

<u>Unit 1 Linear Classifiers and</u>
<u>Course</u> > <u>Generalizations (2 weeks)</u>

<u>Lecture 1. Introduction to Machine</u><u>Learning</u>

7. Different Kinds of Supervised Learning: classification vsregression

7. Different Kinds of Supervised Learning: classification vs regression classification vs regression

the mapping.

Classifier is the mapping that we wish to learn from the training set.

A set of classifiers is the set of alternatives that we consider when we see the training set,

and pick out of that set the best fitting classifier.

Errors-- we talked about training error.

And we talked about generalization,

how we can do well on the test set.

4:22 / 4:22

i .

▶ 1.25x

() X

CC

End of transcript. Skip to the start.

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

xuetangX.com 学堂在线

Classification maps **feature vectors** to **categories**. The number of categories need not be two - they can be as many as needed. **Regression** maps feature vectors to **real numbers**. There are other kinds of supervised learning as well.

For a more thorough statistical background on classification and regression, please check out the following links. Classification Regression

Classification or Regression? 1

1/1 point (graded)

Question 1: We want to come up with a classifier that classifies each news article into one of the following categories: politics, sports, entertainment. Is this a classification problem or a regression problem?

classification

regression

Solution:

Because we would like to predict the **category** an article would belong to, this problem is a classification problem.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem
Classification or Regression? 2
1/1 point (graded) Question 2: We want to estimate the price of bitcoin after 30 days. Is this a classification problem or a regression problem?
Classification
● regression ✔
Solution:
Because we would like to predict the real number price of bitcoin, this is a regression problem.
Submit You have used 1 of 3 attempts
Answers are displayed within the problem
Different Types of Learning
1/1 point (graded) Choose the type of learning that best corresponds to each of the following statements.
1)Labelled training and test examples
● supervised learning ✔
 unsupervised learning
 semi-supervised learning
active learning
transfer learning
reinforcement learning
2)Using knowledge from one task to solve another task
 supervised learning
 unsupervised learning
 semi-supervised learning
active learning
● transfer learning ✔
reinforcement learning

 supervised learning
 unsupervised learning
 semi-supervised learning
active learning
transfer learning
● reinforcement learning ✓
4)Deciding which examples are needed to learn
 supervised learning
 unsupervised learning
 semi-supervised learning
 active learning ✓
transfer learning
reinforcement learning
5)Data with no annotation
 supervised learning
■ unsupervised learning ✓
 semi-supervised learning
active learning
transfer learning
reinforcement learning
6)Training and test examples with limited annotation
 supervised learning
 unsupervised learning
semi-supervised learning ✓
active learning

3)Learning to navigate a robot

transfer learning	
reinforcement learning	
Solution:	
Fully labelled training and test examples corresponds to supervised learning. Limited annotation is semi-supervised learning annotation is unsupervised learning. Using knowledge from one task on another task means you're "transferring" infor how to navigate a robot means learning to act and optimize your actions, or reinforcement learning. Deciding which ex to learn is the definition of active learning.	mation. Learning
Submit You have used 1 of 3 attempts	
Answers are displayed within the problem	
Discussion	Show Discussion
Topic: Unit 1 Linear Classifiers and Generalizations (2 weeks):Lecture 1. Introduction to Machine Learning / 7. Different Kinds of Supervised Learning: classification vs regression	

© All Rights Reserved