Formal Languages Deterministic PDAs

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\underbrace{q_1}^{\lambda, b \to w} q_2$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example:

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Example of Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Not allowed in DPDAs

PDAS

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
PDAs

Since every DPDA is also a PDA

We will actually show:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- \cdot L is context-free
- L is not deterministic context-free

Proof?

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts $\,L\,$)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts a^nb^n

accepts a^nb^{2n}

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists due to determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a PDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

$$L(M') = \{a^n c^n\} \cup \{a^n c^{2n}\}$$

A PDA that accepts $L \cup \{a^nb^nc^n\}$

Connect the final states of $\,M\,$ with the final states of $\,M'\,$

Since $L \cup \{a^nb^nc^n\}$ is accepted by a PDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Is not deterministic context free

There is no DPDA that accepts it

End of Proof

Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Proof?

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 L_2 is context free is context-free

Proof?

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ L^* is context-free

Proof?

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

is context free \longrightarrow L

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

$$L_1$$
 context free $L_1 \cap L_2$ L_2 regular context-free

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

DFA M_2

NPDA M

$$\begin{array}{c}
 q_1, p_1 \\
 \hline
 a, b \rightarrow c \\
 \hline
 q_2, p_2
\end{array}$$
transition

DFA M_2

NPDA M

$$\overbrace{q_1, p_1} \xrightarrow{\lambda, b \to c} \overbrace{q_2, p_1}$$
transition

DFA M_2

initial state

initial state

NPDA M

 $\rightarrow q_0, p_0$

Initial state

DFA M_2

final state

final states

NPDA M

final states

Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

Intersection?

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

$$a, \lambda \to 1 \qquad c, 1 \to \lambda$$

$$q_0, p_0 \to \lambda, \lambda \to \lambda \qquad q_1, p_0 \to \lambda, \lambda \to \lambda \qquad q_2, p_0 \to \lambda, \lambda \to \lambda \qquad q_3, p_0$$

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of

a context-free language and
a regular language
is a context-free language

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap L_1$ context-free

$$\{\cap L_1\}$$

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

Proof?

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free **Impossible!!!**

Therefore, L is not context free

Decidable Properties of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- · Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

Dependency graph

Infinite language

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^2 S(bbb)^2$$

$$\stackrel{*}{\Rightarrow} (acbb)^i S(bbb)^i$$