KRP Spring 2023

Homework 4

Instructor: YiZheng Zhao Name: 张运吉, StudentId: 211300063

Question 1. \mathcal{ALC} -Worlds Algorithm

The role depth of all defined concept name are as follow:

$$rd(B_0) = 2, rd(B_1) = 1, rd(B_2) = 2, rd(B_3) = 0$$

 $rd(B_4) = 1, rd(B_5) = 2, rd(B_6) = 0, rd(B_7) = 2$
 $rd(B_8) = 2, rd(B_9) = 1, rd(B_{10}) = 0$

Therefore, $i = \operatorname{rd}(B_0) = \max(\operatorname{rd}(B_1), \operatorname{rd}(B_2)) = 2.$

$$Def_0(\mathcal{T}) = \{B_3, B_6, B_{10}\}$$

$$Def_1(\mathcal{T}) = \{B_1, B_3, B_4, B_6, B_9, B_{10}\}$$

$$Def_2(\mathcal{T}) = \{B_0, B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8, B_9, B_{10}\}$$

• Successful run.

We guess a set $\tau = \{B_0, B_1, B_2, B_3, B_4, B_5, B_6, B_7\} \subseteq \text{Def}_2 \text{ with } B_0 \in \tau.$ recurse $(\tau, 2, \mathcal{T})$.

 $recurse(\tau, 2, \mathcal{T})$:

 τ is a type for \mathcal{T} and $i \neq 0$.

(i). for $B_1 \in \tau$ with $B_1 \equiv \exists r. B_3$: $S = B_3 \cup B_4 = \{B_3, B_4\}$, we guess $\tau_1 = \{B_3, B_4\} \subseteq \text{Def}_1$ with $S \in \tau_1$.

recurse($\tau_1, 1, \mathcal{T}$):

for $B_4 \in \tau_1$ with $B_4 \equiv \exists r.B_6: S = \{B_6\}$ We guess $\tau'_1 = \{B_6\}$.

 $recurse(\tau'_1, 0, \mathcal{T})$, because i == 0 so return true.

(ii). for $B_4 \in \tau$ with $B_4 \equiv \exists r.B_6$: $S = \{B_6\} \cup \{B_4\} = \{B_4, B_6\}$ we guess $\tau_2 = \{B_4, B_6\}$.

 $recurse(\tau_2, 1, \mathcal{T})$:

 $S = \{B_6\} \cup \emptyset$ we guess $\tau_2' = \{B_6\}$

 $recurse(\tau'_2, 0, \mathcal{T})$, because i == 0 so return true.

Because (i) and (ii) all return true, so the algorithm finally return true.

• Unsuccessful run.

We guess a set $\tau = \{B_0, B_3, B_{10}\} \subseteq \text{Def}_2 \text{ with } B_0 \in \tau.$ recurse $(\tau, 2, \mathcal{T})$:

 τ is not a type for \mathcal{T} because $B_3 \in \tau, B_{10} \in \tau$ but $B_3 \equiv P$ and $B_{10} \equiv \neg P$. Therefore, the algorithm return false.

Because there is a successful run, so the algorithm return a positive result.

Question 2. Entailment Checking

It holds true.

For any model $\mathcal{I} \models \{ \forall r.A \sqsubseteq \exists r.A \}$, we'll prove that $\mathcal{I} \models \{ \forall r.B \sqsubseteq \exists r.B \}$ for all concept B.

According to the semantics of \mathcal{ALC} :

$$\mathcal{I} \models \{ \forall r.A \sqsubseteq \exists r.A \}$$
$$\Rightarrow (\forall r.A)^{\mathcal{I}} \subseteq (\exists r.A)^{\mathcal{I}}$$

For a element $a \in \Delta^{\mathcal{I}}$, if there is no element b such that $(a,b) \in r^{\mathcal{I}}$, then $a \in (\forall r.A)^{\mathcal{I}}$, so $a \in (\exists r.A)^{\mathcal{I}}$ due to $(\forall r.A)^{\mathcal{I}} \subseteq (\exists r.A)^{\mathcal{I}}$, obviously there is a contradiction.

Therefore, $\forall a \in \Delta^{\mathcal{I}}$, there exist element $b \in \Delta^{\mathcal{I}}$ such that $(a, b) \in r^{\mathcal{I}}$ (1) For a element a, if $a \in (\forall r.B)^{\mathcal{I}}$, then there at least exists a element b, such that $(a, b) \in r^{\mathcal{I}}$ and $b \in B^{\mathcal{I}}$, otherwise it contradicts conclusion (1), thus $a \in (\exists r.B)^{\mathcal{I}}$. Therefore, $(\forall r.B)^{\mathcal{I}} \subseteq (\exists r.B)^{\mathcal{I}}$, thus $\mathcal{I} \models \{\forall r.B \sqsubseteq \exists r.B\}$.

Question 3. Finite Boolean Games

(1) The figure following shows a winning strategy for Player 1 in G.

(2) If Player 2 assign $x_2 = 0$ and $x_4 = 1$, whatever Player 1 do, there is no word t can satisfies φ .

Therefore, Player 1 doesn't have a winning strategy.

Question 4. Infnite Boolean Games

(1) Player 2 doesn't have a winning strategy.

