Logistic Regression

逻辑回归

Step 1: Function Set

We want to find $P_{w,b}(C_1|x)$

If
$$P_{w,b}(C_1|x) \ge 0.5$$
, output C_1
Otherwise, output C_2

$$P_{w,b}(C_1|x) = \sigma(z)$$

$$z = w \cdot x + b$$

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$

Function set:

$$f_{w,b}(x) = P_{w,b}(C_1|x)$$

Including all different w and b

Step 1: Function Set

Logistic Regression

Linear Regression $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Step 1:
$$f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$$

Output: between 0 and 1

Output: any value

Step 2:

Step 3:

Step 2: Goodness of a Function

Training
$$x^1$$
 x^2 x^3 x^N
Data C_1 C_2 C_1

Assume the data is generated based on $f_{w,b}(x) = P_{w,b}(C_1|x)$

Given a set of w and b, what is its probability of generating the data?

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots f_{w,b}(x^N)$$

The most likely w^* and b^* is the one with the largest L(w,b).

$$w^*, b^* = arg \max_{w,b} L(w,b)$$

 \hat{y}^n : 1 for class 1, 0 for class 2

 $ln(1-f(x^3))$

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots$$

 $-ln\left(1-f_{w,b}(x^3)\right) \longrightarrow -\left[\begin{array}{c} lnf(x^3) + lnf(x^3) \end{array}\right]$

$$w^*, b^* = arg \max_{w,b} L(w,b) = w^*, b^* = arg \min_{w,b} -lnL(w,b)$$

$$-lnL(w,b)$$

$$= -lnf_{w,b}(x^1) \longrightarrow -\begin{bmatrix} 1 \ lnf(x^1) + 0 \ ln(1 \ f(x^1)) \end{bmatrix}$$

$$-lnf_{w,b}(x^2) \longrightarrow -\begin{bmatrix} 1 \ lnf(x^2) + 0 \ ln(1 \ f(x^2)) \end{bmatrix}$$

Step 2: Goodness of a Function

$$L(w,b) = f_{w,b}(x^{1})f_{w,b}(x^{2}) \left(1 - f_{w,b}(x^{3})\right) \cdots f_{w,b}(x^{N})$$

$$-lnL(w,b) = lnf_{w,b}(x^{1}) + lnf_{w,b}(x^{2}) + ln\left(1 - f_{w,b}(x^{3})\right) \cdots$$

$$\hat{y}^{n} : 1 \text{ for class 1, 0 for class 2}$$

$$= \sum_{n=0}^{\infty} -\left[\hat{y}^{n}lnf_{n+n}(x^{n}) + (1 - \hat{y}^{n})ln\left(1 - f_{n+n}(x^{n})\right)\right]$$

$$= \sum_{n} -\left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n})\right)\right]$$
Cross entropy between two Bernoulli distribution

Distribution p:

$$p(x = 1) = \hat{y}^n$$
$$p(x = 0) = 1 - \hat{y}^n$$

cross entropy

Distribution q:

$$q(x = 1) = f(x^n)$$
$$q(x = 0) = 1 - f(x^n)$$

$$H(p,q) = -\sum_{x} p(x) ln(q(x))$$

Logistic Regression

Linear Regression

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: between 0 and 1

Output: any value

Training data: (x^n, \hat{y}^n)

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : 1 for class 1, 0 for class 2

 \hat{y}^n : a real number

$$L(f) = \sum_{n} C(f(x^n), \hat{y}^n)$$

$$L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$$

Cross entropy:

Step 2:

$$C(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$$

Question: Why don't we simply use square error as linear regression?

Step 3: Find the best function

$$\underline{-lnL(w,b)} = \sum_{n} -\left[\hat{y}^{n} \underbrace{lnf_{w,b}(x^{n})}_{\partial w_{i}}\right] + (1 - \hat{y}^{n}) \underbrace{ln\left(1 - f_{w,b}(x^{n})\right)}_{\partial w_{i}}$$

$$\frac{\partial lnf_{w,b}(x)}{\partial w_i} = \frac{\partial lnf_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i} \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial ln\sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \sigma(z) (1 - \sigma(z))$$

$$f_{w,b}(x) = \sigma(z) = 1/1 + exp(-z)$$
 $z = w \cdot x + b = \sum_{i} w_i x_i + b$

