PSY 5939: Longitudinal Data Analysis

Contents

1	Introduction	1
	1.1 Growth model + latent class = ???	1
2	Latent class analysis 2.1 Latent class analysis	2
3	Growth mixture models	9
	3.1 Growth mixture and latent class growth analysis	9
	3.2 LCGA example	12
	3.3 Evaluating the LCGA	17

1 Introduction

1.1 Growth model + latent class = ???

1.1.1 Variability in trajectories

We have talked about **predictors** of trajectories

- Girls have one average trajectory for alcohol use
- Boys have a different average trajectory for alcohol use

Here, gender is an **observed** variable

What if there is some categorical variable that predicts trajectories, but you don't actually observe it?

- This predictor is **latent** or unobserved
- It may be a single unobserved variable
- More typically, it's a pattern across multiple variables

1.1.2 Growth mixture models

Growth mixture models combine two different types of analysis:

- 1. Latent growth models: You know about these
- 2. Latent class analysis (also called mixture model): You probably don't know about these

Allow different latent groups to have different trajectories

• This is *like* having predictors of growth, but the predictor is latent (unobserved)

2 Latent class analysis

2.1 Latent class analysis

2.1.1 Latent class analysis

Latent class = unknown / unobserved subgroups

• Here, "class" is used to mean groups

LCA is a latent variable technique that **classifies** people into previously unknown subgroups based on their responses to a set of variables

(Strictly speaking, LCA = categorical variables; latent profile analysis (LPA) is the term for this model with continuous variables)

People have different patterns of responses that define the different classes

- Not a single value on a single variable
- For example, people in group 1 are high on items 1-3, low on items 4-6
- People in group 2 are low on items 1-2 and high on items 3-6

2.1.2 What it looks like

- Latent class (C) is categorical
 - Typically only nominal, not ordinal
- X_1 through X_4 are called **indicators** of the latent class
- Note that the latent variable causes the indicator values

2.1.3 LCA vs other methods

LCA is similar to other methods, goes by other names Help you contextualize what is going on in LCA

- 1. Factor analysis / measurement model Very similar, but latent factor is continuous while *latent class is categorical*
- 2. Mixture model Population is a "mixture" of subgroups, LCA "unmixes" them
- 3. Data reduction Large number of items \rightarrow smaller number of classes

4. Person-oriented approach

How do **people** have different *patterns*, rather than how are the **variables** related to one another for all *people*

2.1.4 Selecting the number of classes

We have some number of patterns (classes)?

• How do we decide how many?

Similar to exploratory factor analysis (EFA) methods

Run several models with different numbers of classes e.g., 1 class, 2 classes, 3 classes, etc.

Compare these models in terms of model fit and theory

Choose the model that has the best fit and makes the most sense

2.1.5 Model fit for LCA

• Chi-square test

Problematic for large samples, do not rely on it

• Likelihood ratio test (also bootstrap LR test) Same as previous LR tests, compare two models

• AIC and BIC

Smaller is better, not a measure of absolute fit

• Entropy - certainty of classification Ranges from 0 to 1, closer to 1 is better

• Predicted vs observed means / probabilities

Mean for each item within each class - do they match

BIC and LR test are best for choosing the number of classes

- AIC and entropy are bad for choosing the correct number of classes
- You can report AIC and entropy they tell you about the model but don't use them to decide on the number of classes

2.1.6 Mplus example 7.9 (modified)

4 continuous indicators, 2 classes

```
DATA:
FILE IS ex7.9.dat;

VARIABLE:
NAMES ARE y1-y4 x;
USEVARIABLES ARE y1-y4;
CLASSES = c (2);

ANALYSIS:
TYPE = MIXTURE;

PLOT:
```

```
TYPE=PLOT3;
SERIES = y1(1) y2(2) y3(3) y4(4);
```

${\bf 2.1.7} \quad {\bf Model\text{-}implied\ response\ pattern}$

MODEL RESULTS					
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
Latent Class 1					
Means					
Y1	-1.056	0.070	-15.030	0.000	
Y2	-1.088	0.067	-16.255	0.000	
Y 3	-0.943	0.063	-15.050	0.000	
Y4	-1.093	0.074	-14.688	0.000	
Latent Class 2					
Means					
Y1	1.037	0.070	14.762	0.000	
Y2	1.004	0.064	15.682	0.000	
Y 3	0.865	0.068	12.763	0.000	
Y4	0.980	0.060	16.321	0.000	
• • •					

