RSeQC & HTSeq

March 9th, 2023

MARCH 2023

		ı	ı	ı		1
SUN	MON	TUE	WED	THU	FRI	SAT
			1	2	3	4
5	6	7	8	9 today	10	11
12	13 HW#8	SPRI	15 NG BR	16 EAK	17 St. Patrick's Day	18
19	20 <i>Med</i>	21 R intro nt for begin	22 ners	23	24	25
26	27	28	29		31 HW#9 ner the bett	er

Download & Print Free Calendars From Wiki Calendar

Pre & post alignment QC

raw reads QC

- adapter/primer/other contaminating and over-represented sequences
- sequencing quality
- GC distributions
- duplication levels

aligned reads QC

- % (uniquely) aligned reads
- % exonic vs. intronic/intergenic
- gene diversity
- gene body coverage
- strandedness

Pre-alignment: FastQC, fastp

Post-alignment: RSeQC, QoRTs

Pre QC Questions

- Before mapping:
 - How to identify and remove reads with low base calls?
 - How to identify and remove reads with linkers/adaptors?
 - How to screen for potential species/vector/ribosomal contamination?
 - How is your library complexity?

Post-alignment QC

lack of gene diversity:

 dominance of rRNAs, tRNAs or other highly abundant transcripts

read distribution

- high intron coverage: incomplete poly(A) enrichment
- many intergenic reads: gDNA contamination

gene body coverage

- 3' bias: RNA degradation + poly(A) enrichment
- What is percentage of reads aligned?
- Is your sequencing library stranded or unstranded?

Install RSeQC

- We will install RSeQC using conda
- Conda is an open-source management system
- Conda quickly installs, runs, and updates packages and their dependencies
- For this installation we will be creating a 'conda environment' called rseqc
- To use rseqc program in the future, you will need to perform 'conda activate rseqc'

Take a break to install

Stranded libraries

- A major decision to be made during the library preparation step is whether to preserve RNA strand information.
- Unlike DNA molecules, RNA molecules exist as single-stranded threads that could result from the sense or antisense strand.
- The creation of stranded libraries are now standard with Illumina TruSeq 'stranded' RNA-Seq kits
- This means that with a great amount of certainty you can identify which strand of DNA the RNA was transcribed from

Three widely used protocols for strand-specific RNA-Seq library prep

Purified mRNA by poly(T) magnetic beads or rRNA depletion AAAAAAA...AAA AAAAAAA...AAA Fragmentation b C dUTP second strand **RNA ligation** SMART 1st strand RT 3' RNA adapter ligation 1st strand RT 2nd strand generation Adds dUTP 5' RNA adapter ligation Nontemplate C addition Adds two with dUTP different GGG adapters to ends Library generation TS oligo dependent RT 1st strand RT with Y adapters Uracil-specific digestion 2nd strand generation 2nd strand generation

Why retain stranded information?

- It makes sense to begin with the most information possible even if immediately that is not of interest
- Useful for identifying antisense transcripts, mapping splicing events, and detecting overlapping transcripts.
- They are commonly used in studies of transcriptomics, gene expression analysis, and RNA editing, and *de novo* assembly.

Why is this important to determine prior to counting?

- If you use wrong directionality parameter in the read counting step with HTSeq, the reads are considered to be from the wrong strand.
- This means you won't get any counts, and if there is a gene in the same location on the other strand, your reads are counted for the *wrong gene*.
- So its important to check, if you are unsure, using tools!

