MATEMATYKA 5 LUTEGO 2021 - EGZAMIN - PIERWSZY TERMIN

Zadanie 1. Dla podanych poniżej macierzy A i B wyznaczyć wyznacznik macierzy A oraz iloczyn $A \cdot B$.

$$\mathbf{A} = \begin{pmatrix} 5 & -1 & -2 & 0 \\ 4 & -1 & 1 & 6 \\ 6 & -3 & 2 & 2 \\ -5 & 1 & 2 & 4 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -5 \\ 0 & 3 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$

Zadanie 2.

Rozwiąż wzorami Cramera.
$$\begin{cases} 4x + 3y - 2z = 0 \\ -x - y + z = 2 \\ 8y - z = 11 \end{cases}$$

Zadanie 3.

Rozwiąż metodą eliminacji Gaussa.
$$\begin{cases} -x + 2y - 5z = 4 \\ -x + 3y = 2 \\ 2x - 5y + 5z = -6 \end{cases}$$

Zadanie 4.

Oblicz granice ciągów. a)
$$\lim_{n\to\infty} \frac{n^4+n^3}{7n+5n^3+8n^4}$$
 b) $\lim_{n\to\infty} (\frac{2n+5}{2n})^n$ c) $\lim_{n\to\infty} \frac{\sqrt{5n+9n^2}}{\sqrt[3]{8n^3+6n}}$

c)
$$\lim_{n \to \infty} \frac{\sqrt{5n+9n^2}}{\sqrt[3]{8n^3+6n}}$$

Zadanie 5.

Wyznacz równanie stycznej do wykresu funkcji $f(x) = \frac{x \cdot e^x}{\sqrt{x^2 + 4}}$ w punkcie (0, 0).

Zadanie 6.

Oblicz całki.

a)
$$\int \arctan(4x) dx$$
 b) $\int \frac{dx}{x^2 - x - 20} dx$

Punktacja: Każde zadanie numerowane jest po 6 pkt.

Widełki ocen:

• od 30 pkt
$$-4.5$$
 (db+)