Surreal Numbers

janitha

- Conway's construction of numbers is the following.
- If L, R are two sets of numbers, and if no member of R is \nleq any member of L, then $\{L|R\}$ is a number. All numbers are constructed in this way.
- Start with \emptyset . Then $\{\emptyset|\emptyset\}$ is a number.
- Define $\{\emptyset | \emptyset\} =: 0$.
- Let $x = \{L|R\}$ be a number. Then typical members in L are denoted by x^L , and typical members of R are denoted by x^R .
- $\bullet \ x = \{x^R | x^L\}.$
- x^L is called a left option of x, and x^R is called a right option of x.
- Write $x = \{a, b, c, \dots | d, e, f, \dots\}$ when $L = \{a, b, c, \dots\}$ and $R = \{d, e, f, \dots\}$.

- Order: $x \le y$ iff no $y^R \le x$ and $y \le \text{no } x^L$.
- \leq is a total ordering of the surreals. Moreover $x^R \nleq x$ and $x \nleq x^L$.
- Three options for the next number; $\{0|0\}, \{0|\emptyset\}$, and $\{\emptyset|0\}$.
- $0 \le 0$ iff no $0^R \le 0$ and $0 \le \text{no } 0^L$. But there's no 0^R or 0^L . So $0 \le 0$.
- So only two options for the next number; $\{\emptyset|0\}$ and $\{0|\emptyset\}$.
- Negation : $-x := \{-x^R | -x^L\}.$
- $1 := \{0|\emptyset\}$ and $-1 := \{\emptyset|0\}$.
- For $n \in \omega$, $n + 1 := \{0, 1, \dots, n | \emptyset \}$.
- For ordinals α , $\alpha := \{ \beta < \alpha | \emptyset \}$, where β is an ordinal.
- Ordinals correspond to the numbers with no right options.

- 0 is said to be born on day zero, -1 and 1 are said to be born on day one, and so on. So an ordinal α is born on day α .
- Addition: $x + y := \{x^L + y, x + y^L | x^R + y, x + y^R \}.$
- $0 + x = \{0^L + x, 0 + x^L | 0^R + x, 0 + x^R\} = \{0 + x^L | 0 + x^R\}$ (as $0^L = 0^R = \emptyset$) = $\{x^L | x^R\} = x$. Second equality is by induction hypothesis.
- Induction happens through all the numbers born before x, so they are the set of left options and the set of right options of x.
- 0 + x = x = x + 0.
- $x + (-x) = \{x^L + (-x), x + (-x^L) | x^R + (-x), x + (-x^R) \}.$

- Get $x + (-x) \ge 0$ and $x + (-x) \le 0$, whence x + (-x) = 0 = (-x) + x.
- + is commutative and associative.
- $x \le y$ iff $x + z \le y + z$.
- Surreal numbers form a totally ordered abelian group under addition.
- $-\omega = \{\emptyset | 0, -1, -2, \ldots \}.$
- $\{0, 1, 2, \dots, \omega | \emptyset\} = \omega + 1.$
- What's $x = \{0, 1, 2, \dots | \omega \}$?
- x is a number as every $x^L < \omega$.

- $x+1 = \{x^L+1, x+1^L | x^R+1, x+1^R\} = \{1, 2, 3, \dots, x | \omega+1\}.$
- Easy to see that both $x+1 < \omega$ and $\omega < x+1$ give absurdities. So $x+1 = \omega$, or $x = \omega 1$.
- $\omega 1 = \{0, 1, 2, \dots | \omega \}$, $\omega 2 = \{0, 1, 2, 3, \dots | \omega, \omega 1 \}$, etc.
- Multiplication :

$$xy = \{x^{L}y + xy^{L} - x^{L}y^{L}, x^{R}y + xy^{R} - x^{R}y^{R}\} |$$
$$\{x^{L}y + xy^{R} - x^{L}y^{R}, x^{R}y + xy^{L} - x^{R}y^{R}\}$$

- If $0 \le x$ and $0 \le y$, then $0 \le xy$.
- Surreal numbers form a totally ordered ring.

