Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 07 - Bayesian Linear Regression
(Gaussian and Laplacian priors), Regularized
Linear Regression (Ridge Regression and Lasso)

Recap: Summary for MAP estimation with Normal Distribution

• Univariate: With $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $x \sim \mathcal{N}(\mu, \sigma^2)$, $p(\mu|\mathcal{D}) \sim \mathcal{N}(\mu_m, \sigma_m^2)$

$$\frac{1}{\sigma_m^2} = \frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}$$
$$\frac{\mu_m}{\sigma_m^2} = \frac{m}{\sigma^2} \hat{\mu}_{mle} + \frac{\mu_0}{\sigma_0^2}$$

ullet Multivariate: By **extrapolation** (Bayesian setting for fixed Σ)

$$\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\Sigma}), \; \mu \sim \mathcal{N}(\mu_0, \mathbf{\Sigma}_0) \; \& \; p(\mu|\mathcal{D}) \sim \mathcal{N}(\mu_m, \mathbf{\Sigma}_m)$$

$$egin{aligned} \Sigma_m^{-1} &= m \Sigma^{-1} + \Sigma_0^{-1} \ \Sigma_m^{-1} \mu_m &= m \Sigma^{-1} \hat{\mu}_{mle} + \Sigma_0^{-1} \mu_0 \end{aligned}$$

Different Estimators

Recap: Mean and Mode coincide for (Multivariate) Gaussian ==>

	Point?	p(x D)
MLE	$\hat{ heta}_{ extit{MLE}} = \operatorname{argmax}_{ heta} extit{LL}(D heta)$	$p(x \theta_{MLE})$
Bayes Estimator	$\hat{ heta}_B = E_{p(heta D)} E[heta]$	$p(x \theta_B)$
MAP	$\hat{ heta}_{ extit{MAP}} = \operatorname{argmax}_{ heta} extit{p}(heta D)$	$p(x \theta_{MAP})$
Pure Bayesian	DOD WILL 5	$p(heta D) = rac{p(D heta)p(heta)}{\int\limits_m p(D heta)p(heta)d heta} \ p(D heta) = \prod\limits_m p(x_i heta)$
	P(O/D) ~ N(um, Zm)/ P(x1D) ~ N (um +, 2m+.	$p(x D) = \int_{\theta}^{i=1} p(x \theta)p(\theta D)$

Davisa Estimata - MAD actimata

Recap: Back to Linear Regression: Why Bayesian?

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression to address overfitting
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result
- Intuitive Prior: Components of **w** should not become too large!

Recap: Prior Distribution for w

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- Maximum (log)-likelihood estimate is $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T y$
- We can use a Prior distribution on **w** to avoid over-fitting
- U=0, since σ should have $w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$ $\lambda = \sigma^2 = \frac{1}{\sqrt{2}}$ (that is, each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$ by the $3-\sigma$ rule). λ is also called the precision of the Gaussian
 - Q: Bayesian Estimation?

Recap: Multivariate Normal Distribution and MAP estimate

- If $w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$ then $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \frac{1}{\lambda}I)$ where I is an $n \times n$ identity matrix
- \Rightarrow That is, \mathbf{w} has a multivariate Gaussian distribution $\Pr(\mathbf{w}) = \frac{1}{(\frac{2\pi}{2})^{\frac{n}{2}}} e^{-\frac{\lambda}{2} \|\mathbf{w}\|_2^2}$ with $\mu_0 = \mathbf{0}$. $\Sigma_0 = \frac{1}{\lambda} I$
- Consider Bayesian Estimation for multivariate Gaussian on w

Posterior Distribution for w for Linear Regression

• Given
$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
 and $\varepsilon \sim \mathcal{N}(0, \sigma^2) \Rightarrow \frac{\mathbf{v} - \mathbf{v}^T \mathbf{v}}{\mathbf{v}}$
 $\mathbf{v} \sim \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \sigma^2)$, $\mathbf{w} \sim \mathcal{N}(\mu_0, \Sigma_0)$ where, $\mathbf{w}_i \sim \mathcal{N}(0, \frac{1}{\lambda})$

