BFS and **DFS**

• For many applications, one must systematically search through a graph to determine the structure of the graph.

- Two common elementary algorithms for tree-searching are
 - Breadth-first search (BFS), and
 - Depth-first search (DFS).
- Both of these algorithms work on directed or undirected graphs.
- Many advanced graph algorithms are based on the ideas of BFS or DFS.
- Each of these algorithms traverses edges in the graph, discovering new vertices as it proceeds.
- The difference is in the order in which each algorithm discovers the edges.
- Instead of talking about the differences, we will just look at each algorithm in turn.

Breadth-First Search

- Let G = (V, E) be a graph.
- Let $s \in V$ be a special vertex called the **source**.
- A breadth-first search of G will:
 - Determine all vertices reachable from s.
 - Determine the distance (that is, the fewest number of edges) from s to all vertices reachable.
 - Determine a shortest path from s to all vertices reachable.
 - Construct a breadth-first tree rooted at s.
 That is, a tree whose edges form the shortest paths from s to all vertices reachable.
- Breadth-first search is so called because it locates all vertices of distance i before it locates any of distance i + 1.

How BFS Works

• For each node x in the graph we will need to store

- the list of adjacent vertices,
- the distance from s to x(d(x)),
- predecessor of x(p(x)), and
- the color of x(c(x)).
- The color of a vertex indicates the status of a vertex:
 - A white vertex has not been discovered.
 - A gray vertex has been discovered, but it may have undiscovered neighbors.
 - A black vertex has been discovered, and it has no undiscovered neighbors.
- The algorithm starts with
 - $d(x) = \infty$, p(x) = NIL, and c(x) = white for $x \neq s$, and
 - d(s) = 0, p(s) = NIL, and c(s) = gray.

How BFS Works Continued

- Gray vertices are stored in a queue, Q.
- When the algorithm begins, s is on the queue.
- The algorithm proceeds as follows:
 - Remove the first element, x, from the queue (x = Dequeue(Q)).
 - For each neighbor y of x
 - * If y is white.
 - · Color $y \ gray \ (c(y) = gray)$.
 - · Let the distance of y be one more than the distance of x (d(y) = d(x) + 1).
 - · Let x be the predecessor of y (p(y) = x).
 - · Place y at the end of the queue (Enqueue(Q, y)).
 - * If y is gray or black, do nothing.
 - Color x black.
 - Repeat until the queue is empty.
- Now let's look at the whole algorithm.

BFS Algorithm

- Let G = (V, E) be a graph, and $s \in V$ be some vertex.
- The breadth-first search algorithm is as follows:

```
BFS(G,s)
ForAll u in V-{s}
      c(u)=white
      d(u) = Max_Int
      p(u) = NIL
c(s) = gray
d(s) = 0
p(s) = NIL
Enqueue (Q,s)
while(NotEmpty(Q))
      u=Dequeue (Q)
      ForAll v adjacent to u
            if c(v) = white then
               c(v) = gray
               d(v) = d(u) + 1
               p(v) = u
               Enqueue (Q, v)
      color(u) = black
```

BFS Example

V	adjacent	d	p	color
S	a,b	0	nil	gray
a	s,b,c,e	inf	nil	white
b	s,a,c,e	inf	nil	white
С	b,a,e	inf	nil	white
d	e	inf	nil	white
e	a,b,c,d	inf	nil	white

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	gray
b	s,a,c,e	1	S	gray
c	b,a,e	inf	nil	white
d	e	inf	nil	white
e	a,b,c,d	inf	nil	white

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	gray
С	b,a,e	2	a	gray
d	e	inf	nil	white
e	a,b,c,d	2	a	gray

s O		$)^{d}$
b 11	2 c	Q=[c,e]
a	2	e

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	black
С	b,a,e	2	a	gray
d	e	inf	nil	white
e	a,b,c,d	2	a	gray

BFS Example Continued

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	black
c	b,a,e	2	a	gray
d	e	inf	nil	white
e	a,b,c,d	2	a	gray

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	black
c	b,a,e	2	a	black
d	e	inf	nil	white
e	a,b,c,d	2	a	gray

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	black
С	b,a,e	2	a	black
d	e	3	e	grey
e	a,b,c,d	2	a	black

V	adjacent	d	p	color
S	a,b	0	nil	black
a	s,b,c,e	1	S	black
b	s,a,c,e	1	S	black
c	b,a,e	2	a	black
d	e	3	e	black
e	a,b,c,d	2	a	black

BFS Summary

- There are several things we should ask about BFS:
 - Why does BFS discover every vertex reachable from s?
 - Why does BFS give the distance from s to x, for every reachable vertex x?
 - Why/How does BFS give a shortest path from s to x, for every reachable vertex x?
 - How do we construct a breadth-first tree after we have executed BFS?
 - What is the complexity of BFS?
- It is not hard to convince yourself that the first 3 are true, although proving them is a little harder.
- It is not too difficult to see that the complexity is O(V+E).
- We won't prove any of these things explicitly.

