Can corruption be held responsible for deforestation?

Aayushi Gupta, Department of Economics, University of Maryland

Abstract

Long gone are those days when the concern of forest resource was limited to a region or a nation — it is global now. This study aims to reflect this concern by revolving around the topic of the causes of deforestation. To some extent, deforestation might be necessary for the growth of an economy. But not all deforestation is good. This paper focuses on the bad reasons of deforestation. The research question of the study is to find out the impact of corruption on deforestation. Since, deforestation is a global problem, this study targets all the countries around the world. To conduct this study, I have taken data for 22 years, which is a significant time to observe change in deforestation patterns. Using this panel data, I will be performing regression analysis. The models used in this study are entity fixed effects and time fixed effects to remove unobserved omitted variable biasedness. To define corruption, the study uses two corruption datasets, namely Corruption Perception Index (CPI), and Control of Corruption. The importance of this study is to provide a quantitative basis for strategy builders and policy makers who come across the question of corruption being another cause for deforestation. The results found in the study show highly statistically significant decrease in deforestation activities with 1 unit decrease in corrupt practices in a country.

Keywords: Deforestation, Corruption, Fixed Effects

JEL Code: C330, Q560

1. Background and Literature Review

Deforestation refers to the conversion of forests and grassland to lands suitable for non-forest use like agriculture, urban development, economic growth, and much more. Loss of forests has resulted in climate change, which is known to be one of biggest global concerns of today.

It is vital to understand that agriculture cannot substitute forests to fight climate change. Forests store large amounts of carbon in them. This carbon is prone to be released in the atmosphere, in the form of CO_2 – one of the most harmful gases if forests are cleared away. Forests are home to millions of distinct species that can only survive in specific habitats. Clearly, removing forests would not just lead to climate change, but in the long run it will also destroy the global economy of this planet. Therefore, it is crucial to do deforestation in a sustainable manner.

To some extent, one might agree that agriculture is necessary for current survival and cannot be put to hold. However, corruption is something which is necessary to be suspended indefinitely to continue living. The report by Harwel. 2009. Human Rights Watch, "Wild Money": The Human Rights Consequences of Illegal Logging and Corruption in Indonesia's Forestry Sector.) summarizes the loss of around \$2 billion by Indonesia, country with world's highest deforestation rates, in 2006 was due to illegal logging, corruption, and mismanagement. Exports from its flourishing timber sector were worth \$US6.6 billion in 2007, second only to Brazil. Koyuncu. 2009. The Impact of Corruption on Deforestation: A Cross-Country Evidence. The Journal of Developing Areas, Vol. 42, pp. 213-222. find a positive correlation between corruption and deforestation which is statistically significant According to Scarrow, R. 2017. Corruption drives deforestation. Nature Plants 3, 910., corruption might not have a large impact on deforestation, but it is certainly more significant than when taking a debt from IMF to engage in heavy logging activities.

There is further evidence of involvement of government ineffectiveness and political instability that ignites corrupt practices in forests leading to deforestation. Cassandro Mendes & Sabino Junior & Fabricio Tourruc?o. 2016. Corruption and Deforestation: A Differential Game Model. Business and Economic Research, Macrothink Institute, vol. 6(1), pages 481-491.) uses Stackelberg differential game to depict the correlation between corruption and deforestation. The results show that better government strategies in terms of salary paid to the workers need to be implemented to avoid going on the trail of corruption. Wilson, John K. & Damania, Richard, 2005. Corruption, political competition and environmental policy. Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 516-535.) indicates higher political competition would have stringent policies reducing the level of corruption, needed to achieve reduction in environmental damage. Milledge, S.A.H., Gelvas, I. K. and Ahrends, A. 2007. Forestry, Governance and National Development: Lessons Learned from a Logging Boom in Southern Tanzania. An Overview. TRAFFIC East/Southern Africa / Tanzania Development Partners Group / Ministry of Natural Resources of Tourism, Dar es Salaam, Tanzania. 16pp.) describes in a report how policies related to management of resources were manipulated for private gains that led to depletion of many forests in Tanzania.

With all this in mind, this research deals with the impact of corruption on deforestation in countries with different government policies and political stability.

2. Data

This study uses a rich panel dataset with 216 countries over a span of 22 years starting from 2000 to 2021. Table 2 below lists down all variables used in the study along with their definition and unit of measurement.

I have introduced two corruption datasets for reasons: 1. to get better understanding of the correlation between deforestation and corruption, and 2. to compare both corruption variables from the results obtained and use the best obtained results in this study. Therefore, this study addresses two research questions:

Hypothesis 1: Increase in Corruption Perception Index decreases deforestation

Hypothesis 2: Increase in control of corruption decreases deforestation

Table 2 Types of variables and data used

Datasets	Variable	Definition	Measurement Unit	Source
Corruption	CPIscore	Corruption Perceptions	100 (very clean) - 0 (highly	Transparency
Perception Index		Index (CPI) is an index which	corrupt)	International. 2021.
		ranks countries by their		Corruption
		perceived levels of public sector corruption		Perception
		sector corruption		Index.
				Available
				online:
				https://www.tra
				nsparency.org/e
				n/cpi/2021
Control of	CorrControl	Control of Corruption captures	0 (highly corrupt) - 100 (very	World Bank
Corruption		perceptions of the extent to	clean)	<u>(2021A)</u> .
		which public power is exercised for private gain, including both		Worldwide
		petty and grand forms of		Governance
		corruption.		Indicators.
				Available
				online:
				https://databank
				.worldbank.org/
				source/worldwi
				de-governance-
				indicators/Type/
				TABLE/previe
				w/on
Deforestation	Deforestation	Deforestation is the conversion	1000ha/year	FAO (2020).
		of forest to other land use independently whether human-		Global Forest
		induced or not. It includes		Resources
		permanent reduction of the tree		Assessment.

		canopy cover below the		Available
		minimum 10 percent threshold.		
				online:
				https://fra-
				data.fao.org/IT
				TO/fra2020/for
				estAreaChange/
Gross Domestic	GDP_2015	GDP per capita; GDP represents	Constant 2015 prices, in US	World Bank
Product (constant \$2015)		the sum of value added by all its producers.	dollar (\$)	(2021B). World
<i>\$2013)</i>		producers.		Development
				Indicators.
				Available
				Online:
				https://databank
				.worldbank.org/
				source/world-
				development-
				indicators/Type/
				TABLE/previe
				w/on
Rural Population	RuralPop	Rural population refers to people	In percentage (%)	World Bank
		living in rural areas as defined		(2021B). World
		by national statistical offices. Difference between total		Development
		population and urban population.		Indicators.
				Available
				Online:
				https://databank
				.worldbank.org/
				source/world-
				development-
				indicators/Type/
				TABLE/previe
				w/on
Urban Population	UrbanPop	Urban population refers to	In percentage (%)	World Bank
orean reputation	отоши ор	people living in urban areas as	in percentage (/v)	(2021B). World
		defined by national statistical		Development
		offices. Difference between total population and urban population		Indicators.
		population and aroan population		Available
				Online:
				https://databank
				_
				.worldbank.org/
				source/world-
				development-
				indicators/Type/

				TABLE/previe
				w/on
Political Stability and Absence of Violence/Terroris m: Percentile Rank	PoliticStable	Political Stability and Absence of Violence/Terrorism measures perceptions of the likelihood of political instability and/or politically-motivated violence, including terrorism.	0 (highly violent) - 100 (very clean)	World Bank (2021A). Worldwide Governance Indicators. Available online: https://databank .worldbank.org/ source/worldwi de-governance- indicators/Type/ TABLE/previe w/on
Government Effectiveness: Percentile Rank	GovtEffect	Government Effectiveness captures perceptions of the quality of public services, the quality of the civil service and the degree of its independence from political pressures, the quality of policy formulation and implementation, and the credibility of the government's commitment to such policies.	0 (autocratic) - 100 (democratic)	World Bank (2021A). Worldwide Governance Indicators. Available online: https://databank .worldbank.org/ source/worldwi de-governance- indicators/Type/ TABLE/previe w/on

The two main explanatory variables are Corruption Perception Index (CPI) and control of corruption. The data for CPI score before 2012 ranges between 0 to 10. But after 2012, it ranges between 0 to 100. To conduct regression analysis, we need to make the data compatible throughout all 22 years. Due to non-availability of calculation details, I calculated CPI score before 2012 in the following way:

$$\frac{\textit{CPI score before 2012}}{\textit{Max score before 2012} - \textit{Min score before 2012}} \times \textit{Max score after 2012} \\ - \textit{Min score after 2012}$$

The main dependent variable is deforestation. The data for deforestation is obtained from the Global Forest Resources Assessment (FRA) led by Food and Agriculture Organization (FAO). The available data has only four data points, for 1990-2000, 2000-2010, 2010-2015, and 2015-2020 for every country.

Since, the data is for 10 and 5 year long periods, I have used same value of deforestation between all years from 2000 to 2010, 2011 to 2015, and 2016 to 2020. It includes regions of forest converted to agriculture, pasture, water reservoirs, mining and urban areas, but excludes the regions where the trees have been cut off for harvesting or logging purposes, and where the forest is expected to revive inherently or with the assistance of silvicultural methods.

The covariates included are GDP, rural population, urban population, political stability (absence of violence/terrorism), and government effectiveness. To control for the factor of wealth of the country, GDP is considered in the model. The dollar figures for GDP are converted from domestic currencies of every country using 2015 official exchange rates. For the countries, the exchange rate was not available, an alternative conversion factor was used. According to various studies Bilsborrow, R.E. 1992. Population growth, internal migration, and environmental degradation in rural areas of developing countries. Eur J Population 8, 125–148.) and Julia C. Allen & Douglas F. Barnes. 1985. The Causes of Deforestation in Developing Countries. Annals of the Association of American Geographers, 75:2, 163-184.) indicate a positive correlation between population growth and deforestation. Rural population expands by clearing out forests in villages and rural areas. Growing urban population would lead to escalation in production of goods made from wood and other forest products. Hence, these two are important to be included in the model to avoid any possible omitted variable biasedness. To account for the government effectiveness and political stability of different countries, we consider two variables PoliticStable and GovtEffect. PoliticStable indicates a low rank for countries with high likelihood of political instability and presence of political violence and vice versa. GovtEffect indicates a low rank for countries with less degree of independence from political pressures (definition explained in Table 2).

2.1 Summary Statistics

To investigate the data further, I conducted summary statistics represented in Table 2.1.1 below and used data visualization to easily identify correlations and patterns before moving on to conducting regression analysis.

Table 2.1.1 Descriptive Statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
CPIscore	3368	42.423	20.84	4	100
CorrControl	4069	48.867	29.091	0	100
Deforestation	2446	89.648	380.314	0	5129.3
GDP 2015	770	12432.538	15258.128	334.016	101489.38
RuralPop	866	44.082	25.083	0	87.022
UrbanPop	866	55.918	25.083	12.978	100
GovtEffect	4057	49.102	29	0	100
PoliticStable	4125	49.263	28.834	0	100

Table 2.1.1 shows the mean value of CPI score to be 42.4 which is much closer to 0 than 100. This implies that, on an average, a country is more corrupt than being non-corrupt. The mean value of CorrControl, 48.8, indicates a parallel sense. The mean value of deforestation, 89.6, is extremely low as compared to the maximum value of 5129.3. According to my assumption, mean deforestation should have been closer to its maximum value looking at the low mean CPI score and CorrControl. However, the standard deviation, 380.3, indicates largely dispersed data, enough to be skeptical about my assumption. It would be interesting to know the regression results.

The mean and std. dev. values of CPI score and CorrControl are similar which is a good indication to treat them as two separate main explanatory variables for the two similar hypotheses of this study. The standard deviation of most variables is at most half their respective mean values or in some cases even larger than that showing a wide dispersion of data or maybe large outliers.

Further, graphs are created for all the main variables (dependent and independent) for both the hypothesis studies. The histograms had been created for all the covariates as well. However, there are not displayed in this paper. They are available in the do file for the viewer's reference. Note: The variables measured in ranks had a uniform distribution. I took natural log of all those variables as well as for the deforestation and population variables to bring their distribution closer to normal distribution and minimize their skewness.

Fig. 2.1.1 CPI score distribution

Figure 2.1.1 displays histograms of CPI scores year-wise for all countries over a span of more than two decades. The data is highly dispersed as these are scores ranging from 0 to 100 indicating possibility of outliers in data. Starting from 2000, the bump (or the peak in that graph), observed from the blue line, starts rising slowly over time as we move towards 2021. Around 2005, it reaches the apex point in those 22 years. It remains relatively stable for the next couple of years experiencing slight rise and fall over the years. After 2011, it starts to dissolve again. Throughout this time, the bump stays towards the left of the center and the data is slightly skewed towards the right suggesting the median to be smaller than the mean. This also suggests that large number of countries are corrupt as compared to being clean.

Fig. 2.1.2 Outliers in CPI score

With the help of boxplot, fig. 2.1.2 showcases the number of outliers in the form of red markers (dots) located at the top of boxplot. In alignment with afore-mentioned paragraph, the outliers appear in 2005 and last till 2011. 2005 experiences the maximum outliers pushing the peak upwards in fig 2.1.1. However, these outliers are minuscule and nothing to be concerned about.

Fig 2.1.3 Natural log of control of corruption

Figure 2.1.3 displays histograms of natural log of control of corruption year-wise for all countries over the span of almost two decades. The data is skewed towards the left. The data does not reveal much change in the peak over the years. The data is not available for 2001.

Fig 2.1.4 Outliers in natural log of control of corruption

Fig 2.1.4 displays outliers throughout the period of 2 decades. The outliers skew the distribution of this variable towards the left as seen in the fig 2.1.4. However, since the variable has an independent and identical distribution (explanation for i.i.d is given in fig 2.1.5), the outliers are ignored and the skewed distribution is accepted for the regression analysis.

Fig 2.1.5 Time trend of natural log of deforestation

Fig 2.1.5 displays the time trend of natural log of control of corruption for 3 countries randomly selected through their id (Country) over a period of 21 years. From the trend, the variable displays a random walk suggesting no correlation between past and future behavior which indicates independent distribution. Since, the distribution is same in fig 2.1.4, the variable represents identical distribution. This implies that the variable is i.i.d.

Fig 2.1.6 Natural log of deforestation

Figure 2.1.6 displays histograms of natural log of deforestation year-wise for all countries over the span of almost two decades. The kdensity curve almost overlaps the normal distribution curve completely before 2011. There appear to be two peaks from 2011 to 2015. The data is separated into two parts by a missing rectangle. After 2015, the small peak on the left disappears to again form a bell curve. However, the data does not reveal much change in the peak over the years. The data is not available for 2021.

Fig 2.1.7 Natural log of deforestation

Figure 2.1.7 displays a closer look at the distribution of natural log of deforestation for the years 2010 and 2011. I tried to replicate the number of bins, and the upper and lower limit of x-axis as in the previous graph to better understand the missing rectangle from 2011 to 2015. Apart from 5 missing observations, it appears that the highest peaks in 2010 have shrunk down in 2011 resulting in a missing rectangle.

Fig 2.1.7 Outliers in natural log of deforestation

Fig 2.1.7 does not showcase any outliers. Similar to the explanation of fig 2.1.6, the variable does not display much skewness. Moreover, its distribution overlaps the line for normal distribution. Therefore, having no outliers in the boxplot is coherent.

Fig 2.1.4 Scatter plot of hypothesis 1

The first hypothesis of this study is showcased by Figure 2.1.4 in the form of a scatter plot of natural log of deforestation and CPI score along with the black fitted linear trend line. The unit of observation is country represented by the green dot. The downward sloping trend line shows the negative correlation between deforestation and CPI score. However, this does not imply that the falling corruption causes decrease in deforestation. To find that out, empirical analysis would need to be conducted.

Fig 2.1.5 Scatter plot of hypothesis 2

The second hypothesis of this study is showcased by Figure 2.1.5 in the form of a scatter plot of natural log of deforestation and natural log of control of corruption along with the black fitted linear trend line. The unit of observation is country represented by the green dot. The downward sloping trend line shows the negative correlation between natural log of deforestation and natural log of control of corruption. This is in alignment with the above hypothesis.

