

《模式识别》

第六章 贝叶斯决策理论

马锦华

https://cse.sysu.edu.cn/teacher/MaJinhua

SUN YAT-SEN University

声明:该PPT只供非商业使用,也不可视为任何出版物。由于历史原因,许多图片尚没有标注出处,如果你知道图片的出处,欢迎告诉我们 majh8@mail.sysu.edu.cn.

课程目录(暂定)

第一章	课程简介与预备知识	6学时
第二章	特征提取与表示	6学时
第三章	主成分分析	3学时
第四章	归一化、判别分析、人脸识别	3学时
第五章	EM算法与聚类	3学时
第六章	贝叶斯决策理论	3学时
第七章	线性分类器与感知机	3学时
第八章	支持向量机	3学时
第九章	神经网络、正则项和优化方法	3学时
第十章	卷积神经网络及经典框架	3学时
第十一章	循环神经网络	3学时
第十二章	Transformer	3学时
第十三章	自监督与半监督学习	3学时
第十四章	开放世界模式识别	6学时

Bayesian Decision Theory

Sections 2.1-2.10 (Duda et al.)

- A statistical approach for designing pattern classification systems.
- Quantifies trade-offs between various classification decisions by using probability and the costs associated with such decisions.

Fundamental to this approach is the Bayes rule.

Terminology

- State of nature ω:
 - e.g., ω_1 for sea bass, ω_2 for salmon

- Prior probability $P(\omega)$:
 - e.g., $P(\omega_1)$ and $P(\omega_2)$ reflect our prior knowledge of how likely is to get a sea bass or a salmon <u>before</u> the fish is actually caught.
- Features x and probability density p(x) (evidence):
 - e.g., the probability density of some feature(s) x (e.g., lightness) independently of the class.

Terminology (cont'd)

- Conditional probability density $p(x/\omega_i)$ (*likelihood*):
 - e.g., the probability density of some feature(s) x (e.g., lightness) given that it belongs to class ω_i
- Conditional probability $P(\omega_i/x)$ (posterior):
 - e.g., the probability that the fish belongs to class ω_j given x

Decision Rule Using Prior Probabilities Only

Decide ω_1 if $P(\omega_1) > P(\omega_2)$; otherwise **decide** ω_2

- Will be making the same decision at all times!
 - Favors the most likely class.
 - Optimum if no other information is available.
- What is the probability of error?

$$P(error) = \begin{cases} P(\omega_1) & \text{if we decide } \omega_2 \\ P(\omega_2) & \text{if we decide } \omega_1 \end{cases}$$

or
$$P(error) = min[P(\omega_1), P(\omega_2)]$$

Decision Rule Using Conditional Probabilities

Decide using the Bayes' rule:

$$P(\omega_j / x) = \frac{p(x/\omega_j)P(\omega_j)}{p(x)} = \frac{likelihood \times prior}{evidence}$$

where
$$p(x) = \sum_{j=1}^{2} p(x/\omega_j) P(\omega_j)$$
 (i.e., scale factor – ensures probs sum to 1)

Decide
$$\omega_1$$
 if $P(\omega_1/x) > P(\omega_2/x)$; otherwise **decide** ω_2 or

Decide
$$\omega_1$$
 if $p(x/\omega_1)P(\omega_1)>p(x/\omega_2)P(\omega_2)$; otherwise **decide** ω_2

or

Decide
$$\omega_1$$
 if $p(x/\omega_1)/p(x/\omega_2) > P(\omega_2)/P(\omega_1)$; otherwise **decide** ω_2 likelihood ratio threshold

Decision Rule Using Conditional Probabilities (cont'd)

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons,

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Probability of Error

What is the probability of error?

$$P(error/x) = \begin{cases} P(\omega_1/x) & \text{if we decide } \omega_2 \\ P(\omega_2/x) & \text{if we decide } \omega_1 \end{cases}$$
or
$$P(error/x) = min[P(\omega_1/x), P(\omega_2/x)]$$

What is the average probability error?

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error/x) p(x) dx$$

- Bayes rule is an optimum classification rule (i.e., it minimizes the average probability error).
 - Warning: this is true <u>only</u> under the assumption that $p(x/\omega_i)$ and $P(\omega_i)$ have been <u>modelled/estimated</u> correctly!

How is $p(x/\omega_i)$ estimated?

- Two competitive approaches:
 - Using histograms
 - Using models
- Each approach has its strengths and weaknesses.

