IN THE CLAIMS:

Please amend the claims as follows (complete listing of claims with markups according to Revised Format):

- 1. (previously presented) A device for fluid cooled channeled heat exchange comprising:
 - a. a flat plate heat exchanger, wherein the flat plate heat exchanger comprises a top plate and a base plate coupled together; and
 - b. a plurality of fins coupled to the top plate;

wherein the base plate comprises:

- i. fluid inlet configured to receive flow of a fluid in a heated state therethrough;
- ii. a plurality of channels coupled to the fluid inlet and configured to receive and to cool the fluid;
- iii. a first plurality of separate sealed gaps coupled in between the plurality of channels, wherein the separate sealed gaps are not traversed by the fluid; and
- iv. a fluid outlet coupled to the plurality of channels and configured to receive the cooled fluid and to allow the cooled fluid to exit the device.
- 1 2. (original) The device of claim 1, wherein the device further comprises a second plurality of fins coupled to the base plate.
- 1 3. (canceled)
- 1 4. (previously presented) The device of claim 1, wherein the first plurality of separate sealed gaps are filled with a gas.
- 1 5. (previously presented) The device of claim 1, wherein the device further comprises a 2 second plurality of separate sealed gaps coupled in between the fluid inlet and the 3 plurality of channels, wherein the separate sealed gaps are not traversed by the fluid.
- 1 6. (original) The device of claim 5, wherein the second plurality of separate sealed gaps are filled with a gas.

(previously presented) The device of claim 1, wherein the device further comprises a 1 7. 2 third plurality of separate sealed gaps coupled in between the fluid outlet and the plurality of channels, wherein the separate sealed gaps are not traversed by the fluid. 3 8. (original) The device of claim 7, wherein the third plurality of separate sealed gaps are 1 . 2 filled with a gas. (original) The device of claim 1, wherein the device is coupled to heat source. - 1 9. (original) The device of claim 9, wherein the heat source is a microprocessor. 1 10. 1 11. (original) The device of claim 1, wherein the device is coupled to a pump. (original) The device of claim 1, wherein the plurality of channels comprise condensers 12. 1 configured to condense the fluid. 2 (original) The device of claim 1, wherein the plurality of channels further comprise pins, 1 13. wherein the pins protrude from and are perpendicular to the surface of the base plate. 2 (original) The device of claim 1, wherein the fluid inlet, the plurality of channels, and 14. 1 . 2 the fluid outlet are in a radial configuration. (original) The device of claim 1, wherein the fluid inlet, the plurality of channels, and 1 15. 2 the fluid outlet are in a spiral configuration. (original) The device of claim 1, wherein the fluid inlet, the plurality of channels, and 1 16. 2 the fluid outlet are in an angular configuration. (original) The device of claim 1, wherein the fluid inlet, the plurality of channels, and 1 17. the fluid outlet are in a parallel configuration. 2

the fluid outlet are in a serpentine configuration.

(original) The device of claim 1, wherein the fluid inlet, the plurality of channels, and

1

2

18.

(original) The device of claim 1, wherein the device is in a monolithic configuration. 1 19. (original) The device of claim 1, wherein the device further comprises a conductive fluid 20. 1 proof barrier, wherein the barrier is interposed between the base plate and the top plate. 2 (previously presented) The device of claim 1, wherein the plurality of fins are coupled . 1 21. with the top plate and the second plurality of fins are coupled with the base plate by a 2 . 3 eutectic bonding method. (previously presented) The device of claim 1, wherein the plurality of fins are coupled 22. 1 with the top plate and the second plurality of fins are coupled with the base plate by an 2 3 adhesive bonding method. (previously presented) The device of claim 1, wherein the plurality of fins are coupled 23. 1 with the top plate and the second plurality of fins are coupled with the base plate by a 2 3 brazing method. (previously presented) The device of claim 1, wherein the plurality of fins are coupled 1 24. 2 with the top plate and the second plurality of fins are coupled with the base plate by a 3 welding method. (previously presented) The device of claim 1, wherein the plurality of fins are coupled 25. 1 2 with the top plate and the second plurality of fins are coupled with the base plate by a soldering method. 3 (previously presented) The device of claim 1, wherein the plurality of fins are coupled 1 26. 2 with the top plate and the second plurality of fins are coupled with the base plate by an 3 epoxy. (original) The device of claim 1, wherein the flat plate heat exchanger comprises a 1 27. 2 material with a thermal conductivity value larger than 150 W/m-K. 1 28. (original) The device of claim 1, wherein the flat plate heat exchanger comprises copper.

