

Formale Grundlagen der Informatik

1

Motivation
Formale Sprachen
Zustände in der Informatik
Endliche Automaten

Einführung und Motivation

Theoretische Informatik - Motivation

- Wiki: Gebiet der Informatik, das sich mit der Abstraktion,
 Modellierung und grundlegenden Fragestellungen beschäftigt,
 die die Struktur, Verarbeitung, Übertragung und Wiedergabe von Information betreffen.
- Mathematische Methoden
 - Darstellung der Abstraktion
 - Nachweis von Eigenschaften
 - exakte Beantwortung der Fragestellungen
- Abstraktion hilft!
- In diesem Kurs: "Problemgetriebenes" Vorgehen

Oft sind Dinge nicht so, wie sie auf den ersten Blick erscheinen!

- Algorithmen basieren auf solchen Modellen
 - Beweise für Korrektheit und Terminieren
 - ermöglichen Implementierung
- Compiler/Interpreter sind im Wesentlichen Implementierungen von Modellen der Theoretischen Informatik
- Grenzen der Berechenbarkeit
 - generell
 - aufgrund der Komplexität
- Software Engineering (Qualität im Entwicklungsprozess und im Softwareprodukt)

• • • •

Softwarequalität

- Entwurf → Verwendung von Modellen: Abstraktion hilft!
 - bei der Kommunikation im Entwicklerteam und mit Stakeholdern
 - um Wiederverwendbarkeit festzustellen (s. Entwurfsmuster)
 - z.B. (UML-)Struktur- und Verhaltensdiagramme
- Software-Test / Formale Verifikation
 - Warum wird so selten formal verifiziert? → Grenzen der Berechenbarkeit
 - Formale Beweise im Einzelfall → Automatisierung / Theorembeweiser
- Statische Analysen ... basierend auf geeigneten Modellen
 - Möglichkeiten und Grenzen verschiedener Modellierungssprachen
 - Analysemethoden und deren Korrektheit, ...

- Softwareprozesse führen zu einer Folge von Systemzuständen
- Beispiel: Prozesszustände (vereinfacht)

Welche
Befehlsfolgen
sind valide?

Welche Befehlsfolgen führen zu welchen Systemzuständen?

Programm:

Programmläufe:

für
$$y = 8$$
: abcd

für
$$y = 15$$
: abcdd

System-/Programmzustände: Werte der Programmvariablen

e

Programm:

Programmläufe:

für
$$y = 8$$
: abcd

für
$$y = 15$$
: abcdd

Beschreibung <u>aller</u> Programmläufe?

$$\{ abcd^n \mid n \geq 0 \} \cup \{ abce \}$$

else:

e

Algorithmen und ihre Darstellung

Algorithmen: Folgen von Anweisungen

- plattformunabhängiger Entwurf oder Analyse oft in informaler Sprache (Text) oder in semi-formaler Sprache (Diagramme, Pseudocode, ...)
- Implementierung in formaler Sprache (Programmiersprache)

Formale Sprache

- feste, präzise Syntax
- eindeutige Semantik
- kann von Maschinen interpretiert und ausgeführt werden

Formale Sprachen

- Endliche Menge von Anweisungen → endliche Menge von Symbolen
- Ein **Alphabet** ist eine endliche Menge. Bezeichnung durch Großbuchstaben, oft Σ
- Die Elemente eines Alphabets heißen Symbole (oder Buchstaben).
- Ein Wort ist eine endliche Folge von Buchstaben. Bezeichnung durch Kleinbuchstaben vom Ende des Alphabets: $u, v, w, x, y, z, w_1, w_2, ...$
- Die **Länge** eines Wortes w ist die Anzahl seiner Buchstaben: |w| Beispiel: |abcdd| = 5
- Das leere Wort der Länge 0 wird mit ε bezeichnet: $|\varepsilon| = 0$

Vorkommen von Buchstaben in Wörtern

- Sei Σ ein Alphabet, $w \in \Sigma$ und $U \subseteq \Sigma$.
- Dann bezeichnet $|w|_U$ die Anzahl der Vorkommen von Buchstaben aus U im Wort w.
- Beispiel: $\Sigma = \{a, b, c\}, U = \{a, c\}$
 - ightharpoonup |abacbbc| = 7, $|abacbbc|_U = 4$,
 - $\triangleright |abacbbc|_a = 2$, $|abacbbc|_b = 3$.

