

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/32484
C12N 15/52, 15/82, C12Q 1/68, A01H 5/00	A2	43) International Publication Date: 17 October 1996 (17.10.96
(21) International Application Number: PCT/US (22) International Filing Date: 12 April 1996 ((30) Priority Data: 08/422,560 14 April 1995 (14.04.95) 08/468,793 6 June 1995 (06.06.95) 08/611,546 5 March 1996 (05.03.96) (71) Applicant: ARCH DEVELOPMENT CORPORTION [US/US]; 1101 East 58th Street, Chicago, IL 60637 (12) Inventors: HASELKORN, Robert; 5834 S. Storens, Chicago, IL 60637 (US). GORNIC Apartment 1705, 5050 S. Lake Shore Drive, Chicago, IL 60615 (US). (74) Agent: KITCHELL, Barbara, S.; Arnold, White & P.O. Box 4433, Houston, TX 77210 (US).	(12.04.9 L U ORATIC 37 (US) ny Islan CK, Pio nicago,	CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, J KE, KG, KP, KR. KZ, LK, LR, LS, LT, LU, LV, MD, MG MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, S SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIP patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (ABE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MN, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, G, GN, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.

(54) Title: ACETYL-COA CARBOXYLASE COMPOSITIONS AND METHODS OF USE

(57) Abstract

The present invention provides isolated and purified polynucleotides that encode plant and cyanobacterial polypeptides that participate in the carboxylation of acetyl-CoA. Isolated cyanobacterial and plant polypeptides that catalyze acetyl-CoA carboxylation are also provided. Processes for altering acetyl-CoA carboxylation, increasing herbicide resistance of plants and identifying herbicide resistant variants of acetyl-CoA carboxylase are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM Armenia GB United Kingdom AT Austria GE Georgia AU Australia GR Greece BB Barbadoa HU Hungary BF Burkina Paso IT Italy BG Bulgaria JP Japan BR Brazil KE Kenya BY Belarus KP Democratic People's Republic CA Canada CF Central African Republic CG Congo KZ Kazakhstan CH Switzerland LI Liberia CH Cameroon LK Sri Lanka CN China LR Liberia CN China LT Lithuania CZ Czech Republic CZ Czech Repu	MW MX NE NIL NO NZ PL PT RO SD SE SG SI SK SN ST TG TG UGS US UV VN	Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Rusaiam Federation Sudan Sweden Singapore Slovenia Slovakia Senegal Swaziland Chad Togo Tajiikistan Trinidad and Tobago Urraine Uganda United States of America Uzbekistan Viet Nam
--	---	--

-1-

DESCRIPTION

ACETYL-COA CARBOXYLASE COMPOSITIONS AND METHODS OF USE

5 1. BACKGROUND OF THE INVENTION

The present application is a continuation-in-part of U. S. Serial Number 08/422,560, filed April 14, 1995, which is a continuation-in-part of U. S. Serial Number 07/956,700, filed October 2, 1992; the entire texts and figures of which disclosures are specifically incorporated herein by reference without disclaimer. The United States government has certain rights in the present invention pursuant to Grant #90-34190-5207 from the United States Department of Agriculture.

1.1 Field of the Invention

The present invention relates to the field of molecular biology. More specifically, it concerns nucleic acid compositions comprising cyanobacterial and plant acetyl-CoA carboxylases (ACC), methods for making and using native and recombinant ACC polypeptides, and methods for making and using polynucleotides encoding ACC polypeptides.

20 1.2 Description of the Related Art

1.2.1 Acetyl-CoA Carboxylase

Acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon dioxide ligase (ADP-forming), EC 6.4.1.2] catalyzes the first committed step in *de novo* fatty acid biosynthesis, the addition of CO₂ to acetyl-CoA to yield malonyl-CoA. It belongs to a group of carboxylases that use biotin as cofactor and bicarbonate as a source of the carboxyl group. ACC catalyzes the addition of CO₂ to acetyl-CoA to yield malonyl-CoA in two steps as shown below.

$$BCCP + ATP + HCO_3 \rightarrow BCCP-CO_2 + ADP + P_i(1)$$

$$BCCP-CO_2 + Acetyl-CoA \rightarrow BCCP + malonyl-CoA (2)$$

25

10

15

5

10

15

20

25

30

First, biotin becomes carboxylated at the expense of ATP. The carboxyl group is then transferred to Ac-CoA (Knowles, 1989). This irreversible reaction is the committed step in fatty acid synthesis and is a target for multiple regulatory mechanisms. Reaction (1) is catalyzed by biotin carboxylase (BC); reaction (2) by transcarboxylase (TC); BCCP = biotin carboxyl carrier protein.

There are two types of ACC: prokaryotic ACC in which the three functional domains: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP) and carboxyltransferase (CT) are located on separable subunits (e.g., E. coli, P. aeruginosa, Anabaena, Synechococcus and probably pea chloroplast) and eukaryotic ACC in which all the domains are located on one large polypeptide (e.g., rat, chicken, yeast, diatom and wheat).

E. coli ACC consists of a dimer of 49-kDa BC monomers, a dimer of 17-kDa BCCP monomers and a CT tetramer containing two each of 33-kDa and 35-kDa subunits. The primary structures of all of the E. coli ACC subunits (Alix, 1989; Muramatsu and Mizuno, 1989; Kondo et al., 1991; Li and Cronan, 1992; Li and Cronan, 1992) as well as the structure of the BC and BCCP of Anabaena 7120 (Gornicki et al., 1993), and P. aeruginosa (Best and Knauf, 1993) are known, based on the gene sequences. The genes encoding the subunits of E. coli ACC are called: accA (CT α subunit), accB (BCCP), accC (BC) and accD (CT β subunit). accC and accB form one operon, while accA and accD are not linked to each other or to accCB (Li and Cronan, 1992). In cyanobacteria, accC and accB are unlinked as well (Gornicki et al., 1993).

Yeast, rat, chicken and human ACCs are cytoplasmic enzymes consisting of 250- to 280-kDa subunits while diatom ACC is most likely a chloroplast enzyme consisting of 230-kDa subunits. Their primary structure has been deduced from cDNA sequences (Al-feel et al., 1992; Lopez-Casillas et al., 1988; Takai et al., 1988; Roessler and Ohlrogge, 1993; Ha et al., 1994). In eukaryotes, homologs of the four bacterial genes are fused in the following order: accC, accB, accD and accA. Animal ACC activity varies with the rate of fatty acid synthesis or energy requirements in different nutritional, hormonal and developmental states. In the rat, ACC mRNA is

-3-

transcribed using different promoters in different tissues and can be regulated by alternative splicing. The rat enzyme activity is also allosterically regulated by a number of metabolites and by reversible phosphorylation (Ha et al., 1994 and references therein). The expression of the yeast gene was shown to be coordinated with phospholipid metabolism (Chirala, 1992; Haslacher et al., 1993).

5

10

15

20

25

30

Much less is known relating to plant ACC. Early attempts at characterization of plant ACC led to the suggestion that it consisted of low molecular weight subunits similar to those of bacteria (Harwood, 1988). More recent efforts indicate that at least one plant isozyme is composed of >200-kDa subunits, similar to the enzyme from other eukaryotes (Egin-Buhler and Ebel, 1983; Slabas and Hellyer, 1985; Gornicki and Haselkorn, 1993; Egli et al., 1993; Betty et al., 1992).

While strong evolutionary conservation exists among biotin carboxylases and biotin carboxylase domains of all biotin-dependent carboxylases, BCCP domains show very little conservation outside the conserved sequence E(A/V)MKM (lysine residue is biotinylated) (Knowles, 1989; Samols et al., 1988). Although the three functional domains of the E. coli ACC are located on separate polypeptides, plant ACC is quite different, having all 3 domains on a single polypeptide.

At least one form of plant ACC is located in plastids, the primary site of fatty acid synthesis. The gene encoding it, however, must be nuclear because no corresponding sequence has been seen in the complete chloroplast DNA sequences of tobacco, liverwort or rice. The idea that in some plants plastid ACC consisted of several smaller subunits was revived by the discovery of an *accD* homolog in some chloroplast genomes (Li and Cronan, 1992). Indeed, it has been shown that the product of this gene in pea binds two other peptides, one of which is biotinylated. The complex may be a chloroplast isoform of ACC in pea and some other plants (Sasaki et al., 1993).

It has been shown recently that plants have indeed more than one form of ACCase (reviewed in Sasaki et al., 1995). The one located in plastids, the primary site of plant fatty acid synthesis, can be either a eukaryotic-type high molecular weight multi-functional enzyme (e.g., in wheat and maize) or a prokaryotic-type

multi-subunit enzyme (e.g., in pea, soybean, tobacco and Arabidopsis). The other plant ACCase, located in the cytoplasm, is of the eukaryotic type.

In Graminae, genes for both cytosolic and plastid eukaryotic-type ACCase are nuclear. No ACCase coding sequence can be found in the complete sequence of rice chloroplast DNA.

In other plants, subunits of ACCase other than the carboxyltransferase subunit encoded by a homolog of the *E. coli* accD gene, present in the chloroplast genome (Sasaki et al., 1995; Li and Cronan, 1992), must be also encoded in the nuclear DNA. Like the vast majority of plastid proteins, plastid ACCases are synthesized in the cytoplasm and then transported into the plastid. The amino acid sequence of the cytosolic and some subunits of the plastid ACCases from several plants have been deduced from genomic or cDNA sequences (Egli et al., 1995; Li and Cronan, 1992; Gornicki et al., 1994; Schulte et al., 1994; Shorrosh et al., 1994; Shorrosh et al., 1995; Roesler et al., 1994; Anderson et al., 1995).

There is experimental evidence suggesting that, in plants, ACCase activity controls carbon flow through the fatty acid pathway and therefore may serve as an important regulation point of plant metabolism (Page et al., 1994; Post-Beitenmiller et al., 1992; Shintani and Ohlrogge, 1995).

The possibility of different ACC isoforms, one present in plastids and another in the cytoplasm, is now accepted. The rationale behind the search for a cytoplasmic ACC isoform is the requirement for malonyl-CoA in this cellular compartment, where it is used in fatty acid elongation and synthesis of secondary metabolites. Indeed, two isoforms were found in maize, both consisting of >200-kDa subunits but differing in size, herbicide sensitivity and immunological properties. The major form was found to be located in mesophyll chloroplasts. It is also the major ACC in the endosperm and in embryos (Egli et al., 1993).

1.2.2 Cyanobacteria

5

10

15

20

25

30

. 1

Unlike monocot plants, members of the cyanobacteria are resistant to these herbicide families. Cyanobacteria are prokaryotes that carry out green plant

νį

5

10

15

20

25

30

photosynthesis, evolving O₂ in the light. They are believed to be the evolutionary ancestors of chloroplasts. Virtually nothing is known about fatty acid biosynthesis in cyanobacteria.

Synechococcus is a unicellular obligate phototroph with an efficient DNA transformation system. Replicating vectors based on endogenous plasmids are available, and selectable markers include resistance to kanamycin, chloramphenicol, streptomycin and the PSII inhibitors diuron and atrazine. Inactivation and/or deletion of Synechococcus genes by transformation with suitable cloned material interrupted by resistance cassettes is well known in the art. Genes may also be replaced by specifically mutated versions using selection for closely linked resistance cassettes.

Anabaena differentiates specialized cells for nitrogen fixation when the culture is deprived of a source of combined nitrogen. The differentiated cells have a unique glycolipid envelope containing C26 and C28 fatty acids (Murata and Nishida, 1987), whose synthesis must start with the reaction catalyzed by ACC. Therefore ACC must be developmentally regulated in Anabaena. Powerful systems of genetic analysis exist for Anabaena as well (Golden et al., 1987).

That cyanobacteria and plants are evolutionarily-related make the former useful sources of cloned genes for the isolation of plant cDNAs. This method is well known to those of skill in the art. For example, the cloned gene for the enzyme phytoene desaturase, which functions in the synthesis of carotenoids, isolated from cyanobacteria was used as a probe to isolate the cDNA for that gene from tomato (Pecker et al., 1992).

1.2.3 Herbicide Resistance

Although the mechanisms of inhibition and resistance are unknown (Lichtenthaler, 1990), it has been shown that aryloxyphenoxypropionates and cyclohexane-1,3-dione derivatives, powerful herbicides effective against monocot weeds, inhibit fatty acid biosynthesis in sensitive plants.

The aryloxyphenoxypropionate class comprises derivatives of aryloxyphenoxy-propionic acid such as diclofop, fenoxaprop, fluazifop, haloxyfop,

propaquizatop and quizalofop. Several derivatives of cyclohexane-1,3-dione are also important post-emergence herbicides which also selectively inhibit monocot plants. This group comprises such compounds as oxydim, cycloxydim, clethodim, sethoxydim, and tralkoxydim.

Recently it has been determined that ACC is the target enzyme for both of these classes of herbicide at least in monocots. Dicotyledonous plants, on the other hand, such as soybean rape, sunflower, tobacco, canola, bean, tomato, potato, lettuce, spinach, carrot, alfalfa and cotton are resistant to these compounds, as are other eukaryotes and prokaryotes.

Important grain crops, such as wheat, rice, maize, barley, rye, and oats, however, are monocotyledonous plants, and are therefore sensitive to these herbicides. Thus herbicides of the aryloxyphenoxypropionate and cyclohexane-1,3-dione groups are not useful in the agriculture of these important grain crops owing to the inactivation of monocot ACC by such chemicals.

15

20

25

30

10

5

1.2.4 Deficiencies in the Prior Art

The genetic transformation of important commercial monocotyledonous agriculture crops with DNA segments encoding herbicide-resistant ACC enzymes would be a revolution in the farming of such grains as wheat, rice, maize, barley, rye, and oats. Moreover the availability for modulating the herbicide resistance of plants through the alteration of ACC-encoding DNA segments and the polypeptides themselves would be highly desirable. Methods of identifying and assaying the levels of ACC activity in these plants would also be important in genetically engineering grain crops and the like with desirable herbicide-resistant qualities. Likewise the availability of DNA segments encoding dicotyledonous ACC and nucleic acid segments derived therefrom would provide a much-needed means of genetically altering the activity of ACC in vivo and in vitro.

What is lacking in the prior art, therefore, is the identification of DNA segments encoding plant and cyanobacterial ACC enzymes, and the development of methods and processes for their use in creation of modified, transgenic plants which

3/1

have altered herbicide resistance. Moreover, novel methods providing transgenic plants using DNA segments encoding ACC polypeptides to modulate ACC activity, fatty acid biosynthesis in general, and oil content of plant cells in specific, are greatly needed to provide transformed plants altered in such activity. Methods for determining ACC activity in vivo and quantitating herbicide resistance in plants would also represent major improvements over the current state of the art.

2. SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention seeks to overcome these and other inherent deficiencies in the prior art by providing compositions comprising novel ACC polypeptides from plant and cyanobacterial species. The invention also provides novel DNA segments encoding eukaryotic and prokaryotic ACCs, and methods and processes for their use in regulating the oil content of plant tissues, for conferring and modulating resistance to particular herbicides in a variety of plant species, and for altering the activity of ACC in plant cells in vivo. Also disclosed are methods for determining herbicide resistance and kits for identifying the presence of plant ACC polypeptides and DNA segments.

2.1 ACC Genes and Polynucleotides

The present invention provides polynucleotides and polypeptides relating to a whole or a portion of acetyl-CoA carboxylase (ACC) of cyanobacteria and plants as well as processes using those polynucleotides and polypeptides.

As used herein the term "polynucleotide" means a sequence of nucleotides connected by phosphodiester linkages. A polynucleotide of the present invention can comprise from about 2 to about several hundred thousand base pairs. Preferably, a polynucleotide comprises from about 5 to about 150,000 base pairs. Preferred lengths of particular polynucleotides are set forth hereinafter.

A polynucleotide of the present invention can be a deoxyribonucleic acid (DNA) molecule or a ribonucleic acid (RNA) molecule. Where a polynucleotide is a DNA molecule, that molecule can be a gene or a cDNA molecule. Nucleotide bases

4:5

5

10

15

20

25

30

are indicated herein by a single letter code: adenine (A), guanine (G), thymine (T), cytosine (C), and uracil (U).

In one embodiment, the present invention contemplates isolated and purified polynucleotides comprising DNA segments encoding polypeptides which have the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium. Preferably, the cyanobacterium is Anabaena or Synechococcus. A preferred Anabaena is Anabaena 7120. A preferred Synechococcus is Anacystis nidulans R2 (Synechococcus sp. strain PCC 7942).

Preferably, a polypeptide is a biotin carboxylase enzyme of a cyanobacterium. This enzyme is a subunit of cyanobacterial acetyl-CoA carboxylase and participates in the carboxylation of acetyl-CoA. In a preferred embodiment, a BC polypeptide is encoded by a polynucleotide comprising an accC gene which has the nucleic acid sequence of SEQ ID NO:5 (Anabaena accC) or SEQ ID NO:7 (Synechococcus accC), or functional equivalents thereof. The BC polypeptide preferably comprises the amino acid sequence of SEQ ID NO:6 (Anabaena BC) or SEQ ID NO:8 (Synechococcus BC), or functional equivalents thereof.

In a second embodiment, the present invention contemplates isolated and purified polynucleotides comprising DNA segments encoding a biotin carboxyl carrier protein of a cyanobacterium. Preferably, the cyanobacterium is Anabaena or Synechococcus. A preferred Anabaena is Anabaena 7120. A preferred Synechococcus is Anacystis nidulans R2 (Synechococcus sp. strain PCC 7942).

Preferably, a polypeptide is a biotin carboxyl carrier protein of a cyanobacterium. This polypeptide is a subunit of cyanobacterial acetyl-CoA carboxylase and participates in the carboxylation of acetyl-CoA. In a preferred embodiment, a BCCP polypeptide is encoded by a polynucleotide comprising an accB gene which has the nucleic acid sequence of SEQ ID NO:1 (Anabaena accB) or SEQ ID NO:3:(Synechococcus accB), or functional equivalents thereof. The BCCP polypeptide preferably comprises the amino acid sequence of SEQ ID NO:2 (Anabaena BCCP) or SEQ ID NO:4 (Synechococcus BCCP), or functional equivalents thereof.

96/32484

5

10

15

20

25

30

15

In a third embodiment, the present invention contemplates isolated and purified polynucleotides comprising DNA segments encoding a carboxyltransferase protein of a cyanobacterium. Preferably, the cyanobacterium is Anabaena or Synechococcus. A preferred Anabaena is Anabaena 7120. A preferred Synechococcus is Anacystis nidulans R2 (Synechococcus sp. strain PCC 7942).

Preferably, a polypeptide is a carboxyltransferase α or β subunit protein of a cyanobacterium. These polypeptides are subunits of cyanobacterial acetyl-CoA carboxylase and participate in the carboxylation of acetyl-CoA. In a preferred embodiment, a CT α polypeptide is encoded by a polynucleotide comprising an accA gene which has the nucleic acid sequence of SEQ ID NO:11 (Synechococcus accA), or a functional equivalent thereof. The CT α polypeptide preferably comprises the amino acid sequence of SEQ ID NO:12 (Synechococcus CT α), or a functional equivalent thereof.

In a fourth embodiment, the present invention contemplates isolated and purified polynucleotides comprising DNA segments encoding an acetyl-CoA carboxylase protein of a plant. Preferably, the plant is a monocotyledonous or a dicotyledonous plant. An exemplary and preferred monocotyledonous plant is wheat, rice, maize, barley, rye, oats or timothy grass. An exemplary and preferred dicotyledonous plant is soybean, rape, sunflower, tobacco, *Arabidopsis*, petunia, pea, canola, bean, tomato, potato, lettuce, spinach, alfalfa, cotton or carrot. A preferred monocotyledonous plant is wheat, and a preferred dicotyledonous plant is canola.

Preferably, a polypeptide is an acetyl-CoA carboxylase (ACC) protein of a plant. This polypeptide participates in the carboxylation of acetyl-CoA. In a preferred embodiment, an ACC polypeptide is encoded by a polynucleotide comprising an ACC cDNA which has the nucleic acid sequence of SEQ ID NO:9 (wheat ACC) or SEQ ID NO:19 (canola ACC), or functional equivalents thereof. The ACC polypeptide preferably comprises the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:31 (wheat ACC) or SEQ ID NO:20 (canola ACC), or functional equivalents thereof.

In yet another aspect, the present invention provides an isolated and purified DNA molecule comprising a promoter operatively linked to a coding region that

encodes (1) a polypeptide having the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium, (2) a biotin carboxyl carrier protein of a cyanobacterium or (3) a plant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA, which coding region is operatively linked to a transcription-terminating region, whereby said promoter drives the transcription of said coding region.

In another aspect, the present invention provides an isolated polypeptide having the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium such as *Synechococcus*. Preferably a biotin carboxyl carrier protein gene includes the nucleic acid sequence of SEQ ID NO:2 and the polypeptide has the amino acid residue sequence of SEQ ID NO:6.

16.

2.2 ACC Polypeptides and Anti-ACC Antibodies

5

10

15

20

25

۲,۰

30

The present invention also provides (1) an isolated and purified biotin carboxyl carrier protein of a cyanobacterium such as Anabaena or Synechococcus, which protein includes the amino acid residue sequence of SEQ ID NO:2 or SEQ ID NO:4, respectively; (2) an isolated and purified biotin carboxylase of a cyanobacterium such as Anabaena or Synechococcus, which protein includes the amino acid residue sequence of SEQ ID NO:6 or SEQ ID NO:8, respectively; (3) an isolated and purified carboxyltransferase α subunit protein of a cyanobacterium such as Synechococcus, which protein includes the amino acid residue sequence of SEQ ID NO:12; (4) an isolated and purified monocotyledonous plant polypeptide from wheat having a molecular weight of about 220 kDa, dimers of which have the ability to catalyze the carboxylation of acetyl-CoA, which protein includes the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:31; and (5) an isolated and purified dicotyledonous plant polypeptide from canola having the ability to catalyze the carboxylation of acetyl-CoA, which protein includes the amino acid sequence of SEQ ID NO:20.

Another aspect of the invention concerns methods and compositions for the use of the novel peptides of the invention in the production of anti-ACC antibodies.

-11-

The present invention also provides methods for identifying ACC and ACC-related polypeptides, which methods comprise contacting a sample suspected of containing such polypeptides with an immunologically effective amount of a composition comprising one or more specific anti-ACC antibodies disclosed herein. Peptides that include the amino acid sequence of any of SEQ ID NO:4 through SEQ ID NO:8 and their derivatives will be preferred for use in generating such anti-ACC antibodies. Samples which may be tested or assayed for the presence of such ACC and ACC-related polypeptides include whole cells, cell extracts, cell homogenates, cell-free supernatants, and the like. Such cells may be either eukaryotic (such as plant cells) or prokaryotic (such as cyanobacterial and bacterial cells).

5

10

20

25

30

In certain aspects, diagnostic reagents comprising the novel peptides of the present invention and/or DNA segments which encode them have proven useful as test reagents for the detection of ACC and ACC-related polypeptides.

15 2.3 ACC Transformation and Identification of Herbicide-Resistant Variants

In yet another aspect, the present invention provides a process of modulating the herbicide resistance of a plant cell by a process of transforming the plant cell with a DNA molecule comprising a promoter operatively linked to a coding region that encodes a herbicide resistant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA, which coding region is operatively linked to a transcription-terminating region, whereby the promoter is capable of driving the transcription of the coding region in a monocotyledonous plant.

Preferably, a polypeptide is an acetyl-CoA carboxylase enzyme and, more preferably, a plant acetyl-CoA carboxylase. In a preferred embodiment, a coding region includes the DNA sequence of SEQ ID NO:9 or SEQ ID NO:19 and a promoter is CaMV35.

In a preferred embodiment, a cell is a cyanobacterium or a plant cell and a plant polypeptide is a monocotyledonous plant acetyl-CoA carboxylase enzyme such as wheat acetyl-CoA carboxylase enzyme. The present invention also provides a transformed cyanobacterium produced in accordance with such a process.

The present invention still further provides a process for determining the inheritance of plant resistance to herbicides of the aryloxyphenoxypropionate or cyclohexane-1,3-dione classes, which generally involves measuring resistance to these herbicides in a parental plant line and in the progeny of the parental plant line, detecting the presence of complexes between DNA restriction fragments and the ACC gene, and then correlating the herbicide resistance of the parental and progeny plants with the presence of particular sizes of ACC gene-containing DNA fragments as an indication of the inheritance of resistance to herbicides of these classes.

Preferably, the acetyl-CoA carboxylase is a dicotyledonous plant acetyl-CoA carboxylase enzyme or a mutated monocotyledonous plant acetyl-CoA carboxylase that confers herbicide resistance or a hybrid acetyl-CoA carboxylase comprising a portion of a dicotyledonous plant acetyl-CoA carboxylase, ¹ a portion of a monocotyledonous plant acetyl-CoA carboxylase or one or more domains of a cyanobacterial acetyl-CoA carboxylase.

Where a cyanobacterium is transformed with a plant ACC DNA molecule, that cyanobacterium can be used to identify herbicide resistant mutations in the gene encoding ACC. In accordance with such a use, the present invention provides a process for identifying herbicide resistant variants of a plant acetyl-CoA carboxylase comprising the steps of:

20

25

5

10

15

ш.,

- (a) transforming cyanobacteria with a DNA molecule that encodes a monocotyledonous plant acetyl-CoA carboxylase enzyme to form transformed or transfected cyanobacteria;
- (b) inactivating cyanobacterial acetyl-CoA carboxylase;
- (c) exposing the transformed cyanobacteria to an effective herbicidal amount of a herbicide that inhibits acetyl-CoA carboxylase activity;
- (d) identifying transformed cyanobacteria that are resistant to the herbicide; and
- (e) characterizing DNA that encodes acetyl-CoA carboxylase from the cyanobacteria of step (d).

-13-

Means for transforming cyanobacteria as well as expression vectors used for such transformation are preferably the same as set forth above. In a preferred embodiment, cyanobacteria are transformed or transfected with an expression vector comprising a coding region that encodes wheat ACC. Cyanobacteria resistant to the herbicide are identified. Identifying comprises growing or culturing transformed cells in the presence of the herbicide and recovering those cells that survive herbicide exposure. Transformed, herbicide-resistant cells are then grown in culture, collected and total DNA extracted using standard techniques. ACC DNA is isolated, amplified if needed and then characterized by comparing that DNA with DNA from ACC known to be inhibited by that herbicide.

In still yet another aspect, the present invention provides a process for identifying herbicide resistant variants of a plant acetyl-CoA carboxylase. Such methods generally involve transforming a cyanobacterium or a bacterium or a yeast cell with a DNA molecule that encodes a plant acetyl-CoA carboxylase enzyme, inactivating the host-cell acetyl-CoA carboxylase, and exposing the cells to a herbicide that inhibits monocotyledonous plant acetyl-CoA carboxylase activity. Transformed cells may be identified which are resistant to the herbicide; and the DNA that encodes resistant acetyl-CoA carboxylase in these transformed cells may be examined and characterized.

20

25

5

10

15

2.4 ACC Transgenes and Transgenic Plants

In yet another aspect, the present invention provides a process of altering the carboxylation of acetyl-CoA in a cell comprising transforming the cell with a DNA molecule comprising a promoter operatively linked to a coding region that encodes a plant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA, which coding region is operatively linked to a transcription-terminating region, whereby the promoter is capable of driving the transcription of the coding region in the cell. The invention also provides a means of reducing the amount of ACC in plants by expression of ACC antisense mRNA.

5

10

15

20

25

30

Another aspect of the invention relates generally to transgenic plants which express genes or gene segments encoding the novel polypeptide compositions disclosed herein. As used herein, the term "transgenic plants" is intended to refer to plants that have incorporated DNA sequences, including but not limited to genes which are perhaps not normally present, DNA sequences not normally transcribed into RNA or translated into a protein ("expressed"), or any other genes or DNA sequences which one desires to introduce into the non-transformed plant, such as genes which may normally be present in the non-transformed plant but which one desires to either genetically engineer or to have altered expression. It is contemplated that in some instances the genome of transgenic plants of the present invention will have been augmented through the stable introduction of the transgene. However, in other instances, the introduced gene will replace an endogenous sequence.

A preferred gene which may be introduced includes, for example, the ACC DNA sequences from cyanobacterial or plant origin, particularly those described herein which are obtained from the cyanobacterial species Synechococcus or Anabaena, or from plant species such as wheat or canola, of any of those sequences which have been genetically engineered to decrease or increase the activity of the ACC in such transgenic species.

Vectors, plasmids, cosmids, YACs (yeast artificial chromosomes) and DNA segments for use in transforming such cells will, of course, generally comprise either the cDNA, gene or gene sequences of the present invention, and particularly those encoding ACC. These DNA constructs can further include structures such as promoters, enhancers, polylinkers, or even regulatory genes as desired. The DNA segment or gene may encode either a native or modified ACC, which will be expressed in the resultant recombinant cells, and/or which will impart an improved phenotype to the regenerated plant.

Such transgenic plants may be desirable for increasing the herbicide resistance of a monocotyledonous plant, by incorporating into such a plant, a transgenic DNA segment encoding a plant acetyl-CoA carboxylase enzyme which is resistant to herbicide inactivation, e.g., a dicotyledonous ACC gene. Alternatively a

cyanobacterial ACC polypeptide-encoding DNA segment could also be used to prepare a transgenic plant with increased resistance to herbicide inactivation.

Alternatively transgenic plants may be desirable having an decreased herbicide resistance. This would be particularly desirable in creating transgenic plants which are more sensitive to such herbicides. Such a herbicide-sensitive plant could be prepared by incorporating into such a plant, a transgenic DNA segment encoding a plant acetyl-CoA carboxylase enzyme which is sensitive to herbicide inactivation, e.g., a monocotyledonous ACC gene, or a mutated dicotyledonous or cyanobacterial ACC-encoding gene.

In other aspects of the present invention, the invention concerns processes of modifying the oil content of a plant cell. Such modifications generally involve expressing in such plant cells transgenic DNA segments encoding a plant or cyanobacterial acetyl-CoA carboxylase composition of the present invention. Such processes would generally result in increased expression of ACC and hence, increased oil production in such cells. Alternatively, when it is desirable to decrease the oil production of such cells, ACC-encoding transgenic DNA segments or antisense (complementary) DNA segments to genomic ACC-encoding DNA sequences may be used to transform cells.

٠.,

Either process may be facilitated by introducing into such cells DNA segments encoding a plant or cyanobacterial acetyl-CoA carboxylase polypeptide, as long as the resulting transgenic plant expresses the acetyl-CoA carboxylase-encoding transgene.

The present invention also provides a transformed plant produced in accordance with the above process as well as a transgenic plant and a transgenic plant seed having incorporated into its genome a transgene that encodes a herbicide resistant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA. All such transgenic plants having incorporated into their genome transgenic DNA segments encoding plant or cyanobacterial acetyl-CoA carboxylase polypeptides are aspects of this invention.

2.5 ACC Screening and Immunodetection Kits

5

10

15

20

25

30

-16-

The present invention contemplates methods and kits for screening samples suspected of containing ACC polypeptides or ACC-related polypeptides, or cells producing such polypeptides. Said kit can contain a nucleic acid segment or an antibody of the present invention. The kit can contain reagents for detecting an interaction between a sample and a nucleic acid or antibody of the present invention. The provided reagent can be radio-, fluorescently- or enzymatically-labeled. The kit can contain a known radiolabeled agent capable of binding or interacting with a nucleic acid or antibody of the present invention.

5

10

15

20

25

30

The reagent of the kit can be provided as a liquid solution, attached to a solid support or as a dried powder. Preferably, when the reagent is provided in a liquid solution, the liquid solution is an aqueous solution. Preferably, when the reagent provided is attached to a solid support, the solid support can be chromatograph media, a test plate having a plurality of wells, or a microscope slide. When the reagent provided is a dry powder, the powder can be reconstituted by the addition of a suitable solvent, that may be provided.

In still further embodiments, the present invention concerns immunodetection methods and associated kits. It is proposed that the ACC peptides of the present invention may be employed to detect antibodies having reactivity therewith, or, alternatively, antibodies prepared in accordance with the present invention, may be employed to detect ACC or ACC-related epitope-containing peptides. In general, these methods will include first obtaining a sample suspected of containing such a protein, peptide or antibody, contacting the sample with an antibody or peptide in accordance with the present invention, as the case may be, under conditions effective to allow the formation of an immunocomplex, and then detecting the presence of the immunocomplex.

In general, the detection of immunocomplex formation is quite well known in the art and may be achieved through the application of numerous approaches. For example, the present invention contemplates the application of ELISA, RIA, immunoblot (e.g., dot blot), indirect immunofluorescence techniques and the like. Generally, immunocomplex formation will be detected through the use of a label,

-17-

such as a radiolabel or an enzyme tag (such as alkaline phosphatase, horseradish peroxidase, or the like). Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.

For assaying purposes, it is proposed that virtually any sample suspected of comprising either an ACC peptide or an ACC-related peptide or antibody sought to be detected, as the case may be, may be employed. It is contemplated that such embodiments may have application in the titering of antigen or antibody samples, in the selection of hybridomas, and the like. In related embodiments, the present invention contemplates the preparation of kits that may be employed to detect the presence of ACC or ACC-related proteins or peptides and/or antibodies in a sample. Samples may include cells, cell supernatants, cell suspensions, cell extracts, enzyme fractions, protein extracts, or other cell-free compositions suspected of containing ACC peptides. Generally speaking, kits in accordance with the present invention will include a suitable ACC peptide or an antibody directed against such a protein or peptide, together with an immunodetection reagent and a means for containing the antibody or antigen and reagent. The immunodetection reagent will typically comprise a label associated with the antibody or antigen, or associated with a secondary binding ligand. Exemplary ligands might include a secondary antibody directed against the first antibody or antigen or a biotin or avidin (or streptavidin) ligand having an associated label. Of course, as noted above, a number of exemplary labels are known in the art and all such labels may be employed in connection with the present invention.

The container will generally include a vial into which the antibody, antigen or detection reagent may be placed, and preferably suitably aliquotted. The kits of the present invention will also typically include a means for containing the antibody, antigen, and reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.

25

5

10

15

20

5

10

15

20

25

30

2.6 ELISAs and Immunoprecipitation

ELISAs may be used in conjunction with the invention. In an ELISA assay, proteins or peptides incorporating ACC antigen sequences are immobilized onto a selected surface, preferably a surface exhibiting a protein affinity such as the wells of a polystyrene microtiter plate. After washing to remove incompletely adsorbed material, it is desirable to bind or coat the assay plate wells with a nonspecific protein that is known to be antigenically neutral with regard to the test antisera such as bovine serum albumin (BSA), casein or solutions of milk powder. This allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.

After binding of antigenic material to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the antisera or clinical or biological extract to be tested in a manner conducive to immune complex (antigen/antibody) formation. Such conditions preferably include diluting the antisera with diluents such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween®. These added agents also tend to assist in the reduction of nonspecific background. The layered antisera is then allowed to incubate for from about 2 to about 4 hours, at temperatures preferably on the order of about 25° to about 27°C. Following incubation, the antisera-contacted surface is washed so as to remove non-immunocomplexed material. A preferred washing procedure includes washing with a solution such as PBS/Tween®, or borate buffer.

Following formation of specific immunocomplexes between the test sample and the bound antigen, and subsequent washing, the occurrence and even amount of immunocomplex formation may be determined by subjecting same to a second antibody having specificity for the first. To provide a detecting means, the second antibody will preferably have an associated enzyme that will generate a color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact and incubate the antisera-bound surface with a urease or peroxidase-conjugated anti-human IgG for a period of time and under

-19-

conditions which favor the development of immunocomplex formation (e.g., incubation for 2 hours at room temperature in a PBS-containing solution such as PBS Tween®).

After incubation with the second enzyme-tagged antibody, and subsequent to washing to remove unbound material, the amount of label is quantified by incubation with a chromogenic substrate such as urea and bromocresol purple or 2,2'-azino-di-(3-ethyl-benzthiazoline)-6-sulfonic acid (ABTS) and H₂O₂, in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generation, e.g., using a visible spectra spectrophotometer.

The antibodies of the present invention are particularly useful for the isolation of antigens by immunoprecipitation. Immunoprecipitation involves the separation of the target antigen component from a complex mixture, and is used to discriminate or isolate minute amounts of protein. For the isolation of membrane proteins cells must be solubilized into detergent micelles. Nonionic salts are preferred, since other agents such as bile salts, precipitate at acid pH or in the presence of bivalent cations.

In an alternative embodiment the antibodies of the present invention are useful for the close juxtaposition of two antigens. This is particularly useful for increasing the localized concentration of antigens, e.g. enzyme-substrate pairs.

20 2.7 Western Blots

10

15

25

The compositions of the present invention will find great use in immunoblot or western blot analysis. The anti-peptide antibodies may be used as high-affinity primary reagents for the identification of proteins immobilized onto a solid support matrix, such as nitrocellulose, nylon or combinations thereof. In conjunction with immunoprecipitation, followed by gel electrophoresis, these may be used as a single step reagent for use in detecting antigens against which secondary reagents used in the detection of the antigen cause an adverse background. This is especially useful when the antigens studied are immunoglobulins (precluding the use of immunoglobulins binding bacterial cell wall components), the antigens studied cross-react with the

5

10

15

20

25

detecting agent, or they migrate at the same relative molecular weight as a cross-reacting signal.

Immunologically-based detection methods for use in conjunction with Western blotting include enzymatically-, radiolabel-, or fluorescently-tagged secondary antibodies against the toxin moiety are considered to be of particular use in this regard.

2.8 Epitopic Core Sequences

The present invention is also directed to protein or peptide compositions, free from total cells and other peptides, which comprise a purified protein or peptide which incorporates an epitope that is immunologically cross-reactive with one or more anti-ACC antibodies.

As used herein, the term "incorporating an epitope(s) that is immunologically cross-reactive with one or more anti-ACC antibodies" is intended to refer to a peptide or protein antigen which includes a primary, secondary or tertiary structure similar to an epitope located within an ACC polypeptide. The level of similarity will generally be to such a degree that monoclonal or polyclonal antibodies directed against the ACC polypeptide will also bind to, react with, or otherwise recognize, the cross-reactive peptide or protein antigen. Various immunoassay methods may be employed in conjunction with such antibodies, such as, for example, Western blotting, ELISA, RIA, and the like, all of which are known to those of skill in the art.

The identification of ACC immunodominant epitopes, and/or their functional equivalents, suitable for use in vaccines is a relatively straightforward matter. For example, one may employ the methods of Hopp, as taught in U.S. Patent 4,554,101, incorporated herein by reference, which teaches the identification and preparation of epitopes from amino acid sequences on the basis of hydrophilicity. The methods described in several other papers, and software programs based thereon, can also be used to identify epitopic core sequences (see, for example, Jameson and Wolf, 1988; Wolf et al., 1988; U.S. Patent Number 4,554,101). The amino acid sequence of these

"epitopic core sequences" may then be readily incorporated into peptides, either through the application of peptide synthesis or recombinant technology.

Preferred peptides for use in accordance with the present invention will generally be on the order of 8 to 20 amino acids in length, and more preferably about 8 to about 15 amino acids in length. It is proposed that shorter antigenic ACC-derived peptides will provide advantages in certain circumstances, for example, in the preparation of vaccines or in immunologic detection assays. Exemplary advantages include the ease of preparation and purification, the relatively low cost and improved reproducibility of production, and advantageous biodistribution.

5

10

15

20

25

ولخذة

30

It is proposed that particular advantages of the present invention may be realized through the preparation of synthetic peptides which include modified and/or extended epitopic/immunogenic core sequences which result in a "universal" epitopic peptide directed to ACC and ACC-related sequences. These epitopic core sequences are identified herein in particular aspects as hydrophilic regions of the ACC polypeptide antigen. It is proposed that these regions represent those which are most likely to promote T-cell or B-cell stimulation, and, hence, elicit specific antibody production.

An epitopic core sequence, as used herein, is a relatively short stretch of amino acids that is "complementary" to, and therefore will bind, antigen binding sites on transferrin-binding protein antibodies. Additionally or alternatively, an epitopic core sequence is one that will elicit antibodies that are cross-reactive with antibodies directed against the peptide compositions of the present invention. It will be understood that in the context of the present disclosure, the term "complementary" refers to amino acids or peptides that exhibit an attractive force towards each other. Thus, certain epitope core sequences of the present invention may be operationally defined in terms of their ability to compete with or perhaps displace the binding of the desired protein antigen with the corresponding protein-directed antisera.

In general, the size of the polypeptide antigen is not believed to be particularly crucial, so long as it is at least large enough to carry the identified core sequence or sequences. The smallest useful core sequence anticipated by the present disclosure

would generally be on the order of about 8 amino acids in length, with sequences on the order of 10 to 20 being more preferred. Thus, this size will generally correspond to the smallest peptide antigens prepared in accordance with the invention. However, the size of the antigen may be larger where desired, so long as it contains a basic epitopic core sequence.

5

10

15

20

25

30

77

The identification of epitopic core sequences is known to those of skill in the art, for example, as described in U.S. Patent 4,554,101, incorporated herein by reference, which teaches the identification and preparation of epitopes from amino acid sequences on the basis of hydrophilicity. Moreover, numerous computer programs are available for use in predicting antigenic portions of proteins (see e.g., Jameson and Wolf, 1988; Wolf et al., 1988). Computerized peptide sequence analysis programs (ê:g., DNAStar® software, DNAStar, Inc., Madison, WI) may also be useful in designing synthetic peptides in accordance with the present disclosure.

Syntheses of epitopic sequences, or peptides which include an antigenic epitope within their sequence, are readily achieved using conventional synthetic techniques such as the solid phase method (e.g., through the use of commercially available peptide synthesizer such as an Applied Biosystems Model 430A Peptide Synthesizer). Peptide antigens synthesized in this manner may then be aliquotted in predetermined amounts and stored in conventional manners, such as in aqueous solutions or, even more preferably, in a powder or lyophilized state pending use.

In general, due to the relative stability of peptides, they may be readily stored in aqueous solutions for fairly long periods of time if desired, e.g., up to six months or more, in virtually any aqueous solution without appreciable degradation or loss of antigenic activity. However, where extended aqueous storage is contemplated it will generally be desirable to include agents including buffers such as Tris or phosphate buffers to maintain a pH of about 7.0 to about 7.5. Moreover, it may be desirable to include agents which will inhibit microbial growth, such as sodium azide or Merthiolate. For extended storage in an aqueous state; it will be desirable to store the solutions at 4°C, or more preferably, frozen. Of course, where the peptides are stored in a lyophilized or powdered state, they may be stored virtually indefinitely, e.g., in

5

10

15

20

25

TC.

30

metered aliquots that may be rehydrated with a predetermined amount of water (preferably distilled) or buffer prior to use.

2.9 DNA Segments

The present invention also concerns DNA segments, that can be isolated from virtually any source, that are free from total genomic DNA and that encode the novel peptides disclosed herein. DNA segments encoding these peptide species may prove to encode proteins, polypeptides, subunits, functional domains, and the like of ACC-related or other non-related gene products. In addition these DNA segments may be synthesized entirely *in vitro* using methods that are well-known to those of skill in the art.

As used herein, the term "DNA segment" refers to a DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a DNA segment encoding an ACC peptide refers to a DNA segment that contains ACC coding sequences yet is isolated away from, or purified free from, total genomic DNA of the species from which the DNA segment is obtained. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phagemids, phage, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified ACC gene refers to a DNA segment which may include in addition to peptide encoding sequences, certain other elements such as, regulatory sequences, isolated substantially away from other naturally occurring genes or protein-encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein-, polypeptide- or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides or peptides.

"Isolated substantially away from other coding sequences" means that the gene of interest, in this case, a gene encoding ACC, forms the significant part of the coding

region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode an ACC peptide species that includes within its amino acid sequence an amino acid sequence essentially as set forth in any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, and SEQ ID NO:31.

. with

10

15

20

25

30

The term "a sequence essentially as set forth in any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20 and SEQ ID NO:31" means that the sequence substantially corresponds to a portion of the sequence of either SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20 or SEQ ID NO:31, and has relatively few amino acids that are not identical to, or a biologically functional equivalent of, the amino acids of any of these sequences. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein (for example, see Preferred Embodiments). Accordingly, sequences that have between about 70% and about 80%, or more preferably between about 81% and about 90%, or even more preferably between about 91% and about 99% amino acid sequence identity or functional equivalence to the amino acids of any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, and SEQ ID NO:31 will be sequences that are "essentially as set forth in any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, and SEQ ID NO:31."

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the

maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, *i.e.*, introns, which are known to occur within genes.

5

10

15

20

25

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments may be prepared that include a short contiguous stretch encoding either of the peptide sequences disclosed in any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20 and SEQ ID NO:31, or that are identical to or complementary to DNA sequences which encode any of the peptides disclosed in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, and SEQ ID NO:31, and particularly those DNA segments disclosed in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:19, or SEQ ID NO:30. For example, DNA sequences such as about 14 nucleotides, and that are up to about 13,000, about 5,000, about 3,000, about 2,000, about 1,000, about 500, about 200, about 100, about 50, and about 14 base pairs in length (including all intermediate lengths) are also contemplated to be useful.

It will be readily understood that "intermediate lengths", in these contexts, means any length between the quoted ranges, such as 14, 15, 16, 17, 18, 19, 20, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through the 200-500; 500-1,000; 1,000-2,000; 2,000-3,000; 3,000-5,000; 5,000-10,000, 10,000-12,000, 12,000-13,000 and up to and

including sequences of about 13,000, 13,001, 13,002, or 13,003 nucleotides etc. and the like.

5

10

15

20

25

It will also be understood that this invention is not limited to the particular nucleic acid sequences which encode peptides of the present invention, or which encode the amino acid sequences of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, and SEQ ID NO:31, including those DNA sequences which are particularly disclosed in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:19, and SEQ ID NO:30. Recombinant vectors and isolated DNA segments may therefore variously include the peptide-coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include these peptide-coding regions or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.

The DNA segments of the present invention encompass biologically-functional equivalent peptides. Such sequences may arise as a consequence of codon redundancy and functional equivalency that are known to occur naturally within nucleic acid sequences and the proteins thus encoded. Alternatively, functionally-equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test mutants in order to examine activity at the molecular level.

If desired, one may also prepare fusion proteins and peptides, e.g., where the peptide-coding regions are aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins that may be purified by affinity chromatography and enzyme label coding regions, respectively).

Recombinant vectors form further aspects of the present invention. Particularly useful vectors are contemplated to be those vectors in which the coding portion of the DNA segment, whether encoding a full length protein or smaller peptide, is positioned under the control of a promoter. The promoter may be in the form of the promoter that is naturally associated with a gene encoding peptides of the present invention, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCRTM technology, in connection with the compositions disclosed herein.

5

10

15

20

25

30

In other embodiments, it is contemplated that certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a DNA segment encoding an ACC peptide in its natural environment. Such promoters may include promoters normally associated with other genes, and/or promoters isolated from any bacterial, viral, eukaryotic, or plant cell. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type, organism, or even animal, chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., 1989. The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems contemplated for use in high-level expression include, but are not limited to, the Pichia expression vector system (Pharmacia LKB Biotechnology).

In connection with expression embodiments to prepare recombinant proteins and peptides, it is contemplated that longer DNA segments will most often be used, with DNA segments encoding the entire peptide sequence being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of ACC peptides or epitopic core regions, such as may be used to generate

anti-ACC antibodies, also falls within the scope of the invention. DNA segments that encode peptide antigens from about 8 to about 50 amino acids in length, or more preferably, from about 8 to about 30 amino acids in length, or even more preferably, from about 8 to about 20 amino acids in length are contemplated to be particularly useful. Such peptide epitopes may be amino acid sequences which comprise contiguous amino acid sequences from any of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:20, or SEQ ID NO:31.

5

10

15

20

25

30

In addition to their use in directing the expression of ACC peptides of the present invention, the nucleic acid sequences contemplated herein also have a variety of other uses. For example, they also have utility as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that nucleic acid segments that comprise a sequence region that consists of at least a 14 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 14 nucleotide long contiguous DNA segment any of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:19, and SEQ ID NO:30 will find particular utility. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1,000, 2,000, 5,000, 8,000, 10,000, 12,000, 13,000 etc. (including all intermediate lengths and up to and including full-length sequences will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to ACC-encoding sequences will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Nucleic acid molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so, identical complementary to DNA sequences of any of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:19, and SEQ ID NO:30 are particularly contemplated as hybridization probes for use in,

متينك

-29-

e.g., Southern and Northern blotting. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 10-14 and about 100 or 200 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

5

10

15

20

25

30

The use of a hybridization probe of about 14 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 14 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having genecomplementary stretches of 15 to 20 contiguous nucleotides, or even longer where desired.

Of course, fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion. Small nucleic acid segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCRTM technology of U.S. Patents 4,683,195 and 4,683,202 (each incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by

-30-

about 0.02 M to about 0.15 M NaCl at temperatures of about 50°C to about 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating ACC-encoding DNA segments. Detection of DNA segments via hybridization is well-known to those of skill in the art, and the teachings of U.S. Patents 4,965,188 and 5,176,995 (each incorporated herein by reference) are exemplary of the methods of hybridization analyses. Teachings such as those found in the texts of Maloy *et al.*, 1993; Segal 1976; Proskop, 1991; and Kuby, 1991, are particularly relevant.

5

10

15

20

25

30

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate ACC-encoding sequences from related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ conditions such as about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20°C to about 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a means visible to the human

eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C content, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantitated, by means of the label.

15 2.10 Biological Functional Equivalents

5

10

20

Modification and changes may be made in the structure of the peptides of the present invention and DNA segments which encode them and still obtain a functional molecule that encodes a protein or peptide with desirable characteristics. The following is a discussion based upon changing the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. The amino acid changes may be achieved by changing the codons of the DNA sequence, according to the codons listed in Table 1.

TABLE 1

Amino Acids	_	Codons				
Alanine	Ala	Α	GCA	GCC	GCG	GCU
Cysteine	Cys	С	UGC	UGU		
Aspartic acid	Asp	D,	GAC	GAU		
Glutamic acid	Glu	E	GAA	GAG		
Phenylalanine	Phe	F	UUC	บบบ		

~6.3

5

10

15

٠. ...

Amino Acids			Codons					
Glycine	Gly	G	GGA	GGC	GGG	GGU		
Histidine	His	Н	CAC	CAU				
Isoleucine	Пе	I	AUA	AUC	AUU			
Lysine	Lys	K	AAA	AAG '				
Leucine	Leu	L	UUA	UUG	CUA	CUC	CUG	CUU
Methionine	Met	M	AUG					
Asparagine	Asn	N	AAC	AAU				
Proline	Рго	P	CCA	CCC	CCG	CCU		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU
Serine	Ser	S	AGC	AGU	UCA	ບccື '	UCG	UCU
Threonine	Thr	T	ACA	ACC	ACG	ACU		
Valine	Val	V	GUA	GUC	GUG	GUU		
Tryptophan	Trp	w	UGG					
Tyrosine	Tyr	Y	UAC	UAU				

For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences which encode said peptides without appreciable loss of their biological utility or activity.

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and

Doolittle, 1982, incorporate herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

5

10

15

20

25

Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics (Kyte and Doolittle, 1982), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, *i.e.*, still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Patent 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

As detailed in U.S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 \pm 1); glutamate (+3.0 \pm 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 \pm 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

-34-

It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

2.11 Site-Specific Mutagenesis

. 5

10

15

20

25

30

Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art, as exemplified by various publications. As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors

-35-

such as the M13 phage. These phage are readily commercially available and their use is generally well known to those skilled in the art. Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.

5

10

15

20

25

30

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes the desired peptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as *E. coli* polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the selected peptide-encoding DNA segments using site-directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of peptides and the DNA sequences encoding them may be obtained. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants.2.12 Monoclonal Antibody Generation

Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). The methods for generating monoclonal antibodies (mAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for

10

15

20

25

f2 &

the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.

As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.

The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster, injection may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate mAbs.

10

15

20

25

30

OL

mAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Patent 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified ACC protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the mAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×10^7 to 2×10^8 lymphocytes.

The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653,

-38-

NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

5

10

15

20

25

C43:

Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 ratio, though the ratio may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described (Kohler and Milstein, 1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, (Gefter et al., 1977). The use of electrically induced fusion methods is also appropriate (Goding, 1986, pp. 71-74).

Fusion procedures usually produce viable hybrids at low frequencies, about 1×10^{-6} to 1×10^{-8} . However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the *de novo* synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block *de novo* synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

-39-

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B-cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B-cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs. The cell lines may be exploited for mAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide mAbs in high concentration. The individual cell lines could also be cultured *in vitro*, where the mAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. mAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

ونطوا

sili

5

10

15

20

25

ع يجد 3

10

15

20

3. BRIEF DESCRIPTION OF THE DRAWINGS

The drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

- FIG. 1. Structure of the cytosolic ACCase gene from wheat. Arrows indicate fragments of the genomic clones analyzed in more detail. Sequenced fragments are marked in black. The localization of the ACCase functional domains was established by amino acid sequence comparison with other biotin-dependent carboxylases (Gornicki et al., 1994). BC, biotin carboxylase; BCC, biotin carboxyl carrier; CT, carboxyltransferase.
- FIG. 2. Alignment of cDNA sequences corresponding to the 3'-end of the mRNA encoding wheat cytosolic ACCase. Only the sequence of the 3'-end of the RACE clones is shown. The putative polyadenylation signals are underlined. Asterisks indicate identical nucleotides. Sixteen additional 3'-RACE clones were sequenced, these matched one or another of the four sequences shown.
 - FIG. 3. DNA sequence of the wheat genomic ACC clone. The entire sequence is given in SEQ ID NO:30.
- FIG. 4. Deduced amino acid sequence of the wheat genomic ACC clone shown in FIG. 3. The sequence is presented in SEQ ID NO:31.
 - FIG. 5. Shown is the 5' flanking sequence of the ACCase 1 gene (about 3 kb upstream of the translation initiation codon, of clone 71L. The sequence is shown in SEQ ID NO:32.
- FIG. 6. Shown is the 5' flanking sequence of the ACCase 2 gene designated 153. The sequence is shown in SEQ ID NO:33.

4. DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

4.1 Definitions

The following words and phrases have the meanings set forth below:

Expression: The combination of intracellular processes, including transcription and translation undergone by a coding DNA molecule such as a structural gene to produce a polypeptide.

Promoter: A recognition site on a DNA sequence or group of DNA sequences that provide an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.

5

10

15

20

25

30

Regeneration: The process of growing a plant from a plant cell (e.g., plant protoplast or explant).

Structural gene: A gene that is expressed to produce a polypeptide.

Transformation: A process of introducing an exogenous DNA sequence (e.g., a vector, a recombinant DNA molecule) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication.

Transformed cell: A cell whose DNA has been altered by the introduction of an exogenous DNA molecule into that cell.

Transgenic cell: Any cell derived or regenerated from a transformed cell or derived from a transgenic cell. Exemplary transgenic cells include plant calli derived from a transformed plant cell and particular cells such as leaf, root, stem, e.g., somatic cells, or reproductive (germ) cells obtained from a transgenic plant.

Transgenic plant: A plant or progeny thereof derived from a transformed plant cell or protoplast, wherein the plant DNA contains an introduced exogenous DNA molecule not originally present in a native, non-transgenic plant of the same strain. The terms "transgenic plant" and "transformed plant" have sometimes been used in the art as synonymous terms to define a plant whose DNA contains an exogenous DNA molecule. However, it is thought more scientifically correct to refer to a regenerated plant or callus obtained from a transformed plant cell or protoplast as being a transgenic plant, and that usage will be followed herein.

Vector: A DNA molecule capable of replication in a host cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment. A plasmid is an exemplary vector.

10

15

20

25

30

4.2 Polynucleotides

Amino acid sequences of biotin carboxylase (BC) from Anabaena and Synechococcus show great similarity with amino acid residue sequences from other ACC enzymes as well as with the amino acid residue sequences of other biotin-containing enzymes. Based on that homology, specific nucleotide sequences were chosen for the construction of primers for polymerase chain reaction amplification of a corresponding region of the gene for ACC from wheat. Those primers have the nucleotide sequences shown below:

Primer 1 5'-TCGAATTCGTNATNATHAARGC-3' (SEQ ID NO:13);

Primer 2 5'-GCTCTAGAGKRTGYTCNACYTG-3' (SEQ ID NO:14);

where N is A, C, G or T; H is A, C or T; R is A or G; Y is T or C and K is G or T. Primers 1 and 2 comprise a 14-nucleotide specific sequence based on a conserved amino acid sequence and an 8-nucleotide extension at the 5'-end of the primer to provide anchors for rounds of amplification after the first round and to provide convenient restriction sites for analysis and cloning.

In eukaryotic ACCs, a BCCP domain is located about 300 amino acids away from the end of the BC domain, on the C-terminal side. Therefore, it is possible to amplify the cDNA covering the interval between the BC and BCCP domains using primers from the C-terminal end of the BC domain and the conserved MKM region of the BCCP. The BC primer was based on the wheat cDNA sequence obtained as described above. Those primers, each with 6- or 8-base 5'-extensions, are shown below:

Primer 3 5'-GCTCTAGAATACTATTTCCTG-3' (SEQ ID NO:15)

Primer 4 5'-TCGAATTCWNCATYTTCATNRC-3' (SEO ID NO:16)

where N, R and Y are as defined above. W is A or T. The BC primer (primer 3) was based on the wheat cDNA sequence obtained as described above. The MKM primer (primer 4) was first checked by determining whether it would amplify the fabE gene coding BCCP from Anabaena DNA. This PCRTM was primed at the other end by using a primer based on the N-terminal amino acid residue sequence as determined on

-43-

protein purified from Anabaena extracts by affinity chromatography. Those primers are shown below:

Primer 5 5'-GCTCTAGAYTTYAAYGARATHMG-3' (SEQ ID NO:17)

Primer 4 5'-TCGAATTCWNCATYTTCATNRC-3' (SEQ ID NO:18)

where H, N, R, T, Y and W are as defined above. M is A or C. This amplification (using the conditions described above) yielded the correct fragment of the Anabaena fabE gene, which was used to identify cosmids that contained the entire fabE gene and flanking DNA. An about 4-kb XbaI fragment containing the gene was cloned into the vector pBluescriptKS® for sequencing. Primers 3 and 4 were then used to amplify the intervening sequence in wheat cDNA. Again, the product of the first PCRTM was eluted and reamplified by another round of PCRTM, then cloned into the Invitrogen vector pCRII®.

