ELE32 Introdução a Comunicações Códigos convolucionais

ITA
2º. Semestre de 2019
manish@ita.br

Código convolucional

 Converte uma sequência de bits de informação em uma sequência de bits a serem transmitidos

Neste exemplo a taxa do codificador é ½. As saídas são multiplexadas para formar uma única sequência

Representações: Matriz geradora

$$\mathbf{G}(D) = [1 + D + D^2 + D^3 + D^6 \qquad \qquad 1 + D^2 + D^3 + D^5 + D^6]$$

$$\mathbf{v}(D) = u(D)\mathbf{G}(D)$$

$$v(D) = \sum_{i=1}^{n} v_i(D^n)D^{i-1}$$

Algoritmo de Viterbi

- É mais fácil demonstrado do que explicado
- Um codificador convolucional possui uma seção de treliça associada

Seção de treliça

м

Treliça de um codificador

Algoritmo de Viterbi: formalismo matemático (1/2)

Definições:

- σ_i^k :i-ésimo estado no instante k, i=0,1,2,...,2^m-1 e k = 0,1,2,...,K
- \Box C(σ_i^k): custo do i-ésimo estado no instante k
- $\square \rho_{ij}^{k}$: ramo que causa a transição de σ_{i}^{k} para σ_{j}^{k+1}
- \Box C($\rho_{ij}^{\ k}$): custo do ramo que causa a transição de $\sigma_i^{\ k}$ para $\sigma_i^{\ k+1}$
- \Box s(ρ_{ij}^{k}): símbolo de entrada associado ao ramo ρ_{ij}^{k} .
- \Box $t(\rho_{ij}^{k})$: símbolo de saída (transmitido) associado ao ramo ρ_{ij}^{k} .
- □ r^k símbolo recebido no k-ésimo instante.
- $\mathbf{s}_{i}^{k} = [\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2}, ..., \mathbf{s}_{k-1}]$: Sequência de símbolos que formam o caminho sobrevivente que chega ao estado σ_{i}^{k}

Algoritmo de Viterbi: formalismo matemático (2/2)

Iniciação de variáveis

$$C(\sigma_0^0) = 0$$

$$C(\sigma_i^0) = \infty$$

$$k = 0, \mathbf{s}_0^0 = \{\}$$

Cálculo dos custos dos ramos:

$$C(\rho_{i,j}^k) = d_H(r^k, t(\rho_{i,j}^k))$$

 Calculo dos custos dos estados futuros e seleção de caminho sobrevivente.

$$i(j) *= \min_{i} \{C(\sigma_i^k) + C(\rho_{i,j}^k)\}$$

$$C(\sigma_j^{k+1}) = C(\sigma_{i(j)*}^k) + C(\rho_{i(j)*,j}^k)$$

$$s_j^{k+1} = [s_{i(j)*}^{k+1} \ s(\rho_{i(j)*,j}^k)]$$

- 4. Se k < K(tamanho da sequência), k = k + 1. Retorne ao passo 2.
- Caminho vitorioso é aquele associado ao estado final de menor custo

Atividade

 Implemente um codificador convolucional para os códigos abaixo (notação octal, bit mais significativo a esquerda de cada octeto)

m	$g_1(D)$	$g_2(D)$	$g_3(D)$
3	13	15	17
4	25	33	37
6	117	127	155

Notação octal: 13 = 001011 que equivale a 1+0D+1D²+1D³

- Simule a passagem de uma sequência muito grande de bits de informação por um canal BSC com parametro p de forma análoga a feita nos laboratórios anteriores (dica: o código linear)
- 3. Implemente o algoritmo de Viterbi para decodificar a sequência recebida
- Estime a probabilidade de erro para os bits de informação para cada código e cada valor de p
- 5. Desafio muito difícil: Implemente um código Turbo e compare com desempenho dos códigos convolucionais "normais"