Volatility and Correlation Workshop (Part II)

Bruno Dupire
Head of Quantitative Research
Bloomberg L.P.
ICBI Global Derivatives 2011

Paris, April 15, 2011

Correlation

Bruno Dupire Bloomberg LP

Introduction

Many institutions have positions on a large number of assets/markets. They are exposed to joint moves of these risk factors. In this talk, we review:

- Background on correlation
- Data visualization
- Data analysis
- Correlation scenarios

Background on Correlation

Definitions

• (X,Y) random variables

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Cauchy-Schwarz inequality $\Rightarrow \rho_{X,Y} \in [-1,1]$

• Is
$$C = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 a correlation matrix ?

i.e. does (X_i) r.v. exist s.t. $Corr((X_i)) = C$?

Correlation Matrix: a constrained object

• If $\forall i, Var(X_i) = 1$ then

$$Var\left(\sum_{i} \lambda_{i} X_{i}\right) = \sum_{i} \lambda_{i}^{2} + 2\sum_{i < j} \rho_{ij} \lambda_{i} \lambda_{j} = \lambda^{T} C \lambda > 0$$

$$\Rightarrow C \ge 0$$

• Example: for N r.v., if $C = \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \dots & \rho & 1 \end{pmatrix}$ then $\rho \ge -\frac{1}{N-1}$

Dem.:
$$Var(\sum_{i} X_{i}) = \sum_{i} 1^{2} + 2\sum_{i < j} \rho = N + N(N-1)\rho \ge 0$$

Correlation matrix: to handle with care

Correlation matrix:

- Difficult to manipulate
 When bumping one coefficient and its symmetric, C must remain > 0.
- How to compute a correct matrix if asynchronous or missing data?
 Moreover if we have few data, the matrix will be noisy.
- Computation of implied C may not respect constraints
 ⇒ Arbitrage ?

But correlation is a key data in risk management

Correlation Matrix Computation

- Given 2 time series (X_i) and (Y_i) for i = 1...n we want to compute their correlation
- A possible estimator of their variance is:

$$Cov(X,Y) = \frac{N}{N-1} \left(\frac{1}{N} \sum_{i} X_{i} Y_{i} - \frac{1}{N^{2}} \left(\sum_{i} X_{i} \right) \left(\sum_{i} Y_{i} \right) \right)$$

- Then the correlation is given by: $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$
- We have:

$$Corr(X,Y) = \frac{\left(N\sum X_{i}Y_{i} - \left(\sum X_{i}\right)\left(\sum Y_{i}\right)\right)}{\sqrt{\left(N\sum X_{i}^{2} - \left(\sum X_{i}\right)^{2}\left(N\sum Y_{i}^{2} - \left(\sum Y_{i}\right)^{2}\right)\right)}}$$

Completing data

- In order to construct a correlation matrix, we may have to complete some missing data, or to deal with asynchronous data.
- In the case of missing data, one can use the E.M. (Expectation Maximization) algorithm to complete time series.
- In the case of asynchronous data (ex: closing prices on different markets), that can introduce correlation, distorting the values of portfolios, value at risk measures, and hedge strategies.
 - → Prices can be synchronized by computing estimates of the value of assets even when markets are closed, given information from markets which are open.

Gaussian examples

Bruno Dupire

Correlation is NOT Causality

• $!! \rho$ captures only <u>linear</u> relationships

- X following uniform law over $\begin{bmatrix} -1,1 \end{bmatrix}$ and $Y=X^2$
- Information on X gives information on Y, and vice-versa
- But $Corr(X,Y) = E[XY] E[X]E[Y] = E[X^3] E[X]E[X^2] = 0$

Correlation is NOT Causality

Correlation does not distinguish shapes

To capture conditional correlation: Copulas

High correlation trap

X and Y are 2 stocks of same volatility: σ

Very highly correlated: $\rho(X,Y) = 0.99$

Are they almost perfect substitutes?

NO
$$\sigma_{X-Y}^2 = \sigma^2 + \sigma^2 - 2\rho\sigma^2$$
$$\sigma_{X-Y} = \sigma\sqrt{2(1-\rho)} \approx 0.14\sigma$$

The risk of X-Y is still 14% of the initial risk!