The amino acid sequence of the polypeptide predicted from the cDNA sequence for this entire fragment of wheat cDNA (1473 nucleotides) was compared with the amino acid sequences of other ACC enzymes and related enzymes from various sources. Rat, chicken and yeast are more closely related to each other than to the BC subunits of bacteria, and the BC domains of other enzymes such as pyruvate carboxylase of yeast and propionyl CoA carboxylase of rat. The amino acid identities between wheat ACC and other biotin-dependent enzymes, within the BC domain are no higher than 60%, and shown below in Table 2.

٠, ٠,٠

5

10

15

20

مسائع

وأش

-44-

TABLE 2

	% identity with wheat ACC	# identity with rat ACC
rat ACC	58	(100)
chicken ACC	57 .	
yeast ACC	56	
Synechococcus ACC	32	
Anabaena ACC	30	
E. coli ACC	33	
rat propionyl CoA carboxylase	32	31
yeast pyruvate carboxylase	31	

4.3 Probes and Primers

5

10

15

20

In another aspect, DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences having the ability to specifically hybridize to gene sequences of the selected polynucleotides disclosed herein. In these aspects, nucleic acid probes of an appropriate length are prepared based on a consideration of a selected ACC gene sequence, e.g., a sequence such as that shown in SEQ ID NO:9 or SEQ ID NO:19, or a selected gene sequence encoding a subunit of a cyanobacterial ACC, e.g., a sequence as that shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11. The ability of such nucleic acid probes to specifically hybridize to an ACC gene sequence lend them particular utility in a variety of embodiments. Most importantly, the probes can be used in a variety of assays for detecting the presence of complementary sequences in a given sample.

In certain embodiments, it is advantageous to use oligonucleotide primers. The sequence of such primers is designed using a polynucleotide of the present invention for use in detecting, amplifying or mutating a defined segment of an ACC gene from a cyanobacterium or a plant using PCRTM technology. Segments of ACC genes from other organisms may also be amplified by PCRTM using such primers.

To provide certain of the advantages in accordance with the present invention, a preferred nucleic acid sequence employed for hybridization studies or assays includes sequences that are complementary to at least a 14 to 30 or so long nucleotide stretch of an ACC-encoding or ACC subunit-encoding sequence, such as that shown in SEO ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:19. A size of at least 14 nucleotides in length helps to ensure that the fragment will be of sufficient length to form a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 14 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 14 to 20 nucleotides, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR™ technology of U.S. Patents 4, 683,195, and 4,683,202, herein incorporated by reference, or by excising selected DNA fragments from recombinant plasmids containing appropriate inserts and suitable restriction sites.

5

10

15

20

25

30

Accordingly, a nucleotide sequence of the invention can be used for its ability to selectively form duplex molecules with complementary stretches of the gene. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degree of selectivity of the probe toward the target sequence. For applications requiring a high degree of selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, for example, one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50°C to about 70°C. These conditions are particularly selective, and tolerate little, if any, mismatch between the probe and the template or target strand.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or

10

15

20

25

30

where one seeks to isolate an ACC coding sequences for related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ conditions such as about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20°C to about 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

In certain embodiments, it is advantageous to employ a polynucleotide of the present invention in combination with an appropriate label for detecting hybrid formation. A wide variety of appropriate labels are known in the art, including radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal.

In general, it is envisioned that a hybridization probe described herein is useful both as a reagent in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions depend as is well known in the art on the particular circumstances and criteria required (e.g., on the G+C content, type of target nucleic acid, source of nucleic acid, size of hybridization probe). Following washing of the matrix to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantitated, by means of the label.

4.4 Expression Vectors

The present invention contemplates an expression vector comprising a polynucleotide of the present invention. Thus, in one embodiment an expression

-47-

vector is an isolated and purified DNA molecule comprising a promoter operatively linked to an coding region that encodes a polypeptide having the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium, which coding region is operatively linked to a transcription-terminating region, whereby the promoter drives the transcription of the coding region.

5

10

15

20

25

30

٠., .

As used herein, the term "operatively linked" means that a promoter is connected to an coding region in such a way that the transcription of that coding region is controlled and regulated by that promoter. Means for operatively linking a promoter to a coding region are well known in the art.

Where an expression vector of the present invention is to be used to transform a cyanobacterium, a promoter is selected that has the ability to drive and regulate expression in cyanobacteria. Promoters that function in bacteria are well known in the art. An exemplary and preferred promoter for the cyanobacterium Anabaena is the glnA gene promoter. An exemplary and preferred promoter for the cyanobacterium Synechococcus is the psbAI gene promoter. Alternatively, the cyanobacterial acc gene promoters themselves can be used.

Where an expression vector of the present invention is to be used to transform a plant, a promoter is selected that has the ability to drive expression in plants. Promoters that function in plants are also well known in the art. Useful in expressing the polypeptide in plants are promoters that are inducible, viral, synthetic, constitutive as described (Poszkowski et al., 1989; Odell et al., 1985), and temporally regulated, spatially regulated, and spatio-temporally regulated (Chau et al., 1989).

A promoter is also selected for its ability to direct the transformed plant cell's or transgenic plant's transcriptional activity to the coding region. Structural genes can be driven by a variety of promoters in plant tissues. Promoters can be near-constitutive, such as the CaMV 35S promoter, or tissue-specific or developmentally specific promoters affecting dicots or monocots.

Where the promoter is a near-constitutive promoter such as CaMV 35S, increases in polypeptide expression are found in a variety of transformed plant tissues (e.g., callus, leaf, seed and root). Alternatively, the effects of transformation can be

* 75*

directed to specific plant tissues by using plant integrating vectors containing a tissuespecific promoter.

An exemplary tissue-specific promoter is the lectin promoter, which is specific for seed tissue. The Lectin protein in soybean seeds is encoded by a single gene (Le1) that is only expressed during seed maturation and accounts for about 2 to about 5% of total seed mRNA. The lectin gene and seed-specific promoter have been fully characterized and used to direct seed specific expression in transgenic tobacco plants (Vodkin et al., 1983; Lindstrom et al., 1990.)

5

10

15

20

25

30

~: 53

An expression vector containing a coding region that encodes a polypeptide of interest is engineered to be under control of the lectin promoter and that vector is introduced into plants using, for example, a protoplast transformation method (Dhir et al., 1991). The expression of the polypeptide is directed specifically to the seeds of the transgenic plant.

A transgenic plant of the present invention produced from a plant cell transformed with a tissue specific promoter can be crossed with a second transgenic plant developed from a plant cell transformed with a different tissue specific promoter to produce a hybrid transgenic plant that shows the effects of transformation in more than one specific tissue.

Exemplary tissue-specific promoters are corn sucrose synthetase 1 (Yang et al., 1990), corn alcohol dehydrogenase 1 (Vogel et al., 1989), corn light harvesting complex (Simpson, 1986), corn heat shock protein (Odell et al., 1985), pea small subunit RuBP Carboxylase (Poulsen et al., 1986; Cashmore et al., 1983), Ti plasmid mannopine synthase (Langridge et al., 1989), Ti plasmid nopaline synthase (Langridge et al., 1989), petunia chalcone isomerase (Van Tunen et al., 1988), bean glycine rich protein 1 (Keller et al., 1989), CaMV 35s transcript (Odell et al., 1985) and Potato patatin (Wenzler et al., 1989). Preferred promoters are the cauliflower mosaic virus (CaMV 35S) promoter and the S-E9 small subunit RuBP carboxylase promoter.

The choice of which expression vector and ultimately to which promoter a polypeptide coding region is operatively linked depends directly on the functional properties desired, e.g., the location and timing of protein expression, and the host cell

10

15

20

25

30

~~.1

to be transformed. These are well known limitations inherent in the art of constructing recombinant DNA molecules. However, a vector useful in practicing the present invention is capable of directing the expression of the polypeptide coding region to which it is operatively linked.

Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens described (Rogers et al., 1987). However, several other plant integrating vector systems are known to function in plants including pCaMVCN transfer control vector described (Fromm et al., 1985). Plasmid pCaMVCN (available from Pharmacia, Piscataway, NJ) includes the cauliflower mosaic virus CaMV 35S promoter.

In preferred embodiments, the vector used to express the polypeptide includes a selection marker that is effective in a plant cell, preferably a drug resistance selection marker. One preferred drug resistance marker is the gene whose expression results in kanamycin resistance; *i.e.*, the chimeric gene containing the nopaline synthase promoter, Tn5 neomycin phosphotransferase II and nopaline synthase 3' nontranslated region described (Rogers et al., 1988).

RNA polymerase transcribes a coding DNA sequence through a site where polyadenylation occurs. Typically, DNA sequences located a few hundred base pairs downstream of the polyadenylation site serve to terminate transcription. Those DNA sequences are referred to herein as transcription-termination regions. Those regions are required for efficient polyadenylation of transcribed messenger RNA (mRNA).

Means for preparing expression vectors are well known in the art. Expression (transformation vectors) used to transform plants and methods of making those vectors are described in United States Patent Nos. 4,971,908, 4,940,835, 4,769,061 and 4,757,011, the disclosures of which are incorporated herein by reference. Those vectors can be modified to include a coding sequence in accordance with the present invention.

A variety of methods has been developed to operatively link DNA to vectors via complementary cohesive termini or blunt ends. For instance, complementary

10

15

20

25

homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

A coding region that encodes a polypeptide having the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium is preferably a biotin carboxylase enzyme of a cyanobacterium, which enzyme is a subunit of acetyl-CoA carboxylase and participates in the carboxylation of acetyl-CoA. In a preferred embodiment, such a polypeptide has the amino acid residue sequence of SEQ ID NO:6 or SEQ ID NO:8, or a functional equivalent of those sequences. In accordance with such an embodiment, a coding region comprises the entire DNA sequence of SEQ ID NO:5 or the DNA sequence of SEQ ID NO:5 comprising the *Anabaena accC* gene. Alternatively, a coding region comprises the entire DNA sequence of SEQ ID NO:7 or the DNA sequence of SEQ ID NO:7 comprising the *Synechococcus accC* gene.

In another embodiment, an expression vector comprises a DNA segment that encodes a biotin carboxyl carrier protein of a cyanobacterium. That biotin carboxyl carrier protein preferably includes the amino acid residue sequence of SEQ ID NO:2 or SEQ ID NO:4, or functional equivalents thereof. In accordance with such an embodiment, a coding region comprises the entire DNA sequence of SEQ ID NO:1 or the DNA sequence of SEQ ID NO:1 comprising the *Anabaena accB* gene. Alternatively, a coding region comprises the entire DNA sequence of SEQ ID NO:3 or the DNA sequence of SEQ ID NO:3 comprising the *Synechococcus accB* gene.

In another embodiment, an expression vector comprises a DNA segment that encodes a carboxyltransferase protein of a cyanobacterium. That carboxyltransferase protein preferably includes a CTα or CTβ subunit, and preferably includes the amino acid residue sequence of SEQ ID NO:12, or a functional equivalent thereof. In accordance with such an embodiment, a coding region comprises the entire DNA sequence of SEQ ID NO:11 or the DNA sequence of SEQ ID NO:11 comprising the Synechococcus accA gene.

Α

5

10

15

20

25

30

In still yet another embodiment, an expression vector comprises a coding region that encodes a plant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA. Such a plant polypeptide is preferably a monocotyledonous or a dicotyledonous plant acetyl-CoA carboxylase enzyme. preferred monocotyledonous plant polypeptide encoded by such a coding region is preferably wheat ACC, which ACC includes the amino acid residue sequence of SEQ ID NO:10 or SEQ ID NO:31 or functional equivalents thereof. A preferred coding region includes the DNA sequence of SEQ ID NO:9 or SEQ ID NO:30. Alternatively, a preferred dicotyledonous plant ACC, such as canola ACC, is also preferred. Such an ACC enzyme is encoded by the DNA segment of SEQ ID NO:19 and has the amino acid sequence of SEQ ID NO:20.

· · · · · i

4.5 Polypeptides

The present invention provides novel polypeptides that define a whole or a portion of an ACC of a cyanobacterium or a plant. In one embodiment, thus, the present invention provides an isolated polypeptide having the ability to catalyze the carboxylation of a biotin carboxyl carrier protein of a cyanobacterium such as Anabaena or Synechococcus. Preferably, a biotin carboxyl carrier protein from Anabaena includes the amino acid sequence of SEQ ID NO:2, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:1. Preferably, a biotin carboxyl carrier protein from Synechococcus includes the amino acid sequence of SEQ ID NO:4, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:4, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:2.

In another embodiment, the present invention provides an isolated polypeptide comprising a biotin carboxylase protein of a cyanobacterium such as *Anabaena* or *Synechococcus*. Preferably, a biotin carboxylase protein from *Anabaena* includes the amino acid sequence of SEQ ID NO:6, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:5. Preferably, a biotin carboxylase protein from *Synechococcus* includes the amino acid sequence of SEQ ID NO:8, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:7.

10

15

20

25

30

In another embodiment, the present invention provides an isolated polypeptide comprising a carboxyltransferase protein of a cyanobacterium such as *Synechococcus*. Preferably, a carboxyltransferase protein comprises a CT α or CT β subunit and includes the amino acid sequence of SEQ ID NO:12, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:11.

In another embodiment, the present invention contemplates an isolated and purified plant polypeptide having a molecular weight of about 220 kDa, dimers of which have the ability to catalyze the carboxylation of acetyl-CoA. Such a polypeptide preferably includes the amino acid residue sequence of SEQ ID NO:10 or SEQ ID NO:31, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:9 or SEQ ID NO:30. Alternatively the present invention provides an isolated and purified plant polypeptide from canola which has the ability to catalyze the carboxylation of acetyl-CoA. Such a polypeptide preferably includes the amino acid residue sequence of SEQ ID NO:20, with such amino acid sequence listing encoded by the DNA segment of SEQ ID NO:19.

4.6 Transformed or Transgenic Cells or Plants

A cyanobacterium, a yeast cell, or a plant cell or a plant transformed with an expression vector of the present invention is also contemplated. A transgenic cyanobacterium, yeast cell, plant cell or plant derived from such a transformed or transgenic cell is also contemplated. Means for transforming cyanobacteria and yeast cells are well known in the art. Typically, means of transformation are similar to those well known means used to transform other bacteria or yeast such as *E. coli* or *Saccharomyces cerevisiae*. *Synechococcus* can be transformed simply by incubation of log-phase cells with DNA. (Golden *et al.*, 1987)

Methods for DNA transformation of plant cells include Agrobacteriummediated plant transformation, protoplast transformation, gene transfer into pollen, injection into reproductive organs, injection into immature embryos and particle bombardment. Each of these methods has distinct advantages and disadvantages.

Thus, one particular method of introducing genes into a particular plant strain may not

necessarily be the most effective for another plant strain, but it is well known which methods are useful for a particular plant strain.

There are many methods for introducing transforming DNA segments into cells, but not all are suitable for delivering DNA to plant cells. Suitable methods are believed to include virtually any method by which DNA can be introduced into a cell, such as by Agrobacterium infection, direct delivery of DNA such as, for example, by PEG-mediated transformation of protoplasts (Omirulleh et al., 1993), by desiccation/inhibition-mediated DNA uptake, by electroporation, by agitation with silicon carbide fibers, by acceleration of DNA coated particles, etc. In certain embodiments, acceleration methods are preferred and include, for example, microprojectile bombardment and the like.

Technology for introduction of DNA into cells is well-known to those of skill in the art. Four general methods for delivering a gene into cells have been described: (1) chemical methods (Graham and van der Eb, 1973; Zatloukal et al., 1992); (2) physical methods such as microinjection (Capecchi, 1980), electroporation (Wong and Neumann, 1982; Fromm et al., 1985) and the gene gun (Johnston and Tang, 1994; Fynan et al., 1993); (3) viral vectors (Clapp, 1993; Lu et al., 1993; Eglitis and Anderson, 1988a; 1988b); and (4) receptor-mediated mechanisms (Curiel et al., 1991; 1992; Wagner et al., 1992).

20

25

30

5

10

15

4.6.1 Electroporation

The application of brief, high-voltage electric pulses to a variety of animal and plant cells leads to the formation of nanometer-sized pores in the plasma membrane. DNA is taken directly into the cell cytoplasm either through these pores or as a consequence of the redistribution of membrane components that accompanies closure of the pores. Electroporation can be extremely efficient and can be used both for transient expression of clones genes and for establishment of cell lines that carry integrated copies of the gene of interest. Electroporation, in contrast to calcium phosphate-mediated transfection and protoplast fusion, frequently gives rise to cell lines that carry one, or at most a few, integrated copies of the foreign DNA.

 αt

-54-

The introduction of DNA by means of electroporation, is well-known to those of skill in the art. In this method, certain cell wall-degrading enzymes, such as pectin-degrading enzymes, are employed to render the target recipient cells more susceptible to transformation by electroporation than untreated cells. Alternatively, recipient cells are made more susceptible to transformation, by mechanical wounding. To effect transformation by electroporation one may employ either friable tissues such as a suspension culture of cells, or embryogenic callus, or alternatively, one may transform immature embryos or other organized tissues directly. One would partially degrade the cell walls of the chosen cells by exposing them to pectin-degrading enzymes (pectolyases) or mechanically wounding in a controlled manner. Such cells would then be recipient to DNA transfer by electroporation, which may be carried out at this stage, and transformed cells then identified by a suitable selection or screening protocol dependent on the nature of the newly incorporated DNA.

4.6.2 Microprojectile Bombardment

A further advantageous method for delivering transforming DNA segments to plant cells is microprojectile bombardment. In this method, particles may be coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, gold, platinum, and the like.

20

25

5

10

15

An advantage of microprojectile bombardment, in addition to it being an effective means of reproducibly stably transforming monocots, is that neither the isolation of protoplasts (Cristou et al., 1988) nor the susceptibility to Agrobacterium infection is required. An illustrative embodiment of a method for delivering DNA into maize cells by acceleration is a Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with corn cells cultured in suspension. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates. It is believed that a screen intervening between the projectile apparatus and the cells to be bombarded reduces the size of projectiles

10

15

20

25

30

aggregate and may contribute to a higher frequency of transformation by reducing damage inflicted on the recipient cells by projectiles that are too large.

For the bombardment, cells in suspension are preferably concentrated on filters or solid culture medium. Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate. If desired, one or more screens are also positioned between the acceleration device and the cells to be bombarded. Through the use of techniques set forth herein one may obtain up to 1000 or more foci of cells transiently expressing a marker gene. The number of cells in a focus which express the exogenous gene product 48 hours post-bombardment often range from 1 to 10 and average 1 to 3.

In bombardment transformation, one may optimize the prebombardment culturing conditions and the bombardment parameters to yield the maximum numbers of stable transformants. Both the physical and biological parameters for bombardment are important in this technology. Physical factors are those that involve manipulating the DNA/microprojectile precipitate or those that affect the flight and velocity of either the macro- or microprojectiles. Biological factors include all steps involved in manipulation of cells before and immediately after bombardment, the osmotic adjustment of target cells to help alleviate the trauma associated with bombardment, and also the nature of the transforming DNA, such as linearized DNA or intact supercoiled plasmids. It is believed that pre-bombardment manipulations are especially important for successful transformation of immature embryos.

Accordingly, it is contemplated that one may wish to adjust various of the bombardment parameters in small scale studies to fully optimize the conditions. One may particularly wish to adjust physical parameters such as gap distance, flight distance, tissue distance, and helium pressure. One may also minimize the trauma reduction factors (TRFs) by modifying conditions which influence the physiological state of the recipient cells and which may therefore influence transformation and integration efficiencies. For example, the osmotic state, tissue hydration and the subculture stage or cell cycle of the recipient cells may be adjusted for optimum

ii.

5

10

15

20

25

30

transformation. The execution of other routine adjustments will be known to those of skill in the art in light of the present disclosure.

Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described (Fraley et al., 1985; Rogers et al., 1987). Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences, and intervening DNA is usually inserted into the plant genome as described (Spielmann et al., 1986; Jorgensen et al., 1987).

Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described (Rogers et al., 1987), have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes. In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.

Agrobacterium-mediated transformation of leaf disks and other tissues such as cotyledons and hypocotyls appears to be limited to plants that Agrobacterium naturally infects. Agrobacterium-mediated transformation is most efficient in dicotyledonous plants. Few monocots appear to be natural hosts for Agrobacterium, although transgenic plants have been produced in asparagus using Agrobacterium vectors as described (Bytebier et al., 1987). Therefore, commercially important cereal grains such as rice, corn, and wheat must usually be transformed using alternative

10

15

20

25

30

. 12

methods. However, as mentioned above, the transformation of asparagus using Agrobacterium can also be achieved (see, for example, Bytebier et al., 1987).

A transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome. Such transgenic plants can be referred to as being heterozygous for the added gene. However, inasmuch as use of the word "heterozygous" usually implies the presence of a complementary gene at the same locus of the second chromosome of a pair of chromosomes, and there is no such gene in a plant containing one added gene as here, it is believed that a more accurate name for such a plant is an independent segregant, because the added, exogenous gene segregates independently during mitosis and meiosis.

More preferred is a transgenic plant that is homozygous for the added structural gene; i.e., a transgenic plant that contains two added genes, one gene at the same locus on each chromosome of a chromosome pair. A homozygous transgenic plant can be obtained by sexually mating (selfing) an independent segregant transgenic plant that contains a single added gene, germinating some of the seed produced and analyzing the resulting plants produced for enhanced carboxylase activity relative to a control (native, non-transgenic) or an independent segregant transgenic plant.

It is to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes that encode a polypeptide of interest. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated.

Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, for example, Potrykus et al., 1985; Lorz et al., 1985; Fromm et al., 1986; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et al., 1988).

Application of these systems to different plant strains depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the

10

15

20

25

30

416

regeneration of cereals from protoplasts are described (Fujimura et al., 1985; Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986).

To transform plant strains that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described (Vasil, 1988). In addition, "particle gun" or high-velocity microprojectile technology can be utilized. (Vasil, 1992)

Using that latter technology, DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described (Klein et al., 1987; Klein et al., 1988; McCabe et al., 1988). The metal particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.

Thus, the amount of a gene coding for a polypeptide of interest (i.e., a polypeptide having carboxylation activity) can be increased in monocotyledonous plants such as corn by transforming those plants using particle bombardment methods (Maddock et al., 1991). By way of example, an expression vector containing an coding region for a dicotyledonous ACC and an appropriate selectable marker is transformed into a suspension of embryonic maize (corn) cells using a particle gun to deliver the DNA coated on microprojectiles. Transgenic plants are regenerated from transformed embryonic calli that express ACC. Particle bombardment has been used to successfully transform wheat (Vasil et al., 1992).

DNA can also be introduced into plants by direct DNA transfer into pollen as described (Zhou et al., 1983; Hess, 1987; Luo et al., 1988). Expression of polypeptide coding genes can be obtained by injection of the DNA into reproductive organs of a plant as described (Pena et al., 1987). DNA can also be injected directly into the cells of immature embryos and the rehydration of desiccated embryos as described (Neuhaus et al., 1987; Benbrook et al., 1986).

The development or regeneration of plants from either single plant protoplasts or various explants is well known in the art (Weissbach and Weissbach, 1988). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of

-59-

embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.

The development or regeneration of plants containing the foreign, exogenous gene that encodes a polypeptide of interest introduced by Agrobacterium from leaf explants can be achieved by methods well known in the art such as described (Horsch et al., 1985). In this procedure, transformants are cultured in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant strain being transformed as described (Fraley et al., 1983).

5

10

٠ ٠٠٠ ٦

15

20

25

30

This procedure typically produces shoots within two to four months and those shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil or other media to allow the production of roots. These procedures vary depending upon the particular plant strain employed, such variations being well known in the art.

Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants, as discussed before. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important, preferably inbred lines. Conversely, pollen from plants of those important lines is used to pollinate regenerated plants.

A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art. Any of the transgenic plants of the present invention can be cultivated to isolate the desired ACC or fatty acids which are the products of the series of reactions of which that catalyzed by ACC is the first.

A transgenic plant of this invention thus has an increased amount of an coding region (e.g., gene) that encodes a polypeptide of interest. A preferred transgenic plant is an independent segregant and can transmit that gene and its activity to its progeny. A more preferred transgenic plant is homozygous for that gene, and transmits that gene to all of its offspring on sexual mating.

10

15

20

25

35

Seed from a transgenic plant is grown in the field or greenhouse, and resulting sexually mature transgenic plants are self-pollinated to generate true breeding plants. The progeny from these plants become true breeding lines that are evaluated for, by way of example, herbicide resistance, preferably in the field, under a range of environmental conditions.

The commercial value of a transgenic plant with increased herbicide resistance or with altered fatty acid production is enhanced if many different hybrid combinations are available for sale. The user typically grows more than one kind of hybrid based on such differences as time to maturity, standability or other agronomic traits. Additionally, hybrids adapted to one part of a country are not necessarily adapted to another part because of differences in such traits as maturity, disease and herbicide resistance. Because of this, herbicide resistance is preferably bred into a large number of parental lines so that many hybrid combinations can be produced.

4.7 Process of Increasing Herbicide Resistance

Herbicides such as aryloxyphenoxypropionates and cyclohexane-1,3-dione derivatives inhibit the growth of monocotyledonous weeds by interfering with fatty acid biosynthesis of herbicide sensitive plants. ACC is the target enzyme for those herbicides. Dicotyledonous plants, other eukaryotic organisms and prokaryotic organisms are resistant to those compounds.

Thus, the resistance of sensitive monocotyledonous plants to herbicides can be increased by providing those plants with ACC that is not sensitive to herbicide inhibition. The present invention therefore provides a process of increasing the herbicide resistance of a monocotyledonous plant comprising transforming the plant with a DNA molecule comprising a promoter operatively linked to a coding region that encodes a herbicide resistant polypeptide having the ability to catalyze the carboxylation of acetyl-CoA, which coding region is operatively linked to a transcription-terminating region, whereby the promoter is capable of driving the transcription of the coding region in a monocotyledonous plant.

10

15

20

Preferably, a herbicide resistant polypeptide, a dicotyledonous plant polypeptide such as an acetyl-CoA carboxylase enzyme from soybean, rape, sunflower, tobacco, *Arabidopsis*, petunia, canola, pea, bean, tomato, potato, lettuce, spinach, alfalfa, cotton or carrot, or functional equivalent thereof. A promoter and a transcription-terminating region are preferably the same as set forth above.

Transformed monocotyledonous plants can be identified using herbicide resistance. A process for identifying a transformed monocotyledonous plant cell involves transforming the monocotyledonous plant cell with a DNA molecule that encodes a dicotyledonous acetyl-CoA carboxylase enzyme, and determining the resistance of the plant cell to a herbicide and thereby the identification of the transformed monocotyledonous plant cell. Means for transforming a monocotyledonous plant cell are the same as set forth above.

The resistance of a transformed plant cell to a herbicide is preferably determined by exposing such a cell to an effective herbicidal dose of a preselected herbicide and maintaining that cell for a period of time and under culture conditions sufficient for the herbicide to inhibit ACC, alter fatty acid biosynthesis or retard growth. The effects of the herbicide can be studied by measuring plant cell ACC activity, fatty acid synthesis or growth.

An effective herbicidal dose of a given herbicide is that amount of the herbicide that retards growth or kills plant cells not containing herbicide-resistant ACC or that amount of a herbicide known to inhibit plant growth. Means for determining an effective herbicidal dose of a given herbicide are well known in the art. Preferably, a herbicide used in such a process is an aryloxyphenoxypropionate or cyclohexanedione herbicide.

25

30

4.8 Process of Altering ACC Activity

ACC catalyzes the carboxylation of acetyl-CoA. Thus, the carboxylation of acetyl-CoA in a cyanobacterium or a plant can be altered by, for example, increasing an ACC gene copy number or changing the composition (e.g., nucleotide sequence) of an ACC gene. Changes in ACC gene composition may alter gene expression at either

10

15

20

25

30

the transcriptional or translational level. Alternatively, changes in gene composition can alter ACC function (e.g., activity, binding) by changing primary, secondary or tertiary structure of the enzyme. By way of example, certain changes in ACC structure are associated with changes in the resistance of that altered ACC to herbicides. The copy number of such a gene can be increased by transforming a cyanobacterium or a plant cell with an appropriate expression vector comprising a DNA molecule that encodes ACC.

In one embodiment, therefore, the present invention contemplates a process of altering the carboxylation of acetyl-CoA in a cell comprising transforming the cell with a DNA molecule comprising a promoter operatively linked to a coding region that encodes a polypeptide having the ability to catalyze the carboxylation of acetyl-CoA, which coding region is operatively linked to a transcription-terminating region, whereby the promoter is capable of driving the transcription of the coding region in the cyanobacterium.

In a preferred embodiment, a cell is a cyanobacterium or a plant cell, a polypeptide is a cyanobacterial ACC or a plant ACC. Exemplary and preferred expression vectors for use in such a process are the same as set forth above.

4.9 Determining Herbicide Resistance Inheritability

In yet another aspect, the present invention provides a process for determining the inheritance of plant resistance to herbicides of the aryloxyphenoxypropionate or cyclohexanedione class. That process involves measuring resistance to herbicides of the aryloxyphenocypropionate or cyclohexanedione class in a parental plant line and in progeny of the parental plant line and detecting the presence of a DNA segment encoding ACC in such plants.

The inheritability of phenotypic traits such as herbicide resistance can be determined using RFLP analysis. Restriction fragment length polymorphisms (RFLPs) are due to sequence differences detectable by lengths of DNA fragments generated by digestion with restriction enzymes and typically revealed by agarose gel electrophoresis. There are large numbers of restriction endonucleases available,

characterized by their recognition sequences and source. From these studies, it is possible to correlate herbicide resistance with a particular DNA fragment and analyze the inheritance of such resistance in progeny plants.

In a preferred embodiment, the herbicide resistant variant of acetyl-CoA carboxylase is a dicotyledonous plant acetyl-CoA carboxylase enzyme or a portion thereof. In another preferred embodiment, the herbicide resistant variant of acetyl-CoA carboxylase is a mutated monocotyledonous plant acetyl-CoA carboxylase that confers herbicide resistance or a hybrid acetyl-CoA carboxylase comprising a portion of a dicotyledonous plant acetyl-CoA carboxylase, a portion of a monocotyledonous plant acetyl-CoA carboxylase or one or more domains of a cyanobacterial acetyl-CoA carboxylase.

5

10

15

20

25

Restriction fragment length polymorphism analyses are conducted, for example, by Native Plants Incorporated (NPI). This service is available to the public on a contractual basis. For this analysis, the genetic marker profile of the parental inbred lines is determined. If parental lines are essentially homozygous at all relevant loci (i.e., they should have only one allele at each locus), the diploid genetic marker profile of the hybrid offspring of the inbred parents should be the sum of those parents, e.g., if one parent had the allele A at a particular locus, and the other parent had B, the hybrid AB is by inference.

Probes capable of hybridizing to specific DNA segments under appropriate conditions are prepared using standard techniques well known to those skilled in the art. The probes are labelled with radioactive isotopes or fluorescent dyes for ease of detection. After restriction fragments are separated by size, they are identified by hybridization to the probe. Hybridization with a unique cloned sequence permits the identification of a specific chromosomal region (locus). Because all alleles at a locus are detectable, RFLP's are co-dominant alleles. They differ from some other types of markers, e.g., from isozymes, in that they reflect the primary DNA sequence, they are not products of transcription or translation.

5

10

15

20

25

4.10 Oil Content of Seeds

. Manipulation of the oil content and quality of seeds may benefit from knowledge of this gene's structure and regulation. Understanding the basis of resistance to herbicides, on the other hand, will be useful for future attempts to construct transgenic grasses and to provide crop plants such as wheat with selective resistance.

Genes of the present invention may be introduced into plants, particularly monocotyledonous plants, particularly commercially important grains. A wide range of novel transgenic plants produced in this manner may be envisioned depending on the particular constructs introduced into the transgenic plants. The largest use of grain is for feed or food. Introduction of genes that alter the composition of the grain may greatly enhance the feed or food value.

The introduction of genes encoding ACC may alter the oil content of the grain, and thus may be of significant value. Increases in oil content may result in increases in metabolizable-energy-content and -density of the seeds for uses in feed and food. The introduction of genes such as ACC which encode rate-limiting enzymes in fatty acid biosynthesis, or replacement of these genes through gene disruption or deletion mutagenesis could have significant impact on the quality and quantity of oil in such transgenic plants.

Likewise, the introduction of the ACC genes of the present invention may also alter the balance of fatty acids present in the oil providing a more healthful or nutritive feedstuff. Alternatively, oil properties may also be altered to improve its performance in the production and use of cooking oil, shortenings, lubricants or other oil-derived products or improvement of its health attributes when used in the food-related applications. Such changes in oil properties may be achieved by altering the type, level, or lipid arrangement of the fatty acids present in the oil. This in turn may be accomplished by the addition of genes that encode enzymes that catalyze the synthesis of novel fatty acids and the lipids possessing them or by increasing levels of native fatty acids while possibly reducing levels of precursors.

10

15

20

25

Alternatively, introduction of DNA segments which are complementary to the DNA segments disclosed herein into plant cells may bring about a decrease in ACC activity in vivo and lower the level of fatty acid biosynthesis in such transformed cells. Therefore, transgenic plants containing such novel constructs may be important due to their decreased oil content in such cells. Introduction of specific mutations in either the DNA segments disclosed, or in their complements, may result in transformed plants having intermediate ACC activity.

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

5. EXAMPLES

5.1 EXAMPLE 1 -- Cloning and Sequencing of the Anabaena acc Genes

5.1.1 Biotin Carboxylase (accC)

The gene for the BC subunit was cloned with a fragment of the E. coli fabG gene as a heterologous hybridization probe. Southern analysis of Anabaena sp. strain PCC 7120 DNA digested with various restriction enzymes, carried out at low stringency (57°C, 1 M NaCl, GeneScreen Plus® membrane [DuPont]) in accordance with the manufacturer's protocol, with an SstII-PstI fragment consisting of ~90% of the coding region of the fabG gene from E. coli as a probe revealed, in each case, only one strongly hybridizing restriction fragment. The 3.1-kb HindIII fragment identified by this probe in the Anabaena sp. strain PCC 7120 DNA digest was purified by gel electrophoresis and then was digested with NheI, yielding a 1.6-kb NheI-HindIII fragment that hybridized with the same fabG probe. The 1.6-kb fragment was purified

-66-

by gel electrophoresis and cloned into XbaI-HindIII-digested pUC18. The ends of the insert were sequenced.

A fragment of an open reading frame coding for a polypeptide with very high similarity to an internal sequence of *E. coli* BC was found at the *NheI* end of the insert. This result indicated that the 3.1-kb *HindIII* fragment contained the entire *Anabaena* sp. strain PCC 7120 BC gene. The 1.6-kb *Anabaena* sp strain PCC 7120 DNA fragment was then used as a probe to screen, at high stringency (65°C, 1 M NaCl), a cosmid library of *Anabaena* sp. strain PCC 7120 DNA in the cosmid vector pWB79 (Charng *et al.*, 1992), constructed by W.J. Buikema (University of Chicago) with a sized partial *HindIII* digest of chromosomal DNA. Five cosmids containing overlapping fragments of *Anabaena* sp. strain PCC 7120 DNA were found in the 1,920-member bank, all of which contained the same size *HindIII* and *NheI* fragments as those identified by the *E. coli* probe previously. From one of the cosmids, the 3.1-kb *HindIII* fragment was subcloned into pUC18 and sequenced.

- 5:

Nucleotide sequences of both strands were determined on double-stranded templates by the dideoxy chain termination method with Sequenase (United States Biochemicals). Sets of nested deletions generated with an Erase-a-Base kit (Promega) as well as specific primers were used for sequencing. The 3065-nucleotide DNA segment comprising the *Anabaena accC* gene is given in SEQ ID NO:5. The 477-amino acid translation of the *accC* gene encoding the *Anabaena* BC protein is given in SEQ ID NO:6.

5.1.2 Biotin Carboxyl Carrier Protein (accB)

10

15

20

25

A different approach had to be used to clone the *Anabaena* sp. strain PCC 7120 BCCP gene. An earlier attempt to clone the gene with a fragment of *E. coli* DNA containing the *fabE* gene as a heterologous hybridization probe failed. Furthermore, analysis of the sequence (~1.3-kb) located upstream of the *Anabaena* sp. strain PCC 7120 BC gene revealed no open reading frame corresponding to BCCP, in contrast to the *E. coli* gene organization in which the BCCP gene is located

immediately upstream of the BC gene. The BCCP gene was cloned by PCR™ amplification.

The N-terminal amino acid sequence of BCCP was used to design an upstream PCRTM primer. The downstream primer was targeted to the conserved sequence encoding the biotinylation site. The primers had the following structure:

Amino acid sequence: LDFNEIR (SEQ ID NO:22)

Primer I 5'-GCTCTAGAYTTYAAYGARATHMG-3' (SEQ ID NO:23)

Amino acid sequence: NMKMX (SEQ ID NO:24) (N= V or A)

Primer II 3'-CRNTACTTYTACNWCTTAAGCT-5' (SEQ ID NO:25)

10

15

20

25

5

where Y=T or C; R=A or G; M=C or A; H=A, C, or T; W=A or T; N=T, C, A, or G.

PCRTM was carried out as described in the GeneAmp® kit manual (Perkin-Elmer Cetus). All components of the PCRTM except the *Taq* DNA polymerase were incubated for 3 to 5 min at 95°C. The PCRTM was then initiated by the addition of polymerase. Amplification was for 45 cycles, each 1 min at 95°C, 1 min at 42 to 45°C, and 2 min at 72°C, with 0.5 to 1.0 μg of template DNA per ml and 50 μg of each primer per ml. The PCRTM amplification yielded a product ~450 bp in size (*i.e.*, the correct size for the anticipated fragment of the *Anabaena* sp. strain PCC 7120 BCCP gene deduced from the *E. coli* sequence and allowing for a 60- to 90-nucleotide addition due to the polypeptide length difference). The PCRTM product was cloned into the Invitrogen vector pCR1000 with the A/T tail method and was sequenced to confirm its identity.

The fragment of the Anabaena sp. strain PCC 7120 BCCP gene was then used as a probe to identify cosmids that contain the entire gene and flanking DNA. Three such cosmids were detected in a 1,920-member library (same as described above). A 1.24.2-kb XbaI fragment containing the BCCP gene was subcloned into pBluescriptII®, and its HindIII-NheI fragment was sequenced with specific primers as described above. The 1458-nucleotide DNA segment comprising the Anabaena accB gene is

10

15

20

25

હતુ

30

given in SEQ ID NO:1. The 182-amino acid translation of the accB gene encoding the Anabaena BCCP is given in SEQ ID NO:2.

The amino acid sequence deduced from the DNA sequence of the BCCP gene exactly matches the N-terminal sequence obtained for purified protein. Likely translation initiation codons were identified by comparison with *E. coli*. For the BC gene, the AUG start codon is not preceded by an obvious ribosome-binding site. There is a stop codon in the same open reading frame one codon upstream from the AUG codon, excluding the possibility of additional amino acids at the N terminus. The GUG start codon for BCCP immediately precedes codons for the amino acids identified by protein sequencing of the N terminus of purified BCCP. A putative 5-nucleotide ribosome-binding site, GAGGU, is located 11 nucleotides upstream of the GUG codon. The open reading frame extends further upstream of the GUG codon (for about 60 codons), but there are no AUG or GUG codons that could serve as start sties from translation. This excludes the possibility that the purified BCCP polypeptide lacks more than one amino acid (Met) because of rapid proteolytic degradation.

Structural similarities deduced from the available amino acid sequences suggest strong evolutionary conservation among BCs (Al-Feel et al., 1992; Knowles, 1989; Lopez-Casillas et al., 1988; Samols et al., 1988; Takai et al., 1988). Comparison of the amino acid sequence of the BC domain defined as the part of the sequence between amino acids Lys-5 and Phe-432 of Anabaena sp. strain PCC 7120 BC, the two outermost amino acids present in all or all but one of the compared sequences, revealed that all highly conserved amino acid residues identified before are present in Anabaena sp. strain PCC 7120 BC, including the ATP binding site motif and the conserved sequence including Cys-230 as a part of the bicarbonate binding site. The identity between the amino acid sequence of the Anabaena sp. strain PCC 7120 BC domain (based on the best multiple alignment) and that of rat (Lopez-Casillas et al., 1988), chicken (Takai et al., 1988), yeast (Al-Feel et al., 1992), and wheat ACCs was no more than 32 to 37%. Mitochondrial enzymes, rat propionyl-CoA carboxylase (Browner et al., 1989) and yeast pyruvate carboxylase

10

15

20

25

¥.__

(Lim et al., 1988), are only 45 to 47% identical. Similarities with carbamoyl-phosphate synthetases observed for other BCs (Knowles, 1989; Li and Cronan, 1992; Lopez-Casillas et al., 1988; Samols et al., 1988; Takai et al., 1988) are also evident for Anabaena sp. strain PCC 7120 BC.

Anabaena sp. strain PCC 7120 BCCP is unique with its biotinylation site, the result of a single A-to-C base change resulting in a Met-to-Leu substitution. This base change explains the highly variable yield of the PCR™ amplification with primer II. The structure of this part of the BCCP gene was confirmed by sequencing the corresponding PCR™-cloned fragment of Anabaena sp. strain PCC 7120 DNA. The result is not entirely surprising, because in vitro analysis of mutants of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii, in which the same Met-to-Leu change was introduced, showed that this methionine residue is not essential for efficient biotinylation of the apoprotein (Shenoy et al., 1992). Urea carboxylase contains Ala at this position. The conserved motif may be required for some other functions. Furthermore, it was suggested that the distance between the biotinylated lysine residue and the C terminus and the structure of the last two amino acids (hydrophobic one followed by acidic one) are important determinants for the modification of at least some BCCP apoproteins (Shenoy et al., 1992). Two amino acids with the same properties are also found at an analogous position (with respect to the distance from the biotinylation site) of large eukaryotic biotin-dependent carboxylases. Anabaena sp. strain PCC 7120 BCCP also contains those amino acids, but they are separated from the biotinylation site by two additional amino acids. Anabaena sp. strain PCC 7120 BCCP is about 30 amino acids longer than the E. coli protein, including a 21-amino-acid insertion near the N terminus. The moderate conservation of the amino acid sequence is reflected by rather low conservation at the nucleotide level (Table 3), which explains why the E. coli BCCP specific probe failed to identify the Anabaena sp. strain PCC 7120 gene.

Comparison of the amino acid sequence encoded by the additional short open reading frame located upstream of the BCCP gene and transcribed in the same

-70-

direction and sequences deposited in GenBank (release 75) revealed no similar proteins.

5.1.3 Northern analysis of the BCCP message

The size of Anabaena sp. strain PCC 7120 BCCP mRNA was established by Northern (RNA) analysis with the PCR[™]-amplified fragment of the gene as a probe. The major hybridizing mRNA is 1.45-kb in size. The two minor species are 1.85 and 2.05-kb in size. All of these are long enough to include the BCCP coding region. The amount of all three mRNAs seems to be higher (about twofold) in cells grown in the absence of combined nitrogen. The 24-h induction time correlates with the onset of nitrogen fixation in heterocysts, differentiated cells that fix nitrogen and have a unique glycolipid envelope containing C26 and C28 fatty acids (Murata and Nishida, 1987). If the increase of the level of the BCCP mRNA is heterocyst specific, it must be significant because heterocysts in Anabaena sp. strain PCC 7120 filaments are formed only at ~10-cell intervals. This result suggests that ACC may be developmentally regulated in Anabaena sp. strain PCC 7120. Results of some recent experiments indicate that, in bacteria, modulation of ACC activity may indeed play an important role in the overall regulation of the biosynthesis of the cell lipids. It has been demonstrated that the level of transcription of the ACC genes is correlated in E. coli with the rate of cellular growth and nutritional upshifts and downshifts (Li and Cronan, 1993). Mutations in the E. coli fabGE operon which decrease the rate of phospholipid biosynthesis suppress a null mutation in the htrB gene by restoring the balance between phospholipid biosynthesis and cell growth (Karow et al., 1992). Northern analysis with the 1.6-kb NheI-HindIII fragment as a BC-specific probe repeatedly gave a smeared band pattern which could not be interpreted.

Unlike the BCCP and BC genes of *E. coli* where they are cotranscribed, the BCCP and BC genes of the present invention are separated by at least several kilobases (no overlapping cosmids were seen when the cosmid library was screened with probes specific for BCCP and BC).

25

5

10

15

20

10

15

20

5.2 EXAMPLE 2 -- Purification and Characterization of Anabaena BCCP

Western immunoblot analysis of *Anabaena* sp. strain PCC 7120 proteins with ³⁵S-streptavidin revealed one biotinylated polypeptide ~25 kDa in size. Although the presence of other, much less abundant biotinylated proteins cannot be strictly ruled out, this result strongly suggests that ACC is the only biotin-dependent enzyme in *Anabaena* sp. strain PCC 7120, with the BCCP subunit of 19 kDa, the calculated size; 25 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

The polypeptide shows a slightly lower mobility than *E. coli* BCCP (~22.5 kDa), suggesting that *Anabaena* sp. strain PCC 7120 BCCP is longer by 20 to 30 amino acids. However, the unusual electrophoretic properties of the *E. coli* protein (Li and Cronan, 1992) make an accurate prediction of the polypeptide length difficult. Separation of *Anabaena* sp. strain PCC 7120 proteins for Western analysis or sequencing) was by SDS-PAGE with 12.5% separating gels (Sambrook *et al.*, 1989) followed by transfer onto polyvinylidene difluoride membrane (Immobilon-P®; Millipore) in 10 mM sodium 3-(cyclohexylamino)-1-propane-sulfonate buffer (pH 11)-10% methanol. Western blots were blocked with 3% bovine serum albumin solution in 10 mM Tris-HCl (pH 7.5) and 0.9% NaCl and then were incubated for 3 to 16 h with ³⁵S-streptavidin (Amersham). The blots were washed at room temperature with 0.5% Nonidet P-40TM in 10 mM Tris-HCl (pH 7.5) and 0.9% NaCl.

-72-

TABLE 3
COMPARISON OF BC AND BCCP SUBUNITS FROM
Anabaena AND E. coli

ACC subunit ^a	No. of amino acids	(mol wt) ^b	% Identity (similarity)
	Anabaena sp. PCC 7120	strain E. coli ^c	
BC			
Protein	447 (49,076)	449	57 (74)
DNA^d			58
ВССР			
Protein	182 (19,126)	156	39 (65)
DNA^d		**************************************	41

^a The genes for the two subunits of ACC are unlinked in *Anabaena* sp. strain PCC 7120; in *E. coli* they are in one operon.

10

15

20

5

BCCP from Anabaena sp. strain PCC 7120 was purified starting with cells from a 3-liter culture grown on BG11 medium (Rippka et al., 1979). Cells were broken by sonication at 0°C in 30 ml of 0.5 m NaCl-0.1 M Tris-HCl (pH 7.5)-14 mM β-mercaptoethanol-0.2 mM phenylmethylsulfonyl fluoride. Insoluble material was removed by centrifugation at 31,000 × g for 30 min, and the soluble protein fraction containing BCCP was precipitated by adding solid ammonium sulfate (50% saturation). The pellet was resuspended in 15 ml of 0.2 M NaCl-50 mM Tris-HCl (pH 7.5)-10% glycerol-0.5% SDS and then mixed at room temperature for about 18 h with 0.5 ml of streptavidin-agarose suspension (GIBCO BRL). The mixture was loaded onto a column, was washed with about 30 ml of 0.25 M NaCl-50 mM Tris-HCl (pH 7.5)-0.5 mM EDTA-0.2% SDS, and then was washed with 5 ml of water. Biotinylated peptides were eluted with 3 ml of 70% formic acid, dried under vacuum,

^b Molecular weight was calculated from amino acid composition.

^c From Li and Cronan, 1992.

^d On the basis of amino acid alignment.

WO 96/32484 PCT/US96/05095

-73-

and separated by SDS-PAGE. The N-terminal sequence of the biotin-containing ~25-kDa polypeptide was determined by Edman degradation after transfer to Immobilon-P® as described above. The sequence was PLDFNEIRQL (SEQ ID NO:21).

5

10

15

20

25

30

5.3 EXAMPLE 3 -- Characterization of the Synechococcus acc Genes and Purification of the Synechococcus BCCP

5.3.1 Biotin Carboxylase (accC)

All carboxylases have a conserved amino acid motif that constitutes the ATP-binding site. A 1.2-kb SstII-PstI fragment (containing the ATP-binding motif) within the E. coli accC gene was used as a probe to examine the Synechococcus PCC 7942 genomic DNA by Southern hybridization at 58°C. A strongly hybridizing 0.8-kb BamHI-PstI fragment was detected and subsequently cloned by a two-stage size fractionation method.

Synechococcus PCC 7942 genomic DNA was first digested with BamHI and electrophoresed on an agarose gel. The gel region containing DNA of sizes between 1.6-kb and 3-kb was cut out and purified (using Geneclean II Kit from Bio101). The purified DNA was then digested with PstI and electrophoresed on an agarose gel. The gel region containing DNA of sizes between 0.5-kb and 2-kb was cut out and purified. DNA samples (from each step of purification) were electrophoresed, transferred onto a Genescreen Plus membrane, hybridized with the E. coli accC probe to confirm that the homologous DNA fragment was not lost during each purification step. A library of fragments between 0.5-kb and 2-kb was created by cloning the purified fraction of Synechococcus PCC 7942 DNA into vector pBluescript® KS. Ampicillin-resistant and white (i.e., with insert) colonies were selected by plating on LB plates containing ampicillin, X-Gal and IPTG.

A total of 287 ampicillin-resistant, white clones were screened; the plasmid DNA mixture (from pools of 5 white clones per pool) were prepared, doubly-digested with *PstI* and *BamHI*, electrophoresed, transferred onto a Genescreen Plus membrane, then hybridized with the *E. coli accC* probe at 58°C. Positive signals appeared on 8

(i

WO 96/32484 PCT/US96/05095

-74-

pools. Twelve positive individual clones were identified at the second round of screening. Two (of the 12) positive clones, each with a single fragment inserted, had the inserts sequenced. Both clones had identical inserts. Sequence comparison indicated only about 60% identity at the nucleotide level between the *E. coli accC* gene and the cloned *Synechococcus PstI-BamHI* fragment. This cloned fragment was then used as a probe to screen a *Synechococcus* cosmid library. Hybridization of the cosmid library was performed at 65°C. One hybridizing clone was identified and a 2.4-kb *BamHI-NheI* fragment from this cosmid clone was isolated and sequenced.

The 1362-nucleotide DNA segment comprising the *Synechococcus accC* gene is given in SEQ ID NO:7. Only one significant open reading frame (ORF) was found. This ORF potentially encodes a protein of 453 amino acids. The complete translated amino acid sequence of the *Synechococcus accC* gene encoding BC is given in SEQ ID NO:8.

15 5.3.2 Biotin Carboxyl Carrier Protein (accB)

5

10

20

25

In Synechococcus PCC 7942, the accB gene is not immediately upstream of accC, as it is in E. coli. Gene-specific DNA probes from both E. coli and Anabaena PCC7120 accB failed to hybridize with the Synechococcus genomic DNA by Southern analysis. A different approach was necessary.

Since biotin carboxyl carrier protein is biotinylated and streptavidin has a strong specific affinity for biotin, streptavidin was used to identify the number of biotin-containing proteins in *Synechococcus* PCC 7942. The proteins (from a crude whole protein extract) of *Synechococcus* PCC 7942 were first separated by standard SDS-PAGE method, then transferred onto an Immobilon-P® transfer membrane, which was subsequently incubated with ³⁵S-streptavidin. Only one radioactive band (corresponding to a protein of about 25 kDa) appeared on the autoradiogram. This result suggests that there is only one biotin-containing protein in *Synechococcus* and its mass is similar to the reported mass of *E. coli* biotin carboxyl carrier protein, 22,500 Da.

This biotin-containing protein was purified Synechococcus cells were first broken by sonication in a buffer containing NaCl, Tris, glycerol and SDS. The supernatant was separated from cell debris by centrifugation, then followed by a 50% (NH₄)₂ SO₄ precipitation. The precipitate was dissolved in the same buffer, and was allowed to bind to streptavidin agarose beads. The bound agarose beads were washed and the bound proteins were eluded with 70% formic acid. The formic acid-eluted portion was dried and washed with water before loading onto an acrylamide gel. After electrophoresis, the proteins were transferred from the gel to an Immobilon-P® transfer membrane. The membrane was stained briefly with Coomassie Brilliant blue dye, destained in a mixture of methanol and acetic acid, and soaked in water for na hour or so before air drying. The band corresponding to the streptavidin-bound protein was cut out and its N-terminal amino acid sequence was determined.

5

10

15

20

25

30

Based on the amino acid sequence from the N-terminus of the *Synechococcus* biotin-containing protein and the amino acid sequence around the biotinylation site in all other known BCCPs, degenerate oligonucleotide primers were designed for PCRTM amplification studies with *Synechococcus* genomic DNA. The pair of primers were:

primer LE8 5'-GCTCTAGACNCARYTNAAYTT-3' (SEQ ID NO:26)
primer LE7 3'-CRNTACTTYGACNWCTTAAGCT-5' (SEQ ID NO:27)

PCR™ was performed for 40 cycles (each with 1 minute at 95°C, 1 minute at 48°C, 2 minutes at 72°C), with Cetus *Taq* polymerase, 0.5 mg/ml of template DNA, 5 mg/ml of primer LE8, 40 mg/ml of primer LE7 and with 1 mM Mg²⁺ final concentration. Under these conditions, a specific PCR™ produce was identified. Sequence analysis of this cloned PCR™ product indicated that it encoded a region of conserved amino acids within *accB* of *Synechococcus* PCC 7942 (compared to the amino acid sequences of the biotin carboxyl carrier protein from *Anabaena* PCC 7120 and *E. coli*). Using this PCR™ fragment as a probe in Southern hybridization, a positive clone was identified from the *Synechococcus* cosmid library. A 1.6-kb *Pst*I fragment from this positive cosmid clone was isolated and sequenced.

A 477-nucleotide DNA segment comprising the *Synechococcus accB* gene is given in SEQ ID NO:3. Only one significant ORF was found. The deduced amino

15

20

25

acid sequence at the N-terminus of this ORF matches the earlier determined N-terminal amino acid sequence of the purified Synechococcus biotin-containing protein. The 158-amino acid sequence of the Synechococcus BCCP is given in SEQ ID NO:4. Sequence alignment indicated that the translational product of accB from Synechococcus PCC 7942 is closer to that from Anabaena PCC 7120 than that from E. coli (53% versus 31% amino acid identity).

5.3.3 Carboxyltransferase α Subunit (CTα, accA)

A 0.9-kb ClaI-MluI fragment of the E. coli accA gene was used as a probe to examine the Synechococcus PCC 7942 genomic DNA by Southern hybridization at 60°C. A strongly hybridizing 1.6-kb PstI fragment was detected and subsequently cloned.

Synechococcus PCC 7942 genomic DNA was digested with PstI and electrophoresed on an agarose gel. The gel region containing DNA of sizes between 1.6 and 2.5-kb was cut out and purified. A size library between 1.6-kb and 2.5-kb was created by cloning the purified fraction of Synechococcus PCC 7942 DNA into vector pBR322. Tetracycline-resistant, but ampicillin-sensitive, colonies (i.e., with insert) were selected by first plating on LB plates containing tetracycline, then scored on plates containing ampicillin.

A total of 800 tetracycline-resistant, but ampicillin-sensitive, clones were screened: the plasmid DNA was prepared, digested (in pools of 5 clones per pool) with *PstI*, electrophoresed, transferred onto a Genescreen Plus membrane, then hybridized with the *E. coli accA* probe at 60°C. Positive signals appeared on 3 pools. One positive individual clone, with 2 fragments inserted, was identified at the second round of screening. The positive fragment was isolated and re-cloned. This cloned 1.6-kb *PstI* fragment was then used as a probe to screen the *Synechococcus* cosmid library where 9 positive clones were identified. A 5-kb *BamHI* fragment from one of these 9 clones was isolated and sequenced. DNA sequence analysis of the region indicated a cluster of three ORFs in the same orientation.

The 984-nucleotide DNA segment comprising the *Synechococcus accA* gene is given in SEQ ID NO:11. The first open reading frame encodes the α subunit of the carboxyltransferase. The 327-amino acid sequence of the *Synechococcus* ORF is 54% identical to that of the *E. coli accA* gene. The amino acid sequence of the *Synechococcus accA* gene encoding CTα is given in SEQ ID NO:12.

5.3.4 Carboxyltransferase β Subunit (CT β , accD)

5

10

15

20

25

Oligonucleotide primers, for polymerase chain reaction (PCRTM) amplification experiments with *Synechococcus* genomic DNA, were based on the sequence of ORF326 (which is a homolog of the *E. coli accD*) from a different cyanobacterium, *Synechocystis* PCC 6803. he pair of primers were:

LE39 5'-GAAGATCTTTATGGGCGGTAGTATG-3' (SEQ ID NO:28)

LE40 3'-GGTCGAAACGGTACAACCTAGGC-5' (SEQ ID NO:29)

PCRTMwas run for 40 cycles (each with 1 minute at 95°C, 1 minute at 50°C, 2 minutes at 72°C), with Boehringer-Mannheim *Taq* polymerase, 0.5 mg/ml of template DNA, 5 mg/ml of each primer and with 1 mM Mg²⁺ final concentration. Under these conditions, a specific PCRTM product of 256 bp was identified. Sequence analysis of this cloned PCRTM fragment showed a significant similarity between the *Synechococcus* and *Synechocystis* genomic DNAs in the region between the primers. Using this cloned PCRTM product as a probe, 5 positive cosmid clones were identified from the *Synechococcus* cosmid library by Southern hybridization.

