Hints and solutions to Problems 1

1) Let $q \in G$. As G is a finite group the set

$$\left\{ \left. g^l \, \right| \, l \in \mathbb{N} \, \right\}$$

is finite and so there exist natural numbers n > m, such that $g^m = g^n$. Multiplying both sides by g^{-m} gives $g^{n-m} = e$.

- 2) Let $\{a,b,c\} \subseteq X$ be a subset of three different elements of X. Define maps $f,g:X\longrightarrow X$ by f(a)=b, f(b)=c, f(c)=a, and f(x)=x for all $x\in X\setminus\{a,b,c\}$; and by g(a)=b, g(b)=a, and g(x)=x for all $x\in X\setminus\{a,b\}$. Then both f and g are bijections (check this!), and we have g(f(a))=a but f(g(a))=c, i.e. $f\circ g\neq g\circ f.$
- 3) One direction is clear. For the other, since X is finite l_x and r_x injective implies that both maps are also surjective and so bijections. Hence given $x \in X$ there exists an element $e_x \in X$, such that $e_x \cdot x = x$. Multiplying this equation by $z \in X$ on the right gives (using the associative law)

$$e_x \cdot (x \cdot z) = (e_x \cdot x) \cdot z = x \cdot z$$

for all $z \in X$. Since l_x is onto as well the set of all $x \cdot z$, $z \in X$, is equal X, and so we get $e_x \cdot y = y$ for all $y \in X$, i.e. e_x is a (left) neutral element. Since r_y is onto for all $y \in X$ there exists for all $y \in X$ an element $u_y \in X$, such that $u_y \cdot y = e_x$, i.e. every $y \in X$ has an inverse with respect to the neutral element e_x . It follows that X is a group.

The example of $\mathbb N$ with the usual addition as operation shows that the claim is wrong if X is not finite.

- 4) Verification of the axioms.
- 5) This is clear if G is a group with one or two elements.

To study the cases that G has 3 or 4 elements we note first that for $g \neq e$, where e is the neutral element, we have $g \cdot h \neq h \neq h \cdot g$ for all $h \in G$. This follows from Lemma 1.5 (i) of the Lecture Notes as the neutral element G solves $X \cdot h = h$ and $h \cdot X = h$.

If now $G = \{e, a, b\}$ is a group with three elements (e denotes the neutral element) this implies $a \cdot b = e$ and so $b = a^{-1}$, which commutes with a, i.e. G is commutative.

If $G = \{e, a, b, c\}$ is a group with 4 elements this implies $a \cdot b = e$ or $a \cdot b = c$. In the former case $b = a^{-1}$, and so a and b commute, and in the latter $b \cdot a$ can not be equal e as then $b = a^{-1}$ and so $a \cdot b = e$ as well. Since $b \cdot a$ can also not be equal e or e we get e or e and so e or e or e and so e or e or

1