Топология

1 курс, 2 модуль

Пирковский Алексей Юльевич

Содержание

1	Про топологию	2
2	Метрические пространства	2
	2.1 Метрика	2
	2.2 Норма	3
3	Открытое множество в метрическом пространстве	5
4	Топологические пространства	6
5	Открытое множество в метрическом пространстве	8
6	Топологические пространства	9
7	База и предбаза топологии	11
8	Сходимость последовательностей в топологическом пространстве	12
9	Замыкание, внутренность, граница	13
	9.1 Внутренность	14
10	Аксиомы счетности	15
11	Непрерывные отображения	16
	11.1 Подпространства топологических пространств	19
12	Инициальные топологии. Произведения топологических пространств	21
	12.1 Инициальные точки	21
	12.2 Произведения множеств	21
	12.3 Произведения топологических пространств	22
13	Финальные топологии и дизъюнктные объединения	25
	13.1 Финальные топологии	25
	13.2 Дизъюнктное объединение множеств	25
	13.3. Лизъюнктное объединение	26

1 Про топологию

Топология **изучает** свойства пространств, сохраняющихся при непрерывных преобразованиях. Делится на общую (завершенный раздел, переживший период бурного развития) и современную.

Общая топология — элементарная, то есть не требует предварительных глубоких познаний, и является фундаментом математики. Основные объекты изучения — топологические пространства и непрерывные отображения.

Современная топология состоит из многих разделов, среди которых алгебраическая — изучает топологические пространства алгебраическими методами, то есть проецирует топологию на алгебру, рассматривает топологические пространства, имеющие хорошие комбинаторные свойства, — дифференциальная, объектами которой являются пространства, снабженные дополнительной дифференциальной структурой, и методы дифференциального исчисления, геометрическая, связанная с пространствами малой размерности, и другие. Стоит отметить, что разделы не изолированы, а взаимодействуют друг с другом.

2 Метрические пространства

2.1 Метрика

Определение. Метрика на множестве X — функция $\rho: X \times X \to [0; +\infty]$, удовлетворяющая следующим условиям:

- (1) $\rho(x,y) = \rho(y,x) \forall x,y \in X$;
- (2) $\rho(x,x) = 0 \forall x \in X$;
- (3) $\rho(x,z)\leqslant \rho(x,y)+\rho(y,z) \forall x,y,z\in X$ неравенство треугольника;
- (4) $\rho(x,y) > 0 \forall x \neq y$.

Таким образом, мы аксиоматически задали способ определить расстояние, то есть то, что понимать под расстоянием в общем случае.

Метрическое пространство (\mathbf{x}, ρ) — множество (точнее — пара), снабженное метрикой. Если выполняется только (1)–(3), то ρ называется полуметрикой, а (x, ρ) — полуметрическим пространством.

Пример 0. Дискретная метрика

$$\rho(x,y) = \begin{cases} 1, & \text{если } x \neq y \\ 0, & \text{если } x = y \end{cases}$$

Пример 1. Классический

 $x=\mathbb{R},
ho(x,y)=|x-y|.$ Легко проверить, что выполняются все аксиомы метрики, причем неравенство треугольника — свойство модуля.

Пример 2. Три метрики на \mathbb{R}^n

- $\rho_1(x,y) = \sum_{i=1}^n |x_i y_i|$, где $x = (x_1, \dots, x_n) \in \mathbb{R}^n, y \in \mathbb{R}^n$. Для каждой координаты выполняется неравенство треугольника, просуммируем координаты и получим, что для суммы тоже выполняется.
 - \bullet $\rho_2(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$ «обычное» расстояние евклидова метрика.
- $\rho_{\infty}(x,y) = \max_{1 \leqslant i \leqslant n} |x_i y_i|$ (пояснение: если вместо 1 или 2 стоит p, метрика выглядит так: $\rho_p = \sqrt[p]{\sum_{i=1}^n (x_i y_i)^p}$, это пример для $p \to \infty$).

Пример 3. X = C[a, b] — множество всех непрерывных функций $[a, b] \to \mathbb{R}$.

Равномерная метрика (также супметрика): $\rho(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$. Так как функция непрерывна, она ограничена \Leftrightarrow можно назвать max, а не sup.

Наблюдение. В примерах 1-3 X — векторное пространство над \mathbb{R} : $\rho(x,y) = \rho(x-y,0)$ — так как это пространства специального вида — нормированные.

2.2 Норма

Определение. Пусть X — векторное пространство над \mathbb{K} (где $/mathbbK = \mathbb{R}$ или $/mathbbK = \mathbb{C}$). Функция $X \to [0; +\infty], \ x \in X \mapsto ||x||$, называется **нормой** на X (то есть мы аксиоматически определяем, что такое длина вектора, — тогда говорят норма), если она удовлетворяет следующим условиям:

- (1) $||\lambda \cdot x|| = |\lambda| \cdot ||x||$, $\lambda \in \mathbb{K}$, $x \in X$ (то есть λ число, x вектор);
- (2) аналог неравенства треугольника: $||x+y|| \le ||x|| + ||y||$, $(x,y \in X)$ прим.: на плоскости сводится к неравенству треугольника;
 - (3) $||\mathbf{x}|| > 0 \ \forall x \neq 0 \ (\mathbf{x} = 0$: из аксиомы $(1) \Rightarrow ||\mathbf{x}|| = 0$).

Пространство на X, снабженное нормой, — **нормированное пространство.** Например, $(x,||\cdot||)$.

Если (1), (2) выполняются, а (3) — нет, то это **полунорма**, соответственно пространство — полунормированное.

Наблюдение. Пусть $(x, ||\cdot||)$ — нормированное пространство. Тогда $\rho(x, y) = ||x - y|| \ (x, y \in X)$ — метрика на X, порожденная нормой.

Упражнение. Проверить выполнение аксиом метрики для $\rho(x,y)$.

- Всякая норма порождает метрику;
- Подмножество метрического пространства метрическое пространство;
- Подмножество нормированного пространства нормированное пространство;
- Всякое метрическое пространство изометрично нормированному пространству (изометрия биекция между метрическими пространствами, сохраняющая расстояния между точками, мое примечание.)

Пример 4. Три нормы на \mathbb{K}^n , порожденные метриками из Примера 2

 $\bullet ||x||_1 = \sum_{i=1}^n |x_i|;$

- $\bullet \ ||x||_2 = \sqrt{\sum_i^n |x_i|^2}$ евклидова норма;
- $\bullet ||x||_{\infty} = max_{1 \leq i \leq n} |x_i|.$

Пример 5. Равномерная норма на пространстве непрерывных функций C[a, b], порожденная метрикой из Примера 3

$$||f|| = \sup_{t \in [a,b]} |f(t)|.$$

Обозначение. Напомним, что если X, Y — множества, то Y^X — множество всех отображений $X \to Y$. В частности, $\mathbb{K}^{\mathbb{N}}$ — множество числовых последовательностей в \mathbb{K} .

Пример 6. $l^{\infty}(S)$ — множество всех ограниченных функций на множестве S: $\{f \in \mathbb{K}^{\mathbb{S}} : f \text{ ограничена}\}.$

 $||f|| = \sup_{s \in S} |f(s)|$ — равномерная норма. Повторное замечание: непрерывная функция ограничена (сверху и снизу), достигает максимум, можно писать не sup, а max.

Частный случай: пространство ограниченных последовательностей $l^{\infty} = l^{\infty}(\mathbb{N})$ — пространство ограниченных последовательностей.

Пример 7. $l^1 = \{x = (x_i) \in \mathbb{K}^{\mathbb{N}} : \text{ряд сходится} \}$, где x_i — числовая последовательность. Норма на l^1 : $||x||_1 = \sum_{i=1}^{\infty} |x_i|$.

Пример 8 (важный)

 l^2 (можно также писать l_2) = $\{x = (x_i) \in \mathbb{K} : \text{ряд } \sum_{i=1}^{\infty} |x_i|^2 \text{ сходится} \}.$

 l^2 — векторное подпространство в $\mathbb{K}^{\mathbb{N}}$ — следует из неравенства $(a+b)^2 \leqslant 2(a^2+b^2), \ a,b \geqslant 0.$ Норма на $l^2: ||x||_2 = \sqrt{\sum_{i=1}^\infty |x_i|^2}.$

Неравенство треугольника в l^2 следует из неравенства треугольника для $||\cdot||_2$ на \mathbb{K}^{\ltimes} , $n \to \infty$.

В некоторых пространствах норма исходит из скалярного произведения, поэтому напоминание из геометрии:

Определение. Евклидово пространство — аксиоматически определено скалярное произведение, а не расстояние.

Скалярное произведение на E, где E — векторное пространство над \mathbb{R} — функция $E \times E \to \mathbb{R}$, $(x,y) \in E \times E \mapsto \langle x,y \rangle \in \mathbb{R}$ (прим.: пишем $\langle x,y \rangle$, чтобы отличать скалярное произведение от пары), удовлетворяющая следующим условиям:

- (1) линейность: $<\alpha x+\beta y,z>=\alpha < x,z>+\beta < y,z>,\ \alpha,\beta\in\mathbb{R},\ x,y,z\in E$ линейность по первому аргументу;
- (2) <х, у> = <у, х> х, у \in E \Rightarrow линейность и по второму аргументу симметричная билинейная форма;
 - $(3) < x, x > 0 \ \forall x \neq 0.$

Евклидово пространство — векторное пространство E над \mathbb{R} , снабженное скалярным произведением.

Факты:

- (1) **неравенство Коши-Буняковского**: $|< x, y>| \leqslant \sqrt{< x, x>} \cdot \sqrt{< y, y>} \Rightarrow$ над каждым векторным пространством есть норма:
 - (2) $||x|| = \sqrt{\langle x, x \rangle}$ норма на $E \Rightarrow$ нормированное \Rightarrow метрическое пространство.

Пример 9. Норма $||\cdot||_2$ на \mathbb{R}^n порождается скалярным произведением $< x, y >= \sum_{i=1}^n x_i y_i$. Норма $||\cdot||_2$ на l^2 порождается скалярным произведением $< x, y >= \sum_{i=1}^n x_i y_i$.

Упражнение. Доказать сходимость ряда.

Пример 10. p-адическая метрика на Q

Наблюдение. Каждое $x \in \mathbb{Q}$ $\{0\}$ имеет вид $x = p^r \frac{a}{b}$, где $p \in \mathbb{P}$, $a, r \in \mathbb{Z}$, $b \in \mathbb{N}$, причем $p \nmid a, p \nmid b$.

Определение. р-адическая норма ненулевого числа ненулевого рационального числа x: $x \in \mathbb{Q} \setminus \{0\}$ — это $|x|_p = p^{-r}$, то есть число тем меньше, чем на большую степень оно делится. $|0|_p = 0$.

р-адическая норма не является нормой в предыдущем смысле, поэтому для отличия обозначается, как модуль. \mathbb{Q} не является векторным пространством над \mathbb{R} .

Упражнение. Для $x,y \in \mathbb{Q}$

- (1) $|-x|_p = |x|_p$;
- (2) $|xy|_p = |x|_p |y|_p$;
- (3) $|x|_p > 0 \ \forall x \neq 0$;
- (4) «усиленное неравенство треугольника»: $|x+y|_p \le \max\{|x|_p,|y|_p\} \le |x|_p + |y|_p;$
- (5) $\rho_p(x,y) |x-y|_p$ метрика на \mathbb{Q} .