5.4 EXAMPLE 4 -- Isolation and Characterization of the Wheat ACC Enzyme

Biotin-containing (streptavidin-binding) proteins in extracts prepared from leaves of two-week old seedlings of wheat and pea, both total protein and protein from intact chloroplasts (prepared by centrifugation on Percoll gradients as described previously in Fernandez and Lamppa, 1991), and from wheat germ (Sephadex G-100 fraction prepared as described below) were analyzed by western blotting with

-78-

35S-Streptavidin. Proteins were separated by SDS-PAGE using a 7.5% separating gel (Maniatis et al., 1982), and then were transferred onto a PVDF membrane (Immobilon-P®, Millipore) in 10 mM 3-(cyclohexylamino)-1-propanesulfonic acid buffer (pH 11), 10% methanol, at 4°C, 40 V, overnight. The blots were blocked with 3% BSA solution in 10 mM Tris-HCl pH 7.5 and 0.9% NaCl and then incubated for 3-16 h with ³⁵S-Streptavidin (Amersham). The blots were washed at room temperature with 0.5% Nonidet-P40™ in 10 mM Tris-HCl pH 7.5 and 0.9% NaCl.

5

10

15

20

25

30

In wheat, the 220-kDa protein was present in both total and chloroplast protein. It was the major biotinylated polypeptide in the chloroplast protein (traces of smaller biotinylated polypeptides, most likely degradation products of the large one, could also be detected). ACC consisting of 220-kDa subunits is the most abundant biotin-dependent carboxylase present in wheat chloroplasts. In pea chloroplasts the biotinylated peptides are much smaller, probably due to greater degradation of the 220-kDa peptide, which could be detected only in trace amounts in some chloroplast preparations. The amount of all biotinylated peptides, estimated from band intensities on western blots (amount of protein loaded was normalized for chlorophyll content). is much higher in pea than in wheat chloroplasts.

Purification of wheat germ ACC was carried out at 4°C or on ice. 200 g of wheat germ (Sigma) were homogenized (10 pulses, 10 s each) in a Waring blender with 300 ml of 100 mM Tris-HCl pH 7.5, 7 mM 2-mercaptoethanol. Two 0.3 ml aliquots of fresh 0.2 M solution of phenylmethyl-sulfonyl fluoride (Sigma) in 100% ethanol were added immediately before and after homogenization. Soluble protein was recovered by centrifugation for 30 min at 12000 rpm. 1/33 volume of 10% poly(ethyleneimine) solution (pH 7.5) was added slowly and the mixture was stirred for 30 min (Egin-Buhler et al., 1980), followed by centrifugation for 30 min at 12000 RPM to remove the precipitate. ACC in the supernatant was precipitated by adding solid ammonium sulfate to 50% saturation.

The precipitate was collected by centrifugation for 30 min at 12000 rpm, dissolved in 200 ml of 100 mM KCl, 20 mM Tris-HCl pH 7.5, 20% glycerol, 7 mM 2-mercaptoethanol, mixed with 0.2 ml of phenylmethylsulfonyl fluoride solution (as WO 96/32484

5

10

15

20

25

30

above) and loaded on a 5 cm × 50 cm Sephadex G-100 column equilibrated and eluted with the same buffer. Fractions containing ACC activity (assayed as described below using up to 20 µl aliquots of column fractions) were pooled and loaded immediately on a 2.5 cm × 40 cm DEAE-cellulose column also equilibrated with the same buffer. The column was washed with 500, 250 and 250 ml of the same buffer containing 150, 200 and 250 mM KCl, respectively. Most of the ACC activity was eluted in the last wash. Protein present in this fraction was precipitated with ammonium sulfate (50% saturation), dissolved in a small volume of 100 mM KCl, 20 mM Tris-HCl pH 7.5, 5% glycerol, 7 mM 2-mercaptoethanol, and separated in several portions on two Superose columns connected in-line (Superose 6 and 12, Pharmacia). 1 ml fractions were collected at 0.4 ml/min flow rate. Molecular mass standards were thyroglobulin, 669-kDa; ferritin, 440-kDa; aldolase, 158-kDa; albumin, 67-kDa (Pharmacia). ACC-containing fractions were concentrated using Centricon-100 concentrators (Amicon) and the proteins were separated by SDS-PAGE as described above.

By gel filtration, active ACC had an apparent molecular mass of ~ 500-kDa and the individual polypeptides have a molecular mass of 220-kDa. The 220-kDa polypeptide was the major component of this preparation as revealed by Coomassie staining of proteins separated by SDS-PAGE. This preparation also contained several smaller biotin-containing peptides as revealed by western blotting with ³⁵S-Streptavidin, most likely degradation products of the ca. 220-kDa peptide, which retained their ability to form the ~500-kDa complex and therefore co-purified with intact ACC. The ACC preparations were active only when they contained intact 220-kDa biotinylated polypeptide. It is not possible to estimate the recovery of the active ACC, due to continuous degradation of the 220-kDa peptide during purification and to increased recovery of ACC activity in more purified preparations, probably due to separation of the enzyme from inhibitors in the cruder extracts.

The 220-kDa wheat peptide isolated as a dimer according to the above protocol was finally purified by SDS-PAGE and transferred to Immobilion-P® for sequencing. The N-terminus of the peptide appeared to be blocked. A mixture of amino acids was detected only after the protein was cleaved chemically with CNBr.

n.2.1

5

10

15

20

25

30

The 220-kDa protein was therefore purified on an SDS gel, cleaved with CNBr, and the resulting peptides were fractionated by gel electrophoresis basically as described (Jahnen-Dechent and Simpson, 1990), with the following modifications. A slice of gel containing about 20 µg of the 220-kDa polypeptide was dried under vacuum to about half of its original volume and then incubated overnight in 0.5 ml of 70% formic acid containing 25 mg of CNBr. The gel slice was dried again under vacuum to about half of its original volume and was equilibrated in 1 ml of 1 M Tris-HCl (pH 8.0). The CNBr peptides were separated by inserting the gel piece directly into a well of a tricine gel (as described in Jahnen-Dechent and Simpson, 1990; but without a spacer gel). Gels used to separate peptides for sequencing were pre-run for 30 min with 0.1 mM thioglycolic acid in the cathode buffer. Peptides were transferred to Immobilon-P for sequencing by the Edman degradation method as described above.

Several bands of peptides, ranging in size from 4 to 16-kDa, with a well-resolved single band at about 14-kDa, were obtained. Attempts to sequence the smaller peptides failed, but the 14-kDa peptide yielded a clean results for residues 3-13.

5.5 EXAMPLE 5 -- Effects of the Herbicide Haloxyfop on Wheat ACC

The effect of haloxyfop, one of the aryloxyphenoxypropionate herbicides has been tested, on the activity of ACC from wheat germ and from wheat seedling leaves. For the *in vitro* assay of ACC activity, 1-8 µl aliquots of ACC preparations were incubated for 45 min at 37°C with 20 µl of 100-200 mM KCl, 200 mM Tris-HCl pH 8.0, 10 mM MgCl₂, 2 mM ATP, 2 mM DTT, 2 mM ¹⁴C-NaHCO₃, and where indicated 1 mM Ac-CoA, in a final volume of 40 µl. The reaction was stopped by adding 4 µl of concentrated HCl 30-40 µl aliquots of the reaction mixture were spotted on filter paper and dried, and acid-stable radioactivity was measured using scintillation cocktail. Haloxyfop was added as the Tris salt of the acid, generously supplied by J. Secor of Dow-Elanco.

For the *in vivo* assay of ACC activity, 2-week old seedlings of wheat (*Triticum aestivum* cv. Era) were cut about 1 cm below the first leaf and transferred to a 1.5 ml

micro tube containing ¹⁴C-sodium acetate and haloxyfop (Tris salt) for 4-6 h. The leaves were then cut into small pieces and treated with 0.5 ml of 40% KOH for 1 h at 70°C, and then with 0.3 ml of H₂SO₄ and 20 µl of 30% TCA on ice. Fatty acids were extracted with three 0.5 ml aliquots of petroleum ether. The organic phase was washed with 1 ml of water. Incorporation of ¹⁴C-acetate into fatty acids is expressed as the percentage of the total radioactivity taken up by the seedlings, present in the organic phase.

As expected, the enzyme from wheat germ or from wheat chloroplasts was sensitive to the herbicide at very low levels. 50% inhibition occurs at about 5 and 2 µM haloxyfop, respectively. For comparison, the enzyme from pea chloroplasts is relatively resistant (50% inhibition occurs at >50 :M haloxyfop). Finally, the *in vivo* incorporation of ¹⁴C-acetate into fatty acids in freshly cut wheat seedling leaves is even more sensitive to the herbicide (50% inhibition occurs at <1 :M haloxyfop), which provides a convenient assay for both ACC and haloxyfop.

15

20

25

30

10

5

5.6 EXAMPLE 6 -- Cloning and Sequencing of Triticum aestivum ACC cDNA

5.6.1 Materials and Methods

5.6.1.1 PCR™ Amplification

Degenerate PCRTM primers were based on the alignment of amino acid sequences of the following proteins (accession numbers in brackets): rat (J03808) and chicken (J03541) ACCs; E. coli (M80458, M79446, X14825, M32214), Anabaena 7120 (L14862, L14863) and Synechococcus 7942 BCs and BCCPs; rat (M22631) and human (X14608) propionyl-coenzyme A carboxylase (" subunit); yeast (J03889) pyruvate carboxylase; Propionibacterium shermanii (M11738) transcarboxylase (1.3S subunit) and Klebsiella pneumonia (J03885) oxaloacetate decarboxylase (a subunit). Each primer consisted of a 14-nucleotide specific sequence based on the amino acid sequence and a 6- or 8-nucleotide extension at the 5'-end.

Poly(A)⁺ RNA from 8-day old plants (*Triticum aestivum* var. Era) was used for the synthesis of the first strand of cDNA with random hexamers as primers for AMV reverse transcriptase (Haymerle *et al.*, 1986). Reverse transcriptase was

inactivated by incubation at 90°C and low molecular weight material was removed by filtration. All components of the PCRTM (Cetus/Perkin-Elmer), except the *Taq* DNA polymerase, were incubated for 3-5 min at 95°C. The PCRTM was initiated by the addition of polymerase. Conditions were optimized by amplification of the BC gene from *Anabaena* 7120. Amplification was for 45 cycles, each 1 min at 95°C, 1 min at 42-46°C and 2 min at 72°C. MgCl₂ concentration was 1.5 mM. Both the reactions using *Anabaena* DNA and the single-stranded wheat cDNA as template yielded the expected 440-bp products. The wheat product was separated by electrophoresis on LMP-agarose and reamplified using the same primers and a piece of the LMP-agarose slice as a source of the template. That product, also 440-bp, was cloned into the Invitrogen vector pCR1000 using their A/T tail method, and sequenced.

In eukaryotic ACCs, the BCCP domain is located about 300 amino acids downstream from the end of the BC domain. Therefore, it was possible to amplify the cDNA encoding that interval between the two domains using primers, one from the C-terminal end of the BC domain and the other from the conserved biotinylation site. The expected 1.1-kb product of the first low yield PCRTM with primers III and IV was separated by electrophoresis on LMP-agarose and reamplified by another round of PCRTM, then cloned into the Invitrogen vector pCRII® and sequenced. The PCRTM conditions were the same as those described above.

20

25

5

10

15

5.6.1.2 Isolation and Analysis of ACC cDNA

A wheat cDNA library (*Triticum aestivum*, var. Tam 107, Hard Red Winter, 13-day light grown seedlings) was purchased from Clontech. This 8gt11 library was prepared using both oligo(dT) and random primers. Colony ScreenPlus® (DuPont) membrane was used according to the manufacturers' protocol (hybridization at 65°C in 1 M NaCl and 10% dextran sulfate). The library was first screened with the 1.1-kb PCRTM-amplified fragment of ACC-specific cDNA. Fragments of clones 39-1, 45-1 and 24-3 were used in subsequent rounds of screening. In each case, ~2.5 × 10⁶ plaques were tested. More than fifty clones containing ACC-specific cDNA

'In'

fragments were purified, and *Eco*RI fragments of the longest cDNA inserts were subcloned into pBluescriptSK® for further analysis and sequencing. A subset of the clones was sequenced on both strands by the dideoxy chain termination method with Sequenase® (United States Biochemicals) or using the Perkin Elmer/Applied Biosystems *Taq* DyeDeoxy Terminator cycle sequencing kit and an Applied Biosystems 373A DNA Sequencer.

5.6.1.3 RNA and DNA

Total RNA from 10-day old wheat plants was prepared as described in (Haymerle et al., 1986). RNA was separated on a glyoxal denaturing gel (Sambrook et al., 1989). GeneScreen Plus® (DuPont) blots were hybridized in 1M NaCl and 10% dextran sulfate at 65°C (wheat RNA and DNA) or 58-60°C (soybean and canola DNA). All cloning, DNA manipulation and gel electrophoresis were as described (Sambrook et al., 1989).

15

20

25

30

Til.

10

5

5.6.2 Results

5.6.2.1 PCR™ Cloning of the Wheat (Triticum aestivum) ACC cDNA

A 440-bp cDNA fragment encoding a part of the biotin carboxylase domain of wheat ACC and a 1.1-kb cDNA fragment encoding the interval between the biotin carboxylase domain and the conserved biotinylation site were amplified. These fragments were cloned and sequenced. In fact, three different 1.1-kb products, corresponding to closely related sequences that differ from each other by 1.5%, were identified. The three products most likely represent transcription products of three different genes, the minimum number expected for hexaploid wheat. These two overlapping DNA fragments (total length of 1473 nucleotides) were used to screen a wheat cDNA library.

5.6.2.2 Isolation and Sequence Analysis of Wheat ACC cDNAs

A set of overlapping cDNA clones covering the entire ACC coding sequence was isolated and a subset of these clones has been sequenced. The nucleotide

WO 96/32484 PCT/US96/05095

sequence within overlapped regions of clones 39-1, 20-1 and 45-1 differ at 1.1% of the nucleotides within the total of 2.3 kb of the overlaps. The sequence within the overlap of clones 45-1 and 24-3 is identical. The sequence contains a 2257-amino acid reading frame encoding a protein with a calculated molecular mass of 251 kDa. In wheat germ the active ACC has an apparent molecular mass of ~500 kDa and the individual polypeptides have an apparent molecular mass (measured by SDS-PAGE) of about 220 kDa (Gornicki and Haselkorn, 1993). The 220-kDa protein was also present in both total leaf protein and protein from intact chloroplasts. In fact, it was the major biotinylated polypeptide in the chloroplast protein. The cDNAs (total length 7.4 kb) include 158 bp of the 5'-untranslated and 427 bp of the 3'-untranslated sequence.

The 7360-nucleotide DNA segment comprising the wheat ACC cDNA is given in SEQ ID NO:9. The 2257-amino acid translated wheat ACC sequence is given in SEQ ID NO:10.

15

20

25

30

10

5

5.6.2.3 Northern Analysis of ACC mRNA

Northern blots with total RNA from 10-14 day old wheat leaves were probed using different cDNA fragments (the 1.1-kb PCRTM-amplified fragment and parts of clones 20-1, 24-3 and 01-4). In each case the only hybridizing mRNA species was 7.9 kb in size. This result shows clearly that all the cDNA clones correspond to mRNA of large, eukaryotic ACC and that there are no other closely related biotin-dependent carboxylases, consisting of small subunits that are encoded by smaller mRNAs, in wheat.

Northern analysis of total RNA prepared from different sectors of 10-day old wheat seedlings indicates very high steady-state levels of ACC-specific mRNA in cells of leaf sectors I and II near the basal meristem. The ACC mRNA level is significantly higher in sectors I and II than in sectors III-VI. This cannot be explained by dilution of specific mRNA by increased levels of total RNA in older cells. Based on published results (Dean and Leech, 1982), the increase in total RNA between sectors I and VI is expected to be only about two-fold.

All cell division occurs in the basal meristem and cells in other sectors are in different stages of development. Differences between these young cells and the mature cells at the tip of the leaf include cell size, number of chloroplasts and amount of total RNA and protein per cell (Dean and Leech, 1982). Expression of some genes is correlated with the cell age (e.g., Lampa et al., 1985). It is not surprising that the level of ACC-specific mRNA is highest in dividing cells and in cells with increasing number of chloroplasts. The burst of ACC mRNA synthesis is necessary to supply enough ACC to meet the demand for malonyl-coenzyme A. The levels of ACC mRNA decrease significantly in older cells where the demand is much lower. The same differences in the level of ACC specific mRNA between cells in different sectors were found in plants grown in the dark and in plants illuminated for one day at the end of the dark period.

5.6.2.4 Southern Analysis of Plant DNA

Hybridization, under stringent conditions, of wheat total DNA digests with wheat ACC cDNA probes revealed multiple bands. This was expected due to the hexaploid nature of wheat (Triticum aestivum). Some of the wheat cDNA probes also hybridize with ACC-specific DNA from other plants. The specificity of this hybridization was demonstrated by sequencing several fragments of canola genomic DNA isolated from a library using wheat cDNA probe 20-1 and by Northern blot of total canola RNA using one of the canola genomic clones as a probe. The Northern analysis revealed a large ACC-specific message in canola RNA similar in size to that found in wheat.

25 5.6.2.5 ACC mRNA

5

10

15

20

30

The putative translation start codon was assigned to the first methionine of the open reading frame. An in-frame stop codon is present 21 nucleotides up-stream from this AUG. The nucleotide sequence around this AUG fits quite well with the consensus for a monocot translation initiation site derived from the sequence of 93 genes, except for U at position +4 of the consensus which was found in only 3 of the

15

20

25

30

-86-

93 sequences. The ACC mRNA stop codon UGA is also the most frequently used stop codon found in monocot genes, and the surrounding sequence fits the consensus well.

5 5.6.2.6 Homologies with Other Carboxylases

A comparison of the wheat ACC amino acid sequence with other ACCs shows sequence conservation among these carboxylases. The sequence of the polypeptide predicted from the cDNA described above was compared with the amino acid sequences of other ACCs, and about 40% identity are with the ACC of rat, diatom and yeast (about 40%). Less extensive similarities are evident with subunits of bacterial ACCs. The amino acid sequence of the most highly conserved domain, corresponding to the biotin carboxylases of prokaryotes, is about 50% identical to the ACC of yeast, chicken, rat and diatom, but only about 27% identical to the biotin carboxylases of E. coli and Anabaena 7120. The biotin attachment site has the typical sequence of eukaryotic ACCs. Several conserved amino acids found in the carboxyltransferase domains previously identified (Li and Cronan, 1992) are also present in the wheat sequence. Surprisingly, none of the four conserved motifs containing serine residues, which correspond to phosphorylation sites in rat, chicken and human ACCs (Ha et al., 1994), is present at a similar position in the wheat polypeptide.

5.6.2.7 Lack of Targeting Sequence in Wheat ACC cDNA

The wheat cDNA does not encode an obvious chloroplast targeting sequence unless this is an extremely short peptide. There are only 12 amino acids preceding the first conserved amino acid found in all eukaryotic ACCs (a serine residue). The conserved core of the BC domain begins about 20 amino acids further down-stream. The apparent lack of a transit peptide poses the question of whether and how the ACC described in this paper is transported into chloroplasts. It was shown recently that the large ACC polypeptide purifies with chloroplasts of wheat and maize (Gornicki and Haselkorn, 1993; Egli et al., 1993). No obvious chloroplast transit peptide between

the ER signal peptide and the mature protein was found in diatom ACC either (Roessler and Ohlrogge, 1993).

The number of ACC genes in wheat have been assessed by Southern analysis and by sequence analysis of the 5'- and 3'-untranslated portions of ACC cDNA representing transcripts of different genes. These cDNA fragments may be obtained by PCRTM amplification using the 5'- and 3'-RACE methodology. The genome structure of wheat (*Triticum aestivum*) suggests the presence of at least three copies of the ACC gene, *i.e.* one in each ancestral genome. Sequence analysis of the 5'-untranscribed parts of the gene may determine whether any familiar promoter and regulatory elements are present. The structure of introns within the control region and in the 5'-fragment of the coding sequence is also of interest.

The plant ACC genes are full of introns and their transcripts undergo alternative splicing. In some plant genes, introns have been found both within the sequence encoding the transit peptide, and at the junction between the transit peptide and the mature protein.

In plants, variant cytoplasmic and plastid isoenzymes could arise, for example, by alternative splicing or by transcription of two independent genes. This problem is especially intriguing as it was not possible to identify a transit peptide in the sequences of wheat ACC obtained so far. The two possibilities can be distinguished by sequence analysis of the appropriate fragment of the ACC genes (clones from genomic library) and mRNAs (as cDNA). The sequence of these 5'- and 3'-untranscribed and untranslated fragments of the gene are usually significantly different for different alleles so they may also be used as specific probes to follow expression of individual genes.

25

30

5

10

15

20

5.7 EXAMPLE 7 -- DNA Compositions Comprising a Wheat Cytosolic ACC

This example describes the cloning and DNA sequence of the entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase (ACCase). Comparison of the 12-kb genomic sequence (SEQ ID NO:30) with the 7.4-kb cDNA sequence reported in Example 6 revealed 29 introns. Within the coding region (SEQ

10

15

20

25

30

M.

ID NO:31), the exon sequence is 98% identical to the wheat cDNA sequence (SEQ ID NO:XX). A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5'- and 3'-RACE analysis. One set of transcripts had 5'-end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3'-RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encode a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.

5.7.1 Materials and Methods

5.7.1.1 Isolation and Analysis of ACCase Genomic Clones

A wheat genomic library (*T. aestivum*, var. Hard Red Winter Tam 107, 13-day light grown seedlings) was purchased from Clontech. This 8 EMBO3 library was prepared from genomic DNA partially digested with *Sau*3A. Colony ScreenPlus (DuPont) membrane was used according to the manufacturers' protocol (hybridization at 65°C in 1M NaCl and 10% dextran sulfate). The library was screened with a 440-bp PCRTM-amplified fragment of ACCase-specific cDNA and with cDNA clone 24-3 (Gornicki *et al.*, 1994). In each case, ~1.2 × 10⁶ plaques were tested. 24 clones containing ACCase-specific DNA fragments were purified and mapped. Selected restriction fragments of these genomic clones were subcloned into pBluescriptSK® for further analysis and sequencing. The 3'-terminal fragment of the gene (clone 145) was amplified by PCRTM using wheat genomic DNA as a template. Primers were based on the sequence of genomic clone 233, 5'-CGCTATAGGGAAACGTTAGAAGGATGGG-3' (SEQ ID NO:34) and 3'-RACE clone 4, 5'-ATCGATCGGCCTCGGCTCCAATTTCATT-3' (SEQ ID NO:35).

All PCRTM components except *Taq* polymerase were incubated for 5 min. at 95°C. The reactions were initiated by the addition of the polymerase followed by 35

15

25

cycles of incubation at 94°C for 1min, 55°C for 2 min and 72°C for 2 min. A 1.8-kb PCRTM product was gel-purified, reamplified using the same primers, cloned into the Invitrogen vector pCRIITM and sequenced.

5 5.7.1.2 Analysis of mRNA by rapid amplification of cDNA ends (RACE)

Two sets of 15 and 20 cDNA fragments corresponding to mRNA 5'- and 3'-ends, respectively, were prepared by T/A cloning of RACE products into the vector pCRII. Total RNA from 15-day old wheat (Triticum aestivum var. Tam 107, Hard Red Winter) plants was prepared as described in Chirgwin *et al.* (1979). A Gibco BRL 5'-RACE kit was used according to the manufacturers' protocol. For the 5'-end amplification, the first strand of cDNA was prepared using a gene-specific primer: 5'-GTTCCCAAAGGTCTCCAAGG-3' (SEQ ID NO:36); followed by the addition of a homopolymeric dA-tail.

dT-Anchor primer: 5'-GCGGACTCGAGTCGACAAGCTTTTTTTTTTTTT-3' (SEQ ID NO:37); and a gene-specific primer, 5'-ACGCGTCGACTAGTA GGTGCGGATGCTGCGCATG-3' (SEQ ID NO:38) were used in the first round of PCRTM.

Universal primer, 5'-GCGGACTCGAGTCGACAAGC-3' (SEQ ID NO:39) and another gene-specific primer, 5'-ACGCGTCGACCATCCCA

TTGTTGGCAACC-3' (SEQ ID NO:40) were used for reamplification. The gene-specific primers were targeted to a stretch of 5'-end coding sequence identical in clones 39 and 71 that were available.

Clone 71 was isolated from a 8gt11 cDNA library as described before using a fragment of cDNA 39 as probe (Example 4). The same dT-anchor primer and universal primer together with a gene specific primer
5'-GACTCATTGAGATCAAGTTC-3' (SEQ ID NO:41) were used for the first strand cDNA synthesis and 3'-end amplification. The latter primer was targeted to the

All cloning, DNA manipulations and gel electrophoresis were as described (Sambrook et al., 1989). DNA was sequenced on both strands by the dideoxy chain

3'-end of the ACCase open reading frame.

-90-

termination method using ³⁵S-[dATP] with Sequenase (United States Biochemicals) or using the Perkin Elmer/Applied Biosystems Taq DyeDeoxy Terminator cycle sequencing kit and an Applied Biosystems 373A DNA Sequencer.

5 **5.7.2 Results**

10

15

20

25

30

5.7.2.1 Analysis of wheat cytosolic ACCase genes

Two cDNA fragments, one encoding a part of the biotin carboxylase domain of wheat ACCase and the other a part of the carboxyltransferase, were used to isolate a set of overlapping DNA fragments covering the entire ACCase gene. Some of these genomic fragments were sequenced as indicated in FIG. 1. Where they overlap, the nucleotide sequences of clones 31, 191 and 233 are identical. These obviously derive from the same gene. cDNA clone 71 (see below) represents the transcription product of this gene (430-nucleotide identical sequence). The sequence of clone 145 obtained by PCRTM to cover the remaining 3'-end part of the gene differs from clone 233 by 5 of 400 nucleotides of the overlap located within the long exon 28 (FIG. 1). It must therefore derive from a different copy of the ACCase gene. 3'-RACE clone 4 (3'-4, see below) differs at 6 of 490 nucleotides in the overlap.

The sequence was deposited in GenBank (as accession number U39321), and is a composite of these three very closely related sequences. Its 5'-end corresponds to the 5'-end of clone 71 and the 3'-end corresponds to the poly(A) attachment site of the 3'-RACE clone 4. It was assumed that no additional introns are present at the very end of the gene.

Comparison of the genomic sequence with the cDNA sequence in Example 4 revealed 29 introns. Intron location is conserved among all three known plant ACCase genes except for two introns not present in wheat but found in rape (Schulte et al., 1994), A. thaliana (Roesler et al., 1994) and soybean (Anderson et al., 1995) (FIG. 1). The nucleotide sequence at splice sites fits well with the consensus for monocot plants. The A+T content of the gene exons and introns is 52% and 63%, respectively, compared to 42% and 61% found for other monocot plant genes (White et al., 1992). The exon coding sequence is 98% identical to that of the cDNA

sequence reported earlier. This is the same degree of identity as found previously for different transcripts of the cytosolic ACCase genes in hexaploid wheat (Example 4). The 11-amino acid sequence obtained previously for a CNBr-generated internal fragment of purified 220-kDa wheat germ ACCase (Gornicki and Haselkorn, 1993) differs from the sequence encoded by these cDNA and genomic clones at one position, but it is identical with the corresponding cDNA sequence of the plastid ACCase from maize (Egli et al., 1995), excluding one amino acid which could not be assigned unambiguously in the sequence.

5

10

15

20

25

30

Two additional genomic clones, 153 and 231, were also partially sequenced (FIG. 1). The sequenced fragments include parts of the first two exons and the first intron. Although cDNA corresponding exactly to genomic clone 153 is not available, the boundaries of the first intron could easily be identified by sequence comparison with cDNA clone 71 (corresponding to genomic clone 31). Clone 153 encodes a polypeptide that differs by only one out of the first 110 amino acids of the ACCase open reading frame. The sequence of the 5'-leader was also well conserved but the 5'-part of the first intron of clone 153 is significantly different from that of genomic clone 31.

On the other hand, only the 3'-splice site of an intron could be identified by sequence comparison in this part of clone 231. The sequence immediately upstream of the 3'-splice site and that of the following exon is identical to that of clone 31. No sequence related to that found upstream of the first intron of clone 191 could be identified in clone 231 by hybridization (including a ~6 kb fragment upstream of the ACCase open reading frame) or by sequencing (~ 2 kb of the upstream fragment). It is possible that the first intron in this gene is much larger (additional upstream introns can not be excluded) or that the upstream exon(s) and untranscribed part of the gene has a completely different sequence. A cloning artifact can not be ruled out. Indeed clone 31 contained such an unrelated sequence at its 5'-end (probably a ligation artifact).

Identification of three additional genomic clones with sequence closely related to the other ACCase genes but containing no introns at several tested locations

e;,

5

10

15

20

25

30

suggests the existence of a pseudogene in wheat. A fragment of clone 232 that was sequenced is represented in the diagram shown in FIG. 1. It is 93% and 96% identical with clone 233 at the nucleotide and amino acid level, respectively.

Shown in FIG. 5 is the 5' flanking sequence of the ACCase 1 gene (about 3 kb upstream of the translation initiation codon, of clone 71L (SEQ ID NO:32). The 5' flanking sequence of the ACCase 2 gene designated 153 (SEQ ID NO:33) is shown in FIG. 6.

5.7.2.2 Analysis of mRNA ends

In the original library screen (Gornicki et al., 1994) it was not possible to isolate any cDNA clones corresponding to the very ends of the ACCase mRNA. With the new sequence available it became possible to generate the missing pieces by RACE. Two sets of 5'-end RACE clones, 71L and 39L, were identified. Their sequence is identical to the sequence of cDNA clones 71 (this work) and 39 (Gornicki et al., 1994), respectively. The two sequences extend 239 and 312 nucleotides upstream of the ACCase initiation codon and define an approximate position of the transcription start site. None of the genomic clones corresponds to 39L. The presence of the first intron in the corresponding gene could not therefore be confirmed. All three coding sequences are very similar (they differ by only one three-amino acid deletion or one E to D substitution found within the first 110 amino acids) and none of them encodes additional amino acids at the N-terminus, i.e., none of them encodes a potential chloroplast transit peptide.

The sequences of the 5'-leaders differ significantly although they share some distinctive structural features. They are relatively long (at least 239-312 nucleotides as indicated by the lengths of 39L and 71L, respectively), G+C rich (67%) and contain upstream AUG codons. The open reading frames found in the leaders are 70-90 amino acids long and they end within a few nucleotides of the ACCase initiation codon. A similar arrangement was found in the sequence of genomic clone 153. The three upstream AUG codons are conserved and the presence of deletions, most of which are a multiple of three nucleotides, suggests at least some conservation of the

10

15

20

25

30

open reading frames at the amino acid level. This arrangement, found in the cytosolic ACCase genes, contrasts with the majority of 5'-untranslated leaders found in plants. Although much longer leader sequences containing upstream AUG codons have been reported in plants (e.g., Shorrosh et al., 1995), they are rare. In most cases, the first AUG codon is the site of initiation of translation of the major gene product. The upstream AUGs are believed to affect the efficiency of mRNA translation and as such may be important in the regulation of expression of some genes (Roesler et al., 1994; Anderson et al., 1995). They are often found in mRNAs encoding transcription factors, growth factors and receptors, all important regulatory proteins (Kozak, 1991). They are also found in some plant mRNAs encoding heat shock proteins (Joshi and Nguyen, 1995). The ~800 nucleotide long leader intron found in both genes (clones 153 and 191) may also be important for the level and pattern of gene expression (e.g., Fu et al., 1995).

Four different sequences and two different polyadenylation sites ~300 and ~500 nucleotides downstream of the translation stop codon, respectively, were detected among the 3'-end RACE clones (FIG. 2). The sequence of the cDNA reported previously (Gornicki et al., 1994) and the sequence of genomic clone 145 are also different in this region, bringing the total number of different sequences to six. 3-14 nucleotide differences were found in pairwise comparisons among these six sequences within two stretches that include 282 nucleotides at the 5'-end of the 3'-RACE clones and 204 nucleotides at the 3'-end (FIG. 2).

5.7.2.3 Cytosolic ACC

A gene encoding eukaryotic-type cytosolic ACCase from wheat, very similar in sequence to the cDNA in Example 4, was cloned and sequenced. Nucleotide identity between the cDNA and the gene within the coding sequence is 98%. The putative translation start codon was assigned in the original cDNA sequence to the first methionine of the open reading frame. An in-frame stop codon is present 21 nucleotides upstream from this AUG and the conserved core of the biotin carboxylase domain begins about 20 amino acids further down-stream. The gene, shown in FIG. 3

101

-94-

(SEQ ID NO:30), encodes a 2260-amino acid protein with a calculated molecular mass of 252 kDa (FIG. 4 and SEQ ID NO:31). The wheat cDNA did not encode an obvious chloroplast targeting sequence. The same is true for all the cDNA and genomic sequences described in this paper. The cDNA for maize plastid ACCase, reported recently (Egli et al., 1995), does encode a chloroplast transit peptide.

Comparison of the ACCase sequence encoded by the gene reported in this paper with the sequence of the wheat ACCase of Example 4 and with other representative biotin-dependent carboxylases is shown in Table 4. Wheat ACCase is most similar to other eukaryotic-type plant ACCases. Identity with other eukaryotic carboxylases is also significant. The core sequence of the most conserved ACCase domain, biotin

21.

5

10

Amino Acid Identities (%) Between T. aestivum Cytosolic ACCase

	id Some Other P	cepresentativ	e Biotin-Depen	and some Uther Representative Biotin-Dependent Carboxylases
Specimen	Location	Full Length	Biotin Carboxylase Domain	References
Eukaryotic type carboxylases	arboxylases		<u>.</u>	
T. aestivum¹	cytosolic	66	66	Gornicki et al., 1994
A. thaliana	cytosolic	72	87	Roesler et al., 1994
M. sativa	cytosolic	73	98	Shorrosh et al., 1994
B. napus²		89	82	Schulte et al., 1994
Z. mays	plastid	17	81	Egli et al., 1995
R. ratus	cytosolic	40	89	Lopez-Casillas et al., 1988
C. cryptica²		38	55	Roessler and Ohlrogge, 1993
S. cerevisiae	cytosolic	40	26	Al-Feel et al., 1992
Prokaryotic type carboxylases	carboxylases			
E. coli³	bacterial	•	33	Li and Cronan, 1992
Anabaena 7120³	bacterial	1	34	Gornicki et al., 1993

Specimen	Location	Full Length	Full Biotin Length Carboxylase Domain	References
M. leprae	bacterial		32	Norman et al., 1994
N. tabacum ³	plastid	•	32	Shorrosh et al., 1995
R. ratus PCC ⁵	mitochondrial	•	34	Browner et al., 1989
S. cerevisiae PC	mitochondrial	•	32	Lim et al., 1988
A. thaliana MCCase ⁷	mitochondrial	ı	34	Weaver et al., 1995

'Sequence deduced from cDNA sequence reported previously (product of a different allele or gene).

²Cellular localization uncertain.

³Biotin carboxylase subunit of ACCase.

⁴Biotin carboxylase-biotin carboxyl carrier subunit of ACCase.

S

⁵Biotin carboxylase-biotin carboxyl carrier subunit (a) of propionyl-CoA carboxylase.

⁶Pyruvate carboxylase.

⁷Biotin carboxylase-biotin carboxyl carrier subunit of methylcrotonyl-CoA carboxylase.

15.1

10

15

20

25

30

carboxylase, is well conserved in both eukaryotic and prokaryotic biotin-dependent carboxylases. The other functional domains are less conserved (Example 4). Among plant eukaryotic-type ACCases, the wheat cytosolic ACCase is no more similar to the maize plastid ACCase (both monocots) than it is to cytosolic ACCases from dicot plants. Clearly, cytosolic and plastid eukaryotic-type ACCases are quite distinct proteins. Another wheat ACCase for which partial sequence is available (Elborough et al., 1994) is most likely a plastid isozyme. It is more similar to the maize plastid ACCase than to the wheat cytosolic enzyme. The plant prokaryotic-type plastid enzyme is more similar to bacterial, most notably cyanobacterial ACCases and to biotin-dependent carboxylases found in mitochondria, than to any of the plant cytosolic ACCases.

Sequence comparison of fragments of cDNA and genomic clones from the 3Nend of the gene brings the total number of different genes encoding cytosolic ACCase in wheat to six, indicating that in hexaploid wheat there are at least two distinguishable coding sequences for the cytosolic ACCase in each of the three ancestral chromosome sets. Those two sequences might correspond to the alleles of the ACCase gene present in each ancestral chromosome set. On the other hand, it is possible that each pair of alleles has identical sequences, since the bread wheat studied is extensively inbred. If that is the case, then one or more ancestral genes has been duplicated.

5.8 EXAMPLE 8 -- Developmental Analysis of ACC Genes

Methods have been developed for analyzing the regulation of ACC gene expression on several levels. With the cDNA clones in hand, the first may be obtained by preparing total RNA from various tissues at different developmental stages e.g., from different segments of young wheat plants, then probing Northern blots to determine the steady-state level of ACC mRNA in each case. cDNA probes encoding conserved fragments of ACC may be used to measure total ACC mRNA level and gene specific probes to determine which gene is functioning in which tissue.

ام مو<u>ا</u>

b 7

5

10

15

20

25

30

-98-

In parallel, the steady-state level of ACC protein (by western analysis using ACC-specific antibodies and/or using labeled streptavidin to detect biotinylated peptides) and its enzymatic activity may be measured to identify the most important stages of synthesis and reveal mechanisms involved in its regulation. One such study evaluates ACC expression in fast growing leaves (from seedlings at different age to mature plants), in the presence and in the absence of light.

5.9 EXAMPLE 9 -- Isolation of Herbicide-Resistant Mutants

Development of herbicide-resistant plants is an important aspect of the present invention. The availability of the wheat cDNA sequence facilitates such a process. By insertion of the complete ACC cDNA sequence into a suitable yeast vector in place of the yeast ACC coding region, it is possible to complement a FAS3 mutation in yeast using procedures well-known to those of skill in the art (see e.g., Haslacher et al., 1993). Analysis of the function of the wheat gene in yeast depends first on tetrad analysis, since the FAS3 mutation is lethal in homozygotes.

Observation of four viable spores from FAS3 tetrads containing the wheat ACC gene may confirm that the wheat gene functions in yeast, and extracts of the complemented FAS3 mutant may be prepared and assayed for ACC activity. These assays may indicate the range of herbicide sensitivity, and in these studies, haloxyfop acid and clethodim may be used as well as other related herbicide compounds.

Given that the enzyme expressed in yeast is herbicide-sensitive, the present invention may be used in the isolation of herbicide-resistant mutants. If spontaneous mutation to resistance is too infrequent, chemical mutagenesis with DES or EMS may be used to increase such frequency. Protocols involving chemical mutagenesis are well-known to those of skill in the art. Resistant mutants, *i.e.*, strains capable of growth in the presence of herbicide, may be assayed for enzyme activity in vitro to verify that the mutation to resistance is within the ACC coding region.

Starting with one or more such verified mutants, several routes may lead to the identification of the mutated site that confers resistance. Using the available restriction map for the wild-type cDNA, chimeric molecules may be constructed

containing half, quarter and eighth fragments, etc. from each mutant, then checked by transformation and tetrad analysis whether a particular chimera confers resistance or not.

Alternatively a series of fragments of the mutant DNA may be prepared, end-labeled, and annealed with the corresponding wild-type fragments in excess, so that all mutant fragments are in heterozygous molecules. Brief S1 or mung bean nuclease digestion cuts the heterozygous molecules at the position of the mismatched base pair. Electrophoresis and autoradiography is used to locate the position of the mismatch within a few tens of base pairs. Then oligo-primed sequencing of the mutant DNA is used to identify the mutation. Finally, the mutation may be inserted into the wild-type sequence by oligo-directed mutagenesis to confirm that it is sufficient to confer the resistant phenotype.

5

10

15

20

25

Having identified one or more mutations in this manner, the corresponding parts of several dicot ACC genes may be sequenced (using the physical maps and partial sequences as guides) to determine their structures in the corresponding region, in the expectation that they are now herbicide resistant.

~* ·r

5.10 EXAMPLE 10 -- Isolation and Sequence Analysis of Canola ACC cDNA

Wheat ACC cDNA probes were used to detect DNA encoding canola ACC. Southern analysis indicated that a wheat probe hybridizes quite strongly and cleanly with only a few restriction fragments that were later used to screen canola cDNA and genomic libraries (both libraries provided by Pioneer HiBred Co [Johnson City, IA]). About a dozen positive clones were isolated from each library.

Sequence analysis was performed for several of these genomic clones. Fragments containing both introns and exons were identified. One exon sequence encodes a polypeptide which is 75% identical to a fragment of wheat ACC. This is very high conservation especially for this fragment of the ACC sequence which is not very conserved in other eukaryotes. The 398-nucleotide DNA segment comprising a portion of the canola ACC gene is given in SEQ ID NO:19. The 132-amino acid

10

15

20

25

30

-:0

translated sequence comprising a portion of the canola ACC polypeptide is given in SEQ ID NO:20.

One of the other genomic clones (6.5 kb in size) contains the 5' half of the canola gene, and additional screening of the genomic library may produce other clones which contain the promoter and other potential regulatory elements.

5.11 EXAMPLE 11 -- Methods for Obtaining ACC Mutants

In *E. coli*, only conditional mutations can be isolated in the *acc* genes. The reason is that although the bacteria can replace the fatty acids in triglycerides with exogenously provided ones, they also have an essential wall component called lipid A, whose \$-hydroxy myristic acid can not be supplied externally.

One aspect of the present invention is the isolation of Anacystis mutants in which the BC gene is interrupted by an antibiotic resistance cassette. Such techniques are well-known to those of skill in the art (Golden et al., 1987). Briefly, the method involves replacing the cyanobacterial ACC with wheat ACC, so it is not absolutely necessary to be able to maintain the mutants without ACC. The wheat ACC clone may be introduced first and then the endogenous gene can be inactivated without loss of viability.

By replacing the endogenous herbicide resistant ACC in cyanobacteria with the wheat cDNA, resulting cells are sensitive to the herbicides haloxyfop and clethodim, whose target is known to be ACC. Subsequently, one may isolate mutants resistant to those herbicides. These methods are known to those of skill in the art (Golden et al., 1987).

The transformation system in *Anacystis* makes it possible to pinpoint a very small DNA fragment that is capable of conferring herbicide resistance. DNA sequencing of wild type and resistant mutants then reveals the basis of resistance.

Alternatively, gene replacement may be used to study wheat ACC activity and herbicide inhibition in yeast. Mutants may be selected? which overcome the normal sensitivity to herbicides such as haloxyfop. This will yield a variant(s) of wheat ACC that are tolerant/resistant to the herbicides. The mutated gene (cDNA) present on the

10

15

20

25

-41-

plasmid can be recovered and analyzed further to define the sites that confer herbicide resistance. As for the herbicide selection, there is a possibility that the herbicide may be inactivated before it can inhibit ACCase activity or that it may not be transported into yeast. There are general schemes for treatment of yeast with permeabilizing antibiotics at sublethal concentrations, which are known to those of skill in the art. Such treatments allow otherwise impermeable drugs to be used effectively. For these studies haloxyfop acid and clethodim may be used.

Characterization of the site(s) conferring herbicide resistance generally involves assaying extracts of the complemented ACC1 mutant for ACCase activity. Both spontaneous mutation and chemical mutagenesis with DES or EMS, may be used to obtain resistant mutants, i.e., strains capable of growth in the presence of herbicide. These may be assayed for enzyme activity in vitro to verify that the mutation to resistance is within the ACCase coding region. Starting with one or more such verified mutants, the mutated site that confers resistance may be analyzed. Using the available restriction map for the wild-type cDNA, chimeric molecules may be constructed which containing half, quarter and eighth fragments, etc., from each mutant, and then checked by transformation and tetrad analysis to determine whether a particular chimera confers resistance or not.

An alternative method involves preparing a series of fragments of the mutant DNA, end-labeling, and annealing with the corresponding wild-type fragments in excess, so that all mutant fragments are in heterozygous molecules. Brief S1 or mung bean nuclease digestion cuts the heterozygous molecules at the position of the mismatch within a few tens of base pairs. Then oligo-primed sequencing of the mutant DNA is used to identify the mutation. Finally, the mutation can be inserted into the wild-type sequence by oligo-directed mutagenesis to confirm that it is sufficient to confer the resistant phenotype. Having identified one or more mutations in this manner, the corresponding parts of several dicot ACCase genes to determine their structures in the corresponding region, in the expectation that they ewould be "resistant".

V 96/32484 PCT/US96/05095

Another method for the selection of wheat ACCase mutants tolerant or resistant to different herbicides involves the phage display technique. Briefly, in the phage display technique, foreign peptides can be expressed as fusions to a capsid protein of filamentous phage. Generally short (6 to 18 amino acids), variable amino acid sequences are displayed on the surface of a bacteriophage virion (a population of phage clones makes an epitope library). However, filamentous bacteriophages have also been used to construct libraries of larger proteins such as the human growth hormone, alkaline phosphatase (Scott, 1992) or a 50-kDa antibody Fab domain (Kang et al., 1991). In those cases, the foreign inserts were spliced into the major coat protein pVIII of the M13 phagemid. A complementary helper phage supplying wild-type pVIII has to be cotransferred together with the phagemid. Such "fusion phages" retained full infectivity and the fused proteins were recognized by monoclonal antibodies. These results demonstrate that foreign domains displayed by phage can retain at least partial native folding and activity.

5

10

15

20

25

30

60

Phage libraries displaying wild-type fragments of the wheat ACCase of 250 to 300 amino acids in size may be constructed without "panning" for phage purification. The mechanism of purifying phages by panning involves reaction with biotinylated monoclonal antibodies, then the complexes are diluted, immobilized on streptavidin-coated plates, washed extensively and eluted. Generally, a few rounds of panning are recommended.

Instead, fragments bearing the ATP-binding site may be obtained by using Blue Sepharose CL-6B affinity chromatography, which was shown to bind plant ACCs (Betty et al., 1992; Egin-Buhler et al., 1980). Herbicides bound to Sepharose serve for capturing those phages which display amino acid fragments involved in herbicide binding. Such herbicide affinity resins may also be employed. After identifying peptide fragments that bind herbicides, ATP or acetyl-CoA, the phages bearing those peptides may be subjected to random mutagenesis, again using phage display and binding to the appropriate support to select the interesting variants. Sequence analysis then is used to identify the critical residues of the protein required for binding.

10

15

20

25

30

5.12 EXAMPLE 12 -- Preparation of ACC-specific antibodies

Another aspect of the present invention is the preparation of antibodies reactive against plant ACC for use in immunoprecipitation, affinity chromatography, and immunoelectron microscopy. The antisera may be prepared in rabbits, using methods that are well-known to those of skill in the art (see e.g., Schneider and Haselkorn, 1988).

Briefly, the procedure encompasses the following aspects. Gel-purified protein is electroeluted, dialyzed, mixed with complete Freund's adjuvant and injected in the footpad at several locations. Subsequent boosters are given with incomplete adjuvant and finally with protein alone. Antibodies are partially purified by precipitating lipoproteins from the serum with 0.25% sodium dextran sulfate and 80 mM CaCl₂. Immunoglobulins are precipitated with 50% saturating ammonium sulfate, suspended in phosphate-buffered saline at 50 mg/ml and stored frozen. The antisera prepared as described may be used in Western blots of protein extracts from wheat, pea, soybean, canola and sunflower chloroplasts as well as total protein.

5.13 EXAMPLE 13 -- Protein Fusions, Transgenic Plants and Transport Mutants

Analysis of promoter and control elements with respect to their structure as well as tissue specific expression, timing etc., is performed using promoter fusions (e.g. with the GUS gene) and appropriate in situ assays. Constructs may be made which are useful in the preparation of transgenic plants.

For identifying transport of ACC, model substrates containing different length N-terminal fragments of ACC may be prepared by their expression (and labeling) in E. coli or by in vitro transcription with T7 RNA polymerase and translation (and labeling) in a reticulocyte lysate. Some of the model substrates will include the functional biotinylation site (located ~800 amino acids from the N-terminus of the mature protein; the minimum biotinylation substrate will be defined in parallel) or native ACC epitope(s) for which antibodies will be generated as described above.

WO 96/32484 PCT/US96/05095

-104-

Adding an antibody tag at the C-terminus will also be very helpful. These substrates will be purified by affinity chromatography (with antibodies or streptavidin) and used for *in vitro* assays.

For modification of ACC protein transport, model substrates consisting of a transit peptide (or any other chloroplast targeting signals) to facilitate import into chloroplasts, fused to different ACC domains that are potential targets for modification, may be used. Modified polypeptides from cytoplasmic and/or chloroplast fractions will be analyzed for modification. For example, protein phosphorylation (with ³²P) can be followed by immunoprecipitation or by PAGE. Antibodies to individual domains of ACC may then be employed. The same experimental set-up may be employed to study the possible regulation of plant ACC by phosphorylation (e.g., Witters and Kemp, 1992). Biotinylation may be followed by Western analysis using ³⁵S-streptavidin for detection or by PAGE when radioactive biotin is used as a substrate.

15

20

25

30

5

10

5.14 EXAMPLE 14 -- Expression Systems for Preparation of ACC Polypeptides

The entire plant ACC cDNA and its fragments, and BC, BCCP and the CT gene clones from cyanobacteria may be used to prepare large amounts of the corresponding proteins in *E. coli*. This is most readily accomplished using the T7 expression system. As designed by Studier, this expression system consists of an *E. coli* strain carrying the gene for T7 lysozyme and for T7 RNA polymerase, the latter controlled by a *lac* inducible promoter. The expression vector with which this strain can be transformed contains a promoter recognized by T7 RNA polymerase, followed by a multiple cloning site into which the desired gene can be inserted (Ashton *et al.*, 1994).

Prior to induction, the strain grows well, because the few molecules of RNA polymerase made by basal transcription from the *lac* promoter are complexed with T7 lysozyme. When the inducer IPTG is added, the polymerase is made in excess and the plasmid-borne gene of interest is transcribed abundantly from the late T7 promoter.

ي جو شا

This system easily makes 20% of the cell protein the product of the desired gene. A benefit of this system is that the desired protein is often sequestered in inclusion bodies that are impossible to dissolve after the cells are lysed. This is an advantage in the present invention, because biological activity of these polypeptides is not required for purposes of raising antisera. Moreover, other expression systems are also available (Ausubel et al., 1989).

6. REFERENCES

The references listed below and all references cited herein are incorporated herein by reference to the extent that they supplement, explain, provide a background for, or teach methodology, techniques, and/or compositions employed herein.

United States Patent 4,683,202, July 28, 1987 issued to Mullis et al.

United States Patent 4,683,195, July 28, 1987. issued to Mullis, K. et al.

United States Patent 5,384,253, January 24, 1995, issued to Krzyzek.

WO/9110725, July 25, 1991, by Lundquist et al.

Abu-Elheiga et al., Proc. Natl. Acad. Sci. USA, 92:4011-4015, 1995.

Abdullah et al., Biotechnology, 4:1087, 1986.

Al-Feel et al., Proc. Natl. Acad. Sci. USA, 89:4534-4538, 1992.

20 Alban et al., Plant. Physiol., 102:957-965, 1993.

Alix, DNA, 8:779-789, 1989.

Anderson et al., Plant Physiol., 109:338, 1995.

Ashton et al., Plant Mol. Biol., 24:35-49, 1994.

Ausubel, F.M. et al., "Current Protocols in Molecular Biology," John Wiley & Sons,

25 New York, 1989.

Benbrook et al., In: Proceedings Bio Expo 1986, Butterworth, Stoneham, MA, pp. 27-54, 1986.

Berry-Lowe et al., Cell Cult. Somat. Cell Genet. Plants, Vol. 7A, pp 257-302, Academic Press, New York, 1991.

30 Best and Knauf, J. Bacteriol., 175:6881-6889, 1993.

-106-

Betty et al., J. Plant. Physiol., 140:513-520, 1992.

Bowness et al., Eur. J. Immunol., 23:1417, 1993.

Brichard et al., J. Exp. Med., 178:489, 1993.

Brock et al., "Biology of Microorganisms" 7th Edition, Prentice Hall, Inc., Englewood Cliffs, NJ, 1994.

Browner et al., J. Biol. Chem., 264:12680-12685, 1989.

Bytebier et al., Proc. Natl. Acad. Sci. USA, 84:5345, 1987.

Callis et al., Genes and Development, 1:1183, 1987.

Campbell, "Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology," Vol. 13, Burden and Von Knippenberg, Eds. pp. 75-83, Elsevier, Amsterdam, 1984.

Capecchi, M.R., Cell 22(2):479-488, 1980.

Cashmore et al., Gen. Eng. of Plants, Plenum Press, New York, 29-38, 1983.

Cavener and Ray, Nucl. Acids Res., 19:3185-3192, 1991.

15 Charng et al., Plant Mol. Biol., 20:37-47, 1992.

Chau et al., Science, 244:174-181, 1989.

Chen et al., Arch. Biochem. Biophys., 305:103-109, 1993.

Chirala, Proc Natl Acad Sci USA, 89:10232-10236, 1992.

Chirgwin et al., Biochemistry, 18:5294-5304, 1979.

20 Clapp, Clin. Perinatol. 20(1):155-168, 1993.

Clark and Lamppa, Plant Physiol., 98:595-601, 1992.

Cristou et al., Plant Physiol, 87:671-674, 1988.

Curiel et al., Proc. Natl. Acad. Sci. USA 88(19):8850-8854, 1991.

Curiel et al., Hum. Gen. Ther. 3(2):147-154, 1992.

25 Dean and Leech, Plant Physiol., 69:904-910, 1982.

Dhir et al., Plant Cell Reports, 10:97, 1991.

Dibrino et al., J. Immunol., 152:620, 1994.

Egin-Buhler et al., Arch. Biochem. Biophys., 203:90-100, 1980.

Egin-Buhler et al., Eur. J. Biochem., 133:335-339, 1983.

30 Egli et al., Plant. Physiol., 101:499-506, 1993.

CI

فتشنا

-107-

Egli et al., Plant Physiol., 108:1299-1300, 1995.

Eglitis and Anderson, Biotechniques 6(7):608-614, 1988.

Eglitis et al., Adv. Exp. Med. Biol. 241:19-27, 1988.

Elborough et al., Plant Mol. Biol., 24:21-34, 1994.

5 Elborough et al., Plant Mol. Biol., 24:21-34, 1994.

Feel et al., Proc Natl Acad, Sci USA, 89:4534-4538, 1992.

Fernandez and Lamppa, J. Biol. Chem., 266:7220-7226, 1991.

Fraley et al., Biotechnology, 3:629, 1985.

Fraley et al., Proc. Natl. Acad. Sci. USA, 80:4803, 1983.

10 Fromm et al., Nature, 319:791, 1986.

Fromm et al., Proc. Natl. Acad. Sci. USA 82(17):5824-5828, 1985.

Fu et al., Plant Cell, 7:1387-1394, 1995.

Fujimura et al., Plant Tissue Culture Letters, 2:74, 1985.

Fynan et al., Proc. Natl. Acad. Sci. USA 90(24):11478-11482, 1993.

15 Gallie, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44:77-105, 1993.

Gefter et al., Somatic Cell Genet. 3:231-236, 1977.

Gendler et al., J. Biol. Chem., 263:12820, 1988.

Goding, "Monoclonal Antibodies: Principles and Practice," pp. 60-74. 2nd Edition, Academic Press, Orlando, FL, 1986.

20 Golden et al., Methods Enzymol., 153:215-231, 1987.

Goodal et al., Methods Enzymol., 181:148-161, 1990.

Gordon-Kamm et al., The Plant Cell, 2:603-618, 1990.

Gornicki and Haselkorn, ," Plant Mol. Biol., 22:547-552, 1993.

Gomicki et al., J. Bacteriol., 175:5268-5272, 1993.

25 Gomicki et al., J. Bacteriol., 175:5268-5272, 1993.

Gornicki et al., Proc. Natl. Acad. Sci. USA, 91:6860-6864, 1994.

Graham and van der Eb, Virology 54(2):536-539, 1973.

Grimm et al., J. Exp. Med., 155:1823, 1982.

Guan and Dixon, Anal. Biochem. 192:262-267, 1991.

30 Ha et al., J. Biol. Chem., 269:22162-22168, 1994.

-108-

Ha et al., Eur. J. Biochem., 219:297-306, 1994.

Hardie et al., Trends in Biochem. Sci., 14:20-23, 1989.

Harlow and Lane. "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988.

Harwood, ," Ann. Rev. Physiol. Plant Mol. Biol., 39:101-138, 1988. 5

Haslacher et al., J. Biol. Chem., 268:10946-10952, 1993.

Haymerle et al., Nucl. Acids Res., 14:8615-8629, 1986.

Hess, Intern Rev. Cytol., 107:367, 1987.

Hilber et al., Curr. Genet. 25(2):124-127, 1994.

Hill et al.; Nature, 360:434, 1992. 10

Hogquist et al., Eur. J. Immunol., 23:3028-3036, 1993.

Holt et al., Annu. Rev. Plant. Physiol. Plant Mol. Biol., 44:203-229, 1993.

Horsch et al., Science, 227:1229-1231, 1985.

Hu et al., J. Exp. Med., 177:1681, 1993.

Jacobson et al., J. Virol., 63:1756, 1989. 15

Jahnen-Dechent and Simpson, Plant Mol. Biol. Rep., 8:92-103, 1990.

Jameson and Wolf, Compu. Appl. Biosci., 4(1):181-6, 1988.

Jerome et al., Cancer Res., 51:2908, 1991.

Jerome et al., J. Immunol., 151:1654, 1993.

Johnston and Tang, Methods Cell. Biol. 43(A):353-365, 1994. 20

Jorgensen et al., Mol. Gen. Genet., 207:471, 1987.

Joshi and Nguyen, Nucl. Acids Res., 23:541-549, 1995.

Kaiser and Kezdy, Science, 223:249-255, 1984.

Kang et al., Proc. Natl. Acad. Sci. USA, 88:4363-4366, 1991.

Karow et al., J. Bacteriol., 174:7407-7418, 1992. 25

Keller et al., EMBO J., 8:1309-14, 1989.

Klee et al., In: Plant DNA Infectious Agents, T. Hohn and J. Schell, eds., Springer-Verlag, New York pp. 179-203, 1985.

Klein et al., Nature, 327:70, 1987.

Klein et al., Plant Physiol., 91:440-444, 1989. 30

-109-

Klein et al., Proc. Natl. Acad. Sci. USA, 85:8502-8505, 1988.

Knowles, Annu. Rev. Biochem., 58:195-221, 1989.

Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976.

