A Critical Reexamination of Intra-List Distance and Dispersion

Naoto Ohsaka & Riku Togashi

(Cyber Agent, Inc.)

https://todo314.github.io/

https://riktor.github.io/

Introduction Diversified recommendation

Many beyond-accuracy objectives

[Castells-Hurley-Vargas. 2015] [Kaminskas-Bridge. 2017] [Zangerle-Bauer. 2022]

- diversity, novelty, serendipity, coverage, ...
- Motivation: Risk of recommending over-specialized items to a user

We will focus on diversity

:= Internal differences btw. items recommended to a user

⚠ KEY: Define & optimize *appropriate* diversity objectives

Our target: Distance-based diversity

• Given distance d(i,j) between all item pairs i & j

• Intra-list distance (ILD) ... Most popular distance-based objective [Smyth-McClave. ICCBR'01] [Ziegler-McNee-Konstan-Lausen. WWW'05]

defined as average pairwise dist.

$$ILD(S) \triangleq \frac{1}{\binom{|S|}{2}} \sum_{i \neq j \in S} d(i,j)$$

Our target: Distance-based diversity

- Given distance d(i,j) between all item pairs i & j
- Intra-list distance (ILD) ... Most popular distance-based objective [Smyth-McClave. ICCBR'01] [Ziegler-McNee-Konstan-Lausen. WWW'05]

defined as average pairwise dist.

$$ILD(S) \triangleq \frac{1}{\binom{|S|}{2}} \sum_{i \neq j \in S} d(i,j)$$

- © Can use any distance metric depending on applications
- "Intuitive": Integrate pairwise distances
- Greedy heuristic works well [Birnbaum-Goldman. Algorithmica '09] [Ravi-Rosenkrantz-Tayi. Oper. Res. '94]

Our target: Distance-based diversity

- Given distance d(i,j) between all item pair
 \$ j
- In. list distance (IL' Most por stance-based objective [Smyth-M. 200'01] [Ziegl/ Stan

defined as

2. Do we know what kind of items are preferred by ILD?

- © Can use any Jance L. Jepen application
- "Intuitive": Integrate wise distances
- Greedy heuristic works vell [Birnbaum-Goldman. Algorithmica '09] [Ravi-Rosenkrantz-Tayi. Oper. Res. '94]

Introduction Quiz time!!!

- 1. Generate 1000 random points on ellipse→
- 2. Select 128 points S by maximizing ILD (= average dist.) d(i,j) := Euclidean dist. btw. i & j

Quiz time!!!

- 1. Generate 1000 random points on ellipse →
- 2. Select 128 points S by maximizing ILD (= average dist.) d(i,j) := Euclidean dist. btw. i & j

Q. Which is 5?

Quiz time!!!

- 1. Generate 1000 random points on ellipse→
- 2. Select 128 points S by maximizing ILD (= average dist.)

d(i,j) := Euclidean dist. btw. i & j

Q. Which is 5?

dispersion

= minimum dist.

[Erkut. Eur. J. Oper. Res. '90] [Kuby. Geographical Analysis'87]

Quiz time!!!

- 1. Generate 1000 random points on ellipse→
- 2. Select 128 points S by maximizing ILD (= average dist.)

d(i,j) := Euclidean dist. btw. i & j

Q. Which is 5?

dispersion

Gaussian ILD

= minimum dist.

= average Gaussian kernel

[Erkut. Eur. J. Oper. Res. '90] [Kuby. Geographical Analysis'87]

Quiz time!!!

- 1. Generate 1000 random points on ellipse
- 2. Select 128 points S by maximizing ILD (= average dist.)

d(i,j) := Euclidean dist. btw. i & j

Q. Which is 5?

dispersion

Gaussian ILD

ILD

= minimum dist.

= average Gaussian kernel

= average dist.

[Erkut. Eur. J. Oper. Res. '90] [Kuby. Geographical Analysis'87]

Our contributions

average dist. minimum dist.

Comparison analysis between ILD & dispersion

In theory, we found...

Undesirable when • ILD may select duplicate items recommending very few items.

