Final Exam Review

Jia Chen jiac@ucr.edu

Problem 1: Given the circuit, what are we expecting to see in outputs (Output 1, Output 2, Output 3, Output 4) in the beginning of the 4th cycle (aka after 3 clock cycles) after receiving (1, 1, 0) from the input? Assume that the initial outputs for all the D-FFs are 0.

$$(O1, O2, O3, O4) = (0, 1, 1, 0)$$

Problem 2: what sequences of input will let the circuit output "0"?

Problem 2: what sequences of input will the let the circuit output "0"?

Any sequence except (1 0 0 1)

Problem 3: Given the sequential circuit, please complete the excitation table.

Present state y2y1	ab = 00	01 D_2D_1	10	11	Output s
0 0 0 1 1 0 1 1					

Present state	ab = 00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		D_2D_1			S
0 0	0 0	0 1	0 1	10	0
0 1	0 0	0 1	0 1	10	1
10	0 1	10	10	11	0
1 1	0 1	10	10	11	1

Problem 4: Please convert the Mealy FSM to a Moore machine by showing the Moore FSM table.

	Next State, Output		
Current State	Input		
	0	1	
Α	B,1	D,0	
В	C,0	B,0	
С	B,1	A,0	
D	B,0	C,0	

We define the new state A as (A, 0), new state B as (B, 0), new state C as (C, 0), new state D as (D, 0), and new state E as (B, 1).

Current State	Next	Output	
	Inp		
	0		
Α	Е	D	0
В	С	В	0
С	E	Α	0
D	В	С	0
E	С	В	1

Problem 5: What are the excitation equations, output equations, characteristic equations?

Problem 5: What are the excitation equations, output equations, characteristic equations?

excitation equations

```
D0 = Q1' . X + Q0 . X' + Q2
D1 = Q2' . Q0 . X + + Q1 . X' + Q2 . Q1
D2 = Q2 . Q0' + Q0' . X' . Y
```

Problem 5: What are the excitation equations, output equations, characteristic equations?

Solution:

characteristic equations

$$Q0^* = D0$$
; $Q1^* = D1$; $Q2^* = D2$

Problem 5: What are the excitation equations, output equations, characteristic equations?

output equations

Problem 6: Assume that initially, Output 1 = 0, Output 2 = 0, Output 3 = 1, Output 4 = 1. What are all the outputs after 1, 2, 3, 4, and 5 clock cycles?


```
After 1 clock cycle: Output 1 = 0, Output 2 = 0, Output 3 = 0, Output 4 = 1
After 2 clock cycles: Output 1 = 0, Output 2 = 0, Output 3 = 0, Output 4 = 0
After 3 clock cycles: Output 1 = 1, Output 2 = 0, Output 3 = 0, Output 4 = 0
After 4 clock cycles: Output 1 = 1, Output 2 = 1, Output 3 = 0, Output 4 = 0
After 5 clock cycles: Output 1 = 1, Output 2 = 1, Output 3 = 1, Output 4 = 0
```

Problem 7:

The given FSM has input b, output z, and starts in state m. What is the FSM's resulting output and state if on the clock's active edge b is 0?

Inputs: b
Outputs: z

Problem 7:

The given FSM has input b, output z, and starts in state m. What is the FSM's resulting output and state if on the clock's active edge b is 0?

Inputs: b
Outputs: z

$$z = 0$$
, state = n

Problem 8:

State F3 transitions to state _____ when enable (e) is 0.

State F1 transitions to state _____ when e is 0 and u is 1.

Inputs: e, u

Problem 8:

State F3 transitions to state ____ when e is 0.

State F1 transitions to state _____ when e is 0 and u is 1.

Inputs: e, u

Solution: F0

F0

Problem 9:

Please fill up all the missing entries in the table.

Problem 9:

Please fill up all the missing entries in the table.

Inputs: g Outputs: y, z

	р1	p0	g	n1	n0	у	z
	0	0	0	1	0	0	1
S	0	0	1	0	1	0	1
	0	1	0	0	0	0	0
·	0	1	1	1	0	0	0
u	1	0	0	0	0	1	0
	1	0	1	1	0	1	0
unused	1	1	0	X	X	X	X
	1	1	1	X	X	X	X

^{*}State encodings are in red

Problem 10:

Please identity all the true statement(s) about the given 2-bit carry-lookahead adder. For each true statement, what are the values of a0, a1, b0, b1, cin, p0, p1, g0, g1, c0, c1, s0, and s1? Hint: g = ab, $p = a \oplus b$, and the expression for each digit's carry-out is $co = g + p \cdot ci$.