Step 3: Find the best function

$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{\frac{-\ln L(w,b)}{\partial w_i}} = \sum_{n} -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\frac{\partial w_i}{\partial w_i}} + (1 - \hat{y}^n) \frac{\ln \left(1 - f_{w,b}(x^n)\right)}{\frac{\partial w_i}{\partial w_i}}\right]$$

$$\frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial w_i} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln\left(1 - \sigma(z)\right)}{\partial z} = -\frac{1}{1 - \sigma(z)} \frac{\partial \sigma(z)}{\partial z} = -\frac{1}{1 - \sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)$$

$$f_{w,b}(x) = \sigma(z)$$

= 1/1 + exp(-z) $z = w \cdot x + b = \sum_{i} w_i x_i + b$

Step 3: Find the best function

$$\frac{-\ln L(w,b)}{\partial w_i} = \sum_{n} -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1-\hat{y}^n) \frac{\ln \left(1-f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$= \sum_{n} -\left[\hat{y}^{n} \left(1 - f_{w,b}(x^{n})\right) x_{i}^{n} - (1 - \hat{y}^{n}) f_{w,b}(x^{n}) x_{i}^{n}\right]$$

$$= \sum -[\hat{y}^n - \hat{y}^n f_{w,b}(x^n) - f_{w,b}(x^n) + \hat{y}^n f_{w,b}(x^n)] \underline{x_i^n}$$

$$= \sum -\left(\widehat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Larger difference, larger update

$$w_i \leftarrow w_i - \eta \sum_{i} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Logistic Regression

Linear Regression
$$f_{w,h}(x) = \sum_{w_i x_i + h} w_i x_i + h$$

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_{i} x_{i} + b\right)$$

 $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Output: between 0 and 1

Output: any value

Training data: (x^n, \hat{y}^n) Step 2: \hat{y}^n : 1 for class 1, 0 for class 2

Step 1:

Step 3:

Training data: (x^n, \hat{y}^n) \hat{y}^n : a real number

 $L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$

 $L(f) = \sum C(f(x^n), \hat{y}^n)$

Logistic regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$ Linear regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$

$$= 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x)) x_i$$

$$\hat{y}^n = 1$$
 If $f_{w,b}(x^n) = 1$ (close to target) $\partial L/\partial w_i = 0$

If
$$f_{w,b}(x^n) = 0$$
 (far from target) $\partial L/\partial w_i = 0$

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$

$$= 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x)) x_i$$

$$\hat{y}^n = 0$$
 If $f_{w,b}(x^n) = 1$ (far from target) $\partial L/\partial w_i = 0$

If
$$f_{w,b}(x^n) = 0$$
 (close to target) $\partial L/\partial w_i = 0$

Cross Entropy v.s. Square Error

Discriminative v.s. Generative

$$P(C_1|x) = \sigma(w \cdot x + b)$$

directly find w and b

Will we obtain the same set of w and b?

Find μ^1 , μ^2 , Σ^{-1}

$$w^{T} = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1}$$

$$b = -\frac{1}{2} (\mu^{1})^{T} (\Sigma^{1})^{-1} \mu^{1}$$

$$+ \frac{1}{2} (\mu^{2})^{T} (\Sigma^{2})^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

The same model (function set), but different function is selected by the same training data.

Discriminative

All: total, hp, att, sp att, de, sp de, speed

73% accuracy

79% accuracy

Example

Testing Data

How about Naïve Bayes?

$$P(x|C_i) = P(x_1|C_i)P(x_2|C_i)$$

Example

$$P(C_1) = \frac{1}{13} \qquad P(x_1 = 1 | C_1) = 1 \qquad P(x_2 = 1 | C_1) = 1$$

$$P(C_2) = \frac{12}{13} \qquad P(x_1 = 1 | C_2) = \frac{1}{3} \qquad P(x_2 = 1 | C_2) = \frac{1}{3}$$

- Benefit of generative model
 - With the assumption of probability distribution, less training data is needed
 - With the assumption of probability distribution, more robust to the noise
 - Priors and class-dependent probabilities can be estimated from different sources.

Multi-class Classification (3 classes as example)

$$C_1$$
: w^1 , b_1 $z_1 = w^1 \cdot x + b_1$

$$C_2$$
: w^2 , b_2 $z_2 = w^2 \cdot x + b_2$

$$C_3$$
: w^3 , b_3 $z_3 = w^3 \cdot x + b_3$

Probability:

■
$$1 > y_i > 0$$

$$\blacksquare \sum_i y_i = 1$$

$$y_i = P(C_i \mid x)$$

Multi-class Classification (3 classes as example)

If $x \in class 1$

If $x \in class 2$

If $x \in class 3$

$$\hat{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$\int Class$	ly	$y \geq 0.5$
Class 2	2 y	<i>√</i> < 0.5

Input Feature		Label
x_1	X_2	Label
0	0	Class 2
0	1	Class 1
1	0	Class 1
1	1	Class 2

No, we can't

0.2

0.8

0.8

 x_1' : distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ • Feature Transformation x_2' : distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Not always easy to find a good transformation

Cascading logistic regression models

Stimulus

Reference

• Bishop: Chapter 4.3