

Solutionnaire examen intra

INF1500

Sigle du cours

Identification de l'étudiant(e)					
Nom :		Prénom :			
Signature :		Matricule :	Groupe :		
,					
	Si	gle et titre du cours			
	INF1500 – Log	gique des systèmes numériques	3		
Profe	esseur	Groupe	Trimestre		
Tarek Ou	ıld-Bachir	Tous	Hiver 2023		
Jour	Date	Durée	Heures		
Lundi	20 février 2023	2 h 00	10 h 00 à 12 h 00		
Documentation		Calculatrice	Outils électroniques		
Aucune		Aucune			
Toute		Toutes	Les appareils électroniques		
		Non programmable	personnels sont interdits.		

Question 1 : Systèmes de numération

(4/20 points)

Considérez les nombres a, b, c et d exprimés en binaires sur 8 bits :

- $a = 0101 \ 0110$
- $b = 1101 \ 0110$
- $c = 1001 \ 1010$
- $d = 1111 \ 1001$
- 1.1) (1 point) Exprimez les nombres a, b, c et d en hexadécimal.

$$a = 56_{(16)}$$

$$b = D6_{(16)}$$

$$c = 9A_{(16)}$$

$$d = F9_{(16)}$$

1.2) (1 point) Donnez la valeur décimale des nombres a, b, c et d si une représentation non-signée est utilisée.

$$a = 86_{(10)}$$

$$b = 214_{(10)}$$

$$c = 154_{(10)}$$

$$d = 249_{(10)}$$

1.3) (1 point) Donnez la valeur décimale des nombres a, b, c et d si une représentation signée (complément à 2) est utilisée.

$$a = +86_{(10)}$$

$$b = -42_{(10)}$$

$$c = -102_{(10)}$$

$$d = -7_{(10)}$$

1.4) (**1 point**) Donnez en binaire la valeur décimale des nombres a + b et c - d si une représentation signée (complément à 2) est utilisée. Le résultat doit être sur 8 bits. Indiquez si l'opération arithmétique cause un débordement signé ou pas.

$$a + b = 0010 1100$$

Débordement? OUI _____ NON √____

c - d = 10100001

Débordement? OUI_____ NON √___

Question 2 : Algèbre de Boole

(4/20 points)

Soient a, b, c et d des variables logiques.

2.1) (2 points) En utilisant l'algèbre de Boole, démontrer l'assertion suivante :

2.2) (2 points) En utilisant l'algèbre de Boole, démontrer l'assertion suivante.

Rappel:
$$x \oplus y = x'y + xy'$$
, et $x \otimes y = (x \oplus y)' = x'y' + xy$.
 $a' \oplus (b \otimes c) = (a \oplus b) \oplus c$
 $a' \oplus (b \otimes c) = (a')'(b \otimes c) + a'(b \otimes c)'$
 $= a(b \oplus c)' + a'(b \oplus c)$
 $= a \oplus (b \oplus c)$

Il reste à démontrer que

$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

$$a \oplus (b \oplus c) = a'(b \oplus c) + a(b \oplus c)'$$

$$= a'(b'c + bc') + a(b'c' + bc)$$

$$= a'b'c + a'bc' + ab'c' + ab'c'$$

$$= a'b'c + abc + a'bc' + ab'c'$$

$$= (a'b' + ab)c + (a'b + ab')c'$$

$$= (a \oplus b)'c + (a \oplus b)c'$$

$$= (a \oplus b) \oplus c. CQFD$$

Question 3: Circuits usuels

(4/20 points)

Soit la fonction logique F(a, b, c), décrite par la table de vérité suivante :

а	b	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

3.1) (0.5 point) Donnez la forme disjonctive de la décomposition de Shannon de F(a, b, c) selon a.

$$F(a, b, c) = a'(c') + a(b'+c)$$

3.2) (0.5 point) Donnez la forme disjonctive de la décomposition de Shannon de F(a, b, c) selon b.

$$F(a, b, c) = b'(a+c') + b(a \otimes c)$$

3.3) (0.5 point) Donnez la forme disjonctive de la décomposition de Shannon de F(a, b, c) selon c.

$$F(a, b, c) = c'(a'+b') + c(a) = c'(ab)' + c(a)$$

3.4) (**1 point**) À la lumière des résultats précédents, proposez ci-après un circuit implémentant F(a, b, c) en utilisant un seul MUX 2 à 1 et une seule porte NON-ET.

