10520 CS410001 - Computer Architecture 2017 Appendix A for Projects

Datasheet for the Reduced MIPS R3000 ISA

Table 1: R-Type Instructions

R	31 26 opcode(6)	25 21 rs(5)	20 16 rt(5)		10 6 C(shamt)(5)	5 0 funct(6)	Syntax	Semantic
1.1	`	18(3)	11(3)	ru(3)			•	
add	0x00				X		add \$d,\$s,\$t	\$d = \$s + \$t
addu	0x00				X	0x21	add \$d,\$s,\$t	d = s + t(unsigned, no overflow exception)
sub	0x00				X	0x22	sub \$d,\$s,\$t	d = s - t
and	0x00				X	0x24	and \$d,\$s,\$t	\$d = \$s & \$t
or	0x00				X	0x25	or \$d,\$s,\$t	$d = s \mid t$
xor	0x00				X	0x26	xor \$d,\$s,\$t	$d = s^ $
nor	0x00				X	0x27	nor \$d,\$s,\$t	$\$d = \sim (\$s \mid \$t)$
nand	0x00				X	0x28	nand \$d,\$s,\$t	d = (s & t)
slt	0x00				X	0x2A	slt \$d,\$s,\$t	d = (s < t), signed comparison
sll	0x00	X				0x00	sll \$d,\$t,C	d = t << C
srl	0x00	X				0x02	srl \$d,\$t,C	d = t >> C
sra	0x00	X				0x03	sra \$d,\$t,C	d = t >> C, with sign bit shifted in
jr	0x00		X	X	X	0x08	jr \$s	PC=\$s
mult	0x00			X	X	0x18	mult \$s \$t	$\{Hi \parallel Lo\} = \$s * \t
multu	0x00			X	X	0x19	multu \$s \$t	${Hi \parallel Lo} = s * t \text{ (unsigned, no overflow exception)}$
mfhi	0x00	X	X		X	0x10	mfhi \$d	\$d = Hi
mflo	0x00	X	X		X	0x12	mflo \$d	\$d = Lo

Table 2: I-Type Instructions

_	31 26	25 21	20 16	15 0	G 4	
	opcode(6)	rs(5)	rt(5)	C(immediate)(16)	Syntax	Semantic

I	31 26 opcode(6)	25 21 rs(5)	20 16 rt(5)	15 C(immediate)(16)	Syntax	Semantic
addi	0x08				addi \$t,\$s,C	t = s + C(signed)
addiu	0x09				addi \$t,\$s,C	t = s + C(unsigned, no overflow exception)
lw	0x23				lw \$t,C(\$s)	t = 4 bytes from Memory[$s + C(signed)$]
lh	0x21				lh \$t,C(\$s)	t = 2 bytes from Memory[$s + C(signed)$], signed
lhu	0x25				lhu \$t,C(\$s)	t = 2 bytes from Memory[$s + C(signed)$], unsigned
lb	0x20				lb \$t,C(\$s)	t = Memory[s + C(signed)], signed
lbu	0x24				lbu \$t,C(\$s)	t = Memory[s + C(signed)], unsigned
SW	0x2B				sw \$t,C(\$s)	4 bytes from Memory[\$s + C(signed)] = \$t
sh	0x29				sh \$t,C(\$s)	2 bytes from Memory[$s + C(signed)$] = $t & 0x0000FFFF$
sb	0x28				sb \$t,C(\$s)	Memory[\$s + C(signed)] = \$t & 0x000000FF
lui	0x0F	X			lui \$t,C	t = C << 16
andi	0x0C				andi \$t,\$s,C	\$t = \$s & C(unsigned)
ori	0x0D				ori \$t,\$s,C	$t = s \mid C(unsigned)$
nori	0x0E				nori \$t,\$s,C	$t = \sim (s \mid C(unsigned))$
slti	0x0A				slti \$t,\$s,C	\$t = (\$s < C(signed)), signed comparison
beq	0x04				beq \$s,\$t,C	if $(\$s == \$t)$ go to PC+4+4*C(signed)
bne	0x05				bne \$s,\$t,C	if (\$s != \$t) go to PC+4+4*C(signed)
bgtz	0x07		X		bgtz \$s,C	if (\$s > 0) go to PC+4+4*C(signed)

Table 3: J-Type Instructions

J	31 26 opcode(6)	25 C(address)(26)	Syntax	Semantic
j	0x02		j C	PC = (PC+4)[31:28] 4*C(unsigned)
jal	0x03		jal C	\$31 = PC + 4; PC = (PC+4)[31:28] 4*C(unsigned)

Table 4: Specialized Instruction (to Terminate Simulation)

	S	31 26	25 0	Syntax	Semantic
--	---	-------	------	--------	----------

	opcode(6)	C(address)(26)		
halt	0x3F	x	halt	halt the simulation

In our simulator, all the comparison operation should be implemented using "==" operation instead of hardware subtraction comparison.