Modelos de Propagación electromagnética Propagación en entorno urbano

Alexandre Wagemakers y Borja Ibarz

29 de octubre de 2007

Propagación en entorno urbano

Plan de la clase:

- Modelos determinísticos simples.
- Clasificación de los entornos urbanos
- Modelos empíricos de propagación.
- Modelos para sistemas microcelulares.
- Modelos de propagación en edificios.

Clasificación de entornos urbanos

Los problemas de propagación dependen fuertemente del entorno. En general se clasifica el entorno en cuatro clases:

- Zona rural.
- ► Sub-urbano.
- Urbano
- Urbano denso

Se pueden desarrollar modelos especificos para cada tipo de entorno. Si embargo existen clasificaciones mas objetivas donde intervienen:

- La densidad de superficie de los edificios.
- El volumen medio de los edificios.
- Altura media.
- **...**

Referencias:

Kozono, S.; Watanabe, K., "Influence of Environmental Buildings on UHF Land Mobile Radio Propagation," Communications, IEEE Transactions on, vol.25, no.10, pp. 1133-1143, 1977

Clasificación de entornos urbanos

Definiciones sacadas de la norma ITU-R P1411-3.

Entornos de funcionamiento físico - Degradaciones de la propagación

Entorno	Descripción y degradaciones de la propagación significativas
Urbano de construcció	 Valle urbano, caracterizado por avenidas con edificios altos de varios pisos
n alta	 La altura de los edificios reduce la probabilidad de una contribución significativa de la propagación que pasa por encima de los tejados
	 Las hileras de edificios altos hacen posible la existencia de largos retardos de trayecto
	– El gran número de vehículos en movimiento en la zona actúa como reflector, lo que añade una deriva Doppler a las ondas reflejadas
Urbano/sub	- Típicamente amplias avenidas
urbano de	- Las alturas de los edificios suelen ser inferiores a tres pisos, lo que
construcció	hace probable la difracción por los tejados
n baja	 Pueden producirse en ocasiones reflexiones y ensombrecimientos producidos por los vehículos en movimiento
	 Los efectos principales son: retardos grandes y pequeñas derivas Doppler
Zona	- Construcciones de uno y dos pisos
residencial	 Las calles suelen ser de doble dirección con vehículos estacionados a ambos lados
	- Es posible que haya vegetación densa a ligera
	- Tráfico motorizado generalmente ligero
Rural	- Pequeñas casas rodeadas de amplios jardines
	- Influencia de la altura del terreno (topografía)
	- Posibilidad de vegetación densa a ligera
	- Tráfico motorizado ocasionalmente elevado

Clasificación de entornos urbanos

Definición de tipos de célula

Tipo de célula	Radio de la célula	Posición típica de la antena de la estación de base
Pequeña macrocélula	0,5 a 3 km	Exteriores; montada por encima del nivel medio de los tejados; las alturas de algunos edificios circundantes pueden ser superiores a la de la antena de la estación de base
Microcélula	100 a 500 m	Exteriores; montada por debajo del nivel medio de los tejados
Picocélula	Hasta 100 m	Interiores o exteriores (montada por debajo del nivel máximo de los tejados)

Clasificación de los modelos de propagación

Modelos Empirico	Modelos Semi-empiricos	Modelos deterministas
Mod. Hata Mod. Okamura Mod. en leyes de potencia	Mod. Egli Mod. Walfisch Mod. Ikegami	Mod. Friis Difracción por objetos delgados Mod. dos rayos
	Mod Longlay Dica	

El modelo de dos rayos

El modelo de dos rayos es uno de los mas sencillos que toma en cuenta las reflexiones del suelo. Se recibe la onda del suelo con un desfase Φ y un coeficiente de reflexion R.

