

دانشکدهی علوم ریاضی

نظریهی زبانها و اتوماتا ۵ دی ۱۳۹۱

جلسهی ۲۷: تصمیمپذیری

مدرّس: دکتر شهرام خزائی مدرّس: دکتر شهرام خزائی

L_d معرّفی زبانهای L_u و ا

ما علاقهمند به حل این مسئله هستیم که "آیا ماشین تورینگ M رشته ی ω را میپذیرد؟"؛ بدین منظور زبان L_u را به شکل زیر معرفی میکنیم:

تعریف ۱ زبان L_u را به شکل زیر تعریف می کنیم:

 $L_u = \{M \land \land \land \omega | \omega \in L(M)\}$

با توجه به اینکه در کد ماشین تورینگ (M) زیر رشتهی ۱۱۱ نداریم، تعریف فوق فاقد ابهام است. در جلسه ی قبل ماشین تورینگی به نام ماشین تورینگ جهانی اوائه کردیم که زبان L_u را میپذیرد. در واقع ماشین تورینگ جهانی، ماشین تورینگی است که می تواند با گرفتن کد یک ماشین تورینگ و رشته ی ورودی، رفتار آن ماشین تورینگ نسبت به ورودی را شبیه سازی کند.

در جلسهی گذشته دیدیم مجموعهی تمام رشتههای تحت الفبای ∑ و مجموعهی تمام ماشینهای تورینگ شمارش پذیر هستند. بنابراین تعاریف زیر قابل ارائه هستند:

تعریف ۲ می را iمین رشته تحت Σ تعریف می کنیم.

تعریف M_i را ماشین تورینگی تعریف می کنیم که که آن برابر ω_i است. در صورتیکه ω_i که معتبری برای هیچ ماشین تورینگی نبود، M_i را ماشین تورینگی تعریف می کنیم که هیچ رشته ای را نمی پذیرد.

اکنون زبان L_d به شکل زیر قابل تعریف است:

 $\omega
otin L(M_i)$ عریف $\omega = \omega_i$ را مجموعه تمام رشته هایی مانند ω تعریف میکنیم که اگر و آنگاه $\omega = \omega_i$ تعریف

$$L_d = \{ w | w = w_i \land w \not\in L(M_i) \}$$

^{&#}x27;Universal Turing Machine

قضیه ۱ L_d بازگشتی برشمردنی $^{\gamma}$ نیست.

برهان. برهان خلف؛ فرض کنید که ماشین تورینگی وجود داشته باشد که L_d را بپذیرد، یعنی:

$$\exists j \ L_d = L(M_i)$$

آنگاه دو حالت داریم؛ حالت نخست:

 $\omega_i \in L_d \Rightarrow \omega_i \not\in L(M_i) \Rightarrow L_d \neq L(M_i)$

حالت دوم:

$$\omega_j \notin L_d \Rightarrow \omega_j \in L(M_j) \Rightarrow L_d \neq L(M_j)$$

در هر دو حالت به تناقض رسیدیم، لذا فرض خلف باطل بوده و L_d بازگشتی برشمردنی نیست.

قضیه ۲ بازگشتی برشمردنی هست، ولی بازگشتی $^{\pi}$ نیست.

برهان. L_u بازگشتی برشمردنی هست زیرا ماشین تورینگ جهانی برای پذیرش آن وجود دارد. برای اثبات بازگشتی نبودن آن، از برهان خلف استفاده می کنیم:

فرض خلف: فرض کنید L_u بازگشتی باشد، پس یک الگوریتم مانند M برای پذیرش L_u وجود دارد. با استفاده از M، الگوریتم M را به شکل زیر را برای پذیرش L_d ارائه می کنیم:

ادعا می کنیم که الگوریتم M'، زبان d را می پذیرد. داریم:

 $\omega \in L_d \Rightarrow \omega \notin L(\omega) \Rightarrow \omega$ ۱ ۱ ۱ ۱ ۱ س را نمیپذیرد و لذا M' رشته ω را میپذیرد. همچنین:

 $\omega \not\in L_d \Rightarrow \omega \in L(\omega) \Rightarrow \omega$ \ \ \ \ \ \ \ $\omega \in L_u$

پس M رشته ی ω ۱ ا س را می پذیرد و لذا M' رشته ی ω را نمی پذیرد. اما می دانیم L_d بازگشتی برشمردنی نیست، لذا فرض خلف باطل بوده و حکم ثابت می شود.

