Lab-4

Seaborn Exercises

- Name: Devi Sri Swetha Tanuku
- Student ID: N01623362

Import Numpy, Panda and Matplotlib library

```
In [11]: import numpy as np import pandas as pd

In [22]: import matplotlib.pyplot as plt import seaborn as sns
```

Import Dataset

In [16]: da	ata = pd.read_	_csv("D:\\AI	ML\\5000 0NB	_Data Analyt	ics\\Ass
In [18]: #	# print top 5 row of the dataset				
In [20]: da	ata.head()				
Out[20]:	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa

Exercises 1

5.0

```
In [24]: # Write the code to show the graph below.
sns.displot(data["sepal.width"], kde = True, bins = 10)
```

0.2 Setosa

Out[24]: <seaborn.axisgrid.FacetGrid at 0x1941c290620>

3.6

1.4

In [26]: # Write the code to show the graph below.
sns.pairplot(data)

Out[26]: <seaborn.axisgrid.PairGrid at 0x1941c42ee70>


```
In [28]: # Write the code to show the graph below.
sns.boxplot(data, palette = "rainbow", orient = "h")
```

Out[28]: <Axes: >

In []: # Write the code to show the graph below.

In [32]: d = sns.PairGrid(data)
d.map(plt.scatter)

Out[32]: <seaborn.axisgrid.PairGrid at 0x194245fd4c0>


```
In [34]: # Write the code to show the graph below.
d = sns.PairGrid(data)
d.map_diag(plt.hist)
d.map_upper(plt.scatter)
d.map_lower(plt.scatter)
```

Out[34]: <seaborn.axisgrid.PairGrid at 0x19424013e90>

Create a Categorical Plot for the column Sex of the Titanic dataset.

```
In [44]: titanic = pd.read_csv("D:\\AIML\\5000 0NB_Data Analytics\\Assignment_03\\Titanic_1.csv")
sns.barplot(titanic, x = "Sex", y = "PassengerId")
plt.title("Passengers by Sex")
plt.xlabel("Sex")
plt.ylabel("Passengers")
plt.show()
```


Please save as Pdf and submit in Blackboard Lab4.