - \lambda I) = 0$:

$$\det \left(\begin{bmatrix} -2 - \lambda & -3 \\ 1 & 2 - \lambda \end{bmatrix} \right) = (-2 - \lambda)(2 - \lambda) + 3 = \lambda^2 - 4 + 3 = \lambda^2 - 1 = 0,$$

lo cual da $\lambda=\pm 1$. Como los valores propios son reales y distintos, A es diagonalizable. Sea P la matriz de vectores propios y $D={\rm diag}(1,-1)$, entonces:

$$A^k = PD^k P^{-1}.$$

Continúa

$$\bullet \ \mathsf{Para} \ \lambda = 1 \colon \ (A - I) \mathbf{v} = 0 \Rightarrow \begin{bmatrix} -3 & -3 \\ 1 & 1 \end{bmatrix} \Rightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

• Para
$$\lambda = -1$$
: $(A + I)\mathbf{v} = 0 \Rightarrow \begin{bmatrix} -1 & -3 \\ 1 & 3 \end{bmatrix} \Rightarrow \mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Entonces,

$$P = \begin{bmatrix} 1 & 3 \\ -1 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad A^k = PD^kP^{-1}.$$

O sea,

$$A^{k} = \begin{bmatrix} \frac{-1+3(-1)^{k}}{2} & \frac{-3+3(-1)^{k}}{2} \\ \frac{1-(-1)^{k}}{2} & \frac{3-(-1)^{k}}{2} \end{bmatrix}$$

Valores y vectores propios (2)

- ② Pruebe que si A y B son equivalentes (en el sentido más fuerte), entonces |A| = |B|.
- Pruebe que si A y B son equivalentes, entonces A^k y B^k también lo son.
- Onsidere el siguiente sistema de ecuaciones en diferencias:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 1-\delta & 0 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}, \quad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$$

- ullet Interprete el modelo. Identifique qué podrían ser x_1 y x_2 .
- Analice $\lim_{k\to\infty} x_i(k)$ e interprete.

6/36

Soluciones: Valores y vectores propios (2)

Equivalencia y determinante: Dos matrices A y B son equivalentes si existen matrices invertibles P y Q tales que A = PBQ. Entonces:

$$|A| = |PBQ| = |P||B||Q| = |P||Q||B|.$$

Como $Q = P^{-1}$, concluimos.

• Potencias de matrices equivalentes: Supongamos $A = PBP^{-1}$. Entonces por inducción o cálculo directo

$$A^k = (PBP^{-1})^k = PB^kP^{-1},$$

ya que $(PBP^{-1})(PBP^{-1}) = PB(P^{-1}P)BP^{-1} = PB^2P^{-1}$, y así sucesivamente. Por tanto, A^k v B^k son también semejantes (es decir, equivalentes por conjugación) para todo $k \in \mathbb{N}$.

Modelo de producción sencillo

Con respecto al modelo dinámico:

- $x_1(k)$ representa un insumo que se reduce progresivamente a lo largo del tiempo.
- $x_2(k)$ representa un output acumulado que se incrementa a medida que se utiliza x_1 .
- $\delta \in (0,1)$ representa la **tasa de transferencia** del insumo x_1 hacia el output x_2 .

Solución del sistema: Llamemos $A = \begin{bmatrix} 1 - \delta & 0 \\ \delta & 1 \end{bmatrix}$. Entonces, por iteración:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = A^k \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}.$$

Continúa

Diagonalizamos A si es posible:

Valores propios:
$$\det(A-\lambda I)=(1-\delta-\lambda)(1-\lambda)=0 \Rightarrow \lambda_1=1-\delta, \ \lambda_2=1.$$
 Vectores propios:
$$\begin{cases} \lambda_1=1-\delta \Rightarrow \mathbf{v_1}=\begin{bmatrix} 1\\ \delta/(1-\delta) \end{bmatrix}, \\ \lambda_2=1 \Rightarrow \mathbf{v_2}=\begin{bmatrix} 0\\ 1 \end{bmatrix}.$$

Por lo tanto, podemos expresar:

$$x_1(k) = (1 - \delta)^k x_{10}, \qquad x_2(k) = x_{20} + x_{10}(1 - (1 - \delta)^k).$$

Se sigue directamente que $x_1(k) \to 0$ y $x_2(k) \to x_{10} + x_{20}$.

