☐ Typically, the RAW device consists of the actual device under test (DUT) and some interconnecting structures such as feed lines and pads for on-wafer testing.

Examples of RAW devices and DUTs for on-wafer characterization: **RAW Inductor Inductor DUT RAW MOM Capacitor Capacitor DUT**

RAW CPW T-line

CPW DUT

Introduction Even- and Odd-Mode Excitations(1)

- ☐ Symmetrical four-port networks are of particular interest since they allow for analysis in terms of evenand odd-mode excitation.
- Due to symmetry and the reciprocal nature of the network we may state that $S_{ij} = S_{ij}$, where $i, j = 1 \cdots 4$ and $S_{11} = S_{33}$, $S_{22} = S_{44}$, $S_{34} = S_{12}$, and $S_{23} = S_{14}$, which results in a compact S-parameter matrix representation.

Even Mode

The symmetry plane x - x'corresponds now to an open-circuit (OC). Let V_{1+} = $V_{3\pm} = V_{1e\pm}$ and $V_{2\pm} = V_{4\pm} = V_{2e\pm}$ be the even-mode signals to considered the be analysis.

$$\begin{bmatrix} V_{1e} - \\ V_{2e} - \\ V_{3e} - \\ V_{4e} - \end{bmatrix} = \begin{bmatrix} [S_A] & [S_B] \\ [S_B] & [S_A] \end{bmatrix} \times \begin{bmatrix} V_{1e} + \\ V_{2e} + \\ V_{3e} + \\ V_{4e} + \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{V_{1e}} - \\ \mathbf{V_{2e}} - \end{bmatrix} = ([\mathbf{S_A}] + [\mathbf{S_B}]) \times \begin{bmatrix} \mathbf{V_{1e}} + \\ \mathbf{V_{2e}} + \end{bmatrix}$$

Even-mode excitation for symmetric fourport network.

$$\begin{bmatrix} \mathbf{V_{1e}} - \\ \mathbf{V_{2e}} - \end{bmatrix} = [\mathbf{S_e}] \times \begin{bmatrix} \mathbf{V_{1e}} + \\ \mathbf{V_{2e}} + \end{bmatrix}$$
$$[\mathbf{S_e}] = [\mathbf{S_A}] + [\mathbf{S_B}]$$
$$[\mathbf{S_A}] = \frac{[\mathbf{S_e}] + [\mathbf{S_o}]}{2}$$
$$[\mathbf{S_B}] = \frac{[\mathbf{S_e}] - [\mathbf{S_o}]}{2}$$

Odd Mode

❖ The corresponding oddmode excitation scheme with $V_{1+} = -V_{3+} = V_{10+}$ and $V_{2+} = -V_{4\pm} = V_{2o\pm}$ and its short-circuit (SC) symmetry plane x -x'.

$$\begin{bmatrix} \mathbf{V_{1o}} - \\ \mathbf{V_{2o}} - \\ -\mathbf{V_{2o}} - \\ -\mathbf{V_{2o}} - \\ -\mathbf{V_{2o}} - \end{bmatrix} = \begin{bmatrix} [\mathbf{S_A}] & [\mathbf{S_B}] \\ [\mathbf{S_B}] & [\mathbf{S_A}] \end{bmatrix} \times \begin{bmatrix} \mathbf{V_{1o}} + \\ \mathbf{V_{2o}} + \\ -\mathbf{V_{3o}} + \\ -\mathbf{V_{4o}} + \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{V_{1o}} - \\ \mathbf{V_{2o}} - \end{bmatrix} = [\mathbf{S_o}] \times \begin{bmatrix} \mathbf{V_{1o}} + \\ \mathbf{V_{2o}} + \\ -\mathbf{V_{4o}} + \end{bmatrix}$$

$$[\mathbf{S_o}] = [\mathbf{S_A}] - [\mathbf{S_B}]$$

$$\begin{bmatrix} \mathbf{V_{1o}} - \\ \mathbf{V_{2o}} - \end{bmatrix} = ([\mathbf{S_A}] - [\mathbf{S_B}]) \times \begin{bmatrix} \mathbf{V_{1o}} + \\ \mathbf{V_{2o}} + \end{bmatrix}$$

Odd-mode excitation for symmetric four-port network.

$$\begin{bmatrix} \mathbf{V_{1o}} - \\ \mathbf{V_{2o}} - \end{bmatrix} = [\mathbf{S_o}] \times \begin{bmatrix} \mathbf{V_{1o}} + \\ \mathbf{V_{2o}} + \end{bmatrix}$$
$$[\mathbf{S_o}] = [\mathbf{S_A}] - [\mathbf{S_B}]$$
$$[\mathbf{S_A}] = \frac{[\mathbf{S_e}] + [\mathbf{S_o}]}{2}$$
$$[\mathbf{S_B}] = \frac{[\mathbf{S_e}] - [\mathbf{S_o}]}{2}$$

