a.) Amendments to the Claims

1. (Currently Amended) A cyclic peptide, or a pharmaceutically acceptable salt thereof, having an activity to restore DNA-binding activity or P53 protein-dependent transcription activity to mutant P53 protein, said peptide being represented by formula (I): $R^{1}(X^{1})^{nl}(X^{2})^{n2}(X^{3})^{n3}(X^{4})^{n4}(X^{5})^{n5}(X^{6})^{n6}(X^{7})^{n7}(X^{8})^{n8}(X^{9})^{n9}(X^{10})^{n10}(X^{11})^{n11}(X^{12})^{n12}$ $(X^{13})^{n13}(X^{14})^{n14}(X^{15})^{n15}(X^{16})^{n16}(X^{17})^{n17}R^{2}$ (I) wherein

any of X^{I} to X^{17} may be denoted by X^{I} , i being an integer of 1 to 17; any of nl to n17 may be denoted by ni, where ni represents 0 or 1 such that $(X^{I})^{nI}$ represents X^{I} when ni is 1 and represents a bond when ni is 0;

ni represents 1 for at least 7 different Xⁱs, with R[†] bonded to the N-terminus and R² bonded to the C-terminus: Xⁱs;

any of X^1 to X^{11} where ni represents 1 may be denoted by X^p , wherein p is 1-11 respectively, and any of X^8 to X^{17} where ni represents 1 may be denoted by X^q where q is 8-17, respectively, such that q > p;

R¹ represents substituted or unsubstituted alkanoyl, substituted or unsubstituted alkoxycarbonyl, substituted or unsubstituted aralkyloxycarbonyl, substituted or unsubstituted aroyl, 9-fluorenylmethoxycarbonyl or hydrogen;

R² represents substituted or unsubstituted alkoxy, substituted or unsubstituted aralkyloxy, amino, substituted or unsubstituted alkylamino, substituted or

unsubstituted dialkylamino, substituted or unsubstituted aralkylamino, substituted or unsubstituted arylamino or hydroxy;

 R^{\dagger} and R^{2} may together form a single bond when the total number of amino acid and organic acid residues having an SH group in the peptide is two or less, or a functional group in X^{p} and a functional group in X^{q} may together form a covalent bond to form a cyclic structure together with any intervening X^{i} residues;

X¹ represents a residue of 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid, suberic acid, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline or 4-hydroxyproline;

X² represents a residue of leucine, isoleucine, valine, alanine, norvaline, norleucine, 2-aminobutanoic acid, homoleucine, β-alanine, α-aminoisobutanoic acid, β-cyclopropylalanine, β-chloroalanine, 1-aminocyclopentane-1-carboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, 2-amino-1-cyclopentanecarboxylic acid, t-butylglycine, diethylglycine, t-butylalanine, O-methylserine, cyclohexylglycine, cyclohexylalanine or glycine;

X³ represents a residue of lysine arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

 X^4 represents a residue of serine, threonine, homoserine, α methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine,

aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X⁵ represents a residue of lysine, arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X⁶ represents a residue of lysine, arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X⁷ represents a residue of alanine, β-alanine, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 3-aminomethylbenzoic acid, proline, 3-hydroxyproline, 4-hydroxyproline, L-1,2,3,4-tetrahydroisoquinoline-7-carboxylic acid, cysteine, homocysteine, penicillamine, 2,3-diaminopropionic acid, 2,4-diaminobutanoic acid, ornithine, lysine, p-aminophenylalanine, aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid or glycine;

X⁸ represents a residue of glutamine, asparagine, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X⁹ represents a residue of serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹⁰ represents a residue of serine, threonine, homoserine, α-methylserine, hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹¹ represents a residue of serine, threonine, homoserine, α-methylserine, hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹² represents a residue of lysine, arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X¹³ represents a residue of histidine, alanine, 4-thiazolylalanine, 2-

thienylalanine, 2-pyridylalanine, 3-pyridylalanine, 4-pyridylalanine, (3-N-methyl)piperidylalanine, 3-(2-quinoyl)alanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

 X^{14} represents a residue of lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α -methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid or glycine, and an amino group or guanidino group in the side chain of X^{14} may be modified with R^3 (where R^3 is independently selected from the moieties of R^1 ;

X¹⁵ represents lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

 X^{16} represents a residue of leucine, alanine, 4-thiazolylalanine, 2-thienylalanine, isoleucine, norleucine, homoleucine, valine, norvaline, β -alanine, α -aminoisobutanoic acid, 2-aminobutanoic acid, β -cyclopropylalanine, β -chloroalanine, 1-aminocyclopentane-1-carboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, 2-amino-1-cyclopentanecarboxylic acid, t-butylglycine, diethylglycine, t-butylalanine, O-methylserine, cyclohexylglycine, cyclohexylalanine or glycine;

X¹⁷ represents a residue of 2-mercaptoaniline, cysteamine,

homocysteamine, cysteine, homocysteine, penicillamine, ornithine, lysine, 2,3-diaminopropionic acid, 2,4-diaminobutanoic acid, p-aminophenylalanine, glutamic acid, aspartic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid or 2-aminosuberic acid;

where a 12-aminododecanoic acid residue may be added at between R¹ and Xp nearest to the N- or C- terminus of the petpide N-terminus, or between Xq nearest to the C-terminus and R², and the cyclic peptide does not comprise five or more consecutive glycine residues.