Correlating levels/increments

• $X_t = S\&P_t$, $Y_t = S\&P_{t+\delta t}$

Levels very correlated Increments decorrelated

X_t= S&P_t, Y_t= X_t+αt
 Levels weakly correlated
 Increments fully correlated

Independent Components Analysis

- Covariance Matrix discards information on joint behavior beyond correlation
- If factors are independent, joint density = product of marginal density

These two distributions have the same covariance matrix

- The purpose of ICA is to try to decompose the signal as a mix of independent factors: S = Af

Where A is the mixing matrix, and f are the independent factors

Independent Components Analysis

- Mix of independent non gaussian random variables is more gaussian (Central Limit Theorem)
- To recover independent factors, identify non gaussian combinations. For instance use kurtosis as a criterion

 Reconstruction not as good as PCA in terms of variance. But better than PCA in capturing qualitative behavior

Comparison P.C.A. / I.C.A.

- Both have null correlation between factors over the whole period
- But running correlation is better with ICA (here with a time window of 100)

Comparison P.C.A. / I.C.A.

 We can also compare the distribution of the factors given by PCA and by ICA:

- In fact ICA gives factor less gaussian than PCA:
 - kurtosis(PCA) ~ 5
 - kurtosis(ICA) ~ 20

Correlation scenarios

Correlation Scenarios

- If you want to test simple hypothesis about the evolution of correlation how to modify the current correlation matrix, as it needs to remain non-negative?
- How to increase/decrease the global correlation
- First, let us define a global correlation measurement:

$$\rho_0 = \frac{\sum_{i} \sum_{j \neq i} \rho_{ij}}{n(n-1)}$$

 The idea is to move within the set of all the correlation matrices increasing or decreasing the correlation

Correlation Scenarios

 The set of all correlation matrices is convex. Using this property we define the following matrices:

$$C_{1} = 1$$

$$C_{2} = Id$$

$$C_{\rho}, \rho_{0} < \rho \le 1$$

$$C_{\rho} = \frac{\rho - \rho_{0}}{1 - \rho_{0}} C_{1} + \frac{1 - \rho}{1 - \rho_{0}} C$$

$$C_{\rho}, 0 \le \rho \le \rho_{0}$$

$$C_{\rho} = \frac{\rho}{\rho_{0}} C + \frac{\rho_{0} - \rho}{\rho_{0}} C_{2}$$

• We have: $\rho_0(C_1) = 1$, $\rho_0(C_2) = 0$, $\rho_0(C_\rho) = \rho$

Correlation Matrix Deformation

2 possible dynamical models for correlation:

Model 1: $\rho_t = a + \sigma \varepsilon_t$

Model 2: $\rho_t - \rho_{t-1} = \alpha \varepsilon_t$

Where $\mathcal{E}_{t} \sim N(0,1)$. To test these models:

- We sliced out 5 years of data into 20 quarters to get a time series of 20 correlation matrices.
- We computed the covariance matrix of these 20 correlations $\,C_1^{}$ and the covariance of the 19 increments $\,C_2^{}$.
- Decision is based upon a comparison of total variance:
 - Model 1: one should have $tr(C_1) < tr(C_2)$
 - Model 2: one should have $tr(C_2) < tr(C_1)$

Correlation Matrix Deformation

For the ten largest stocks, we found:

$$tr(C_1) = 0.3289 < 0.4721 = tr(C_2)$$

This supports a model of the first type.

Now we compare the spectrum of the 2 covariance matrices:

Bruno Dupire

Empirical Scenarios for VaR / Stress testing

- Compute n correlation matrices over non overlapping time windows
- Reprice the current portfolio with those n correlation matrices
- Retain the (p^{th}) worst results
- For volatility stress: multiply all volatilities by the same λ

Conclusion

- The value of large portfolios depends crucially on the covariance matrix
- It is important to synthesize this huge amount of information and to represent it visually
- Developing correlation scenarios is important but requires care
- New techniques are becoming available

Trading Volatility and Correlation

Outline

Trading volatility and correlation

Why trade volatility/correlation?

