# Learning Transferable Self-attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision

# Xiao-Yu Zhang<sup>1</sup> Haichao Shi<sup>1,2</sup> Changsheng Li<sup>3</sup> Xiaobin Zhu<sup>4</sup> Lixin Duan<sup>3</sup> Kai Zheng<sup>3</sup>

<sup>1</sup>Institute of Information Engineering, Chinese Academy of Sciences <sup>2</sup>School of Cyber Security, University of Chinese Academy of Sciences <sup>3</sup>University of Electronic Science and Technology of China <sup>4</sup>Beijing Technology and Business University

> AAAI, 2019 Presenter: Haichao Shi

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

#### Motivation

- 1. It may be difficult to adapt to large-scale action recognition in more realistic and challenging scenario only relying on the existing precise temporal annotations.
- 2. There might even be **no sensible definition** about the exact temporal extent of actions and these temporal annotations may be **subjective** and **not consistent** across different persons, so weakly supervised learning is an effective way to perform the task.

#### Motivation

- 3. Current action recognition methods heavily rely on trimmed videos for model training, while it is **expensive** and **time-consuming** to acquire a large-scale trimmed video dataset.
- 4. The breakthrough made by **self-attention** on computer vision tasks makes it possible to **weight key frames** to eliminate the influence of background frames.
- 5. The abundant and useful information contained in trimmed videos contribute the use of **transfer learning**.

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

#### Overview

• Different data distributions in the source and target domain, represented as trimmed videos and untrimmed videos.

In this paper, only video-level labels are provided in untrimmed videos, simultaneously publicly available trimmed videos are leveraged as additional information to learn a robust model.

Method:

A **self-attention module** for each domain: capture specific domain properties.

A transfer module: capture representations shared by domains.

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

#### Related Work

- Action Recognition
  - Two-Stream Network, 3D Convolutional neural networks(C3D),
     Temporal Segment Network(TSN)
- Temporal Action Detection
  - Fully-supervised: S-CNN, SSN; Weakly-supervised: UntrimmedNet, STPN, W-TALC
- Transfer Learning
  - Maximum Mean Discrepancy(MMD), JAN, DAN
- Attention Mechanism
  - Self-attention

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

#### Overview



- > TSRNet first extracts high-level semantic features of frames and optical flows.
  - Then it localizes the action frames utilizing two separate self-attention modules.
- ➤ Later, the knowledge extracted from the trimmed training videos is transferred to enhance the classification performance of the overall model for the untrimmed videos.

# Overview



A: the attention matrix

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

# Learning

Self-attentive Action Classification

$$\mathbf{m} = \mathbf{X}\mathbf{a} = \mathbf{X}(\operatorname{softmax}(\mathbf{w}_2 \cdot \tanh(\mathbf{W}_1\mathbf{X})))^{\mathrm{T}}$$

$$\mathbf{M} = \mathbf{X}\mathbf{A} = \mathbf{X}(\operatorname{softmax}(\mathbf{W}_2 \cdot \operatorname{tanh}(\mathbf{W}_1\mathbf{X})))^{\mathrm{T}}$$

$$\mathcal{L}_{SA} = \mathcal{L}_{class} + \mathcal{R}_{SA}$$

$$\mathcal{R}_{SA} = \alpha \mathcal{R}_{smooth} + \beta \mathcal{R}_{diversity} + \gamma \mathcal{R}_{sparsity}$$

$$\mathcal{R}_{smooth} = \sum_{i=1}^{n-1} (a_i - a_{i+1})^2$$
,  $\mathcal{R}_{diversity} = ||\mathbf{A}^T \mathbf{A} - \mathbf{I}||_F^2$ ,  $\mathcal{R}_{sparsity} = ||\mathbf{A}^T||_{2,1}$ 

 $\mathcal{L}_{class}$ : the standard multi-label cross-entropy loss

a: attention weights vector, A: attention weights matrix

X: feature matrix, m: a weighted sum of feature vectors, M: self-attentive feature matrix

# Learning

Knowledge Transfer between Trimmed and Untrimmed Videos

$$\mathcal{L}_{KT} = \mathcal{L}_{FC1} + \mathcal{L}_{FC2}$$

$$\mathcal{L}_{FC1} = MMD^2(\mathcal{T}, \mathcal{U})$$

$$= \frac{1}{n_T^2} \sum_{i=1}^{n_T} \sum_{j=1}^{n_T} k(t_i, t_j) + \frac{1}{n_U^2} \sum_{i=1}^{n_U} \sum_{j=1}^{n_U} k(u_i, u_j) - \frac{2}{n_T \cdot n_U} \sum_{i=1}^{n_T} \sum_{j=1}^{n_U} k(t_i, u_j)$$

$$\mathcal{L}_{FC2} = MMD^{2}(FC1(\mathcal{T}), FC1(\mathcal{U}))$$

 $\mathcal{T} = \{t_i|_{i=1}^{n_T}\}, \ \mathcal{U} = \{u_i|_{i=1}^{n_U}\}, \ \text{represent the sets of trimmed and untrimmed videos features.}$ 

 $k(\cdot,\cdot)$ : the predefined Gaussian kernel function.

