Independent Events

Two events E and F are independent if

$$P(EF) = P(E) P(F)$$
.

In this case

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(E) \ P(F)}{P(F)} = P(E) ,$$

(assuming P(F) is not zero).

Thus

knowing $\ F$ occurred doesn't change the probability of $\ E$.

EXAMPLE: If E and F are independent then so are E and F^c .

PROOF:
$$E=E(F\cup F^c)=EF\cup EF^c$$
, where
$$EF \quad \text{and} \quad EF^c \quad \text{are } disjoint \,.$$
 Thus
$$P(E)=P(EF)+P(EF^c) \,,$$
 from which

$$P(EF^c)$$
 = $P(E)$ - $P(EF)$
= $P(E)$ - $P(E) \cdot P(F)$ (since E and F independent)
= $P(E) \cdot (1 - P(F))$
= $P(E) \cdot P(F^c)$.

EXAMPLE: Draw *one* card from a deck of 52 playing cards.

Counting outcomes we find

$$P(\text{Face Card}) = \frac{12}{52} = \frac{3}{13} ,$$

$$P(\text{Hearts}) = \frac{13}{52} = \frac{1}{4},$$

$$P(\text{Face Card and Hearts}) = \frac{3}{52}$$
,

$$P(\text{Face Card}|\text{Hearts}) = \frac{3}{13}$$
.

We see that

$$P(\text{Face Card and Hearts}) = P(\text{Face Card}) \cdot P(\text{Hearts}) = \frac{3}{52}$$
.

Thus the events "Face Card" and "Hearts" are independent.

Therefore we also have

$$P(\text{Face Card}|\text{Hearts}) = P(\text{Face Card}) = (=\frac{3}{13}).$$

NOTE: Independence and disjointness are different things!

Independent, but not disjoint.

Disjoint, but not independent.

(The six outcomes in S are assumed to have equal probability.)

If E and F are independent then P(EF) = P(E) P(F).

If E and F are disjoint then $P(EF) = P(\emptyset) = 0$.

If E and F are independent and disjoint then one has zero probability!

Three events E, F, and G are independent if

$$P(EFG) \ = \ P(E) \ P(F) \ P(G) \ .$$

and

$$P(EF) = P(E) P(F)$$
.

$$P(EG) = P(E) P(G)$$
.

$$P(FG) = P(F) P(G)$$
.

DISCRETE RANDOM VARIABLES

DEFINITION: A discrete random variable is a function X(s) from a finite or countably infinite sample space S to the real numbers:

$$X(\cdot)$$
 : $\mathcal{S} \rightarrow \mathbb{R}$.

EXAMPLE: Toss a coin 3 times in sequence. The sample space is

 $\mathcal{S} = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ and examples of random variables are

- X(s) = the number of Heads in the sequence; e.g., <math>X(HTH) = 2,
- $Y(s) = \text{The index of the first } H \; ; \quad e.g., \quad Y(TTH) = 3 \; ,$ 0 if the sequence has no H , $i.e., \quad Y(TTT) = 0 \; .$

NOTE: In this example X(s) and Y(s) are actually *integers*.

Value-ranges of a random variable correspond to events in S.

EXAMPLE: For the sample space

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},\$$

with

$$X(s)$$
 = the number of Heads,

the value

X(s) = 2 , corresponds to the event $\{HHT \ , \ HTH \ , \ THH\}$, and the values

 $1 < X(s) \leq 3$, $\;$ correspond to $\;$ $\{HHH$, HHT , HTH , $THH\}$.

NOTATION: If it is clear what S is then we often just write X instead of X(s).

Value-ranges of a random variable correspond to events in S,

and

events in S have a probability.

Thus

Value-ranges of a random variable have a probability.

EXAMPLE: For the sample space

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},\$$

with X(s) =the number of Heads,

we have

$$P(0 < X \le 2) = \frac{6}{8} .$$

QUESTION: What are the values of

$$P(X \le -1) \; , \; P(X \le 0) \; , \; P(X \le 1) \; , \; P(X \le 2) \; , \; P(X \le 3) \; , \; P(X \le 4) \; ?$$

NOTATION: We will also write $p_X(x)$ to denote P(X = x).