We can show that by showing Player 1 has a winning strategy.

Player 1 assign $x_2 = 1$ and $x_3 = 1$ in the previous two turns.

After assigning, $y_1 = 0$ or $y_2 = 0$, otherwise $(\neg(x_1 \lor x_4) \land y_1 \land y_2) = 1$ and Player 1 wins.

If y_1 = False, Player 1 can assign $x_1 = 1$ and then $(x_1 \wedge x_2 \wedge \neg y_1) = 1$, so Player 1 wins.

If y_2 = False, Player 1 can assign x_4 = 1 and then $(x_3 \land x_4 \land \neg y_2)$ = 1, so Player 1 wins.

So Player 2 doesn't have a winning strategy.

(2) Player 2 has a winning strategy.

If $y_1 = 0, y_2 = 0$, the formule φ is false, so Player 2 just need to assign 0 to y_1 and y_2 and he can win this game.

Question 5. Complexity of Concept Satisfability in ALC Extensions

Firstly we prove that concept satisfiability in \mathcal{ALC}^u without TBoxes is EXPTIME-hard. \cdots (1)

We have known in class that \mathcal{ALC} -concept satisfiability w.r.t. general TBox is EXPTIME-hard. So we need to prove that \mathcal{ALC} -concept satisfiability w.r.t. general TBox can be reduced to concept satisfiability in \mathcal{ALC}^u .

Construct an \mathcal{ALC}^u -concept:

$$D_0 = C_0 \sqcap \forall u. (\underset{C \sqsubseteq D \in \mathcal{T}}{\sqcap} \neg C \sqcup D)$$

 C_0 is satisfiable with respect to \mathcal{T} iff D_0 is satisfiable with respect to \mathcal{T} . Now we prove it.

⇐=:

Let \mathcal{I} be a model of D_0 , $d_0 \in D_0^{\mathcal{I}}$.

Due to the universal rule, $\forall d \in D_0^{\mathcal{I}}$ we have $(d_0, d) \in u^{\mathcal{I}}$ and therefore $d \in (\bigcap_{C \sqsubseteq D \in \mathcal{T}} \neg C \sqcup D)^{\mathcal{I}}$, which means $\forall d \in C^{\mathcal{I}}$ and $C \sqsubseteq D \in \mathcal{T}$, we have $d \in D^{\mathcal{I}}$ because $d \in (\neg C \sqcup D)^{\mathcal{I}}$.

So \mathcal{I} is also a model of C_0 .

 \Longrightarrow :

Let \mathcal{I} be a model of C_0 w.r.t. \mathcal{T} , $d_0 \in C_0^{\mathcal{I}}$.

Modify \mathcal{I} by setting $u^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

Since $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all $C \sqsubseteq D \in \mathcal{T}$, we have $\Delta^{\mathcal{I}} \subseteq (\neg C \sqcup D)^{\mathcal{I}}$ and therefore $d_0 \in (\forall u. (\bigcap_{C \sqsubseteq D \in \mathcal{T}} \neg C \sqcup D))^{\mathcal{I}} = (\forall u. \top)^{\mathcal{I}} = \Delta^{\mathcal{I}}.$

So \mathcal{I} is also a model of D_0 .

And now we have prove that the satisfiability of \mathcal{ALC} -concept C_0 can be reduced to the satisfiability of \mathcal{ALC}^u -concept D_0 , thus concept satisfiability in \mathcal{ALC}^u without TBoxes is EXPTIME-hard.

Secondly, we prove that concept satisfiability in \mathcal{ALC}^u without TBoxes has a

EXPTIME upper bound. \cdots (2)

We will modify \mathcal{ALC} -Elim algorithm to get \mathcal{ALC}^u -Elim algorithm, which is a EXPTIME algorithm. The only difference is the definition of bad type:

- $\exists r.C \in \tau$ such that the set $S = \{C\} \cup \{D | \forall r.D \in \tau\}$ is no subset of any type in Γ
- $\exists u.C \in \tau$ such that the set $S' = \{C\} \cup \{D | \forall u.D \in \tau\}$ is no subset of any type in Γ

Now we prove that \mathcal{ALC}^u -Elim (A_0, \mathcal{T}) returns 'true' iff A_0 is satisfifiable w.r.t. \mathcal{T} .

 \Longrightarrow :

Construct a model \mathcal{I} use the result of \mathcal{ALC}^u -Elim (A_0, \mathcal{T}) :

$$\Delta^{\mathcal{I}} = \Gamma_i$$

$$A^{\mathcal{I}} = \{ \tau \in \Gamma_i | A \in \tau \}$$

$$r^{\mathcal{I}} = \{ (\tau, \tau') \in \Gamma_i \times \Gamma_i | \forall r. C \in \tau \text{ implies } C \in \tau' \}$$

- Let $\exists u.D \in \tau$. Since τ has not been eliminated from Γ_i , it is not bad. Thus, there is a $\tau' \in \Gamma$, such that $\{D\} \subseteq \tau'$. Because we have $(\tau'', \tau') \in u^{\mathcal{I}}$ for any type τ'' , we obtain $\tau'' \in (\exists r.D)^{\mathcal{I}}$ by the semantics, and it also includes $\tau \in (\exists r.D)^{\mathcal{I}}$.
- Let $\forall u.D \in \tau$. Since τ has not been eliminated from Γ_i , it is not bad. Thus, there is $D \in \tau'$ for all type τ' , we obtain $\tau' \in D^{\mathcal{I}}$ and $\tau' \in (\forall u.D)^{\mathcal{I}}$ by the semantics, and it also include $\tau \in D$ and $\tau \in (\forall u.D)^{\mathcal{I}}$.

