(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年9 月19 日 (19.09.2002)

PCT

(10) 国際公開番号 WO 02/072562 A1

(51) 国際特許分類⁷: C07D 279/06, 279/08, 417/12, 513/10, A61K 31/54, 31/541, 31/5415, 31/547, A61P 43/00, 29/00

РСТ/JР02/01229

(21) 国際出願番号:

(22) 国際出願日:

2002年2月14日(14.02.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-65386 2001年3月8日(08.03.2001) JF

- (71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府 大阪市中央区 道修町 3 丁目 1 番 8 号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 甲斐 浩幸 (KAI,Hiroyuki) [JP/JP]; 〒520-3423 滋賀県 甲賀郡 甲賀町大字五反田 1 4 0 5 番地 塩野義製薬株式会社内 Shiga (JP). 村司 孝巳 (MURASHI,Takami) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷲洲 5 丁目 1 2 番 4 号 塩野義製薬株式会社内 Osaka (JP). 冨田 実(TOMIDA,Minoru) [JP/JP]; 〒520-3423 滋賀県甲賀郡

甲賀町大字五反田 1 4 0 5 番地 塩野義製薬株式会 社内 Shiga (JP).

- (74) 代理人: 山内 秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2番 4号 塩野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: MEDICINAL COMPOSITION CONTAINING 1,3-THIAZINE DERIVATIVE

(54) 発明の名称: 1,3-チアジン誘導体を含有する医薬組成物

(57) Abstract: A compound represented by the formula (I) (I) (wherein R^1 is an optionally substituted heterocyclic group, etc.; R^2 and R^3 each independently is hydrogen, etc.; m is an integer of 0 to 2; and A is an optionally substituted aromatic carbon ring group, etc.). It has an affinity for the cannabinoid receptor of type 2.

(57) 要約:

式(I):

(式中、

 R^1 は置換されていてもよい複素環式基等; R^2 及び R^3 はそれぞれ独立して水素原子等;mは $0\sim2$ の整数;Aは置換されていてもよい芳香族炭素環式基等)で示される化合物にカンナビノイド2型受容体親和性作用を見出した。

明細書

1,3-チアジン誘導体を含有する医薬組成物

5 技術分野

本発明は、2-イミノ-1,3-チアジン誘導体に関する。より詳しくは、カンナビノイド2型受容体に結合活性を有する 2-イミノ-1,3-チアジン誘導体及びその医薬用途に関する。

10 背景技術

20

カンナビノイドは、1960年にマリファナの活性物質の本体として発見され、 その作用は、中枢神経系作用(幻覚、多幸感、時間空間感覚の混乱)、および末梢 細胞系作用(免疫抑制、抗炎症、鎮痛作用)であることが見出された。

その後、内在性カンナビノイド受容体アゴニストとして、アラキドン酸含有リン 脂質から産生されるアナンダミドや 2-アラキドノイルグリセロールが発見された。 これら内在性アゴニストは、中枢神経系作用及び末梢細胞系作用を発現することが 知られているが、さらに、Hypertension (1997) 29, 1204-1210 には、アナンダミドの 心血管への作用も報告されている。

カンナビノイド受容体としては、1990年にカンナビノイド1型受容体が発見され、脳などの中枢神経系に分布することがわかり、そのアゴニストは神経伝達物質の放出を抑制し、幻覚などの中枢作用を示すことがわかった。また、1993年にはカンナビノイド2型受容体が発見され、脾臓などの免疫系組織に分布することがわかり、そのアゴニストは免疫系細胞や炎症系細胞の活性化を抑制し、免疫抑制作用、抗炎症作用、鎮痛作用を示すことがわかった(Nature, 1993, 365, 61-65)。

25 従って、カンナビノイド 2 型受容体のアゴニストは、免疫抑制剤、抗炎症剤、鎮 痛剤として期待されている (Nature, 1998, 349, 277-281)。

カンナビノイド2型受容体アゴニスト作用を有する化合物としては、イソインド

リノン誘導体(WO97/29079、WO99/02499)、ビラゾール誘導体(WO98/41519)などが知られている。

さらに、J Pharmacol Exp Ther, 2001, 296, 420-425 には、カンナビノイド 2 型受容体親和性作用(アゴニスト作用及び/又はアンタゴニスト作用)を有する化合物が、抗炎症作用を示すことが報告されている。

一方、2-イミノ-1,3-チアジン骨格を有する有機燐化合物には殺虫作用があることが知られている(特開昭 6 1 - 6 5 8 9 4、特開昭 6 2 - 2 9 5 9 4)。

また、WO00/42031には、本願に類似する化合物が、プロゲステロン受容体親和性作用を有することが開示されている。

10 しかし、2-イミノ-1,3-チアジン誘導体がカンナビノイド2型受容体親和性作用(アゴニスト作用及び/又はアンタゴニスト作用)を有することは知られていない。

発明の開示

カンナビノイド 2 型受容体親和性作用(アゴニスト作用及び/又はアンタゴニス 15 ト作用)を有する化合物を見出す。

カンナビノイド 2 型受容体に結合活性を有する新規な化合物として、2-イミノ-1,3-チアジン誘導体を見出した。

すなわち、本発明は、

20 (1) 式(I):

$$(CH_2)_m$$
 R^2
 R^3
 (I)

(式中、

R¹は置換されていてもよい複素環式基又は式:-C (= Z) W-R⁴(式中、Zは酸

素原子又は硫黄原子; Wは酸素原子又は硫黄原子; R⁴は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基;

R²及びR³はそれぞれ独立して水素原子、置換されていてもよいアルキル、置換されていてもよいアルコキシアルキル、置換されていてもよいアミノアルキル又は置換されていてもよいシクロアルキル;又は

R²及びR³は一緒になって置換されていてもよいヘテロ原子を含んでいてもよい アルキレン;

mは0~2の整数;

10 Aは置換されていてもよい芳香族炭素環式基又は置換されていてもよい芳香族複素 環式基;

但し、 R^1 が式:-C (=Z) W^-R^4 (式中、Z は酸素原子又は硫黄原子;W は酸素原子又は硫黄原子; R^4 は非置換アルキル)で示される基の場合、 R^2 及び R^3 は一緒になって置換されていてもよいヘテロ原子を含んだアルキレンである)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

(2) 式:

15

で示される基が、式:

20 (式中、

R⁵およびR⁶はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、 置換されていてもよいアミノ、置換されていてもよいアリール、置換されていても よいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアル キル、ハロアルコキシ、置換されていてもよいカルパモイル、カルボキシ、アルコ

キシカルポニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基;又は

R⁵及びR⁶は一緒になってアルキレンジオキシを表わし; Aは芳香族炭素環式基又は芳香族複素環式基を表わす。)である上記(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

- R^{5} が水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、 (3) 10 イソブチル、sec-ブチル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、イソプロ ポキシ、n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチ オ、ジメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、 エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、塩 素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロメト 15 キシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、エタン スルフィニル、メタンスルホニル、エタンスルホニル、アセチル、メトキシメチル、 1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピペリジノ、2-オキソピ ロリジノ、1-メトキシイミノエチル又はモルホリノカルボニルであり; R 6 が水素、 メチル、エチル、フッ素、塩素、ニトロ、メトキシ又はエトキシであり:又はR5 及びR⁶が一緒になって-O-CH₂-O-であり; A がフェニル、ナフチル、ピリジル又は キノリニルである上記 (2) 記載の化合物、そのプロドラッグ、それらの製薬上許
- (4) R⁵およびR⁶がそれぞれ独立して水素、アルキル、アルコキシ又はア 25 ルキルチオであり; Aが芳香族炭素環式基である上記(2)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

容される塩又はそれらの溶媒和物、

(5) mが0である上記(1)~(4)のいずれかに記載の化合物、そのプ

ロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

(6) R^1 が置換されていてもよい複素環式基である上記(5)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

- (7) R¹が置換されていてもよいピリジル、置換されていてもよいベンゾチアゾリル、置換されていてもよいベンゾオキサゾリル又は置換されていてもよいチアジアゾリルである上記(6)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、
 - (8) R^1 が式:-C(=Z)W- R^4 (式中、Zは酸素原子又は硫黄原子;Wは酸素原子又は硫黄原子; R^4 は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基である上記(5)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、
 - (9) Z及びWが硫黄原子である上記(78記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、
- 15 (10) R²及びR³がそれぞれ独立してメチル、エチル、プロビル又はメトキシメチル;又は一緒になってエチレン、トリメチレン、テトラエチレン、ペンタメチレン又はエチレンオキシエチレンである上記(1)~(9)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、

(11) 式:

10

20

(式中、 R^2 及び R^3 はそれぞれ独立して置換されていてもよいアルキル;又は R^2 及び R^3 は一緒になって置換されていてもよいヘテロ原子を含んでいてもよいアルキレン;

5

R⁴は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換 されていてもよいアルキニル;

R⁵はアルキル、アルコキシ又は置換されていてもよいアミノ;

10

R®は水素、アルキル、アルコキシ、置換されていてもよいアミノ、ハロアルコキ シである)である上記(1)記載の化合物、そのプロドラッグ、それらの製薬上許 容される塩又はそれらの溶媒和物、