Table 2.1.2 Matrix of correlations

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) CPIscore	1.000							
(2) ln_CorrControl	<mark>0.796</mark>	1.000						
(3) ln_Deforestation	0.353	-0.011	1.000					
(4) ln_GDP_2015	0.861	0.825	0.379	1.000				
(5) ln_RuralPop	- 0.873	-0.812	-0.161	-0.848	1.000			
(6) ln_UrbanPop	<mark>0.599</mark>	<mark>0.614</mark>	-0.051	0.560	-0.884	1.000		
(7) ln_GovtEffect	0.714	0.868	0.168	0.899	-0.712	0.449	1.000	
(8) ln_PoliticStable	0.704	0.768	0.179	0.647	-0.595	0.318	0.701	1.000

The two conditions of omitted variable bias are:

- 1. Correlation of omitted variable with X (main explanatory variable)
- 2. Determinant of Y (main dependent variable)

The first condition has been fulfilled, as observed in column (1) for hypothesis 1, and column (2) for hypothesis 2, of table 2.1.2. In both columns, all variables are highly correlated with their respective main explanatory variables. To observe if these variables also fulfil condition 2, regression analysis have been conducted including and excluding each variable.

3. Methodology

Before starting with regression analysis, I would like to discuss the assumptions of OLS.

Assumption 1: The conditional mean is zero

Assumption 2: Xi and Yi are independently and identically distributed (i.i.d)

Assumption 3: Large outliers are unlikely

Assumption 4: There is no multicollinearity (or perfect collinearity)

Assumption 5: There is homoskedasticity and no autocorrelation

Assumption 6: The linear model is linear in parameters

Assumption 7: Each observation of the error term is independent of others

The initial methodologies used are linear and multiple regression models using OLS estimator in the form of pooled data. Further, entity fixed effects and time fixed effects methods are used separately and combined.

All results are obtained using the robust command taking into consideration any possibility of heterogeneity.

The general form of regression model is,

$$ln_deforestation_{it} = \beta_0 + \beta_1 CPIscore_{it}^1 + \beta_2 COND_{it} + u_{it}$$
 ; COND is all covariates u is the error term i are the entity fixed effects t are the time fixed effects

3.1 Hypothesis 1: Increase in Corruption Perception Index decreases deforestation

Table 3.1.1 shows the pooled data using OLS estimation. Model 1 displays linear regression model of CPI score as the main independent variable and Deforestation as the main dependent variable. As we proceed towards Model 6, covariates are added gradually to the previous models to account for omitted variable bias by observing the change in $\widehat{\beta_1}$. All multiple linear regression models, except for Model 2, have a statistically significant $\widehat{\beta_1}$ at 95% and 99% (not Model 3) confidence interval. However, only Model 1 displays the negative effect of CPI on deforestation that was expected according to the found literature review.

¹ This is for the first hypothesis. For the second hypothesis, CPIscore would be substituted with ln_CorrControl in the suffix of β_1 .

Declining observation lower down the precision of a model. According to me, the two best models in table 3.1.1 are Model 1 and Model 6. Comparing Model 1 with Model 6, we observe the declining number of observations but the improving R-squared values. However, R-squared does not penalize for an insignificant variable or reward for a significant variable, which adjusted R-squared does. Furthermore, the positive value of $\widehat{\beta_1}$ in Model 6 is unexpected. Possibly even after controlling for endogenous variables correlated with the error term, there could remain some unobserved omitted variables which can be accounted for by using fixed effects method.

Table 3.1.1 Pooled data

cu uata					
(1)	(2)	(3)	(4)	(5)	(6)
Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
					_
-0.0448***	0.0100	0.0246**	0.0666***	0.0543***	0.0493***
(0.00229)	(0.0103)	(0.0105)	(0.0196)	(0.0169)	(0.0163)
	0.393*	0.506**	1.205***	2.966***	3.435***
	(0.212)	(0.209)	(0.359)	(0.383)	(0.435)
		-1.480***	1.767	2.019*	3.030**
		(0.231)	(1.253)	(1.134)	(1.167)
			5.960***	6.758***	8.399***
			(2.265)	(1.945)	(1.969)
				-2.346***	-2.836***
				(0.448)	(0.539)
					0.487*
					(0.276)
4.387***	-1.579	2.651*	-38.83**	-48.90***	-62.27***
(0.112)	(1.511)	(1.368)	(16.00)	(13.37)	(13.90)
1,700	126	126	126	122	120
0.154	0.151	0.264	0.307	0.502	0.520
	(1) Model 1 -0.0448*** (0.00229) 4.387*** (0.112) 1,700	(1) (2) Model 2 -0.0448*** 0.0100 (0.00229) (0.0103) 0.393* (0.212) 4.387*** -1.579 (0.112) (1.511) 1,700 126	(1) (2) (3) Model 1 Model 2 Model 3 -0.0448*** 0.0100 0.0246** (0.00229) (0.0103) (0.0105) 0.393* 0.506** (0.212) (0.209) -1.480*** (0.231) 4.387*** -1.579 2.651* (0.112) (1.511) (1.368) 1,700 126 126	(1) (2) (3) (4) Model 1 Model 2 Model 3 Model 4 -0.0448*** 0.0100 0.0246** 0.0666*** (0.00229) (0.0103) (0.0105) (0.0196) 0.393* 0.506** 1.205*** (0.212) (0.209) (0.359) -1.480*** 1.767 (0.231) (1.253) 5.960*** (2.265) 4.387*** -1.579 2.651* -38.83** (0.112) (1.511) (1.368) (16.00) 1,700 126 126 126 126	(1) (2) (3) (4) (5) Model 1 Model 2 Model 3 Model 4 Model 5 -0.0448*** 0.0100 0.0246** 0.0666*** 0.0543*** (0.00229) (0.0103) (0.0105) (0.0196) (0.0169) 0.393* 0.506** 1.205*** 2.966*** (0.212) (0.209) (0.359) (0.383) -1.480*** 1.767 2.019* (0.231) (1.253) (1.134) 5.960*** 6.758*** (2.265) (1.945) -2.346*** (0.448) 4.387*** -1.579 2.651* -38.83** -48.90*** (0.112) (1.511) (1.368) (16.00) (13.37) 1,700 126 126 126 126 126

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Interpretation of Model 1 (Table 3.1.1): On an average, increase in the CPI score of a country by 1 score, i.e, moving towards a corrupt free environment, would lead to a decrease in deforestation by 4.381%.²

Interpretation of Model 6 (Table 3.1.1): On an average, increase in the CPI score of a country by 1 score, i.e, moving towards a corrupt free environment, would lead to an increase in deforestation by 5.05%.

 $^{^2}$ Computation of (β_1) 2 value for all models of type ln(Y)=B0 + B1*X + u ~ A change in X by one unit (ΔX =1) is associated with a (exp(B1) - 1)*100 % change in Y

Table 3.1.2 shows the pooled data using OLS estimation adjusted for time fixed effects only. Just like in the previous table, Model 1 displays linear regression model and as we proceed towards Model 6, covariates are added gradually to the previous models. These models fix for any change over years, in the effect common to all countries. Therefore, they adjust for any unobserved omitted variables that are country invariant but changing over time.

On comparing the results of table 3.1.2 with the results of table 3.1.1, we observe the sign of $\widehat{\beta_1}$ to be the same for all models. However, the values of $\widehat{\beta_1}$ in table 3.1.2, all models except Model 2 and Model 3, appear to be slightly smaller than the values of $\widehat{\beta_1}$ in table 3.1.1. Furthermore, the R-squared value is greater in table 3.1.2. Although only Model 1 gives us the believed correlation direction, after taking in time fixed effects, the $\widehat{\beta_1}$ values have reduced from before which is what I hope for.

Table 3.1.2 Time fixed effects

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
CPIscore	-0.0452***	0.0126	0.0280**	0.0658***	0.0492**	0.0462**
	(0.00257)	(0.0141)	(0.0136)	(0.0215)	(0.0191)	(0.0192)
ln_GDP_2015		0.329	0.436*	1.103***	2.809***	3.271***
		(0.259)	(0.242)	(0.380)	(0.424)	(0.508)
ln_UrbanPop			-1.530***	1.436	1.397	2.482*
			(0.364)	(1.369)	(1.197)	(1.367)
ln_RuralPop				5.445**	5.671***	7.458***
				(2.425)	(2.126)	(2.389)
ln_GovtEffect					-2.418***	-2.839***
					(0.387)	(0.465)
ln_PoliticStabl						0.452
e						
						(0.276)
Constant	4.759***	-1.100	3.532	-34.70**	-40.60***	-55.07***
	(0.343)	(2.145)	(2.276)	(17.17)	(15.04)	(17.43)
Observations	1,700	126	126	126	122	120
R-squared	0.156	0.191	0.310	0.343	0.529	0.542
Time Fixed	Yes	Yes	Yes	Yes	Yes	Yes
Effects						

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Interpretation of Model 1 (Table 3.1.2): On an average, increase in the CPI score of a country by 1 score, i.e., moving towards a corrupt free environment, would lead to a decrease in deforestation by 4.419%.

Interpretation of Model 6 (Table 3.1.2): On an average, increase in the CPI score of a country by 1 score, i.e., moving towards a corrupt free environment, would lead to an increase in deforestation by 4.728%.

3.2 Hypothesis 2: Increase in control of corruption decreases deforestation

Table 3.2.1 shows the pooled data using OLS estimation. Just like in the previous tables, Model 1 displays linear regression model and as we proceed towards Model 6, covariates are added gradually to the previous models. Unlike the hypothesis 1, the $\widehat{\beta_1}$ values, for all models, are negative as well as highly statistically significant at 99% confidence interval, which makes ln_CorrControl, a better variable for my study as compared to the CPI score.

Declining observation lower down the precision of a model. Comparing Model 1 with Model 6 (after adding all covariates), we observe the declining number of observations but the improving R-squared values. However, R-squared does not penalize for an insignificant variable or reward for a significant variable, which adjusted R-squared does. Model 6 gives a value of $\widehat{\beta}_1$ closer to the true value of β_1 ; the value of $\widehat{\beta}_1$ in Model 1 is underestimated, i.e., Model 6 shows higher % of deforestation decrease (1.586>.963) with every 1% increase in ln_CorrControl. Possibly even after controlling for endogenous variables correlated with the error term, there could remain some unobserved omitted variables which can be accounted for by using fixed effects method.

Table 3.2.1 Pooled data

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
ln_CorrControl	-0.963***	-1.733***	-1.620***	-1.628***	-0.890***	-1.586***
	(0.0572)	(0.185)	(0.181)	(0.182)	(0.286)	(0.347)
ln_GDP_2015		1.542***	1.663***	1.464***	2.301***	2.727***
		(0.142)	(0.141)	(0.273)	(0.368)	(0.393)
ln_UrbanPop			-0.923***	-1.513**	-0.890	0.489
			(0.267)	(0.744)	(0.745)	(0.842)
ln_RuralPop				-0.994	0.797	2.637*
				(1.169)	(1.258)	(1.396)
ln_GovtEffect					-1.314***	-1.439***
					(0.401)	(0.421)
ln_PoliticStable						0.728***
						(0.216)
Constant	5.764***	-5.188***	-2.920***	4.599	-9.199	-24.26**
	(0.211)	(0.806)	(1.017)	(8.898)	(9.596)	(10.76)
Observations	1,808	154	154	154	154	151
R-squared	0.136	0.442	0.483	0.486	0.520	0.562

Interpretation of Model 1 (Table 3.2.1): On an average, increase in the ln_CorrControl of a country by 1%, i.e., moving towards a corrupt free environment, would lead to a decrease in deforestation by 0.963%.

Interpretation of Model 6(Table 3.2.1): On an average, increase in the ln_CorrControl of a country by 1%, i.e., moving towards a corrupt free environment, would lead to a decrease in deforestation by 1.586%.

Table 3.2.2 (on the next page) shows the pooled data using OLS estimation adjusted for time fixed effects only. Just like in the previous table, Model 1 displays linear regression model and as we proceed towards Model 6, covariates are added gradually to the previous models. These models fix for any change over years, in the effect common to all countries. Therefore, they adjust for any unobserved omitted variables that are country invariant but changing over time. Unlike the hypothesis 1, the $\widehat{\beta}_1$ values, for all models, are negative as well as highly statistically significant at 99% confidence interval, which makes ln_CorrControl, a better variable for my study as compared to the CPI score; similar to the finding in previous table 3.2.1

On comparing the results of table 3.2.2 with the results of table 3.2.1, we observe the sign of $\widehat{\beta_1}$ to be the same for all models. However, the values of $\widehat{\beta_1}$ in table 3.2.2, all models except Model 5 and Model 6, appear to be slightly smaller than the values of $\widehat{\beta_1}$ in table 3.2.1. Furthermore, the R-squared value is greater in table 3.2.2. Unlike table 3.2.1, one of the covariates, ln_RuralPop, lose their statistical significance in Model 6.

Table 3.2.2 Time fixed effects

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
ln_CorrControl	-0.964***	-1.743***	-1.624***	-1.634***	-0.833***	-1.574***
	(0.0575)	(0.199)	(0.195)	(0.195)	(0.310)	(0.377)
ln_GDP_2015		1.554***	1.670***	1.413***	2.289***	2.676***
		(0.152)	(0.151)	(0.291)	(0.389)	(0.420)
ln_UrbanPop			-0.927***	-1.692**	-1.055	0.311
			(0.282)	(0.793)	(0.789)	(0.913)
ln_RuralPop				-1.287	0.583	2.357
				(1.245)	(1.332)	(1.509)
ln_GovtEffect					-1.403***	-1.465***
					(0.431)	(0.450)
ln_PoliticStable						0.726***
						(0.243)
Constant	5.730***	-4.821***	-2.560**	7.196	-6.954	-21.36*
	(0.322)	(1.093)	(1.260)	(9.519)	(10.16)	(11.71)
Observations	1,808	154	154	154	154	151
R-squared	0.136	0.455	0.496	0.500	0.538	0.578
Time Fixed	Yes	Yes	Yes	Yes	Yes	Yes
Effects						

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Interpretation of Model 1 (Table 3.2.2): On an average, increase in the ln_CorrControl of a country by 1%, i.e., moving towards a corrupt free environment, would lead to a decrease in deforestation by 0.964%.

Interpretation of Model 6 (Table 3.2.2): On an average, increase in the ln_CorrControl of a country by 1%, i.e., moving towards a corrupt free environment, would lead to a decrease in deforestation by 1.574%.

After doing the regression analysis, it was observed that for both the hypothesis, the entity fixed effects, and the entity and time fixed effects combined did not give results that were highly statistically significant. However, the time fixed effects had good statistically significant results. Therefore, this study only compares the hypothesis 1 and 2 based on regression models with no fixed effects, and only time fixed effects. However, the results using other methodologies are displayed in the do file for the viewer's reference.

4. Conclusion and Discussion

The methods used in this study were linear regression and multiple regression, with and without time fixed effects. Although, the research was conducted using entity fixed effects only, and time and entity fixed effects together, the results obtained from these models were not statistically significant enough to be considered in the study. The results obtained from using time fixed effects only in hypothesis 2 (displayed in table 3.2.2) are the ones that are closest to the true value of β_1 , according to me. It showed that with 1% decrease in the corruption factor of a country, deforestation activities declined statistically significantly at 99% confidence interval. They are in alignment with the literature review found, and coincide with my economic intuition, i.e., declining corruption activities tend to decline deforestation in a country.

After performing regression analysis using CPI score and ln_CorrControl as two separate corruption variables to observe their impact on deforestation, it was found that ln_CorrControl gave more expected results, as compared to CPI score, as they conform with my literature review found. CPI score is one of most profoundly used corruption indices. Therefore, it is possible that the results obtained from CPI score were not as expected due to some other problem which could not be accounted for in this study. It is possible that my CPI score calculation before 2012 might not be accurate as I used simple conversion formula to convert scores ranging from 1-10 to 1-100. Furthermore, there could exist a problem of large outliers that was observed in the graphs above. The corruption factor does not limit to corrupt practices being practiced in the forest. I believe, had I considered corruption variable that only relates to things like illegal logging, or bribery offered to forest officers, I might have got larger corruption coefficient values, signifying higher decline in deforestation. This is something that I would like to explore further in my future work.

