Line Integrals of vector fields

Department of Mathematics IIT Guwahati

Line integrals of vector fields

Definition: Let Γ be a curve in \mathbb{R}^n parametrized by a PC^1 path $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and let F be a continuous vector field on an open set containing Γ . Then the line integral of F over Γ is defined by

Line integrals of vector fields

Definition: Let Γ be a curve in \mathbb{R}^n parametrized by a PC^1 path $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and let F be a continuous vector field on an open set containing Γ . Then the line integral of F over Γ is defined by

$$\int_{\Gamma} F \bullet d\mathbf{r} := \int_{a}^{b} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt = \int_{a}^{b} \langle F(\mathbf{r}(t)), \mathbf{r}'(t) \rangle dt$$
$$= \lim_{\mu(P) \to 0} \sum_{j=1}^{m} F(\mathbf{p}_{j}) \bullet \Delta \mathbf{r}_{j},$$

where $\mu(P) = \max_{j} \|\Delta \mathbf{r}_{j}\|$.

Line integrals of vector fields

Definition: Let Γ be a curve in \mathbb{R}^n parametrized by a PC^1 path $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and let F be a continuous vector field on an open set containing Γ . Then the line integral of F over Γ is defined by

$$\int_{\Gamma} F \bullet d\mathbf{r} := \int_{a}^{b} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt = \int_{a}^{b} \langle F(\mathbf{r}(t)), \mathbf{r}'(t) \rangle dt$$
$$= \lim_{\mu(P) \to 0} \sum_{i=1}^{m} F(\mathbf{p}_{i}) \bullet \Delta \mathbf{r}_{i},$$

where $\mu(P) = \max_{j} \|\Delta \mathbf{r}_{j}\|$.

Note that $[a, b] \longrightarrow \mathbb{R}, t \longmapsto F(\mathbf{r}(t)) \bullet \mathbf{r}'(t)$ is piecewise continuous and hence Riemann integrable.

Line integrals of vector fields via scalar fields

Suppose that \mathbf{r} is (piecewise) smooth. Then $\|\mathbf{r}'(t)\| \neq 0$. Define the tangent vector field $T(\mathbf{r}(t)) := \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$ to Γ at $\mathbf{r}(t)$.

Line integrals of vector fields via scalar fields

Suppose that \mathbf{r} is (piecewise) smooth. Then $\|\mathbf{r}'(t)\| \neq 0$. Define the tangent vector field $T(\mathbf{r}(t)) := \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$ to Γ at $\mathbf{r}(t)$.

Then $F \bullet T$ is the tangential component of F and

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{a}^{b} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} F(\mathbf{r}(t)) \bullet T(\mathbf{r}(t)) ||\mathbf{r}'(t)|| dt$$

$$= \int_{\Gamma} F \bullet T ds = \int_{\Gamma} \langle F, T \rangle ds.$$

Line integrals of vector fields via scalar fields

Suppose that \mathbf{r} is (piecewise) smooth. Then $\|\mathbf{r}'(t)\| \neq 0$. Define the tangent vector field $T(\mathbf{r}(t)) := \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$ to Γ at $\mathbf{r}(t)$.

Then $F \bullet T$ is the tangential component of F and

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{a}^{b} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} F(\mathbf{r}(t)) \bullet T(\mathbf{r}(t)) ||\mathbf{r}'(t)|| dt$$

$$= \int_{\Gamma} F \bullet T ds = \int_{\Gamma} \langle F, T \rangle ds.$$

Line integral of $F = \text{line integral of the scalar field } F \bullet T$.

Notations for line integrals of vector fields

• When Γ is closed, that is, $\mathbf{r}(a) = \mathbf{r}(b)$, the line integral

$$\int_{\Gamma} F \bullet d\mathbf{r} \text{ is denoted by } \oint_{\Gamma} F \bullet d\mathbf{r}.$$

Notations for line integrals of vector fields

• When Γ is closed, that is, $\mathbf{r}(a) = \mathbf{r}(b)$, the line integral

$$\int_{\Gamma} F \bullet d\mathbf{r} \text{ is denoted by } \oint_{\Gamma} F \bullet d\mathbf{r}.$$

• When n = 2 and F = (P, Q) the line integral is written as

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{\Gamma} (P(x,y)dx + Q(x,y)dy).$$

Notations for line integrals of vector fields

• When Γ is closed, that is, $\mathbf{r}(a) = \mathbf{r}(b)$, the line integral

$$\int_{\Gamma} F \bullet d\mathbf{r} \text{ is denoted by } \oint_{\Gamma} F \bullet d\mathbf{r}.$$