- (12) R⁴が置換されていてもよいアルキル(置換基としては、シアノ、 アルコキシ、アルキルカルボニル、カルボキシ、アルコキシカルボニル、アルケニ ルオキシカルボニル、アルコキシアルコキシカルボニル、置換されていてもよいカ ルバモイル(置換基としては、アルキル、アルコキシ)、ハロゲン、アルキルカル ボニルオキシ、アリールオキシ、置換されていてもよい非芳香族複素環式基(置換 基としては、アルキル)、置換されていてもよい芳香族複素環式基(置換基として は、アルキル、アリール)、式:-O-RI(Rは非芳香族複素環式基)で示される基)、 アルケニル又はアルキニルである上記(11)記載の化合物、そのプロドラッグ、 15 それらの製薬上許容される塩又はそれらの溶媒和物、
 - (13) Aが置換されていてもよいフェニル、置換されていてもよいナフチ ル又は置換されていてもよいキノリルである上記(1)記載の化合物、そのプロド ラッグ、それらの製薬上許容される塩又はそれらの溶媒和物、
- (14) 上記(1)~(13)のいずれかに記載の化合物、そのプロドラッ グ、それらの製薬上許容される塩又はそれらの溶媒和物を含有する医薬組成物、 20
 - (15) カンナビノイド2型受容体親和性である上記(14)記載の医薬組 成物、
 - (16) カンナビノイド2型受容体作動性である上記(15)記載の医薬組 成物、
- 抗炎症剤である上記(14)~(16)のいずれかに記載の医薬組 (17)25 成物、
 - (18)上記(1)記載の化合物を投与することを特徴とする炎症の治療方

法、

(19) 抗炎症剤を製造するための上記(1)記載の化合物の使用、

- (20) 免疫抑制剤である上記(14)~(16)のいずれかに記載の医薬 組成物、
- 5 (21) 腎炎治療剤である上記(14)~(16)のいずれかに記載の医薬 組成物、
 - (22) 鎮痛剤である上記(14)~(16)のいずれかに記載の医薬組成物、
- (23) 上記(1)記載の化合物を投与することを特徴とする免疫抑制の方 10 法、
 - (24) 上記(1)記載の化合物を投与することを特徴とする腎炎の治療方法、
 - (25) 上記(1)記載の化合物を投与することを特徴とする痛みの抑制方法、
- 15 (26) 免疫抑制剤を製造するための上記(1)記載の化合物の使用、
 - (27) 腎炎治療剤を製造するための上記(1)記載の化合物の使用、
 - (28) 鎮痛剤を製造するための上記(1)記載の化合物の使用、 に関する。
- 20 式(I)で示される化合物の特徴としては、
 - 1) 1,3-チアジン環が、3位で、置換されていてもよい複素環式基又は式:-C(=Z) W-R- 4 (式中、Zは酸素原子又は硫黄原子;Wは酸素原子又は硫黄原子;R- 4 は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基で置換されている点、
- 25 2) 1,3-チアジン環が、2位で、式: $=N-(CH_2)_m-A$ (式中、mは $0\sim2$ の整数;Aは置換されていてもよい芳香族炭素環式基又は置換されていてもよい芳香族複素環式基)で示される基で置換されている点、

が挙げられる。

式(I)で示される化合物の好ましい態様としては、

- 1) A環上の置換基が、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリーカオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルパモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基からなる群から選択される置換基である場合、
 - 2) · A環が、隣接する位置でアルキレンジオキシで置換されている場合、
- 15 3) mが0である場合、
 - 4) R¹が置換されていてもよいピリジル、置換されていてもよいベンゾチアゾリル、置換されていてもよいベンゾオキサゾリル又は置換されていてもよいチアジアゾリルである場合、
- 5) R^1 が式:-C (= Z) $W-R^4$ (式中、Zは酸素原子又は硫黄原子;Wは酸素 R^4 (式中、 R^4) 原子又は硫黄原子; R^4 は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基である場合、
 - 6) R^1 が式: -C (=Z) $W-R^4$ (式中、Z は酸素原子又は硫黄原子; W は酸素原子又は硫黄原子; R^4 は置換されたアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基である場合、
- 25 7) R²及びR³がそれぞれ独立してメチル、エチル、プロピル又はメトキシメチル;又は一緒になってエチレン、トリメチレン、テトラエチレン、ペンタメチレン 又はエチレンオキシエチレンである場合、

8) A環が単環の芳香族であり、結合手に隣接する原子が、分枝状のアルキル基 で置換されている場合、

9) R^2 及び R^3 が一緒になって置換されていてもよいヘテロ原子を含んでいてもよいアルキレンである場合、

5 が挙げられる。

式(I)で示される化合物の定義中使用される各語の意味を、以下に説明する。 各語は明細書中で統一して使用する。各用語は単独で又は他の用語と一緒になって 同一の意義を有する。

「アルキル」とは、炭素数 1 ~ 1 0 の直鎖状又は分枝状のアルキルを意味し、例 2 えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、n-ヘキシル、イソヘキシル、n-ヘブチル、n-オクチル、n-ノニル、n-デシル等が挙げられる。特に、炭素数 1 ~ 4 の直鎖又は分枝状のアルキルが好ましく、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチルが好ましい。

「アルケニル」とは、上記「アルキル」に 1 個又はそれ以上の二重結合を有する 炭素数 $2 \sim 8$ 個の直鎖状又は分枝状のアルケニルを意味し、例えば、ビニル、1-プロペニル、アリル、イソプロペニル、1-プテニル、2-プテニル、3-ブテニル、2-ペンテニル、1-プタジエニル、3-メチル-2-プテニル等が挙げられる。

20 「アルキニル」とは、上記「アルキル」に1個又はそれ以上の三重結合を有する 炭素数2~8個の直鎖状又は分枝状のアルキニルを意味し、例えば、エチニル等が 挙げられる。

「アルコキシ」とは、酸素原子に上記「アルキル」が置換した基を意味し、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソプト キシ、sec-ブトキシ、tert-ブトキシ、n-ペンチルオキシ、n-ヘキシルオキシ、n-ヘプ チルオキシ、n-オクチルオキシなどが挙げられる。特に、炭素数 1~4の直鎖又は 分枝状のアルコキシが好ましく、メトキシ、エトキシ、n-プロポキシ、イソプロポ

キシ、n-プトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシが好ましい。

「アルコキシアルキル」とは、上記「アルキル」に上記「アルコキシ」が置換した基を意味し、例えば、メトキシメチル、エトキシメチル、n-プロポキシメチル、1-メトキシエチル、2-エトキシエチル、1-n-プロポキシエチル、2-エトキシエチル、1-n-プロポキシエチル、2-エトキシーアロピル、2-メトキシーープロピル、3-メトキシーープロピル、1-エトキシーープロピル、2-エトキシーープロピル、3-エトキシーープロピル、1-エトキシーープロピル、2-エトキシーープロピル、3-エトキシーープロピル、1-n-プロポキシーープロピル、2-n-プロピル、3-n-プロピル、1-n-プロピル、3-n-プロピル、1-n-プロピル、3-n-プロピル、1-n-プロピル、3-n-プロピル、1-n-プロピル、3-n-プロピル等が挙げられる。

「置換されていてもよいアミノ」の置換基としては、アルキル (例えば、メチル、エチル、n-プロピル、イソプロピル等)、アシル (例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。アミノ基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

10

15

20

「置換されていてもよいアミノ」としては、アミノ、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、ジメチルアミノ、ジエチルアミノ、エチルメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、プロピルメチルアミノ等が好ましい。

「置換されていてもよいアミノアルキル」とは、上記「置換されていてもよいアミノ」が置換した上記「アルキル」を意味し、例えば、アミノメチル、メチルアミノメチル、エチルアミノメチル、n-プロピルアミノメチル、イソプロピルアミノメチル、N,N-ジメチルアミノメチル、N,N-ジエチルアミノメチル、N-エチル-N-メチルアミノメチル、アセチルアミノメチル、N-アセチルメチルアミノメチル、N-プロピル-N-メチルアミノメチル等が挙げられる。

「シクロアルキル」は、炭素数 3~10の環状飽和炭化水素基を意味し、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等が挙げられる。好ましくは、炭素数 3~6 のシクロアルキルであり、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシルが挙げられる。

「ヘテロ原子を含んでいてもよいアルキレン」とは、1~3個のヘテロ原子を含んでいてもよい炭素数2~10の直鎖状又は分枝状のアルキレンを意味し、例えば、エチレン、トリメチレン、テトラメチレン、ベンタメチレン、メチレンジオキシ、エチレンジオキシ、エチレンオキシエチレン等が挙げられる。特に、1個のヘテロ原子を含んでいてもよい炭素数3又は5直鎖状のアルキレンが好ましく、テトラメチレン、ベンタメチレン、エチレンオキシエチレン、エチレンアミノエチレン、エチレンチオエチレンが挙げられる。

「芳香族炭素環式基」とは、炭素数 6~14の芳香族炭素環式基を意味し、例え 10 ば、フェニル、ナフチル(1-ナフチル、2-ナフチル)、アントリル、フェナントリ ル等が挙げられる。特にフェニル、ナフチル(1-ナフチル、2-ナフチル)が好まし い。