${\bf 2.1.8}\quad {\bf Model\text{-}implied\ response\ pattern}$

 $GRAPH \rightarrow VIEW GRAPHS \rightarrow ESTIMATED MEANS (Windows only)$

2.1.9 Model-implied response pattern

2.1.10 Another example

Quaiser-Pohl, Geiser, & Lehmann (2006) 3 classes with binary indicators

How often do you play the following types of computer games?

Never or rarely (0) vs. Often or very often (1)

- 1. Adventure
- 2. Action
- 3. Sport
- 4. Fantasy role playing
- 5. Logic
- 6. Skill training
- 7. Simulation
- 8. Driving simulation

2.1.11 Mplus syntax

2.1.12 Model-implied response pattern

MODEL RESULTS				
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Latent Class 1				
Thresholds				
C1\$1	0.555	0.144	3.852	0.000
C2\$1	-0.591	0.191	-3.101	0.002
C3\$1	-0.097	0.163	-0.593	0.553
C4\$1	0.463	0.143	3.244	0.001
C5\$1	1.154	0.247	4.680	0.000
C6\$1	1.542	0.291	5.290	0.000
C7\$1	-0.628	0.152	-4.134	0.000
C8\$1	-0.576	0.159	-3.633	0.000
Latent Class 2				
Thresholds				
C1\$1	1.398	0.506	2.761	0.006
C2\$1	1.920	0.706	2.717	0.007
C3\$1	1.675	0.423	3.961	0.000
C4\$1	1.489	0.523	2.850	0.004
C5 \$1	-0.981	0.406	-2.413	0.016
C6\$1	-1.480	0.654	-2.263	0.024
C7 \$1	0.187	0.357	0.524	0.600
C8\$1	0.685	0.334	2.052	0.040
Latent Class 3				
Thresholds				
C1\$1	4.582	0.780	5.872	0.000
C2\$1	4.334	0.804	5.388	0.000
C3\$1	2.723	0.322	8.455	0.000
C4\$1	4.583	0.927	4.947	0.000
C5 \$1	2.216	0.300	7.391	0.000
C6\$1	2.166	0.366	5.924	0.000
C7\$1	2.873	0.326	8.817	0.000
C8\$1	2.845	0.410	6.937	0.000
• • •				
RESULTS IN PROBAE	BILITY SCALE			
Latent Class 1				
C1				
Category 1	0.635	0.033	19.021	0.000

Category	2	0.365	0.033	10.915	0.000
C2	1	0.356	0.044	8.152	0.000
Category		0.644	0.044	14.721	0.000
Category :	2	0.044	0.044	14.721	0.000
Category	1	0.476	0.041	11.727	0.000
Category		0.524	0.041	12.916	0.000
C4	_	0.024	0.041	12.510	0.000
Category	1	0.614	0.034	18.144	0.000
Category		0.386	0.034	11.423	0.000
C5					
Category	1	0.760	0.045	16.915	0.000
Category		0.240	0.045	5.332	0.000
C6					
Category	1	0.824	0.042	19.465	0.000
Category	2	0.176	0.042	4.165	0.000
C7					
Category	1	0.348	0.034	10.094	0.000
Category	2	0.652	0.034	18.917	0.000
C8					
Category		0.360	0.037	9.847	0.000
Category	2	0.640	0.037	17.521	0.000
	_				
Latent Class	2				
C1					
Category	1	0.802	0.080	9.967	0.000
Category	2	0.198	0.080	2.463	0.014
C2					
Category		0.872	0.079	11.068	0.000
Category	2	0.128	0.079	1.623	0.105
C3					
Category		0.842	0.056	14.991	0.000
Category	2	0.158	0.056	2.808	0.005
Catagory	1	0.816	0.078	10.399	0.000
Category		0.184	0.078	2.345	0.019
Category :	2	0.104	0.076	2.340	0.019
Category	1	0.273	0.081	3.383	0.001
Category		0.727	0.081	9.020	0.000
C6	-	V. 121	0.001	3.020	
Category	1	0.185	0.099	1.877	0.060
Category		0.815	0.099	8.247	0.000
C7					
Category	1	0.547	0.088	6.179	0.000
Category		0.453	0.088	5.125	0.000
C8					
Category	1	0.665	0.074	8.941	0.000
Category		0.335	0.074	4.508	0.000
Latent Class	3				
C1					
O1					