Пример 11. Метрика Хаусдорфа — способ измерить расстояние между точками и множествами

Определение. X — метрическое пространство, $x \in X$, $A \subset X$. $\rho(X,A) = \inf\{\rho(x,a) : a \in A\}$ — расстояние от X до A, то есть расстояние до ближайшего элемента, если inf достигается.

Определение. Ограниченное подмножество в любом метрическом пространстве можно определить, как на плоскости: подмножество $A \subset X$ ограничено, если $\exists c > 0$ т.ч. $\rho(x,y) \leqslant c \ \forall x,y \in A$.

Обозначим $\mathcal{B}(X) = \{A \subset X : A \text{ ограничено}\}.$

Определение. Расстояние Хаусдорфа между двумя ограниченными множествами $A, B \in \mathfrak{B}(X)$ — это $\rho_H(A, B) = \max \{ \sup_{a \in A} \rho(a, B), \sup_{b \in B} p(b, A) \}.$

Упражнение. ρ_H — полуметрика на $\mathcal{B}(X)$.

3 Открытое множество в метрическом пространстве

 (X, ρ) — метрическое пространство, $x \in X, r \geqslant 0$.

Определение. Открытый шар с центром в x радиуса r — это $B_r(x) = \{y \in X : \rho(y, x) < r\}$ — r-окрестность x.

Замкнутый шар с центром в x радиуса r — это $\overline{B}_r(x) = \{y \in X : \rho(y,x) \leqslant r\}$.

Пример.
$$x = \mathbb{R} \Rightarrow B_r(x) = (x - r, x + r); \overline{B}_r(x) = [x - r, x + r].$$

Упражнение. Нарисовать $B_1(o)$ на (\mathbb{R}^2, ρ_p) для $p=1, p=2, p=\infty$ (для p=2 — круг, для p=3 — шар, как в школе).

Пример. X = C[a, b] с равномерной метрикой.

Определение. (X, ρ) — метрическое пространство, $A \subset X, x \in A$.

x — внутренняя точка $A \Leftrightarrow \exists \epsilon > 0 : B_{\epsilon}(x) \subset A$.

A называется **открытым** \Leftrightarrow все его точки — внутренние.

Предложение 1. Открытый шар $B_r(x)$ открыт.

Доказательство.

Пусть $y \in B_r(x)$, т.е $\rho(y,x) < r$.

Положим $\epsilon = r - \rho(y, x)$.

Покажем: $B_{\epsilon}(y) \subset B_r(x).(*)$

Пусть $z \in B_{\epsilon}(y)$.

Неравенство треугольника: $\rho(z,x)\leqslant \rho(z,y)+\rho(y,x)<\epsilon+$ $\rho(y,x)=r\Rightarrow z\in B_r(x)\Rightarrow \ (*)$ доказано $\Rightarrow B_r(x)$ открыто.

- (1) ∅ открыто;
- (2) X открыто;
- (3) $\{U_i\}_{i\in I}$ семейство открытых множеств в $X\to \bigcup_{i\in I} U_i$ открыто.
 - (4) $U_1, U_2, \dots, U_n \subset X$ открыты $\Rightarrow \bigcap_{i=1}^n U_i$ открыто.

Доказательство. (1), (2) очевидны (из определения).

- (3) $x \in \bigcup_{i \in I} U_i \Rightarrow \exists i_0 \in X : x \in U_{i_o} \Rightarrow \exists \epsilon > 0 : B_{\epsilon}(x) \subset U_{i_0} \Rightarrow B_{\epsilon}(x) \subset \bigcup_{i \in I} U_i$.
 - (4) достаточно для n=2

 $\exists \epsilon_1 \epsilon_2 > 0 : B_{\epsilon_1}(x) \subset U_1, B_{\epsilon_2} \subset U_2.$

Обозначим $\epsilon = \min\{\epsilon_1, \epsilon_2\} \Rightarrow B_{\epsilon}(x) \subset U_1 \cap U_2$.

4 Топологические пространства

Определение. Пусть X — множество, $\tau \subset 2^X$.

au называется **топологией** на X, если

- (1) $\emptyset \in \tau$;
- (2) $X \in \tau$;
- (3) $\{U_i\}_{i\in I}$ семейство множеств из $\tau\Rightarrow\bigcup_{i\in I}U_i\in\tau$.
- (4) $U_1, \ldots, U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$.
- (X, τ) называется топологическим пространством.

Множества из au называются **открытыми**.

Наблюдение. Из предложения 2: каждая метрика ρ на множестве X порождает топологию τ_{ρ} на X.

 $\overline{B}_r(f)$ состоит из тех непрерывных функций, графики которых содержатся в заштрихованном множестве.

 $x \in U_1 \cap U_2$

Обозначение. 2^X — множество всех подмножеств множества X.

Определение. Топологическое пространство (X, τ) называется **метризуемым** $\Leftrightarrow \exists$ метрика $\rho: X \times X \to [0; +\infty): \tau_{\rho} = \tau.$

3амечение. Если $au= au_{
ho}$, то такая ho не единственная! Например, $au_{
ho}= au_{2
ho}$

Пример-упражнение. Метрики $\rho_1, \rho_2, \rho_\infty$ на \mathbb{K}^n (где $\mathbb{K} = \mathbb{R}$ либо \mathbb{C}) порождают одну и ту же топологию на \mathbb{K}^n .

Пример 1. Дискретная топология

 $X - \forall$ множество, $\tau = 2^X$.

Рассмотрим
$$\rho: X \times X \to [0; +\infty), \quad \rho(x,y) = \begin{cases} 1, \text{если } x \neq y, \\ 0 \text{ иначе.} \end{cases}$$

Заметим: $\tau = \tau_{\rho}$.

Действительно: $B_1(x) = x \Rightarrow x$ открыто в $\tau_\rho \ \forall x \in X \Rightarrow$ каждое $A \subset X$ открыто в τ_ρ , так как $A = \bigcup_{x \in A} x \Rightarrow \tau_\rho = \tau$ — дискретная топология (метризуема).

Пример 2. Антидискретная топология

X - \forall множество, $\tau = {\emptyset, X}$.

Определение. Пусть τ_1, τ_2 — топологии на множестве X.

Говорят, что τ_1 грубее τ_2 (τ_2 тоньше τ_1), если $\tau_1 \subset \tau_2$.

Синонимы: грубее = слабее, тоньше = сильнее.

Дискретная топология — самая тонкая, антидискретная — самая грубая.

Определение. Окрестность точки x в топологическом пространстве X — любое открытое множество $U \subset X$, содержащее x.

Определение. Топологическое пространство X называется хаусдорфовым $\Leftrightarrow \forall x,y \in X, x \neq y, \exists$ окрестности $U \ni x, V \ni y : U \cap V = \emptyset$.

Предложение. Метризуемое топологическое пространство хаусдорфово.

Доказательство. Пусть (X, ρ) — метрическое пространство, $x, y \in X, x \neq y$. Обозначим $a = \rho(x, y), \ a > 0$.

Следствие. Антидискретная топология на множестве, содержащем более одного элемента, неметризуема (так как неухаусдорфова).

Определение. Пусть X — топологическое пространство.

Множество $F\subset X$ называется замкнутым $\Leftrightarrow X\backslash F$ открыто.

Предложение. Пусть X — топологическое пространство, $\tau' = \{F \subset X : F$ замкнуто $\}$. Тогда:

- (1) $\emptyset \in \tau'$;
- (2) $x \in \tau'$;
- (3) $\{F_i\}$ семейство множеств из $\tau' \Rightarrow \bigcap_{i \in I} F_i \in \tau'$;
- (4) $F_1, F_2, \ldots, F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i$ замкнуто.

Наблюдение. Если X — множество, $\tau' \subset 2^X$ удовлетворяет (1)-(4) из предложения \Rightarrow $\{X \backslash F \colon F \in \tau'\}$ — топология на X.

Из неравенства треугольника: $B_{\frac{a}{2}}(x) \cap B_{\frac{a}{2}}(y) = \emptyset$.

Пример. Топология Зарисского

X — множество, $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Напоминание:

$$X \setminus \bigcap_{i \in I} F_i = \bigcup_{i \in I} (X \setminus F_i);$$

$$X \setminus \bigcup_{i \in I} F_i = \bigcap_{i \in I} (X \setminus F_i)$$
.

- (1) A векторное подпространство в \mathbb{K}^X ;
- (2) $1 \in A$ (где 1 функция, тождественно равная единице);
- (3) $f,g \in A \Rightarrow fg \in A \ (fg$ поточечное произведение f и g).

Зафиксируем какую-либо подалгебру $A \subset \mathbb{K}^X$.

Определение. $A \subset \mathbb{K}^X$ - подалгебра в \mathbb{K}^X , если

$$\forall S \subset A$$
 обозначим $V(S) = \{x \in X : \forall f \in S \ f(x) = 0\}$

Y праженение. На X существует топология, в которой $F\subset X$ замкнуто $\Leftrightarrow F=V(S)$ для некоторого $S\subset A$.

Она называется топологией Зарисского.

Важный частный случай: $X = \mathbb{K}^n$, $A = \mathbb{K}[t_1, \dots, t_n]$.

Упражнение. Описать топологию Зарисского в явном виде для следующих случаев:

- (1) X любое множество, $A = \mathbb{K}^X$;
- (2) $X = \mathbb{K}, A = \mathbb{K}[t];$
- (3) $X = [a, b] \subset \mathbb{R}, A = C[a, b].$

5 Открытое множество в метрическом пространстве

 (X, ρ) — метрическое пространство, $x \in X, r \geqslant 0$.

Определение. Открытый шар с центром в x радиуса r — это $B_r(x) = \{y \in X : \rho(y, x) < r\}$ — r-окрестность x.

3амкнутый шар с центром в x радиуса r — это $\overline{B}_r(x) = \{y \in X : \rho(y,x) \leqslant r\}.$

Пример.
$$x = \mathbb{R} \Rightarrow B_r(x) = (x - r, x + r); \quad \overline{B}_r(x) = [x - r, x + r].$$

Упражнение. Нарисовать $B_1(o)$ на (\mathbb{R}^2, ρ_p) для $p=1, p=2, p=\infty$ (для p=2 — круг, для p=3 — шар, как в школе).

Пример. X = C[a,b] с равномерной метрикой.

Определение. (X,ρ) — метрическое пространство, $A\subset X, x\in A.$ x — внутренняя точка $A\Leftrightarrow \exists \epsilon>0: B_\epsilon(x)\subset A.$

A называется **открытым** \Leftrightarrow все его точки — внутренние.

Предложение 1. Открытый шар $B_r(x)$ открыт.

Доказательство.

 $\overline{B}_r(f)$ состоит из тех непрерывных функций, графики которых содержатся в заштрихованном множестве. Пусть $u \in R(x)$ те o(u, x) < r

Пусть $y \in B_r(x)$, т.е $\rho(y,x) < r$.

Положим $\epsilon = r - \rho(y, x)$.

Покажем: $B_{\epsilon}(y) \subset B_r(x).(*)$

Пусть $z \in B_{\epsilon}(y)$.