- Seien u und v zwei Wörter über einem Alphabet Σ . Ihre **Konkatenation** $u \cdot v$ ist das Wort uv.
- Beispiel: Für u = ab und v = ba ist $u \cdot v = abba$
- Die Konkatenation ist *nicht kommutativ*: $v \cdot u = baab$
- Das leere Wort ist *neutrales Element* bei der Konkatenation: Für jedes Wort w gilt: $w \cdot \varepsilon = \varepsilon \cdot w = w$
- Σ^* sei die Menge aller Wörter über Σ , Σ^+ sei die Menge aller nichtleeren Wörter über Σ .
- $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

Rekursive Definition: Sei w ein Wort. Dann ist

- $w^0 = \varepsilon$ und
- $w^i = w^{i-1} \cdot w$, für alle $i \ge 1$.

$$> w^1 = w^0 \cdot w = \varepsilon \cdot w = w$$

- Σ^* und Σ^+ sind **abgeschlossen** unter Konkatenation
- $\succ (\Sigma^*, \cdot)$ und (Σ^+, \cdot) sind algebraische Strukturen

- Konkatenation ist **assoziativ**: Für alle $u, v, w \in \Sigma^*$ gilt (uv)w = u(vw)
- $\succ (\Sigma^*, \cdot)$ und (Σ^+, \cdot) sind **Halbgruppen**
- $\succ (\Sigma^*, \cdot, \varepsilon)$ ist ein **Monoid** (Halbgruppe mit neutralem Element)

- Sei Σ ein Alphabet.
- Eine formale Sprache L über Σ ist eine Menge von Wörtern über Σ :

$$L \subseteq \Sigma^*$$

- Die Mengen Ø und $\{\varepsilon\}$ sind Sprachen. Es gilt Ø $\neq \{\varepsilon\}$.
- Eine endliche Sprache ist eine Menge mit endlich vielen Wörtern:

$$L = \{abc, abcd, abcdd\}$$

- Relevante Sprachen sind oft unendlich.
 Wir suchen endliche Beschreibungen für diese unendlichen Objekte.
 - > verschiedene Modelle der Theoretischen Informatik
 - Beispiel: Endliche Automaten

Endliche Automaten

$$x = 1$$
 awhile $(x > 0)$:
 $x = x + 1$ b

Startzustand q_0 : alle Variablen undefiniert

Zustandsraum: Menge aller Zustände:

$$\{q_0\} \cup \{ 'x = n' \mid n \ge 1 \}$$

Prozesszustände als UML-Zustandsdiagramm:

- weitere Beispiele:
 - Geld-/Verkaufsautomaten
 - Verkehrsampel
 - elektronische Schaltungen,z.B. Flip-Flop (2 Zustände)
 - Client-Server-Systeme
 - GUIs
 - Geschäftsprozesse
 - •

Endliche Zustandsräume

Programm:

$$x = 7$$

$$y = int(y)$$

if
$$(y > 0)$$
:

while
$$(y >= x)$$
:

$$y = y - x$$

else:

$$y = 0$$

e

d

Programm:

$$\{ abcd^n \mid n \geq 0 \} \cup \{ abce \}$$

Abstraktion zu einheitlichem Modell

benötigen:

Zustandsmenge: endliche Menge von Zuständen

• Eingabealphabet: endliche Menge von Eingabezeichen, die die

Zustandsübergänge auslösen (Aktionen/Befehle)

Überführungsfunktion: ordnet jedem Zustand bei jedem Eingabezeichen

den Nachfolgezustand zu

Startzustand: Zustand bei Start des Systems

Menge der Zustände, die Eingabefolgen als korrekt akzeptieren

Deterministischer Endlicher Automat

Definition: Ein **deterministischer endlicher Automat (DEA)** ist ein 5-Tupel $A=(Q,\Sigma,\delta,q_0,F)$, wobei

- Q eine endliche Menge ist, deren Elemente Zustände heißen,
- ullet ein Alphabet ist, dessen Elemente Eingabesymbole heißen,
- δ : $(Q \times \Sigma) \rightarrow Q$ die Überführungsfunktion ist,
- $q_0 \in Q$ der Startzustand ist und
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