Let

$$y = \{0, \frac{1 + (x^R - x)y^L}{x^R}, \frac{1 + (x^L - x)y^R}{x^L}\}$$

$$\{\frac{1 + (x^L - x)y^L}{x^L}, \frac{1 + (x^R - x)y^R}{x^R}\}$$

- Then xy = 1.
- The class No of surreal numbers forms an ordered Field.

Simplicity

- The domain of **No** is the class **No** = $2^{<\mathbf{On}}$.
- So a surreal number is a function of the form $s: \alpha \to \{0,1\}$, where α is an ordinal.
- ullet α is called the length or the birthday of s.
- x is simpler than y if $x \subseteq y$, ie x is an initial segment of y as a binary sequence. This is denoted by $x \le_s y$.
- Note that $0 \le_s 1$ but -1 and 1 are not comparable in this sense.
- \leq_s is a binary tree like partial order on **No**.
- Immediate successors of x are $x \cap 0$ and $x \cap 1$.
- Introduce a total order < on **No** : $x^0 < x < x^1$.
- In general $x \cap 0 \cap u < x < x \cap 1 \cap v$ for all u and v.

Simplicity

- Note that < coincides with the lexicographic order on binary sequences of same length.
- A subclass C of **No** is <u>convex</u> if whenever $x, y \in C$ and $z \in$ **No** satisfies x < z < y we have $z \in C$.
- Every nonempty convex class C contains a simplest element.
 It's the meet of all elements of C.
- $x \leq_s y$ means x was born before y, equivalently x is in a lower level than y is in the surreal number tree.
- x < y means if you project x and y to a horizontal line passing through the root then x lies to the left of y.
- Given two sets A, B of surreals with A < B, the class $\{A|B\} = \{y \in \mathbf{No} : A < y < B\}$ is nonempty and convex. So it has a simplest element x denoted by A|B.

Simplicity

- A given surreal can have different representations.
- $0 = \{00\} | \{01\}.$
- $0 = \{000, 00, 001\} | \{010\}.$
- x = A|B is called the <u>canonical representation</u> of x if $A \cup B = \{y \in \mathbf{No} : y <_s x\}$. We'll use this notation for Canonical representation of x.
- Canonical representation of 001 is $\{00\}|\{0,01\}$.
- Note: If x = A|B and A < y < B, then $x \le_s y$. Because y doesn't have room to be in a lower level than x is in the surreal number tree.
- A simple picture shows that x = A|B and $x \le_s y$ does not imply A < y < B.

Simplicity Theorem (when does x = z?)

Theorem 1

Suppose for $x = \{x^L\}|\{x^R\}$ we have a number z satisfying the condition $x^L \ngeq z \ngeq x^R$ for all x^L and x^R . Further suppose no option of z satisfies the same condition. Then x = z.

Proof.

 $x \ge z$ iff no $x^R \le z$ and $x \le no$ z^L . But for all z^R and z^L , $x^L \ge z^L$, $z^R \ge x^R$. Since $x \ge x^L$ we have $x \le no$ z^L . So $x \ge z$. Unravelling the definition of x > z leads to a contradiction. So $x \le z$. Hence x = z.

- Why the name "Simplicity Theorem"?
- When we know that x is a number it's the simplest number (earliest created number) lying between x^L and x^R , and if z is the simplest between x^L and x^R , then the simpler numbers z^L and z^R cannot satisfy the same condition.

Dyadic Rationals are contained in No

Theorem 2

If x is a rational whose denominator divides 2^n , then $x = \{x - \frac{1}{2^n}\} | \{x + \frac{1}{2^n}\}.$

- Dyadic rationals $(m/2^n)$ are exactly the numbers born on finite days.
- Why?

