Phụ thuộc hàm

- Biểu diễn hình thức các RBTV
- Úng dụng để tìm khóa, phủ tối thiểu và chuẩn hóa CSDL

Phụ thuộc hàm

Dịnh nghĩa:

$$X \rightarrow Y \Leftrightarrow (t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y])$$

Phụ thuộc hàm hiển nhiên

$$X \supset Y \text{ thì } X \rightarrow Y$$

Phụ thuộc hàm đầy đủ

$$\neg\exists X'\subset X:X'\rightarrow Y$$

Giải thuật kiểm tra phụ thuộc hàm

```
SATISFY(r,f)

r' = r[XY]

If(card(r'[X])==card(r'))

Return true;

Return false;
```

Giải thuật kiểm tra phụ thuộc hàm đầy đủ

```
For \forall Z \subset X do
 If(SATISFY(r,Z\rightarrowY)) then
 Return false;
 Return true;
```

Ví dụ:r(ABCD)a1 b1 c1 d1a1 b1 c1 d2a2 b1 c3 d1a3 b2 c1 d1

f: AC->B, r có thỏa f?

Tập phụ thuộc hàm

- □ r(R), F: tập phụ thuộc hàm
- □ Quan hệ r được gọi là thỏa F nếu r thỏa ∀f∈F
- □ Ví dụ: r (ABCDE)

```
a1 b1 c1 d1 e1
a1 b2 c2 d2 e1
a2 b1 c3 d3 e1
a2 b1 c4 d3 e1
a3 b2 c5 d1 e1
```

- F={A->D, AB->D, C->BDE, E->A, A->E}
- r có thỏa F không?

Hệ luật dẫn Armstrong

- Luật phản xạ

- Luật thêm vào
 - $X \rightarrow Y \text{ và } Z \subseteq W => XW \rightarrow YZ$
 - \square X \rightarrow Y => XZ \rightarrow YZ (tăng trưởng)
- Luật bắc cầu
 - $\blacksquare X \rightarrow Y \text{ và } Y \rightarrow Z$

=> X→Z

- Luât tưa bắt cầu
 - \square X \rightarrow Y và WY \rightarrow Z => WX \rightarrow Z
- Luật phân rả
 - $X \rightarrow Y$ và $Z \subset Y$ => $X \rightarrow Z$ or $X \rightarrow YZ => X \rightarrow Z$
- Luật hợp
 - $\blacksquare X \rightarrow Y \text{ và } X \rightarrow Z => X \rightarrow YZ$

Bao đóng của tập phụ thuộc hàm

- □ Phụ thuộc hàm suy dẫn: f:X→Y
 - Dược suy ra từ F bằng các luật dẫn Armstrong F⁺
 ={f/(F| = f) ⇔ f ∈ F⁺

- □ Ví dụ R(A,B,C,D,E,G)
 - F = {AE->C, GC->A, BD->G, AG->E}
 - C/m: BDC->R⁺ ∈ F⁺

Bao đóng của tập thuộc tính

```
\square X_F^+ = \{Y \subset R^+ / X \rightarrow Y \in F^+\}
Tìm bao đóng:
   Temp= \emptyset
   While(temp \neq X)
     temp = X;
        For \forall W \rightarrow Z \in F do
                If(W \subset X) then X = X \cup Z;
                Return X;
Ví dụ
```

Ví dụ - Bao đóng tập thuộc tính

- F = {A->D, AB->E, BI->E, CD->I, E->C}
- X=AE;
- □ Tìm bao đóng X⁺_F

Bài tóan thành viên

□ Nhận xét: f ∈ F⁺ ⇔ Y ⊂ X_F⁺

```
Thanhvien(f,F)
Return (Y \subset X<sub>F</sub><sup>+</sup>)
```

- □ Ví dụ F = {A->D, AB->E, BI->E, CD->I, E->C}
 - ☐ f: AE->DI
 - □ f ∈ F⁺ không?

Khóa của quan hệ

- B1: Tìm nút gốc X
- B2: Tìm X_F⁺
 - □ Nếu X_F⁺ = R⁺ thì X là khóa. Kết thúc
 - □ Ngược lại: $X = X \cup Y$, với $Y \subset R^+$
 - Quay lại B2
- □ Ví dụ: R(A,B,C,D,E,H)
 - □ F={AB->C, CD->E, EC->A, CD->H, H->B}
 - Tìm một khóa của R.

Tất cả các khóa của quan hệ

- □ B1:
 - Tìm tập nguồn TN
 - Tìm tập trung gian TG
 - Xây dựng 2^l tập con của TG I là số thuộc tính của TG.
- B2: Xây dựng tập SK chứa các siêu khóa

```
SK = \emptyset

For i=1 to 2^{l} do

{

X_{i} = TN \cup Tg_{i}

Tín bao đóng (X_{i})_{F}^{+}

If (X_{i})_{F}^{+}==R^{+}) then SK=SK \cup X_{i}

}
```

 B3: loại bỏ dần các siêu khóa trong SK để có được tập các khóa K.

Ví dụ - Tìm tất cả các khóa

- Cho R (A,B,C,D,E,G)
- F={AE->C, CG->A, BD->G, GA->E}
- Xác định tất cả các khóa của R.