⇐=:

If A_0 is satisfiable with respect to \mathcal{T} , then there is a model \mathcal{I} of A_0 and \mathcal{T} . Let $d_0 \in A_0^{\mathcal{I}}$. For all $d \in \Delta^{\mathcal{I}}$,

$$tp(d) = \{ C \in sub(\mathcal{T}) | d \in C^{\mathcal{I}} \}$$

Define $\Psi = \{ \operatorname{tp}(d) | d \in \Delta^{\mathcal{I}} \}$ and let $\Gamma_0, \Gamma_1, \dots, \Gamma_k$ be the sequence of type sets computed by \mathcal{ALC}^u -Elim (A_0, \mathcal{T}) . It is possible to prove by induction on i that no type from Ψ is ever eliminated from any set Γ_i , for $i \leq k$. So the algorithm return "true".

According to the conclusion (1) and (2), we can get that concept satisfability in \mathcal{ALC}^u without TBoxes is EXPTIME-complete.

Question 6. Conservative Extension

$$(1) :: sig(\mathcal{T}_2) = sig(\mathcal{T}_1) \cup \{A, B\} :: sig(\mathcal{T}_1) \subseteq sig(\mathcal{T}_2)$$

 $:: \mathcal{T}_1 \subseteq \mathcal{T}_2$... every model of \mathcal{T}_2 is a model of \mathcal{T}_1

For every model \mathcal{I}_1 of \mathcal{T}_1 , we can construct a model \mathcal{I}_2 as follow:

- $\Delta^{\mathcal{I}_2} = \Delta^{\mathcal{I}_1}$
- $E^{\mathcal{I}_2} = E^{\mathcal{I}_1}$ for all concept names E in \mathcal{T}_1 , $A^{\mathcal{I}_2} = C^{\mathcal{I}_1}$, $B^{\mathcal{I}_2} = D^{\mathcal{I}_1}$
- $r^{\mathcal{I}_2} = r^{\mathcal{I}_1}$ for all roles in \mathcal{T}_1

Obviously, \mathcal{I}_2 is a model of \mathcal{T}_2 and the extensions of concept and role names from $sig(\mathcal{T}_1)$ coincide in \mathcal{I}_1 and \mathcal{I}_2 .

Therefore, \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 .

(2) After adding $A \sqsubseteq B$, it still holds.

The only difference of the model \mathcal{I}_2 we construct with (1) is: $A^{\mathcal{I}} = \emptyset$.

We can get that $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ so \mathcal{I}_2 is still a model of \mathcal{T}_2 and the extensions of concept and role names from $sig(\mathcal{T}_1)$ coincide in \mathcal{I}_1 and \mathcal{I}_2 .

Therefore, \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 .

(3) It dose not hold.

After adding $B \sqsubseteq A$, we can get that $D \sqsubseteq C$ in \mathcal{T}_2 .

For some model \mathcal{I}_1 w.r.t. \mathcal{T}_1 , if there exists element $a \in \Delta^{\mathcal{I}_1}$ such that $a \in D^{\mathcal{I}_1}$ but $a \notin C^{\mathcal{I}_1}$, then it is impossible to find a model \mathcal{I}_2 w.r.t. \mathcal{T}_2 and the extensions of concept and role names from $sig(\mathcal{T}_1)$ coincide in \mathcal{I}_1 and \mathcal{I}_2 . (because there exists $D^{\mathcal{I}_1} \neq D^{\mathcal{I}_2}$ or $C^{\mathcal{I}_1} \neq C^{\mathcal{I}_2}$)

Question 7. Subsumption in \mathcal{EL}

Normalization TBox \mathcal{T} :

$$A \sqsubseteq B \sqcap \exists r.C \to_{NF4} A \sqsubseteq B, A \sqsubseteq \exists r.C$$

$$B \sqcap \exists r.B \sqsubseteq C \sqcap D \to_{NF0} \underline{B} \sqcap \exists r.B \sqsubseteq E_0, \underline{E_0} \sqsubseteq C \sqcap D$$

$$B \sqcap \exists r.B \sqsubseteq E_0 \to_{NF1_r} \exists r.B \sqsubseteq E_1, B \sqcap E_1 \sqsubseteq E_0$$

$$E_0 \sqsubseteq C \sqcap D \to_{NF4} E_0 \sqsubseteq C, E_0 \sqsubseteq D$$

$$C \sqsubseteq (\exists r.A) \sqcap B \to_{NF4} C \sqsubseteq \exists r.A, C \sqsubseteq B$$

$$(\exists r.\exists r.B) \sqcap D \sqsubseteq \exists r.(A \sqcap B) \to_{NF0} \underline{(\exists r.\exists r.B)} \sqcap D \sqsubseteq E_2, \underline{E_2} \sqsubseteq \exists r.(A \sqcap B)$$

