## BUILDING PD-1 PROTEIN STRUCTURE FOR DIFFERENT MODELS USING HUMAN PD-1 STRUCTURE AS REFERENCE AND CHECKING THE STRUCTURAL AND SEQUENCE LEVEL SIMILARITIES BETWEEN THEM



### Motivation

- Cancer is one of the leading causes of deaths in the world. It is a disease in which abnormal cells divide uncontrollably and destroy body tissue.
- The main cancer treatment include cancer surgery, radiotherapy, chemotherapy and hormone therapy.
- One of the emerging treatments for cancer is immune checkpoint inhibitors which has been approved for cancers like small cell carcinoma of lung, malign melanoma, renal cell carcinoma etc.
- Currently approved immune checkpoint inhibitors target the molecules CTLA<sub>4</sub>, PD<sub>1</sub> and PDL<sub>1</sub>.

# Programmed Cell Death Protein 1: Functioning

- PD1 is a protein found on T cells (a type of immune cell) that helps keep the body's immune responses in check.
- PD-1 extends from the surface of T-cells, and interacts with two similar ligand proteins, PD-L1 and PD-L2, that are found on the surface of regulatory T cells which control the immune system's response to self and foreign particles.
- Cancers such as melanomas evade the immune system by expressing PD-L<sub>1</sub> on their surface, allowing them to trick the immune system by downregulating T-cells.
- Immune checkpoint inhibitors target these cancer cells by blocking the interaction of PD-1 and PD-L1, restoring T-cell function.

# Programmed Cell Death Protein 1: Properties

- Also called CD279
- Immunoglobulin superfamily, expressed on T-cells and pro B-cells
- Coded by PDCD1 gene which is expressed on chromosome 2 of human
- Composed of 288 amino acids
- Useful in prevention of autoimmune diseases
- Can prevent the immune system from attacking cancer cells
- Another reason for studying PD1: Drugs targeting PD1 along with other negative immune checkpoint receptors may augment immune response and/or facilitate HIV eradication.

## MODELS

| MODEL             | COMMON NAME         | ACCESSION NUMBER |
|-------------------|---------------------|------------------|
| Macaca mulatta    | Rhesus Monkey       | NP_001107830.1   |
| Rattus norvegicus | Brown Rat           | NP_001100397.1   |
| Bos taurus        | Domesticated Cattle | BAX73992.1       |
| Sus scrofa        | Pig                 | NP_001191308     |

Is the result of the phylogenetic analysis correlating with the RMSD values for the above mentioned models?

## SEQUENCE LEVEL ANALYSIS

**Tools Used** 

MegaX

Clustal Omega

## PHYLOGENETIC

#### DATA COLLECTION

60

60 60

60

120

120

120

120

120

180

180

180

180

180

## 

NP 005009.2

BAX73992.1

NP 001100397.1

NP 001107830.1

NP 001191308.1

NP 001100397.1

NP\_001107830.1

NP 001191308.1

NP 001100397.1

NP 001107830.1

NP 001191308.1

NP 001100397.1

NP 001107830.1

NP 005009.2

BAX73992.1 NP 001191308.1

NP 005009.2

BAX73992.1

NP 005009.2

BAX73992.1

NP 005009.2

BAX73992.1

NP 001100397.1 MWVQQVPWSFTWAVLQLSWQSGWLLEVLNKPWRPLTFSPTWLTVSEGANATFTCSFSNWS MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTS NP 001107830.1 MQIPQAPWPVVWAVLQLGWRPGWFLESPDRPWNPPTFSPALLLVTEGDNATFTCSFSNAS MGTPRALWPLVWAVLOLGCWPGWLLEASSRPWSALTFSPPRLVVPEGANATFTCSFSSKP MGTPRALWPVVWVVLOLRWWPGWLLDAPSRPRGPLTLSPAOLTVPEGANATFTCSFPSEP NP 001191308.1 

> EDLKLNWYRLSPSNQTEKQAAFCNGYSQPVRDARFQIVQLPNGHDFHMNILDARRNDSGI ESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGT ESFVLNWYRMSPSNQTDKLAAFPEDRSQPGRDCRFRVTQLPNGRDFHMSVVRARRNDSGT ERFVLNWYRKSPSNQMDKLAAFPEDRSQPSRDRRFRVTPLPDGQQFNMSIVAAQRNDSGV KHFILNWYRLSPSNQTDKLAAFSEDGSQPGRDPRFHVTPLPNGRDFHMSVVATRRNDSGT \*\*\*\*\* \*\*\*\*\* \* \*\*\* \* \*\*\* \* \*\*\* \* \*\*\*

