Projeto de Controlador PID para Sistemas de Segunda Ordem com Atraso via Resposta em Frequência

Jhonat Heberson Avelino de Souza ¹

Prof. Dr. Carlos Eduardo Trabuco Dórea ²

Prof. Dr. José Mário Araújo ³

 $^{1}\langle \mathsf{jhonatheberson@gmail.com}\rangle$

 $^2\langle cetdorea@dca.ufrn.br\rangle$

³(prof.jomario@gmail.com)

Departamento de Engenharia de Computação e Automação – DCA Universidade Federal do Rio Grande do Norte – UFRN

Sumário

- Introdução
- Pundamentação Teórica
- 3 Definição do Problema
- 4 Metodologia
- Experimentos
- 6 Resultados
- Conclusões
- Referencias

Introdução - Contextualização

Figura 1: Sistema de Segunda ordem, e Controlador PID

Introdução - Trabalhos anteriores do grupo

- Problema com realimentação de estado
- Alocação parcial de polos
- Monovariável
- Sistemas estáveis em malha aberta

Contribuímos com utilização do controlador Proporcional e Integrativo Derivativo (PID) com realimentação de saída para rastreamento e considerar sistemas estáveis em malha aberta, otimizando índice *IAE* e robustez de forma concorrente.

Introdução - Objetivos

- Estudo de sistemas de segunda ordem com atraso.
- Propor uma solução para um problema de controle para um sistema de segunda ordem com atraso
- Controlador Proporcional e Integrativo Derivativo (PID).
- Definir o problema de controle nos termos da resposta em frequência usando Receptância
- Critério de estabilidade de Nyquist para definir a função as regras de otimização.
- Otimização do controlador com base no índice de *IAE*, concorrente ao critério de robustez.
- Aprimorar algoritmo heurístico de otimização (GA) para encontrar os ganhos do controlador PID que atenda os critérios estabelecidos.

Fundamentação Teórica - Sistema de segunda ordem

Figura 2: Sistema massa e mola

Equação do sistema

$$m_1\ddot{x}_1(t) + d(2\dot{x}_1(t) - \dot{x}_2(t)) + k(2x_1(t) - x_2(t)) = 0$$
 (1)

$$m_2\ddot{x}_2(t) + d(\dot{x}_2(t) - \dot{x}_1(t)) + k(x_2(t) - x_1(t)) = u$$
 (2)

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} 2d & -d \\ -d & d \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} 2k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad (3)$$

Fundamentação Teórica - Sistema de segunda ordem

Figura 3: Sistema massa e mola

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{B}\mathbf{u} \tag{4}$$

Para um sistema com n graus de liberdade e m entradas, têm-se $\mathbf{M} \in \Re^{n \times n}$, é uma matriz de massas, $\mathbf{C} \in \Re^{n \times n}$ é uma matriz de amortecimento, $\mathbf{K} \in \Re^{n \times n}$ é uma matriz de rigidez, $\mathbf{B} \in \Re^{n \times m}$ é uma matriz de controle, $\mathbf{x} \in \Re^n$ é o vetor de deslocamento e $\mathbf{u} \in \Re^m$ é um vetor de entradas Single Input Single Output (SISO)

Fundamentação Teórica - Matriz de receptância

$$\mathbf{M}(t)+\mathbf{C}(t)+\mathbf{K}\mathbf{x}(t)=\mathbf{B}\mathbf{u}(t)$$

A saída do sistema definida como:

$$y(t) = lx(t) \tag{5}$$

Considere-se o monovariável, ou seja, $l \in \mathbb{R}^{1 \times n}$. e erro do sistema é definido como:

$$e(t) = r(t) - y(t) \tag{6}$$

$$u(t) = k_p e(t) + k_i \int_0^t e(t) dt + k_d \frac{de(t)}{dt}$$

Fundamentação Teórica - Matriz de receptância

$$V(s) = q(s)R(s)$$
, com $q(s) = (k_p + \frac{k_i}{s} + k_d s)$

$$U(s) = -(k_p + \frac{k_i}{s} + k_d s)e^{-\tau s}IX(s) + V(s)$$
 (7)

$$(Ms^2 + Cs + K + e^{-\tau s}q(s)\mathbf{B}I)X(s) = V(s)$$
(8)

$$x(s) = (Ms^{2} + Cs + K + e^{-\tau s}q(s)BI)^{-1}V(s)$$
 (9)

$$(\mathbf{M}s^2 + \mathbf{C}s + \mathbf{K} - q(s)\mathbf{B}I)z = \mathbf{0}$$
 (10)