Неравенство треугольника: $\rho(z,x) \leqslant \rho(z,y) + \rho(y,x) < \epsilon + \rho(y,x) = r \Rightarrow z \in B_r(x) \Rightarrow (*)$ доказано $\Rightarrow B_r(x)$ открыто.

Предложение 2.

- (1) ∅ открыто;
- (2) X открыто;
- (3) $\{U_i\}_{i\in I}$ семейство открытых множеств в $X\to \bigcup_{i\in I}U_i$ открыто.
- $(4) U_1, U_2, \dots, U_n \subset X$ открыты $\Rightarrow \bigcap_{i=1}^n U_i$ открыто.

Доказательство. (1), (2) очевидны (из определения).

- (3) $x \in \bigcup_{i \in I} U_i \Rightarrow \exists i_0 \in X : x \in U_{i_0} \Rightarrow \exists \epsilon > 0 : B_{\epsilon}(x) \subset U_{i_0} \Rightarrow B_{\epsilon}(x) \subset \bigcup_{i \in I} U_i$.
- (4) достаточно для n=2

 $\exists \epsilon_1 \epsilon_2 > 0 : B_{\epsilon_1}(x) \subset U_1, B_{\epsilon_2} \subset U_2.$

Обозначим $\epsilon = \min\{\epsilon_1, \epsilon_2\} \Rightarrow B_{\epsilon}(x) \subset U_1 \cap U_2.$

6 Топологические пространства

Определение. Пусть X — множество, $\tau \subset 2^X$.

 $x \in U_1 \cap U_2$

- au называется **топологией** на X, если
- (1) $\emptyset \in \tau$;
- (2) $X \in \tau$;
- (3) $\{U_i\}_{i\in I}$ семейство множеств из $\tau\Rightarrow\bigcup_{i\in I}U_i\in\tau$.
- (4) $U_1, \ldots, U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$.
- (X, τ) называется топологическим пространством.

Множества из τ называются **открытыми**.

Наблюдение. Из предложения 2: каждая метрика ρ на мно- ство всех подмножеств множестве X порождает топологию τ_{ρ} на X.

Обозначение. 2^{X} — множежества X.

Определение. Топологическое пространство (X, τ) называется метризуемым $\Leftrightarrow \exists$ метрика $\rho: X \times X \to [0; +\infty): \tau_{\rho} = \tau$.

3амечение. Если $\tau= au_{
ho}$, то такая ho не единственная! Например, $au_{
ho}= au_{2
ho}$

Пример-упражнение. Метрики $\rho_1, \rho_2, \rho_\infty$ на \mathbb{K}^n (где $\mathbb{K} = \mathbb{R}$ либо \mathbb{C}) порождают одну и ту же топологию на \mathbb{K}^n .

Пример 1. Дискретная топология

 $X - \forall$ множество, $\tau = 2^X$.

Рассмотрим
$$\rho: X \times X \to [0; +\infty), \quad \rho(x,y) = \begin{cases} 1, \text{если } x \neq y, \\ 0 \text{ иначе.} \end{cases}$$

Заметим: $\tau = \tau_o$.

Действительно: $B_1(x) = x \Rightarrow x$ открыто в $\tau_\rho \ \forall x \in X \Rightarrow$ каждое $A \subset X$ открыто в τ_ρ , так как $A = \bigcup_{x \in A} x \Rightarrow \tau_{\rho} = \tau$ — дискретная топология (метризуема).

Пример 2. Антидискретная топология

X - \forall множество, $\tau = {\emptyset, X}$.

Определение. Пусть τ_1, τ_2 — топологии на множестве X.

Говорят, что τ_1 грубее τ_2 (τ_2 тоньше τ_1), если $\tau_1 \subset \tau_2$.

Синонимы: грубее = слабее, тоньше = сильнее.

Дискретная топология — самая тонкая, антидискретная — самая грубая.

Определение. Окрестность точки x в топологическом пространстве X — любое открытое множество $U \subset X$, содержащее x.

Определение. Топологическое пространство X называется хаусдорфовым $\Leftrightarrow \forall x,y \in$ $X, x \neq y, \exists$ окрестности $U \ni x, V \ni y : U \cap V = \emptyset$.

Предложение. Метризуемое топологическое пространство хаусдорфово.

Доказательство. Пусть (X, ρ) — метрическое пространство, $x, y \in X, x \neq y$. Обозначим $a = \rho(x, y), \ a > 0.$

Следствие. Антидискретная топология на множестве, содержащем более одного элемента, неметризуема (так как неухаусдорфова).

Определение. Пусть X — топологическое пространство.

Множество $F \subset X$ называется **замкнутым** $\Leftrightarrow X \backslash F$ открыто.

Предложение. Пусть X — топологическое пространство, $\tau' = \{F \subset X : F$ замкнуто $\}$. Тогда:

- (1) $\emptyset \in \tau'$;
- (2) $x \in \tau'$;
- (3) $\{F_i\}$ семейство множеств из $\tau' \Rightarrow \bigcap_{i \in I} F_i \in \tau'$;

Из неравенства треугольника: $B_{\frac{a}{2}}(x) \cap B_{\frac{a}{2}}(y) = \emptyset$.

(4) $F_1, F_2, \dots, F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i$ замкнуто.

Наблюдение. Если X — множество, $au' \subset 2^X$ удовлетворяет

(1)-(4) из предложения $\Rightarrow \{X \backslash F \colon F \in \tau'\}$ — топология на X.

Пример. Топология Зарисского

X — множество, $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Определение. $A \subset \mathbb{K}^X$ - подалгебра в \mathbb{K}^X , если

- (1) A векторное подпространство в \mathbb{K}^X ;
- (2) $1 \in A$ (где 1 функция, тождественно равная единице);
- (3) $f, g \in A \Rightarrow fg \in A \ (fg$ поточечное произведение f и g).

Зафиксируем какую-либо подалгебру $A \subset \mathbb{K}^X$.

 $\forall S \subset A$ обозначим $V(S) = \{x \in X : \forall f \in S \ f(x) = 0\}$

Упраженение. На X существует топология, в которой $F \subset X$ замкнуто $\Leftrightarrow F = V(S)$ для некоторого $S \subset A$.

Она называется топологией Зарисского.

Важный частный случай: $X = \mathbb{K}^n$, $A = \mathbb{K}[t_1, \dots, t_n]$.

Упражнение. Описать топологию Зарисского в явном виде для следующих случаев:

- (1) X любое множество, $A = \mathbb{K}^X$;
- (2) $X = \mathbb{K}, A = \mathbb{K}[t];$
- (3) $X = [a, b] \subset \mathbb{R}, A = C[a, b].$

База и предбаза топологии 7

Лемма. X — множество, $\beta \subset 2^X$. Следующие свойства множества $A \subset X$ эквиваленты:

- (1) $\exists \gamma \subset \beta$ т.ч. $A = \cup \gamma$;
- (2) $\forall x \in A \exists B \in \beta \text{ T.y. } x \in B \subset A.$

Доказательство. (1) \Rightarrow (2). Пусть $A = \cup \gamma, \gamma \subset \beta, x \in A \Rightarrow$ $\exists B \in \gamma : x \in B \Rightarrow B$ удовлетворяет (2).

 $(2) \Rightarrow \forall x \in A \ \exists B_1 \in \beta : x \in B_1 \subset A \Rightarrow \gamma = \{B_x : x \in A\}$ удовлетворяет (1).

Определение. (x, τ) — топологическое пространство.

(1) $\beta \in \tau$ — база τ (или база (X,τ)) \Leftrightarrow каждое $U \in \tau$ является объединением некоторого подсемейства в $\beta \Leftrightarrow \forall U \in \tau \ \forall x \in \tau$ $U \exists B \in \beta$ т.ч. $x \in B \subset U$.

Пример. (x, ρ) — метрическое пространство $\Leftrightarrow \{B_r(x) : x \in X, r > 0\}$ — база τ_p .

Пример. $X = \mathbb{R}, \ \sigma = \{(-\infty, b); (a, +\infty) : a, b \in \mathbb{R}\}$ — предбаза \mathbb{R} , но не база.

Предложение. X — множество, $\beta, \sigma \subset 2^X$.

$$X \setminus \bigcap_{i \in I} F_i = \bigcup_{i \in I} (X \setminus F_i);$$

$$X \setminus \bigcup_{i \in I} F_i = \bigcap_{i \in I} (X \setminus F_i).$$

Обозначение: $\bigcup_{C \in \gamma} C = \bigcup \gamma$

 $\gamma \subset 2^X$

$$(1) \ \text{Ha X} \ \exists \ \text{топология c базой} \ \beta \Leftrightarrow \begin{cases} (a) \cup \beta = X \\ (b) \forall B_1, B_2 \in \beta \ \forall x \in B_1 \cap B_2 \ \exists B_3 \in \beta \ : \\ x \in B_3 \subset B_1 \cap B_2. \end{cases}$$

(2) На X \exists топология с предбазой $\sigma \Leftrightarrow \cup \sigma = X$

Доказательство. (1) (\Leftarrow) следует из открытости X и $B_1 \cap B_2$.

 \Rightarrow Обозначим $\tau=\{\cup\gamma:\gamma\in\beta\}.$ Покажем, что τ — топология на X.

 $\emptyset = \cup \emptyset \in \tau; \; X = \cup \beta \in \tau;$ объединение множеств из τ принадлежит $\tau.$

Пусть $U_1, U_2 \in \tau$. Хотим: $U_1 \cap U_2 \in \tau$.

(2) (\Rightarrow) из открытости X.

Пример. Топология поточечной сходимости

Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , $S \subset \mathbb{K}^X$, где $X - \forall$ множество)

 $\forall x \in X, \forall$ интервала $I \subset \mathbb{R}$ обозначается $G(x,I) = \{f \in S: f(x) \in I\}.$

Семейство $\{G(x,I): x\in X, I\subset R$ — интервал (для $\mathbb{K}=\mathbb{C}$ — открытый круг) $\}$ является предбазой некоторой топологии на S. Она называется **топологией поточечной сходимости** на S.

8 Сходимость последовательностей в

топологическом пространстве

(Окрестность точки — это любое открытое множество, содержащее эту точку)

X — топологическое прространство, $x \in X, (x_n)$ — последовательность в X.

Опредедение. (x_n) сходится к x (x является пределом $(x_n) \Leftrightarrow \forall$ окрестности $U \ni x \exists N \in \mathbb{N} \forall n \geqslant N \ x_n \in U$.

Обозначение. $x_n \to x(n \to \infty)$, или $x = \lim_{n \to \infty} x_n$.

Определение. (1) Семейство β_x окрестностей точки $x \in X$ — база окрестностей х (база в х) $\Rightarrow \forall$ окрестности $U \in ($ знак наоборот $) \exists V \in \beta_x, V \subset U.$

(2) Семейство σ_1 окрестностей точки $x \in X$ — предбаза окрестностей х (предбаза в х).

$$\Leftrightarrow \{U_1 \cap \ldots \cap \ldots U_n : U_i \in \sigma_x, n \in \mathbb{N}\}$$
 — база в х.

Пример. (x, ρ) — метрическое пространство.

 $\{B_r(x): r > 0\}$ — база в х.

 $\{B_{\frac{1}{n}}(x):n\in\mathbb{N}\}$ — тоже (важный пример, запомнить.)