Kohler and Milstein, Nature 256:495-497, 1975.

5 Kondo et al., Proc Natl Acad Sci USA, 88:9730-9733, 1991.

Kos and Müllbacher, Eur. J. Immunol., 22:3183, 1992.

Kozak, Annu. Rev. Cell. Biol., 8:197-225, 1992.

Kozak, J. Cell Biol., 115:887-903, 1991.

Kyte and Doolittle, J. Mol. Biol., 157:105-132, 1982.

10 Lamppa et al., Mol. Cell Biol., 5:1370-1378, 1985.

Langridge et al., Proc. Natl. Acad. Sci. USA, 86:3219-3223, 1989.

Letessier et al., Cancer Res., 51:3891, 1991.

Li and Cronan, J. Bacteriol., 175:332-340, 1993.

Li and Cronan, Plant Mol. Biol., 20:759-761, 1992.

15 Li and Cronan, J. Biol. Chem., 267:855, 1992.

Lichtenthaler, Z. Naturforsch., 45c:521-528, 1990.

Lim et al., J. Biol. Chem., 263:11493-11497, 1988.

Lindstrom et al., Developl Genet., 11:160, 1990.

Liu and Roizman, J. Virol., 65:5149-5156, 1991.

20 Lopez-Casillas et al., Proc. Natl. Acad. Sci. USA, 85:5784-5788, 1988.

Lorz et al., Mol. Gen. Genet., 199:178, 1985.

Lu et al., J. Exp. Med. 178(6):2089-2096, 1993.

Luo et al., Plant Mol. Biol. Reporter, 6:165, 1988.

Luo et al., Proc. Natl. Acad. Sci. USA, 86:4042-4046, 1989.

- 25 Maddock et al., Third International Congress of Plant Molecular Biology, Abstract 372, 1991.
 - Maniatis et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.
- Maloy, S.R., "Experimental Techniques in Bacterial Genetics" Jones and Bartlett

 Publishers, Boston, MA, 1990.

-110-

Maloy et al., "Microbial Genetics" 2nd Edition. Jones and Barlett Publishers, Boston, MA, 1994.

Marcotte et al., Nature, 335:454, 1988.

Marincola et al., Cancer Res., 83:932, 1991.

Marshall et al., Theor. Appl. Genet., 83:435-442, 1992. 5

McCabe et al., Biotechnology, 6:923, 1988.

Muramatsu and Mizuno, Nucleic Acids Res., 17:3982, 1989.

Murata and Nishida, In: P.K. Stumpf (ed.), The Biochemistry of Plants, Academic Press, Inc., New York, 9:315-347, 1987.

Neuhaus et al., Theor. Appl. Genet., 75:30, 1987. 10

Norman et al., J. Bacteriol., 176:2525-2531, 1994.

Odell et al., Nature, 313:810, 1985.

Ohno, Proc. Natl. Acad. Sci. USA, 88:3065, 1991.

Omirulleh et al., Plant Molecular Biology, 21:415-428, 1993.

Page et al., Biochem. Biophys. Acta, 1210:369-372, 1994. 15

Pecker et al., Proc Natl Acad Sci USA, 89:4962-4666, 1992.

Pena et al., Nature, 325:274, 1987.

Post-Beitenmiller et al., Plant Physiol., 100:923-930, 1992.

Poszkowski et al., EMBO J., 3:2719, 1989.

Potrykus et al., Mol. Gen. Genet., 199:183, 1985. 20

Poulsen et al., Mol. Gen. Genet., 205:193-200, 1986.

Quaedvlieg et al., The Plant Cell, 7:117-129, 1995.

Ratner and Clark, J. Immunol., 150:4303, 1993.

Rawn, "Biochemistry" Harper & Row Publishers, New York, 1983.

Rippka et al., J. Gen. Microbiol., 170:4136-4140, 1979. 25

Roesler et al., Plant Physiol., 105:611-617, 1994.

Roessler and Ohlrogge, J. Biol. Chem., 268:19254-19259, 1993.

Rogers et al., In: Methods For Plant Molecular Biology, A. Weissbach and H. Weissbach, eds., Academic Press Inc., San Diego, CA 1988.

Rogers et al., Meth. in Enzymol., 153:253-277, 1987. 30

-111-

Sambrook et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

Samols et al., J. Biol. Chem., 263:6461-6464, 1988.

Sasaki et al., J. Biol. Chem., 268:25118-25123, 1993.

5 Sasaki et al., Plant Physiol., 108:445-449, 1995.

Schneider and Haselkorn, J. Bacteriol. 170:4136-4140, 1988.

Schulte et al., Plant Physiol., 106:793-794, 1994.

Scoble et al., "Mass spectrometric strategies for structural characterization of proteins," In: A practical guide to protein and peptide purification for microsequencing, P. Matsudaira, ed., pp 125-153, Academic Press, New York, 1993.

Scott, TIBS, 17:241-245, 1992.

Segal, "Biochemical Calculations" 2nd Edition. John Wiley & Sons, New York, 1976.

15 Sheen, Plant Cell, 21027-1038, 1990.

Shenoy et al., J. Biol. Chem., 267:18407-18412, 1992.

Sherman et al., J. Exp. Med., 175:1221, 1992.

Shintani and Ohlrogge, Plant J., 7:577-587, 1995.

Shorrosh et al., Proc. Natl. Acad. Sci. USA, 91:4323-4327, 1994.

20 Shorrosh et al., Plant Physiol., 108:805-812, 1995.

Simpson, Science, 233:34, 1986.

Slabas and Fawcett, Plant Mol. Biol., 19:169-191, 1992.

Slabas and Hellyer, Plant Sci. 39:177-182, 1985.

Somers et al., Plant Physiol., 101:1097-1101, 1993.

25 Somerville and Browse, Science, 252:80-87, 1991.

Spielmann et al., Mol. Gen. Genet., 205:34, 1986.

Steinman, Annu. Rev. Immunol., 9:271, 1991.

Suhrbier et al., J. Immunol., 150:2169, 1993.

Takai et al., J. Biol. Chem., 263:2651-2657, 1988.

30 Toh et al., Eur. J. Biochem., 215:687-696, 1993.

rHi

-112-

Tomes et al., Plant Mol. Biol., 14:261-268, 1990.

Toriyama et al., Theor Appl. Genet., 73:16, 1986.

Uchimiya et al., Mol. Gen. Genet., 204:204, 1986.

Van Tunen et al., EMBO J., 7:1257, 1988.

5 Vasil, Biotechnology, 6:397, 1988.

Vasil et al., Biotechnology, 10:667-674, 1992.

Vodkin et al., Cell, 34:1023, 1983.

Vogel et al., J. Cell Biochem., (Suppl) 13D:312, 1989.

Wagner et al., Proc. Natl. Acad. Sci. USA 89(13):6099-6103, 1992.

10 Weaver et al., Plant Physiol., 107:1013-1014, 1995.

Weissbach and Weissbach, Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc., San Diego, CA, 1988.

Wenzler et al., Plant Mol. Biol., 12:41-50, 1989.

White et al., Plant Mol. Biol., 19:1057-1064, 1992.

15 Winter et al., J. Immunol., 146:3508, 1991.

Winz et al., J. Biol. Chem., 269:14438-14445, 1994.

Witters and Kemp, J. Biol. Chem., 267:2864-2867, 1992.

Wolf et al., Compu. Appl. Biosci., 4(1):187-91 1988.

Wolfel et al., Int. J. Cancer, 54:636, 1993.

20 Wong and Neumann, Biochim. Biophys. Res. Commun. 107(2):584-587, 1982.

Wood, R.A., "Metabolism," In Manual of Methods for General Bacteriology, (Gerhardt, Murray, Costilow, Nester, Wood, Krieg, and Phillips, Eds.)

American Society for Microbiology, Washington, D.C., 1981.

Wurtele and Nikolau, Plant. Physiol., 99:1699-1703, 1992.

Wurtele and Nikolau, Arch. Biochem. Biophys., 278:179-186, 1990.

Yamada et al., Plant Cell Rep., 4:85, 1986.

cis

Yanai et al., Plant Cell Physiol., 36:779-787, 1995.

Yang et al., Proc. Natl. Acad. Sci. USA, 87:4144-48, 1990.

Young and Davis, Proc. Natl. Acad. Sci. USA, 80:1194-1198, 1983.

30 Zatloukal et al., Ann. N.Y. Acad. Sci. 660:136-153, 1992.

Zhou et al., Methods in Enzymology, 101:433, 1983.

WO 96/32484 PCT/US96/05095

- 113 -

7. SEQUENCE LISTING

17	CEMEDAT	INFORMATION	٠.
١L.) GENERAL	INFURMATION	- 2

5

(i) APPLICANT:

- (A) NAME: ARCH DEVELOPMENT CORPORATION
- (B) STREET: 1101 East 58th Street
- (C) CITY: Chicago
- 10 (D) STATE: Illinois
 - (E) COUNTRY: United States of America
 - (F) POSTAL CODE (ZIP): 60637
 - (ii) TITLE OF INVENTION: NUCLEIC ACID COMPOSITIONS
- 15 ENCODING ACETYL-COA
 CARBOXYLASE AND USES

THEREFOR

(iii) NUMBER OF SEQUENCES: 40

20

- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- 25 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US Unknown
- 30 (B) FILING DATE: 05-MAR-1996
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/422,560
 - (B) FILING DATE: 14-APR-1995

35

(2) INFORMATION FOR SEQ ID NO: 1:

PCT/US96/05095 WO 96/32484

-114-

CHARACTERISTICS:
) SEQUENCE (

चेत्रः,

(A) LENGTH: 1458 base pairs

(B) TYPE: nucleic acid

STRANDEDNESS: single <u>©</u>

(D) TOPOLOGY: linear

Ŋ

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

10

09	120	180	240	300	360	420	480
TAGATGGGTC	CCTTTGTACG	GGGCTGGGGA	AAGAGGGCGA	CCGCACAAAT	GTTGGGGTGA	AAACTGATCC	AAACTGGTGC
AAGCTTCATG ATTTCTAGTA ACGATTTTCG ACCTGGTGTA TCCATTGTCT TAGATGGGTC	TGTATGGCGA GTGATAGATT TCCTTCACGT TAAGCCAGGT AAGGGTTCTG CCTTTGTACG	GACAACTCTG AAGAACGTCC AAAGCGGCAA AGTTTTAGAA AAAACCTTCC GGGCTGGGGA	AACTGTTCCA CAAGCTACTT TAGAAAAAT TACAATGCAG CATACCTATA AAGAGGGCGA	TGAGTTCGTC TTTATGGATA TGGAAAGCTA TGAAGAAGGA CGACTCAGCG CCGCACAAAT	TGGCGATCGC GTCAAATACC TCAAGGAAGG TATGGAAGTG AACGTCATTC GTTGGGGTGA	GCAAGTGCTA GAGGTGGAAC TGGCTAATTC TGTAGTCTTG GAAGTTATAC AAACTGATCC	AGGTGTCAAG GGTGACACGG CTACAGGTGG CACGAAACCA GCAATTGTCG AAACTGGTGC
ACCTGGTGTA	TAAGCCAGGT	AGTTTTAGAA	TACAATGCAG	TGAAGAAGGA	TATGGAAGTG	TGTAGTCTTG	CACGAAACCA
ACGATTTTCG	TCCTTCACGT	AAAGCGGCAA	TAGAAAAAT	TGGAAAGCTA	TCAAGGAAGG	TGGCTAATTC	CTACAGGTGG
ATTTCTAGTA	GTGATAGATT	AAGAACGTCC	CAAGCTACTT	TTTATGGATA	GTCAAATACC	GAGGTGGAAC	GGTGACACGG
AAGCTTCATG	TGTATGGCGA	GACAACTCTG	AACTGTTCCA	TGAGTTCGTC	TGGCGATCGC	GCAAGTGCTA	AGGTGTCAAG

15

	AACTGTGATG	AACTGTGATG GTTCCTTTGT TTATTTCTCA AGGAGAGCGA ATTAAAATTG ATACCCGTGA	TTATTTCTCA	AGGAGAGCGA	ATTAAAATTG	ATACCCGTGA	540
	TGATAAATAC	TGATAAATAC TTAGGCAGGG AATAGGTTTT ATCTCATCCG AGAACAAATC CCGATTTCAA	AATAGGTTTT	ATCTCATCCG	AGAACAAATC	CCGATTTCAA	009
ហ	TCCCTATITC	TCCCTATTTC AGGATTAAA TCCCTGCCAC ACTTAGGCCA ATTCAAAATT CAAAATTCAA	TCCCTGCCAC	ACTTAGGCCA	ATTCAAAATT	CAAAATTCAA	099
	AAAACTGGAT	AAAACTGGAT TCCCTTAAGG TTTCTGAGTC TCAATGGTAG ATGGATTTTG GAGAGTTGGT	TTTCTGAGTC	TCAATGGTAG	ATGGATTTTG	GAGAGTTGGT	720
0	ATGAAAAATT	ATGAAAAATT CTTTATTTAC GGACTGGTCG AGGTAATAAA AACTGTGCCA TTGGACTTTA	GGACTGGTCG	AGGTAATAAA	AACTGTGCCA	TTGGACTTTA	780
2	ATGAAATCCG	ATGAAATCCG TCAACTGCTG ACAACTATTG CACAAACAGA TATCGCGGAA GTAACGCTCA	ACAACTATTG	CACAAACAGA	TATCGCGGAA	GTAACGCTCA	840
	AAAGTGATGA	AAAGTGATGA TTTTGAACTA ACGGTGCGTA AAGCTGTTGG TGTGAATAAT AGTGTTGTGC	ACGGTGCGTA	AAGCTGTTGG	TGTGAATAAT	AGTGTTGTGC	006
15	CGGTTGTGAC	CGGTTGTGAC AGCACCCTTG AGTGGTGTGG TAGGTTCGGG ATTGCCATCG GCTATACCGA	AGTGGTGTGG	TAGGTTCGGG	ATTGCCATCG	GCTATACCGA	096
	TTGTAGCCCA	TTGTAGCCCA TGCTGCCCCA TCTCCATCTC CAGAGCCGGG AACAAGCCGT GCTGCTGATC	TCTCCATCTC	CAGAGCCGGG	AACAAGCCGT	GCTGCTGATC	1020
0	ATGCTGTCAC	ATGCTGTCAC GAGTTCTGGC TCACAGCCAG GAGCAAAAAT CATTGACCAA AAATTAGCAG	TCACAGCCAG	GAGCAAAAAT	CATTGACCAA	AAATTAGCAG	1080
>	AAGTGGCTTC	AAGTGGCTTC CCCAATGGTG GGAACATTTT ACCGCGCTCC TGCACCAGGT GAAGCGGTAT	GGAACATTTT	ACCGCGCTCC	TGCACCAGGT	GAAGCGGTAT	1140
	TTGTGGAAGT A	TIGIGGAAGT CGGCGATCGC ATCCGTCAAG GTCAAACCGT CTGCATCATC GAAGCAATGA	ATCCGTCAAG	GTCAAACCGT	CTGCATCATC	GAAGCAATGA	1200

	(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Met Pro Leu Asp Phe Asn Glu Ile Arg Gln Leu Leu Thr Thr Ile Ala 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO: 2:
1458	CTTAAATTGA TAGCTAGC
1440	GTGATTGCTA ATTGGTAATT GAGAAAATT TTACTCATTA CCCATCACCC ATTACCAGTT
1380	TGTATATAGG TGAGTCATTA CTAACTCAAG TTGCTAGTTA TGTTTGGTAA TTGGTAACTG
1320	ACGGCGAACC TGTAGAATAT AATCAACCTT TGATGAGAAT TAAACCAGAT TAAGTATTAA
1260	AGCTGATGAA TGAAATTGAG GCTGATGTTT CTGGGCAAGT GATCGAAATT CTCGTCCAAA

S

Glu Leu	
Phe	30
ABD	ı
Asp	
Ser	
Lys	
Leu	25
Thr	
Val	
Glu	
Ala	
Ile	20
Asp	
Thr	
g]n	

Thr Val Arg Lys Ala Val Gly Val Asn Asn Ser Val Val Pro Val Val

Thr Ala Pro Leu Ser Gly Val Val Gly Ser Gly Leu Pro Ser Ala Ile 20

Pro Ile Val Ala His Ala Ala Pro Ser Pro Ser Pro Glu Pro Gly Thr 70 Ser Arg Ala Asp His Ala Val Thr Ser Ser Gly Ser Gln Pro Gly 90

Ala Lys Ile Ile Asp Gln Lys Leu Ala Glu Val Ala Ser Pro Met Val 105 100

Gly Thr Phe Tyr Arg Ala Pro Ala Pro Gly Glu Ala Val Phe Val Glu 120

Val Gly Asp Arg Ile Arg Gln Gly Gln Thr Val Cys Ile Ile Glu Ala

വ

10

	Met Lys Leu Met Asn Glu Ile Glu Ala Asp Val Ser Gly Gln Val Ile 145 160
S	Glu Ile Leu Val Gln Asn Gly Glu Pro Val Glu Tyr Asn Gln Pro Leu 165
	Met Arg Ile Lys Pro Asp 180
10	(2) INFORMATION FOR SEQ ID NO: 3:
. 15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 477 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
C	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
,	GTGCAACTGA ACTCAGCCA ACTGCAAGAG CTGCTGACCG TGCTGAGTGA CTCAGACATC 60
	GCTGAGTTTG ACCTCAAAGG TACGGATTTT GAGTTGCACG TGAAGCGCGG CTCGACCGGC 120

GATTA CGGCGCCGAT GGTGGGCACC TTCTATCGCG CTCCAGCACC GGAAGAA CGTCA ATGTTGGCGA TCGCATTCAG GTGGGACAGA CCGTCTGCAT CCTCGAA GCTGA TGAACGAGTT GGAGTCGGAG GTGACGGGGG AAGTCGTCGA GATTCTC	cocco Arceologa GillaAlCAG CCCCTGTTCC GGTTGCGGCC TCTCTGA	CAGAACGGCG AACCGGTGGA GTTTAATCAG CCCCTGTTCC GGTTGCGGCC TCTCTGA	ATGAAGCTGA TGAACGAGTT GGAGTCGGAG GTGACGGGGG AAGTCGTCGA GATTCTGGTC	CCCTTCGTCA ATGTTGGCGA TCGCATTCAG GTGGGACAGA CCGTCTGCAT CCTCGAAGCG	CTTGAGATTA CGGCGCCGAT GGTGGGCACC TTCTATCGCG CTCCAGCACC GGAAGAACCG		TTACCCGCTC CAACCCCTGC GGCAGCACCG CCTGCTGGAC CTCTGGGTGG CGAGAAGTTC
CCGCTC CAA(AGATTA CGG(ICGTCA ATG: AGCTGA TGA)	מספרת ששנו	ACGGCG AACK	AAGCTGA TGA	TTCGTCA ATG	rgagatta cgg	ACCCCCTC CAA	

(2) INFORMATION FOR SEQ ID NO: 4: 15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 158 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS:

20

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Ser	ren	Pro	Pro	Phe 80	Ala	Gly	Glu
Leu 15	Glu	Ala	Ala	Lys	Pro 95		
Val	Phe 30	Ala	Pro	Glu	Ala	Gln Val 110	Glu Leu
Thr	Asp	11e 45	Leu	Gly	Arg	Ile	Asn 125
Glu Leu Leu 10	Thr	Ile Val	Pro 60	Ala Pro Pro Ala Gly Pro Leu Gly Gly 70	Tyr	Val Gly Asp Arg 105	Met
Leu	Gly			Leu 75		Asp	Leu
Glu 10	Asp Leu Lys 25	Pro	Pro Val Ala Val Ala Pro Val Pro Ala 55	Pro	Ala Pro Met Val Gly Thr Phe 85 90	Gly	Ile Leu Glu Ala Met Lys Leu Met 120
Gln	Leu 25	Asp	Val	Gly	Gly	Val 105	Met
Gln Leu		Gly Ser Thr Gly Asp 40	Pro	Ala	Val	Phe Val Asn	Ala 120
Gln	Glu Phe	Thr	A la 55	Pro	Met	Val	Glu
Ser	Glu	Ser	Val	Pro 70	Pro	Phe	Leu
Phe 5	Ala	Gly	Ala	Ala	Ala 85	Pro	11e
Asn	11e 20	Lys Arg 35	Val	Ala	Thr	Pro 100	Сув
Leu	Asp	Lys 35	Pro	Ala	11e	Glu	Val 115
Met Gln Leu Asn Phe 1 5	Ser	Val	Thr 50	Pro	Glu	Glu	Thr
Met 1	Asp	His	Thr	Thr 65	Leu	Pro	Gln

	Ser Glu Val Thr Gly Glu Val Val Glu Ile Leu Val Gln Asn Gly Glu 130
ស	Pro Val Glu Phe Asn Gln Pro Leu Phe Arg Leu Arg Pro Leu 145 r 7
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3065 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
	AAGCTTTTAT ATTTTGCCAT TTCTAGAACT TAGCTGCATC GGCCCCAAGT ATTTTGTCAA 60
02	ATATGGCGAA AAGACTTCAT AAATCAAGGT TAAAGGTTGA CCGTGATGCC AAAACAGGTA 120
	ATGGCGACCC CAGAAAGGCC CATCCACGCC AAAACCTAAT TGCAAGGCCT CTGAATTTCC 180
	GTAATAAATA CCCCGCACAT CCCGATACAA CTCCGTGCGA AGACGAGCTA GACTTGCCCA 240

: }-

~;

`~*i*

PCT/US96/05095

-122-

	AATTGGTAAT	GAACGGTTTT	AATTGGTAAT GAACGGTTTT GCAAATACTC GTCTACATGG CTGGCTTCCC ACCAIGAGGI	GTCTACATGG	CIGGCITCCC	ACCATGAGGT	300
	TGCATAGGCG	AGTCGTTGGC	TGCATAGGCG AGTCGTTGGC CAGAGCGTGT ACGTAGCCAT ACCTGTCGCC GCAGTCTTGG	ACGTAGCCAT	ACCTGTCGCC	GCAGTCTTGG	360
S	CGCTGGAACA	GATTGGATTA	CGCTGGAACA GATTGGATTA AATCCGGCGC ACTATCTAAA TCCAAACCAA TCAATGACAT	ACTATCTAAA	TCCAAACCAA	TCAATGACAT	420
	ATCAATGACA	TCGACTTCTG	ATCAATGACA TCGACTTCTG TTGGCTCACC AGTAAGTAAT TCTAAATGCC TTGTGGGTGA	AGTAAGTAAT	TCTAAATGCC	TTGTGGGTGA	480
	GCCATCACCT	AAGAGTAGTA	GCCATCACCT AAGAGTAGTA GTTGCCACGC TGGAGCCAGC TGAGTGTGAG GCAAACTATG	TGGAGCCAGC	TGAGTGTGAG	GCAAACTATG	540
01	TTTAATTACT	TCTTCCCCAC	TTTAATTACT TCTTCCCCAC CTTGCCAAAT AGGAGTGAGG CGATGCCATC CGGCTGGCAG	AGGAGTGAGG	CGATGCCATC	CGGCTGGCAG	009
	TGTTGAGTTG	TTGCTTGGAG	TGTTGAGTTG TTGCTTGGAG TAAAAGTGGC AGTCAATGTT CTTTACAAAA GTTCACCTAT	AGTCAATGTT	CTTTACAAAA	GTTCACCTAT	099
15	TTATATCAAA	GCATAAAAA	TTATATCAAA GCATAAAAA TTAATTAGTT GTCAGTTGTC ATTGGTTATT CTTCTTTGCT	GTCAGTTGTC	ATTGGTTATT	CTTCTTTGCT	720
	ವವಾತಿದ್ದಾರವಾ	ccractrccc	CCCCCTGCCC CCTACTICCC ICCTCTGCCC AATAATTAGA AAGGTCAGGA GTCAAAAACT	AATAATTAGA	AAGGTCAGGA	GTCAAAAACT	780
ć	TATCACTTTT	GACCACTGAC	TATCACTTTT GACCACTGAC CTTTCACAAT TGACTATAGT CACTAAAAAA TGCGGATGGC	TGACTATAGT	CACTAAAAAA	TGCGGATGGC	840
0.7	GAGACTCGAA	· CTCGCAAGGC	GAGACTCGAA CTCGCAAGGC AAAGCCACAC GCACCTCAAG CGTGCGCGTA TACCAATTCC	GCACCTCAAG	cerececera	TACCAATTCC	006
	GCCACATCCG	CACGGGTTGT	GCCACATCCG CACGGGTTGT ACAAGAAT ATACTAGCAC AAAAAAATTG CATAAAACAA	ATACTAGCAC	AAAAAATTG	CATAAAACAA	096

	GGTAAAACTA	TATTTGCCAA	GGTAAAACTA TATTTGCCAA ACTTTATGGA AAATTTATCT TGCTAAATAT ACAAATTTCC	AAATTTATCT	TGCTAAATAT	ACAAATTTCC	1020
	CGAAGAGGAT	ACGAGACTAA	CGAAGAGGAT ACGAGACTAA CAGAAATGTA GTATCGCCAC AAGTGATATT AAAGGGGGTA	GTATCGCCAC	AAGTGATATT	AAAGGGGGTA	1080
2	TGGGGGTTTT	CTTCCCTTAC	TGGGGGTTTT CTTCCCTTAC ACCCTTAAAC CCTCACACC CACCTCCATG AAAAATCTTG	CCTCACACCC	CACCTCCATG	AAAAATCTTG	1140
	TTGGTAAGTC	CGTTTCCTGC	TTGGTAAGTC CGTTTCCTGC AATTTATTTA AAGATGAGCC TGGGGTATCT CCTGTCATAA	AAGATGAGCC	TGGGGTATCT	CCTGTCATAA	1200
. 5	TTTGAGATGA	AGCGATGCCT	TTTGAGATGA AGCGATGCCT AAGGCGGCTA CGCTACGCGC TAAAAGCAAC TTGGATGGGA	CGCTACGCGC	TAAAAGCAAC	TTGGATGGGA	1260
2	GACAATTTCT	ATCTGCTGGT	GACAATTTCT ATCTGCTGGT ACTGATACTG ATATCGAAAA CTAGAAAATG AAGTTTGACA	atatcgaaaa	CTAGAAAATG	AAGTTTGACA	1320
	AAATATTAAT	TGCCAATCGG	AAATATTAAT TGCCAATCGG GGAGAAATAG CGCTGCGCAT TCTCCGCGCC TGTGAGGAAA	CGCTGCGCAT	TCTCCGCGCC	TGTGAGGAAA	1380
15	TGGGGATTGC	GACGATCGCA	TGGGGATTGC GACGATCGCA GTTCATTCGA CTGTTGACCG GAATGCTCTT CATGTCCAAC	CTGTTGACCG	GAATGCTCTT	CATGTCCAAC	1440
	TTGCTGACGA	AGCGGTTTGT	TTGCTGACGA AGCGGTTTGT ATTGGCGAAC CTGCTAGCGC TAAAAGTTAT TTGAATATTC	CTGCTAGCGC	TAAAAGTTAT	TTGAATATTC	1500
ć	CCAATATTAT	TGCTGCGGCT	CCAATATTAT TGCTGCGCT TTAACGCGCA ATGCCAGTGC TATTCATCCT GGGTATGGCT	ATGCCAGTGC	TATTCATCCT	GGGTATGGCT	1560
) N	TTTTATCTGA	AAATGCCAAA	TTTTATCTGA AAATGCCAAA TTTGCGGAAA TCTGTGCTGA CCATCACATT GCATTCATTG	TCTGTGCTGA	CCATCACATT	GCATTCATTG	1620
	GCCCCACCCC	AGAAGCTATC	GCCCCACCCC AGAAGCTATC CGCCTCATGG GGGACAAATC CACTGCCAAG GAAACCATGC	GGGACAAATC	CACTGCCAAG	GAAACCATGC	1680

	AAAAAGCTGG	TGTACCGACA	AAAAAGCTGG TGTACCGACA GTACCGGGTA GTGAAGGTTT GGTAGAGACA GAGCAAGAAG	GTGAAGGTTT	GGTAGAGACA	gagcaagaag	1740
	GATTAGAACT	GGCGAAAGAT	GATTAGAACT GGCGAAAGAT ATTGGCTACC CAGTGATGAT CAAAGCCACG GCTGGTGGTG	CAGTGATGAT	CAAAGCCACG	GCTGGTGGTG	1800
ស	ອອອອລລອອລອ	TATGCGACTG	GCGGCCGGGG TATGCGACTG GTGCGATCGC CAGATGAATT TGTCAAACTG TTCTTAGCCG	CAGATGAATT	TGTCAAACTG	TTCTTAGCCG	1860
	CCCAAGGTGA	AGCTGGTGCA	CCCAAGGIGA AGCIGGIGCA GCCTITGGIA AIGCIGGCGI ITAIAIAGAA AAAITIAITG	ATGCTGGCGT	TTATATAGAA	AAATTTATTG	1920
•	AACGTCCGCG	CCACATTGAA	AACGTCCGCG CCACATTGAA TTTCAAATTT TGGCTGATAA TTACGGCAAT GTGATTCACT	TGGCTGATAA	TTACGGCAAT	GTGATTCACT	1980
10	TGGGTGAGAG	GGATTGCTCA	TGGGTGAGAG GGATTGCTCA ATTCAGCGTC GTAACCAAAA GTTACTAGAA GAAGCCCCCA	GTAACCAAAA	GTTACTAGAA	GAAGCCCCCA	2040
	GCCCAGCCTT	GGACTCAGAC	GCCCAGCCTT GGACTCAGAC CTAAGGGAAA AAATGGGACA AGCGGCGGTG AAAGCGGCTC	AAATGGGACA	AGCGGCGGTG	AAAGCGGCTC	2100
15	AGTTTATCAA	TTACGCCGGG	AGTITATCAA ITACGCCGGG GCAGGTACTA TCGAGTITIT GCTAGATAGA TCCGGTCAGT	TCGAGTTTTT	GCTAGATAGA	TCCGGTCAGT	2160
	TTTACTTTAT	GGAGATGAAC	TITACTITAI GGAGAIGAAC ACCCGGAIIC AAGIAGAACA ICCCGIAACI GAGAIGGITA	AAGTAGAACA	TCCCGTAACT	GAGATGGTTA	2220
	CTGGAGTGGA	TTTATTGGTT	CTGGAGTGGA TTTATTGGTT GAGCAAATCA GAATTGCCCA AGGGGAAAGA CTTAGACTAA	GAATTGCCCA	AGGGGAAAGA	CTTAGACTAA	2280
0.7	CTCAAGACCA	AGTAGTTTTA	CTCAAGACCA AGTAGTTTTA CGCGGTCATG CGATCGAATG TCGCATCAAT GCCGAAGACC	CGATCGAATG	TCGCATCAAT	GCCGAAGACC	2340
	CAGACCACGA	TTTCCGCCCA	CAGACCACGA TITCCGCCCA GCACCCGGAC GCATTAGCGG TTATCTICCC CCTGGCGGCC	GCATTAGCGG	TTATCTTCCC	CCTGGCGGCC	2400

	CTGGCGTGCG	GATTGACTCC	CACGTTTACA	CGGATTACCA	CTGGCGTGCG GATTGACTCC CACGTTTACA CGGATTACCA AATTCCGCCC TACTACGATT		2460
	CCTTAATTGG	TAAATTGATC	GTTTGGGGCC	crearcecec	CCTTAATTGG TAAATTGATC GTTTGGGGCC CTGATCGCGC TACTGCTATT AACCGCATGA		2520
Ŋ	AACGCGCCCT	CAGGGAATGC	GCCATCACTG	GATTACCTAC	AACGCGCCCT CAGGGAATGC GCCATCACTG GATTACCTAC AACCATTGGG TTTCATCAAA		2580
	GAATTATGGA	AAATCCCCAA	TTTTTACAAG	GTAATGTGTC	GAATTATGGA AAATCCCCAA TITITACAAG GTAATGTGTC TACTAGTTTT GTGCAGGAGA	TGCAGGAGA	2640
,	TGAATAAATA	. GGGTAATGGG	TAATGGGTAA	TGGGTAATAG	TGAATAAATA GGGTAATGGG TAATGGGTAA TGGGTAATAG AGTTTCAATC ACCAATTACC	CCAATTACC	2700
10	AATTCCCTAA	. CTCATCCGTG	CCAACATCGT	CAGTAATCCT	AATTCCCTAA CTCATCCGTG CCAACATCGT CAGTAATCCT TGCTGGCCTA GAAGAACTTC	AAGAACTTC	2760
	TCGCAACAGG	CTAAAAATAC	CAACACACAC	AATGGGGGTG	TCGCAACAGG CTAAAAATAC CAACACACA AATGGGGGTG ATATCAACAC CACCTATTGG	ACCTATTGG	2820
15	TGGGATGATT	TTTCGCAAGG	GAATGAGAAA	TGGTTCAGTC	TGGGATGATT TTTCGCAAGG GAATGAGAAA TGGTTCAGTC GGCCAAGCAA TTAAGTTGAA	TAAGTTGAA	2880
	GGGCAAACGG	3 TTCAGATCGA	CTTGCGGATA	CCAGGTCAGA	GGGCAAACGG TTCAGATCGA CTTGCGGATA CCAGGTCAGA ATGATACGGA AAATAAACAG	AATAAACAG	2940
;	AAATGTCATC	C ACTCCCAATA	CAGGGCCAAG	AATCCAAACG	AAATGTCATC ACTCCCAATA CAGGGCCAAG AATCCAAACG CTCAGGTTAA CACCAGTCAT	ACCAGTCAT	3000
0 73	CGATCTAAGC	C TACTATTTTG	; TGAATTTACA	AAAAACTGCA	CGATCTAAGC TACTATTTTG TGAATTTACA AAAAACTGCA AGCAAAAGCT GAAAATTTTA	BAAATTTA	3060
	AGCTT						3065

::

(2) INFORMATION FOR SEQ ID NO: 6:

4

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 447 amino acids

Ŋ

TYPE: amino acid (B)

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: 10

Arg Ile Leu Arg Ala Cys Glu Glu Met Gly Ile Ala Thr Ile Ala Val

Met Lys Phe Asp Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile Ala Leu

20

15

His Ser Thr Val Asp Arg Asn Ala Leu His Val Gln Leu Ala Asp Glu 40 Ala Val Cys Ile Gly Glu Pro Ala Ser Ala Lys Ser Tyr Leu Asn Ile

55

His 80	Cys	Arg	Gly	Glu	Ala 160	Asp	Ala
Ile	Ile 95	Ile	Ala	Gln	Lys	Pro 175	Ala
Ala	Glu	Ala 110	Lys	Glu	Ile	Ser	Gly Ala 190
Ser	Ala	Glu Ala 110	Gln 125	Thr	. Wet	Arg	Ala
Ala	Phe	Pro	Met	Glu 140	Pro Val 155	Val	Glu
Asn 75	Lys	Thr	Thr	Val	Pro 155	Leu	σιу
Arg	Ala 90	Pro	Glu	Leu	Tyr	Arg 170	Gln
Thr	Asn	Gly 105	Lys	Gly	Gly	Met	Ala 185
Leu	Glu	Ile	Ala 120	Glu	Ile	Glγ	Ala
Ala	Ser	Phe	Thr	Ser 135	Asp	Arg	Leu
Ala 70	Leu	Ala	Ser	Gly	Lys 150	Gly Gly Gly 165	Leu Phe Leu Ala
Ala	Phe 85	11e	Ьув	Pro	Ala	Gly 165	Геи
Ile	Gly	Нів 100	Авр Lув	Val	Leu		Lys 180
Ile	Tyr	Нів	Gly 115	Thr	Glu	Gly	Val
Asn	Gly	Asp	Met	Pro 130	Leu	Ala	Phe
Pro 65	Pro	Ala	Leu	Val	Gly 145	Thr	Glu

WO 96/32484

-128-

Arg	His	Leu 240	Met	Ala	Met	Val	Gly Glu 320
Pro Arg	Ile	Leu	Lys 255	д Б	Phe	Glu Met	Gly
Arg	Val		Glu	Thr 270	Tyr	Glu	Gln
Glu Arg 205	Asn	Gln		Tyr	Phe 285	Thr	Ala
Ile	Gly 220	Arg Asn Gln Lys 235	Leu Arg	Asn	Ser Gly Gln	Val 300	Ile
	Tyr	Arg 235	Asp	Ile	$\mathtt{Gl}_{\mathbf{y}}$	Pro Val 300	Arg 315
Lys	Asn	Arg	Ser 250	Phe		Glu His	Gln Ile Arg 315
glu	Asp Asn	Gln Arg	Asp	Gln 265	Arg	Glu	Gln
lle Glu Lys Phe 200	Ala	Ile	Leu Asp	Ala	Leu Asp Arg 280	Val	Glu
	Leu 215	Ser	Ala	Ala	Leu	Gln Val 295	Val
Gly Asn Ala Gly Val Tyr 195	Ile	Cys 230	Pro	Lys	Leu	Ile	Gly Val Asp Leu Leu Val 310
Gly	Gln	Asp	Ser 245	Val	Phe	Arg	Leu
Ala	Phe	Arg	Pro	Ala 260	Ile Glu Phe 275	Thr	Asp
Asn 195	Glu	Glu Arg	Ala	Ala	11e 275	Met Asn Thr Arg 290	Val
Gly	11e 210	Gly	Glu	Gln	Thr		
Phe	His	Leu 225	Glu	Gly	Gly	Glu	Thr 305
	w		10	15	}	20	

Ile	Ala	Arg	Авр	Ala 400	Leu	Phe	
	Ile Asn Ala Glu Asp Pro Asp His Asp Phe Arg Pro Ala 340	Ser Gly Tyr Leu Pro Pro Gly Gly Pro Gly Val Arg 360	His Val Tyr Thr Asp Tyr Gln Ile Pro Pro Tyr Tyr Asp 375	Leu Ile Gly Lys Leu Ile Val Trp Gly Pro Asp Arg Ala Thr Ala 390	Asn Arg Met Lys Arg Ala Leu Arg Glu Cys Ala Ile Thr Gly Leu 410	Gln Arg Ile Met Glu Asn Pro Gln 425	Lys
Thr Gln Asp Gln Val Val Leu Arg Gly His Ala 325 335	Arg 350	Gly	Tyr	Ala	Thr	Pro 430	Leu Gln Gly Asn Val Ser Thr Ser Phe Val Gln Glu Met Asn
Gly	Phe	Pro 365	Pro	Arg	11e	Asn	Met
Arg	Asp	Gly	Pro 380	Asp	Ala	Glu	Glu
Leu	His	Gly	Ile	Pro 395	Cys	Met	Gln
Va l 330	Asp	Pro	Gln	Gly	Glu 410	Ile	Val
Val	Pro 345	Pro	Tyr	Trp	Arg	Arg 425	Phe
Gln	Asp	Leu 360	Asp	Val	Leu	Gln	Ser
Asp	Glu	Tyr	Thr 375	Ile	Ala	нів	Thr
Gln	Ala	Gly	Tyr	Leu 390	Arg	Ile Gly Phe His 420	Ser
Thr 325	Asn	Ser	Val	Lys	Lys 405	Gly	Val
Leu	11e 340	Ile		Gly	Met	11e 420	Asn
Leu Arg Leu	Cys Arg	Gly Arg 355	Asp Ser 370	Ile	Arg	Thr	Gly
Leu		Glγ		Leu	Asn	Thr	Gln
Arg	Glu	Pro	Ile	Ser 385	Ile	Pro	Leu

AAGGAAACAA TGCAGCGGGT CGGCGTTCCG ACGATTCCGG GCAGTGACGG TCTGCTGACG

9

(2) INFORMATION FOR SEQ ID NO: 7:

cs:
ERISTI
CHARACT
SEQUENCE
(ï)

(A) LENGTH: 1362 base pairs

TYPE: nucleic acid (B)

ស

STRANDEDNESS: single <u>0</u>

TOPOLOGY: linear <u>e</u> (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

360 240 300 120 180 ATGCGTTTCA ACAAGATCCT GATCGCCAAT CGCGGCGAAA TCGCCCTGCG CATTCTCCGC ACTIGIGAAG AACTCGGGAT CGGCACGATC GCCGTTCACT CCACTGTGGA TCGCAACGCG CTCCATGTGC AGTTAGCGGA CGAAGCGGTC TGTATTGGCG AAGCGGCCAG CAGCAAAAGC TATCTCAATA TCCCCAACAT CATTGCGGCG GCCCTGACCC GTAATGCCAG CGCCATTCAC CCCGGCTATG GCTTCTTGGC GGAGAATGCC CGCTTTGCAG AAATCTGCGC CGATCACCAT CICACCITIA ITGGCCCCAG CCCCGAITCG AITCGAGCCA IGGGCGAIAA AICCACCGCI 15

PCT/US96/05095

WO 96/32484

-131-

	GATGTTGATT	CGGCTGCCAA	GATGTTGATT CGGCTGCCAA AGTTGCTGCC GAGATCGGCT ATCCCGTCAT GATCAAAGCG	GAGATCGGCT	ATCCCGTCAT	GATCAAAGCG	480
	Acgccgggg	GCGGTGGTCG	ACGGGGGG GCGGTGGTCG CGGTATGCGG CTGGTGCGTG AGCCTGCAGA TCTGGAAAA	стестессте	AGCCTGCAGA	TCTGGAAAA	540
5	CIGITCCITG	CTGCCCAAGG	CTGTTCCTTG CTGCCCAAGG AGAAGCCGAG GCAGCTTTTG GGAATCCAGG ACTGTATCTC	GCAGCTTTTG	GGAATCCAGG	ACTGTATCTC	009
	GAAAATTTA	TCGATCGCCC	GAAAAATTTA TCGATCGCCC ACGCCACGTT GAATTTCAGA TCTTGGCCGA TGCCTACGGC	GAATTTCAGA	TCTTGGCCGA	TGCCTACGGC	099
C	AATGTAGTGC	ATCTAGGCGA	AATGTAGTGC ATCTAGGCGA GCGCGATTGC TCCATTCAAC GTCGTCACCA AAAGCTGCTC	TCCATTCAAC	GTCGTCACCA	AAAGCTGCTC	720
2	GAAGAAGCCC	CCAGTCCGGC	GAAGAAGCCC CCAGTCCGGC GCTATCGGCA GACCTGCGGC AGAAAATGGG CGATGCCGCC	GACCTGCGGC	agaaaatggg	CGATGCCGCC	780
	GTCAAAGTCG	CTCAAGCGAT	GTCAAAGTCG CTCAAGCGAT CGGCTACATC GGTGCCGGCA CCGTGGAGTT TCTGGTCGAT	GGTGCCGGCA	CCGTGGAGTT	TCTGGTCGAT	840
15	GCGACCGGCA	ACTTCTACTT	GCGACCGGCA ACTTCTACTT CATGGAGATG AATACCCGCA TCCAAGTCGA GCATCCAGTC	AATACCCGCA	TCCAAGTCGA	GCATCCAGTC	006
	ACAGAAATGA	TTACGGGACT	ACAGAAATGA TTACGGGACT GGACTTGATT GCGGAGCAGA TTCGGATTGC CCAAGGCGAA	GCGGAGCAGA	TTCGGATTGC	CCAAGGCGAA	096
ć	GCGCTGCGCT	TCCGGCAAGC	GCGCTGCGCT TCCGGCAAGC CGATATTCAA CTGCGCGGCC ATGCCGATCGA ATGCCGTATC	CTGCGCGGCC	ATGCGATCGA	ATGCCGTATC	1020
) Y	AATGCGGAAG	ATCCGGAATA	AATGCGGAAG ATCCGGAATA CAATTTCCGG CCGAATCCTG GCCGCATTAC AGGCTATTTA	CCGAATCCTG	GCCGCATTAC	AGGCTATTTA	1080
	ອວອອວວວອວວ	GCCCGGCGT	CCGCCCGGCG GCCCCGGCGT TCGTGTTT ATACCGACTA CGAAATTCCG	TCCCATGTTT	ATACCGACTA	CGAAATTCCG	1140

1362		AG	CTCAAGTCCT	ACCTCGGATC	TITGITGAGC AGGIGATGCI ACCICGGAIC CICAAGICCI AG	TTTGTTGAGC	
1320	CTATACCAAC	GCGGGGAACT	GAGTTCCTGC	GCAGATGCCT	AGTITCCAIC AGCTGAIGIT GCAGAIGCCI GAGIICCIGC GCGGGGAACI CTAIACCAAC	AGTTTCCATC	
1260	GACGACCCTT	CCGGCTTGCC	TGCGCCATCA	TCTGCGGGAA	ATCGCGCGGA TGCAGCGTGC TCTGCGGGAA TGCGCCATCA CCGGCTTGCC GACGACCCTT	ATCGCGCGGA	
1200	GGAAGAGGCG	GTGCAACACG	ATTGTCTGGG	TGGCAAATTG	CCCIATIACG ATTCGCTGAT TGGCAAATTG ATTGTCTGGG GTGCAACACG GGAAGAGGCG	CCCTATTACG	

10 (2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 453 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

(D) TOPOLOGY: linear

12

Met Arg Phe Asn Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile Ala Leu 10

Val Pro Thr lle Pro Gly Ser Asp Gly Leu Leu Thr Asp Val Asp Ser

덛	n .	Ile	s C	Сув	Arg	Gly	
Val	Glu		His 80		Æ		
Ala	Asp	Asn	11e	Ile 95	Ile	Val	
Ile 30	Val Gln Leu Ala 45	Leu Asn	Ser Ala	Glu	Ser 110	Ser Thr Ala Lys Glu Thr Met Gln Arg Val 120	
Thr	Leu 45	Tyr	Ser	Ala	Pro Asp	Gln 125	
Gly	Gln	Ser 60	Ala	Phe	Pro	Met	
Ile	Val	Lys	Ala Ala Ala Leu Thr Arg Asn Ala 70	Pro Gly Tyr Gly Phe Leu Ala Glu Asn Ala Arg 85	Ser	Thr	
$_{ m Gly}$	Thr Val Asp Arg Asn Ala Leu His 35	Ser	Arg	Ala 90	Ile Gly Pro 105	Glu	
Leu 25	Leu	Ser	\mathtt{Thr}	Asn	Gly 105	Lys	
Glu	Ala 40	Ala	Leu	Glu	Ile	Ala 120	
Glu	Asn	Ala 55	Ala	Ala	Phe	Thr	
Cys	Arg	Ile Gly Glu Ala Ala 55	Ala 70	Leu	Thr		
Thr	Asp	Glγ	Ala	Phe 85	Leu	Gly Asp Lys 115	
Leu Arg 20	Val	Ile	Ile	Gly	His 100	Asp	
Leu	Thr 35	Сув	Ile	Tyr	His	Gly 115	
Ile	Ser	Val 50	Asn	Gly	Asp	Met	
Arg	His	Ala	Pro 65	Pro	Ala	Ala	
	ស		10	r.	}	. 20	

Ala	160	Ala	Ala	Arg	His	Leu 240	Met	Ala
Lys		Pro 175		Pro	Val	Gly Glu Arg Asp Cys Ser Ile Gln Arg Arg His Gln Lys Leu Leu 230	Ala Asp Leu Arg Gln Lys Met 250	Gly Asp Ala Ala Val Lys Val Ala Gln Ala Ile Gly Tyr Ile Gly Ala 260
Ile		Glu	Glu Ala 190	Arg	Val Glu Phe Gln Ile Leu Ala Asp Ala Tyr Gly Asn Val Val 210	Lys	Gln	11e 270
Met		Arg	Ala	Asp Arg 205	Asn	Gln	Arg	Tyr
Val		Val	Gly Glu Ala	Ile	Gly 220	His	Leu	$\mathtt{Gl}\mathbf{y}$
Pro Val	155	Leu	Gly	Phe	Tyr	Arg 235	Asp	Ile
Tyr		Arg 170	Ala Gln 185	Lys	Ala	Arg	Ala 250	Ala
$_{\rm Gly}$		Met	Ala 185	Glu	Asp	Gln	Ser	Gln 265
Ile		Gly	Ala	Leu 200	Ala	Ile	Leu	Ala
g]n		Arg	Leu	Tyr	Leu 215	Ser	Ala	Val
Ala	150	Gly Gly Arg 165	Phe	Gly Asn Pro Gly Leu Tyr Leu Glu Lys Phe 195	Ile	Cys 230	Ser Pro Ala Leu 245	Lys
Ala		Gly 165	Lys Leu 180	Gly	Gln	Asp	Ser 245	Val
Val		Gly	Lys 180	Pro	Phe	Arg	Pro	Ala 260
Lys		Gly Gly	Glu	Asn 195	Glu	Glu	Glu Ala	Ala
Ala		Ala	Leu	Gly	Val 210	Gly		Asp
Ala	145	Thr	Asp	Phe	His	Leu 225	Glu	Gly

ហ

Ser Leu Ile Gly Lys Leu Ile Val Trp Gly Ala Thr Arg Glu Glu Ala

Met	Ile	Glu 320	Ile	Asn	rg	ďg
Σ̈́		Θ _W			¥	Æ
Phe	Met	Gly	Ala 335	Pro	Val	Tyr Asp
Tyr	Glu Met	Thr Gly Leu Asp Leu Ile Ala Glu Gln Ile Arg Ile Ala Gln Gly Glu 305	Gly His	Arg 350	Leu Pro Pro Gly Gly Pro Gly Val Arg 360	Pro Pro Tyr 380
Leu Val Asp Ala Thr Gly Asn Phe Tyr 280	Pro Val Thr 300	Ala	Gly	Phe	Pro 365	Pro
Asn	Val 300	Ile	Arg	Asn	Gly	Pro 380
Gly		Arg 315	Gln Leu Arg 330	Cys Arg Ile Asn Ala Glu Asp Pro Glu Tyr 340	Gly	Thr Asp Tyr Glu Ile 375
Thr	Glu His	Ile	Gln 330	Glu	Pro	G1u
Ala	Glu	Gln	Ile	Pro 345	Pro	Tyr
Asp 280	Gln Val 295	Glu	Asp	Asp	Leu 360	Asp
Val	Gln 295	Ala	Ala	Glu	Gly Tyr	Thr 375
Leu	Ile	Ile 310	Arg Gln Ala Asp Ile 325	Ala		Tyr
Phe	Arg	Leu	Arg 325	Asn	Thr	Val
Glu	Thr	Asp	Phe	11e 340	11e	His
Val 275	Asn	Leu	Leu Arg	Arg	Gly Arg Ile Thr 355	Ser
Thr	Met 290	Glγ	Leu	Cys	Glγ	Asp 370
Gly	Glu	Thr 305	Ala	Glu (Pro	Val
	Ŋ		10	ر بر	2	20

ren Ten	
ĞΤλ	415
Thr	
Ile	
Ala	
Cys	
Glu	410
Arg	
Len	
Ala	
Arg	
Gln	405
Met	
Arg	
Ala	
Ile Ala	

Pro Thr Ihr Leu Ser Phe His Gln Leu Met Leu Gln Met Pro Glu Phe 430 420

425

Leu Arg Gly Glu Leu Tyr Thr Asn Phe Val Glu Gln Val Met Leu Pro

440

445

Arg Ile Leu Lys Ser 10

450

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7360 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

ហ

PCT/US96/05095

WO 96/32484

-137-

	720	CATGGAGCGG GTCACATGTG AAAGTTCCGC AAGAAACCTG CCACTCAATA CCTGAGGAGA	
	099	CACTAGGCGA TAAGATTGGT TCTTCTTTA TTGCACAAGC AGCAGGAGTT CCAACTCTTC	>
	009	CAGACGCGCT CATGGAAAAG GGAATCATTT TTCTTGGGCC ACCATCAGCC GCGATGGGGG	20
	540	GAACTCGGGT TTCTGCAGTT TGGCCTGGCT GGGGTCATGC TTCTGAGAAC CCAGAACTTC	
	480	CTGGTGGGAC GAATAACAAC AACTATGCAA ATGTACAGCT CATAGTGGAG ATAGCAGAGA	15
	420	CAGAGGACCT CAGGATTAAT GCGGAGCACA TAAGAATCGC CGACCAGTTC TTAGAAGTTC	
	360	CCTGGGCCTT GGAACCTTT GGGAACGAGA AGGCCATTCT CTTGGTGGCT ATGGCAACTC	2
	300	ACAGCGTGCT GGTTGCCAAC AATGGGATGG CTGCGGTCAA GTTCATGCGC AGCATCCGCA	9
•	240	ACGGGAGGAT GTCCTCGGTC GACGAGTTCT GTAAAGCGCT CGGGGGCGAC TCGCCGATAC	
	180	CGGGCGGACT CACGTGCTGA AGGTTGGAGG GGGCAATAAT GGTGGAATCT GACCAGATAA	ß
	120	TGGATCTCCA TCTCTCTTC GCGGCGCGGC ATTCCGTCGA ACGCCTCCGC GGCGCGCCTC	
	09	ATCTCTTTCA ACTTGGATAC CAGGCCGTTG CCTCCGCCGC CGCCGCCTGC CTGCCTCTCC	

	TCTATAAGAA	CGCTTGTGTT	TCTATAAGAA CGCTTGTGTT TCAACTACAG ACGAAGCAGT CGCTAGTTGT CAGGTGGTGG	ACGAAGCAGT	CGCTAGTTGT	CAGGTGGTGG	780
	GGTATCCTGC	aatgatcaag	GGTATCCTGC AATGATCAAG GCATCATGGG GTGGGGGTGG TAAAGGAATA AGGAAGGTAC	GTGGGGGTGG	TAAAGGAATA	AGGAAGGTAC	840
'n	ACAATGATGA	TGAGGTCAGA	ACAATGATGA TGAGGTCAGA GCATTGTTTA AGCAAGTGCA AGGAGAGGTC CCCGGATCGC	AGCAAGTGCA	AGGAGAGGTC	CCCGGATCGC	006
	CTATATTÍAT	TATGAAGGTG	CTATATTÍAT TATGAAGGTG GCATCTCAGA GCCGACATCT AGAGGTTCAG TTGCTCTGTG	GCCGACATCT	AGAGGTTCAG	TIGCTCTGTG	096
	ACAAGCATGG	CAACGTGGCA	ACAAGCATGG CAACGTGGCA GCACTGCACA GTCGAGACTG TAGTGTTCAA AGAAGGCACC	GTCGAGACTG	TAGTGTTCAA	AGAAGGCACC	1020
10	AAAAGATCAT	TGAGGAGGGA	AAAAGATCAT TGAGGAGGGA CCAATTACAG TTGCTCCTCC AGAAACAATT AAAGAGCTTG	TIGCICCICC	AGAAACAATT	AAAGAGCTTG	1080
	AGCAGGCGGC	AAGGCGACTA	AGCAGGCGGC AAGGCGACTA GCTAAATGTG TGCAATATCA GGGTGCTGCT ACAGTGGAAT	TGCAATATCA	GGGTGCTGCT	ACAGTGGAAT	1140
15	ATCTGTACAG	CATGGAAACA	ATCTGTACAG CATGGAAACA GGCGAATACT ATTTCCTGGA GCTTAATCCA AGGTTGCAGG	ATTTCCTGGA	GCTTAATCCA	AGGTTGCAGG	1200
	TAGAACACCC	TGTGACCGAA	TAGAACACCC TGTGACCGAA TGGATTGCTG AAATTAACTT ACCTGCATCT CAAGTTGTAG	AAATTAACTT	ACCTGCATCT	CAAGTTGTAG	1260
	TAGGAATGGG	CATACCACTC	TAGGAATGGG CATACCACTC TACAATATTC CAGAGATCAG ACGCTTTTAT GGAATAGAAC	CAGAGATCAG	ACGCTTTTAT	GGAATAGAAC	1320
20	ATGGAGGTGG	CTATCACGCT	ATGGAGGTGG CTATCACGCT TGGAAGGAAA TATCAGCTGT AGCAACTAAA TTTGATTTGG	TATCAGCTGT	AGCAACTAAA	TTTGATTTGG	1380
	ACAAAGCACA	GTCTGTAAAG	ACAAAGCACA GTCTGTAAAG CCAAAGGGTC ATTGTGTAGC AGTTAGAGTT ACTAGCGAGG	ATTGTGTAGC	AGTTAGAGTT	ACTAGCGAGG	1440

-- <u>F</u>

PCT/US96/05095

20

AICCAGAIGA	AICCAGAIGA 16661111AAG CCIACCAGIG GAAGAGIGGA AGAGCIGAAC 1111AAAAGCA	CCTACCAGIG	GAAGAGTGGA	AGAGCTGAAC	TTTAAAAGCA	1500
AACCCAATGT	AACCCAATGT TTGGGCCTAC TTCTCCGTTA AGTCCGGAGG TGCAATTCAT GAGTTCTCTG	TTCTCCGTTA	AGTCCGGAGG	TGCAATTCAT	GAGTTCTCTG	1560
ATTCCCAGTT	ATTCCCAGTT IGGTCAIGIT TITGCTTTTG GGGAATCTAG GTCATTGGCA ATAGCCAATA	TTTGCTTTTG	GGGAATCTAG	GTCATTGGCA	ATAGCCAATA	1620
TGGTACTTGG	TGGTACTTGG GTTAAAAGAG ATCCAAATTC GTGGAGAGAT ACGCACTAAT GTTGACTACA	ATCCAAATTC	GTGGAGAGAT	ACGCACTAAT	GTTGACTACA	1680
CTGTGGATCT	CTGTGGATCT CTTGAATGCT GCAGAGTACC GAGAAAATAA GATTCACACT GGTTGGCTAG	GCAGAGTACC	GAGAAAATAA	GATTCACACT	GGTTGGCTAG	1740
ACAGCAGAAT	ACAGCAGAAT AGCTATGCGT GTTAGAGCAG AGAGGCCCCC ATGGTACCTT TCAGTTGTTG	GTTAGAGCAG	AGAGGCCCCC	ATGGTACCTT	TCAGTTGTTG	1800
GTGGAGCTCT	GTGGAGCTCT ATATGAAGCA TCAAGCAGGA GCTCGAGCGT TGTAACCGAT TATGTTGGTT	TCAAGCAGGA	GCTCGAGCGT	TGTAACCGAT	TATGTTGGTT	1860
ATCTCAGTAA	ATCTCAGTAA AGGTCAAATA CCACCAAAGC ACATCTCTCT TGTCAATTTG ACTGTGACAC	CCACCAAAGC	ACATCTCTCT	TGTCAATTTG	ACTGTGACAC	1920
TGAATATAGA	TGAATATAGA TGGGGGCAAA TATACGATTG AGACAGTACG AGGTGGACCC CGTAGCTACA	TATACGATTG	AGACAGTACG	AGGTGGACCC	CGTAGCTACA	1980
AATTAAGAAT	AATTAAGAAT TAATGAATCA GAGGTTGAAG CAGAGATACA TTCTCTGCGA GATGGCGGAC	GAGGTTGAAG	CAGAGATACA	TTCTCTGCGA	GATGGCGGAC	2040
TCTTAATGCA	TCTTAATGCA GTTGGATGGA AACAGTCATG TAATTTACGC CGAGACAGAA GCTGCTGGCA	AACAGTCATG	TAATTTACGC	CGAGACAGAA	GCTGCTGGCA	2100
CGCGCCTTCT	CGCGCCTTCT AATCAATGGG AGAACATGCT TATTACAGAA AGAGCATGAT CCTTCCAGGT	AGAACATGCT	TATTACAGAA	AGAGCATGAT	CCTTCCAGGT	2160

