MSc Master Course – High Performance Computing

Introduction into HPC – General overview Applications, Technology, Memory Bandwidth and Locality

Olaf Schenk

Institute of Computational Science USI Lugano September 18, 2018

How to reach us?

Prof. Olaf Schenk
 Institute of Computational Science
 Faculty of Informatics
 2nd floor, ICS Lab, USI Lugano
 Email: olaf.schenk@usi.ch

• TA: Radim Janalik, Juraj Kardos Email: <u>radim.janalik@usi.ch</u>, Juraj <u>Kardos@usi.ch</u>

• Classes:

Tuesday, 13:30-15:15 (SI-006) Wednesday, 15:30-15:15 (SI-006)

Your background

- MSc CS? MSc FinTEC? MSc AI? MSc INF? Other?
- Programming experience & languages?
- Parallel programming languages?
- Operating systems?
- Working at the command line in Unix-like shells (e.g. Linux or a Mac OSX terminal)?
- Scientific libraries or mathematical libraries?
- Latex?
- Version control systems, particularly git, and the use of Github and Bitbucket repositories?

Quiz

- What does "clock frequency" mean in computers? The "heartbeat" of the CPU. A clock cycle is the smallest unit of time on a CPU chip. Typically $< 1 \text{ns} -> f \gtrsim 1 \text{ "GHz"}$
- What is "memory bandwidth"?
 Rate of data transfer between main memory (RAM) and CPU chip. Typical b_S≈10...100 "GB/s"

- What is SIMD vectorization?
 - Single Instruction Multiple Data.

 Data-parallel load/store and execution units.
- What is ccNUMA?

Quiz

rbx

rcx

rdx

ymm0

ymm1

ymm2

ymm3

What is a register?

A storage unit in the CPU core that can take one single value (a few values in case of SIMD). Operands for computations reside in registers.

What is Amdahl's Law?

$$S_p = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N}}$$

What is a pipelined functional unit?

An instruction execution unit on the core that executes a certain task in several simple sub-steps The stages of the pipeline can act in parallel on several instructions at once.

A conversation

From a student seminar on "Efficient programming of modern multi- and manycore processors"

Student: I have implemented this algorithm on the GPU, and solves

a system with 26546 unknowns in 0.12 seconds, so it is

really fast.

Me: What makes you think that 0.12 seconds is fast?

Student: It is fast because my baseline C++ code on the CPU is

about 20 times slower.

Focus

- Focus
 - High Performance Scientific Computing (LAB)
- high emphasis on
 - numerical programming (less on theory and proofs)
 - less teaching lectures, but full-time in-class mini-projects (programming projects!)
 - new theory is explained in reading assignments, and if needed, explained in class on an individual basis.
- Essential prerequisite for this course is a solid knowledge
 - topics covered in a bachelor course on numerical methods
 - in programming experience in C/C++

Software Atelier: Supercomputing and Simulations

• Spring 2019:

Software Atelier: Software Atelier: Simulation, Data Science & Supercomputing (6 ECTS)

CSCS - Swiss National Supercomputing Centre Via Trevano 131 6900 Lugano

CSCS Visit (no class for MSc students in CS/FinTEC/INF)

TBA (13:30 to 16:00). The agenda will be Dr. Michele de Lorenzi (CSCS) - Overview CSCS (30 min) Student from USI (15 min) Guided Tour CSCS Server Room (60 min)

What you should get out of the lab?

In depth understanding of:

- When is parallel computing useful?
- Understanding of parallel computing hardware options.
- Overview of programming models (software) and tools, and experience using some of them
- Some important parallel applications and the algorithms
- Performance analysis and tuning
- Ability to implement **parallel numerical algorithms** efficiently in C/C++ using the Intel Math Kernel Library.

Three types of modern accelerators

GPU: NVIDIA Tesla K20c

Kepler GK110, 28 nm 13 mp × 192 cores @ 0.71 GHz 5 GB GDDR5 @ 2.6 GHz 225W

GPU: Radeon HD 7970

Graphics Core Next, 28 nm 32 mp × 64 cores @ 1 GHz 3GB GDDR5 @ 1.5 GHz 250W

MIC: Intel Xeon Phi 3120A

Knights Corner (KNC), 22 nm 57 cores @ 1.1 GHz 6GB GDDR5 @ 1.1 GHz 300W up to 4 threads per core 512-bit vectorization (AVX-512)

Software Atelier: Simulation, Data Science & Supercomputing (Spring 2019, 6 ECTS)

Students will get the chance to work on a **software simulation project** namely to take **all the** theoretical and practical **knowledge** obtained so far and put it in use in a **real world context.**

Software Atelier: Supercomputers used in 2016 and 2017

Local CUB Cluster at ICS

- The Salomon cluster at Czech Supercomputer Center
- Largest Intel Xeon Phi Installation in Europe
- 2 Pflop/s theoretical peak performance.
- 1,008 compute nodes, up to **24,192 cores**
- 129TB RAM

- Piz Daint Cluster at CSCS:
- User Lab for Swiss Scientists
- 25.3 Pflop/s theoretical peak performance.
- Ranking TOP500: 6th, as of June 2018.
- 5,272 compute nodes, 129,108
 cores 672 TB of RAM, 5,320
 NVIDIA P100 GPUs
- Intel Haswell node
- 6PB local disks

Books:

Performance Computing for Scientists and Engineers by G. Wellein and G. Hager

 Introduction to Parallel Computing (2nd Edition) by Ananth Grama.
 George Karypis, Vipin Kumar.
 Anshul Gupta

Two books from Victor Eijkout

- Introduction to High-Performance Scientific Computing by Victor Eijkout
- Parallel Computing Book by Victor Eijkout
- Both books are available on https://bitbucket.org/VictorEijkhout/

Schedule

- Lectures and in-class exercises on CUB cluster (please always bring your laptop to the class).
- 7 to 9 mini-projects & reading assignments (discussion in class)
- Course grading
 - 7 to 9 mini-projects 60%
 - no midterm (but much more emphasis on scientific programming)
 - Final written exam 40%, the final exam must be passed with a grade of at least 6/10.
- Course Webpage: https://www2.icorsi.ch/course/view.php?id=6851
- Registration Please enroll within **until September 26** on teaching.inf.usi.ch and on https://www2.icorsi.ch/course/view.php?id=6851

Mini-Projects & Reading Assignments

- 7 to 9 mini-projects (including reading assignments)
- The mini-projects sheets will be uploaded on the course webpage
- The exercise should be solved until the deadline which is given on assignment (Please upload your code and solution in electronic form on https://www2.icorsi.ch/course/view.php?id=6851)
- We only accept submissions using our Latex template and C/C++ code.
- You are allowed to discuss such questions with anyone you like; however:
 - Your submission must list anyone you discussed problems with.
 - You must write up and summarize your submission independently.

Installation

• Slides from Radim Janalik