Las perdidas son la suma del rayo directo y de una reflección directa:

$$E_r(d) = E_{LOS} + E_R = \frac{E_0}{d'} e^{j\omega_c(t-c/d')} + R \frac{E_0}{d''} e^{j\omega_c(t-c/d'')}$$
 (1)

El modelo de dos rayos

Suponemos que la refleccion es total y que se invierte la fase de la componente del campo: R=-1.

$$E_r = \frac{E_0}{d'} e^{j\omega_c(t - c/d')} - \frac{E_0}{d''} e^{j\omega_c(t - c/d'')}$$
 (2)

La diferencia de camino se expresa como:

$$\delta = d'' - d' = \sqrt{(h_t + h_r)^2 + d^2} - \sqrt{(h_t - h_r)^2 + d^2} \simeq \frac{2h_t h_r}{d}$$
 (3)

La diferencia de fase puede expresarse como

$$\theta_{\delta} = \frac{2\pi\delta}{\lambda} \tag{4}$$

El modelo de dos rayos

Para distancias grandes se puede hacer una serie de aproximaciones:

$$|E_r| = \frac{E_0}{d} \sqrt{2 - 2\cos\theta_{\delta}} = \frac{2E_0}{d} \sin(\theta_{\delta}/2)$$
 (5)

Para angulos pequeños: $\theta_\delta \simeq \frac{2\pi 2h_th_r}{\lambda d}$ y $\sin\theta \simeq \theta$, llegamos a la expresion:

$$|E_{TOT}| = \frac{2E_0}{d} \frac{2\pi h_t h_r}{\lambda d} \text{ V/m}$$
 (6)

El modelo del canyon

Se puede obtener un modelo simplificado de propagacion en un canyon de simbolizado por dos un receptor entre dos edificios altos.

Modelos empiricos y semi-empiricos

Se han construidos modelos empiricos de perdidas en entornos variados a partir de medidas realizadas *in situ*. Estos modelos reflejan la realidad y pueden dar una idea del peor caso, es decir una cuato superior razonable para las perdidas.

En la figura se presenta un ejemplo de como se ajustan medidas experimentales a un modelo a trozos.

Modelos en ley de potencia

Los modelos en ley de potencia se basan en la observación que las perdidas en media pueden expresarse en función de un exponente:

$$L\alpha \left(\frac{d}{d_0}\right)^n \tag{7}$$

donde el exponente n depende del entorno:

Entorno	Exponente	
Espacio libre	2	
Urbano	2.7 hasta 3.5	
Urbano con sombra	3 hasta 5	
En un edificio LOS	1.6 hasta 1.8	
En un edificio NLOS	4 hasta 6	

Modelo de Okamura

Aplicación: 150Mhz hasta 1920Mhz y de 1km hasta 20km. Es uno de los modelos de predicción mas usados. Su expresión es:

$$L_{50} = L_F + A_{mu}(f, d) - G(h_r) - G(h_t) - G_{AREA}$$
 (8)

Con los siguientes elementos:

- L_F son las perdidas en espacio libre.
- ► A_{mu} las predidas adicionales en media.
- ▶ *G* es un termino de corrección para la altura de la antena.
- ► *G*_{AREA} es un termino depediente del entorno.

Modelo de Hata

Esta basado en el modelo de Okamura y por tanto tiene una expresión similar:

$$L_{50}(urban) = 69,55 + 26,16 \log f_c - 13,82 \log h_t \dots \dots - a(h_r) + (44,9 - 6,55 \log h_r) \log d$$
(9)

Con las siguientes formulas adicionales. Para una ciudad media:

$$a(h_r) = (1.1\log f_c - 0.7)h_r - (1.56\log f_c - 0.8)$$
 (10)

Para una ciudad grande:

$$a(h_r) = 8.29(\log 1.54h_r)^2 - 1.1dB f_c \le 300MHz$$

$$a(h_r) = 3.2(\log 11.75h_r)^2 - 4.97dB f_c > 300MHz$$
(11)

 f_c esta en MHz, d en km y las alturas h_r y h_e en m.

Una comparación de 3 modelos

Modelo Walfisch-Bertoni

Walfisch y Bertoni se interesaron al efecto de la altura de los edificios. Propusieron un modelo teorico tomando en cuenta la altura de estos.

En este modelo se desprecia:

- Camino 3: Los rayos que penetran son demasiado atenuados.
- ► Camino 4: Las multiples difracción son despreciables.

Modelo Walfisch-Bertoni

Proponen un calculo teniendo en cuenta los edificios para angulos α pequeños. Integrando las ecuaciones de Huygens-Kirchhoff para una serie de pantallas finas.