	Category	1	0.990	0.008	126.531	0.000	
	Category	2	0.010	0.008	1.295	0.195	
C2	0 1						
	Category	1	0.987	0.010	96.062	0.000	
	Category	2	0.013	0.010	1.259	0.208	
СЗ	0 1						
	Category	1	0.938	0.019	50.383	0.000	
	Category	2	0.062	0.019	3.309	0.001	
C4	0 1						
	Category	1	0.990	0.009	106.680	0.000	
	Category	2	0.010	0.009	1.090	0.276	
C5							
	Category	1	0.902	0.027	33.919	0.000	
	Category	2	0.098	0.027	3.699	0.000	
C6							
	Category	1	0.897	0.034	26.596	0.000	
	Category	2	0.103	0.034	3.049	0.002	
C7							
	Category	1	0.947	0.017	57.362	0.000	
	Category	2	0.053	0.017	3.242	0.001	
C8	- •						
	Category	1	0.945	0.021	44.386	0.000	
	Category	2	0.055	0.021	2.580	0.010	

${\bf 2.1.13}\quad {\bf Model\text{-}implied\ response\ pattern}$

 ${\sf GRAPH} \to {\sf VIEW} \ {\sf GRAPHS} \to {\sf ESTIMATED} \ {\sf PROBABILITIES} \ ({\sf Windows} \ {\sf only})$

2.1.14 Model-implied response pattern

3 Growth mixture models

3.1 Growth mixture and latent class growth analysis

3.1.1 Growth mixture models

 ${\bf Growth\ mixture\ models\ use\ a\ latent\ class\ to\ predict\ growth}$

Previously:

We used an **observed** variable to predict growth trajectory

• Gender predicts trajectory \rightarrow different predicted trajectory for boys versus girls

Now, we can use a latent class (unobserved, potentially multivariate construct) to predict growth trajectory

• Type of video game player

3.1.2 Growth mixture vs latent class growth analysis

There are two **slightly** different kinds of models that incorporate a latent class component in a growth modeling framework

- Growth mixture models (GMM)
- Latent class growth analysis (LCGA)

GMM allows within-class variation in growth trajectories

• People in the same class are allowed to vary in their intercepts and slopes

LCGA does not allow this, so any variation among people in the same class just becomes error variance

LCGA are more constrained, often used to explore the data I will refer to all these analyses as "growth mixture models"

3.1.3 Growth mixture model

3.1.4 Latent class growth analysis

3.1.5 Running growth mixture models

As with LCA, running GMM is an iterative procedure

Run a 1 class model, a 2 class model, etc.

Compare these models in terms of model fit:

- BIC
- LR test
- Entropy (classification quality)
- Theoretical utility

3.1.6 Technical issues

Growth mixture models often need a lot of constraints

- May need to constrain parameters in some classes but not in others
- $\bullet\,$ Frequently need to supply start values

These examples are all LCGA models

 \rightarrow No within class variance components (all people in the same class have same intercept and slope)

- Intercept, linear trend, and quadratic trend means are estimated for all classes
- Intercept, linear trend, and quadratic trend variance components are fixed at 0 for all classes
- Use previous model solution as start values for classes in next model (I'll show you what this means)

3.2 LCGA example

3.2.1 Growth mixture / LCGA example

This is LCGA example

(It is sometimes hard to get a true GMM to run)

Example where we can look at 1, 2, 3, and 4 class solutions

Antisocial behavior at 4 time points

Time is centered at first time point

Two major research questions:

- 1. How does antisocial behavior change over time?
- 2. Are there **subgroups** of people who have **different trajectories** in antisocial behavior?