Предложение. X — топологическое пространство, $x \in X$, σ_x

— предбаза в х, (x_n) — последовательность в X.

$$x_n \to x \ (n \to \infty) \Leftrightarrow \forall V \in \sigma_x \exists N \in \mathbb{N} \forall n \geqslant N \ x_n \in V.$$

Доказательство. (\Leftarrow) Пусть U — окрестность $\mathbf{x} \Rightarrow \exists V1, \dots, V_p \in \sigma_x$ т.ч. $V_1 \cap \dots \cap V_p \subset U$.

$$\exists N_1,\ldots,N_p$$
 т.ч. $\forall n\geqslant N_i \ x_n\in V_i (i=1,\ldots,p).$

Обозначим $N = \max_{1 \leq i \leq n} N_i \Rightarrow \forall n \geqslant N \ x_n \in V_1 \cap \ldots \cap V_p \subset U.$

Следствие. (x, ρ) — метрическое пространство, $x \in X, (x_n)$ — последовательность в X. Следующие утверждения эквивалентны:

- (1) $x_n \to x$
- (2) \forall открытого щара V с центром в х $\exists N \in \mathbb{N} \ \forall n \geqslant N \ x_n \in V$
- $(3)\forall \epsilon > 0 \exists N \in \mathbb{N} \ \forall n \geqslant N \rho(x_n, x) < \epsilon.$
- $(4)\rho(x_n,x)\to 0$

Предложение. X — хаусдорфово топологического пространство, (x_n) — последовательность в X, $x_n \to x \in X$, $x_n \to y \in X \Rightarrow x = y$.

Доказательство. Пусть $x \neq y \Rightarrow \exists$ окрестности $U \ni x, V \ni y, U \cap V = \emptyset$.

Из $\exists N_1$ т.ч. $\forall n\geqslant N_1x_n\in U$ и $\exists N_2$ т.ч. $\forall n\geqslant N_2$ $x_n\in V$ следует, что $x_n\in U\cap V$ $\forall n\geqslant \max N_1,N_2$ — противоречие.

Пример. X — антидискретное пространство. Каждая последовательность в X сходится к каждой точке $x \in X$.

Пример. X — дискретное топологическое пространство $x_n \to x \Leftrightarrow \exists N \in \mathbb{N} \ \forall n \geqslant N x_n = x.$

Действительно: $(\Rightarrow) x$ — окрестность х. Далее см. определение сходимости.

Пример-упражнение. $\mathbb{K}=\mathbb{R}$ или ,X- множество, $S\subset \mathbb{K}^{X}.$

Пусть $f_n \to F$ в S с топологией поточечной сходимости $\Leftrightarrow \forall x \in X \ f_n(x) \to f(x)$.

9 Замыкание, внутренность, граница

X — топологическое пространство, $A \subset X$.

Определение. Замыкание А — множество $\overline{A} = \cap \{F \subset X : F \text{ замкнуто, } A \subset F\}.$

Наблюдение. \overline{A} — наименьшее замкнутое множество, содержащее A. В частности, если A замкнуто, то $A = \overline{A}$.

Предложение. $(1)A \subset B \subset X \Rightarrow \overline{A} \subset \overline{B}$;

- $(2)\overline{\overline{A}} = \overline{A};$
- $(3)\overline{A \cup B} = \overline{A} \cup \overline{B}.$

Доказательство. (1) из определения, (2) из наблюдения, (3) $A \subset A \cup B \stackrel{(1)}{\Longrightarrow} \subset \overline{A \cup B}$. Аналогично $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

 $A \cup B \subset \overline{A} \cup \overline{B} \stackrel{\text{(1)}}{\Longrightarrow} \overline{A \cup B} \subset \overline{\overline{\cup} \overline{B}} = \overline{A} \cup \overline{B}$, так как $\overline{A} \cup \overline{B}$ замкнуто.

Предложение. $x \in \overline{A} \Leftrightarrow$ окрестности $U \ni x, U \cap A \neq \emptyset$.

Доказательство. $x \notin \overline{A} \Leftrightarrow \exists$ замкнутое $F \subset X$ т.ч. $F \supset A, \ x \notin F \xrightarrow{U=X \backslash F} \exists x \in U$ и \exists открытое $U \subset X$ т.ч. $U \cap A = \emptyset \Leftrightarrow \exists$ окрестность $U \ni x, \ U \cap A = \emptyset$.

Определение. X — топологическое пространство, $A \subset X$. Тогда $x \in X$ — **предельная** точка $A \Leftrightarrow x \in \overline{A \setminus \{x\}} \xrightarrow{\text{предложение}}$ в каждой окрестности x есть точки из A, отличные от x.

Обозначение. $A' = \{x \in X | x$ — предельная точка $A\}$ — производное множество множества Α.

Из предложения $\overline{A} = A \cup A'$. В частности: А замкнуто $\Leftrightarrow A' \subset A$.

Определение. $x \in A$ — изолированная точка $A \Leftrightarrow x \in A \backslash A' \Leftrightarrow \exists$ окрестность $U \ni x$ т.ч. $U \cap A = \{x\}.$

 $\overline{A} = A' \sqcup$ изолированные точки A.

9.1Внутренность

X — топологическое пространство, $A \subset X$.

Определение. Внутренность A — это $Int(A) = \bigcup \{U \subset X : U \text{ открыто, } U \subset A\}.$

Наблюдение. (1) Int A — наибольшее открытое множество, содержащееся в А. В частности: A открытое \Leftrightarrow A = Int A.

Если (x, ρ) — метрическое пространство, то $x \in IntA \Leftrightarrow \exists \epsilon > 0$ т.ч. $B_{\epsilon}(x) \subset .$

Упражнение. Int $A = X \setminus \overline{(X \setminus A)}$; $\overline{A} = X \setminus Int(X \setminus A)$.

(в рамочке) Int A $subset A \subset \overline{A}$.

Определение. Граница $A - \exists T \in A$ Int A.

Наблюдение. $x \in \delta A \Leftrightarrow \forall$ окрестностей $U \ni x \ U \cap A \neq \emptyset$, $U \cap (X \setminus A) \neq \emptyset$.

Примечание 1. $X = \mathbb{R}, A = \mathbb{Z} \Rightarrow \overline{A} = \mathbb{Z}$, Int $A = \emptyset$, $\delta A = A = \mathbb{Z}$, все точки A изолированы, $A' = \emptyset$.

Примечание 2. $X = \mathbb{R}, A = (0,1) \Rightarrow \overline{A} = [0,1], \text{ Int } A = A =$

 $(0,\,1),\,\delta A=\{0,1\},$ изолированных точек нет, A' = $[0,\,1].$

Примечание 3. $X=\mathbb{R}, A=\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\ \Rightarrow \overline{A}=A\ (\text{т.к.}$

 $\mathbb{R}\setminus A=(-\infty,0)\cup(1,+\infty)\cup(\bigcup_{n=1}^{\infty}(\frac{1}{n+1},\frac{1}{n})).$ Int $A=\emptyset,\ \delta A=A,$

 $\{$ изолированные точки $A\} = \{\frac{1}{n} : n \in \mathbb{N}\}; \{0\} = A'.$

Определение. Х — топологическое пространство. Множе-

ство $A \subset X$ плотно в X (= всюду плотно в X) $\Leftrightarrow \overline{A} = X$.

Наблюдение. А плотно в $X \Leftrightarrow \forall x \in X \forall$ окрестности $U \ni$ $x \ U \cap A \neq \emptyset \Leftrightarrow \forall$ непустого открытого $U \subset X \ U \cap A \neq \emptyset$.

Определение. Х сепарабельно ⇔ ∃ не более чем счетное плотное подмножество в Х.

Пример 1. Дискретное пространство сепарабельно \Leftrightarrow оно само не более чем счетно.

Пример 2. Антидискретное пространство сепарабельно (каждое непустое подмножество плотно).

Пример 3. \mathbb{R} сепарабельно (т.к. \mathbb{Q} плотно в \mathbb{R}).

Пример-упражнение 4. \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 сепарабельны, l^{∞} несепарабельно.

10 Аксиомы счетности

Х — топологическое пространство.

Определение. (1) X удовлетворяет **1-ой аксиоме счетности** $\Leftrightarrow \forall x \in X \exists$ не более чем счетная база окрестностей x.

(2) X удовлетворяет **2-ой аксиоме счетности** (является пространством со **счетной базой**) $\Leftrightarrow \exists$ не более чем счетная база топологии на X.

Предложение. X удовлетворяет 2-ой аксиоме счетности \Rightarrow X удовлетворяет 1-ой аксиоме счетности.

Доказательство. Пусть β — не более чем счетная база топологии на X. $x \in X$; тогда $\{U \in \beta: U \ni x\}$ — база окрестностей x.

Пример 1. X — метризуемо \Rightarrow X удовлетворяет 1-ой аксиоме счетности. Действительно, $\forall x \in X \ \{B_{\underline{1}}(x): n \in \mathbb{N}\}$ — база окрестностей x.

Определение. Семейство β_x окрестностей точки $x \in X$ — база окрестностей $\mathbf{x} \Leftrightarrow \forall$ окрестности $U \ni x \; \exists V \in \beta_x, \; V \subset U$.

Пример 2. Дискретное пространство X удовлетворяет 1-ой аксиоме счетности. Оно удовлетворяет 2-ой аксиоме счетности \Leftrightarrow оно не более чем счетно.

Пример 3. \mathbb{R} удовлетворяет 2-ой аксиоме счетности. А именно, $\{(a,b): a < b, a, b \in \mathbb{Q}\}$ — база \mathbb{R} . Действительно, $\forall c, d \in \mathbb{R}, \ c < d$, выполнено $(c,d) = \bigcup \{(a,b): a,b \in \mathbb{Q}, \ c < a < b < d\}$ — в силу плотности \mathbb{Q} в \mathbb{R} .

Предложение. Топологическое пространство со счетной базой сепарабельно.

Доказательство. $\{U_n: n \in \mathbb{N}\}$ — счетная база в $X; U_n \neq \emptyset \ \forall n$ (если пусто, можно выкинуть и ничего не потерять). $\forall n \in \mathbb{N}$ выберем $x_n \in U_n \Rightarrow \{x_n: n \in \mathbb{N}\}$ плотно в X.

Упражнение. Для метризуемых пространств: счетная база \Leftrightarrow сепарабельность. В частности: \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 — со счетной базой.

Лемма. Пусть X — топологическое пространство, удовлетворяющее 1-й аксиоме счетности. Тогда $\forall x \in X \; \exists \;$ база окрестностей $\{U_n : n \in \mathbb{N}\} \;$ точки x, т.ч. $U_n \supset U_{n+1} \; \forall n.$

Доказательство. Пусть $\{V_n:\ n\in\mathbb{N}\}$ — база окрестностей х; обозначим $U_n=V_1\cap...\cap V_n\Rightarrow\{U_n:\ n\in\mathbb{N}\}$ — искомая.

Предложение. X — топологическое пространство, $A \subset X, x \in X$.

- (1) Если \exists последовательность (x_n) в A т.ч. $x_n \to x \Rightarrow x \in \overline{A}$;
- (2) Если X удовлетворяет 1-й аксиоме счетности, то верно и обратное.

Доказательство. (1) \Rightarrow (2). Пусть U — окрестность x. $\Rightarrow \exists n \in \mathbb{N}$ т.ч. $x_n \in U \Rightarrow U \cap A \neq \emptyset \Rightarrow x \in \overline{A}$.

