Note sul cautious learning a limite fisso con GICP per dati di Poisson

Daniele Zago

1 Poisson GICP

1) Consideriamo una carta di controllo C_t per aumenti del parametro di una Poisson,

$$C_t = \max\{0, \tilde{C}_t\},\,$$

dove \tilde{C}_t è una carta di tipo EWMA (o CUSUM o AEWMA), ad esempio

$$\tilde{C}_t = (1 - \lambda)C_t + \lambda \frac{x_t - \mathbb{E}[X_t|\widehat{\theta}_{t-d_t}]}{\sqrt{\mathbb{V}[X_t|\widehat{\theta}_{t-d_t}]}}.$$

Consideriamo il caso del limite di controllo fisso, per cui viene chiamato un allarme se

$$C_t \geq L$$
.

Per ora consideriamo generica la strategia di update del parametro $\hat{\theta}_{t-d_t}$ (può essere adaptive estimator, fixed parameter, cautious learning).

- 2) Supponiamo che la stima iniziale del parametro sia pari a $\hat{\theta}_0$, mentre il vero valore del parametro è θ_0 . Allora, la CARL (ARL condizionata alla stima $\hat{\theta}_0$) della carta di controllo C_t sarà quella di una carta di controllo con vero valore $\hat{\theta}_0$ che osserva uno shift fittizio al tempo $\tau=1$ di ampiezza $\theta_0-\hat{\theta}_0$. In particolare, se la carta unilaterale controlla aumenti del parametro,
 - > Se $\widehat{\theta}_0 > \theta_0$, allora lo shift fittizio è $\theta_0 \widehat{\theta}_0 < 0$ e quindi CARL $_0 > a$.
 - > Se $\widehat{\theta}_0 < \theta_0$, allora lo shift fittizio è $\theta_0 \widehat{\theta}_0 > 0$ e quindi CARL $_0 < a$.

Combinando 1) e 2) si può disegnare una procedura GICP per la carta di controllo C_t , ovvero tale per cui

$$\mathbb{P}(ARL_0 \le a) = \beta,\tag{1}$$

basata sul seguente procedimento:

- \rightarrow Sia $(0, \hat{\theta}_{up})$ un intervallo di confidenza unilaterale di livello $1-\beta$ per θ . Se il parametro stimato è $\hat{\theta}$, allora per un fissato $L=L_0$ la carta di controllo avrà la minima CARL₀ nell'intervallo di confidenza quando il vero valore del parametro è $\hat{\theta}_{up}$.
- Si applichi una procedura (es. saControlLimits) per trovare $L_{\rm up}$, ovvero i limite di controllo che fornisce $ARL_0 = a$ per la carta con valore stimato $\widehat{\theta}$ quando il vero valore del parametro è $\widehat{\theta}_{\rm up}$.
- > Il limite di controllo $L_{\beta} = L_{\rm up}$ rende (1) valida poiché l'intervallo di confidenza ha probabilità β di non contenere il vero valore θ_0 .

Nota su saControlLimits. Siccome ci interessa in particolare che valga la (1), ho fatto una piccola modifica a saControlLimits. Dall'equazione (12) di Capizzi and Masarotto (2016), usando il parametro di precisione γ si ha che con alta probabilità

$$a \cdot (1 - \gamma) \le ARL \le a \cdot (1 + \gamma).$$

Quindi, ottimizzando per $ARL_0 = a/(1-\gamma)$ invece di $ARL_0 = a$ si ha che con alta probabilità

$$a \le ARL \le a \cdot \frac{1+\gamma}{1-\gamma},$$
 (2)

il che è più utile se consideriamo la proprietà (1) per la carta. Per a = 500 e $\gamma = 0.03$, la (2) diventa

$$500 \le ARL \le 531$$
.

2 Cautious Learning

Con la stessa terminologia del paper, si disegna la cautious region $S_t = [0, H)$ in modo che

$$ATS_0 = \mathbb{E}[TS|\tau = \infty] = s,$$

per un valore di s specificato, dove TS = $\inf\{n \geq 1 : C_t \in \mathcal{S}_t\}$ è il time to first stop dell'update dei parametri. Per disegnare \mathcal{S}_t basta osservare che H è il limite di controllo di una carta adaptive estimator tale per cui ARL₀ = ATS₀. Per cui, si può semplicemente applicare la procedura saControlLimits con adaptive estimator per trovare il limite H. Una volta fissato H, si può applicare la procedura in Sezione 1 per trovare il limite L_β che fornisce la proprietà GICP (1).

Osservazione. Se $S_t = \{0\}$, la carta di controllo diventa di tipo restarting, ovvero l'update del parametro avviene solo quando $C_t = 0$. Se poi C_t è una CUSUM, allora siamo nel caso della carta CUSUM-restarting.

REFERENCES

Capizzi, G. and Masarotto, G. (2016). "Efficient Control Chart Calibration by Simulated Stochastic Approximation". In: *IIE Transactions* 48.1, 57–65.