Abbottabad University of Science & Technology

SOFTWARE REQUIREMENTS SPECIFICATION

(SRS DOCUMENT)

For

< Binary Tree Visualizer>

By

Bibi Hajra

14640

Program

BSCS (3A)

Supervisor

(Sir Jamal Abdul Ahad)

Table of Content

1.	Introduction	
	1.1 Purpose	
	1.2 Document Conventions	ļ
	1.3 Project Scope4	
	1.3.1 Scope Definition	
	1.3.2 Core Features	
	1.3.3 Subsequent Releases	
	1.3.4 Alignment with User and Business Goals	
	1.4 References 6	
2.	Overall Description	
	2.1 Product Perspective	
	2.1.1 Product Context8	
	2.1.2 Product Origin	
	2.1.3 Product Relationship to Existing Systems	
	2.1.4 Product Ecosystem10	
	2.2 User Classes and Characteristics	
	2.2.1 Students and Educators	
	2.2.2 Tech Enthusiasts 11	
	2.2.3 Favored User Class	
	2.2.4 Alignment with User Needs	
	2.3 Operating Environment	
	2.3.1 Hardware Platform 14	
	2.3.2 Operating Systems and Versions	
	2.4 Design and Implementation Constraints	
	2.4.2 Database Technology	
	2.4.4 Third-Party Integrations	
	2.4.5 User Interface Design	
	2.5 Assumptions and Dependencies	
	2.5.1 Assumptions	
	2.5.2 Dependencies	
3.	J	
	3.1 Node Addition and Deletion	
	3.2 Visual Insertion and Balancing	
	3.3 Tree Traversals (In-order, Pre-order, Post-order)	
	3.4 Highlight Search Paths	
4.	External Interface Requirements	
	4.1 User Interfaces	
	4.1.1 Design Standards and Guidelines	
	4.1.2 Screen Layout and Resolution	
	4.1.3 Standard Interface Elements	
	4.2 Software Interfaces 20	
	4.3 Hardware Interfaces	
5.	Quality Attributes	
	5 1 Performance	

	5.2 Reliability	21
	5.3 Usability	
	5.4 Security	
	5.5 Maintainability	
6.	Appendix B: Analysis Model	

Introduction

This section provides a high-level overview of the project and sets the stage for the rest of the report.

1.1 Purpose

• Explains the primary goal of the Binary Search Tree Visualizer: to help users visualize and understand how BSTs function (e.g., node insertion, deletion, traversal, etc.).

1.2 Document Conventions

• Lists any symbols, terms, or formatting used throughout the document for clarity and consistency.

1.3 Project Scope

- **Scope Definition**: Highlights the boundaries of the project, such as visualizing BST operations and user interaction with the visualizer.
- **Core Features**: Defines key functionalities like adding/deleting nodes, tree traversal visualization, and search path highlighting.
- **Subsequent Releases**: Discusses features planned for future updates, like balancing for AVL or Red-Black trees.
- Alignment with User and Business Goals: Aligns project objectives with the needs of users and stakeholders, emphasizing usability and educational value.

1.4 References

https://colab.research.google.com/drive/1_BcVirbAWygVR8-w-HaOEhoAFgpxspv8#scrollTo=oWcm Ep5bjJy

2. Overall Description

Describes the product's context, audience, environment, and constraints.

2.1 Product Perspective

- **Product Context**: Positions the project within its domain (e.g., a tool for learning data structures).
- **Product Origin**: Explains the motivation or background that led to creating the visualizer.

- **Product Relationship to Existing Systems**: Discusses how the visualizer interacts with or complements other systems (e.g., education platforms).
- **Product Ecosystem**: Maps the visualizer's role in a larger system, including APIs or integrations.

2.2 User Classes and Characteristics

- **Students and Educators**: Users learning about or teaching data structures who need a clear visualization of BST operations.
- **Tech Enthusiasts**: Users interested in computer science concepts and eager to explore practical implementations.
- **Favored User Class**: The primary audience for whom the visualizer is optimized (e.g., students).
- **Alignment with User Needs**: Matches the features of the visualizer to specific user requirements, like simplicity and interactivity.

2.3 Operating Environment

- **Hardware Platform**: Describes the hardware requirements, such as desktops, laptops, or tablets.
- **Operating Systems and Versions**: Lists supported platforms, e.g., Windows, macOS, Linux, or web browsers.

2.4 Design and Implementation Constraints

- **Database Technology**: Specifies storage or data handling methods if the project saves tree data.
- **Third-Party Integrations**: Mentions any libraries or APIs used for visualization (e.g., D3.js, React).
- **User Interface Design**: Describes the design philosophy for making the interface intuitive and user-friendly.

2.5 Assumptions and Dependencies

- **Assumptions**: Lists assumptions about the environment or users (e.g., users have basic knowledge of data structures).
- **Dependencies**: Details external factors, like dependencies on frameworks or runtime environments.

3. System Features

Focuses on the main functionality of the visualizer.

Key Features:

- Node Addition and Deletion: Visual representation of inserting or removing nodes in the BST.
- **Visual Insertion and Balancing**: Displays how nodes are placed in the tree and balanced if needed.
- **Tree Traversals**: Highlights in-order, pre-order, and post-order traversals with step-by-step visualization.
- **Highlight Search Paths**: Shows the path taken to find a specific node in the tree.

4. External Interface Requirements

Defines how users and other systems interact with the visualizer.

4.1 User Interfaces

- **Design Standards and Guidelines**: Ensures the visualizer is visually consistent and accessible.
- Screen Layout and Resolution: Optimized for different screen sizes and resolutions.
- **Standard Interface Elements**: Buttons, sliders, and dropdowns are used for intuitive interactions.

4.2 Software Interfaces

• Lists APIs, libraries, or other software used in the project.

4.3 Hardware Interfaces

• Defines supported devices and their specifications (e.g., compatibility with desktops and tablets).

5. Quality Attributes

Highlights non-functional requirements that ensure the tool's quality.

5.1 Performance

The visualizer should handle large trees without noticeable lag.

5.2 Reliability

• Ensures consistent behavior without crashes or incorrect visualizations.

5.3 Usability

• Prioritizes an intuitive interface so that non-technical users can understand the visualizations.

5.4 Security

• Ensures the tool is safe, especially for web-based versions (e.g., no unauthorized access or vulnerabilities).

5.5 Maintainability

• The code base should be modular and easy to update or expand in future releases.

6. Appendix B: Analysis Model

Includes any diagrams, models, or charts explaining the project in depth. Examples:

- Flowcharts: Show how data moves through the system.
- **UML Diagrams**: Illustrate system architecture and class relationships.