 $(2)\Rightarrow (1)$. Пусть $x\in \overline{A}$ и пусть $\{U_n:n\in\mathbb{N}\}$ — база окрестностей х т.ч. $U_{n+1}\subset U_n$ $\forall n$ выберем $\forall x_n\in U_n\cap A$. Покажем: $x_n\to x$.

Пусть U — окрестность х. $\exists N \in N$ т.ч. $U_N \subset U \Rightarrow \forall n \neq N \ x_n \in U_n \subset U_N \subset U \Rightarrow x_n \to x$.

11 Непрерывные отображения

Определение. X, Y — топологические пространства, $f: X \to Y, \ x \in X.$

f непрерывно в х \Leftrightarrow \forall окрестности $V\ni f(x)$ \exists окрестность $U\ni x$ т.ч. $f(U)\subset V$.

f **непрерывно** \Leftrightarrow оно непрерывно в каждой $x \in X$.

Предложение. Пусть $f: X \to Y$ — отображение топологических пространств, $x \in X$, y = f(x).

 β_x — база топологии х, σ_y — предбаза окрестностей у. Тогда:

f непрерывно в x \Leftrightarrow $\forall V \in \sigma_y \exists$ окрестность $W \ni x$ т.ч. $f(w) \subset V; \exists V \in \beta_x$ т.ч. $U \subset W \Rightarrow f(x) \subset V$.

(\Leftarrow) Пусть V — окрестность у. $\exists V_1,...,V_p \in \sigma_y$ т.ч. $V_1 \cap ... \cap V_p \subset V; \ \forall i=1,...,p \ \exists U_i \in \beta_x$ т.ч. $f(V_i) \subset V_i \ f(U_1 \cap ... \cap U_p) \subset V$.

Следствие. $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $x \in X$.

Отображение $f: X \to Y$ непрерывно в х $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \text{т.ч.} \; \forall x' \in X$, удовлетворяющей $\rho_X(x,x') < \delta$, выполнено $\rho_Y(f(x),f(x')) < \epsilon$.

Доказательство. Применить предложение к базам окрестностей x и f(x), состоящим из открытых шаров с центрами x и y.

Теорема. X, Y — топологические пространства, $f: X \to Y$ — отображение. Следующие утверждения эквивалентны:

(1) f непрерывно;

Часто берут в качестве определения непрерывности отображения: (2)!!! \forall открытых $V \subset Y$ $f^{-1}(V)$ открыты в X;

- (3) \forall замкнуто $B \subset Y$ $f^{-1}(B)$ замкнуто в X;
- $(4) \ \forall A \subset X \ f(\overline{A}) \subset \overline{f(A)}.$

Доказательство. (1) \Rightarrow (2). Пусть $V \subset Y$ — открыто. $\forall x \in f^{-1}(V) \exists$ окрестность $U_x \ni x$ т.ч. $f(U_x) \subset V \Rightarrow U_x \subset f^{-1} \Rightarrow \bigcap_{x \in f^{-1}} U_x = f^{-1}(V) \Rightarrow f^{-1}(V)$ открыто.

- $(2)\Leftrightarrow (3)$ следствие из равенства $f^{-1}(Y\backslash B)=X\backslash f^{-1}(B)\ \forall B\subset Y.$
- $(3)\Rightarrow (4)\ \forall A\subset X\ A\subset f^{-1}(f(A))\subset f^{-1}(\overline{f(A)}),$ где $f^{-1}(\overline{f(A)})$ замкнуто, $\Rightarrow\overline{A}\subset f^{-1}(\overline{f(A)}),$ т.е. $f(\overline{A}\subset \overline{f(A)}).$
- $(4)\Rightarrow (3).$ Пусть $B\subset Y$ замкнуто, $A=f^{-1}(B).$ $f(\overline{A})\subset \overline{f(A)}\subset \overline{B}=B\Rightarrow \overline{A}\subset g^{-1}(B)=A,$ т.е. A замкнуто.

 $(2)\Rightarrow (1)\ \forall x\in X$ пусть V — окрестность $f(x)\Rightarrow VU=f^{-1}(V)$ — окрестность x, и $f(U)\subset V$ V. \square

Следствие. Пусть τ_1 , τ_2 — топологии на множестве X. Тогда $tau_1 \subset \tau_2 \Leftrightarrow$ отображение $f:(X,\tau_2)\to (X,\tau_1),\ f(x)=x$ — непрерывно. Т.е. следует из второго пункта теоремы.

Предложение. Пусть $f: X \to Y$ — отображение топологических пространств, σ — предбаза Y. f непрерывно $\Leftrightarrow \forall V \in \sigma \ f^{-1}(V)$ открыто в X.

Доказательство. (\Leftarrow) Пусть $V \subset Y$ открыто $\Rightarrow V = \bigcup_{\alpha \in A} \bigcap_{\beta \in B_{\alpha}} V_{\alpha\beta}$, где $V_{\alpha\beta} \in \sigma$, а множества B_x конечны.

$$\Rightarrow f^{-1}(V) = \bigcup_{\alpha \in A} \bigcap_{\beta \in B_{\alpha}} f^{-1}(V_{\alpha\beta})$$
 — открыто в X . \square

 $\Rightarrow f^{-1}(V) = \bigcup_{\alpha \in A} \bigcap_{\beta \in B_{\alpha}} f^{-1}(V_{\alpha\beta})$ — открыто в X. \square Предложение.X,Y,Z — топологические пространства, $F:X \to Y,\ g:Y \to Z,\ x \in X,\ y = X$ f(x).

Предположение: f непрерывно в x, g непрерывно в $y \Rightarrow g \circ f$ непрерывно в x. В частности: если f и g непрерывно, то и $g \circ f$ непрерывно.

Доказательство. Пусть W — окрестность $(g \circ f)(x) = g(x)$.

Из того, что \exists окрестность $V \ni y$ т.ч. $g(V) \subset W$, и \exists окрестность $U \ni x$, т.ч. $f(U) \subset V$, следует, что $(g \circ f)(U) \subset W$. Картинка1

Определение. X, Y — топологические пространства, $x \in X, f : X \to Y$.

f секвенциально непрерывно в $x \Leftrightarrow \forall$ последовательности (x_n) в X, т.ч. $x_n \to x$, выполнено $f(x_n) \to f(x)$.

Предложение. $f: X \to Y$ — отображение топологических пространств, $x \in X$.

- (1) f непрерывна в $x \Rightarrow f$ секвенциально непрерывно в x;
- (2) Если X удовлетворяет первой аксиоме счетности (например, метризуемо), то верно и обратное.

Доказательство. (1) Пусть $x_n \to x$, V — окрестность f(x).

 \exists окрестность $U \ni x$ т.ч. $f(U) \subset V$. $\exists N \in \mathbb{N}: \ \forall n \geq N \ x_n \in U \ \Rightarrow \forall n \geq N \ f(x_n) \in V \ \Rightarrow$ $f(x_n) \to f(x)$.

- (2) Предположение: f не является непрерывным в x.
- \exists база окрестностей $\{U_n: n \in \mathbb{N}\}$ точки x, т.ч. $U_n \supset U_{n+1} \ \forall n$;
- \exists окрестность $V \ni f(x)$, т.ч. $f(U_n) \ni \subset V \ \forall n \in \mathbb{N}$.

Т.е. $\forall n \in \mathbb{N} \ \exists x_n U_n, \ \text{т.ч.} \ f(x_n) \ni V \Rightarrow x_n \to x, \ \text{но} \ f(x_n) \ni \to f(x)$ — противоречие.

Обозначение. $C(X,Y) = \{f : X \to Y | \text{f непрерывно} \}.$

 $C(X) = C(X, \mathbb{K})$, где $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Определение. $f \in C(X,Y)$ — гомеоморфизм $\Leftrightarrow \exists g \in C(Y,X)$, т.ч. $fg = id_Y, \ gf = id_X.$

Определение' (эквивалентное предыдущему). $f: X \to Y -$ **гомеоморфизм** $\Leftrightarrow f$ непрерывно и биективно, f^{-1} непрерывно.

Наблюдение. (1) $f: X \to Y$ — гомеоморфизм $\Rightarrow f^{-1}: Y \to X$ — гомеоморфизм.

(2) $f: X \to Y, g: Y \to Z$ — гомеоморфизм $\Rightarrow g \circ g: X \to Z$ — гомеоморфизм.

Определение. X и Y **гомеоморфны** $\Leftrightarrow \exists$ гомеоморфизм $X \to Y$.

Определение. X, Y — топологические пространства, $f: X \to Y$.

f открыто $\Leftrightarrow \forall$ открытых $U \subset X$ f(U) открыто в Y.

f замкнуто $\Leftrightarrow \forall$ замкнутых $B \subset X$ f(B) замкнуто в Y.

Наблюдение. Отображение $f: X \to Y$ — гомеоморфизм $\Leftrightarrow f$ непрерывно, биективно и открыто или $\Leftrightarrow f: X \to Y$ непрерывно, биективно и замкнуто.

Пример-упражнение 1. X — нормированное пространство, $x \in X$, r > 0.

 $f: B_1(0) \to B_r(x), \ f(y) = x + ry$ — гомеоморфизм.

Пример-упражнение 2. X — нормированное пространство.

 $ff: B_1(0) \to X, \ f(x) = \frac{x}{1 - ||x||}$ — гомеоморфизм.

Пример-упражнение 3. $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

 $C = \{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} = 1\}.$

 $f: C \to S^1, \ f(p) = \frac{p}{||p||_2}$ — гомеоморфизм.

Пример-упражнение 4 (стереографическая проекция)

$$S^2 = \{(x,y,z) \in \mathbb{R}^3: \; x^2 + y^2 + z^2 = 1\} - \text{c-pepa.}$$

 $f: S^2 \backslash \{N\} \to \mathbb{R}^2$ — гомеоморфизм.

Упражнение. Построить аналогичный гомеоморфизм между $S^n \setminus \{\mathbb{N}\}$ и \mathbb{R}^n .

Определение. Топологическое пространство M — топологическое многообразие (C^0 -многообразие) размерности n, если

- (1) M хаусдорфово;
- (2) M со счетной базой;
- (3) $\forall x \in M \; \exists \;$ окрестность $U \ni x$, гомеоморфная открытому подмножеству в \mathbb{R}^n (здесь топология на U определяется так: $V \subset U$ открыто в $U \Leftrightarrow V$ открыто в M).

Если U — как в (3), $\varphi: U \to V$ — гомеоморфизм, где $V \subset \mathbb{R}^n$ открыто, то (U,φ) называется картой на M.

Пример 1. \mathbb{R}^n — топологическое многообразие.

Пример-упражнение 2. Открытое подмножество в \mathbb{R}^n — топологическое многообразие (упражнение: доказать наличие счетной базы).

Пример-упражнение 3. Сфера $S^n \subset \mathbb{R}^{n+1}$, $S^n = \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$ — топологическое многообразие. Упражнение: сколькими картами она покрывается?

11.1 Подпространства топологических пространств

 (x,τ) — топологическое пространство, $Y\subset X$.

Обозначение. $\tau_Y = \{V \cap Y : U \in \tau\}.$

Наблюдение. τ_Y — топология на Y.

Определение. τ_Y — топология, индуцированная (унаследованная) из (x,τ) . (Y,τ_Y) называется топологическим подпространством в (X,τ) .

