

Área de Ciências Exatas e Engenharias Lógica Computacional e Programação

Introdução ao Pensamento Computacional

Professoras:

Maria de Fátima Webber do Prado Lima Helena Grazziotin Ribeiro Carine G. Webber

Semestre 2018/4

O que está acontecendo no mundo?

- A Computação (e suas Tecnologias) tornaram-se parte das áreas :
 - Matemática e Estatística
 - Engenharia e Design
 - Ciências:
 - Biologia
 - Física
 - Química
 - Economia
 - Artes e Entretenimento
 - Comunicação e Sociedade

A que você atribui este fenômeno?

Timeline: exemplo de como às ciências e a matemática se integram à computação da pesquisa ao produto

Evolution of mobile phone communications

Produtos tecnológicos

Você lembra de algum produto tecnológico do dia a dia que aplica conhecimento científico?

Como a indústria chegou até ele ?

Ele estabelece algum padrão?

Ele tem algum diferencial?

Existem produtos concorrentes com abordagem diferente?

Para que serve um produto tecnológico?

- Auxiliar o ser humano em tarefas do dia a dia, de forma pró-ativa.
- Automatizar processos que sobrecarregam ou põe em risco o ser humano.
- Melhorar tomadas de decisão, diagnósticos e a eficiência de processos organizacionais.
- Interligar pessoas e coisas com diversos fins.
- Veja dois exemplos.

Monitor de bebê: monitora a respiração, temperatura, movimentos e padrões de sono.

Fralda Inteligente: alerta para bebê desidratado, inflamação renal.

As tecnologias foram pensadas para resolver problemas!

1.Temos um problema.

2.De que tipo ele é?

3. O problema tem solução é conhecida?

4. Já resolvi algum problema parecido antes?

5.Pensei em uma solução.
6.Vou testar e ver se dá certo.
7.Tem como melhorá-la ou fazer de outra forma?
8. Qual a melhor solução para o problema, dadas as limitações do contexto?

Solução

O ponto de partida é o PROBLEMA

- Questões que emergem:
 - Quão difícil é o problema?
 - Como ele pode ser resolvido?
 - Quais estratégias de resolução podem ser empregadas?
 - Como a tecnologia pode ser aplicada ao problema?
 - Qual é o poder e o limite da inteligência humana e da computação?
 - Como avaliar se a solução apresentada é satisfatória?

Mas o que é o pensamento computacional?

Pensamento Computacional

 O termo compreende um conjunto de habilidades desejáveis e úteis, relacionadas a forma com que os seres humanos podem usar os computadores para resolver problemas (Wing, 2006; Scaico et.al., 2012).

 O desenvolvimento do pensamento computacional é útil para que todos os profissionais possam fazer melhor uso das tecnologias da computação em sua área de atuação.

Basicamente, resolução de problemas!

Mas em que cenário?

No cenário em que vivemos.

Vivemos a era da internet das coisas (IoT), onde qualquer dispositivo conectado pode coletar dados e tomar decisões que afetam indivíduos e mesmo toda a sociedade.

Habilidade desejáveis para um **Profissional**

- 1)Ser capaz de compreender o problema
- 2)Planejar a sua resolução
- 3)Executar o plano
- 4) Analisar o resultado

- Compreender o problema:
 - O que é pedido no problema?
 - Quais são os dados e condições do problema?
 - Tem relação com outros problemas?
 - Posso fazer um esquema do problema?

- Planejar a solução:
 - Há problemas parecidos?
 - Quais as ideias para solução?
 - Pode-se dividir o problema em problemas menores?
 - Quais as etapas para resolvê-lo?

- Executar o plano:
 - Executar as etapas da solução.
 - Testar a cada etapa.
 - Codificar ou fazer um protótipo.

- Analisar o resultado:
 - A solução obtida está correta?
 - Existe outra maneira de resolver o problema?
 - O método definido pode ser utilizado para resolver problemas semelhantes?

Pensamento Computacional

- Decomposição: quebrar um problema complexo em partes menores, mais fáceis de serem resolvidas.
- Reconhecimento de padrões: buscar por similaridades entre problemas
- Abstração: concentrar somente em informações mais importantes, ignorando detalhes irrelevantes.
- Algoritmos: desenvolver uma solução passo-apasso para o problema, ou regras que seguidas resolvem o problema.

Pensamento Computacional

- Aprimorar o pensamento computacional é importante porque :
 - **Não** queremos ser apenas usuários digitais
 - Não estamos aqui para sermos só consumidores
- Com habilidade computacionais poderemos:
 - Criar novos produtos
 - Criar novas tecnologias
 - Empreender: criar um novo negócio e prover sustento para si
 - Contribuir para o avanço tecnológico da Ciência
 - Elevar o nível econômico de nossa cidade

As Várias Áreas da Alfabetização Digital

Liderança Digital

A liderança digital depende do desenvolvimento das habilidades compreendidas no conceito do Pensamento Computacional.

Características do Pensamento Computacional

- Uso de abstrações e reconhecimento de padrões para representar o problema de maneiras novas e diferentes.
- Organização lógica e análise dos dados.
- Divisão do problema em partes menores.
- Abordagem do problema utilizando técnicas de pensamento programático, como iteração, representação simbólica e operações lógicas.
- Reformulação do problema em uma série de etapas ordenadas (pensamento algorítmico).
- Identificação, análise e implementação de possíveis soluções com o objetivo de alcançar a combinação mais eficiente e efetiva de etapas e recursos.
- Generalização deste processo de solução de problemas para uma grande variedade.

Características do Pensamento Computacional

- O pensamento computacional é um processo iterativo baseado em três estágios:
 - 1)Formulação do problema (identificar aspectos mais importantes do problema, modelagem e abstração)
 - 2)Expressão da solução (integração software e hardware para construir um produto)
 - 3)Execução da solução e avaliação (testes, coleta de dados e análise)

Por esta razão, as **linguagens de programação** são as ferramentas aptas para a construção de produtos tecnológicos, integrando máquinas, pessoas e coisas.

Elementos de uma linguagem de programação

- a) Dados: elementos que o computador armazena, recupera e atualiza.
- b) Operadores: operadores matemáticos, relacionais e lógicos.
- c) Sequências: expressam uma tarefa em uma série de passos.
- d) Condicionais: habilidade de fazer decisões baseado em certas condições.
- e) Laços (loops): mecanismo utilizado para repetição de sequências.
- f) Eventos: situações que dão início a outras.
- g) Paralelismo: sequências que acontecem ao mesmo tempo.

Problemas

- Vocês conhecem a Torre da Hanói ?
- Vocês conhecem o Tangram?
- E outros jogos?