ʻ·i

Ŋ

PCT/US96/05095

WO 96/32484

-140-

	TGTTGGCTGA	TACACCGTGC	TGTTGGCTGA TACACCGTGC AAACTTCTTC GGTTTTTTGGT CGCGGATGGT TCTCATGTGG	GGTTTTTGGT	CGCGGATGGT	TCTCATGTGG	2220
	TTGCTGATAC	GCCATATGCT	TTGCTGATAC GCCATATGCT GAGGTGGAGG TTATGAAAAT GTGCATGCCA CTGTTACTAC	TTATGAAAAT	GTGCATGCCA	CTGTTACTAC	2280
ស	CGGCCTCTGG	TGTCATTCAC	CGGCCTCTGG TGTCATTCAC TTTGTCATGC CTGAGGGTCA GGCCATGCAG GCAAGTGATC	CTGAGGGTCA	GGCCATGCAG	GCAAGTGATC	2340
	TGATAGCAAG	GTTGGATCTT	TGATAGCAAG GTTGGATCTT GATGACCCAT	CTTCTGTGAG AAGAGCTGAA CCATTTCATG	AAGAGCTGAA	CCATTTCATG	2400
9	GCACCITICC	AAAACTTGGA	GCACCTITCC AAAACTIGGA CCTCCTACTG CTATITCTGG CAAAGTTCAC CAAAGTTTG	CTATTTCTGG	CAAAGTTCAC	CAAAAGTTTG	2460
2	CTGCAAGTGT	GAATTCTGCC	CTGCAAGTGT GAATTCTGCC CACATGATCC TTGCAGGATA TGAACATAAC ATCAATCATG	TTGCAGGATA	TGAACATAAC	ATCAATCATG	2520
	TTGTACAAGA	TTTGCTAAAC	TTGTACAAGA TTTGCTAAAC TGCCTAGACA GCCCTGAGCT CCCTTTCCTA CAGTGGCAAG	GCCCTGAGCT	CCCTTTCCTA	CAGTGGCAAG	2580
15	AACTCATGTC	CGTTTTGGCA	AACTCATGTC CGTTTTGGCA ACCCGACTCC CGAAAGATCT TAGGAATGAG TTGGATGCTA	CGAAAGATCT	TAGGAATGAG	TTGGATGCTA	2640
	AGTACAAGGA	GTATGAGTTG	AGTACAAGGA GTATGAGTTG AATGCTGACT TCCGGAAGAG CAAGGATTTC CCTGCCAAGT	TCCGGAAGAG	CAAGGATTTC	CCTGCCAAGT	2700
ć	TGCTAAGGGG	AGTCATTGAG	IGCTAAGGGG AGTCATTGAG GCTAATCTTG CATACTGTTC CGAGAAGGAT AGGGTTACTA	CATACTGTTC	CGAGAAGGAT	AGGGTTACTA	2760
07	GTGAGAGGCT	TGTAGAGCCA	GTGAGAGGCT TGTAGAGCCA CTTATGAGCC TGGTCAAGTC ATATGAGGGT GGAAGAGAAA	TGGTCAAGTC	ATATGAGGGT	GGAAGAGAAA	2820
	GCCATGCTCG	TGCGGTTGTC	GCCATGCTCG TGCGGTTGTC AAGTCTCTGT TTGAGGAGTA TTTATCTGTT GAAGAACTCT	TTGAGGAGTA	TTTATCTGTT	ようようなながななが	0880

	TCAGCGATGA	CATTCAGTCT	TCAGCGATGA CATTCAGTCT GATGTGATAG AACGTCTACG ACTTCAACAT GCAAAAGACC	AACGTCTACG	ACTTCAACAT	GCAAAAGACC	2940
	TTGAGAAGGT	CGTATATATT	TTGAGAAGGT CGTATATAT GTGTTCTCCC ACCAGGGCGT GAAAAGTAAA AATAAATTAA	ACCAGGGCGT	Gaaaagtaaa	AATAAATTAA	3000
ស	TACTTCGGCT	TATGGAAGCA	TACTICGGCT TATGGAAGCA TTGGTCTATC CAAATCCATC TGCGTACAGG GACCAGTTGA	CAAATCCATC	TGCGTACAGG	GACCAGTTGA	3060
	TTCGCTTTTC	TGCCCTTAAC	TTCGCTTTTC TGCCCTTAAC CATACAGCAT ACTCTGGGCT GGCGCTTAAA GCAAGCCAAC	ACTCTGGGCT	GGCGCTTAAA	GCAAGCCAAC	3120
10	TTCTTGAGCA	CACTAAATTG	TTCTTGAGCA CACTAAATTG AGTGAACTCC GCACAAGCAT AGCAAGAAGC CTTTCAGAGC	GCACAAGCAT	AGCAAGAAGC	CTTTCAGAGC	3180
• !	TGGAGATGTT	TACTGAGGAA	TGGAGATGTT TACTGAGGAA GGAGAGCGGA TTTCAACACC TAGGAGGAAG ATGGCTATCA	TTTCAACACC	TAGGAGGAAG	ATGGCTATCA	3240
	ATGAAAGGAT	GGAAGATTTA	ATGAAAGGAT GGAAGATTTA GTATGTGCCC CGGTTGCAGT TGAAGACGCC CTTGTGGCTT	CGGTTGCAGT	TGAAGACGCC	CTTGTGGCTT	3300
15	TGTTTGATCA	CAGTGATCCT	TGTTTGATCA CAGTGATCCT ACTCTTCAGC GGAGAGTTGT TGAGACATAC ATACGCAGAT	GGAGAGTTGT	TGAGACATAC	ATACGCAGAT	3360
	TGTATCAGCA	TTATCTTGTA	TGTATCAGCA TTATCTTGTA AGGGGCAGTG TCCGGATGCA ATGGCACAGG TCTGGTCTAA	TCCGGATGCA	ATGGCACAGG	TCTGGTCTAA	3420
00	TTGCTTTATG	GGAATTCTCT	TTGCTTTATG GGAATTCTCT GAGGAACATA TTGAACAAAG AAATGGGCAA TCTGCGTCAC	TTGAACAAAG	AAATGGGCAA	TCTGCGTCAC	3480
2	TTCTAAAGCC	ACAAGTAGAG	TTCTAAAGCC ACAAGTAGAG GATCCAATTG GCAGGCGATG GGGTGTAATG GTTGTAATCA	GCAGGCGATG	GGGTGTAATG	GTTGTAATCA	3540
	AGTCTCTTCA	GCTTCTGTCA	AGTCTTTCA GCTTCTGTCA ACTGCAATTG AAGCTGCATT AAAGGAGACT TCACATTACG	AAGCTGCATT	AAAGGAGACT	TCACATTACG	3600

T:

	GAGCAGGTGT	TGGAGGTGTC	GAGCAGGIGI IGGAGGIGIC ICAAAIGGIA AICCIAIAAA IICIAACAGI AGCAAIAIGC	ATCCTATAAA '	TTCTAACAGT 1	AGCAATATGC	3660
	TGCATATTGC	TTTGGTTGGT	TGCATATTGC TTTGGTTGGT ATCAACAATC AGATGAGCAC TCTTCAAGAC AGTGGTGATG	AGATGAGCAC	TCTTCAAGAC)	AGTGGTGATG	3720
ស	AGGATCAAGC	GCAAGAAAGG	AGGATCAAGC GCAAGAAAGG ATCAACAAAC TCTCCAAGAT TTTGAAGGAT AACACTATAA	TCTCCAAGAT	TTTGAAGGAT	aacactataa	3780
	CATCACATCT	CAATGGTGCT	CATCACATCT CAATGGTGCT GGTGTTAGGG TTGTCAGCTG CATTATCCAA AGAGATGAAG	TTGTCAGCTG	CATTATCCAA	AGAGATGAAG	3840
	GGCGTTCACC	AATGCGCCAC	GGCGTTCACC AATGCGCCAC TCCTTCAAAT GGTCATCTGA CAAGTTATAT TATGAGGAGG	GGTCATCTGA	CAAGTTATAT	TATGAGGAGG	3900
10	ACCCGATGCT	CCGCCATGTG	ACCCGATGCT CCGCCATGTG GAACCTCCTT TGTCCACCTT CCTTGAATTG GACAAAGTGA	TGTCCACCTT	CCTTGAATTG	GACAAAGTGA	3960
	ATTTAGAAGG	TTACAATGAC	ATTTAGAAGG TTACAATGAC GCGAAATACA CCCCATCACG TGATCGCCAG TGGCACATGT	CCCCATCACG	TGATCGCCAG	TGGCACATGT	4020
15	ACACACTAGT	AAAGAACAAG	ACACACTAGT AAAGAACAAG AAAGATCCGA GATCAAATGA CCAAAGGATG TTTCTTCGTA	GATCAAATGA	CCAAAGGATG	TTTCTTCGTA	4080
	CCATAGTCAG	ACAGCCAAGT	CCATAGTCAG ACAGCCAAGT GTGACCAATG GGTTTTTGTT TGGAAGTATT GATAATGAAG	GGTTTTTGTT	TGGAAGTATT	GATAATGAAG	4140
	TTCAAGCCTC	ATCATCATTC	TTCAAGCCTC ATCATCATTC ACATCTAACA GCATACTCAG ATCATTGATG GCAGCGCTAG	GCATACTCAG	ATCATTGATG	GCAGCGCTAG	4200
20	AAGAAATAGA	GTTGCGCGCT	AAGAAATAGA GTTGCGCGCT CACAGTGAGA CTGGGATGTC AGGCCACTCC CACATGTATC	CTGGGATGTC	AGGCCACTCC	CACATGTATC	4260
	TGTGCATAAT	GAGAGAACAG	TGTGCATAAT GAGAACAG CGGTTGTTG ATCTAATTCC ATCTTCAAGG ATGACGAATG	ATCTAATTCC	ATCTTCAAGG	ATGACGAATG	432(

	AAGTTGGTCA	AGATGAGAAG	AAGTTGGTCA AGATGAAAG ACAGCATGCA CATTATTGAA GCATATGGGT ATGATATATA	CATTATTGAA	GCATATGGGT	ATGATATATA	4380
	TGAGCATGTG	GTGTCAGGAT	TGAGCATGTG GTGTCAGGAT GCATCGCTTT CTGTGTGCCA GTGGGAAGTG AAGCTATGGT	CTGTGTGCCA	GTGGGAAGTG	AAGCTATGGT	4440
Ŋ	TGGATTGTGA	TGGGCAGGCT	TGGATTGTGA TGGGCAGGCT AATGGTGCTT GGAGAGTTGT TGTTACCAGT GTAACTGGGC	GGAGAGTTGT	TGTTACCAGT	GTAACTGGGC	4500
	ATACCTGCAC	TGTTGATATT	ATACCTGCAC TGTTGATATT TACCGAGAAG TGGAGGACCC CAATACACAT CAGCTTTTCT	TGGAGGACCC	CAATACACAT	CAGCITITCI	4560
ç	ACCGCTCTGC	CACACCCACA	ACCGCTCTGC CACACCCACA GCTGGTCCTT TGCATGGCAT TGCATTGCAT	TGCATGGCAT	TGCATTGCAT	GAGCCATACA	4620
>	AACCTTTGGA	TGCTATTGAC	AACCTTTGGA TGCTATTGAC CTGAAACGTG CCGCTGCTAG GAAAAATGAA ACCACATACT	CCGCTGCTAG	GAAAAATGAA	ACCACATACT	4680
	GCTATGATTT	CCCATTGGCA	GCTATGATTT CCCATTGGCA TTTGAAACAG CATTGAAGAA GTCATGGGAA TCTGGTATTT	CATTGAAGAA	GTCATGGGAA	TCTGGTATTT	4740
15	CACATGTTGC	AGAATCTAAC	CACATGTTGC AGAATCTAAC GAGCATAACC AGCGGTATGC TGAAGTGACA GAGCTTATAT	AGCGGTATGC	TGAAGTGACA	GAGCTTATAT	4800
	TTGCTGATTC	AACTGGATCA	TTGCTGATTC AACTGGATCA TGGGGTACTC CTTTGGTTCC AGTTGAGCGT CCTCCAGGTA	CTTTGGTTCC	AGTTGAGCGT	CCTCCAGGTA	4860
ć	GCAACAATTT	TGGTGTTGTT	GCAACAATTT TGGTGTTGTT GCTTGGAACA TGAAGCTCTC CACACCAGAA TTTCCAGGCG	TGAAGCTCTC	CACACCAGAA	TTTCCAGGCG	4920
) N	GCCGGGAGAT	TATAGTTGTT	GCCGGGAGAT TATAGTTGTT GCAAATGATG TGACATTTAA AGCTGGGTCT TTTGGTCCTA	TGACATTTAA	AGCTGGGTCT	TTTGGTCCTA	4980
	GAGAAGATGC	ATTCTTTGAT	GAGAAGATGC ATTCTTTGAT GCTGTCACCA ATCTTGCTTG TGAGGGAAA ATTCCTCTAA	ATCTTGCTTG	TGAGAGGAAA	ATTCCTCTAA	5040

	TTTACTTGTC	AGCAACTGCT	TITACTIGIC AGCAACIGCI GGIGCIAGGC ICGGIGIAGC AGAGGAAAIA AAGGCGIGCI	rcggrgrage ;	AGAGGAAATA 1	AGGCGTGCT	5100
	rccargrigg	ATGGTCTGAT	TCCATGTTGG ATGGTCTGAT GACCAGAGCC CTGAACGTGG TTTTCACTAC ATTTACCTCA	CTGAACGTGG	TTTCACTAC 1	ATTTACCTCA	5160
ស	CTGAACAAGA	TTATTCACGT	CTGAACAAGA TTATTCACGT CTAAGCTCTT CAGTTATAGC CCATGAGCTA AAAGTACCGG	CAGTTATAGC	CCATGAGCTA 1	AAAGTACCGG	5220
	AAAGCGGAGA	AACCAGATGG	AAAGCGGAGA AACCAGATGG GITGITGAIA CCAITGITGG GAAAGAGGAC GGACTTGGIT	CCATTGTTGG	GAAAGAGGAC (GGACTTGGTT	5280
•	GTGAGAATCT	ACATGGAAGT	GTGAGAATCT ACATGGAAGT GGTGCCATTG CCAGTGCCTA CTCTAAGGCA TACAGAGAA	CCAGTGCCTA	CTCTAAGGCA '	TACAGAGAGA	5340
10	CCTTTACTCT	GACATTTGTG	CCTITACICI GACATITGIG ACTGGGCGAG CTATIGGAAT IGGGGCTTAI CTIGCICGGI	CTATTGGAAT	TGGGGCTTAT	CTTGCTCGGT	5400
	TAGGAATGCG	GTGTATACAA	TAGGAATGCG GTGTATACAA CGTCTTGATC AACCAATTAT TTTGACTGGG TATTCTGCAC	AACCAATTAT	TTTGACTGGG '	TATTCTGCAC	5460
15	TGAACAAGCT	CCTGGGGCGC	TGAACAAGCT CCTGGGGCGC GAGGTGTATA GCTCTCAGAT GCAACTGGGT GGCCCCAAAA	GCTCTCAGAT	GCAACTGGGT	GGCCCCAAAA	5520
	TCATGGCTAC	AAATGGAGTT	TCATGGCTAC AAATGGAGTT GTCCATCTCA CTGTGTCAGA TGATCTTGAA GGTGTTTCTG	CTGTGTCAGA	TGATCTTGAA	GGTGTTTCTG	5580
;	r CTATCTTGAA	ATGGCTCAGC	ï CTATCTTGAA ATGGCTCAGC TATGTTCCTC CCTATGTTGG CGGTCCTCTT CCTATTGTGA	CCTATGTTGG	CGGTCCTCTT	CCTATTGTGA	5640
02	AATCTCTTGA	TCCACCAGAG	AATCTCTTGA TCCACCAGAG AGAGCTGTAA CATATTTCCC AGAGAATTCA TGTGATGCCC	CATATTTCCC	AGAGAATTCA	TGTGATGCCC	5700
	GTGCCGCCAT	CTGTGGCATC	GTGCCGCCAT CTGTGCCATC CAGGACACTC AAGGAGGCAA GTGGTTGGAT GGTATGTTTG	AAGGAGGCAA	GTGGTTGGAT	GGTATGTTTG	5760

PCT/US96/05095

WO 96/32484

-145-

	ACAGAGAAAG	CTTTGTGGAA	acagagaag citigiggaa acattagaag gatgggccaa aactgitatt actggaaggg	GATGGGCCAA	AACTGTTATT	ACTGGAAGGG	5820
	CAAAGCTAGG	TGGGATTCCA	CAAAGCTAGG TGGGATTCCA GTTGGTATCA TAGCTGTGGA AACCGAGACA GTGATGCAAG	TAGCTGTGGA	AACCGAGACA	GTGATGCAAG	5880
S	TAATCCCTGC	TGACCCTGGT	TAATCCCTGC TGACCCTGGT CAGCTTGATT CTGCCGAGCG TGTAGTCCCT CAAGCTGGAC	CTGCCGAGCG	TGTAGTCCCT	CAAGCTGGAC	5940
	AGGTGTGGTT	CCCAGATTCG	AGGTGTGGTT CCCAGATTCG GCCGCAAAAA CGGGCCAGGC ACTGCTGGAT TTCAACCGTG	CGGGCCAGGC	ACTGCTGGAT	TTCAACCGTG	0009
ç	AAGAGCTCCC	ATTGTTCATA	AAGAGCTCCC ATTGTTCATA CTTGCTAACT GGAGAGGCTT TTCTGGTGGG CAAAGGGATC	GGAGAGGCTT	rrcrecrece	CAAAGGGATC	0909
2	TGTTTGAAGG	AATCCTTCAG	TGTTTGAAGG AATCCTTCAG GCTGGCTCTA TGATTGTTGA GAATCTGAGG ACGTATAAGC	TGATTGTTGA	GAATCTGAGG	ACGTATAAGC	6120
	AGCCTGCTTT	TGTGTACATA	AGCCTGCTTT TGTGTACATA CCAAAGGCTG GAGAGCTGCG TGGAGGTGCA TGGGTTGTGG	GAGAGCTGCG	TGGAGGTGCA	TGGGTTGTGG	6180
15	TGGACAGCAA	GATCAATCCT	TGGACAGCAA GATCAATCCT GAGCACATTG AGATGTATGC CGAGAGGACT GCGAGAGGAA	AGATGTATGC	CGAGAGGACT	GCGAGAGGGA	6240
	ATGTCCTTGA	GGCACCAGGA	ATGICCTIGA GGCACCAGGA CICATIGAGA ICAAGITCAA GCCAAAIGAA CIGGAAGAGA	TCAAGTTCAA	GCCAAATGAA	CTGGAAGAGA	6300
ć	GTATGCTAAG	GCTTGACCCT	GTAIGCTAAG GCTIGACCCT GAGTIGAICA GCCTCAAIGC CAAACTCCTC AAAGAAACTA	GCCTCAATGC	CAAACTCCTC	AAAGAAACTA	6360
0	GTGCTAGCCC	TAGTCCTTGG	GTGCTAGCCC TAGTCCTTGG GAAACGGCGG CGGCGGCGGA GACCATCAGG AGGAGCATGG	CGGCGGCGGA	GACCATCAGG	AGGAGCATGG	6420
	CTGCTCGGAG	GAAGCAGCTG	CTGCTCGGAG GAAGCAGCTG ATGCCCATAT ATACTCAGGT TGCCACCCGG TTTGCTGAGT	ATACTCAGGT	TGCCACCCGG	TTTGCTGAGT	6480

	TGCACGACAC	TGCACGACAC CTCTGCGAGA ATGGCTGCCA AAGGCGTGAT CAGTAAGGTG GTGGACTGGG	ATGGCTGCCA	AAGGCGTGAT	CAGTAAGGTG	GTGGACTGGG	6540
	AGGAGTCCCG	AGGAGTCCCG AGCCTTCTTC TACAGGAGAC TGCGAAGGAG GCTTGCCGAG GACTCGCTCG	TACAGGAGAC	TGCGAAGGAG	GCTTGCCGAG	GACTCGCTCG	0099
ស	CCAAACAAGT	CCAAACAAGT CAGAGAAGCC GCCGGCGAGC AGCAGATGCC CACTCACAGA TCGGCCTTGG	GCCGGCGAGC	AGCAGATGCC	CACTCACAGA	TCGGCCTTGG	0999
	AATGCATCAA	AATGCATCAA GAAATGGTAC CTGGCCTCTC AGGGAGGAGA CGGCGAGAAG TGGGGAGACG	CTGGCCTCTC	AGGGAGGAGA	CGGCGAGAAG	TGGGGAGACG	6720
•	ATGAAGCCTT	ATGAAGCCTT CTTCGCCTGG AAAGATGATC CTGACAAGTA TGGCAAGTAT CTTGAGGAGC	AAAGATGATC	CTGACAAGTA	TGGCAAGTAT	CTTGAGGAGC	6780
01	TGAAAGCCGA	TGAAAGCCGA GAGAGCGTCT ACACTGCTGT CGCATCTCGC TGAAACCTCT GATGCCAAGG	ACACTGCTGT	CGCATCTCGC	TGAAACCTCT	GATGCCAAGG	6840
	CCTTGCCCAA	CCTTGCCCAA CGGTCTATCG CTCCTCCA GCAAAATGGA TCCTGCAAAG AGGGAGCAGG	CTCCTCCTCA	GCAAAATGGA	TCCTGCAAAG	AGGGAGCAGG	0069
15	TTATGGATGG	TTAIGGAIGG CCICAGGCAG CTICTIGGTI GAIGACIGGC CCACCCTIIG ATAACGGGAG	CTTCTTGGTT	GATGACTGGC	CCACCCTTTG	ATAACGGGAG	0969
	CATCCATTCA	CATCCATTCA GCCAGCATAA ACCGGCCTTG CTTGTTGCCA CCAAGCAAGT CCTGTCTATG	ACCGGCCTTG	CTTGTTGCCA	CCAAGCAAGT	CCTGTCTATG	7020
•	GTGGACTGGG	GTGGACTGGG TACCAACGGA AGCGCAGACG ACGACAAGCA AATTTTACTT GCGTGGCGAG	AGCGCAGACG	ACGACAAGCA	AATTTTACTT	GCGTGGCGAG	7080
20	CTACAGGAGG	CTACAGGAGG GGGAGGTTTT TCAACTGAAA CACATTGTTT GCACATAGGT AGGAGGCATC	TCAACTGAAA	CACATTGTTT	GCACATAGGT	AGGAGGCATC	7140
	TCATCTCAGG	TCATCTCAGG ACAATTTGTA TGTTTATTGT TATTACAGAT AGGTACACAC AAAGCATATG	TGTTTATTGT	TATTACAGAT	AGGTACACAC	AAAGCATATG	7200

	TATECTEGAT AGATATTCGG TGTGAGTTGT TGCAATGCAA GATTCATCAT CTTAATTTAC 7260	
	GAGATACGTG TGATGGTCGA TGTGATAGTC CTAGTTTCCT CGGTGGCGAG GAACGCTGAG 7320	
Ŋ	TTTCCTTTTG CTGCAGTTAT GTGATGTATA CCCTGAGAAC	
	(2) INFORMATION FOR SEQ ID NO: 10:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2257 amino acids	
15	(D) TOPOLOGY: linear	
	<pre>(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Met Val Glu Ser Asp Gln Ile Asn Gly Arg Met Ser Ser Val Asp Glu</pre>	
20	1 5 . 10 15	
	Phe Cys Lys Ala Leu Gly Gly Asp Ser Pro Ile His Ser Val Leu Val 20	

Ala Met Gly Ala Leu Gly Asp Lys Ile Gly Ser Ser Leu Ile Ala Gln 145 150 150

Thr	Ala	Ile 80	ſyr	Ser	Pro	Ala
		Arg I	Asn Tyr 95		Leu 1	Ser 1
Ile Arg	Leu Val	A. ov	₹ 6	Arg Val 110	.I	O O
116	Leı	Ile	Ası	Arg 110	Glu	Pr
Ser 45	Leu	нів	Asn	Thr	Pro 125	Pro
Arg	11e 60	Glu	Asn Asn Asn	Arg	Glu Asn	Gly 140
Met	Ala	Ala 75	Thr	Glu Arg Thr	Glu	Leu
Phe		Asn	G1y 90	Ala	Ser	Phe
Lys	Glu [.] Lys	Ile Asn Ala 75	Gly Gly Thr 90	11e 105	Ala	Ile Phe Leu Gly Pro Pro 140
Val 40	Asn	Arg	Pro	Glu	Gly His Ala 120	11e
Ala	Gly 55	Glu Asp Leu Arg 70	Val	Val	Glγ	Ala Leu Met Glu Lys Gly Ile 130
Ala	Phe	Asp 70	Glu	Ile	Trp	Lys
	Thr	Glu	Leu 85	Gln Leu 100	Pro Gly Trp	Glu
в1у	Glu	Pro	Phe	Gln 100	Pro	Met
Asn 35	Leu	Thr	Gln	Val	Trp 115	Leu
Asn Asn Gly Met 35	Ala 50	Ala	Asp	Asn	Val	Ala 130
Ala	Trp	Met 65	Ala	Ala	Ala	Asp
	Ŋ		10		15	20

Val	Ala	Gly	Ile	Val 240	Ser	Asn	Gln
Lys 175	Asn	Val	Gly	Gln		His Gly Asn 270	His
Val	Lys 190	Gln Val Val 205	Trp Gly Gly Gly Gly Lys Gly 220	Lys	Phe Ile Met Lys Val Ala 250	His 270	Gln Arg Arg 285 .:
His		Gln 205	сіу	Phe	Lys	Lys	Arg 285 .:
Ser	Pro Glu Glu Ile Tyr 185	Сув	Gly 220	Val Arg Ala Leu 235	Met	Gln Leu Leu Cys Asp Lys 265	
Gly	Glu	Ser	Gly	Ala 235	Ile	Cys	Val
Ser 170	Glu	Ala	Gly	Arg	Phe 250	Leu	Ser
Trp	Pro 185	Ala Val Ala 200		Val	Ile	Leu 265	Cys
Pro	Ile	A la 200	Ser	Glu	Pro		Asp 280
Leu	Ser	Glu	Ala 215	Asp Asp 230	Pro Gly Ser 245	Val	Arg
Pro Thr 165	His	Thr Asp	Lуз	Asp 230	\mathtt{Gly}	Leu Glu	Ser
Pro 165	Cys		Ile	Asn		Leu	His
Val	Thr 180	Thr	Met	Нів	Val	His 260	Leu
Gly	Glu Thr 180	Ser 195	Ala	Val	Glu	Arg	Ala 275
Ala	Gln	Val	Pro 210	Lys	Gly	Ser	Ala
Ala	Pro	Сув	Tyr	Arg 225	Gln	Gln	Val

10

0	Tyr 320	Glu	Val	Val	Tyr	A la 400	Pro Lys 415
Ala Pro Pro Glu Thr 11e 300	Gln	Gly (Pro Val	Val	Phe Tyr	Ser Ala 400	Pro 415
nTg		Thr	H18 350	Val	Arg	Ile	Lys
Pro (Cys Val	Glu	Glu His 350	Gln 365	Arg	Glu	Val
Pro 300	Lys	Met	Val	lle Asn Leu Pro Ala Ser Gln Val 360	Pro Leu Tyr Asn Ile Pro Glu Ile Arg 375	Gly Gly Gly Tyr His Ala Trp Lys Glu Ile 390	Ala Thr Lys Phe Asp Leu Asp Lys Ala Gln Ser Val 410
Ala	Ala 315	Ser	Gln	Ala	Glu	Trp 395	Gln
Val	Leu Ala 315	Tyr 330	Leu	Pro	Pro	Ala	Ala 410
Thr	Arg	Leu	Arg Leu Gln Val 345	Leu	Ile	His	Lys
	Arg	Tyr	Pro	As n 360	Asn	Тут	Asp
Pro Ile 295	Ala	Glu	Leu Asn		Tyr 375	Gly	Leu
Gly	Ala 310	Val	Leu	Glu	Leu	Gly 390	Asp
Glu	Gln	Thr 325	Leu Glu 340	Ile Ala	Pro		Phe 405
Glu (Glu	Ala	Leu 340	Ile	Ile	Glu His	Lys
Ile	Leu Glu	Ala	Phe	Trp 355	Gly		Thr
Ile 290	Glu	Gly	Tyr	Glu	Gly Met Gly Ile .370	Gly Ile 385	Ala
Lys	Lys' Glu 305	Gln	Tyr	Thr	G1y	G1y 385	Val
				•			

ហ

} <u>**</u>

Gly	Lys	His	Ser 480	Gln	ren	Asp	Leu
Авр	Ser	11e			Leu	Gly Trp Leu Asp 525	
Pro Asp Asp 430	Ьув	Ala	Gly Glu	Glu	Asp 510	Trp	Trp
Pro	Phe 445	Gly Gly Ala 460	Phe	Lys	Thr Val Asp Leu 510	G1y 525	Pro Pro Trp Tyr 540
Glu Asp	Glu Leu Asn	Gly 460	Val Phe Ala Phe 475	Leu Ala Ile Ala Asn Met Val Leu Gly Leu Lys Glu Ile 495	Thr	Thr	Pro 540
Glu	ren	Ser	Phe 475	Gly	Tyr	His	Glu Arg
Ser	Glu	Lys		Leu 490	Asn Val Asp 505	Ile	Glu
Thr 425	Glu	Val	Gly His	Val	Val 505	Tyr Arg Glu Asn Lys 520	Ala Met Arg Val Arg Ala 535
Val	Val 440	Ser	Gly	Met	Asn	Asn 520	Arg
Arg	Ser Gly Arg	Phe 455	Phe	Asn	Glu Ile Arg Thr 500	Glu	Val 535
Val Ala Val 420	Gly	Trp Ala Tyr	Ser Gln Phe 470	Ala	Arg	Arg	Arg
Ala	Ser	Ala	Ser	Ile 485	Ile	Tyr	Met
Val 420	Thr	Trp	Ser Asp	Ala	Glu 500	Glu	Ala
Сув	Pro Thr 435	Asn Val 450		Leu	Gly	Ala 515	11e
His	Lys		Glu Phe 465	Ser	Arg	Ala	Arg 530
б1у	Phe	Pro	Glu 465	Arg	Ile	Asn	Ser
	ហ		10	15		20	

Ser 560	Pro	Gly	Lув	Arg	Tyr 640	Thr	Thr
Ser	Pro 575	ile Asp 590	Tyr	Leu	Ile	Arg 655	Asp
Ser	Ile		Ser	Ser	Val	Leu Leu Ile Asn Gly 650	Ala 670
	Gln	Leu Asn	Arg 605	His	His	Asn	Leu
Ser Arg	Gly	Leu	Pro	Ile 620	Ser	11e	Pro Ser Arg Leu Leu 665
Ser 555	Lys	\mathtt{Thr}	Gly Gly	Glu	Asn 635	Leu	Arg
Ala	Ser 570	Val	Gly	Ala	Gly	Leu 650	Ser
Glu	Leu	Thr 585	Arg	Glu	Авр	Thr Arg	Pro 665
Tyr	Tyr	Leu	Val 600	Val	Leu	Thr	Asp
Val Val Gly Gly Ala Leu 550	Gly	Asn	Thr	Glu 615	Gln	Gly	Cys Leu Leu Gln Lys Glu His 660
Ala 550	Tyr Val 565	Leu Val	Glu	Ser	Met 630	Glu Ala Ala 645	Glu
Gly	Tyr 565	Leu	Ile	Glu	Leu	Ala 645	Lys
Gly	Asp	Ser 580	Thr	Asn	Gly Gly Leu	Glu	Gln 660
Val	Thr	Ile	Tyr 595	11e	$_{ m Gly}$	Thr	Leu
Val	Val	His	Lys	Arg 610	Gly	Glu	Leu
Ser 545	Val	Ьув	Gly	Leu	Asp 625	Ala	Cys

ស

•:

Val	Pro	Gly 720	Asp	Lys	Ala	Asn	Glu 800
Val	Met	Glu	Asp Asp 735	Phe Pro 750	Phe	Glu His	Leu Asp Ser Pro Glu 800
His	Сув	Pro	Ile Ala Arg Leu Asp Leu 730	Phe 750	Gln Lys 765	Glu	S. H
Ser 685	Lys Met 700	Met	Asp	Thr	Gln 765	Tyr	Asp
Gly	Lys 700	Phe Val 715	Leu	Pro Phe His Gly Thr 745	His	Leu Ala Gly Tyr 780	Leu
Ala Asp	Met		Arg	H18	Val	Ala	Cys 795
Ala	Glu Val	His	Ala 730	Phe	Lys	Leu	Asn
Leu Val 680	Glu	Ile	Ile	Pro 745	Ser Gly Lys Val 760	Ile	Gln Asp Leu Leu Asn 790
	Glu Val 695	Val	Leu	Glu		Met	Leu
Phe		Ser Gly Val 710	Asp	Ala	Ile	His 775	Asp
Arg	Ala		Gln Ala Ser Asp Leu 725	Arg Arg Ala	Ala	Ala	Gln 790
Lys Leu Leu Arg 675	Tyr	Leu Pro Ala	Ala 725	Arg	Thr	Ser	Val
Leu	Pro	Pro	Gln	Val 740	Pro	Asn	val
	Thr	Leu	Met	Ser	Pro 755	Val	His
Сув	Asp 690	Leu	Ala	Ser	Gly	Ser 770	Asn
Pro	Ala	Leu 705	Gln	Pro	Leu	Ala	11e 785

ស

Arg	Tyr	Leu	Asp	Lys 880	Ser	Ile	Leu
Thr Arg 815	Glu	Гув Leu	Lys Asp	Val	Lув 895	Asp Asp 910	Lys Asp
A]a	Lys Glu Tyr 830	Ala	Glu	Leu	Val	Asp 910	Lув
ren 7	Tyr	Pro Ala 845	Ser	Ser	Val	Ser	A la 925
Ser Val Leu Ala		Phe	Cys Ser 860	Glu Pro Leu Met Ser Leu Val 875	Ala Arg Ala Val Val 890	Glu Glu Leu Phe 905	Ser Asp Val Ile Glu Arg Leu Arg Leu Gln His 915
Ser	Ala	Asp	Tyr	Leu 875	Arg	Leu	Gln
Met 8	Leu Asp Ala Lys 825	ьуя		Pro	Ala 890	Glu	Leu
Leu Leu	Leu 825	Ser	Leu Ala	Glu ·	His	Glu 905	Arg
3lu	Glu	Lys 840	Asn	Val	Ser	Val	Le u 920
Gln Glu Leu	Asn	Arg	Ala 855	Glu Arg Leu Val 870	Glu		Arg
Jrp (Arg	Phe	Gl u	Arg 870		Glu Glu Tyr Leu Ser 900	Glu
Gln Trp 805	Leu	Asp	Ile	Glu	Tyr Glu Gly Gly Arg 885	Tyr	Ile
Leu	Asp 820		•	Ser	Gly	Glu 900	Val
Phe	ьув	Asn Ala 835	Gly Val	Thr	Glu		Asp 915
Pro	Pro	Геп	Arg 850	Val	Tyr	Leu Phe	Ser
Leu	Leu	Glu	Leu	Arg 865	Ser	Leu	Gln
				•			

Lys	Pro 960	Thr	Thr	ren	Ьув	Ala 1040	Leu
Ser	Pro Asn	His Thr 975	Glu His Thr 990	Glu Leu	Thr Glu Glu Gly Glu Arg Ile Ser Thr Pro Arg Arg 1015	Pro Val	Thr
Lys Ser	Pro	Ala Leu Asn	Glu 990	Ser	Arg		Pro
Gly Val 940	Tyr	Leu	Leu	Leu 8 1005	Pro	Ala	Asp
Gly 940	Leu Val 955	Ala	Gln Leu Leu	Ser Ile Ala Arg Ser Leu Ser 1000	Thr 1	Ile Asn Glu Arg Met Glu Asp Leu Val Cys Ala 1030	Val Glu Asp Ala Leu Val Ala Leu Phe Asp His Ser Asp
Gln	Leu 955	Ser	Gln	Arg	Ser	Val (1035	His
His	Glu Ala	Phe 970	Ser	Ala	Ile	Leu	Asp
Ser		Arg	Gly Leu Ala Leu Lys Ala 980	11e	Arg	Asp	Phe
Phe	lle Leu Arg Leu Met 950	11e	Lys		Glu 5	Glu	Leu
Val 935	Leu	Tyr Arg Asp Gln Leu 965	Leu	Ser Glu Leu Arg Thr 995	Gly (1015	Met	Ala
Ile	Arg 950	Gln	Ala	Arg	Glu	Arg 1030	Val
Tyr	Leu	А вр 965	Leu	Leu	Glu	Glu	Leu
Val	Ile	Arg	G1y 980	Glu	Thr	Asn	Ala
Val	Leu	Tyr	Ser	Ser 995	Met Phe 1010	11e	Asp
Lys 930	Asn Lys 945	Ala	Tyr	Leu	Met]	Met Ala 1025	Glu
Glu	Asn 945	Ser	Ala	Lys	Glu	Met /	Val
	រហ		10	ū	3	20	

.11 T

15

10

Ŋ

·¥r	ile	31n	Arg 1120	Ala	Ġly	Leu	Asp
Tyr Ile Arg Arg Leu Tyr Gln His Tyr 1065	ren .	Glu Glu His Ile Glu Gln Arġ Asn Gly Gln 1095		Thr 1	ser His Tyr Gly Ala Gly Val Gly 1145	Ser Asn Met Leu 1165	Ser Thr Leu Gln Asp 1180
Gln 1 1070	31y]	Asn	Gly Arg	Ser	Gly 1	Asn	Leu
lyr (Ser (Arġ	Ile	Leu	Ala	Ser /	Thr
ren 1	Arg Gly Ser Val Arg Met Gln Trp His Arg Ser Gly Leu 1075 1086	Gln / 1100	Pro	Leu	Gly	Ser	Ser [
Arg 1	нів	Glu	Glu Asp Pro 1115	Leu Gln Leu 1130	Tyr	Ser Asn Gly Asn Pro Ile Asn Ser Asn Ser 1155	Ile Ala Leu Val Gly Ile Asn Asn Gln Met 1170
Arg /	Trp	Ile	Glu	Leu (1130	His	Ser	Gln
Ile <i>1</i> 1065	Gln	His		Ser		Asn	Asn
Tyr	Met (Glu	Gln	Ile Lys	Thr	11e /	Asn 5
Thr	Arg	Glu (1095	Ser Leu Leu Lys Pro Gln Val 1110	Ile	Ala Leu Lys Glu Thr 1140	Pro	Ile / 1175
Glu Thr	Val	Ser	Lys 1110	Val 5	Lys	Asn	Gly
Val	Ser	Leu Trp Glu Phe Ser 1090	Leu	Met Val Val . 1125	Leu	Gly	Val
Val Val 1060	Gly	Glu	Leu	Met	Ala] 1140	Asn 5	Leu
Arg	Arg (Trp	Ser	Val	Ala		Ala 0
Arg	Val		Ser Ala 1105	Gly	Glu	Gly Val	
Gln Arg	Leu	Ala	Ser 1	Trp	Ile	Gly	нів

Pro Arg Ser Asn Asp Gln Arg Met Phe Leu Arg Thr Ile Val Arg Gln

1300

1310

ز:

	Ser Gly Asp Glu Asp Gln Ala Gln Glu Arg Ile Asn Lys Leu Ser Lys 1185 1200
ស	Ile Leu Lys Asp Asn Thr Ile Thr Ser His Leu Asn Gly Ala Gly Val 1205
	Arg Val Val Ser Cys Ile Ile Gln Arg Asp Glu Gly Arg Ser Pro Met 1220
01	Arg His Ser Phe Lys Trp Ser Ser Asp Lys Leu Tyr Tyr Glu Glu Asp 1235
<u>.</u>	Pro Met Leu Arg His Val Glu Pro Pro Leu Ser Thr Phe Leu Glu Leu 1250 1255
<u>0</u>	Asp Lys Val Asn Leu Glu Gly Tyr Asn Asp Ala Lys Tyr Thr Pro Ser 1265 . 1270 . 1275
20	Arg Asp Arg Gln Trp His Met Tyr Thr Leu Val Lys Asn Lys Lys Asp 1295

Val	Met	Met 1360	Leu	Азр .	Met	Val	Val 1440
Asp Asn Glu Val 1325	Leu Met	Gly Met 136	Gln Arg Leu 1375	Gly Gln Asp 1390	Tyr	Glu Val	Cys Asp Gly Gln Ala Asn Gly Ala Trp Arg Val 1430
Asn	Ser	Thr	Gln	Gly (1390	Thr Ala Cys Thr Leu Leu Lys His Met Gly Met Ile 1395	Cys Gln Trp 1420	Trp
Asp i 1325	Arg	Glu	Glu	Val	Met	Gln	Ala
Ile	Leu 1	Ser	Ile Met Arg 1370	Glu	Gly	Cys (G1y 5
Pro Ser Val Thr Asn Gly Phe Leu Phe Gly Ser 1315	11e	His 1359	Met	Met Thr Asn 1385	Met	Val	Asn (1435
Gly	Ser	Ala		Thr	His	Ser	Ala
Phe	Asn	Ile Glu Leu Arg 1350	Leu Cys	Met ' 1385	Lys)	Cys Gln Asp Ala Ser Leu 1415	Gln
Leu 1320	Ser	Leu	Leu	Arg	Leu .	Ser	Gly
Phe	Thr 133	Glu	Tyr	Ser	Геи	Ala (Asp J
в1у	Phe	Ile (1350	His Met 1365	Ser	Thr	Asp	Cys 7
Asn	Ser	Glu		Leu Ile Pro Ser 1380	Cys	Gln	Lys Leu Trp Leu Asp 1425
Thr	Ser	Glu Glu	Ser	Ile 1380	Ala	Cys	Leu
Val 7 1315	Ser	Leu	нів	Leu	Thr 1	Met Trp 1410	Trp
Ser	Ala : 1330	٩la	Gly	Asp	Lys		Leu
Pro	Gln .:	Ala 1 1345	Ser	Phe	Glu	Ser	Lys] 1425

ß

Gly Ser Trp Gly Thr Pro Leu Val Pro Val Glu Arg Pro Pro Gly Ser

1560

1565

Arg	Thr	Lys	Glu	Lув 1520	His	Thr
Ser Val Thr Gly His Thr Cys Thr Val Asp Ile Tyr Arg 1445 1455		Tyr	Asn	Leu Lys 152	Glu His 1535	Ser
ile	Ser Ala 1470	Pro	Ьув	Ala	Asn	Asp 1
Asp	Arg		Arg o	Thr	Ser	Ala
Val	Tyr	His	Ala 1 1500	Glu 5	Glu	Phe
Thr o	Phe	Leu	Ala	Phe (Ala 0	Ile
Cys 7	Leu 5	Ala	Ala	Ala	His Val Ala 1530	ı Leu .5
Thr	Gln 1 1465	. Ile 0	Arg	Leu	His	Thr Glu Leu Ile 1545
His	Glu Asp Pro Asn Thr His Gln Leu Phe Tyr Arg 1460	Ala Gly Pro Leu His Gly Ile Ala Leu His 1475	Pro Leu Asp Ala Ile Asp Leu Lys Arg Ala Ala Arg Lys 1490 1495	Thr Thr Tyr Cys Tyr Asp Phe Pro Leu Ala Phe Glu Thr Ala 1505 1516	Ser	l Thr
. Gly	Thr	His	Leu I 1495	o Phe	/ 11€	ı Va]
. Thr	о Авп	. Lev	Asi	r Asp } 1510	Glu Ser Gly Ile 1525	Tyr Ala Glu Val 1540
. Val 1 1445	Pro 50	/ Pro	a 116	ε Τ Υ	1525 (r Ala
Sex	1 Asp 1	a Gl ₃	Alé	r Cys		9 Tyr .
Val Thr	າເວ 1		ı Ası 90	7 1 7	r Trp	Asn Gln Arg
Va.	ı Val	o Thr	, Leu 1 1490	r Th: 05	s Ser	n G1
Val	Glu	Pro	Pro	Thr !	Ьув	Ası
	ம		10	r u	C T	20

glu	Phe 1600	Val	Ala	Phe	Tyr	Ile 1680	Val Val 1695
Pro	Thr	Ala Val 1615	Ser	Сув	His	Val	Val 1
Thr	Val	Asp	Leu Ser 1630	Lys Ala 1645	Phe	Ser	Trp
Ser	Asp	Phe Phe	Tyr	Lys /	Gly	Ser	Arg
Asn Phe Gly Val Val Ala Trp Asn Met Lys Leu Ser Thr Pro Glu 1570	Phe Pro Gly Gly Arg Glu Ile Ile Val Val Ala Asn Asp Val 1585 1590	Phe	11e	Glu Glu Ile	Pro Glu Arg Gly Phe His 1660	Ile Tyr Leu Thr Glu Gln Asp Tyr Ser Arg Leu Ser 1665	Gly Glu Thr Arg 1690
LyB	Ala <i>I</i> 1595	Ala	Leu	Glu	Glu	Leu 3 1675	Glu 0
Met	Val	Phe Gly Pro Arg Glu Asp Ala Phe 1605	Ile Pro Leu Ile 1625	Glu	Pro	Arg	Gly (1690
Asn	Val	Glu		Leu Gly Val Ala 1640	Ser Asp Asp Gln Ser 1655	Ser	Ser
Trp	Ile	Arg	Asn Leu Ala Cys Glu Arg Lys 1620	Val 1	Gln 5	Туг	Pro Glu
Ala (Ile	Pro	Arg	Gly	Asp (Asp 0	Pro
Val	Glu] 1590	Gly	Glu	Leu	Asp	Gln 7	. Val
Val	Arg		Cys	Arg		Glu	Lys 1685
Gly	Gly	Ser	Ala (1620	Gly Ala Arg 1635	Val Gly Trp 1650	Thr	Glu Leu Lys Val 1685
Phe	Gly	Gly	Leu		Gly 0	Leu	Glu
Asn 1	Pro	Lys Ala Gly Ser		Ala	Val (1650	. Tyr .5	His
Asn	Phe 1585	Lys	Thr	Thr	o His	Ile 7 1665	Ala
							,

ហ

Çı

20

His	Thr	Tyr	Ile 1760	val	Asn	Ala	Leu
neg	Glu	Ala	Pro	Glu ' 1775	$\mathtt{Th} x$	Ser	Pro
Asn I 1710	Arg	Gly	Gln	Arg	Ala 7		ج ق
3lu i	Tyr Arg Glu Thr 1725	11e (Asp (G].Y	Met	Gly 1.	Gly
) 8\ <u>\</u>	Ala	Gly] 1740	Leu	Leu	11e	Glu	Val
Ile Val Gly Lys Glu Asp Gly Leu Gly Cys Glu Asn Leu His 1700 1700	Gly Ala Ile Ala Ser Ala Tyr Ser Lys Ala 1715	Thr Gly Arg Ala Ile Gly Ile Gly Ala 1735	Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu Asp Gln Pro Ile 1745	Ile Leu Thr Gly Tyr Ser Ala Leu Asn Lys Leu Leu Gly Arg Glu Val 1775	Ser Ser Gln Met Gln Leu Gly Gly Pro Lys Ile Met Ala Thr 1780 1780	Ser Asp Asp Leu Glu Gly Val 1800	Leu Lys Trp Leu Ser Tyr Val Pro Pro Tyr Val Gly Gly Pro Leu
reu (Ser 1	Ala	3ln	Lys] 1770	Pro	Авр	Pro
Gly 1 1705	ľyr 9	Arg 1	Ile (Asn	Gly 1 1785	Asp	Pro
Asp (Ala 7 1720	31y 1	Cys.	ren /	317	Ser 1	Val
3lu /	Ser 1	Thr (1735	Arg (Ala	Leu	Val	Tyr
9	Ala S		Met <i>1</i> 1750	Ser	31n	Thr	Ser
31у 1	[]e /	Phe Val	31y 1	Tyr (1765	.et t	r Leu	Leu
Val (1700	Na J		Leu (317	Gln 1 1780	Val His Leu Thr 1795	Irp
[]e	Gly #	ner J	Arg]	rhr (Ser	Val I 1795	Lys
Chr.	Ser (Thr Leu Thr 1730	Ala	ren .	Ser	Val	Leu
Asp Thr	Gly s	Phe 7	Leu /	[]e	Tyr :	Gly	Ile
~ •	J	-			-	<u>-</u>	

S

	Pro Ile Val Lys Ser Leu Asp Pro Pro Glu Arg Ala Val Thr Tyr Phe 1825 1835 1840
ហ	Pro Glu Asn Ser Cys Asp Ala Arg Ala Ala Ile Cys Gly Ile Gln Asp 1845 1850
	Thr Gln Gly Gly Lys Trp Leu Asp Gly Met Phe Asp Arg Glu Ser Phe 1860 1865
10	Val Glu Thr Leu Glu Gly Trp Ala Lys Thr Val Ile Thr Gly Arg Ala 1875 1880
<u>.</u> r	Lys Leu Gly Gly Ile Pro Val Gly Ile Ile Ala Val Glu Thr Glu Thr 1890
}	Val Met Gln Val Ile Pro Ala Asp Pro Gly Gln Leu Asp Ser Ala Glu 1905 1920
20	Arg Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp Ser Ala Ala 1925 1930
	Lys Thr Gly Gln Ala Leu Leu Asp Phe Asn Arg Glu Glu Leu Pro Leu

Lys Glu Thr Ser Ala Ser Pro Ser Pro Trp Glu Thr Ala Ala Ala Ala

	Phe Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln Arg Asp Leu 1955 1960	reu Leu
ιΩ	Phe Glu Gly Ile Leu Gln Ala Gly Ser Met Ile Val Glu Asn Leu Arg 1970 1975	Arg
	Thr Tyr Lys Gln Pro Ala Phe Val Tyr Ile Pro Lys Ala Gly Glu Leu 1985 1985	Leu 2000
10	Arg Gly Gly Ala Trp Val Val Val Asp Ser Lys Ile Asn Pro Glu His 2010	His
y -	ile Glu Met Tyr Ala Glu Arg Thr Ala Arg Gly Asn Val Leu Glu Ala 2020	Ala
1	Pro Gly Leu Ile Glu Ile Lys Phe Lys Pro Asn Glu Leu Glu Glu Ser 2035 2045	Ser
20	Met Leu Arg Leu Asp Pro Glu Leu Ile Ser Leu Asn Ala Lys Leu Leu 2050	ren

ys Gln Leu Met Pro 2095	eu His Asp Thr Ser 2110	al Val Asp Trp Glu 2125	Arg Arg Leu Ala Glu 2140	Ala Gly Glu Gln Gln Met 2155	ys Trp Tyr Leu Ala 2175	Asp Glu Ala Phe Phe 2190	lyr Leu Glu Glu Leu
Ala Ala Arg Arg Lys 2090	Arg Phe Ala Glu Leu 2105	val ile Ser Lys V 2120	rg Arg Leu Arg	Glu Ala	ı Glu Cys Ile Lys Lys Trp 2170	1 Lys Trp Gly Asp A 2185	Lys Tyr Gly Lys 1
Glu Thr Ile Arg Arg Ser Met 2085	lle Tyr Thr Gln Val Ala Thr 2100	Ala Arg Met Ala Ala Lys Gly Val Ile Ser Lys Val Val Asp Trp 2115. 2120	Glu Ser Arg Ala Phe Phe Tyr A 2130	Asp Ser Leu Ala Lys Gln Val Arg 2145	Pro Thr His Arg Ser Ala Leu 2165	Ser Gln Gly Gly Asp Gly Glu Lys Trp Gly Asp Asp 2180	Ala Trp Lys Asp Asp Pro Asp Lys Tyr Gly Lys Tyr Leu Glu Glu Leu
ัช	H	ď	ับ	Æ, Ø	<u>α</u>	Ø	4

10

ഗ

Lys Ala Glu Arg Ala Ser Thr Leu Leu Ser His Leu Ala Glu Thr Ser 2220 Asp Ala Lys Ala Leu Pro Asn Gly Leu Ser Leu Leu Leu Ser Lys Met

2225

S

2240 2230

Asp Pro Ala Lys Arg Glu Gln Val Met Asp Gly Leu Arg Gln Leu Leu 2250 2245

Gly

ព

(i) SEQUENCE CHARACTERISTICS:

15

(2) INFORMATION FOR SEQ ID NO: 11:

(A) LENGTH: 984 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

ATGGCTGCAC CTGTCACGAA GAAGCCAATT CTGCTGGAGT TTGAAAAGCC CCTAGTTGAG

PCT/US96/05095

WO 96/32484

-166-

	CTGGAGGAAC	GGATCACGCA	CTGGAGGAAC GGATCACGCA AATCCGCACC CTCGCAGCGG ACAACCAGGT GGATGTGAGC	CTCGCAGCGG	ACAACCAGGT	GGATGTGAGC	120
	GGCCAAATTC	AGCAACTGGA	GGCCAAATTC AGCAACTGGA AGCCCGGGCG ATTCAACTGC GGCGAGAAAT TTTTAGTAAT	ATTCAACTGC (GGCGAGAAAT	TTTAGTAAT	180
Ŋ	CTCTCGCCAG	CCCAGCGCAT	TOTOGOCAG COCAGOGOAT CCAAGTGGOG CGTOATCOCO GACGTOOGAG TACOTTGGAO	CGTCATCCCC	GACGICCGAG	TACCTTGGAC	240
	TACATCCAAG	CGATCAGCGA	TACATCCAAG CGATCAGCGA CGAGTGGATT GAATTACACG GCGATCGCAA CGGTAGTGAT	GAATTACACG	GCGATCGCAA	CGGTAGTGAT	300
	GACCTCGCAC	тсстесстес	GACCTCGCAC TCGTGGGTGG TGTTGGTGCG CTCGACGGCC AGCCAGTCGT TTTCTTGGGC	CTCGACGGCC	AGCCAGTCGT	TTTCTTGGGC	360
0	CACCAAAAGG	GGCGCGACAC	CACCAAAAGG GGCGCGACAC CAAGGACAAC GTGCTGCGCA ACTTCGGGAT GGCTTCACCC	GTGCTGCGCA	ACTTCGGGAT	GGCTTCACCC	420
	GGCGGCTATC	GCAAGGCACT	GGCGGCTATC GCAAGGCACT GCGTTTGATG GAGCATGCCG ATCGCTTCGG GATGCCGATT	GAGCATGCCG	ATCGCTTCGG	GATGCCGATT	480
rύ	CTGACCTTTA	TCGATACACC	CTGACCTTTA TCGATACACC CGGTGCTTAC GCTGGGGTCA GTGCTGAAGA ACTGGGTCAA	GCTGGGGTCA	GTGCTGAAGA	ACTGGGTCAA	540
	GGTGAGGCAA	TCGCAGTCAA	GGIGAGGCAA ICGCAGICAA CCIGCGCGAA AIGIICCGCI ICICGGIGCC GAIICICIGC	ATGTTCCGCT	rcreerecc	GATTCTCTGC	009
	ACAGTGATTG	GCGAAGGCGG	ACAGTGATTG GCGAAGGCGG TTCGGGCGGG GCCTTGGGCA TTGGCGTCGG CGATCGCCTG	GCCTTGGGCA	TTGGCGTCGG	CGATCGCCTG	099
0	CTGATGTTTG	AGCATTCCGT	CTGATGITIG AGCATICCGI CTACACTGII GCCAGICCCG AAGCCTGCGC AICAATICTC	GCCAGTCCCG	AAGCCTGCGC	ATCAATTCTC	720
	TGGCGTGATG	CGGGCAAGGC	TGGCGTGATG CGGGCAAGGC AGCCCAGGCG GCAGAAGCGC TCAAGATTAC GGCGCGAGAC	GCAGAAGCGC	TCAAGATTAC	GGCGCGAGAC	780

) Met Ala Ala Pro Val Thr Lys Lys Pro Ile Leu Leu Glu Phe Glu Lys	20
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	(C) STRANDEDNESS: (D) TOPOLOGY: linear	15
	(1) SECENCE CHARACIERISTICS: (A) LENGTH: 327 amino acids (B) TYPE: amino acid	
) (2) INFORMATION FOR SEQ ID NO: 12:	10
4	GTGTTTCTGG AAAGCAGTGA CTAA	
0	SCAAGCCCTCA GTCCGGCTCA GTTGCGCGAG CAGCGTTATC AAAAGTTTCG CCAGCTCGGG 960	S
0	GCACCGCTGG AAACGGCCCA GAGTTTGCGT CAGGTTTTGC TGCGCCATCT GAAGGATTTG 900	
0	CICAAGCAAT TAGGCATCCT TGACGAAATC ATCACCGAAC CTTTGGGCGG TGCCCATTCT 840	