3.2.2 One-class LCGA results

Fit index	Value
# parameters BIC	4 5712.128

Estimate	Class 1
Intercept	1.703*
Linear	0.237*
Quadratic	-0.045
Residual variance	3.721*
Proportion	1.00

3.2.3 One-class LCGA results

3.2.4 Two-class LCGA results

Fit index	Value
# parameters	8
BIC	5354.937
LRT p-value	.0006

lass 1	Class 2
.304*	1.211*
.018*	0.014
0.170	0.001
.188*	2.188*
.225	0.775
	.304* .018* 0.170 .188*

3.2.5 Two-class LCGA results

3.2.6 Three-class LCGA results

Fit index	Value
# parameters	12
BIC	5268.238
LRT p-value	.0070

Estimate	Class 1	Class 2	Class 3
Intercept	3.740*	1.106*	2.766*
Linear	3.505*	0.014	0.133
Quadratic	-0.796*	-0.015	0.113
Residual variance	1.829*	1.829*	1.829*
Proportion	0.062	0.711	0.227

3.2.7 Three-class LCGA results

3.2.8 Four-class LCGA results

Fit index	Value
# parameters BIC	16
LRT p-value	5263.066 .2066

Estimate	Class 1	Class 2	Class 3	Class 4
Intercept	5.111*	1.102*	3.154*	2.336*
Linear	0.033	-0.003	4.190*	0.146
Quadratic	-0.120	-0.017	-0.928*	0.149
Residual variance	1.715*	1.715*	1.715*	1.715*
Proportion	0.037	0.689	0.057	0.217

3.3 Evaluating the LCGA

3.3.1 BIC comparison - smaller is better

3.3.2 Likelihood ratio tests comparison

The likelihood ratio test (LRT) compares your model to a model with 1 fewer classes A significant result means that your model is better than the model with fewer classes

Classes	LRT statistic	p-value	Conclusion
1	N/A	N/A	None
2	26.826	.0006	2 better than 1
3	-9.646	.0070	3 better than 2
4	15.268	.2066	4 NOT better than 3

3.3.3 Classification quality

How confident are you of classification?

- Did people in class 1 also have a good chance of begin put in class 2?
- 1. Classification table
- k x k table, where k is the number of classes in the model
- ullet Good classification = diagonals high, off-diagonals low
- A bit like reliability, "high" is greater than .80

2. Entropy

Ranges from 0 to 1, with higher values indicating better overall classification accuracy / confidence

3.3.4 Classification quality - 2 classes

Rows = Most likely class (class they are assigned to)

Columns = Average probability of class k membership

	1	2
1	0.909	0.091
2	0.033	0.967

Entropy = 0.840

3.3.5 Classification quality - 3 classes

Rows = Most likely class (class they are assigned to)

Columns = Average probability of class k membership

	1	2	3
1	0.920	0.001	0.079 0.059 0.884
2	0.001	0.940	
3	0.025	0.091	

Entropy = 0.834

3.3.6 Classification quality - 4 classes

Rows = Most likely class (class they are assigned to)

Columns = Average probability of class k membership

	1	2	3	4
1	0.836	0.000	0.076	0.087
2	0.000	0.929	0.001	0.069
3	0.087	0.004	0.832	0.076
4	0.039	0.112	0.014	0.836

Entropy = 0.826

3.3.7 Summary of results from LCGA

BIC suggests 3 classes

LRT suggests 3 classes

Classification is still good for 4 class solution, but is much lower than for 3 class solution

Extra class in the 4 class solution is very small (4%) and not much different from another class 4 class solution has 3 classes with no linear or quadratic slope: differ only for intercepts (and only slightly) Be wary of very small (<5%) classes: often unreliable but could also just be a rare group