15

20

25

「芳香族複素環式基」とは、環の構成原子として窒素原子、酸素原子及び/又は 硫黄原子を 1~4個含む炭素数 1~14の芳香性の単環又は 2~3個の縮合環から 誘導される基を意味し、例えば、フリル (例えば、2-フリル、3-フリル)、チェニル (例えば、2-チェニル、3-チェニル)、ピロリル (例えば、1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル (例えば、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル (例えば、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、トリアゾリル (例えば、1・2・4-トリアゾール・3・イル、1・2・4-トリアゾール・4・イル、1・2・4-トリアゾール・3・イル、1・2・4-トリアゾール・4・イン・ラゾリル、5・テトラゾリル)、オキサゾリル(例えば、2・オキサゾリル、4・オキサゾリル、5・オキサゾリル)、インキサゾリル(例えば、3・インキサゾリル、4・インキサゾリル、5・インキサゾリル、インキナゾリル(例えば、2・チアゾリル、4・チアゾリル、5・チアゾリル、5・インキアゾリル、インチアゾリル(例えば、2・ピリジル、3・ピリジル、4・ピリダジニル、4・ピリジル、3・ピリジル、4・ピリダジニル、5・ピリミジニル(例えば、2・ピリミジニル)、

フラザニル(例えば、3-フラザニル)、ピラジニル(例えば、2-ピラジニル)、オ キサジアゾリル (例えば、1,3,4-オキサジアゾール-2-イル)、ベンゾフリル (例 えば、2-ベンゾ[b]フリル、3-ベンゾ[b]フリル、4-ベンゾ[b]フリル、5-ベンゾ[b]フリ ル、6-ペンゾ[b]フリル、7-ペンゾ[b]フリル)、ベンゾチエニル(例えば、2-ペンゾ [b] \mathcal{F} \mathcal ペンゾ[b]チエニル、7-ペンゾ[b]チエニル)、ペンズイミダゾリル(例えば、1-ペン ゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾ リル)、ジベンゾフリル、ベンゾオキサゾリル、キノキサリル(例えば、2-キノキ サリニル、5-キノキサリニル、6-キノキサリニル)、シンノリニル(例えば、3-シン ノリニル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニル、8-10 シンノリニル)、キナゾリル(例えば、2-キナゾリニル、4-キナゾリニル、5-キナゾ リニル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル)、キノリル(例えば、 2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キ ノリル)、フタラジニル(例えば、1-フタラジニル、5-フタラジニル、6-フタラジニ - ル)、イソキノリル(例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、 5-イソキノリル、6-イソキノリル、7-イソキノリル、8-イソキノリル)、プリル、プ テリジニル (例えば、2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリ ジニル)、カルパゾリル、フェナントリジニル、アクリジニル(例えば、1-アクリ ジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、イ - ンドリル(例えば、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル)、イソインドリル、ファナジニル(例 えば、1-フェナジニル、2-フェナジニル) またはフェノチアジニル (例えば、1-フェ ノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニル) 等 が挙げられる。

25 Aの「芳香族複素環式基」は、特に、ビリジル、キノリル (特に、5-キノリル)、 イソキノリルが好ましい。

「複素環式基」とは、環の構成原子として窒素原子、酸素原子、及び/又は硫黄

原子を1~4個含む炭素数1~14の単環又は2~3個の縮合環から誘導される基を意味し、例えば上記「芳香族複素環式基」及び非芳香族複素環式基を包含する。

「非芳香族複素環式基」としては、環の構成原子として窒素原子、酸素原子及び /又は硫黄原子を 1 ~ 4 個含む炭素数 1 ~ 1 4 の非芳香性の単環又は 2 ~ 3 個の縮 合環から誘導される基を意味し、例えば、1-ピロリニル、2-ピロリニル、3-ピロリニ ル、ピロリジノ、2-ピロリジニル、3-ピロリジニル、1-イミダゾリニル、2-イミダゾ リニル、4-イミダゾリニル、1-イミダゾリジニル、2-イミダゾリジニル、4-イミダゾ リジニル、1-ピラゾリニル、3-ピラゾリニル、4-ピラゾリジニル、1-ピラゾリジニル、 3-ピラゾリジニル、4-ピラゾリジニル、ピペリジノ、2-ピペリジル、3-ピペリジル、 4-ピペリジル、ピペラジノ、2-ピペラジニル、2-モルホリニル、3-モルホリニル、モ ルホリノ、テトラヒドロピラニル等が挙げられる。特に、モルホリノ、ピロリジノ、 ピペリジノ、ピペラジノが好ましい。

R¹が複素環式基の場合、複素環式基としては芳香族複素環式基が好ましく、特に、単環又は2環の芳香族複素環式基が好ましい。特にピリジル(例えば、ピリジン-2-イル等)、チアジアゾリル(例えば、チアジアゾール-2-イル等)、ベンゾチアゾリル(例えば、ベンゾチアゾール-2-イル等)、ベンゾオキサゾリル(例えば、ベンゾオキサゾール-2-イル等)が好ましい。

15

キル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコ キシカルボニル、アルケニルオキシカルボニル、アルキルスルフィニル、アルキル スルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよい アミノアルキル、アルコキシアルコキシ、アルコキシアルコキシカルボニル、アル キルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよ い非芳香族複素環式基、アルコキシイミノアルキル、式:-C(=O)-R^H(R^Hは水素、 アルキル、置換されていてもよいアリール又は置換されていてもよい非芳香族複素 環式基)で示される基、アリールスルホニル(例えば、ペンゼンスルホニル等)、 シアノ、ヒドロキシアミノ、アラルキル(例えば、ベンジル等)、メルカプト、ヒ ドラジノ、アミジノ、グアニジノ、イソシアノ、イソシアナト、チオシアナト、イ ソチオシアナト、スルファモイル、ホルミルオキシ、ハロホルミル、オキザロ、チ オホルミル、チオカルポキシ、ジチオカルボキシ、チオカルバモイル、スルフィノ、 スルフォ、スルホアミノ、アジド、ウレイド、アミジノ、グアニジノ、オキソ、チ オキソ、アルキルカルボニルオキシ、アルキレンジオキシ、式:-O-R¹(式中、R¹ は非芳香族複素環式基)で示される基、アラルキルオキシ、アラルキルチオ、アラ ルキルアミノ等が挙げられる。

これらの置換基で置換可能な任意の位置が置換されていてもよい。また、上記に示した2価の基は、同一又は異なる位置(例えば、隣接する位置等)で置換していてもよい。

20

25

10

15

 R^1 の「置換されていてもよい複素環式基」の置換基としては、上記に例示された置換基の中でも、特に、アルキル(例えば、メチル等)、アルコキシ(例えば、メトキシ等)、アルキルチオ(例えば、メチルチオ等)、置換されていてもよいアミノ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルパモイル、カルポキシ、アルコキシカルボニル、置換されていてもよいアミノアルキル、式: $-C(=O)-R^H$ (R^H は水素又はアルキル)で示される基、シアノ、ヒドロキシアミノ、メルカプト等が好ましい。

R⁴の「置換されていてもよいアルキル」、「置換されていてもよいアルケニル」、 「置換されていてもよいアルキニル」、「置換されていてもよいアルコキシアルキ ル」、「置換されていてもよいシクロアルキル」の置換基としては、上記に例示さ れた置換基の中でも、特に、アルコキシ(例えば、メトキシ等)、アルケニルオキ - シ(例えば、ビニルオキシ等)、置換されていてもよいヘテロアリール(例えば、 アルキル (例えば、メチル、イソプロビル、イソブチル、tert-ブチル等) 又はアリ ール(例えば、フェニル)で置換されていてもよいヘテロアリール(例えば、イソ キサゾリル、オキサゾリル等))、アルキル(例えば、メチル)で置換されていて もよい非芳香族複素環式基(例えば、モルホリノ、4.5-ジヒドロイソキサゾール-3-イル、1,3-ジオキソラン-2-イル等)、アリールオキシ(例えば、フェノキシ等)、 ハロゲン(例えば、フッ素)、ヒドロキシ、ハロアルキル(例えば、トリフルオロ メチル等)、置換されていてもよいカルバモイル(非置換カルバモイル、N.N.ジメ チルカルバモイル、N-メチル-N-メトキシカルバモイル等)、カルポキシ、アルコキ シカルポニル (例えば、メトキシカルボニル、エトキシカルボニル、n-プロポキシ カルポニル、イソプロポキシカルボニル、tert-ブトキシカルボニル等)、アルケニ ルオキシカルボニル(例えば、ビニルオキシカルボニル、アリルオキシカルボニル 等)、アルコキシアルコキシカルボニル(2-メトキエチルオキシカルボニル等)、 式:- $C(=O)-R^H(R^H$ は水素又はアルキル)で示される基(例えば、ホルミル、アセ チル等)、シアノ、オキソ、アルキルカルボニルオキシ(例えば、アセチルオキシ 等)、アルキレンジオキシ(例えば、エチレンジオキシ等)、式:-O-R¹(式中、R¹ は非芳香族複素環式基)で示される基(例えば、テトラヒドロピラン-2-イルオキシ 等)等が好ましい。

10

15

Aの「置換されていてもよいヘテロ原子を含んでいてもよいアルキレン」、「置換されていてもよい芳香族炭素環式基」及び「置換されていてもよい芳香族複素環式基」の置換基としては、上記に例示された置換基の中でも、特に、アルキル(例えば、メチル、エチル、イソプロピル、sec-ブチル等)、アルコキシ(例えば、メトキシ、エトキシ、イソプロポキシ等)、置換されていてもよいアミノ(例えば、

