1 Subshift e Matriz de Transição

Definição 1.1. $\Sigma_N = \{x = (x_n)_{n \in \mathbb{N}} : 1 \le x_n \le N\}$

Proposição 1.2. (Σ_N, d_N) é um espaço métrico.

Proposição 1.3. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x,y) \le \frac{1}{N^k}$. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

Definição 1.4. Seja $A=(a_{ij})_{1\leq i,j\leq N}$ uma matriz quadrada de ordem N tal que $a_{ij}\in\{0,1\}$ para todo $1\leq i,j\leq N$. Então

$$\Sigma_A = \{x = (x_n) \in \Sigma_N : a_{x_i x_{i+1}} = 1\}$$

Proposição 1.5. Σ_A é fechado em (Σ_N, d_N) .

Proposição 1.6. Se x é um ponto periódico de F diferente de $0, a_1, a_2, a_3$, então $x \in I_1 \cup I_2$.

Lema 1.7. Λ é um conjunto hiperbólico.

Teorema 1.8. F_{Λ} e σ_{A} são topologicamente conjugadas.

Proposição 1.9. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.