Предложение. Пусть (X, ρ) — метрическое пространство, $Y \subset X, \ \tau_{\rho}$ — топология на Y, порожденная ограничением метрики ρ на $Y \times Y \Rightarrow \tau_{\rho} = \tau_{Y}.$

Доказательство. Базу τ_{ρ} образуют шары $B_{r}^{Y} = \{z \in Y: \ \rho(z,y) < r\} \ (y \in Y, r > 0).$

Замечание. $B_r^Y(y) = B_r(y) \cap Y$ (где $B_r(y) = \{z \in X: \ \rho(z,y) < r\}) \Rightarrow B_r^Y \in \tau_Y \Rightarrow \tau_\rho \subset \tau_Y$.

Пусть $V \in \tau_Y$; $V = U \cap Y$, где U открыто в X.

Пусть $y \in V \Rightarrow \exists r > 0$, т.ч. $B_r(y) \subset U \Rightarrow B_r^Y(y) \subset V \Rightarrow V \in \tau_\rho \Rightarrow \tau_Y = \tau_\rho$. \square

Обозначение. X — множество, $Y \subset X$. $y_Y : Y \to X$, $i_Y(y) = y \ \forall y \in Y$ — отображение включения Y в X.

Теорема (основные свойства индуцированной топологии)

 (X, τ) — топологическое пространство, $Y \subset X$. Снабдим Y индуцированной топологией τ_y .

- (1) τ_Y самая грубая топология на Y, в которой $i_Y: Y \to X$ непрерывно;
- (2) Если Z топологическое пространство, то $f:Z\to Y$ непрерывно $\Leftrightarrow i_Y\circ f:Z\to X$ непрерывно.

Иначе говоря, f непрерывно как отображение из Z в $Y \Leftrightarrow$ оно непрерывно как отображение из Z в X.

Доказательство. (1) $i_Y^{-1}(U) = U \cap Y \Rightarrow i_Y$ непрерывно. Пусть σ — топология на Y, т.ч. $i_Y: (Y,\sigma) \to X$ непрерывно $\Rightarrow \ \forall U \in \tau \ i_Y^{-1}(=U \cap Y) \in \sigma \Rightarrow \tau_Y \subset \sigma$.

(2)
$$\forall U \subset X (i_Y \circ f)^{-1}(U) = f^{-1}(i_Y(U)) = f^{-1}(U \cap Y).$$

 $i_Y\circ f$ непрерывно $\Leftrightarrow \forall U\in \tau\ (i_Y\circ f)^{-1}(U)$ открыто в $Z\Leftrightarrow \forall V\in \tau_Y\ f^{-1}(V)$ открыто в Z и $\Leftrightarrow f$ непрерывна. \square

Упражнение. τ_Y — единственная топология на Y, удовлетворяющая (1), и единственная топология на Y, удовлетворяющая (2).

[дальше лекция 21.11.19]

 (X,τ) — топологическое пространство $Y\subset X$.

 $au_Y = \{U \cap Y: \ U \in au\}$ — индуцированная топология на Y.

 $i_Y:Y\to X$ — отображение включения: $i_Y(y)=y \quad \forall y\in Y$.

 τ_Y — самая грубая топология на Y, в которой i_Y непрерывно.

Определение. $f: X \to Y$ — отображение множеств, $A \subset X$.

Ограничение f на A — это $f \setminus_A : A \to Y, (f \setminus_A)(a) = f(a) \quad \forall a \in A.$

Предложение. X, Y — топологические пространства, $A \subset X, f : X \to Y$ непрерывно $\Rightarrow f \setminus_A : A \to Y$ непрерывно.

Доказательство. $f \setminus_A = f \circ i_A$. \square

Предложение. (1) Множество $B\subset Y$ замкнуто в $\tau_Y\Leftrightarrow B=F\cap Y$ для некоторого замкнутого $F\subset X$.

 $(2) \forall A \subset Y$ (замыкание A в $(Y, \tau_Y) = \overline{A} \cap Y$, где \overline{A} — замыкание A в X.

Доказательство. (1) следует из формулы $Y \setminus B = (X \setminus B) \cap Y \ \forall B \subset Y$.

(2) (Замыкание A в Y) = $\bigcap \{C \subset Y : C$ замкнуто в (Y, τ_Y) и $C \supset A\} \stackrel{(1)}{=}$

 $\bigcap \{F\cap Y:\ F$ замкнуто в X и $F\supset A\}=(\bigcap \{F:F$ замкнуто в X и $F\supset A\})\cap Y=\overline{A}\cap Y.$

Предложение. X — топологическое пространство, $A \subset Y \subset X$.

- (1) Если Y открыто в X, то A открыто в $Y \Leftrightarrow A$ открыто в X.
- (2) Если Y замкнут в X, то A замкнут в $Y \Leftrightarrow A$ замкнут в X.

Доказательство. (1) (\Rightarrow) $A = Y \cap U$, где U открыто в $X \Rightarrow A$ открыто в X.

 (\Leftarrow) $A=Y\cap A$, где A открыто в $X,\ \Rightarrow A$ открыто в Y.

(2) Аналогично. □

12 Инициальные топологии. Произведения топологических пространств

12.1 Инициальные точки

X — множество, $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств $(I \neq \varnothing)$; $(f_i : X \to X_i)_{i \in I}$ — семейство отображений.

Определение. Инициальная топология на X, порожденная семейством $(f_i)_{i\in I}$, — это топология τ_{in} на X с предбазой $\{f_i^{-1}(U): i\in I, U\in \tau_i\}$.

Пример 1. X — топологическое пространство, $Y \subset X$.

Инициальная топология на Y = инициальная топология, порожденная $\{i_Y: Y \to X\}$.

Обозначение. pt — топологическое пространство,состоящее из одной точки.

Пример 2. X — множество. Инициальная топология на X, порожденная $\{X \to pt\}$, — антидискретная топология.

Теорема (основные свойства инициальной топологии). X — множество, снабженное инициальной топологией, порожденной семейством $(f_i: X \to X_i)_{i \in I}$.

- (1) τin самая грубая топология на X, в которой все f_i непрерывны;
- (2) Если Y топологическое пространство, то отображение $g: Y \to X$ непрерывно $\Leftrightarrow f_i \circ g: Y \to X_i$ непрерывно $\forall i.$

Доказательство. (1) $\forall i \in I \ \forall U \in \tau_i \ f_i^{-1}(U) \in \tau_{in} \ \Rightarrow f_i$ непрерывно.

Пусть σ — некоторая топология на X, т.ч. $\forall i \in I$ $f_i:(X,\sigma) \to X_i$ непрерывно.

 $\forall i \in I \ \forall U \in \tau_i \quad f - i^{-1}(U) \in \sigma \implies (\text{предбаза } \tau_{in}) \subset \sigma \Rightarrow \tau_{in} \subset \sigma.$

- (2) (\Rightarrow) Если g непрерывно, то $f_i \circ g$ непрерывно, т.к. f_i непрерывно.
 - (\Leftarrow) Пусть $f_i \circ g$ непрерывно $\forall i$.

Достаточно доказать: \forall множества $V \subset X$ из предбазы $\tau_{in} = g^{-1}(V)$ открыто в Y.

 $V=f_i^{-1}(U),$ где $U\subset X_i$ открыто $\Rightarrow g^{-1}(V)=g^{-1}(f_i^{-1}(U))=(f_i\circ g)^{-1}(U)$ — открыто в Y. $\ \square$

Упражнение. τ_{in} — единственная топология на X со свойством (2).

12.2 Произведения множеств

 $(X_i)_{i \in I}$ — семейство множеств.

Определение. Произведение семейства $(X_i)_{i \in I}$ — множество.

$$\prod_{i \in I} = \{ x : I \to \bigcup_{i \in I} X_i \mid \forall i \in I \ x(i) \in X_i \}.$$

 $i\in I$ Если $I=\{1,2,...,n\}$, то вместо $\prod\limits_{i\in I}X_i$ пишут $\prod\limits_{i=1}^nX_i$ или $X_1\times X_2\times...\times X_n$. В этом случае элементы $X_1\times...\times X_n$ — упорядоченные наборы $(x_1,...,x_n)$, где $x_i\in X_i$.

Обозначение. $\forall j \in I \ p_j: \prod\limits_{i \in I} X_i \to X_j, \ p_j(x) = x_j.$

 p_j — каноническая проекция на x_j .

12.3 Произведения топологических пространств

 $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств, $X = \prod_{i \in I} X_i$.

Определение. Топология произведения (тихоновская топология) на X — это инициальная топология, порожденная семейством $\{p_j: X \to X_j\}_{j \in I}\}$ — канонических проекций.

Наблюдение. (1) \forall открытых $U \in X_i$

$$(*) \; p_i^{-1}(U) = \prod_{j \in J} V_j, \; \text{где} \; V_j = egin{cases} U & \text{при } \mathbf{j} = \mathbf{i}, \\ X_j & \text{при } j
eq i. \end{cases}$$

Множества вида (*) образуют предбазу X.

(2) \forall конечного $I_0 \subset I$, $\forall i \in I_0$ пусть $U_i \subset X_i$ — открытое множество.

(**)
$$\bigcap_{i \in I_0} p_i^{-1}(U_i) = V_j$$
, где $V_j = \begin{cases} U_j, & \text{если } j \in I_0 \\ X_j, & \text{если } j \not \in I_0 \end{cases}$

Множества вида (**) образуют базу X

(3) Если I конечно, то базу X образуют множества вида U_i , где $U_i \subset X_i$ открыто. **Предостережение-упражнение.** Если I бесконечно, то $\prod_{i \in I} U_i$ необязательно открыто в X(где $U_i \subset X_i$ открыто).

Отступление. Коммутативные диаграммы

Теорема (универсальное свойство произведения). $(x_i)_{i \in I}$ — семейство топологических

пространств, $X = \prod\limits_{i \in i} X_i, \quad p_i : X \to X_i$ — каноническая проекция, Y — топологическое пространство.

Тогда \forall семейства $(f_i:Y\to X_i)_{i\in I}$ непрерывных отображений $\exists !$ непрерывное отображение $f:Y \to X$, т.ч. диаграмма (D)коммутативна $\forall i \in I$.

Доказательство. Определим $f:Y\to X$ так: $(f(y))_i=f_i(y) \quad \forall y\in Y, \ \forall i\in I.$

Отображение f делает диаграмму (D) коммутативной и является единственным отображением с этим свойством. Его непрерывность следует из теоремы о свойствах инициальной тополо-

гии. 🗆

Предложение. (x_i, ρ_i) (i = 1, 2, 3, ..., n) — метрическое пространство, $X = \prod_{i=1}^{n} X_i$.

Определим $\rho: X \times X \to [0; +\infty)$ так: $\rho(x, y) = \max_{1 \le i \le n} \rho_i(x_i, y_i)$.

Тогда ρ — метрика на X, и она порождает топологию произведения на X.

Доказательство. Упражнение. ho — метрика. Обозначим au = топология на X, $au_{
ho}$ — топология, порожденная ρ .

Заметим: $\rho(x,y) < r \Leftrightarrow \rho_i(x_i,y_i) < r \quad \forall i=1,...,n \quad \Leftrightarrow B_r(x) = \prod\limits_{i=1}^{n=1} B_r(x_i) \Rightarrow B_r(x)$ открыт в $\tau \Rightarrow \tau_{\rho} \subset \tau$.