1 29. (original) The device of claim 1, wherein the flat plate heat exchanger comprises 2 aluminum. (original) The device of claim 1, wherein the fluid outlet and the plurality of channels 1 30. 2 comprise precision machined metals. (original) The device of claim 1, wherein the fluid outlet and the plurality of channels 1 31. · 2 comprise precision machined alloys. (original) The device of claim 1, wherein the plurality of fins comprise aluminum. 1 32. (original) The device of claim 1, wherein the fluid is selected from one of a liquid and a 1 33. combination of a liquid and a vapor. 2 (original) The device of claim 1, wherein the fluid is comprised from the group 1 34. 2 comprising of water, ethylene glycol, isopropyl alcohol, ethanol, methanol, and hydrogen 3 peroxide. (original) A device for two phase fluid cooled channeled heat exchange comprising: . 1 35. 2 a flat plate heat exchanger, wherein the flat plate heat exchanger comprises a top a. plate and a base plate coupled together, and the base plate comprises: 3 4 i. a single phase region comprising a plurality of two phase channels configured to permit flow of a fluid therethrough, along a first axis; 5 ii. a condensation region comprising a plurality of condenser channels 6 7 coupled to the plurality of two phase channels, and configured to permit 8 flow of the fluid therethrough, along a second axis not parallel to the first 9 axis; and a first plurality of fins coupled to the top plate of the flat plate heat exchanger. 10 b. 1 36. (original) The device of claim 35, wherein the device further comprises a plurality of 2 separate sealed gaps coupled in between the single phase region and the condensation region, wherein the separate sealed gaps are filled with a gas. 3 1 37. (original) The device of claim 35, wherein the device further comprises a second single

phase region comprising a plurality of single phase channels coupled to the plurality of 2 condenser channels and configured to permit flow of a fluid therethrough, along the first 3 4 axis. (original) The device of claim 35, wherein the plurality of two phase channels and the 38. 1 plurality of condenser channels are in a serpentine configuration. . 2 (original) The device of claim 35, wherein the device further comprises a second 1 39. plurality of fins coupled to the base plate of the flat plate heat exchanger. 2 (original) The device of claim 35, wherein the device is coupled to a heat source. 1 40. 1 41. (original) The device of claim 40, wherein the heat source is a microprocessor. (original) The device of claim 35, wherein the fluid is selected from one of a liquid and 1 42. 2 a combination of a liquid and a vapor. (original) The device of claim 35, wherein the fluid is comprised from the group 1 43. comprising of water, ethylene glycol, isopropyl alcohol, ethanol, methanol, and hydrogen 2 3 peroxide. (original) The device of claim 35, wherein the fluid comprises water. 1 44. (original) The device of claim 35, wherein the flat plate heat exchanger comprises 1 45. 2 copper. (original) The device of claim 35, wherein the plurality of fins comprise aluminum. 1 46. 1 47. (canceled) (currently amended) A system for heat exchange comprising: 1 48. one or more fluid channel heat exchangers each comprising at least two separate 2 3 fluid paths configured to permit flow of a fluid therethrough and including: a plurality of non-uniform fluid channels configured to permit flow of the 4 <u>i.</u>

5		<u>iiulu meremiougn, anu, </u>					
6		ii. a plurality of separate sealed gaps coupled in between the plurality of non-					
7		uniform channels and configured not to permit flow of the fluid					
8		therethrough; and,					
9		b. one or more pumps configured to circulate the fluid to and from the one or more					
10		fluid channel heat exchangers.					
1	49.	(original) The system for heat exchange of claim 48, wherein the system further					
2		comprises a plurality of heat sources.					
1	50.	(original) The system for heat exchange of claim 49, wherein the plurality of heat					
2		sources comprise one or more microprocessors.					
1	51.	(original) The system for heat exchange of claim 49, wherein the plurality of heat					
2		sources comprise the one or more pumps.					
1	52.	(original) The system for heat exchange of claim 48, wherein the one or more fluid					
2		channel heat exchangers are further configured to cool a fluid in a heated state to a cooled					
3		state.					
1	53.	(original) The system for heat exchange of claim 52, wherein the at least two fluid paths					
2		are configured to carry the fluid in the heated state from the plurality of heat sources and					
3		to carry the fluid in the cooled state to the plurality of heat sources.					
1	54.	(original) The system of claim 48, wherein the at least two separate fluid paths are					
2		parallel.					
1	55.	(original) The system of claim 48, wherein the at least two separate fluid paths are in a					
2		serpentine configuration.					
1	56.	(original) The system of claim 48, wherein the fluid is selected from one of a liquid and					
2		a combination of a liquid and a vapor.					
1	57.	(previously presented) A method of manufacturing a flat plate heat exchanger					