Sumando las contribuciones de las difracciones para las pantallas en la primera zona de Fresnel se obtiene un modelo para el campo al nivel del tejado:

$$Q(\alpha) \simeq 0.1 \left(\frac{\alpha \sqrt{d/\lambda}}{0.03}\right)^{0.9} \tag{12}$$

Modelo Walfisch-Bertoni

Al final incluyendo las perdidas para que la señal llegue al suelo y otros factores llegan a un nivel de perdidas suplementarias (frente al espacio libre):

$$L_{\text{ex}} = 57.1 + A + \log f_c + 18\log R_k - 18\log H - 18\log \left(1 - \frac{R_k^2}{17H}\right)$$
 (13)

con R_k la distancia en km y $H=h_t-h$. El ultimo termino depende del radio de la tierra y se puede despreciar. Por otra parte el factor A es:

$$A = 5\log\left[\left(\frac{d}{2}\right)^{2} + (h - h_{r})^{2}\right] - 9\log d + 20\log[\tan^{-1}[2(h - h_{r})/d]]$$
(14)

Con d es la distancia media entre dos edificios.

Modelo de Ikegami

El modelo de lkegami es anterior al modelo de Walfisch. Es también un modelo empirico pero con basado en la teoria de geometrica de rayos.

Modelo de Ikegami

En el modelo de Ikegami solo toman en cuenta las dos contribuciones del primer rayo difractado 1 y el secundo rayo 2

Modelo de Ikegami

Las perdidas se calculan como:

$$L = -5.8 - 20 \log \left(1 + \frac{3}{L_r^2}\right) - 10 \log W \dots \dots + 20 \log(H - h_r) + 10 \log(\sin \Phi) + 10 \log f$$
 (15)

con Φ el angulo de calle, L_r son las perdidas por reflección, y W la anchura de la calle

El modelo del cost 231 se apoya en los dos modelos anteriores para predecir las perdidas.

Se traduce en la suma de las perdidas por espacio libre Lb con las perdidas de los modelos de Ikegami y un modelo extendido de Walfisch-Bertoni. Tenemos para el LOS:

$$L_b = 42.6 + 26\log d + 20\log f \tag{16}$$

Las perdidas totales se computan para el caso NLOS:

$$L_{COST} = L_{free} + \begin{cases} L_{rts} + L_{msd} & \text{si } L_{rts} + L_{msd} > 0 \\ 0 & \text{si } L_{rts} + L_{msd} < 0 \end{cases}$$
(17)

con L_{rts} son las perdidas del modelo de Ikegami (Roof to Street) y en el otro caso las perdidas del modelo de Walfisch (multiple screen diffraction).

Formulación del cost de las perdidas en el modelo de Ikegami.

$$L_{rts} = -16.9 - 10 \log W + 20 \log (H - h_r) + 10 \log f + L_{ori}$$
 (18)

$$L_{ori} = \begin{cases} -10 + 0.354\phi & 0 \le \phi < 35\\ 2.5 + 0.075(\phi - 35) & 35 \le \phi < 55\\ 4.0 - 0.114(\phi - 55) & 55 \le \phi < 90 \end{cases}$$
 (19)

Para las perdidas de difracción el comité del COST a incluido correcciones al modelo de Walfisch así como mejoras.

$$L_{mds} = L_{bsh} + k_a + k_d \log d + k_f \log f - 9 \log b$$
 (20)

$$L_{bsh} = \begin{cases} -18 \log(1 + (h_t - h)) & h_t > h \text{ antena por encima del tejado} \\ 0 & h_t < h \end{cases}$$
(21)

$$k_{a} = \begin{cases} 54 & h_{t} > h \\ 54 - 0.8(h_{t} - h) & h_{t} \leq h \text{ y } d > 0.5km \\ 54 - 0.8(h_{t} - h)\frac{d}{0.5} & h_{t} \leq h \text{ y } d < 0.5km \end{cases}$$
(22)

$$k_d = \begin{cases} 18 & h_t > h \\ 18 - 15(h_t - h)/h & h_t \le h \end{cases}$$
 (23)

$$k_f = -4 + \begin{cases} 0.7(\frac{f}{925} - 1) & \text{entorno suburbano} \\ 1.5(\frac{f}{925} - 1) & \text{centro urbano} \end{cases}$$
 (24)

 k_a representa las perdidas debidas a la altura de la antena emisora. k_d y k_f son terminos de corrección relativos a la difracción.