$$(\exists r.\exists r.B) \sqcap D \sqsubseteq E_2 \to_{NF1_l} \underline{(\exists r.\exists r.B)} \sqsubseteq E_3, E_3 \sqcap D \sqsubseteq E_2$$

$$(\exists r.\exists r.B) \sqsubseteq E_3 \to_{NF2} \exists r.B \sqsubseteq E_4, \exists r.E_4 \sqsubseteq E_3$$

$$E_2 \sqsubseteq \exists r.(A \sqcap B) \to_{NF3} \underline{E_5} \sqsubseteq A \sqcap B, E_2 \sqsubseteq \exists r.E_5$$

$$E_5 \sqsubseteq A \sqcap B \to_{NF4} E_5 \sqsubseteq A, E_5 \sqsubseteq B$$

We get the normalised TBox $\mathcal{T}' = \{ A \sqsubseteq B, A \sqsubseteq \exists r.C, \exists r.B \sqsubseteq E_1, B \sqcap E_1 \sqsubseteq E_0, E_0 \sqsubseteq C, E_0 \sqsubseteq D, C \sqsubseteq \exists r.A, C \sqsubseteq B, E_3 \sqcap D \sqsubseteq E_2, \exists r.B \sqsubseteq E_4, \exists r.E_4 \sqsubseteq E_3, E_2 \sqsubseteq \exists r.E_5, E_5 \sqsubseteq A, E_5 \sqsubseteq B \}$

- (1) $A \sqsubseteq B$ already exists in \mathcal{T}' , so it holds w.r.t. to \mathcal{T}' .
- (2) According to lemma 6.1, $\mathcal{T} \models A \sqsubseteq \exists r. \exists r. A \text{ iff } \mathcal{T} \cup \{F \sqsubseteq A, \exists r. \exists r. A \sqsubseteq G\} \models F \sqsubseteq G$. Normalization $\mathcal{T} \cup \{F \sqsubseteq A, \exists r. \exists r. A \sqsubseteq G\}$, we get $\mathcal{T}'' = \mathcal{T}' \cup \{F \sqsubseteq A, \exists r. A \sqsubseteq H, \exists r. H \sqsubseteq G\}$

Apply CR3 to
$$C \sqsubseteq \exists r.A, \exists r.A \sqsubseteq H \to C \sqsubseteq H$$

Apply CR3 to $F \sqsubseteq A, A \sqsubseteq \exists r.C \to F \sqsubseteq \exists r.C$
Apply CR5 to $F \sqsubseteq \exists r.C, C \sqsubseteq H, \exists r.H \sqsubseteq G \to F \sqsubseteq G$

we have $F \sqsubseteq G$, so $A \sqsubseteq \exists r. \exists r. A$ holds.

(3) We can get $\mathcal{T}'' = \mathcal{T}' \cup \{F \sqsubseteq B, F \sqsubseteq \exists r.A, \exists r.C \sqsubseteq G\}$ just like (2).

Apply CR5 to $A \sqsubseteq \exists r.C, C \sqsubseteq B, \exists r.B \sqsubseteq E_1 \to A \sqsubseteq E_1$ Apply CR3 to $B \sqcap E_1 \sqsubseteq E_0, E_0 \sqsubseteq C \to B \sqcap E_1 \sqsubseteq C$ Apply CR4 to $A \sqsubseteq B, A \sqsubseteq E_1, B \sqcap E_1 \sqsubseteq C \to A \sqsubseteq C$ Apply CR5 to $F \sqsubseteq \exists r.A, A \sqsubseteq C, \exists r.C \sqsubseteq G \to F \sqsubseteq G$

we have $F \sqsubseteq G$, so $B \sqcap \exists r.A \sqsubseteq \exists r.C$ holds.

Question 8. Simulation

- (a) According to the definition of bisimulation $(\mathcal{I}, d) \sim (\mathcal{J}, d')$:
 - (i) $d\rho d'$ implies $d \in A^{\mathcal{I}} \Leftrightarrow d' \in A^{\mathcal{I}}$ for all $A \in \mathbb{C}$.
 - (ii) $d\rho d'$ and $(d, e) \in r^{\mathcal{I}}$ implies there exists $e' \in \Delta^{\mathcal{I}}$ so that $e\rho e'$ and $(d', e') \in r^{\mathcal{I}}$.
 - (iii) $d\rho d'$ and $(d', e') \in r^{\mathcal{I}}$ implies there exists $e \in \Delta^{\mathcal{I}}$ so that $e\rho e'$ and $(d, e) \in r^{\mathcal{I}}$.

We can get $(\mathcal{I}, d) \approx (\mathcal{J}, d')$ because of (i) and (ii), $(\mathcal{J}, d') \approx (\mathcal{I}, d)$ because of (i) and (iii).

