데이터베이스시스템

11. SQL(2/3) - 관계데이터 연산

나홍석 교수

11 LESSON

SQL(2/3) - 관계데이터 연산

학습 목표

- 1 관계대수와 관계해석의 차이를 설명할 수 있다.
- 2 관계연산을 사용해서 질의문의 동작과정을 표현할 수 있다.
- 3 관계해석을 사용해서 질의문을 표현할 수 있다.

학습 내용

- 1 관계대수 집합연산
- 2 관계대수 관계연산
- 3 관계해석

<u>Chapter 01</u> 관계대수 - 집합연산

생각해봅시다

Q 다음의 질의문을 관계형 데이터베이스는 어떻게 처리할까요?

- 1. 모든 학생의 이름과 학과를 보여라.
- 2. 과목 번호가 'IT100'인 과목에 등록한 학생의 이름과 성적은 무엇인가?
- 3. 학번이 '600', 이름이 '김명호', 학과가 '정보' 인 학생을 삽입하라.
- 4. 과목 '컴퓨터학 개론'을 삭제하라.

- 1 DBMS 구조
 - ☑ 데이터저장소
 - ☑ 쿼리처리기
 - ☑ 시스템카탈로그
 - ☑ 트랜잭션처리부
 - ☑ 병행처리
 - ₩ 백업/복구

2 관계대수(Relation Algebra)

- ☑ 릴레이션 = 튜플의 집합
- ☑ 관계대수 = 릴레이션을 처리하기 위한 연산(operation)의 집합
- ☑ 특징: 피연산자와 연산결과가 모두 릴레이션
- ☑ 절차적 언어(Procedural Language)로써 관계대수 연산자의 절차적인 적용을 통해서 원하는 결과(릴레이션)를 얻음

3 역할

- ☑ 릴레이션 조작에 대한 이론적 기초를 제공
- ☑ 데이터베이스 질의(Query)를 구현하고 최적화하는 데 사용됨
- ☑ RDBMS의 표준 언어인 SQL이 관계대수의 일부 연산을 사용함

- 2 관계대수 종류
- 1 일반집합연산(Set Operation)
 - ☑ 릴레이션 = 튜플의 집합 → 집합 연산을 그대로 적용할 수 있음
 - ☑ 합병가능(Union Compatible)한 릴레이션에 적용이 가능

합집합 Union 교집합 Intersection **차집합**Difference

곱집합 Cartesian Product

- 2 관계대수 종류
- 2 순수 관계 연산

☑ 릴레이션의 조작을 위해서 정의된 연산

셀렉트 Select 프로젝트 Project **조인**Join

디비전Division

- 1 릴레이션의 합병가능
 - ☑ 두 릴레이션 R과 S가 있을 때
 - ☑ 두 릴레이션의 차수(애트리뷰트의 수)가 같고, 대응 애트리뷰트 별로 도메인이 같을 때→ 두 릴레이션은 합병 가능(Union Compatible)하다고 정의

 $R(A_1, A_2, ..., A_n)$ 과 $S(B_1, B_2, ..., B_n)$ 이 같은 차수 n을 갖고, $1 \le i \le n$ 인 모든 i 에 대해서 $dom(A_i) = dom(B_i)$ 를 만족하면 합병가능(Union compatible)하다.

2 합병가능한 두 릴레이션의 예

학생

학번	이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

조교

학번	이름
S100	김만수
S500	강명진
S400	한병진

3 합집합, 차집합, 교집합

☑ 합집합 R U S

- 릴레이션 R 또는 릴레이션 S에 속하는 모든 튜플의 집합

☑ 차집합 R - S

- 릴레이션 R 에는 있지만 릴레이션 S에는 없는 튜플의 집합

☑ 교집합 R ∩ S

- 릴레이션 R 또는 릴레이션 S에 동시에 속해 있는 튜플의 집합

4 합집합의 예

학생

학번	이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

조교

학번	이름
S100	김만수
S500	강명진
S400	한병진

학생 U 조교

학번	이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진
S500	강명진

5 교집합의 예

학생

학번	│ 이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

조교

학번	이름
S100	김만수
S500	강명진
S400	한병진

학생 ○ 조교

학번	이름
S100	김만수
S400	한병진

6 차집합의 예

학생

학번	│ 이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

조교

학번	이름
S100	김만수
S500	강명진
S400	한병진

학생 - 조교

학번	이름
S200	남수민
S300	장일수

곱집합(Cartesian Product) #1 - 정의

두 릴레이션 $R(A_1, A_2, ..., A_n)$ 과 $S(B_1, B_2, ..., B_m)$ 의 카티션 프로덕트(x), 즉, R x S는 R에 속한 각 튜플 r에 대해 릴레이션 S에 속한 각 튜플 s를 모두 결합(Concatenation ; •) 시킨 튜플 $r \cdot s$ 로 구성된 릴레이션이다.

