VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Počítačové komunikace a sítě – 2. projekt ARP Scanner

23. dubna 2017 Karel Ondřej

Obsah

1	Add	ress Resolution Protocol	2
	1.1	Princip funkce	2
	1.2	Struktura Ethernet rámce	2
	1.3	Struktura ARP packetu	3
	1.4	Bezpečnost	3
2	Impl	lementace	4
	2.1	Inicializace	4
	2.2	Skenování sítě	4
	2.3	Formát výstupu	4
3	Dem	nonstrace	4
4	Refe	rence	5

1 Address Resolution Protocol

Address Resolution Protocol (dále ARP) slouží k přiřazení neznámé linkové adresy k síťové adrese v lokální síti. Používá se téměř výhradně pro překlad IP adres na MAC adresy, ale byl navržen pro mnoho různých protokolů síťové vrstvy nebo i jiných typů adres fyzické vrstvi.

1.1 Princip funkce

Zařízení, které chce získat fyzickou adresu cílového zařízení, vyplní ARP žádost a odešle ji na *broadcast* (v Ethernetu je ARP žádost uložena do ethernetového rámce a odeslána na adresu *ff:ff:ff:ff:ff:ff:ff:ff:* Všechny zařízení v lokální síti přijmou ARP žádost (v rámci optimalizace si můžou uložit informace o odesílateli). Pokud byla zařízení určena žádost, tak sestaví ARP odpověď a odešle ji jako *unicast* zdrojovému zařízení.

1.2 Struktura Ethernet rámce

offset	Layer
6	MAC Target
6	MAC Sender
(4)	802.1Q tag (Optional)
2	Type/Length
46 (42) - 1500	Payload
4	CRC

Tabulka 1: Ethernet rámec (linková vrstva)

MAC Target

Adresa identifikující příjemce.

MAC Sender

Adresa identifikující odesílatele.

802.1Q tag

Definice virtuální sítě (VLAN). Volitelná položka.

Tape/Length

Specifikuje obsah datového pole (pro ARP 0x0806).

Payload

Datové pole (může obsahovat např. ARP žádost nebo odpověď).

CRC

Kontrolní součet sloužící k detekci poškození rámce.

1.3 Struktura ARP packetu

bits	0 - 7	8 - F	
00	Hardware type		
10	Protocol type		
20	Hardware address length	Protocol address length	
30	Operation		
40	Sender hardware address		
50			
60			
70	Sender protocol address		
80	Sender protocor address		
90	Target hardware address		
A0			
B0			
C0	Target proto	col address	
D0	Target protoc	coi addicss	

Tabulka 2: ARP diagram pro IPv4, která používá Ethernet

Hardware type

Specifikace systémového protokolového typu (0x0001 pro Ethernet).

Protocol type

Specifikace vnitřního systémového protokolu (0x0800 pro IPv4).

Hardware address length

Délka hardwarové adresy v bytech (6 pro Ethernet).

Protocol address length

Délka protokolové adresy v bytech (4 pro IPv4).

Operation

Pro žádost nabývá hodnoty 1 a pro odpověď 2.

Sender hardware address

Hardwarová adresa odesílatele. V odpovědi slouží k přiřazení MAC adresy k IP adrese.

Sender protocol address

Protokolová adresa odesílatele.

Target hardware address

Hardwarová adresa příjemce. V ARP žádosti se na ni nebere zřetel (nastavena např. na 00:00:00:00:00:00) a v odpovědi označuje zařízení, které vyvolalo dotaz.

Target protocol address

Protokolová adresa příjemce pro kterou chceme zjistit hardwarovou adresu.

1.4 Bezpečnost

ARP protokol není vhodný pro prostředí se zvýšeným nárokem na bezpečnost, jelikož místo skutečného vlastníka hledané IP adresy může odpovědět útočník. Následně by komunikace neprobíhala s hledaným zařízením, ale s útočníkem.

2 Implementace

ARP skener je vyvinut na systému *Debian*. Jako vstup dostane rozhraní, nad kterým má proběhnout skenování a soubor, kam se má uložit výsledek. K vytvoření RAW socketu jsou potřeba administrátorská práva.

2.1 Inicializace

Aplikace skenuje zařízení s IPv4 adresou v síti Ethernet. Proto se hardwarový typ nastaví na 0x0001 a protokolový typ na 0x0800. Délka adresy pro Ethernet je 6 a délka adresy pro IPv4 je 4. Kód operace pro ARP žádost je 0x0001. MAC adresa a IP adresa zdrojového zařízení na zadaném rozhraní se získá pomocí socketů a MAC adresa cílového zařízení se nastaví na 00:00:00:00:00:00.

V Ethernet rámci se nastaví cílová MAC adresa na ff:ff:ff:ff:ff:ff a typ na 0x0806.

2.2 Skenování sítě

Pomocí IP adresy zdrojového zařízení a masky sítě získáme pomocí bitové operace logického součinu adresu sítě a z negace masky sítě a bitového logického součtu adresu broadcastu. První skenovaná adresa je o jedno vyšší jak adresa sítě a poslední o jedno nižší jak broadcast. Pro každou adresu se aktualizuje IP adresa cílového zařízení v ARP žádosti a odešle se. Po odeslání určitého bloku žádostí (zvoleno 20) se počká 1 sekundu na odpovědi a pokračuje se až do vyčerpání adres lokální sítě.

2.3 Formát výstupu

O výstup v požadovaném formátu se starají třídy Devices, MAC a IP. Třídy se také starají o přiřazení více IP adres k jedné MAC adrese, případně odstranění duplicit v obdržení více odpovědí od stejného zařízení.

3 Demonstrace

```
$ sudo ./ipk-scanner -i wlan0 -f ipk-scanner.xml
$ cat ./ipk-scanner.xml
<?xml version="1.0" encoding="UTF-8"?>
<devices>
   <host mac="0011.3262.4494">
      <ipv4>192.168.99.10</ipv4>
   </host>
   <host mac="d066.7b01.1cea">
      <ipv4>192.168.99.101</ipv4>
   </host>
   <host mac="e094.6747.0086">
      <ipv4>192.168.99.117</ipv4>
   </host>
   <host mac="44d9.e760.dadf">
      <ipv4>192.168.99.253</ipv4>
   </host>
</devices>
```

4 Reference

- [1] Bouška, P.: TCP/IP nalezení MAC adresy k IP ARP. [online], cit. 2017-04-22. URL http://www.samuraj-cz.com/clanek/tcpip-nalezeni-mac-adresy-k-ip-arp/
- [2] Plummer, D. C.: RFC 826: An Ethernet Address Resolution Protocol. [online], cit. 2017-04-22. URL https://tools.ietf.org/html/rfc826
- [3] Wikipedie: Address Resolution Protocol. [online], cit. 2017-04-22.

 URL https://cs.wikipedia.org/wiki/Address_Resolution_Protocol
- [4] Wikipedie: Ethernet. [online], cit. 2017-04-22.
 URL https://cs.wikipedia.org/wiki/Ethernet