MATURA ROZSZERZONA INFORMATYKA - TEORIA

Kilkanaście obszarów zagadnień

DO TEORII Z MATURYDO POWTÓRZENIA SA NASTĘPUJĄCE OBSZARY ZAGADNIEŃ

- **1. <u>SYSTEMY LICZBOWE</u>** (zamiana systemu dziesiętnego na dowolny; z dowolnego na dziesiętny; z dowolnego systemu na dowolny)
- 2. LOGIKA (NOT AND OR NAND NOR XOR XNOR)
- **3. GRAFIKA, WIDEO, AUDIO:** g. rastrowa, wektorowa; RGB, CMYK; jednostki rozdzielczości; obliczanie rozmiaru pliku graficznego; rozszerzenia plików graficznych g. rastrowej i g. wektorowej
- 4. LICENCJE I PRAWO
- 5. PROTOKOŁY SIECIOWE: SMTP, POP3, IMAP, SSL, HTTP, DNS, IP, DHCP, FTP, UDP, TELNET, SSH, port protokołu
- **6. SIECI KOMPUTEROWE:** rodzaje sieci; terminy związane z sieciami; topologie sieci; adresacja IP (adresacja, obliczanie adresów, klasy adresów IP); szyfrowanie (rodzaje szyfrów, Szyfr RSA); URL
- 7. STOSY i KOLEJKI: tablica (array); stos (stack); kolejka (queue)
- 8. PROGRAMOWANIE: rodzaje programowania; rodzaje kodu; języki programowania; kod ASCII
- 9. BUDOWA KOMPUTERA, PROGRAMY i SYSTEMY...
- 10.ARKUSZ KALKULACYJNY (funkcje w arkuszu kalkulacyjnym; operatory w arkuszu kalkulacyjnym; rodzaje adresowań)
- **11.BAZY DANYCH** (pojęcia związane z bazą danych; relacyjna baza danych; podział danych na różne tabele; bezpieczeństwo danych; haszowanie; szyfrowanie)
- 12.SQL...

1. SYSTEMY LICZBOWE

WPROWADZENIE

- Praktycznie w każdym arkuszu maturalnym pojawia się zadanie z systemów liczbowych –
 da tobie to co najmniej 1 punkt w egz.
- **DEFINICJA system liczbowy, to** sposób zapisu wartości liczbowych (liczb) wykorzystując zestaw symboli (cyfr i reguł). Np.
- system rzymski tzw. addytywny, w nim liczby są tworzone przez dopisywanie znaków np. 1 to I, a 3 to III
- arabski(dziesiętny) tzw. system pozycyjny, gdzie pozycja cyfry w liczbie określa jej wagę
- W informatyce stosuje się systemy pozycyjne. Każdy system pozycyjny ma określoną podstawę. Znając podstawę systemu i cyfry, oraz wagę liczby możemy obliczyć jej wartość

WPROWADZENIE

- Najpopularniejsze systemy POZYCYJNE:
 - 1. System **DECYMALNY** (dziesiętny) jego podstawą jest 10. Składa się z cyfr od 0 do 9
 - 2. System **BINARNY (dwójkowy)** jego podstawą jest 2. Składa się tylko z dwóch cyfr 0 i 1. Wykorzystywany w elektronice i komputerach
 - 3. System OKTALNY (ósemkowy) jego podstawą jest 8. Składa się z cyfr 0-7
 - 4. System **HEKSADECYMALNY** (szesnastkowy) jego podstawą jest 16. Składa się z cyfr 9-9 oraz z liter A-F które reprezentują liczby (10-15). Jest często stosowany w programowaniu np. do reprezentowania kolorów

- Na poniższym rysunku wytłumaczone zostały wagi.
- Rysunek przestawia liczbę 583 w systemie dziesiętnym

1. Zamiana z systemu DZIESIĘTNEGO na DOWOLNY

- Jak zmienić liczbę w systemie dziesiętnym na dowolny system?
- Odp. Wystarczy dzielić tę liczbę przez podstawę systemu, na który chcemy ją zamienić.
- Dzielimy (całkowanie) do momentu, w którym liczba jest równa 0
- Podczas działania zapisujemy reszty z dzielenia, które potem złożą się na liczbę

