

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Инс	Информатика и системы управления (ИУ)								
КАФЕДРА	Систе	Система обработки информации и управления								
ДИСЦИПЛ	ІИНА	Методы машинного обучения								
		U								
	ОТЧЕТ ПО ЛАЕ	ОРАТОРНОЙ РАІ	5OTE № 1							
		ии о данных" (Data St	orytelling)							
	назван	ие лабораторной работы								
Группа	<u>ИУ5-14М</u>									
Студент	14.03.2022		Молева А. А.							
Студент	дата выполнения рабог	<u>пы</u> подпись	фамилия, и.о.							
	ound contonicinal pacer	noonwoo	<i>φωπουσου, σ.σ.</i>							
Преподава	гель		Гапанюк Ю. Е.							
-		подпись	фамилия, и.о.							

Цель работы

Цель лабораторной работы: изучение различных методов визуализация данных и создание истории на основе данных.

Краткое описание. Построение графиков, помогающих понять структуру данных, и их интерпретация.

Залание

- Выбрать набор данных (датасет).
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
 - о История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
 - На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
 - Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
 - о Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
 - История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
 - Сформировать отчет и разместить его в своем репозитории на github.

Текст программы

```
dataset = load boston()
import pandas as pd
X = pd.DataFrame(dataset['data'], columns=dataset['feature names'])
y = pd.Series(dataset['target'], name='target')
from sklearn.datasets import fetch california housing
dataset = fetch california housing(return X y=True, as frame=True)
X, y = dataset
X.info()
X.describe()
import pandas as pd
housing = pd.concat([X, y], axis=1)
from matplotlib import pyplot as plt
#skatter
housing.plot(kind='scatter', x='Longitude', y='Latitude', alpha=0.4, s=X.Popu
lation/100, label='population', figsize=(10,7), c=housing.MedHouseVal,
             cmap=plt.get cmap("jet"), colorbar=True)
plt.legend()
#парные диаграммы
import seaborn as sns
sns.pairplot(housing)
# Violin plot
fig, ax = plt.subplots(9, 1, figsize=(10, 35))
for idx, column in enumerate(housing.columns):
    sns.violinplot(x=housing[column], ax=ax[idx])
# Histograms
fig, ax = plt.subplots(9, 1, figsize=(10, 35))
for idx, column in enumerate(housing.columns):
    sns.distplot(x=housing[column], ax=ax[idx], axlabel=column)
# Boxplot
fig, ax = plt.subplots(9, 1, figsize=(10, 35))
for idx, column in enumerate (housing.columns):
    sns.boxplot(y=housing[column], ax=ax[idx])
housing.corr()
# Вывод значений в ячейках
plt.figure(figsize=(10,10))
sns.heatmap(housing.corr(), annot=True, fmt='.3f')
```

Экранные формы

0	X													
0		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
	501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
	502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
	503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
	504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
	505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

506 rows x 13 columns

Рисунок 1 – Датасет

Рисунок 2 – Диаграмма рассеяния

Рисунок 3 – Парные диаграммы

Рисунок 4 – Скрипичная диаграмма

Рисунок 6 – Боксплот

Рисунок 7 – Тепловая карта

Выводы

В результате проделанной работы была создана история о данных со следующими диаграммами: диаграмма расеяния, парные диаграммы, скрипичные диаграммы, гистограммы, боксплоты, тепловая карта.