Three scenarios when it comes to stranded libraries

- Forward (secondstrand) reads resemble the gene sequence
- Reverse (firststrand) reads resemble the complementary sequence
- Unstranded

If sequences of Read 1 align to the coding, sense strand – the library is "stranded"

If sequences of Read 2 align to the coding, sense strand – the library is "reverse stranded"

If sequences both Read 1 and Read 2 align to the coding, sense strand – the library is "unstranded"

Different tools have different names for stranded settings:

	Option 1 RF/fr-firststrand		Option 3 Unstranded
HISAT2	HISAT2 R/RF (for PE)rna-strandedness R (for SE)		Default
STAR n/a		n/a	n/a
SALMON -I ISR		-I ISR	-I IU
HTSeq	HTSeq stranded=reverse stranded=yes		stranded=no
Methods or Kits dUTP Illumina TruSeq NEBNext Ultra II		Ligation Standard SOLID, NuGEN, 10X	Standard Illumina NuGEN, SMARTer

Infer_experiment.py pair-end RNA-seq

The second read (read 2) is from the original RNA strand/template, first read (read 1) is from the opposite strand.

Fraction of reads explained by "1++,1--,2+-,2-+": 0.0169

Fraction of reads explained by "1+-,1-+,2++,2-- ": 0.8827

Strand-specific pair-end RNA-seq data using dUTP protocol

Option 1 RF/fr-firststrand

		,		
Option 1 RF/fr-firststrand		Option 2 FR/fr- secondstrand	Option 3 Unstranded	
HISAT2	HISAT2 R/RF (for PE)rna-strandedness R (for SE)		Default	
STAR n/a		n/a	n/a	
SALMON -I ISR		-I ISR	-I IU	
HTSeq	stranded=reverse	stranded=yes	stranded=no	
Methods or Kits dUTP Illumina TruSeq NEBNext Ultra		Ligation Standard SOLID, NuGEN, 10X	Standard Illumina NuGEN, SMARTer	

Infer_experiment.py pair-end RNA-seq

The first read (read 1) is from the original RNA strand/template, second read (read 2) is from the opposite strand.

Fraction of reads explained by "1++,1--,2+-,2-+": 0.9807

Fraction of reads explained by "1+-,1-+,2++,2-- ": 0.0193

Strand-specific pair-end RNA-seq data using Ligation protocol

Option 2 FR/fr-secondstrand

Option 1 RF/fr-firststrand		Option 2 FR/fr-secondstrand	Option 3 Unstranded	
HISAT2	R/RF (for PE)rna-strandedness R (for SE)	F/FR (for PE)rna-strandedness F (for SE)	Default	
STAR	n/a	n/a	n/a	
SALMON	-I ISR	-I ISR	-I IU	
HTSeq	stranded=reverse	stranded=yes	stranded=no	
Methods or Kits	dUTP Illumina TruSeq NEBNext Ultra II	Ligation Standard SOLID, NuGEN, 10X	Standard Illumina NuGEN, SMARTer	

Infer_experiment.py pair-end RNA-seq

Fraction of reads failed to determine: 0.0648

Fraction of reads explained by "1++,1--,2+-,2-+": 0.4590

Fraction of reads explained by "1+-,1-+,2++,2--": 0.4763

Information regarding the strand is not conserved (it is lost during the amplification of the mRNA fragments).

Option 3 Unstranded

Option 1 RF/fr-firststrand		Option 2 FR/fr-secondstrand	Option 3 Unstranded	
HISAT2	R/RF (for PE)rna-strandedness R (for SE)	F/FR (for PE)rna-strandedness F (for SE)	Default	
STAR	n/a	n/a	n/a	
SALMON	-I ISR	-I ISR	-I IU	
HTSeq	stranded=reverse	stranded=yes	stranded=no	
Methods or Kits	dUTP Illumina TruSeq NEBNext Ultra II	Ligation Standard SOLID, NuGEN, 10X	Standard Illumina NuGEN, SMARTer	

Take a break to run RSeQC to infer strandedness

Is your library stranded or not stranded?

–RSeQC (http://rseqc.sourceforge.net/)

-infer_experiment.py -i
sample.bam -r gene_model.bed

What would you choose for the unknown?

