Multiple Methods of Longitudinal Data Analysis

Draft Notes

Andy Grogan-Kaylor

2023-12-15

Table of contents

1	Some Data	1
2	Multilevel Modeling	3
	2.1 Equation	3
	2.2 Syntax And Results	
3		5
	3.1 Equation	5
	3.2 Syntax And Results	
4	Difference in Differences	6
5	Cross Lagged Regression	6
	5.1 Equation	6
	5.2 Data Wrangling	6
	5.3 Syntax And Results	7
6	Summary	9

1 Some Data

```
clear all
set seed 3846 // set random seed
quietly set obs 10 // 10 observations
generate id = _n // id number
quietly expand 3 // expand by 3
sort id // sort by id
bysort id: generate t = _n // time variable
generate x = rnormal(10, 3) // random normal variable
generate w = rbinomial(1, .3) // random binomial variable
generate e = rnormal(0, 1) // random error
generate y = x + w + e // regression equation
drop e // drop error
list // list out the data
save longitudinal.dta, replace
```

		id	t	X	W	уΙ
	-					
1.		1	1	13.26895	0	11.69778
2.		1	2	5.669146	1	6.4028
3.		1	3	11.32535	0	11.00579
4.		2	1	7.237092	0	6.865333
5.		2	2	12.60327	1	15.93668
	-					
6.		2	3	14.30695	1	13.92043
7.		3	1	6.360627	0	7.093182
8.	1	3	2	7.607124	0	7.378952

9.	3	3	11.15448	0	11.90395	l
10.	4	1	7.403773	1	10.07775	
11.	 4	2	11.1741	0	10.86197	
12.	I 4	3	7.016891	0	5.84125	ı I
13.	l 5	1	7.085833	0		ı I
14.	l 5	2	8.618052	0		ı I
15.	l 5	3	10.27657	0		ı I
15.	3 		10.27657		10.59152	ı
16.	l 6	1	7.937543	1	10.02182	
17.	6	2	12.00493	0	10.40057	l
18.	6	3	11.22594	1	12.66391	l
19.	7	1	11.34407	0	10.74489	l
20.	7	2	11.35657	0	11.4781	l
	 					١
21.	7	3	14.3872	0	15.16246	١
22.	8	1	11.72829	1	11.94959	l
23.	8	2	8.028893	1	8.781265	l
24.	8	3	11.90905	1	12.49115	I
25.	9	1	9.205235	0	8.002105	I
						l
26.	9	2	5.909642	1	8.8732	l
27.	9	3	16.80353	0	16.67801	l
28.	10	1	6.183664	0	6.201822	l
29.	10	2	7.644044	0	5.58361	l
30.	10	3	11.53438	0	11.32048	l
+						+

file longitudinal.dta saved

2 Multilevel Modeling

2.1 Equation

$$y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 w_{it} + u_{0i} + e_{it}$$

We assume that u_{0i} has a normal distribution, but do not directly estimate the values of u_{0i} for each individual.

2.2 Syntax And Results

```
use longitudinal.dta, clear
mixed y x i.w || id:
```

Performing EM optimization Performing gradient-based optimization:

Iteration 0: Log likelihood = -41.789697
Iteration 1: Log likelihood = -41.654948
Iteration 2: Log likelihood = -41.653312
Iteration 3: Log likelihood = -41.65331

Computing standard errors ...

Mixed-effects	ML regression	-		Nι	umber of obs	= 30
Group variable	: id			Nι	umber of group	s = 10
				Ot	os per group:	
					mi	n = 3
					av	g = 3.0
					ma	x = 3
				Wa	ald chi2(2)	= 236.62
Log likelihood	= -41.65331			Pı	cob > chi2	= 0.0000
					[95% conf.	
x	.938261	.0626023	14.99	0.000	.8155627	1.060959
					.9447577	
_cons	.3540235	.6672312	0.53	0.596	9537257	1.661773
	-				[95% conf.	
id: Identity						

1.53e-11

var(_cons) | 1.66e-15

3 Fixed Effects

3.1 Equation

$$y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 w_{it} + u_{0i} + e_{it}$$

3.2 Syntax And Results

use longitudinal.dta, clear
xtreg y x i.w, i(id) fe

We assume that the u_{0i} are in fact, estimable. However, we end up estimating $y_{it} - \bar{y}_i = \beta_1(x_{it} - \bar{x}_i) + \beta_2(w_{it} - \bar{w}_i) + (e_{it} - \bar{e}_i)$. The u_{0i} have dropped out of this equation.

Fixed-effects Group variable	•	ession			f obs = f groups =	30 10
R-squared: Within = Between =	= 0.9142 = 0.8102			Obs per	group: min = avg =	3 3.0
Overall = corr(u_i, Xb)				F(2, 18) Prob > F		95.93 0.0000
у	Coefficient	Std. err.	t	P> t	 [95% conf.	interval]
1.w	.987199 2.757344 4908022	.5380926	5.12	0.000	1.626853	3.887834
·	.87126686 .93451278					

F test that all $u_i=0$: F(9, 18) = 1.59

Prob > F = 0.1919

4 Difference in Differences

???

