

CS-E4540 Answer Set Programming

Introduction

Aalto University School of Science Department of Computer Science

Autumn 2016

Introduction

Declarative Problem Solving

Answer Set Programming

Some Prerequisites

1. DECLARATIVE PROBLEM SOLVING

- Declarative programming languages allow the specification of what is to be computed rather than how computation takes place.
- PROLOG (PROgramming in LOGic) is a prototypical language that was developed for declarative programming.

```
Nat(0). Nat(s(X)) :- Nat(X).
```

 Programming in a procedural language such as Pascal, C, or Java is much about controlling the execution order of commands.

```
unsigned int f(unsigned int x) {
  if(x == 0 || x==1)
    return 1;
  else return x*f(x-1);
}
```

Conceptual Model

A problem is solved using a declarative programming language by

- 1. modeling the problem domain using the language,
- 2. performing actual computation steps to produce output, and
- extracting a solution for the problem from the output.

Compilers and/or interpreters can be used to execute the model.

Basic Requirements

Any declarative language should

- have a clear declarative semantics,
- enable concise formalization of a variety of problem domains,
- lend itself to modular program development, and
- provide sufficient performance and scalability.

Remark

The last two requirements may endanger the declarative nature of programming (cf. the use of cuts "!" in PROLOG), i.e., a form of control becomes necessary for efficiency reasons.

2. ANSWER SET PROGRAMMING

Answer set programming (ASP) is a paradigm for declarative programming that effectively emerged in the late nineties.

- A rule-based language is used for problem encodings.
- Every program P, i.e., a set of rules, has a clearly defined semantics (the set of answer sets associated with P).
- The order of rules and the order of individual conditions in rules is irrelevant which gives a declarative nature for answer sets.
- Dedicated search engines—answer set solvers—are used to compute an answer set or several answer sets for a program.

Revising the Conceptual Model for ASP

A problem is encoded so that the answer sets of the respective program and the solutions of the problem are in a tight correspondence.

Current answer set solvers expect ground programs as their input which implies a preprocessing step in order to remove variables.

Example: Graph Coloring

```
edge (a,b). edge (b,c). edge (c,a).
                                  % Edges
node(X) := edge(X,Y).
                                       % Extract nodes
node(Y) := edge(X,Y).
r(X) := not q(X), not b(X), node(X). % Red
q(X) := not b(X), not r(X), node(X). % Green
b(X) := not r(X), not q(X), node(X). % Blue
:- r(X), r(Y), edge(X,Y).
                                      % Constraints
:= q(X), q(Y), edge(X,Y).
:-b(X), b(Y), edge(X,Y).
\#show r/1.
\#show q/1.
\#show b/1.
```

Example: Running the Solver

The program for 3-coloring graphs is used as follows:

```
$ gringo color.lp | clasp
clasp version 3.2.0
Reading from stdin
Solving...
Answer: 1
r(a) q(b) b(c)
SATISFIABLE
Models : 1+
Calls
         : 1
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s ...)
CPU Time : 0.000s
```

Roots of ASP

- Knowledge representation and reasoning
- Databases (SQL)
- Deductive databases
- Logic programming (PROLOG)
 - SLD-Resolution
 - Negation as failure to prove
 - Clark's completion and supported models
- Constraint programming

ASP = KR + DB + Search

Example: SuDoku Puzzle

```
number (1..9).
border(1). border(4). border(7).
region(X,Y):- border(X), border(Y).
1 { value(X, Y, N): number(X), number(Y),
    X1 \le X, X \le X1 + 2, Y1 \le Y, Y \le Y1 + 2 } 1
  :- number(N), region(X1,Y1).
:= 2 \{ value(X,Y,N) : number(N) \}, number(X), number(Y).
:= 2 \{ value(X,Y,N) : number(Y) \}, number(N), number(X).
:= 2 \{ value(X,Y,N) : number(X) \}, number(N), number(Y).
```

Example: Running the SuDoku Program

Royle's instance with 16 clues is solved in a fraction of a second:

```
$ gringo sudoku.lp royle.lp | clasp 1
clasp version 3.2.0
Reading from stdin
Solving...
Answer: 1
value (1,3,2) value (1,9,1) ... value (7,9,4) value (8,9,2)
SATISFIABLE
Models : 1+
Calls : 1
Time : 0.012s (Solving: 0.00s 1st Model: 0.00s ...)
CPU Time : 0.000s
```