Asp Asn Val Leu Arg Asn Phe Gly Met Ala Ser Pro Gly Gly Tyr Arg

Ala	Ala	Ala	Asp 80	Arg	Asp	Lув
Leu Ala	Glu	Pro	Leu	Gly Asp Arg 95	Leu	Thr
Thr 30	Leu	Ser	Thr	Gly	Gly Ala 110	Asp
Arg	Gln 45		Ser	His	Glγ	Arg 125
Ile	Gln	Asn Leu 60	Pro	Leu	Val	Gly
Gln Ile	Gly Gln Ile Gln Gln Leu 45	Ser	Arg 75	Glu	Glγ	Lys
Thr	Gln	Phe	Arg	Ile 90	Gly	Gln
11e 25	Gly	Ile	Pro	Trp Ile 90	Val 105	His
Arg	Ser 40	Glu	His		Leu	Leu Gly His 120
Glu	Val	Arg 55	Arg	Asp Glu	Ala	Leu
Glu	Asp	Gln Leu Arg Arg 55	Ala 70	Ser	Leu Ala	Phe
Leu	Val	Leu	Val	Ile 85	Asp	Val
Glu 20	Gln	Gln	Gln Val	Ala	Asp 100	Val
Val	Asn 35	Ile	Ile	Gln	Ser	Pro 115
Leu	Asp	Ala 50	Arg	Tyr'ile Gln Ala ile 85	Glγ	Gln
Pro	Ala	Arg	Gln 65	Tyr `	Asn	Gly
	'n		10		45	20

Ile 160	Glu	Phe	Ser	Glu	Leu 240	Ile	Thr
Pro	Ala 175	Met	Gly	Phe	Ile	Lув 255	Ile
Met	Ser	Glu 190	Glu Gly 205	Met	Ser	Leu	11e 270
Gly	Val	Arg	Glu 205	Leu	Ala	Ala	Glu
Phe	Gly	Leu Arg	Gly	Leu 220	Сув	Glu	Asp
Arg 155	Ala	Asn	Ile	Arg	Ala 235	Ala	Leu
Asp	Tyr 170		Val	Asp	Glu	Ala 250	Ile
Ala	Ala	Ala Val 185	Thr	Gly Asp Arg	Pro	Gln	Ala Arg Asp Leu Lys Gln Leu Gly Ile Leu Asp 260
His	Pro Gly Ala	11e	Сув 200	Val	Ser	Ala	Leu
Glu	Pro	Ala	Leu	Gly 215	Ala	Ala	Gln
Met 150	Thr	Glu	Ile	Ile	Val 230	Gly Lys 245	Lys
Leu	Asp 165	Gly	Pro	Gly	Thr	G1y 245	Leu
Arg	I1e	Gln Gly 180	Val	Leu	Tyr	Ala	Asp 260
Leu	Phe	$_{ m G1y}$	Ser 195	Ala	Val	Asp	Arg
Ala	Thr	Leu	Phe	Gly 210	Ser	Arg	Ala
Lys 145	Leu	Glu	Arg	Gly	His 225	Trp	Thr
						٠	

Ŋ

Glu Pro Leu Gly Gly Ala His Ser Ala Pro Leu Glu Thr Ala Gln Ser

	Leu Ser	Pro Ala Gln Leu Arg Glu Gln Arg Tyr Gln Lys Phe Arg Gln Leu Gly 305 310 320	
	Ala	Gln	
285	31n	Arg (
••	100 (300	Phe	
	Asp]	Lys 315	
	Arg Gln Val Leu Leu Arg His Leu Lys Asp Leu Gln Ala Leu 290	Gln	
	Leu	Tyr	
280	His	Arg	
	Arg 295	Gln	Asp
	Leu	Glu 310	Ser Asp
	Leu	Arg	Ser 325
•	Val	Leu	Glu
275	Gln	Gln	Leu Glu
	Arg 290	Ala	Phe
	Leu	Pro 305	Val

ហ

10

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 22 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20

(ix) FEATURE:

(A) NAME/KEY: modified_base

		- 171	. -	
		(B) LOCATION: one-of (
		(D) OTHER INFORMATION	N:/mod_base= OTHER	
		/note= "N = A	, C, G, or T"	
5	(ix)	FEATURE:		
		(A) NAME/KEY: modified	ed_base	
		(B) LOCATION:20		
		(D) OTHER INFORMATION	N:/mod_base= OTHER	
	,	/note= "R = A	or G"	
10				
	(1X)	FEATURE:	-4	
		<pre>(A) NAME/KEY: modifie (B) LOCATION:17</pre>	ed_base	
r			N./mod baco- OTUER	
1 5		(D) OTHER INFORMATION /note= "H = A,	-	
15		/Noce= "H = A,	, C, OI 1"	
	(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO: 13:	
	TCGAATTC	T NATNATHAAR GC	2	22
20				
	(2) INFO	MATION FOR SEQ ID NO:	14:	
	(i)	SEQUENCE CHARACTERISTI	ICS:	
25		(A) LENGTH: 22 base p		
		(B) TYPE: nucleic aci		
		(C) STRANDEDNESS: sin	ngle	
		(D) TOPOLOGY: linear		
30	(ix)	FEATURE:		
		(A) NAME/KEY: modifie	ed_base	
		(B) LOCATION: one-of(3	1, 9)	
		(D) OTHER INFORMATION	:/mod_base= OTHER	
		/note= "Y = C	or T"	
35				
	(ix)	FEATURE:		

WO 96/32484 PCT/US96/05095

	- 172 -	
	(A) NAME/KEY: modified_base	
	(B) LOCATION:6	
	(D) OTHER INFORMATION:/mod_base= OTHER	
	/note= "N = A, C, G, or T"	
5		
	(ix) FEATURE:	
	(A) NAME/KEY: modified_base	
	(B) LOCATION:13	
	(D) OTHER INFORMATION:/mod_base= OTHER	
10	/note= "K = G or T"	
	(ix) FEATURE:	
	(A) NAME/KEY: modified_base	
	(B) LOCATION:12	
15	(D) OTHER INFORMATION:/mod_base= OTHER	
	/note= "R = A or G"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
20	GTYCANCTYG TRKGAGATCT CG	22
	(2) INFORMATION FOR SEQ ID NO: 15:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CONTRACTOR OF THE PROPERTY OF	21
	GCTCTAGAAT ACTATTTCCT G	

35

(2) INFORMATION FOR SEQ ID NO: 16:

W 96/32484 PCT/US96/05095

- 173 -

	(i)	SEQU	ENCE CHARACTERISTICS:	
		(A)	LENGTH: 22 base pairs	
		(B)	TYPE: nucleic acid	
		(C)	STRANDEDNESS: single	
5		(D)	TOPOLOGY: linear	•
	(ix)	FEAT	URE:	
		(A)	NAME/KEY: modified_base	
		(B)	LOCATION: one-of(3, 9)	
10		(D)	OTHER INFORMATION:/mod_base= OTHER	
			<pre>/note= "Y = C or T"</pre>	
	(ix)	FEAT	URE:	
		(A)	NAME/KEY: modified_base	
15			LOCATION: 6	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "N = A, C, G, or T"	
			-	
	(1X)	FEAT	-	•
20			NAME/KEY: modified_base LOCATION:12	
			OTHER INFORMATION:/mod_base= OTHER	
		(D)	/note= "R = A or G"	
			/Note= "R = A Of G	
25	(ix)	FEAT	JRE:	
	, ,		NAME/KEY: modified_base	
			LOCATION:13	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "K = G or T"	
30				
	(xi)	SEQUE	ENCE DESCRIPTION: SEQ ID NO: 16:	
		-		
	GTYCANCTY	G TRI	KGAGATCT CG	22
35				
	(2) INFOR	TAM	ON FOR SEQ ID NO: 17:	

WO 96/32484 PCT/US96/05095

- 174 -

	(i)	SEQUI	ENCE CHARACTERISTICS:
		(A)	LENGTH: 23 base pairs
		(B)	TYPE: nucleic acid
		(C)	STRANDEDNESS: single
5		(D)	TOPOLOGY: linear
	(ix)	FEAT	JRE:
		(A)	NAME/KEY: modified_base
		(B)	LOCATION: one-of(9, 11, 14)
10		(D)	OTHER INFORMATION:/mod_base= OTHER
			/note= "Y = C or T"
	(ix)	FEAT	URE:
		(A)	NAME/KEY: modified_base
15		(B)	LOCATION:18
		(D)	OTHER INFORMATION:/mod_base= OTHER
			<pre>/note= "R = A or G"</pre>
	(ix)	FEAT	
20			NAME/KEY: modified_base
			LOCATION: 21
		(D)	OTHER INFORMATION:/mod_base= OTHER
			/note= "H = A, C, or T"
25	(ix)	FEAT	
			NAME/KEY: modified_base
		•-•	LOCATION: 22
		(D)	OTHER INFORMATION:/mod_base= OTHER
			<pre>/note= "M = A or C"</pre>
30			
	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO: 17:
			NAVCADAT UMC
	GCTCTAGA	IT TY	AAYGARAT HMG
25			•
35			

23

(2) INFORMATION FOR SEQ ID NO: 18:

WO 96/32484 PCT/US96/05095

- 175 -

	/ = \	CHOTE	DNOD OWN DA OFFIDE CO.	
	(1)		ENCE CHARACTERISTICS:	
			LENGTH: 22 base pairs	
			TYPE: nucleic acid	
_			STRANDEDNESS: single	
5		(D)	TOPOLOGY: linear	
	(ix)	FEAT	JRE:	
	, — ,		NAME/KEY: modified base	
			LOCATION: 2	
10			OTHER INFORMATION:/mod_base= OTHER	
		,_,	/note= "R = A or G"	
	(iv)	FEATU	TDF.	
	(1%)		NAME/KEY: modified_base	
15			LOCATION: one-of(3, 13)	
13				
		(1)	OTHER INFORMATION:/mod_base= OTHER /note= "N = A, C, G, or T"	
			/Hote= "N = A, C, G, or 1"	
	(ix)	FEATU	TRE:	
20		(A)	NAME/KEY: modified_base	
		(B)	LOCATION:9	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "Y = C or T"	
25	(ix)	FEATU	TRE:	
		(A)	NAME/KEY: modified_base	
		(B)	LOCATION: 14	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "W = A or T"	
30				
	(xi)	SEQUE	NCE DESCRIPTION: SEQ ID NO: 18:	
	CRNTACTTY	r acn	WCTTAAG CT	22

35

(2) INFORMATION FOR SEQ ID NO: 19:

WO 96/32484

-176-

SEQUENCE CHARACTERISTICS: (ï)

(A) LENGTH: 398 base pairs

TYPE: nucleic acid (B) STRANDEDNESS: single <u>0</u>

TOPOLOGY: linear

Ŋ

SEQUENCE DESCRIPTION: SEQ ID NO: 19: (xi)

360 398 300 240 120 180 9 GAGGATCACG AAAGGATTGG ATCATCTGTC ATTGCGCACG AAATAAAGCT GCCCAGCGGG GAAACGAGGT GGGTCATTGA TACAATCGTT GGTAAAGAAG ATGGTATTGG CGTAGAGAAT AAAATTATCA TAGTCGCCAA TGACGTTACC TTCAAAGCTG GGTCTTTTGG TCCTAGAGAG GACGCGTTTT TCCTCGCTGT GACTGAACCC TTGTGCGCGG AGAAGCTTCC CTTGATTTAC TTAGCAGCAA ACTCTGGCGC CCGGCTAGGG GTGGCTGAAG AAGTCAAAGC CTGCTTTAAA GTTGGATGGT CGGATGAAGT TTCCCCGGAG AATGGTTTTC AGTATATA CCTAAGCCCT CTAACGGGAA GCGGGCAAT AGCGGGTGCT TACTCGAG 15 20 10

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 132 amino acids

(B) TYPE: amino acid

ហ

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Lys Ile Ile Val Ala Asn Asp Val Thr Phe Lys Ala Gly Ser Phe 10

Gly Pro Arg Glu Asp Ala Phe Phe Leu Ala Val Thr Glu Pro Leu Cys

15

Ala Glu Lys Leu Pro Leu Ile Tyr Leu Ala Ala Asn Ser Gly Ala Arg 30

Leu Gly Val Ala Glu Glu Val Lys Ala Cys Phe Lys Val Gly Trp Ser 25

20

Pro 80	Ĺys	Lys
Ser	Ile 95	Gly
r Leu s	His Glu	Val 110
Tyr	His	Ile
Ile	Ala	Thr
Tyr 75	Ile	Asp
e Gln 1	Val 90	Ile
Asn Gly Phe	Ser	Val 105
Gly	Gly Ser	Trp
Asn	Gly	Arg
Glu 70	Ile	Thr
Pro	Arg 85	Glu
Val Ser	Glu Arg	Gly 100
Val	iis	Ser
Glu 1	Asp H	Pro
Asp 65	Glu A	Leu

S

Gly Ala Tyr Ser

15

Glu Asp Gly Ile Gly Val Glu Asn Leu Thr Gly Ser Gly Ala Ile Ala

10

120

125

(2) INFORMATION FOR SEQ ID NO: 21:

(A) LENGTH: 10 amino acids (i) SEQUENCE CHARACTERISTICS: (B) TYPE: amino acid 20

(D) TOPOLOGY: linear

(C) STRANDEDNESS:

- 179 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Pro Leu Asp Phe Asn Glu Ile Arg Gln Leu 10 5

5

10

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22: 15

Leu Asp Phe Asn Glu Ile Arg 5

20

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid 25
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: one-of (9, 11, 14)
 - (D) OTHER INFORMATION:/mod_base= OTHER /note= "Y = C or T"
- 35 (ix) FEATURE:
 - (A) NAME/KEY: modified_base

PCT/US96/05095

WO 96/32484 PCT/

- 180 -

(B) LOCATION:18

(D) OTHER INFORMATION:/mod_base= OTHER
 /note= "R = A or G"

5 (ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION:21
- (D) OTHER INFORMATION:/mod_base= OTHER
 /note= "H = A, C, or T"

10

15

- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION:22
 - (D) OTHER INFORMATION:/mod_base= OTHER
 /note= "M = A or C"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GCTCTAGAYT TYAAYGARAT HMG

23

20

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 5 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Asn Met Lys Met Xaa

າ 5

35

(2) INFORMATION FOR SEQ ID NO: 25:

- 181 -

			101
	(i)	SEQU	ENCE CHARACTERISTICS:
		(A)	LENGTH: 22 base pairs
		(B)	TYPE: nucleic acid
		(C)	STRANDEDNESS: single
5		(D)	TOPOLOGY: linear
	(ix)	FEAT	URE:
		(A)	NAME/KEY: modified_base
		(B)	LOCATION: 2
10		(D)	OTHER INFORMATION:/mod_base= OTHER
			/note= "R = A or G"
	(ix)	FEAT	
			NAME/KEY: modified_base
15			LOCATION: one-of(3, 13)
		(D)	OTHER INFORMATION:/mod_base= OTHER
			/note= "N = A, C, G, or T"
	(ix)	FEAT	TIPE.
20	(17)		NAME/KEY: modified_base
20			LOCATION: 9
			OTHER INFORMATION:/mod base= OTHER
		(2)	/note= "Y = C or T"
			, 11000 1 0 01 1
25	(ix)	FEAT	JRE:
		(A)	NAME/KEY: modified_base
		(B)	LOCATION:14
		(D)	OTHER INFORMATION:/mod_base= OTHER
			/note= "W = A or T"
30			
	(xi)	SEQUE	ENCE DESCRIPTION: SEQ ID NO: 25:

CRNTACTTYT ACNWCTTAAG CT

22

35

1

(2) INFORMATION FOR SEQ ID NO: 26:

PCT/US96/05095

WO 96/32484

- 182 -

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear 5

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: one-of(10, 16)
- (D) OTHER INFORMATION:/mod_base= OTHER 10 /note= "N = A, C, G, or T"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION:13 15
 - (D) OTHER INFORMATION:/mod_base= OTHER /note= "R = A or G"

(ix) FEATURE:

- (A) NAME/KEY: modified_base 20
 - (B) LOCATION: one-of(14, 19)
 - (D) OTHER INFORMATION:/mod_base= OTHER /note= "Y = C or T"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26: 25

GCTCTAGACN CARYTNAAYT T

- (2) INFORMATION FOR SEQ ID NO: 27: 30
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single 35
 - (D) TOPOLOGY: linear

WO 96/32484 PCT/US96/05095

- 183 -

	(ix)	FEAT	URE:	
		(A)	NAME/KEY: modified_base	
		(B)	LOCATION: 2	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
5			/note= "R = A or G"	
	(ix)	FEAT		
			NAME/KEY: modified_base	
			LOCATION: one-of(3, 13)	
10		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "N = A, C, G, or T"	
	(ix)	FEAT	TRE	
	(12,		NAME/KEY: modified_base	
15			LOCATION: 9	
10			OTHER INFORMATION:/mod_base= OTHER	
		(2)	/note= "Y = C or T"	
			, notes 1 = 0 of 1	
	(ix)	FEAT	JRE:	
20		(A)	NAME/KEY: modified_base	
			LOCATION:14	
		(D)	OTHER INFORMATION:/mod_base= OTHER	
			/note= "W = A or T"	
25	(xi)	SEOUE	ENCE DESCRIPTION: SEQ ID NO: 27:	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	CRNTACTTY	G ACN	WCTTAAG CT	22
20	(2) INFO		NV POR CRO ID NO. 20.	
30	(2) INFOR	CMAIIC	ON FOR SEQ ID NO: 28:	
	(i)	SEQUE	ENCE CHARACTERISTICS:	
		(A)	LENGTH: 25 base pairs	
		(B)	TYPE: nucleic acid	
35		(C)	STRANDEDNESS: single	
		(D)	TOPOLOGY: linear	

WO 96/32484 PCT/US96/05095

- 184 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

GAAGATCTTT ATGGGCGGTA GTATG

25

5

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

15

10

GGTCGAAACG GTACAACCTA GGC

23

(2) INFORMATION FOR SEQ ID NO: 30:

20

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11994 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION:10357
 - (D) OTHER INFORMATION:/mod_base= OTHER /note= "R = A or G"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: one-of (10198, 10472, 10501, 11698)
 - (D) OTHER INFORMATION:/mod_base= OTHER

-185-

9

/note= "Y = C or

Ē

FEATURE:

(ix)

(A) NAME/KEY: modified_base

(B) LOCATION:10321

ഹ

(D) OTHER INFORMATION:/mod_base= OTHER

note= "K = G or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

GCCCGCCCAA CCAGGGCCAT GCGGCCCAAC TACCCGTCGT CCCCGTCTAG ACCACGCCCC 10

120 180 CCACCTGCCC CGCCCACCC CACCCCCAAC TCCTCCATGA ATGCACGCAT TTCATCGCTC CAACCACAAC GCAGCAGCC CAGCACCAGC GGCCTCGGCG ACGCGGCGCG CATTTATACC 15

240 ACGCAATTCC ATCTGGATCT CCACCTGGCC GCAGCACGGG TTTCCTCCTC CCTCCCCGCG

300 CGGCATTCCG TCGAACGGCT TGGCGGCGCG CCTCCGGACG GACCCACGGT AAGCTCCCCC 20

360 TGCCCTTGCT ATGCCCCTGC TTCTGCACGC ATCTTCCGAT TTTCGCTGGA GCGCTCCGCC

420 TCCGCCTATG CGTGCGGGCG ATTGACTGGG CCGGACTTGC CATGGACTCG TACTGACCAG

GC 480	.AG 540	AT 600	099 527	TT 720	rcg 780	4AT 840	ATT 900	096 ၁၁၁	CAT 1020	TTG 1080	TCG 1140
TGATGTACTC GCTCGCTAGC CTCTCCGCCC ACGCCGGCCT CAAATCGAGC GCGCGTAGGC	TGCCTCCAGG CCCCAATCCA AGCAGCGCAG CGCAGGGCCT TCCTGCTGAT TCTCTCTAG	CGCCAGGAGA TCACGGGACC AGATACCACT GCTAGCAGTC GACCCGTGCC GTCGCCGGAT	TGCCGGGTTC GCCCCGTCTG GCATTACGTC GAGCGGGTGG TGGGCGCGCG CGACTGGCCG	GGTTTTGGGC ACACTTGTTG CTTACTTCCT TCTGCTGAAT GCCGGAATTC AAGTCCATTT	CCCTCTITIGC ICCIGCITGG ACTAACCAGI CCCCTAGIGI GGACTACAGC AITTTTICG	CGTATTTTA ATGTGATCTC TGGTCTTGCT CTTCTGGTTC TGCTGGTTGT TGACTAGAAT	TCTGCACTCT CCCATGGCAC TCTTGCCGGA GGAATTTCCC GATTTAGCTA GCCGTTAATT	AGTGCCACCA TGTTGTTT TTCTGTAGTA CCATTTTAGC ATCTGGTACA GAAAAAGGGC	ACACACATGC CAAACCGAAA AGAAATATCC CAGTGCTGCA ATTCTACGCT AATCGGACAT	AAATGATTGA TGCGCTAACG GACGGACTTG TTCTTTTGCT TTTCCCAGCG CTGAAGGTTG	GAGGGGCAA TAATGGTGGA ATCTGACCAA ATAAACGGGA CGCCCAACAG GATGTCCTCG
ACGCCGGCCT CA	CGCAGGGCCT TCC	GCTAGCAGTC GA	GAGCGGGTGG TG	TCTGCTGAAT GC	CCCCTAGTGT GG	CTICTGGITC TG	. GGAATTTCCC GA	. CCATTTAGC AT	: CAGTGCTGCA AT	; TTCTTTTGCT TI	A ATAAACGGGA CC
crcrccgccc	AGCAGCGCAG	AGATACCACT	GCALTACGIC	CTTACTTCCT	ACTAACCAGT	regretteet	rcttgccggA	TTCTGTAGTA	AGAAATATCC	3 GACGGACTTG	A ATCTGACCAA
GCTCGCTAGC	CCCCAATCCA	TCACGGGACC	GCCCGTCTG	ACACTTGTTG	rccrectree	ATGTGATCTC	CCCATGGCAC	rgtigitgi	CAAACCGAAA	TGCGCTAACG	TAATGGTGG
TGATGTACTC	TGCCTCCAGG	CGCCAGGAGA	TGCCGGGTTC	GGTTTTGGGC	CCCTCTTTGC	CGTATTTTA	TCTGCACTCT	AGTGCCACCA	ACACACATGC	AAATGATTGA	GAGGGGGCAA
		ស			10		15		1	. 50	

-187-

	GTCGATGAAT	GTCGATGAAT TCTGTAAAGC GCTCGGGGGT GACTCGCCGA TACACAGCGT GCTGGTTGCC	GCTCGGGGGT	GACTCGCCGA	TACACAGCGT	GCTGGTTGCC	1200
	AACAATGGGA	AACAATGGGA TGGCTGCGGT CAAATTCATG CGCAGCATCC GCACCTGGGG CTTGGAGACC	CAAATTCATG	CGCAGCATCC	GCACCTGGGC	CTTGGAGACC	1260
ស	TTTGGGAACG	TTTGGGAACG AGAAGGCCAT TCTCTTGGTG GCTATGGCAA CTCCAGAGGA CCTCAGGATA	TCTCTTGGTG	GCTATGGCAA	CTCCAGAGGA	CCTCAGGATA	1320
	AATGCGGAGC	AATGCGGAGC ACATAAGAAT CGCCGACCAG TTCTTAGAAG TTCCTGGTGG AACGAACAAT	CGCCGACCAG	TTCTTAGAAG	Trccreeree	AACGAACAAT	1380
5	AACAACTATG	AACAACTATG CAAATGTACA GCTCATAGTG GAGGTTAGTG CAGTTGATCA TCCTTTTTCA	GCTCATAGTG	GAGGTTAGTG	CAGTTGATCA	TCCTTTTCA	1440
) 1	CCTACTACTT	CCTACTACTT ATGGATTACC ATGTTCATTA TGCTGGATAC TTGACTAGTT ATTAATCTTT	ATGTTCATTA	TGCTGGATAC	TTGACTAGTT	ATTAATCITT	1500
	CTGATTCACC	CTGATTCACC TGTCCTGTCA CAGATAGCAG AGAGAACTCG GGTTTCTGCA GTTTGGCCTG	CAGATAGCAG	AGAGAACTCG	GGTTTCTGCA	GTTTGGCCTG	1560
15	GCTGGGGTCA	GCTGGGGTCA TGCTTCTGAG AACCCAGAAC TTCCAGACGC GCTCATGGAA AAGGGAATCA	AACCCAGAAC	TTCCAGACGC	GCTCATGGAA	AAGGGAATCA	1620
	TTTTCTTGG	TTTTTCTTGG GCCACCATCA GCCGCGATGG GGGCACTAGG CGATAAGATT GGTTCTTCTC	GCCGCGATGG	GGGCACTAGG	CGATAAGATT	GGTTCTTCTC	1680
ç	TTATTGCACA	TTATTGCACA AGCAGCAGGA GTTCCAACTC TTCCATGGAG CGGGTCACAT GTATGTATAC	GTTCCAACTC	TTCCATGGAG	CGGGTCACAT	GTATGTATAC	1740
) N	CTTGTCCTAT	CTIGICCIAI ITCITIAIGG TITIGCICII CIGITITICI CICCACCACI GIGIAITICI	TTTGCTCTT	CTGTTTTTCT	CTCCACCACT	GTGTATTTCT	1800
	CAAAACTAAA	CAAAACTAAA TCAATACACG CTGTAGGTGA AAGTTCCGCA AGAAACCTGC CACTCAATAC	CTGTAGGTGA	AAGTTCCGCA	AGAAACCTGC	CACTCAATAC	1860

2580	GTAGAAGTTC	GTGAGTACTG	CATTTGTGTA	CTTAGCCAAA	TCAGITITIGI IGGAAITAGI CTIAGCCAAA CATTIGIGIA GIGAGIACIG GTAGAAGITIC	TCAGTTTTGT	
2520	TTGTTCAATA	AAGCATTGGG	TATTCTCCTG	AAAGGTTAGT	AGTGTTCAAA GAAGGCACCA AAAGGTTAGT TATTCTCCTG AAGCATTGGG TTGTTCAATA	AGTGTTCAAA	02
2460	TCGAGACTGT	CACTGCACAG	AACGTGGCAG	CAAGCATGGC	GAGGTTCAGT TGCTCTGTGA CAAGCATGGC AACGTGGCAG CACTGCACAG TCGAGACTGT	GAGGTTCAGT	ć
2400	CCGACATCTA	CTTTGTAGAG	TCTGTACTTT	ATCTTGCCTT	ATATAGITCA TTTAGCTAAA ATCTTGCCTT TCTGTACTTT CTTTGTAGAG CCGACATCTA	ATATAGTTCA	
2340	TTCTGTACTG	CGAGTGCTTC	CAGTATTCAG	TACTCATGTT	TITCIGITGI AICTITGIGI TACTCAIGIT CAGTATICAG CGAGIGCTIC ITCTGTACTG	TTTCTGTTGT	15
2280	CAGCCATTAT	AAGCTGATAA	GATACGTGAT	CATCTCAGGT	TATATTTATT ATGAAGGTGG CATCTCAGGT GATACGTGAT AAGCTGATAA CAGCCATTAT	TATATTTATT	
2220	CCGGATCGCC	GGAGAAGTCC	GCAAGTGCAA	CATTGTTTAA	TAATGATGAT GAGGTCAGAG CATTGTTTAA GCAAGTGCAA GGAGAAGTCC CCGGATCGCC	TAATGATGAT	01
2160	TATAGGTACA	CAAATGGTTT	TTTATGTCAT	AAAGATGTTT	GCAATTATTG TATATTAACC AAAGATGTTT TTTATGTCAT CAAATGGTTT TATAGGTACA	GCAATTATTG	•
2100	CAAGTTTTCT	AAATGAAGTC	TGTTCATTTG	TAATTTCCAC	CTACTAGAAA CAATTACATG TAATTTCCAC TGTTCATTTG AAATGAAGTC CAAGTTTTCT	CTACTAGAAA	
2040	ATGGAATGCT	CCTTAGTTAT	TTCATCTCTA	ATCTTTTCAA	GGAAGGTTGG TATTCTTTTC ATCTTTTCAA TTCATCTTA CCTTAGTTAT ATGGAATGCT	GGAAGGTTGG	Ŋ
1980	AAAGGAATAA	cececetect	CATCATGGGG	ATGATCAAGG	AGGTGGTGGG GTATCCTGCA ATGATCAAGG CATCATGGGG CGGGGGTGGT AAAGGAATAA	AGGTGGTGGG	
1920	GCTAGTTGTC	CGAAGCAGTT	CAACTACAGA	GCTTGTGTTT	CTGAGGAGAT CTATAAGAAC GCTTGTGTTT CAACTACAGA CGAAGCAGTT GCTAGTTGTC	CTGAGGAGAT	

PCT/US96/05095

WO 96/32484

-189-

	4)11)94)41	incasciica seesaaiaaa aaciicaiis sacaaisias caatcatata stactstra	AACITICATIG	GACAATGTAG	CAATCATATA	GTACTGTTTA	2640
	GCAAAGTGCA	GCAAAGTGCA AAATGTTGCA GGAGCTATAC CAAATTTATG TCGTGGCATT TTCTTAAATG	GGAGCTATAC	CAAATTTATG	TCGTGGCATT	TTCTTAAATG	2700
ស	GAATCATTTA	GAATCATTTA TTACTGTTAG TTATACTTAT ACTGTACTAA ATAGTTGAAT GTTGCATTTT	TTATACTTAT	ACTGTACTAA	ATAGTTGAAT	GTTGCATTTT	2760
	GAATTCAAGA	GAATTCAAGA ACAAACITIT ICTICCTATA GIGATAIAIG IGTIGIACIT GAAGITITIG	TCTTCCTATA	GTGATATATG	TGTTGTACTT	GAAGTTTTTG	2820
9	AACTCAGAAT	AACTCAGAAT ATTGAAAAGT CTAGTGACTG TATTACAGAT TATTTTGTAA CCAAAAAAAT	CTAGTGACTG	TATTACAGAT	TATTTTGTAA	CCAAAAAAT	2880
}	TTAACTAGTG	TTAACTAGTG CAAGACAGAT AATAGCAGAG AAGTCTTAGC AAAATTATAT TTATTTTACT	AATAGCAGAG	AAGTCTTAGC	AAAATTATAT	TTATTTTACT	2940
	TCTCACGATA	TCTCACGATA TATATACTTG TGAAACAGAT CATTGAGGAG GGACCAATTA CAGTTGCTCC	TGAAACAGAT	CATTGAGGAG	GGACCAATTA	CAGTTGCTCC	3000
15	TCCAGAAACA	TCCAGAAACA ATTAAAGAGC TTGAGCAGGC AGCAAGGCGG CTTGCTAAAT GTGTGCAATA	TTGAGCAGGC	AGCAAGGCGG	CTTGCTAAAT	GTGTGCAATA	3060
	TCAGGGTGCT	TCAGGGTGCT GCTACAGTAG AATATCTGTA CAGCATGGAA ACAGGCGAAT ACTATTTCCT	AATATCTGTA	CAGCATGGAA	ACAGGCGAAT	ACTATTTCCT	3120
00	GGAGCTTAAT	GGAGCTTAAT CCAAGGTTGC AGGTAGAACA CCCTGTGACC GAATGGATTG CTGAAATAAA	AGGTAGAACA	CCCTGTGACC	GAATGGATTG	CTGAAATAAA	3180
) 1	CTTACCTGCA	CTTACCTGCA TCTCAAGTTG TAGTAGGAAT GGGCATACCA CTCTACAACA TTCCAGGTAG	TAGTAGGAAT	GGGCATACCA	CTCTACAACA	TTCCAGGTAG	3240
	GCCAGTTGTC	GCCAGTTGTC CAACTTGATG GTTGATGATA TTATCTCTTT CCCCCCACAC TAATCAATAT	GTTGATGATA	TIATCTCTTT	CCCCCACAC	TAATCAATAT	3300

WO 96/32484

PCT/US96/05095

-190-

	AAGGATAACT	GCAGAGATCA	AAGGATAACT GCAGAGATCA GACGCTTTTA TGGAATAGAA CATGGAGGTG GCTATCACGC	TGGAATAGAA	CATGGAGGTG	GCTATCACGC	3360
	TTGGAAGGAA	ATATCAGCTG	TTGGAAGGAA ATATCAGCTG TTGCAACTAA ATTTGATCTG GACAAAGCAC AGTCTGTAAA	ATTTGATCTG	GACAAAGCAC	AGTCTGTAAA	3420
Ω.	GCCAAAGGGT	CATTGTGTAG	GCCAAAGGGT CATTGTGTAG CAGTTAGAGT TACTAGCGAG GATCCAGATG ATGGGTTTAA	TACTAGCGAG	GATCCAGATG	ATGGGTTTAA	3480
	GCCTACAAGT	GGAAGAGTGG	GCCTACAAGT GGAAGAGTGG AAGAGCTGAA CTTTAAAAGT AAACCCAATG TTTGGGCCTA	CTTTAAAAGT	AAACCCAATG	TTTGGGCCTA	3540
c	TTTCTCTGTT	AAGGCAAGTT	TTTCTCTGTT AAGGCAAGTT TGCATCCATG CAGAATGATC TTTGATACCA CATGACATGT	CAGAATGATC	TTTGATACCA	CATGACATGT	3600
?	CACAACAGCT	GCAGCTTATC	CACAACAGCT GCAGCTTATC ATTACCCTTG AGTTTTCCTG TTTCTTATGT CGATAAATTT	AGTTTTCCTG	TTTCTTATGT	CGATAAATTT	3660
	CCTGGTTAAA	AACTGTATCT	CCTGGTTAAA AACTGTATCT TGTGTGGCAA ACCTAACCTG AATCATCGTT TTTTGTTTCA	ACCTAACCTG	AATCATCGTT	TTTTGTTTCA	3720
ρί	GTCCGGAGGT	GCAATTCATG	GTCCGGAGGT GCAATTCATG AGTTCTCTGA TTCCCAGTTT GGTAAGTGAT GTGCGTAAAT	TTCCCAGTTT	GGTAAGTGAT	GTGCGTAAAT	3780
	TTCTGTTTCC	TCATATATCT	TTCTGTTTCC TCATATATCT CATGATGATG CTTCTTTAA ACAGCATGCC TTTTTTCGCA	CTTCTCTTAA	ACAGCATGCC	TTTTTCGCA	3840
ç	GGTCATGTTT	TTGCTTTTGG	GGTCATGTTT TTGCTTTTGG GGAATCTAGG TCATTGGCAA TAGCCAATAT GGTACTTGGG	TCATTGGCAA	TAGCCAATAT	GGTACTTGGG	3900
2	TTAAAAGAGA	TCCAAATTCG	TTAAAAGAGA TCCAAATTCG TGGAGAGATA CGCACTAATG TTGACTACAC TGTGGATCTC	CGCACTAATG	TTGACTACAC	TGTGGATCTC	3960
	TTGAATGTAA	GATAACCCCA	TIGAAIGIAA GAIAACCCCA CAGIAAACAI GIICICIGAI IACAIGGIAC AIIIAAAAAA	GTTCTCTGAT	フタルジジルタンタル	դորդչորդչ	0

AAAA	ACATGG	TACAATTTTG	AAAAACATGG TACAATTTTG TGTGTGTAAT TTATGTTCAA AATTTTTCAT ATCTCCAGGC	TTATGTTCAA	AATTTTTCAT	ATCTCCAGGC	4080
TGCAGAGTAC CGAGAAATA AGATTCACAC TGGTTGGCTA GACAGCAGAA TAGCAATGCG	ဗ	AGAAAATA	AGATTCACAC	TGGTTGGCTA	GACAGCAGAA	TAGCAATGCG	4140
TGTTAGAGCA GAGAGGCCCC CATGGTACCT TTCAGTTGTT GGTGGAGCTC TATATGTATG	වී	GAGGCCC	CATGGTACCT	TTCAGTTGTT	GGTGGAGCTC	TATATGTATG	4200
ATTTCTTTTT CTGGGGAACT ATGATTTATT AGGTGGTTAT GAGCTTTCAT ACAAGATCCA	ទ	GGGGAACT	ATGATTTATT	AGGTGGTTAT	GAGCTTTCAT	ACAAGATCCA	4260
TITICCATCC TCAAATACTG TGTTTCTTAT ATTTCAGGAA GCATCAAGCA GGAGCTCGAG	Į.	AAATACTG	TGTTTCTTAT	ATTTCAGGAA	GCATCAAGCA	GGAGCTCGAG	4320
TGTTGTAACC GATTATGTTG GTTATCTCAG TAAAGGTCAA ATACCACCAA AGGTACATAC	GA	TTATGTTG	GTTATCTCAG	TAAAGGTCAA	ATACCACCAA	AGGTACATAC	4380
TATATGATGA ATGTTCTTAC TGTTTATATT	AT	GTTCTTAC	TGTTTATATT	CCAATITICTA TATGAATAAA ACTGTCTAAC	Tatgaataaa	ACTGTCTAAC	4440
TCTTTCCGTT CA	ฮ์	CAGCACAT	CACAGCACAT CTCTTGTC AATTTGACTG TAACACTGAA TATAGATGGG	AATTTGACTG	TAACACTGAA	TATAGATGGG	4500
AGCAAATATA CGGTAATTAT CTATAATTTT CTCTTTAATC TTATCCATGC CATACCCATC	S	GTAATTAT	CTATAATTTT	CTCTTTAATC	TTATCCATGC	CATACCCATC	4560
TAATCCAGIT GGTATCCTTG TCACATCTGC TAATTAITAT TITCTTCTGC AGATTGAGAC	Ď.	TATCCTTG	TCACATCTGC	TAATTATTAT	TTTCTTCTCC	AGATTGAGAC	4620
AGTACGAGGT GGACCCCGTA GCTACAAATT AAGAATTAAT GAATCAGAGG ITGAAGCAGA	ဗ္ဗ	ACCCCGTA	GCTACAAATT	AAGAATTAAT	GAATCAGAGG	TTGAAGCAGA	4680
GATACATTCG CTGCGAGATG GCGGACTCTT AATGCAGGTA GATATATCTA CCAAGTTTTT	ย์	GCGAGATG	GCGGACTCTT	AATGCAGGTA	GATATATCTA	CCAAGTTTT	4740

ĕ

	ATACAAGCGC AATCTATCTA ATTTTCTTT TATTTGGAAA TGGTCTGACC AATTTTCAAT	TCTA	ATTITCITI	TATTTGGAAA	TGGTCTGACC	AATTTTCAAT	4800
	TGTGAATTTT CTAGTTGGAT GGAAACAGTC ATGTAATTTA CGCCGAGACA GAAGCTGCTG	GGAT	GGAAACAGTC	ATGTAATTTA	CGCCGAGACA	GAAGCTGCTG	4860
rc	GCACGCGTCT TCTAATCAAT GGGAGAACAT	CAAT	GGGAGAACAT	GCTTATTACA	GCTTATTACA GGTGAAGATA GCTAGATCTG	GCTAGATCTG	4920
	TACTCTCCTC TIGGTTCCTA TGTAATATAG GGGTTGTTTC AGTTGTAACT CTAGCTGCAA	CCTA	TGTAATATAG	GGGTTGTTTC	AGTTGTAACT	CTAGCTGCAA	4980
	ATTGTATGAA AATACATAAA TTAATTATGT CCTCTGAATG ATATATTACA GAAAGAGCAT	TAAA	TTAATTATGT	CCTCTGAATG	ATATATTACA	GAAAGAGCAT	5040
10	GATCCTTCCA GGTTGTTGGC TGATACACCA TGCAAGCTTC TTCGGTTTTT GGTCGCGGAT	rtggc	TGATACACCA	TGCAAGCTTC	TICGGTTTTT	GGTCGCGGAT	2100
	GGTTCTCATG TGGTTGCTGA TACGCCATAT GCTGAGGTGG AGGTGATGAA AATGTGCATG	SCTGA	TACGCCATAT	GCTGAGGTGG	AGGTGATGAA	AATGTGCATG	5160
15	CCACTGTTAC TACCGGCCTC TGGTGTCATT CACTTTGTCA TGCCTGAGGG TCAGGCCATG	зсстс	TGGTGTCATT	CACTTTGTCA	TGCCTGAGGG	TCAGGCCATG	5220
	CAGGTTCCTC CCCTCCTCT GTTTGCAGCA CTAGATGTAC ATTCTGACAA 'AAGTACTATA	CCTCT	GTTTGCAGCA	CTAGATGTAC	ATTCTGACAA	'AAGTACTATA	5280
,	TGGTTCATGC TCGTAATATA CGTGCATCTT TTAAATAGTA GCTGAAATGG CTGTCTTTGT	ATATA	CGTGCATCTT	TTAAATAGTA	GCTGAAATGG	CTGTCTTTGT	5340
70	GCAGGCGAGT GATCTGATAG CAAGGTTGGA TCTTGATGAC CCATCTTCTG TGAGAAGGGC	GATAG	CAAGGTTGGA	TCTTGATGAC	CCATCTTCTG	TGAGAAGGGC	5400
	TGAACCAITT CAIGGCACCI ITCCAAAACI IGGACCICCI ACIGCTAITI CIGGCAAAGI	CACCT	TTCCAAAACT	TGGACCTCCT	ACTGCTATTT	CTGGCAAAGT	5460

	TCACCAAAAG	TTTGCTGCAA	TCACCAAAAG TTTGCTGCAA GTGTGAATTC TGCCCACATG ATCCTTGCAG GATATGAACA	TGCCCACATG	ATCCTTGCAG (GATATGAACA	5520
	TAACATCAAT	CATGTAAGGC	TAACATCAAT CATGTAAGGC ACATCAAACT GTCAGTGTAT ACTTGTTCTT CCACTTTTCT	GTCAGTGTAT	ACTIGITCIT	CCACTTTTCT	5580
ហ	TTCCCTTGT	CTATCACATT	TTTCCCTTGT CTATCACATT GCCATGGGAA AACAGAGCAT GAGTTCTTCT ACAGAGAAA	AACAGAGCAT	GAGTICTICT	ACAGAGAGAA	5640
	ACTAACCTCT	TAATTGTGAC	ACTAACCTCT TAATTGTGAC AAACTATACC ATCTTTCTTC AATCAATAAG TTCCTGACTG	ATCTTTCTTC	AATCAATAAG	TTCCTGACTG	5700
9	TACCTTTTCT	TTCAGGTTGT	TACCTTTTCT TTCAGGTTGT ACAAGATTTG CTGAACTGCC TAGACAGCCC TGAGCTCCCT	CTGAACTGCC	TAGACAGCCC	TGAGCTCCCT	5760
	TTCCTGCAGT	GGCAAGAACT	TICCTGCAGT GGCAAGAACT CATGTCCGIT TIGGCAACCC GACTCCCGAA AGATCTTAGG	TTGGCAACCC	GACTCCCGAA	AGATCTTAGG	5820
	Aatgaggtga	ATAAGTATTC	AATGAGGTGA ATAAGTATTC AAGTTATAT TTTTTATCTT AGAGTTATTA TTCCATTTTT	TTTTATCTT	AGAGTTATTA	TTCCATTTT	5880
15	CATTICGGCT	GCATATCAAA	CATTICGGCT GCATAICAAA IGGAIAACIG AITIACCIGI ICICAGIIGG AIGCIAAGIA	ATTTACCTGT	TCTCAGTTGG	ATGCTAAGTA	5940
	CAAGGAGTAT	GAGTTGAATG	CAAGGAGTAT GAGTIGAATG CTGACTTCCG GAAGAGCAAG GATTTCCCTG CCAAGTTGCT	GAAGAGCAAG	GATTTCCCTG	CCAAGTTGCT	0009
Ċ	AAGGGGAGTC	ATTGAGGTCA	AAGGGGAGTC ATTGAGGTCA GTTTGAGACT GTTACTTGGC ATCCCTTCCT ITTTTATGTG	GTTACTTGGC	Arccertect	TTTTATGTG	0909
) V	TCATGTTGTT	TCCTTACAAA	TCATGTTGTT TCCTTACAAA GTCATCATTG CAGGCTAATC TTGCATACTG TTCCGAGAAA	CAGGCTAATC	TTGCATACTG	TTCCGAGAAA	6120
	GATAGGGTCA	CTAGTGAGAG	GATAGGGTCA CTAGTGAGAG GCTTGTAGAG CCACTTATGA GTCTGGTCAA GTCATATGAG	CCACTTATGA	GTCTGGTCAA	GTCATATGAG	6180

-194-

	GGTGGAAGAG	GGTGGAAGAG AAAGCCATGC TCGTGCGGTT GTCAAGTCTC TGTTTGAGGA GTATTTATCT	TCGTGCGGTT	GTCAAGTCTC	TGTTTGAGGA	GTATTTATCT	6240
	GTTGAAGAAC	GTTGAAGAAC TCTTCAGCGA TGACATTCAG GTAACTATTT ATAATTGCTT GGAATGGTTT	TGACATTCAG	GTAACTATTT	ATAATTGCTT	GGAATGGTTT	6300
ហ	GATCGATGCT	GAICGAIGCI CACTIICIGA CCAAAACGIG CIAAACCGII GIGCIITIITI GITITIAIAI	CCAAAACGTG	CTAAACCGTT	GTGCTTTTT	GTTTTTATAT	6360
	TCTCAGTCTG	TCTCAGTCTG ATGTGATAGA ACGTCTACGA CTTCAACATG CAAAAGACCT TGAGAAGGTC	ACGTCTACGA	CTTCAACATG	CAAAAGACCT	TGAGAAGGTC	6420
•	GTATATATTG	GTATATATIG IGTICTCCCA CCAGGTAATG ICTTCTAITG IGCAATCTGT IGACTIGATA	CCAGGTAATG	TCTTCTATTG	TGCAATCTGT	TGACTTGATA	6480
10	TGCAAAATTT	TGCAAAATTT TCGTGCTGAC AATTTGTGTT CTTTTGAAGG GTGTGAAAAG TAAAAATAAA	AATTTGTGTT	CTTTTGAAGG	GTGTGAAAAG	TAAAAATAAA	6540
	TTAATACTAC	TTAATACTAC GGCTTATGGA AGCATTGGTC TATCCAAATC CATCTGCATA CAGGGACCAG	AGCATTGGTC	TATCCAAATC	CATCTGCATA	CAGGGACCAG	0099
15	TTGATTCGCT	TTGATTCGCT TCTCTGCCCT GAACCATACA GCATACTCGG GGGTAAAATT GAGTTTGGAT	GAACCATACA	GCATACTCGG	GGGTAAAATT	GAGTTTGGAT	0999
	GATCTGCATC	GATCTGCATC TATTTATTTT GCACATTGAT ATGATAGTCT AGAAAAATAA AATAAATCTA	GCACATTGAT	ATGATAGTCT	AGAAAAATAA	AATAAATCTA	6720
!	TTGTAATTGA	TTGTAATTGA TGCAGCTGGC GCTTAAAGCA AGCCAACTTC TTGAGCACAC CAAATTGAGT	GCTTAAAGCA	AGCCAACTTC	TTGAGCACAC	CAAATTGAGT	. 6780
70	GAACTCCGCA	GAACTCCGCA CAAGCATAGC AAGAAGCCTT TCAGAGCTGG AGATGTTTAC TGAGGAAGGA	AAGAAGCCTT	TCAGAGCTGG	AGATGTTTAC	TGAGGAAGGA	6840
	GAGCGGATTT	GAGCGGATIT CAACACCTAG GAGGAAGATG GCTATCAATG AAAGGATGGA AGATTTAGTA	GAGGAAGATG	GCTATCAATG	AAAGGATGGA	AGATTTAGTA	0069

	TGTGCACCGG	TTGCAGTTGA	TGTGCACCGG TTGCAGTTGA AGACGCCCTT GTGGCTTTGT TTGATCACAG TGATCCTACT	GTGGCTTTGT	TTGATCACAG	TGATCCTACT	0969
	CTTCAGCGGA	GAGTAGTCGA	CTTCAGCGGA GAGTAGTCGA GACATACATA CGCAGATTGT ATCAGGTATC ACTGATTTTT	CGCAGATTGT	ATCAGGTATC	ACTGATTTT	7020
ហ	TTTTTACTA	CACTCTTTCT	TTTTTTACTA CACTCTTTCT TGAGACAACT AGAACATTAA CAAATTTATG CCGGCTAACT	AGAACATTAA	CAAATTTATG	CCGGCTAACT	7080
	CACAATCACC	TTCCAGCATT	CACAATCACC TTCCAGCATT ATCTTGCAAG GGGCAGCGTC CGGATGCAAT GGCATAGGTC	GGGCAGCGTC	CGGATGCAAT	GGCATAGGTC	7140
5	TGGTCTAATT	GCTTTATGGG	TGGTCTAATT GCTTTATGGG AATTCTCTGA AGAGCATATT GAACAAAGAA ATGGGCAATC	AGAGCATATT	GAACAAAGAA	ATGGGCAATC	7200
2	TGCGTCACTT	CTAAAGCCAC	TGCGTCACTT CTAAAGCCAC AAGTAGAGGA TCCAATTGGC AGGCGATGGG GTGTAATGGT	TCCAATTGGC	AGGCGATGGG	GTGTAATGGT	7260
	TGTAATCAAG	TCTCTTCAGC	TGTAATCAAG TCTCTTCAGC TTCTGTCAAC TGCAATTGAA GCTGCATTAA AGGAGACTTC	TGCAATTGAA	GCTGCATTAA	AGGAGACTTC	7320
15	ACACTACGGA	GCAGGTGTTG	ACACTACGGA GCAGGTGTTG GAAGTGTCTC AAATGGTAAT CCTATAAATT TGAACGGCAG	AAATGGTAAT	CCTATAAATT	TGAACGGCAG	7380
	CAATATGCTG	CACATTGCTC	CAATATGCTG CACATTGCTC TGGTTGGTAT CAACAATCAG ATGAGCACTC TTCAAGACAG	CAACAATCAG	ATGAGCACTC	TTCAAGACAG	7440
ć	GTTTGTTTAC	ACTCTATTCT	GTTTGTTTAC ACTCTATTCT TATGTGGTTT GTTGTTATTG CACAGGAGAC GAGTGTGATT	GTTGTTATTG	CACAGGAGAC	GAGTGTGATT	7500
) 1	CTGTGAACTG	GTCGTTAATT	CTGTGAACTG GTCGTTAATT TCATGATTT TTAGTTACCT CTTCCACTCT GTTTTCTCTT	TTAGTTACCT	CTTCCACTCT	GTTTTCTCTT	7560
	TATAGTGGTG	ATGAGGATCA	TATAGTGGTG ATGAGGATCA AGCGCAAGAA AGGATCAACA AACTCTCCAA GATTTTGAAG	AGGATCAACA	AACTCTCCAA	GATTTTGAAG	7620

	GATAACACTA	TAACATCACA	TCTCAATGGT (GCTGGTGTTA	GATAACACTA TAACATCACA TCTCAATGGT GCTGGTGTTA GGGTTGTCAG CTGCATTATC		089/
	CAAAGAGATG	AAGGGCGTTC	ACCAATGCGC	CACTCCTTCA	CAAAGAGATG AAGGGCGTTC ACCAATGCGC CACTCCTTCA AATGGTCATC TGACAAGTTA		7740
Ŋ	TATTATGAGG	AGGACCCGAT	GCTCCGCCAT	GTGGAATCTC	TATTATGAGG AGGACCCGAT GCTCCGCCAT GTGGAATCTC CTTTGTCCAC CTTCCTTGAA		7800
	TTGGTATTCA	GCTTTTGTTT	TGGCTTATGT	TCCCTTCAAT	TIGGIATICA GCTITIGITI IGGCTIAIGI ICCCTICAAI AATACCAGIA CCICTTAACA		7860
,	GTTTATGTGT	AAATACAGGA	CAAAGTGAAT	TTAGAAGGTT	GTTTATGTGT AAATACAGGA CAAAGTGAAT TTAGAAGGTT ACAATGACGC GAAATACACC		7920
10	CCATCACGTG	ATCGCCAGTG	GCACATGTAC	ACACTAGTAA	CCATCACGTG ATCGCCAGTG GCACATGTAC ACACTAGTAA AGAACAAGAA AGATCCGAGA		7980
	TCAAATGACC	AAAGGATGTT	TCTTCGTACC	ATAGTCAGAC	TCAAATGACC AAAGGATGTT TCTTCGTACC ATAGTCAGAC AGCCAAGTGT GACCAATGGG		8040
15	TTTTTGTTTG	GAAGTATTGA	TAATGAAGTT	CAAGCCTCGT	TTTTGTȚTG GAAGTATTGA TAATGAAGTT CAAGCCTCGT CATCATTCAC ATCTAACAGC		8100
	ATACTCAGAT	CATTGATGGC	AGCTCTAGAA	GAAATAGAGT	ATACTCAGAT CATTGATGGC AGCTCTAGAA.GAAATAGAGT TGCGTGCTCA CAGTGAGACT	AGTGAGACT	8160
;	GGGATGTCAG	GCCACTCCCA	CATGTATCTG	TGCATAATGA	GGGATGTCAG GCCACTCCCA CATGTATCTG TGCATAATGA GAGAACAACG GTTGTTTGAT	rtgtttgat	8220
20	CTAATTCCAT		AGTCAAAATT	TATTTATGTT	CTTCAAGGTC AGTCAAAATT TATTTATGTT CTCAACAGAT TATATTGCAT	ATATTGCAT	8280
	TAAATATGTT	. CATAGATGTT	CACTTGGTTT	TTGCTTCTCA	TABATATGIT CATAGAIGIT CACITGGITT ITGCIICICA TIAIGITAGG AIGACGAAIG	TGACGAATG	8340

PCT/US96/05095

WO 96/32484

-197-

	A31561164	HON I GHOMAG	moticolca monicacano acadenica eaciniicaa echinicoli nicaninii	CACIAIIGAA	GCA1A1GG11	AIGAAIAIAI	8400
	ATGAGCATGT	TGGTGTCAGG	ATGAGCATGT TGGTGTCAGG ATGCATCGCC TTTCCGTGTG CCAGTGGGAA GTGAAGCTAT	TTTCCGTGTG	CCAGTGGGAA	GTGAAGCTAT	8460
ហ	GGTTGGATTG	TGATGGGCAG	GGTTGGATTG TGATGGCAG GCTAATGGTG CTTGGAGAGT TGTTGTTACC AGTGTAACTG	CTTGGAGAGT	rgttgttacc	AGTGTAACTG	8520
	GCAATACCTG	CACTGTTGAT	GCAATACCTG CACTGTTGAT GTAAGTTACC TTAGCTATTG CACTGCTACG CGAGCATTAT	TTAGCTATTG	CACTGCTACG	CGAGCATTAT	8580
<u></u>	CATCTACAGT	TTTGCAAATA	CATCTACAGT TTTGCAAATA CTACCTCTGA TGGATAAAGC CCCACAGATC ATCAAATATG	TGGATAAAGC	CCCACAGATC	ATCAAATATG	8640
2	ATTTTGTTAG	CTTATCTAGT	ATTITGTTAG CTTATCTAGT TAGTGAATAG AAAATGTTCA TCACCCCCAT TATGAGTGTA	AAAATGTTCA	TCACCCCCAT	TATGAGTGTA	8700
	ATGGGTAATC	TCTCAATTTT	ATGGGTAATC TCTCAATTTT TGCCTTTAAA AGTTCTATTA AACACTACTT AAAAGACTTG	AGTTCTATTA	AACACTACTT	AAAAGACTTG	8760
15	TAAGTACCAG	TAAGTACCAG GTACCATTTT	CTCTTTATTG CTCTTATGCT TGAATTATTT TGACTTTCAG	CTCTTATGCT	TGAATTATTT	TGACTTTCAG	8820
	ATTTACCGAG	AAGTGGAGGA	ATTTACCGAG AAGTGGAGGA CCCCAATACA CATAAGCTTT TCTATCGCTC TGCCACACCC	CATAAGCTTT	TCTATCGCTC	TGCCACACCC	8880
c	ACAGCTGGTC	CTTTGCATGG	ACAGCTGGTC CTTTGCATGG CATTGCATTG CATGAGCCAT ACAAACCTTT GGATGCTATT	CATGAGCCAT	ACAAACCTTT	GGATGCTATT	8940
0	GACCTGAAAC	GTGCCGCTGC	GACCTGAAAC GTGCCGCTGC TAGGAAAAT GAAACCACAT ACTGCTATGA TTTCCCATTG	GAAACCACAT	ACTGCTATGA	TTTCCCATTG	0006
	GTGCGTTAGC	TACATCTCTT	GTGCGTTAGC TACATCTCTT TTCTTTTTT CTCTACAATT GGTTBACATG ATTAAAAAA	CTCTACAATT	ごよないななかんかい	ביא מידים מ מידים מ	0

£ ; _

TAGAGAGACA TTTACTCTGA CATTTGTGAC TGGCCGAGCT ATTGGAATTG GGGCCTATCT

	ACAGA 9180	CGTCC 9240	GAATT 9300	TCTTT 9360	AAAAT 9420	ATAAA 9480	TACAT 9540	CTAAA 9600	GACGG 9660	GCATA 9720
·	TG AAGTG	AG TTGAGO	CA CACCA	AG CTGGG	TG AGAGG	ag aggaa	TT TTCAC	cc Atgag	gga Aagag	ACT CTAAG
	CGGTATGC	TTGGTTCC	AAGCTCTO	ACATTTAA	CITGCITC	GGTGTAG	GAACGTG	GTTATAG	: ATTGTTG	: AGTGCCT
いっついっしい	GCATAACCAG	GGGTACTCCT	TTGGAACATG	AAATGATGTG	TGTCACAAAT	TGCAAGGCTC	CCAGAGCCCT	AAGCTCTTCA	TGTTGATACC	TGCCATTGCC
**************************************	AATCTAATGA	CTGGATCATG	GTGTTGTTGC	TAGTTGTTGC	TCTTTGATGC	CAACTGCTGG	GGTCTGATGA	ATTCACGTCT	CCAGATGGGT	ATGGAAGTGG
ATACICIGIC	CATGTTGCAG	GCTGATTCAA	AACAATTTTG	CGGGAGATTA	GAAGATGCAT	TACTTGTCAG	CATGTTGGAT	TTACCTCACT GAACAAGAIT AITCACGICT AAGCTCTICA GITAIAGCCC AIGAGCTAAA	agtaccagaa agcggagaaa ccagatgggt tgttgatacc attgttggga aagaggacgg	ACTIGGTIGI GAGAAICTAC AIGGAAGIGG IGCCAIIGCC AGIGCCIACI CIAAGGCAIA
ATTGGTAATA ATACTCTGTC CGCAGGCATT TGAAACACA TIGAAGAAGT CATGGGAATC	TGGTATTTCA CATGTTGCAG AATCTAATGA GCATAACCAG CGGTATGCTG AAGTGACAGA	GCTTATATTT GCTGATTCAA CTGGATCATG GGGTACTCCT TTGGTTCCAG TTGAGCGTCC	TCCAGGTAGC AACAATTTTG GTGTTGTTGC TTGGAACATG AAGCTCTCCA CACCAGAATT	TCCAGGTGGC CGGGAGATTA TAGTTGTTGC AAATGATGTG ACATTTAAAG CTGGGTCTTT	TGGTCCTAGA GAAGATGCAT TCTTTGATGC TGTCACAAAT CTTGCTTGTG AGAGGAAAAT	TCCTCTAATC TACTTGTCAG CAACTGCTGG TGCAAGGCTC GGTGTAGCAG AGGAAATAAA	GGCATGCTIC CATGTTGGAT GGTCTGATGA CCAGAGCCCT GAACGTGGTT TTCACTACAT	TTACCTCACT	AGTACCAGAA	ACTTGGTTGT
		ហ		•	10		15		ć	07