References

- Bilsborrow, R.E. 1992. Population growth, internal migration, and environmental degradation in rural areas of developing countries. Eur J Population 8, 125–148.
- Cassandro Mendes & Sabino Junior & Fabricio Tourruc?o. 2016. *Corruption and Deforestation:*A Differential Game Model. Business and Economic Research, Macrothink Institute, vol. 6(1), pages 481-491.
- Cozma, Adeline-Cristina, Corina-Narcisa (Bodescu) Cotoc, Viorela Ligia Vaidean, and Monica Violeta Achim. 2021. *Corruption, Shadow Economy and Deforestation: Friends or Strangers?* Risks9: 153.
- FAO (2020). Global Forest Resources Assessment. Available online: https://fradata.fao.org/ITTO/fra2020/forestAreaChange/
- Harwel. 2009. Human Rights Watch, "Wild Money": *The Human Rights Consequences of Illegal Logging and Corruption in Indonesia's Forestry Sector*.
- Julia C. Allen & Douglas F. Barnes. 1985. *The Causes of Deforestation in Developing Countries*. Annals of the Association of American Geographers, 75:2, 163-184.
- Koyuncu. 2009. *The Impact of Corruption on Deforestation: A Cross-Country Evidence*. The Journal of Developing Areas , Vol. 42, pp. 213-222.
- Milledge, S.A.H., Gelvas, I. K. and Ahrends, A. 2007. Forestry, Governance and National Development: Lessons Learned from a Logging Boom in Southern Tanzania. An Overview.

 TRAFFIC East/Southern Africa / Tanzania Development Partners Group / Ministry of Natural Resources of Tourism, Dar es Salaam, Tanzania. 16pp.
- Scarrow, R. 2017. Corruption drives deforestation. Nature Plants 3, 910.
- Transparency International. 2021. Corruption Perception Index. Available online: https://www.transparency.org/en/cpi/2021
- Wilson, John K. & Damania, Richard, 2005. *Corruption, political competition and environmental policy*. Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 516-535.
- World Bank (2021A). Worldwide Governance Indicators. Available online: https://databank.worldbank.org/source/worldwide-governance-indicators/Type/TABLE/preview/on
- World Bank (2021B). World Development Indicators. Available Online: https://databank.worldbank.org/source/world-development-indicators/Type/TABLE/preview/on

Technical Appendix

```
************
                                      ***********
. *summary statistics
. ssc install asdoc
checking asdoc consistency and verifying not already installed...
all files already exist and are up to date.
. asdoc summarize CPIscore CorrControl Deforestation GDP_2015 RuralPop UrbanPop GovtEffect
        PoliticStab
> le, separator(10)
                         Obs
                                                Std. dev.
    Variable |
                                        Mean
                                                                       Min
                                                                                    Max

      CPIscore |
      3,365
      42.41783
      20.82815
      4
      100

      rrControl |
      4,069
      48.86651
      29.09121
      0
      100

      orestat~n |
      2,446
      89.64793
      380.3136
      0
      5129.3

      GDP_2015 |
      755
      12045.5
      15190
      334.0157
      101489.4

      RuralPop |
      851
      44.53006
      24.9668
      0
      87.022

 CorrControl |
Deforestat~n |
                                  55.46994 24.9668 12.978
49.10154 28.99973 0
49.26337 28.83449 0
    UrbanPop | 851 55.46994
ovtEffect | 4,057 49.10154
                                                                                     100
GovtEffect | 4,057
PoliticSta~e | 4,125
                                                                                    100
                                                                         0
                                                                                    100
Click to Open File: Myfile.doc
. *new log variables generated
. gen ln_CorrControl = ln(CorrControl)
(693 missing values generated)
. label var ln_CorrControl "natural log of CorrControl"
. gen ln_Deforestation = ln(Deforestation)
(2,809 missing values generated)
. label var ln_Deforestation "natural log of variable Deforestation"
 gen ln_{GDP_{2015}} = ln(GDP_{2015})
(3,986 missing values generated)
. label var ln_GDP_2015 "natural log of variable GDP_2015"
  gen ln_RuralPop = ln(RuralPop)
(3,942 missing values generated)
. label var ln_RuralPop "natural log of RuralPop"
  gen ln_UrbanPop = ln(UrbanPop)
(3,890 missing values generated)
. label var ln_UrbanPop "natural log of UrbanPop"
  gen ln_GovtEffect = ln(GovtEffect)
(705 missing values generated)
. label var ln_UrbanPop "natural log of ln_GovtEffect"
```

gen ln_PoliticStable = ln(PoliticStable)

. label var ln_UrbanPop "natural log of PoliticStable"

(637 missing values generated)

```
*forming histograms
 // histogram CPIscore, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(black%100)
  lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(CPI score) by(,
      legend(on at(
> 23))) name(G1, replace) by(Year, style(econ) imargin(small) cols(4))
. // histogram ln_CorrControl, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(blac
> k%100) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      CorrCont
> rol) by(, legend(on at(23))) name(G2, replace) by(Year, style(econ) imargin(small) cols(4))
  // histogram ln_Deforestation, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(bl
> ack%100) | pattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      Defore
> station) by(, legend(on at(23))) name(G3, replace) by(Year, style(econ) imargin(small) cols(4))
 // histogram ln_GDP_2015, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(black%1
> 00) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      GDP_2015) b
> y(, legend(on at(23))) name(G4, replace) by(Year, style(econ) imargin(small) cols(4))
 // histogram ln_RuralPop, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(black%1
> 00) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      RuralPop) b
> y(, legend(on at(23))) name(G5, replace) by(Year, style(econ) imargin(small) cols(4))
. // histogram ln_urbanPop, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(black%1
> 00) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      UrbanPop) b
> y(, legend(on at(23))) name(G6, replace) by(Year, style(econ) imargin(small) cols(4))
 // histogram ln_GovtEffect, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(black
> %100) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      GovtEffec
> t) by(, legend(on at(23))) name(G7, replace) by(Year, style(econ) imargin(small) cols(4))
  // histogram ln_PoliticStable, fcolor("169 145 234") lcolor("136 114 228") normal
      normopts(lcolor(bl
> ack%100) lpattern(shortdash_dot)) kdensity kdenopts(lcolor("17 0 240")) xtitle(Natural log of
      Politi
> cStable) by(, legend(on at(23))) name(G8, replace) by(Year, style(econ) imargin(small) cols(4))
  // twoway (scatter ln_Deforestation CPIscore, sort mcolor("0 169 24") msize(vsmall)
      msymbol(circle))
   (lfit ln_Deforestation CPIscore, lcolor("0 0 0 %80")), ytitle(Natural log of Deforestation)
      xtitle(
> CPI score) title(Scatter plot of ln_deforestation and CPI score) subtitle((Pooled data))
      name(S1, r
> eplace)
  // twoway (scatter In_Deforestation In_CorrControl, sort mcolor("0 169 24") msize(vsmall)
      msymbol(ci
> rcle)) (lfit ln_Deforestation ln_CorrControl, lcolor("0 0 0 %80")), ytitle(Natural log of
      Deforestat
> ion) xtitle(Natural lof of CorrControl) title(Scatter plot of ln_deforestation and
      ln_CorrControl) s
> ubtitle((Pooled data)) name(S2, replace)
                              **************
                              **********
  *correlation matrix
 asdoc corr CPIscore ln_CorrControl ln_Deforestation ln_GDP_2015 ln_RuralPop ln_UrbanPop
      ln_GovtEffec
> t ln_PoliticStable
```

(File Myfile.doc already exists, option append was assumed) (obs=120)

-		1 1	ln Def~n	1n_~20	15 ln_Rur~	⁄p ln_∪rb~p	ln_Gov~t
	CPIscore	III_Cor~1					
CPIscore n_CorrCon~l n_Defores~n	i 0.7962 i 0.3534	1.0000 -0.0107					
ln_GDP_2015 ln_RuralPop					000 82	00	
ln_UrbanPop n_GovtEff~t	0.5987	0.6144					
n_GOVTETT~t n_Politic~e			0.1677		69 -0.595		
lick to Open	n File: Myf	ile.doc					
******CPI s *pooled met reg ln_Defo	hod using O		r				
inear regres	ssion				Number of	obs =	1,700
						=	
					Prob > F R-squared	=	
					Root MSE	=	2.3694
	 	Robu	 ust				
	Coefficie 						
CPIscore _cons		1 .0022 5 .1122	2896 -19 2196 39	9.58 9.09	0.000 - 0.000	.0493207 4.167092	0403394 4.607298
yreg.doc ir : seeout					1)		
outreg2 usi yreg.doc ir : seeout reg ln_Defo	ing Myreg.do			15, r	Number of F(2, 123) Prob > F R-squared Root MSE	= =	11.23 0.0000
yreg.doc ir : seeout reg ln_Defo inear regres	ing Myreg.do prestation C ssion	PIscore 1	In_GDP_20:	15, r	Number of F(2, 123) Prob > F R-squared Root MSE	= = = =	11.23 0.0000 0.1506 2.0401
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n	orestation Cossion	PIscore T	In_GDP_20: ust err.	15, r t	Number of F(2, 123) Prob > F R-squared Root MSE	= = = = [95% conf.	11.23 0.0000 0.1506 2.0401 interval]
reg.doc ir : seeout reg ln_Defo inear regres n_Defores~n	orestation Cossion	PIscore Tenders	In_GDP_20: ust err. 	15, r t 	Number of F(2, 123) Prob > F R-squared Root MSE	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401 interval]
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n	orestation Cossion	PIscore Tenders	In_GDP_20: ust err. 	15, r t 0.98 1.85 1.04	Number of F(2, 123) Prob > F R-squared Root MSE P> t	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401 interval] .0303807 .8117712 1.411672
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n CPIscore ln_GDP_2015 _cons outreg2 usi yreg.doc ir : seeout	orestation Cossion Coefficie Co	PISCORE TO THE PROPERTY OF T	In_GDP_20: ust err. 2766 (7983 : 0669 -:	t 0.98 1.85 1.04	Number of F(2, 123) Prob > F R-squared Root MSE	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401 interval] .0303807 .8117712 1.411672
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n CPIscore ln_GDP_2015 _cons outreg2 usi yreg.doc ir : seeout reg ln_Defo	restation Cossion Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie	PISCORE TO THE PROPERTY OF T	In_GDP_20: ust err. 2766 (7983 : 0669 -:	t t 0.98 1.85 1.04 Model 2	Number of F(2, 123) Prob > F R-squared Root MSE P> t 0.331 0.066 0.298	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401 interval] .0303807 .8117712 1.411672
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n CPIscore ln_GDP_2015 _cons outreg2 usi yreg.doc ir : seeout	restation Cossion Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie	PISCORE TO THE PROPERTY OF T	In_GDP_20: ust err. 2766 (7983 : 0669 -:	t t 0.98 1.85 1.04 Model 2	Number of F(2, 123) Prob > F R-squared Root MSE P> t 0.331 0.066 0.298 TrbanPop, r Number of F(3, 122)	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n CPIscore ln_GDP_2015 _cons outreg2 usi yreg.doc ir : seeout reg ln_Defo	restation Cossion Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie	PISCORE TO THE PROPERTY OF T	In_GDP_20: ust err. 2766 (7983 : 0669 -:	t t 0.98 1.85 1.04 Model 2	Number of F(2, 123) Prob > F R-squared Root MSE P> t 0.331 0.066 0.298 TrbanPop, r Number of F(3, 122)	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401
reg ln_Deforesan_ CPIscore ln_GDP_2015 _cons outreg2 usiveg.doc ir: seeout	restation Cossion Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie Coefficie	PISCORE TO THE PROPERTY OF T	In_GDP_20: ust err. 2766 (7983 : 0669 -:	15, r t 0.98 1.85 1.04	Number of F(2, 123) Prob > F R-squared Root MSE P> t 0.331 0.066 0.298 1 Dan Pop, r Number of F(3, 122) Prob > F R-squared	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401 interval] .0303807 .8117712 1.411672
yreg.doc ir : seeout reg ln_Defo inear regres n_Defores~n CPIscore ln_GDP_2015 _cons outreg2 usi yreg.doc ir : seeout reg ln_Defo	orestation Cossion Coefficie Coeffi	PIscore To Robint Std. 7 .0102 5 .2112 4 1.510	In_GDP_20:	t 0.98 1.85 1.04 	Number of F(2, 123) Prob > F R-squared Root MSE P> t 0.331 0.066 0.298 TrbanPop, r Number of F(3, 122) Prob > F R-squared Root MSE	= = = = = = = = = = = = = = = = = = =	11.23 0.0000 0.1506 2.0401

+						
CPIscore	.0245856	.0104837	2.35	0.021	.003832	. 0453392
ln_GDP_2015	. 5055253	.2089829	2.42	0.017	.0918228	.9192278
ln_UrbanPop	-1.480165	.2305171	-6.42	0.000	-1.936497	-1.023834
_cons	2.651002	1.367716	1.94	0.055	0565283	5.358533

. outreg2 using Myreg.doc, append ctitle(Model 3)

Myreg.doc dir : seeout

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop, r

Linear regression	Number of obs	=	126
-	F(4, 121)	=	13.71
	Prob > F	=	0.0000
	R-squared	=	0.3071
	Root MSE	=	1.8578

ln_Defores~n	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	.0666268	.0195692	3.40	0.001	.0278843	.1053693
ln_GDP_2015	1.205066	.3594347	3.35	0.001	.4934703	1.916662
ln_UrbanPop	1.76655	1.252606	1.41	0.161	7133142	4.246413
ln_RuralPop	5.959755	2.264977	2.63	0.010	1.475635	10.44387
_cons	-38.82714	16.00265	-2.43	0.017	-70.50861	-7.145678

[.] outreg2 using Myreg.doc, append ctitle(Model 4)

Myreg.doc dir : seeout

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect, r

Linear regression	Number of obs	=	122
-	F(5, 116)	=	19.99
	Prob > F	=	0.0000
	R-squared	-	0.5015
	Root MSE	=	1.5809

ln_Deforest~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	0543042	.0169228	3.21	0.002	.0207865	.0878219
ln_GDP_2015	2.965905	.3831555	7.74	0.000	2.207017	3.724793
ln_UrbanPop	2.019093	1.133867	1.78	0.078	2266728	4.26486
ln_RuralPop	6.757723	1.94469	3.47	0.001	2.90602	10.60943
ln_GovtEffect	-2.34634	.4477751	-5.24	0.000	-3.233215	-1.459465
_cons	-48.89705	13.37498	-3.66	0.000	-75.38788	-22.40623

[.] outreg2 using Myreg.doc, append ctitle(Model 5)

Myreg.doc dir : seeout

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable, r

Linear regression	Number of obs	=	120
-	F(6, 113)	=	16.68
	Prob > F	=	0.0000
	R-squared	=	0.5200
	Root MSE	=	1.5717

| Robust
|In_Deforestation | Coefficient std. err. t P>|t| [95% conf. interval]

+						
CPIscore	.0493187	.0163448	3.02	0.003	.0169366	.0817007
ln_GDP_2015	3.434834	.4351805	7.89	0.000	2.572663	4.297005
ln_UrbanPop	3.030359	1.166548	2.60	0.011	.7192176	5.341501
ln_RuralPop	8.39861	1.969302	4.26	0.000	4.497066	12.30015
<pre>ln_GovtEffect </pre>	-2.835938	.5385964	-5.27	0.000	-3.902994	-1.768881
ln_PoliticStable	.4870606	.2756304	1.77	0.080	059013	1.033134
_cons	-62.27051	13.89544	-4.48	0.000	-89.79989	-34.74113

. outreg2 using Myreg.doc, append ctitle(Model 6)

Myreg.doc dir : seeout

. *entity fixed effects

- . encode country, gen(Country)
- . xtset Country Year

Panel variable: Country (unbalanced)
Time variable: Year, 2000 to 2021, but with gaps
Delta: 1 unit

. xtreg ln_Deforestation CPIscore, fe vce(cluster country)