Example

The corresponding solution can be extracted from the answer set and then visualized as a solved SuDoku puzzle:

1	9	3	8	6	7	4	2	5
4	6	8	5	3	2	9	1	7
7	5	2	1	4	9	6	8	3
6	2	1	4	7	3	5	9	8
5	3	4	9	1	8	7	6	2
9	8	7	2	5	6	3	4	1
2	1	6	3	9	5	8	7	4
8	7	5	6	2	4	1	3	9
3	4	9	7	8	1	2	5	6

Example

Actually, there are 2 solutions for this 16 clue puzzle. The other is obtained by exchanging the occurrences of 8 and 9:

1	8	3	9	6	7	4	2	5
4	6	9	5	3	2	8	1	7
7	5	2	1	4	8	6	9	3
6	2	1	4	7	3	5	8	9
5	3	4	8	1	9	7	6	2
8	9	7	2	5	6	3	4	1
2	1	6	3	8	5	9	7	4
9	7	5	6	2	4	1	3	8
3	4	8	7	9	1	2	5	6

Applications of ASP

- Argumentation
- Code (super)optimization
- Configuration
- Cryptanalysis
- Database integration
- Decision support
- Diagnosis
- Games
- Music composition
- Phylogenetics
- Planning
- Semantic web
- Testing and verification
- Timetabling

(Abridged from http://www.cs.uni-potsdam.de/~torsten/asp/)

Application: Learning Markov Networks

Example

Heart disease dataset [Edwards and Havránek, 1985]:

- A Smoking
- B Strenuous mental work
- C Strenuous physical work
- D Systolic blood pressure > 140
- E Ratio of beta and alpha lipoproteins > 3
- F Family anamnesis of coronary heart disease

Resulting Markov Network

\boldsymbol{A}	B	C	D	\boldsymbol{E}	F	
1	1	0	1	0	0	•
1 0	0	0	1	0	0	
0	1	1	0	1	1	
0	1	1	0	0	1	
0	0	0	1	0	0	
0	0	0	1	0	1	
0	1	0	1	0	0	
1	0	1	0	1	0	
0 0 0 0 1 0 1 0	0	0	1	1	0	
1	0	0	0	1	1	
0	1	1	1	0	1	
0	1	1	0	0	1	
0	0	1	1	0	0	
0	0	0	0	1	0	
:	:	:	:	:	:	

Application: Supertree Construction

Factors Behind the Success of ASP

- The performance of computers has increased remarkably.
- Implementation techniques have advanced rapidly.
- Many efficient solvers are publicly available.

Download state-of-the-art tools from

```
http://potassco.sourceforge.net/
```

- the gringo grounder (4.5.4) and
- the clasp solver (3.2.0).
- Rule-based languages are highly expressive—enabling concise encodings for a wide variety of problems.
- ASP languages lend themselves to fast prototyping with little programming effort.

3. SOME PREREQUISITES

- Propositional languages
- Interpretations and models
- Logical entailment
- First-order languages
- Structures
- Herbrand bases
- Herbrand structures and models
- Relational operations

Propositional Languages

- Any set of atomic sentences $\mathcal{P} \neq \emptyset$, or atoms for short, induces a propositional language \mathcal{L} the set of well-formed sentences.
- Sentences are built using the atoms of P and propositional connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (equivalence).
 - 1. Atomic sentences are sentences.
 - 2. If α and β are sentences, then expressions of the forms $(\neg \alpha)$, $(\alpha \lor \beta)$, $(\alpha \land \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ are also sentences.
- Propositional theories T are defined as subsets of L.

Example

The theory $T=\{r\vee g\vee b,\ \neg r\vee \neg g,\ \neg g\vee \neg b,\ \neg b\vee \neg r\}$ describes the 3-coloring of a single node in a graph.

Interpretations and Models

- An interpretation I for \mathcal{L} is defined as any subset of \mathcal{P} :
 - 1. atoms in I are considered to be true and
 - 2. atoms in $\mathcal{P} \setminus I$ are false.
- If \mathcal{P} is finite, there are $|\mathbf{2}^{\mathcal{P}}| = 2^{|\mathcal{P}|}$ different interpretations, each of which represents a unique state of the world described in \mathcal{L} .
- The satisfaction I |= α of a sentence α ∈ L in an interpretation I is defined in the standard way.
- An interpretation I is a model of a theory T iff $I \models T$, i.e., $I \models \alpha$ holds for every $\alpha \in T$.