Total Loss:  $\mathcal{L} = \mathcal{L}_{SA} + \mathcal{L}_{KT}$ 

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

# Localization

$$w_{i}^{c} = \bar{a}_{i} s_{c}$$

$$\bar{a}_{i} = \frac{1}{r} \sum_{j=1}^{r} \mathbf{A}_{ij}$$

$$\bar{w}_{i}^{c} = \theta \cdot w_{i,RGB}^{c} + (1 - \theta) \cdot w_{i,Flow}^{c}$$

$$t_{start} = \frac{ind_{start}}{F}$$

$$t_{end} = \frac{ind_{end}}{F}$$

 $w_i^c$ : the weighted score of each frame i for class c.

 $s_c$ :  $s_c = [s_1, s_2, ..., s_m]^T \in \mathbb{R}^{m \times 1}$  is the output of softmax layer.

[ $ind_{start}$ ,  $ind_{end}$ ]: the frames indices of starting and ending positions.

*F*: the fps(frames per second) of videos.

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

# Settings

Evaluation is based on training on the paired datasets.

Data for training:

Source domain training: Trimmed videos from the source domain.

Domain adaptation training: Untrimmed videos from the target domain.

Test:

Test set from the target domain

- •Transfer scenarios:
  - (a). UCF101 to THUMOS14
  - (b). UCF101 to ActivityNet1.3

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

# Accuracy

Table 1: Classification accuracy (%) of all the methods on the THUMOS14 dataset for action recognition. Note that SRNet is a simpler version of TSRNet, which excludes the knowledge transfer module.

|                           | RGB  | Optical Flow | Fusion |
|---------------------------|------|--------------|--------|
| (Wang and Schmid 2013)    | -    | -            | 63.1   |
| (Wang et al. 2016)(3 seg) | -    | -            | 78.5   |
| (Wang et al. 2017)        | -    | -            | 82.2   |
| Two-Stream                | 68.2 | 71.6         | 73     |
| SRNet                     | 72.3 | 76.2         | 79.4   |
| TSRNet                    | 74.4 | <b>79.6</b>  | 87.1   |

Table 2: Classification accuracy (%) of all the methods on the ActivityNet1.3 dataset for action recognition. Note that SRNet is a simpler version of TSRNet, which excludes the knowledge transfer module.

|               | RGB         | Optical Flow | Fusion |
|---------------|-------------|--------------|--------|
| Two-Stream    | 71.4        | 73.5         | 79.2   |
| SRNet         | 74.3        | 80.1         | 86.9   |
| <b>TSRNet</b> | <b>79.7</b> | 84.3         | 91.2   |

The action recognition results. TSRNet performs good performance than the other based on weakly supervised learning scheme on THUMOS14 and ActivityNet1.3 datasets.

# Accuracy

Table 3: Comparisons on the THUMOS14 dataset for action detection.