Example (using histograms)

- Classify cars into two classes:
 - <u>Classes</u>: C₁ if price > \$50K, C₂ if price <= \$50K</p>
 - <u>Feature</u>: x, the <u>height</u> of a car
- Use the Bayes' rule to compute the posterior probabilities:

$$P(C_i/x) = \frac{p(x/C_i)P(C_i)}{p(x)}$$

• We need to estimate $p(x/C_1)$, $p(x/C_2)$, $P(C_1)$, $P(C_2)$

Example (using histograms) (cont'd)

- Collect data
 - Ask drivers how much their car was and measure height.
- Determine prior probabilities $P(C_1)$, $P(C_2)$
 - e.g., 1209 samples: $\#C_1=221 \ \#C_2=988$

$$P(C_1) = \frac{221}{1209} = 0.183$$

$$P(C_2) = \frac{988}{1209} = 0.817$$

Example (using histograms) (cont'd)

- Determine class conditional probabilities (likelihood)
 - Discretize car height into bins and compute normalized histogram.

Example (using histograms) (cont'd)

Calculate the posterior probability for each bin, e.g.:

$$P(C_1/x = 1.0) = \frac{p(x = 1.0/C_1)P(C_1)}{p(x = 1.0/C_1)P(C_1) + p(x = 1.0/C_2)P(C_2)} = \frac{0.2081*0.183}{0.2081*0.183 + 0.0597*0.817} = 0.438$$

Example (using models)

Model each class using some pdf, e.g., a Gaussian (parametric)

$$p(x) = N(\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$p(x/C_1) \sim N(\mu_1, \sigma_1)$$
 μ_1, σ_1 are estimated from C_1 data $p(x/C_2) \sim N(\mu_2, \sigma_2)$ μ_2, σ_2 are estimated from C_2 data

Compute priors as before or maybe set $P(C_1) = P(C_2) = 0.5$

Use Bayes rule to compute posterior probabilities:

$$P(C_i/x) = \frac{p(x/C_i)P(C_i)}{p(x)}$$

A More General Theory

- More than one features.
- More than two categories.
- Allow actions other than classification (e.g., rejection when classification is uncertain).
- Associate costs with different actions.
- Assume a more general error function (i.e., conditional risk) to perform classification using probability and costs.

Terminology

- Features form a vector $\mathbf{x} \in R^d$
- A set of *c* categories ω_1 , ω_2 , ..., ω_c
- A finite set of l actions $\alpha_1, \alpha_2, ..., \alpha_l$ (typically $l \ge c$)
 - e.g., $α_i$: decide $ω_i$ (1≤i≤c), $α_{c+1}$: reject
- A *loss* function $\lambda(\alpha_i / \omega_j) = \lambda_{ij}$
 - i.e., the cost associated with taking action α_i when the correct classification category is ω_i
- Conditional risk $R(\alpha_i/x)$ expected loss of taking action α_i given x

Classification will be performed by minimizing $R(\alpha_i/x)$ instead of maximizing $P(\omega_i/x)$

Conditional Risk $R(\alpha_i/x)$

• The conditional risk $R(\alpha_i/x)$ is defined as the expected loss of taking action α_i given x:

$$R(a_i/\mathbf{x}) = \sum_{j=1}^c \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x})$$

where
$$P(\omega_j/\mathbf{x}) = \frac{p(\mathbf{x}/\omega_j)P(\omega_j)}{p(\mathbf{x})}$$

Overall Risk

 The overall risk is the expected loss associated with α(x):

$$R = \int R(a(\mathbf{x})/\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

where $\alpha(\mathbf{x})$ is the decision rule which determines which action $\alpha_{1,\alpha_{2,\ldots,\alpha_l}}$ to take for any \mathbf{x} .

• How should we minimize R?

Decision Rule Using Conditional Risk

- R can be **minimized** by minimizing $R(\alpha_i/\mathbf{x})$:
 - (i) Computing $R(\alpha_i/\mathbf{x})$ for every α_i given an \mathbf{x}
 - (ii) Choosing the action α_i with the **minimum** conditional risk $R(\alpha_i/\mathbf{x})$

• The resulting minimum R^* is called *Bayes risk* and is the best performance that can be achieved: $R^* = \min R$

Example: Two-category classification

- Define
 - $-\alpha_1$: decide ω_1
 - $-\alpha_2$: decide ω_2
 - $-\lambda_{ij} = \lambda(\alpha_i/\omega_j)$ (e.g., $\lambda_{11} = \lambda_{22} = 0$, $\lambda_{12} = 10$, $\lambda_{21} = 2$)

The conditional risk associated with each action is:

$$R(a_i/\mathbf{x}) = \sum_{j=1}^{c} \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x})$$

$$R(a_1/\mathbf{x}) = \lambda_{11} P(\omega_1/\mathbf{x}) + \lambda_{12} P(\omega_2/\mathbf{x})$$

$$R(a_2/\mathbf{x}) = \lambda_{21} P(\omega_1/\mathbf{x}) + \lambda_{22} P(\omega_2/\mathbf{x})$$

Example: Two-category classification (cont'd)

Minimum risk decision rule:

Decide
$$\omega_1$$
 if $R(a_1/\mathbf{x}) \le R(a_2/\mathbf{x})$; otherwise decide ω_2