تعریف ۵ می گوییم مسئله ی P_1 به مسئله ی P_2 کاهش می یابد، اگر با فرض وجود الگوریتمی برای حل مسئله ی P_3 بتوان الگوریتمی برای مسئله ی P_4 ارائه کرد. (حل کردن P_3 سخت تر از حل کردن P_4 نیست)

قضیه P اگر مسئلهی P_1 به مسئلهی P_2 کاهش یابد و P_3 تصمیم ناپذیر باشد، P_3 نیز تصمیمناپذیر است.

[†]Recursively Enumerable

[&]quot;Recursive

۲ ویژگیهای بستاری

در این مبحث بسته بودن مجموعه زبانهای بازگشتی برشمردنی و بازگشتی تحت اعمالی مانند اجتماع، الحاق، ستاره کلینی، معکوس، اشتراک، معکوس یکریختی، یکریختی، متمّم و تفاصل بررسی میشود. در ادامه به عنوان نمونه چند مورد از موارد فوق را بررسی میکنیم:

۱.۲ اجتماع

قضیه ۲ اگر L_1 و L_1 بازگشتی برشمردنی باشند، آنگاه $L_1 \cup L_1$ نیز بازگشتی برشمردنی است.

 L_{Λ} برهان. اگر L_{Λ} و M_{Λ} زبانهای بازگشتی برشمردنی باشند، آنگاه ماشینهای تورینگ M_{Λ} و M_{Λ} و جود دارند که M_{Λ} و به M_{Λ} را بپذیرند. ماشین تورینگ M را طوری میسازیم که M_{Λ} و M_{Λ} را به صورت موازی شبیهسازی کند و به محض اینکه یکی از دو ماشین آنرا پذیرفتند، M نیز آن را پذیرفته و متوقّف شود:

قضیه ۵ اگر L_{1} و L_{7} بازگشتی باشند، آنگاه $L_{1}\cup L_{1}$ نیز بازگشتی است.

برهان. اگر L_1 و M_1 و M_1 و برای پذیرش M_1 و برای پذیرش M_1 و برای بود دارند. الگوریتم M_1 و برای بود و برای پذیرش M_2 و برای بود و برای بود و برای محدود M_3 و برای برای به برای کند (چون هر دو الگوریتم در زمان محدود به پایان می رسند، شبیه سازی می تواند به صورت سری یا موازی انجام شود). سپس در صورتی که خروجی حداقل یکی از الگوریتم ها M_2 بود، M_3 بود، M_4 و خروجی M_4 و خروجی M_4 می شود. در غیر اینصورت خروجی M_4 و خروجی می شود. در غیر اینصورت خروجی می می شود.

به شكل دقيقتر:

 $Accept \Rightarrow Accept_{\mathsf{N}} \lor Accept_{\mathsf{T}} \Rightarrow (\omega \in L(M_{\mathsf{N}})) \lor (\omega \in L(M_{\mathsf{T}}))) \Rightarrow \omega \in (L(M_{\mathsf{N}}) \cup L(M_{\mathsf{T}}))$ $Reject \Rightarrow Reject_{\mathsf{N}} \land Reject_{\mathsf{T}} \Rightarrow (\omega \not\in L(M_{\mathsf{N}})) \land (\omega \not\in L(M_{\mathsf{T}}))) \Rightarrow \omega \not\in (L(M_{\mathsf{N}}) \cup L(M_{\mathsf{T}}))$

دقت کنید چون M_{1} و M_{5} در زمان محدود به پایان میرسند، الگوریتم فوق نیز در زمان محدود به پایان میرسد.