(b) Here is the counterexample:

We can get $(\mathcal{I}, e) \approx (\mathcal{J}, e1)$ and $(\mathcal{I}, f) \approx (\mathcal{J}, f1)$ so $(\mathcal{I}, d) \approx (\mathcal{J}, d')$. We can get $(\mathcal{J}, e1) \approx (\mathcal{I}, f)$ and $(\mathcal{J}, f1) \approx (\mathcal{I}, f)$ so $(\mathcal{J}, d') \approx (\mathcal{I}, d)$. But obviously $(\mathcal{I}, d) \not\sim (\mathcal{J}, d')$ (c) • Assume $C = A \in \mathbf{C}(\text{Concept name})$.

$$d \in C^{\mathcal{I}}$$
 implies $d' \in C^{\mathcal{I}}$

is an immediate consequence due to the definition of $(\mathcal{I},d) \sim (\mathcal{J},d')$

• Assume $C = \top$.

$$d \in C^{\mathcal{I}}$$
 implies $d' \in C^{\mathcal{I}}$

is an immediate consequence due to the definition of $(\mathcal{I},d) \sim (\mathcal{J},d')$

- Assume $C = D \sqcap E$. If $d \in C^{\mathcal{I}}$ then $d \in D^{\mathcal{I}} \cap E^{\mathcal{I}}$ implies $d \in D^{\mathcal{I}}, d \in E^{\mathcal{I}}$, which implies $d' \in D^{\mathcal{I}}, d' \in E^{\mathcal{I}}, d' \in (D \sqcap E)^{\mathcal{I}} = C^{\mathcal{I}}$.
- Assume $C = \exists r.D$. If $d \in C^{\mathcal{I}}$ then there exists an $e \in D^{\mathcal{I}}$ and $(d, e) \in r^{\mathcal{I}}$, which implies there exists an $e' \in D^{\mathcal{I}}$, $(d', e') \in r^{\mathcal{I}}$. So $d' \in C^{\mathcal{I}}$.
- (d) For disjunction:

Assume $C = D \sqcup E$. If $d \in C^{\mathcal{I}}$, then we have $d \in D^{\mathcal{I}}$ or $d \in E^{\mathcal{I}}$. We have $d' \in D^{\mathcal{I}}$ or $d' \in E^{\mathcal{I}}$. So we have $d' \in (D \sqcup E)^{\mathcal{I}} = C^{\mathcal{I}}$

Therefore, disjunction can be added to \mathcal{EL} without losing the property in (c). For negation:

Let
$$A^{\mathcal{I}} = \{e\}, \Delta^{\mathcal{I}} = \{d, e\}$$
 and $A^{\mathcal{I}} = \{d'\}, \Delta^{\mathcal{I}} = \{d', e'\}$. We have $(\mathcal{I}, d) = (\mathcal{I}, d')$ and $d \in (\neg A)^{\mathcal{I}}$. But $d' \notin (\neg A)^{\mathcal{I}}$.

Therefore, negation can not be added without lose the property.

For value restriction:

Let
$$A^{\mathcal{I}} = \{a\}, r^{\mathcal{I}} = \emptyset, \Delta^{\mathcal{I}} = \{a, b\}$$
 and $A^{\mathcal{I}} = \{a'\}, r^{\mathcal{I}} = \{(a', b')\}, \Delta^{\mathcal{I}} = \{a', b'\}$. We have $(\mathcal{I}, a) \approx (\mathcal{J}, a')$ and $a \in (\forall r.A)^{\mathcal{I}}$. But $a' \notin (\forall r.A)^{\mathcal{I}}$.

Therefore, value restriction can not be added without lose the property.

(e) The above consequence in (c) states that \mathcal{EL} cannot distinguish between simulate elements. But \mathcal{ALC} can. Look at the example as follow:

$$\Delta^{\mathcal{I}} = \{a, b, c\}, A^{\mathcal{I}} = \{a, b\}, B^{\mathcal{I}} = \{c\}$$

$$\Delta^{\mathcal{I}} = \{a', b', c'\}, A^{\mathcal{I}} = \{a', b', c'\}, B^{\mathcal{I}} = \{c'\}$$
Obviously, $(\mathcal{I}, c) = (\mathcal{I}, c')$. But $c \in (\neg A)^{\mathcal{I}}$ while $c' \notin (\neg A)^{\mathcal{I}}$
So \mathcal{ALC} is more expressive than \mathcal{EL}

Question 9. \mathcal{EL} Extension

(1) To show that each \mathcal{EL} si concept description is equivalent to some concept descriptions of the form $\exists \text{sim}(I,d)$, we need to demonstrate that any \mathcal{EL} si concept description can be represented using $\exists \text{sim}(I,d)$ and vice versa.

Let's start with an \mathcal{EL} si concept description of the form $\exists \text{sim}(I, \delta)$, where I is a finite interpretation and $\delta \in \Delta^I$. We want to show its equivalence to a concept description of the form $\exists \text{sim}(I, d)$.

To do this, we'll represent δ as a concept description using $\exists sim(I, d)$. Consider the concept description $\delta' = \{x \mid \exists sim(I, \delta)(x)\}.$

Now, let's analyze the semantics of both descriptions:

- $(\exists \text{sim}(I, \delta))J$: This represents the set of individuals in the interpretation J that satisfy the concept description $\exists \text{sim}(I, \delta)$. In other words, it includes individuals in J for which there exists an individual in I that is similar to them according to δ .
- $(\exists \text{sim}(I,d))J$: This represents the set of individuals in the interpretation J that satisfy the concept description $\exists \text{sim}(I,d)$. Similarly, it includes individuals in J for which there exists an individual in I that is similar to them according to d.