Decide
$$\omega_1$$
 if $(\lambda_{21} - \lambda_{11})P(\omega_1/\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2/\mathbf{x})$; otherwise decide ω_2

Or Decide
$$\omega_1$$
 if $\frac{p(\mathbf{x}/\omega_1)}{p(\mathbf{x}/\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$; otherwise decide ω_2

likelihood ratio

threshold

Special Case: Zero-One Loss Function

Assign the same loss (cost) to all errors:

$$\lambda(a_i/\omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

The conditional risk is given by:

$$R(a_i/\mathbf{x}) = \sum_{j=1}^{c} \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x}) = \sum_{i \neq j} P(\omega_j/\mathbf{x}) = 1 - P(\omega_i/\mathbf{x})$$

Special Case: Zero-One Loss Function (cont'd)

• In this case, the decision rule becomes:

Decide
$$\omega_1$$
 if $R(a_1/\mathbf{x}) < R(a_2/\mathbf{x})$; otherwise decide ω_2
$$R(a_i/\mathbf{x}) = 1 - P(\omega_i/\mathbf{x})$$
 or
$$\mathbf{Decide} \ \omega_1 \ \text{if} \ 1 - P(\omega_1/\mathbf{x}) < 1 - P(\omega_2/\mathbf{x}); \text{ otherwise decide } \omega_2$$
 or
$$\mathbf{Decide} \ \omega_1 \ \text{if} \ P(\omega_1/\mathbf{x}) > P(\omega_2/\mathbf{x}); \text{ otherwise decide } \omega_2$$
 Same as in the case with no costs!

 The overall risk in this case is the average probability error which is minimized by the Bayes rule!

Effect of using a loss function

Assuming a zero-one loss function λ_{ii} :

Decide ω_1 if $p(x/\omega_1)/p(x/\omega_2) > P(\omega_2)/P(\omega_1)$ otherwise **decide** ω_2

$$\theta_a = P(\omega_2)/P(\omega_1)$$

Assuming a general loss function λ_{ii} :

Decide
$$\omega_1$$
 if $\frac{p(\mathbf{x}/\omega_1)}{p(\mathbf{x}/\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$; otherwise decide ω_2

$$\theta_b = \frac{P(\omega_2)(\lambda_{12} - \lambda_{22})}{P(\omega_1)(\lambda_{21} - \lambda_{11})}$$

Discriminant Functions

 A classifier can also be represented by a set of discriminant functions, one for each class:

$$g_{i}(x), i = 1, ..., c$$

• An input **x** is assigned to class ω_i if:

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

Examples of Discriminants

Assuming a zero-one loss function:

$$g_i(\mathbf{x}) = P(\omega_i / \mathbf{x})$$
$$g_i(\mathbf{x}) = p(\mathbf{x} / \omega_i)P(\omega_i)$$

Assuming a general loss function:

$$g_i(\mathbf{x}) = -R(\alpha_i / \mathbf{x})$$

Examples of Discriminants (cont'd)

 Replacing g_i(x) with f(g_i(x)), where f() is monotonically increasing, will yield the same classification results!

$$g_i(\mathbf{x}) = p(\mathbf{x}/\omega_i)P(\omega_i)$$
 take In()

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}/\omega_i) + \ln P(\omega_i)$$

We'll use this formulation extensively!

Case of two categories

 More common to use a single discriminant function (dichotomizer, 二分器) instead of two:

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

Decide ω_1 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

Examples:
$$g(\mathbf{x}) = P(\omega_1 / \mathbf{x}) - P(\omega_2 / \mathbf{x})$$

$$g(\mathbf{x}) = [\ln p(\mathbf{x}/\omega_1) + \ln P(\omega_1)] - [\ln p(\mathbf{x}/\omega_2) + \ln P(\omega_2)]$$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x}/\omega_1)}{p(\mathbf{x}/\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Decision Regions and Boundaries

• Discriminants divide the feature space into decision regions R_1 , R_2 , R_c , separated by decision boundaries.

How is the decision boundary defined?

$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$

 Next, let's examine the form of discriminants (and corresponding decision boundaries) when p(x/ω_i) is modelled by a multivariate Gaussian density!