Formas cuadráticas (1)

- **4** Pruebe que si $A \in \mathcal{M}_{m \times n}$, entonces $A^T A$ es simétrica y positivo semidefinida.
- **3** Sea $A = \operatorname{Hess}(f)(\mathbf{x}_0)$. ¿Bajo qué condiciones sobre f, $\mathbf{x}^T A \mathbf{x}$ es una forma cuadrática estándar?

Soluciones: Formas cuadráticas (1)

- **§** Simetría y semidefinitud de A^TA : Sea $A \in \mathcal{M}_{m \times n}$. Entonces $A^TA \in \mathcal{M}_{n \times n}$.
 - Simetría:

$$(A^T A)^T = A^T (A^T)^T = A^T A.$$

Por tanto, A^TA es simétrica.

Positividad semidefinida: Para todo $x \in \mathbb{R}^n$, se tiene:

$$x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} \geq 0.$$

Por tanto, todos los valores propios de A^TA son reales y no negativos.

© Forma cuadrática estándar desde el Hessiano: Sea $f: \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable, y sea $A = \operatorname{Hess}(f)(\mathbf{x}_0)$ la matriz Hessiana en un punto \mathbf{x}_0 . Entonces, la forma

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

es una forma cuadrática si A es simétrica, lo cual siempre se cumple si f es \mathcal{C}^2 (por el teorema de Schwarz o simetría de derivadas parciales cruzadas).

Conclusión: $\mathbf{x}^T A \mathbf{x}$ define una forma cuadrática estándar si f es \mathcal{C}^2 en un entorno de \mathbf{x}_0 .

Formas cuadráticas (2)

Una firma puede escoger entre dos procesos con costos:

$$C_1(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 + 3x_2^2 + 5x_3^2 + 2x_2x_3$$
$$C_2(x_1, x_2, x_3) = 2x_1x_2 + x_2^2 + 3x_3^2$$

Determine qué proceso escogerá.

Clasifique las siguientes formas cuadráticas:

$$f_1(x_1, x_2) = 4x_1^2 + 8x_1x_2 + 5x_2^2$$

$$f_2(x_1, x_2, x_3) = 3x_1^2 - 2x_1x_2 + 3x_1x_3 + x_2^2 - 4x_2x_3 + 3x_3^2$$

Soluciones: Formas cuadráticas (2)

Comparación de procesos productivos:

Consideramos $f(x_1, x_2, x_3) = C_1(x_1, x_2, x_3) - C_2(x_1, x_2, x_3)$

$$f = (2x_1^2 + 4x_1x_2 + 3x_2^2 + 5x_3^2 + 2x_2x_3)$$
$$- (2x_1x_2 + x_2^2 + 3x_3^2)$$
$$= 2x_1^2 + 2x_1x_2 + 2x_2^2 + 2x_3^2 + 2x_2x_3.$$

Como todos los términos de f son no negativos $\forall (x_1, x_2, x_3)$ y el término cuadrático $2x_1^2 + 2x_2^2 + 2x_3^2$ domina, se concluye que:

$$C_1(x) \ge C_2(x) \quad \forall x \Rightarrow \text{la firma elige el proceso } C_2.$$

Note que

$$A_f = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

y sus valores propios son 2, $2 \pm \sqrt{2}$, todos estrictamente positivos.

Continúa

Clasificación de formas cuadráticas:

- ► $f_1(x) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ Tiene determinante = $4 \cdot 5 4^2 = 20 16 = 4 > 0$, traza > 0, y los valores propios son positivos \Rightarrow definida positiva. El espectro es de hecho $(9 \pm \sqrt{65})/2$.
- ► f₂(x) tiene matriz asociada:

$$A = \begin{bmatrix} 3 & -1 & 1.5 \\ -1 & 1 & -2 \\ 1.5 & -2 & 3 \end{bmatrix}$$

Determinantes principales: $\det A_{1\times 1}=3>0$, $\det A_{2\times 2}=\begin{vmatrix} 3 & -1 \\ -1 & 1 \end{vmatrix}=3-1=2>0$, pero el determinante total es negativo (verificado por cálculo directo o SAGE), \Rightarrow indefinida. De hecho, su espectro contiene a -0.23 y 1.7 (redondeados).