We need to show that $(\exists \sin(I, \delta))J = (\exists \sin(I, d))J$. To prove this, we'll demonstrate that $(\exists \sin(I, \delta))J \subseteq (\exists \sin(I, d))J$ and $(\exists \sin(I, d))J \subseteq (\exists \sin(I, \delta))J$.

(a) $(\exists \text{sim}(I, \delta))J \subseteq (\exists \text{sim}(I, d))J$: Let's assume an individual $a \in (\exists \text{sim}(I, \delta))J$. It means that there exists an individual b in I such that (I, δ) is similar to (J, a). Since δ' represents $\exists \text{sim}(I, \delta)$, we can say that $b \in (\exists \text{sim}(I, d))J$, as (I, d) is similar to (J, a). Therefore, $(\exists \text{sim}(I, \delta))J \subseteq (\exists \text{sim}(I, d))J$. (b) $(\exists \sin(I,d))J \subseteq (\exists \sin(I,\delta))J$: Assume an individual $c \in (\exists \sin(I,d))J$. It implies that there exists an individual d in I such that (I, d) is similar to (J,c). Since δ represents $\exists \sin(I,\delta)$, we can say that $d \in (\exists \sin(I,\delta))J$, as (I, δ) is similar to (J, c). Hence, $(\exists \sin(I, d))J \subseteq (\exists \sin(I, \delta))J$.

Therefore, we have shown that $(\exists \sin(I, \delta))J = (\exists \sin(I, d))J$. This demonstrates the equivalence between the \mathcal{EL} si concept description $\exists sim(I, \delta)$ and the concept description $\exists sim(I, d)$.

By extension, we can conclude that any ELsi concept description can be represented by a concept description of the form $\exists sim(I, d)$, and vice versa.

(2) Construct interpretation \mathcal{I} :

$$\Delta^{\mathcal{I}} = \{d\}$$

$$A^{\mathcal{I}} = \{d\} \text{ for each } A \in \mathbb{C}$$

However, there are no roles in \mathcal{I} . Consequently, any element simulated by d must belong to the extensions of all concepts $A \in \mathbb{C}$. The concept $\exists^{\text{sim}}(\mathcal{I},d)$ is equivalent to $\prod_{A \in \mathbb{C}} A$.

Now let's prove that no \mathcal{EL} concept is equivalent to $\exists^{\text{sim}}(\mathcal{I},d)$. Consider any concept C that is not the intersection of all concept names. There must exist a concept name $A \notin \text{sub}(C)$.

We can construct a model $\mathcal J$ as follows:

 $r^{\mathcal{J}}$ is empty for all role names in C.

$$A^{\mathcal{I}} = \begin{cases} \{a, b\} & A \in \mathrm{sub}(C) \\ \{a\} & A \not\in \mathrm{sub}(C) \end{cases} \text{ for all concept names } A \in \mathbb{C}.$$

$$\Delta^{\mathcal{I}} = \{a, b\}.$$

In this model, any concepts of the form $\exists r.E$ will be interpreted as \emptyset by \mathcal{J} . Consequently, any concepts in sub(C) will be interpreted as \emptyset or a, b by \mathcal{J} .

However, $(\exists^{\text{sim}}(\mathcal{I},d))^{\mathcal{J}}=a$. Thus, no \mathcal{EL} concept is equivalent to the \mathcal{EL}_{si} concept.

Therefore, \mathcal{EL}_{si} is more expressive than \mathcal{EL} .

(3) To show that checking subsumption in \mathcal{EL} si without any TBox can be done in polynomial time, we need to demonstrate that there exists a polynomial-time algorithm that can determine whether one \mathcal{EL} si concept is a subsumed by another \mathcal{EL} si concept.

Given two \mathcal{EL} si concepts, C_1 and C_2 , the algorithm for checking subsumption can proceed as follows:

- 1. If C_1 is equivalent to C_2 , return true.
- 2. If C_1 is of the form $\exists^{\text{sim}}(I_1, d_1)$ and C_2 is of the form $\exists^{\text{sim}}(I_2, d_2)$, check if I_1 and I_2 have a non-empty intersection. If they do and $d_1 = d_2$, return true. Otherwise, return false.
- 3. If C_1 is of the form $\exists^{\text{sim}}(I_1, d_1)$ and C_2 is of the form D_2 , recursively check if D_2 subsumes $\exists^{\text{sim}}(I_1, d_1)$. If it does, return true. Otherwise, return false.
- 4. If C_1 is of the form D_1 and C_2 is of the form $\exists^{\text{sim}}(I_2, d_2)$, return false.
- 5. If C_1 is of the form D_1 and C_2 is of the form D_2 , recursively check if D_1 subsumes D_2 . If it does, return true. Otherwise, return false.

This algorithm checks each possible case and terminates in a finite number of steps. The size of the input concepts and interpretations can be represented using polynomially bounded space. Thus, the algorithm runs in polynomial time.

Therefore, checking subsumption in \mathcal{EL} si without any TBox can be done in polynomial time.

