

TEST REPORT

FCC PART 15.247

Report R	eference	No:	CTL1611308201-WF
----------	----------	-----	------------------

Compiled by: (position+printed name+signature) (File administrators)

Allen Wang

Allen Wang
Nice Nong

1.102:

Tested by: (position+printed name+signature)

(Test Engineer) Tracy Qi

(Manager)

Nice Nong

Approved by: (position+printed name+signature)

Product Name...... WLAN 802.11b/g/n module

Model/Type reference WIFI-2-M06USA1

List Model(s)..... See next page

FCC ID 2AC49-M06USA1

Applicant's name Sichuan Changhong Electronic Component Co., Ltd.

Address of applicant Luosheng street, Huagai Zhen, Anxian, Mianyang, Sichuan, China

Prepared by Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt...... Nov. 30, 2016

Date of Test Date...... Nov. 30, 2016–Dec. 14, 2016

Data of Issue...... Dec. 14, 2016

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Report No.: CTL1611308201-WF

Test Report No. : CTL1611308201-WF Dec. 14, 2016

Date of issue

Equipment under Test : WLAN 802.11b/g/n module

Model /Type : WIFI-2-M06USA1

Listed Models : WIFI-2-M06, WIFI-2-M06USA2, WIFI-2-M06UWP4,

WIFI-2-M601, WIFI-2-M601UWP3

Applicant : Sichuan Changhong Electronic Component Co.,

Ltd.

Address : Luosheng street, Huagai Zhen, Anxian, Mianyang,

Sichuan, China

Manufacturer : Sichuan Changhong Electronic Component Co.,

Ltd.

Address : Luosheng street, Huagai Zhen, Anxian, Mianyang,

Sichuan, China

Test result	199	33	Dace *	
rest result	23	8	rass	

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2016-12-14	CTL1611308201-WF	Tracy Qi

		Page
1. S	UMMARY	
1.1.	TEST STANDARDS	
1.2.		
1.3.		
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. G	ENERAL INFORMATION	
2.1.	ENVIRONMENTAL CONDITIONS	
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	-
2.4.	DESCRIPTION OF SUPPORT UNITS	
2.5.	EQUIPMENTS USED DURING THE TEST	8
2.6.	Related Submittal(s) / Grant (s)	8
2.7.	Modifications	9
3. T	EST CONDITIONS AND RESULTS	10
3.1.	CONDUCTED EMISSIONS TEST	10
3.2.		
3.3.		
3.4.		2
3.5.		
3.6.		
3.7.		
	EST SETUP PHOTOS OF THE EUT	
5. P	HOTOS OF THE EUT.	39

V1.0 Page 5 of 39 Report No.: CTL1611308201-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

FCC PART 15.247				
FCC Part 15.207	AC Power Conducted Emission	PASS		
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS		
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS		
FCC Part 15.247(e)	Power Spectral Density	PASS		
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS		
FCC Part 15.247(d)	Band Edge	PASS		
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		
FCC Part 15.203/15.247 (b) Antenna Requirement PASS				

V1.0 Page 6 of 39 Report No.: CTL1611308201-WF

1.3. Test Firm

1.3.1 Address of the test laboratory

Shenzhen BALUN Technology Co., Ltd.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:832625

Shenzhen BALUN Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 832625

1.4. Statement of the measurement uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence

level using a coverage factor of k=2

level using a coverage factor of k-2.	
Measurement	Value
Occupied Channel Bandwidth	$\pm 4\%$
RF output power, conducted	±1.4dB
Power Spectral Density, conducted	±2.5dB
Unwanted Emissions, conducted	±2.8dB
All emissions, radiated	±5.4dB
Temperature	±1°C
Humidity	±4%

Testing Technology

V1.0 Page 7 of 39 Report No.: CTL1611308201-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2. General Description of EUT

-	
Product Name:	WLAN 802.11b/g/n module
Model/Type reference:	WIFI-2-M06USA1
Power supply:	DC 3.3V from host device
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation	802.11b: DSSS
Modulation:	802.11g/802.11n(H20)/802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Operation frequency.	802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Charmer number.	802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	PIFA Antenna
Antenna gain:	1.0dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/06/11 were selected for WIFI test.