Zamiana 270₁₀ na system szesnastkowy
270 / 16 = 16 reszty 14
$$\rightarrow$$
 E \uparrow wynikiem jest zestawienie
16 / 16 = 1 reszty 0 reszty 1 reszt z dzielenia zapisane
1 / 16 = 0 reszty 1 270₁₀ =10E₁₆

ZADANIE: Zamień liczbę 2038₁₀ na system ósemkowy

2. Zamiana z systemu DOWOLNEGO na DZIESIĘTNY

- Jak zamienić dowolny inny system na dziesiętny?
- Nie wykonujemy tu dzielenia, ale mnożenie.
- Obok dodałem przykład
 przedstawiający zamianę liczby 1101
 w systemie dwójkowym na
 dziesiętny
- ZADANIE: Zamień liczbę ACDC₁₆ na system dziesiętny

3. Zamiana z DOWOLNEGO systemu na DOWOLNY

- Jak zamienić liczbę z systemu np.
 binarnego na oktalny?
 Najłatwiejszym sposobem do
 zapamiętania na maturę jest
 zamiana liczby na system dziesiętny,
 a potem z dziesiętnego na oktalny
- Tym sposobem można zamienić liczby nie tylko z systemów o podstawie 2, 8, 10 i 16. Dla innych podstaw działa identycznie
- Obok przykład, w którym zamieniona jest liczba 210022, na system czwórkowy

3. Zamiana z DOWOLNEGO systemu na DOWOLNY

- Znając tylko te dwie metody można wykorzystać operacje arytmetyczne tj. dodawanie,
 odejmowanie, dzielenie, mnożenie, jedynie w systemie dziesiętnym
- Zauważ, ze $11_{10} + 11_{10} = 22_{10}$
- Natomiast $11_2 + 11_2 = 110_2$, ponieważ 11 w systemie dwójkowym to 3 w systemie dziesiętnym ($11_2 = 3_{10}$) A wiec $3_{10} + 3_{10} = 610 = 110_2$

1 Liczba 2101 oznacza:

- 13 zapisane w systemie binarnym.
- B 64 zapisane w systemie trójkowym.
- c 1099 zapisane w systemie ósemkowym.
- [] (Informator maturalny CKE 2009, poziom rozszerzony)

Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to:

- $A = 2^8 3$
- B 65535
- c 32767
- [] (Informator maturalny CKE 2009, poziom rozszerzony)

Liczba BA₁₆ równa się:

- A 186₁₀
- B 252₈
- c 10101010₂
- [] (Informator maturalny CKE 2009, poziom rozszerzony)

Liczba 1000₁₆ to:

- a) 345225
- b) 4096₁₀
- c) 10000₂
- (Matura CKE 2010, poziom rozszerzony)

Dane są dwie liczby: A=110012 oraz B=10102

B
$$A + B = 35_{10}$$

Matura CKE 2011, poziom podstawowy)

Liczba 212023 jest równa:

- a) D1₁₆
- b) 321₈
- c) 10110001₂
- d) 211₁₀
- Matura CKE 2011, poziom rozszerzony)

Największa liczba dziesiętna, jaką można zapisać na 32 bitach jest:

- 4 równa 65 000.
- B większa od 1 123 000.
- c mniejsza od 4 000.
- (Matura CKE 2012, poziom podstawowy)

Liczba 1E16 jest równa liczbie:

- a) 101010₂
- b) 36₈
- c) 1110_3
- d) 30₁₀
- [] (Matura CKE 2012, poziom rozszerzony)

Dla dwóch liczb 1110₂ i 10₂, ich:

- a) suma jest równa 10000₂
- b) różnica jest równa 1000₂
- c) iloczyn jest równy 11110₂
- d) iloraz jest równy 1112
- [] (Matura CKE 2012, poziom rozszerzony)

Liczba 10101 zapisana w systemie binarnym jest:

- A większa od liczby 10110 zapisanej w systemie binarnym.
- B mniejsza od liczby 20 zapisanej w systemie dziesiętnym.
- c równa liczbie 15 zapisanej w systemie szesnastkowym.
- Matura CKE 2013, poziom podstawowy)

