透镜焦距的测量 实验报告

2018011365 计84 张鹤潇

拉伸法测量弹性模量

一、实验目的

- 1. 学习用拉伸法测量弹性模量的方法;
- 2. 掌握螺旋测微计和读数显微镜的使用;
- 3. 学习用逐差法处理数据。

二、数据处理

1. 测钢丝长度L及其伸长量δL.

仪器编号 10; 钢丝长度L = 999 mm

表 1 钢丝长度测量数据表

组	E(N)	y_i (mm)	$l_i = y_{i+5} - y_i(\text{mm})$			
别	$F_i = mg(N)$	增砝码时	减砝码时	增砝码时1+	减砝码时1_		
1	0. 200×1×9. 80	0.415	0. 442	1.240	1. 204		
2	0.200×2×9.80	0.639	0.641	1. 270	1. 257		
3	0.200×3×9.80	0.883	0.891	1. 286 1. 272			
4	0. 200×4×9. 80	1.130	1. 136	1.303	1. 295		
5	0.200×5×9.80	1.388	1.391	1.308	1. 296		
6	0.200×6×9.80	1.655	1.646				
7	$0.200 \times 7 \times 9.80$	1.909	1.898	$ar{l}=rac{\sum l_i}{10}=1.2727~ ext{mm}$			
8	0.200×8×9.80	2. 169	2. 163				
9	0.200×9×9.80	2. 433	2. 431				
10	$0.200 \times 10 \times 9.80$	2. 696	2. 687				

故
$$\bar{l} = 1.2727 \, mm, \, \, \frac{t_p(n-1)}{\sqrt{n}} = \frac{2.26}{\sqrt{10}}$$

$$S_l = \sqrt{\frac{\sum(l_i - \bar{l})^2}{9}} = 0.0324 \ mm$$

$$\Delta_{A} = \frac{t_{p}(n-1)}{\sqrt{n}} S_{l} = 0.0232 \text{ mm}$$

$$\Delta_{B} = \sqrt{\Delta_{y_{i+5}/x}^{2} + \Delta_{y_{i}/x}^{2}} = \sqrt{2} \times 0.004 \text{ mm}$$

$$\Delta_{l} = \sqrt{\Delta_{A}^{2} + \Delta_{B}^{2}} = 0.0238 \text{ mm}$$

进一步,

$$\delta L = \frac{l}{5} = 0.255 \, mm$$

$$\Delta_{\delta L} = \frac{\Delta_l}{5} = 0.005 \ mm$$

故 $\delta L \pm \Delta_{\delta L} = (0.255 \pm 0.005)$ mm

2. 测钢丝直径 D

表 2 测定螺旋测微计的零点

测量前(mm)	-0.011	-0.009	-0.010
测量后(mm)	-0.009	-0.010	-0.010

$$\bar{d} = -0.010 \ mm$$

表 3 测量钢丝直径

组别	1	2	3	4	5	6
$D_i(mm)$	0.211	0. 212	0. 208	0. 218	0.208	0.210

$$\overline{D} = -\overline{d} + \frac{\sum D_i}{6} = 0.221 \ mm$$

$$S_D = 0.004 \, mm$$

已知螺旋测微器示值误差 $\Delta_{\text{ (V)}} = 0.004 \, mm$, $\frac{t_p(n-1)}{\sqrt{n}} = \frac{2.57}{\sqrt{6}}$

$$\Delta_A = \frac{t_p(n-1)}{\sqrt{n}} S_D = 0.004 \ mm$$

$$\Delta_D = \sqrt{\Delta_{/\chi}^2 + \Delta_A^2} = 0.006 \ mm$$

$$D \pm \Delta_D = (0.221 \pm 0.006) mm$$

3. 总不确定度计算

$$E = \frac{4FL}{\pi D^2 \delta L} = \frac{4 \times 0.2 \times 9.8 \times 0.999}{\pi \times (0.221 \times 10^{-3})^2 \times 0.255 \times 10^{-3}} Pa = 2.0017 \times 10^{11} Pa$$

由实验室给出, $\frac{\Delta_F}{F} = 0.5\%$, $\Delta_L \approx 3mm$

$$\Delta_E = E \sqrt{\left(\frac{\Delta_F}{F}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{2\Delta_D}{D}\right)^2 + \left(\frac{\Delta_{\delta L}}{\delta L}\right)^2} = 0.1161 \times 10^{11} Pa$$