Fixed-effects (within) regression	Number of obs	=	1700
Group variable: Country	Number of groups		100
R-sq: Within = 0.0003		n =	4
Between = 0.1432		g =	17.0
Overall = 0.1537		x =	21
corr(u_i, Xb) = -0.4132	F(1,99)	=	0.05
	Prob > F	=	0.8164

(Std. err. adjusted for 100 clusters in country)

ln_Defores~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore _cons	.001941 2.340248	.0083375 .3648926	0.23 6.41	0.816 0.000	0146024 1.616222	.0184843 3.064274
sigma_u sigma_e rho	2.5427888 .48637325 .96470499	(fraction	of varian	nce due t	:o u_i)	

. outreg2 using StateOnly.doc, replace ctitle(Model 1) addtext(Country Fixed Effects, Yes) StateOnly.doc

dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	126 9
R-sq: Within = 0.4248 Between = 0.0822 Overall = 0.1277	Obs per group: min = avg = max =	5 14.0 21
corr(u_i, Xb) = -0.5934	F(2,8) = Prob > F =	2.42 0.1505

(Std. err. adjusted for 9 clusters in country)

ln_Defores~n				P> t	-	interval]
CPIscore	F	.0396925	2.20	0.059 0.883	0043382	.1787239 1.490215

_cons	9892446	6.150677	-0.16	0.876	-15.17273	13.19424	
sigma_u sigma_e rho	2.5965971 .46024507 .96953966	(fraction	of varian	ce due t	o u_i)		
. outreg2 usin StateOnly.doc dir : seeout	ng StateOnly.d	oc, append	ctitle(Mo	odel 2) a	ddtext(Countr	y Fixed Eff	Fects, Yes)
xtreg ln_Def	forestation CP	Iscore ln_G	DP_2015 1	n_UrbanP	op, fe vce(cl	uster count	ry)
Fixed-effects Group variable		ession			of obs = of groups =		
	= 0.4450 n = 0.0030 l = 0.0087			Obs per	group: min = avg = max =	5 14.0 21	
corr(u_i, Xb)	= -0.8320			F(3,8) Prob >	= F =	3.11 0.0883	
		(Std.	err. adju	sted for	9 clusters i	n country)	
ln_Defores~n	 Coefficient	Robust std. err.	+	P> t	[95% conf.	interval]	
CPIscore ln_GDP_2015 ln_UrbanPop _cons	.0802412 6500812 3.900921 -11.4971	.0287682 1.385361 5.346 13.46887	2.79 -0.47 0.73 -0.85	0.024 0.651 0.486 0.418	.0139015 -3.844729 -8.426977 -42.55637	.1465809 2.544567 16.22882 19.56217	
sigma_u sigma_e	3.7441999 .45407443 .98550577		of varian	ce due t	o u_i)		
. outreg2 usin StateOnly.doc dir : seeout	ng StateOnly.d	oc, append	ctitle(Mo	del 3) a	ddtext(Countr	y Fixed Eff	^F ects, Yes)
xtreg ln_Def	forestation CP	Iscore ln_G	GDP_2015 T	n_UrbanP	op ln_RuralPo	p, fe vce(d	cluster country)
Fixed-effects Group variable	(within) regr e: Country	ession			of obs = of groups =		
	= 0.4602 n = 0.0005 l = 0.0001			Obs per	group: min = avg = max =	14.0	
corr(u_i, Xb)	= -0.9229			F(4,8) Prob >	= F =		
		(Std.	err. adju	sted for	9 clusters i	n country)	
ln_Defores~n	 Coefficient	Robust std. err.	t	P> t			
CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop _cons	.0814015 4745187 9.443437 3.147619 -46.02238	.0301407 1.375466 6.95447 2.919373 33.53225	2.70 -0.34 1.36 1.08 -1.37	0.027 0.739 0.212 0.312 0.207	.0118969 -3.646348 -6.593599 -3.584467 -123.3479	.150906 2.69731 25.48047 9.879704 31.30312	
sigma_e	5.305052 .44980537 .99286229	(fraction	of varian	ce due t	o u_i)		

[.] outreg2 using StateOnly.doc, append ctitle(Model 4) addtext(Country Fixed Effects, Yes)

. xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect, fe
 vce(cluster co
> untry)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	= 122 = 9
R-sq: Within = 0.4674 Between = 0.0001 Overall = 0.0001	Obs per group: min = avg = max =	= 13.6
corr(u_i, Xb) = -0.9311	F(5,8) = Prob > F	= 5.97 = 0.0136

(Std. err. adjusted for 9 clusters in country)

ln_Deforest~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect _cons	.0805791 2900379 9.885823 3.358563 0720056 -49.75857	.0294422 1.448472 6.742006 3.294022 .3163285 35.84311	2.74 -0.20 1.47 1.02 -0.23 -1.39	0.026 0.846 0.181 0.338 0.826 0.202	.0126853 -3.630221 -5.66127 -4.237465 8014604 -132.4129	.148473 3.050145 25.43292 10.95459 .6574493 32.89578
sigma_u sigma_e rho	5.514593 .45584384 .99321347	(fraction	of variar	nce due t	o u_i)	

. outreg2 using StateOnly.doc, append ctitle(Model 5) addtext(Country Fixed Effects, Yes)
StateOnly.doc
dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable,

> fe vce(cluster country)

Fixed-effects (within) regression	Number of obs =	120
Group variable: Country	Number of groups =	9
R-sq: Within = 0.5261	Obs per group: min =	5
Between = 0.0018	avg =	13.3
Overall = 0.0012	max =	20
corr(u_i, Xb) = -0.9334	F(6,8) = Prob > F =	44.95 0.0000

(Std. err. adjusted for 9 clusters in country)

ln_Deforestation	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable _cons	.0682732 5958014 9.483213 1.962457 3617024 .3181478 -40.14101	.0314823 1.718405 6.707517 3.527832 .3216744 .0889637 39.16271	2.17 -0.35 1.41 0.56 -1.12 3.58 -1.02	0.062 0.738 0.195 0.593 0.293 0.007 0.335	004325 -4.558451 -5.98435 -6.172739 -1.103485 .1129972 -130.4504	.1408715 3.366849 24.95078 10.09765 .38008 .5232984 50.16836
sigma_u sigma_e rho	5.6432319 .42752505 .99429334	(fraction	of varia	nce due 1	to u_i)	

. outreg2 using StateOnly.doc, append ctitle(Model 6) addtext(Country Fixed Effects, Yes)

StateOnly.doc dir : seeout

*time fixed effects

. reg ln_Deforestation CPIscore i.Year

Source	SS	df	MS		ber of obs 1, 1678)	=	1,700 14.74
Model I	1753.77727	21	83.5132031		b > F	=	0.0000
Residual	9510.10404	1,678	5.66752326		guared	=	0.0000
Kesiuuai į	3310.10404	1,076	3.00/32320		R-squared	=	0.1337
To+o1	11263.8813	1 600	6.62971236		•		2.3807
Total	11703.0013	1,699	0.029/1230) KOO	t MSE	=	2.3607
ln_Defores~n	Coofficient	Std onn	 t	P> t	[05% con	£	intervall
		3tu. eii.		P> -	[93% COII		ilicei vaij
CPIscore	0451939	.0025726	-17.57	0.000	0502397	,	040148
. !							
Year	40000=0	4460040			00.00=04		======
2001	1220372	.4460342	-0.27	0.784	9968791		.7528047
2002	1722354	.43729	-0.39	0.694	-1.029927		. 6854559
2003	2617068	.4231376	-0.62	0.536	-1.09164		. 5682262
2004	3175551	.4172508	-0.76	0.447	-1.135942		.5008318
2005	4198419	.4151576	-1.01	0.312	-1.234123		. 3944394
2006	3978318	.4110506	-0.97	0.333	-1.204058		.4083941
2007	4776153	.4083257	-1.17	0.242	-1.278497		.323266
2008	4920065	.4074253	-1.21	0.227	-1.291122		.3071088
2009	4611416	.4092227	-1.13	0.260	-1.263782		.3414991
2010	4479354	.4111374	-1.09	0.276	-1.254332	2	.3584607
2011	3766645	.4057003	-0.93	0.353	-1.172397	,	.4190675
2012	2949889	.4045714	-0.73	0.466	-1.088507	,	.4985289
2013	3098879	.4046013	-0.77	0.444	-1.103464	Ļ	. 4836885
2014	2709927	.4053881	-0.67	0.504	-1.066112	<u> </u>	.5241269
2015	265469	.4053784	-0.65	0.513	-1.06057	,	.5296315
2016	3764521	.4160969	-0.90	0.366	-1.192576	•	.4396715
2017	4388778	.4120047	-1.07	0.287	-1.246975	;	.3692194
2018	4481343	.4120256	-1.09	0.277	-1.256273	}	.3600038
2019 i	4421448	.412012	-1.07	0.283	-1.250256	;	.3659667
2020	4405113	.4120083	-1.07	0.285	-1.248616		.367593
_cons 	4.758875	.3427889	13.88	0.000	4.086536	; 	5.431214

[.] outreg2 using TimeOnly.doc, replace ctitle(Model 1) addtext(Time Fixed Effects, Yes) keep($ln_Defores$

> tation CPIscore)

TimeOnly.doc dir : seeout

. reg ln_Deforestation CPIscore ln_GDP_2015 i.Year

Source	SS	df	MS	Number of obs	= 126 = 1.11
Model Residual	115.316657 487.422918	22 103	5.24166625 4.73226134	Prob > F R-squared	= 0.3514 = 0.1913
Total	602.739575	125	4.8219166	Adj R-squared Root MSE	= 0.0186 = 2.1754
ln_Defores~n	Coefficient	Std. err.	t P	> t [95% co	onf. interval]
CPIscore ln_GDP_2015	.0126422 .3290219	.0141233 .2589122		.37301530 .207184469	
Year 2001 2002 2003 2004 2005 2006	0063546 0236506 .4428511 .41128 .388534 .3812874	1.538239 1.538234 1.408187 1.407963 1.407681 1.407294	-0.02 0 0.31 0 0.29 0 0.28 0	.997 -3.0570 .988 -3.0743 .754 -2.3499 .771 -2.3810 .783 -2.4032 .787 -2.40974	75 3.027074 56 3.235658 82 3.203642 69 3.180337

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020	3956017103908541909073805675 .5705455 .2047874 .2231443 .2213543 .2216157 -1.1756226612332656374864888256483217	1.369364 1.380324 1.369543 1.41262 1.372869 1.346133 1.345713 1.344953 1.546516 1.477273 1.47653 1.47653	-0.29 -0.08 -0.31 -0.27 0.42 0.15 0.17 0.16 -0.76 -0.45 -0.44 -0.44	0.773 0.940 0.760 0.788 0.679 0.879 0.869 0.870 0.449 0.655 0.658 0.661	-3.111412 -2.841455 -3.135256 -3.182167 -2.152216 -2.46495 -2.445761 -2.446042 -2.44477 -4.242771 -3.591057 -3.584724 -3.575665 -3.57664	2.320209 2.633638 2.297074 2.421032 3.293307 2.874525 2.892049 2.888751 2.888002 1.891528 2.26859 2.271974 2.2779
_cons	 -1.100122	2.145198	-0.51	0.609	-5.354617	3.154373

[.] outreg2 using TimeOnly.doc, append ctitle(Model 2) addtext(Time Fixed Effects, Yes)
 keep(ln_Deforest

> ation CPIscore ln_GDP_2015)

TimeOnly.doc dir : seeout

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop i.Year

Source	SS	df	MS			= 126
Model	 187.140872	23	8.13655964		-,,	= 2.00 = 0.0100
Residual	167.140672 415.598703	102	4.07449709		guared =	
Residuai	413.330703 				R-squared =	
Total	602.739575	125	4.8219166		-	= 2.0185
ln_Defores~n	Coefficient	Std. err.	t	P> t	 [95% conf.	interval]
CDTacana	 l .0280337	.0136081	2.06	0.042	.001042	.0550253
CPIscore ln_GDP_2015	.4355665	.241582	1.80	0.042	0436102	.9147433
ln_UrbanPop	-1.529759	.364355	-4.20	0.000	-2.252456	807063
III_UI DaliPUP	-1. 323733	.304333	-4.20	0.000	-2.232430	807003
Year						
2001	0092722	1,427337	-0.01	0.995	-2.840389	2.821844
2002	0287616	1.427333	-0.02	0.984	-2.85987	2.802346
2003	.1661457	1.308322	0.13	0.899	-2.428905	2.761197
2004	.1128162	1.308386	0.09	0.931	-2.48236	2.707993
2005	.0786116	1.308276	0.06	0.952	-2.516347	2.67357
2006	.0756556	1.30786	0.06	0.954	-2.518479	2.66979
2007	5672537	1.271295	-0.45	0.656	-3.088861	1.954353
2008	2975592	1.281637	-0.23	0.817	-2.83968	2.244561
2009	6028068	1.271556	-0.47	0.636	-3.124932	1.919319
2010	621767	1.312033	-0.47	0.637	-3.224179	1.980644
2011	. 3764343	1.274728	0.30	0.768	-2.151982	2.904851
2012	.0713131	1.249486	0.06	0.955	-2.407036	2.549662
2013	.1134771	1.248965	0.09	0.928	-2.363839	2.590793
2014	.1204567	1.248217	0.10	0.923	-2.355376	2.596289
2015	.1364324	1.247678	0.11	0.913	-2.338331	2.611196
2016	-1.569713	1.438083	-1.09	0.278	-4.422145	1.282718
2017	9347434	1.372314	-0.68	0.497	-3.656721	1.787234
2018	9101326	1.371409	-0.66	0.508	-3.630316	1.810051
2010	070700	4 27247	0.04	A E33	2 507000	4 020554

-0.64

1.55

-0.64

0.522

0.526

0.124

-3.597998

-3.591546

-.9818855

1.838554

1.847586

8.046478

-.8797222

-.8719795

_cons | 3.532296

1.370447

1.371098

2.275872

TimeOnly.doc
dir : seeout

2019

2020

[.] outreg2 using TimeOnly.doc, append ctitle(Model 3) addtext(Time Fixed Effects, Yes)
 keep(ln_Deforest

> ation CPIscore ln_GDP_2015 ln_UrbanPop)

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop i.Year

Source	SS	df	MS		per of obs =	
+ Model	206.896279	24	8.6206782		i, 101) = 0 > F =	
Residual I	395.843296	101	3.9192405) > F = quared =	
Nesidual			3.9192703		R-squared =	
Total	602.739575	125	4.821916		: MSE =	
10001	0021733373		11021510		-	1.5.5.
ln_Defores~n	Coefficient	Std. err.	 t	 P> t		interval]
Deloies~						
CPIscore	.0657544	.021457	3.06	0.003	.0231895	.1083193
In_GDP_2015	1.102531	.3799861	2.90	0.005	.348741	1.856321
ln_UrbanPop	1.436138	1.368513	1.05	0.296	-1.278623	4.1509
ln_RuralPop	5.444561	2.425051	2.25	0.027	.6339126	10.25521
I						
Year						
2001	.0034199	1.399891	0.00	0.998	-2.773587	2.780426
2002	0000569	1.399933	-0.00	1.000	-2.777148	2.777034
2003	.1927572	1.283209	0.15	0.881	-2.352783	2.738298
2004	.098333	1.283232	0.08	0.939	-2.447254	2.64392
2005	.0492499	1.283175	0.04	0.969	-2.496223	2.594723
2006	.0686116	1.282705	0.05	0.957	-2.475929	2.613152
2007	4734515	1.247538	-0.38	0.705	-2.948232	2.001329
2008	2305433	1.257336	-0.18	0.855	-2.72476	2.263673
2009	5012859	1.247914	-0.40	0.689	-2.976812	1.97424
2010	5843274	1.286901	-0.45	0.651	-3.137193	1.968538
2011	.4407261	1.250533	0.35	0.725	-2.039996	2.921448
2012	.1543781	1.226007	0.13	0.900	-2.27769	2.586447
2013 İ	.2782833	1.227136	0.23	0.821	-2.156024	2.71259
2014	.3179433	1.227361	0.26	0.796	-2.116811	2.752697
2015 İ	.3829081	1.228591	0.31	0.756	-2.054286	2.820102
2016 İ	-1.346677	1.413913	-0.95	0.343	-4.151499	1.458146
2017 i	684228	1.350531	-0.51	0.614	-3.363319	1.994863
2018 İ	5920833	1.352467	-0.44	0.662	-3.275013	2.090847
2019	4863537	1.355455	-0.36	0.720	-3.175213	2.202505
2020 i	4317337	1.358943	-0.32	0.751	-3.127512	2.264044
i						
_cons	-34.69844	17.17394	-2.02	0.046	-68.76692	6299553