Log Refresher

Logarithmic Properties			
Product Rule	$\log_a(xy) = \log_a x + \log_a y$		
Quotient Rule	$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$		
Power Rule	$\log_a x^p = p \log_a x$		
Change of Base Rule	$\log_a x = \frac{\log_b x}{\log_b a}$		
Equality Rule	If $\log_a x = \log_a y$ then $x = y$		

Discriminant Functions assuming a Multivariate Gaussian Density

Let's consider the following discriminant function:

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}/\omega_i) + \ln P(\omega_i)$$
 $i = 1, ..., c$

assuming that $p(\mathbf{x}/\omega_i) \sim N(\mu_i, \Sigma_i)$

$$N(\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu)\right] \quad \mathbf{x} \in \mathbb{R}^d$$

In this case, the discriminant can be expressed as:

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

Discriminant Function assuming Multivariate Gaussian Density (cont'd)

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

- The complexity of $g_i(\mathbf{x})$ depends on Σ_i which has d(d+1)/2 parameters in general (μ_i has d parameters).
- We will consider three different cases to better understand simple vs complex models:
 - Case 1: $\Sigma_i = \sigma^2 I$ for each ω_i (one parameter total)
 - Case 2: $\Sigma_i = \Sigma$ for each ω_i (d(d+1)/2 parameters total)
 - Case 3: Σ_i = arbitrary for each ω_i (cd(d+1)/2 parameters total)

Case I

- $\Sigma_i = \sigma^2$ (each class is modeled by the same cov. matrix, diagonal with equal values)
 - Features are uncorrelated with the same variance.
 - Clusters have a spherical shape and the same size (centered at μ_i)
 - How could the discriminant be simplified in this case?

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

- If we disregard $\frac{d}{2}\ln 2\pi$ and $\frac{1}{2}\ln |\Sigma_i|$ (constants):

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mu_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

where
$$\|\mathbf{x} - \mu_i\|^2 = (\mathbf{x} - \mu_i)^t (\mathbf{x} - \mu_i)$$

— This is a linear discriminant, let's see why!

Case I (cont'd)

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mu_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

- Expanding the above expression:

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}^t \mathbf{x} - 2\mu_i^t \mathbf{x} + \mu_i^t \mu_i \right] + \ln P(\omega_i)$$

- Disregarding $\mathbf{x}^t\mathbf{x}$ (constant), we get a linear discriminant:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where
$$\mathbf{w}_i = \frac{1}{\sigma^2} \mu_i$$
, and $w_{i0} = -\frac{1}{2\sigma^2} \mu_i^t \mu_i + \ln P(\omega_i)$

What is the form of the decision boundary in this case?

Let's set
$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$

Case I (cont'd)

- Decision boundary is determined by hyperplanes; setting $g_i(\mathbf{x}) = g_j(\mathbf{x})$:

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x_0}) = 0$$

where
$$\mathbf{w} = \mu_i - \mu_j$$
, and $\mathbf{x}_0 = \frac{1}{2} (\mu_i + \mu_j) - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j)$

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x_0}) = 0$$

where
$$\mathbf{w} = \mu_i - \mu_j$$
, and $\mathbf{x}_0 = \frac{1}{2} (\mu_i + \mu_j) - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j)$

- Properties of decision boundary:
 - It passes through x₀
 - It is orthogonal to the line connecting the two means.
 - What happens if σ is very small? x_0 is insensitive to $P(\omega_i)$ and $P(\omega_i)$
 - What happens when $P(\omega_i) = P(\omega_j)$? $\mathbf{x}_0 = \frac{1}{2} (\mu_i + \mu_j)$
 - What happens if $P(\omega_i) \neq P(\omega_j)$? $\mathbf{x_0}$ shifts away from the most likely category!

If $P(\omega_i) \neq P(\omega_i)$, then $\mathbf{x_0}$ shifts away from the most likely category.

• When $P(\omega_i)$ are all equal, then the discriminant can be further simplified:

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mu_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

$$\mathbf{g}_i(\mathbf{x}) = -\|\mathbf{x} - \mu_i\|^2$$
Euclidean distance

This is known as the Euclidean distance classifier.

Case II

- $\Sigma_i = \Sigma$ (each class is modeled by the same cov. matrix, not necessarily diagonal)
 - Clusters are hyper ellipsoidal with same size (centered at μ_i)
 - How could the discriminant be simplified in this case?

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

- If we disregard $\frac{d}{2} \ln 2\pi$ and $\frac{1}{2} \ln |\Sigma_i|$ (constants):

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln P(\omega_i)$$

– This is also a linear discriminant, let's see why!

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln P(\omega_i)$$

- Expanding the above expression and disregarding the quadratic term:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$
 (linear discriminant)

where
$$\mathbf{w}_i = \Sigma^{-1} \mu_i$$
, and $w_{i0} = -\frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i + \ln P(\omega_i)$

What is the form of the decision boundary in this case?