YLCGAISLPPKAQIKESPGAELVVTERILETPTRYPRPSPKPEGQFQGLVIVIMSVLVGI YLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVGVVGGLLGS YLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQALVVGVVGGLLGS YFCGAIYLPPRTQINESHSAELMVTEAVLEPPTEPPSPQPRPEGQMQSLVIGVTSVLLGV YFCGAIYLPPKTQINESHQAKLTVTERVLELPTEHPSCPPRPEGHLEGQVLVITSVLLGL 

PVLLLLAWALAAFCSTGMSEAREAGRKEDPPKEAHAAAPVPSVAYEELDF0GREKTPEPA 240 LV--LLVWVLAVICSRAARGTIGARRTGOPLKEDPSAVPVFSVDYGELDFOWREKTPEPP 238 LV--LLVWVLAVICSRAAQGTIEARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPP 238 LLLPPLIWVLAAVFLRATRGGCARRSQDQPPKEGCPSVPAVTVDYGELDFQWREKTPEPA 240 LLLLLAWSLAAFFLWAPRGDRAHRTENOPRKEGASSGLVFTVDYGELDFOWREKTPVPS \* \* \*\*

-PCV--HTEYATIVFTEGLDASAIGRRGSADGPQGPRPPRHEDGHCSWPL 287 VPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL APCVPEQTEYATIVFPSGLGTSSPARRGSADGPRSPRPLRPEDGHCSWPL APCVPEOTEYATIVFP-----GRRASADSPOGPWPLRTEDGHCSWPL AACVSEQTEYATIVFPERPG--SPGRRASADSPQGPWPQRTEDGHCSWPL \*\* \*\*\*\*\*\*\* \*\* \*\*\* \* \* \* \*\*\*\*\*\*\*

Strong Similarity (Maximum Parsimony) Weak Similarity (Distance methods) Very weak similarity (Maximum **MODEL SELECTION** 

Percent Identity Matrix - created by Clustal2.1

MULTIPLE SEQUENCE

**ALIGNMENT** 

```
1: NP_001100397.1 100.00
                            61.75
                                    63.86
                                             58.42
                                                     57.89
2: NP 005009.2
                    61.75
                           100.00
                                    96.18
                                            66.43
                                                     64.34
3: NP_001107830.1
                    63.86
                            96.18
                                   100.00
                                            67.14
                                                     64.69
4: BAX73992.1
                    58.42
                                    67.14
                                           100.00
                            66.43
                                                     73.05
5: NP 001191308.1
                    57.89
                            64.34
                                    64.69
                                            73.05
                                                   100.00
```

## Phylogenetic trees based on distance based models



Neighbor Joining



**UPGMA** 

## STRUCTURE LEVEL ANALYSIS

#### **TOOLS USED**

**NCBI Blast** 

**Swiss Model** 

Modeller

Chimera

ProCheck



## HOMOLOGY MODELING (Modeller)

#### DATA COLLECTION

- Download the target protein sequence
- Run Blast
- Select the template with the lowest resolution
- Download the aligned sequence and the structure of the selected template

#### DATA PREPARATION

- Multiple sequence alignment
- Keep only the part of the template with which the sequence got aligned
- Remove the residues

#### MODELLING

- Define the number of models
- Select the model which gives the least DOPE value

#### LOOP REFINEMENT

- Refine a region of an existing coordinate
- Define the number of models
- Select the model which gives the least DOPE value

#### MODEL EVALUATION

- RMSD Score
- Ramachandran plot

## TEMPLATES

| MODELS            | PDB ID      |          |
|-------------------|-------------|----------|
|                   | Swiss Model | Modeller |
| Macca mulatta     | 6K0Y        | 6J14     |
| Rattus norvegicus | 3BP5        | 5WT9     |
| Bos taurus        | 6K0Y        | 5WT9     |
| Sus scrofa        | 6K0Y        | 5WT9     |



Macaca mulatta (Rhesus Monkey)



Residues in most favoured regions: 93.1%

**Swiss Model** 135-90 -45 Psi (degrees)

Rattus norvegicus (BROWN RAT)



Residues in most favoured regions: 94.9%

Phi (degrees)

135

-90

-135-

Residues in most favoured regions: 94.5%



**Bos taurus** (Cattle)



Residues in most favoured regions: 94.7%

Residues in most favoured regions: 97%



Sus scrofa (Pig)



Residues in most favoured regions: 91%

### RMSD: 0.073 °A





## RMSD: 0.142 °A



## RMSD: 0.088 °A





## CONCLUSION

**Hypothesis**: Sequence analysis = Structure analysis

#### **Observations:**

Phylogenetic analysis: Macaca mulatta is closest to Homo sapiens

■ Homology Modeling: In terms of the RMSD, *Macaca mulatta* gives us the minimum score.

#### Interpretation:

Since, sequence and structural analysis give us the same results, we do not reject our hypothesis. Therefore, we conclude that *Macaca mulatta* will be the best of the four models for drug trials and studies related to PD1 protein of *Homo sapiens*.

## Thank You!