카티션 프로덕트에 관련된 릴레이션 들은 서로 합병가능하지 않아도 된다.

곱집합(Cartesian Product) #2 - 예제

학생 x 과목

학생

학번	이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

과목

과목번 호	과목명
C123	컴퓨터학개 론
C124	이산수학
C225	자바언어

١.	학번	이름	과목번호	과목명
	100	김만수	C123	컴퓨터학개론
	100	김만수	C124	이산수학
	100	김만수	C125	자바언어
	200	남수민	C123	컴퓨터학개론
	200	남수민	C124	이산수학
	200	남수민	C125	자바언어
	300	장일수	C123	컴퓨터학개론
	300	장일수	C124	이산수학
	300	장일수	C125	자바언어
	400	한병진	C123	컴퓨터학개론
	400	한병진	C124	이산수학
	400	한병진	C125	자바언어

<u>Chapter 02</u> 관계대수 - 관계연산

1 순수관계연산

1 정의와 종류

☑ 릴레이션의 조작을 위해서 특별히 정의된 연산

셀렉트 (Select, σ)

<mark>프로젝트</mark> (Project, π)

조인 (Join, ⋈)

디비전 (Division, ÷)

2 실렉트(Select, σ)

- 1 정의
 - ☑ 주어진 조건을 만족하는 튜플 들만 걸러내는 연산
 - ☑ 실렉트 연산은 릴레이션에서 선택조건을 만족하는 튜플들의 집합을 선택하는데 사용

형식 : σ_{선택조건}(R)

- σ 실렉트 연산자
- 선택조건 릴레이션 R의 애트리뷰트들에 대한 논리식
- R 릴레이션, 또는 결과가 릴레이션이 되는 관계 대수식

2 실렉트(Select, σ)

2 예제 #1

☑ σ _{학과='컴퓨터'} (학생)

☑ 연산식의 의미 → 학생 릴레이션에서 학과가 '컴퓨터'인 튜플을 선택하라.

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터

2 실렉트(Select, σ)

2 예제 #2

☑ σ _{학번='S300'∧과목번호='C123'} (등록)

☑ (의미) 등록 릴레이션에서 학번이 'S300'이고 과목번호가 'C123'인 튜플을 선택하라.

<u>학번</u>	<u>과목번호</u>	성적	중간고사	기말고사
S100	C123	Α	90	95
S100	C124	В	80	87
S100	C225	Α	92	100
S200	C123	C	75	75
S200	C225	Α	96	95
S300	C123	Α	90	100
S300	C124	В	84	80
S400	C123	В	80	84
S400	C124	C	80	78
S400	C225	C	74	78

<u>학번</u>	<u> 과목번호</u>	성적	중간고사	기말고사
S300	C123	Α	90	100

3 프로젝트(Project, π)

1 정의

☑ 프로젝트 연산은 릴레이션(테이블)의 일부 열만을 선택하고 나머지는 버리는 연산

형식 : π _{애트리뷰트리스트}(R)

- π 프로젝트 연산자
- 애트리뷰트리스트 릴레이션 R의 애트리뷰트 들에 대한 리스트
- R 릴레이션, 또는 결과가 릴레이션이 되는 관계 대수식

3 프로젝트(Project, π)

1 예제 #1

☑ π _{학번, 이름} (학생)

☑ (의미) 학생 릴레이션에서 학번, 이름 애트리뷰트만을 갖는 릴레이션을 생성하라.

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

<u>학번</u>	이름
S100	김만수
S200	남수민
S300	장일수
S400	한병진

(주의) 애트리뷰트 리스트가 R의 키가 아닌 애트리뷰트들만 포함하면 중복된 튜플들이 결과에 나타날 수 있다.
프로젝트 연산은 중복을 모두 제거하여 유효한 릴레이션으로 만든다.

3 프로젝트(Project, π)

2 예제 #2

☑ (의미) 등록 릴레이션에서 학번, 성적 애트리뷰트만을 갖는 릴레이션을 생성하라.

