

Mes de Openshift para Socios IBM



#### Mes de Red Hat Openshift for BPs

#### **INFORMACIÓN GENERAL**

Fecha inicio: 03 Noviembre 2022

**<u>Duración:</u>** 5 sesiones de 3 horas c/u (jueves en la mañana)

#### **Presentadores:**

Peru: Luzmila Toledo / Cesar Guerra

Colombia: Gianni Guatame / Luis Felipe Martinez

**Formato:** Sesiones de presentación síncrona con demos en vivo y entrega de material para ejecutar hands on durante la semana

#### **REQUERIMIENTOS PREVIOS**

- Haber culminado el curso DO080: Containers,
   Kubernetes and Red Hat Openshift Technical Overview
   (estimado: 3 horas de duración)
- Cada uno deberá contar con acceso a una VM RHEL con podman y oc cli instalado
- Cada uno deberá contar con acceso a un cluster de Openshift

| Sesiones | Actividades                                                     | Horario                  |
|----------|-----------------------------------------------------------------|--------------------------|
| Sesión 1 | Overview general sobre Openshift                                | 3 Noviembre -> 8:30 am   |
| Sesión 1 | Administración y Despliegue via Consola Web                     | 3 Noviembre -> 9:30 am   |
| Sesión 1 | Despliegues por Linea de comando                                | 3 Noviembre -> 10:30 am  |
| Sesión 2 | Manejo de operadores                                            | 10 Noviembre -> 8:30 am  |
| Sesión 2 | Scaling & Autoscaling                                           | 10 Noviembre -> 9:00 am  |
| Sesión 2 | Autenticación y Conctrol de accesos usando grupos y RBAC        | 10 Noviembre -> 10:00 am |
| Sesión 2 | Consideraciones para comunicación de servicios entre namespaces | 10 Noviembre -> 11:00 am |
| Sesión 3 | Control de recursos: manejo de limites                          | 17 Noviembre -> 8:30 am  |
| Sesión 3 | Gestión de alertas con AlertManager                             | 17 Noviembre -> 10:00 am |
| Sesión 3 | Manejo de storage                                               | 17 Noviembre -> 10:30 am |
| Sesión 4 | Uso de cronjobs & jobs                                          | 24 Noviembre -> 8:30 am  |
| Sesión 4 | Manejo de templates                                             | 24 Noviembre -> 9:30 am  |
| Sesión 4 | Manejo de Helm                                                  | 24 Noviembre -> 10:00 am |
| Sesión 5 | Configuración de reglas de acceso con NetworkPolicy             | 1 Diciembre -> 8:30 am   |
| Sesión 5 | Principales commandos de troubleshooting                        | 1 Diciembre -> 10:00 am  |



**Overview General sobre Openshift** 



#### **Development Process**



Waterfall



Agile



**Application Architecture** 



Monolithic



N-Tier



**Deployment & Packing** 



Physical



Virtual



Containers

#### **Application Infrastructure**



Datacenter



Hosted



Cloud

|                              | TRADICIONAL                                                                                                                                                    | NATIVO DE LA NUBE                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CENTRADO                     | Antigüedad y estabilidad                                                                                                                                       | Rapidez de comercialización                                                                                                                                     |
| METODOLOGÍA DE<br>DESARROLLO | Desarrollo semiágil en cascada                                                                                                                                 | Desarrollo ágil, DevOps                                                                                                                                         |
| EQUIPOS                      | Equipos aislados de desarrollo,<br>operaciones, control de calidad y seguridad                                                                                 | Equipos colaborativos de DevOps                                                                                                                                 |
| CICLOS DE ENTREGA            | Largos                                                                                                                                                         | Cortos y continuos                                                                                                                                              |
| ARQUITECTURA DE APLICACIONES | Con conexión directa<br>Monolítica                                                                                                                             | Sin conexión directa  Basada en servicios  Comunicación basada en la interfaz de programación de aplicaciones (API)                                             |
| INFRAESTRUCTURA              | Centrada en el servidor  Diseñada para las instalaciones  Dependiente de infraestructura  Expandible verticalmente  Con preparación previa para capacidad pico | Centrada en contenedores  Diseñada para las instalaciones y la nube  Portátil entre la infraestructura  Expandible horizontalmente  Capacidad según se solicite |

#### CNCF Cloud Native Definition v1.0

Las tecnologías "Cloud Native" empoderan a las organizaciones para construir y correr aplicaciones escalables en ambientes dinámicos modernos, como lo son hoy las **nubes públicas**, **privadas o hibridas**. Temas como **contenedores**, **mallas de servicios**, **microservicios**, **infraestructura inmutable y APIs declarativas** son ejemplos de este enfoque.

Estas técnicas permiten crear sistemas de bajo acoplamiento que son resilentes, administrables y observables. Combinado con técnicas de automatización robusta les permite a los ingenieros realizar cambios de alto impacto de manera frecuente y predecible con un mínimo esfuerzo.

La "Cloud Native Computing Foundation" busca impulsar la adopción de este paradigma mediante el fomento y mantenimiento de un ecosistema de proyectos de código abierto y neutro con respecto a los proveedores.