[.] outreg2 using TimeOnly.doc, append ctitle(Model 4) addtext(Time Fixed Effects, Yes) keep(ln_Deforest

SS

TimeOnly.doc dir : seeout

Source |

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect i.Year MS

Number of obs =

122

554.55				E(24	. 97)	_	4 54
			42 0456752	•	,	=	4.54
Model	307.576205	24	12.8156752	Prob		=	0.0000
Residual	273.991666	97	2.82465635	R-sq	uared	=	0.5289
+				Adj	R-squared	=	0.4123
Total	581.567871	121	4.80634604	Root	MSE	=	1.6807
ln_Deforest~n	Coefficient	Std. err.	. t	P> t	[95% c	onf.	interval]
	+						
CPIscore	.0492213	.0191021	2.58	0.011	.01130	88	.0871337
ln_GDP_2015	2.809387	.4243851	6.62	0.000	1.96	71	3.651674
ln_UrbanPop		1.196522	1.17	0.246	9781		3.771392
		2.125578	2.67	0.009	1.4525		9.889907
ln_RuralPop							
ln_GovtEffect	-2.417921	.3870202	-6.25	0.000	-3.1860	49	-1.649793
Year							
2002	.0268323	1.188483	0.02	0.982	-2.3319	77	2.385641
2003	.2634571	1.089459	0.24	0.809	-1.8988	17	2.425731
2004	.1046348	1.089425	0.10	0.924	-2.0575		2.266842
		1.089773		0.897			2.02141
2005	1414874		-0.13		-2.3043		
2006	.2291447	1.0893	0.21	0.834	-1.9328	14	2.391103

df

> ation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019	1020025 2780628 0314232 070161 .032201 4019058 0676043 142427 1000267 -1.264072 8639591 7509797 7597619	1.060869 1.06747 1.062184 1.095774 1.063557 1.04446 1.043243 1.044605 1.046025 1.200549 1.147039 1.148723 1.152001	-0.10 -0.26 -0.03 -0.06 0.03 -0.38 -0.06 -0.14 -0.10 -1.05 -0.75 -0.65 -0.66	0.924 0.795 0.976 0.949 0.976 0.701 0.948 0.892 0.924 0.295 0.453 0.515	-2.207533 -2.396695 -2.139565 -2.244969 -2.078665 -2.47487 -2.138153 -2.215679 -2.176097 -3.64683 -3.140515 -3.030877 -3.046166	2.003528 1.840569 2.076718 2.104647 2.143067 1.671059 2.002945 1.930825 1.976044 1.118686 1.412596 1.528918 1.526642
2020 _cons	9822351 -40.59747	1.157655 15.03605	-0.85 -2.70	0.398	-3.27986 -70.43986	1.31539

[.] outreg2 using TimeOnly.doc, append ctitle(Model 5) addtext(Time Fixed Effects, Yes)
 keep(ln_Deforest

TimeOnly.doc
dir : seeout

Source |

SS

. reg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable i.Y

MS

Number of obs =

120

df

> ear

				F(25, 94)	=	4.46
Model 31	15.43433	25 12.6	173732	Prob > F	=	0.0000
Residual 266	6.101279	94 2.83	086467	R-squared	=	0.5424
-				R-squared Adj R-squa	red =	0.4207
Total 581	1.535609	119 4.88	685386	ROOT MSE	=	1.6825
-						
ln_Deforestation	Coefficient	Std. err.	t	P> t	L95% conf	. interval]
CPIscore	.0462179	.019208	2.41	0.018	.00808	.0843559
In_GDP_2015	3.271314	.5077738	6.44	0.000	2.263117	4.279511
ln_UrbanPop	2.481574	1.366594	1.82	0.073	2318302	5.194978
	7.45826	2.388692	3.12	0.002	2.715456	12.20106
ln_GovtEffect	-2.839384	.4652561	-6.10	0.000	-3.76316	-1.915607
ln_PoliticStable	.4522626	.2759085	1.64	0.105	0955602	1.000085
_ i						
Year						
2002	.0720455	1.190103	0.06	0.952	-2.290931	2.435022
2003	.2383123	1.090767	0.22	0.828	-1.92743	2.404055
2004	.0910475	1.090669	0.08	0.934	-2.074502	2.256597
2005	1652219	1.091122	-0.15	0.880	-2.33167	2.001227
2006	.2653666	1.090718	0.24	0.808	-1.90028	2.431014
2007	0816708	1.062104	-0.08	0.939	-2.190503	2.027162
2008	20748	1.069875	-0.19	0.847	-2.331742	1.916782
2009	.0864268	1.065719	0.08	0.936	-2.029582	2.202436
2010	.0464494	1.099224	0.04	0.966	-2.136086	2.228985
2011	.3196163	1.080197	0.30	0.768	-1.82514	2.464372
2012	1127498	1.06208	-0.11	0.916	-2.221536	1.996036
2013	.2619387	1.064893	0.25	0.806	-1.85243	2.376308
2014	.0070785	1.070539	0.01	0.995	-2.118502	2.132658
2015	.1725773	1.074432	0.16	0.873	-1.960732	2.305887
2016	9999699	1.212728	-0.82	0.412	-3.40787	1.40793
2017	5596127	1.164051	-0.48		-2.870863	1.751638
2018	5023858	1.160623	-0.43	0.666	-2.80683	1.802058
2019	5596552	1.160436	-0.48	0.631	-2.863728	1.744417
2020	8172204	1.164338	-0.70	0.484	-3.129042	1.494601
_cons	-55.07355	17.42781	-3.16	0.002	-89.67688	-20.47023

[.] outreg2 using TimeOnly.doc, append ctitle(Model 6) addtext(Time Fixed Effects, Yes)
 keep(ln_Deforest

> ation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect)

> ation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable)

dir : seeout

. *Entity & time fixed effects

. xtreg ln_Deforestation CPIscore i.Year, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	1700 100
R-sq: Within = 0.0207 Between = 0.1191 Overall = 0.1092	Obs per group: min = avg = max =	4 17.0 21
corr(u_i, Xb) = -0.3862	F(21,99) = Prob > F =	0.70 0.8202

(Std. err. adjusted for 100 clusters in country)

ln_Defores~n	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	.0056569	.0078339	0.72	0.472	0098873	.021201
Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017	.009971200266660156052019311602757330397143063487105554780647613057634204382980487948046929904915450498459049845920328682019498	.0227969 .016017 .0348874 .0364593 .0391519 .0362078 .0419091 .0432387 .0424246 .0423934 .0941912 .0939595 .093681 .0944375 .0944191 .0981284	0.44 -0.17 -0.45 -0.53 -0.70 -1.10 -1.51 -1.28 -1.36 -0.47 -0.52 -0.50 -0.52 -0.53 -2.07 -2.08	0.663 0.868 0.656 0.598 0.483 0.275 0.133 0.202 0.130 0.177 0.643 0.605 0.618 0.605 0.619 0.041	0352629 0344478 0848293 0916548 1052592 1115585 1466438 1413427 1489408 1417518 2307257 2352308 2328134 2365391 2371939 3979947 3946647	.0552053 .0291146 .0536189 .0530317 .0501127 .0321298 .0196696 .0302471 .0194182 .0264834 .1430661 .1376412 .1389536 .1389536 .1375021 -0085788
2017 2018 2019 2020	2017436 2007912 2015409 2017454	.0972489 .0972128 .097346	-2.06 -2.07 -2.07	0.042 0.041 0.041	3937541 3944323 3949009	0078283 0086496 0085898
_cons sigma_u sigma_e rho	2.255929 2.5748358 .48443476 .96581273	.3459717 (fraction	6.52 of varia	0.000 nce due 1	1.569446 :o u_i)	2.942411

. outreg2 using StateTime.doc, replace ctitle(Model 1) addtext(Country Fixed Effects, Yes, Time Fixed

> Effects, Yes) keep(ln_Deforestation CPIscore)

StateTime.doc dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015 i.Year, fe vce(cluster country)

Fixed-effects (within) regression	Number of obs =	126
Group variable: Country	Number of groups =	9
R-sq: Within = 0.5003	Obs per group: min =	5
Between = 0.1039	avg =	14.0
Overall = 0.1396	max =	21
corr(u_i, Xb) = -0.7145	F(8,8) = Prob > F =	:

	 	Robust				
ln_Defores~n	Coefficient	std. err.	t	P> t	[95% conf.	interval]
CPIscore	.0857224	.0422147	2.03	0.077	0116248	.1830697
ln_GDP_2015	.3418586	.9644754	0.35	0.732	-1.882226	2.565943
Year						
2001	0428961	.0982013	-0.44	0.674	2693486	.1835565
2002	0790136	.2411548	-0.33	0.752	6351175	. 4770903
2003	3091018	.3023986	-1.02	0.337	-1.006434	.3882306
2004	4507852	.3713081	-1.21	0.259	-1.307023	.4054528
2005	5349078	.3550116	-1.51	0.170	-1.353566	.2837504
2006	5303393	.3276503	-1.62	0.144	-1.285902	.2252237
2007	5738073	.2462055	-2.33	0.048	-1.141558	0060564
2008	5288472	.1962893	-2.69	0.027	9814911	0762033
2009	7226476	.2921313	-2.47	0.038	-1.396304	0489916
2010	6710726	.2723625	-2.46	0.039	-1.299141	0430036
2011	7194718	.3267231	-2.20	0.059	-1.472897	.033953
2012	6790576	.2852704	-2.38	0.045	-1.336892	0212229
2013	5692507	.2454153	-2.32	0.049	-1.135179	0033221
2014	5348171	.2913892	-1.84	0.104	-1.206762	.1371276
2015	4982519	.3124689	-1.59	0.149	-1.218807	.2223028
2016	5298523	.3308687	-1.60	0.148	-1.292837	.2331323
2017	5239194	.3496746	-1.50	0.172	-1.33027	.2824317
2018	4753192	.3418936	-1.39	0.202	-1.263727	.3130889
2019	409465	.3748626	-1.09	0.306	-1.2739	.4549697
2020	4379171	.3327132	-1.32	0.225	-1.205155	.329321
_cons	-4.352402	7.482272	-0.58	0.577	-21.60655	12.90175
sigma_u	2.9325647					
sigma_e	.47195332					
rho	. 9747537	(fraction	of varian	nce due t	o u_i)	

[.] outreg2 using StateTime.doc, append ctitle(Model 2) addtext(Country Fixed Effects, Yes, Time
Fixed E

StateTime.doc dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop i.Year, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	126 9
R-sq: Within = 0.5097 Between = 0.0331 Overall = 0.0421	Obs per group: min = avg = max =	5 14.0 21
corr(u_i, xb) = -0.8459	F(8,8) = Prob > F =	:

ln_Defores~n	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore In_GDP_2015 In_UrbanPop	.0786059 .0913003 3.069454	.0327513 1.275313 6.581423	2.40 0.07 0.47	0.043 0.945 0.653	.0030813 -2.849578 -12.10733	.1541306 3.032178 18.24624
Year 2001 2002 2003 2004 2005 2006 2007 2008	0489213 0849994 325473 4577386 53731 536344 5665005 5168159	.0855709 .2151799 .2895297 .3641516 .3507923 .3309361 .2562466 .2333356	-0.57 -0.40 -1.12 -1.26 -1.53 -1.62 -2.21	0.583 0.703 0.294 0.244 0.164 0.144 0.058 0.058	2462481 5812053 9931296 -1.297474 -1.346239 -1.299484 -1.157406 -1.054889	.1484054 .4112064 .3421836 .3819965 .2716185 .226796 .0244051

> ffects, Yes) keep(ln_Deforestation CPIscore ln_GDP_2015) StateTime.doc

```
.2920117
  2009 | -.7316736
                                        0.037
                                                -1.405054
                                                            -.0582935
                                 -2.51
                    .2929007
  2010 | -.6976347
                                -2.38
                                        0.044
                                                -1.373065
                                                            -.0222045
 2011 | -.7307061
2012 | -.6854032
                    .3221645
                                -2.27
                                        0.053
                                                -1.473619
                                                            .0122065
                                                -1.359242
                     .2922106
                                 -2.35
                                        0.047
                                                            -.0115643
  2013 | -.5939425
                      .24331
                                        0.040
                                 -2.44
                                                -1.155016
                                                            -.0328686
                    .2758182
       | -.5643153
                                                            .0717226
  2014
                                 -2.05
                                        0.075
                                                -1.200353
  2015
       -.5467201
                     .2914963
                                 -1.88
                                        0.098
                                                -1.218912
                                                            .1254716
  2016
       | -.5830817
                     .3065996
                                -1.90
                                        0.094
                                                -1.290102
                                                             .1239383
  2017
       | -.6034337
                     .3380175
                                -1.79
                                        0.112
                                                 -1.382903
                                                             .1760361
       | -.5799021
                                                            .2298189
  2018
                      .351136
                                -1.65
                                        0.137
                                                -1.389623
                                                            . 3694268
  2019
       -.5407266
                     .3946885
                                -1.37
                                        0.208
                                                 -1.45088
 2020 | -.5937235
                                -1.39 0.201
                                                             .3879942
                     .4257224
                                                -1.575441
 _cons | -14.0826
                     20.55734
                               -0.69 0.513
                                               -61.4879
                                                             33.3227
sigma_u | 3.8547017
sigma_e | .46999719
  rho | .98535127 (fraction of variance due to u_i)
```

dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop i.Year, fe vce(cluster country)

Fixed-effects (within) regression	Number of obs =	126
Group variable: Country	Number of groups =	9
R-sq: Within = 0.5132	Obs per group: min =	5
Between = 0.0111	avg =	14.0
Overall = 0.0138	max =	21
corr(u_i, Xb) = -0.8913	F(8,8) = Prob > F =	

ln_Defores~n	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	.0802953	.0336025	2.39	0.044	.0028079	. 1577827
ln_GDP_2015	.0794494	1.255461	0.06	0.951	-2.81565	2.974549
ln_UrbanPop	6.038211	7.427112	0.81	0.440	-11.08874	23.16516
ln_RuralPop	1.696915	2.708423	0.63	0.548	-4.548721	7.94255
Year	0.463006				0540050	4504450
2001	0463096	.0887794	-0.52	0.616	2510352	.1584159
2002	0737687	.2181107	-0.34	0.744	5767329	.4291955
2003	2920736	.2794775	-1.05	0.327	9365498	.3524025
2004	4208589	.350572	-1.20	0.264	-1.229279	.3875615
2005	4956358	.3338211	-1.48	0.176	-1.265429	.274157
2006	489499	.3066066	-1.60	0.149	-1.196535	.217537
2007	5144436	.2215749	-2.32	0.049	-1.025396	0034909
2008	4394573	.162198	-2.71	0.027	8134864	0654281
2009	6786651	. 26347	-2.58	0.033	-1.286228	0711022
2010	6448559	.2606123	-2.47	0.038	-1.245829	043883
2011	6524575	.3243113	-2.01	0.079	-1.400321	.0954058
2012	6109865	.2833508	-2.16	0.063	-1.264395	.0424216
2013	5133379	.2485694	-2.07	0.073	-1.08654	.0598642
2014 İ	4780874	.283062	-1.69	0.130	-1.13083	.1746548
2015 i	4595488	.3046005	-1.51	0.170	-1.161959	.2428614
2016 i	4992287	.3096747	-1.61	0.146	-1.21334	.2148825
2017 i	5256468	.3391911	-1.55	0.160	-1.307823	.2565293
2018	5005217	.3465138	-1.44	0.187	-1.299584	.2985406
2019	4594812	.3829493	-1.20	0.265	-1.342564	.4236014
2020 i	5129869	.4138216	-1.24	0.250	-1.467261	.4412874
				, ,		
_cons	-31.79331	33.25075	-0.96	0.367	-108.4697	44.88305