Hahn Fields

- Start with an ordered abelian group Γ.
- The Hahn field $\mathbb{R}((\Gamma))$ with coefficients in \mathbb{R} and monomials in Γ is the following.
- Domain of $\mathbb{R}((\Gamma))$ is the set of functions $f : \Gamma \to \mathbb{R}$ with support S(f) a <u>reverse well-ordered subset</u> of Γ .
- For $f \in \mathbb{R}((\Gamma))$ which is not identically zero, S(f) has a maximum element \mathfrak{m} . We say f is positive if $f(\mathfrak{m}) > 0$.
- Fix $\mathfrak{m} \in \Gamma$. <u>Truncation</u> of f at \mathfrak{m} is $f | \mathfrak{m} : \Gamma \to \mathbb{R}$; $f | \mathfrak{m}$ coincides with f for arguments $> \mathfrak{m}$ and equals 0 on arguments $\leq \mathfrak{m}$.
- Addition: $(f+g)(\mathfrak{m}) = f(\mathfrak{m}) + g(\mathfrak{m})$.
- Multiplication : $(fg)(\mathfrak{m}) = \sum_{\mathfrak{n}+\mathfrak{o}=\mathfrak{m}} f(\mathfrak{n})g(\mathfrak{o})$.

Hahn Fields

- $\mathbb{R}((\Gamma))$ is an ordered field.
- If Γ is divisible, $\mathbb{R}((\Gamma))$ is a real closed field.¹
- $x, y \in \mathbf{No}$ are in the same archimedean class if there exists $k \in \mathbb{N}$ so that $|x| \le k|y|$ and $|y| \le k|x|$.
- A positive $x \in \mathbf{No}$ is called a monomial if x is the simplest positive element in its archimedean class.
- A <u>term</u> is a nonzero real r multiplied by a monomial.
- The class of all terms is denoted by $\mathbb{R}\mathfrak{M}$, where $\mathfrak{M}\subseteq \mathbf{No}$ is the class of all monomials.

janitha Surreal Numbers

 $^{^1\}Gamma$ is divisible if for all $n \in \mathbb{Z}^+$ and for all $h \in \Gamma$ there exists $g \in \Gamma$ so that ng = h. Equivalently $n\Gamma = \Gamma$ for all $n \in \mathbb{Z}^+$

Hahn Field $\mathbb{R}((\mathfrak{M}))$ and \sum -map

- We can identify **No** with $\mathbb{R}((\mathfrak{M}))$ as follows.
- Given $f \in \mathbb{R}((\mathfrak{M}))$, write $f_{\mathfrak{m}}$ for the real number $f(\mathfrak{m})$.
- $f_{\mathfrak{m}}\mathfrak{m} = f(\mathfrak{m})\mathfrak{m} \in \mathbb{R}\mathfrak{M}$.
- Define the map $\sum : \mathbb{R}((\mathfrak{M})) \to \mathbf{No}$ by induction on the order type of the support.
- If $S(f) = \emptyset$, define $\sum f := 0 \in \mathbf{No}$.
- If S(f) has a smallest monomial \mathfrak{n} , define $\sum f := \sum f |\mathfrak{n} + f_{\mathfrak{n}}\mathfrak{n}$.
- If $S(f) \neq \emptyset$ and S(f) has no smallest monomial, define

$$\sum f := \{ \sum f | \mathfrak{m} + q' \mathfrak{m} \} | \{ \sum f | \mathfrak{m} + q'' \mathfrak{m} \},$$

where \mathfrak{m} varies in S(f) and q', q'' vary among rationals such that $q' < f_{\mathfrak{m}} < q''$.

Hahn Field $\mathbb{R}((\mathfrak{M}))$ and \sum -map

Theorem 3

For every $f \in \mathbb{R}((\mathfrak{M}))$,

$$\sum f = \{\sum f | \mathfrak{m} + q' \mathfrak{m} \} | \{\sum f | \mathfrak{m} + q'' \mathfrak{m} \},$$

where \mathfrak{m} varies in S(f) and q',q'' varies among rationals with $q' < f_{\mathfrak{m}} < q''$.

$\mathbb{R}((\mathfrak{M}))\cong \mathbf{No}$ as ordered Fields

- Write $\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ for $\sum f$.
- Think of $\sum f$ as a decreasing formal infinite sum of terms $f_{\mathfrak{m}}\mathfrak{m}$ with reverse well-ordered support.

