Classificação de plantas utilizando CNN

Alex Serodio e Luma Kühl

Introdução

Artigo: A Leaf Recognition Algorithm for Plant Classification using PNN (2007).

- Criou o dataset Flavia (utilizado neste projeto)
- Pré-processamento das imagens (grayscale, binarization, smoothing, filtering)
- Ao invés de submeter a imagem à rede, extrai 12 características da imagem e submete essas características ao modelo
- Uma das características precisa ser extraída manualmente por uma pessoa
- Atingiu acurácia maior que 90% em 32 tipos diferentes de plantas

Objetivos

- Classificar 10 tipos diferentes de plantas
- Utilizar o Flavia dataset para treinar e validar o modelo
- Utilizar imagens de 150 x 100 px
- Submeter a imagem completa para o modelo, sem a necessidade de extração de informações prévias da imagem

Flavia Dataset

- Possui 1.907 imagens de 33 plantas diferentes.
- Aproximadamente 57 imagens de cada planta.
- Imagens coloridas com resolução de 1600x1200.
- Sem distinção entre imagens de treino e teste.
- O tipo da planta é identificado a partir do range no nome do arquivo.

labe	Scientific Name	Common Name(s)	filename
1	Phyllostachys edulis (Carr.) Houz.	pubescent bamboo	1001-1059
2	Aesculus chinensis	Chinese horse chestnut	1060-1122
3	Berberis anhweiensis Ahrendt	Anhui Barberry	1552-1616
4	Cercis chinensis	Chinese redbud	1123-1194
5	Indigofera tinctoria L.	true indigo	1195-1267
6	Acer Palmatum	Japanese maple	1268-1323
7	Phoebe nanmu (Oliv.) Gamble	Nanmu	1324-1385
8	Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz.	castor aralia	1386-1437
9	Cinnamomum japonicum Sieb.	Chinese cinnamon	1497-1551
10	Koelreuteria paniculata Laxm.	goldenrain tree	1438-1496
11	llex macrocarpa Oliv.	Big-fruited Holly	2001-2050
12	Pittosporum tobira (Thunb.) Ait. f.	Japanese cheesewood	2051-2113
14	Chimonanthus praecox L.	wintersweet	2114-2165
15	Cinnamomum camphora (L.) J. Presl	camphortree	2166-2230
16	Viburnum awabuki K.Koch	Japan Arrowwood	2231-2290
17	Osmanthus fragrans Lour.	sweet osmanthus	2291-2346
18	Cedrus deodara (Roxb.) G. Don	deodar	2347-2423
19	Ginkgo biloba L.	ginkgo, maidenhair tree	2424-2485
20	Lagerstroemia indica (L.) Pers.	Crape myrtle, Crepe myrtle	2486-2546
21	Nerium oleander L.	oleander	2547-2612
22	Podocarpus macrophyllus (Thunb.) Sweet	yew plum pine	2616-2675
23	Prunus serrulata Lindl. var. lannesiana auct.	Japanese Flowering Cherry	3001-3055
24	Ligustrum lucidum Ait. f.	Glossy Privet	3056-3110
25	Tonna sinensis M. Roem.	Chinese Toon	3111-3175
26	Prunus persica (L.) Batsch	peach	3176-3229
27	Manglietia fordiana Oliv.	Ford Woodlotus	3230-3281
28	Acer buergerianum Miq.	trident maple	3282-3334
29	Mahonia bealei (Fortune) Carr.	Beale's barberry	3335-3389
30	Magnolia grandiflora L.	southern magnolia	3390-3446
31	Populus × canadensis Moench	Canadian poplar	3447-3510
32	Liriodendron chinense (Hemsl.) Sarg.	Chinese tulip tree	3511-3563
33	Citrus reticulata Blanco	tangerine	3566-3621

Dataset extraído

- Escolhemos as dez plantas com o maior número de imagens disponíveis
- De 1.907 imagens disponibilizadas pelo dataset, utilizamos 610 (~30%).

Imagens de cada uma das plantas utilizadas.

Data Augmentation

Por utilizarmos um dataset limitado, foi necessário submeter as 610 imagens a um processo de *data augmentation*, resultando em 45 novas imagens a partir de cada imagem já existente.

O processo resultou em 28.123 imagens (22.498 treino / 5.623 testes).

Modelo

```
model = keras.Sequential([
    keras.layers.Conv2D(16, 5, padding='same', activation='relu'),
    keras.layers.MaxPooling2D(),
    keras.layers.Conv2D(32, 5, padding='same', activation='relu'),
    keras.layers.MaxPooling2D(),
    keras.layers.Conv2D(64, 5, padding='same', activation='relu'),
    keras.layers.MaxPooling2D(),
    keras.layers.Flatten(),
    keras.layers.Dense(10, activation='softmax')
])
```

Porém ao não utilizar a última camada Conv2D obtivemos resultados semelhantes.

Resultados

dataset colorido

Época	Acurácia
1	0.7728
2	0.9278
3	0.9500
4	0.9521
5	0.9628
6	0.9615
7	0.9564
8	0.9764
9	0.9706
10	0.9734

Acurácia do teste: 0.8730

dataset grayscale

Época	Acurácia
1	0.7578
2	0.9179
3	0.9369
4	0.9469
5	0.9587
6	0.9617
7	0.9641
8	0.9661
9	0.9731
10	0.9759

Acurácia do teste: 0.9365

dataset binarizado

Acurácia		
0.7434		
0.8838		
0.9182		
0.9138		
0.9478		
0.9590		
0.9669		
0.9695		
0.9745		
0.9737		

Acurácia do teste: 0.9157

Comparações

Considerações finais

- Dataset original insuficiente para nossa proposta;
- Utilizar Data Augmentation foi uma solução adequada;
- Acurácia média em comparação aos três tipos de inputs: 90,84%;
- Ficamos na média em comparação com outros trabalhos.