- Trade volatility spread between two indices
- Trade realised volatility against implied volatilities
- Trade correlation between two underlyings, e.g. interest rates, equity indices, FX
- Buy gamma, cross-gamma or vega for hedging purpose

Notation

Simplification:

- Assume interest rate = 0
- Normal model:

$$dX_{t} = \sigma_{X,t} dW_{t}^{X}$$

$$dY_{t} = \sigma_{Y,t} dW_{t}^{Y}$$

$$E[dW_{t}^{X} dW_{t}^{Y}] = \rho$$

European call and put options

- Trade volatility using delta hedged European call or put option
- Complex exposure to spot and volatility level
- Take a view on the spot in order to determine the expected variance sensitivity

How to trade volatility with better control on spot sensitivity?

Instantaneous Forward Variance

- Trade instantaneous variance at T
- Requirement: sensitivity to variance independent of spot
- Vega hedging purpose: simple vega
- Arbitrage variance on all possible spot levels

Instantaneous Forward Variance

- $Par_T = contract that gives S_T^2$ at time T
- Constant sensitivity to the variance
- Calendar Spread: $\frac{Par_{T+\Delta T} Par_{T}}{\Delta T}$

Conditional Instantaneous Forward Variance

What is conditional instantaneous variance at T?

Instantaneous variance at T condition on spot at T equal to a particular value

Conditional Instantaneous Forward Variance

Why trade conditional instantaneous variance?

Control exposure

 $S_T \neq$ target value: no instantaneous variance exposure

- Hedging: Exotics, such as knock-out option, have different variance exposures at different spot levels
- Arbitrage variance only over a particular spot range

Conditional Instantaneous Forward Variance

Naïve approach: Calendar spread of European Call with strike K and maturity T, i.e

$$\frac{C(K,T+\Delta T)-C(K,T)}{\Delta T}$$

- $\Delta T \rightarrow 0$: receive payment only when $S_T = K$
- Width changes as instantaneous variance changes

Conditional Instantaneous Forward Variance

- Truncated parabola contract: $Par_{KT} = max(S_T K, 0)^2$
- Non-constant sensitivity to variance
- Parabola Calendar Spread: $PCS_{K,T} = \lim_{\Delta T \to 0} \frac{Par_{K,T+\Delta T} Par_{K,T}}{\Delta T}$
- Strongly sensitive to variance when $S_T \ge K$

Sensitivity to the variance

Conditional Instantaneous Forward Variance

- Consider the portfolio: $\frac{PCS_{K_1,T} PCS_{K_2,T}}{K_2 K_1}$
- It gives the instantaneous variance at T only when

$$K_1 \leq S_T \leq K_2$$

Conditional Instantaneous Forward Variance

- Problem: lose your premium if S_T is not within $[K_1, K_2]$
- Finance your premium using digital spread

$$\alpha \frac{Dgt(K_{1},T) - Dgt(K_{2},T)}{K_{2} - K_{1}} = \frac{PCS_{K_{1},T} - PCS_{K_{2},T}}{K_{2} - K_{1}}$$

• No need to pay the digital spread when S_T is not within $[K_1, K_2]$

Trade realized variance

How to trade realised variance between T_1 and T_2 ?

- Parabola Calendar Spread: $Par_{T_2} Par_{T_1}$
- Delta-hedge between T₁ and T₂

$$\begin{aligned} \operatorname{Par}_{\mathbf{t}+\Delta\mathbf{t}} - \operatorname{Par}_{\mathbf{t}} &= 2S_{t}\Delta S_{t} + (\Delta S_{t})^{2} \\ \uparrow & \uparrow \\ \operatorname{Spot} & \operatorname{Quadratic} \\ \operatorname{Dependent} & \end{aligned}$$

$$\Rightarrow S_{T_2}^2 - S_{T_1}^2 - \sum_{t} 2S_t \Delta S_t = \sum_{t} (\Delta S_t)^2$$

$$\longrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow$$
Delta Hedge Total
with ratio realized
$$= 2S_t \qquad \text{variance}$$