Question 10 (with 1 bonus mark). ALC-Elim Algorithm

(1) We firstly caculate $C_{\mathcal{T}}$ and $sub(\mathcal{T})$:

$$C_{\mathcal{T}} = A \sqcap (\neg A \sqcup \exists r.A) \sqcap (\exists r.\neg A \sqcup \exists r.A)$$

$$sub(\mathcal{T}) = \{\exists r.\neg A, \neg A, \exists r.A, \exists r.\neg A \sqcup \exists r.A, \neg A \sqcup \exists r.A, A, A \sqcap (\exists r.\neg A \sqcup \exists r.A), C_{\mathcal{T}}\}$$

Then we run $\mathcal{ALC} - Elim$ algorithm.

$$\mathcal{ALC} - Elim(A, \mathcal{T})$$
:

loop:

$$i = 0$$

$$\Gamma_0 = \{\tau_1, \tau_2\}$$

$$\tau_1 = \{ \exists r.A, \exists r. \neg A \sqcup \exists r.A, \neg A \sqcup \exists r.A, A, A \sqcap (\exists r. \neg A \sqcup \exists r.A), C_{\mathcal{T}} \}$$

i=1:

$$S = \{A\} \subseteq \tau_1, \, \tau_1 \text{ is not bad}$$

$$S = {\neg A} \not\subseteq \tau_1 \text{ or } \tau_2, \, \tau_2 \text{ is bad!}$$

$$\Gamma_1 = \{\tau_1\}$$

$$i=2, \Gamma_2=\Gamma_1=\{\tau_1\}$$
, break the loop!

 $A \in \tau_1$, return true

The satisfying model \mathcal{I} :

$$\Delta^{\mathcal{I}} = \{\tau_1\}$$

$$A^{\mathcal{I}} = \{\tau_1\}$$

$$r^{\mathcal{I}} = \{(\tau_1, \tau_1)\}$$

(2) Add $D \sqsubseteq \forall r. \forall r. \neg B$ to \mathcal{T} , where D is a fresh concept name.

We firstly caculate $C_{\mathcal{T}}$, $sub(\mathcal{T})$ and τ_i :

$$C_{\mathcal{T}} = (\neg A \sqcup \neg B) \sqcap (A \sqcup B) \sqcap \exists r. \neg A \sqcap (\neg D \sqcup \forall r. \forall r. \neg B)$$

$$sub(\mathcal{T}) = \{\forall r. \neg B, \forall r. \forall r. \neg B, D, \neg D, A, \neg A, B, \neg B, \neg C \sqcup \forall r. \forall r. \neg B, \exists r. \neg A, \neg A \sqcup \neg B, A \sqcup B, (A \sqcup B) \sqcap (\neg A \sqcup \neg B), (A \sqcup B) \sqcap (\neg A \sqcup \neg B) \sqcap \exists r. \neg A, C_{\mathcal{T}}\}$$

$$\tau_0 = \{\neg C \sqcup \forall r. \forall r. \neg B, \exists r. \neg A, \neg A \sqcup \neg B, A \sqcup B, (A \sqcup B) \sqcap (\neg A \sqcup \neg B), (A \sqcup B) \sqcap (\neg A \sqcup B)$$

Then we run \mathcal{ALC} – Elim algorithm.

$$\mathcal{ALC}-Elim(A,\mathcal{T})$$
:

loop:

$$i = 0, \ \Gamma_0 = \{\tau_i | i \in [16]\}$$
 $i = 1, \ \tau_2, \tau_5, \tau_6, \tau_8, \tau_{10}, \tau_{13}, \tau_{14}, \tau_{16} \text{ are bad.}$
 $\Gamma_1 = \{\tau_1, \tau_3, \tau_4, \tau_7, \tau_9, \tau_{11}, \tau_{12}, \tau_{15}\}$
 $i = 2:, \ \tau_3, \tau_4, \tau_7, \tau_{11}, \tau_{12}, \tau_{15} \text{ are bad.}$
 $\Gamma_2 = \{\tau_1, \tau_9\}$
 $i = 3:$
 $\Gamma_3 = \Gamma_2, \text{ break the loop!}$

 $D \not\in \tau_1$ or τ_9 , return false

Therefore, $\forall r. \forall r. \neg B$ is not satisfiable w.r.t \mathcal{T} .

Question 11 (with 1 bonus mark). ALCI-Elim algorithm

Extend definition 5.9 in text book:

Let Γ be a set of types and $\tau \in \Gamma$. Then τ is bad in Γ if:

1. there exists an $\exists r.C \in \tau$ such that the set

$$S = C \cup \{D | \forall r. D \in \tau\}$$

is no subset of any type in Γ .

or

2. there exists an $\exists r^-.C \in \tau$ such that the set

$$S = C \cup \{D | \forall r^-.D \in \tau\}$$

is no subset of any type in Γ .

The rest of the process is the same as in the textbook.

Prove of correctness(based on lemma 5.10 in text book):

Assume that \mathcal{ALC} -Elim $(\mathcal{A}_0, \mathcal{T})$ returns true, and let Γ_i be the set of remaining types. Then there is a $\tau_o \in \Gamma_i$ such that $\mathcal{A}_0 \in \tau_0$.

