The difference between

- (i) invariant
- 2 inductive invariant

$$\frac{1}{x} = x - 2$$

$$x = -100$$

$$\{x>0 \land x>0\}$$
 loop body  $\{x>0\}$   $X$ 

$$\times$$

### predicate abstraction

Set of predicates
$$= \{x > 100, y = 0\}$$

$$x := x + 1$$

$$\{x>100 \ A \ y=0\}$$
 $\{x>100 \ A \ y=0\}$ 
 $\{x>100 \ A \ y=0\}$ 
 $\{x>100 \ A \ y=0\}$ 

# Cartesian predicate abstraction

## Back to Horn Clauser

$$\begin{cases}
\chi = 0 & \Lambda & y = 0
\end{cases}$$

while  $(\Lambda > 0)$ 
 $\chi := \chi + 1$ 
 $\chi := y + 1$ 
 $\Lambda := \Lambda - 1$ 

$$\{x=0 \Rightarrow y=10\}$$

Convert to Horn clauser:

initiation:

$$x=0 \wedge y=0 \Rightarrow T(x_1y)$$

consception:

 $T(x_1y) \wedge x' = x + 1 \wedge y' = y + 1 \Longrightarrow T(x', y')$ 

Sefety
$$T(x,y) \Longrightarrow (x=0) \Rightarrow y=0$$



#### FIXPOINT

$$\pm (x',y') = \pm (\alpha',y') \vee \alpha \left( \exists x_{i}y \right) \cdot \pm (x_{i}y) \wedge x' = x + 1 \wedge \gamma' = \gamma + 1 \right)$$

take one step through the loop starting from I (X14)

$$\frac{9.7}{1} = x = 0 \wedge y = 0$$

$$\frac{1}{1} = (x = 0 \wedge y = 0) \vee (x = 1 \wedge y = 1)$$

$$\frac{1}{1} = (x = 0 \wedge y = 0) \vee (x = 2 \wedge y = 2)$$

$$\vdots$$

### PREDICATE ABS

predicates = {P, , ... , P. }

given Q, what is the strongest formula W over predicator s.t.  $Q \Rightarrow Y$ 





$$e_{q}$$
  $\{x>100 \land y=0\}$   $x=x-1$   $\{y=0\}$ 

$$e_{q} = x>100 \land y=0 \land x'=x-1 \land y'=y$$

$$e_{q} = x>100 \land y=0 \land x'=x-1 \land y'=y$$

$$e_{q} = x>100 \land y=0 \land x'=x-1 \land y'=y$$

abstraction function