[.] outreg2 using StateTime.doc, append ctitle(Model 3) addtext(Country Fixed Effects, Yes, Time
Fixed E

> ffects, Yes) keep(ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop)
StateTime.doc

sigma_u | 4.5211484 sigma_e | .47080476 rho | .98927246 (fraction of variance due to u_i)

. outreg2 using StateTime.doc, append ctitle(Model 4) addtext(Country Fixed Effects, Yes, Time
 Fixed E

> ffects, Yes) keep(ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop)
StateTime.doc

dir : seeout

. xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect i.Year, fe vce(cl

> uster country)

Fixed-effects (within) regression Number of obs 122 Group variable: Country Number of groups R-sq: Within = 0.5152Obs per group: min = Between = 0.009513.6 avg = Overall = 0.0084max =20 F(8,8) $corr(u_i, xb) = -0.9139$ Prob > F

(Std. err. adjusted for 9 clusters in country)

ln_Deforest~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	.0784738	.0313266	2.51	0.037	.0062345	.1507131
In_GDP_2015	.2343443	1.399769	0.17	0.871	-2.993529	3.462218
ln_UrbanPop	7.087077	6.111025	1.16	0.280	-7.004972	21.17913
ln_RuralPop	2.005593	2.750171	0.73	0.487	-4.336312	8.347497
ln_GovtEffect	0656981	.2690718	-0.24	0.813	6861788	.5547827
_						
Year						
2002	0782961	.2200416	-0.36	0.731	585713	.4291207
2003	3026574	.282249	-1.07	0.315	9535247	.3482099
2004	436143	.356008	-1.23	0.255	-1.257099	.3848129
2005	5199415	.3514834	-1.48	0.177	-1.330464	.2905807
2006	5083805	. 3123984	-1.63	0.142	-1.228773	.2120114
2007	5344593	.2270309	-2.35	0.046	-1.057993	0109252
2008	4601906	.1623307	-2.83	0.022	8345257	0858554
2009	6986539	.2710722	-2.58	0.033	-1.323747	0735603
2010	6759939	.27122	-2.49	0.037	-1.301428	0505595
2011	6877432	.302704	-2.27	0.053	-1.38578	.0102935
2012	652653	.2566489	-2.54	0.035	-1.244487	0608195
2013	5506907	.2344161	-2.35	0.047	-1.091255	0101262
2014	5223719	. 2664624	-1.96	0.086	-1.136835	.0920917
2015	5105495	. 2957843	-1.73	0.123	-1.192629	.1715303
2016	5668701	. 3405245	-1.66	0.135	-1.352121	.2183808
2017	596612	.3573236	-1.67	0.134	-1.420602	.2273777
2018	5764382	. 3471938	-1.66	0.135	-1.377068	.2241921
2019	5442953	. 3863685	-1.41	0.197	-1.435263	.3466722
2020	6067832	.4130563	-1.47	0.180	-1.559293	.3457265
_cons	-37.95297	29.34224	-1.29	0.232	-105.6163	29.71035
sigma_u	 4.9884956					
sigma_e	.47910727					
rho	.99086016	(fraction	of variar	nce due	to u_i)	

[.] outreg2 using StateTime.doc, append ctitle(Model 5) addtext(Country Fixed Effects, Yes, Time Fixed E

dir : seeout

.

> ffects, Yes) keep(ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect) StateTime.doc

- . xtreg ln_Deforestation CPIscore ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable
- > i.Year, fe vce(cluster country)

```
Fixed-effects (within) regression
                                               Number of obs
                                                                          120
                                               Number of groups =
Group variable: Country
R-sq: Within = 0.5724
                                               Obs per group: min =
       Between = 0.0065
                                                                         13.3
                                                              avg =
      overall = 0.0030
                                                                           20
                                                              max =
                                               F(8,8)
corr(u_i, xb) = -0.9158
                                               Prob > F
```

(Std. err. adjusted for 9 clusters in country)

	 '					
ln_Deforestation	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
CPIscore	.072404	.0310436	2.33	0.048	.0008174	.1439907
ln_GDP_2015	9870212	1.810525	-0.55	0.601	-5.162099	3.188057
ln_UrbanPop	8.094193	6.709692	1.21	0.262	-7.378386	23.56677
ln_RuralPop	1.393108	3.207153	0.43	0.675	-6.0026	8.788816
<pre>ln_GovtEffect</pre>	3123482	.3093322	-1.01	0.342	-1.025669	.4009731
ln_PoliticStable	.3709231	.1468897	2.53	0.036	.0321948	.7096514
Year] [
2002	0147252	.1604245	-0.09	0.929	3846647	.3552143
2003	30007	.2495279	-1.20	0.264	8754825	.2753425
2004	3763656	.3309712	-1.14	0.288	-1.139587	.3868554
2005	4200734	.2990953	-1.40	0.198	-1.109788	.2696416
2006	3480908	.2749159	-1.27	0.241	982048	.2858663
2007	3002358	.2091062	-1.44	0.189	7824356	.181964
2008	2166293	.1881354	-1.15	0.283	6504703	.2172118
2009	4137031	.2052331	-2.02	0.079	8869714	.0595652
2010	3680295	.1914737	-1.92	0.091	8095688	.0735097
2011	2287179	.4304527	-0.53	0.610	-1.221344	.7639077
2012	1702125	.4552297	-0.37	0.718	-1.219974	.8795491
2013	0751916	.4439497	-0.17	0.870	-1.098942	.9485583
2014	0577401	. 4947478	-0.12	0.910	-1.198631	1.08315
2015	0073084	.5371415	-0.01	0.989	-1.245959	1.231342
2016	0048343	.7036735	-0.01	0.995	-1.627508	1.61784
2017	0175034	.6621989	-0.03	0.980	-1.544537	1.50953
2018	0622183	.5870771	-0.11	0.918	-1.416021	1.291584
2019	0848642	.5994883	-0.14	0.891	-1.467287	1.297558
2020	2177774	.5866586	-0.37	0.720	-1.570615	1.13506
_cons	 -29.56941	38.06178	-0.78	0.460	-117.34	58.20122
sigma_u	 5.081342					
sigma_e	.44875726					
rho	99226087	(fraction	of varia	nce due 1	to u_i)	

> iticStable)
StateTime.doc
dir : seeout

. ******ln_CorrControl

. reg ln_Deforestation ln_CorrControl, r

Linear regression

Number of obs = 1,808
F(1, 1806) = 357.26
Prob > F = 0.0000
R-squared = 0.1357
Root MSE = 2.3765

^{. *}pooled method using OLS

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% c	onf.	interval]
ln_CorrControl _cons	9627333 5.763946						
. outreg2 using Myreg1.doc, replace ctitle(Model 1) Myreg1.doc dir : seeout							
. reg ln_Defore	station ln_Cor	rControl ln	_GDP_201	5, r			
Linear regressi	nn .		ı	Number of	ohe	_	15/

Linear regression	Number of obs	=	154
_	F(2, 151)	=	43.75
	Prob > F	=	0.0000
	R-squared	=	0.4419
	Root MSE	=	1.6767

ln_Deforesta~n	•	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	•	.1998062	-8.67	0.000	-2.127349	-1.337795
ln_GDP_2015		.1660927	9.29	0.000	1.21424	1.870571
_cons		.9148325	-5.67	0.000	-6.995541	-3.380491

. outreg2 using Myreg1.doc, append ctitle(Model 2)
Myreg1.doc
dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop, r

Lincon regression	Number of obs	_	154
Linear regression	Number of obs	=	134
	F(3, 150)	=	36.17
	Prob > F	-	0.0000
	R-squared	-	0.4832
	Root MSE	=	1.6189

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	-1.620013	.1800735	-9.00	0.000	-1.975821	-1.264205
ln_GDP_2015	1.662502	.1674927	9.93	0.000	1.331552	1.993452
ln_UrbanPop	9228031	.1575633	-5.86	0.000	-1.234133	611473
_cons	-2.920286	.8607212	-3.39	0.001	-4.62099	-1.219583

. outreg2 using Myreg1.doc, append ctitle(Model 3)
Myreg1.doc

dir : seeout

. . reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop, r

Linear regression	Number of obs	=	154
_	F(4, 149)	_	29.71
	Prob > F	_	0.0000
	R-squared	=	0.4857
	Root MSE	=	1.6204

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
In_CorrControl In_GDP_2015 In_UrbanPop	-1.628136	.1839638	-8.85	0.000	-1.991651	-1.264621
	1.463886	.2117458	6.91	0.000	1.045474	1.882298
	-1.513373	.6620969	-2.29	0.024	-2.821685	2050605

ln_RuralPop	9941259	1.004104	-0.99	0.324	-2.978249	.9899971
_cons	4.599465	7.450214	0.62	0.538	-10.12226	19.32119

. outreg2 using Myreg1.doc, append ctitle(Model 4)

Myreg1.doc dir : seeout

reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect, r

Linear regression

Number of obs = 154
F(5, 148) = 30.66
Prob > F = 0.0000
R-squared = 0.5204
Root MSE = 1.57

| Robust | In_Deforesta~n | Coefficient | std. err. | t | P>|t| | [95% conf. interval] | In_CorrControl | -.8903459 | .3418898 | -2.60 | 0.010 | -1.565962 | -.2147298 | In_GDP_2015 | 2.300752 | .380177 | 6.05 | 0.000 | 1.549475 | 3.052028 | In_UrbanPop | -.8904644 | .670366 | -1.33 | 0.186 | -2.21519 | .4342609 | In_RuralPop | .7972436 | 1.12513 | 0.71 | 0.480 | -1.426151 | 3.020638 | In_GovtEffect | -1.314276 | .5249271 | -2.50 | 0.013 | -2.351596 | -.2769557 | _cons | -9.198593 | 8.554243 | -1.08 | 0.284 | -26.10282 | 7.705639

. outreg2 using Myreg1.doc, append ctitle(Model 5)

Myreg1.doc dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStab

> le, r

ln_Deforestation	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable _cons	-1.586084	.4157683	-3.81	0.000	-2.407881	7642868
	2.727293	.4218979	6.46	0.000	1.89338	3.561206
	.4887982	.8697131	0.56	0.575	-1.230255	2.207851
	2.637463	1.400465	1.88	0.062	1306621	5.405587
	-1.439234	.5467845	-2.63	0.009	-2.519995	3584738
	.7277233	.3076147	2.37	0.019	.1196997	1.335747
	-24.26331	10.89345	-2.23	0.027	-45.79503	-2.731576

. outreg2 using Myreg1.doc, append ctitle(Model 6)
Myreg1.doc

dir : seeout

. *entity fixed effects . xtset Country Year

Panel variable: Country (unbalanced)

Time variable: Year, 2000 to 2021, but with gaps

Delta: 1 unit

. xtreg ln_Deforestation ln_CorrControl, fe vce(cluster country)

Fixed-effects (within) regression Number of obs = 1808 Group variable: Country Number of groups = 101

```
R-sq: Within = 0.0038
                                         Obs per group: min =
      Between = 0.1577
                                                                17.9
                                                      avg =
      overall = 0.1357
                                                      max =
                                                                 20
                                         F(1,100)
                                                                1.75
corr(u_i, xb) = -0.4009
                                         Prob > F
                                                              0.1893
                           (Std. err. adjusted for 101 clusters in country)
                          Robust
In_Deforesta~n | Coefficient std. err. t P>|t| [95% conf. interval]
sigma_u | 2.5815772
      sigma_e | .49074276
rho | .96512446 (fraction of variance due to u_i)
. outreg2 using StateOnly1.doc, replace ctitle(Model 1) addtext(Country Fixed Effects, Yes)
StateOnly1.doc
dir: seeout
. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015, fe vce(cluster country)
Fixed-effects (within) regression
                                         Number of obs
                                                                 154
Group variable: Country
                                         Number of groups =
R-sq: Within = 0.1512
                                         Obs per group: min =
      Between = 0.1227
                                                      avg =
                                                                17.1
      overall = 0.0928
                                                      max =
                                                                20
                                         F(2.8)
                                                                2.25
corr(u_i, xb) = -0.6386
                                         Prob > F
                                                              0.1673
                            (Std. err. adjusted for 9 clusters in country)
                         Robust
In_Deforesta~n | Coefficient std. err. t P>|t| [95% conf. interval]
3.997347
                                                             12.72059
     sigma_u | 2.6768382
      sigma_e | .60428261
        rho | .95151031 (fraction of variance due to u_i)

    outreg2 using StateOnly1.doc, append ctitle(Model 2) addtext(Country Fixed Effects, Yes)

StateOnly1.doc
dir : seeout
. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop, fe vce(cluster country)
Fixed-effects (within) regression
                                         Number of obs
Group variable: Country
                                         Number of groups =
R-sq: Within = 0.2697
                                         Obs per group: min =
                                                                17.1
      Between = 0.0000
                                                      avg =
      overall = 0.0026
                                                      max =
                                                                 20
                                         F(3.8)
                                                                0.86
corr(u_i, xb) = -0.8885
                                         Prob > F
                                                              0.5009
                            (Std. err. adjusted for 9 clusters in country)
                          Robust
In_Deforesta~n | Coefficient std. err. t P>|t| [95% conf. interval]
```

	L					
ln_CorrControl ln_GDP_2015 ln_UrbanPop _cons	.1331161 .043588 6.515204 -24.67997	.2670027 1.267021 6.397458 20.03494	0.50 0.03 1.02 -1.23	0.632 0.973 0.338 0.253	4825932 -2.878169 -8.237361 -70.88063	.7488255 2.965345 21.26777 21.5207
sigma_u sigma_e rho	4.6339102 .56250146 .9854789	(fraction	of varia	nce due t	:o u_i)	

. outreg2 using StateOnly1.doc, append ctitle(Model 3) addtext(Country Fixed Effects, Yes) StateOnly1.doc $\,$

dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	154 9
R-sq: Within = 0.3295 Between = 0.0153 Overall = 0.0097	Obs per group: min = avg = max =	5 17.1 20
corr(u_i, Xb) = -0.7199	F(4,8) = Prob > F =	1.64 0.2557

(Std. err. adjusted for 9 clusters in country)

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop _cons	.3199468 4964465 8830979 -5.285386 27.08182	.1764131 1.503899 4.860641 4.282854 32.27658	1.81 -0.33 -0.18 -1.23 0.84	0.107 0.750 0.860 0.252 0.426	0868625 -3.964444 -12.09176 -15.16166 -47.34812	.7267561 2.971551 10.32556 4.590892 101.5118
sigma_u sigma_e rho	3.1305245 .54089141 .9710125	(fraction	of varia	nce due t	o u_i)	

. outreg2 using StateOnly1.doc, append ctitle(Model 4) addtext(Country Fixed Effects, Yes)
StateOnly1.doc

dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect, fe vce(clus

> ter country)

Fixed-effects (within) regression Group variable: Country	Number of obs Number of groups	=	154 9
R-sq: Within = 0.3431 Between = 0.0092 Overall = 0.0043	Obs per group: mir avg max	j =	5 17.1 20
corr(u_i, Xb) = -0.7560	F(5,8) Prob > F	=	7.93 0.0058

ln_Deforesta~n	 Coefficient 	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	.3910983	.1630226	2.40	0.043	.0151675	.7670292
ln_GDP_2015	3138476	1.499891	-0.21	0.839	-3.772603	3.144908
ln_UrbanPop	.3830955	5.406794	0.07	0.945	-12.08499	12.85118
ln_RuralPop	-4.357071	4.626577	-0.94	0.374	-15.02598	6.311834

<pre>ln_GovtEffect _cons </pre>	2933524 18.03546	.35047 37.25589		0.427 0.641	-1.101538 -67.87678	.514833 103.9477
sigma_u sigma_e rho	3.3086774 .53725791 .97431059	(fraction	of varia	nce due t	:o u_i)	

. outreg2 using StateOnly1.doc, append ctitle(Model 5) addtext(Country Fixed Effects, Yes) StateOnly1.doc dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticSt

> able, fe vce(cluster country)

Fixed-effects (within) regression	Number of obs =	151
Group variable: Country	Number of groups =	9
R-sq: Within = 0.4252	Obs per group: min =	5
Between = 0.0009	avg =	16.8
Overall = 0.0000	max =	20
corr(u_i, Xb) = -0.8379	F(6,8) = Prob > F =	28.55 0.0001