ジメチルアミノ、ジエチルアミノ、エチルメチルアミノ等)、ハロアルキル (例えば、トリフルオロメチル等)、ハロアルコキシ (例えば、トリフルオロメトキシ等)、アラルキル (例えば、ベンジル等)等が好ましい。「ヘテロ原子を含んでいてもよいアルキレン」及び「芳香族複素環式基」の置換基は、ヘテロ原子 (窒素原子)上に置換していてもよい。

特にAが単環の芳香族(例えば、フェニル、フリル、チェニル、ピロリル、イミダゾリル、オキサゾリル、イソキサゾリル、チアゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル等)である場合、結合手に隣接する原子が、分枝状のアルキル基で置換されている場合が好ましい。分枝状のアルキル基としては、炭素数1~10の分枝状のアルキルを意味し、例えば、イソプロピル、イソプチル、sec-プチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル等が挙げられる。特に、炭素数3又は4の分枝状のアルキルが好ましく、具体的には、イソプロピル、イソブチル、sec-ブチル、tert-ブチルが好ましい。

10

20

25

15 「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。特に、フッ素、塩素、 臭素が好ましい。

「アルケニルオキシ」とは、酸素原子に上記「アルケニル」が置換した基を意味 し、例えば、ビニルオキシ、1-プロペニルオキシ、アリルオキシ、イソプロペニル オキシ、1-プテニルオキシ、2-プテニルオキシ、3-プテニルオキシ、2-ペンテニルオ キシ、1,3-ブタジエニルオキシ、3-メチル-2-プテニルオキシ等が挙げられる。

「アルキルチオ」とは、硫黄原子に上記「アルキル」が置換した基を意味し、例えば、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソプチルチオ、sec-ブチルチオ、t-ブチルチオ、n-ペンチルチオ、n-ヘキシルチオ等が挙げれれる。特に、炭素数 1 ~ 4 の直鎖又は分枝状のアルキルチオが好ましく、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソプチルチオ、sec-ブチルチオ、t-ブチルチオが好ましい。

「アリール」とは、上記「芳香族炭素環式基」と同意義であり、例えば、フェニ

ル、ナフチル(1-ナフチル、2-ナフチル)、アントリル、フェナントリル等が挙げ られる。特にフェニル、ナフチル(1-ナフチル、2-ナフチル)が好ましい。

「ヘテロアリール」とは、上記「芳香族複素環式基」と同意義であり、例えば、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリル、チアゾリル、チアジアゾリル、イソチアゾリル、ピリジル、ピリダジニル、ピリミジニル、フラザニル、ピラジニル、オキサジアゾリル、ベンゾフリル、ベンゾチエニル、ベンズイミダゾリル、ジベンゾフリル、ベンゾオキサゾリル、キノキサリル、シンノリニル、キナゾリル、キノリル、フタラジニル、イソキノリル、プリル、プテリジニル、カルバゾリル、フェナントリジニル、アクリジニル、インドリル、イソインドリル、ファナジニル又はフェノチアジニル等が挙げられる。

10

15

20

25

「アリールオキシ」とは、酸素原子に上記「アリール」が置換した基を意味し、例えば、フェノキシ、ナフトキシ(例えば、1-ナフトキシ、2-ナフトキシ等)、アントリルオキシ(例えば、1-アントリルオキシ、2-アントリルオキシ等)、フェナントリルオキシ(例えば、1-フェナントリルオキシ、2-フェナントリルオキシ等)等が挙げられる。

「ハロアルキル」とは、1以上のハロゲンで置換された上記「アルキル」を意味する。特に、炭素数 $1 \sim 3$ のハロゲン化アルキルが好ましく、例えば、トリフルオロメチル、クロロメチル、ジクロロメチル、ジフルオロメチル、1-クロロエチル、2-クロロエチル、1,1-ジクロロエチル、1,2-ジクロロエチル、2,2-ジクロロエチル、2,2-トリクロロエチル等が挙げられる。

「ハロアルコキシ」とは、酸素原子に上記「ハロアルキル」が置換した基を意味 し、例えば、トリフルオロメトキシ、クロロメトキシ、ジクロロメトキシ、1,1-ジ クロロエトキシ、2,2,2-トリクロロエトキシ、2,2,2-トリフルオロエトキシ等が挙げ られる。

「置換されていてもよいカルバモイル」は、置換又は非置換のカルバモイルを意味する。「置換されていてもよいカルバモイル」の置換基としては、アルキル(例

えば、メチル、エチル、n-プロピル、イソプロピル等)、アシル(例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。カルバモイル基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。「置換されていてもよいカルバモイル」としては、カルバモイル、N-メチルカルバモイル、N-エチルカルバモイル等が好ましい。

「アルコキシカルボニル」とは、上記「アルコキシ」で置換されたカルボニルを意味し、例えば、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、コンプロポキシカルボニル、n-ブトキシカルボニル、イソプトキシカルボニル、sec-プトキシカルボニル、tert-ブトキシカルボニル、n-ペンチルオキシカルボニル、n-ヘキシルオキシカルボニル、n-ヘプチルオキシカルボニル、n-オクチルオキシカルボニルなどが挙げられる。

10

15

「アルケニルオキシカルボニル」とは、上記「アルケニルオキシ」で置換された カルボニルを意味し、例えば、ピニルオキシカルボニル、1-プロペニルオキシカル ボニル、アリルオキシカルボニル、イソプロペニルオキシカルボニル、1-プテニル オキシカルボニル、2-プテニルオキシカルボニル、3-プテニルオキシカルボニル、2-ペンテニルオキシカルボニル、1,3-プタジエニルオキシカルボニル、3-メチル-2-ブ テニルオキシカルボニル等が挙げられる。

「アルキルスルフィニル」とは、上記「アルキル」が置換したスルフィニルを意味し、特にメタンスルフィニル、エタンスルフィニル等が好ましい。

20 「アルキルスルホニル」とは、上記「アルキル」が置換したスルホニルを意味し、 特にメタンスルホニル、エタンスルホニル等が好ましい。

「アルキルチオアルキル」とは、上記「アルキル」に上記「アルキルチオ」が置換した基を意味し、例えば、メチルチオメチル、エチルチオメチル、n-プロピルチオメチル、1-メチルチオエチル、2-メチルチオエチル、1-エチルチオエチル、2-エチルチオエチル、1-n-プロピルチオエチル、2-n-プロピルチオエチル、3-n-プロピルチオエチル、1-メチルチオ-n-プロピル、2-メチルチオ-n-プロピル、3-メチルチオ-n-プロピル、1-エチルチオ-n-プロピル、2-エチルチオ-n-プロピル、3-エチルチオ-n-プロピル、1-エチルチオ-n-プロピル、2-エチルチオ-n-プロピル、3-エチルチオ-n-プロ

ビル、1-n-プロビルチオ-n-プロビル、2-n-プロビルチオ-n-プロビル、3-n-プロビルチオ-n-プロビル等が挙げられる。

「アルコキシアルコキシ」とは、上記「アルコキシ」で置換された上記「アルコキシ」を意味し、例えば、メトキシメトキシ、エトキシメトキシ、n-プロポキシメトキシ、イソプロポキシメトキシ、1-メトキシエトキシ、2-メトキシエトキシなどが挙げられる。

「アルコキシアルコキシカルボニル」とは、上記「アルコキシアルコキシ」が置換したカルボニルを意味し、例えば、メトキシメトキシカルボニル、エトキシメトキシカルボニル、n-プロポキシメトキシカルボニル、イソプロポキシメトキシカルボニル、1-メトキシエトキシカルボニルなどが挙げられる。

10

「アルキルチオアルコキシ」とは、上記「アルキルチオ」で置換された上記「アルコキシ」を意味し、例えば、メチルチオメトキシ、エチルチオメトキシ、n-プロピルチオメトキシ、イソプロピルチオメトキシ、1-メチルチオエトキシ、2-メトキシエトキシなどが挙げられる。

「アルコキシイミノアルキル」とは、アルコキシイミノで置換された上記「アルキル」を意味する。例えば、メトキシイミノメチル、エトキシイミノメチル、1-メトキシイミノエチル等が挙げられる。

式:-C(=O)-R^H(RHは水素、アルキル、置換されていてもよいアリール、 20 又は置換されていてもよい非芳香族複素環式基)で示される基としては、例えば、 ホルミル、アセチル、ベンゾイル、トルオイル、モルホリノカルボニル等が挙げら れる。

「アリールスルホニル」とは、上記「アリール」で置換されたスルホニルを意味 し、特に、ベンゼンスルホニルが好ましい。

25 「アラルキル」とは、上記「アルキル」に上記「アリール」が置換した基を意味 し、例えば、ベンジル、フェニルエチル (例えば、1-フェニルエチル、2-フェニル エチル)、フェニルプロピル (例えば、1-フェニルプロピル、2-フェニルプロピル、

3-フェニルプロピル等)、ナフチルメチル(例えば、1-ナフチルメチル、2-ナフチル メチル等)等が挙げられる。

「アルキルカルボニルオキシ」とは、上記「アルキル」が置換したカルボニルオ キシを意味し、メチルカルボニルオキシ、エチルカルボニルオキシ、n-プロピルカ ルポニルオキシ、イソプロピルカルボニルオキシ、n-ブチルカルボニルオキシ、イ ソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルポニルオ キシ、n-ペンチルカルボニルオキシ、イソペンチルカルボニルオキシ、ネオペンチ ルカルボニルオキシ、tert-ペンチルカルボニルオキシ、n-ヘキシルカルボニルオキ シ、イソヘキシルカルボニルオキシ、n-ヘプチルカルボニルオキシ、n-オクチルカ ルボニルオキシ、n-ノニルカルポニルオキシ、n-デシルカルボニルオキシ等が挙げ られる。