Replication

We can replicate Parabola contract using a combination of European Call and Put options

- Additional option = Change in slopes
- $Par_{T} = \int 2C(K,T)dK$

Implied volatility

What is the relationship between implied volatility and the value of $Par_{_{\! T}}-Par_{_{\! T}}$ at T?

$$Par_{T_1} - Par_{T} = \int 2varga(K)\sigma_{imp}^2(K, T_1)dK$$

Trading correlation

 Similar to volatility, correlation sensitivity in general depends on spot level

Spot dependent correlation vega of basket option max(X_T+Y_T-K,0)

How to trade correlation with better control on spot sensitivity?

Why we want to trade instantaneous covariance at T?

- Spot independent covariance sensitivity
- Simple covariance hedging instrument
- Trade covariance on every possible spot levels

How to lock instantaneous covariance?

- Product contract: Pro gives XY at T
- Calendar spread: $\frac{\text{Pro}_{\text{T+}\Delta\text{T}} \text{Pro}_{\text{T}}}{\Delta\text{T}}$

Product contract payoff function

Constant sensitivity to covariance

 Replicate Product contract using basket options and European call on single assets

Example: Use Basket option $Bas(K) = max(X_T + Y_T - K, 0)$

• Parabola contract $max(X,0)^2 \longleftrightarrow max(X+Y,0)^2$

Long parabola on (X+Y) and short parabola on X and on Y

$$\frac{1}{2}(X+Y)^2 - \frac{1}{2}X^2 - \frac{1}{2}Y^2 = XY$$

Realized covariance

How to trade realised covariance between T₁ and T₂?

- Calendar Spread on Product contract: Pro_{T2} Pro_{T1}
- Delta hedge between T₁ and T₂

Let
$$T_2 = T_1 + 1$$
:
$$X_{T_1+1}Y_{T_1+1} - X_{T_1}Y_{T_1} = X_{T_1}\Delta Y_{T_1} + Y_{T_1}\Delta X_{T_1} + \Delta X_{T_1}\Delta Y_{T_1}$$
Spot covariance Dependency

$$\Rightarrow X_{T_2}Y_{T_2} - X_{T_1}Y_{T_1} - \sum_{t} X_{t}\Delta Y_{t} - \sum_{t} Y_{t}\Delta X_{t} = \sum_{t} \Delta X_{t}\Delta Y_{t}$$

$$\downarrow \text{Delta} \qquad \qquad \text{Delta} \qquad \qquad \text{Total Realised}$$

$$\downarrow \text{Hedge} \qquad \qquad \text{Hedge} \qquad \qquad \text{Ratio for}$$

$$\downarrow \text{Ratio for} \qquad \qquad \text{Ratio for}$$

$$\downarrow \text{Y}_{t} = \text{X}_{t} \qquad \qquad \text{X}_{t} = \text{Y}_{t}$$

Instantaneous Forward Correlation

Can we lock instantaneous forward correlation using model free method? No!

Any delta-hedged two-asset derivative

$$\frac{\partial P}{\partial t} = -\frac{1}{2}\sigma_{\!\scriptscriptstyle X}^2\Gamma_{\!\scriptscriptstyle X} - \frac{1}{2}\sigma_{\!\scriptscriptstyle Y}^2\Gamma_{\!\scriptscriptstyle Y} - \sigma_{\!\scriptscriptstyle X}\sigma_{\!\scriptscriptstyle Y}\rho\Gamma_{\!\scriptscriptstyle XY} \\ \longleftrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow$$
 Time value of a delta- variance of X * Gamma of X of Y of Y Gamma option of Y Gamma

Instantaneous Forward Correlation

 Through options, we can only trade variance and covariance

• Correlation
$$\rho = \frac{\text{cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

$$\Rightarrow E[\rho] = E\left[\frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}\right] \neq \frac{E[\text{cov}(X,Y)]}{E[\sqrt{\text{var}(X)}]E[\sqrt{\text{var}(Y)}]}$$