	TGCTCGGTTA	GGAATGCGGT	TGCTCGGTTA GGAATGCGGT GTATACAACG TCTTGATCAA CCAATTATTT TGACTGGGTA	TCTTGATCAA	CCAATTATTT	TGACTGGGTA	9840
	TTCTGCACTG	AACAAGCTCC	TTCTGCACTG AACAAGCTCC TGGGGCGCGA GGTTTATAGC TCTCAGATGC AACTGGGTGG	GGTTTATAGC	TCTCAGATGC	AACTGGGTGG	0066
2	CCCCAAAATC	ATGGCTACAA	CCCCAAAATC ATGGCTACAA ATGGAGTTGT TCATCTCACT GTGTCAGATG ATCTTGAAGG	TCATCTCACT	GTGTCAGATG	ATCTTGAAGG	0966
	TGTTTCTGCT	ATCTTGAAAT	TGTTTCTGCT ATCTTGAAAT GGCTCAGCTA TGTTCCTCCC TATGTTGGTG GTCCTCTTCC	TGTTCCTCCC	TATGTTGGTG	GTCCTCTTCC	10020
ç	TATTGTAAAA	TCTCTTGATC	TATTGTAAAA TCTCTTGATC CACCAGAGAG AGCTGTAACA TACTTTCCAG AGAATTCATG	AGCTGTAACA	TACTTTCCAG	AGAATTCATG	10080
9	TGATGCCCGT	GCTGCCATCT	TGATGCCCGT GCTGCCATCT GTGGCATTCA GGACACTCAA GGCAAGTGGT TGAGTGGTAT	GGACACTCAA	GGCAAGTGGT	TGAGTGGTAT	10140
	GTTTGACAGA	GAAAGCTTTG	GTTTGACAGA GAAAGCTTTG TGGAAACGTT AGAAGGATGG GCCAAAACTG TTATTACYGG	Agaaggatgg	GCCAAAACTG	TTATTACYGG	10200
15	AAGGCCAAAG	CTGGGTGGGA	AAGGGCAAAG CTGGGTGGGA TTCCAGTTGG TATCATAGCT GTGGAAACCG AGACAGTGAT	TATCATAGCT	GTGGAAACCG	AGACAGTGAT	10260
	GCAAGTAATC	CCTGCTGACC	GCAAGTAATC CCTGCTGACC CTGGTCAGCT TGATTCTGCC GAGCGTGTAG TCCCTCAAGC	TGATTCTGCC	GAGCGTGTAG	TCCCTCAAGC	10320
ć	KGGACAGGTG	TGGTTCCCAG	KGGACAGGTG TGGTTCCCAG ATTCGGCCGC AAAAACRGCC CAGGCACTGC TGGATTTCAA	AAAAACRGCC	CAGGCACTGC	TGGATTTCAA	10380
07	CCGTGAAGAG	crcccerrer	CCGTGAAGAG CTCCCGTTGT TCATACTTGC TAACTGGAGA GGCTTTTCTG GTGGGCAAAG	TAACTGGAGA	GGCTTTTCTG	GTGGGCAAAG	10440
	GGATCTGTTT	GAAGGAATCC	GGATCTGTTT GAAGGAATCC TTCAGGCTGG TYCTATGATT GTTGAGAATC TGAGGACGTA	TYCTATGATT	GTTGAGAATC	TGAGGACGTA	10500

-200-

	YAAGCAGCCT	YAAGCAGCCT GCTTTTGTGT ACATACCAAA GGCTGGAGAG CTGCGTGGAG GTGCATGGGT	ACATACCAAA	GGCTGGAGAG	creceredae	GTGCATGGGT	10560
	TGTGGTGGAC	TGTGGTGGAC AGCAAGATCA ATCCGGAGCA CATTGAGATG TATGCCGAGA GGACTGCGAG	ATCCGGAGCA	CATTGAGATG	TATGCCGAGA	GGACTGCGAG	10620
ß	AGGGAATGTC	AGGGAATGTC CTTGAGGCAC CGGGACTCAT TGAGATCAAA TTCAAGCCAA ATGAATTGGA	CGGGACTCAT	TGAGATCAAA	TTCAAGCCAA	ATGAATTGGA	10680
	AGAGAGTATG	AGAGAGTATG CTAGGGCTGG ACCCTGAGTT GATCAGCCTC AATGCTAAAC TCCTCAAAGA	ACCCTGAGTT	GATCAGCCTC	AATGCTAAAC	TCCTCAAAGA	10740
	AACTAGTGCT	AACTAGTGCT AGCCCTAGCC CTTGGGAAAC GGCGGCGGCG GCAGAGACCA TCAGGAGGAG	CTTGGGAAAC	ອວອອວອອວອອ	GCAGAGACCA	TCAGGAGGAG	10800
01	CATGGCTGCT	CATGGCTGCT CGGAGGAAGC AGCTGATGCC CATATATACT CAGGTTGCCA CCCGGTTTGC	AGCTGATGCC	CATATATACT	CAGGITGCCA	ccceermec	10860
	TGAGTTGCAC	TGAGTTGČAC GACACCTCCG CAAGAATGGC TGCCAAAGGC GTGATCAGTA AGGTGGTGGA	CAAGAATGGC	TGCCAAAGGC	GTGATCAGTA	AGGTGGTGGA	10920
15	CTGGGAGGAG	CTGGGAGGAG TCCCGGGCCT TCTTCTACAG GAGACTGCGA AGGAGGCTTG	TCTTCTACAG	GAGACTGCGA	AGGAGGCTTG	CCGAGGACTC	10980
	GCTCGCCAAA	GCTCGCCAAA CAAGTCAGAG AAGCCGCCGG CGAGCAGCAG ATGCCCACTC ACAGATCAGC	AAGCCGCCGG	CGAGCAGCAG	ATGCCCACTC	ACAGATCAGC	11040
ć	CTTGGAGTGC	CTIGGAGIGC ATCAGGAAAF GGTACCTGGC CTCTCAAGGA GGAGACGGCG AGAAGIGGGG	GGTACCTGGC	CTCTCAAGGA	GGAGACGGCG	AGAAGTGGGG	11100
0.7	CGATGATGAA	CGATGATGAA GCCTTCTTCA CCTGGAAAGA TGATCCTGAC AAGTATGGCA AGTATCTTGA	CCTGGAAAGA	TGATCCTGAC	AAGTATGGCA	AGTATCTTGA	11160
	GGAGCTGAAA	GGAGCTGAAA GCCGAGAGAG CGTCTACACT GCTGTCGCAT CTCGCTGAAA CCTCGGACGC	CGTCTACACT	GCTGTCGCAT	CTCGCTGAAA	CCTCGGACGC	11220

	CAAGGCCTTG	CCCAACGGTC	CAAGGCCTIG CCCAACGGIC ICICGCICCI CCICAGCAAA GIAAGITICI ITIGCIIAII	CCTCAGCAAA	GTAAGTTTCT	TTTGCTTATT	11280
	AGTATTTGTT	TGTTCTTGTA	AGTATTIGIT IGITCTIGIA TACATTICCT AATAAGITTC TITTGCTICT ICTTTTCTTT	AATAAGTTTC	TTTTGCTTCT	TCTTTTCTTT	11340
ß	GTTCTTGTAT	AGTTTTCCTA	GTTCTTGTAT AGTTTTCCTA ATTAAATTCT TTCTGTCCCT AAGTTCATCT CCCTGATACA	TTCTGTCCCT	AAGTTCATCT	CCCTGATACA	11400
	TACATTTGAT		TGATTGTACA GATGGATCCT GCAAAGAGGG AGCAGGTTAT GGATGGCCTC	GCAAAGAGGG	AGCAGGTTAT	GGATGGCCTC	11460
Ċ	AGGCAGCTTC	TTGGTTGATT	AGGCAGCTIC TIGGITGAIT ACTGGCCCGC GCCCTITGAI AACGCAICCA IICAGCCAGC	GCCCTTTGAT	AACGCATCCA	TTCAGCCAGC	11520
07	ATAAATCGGC	CTIGCTIGIT	ATAAATCGGC CTTGCTTGTT GCCACCAAGC AAGTCCTGTC TATGGTGGGC TGGGTACCAG	AAGTCCTGTC	TATGGTGGGC	TGGGTACCAG	11580
	TGGAACAAGC	AAATTTTACT	TGGAACAAGC AAATTTTACT TGCGTGGCGA GCTACAGGAG GGGGAGGATT TTCAGCGGAA	GCTACAGGAG	GGGGAGGATT	TTCAGCGGAA	11640
15	GAAAACTGAA	ACACATTGTT	GAAAACTGAA ACACATTGTT TGCACATAGG TAGGAGGCAT CTCATCTCAG GACAATCYGT	TAGGAGGCAT	CTCATCTCAG	GACAATCYGT	11700
	ATGTTTATTG	TCATTACAGA	ATGTTTATTG TCATTACAGA TAGGTACACA CAAAGCATAT GTATGCTGGA TAGATATTCG	CAAAGCATAT	GTATGCTGGA	TAGATATTCG	11760
ć	GTGTGAGTTG	TTGCAATGCA	TTGCAATGCA AGATTCATCA TCTTAATTTA CGAGATACGA ĮGTGATGATC	TCTTAATTTA	CGAGATACGA	ŢGTGATGATC	11820
2	GGTCGATGTG	GTAGTTGTAG	GGTCGATGTG GTAGTTGTAG TTTCCTCAGT GGCAGGGAAT GCCGAGTTTC CTTACGCTGC	GGCAGGGAAT	GCCGAGTITC	CTTACGCTGC	11880
	AGTTATGTGA	TATGTAAACC	AGTTATGTGA TATGTAAACC CTGAGAACTT TGGGGTGATA TGATGGACGT TTTATCAGTT	のようにいいません	TGATGGACGT	֏֏֏	04011

TCATGAGAAA TGAAATTGGA GCCGAGGCCC CTTACATCAG TTTTTTTCT TCTA

(2) INFORMATION FOR SEQ ID NO: 31:

SEQUENCE CHARACTERISTICS: (<u>;</u> (A) LENGTH: 2260 amino acids

TYPE: amino acid (B)

STRANDEDNESS: <u>0</u>

TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Met Val Glu Ser Asp Gln Ile Asn Gly Thr Pro Asn Arg Met Ser Ser 15 10

Val Asp Glu Phe Cys Lys Ala Leu Gly Gly Asp Ser Pro Ile His Ser 30

Val Leu Val Ala Asn Asn Gly Met Ala Ala Val Lys Phe Met Arg Ser

20

Ŋ

10

Ile Ala Gln Ala Ala Gly Val Pro Thr Leu Pro Trp Ser Gly Ser His 170

Ile A	Ile Arg Thr 1 50 Leu Val Ala M	Trp Ala Leu Glu 55 Met Ala Thr Pro	I BI E	Leu Glu 55 Thr Pro	Glu 7 55 Pro (Thr	Phe Asp	Thr Phe Gly Asn Glu Asp Leu Arg	Gly Asn Glu 60 Leu Arg Ile	Glu Glu Ile I	Lys	Ala Ala	Ile	Leu His
			1-	70			•		75					80
Arg Ile Ala	la I	AC CO	Asp G 85	Asp Gln Phe 85	e de	Leu Glu Val 90	g]n	Val 90	Pro	Gly	Gly Thr		Asn 95	Asn
Asn Tyr Ala Asn Val 100	11a A		/ usı	/al (Gln Leu	Leu	11e	Val		ile ile	Ala	Glu 110	Arg	Thr
Val Ser Ala Val Trp Pro Gly Trp Gly His 115	ala Va	Σ.	년 -	[fr]	Pro	Gly 120	Trp	Gly	His	Ala	Ser 125	Glu	Asn	Pro
Leu Pro Asp Ala 130	Авр А.]	7	G H	Leu	Met Glu 135	Glu	ьуя	Gly	Ile	11e 140	Phe	Leu	Gly	Pro
Ser Ala Ala M	Ala M	—	Met (Gly Ala Leu 150	Ala	Leu	Gly	Gly Asp Lys 155		Ile	Gly	Ser	Ser	Leu 160

[yr	Gln	Gly	Phe 240	Ĺув	Lys	Arg	Pro
Ser Ile Pro Glu Glu Ile Tyr 190	Cy8 C	Trp Gly Gly Gly Gly 220	Leu Phe 240	Gln Val Gln Gly Glu Val Pro Gly Ser Pro Ile Phe Ile Met Ly8 245	Ser Gln Ser Arg His Leu Glu Val Gln Leu Leu Cys. Asp 260 260	Ser Val Gln Arg 285	His Gln Lys Ile Ile Glu Glu Gly Pro Ile Thr Val Ala Pro Pro 290
G1u 190	Ser	Gly	Ala	Ile	Сув. 270	Val	Ala
alu elu	Ala 205	Gly	Asn Asp Asp Glu Val Arg Ala 235	Phe	Leu	Ser 285	Val
Pro	Val	Trp 220	Val	Ile	Leu	Gly Asn Val Ala Ala Leu His Ser Arg Asp Cys 275	Thr 300
Ile	Ala	Ser	Glu 235	Pro	Gln	Asp	Ile
Ser	Glu	Ala	Asp	Ser 250	Val	Arg	Pro
His 185		Lys	Asp	Gly	Glu 265	Ser	Gly
Сув	Thr Asp 200	Ile	Asn	Pro	Leu	His 280	Glu
	Thr	Met Ile 215	Ile Arg Lys Val His 230	Val	нів	Leu	Glu 295
Pro Gln Glu Thr 180	Ser	Ala	Val 230	G]u	Arg	Ala	Ile
Gln	Val	Pro	Lув	Gly 245	Ser	Ala	Ile
Pro 180	Cy8	Tyr	Arg	Gln	Gln 260	Val	Lys
Val	Ala 195	Val Gly Tyr 210	Ile	Val	Ser	Asn 275	Gln
Lys	Asn	Val 210	Gly		Ala		His 290
Val	Lys	Val	Lys 225	Lув	Val	His	Arg

S

15

Cy8 320	Glu	Glu	Gln	Arg	Glu 400	Val	Pro
	Met 335	Val	Ser	Ile	Lys Glu 400	Ser 415	Asp
Ala	Ser	Gln 350	Ala	Glu	Trp	Gln	Ser Glu Asp 430
Arg Arg Leu Ala Lys 315	Tyr	Leu	Pro 365	Pro	Ala	Lys Ala	Ser
Arg	Leu	Arg	Leu	11e 380	His		Thr
Arg 315		Pro	Aen	Tyr Asn	Phe Tyr Gly Ile Glu His Gly Gly Gly Tyr His 390	Asp	
Ala	Glu Tyr 330	Asn	Ile	Tyr	Gly	Phe Asp Leu Asp 410	Val Arg Val 425
Ala	Val	Leu 345	Glu	Leu	Gly	Asp	
Lys Glu Leu Glu Gln Ala 310	Thr	Leu Glu Leu Asn 345	Ala Glu 360	Val Val Gly Met Gly Ile Pro Leu 370	Gly	Phe	Ala
Glu	Ala Thr	Leu	Pro Val Thr Glu Trp Ile 355	Ile 375	His	Lys	Val
Leu 310		Phe	Trp	Gly	Glu 390	Ala Thr 405	Сув
Glu	Gln Gly Ala 325	Tyr Tyr 340	Glu	Met	Ile	A la 405	His
Ĺув	Gln		Thr	сіу	Gly	Val	Gly 420
Ile	Tyr	Glu	Va l 355	Val	Tyr	Ala	Lys
Thr	Gln	Th ^r Gly Glu		Val 370	Phe	Ser	Lys Pro Lys Gly His Cys Val Ala 420
Glu 305	Val	Thr	нів	Val	Arg 385	Ile	Lys

Ŋ

10

ć,

Trp Tyr Leu Ser Val Val Gly Gly Ala Leu Tyr Glu Ala Ser Ser Arg 545 550 550 560

Phe	Gly	Phe 480	Leu Lys 495	. Val	. Glу	Pro
Asn	Gly	Ala	Leu 495	Thr	Thr	Pro
Leu	Ser	Phe	Gly	Tyr 510	His	Arg
Glu 445	Lys		Leu	Asp Tyr 510	Ile 525	Glu Arg
Glu	Val 460	Gly His Val 475	Val Leu	Val	Ьув	Val Arg Ala 540
Val	Ser	G1y 475	Met	Asn	Asn	Arg
Arg	Phe	Phe	Asn 490	Thr	Glu	Val
Gly		Gln	Ala Asn Met 490	Arg 505	Tyr Arg Glu Asn Lys Ile His 520	Arg
Ser Gly Arg Val Glu Glu Leu Asn 440	Asn Val Trp Ala Tyr 455	Ser	Ile	Ile	Tyr 520	Met
Thr	Trp 455	Ser Asp Ser 470	Ser Leu Ala 485	Gly Glu	Leu Asn Ala Ala Glu 515	Ala 535
Gly Phe Lys Pro Thr 435	Val		Leu	Gly	Ala	Ile
Lys	Asn	Phe	Ser 485	Ile Arg 500	Ala	Arg
Phe	Pro	Glu	Arg	Ile 500	Asn	Ser
Gly 435	Lys	His	Ser	Gln	Leu 515	Leu Asp 530
Asp	Ser 450	Ile	Gly Glu Ser Arg	Ile	Leu	Leu 530
Asp ,	Ьув	Ala 465	Gly	Glu	Asp	Trp
	Ŋ		0	9	15	20

	-					
Gln	Asn	Arg	нів	His 640	Asn	Leu
Gly 575	Leu	Pro Arg	Ile	Ser	Ile 655	Leu
Гув	Thr 590			Asn	Leu	Arg 670
Ser	Val	G1y 605	Ala	Gly	Leu	Ser
Leu		Arg	Glu 620	Asp	Arg	Pro
Tyr	Leu	Val Arg Gly Gly 605	Val	Leu 635	Thr	Авр
Ser Val Val Thr Asp Tyr Val Gly Tyr Leu Ser Lys Gly Gln 575	Leu Val Asn Leu Thr 585	Thr	Lys Leu Arg Ile Asn Glu Ser Glu Val Glu Ala Glu 615	Leu Arg Asp Gly Gly Leu Leu Met Gln Leu Asp Gly Asn 630	Ala Gly Thr Arg 650	Leu Leu Gln Lys Glu His Asp Pro Ser Arg Leu Leu 665
Val	Val 585	Ile Glu Thr 600	Ser	Met	Ala	Glu 665
Tyr	Leu	Ile 600	Glu	Leu	Tyr Ala Glu Thr Glu Ala 645	Lys
Asp	Ser	Thr	A sn 615	Leu	Glu	Gln
Thr	11e	ľyr	Ile	G1y 630	Thr	Leu
Val 565	His	Ьув	Arg	Gly	Glu 645	Leu
Val	Lys 580	Asp Gly Ser 595	Leu	Asp	Ala	Сув 660
Ser	Pro	G1y 595	Lys	Arg	Tyr	Gly Arg Thr
Ser	Pro	Asp	Tyr 610	Leu	Ile	Arg
Ser	11e	Ile	Ser	Ser 625	Val	Gly
	ហ		10	ŭ	?	20

Ala Asp Thr Pro Cys Lys Leu Leu Arg Phe Leu Val Ala Asp Gly Ser 680

685

٥.

Met	Met 720	Asp	Thr	Gln	Tyr	Asp 800	Leu
Pro Tyr Ala Glu Val Glu Val Met Lys Met 700	Val	Leu Asp 735	Gly Thr	нів	Gly Tyr	Cys Leu Asp 800	Val 815
ж е С	Phe	Ala Arg	Pro Phe His 750	Ser Gly Lys Val 765	Ile Leu Ala 780	Cys	Phe Leu Gln Trp Gln Glu Leu Met Ser 810
Val	His	Ala	Phe	Lys 765	Leu	Asn	Met
Glu 700	Ile	11e	Pro	Gly	Ile 780	Gln Asp Leu Leu Asn 795	Leu
Val		Leu	Glu	Ser	Ala His Met	Leu 795	Glu
Glu	Gly Val 715	Asp 730	Ala	Ile	His	Asp	Gln 810
Ala	Ser	Ser	Arg Ala 745	Ala	Ala		Trp
Tyr	Ala	Ala	Arg	Pro Thr Ala 760	Ser	Val Val	Gln
Pro 695		Gln	Val	Pro	As n 775		·Leu
Thr	Leu Pro 710	⊠ e t	Ser	Pro	Val	His 790	Phe
Asp	Leu	Ala 725	Pro Ser 740	Lys Leu Gly 755	Ser	Asn	Pro 805
Ala Asp	Leu	Gly Gln	Pro 740	Leu	Ala	I Je	Pro Glu Leu
Val	Pro	Gly	Asp	Lys 755	Phe Ala Ala 770	Asn	Glu
Val 690	Met	Glu	Asp	Pro	Phe 770	Glu His 785	
His	Cyន 705	Pro	Leu	Phe	Lys	Glu 785	Ser

Ŋ

Lys Asp Leu Glu Lys Val Val Tyr Ile Val Phe Ser His Gln Gly Val

	Ala	Ala Thr	Arg	Arg Leu Pro Lys Asp Leu Arg Asn Glu Leu Asp Ala Lys 820	Pro	Lув	Asp	Leu	Arg 825	Asn	Glu	Leu	Asp	Ala 830		Tyr
ហ	Lys	Glu	Tyr 835	Glu Leu Asn Ala	Leu	Asn		Asp Phe 840	Phe	Arg	Lys	Ser	Lys Asp 845		Phe	Pro
	Ala	Lys 850	Leu	Lys Leu Leu Arg Gly Val Ile Glu Ala Asn Leu Ala Tyr 850 850	Arg	Gly	Val 855	Ile	Glu	Ala	Asn	Leu 860	Ala		Сув	Ser
10	Glu 865	Glu Lys 865	Asp	Asp Arg	Va]	Thr 870	Ser	Ser Glu Arg	Arg	Leu	Val 875	Leu Val Glu 875	Pro Leu Met	Leu	Met	Ser 880
u F	Leu	Val	Ŀ ув	Leu Val Lys Ser Tyr Glu Gly Gly Arg Glu Ser His Ala Arg 885	Tyr 885	Glu	Gly	Gly	Arg	Glu 890	Ser	His	Ala	Arg	Ala Val 895	Val
7	Val	Lys	Ser	Leu Phe 900	Phe	Glu	Glu	Glu Tyr	Leu 905	Leu Ser 905	Val	Val Glu Glu Leu Phe 910	Glu	Leu 910	əya	Ser
20	Asp	Asp	11e 915	Asp Asp Ile Gln Ser Asp Val Ile Glu Arg Leu Arg Leu Gln His 915	Ser	Азр	Val	Ile 920	Glu	Arg	Leu	Arg	Leu 925	Gln	His	Ala

Tyr 960	Leu	Leu	Leu	Pro	Ala 1040	Ser Asp 1055	Tyr
	Ala 975	Gln Leu Leu 990	Ser	Thr	Cys Ala 104		Tyr Ile Arg Arg Leu Tyr 1070
Leu Met Glu Ala Leu Val 955	Ser		Ala Arg 1005	Ser	Leu Val	His	Arg I 1070
Ala	Phe	Ser		Arg Ile 1020	Leu	Asp	Arg
Glu	Arg	Ala	Ile	Arg 1020	Glu Asp 1035	Ala Leu Phe 1050	Ile
Met 955	Leu Ile Arg 970	Leu Lys	Ser	Glu	Glu / 1035	Leu	Tyr
Leu	Leu 970	Leu	Thr	Gly	Met		Glu Thr 1065
Arg	Ala Tyr Arg Asp Gln 965	Ala 985	Leu Arg 1000	Thr Glu Glu 1015	Glu Arg	Glu Asp Ala Leu Val 1045	
Lys Asn Lys Leu Ile Leu Arg 950	Asp	Gly Leu	Leu)	Glu 5	Glu	Leu	Gln Arg Arg Val Val 1060
Ile	Arg	Glγ	Glu		Ile Asn 1030	Ala	Val
Leu 950	Tyr	Ser	Ser	Phe		Asp 5	Arg
Ĺуз	Ala 965	Tyr	Leu	Met	Ala	Glu 1	Arg 0
Asn	Ser	Ala 980	Ьув	Glu Leu Glu 1010	Met	Va1	Gln 1
Lys	Pro	Thr	Thr 995	Leu	Lys	Ala	Pro Thr Leu
Ser	Pro Asn	His	His		Arg Arg 1025	Pro Val	Thr
Lys 945	Pro	Asn	Glu	Ser	Arg 1	Pro	Pro

S

Leu Gln Asp Ser Gly Asp Glu Asp Gln Ala Gln Glu Arg Ile Asn Lys 1185 1190

Ser	Arg	Ile 1120	Leu	Ala	Ser	Thr
Arg	Gln	Pro	Leu I 1135	Gly	Gly	Ser
His	Glu	Asp	Gln	Tyr (1150	Asn	Met
Gln His Tyr Leu Ala Arg Gly Ser Val Arg Met Gln Trp His Arg Ser 1075 1080	Ile	Glu	Leu	His	Leu 1 1165	Gln
Gln	His 1100	Val	Ser	Ser	Asn	Asn (
Met	G1u	Gln 1	Lуз	Thr	Ile	Asn
Arg	Gly Leu Ile Ala Leu Trp Glu Phe Ser Glu Glu His Ile Glu Gln Arg 1090	Asn Gly Gln Ser Ala Ser Leu Leu Lys Pro Gln Val Glu Asp Pro Ile 1105	Gly Arg Arg Trp Gly Val Met Val Val Ile Lys Ser Leu Gln Leu Leu 1125	Thr Ala Ile Glu Ala Ala Leu Lys Glu Thr Ser His Tyr Gly Ala 1140 1150	Gly Val Gly Ser Val Ser Asn Gly Asn Pro Ile Asn Leu Asn Gly 1155 1160	Asn Met Leu His Ile Ala Leu Val Gly Ile Asn Asn Gln Met Ser Thr
Val	Ser	Lys	Val	Lys (1145	Asn	Gly
Ser 1080	Phe	Leu	Val	Leu	Gly 7	Val
Gly	Glu 1 1095	Leu	Met	Ala	Asn	Leu
Arg	Trp	Ser I 1110	Val	Ala	Ser	Ala
Ala	Leu	Ala	Gly 1	Glu	Val	Ile
Ten Ten	Ala	Ser	Trp	ile (1140	Ser	His
Tyr I 1075	11e	Gln	Arg	Ala	Gly 9	Leu
His	Leu] 1090	Gly	Arg	\mathtt{Thr}	Val	Met]
Gln	$_{ m G1y}$	Asn (Gly	Ser	Gly	Asn
	S		10	L	T 2	Ċ

Val Arg Gln Pro Ser Val Thr Asn Gly Phe Leu Phe Gly Ser Ile Asp

1315

Asn Gly 1215	ly Arg	уг Туг	Thr Phe	Lys Tyr 1280	Lys Asn 1295	Thr Ile	
Leu Lys Asp Asn Thr Ile Thr Ser His Leu Asn Gly 1205 1215	Ile Ile Gln Arg Asp Glu Gly Arg 1225	Pro Met Arg His Ser Phe Lys Trp Ser Ser Asp Lys Leu Tyr Tyr 1235 1245	Pro Leu Ser 1 1260	sn Asp Ala I	hr Leu Val 1	Asp Pro Arg Ser Asn Asp Gln Arg Met Phe Leu Arg Thr 1300 1310	
: Ile Thr Se 1210	e Ile Gln Ar 25	Ser Ser As	l Glu Ser Pi	Leu Glu Leu Asp Lys Val Asn Leu Glu Gly Tyr Asn Asp Ala 1265	Arg Asp Arg Gln Trp His Met Tyr Thr Leu Val 1285	Gln Arg Met Pi 1305	
Asp Asn Thr	Ser Cys	Phe Lys Trr 1240	Arg His Val 1255	Asn Leu Glu	Gln Trp His	Asn Asp Gl	
Ile Leu Lys 1205	Arg Val Val 1220	rg His Ser	ro Met Leu	Asp Lys Val 1	Arg Asp Arg 1285	Pro Arg Ser 1300	
Ser Lys	Ala Gly Val Arg Val 1220	r Pro Met A 1235	Glu Glu Asp Pro Met Leu Arg His Val Glu Ser 1250	Leu Glu Leu A 1265	Pro Ser	Lys Lys Asp I	
Leu	All	Ser	10 G1	-	15 Thr	Ly	
			-	•	•		

	Asn Glu Val Gln Ala Ser Ser Ser Phe Thr Ser Asn Ser Ile Leu Arg 1330 1330
ហ	Ser Leu Met Ala Ala Leu Glu Glu Ile Glu Leu Arg Ala His Ser Glu 1345 1360
	Thr Gly Met Ser Gly His Ser His Met Tyr Leu Cys Ile Met Arg Glu 1365
10	Gln Arg Leu Phe Asp Leu Ile Pro Ser Ser Arg Met Thr Asn Glu Val 1380
i.	Gly Gln Asp Glu Lys Thr Ala Cys Thr Leu Leu Lys His Met Val Met 1395
5 7	Asn Ile Tyr Glu His Val Gly Val Arg Met His Arg Leu Ser Val Cys 1410
20	Gln, Trp Glu Val Lys Leu Trp Leu Asp Cys Asp Gly Gln Ala Asn Gly 1425 1430
	Ala Trp Arg Val Val Val Thr Ser Val Thr Gly Asn Thr Cys Thr Val

Pro Pro Gly Ser Asn Asn Phe Gly Val Val Ala Trp Asn Met Lys Leu

1575

1570

20

1580

Arg Glu Val Glu Asp Pro Asn Thr His Lys Leu Phe Tyr 1460 Thr Pro Thr Ala Gly Pro Leu His Gly Ile Ala Leu His 1480	Pro Leu Asp Ala Ile Asp Leu Lys Arg Ala Ala Ala	Thr Tyr Cys Tyr Asp Phe Pro Leu Ala Phe Glu	Lys Ser Trp Glu Ser Gly Ile Ser His Val Ala Glu	Ala Glu Val Thr Glu Leu Ile Phe	Ser Thr Gly Ser Trp Gly Thr Pro Leu Val Pro Val Glu Arg
	1495	1510	1525 1530	1545	1555
Asp ile Tyr Arg Glu Val Glu A 1460 Arg Ser Ala Thr Pro Thr Ala G	Glu Pro Tyr Lys Pro Leu Asp A	Arg Lys Asn Glu Thr Thr Tyr (1505	Thr Ala Leu Lys Lys Ser Trp (1525	Ser Asn Glu His Asn Gln Arg Tyr 1540	Ala Asp Ser Thr Gly Ser Trp

10

ហ

a Asn	1600	Ala Phe 1615	u Ile	u Ile	Gly Trp Ser Asp Asp Gln Ser Pro Glu Arg 1655	eu Ser 1680	Gly Glu Thr 1695	Val Gly Lys Glu Asp Gly Leu Gly Cys 1705
l Ala			Pro Leu 1630	и 6	6	Ser Arg Leu	્રે ફ	Leu G. 1710
Val		Glu Asp	Pro 1	. G].	Д Д	Ar	ម	/ Le
Val		Glu	11e	Ala (Ser	Ser	Ser	G1,
Ile		Arg	Lys	Val	Gln : 1660	Tyr	Glu	Asp
Пе	1595	Pro	Arg	Gly	Asp	Asp 7	Pro	Glu
Glu		Gly Pro Arg 1610	Glu	Leu	Asp	Gln	Val 1690	Lys
Arg		Phe	Cys Glu Arg Lys 1625	Arg	Ser	Glu Gln Asp Tyr 1675	Lys Val Pro Glu 1690	Gly 1 1705
Gly		Ser	Ala	Ala / 1640	Trp		Leu	Val
Pro Gly Gly Arg		Gly	Ala Val Thr Asn Leu Ala 1620	Tyr Leu Ser Ala Thr Ala Gly Ala Arg Leu Gly Val Ala Glu Glu 1635	Gly 1 1655	Tyr Leu Thr 1670	Glu Leu	Ile
Pro	1590	Lys Ala Gly 1605	Asn	Ala	Val	Tyr] 1670	His	Thr
Phe		Lys <i>1</i> 1605	Thr	Thr	His	11e	Ala His 1685	Asp)
Glu		Phe	Val 7 1620	Ala	Ala Cys Phe 1650	Tyr	Ile	Trp Val Val Asp Thr 1700
Pro		Thr	Ala	Ser 1	Cys	Gly Phe His Tyr 1665	Val	Val
		Val	Asp	Leu	Ala (1650	Phe	Ser	Trp
Ser Thr	1585	Авр	Phe	Tyr	Lys	Gly 1665	Ser	Arg
		·						

10

ß

Gly Gly Pro Leu Pro Ile Val Lys Ser Leu Asp Pro Pro Glu Arg Ala

1830

Ala	Gly	lle Gly Ala Tyr Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu 1745 1760	Leu 5	Ile	Ala Thr Asn Gly Val Val His Leu Thr Val Ser Asp Asp Leu Glu 1795 1805	Val
Ьув	Ile	Arg	Leu 1 1775	Lys)	Leù	Tyr
Ser	Ala	Gln	Lys	Pro] 1790	Asp	Pro
Tyr 9	Arg	Ile (Asn	Gly	Asp / 1805	Pro
Ala	Gly 1 1740	Сув	Leu	Gly	Ser	Val 1820
Ser	Phe Val Thr Gly Arg Ala 1740	Arg (1755	Ala	Gln Met Gln Leu Gly Gly Pro Lys 1785	Val	Ile Leu Lys Trp Leu Ser Tyr Val Pro Pro Tyr Val 1815
Ala	Val	Met	Ser 1	Gln 5	Thr	Ser
11e	Phe	Gly	Tyr	Met (1785	Leu	Leu
Ala :	Thr	Leu	Glγ	Gln	His] 1800	Trp
G1y	Phe Thr Leu Thr 1735	Arg	Thr	Ser	Val	Lys 7
Ser	Thr	Ala / 1750	Leu	Glu Val Tyr Ser 1780	Val	Leu
Gly	Phe	Leu	Ile 1 1765	Tyr	Gly	
His	Thr	Туг	Ile	Val 7 1780	Asn	Ala
Leu 1715	Arg Glu Thr 1730	Ala	Pro	Glu	Thr <i>1</i> 1795	Ser
Asn	Arg (317	31n	Arg	Ala	Val (
Glu Asn Leu His Gly Ser Gly Ala Ile Ala Ser Ala Tyr Ser Lys Ala 1715	Tyr 1	lle (1745	Asp Gln Pro Ile Ile Leu Thr Gly Tyr Ser Ala Leu Asn Lys Leu Leu 1755 1775	Gly Arg	Met 1	Gly Val Ser Ala 1810
	Ŋ		10	<u>ر</u> تر	3	20

var iiii iyi file fio ciu Abn Ser Cys Asp Ala Arg Ala Ala Ile Cys	Gly Ile Gln Asp Thr Gln Gly Lys Trp Leu Ser Gly Met Phe Asp Arg	Glu Ser Phe Val Glu Thr Leu Glu Gly Trp Ala Lys Thr Val Ile Thr	Gly Arg Ala Lys Leu Gly Gly Ile Pro Val Gly Ile Ile Ala Val Glu	Thr Glu Thr Val Met Gln Val Ile Pro Ala Asp Pro Gly Gln Leu Asp	Ser Ala Glu Arg Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp	Ser Ala Ala Lys Thr Ala Gln Ala Leu Leu Asp Phe Asn Arg Glu Glu	Leu Pro Leu Phe Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln
1845 1850 1855	1860 1865	1875 1885	1890 1895	1905 1920	1925 1930	1940 1945	1955

ស

15

10

S

Ö

Phe Ala Glu Leu His 2110	le Ser Lys Val Val 2125	Arg Arg Leu Arg Arg 2140 °	lu Ala Ala Gly Glu 2160	ys ile Arg Lys Trp 2175	Trp Gly Asp Asp Glu 2190	Tyr Gly Lys Tyr Leu 2205
Val Ala Thr Arg Pl 2105	Ala Lys Gly Val I 2120	Tyr	Lys Gln Val Arg G	Ser Ala Leu Glu C 2170	Asp Gly Glu Lys T. 2185	Asp Pro Asp Lys T 2200
: Pro Ile Tyr Thr Gln Val Ala Thr Arg 2100	Asp Thr Ser Ala Arg Met Ala Ala Lys Gly Val Ile Ser Lys Val Val 2115 2126	Trp Glu Glu Ser Arg Ala Phe Phe 2130 2135	Leu Ala Glu Asp Ser Leu Ala Lys Gln Val Arg Glu Ala Ala Gly Glu 2145 2150 216	Gln Met Pro Thr His Arg Ser Ala Leu Glu Cys Ile Arg Lys Trp 2165 2175	Leu Ala Ser Gln Gly Gly Asp Gly Glu Lys 2180	Phe Phe Thr Trp Lys Asp Asp Pro Asp Lys 2195
Leu Met Pro	Asp Thr	Asp Trp (2130	Leu Ala 2145	Gln Gln	Tyr Leu	Ala Phe

10

ហ

15

20

Glu Glu Leu Lys Ala Glu Arg Ala Ser Thr Leu Leu Ser His Leu Ala 2210 2210

	Glu Thr Ser Asp Ala Lys Ala Leu Pro Asn Gly Leu Ser Leu Leu Leu 2225 2240	
'n	Ser Lys Met Asp Pro Ala Lys Arg Glu Gln Val Met Asp Gly Leu Arg 2245 2250	
	Gln Leu Leu Gly 2260	
10	(2) INFORMATION FOR SEQ ID NO: 32:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3319 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20		
	GGCTTGGCGT AGAACACTTT CCCTGTCGGC TTGCCACGGC CAACAGCTTT TCCAGATTGG 120	

PCT/US96/05095

WO 96/32484

-221-

	TIGGGGITGG	TIGGGGITIGG ICTGGGGACA CICGCGCAGA TAGIGGCCCG GITCCCCACA ITTAAAGCAA	CTCGCGCAGA	TAGTGGCCCG	GTTCCCCACA	TTTAAAGCAA	180
	GTCACCGAGC	GTCACCGAGC TGGTACGTGG AGGAGCATTG TTGGTTGGAC CACCATAGGG CTTGGCTGGT	AGGAGCATTG	TTGGTTGGAC	CACCATAGGG	CTTGGCTGGT	240
Ŋ	GTAAACTGTT	GTAAACTGTT GGGGGGGCA AGGCGCCTGA AAGGATGGCC TCGGTGTGAA CCTGGGTGGC	AGGCGCCTGA	AAGGATGGCC	TCGGTGTGAA	ccreegreec	300
	AGGCCAGTGT	AGGGCAGTGT TAGGCACCCA CACACGGCGC TTCTGAGGAC CAGCACCGGA TGAGGAACCC	CACACGCCCC	TTCTGAGGAC	CAGCACCGGA	TGAGGAACCC	360
Ç	ATGTCACGGC	ATGICACGGC CATGCTTGCG TGTTGCTTCA TAATCAGTCT GACCAGACTC AGCATTGATG	TGTTGCTTCA	TAATCAGTCT	GACCAGACTC	AGCATTGATG	420
) 1	GCTTTGTTAA	GCTTTGTTAA CAAGCTTCTG AAAAGATGTG CACTCATGCA GACGGAGGTC GCGGCGAAGC	AAAAGATGTG	CACTCATGCA	GACGGAGGTC	GCGGCGAAGC	480
	TCAGGACTAA	TCAGGACTAA GTCCCCTATG GAACCTTGCT TGCTTCTTGG CTTCAGTAGA GACTTCCTCA	GAACCTTGCT	TGCTTCTTGG	CTTCAGTAGA	GACTTCCTCA	540
15	GTTGCATATC	GTTGCATATC GTGCAAGGTT ACCGAACTCC CTACTGTAAG CATCCACAGA AAGTCGACCT	ACCGAACTCC	CTACTGTAAG	CATCCACAGA	AAGTCGACCT	009
	TGAGTGAAAC	TGAGTGAAAC TGCAGAACTC CTCATGTTTA CGGTCCATGA GACCCTTCGG AATGTGATGT	CTCATGTTTA	CGGTCCATGA	GACCCTTCGG	AATGTGATGT	099
ć	TCACGCAAAG	TCACGCAAAG CCTCGCTGAA TTCAGCCCAG GTAGTGACAT GGCCCGCTGG GCGCATAGCT	TTCAGCCCAG	GTAGTGACAT	GGCCCGCTGG	GCGCATAGCT	720
) N	CCATAGTTCT	CCATAGTICT CCCACCATAG ACTGGCGGGG CCTTCAAGAT GATATGCAGC AAAGGTGACC	ACTGGCGGGG	CCTTCAAGAT	GATATGCAGC	AAAGGTGACC	780
	TTATCAGCCT	TTATCAGCCT CAGCTACTAG CGCAGAATGC AGTTTGTGAG TAATACTGCG AAGCCAGTCA	CGCAGAATGC	AGTTTGTGAG	TAATACTGCG	AAGCCAGTCA	840

-222-

	TCGGCGTCGA	GAGGCTCGAC	TCGGCGTCGA GAGGCTCGAC GGAGTGGTGG GATGTAACIT GATGAAATCA	AAAG166616	GAIGIAACII	GALGAMALCA	
	CTGAGTGACA	CCAAGTTATT	CTGAGTGACA CCAAGTTATT CCTCTGATGG TGTGCCATGT TTTGCTCGAT GCGCTCCAAC	TGTGCCATGT	TTTGCTCGAT	GCGCTCCAAC	096
10	AAACGGTTAG	TCTCCCGCTT	AAACGGTTAG TCTCCCGCTT GTTTCTCTCG GCTTCCAGCA TAACTTCGGC CAGAGAGGA	GCTTCCAGCA	TAACTTCGGC		1020
	GGGTGAGGCA	GGTTTGTTCC	GGGTGAGGCA GGTTTGTTCC CCCAACTCTG CTGCCTTCGG CCTGCTCTGG GGGAGCAGGG	CTGCCTTCGG	ccrecrcres		1080
	TTGGTGCGGG	TGTTAACCAT	TTGGTGCGGG TGTTAACCAT CCTAGGAAAA CAAAACAATA GTTTAGTCCA GGATGATAGG	CAAAACAATA	GTTTAGTCCA	GGATGATAGG	1140
0	ATTCTGACAT	AGAACGAAGA	ATTCTGACAT AGAACGAAGA ATGTAATGGA TAACTTGGAA TGTAAGATGA CCATCCGTAT	TAACTTGGAA	TGTAAGATGA	CCATCCGTAT	1200
	GACATGGTAG	ATACAGAAAC	GACATGGTAG ATACAGAAAC TGCTTCTTTT ATTCCATCGT CATACACACC ATACAAGGTT	ATTCCATCGT	CATACACACC	ATACAAGGTT	1260
Ŋ	TAGTACAGAA	CCAAACAAAG	TAGTACAGAA CCAAACAAAG TACTACTACG GTGAAAAGAG GATTACATCT	GTGAAAAGAG	GATTACATCT	CATCGGAGGC	1320
	ATTCCGAGCT	. CCTATACATT	ATTCCGAGCT CCTATACATT ATTTTTTAC ACCTCCGGAA GGCGGTACAA GCTAAGTCAT	ACCTCCGGAA	GGCGGTACAA	GCTAAGTCAT	1380
•	ATCCCACGAG	TCACGCAGGA	ATCCCACGAG TCACGCAGGA CGGTGGATGA TACAGCTAGT ACGATACTAG TGATACTACT	TACAGCTAGT	ACGATACTAG	TGATACTACT	1440
0	ACTAACTCAG	3 ACAACTCCGT	ACTAACTCAG ACAACTCCGT AGTAGTCTTC ATATAAGTCA CCTCCATAGC CTGGAAGCTC	ATATAAGTCA	CCTCCATAGC	CTGGAAGCTC	1500
	ひつかなごむごしなな	#10.14.0.T. #2.14. #	AACGTGATCG TGATCCTTCT TTTTCGTTCG TCGTAGGGGC TGTTGGGAGG GATTAAATCA	TCGTAGGGG	TGTTGGGAGG	GATTAAATCA	1560

	Tregerecas	TTCGCTCCAG AACTGATGAC ATCGCGTTAT GCACGTCCTA TTTAAAATCA CAGACATGAG	ATCGCGTTAT	GCACGTCCTA	TTTAAAATCA	CAGACATGAG	1620	
	TGAATAAAGT	TGAATAAAGT ATGATATGAC GTTATGGCGC AACGGACAAC ATGGGAACAT GACATGTTTC	GTTATGGCGC	AACGGACAAC	ATGGGAACAT	GACATGTTTC	1680	
Ŋ	ATCTCCCACA	ATCTCCCACA CATAACACGA AAACCAGAAC AAAACACCCC GCGACTACGA TTGGAGATGT	AAACCAGAAC	AAAACACCCC	GCGACTACGA	TTGGAGATGT	1740	
	AGGCATCAAA	AGGCATCAAA GGCGTCGAGA CCTATGCCAA GCACACCATC CATCTGTGAC CATGAAGCAC	CCTATGCCAA	GCACACCATC	CATCTGTGAC	CATGAAGCAC	1800	
c	AACTATTCAT	AACTATTCAT CTTCCACCAG CCCCGCCTCC ATGAATGTTG GACTAGAATG TGAATGTGTA	CCCCCCTCC	ATGAATGTTG	GACTAGAATG	TGAATGTGTA	1860	
,	CTGCCGCGTG	CTGCCGCGTG CGCGTGTGTC CGTTTTGCCTC GGCGGAACAC CACCAGCCCG GTACAGCAAG	CGTTTGCCTC	GGCGGAACAC	CACCAGCCCG	GTACAGCAAG	1920	
	CGATTTGTGA	CGATTTGTGA CCGTCAACTA AATTTGGAAT CGTTGGCGCA TAATCATTGG AATATGCATG	AATTTGGAAT	CGTTGGCGCA	TAATCATTGG	AATATGCATG	1980	
ស្ម	TCTCCGTTAC	TCTCCGTTAC AAGGCACGGA CAATTAGCTA GACAACACAC CCATGATGCA ATTAGCTAGA	CAATTAGCTA	GACAACACAC	CCATGATGCA	ATTAGCTAGA	2040	
	CAATTAGCTA	CAATTAGCTA GACAACACAC CCACGGACAA TTAGCACCGA CGACTACGGG ACGGCCGGAC	CCACGGACAA	TTAGCACCGA	CGACTACGGG	ACGGCCGGAC	2100	
9	GGTGACGGG	GGTGACGGGG ACGTGGACGA AGCCGAGCGG AGCACGCCAC CGGAGCGGAG	AGCCGAGCGG	AGCACGCCAC	CGGAGCGGAG	GGAGCGAGCT	2160	
2	GAGCACATCG	GAGCACATCG AGTCCAGGGC AGACACGCCG GAGAGACAGG TGCAACGACG CACCCATCCG	AGACACGCCG	GAGAGACAGG	TGCAACGACG	CACCCATCCG	2220	
	TCCATCCGCC	TCCATCCGCC CGCCCAACCA GGGCCATGCG GCCCAACTAC CCGTCGTCCC CGTCTAGACC	GGGCCATGCG	GCCCAACTAC	CCGTCGTCCC	CGTCTAGACC	2280	

	ACGCCCCCCA CCIGCCCCGC CCCACCCCAC CCCCAACICC ICCAIGNIG CCCCCCCCAC	
	ATCGCTCCAA CCACAACGCA GCAGCCCCAG CACCAGCGGC CTCGGCGACG CGGCGCGCAT	2400
25	TTATACCACG CAATTCCAIC TGGATCTCCA CCTGGCCGCA GCACGGGTTT CCTCCTCCCT	2460
	CCCCGCGCGG CATTCCGTCG AACGGCTTGG CGGCGCGCCT CCGGACGGAC CCACGGTAAG	2520
,	CICCCCCIGC CCTIGCIAIG CCCCIGCIIC IGCACGCAIC IICCGAITIT CGCTGGAGCG	2580
10	CTCCGCCTCC GCCTATGCGT GCGGGCGATT GACTGGGCCG GACTTGCCAT GGACTCGTAC	2640
	TGACCAGTGA TGTACTCGCT CGCTAGCCTC TCCGCCCACG CCGGCCTCAA ATCGAGCGCG	2700
15	CGTAGGCTGC CTCCAGGCCC CAATCCAAGC AGCGCAGCGC	2760
	CTCTCAGCGC CAGGAGATCA CGGGACCAGA TACCACTGCT AGCAGTCGAC CCGTGCCGTC	2820
	GCCGGATTGC CGGGTTCGCC CCGTCTGGCA TTACGTCGAG CGGGTGGTGG GCGCGCGAA	2880
20	CTGGCCGGGT TITGGGCACA CTTGTTGCTT ACTTCCTTCT GCTGAATGCC GGAATTCAAG	2940
	TCCATTICCC TCTTIGCTCC IGCTIGGACT AACCAGICCC CTAGIGIGGA CTACAGCAIT	3000

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

3319	AAGGTTGGAG GGGCAATA (2) INFORMATION FOR SEQ ID NO: 33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3368 base pairs ' (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	1 15
3319		10
3300	CGGACATAAA TGATTGATGC GCTAACGGAC GGACTTGTTC TTTTGCTTTT CCCAGCGCTG	,
3240	AAAGGGCACA CACATGCCAA ACCGAAAAGA AATATCCCAG TGCTGCAATT CTACGCTAAT	
3180	5 GTTAATTAGT GCCACCATGT TGTTGTTTTC TGTAGTACCA TTTTAGCATC TGGTACAGAA	u)
3120	CTAGAATTCT GCACTCTCC ATGGCACTCT TGCCGGAGGA ATTTCCCCGAT TTAGCTAGCC	
0000	IIIIICGCGI AIIIIIAAIG IGAICICIGG ICIIGCICII CIGGIICIGC IGGIIGIIGA	

ξ. ξ

-226-

	TACTCGCCGC CGGCAGCGC GTAGGCATGG GCGTATGCAT CCTACTGTTT CTGTCGGATC	GGCAGCGGC (STAGGCATGG (SCGTATGCAT (CTACTGTTT C	TGTCGGATC	09
	TACTCGCCGC CGGCAGCGGC GTAGGCATGG GCGTGTGCGG GCGCCTGCAG CACGCTGACG	GGCAGCGGC (GTAGGCATGG (scararacea (SCGCCTGCAG (ACGCTGACG	120
ហ	CAGCTGGACA GGGACTCGGA GCCCATGGAC AACGTCAGCG GGTGCAGGAG GGCACCAGGG	SGGACTCGGA	GCCCATGGAC 1	AACGTCAGCG (SGTGCAGGAG (GCACCAGGG	180
	TIGCCGIGGT IGGCCGCCAC GAIAGCCCCI ICGACGICCI CGICGICGCC GGIGICCACG	TGGCCGGCAC	GATAGCCCCT '	rcgacgrccr	CGTCGTCGCC (SGTGTCCACG	240
	TCGTAGACGT CTCCTGCACG CGCCATCCAT GGCCTCCTGC CGCCATGCGC CGCCGCGACA	CTCCTGCACG	CGCCATCCAT	GGCCTCCTGC	CGCCATGCGC (CGCCGCGACA	300
10	GTCGCCATGG CCTCCTGCCG CCGTGCGCGC TCCTCATGAA CTACTGCCGC CGCTCGCCGT	ccrccracca	ccerececec	TCCTCATGAA	CIACTGCCGC	CGCTCGCCGT	360
	GGCCACTTGC CGGTCCGCTG AGTCCGGCCC GGTCTGGAGA GCCGCCGGTC TGGTCAGTGG	сватссвств	AGTCCGGCCC	GGTCTGGAGA	GCCGCGGTC	TGGTCAGTGG	420
15	TCACGGAAAA	CAGGACTGCC	TCACGGAAAA CAGGACTGCC AGGCTGGTCG GATCGGCCCG GACAGTTTCC ACCCTGATGA	GATCGGCCCG	GACAGTTTCC	ACCCTGATGA	480
	TCAGGCAGCG	CGTCGAATCA	TCAGGCAGCG CGTCGAATCA GACGCCGCGG CAACTCCGAT GTCCCAGACG GCGGCGACAG	CAACTCCGAT	GTCCCAGACG	GCGCCGACAG	540
	AGGTGGTGTG	TAGCGTATCC	AGGIGGIGIG TAGCGIAICC TIGGCAGAIG CAACGGCGGA TAGTAAGAGG GAITAGAGAA	CAACGGCGGA	TAGTAAGAGG	GATTAGAGAA	009
20	GATATGTTTT	CAGCCGAGAA	CAGCCGAGAA AGAACAGGAA GGGATGACGA CGTAGATAGA CGGCACGGGG	GGGATGACGA	CGTAGATAGA	CGGCACGGGG	099
	AGGGATGAAG	GGGCATGTTT	AGGGATGAAG GGGCATGTTT GGATGCCGAT AGCATGAGAT GCGGGGCGGG	AGCATGAGAT	ອອອວອອອອລອ	AAGAGATCAA	720

	TTAGGTTGAG	TGGCTTCCTA	TTAGGTTGAG TGGCTTCCTA TTTTAGCTGA TAATAATAAT TAGATGACAA TTATATATGG	TAATAATAAT	TAGATGACAA	TTATATATGG	780
	TAGGAGTAAT	AAGTTTTTA	TAGGAGTAAT AAGTTTTTTA ATAGGATGGA TTTGTCTGAG ATTAGTTTCC TAATAGGATG	TTTGTCTGAG	ATTAGTTTCC	TAATAGGATG	840
īŪ	GATGCACTCT	GATTTAGTTT	GATGCACTCT GATTTAGTTT CATAGAAAG GATGCACCGC GATTATATAG TTTCCTAATT	GATGCACCGC	GATTATAG	TTTCCTAATT	006
	GCCCAGGCGT	GGAGTTTCAT	GCCCAGGCGT GGAGTTTCAT ATTTTCCTCC ACAGTGGAGT ACGGCCAGTC AATGTAAATT	ACAGTGGAGT	ACGGCCAGTC	AATGTAAATT	096
6	GCTAAGTGCA	CACAGAAAAT	GCTAAGTGCA CACAGAAAAT GGTTTAGGTT AAGGCTAACC GTTAGATTGA TTTTAGTGGG	AAGGCTAACC	GTTAGATTGA	TTTTAGTGGG	1020
0.1	CCTAATCGTG	CGGTGGTATT	CCTAATCGTG CGGTGGTATT GGATCTGTGT ACGCTTTGTG GGGTGTGCTT AAAAAAGTTC	ACGCTTTGTG	GGGTGTGCTT	AAAAAGTTC	1080
	TTATTTGATT	GTTTAATAGT	TTATTTGATT GTTTAATAGT AGTATAGATA AAAAAGGCAC GCCTTCGTTA ACGCGCGTAG	AAAAAGGCAC	GCCTTCGTTA	ACGCGCGTAG	1140
15	AAAAAATATT	TGAATCACAA	AAAAAATATT TGAATCACAA ACAAGAGCTA ACAAAAGCAT GATATGCCCT TGTGGCAAAA	ACAAAAGCAT	GATATGCCCT	TGTGGCAAAA	1200
	ccggrgacac	GGGAGTACAA	CCGGTGACAC GGGAGTACAA CATGTTTCAC CACCAACACG TCACCCGAGA AACGGAATAA	CACCAACACG	TCACCCGAGA	AACGGAATAA	1260
5	ACACCCCGCA	GTATGTTTGA	ACACCCGCA GTATGTTTGA GGCGTTGGCA TCAAAAGCGT TGGGACCTAT GCTAGGCACA	TCAAAAGCGT	TGGGACCTAT	GCTAGGCACA	1320
) N	ACATCCATCC	GTGACGGCGA	ACATCCATCC GTGACGGCGA AGCGCAACTA TTGTCTTCAA GGGGAAATGG AATCGACTCC	TTGTCTTCAA	GGGGAAATGG	AATCGACTCC	1380
	GCACCAACGG	GAGCGGAGGG	GCACCAACGG GAGCGGAGGG AGTCTACATC ACACCCGTCA CGTGTCCCCG CCCCGTAAAT	ACACCCGTCA	CGTGTCCCCG	CCCCGTAAAT	1440

AGTCCCTTTT CCCCTTCGCT CCTGCTTGGA GTGGACTAAC CTTAGTGTGG ACTTCAACAT

٤;

-229-

	ATAGCAAGCA ATTCCTCGTT GCCTCCGCCT COGCCGCCGC TGCCTCTCT GGATCTCCAT	ATTCCTCGTT	GCCTCCGCCT	ಎಲುಎಲುಎಲು	TGCCTCTCCT	GGATCTCCAT	2220
	CTGGCCGCAG CACGGCCTTC TTCCTCCTTC CTCCCTCCGC GGCATTCCGT CGAACGGCTT	CACGCCTTC	TTCCTCCTTC	creereege	GGCATTCCGT	CGAACGGCTT	2280
ស	CGCGGCGCGG CICCGGCCGA ACCGACGGIA CGCGCCCTGC CCGICCCCCC TGCCCCCGCC	CTCCGGCCGA	ACCGACGGTA	CGCGCCCTGC	ccerccccc	TGCCCCGCC	2340
	GIGCCCCTGC TICTGCCCCC CICTTCCGGT TITCGCTGGA GCACCGCGTG CGTGTGTGA	TTCTGCCCCC	CTCTTCCGGT	TTTCGCTGGA	GCACCGCGTG	CGTGTGTG	2400
Ç	GGTGATTGAG CGAGTCGGTC TCGCTACTGG CTTCGGCCCG AGCTGCCGTG TCCCGGCGCG	CGAGTCGGTC	TCGCTACTGG	CTTCGGCCCG	AGCTGCCGTG	TCCCGGCGCG	2460
2	CGCGCGTAAG AACAGTAGTA CTACCACCAG CTTCTCCGTC CCCGGGGCCT TCAAATCGAG	AACAGTAGTA	CTACCACCAG	crrcrccarc	LCCGGGGGCCT	TCAAATCGAG	2520
	CACGAGCCGG CTAGCTCCAG GCCCCCCAGT CCCGCAAGCG GCGCGGGGCC TTCCTGCTGG	CTAGCTCCAG	GCCCCCAGT	CCCGCAAGCG	ວວອອອອວອວອ	TTCCTGCTGG	2580
15	TTCTAGCGGC ACGAGATCAC GGAGCCGGAT ACTGCTCTCG CGCGCGCGAT TCGAGCTAGT	ACGAGATCAC	GGAGCCGGAT	ACTGCTCTCG	CGCGCGCGAT	TCGAGCTAGT	2640
	TCGIGCGCGC GGAGICCIGC IGACGCGGGA ICCIGCCGAC GAICGACCCG CGCCGICGCC	GGAGTCCTGC	TGACGCGGGA	TCCTGCCGAC	GATCGACCCG	CGCCGTCGCC	2700
Ç	GAATTGGCGG GCGGCTTCTT CGTGCCGTCT GGCATTACGT CGAGCGGGTG GTGGGCGTGC	GCGGCTTCTT	cereccerer	GGCATTACGT	CGAGCGGGTG	Greecerec	2760
2	GTGATTGGCC GGGTTTTGGG TGCTTGCTGC TTCCGTCCTT GTGCTGAATG TCGGAATTCA	GGGTTTTGGG	TGCTTGCTGC	Trecereer	GTGCTGAATG	TCGGAATTCA	2820

2940	3000	3060	3120	3180	3240	3300	3360	3368
CTATCAGCTT	CTGATTTTT	ATTTTAGCA	ceerecrerr	GTTAAATAGG	AAGCGCACAC	GGACATAAAT	AGGTTGGAGG	
TGGCTGTTGA	ACTGTTGCGG ATTGCGCACT TTCCCCTGGC ACTGTTTCCG GAGGAATTTC CTGATTTTTT	TAGITATTAG IGGITAAATA GIACCATTAT GICTTIGITT GCTTIGIGCC ATITITAGCA	TCCAGTACAG AAAAAAGGA ATAAACGTGC AAAACTGAAA AATAATAACC CGGTGCTGTT	TTCGCTAACC AGACAGAATT GATTCCACCA TTTTCCTGAT TTAGTTAGTA GTTAAATAGG	ACTACTATGT TTTGTTCTG TTTGTACCAT TTTAGCATCT AGTACAGAAA AAGCGCACAC	ACATGCCAAA CCGAAAAGAA ATATCCCAAT GCTGCAATTC TACGCTAATC GGACATAAAT	CTAACAGACG GATTIGTICT TITGCTTTIC CCAGIGCTGA AGGTIGGAGG	
CTGTTTCTGC	ACTGTTTCCG	GTCTTTGTTT	AAAACTGAAA	TTTTCCTGAT	TTTAGCATCT	GCTGCAATTC	TTTGCTTTTC	
TCTTGCTGTT	Trecertese	GTACCATTAT	ATAAACGTGC	GATTCCACCA	TTTGTACCAT	ATATCCCAAT	GATTTGTTCT	
TGATCTAGGG	ATTGCGCACT	TGGTTAAATA	aaaaaagga	AGACAGAATT	TTTTGTTCTG	CCGAAAAGAA	CTAACAGACG	
TTTTTTCATG TGATCTAGGG TCTTGCTGTT CTGTTTCTGC TGGCTGTTGA CTATCAGCTT	ACTGTTGCGG	TAGTTATTAG	TCCAGTACAG	TTCGCTAACC	ACTACTATGT	ACATGCCAAA	GATTGATGCG	GGGCAATA
		Ŋ			10		15	

20 (2) INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 28 base pairs

WO 96/32484 PCT/US96/05095

	- 231 -	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	ATCGATCGGC CTCGGCTCCA ATTTCATT	28
	Archarcage credicted Arrivari	20
10	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
20	GTTCCCAAAG GTCTCCAAGG	20
	(2) INFORMATION FOR SEQ ID NO: 36:	
	Ţ.	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 37 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	())	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	GCGGACTCGA GTCGACAAGC TTTTTTTTT TTTTTTT	37

(2) INFORMATION FOR SEQ ID NO: 37:

O 96/32484	PCT/US96/05095
(1) YN/3 <i>24</i> 84	202.000.0000

- 232 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 34 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
		34
	ACGCGTCGAC TAGTAGGTGC GGATGCTGCG CATG	34
10		
	(2) INFORMATION FOR SEQ ID NO: 38:	
	42.	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GCGGACTCGA GTCGACAAGC	20
25	(2) INFORMATION FOR SEQ ID NO: 39:	
23	(2) 1112 012 112 013 0 0 0 0	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 29 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 37.	
35	ACGCGTCGAC CATCCCATTG TTGGCAACC	29

WO 96/32484 PCT/US96/05095

- 233 -

- (2) INFORMATION FOR SEQ ID NO: 40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

10

5

GACTCATTGA GATCAAGTTC

PCT/US96/05095

WO 96/32484 PC17US96/05099

-234-

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the composition, methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

5

CLAIMS:

- 1. An isolated plant acetyl-CoA carboxylase enzyme.
- 5 2. The enzyme according to claim 1, wherein said enzyme is isolated from a dicotyledonous plant.
- The enzyme according to claim 2, wherein said enzyme is isolated from soybean, rape, sunflower, tobacco, Arabidopsis, petunia, canola, pea, bean, tomato,
 potato, lettuce, spinach, carrot, alfalfa, or cotton.
 - 4. The enzyme according to claim 3, wherein said enzyme is isolated from canola.
- The enzyme according to claim 1, comprising the amino acid sequence of SEQ
 ID NO:20.
 - The enzyme according to claim 1, wherein said enzyme is isolated from a monocotyledonous plant.
- 7. The enzyme according to claim 6, wherein said enzyme is isolated from wheat, rice, maize, barley, rye, oats or timothy grass.
 - 8. The enzyme according to claim 7, wherein said enzyme is isolated from wheat.
- The enzyme according to claim 1 comprising the amino acid sequence of SEQ
 NO:10.
 - 10. The enzyme according to claim 1 comprising a portion of a dicotyledonous acetyl-CoA carboxylase functionally linked to a portion of a monocotyledonous acetyl-
- 30 CoA carboxylase.