故E $\pm \Delta_E$ = $(2.00 \pm 0.12) \times 10^{11} Pa$

4. 直线拟合处理数据

选择增砝码时的数据。

图 1 增砝码时的 $v \sim F$ 回归直线图

直线公式为y = 0.1302F + 0.1277,相关系数r = 0.9998。

$$E = \frac{4L}{\pi D^2 \frac{\delta L}{F}} = \frac{4 \times 0.999}{\pi \times (0.221 \times 10^{-3})^2 \times 0.1302 \times 10^{-3}} \text{ Pa} = 2.0002 \times 10^{11} \text{ Pa}$$

与 3 中用逐差法得到的结果大致相等。

三、思考题

2. 在本实验中读数显微镜作测量室哪些情况下会产生空程误差?应如何消除它?

若非沿着一个方向波动鼓轮,则会产生空程误差。

欲消除空程误差,需要在一轮测量中保持鼓轮只向一个方向旋转,整个测量过程不能中途反转。特别注意,当测量完加砝码的情况,转换到减砝码时,要先将鼓轮向一个方向 多转一段再反转,以消除空程误差。

3. 从E的不确定度计算式分析哪个量的测量对E的结果影响最大?测量中应注意哪些问题?

$$\frac{\Delta_E}{E} = \sqrt{\left(\frac{\Delta_F}{F}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{2\Delta_D}{D}\right)^2 + \left(\frac{\Delta_{\delta L}}{\delta L}\right)^2}$$

由上述公式, $\frac{\Delta_D}{D}$ 这一项影响最大。因此在测量钢丝直径时,要注意:

- 1. 应均匀选择测量点,多次测量取平均值;
- 2. 测量时使用棘轮细调, 防止压力造成误差;
- 3. 实验前后测量螺旋测微仪的零点,以消除零点误差。

动力学法测弹性模量

一、实验目的

- 1. 学习一种更实用, 更准确的测量弹性模量的方法;
- 2. 学习用实验方法研究与修正系统误差。

二、数据处理

1. 被测样品的长度、直径和质量

使用材料 黄铜

游标卡尺零点 0.10 mm

铜棒长度l=199.70 mm,质量m=32.58 g

表 3 测定螺旋测微计的零点

测量前(mm)	-0.011	-0.010	-0.011
测量后(mm)	-0.009	-0.010	-0.010

$$\bar{d} = -0.010 \ mm$$

表 4 测量黄铜直径

组别	1	2	3	4	5	6
$D_i(mm)$	4. 949	4. 950	4. 957	4. 951	4. 955	4. 954

$$\overline{D} = -\overline{d} + \frac{\sum D_i}{6} = 4.963 \ mm$$

$$S_D = 0.003 \, mm$$

已知螺旋测微器示值误差
$$\Delta_{\text{ (d)}}=0.004~mm,~\frac{t_p(n-1)}{\sqrt{n}}=\frac{2.57}{\sqrt{6}}$$

$$\Delta_A = \frac{t_p(n-1)}{\sqrt{n}} S_D = 0.003 \ mm$$

$$\Delta_D = \sqrt{\Delta_{/\!\!/\chi}^2 + \Delta_A^2} = 0.005 \ mm$$

$$D \pm \Delta_D = (4.963 \pm 0.005) \, mm$$

2. 测基频频率

表 5 基频频率的测量

悬线位置x(mm)	-15	-10	-5	+5	+10	+15
共振频率f(Hz)	398. 66	398. 06	397. 63	397. 63	398. 28	399.07