3.5) (1 point) Indiquez ci-après comment réaliser un NON-ET à l'aide d'un décodeur 2×4 exploitant la logique mixte (sorties inversées). On supposera que vous avez deux entrées A et B et que vous tentez de produire (AB)'.

3.6) (0.5 point) À la lumière des résultats précédents, proposez ci-après un circuit implémentant F(a, b, c) en utilisant un seul MUX 2 à 1 et le décodeur 2×4 de la question 3.5).

Question 4 : Optimisation de circuit

(5/20 points)

L'implantation d'une fonction logique ${\bf Z}$ relativement complexe repose sur la combinaison par un NAND de deux fonctions $F_{\bf X}$ et $F_{\bf Y}$, tel qu'indiqué par le schéma suivant :

La fonction F_X est spécifiée par sa table de vérité :

Α	В	С	D	Fx
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

La fonction F_Y est réalisée par le circuit suivant.

4.1) (1 point) Donnez l'expression disjonctive simplifiée de F_X en vous aidant de la table de Karnaugh ciaprès.

$$F_X = B'D' + AC + A'BC'D$$

AB/CD	00	01	11	10
00	1	0	0	1
01	0	1	0	0
11	0	0	1	1
10	1	0	1	1

4.2) (0.5 point) Dessinez ci-après le circuit implémentant l'expression disjonctive simplifiée de F_X au moyen de portes NON-ET uniquement. Supposez que vous avez accès en entrée à toutes les variables et leur inverse.

4.3) (0.5 point) Donnez le coût du circuit trouvé en 4.2). Justifiez votre résultat par un calcul.

$$Coût = 2 \times (2+1) + 1 \times (3+1) + 1 \times (4+1) = 15$$

4.4) (1 **point**) Donnez l'expression conjonctive simplifiée de F_Y en vous aidant de la table de Karnaugh ciaprès.

$$F_Y = D(B'+C)$$

AB/CD	00	01	11	10
00	0	1	1	0
01	0	0	1	0
11	0	0	1	0
10	0	1	1	0

4.5) (0.5 point) Dessinez ci-après le circuit implémentant l'expression conjonctive simplifiée de F_Y au moyen de portes NON-OU uniquement. Supposez que vous avez accès en entrée à toutes les variables et leur inverse.

4.6) (0.5 point) Donnez le coût du circuit trouvé en 4.5). Justifiez votre résultat par un calcul.

Coût =
$$2 \times (2+1) = 6$$

4.7) (1 point) En vous aidant de la table de Karnaugh suivante, proposez un circuit optimisé implémentant Z en utilisant uniquement des NON-ET ou des NON-OU (mais pas les deux). Supposez que vous avez accès en entrée à toutes les variables et leur inverse.

AB/CD	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	0	1
10	1	1	0	1

Dessinez le circuit optimisé.

Question 5 : Circuit CMOS

(3/20 points)

Considérez le circuit CMOS suivant :

5.1) (1 point) Analysez la fonction PMOS (réseau connecté à v_{cc}) pour compléter la table suivante. Indiquer '1' lorsque F est connecté à v_{cc} et 'Z' autrement.

Α	В	С	PMOS
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	Z
1	1	0	Z
1	1	1	Z

5.2) (1 point) Analysez la fonction NMOS (réseau connecté à v_{ss}) pour compléter la table suivante. Indiquer '0' lorsque F est connecté à v_{ss} et 'Z' autrement.

Α	В	С	NMOS
0	0	0	Z
0	0	1	Z
0	1	0	Z
0	1	1	Z
1	0	0	Z
1	0	1	0
1	1	0	0
1	1	1	0

5.3) (1 point) À la lumière des résultats précédents, complétez la table de vérité de la fonction F et donnez son expression disjonctive simplifiée.

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

F = A' + B'C'