Al for wearable ECG prototype (ResNet + SE model) Tech 07 class project

Related to a virtual poster presentation at SciPy 2025 https://www.scipy2025.scipy.org/

Jennifer E Yoon: mail@JenniferYoon.com

github: https://github.com/JennEYoon/ECG-transform

Areteus ECG prototype (Areteus.us.com)

ECG 12-signal device, on t-shirt

Electrodes placement diagram Source: ECGpedia.org

Sample ECG plot

New ECG 12-signal datasets for AI (to do)

ECG datasets for 50 years (<2017)

MIT-BIH

PTB original

New 12-signal datasets (2018-2021)

- Large patient numbers
- High Quality 12-signal (latest hospital ECG machines)
- Multiple hospitals, multiple countries
- Efforts to standardize diagnostic class labels
- Developed with recent deep learning models in mind (ResNet, SENetworks, Transformers, RNN)

Data Processing (to do)

From new, large 12-signal datasets (2018-2021 collections) PTB-XL dataset was selected with about 22,000 patients, 10 second recording length. From this, 1,000 patients were selected for a test run.

ECG signals data processing

- Peak center, split into 1.5 sec. windows, zero pad left & right.
- Baseline meander fix to zero
- Filters not applied:
 - Peak to peak distance standardizing
 - Peak amplitude standardizing
 - Removing negative values (squaring)
 - random split, overlapping split
 - much longer time windows
 - no relationship, feed each one of 12 signals independently

Image, peak centering, zero padding

ResNet (Residual Network) + SE (Squeeze and Excite)

draw sheets, signals, 12channels

Results: What I hope to show (to do)

ResNet+ SE, PTB-XL 12-signal data:

Accuracy, F1 score
Binary classification
4-6 class classification
24 class classification
Comparison of PTB-XL with SPH data

CNN, Random Forest, old MIT-BIH, PTB data:

Accuracy, F1 score: earlier models

- * MIT-BIH (2-signals, small sample)
- * PTB original (12-signals, small sample)

Areteus device inference:

- proof of concept, using one person, healthy heart data, 30 recordings taken over 2 days.

Translate binary/hex into usable numpy format

Future Steps:

Areteus device – need to gather many more patient data, and from large number of abnormal diagnostic classes.

Areteus device - testing for accuracy when user moves, when user did not attach all 12-nodes at right locations.

Areteus device – how to adapt the device to body sizes. Initially medium t-shirt size is available, but small and extra-large sizes planned. Will need to test device accuracy on users with varying body sizes.

Transformer + RNN model, also a good candidate. 2-stage training, makes full use of 12-signal dataset. Future work

Al for wearable ECG prototype (ResNet + SE model) Tech 07 class project

Jennifer E Yoon mail@JenniferYoon.com

https://github.com/JennEYoon/ECG-transform/tree/main/Tech07project

Deep Residual Networks, c. 2015: https://arxiv.org/abs/1512.03385

Yannic Kilcher: https://www.youtube.com/watch?v=GWt6Fu05vol

Squeeze-and-Excitation (SE) Networks, c. 2017: https://arxiv.org/abs/1709.01507 Soroush Mehraban: https://youtu.be/3b7kMvrPZX8?si=g0JY09P5dIPMXwRj