- 7.54 Refer to data in Exercise 7.3 on the labor time required to produce an order of automobile mufflers using a heavy stamping machine. The times (hours) for n = 52 orders of different parts has $\bar{x} = 1.865$ hours and $s^2 = 1.5623$, so s = 1.250 hours.
 - (a) Conduct a test of hypotheses with the intent of showing that the mean labor time is more than 1.5 hours. Take $\alpha = 0.05$.
 - (b) Based on your conclusion in part (a), what error could you have made? Explain in the context of the problem.
- 7.55 Refer to Exercise 7.5, where the number of unremovable defects, for each of n = 45 displays, has $\bar{x} = 2.667$ and s = 3.057 unremovable defects.
 - (a) Conduct a test of hypotheses with the intent of showing that the mean number of unremovable defects is less than 3.6. Take $\alpha = 0.025$.
 - (b) Based on your conclusion in part (a), what error could you have made? Explain in the context of the problem.
- 7.57 Refer to Exercise 7.14, where n = 9 measurements were made on a key performance indicator.

123 106 114 128 113 109 120 102 111

- (a) Conduct a test of hypotheses with the intent of showing that the mean key performance indicator is different from 107. Take $\alpha = 0.05$ and assume a normal population.
- (b) Based on your conclusion in part (a), what error could you have made? Explain in the context of the problem.

- 7.59 Refer to Exercise 2.34, page 36, concerning material costs for rebuilding n = 29 traction motors. A computer calculation gives $\bar{x} = 1.4707$ and s = 0.5235 thousand dollars. At the 0.05 level of significance, conduct a test of hypotheses with the intent of showing the mean is greater than 1.3 thousand dollars.
- 7.60 In 64 randomly selected hours of production, the mean and the standard deviation of the number of acceptable pieces produced by a automatic stamping machine are $\bar{x} = 1.038$ and s = 146. At the 0.05 level of

significance, does this enable us to reject the null hypothesis $\mu = 1.000$ against the alternative hypothesis $\mu > 1.000$?

- 7.61 With reference to the thickness measurements in Exercise 2.41, test the null hypothesis that $\mu = 30.0$ versus a two-sided alternative. Take $\alpha = 0.05$.
- 7.63 A manufacturer claims that the average tar content of a certain kind of cigarette is $\mu = 14.0$. In an attempt to show that it differs from this value, five measurements are made of the tar content (mg per cigarette):

Show that the difference between the mean of this sample, $\bar{x} = 14.4$, and the average tar claimed by the manufacturer, $\mu = 14.0$, is significant at $\alpha = 0.05$. Assume normality.

Refer to the nonopillar height data on page 15. Using the 95% confidence interval, based on the t distribution, for the mean nanopillar height

N Mean StDev SE Mean 95% CI 50 305.580 36.971 5.229 (295.073, 316.087)

- (a) decide whether or not to reject H_0 : $\mu = 320$ nm in favor of H_1 : $\mu \neq 320$ at $\alpha = 0.05$;
- (b) decide whether or not to reject H_0 : $\mu = 310$ nm in favor of H_1 : $\mu \neq 310$ at $\alpha = 0.05$.
- (c) What is your decision in part (b) if $\alpha = 0.02$? Explain.