Elementos de Topología (1)

- ① Pruebe que $\|\mathbf{x}\|_{\infty} = \lim_{p \to \infty} \|\mathbf{x}\|_{p}$.
- ② (*) Sea $A \in \mathcal{M}_{n \times n}$, $\|A\| = \sup_{\|\mathbf{x}\| = 1} \|A\mathbf{x}\|$. Pruebe que $\rho(A) \le \|A\|$.
- \odot Pruebe que si S es abierto y A cualquier conjunto no vacío, entonces S+A es abierto.

Soluciones: Topología en \mathbb{R}^n (1)

1 Limite de normas p: Para $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, se define:

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \quad \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_{i}|.$$

Como $|x_i| \leq ||\mathbf{x}||_{\infty}$ para todo i, se tiene:

$$\|\mathbf{x}\|_{p} \leq (n \cdot \|\mathbf{x}\|_{\infty}^{p})^{1/p} = n^{1/p} \|\mathbf{x}\|_{\infty}.$$

También, existe un j tal que $|x_j| = \|\mathbf{x}\|_{\infty}$, y:

$$\|\mathbf{x}\|_p \geq |x_j| = \|\mathbf{x}\|_{\infty}.$$

Por tanto,

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{p} \le n^{1/p} \|\mathbf{x}\|_{\infty} \Rightarrow \lim_{p \to \infty} \|\mathbf{x}\|_{p} = \|\mathbf{x}\|_{\infty}.$$

Soluciones: Topología en \mathbb{R}^n (1)

Oesigualdad del radio espectral: El radio espectral de A es

$$\rho(A) = \max\{|\lambda| : \lambda \text{ valor propio de } A\}.$$

Sea λ un valor propio de A, y $\mathbf{v} \neq \mathbf{0}$ su vector propio, entonces:

$$||A|| \geq \frac{||A\mathbf{v}||}{||\mathbf{v}||} = \frac{||\lambda\mathbf{v}||}{||\mathbf{v}||} = |\lambda|.$$

Como esto vale para todo valor propio λ , se concluye:

$$\rho(A) \leq \|A\|.$$

Suma de conjunto abierto con cualquiera: Simplemente

$$S + A = \bigcup_{a \in A \text{ Abierto trivial mente.}} \underbrace{S + a}_{\text{Abierto.}}$$

Más sobre normas matriciales.

Sea $B = A^T A$. Entonces:

$$||B||_{F} = \sqrt{\operatorname{Tr}(B^{T}B)} = \left(\sum_{i=1}^{n} \lambda_{i}(B)^{2}\right)^{1/2}$$
$$\geq \sqrt{\left(\max_{1 \leq i \leq n} \lambda_{i}(B)\right)^{2}} = \max_{1 \leq i \leq n} \lambda_{i}(B).$$

Donde $(\lambda_i(B))_{1 \le i \le n}$ son los valores propios (reales) de la matriz simétrica B. Esto prueba que:

$$||A^TA||_F \ge \lambda_{\max}(A^TA),$$

es decir, la norma de Frobenius de A^TA es mayor o igual que el mayor valor propio de A^TA .

18 / 36

Norma matricial y valor propio máximo

Norma inducida de una matriz:

La norma de una matriz A se define como el máximo cociente entre normas:

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||}.$$

Esto implica inmediatamente que:

$$||A\mathbf{x}|| \leq ||A|| \cdot ||\mathbf{x}||.$$

Matriz simétrica definida positiva: Si A es simétrica y definida positiva, entonces:

$$||A|| = \lambda_{\max}(A),$$

donde $\lambda_{\max}(A)$ es el mayor valor propio de A.

Tomando como ${f x}$ el vector propio correspondiente a $\lambda_{\sf max}$, se alcanza exactamente ese cociente:

$$\frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} = \lambda_{\mathsf{max}}.$$

Matrices no simétricas y norma

Ningún otro vector puede producir un cociente mayor. Si $A = Q \Lambda Q^T$, con Q ortogonal, entonces la norma es simplemente:

$$||A|| = ||\Lambda|| = \lambda_{\mathsf{max}}.$$

Matrices no simétricas: Cuando *A* no es simétrica, los valores propios pueden no reflejar correctamente el "tamaño" real de la matriz.

Ejemplo:

$$A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix},$$

cuyos valores propios son $\lambda_1=\lambda_2=0$, pero su norma es:

$$||A|| = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = 2.$$

Tomando $\mathbf{x} = (0, 1)^T$, se obtiene $A\mathbf{x} = (2, 0)^T$, entonces:

$$\frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} = \frac{2}{1} = 2.$$

Este es el máximo valor, a pesar de que x no es un vector propio.