10

15

20

「アルキレンジオキシ」とは、炭素数1~6の直鎖又は分枝状のアルキレンで置 換されたジオキシを意味し、同一又は異なる原子で置換することができる。例えば、 メチレンジオキシ (-O-CH₂-O-)、エチレンジオキシ (-O-CH₂-CH₂-O-) プロピレン ジオキシ (-O-CH₂-CH₂-CH₂-O-) 等が好ましい。

式:-O-RI(式中、RIは非芳香族複素環式基)で示される基としては、例えば、1-ピロリニルオキシ、2-ピロリニルオキシ、3-ピロリニルオキシ、ピロリジノオキシ、 2-ピロリジニルオキシ、3-ピロリジニルオキシ、1-イミダゾリニルオキシ、2-イミダ ゾリニルオキシ、4-イミダゾリニルオキシ、1-イミダゾリジニルオキシ、2-イミダゾ リジニルオキシ、4-イミダゾリジニルオキシ、1-ピラゾリニルオキシ、3-ピラゾリニ ルオキシ、4-ピラゾリニルオキシ、1-ピラゾリジニルオキシ、3-ピラゾリジニルオキ シ、4-ピラゾリジニルオキシ、ピペリジノオキシ、2-ピペリジルオキシ、3-ピペリジ ルオキシ、4-ピペリジルオキシ、ピペラジノオキシ、2-ピペラジニルオキシ、2-モル ホリニルオキシ、3-モルホリニルオキシ、モルホリノオキシ、テトラヒドロピラン 25 -2-イルオキシ等が挙げられる。

「アラルキルオキシ」とは、酸素原子に上記「アラルキル」が嚴換した基を意味 し、例えば、ベンジルオキシ、フェニルエチルオキシ(例えば、1-フェニルエチル

オキシ、2-フェニルエチルオキシ)、フェニルプロポキシ(例えば、1-フェニルプロピルオキシ、2-フェニルプロピルオキシ、3-フェニルプロピルオキシ等)、ナフチルメトキシ(例えば、1-ナフチルメトキシ、2-ナフチルメトキシ等)等が挙げられる。

5 「アラルキルチオ」とは、硫黄原子に上記「アラルキル」が置換した基を意味し、例えば、ベンジルチオ、フェニルエチルチオ (例えば、1-フェニルエチルチオ、2-フェニルエチルチオ)、フェニルプロピルチオ (例えば、1-フェニルプロピルチオ、2-フェニルプロピルチオ、3-フェニルプロピルチオ等)、ナフチルメチルチオ (例えば、1-ナフチルメチルチオ、2-ナフチルメチルチオ等)等が挙げられる。

10 「アラルキルアミノ」とは、窒素原子に上記「アラルキル」が1又は2個置換した基を意味し、例えば、ベンジルアミノ、フェニルエチルアミノ (例えば、1-フェニルエチルアミノ、2-フェニルエチルアミノ)、フェニルプロピルアミノ (例えば、1-フェニルプロピルアミノ、2-フェニルプロピルアミノ)、ナフチルメチルアミノ (例えば、1-ナフチルメチルアミノ、2-ナフチルメチルアミノ (例えば、1-ナフチルメチルアミノ、2-ナフチルメチルアミノ等が挙げられる。

mは0~2の整数を意味し、特に、m=0が好ましい。

カンナビノイド2型受容体作動性とは、カンナビノイド2型受容体に対してアゴニスト作用を示すことを意味する。

20

発明を実施するための最良の形態

本発明に係る化合物は、以下に示す工程によって製造することができる。

(式中、各記号は前記と同意義)

第1工程

10

15

20

式 (III) で示される化合物のアミノ基をイソチオシアン酸エステル (イソチ オシアネート) に変換し、式 (IV) で示される化合物を製造する工程である。

アミノ基からイソチオシアン酸エステル(イソチオシアネート)への変換法としては、①アンモニア(NH_3 、 NH_4OH)やトリエチルアミン(Et_3N)などの塩基の存在下に二硫化炭素(CS_2)を作用させて得られるジチオカルバミド酸塩を、クロロ炭酸エチル($C1CO_2Et$)、トリエチルアミン(Et_3N)で処理する方法、②前記ジチオカルバミド酸塩を、硝酸鉛等の金属塩で処理する方法③チオホスゲン($CSC1_2$)を作用させる方法④チオカルボニルジイミダゾールを作用させる方法等が挙げられる。

①の場合、塩基(1.0~1.5当量)及び二硫化炭素(1.0~1.5当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。その後、クロロ炭酸エチル(1.0~1.5当量)及びトリエチルアミン(1.0~1.5当量)を加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、

特に0℃~室温が好ましい。

10

③の場合、チオホスゲン(1.0~1.5 当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で 0.5 時間~10時間攪拌する。反応温度としては 0.5 ~100 0.5 が好ましく、特に 0.5 ~室温が好ましい。

式(III)で示される化合物としては、m=0の例として、アニリン、2-メチ ルアニリン、2-エチルアニリン、2-n-プロピルアニリン、2-イソプロピルアニリン、 2-n-プチルアニリン、2-sec-ブチルアニリン、2-t-プチルアニリン、3-メチルアニリン、 3-イソプロピルアニリン、3-イソプロピル-4-メチルアニリン、3-t-ブチルアニリン、 4-メチルアニリン、4-イソプロピルアニリン、2,6-ジメチルアニリン、2,3-ジメチル アニリン、2,4-ジメチルアニリン、3,4-ジエチルアニリン、2,5-ジメチルアニリン、 3,4-ジメチルアニリン、3,5-ジメチルアニリン、2,6-ジエチルアニリン、2,6-ジ-イソ プロピルアニリン、2-メトキシアニリン、2-エトキシアニリン、2-イソプロポキシア ニリン、3-メトキシアニリン、3,5-ジメトキシアニリン、3-n-ブトキシアニリン、4-20 n-プトキシアニリン、4-エトキシアニリン、3,4-ジメトキシアニリン、2-メチルチオ アニリン、2-エチルチオアニリン、2-イソプロピルチオアニリン、2-N,N-ジメチル アミノアニリン、2-フェニルアニリン、3-フェニルアニリン、4-フェノキシアニリン、 2-シクロヘキシルアニリン、2-シクロペンチルアニリン、2-ニトロアニリン、2.4-ジ ニトロアニリン、2-フルオロアニリン、2-クロロアニリン、4-クロロアニリン、2,3-25 ジクロロアニリン、3,4-ジクロロアニリン、2-イソプロピル-4-ニトロアニリン、2-イソプロピル-6-ニトロアニリン、2-ヒドロキシアニリン、2-N.N-ジメチルアミノカ

ルボニルアニリン、2-N-アセチルアニリン、2-(1-エチルプロピル) アニリン、2-イソプロピル 4-メチルアニリン、2-イソプロピル-4-ヒドロキシアニリン、2-イソプロピル-5-ロピル-4-クロロアニリン、2-イソプロピル-4-アミノアニリン、2-イソプロピル-5-メチルアニリン、2-イソプロピル-5-ヒドロキシアニリン、2-イソプロピル-5-クロロアニリン、4-クロロ-3-メチルアニリン、3,4-メチレンジオキシアニリン等が挙げられる。

10

20

25

m=1の例としては、ベンジルアミン、2-メチルベンジルアミン、2-エチルベンジ ルアミン、2-n-プロピルベンジルアミン、2-イソプロピルベンジルアミン、2-n-ブチ ルベンジルアミン、2-sec-ブチルベンジルアミン、2-t-ブチルベンジルアミン、3-メ チルベンジルアミン、3-イソプロピルベンジルアミン、3-イソプロピル-4-メチルベ ンジルアミン、3-t-ブチルベンジルアミン、4-メチルベンジルアミン、4-イソプロピ ルベンジルアミン、2,6-ジメチルベンジルアミン、2,3-ジメチルベンジルアミン、2,4-ジメチルベンジルアミン、3,4-ジエチルベンジルアミン、2,5-ジメチルベンジルアミ ン、3,4-ジメチルベンジルアミン、3,5-ジメチルベンジルアミン、2,6-ジエチルベン ジルアミン、2,6-ジ-イソプロピルペンジルアミン、2-メトキシベンジルアミン、2-エトキシベンジルアミン、2-イソプロポキシベンジルアミン、3-メトキシベンジル アミン、3,5-ジメトキシベンジルアミン、3-n-プトキシベンジルアミン、4-n-プトキ シベンジルアミン、4-エトキシベンジルアミン、3,4-ジメトキシベンジルアミン、2-メチルチオベンジルアミン、2-エチルチオベンジルアミン、2-イソプロピルチオベ ンジルアミン、2-N,N-ジメチルアミノペンジルアミン、2-フェニルペンジルアミン、 3-フェニルベンジルアミン、4-フェノキシベンジルアミン、2-シクロヘキシルベンジ ルアミン、2-シクロペンチルベンジルアミン、2-ニトロペンジルアミン、2.4-ジニト ロベンジルアミン、2-フルオロベンジルアミン、2-クロロベンジルアミン、4-クロロ ペンジルアミン、2,3-ジクロロペンジルアミン、3,4-ジクロロベンジルアミン、2-イ ソプロピル-4-ニトロベンジルアミン、2-イソプロピル-6-ニトロベンジルアミン、2-ヒドロキシベンジルアミン、2-N.N-ジメチルアミノカルボニルベンジルアミン、2-N-アセチルペンジルアミン、2-(1-エチルプロピル)ペンジルアミン、2-イソプロ

