Suggested exercises Sections 2 and 3

Section 2: Modules

Exercise 2.21. Let R be a commutative ring and let M be an R-module. We say that M is faithfully flat if it satisfies the following property: A sequence $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ in R-mod is exact if and only if the sequence $0 \longrightarrow M \otimes_R A \xrightarrow{f} M \otimes_R B \xrightarrow{g} M \otimes_R C \longrightarrow 0$ is exact in R-mod.

- i. Prove that an R-module M is faithfully flat if and only if M is flat and if $M \otimes_R N = 0$ implies n = 0 for any R-module N.
- ii. As \mathbb{Z} -module, is \mathbb{Q} faithfully flat, flat or neither?
- iii. Let $\varphi: R \to S$ be a ring homomorphism, and let M be an S-module.
- iv. Let $\varphi: R \to S$ be a ring homomorphism, and let M be an S-module. Prove that $\operatorname{res}_{\varphi} M$ is flat as R-module if and only if the localisation $\operatorname{res}_{\varphi}(M_P)$ is flat over R_{P^c} for all $P \in \operatorname{Spec}(R)$, where $P^c = \varphi^{-1}(P)$ is the contraction of P.

Section 3: Integral dependence

Exercise 3.1. i. Let $f \in \mathbb{Z}[x]$ and let $\frac{a}{b} \in \mathbb{Q}$, in reduced form, such that $f(\frac{a}{b}) = 0$. Prove that b divides the leading coefficient of f and that a divides the constant term

ii. Deduce from it that \mathbb{Z} is integrally closed in \mathbb{Q} .

Exercise 3.2. Let $z=e^{\frac{2\pi \mathrm{i}}{3}}\in\mathbb{C}$ and let $R=\mathbb{Z}[z].$ Prove that R is integrally closed in $\mathbb{Q}[z].$

Exercise 3.3. i. Prove that $\sqrt{2} + \sqrt{3} \in \mathbb{R}$ is integral over \mathbb{Z} .

ii. Find its minimal polynomial in $\mathbb{Q}[x]$, that is, the unique monic irreducible polynomial $f \in \mathbb{Q}[x]$ such that $f(\sqrt{2} + \sqrt{3}) = 0$.

Exercise 3.8. Let k be a field and let R = k[x, y]. Calculate I^{-1} where I = (x, y), and prove that $(I^{-1})^{-1} \neq I$.

Exercise 3.9. Let R be a Dedekind domain with field of fractions K, and let M_1, M_2 be fractional ideals of R. Prove the following.

- i. Every nonzero ideal of R is fractional.
- ii. The sum M_1+M_2 and the product

$$M_1M_2=\{\sum_{i=1}^n\frac{a_i}{b_i}\frac{c_i}{d_i}\mid \frac{a_i}{b_i}\in M_1,\ \frac{c_i}{d_i}\in M_2,\ n\in\mathbb{N}\}\quad\text{are fractional ideals of }R.$$

- iii. M_1^{-1} is a fractional ideal of R.
- iv. If $M_1M_2=R$, then $M_2=M_1^{-1}$.
- v. The set of invertible fractional ideals of R forms an abelian multiplicative group with multiplicative identity R.

Exercise 3.10. Let R be a Dedekind domain and let U be a multiplicative subset of R. Prove that R_U is Dedekind too.

1

Exercise 3.11. Let $\mathbb{Z}[t^2]=R\subseteq S=\mathbb{Z}[t,\sqrt{3}].$ Apply the going-up theorem to find chains of prime ideals in S lifting the following chains in R. In each case describe the inclusions $R/P_1\hookrightarrow S/Q_1$ and $R/P_2\hookrightarrow S/Q_2$.

- (i) $0 \subseteq (13) \subseteq (t^2 1, 13)$.
- (ii) $0 \subseteq (t^2 1) \subseteq (t^2 1, 13)$.
- (iii) $0 \subseteq (t^2 + 1) \subseteq (t^2 + 1, 13)$.
- (iv) $0 \subseteq (t^2) \subseteq (t^2, 13)$.