Let's set
$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$

- Decision boundary is determined by hyperplanes; setting $g_i(\mathbf{x}) = g_j(\mathbf{x})$:

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x_0}) = 0$$

where
$$\mathbf{w} = \Sigma^{-1}(\mu_i - \mu_j)$$
 and $\mathbf{x}_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{ln[P(\omega_i)/P(\omega_j)]}{(\mu_i - \mu_j)^t \Sigma^{-1}(\mu_i - \mu_j)}(\mu_i - \mu_j)$

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x_0}) = 0$$

where
$$\mathbf{w} = \Sigma^{-1}(\mu_i - \mu_j)$$
 and $\mathbf{x}_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{ln[P(\omega_i)/P(\omega_j)]}{(\mu_i - \mu_j)^t \Sigma^{-1}(\mu_i - \mu_j)}(\mu_i - \mu_j)$

- Properties of hyperplane (decision boundary):
 - It passes through x₀
 - It is not orthogonal to the line connecting the two means.
 - What happens when $P(\omega_i) = P(\omega_j)$? $\mathbf{x}_0 = \frac{1}{2} (\mu_i + \mu_j)$
 - What happens if $P(\omega_i) \neq P(\omega_j)$? $\mathbf{x_0}$ shifts away from the most likely category.

If $P(\omega_i) \neq P(\omega_i)$, then $\mathbf{x_0}$ shifts away from the most likely category.

• When $P(\omega_i)$ are all equal, the discriminant can be further simplified:

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i)$$

Mahalanobis distance

This is known as the Mahalanobis distance classifier.

Case III

- Σ_i = arbitrary (each class has its own covariance matrix)
 - Clusters have different shapes and sizes (centered at μ_i)
 - How could the discriminant be simplified in this case?

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

- If we disregard $\frac{d}{2} \ln 2\pi$ (constant):

$$g_i(x) = x^t W_i x + w_i^t x + w_{i0}$$
(quadratic discriminant)

where
$$\mathbf{W}_i = -\frac{1}{2} \Sigma_i^{-1}$$
, $\mathbf{w}_i = \Sigma_i^{-1} \mu_i$, and $w_{i0} = -\frac{1}{2} \mu_i^t \Sigma_i^{-1} \mu_i - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$

What is the form of the decision boundary in this case?

Let's set
$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$

超二次曲面

- Decision boundary is determined by hyperquadrics; setting $g_i(\mathbf{x}) = g_j(\mathbf{x})$

$$\mathbf{x}^t\mathbf{W}_1\mathbf{x}+\mathbf{w}_1^t\mathbf{x}+w_{1,0}=\mathbf{x}^t\mathbf{W}_2\mathbf{x}+\mathbf{w}_2^t\mathbf{x}+w_{2,0}$$
 or
$$\mathbf{x}^t(\mathbf{W}_1-\mathbf{W}_2)\mathbf{x}+(\mathbf{w}_1^t-\mathbf{w}_2^t)\mathbf{x}+(w_{1,0}-w_{2,0})=0$$
 non-linear decision boundary

e.g., hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids etc.

Example

Assume $P(\omega_1)=P(\omega_2)$

$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}; \quad \Sigma_1 = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } \mu_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}; \quad \Sigma_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

What case is this? Case III

$$x_2 = 3.514 - 1.125x_1 + 0.1875x_1^2.$$

Note that the decision boundary does not pass through the midpoint of μ_1, μ_2

Error Bounds

 Exact error calculations could be difficult – it is easier to estimate error bounds.

$$P(error) = \int P(error, \mathbf{x}) d\mathbf{x} = \int P(error/\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$P(error/\mathbf{x}) = \begin{cases} P(\omega_1/\mathbf{x}) & \text{if we decide } \omega_2 \\ P(\omega_2/\mathbf{x}) & \text{if we decide } \omega_1 \end{cases} \min[P(\omega_1/\mathbf{x}), P(\omega_2/\mathbf{x})]$$

$$P(error) = \int \min[P(\omega_1/\mathbf{x}), P(\omega_2/\mathbf{x})] p(\mathbf{x}) d\mathbf{x} = \int \min[P(\omega_1/\mathbf{x}), P(\omega_2/\mathbf{x})] d\mathbf{x} = \int \min[P(\omega_1/\mathbf{x}), P(\omega_1/\mathbf{x}), P(\omega_2/\mathbf{x})] d\mathbf{x}$$

Error Bounds

- Using the inequality:

$$min[a, b] \le a^{\beta}b^{1-\beta}, \quad a, b \ge 0, 0 \le \beta \le 1$$

$$P(error) = \int \min[p(\mathbf{x}/\omega_1)P(\omega_1), p(\mathbf{x}/\omega_2)P(\omega_2)]d\mathbf{x} \le$$

$$P^{\beta}(\boldsymbol{\omega}_1)P^{1-\beta}(\boldsymbol{\omega}_2)\int p^{\beta}(\mathbf{x}/\boldsymbol{\omega}_1)\ p^{1-\beta}(\mathbf{x}/\boldsymbol{\omega}_2)d\mathbf{x}$$

Can we compute the following integral?

$$\int p^{\beta}(\mathbf{x}/\omega_1) \ p^{1-\beta}(\mathbf{x}/\omega_2) d\mathbf{x}$$

Error Bounds (cont'd)

