Thank you. Your submission for this guiz was received.

You submitted this quiz on **Thu 10 Jul 2014 6:19 PM PDT**. You got a score of **15.00** out of **20.00**. You can attempt again, if you'd like.

Introduction

This first quiz will check your ability to execute basic operations on objects in R and to understand some basic concepts. For questions 11–20 you will need to load a dataset into R and do some basic manipulations in order to answer the questions on the quiz.

You may want to print a copy of the quiz questions to look at as you work on the assignment. It is recommended that you save your answers as you go in the event that a technical problem should occur with your network connection or computer. Ultimately, you must submit the quiz online to get credit!

Data

The zip file containing the data for questions 11–20 in this Quiz can be downloaded here:

Week 1 Quiz Data

For this assignment you will need to unzip this file in your working directory.

Question	1	
R was developed k	oy statisticia	ans working at
Your Answer	Score	Explanation
○ StatSci		
○ Microsoft		
HarvardUniversity		
The University of	1.00	The R language was developed by Ross lhaka and Robert Gentleman who were statisticians at the University of Auckland ir

Auckland	New Zealand.	
Total	1.00 / 1.00	

The definition of free software consists of four freedoms (freedoms 0 through 3). Which of the following is NOT one of the freedoms that are part of the definition?

Your Answer		Score	Explanation
The freedom to prevent users from using the software for undesirable purposes.	~	1.00	This is not part of the free software definition. Freedom 0 requires that the users of free software be free to use the software for any purpose.
The freedom to study how the program works, and adapt it to your needs.			
The freedom to improve the program, and release your improvements to the public, so that the whole community benefits.			
The freedom to redistribute copies so you can help your neighbor.			
Total		1.00 / 1.00	

Question 3

In R the following are all atomic data types EXCEPT

Your Answer	Score	Explanation
numeric		

data frame	~	1.00	'data frame' is not an atomic data type in R.
character			
complex			
Total		1.00 / 1.00	

If I execute the expression x < -4 in R, what is the class of the object `x' as determined by the `class()' function?

Your Answer		Score	Explanation
• numeric	~	1.00	
oreal			
vector			
list			
Total		1.00 / 1.00	

Question 5

What is the class of the object defined by x <- c(4, TRUE)?

Your Answer	Score	Explanation
logical		
0		
matrix		
• numeric	1.00	The numeric class is the "lowest common denominator" here and so all elements will be coerced into that class.

integer				
Total	1.00 /			
	1.00			

Question Explanation

R does automatic coercion of vectors so that all elements of the vector are the same data class.

Question 6

If I have two vectors $x \leftarrow c(1,3,5)$ and $y \leftarrow c(3,2,10)$, what is produced by the expression rbind(x, y)?

Your Answer	Score	Explanation
a vector of length 3		
a matrix with three columns and two rows	✓ 1.00	The 'rbind' function treats vectors as if they were rows of a matrix. It then takes those vectors and binds them together row-wise to create a matrix.
a 2 by 2 matrix		
a 3 by 3 matrix		
Total	1.00 / 1.00	

Question 7

A key property of vectors in R is that

Your Answer	Score	Explanation
elements of a vector can be of different classes		
the length of a vector must be less than 32,768		
elements of a vector can only be character or numeric		
elements of a vector all must be of the same class	✓ 1.00	

Total 1.00 / 1.00

Question 8

Suppose I have a list defined as $x \leftarrow list(2, "a", "b", TRUE)$. What does x[[1]] give me?

Your Answer		Score	Explanation
a character vector containing the element "2".			
a list containing a numeric vector of length 1.			
a numeric vector containing the element 2.	~	1.00	
a list containing the letter "a".			
Total		1.00 / 1.00	

Question 9

Suppose I have a vector x <- 1:4 and y <- 2:3. What is produced by the expression x + y?

