

The experiment.

I used a Neato Robot in a simplify environment to log the robot and laser information while driving it to perform a trajectory

ABMV

LM3

Getting inside

	What to do	Description	What to read or practice or integrate		
			data_enc	Contains all the encoders information.	
	Getting familiar with logged dat of the in Workspace			Has 9 columns which represents:	
				Timestamp, LeftWheel_RPM, RightWheel_RPM, LeftWheel_Load%,	
		Workspace Name ♣ Value data_enc 523x9 double		RightWheel_Load%, LeftWheel_PositionInMM, RightWheel_PositionInMM,	
				LeftWheel_Speed, RightWheel_Speed	
			lds_dis	Contains the laser information. Has 361 columns which represents:	
		HandMark [1.5000 1.5000; -1.5000 1.5000; dls_dis 523x361 double dldx 524x360 double dldy 524x360 double 524x360 double		Timestamp, DistInMM (For each line, one record for each degree 0-359)	
I		pk 1x1 struct r_wheel 38.5000	Lndmrk	Contains the measured landmarks. LanMark has two columns which represents x	
		Robot 4x3 double trajec 524x3 double width 243	Ldx	and y coordinates.	
		273	ldy	ldx and ldy are separated variables	
			pk	Is the covariance matrix for each point in the trajectory. Is a data estructure.	
			r_wheel	Is the radius of the wheels in mm.	
			trajec	Contains the calculated trajectory. Has 3 columns	
			width	Is the wheel axes distance of the robot in mm.	

	What to do	Description	What to read or practice or integrate
2	Getting familiar with the script to plot information.	Clase data filiado Persona Paras Lase data efficiel Persona Paras Lase data efficiel Persona Paras Total Service Se	<pre>x = inputdlg('Enter step time to visualize', %Introducing the snapshot to visualize</pre>

	What to do	Description	What to read or practice or integrate
3	Implement your own pose integration algortihm and compare results	Trajectory	Use the matlab code of the previous Lab's to generate the trajectory. Compare resulkts
4	Add some noise to the odometry	$v = \begin{pmatrix} \sigma_d^2 & 0 \\ 0 & \sigma_\theta^2 \end{pmatrix}$ $odo = \begin{pmatrix} \frac{R+L}{2} \\ \frac{R-L}{2S} \end{pmatrix} + randn(2,1)^T * v$	Add noise to the trajectory. Use different noise covariance matrix, display the ellipses and compare results.

What to deliver:

A pdf report with figures, commented code and workspace variable you use for implementing the blocks of the suggested architecture.

Step	Block	Points
1	Pose estimated. A figure of a noisy trajectory with the ellipses representing the covariance error in position. Make a zoom in to see in detail. Add to the report the commented code you implemented.	1
2	Polar 2 Cartesian. A figure of the Land Mark seeing in Robot Reference Frame.	1
3	Robot to World. Generate the workspace 'laserW' variable and and include in the report a figure of the Land Mark seeing in World Reference Frame.	2
4	Associated Land Mark. Filter out the lidar data by detecting the landMark (datacloud) and Identifying the LandMark (nearest_to). Add to the report a figure with colored Land Mark seeing by the Robot.	2
5	Similarity Transform. Adapt the Similarity Transform to output the error in pose given a time.	2

Note: Steps 1 to 5 can be done using Matlab script.