Internal Charging Joseph I Minow NASA/MSFC 7th CCMC Workshop 31 March – 4 April 2014 joseph.minow@nasa.gov ISS image: 7 March 2012

Introduction

NASA Goddard Space Flight Center, Space Weather Research Center (SWRC)

Message Type: Space Weather Alert

Message Issue Date: 2013-07-12T11:35:00Z

Message ID: 20130712-AL-001

Summary:

Significantly elevated energetic electron fluxes in the Earth's outer radiation belt. GOES 13 "greater than 0.8 MeV" integral electron flux is above 10^5 pfu starting at 2013-07-12T11:00Z.

Spacecraft at GEO, MEO and other orbits passing through or in the vicinity of the Earth's outer radiation belt can be impacted.

Activity ID: 2013-07-12T11:00:00-RBE-001.

Outline

- Internal charging
- MeV electron fluence threat thresholds
- NUMIT internal charging model
- Real time GEO internal charging tool
- LEO internal charging tool

Internal (Deep Dielectric) Charging

- High energy (>100 keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors
- Threat environment is energetic electrons
 with sufficient flux to charge circuit boards,
 cable insulation, and ungrounded metal faster
 than charge can dissipate
- Accumulating charge density generates electric fields in excess of material breakdown strength resulting in electrostatic discharge
- System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise

PMMA (acrylic) charged by ~2 to 5 MeV electrons

MeV Electron Threat Fluence Thresholds

NASA-HBK-4002A: ~MeV electron flux ≥ 9x10⁴ e/cm2-sec-sr

(10¹⁰ e/cm² in 10 hours)

• CCMC/SWRC: > 0.8 MeV electron flux $> 1x10^5$ e/cm2-sec-sr

• NOAA/SWPC >2 MeV electron flux > 1x10³ e/cm2-sec-sr

NUMIT Model for EVA Suit Charging

 NUMIT computes charge deposition, electric field as function of depth in insulating materials due to radiation charging by electrons

• Five material layers parameterized by electrical resistivity, radiation induced conductivity parameters, dielectric

5

constant

Conductor (I) Ampere meter. Arrow shows positive current direction.

$$\begin{split} \nabla \bullet D &= \rho \\ D &= \epsilon E, \quad \epsilon = \kappa \epsilon_0 \\ \frac{\partial \rho}{\partial t} &= - \nabla \bullet J \\ J &= J_R + J_C = J_R + \sigma E \\ &= J_R + \left[\sigma_{dark} + \sigma_{radiation} \right] E \\ \sigma_{radiation} &= k \bigg(\frac{d \gamma}{dt} \bigg)^{\alpha} \quad 0.5 < \alpha < 1.0 \end{split}$$

Table 1-2 NUMIT Model,
Existing Suit

Existing Sair										
	Layer	Z _{eff}	A_{eff}	Density (g/cm3)	Vol. Resis. (S/m)	κ	RIC (S/m)	RIC Exp	Depth (cm)	0
	1	8.25	17.19	0.429	1.00E+16	2	1.00E+14	0.7	0.114	
	2	5.484	10.008	1.225	1.00E+12	2	1.00E+14	0.7	0.137	
	3	6.24	11.99	0.752	1.00E+17	2	1.00E+14	0.7	0.165	
	4	6.083	11.291	0.501	1.00E+15	4	1.00E+14	0.7	0.193	
	5	5.484	10.008	3.031	1.00E+12	2	1.00E+14	0.7	0.244	
	Total									
	Total	31.541	60.487	5.938						
Average		6.3082	12.0974	1.1876						
	Wt Ave	6.0847	11.555	2.0485						

Layer Number	Material				
	space (outside of suit)				
1	Teflon/Nomex/Kevlar				
2	Neoprene coated Nylon				
3	Dacron polyester				
4	Urethane coated Nylon				
5	Nylon chiffon, Nylon Spandex,				
	water cooling tubes				
	skin (inside suit)				

3/30/2014

EVA Suit Study Environment

0.050-0.075 MeV 0.075-0.105 MeV 0.105-0.150 MeV 0.150-0.225 MeV 0.225-0.315 MeV 0.315-0.500 MeV 0.500-0.750 MeV 0.750-1.1 MeV 1.1-1.5 MeV 1.8-2.2 MeV 2.2-2.7 MeV 2.2-2.7 MeV 3.5-4.5 MeV 4.5-6.0 MeV 7.8-10.8 MeV 10.8-25.8 MeV

EVA Suit Study Environment

geo_flux_ts_215.11186.txt → test_env.txt

8 hours 16 hoursInterpolation records for filling data gaps

Arms and Lower Torso

Current Design*

Layer	κ	σ (S/m)	Depth (mm)
1	2.0	10 ⁻¹⁶	1.14
2	2.0	10 ⁻¹²	1.37
3	2.0	10 ⁻¹⁷	1.65
4	4.0	10 ⁻¹⁵	1.93
5	2.0	10-12	2.44