|                  | Method mAP@IoU (%)                    |      |             |      |      |             |      |      |      |      |
|------------------|---------------------------------------|------|-------------|------|------|-------------|------|------|------|------|
|                  | Method                                | 0.1  | 0.2         | 0.3  | 0.4  | 0.5         | 0.6  | 0.7  | 0.8  | 0.9  |
|                  | (Richard and Gall 2016)               | 39.7 | 35.7        | 30.0 | 23.2 | 15.2        | -    | -    | -    | -    |
|                  | (Shou, Wang, and Chang 2016)          | 47.7 | 43.5        | 36.3 | 28.7 | 19.0        | 10.3 | 5.3  | -    | -    |
|                  | (Yeung et al. 2016)                   | 48.9 | 44.0        | 36.0 | 26.4 | 17.1        | -    | -    | -    | -    |
|                  | (Alwassel, Heilbron, and Ghanem 2017) | 49.6 | 44.3        | 38.1 | 28.4 | 19.8        | -    | -    | -    | -    |
| Full supervision | (Lin, Zhao, and Shou 2017)            | 50.1 | 47.8        | 43.0 | 35.0 | 24.6        | -    | -    | -    | -    |
|                  | (Yuan et al. 2016)                    | 51.4 | 42.6        | 33.6 | 26.1 | 18.8        | -    | -    | -    | -    |
|                  | (Shou et al. 2017)                    | -    | -           | 40.1 | 29.4 | 23.3        | 13.1 | 7.9  | -    | -    |
|                  | (Xu, Das, and Saenko 2017)            | 54.5 | 51.5        | 44.8 | 35.6 | 28.9        | -    | -    | -    | -    |
|                  | (Zhao et al. 2017)                    | 66.0 | <b>59.4</b> | 51.9 | 41.0 | <b>29.8</b> | -    | -    | -    | -    |
|                  | (Wang et al. 2017)                    | 44.4 | 37.7        | 28.2 | 21.1 | 13.7        | -    | -    | -    | -    |
| Weak supervision | (Singh and Lee 2017)                  | 36.4 | 27.8        | 19.5 | 12.7 | 6.8         | -    | -    | -    | -    |
|                  | (Nguyen et al. 2017)                  | 52.0 | 44.7        | 35.5 | 25.8 | 16.9        | 9.9  | 4.3  | 1.2  | 0.1  |
|                  | (Nguyen et al. 2017)                  | 45.3 | 38.8        | 31.1 | 23.5 | 16.2        | 9.8  | 5.1  | 2.0  | 0.3  |
|                  | $TSRNet\ (w/o\ \mathcal{L}_{FC2})$    | 53.5 | 45.3        | 35.9 | 26.5 | 17.2        | 10.4 | 5.31 | 1.93 | 0.21 |
|                  | TSRNet                                | 55.9 | 46.9        | 38.3 | 28.1 | 18.6        | 11.0 | 5.59 | 2.19 | 0.29 |

TSRNet can not only outperform other weakly supervised learning methods, it can also outperform some fully supervised learning methods for action detection.

# Accuracy

Table 4: Comparisons on the ActivityNet1.3 dataset for action detection.

|                  | Methods                                  |       | mAP@IoU (%) |      |         |  |  |  |
|------------------|------------------------------------------|-------|-------------|------|---------|--|--|--|
|                  | Wethods                                  | 0.5   | 0.75        | 0.95 | Average |  |  |  |
|                  | (Singh and Cuzzolin 2016)                | 34.5  | -           | -    | 11.3    |  |  |  |
| Full supervision | (Singh et al. 2016)                      | 26.0  | 15.2        | 2.6  | 14.6    |  |  |  |
|                  | (Xu, Das, and Saenko 2017)               | 26.8  | -           | -    | -       |  |  |  |
|                  | (Xiong et al. 2017)                      | 29.1  | 23.5        | 5.5  | -       |  |  |  |
|                  | (Heilbron et al. 2017)                   | 40.0  | 17.9        | 4.7  | 21.7    |  |  |  |
|                  | (Shou et al. 2017)                       | 45.3  | 26.0        | 0.2  | 23.8    |  |  |  |
|                  | (Zhao et al. 2017)                       | 39.12 | 23.48       | 5.49 | 23.98   |  |  |  |
|                  | (Lin et al. 2018)                        | 52.50 | 33.53       | 8.85 | 33.72   |  |  |  |
| Weak supervision | (Nguyen et al. 2017)                     | 29.3  | 16.9        | 2.6  | -       |  |  |  |
|                  | TSRNet (pretrained:[TSRNet@overlap30])   | 33.1  | <b>18.7</b> | 3.32 | 21.78   |  |  |  |
|                  | TSRNet (pretrained:[ResNet101@ImageNet]) | 29.9  | 17.2        | 2.71 | 19.56   |  |  |  |

Note that the 'pretrained:[TSRNet@overlap30]' represents that we use the classes with overlapping labels found between the UCF101 and ActivityNet1.3 datasets to initialize the TSRNet and train it using the whole classes. The 'pretrained:[ResNet101@ImageNet]' represents that we use the ResNet101 pretrained on ImageNet dataset to initialize the TSRNet and then train it.

- 1. Introduction
  - Motivation
  - Overview
  - Related Work
- 2. Method (TSRNet)
  - Overview
  - Learning
  - Localization
- 3. Evaluation
  - Settings
  - Accuracy
  - Analysis

# Analysis



The results of baselines and the full model among different IoUs. It shows that the self-attention with regularization loss and knowledge transfer contribute substantially to the model performance improvement.

# Analysis



Qualitative results on THUMOS14 (top and middle) and ActivityNet1.3 (bottom).

# Thank you! Questions & Answers!