

Configuring DHCP Leases in the Smartphone Era

Ioannis Papapanagiotou Erich Nahum Vasileios Pappas

Huge growth in the number of smartphones and tablets

- These devices connect to the network using DHCP
- However, DHCP requires manual configuration of access policies

What is the proper value for the lease time?

- Too long: leads to exhaustion of the IP address space pool
- Too short: leads to
 - 1) increase in broadcast traffic, which wakes up wireless interfaces;
 - 2) Lower response time, since the user waits for the 4-way DHCP handshake;
 - 3) Increase in DHCP server load.

Setting the proper lease time has been an art, rather than a science

- Do handheld devices behave differently?
- Can we exploit that for DHCP lease allocation?

Trace Type	Corporate	Educational			
Dates (2012)	Feb 29 – Mar 25	Jan 15 – Feb 15			
Client MAC address	2980	8726			
Wireless Subnets	8 * /23 = /20	/21			
DHCP Leases	12h	15 min			
TCP/UDP Bytes	2.5TB	4.9TB			
Software Used	Bro IDS 2.0				


```
Frame 75: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits)
          Ethernet II, Src: 42:09:02:fa:03:00 (42:09:02:fa:03:00), Dst:

■ Internet Protocol Version 4, Src:

⊕ User Datagram Protocol, Src Port: bootps (67), Dst Port: bootps (67)

          ■ Bootstrap Protocol
             Message type: Boot Request (1)
                                                              We found correlation between the
             Hardware type: Ethernet
             Hardware address length: 6
                                                               fields of the DHCP Request
             Hops: 1
             Transaction ID: 0xa57f8cd9
                                                                header and the device
             Seconds elapsed: 0

■ Bootp flags: 0x0000 (Unicast)

                                                                  1. Host-Name
             Client IP address: 0.0.0.0 (0.0.0.0)
             Your (client) IP address: 0.0.0.0 (0.0.0.0)
                                                                  2. Vendor-Name
             Next server IP address: 0.0.0.0 (0.0.0.0)
             Relay agent IP address: [...
                                                                  3. Parameter-Request-List
             client MAC address: Apple_9
             Client hardware address padding: 000000000000
                                                                  4. Organization Unique
             Server host name not given
                                                                      Identifier (OUI – First 3 bytes
             Boot file name not given
             Magic cookie: DHCP
                                                                      of MAC address)

⊕ Option: (t=53,1=1) DHCP Message Type = DHCP R

  □ Option: (t=55,1=6) Parameter Request List

                                                                  5. Options parameter sequence
               Option: (55) Parameter Request List
               Length: 6
               Value: 0103060f77fc
               1 - Subnet Mask
                                        "Options" fields
                                                              Developed a data mining
               3 = Router
"Parameter
                                          sequence
                6 = Domain Name Server
                                                                algorithm based on association
Request List"
               15 - Domain Name
ields sequence
               119 = Domain Search [TODO:RFC3397]
                                                                rule mining that quantifies the
               252 = Private/Proxy autodiscovery
           ⊕ Option: (t-57,1-2) Maximum DICP Message Size
                                                                correlation.
           ⊕ Option: (t=61,1=7) | Client identifier
           ⊕ Option: (t=50,1=4) Requested IP Address = _____
           ⊕ Option: (t=51, l=4) IP Address Lease Time = 90 days

⊕ Option: (t=12, l=6) Host Name = "iPhone"

             End Option
             Padding
```


		Corporate		Educational	
Device	OS	#	%		
Laptop	All	2176	73.02	3970	45.50
	Windows	1787	59.92	2819	32.31
	Mac OS X	385	12.92	1131	12.96
	Linux	4	0.13	20	0.23
Smartphone	All	735	23.66	4489	51.44
	iPhone/iPad/iPod	577	19.36	3069	35.17
	Android	126	4.24	1336	15.29
	BlackBerry	31	1.04	84	0.96
	Windows Mobile	1	0.03	2	0.02
Other	All	69	2.32	267	3.06
	Cisco VoIP	9	0.32	-	-
	Unidentified	60	2.01	267	3.06
All		2980	100	8726	100

DHCP Traffic: Percentage of Requests

Trace Lease Settings

Corporate: 12h

• Educational: 15min

Lease Time:

Long: exhausts address space.

Short: increases broadcast traffic.

- Trivial to calculate if we see a DHCP release
- Otherwise, use the last packet seen for that MAC/IP lease combination

- iOS have short active times:
 - Device disconnects from WiFi after 30sec in idle
 - Use DNAv4 to speedup re-association (RFC 4436)
- Android and BlackBerry have medium active times:
 - Most do not disconnect from WiFi when in idle (set CPU in lower state)
- Laptops (Windows and Mac OS X) have long active times.

Wrote a trace-driven simulator to evaluate different lease policies:

- a) Static Policies: Fixed lease of 15 min, 30 min or 12 hours (most common case).
- b) Exponential Adaptation: Allocates a short lease to client once it arrives, and doubles the lease time every time the client renews the lease [GaTech IMC 2007]
- c) Differential Lease: Allocates different lease values based on device:

Trace	iOS	Android	RIM	Windows	MAC
Corporate	1000	2000	2000	4000	4000
Educational	500	1000	1000	2000	2000

Simulation Results

- Differential lease policy performs well:
 - Achieves low address space utilization (comparable to short lease time)
 - Reasonable number of broadcasts (compared to short lease times)
 - Reasonable server load

- Differentiated Lease policy that assigns different leases to each device type.
 - Removes the burden to manually configure DHCP lease times as the mixture of devices change;
 - Requires no protocol changes;
 - Can be deployed as a software solution in DHCP servers;
 - It makes use of a novel device fingerprinting.
- Device fingerprinting can be leveraged for other uses:
 - -Bring Your Own Device (BYOD) business policies;
 - Add layers for finer grain classification and identification of VMs.

Thank you!

12

Selecting the proper Lease Value

- We plot the a) address space utilization, b) broadcast message, and c) server load, versus lease time, averaged per day and per device.
- Figure a) for both traces, shows that utilization stays flat, and increases after a specific point.

 This point is different per device, e.g. in the corporate network, 10³ for iOS, 2*10³ for Android and 4*10³ for laptops.

Motivation: The Growth of Mobile Data

Figure 5 - Projection of Mobile Access Traffic in North America

Mobile Data Consumption is exploding

- Cisco 2012 VNI report
- Sandvine 1H 2012 Report
- Akamai State of the Internet Report Q2 2012