(Std. err. adjusted for 9 clusters in country)

ln_Deforestation	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable _cons	.1636526 405812 2.656527 -3.739221 5432901 .3615128 8.032215	.1666748 1.491769 6.022848 4.462416 .3712767 .0762038 40.15508	0.98 -0.27 0.44 -0.84 -1.46 4.74 0.20	0.355 0.792 0.671 0.426 0.182 0.001 0.846	2207001 -3.845838 -11.23219 -14.02957 -1.399456 .1857864 -84.56556	.5480053 3.034214 16.54524 6.551127 .3128754 .5372392 100.63
sigma_u sigma_e rho	3.9668428 .50207596 .98423308	(fraction	of varia	nce due t	:o u_i)	

. outreg2 using StateOnly1.doc, append ctitle(Model 6) addtext(Country Fixed Effects, Yes) StateOnly1.doc

dir : seeout

- . *time fixed effects
- . reg ln_Deforestation ln_CorrControl i.Year

Source 	SS 1605.06722 10195.5015 11800.5687	df 20 1,787 1,807	MS 80.2533609 5.70537297 6.53047521	F(20, Prob > R-squa	F red squared	= = = = =	1,808 14.07 0.0000 0.1360 0.1263 2.3886
ln_Deforesta~n	 Coefficient	Std. eri	r. t	P> t	[95%	conf.	interval]
ln_CorrControl	9636749	.0574963	3 -16.76	0.000	-1.076	442	8509078
Year	 						
2002	.0038804	.3541086	0.01	0.991	69	063	.6983908
2003	0053796	.3541086	6 -0.02	0.988	6998	901	.689131
2004	036976	.3550918	3 -0.10	0.917	7334	149	.6594629
2005	0006857	.3550931	1 -0.00	0.998	697	127	.6957557
2006	009521	.3550958	0.03	0.979	6869	257	.7059678
2007	.0307173	.3551048	3 0.09	0.931	6657	471	.7271818
2008	.0471219	.3551149	0.13	0.894	6493	623	. 743606

2009 2010 2011 2012 2013 2014 2015 2016 2017	.0420814 .0400214 .1160591 .113903 .119501 .1045974 .0994521 .0241369 0047511	.3551115 .3551102 .3503795 .3503782 .3503817 .3503732 .34947 .3592275	0.12 0.11 0.33 0.33 0.34 0.30 0.28 0.07	0.906 0.910 0.741 0.745 0.733 0.765 0.776 0.946 0.989	6543962 6564536 5711376 5732912 5676999 5825869 5859607 6804132 7092855	.7385589 .7364964 .8032558 .8010972 .8067019 .7917817 .784865 .7286871 .6997832
2017 2018	0047511 .0221055	.3592195 .3603237	-0.01 0.06	0.989 0.951	7092855 6845947	.6997832 .7288056
2018	0121933	.3592187	-0.03	0.931	7167263	.6923396
2020	.0068078	.3592217	0.02	0.985	6977309	.7113466
_cons	5.72997	.3221562	17.79	0.000	5.098128	6.361813

. outreg2 using TimeOnly1.doc, replace ctitle(Model 1) addtext(Time Fixed Effects, Yes) keep(ln_Defore
> station ln_CorrControl)

TimeOnly1.doc dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 i.Year

Source	SS	df	MS	Number F(21.		=	154 5.24
Model Residual	345.977597 414.679544	21 132	16.4751237 3.1415117	Prob´> R-squa	F red	=	0.0000 0.4548
Total	760.657141	153	4.9716153	Adj R-S Root MS		=	0.3681 1.7724
ln_Deforesta~n	Coefficient	Std. err	. t	P> t	[95%	conf.	interval]
ln_CorrControl ln_GDP_2015	-1.743444 1.553983	.1986338 .1518692		0.000 0.000	-2.136 1.253		-1.350527 1.854396
Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018	0358954 1199614 1181647 3311196 5630877 2646023 3248026 556251 5503691 4338472 3061649 268878 5552166 5945744 6520009 7449712 8385324	. 9207341 . 9200489 . 9201639 . 9186676 . 9176572 . 9192776 . 9188807 . 9177217 . 9178096 . 8933051 . 8935427 . 893651 . 893651 . 8933324 . 988557 . 9879436	-0.13 -0.13 -0.36 -0.61 -0.29 -0.35 -0.61 -0.60 -0.49 -0.30 -0.62 -0.67 -0.66 -0.75 -0.85	0.969 0.896 0.898 0.719 0.541 0.774 0.724 0.555 0.628 0.732 0.764 0.535 0.507 0.511 0.452 0.359	-1.857 -1.939 -1.93 -2.148 -2.378 -2.083 -2.142 -2.375 -2.365 -2.200 -2.073 -2.365 -2.360 -2.607 -2.699 -2.791	9909 8834 8335 3304 8024 2439 1595 6887 8883 8681 6608 2228 6674 7464 9221 1673	1.785408 1.699986 1.70201 1.486096 1.252129 1.55382 1.492834 1.259093 1.265149 1.333199 1.461351 1.498852 1.211795 1.172525 1.303462 1.209279 1.114608
2019 2020	9077135 8286439	.9870389 .9874216	-0.92	0.359	-2.860 -2.781	174	1.044747 1.124574

[.] outreg2 using TimeOnly1.doc, append ctitle(Model 2) addtext(Time Fixed Effects, Yes) keep(ln_Defores

-6.982911 -2.658714

dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop i.Year

Source	SS	df	MS	Number of obs	=	154
+				F(22, 131)	=	5.87

> tation ln_CorrControl ln_GDP_2015)
TimeOnly1.doc

Model Residual 	377.466089 383.191052 760.657141	131 2.9	1575495 2512254 9716153	Prob > R-squan Adj R-s Root MS	red = squared =	0.0000 0.4962 0.4116 1.7103
ln_Deforesta~n	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl ln_GDP_2015 ln_UrbanPop	-1.624338 1.670178 9266889	.1950782 .150764 .2824425	-8.33 11.08 -3.28	0.000 0.000 0.001	-2.010249 1.371931 -1.485428	-1.238427 1.968425 3679502
Year 2002 2003	 028562 1067638	.8884609 .887806	-0.03 -0.12	0.974 0.904	-1.78615 -1.863056	1.729026 1.649528
2004 2005 2006	1064675 3067972 5239399	.887915 .8864949 .8855694	-0.12 -0.35 -0.59	0.905 0.730	-1.862975 -2.060496 -2.275807	1.65004 1.446901 1.227928
2007 2008	2468016 299289	.8870692 .8867037	-0.28 -0.34	0.555 0.781 0.736	-2.001636 -2.0534	1.508033 1.454823
2009 2010 2011	5092867 5076227 3610099	.8856669 .8857319 .8622764	-0.58 -0.57 -0.42	0.566 0.568 0.676	-2.261347 -2.259812 -2.066798	1.242774 1.244566 1.344778
2012 2013 2014	2380937 2005535 4709247	.8624694 .8625757 .8623565	-0.28 -0.23 -0.55	0.783 0.817 0.586	-1.944264 -1.906934 -2.176872	1.468077 1.505827 1.235022
2015 2016 2017	5065059 6705384 7566211	.8624347 .9539201 .9533182	-0.59 -0.70 -0.79	0.558 0.483 0.429	-2.212608 -2.55762 -2.642512	1.199596 1.216543 1.12927
2018 2019 2020	8405559 9014537 8184692	.9527704 .9524405 .9528128	-0.88 -0.95 -0.86	0.379 0.346 0.392	-2.725363 -2.785608 -2.70336	1.044251 .9827007 1.066422
_cons	-2.559912 	1.25986	-2.03	0.044	-5.052216	0676092

[.] outreg2 using TimeOnly1.doc, append ctitle(Model 3) addtext(Time Fixed Effects, Yes) keep(ln_Defores

TimeOnly1.doc dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop i.Year

Source Model Residual	SS 380.59156 380.065581		MS .5474591 92358139	Number F(23, 1 Prob > R-squar Adj R-s	.30) F 'ed	= = = =	154 5.66 0.0000 0.5003 0.4119
Total	760.657141	153 4	.9716153	Root MS	Ē	=	1.7098
ln_Deforesta~n	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
ln_CorrControl	-1.633861	.1952442	-8.37	0.000	-2.020	128	-1.247594
	i 1.412839	.2909692	4.86	0.000	.8371	916	1.988487
ln_UrbanPop	-1.692342	.7925206	-2.14	0.035	-3.260	249	1244345
ln_RuralPop	-1.287121	1.244856	-1.03	0.303	-3.749	921	1.175678
•	ĺ						
Year							
2002	0300425	.888228	-0.03	0.973	-1.787	295	1.72721
2003	1104056	.8875791	-0.12	0.901	-1.866	375	1.645564
2004	1104343	.8876893	-0.12	0.901	-1.866	621	1.645753
2005	3119644	.8862755	-0.35	0.725	-2.065	354	1.441426
2006	5309418	.885362	-0.60	0.550	-2.282	525	1.220641
2007	2516568	. 8868479	-0.28	0.777	-2.006	179	1.502866
2008	3097539	. 8865279	-0.35	0.727	-2.063	643	1.444136
2009	5290746	.8856403	-0.60	0.551	-2.281	208	1.223059
2010	5244776	.8856486	-0.59	0.555	-2.276	627	1.227672
2011	3606678	.8620493	-0.42	0.676	-2.066	129	1.344794
2012	2448507	.862267	-0.28	0.777	-1.950	743	1.461041
2013	2137045	.8624422	-0.25	0.805	-1.919	943	1.492534

> tation ln_CorrControl ln_GDP_2015 ln_UrbanPop)

2014	4848006	.8622338	-0.56	0.575	-2.190627	1.221026
2015	5236272	.8623665	-0.61	0.545	-2.229716	1.182462
2016	7127977	.9545442	-0.75	0.457	-2.601249	1.175654
2017	8022447	.9540879	-0.84	0.402	-2.689794	1.085304
2018	8928704	.9538622	-0.94	0.351	-2.779973	.9942319
2019	9608	.9539179	-1.01	0.316	-2.848012	.9264126
2020	8910056	.9551417	-0.93	0.353	-2.780639	. 998628
I						
_cons	7.195768	9.519032	0.76	0.451	-11.6365	26.02803

[.] outreg2 using TimeOnly1.doc, append ctitle(Model 4) addtext(Time Fixed Effects, Yes)
 keep(ln_Defores

> tation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop)

TimeOnly1.doc dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect i.Year

Source	SS	df	MS		of obs	=	154
				F(24,		=	6.27
Mode]	409.422773		7.0592822	Prob >		=	0.0000
Residual	351.234368	129 2.	72274704	R-squa		=	0.5382
					squared	=	0.4523
Total	760.657141	153 4	.9716153	Root M	SE	=	1.6501
ln_Deforesta~n	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
ln ConnContnol	-+ 8327806	.3100081	-2.69	0.008	-1.446	120	219422
ln_CorrControl	1 2.289328	.3890978		0.008	1.519		3.059167
In_GDP_2013	1 -1.055352	.789469	5.88 -1.34	0.000	-2.617		.506632
ln_RuralPop	1 403665	1.331789	0.44 -3.25	0.662 0.001	-2.051 -2.255		3.218451
ln_GovtEffect	-1.402665	.4310486	-3.25	0.001	-2.255	505	549825
Year	¦						
2002	i2820769	.860669	-0.33	0.744	-1.984	932	1.420778
2003	3742261	.8603791	-0.43	0.664	-2.076		1.328055
2004	3866487	.8608522	-0.45	0.654	-2.089		1.316568
2005	6244518	.8606668	-0.73	0.469	-2.327		1.078399
2006	6779525	.8556047	-0.79	0.430	-2.370		1.014882
2007	i5375851	.8603439	-0.62	0.533	-2.239		1.164626
2008	i5233962	.8580518	-0.61	0.543	-2.221		1.17428
2009	6297864	.85524	-0.74	0.463	-2.3		1.062327
2010	6811141	.8560421	-0.80	0.428	-2.374	814	1.012586
2011	i4695345	.8325859	-0.56	0.574	-2.116	826	1.177757
2012	i6037298	.8394001	-0.72	0.473	-2.264	503	1.057044
2013	i467482	.8359385	-0.56	0.577	-2.121	407	1.186443
2014	i6659544	.8339517	-0.80	0.426	-2.315	948	.9840394
2015	i6986062	. 833955	-0.84	0.404	-2.348	607	.9513942
2016	-1.018181	.925943	-1.10	0.274	-2.850	182	.8138196
2017	-1.117174	.925807	-1.21	0.230	-2.948	906	.7145573
2018	-1.141946	.9236936	-1.24	0.219	-2.969	497	.6856042
2019	-1.206893	.9236717	-1.31	0.194	-3.0	344	.6206138
2020	-1.281873	.9295449	-1.38	0.170	-3.	121	.5572547
	1						
_cons	-6.954423	10.16349	-0.68	0.495	-27.06	313	13.15428

[.] outreg2 using TimeOnly1.doc, append ctitle(Model 5) addtext(Time Fixed Effects, Yes)
 keep(ln_Defores

dir : seeout

. reg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStab

> le i.Year

Source | SS df MS Number of obs = 151 ------ F(25, 125) = 6.86

> tation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect)
TimeOnly1.doc

Residual 32	39.781939 20.573555 50.355494	125 2.56	912776 458844 903663	Prob > F R-squared Adj R-squar Root MSE	= = red = =	0.0000 0.5784 0.4941 1.6014
ln_Deforestation	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
In_CorrControl In_GDP_2015 In_UrbanPop In_RuralPop In_GovtEffect In_PoliticStable Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017	-1.574421 -1.574421 2.675694 .3110153 2.356556	.3769043 .4195874 .9134234 1.508651 .4502198 .2432923 .8678404 .8678271 .8688196 .8690505 .8692831 .8683228 .8681886 .8700209 .8694968 .8550531 .8623654 .8623654 .8724045 .8739356 .9411646 .9399561	-4.18 6.38 0.34 1.56 -3.25 2.99 -0.62 -0.76 -0.65 -0.98 -1.08 -0.84 -1.01 -1.04 -0.63 -0.56 -0.39 -0.71 -0.66 -0.91	0.000 0.000 0.734 0.121 0.001 0.003 0.539 0.451 0.519 0.328 0.283 0.393 0.401 0.312 0.301 0.532 0.574 0.698 0.479 0.511	-2.320361 1.845278 -1.496763 6292512 -2.355905 .2449222 -2.252753 -2.373269 -2.281322 -2.573102 -2.658439 -2.463219 -2.449144 -2.604535 -2.623481 -2.228044 -2.192512 -2.042157 -2.346695 -2.305334 -2.7206266 -2.85278	28284806 3.506109 2.118794 5.342364 5738233 1.207933 1.182375 1.061806 1.157681 .866816 .7823999 .9738185 .9873624 .8392236 .8182028 1.156468 1.220944 1.372102 1.106499 1.15392 1.004737
2018 2019 2020	-1.150935 -1.286172 -1.335787	.9347223 .9333254 .9365409	-1.23 -1.38 -1.43	0.221 - 0.171 -	-3.133339 -3.189317	.6989966 .5609945 .5177441
_cons	-21.35969	11.70646	-1.82	0.070 -	-44.52822	1.808847

> tation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticStable) TimeOnly1.doc

dir : seeout

. *Entity & time fixed effects

. xtreg ln_Deforestation ln_CorrControl i.Year, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	1808 101
R-sq: Within = 0.0174 Between = 0.1402 Overall = 0.0884	Obs per group: min = avg = max =	5 17.9 20
corr(u_i, Xb) = -0.3381	F(20,100) = Prob > F =	0.66 0.8591

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	.0839617	.0578623	1.45	0.150	0308355	.1987589
Year						
2002	0003381	.0039994	-0.08	0.933	0082728	.0075966
2003	.0004687	.0041377	0.11	0.910	0077404	.0086778
2004	.0047739	.0055937	0.85	0.395	006324	.0158717
2005	.001612	.0046063	0.35	0.727	0075267	.0107507
2006	.0007227	.0046556	0.16	0.877	0085138	.0099592
2007	001124	.0056203	-0.20	0.842	0122746	.0100265