ピル-4-メチルベンジルアミン、2-イソプロピル-4-ヒドロキシベンジルアミン、2-イソプロピル-4-クロロベンジルアミン、2-イソプロピル-4-アミノベンジルアミン、2-イソプロピル-5-メチルベンジルアミン、2-イソプロピル-5-ヒドロキシベンジルアミン、2-イソプロピル-5-クロロベンジルアミン、4-クロロ-3-メチルベンジルアミン、3.4-メチレンジオキシベンジルアミン等が挙げられる。

m=2の例としては、フェネチルアミン、2-メチルフェネチルアミン、2-エチルフ ェネチルアミン、2-n-プロピルフェネチルアミン、2-イソプロピルフェネチルアミン、 2-n-ブチルフェネチルアミン、2-sec-ブチルフェネチルアミン、2-t-ブチルフェネチ ルアミン、3-メチルフェネチルアミン、3-イソプロピルフェネチルアミン、3-イソプ ロピル-4-メチルフェネチルアミン、3-t-ブチルフェネチルアミン、4-メチルフェネチ ルアミン、4-イソプロピルフェネチルアミン、2,6-ジメチルフェネチルアミン、2,3-ジメチルフェネチルアミン、2,4-ジメチルフェネチルアミン、3,4-ジエチルフェネチ ルアミン、2,5-ジメチルフェネチルアミン、3,4-ジメチルフェネチルアミン、3,5-ジ メチルフェネチルアミン、2.6-ジエチルフェネチルアミン、2.6-ジ-イソプロピルフ ェネチルアミン、2-メトキシフェネチルアミン、2-エトキシフェネチルアミン、2-イソプロポキシフェネチルアミン、3-メトキシフェネチルアミン、3.5-ジメトキシフ ェネチルアミン、3-n-ブトキシフェネチルアミン、4-n-ブトキシフェネチルアミン、 4-エトキシフェネチルアミン、3,4-ジメトキシフェネチルアミン、2-メチルチオフェ ネチルアミン、2-エチルチオフェネチルアミン、2-イソプロピルチオフェネチルア ミン、2-N.N-ジメチルアミノフェネチルアミン、2-フェニルフェネチルアミン、3-フェニルフェネチルアミン、4-フェノキシフェネチルアミン、2-シクロヘキシルフ ェネチルアミン、2-シクロペンチルフェネチルアミン、2-ニトロフェネチルアミン、 2,4-ジニトロフェネチルアミン、2-フルオロフェネチルアミン、2-クロロフェネチル アミン、4-クロロフェネチルアミン、2,3-ジクロロフェネチルアミン、3,4-ジクロロ フェネチルアミン、2-イソプロピル-4-ニトロフェネチルアミン、2-イソプロピル-6-ニトロフェネチルアミン、2-ヒドロキシフェネチルアミン、2-N,N-ジメチルアミノ カルボニルフェネチルアミン、2-N-アセチルフェネチルアミン、2-(1-エチルプロ

10

15

25

ピル) フェネチルアミン、2-イソプロピル-4-メチルフェネチルアミン、2-イソプロピル-4-ヒドロキシフェネチルアミン、2-イソプロピル-4-クロロフェネチルアミン、2-イソプロピル-5-メチルフェネチルアミン、2-イソプロピル-5-メチルフェネチルアミン、2-イソプロピル-5-クロロフェネチルアミン、4-クロロ-3-メチルフェネチルアミン、3,4-メチレンジオキシフェネチルアミン等が挙げられる。

第2工程

式(IV)で示される化合物のイソチオシアン酸エステル(イソチオシアネート) 10 に、N H_2 - C H_2 C (R^2) R^3 C H_2 - O H を 反応させ、式 (V) で示される化合物を 製造する工程である。

本工程は、非プロトン性溶媒 (例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムアミド、ペンゼン、トルエン、ジクロロメタン、クロロホルム等) 中で行うことができる。

15 反応温度としては、0℃~100℃が好ましく、特に0℃~室温が好ましく、反応時間としては、0.5時間~10時間が好ましい。

 NH_2 - $CH_2C(R^2)R^3CH_2$ -OHは、化合物(IV)に対して1.0~1.5 当量用いればよい。

 $\mathrm{NH_2\text{-}CH_2C}(\mathrm{R}^2)\mathrm{R}^3\mathrm{CH_2\text{-}OH}$ としては、3-Pミノプロパノール、3-Pミノ-2-2-2・ジメチ ルプロパノール、3-Pミノ-1-2・メチルプロパノール、3-Pミノ-2-2・メチルプロパノール、3-Pミノ-2-2・ジェチルプロパノール、1-Pミノメ チル-1-2・ジェチルシクロプロパン、1-Pミノメチル-1-2・ドロキシメチルシクロペキサン、1-Pミノメチル -1-2・ドロキシメチル-2-2・ボール・2-2・ズール・2-2・ズール

25

第3工程

式(V)で示される化合物を閉環させ、式(VI)で示される化合物を製造する

工程である。

閉環方法としては、①ジェチルアゾジカルボキシレート (DEAD) 及びトリフェニルホスフィン (Ph₃P)で処理する方法、②塩酸で処理する方法等が挙げられる。

①の場合は、溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)等を用い、0.5時間~5時間、0℃~室温で行えばよい。ジエチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(PhaP)は、それぞれ化合物(V)に対して1.0~1.5当量用いればよい。

10 ②の場合は、濃塩酸中で 0.5時間~10時間、加熱還流すればよい。

第4工程

15

25

式(VI)で示される化合物に、 R^2 (式:-C($=R^5$) $-R^6$ で示される基又は式: $-SO_2R^7$ で示される基)を導入し、式(II)で示される化合物を製造する工程である。(式中、 R^6 はO又はSを表わし、 R^6 はPルキル、Pルコキシ、Pルキルチオ、置換されていてもよいPラルキルチオ、置換されていてもよいPラルキルチオ、置換されていてもよいPラルキルアミノ、Pルコキシアルキル、Pルキルチオアルキル、又は置換されていてもよいPミノアルキルを表わし、P0はP1はP1、置換されていてもよいP2、置換されていてもよいP1、

また、 R^6 がS、 R^6 がPルキルチオ又は置換されていてもよいPラルキルチオであるジチオ酸エステルの化合物は、塩基(例えば、水素化ナトリウム等)の存在下、二硫化炭素(CS_2)を反応させ、次いで、ハロゲン化Pルキル(例えば、3-Fメタン、3-Fエタン等)又はハロゲン化Pラルキル(例えば、ベンジルプロミド等)を反応させることによっても得ることができる。この場合、溶媒としては、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、N,N-ジメチルホルムPミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)を用いることができ、0 C~室温で反応は進行する。

また、 R^2 として、式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を導入する場合は、式: R^7SO_2X (式中、Xはハロゲン等)で示される化合物を式(VI)で示される化合物に塩基存在下で反応させればいい。

15 プロドラッグは、生理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載されている。

本発明に係る化合物のプロドラッグは、脱離基を導入することが可能なA環上の置換基 (例えば、アミノ、ヒドロキシ等) に、脱離基を導入して製造することができる。アミノ基のプロドラッグとしては、カルバメート体 (例えば、メチルカルバメート、シクロプロピルメチルカルバメート、t-ブチルカルバメート、ベンジルカルバメート等)、アミド体 (例えば、ホルムアミド、アセタミド等)、N-アルキル体 (例えば、N-アリルアミン、N-メトキシメチルアミン等)等が挙げられる。ヒドロキシ基のプロドラッグとしては、エーテル体 (メトキシメチルエーテル、メトキシエトキシメチルエーテル等)、エステル体 (例えば、アセテート、ピバロエート、ベンゾエート等)等が挙げられる。

製薬上許容される塩としては、塩基性塩として、例えば、ナトリウム塩、カリウ ム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩; アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ジシクロヘキシルア ミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、 プロカイン塩等の脂肪族アミン塩;N.N-ジベンジルエチレンジアミン等のアラルキ ルアミン塩、ピリジン塩、ピコリン塩、キノリン塩、イソキノリン塩等のヘテロ環 芳香族アミン塩;テトラメチルアンモニウム塩、テトラエチルアモニウム塩、ベン ジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルト リブチルアンモニウム塩、メチルトリオクチルアンモニウム塩、テトラブチルアン 10 モニウム塩等の第4級アンモニウム塩;アルギニン塩、リジン塩等の塩基性アミノ 酸塩等が挙げられる。酸性塩としては、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸 塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;酢酸塩、プロピオン酸塩、乳 酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコ ルビン酸塩等の有機酸塩:メタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホ ン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩;アスパラギン酸塩、グルタミ ン酸塩等の酸性アミノ酸等が挙げられる。

溶媒和物としては、式(I)で示される化合物、そのプロドラッグ、又はその製 薬上許容される塩の溶媒和物を意味し、例えば、一溶媒和物、二溶媒和物、一水和 物、二水和物等が挙げられる。

本発明化合物は、カンナビノイド2型受容体(CB2R)親和性であり、カンナ ビノイド2型受容体(CB2R)に結合し、CB2Rアンタゴニスト作用またはC B2Rアゴニスト作用を示す。特に、CB2Rアゴニスト作用を示す。

25

15

20

従って、本発明化合物は、カンナビノイド2型受容体(CB2R)が関与する疾 患に対して治療又は予防の目的で使用することができる。例えば、Proc. Natl. Acad.