Theorem 4

 $\sum: \mathbb{R}((\mathfrak{M})) \to \textbf{No}$ is an isomorphism of ordered Fields.

- Identify $f \in \mathbb{R}((\mathfrak{M}))$ with $\sum f = \sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbf{No}$.
- Write $No = \mathbb{R}((\mathfrak{M}))$.

Conway's ω -map

- Fix $x \in \mathbf{No}$.
- Define $\omega^x := \{0, k\omega^{x'}\} | \{\frac{1}{2^k}\omega^{x''}\}$, where k ranges in \mathbb{N} , x' ranges in surreals x with $x' <_s x$ and x' < x, and x'' ranges in surreals x with $x'' <_s x$ and x < x''.
- $\omega^0 = \{0\} | \emptyset = 1$, $\omega^1 = \{0, 1, 2, ...\} | \emptyset = \omega$, and so on.

Lemma 5

If $x \leq_s y$, then $\omega^x \leq_s \omega^y$.

Theorem 6

The ω -map is an isomorphism from (No,+,<) to ($\mathfrak{M},\cdot,<$). And ω^x is the simplest positive representative of its archimedean class, $\omega^0=1$, and $\omega^{x+y}=\omega^x\cdot\omega^y$.

Conway's ω -map

- We have $\mathbf{No} = \mathbb{R}((\mathfrak{M}))$ and $\mathfrak{M} = \omega^{\mathbf{No}}$.
- So $\mathbf{No} = \mathbb{R}((\omega^{\mathbf{No}}))$.
- So every surreal number has the unique form

$$x = \sum_{y \in \mathbf{No}} a_y \omega^y,$$

where $a_y \in \mathbb{R}$ and $a_y \neq 0$ iff $\omega^y \in S(x)$. This is called the <u>normal form</u> of x.

• The normal form of x coincides with the Cantor normal form of x when $x \in \mathbf{On}$.

On the subgroup \mathfrak{M}

- Recall that a multiplicative subgroup $\mathfrak{M} \subseteq K^{>0}$ of an ordered field K is a set of monomials if for each nonzero $x \in K$, there's one and only one $\mathfrak{m} \in \mathfrak{M}$ so that $x \asymp \mathfrak{m}$.
- WTS: $\mathfrak M$ of monomials in our construction is a multiplicative subgroup of $\mathbf {No}$.
- This follows via the ω -map.
- We have $\omega^{x+y} = \omega^x \cdot \omega^y$, (No, +) is a group, and (No, +) \cong^{ω} (\mathfrak{M} , ·).
- So (\mathfrak{M}, \cdot) is a multiplicative group.

Extending notions about Hahn fields to No

Let $x \in \mathbf{No}$. Write $x = \sum_{\mathfrak{m}} x_{\mathfrak{m}} \mathfrak{m}$.

- The support of x is $S(x) = {\mathfrak{m} \in \mathfrak{M} : x_{\mathfrak{m}} \neq 0}$.
- Terms of x are the numbers in $\{x_{\mathfrak{m}}\mathfrak{m}:x_{\mathfrak{m}}\neq 0\}\subseteq \mathbb{R}\mathfrak{M}$.
- The coefficient of \mathfrak{m} in x is $x_{\mathfrak{m}}$.
- Leading monomial of $x = \max$ maximal monomial in S(x).
- Leading term of x = Leading monomial multiplied by its coefficient.
- Let $\mathfrak{n} \in \mathfrak{M}$. Truncation of x at \mathfrak{n} is $x | \mathfrak{n} := \sum_{\mathfrak{m} > \mathfrak{n}} x_{\mathfrak{m}} \mathfrak{m}$.
- Write $y \le x$ if $y \in \mathbf{No}$ is a truncation of x, and $y \triangleleft x$ if moreover $x \ne y$.

⊴ is a partial order with a tree-like structure

Proposition 7

⊴ is a partial order with a tree-like structure.

