The Pólya-Szegő Conjecture on Polygons: A Numerical Approach

By

LOGAN REED

A thesis submitted to the
Graduate School–Camden
Rutgers, The State University of New Jersey
In partial fulfullment of the requirements
For the degree of Master of Science
Graduate Program in Mathematical Sciences

Written under the direction of

Siqi Fu

And approved by

Dr. One

Dr. Two

Dr. Three

Dr. Four

Camden, New Jersey

May 2023

TEST PAGE

THESIS ABSTRACT

TODO SOMETHING ABOUT THE ABSTRACT THAT IS ABOUT THIS

LONG OR SO

by LOGAN REED

Thesis Director:

Siqi Fu

The topic that I chose to explore for this thesis is a study of the eigenvalues of the Dirichlet Laplacian on a two dimensional domain and \dots

Acknowledgment

I would be remiss if I did not take a moment to express appreciation for all of the people who have helped me through this process.

Contents

1	Introduction		
	1.1	Physical Motivation	3
	1.2	Polya-Szego's Conjecture	5
	1.3	Known Results	6
	1.4	Numerical Analysis Tools	7
2 Background			8
	2.1	Notations and Definitions	9
	2.2	Function Spaces	10
	2.3	PDEs	11
	2.4	Calculus of Variations	12
3	Eigenvalues of Dirichlet Laplacian		13
	3.1	Definition	14
	3.2	Known Results	15
	3.3	Polygons	16
	3 4	Tools	17

Introduction

This is the intro.

Chapter 1

Introduction

1.1 Physical Motivation

Consider a homogeneous elastic drumhead, or membrane, stretched over a rigid frame. We will represent the frame as a domain $\Omega \subset \mathbb{R}^2$. Take the function u(x,y,t) to be the vertical displacement of the membrane from its resting position. Then for any disk $D \subset \Omega$, Newton's second law of motion states that

$$\int_{\partial D} T \frac{\partial u}{\partial \mathbf{n}} \, dS = \int_{D} \rho u_{tt} \, dA$$

where T is the constant tension, ρ is the density constant, and **n** is the outward normal of the boundary. By the divergence theorem, we have

$$\int_{D} T\Delta u \, dA = \int_{D} \rho u_{tt} \, dA$$

where Δ is the Laplace operator. From this we can get the wave equation on Ω

$$u_{tt} = c^2 \Delta u$$

where we define u to be 0 on the boundary and where $c = \sqrt{T/\rho}$. We can solve this wave equation using u(x, y, t) = T(t)V(x, y) which gives us

$$\frac{T''}{c^2T} = \frac{\Delta V}{V} = -\lambda$$

and finally we have reduced our problem to the Dirichlet Laplacian

$$\Delta V = -\lambda V$$

where V on the boundary is zero.

NOTE: The best reference I could find is Logan's Applied Partial Differential Equations. I could also use Ryans paper

In the next section, we will start from the Dirichlet Laplacian and introduce

the conjectures in a formal setting.

1.2 Polya-Szego's Conjecture

- 1. Introduce Rigorous Definitions from 1.1.2 Henrot
- 2. Dirichlet Laplacian eigenvalues prereqs
- 3. Faber Krahn
- 4. Polya-Szego Conjecture [1]

1.3 Known Results

- 1. All Explicit Cases
- 2. Tools for n=3 and n=4

1.4 Numerical Analysis Tools

Chapter 2

Background

2.1 Notations and Definitions

2.2 Function Spaces

Definition 2.2.1. A complex linear space \mathbb{H} is called a normed linear space if there exists a map $||\cdot||: \mathbb{H} \to \mathbb{R}^+$ such that for any $x, y \in \mathbb{H}$ and $\lambda \in \mathbb{C}$,

- 1. $||\lambda x|| = |\lambda|||x||$
- 2. $||x + y|| \le ||x|| + ||y||$
- 3. $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0

Definition 2.2.2. A complex linear space \mathbb{H} is called an inner product space with inner product $\langle \cdot, \cdot \rangle : \mathbb{H} \times \mathbb{H} \to \mathbb{C}$ if for any $x, y, z \in \mathbb{H}$ and $\lambda \in \mathbb{C}$,

- 1. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 4. $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if x = 0.

Definition 2.2.3. A Hilbert space is a complete inner product space

2.3 PDEs

Definition 2.3.1. Laplacian

$$-\Delta u := -\sum_{i=1}^{N} \frac{\partial^2 u}{\partial x_i^2}.$$

Definition 2.3.2. The Dirichlet Laplacian is the Laplace Operator subject to Dirichlet boundary conditions

2.4 Calculus of Variations

Chapter 3

Eigenvalues of Dirichlet

Laplacian

3.1 Definition

Theorem 3.1.1. Let Ω be a bounded open set. We assume that $\lambda'_k(\Omega)$ is simple. Then, the functions $t \to \lambda_k(t), t \to u_t \in L^2(\mathbb{R}^N)$ are differentiable at t = 0 with

$$\lambda'_k(0) := -\int_{\Omega} \operatorname{div}(|\nabla u|^2 V) \, \mathrm{d}x.$$

If, moreover, Ω is of class C^2 or if Ω is convex, then

$$\lambda_k'(0) := -\int_{\Omega} \left(\frac{\partial u}{\partial n}\right)^2 V.n \,\mathrm{d}\sigma$$

and the derivative u' of u_t is the solution of

$$\begin{cases}
-\Delta u' = \lambda_k u' + \lambda'_k u & \text{in}\Omega \\
u' = -\frac{\partial u}{\partial n} V.n & \text{on}\partial\Omega \\
\int_{\Omega} u u' \, d\sigma = 0.
\end{cases}$$

3.2 Known Results

- 1. invariant under translations rotations
- 2. homothety
- 3. continuous

Theorem 3.2.1 (Faber-Krahn). Let c be a positive number and B the ball with volume c. Then,

$$\lambda_1(B) = \min \{\lambda_1(\Omega), \Omega \text{ open subset of } \mathbb{R}^N, |\Omega| = c\}.$$

Proof. page 46 henrot \Box

3.3 Polygons

Note P_N is the class of plane polygons with at most N edges.

Theorem 3.3.1. Let a > 0 and $N \in \mathbb{N}$ be fixed. Then the problem

$$\min \{\lambda_1(\Omega), \Omega \in P_N, |\Omega| = a\}$$

has a solution.

Proof. 47 henrot

Theorem 3.3.2. Let $M \in \mathbb{N}$ and Ω be a polygon with M edges. Then Ω cannot be a (local) minimum for $|\Omega|\lambda_1(\Omega)$ in the class P_{M+1} .

Theorem 3.3.3 (Pólya). The equilateral triangle has the least first eigenvalue among all triangles of given area. The square has the least first eigenvalue among all quadrilaterals of given area.

3.4 Tools

steiner etx.

Bibliography

[1] G. Polya and G. Szego. *Isoperimetric inequalities in mathematical physics*. Princeton University Press, 1951.