- Context-free grammar G = (N, T, P, S), where
 - N is a finite set of non-terminals, with no useless non-terminals;
 - *T* is a finite set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$, and $\alpha \in (N \cup T)^*$ is a sentential form;
 - $S \in N$ is the start symbol, which does not appear of the RHS of any production.

- Context-free grammar G = (N, T, P, S), where
 - N is a finite set of non-terminals, with no useless non-terminals;
 - T is a finite set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$, and $\alpha \in (N \cup T)^*$ is a sentential form;
 - $S \in \mathbb{N}$ is the start symbol, which does not appear of the RHS of any production.
- For convenience, we will augment an input string s with a distinct end-of-string symbol s, and change all productions of the form $s \to a$ to $s \to a$ (call this change s-augmentation).

- Context-free grammar G = (N, T, P, S), where
 - *N* is a finite set of non-terminals, with no useless non-terminals;
 - T is a finite set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$, and $\alpha \in (N \cup T)^*$ is a sentential form;
 - $S \in \mathbb{N}$ is the start symbol, which does not appear of the RHS of any production.
- For convenience, we will augment an input string s with a distinct end-of-string symbol s, and change all productions of the form $s \to a$ to $s \to a$ (call this change s-augmentation).
- Notational shortcuts: $\Sigma = N \cup T$, $F = T \cup \{\varepsilon\}$, $T' = T \cup \{\$\}$.

- Context-free grammar G = (N, T, P, S), where
 - *N* is a finite set of non-terminals, with no useless non-terminals;
 - T is a finite set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$, and $\alpha \in (N \cup T)^*$ is a sentential form;
 - $S \in \mathbb{N}$ is the start symbol, which does not appear of the RHS of any production.
- For convenience, we will augment an input string s with a distinct end-of-string symbol s, and change all productions of the form $s \to a$ to $s \to a$ (call this change s-augmentation).
- Notational shortcuts: $\Sigma = N \cup T$, $F = T \cup \{\varepsilon\}$, $T' = T \cup \{\$\}$.
- A derivation $\alpha \Rightarrow \beta$, with $\alpha, \beta \in \Sigma^*$, is a finite sequence of (valid) applications of productions that rewrites α to β .

TODO: Constructing Parsing Tables

	num	+	()	\$
S	\rightarrow ES'		\rightarrow ES'		
S'		→+ S		→ε	$\rightarrow \epsilon$
E	\rightarrow num		→ (S)		

Problem

• Decide whether the production $A \to \alpha$ of the context-free grammar G = (N, T, P, S) is a candidate for rewriting A when the input token is t, i.e., whether $A \to \alpha \in ParsingTable[A, t]$.

Problem

• Decide whether the production $A \to \alpha$ of the context-free grammar G = (N, T, P, S) is a candidate for rewriting A when the input token is t, i.e., whether $A \to \alpha \in ParsingTable[A, t]$.

- Suppose we know the first symbols of all sentences derivable from the sentential form α . Call this set $FIRST(\alpha) \subseteq F$.
- Then $A \to \alpha$ is a candidate if $t \in FIRST(\alpha)$.

Problem

• Decide whether the production $A \to \alpha$ of the context-free grammar G = (N, T, P, S) is a candidate for rewriting A when the input token is t, i.e., whether $A \to \alpha \in ParsingTable[A, t]$.

- Suppose we know the first symbols of all sentences derivable from the sentential form α . Call this set $FIRST(\alpha) \subseteq F$.
- Then $A \to \alpha$ is a candidate if $t \in FIRST(\alpha)$.
- Almost!
- The only complication is if $\alpha \stackrel{\hat{}}{\Rightarrow} \varepsilon$. Call this predicate $NULLABLE(\alpha)$.

Problem

• Decide whether the production $A \to \alpha$ of the context-free grammar G = (N, T, P, S) is a candidate for rewriting A when the input token is t, i.e., whether $A \to \alpha \in ParsingTable[A, t]$.

- Suppose we know the first symbols of all sentences derivable from the sentential form α . Call this set $FIRST(\alpha) \subseteq F$.
- Then $A \to \alpha$ is a candidate if $t \in FIRST(\alpha)$.
- Almost!
- The only complication is if $\alpha \stackrel{\hat{}}{\Rightarrow} \varepsilon$. Call this predicate $NULLABLE(\alpha)$.
- In this case, the production is still a candidate if $S \stackrel{\hat{\rightarrow}}{\Rightarrow} \eta A t \xi$.