• We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$

Invoking the Bayes Estimation results from before (homework):

$$P_{1}(\omega|D) \propto P(D|\omega) P(\omega) \propto \iint_{\mathbb{R}^{2}} \exp\left[-\frac{(y_{1}-\omega)\phi(x_{1})}{2\sigma^{2}}\right] \exp\left[-\frac{(\omega-M_{0})z_{0}^{-1}}{(\omega-M_{0})}\right]$$

$$= \exp\left[-\omega^{T}\left(z_{0}^{-1}+\sum_{i=1}^{m}\phi^{T}(x_{i})\phi(x_{i})\right)\omega^{T}+\sum_{i=1}^{m}\omega^{T}\left(y_{i}^{-1}\phi(x_{i})+A_{0}^{T}z_{0}^{-1}\right)\right]$$

Posterior Distribution for w for Linear Regression

- Given $y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2) \Rightarrow$ $y \sim \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \sigma^2)$, $\mathbf{w} \sim \mathcal{N}(\mu_0, \Sigma_0)$ where, $w_i \sim \mathcal{N}(0, \frac{1}{\gamma})$
- We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$ Invoking the Bayes Estimation results from before (homework):

Invoking the Bayes Estimation results from before (homework):

$$\Sigma_{m}^{-1} = \left(\frac{1}{\sigma^{2}} \Phi^{T} \Phi\right) + \Sigma_{0}^{-1} \qquad \Sigma_{m}^{-1} = \frac{1}{\sigma^{2}} \Phi^{T} \Phi + \Sigma_{0}^{-1}$$

$$\Sigma_{m}^{-1} = \left(\frac{1}{\sigma^{2}} \Phi^{T} \Phi\right) + \Sigma_{0}^{-1} \qquad \Sigma_{m}^{-1} = \frac{1}{\sigma^{2}} \Phi^{T} \Phi + \Sigma_{0}^{-1}$$
Substitute!

Finding $\mu_m \& \Sigma_m$ for **w**

Setting
$$\Sigma_0 = \frac{1}{\lambda}I$$
 and $\mu_0 = \mathbf{0}$

$$\Sigma_{m}^{-1}\mu_{m} = \Phi^{T}\mathbf{y}/\sigma^{2}$$

$$\Sigma_{m}^{-1} = \lambda I + \Phi^{T}\Phi/\sigma^{2}$$

$$\mu_{m} = \frac{(\lambda I + \Phi^{T}\Phi/\sigma^{2})^{-1}\Phi^{T}\mathbf{y}}{\sigma^{2}}$$

or

$$\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

MAP and Bayes Estimates

- $Pr(\mathbf{w} \mid \mathcal{D}) = \mathcal{N}(\mathbf{w} \mid \mu_m, \Sigma_m)$
- The MAP estimate or mode under the Gaussian posterior is the mode of the posterior ⇒

$$\hat{w}_{MAP} = \operatorname*{argmax} \mathcal{N}(\mathbf{w} \mid \mu_{m}, \Sigma_{m}) = \underline{\mu_{m}}$$

 Similarly, the Bayes Estimate, or the expected value under the Gaussian posterior is the mean ⇒

$$\hat{w}_{ extit{Bayes}} = extit{E}_{ ext{Pr}(\mathbf{w}|\mathcal{D})}[\mathbf{w}] = extit{E}_{\mathcal{N}(\mu_m,\Sigma_m)}[\mathbf{w}] = \mu_m$$

Summarily: Recall: Wale had no $\sigma^2(\mathbf{f})$ of course no λ) $\mu_{MAP} = \mu_{Bayes} = \mu_m = (\lambda \sigma^2 \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$