۲.۲ اشتراک

قضیه ۶ اگر L_1 و L_1 بازگشتی برشمردنی باشند، آنگاه $L_1 \cap L_2$ نیز بازگشتی برشمردنی است.

برهان. اگر L_1 و L_1 زبانهای بازگشتی برشمردنی باشند، آنگاه ماشینهای تورینگ M_1 و M_2 و جود دارند که M_3 و به M_4 را بپذیرند. ماشین تورینگ M_4 را طوری میسازیم که M_4 و M_5 را به صورت موازی شبیهسازی کند و به محض اینکه هر دو ماشین آنرا پذیرفتند، M_4 نیز آن را پذیرفته و متوقّف شود:

قضیه ۷ اگر L_1 و L_1 بازگشتی باشند، آنگاه $L_1 \cap L_1$ نیز بازگشتی است.

برهان. اگر L_1 و M_1 بازگشتی باشند، الگوریتمهایی برای پذیرش L_1 و L_1 مثل M_1 و جود دارند. الگوریتم M_1 را بدین ترتیب ارائه می کنیم که الگوریتمهای M_1 و M_2 را شبیه سازی کند (چون هر دو الگوریتم در زمان محدود به پایان می رسند، شبیه سازی می تواند به صورت سری یا موازی انجام شود). سپس در صورتی که خروجی هر دو الگوریتم M_2 بود، M_3 بود، M_4 بود، M_4 بود، M_4 بود، M_4 و خروجی M_4 می شود. در غیر اینصورت خروجی M_4 می شود.

به شكل دقيقتر:

 $Accept \Rightarrow Accept_{\uparrow} \land Accept_{\uparrow} \Rightarrow (\omega \in L(M_{\uparrow})) \land (\omega \in L(M_{\uparrow}))) \Rightarrow \omega \in (L(M_{\uparrow}) \cap L(M_{\uparrow}))$ $Reject \Rightarrow Reject_{\uparrow} \lor Reject_{\uparrow} \Rightarrow (\omega \notin L(M_{\uparrow})) \lor (\omega \notin L(M_{\uparrow}))) \Rightarrow \omega \notin (L(M_{\uparrow}) \cap L(M_{\uparrow}))$

دقت کنید چون M_1 و M_5 در زمان محدود به پایان میرسند، الگوریتم فوق نیز در زمان محدود به پایان میرسد.

۳.۲ متمّم

قضیه ۸ مجموعهی زبانهای بازگشتی برشمردنی نسبت به متمّم بسته نیستند.

برهان. برای اثبات این امر کافیست یک زبان ارائه کنیم که خود بازگشتی برشمردنی باشد و متمّم آن نباشد؛ L_u این خاصیت را دارد.

قضیه ۹ مجموعهی زبانهای بازگشتی نسبت به متمّم بسته هستند.

برهان. اگر L یک زبان بازگشتی باشد، آنگاه الگوریتم M برای پذیرش L وجود دارد. الگوریتم M را برای پذیرش \bar{L} به شکل زیر ارائه می کنیم. برای بررسی اینکه آیا ω عضو \bar{L} هست، الگوریتم M را با ورودی ω شبیه سازی می کنیم. اگر خروجی الگوریتم \bar{L} باشد، ω عضو ω هست و در نتیجه عضو \bar{L} نیست. بنابرین پاسخ ω باید ω عضو ω باشد. در غیر اینصورت ω عضو ω نیست و در نتیجه عضو ω هست، پس پاسخ ω باشد. ω عضو ω باشد.

۴.۲ تفاضل

قضیه ۱۰ مجموعهی زبانهای بازگشتی برشمردنی نسبت به تفاضل بسته نیست.

برهان. فرض کنید $L_1=(\circ+1)^*$ و $L_1=L_0$ و $L_1=(\circ+1)^*$ و براگشتی برشمردنی هستند، حال آنکه L_1-L_1 برشمردنی نیست.

قضیه ۱۱ مجموعهی زبانهای بازگشتی نسبت به تفاضل بسته است.

