Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

20 de junho de 2016

Plano de Aula

- Pensamento
- 2 Revisão
 - Grafos Bipartidos
- Caminhos e circuitos em grafos
- Cortes

Bônus (0,5 pt)

Desafio

- E 1.151
- Candidaturas até amanhã (21 de junho, 13h30);
- Apresentação e resposta por escrito → segunda (28 de junho, 15h30);
- 20 minutos de apresentação.

Referência

FEOFILOFF, P. Exercícios de Teoria dos Grafos, BCC, IME-USP, 2012.

Sumário

- Pensamento
- 2 Revisão
 - Grafos Bipartidos
- 3 Caminhos e circuitos em grafos
- 4 Cortes

Pensamento

Pensamento

Frase

Jamais corte o que pode ser desatado.

Quem?

Joseph Joubert (1754 - 1824) Moralista e ensaísta francês.

Sumário

- Pensamento
- 2 Revisão
 - Grafos Bipartidos
- Caminhos e circuitos em grafos
- Cortes

Grafo Bipartido

Definição

Um grafo G é **bipartido** se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Lembrando... Bipartição!

Uma bipartição de um conjunto V é um par $\{U,W\}$ de conjuntos não vazios tal que $U\cup W=V$ e $U\cap W=\emptyset$.

Notação

- Para explicitar a partição, podemos dizer que o grafo é {U, W}-bipartido.
- Se G é um grafo {U, W}-bipartido, podemos dizer, informalmente, que os elementos de U são os vértices brancos e os de W são os vértices pretos do grafo.

Grafo Bipartido

Grafo $\{U, W\}$ -bipartido completo

Um grafo $\{U, W\}$ -bipartido é **completo** se todo vértice branco é adjacente a todos os vértices pretos.

Grafo Bipartido

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

- Uma estrela é um grafo $K_{1,q}$;
- Se q ≥ 2, o centro da estrela é o único vértice que incide em duas ou mais arestas;
- Se q < 2, a estrela não tem centro.

Sumário

- Pensamento
- RevisãoGrafos Bipartidos
- 3 Caminhos e circuitos em grafos
- 4 Cortes

Caminho em um grafo

Se um caminho $v_1 ldots v_p$ é subgrafo de G, dizemos simplesmente que $v_1 ldots v_p$ é um caminho em G ou que G contém o caminho $v_1 ldots v_p$.

Caminho em um grafo

Se um caminho $v_1 ldots v_p$ é subgrafo de G, dizemos simplesmente que $v_1 ldots v_p$ é um caminho em G ou que G contém o caminho $v_1 ldots v_p$.

Circuitos em um grafo

Aplica-se identicamente a circuitos.

Nomenclatura

Se v e w são os dois extremos de um caminho em G, é cômodo dizer que o caminho vai de v a w ou que começa em v e termina em w.

Nomenclatura

Se v e w são os dois extremos de um caminho em G, é cômodo dizer que o caminho vai de v a w ou que começa em v e termina em w.

Cuidado!

Use estas expressões com cautela pois caminhos são objetos estáticos e não têm orientação.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho <u>maximal em *G*</u>

Um caminho P em G é maximal se não existe caminho P' em G tal que $P \subset P'$.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho maximal em G

Um caminho P em G é maximal se não existe caminho P' em G tal que $P \subset P'$.

Caminho Hamiltoniano

Um caminho é **hamiltoniano** se contém todos os vértices do grafo.

Sumário

- Pensamento
- 2 Revisão
 - Grafos Bipartidos
- Caminhos e circuitos em grafos
- 4 Cortes

Definição

• Suponha que X é um conjunto de vértices de um grafo G.

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Notação

O corte associado a X será denotado por

$$\partial_G(X)$$

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Notação

O corte associado a X será denotado por

$$\partial_G(X)$$

Outros autores...

Alguns preferem escrever $\delta(X)$ ou $\nabla(X)$.

Cortes triviais

∂(∅);

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Grau de um conjunto

• Diremos que $|\partial(X)|$ é o grau de X;

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Grau de um conjunto

- Diremos que $|\partial(X)|$ é o grau de X;
- Denotamos este número como se segue:

$$d(X) := |\partial(X)|$$

Corte - Definição

Um **corte** (= cut = coboundary) em um grafo G é qualquer conjunto da forma $\partial(X)$, em que X é um subconjunto de V_G .

Corte - Definicão

Um **corte** (= cut = coboundary) em um grafo G é qualquer conjunto da forma $\partial(X)$, em que X é um subconjunto de V_G .

Cuidado

Um corte é um conjunto de arestas, não de vértices.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

20 de junho de 2016

