PROBLEM SET 6

Zhiqiang Xie 77892769

Problem 1: Knapsack Variants

Here I set OPT(i, w) to be the optimal solution with the weight constrain of w and items of $(1, \ldots, i)$

For i from 1 to n, w from 1 to W, apply a bottom-up method:

- If i = 0, OPT(i, w) = 0
- If $w < w_i$, OPT(i, w) = OPT(i 1, w)
- If $w_i \leq w < 2w_i$, $OPT(i, w) = max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\}$
- $\bullet \ \ \mathsf{If} \ 2w_i \leq w_i \ OPT(i,w) = max\{OPT(i-1,w), v_i + max\{OPT(i,w-w_i), OPT(i-1,w-w_i)\}\}$

Finally, OPT(n, W) is the optimal answer, and we can trace back the DP table to get the corresponding combination. The time complexity T(n) = O(n) * O(W)

Problem 2: Multiplication Card

Here I set OPT(a,b) to be the optimal solution for the card set C[a:b] (including a and b)

For all a+2=b to b-a=n-1, apply a bottom-up method:

- If a+1 < b: $OPT(a,b) = min_{a+1 \le j \le b-1} \{OPT(a,j) + OPT(j,b) + c_a * c_j * c_b \}$ (Here j means the last card to be taken)
- If a + 1 = b: OPT(a, b) = 0

Finally, OPT(1,n) is the optimal answer, and we can trace back the DP table to get the corresponding order of taking card. The time complexity $T(n) = O(\sum_{i=2}^{n-2} (i-1)(n-i)) \in O(n^3)$

Problem 3:

Set the start node r to be the root of the tree. And $OPT_0(u,i)$ to be the optimal solution for starting from node u and walk at most i step without returning back to u, $OPT_1(u,i)$ to be the optimal solution for starting from node u and walk at most i step with returning back to u.

initialization:

- For all each u in tree, $OPT_0(u,0) = OPT_1(u,0) = w(u)$, OPT(u,-1) = 0
- If u is leaf node, $OPT_0(u,i) = OPT_1(u,i) = w(u)$, $\forall i \in [1,k]$

For *u* From the leaf to the root (post-order), *i* from 1 to *k*, apply a bottom-up method:

- $OPT_1(u,i) = max_{v \in children(u)} \{ max_{-1 \leq j \leq i-2} \{ OPT_1(u,i-j-2) + OPT_1(v,j) \} \}$
- $\begin{array}{l} \bullet \ \ OPT_0(u,i) = \\ \ \ max_{v \in children(u)} \{ max_{0 \leq j \leq i-1} \{ OPT_0(u,i-j-2) + OPT_1(v,j), OPT_1(u,i-j-1) + OPT_0(v,j) \} \} \end{array}$

Finally, OPT(r,k) is the optimal answer, and we can trace back the DP table to get the corresponding routine. The time complexity $T(n) = O(n) * O(\sum_{i=1}^k i) \in O(nk^2)$

Problem 4:

Preprocessing:

- Precompute the level of every node (length of the path to the root).
 - This procedure costs O(n) by BFS.
- Precompute the $2^{j}th$ ancestor for all valid j for each node in the rooted tree.
- Put the result above into a sparse 2D table P such that P[i][j] stores the 2^jth ancestor for node i.
- This preprocess costs $O(n \log n)$ time and space.

If $level(v_i) = level(w_i)$:

- Every number can be expressed as a *sum* of distinct *powers* of **2**.
- Keep referencing the table by finding the "largest uncommon ancestor" and finally we'll get $LCA(v_i,w_i)=k^{th}$
- This procedure costs $O(\log H)$

Else:

- Replace the node with high level to be its ancestor with the same level to another node.
 - This procedure could cost $O(\log H)$
- Repeat the procedure above.

Where \boldsymbol{H} is the height of the tree.

Therefore, we can guarantee $T(n) = O(n \log n) + m * O(\log H) \in O((n+m) \log n)$

Problem 5:

- 1. For all i + 1 = j to j i = n 1, apply a bottom-up method:
 - \circ Calculate $f(1,2), f(2,3), \ldots, f(n-1,n)$ and $w(1,2), w(2,3), \ldots, w(n-1,n)$ by summing
 - The first step costs O((n-1)*1)
 - \circ Calculate $f(1,3), f(2,4), \ldots, f(n-2,n)$ and $w(1,3), w(2,4), \ldots, w(n-2,n)$ by the previous result and try different k.
 - This step costs O((n-2)*2)

o ...

$$T(n) = O(\sum_{i=1}^{n-1} i(n-i)) \in O(n^3)$$

2.
$$w(a,c) + w(b,d) = \sum_{k=a}^{d} a_k + \sum_{k=b}^{c} a_k = w(b,c) + w(a,d)$$

 $w(b,c) = \sum_{k=b}^{c} a_k \le \sum_{k=a}^{b} a_k + \sum_{k=b}^{c} a_k + \sum_{k=c}^{d} a_k = \sum_{k=a}^{d} a_k = w(a,d)$

3. As for 0 < a < b < c < d, we have:

$$\circ \ \ f(a,d)=f(a,t)+f(t+1,d)+w(a,d)$$

$$f(b,c) = f(b,k) + f(k+1,c) + w(b,c)$$

Without loss of generality, we can assume $a < t \le k \le c$:

$$egin{array}{ll} \circ & f(a,c) + f(b,d) \ & \leq f(a,t) + f(t+1,c) + w(a,c) + f(b,k) + f(k+1,d) + w(b,d) \ & \leq f(a,t) + f(t+1,d) + w(a,d) + f(b,k) + f(k+1,c) + w(b,c) \ & = f(a,d) + f(b,c) \end{array}$$

• Notice an induction is applied $f(t+1,c)+f(k+1,d) \leq f(t+1,d)+f(k+1,c)$ where $t \leq k$. And the equality of the base case is held.

Therefore, $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$

4. By symmetry, we need only to prove that $K(i, j) \leq K(i, j+1)$

Since $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$, for all 0 < a < b < c < d:

$$f(b+1,d) + f(c+1,d+1) \le f(c+1,d) + f(b+1,d+1)$$

$$\circ \ f(a,b-1) + f(b,d) + w(a,d) + f(a,c-1) + f(c,d+1) + w(a,d+1) \\ \leq f(a,b-1) + f(b,d+1) + w(a,d+1) + f(a,c-1) + f(c,d) + w(a,d)$$

$$\circ \ \ f(a,b-1) + f(b,d) + w(a,d) - (f(a,c-1) + f(c,d) + w(a,d)) \\ \leq f(a,b-1) + f(b,d+1) + w(a,d+1) - (f(a,c-1) + f(c,d+1) + w(a,d+1))$$

- Therefore, for all b < K(i,j), we have $f(a,d) \le f(a,b-1) + f(b,d) + w(a,d)$. And it applies too for the case f(a,d+1).
- Which indicates that $K(a,d) \leq K(a,d+1)$

5.
$$f(i,j) = min_{K(i,j-1) \leq k \leq K(i+1,j)} \{ f(i,k-1) + f(k,j) + w(i,j) \}$$
 if $(i < j)$

Based on the procedure described above, we can accelerate the part of finding the right ${\it k}$.

$$\circ K(i, j-1) \le k \le K(i+1, j)$$

• Therefore, for each i in f(a, a + i), it's supposed to find all k in O(n) time.

Therefore,
$$T(n) = O(\sum_{i=1}^{n-1} i) + n * O(n) \in O(n^2)$$