				(k ²)	$\frac{1}{k^2)^2}$		$\frac{1}{k^2)^2}$
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1}^{\#_{1}}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

Lagrangian density $-\frac{1}{2}\alpha_{0}\omega_{\alpha\beta}\omega^{\alpha\beta}\omega^{-\frac{1}{2}}\alpha_{0}\omega^{\alpha\beta}\omega^{\alpha}_{\alpha}\omega^{\chi}_{\lambda} + 2\beta_{1}\omega^{\alpha\beta}\omega^{\alpha}_{\alpha}\omega^{\chi}_{\lambda} - 2\beta_{1}\omega^{\alpha}_{\alpha}\omega^{\alpha}_{\beta}\omega^{\chi}_{\lambda} + 2\beta_{1}\omega^{\alpha}_{\alpha}\delta^{\alpha}\omega^{\beta}_{\lambda}\omega^{\chi}_{\lambda} + \alpha_{0}\beta_{1}\omega^{\alpha}_{\alpha}\omega^{\alpha}_{\lambda}\omega^{\chi}_{\lambda} + \alpha_{0}\beta_{1}\omega^{\alpha}_{\alpha}\omega^{\chi}_{\lambda} + 2\beta_{1}\omega^{\chi}_{\alpha}\delta^{\alpha}_{\alpha}\omega^{\chi}_{\lambda} + \alpha_{0}\beta_{1}\omega^{\alpha}_{\alpha}\omega^{\lambda}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega^{\beta}_{\lambda}\omega^{\lambda}_{\lambda}\omega$	Xdn dn ,
--	----------

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1}$ † $^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
Total #:	10			

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}$ † lphaeta	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\sharp_{1}}$ † lpha	0	0	0	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$
$\omega_1^{#2}$ † $^{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0

Massive particle

Pole residue:
$$-\frac{1}{\alpha_3} > 0$$

Polarisations: 1

Square mass: $-\frac{\alpha_0 - 4\beta_1}{2\alpha_3} > 0$

Parity: Odd