• When n = 2 and F = (P, Q) the line integral is written as

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{\Gamma} (P(x, y) dx + Q(x, y) dy).$$

• For n = 3 and F = (P, Q, R) the line integral is written as

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{\Gamma} (P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz).$$

• Evaluate $\int_{\Gamma} F \bullet d\mathbf{r}$, where F(x, y, z) := (xy, yz, zx) and $\mathbf{r}(t) := (t, t^2, t^2), t \in [0, 1]$. We have

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{0}^{1} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt = \int_{0}^{1} (t^{3} + 2t^{5} + 2t^{4}) dt = \frac{59}{60}.$$

• Evaluate $\int_{\Gamma} F \bullet d\mathbf{r}$, where F(x, y, z) := (xy, yz, zx) and $\mathbf{r}(t) := (t, t^2, t^2), t \in [0, 1]$. We have

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{0}^{1} F(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt = \int_{0}^{1} (t^{3} + 2t^{5} + 2t^{4}) dt = \frac{59}{60}.$$

• Evaluate $\int_{\Gamma} (yx^2 dx + \sin(\pi y) dy)$, where Γ is the line segment from (0,2) to (1,4).

We have
$$\mathbf{r}(t) = (t, 2 + 2t), t \in [0, 1]$$
. Thus

$$\int_{\Gamma} (yx^2 dx + \sin(\pi y) dy) =$$

$$= \int_{0}^{1} 2\sin(\pi (2+2t)) dt + \int_{0}^{1} (2+2t)t^2 dt = \frac{7}{6}$$

• A parametrization $\mathbf{r}:[a,b]\to\mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma=\mathbf{r}([a,b])$. Indeed, as t varies from a to b, $\mathbf{r}(t)$ traverses the path from $\mathbf{r}(a)$ to $\mathbf{r}(b)$.

- A parametrization $\mathbf{r}:[a,b]\to\mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma=\mathbf{r}([a,b])$. Indeed, as t varies from a to b, $\mathbf{r}(t)$ traverses the path from $\mathbf{r}(a)$ to $\mathbf{r}(b)$.
- $\int_{\Gamma} F \cdot d\mathbf{r}$ is invariant under equivalent parametrization of Γ .

- A parametrization $\mathbf{r}:[a,b]\to\mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma=\mathbf{r}([a,b])$. Indeed, as t varies from a to b, $\mathbf{r}(t)$ traverses the path from $\mathbf{r}(a)$ to $\mathbf{r}(b)$.
- $\int_{\Gamma} F \bullet d\mathbf{r}$ is invariant under equivalent parametrization of Γ .
- Let Γ be an oriented path. Denote the reverse orientation of Γ by $-\Gamma$. If $\mathbf{r}:[a,b]\to\mathbb{R}^n$ is a parametrization of the oriented path Γ then $\rho:[a,b]\to\mathbb{R}^n$ given by $\rho(t):=\mathbf{r}(a+b-t)$ is a parametrization of $-\Gamma$.

- A parametrization $\mathbf{r}:[a,b]\to\mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma=\mathbf{r}([a,b])$. Indeed, as t varies from a to b, $\mathbf{r}(t)$ traverses the path from $\mathbf{r}(a)$ to $\mathbf{r}(b)$.
- $\int_{\Gamma} F \bullet d\mathbf{r}$ is invariant under equivalent parametrization of Γ .
- Let Γ be an oriented path. Denote the reverse orientation of Γ by $-\Gamma$. If $\mathbf{r}:[a,b]\to\mathbb{R}^n$ is a parametrization of the oriented path Γ then $\rho:[a,b]\to\mathbb{R}^n$ given by $\rho(t):=\mathbf{r}(a+b-t)$ is a parametrization of $-\Gamma$.
- ullet Let Γ be an oriented path. Then

$$\int_{-\Gamma} F \bullet d\mathbf{r} = -\int_{\Gamma} F \bullet d\mathbf{r}.$$

Work done

Definition: The work done by a force field F on a particle traversing an oriented path Γ is the line integral

Work
$$=\int_{\Gamma} F \bullet d\mathbf{r}$$
.

Work done

Definition: The work done by a force field F on a particle traversing an oriented path Γ is the line integral

Work
$$=\int_{\Gamma} F \bullet d\mathbf{r}$$
.

Remark: The total work done by F on a particle traversing the path Γ and then reversing back to the initial point is

$$W = \int_{\Gamma} F \bullet d\mathbf{r} + \int_{-\Gamma} F \bullet d\mathbf{r} = \int_{\Gamma} F \bullet d\mathbf{r} - \int_{\Gamma} F \bullet d\mathbf{r} = 0.$$

Consider the gravitational force field $F = -\frac{mMGr}{\|\mathbf{r}\|^3}$, where $\mathbf{r} := (x, y, z)$. Find the work done by F in moving a particle of mass m from point (3, 4, 12) to the point (1, 0, 0) along a piecewise smooth curve Γ .

Consider the gravitational force field $F = -\frac{mMG\mathbf{r}}{\|\mathbf{r}\|^3}$, where $\mathbf{r} := (x, y, z)$. Find the work done by F in moving a particle of mass m from point (3, 4, 12) to the point (1, 0, 0) along a piecewise smooth curve Γ .

Setting $f(x, y, z) := \frac{mMG}{\|\mathbf{r}\|}$, we have $F = \nabla f$. Consequently

$$W = \int_{\Gamma} \nabla f \bullet d\mathbf{r} = f(1,0,0) - f(3,4,12) = \frac{12mMG}{13}.$$

Fundamental Theorem for line integrals

If $f:[a,b]\to\mathbb{R}$ is C^1 then by FTI $\int_a^b f'(x)dx=f(b)-f(a)$.

Theorem: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ be C^1 . Let $\mathbf{r}: [a,b] \to \mathbb{R}^n$ be PC^1 such that $\mathbf{r}([a,b]) \subset U$. Then

$$\int_{\Gamma} \nabla f \bullet d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Fundamental Theorem for line integrals

If $f:[a,b]\to\mathbb{R}$ is C^1 then by FTI $\int_a^b f'(x)dx=f(b)-f(a)$.

Theorem: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ be C^1 . Let $\mathbf{r}: [a,b] \to \mathbb{R}^n$ be PC^1 such that $\mathbf{r}([a,b]) \subset U$. Then

$$\int_{\Gamma} \nabla f \bullet d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Proof: We have

$$\int_{\Gamma} \nabla f \bullet d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt$$
$$= \int_{a}^{b} \frac{d}{dt} f(\mathbf{r}(t)) dt = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Consequence of FTLI

If F is a conservative vector field, that is, $F = \nabla f$ for some scalar field f, then $\int_{\Gamma} F \bullet d\mathbf{r}$ only depends on the end points of Γ and hence independent of the path Γ .

So, in particular, if Γ is closed then $\oint_{\Gamma} F \bullet d\mathbf{r} = 0$.

Consequence of FTLI

If F is a conservative vector field, that is, $F = \nabla f$ for some scalar field f, then $\int_{\Gamma} F \bullet d\mathbf{r}$ only depends on the end points of Γ and hence independent of the path Γ .

So, in particular, if Γ is closed then $\oint_{\Gamma} F \bullet d\mathbf{r} = 0$.

Generally $\int_{\Gamma} F \bullet d\mathbf{r}$ depends on the oriented path Γ and

$$\int_{\Gamma_1} F \bullet d\mathbf{r} \neq \int_{\Gamma_2} F \bullet d\mathbf{r}$$

for two curves having the same initial and final points.

Consider the vector field F(x, y, z) := (y, -x, 1) and the paths joining (1, 0, 0) to (1, 0, 1) given by

$$\Gamma_{1}: \mathbf{r}(t) = (\cos t, \sin t, \frac{t}{2\pi}), t \in [0, 2\pi],
\Gamma_{2}: \mathbf{r}(t) = (\cos t^{3}, \sin t^{3}, \frac{t^{3}}{2\pi}), t \in [0, \sqrt[3]{2\pi}],
\Gamma_{3}: \mathbf{r}(t) = (\cos t, -\sin t, \frac{t}{2\pi}), t \in [0, 2\pi].$$

Example (contd.)

Then

$$\int_{\Gamma_1} F \bullet d\mathbf{r} = \int_0^{2\pi} (-\sin^2 t - \cos^2 t + 1/2\pi) dt = 1 - 2\pi$$

$$\int_{\Gamma_2} F \bullet d\mathbf{r} = \int_0^{\sqrt[3]{2\pi}} (-\sin^2 t^3 - \cos^2 t^3 + 1/2\pi) 3t^2 dt = 1 - 2\pi$$

$$\int_{\Gamma_3} F \bullet d\mathbf{r} = \int_0^{2\pi} (\sin^2 t + \cos^2 t + 1/2\pi) dt = 1 + 2\pi.$$

This shows that the line integral of F is path dependent. Thus in view of FTLI the vector field F is not a gradient field.

