Overview of current methods for population structure analysis

Journal club

Imperial College London

Human genetic diversity

Studying the human genetic diversity

Summarizing the genetic diversity within a population

Summarizing the genetic diversity within a population

Watterson estimator

Number of segregating sites

$$\hat{\theta}_W = \frac{S}{\sum_{k=1}^{n-1} \frac{1}{k}}$$

Nucleotide pairwise differences

$$\pi = \frac{\sum_{i < j} d_{i,j}}{n(n-1)/2}$$

Summarizing the genetic diversity within a population

Effective population size (N_e)

The 1000 Genomes Project Consortium. 2015, Nature

Allele frequency methods

• Nei's D
$$D = -\ln(\frac{J_{12}}{(\sqrt{J_{11}J_{22}})})$$

F_{ST}
$$F_{ST} = rac{\pi_{ ext{Between}} - \pi_{ ext{Within}}}{\pi_{ ext{Between}}}$$

Haplotype-based methods

Haplotype-based methods

Haplotype-based methods

ChromoPainter

Lawson et al. 2012, PLoS Genet

Haplotype-based methods

- ChromoPainter
 Lawson et al. 2012, PLoS Genet
- Search for the most common recent ancestor of each individual haplotype within the haplotypes of the other individuals of the datsaset

Haplotype-based methods

Lawson et al. 2012, PLoS Genet

ChromoPainter

Α В

Haplotype-based methods

Lawson et al. 2012, PLoS Genet

ChromoPainter

Α В

Haplotype-based methods

Lawson et al. 2012, PLoS Genet

ChromoPainter

Α В

Haplotype-based methods

ChromoPainter

Lawson et al. 2012, PLoS Genet

Analyzing the context of the snps, the haplotypes, we can smooth the weight of increased allele frequencies after genetic drift and relate the populations trough shared haplotypes

Haplotype-based methods

ChromoPainter

Lawson et al. 2012, PLoS Genet

Analyzing the context of the snps, the haplotypes, we can smooth the weight of increased allele frequencies after genetic drift and relate the populations trough shared haplotypes

Population structure through clustering methods

Population structure through clustering methods

From allele frequencies

Population structure through clustering methods

From allele frequencies

- Principal Component Analysis
 - Transforms allele frequencies to a set of linearly uncorrelated variables called principal components.
 - The visualization of the indivudals as points of two principal component coordinates clusters them based on their genetic distances.

Moreno-Estrada et al. 2013, PLoS Genet

Population structure through clustering methods

From allele frequencies

Admixture

analyses differences in the distribution of allele frequencies amongst individuals with a Bayesian iterative algorithm by placing samples into groups whose members share similar patterns of variation

Population structure through clustering methods

From haplotype-based methods

Population structure through clustering methods

From haplotype-based methods

FineStructure

Lawson et al. 2012, PLoS Genet

Clusters the individuals based on their haplotypic similatiries computed in the ChromoPainnter coancestry matrix

From allele frequencies

 F_3 (Pop2;Pop1,Pop3) < 0

 F_{h} < 0: Admixture in Pop1

 F_{h} < 0: Admixture in Pop1

From haplotype-based methods

Globetrotter

Hellenthal et al. 2014, Science

Generation 4 Longer fragments, longer distance between fragments

Generation 8 Shorter fragments, shorter distance between fragments

- Other methods using similar approaches
 - Tracts
 - Gravel et al. 2012, Genetics
 - ALDER
 - ▶ Loh et al. 2013, Genetics

Generation 4 Longer fragments, longer distance between fragments

Generation 8 Shorter fragments, shorter distance between fragments

Genome wide association studies (GWAS)

Genome wide association studies (GWAS)

1) P-value → identification of associated loci

2) β SNP effect size \rightarrow Polygenic Risk Score PRS= $\sum_{i=1}^{l} \beta_i$ along the genome, per individual Express how likely an individual will present a phenotype

Pairo-Castineira, E., Clohisey, S., Klaric, L. *et al.* **Genetic mechanisms of critical illness in COVID-19**. *Nature* **591**, 92–98 (2021). https://doi.org/10.1038/s41586-020-03065-y

Imperial College London