- 2. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 1, wherein said cyclic structure is formed by a S-S, S-CH₂-S, S-CH₂-C₆H₄-CH₂-S, S-CH₂-CO, CO-NH, NH-CO, O-CO or CO-O bond between X^P and X^Q .
- 3. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim $\dot{2}$, wherein X^P (np=1) is an N-terminal residue and X^q (nq=1) is a C-terminal residue.
- 4. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 2, wherein X^p (np=1) is not an N-terminal residue and X^q (nq=1) is not a C-terminal residue.
 - 5. (Previously Presented) A peptide or a pharmaceutically acceptable salt

thereof according to claim 2, wherein X^{P} (np=1) is not an N-terminal residue and X^{Q} (nq=1) is a C-terminal residue.

- 6. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 2, wherein X^P (np=1) is an N-terminal residue and X^q (nq=1) is not a C-terminal residue.
- 7. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 3, wherein X^{P} (np=1) is X^{1} and X^{q} (nq=1) is X^{17} .
- 8. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 6, wherein X^p (np=1) is X^1 and X^q (nq=1) is X^{17} .
- 9. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 3, wherein X^{P} (np=1) is X^{1} and X^{q} (nq=1) is X^{16} .
- 10. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 6, wherein X^{P} (np=1) is an N-terminal residue and X^{Q} (nq=1) is X^{Q} .
- 11. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 4, wherein X^{P} (np=1) is X^{8} and X^{q} (nq=1) is X^{14} .

- 12. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 5, wherein X^P (np=1) is X^3 and X^q (nq=1) is a C-terminal residue.
- 13. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 4, wherein X^P (np=1) is X^3 and X^q (nq=1) is not a C-terminal residue.
- 14. (Previously Presented) A peptide or a pharmaceutically acceptable salt thereof according to claim 6, wherein X^P (np=1) is an N-terminal residue and X^Q (nq=1) is X^{11} .
- 15. (Currently Amended) A peptide or a pharmaceutically acceptable salt thereof according to claim 1, said peptide having an amino acid sequence shown by one of SEQ ID NOS: 4-7 and 16-32 in which a 12-aminododecanoic acid residue may be added between R¹ and X^p nearest to at the or C- terminus of the peptide the N-terminus or between X^q nearest to the C-terminus and R².
- 16. (Currently Amended) A peptide or a pharmaceutically acceptable salt thereof according to claim 15, said peptide having an amino acid sequence shown by one of SEQ ID NOS: 4-7, 16, 19 and 25-32 in which a 12-aminododecanoic acid residues may be substituted or added at the or C- terminus of the petpide between R¹ and X^p nearest to the

N-terminus or between X^q nearest to the C-terminus and R².

17. (New) A cyclic peptide, or a pharmaceutically acceptable salt thereof, having an activity to restore DNA-binding activity or P53 protein-dependent transcription activity to mutant P53 protein, said peptide being represented by formula (I): $R^{1}(X^{1})^{nl}(X^{2})^{n2}(X^{3})^{n3}(X^{4})^{n4}(X^{5})^{n5}(X^{6})^{n6}(X^{7})^{n7}(X^{8})^{n8}(X^{9})^{n9}(X^{10})^{n10}(X^{11})^{n11}(X^{12})^{n12}$ $(X^{13})^{n13}(X^{14})^{n14}(X^{15})^{n15}(X^{16})^{n16}(X^{17})^{n17}R^{2} \qquad (I)$ wherein

any of X^1 to X^{17} may be denoted by X^i , i being an integer of 1 to 17; any of nl to n17 may be denoted by ni, where ni represents 0 or 1 such that $(X^i)^{ni}$ represents X^i when ni is 1 and represents a bond when ni is 0; ni represents 1 for at least 7 different X^i s;

any of X^1 to X^{11} where ni represents 1 may be denoted by X^p where p is 1-11, respectively, and any of X^8 to X^{17} where ni represents 1 may be denoted by X^q where q is 8-17, respectively, such that q > p;

R¹ represents substituted or unsubstituted alkanoyl, substituted or unsubstituted alkoxycarbonyl, substituted or unsubstituted aralkyloxycarbonyl, substituted or unsubstituted aroyl, 9-fluorenylmethoxycarbonyl or hydrogen;

R² represents substituted or unsubstituted alkoxy, substituted or unsubstituted aralkyloxy, amino, substituted or unsubstituted alkylamino, substituted or unsubstituted aralkylamino, substituted or unsubstituted aralkylamino, substituted or

unsubstituted arylamino or hydroxy;

