Simple Linear Regression Part 2: Model Assumptions

STAT 705: Regression and Analysis of Variance

Recall

- For the Lead vs. Traffic example
 - estimated intercept = -21
 - estimated slope = 35.7
- You should know how to calculate these values
- $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \Leftrightarrow \text{Lead} = -21 + 35.7 \times \text{Traffic}$

Estimated Least Squares Line

- Lead = -21 + 35.7*Traffic
- Suppose there is another site that has traffic 22 (thousand vehicles)
- How much lead would we expect to see in the tree bark at this site?
 - Lead = -21 + 35.7*22 = 764.4 micrograms of lead per gram of bark
 - This is the point on the line at X = 22.

Least Squares Line

Traffic (in thousands)

30

A Trick Question

- Could we estimate the lead concentration for a site that has 50,000 vehicles?
- We can calculate it
 - Lead = -21 + 35.7*50 = 1764 micrograms per gram of bark
- But does it make sense?
- Short answer: It does not make sense.
 - The traffic values in the data set range from 8.1 to 33.6 (thousand)
 - 50 thousand vehicles is MUCH larger than the largest value in the data
 - We cannot assume the relationship between Traffic and Lead remains the same when Traffic is much larger than the observed values
 - This is EXTRAPOLATION, and it must be avoided

Model vs. Estimated Line

- Regression model: $Y = \beta_0 + \beta_1 X + \varepsilon$
 - Applies to the entire population (e.g., all the sites that could possibly be selected along the highway)
 - β_0 and β_1 are population parameters that describe the "true" relationship between X and Y for ALL items in the population
- Estimated regression line: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$
 - This is our estimate of the "true" relationship
 - To assess whether or not our estimated line is close to the 'true' line, we can compare $\hat{\beta}_0$ to $\hat{\beta}_0$, $\hat{\beta}_1$ to $\hat{\beta}_1$, and \hat{Y} to \hat{Y}

Are There Other Lines?

- Other criteria can be used to construct lines that fit the data
- Least Squares Lines have many desirable statistical properties
- Unless there is a specific reason to use a different method, Least Squares is preferred

Statistical Model

- Is a conceptualization of a real process
- Is a simplification of a much more complex phenomenon
- The data provide clues about the process
- For some data sets, there might be many "good" models
- For other data sets, finding even one good model can be difficult

"All models are wrong, but some are useful."

George E. P. Box (1921 – 2013)

Model Assumptions

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Anything that is random has a probability distribution
 - β_0 , β_1 and X_i are fixed (not random)
 - ε_i and Y_i are random

ASSUME: $\varepsilon_i \sim \text{NIID}(0, \sigma^2)$

- NIID is shorthand for <u>N</u>ormally, <u>I</u>dentically, and <u>I</u>ndependently <u>D</u>istributed
- We need to check that this assumption is reasonably satisfied
 ... or at least not grossly violated!

Implications of the Assumptions

Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

Assume: (1) $\varepsilon_i \sim \text{NIID}(0, \sigma^2)$ and (2) β_0 , β_1 and X_i are constants

Recall

- The expected value (mean) of a constant is the constant
- The variance of a constant is 0

Assumption	Implication	
$E(\varepsilon_i) = 0$	$E(Y_i) = \beta_0 + \beta_1 X_i$	
$Var(\varepsilon_i) = \sigma^2$	$Var(Y_i) = Var(\varepsilon_i) = \sigma^2$	
ε_{i} 's are independent	Y _i 's are independent	
ε_{i} 's are normal	Y _i 's are normal	

Implications of Model Assumptions

In shorthand,

$$\varepsilon_i \sim \text{NIID}(0, \sigma^2) \Rightarrow Y_i \sim \text{NID}(\beta_0 + \beta_1 X_i, \sigma^2)$$

- Notes:
 - "NIID" stands for a normal, independent, distribution (not identical)
 - Y has a probability distribution
 - The mean of Y depends on X
 - The variance of Y does not depend on X

Implications

Mean of Y is $\beta_0 + \beta_1 X$ (depends on X)

(This is the Y value on the line for the specific X)

Variance of Y is σ^2 (does NOT depend on X)

(Each normal curve has exactly the same width)

More Implications

Gauss-Markov Theorem:

"Under the conditions of the linear regression model, the least squares estimators for β_0 and β_1 are unbiased and have minimum variance among all unbiased linear estimators."

This is the statistical 'gold standard' for estimators.

Unbiased, Minimum Variance

Image source: http://www.amstat.org/publications/jse/v11n2/martin.html

Reasons for Performing Regression

- Get point estimates for parameters
 - Intercept and slope (β_0 and β_1)
 - Error variance (σ^2)
- Inference on parameters
 - Confidence intervals (i.e., plausible values)
 - Hypothesis tests
- Estimate the mean of Y for a given X
- Predict a new value of Y for a given X

Point Estimates

- Intercept: The point estimate for β_0 is $\hat{\beta}_0$
 - This is the estimate for Y when X = 0
 - This may be nonsensical. Example: For a location that has zero traffic, do we really expect -21 micrograms of lead?
- Slope: The point estimate for β_1 is $\hat{\beta}_1$
 - Average change in Y for each one-unit increase in X
 - Example: If the traffic increases by one (thousand vehicles) then, on average, we expect the lead to increase by 35.7 micrograms per gram of bark.

Point Estimate for σ^2

- $\varepsilon_i \sim \text{NIID}(0, \sigma^2)$
- σ^2 is the variability in the Y values that is NOT explained by the regression equation
- It is based on the sum of squared errors (residuals)
- Total variability around the line = $SSE = \sum_{i=1}^{n} r_i^2$
- Average variability around the line = $MSE = \frac{SSE}{n-2}$
- Point estimate for is σ^2 is $\hat{\sigma}^2 = MSE$
- For Lead vs. Traffic example, MSE = 7867.2 (see next slide)

Calculate MSE for Lead Example

Site (i)	Traffic (X)	Lead (Y)	Est'd Lead	Residual	Resid^2
1	8.1	227	268.17	-41.17	1695.0
2	8.3	312	275.31	36.69	1346.2
3	12.1	362	410.97	-48.97	2398.1
4	13.2	521	450.24	70.76	5007.0
5	16.5	640	568.05	71.95	5176.8
6	17.5	539	603.75	-64.75	4192.6
7	19.2	728	664.44	63.56	4039.9
8	24.8	945	864.36	80.64	6502.8
9	24.1	738	839.37	-101.37	10275.9
10	26.1	759	910.77	-151.77	23034.1
11	33.6	1263	1178.52	84.48	7136.9

Est'd Lead = -21 + 35.7*Traffic

Residual = Lead – Est'd Lead

Sum this column SSE = 70,805.1

MSE = 70,805.1 / 9 MSE = 7867.2

Things You Should Know

- The difference between the regression model and the estimated equation
- The assumptions of the linear regression model
- How to calculate and interpret
 - a point estimate for the slope
 - a point estimate for the intercept
 - the mean of Y for a given X
 - the predicted value of Y for a given X
 - a point estimate for the residual variance