Fundamentação Teórica - Fórmula de Sherman-Morrison

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{T})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{T}\mathbf{A}^{-1}}{1 + \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}}$$
(11)

Aplicando a fórmula de *Sherman-Morrison* em (10) com $\mathbf{A} = (\mathbf{M}s^2 + \mathbf{C}s + \mathbf{K}), \mathbf{u} = \mathbf{B} e \mathbf{v}^T = q(s),$ temos:

$$\hat{\mathbf{H}}(s) = \mathbf{H}(s) - \frac{\mathbf{H}(s)q(s)/\mathbf{H}(s)\mathbf{B}}{1 + q(s)/\mathbf{H}(s)\mathbf{B}}$$
(12)

na qual $\hat{\mathbf{H}}(s) = (\mathbf{M}s^2 + \mathbf{C}s + \mathbf{K} + q(s)Bl)^{-1}$ é definida como matriz de receptância de malha fechada e $\mathbf{H}(s) = (\mathbf{M}s^2 + \mathbf{C}s + \mathbf{K})^{-1}$ como matriz de receptância de malha aberta, que, na prática, pode ser medida pela resposta em frequência $\mathbf{H}(j\omega)$.

A equação característica de (12) é definida como:

$$1 + q(s)/\mathbf{H}(s)\mathbf{B} = 0 \tag{13}$$

Fundamentação Teórica - Sistema com atraso

$$u(t-\tau) = k_p e(t-\tau) + k_i \int_0^t e(t-\tau) d\tau + k_d \frac{de(t-\tau)}{dt}$$
 (14)

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{b}u(t-\tau) \tag{15}$$

$$(\mathbf{M}s^{2} + \mathbf{C}s + \mathbf{K} - q(s)\mathbf{B}le^{-s\tau})z = \mathbf{0}$$

$$(\mathbf{M}s^{2} + \mathbf{C}s + K - (k_{p} + \frac{k_{i}}{s} + k_{d}s)\mathbf{B}le^{-s\tau})z = \mathbf{0}$$
(16)

Fundamentação Teórica - Fórmula de Sherman-Morrison com atraso

$$\hat{\mathbf{H}}(s) = \mathbf{H}(s) - \frac{\mathbf{H}(s)(k_p + \frac{k_i}{s} + k_d s)/\mathbf{H}(s)\mathbf{B}e^{-s\tau}}{1 + (k_p + \frac{k_i}{s} + k_d s)/\mathbf{H}(s)\mathbf{B}e^{-s\tau}}$$
(17)

$$1 + (k_p + \frac{k_i}{s} + k_d s)/\mathbf{H}(s)Be^{-s\tau} = 0$$
 (18)

Resposta em frequência

- A matriz de receptância nos fornece a resposta em frequência $H(j\omega)$ do sistema
- O ganho de malha da equação característica em malha fechada é descrito na Equação 19.

$$L(s) = \left(k_p + \frac{k_i}{s} + k_d s\right) / \mathbf{H}(s) B e^{-s\tau}$$
(19)

Definição do Problema - Estabilidade

Figura 4: Diagrama de Nyquist Exemplo de Circunferência. M_s

Restrições de estabilidade

- Podemos afirmar pela teórica do critério de estabilidade de Nyquist que circunferência M_s representa quanto robusto é o sistema
- M_s é menor distância entre o ponto (-1,0) e a curva de Nyquist

Definição do Problema - Instabilidade

Figura 5: Diagrama de Nyquist de um Sistema Genérico para Exemplo de um Caso de Instabilidade.