x为负表示节点外侧,为正表示内侧。

用二阶多项式拟合。

图 2 $f \sim x$ 曲线图

曲线公式为 $f = 0.0061x^2 + 0.0119x + 397.51$,相关系数r = 0.995。

可以得到基频振动x = 0时,由拟合曲线可以得到基频频率f = 397.51 Hz

3. 推导 $\frac{\Delta_E}{E}$, 计算E, Δ_E

通过查表可知, $T_1 = 1.0035$

求得

$$E = 1.6067 \frac{l^3 m}{D^4} f^2 T_1 = 1.0896 \times 10^{11} Pa$$

根据 $\Delta_f = 0.10$ Hz, $\Delta_m = 0.05$ g, $\Delta_L = 0.02$ mm

$$\begin{split} \frac{\Delta_E}{E} &= \sqrt{\left(\frac{\partial}{\partial l} \ln E\right)^2 (\Delta_l)^2 + \left(\frac{\partial}{\partial m} \ln E\right)^2 (\Delta_m)^2 + \left(\frac{\partial}{\partial f} \ln E\right)^2 (\Delta_f)^2 + \left(\frac{\partial}{\partial D} \ln E\right)^2 (\Delta_D)^2} \\ &= \sqrt{\left(\frac{3\Delta_l}{l}\right)^2 + \left(\frac{\Delta_m}{m}\right)^2 + \left(\frac{2\Delta_f}{f}\right)^2 + \left(\frac{4\Delta_D}{D}\right)^2} \end{split}$$

$$\Delta_E = E \sqrt{\left(\frac{3\Delta_l}{l}\right)^2 + \left(\frac{\Delta_m}{m}\right)^2 + \left(\frac{2\Delta_f}{f}\right)^2 + \left(\frac{4\Delta_D}{D}\right)^2} = 4.7417 \times 10^8 Pa$$

$$E \pm \Delta_E = (1.090 \pm 0.005) \times 10^{11} Pa$$

实验小结

拉伸法优点在于操作简单,对仪器的需求小。但由于需要通过显微镜读取伸长量,难以 保证每次读取的位置相同;由于显微镜的坐台底部不平,显微镜经常晃动;另外,还要考虑 仪器的空程问题等。这些因素导致拉伸法的误差较大。

动力学法的实验原理较复杂,在获得共振频率时要反复调节信号发生器。在实验中,我发现稍微改变信号发生器的频率,波形就会有较大变化,需要对频率的百分位进行细调才能共振,可见该方法精确度较高。另外,从 $\frac{\Delta_E}{E}$ 的计算结果也可以看出,拉伸法的相对误差是动力学法的数十倍。

从选用材料看,钢丝很细,质量也很小,在振动过程中易受扰动,不适宜采用动力学法测量;而铜棒较粗,通过拉伸产生的形变很小,不易观察,不适宜采用拉伸法测量。

本次实验是我本学期的最后一次实验。物理实验让我认识到世界的奇妙,特别感谢各位老师和助教的耐心指导和帮助。

弹性模量的测量 实验数据

2018011365 计84 张鹤潇

一、拉伸法测量弹性模量

1.测钢丝长度L及其伸长量 δL

12	J	,树丝以及6————————————————————————————————————				
序		<i>y_i</i> ($(mm) l_i = y_{i+5} - y_i(mm)$		$-y_i(mm)$	
뒹	$F_i = mg(N)$	增砝码时	减砝码时	增砝码时 l_+	减砝码时1_	
1	0.200×1×9.80	0.41}	0.447			
2	0.200×2×9.80	0.639	0.641			
3	0.200×3×9.80	0.883	0.891			
4	0.200×4×9.80	1.130	1.136			
5	0.200×5×9.80	1.388	J.386 91 J	21 12/01		
6	0.200×6×9.80	1. 6rr	1.646			
7	0.200×7×9.80	1.906	1. 898			
8	0.200×8×9.80	2.169	2.163	$\bar{l} = 0.1 \sum$	$l_i = \underline{\hspace{1cm}}mm$	
9	0.200×9×9.80	2.433	2.431			
10	0.200×10×9.80	2.696	2.687			

2.测钢丝直径D

测定螺旋测微计的零点d(单位为 mm)

平均值*d*=_____mm

序号	1	2	3	4	5	6
$D_i(mm)$	0.211	0.212	0.208	0.2 8	0.208	0.210

钢丝的平均直径 \overline{D} =____mm, s_D =____mm

藝园 测量前(mm) -0.011 -0.010 -0.011

15 (mm) -0009 -0.010 -0.010

二、动力学法测弹性模量

3.被测样品的长度、直径和质量。 **38** /**99**-8-0.1

199.8-0.1 长度l=<u>199.70g mm</u>, 质量<u>32.48</u>9 卡尺厚点:0.010 Cm

序号	1	2	3	4	5	6
D _i /mm	<i>4.949</i> & ₹	4.9ro	4.917	4.951	4.911	4.914

理论: 49.75//154.99 (mm)

4.测基振频率

负标外侧, 祛尿内侧.