2008	0025533	.0061423	-0.42	0.679	0147395	.0096329
2009	0021141	.0060117	-0.35	0.726	0140412	.0098129
2010	0019347	.0058402	-0.33	0.741	0135215	.0096522
2011	.0317039	.1009849	0.31	0.754	1686473	.2320552
2012	.0318918	.1009489	0.32	0.753	1683879	.2321715
2013	.0314041	.1010513	0.31	0.757	1690788	.231887
2014	.0327026	.1006574	0.32	0.746	1669988	.2324039
2015	.03126	.1000894	0.31	0.755	1673144	.2298345
2016	1207505	.0970455	-1.24	0.216	3132859	.0717849
2017	1182336	.0970942	-1.22	0.226	3108656	.0743984
2018	1203258	.0974177	-1.24	0.220	3135997	.0729481
2019	1175852	.0971302	-1.21	0.229	3102886	.0751183
2020	1192407	.0969486	-1.23	0.222	3115839	.0731026
I						
_cons	2.056015	.2083831	9.87	0.000	1.642589	2.469441
sigma_u	2.5833655					
sigma_e	.49013825					
rho i	.96525383	(fraction	of variar	nce due t	to u_i)	

. outreg2 using StateTime1.doc, replace ctitle(Model 1) addtext(Country Fixed Effects, Yes, Time Fixed

> Effects, Yes) keep(ln_Deforestation ln_CorrControl)

StateTime1.doc dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 i.Year, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	154 9
R-sq: Within = 0.1852 Between = 0.1466 Overall = 0.1113	Obs per group: min = avg = max =	5 17.1 20
corr(u_i, Xb) = -0.8244	F(8,8) = Prob > F =	

(Std. err. adjusted for 9 clusters in country)

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
1- Component	+ .1063108	.2099166	 0.51	 0.626	 3777578	.5903794
<pre>ln_CorrControl ln_GDP_2015</pre>	.1063108 2.174778	1.322544	1.64	0.020	8750127	5.224569
111_GDP_2013	2.1/4//0 	1.322344	1.04	0.139	0/3012/	3.224309
Year	i I					
2002	240728	. 2267454	-1.06	0.319	7636037	.2821478
2003	3007031	.2362086	-1.27	0.239	845401	.2439949
2004	i3800681	.2390072	-1.59	0.150	9312197	.1710834
2005	4507435	.2599661	-1.73	0.121	-1.050226	.1487395
2006	5078387	.2971995	-1.71	0.126	-1.193182	.1775045
2007	5930296	.3018453	-1.96	0.085	-1.289086	.103027
2008	6089222	.3226863	-1.89	0.096	-1.353038	.1351938
2009	5925762	.336567	-1.76	0.116	-1.368701	.1835486
2010	6863287	.3629734	-1.89	0.095	-1.523347	.1506895
2011	5574707	.3987364	-1.40	0.200	-1.476958	.362017
2012	5449388	. 3544359	-1.54	0.163	-1.362269	.2723917
2013	5382606	. 3330722	-1.62	0.145	-1.306326	.2298053
2014	5768979	.3589786	-1.61	0.147	-1.404704	.2509083
2015	6173086	.3717203	-1.66	0.135	-1.474497	.23988
2016	6341599	. 4998425	-1.27	0.240	-1.786799	. 518479
2017	6801841	.5150017	-1.32	0.223	-1.86778	.5074119
2018	6993546	.5357131	-1.31	0.228	-1.934711	. 536002
2019	717283	. 5505746	-1.30	0.229	-1.98691	.5523443
2020	6860545	. 5179646	-1.32	0.222	-1.880483	.5083741
		10 0100=		0.464	40.0040=	
_cons	-16.38016 	10.61625	-1.54 	0.161	-40.86127	8.100955
sigma_u	3.5788884		_		·	

sigma_u | 3.5788884 sigma_e | .63580693

. outreg2 using StateTime1.doc, append ctitle(Model 2) addtext(Country Fixed Effects, Yes, Time Fixed

> Effects, Yes) keep(ln_Deforestation ln_CorrControl ln_GDP_2015)

StateTime1.doc dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop i.Year, fe vce(cluster country)

Fixed-effects (within) regression

Group variable: Country

R-sq: Within = 0.3454

Between = 0.0282

Overall = 0.0104

Corr(u_i, Xb) = -0.9485

Number of obs = 154

Number of obs = 9

Obs per group: min = 5

avg = 17.1

max = 20

F(8,8) = .

Prob > F = .

(Std. err. adjusted for 9 clusters in country)

	 	Robust				
ln_Deforesta~n	Coefficient	std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	1170418	.29106	-0.40	0.698	7882272	.5541437
ln_GDP_2015	1.649394	1.461195	1.13	0.292	-1.720127	5.018915
ln_UrbanPop	8.099315	6.826484	1.19	0.269	-7.642586	23.84121
Year						
2002	1423267	.0640865	-2.22	0.057	2901104	.0054571
2003	2490957	.0830639	-3.00	0.017	4406414	0575499
2004	3587568	.1309851	-2.74	0.025	6608091	0567045
2005	4848398	.2036489	-2.38	0.044	954455	0152246
2006	6009836	.2872318	-2.09	0.070	-1.263341	.0613741
2007	6755635	.2926225	-2.31	0.050	-1.350352	0007749
2008	7411414	. 3604972	-2.06	0.074	-1.572449	.0901666
2009	8025317	.4376211	-1.83	0.104	-1.811688	.2066244
2010	91234	.4880623	-1.87	0.099	-2.037814	.2131338
2011	7891931	.4199951	-1.88	0.097	-1.757704	.1793173
2012	7839737	.3773518	-2.08	0.071	-1.654149	.086201
2013	7921884	.3575211	-2.22	0.058	-1.616634	.0322568
2014	8662241	. 3883404	-2.23	0.056	-1.761739	.0292905
2015	9441784	.4181925	-2.26	0.054	-1.908532	.0201753
2016	9993171	.5056132	-1.98	0.084	-2.165263	.166629
2017	-1.089702	. 5465402	-1.99	0.081	-2.350026	.1706216
2018	-1.16249	.6008386	-1.93	0.089	-2.548026	.2230465
2019	-1.232266	.6408039	-1.92	0.091	-2.709962	.2454308
2020	-1.252974	.6744481	-1.86	0.100	-2.808254	.3023062
_cons	-43.2417	25.82592	-1.67	0.133	-102.7964	16.31299
sigma_u	6.7368744		 -			
sigma_e	.57218855					
rho	.99283791	(fraction	of varia	nce due t	:o u_i)	

dir : seeout

> untry)

Fixed-effects (within) regression Number of obs = 154 Group variable: Country Number of groups = 9

> Effects, Yes) keep(ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop) StateTime1.doc

[.] xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop i.Year, fe vce(cluster co

```
R-sq: Within = 0.3862
                                               Obs per group: min =
       Between = 0.0546
                                                              avg =
      overall = 0.0330
                                                              max =
                                               F(8,8)
corr(u_i, xb) = -0.9101
                                               Prob > F
                                 (Std. err. adjusted for 9 clusters in country)
```

ln_Deforesta~n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	.0814644	.1542733	0.53	0.612	2742904	.4372192
In_GDP_2015	9471536	1.496642	0.63	0.544	-2.504109	4.398416
ln_UrbanPop	1.627507	4.810439	0.34	0.744	-9.465386	12.7204
ln_RuralPop	-4.459406	4.317141	-1.03	0.332	-14.41475	5.495937
•	İ					
Year						
2002	1700747	.0743588	-2.29	0.051	3415463	.001397
2003	2577339	.0863116	-2.99	0.017	4567687	0586991
2004	3562538	.1123906	-3.17	0.013	6154269	0970807
2005	4469502	.1548182	-2.89	0.020	8039615	0899388
2006	5265157	.2106191	-2.50	0.037	-1.012204	0408273
2007	6218608	.2333998	-2.66	0.029	-1.160082	0836398
2008	679555	.2851452	-2.38	0.044	-1.337101	0220089
2009	7197867	.3440381	-2.09	0.070	-1.51314	.0735665
2010	8145134	.3753197	-2.17	0.062	-1.680002	.0509754
2011	6852473	. 3958647	-1.73	0.122	-1.598113	.2276183
2012	7099324	. 3644037	-1.95	0.087	-1.550249	. 130384
2013	7357629	.3515937	-2.09	0.070	-1.546539	.0750136
2014	7762314	. 3548705	-2.19	0.060	-1.594564	.0421014
2015	8458986	. 3776006	-2.24	0.055	-1.716647	.0248499
2016	8740827	. 4702768	-1.86	0.100	-1.958543	.2103776
2017	9497096	. 5017992	-1.89	0.095	-2.106861	.2074414
2018	-1.014217	. 543996	-1.86	0.099	-2.268674	.2402397
2019	-1.079428	.5844818	-1.85	0.102	-2.427246	. 268389
2020	-1.12621	.623423	-1.81	0.108	-2.563826	.3114064
_cons	3.259083	27.73801	0.12	0.909	-60.70488	67.22305
sigma_u	5.1157355	·				
sigma_e	.55634317					
rho		(fraction	of varia	nce due t	:o u_i)	
					·· ·· - · /	

. outreg2 using StateTime1.doc, append ctitle(Model 4) addtext(Country Fixed Effects, Yes, Time Fixed

> Effects, Yes) keep(ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop) StateTime1.doc

dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect i.Year, fe
> vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	154 9
R-sq: Within = 0.4248 Between = 0.0489 Overall = 0.0265	Obs per group: min = avg = max =	5 17.1 20
corr(u_i, Xb) = -0.9386	F(8,8) = Prob > F =	

ln_Deforesta~n	•				[95% conf.	interval]
ln_CorrControl	•	. 1714446	0.84	0.424 0.346	250954	.5397498 5.616877

```
ln_UrbanPop |
                 4.572146
                             4.68082
                                         0.98
                                                0.357
                                                         -6.221845
                                                                      15.36614
                            4.633993
 ln_RuralPop |
                 -2.60336
                                        -0.56
                                                0.590
                                                         -13.28937
                                                                       8.082647
ln_GovtEffect |
                -.5262407
                            .3299497
                                        -1.59
                                                0.149
                                                          -1.287106
                                                                       .2346248
        Year |
       2002
                                                                     -.0457423
                -.2241694
                             .077375
                                        -2.90
                                                0.020
                                                         -.4025966
       2003
                -.3396226
                            .0604766
                                        -5.62
                                                0.001
                                                         -.4790818
                                                                     -.2001634
                                                                     -.2324608
       2004
                -.4552881
                            .0966292
                                        -4.71
                                                0.002
                                                         -.6781153
       2005
                 -.601327
                            .1449584
                                        -4.15
                                                0.003
                                                          -.9356016
                                                                     -.2670524
       2006
                -.6621093
                            .2077562
                                                                     -.1830225
                                        -3.19
                                                0.013
                                                         -1.141196
                            .2357178
       2007
                -.7808333
                                        -3.31
                                                0.011
                                                          -1.3244
                                                                      -.237267
       2008
                -.8266806
                            .2830353
                                        -2.92
                                                         -1.479361
                                                0.019
                                                                          -.174
                            .3352117
       2009
                -.8606945
                                        -2.57
                                                0.033
                                                         -1.633694
                                                                      -.087695
       2010
                -.9887925
                            .3785044
                                        -2.61
                                                0.031
                                                                     -.1159598
                                                         -1.861625
                            .3249421
        2011
                -.8695373
                                        -2.68
                                                0.028
                                                          -1.618855
                                                                     -.1202194
       2012
                -.9681352
                            .2805896
                                        -3.45
                                                0.009
                                                         -1.615176
                                                                     -.3210944
                            .2629788
       2013
                -.9478261
                                        -3.60
                                                0.007
                                                         -1.554256
                                                                     -.3413958
       2014
                -1.004349
                            .2628805
                                                0.005
                                                                     -.3981457
                                        -3.82
                                                         -1.610553
       2015
                -1.085382
                            .2884863
                                        -3.76
                                                0.006
                                                         -1.750632
                                                                     -.4201311
       2016
                -1.145946
                            .3555684
                                        -3.22
                                                0.012
                                                         -1.965889
                                                                     -.3260043
       2017
                -1.246896
                            .3885514
                                        -3.21
                                                0.012
                                                          -2.142897
                                                                     -.3508944
                            .4197261
                                        -3.11
                                                0.014
                                                                     -.3380986
       2018
                -1.305989
                                                         -2.273879
       2019
                -1.385776
                            .4454209
                                        -3.11
                                                0.014
                                                          -2.412918
                                                                     -.3586332
                            .4419948
       2020
                -1.476882
                                        -3.34
                                                0.010
                                                         -2.496124
                                                                     -.4576399
       _cons | -19.57777 33.37579
                                        -0.59 0.574
                                                         -96.54248
                                                                      57.38695
     sigma_u | 6.1716307
     sigma_e |
                .54080515
        rho | .99237992
                           (fraction of variance due to u_i)
```

. outreg2 using StateTime1.doc, append ctitle(Model 5) addtext(Country Fixed Effects, Yes, Time

> Effects, Yes) keep(ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect

>)
StateTime1.doc
dir : seeout

. xtreg ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GovtEffect ln_PoliticSt

> able i.Year, fe vce(cluster country)

Fixed-effects (within) regression Group variable: Country	Number of obs = Number of groups =	151 9
R-sq: Within = 0.4640 Between = 0.0240 Overall = 0.0118	Obs per group: min = avg = max =	5 16.8 20
corr(u_i, Xb) = -0.9112	F(8,8) = Prob > F =	

	 I	Robust				
ln_Deforestation	Coefficient	std. err.	t	P> t	[95% conf.	interval]
ln_CorrControl	.0674001	.1725783	0.39	0.706	3305663	.4653664
ln_GDP_2015	.7232143	2.378113	0.30	0.769	-4.760724	6.207153
ln_∪rbanPop	4.149609	6.153133	0.67	0.519	-10.03954	18.33876
ln_RuralPop	-3.139391	4.835284	-0.65	0.534	-14.28958	8.010793
<pre>ln_GovtEffect</pre>	6132381	.415609	-1.48	0.178	-1.571634	.345158
ln_PoliticStable	.3409333	.2178729	1.56	0.156	1614825	.843349
Year						
2002	0833611	.0866725	-0.96	0.364	2832283	.1165061
2003	1818036	.0990748	-1.84	0.104	4102704	.0466632
2004	2231996	.1570493	-1.42	0.193	5853559	.1389567
2005	3400182	.2163925	-1.57	0.155	8390203	.1589839
2006	3546979	.2807917	-1.26	0.242	-1.002205	.2928089

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020	4728701506353253378096175192369024233007406573514858353829685282926198469724212782678659474842	.3342308 .3598597 .3846304 .4504266 .6380445 .6661907 .6358715 .7114589 .756499 .8985647 .9121642 .8806065 .8860503	-1.41 -1.41 -1.39 -1.37 -0.58 -0.64 -0.72 -0.71 -0.59 -0.68 -0.82 -0.93 -1.13	0.195 0.197 0.203 0.208 0.579 0.543 0.540 0.490 0.497 0.573 0.516 0.435 0.378 0.293	-1.243608 -1.336191 -1.42074 -1.656205 -1.840353 -1.959539 -1.872895 -2.155485 -2.282787 -2.600386 -2.723301 -2.754895 -2.870022 -2.88794	.2978674 .3234848 .3531785 .4211665 1.102313 1.112938 1.059749 1.125769 1.206193 1.543802 1.483608 1.306469 1.216449
_cons	-8.657422	45.17428	-0.19	0.853	-112.8295	95.51466
sigma_u sigma_e rho	5.2287637 .52269552 .99010579	(fraction of variance due to u_i)				

[.] outreg2 using StateTime1.doc, append ctitle(Model 6) addtext(Country Fixed Effects, Yes, Time Fixed

StateTime1.doc dir : seeout

> Effects, Yes) keep(ln_Deforestation ln_CorrControl ln_GDP_2015 ln_UrbanPop ln_RuralPop ln_GOvtEffect

> ln_PoliticStable)