

课程(实验)名称用示波器	观测动态、磁、细级(组别)	围一9组
指导教师足飞	实验日期_2017年12月4日	仪器号8
学生姓名_李洛	学号_2016K8009829036	成绩

实验了示波器观测动态磁滞回线

实验目的

- , 掌握利用示波器测量铁磁材料动态磁滞回线的方法;
- 2.了解铁磁性材料的动态磁化特性;
- 3.了解磁滞、磁滞回线和磁化曲线的概念,加强对饱和磁化强度、剩余磁化强度、矫顶力等物理量的理解。

似器用具

磁特性综合测量实验仪(包括正弦波信号源, 奇测样品及绕组, 积分电路 所用的电阻和电房)、双踪示波器, 直流电源、电感, 教守多用表。 磁特性综合测量实验仪主要技术指标如下:

1)样品1:锰锌铁氧体,圆形罗兰环,磁滞损耗较小;

平均磁路长度1=0.130m,铁芯实验科品截面积S=1.24×10-4m²;

務圈匝数: N1=150匝 N2=150匝 N3=150匝

2)样品2: EI型硅钢片,磁滞损耗较大;

平均磁路长度1=0.075m,铁芯实验释品截面积S=1.20×10-4m²;

我圈匝数: N,=150匝 N3=150匝 N3=150匝

3)信号源 明频率在 20~200 Hz 间可调;可调称在电镀 R1、R2 均为无感交流 电阻, R1 的调节范围为 0.1~11 f2; R2 的调节范围为 1~110 ksc.。

和·植电客有O·IMF~IIMF可选

课程(实验)名称		班级(组别)		
指导教师	实验日期		仪器号	
学生姓名	学号		成绩	

1. 铁磁材料的磁化特性

磁化率 2m= H, 相对磁导率 ur= B noH。由于 B= uo(M+H), 故 ur= H 2m。 其中 H~外磁场强度,M~内部磁化强度,B~磁感应强度 MO~真空磁导率, MO=4TX 10-7 N/A2

物质的磁性按磁化率可以分为抗磁性,顺磁性和铁磁性

抗磁性物质磁化率为负值,10分~10分量级,几乎不随温度变化 顺磁性物质 磁化率为正值,10~~10~~之间,随湿度残性喷大 磁化率为正值,通常大于一、随湿度增高而变小

铁磁性物质

。动态磁滞回线

图1 虽磁材料的起始磁化曲线和饱经减滞回衷示意图

AS: 不可连磁化阶段 OA:可逆硷化阶段

SC:饱和磁化阶段 Hs:饱和磁场强度

Bs:饱和磁效应强度 Br:剩条磁化强度

Hc: 矫顶力

S'P'Q'S与SPQS'关于原点O放中心对称,所用面积为循环磁化一同的能量损耗

。动态、石兹化曲线

振幅磁导率 Mm = MoHm 起始磁导率 Ni= Iiii NoH

可连磁导率 UR= im AB (加直流偏置)

图2 铁磁材料的动态 整 寿国政治政治、磁化曲政师意图

课程(实验)名称		班级(组别)	
指导教师	实验日期	仪器号	
学生姓名	学号	成绩	

2. 动态磁滞回线的测量

图3 用示波器测量动态、磁带回线电路图

仪器测量原理及公式:

$$H = \frac{N_1}{l} i_1 = \frac{N_1}{lR_1} U_{R_1} \implies H \propto u_{R_1}$$

$$U_c = \frac{Q}{C} = \frac{1}{C} \int i_2 dt = \frac{1}{CR_2} \int u_{R_2} dt \approx \frac{1}{CR_2} \int u_2 dt$$

$$U_2 = -\frac{N_2 d\Phi}{dt} = -\frac{N_2 S dB}{dt}$$

$$R_2 C \gg T$$

$$R = \frac{R_2 C}{N_2 S} U_c \implies B \propto U_c$$

实验内容及数据处理

1. 观测样的1铁氧体)的饱积磁滞回线

(1) 测量频率 f=100Hz 别引饱和磁滞回线。取 R1=2.00, R2=30ks, C=10.0 MF 示波器选择 X-Y模式。测量并画出饱和磁滞回线的 B-H图。测量 Bs, Br, Hc

