Université Mohamed Khider - Biskra

16/10/2014

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

 $(dur\acute{e}e: 01h30)$

Concours d'accès à la formation de 3^{eme} Cycle LMD

Mathématiques Appliquées (Option : Analyse Numérique et Optimisation)

Epreuve de Topologie & Mesure

Exercice 1. On considère la fonction $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$

- 1. Montrer que la restriction de f à toute droite de $\mathbb{R} \times \mathbb{R}$ passant par l'origine est continue.
 - 2. La fonction f est-elle continue? (on pourra calculer $f(x, x^2)$).

Exercice 2. Soit $f:[0,1] \to [0,1]$ une application continue vérifiant $f \circ f = f$

1. Montrer que l'ensemble

$$\{x \in [0,1] / f(x) = x\}$$

est un intervalle fermé et non vide.

- 2. Donner l'allure d'une fonction f non triviale vérifiant les conditions précédentes.
- 3. On suppose de plus que f est dérivable. Montrer que $\mathbf f$ est constante ou égale à l'identité.

Exercice 3. Soient μ_1 , μ_2 deux mesures sur l'espace mesurable (X, \mathcal{A}) .

- 1) Montrer que $\mu = \mu_1 + \mu_2$ est une mesure.
- 2) Montrer qu'une application mesurable $f: X \to \mathbb{R}$ est intégrable pour la mesure μ si et seulement si elle est intégrable pour les mesures μ_1, μ_2 .
 - 3) Si f est intégrable pour la mesure μ , montrer que

$$\int_X f d\mu = \int_X f d\mu_1 + \int_X f d\mu_2.$$

Exercice 4. Soit f une application de $\mathbb R$ vers $\mathbb R$. Montrer que :

- $\overline{a) f}$ monotone $\Longrightarrow f$ borélienne.
- b) f dérivable $\Longrightarrow f'$ borélienne.

Université Mohamed Khider - Biskra

16/10/2014

 $(dur\acute{e}e: 01h30)$

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

Concours d'accès à la formation de 3^{eme} Cycle LMD

Mathématiques Appliquées (Option : Analyse Numérique et Optimisation)

Epreuve de Topologie & Mesure

Exercice 1.Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction strictement croissante.

1. Pour $x, y \in \mathbb{R}$, on pose

$$d_f(x,y) = |f(x) - f(y)|.$$

Montrer que d_f est une distance sur f.

- 2. On suppose que f est continue. Montrer que $I = f(\mathbb{R})$ est un intervalle ouvert de \mathbb{R} .
- 3. Soit $y_n = f(x_n)$ une suite de points de I convergeant vers $y = f(x) \in I$. Montrer que la suite $(x_n)_n$ est bornée, et puis que l'on a $x_n \to x$. En déduire que $f^{-1}: I \to \mathbb{R}$ est continue.

Exercice 2. Soient X et Y deux espaces métriques, et $f: X \longrightarrow Y$ une fonction.

Soit $G(f) = \{(x, f(x)) \in X \times Y | x \in X\}$ le graphe de f.

- 1. On suppose que f est continue. Montrer que G(f) est fermé dans $X \times Y$.
- 2. On suppose que G(f) est fermé dans $X \times Y$, et que Y est compact. Montrer que f est continue.

Exercice 3. Soit (X, \mathcal{A}, μ) un espace mesuré, $(f_n)_{n \in \mathbb{N}}$ une suite décroissante de fonctions mesurables positives telle que $\int_X f_0 d\mu < +\infty$. Montrer que si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f, alors

$$\int_X f d\mu = \lim_n \int_X f_n d\mu < +\infty.$$

Exercice 4. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré, (X, \mathcal{A}) un espace mesurable et $\varphi : \Omega \to X$ une application mesurable. On définie la mesure image de μ par l'application φ par

$$\forall A \in \mathcal{A}, \, \mu_{\varphi}(A) = \mu \left[\varphi^{-1}(A) \right]$$

- 1) Montrer que μ_{φ} est une mesure sur (X, \mathcal{A}) .
- 2) Montrer que pour tout $f: X \to [0, +\infty[$ mesurable on a

$$\int_X f d\mu_\varphi = \int_\Omega f \circ \varphi d\mu.$$

Université Mohamed Khider - Biskra

16/10/2014

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

 $(dur\acute{e}e: 01h30)$

Concours d'accès à la formation de 3^{eme} Cycle LMD

Mathématiques Appliquées (Option : Analyse Numérique et Optimisation)

Epreuve de Topologie & Mesure

Exercice 1. Soit E un espace normé de dimension quelconque et u un endomorphisme de E vérifiant :

$$\forall x \in E, ||u(x)|| \le ||x||$$

Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u^k$$

- 1. Simplifier $v_n \circ (u Id)$.
- 2. Montrer que

$$\operatorname{Im}(u - Id) \cap \ker(u - Id) = \{0\}$$

3. On suppose E de dimension finie, établir

$$\operatorname{Im}(u - Id) \oplus \ker(u - Id) = E$$

4. On suppose de nouveau E de dimension quelconque. Montrer que si

$$\operatorname{Im}(u - Id) \oplus \ker(u - Id) = E$$

Alors la suite (v_n) converge simplement et l'espace Im(u-Id) est une partie fermée de E.

Exercice 2. On suppose que A est une partie convexe d'un espace vectoriel normé E.

- 1. Montrer que l'adhérence de A (notée \overline{A}) est convexe.
- 2. La partie $\stackrel{\circ}{A}$ (l'intérieur de A) est-elle convexe ?

Exercice 3. Soit (X, \mathcal{A}, μ) un espace mesuré, $f: X \to [0, +\infty]$ une fonction mesurable. On définie la mesure $\nu: \mathcal{A} \to [0, +\infty]$ par

$$\nu(A) = \int_{A} f d\mu = \int_{X} f 1_{A} d\mu.$$

Montrer que si $g: X \to [0, +\infty]$ est mesurable, alors

$$\int g d\nu = \int f g d\mu.$$

Exercice 4. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}_+$ une fonction mesurable et μ -intégrable. Montrer que $\int_X f d\mu = 0 \Longrightarrow f = 0 \ \mu - p.p.$