Ref: Errikos Lourandakis, On-Wafer Microwave Measurements and De-Embedding, 2016

Introduction Even- and Odd-Mode Excitations(3)

$$S_{o} = \begin{bmatrix} S_{110} & S_{120} \\ S_{210} & S_{220} \\ S_{e} + S_{o} & S_{220} \\ S_{e} + S_{o} & S_{e} + S_{o} \\ \end{bmatrix} \qquad S_{12} = S_{21} = S_{34} = S_{43} = S_{44} = S_{44}$$

$$\mathbf{S}_{\mathbf{B}} = \begin{bmatrix} \frac{\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{o}}}{2} & \frac{\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{o}}}{2} \\ \frac{\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{o}}}{2} & \frac{\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{o}}}{2} \end{bmatrix}$$

$$S = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \Big| \qquad S_{24} = S_{42} = \frac{S_{22e} - S_{22o}}{2}$$

$$S_{11} = S_{33} = \frac{S_{11e} + S_{11o}}{2}$$

$$S_{12} = S_{21} = S_{34} = S_{43} = \frac{S_{21e} + S_{21o}}{2}$$

$$S_{13} = S_{31} = \frac{S_{11e} - S_{11e}}{2}$$

$$S_{14} = S_{41} = S_{32} = S_{23} = \frac{S_{21e} - S_{21o}}{2}$$

$$S_{22} = S_{44} = \frac{S_{22e} + S_{22o}}{2}$$

$$S_{24} = S_{42} = \frac{S_{22e} - S_{22o}}{2}$$

☐ At this point we have reconstructed the complete four-port S-parameter network matrix by performing an even- and odd-mode analysis and exploring the network symmetry.

This technique is not universally applicable to a generic four-port network since it assumes the aforementioned symmetry condition.

Fortunately enough, this type of symmetry is encountered in many microwave networks such as couplers, filters and differential signal routings.

Thru De-embedding Four Port RAW Device

- □ In the case of four-port networks with an even- and odd-mode symmetry, as shown by plane x x, the S-parameter matrix of the four-port network can be transformed into a block diagonal representation with two independent two-port networks.
- By adopting this convention, we end up with an even-mode two-port network with terminals e_1 , e_2 and an odd-mode two-port network with corresponding terminals o_1 , o_2 .

Symmetrical four-port network and THRU device.

- a) Four-port RAW device
- b) Four-port THRU device
- c) uncoupled two-ports.

$$T_{eeRAW} = T_{eeLEFT} \times T_{eeDUT} \times T_{eeRIGHT}$$

$$T_{ooRAW} = T_{ooLEFT} \times T_{ooDUT} \times T_{ooRIGHT}$$

Ref: Errikos Lourandakis, On-Wafer Microwave Measurements and De-Embedding, 2016

L-2L De-embedding Four Port RAW Device

 $\mathbf{ABCD}_{\mathbf{meas}_\mathbf{L}} = \mathbf{ABCD}_{\mathbf{LS}} * \mathbf{ABCD}_{\mathbf{L}} * \mathbf{ABCD}_{\mathbf{RS}}$

 $\mathbf{ABCD}_{\mathbf{meas_2L}} = \mathbf{ABCD}_{LS} * \mathbf{ABCD}_{2L} * \mathbf{ABCD}_{RS}$

Where,

ABCD_{LS}: Represent the matrix of the left **Bump+Pads**;

ABCD_{L&2L}: Represent the matrix of the **lines**;

ABCD_{RS}: Represent the matrix of the right **Bump+Pads**;

L-2L De-embedding Four Port RAW Device

$$\begin{bmatrix} 2Y_{\text{shunt-E}}Z_{\text{series-E}} + 1 & 2Z_{\text{series-E}} \\ 2Y_{\text{shunt}}(Y_{\text{shunt-E}}Z_{\text{series-E}} + 1) & 2Y_{\text{shunt-E}}Z_{\text{series-E}} + 1 \end{bmatrix}$$

$$ABCD_{LS} = \begin{bmatrix} 1 & Z_{series-E} \\ Y_{shunt-E} & Y_{shunt-E}Z_{series-E} + 1 \end{bmatrix}, \quad ABCD_{RS} = \begin{bmatrix} Y_{shunt-E}Z_{series-E} + 1 & Z_{series-E} \\ Y_{shunt-E} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2Y_{\text{shunt-o}}Z_{\text{series-o}} + 1 & 2Z_{\text{series-o}} \\ 2Y_{\text{shunt-o}}(Y_{\text{shunt-o}}Z_{\text{series-o}} + 1) & 2Y_{\text{shunt-o}}Z_{\text{series-o}} + 1 \end{bmatrix}$$

$$ABCD_{LS} = \begin{bmatrix} 1 & Z_{series-O} \\ Y_{shunt-O} & Y_{shunt-O}Z_{series-O} + 1 \end{bmatrix}, \quad ABCD_{RS} = \begin{bmatrix} Y_{shunt-O}Z_{series-O} + 1 & Z_{series-O} \\ Y_{shunt-O} & 1 \end{bmatrix}$$

L-2L De-embedding Four Port RAW Device

$$ABCD_L = ABCD_{LS}^{-1} *ABCD_{meas_L} *ABCD_{RS}^{-1}$$

 b_{02}

 b_{02}

$$ABCD_{2L} = ABCD_{LS}^{-1} *ABCD_{meas_2L} *ABCD_{RS}^{-1}$$

References