$x \le y$ implies $x \le_s y$

Theorem 8

If $x \leq y$, then $x \leq_s y$.

Proof.

Suppose $x \leq y$. By Theorem 1, x = A|B, where

$$A = \{x | \mathfrak{n} + q'\mathfrak{n}\}, \ B = \{x | \mathfrak{n} + q''\mathfrak{n}\},\$$

with $\mathfrak n$ varying in S(x) and q',q'' varying in $\mathbb Q$ with $q' < x_\mathfrak n < q''$. Similarly y = A'|B', where

$$A' = \{y|\mathfrak{n} + q'\mathfrak{n}\}, \ B' = \{y|\mathfrak{n} + q''\mathfrak{n}\}.$$

- Since $x \le y$ we have $S(x) \subseteq S(y)$.
- For every $\mathfrak{n} \in S(x)$ we have $x|\mathfrak{n}=y|\mathfrak{n}$ and $x_{\mathfrak{n}}=y_{\mathfrak{n}}$.
- Therefore $A \subseteq A'$ and $B \subseteq B'$.
- Hence $x \leq_s y$.

Extending the notion of infinite sum to No

Summability:

- Let I be a set and $(x_i : i \in I)$ be an indexed family of surreals.
- $(x_i : i \in I)$ is summable if $\bigcup_i S(x_i)$ is reverse well-ordered and if for every $\mathfrak{m} \in \bigcup_i S(x_i)$ there are only finitely many $i \in I$ so that $\mathfrak{m} \in S(x_i)$.

Another Representation

- Let $x = \sum_{m \in \mathfrak{M}} x_m m$.
- The support of x, $S(x) = \{m \in \mathfrak{M} : x_m \neq 0\}$ is reverse well-ordered.
- So there's some $\alpha \in \mathbf{On}$ so that $S(x) = \{m_i : i < \alpha\}$ and (m_i) is a decreasing sequence.
- So $x = \sum_{i < \alpha} m_i r_i$, with (m_i) a decreasing sequence in \mathfrak{M} and $0 \neq r_i \in \mathbb{R}$ for each $i < \alpha$.
- Moreover x > 0 iff $r_0 > 0$.
- Now truncations make more sense: $g \in \mathbb{R}((\mathfrak{M}))$ is a truncation of $f = \sum_{i < \alpha} m_i r_i \in \mathbb{R}((\mathfrak{M}))$ iff there's some $\beta \in \mathbf{On}$ so that $g = \sum_{i < \beta} m_i r_i$ and $\beta < \alpha$.

Ressayre Form

- Let $x = \sum_{i < \alpha} m_i r_i$.
- x is purely infinite if $m_i > 1$ for all $i < \alpha$. This makes sense as (m_i) is s decreasing sequence.
- \mathbf{No}^{\uparrow} = Non unitary ring of purely infinite surreals.
- x has the unique form $x^{\uparrow} + x^{\circ} + x^{\downarrow}$, where $x^{\uparrow} \in \mathbf{No}^{\uparrow}, x^{\circ} \in \mathbb{R}$, and $x^{\downarrow} \prec 1$.
- No = No $^{\uparrow}$ + \mathbb{R} + o(1).
- Gonshor defined a group isomorphism $\exp: (\mathbf{No}, +, <) \to (\mathbf{No}^{>0}, \cdot, <)$ extending the real exponential function and satisfying $\exp(x) \ge 1 + x$ for all $x \in \mathbf{No}$ and $\exp(x) = \sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ for $x \prec 1$. Moreover $\exp(\mathbf{No}^{\uparrow}) = \mathfrak{M}$. So $\mathbf{No} = \mathbb{R}((e^{\mathbf{No}^{\uparrow}}))$.

Ressayre Form

- Every surreal can be written uniquely in the form $\sum_{i<\alpha}e^{\gamma_i}a_i$, where $\alpha\in\mathbf{On},\ (\gamma_i)$ is a decreasing sequence in \mathbf{No}^{\uparrow} , and $0\neq a_i\in\mathbb{R}$ for each i.
- This representation is called the Ressayre Form.