Matrices simétricas y norma

Matrices simétricas no definidas positivas:

Si A es simétrica (pero no necesariamente definida positiva), la descomposición $A=Q\Lambda Q^T$ sigue siendo válida.

En este caso, la norma de A es:

$$||A|| = \max_{i} |\lambda_i(A)|,$$

es decir, el valor absoluto del mayor valor propio en módulo.

Para cualquier vector propio \mathbf{x} con $A\mathbf{x} = \lambda \mathbf{x}$, se tiene:

$$||A\mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||.$$

Norma inducida por A^TA

Norma inducida general (caso simétrico o no):

El valor máximo del cociente cuadrático asociado a A es:

$$||A||^2 = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||^2}{||\mathbf{x}||^2} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^T A^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_{\max} (A^T A).$$

Por tanto.

$$\|A\| = \sqrt{\lambda_{\mathsf{max}}(A^TA)}.$$

Esto permite definir la norma de cualquier matriz (simétrica o no) mediante los valores propios de $A^T A$ (una matriz simétrica y definida positiva).

Elementos de Topología (2)

- lacksquare Pruebe que C[0,1] con $\|\cdot\|_{\infty}$ es completo. Analice si esto es válido usando $||\cdot||_1$
- Pruebe que (i) la unión finita y la intersección arbitraria de conjuntos cerrados es un conjunto cerrado, (ii) la intersección finita de conjuntos compactos es un conjunto compacto.

Soluciones: Topología en \mathbb{R}^n (2)

Our Completitud de C[0,1] con $\|\cdot\|_{\infty}$:

Sea (f_n) una sucesión de Cauchy en $(C[0,1],\|\cdot\|_{\infty})$. Entonces, para todo $\varepsilon>0$ existe N tal que para todo $m,n\geq N$:

$$||f_n-f_m||_{\infty}=\sup_{x\in[0,1]}|f_n(x)-f_m(x)|<\varepsilon.$$

Esto implica convergencia uniforme a una función f, y el límite uniforme de funciones continuas es continuo. Por tanto, $f \in C[0,1]$ y (f_n) converge a f en norma ∞ . $\Rightarrow C[0,1]$ es completo con $\|\cdot\|_{\infty}$. $\c\c\c\c\c$ Y con $\|\cdot\|_1$?

Continúa: LP

$$f_n(x) = \begin{cases} 1, & \text{si } 0 \le x \le \frac{1}{2}, \\ 1 - n(x - \frac{1}{2}), & \text{si } \frac{1}{2} < x \le \frac{1}{2} + \frac{1}{n}, \\ 0, & \text{si } \frac{1}{2} + \frac{1}{n} < x \le 1. \end{cases}$$

Cada f_n es continua en [0,1] y tiene un salto suavizado entre 1 y 0 centrado en x=1/2.

Cota de convergencia en norma p:

$$\|f_n - f_m\|_p = \left(\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} |f_n(x) - f_m(x)|^p dx\right)^{1/p} \leq \left(\frac{1}{n}\right)^{1/p} \longrightarrow 0.$$

Por tanto, (f_n) es de Cauchy en la norma $\|\cdot\|_p$.

¿Cuál es el límite?

Para toda $x \in [0, \frac{1}{2})$, $f_n(x) = 1 \ \forall n \Rightarrow f(x) = 1 \ \text{Para} \ x \in (\frac{1}{2}, 1]$, $f_n(x) = 0 \ \forall n \gg 1 \Rightarrow f(x) = 0$ Pero en $x = \frac{1}{2}$, el límite f es discontinua (salta de 1 a 0).

Conclusion: $f \notin C[0,1]$, aunque $f_n \in C[0,1]$ y $f_n \to f$ en $\|\cdot\|_p$. Por tanto, C[0,1] no es completo bajo $\|\cdot\|_p$ para $1 \le p < \infty$.

◄□▶ ◀∰▶ ◀臺▶ ◀臺▶ · 臺 · ∽️९

Gráfica de la función $f_n(x)$ con n=5

Propiedades topológicas: Cerrados y compactos

Unión finita e intersección arbitraria de cerrados:

Unión finita: Simplemente una secuencia $x_n \in \bigcup_{i=1}^K F_i$ termina en uno de los F_i , y como cada uno es cerrado, converge a $x \in F_{i_0} \subset \bigcup_{i=1}^K F_i$.