Correlation is a non-linear function of var and cov

Expected correlation depends on volatility of var and cov

Restriction on trading covariance

- Options (except for quantos) capture instantaneous variance and covariance through gamma and crossgamma
- Restriction on the relationship between gamma and cross-gamma

$$\Gamma_{XY} = \frac{\partial^2 C}{\partial X \partial Y} \Rightarrow \Gamma_X = \frac{\partial^2 C}{\partial X^2} = \frac{\partial}{\partial X} \int \Gamma_{XY} dY \text{ and } \Gamma_Y = \frac{\partial^2 C}{\partial Y^2} = \frac{\partial}{\partial Y} \int \Gamma_{XY} dX$$

Implication:

Lock conditional instantaneous covariance

(e.g.
$$X_T = K_X \& Y_T = K_Y$$
) ? No!

Restriction on trading covariance

Cross-Gamma = 1 when $X = K_X$ and $Y = K_Y$ e.g. $F(X,Y) = (X-K_X)(Y-K_Y)$ locally

Globally, no Gamma and Cross-Gamma

Change in slopes on the boundary

Additional convexity

Additional variance and covariance exposure

Covariance modelling

- Model free method trade forward covariance
- More flexible covariance trading requires modelling
- A good model should generate prices which match option prices traded in liquid market
- Important for hedging complicated options using some simple ones traded in liquid market

How to achieve this?

Smile model

How to read local correlation from MAX Option?

$$M(K_X, K_Y, T) = \max(X_T - K_X, Y_T - K_Y, 0)$$

- First, construct a portfolio of MAX option such that it only has value when X and Y equal to particular values
- Then, read correlation by aggregation

• MAX option $M(K_X, K_Y, T) = \max(X_T - K_X, Y_T - K_Y, 0)$

$$M(K_{X},K_{Y},T)$$

• Create a spread along $X-K_x=Y-K_y$

• Create a spread on $SM_{(X+Y)}$ along K_X

• Create a spread on $SM_{(X+Y)X}$ along K_Y

$$SM_{(X+Y)XY} = Probability density(K_X, K_Y, T) = \phi(K_X, K_Y, T)$$

Fokker-Planck equation:

$$\frac{\partial \phi}{\partial T} = \frac{1}{2} \frac{\partial^2 \sigma_X^2 \phi}{\partial X^2} + \frac{1}{2} \frac{\partial^2 \sigma_Y^2 \phi}{\partial Y^2} + \frac{\partial^2 \sigma_X \sigma_Y \rho \phi}{\partial X \partial Y}$$

$$\rho(K_{X},K_{Y},T) = \frac{\frac{\partial}{\partial T} \int_{X \leq K_{X}} \int_{Y \leq K_{Y}} \phi dY dX - \frac{1}{2} \int_{Y \leq K_{Y}} \frac{\partial \sigma_{X}^{2} \phi}{\partial X}_{|X=K_{X}} dY - \frac{1}{2} \int_{X \leq K_{X}} \frac{\partial \sigma_{Y}^{2} \phi}{\partial Y}_{|Y=K_{Y}} dX}{\sigma_{X}(K_{X},T)\sigma_{Y}(K_{Y},T)\phi(K_{X},K_{Y},T)}$$

Reprise of Break-Even Points

• Break-even points (BEP): price of the underlying(s) that leave PL of Δ -hedged position unaffected.

1D Case

1D BEP are ± 1 SD away from the FWD. They depend on the price dynamics, not on the option

2D BEP

- 2D BEP are of dimension 1
- At first sight: depends only the Cov matrix
 - → WRONG: depends mostly on another quadratic form, the

Hessian of the option price f(X,Y,t) : $\begin{pmatrix} f_{XX} & f_{XY} \\ f_{XY} & f_{YY} \end{pmatrix}$

$$\delta PL = \frac{1}{2} \left[f_{XX} \left((\delta X)^2 - \sigma_X^2 \delta t \right) + f_{YY} \left((\delta Y)^2 - \sigma_Y^2 \delta t \right) + 2 f_{XY} \left(\delta X \delta Y - \rho \sigma_X \sigma_Y \delta t \right) \right]$$