Operation Frequency WIFI:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	TOC8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Note: The line display in grey were the channel selected for testing

2.4. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Manufacturer	Model No.	Notes
1	Notebook	Apple	MacBook Air	
2	Adapter	Apple	A1436	
3	Test jig	Sichuan Changhong	T1	
4	Antenna	Walsin	810654071	Gani 1.0dBi

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(40MHz)/OFDM	13.5Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
D. JEI	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

2.5. Equipments Used during the Test

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWAR	ZFSV-30	103118	2016.07.13	2017.07.12
Switch Unit with OSP-B157	ROHDE&SCHWARZ	OSP120	1012	2016.07.13	2017.07.12
Spectrum Analyzer	AGILENT	E4440A4	MY4530443	2016.10.15	2017.10.14
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2016.07.05	2017.07.04
LISN	SCHWARZBECK	NSLK	81278127-687	2016.07.05	2017.07.04
Test Antenna- Loop(9kHz-30MHz)	SCHWARZBECK	FMZB	15191519-037	2016.07.22	2017.07.21
Test Antenna- Bi-Log(30MHz-3GHz)	SCHWARZBECK	VULB 9163	9163-624	2016.07.22	2017.07.21
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2016.07.22	2017.07.21
Test Antenna- Horn(15-26.5GHz)	SCHWARZBECK	BBHA 9170	9170-305	2016.07.22	2017.07.21
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2016.02.28	2017.02.27
Shielded Enclosure	ChangNing	CN-1307013	13070		
Power Splitter	KMW	DCPD-LDC	1305003215	2016.07.13	2017.07.12
Spectrum Analyzer	Agilent	N9020	US46220290	2016/01/17	2017/01/16
Power Meter	Anritsu	ML2487B	110553	2016/06/02	2017/06/01
Power Sensor	Anritsu	MA2411B	100345	2016/05/21	2017/05/20
RF Cable	Megalon	RF-A303	N/A	2016/06/02	2017/06/01

The calibration interval was one year

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguency range (MHz)	Limit (d	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark:802.11b/802.11g/802.11n(H20)/802.11n(H40) mode all have been tested ,only worse case of 802.11b High Channel was reported.

MEASUREMENT RESULT: "CTL161209180_fin"

12/12/2016 2 Frequency MHz	:56PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.234000	57.30	10.2	62	5.0	QP	L1	GND
0.662000	43.90	10.2	56	12.1	QP	L1	GND
0.770000	40.10	10.2	56	15.9	QP	L1	GND
1.370000	38.10	10.3	56	17.9	QP	L1	GND
1.574000	38.60	10.3	56	17.4	QP	L1	GND
3.398000	37.00	10.4	56	19.0	QP	L1	GND

MEASUREMENT RESULT: "CTL161209180_fin2"

12/2016 2:5 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.242000	44.40	10.2	52	7.6	AV	L1	GND
0.548000	31.60	10.2	46	14.4	AV	L1	GND
0.770000	34.20	10.2	46	11.8	AV	L1	GND
1.004000	28.00	10.3	46	18.0	AV	L1	GND
1.322000	35.10	10.3	46	10.9	AV	L1	GND
1.544000	35.70	10.3	46	10.3	AV	L1	GND

MEASUREMENT RESULT: "CTL161209181_fin"

1	12/12/2016 3: Frequency MHz	00PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	49.40	10.2	66	16.6	QP	N	GND
	0.198000	36.10	10.2	64	27.6	QP	N	GND
	0.306000	33.30	10.2	60	26.8	QP	N	GND
	0.674000	22.90	10.2	56	33.1	QP	N	GND
	0.860000	43.10	10.2	56	12.9	QP	N	GND
	1.328000	39.30	10.3	56	16.7	QP	N	GND

MEASUREMENT RESULT: "CTL161209181_fin2"

12/12/2016 3: Frequency MHz	00PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PΕ
0.238000	46.10	10.2	52	6.1	AV	N	GND
0.890000	33.20	10.2	46	12.8	AV	N	GND
1.082000	21.40	10.3	46	24.6	AV	N	GND
1.538000	28.60	10.3	46	17.4	AV	N	GND
1.652000	30.30	10.3	46	15.7	AV	N	GND
1.874000	31.10	10.3	46	14.9	AV	N	GND

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 2. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

V1.0 Page 15 of 39 Report No.: CTL1611308201-WF

For 30MHz-1GHz

12/5/2016 9:	47AM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	23.00	20.8	40.0	_,		0.0	0.00	HORIZONTAL
95.960000	13.20	10.2	40.0			0.0	0.00	HORIZONTAL
130.880000	17.70	14.5	40.0	22.3		0.0	0.00	HORIZONTAL
214.300000	18.10	14.0	40.0	21.9		0.0	0.00	HORIZONTAL
538.280000	24.60	20.6	47.0	22.4		0.0	0.00	HORIZONTAL
994.180000	31.80	27.1	47.0	15.2		0.0	0.00	HORIZONTAL

Test mode: WIFI Polarization: Vertical

(30M-1G)"