EXAMPLE: For the sample space

$$\mathcal{S} \;\; = \;\; \left\{ HHH \; , \; HHT \; , \; HTH \; , \; HTT \; , \; THH \; , \; THT \; , \; TTH \; , \; TTT \right\} \; ,$$

with

$$X(s)$$
 = the number of Heads,

we have

$$p_X(0) \equiv P(\{TTT\}) = \frac{1}{8}$$

$$p_X(1) \equiv P(\{HTT, THT, TTH\}) = \frac{3}{8}$$

$$p_X(2) \equiv P(\{HHT, HTH, THH\}) = \frac{3}{8}$$

$$p_X(3) \equiv P(\{HHH\}) = \frac{1}{8}$$

where

$$p_X(0) + p_X(1) + p_X(2) + p_X(3) = 1$$
. (Why?)

Graphical representation of X.

The events E_0, E_1, E_2, E_3 are disjoint since X(s) is a function! $(X : S \to \mathbb{R} \text{ must be defined for all } s \in S \text{ and must be single-valued.})$

The graph of p_X .

DEFINITION:

$$p_X(x) \equiv P(X=x)$$
,

is called the *probability mass function*.

DEFINITION:

$$F_X(x) \equiv P(X \le x)$$
,

is called the (cumulative) probability distribution function.

PROPERTIES:

- $F_X(x)$ is a non-decreasing function of x. (Why?)
- $F_X(-\infty) = 0$ and $F_X(\infty) = 1$. (Why?)
- $P(a < X \le b) = F_X(b) F_X(a)$. (Why?)

NOTATION: When it is clear what X is then we also write

$$p(x)$$
 for $p_X(x)$ and $F(x)$ for $F_X(x)$.

EXAMPLE: With X(s) = the number of Heads, and

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$$

$$p(0) = \frac{1}{8}$$
 , $p(1) = \frac{3}{8}$, $p(2) = \frac{3}{8}$, $p(3) = \frac{1}{8}$,

we have the probability distribution function

$$F(-1) \equiv P(X \le -1) = 0$$
 $F(0) \equiv P(X \le 0) = \frac{1}{8}$
 $F(1) \equiv P(X \le 1) = \frac{4}{8}$
 $F(2) \equiv P(X \le 2) = \frac{7}{8}$
 $F(3) \equiv P(X \le 3) = 1$
 $F(4) \equiv P(X \le 4) = 1$

We see, for example, that

$$P(0 < X \le 2) = P(X = 1) + P(X = 2)$$

= $F(2) - F(0) = \frac{7}{8} - \frac{1}{8} = \frac{6}{8}$.

The graph of the $\ probability \ distribution \ function \ F_X$.

X(s) is the *number of tosses* until "Heads" occurs \cdots

REMARK: We can also take $S \equiv S_n$ as all ordered outcomes of length n. For example, for n = 4,

$$\mathcal{S}_4 = \{ \tilde{H}HHH, \tilde{H}HHT, \tilde{H}HTH, \tilde{H}HTT, \\ \tilde{H}THH, \tilde{H}THT, \tilde{H}TTH, \tilde{H}TTT, \\ T\tilde{H}HH, T\tilde{H}HT, T\tilde{H}TH, T\tilde{H}TT, \\ TT\tilde{H}H, TT\tilde{H}T, TTT\tilde{H}, TTTT \}.$$

where for each outcome the first "Heads" is marked as \tilde{H} .

Each outcome in S_4 has equal probability 2^{-n} (here $2^{-4} = \frac{1}{16}$), and $p_X(1) = \frac{1}{2}$, $p_X(2) = \frac{1}{4}$, $p_X(3) = \frac{1}{8}$, $p_X(4) = \frac{1}{16}$..., independent of n.

Joint distributions

The probability mass function and the probability distribution function can also be functions of more than one variable.

EXAMPLE: Toss a coin 3 times in sequence. For the sample space

$$\mathcal{S} \ = \ \left\{HHH\,,\,HHT\,,\,HTH\,,\,HTT\,,\,THH\,,\,THT\,,\,TTH\,,\,TTT\right\},$$
 we let

$$X(s) = \# \text{ Heads}$$
, $Y(s) = \text{ index of the first } H$ (0 for TTT).

Then we have the joint probability mass function

$$p_{X,Y}(x,y) = P(X = x , Y = y) .$$

For example,

$$p_{X,Y}(2,1) = P(X = 2, Y = 1)$$

= $P(\text{ 2 Heads }, \text{ 1}^{\text{st}} \text{ toss is Heads})$
= $\frac{2}{8} = \frac{1}{4}$.