11 Liczba BA₁₆ jest równa liczbie:

- a) 272₈
- b) 186₁₀
- c) 2232₄
- d) 10101010₂
- [] (Matura CKE 2013, poziom rozszerzony)

Liczba binarna 10101010 to w systemie dziesiętnym:

- A 160
- B 165
- c 170
- [] (Matura CKE 2014, poziom podstawowy)

14

Liczba binarna 101011111100 zapisana w systemie szesnastkowym ma postać:

- a) AEF
- b) CFC
- c) AFC
- d) DFC
- (Matura CKE 2014, poziom rozszerzony)

Jaką ostatnią cyfrę w zapisie dziesiętnym ma liczba 22015?

- A 2
- B 4
- c 6
- D 8
- (Matura CKE 2015 (formula przed 2015), poziom podstawowy)

- PF
- PF
- PF
- PF

Po wymnożeniu dwóch liczb 10324 oraz 1314 zapisanych w systemie czwórkowym otrzymamy:

- Niech a=10010012, b=2119, c=2118, wówczas: 15
 - a) b > c
 - b) a + b c = 0
 - c) $c = 89_{16}$
 - (Matura próbna CKE 2014 (formula po 2015), poziom rozszerzony)

 - - a) 78₁₀

16

- b) 8D6₁₆
- c) 4326₈
- d) 10011010110₂
- (Matura CKE 2015 (formula po 2015), poziom rozszerzony)

17 Liczba szesnastkowa FCA₁₆ jest:

- a) mniejsza od liczby FFF₁₆
- b) większa od liczby AAAA₁₆
- c) mniejsza od liczby 1111₁₆
- d) większa od liczby 9999₁₆
- (Matura dodatkowa CKE 2015 (formuła po 2015), poziom rozszerzony)

lle jest równe Y, aby X+Y=60₁₀, jeżeli X=10110₂?

A 100011₂

18

- B 100110₂
- c 100101₂
- D 100111₂
- (Matura CKE 2016 (formula przed 2015), poziom podstawowy)

19 Liczba CB₁₆ jest równa liczbie:

a) 10101111₂

b) 313₈

c) 31204

d) 203₁₀

(Matura CKE 2016 (formula przed 2015), poziom rozszerzony)

20 Dla dwóch liczb 110₂ i 101₂, ich:

a) suma jest równa 100002.

b) różnica jest równa 1₂.

c) iloczyn jest równy 11110₂.

d) iloraz jest równy 11₂.

[(Matura CKE 2016 (formula przed 2015), poziom rozszerzony)

PF

PF

PF

PF

PF

PF

PF

PF

21 Dwudziestocyfrowa liczba binarna z 1 na najbardziej znaczącej pozycji ma w systemie:

a) czwórkowym dokładnie 9 cyfr.

PF

b) ósemkowym dokładnie 7 cyfr.

PF

c) szesnastkowym dokładnie 5 cyfr.

PF

d) dziesiętnym co najwyżej 7 cyfr.

PF

[a] (Matura CKE 2016 (formula przed 2015), poziom rozszerzony)

22 Dla dwóch liczb 1111₂ i 101₂, ich:

a) suma jest równa 101102.

PF

b) różnica jest równa 1010₂.

PF

c) iloczyn jest mniejszy od 110000₂.

PF

d) iloraz jest większy od 102.

PF

[] (Matura CKE 2016 (formula po 2015), poziom rozszerzony)

Suma 200₁₀ i 10₂ jest równa:

- a) 210₁₀
- b) 312₈
- c) CA₁₆
- [] (Matura dodatkowa CKE 2016 (formula po 2015), poziom rozszerzony)

24

Liczbą większą od 150₁₀ jest:

- a) 10011001₂
- b) 1222₄
- c) 277₈
- d) $9B_{16}$

[(Matura CKE 2017 (formula przed 2015), poziom rozszerzony)

- PF
- PF

- PF
- PF
- PF
- PF

W oddziałach światowej korporacji zegary podają liczbę minut, które upłynęły od początku doby. Wynik podawany jest w różnych systemach pozycyjnych

- · Oddział A: system binarny,
- Oddział B: system czwórkowy,
- Oddział C: system szesnastkowy.

