LECTURE 6: PERCENTILES, NORMAL DISTRIBUTIONS

AP STATS

ABSTRACT. We first review cumulative distributions to help determine percentiles in an ordered list. We then relate z-scores to percentiles in the case of normal distributions.

1. Cumulative Frequencies and Cumulative Distributions

Given a random variable X and a PMF/PDF f defined on X, we can consider another distribution called the **cumulative distribution** function, which sums all of the probabilities up to a given point.

Definition. The cumulative distribution function (CDF) is the function defined as

$$CDF(x) = \int_{t=-\infty}^{x} f(t), \quad f = PDF/PMF$$

The cumulative distribution function has the following properties:

- Domain = all real numbers \mathbb{R}
- Range of outputs = [0, 1]
- CDF is monotonically increasing (if $x \le y \Longrightarrow CDF(x) \le CDF(y)$)

Another way of defining the CDF is by

$$CDF(x) = Prob(X \le x).$$

That is, the CDF will tell you the probability up to a certain point x (you get to pick this point!).

Example 1. From Question 1, we have $X = \{1, 2, 5\}$ and $p(x) = \frac{1}{8}$ as our probability function.

Let's find the values of the CDF:

$$\begin{array}{c|cccc} x & 1 & 2 & 5 \\ \hline p(x) & \frac{1}{8} & \frac{2}{8} & \frac{5}{8} \\ CDF(x) & \frac{1}{8} & \frac{3}{8} & \frac{8}{8} \end{array}$$

Note that we set the CDF(x) = 0 for any x < 1 in this example so that the CDF starts life at 0 and then concludes its final output to be 8/8 = 1.

FIGURE 1. Relationship between CDF and PDF

Example 2. If we set X = [2,2023] and let $f(x) = \frac{1}{2021}$ to be our (uniform) probability function, then we can evaluate the CDF at any given point between 2 and 2023. So if we were interested in x = 2020, then

$$CDF(x = 2020) = [area from x = 2 to x = 2020] = \frac{2018}{2021}$$

The graphic displaying different CDF's showcases their shared properties and how tweaking the mean or standard deviation changes how quickly we increase¹:

 $^{^{1}}$ Image is from here

FIGURE 2. Different CDFs

1.1. Cumulative Frequencies. Since the CDF is defined in terms of the PDF, we get that $CDF(x) \leq 1$ for all inputs x. However, if we are given a *frequency table*, we can convert these frequencies into relative frequencies to get the probabilities, but we can also consider the cumulative frequency.

Let's work with a particular example:

Example 3. Suppose we have weights of a number of people in kilograms (kg) with the following frequencies:

frequency	$cumulative\ frequency$
2	2
3	5
12	17
20	37
13	50
10	60
5	65
	2 3 12 20 13 10

2. Z-Scores

Definition. Given a quantitative variable, the **z-score** of a point x is the number

$$z_x = \frac{x - \mu}{\sigma}$$
, $\mu = \text{mean}$, $\sigma = \text{standard dev}$

The z-score tells you how many standard deviations you are away from the mean μ .

Example 1. Suppose $\mu = 70$ years and $\sigma = 5$ years. Say that your tortoise lifespan was in the 2.3 standard deviations above the mean. How long was your tortoise lifespan?

We write $z_x = 2.3$ and then do the computations:

$$2.3 = z_x = \frac{x - 70}{5} \Longrightarrow x = 70 + 2.3(5) = 81.5 \text{ years}$$

Remark. You can always compute the z-score of a point given μ and σ .

The only reason why we care about these z-scores is that they give us percentile interpretations when our distribution is normal.

3. Normal Distributions

When we are given a **normal distribution**, we write $X \sim N(\mu, \sigma)$ where μ is the mean and σ is the standard deviation. We know that X is going to be normal distribution if the associated PDF is given by the function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \text{ where } -\infty < x < \infty$$

This PDF will look like the bell-curve but also satisfies our 68-95-99.7 empirical rule.

Note that

- $\approx 68.26\%$ of the data lives between $\mu \sigma$ and $\mu + \sigma$
- $\approx 95.44\%$ of the data lives between $\mu 2\sigma$ and $\mu + 2\sigma$
- $\approx 99.74\%$ of the data lives between $\mu 3\sigma$ and $\mu + 3\sigma$

When the distribution is normal, we get an easy relationship between **percentiles** and **z-score**.

Example 1. If X is a normal distribution with $\mu = 62$ and $\sigma = 7$, let's compute

- (1) percentile of X = 69
- (2) Find the probability $Prob(58.5 \le X \le 71.8)$.

The tool to use is the z-score and recall that percentiles start from the left:

So compute the z-score of X = 69

$$z_{69} = \frac{69 - \mu}{\sigma} = \frac{69 - 62}{7} = 1$$

so we know that X - 69 is exactly 1 standard deviation above the mean. Using the z-score table, we get that X = 69 is in the 84.13rd percentile.

For (2), we find the z-scores of 58.5 and 71.8, respectively:

$$z_{58.5} = \frac{58.5 - 62}{7} = -\frac{1}{2}$$
$$z_{71.8} = \frac{71.8 - 62}{7} = 1.4$$

so locating these onto the z-score table, we find that $z_{71.7}$ is in the 91.92nd percentile while $z_{71.8}$ is in the 30.85th percentile. So we conclude that the probability $Prob(58.5 \le X \le 71.8)$ if $X \sim N(62,7)$ is going to be 0.9192 - 0.3085 = 0.6107, which gives us our answer.

3.1. The 3-Step Plan. To find probabilities for a normally distributed variable,

- (1) Convert the X-values into z-scores
- (2) Sketch a standard normal curve and shade in the required region asked by the question
- (3) Use a z-score table (or calculator) to find probabilities