Sci. USA 96, 14228-14233.には、CB2型受容体アゴニストが抗炎症作用、鎮痛作用を有する旨記載されている。また、Nature, 1998, 349, 277-281には、CB2型受容体アゴニストが鎮痛作用を有する旨記載されている。また、Cancer Research 61(2001)5784-5789には、カンナビノイド2型受容体アゴニストが脳腫瘍の退縮作用を有する旨記載されている。また、European Journal of Pharmacology 396 (2000) 85-92には、CB2型受容体アンタゴニストが鎮痛作用を有する旨記載されている。さらに、J Pharmacol Exp Ther, 2001, 296, 420-425には、カンナビノイド2型受容体親和性作用(アゴニスト作用及び/又はアンタゴニスト作用)を有する化合物が、抗炎症作用を示す旨記載されている。Pain, 2001, 93, 239-245には、カンナビノイド2

すなわち、本発明化合物は、免疫系細胞や炎症系細胞の活性化を抑制し、末梢細胞系作用(免疫抑制、抗炎症、鎮痛作用)を発現すると考えられ、抗炎症剤、抗アレルギー剤、鎮痛剤、免疫不全治療剤、免疫抑制剤、免疫調節剤、自己免疫疾患治療剤、慢性関節リューマチ治療剤、多発性硬化症治療剤等として用いることができる。

また、カンナビノイド 2 型受容体作動剤は、ラット Thy-1 抗体惹起腎炎に対する抑制効果を有していることが知られており(WO97/29079)、腎炎治療剤としても有用である。

本発明化合物を治療に用いるには、通常の経口又は非経口投与用の製剤として製剤化する。本発明化合物を含有する医薬組成物は、経口及び非経口投与のための剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液又は 懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投与用製剤などの非経口投与製剤とすることもできる。

25

20

10

15

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型

する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例えば、トウモロコシでん粉等)、充填剤(例えば、ラクトース、微結晶性セルロース等)、崩壊剤(例えば、でん粉グリコール酸ナトリウム等)又は滑沢剤(例えば、ステアリン酸マグネシウム等)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例えば、メチルセルロース等)、乳化剤(例えば、レシチン等)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として、点眼剤として使用する場合も液剤又は懸濁化剤として用いる。

本発明化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重 $1 \, \mathrm{kg}$ あたり、 $1 \, \mathrm{HO} \cdot \mathrm{O} \, 1 \sim 1 \, \mathrm{O} \, \mathrm{mg}$ 、好ましくは $0.0 \, 1 \sim 1 \, \mathrm{O} \, \mathrm{mg}$ 、より好ましくは $0.1 \sim 1 \, \mathrm{O} \, \mathrm{mg}$ 、非経口投与の場合、体重 $1 \, \mathrm{kg}$ あたり、 $1 \, \mathrm{HO} \cdot \mathrm{O} \, 0 \, 1 \sim 1 \, \mathrm{O} \, \mathrm{mg}$ 、より好ましくは $0.0 \, \mathrm{O} \, 1 \sim 1 \, \mathrm{mg}$ 、より好ましくは $0.0 \, \mathrm{O} \, 1 \sim 1 \, \mathrm{mg}$ 、より好ましくは $0.0 \, \mathrm{O} \, 1 \sim 1 \, \mathrm{mg}$ を投与する。これを $1 \sim 4 \, \mathrm{Gm} \, \mathrm{COM}$ して投与すればよい。

実施例

10

15

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり本 20 発明はこれらに限定されるものではない。

なお、各略号は以下に示す意味を有する。

 $Me: X \neq V$, $Et: x \neq V$, $Pr: \forall CUV$, $Pr^{i}: \forall V \forall CUV$,

Bu:ブチル、Buⁱ:イソブチル、Bu^s:sec-プチル、

But:t-ブチル

25 Ph:フェニル、

参考例 1-1 (2-イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

2-イソプロピルアニリン (5.00g)、トリエチルアミン (3.74g)、トルエン (10ml)の混合液に、二硫化炭素 (2.81g)を10分間で滴下し、室温で1時間攪拌した後、12時間放置した。反応溶液を減圧濃縮し、塩化メチレン (20ml)、トリエチルアミン (3.74g)を加え、クロロ炭酸エチル (4.01g)を氷冷下10分間で加え、室温で1時間攪拌した。反応液に10%塩酸 (20ml)を加え、塩化メチレン (60ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-イソプロピルフェニル)イソチオシアネート (6.55g、収率99%)を黄色油状物で得た。

¹H-NMR (δ ppm TMS / CDCl₃)1.25(6H, d, J=6.7), 3.25(1H, q, J=6.7), 7.14-7.30(4H, m).

参考例 1-2 (2-イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

15

2-4 ソプロピルアニリン (1.8 1g) のジエチルエ-テル (20 ml) 溶液に、チオホスゲン (1.5 4g) を氷冷下 10 分間で滴下し、室温で 1 時間撹拌した。

反応液に水 (30 ml) を加え、ジエチルエ-テル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-イソプロピルフェニル) イソチ20 オシアネ-ト (2.35g、収率 99%) を褐色油状物で得た。

参考例 2 N-(2-イソプロピルフェニル)-N'-(1-ヒドロキシ-2、2-ジメチル)プロピルチオウレア(化合物 3)の製造

(2-イソプロピルフェニル) イソチオシアネ-ト (3.30g) のジエチルエ-テル (20 π 1) 溶液に、3-アミノ-2,2-ジメチルプロパノ-ル (1.92g) を加え、室 温で 1 時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル) にて精製して、N-(2-イソプロピルフェニル) -N'-(1-ヒドロキシ-2,2-ジメチル) プロピルチオウレア (4.60g、収率88%) を黄色油状物で得た。

10 1 H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 1.25(6H, d, J=6.7), 3.11(1H, q, J=6.7), 3.25(2H, s), 3.55(2H, d, J=6.3), 6.05(1H, m), 7.17-7.40(4H, m).

参考例3 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(化合物4)の製造

15

20

融点155-157℃

 $^{1}\text{H-NMR}$ (δ ppm TMS / CDCl₃)1.15(6H, s), 1.20(6H, d, J=6.7), 2.67(2H, s), 3.09(2H,

s), 3.15.(1H, q, J=6.7), 6.88(1H, m), 7.05-7.11(2H, m), 7.20(1H, m).

参考例 4 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(化合物 4)の製造

5

10

N-(2-イソプロピルフェニル)-N'-(1-ヒドロキシ-2,2-ジメチル)プロピルチオウレア(1.00g)のテトラヒドロフラン(6 ml)の混合液に、塩化チオニル(0.60g)を滴下し、室温で1時間撹拌する。反応溶液を減圧濃縮し、アセトニトリル(20 ml)、炭酸カリウム(0.93g)を加え、2時間加熱還流した。反応液に水(40 ml)を加え、塩化メチレン(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.45g、収率48%)を白色結晶で得た。

15 参考例 3 、 4 で得られた 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジンを用いて、以下の実施例を行った。

実施例 1 2-(2-4) プロピルフェニル) $4 \le J-3-(P)$ リルチオ) チオカルボニル-5, 5-3 メチル-1, 3-4 アジン(化合物 I-1) の製造

2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.2 6 g)、 二硫化炭素(0.1 0 g)、N,N-ジメチルホルムアミド(3 ml)の混合液に、6 0 %水素 化ナトリウム(0.0 5 g)を氷冷下で加え、3 0 分間撹拌後、アリルクロリド(0.1

実施例 2 2-(2-4) プロピルフェニル) $4 \le 2-3-(5-1)$ リフルオロメチル-2-ピリジル) -5, 5-3 メチル-1, 3-4 アジン(化合物 1-106)の製造

2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.26g)、5-トリフルオロメチル-2-クロロピリジン(0.24g)、N,N-ジメチルホルムアミド(3 ml)の混合液に、60%水素化ナトリウム(0.05g)を氷冷下で加え、室温で2時間撹拌した。反応液に水(80 ml)を加え、ジエチルエ-テル(100 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノ-3-(5-トリフルオロメチル-2-ピリジル)-5,5-ジメチル-1,3-チアジン(0.13g、収率32%)を無色油状物で得た。