R¹ and R² together form a single bond;

X¹ represents a residue of 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid, suberic acid, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline or 4-hydroxyproline;

 X^2 represents a residue of leucine, isoleucine, valine, alanine, norvaline, norleucine, 2-aminobutanoic acid, homoleucine, β -alanine, α -aminoisobutanoic acid, β -cyclopropylalanine, β -chloroalanine, 1-aminocyclopentane-1-carboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, 2-amino-1-cyclopentanecarboxylic acid, t-butylglycine, diethylglycine, t-butylalanine, O-methylserine, cyclohexylglycine, cyclohexylalanine or glycine;

X³ represents a residue of lysine arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X⁴ represents a residue of serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or

suberic acid;

X⁵ represents a residue of lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X⁶ represents a residue of lysine, arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X⁷ represents a residue of alanine, β-alanine, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 3-aminomethylbenzoic acid, proline, 3-hydroxyproline, 4-hydroxyproline, L-1,2,3,4-tetrahydroisoquinoline-7-carboxylic acid, cysteine, homocysteine, penicillamine, 2,3-diaminopropionic acid, 2,4-diaminobutanoic acid, ornithine, lysine, p-aminophenylalanine, aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid or glycine;

X⁸ represents a residue of glutamine, asparagine, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X⁹ represents a residue of serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-

diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹⁰ represents a residue of serine, threonine, homoserine, α-methylserine, hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹¹ represents a residue of serine, threonine, homoserine, α-methylserine, hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, glycine, 2-mercaptobenzoic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, mercaptoacetic acid, adipic acid or suberic acid;

X¹² represents a residue of lysine, arginine, ornithine, 2,4diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X¹³ represents a residue of histidine, alanine, 4-thiazolylalanine, 2-thienylalanine, 2-pyridylalanine, 3-pyridylalanine, 4-pyridylalanine, (3-N-methyl)piperidylalanine, 3-(2-quinoyl)alanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-

aminoadipic acid, 2-aminosuberic acid, ornithine, lysine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

X¹⁴ represents a residue of lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine, serine, threonine, homoserine, α-methylserine, 3-hydroxyproline, 4-hydroxyproline, cysteine, homocysteine, penicillamine, aspartic acid, glutamic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid or glycine, and an amino group or guanidino group in the side chain of X¹⁴ may be modified with R³ (where R³ is independently selected from the moieties of R¹;

X¹⁵ represents lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, p-aminophenylalanine or glycine;

 X^{16} represents a residue of leucine, alanine, 4-thiazolylalanine, 2-thienylalanine, isoleucine, norleucine, homoleucine, valine, norvaline, β -alanine, α -aminoisobutanoic acid, 2-aminobutanoic acid, β -cyclopropylalanine, β -chloroalanine, 1-aminocyclopentane-1-carboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, 2-amino-1-cyclopentanecarboxylic acid, t-butylglycine, diethylglycine, t-butylalanine, O-methylserine, cyclohexylglycine, cyclohexylalanine or glycine;

X¹⁷ represents a residue of 2-mercaptoaniline, cysteamine, homocysteamine, cysteine, homocysteine, penicillamine, ornithine, lysine, 2,3-diaminopropionic acid, 2,4-diaminobutanoic acid, p-aminophenylalanine, glutamic acid, aspartic acid, homoglutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid or 2-aminosuberic acid;

 $\label{eq:continuous} \text{where a 12-aminododecanoic acid residue may be added between } R^1$ and X^p nearest to the N-terminus, or between X^q nearest to the C- terminus and $R^2,$

and the cyclic peptide cannot be formed by cyclizing the peptides

represented by any of SEQ ID NOS: 33-41:

		NO:			Ala									
SEQ	ID	NO:	34:		Leu	Lys	Ser	Lys	Lys	Gly	Gln	Ser	Thr	Ser
				_	His									
SEQ	ID	NO:	35:		Gly									
SEQ	ID	NO:	36:	Ser	Lys	Lys	Gly	Gln	Ser	Thr	Ser	Arg	His	Lys
				Lys	Leu									
SEQ	ID	NO:	37:	Arg	Ala	His	Ser	Ser	His	Leu	Lys	Ser	Lys	Lys
					Gln									
SEQ	ID	NO:	38:		His								Ser	Thr
					Arg									
SEQ	ID	NO:	39:		Ala									
				Gly	Gln	Ser	Thr	Ser	Arg	His	Lys	Lys	Leu	Met
					Lys									
SEQ	ID	NO:	40:		Arg									
				Lys	Gly	Gln	Ser	Thr	Ser	Arg	His	Lys	Lys	Leu
-				Met	Phe	Lys								
SEQ	ID	NO:	41:	Gly										
				Ser	Lys	Lys	Gly	Gln	Ser	Thr	Ser	Arg	His	Lys
				Lys	Leu	Met	Phe	Lys	•					