Пусть U — множество из базы τ ; $U = \prod_{i=1}^n U_i$, где $U_i \subset X_i \ \forall i$ открыто.

Пусть $x \in U$. Тогда $\forall i = 1, ..., n$ $x_i \in U_i \Rightarrow \exists r_i > 0$ т.ч. $B_{r_i}(x_i) \subset \prod_{i=1}^n U_i = U$.

 $\Rightarrow U$ открыто в $\tau_{\rho} \Rightarrow \tau \subset \tau_{\rho} \Rightarrow \tau = \tau_{\rho}$. \square

Следствие. $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Стандартная топология на \mathbb{R}^n , порожденная $||\cdot||_{\infty}$ (или $||\cdot||_1$, $||\cdot||_1$ $||_2$), совпадает с топологией произведения $\mathbb{K} \times ... \times \mathbb{K}$.

Доказательство. Определим $f: Y \to X$ так: $(f(y))_i = f_i(y) \quad \forall y \in Y \quad \forall i \in I$.

Отображение f делает диаграмму (D) коммутативной и является отображением с этим свойством. Его непрерывность следует из теоремы о свойствах инициальной топологии. \square

Определение. (X_i, ρ_i) (i = 1, ..., n) — метрические пространства, $X = \prod_{i=1}^n X_i$.

Определим $\rho: X \times X \to [0; +\infty]$ так: $\rho(x, y) = \max_{1 \le i \le n} \rho_i(x_i, y_i)$.

Тогда ρ — метрика на X, и она порождает топологию произведения на X.

Доказательство. Упражнение. ρ — метрика.

Обозначение. au= топология произведения на $X, au_{
ho}$ — топология, порожденная ho. Заметим: $\rho(x,y) < r \Rightarrow \rho_i(x_i,y_i) < r \quad \forall i = 1,...,n \Rightarrow B_r(x) = \prod_{i=1}^n B_r(X_i) \Rightarrow B_r(X)$ открыто в $\tau \Rightarrow \tau_\rho \subset \tau$.

Пусть U — множество из базы τ ; $U = \prod_{i=1}^n U_i$, где $U_i \subset X_i \quad \forall i$ открыто.

Пусть $x\in U$. Тогда $\forall i=1,...,b$ $x_i\in U_i\Rightarrow \exists r_i>0: B_r(x_i)\subset U_i.$ Обозначим $r=\min_{1\leq i\leq n}r_i\Rightarrow B_r(x)=\prod_{i=1}^nB_r(x_i)\subset \prod_{i=1}^nB_{r_i}(x_i)\subset \prod_{i=1}^nU_i=U\Rightarrow U$ открыто в $au_{\rho}\Rightarrow \tau\subset au_{\rho}\Rightarrow \tau= au_{\rho}.$

Следствия. Стандартная топология на \mathbb{K}^n , порожденная $||\cdot||_{\infty}$ (или $||\cdot||_1$, $||\cdot||_2$), где $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , совпадает с топологией произведения $\mathbb{K} \times ... \times \mathbb{K}$.

X — множество, $(X_i)_{i \in I}$ — топологические пространства, $(f_i : X \to X_i)_{i \in I}$.

 $\{f_i^{-1}(U): U \subset X_i \text{ открыто, } i \in I\}$ является предбазой инициальной топологии τ_{in} , порожденной (f_i) .

 $(X_i)_{i\in I},\ (Y_i)_{i\in I}$ — семейства множеств, $f_i:\ (X_i\to Y_i)_{i\in I}$ — семейство отображений.

Определение. Декартово произведение семейства (f_i) — отображение $\prod_{i \in I} f_i : \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$. $(X_i)_{i \in I} \to (f_i(X_i))_{i \in I}$.

Предположение. Пусть $(X_i)_{i\in I}, (Y_i)_{i\in I}$ — семейства топологических пространств, $f_i: X_i \to Y_i)_{i\in I}$ — семейство непрерывных отображений $\Rightarrow \Pi f_i: \Pi X_i \to \Pi Y_i$ непрерывно.

Доказательство. $\Pi X_i = X, \ \Pi Y_i = Y \ \Pi f_i = f.$

f непрерывно $\Leftrightarrow p_i^Y \circ f$ непрерывно $\forall i$ (см. свойства инициальной топологии) $\Leftrightarrow f_i \circ p_i^X$ непрерывно, а это верно по условию.

Следствие. X — топологическое пространство. $\mathbb{K}=\mathbb{R}$ или $\mathbb{C},\ C(X)=C(X,\mathbb{R}).$

Тогда $\forall f,\ g\in C(X)\ f+g\in C(X)$ и $fg\in C(X)$. Если $f(x)\neq 0$ $\forall x\in X\Rightarrow \frac{1}{f}\in C(X)$.

$$X \xrightarrow[\text{\tiny H enpepubho}]{\Delta} (x,x) \xrightarrow{X} X \times X \xrightarrow[\text{\tiny H enpepubho}]{f \times g} \mathbb{K} \times \mathbb{K} \xrightarrow[\text{\tiny H enpepubho}]{+} \text{\tiny H enpepubho}} \mathbb{K}, \text{ T.e.}$$

 $X \xrightarrow{f+g} \mathbb{K}, \Rightarrow f+g$ непрерывно. Аналогично fg непрерывно.

$$X \xrightarrow{f} \mathbb{K} \setminus \{0\} \xrightarrow{t \mapsto \frac{1}{t}} \xrightarrow{t}$$
, т.е. $X \xrightarrow{\frac{1}{t}} \mathbb{K} \Rightarrow \frac{1}{f}$ непрерывно. \square

Предложение. Топологическое пространство X хаусдорфово \Leftrightarrow диагональ $D_x = \{(x, x) : x \in X\} \subset X \times X$ замкнута в $X \times X$.

Доказательство. D_X замкнута в $X \times X \Leftrightarrow \forall p \in (X \times X) \backslash D_X$ \exists окрестность $W \ni p$ вида $W = U \times V$, где U, V — открыто в X, т.ч. $W \cap D_x = \varnothing$.

 $\Leftrightarrow \forall x,y\in X,$ т.ч. $x\neq y$ \exists открытые $U,V\subset X,$ т.ч. $x\in U,y\in V$ у и $U\cap V=\varnothing\Leftrightarrow X$ — хаусдорфово. \square

Следствие 1. Предложение. X,Y — топологические пространства, Y — хаусдорфово, $f,g:X\to Y$ непрерывно $\Rightarrow \{x\in X:\ f(x)=g(x)\}$ замкнуто в X.

Доказательство.
$$F: X \to Y \times Y, \ F(x) = (f(x), g(x)) \ F$$
 непрерывно, $\{x: f(x) = g(x)\} = F^{-1}(D_Y)$, а D_Y замкнуто в $Y \times Y$. \square

Следствие 2. X, Y — топологические пространства, Y — хаусдорфово, $f, g: X \to Y$ непрерывно. Пусть $X_0 \subset X$ — плотное подмножество, т.е. замыкание содержит все пространство,

 $f \setminus_{X_0} = g \setminus_{X_0} \Rightarrow f = g.$

Доказательство. Множество $S = \{x \in X : f(x) = g(x)\}$ замкнуто и содержит $X_0 \Rightarrow S = X$. \square

13 Финальные топологии и дизъюнктные объединения

13.1 Финальные топологии

X — множество, $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств. $(f_i: X_i \to X)_{i \in I}$ — семейство отображений.

Определение. Финальная топология на X, порожденная $(f_i)_{i \in I}$ — это $\tau_{f_{i \notin I}} = \{U \subset X : f_i^{-1}(U) \in \tau_i \quad \forall i \in I\}.$

Замечание. $au_{f_{in}}$ является топологией на X.

Предложение. Финальная топология на X, порожденная отображением $\{\varnothing \to X\}$, — дискретная топология.

Теорема 1 (основное свойство финальной топологии)

- (1) $au_{f_{in}}$ самая тонкая топология на X, т.ч. все $f_i: X_i o X$ непрерывны.
- (2) Если Y топологическое пространство, то отображение $g: X \to Y$ непрерывно $\Leftrightarrow g \circ f_i$ непрерывно $\forall i.$

Доказательство. (1) $\forall i] in I \quad \forall U \subset \tau_{f_{in}} \quad f_i^{-1} \in \tau_i$ — верно по определению $\tau_{f_{in}} \Rightarrow f_i^{-1}$ (открытое) = открытое $\Rightarrow f_i$ непрерывно.

Пусть σ — топология на X, т.ч. $\forall i \in I$ $f_i: X_i \to (X,\sigma)$ непрерывно $\forall U \in \sigma \ \forall i \in I$ $f_i^{-1}(U) \in \tau_i \Rightarrow U \in \tau_{fin} \Rightarrow \sigma \subset \tau_{fin}$.

(2) g непрерывно $\Leftrightarrow \forall V \subset Y$ открыто, $g^{-1}(V) \in \tau_{fin} \Leftrightarrow \forall$ открытого $V \subset Y \ \forall i \in I, \quad f_i^{-1}(g^{-1}(V)) = (g \circ f_i)^{-1}(V) \in \tau_i.$

Упражнение. au_{fin} — топология на X, обладающая свойством (2).

13.2 Дизъюнктное объединение множеств

 $(X_i)_{i \in I}$ — семейство множеств.

Определение. Дизъюнктное объединение семейства $(X_i)_{i\in I}$ — множество $\underset{i\in I}{\sqcup} X_i = \{(x,i): i\in I, x\in X_i\}.$

Обозначение. $\forall j \in I \quad q_j: X_j \to \underset{i \in I}{\sqcup} X_i, \ q_j(X) = (X,j)$ — каноническое вложение X_j в $\underset{i \in I}{\sqcup} X_i$. Наблюдение. (1) q_j — инъекция $\forall j;$

- $(2) q_i(X_i) \cap q_j(X_j) = 0 \quad \forall i \neq j;$
- $(3) \underset{i \in I}{\sqcup} X_i = q_i(X_i).$

Соглашение. Отождествляем X_j с $q_j(X)$ посредством q_j .

13.3 Дизъюнктное объединение

топологических пространств (несвязные суммы)

 $(X_i)_{i\in I}$ — семейство топологических пространств, $X=\bigsqcup_{i\in I}X_i,\ q_j:X_j\to X.$

Определение. Топология дизъюнктного объединения на X — финальная топология, порожденная семейством $(q_i: X_i \to X)_{i \in I}$ канонических вложений.

Таким образом, $U \subset X$ открыто $\Leftrightarrow U \cap X_i$ открыто в $X_i \quad \forall i \in I$.

Теорема 2 (универсальное свойство дизъюнктных объединений)

 $(x_i)_{i\in I}$ — семейство топологических пространств, Y — топологическое пространство, $X=\bigsqcup_{i\in I}X_i$.

Тогда \forall семейства непрерывных отображений $(f_i: X_i \to Y)_{i \in I} \exists !$ непрерывное $f: X \to Y$, т.ч. диаграмма (D) коммутативна $\forall i \in I$.