	Score	Explanation
×	0.00	
	0.00 / 1.00	
	×	× 0.00

Question 10

Suppose I have a vector x <- c(3, 5, 1, 10, 12, 6) and I want to set all elements of this vector that

are less than 6 to be equal to zero. What R code achieves this?

our Answer	Score	Explanation
x[x == 0] <-		
x[x %in% 5] <- 0		
x[x < 6] ==	x 0.00	This takes the elements of x that are less than 6 and tests whether they are equal to 0 or not.
) x[x > 0] <-		
otal	0.00 / 1.00	

Question 11

In the dataset provided for this Quiz, what are the column names of the dataset?

Your Answer	Score	Explanation
0 1, 2, 3, 4, 5, 6		
Ozone, Solar.R, Wind,Temp, Month, Day	✓ 1.00	You can get the column names of a data frame with the `names()' function.
Month, Day, Temp, Wind		
Ozone, Solar.R, Wind		
Total	1.00 / 1.00	

Question 12

Extract the first 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
Ozone Solar.R Wind Temp Month Day 1 41 190 7.4 67 5 1	1.00	You can extract the first two rows using the [operator and an integer sequence to index the rows.
2 36 118 8.0 72 5 2		
0		
Ozone Solar.R Wind		
Temp Month Day		
1 9 24 10.9 71		
9 14		
2 18 131 8.0 76 9 29		
0		
Ozone Solar.R Wind		
Temp Month Day		
1 18 224 13.8 67 9 17		
2 NA 258 9.7 81 7 22		
0		
Ozone Solar.R Wind		
Temp Month Day		
1 7 NA 6.9 74		
5 11		
2 35 274 10.3 82 7 17		
Total	1.00 /	

How many observations (i.e. rows) are in this data frame?

Your	Score	Explanation
Answer		

<u> </u>		
<u> </u>		
153	✓ 1.00	You can use the `nrows()' function to compute the number of rows in a data frame.
Total	1.00 / 1.00	

Extract the *last* 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer Score Explanation Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 The 'tail()' function is an easy way to extract the last **✓** 1.00 Ozone Solar.R Wind Te few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30

Ozone Solar.R Wind Te mp Month Day 152 31 244 10.9 78 8 19 153 29 127 9.7 82 6 7

Ozone Solar.R Wind Te mp Month Day

152 11 5 20	44 9.7 62			
	223 8.0 85			
Total		1.00 /		
		1.00		

What is the value of Ozone in the 47th row?

Your Answer		Score	Explanation
34			
<u>63</u>			
21	~	1.00	The single bracket [operator can be used to extract individual rows of a data frame.
<u> </u>			
Total		1.00 / 1.00	

Question 16

How many missing values are in the Ozone column of this data frame?

Your Answer	Score	Explanation
78		
37		
43		
9		
Total	0.00 / 1.00	

Question Explanation

The `is.na' function can be used to test for missing values.

Question 17

What is the mean of the Ozone column in this dataset? Exclude missing values (coded as NA) from this calculation.

Your Answer		Score	Explanation
42.1	~	1.00	
31.5			
<u>18.0</u>			
<u> 53.2</u>			
Total		1.00 / 1.00	

Question Explanation

The `mean' function can be used to calculate the mean.

Question 18

Extract the subset of rows of the data frame where Ozone values are above 31 and Temp values are above 90. What is the mean of Solar.R in this subset?

Your Answer		Score	Explanation
212.8	~	1.00	
205.0			
334.0			
185.9			
Total		1.00 / 1.00	

Question Explanation

You need to construct a logical vector in R to match the question's requirements. Then use that logical vector to subset the data frame.

Question 19

What is the mean of "Temp" when "Month" is equal to 6?

Your Answer		Score	Explanation
• 75.3	×	0.00	
85.6			
90.2			
79.1			
Total		0.00 / 1.00	

Question 20

What was the maximum ozone value in the month of May (i.e. Month = 5)?

Your Answer	Score	Explanation
97		
<u>115</u>		
<u> </u>		
<u>18</u>		
Total	0.00 / 1.00	