• It can be shown that if $p(\mathbf{x}/\omega_i)$ is Gaussian, then:

$$\int p^{\beta}(\mathbf{x}/\omega_1) \ p^{1-\beta}(\mathbf{x}/\omega_2) d\mathbf{x} = e^{-\kappa(\beta)}$$

where
$$k(\beta) = \frac{\beta(1-\beta)}{2}(\mu_2 - \mu_1)^t[\beta\Sigma_1 + (1-\beta)\Sigma_2]^{-1}(\mu_2 - \mu_1) + \frac{1}{2}\ln\frac{|\beta\Sigma_1 + (1-\beta)\Sigma_2|}{|\Sigma_1|^\beta|\Sigma_2|^{1-\beta}}.$$

determinant

So:
$$P(error) \le P^{\beta}(\omega_1)P^{1-\beta}(\omega_2)e^{-k(\beta)}$$

Chernoff Error Bound

- Can be obtained by minimizing $P^{eta}(\omega_1)P^{1-eta}(\omega_2)e^{-k(eta)}$
 - This is a 1-D optimization problem, regardless to the dimensionality of the class conditional densities $p(\mathbf{x}/\omega_i)$.

FIGURE 2.18. The Chernoff error bound is never looser than the Bhattacharyya bound. For this example, the Chernoff bound happens to be at $\beta^* = 0.66$, and is slightly tighter than the Bhattacharyya bound ($\beta = 0.5$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Bhattacharyya Error Bound

- Can be obtained by simply setting $\beta=0.5$
 - Easier to compute but typically looser.

FIGURE 2.18. The Chernoff error bound is never looser than the Bhattacharyya bound. For this example, the Chernoff bound happens to be at $\beta^* = 0.66$, and is slightly tighter than the Bhattacharyya bound ($\beta = 0.5$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

• Warning: both bounds are reliable only if $p(\mathbf{x}/\omega_i)$ is Gaussian!

Example (cont'd)

$$k(\beta) = \frac{\beta(1-\beta)}{2} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^t [\beta \boldsymbol{\Sigma}_1 + (1-\beta)\boldsymbol{\Sigma}_2]^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) + \frac{1}{2} \ln \frac{|\beta \boldsymbol{\Sigma}_1 + (1-\beta)\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|^\beta |\boldsymbol{\Sigma}_2|^{1-\beta}}.$$

$$P(\boldsymbol{\omega}_1) = P(\boldsymbol{\omega}_2) = 0.5$$

$$\mu_1 = \left[\begin{array}{c} 3 \\ 6 \end{array} \right]; \quad \Sigma_1 = \left(\begin{array}{cc} 1/2 & 0 \\ 0 & 2 \end{array} \right)$$

$$\mu_2 = \left[\begin{array}{c} 3 \\ -2 \end{array} \right]; \quad \Sigma_2 = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right).$$

Bhattacharyya error:

$$k(0.5)=4.06$$

$$P(error) \le P^{\beta}(\omega_1) P^{1-\beta}(\omega_2) e^{-k(\beta)}$$
$$P(error) \le 0.0087$$

Bayes Decision Theory: Case of Discrete Features

• Replace
$$\int p(\mathbf{x}/\omega_j)d\mathbf{x}$$
 with $\sum_{\mathbf{x}} P(\mathbf{x}/\omega_j)$

See section 2.9 for details

Missing Features

• Suppose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ is a test vector where \mathbf{x}_1 is missing and $\mathbf{x}_2 = \hat{x}_2$; how should we classify it?

- If we set x_1 equal to the average value, we will classify **x** as ω_3
- But $p(\hat{x}_2/\omega_2)$ is larger; should we classify **x** as ω_2 ?

Marginalize Posterior Probability

- Suppose $\mathbf{x} = [\mathbf{x}_g, \mathbf{x}_b]$ (\mathbf{x}_g : good features, \mathbf{x}_b : bad features)
- Compute posterior probability using good features only:

$$P(\boldsymbol{\omega}_i/\mathbf{x}_g) = \frac{p(\boldsymbol{\omega}_i,\mathbf{x}_g)}{p(\mathbf{x}_g)} = \frac{\int p(\boldsymbol{\omega}_i,\mathbf{x}_g,\mathbf{x}_b)d\mathbf{x}_b}{p(\mathbf{x}_g)} = \frac{\int p(\boldsymbol{\omega}_i,\mathbf{x}_g,\mathbf{x}_b)d\mathbf{x}_b}{p(\mathbf{x}_g,\mathbf{x}_b)p(\mathbf{x}_g,\mathbf{x}_b)d\mathbf{x}_b} = \frac{\int P(\boldsymbol{\omega}_i/\mathbf{x}_g,\mathbf{x}_b)p(\mathbf{x}_g,\mathbf{x}$$

Decide ω_1 if $P(\omega_1/\mathbf{x}_g) > P(\omega_2/\mathbf{x}_g)$; otherwise decide ω_2

Compound Bayesian Decision Theory

- Sequential decision
 - (1) Decide as each pattern (e.g., fish) emerges.
- Compound decision
 - (1) Wait for *n* patterns (e.g., fish) to emerge.
 - (2) Make all *n* decisions jointly.
- Could improve performance when consecutive states of nature ($\omega(1)$, $\omega(2)$, ..., $\omega(n)$) are **not** statistically independent!