Example

The theory $T = \{r \lor g \lor b, \neg r \lor \neg g, \neg g \lor \neg b, \neg b \lor \neg r\}$ based on $\mathcal{P} = \{r, g, b\}$ has models $M_1 = \{r\}, M_2 = \{g\}$, and $M_3 = \{b\}$.

Logical Entailment

- A sentence α is a logical consequence of a theory T, denoted $T \models \alpha$, iff $M \models \alpha$ for every model $M \models T$.
- The set of logical consequences $Cn(T) = \{\alpha \in \mathcal{L} \mid T \models \alpha\}.$
- The operator $Cn(\cdot)$ has the properties of a closure operator. For any T_1 and T_2 ,
 - 1. $T_1 \subseteq \operatorname{Cn}(T_1)$,
 - 2. $T_1 \subseteq T_2 \implies \operatorname{Cn}(T_1) \subseteq \operatorname{Cn}(T_2)$, and
 - 3. $Cn(Cn(T_1)) = Cn(T_1)$.

Example

Consider the theory $T = \{a, \ a \to b, \ \neg b \lor c, \ d \to \neg c\}$ based on $\mathcal{P} = \{a, b, c, d\}$. The theory has a unique model $M = \{a, b, c\}$. $\Longrightarrow \operatorname{Cn}(T) = \{a, \ a \to b, \ b, \ \neg b \lor c, \ c, \ d \to \neg c, \ \neg d, \ c \lor d, \ldots\}$.

First-Order Languages (I)

- ullet A first-order language $\mathcal L$ is based on mutually disjoint sets of
 - constant symbols C,
 - variable symbols \mathcal{V} ,
 - function symbols \mathcal{F} , and
 - relation symbols \mathcal{R} .
- A term is either
 - 1. a constant symbol c from C,
 - 2. a variable symbol v from \mathcal{V} , or
 - 3. an expression of the form $f(t_1,...,t_n)$ where f is a function symbol of arity n > 0 from \mathcal{F} and $t_1,...,t_n$ are terms.

Remark

Constants represent function symbols of arity 0.

First-Order Languages (II)

- An atomic formula is an expression of the form
 - 1. R for each relation symbol of arity 0 from \mathcal{R} ,
 - 2. $t_1 = t_2$ where t_1 and t_2 are terms, or
 - 3. $R(t_1,...,t_n)$ where R is a relation symbol of arity n > 0 from \mathcal{R} and $t_1,...,t_n$ are terms.
- Atomic formulas are formulas.
- If α and β are formulas and ν is a variable from \mathcal{V} , then $(\neg \alpha), (\alpha \lor \beta), (\alpha \land \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta), (\forall \nu \alpha), \text{ and } (\exists \nu \alpha)$ are also formulas.
- A sentence is a formula having no free occurrences of variables.

Structures (I)

- ullet An interpretation for a first-order language ${\cal L}$ is a structure S based on a universe U which is any non-empty set and
 - 1. each $c \in \mathcal{C}$ is mapped to an element $c^S \in U$,
 - 2. each $v \in \mathcal{V}$ is mapped to an element $v^S \in U$,
 - 3. each $f \in \mathcal{F}$ is mapped to a function $f^{\mathcal{S}}: U^n \to U$ where n is the arity of f, and
 - 4. each $R \in \mathcal{R}$ with an arity n is mapped to a relation $R^S \subseteq U^n$.
- Given a structure S, each term t is mapped to an element $t^s \in U$.

Example

Given a constant symbol 0 and a unary (of arity 1) function symbol s we may define a structure S based on $U = \{0, 1, 2, \ldots\}$ by setting $0^S = 0$ and $s^S : x \mapsto x + 1$. Thus $(s(s(s(0))))^S = 3$.

Structures (II)

- Atomic formulas R, $t_1 = t_2$, and $R(t_1, ..., t_n)$ are satisfied by S iff $\langle \rangle \in R^S$, $(t_1)^S = (t_2)^S$, and $\langle (t_1)^S, ..., (t_n)^S \rangle \in R^S$, respectively.
- The satisfaction of a first order formula/sentence α in a structure is defined in the standard way.
- Structures that are models of sentences $(S \models \alpha)$ and theories $(S \models T)$ are distinguished in analogy to propositional logic.
- The definition of $T \models \alpha$, i.e., whether a sentence α is a logical consequence of a theory T, remains unchanged.