2D BEP

• 3 cases for signature of quadratic form:

$$(Max(X,Y)-K)^+$$

Option on the max

+0:

$$(X+Y-K)^{+}$$

Basket option

+- :

Quanto stock

Bruno Dupire

Basket options

∆-Hedge of Basket Option

- X and Y correlated with ρ
- Option price C(X,Y,t)

$$\Delta_X = \frac{\partial C}{\partial X} \quad \Delta_Y = \frac{\partial C}{\partial Y}$$

 Δ hedge = $\Delta_X \widetilde{X} + \Delta_Y \widetilde{Y}$? Or does it depend on correlation? What if we can only hedge with X?

Γ-Hedge of Basket Option

Option on $X_1, ..., X_n$ 1 price, n deltas, (n x n) Γ matrix As with Δ :

- If all entries can be hedged, do it
- If only diagonal entries can be hedged, beware of correlation

Spread example

$$(X-Y-K)^{+}$$

If $\sigma_X \sim \sigma_Y$, high correlation, options on X and Y are useless

Values of \mathbb{H}^2

(X - Y) almost orthogonal with X and Y

Hedge of Basket Option

Bruno Dupire

Hedge of Spread Option

Bruno Dupire

Basket Correlation Skew

2 reasons for Basket skew:

- 1) Individual skews
- 2) State dependent correlation

Individual skew + fixed correlation

nD LVM, no rates

$$dS_{i} = \sigma_{i}(S_{i}, t)dW_{i}$$

$$< dW_{i}, dW_{j} >= \rho_{ij} dt$$

•
$$I = \sum \alpha_i S_i \qquad dI = \sigma_I dW$$

with

$$\sigma_I^2 = \sum \sum \alpha_i \alpha_j \rho_{ij} \sigma_i (S_i, t) \sigma_j (S_j, t) = \sigma_I^2 (S_1, ..., S_n, t)$$

Approximation

Produces same basket option prices as

$$dI = \sigma(I, t)dW$$

where

$$\sigma(I,t) = E\left[\sigma_I^2(S_1,...,S_n,t) | I_t = I\right]$$

$$\sim \sigma_I^2(E[S_1 | I_t = I],...,E[S_n | I_t = I],t)$$

$$= \sum \sum \alpha_i \alpha_j E[S_i | I_t = I] E[S_j | I_t = I]$$

FWD PDE → Basket option prices and skew

State dependent correlation

• Assume S_i, i=1...n flat Bachelier $dS_i = \sigma_i dW_i$ with σ_i constant Correlation matrix at t indexed by one variable θ :

$$\rho(S_i, S_j, t) = \rho_{ij}(\theta, t)$$

$$I = \sum \alpha_i S_i \quad dI = \sigma_I dW$$

$$\sigma_I^2 = \sum \sum \alpha_i \alpha_j \rho_{ij}(\theta, t) = f(\theta, t)$$

- If we know the vanillas on I, we know the local vol $\sigma(I,t)$ and $f(\theta,t)=\sigma^2(I,t)$ can be inverted $\Rightarrow \theta=\theta(I,t)$
- Conclusion: $\begin{cases} dS_i = \sigma_i dW_i \\ \rho_{ij} = \rho_{ij} \big(\theta(I,t), t \big) \leftarrow \text{Instantaneous correlation skew} \end{cases}$

is a model that fits the skew of I

Barrier option on basket

 If the barrier is triggered by the basket value, one can use the static replication as a basket Call option minus a basket Put option

 In this case, it is better to hedge with vanillas on the components as opposed to barriers on the components

Mountain Range Options and Correlation risk management

Mountain Range Options

Altiplano

$$\begin{cases}
\left(\sum_{i} \frac{S_{i}(T)}{S_{i}(0)} - K\right)^{+} & \text{if } \min_{i,t} n \left(\frac{S_{i}(t)}{S_{i}(0)}\right) \leq L \\
1 & \text{else}
\end{cases}$$