DEA - unser Beispiel

$$A = (Q, \Sigma, \delta, q_0, F)$$
 mit

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$ repräsentiert durch Knoten
- $\Sigma = \{a, b, c, d, e\}$ repräsentiert durch Kantenmarkierungen
- $\delta(q_0,a)=q_1$ $\delta(q_1,b)=q_2$ $\delta(q_2,c)=q_3$ $\delta(q_3,d)=q_4$ $\delta(q_3,e)=q_5$ $\delta(q_4,d)=q_4$? repräsentiert durch Kanten
- $q_0 \in Q$ (ein mit einem Pfeil markierter Knoten)
- $F = \{q_3, q_4, q_5\}$ (durch "Doppelkreis" markierte Knoten)

Überführungsfunktion

- Formal ist δ : (Q × Σ) \rightarrow Q als totale Funktion definiert.
- lacktriangle Kann erreicht werden durch Einführung eines **Fehlerzustands** q_f :

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_f\}$$

•
$$\delta(q_0, a) = q_1$$
 $\delta(q_1, b) = q_2$ $\delta(q_2, c) = q_3$

$$\delta(q_1, b) = q_2$$

$$\delta(q_2,c)=q_3$$

$$\delta(q_3, d) = q_4 \qquad \qquad \delta(q_3, e) = q_5$$

$$\delta(q_3, e) = q_5$$

$$\delta(q, x) = q_f$$
 für alle anderen Paare $(q, x) \in Q \times \Sigma$

$$\rightarrow \delta(q_f, x) = q_f \text{ für alle } x \in \Sigma$$

Der Automat soll alle (Programmläufe)/Eingabefolgen/Eingabewörter beschreiben/akzeptieren, bei denen auf ein α beliebig viele b folgen.

Transitionsgraph von A_1

$$A_1 = (\{q_0, q_1, q_f\}, \{a, b\}, \delta_1, q_0, \{q_1\})$$

Überführungstabelle für δ_1 :

	а	b
$\rightarrow q_0$	q_1	q_f
* q ₁	q_f	q_1
q_f	q_f	q_f

- intuitiv: Menge aller Eingabefolgen (Wörter über Σ), die den Automaten vom Startzustand in einen akzeptierenden Zustand überführen
- am Beispiel: abc, abd, abdd, abddd, ..., abce
- $L(A) = \{ abcd^n | n ≥ 0 \} \cup \{ abce \}$
- formale Definition?!
 - \blacktriangleright benötigen Erweiterung von δ auf Wörter:

$$\delta: (Q \times \Sigma) \to Q$$

$$\hat{\delta} \colon (Q \times \Sigma^*) \to Q$$

$$\hat{\delta}(q_0, a) = q_1$$

$$\hat{\delta}(q_0, ab) = q_2$$

$$\hat{\delta}(q_0, a) = q_1 \qquad \hat{\delta}(q_0, ab) = q_2 \qquad \hat{\delta}(q_0, abc) = q_3$$

$$\bullet \ \hat{\delta}(q_0,a) = q_1 \qquad \hat{\delta}(q_0,ab) = q_2 \qquad \hat{\delta}(q_0,abc) = q_3$$

$$\bullet \ \hat{\delta}(q_0,abc) = \delta(q_2,c), \ \mathsf{da} \ \hat{\delta}(q_0,ab) = q_2$$

$$\bullet \ \hat{\delta}(q_0,ab) = \delta(q_1,b), \ \text{da} \ \hat{\delta}(q_0,a) = q_1$$

$$\hat{\delta}(q_0,a) = \delta(q_0,a)$$
, da $\hat{\delta}(q_0,\varepsilon) = q_0$

DEA – erweiterte Überführungsfunktion

Definition: Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA.

Die **erweiterte Überführungsfunktion** $\hat{\delta}$: $(Q \times \Sigma^*) \to Q$ ist rekursiv wie folgt definiert:

Für alle $q \in Q$, $a \in \Sigma$ und $w \in \Sigma^*$ sei

- $\bullet \, \hat{\delta}(q, \varepsilon) = q$
- $\hat{\delta}(q, wa) = \delta(p, a) \text{ mit } p = \hat{\delta}(q, w)$ $= \delta(\hat{\delta}(q, w), a)$

- intuitiv: Menge aller Eingabefolgen (Wörter über Σ), die den Automaten vom Startzustand in einen akzeptierenden Zustand überführen
- am Beispiel: abc, abd, abdd, abddd, ..., abce
- $L(A) = \{ abcd^n \mid n \ge 0 \} \cup \{ abce \}$
- **Definition:** Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA. Die von A akzeptierte Sprache L(A) ist die Sprache $L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$.