Oddziały A, B i C znajdują się w różnych strefach czasowych, dlatego zegary nie wskazują tej samej liczby. W pewnym momencie zegary wskazywały następujące wartości

- Oddział A: 00010110100,
- Oddział B: 000330,
- Oddział C: 078.
- Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.
 - a) Wskazania wszystkich trzech zegarów są wielokrotnościami liczby 910.

PF

b) Wskazania zegarów są wielokrotnościami liczby 6₁₀.

- PF
- c) Dla każdej pary zegarów różnica ich wartości jest wielokrotnością liczby 60₁₀.
- PF
- Największą wartość wskazuje zegar w oddziale A, a najmniejszą zegar w oddziale
 C.

 Po pewnym czasie ponownie odczytano wszystkie zegary (jednocześnie). Niestety, podczas tych odczytów nie wszystkie znaki były widoczne. Wartości odczytów to:

- Oddział A: 000110100XX,
- · Oddział B: 001XX2,
- Oddział C: X96,

gdzie X oznacza znak, którego wartości nie udało się odczytać. Poniżej podaj pełne wartości odczytów poszczególnych zegarów

- Oddział A:
- Oddział B:
- Oddział C:

(Matura dodatkowa CKE 2017 (formula po 2015), poziom rozszerzony)

10110₂ + 111100₂ jest równe:

- A 111110₂
- B 84₁₀
- c 1010010₂
- D 1248

(Matura CKE 2018 (formula przed 2015), poziom podstawowy)

28

Oceń prawdziwość stwierdzeń. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

a) $A5_{16} + 234_8 = 149_{16}$

PF

b) $A5_{16} - 234_8 = 9_{16}$

PF

c) $A5_{16} * 1000_2 = A50_{16}$

PF

d) $128_{10} + 2_8 = 1000000_{16}$

PF

[] (Matura CKE 2018 (formula przed 2015), poziom rozszerzony)

Liczba 47369 zapisana w systemie dziewiątkowym ma w systemie trójkowym postać:

- A 21212011₃
- B 11211020₃
- c 10201221₃
- D 112020₃
- (Matura CKE 2019 (formula przed 2015), poziom podstawowy)

29

Po pomnożeniu dwóch liczb 1111110_2 oraz 101_2 zapisanych w systemie dwójkowym otrzymamy:

a) 21312₄

b) 1001010110₂

c) 1166₈

d) 276₁₆

[] (Matura CKE 2019 (formula po 2015), poziom rozszerzony)

30

Różnica 110010012 - 111111112 jest równa:

a) 2A₁₆

b) 112₈

c) 2110₄

d) 1001010₂

PF

PF

PF

PF

PF

PF

PF

PF

(Matura dodatkowa CKE 2019 (formula po 2015), poziom rozszerzony)

31 Liczba binarna 111010101 to w systemie dziesiętnym:

- 4 481
- B 467
- c 469
- D 471
- Matura CKE 2020 (formula przed 2015), poziom podstawowy)

32 Liczba 10110101101 zapisana w systemie binarnym jest równa:

- a) 1540₁₀
- b) 231121₄
- c) 2655₈
- d) 5AD₁₆
- (Matura CKE 2020 (formula przed 2015), poziom rozszerzony)

33 Różnica 11001001₂ - 11111110₂ jest równa:

b) 113₈

c) 1023₄

d) 1001010₂

Liczba, która w zapisie binarnym ma dokładnie 16 cyfr i jedynkę na najbardziej znaczącej pozycji ma w zapisie:

a) czwórkowym dokładnie 9 cyfr.

b) ósemkowym dokładnie 7 cyfr.

c) szesnastkowym dokładnie 4 cyfry.

d) dziesiętnym dokładnie 5 cyfr.