Depth-First Search

- Let G = (V, E) be a graph.
- A depth-first search of G will
 - Find every vertex in *G*.
 - Timestamp every vertex with
 - * the first time it was discovered, and
 - * the last time it is examined.
 - Construct a depth-first forest. That is, a partition of G into depth-first trees.
- The timestamps are used by other graph algorithms.
- Depth-first search is so called because it continues along a path until it finds no new vertices, at which point it backtracks.
- Unlike BFS, DFS has no source vertex.
- DFS starts searching from *every* vertex of the graph eventually. We will see what this means.

How DFS Works

- For each node x in the graph we will need to store
 - the list of adjacent vertices,
 - the discover timestamp of x (d(x)).
 - the final timestamp of x(f(x)).
 - predecessor of x(p(x)), and
 - the color of x(c(x)).
- The color of a vertex indicates the status of a vertex:
 - A white vertex has not been discovered.
 - A gray vertex has been discovered, but it may have undiscovered neighbors.
 - A black vertex has been discovered, and it has no undiscovered neighbors.
- The algorithm starts with p(x) = NIL, and c(x) = white for all $x \in V$.
- Since both d(x) and f(x) are guaranteed to be set in the algorithm, we need not initialize them.

More of How DFS Works

- Unlike BFS, DFS is recursive.
- When DFS "visits" a white node $x \in V$, it does the following:
 - Color x gray (c(x) = gray).
 - Set discover time of x to the current time (d(x) = time).
 - Increment current time (time = time + 1).
 - For all y adjacent to x
 - * If y is white,
 - Set x to be the predecessor of y (p(y) = x).
 - · Recursively "visit" node y.
 - Color x black (c(x) = black).
 - Set finish time of x to the current time (f(x) = time).
 - Increment current time (time = time + 1).
- Notice that *time* has to be a global variable.
- We will now see the algorithm in its entirety.

DFS Algorithm

- Let G be a graph.
- The depth-first algorithm is as follows:

```
DFS(G)
ForAll u in V
   c(u)=white
   p(u)=NIL
time=0
ForAll u in V
   If c(u)=white
         DFS-Visit(u)
```

• *DFS-Visit* is as follows:

```
DFS-Visit(u)
 c(u) = gray
 d(u) = time++
 ForAll v adjacent to u
     If c(v) = white
         p(v) = u
         DFS-Visit(v)
 c(u) = black
 f(u) = time++
```

• An example should help make things clearer.

13

DFS Example

V	a	b	c	d	e	f	g	h
p	NIL							
d	1							
f								
c	G	W	W	W	W	W	W	W

V	a	b	c	d	e	f	g	h
p	NIL	a	NIL	NIL	NIL	NIL	NIL	NIL
d	1	2						
f								
c	G	G	W	W	W	W	W	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	NIL	NIL	NIL	NIL	NIL
d	1	2	3					
f								
c	G	G	G	W	W	W	W	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	С	NIL	NIL	NIL	NIL
d	1	2	3	4				
f								
c	G	G	G	G	W	W	W	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	c	NIL	NIL	NIL	NIL
d	1	2	3	4				
f								
c	G	G	G	G	W	W	W	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	c	NIL	NIL	d	NIL
d	1	2	3	4			5	
f								
c	G	G	G	G	W	W	G	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	С	NIL	NIL	d	NIL
d	1	2	3	4			5	
f							6	
c	G	G	G	G	W	W	В	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	c	NIL	NIL	d	NIL
d	1	2	3	4			5	
f				7			6	
c	G	G	G	В	W	W	В	W

V	a	b	c	d	e	f	g	h
p	NIL	a	b	c	NIL	NIL	d	c
d	1	2	3	4			5	8
f				7			6	
c	G	G	G	В	W	W	В	G

DFS Example Finish

V	a	b	c	d	e	f	g	h
p	NIL	a	b	С	NIL	e	d	С
d	1	2	3	4	13	14	5	8
f	12	11	10	7		15	6	9
c	В	В	В	В	G	В	В	В

V	a	b	c	d	e	f	g	h
p	NIL	a	b	c	NIL	e	d	c
d	1	2	3	4	13	14	5	8
f	12	11	10	7	16	15	6	9
c	В	В	В	В	В	В	В	В

• The depth-first forest for this example is

DFS Summary

- The running time of DFS is O(V + E).
- The edges (x, p(x)) are the edges in the depth-first forest.
- As stated previously, the timestamps are useful in other algorithms.
- There are several other things that can be said about depth-first searching, but we won't.
- Instead, we will discuss one application, the **Topological Sort**.

Topological Sort

- Let G = (V, E) be a directed acyclic graph.
- A **topological sort** of G is a linear ordering of the vertices of G such that if u is before v, then (v, u) is not an edge.
- Example: Consider the following Graph:

• Here is one possible topological sort:

• Notice that no edges go from right to left.

Topological Sort Algorithm

- Let G be a directed acyclic graph.
- To topologically sort G, we use a slightly modified version of DFS.
- At the end of *DFS-Visit(u)*, place *u* at the head of a linked list.
- When DFS is done, the linked list contains the vertices of G topologically sorted.

• Example:

