# Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας

Αθανάσιος Ροντογιάννης

Αν. Καθηγητής ΣΗΜΜΥ-ΕΜΠ

#### Συμβολισμοί (Notation)

• Διανύσματα/πίνακες και ανάστροφοί τους:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_l \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{l1} & \cdots & a_{lm} \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_l \end{bmatrix}, \quad B = A^T \Leftrightarrow b_{ij} = a_{ji}$$

- Ένας διαγώνιος πίνακας με στοιχεία  $a_1, a_2, \ldots, a_l$  στη διαγώνιό του θα συμβολίζεται ως  $A = \mathrm{diag}\{a_1, a_2, \ldots, a_l\}$
- $I = diag\{1,1,...,1\}$  είναι ο μοναδιαίος πίνακας
- Το ίχνος (άθροισμα διαγώνιων στοιχείων) ενός τετραγωνικού πίνακα A συμβολίζεται ως  $trace\{A\}$  και η ορίζουσά του ως |A|.
- Ακολουθίες αριθμών (διανυσμάτων) συμβολίζονται ως  $x_n(x_n)$  ανάλογα με την περίπτωση
- Συμβολισμός συναρτήσεων:  $f, f(x), f(\cdot)$
- Τα στοιχεία των διανυσμάτων/πινάκων και οι βαθμωτές ποσότητες που θα χρησιμοποιήσουμε θεωρούνται γενικά πραγματικοί αριθμοί.

#### Ορισμοί

• Εσωτερικό γινόμενο διανυσμάτων  $x, y \in \mathbb{R}^l$ :

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^l x_i y_i \equiv \mathbf{y}^T \mathbf{x}$$

• Γραμμική ανεξαρτησία: Δοθέντων  $m \leq l$  διανυσμάτων  $x_i \in \mathbb{R}^l$ ,  $i=1,2,\ldots,m$ , θα λέμε ότι τα διανύσματα αυτά είναι γραμμικά ανεξάρτητα αν η σχέση:

$$\sum_{i=1}^{m} a_i x_i = 0$$

ισχύει μόνο για  $a_i=0$ ,  $i=1,2,\dots,m$ . Αν m>l τα διανύσματα είναι υποχρεωτικά γραμμικά εξαρτημένα.

• Γραμμικός υπόχωρος που παράγεται από ένα σύνολο διανυσμάτων  $x_i \in \mathbb{R}^l$ , i=1,2,..., m:

$$S = \left\{ x: x = \sum_{i=1}^{m} a_i x_i, \forall a_i \in \mathbb{R}, i = 1, 2, ..., m \right\}$$

$$S = \operatorname{span}\{x_1, x_2, \dots, x_m\}$$
 και  $S \subseteq \mathbb{R}^l$ 

#### Ορισμοί

- Bάση γραμμικού υπόχωρου: Έστω ένα σύνολο διανυσμάτων σε ένα υπόχωρο  $V \subseteq \mathbb{R}^l$ , δηλαδή  $e_i \in V$ , i=1,2,...,m. Θα λέμε ότι τα διανύσματα αυτά αποτελούν μια βάση του V αν α) είναι γραμμικά ανεξάρτητα και β)  $V=\operatorname{span}\{e_1,e_2,...,e_m\}$
- Τάξη (ή βαθμός) πίνακα: Έστω ένας  $l \times m$  πίνακας A. Τάξη (rank) r του A είναι ο μέγιστος αριθμός γραμμικά ανεξάρτητων γραμμών (ή στηλών) του A. Είναι  $r \leq \min(m,l)$ . Αν ο A είναι ένας τετραγωνικός  $l \times l$  πίνακας και r = l, ο A καλείται πίνακας πλήρους τάξης (full rank).
- Αντίστροφος  $l \times l$  πίνακα A:

$$A^{-1}A = AA^{-1} = I$$

• Ανάστροφος ενός τετραγωνικού πίνακα με βάση τις στήλες του:

$$A = [\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_l], \qquad \qquad A^T = \begin{bmatrix} \boldsymbol{a}_1^T \\ \boldsymbol{a}_2^T \\ \vdots \\ \boldsymbol{a}_l^T \end{bmatrix}$$

#### Ορισμοί

• Ορθογώνια προβολή σε γραμμικό υπόχωρο: Έστω ένα σύνολο γραμμικά ανεξάρτητων διανυσμάτων  $\boldsymbol{a}_i \in \mathbb{R}^l$ ,  $i=1,2,\ldots,m$  με  $m\leq l$ . Τα διανύσματα αυτά θα παράγουν τον υπόχωρο  $\mathrm{span}\{\boldsymbol{a}_1,\boldsymbol{a}_{2,}\ldots,\boldsymbol{a}_m\}\subseteq \mathbb{R}^l$ . Θεωρήστε ένα διάνυσμα  $\boldsymbol{x}\in \mathbb{R}^l$ , το οποίο γενικά δε θα ανήκει στον υπόχωρο αυτό. Η ορθογώνια προβολή του διανύσματος αυτού στον υπόχωρο είναι το διάνυσμα:

$$P_A(x) = A(A^T A)^{-1} A^T x$$
,  $\acute{o}\pi o \cup A = [a_1, a_2, ..., a_m]$ 



# Χρήσιμες σχέσεις

Αν Α, Β, C πίνακες με κατάλληλες διαστάσεις και ιδιότητες, θα είναι:

- $(AB)^T = B^T A^T$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$
- trace{AB} = trace{BA}
- trace $\{ABC\}$  = trace $\{CAB\}$  = trace $\{BCA\}$
- Αν  $A = ab^T$  (εξωτερικό γινόμενο των διανυσμάτων a, b) εύκολα προκύπτει:

$$trace(A) = trace(\mathbf{b}^T \mathbf{a}) = \mathbf{b}^T \mathbf{a} = \mathbf{a}^T \mathbf{b}$$

- |AB| = |A||B|
- $|A^{-1}| = 1/|A|$

#### Ιδιοτιμές και ιδιοδιανύσματα

Έστω ένας τετραγωνικός  $l \times l$  πίνακας A. Αν για το ζεύγος  $(\lambda \in \mathbb{C}, \boldsymbol{u} \in \mathbb{C}^l)$  ισχύει:

$$A\mathbf{u} = \lambda \mathbf{u}$$

το  $\lambda$  ονομάζεται ιδιοτιμή του A και το u είναι το αντίστοιχο ιδιοδιάνυσμά του. Η παραπάνω σχέση γράφεται:

$$(A - \lambda I)\mathbf{u} = \mathbf{0}$$

Οι ιδιοτιμές του A υπολογίζονται από τη λύση της εξίσωσης:

$$|A - \lambda I| = 0$$

και συμβολίζονται ως  $\lambda_1$ ,  $\lambda_2$ , ...,  $\lambda_l$ . Θα ισχύει:

$$A\mathbf{u}_i = \lambda_i \mathbf{u}_i, i = 1, 2, \dots, l \tag{1}$$

Δύο χρήσιμες ιδιότητες:

trace
$$\{A\} = \sum_{i=1}^{l} \lambda_i$$
,  $|A| = \prod_{i=1}^{l} \lambda_i$ 

## Συμμετρικοί και θετικά ορισμένοι πίνακες

Ένας τετραγωνικός  $l \times l$  πίνακας A με πραγματικά στοιχεία ονομάζεται συμμετρικός αν  $A = A^T \left( a_{ij} = a_{ji} \right)$ . Οι ιδιοτιμές ενός συμμετρικού πίνακα είναι πραγματικοί αριθμοί και τα ιδιοδιανύσματα που αντιστοιχούν σε διαφορετικές (διακριτές) ιδιοτιμές είναι κάθετα μεταξύ τους  $(\boldsymbol{u}_i^T \boldsymbol{u}_j = 0)$ .

Ένας συμμετρικός  $l \times l$  πίνακας A με πραγματικά στοιχεία ονομάζεται  $\frac{\partial ετικά ορισμένος}{\partial ετικά ορισμένος}$  αν για κάθε μη μηδενικό διάνυσμα  $\mathbf{x} \in \mathbb{R}^l$  ισχύει:

$$x^T A x > 0$$

Οι ιδιοτιμές ενός θετικά ορισμένου πίνακα είναι θετικοί αριθμοί. Από την (1) μπορεί να δειχθεί ότι ένας θετικά ορισμένος πίνακας μπορεί να διαγωνοποιηθεί ως εξής:

$$U^T A U = \Lambda$$
, όπου

$$U = [\mathbf{u}_1, \mathbf{u}_{2,...}, \mathbf{u}_l]$$
 και  $\Lambda = \text{diag}\{\lambda_1, \lambda_2, ..., \lambda_l\}$ 

Επιπλέον:  $U^T U = U U^T = I$ , δηλαδή  $U^{-1} = U^T$ .

## Ανάδελτα συνάρτησης - Ιδιότητες

Έστω μια συνάρτηση f(x) μιας διανυσματικής ποσότητας x. Το ανάδελτα ή παράγωγος της f ως

προς x ορίζεται ως εξής:

$$\nabla_{x} f \equiv \frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{l}} \end{bmatrix}$$

Μπορούν να δειχτούν τα παρακάτω:

$$\bullet \ \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$$

• 
$$\frac{\partial x^T A x}{\partial x} = (A + A^T) x$$
, που γίνεται  $2Ax$  αν ο  $A$  είναι συμμετρικός.

• 
$$\frac{\partial Ax}{\partial x} = A^T$$