Recomendacion ITU-R 1411-3

La recomendacion de la ITU-R recoge todas los aspectos anteriores para la estimacion de las perdidas. Se basa en varios modelos segun el tipo de escenario (con vista directa, con difraccion ect). Tambien recoge modelos de dispersión multitrayecto y valores típicos de dispersión.

Propagación en microcelulas

Existe un modelo basado en el modelo de dos rayos que proporciona una estimación con leyes lineales a trozos:

$$L(d) = \begin{cases} 10n_1logd + P_1 & 1 < d < d_{brk} \\ 10(n_1 - n_2)logd_{brk} + 10n_2logd + P_1 & d > d_{brk} \end{cases}$$
(25)

 n_1 y n_2 se calculan a partir de medidas empiricas. El parametro d_{brk} es el punto de ruptura de Fresnel, corresponde a la distancia de la primera zona de Fresnel. También se obtiene d_{brk} gracias a un ajuste de las curvas con los minimización del error cuadratico. P_1 son las perdidas a 1 m para la frecuencia dada en el espacio libre. Los exponentes n_1 y n_2 así como d_{brk} :

Ajuste Fresnel			Ajust	e minin	nos cua	drados	
n_1	n_2	σ	d_f	n_1	n_2	σ	d_b
2.18	3.29	8.76	159	2.20	9.36	8.64	884

Dentro de los edificios se suman nuevas perdidas debidos a las paredes, los suelos, las difracciones y dispersiones varias. En 1992, Rappaport *et. al.* propusieron un modelo empirico basado en medidas:

$$L(d) = L_f(d_0) + 10 \operatorname{nlog} d/d_0 + X_{\sigma}$$
 (26)

con n un exponente depediendo del entorno y d_0 una distancia de referencia (generalmente 1m). X_σ es un proceso aleatorio siguiendo una ley log-normal y de desvacion σ depediente del entorno.

TABLE I
THE PARAMETERS MEAN PATH LOSS EXPONENT *n* AND STANDARD
DEVIATION *o* FOR USE IN THE DISTANCE-DEPENDENT
PATH LOSS MODEL IN (2) BASED ON MEASUREMENTS AT A
CARRIER FREQUENCY OF 914 MHz

	n	$\sigma(dB)$	Number of Locations
All Buildings:			
All Locations	3.14	16.3	634
Same Floor	2.76	12.9	501
Through 1 Floor	4.19	5.1	73
Through 2 Floors	5.04	6.5	30
Through 3 Floors	5.22	6.7	30
Grocery Store	1.81	5.2	89
Retail Store	2.18	8.7	137
Office Building 1:			
Entire Building	3.54	12.8	320
Same Floor	3.27	11.2	238
West Wing 5th Floor	2.68	8.1	104
Central Wing 5th	4.01	4.3	118
West Wing 4th Floor	3.18	4.4	120
Office Building 2:			
Entire Building	4.33	13.3	100
Same Floor	3.25	5.2	37

Mejora del modelo incluyendo las perdidas de las paredes y suelos:

$$L(d) = L_f(d_0) + 10 n log d/d_0 + \sum_{q=1}^{Q} FAF(q) + \sum_{p=1}^{P} WAF(p) + X_{\sigma}$$
 (27)

FAF: Floor attenuation WAF: Wall attenuation

TABLE II

AVERAGE FLOOR ATTENUATION FACTOR IN DECIBELS FOR ONE,
Two, Three, and Four Floors Between the Transmitter
and Receiver in the Two Office Buildings; Also
Presented are the Standard Deviation in Decibels
and the Number of Locations Used to Compute
the Statistics

	FAF (dB)	$\sigma(dB)$	Number of Locations
Office Building 1:			
Through 1 floor	12.9	7.0	52
Through 2 floors	18.7	2.8	9
Through 3 floors	24.4	1.7	9
Through 4 floors	27.0	1.5	9
Office Building 2:			
Through 1 floor	16.2	2.9	21
Through 2 floors	27.5	5.4	21
Through 3 floors	31.6	7.2	21

Seidel, S.Y.; Rappaport, T.S., 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings, Antennas and Propagation, IEEE Transactions on , vol.40, no.2, pp.207-217, Feb:1992

Propagación en edificios: modelo de la ITU

El modelo de la ITU-R para propagación en edificios se define como:

$$L_{total} = 20 \log f + 10 N \log d + L_f(n) - 28$$
 (28)

N: coeficiente de perdida de potencia. L_f : perdida de penetración en el suelo. n: número de pisos.