URI/mV	Uc/mV	H/A·m-1	B/T	UR./mV	Uc/mV	H/A·m-1	B/T
-90.4	-18.4	-52.15	-0.495	-90.4	-18.4	-52.15	-0.495
-79.2	-18.0	-45.69	- 0.484	-79.2	-18.0	-45.69	-0.484
-59.2	-16.4	-34.15	-0.441	-59.2	-14.0	-34.15	-0.376
-39.2	-14.8	-22.62	-0.398	-39.2	-9.6	-22.62	-0.258
-19.2	-12.0	-11.08	-0.323	-19.2	-1.6	-11.08	-0.043
0.0	-8.4	0.00	-0.226	0.0	7.6	0.00	0.204
20.8	-0.4	12.00	-0.011	20.8	10.8	12.00	0.290
40.8	8.4	23.54	0.226	40.8	14.0	23.54	0.376
60.8	13.6	35.08	0.452	60.8	15.6	35.08	0.419
80.8	16.8	46.62	0.366	80.8	17.6	46.62	0.473
90.8	18.0	\$2.38	0.484	80.8	18.0	52.38	0.484

表1家在一川利星教据表

课程(实验)名称		班级(组别)	_
指导教师	实验日期	仪器号	
学生姓名	学号	成绩	

由表 1中数据进行绘图得到图 4结果。根据测量结果也可算出:

Bs = -0.484T Br = 0.204 T Hc = 13.38 A/m 图4中所得国像与理论图像也基本相符。

(2) 保持信号源幅度不变,在仪器频率可调范围内,观测不同频率时即饱和磁滞回线。用不同频率时,磁滞回线有何变化?为什么? 保持 R, Ric不变,测量 并比较 f=95 Hz 和 150 Hz 射射 B,和 Hc。

f=95Hz时 $B_s=0.495$ T $B_r=0.172$ T $H_c=13.38$ A/m f=150Hz时 $B_s=0.441$ T $B_r=0.108$ T $H_c=5.54$ A/m 随着频率的升高,磁性材料即饱和磁滞回线 职横纵截距 B_s , B_r , H_c 四减十, 图像面积减小,且形状逐渐趋向描图流突形。

课程(实验)名称		班级(组别)		
指导教师	实验日期	仪:	器号	
学生姓名	学号	成:	绩	

131 在频率 f=50Hz 下, 比较不同积分常量对李萨如图的影响。固定励磁电流 Im=0.1A, R1=2.052,改变积分常量R2C。调节R2C分别为0.015,0.055, 0.55,观察并租略面出不同积分常量下以的一以。李萨如图形的示意图。 请思考为什么积分常量会影响URI-UC李萨如图形的形状?积分常量是否会 影响真实的 B-H磁滞回线的形状?

图5 不同职分常量下寺南如图形的示意图

积分常量会影响同一个H下B的伸缩比例,但其不会影响真实的磁滞回线形状。 2.测量样品 (铁氧体) 的动态磁滞回线

(1)在于=100Hz时,调出不同幅度的动态磁滞回线,测量并囤出动态磁化曲线。

取 R1=2.052, R2=50ks, C=10.0 MF。磁场幅度Hm从0到Hs单洞增加。

URI/mV	Uc/mV	H/A·m-1	B/T	Mm/103	UR,/mV	Uc/mV	H/A·m-	B/T	Mm/103
5.4	2.0	3.12	0.054	13.73	50.4	14.4	29.08	0.387	10.59
8.0	2.8	4.62	0.075	12.98	53.6	14.6	30.92	0.392	10.10
11.6	3.8	6.69	0.102	12.15	56.8	14.8	32.77	0-398	9.66
12.8	5.2	9.12	0.140	12.20	62.4	15.4	36.00	0.414	9.15
19.6	6.8	11.31	0.183	12.86	68-8	16.6	39.69	0.446	8.95
23.6	8.0	13.62	0.215	12.57	84.0	18.0	48.46	0.484	7.95
27.6	9.4	15.92	0.253	12.63	102.0	18.8	58.85	0.505	6.83
34.4	11.6	19.85	0.312	12.50	132.0	19.6	76.15	0.527	3.51
40.8	12.4	23.54	0.333	11.27	212.0	20.0	122.31	0.538	3.50
44.0	13.2	25.38	0.355	11.12	432.0	20.8	249.23	0.228	1-79
47.2	13.6	27.23	0.366	10.68	632.0	21.6	364.61	0.581	1-27

课程(实验)名称		班级(组别)		
指导教师	实验日期	仪器号		
坐生姓名	坐号	成绩		

(2) 根据测量数据计算并函出从一Hm 由线 (3) 测定起始磁导率从1 测量数据及曲线绘制如表2和图6.图7所示。图7中前两个数据点因精度问题会去,相关解释见讨论部分。

起始磁马率 Mi= HO MOH = 11.3 × 103 = 11300

3、观察不同频率下祥品2(硅钢)的动态磁滞回线

取 Ri=2.0si, Rz=50ksi, C=10.0 MF。在给定交变磁场幅度Hm=400A/m下,测量f=20Hz,40Hz,60Hz的Bm, Br, Hc。