Democratizamos los patrones modernos para que estas innovaciones sean accesibles para todos.

https://github.com/cncf/toc/blob/main/DEFINITION.md



### CNCF Cloud NativeInteractive Landscape

This landscape is intended as a map through the previously uncharted terrain of cloud native technologies. There are many routes to deploying a cloud native application, with CNCF Projects representing a particularly well-traveled path

https://landscape.cncf.io/





#### **OpenShift**

- ✓ RET HAT OPENSHIFT es la plataforma de nube híbrida líder en el sector. Conjunto de componentes y servicios modulares creados sobre una infraestructura de contenedores de K8S
- ✓ Enfoque PaaS mayor seguridad, administración remota, administración de ciclo de vida, interfaces de autoservicio para desarrolladores
- ✓ A partir de Red Hat OpenShift v4, todos los nodos en un clúster de OpenShift utilizan Red Hat Enterprise Linux CoreOS como sistema operativo subyacente.
- ✓ Se agregan capacidades a un cluster de K8S como workflow de desarrollo integrado (CI/CD, S2I), routes, métricas y logging, UI unificado (consola web, cli, API-REST)



#### **Distribuciones**

- Entorno alojado sobre AWS & gestionado por RED HAT [ROSA].
- 2. Entorno alojado en AZURE & con soporte de RED HAT & MICROSOFT [ARO].
- 3. Entorno alojado en IBM & con soporte de RED HAT & IBM [ROKS].
- 4. Entorno de KUBERNETES (OPENSHIFT), para desplegarlo de una propia INFRAESTRUCTURA (ON-PREMISE, IAAS) [OCP].



| OpenShift Version | Kubernetes Version |
|-------------------|--------------------|
| 4.1               | 1.13               |
| 4.2               | 1.14               |
| 4.3               | 1.16               |
| 4.4               | 1.17               |
| 4.5               | 1.18               |
| 4.6               | 1.19               |
| 4.7               | 1.20               |
| 4.8               | 1.21               |
| 4.9               | 1.22               |
| 4.10              | 1.23               |
| 4.11              | 1.24               |

#### Capacidad del Cluster

✓ La CAPACIDAD del CLÚSTER es medida en base al máximo manejo de sus RECURSOS internos, en este sentido

OPENSHIFT maneja:

| Maximum type                                             | 3.x tested maximum                                     | 4.x tested maximum                                                        |
|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| Number of nodes                                          | 2,000                                                  | 2,000 [1]                                                                 |
| Number of pods <sup>[2]</sup>                            | 150,000                                                | 150,000                                                                   |
| Number of pods per node                                  | 250                                                    | 500 [3]                                                                   |
| Number of pods per core                                  | There is no default value.                             | There is no default value.                                                |
| Number of namespaces [4]                                 | 10,000                                                 | 10,000                                                                    |
| Number of builds                                         | 10,000 (Default pod RAM 512 Mi) -<br>Pipeline Strategy | 10,000 (Default pod RAM 512 Mi) -<br>Source-to-Image (S2I) build strategy |
| Number of pods per namespace <sup>[5]</sup>              | 25,000                                                 | 25,000                                                                    |
| Number of routes and back ends per<br>Ingress Controller | 2,000 per router                                       | 2,000 per router                                                          |
| Number of secrets                                        | 80,000                                                 | 80,000                                                                    |
| Number of config maps                                    | 90,000                                                 | 90,000                                                                    |
| Number of services <sup>[6]</sup>                        | 10,000                                                 | 10,000                                                                    |
| Number of services per namespace                         | 5,000                                                  | 5,000                                                                     |

#### **✓ IMPORTANTE:**

En la mayoría de los casos, exceder estos números da como resultado un rendimiento más bajo, pero NO significa necesariamente que el CLÚSTER falle.

https://docs.openshift.com/container-platform/4.10/scalability\_and\_performance/planning-your-environment-according-to-object-maximums.html

#### OpenShift Container Platform



#### your choice of infrastructure



#### workers run workloads



#### masters are the control plane



#### state of everything



#### core kubernetes components



#### core OpenShift components



#### OPENSHIFT CONTAINER PLATFORM | Architectural Overview internal and support infrastructure services



#### run on all hosts



#### integrated image registry



#### cluster monitoring



#### log aggregation



#### integrated routing



#### dev and ops via web, cli, API, and IDE



#### **Openshift v4**



RHOCP 4 es un GRAN cambio con respecto a las versiones anteriores. Además de mantener la compatibilidad con versiones anteriores, incluye nuevas funciones, como:

- CoreOS como SO obligatorio para todos los nodos, ofreciendo una infraestructura inmutable optimizada para contenedores.
- Un nuevo instalador de clúster que guía el proceso de instalación y actualización.
- Una plataforma de autogestión, capaz de aplicar automáticamente actualizaciones y recuperaciones de clústeres sin interrupciones.
- Una gestión del ciclo de vida de la aplicación rediseñada.

#### Arquitectura de Referencia en Ambiente Cloud



Arquitectura de Referencia en Ambiente Onpremise con HA



ANTIPATRON (NO RECOMENDADO)

**2 DC Stretch Cluster** 





# OpenShift and Kubernetes core concepts



## a container is the smallest compute unit





# containers are created from container images



# container images are stored in an image registry





#### everything runs in pods



# ReplicationControllers ensure a specified number of pods are running at any given time



### Deployments define how to roll out new versions of Pods



#### OpenShift Concepts

a daemonset ensures that all (or some) nodes run a copy of a pod



# configmaps allow you to decouple configuration artifacts from image content







# secrets provide a mechanism to hold sensitive information such as passwords





services provide internal load-balancing and service discovery across pods



### routes make services accessible to clients outside the environment via real-world urls



#### **Persistent Volume and Claims**



#### **Liveness and Readiness**



# projects isolate apps across environments, teams, groups and departments