Path independence

Definition: The integral $\int_{\Gamma} F \bullet d\mathbf{r}$ is said to be path independent if for any two paths Γ_1 and Γ_2 having the same initial and terminal points

$$\int_{\Gamma_1} F \bullet d\mathbf{r} = \int_{\Gamma_2} F \bullet d\mathbf{r}.$$

Path independence

Definition: The integral $\int_{\Gamma} F \bullet d\mathbf{r}$ is said to be path independent if for any two paths Γ_1 and Γ_2 having the same initial and terminal points

$$\int_{\Gamma_1} F \bullet d\mathbf{r} = \int_{\Gamma_2} F \bullet d\mathbf{r}.$$

Theorem: Let F be a continuous vector field on U. Then

$$\int_{\Gamma} F \bullet d\mathbf{r} \text{ is path independent } \iff \int_{\Gamma} F \bullet d\mathbf{r} = 0$$

for every closed path Γ in U.

Path independence

Definition: The integral $\int_{\Gamma} F \bullet d\mathbf{r}$ is said to be path independent if for any two paths Γ_1 and Γ_2 having the same initial and terminal points

$$\int_{\Gamma_1} F \bullet d\mathbf{r} = \int_{\Gamma_2} F \bullet d\mathbf{r}.$$

Theorem: Let F be a continuous vector field on U. Then

$$\int_{\Gamma} F \bullet d\mathbf{r} \text{ is path independent } \iff \int_{\Gamma} F \bullet d\mathbf{r} = 0$$

for every closed path Γ in U.

Proof: Consider $\Gamma = \Gamma_1 + \Gamma_2$ and $\Gamma = \Gamma_1 - \Gamma_2$.

An observation

Let F be a continuous vector field on an open set $U \subset \mathbb{R}^n$. Consider the following statements:

- 1. F is conservative on U.
- 2. $\int_{\Gamma} F \bullet d\mathbf{r}$ is path independent in U.
- 3. $\int_{\Gamma} F \bullet d\mathbf{r} = 0$ for any closed path in U.

An observation

Let F be a continuous vector field on an open set $U \subset \mathbb{R}^n$. Consider the following statements:

- 1. F is conservative on U.
- 2. $\int_{\Gamma} F \bullet d\mathbf{r}$ is path independent in U.
- 3. $\int_{\Gamma} F \bullet d\mathbf{r} = 0$ for any closed path in U.

By FLTI we have $(1) \Rightarrow (2) \Rightarrow (3)$. The implication $(3) \Rightarrow (1)$ holds under a suitable assumption on U.

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points \mathbf{x} and \mathbf{y} in U there is a path $\gamma : [a, b] \to \mathbb{R}^n$ such that $\gamma(a) = \mathbf{x}, \gamma(b) = \mathbf{y}$ and $\gamma([a, b]) \subset U$.

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points \mathbf{x} and \mathbf{y} in U there is a path $\gamma:[a,b] \to \mathbb{R}^n$ such that $\gamma(a) = \mathbf{x}, \gamma(b) = \mathbf{y}$ and $\gamma([a,b]) \subset U$.

Theorem-A: Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Suppose $\int_{\Gamma} F \bullet d\mathbf{r}$ depends only on the end points of Γ for any PC^1 path Γ in U. Then there exists a C^1 function $f: U \to \mathbb{R}$ such that $F = \nabla f$.

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points \mathbf{x} and \mathbf{y} in U there is a path $\gamma:[a,b] \to \mathbb{R}^n$ such that $\gamma(a) = \mathbf{x}, \gamma(b) = \mathbf{y}$ and $\gamma([a,b]) \subset U$.

Theorem-A: Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Suppose $\int_{\Gamma} F \bullet d\mathbf{r}$ depends only on the end points of Γ for any PC^1 path Γ in U. Then there exists a C^1 function $f: U \to \mathbb{R}$ such that $F = \nabla f$.

Further, for $\mathbf{a} \in U$, define $g: U \to \mathbb{R}$ by

$$g(\mathbf{x}) := \int_{\mathbf{a}}^{\mathbf{x}} F \bullet d\mathbf{r}$$

where the integral is taken over any PC^1 path joining **a** to **x**. Then g is well defined, g is C^1 and $F = \nabla g$.

Corollary: Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Then the following conditions are equivalent.