- 1. c0 = 0, when a0 = 1, b0 = 1, and cin = 0
- 2. c0 = 1, when a0 = 1, b0 = 1, cin = 1, p1 = 1, and b1 = 1
- 3. c1 = 1, when cin = 1, g0 = 1, p0 = 0, g1 = 0, and p1 = 0
- 4. c1 = 0, when cin = 0, g0 = 1, p0 = 0, g1 = 1, and p1 = 0

Only the 2nd statement is true.

$$a0 = 1$$
, $b0 = 1$, $cin = 1$, $p0 = 0$, $g0 = 1$, $co = 1$, $s0 = 1$
 $a1 = 0$, $b1 = 1$, $c1 = 1$, $g1 = 0$, $p1 = 1$, $s1 = 0$

Problem 11:

Design a circuit for the following truth table using a 4-to-1 MUX and necessary gate(s).

w_1	w_2	w_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

w_1	w_2	w_3	f	_	
0	0	0	0	_]	147
0	0	1	1	5	w_3
0	1	0	1	1	
0	1	1	0	S	\bar{w}_3
1	0	0	1	1	
1	0	1	0	S	\bar{w}_3
1	1	0	0	1	w_3
1	1	1	1	5	" 3

Problem 12:

What are the logic expressions for the outputs h and g?

$$h = 1 \text{ iff } B = 0, C = 1, D = 0, \text{ and } A = 1$$

Thus,
$$h = A B' C D'$$

$$g = 1 \text{ iff } B = 1, C = 0, D = 1, \text{ and } A = 1$$

Thus,
$$g = A B C' D$$

Problem 13:

Design a sequential circuit with the finite state machine shown in the Table, using D Flip-Flops. Use two state variables, Q1, Q2, with the state assignment A = 00, B = 01(aka Q1=0, Q2=1), C = 11, D = 10.

	Next State, Output		
Current State	Input		
	0	1	
Α	B,1	D,0	
В	C,0	B,0	
С	B,1	A,0	
D	B,0	C,0	

Step 1: substitute the states with their assignments

	Next State, Output		
Current State	Input		
	0	1	
00	01,1	10,0	
01	11,0	01,0	
11	01,1	00,0	
10	01,0	11,0	

Step 2: draw excitation table

Current state, Input	D1	D2	Output
000	0	1	1
001	1	0	0
010	1	1	0
011	0	1	0
110	0	1	1
111	0	0	0
100	0	1	0
101	1	1	0

<u>Step 3:</u> get the logic expressions for D1, D2, and Output Current state is represented by Q1 and Q2, e.g., B=01 where Q1=0 and Q2=1. Let's use x and y to denote the input and output, respectively.

Step 4: design sequential circuit

Problem 14:

Using KMaps, find the simplest SOP expression for each of the following functions.

1)
$$F = \sum_{x,y,z} (1, 3, 5, 6, 7);$$

2) $F = \sum_{w,x,y,z} (0, 1, 6, 7, 8, 9, 14, 15);$

3) $F = \Pi_{W,X,Y}(1, 4, 5, 6, 7)$

Problem 14:

Using KMaps, find the simplest SOP expression for each of the following functions.

1)F =
$$\Sigma_{X,Y,Z}$$
(1, 3, 5, 6, 7);

2)
$$F = \sum_{W,X,Y,Z} (0, 1, 6, 7, 8, 9, 14, 15);$$

3)F =
$$\Pi_{W,X,Y}$$
(1, 4, 5, 6, 7)

Problem 15:

What is the simplest SOP and POS expressions for $F = \Sigma_{A,B,C}(0, 1, 3, 4, 6) + D(2, 5)$, where "D" represents "Don't care"; see the K-map of F below.

3		A'B'	A'B	AB	AB'
		0,0	0,1	1,1	1,0
C'	0	1	X	1	1
С	1	1	1	0	X

		A'B'	A'B	AB	AB'		
		0,0	0,1	1,1	1,0		
C'	0	1	Х	1	1	C'	
С	1	1	1	0	Х		
Α'							

The simplest SOP: F = A' + C'

		A'B'	A'B	AB	AB'
		0,0	0,1	1,1	1,0
C'	0	1	Х	1	1
С	1	1	1	0	х

A' + C'

The simplest POS: F = A' + C'

Problem 16:

Using KMaps, find the simplest POS expression for each of the following functions.

- 1) $F = \Sigma_{W,X,Y,Z}(0, 1, 6, 7, 8, 9, 14, 15);$
- 2) $F = \Pi_{W,X,Y}(1, 4, 5, 6, 7)$

Final Exam Review – Part II

Jia Chen jiac@ucr.edu

Problem 17:

S ₁	S 0	Operation	
0	0	Maintain present value	
0	1	Parallel input load	
1	0	Shift right by 2 bits	
1	1	Clear output to 0's	
		l ,	

Design a special function 5-bit register which will perform operations indicated in the table where s_1 and s_0 are control input signals. Shift in zeros into bits which do not have proceeding bits.

Problem 17:

S ₁	S 0	Operation	
0	0	Maintain present value	
0	1	Parallel input load	
1	0	Shift right by 2 bits	
1	1	Clear output to 0's	
		l ,	

Design a special function 5-bit register which will perform operations indicated in the table where s_1 and s_0 are control input signals. Shift in zeros into bits which do not have proceeding bits.

Problem 18:

Design a two-bit number multiplier assuming that any-bit number adders are provided.

Design a two-bit number multiplier assuming that any-bit number adders are provided.

