COMP90043: Cryptography and security: Week 8: ElGamal Encryption and Signatures

- (1) For the following structures, list sizes of the possible cyclic multiplicative groups present in them.
 - (a) Integers modulo 31.
 - (b) Integers modulo 30.
 - (c) Finite Field of size 128.
 - (d) Integers modulo 89.
- (2) Consider a finite field Z_{11} ; determine the multiplicative order of all nonzero elements of the field.
 - Note: A multiplicative order of an element α is the smallest integer $j \geq 1$ such that $\alpha^j = 1$. Note that 1 is the multiplicative identity.
- (3) Use the irreducible polynomial $1 + x + x^4$ to create a table for the finite field GF(16).

i	Elements: x^i	As Polynomials	As Vectors	Multiplicative Order
$-\infty$	0	0	[0, 0, 0, 0]	
0	1	1	[1, 0, 0, 0]	
1	x	x	[0, 1, 0, 0]	
2	x^2	$ \begin{array}{c c} x^2 \\ 1+x^2 \end{array} $	[0, 0, 1, 0]	
3	x^3	$1 + x^2$	[0, 0, 0, 1]	
4	x^4			
5	x^5			
6	x^6			
7	x^7			
8	x^8			
9	x^9			
10	x^{10}			
11	x^{11}			
12	x^{12}			
13	x^{13}			
14	x^{14} x^{15}			
15	x^{15}			

Table 1. Elements of $GF(2^4)$ as powers of x

- (a) Complete the missing entries in the table.
- (b) Determine multiplicative order of the elements.
- (c) What is the multiplicative inverse of x^3 ?
- (4) Prove that ElGamal decryption equations satisfy as required.
- (5) What are the hard problems on which the security of the El-Gamal encryption is based on?
- (6) Derive the verification equations of the ElGamal signature using the defining equations of signing.
 - Note: Please read slides 4, 5 and 9 before attempting this question.
- (7) Discuss Elgamal digital signature scheme with an example. Say, for q = 19 and q = 13, m = 7, calculate the signature and verify it.
- (8) Show that verification equations of Schnorr's signature scheme follows from the signing equation.
- (9) How do you determine primes p and q as required for the Schnorr's signature scheme? Suggest a method. Given an example in small primes.

Key Management Questions:

- (1) List ways in which secret keys can be distributed to two communicating parties.
- (2) What is the difference between a session key and a master key?
- (3) What is a nonce?
- (4) Explain the problems with key management and how it affects symmetric cryptography?

Home work:

Study the correctness of DSA signing and verification algorithms from the textbook.