Compound Bayesian Decision Theory (cont'd)

- $X=(x_1, x_2, ..., x_n)$ are n observed vectors.
- Ω =(ω (1), ω (2), ..., ω (n)) denotes the **n** states of nature.
 - $-\omega(i)$ can take one of c values $\omega_1, \omega_2, ..., \omega_c$
- $P(\Omega)$ is the prior probability of the **n** states
- $p(X/\Omega)$ is the conditional probability density (likelihood).

Compound Bayesian Decision Theory (cont'd)

• We can compute $P(\Omega/X)$ using the Bayes Rule:

$$P(\mathbf{\Omega}/\mathbf{X}) = \frac{p(\mathbf{X}/\mathbf{\Omega})P(\mathbf{\Omega})}{p(\mathbf{X})}$$

The following assumption is not acceptable:

$$p(\mathbf{\Omega}) = \prod_{i=1}^{n} P(\omega(i))$$
 i.e., consecutive states of nature may **not** be **statistically independent!**

- Difficult to compute $p(\Omega)$ with c^n possible Ω
- Possible solution: use Markov Model to speed up
- The following assumption might be acceptable:

$$p(\mathbf{X}/\mathbf{\Omega}) = \prod_{i=1}^{n} p(\mathbf{x}_{i} / \omega(i))$$

如何表示/估计概率密度

(吴建鑫《模式识别》第8章)

- <u>参数估计</u>
 - 点估计point estimation
 - 贝叶斯估计Bayesian estimation
- 非参数估计
 - 直方图估计
 - KDE

最大似然估计的基本思想

• 样本集最可能来自哪个参数

以高斯分布为例

- 假设 $x \sim N(\mu, \sigma^2)$,从数据 $D = \{x_1, ..., x_n\}$ 估计
 - 数据独立同分布i.i.d. (independently identically distributed)
- 参数记为 θ , 这里 $\theta = (\mu, \sigma)$, 如何估计? 形式化?
- 一种直觉: 如果有两个不同的参数 θ_1 和 θ_2
 - 假设 θ 是参数的真实值,似然(likelihood)函数是

$$p(D|\boldsymbol{\theta}) = \prod_i p(x_i|\boldsymbol{\theta}) = \prod_i \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

- 若 $p(D|\boldsymbol{\theta}_1) > p(D|\boldsymbol{\theta}_2)$,该选择哪个?

易混淆的表示法notation

- 目前 θ 不是随机变量,所以 $p(D|\theta)$ 不是条件分布
 - -D固定, θ 是变量, $p(D|\theta)$ 是 θ 的函数,不是一个PDF!
 - $-p(x_i|\boldsymbol{\theta})$ 是一个PDF,因为 $\boldsymbol{\theta}$ 不是随机变量,这不是一个条件分布,只是习惯上这么写,表明这个分布依赖于参数 $\boldsymbol{\theta}$ 的值, x_i 是PDF的变量
- 较好的表示法: 定义似然函数likelihood function
 - $-\ell(\boldsymbol{\theta}) = p(D|\boldsymbol{\theta}) = \prod_i p(x_i|\boldsymbol{\theta})$ (或者 \boldsymbol{x}_i)
- 为了方便,定义对数似然函数log-likelihood function
 - $-\ell\ell(\boldsymbol{\theta}) = \ln p(D|\boldsymbol{\theta}) = \sum_{i} \ln p(x_i|\boldsymbol{\theta})$

最大似然估计

Maximum likelihood estimation, MLE

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell \ell(\boldsymbol{\theta})$$

- 高斯分布的最大似然估计
 - 参数为(μ , Σ),数据为 $D = \{x_1, ..., x_n\}$
 - 练习: 通过对 $\ell\ell(\theta)$ 求导发现最佳的参数值,可以查表

$$\boldsymbol{\mu}^* = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$$

$$\Sigma^* = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu^*) (x_i - \mu^*)^T$$

最大后验估计及其他

- Maximium a posteriori estimation, MAP
 - $-\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) p(\boldsymbol{\theta})$
 - 将参数 θ 自身不同取值的可能性 $p(\theta)$ (参数的先验概率)考虑进来
- 与MLE的关系
 - 假设我们对 θ 一无所知,那么应该怎样设定 $p(\theta)$?
 - noninformative prior时,MLE等价于MAP
 - 若 θ 是离散的随机变量,离散的均匀分布, $p(\theta) = \frac{1}{N}$
 - 若 $\boldsymbol{\theta}$ 是有限区间[a,b]的连续随机变量, $p(\theta) = \frac{1}{b-a}$
 - 若 θ 是 $(-\infty, +\infty)$ 上的连续随机变量,?
 - 假设 $p(\theta) = \text{const}$,称为improper prior