학번	과목번호	성적	중간고사	기말고사
S100	C123	Α	90	95
S100	C124	В	80	87
S100	C225	Α	92	100
S200	C123	C	75	75
S200	C225	Α	96	95
S300	C123	Α	90	100
S300	C124	В	84	80
S400	C123	В	80	84
S400	C124	C	80	78
S400	C225	C	74	78

	07
S100	Α
S100	В
S100	À
3100	А
S200	C
S200	Α
S300	Α
S300	В
S400	В
S400	C
C400	
3400	

하버 성저

4 조인(Join, ⋈)

- 1 정의
 - ☑ 조인 연산은 두 릴레이션으로부터 관련된 튜플들을 결합하여 하나의 튜플로 만듦
 - ☑ 이 연산은 두 개 이상의 릴레이션을 갖는 어떤 관계 데이터베이스에 대해서 릴레이션 간의 관계를 처리할 수 있게 함

형식 : R ⋈ A θ B S

- ☑ 조인 연산자
- ⊖ 조인 조건에 사용되는 비교 연산자
- A, B 같은 도메인 위에 정의된 조인 애트리뷰트(Joining attribute)
- R, S 릴레이션, 또는 결과가 릴레이션이 되는 관계 대수식

4 조인(Join, ⋈)

2 예제

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

등록

<u>학번</u>	<u> 과목번호</u>	성적
S100	C123	Α
S100	C124	В
S200	C123	C
S200	C225	Α
S300	C123	Α
S400	C123	В

학생 ⋈ _{학생.학번 = 등록.학번} 등록

학생.학번	이름	학과	등록.학번	과목번호	성적
S100	김만수	컴퓨터	S100	C123	Α
S100	김만수	컴퓨터	S100	C124	В
S200	남기병	컴퓨터	S200	C123	C
S200	남기병	컴퓨터	S200	C225	Α
S300	장일수	디자인	S300	C123	Α
S400	한병진	교육	S400	C123	В

4 조인(Join, ⋈)

3 조인의 종류

세타조인

비교연산자 {=. <, ≤, ≥, >, ≠} 를 일반화 해서 θ 로 표현한 것

동등조인

θ가 "=" 인 조인을 동등조인(Equi join)이라 함

자연조인

동등조인에서 중복된 애트리뷰트를 제거한 것

외부조인

다른 릴레이션에 대응되는 튜플이 없는 튜플이거나, 널을 갖는 경우에도 조인 결과에 포함

정의

- ☑ 동일조인에서 중복되는 애트리뷰트를 제거한 것
- ☑ 자연조인(Natural join), ⋈ 으로 표시

조인(자연조인)의 수학적 정의

 $R \bowtie_{N(R,z=S,z)} S = \pi_{x \cup y} (\sigma_{z=z} (R \times S))$ $= \pi_{x \cup y} (R \bowtie_{z=z} S)$ z : 조인 애트리뷰트 집합

╱ X∶릴레이션 R의 애트리뷰트 집합

z:조인 애트리뷰트

2 예제 #1

R	Α	В	С
	a1	b1	c1
	a2	b2	c2

S C D c1 d1 c3 d2

RXS

	a1	b1	c1	c1	d1
	a1	b1	c1	c3	d2
	a2	b2	c2	c1	d1
$R \bowtie_{N(R.C=S.C)} S$	a2	b2	c2	c3	d2
N(N.C-3.C)					

동일조인

A	В	С	С	D
a1	b1	c1	c1	d1

중복된 애트리뷰트 제거

Α	В	С	D
a1	b1	c1	d1

2 예제 #2

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

등록

<u>학번</u>	<u> 과목번호</u>	성적
S100	C123	Α
S100	C124	В
S200	C123	C
S200	C225	Α
S300	C123	A
S400	C123	В

학생 ⋈ 학생.학번 = 등록.학번 등록

2 예제 #3

학생

<u>학번</u>	이름	학과코드
S100	김만수	CS
S200	남수민	SW
S300	장일수	BZ
S400	한병진	CS

학과

<u>학과코드</u>	학과명
CS	컴퓨터
BZ	경영
SW	복지

학생 ⋈_{N(학생.학과코드} = 학과.학과코드) 학과

<u>학번</u>	이름	학과코드	학과명
S100	김만수	CS	컴퓨터
S200	남수민	SW	복지
S300	장일수	BZ	경영
S400	한병진	CS	컴퓨터

