Football Action Classification using Face Emotion Features

Josep Reverter Sancho Supervisors: Coloma Ballester, Alejandro Cartas, Gloria Haro

Escola d'Enginyeria

Introduction and Motivation

- Football: more than 20 million players (in more than 120 countries) and more than 4 billion fans.
- Statistics, Artificial Intelligence and Computer Vision for tactical and communication purposes.
- Live written annotations, match highlights, automatic summaries...
- $\stackrel{\bullet}{ullet}$ × Field information | < Emotions of players and fans.

Objectives

Determine and implement an adequate face detector for the correct and accurate detection of faces.

Determine and implement an emotion feature extractor from faces.

Develop an action classification model that takes as input the extracted emotion features

Proposed Methodology

Feature Extraction:

- Frames Extraction
- Face Detection
- Emotion Feature Extraction

Classification:

- Action Classification

SoccerNet-v2

- 500 football matches from the 5 major European leagues + UEFA Champions League.
- 300,000 annotations.
- 17 classes.
- Detailed list of annotations per match.

Frames Extraction

- ↑ fs | ↑ quality | ↑ time
 ↓ fs | ↓ quality | ↓ time

8fps: more than 21,600 frames per half

Face Detection

RetinaFace¹:

- Learning based on 4 parts: face classification → face box regression → facial landmarks regression
 → and dense face regression
- Multi-task loss (for each part).
- Combination of a Feature Pyramid Network (FPN) and a Deformable Convolutional Network (DCN).

Implementation and Results

- Detect useful faces around actions.
- Time Window: 20s (smaller time windows can be chosen when we train the model).
- 5 classes with much more faces, and classes with a big faces per action ratio.
- Average distribution never exceeds ±60 frames.

Emotion Feature Extraction

DeepFace²

- Convolutional Neural Network.
- 5 convolutional layers → flatten → 3fully-connected layers.
- 7 emotion classification.
- Output of the flatten layer as the Face Emotion Feature.

Action Classification

Model Scheme:

- 2 average pooling layers.
- 2 fully-connected layers.

Dataset Preprocessing

- 135 complete matches:
 - Frames that have no faces: 60% (949,104/1,562,545)
 - Actions that have no faces: 5.7% (1,290/22,327)

Model Training

- SGD optimizer (momentum of 0.9).
- Cross-Entropy Loss.
- Early Stop of 15 iterations.
- Weighted Loss:
 - Inverse Number of Samples
 - Opposite of the Class Ratio

$$W = \frac{\frac{1}{\text{Number of samples of each class}}}{\sum (\frac{1}{\text{Number of samples of each class}})} * \text{Number of classes}$$

$$W=1-\frac{\text{Number of samples of each class}}{\text{Total number of samples}}$$

Experimental Results

Weight Equation	T = 10 (W = 81)	$T = 16 \ (W = 129)$	T = 20 (W = 161)
Not using Weighted Loss	28.7%	28.6%	28.5%
INS	25.2%	18.4%	20.9%
OCR	28.7%	28.6%	28.5%

С	WE	TW	TA	Pen	Ko	Goal	Sub	Son	Sof	Cl	Foul	Dfk	Cor
Chosen	INS	10	41%	-	-	0%	76%	-	-	21%	64%	-	2%
Chosen	INS	16	22%	-	-	74%	47%	-	-	21%	16%	-	14%
Chosen	OCR	10	50%	-	-	0	18%	-	-	63%	70%	-	2%
Chosen	OCR	16	46%	-	-	0%	0%	-	-	48%	74%	-	0%
Em	INS	10	18%	0%	-	0%	80%	56%	13%	-	0%	0%	16%
Em	INS	16	17%	0%	н	60%	60%	31%	12%	=	4%	17%	14%
Em	OCR	10	26%	0%	-	0%	0%	0%	0%	-	100%	0%	0%
Em	OCR	16	36%	0%	-	0%	0%	0%	0%	-	100%	0%	0%
M.FpA	INS	10	59%	0%	0%	0%	18%	-	-	93%	-	-	-
M.FpA	INS	16	59%	0%	0%	0%	29%	-	-	89%	-	-	-
M.FpA	OCR	10	61%	0%	0%	0%	22%	-	-	95%	-	-	1-
M.FpA	OCR	16	61%	0%	0%	0%	20%	-	-	94% -	=	-	-

Confusion Matrix of the Chosen actions

Confusion Matrix of the Emotion actions

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

Conclusions and Future Work

- INS and Time window of 16 seconds.
- Initial approach for understanding football games based on emotions, as we have completed the main objective of detecting football actions using face emotion features.
- Combine our model with a model that use audio emotion features.
- Implement cameras that focus on the public all the time.
- Considering fan's and player's team.

Thank you for your attention Questions?