Restrições de instabilidade

- Garantir que a curva de Nyquist n\u00e3o contenha a circunfer\u00e9ncia a englobando
- Enlaçar o ponto (1,0), se evidencia um caso de instabilidade

Definição do Problema - Funções de otimização

$$\min_{k_p, k_i, k_d} h(k_p, k_i, k_d) = \left(\min_{\omega_i} |L(j\omega) + 1| - \mathsf{M}_s^{-1}\right)^2$$
s.a.
$$L(j\omega_i) = -(k_p + \frac{k_i}{j\omega_i} + k_d j\omega_i) / \mathbf{H}(j\omega_i) B e^{-j\omega_i \tau}$$

$$\operatorname{Re} \left\{ L(j\omega_i) \right\} \ge -1 + \mathsf{M}_s^{-1} \quad \forall \; \omega_i / \operatorname{Im} \left\{ L(j\omega_i) \right\} = 0$$

$$\min_{\omega_i} \operatorname{Re} \left\{ L(j\omega_i) \right\} = -1 + \mathsf{M}_s^{-1} \quad \forall \; \omega_i / \operatorname{Im} \left\{ L(j\omega_i) \right\} = 0 \quad (20)$$

Metodologia - Algoritmo

Função	Dimensão	PSO [3]	PSO	GA [3]	GA	GA [5]
Esfera	30	1.0454E+05	2.241E+03	6.4415E+03	6.7564E+01	2.0532E+02
		±7.1998E+04	±7.030E+02	±1.6876E+03	±4.4760E+01	± 4.6377E+01
Rosenbrock	2	7.0289E+08	7.0261E+08	1.2493E+07	9.7689E+00	1.2280E+02
		±4.8937E+08	±3.666E+08	±8.6725E+06	±2.5590E+03	±1.9833E+02
Rastrigin	30	5.4130E+02	1.7430E+02	5.5900E+01	1.7650E+01	6.9160E+01
		±1.5969E+01	±2.506E+01	±1.4294E+01	±3.2255E+00	± 9.5182E+00

Figura 6: Média e desvio-padrão do fitness de 20 execuções do algoritmo GA comparado ao PSO, nas condições da ref [3]. Resultados do algoritmo deste trabalho em negrito

Metodologia - Pseudo código

Busca dos ganhos do controlador

- Uso de meta-heurística para encontrar os ganhos
- Algoritmo Genético
- Resolve de forma genérica problemas de otimização
- Geralmente aplicadas a problemas para os quais não se conhece algoritmo eficiente

Metodologia - Fluxograma

Figura 7: Fluxograma do algoritmo genético

Metodologia - Algoritmo

```
Algoritmo 1: Função de Busça
   Entrada: M; C; K; B; l; τ; ω, M, e simulink
   Saida: gain = [Kp Ki Kd];
| população = random(n);
2 objetivo = "execute":
3 execução = 0;
4 variabilidade = 1:
s evolução = 0:
6 alfa = random(0.1):
7 n = 100:
s renita
     para geracao=1 até geracao=n faça
         avalicao = []
         se execucao > 0 então
12
           populacao(2:n,:) = random(n-1);
13
         para i = / até populacao=n faca
15
            L \leftarrow LFunction(M, C, K, B, I, \tau, \omega, populacao(i, 1:3);
            robustez \leftarrow RobustezFunction(L(s), M_i);
            restrictions \leftarrow RestrictionsFunction(L(s), 0):
18
            IAE - IaeFunction(população, simulink)
            ff ← FitnessFunction(IAE, robustez, alfa);
            avaliacao(i,1:end) = [ff, restrictions];
23
         população = [população avaliação];
        população - AssortmentFunction(população);
        populacao \leftarrow CrossOverFunction(populacao(1:n,1:end-2));
        L ← LFunction(M, C, K, B, I, τ, ω, população(1, 1:3));
         robustez \leftarrow RobustezFunction(L(s), M_s)
         restrictions \leftarrow RestrictionsFunction(L(s), 0)
         IAE ← IaeFunction(população, simulink);
         ff ← FitnessFunction(IAE, robustez, alfa);
        se (ff < 0.4 && restrictions < 0.9) || (execução >
          2 && Restrictions < 0.9) então
            objetivo = "fin":
            melhorIndividuo = populacao(1,:);
         VariabilidadeFunction(variabilidade, evolução, ff):
        geração = geração + 1;
     execucao = execucao + 1;
e até (objetivo # "fim");
```