I

EXAMPLE: (continued \cdots) For

 $\mathcal{S} = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ X(s) = number of Heads, and Y(s) = index of the first H,we can list the values of $p_{X,Y}(x,y)$:

Joint probability mass function $p_{X,Y}(x,y)$

	y = 0	y = 1	y = 2	y = 3	$p_X(x)$
x = 0	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
x = 1	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	3 8
x = 2	0	$\frac{2}{8}$	$\frac{1}{8}$	0	3 8
x = 3	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_Y(y)$	$\frac{1}{8}$	<u>4</u> 8	$\frac{2}{8}$	$\frac{1}{8}$	1

NOTE:

- The marginal probability p_X is the probability mass function of X.
- The marginal probability p_Y is the probability mass function of Y.

The events $E_{i,j} \equiv \{ s \in S : X(s) = i , Y(s) = j \}$ are disjoint.

QUESTION: Are the events X = 2 and Y = 1 independent?

DEFINITION:

$$p_{X,Y}(x,y) \equiv P(X=x, Y=y),$$

is called the joint probability mass function.

DEFINITION:

$$F_{X,Y}(x,y) \equiv P(X \le x , Y \le y) ,$$

is called the joint (cumulative) probability distribution function.

NOTATION: When it is clear what X and Y are then we also write

$$p(x,y)$$
 for $p_{X,Y}(x,y)$,

and

$$p(x,y)$$
 for $p_{X,Y}(x,y)$,
 $F(x,y)$ for $F_{X,Y}(x,y)$.

EXAMPLE: Three tosses: $X(s) = \# \text{ Heads}, Y(s) = \text{index } 1^{\text{st}} H$.

Joint probability mass function $p_{X,Y}(x,y)$

$p_{X,Y}(x,y)$						
	y = 0	y = 1	y = 2	y = 3	$p_X(x)$	
x = 0	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$	
x = 1	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	3 8	
x = 2	0	$\frac{2}{8}$	$\frac{1}{8}$	0	3 8	
x = 3	0	1/8	0	0	$\frac{1}{8}$	
$p_Y(y)$	$\frac{1}{8}$	4/8	2/8	$\frac{1}{8}$	1	

'	2 - (0)	0	0	0	0		,
Joint o	distribut	ion fun	ction F	$T_{X,Y}(x,y)$	$p(x) \equiv P(x)$	$X \le x, Y$	$Y \leq y$
		y = 0	y = 1	y = 2	y = 3	$F_X(\cdot)$	
	x = 0	1/8	1/8	1/8	$\frac{1}{8}$	1 8	
	x = 0 $x = 1$	$\frac{1}{8}$	$\frac{2}{8}$	<u>3</u> 8	$\frac{4}{8}$	$\frac{4}{8}$	
	x = 2	$\frac{1}{8}$	$\frac{4}{8}$	<u>6</u> 8	$\frac{7}{8}$	$\frac{7}{8}$	
	x = 3	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1	
	$F_Y(\cdot)$	$\frac{1}{8}$	<u>5</u> 8	7 /8	1	1	

Note that the distribution function F_X is a *copy* of the 4th column, and the distribution function F_Y is a copy of the 4th row. (Why?) In the preceding example :

Joint probability mass function $p_{X,Y}(x,y)$

$p_{X,I}(x,y)$						
	y = 0	y = 1	y = 2	y = 3	$p_X(x)$	
x = 0	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$	
x = 1	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	3 8	
x = 2	0	$\frac{2}{8}$	$\frac{1}{8}$	0	3/8	
x = 3	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$	
$p_Y(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1	

Joint distribution function $F_{X,Y}(x,y) \equiv P(X \leq x, Y \leq y)$

	y = 0	y = 1	y=2	y = 3	$F_X(\cdot)$
x = 0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
x = 1	$\frac{1}{8}$	<u>2</u> 8	<u>3</u> 8	<u>4</u> 8	$\frac{4}{8}$
x = 2	$\frac{1}{8}$	$\frac{4}{8}$	<u>6</u> 8	$\frac{7}{8}$	$\frac{7}{8}$
x = 3	$\frac{1}{8}$	<u>5</u> 8	$\frac{7}{8}$	1	1
$F_Y(\cdot)$	$\frac{1}{8}$	<u>5</u> 8	$\frac{7}{8}$	1	1

QUESTION: Why is

$$P(1 < X \le 3 \; , 1 < Y \le 3) \;\; = \;\; F(3,3) \; - \; F(1,3) \; - \; F(3,1) \; + \; F(1,1) \; ?$$

Three tosses : X(s) = # Heads, $Y(s) = \text{index } 1^{\text{st}}$ H .

- What are the values of $p_X(2)$, $p_Y(1)$, $p_{X,Y}(2,1)$?
- Are X and Y independent?