Доказательство. Зададим $f: X \to Y$ так: $f((x,i)) = f_i(x) \quad (\forall i \in I, l \forall x \in X_i).(*)$

Отображение f делает (D) коммутативной и является единственным отображеним с этим свойством (т.к. (*) эквивалетно $f(q_i(x)) = f_i(x)$). Непрерывность f — из теоремы 1. \square

14 Связные топологические пространства

Определение. Топологическое пространство X **связно** \Leftrightarrow X непредставимо в виде $X=U\cup V$, где U,V открыто, непусто, $U\cap V=\varnothing$.

X **несвязно** \Leftrightarrow оно связно как топологическое пространство в индуцированной топологии.

Наблюдение. X связано $\Leftrightarrow X$ непредставимо в виде $X = A \cup B$, где A, B замкнуты, непусты, $A \cap B = \emptyset \Leftrightarrow \exists$ подмножества $A \subset X, \ A \neq X, A \neq \emptyset$, открыто и замкнуто одновременно.

Пример. Дискретное пространство, состоящее более чем из 1 точки, несвязно.

Пример. Антидискретное пространство связно.

Пример. $\mathbb{R}\setminus\{0\}$ несвязно, т.к. $\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,+\infty)$.

Пример. $\overline{B_1}(0,0) \cup \overline{B_1}(0,3) \subset \mathbb{R}^2$ — несвязное.

Пример. X, Y — непустые топологические пространства $\Rightarrow X \sqcup Y$ несвязно (т.к. X, Y открыты в $X \sqcup Y$).

Пример. $\forall A \subset \mathbb{Q}$ (с топологией, индуцированной из \mathbb{R}), состоящего более чем из одной точки, несвязно.

 $a, b \in A, a < b$ \exists иррациональное $c \in \mathbb{R}$: a < c < b.

$$\bigcup = A \cap (-\infty,c), \quad V = A \cap (c,+\infty) \Rightarrow U,V \text{ открыто в } A, \ U \cap V = \varnothing \text{ и } U \cup V = A.$$

Предложение. Отрезок $[a,b] \subset \mathbb{R}$ связен.

Доказательство. Предположим, $[a, b] = U \cup V$, $U, V \subset [a, b]$ открыты в топологии отрезка [a,b]), непусты, $U \cap V = \emptyset$.

Можем считать: $b \in V \Rightarrow \exists \varepsilon > 0$, т.ч. $(b - \varepsilon, b] \subset V$. (1)

Обозначим $c = \sup U$. Заметим: c > a (иначе бы $U = \{a\}$ противоречие), c < b в силу (1).

Если $c \in U \Rightarrow \exists \delta > 0$, т.ч. $(c - \delta, c + \delta) \subset U \Rightarrow c + \frac{\delta}{2} \in U$ противоречие с определением c.

Если $c \in V \Rightarrow \exists \delta > 0$, т.ч. $(c - \delta, c + \delta) \subset V \Rightarrow$ $\forall x \in U \quad x \leq c - \delta$ — противоречие с определением $c\Rightarrow c\not\in U\cup V=[a,b]$ — противоречие $\Rightarrow [a,b]$ связен. \square

14.1 Свойства связных пространств

Теорема (свойства связных пространств)

- (1) X, Y топологические пространства, X связно, $f: X \to Y$ непрерывно $\Rightarrow f(X)$ связно.
- (2) Пусть $X=U\cup V,\ U,V$ открыто, $U\cap v=\varnothing$; пусть $A\subset X$ связно $\Rightarrow A\subset U$ либо $A\subset V.$
- (3) $A, B \subset X$, $A \subset B \subset \overline{A}$, A связно $\Rightarrow B$ связно.
- (4) Пусть $(A_i)_{i \in I}$ семейство связных подмножеств X, имеющих общую точку $\Rightarrow A_i$ связно.
- (5) Пусть любые $x, y \in X$ лежат в некотором связном подмножестве $X \Rightarrow X$ связно.
- (6) $X_1, ..., X_n$ связные топологические пространства $\Rightarrow X_1 \times ... \times X_n$ связно.

Доказательство. (1) Можем считать: f(X) = Y. Пусть $Y = U \cup V$, $U, V \subset Y$ открыты, непусты, $U \cap V = \emptyset$.

f — сюръекция $\Rightarrow X = f^{-1}(U) \cup f^{-1}(V)$, где $f^{-1}(U)$, $f^{-1}(V)$ открыты, непусты, не пересекаются, — противоречие.

- (2) $A = (U \cap A) \cup (V \cap A) \Rightarrow U \cap A$ либо $V \cap A$ пусто. Если $U \cap A = \emptyset \Rightarrow A = V \cap A$, т.е. $A \subset V$, где $U \cap A$, $V \cap A$ открыты в A и не пересекаются.
- (3) Можем считать: B=X, тогда $\overline{A}=X$. Пусть $X=U\cup V,\ U,V\subset X$ открыты, непусты, $U \cap V = \emptyset$.

Из (2): $A\subset U$ либо $A\subset V$. Пусть $A\subset U\Rightarrow A\cap V=\varnothing$ — противоречие с тем, что $\overline{A}=X\Rightarrow X$ связно.

(4) Можем считать: $\bigcup_{i\in I}A_i=X$. Пусть $a\in A_i\quad \forall i\in I$. Пусть $X=U\cap V,\quad U,V\subset X$ открыты, непусты, $U\cap V=\varnothing$.

Пусть $a \in U$. Из (2): $A_i \subset U \quad \forall i \in I \Rightarrow V = \emptyset$ — противоречие $\Rightarrow X$ связно.

(5) Зафиксируем $\forall x \in X$.

 $\forall y \in X \quad \exists \text{ связное } A_{xy} \subset X, \text{ т.ч. } x,y \in A_{xy} \Rightarrow \bigcup_{y \in X} A_{xy} = X. \text{ Из (4) } X \text{ связно.}$

(6) Достаточно доказать для n=2 (индукция). Обозначим $X_1=X, X_2=Y$. Зафиксируем $p = (x_1, y_1) \in X \times Y, \ q = (x_2, y_2) \in X \times Y.$

Обозначим $A = \{x_1\} \times Y, \ B = X \times \{y_2\}.$ A гомеоморфно $Y, \ B$ гомеоморфно $X \Rightarrow A, B$ связно.

$$(x_1,y_2)\in A\cap B\Rightarrow A\cap B=arnothing ---\to A\cup B$$
 связно. $p,q\in A\cup B\underset{5}{\Rightarrow}X\to Y$ связно. \square

Упражнение. Доказать: произведение ∀ семейства топологических пространств связно.

Определение. X — топологическое пространство, $x,y\in X$. **Пусть** в X из x в y — непрерывное отображение $f:[0,1]\to X$, т.ч. f(0)=x,f(1)=y.

14.2 Линейно связные пространства

Определение. X линейно связно, если $\forall x, y \in X$ \exists путь из x в y.

Предложение. X линейно связно $\Rightarrow X$ связно.

Доказательство. Пусть $x, y \in X, \ f: [0,1] \to X$ пусть из x в $y, \ C = f([0,1])$.

C связно (т.к. $[0,\,1]$ связен, см. пункт (1) теоремы), $x,y\in C$. Теорема, п. $(5)\Rightarrow X$ связно. \square

Теорема (свойства линейно связных пространств)

- (1) X,Y топологические пространства, X линейно связно, $f:X\to Y$ непрерывно $\Rightarrow f(X)$ линейно связно;
- (2) $(A_i)_{i\in I}$ семейство линейно связных подмножеств в X, имеющих общую точку $\Rightarrow \bigcup_{i\in I} A_i$ линейно связно;

(3) $X_1,...,X_n$ линейно связны $\Rightarrow X_1 \times ... \times X_n$ линейно связны.

Доказательство. Упражнение. Подсказка к (2) — рисунок.

Пример 1. X — нормированное пространство над $\mathbb{R} \Rightarrow X$ линейно связно.

Действительно: $\forall x,y \in X$ рассмотрим $f:[0,1] \to X, \ f(t)=ty+(1-t)x.$ f непрерывно (упражнение), $f(0)=x, \ f(1)=y.$

Определение. Пусть X — векторное пространство над $\mathbb{R}, \quad x,y \in X$. Обозначим $[x,y] = \{ty + (1-t)x: \ 0 \le t \le 1\}$. Это множество называется **отрезком** с концами x,y.

Множество $A \subset X$ выпукло $\Leftrightarrow \quad \forall x,y \in A$ выполнено $[x,y] \subset A$.

Упражнение. Шар в нормированном пространстве — выпуклое множество.

Пример 2. \forall выпуклое подмножество нормированного пространства (над \mathbb{R}) линейно связно. Доказательство — см. пример 1.

Пример-упражнение 3. X — нормированное пространство над $\mathbb{R},\ dim X>1\Rightarrow X\backslash\{0\}$ линейно связно.

Пример 4. X — нормированное пространство над \mathbb{R} , dim X > 1. Сфера $S = \{x \in X : ||x|| = 1\}$ линейно связна.

Действительно: рассмотрим $f: X \setminus \{0\} \to S, \ f(x) = \frac{x}{||x||}$. (еще рисунок)

Пример 5 (n-мерный тор). Обозначим $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (окружность).

 $T^n = S^1 \times ... \times S^1 \ (n \ \mathrm{pas}) - n$ -мерный тор. T^n линейно связно.

Упражнение. Обозначим $X=\{(x,sin\frac{1}{x}): 0< x\leq 1\}\cup\{(0,y): -1\leq y\leq 1\}\subset\mathbb{R}^2.$

Доказать: Х связно, но не линейно связно.

Определение. Подмножество $A \subset \mathbb{R}$ — промежуток $\Leftrightarrow A = (a,b)$, где $-\infty \leq a < b \leq +\infty)$, либо $A = [a,b] \ (-\infty < a \leq b < +\infty)$, либо A = [a,b), где $(-\infty < a < b \leq +\infty)$, либо $A = (a,b] \ (-\infty \leq a < b < +\infty)$, либо $A = \varnothing$.

Упражнение. A — промежуток $\Leftrightarrow A$ выпукло.

Предложение. Следующие свойства подмножества $A \subset \mathbb{R}$ эквивалентны:

(1) A связно, (2) A линейно связно, (3) A — промежуток.

Доказательство. $(3) \Rightarrow (2)$ — очевидно, $(2) \Rightarrow (1)$ — знаем.

 $(1)\Rightarrow (3)$: предположим, что A ограничено. Обозначим $a=infA,\ b=supA.\Rightarrow A\subset [a,b].$

Покажем: $(a, b) \subset A$. (Этого нам достаточно)

Пусть $\exists c \in (a,b),$ т.ч. $c \not\in A.$ Обозначим $U=(-\infty,c)\cap A,\ V=(c,+\infty)\cap A.$

U,V открыты в $A,~U\cap V=\varnothing,~~U\cup V=A,~U\neq\varnothing,~V\neq\varnothing$ — противоречие со связностью A.

Для неограниченного A рассуждения аналогичны (упражнение). \square

Следствие (теорема о промежуточном значении)

X- связное топологическое пространство, $f\in C(X,\mathbb{R}),\quad x,y\in X \ f(x)\leq f(y).$

Тогда $\forall c \in [f(x), f(y)] \; \exists z \in X, \, \text{т.ч.} \; c = f(z).$

Доказательство. f(X) — связное подмножество $\mathbb{R} \Rightarrow f(X)$ — промежуток; $f(x), f(y) \in f(X) \Rightarrow [f(x), f(y)] \subset f(X)$. \square