PATENT Atty. Docket No.: COOL-00601

2		comprising:					
3		a. machining fluid channels into each of two plate halves;					
4		b. soldering fins onto each of the two plate halves;					
5		c. nickle plating the fluid channels; and					
6		d. coupling the two halves such that the fluid channels of each of the two plate					
7		halves mate and form a leakproof fluid path.					
1	58.	(original) The method of claim 57, wherein the two halves are coupled by a soldering					
2		method.					
1	59.	(original) The method of claim 58, wherein the soldering method comprises utilizing a					
2		solder paste applied by stencil screen printing onto each of the two plate halves to form a					
3		bonding interface resulting in a hermetic seal.					
1	60.	(original) The method of claim 58, wherein the soldering method comprises a step					
2		soldering process for multiple soldering operations.					
1	61.	(original) The method of claim 57, wherein the two halves are coupled by an epoxy.					
1	62.	(previously presented) A method for manufacturing a flat plate heat exchanger					
2		comprising:					
3		a. manufacturing a first finned extrusion;					
4		b. manufacturing a second finned extrusion;					
5		c. machining complementary fluid channels onto the first and second finned					
6		extrusions; and					
7		d. coupling the first finned extrusion to the second finned extrusion by a method					
8		from a group consisting of eutectic bonding, adhesive bonding, brazing, welding					
9		soldering, and epoxy such that the fluid channels of the first and second finned					
10		extrusions mate and form a leakproof fluid path.					
1	63.	(original) The method of claim 62, wherein the first finned extrusion is coupled to the					
2		second finned extrusion by a soldering method.					
1	64.	(original) The method of claim 63, wherein the soldering method comprises utilizing a					

solder paste applied by stencil screen printing onto each of the first and second finned 2 3 extrusions to form a bonding interface resulting in a hermetic seal. (original) The method of claim 63, wherein the soldering method comprises a step 1 65. soldering process for multiple soldering operations. 2 (original) The method of claim 62, wherein the first finned extrusion is coupled to the 66. 1 . 2 second finned extrusion by an epoxy. (previously presented) A method for manufacturing a flat plate heat exchanger 67. 1 2 comprising: manufacturing a first finned halve by a skiving method; 3 a. 4 manufacturing a second finned halve by a skiving method; b. machining complementary fluid channels onto the first and second finned halves; 5 c. 6 and coupling the first finned halve to the second fined halve such that the fluid 7 d. channels of the first and second finned halves mate and form a leakproof fluid 8 9 path. (original) The method of claim 67, wherein the two finned halves are coupled by a 68. 1 2 soldering method. 69. (original) The method of claim 68, wherein the soldering method comprises utilizing a 1 2 solder paste applied by stencil screen printing onto each of the first and second finned halves to form a bonding interface resulting in a hermetic seal. 3 1 70. (original) The method of claim 68, wherein the soldering method comprises a step soldering process for multiple soldering operations. 2 (original) The method of claim 67, wherein the two finned halves are coupled by an 1 71. 2 epoxy. (currently amended) A device for fluid cooled channeled heat exchange comprising: 1 72. a flat plate heat exchanger, wherein the flat plate heat exchanger comprises a top 2 a.

3		plate	and a base plate coupled together;			
4	b.	a first plurality of fins coupled to the top plate; and				
5	c.	a second plurality of fins coupled to the base plate;				
6	whe	erein the base plate comprises:				
7		i.	fluid inlet configured to receive flow of a fluid in a heated state			
8			therethrough;			
9		ii.	a plurality of non-uniform channels coupled to the fluid inlet and			
10			configured to receive and to cool the fluid; and			
11		iii.	a fluid outlet coupled to the plurality of channels and configured to receive			
12			the cooled fluid and to allow the cooled fluid to exit the device;			
13	wherein the first plurality of fins are coupled to the top plate and the second plurality of					
14	fins	fins are coupled to the base plate by a method from a group consisting of eutectic				
15	bonding, adhesive bonding, brazing, welding, soldering, and epoxy.					