悬 线 位 置			,			
x/mm	<i>†</i>	+,10	<i>† s</i>	<u>-</u> }^	-10	-15
共 振 频 率	, "" "	Q		9		
f/Hz	397.63	398. 2 4	399.07	3 \$7.63	398.06	398.66

弹性模量的测量 预习报告

2018011365 计84 张鹤潇

一、 拉伸法测量弹性模量

实验原理

在弹性形变范围内, 正应力与线应变成正比, 即

$$\frac{F}{S} = E \frac{\delta L}{L}, E = \frac{F/S}{\delta L/L}$$

本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D,则可以进一步把E写成:

$$E = \frac{4FL}{\pi D^2 \delta L}$$

实验步骤

- 1. 调整钢丝竖直。钢丝下夹具上应先挂上砝码钩,用一拉直钢丝。调整底座螺钉使钢丝 夹具不与周围支架碰蹭
- 2. 调节读数显微镜。应先粗调显微镜高度,使之与钢丝下夹具上的标记线同高,再细条 读数显微镜。细调步骤是先调节目镜看清钢丝,再移动镜筒看清标记线。使标记线的 像与叉丝无视差(即当视线略微上下移动时,标记线的像与叉丝之间无相对移动)
- 3. 测量。测量钢丝长度L及其伸长量 δL 。先读出只挂砝码钩(其质量为 0. 200kg)时的钢丝夹具标记线的位置,然后再砝码钩上每加一砝码(质量均为 0. 200kg),读一次位置 y_i ,逐步层架到 0. 200×10kg,再从 0. 200×10kg 逐渐减少至 0. 200kg,各测一组数据。再用螺旋测微仪在钢丝的不同地方测量其直径D,测六次,并在测量前后记录螺旋测微仪的零点d各三次

二、 动力学法测弹性模量

实验原理

一根细长棒(长度比横向尺寸大很多)的横振动(又称弯曲振动)满足动力学方程:

$$\frac{\partial^2 \eta}{\partial t^2} + \frac{EI}{oS} \cdot \frac{\partial^4 \eta}{\partial x^4} = 0$$

可以得到棒作基频振动的固有频率:

$$\omega = \sqrt{\frac{4.730^4 EI}{\rho l^4 S}}$$

解出弹性模量

$$E = 1.997 \, 8 \times 10^{-3} \times \frac{\rho l^4 S}{I} \omega^2 = 7.887 \, 0 \times 10^{-2} \frac{l^3 m}{I} f^2$$

上式中m为棒的质量, $m = \rho lS$; f为圆棒的基振频率。对于直径为d的圆棒,惯量矩I =

$$E = 1.606 \, 7 \frac{l^3 m}{d^4} f^2$$

这就是本实验用的计算公式。

实际测量时,由于不能满足 $d \ll l$,此时上式应乘上一修正系数 T_1 ,即

$$E = 1.606 \, 7 \frac{l^3 m}{d^4} f^2 T_1$$

 T_1 可根据d/l的不同数值和材料的泊松比查表得到。

实验步骤

- 1. 连接线路,阅读信号发生器及示波器的有关资料,学习和调节使用方法
- 2. 测量被测样品的长度、直径(在不同部位测 6 次取平均值)及质量。并记录试验用的样品材料是黄铜还是紫铜。
- 3. 测样品的弯曲振动基振频率。理论上样品作基频共振时,悬点应置于节点处,即悬点应置于距棒两端面分别为 0. 2241 和 0. 7761 处。但是在这种情况下,棒的振动无法被激发。欲激发棒的振动,悬点必须离开节点位置。这样又与理论条件不一致,势必产生系统误差。故实验上采用下述方法测棒的弯曲振动基频频率:在基频节点处正负30mm 范围内同时改变两悬线位置,每隔 5mm~10mm 测一次共振频率。画出共振频率与悬线位置关系曲线。由该图可准确求出悬线在节点位置的基频共振频率,其值约在几百赫兹量级。