Predictive distribution for linear Regression

- fure Bayesian: M(y)x,D)
 ŵ_{MAP} helps avoid overfitting as it takes regularization into account
- But we miss the modeling of uncertainty when we consider only $\hat{\mathbf{w}}_{MAP}$
- **Eg:** While predicting diagnostic results on a new patient x, along with the value v, we would also like to know the uncertainty of the prediction $Pr(y \mid x, D)$. Recall that $y = \mathbf{w}^T \phi(x) + \varepsilon$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$Pr(y \mid \mathbf{x}, \mathcal{D}) = Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$$

$$Expect: \mathcal{H}(y(\mathbf{x}, \mathcal{D}) \sim N(u_n^{-1}\phi(\mathbf{x}), \phi^{-1}(\mathbf{x}), \phi^{-1}(\mathbf{x}), \phi^{-1}(\mathbf{x})) = 0$$

Pure Bayesian Regression Summarized (Optional)

By definition, regression is about finding $(y \mid \mathbf{x}, \mathcal{D})$. By Bayes Rule

$$Pr(y \mid \mathbf{x}, \mathcal{D}) = Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$$

$$= \int_{\mathbf{w}} Pr(y \mid \mathbf{w}; \mathbf{x}) Pr(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$$

$$\sim \mathcal{N} \left(\mu_m^T \phi(\mathbf{x}), \sigma^2 + \phi^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x}) \right)$$

where

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon \text{ and } \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $\mathbf{w} \sim \mathcal{N}(0, \alpha I) \text{ and } \mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\mu_m, \Sigma_m)$
 $\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \text{ and } \Sigma_m^{-1} = \lambda I + \Phi^T \Phi / \sigma^2$

Finally $y \sim \mathcal{N}(\mu_m^T \phi(\mathbf{x}), \phi_{-}^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x}))$

MAP (and Bayes) Inference (Rewinning dufferently)

$$\begin{aligned} \mathbf{w}_{MAP} &= \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{log} \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right), \ \text{where,} \\ &- \operatorname{log} \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \frac{n}{2} \operatorname{log}\left(2\pi\right) + \frac{1}{2} \operatorname{log}\left|\Sigma_{m}\right| + \frac{1}{2} (\mathbf{w} - \mu_{m})^{T} \Sigma_{m}^{-1} (\mathbf{w} - \mu_{m}) \end{aligned}$$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmin}} - \log \Pr(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{T} \underline{\sum_{m}^{-1}} \mathbf{w} - \mathbf{w}^{T} \underline{\sum_{m}^{-1}} \mu_{m}$$

(expanding/canceling redundant terms & completing squares: Tut

3) By Substituting for $\Sigma_m + M_m$ Recall: log is monotonically increasing

argmax $f(\omega) = argmn - f(\omega)$

MAP (and Bayes) Inference

$$\begin{aligned} \mathbf{w}_{MAP} &= \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \ \log \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right), \ \text{where,} \\ &- \log \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \frac{n}{2} \log \left(2\pi\right) + \frac{1}{2} \log |\Sigma_m| + \frac{1}{2} (\mathbf{w} - \mu_m)^T \Sigma_m^{-1} (\mathbf{w} - \mu_m) \end{aligned}$$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmin}} - \log \Pr(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^T \Sigma_m^{-1} \mathbf{w} - \mathbf{w}^T \Sigma_m^{-1} \mu_m$$

(expanding/canceling redundant terms & completing squares: Tut

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} ||\phi \mathbf{w} - \mathbf{y}||^2 + \sigma^2 \lambda ||\mathbf{w}||^2 = \mathbf{w}_{Ridge}$$

is the same as that of Penalized Regularized Regression.

$$W_{map} = argmin \frac{1}{2} || \Phi w - y ||^2 + 2 \sigma^2 || w ||^2$$

$$|| \text{Independently } || w ||^2$$

$$|| \text{Is minimized only when each } w_i = 0$$

$$|| \text{This is COMMON SENSE! ALL WE HAVE DONE IS GIVEN SOME}$$

THIS IS COMMON SENSE! ALL WE HAVE DONE IS GIVEN SOME PROBABILISTIC INTERPRETATION TO COMMON SENSE!