Problem

• Decide whether the production $A \to \alpha$ of the context-free grammar G = (N, T, P, S) is a candidate for rewriting A when the input token is t, i.e., whether $A \to \alpha \in ParsingTable[A, t]$.

- Suppose we know the first symbols of all sentences derivable from the sentential form α . Call this set $FIRST(\alpha) \subseteq F$.
- Then $A \to \alpha$ is a candidate if $t \in FIRST(\alpha)$.
- Almost!
- The only complication is if $\alpha \stackrel{\sim}{\Rightarrow} \varepsilon$. Call this predicate $NULLABLE(\alpha)$.
- In this case, the production is still a candidate if $S \stackrel{\hat{\rightarrow}}{\Rightarrow} \eta A t \xi$.
- So we also need to know the set of terminals that can immediately follow A in some sentential form derivable from S. Call this set $FOLLOW(A) \subseteq T'$.
- That is, if $NULLABLE(\alpha)$, then the production $A \to \alpha$ is also a candidate if $t \in FOLLOW(A)$.

Definition: NULLABLE

- $NULLABLE(\alpha) = true \text{ iff } \alpha \stackrel{*}{\Rightarrow} \varepsilon.$
- $NULLABLE: \Sigma^* \rightarrow \{true, false\}$ is defined inductively as follows:
 - $NULLABLE(\varepsilon) = true$.
 - $\forall t \in T$, NULLABLE(t) = false.
 - $NULLABLE(Y_1 \cdots Y_k) = NULLABLE(Y_1) \wedge \cdots \wedge NULLABLE(Y_k)$.
 - $(A \to \alpha \in P) \land NULLABLE(\alpha) \Longrightarrow NULLABLE(A)$.

Definition: FIRST

- $FIRST(\alpha)$ is the set of the first symbols of all sentences derivable from α .
- $FIRST: \Sigma^* \to F$ is defined inductively as follow:
 - $FIRST(\varepsilon) = \{\varepsilon\}.$
 - $\forall t \in T, FIRST(t) = \{t\}.$
 - $FIRST(Y_1 \cdots Y_k) = FIRST(Y_1) +_1 \cdots +_1 FIRST(Y_k)$.
 - $(A \to Y_1 \cdots Y_k \in P) \land (f \in FIRST(Y_1 \cdots Y_k)) \Longrightarrow f \in FIRST(A)$.
- $+_1: 2^F \times 2^F \to 2^F$ is a binary helper function on subsets of F defined thus:
 - Concatenate each element of the first set with each element of the second set, and truncate to the first symbol of the resulting string.
 - Thus, $\{\varepsilon, a, b\} +_1 \{\varepsilon, c\} = \{\varepsilon, a, b, c\}$, but $\{\varepsilon, a, b\} +_1 \{c\} = \{a, b, c\}$.

Definition: FOLLOW

- FOLLOW(A) is the set of terminals that can appear immediately following A in some sentential form derivable from S.
- $FOLLOW: N \rightarrow T'$ is defined inductively as follows:
 - $\$ \in FOLLOW(S)$.
 - $(A \to X_1 \cdots X_k B Y_1 \cdots Y_m \in P) \land$ $(t \in FIRST(Y_1 \cdots Y_m) +_1 FOLLOW(A)) \Longrightarrow t \in FOLLOW(B).$

Algorithm for Computing Sets

```
for each A do {
   NULLABLE[A] = false;
   FIRST[A] = FOLLOW[A] = { };
FOLLOW[S] = \{\$\};
repeat {
 for each production A \rightarrow Y_1 \cdots Y_n do {
     if NULLABLE(Y_1 \cdots Y_n) then NULLABLE[A] = true;
    FIRST[A] = FIRST[A] \cup FIRST(Y_1 \cdots Y_n);
    for each Y_i do
       FOLLOW[Y_i] = FOLLOW[Y_i] U (FIRST(Y_{i+1} \cdots Y_k) +_1 FOLLOW[A]);
} until sets do not change
```

Example

S
$$\rightarrow$$
 A\$
A \rightarrow BC | x
B \rightarrow t | ϵ
C \rightarrow v | ϵ

```
NULLABLE = \{A,B,C\}

FIRST(A)=\{x,t,v,\epsilon\}

FIRST(B)=\{t,\epsilon\}

FIRST(C)=\{v,\epsilon\}

FIRST(S)=\{x,t,v,\$\}

FOLLOW(A)=\{\$\}

FOLLOW(B)=\{v,\$\}

FOLLOW(C)=\{\$\}
```