Atlas

$$\left(\sum_{i=1+n_1}^{n-n_2} \frac{S_i(T)}{S_i(0)} - K\right)^+$$

Where $S_1,...,S_{n_1}$ are the n_1 worst stocks and $S_{n-n_2+1},...,S_n$ are the n_2 best stocks

Mountain Range Options

Everest

$$\min_{i} n \left(\frac{S_{i}(T)}{S_{i}(0)} \right)$$

Annapurna

1 if
$$\min_{i,t} n \left(\frac{S_i(t)}{S_i(0)} \right) \ge L$$

Himalaya

$$\sum_{i} \frac{S_{n(i)}(T_i)}{S_{n(i)}(0)}$$

Where $S_{n(i)}$ is the best remaining stock at time $\mathsf{T_i}$

(and it is then removed from the basket)

Correlation Risk Management

- Option A with price $A(X,Y,\sigma_X,\sigma_Y,\rho,t)$ with $\operatorname{Rega}(A) = \frac{\partial A}{\partial \rho}$
- Hedge with $B(X,Y,\sigma_{_{X}},\sigma_{_{Y}},\rho,t)$
- Rega $\left(A \frac{\text{Rega}(A)}{\text{Rega}(B)}B\right) = 0$

So selling $\frac{\operatorname{Rega}(A)}{\operatorname{Rega}(B)}B$ seems to be a good hedge

Rega is not a single number

- Cancelling Rega today is no guarantee for the future
- Example: simplified ANNAPURNA

The danger of naïve Rega hedging

Bruno Dupire

Sensitivity to correlation

- 3 stocks X₁,X₂ and X₃
- A: Pay-off at T: Second highest value
- We assume $X_1(t) \ge X_2(t) \ge X_3(t)$

• Rega =
$$\frac{\partial A}{\partial \rho}$$

Rega > 0 ?

• For instance, assume:

$$X_1(t)=120; X_2(t)=119; X_3(t)=80$$

Then A \sim min(X_1, X_2) at T

With $\min(X_1, X_2) = X_1 - (X_1 - X_2)^+$

Short a spread option → Rega>0

Rega < 0 ?

Now, assume :

$$X_1(t)=120; X_2(t)=81; X_3(t)=80$$

Then A~max(X_2, X_3) at T

With $\max(X_2, X_3) = X_2 + (X_3 - X_2)^+$

Short a spread option → Rega<0

Correlation arbitrage

FX Triangle Arbitrage

$$X \equiv EUR/USD$$
 $Z \equiv EUR/JPY$ $Y \equiv JPY/USD$

Spot arbitrage:
$$Z_t = \frac{X_t}{Y_t}$$

Vol arbitrage:
$$\sigma_Z^2 = \sigma_{X/Y}^2 = \sigma_X^2 + \sigma_Y^2 - 2\rho\sigma_X\sigma_Y$$

$$\Rightarrow |\sigma_X - \sigma_Y| \le \sigma_Z \le \sigma_X + \sigma_Y$$

Implemented by: $(X - Z_0Y)^+ \le (X - X_0)^+ + Z_0(Y_0 - Y)^+$

N Currency Case

Tetrahedron Arbitrage

• With 4 currencies, all triangles may be viable but still there is a global arbitrage

 In general, it is possible to "trade" the height of a simplex

nD Arbitrage

The identity

$$\left\| \sum_{i=1}^{n} \alpha_{i} X_{i} \right\|^{2} = \left(\sum_{i=1}^{n} \alpha_{i} \right) \sum_{i=1}^{n} \alpha_{i} \|X_{i}\|^{2} - \sum_{i=1}^{n} \sum_{j < i}^{n} \alpha_{i} \alpha_{j} \|X_{i} - X_{j}\|^{2}$$

gives,
$$\sum_{i=1}^{n} \alpha_i = 1$$

$$\sum_{i=1}^{n} \sum_{i < i}^{n} \alpha_i \alpha_j \sigma_{i,j}^2 \le \sum_{i=1}^{n} \alpha_i \sigma_{i,0}^2$$