25

30 .

- 11. An isolated and purified plant acetyl-CoA carboxylase enzyme having the ability to catalyze the carboxylation of acetyl-CoA.
- 5 12. A purified DNA segment encoding plant or cyanobacterial acetyl-CoA carboxylase.
 - 13. The DNA segment of claim 12, wherein said segment encodes canola acetyl-CoA carboxylase.
- 14. The DNA segment of claim 13, further defined as encoding the amino acid sequence of SEQ ID NO:20 or SEQ ID NO:31.
- 15. The DNA segment of claim 14, further defined as comprising SEQ ID NO:1915 OR SEQ ID NO:30.
 - 16. The DNA segment of claim 12, wherein said segment encodes wheat acetyl-CoA carboxylase.
- 20 17. The DNA segment of claim 16, further defined as encoding the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:31.
 - 18. The DNA segment of claim 17, further defined as SEQ ID NO:9 or SEQ ID NO:30.
 - 19. The DNA segment of claim 12, defined further as a recombinant vector.
 - 20. The DNA segment of claim 12, wherein said DNA is operatively linked to a promotor, said promoter expressing the DNA segment.

PCT/US96/05095

WO 96/32484

-237-

- 21. The DNA segment of claim 12, wherein said DNA encodes a portion of a dicotyledonous acetyl-CoA carboxylase functionally linked to a portion of a monocotyledonous acetyl-CoA carboxylase.
- 5 22. A recombinant host cell comprising the DNA segment of claim 12.
 - 23. The recombinant host cell of claim 22, defined further as being a prokaryotic cell.
- 10 24. The recombinant host cell of claim 23, further defined as a bacterial or cyanobacterial host cell.
 - 25. The recombinant host cell of claim 22, defined further as being a eukaryotic cell.
- 15 26. The recombinant host cell of claim 25, further defined as a yeast cell or a plant host cell.
 - 27. The recombinant host cell of claim 26, wherein said cell is a monocotyledonous plant cell.

20

- 28. The recombinant host cell of claim 24, wherein the bacterial host cell is E. coli.
- 29. The recombinant host cell of claim 24, wherein the cyanobacterial host cell is Synechococcus or Anabaena.

- 30. The recombinant host cell of claim 22, wherein the DNA segment is introduced into the cell by means of a recombinant vector.
- The recombinant host cell of claim 22, wherein the host cell expresses the DNA
 segment to produce the encoded acetyl-CoA carboxylase protein or peptide.

-238-

- The recombinant host cell of claim 22, wherein the expressed acetyl-CoA 32. carboxylase protein or peptide includes a contiguous amino acid sequence from SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10; SEQ ID NO:12; SEO ID NO:20 or SEQ ID NO:31.
- A method of using a DNA segment that encodes an isolated acetyl-CoA 33. carboxylase, comprising the steps of:
- acetyl-CoA which recombinant vector in 10 (a) preparing carboxylase-encoding DNA segment is positioned under the control of a promoter;
 - introducing said recombinant vector into a recombinant host cell; (b)
- 15 culturing the recombinant host cell under conditions effective to allow (c) expression of an encoded acetyl-CoA carboxylase protein or peptide; and
 - collecting said expressed acetyl-CoA carboxylase protein or peptide. (d)
 - An isolated nucleic acid segment characterized as: 34.

5

- a nucleic acid segment comprising a sequence region that consists of at (a) least 14 contiguous nucleotides that have the same sequence as, or are complementary to, 14 contiguous nucleotides of SEQ ID NO:1; SEQ ID NO:3; 25 SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:19 or SEQ ID NO:30; or
- a nucleic acid segment of from 14 to about 10,000 nucleotides in length (b) that hybridizes to the nucleic acid segment of SEQ ID NO:1; SEQ ID NO:3; 30

WO 96/32484 PCT/US96/05095

-239-

SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:19 or SEQ ID NO:30; or the complements thereof, under standard hybridization conditions.

The nucleic acid segment of claim 34, further defined as comprising a sequence region that consists of at least 14 contiguous nucleotides that have the same sequence as, or are complementary to, 14 contiguous nucleotides of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:19; or SEQ ID NO:30.

10

15

20

25

- 36. The nucleic acid segment of claim 34, further defined as comprising a nucleic acid segment of from 14 to about 10,000 nucleotides in length that hybridizes to the nucleic acid segment of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:19; or SEQ ID NO:30, or the complements thereof, under standard hybridization conditions.
- 37. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least 14 contiguous nucleotides from SEQ ID NO:19 or SEQ ID NO:30, or the complement thereof, or wherein the nucleic acid segment hybridizes to the nucleic acid segment of SEQ ID NO:19 or SEQ ID NO:30, or the complement thereof, under standard hybridization conditions.
- 38. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least 14 contiguous nucleotides from SEQ ID NO:9 or SEQ ID NO:11, or the complement thereof, or wherein the nucleic acid segment hybridizes to the nucleic acid segment of SEQ ID NO:9 or SEQ ID NO:11, or the complement thereof, under standard hybridization conditions.
- 39. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least 14 contiguous nucleotides from SEQ ID NO:7, or the

complement thereof, or wherein the nucleic acid segment hybridizes to the nucleic acid segment of SEQ ID NO:7, or the complement thereof, under standard hybridization conditions.

- 5 40. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least 14 contiguous nucleotides from SEQ ID NO:5, or the complement thereof, or wherein the nucleic acid segment hybridizes to the nucleic acid segment of SEQ ID NO:5, or the complement thereof, under standard hybridization conditions.
- 41. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least 14 contiguous nucleotides from SEQ ID NO:1 or SEQ ID NO:3, or the complement thereof, or wherein the nucleic acid segment hybridizes to the nucleic acid segment of SEQ ID NO:1 or SEQ ID NO:3, or the complement thereof, under standard hybridization conditions.

10

- 42. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 20 nucleotides; or wherein the segment is about 20 nucleotides in length.
- 43. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 30 nucleotides; or wherein the segment is about 30 nucleotides in length.
- 25 44. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 50 nucleotides; or wherein the segment is about 50 nucleotides in length.

WO 96/32484 PCT/US96/05095

-241-

- 45. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 100 nucleotides; or wherein the segment is about 100 nucleotides in length.
- 5. 46. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 200 nucleotides; or wherein the segment is about 200 nucleotides in length.
- 47. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 500 nucleotides; or wherein the segment is about 500 nucleotides in length.
- 48. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of at least about 1000 nucleotides; or wherein the segment is about 1000 nucleotides in length.
 - 49. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.
- 20 50. The nucleic acid segment of claim 34, wherein the segment comprises a sequence region of SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:19 or SEQ ID NO:30.
 - 51. The nucleic acid segment of claim 34, wherein the segment is up to 10,000 basepairs in length.
 - 52. The nucleic acid segment of claim 34, wherein the segment is up to 5,000 basepairs in length.
- 53. The nucleic acid segment of claim 34, wherein the segment is up to 3,00030 basepairs in length.

- 54. The nucleic acid segment of claim 34, wherein the segment is up to 1,000 basepairs in length.
- 5 55. A method for detecting a nucleic acid sequence encoding a plant acetyl-CoA carboxylase, comprising the steps of:
 - (a) obtaining sample nucleic acids suspected of encoding a plant acetyl-CoA carboxylase;
 - (b) contacting said sample nucleic acids with an isolated nucleic acid segment encoding acetyl-CoA carboxylase under conditions effective to allow hybridization of substantially complementary nucleic acids; and
- 15 (c) detecting the hybridized complementary nucleic acids thus formed.
 - 56. The method of claim 55, wherein the sample nucleic acids contacted are located within a cell.
- 20 57. The method of claim 55, wherein the sample nucleic acids are separated from a cell prior to contact.
 - 58. The method of claim 55, wherein the isolated plant acetyl-CoA carboxylase-encoding nucleic acid segment comprises a detectable label and the hybridized complementary nucleic acids are detected by detecting said label.
 - 59. A nucleic acid detection kit comprising, in suitable container means, an isolated plant or cyanobacterial acetyl-CoA carboxylase-encoding nucleic acid segment and a detection reagent.

- 60. The nucleic acid detection kit of claim 59, wherein the detection reagent is a detectable label that is linked to said acetyl-CoA carboxylase nucleic acid segment.
- 61. An enzyme composition, free from total cells, comprising a purified acetyl-CoA
 5 carboxylase that includes a contiguous amino acid sequence from SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10; SEQ ID NO:12; SEQ ID NO:20; or SEQ ID NO:31.
- 62. The composition of claim 61, comprising a peptide that includes a 15 to about 50 amino acid long sequence from SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10; SEQ ID NO:12; SEQ ID NO:20; or SEQ ID NO:31.
- 63. The composition of claim 61, comprising a peptide that includes a 15 to about 150 amino acid long sequence from SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ
 15 ID NO:8; SEQ ID NO:10; SEQ ID NO:12; SEQ ID NO:20 or SEQ ID NO:31.
 - 64. The composition of claim 61, wherein the protein or peptide is a recombinant protein or peptide.
- 20 65. A purified antibody that binds to a plant or cyanobacterial acetyl-CoA carboxylase protein or peptide.
 - 66. The antibody of claim 65, wherein the antibody is a monoclonal antibody.
- 25 67. A method for detecting an acetyl-CoA carboxylase peptide in a biological sample, comprising the steps of:
 - obtaining a biological sample suspected of containing an acetyl-CoA¹ carboxylase peptide;

25

-244-

- (b) contacting said sample with a first antibody that binds to a plant acetyl-CoA carboxylase protein or peptide, under conditions effective to allow the formation of immune complexes; and
- 5 (c) detecting the immune complexes so formed.
 - 68. The method of claim 67, wherein said first antibody is linked to a detectable label and the immune complexes are detected by detecting the presence of the label.
- 10 69. The method of claim 67, wherein said immune complexes are detected by means of a second antibody linked to a detectable label, the second antibody having binding affinity for said first protein, peptide or antibody.
- 70. An immunodetection kit comprising, in suitable container means, a first antibody that binds to an acetyl-CoA carboxylase protein or peptide, and an immunodetection reagent.
 - 71. A process for determining resistance to herbicides of the aryloxyphenoxypropionate or cyclohexanedione class in a plant, comprising:
 - (a) obtaining a sample from said plant; and
 - (b) testing for the presence of an acetyl-CoA carboxylase enzyme capable of conferring resistance to said plant in said sample.
 - 72. The process according to claim 71, wherein the presence of an acetyl-CoA carboxylase enzyme conferring said resistance is determined by identifying the presence of an acetyl-CoA carboxylase polypeptide in said plant.

n:

- 73. The process according to claim 71, wherein the presence of an acetyl-CoA carboxylase enzyme conferring said resistance is determined by identifying the presence of an acetyl-CoA carboxylase-encoding nucleic acid segment in said plant.
- 5 74. The process according to claim 71, wherein said sample is obtained from a progeny plant of a parent plant that includes a herbicide-resistant acetyl-CoA carboxylase transgene.
- 75. The process according to claim 71, wherein said sample is suspected of containing a fusion protein comprising a portion of a dicotyledonous plant acetyl-CoA carboxylase functionally linked to a portion of a monocotyledonous plant acetyl-CoA carboxylase or one or more domains of a cyanobacterial acetyl-CoA carboxylase.
- 76. A process for identifying herbicide resistant variants of a plant acetyl-CoA carboxylase enzyme, comprising the steps of:
 - (a) transforming a cyanobacterium or a yeast cell with a candidate DNA molecule that encodes an engineered plant acetyl-CoA carboxylase enzyme suspected of conferring herbicide resistance to form a transformed cyanobacterium;
 - (b) inactivating cyanobacterial or yeast acetyl-CoA carboxylase;
- (c) exposing said transformed cyanobacterium or said transformed yeast cell
 to a herbicide that inhibits acetyl-CoA carboxylase activity;
 - (d) identifying transformed cyanobacteria or transformed yeast cells that are resistant to said herbicide; and

-246-

- (e) characterizing DNA that encodes acetyl-CoA carboxylase from the cyanobacteria or yeast cells of step (d).
- 77. The process of claim 76, wherein said acetyl-CoA carboxylase enzyme is a fusion protein comprising a portion of a dicotyledonous plant acetyl-CoA carboxylase functionally linked to a portion of a monocotyledonous plant acetyl-CoA carboxylase or one or more domains of a cyanobacterial acetyl-CoA carboxylase.
- 78. The process of claim 76, wherein said acetyl-CoA carboxylase enzyme is an engineered dicotyledonous plant acetyl-CoA carboxylase, or a portion of an engineered dicotyledonous plant acetyl-CoA carboxylase functionally linked to a portion of a monocotyledonous plant acetyl-CoA carboxylase or one or more domains of a cyanobacterial acetyl-CoA carboxylase, or an engineered cyanobacterial acetyl-CoA carboxylase enzyme.

79. A process of modifying the oil content of a plant cell, comprising expressing in a plant cell a DNA segment that encodes a plant or cyanobacterial acetyl-CoA carboxylase or the complement of said DNA segment.

- 20 80. The process according to claim 79, comprising incorporating into said plant cell a DNA segment that encodes a plant or cyanobacterial acetyl-CoA carboxylase polypeptide, wherein said cell expresses the acetyl-CoA carboxylase enzyme.
- 81. The process according to claim 80, wherein said plant cell is a monocotyledonous plant cell.
 - 82. A process of increasing the herbicide resistance of a monocotyledonous plant, comprising incorporating into said plant a transgene comprising a DNA segment encoding a plant or cyanobacterial acetyl-CoA carboxylase polypeptide resistant to herbicide inactivation, the plant expressing the polypeptide.

- 83. The process according to claim 82, wherein said acetyl-CoA carboxylase polypeptide is a dicotyledonous plant acetyl-CoA carboxylase polypeptide.
- 5 84. The process according to claim 81, wherein said plant acetyl-CoA carboxylase polypeptide comprises the amino acid sequence of SEQ ID NO:10; SEQ ID NO:20 or SEQ ID NO:31.
- 85. The process according to claim 81, wherein said plant acetyl-CoA carboxylase polypeptide is encoded by the DNA sequence comprising SEQ ID NO:9; SEQ ID NO:19, or SEQ ID NO:30.
 - 86. The process according to claim 81, wherein said cyanobacterial acetyl-CoA carboxylase polypeptide comprises the amino acid sequence of SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; or SEQ ID NO:12.
 - 87. The process according to claim 81, wherein said cyanobacterial acetyl-CoA carboxylase polypeptide is encoded by the DNA sequence comprising SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:11; or SEQ ID NO:30.

15

88. A transgenic plant having incorporated into its genome a transgene that encodes a plant or cyanobacterial acetyl-CoA carboxylase.

SUBSTITUTE SHEET (RULE 26)

<:<u>~</u>;

2/16 GACCTACAGGAGGAGGATTTTCAGCGGAAGAAAACTGAAACACACATTGTTTGCACATAGGTAGTAGGCATCTCATCTCAGGACAATCTGTATGTTTATTGTCATTACA GAOCTACAGGAGGGGGAGGITTITCA-----GAAAACTGAAACACACATTGTITIGCACAITAGGTAGGAGGCAICTCAICCAGGACAAITIGIAITAITATTAACA GAGCTACAGGAGGAGGTTTTTCA-----ACTGAAACACATTGTTTGCACATAGGTAGGAGGCATCTCATCTCAGGACAATTTGTAIGTTTÄTTGTTÄTTÄTTÄCA GACCTACAGGAGGAGGATTTTCAGCGGAA----ACTCAAGCACATTGTTTGCACATAGGTAGTAGGAAGATCTCATCAGGACAATCTGTATGTTAATTGTCATTACA 化拉克拉拉 化非常非非非非非非非非非非非 3'-10 3.-4 3'-1

.

3/16

AGITITICETCAGIGGGAAATGCCCGAGITITICCTTACGCTGCAGTTATGTGATATGTAAACCCTGAGAACTTTGGGG-TGATATGATGAGGAGGTTTTATCAGGTATTCATGAGAAATGAAATT

AGTITICCTICGGIGGGAAGGCTGAGTITICCTGCAGTTATGTGATGTATA——CCCTGAGAACTITIGGGGGTGATATGATGGATGTTT—AICAGITITICAIGAIAAIGAAATT

FIG. 2-2

\$1¹⁸}

SUBSTITUTE SHEET (RULE 26)

ggttcttctc gtatgtatac aagggaatca gtgtatttct gctagttgtc cttggagacc cctcaggata tccttttca gccgttaatt gaaaaagggc aatcggacat ctgaaggttg gctggttgcc aacgaacaat attaatcttt tgactagaat gatgtcctcg cgactggccg attttttcg ttcatcqctc cctccccgcg gegeteegee tactgaccag gegegtagge tctctctcag aagtccattt catttatacc aagctcccc gtcgccggat accacgccc gctcatggaa cgataagatt cgggtcacat cgaagcagtt gcacctgggc ttcctggtgg ctccaccact ctccagagga cagttgatca ttgactagtt ggtttctgca gacccgtgcc ggactacagc tgctggttgt gattťagcťa atctggtaca tttcccagcg cgcccaacag tacacagogt ttcgctgga tgggcgcgcg gccggaattc attctacgct tcctgctgat ccccgtctag atgcacgcat acgcggcgcg ttcctcctc catggactcg caaatcgagc gacccacggt gggcactagg caactacaga tgctggatac agagaactcg ttccatggag ctgtttttct gactegeega cgcagcatcc gctatggcaa ttcttagaag gaggttagtg ttccagacgc gagcgggtgg ggaatttccc ccattttagc cagtgctgca ttettttget ataaacggga ccggacttgc gctagcagtc tctgctgaat ccctagtgt cttctggttc tcctccatga ggcctcggcg gcagcacggg cctccggacg atcttccgat acgccggcct cgcagggcct tacccgtcgt qttccaactc tttgctct ctgtaggtga gctcatagtg cagatagcag aacccagaac gccgcgatgg gcttgtgttt atctgaccaa caaattcatg tctcttggtg cgccgaccag atgttcatta tcttgccgga ttctgtagta ttctgcacgc attgactggg gcattacgtc tggtcttgct agaaatatcc gacggacttg gctcgggggt geggeeeae agcagcgcag agataccact cttacttcct actaaccagt caccccaac cagcaccagc ccacctggcc tggcggcgcg ctctccgccc tggctgcggt atggattacc tgtcctgtca tgcttctgag gccaccatca agcagcagga tictttatgg tcaatacacg ctataagaac tgttgttgtt taatggtgga agaaggccat acataagaat caaatgtaca cccatggcac caaaccgaaa tgcgctaacg tctgtaaagc tectgettgg atgtgatctc cgccccaccc atgcccctgc cgtgcgggcg gctcgctagc cccaatcca tcacgggacc gccccgtctg acacttgttg ccagggccat gcagcagccc atctggatct tcgaacggct caaaactaaa acacacatgo aaatgattga gaggggcaa aacaatggga tttgggaacg aatgeggage aacaactatg cctactactt ctgattcacc gctggggtca tttttcttgg ttattgcaca cttgtcctat ctgaggagat ggttttgggc agtgccacca gtcgatgaat tgccgggttc cectettede cgtattttta tctgcactct tgatgtactc cgccaggaga gcccgcccaa acgcaattcc cggcattccg tgcccttgct tecgeetatg tgcctccagg ccacctgccc caaccacaac 1861 681 1261 381 1441 501 561 621 1081 841 901 961 1141 201 1321 541 601 661 721 781 1021 1801 301 421 481 361

ເກ

. .

্য

5/16

atggaatgct tataggtaca ccggatcgcc ttctgtactg ttgttcaata gtagaagttc gtactgttta ttcttaaatg ttccaggtag ccgacatcta gttgcattt gaagtttttg ccaaaaaat ttattttact cagtigctcc gtgtgcaata ctgaaataaa gctatcacgc caagttttct actatttcct agtetqtaaa atgggtttaa tttttcgca taatcaatat catgacatgt cgataaattt tegagaetgi cagccatta aaatgaagtc cgagtgcttc ccttaqttat caaatggttt ggagaagtcc aagctgataa ctttgtagag tcgtggcatt cccccacac cactgcacag aagcattggg gtgagtactg caatcatata atagttgaat tgttgtactt tattitgtaa aaaattatat ggaccaatta cttgctaaat acaggcgaat gaatggattg ctctacaaca catggaggtg gatccagatg tttgatacca aatcatcgtt gacaaagcac aaacccaatg tttcttatgt ggtaagtgat acagcatgcc catcatgggg tgttcatttg ttcatctcta tttatgtcat gatacgtgat cagtattcag taticicctg catttgtgta actgtactaa aagtettage gcaagtgcaa totgtacttt aacgtggcag gacaatgtag caaatttatg cattgaggag cagcatggaa tggaatagaa gtgatatatg tattacagat agcaaggcgg ccctgtgacc gggcatacca atttgatctg tactagogag ctttaaaagt cagaatgatc agttttcctg acctaacctg cttctcttaa ttatctctt atgatcaagg cttagccaaa atcttttcaa taatttccac aaagatgttt catctcaggt tactcatgtt atcttgcctt caagcatggc aaaggttagt aacticattg ggagctatac ttgagcaggc aggtagaaca gacgctttta cattgtttaa ttatacttat tcttcctata ctagtgactg tgaaacagat aatatctgta gttgatgata ttgcaactaa cagttagagt aagagctgaa aatagcagag tagtaggaat tgcatccatg attacccttg tgtgtggcaa agttctctqa catgatgatg tattctttc caattacatg gaggtcagag atgaaggtgg atčttígtgt tttagctaaa tgctctgtga ggggaataaa aaatgttgca tatatacttg attaaagagc gctacagtag tctcāāgttg tatattaacc gaaggcacca tggaattagt ttactgttag caagacagat caacttgatg ccaaggttgc cattgtgtag ggaagagtgg gcagcttatc acaaacttt attgaaaagt gcagagatca atatcagctg aaggcaagtt aactgtatct gcaattcatg tcatatatct gccagttgtc aggtggtggg ggaaggttgg gaggttcagt gaattcaaga ttaactagtg ctactagaaa gcaattattg taatgatgat tatatttatt tttctgttgt atatagttca agtgttcaaa tcagttttgt tacagettea gcaaagtgca gaatcattta aactcagaat tctcacgata tccaqaaaca tcagggtgct ggagettaat cttacctgca ttggaaggaa gccaaagggt ttctgtttcc aaggataact gcctacaagt tttctctgtt cctggttaaa cacaacagct gtccggaggt 2041 2341 2401 2521 2581 2641 2701 2821 2881 2941 3061 1981 2101 2161 2221 2281 2461 2761 3001 3121 3181 3241 3301 3361 3421 3481 3541 3601 661

WO 96/32484

PCT/US96/05095

6/16

aagtactata tgagaagggc gatatgaaca acadadadaa ttcctgactg tgagctccct agatcttagg gaagctgctg gctagatctg gaaagagcat tcaggccatg ctgtctttgt ctggcaaagt ccacttttct ttgaagcaga ccaagttttt ctagctgcaa ggtcgcggat aatgtgcatg actgtctaac tatagatggg catacccatc agattgagac tgtggatctc atctccaggc tatatgtatg acaagatcca ggagctcgag aggtacatac aattttcaat atttattaaq tagcaatgcg gactcccgaa gagttcttct tagacagccc ccatcttctg atccttqcaq acttgttctt aatcaataag tggtctgacc ggtgaagata agttgtaact atatattaca ttcggttttt aggtgatgaa tgcctgaggg attctgacaa gctgaaatgg actgctattt ggtggagctc ttatccatgc tttcttctgc gaatcagagg gatatatcta cgccgagaca gcatcaagca tatgaataaa ttgactacac tacatggtac gacagcagaa gagctttcat ataccaccaa taacactgaa tagccaatat aatttttcat tgcccacatg ctgaactgcc ttggcaaccc gggttgtttc ctagatgtac tcttgatgac aacagagcat atctttcttc tgcaagcttc gctgaggtgg ttaaatagta tggacctcct gtcagtgtat ctctttaatc taattattat aatgcaggta tatttggaaa atgtaattta gcttattaca cctctgaatg cactttqtca ttatgttcaa taaaggtcaa ccaatttcta aatttgactg aagaattaat tggttggcta ttcagttgtt atttcaggaa tcattggcaa aggtggttat cgcactaatg gttctctgat acaagatttg gtttgcagca caaggttgga gtgtgaattc gccatgggaa aaactatacc catgtccgtt ggaaacagtc tgatacacca cgtgcatct ttccaaaact acatcaaact agattcacac tcacatctgc gctacaaatt geggactett attttcttt gggagaacat tgtaatatag tacqccatat tggtgtcatt atgatttatt gttatctcag ctctcttgtc ttaattatgt tggagagata tgtgtgtaat catggtacct tgittcttat tgtttatatt ctataattt ggaatctagg cagtaaacat tttgctgcaa taattgtgac ttcaggttgt ggcaagaact tggttgctga catgtaaggc ctatcacatt ggttgttggc taccggcctc tegtaatata gatctgatag catggcacct ctagttggat aatacataaa atgttcttac cggtaattat ggtatccttg ggaccccgta ctgcgagatg aatctatcta tctaatcaat ttggttccta ccctcctct cgagaaaata tcaaatactg cacagcacat tacaattttg gagaggccc ctggggaact gattatgttg ttgcttttgg gataaccca tccaaattcg caggttcctc tgaaccattt tttcccttgt taccttttct ttcctgcagt gcacgcgtct attgtatgaa ggttctcatg ccactqttac tagttcatgc tcaccaaaag taacatcaat actaacctct tactctcctc gatectteca gcaggcgagt tttccatcc tgttgtaacc tatatgatga agcaaatata taatccagtt agtacgaggt gatacattcq atacaagcgc tgtgaattt tgcagagtac atttctttt ggtcatgttt ttaaaagaga ttgaatgtaa aaaacatgg tgttagagca tctttccgtt 5461 5521 5581 5641 5701 5161 5221 5281 5341 5401 4801 4921 4981 5041 5101 4561 4621 4741 4861 4201 1261 4381 4441 4501 4681 4141 4321 4081 4021

n!

5

7/16

gattttgaag cttccttgaa aggagacttc tgaacggcag ttcaagacag ctgcattatc tgacaagtta tgaggaagga agatttagta actgattttt ggcataggtc atgggcaatc gtgtaatggt gagtgtgatt gttttctctt cagggaccag aataaatcta tgatcctact tttttatgtg ggaatggttt gtttttatat tgagaaggtc tgacttgata taaaaataaa caaattgagt atgctaagta ccaagttgct ttccgagaaa gtcatatgag gtatttatct gagtttggat ccggctaact ctttgtccac aatggtcatc aaaggatgga atcaggtatc gaacaaagaa aggcgatggg gctgcattaa cacaggagac aactctccaa gggttgtcag ttgagcacac agatgtttac ttgatcacag caaatttatg cggatgcaat cctataaatt cttccactct tgcaatctgt gggtaaaatt ttgcatactg gtgcttttt caaaagacct catctgcata agaaaaataa tctcagttgg gatttccctg atcccttcct gtctggtcaa tgtttgagga ataattgctt gtgtgaaag aggatcaaca gtggaatctc gctatcaatg cgcagattgt agaacattaa gggcagcgtc tccaattggc tgcaattgaa aaatggtaat caacaatcag gttgttattg gctggtgtta cactccttca gcatactcgg agccaacttc tcagagctgg gtggctttgt agagcatatt ttagttacct caggctaatc gtcaagtctc gtaactattt tottotattg tatccaaatc gttacttggc ccacttatga cttcaacatg cttttgaagg atgatagtct atttacctgt gaagagcaag ctaaaccgtt tttttatctt gaagtgtctc ttctgtcaac aattctctga aagtagagga tggttggtat acgtctacga ccaggtaatg agcattggtc gaaccataca gcttaaagca aagaagcctt gaggaagatg agacgccct gacatacata tgagacaact atcttgcaag tatgtggttt tcatgattt gctccgccat aattigtgtt gcacattgat tggataactg gcttgtagag tegtgeggtt tgacattcag ccaaaacgtg aagttatatt gtcatcattg ctgacttccg gtttgagact tctcttcagc gtcgttaatt taacatcaca aggacccgat cacattgctc actctattct gagtagtcga gctttatggg gcaggtgttg ataagtattc aaagccatgc tcttcagcga cactttctga atgtgataga tgttctccca tegtgetgae ggcttatgga tctctgccct tatttattt tgcagctggc caagcatago caacacctag ttgcagttga cactctttct ttccagcatt ctaaagccac gcatatcaaa attgaggtca tccttacaaa ctagtgagag gagttgaatg gtttgtttac qataacacta caaagagatg tattatgagg ctgtgaactg tatagtggtg tgcgtcactt acactacgga caatatgctg ttgtaattga gaacteegea tgtgcaccgg cttcagcgga ttttttacta cacaatcacc tggtctaatt tgtaatcaag aaggggagtc gatagggtca ggtggaagag gategatget tctcagtctg ttaatactac ttgattcgct gatctgcatc gagcggattt tcatgttgtt gttgaagaac gtatatattg tgcaaaattt caaggagtat catttcggct 7081 7141 7201 7261 7321 7381 7501 7561 7621 1969 7021 7441 6781 6901 6241 6361 6481 6541 1099 6721 6841 5941 6001 6121 6181 6301 6421 6661 6061

. .

8/16

aagaggacgg aggaaataaa ctaaggcata aaaagacttg ggatgctatt ttcccattg attaactaag aagtgacaga caccagaatt ctgggtcttt agaggaaaat atcaaatatg tgactttcag tgccacaccc catgggaatc ttgagcgtcc ttcactacat agtgtaactg tatgagtgta gttgtttgat tatattgcat atgacgaatg gtgaagctat cgagcattat gaccaatggg qaaatacacc cctcttaaca atctaacago cagtgagact atgaatata gttatagccc attgttggga agtgcctact cttgcttgtg ggtgtagcag tgaattattt actgctatga ggttaacatg cggtatgctg ttggttccag aagctctcca acatttaaag gaacgtggtt ccagtgggaa cccacagatc tcacccccat aacactactt tctatcgctc acaaaccttt ttgaagaagt tgttgttacc cactgctacg tgcgtgctca gagaacaacg gcatatggtt acaatgacgc agaacaagaa agccaagtgt catcattcac ctcaacagat ttatgttagg tgttgatacc tğccattgcc tgcaaggctc ccagagccct aagctcttca ttggaacatg aaatgatgtg tggataaagc agttctatta catgagccat gaaaccacat ctctacaatt tgaaacagca gcataaccag gggtactcct tgtcacaaat ttgcttctca cactattgaa tttccgtgtg ttagctattg aaaatgttca ctcttatgct cataagcttt cttggagagt atagtcagac tgcataatga tatttatgtt ttagaaggtt acactagtaa caagcctcgt gaaatagagt tagttgttgc tctttgatgc caactgctgg ccagatgggt atggaagtgg gtgttgttgc ggtctgatga attcacgtct cgcaggcatt aatctaatga ctggatcatg atgcatcgcc gtaagttacc ctacctctga tagtgaatag tgcctttaaa ctcttattg cccaataca cattgcattg taggaaaaat ttattttt agctctagaa acagcatgca gctaatggtg tettegtace taatgaagtt agtcaaaatt cacttggttt tggcttatgt gcacatgtac catgtatctg caaagtgaat gagaatctac catgttgcag tacttgtcag gaacaagatt agcggagaaa atactctgtc gctgattcaa aacaattttg cgggagatta gaagatgcat catgttggat ctttgcatgg tacatctctt aaaggatgtt gaagtattga cattgatggc gccactccca cttcaaggtc catagatgtt agatgagaag tggtgtcagg tgatgggcag cactgttgat tttgcaaata cttatctagt tctcaattt gtaccattt aagtggagga gtgccgctgc gcttttgtt aaatacagga ategecagtg gtgcgttagc tggtatttca tccaggtagc tccaggtggc tggtcctaga tcctctaatc ggcatgcttc ttacctcact agtaccagaa acttggttgt acagctggtc gacctgaaac attggtaata acttatattt attttgttag atgggtaatc taagtaccag tttttgttg atactcagat gggatgtcag taaatatgtt aagttggtca atgagcatgt ggttggattg gcaatacctg catctacagt atttaccgag gtttatgtgt ccatcacgtg tcaaatgacc ctaattccat 9541 9241 9301 9361 9421 9481 9601 8641 8701 8761 8821 8881 8941 9001 9061 9121 9181 8581 8521 8101 8341 8401 8461 7981 8041 8161 8281 7921 8221

T:

ggatggcctc ttcagcggaa aggtggtgga ccgaggactc cctcggacgc tttgcttatt tottttottt ccctgataca atgaattgga tcaggaggag agaagtgggg agtatcttga tggatttcaa gtgggcaag tgaggacgta ggactgcgag tcctcaaaga cccggtttgc acagatcagc gtgcatgggt tgactgggta aactgggtgg gtectétée agaattcatg tccctcaagc ttattacygg atcttgaagg agacagtgat gggcctatct tgagtggtal aagtatggca tatggtgggc ggggaggatt caggttgcca gtgatcagta ctcgctgaaa gtaagtttct agcaggttat aacgcatcca aggaggettg atgcccactc ggagacggcg ttttgcttct aagttcatct ggattttatg ctgcgtggag tatgccgaga ttcaagccaa aatgctaaac gcagagacca gtggaaaccg gagcgtgtag caggcactgc gttgagaatc attggaattg gtgtcagatg tatgttggtg tactttccag ggcaagtggt gccaaaactg ccaattattt tctcagatgc aagtcctgtc tgatcctgac cctcaqcaaa aataagtttc gcaaagaggg gccctttgat gctacaggag cgagcagcag ctctcaagga gctgtcgcat ttctgtccct gatcagcctc gagactgcga ggcggcggcg tgccaaaggc agaaggatgg taactggaga tyctatgatt ggctggagag cattgagatg tgagatcaaa catatatact tgttcctccc agctgtaaca ggacactcaa tgattctgcc aaaaacrgcc tcttgatcaa ggtttatage tggccgagct tatcatagct tcatctcact FIG. tgttcttgta tacatttcct actggcccgc gccaccaagc tgcgtggcga cttgggaaac agctgatgcc caagaatggc tcttctacag ggtacctggc cctggaaaga cgtctacact tctcgctcct attaaattct gatggatcct aagccgccgg atccggagca accetgagtt ggctcagcta ttccagttgg ctggtcagct atteggeege tcatacttgc treaggetgg acataccaaa cgggactcat atggagttgt caccagagag tggaaacgtt gtatacaacg tggggcgcga gtggcattca catttgtgac cttgcttgtt agttttccta tgattgtaca ttggttgatt aaattttact gccgagagag cccaacggtc gaaggaatcc agccctagcc cggaggaagc gacacctccq caagtcagag gccttcttca agcaagatca cttgaggcac ctagggctgg tecegggeet atcaggaaat cctgctgacc tggttcccag gcttttgtgt gaaagctttg ctcccgttgt tttactctga aacaagctcc atggctacaa tctcttgatc gctgccatct ctgggtggga ggaatgcggt atcttgaaat ggagctgaaa aggcagcttc tggaacaagc cttggagtgc caaggccttg agtatttgtt tacatttgat ataaatcggc tgagttgcac cgatgatgaa gttcttgtat tgtggtggac agggaatgtc agagagtatg aactagtgct catggctgct ctgggaggag gctcgccaaa kggacaggtg ccgtgaagag ggatctgttt yaagcagcct tagagagaca tgtttctgct tattgtaaaa gtttgacaga aagggcaag tgctcggtta ttctgcactg cccaaaatc tgatgcccgt gcaagtaatc .0981 11101 11401 11581 11461 10501 10561 0621 11221 11281 11341 11521 .0261 0321 10381 .0441 10681 10741 10801 10861 10921 11041 11161 0021 0141 0201 1966 9901 10081

 ψ

tgigatgatc cttacgctgc tttatcagtt tagatattcg gacaatcygt tcta a taggtacaca caaagcatat gtatgctgga ta a agattcatca tcttaattta cgagatacga tg g tttcctcagt ggcagggaat gccgagtttc ct c ctgagaactt tggggtgata tgatggacgt tt a gccgaggcc cttacatcag ttttttttct tc (SEQ ID NO:30) ctcatctcag taggaggcat tgcacatagg i gtgtgagttg ttgcaatgca a 1 ggtcgatgtg gtagttgtag t 1 agttatgtga tatgtaaacc c 1 tcatgagaaa tgaaattgga g tcattacaga acacattgtt gaaaactgaa atgtttattg 11761 11821 11881 11941 11641

SUBSTITUTE SHEET (RULE 26)

-

;=

W 96/32484

11/16

MVESDOINGTPNRMSSVDEFCKALGGDSPIHSVLVANNGMAAVK FMRSIRTWALETFGNEKAILLVAMATPEDLRINAEHIRIADQFL EVPGGTNNNNYANVQLIVEIAERTRVSAVWPGWGHASENPELPD ALMEKGIIFLGPPSAAMGALGDKIGSSLIAQAAGVPTLPWSGSH VKVPOETCHSIPEEIYKNACVSTTDEAVASCQVVGYPAMIKASW GGGGKGIRKVHNDDEVRALFKQVQGEVPGSPIFIMKVASQSRHL EVOLLCDKHGNVAALHSRDCSVQRRHQKIIEEGPITVAPPETIK ELEQAARRLAKCVQYQGAATVEYLYSMETGEYYFLELNPRLQVE HPVTEWIAEINLPASQVVVGMGIPLYNIPEIRRFYGIEHGGGYH AWKEISAVATKFDLDKAQSVKPKGHCVAVRVTSEDPDDGFKPTS GRVEELNFKSKPNVWAYFSVKSGGAIHEFSDSQFGHVFAFGESR SLAIANMVLGLKEIQIRGEIRTNVDYTVDLLNAAEYRENKIHTG WLDSRIAMRVRAERPPWYLSVVGGALYEASSRSSSVVTDYVGYL SKGQIPPKHISLVNLTVTLNIDGSKYTIETVRGGPRSYKLRINE SEVEAEIHSLRDGGLLMQLDGNSHVIYAETEAAGTRLLINGRTC LLQKEHDPSRLLADTPCKLLRFLVADGSHVVADTPYAEVEVMKM CMPLLLPASGVIHFVMPEGQAMQASDLIARLDLDDPSSVRRAEP FHGTFPKLGPPTAISGKVHQKFAASVNSAHMILAGYEHNINHVV QDLLNCLDSPELPFLQWQELMSVLATRLPKDLRNELDAKYKEYE LNADFRKSKDFPAKLLRGVIEANLAYCSEKDRVTSERLVEPLMS LVKSYEGGRESHARAVVKSLFEEYLSVEELFSDDIQSDVIERLR LQHAKDLEKVVYIVFSHQGVKSKNKLILRLMEALVYPNPSAYRD **QLIRFSALNHTAYSGLALKASQLLEHTKLSELRTSIARSLSELE** MFTEEGERISTPRRKMAINERMEDLVCAPVAVEDALVALFDHSD PTLQRRVVETYIRRLYQHYLARGSVRMQWHRSGLIALWEFSEEH IEORNGOSASLLKPQVEDPIGRRWGVMVVIKSLQLLSTAIEAAL KETSHYGAGVGSVSNGNPINLNGSNMLHIALVGINNQMSTLQDS GDEDQAQERINKLSKILKDNTITSHLNGAGVRVVSCIIQRDEGR SPMRHSFKWSSDKLYYEEDPMLRHVESPLSTFLELDKVNLEGYN DAKYTPSRDRQWHMYTLVKNKKDPRSNDQRMFLRTIVRQPSVTN GFLFGSIDNEVQASSSFTSNSILRSLMAALEEIELRAHSETGMS GHSHMYLCIMREQRLFDLIPSSRMTNEVGQDEKTACTLLKHMVM NIYEHVGVRMHRLSVCQWEVKLWLDCDGQANGAWRVVVTSVTGN FIG. 4-1

TCTVDIYREVEDPNTHKLFYRSATPTAGPLHGIALHEPYKPLDA IDLKRAAARKNETTYCYDFPLAFETALKKSWESGISHVAESNEH NQRYAEVTELIFADSTGSWGTPLVPVERPPGSNNFGVVAWNMKL STPEFPGGREIIVVANDVTFKAGSFGPREDAFFDAVTNLACERK IPLIYLSATAGARLGVAEEIKACFHVGWSDDQSPERGFHYIYLT EODYSRLSSSVIAHELKVPESGETRWVVDTIVGKEDGLGCENLH GSGAIASAYSKAYRETFTLTFVTGRAIGIGAYLARLGMRCIORL ${\tt DQPIILTGYSALNKLLGREVYSSQMQLGGPKIMATNGVVHLTVS}$ DDLEGVSAILKWLSYVPPYVGGPLPIVKSLDPPERAVTYFPENS CDARAAICGIQDTQGKWLSGMFDRESFVETLEGWAKTVITGRAK LGGIPVGIIAVETETVMQVIPADPGQLDSAERVVPQAGQVWFPD SAAKTAQALLDFNREELPLFILANWRGFSGGQRDLFEGILQAGX MIVENLRTYKQPAFVYIPKAGELRGGAWVVVDSKINPEHIEMYA ERTARGNVLEAPGLIEIKFKPNELEESMLGLDPELISLNAKLLK ETSASPSPWETAAAAETIRRSMAARRKQLMPIYTQVATRFAELH DTSARMAAKGVISKVVDWEESRAFFYRRLRRRLAEDSLAKQVRE AAGEQQMPTHRSALECIRKWYLASQGGDGEKWGDDEAFFTWKDD PDKYGKYLEELKAERASTLLSHLAETSDAKALPNGLSLLLSKMD PAKREQVMDGLRQLLG

(SEQ ID NO:31) FIG. 4-2 7.5

13/16

<u> ACGACGCACCCATCCGTCCCATCCGCCCGCCCAACCAGGGCCATGCGGCCCAACTACCCGTCGTCCCGTCTAGACC</u> rggccgcagcacagggtttcctcctcctccccagcgcattccgtcgaacggctttgccgccgccgccctccgaacg ACGCCCCCCACCTGCCCCCCCCCCCCCCCCCCAACTCCTCCATGAATGCACGCATTTCATCGCTCCAACCACAA GATATGCAGCAAAGGTGACCTTATCAGCCTCAGCTACTAGCGCAGAATGCAGTTTGTGAGTAATACTGCGAAGCCA CGGCTTCCAGCATAACTTCGGCCAGAGGGAGGGTGAGGCAGGTTTGTTCCCCCCAACTCTGCTGCCTTCGGCCTG CTCTGGGGGAGCAGGGTTGGTGCGGGTGTTAACCATCCTAGGAAAACAAAACAATAGTTTAGTCCAGGATGATAGG **ATTCTGACATAGAACGAAGAATGTAATGGATAACTTGGAATGTAAGATGACCATCCGTATGACATGGTAGAG** GAAAAGAGGATTACATCTCATCGGAGGCATTCCGAGCTCCTATACATTATTTTTTTACACCTCCGGAAGGCGGTAC **AAGCTAAGTCATATCCCACGAGTCACGCAGGACGGTGGATGATACAGCTAGTACGATACTAGTGATACTACTACTA ACTCAGACAACTCCGTAGTAGTCTTCATATAAGTCACCTCCATAGCCTGGAAGCTCAACGTGATCGTGATCCTTCT** ITTTCGTTCGTCGTAGGGGCTGTTGGGAGGGATTAAATCATTCGCTCCAGAACTGATGACATCGCGTTATGCACGT CCTATTTAAAATCACAGACATGAGTGAATAAAGTATGATATGACGTTATGGCGCAACGGACAACATGGGAACATGA CATGTTTCATCTCCCACACATAACACGAAAACCAGAAAACACACCCCGCGACTACGATTGGAGATGTAGGCATCA GCCTCCATGAATGTTGGACTAGAATGTGAATGTGTACTGCCGCGTGCGCGTGTGTCCGTTTTGCCTCGGCGGAACAC CACCAGCCCGGTACAGCAAGCGATTTGTGACCGTCAACTAAATTTGGAATCGTTGGCGCATAATCATTGGAATATG CATGTCTCCGTTACAAGGCACGGACAATTAGCTAGACAACACCCATGATGCAATTAGCTAGACAATTAGCTAGA CAACACACCCACGGACAATTAGCACCGACGACTACGGGACGGCCGGACGTGACGGGGGACGTGGACGAAGCCGAGC SCCCAGGTAGTGACATGGCCCGCTGGGCGCATAGCTCCCATAGTTCTCCCCATAGACTGGCGGGGCCTTCAAGAT <u> AAGGCGTCGAGACCTATGCCAAGCACACCATCCATCTGAGCACAAGCACAACTATTCATCTTCCACCAGCCCCC</u> CAGTGTTAGGCACCCACACACGGCGCTTCTGAGGACCAGCACCGGATGAGGAACCCATGTCACGGCCATGCTTGCG CTTCCTCAGTTGCATATCGTGCAAGGTTACCGAACTCCCTACTGTAAGCATCCACAGAAAGTCGACCTTGAGTGAA ACTGCAGAACTCCTCATGTTTACGGTCCATGAGACCCTTCGGAATGTGATGTTCACGCAAAGCCTCGCTGAATTCA IGTTGCTTCATAATCAGTCTGACCCAGACTCAGCATTGATGGCTTTGTTAACAAGCTTCTGAAAAAATGTGCACTCA <u>AAGTTATTCCTCTGATGGTGTGCCATGTTTTGCTCGATGCGCTCCAACAAACGGTTAGTCTCCCGCTTGTTTCTCT</u>

GCGCAGGGCCTTCCTGCTGATTCTCTCTCAGCGCCCAGGAGATCACGGGACCAGATACCAGTGCTAGCAGTCGACCC CGCTAGCCTCTCCGCCCACGCCGGCCTCAAATCGAGCGCGGTAGGCTGCCTCCAGGCCCCAATCCAAGCAGCGCA

ACCCACGGTAAGCTCCCCCTGCCCTTGCTATGCCCCTGCTTCTGCACGCATCTTCCGATTTTTCGCTGGAGCGCTCC GCCTCCGCCTATGCGTGCGGGCGATTGACTGGGCCGGACTTGCCATGGACTCGTACTGACCAGTGATGTACTCGCT GTTTTGGGCACACTTGTTGCTTACTTCCTTCTGCTGAATGCCGGAATTCAAGTCCATTTCCCTCTTTGCTCCTGCT

TGGACTAACCAGTCCCCTAGTGTGGACTACAGCATTTTTTCGCGTATTTTTAATGTGATCTCTGGTCTTGCTCTT CTGGTTCTGCTGGTTGTTGACTAGAATTCTGCACTCTCCCATGGCACTCTTGCCGGAGGAATTTCCCGATTTAGCT AGCCGTTAATTAGTGCCACCATGTTGTTTTTTTGTAGTACCATTTTAGCATCTGGTACAGAAAAAGGGCACACA

٠. توكوني.

14/16

(SEQ ID NO:32) FIG. 5-2

ACGGACTTGTTCTTTTTCCCAGCGCTGAAGGTTGGAGGGGGGCAATA

TACTCGCCGCCGGCAGCGCGTAGGCATGGGCGTATGCATCCTACTGTTTTCTGTCGGATCTACTCGCCGCCGGCAG CGGCGTAGGCATGGGCGTGTGCGGGCGCCTGCAGCACGCTGACGCAGCTGGACAGGGACTCGGAGCCCATGGACAA CGTCAGCGGGTGCAGGAGGGCACCAGGGTTGCCGTGGTTGGCCGGCACGATAGCCCCTTCGACGTCCTCGTCGT CCATGGCCTCCTGCCGCGTGCGCGCTCCTCATGAACTACTGCCGCCGCTCGCCGTGGCCACTTGCCGGTCCGCTG

15/16

TAGATGACAATTATATATGGTAGGAGTAATAAGTTTTTAATAGGATGGATTTTGTCTGAGATTAGTTTCCTAATAG GATGGATGCACTCTGATTTAGTTTCATAGAAAAGGATGCACCGCGATTATATAGTTTCCTAATTGCCCAGGCGTGG AGTCCGGCCCGGTCTGGAGAGCCGCCGGTCTGGTCAGTGGTCACGGAAAACAGGACTGCCAGGCTGGTCGGATCGG CCCGGACAGTTTCCACCCTGATGATCAGGCAGCGCGTCGAATCAGACGCCGCGGCAACTCCGATGTCCCAGACGGC GCCGATAGCATGAGATGCGGGGGGGGGAAGATCAATTAGGTTGAGTGGCTTCCTATTTAGCTGATAATAAT <u> AGTTTCATATTTTCCTCCACAGTGGAGTACGGĊCAGTCAATGTAAATTGCTAAGTGCACACAGAAAATGGTTTAGG</u> TTAAGGCTAACCGTTAGATTTTAGTGGGCCTAATCGTGCGGTGGTATTGGATCTGTGTACGCTTTGTGGGGT GTGCTTAAAAAAGTTCTTATTTGATTGTTTAATAGTATAGATAAAAAAGGCACGCCTTCGTTAACGCGCGTAG AAAAGCGTTGGGACCTATGCTAGGCACAACATCCATCCGTGACGGCGAAGCGCAACTATTGTCTTCAAGGGGAAAT GGAATCGACTCCGCACCAACGGGAGCGGAGGGAGTCTACATCACACCCGTCACGTGTCCCCGCCCCGCTAAATGCAC aaaaaatatttgaatcacaaacaaggctaacaaagcatgatatgccttgtggcaaaaccggtgaca.cgggagt ACAACATGTTTCACCACCAACACGTCACCCGAGAAACGGAATAAACACCCCGCAGTATGTTTGAGGCGTTGGCATC GGCGACAGAGGTGGTGTAGCGTATCCTTGGCAGATGCAACGGCGGATAGTAAGAGGGATTAGAGAAGATATGTT GCGATGCGCATTCAGTGGGAGGTTCATAGGGATGAGTGTATACGCGTGTATATGAGCGCTTGCGTCTGTACTGTGT AGGGTCATGATGCAGTCCGAGTTACGGTAACGAACAAACGGGGGGTCAACAAGGCGGCACAAGACGCCGTGGTGGCT IGGCCGACGACTACGGGACGGCCGGACGGGTCGGGGACGTGAGCGAAGCCGAAGGGAAGCAAGGCAACGCACCGGAGCGAAA GCCCCGCCCCACCCCACCCCCAACTCCTCCATGAATGCACGCATTTCATCGCTCCTACCACAAGGCAGCAG TCGGCCCGAGCTGCCGTGTCCCGGCGCGCGCGTAAGAACAGTAGTACTACCACCAGCTTCTCCGTCCCCGGGGC GTCCAACCAGGGCGATGAGGCCCAACAACCTGTCGTCGACTCCTCCCGGTCTCCACCTCCACCACACCCCCCACCT CTTCAAATCGAGCACGAGCCGGCTAGCTCCAGGCCCCCCAGTCCCGCAAGCGGCGCGGGGGCCTTCCTGCTGGTTCT

GGAATTCAAGTCCCTTTTCCCCTTCGCTCCTGCTTGGAGTGGACTAACCTTAGTGTGGACTTCAACATTTTTTTCA

TGTGATCTAGGGTCTTGCTGTTTCTGCTGGCTGTTGACTATCAGCTTACTGTTGCGGATTGCGCACTTTCC CCTGGCACTGTTTCCGGAGGAATTTCCTGATTTTTTAGTTATTAGTGGTTAAATAGTACCATTATGTCTTTGTTT

4.44

GCTTTGTGCCATTTTAGCATCCAGTACAGAAAAAAGGAATAAACGTGCAAAACTGAAAAATAATAACCCGGTGC

ATGCTGCAATTCTACGCTAATCGGACATAAATGATTGATGCGCTAACAGACGGATTTGTTCTTTTGCTTTTCCCAG

TGCTGAAGGTTGGAGGGGGCAATA

...

16/16

h :.,

(SEQ ID NO:33) FIG. 6-2