导数选填

1.	若 $f(x)$ 的导数为 $f'(x)$ 且满足 $f'(x) < f(x)$,则 $f(3)$ 与 $e^3 f(0)$ 的大小关系是					()	
	(A) $f(3) < e^3 f(0)$	(B) $f(3) = e^3 f(0)$	$(C) f(3) > e^3 f$	(0)	(D) 不能确定			
2.	设 $f(x)$, $g(x)$ 是 R 上的可导函数, $f'(x)$, $g'(x)$ 分别是 $f(x)$, $g(x)$ 的导函数,且 $f'(x)g(x) - f(x)g'(x) > 0$ 对 $x \in \mathbf{R}$ 恒成立,则当 $a < b$ 时,有					g'(x) < 0	< 0,)	
	(A) $f(a)g(b) > f(b)g(a)$		(B) $f(b)g(b)$ <	f(a)g(a)				
	(C) $f(b)g(b) > f(a)g(a)$		(D) $f(a)g(b) <$	f(b)g(a)				
3.	若 $0 < x_1 < x_2 < 1$,则					()	
	(A) $e^{x_2} - e^{x_1} > \ln x_2 - \ln x_2$	\mathfrak{c}_1	(B) $e^{x_2} - e^{x_1} <$	$\ln x_2 - \ln x$	1			
	(C) $x_2 e^{x_1} > x_1 e^{x_2}$		(D) $x_2 e^{x_1} < x_1 e^{x_2}$	e^{x_2}				
4.	. 设函数 $f(x) = \sqrt{3} \sin \frac{\pi x}{m}$. 若存在 $f(x)$ 的极值点 x_0 满足 $x_0^2 + \left[f(x_0) \right]^2 < m^2$,则 m 的取值范围是()	
	$(A) (-\infty, -6) \cup (6, +\infty)$		(B) $(-\infty, -4) \cup (4, +\infty)$					
	(C) $(-\infty, -2) \cup (2, +\infty)$	(D) $(-\infty, -1) \cup (1, +\infty)$						
5.	已知函数 $f(x) = ax^3 - 3x^3$	$f^2 + 1$,若 $f(x)$ 存在唯一的]零点 x_0 ,且 x_0	>0,则 a	的取值范围是	()	
	$(A) (2, +\infty)$	(B) $(-\infty, -2)$	$(C)(1,+\infty)$		(D) $\left(-\infty, -1\right)$			
6.	已知函数 $f(x) = x^3 + ax^2 + bx + c$, 给出下来结论: ① $\exists x_0 \in \mathbf{R}, f(x_0) = 0$; ② 函数 $f(x)$ 的图像是中心对称图形; ③ 若 x_0 是 $f(x)$ 的极小值点,则 $f(x)$ 在 $(-\infty, x_0)$ 上单调递减; ④ 若 x_0 是 $f(x)$ 的极值点,则 $f'(x_0) = 0$ 上述结论错误的是							
	(A) ①③	(B) 23	(C) 24		(D) 3			
7.	设函数 $f'(x)$ 是奇函数 $f(f(x)) > 0$ 成立的 $f(x)$ 的取值		$-1) = 0, \stackrel{\text{def}}{=} x$	> 0 时, x _J	f'(x) - f(x) < 0,	则使 (更得)	
	$(A) (-\infty, -1) \bigcup (0, 1)$		$(B) (-1,0) \bigcup (1,+\infty)$					
	(C) $(-\infty, -1) \cup (-1, 0)$	(D) $(0,1) \cup (1,+\infty)$						
8.	设函数 $f(x)$ 的定义域为 \mathbf{R} , x_0 $(x_0 \neq 0)$ 是 $f(x)$ 的极大值点,以下结论正确的是					()	
	(A) $\forall x \in \mathbf{R}, f(x) \leqslant f(x_0)$		(B) $-x_0$ 是 $f(-x)$ 的极小值点					
	(C) $-x_0$ 是 $-f(x)$ 的极小位	直点	(D) $-x_0$ 是 $-f$ ((-x)的极小	值点			
9.	已知函数 $f(x) = \begin{cases} -x^2 + 2x \\ \ln(x + 1) \end{cases}$	$2x, x \le 0,$ 若 $ f(x) \ge ax,$ 1), $x > 0.$	则 a 的取值范	围是		()	
	$(A) (-\infty, 0]$	(B) $(-\infty, 1]$	(C) $[-2, -1]$		(D) $[-2, 0]$			

10.	若函数 $f(x) = x - \frac{1}{3}\sin 2x + a\sin x$ 在 $(-\infty, +\infty)$ 单调递增,则 a 的取值范围是								
	(A) $[-1, 1]$	$(B)\left[-1,\frac{1}{3}\right]$	$(C)\left[-\frac{1}{3},\frac{1}{3}\right]$	$(D)\left[-1, -\frac{1}{3}\right]$					
11.	已知函数 $f(x) = x^3 + ax^2 + bx + c$ 有两个极值点 x_1, x_2 ,若 $f(x_1) = x_1 < x_2$,则关于 x 的方 $3(f(x))^2 + 2af(x) + b = 0$ 的不同实数根的个数为								
	(A) 3	(B) 4	(C) 5	(D) 6					
12.	已知函数 $f(x) = e^x + ax - x_1 f(x_2) < a(x_1 - x_2)$,则 $a(x_1 - x_2)$,则 $a(x_1 - x_2)$		E意的 $x_1, x_2 \in [1, +\infty)$, 且	$1 x_1 < x_2$,都有 x_1	$x_2 f(x_1)$ -	-			
	$(A) [1, +\infty)$		(B) $[2, +\infty)$						
	(C) $(-\infty, 1]$		(D) $(-\infty, 2]$						
13.	. 设函数 $f(x) = \begin{cases} x^3 - 3x & x \leq a, \\ -2x & x > a. \end{cases}$ ①若 $a = 0$,则 $f(x)$ 的最大值为; ②若 $f(x)$ 无最大值,则实数 a 的取值范围是								
14.	已知 $f(x)$ 为偶函数,当 $x < 0$ 时, $f(x) = \ln(-x) + 3x$,则曲线 $y = f(x)$ 在点 $(1,-3)$ 处的切线方程是								
15.	已知曲线 $y = x + \ln x$ 在点 $(1,1)$ 处的切线与曲线 $y = ax^2 + (a+2)x + 1$ 相切,则 $a = \underline{\hspace{1cm}}$.								
16.	. 已知函数 $f(x) = e^{- x } + \cos \pi x$, 给出下列命题: ① $f(x)$ 的最大值为 2; ② $f(x)$ 在 $(-10,10)$ 内的零点之和为 0; ③ $f(x)$ 的任何一个极大值都大于 1. 其中,所有正确命题的序号是								