The difference is minimized by $\alpha = \frac{V^{-1}1}{1!V^{-1}1}$ with $v_{i,j} \equiv \left\langle X_i, X_j \right\rangle$

If the simplex is too flat, buy VS on straight pairs and sell VS on crosses (short maturity to cancel the quanto effect)

II. Dispersion Arbitrage

Dispersion Trades

Index
$$I = \sum \alpha_i S_i$$
, $\sum \alpha_i = 1$

Historical $\sigma, \rho: \sigma_I^2 = \sum \sum \alpha_i \alpha_j \rho_{ij} \sigma_i \sigma_j$

Global historical $\rho / \sigma_I^2 = \sum \sum \alpha_i \alpha_j \rho_{ij} \sigma_i \sigma_j \approx \rho (\sum \alpha_i \sigma_i)^2 \ (\rho = 1 \text{ on diagonal})$

$$\rho = \left(\frac{\sigma_I}{\sum \alpha_i \sigma_i}\right)^2$$

Implied $\rho: \hat{\rho} = (\frac{\hat{\sigma}_I}{\sum \alpha_i \hat{\sigma}_i})^2$

Usually, $\rho < \hat{\rho} < 1$: buy basket of options, sell Index options.

Correlation / Dispersion

- Index $I = \sum \alpha_i S_i$ $\sum \alpha_i = 1$
- $Par_i = Parabolic profile on S_i$
- To lock Dispersion $(\sum \alpha_i \sigma_i^2 \sigma_I^2)$
 - Buy $\sum \alpha_i Par_i$
 - Sell Par_{I}
- To lock Diversification $((\sum \alpha_i \sigma_i)^2 \sigma_I^2)$
 - Buy $\sum_{i} \left(\sum_{i} \alpha_{j} \sigma_{j} \right) \frac{\alpha_{i}}{\sigma_{i}} Par_{i}$

- Sell
$$Par_I$$
 $\sigma_{I\leq} \sum \alpha_i \sigma_i \leq \sqrt{\sum \alpha_i \sigma_i^2}$

Correlation / Dispersion (2)

Dispersion

$$\left(\sum \alpha_{i} \delta_{i}\right)^{2} = \left(\sum \sqrt{\alpha_{i}} . \sqrt{\alpha_{i}} \delta_{i}\right)^{2} \leq \left(\sum \alpha_{i}\right) \left(\sum \alpha_{i} \delta_{i}^{2}\right) = \sum \alpha_{i} \delta_{i}^{2}$$

$$Par_{I} \leq \sum \alpha_{i} Par_{i}$$

$$\sigma_{I}^{2} \leq \sum \alpha_{i} \sigma_{i}^{2}$$

Diversification

$$\left(\sum \alpha_{i} \delta_{i}\right)^{2} = \left(\sum \sqrt{\alpha_{i} \sigma_{i}} \cdot \sqrt{\frac{\alpha_{i}}{\sigma_{i}}} \delta_{i}\right)^{2} \leq \left(\sum \alpha_{i} \sigma_{i}\right) \left(\sum \frac{\alpha_{i}}{\sigma_{i}} \delta_{i}^{2}\right)$$

$$Par_{I} \leq \left(\sum \alpha_{i} \sigma_{i}\right) \sum \frac{\alpha_{i}}{\sigma_{i}} Par_{i}$$

$$\sigma_{I}^{2} \leq \left(\sum \alpha_{i} \sigma_{i}\right) \sum \frac{\alpha_{i}}{\sigma_{i}} \sigma_{i}^{2} = \left(\sum \alpha_{i} \sigma_{i}\right)^{2} \Rightarrow \sigma_{I} \leq \sum \alpha_{i} \sigma_{i} \leq \sqrt{\sum \alpha_{i} \sigma_{i}^{2}}$$

Cheapest super-replication of Par_I with a portfolio of Par_i (or Variance Swaps)

Conclusion

- Viewing volatility as an asset class is not a fiction anymore:
 - options capture different flavors of volatility
 - much can be extracted from vanillas
 - volatility linked products are being launched

- The same is becoming true for correlation.
- However, exotics give more information on joint densities