5 Cross Lagged Regression

5.1 Equation

Similar to before, there is an equation predicting y.

$$y_{2i} = \beta_0 + \beta_1 y_{1i} + \beta_2 x_{1i} + \beta_3 w_{2i} + e_i$$

However, we need an equation for each time point, so:

$$y_{3i} = \beta_0 + \beta_1 y_{2i} + \beta_2 x_{2i} + \beta_3 w_{2i} + e_i$$

And, there are also equations predicting x.

$$x_{2i} = \beta_0 + \beta_1 x_{1i} + \beta_2 y_{1i} + \beta_3 w_{1i} + e_i$$

$$x_{3i} = \beta_0 + \beta_1 x_{2i} + \beta_2 y_{2i} + \beta_3 w_{2i} + e_i$$

In cross-lagged regression, we need the data to be in wide format rather than long format.

5.2 Data Wrangling

```
use longitudinal.dta, clear  \begin{tabular}{ll} reshape wide y x w, i(id) j(t) // reshape data to wide \\ save longitudinalWIDE.dta, replace \\ \end{tabular}
```

```
(j = 1 2 3)
```

Data	Long	->	Wide
Number of observations	30	->	10
Number of variables	5	->	10
j variable (3 values)	t	->	(dropped)
xij variables:			
	у	->	y1 y2 y3
	X	->	x1 x2 x3
	W	->	w1 w2 w3

file longitudinalWIDE.dta saved

5.3 Syntax And Results

```
use longitudinalWIDE.dta, clear

sem (y2 <- y1 x1 w1) ///
(x2 <- x1 y1 w1) ///
(y3 <- y2 x2 w2) ///
(x3 <- x2 y2 w2)</pre>
```

Endogenous variables
Observed: y2 x2 y3 x3

Exogenous variables
Observed: y1 x1 w1 w2

Fitting target model:

Iteration 0: Log likelihood = -126.89265Iteration 1: Log likelihood = -126.89265

Structural equation model Estimation method: ml

Log likelihood = -126.89265

Number of obs = 10

ı		OIM				
į	Coefficient	std. err.	Z	P> z	[95% conf.	interval
tructural						
y2						
y1	06638	1.722865	-0.04	0.969	-3.443134	3.31037
x1	1142004	1.22043	-0.09	0.925	-2.506199	2.27779
w1	.9129669	4.046881	0.23	0.822	-7.018773	8.84470
_cons	10.84123	5.48777	1.98	0.048	.0853985	21.5970
x2						
y1	1.077149	1.270605	0.85	0.397	-1.413191	3.56748
x1	-1.050991	.9000609	-1.17	0.243	-2.815078	.71309
w1	2019809	2.984554	-0.07	0.946	-6.0516	5.64763
_cons	8.580689	4.047204	2.12	0.034	.6483162	16.5130
y3						
y2	.6385229	.7520661	0.85	0.396	8354996	2.11254
x2	6869322	.9228791	-0.74	0.457	-2.495742	1.1218
w2	.6030497	2.657096	0.23	0.820	-4.604762	5.81086
_cons	12.06822	3.779402	3.19	0.001	4.660724	19.475
x3						
y2	.7641998	.6168695	1.24	0.215	4448422	1.97324
x2	8415779	.756976	-1.11	0.266	-2.325223	.642067
w2	.6179903	2.179438	0.28	0.777	-3.65363	4.889
_cons	12.10439	3.099991	3.90	0.000	6.028522	18.1802
var(e.y2)	7.584673	3.391969			3.156952	18.2224
var(e.x2)	4.125296	1.844888			1.717063	9.91114
var(e.y3)	6.049814	2.705559			2.518101	14.5348
var(e.x3)	4.070208	1.820252			1.694134	9.7787

LR test of model vs. saturated: chi2(10) = 85.21 Prob > chi2 = 0.0000

6 Summary ¹

Table 1: Table continues below

Method	${\bf Control. for. Time. Invariant. Observed}$
Multilevel Modeling	yes
Fixed Effects	yes
Cross Lagged Regression	yes

Table 2: Table continues below

${\bf Control. for. Time. Varying. Observed}$	${\bf Control. for. Time. Invariant. Unobserved}$
yes yes	partially yes
yes	no

Table 3: Table continues below

Estimate.Reciprocal.Causality
no
no
-

 $^{^{1}\}mathrm{Some}$ of the decisions in this table are arguable.

Control.for.Time.Varying.Unobserved	Estimate.Reciprocal.Causality
no	yes

Control.for.Earlier.or.Baseline.y

automatic automatic must explicitly specify