Corollary: Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Then the following conditions are equivalent.

- 1. F is conservative on U, i.e., $F = \nabla f$ for some C^1 function $f: U \to \mathbb{R}$.
- 2. $\int_{\Gamma} F \cdot d\mathbf{r}$ is path independent for any PC^1 path in U.
- 3. $\int_{\Gamma} F \bullet d\mathbf{r} = 0$ for any PC^1 closed path in U.

Proof of Theorem-A

By hypothesis $g(\mathbf{x}) := \int_{\mathbf{a}}^{\mathbf{x}} F \cdot d\mathbf{r}$ is well defined.

1.
$$g(\mathbf{x} + h\mathbf{e}_i) - g(\mathbf{x}) = \int_{\mathbf{x}}^{\mathbf{x} + h\mathbf{e}_i} F \bullet d\mathbf{r}$$
.

2. Consider $\mathbf{r}(t) = \mathbf{x} + th\mathbf{e}_i$, $t \in [0,1]$. Then $\mathbf{dr} = h\mathbf{e}_i dt$ and

$$\frac{g(\mathbf{x} + h\mathbf{e}_i) - g(\mathbf{x})}{h} = \int_0^1 F(\mathbf{x} + th\mathbf{e}_i) \bullet \mathbf{e}_i dt.$$

3. Setting $u = th \Rightarrow du = hdt$. Hence

$$\int_0^1 F(\mathbf{x} + th\mathbf{e}_i) \bullet \mathbf{e}_i dt = \frac{1}{h} \int_0^h F_i(\mathbf{x} + u\mathbf{e}_i) du \to F_i(\mathbf{x}).$$

Exact differentials

Let F be a vector field on U with a scalar potential f, that is, $F = \nabla f$. Suppose $F = (F_1, \dots, F_n)$. Then the differential

$$F \bullet d\mathbf{r} = F_1 dx_1 + \cdots + F_n dx_n$$

is called exact.

Exact differentials

Let F be a vector field on U with a scalar potential f, that is, $F = \nabla f$. Suppose $F = (F_1, \dots, F_n)$. Then the differential

$$F \bullet d\mathbf{r} = F_1 dx_1 + \cdots + F_n dx_n$$

is called exact.

Fact: If a C^1 vector field $F = (F_1, ..., F_n)$ on U is conservative then for all i and j

$$\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i}.$$

Exact differentials

Let F be a vector field on U with a scalar potential f, that is, $F = \nabla f$. Suppose $F = (F_1, \dots, F_n)$. Then the differential

$$F \bullet d\mathbf{r} = F_1 dx_1 + \cdots + F_n dx_n$$

is called exact.

Fact: If a C^1 vector field $F = (F_1, ..., F_n)$ on U is conservative then for all i and j

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}.$$

Proof: We have $F_i = \partial_i f \Rightarrow \partial_j F_i = \partial_j \partial_i f = \partial_i \partial_j f = \partial_i F_j$.

Consider
$$F(x, y) := (3 + 2xy, x^2 - 3y^2) =: (P, Q)$$
. Then $Q_x = 2x = P_y$ so the necessary condition is satisfied.

We wish to find
$$f$$
 such that $F = \nabla f$. If f exists then $f_x(x,y) = 3 + 2xy \Rightarrow f(x,y) = 3x + x^2y + h(y)$.

Thus
$$f_y(x,y) = x^2 + h'(y) = x^2 - 3y^2 \Rightarrow h'(y) = -3y^2$$
.
Hence $h(y) = -y^3 + c$ for some constant c . Consequently,

$$f(x,y) = 3x + x^2y - y^3 + c \text{ and } F = \nabla f.$$

Consider $F(x,y) := (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}) = (P, Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

Consider $F(x,y) := (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}) = (P, Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

For the path Γ : $\mathbf{r}(t) = (\cos t, \sin t), t \in [0, 2\pi],$ we have

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{0}^{2\pi} dt = 2\pi.$$

This shows that F is not conservative.

Consider $F(x,y) := (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}) = (P,Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

For the path Γ : $\mathbf{r}(t) = (\cos t, \sin t), t \in [0, 2\pi],$ we have

$$\int_{\Gamma} F \bullet d\mathbf{r} = \int_{0}^{2\pi} dt = 2\pi.$$

This shows that F is not conservative.

Remark: The necessary condition $\partial_i F_j = \partial_j F_i$ is also sufficient for conservativeness of F when the domain of F is simply connected. This is a consequence of Green's theorem.

*** End ***