Example

For $T = \{E(0), \ \forall x (E(x) \to O(s(x))), \ \forall x (O(x) \to E(s(x)))\}$ formalizing even natural numbers: $T \models E(s(s(0)))$ but $T \not\models \neg E(s(0))$.

Herbrand Bases

- A ground term is a term having no occurrences of variables.
- Given the sets $\mathcal C$ and $\mathcal F$ (see above), the Herbrand universe is the set of ground terms constructible using the symbols of $\mathcal C$ and $\mathcal F$.
- Given the set \mathcal{R} , the Herbrand base consists of atomic sentences $R(t_1,\ldots,t_n)$ where $R\in\mathcal{R}$ is of arity n and each t_i is a ground term.
- A Herbrand instance of an atomic formula $R(t_1,...,t_n)$ is obtained by substituting ground terms for variables occurring in $t_1,...,t_n$.
- We may also define the Herbrand base Hb(T) of a theory T by inspecting which constant/function symbols occur in T.

Example

For the previous theory T formalizing even natural numbers, we have $\mathrm{Hb}(T)=\{E(0),O(0),E(s(0)),O(s(0)),\ldots\}.$

Herbrand Structures and Models

- A Herbrand structure S is based on a fixed interpretation of constant and function symbols over the Herbrand universe:
 - 1. Each $c \in \mathcal{C}$ is mapped to $c^S = c$.
 - 2. Each $f \in \mathcal{F}$ is mapped to $f^S : \langle t_1, \dots, t_n \rangle \mapsto f(t_1, \dots, t_n)$.
 - ⇒ Only interpretations of variables and relations can vary!
- Any Herbrand structure S can be viewed as a propositional interpretation $I = \{R(t_1, ..., t_n) \in Hb(T) \mid S \models R(t_1, ..., t_n)\}.$
- A Herbrand model M of a theory T is a Herbrand structure that satisfies all sentences of T.

Example

For the theory T formalizing even natural numbers, we have a Herbrand model $M=\{E(0),O(s(0)),E(s(s(0))),O(s(s(s(0)))),\ldots\}.$

Relational Operations

Assume that R_1 and R_2 are binary relations (of arity 2) over a fixed universe U, i.e., $R_1 \subseteq U^2$ and $R_2 \subseteq U^2$.

- 1. The union of R_1 and R_2 is $R_1 \cup R_2 = \{\langle x, y \rangle \in U^2 \mid \langle x, y \rangle \in R_1 \text{ or } \langle x, y \rangle \in R_2\}.$
- 2. The intersection of R_1 and R_2 is $R_1 \cap R_2 = \{\langle x, y \rangle \in U^2 \mid \langle x, y \rangle \in R_1 \text{ and } \langle x, y \rangle \in R_2\}.$
- 3. The projections of R_1 w.r.t. the first/second arguments are $P_1 = \{x \in U \mid \langle x, y \rangle \in R_1\}$ and $P_2 = \{y \in U \mid \langle x, y \rangle \in R_1\}$.
- 4. The composition of R_1 of R_2 is $R_1 \circ R_2 = \{\langle x, y \rangle \in U^2 \mid \langle x, z \rangle \in R_1 \text{ and } \langle z, y \rangle \in R_2\}.$

OBJECTIVES

- You have the necessary premises for the course, i.e., you are familiar with the syntax and semantics of classical logic.
- You know the main characteristics of declarative programming languages and understand the difference w.r.t. procedural ones.
- You understand the conceptual model of answer set programming.
- You are able to list the basic steps which are required to to apply ASP in declarative problem solving.

TIME TO PONDER

Definition

The set of classical models associated with a propositional theory T is $CM(T) = \{M \subseteq Hb(T) \mid M \models T\}.$

Problem

Let T_1 and T_2 be arbitrary propositional theories which may be based on different Herbrand bases $Hb(T_1)$ and $Hb(T_2)$.

Which one of the following equations is correct in general?

- 1. $CM(T_1 \cup T_2) = CM(T_1) \cap CM(T_2)$.
- 2. $CM(T_1 \cup T_2) = \{M_1 \cup M_2 \mid M_1 \in CM(T_1) \text{ and } M_2 \in CM(T_2)\}.$
- 3. $CM(T_1 \cup T_2) = \{M_1 \cup M_2 \mid M_1 \in CM(T_1), M_2 \in CM(T_2), \text{ and } M_1 \cap C = M_2 \cap C\}$ where $C = Hb(T_1) \cap Hb(T_2)$ gives atoms common to T_1 and T_2 .