Conclusión: x es punto de acumulación de F_1 o de F_2 , luego pertenece a $F_1 \cup F_2$. $\Rightarrow F_1 \cup F_2$ es cerrado.

Intersección arbitraria: Si $\{F_{lpha}\}_{lpha\in I}$ es una familia cualquiera de conjuntos cerrados, entonces:

$$\left(\bigcap_{\alpha\in I}F_{\alpha}\right)^{c}=\bigcup_{\alpha\in I}F_{\alpha}^{c},$$

y como cada $F^{
m c}_lpha$ es abierto, la unión es abierta, por lo tanto la intersección es cerrada.

Unión arbitraria de abiertos e intersección/unión finita de compactos

- 1) Tome $x\in\bigcup_{\alpha\in\Lambda}U_\alpha$. En particular, $x\in U_{\alpha_0}$ para algún $\alpha_0\in\Lambda$. Se sigue que $\exists\ \varepsilon>0$ tal que $B(x,\varepsilon)\subset U_{\alpha_0}$. Por ende, $B(x,\varepsilon)\subset\bigcup_{\alpha\in\Lambda}U_\alpha$.
- 2) Sean K_1, \cdots, K_L compactos. Cada uno es cerrado, por lo que su intersección (de hecho arbitraria) o unión finita, sigue siéndolo. Ahora, como son compactos, cada uno está incluido en $B_i(r_i), r_i > 0$. Tome $\max_{1 \le i \le L} 2r_i = \theta : \bigcup_{i=1}^L K_i \subset B(2\theta)$. O sea, la unión es un conjunto acotado. Para la intersección, tome cualquier r_i :

$$\bigcap_{i} K_{i} \subset K_{i_{0}} \subset B_{i_{0}}(r_{i_{0}}).$$

Conjunto Walrasiano

- O Defina qué es el conjunto Walrasiano.
- 2 Pruebe que dicho conjunto es compacto.
- Pruebe que dicho conjunto es convexo.
- Grafique y analice cómo cambia dicho conjunto en función de los parámetros.

Conjunto Walrasiano

- **3** $B(\mathbf{p}, I) \subset B(2I/p_{\min})$ y es cerrado pues $f^{-1}(-\infty, I] \cap \mathbb{R}^{L}_{+}$, con $f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x}$.
- Trivialmente es convexo:

$$\mathbf{x_1}, \mathbf{x_2} \in \mathcal{B}(\mathbf{p}, I) \implies \mathbf{x_i} \cdot \mathbf{p} \leq I \implies \lambda \mathbf{x_1} \cdot \mathbf{p} \leq \lambda I \ \land (1 - \lambda) \mathbf{x_1} \cdot \mathbf{p} \leq (1 - \lambda) I.$$

Sumando, se concluye.

Conjunto presupuestario Walrasiano en \mathbb{R}^2

Conjunto presupuestario Walrasiano en \mathbb{R}^3

Conjunto presupuestario en \mathbb{R}^2 , I=1, $p_1=p_2=1$

Conjunto presupuestario en \mathbb{R}^2 , $p_1=5$, $p_2=1$, I=1

Conjunto presupuestario en \mathbb{R}^3 , $p_1=10$, $p_2=p_3=1$, I=2

Convexidad

- Conjuntos convexos.
- Envolvente convexa.
- Proyección.
- Separación.
- Lema de Farkas.
- Transporte óptimo y programación lineal.
- Funciones convexas y cóncavas.
- Funciones cuasi-convexas/cóncavas.
- Relaciones de preferencias
- Optimización (sin y con restricciones): Lagrange, KKT. Aplicaciones: maximización de la utilidad, minimización del gasto, maximización del beneficio, minimización del costo.
- Estática comparativa y teorema de la envolvente.
- Equilibrio general, teoremas del bienestar.
- Optimización dinámica / juegos.

Aplicaciones

- Econometría: OLS, ML.
- Juegos: existencia del equilibrio de Nash, subastas, diseño de mecanismos (requiere medida, topología general y funcional). Teoremas de puntos fijos.
- Macroeconomía dinámica: ecuación de Bellman, contracción, enfoque variacional, control
 óptimo en tiempo continuo (requiere dinámica real y funcional).
- Transporte óptimo (requiere probabilidad y funcional idealmente).
- ullet Equilibrio general en dimensión infinita ℓ^∞