COMP3600/6466 – Algorithms Introduction [CLRS ch. 1, sec. 2.1, 2.2]

Hanna Kurniawati

comp_3600_6466@anu.edu.au

Topics

√ What is Algorithms?

- Setting up the stage
 - The Problems we'll focus on:
 - Sorting
 - Searching
 - Model of Computation
 - Math refresher

The Problems

- Recall: An algorithm is a well-defined procedure to solve well-specified problems
- In this class, we will focus on 2 classes of problems:
 - Sorting
 - Searching

These problems are building blocks of almost any program you see in practice today

Sorting – Problem Specification

- Input: A sequence of n numbers [a₁, a₂, ..., a_n]
- Output: A reordering [a_1 ', a_2 ', ..., a_n '] of the input sequence such that $a_1 \le a_2 \le ... \le a_n$ (for ascending order)

Where is sorting used?

- Often sorting is used as a building block of a bigger program. For instance:
 - Searching. Binary search can run faster once the keys are sorted. Internet search (e.g., Google) also uses sort to present the most relevant results first
 - Closest pair. Given n numbers, which two have the smallest different between them? Once the numbers are sorted, the closest pair must be next to each other. Therefore, a linear-time scan will find the solution. Closest pair problem is often encountered in various applications, including in machine learning, computational geometry, etc.

Searching – Problem Specification

- Input: A bounded set *X* with relation *R* among its elements, and a solution criteria *C*
- Output: An element of X, $x \in X$, that satisfies the criteria C
- Note: The above definition is very generic. In many problems, we'll be more specific. For instance:
 - What type of space is *X*? (e.g., is it countable or uncountable?) What type of relation exists among the elements? Different algorithms are more suitable for different types of *X* and *R*.
 - The solution criteria will also influence the type of algorithms we should use to be efficient.

Searching – A Problem Specification

- An example for a specific search problem that will be used often in this class
- Input: A sequence of n numbers A = [a₁, a₂, ..., a_n] and a value v
- Output: An index i such that v = A[i] or the special value null if v does not appear in A

Where is searching used?

- More visible than sorting. For instance:
 - Internet search, search in your email, search in a document, etc.
 - Optimization. Computation wise, optimization problem is a search problem (i.e., finding a value that is the largest/smallest). Many are search in continuous space (e.g., in real number space).
 Since almost (if not all) problems can be framed as an optimization problem, they will eventually become a search problem ©

A bit more about problems

- Recall: An algorithm solves well-specified problems
- In reality, problems do not come in well-specified form.
 Someone (usually the algorithm designer) needs to formulate the problem into a well-specified problem that an algorithm can solve
- In fact, good problem formulation is usually half the solution
- In this class, esp. from tutorial questions and assignments, we'll learn how to formulate problems too
 - Yes, you'll need to do this in your assignments ©

Today

- √ What is Algorithms?
- Setting up the stage
 - √The Problems we'll focus on:
 - ✓ Sorting
 - ✓ Searching
 - Model of Computation
 - Math refresher

Analysing Algorithms

- Recall that analysing algorithms mean computing computational resources (typically, time and space) required to run the algorithm on a certain input
- To do the above analysis, we need to first know the machine where the algorithms are executed
 - Model of computation

Model of Computation

- In this class, we'll assume:
 - An abstract generic one-processor Random Access Machine (RAM)
 - Abstract: We don't consider memory swapping, garbage collection, etc.
 - One-processor RAM: Instructions are executed one after another (no concurrent operations)
 - To store numbers, RAM has integer and float data type. Each data type in RAM has a limit. We will introduce as necessary

Model of Computation

 Have the following primitive instructions (each primitive instruction takes constant time)

Arithmetic: Add, subtract, multiply, divide, mod, floor, ceil

Data movement: Load, store, copy

Control: Conditional & unconditional branching, subroutine call and return

Analysing Algorithms Executed in a RAM: Example on Time Analysis

Sorting problem:

- Input: A sequence of n numbers [a₁, a₂, ..., a_n]
- Output: A reordering [a_1 ', a_2 ', ..., a_n '] of the input sequence such that $a_1 \le a_2 \le ... \le a_n$

InsertionSort(A)

- 1. for j = 2 to A.length
- 2. Key = A[j]
- 3. i = j-1
- 4. While i > 0 and A[i] > key
- 5. A[i+1] = A[i]
- 6. i = i-1
- 7. A[i+1] = key

Intuitively:

- Separate the sequence of numbers / array into: Sorted and unsorted.
- At each iteration take an element from the unsorted part and put it in the right place in the sorted part of the sequence

Illustration of Insertion Sort

Illustration of Insertion Sort

Correctness? We'll discuss after Asymptotic Analysis

Back to time analysis

InsertionSort		Cost	Times
1	for j = 2 to A.length		
2	Key = A[j]		
3	i = j-1		
4	While i > 0 and A[i] > key		
5	A[i+1] = A[i]		
6	i = i-1		
7	A[i+1] = key		

Total time T(n): sum of cost X times

Today

- √ What is Algorithms?
- Setting up the stage
 - √The Problems we'll focus on:
 - ✓ Sorting
 - ✓ Searching
 - ✓ Model of Computation
 - Math refresher

Important Summation Formulas

1.
$$\sum_{i=l}^{u} 1 = \underbrace{1 + 1 + \dots + 1}_{u-l+1 \text{ times}} = u - l + 1 \ (l, u \text{ are integer limits}, l \le u); \quad \sum_{i=1}^{n} 1 = n$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3}n^3$$

4.
$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i2^{i} = 1 \cdot 2 + 2 \cdot 2^{2} + \dots + n2^{n} = (n-1)2^{n+1} + 2$$

7.
$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma$$
, where $\gamma \approx 0.5772 \dots$ (Euler's constant)

$$8. \quad \sum_{i=1}^{n} \lg i \approx n \lg n$$

Properties of logarithms

1.
$$\log_a 1 = 0$$

2.
$$\log_a a = 1$$

$$3. \quad \log_a x^y = y \log_a x$$

$$4. \quad \log_a xy = \log_a x + \log_a y$$

$$\mathbf{5.} \quad \log_a \frac{x}{y} = \log_a x - \log_a y$$

$$6. \quad a^{\log_b x} = x^{\log_b a}$$

A function where the exponent is log can be transformed into a polynomial function

7.
$$\log_a x = \frac{\log_b x}{\log_b a} = \log_a b \log_b x$$

In this class, unless otherwise stated, the base of the log is 2, i.e.: $\log x = \log_2 x$

Examples

• Can we transform $2^{3 \log \sqrt{n}}$ into a polynomial form?

• Can we transform $n^{\sqrt{n}}$ into the form of a power of 2?

You need to be comfortable with the basic math (basic transformations as in previous slides, basic arithmetic and algebra + basic calculus + basic probability).

If not, please catch up NOW!!!

To catch up, see the notes of Week-1 in Wattle

Today

- √ What is Algorithms?
- ✓ Setting up the stage
 - √The Problems we'll focus on:
 - ✓ Sorting
 - √ Searching
 - ✓ Model of Computation
 - ✓ Math refresher

Next: Asymptotic Analysis