- dispersion may overlook distant item pairs

$$ILD(S) \triangleq \frac{1}{\binom{|S|}{2}} \sum_{i \neq j \in S} d(i,j)$$

$$disp(S) \triangleq \min_{i \neq j \in S} d(i,j)$$

(OMITTED... see our paper)

- Experimentally verify the potential drawbacks
- Competitor interpolating btw. ILD and dispersion

Related work Other diversity objectives

Determinantal point processes [Borodin-Rains. J. Stat. Phys. '05] [Macchi. Adv. Appl. Probab. '75] [Kulesza-Taskar. Found. Trends Mach. Learn. '12]
 topical diversity [Agrawal-Gollapudi. WSDM'09] [Vargas-Baltrunas-Karatzoglou-Castells. RecSys'14]

Diversity enhancement algorithms

- Maximal marginal relevance (MMR) [Carbonell-Goldstein. SIGIR'98] local search [Yu-Lakshmanan-Amer-Yahia. EDBT'09] quadratic programming [Zhang-Hurley. RecSys'08] multi-objective optimization [Ribeiro-Lacerda-Veloso-Ziviani. RecSys'12]
 - ⚠ Undesirable unless *appropriate* objective chosen

In information retrieval

- α-nDCG [Clarke-Kolla-Cormack-Vechtomova-Ashkan-Büttcher-MacKinnon. SIGIR'08] Intent-Aware [Agrawal-Gollapudi-Halverson-Ieong. WSDM'09] D# [Sakai-Song. SIGIR'11], αβ-nDCG [Parapar-Radlinski. RecSys'21]
 - 1 They assume a distribution over the intent

Theoretical analysis

Our methodology

- Quantify the correlation btw. two diversity objectives f & g POLICY: Optimize w.r.t. f, evaluate w.r.t. g
- 1. Select S_f w.r.t f $f(S_f)$ maximized s.t. $|S_f|=k$
- 2. Evaluate S_f w.r.t. g \bigcirc Is $g(S_f)$ also large?

If
$$g(S_f) > 0.999 \max_T g(T)$$

→ coenhancing f also enhances g

If $g(S_f) < 0.001 \max_{T} g(T)$

→ wincreasing f does NOT help improve g

Theoretical analysis Does increasing f=ILD improve g=dispersion?

1. Select k items S_{ILD} w.r.t. ILD

Theoretical analysis Does increasing f=ILD improve g=dispersion?

- 1. Select k items S_{ILD} w.r.t. ILD \rightarrow ILD prefers two ends (PROVABLY)
- 2. Evaluate S_{ILD} w.r.t. dispersion $\rightarrow \bigotimes$ disp (S_{ILD}) = 0!

WHY? Select duplicated items

Theoretical analysis Does increasing f=ILD improve g=dispersion?

- 1. Select k items S_{ILD} w.r.t. ILD \rightarrow ILD prefers two ends (PROVABLY)
- 2. Evaluate S_{ILD} w.r.t. dispersion $\rightarrow \bigotimes$ disp $(S_{ILD}) = 0!$

WHY? Select duplicated items

In fact... $max_T disp(T) = 1$

CLAIM (Informal)

Even if S_{ILD} is optimal w.r.t. ILD, disp(S_{ILD}) can be 0

Theoretical analysis

Does enhancing f=disp enhances g=ILD?

In a nutshell, we can do similar analysis

2. Evaluate S_{disp} w.r.t. ILD $\rightarrow \bigotimes$ ILD(S_{disp}) = $\epsilon \ll 1$

WHY? Can't distinguish small-ILD and large-ILD by disp.

In fact... $max_T ILD(T) \approx 0.5$

CLAIM (Informal)

Even if S_{disp} is optimal w.r.t. dispersion, $ILD(S_{disp})$ can be k times worse than $max_T ILD(T)$

Conclusions: TAKEAWAY

Cons of ILD: May select (nearly) duplicated items

Cons of disp: May overlook distant item pairs

Pros of ILD: Select items in a well-balanced manner

Pros of disp: Selected items are dispersed

