Computer Vision & Image Processing CSE 473 / 573

Instructor - Kevin R. Keane, PhD TAs - Radhakrishna Dasari, Yuhao Du, Niyazi Sorkunlu

Lecture 20
October 16, 2017
Structure from Motion

Slide credits

Svetlana Lazebnik

Reading

F&P chapter 8

Драконь, видимый подъ различными углами зрѣнія По граворь на мьли нав "Oculus artificialis teledioptricus" Цана. 1702 года.

 Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

• Given: *m* images of *n* fixed 3D points

$$\lambda_{ij}\mathbf{x}_{ij}=\mathbf{P}_i\mathbf{X}_j, \quad i=1,\ldots,m, \quad j=1,\ldots,n$$

• Problem: estimate m projection matrices \mathbf{P}_i and n 3D points \mathbf{X}_j from the mn correspondences \mathbf{x}_{ij}

Is SfM always uniquely solvable?

Necker cube

Source: N. Snavely

Structure from motion ambiguity

• If we scale the entire scene by some factor *k* and, at the same time, scale the camera matrices by the factor of 1/*k*, the projections of the scene points in the image remain exactly the same:

$$\mathbf{x} = \mathbf{PX} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor *k* and, at the same time, scale the camera matrices by the factor of 1/*k*, the projections of the scene points in the image remain exactly the same
- More generally, if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = (\mathbf{P}\mathbf{Q}^{-1})(\mathbf{Q}\mathbf{X})$$

Types of ambiguity

Projective 15dof	$\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$	Preserves intersection and tangency
Affine 12dof	$\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$	Preserves parallellism, volume ratios
Similarity 7dof	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix}$	Preserves angles, ratios of length
Euclidean 6dof	$\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$	Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Projective ambiguity

Projective ambiguity

Affine ambiguity

Affine ambiguity

Similarity ambiguity

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}}\mathbf{X}\right)$$

Similarity ambiguity

• Let's start with *affine* or *weak perspective* cameras (the math is easier)

Recall: Orthographic Projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Affine cameras

Orthographic Projection 9

Parallel Projection

Affine cameras

 A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$\mathbf{P} = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix}$$

 Affine projection is a linear mapping + translation in non-homogeneous coordinates

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{AX} + \mathbf{b}$$
Projection of world origin

• Given: *m* images of *n* fixed 3D points:

$$\mathbf{x}_{ij} = \mathbf{A}_i \, \mathbf{X}_j + \mathbf{b}_i$$
, $i = 1, ..., m, j = 1, ..., n$

- Problem: use the mn correspondences \mathbf{x}_{ij} to estimate m projection matrices \mathbf{A}_i and translation vectors \mathbf{b}_i , and n points \mathbf{X}_j
- The reconstruction is defined up to an arbitrary affine transformation Q (12 degrees of freedom):

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{Q}^{-1}, \qquad \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix} \rightarrow \mathbf{Q} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}$$

- We have 2mn knowns and 8m + 3n unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have 2mn >= 8m + 3n 12
- For two views, we need four point correspondences

 Centering: subtract the centroid of the image points in each view

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \hat{\mathbf{X}}_{j}$$

- For simplicity, set the origin of the world coordinate system to the centroid of the 3D points
- After centering, each normalized 2D point is related to the 3D point X_i by

$$\hat{\mathbf{x}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

• Let's create a $2m \times n$ data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & \ddots & & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix}$$
 cameras (2 m)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

• Let's create a $2m \times n$ data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$
cameras
$$(2 \, m \times 3)$$

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

• Singular value decomposition of D:

• Singular value decomposition of D:

Obtaining a factorization from SVD:

Obtaining a factorization from SVD:

Affine ambiguity

- The decomposition is not unique. We get the same D by using any 3x3 matrix C and applying the transformations M → MC, S →C⁻¹S
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

- Transform each projection matrix A to another matrix AC to get orthographic projection
 - Image axes are perpendicular and scale is 1

• This translates into 3*m* equations:

$$(\mathbf{A}_i \mathbf{C})(\mathbf{A}_i \mathbf{C})^T = \mathbf{A}_i (\mathbf{C} \mathbf{C}^T) \mathbf{A}_i = \mathbf{Id}, \qquad i = 1, ..., m$$

- Solve for $L = CC^T$
- Recover C from L by Cholesky decomposition: L = CC^T
- Update M and S: M = MC, S = C⁻¹S

Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Algorithm summary

- Given: m images and n features \mathbf{x}_{ij}
- For each image i, center the feature coordinates
- Construct a 2m × n measurement matrix D:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n
 points in image i
- Factorize **D**:
 - Compute SVD: $\mathbf{D} = \mathbf{U} \mathbf{W} \mathbf{V}^{\mathsf{T}}$
 - Create U₃ by taking the first 3 columns of U
 - Create V₃ by taking the first 3 columns of V
 - Create W₃ by taking the upper left 3 × 3 block of W
- Create the motion and shape matrices:
 - $\mathbf{M} = \mathbf{U}_3 \mathbf{W}_3^{1/2}$ and $\mathbf{S} = \mathbf{W}_3^{1/2} \mathbf{V}_3^{\mathsf{T}}$ (or $\mathbf{M} = \mathbf{U}_3$ and $\mathbf{S} = \mathbf{W}_3 \mathbf{V}_3^{\mathsf{T}}$)
- Eliminate affine ambiguity

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

- Possible solution: decompose matrix into dense subblocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NPcomplete (equivalent to finding maximal cliques in a graph)

Dealing with missing data

Incremental bilinear refinement

- (1) Perform factorization on a dense sub-block
- (2) Solve for a new
 3D point visible by
 at least two known
 cameras (linear
 least squares)
- (3) Solve for a new camera that sees at least three known3D points (linear least squares)

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$\lambda_{ij}\mathbf{x}_{ij}=\mathbf{P}_i\mathbf{X}_j$$
, $i=1,\ldots,m$, $j=1,\ldots,n$

• Problem: estimate m projection matrices P_i and n 3D points X_i from the mn correspondences x_{ij}

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$\lambda_{ij}\mathbf{x}_{ij}=\mathbf{P}_i\mathbf{X}_j, \quad i=1,\ldots,m, \quad j=1,\ldots,n$$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation Q:

$$X \rightarrow QX, P \rightarrow PQ^{-1}$$

We can solve for structure and motion when

$$2mn > = 11m + 3n - 15$$

For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix F between the two views
- First camera matrix: [I | 0]
- Second camera matrix: [A | b]
- Then **b** is the epipole ($\mathbf{F}^T\mathbf{b} = 0$), $\mathbf{A} = -[\mathbf{b}_{\mathbf{x}}]\mathbf{F}$

Sequential structure from motion

•Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

•For each additional view:

 Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration

Sequential structure from motion

- •Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation

Sequential structure from motion

- •Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation
- •Refine structure and motion: bundle adjustment

cameras

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error

Self-calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images
 - Compute initial projective reconstruction and find 3D projective transformation matrix \mathbf{Q} such that all camera matrices are in the form $\mathbf{P}_i = \mathbf{K} \left[\mathbf{R}_i \, | \, \mathbf{t}_i \right]$
- Can use constraints on the form of the calibration matrix: zero skew
- Can use vanishing points

Modern SFM pipeline

N. Snavely, S. Seitz, and R. Szeliski, <u>"Photo tourism: Exploring photo collections in 3D,"</u> SIGGRAPH 2006.

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT

Feature matching

Match features between each pair of images

Feature matching

Use RANSAC to estimate fundamental matrix between each pair

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Incremental SFM

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
 - Initialize intrinsic parameters (focal length, principal point) from EXIF
 - Estimate extrinsic parameters (R and t)
 - Five-point algorithm
 - Use triangulation to initialize model points
- While remaining images exist
 - Find an image with many feature matches with images in the model
 - Run RANSAC on feature matches to register new image to model
 - Triangulate new points
 - Perform bundle adjustment to re-optimize everything

The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Eliminating outliers
- Dealing with repetitions and symmetries
- Handling multiple connected components
- Closing loops
-

Review: Structure from motion

- Ambiguity
- Affine structure from motion
 - Factorization
- Dealing with missing data
 - Incremental structure from motion
- Projective structure from motion
 - Bundle adjustment
 - Modern structure from motion pipeline

Summary: 3D geometric vision

Summary: 3D geometric vision

- Single-view geometry
 - The pinhole camera model
 - Variation: orthographic projection
 - The perspective projection matrix
 - Intrinsic and extrinsic parameters
 - Calibration
 - Single-view metrology, calibration using vanishing points
- Multiple-view geometry
 - Triangulation
 - The epipolar constraint
 - Essential matrix and fundamental matrix
 - Stereo
 - Binocular, multi-view
 - Structure from motion
 - Reconstruction ambiguity
 - Affine SFM
 - Projective SFM

QUESTIONS?