

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)	
$\rightarrow x$	y —	
2104	460	
1416	232	
1534	315	
852	178	
•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
<u>×</u> 1	×z	×3	7	9
2104	5	1	45	460
> 1416	3	2	40	232 - M= 47
1534	3	2	30	315
852	2	1	36	178
Notation:	*	*	1	$\frac{\chi^{(2)}}{2} = \frac{3}{2} = \frac{3}{2}$
$\rightarrow n$ = number of features $n=4$				
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.				
$\rightarrow x_i^{(i)}$ = value of feature i in i^{th} training example.				

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Linear Regression with

multiple variables

Gradient descent for

səldeinev əlqitlum

Machine Learning

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(simultaneously update for every** $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update θ_0, θ_1)

New algorithm
$$(n \ge 1)$$
:

Repeat $\{$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \}$$

(simultaneously update θ_j for $j = 0, \dots, n$)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)} \}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)} \}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)} \}$$

Andrew Ng

Linear Regression with

səldeinev əlqitlum

practice I: Feature Scaling

Gradient descent in

Machine Learning

Feature Scaling Idea: Make sure features are on a similar scale.

Feature Scaling

 $1 \ge ix \ge 1$ b ylətemixorqqe otni əruteəf yrəvə təð

Mean normalization

Replace \underline{x}_i with $\underline{x}_i = \mu_i$ to make features have approximately zero mean

(Do not apply to
$$x_0 = 1$$
).

$$x_1 = \frac{\sin x - 1000}{200}$$

$$x_2 = x_1 \le x_2 \le x_3 \le x_4 = x_5 = x$$

BM wendnA

Machine Learning

Linear Regression with seldsines and selds wariables

Gradient descent in practice II: Learning rate

Gradient descent

$$(\theta) \mathcal{L}_{\frac{6}{6}\theta} \mathcal{D} - \mathcal{L}_{\theta} =: \mathcal{L}_{\theta} \leftarrow$$

- "Debugging": How to make sure gradient descent is working correctly.
- $.\mathfrak{D}$ base learning rate $\overline{\Omega}$.

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, I(heta) should decrease on every iteration.
- But if Ω is too small, gradient descent can be slow to converge.

BN wendre

To choose α , try 1.0, 20.01, 0.003, 10

- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (الالمانية المانية الما

- If \alpha is too small: slow convergence.

չութաաուչ։

Machine Learning

Features and polynomial regression

Linear Regression with multiple variables

BM wendnA

Polynomial regression

BM wendre

Choice of features

BM wendnA

Machine Learning

Normal equation

Linear Regression with multiple variables

Gradient Descent

Normal equation: Method to solve for heta analytically.

$$(\theta)I$$

Intuition: If
$$1D$$
 ($\theta \in \mathbb{R}$)
$$J(\theta) = a\theta^2 + b\theta + c$$

$$S(\theta) = a\theta^2 + b\theta + c$$

$$S(\theta) = a\theta^2 + b\theta + c$$

$$\frac{1}{1+n} \frac{1}{1+n} \frac{1}$$

Solve for
$$\theta_0, \theta_1, \ldots, \theta_n$$

 $h_{T}X^{1-}(X^{T}X) = \theta$ 822 2 I 841 36 31530 7 8 1534 232 08 9111 [09₹] **✓ Ğ**₽ \vec{c} 2104871 9٤[′] 825 312 30 3 1234 737 1416 ٥٢ 097 St 4017 0x ϵx x^{5} κ txIx(years) floors pedrooms Price (\$1000) emod fo egA **Number of Number of** Size (feet²)

Examples: m = 4.

 $\begin{array}{c|c}
 & (x,x) \\
\hline
 & (x,y) \\
\hline
 & (x,y)$ Andrew Ng sənites n : $((m,y,w),\dots,((1)y,w))$ seldmexs m

$$\frac{1}{\sqrt{X^TX}} = \theta$$

$$\frac{X^TX}{\sqrt{X^TX}} = \theta$$

BM wendre

.eatures. \underline{n} training examples, \underline{n}

Normal Equation

- \bullet No need to choose α .
- Don't need to iterate.
- Meed to compute
- .9816 Very large.

Gradient Descent

- ∞ Need to choose α .
- → Needs many iterations.
- .9816l si \underline{n} n9dw Morks well even

Machine Learning

Normal equation and non-invertibility (optional)

Linear Regression with multiple variables

Andrew Ng

Normal equation

degenerate)

$$h_{L}X_{1} - (X_{L}X) = \theta$$

$$\widehat{h_{L}X_{1}} - (X_{L}X) = \theta$$

What if X^TX is non-invertible? (singular/

Səlditi əvni-non s X^TX ti tadW

Redundant features (linearly dependent).

E.g.
$$x$$
 = 3.78 feet x -3.59 in feet x -3.78 f

Delete some features, or use regularization.