Propagación en edificios ITU-R P1238

CUADRO 2

Coeficientes de pérdida de potencia, N, para el cálculo de la pérdida de transmisión en interiores

Frecuencia	Edificio residencial	Edificio de oficinas	Edificio comercial
900 MHz	-	33	20
1,2-1,3 GHz	-	32	22
1,8-2 GHz	28	30	22
4 GHz	-	28	22
5,2 GHz	=	31	=
60 GHz ⁽¹⁾	=	22	17
70 GHz ⁽¹⁾	-	22	-

Propagación en edificios ITU-R P1238

Factores de pérdida de penetración en el suelo, L_f (dB), siendo n el número de pisos penetrados, para el cálculo de la pérdida de transmisión en interiores $(n \ge 1)$

Frecuencia	Edificio residencial	Edificio de oficinas	Edificio comercial
900 MHz	_	9 (1 piso) 19 (2 pisos) 24 (3 pisos)	_
1,8-2 GHz	4 n	15 + 4 (n - 1)	6 + 3 (n - 1)
5,2 GHz	-	16 (1 piso)	-

Bibliografia

- J.D. Parson, the Mobile Radio Channel, Wiley, 2000
- T. Rappaport, Wireless Communication, Prentice Hall, 1996
- Ikegami, F.; Yoshida, S.; Takeuchi, T.; Umehira, M., Propagation factors controlling mean field strength on urban streets, Antennas and Propagation, IEEE Transactions on, vol.32, 8, 822-829, 1984
- Sarkar, T.K.; Zhong Ji; Kyungjung Kim; Medouri, A.; Salazar-Palma, M., A survey of various propagation models for mobile communication, Antennas and Propagation Magazine, IEEE, vol.45, 3, 51-82, 2003
- Walfisch, J.; Bertoni, H.L., A theoretical model of UHF propagation in urban environments, Antennas and Propagation, IEEE Transactions on , vol.36, 12, 1788-1796, Dec 1988
- Kozono, S.; Watanabe, K., "Influence of Environmental Buildings on UHF Land Mobile Radio Propagation," Communications, IEEE Transactions on, vol.25, 10, 1133-1143, 1977
- Seidel, S.Y.; Rappaport, T.S., 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings, Antennas and Propagation, IEEE Transactions on, vol.40, 2, 207-217, 1992
- Rappaport, T.S.; Sandhu, S., Radio-wave propagation for emerging wireless personal-communication systems, Antennas and Propagation Magazine, IEEE , vol.36, 5, 14-24, 1994
- Dudley, D.G.; Lienard, M.; Mahmoud, S.F.; Degauque, P., "Wireless propagation in tunnels, Antennas and Propagation Magazine, IEEE , vol.49, 2, 11-26, 2007
- Molisch, A. F.; Cassioli, D.; Chong, C.-C.; Emami, S.; Fort, A.; Kannan, B.; Karedal, J.; Kunisch, J.; Schantz, H. G.; Siwiak, K.; Win, M. Z., .A Comprehensive Standardized Model for Ultrawideband Propagation Channels, Antennas and Propagation, IEEE Transactions on , vol.54, 11, 3151-3166, 2006
- Xia, H.H., .A simplified analytical model for predicting path loss in urban and suburban environments," Vehicular Technology, IEEE Transactions on , vol.46, 4, 1040-1046, 1997
- COST 231 group final repport: D.J. Cichon, T. Kürner, Capitulo 4 Propagation Prediction Models.
- Recomendación UIT-R: P1411 Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 Ghz
- Recomendación UIT-R: P1238 Datos de propagación y métodos de predicción para la planificación de sistemas de radiocomunicaciones en interiores y redes de radiocomunicaciones de área local en la gama de frecuencias de 900 MHz a 100 GHz