3.3.8 Three class model input

```
data:
file is 'antisocial_missing.txt';
variable:
names are
anti1 - anti4 read1 - read4
male momage kidage homecog homeemo id;
usevariables are anti1 - anti4;
missing are all (999);
classes = c(3);
analysis:
type is missing mixture;
coverage = .0000001;
iterations = 3000;
model:
%overall%
!quadratic growth model
icept linear quad | anti100 anti201 anti302 anti403;
! equal residual variances
anti1 - anti4 (1);
! FIX VARIANCE COMPONENTS TO ZERO FOR LCGA;
icept@0 linear@0 quad@0;
icept with linear@0 quad@0;
linear with quad@0;
%c#1%
[icept*3.304 linear*1.018 quad*-.17];
%c#2%
[icept*1.211 linear*.014 quad*.001];
%c#3%
[icept* linear* quad*];
output: tech11;
```

3.3.9 Three class model output 1

```
THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 12

Loglikelihood

HO Value -2598.096
HO Scaling Correction Factor 1.5497
for MLR

Information Criteria
```

```
Akaike (AIC) 5220.192
Bayesian (BIC) 5268.238
Sample-Size Adjusted BIC 5230.161
(n* = (n + 2) / 24)
```

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes

 1
 100.44952
 0.24802

 2
 279.06685
 0.68905

 3
 25.48363
 0.06292

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Classes

 1
 100.44952
 0.24802

 2
 279.06685
 0.68905

 3
 25.48363
 0.06292

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent Classes

 1
 92
 0.22716

 2
 288
 0.71111

 3
 25
 0.06173

CLASSIFICATION QUALITY

Entropy 0.834

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column)

1 2 3 1 0.884 0.091 0.025 2 0.059 0.940 0.001 3 0.079 0.001 0.920

Classification Probabilities for the Most Likely Latent Class Membership (Column) by Latent Class (Row)

```
1 2 3

1 0.810 0.170 0.020

2 0.030 0.970 0.000

3 0.089 0.009 0.902
```

Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column) by Latent Class (Row)

	1	2	3
1	3.722	2.163	0.000
2	5.431	8.907	0.000
3	-2.321	-4.607	0.000

3.3.10 Three class model output 2

MODEL RESULTS					
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
Latent Class 1					
ICEPT					
ANTI1	1.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	1.000	0.000	999.000	999.000	
ANTI4	1.000	0.000	999.000	999.000	
LINEAR					
LINEAR ANTI1	0.000	0.000	999.000	999.000	
ANTII ANTI2	1.000	0.000	999.000	999.000	
ANTI3	2.000	0.000	999.000	999.000	
ANTI4	3.000	0.000	999.000	999.000	
ANII4	3.000	0.000	999.000	999.000	
QUAD					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	4.000	0.000	999.000	999.000	
ANTI4	9.000	0.000	999.000	999.000	
ICEPT WITH					
LINEAR	0.000	0.000	999.000	999.000	
QUAD	0.000	0.000	999.000	999.000	
ψονη	0.000	0.000	555.000	200.000	
LINEAR WITH					
QUAD	0.000	0.000	999.000	999.000	
Means					
ICEPT	2.766	0.231	11.964	0.000	
LINEAR	0.133	0.345	0.385	0.700	
QUAD	0.133	0.115	0.982	0.326	
MOVD	0.113	0.113	0.302	0.020	

Intercepts					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	0.000	0.000	999.000	999.000	
ANTI3	0.000	0.000	999.000	999.000	
ANTI4	0.000	0.000	999.000	999.000	
MNIII	0.000	0.000	333.000	333.000	
Variances					
ICEPT	0.000	0.000	999.000	999.000	
LINEAR	0.000	0.000	999.000	999.000	
QUAD	0.000	0.000	999.000	999.000	
Q OID	0.000	0.000	000.000	000.000	
Residual Variances					
ANTI1	1.829	0.102	17.935	0.000	
ANTI2	1.829	0.102	17.935	0.000	
ANTI3	1.829	0.102	17.935	0.000	
ANTI4	1.829	0.102	17.935	0.000	
ANII4	1.029	0.102	17.935	0.000	
Latent Class 2					
ICEPT					
ANTI1	1.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	1.000	0.000	999.000	999.000	
ANTI4	1.000	0.000	999.000	999.000	
	2,000	0.000			
LINEAR					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	2.000	0.000	999.000	999.000	
ANTI4	3.000	0.000	999.000	999.000	
QUAD					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	4.000	0.000	999.000	999.000	
ANTI4	9.000	0.000	999.000	999.000	
ICEPT WITH					
LINEAR	0.000	0.000	999.000	999.000	
QUAD	0.000	0.000	999.000	999.000	
LINEAR WITH					
QUAD	0.000	0.000	999.000	999.000	
M					
Means	4 400	0.001	40.040	0.000	
ICEPT	1.106	0.084	13.219	0.000	
LINEAR	0.014	0.113	0.121	0.904	
QUAD	-0.015	0.036	-0.420	0.675	
T					
Intercepts	0.000	0.000	000 000	000 000	
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	0.000	0.000	999.000	999.000	
ANTI3	0.000	0.000	999.000	999.000	