当于=20Hz时 Bm=0.939 Br=0.600 Hc=116

当于=40Hz时 Bm=0.933 Br=0.600 Hc=132

当于=60Hz时 Bm=0.933 Br=0.611 Hc=144

观察发现,随着交变磁场于的增高, Bm, B, 的大小几乎不发生变化,而 Hc 则随之有明显增长。然而,由于则量误差的原因, Bm和Bv有可能有较小的变化规律,这有待于后续实验测量精度的提高。

课程(实验)名称	班级(组别)
指导教师	实验日期	仪器号
学生姓名	学号	成绩

4.测量样品1(铁氧体)在不同直流偏置磁场H下的可逆磁导率

交流磁场频率取 f=100Hz。电路参数设置为: R₁=2.00, R₂=20ks, C=2.0 μF。 直流偏置磁场从 0到 Hs 单凋增加。测量时, 为保证精度, 需调交流信号源幅度使 交流磁场 H足够小, 并调节示波器, 使季萨如图剂分放大, 以观测磁化是否可

逆。画出从R-H曲线

1/A	K/H·m-1	H/A·m-1	MRI	I/A	K/H·m-1	H/A.m	MR,
0.01	1.72	11.54	5103.2	0.06	0.20	69.23	J93.4
0.02	0.98	23.08	2807.7	0.07	2.16	80.77	474.7
0.03	0.59	34.62	1750.1	0.09	0.11	103.85	326.4
0.04	0.36	46.15	1067.9	0.13	0.06	150.00	178.5
0.05	0.28	57.69	830.6	0.21	2.04	242.31	118.7

表3 实验4数据记录表

到8 样和1在军事中的AR-H 動鉄

课程(实验)名称	班级(组别)	
指导教师	实验日期	仪器号
学生姓名	学号	成绩

思考题

1. 铁磁材料的动态磁滞回线与静态磁滞回线在概念上有什么区别?铁磁材料动态磁滞回线的形状和面积受明些因素影响?

联磁材料的动态磁滞回线是其在交变磁局的作用下,所得到的 B-H关系曲线;而铁磁材料的静态磁滞回线呈记录磁化完全后的 B-H关系曲线。

动态磁滞回线的形状受铁磁材料的种类、形状、大小,交流电的频率和振畅等因素的影响,其面积等于磁化一个周期内的报耗,包括磁滞损耗、涡流损耗和剩余损耗等。

2. 铁氧体和硅钢材料的动态磁化特性各有什么特点?

铁氧库较硅钢材料而言更易受到磁化,具有较高时磁导率。由于铁氧库单位体积中储存的磁能较低,饱和磁化强度也较低。而硅钢材料、矫硬力小、磁滞损耗小、

3. 本实验中,电路参量应怎样设置才能保证 UR, -Uc 所形成的李萨如图形正确反定 映材料动态磁滞回线的形状?

应设置交流电幅度使之保证铁磁体饱和磁化,设置积分电路的时间常数使之远太于 交流电阶周期

讨论

实验 2 中的 /m - Hm 图像结果不是于分理想,前两个数据点的偏差较大。后经分析,只要测量读数值改变 0.1 mV,即可使其回复到理论状态。而测量读数的分度为 0.2 mV,导致了较大的偏差。这样的大偏差只出现在了稳定性不好的小值区,所以在后期数据处理中我会并了小值区数据。

用示波器观测动态磁滞回线 数据记录表

1. 观测样品 1 (铁氧体) 的饱和动态磁滞回线

 $f = 100Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F$

U_{R_1}/mV	U_C/mV	$H/A \cdot m^{-1}$	B/T	U_{R_1}/mV	U_C/mV	$H/A \cdot m^{-1}$	B/T
-90.4	-18.4	-25.12	-0.495	-90.4	-18.4	-52.15	-0.495
-79.2	-18.0	-45.69	-0.484	-78.2	-18.0	-45.69	-0.484
-59.2	-16.4	-34.15	-0.441	-58.2	-14.0	-34.15	-0.441-0.376
-39.2	-14.8	-22.62	-0.398	-39.2	-9.6	-22.62	-0.398-0.258
-19.2	-12.0	-11.08	-0.323	-19.2	-1.6	-11.08	-0.043
0.0	-8.4	0.00	-0.226	0.0	7.6	0.00	0.204
20.8	-0.4	12.00	-0.011	20.8	10.8	12.00	0.290
40.8	8.4	23.54	0.226	40.8	14.0	23.54	0.376
60.8	13.6	35.08	0.366	60.8	15.6	35.08	0.419
80.8	16.8	46.62	0.452	80.8	17.6	46.62	0.473
90.8	18.0	52.38	0.484	90.8	18.0	52.38	0.484

