

HI-8420, HI-8423

March 2007

6-Channel / 8-Channel Discrete-to-Digital Interface Sensing Open / Ground Signals

DESCRIPTION

The HI-8420 is a six channel discrete-to-digital interface device. The HI-8423 has eight channels. Mixed-signal CMOS technology is used to provide superior low-power performance. The device inputs are configured to sense Ground / Open discrete signals. The device outputs are CMOS / $\overline{\text{TTL}}$ compatible and may be disabled (tri-state) using the $\overline{\text{CE}}$ and $\overline{\text{OE}}$ pins.

The HI-8420 is a drop-in replacement for the DEI1026.

For added functionality, the Holt HI-8422 offers eight channels of Open / Ground sensing and eight channels of 28V / Ground sensing in a single device.

BLOCK DIAGRAM

FEATURES

- 6 or 8 independent Open / Ground sensing channels
- 5.0V single supply operation
- Low power CMOS technology
- Lightning protected inputs to DO-160D level 3
- HI-8420 is a drop in replacement for DEI1026

PIN CONFIGURATIONS

16-Pin Plastic SOIC package (Narrow Body)

20 Pin TSSOP package

FUNCTION TABLE

Discrete Input	CE	ŌĒ	Output		
Open	0	0	0		
Ground	0	0	1		
X	1	Х	High Z		
Х	Х	1	High Z		

PIN DESCRIPTIONS

PIN		SYMBOL	FUNCTION	DESCRIPTION			
(HI-8420)	(HI-8423)	01202		DESCRIPTION			
1	1	IN1	Discrete Input	Open / Ground sensing input, channel 1			
2	2	IN2	Discrete Input	Open / Ground sensing input, channel 2			
3	3	IN3	Discrete Input	Open / Ground sensing input, channel 3			
4	4	IN4	Discrete Input	Open / Ground sensing input, channel 4			
5	5	IN5	Discrete Input	Open / Ground sensing input, channel 5			
6	6	IN6	Discrete Input	Open / Ground sensing input, channel 6			
-	7	IN7	Discrete Input	Open / Ground sensing input channel 7			
7	8	ŌĒ	Digital input	Output Enable. OUT1-OUT8 are high-impedance if OE is high			
8	9	CE	Digital input	Chip Enable. OUT1-OUT8 are high-impedance if $\overline{\text{CE}}$ is high			
9	10	VDD	Power	Positive supply voltage 5.0 V			
-	11	OUT8	Tri-state output	Logic output, channel 8			
-	12	OUT7	Tri-state output	Logic output, channel 7			
10	13	OUT6	Tri-state output	Logic output, channel 6			
11	14	OUT5	Tri-state output	Logic output, channel 5			
12	15	OUT4	Tri-state output	Logic output, channel 4			
-	16	IN8	Discrete Input	Open / Ground sensing input, channel 8			
13	17	OUT3	Tri-state output	Logic output, channel 3			
14	18	OUT2	Tri-state output	Logic output, channel 2			
15	19	OUT1	Tri-state output	Logic output, channel 1			
16	20	GND	Power	Ground			

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +7 V			
Logic input voltage range	-0.3 V to +5.5 V			
Discrete input voltage range	-5 V to + 35 V			
Power dissipation at 25°C	350 mW			
Solder temperature	275°C for 10 sec			
Storage temperature	-65°C to +150°C			

RECOMMENDED OPERATING CONDITIONS

Supply Voltage				
VDD	4.5 V to 5.5 V			
Operating Temperature Range				
Industrial Screening	-40°C to +85°C			
Hi-Temp Screening	-55°C to +125°C			

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

VDD = 5.0V ± 10%, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER		SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
DISCRETE INPUTS	•						
Ground state input voltage		Vsg	Input voltage to give high output			3.0	V
Open state input voltage		Vso	Input voltage to give low output	3.5			V
Ground state input resistor		Rıg	Resistor from input to ground to give high output	0		100	Ω
Open state input resistor		Rıo	Resistor from input to ground to give low output	100			ΚΩ
Input source current		lio	Current sourced into 100Ω	-100	-330		μA
			to ground				
Reverse leakage current		lir	VIN = 35 V, VDD = 0 V			5.0	mA
LOGIC INPUTS (CE, OE)	1			· · · · · · · · · · · · · · · · · · ·			'
Input Voltage	Input voltage HI	VIH		2.0			V
	Input voltage LO	VIL				0.8	V
Input current	Input sink	lін	VIH = VDD			1.0	μA
	Input source	lıL	VIL = 0 V	-1.0			μA
OUTPUTS							
Logic output voltage	High	Vон	Iон = -5 mA	2.4			V
	Low	Vol	IoL = 5 mA			0.4	V
Logic output voltage (CMOS)	High	Vон	Iон = -100 uA	VDD - 0.2			V
	Low	Vol	IOL = 100 uA			0.2	V
Tri-state output current		loz	Vout = 0 V or VDD			±10	μA
SUPPLY CURRENT							
VDD current		IDD	VIN = VDD (all inputs)		5	10	mA
SWITCHING CHARACTERISTIC	S						
Propagation delay	IN to OUT	tLH, tHL				150	ns
Output enable time		tzl, tzh	From CE or OE			25	ns
Output disable time		tLZ, tHZ	From CE or OE			25	ns

TIMING DIAGRAMS

LIGHTNING PROTECTION

The Open / Ground inputs will survive DO-160D level 3, waveforms 3 and 4 without external components. In order to guarantee survival to waveform 5A an external series resistor of at least $3.3 \mathrm{K}\Omega$ is recommended.

INPUT SWITCHING THRESHOLD

The input switching threshold of the Open / Ground inputs will decrease with increasing series resistance according to the function

$$V_T = 3.25 - 0.1R$$

where $V_{\scriptscriptstyle T}$ is the nominal input switching threshold, and R is the value of the external series resistor in Kohms.

ORDERING INFORMATION

PACKAGE DIMENSIONS

16-PIN PLASTIC SMALL OUTLINE (SOIC) - NB

(Narrow Body)

inches (millimeters)

Package Type: 16HN

BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

20-PIN PLASTIC TSSOP

inches (millimeters)

Package Type: 20HT

Detail A

BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)