参数估计的一些性质

- 样例越多,估计越准!
- 渐进性质asymptotic property: 研究 $n \to \infty$ 时的性质,如
 - 一致性consistency: 随样本容量增大收敛到参数真值的估计量
- 其他性质如
 - 无偏估计unbiased estimate: 指估计量的期望和被估计量的真值相等
- 进一步阅读:关于一致和无偏

贝叶斯参数估计

- 点估计point estimation
 - MLE: 视 θ 为固定的参数,假设存在一个最佳的参数(或参数的真实值是存在的),目的是找到这个值
 - MAP: 将 $p(\theta)$ 的影响代入MLE中,仍然假设存在最优的参数
- 在贝叶斯观点中,**0**是一个分布/随机变量,所以估计应该是估计一个分布,而不是一个值(点)!
 - $p(\theta|D)$: 这是贝叶斯参数估计的输出,是一个完整的分布,而不是一个点

高斯分布参数的贝叶斯估计

- 参数 θ 的先验分布 $p(\theta)$,数据 $D = \{x_1, ..., x_n\}$,估计 $p(\theta|D)$ 。这里假设单变量,只估计 μ ,方差 σ 已知
 - 第一步: 设定 $p(\mu)$ 的参数形式: $p(\mu) = N(\mu_0, \sigma_0^2)$,目前假设参数 μ_0, σ_0^2 已知
 - 第二步: 贝叶斯定理和独立性得到 $p(\mu|D) = \frac{p(D|\mu)p(\mu)}{\int p(D|\mu)p(\mu)d\mu} = \alpha p(D|\mu)p(\mu) = \alpha \prod_{i=1}^{n} p(x_i|\mu)p(\mu)$
 - 第三步,应用高斯分布的性质,进一步得到其解析形式
 - 注意这里所有 $p(\cdot)$ 都是合法的密度函数

解的形式

$$p(\mu|D) = N(\mu_n, \sigma_n^2)$$

- 均值为 $\mu_n = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \mu_{\text{ML}}$
 - 其中 μ_{ML} 为MLE的估计值,即 $\mu_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 方差为 σ_n^2 ,其值由如下公式确定: $\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}$,或者为了便于记忆

$$(\sigma_n^2)^{-1} = (\sigma_0^2)^{-1} + n(\sigma^2)^{-1}$$

• 先验和数据的综合!

Bayes估计的例子

贝叶斯的进一步讨论

- 共轭先验conjugate prior
 - $若 p(x|\theta)$,存在先验 $p(\theta)$,使得 $p(\theta|D)$ 和 $p(\theta)$ 有相同的函数形式,从而简化推导和计算
 - 如高斯分布的共轭先验分布仍然是高斯分布
- 优缺点:
 - 理论上非常完备, 数学上很优美
 - 推导困难(怎样求任意分布的共轭?怎样用于决策? μ_0 的prior)、计算量极大(需要很多积分)
 - 在数据较多时,学习效果常不如直接用discriminant function

如何表示/估计概率密度

(吴建鑫《模式识别》第8章)

- 参数估计
 - 点估计point estimation
 - 贝叶斯估计Bayesian estimation
- 非参数估计
 - 直方图估计
 - KDE

非参数估计

- 常用的参数形式基本都是单模single modal的,不足以描述 复杂的数据分布:即应该直接以训练数据自身来估计分布
 - 例如直方图histogram,基于计数counting

有很多问题:

- 多维怎么办?
- · 怎么确定bin的个数?
- 连续?
- 需要保存数据吗?

Bin个数(宽度)的影响

维数灾难

- Curse of dimensionality
 - 以直方图为例,需要保存的参数是什么?
 - 如果每维n个bin,那么d维应该保存多少个bin的参数?
 - 如果n = 4, d = 100,那么应该保存多少个bin的参数?
 - $-4^{100} = 2^{200} \approx 10^{60}$! 那么,需要多少样例来学习? $1G = 10^9$
- 不仅局限于直方图、非参数估计,在参数估计、 以及很多其他统计学习方法中都是如此

Kernel Density Estimation (KDE)

• 举例: Parzen window (一维,使用高斯核)

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{(2\pi h^2)^{\frac{1}{2}}} \exp\left(-\frac{|x - x_i|^2}{2h^2}\right)$$

问题:

- 连续吗?
- 多维: 多个维度乘积(独立性假设)
- 需要保存数据吗?
 - 存储和计算实际代价大
 - 无穷多的参数
- 怎么确定*h*?