

Temporal Module

周浩 2018/11/23

Outline:

- RNN
 - GRU
- Neural Machine Translation
 - Transformer

RNN

• 输入: T个D维有序向量

·输出: T个E维有序向量

• 此处T=3

RNN Cell

- 输入: D维向量
- 输出: E维向量

1×E 维向 量 1×D 维向 量

class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh')

An Elman RNN cell with tanh or ReLU non-linearity.

$$h' = \tanh(w_{ih}x + b_{ih} + w_{hh}h + b_{hh})$$

If nonlinearity is 'relu', then ReLU is used in place of tanh.

Parameters:

- input_size The number of expected features in the input x
- hidden_size The number of features in the hidden state h
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default:
 True
- nonlinearity The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'

GRU Cell

• 输入: D维向量

• 输出: E维向量

class torch.nn.GRUCell(input_size, hidden_size, bias=True)

[source]

A gated recurrent unit (GRU) cell

$$egin{aligned} r &= \sigma(W_{ir}x + b_{ir} + W_{hr}h + b_{hr}) \ z &= \sigma(W_{iz}x + b_{iz} + W_{hz}h + b_{hz}) \ n &= anh(W_{in}x + b_{in} + r*(W_{hn}h + b_{hn})) \ h' &= (1-z)*n + z*h \end{aligned}$$

where σ is the sigmoid function.

Parameters:

- input_size The number of expected features in the input X
- hidden size The number of features in the hidden state h
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default True

bidirectional RNN

1. Word Embedding and Prediction

- embedding: W×D, 随机初始化,可训练的
 - 相似场景: 个性化推荐
 - 给定对象和广告,学习特征的表达

- prediction: D×W
 - 全连接层做分类,类别数为词的个数

Word Embedding and Prediction

- 上下文预测:
- 这个\可爱的\小狗\舔了\我的\脸

2. Neural Machine Translation (sys2sys)

- 编码: N1×D维向量
- •解码: ?×E维向量
 - 输入词表:添加 [begin] 标签(optional)
 - 输出此表:添加 [end] 标签, 遇到则停止

sys2sys

- 基于attention的sys2sys
 - 把所有序列信息利用起来

3. Transformer

- 基于Attention模型的编码
 - RNN完成了N1×D到N1×E的变换
 - long term ?
 - 利用Attention模型完成相似的功能
 - non-local

Figure 1: The Transformer - model architecture.

3. Transformer

scaled dot-product attention

• query: $T1 \times D$

• key: $T2 \times D$

• value: $T2 \times E$

- 利用T1×T2的mask得到T1×E
 - 此处E和D可以相同,即为RNN的作用

multi-head attention

• 分组,重复attention操作,把结果拼接

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Non-local Neural Networks(best performance)

- Non-local Similarity
- Input-Dependent Matrix

