LISTA 2

Cada uma das cinco integrais a seguir deve ser calculada aplicando o método relevante (ou seja, a receita de cálculo) descrito(a) na aula, e $n\tilde{a}o$ simplesmente usando a fórmula final obtida na aula.

Exercício 1. Calcule a seguinte integral:

$$\int_0^{2\pi} \frac{1}{5 + 4 \operatorname{sen} \theta} \, d\theta \, .$$

Exercício 2. Calcule a seguinte integral:

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \, dx \, .$$

Exercício 3. Calcule a seguinte integral:

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 1} \, dx \, .$$

Mais geralmente, para cada $t \in \mathbb{R}$, verifique a seguinte identidade:

$$\int_{-\infty}^{\infty} \frac{e^{it \, x}}{x^2 + 1} \, dx = \pi \, e^{-|t|} \, .$$

A integral acima se refere à transformada de Fourier (um conceito muitíssimo importante em análise) da função $\frac{1}{x^2+1}$.

Exercício 4. Calcule a seguinte integral:

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2} \, dx \, .$$

Mais geralmente, para cada $t \in \mathbb{R}$, verifique a seguinte identidade:

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{x^2} dx = -\pi |t|.$$

Exercício 5. Calcule a seguinte integral:

$$\int_0^\infty \frac{1}{(x^2+1)\sqrt{x}} \, dx \, .$$

Exercício 6. Seja $f(z) = z^5 + 5z^3 + z - 2$.

- (1) Prove que f(z) tem três zeros (contados segundo suas multiplicidades) em \mathbb{D} .
- (2) Prove que todos os zeros de f(z) estão no disco $D(0, \frac{5}{2})$.

Dica: No item (a) use o teorema de Rouché com $g(z) = 5z^3$. No item (b) use o teorema de Rouché com $g(z) = z^5$.

Exercício 7. Prove que as raízes de um polinômio dependem continuamente de seus coeficientes no seguinte sentido: dado $p(z) = a_0 + a_1 z + \dots a_n z^n$, um polinômio de grau $n \ge 1$ cujas raízes z_1, \dots, z_n são todas distintas, e dado $\epsilon > 0$, existe $\delta > 0$ tal que todo polinômio $q(z) = b_0 + b_1 z + \dots b_n z^n$ com $|b_k - a_k| < \delta$ para $k = 0, \dots, n$, tem uma raiz em cada disco $D(z_k, \epsilon)$.

Exercício 8. (a) Prove que todo conjunto estrelado é simplesmente conexo.

(b) Prove que dados $0 \le a < b < \infty$ e $0 \le \alpha < \beta < 2\pi$, o setor circular

$$\{z = r e^{i\theta} \colon a < r < b, \ \alpha < \theta < \beta\}$$

é simplesmente conexo.

(c) Seja $\Omega \subset \mathbb{C}$ um conjunto aberto. Prove que dois caminhos γ_1, γ_2 são homotópicos em Ω sse $\gamma_1 \vee (-\gamma_2)$ é homotópico a zero em Ω .

Exercício 9. Seja $F \colon \mathbb{H} \to \mathbb{C}$ uma função holomorfa que satisfaz

$$F(i) = 0$$
 e $|F(z)| \le 1$ para todo $z \in \mathbb{H}$.

Prove que

$$|F(z)| \le \left| \frac{z-i}{z+i} \right|$$
 para todo $z \in \mathbb{H}$.

Exercício 10. Prove que a função $f(z)=-\frac{1}{2}\left(z+\frac{1}{z}\right)$ é uma transformação conforme do semi disco $\{z\in\mathbb{C}\colon |z|<1,\ \Im z>0\}$ para o semiplano superior $\mathbb{H}.$