SWEEP TABLE: "test Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL161205309_red"

12/5/2016 9:4 Frequency MHz	16AM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
33.880000 90.140000 125.060000 208.480000	25.30 18.60 19.20 18.60	17.7 9.4 14.6	40.0 40.0 40.0 40.0	20.8		0.0 0.0 0.0	0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL
549.920000 996.120000	25.70 33.00	21.0	47.0 47.0	21.4 21.3 14.0		0.0	0.00	VERTICAL VERTICAL VERTICAL

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20)/802.11n (H40) all have been tested, only worse case 802.11b is reported

Fred	Frequency(MHz):		2412			Polarity:		HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correctio	
requericy	Limi	531011	LIIII	Margin	IXAW	Antenna	Cable	amplifier	n	
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4824.00	57.79	PK	74	16.21	53.24	33.52	6.92	35.89	4.55	
4824.00	49.42	AV	54	4.58	44.87	33.52	6.92	35.89	4.55	
5125.75	48.81	PK	74	25.19	41.61	34.38	7.10	34.28	7.20	
5125.75	-	AV	54	1	1	-	ı	1	-	
7236.00	48.44	PK	74	25.56	37.17	37.10	9.19	35.02	11.27	
7236.00	1	AV	54	1	-	_		_	-	

Freq	uency(MF	lz):	24	12		Polarity:		VERTICAL			
Frequency	Emission		Limit	Margin	Raw Antenna Cable		Pre- amplifier	Correction			
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor		
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)		
4824.00	58.02	PK	74	15.98	53.47	33.52	6.92	35.89	4.55		
4824.00	50.17	AV	54	3.83	45.62	33.52	6.92	35.89	4.55		
5125.75	49.62	PK	74	24.38	42.42	34.38	7.10	34.28	7.20		
5125.75		AV	54	0.00	A 0+2=		11				
7236.00	49.04	PK	74	24.96	37.77	37.10	9.19	35.02	11.27		
7236.00		AV	54	** -	-	- 1/2	<u></u>				

Fred	Frequency(MHz):			37		Polarity:		HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4874.00	56.91	PK	74	17.09	50.67	33.59	6.95	34.3	6.24	
4874.00	49.83	AV	54	4.17	43.59	33.59	6.95	34.3	6.24	
5215.50	50.14	PK	74	23.86	42.54	34.56	7.15	34.11	7.60	
5215.50		AV	54	28-	1		29/			
7311.00	49.77	PK	74	24.23	38.11	37.44	9.22	35	11.66	
7311.00		AV	54			-7	<u> </u>			

	Tecting Tech												
Frequency(MHz):		2437			Polarity:	VERTICAL							
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction				
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor				
	(dBuV/m)				(dBuV)	(dB/m)	(dB)		(dB/m)				
4874.00	58.04	PK	74	15.96	51.80	33.59	6.95	34.3	6.24				
4874.00	51.82	AV	54	2.18	45.58	33.59	6.95	34.3	6.24				
5215.50	52.04	PK	74	21.96	44.44	34.56	7.15	34.11	7.60				
5215.50		AV	54										
7311.00	50.91	PK	74	23.09	39.25	37.44	9.22	35	11.66				
7311.00		AV	54										

Fred	Frequency(MHz):		2462		Polarity:			HORIZONTAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correctio n
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4924.00	57.74	PK	74	16.26	52.96	33.71	6.98	35.91	4.78
4924.00	50.25	AV	54	3.75	45.47	33.71	6.98	35.91	4.78
5105.50	51.05	PK	74	22.95	43.89	34.34	7.09	34.27	7.16
5105.50		AV	54						
7386.00	49.49	PK	74	24.51	37.61	37.61	9.25	34.98	11.88
7386.00		AV	54						

Fred	Frequency(MHz):		24	62		Polarity:		VER	ΓICAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4924.00	58.83	PK	74	15.17	54.05	33.71	6.98	35.91	4.78
4924.00	51.04	AV	54	2.96	46.26	33.71	6.98	35.91	4.78
5105.50	48.89	PK	74	25.11	41.73	34.34	7.09	34.27	7.16
5105.50		AV	54		ーボく				
7386.00	50.06	PK	74	23.94	38.18	37.61	9.25	34.98	11.88
7386.00		AV	54	-		Ā			

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Testing Technology

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/802.11n (H40) all have been tested, only worse case 802.11b is reported