Figura 8: Pseudo código do algorítimo de busca

Metodologia - Algoritmo causando erros numéricos

```
Algoritmo 3: Função L  
Entrada: M; C; K; B; I; \tau; \omega e população Saída: L  
1 Kp = população(1); 2 Ki = população(2); 3 Kd = população(3); 4 para i = 1 até i = comprimento(\omega) faça  
5 | \beta = j \times \omega(i); 6 | L(i) = (Kp + Ki/\beta + 0.0001) + \beta \times Kd) \times I \times (M \times \beta^2 + C \times \beta + K)^{-1} \times B \times e^{-\tau \times \beta}; 7 | i = i + 1; 8 fim
```

Figura 9: Pseudo código da função L

Nyquist infinito

- Pertubação na ação integrativa
- Evita valores infinitos para cálculo do diagrama de Nyquist

Metodologia - Algoritmo verificando a variabilidade genética

```
Algoritmo 8: Função de Variabilidade

Entrada: variabilidade, evolucao, e ff
1 evolucao(variabilidade) = ff;
2 variabilidade = variabilidade + 1;
3 se tamanho(evolucao) > 10 então
4 | variabilidade = 1;
5 | evolucao = evolucao(2:end);
6 | se var(evalution) < 0.0000001 então
7 | objetivo = "fim";
8 | melhorIndividuo = populacao(1,:);
9 | interromper;
10 | fim
```

Figura 10: Pseudo código da função de variabilidade

Verificação de variabilidade genética

Análise de melhoria da população com base na interação do algoritmo

Metodologia - Métodos de seleção

Figura 11: Ilustração dos métodos implementados de seleção. (a) Seleção elitismo, ordenando de forma crescente e escolhendo os indivíduos com maior fitness. (b) Seleção Randômica, que seleciona os pais aleatoriamente entre a população. (c) Seleção roleta, a qual ordena e rearranja para que simula uma roleta.

Metodologia - Métodos de cruzamento

Figura 12: Algoritmos de cruzamento (crossover). (a) Cruzamento uniforme, em que o novo cromossomo (abaixo) é formado selecionando genes aleatórios de cada um dos pais. (b) Cruzamento de dois pontos, em que o novo cromossomo é formado pelas extremidades de um dos pais e a parte central do outro. Os pontos de corte (tracejados) são sorteados aleatoriamente para cada indivíduo. (c) Cruzamento de um ponto, em que o novo indivíduo é gerado com o início do cromossomo de um dos pais e o final do outro. O ponto de corte (linha tracejada) é decidido aleatoriamente para cada indivíduo.

Resultados - Resultados da Otimização de IAE

Resultados - Resultados da Comparação entre as Otmização

Resultados - Resultados da Concorrência entre a Otimização

Resultados - Resultados da pertubação no sistema

Conclusões

- PID com realimentação de saída para rastreamento.
- Considerar sistemas instáveis em malha aberta.
- Considerar sistemas multivariáveis
- Estudo da eficiência para essa técnica utilizando controlador PID.
- Avaliação do critério de estabilidade de Nyquist.
- Trabalhos futuros: Verificar eficiência de outro algoritmo heurístico (PSO).

Referências

- [1] Ogata, Katsuhiko (2009), Modern control engineering, Prentice Hall Upper Saddle River, NJ.
- [2] DANTAS, N. J. B. (n.d.), Projeto de controladores para sistemas de segunda ordem com atraso via resposta em frequência., Dissertação de mestrado, Universidade Federal do Rio Grande do Norte.
- [3] Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, Adham Atyabi, A Comprehensive Review of Swarm Optimization Algorithms, PLOS ONE, 10, e0122827, 2015.
- [4] Solgi, R. M., geneticalgorithm, v 1.0.1, https://github.com/rmsolgi/geneticalgorithm Acessado em 24/08/2020.