

Pattern Recognition Homework 1 Announcement

Lastest update: 2023.03.08 13:30

Homework 1

- Deadline: Mar. 22 , Wed. at 23:59
 - Code assignment (70%): Implement linear regression using only numpy
 - Questions (30%): Write your answer in detail on pdf

- Question: <u>Link</u>
- Sample code: <u>Link</u>
- Dataset: <u>Link</u>
- Report template: <u>Link</u>
- Sample prediction file: <u>Link</u>

Linear Regression

Find the value of weight and intercept

How to find β 0 and β 1?

Trial and Error

Closed form solution

Gradient Descent

$$\beta 0 = -2$$
, -1 , 0 , 1 , 2 ,... $\beta 1 = 1$, 2 , 3 , 4 , 5 ,...

$$\hat{\beta} = (X^T.X)^{-1}X^T.Y$$

Gradient Descent

- x-axis and y-axis represent the value of weights
- z-axis represents the loss of the corresponding weights
- Goal: Find the weights that minimize the loss

Gradient Descent

Gradient tells the direction

Dataset

Medical Insurance Charges Forecast

• Training set: 938

Validation set: 200

Testing set: 200

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

Dataset

- Medical Cost Personal Datasets:
 - age: age of primary beneficiary
 - sex: insurance contractor gender, female, male
 - bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
 - children: Number of children covered by health insurance / Number of dependents
 - smoker: Smoking
 - region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
 - charges: Individual medical costs billed by health insurance.
- 6 features, 1 target

Single Feature Linear Regression (25%)

- Train linear regression model by gradient descent using only bmi feature.
- Tune the learning rate and epoch to get the same results as sklearn
- Reference parameters from sklearn:

o Intercept: 1382

o Weight: 380

Multiple Features Linear Regression (25%)

- Train linear regression model by gradient descent using all six features.
- Tune the learning rate and epoch to get the same results as sklearn
- Reference parameters from sklearn:

O	intercepts. [-1100/]
0	Weights: [[259]
	[-383]
	[333]
	[442]
	[24032]

[-416]]

Intercents: [_11857]

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

Train your own model (20%)

- In this part, you can choose any learning rate, epoch, batch_size, and features you want to train your model to beat the baseline.
- Explain in detail how you choose the parameters in the report.
- Predict for the testing data and save the result into a csv file (refer to <u>sample</u>)

prediction.csv)

	age	sex	bmi	children	smoker	region	charges
0	33	male	30.250	0	no	southeast	NaN
1	19	female	32.490	0	yes	northwest	NaN
2	50	male	37.070	1	no	southeast	NaN
3	41	female	32.600	3	no	southwest	NaN
4	52	female	24.860	0	no	southeast	NaN
5	39	male	32.340	2	no	southeast	NaN
6	50	male	32.300	2	no	southwest	NaN
7	52	male	32.775	3	no	northwest	NaN
8	60	male	32.800	0	yes	southwest	NaN
9	20	female	31.920	0	no	northwest	NaN

Train your own model (20%)

- Evaluation will be based on the testing mse loss.
- Testing data distribution is guaranteed to be similar with validation data.
- Explain your method in detail in report. Otherwise, extra penalty.

Points	Test MSE	
20	< 3000000	
15	< 4000000	
10	< 5000000	
5	50000000 ~ 100000000	
0	> 10000000	

Data Analysis / Pre-processing

- Which features to be used?
- Different label encoding strategy?
- Feature Importance?
- Data distribution / normalization?
- Different feature weights?
- How to create more features?

Submission

- Compress your .ipynb, .pdf, and .csv into zip file and submit on E3.
- Before submission:
 - Restart and Run All
 - Save and submit the .ipynb (keep all the cell outputs)
 - Get 0 points if you do not keep the cell outputs.
- STUDENT ID> HW1.zip
 - STUDENT ID> HW1.ipynb
 - STUDENT ID> HW1.pdf

Late policy

- We will deduct a late penalty of 20 points per additional late day
- For example, If you get 90 points but delay for two days, your will get only 90- $(20 \times 2) = 50$ points!

FAQ

- Why my loss is high and the training can not converge
 - Make sure you calculate the gradients correctly
 - Use smaller learning rate
- Can I use deep learning frameworks such as TensorFlow, PyTorch?
 - No! In HW1, you are request using only Numpy to implement linear regression and gradien descent. You can use matplotlib to plot the results.
- DO NOT CHEAT! Otherwise, you will get 0 points for the homework.
- If you have any questions, ask on E3 first! We will reply as soon as possible.

Have Fun!