M برای پذیرش L_1 و L_1 و جود دارند. الگوریتم M_1 و M_1 و M_1 برای پذیرش L_1 و جود دارند. الگوریتم M_1 و M_2 را شبیه سازی کند (چون هر دو را برای پذیرش $L_1 - L_1$ بدین ترتیب ارائه می کنیم که الگوریتم های M_1 و M_2 را شبیه سازی کند (چون هر دو الگوریتم در زمان محدود به پایان می رسند، شبیه سازی می تواند به صورت سری یا موازی انجام شود). سپس در صورتی که خروجی M_1 و خروجی M_2 و خروجی M_3 می شود. M_3 و خروجی M_4 می شود. M_4 و خروجی M_4 می شود.

٥.٢ الحاق

قضیه ۱۲ مجموعهی زبانهای بازگشتی برشمردنی نسبت به الحاق بسته است.

برهان. اگر L_1 و L_1 بازگشتی برشمردنی باشند، آنگاه ماشینهای تورینگ M_1 و M_1 برای پذیرش آنها وجود دارد. یک ماشین تورینگ M_1 و M_2 نسبت به ورودیهای x و y به یک ماشین تورینگ M_3 ارائه می کنیم که در آن رفتار ماشینهای تورینگ M_3 و M_4 نسبت به ورودیهای y و y بازای هر y به صورت موازی شبیه سازی می شود. اگر به ازای یکی از x و y ها y و y با بیندیرند، y است. پس $y \in L_1$ بازگشتی برشمردنی است. $y \in L_1$ بازگشتی برشمردنی است.

قضیه ۱۳ مجموعهی زبانهای بازگشتی نسبت به الحاق بسته است.

برهان. اگر L_1 و L_1 زبانهای بازگشتی باشند، مسئله ی عضویت برای آنها تصمیمپذیر است، لذا برای بررسی عضویت یک رشته مانند $\omega = xy$ د را بررسی کنیم؛ که به علت محدود بودن تعداد حالات، در زمان متناهی به جواب می رسد. بنابرین مجموعه ی زبانهای بازگشتی نسبت به الحاق بسته است.

۶.۲ ستارهی کلینی

قضیه ۱۴ مجموعهی زبانهای بازگشتی برشمردنی نسبت به عمل ستارهی کلینی بسته است.

برهان. اگر L بازگشتی برشمردنی باشند، آنگاه ماشینهای تورینگ M برای پذیرش آنها وجود دارد. در اثبات این قضیه هم کافیست مانند الحاق، برای تمام x_1 برای تمام x_2 برای تمام x_3 برای تمام x_4 برای تمام x_4 برای کنیم. اگر به ازای یک تفکیک، x_4 تمام x_4 را بپذیرد، x_5 پذیرفته می شود. بدین ترتیب ماشین تورینگی برای x_4 بدست می آید که بازگشتی برشمردنی بودن x_5 را اثبات می کند.

قضیه ۱۵ مجموعهی زبانهای بازگشتی نسبت به عمل ستارهی کلینی بسته است.

برهان. برای ستاره ی کلینی نیز در زبانهای بازگشتی، مشابه الحاق، تمام حالات تفکیک یک رشته (مانند ω) به تعدادی زیر رشته را بررسی کرده (مثل $x_1 x_2 \dots x_k \omega$) و در هر حالت، با استفاده از الگوریتم مسئله ی عضویت برای هر قسمت (آیا $x_1 x_2 \dots x_k \omega$)، امکان عضویت $x_2 x_3 \dots x_k \omega$ را بررسی می کنیم. مجددا به علت متناهی بودن برای هر قسمت (آیا $x_2 x_3 \dots x_k \omega$)، امکان عضویت $x_3 \omega \omega$ را بررسی می کنیم. مجددا به علت متناهی و مستقل از پاسخ پایان می پذیرد. لذا مجموعه ی زبانهای بازگشتی، تحت ستاره یکلینی نیز بسته هستند.