 $U_C = 18.0$ $B_S = -0.484$

 $U_{c} = 7.6$ $B_r = 0.204$

 $U_{R_1} = 23.2$ $H_C = 13.38$

 $f = 95Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F$

 $U_{c} = 18.4$ $U_{c} = 36.4$

 $U_{R_1} = 24.0$

 $B_S = 0.495$ $B_T = 0.172$

 $H_C = 13.85$

 $f = 150Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F$

 $U_{\rm C} = 16.4$

 $U_{c} = 4.0$

 $U_{R_1} = 9.6$

 $B_S = 0.441$

 $B_r = 0.108$

 $H_C = 5.54$

 $R_2C=0.5s$

 $R_2C = 0.05s$

 $R_2C = 0.01s$

2. 测量样品 1 (铁氧体)的动态磁滞回线

 $f = 100Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F$

U_{R_1}/mV	U_C/mV	$H/A \cdot m^{-1}$	B/T	U_{R_1}/mV	U_C/mV	$H/A \cdot m^{-1}$	B/T
5.4	2.0	3.12	0.054	50.4	14.4	29.08	0-387
8.0	2.8	4.62	0.075	53.6	14.6	30.92	0-392
11.6	3.8	6.69	0.102	26.8	14.8	32.77	0.398
15.8	5.2	9.12	0.140	62.4	15.4	36.00	0.414
19.6	6.8	11.31	0.183	68.8	16.6	39.68	0.446
23.6	8.0	13.62	0.215	84.0	18.0	48.46	0.484
27.6	9.4	15.92	0.253	102.0	18.8	78.85	0.505
34.4	11.6	19.85	0.312	132.0	13.6	76.15	0.527
40.8	12.4	23.54	0.333	212.0	20.0	122.31	0.538
44.0	13.2	25.38	0.355	432.0	20.8	248.23	2.559
47.2	13.6	27.23	0.366	632.0	21.6	364.61	0.581

3. 观察不同频率下样品 2 (硅钢)的动态磁滞回线

$$f = 20Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F H_m = 400A/m$$

$$U_C = 33.8$$
 $U_C = 21.6$ $U_{R_1} = 116$

$$U_C = 21.6$$

$$B_m = 0.939$$

$$B_r = 0.600$$
 $H_c = 116$

$$H_{C} = 116$$

$$f = 40Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F H_m = 400A/m$$

$$U_C = 33.6$$
 $U_C = 21.6$

$$U_{c} = 21.6$$

$$U_{R_1} = 132$$

$$B_m = 0.933$$

$$B_m = 0.933$$
 $B_r = 0.600$ $H_c = 132$

$$H_{c} = 132$$

$f = 60Hz R_1 = 2.0\Omega R_2 = 50k\Omega C = 10.0\mu F H_m = 400A/m$

$$U_{c} = 33.6$$

$$U_{C} = 22.0$$

$$U_C = 33.6$$
 $U_C = 22.0$ $U_{R_1} = 144$

$$B_m = 0.933$$

$$B_r = 0.61$$

$$H_C = 144$$

$$B_r = 0.611 \qquad H_c = 144 \qquad \mu_R = \frac{1}{N_0} \frac{\partial R}{\partial H} = \frac{1}{N_0} \frac{R_2C}{N_2S} \frac{\partial UC}{\partial UR_1} \frac{UR_1}{N_1} = \frac{R_1R_2UC}{N_0SN_1N_2} \frac{R_1}{N_1}$$

4. 测量样品 1 (铁氧体) 在不同直流偏置磁场 H 下的可逆磁导率

 $100H_{7}R_{-} = 200R_{-} - 2000C_{-} = 200E_{-}$

1	$J = 100HZ R_1 = 2.0M R_2 = 20RM C = 2.0\mu F$								
	I/A	$K/H \cdot m^{-1}$	$H/A \cdot m^{-1}$	$\mu_{R_1}/10^3$	I/A	$K/H \cdot m^{-1}$	$H/A \cdot m^{-1}$	$\mu_{R_1}/10^3$	
	0.01	13-27 1-72	11.54	5103.24	0.09	0.11	103.85	326-37	
	0.02	0.98	23.08	2807.66	0.13	0.06	150.00	178.32	
	0.03	0.59	34.62	1750.14	0.2	0.04	242.31	118 68	
-	0.04	0.36	46.15	1067.88	0.35	0.02	403.85	45.34	
L	0.05	0.28	57.68	830.57	0.77	0.01	888.46	7967	
	0.06	0.20	69.23	193.40	0.88	0.01	10.5.38	2957	
	0.07	0.16	80.77	474.72					