Penalized Regularized Least Squares Regression

 The Bayes and MAP estimates for Linear Regression coincide with Regularized Ridge Regression

$$\mathbf{w}_{Ridge} = \arg\min \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$$

$$\mathbf{w}_{g: \ lf} \ \phi: \phi: \ \omega: \neq 0 \ \lambda \ \omega = 0$$
 • Intuition: To discourage redundancy and/or stop coefficients

- **Intuition:** To discourage redundancy and/or stop coefficients of **w** from becoming too large in magnitude, add a penalty to the error term used to estimate parameters of the model.
- The general **Penalized Regularized L.S Problem**:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_{2}^{2} + \lambda \Omega(\mathbf{w})$$

Penalized Regularized Least Squares: Examples

• The general **Penalized Regularized L.S Problem**:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\arg\min} \ ||\Phi\mathbf{w} - \mathbf{y}||_2^2 + \lambda \Omega(\mathbf{w})$$

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \underset{\mathbf{k} \in \mathcal{S}}{\mathbf{Ridge Regression}}$$

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_1^2 \Rightarrow \underset{\mathbf{k} \in \mathcal{S}}{\mathbf{Ridge Regression}}$$

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \underset{\mathbf{k} \in \mathcal{S}}{\mathbf{Lasso}}$$

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow \underset{\mathbf{k} \in \mathcal{S}}{\mathbf{Support-based penalty}}$$

$$\operatorname{Some} \Omega(\mathbf{w}) \text{ correspond to priors that can be expressed in close}$$

Some $\Omega(\mathbf{w})$ correspond to priors that can be expressed in close form. Some give good working solutions. Some norms are mathematically easier to handle

mathematically easier to handle
$$||\omega||_{2}^{2} \sim N(\cdot) \sim \exp(||-\cdot||^{2}) \cdot ||\omega||_{2}^{2} \exp(\cdot) \sim \exp(\cdot\cdot)$$

Constrained Regularized Least Squares Regression

- Intuition: To discourage redundancy and/or stop coefficients of w from becoming too large in magnitude, constrain the error minimizing estimate using a penalty
- The general **Constrained Regularized L.S. Problem**:

$$\mathbf{w}_{Reg} = \mathop{\mathrm{arg\,min}}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

- Claim: For any Penalized formulation with a particular λ , there exists a corresponding Constrained formulation with a corresponding θ
- Proof of Equivalence: Requires tools of Optimization/duality

Constrained Regularized Least Squares: Examples

• The general Constrained Regularized L.S. Problem:

$$\mathbf{w}_{Reg} = \mathop{
m arg\,min}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

- $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \mathsf{Ridge} \; \mathsf{Regression}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty

Polynomial regression

- Consider a degree 3
 polynomial regression model
 as shown in the figure
- Each bend in the curve corresponds to increase in ||w||
- Eigen values of $(\Phi^{T}\Phi + \lambda I)$ are indicative of curvature. Increasing λ reduces the curvature

Do Closed-form solutions Always Exist?

- Linear regression and Ridge regression both have closed-form solutions
 - For linear regression,

$$w^* = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}y$$

For ridge regression,

$$w^* = (\Phi^ op \Phi + \lambda I)^{-1} \Phi^ op y$$
 (for linear regression, $\lambda = 0$)

 What about optimizing the formulations (constrained/penalized) of Lasso (L₁ norm)? And support-based penalty (L₀ norm)?: Also requires tools of Optimization/duality

Lasso Regularized Least Squares Regression

• The general **Penalized Regularized L.S Problem**:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
- Lasso Regression

$$\mathbf{w}_{lasso} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_1$$

• Lasso is the MAP estimate of Linear Regression subject to Laplace Prior on $\mathbf{w} \sim Laplace(0, \theta)$

$$Laplace(w_i \mid \mu, b) = \frac{1}{2b} \exp\left(-\frac{|w_i - \mu|}{b_{i+1}}\right)$$

Gaussian Hare vs. Laplacian Tortoise

Gaussian easier to

estimate $\omega_{MAP} = \left(\Phi + \lambda I \right)^{-1} \Phi^{T} y$

Laplacian yields more sparsity

No closed form for WMAP

Here his algos to the second second