Fred	Frequency(MHz):		24	12		Polarity:		VER	TICAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	117.20	PK			83.78	28.80	4.62	0	33.42
2412.00	109.05	AV			75.63	28.80	4.62	0	33.42
2357.25	44.28	PK	74	29.72	11.21	28.51	4.56	0	33.07
2357.25		AV	54				-	-	
2390.00	51.02	PK	74	22.98	17.7	28.72	4.60	0	33.32
2390.00		AV	54				-		
2400.00	54.85	PK	74	19.15	21.46	28.78	4.61	0	33.39
2400.00	49.01	AV	54	4.99	15.62	28.78	4.61	0	33.39

Freq	Frequency(MHz):		24	12		Polarity:		VER	TICAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	118.90	PK		-	85.48	28.80	4.62	0	33.42
2412.00	109.74	AV			76.32	28.80	4.62	0	33.42
2357.25	45.96	PK //	74	28.04	12.89	28.51	4.56	0	33.07
2357.25	/	AV	54			3/1/-	77		
2390.00	50.42	PK	74	23.58	17.1	28.72	4.60	0	33.32
2390.00		AV	54	14-41	17=47	271			
2400.00	54.76	PK	74	19.24	21.37	28.78	4.61	0	33.39
2400.00	48.14	AV	54	5.86	14.75	28.78	4.61	0	33.39

Freq	Frequency(MHz):		24	62		Polarity:		HORIZ	ZONTAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	117.46	PK	-	- C-M	83.89	28.89	4.68	0	33.57
2462.00	110.18	AV	>	-	76.61	28.89	4.68	0	33.57
2483.50	45.72	PK	74	28.28	12.09	28.93	4.70	0	33.63
2483.50		AV	54) - TI		28.93	4.70	0	
2488.75	50.99	PK	74	23.01	17.34	28.94	4.71	0	33.65
2488.75		AV	54	-	5		-	-	
2500.00	54.44	PK	74	19.56	20.76	28.96	4.72	0	33.68
2500.00	48.37	AV	54	5.63					

Freq	μency(MH	z):	24	62		Polarity:		HORIZ	ZONTAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	117.72	PK			84.15	28.89	4.68	0	33.57
2462.00	108.09	AV			74.52	28.89	4.68	0	33.57
2483.50	43.18	PK	74	30.82	9.55	28.93	4.70	0	33.63
2483.50		AV	54		-	28.93	4.70	0	
2488.75	50.42	PK	74	23.58	16.77	28.94	4.71	0	33.65
2488.75		AV	54						
2500.00	53.94	PK	74	20.06	20.26	28.96	4.72	0	33.68
2500.00	49.01	AV	54	4.99	-		-		

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

WIFI

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	22.25		
802.11b	06	21.66	30.00	Pass
	(2) 11	22.54	0	
	01	22.88	4	
802.11g	06	22.25	30.00	Pass
	11	23.12		
	01	21.65		
802.11n(HT20)	06	21.00	30.00	Pass
	(11)	21.86	03	
	03	20.20	0.	
802.11n(HT40)	06	19.48 C	30.00	Pass
	09	19.73		

Note: 1.The test results including the cable lose.

V1.0 Page 21 of 39 Report No.: CTL1611308201-WF

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

WIFI

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	01	-6.768	0		
802.11b	06	-7.309	8.00	Pass	
	11	/A -6.944 TO			
	01	-13.063			
802.11g	06	-12.583	8.00	Pass	
	11	-12.342			
	01	-13.470			
802.11n(HT20)	06	-14.418	8.00	Pass	
	11	-13.440			
802.11n(HT40)	03	-18.622			
	06	-18.982	8.00	Pass	
	09	-19.503			

Test plot as follows:

V1.0 Page 24 of 39 Report No.: CTL1611308201-WF

3.5. 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

WIFI

		VVIII			
Туре	Channel	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit (KHz)	Result
	01	9.043	12.082		
802.11b	06/	9.110	12.106	≥500	Pass
	11	8.730	12.077		
	01	16.46	16.460	7.	
802.11g	06	16.49	16.467	≥500	Pass
	11	16.50	16.462)	
	01	17.60	17.560		
802.11n(HT20)	06	17.61	17.569	≥500	Pass
	11	17.63	17.559		
	03	36.38	36.191		
802.11n(HT40)	06	36.42	36.197	≥500	Pass
	09	36.43	36.159	1	

Test plot as follows:

V1.0 Page 27 of 39 Report No.: CTL1611308201-WF

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Chi Testing Technolo

Test plot as follows:

V1.0 Page 34 of 39 Report No.: CTL1611308201-WF

Band-edge Measurements for RF Conducted Emissions:

3.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 1dBi.

4. Test Setup Photos of the EUT

V1.0 Page 39 of 39 Report No.: CTL1611308201-WF

5. Photos of the EUT