Define an interpretation I as follows:

$$\Delta^{\mathcal{I}} = \Gamma_i$$

$$A^{\mathcal{I}} = \{ \tau \in \Gamma_i | A \in \tau \}$$

$$r^{\mathcal{I}} = \{ (\tau, \tau') \in \Gamma_i \times \Gamma_i | \forall r. C \in \tau \text{ implies } C \in \tau' \}$$

By induction on the structure of C, we can prove, for all $C \in sub(\mathcal{T})$ and all $\tau \in \Gamma_i$, that $C \in \tau$ implies $\tau \in C^{\mathcal{I}}$. Most cases are straightforward, using the definition of \mathcal{I} and the induction hypothesis. We only do the case $C = \exists r.D$, $C = \exists r^-.D$ and $C = \forall r^-.D$ explicitly:

• Let $\exists r.D \in \tau$. Since τ has not been eliminated from Γ_i , it is not bad. Thus, there is a $\tau' \in \Gamma_i$ such that

$$\{C\} \cup \{D \mid \forall r.D \in \tau\} \subseteq \tau'.$$

By definition of \mathcal{I} , we have $(\tau, \tau') \in r^{\mathcal{I}}$. Since $\tau' \in C^{\mathcal{I}}$ by induction hypothesis, we obtain $\tau \in (\exists r.C)^{\mathcal{I}}$ by the semantics.

• let $\exists r^-.D \in \tau$. Since τ has not been eliminated from Γ_i , it is not bad. Thus, there is a $\tau' \in \Gamma_i$ such that

$$\{D\} \cup \{E | \forall r^-.E \in \tau\} \subseteq \tau'$$

If there exists $\forall r.E \in \tau'$, then $E \in \tau$ because τ' is not bad, and thus $(\tau', \tau) \in r^{\mathcal{I}}$. We obtain $\tau \in (\exists r^{-}.D)^{\mathcal{I}}$ by the semantics.

• Let $\forall r^-.D \in \tau$. Since τ has not been eliminated from Γ_i , it is not bad. If there is a $\tau' \in \Gamma_i$ and $(\tau', \tau) \in r^{\mathcal{I}}$, then $D \in \tau'$.

So $\tau' \in D^{\mathcal{I}}$, we obtain $\tau \in (\forall r^{-}.D)^{\mathcal{I}}$ by semantics.

Hence, \mathcal{I} is a model of \mathcal{T} . Since $\mathcal{A}_0 \in \tau_0$, it is also a model of \mathcal{A}_0 .

Question 12 (with 1 bonus mark). Subsumption in \mathcal{ELI}

Normalization the TBox and get

$$\mathcal{T}' = \{ \{A_1, A_2\} \sqsubseteq \exists r. \{B\}, \{A_2\} \sqsubseteq \forall r. \{C\}, \{A\} \sqsubseteq \{A_1, A_2\}, \{B, C\} \sqsubseteq \forall r^-. \{D\} \}$$
(1)

Apply CR1:
$$\{A_1, A_2\} \sqsubseteq \{A_2\}$$

Apply CR2: $\{A\} \sqsubseteq \{A_1, A_2\}, \{A_1, A_2\} \sqsubseteq \{A_2\} \rightarrow \{A\} \sqsubseteq \{A_2\}$
Apply CR2: $\{A\} \sqsubseteq \{A_1, A_2\}, \{A_1, A_2\} \sqsubseteq \exists r.\{B\} \rightarrow \{A\} \sqsubseteq \exists r.\{B\}$
Apply CR2: $\{A\} \sqsubseteq \{A_2\}, \{A_2\} \sqsubseteq \forall r.\{C\} \rightarrow \{A\} \sqsubseteq \forall r.\{C\}$
Apply CR4: $\{A\} \sqsubseteq \forall r.\{C\}, \{A\} \sqsubseteq \exists r.\{B\} \rightarrow \{A\} \sqsubseteq \exists r.\{B, C\}$
Apply CR3: $\{A\} \sqsubseteq \exists r.\{B, C\}, \{B, C\} \sqsubseteq \forall r^-.\{D\} \rightarrow \{A\} \sqsubseteq \{D\}$

We have $\{A\} \sqsubseteq \{D\}$, so $A \sqsubseteq D$ holds.

(2) According to lemma 6.1(just like Question 8(2)), we can get

$$\mathcal{T}'' = \mathcal{T}' \cup \{ \{ E \} \sqsubseteq \exists r. \{ A \}, \{ D \} \sqsubseteq \forall r^-. \{ F \} \}$$

Apply CR2:
$$\{A\} \sqsubseteq \{D\}, \{D\} \sqsubseteq \forall r^-. \{F\} \to \{A\} \sqsubseteq \forall r^-. \{F\}$$

Apply CR3: $\{E\} \sqsubseteq \exists r. \{A\}, \{A\} \sqsubseteq \forall r^-. \{F\} \to \{E\} \sqsubseteq \{F\}$

We have $\{E\} \sqsubseteq \{F\}$, so $\exists r.A \sqsubseteq \exists r.D$ holds.

(3) If we want to get $\{A\} \sqsubseteq \exists r.\{A\}$, we must apply CR4 to some $M_1 \sqsubseteq \exists r.M_2, M_1 \sqsubseteq \forall r.\{A\}$, there is no CR4-rule could apply to get $\{A\} \sqsubseteq \exists r.\{A\}$ and there isn't $\{A\} \sqsubseteq \exists r.\{A\}$, so we can conclude that $A \sqsubseteq \exists r.A$ doesn't hold.