

NOTES:

QNX, Momentics, Neutrino, and "Build a more reliable world" are registered trademarks in certain jurisdictions, and Qnet is a trademark of QNX Software Systems

All other trademarks and trade names belong to their respective owners.

Introduction

As we've seen, QNX supports a wide variety of IPC methods:

- QNX Native (API is unique to QNX)
 - · includes:
 - QNX Neutrino Messaging
 - QNX Neutrino Pulses
- POSIX/UNIX (well known, portable API's)
 - Includes:
 - signals
 - shared Memory
 - pipes (requires pipe process)
 - POSIX message queues (requires mqueue or mq process)
 - TCP/IP sockets (requires io-pkt-* process)

How do you choose which to use?

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07

2

GINX

NOTES:

API: Application Programming Interface

IPC summary:

- QNX Native Messaging
 - · client-server or RPC model
 - · includes inherent synchronization
 - · copies any size data
 - · carries priority information

- Pulses

- non-blocking notification compatible with QNX native messaging
- · only 39 bits of data
- · carry priority information

continued...

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07

NOTES:

The fact that they carry priority information means that priority inversion issues are addressed.

IPC summary (continued):

- Signals
 - POSIX
 - · non-blocking notification
 - · interrupts target, making receiving difficult
 - · do not carry priority information
- Shared Memory
 - POSIX
 - · can eliminate need for a data copy
 - · requires some additional way of synchronizing
 - · not network distributable
 - · does not carry priority information

continued...

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07

GINX

IPC summary (continued):

- Pipes
 - POSIX
 - · built on QNX native messaging
 - slow
 - 2 copies of data
 - more context switches
 - · do not carry priority information
 - requires pipe process
 - · mostly for porting existing code

POSIX message queues

- · basically pipes with extra features
- requires mqueue or mq process
 - if mq is used, queues are in kernel space reducing context switches
 continued...

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07 5

GINX

IPC summary (continued):

- TCP/IP
 - · built on QNX messaging
 - · slow for local communication
 - 2 copies of data
 - POSIX
 - · best way to communicate with a non-QNX machine
 - · does not carry priority information
- fd/fp to a resource manager
 - · built on QNX messaging, but not double copy
 - provides POSIX interface for clients
 - server must be QNX messaging aware
 - works well as a driver interface

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07 6

GNX

Look at what you need for your IPC, and the features each offers. Some things to think about:

- Is POSIX a requirement?
- How much data is being moved?
- Do I want/need a direct response?
 - · Can I afford to block?
- Am I willing to engineer a buffering scheme?
 - · Can I trust a default buffering scheme?
- Do I need to communicate across a network?
- Can I use a combination of these in different places?
 - this is the usual result a combination of choices

All content copyright QNX Software Systems Limited, a subsidiary of BlackBerry Comparing QNX IPC Methods 2020/09/18 R07 7

QNX