- 6 외부조인(Outer Join)
- 1 정의
 - ☑ 확장된 조인 연산
 - ☑ 다른 릴레이션에 대응되는 튜플이 없는 튜플이거나,널을 갖는 경우에도 조인 결과에 포함

왼쪽 외부 조인 left outer join 오른쪽 외부 조인 right outer join

완전 외부 조인 full outer join

6 외부조인(Outer Join)

2 왼쪽(오른쪽) 외부조인

☑ 왼쪽(오른쪽)에 있는 릴레이션의 튜플을 결과 릴레이션에 포함하는 외부 조인

R	A	В	C
	a1	b1	c1
	a2	b2	c2

S C D c1 d1 c3 d2

Α	В	С	D
a1	b1	c1	d1
a2	b2	c2	

6 외부조인(Outer Join)

3 완전 외부조인

☑ 양쪽에 있는 릴레이션의 튜플을 결과 릴레이션에 포함하는 외부조인

R A B C a1 b1 c1 a2 b2 c2

 S
 C
 D

 c1
 d1

 c3
 d2

 $R \implies ^+ S$

Α	В	С	D
a1	b1	c1	d1
a2	b2	c2	
		c3	d2

7 디비전(Division, ÷)

- 1 정의
 - \square X \supset Y인 2개의 릴레이션에서 R(X)와 S(Y)가 있을 때,
 - ☑ R의 속성이 S의 속성값을 모두 가진 튜플에서 S가 가진 속성을 제외한 속성만을 구하는 연산
 - 두 릴레이션 R(X), S(Y)에 대해 Y⊆X 이고 X Y = Z 라고 해보자
 - R(X) = R(Z, Y)로 표현할 수 있음
 - 이때, 릴레이션 R(Z,Y)에 대한 S(Y)로의 디비젼(Division, ÷)은

S(Y)의 모든 튜플에 연관되어 있는 R(Z)의 튜플을 선택하라는 것임

7 디비전(Division, ÷)

2 예제

등록

학번	과목번호
S100	C123
S100	C124
S100	C225
S200	C123
S200	C225
S300	C123
S300	C124
S400	C123
S400	C124
S400	C225

과목1 <mark>과목번호</mark> C123

과목2 <mark>과목번호</mark> C123 C124

과목3 <mark>과목번호</mark> C123 C124 C225 등록 ÷ 과목1 등록 ÷ 과목2 등록 ÷ 과목3

학번
S100
S200
S300
S400

학번	
S100	
S300	
S400	

학번 S100 S400

1 정의

- ☑ 관계 대수는 데이터베이스 시스템에 사용자가 원하는 바를 표현하는 공식적인 언어로 표현함
- ☑ 하나의 질의문은 여러 가지 관계 연산자를 사용하여여러 가지 형태로 표현할 수 있음

2 질의문 #1

모든 학생의 이름과 학과를 보여라.

» π _{이름,학과}(학생)

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

이름	학과
김만수	컴퓨터
남수민	컴퓨터
장일수	디자인
한병진	교육

2 질의문 #2

학번이 'S600', 이름이 '김명호', 학과가 '컴퓨터' 인 학생을 삽입하라. 학생 U {<'S600', '김명호', '컴퓨터'>}

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육
S600	김명호	컴퓨터

질의문 #3

과목 "데이터베이스"를 삭제하라.

과목 - σ_{과목이름='데이터베이스'} (과목)

과목

	과목번호	과목이름	학점	학과	담당교수
-	IT312	데이터베이스	3	컴퓨터	나홍석
	MD218	웹디자인	3	디자인	이창수
	IT261	자료구조	3	컴퓨터	나홍석
	PA103	정보보호이론	3	보안	박대하
	IT123	컴퓨터네트워크	3	컴퓨터	위성홍

2 질의문 #4

과목번호가 'C123'인 과목에 등록한 학생의 이름과 성적은 무엇인가?