ANTI4	0.000	0.000	999.000	999.000	
Variances					
ICEPT	0.000	0.000	999.000	999.000	
LINEAR	0.000	0.000	999.000	999.000	
QUAD	0.000	0.000	999.000	999.000	
QAD	0.000	0.000	999.000	999.000	
Residual Variances					
ANTI1	1.829	0.102	17.935	0.000	
ANTI2	1.829	0.102	17.935	0.000	
ANTI3	1.829	0.102	17.935	0.000	
ANTI4	1.829	0.102	17.935	0.000	
Latent Class 3					
ICEPT					
ANTI1	1 000	0.000	999.000	000 000	
ANTII ANTI2	1.000	0.000		999.000	
	1.000	0.000	999.000	999.000	
ANTI3	1.000	0.000	999.000	999.000	
ANTI4	1.000	0.000	999.000	999.000	
LINEAR					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	2.000	0.000	999.000	999.000	
ANTI4	3.000	0.000	999.000	999.000	
OIIAD					
QUAD	0.000	0.000	000 000	000 000	
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	1.000	0.000	999.000	999.000	
ANTI3	4.000	0.000	999.000	999.000	
ANTI4	9.000	0.000	999.000	999.000	
ICEPT WITH					
LINEAR	0.000	0.000	999.000	999.000	
QUAD	0.000	0.000	999.000	999.000	
·					
LINEAR WITH	0.000	0.000	000 000	000 000	
QUAD	0.000	0.000	999.000	999.000	
Means					
ICEPT	3.740	0.573	6.527	0.000	
LINEAR	3.505	0.671	5.226	0.000	
QUAD	-0.796	0.186	-4.282	0.000	
•	, , , ,				
Intercepts					
ANTI1	0.000	0.000	999.000	999.000	
ANTI2	0.000	0.000	999.000	999.000	
ANTI3	0.000	0.000	999.000	999.000	
ANTI4	0.000	0.000	999.000	999.000	
Variances					
ICEPT	0.000	0.000	999.000	999.000	
	2.000	3.000	110.000		

LINEAR	0.000	0.000	999.000	999.000
QUAD	0.000	0.000	999.000	999.000
Residual Variance	es			
ANTI1	1.829	0.102	17.935	0.000
ANTI2	1.829	0.102	17.935	0.000
ANTI3	1.829	0.102	17.935	0.000
ANTI4	1.829	0.102	17.935	0.000

3.3.11 Three class model output 3

```
TECHNICAL 11 OUTPUT
     Random Starts Specifications for the k-1 Class Analysis Model
        Number of initial stage random starts
                                                                20
                                                                 4
        Number of final stage optimizations
     VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 2 (HO) VERSUS 3 CLASSES
          HO Loglikelihood Value
                                                         -2653.453
          2 Times the Loglikelihood Difference
                                                           110.714
          Difference in the Number of Parameters
                                                            -9.646
          Standard Deviation
                                                            57.462
          P-Value
                                                            0.0070
     LO-MENDELL-RUBIN ADJUSTED LRT TEST
          Value
                                                           106.288
          P-Value
                                                            0.0082
```

3.3.12 Next steps...

These LCGA models have no intercept, slope, or quadratic curvature variance

- Explore GMMs that allow variability in intercept, linear trend, quadratic trend within each class
- Substantially more difficult to run successfully
- Sometimes you can allow variability in only some classes

Don't know anything about the classes except for their trajectories on antisocial behavior

- This model has a latent class with **no indicators**
- Further models can add indicators of the latent class