 $Z_{eff} = 6$ $A_{eff} = 12$ 2.04 g/cm^3 $Kp = 10^{-14} \text{ S-sec/m-rad}$ $\Delta = 0.7$ $\Delta T = 1.0 \text{ sec}$

*Using material spec for nylon conductivity $\sigma = 10^{-12} \text{ S/m}$

geo_flux_ts_215.11186.txt → test_env.txt

Arms and Lower Torso

Case 1c

3/30/2014 10

Case 2a

3/30/2014 11

Time constant for charge decay through conduction: $\tau = \kappa \epsilon_0 / \sigma$

κ	σ (S/m)	τ
2 2 2 2 2	10 ⁻¹² 10 ⁻¹³ 10 ⁻¹⁴ 10 ⁻¹⁵	~18 sec ~3 min ~30 min ~5 hr
2	10 ⁻¹⁶	~2 days

Electric fields resulting from internal (deep dielectric) charging as function of depth in dielectric material and electrical conductivity. Fields are updated at 5 minute intervals using NOAA GOES >0.8 MeV, >2.0 MeV electron data.

Radiation Shielding Option

0.069 g/cm2 Al shielding (0.256 mm)

no shielding

Input Data Options

 1-D internal charging simulation treating electron flux responsible for charging dielectric materials (or isolated conductors) covered by thin shielding (e.g., MLI):

$$\kappa \varepsilon_o \frac{\mathrm{dE}}{\mathrm{dt}} + \sigma E = \mathrm{J}_{\mathrm{p}}$$

where J_p is the integral electron current density penetrating the MLI shielding, κ is the dielectric constant, ϵ_0 the permittivity of free space, and σ the electrical conductivity of the dielectric material

- Compute electric field E and potential Φ as function of time using electron flux measurements from NOAA-19 for the incident electron current density, J_p
- Conductivity σ due only to "dark" conductivity, neglect radiation induced conductivity
 - Charge loss process due to conduction to ground slows charge accumulation rate and limits ESD events in lower flux environments
 - Charge, electric field will establishes an equilibrium E $^{\sim}$ J/ σ if charging time constant τ = $\kappa\epsilon_o$ / σ for charge loss through conduction is short compared to exposure time
 - Finite amount of time required for charge to decay through conduction after exposure to electrons
- Electric field enhancement factor included to account for sharp edges

Dimensions (LxWxD): 10.000 cm x 3.000 cm x 0.200 mm

Volume resistivity: 1.000e+018 ohm-m

Kappa: 4.0000

Dielectric strength: 2.500e+007 V/m

Efield enhancement: 10.0x

Capacitance: 5.310e-010 Farads

Conduction time constant: 409.7222 days

Fraction (f) discharged: 0.100 < f < 0.300

NOAA-19 electrons: pi*(0deg + 90deg)

Electron energy: 150.0000 keV - 300.0000 keV

Arc	Decimal Day of		mal Day of Fraction		Surface Voltage (Volts)		Arc Current (Amp)		
	Year(UT)	Year(UT)	Discharged	Before a	nd After Arc	(mJoule)	0.10 us	1.00 us	10.00 us
0	2012.0710	26.9785	0.2283	500.0	385.9	0.0268	6.06e-001	6.06e-002	6.06e-003
1	2012.1039	39.0314	0.2004	500.0	399.8	0.0239	5.32e-001	5.32e-002	5.32e-003
2	2012.1290	48.2109	0.2537	500.0	373.2	0.0294	6.73e-001	6.73e-002	6.73e-003
3	2012.1399	52.2185	0.2410	500.0	379.5	0.0281	6.40e-001	6.40e-002	6.40e-003
4	2012.1837	68.2398	0.2647	500.1	367.7	0.0305	7.03e-001	7.03e-002	7.03e-003
5	2012.1874	69.5824	0.1438	500.6	428.6	0.0178	3.82e-001	3.82e-002	3.82e-003
6	2012.1891	70.2203	0.1002	500.0	449.9	0.0126	2.66e-001	2.66e-002	2.66e-003
7	2012.1909	70.8707	0.1937	500.1	403.3	0.0232	5.14e-001	5.14e-002	5.14e-003
8	2012.1942	72.0668	0.1379	500.0	431.1	0.0170	3.66e-001	3.66e-002	3.66e-003
9	2012.1965	72.9144	0.1782	500.0	410.9	0.0215	4.73e-001	4.73e-002	4.73e-003
10	2012.2000	74.1920	0.2192	500.0	390.4	0.0259	5.82e-001	5.82e-002	5.82e-003

•

•