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

등록

<u>학번</u>	<u>과목번호</u>	성적
S100	C123	Α
S100	C124	В
S200	C123	С
S200	C225	Α
S300	C123	Α
S400	C123	В

2 질의문 #4

과목번호가 C123인 과목에 등록한 학생의 이름과 성적은 무엇인가 π _{이름,성적}(σ_{과목번호='C123'} (학생 N 등록))

학생 ⋈ _{학생.학번 = 등록.학번} 등록

학생.학번	이름	학과	등록.학번	과목번호	성적
S100	김만수	컴퓨터	S100	C123	Α
S100	김만수	컴퓨터	S100	C124	В
S200	남기병	컴퓨터	S200	C123	С
S200	남기병	컴퓨터	S200	C225	Α
S300	장일수	디자인	S300	C123	Α
S400	한병진	교육	S400	C123	В

σ_{과목번호='C123'}(학생⋈_N등록)

학생.학번	이름	학과	과목번호	성적
S100	김만수	컴퓨터	C123	Α
S200	남기병	컴퓨터	C123	С
S300	장일수	디자인	C123	Α
S400	한병진	교육	C123	В

Chapter 03 관계해석

1 정의

- ☑ 관계해석(Relational Calculus)
- ☑ 관계 데이터베이스 관리에서 관계를 조작하기 위한 비절차적인 방법의 하나
- ☑ 결과를 얻기 위해 절차를 기술하는 것이 아니라 원하는 정보가 무엇이라는 것만 선언해주면 결과를 얻을 수 있음

무엇인지만(what)을 명시하고 질의를 어떻게 수행할 것인가는 명시하지 않는 것을 의미

2 종류

☑ 튜플 관계 해석과 도메인 관계 해석이 있음

튜플 관계 해석

- 여러 튜플 변수에 기초
- 각 튜플 변수는 주로 특정 릴레이션의 값(튜플)을 범위로 갖음
- QUEL(QUEry Language)

도메인 관계 해석

- 여러 도메인 변수에 기초
- 각 도메인 변수들은 릴레이션 대신 도메인 상에서 정의됨
- QBE(Query By Example)

3 튜플 관계 해석 #1

☑ 원하는 릴레이션을 튜플 해석식(tuple calculus expression)으로 정의

튜플 관계 해석 #2

예제

- '주문' 릴레이션에서 고객번호가 200인 고객이 주문한 주문수량과 주문액수를 검색
- 관계해석식 → {a.주문수량, a.주문액수 | a(주문) ^ a.고객번호=200}

주문

주문번호	고객번호	제품번호	주문수량	주문액수
p-210	200	y-20	10	2,000,000
p-340	300	y-40	10	200,000
p-230	300	y-30	5	1,500,000
p-394	100	y-50	2	20,000
p-400	500	y-40	40	8,000,000

주문수량	주문액수
10	2,000,000

4 도메인 관계 해석 #1

☑ 원하는 릴레이션을 도메인 해석식(domain calculus expression)으로 정의

대표적인 언어 - QBE(Query By Example)

 $\{x_1, x_2, ..., x_n \mid F(x_1, ..., x_n, x_{n+1}, ..., x_n + m)\}$

4 도메인 관계 해석 #2

예제

- 이름이 "김만수"인 학생의 학번과 학과를 검색하라.
- 관계해석식 → {학번, 학과 | 학생(학번, '김만수', 학과)}

학생

<u>학번</u>	이름	학과
S100	김만수	컴퓨터
S200	남수민	컴퓨터
S300	장일수	디자인
S400	한병진	교육

<u>학번</u>	이름	학과
S100	김만수	컴퓨터

학습 정리

🜏 관계대수

- 릴레이션을 처리하기 위한 연산의 집합
- 일반집합연산
 - → 합집합, 교집합, 차집합, 곱집합
- 순수관계연산
 - → 실렉트, 프로젝트, 조인, 디비전

학습 정리

☑ 조인(Join)

- 조인 연산은 두 릴레이션으로부터 관련된 튜플들을 결합하여 하나의 튜플로 만듦
- 세타조인

비교연산자 {=. <, ≤, ≥, >, ≠} 를 일반화 해서 θ 로 표현한 것

- 동등조인
 - θ 가 "=" 인 조인을 동등조인(Equi join)이라 함
- 자연조인 동등조인에서 중복된 애트리뷰트를 제거한 것
- 외부조인

다른 릴레이션에 대응되는 튜플이 없는 튜플이거나, 널을 갖는 경우에도 조인 결과에 포함

학습 정리

관계해석

■ 릴레이션을 조작하기 위한 비절차적인 방법

튜플 관계 해석

- 여러 튜플 변수에 기초
- 각 튜플 변수는 주로 특정 릴레이션의 값(튜플)을 범위로 갖음
- QUEL(QUEry Language)

도메인 관계 해석

- 여러 도메인 변수에 기초
- 각 도메인 변수들은 릴레이션 대신 도메인 상에서 정의됨
- QBE(Query By Example)

무허

네 데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월

www.wikipedia.org

❷사용서체: 나눔글꼴(네이버)