	Option 1 RF/fr-firststrand	Option 2 FR/fr-secondstrand	Option 3 Unstranded	
HISAT2	R/RF (for PE)rna-strandedness R (for SE)	F/FR (for PE)rna-strandedness F (for SE)	Default	
STAR	n/a	n/a	n/a	
SALMON	-I ISR	-I ISR	-I IU	
HTSeq	stranded=reverse	stranded=yes	stranded=no	
Methods or Kits	dUTP Illumina TruSeq NEBNext Ultra II	Ligation Standard SOLID, NuGEN, 10X	Standard Illumina NuGEN, SMARTer	

Summary

reads explained by "1++,1--,2+-,2-+":0.4590

Fraction of reads explained by "1+-,1-+,2++,2--": 0.4763

Infer_experiment.py single-end RNA-seq

Two different ways to strand reads:

read mapped to '+' strand indicates parental gene on '+' strand read mapped to '-' strand indicates parental gene on '-' strand

read mapped to '+' strand indicates parental gene on '-' strand read mapped to '-' strand indicates parental gene on '+' strand

Strand-specific example:

Fraction of reads failed to determine: 0.0170 Fraction of reads explained by "++,--": 0.9669 Fraction of reads explained by "+-,-+": 0.0161

FR/fr-secondstrand stranded=yes

COUNTING READS

Bioinformatics workflow of RNA-seq analysis

Gene counting programs

- HTSeq (Anders et al.2015, Bioinformatics 31:2)
- Cufflinks (Trapnell et al, 2010, Nat Biotech 28:5)
- StringTie (Pertea et al. 2015, Nat Biotech 33:3)
- featureCounts

We are using HTSeq as this approach will obtain gene-level quantification by directly overlapping with gene loci

Counting per-gene alignments

	sample1	sample2	sample3	sample4	
gene1	999	701	616	595	
gene2	532	520	41	26	
gene3	14	36	305	322	

- HTSeq package
 - Anders, Pyl & Huber, 2015, Bioinformatics 31:2
 - Hompage at https://htseq.readthedocs.io/
 - Allows per-exon counts
 - Designed for differential gene expression testing
 - Includes the htseq-count command

Counting features with htseq-count

 What features are of interest? Gene, transcript, and/or exon counts?

type=exon

• What happens if a read overlaps with multiple features?

mode=union

• Is the RNA stranded, reversed strand, or unstranded?

Storing annotation information

- representing genome coordinates + description/name
 - intron-exon structures, start and stop codons, UTRs, alternative transcripts
- various formats (all are plain text files): GFF2, GFF3, GTF, BED, SAF...

GTF ("GFF2.5") # GFF-version 2 curated exon 5506900 5506996 . + . Transcript B0273.1 5506026 5506382 . + . Transcript B0273.1 3 IV curated exon reference coordinate Transcript B0273.1 4 IV curated exon 5506558 5506660 . + . Transcript B0273.1 5506738 5506852 . + . 5 IV curated exon source # GFF-version 3 s ctg123 exon 1300 1500 ID=exon00001 annotation type GFF3 o ctg123 1050 1500 exon ID=exon00002 10 ctg123 exon 3000 3902 ID=exon00003 start position n ctg123 . 5000 5500 ID=exon00004 exon 12 ctg123 7000 9000 ID=exon00005 exon

6. score

```
# example for the 9th field of a GTF file
gene_id "Em:U62.C22.6"; transcript_id "Em:U62.C22.6.mRNA"; exon_number 1
```

GFF2

GTF

8. frame/phase

strand

end position

9. attributes: <TYPE VALUE>; <TYPE VALUE>; <TYPE VALUE>

Summary

- We downloaded fastq.gz files from the SRA via SRAtool-kit (fastq-dump)
- We did QC of the raw reads using FastQC (1x per sample) and summarized the results for the numerous fastq files per sample it using MultiQC
- We aligned the raw reads using STAR and HISAT2
- We performed additional
 QC on those BAM files
 using RSeQC
- We then counted readgene overlaps with HTSeq