(Matura próbna CKE 2020 (formula po 2015), poziom rozszerzony)

Czas można odczytywać na zegarach tradycyjnych i na zegarach binarnych. Poniżej zamieszczono przykładowy sposób zapisu godziny 12:46:39 na zegarze binarnym:

- każda kolumna odpowiada jednej cyfrze zapisu dziesiętnego godziny przedstawionej w postaci binarnej
 - czarny kwadrat (np. dioda zegara świeci) oznacza 1
 - biały kwadrat (np. dioda zegara nie świeci) oznacza 0
 - kwadraty w najniższym wierszu odpowiadają znaczącym cyfrom zapisu binarnego

35 cdn.

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

- a) Zegar A wskazuje godzinę 22:30:48.
- b) Zegar B wskazuje godzinę 07:58:35.
- c) Zegar C wskazuje godzinę 10:44:24.
- d) Zegar D wskazuje godzinę 17:48:54.
- (Matura CKE 2020 (formula po 2015), poziom rozszerzony)

- PF
- PF
- PF
- PF

Liczba BA₁₆ (zapisana w systemie szesnastkowym) jest równa:

- a) 186₁₀
- b) 252₈
- c) 10111010₂
- d) 2232₄
- [] (Matura dodatkowa CKE 2020 (formuła po 2015), poziom rozszerzony)

- PF
- PF
- PF
- PF

b) równa 1000110₂.

c) większa niż 101112.

d) równa 1001000₂.

(Matura próbna CKE 2021 (formula po 2015), poziom rozszerzony)

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

a) 10000000₂ jest liczbą większą od liczby A9₁₆.

b) 1111₄ jest liczbą większą od liczby 1111111₄.

c) 3003₄ jest liczbą większą od liczby C2₁₆.

d) 333₈ jest liczbą większą od liczby 10100101₂.

(Matura CKE 2021 (formula po 2015), poziom rozszerzony)

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jesli zdanie jest fałszywe.

a) $10101_2 + 101011_2 = 111111_2$

PF

b) $A_{16} + B_{16} = F_{16}$

PF

c) $12_8 + 12_8 = 14_{16}$

PF

d) $123_{10} = 11111101_2$

PF

(Matura dodatkowa CKE 2021 (formula po 2015), poziom rozszerzony)

40

Po dodaniu liczb 1324 oraz 31114 zapisanych w systemie czwórkowym otrzymamy:

a) 1111011₂

PF

b) 362₈

PF

c) F3₁₆

PF

d) 3303₄

PF

Matura CKE 2022 (formula po 2015), poziom rozszerzony)

Po dodaniu dwóch liczb 1011012 i 1110112 zapisanych w systemie binarnym otrzymamy: 41

d) 1120₄

a) 1101000₂ b) 68₁₆ c) 140₈

Uzupełnij tabelę. Zapisz wyniki działania w zapisie czwórkowym i szesnastkowym.

Działanie na liczbach zapisanych w systemie czwórkowym	Wynik działania zapisany w systemie czwórkowym	Wynik działania zapisany w systemie szesnastkowym
3211, + 2322,		
3211, - 2322,		

44

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

b)
$$A5_{16} < 10100100_2$$

c)
$$10100100_2 = 2210_4$$

[] (Matura CKE 2023 (formula po 2015), poziom rozszerzony)

Dane są liczby zapisane w systemach pozycyjnych o podstawach 3, 5 i 6. Wstaw w miejsce kropek odpowiedni znak spośród: < , > , =, tak aby wyrażenie było poprawne.

$$2011_3 = 134_6$$

 $134_5 \dots 134_6$
 $2222_3 \dots 1111_6$

Matura CKE 2023 (formula od 2023), poziom rozszerzony)

46

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

- c) $401_8 = 100000001_2$
- d) $101_8 = 41_{16}$

a) $101_{16} = 11001011_2$

b) $101_{16} = 401_8$

Matura dodatkowa CKE 2023 (formuła po 2015), poziom rozszerzony)

Uzupełnij brakujące pola tabeli: - w wierszu pierwszym dla liczby zapisanej w systemie o podstawie 3 podaj jej zapis w systemie o podstawie 9 - w wierszu drugim dla liczby zapisanej w systemie o podstawie 9 podaj jej zapis w systemie o podstawie 3.

1012013	
	2487

