Chapter 6 Sequence and Series

EE24BTECH11014-Deepak

- 1) Sum of the first *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equal to(1998-2 Marks)
 - a) $2^n n 1$
 - b) $1 2^{-n}$
 - c) $n + 2^{-n} 1$
 - d) $2^n + 1$
- 2) The number $\log_2 7$ is (1990-2 Marks)
 - a) an integer
 - b) a rational number
 - c) an irrational number
 - d) a prime number
- 3) If $\log_e(a+c)$, $\log_e(a-c)$, $\log_e(a-2b+c)$ are in A.P.,then (1994)
 - a) a, b, c are in A.P.
 - b) a^2, b^2, c^2 are in A.P.
 - c) a, b, c are in G.P.
 - d) a, b, c are in H.P.
- 4) Let $a_1, a_2, \dots a_{10}$ be in A.P. and $h_1, h_2, \dots h_{10}$ be in H.P. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then a_4h_7 is (1992 2 Marks)
 - a) 2
 - b) 3
 - c) 5
 - d) 6
- 5) The harmonic mean of the roots of the equation $(5 + \sqrt{2})x^2 (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is (1999 2 Marks)
 - a) 2
 - b) 4
 - c) 6
 - d) 8
- 6) Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is 3/4, then (2000S)
 - a) a = 4/7, r = 3/7
 - b) a = 2, r = 3/8
 - c) a = 3/2, r = 1/2
 - d) a = 3, r = 1/4
- 7) Let α,β be the roots of $x^2 x + p = 0$ and γ,δ

be the roots of $x^2 - 4x + q = 0$. If $\alpha, \beta, \gamma, \delta$ are in G.P., then the integral values of of p and q respectively are (2001S)

- a) -2, -32
- b) -2,3
- c) -6, 3
- d) 6, -32
- 8) Let the positive numbers a, b, c, d be in A.P. Then abc, abd, acd, bcd are (2001S)
 - a) NOT in A.P./G.P./H.P
 - b) in A.P.
 - c) in G.P.
 - d) in H.P.
- 9) If the sum of the first 2n terms of the A.P. 2, 5, 8, ..., is equal to the sum of the first n terms of the A.P. 57, 59, 61, ..., then n equals (2001S)
 - a) 10
 - b) 12
 - c) 11
 - d) 13
- 10) Suppose a, b, c are in A.P. and a^2, b^2, c^2 are in G.P. if a < b < c and a + b + c = 3/2, then the value of a is (2002S)
 - a) $\frac{1}{2\sqrt{2}}$
 - b) $\frac{1}{2\sqrt{3}}$
 - c) $\frac{1}{2} \frac{1}{\sqrt{2}}$
 - d) $\frac{1}{2} \frac{1}{\sqrt{2}}$
- 11) An infinite G.P. has first term 'x' and sum '5' then x belongs to (2004S)
 - a) x < -10
 - b) -10 < x < 0
 - c) 0 < x < 10
 - d) x > 10
- 12) In the quadratic equation $ax^2 + bx + c = 0$, $\triangle = b^2 4ac$ and $\alpha + \beta, \alpha^2 + \beta^2, \alpha^3 + \beta^3$ are in G.P. where α, β are root of $ax^2 + bx + c = 0$, then (2005S)

- a) $\triangle \neq 0$
- b) $b\triangle = 0$
- c) $c \triangle = 0$
- d) $\triangle = 0$
- 13) In the sum of first n terms of an A.P. is cn^2 , then the sum of squares of these n terms is (2009)
 - a) $\frac{n(4n^2-1)c^2}{(1-n^2)^2}$
 - b) $\frac{n(4n^2+1)c^2}{3}$
 - c) $\frac{n(4n^2-1)c^2}{2}$
 - d) $\frac{n(4n^2+1)c^2}{6}$
- 14) Let $a_1, a_2, a_3,...$ be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is (2012)
 - a) 22
 - b) 23
 - c) 24
 - d) 25
- 15) Let $b_i > 1$ for i = 1, 2, ..., 101. Suppose $\log_e b_1, \log_e b_2, ..., \log_e b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $\log_e 2$. Suppose $a_1, a_2, ..., a_{101}$ are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + \cdots + b_{51}$ and $s = a_1 + a_2 + \cdots + a_{53}$, then (JEE Adv. 2016)
 - a) s > t and $a_{101} > b_{101}$
 - b) s > t and $a_{101} < b_{101}$
 - c) s < t and $a_{101} > b_{101}$
 - d) s < t and $a_{101} < b_{101}$