上記実施例と同様にして、以下の表に示される化合物を合成した。なお、表中の 20 左カラムの数字は化合物 No. を表わし、上記実施例で得られた化合物も併記する。

表 1

No	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸
I-1	Pr ⁱ	Н	H	Н	Н	Allyl	Me	Me
I-2	Pr ⁱ	Н	Н	Н	Н	Propargyl	Me	Me
I-3	Pr ⁱ	H_	Н	Н	Н	CH₂CN	Me	Me
I-4	Pr'	H	Н	Н	H	CH₂OMe	Me	Me
I-5	Pr'	Н	Н	Н	Н	CH₂CH=CHMe	Me	Me
I-6	Pr [/]	Н	H	H	Н	CH ₂ CH=CMe ₂	Me	Me
I-7	Pr [/]	Н	Н	Н	Н	CH ₂ CH ₂ CH=CH ₂	Me	Me
I-8	Pr ⁱ	Н	Ĥ	Н	Н	CH ₂ COMe	Me	Me
I-9	Pr'	Н	Η	H	Н	CH ₂ CO ₂ H	Me	Me
I-10	Pr'	H	Ι	H	Н	CH ₂ CO ₂ Me	Me	Me
I-11	Pr [/]	Н	H	H	I	CH ₂ CO ₂ Et	Me	Me
I-12	Pr'	H	Ι	Η	Н	CH ₂ CO ₂ Pr	Me	Me
I-13	Pr [/]	Н	I	Н	Ξ	CH ₂ CO ₂ Pr ⁷	Me	Me
I-14	Pr′	Н	I	Ι	H	CH ₂ CO ₂ Bu ^t	Ме	Me
I-15	Pr'	Н	Ι	Η	H	CH ₂ CO ₂ CH=CH ₂	Me	Me
I-16	Pr [/]	Н	Ξ	Ι	H	CH ₂ CO ₂ CH ₂ CH=CH ₂	Me	Me
I-17	Pr [/]	H	I	Ι	Н	CH ₂ CO ₂ (CH ₂) ₂ OMe	Me	Me
I-18	Pr [/]	Н	Ι	Ι	H	CH(Me)CO₂Me	Ме	Me
I-19	Pr [/]	Н	Ι	Ξ	Η	C(Me) ₂ CO ₂ Et	Ме	Me
I-20	Pr/	Η	I	Ι	I	CH ₂ CONH ₂	Ме	Me
I-21	Pr [/]	Н	Н	Ι	Н	CH ₂ CONMe ₂	Ме	Me
I-22	Pr ⁱ	Н	Н	Н	Н	CH₂CON(Me)OMe	Me	Me
I-23	Pr ⁱ	Н	Н	H	Н	CH₂CF₃	Me	Me
I-24	Pr [/]	Н	Н	Н	Н	CH₂CH₂OCOMe	Ме	Me
I-25	Pr [/]	Н	H _	Н	Н	CH ₂ CH ₂ OPh	Ме	Me

表 2

$$R^2$$
 R^3
 R^4
 R^6
 R^6
 R^8
 R^8
 R^8

No	R ¹	R ²	R ³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
I-26	Pr	H	H	H	H	CH ₂ CH ₂ OCH=CH ₂	Me	Me
1-20	 	 	 ''	 		011201120011=0112	IVIE	IVIE
I-27	Pr¹	Н	Н	Н	Н	-CH ₂ -(0)	Me	Me
I-28	Pr ⁱ	Н	Н	Н	Н	−CH ₂ -√Me	Me	Me
I-29	Pr¹	Н	Н	н	н	-CH ₂ √Bu ^l	Me	Me
1-30	Pr [/]	Н	Н	н	Н	$-CH_2 \xrightarrow{Bu^t}$	Me	Me
I-31	Pr ⁱ	Н	Н	Н	Н	−CH ₂ -√Ph N-O	Me	Ме
I-32	Pr [/]	Н	Н	Н	Н	-CH₂-√Ne O-N	Ме	Ме
I-33	Pr'	Н	Н	Н	Н	-CH ₂ -O-N	Ме	Me
I-34	Pr ⁱ	Н	Н	Н	Н	-CH ₂ -O-N	Me	Ме
I-35	Pr'	Н	Н	Н	Н	-CH ₂ -O-N	Ме	Ме
I-36	Pr ⁱ	Н	Н	Н	Н	-CH ₂ -⟨N Bu ^t	Me	Ме
I-37	Pr [/]	Н	Н	Н	Н	CH ₂ CH ₂ -NO	Me	Ме
1-38	Pr'	Н	н	Н	Н	—CH ₂ ← Me	Me	Ме
1-39	Pr′	Н	Н	Н	Н	Allyl	Et	Et
I-40	Pr [/]	Н	Н	Н	Н	CH ₂ CO ₂ Et	Et	Et
I-41	Pr'	Н	Н	Н	Н	CH ₂ CO ₂ Pr ¹	Et	Et
I-42	Pr [/]	Н	Н	Н	Н	CH ₂ CO ₂ Bu ¹	Et	Et
I-43	Pr'	H	Н	Н	Н	CH ₂ CH ₂ CO ₂ Et	Et	Et

表 3

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

No									
I-45 Pr' H H H H H CH₂CH₂CH₂CH₂ Et Et I-46 Pr' H H H H H CH₂CH₂CH₂CH₂ Et	No		R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-46	I-44	Pr'	Н	H	Н	Н	CH₂CH=CHMe	Et	Et
I-47 Bu³ H H H H H H CH₂CO₂Bu¹ Me Me I-48 Bu³ H H H H H H H Me Interval No Me	I-45	Pr [/]			Н	Н	CH ₂ CH=CMe ₂	Et	Et
I-48 Bu³ H H H H H H H Me Me I-49 Bu³ H	I-46	Pr [/]	Н	Н	Н	Н	CH ₂ CH ₂ CH=CH ₂	Et	Et
I-49 Bu³ H </td <td>I-47</td> <td>Bus</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>CH₂CO₂Et</td> <td>Me</td> <td>Me</td>	I-47	Bus	Н	Н	Н	Н	CH ₂ CO ₂ Et	Me	Me
I-50 Bus H H H H H H CH₂CH₂OCOMe Et Et I-51 Bus H H H H H H H Et E	I-48	Bus	Н	Н	Н	Н	CH ₂ CO ₂ Bu ^t	Me	Me
I-50 Bus H H H H H H CH₂CH₂OCOMe Et Et I-51 Bus H H H H H H H Et E	I-49	Bus			Н	Н	Allyl	Et	Et
I-52 H H Et H H CH2CO2Et Me Me I-53 H Pr' H H H CH2CO2Et Me Me I-54 NMe2 H H H CH2CO2Et Me Me I-55 H NMe2 H H H CH2CO2Et Me Me I-56 H NEt2 H H CH2CO2Et Me Me I-56 H NEt2 H H CH2CO2Et Me Me I-57 H H Et H CH2CO2Eu² Me Me Me I-58 H Pr' H H CH2CO2Bu² Me M	I-50	Bus	Н	Н	Н	Н	CH ₂ CH ₂ OCOMe	Et	Et
I-53 H Pr' H H H CH2CO2Et Me Me I-54 NMe2 H H H H CH2CO2Et Me Me I-55 H NMe2 H H H CH2CO2Et Me Me I-56 H NEt2 H H H CH2CO2Et Me Me I-57 H H Et H H CH2CO2Bu' Me Me I-58 H Pr' H H H CH2CO2Bu' Me Me I-59 NMe2 H H H H CH2CO2Bu' Me Me Me I-60 H NMe2 H H H CH2CO2Bu' Me	I-51	Bus	н	Н	Н	Н	-CH ₂ CH ₂ -NO	Et	Et
I-54 NMe2 H H H H H CH2CO2Et Me Me I-55 H NMe2 H H H CH2CO2Et Me Me I-56 H NEt2 H H H CH2CO2Et Me Me I-57 H H Et H H CH2CO2BU' Me Me I-58 H Pr' H H H CH2CO2BU' Me Me Me I-59 NMe2 H H H H CH2CO2BU' Me	I-52	Н	Н	Et	Н	Н	CH ₂ CO ₂ Et	Ме	Ме
I-55 H NMe2 H H H CH2CO2Et Me Me I-56 H NEt2 H H H CH2CO2Et Me Me I-57 H H Et H H CH2CO2Bu¹ Me Me I-58 H Pr¹ H H H CH2CO2Bu¹ Me Me I-59 NMe2 H H H H CH2CO2Bu¹ Me Me Me I-60 H NMe2 H H H CH2CO2Bu¹ Me	I-53	Н	Pr [/]	H	Н	Н	CH ₂ CO ₂ Et	Ме	Me
I-56 H NEt2 H H H CH2CO2Et Me Me I-57 H H Et H H CH2CO2Bu¹ Me Me I-58 H Pr¹ H H H CH2CO2Bu¹ Me Me I-59 NMe2 H H H H CH2CO2Bu¹ Me Me I-60 H NMe2 H H H CH2CO2Bu¹ Me Me Me I-61 H NEt2 H H H Allyl Me	I-54	NMe ₂					CH ₂ CO ₂ Et	Me	Me
I-57 H H Et H H CH2CO2Bu¹ Me Me I-58 H Pr¹ H H H CH2CO2Bu¹ Me Me I-59 NMe2 H H H CH2CO2Bu¹ Me Me I-60 H NMe2 H H H CH2CO2Bu¹ Me Me I-61 H NEt2 H H H Allyl Me Me I-62 H NEt2 H H H Allyl Me Me I-63 Me NEt2 H H H Allyl Me Me I-64 Me NMe2 H H H Allyl Et Et I-65 NMe2 H H H H Allyl Et Et I-66 NMe2 H H H H H H Allyl Et Et	I-55	Н	NMe₂		Н	Η	CH ₂ CO ₂ Et	Me	Me
I-58 H Pr' H H H CH2CO2Bu' Me Me I-59 NMe2 H H H H CH2CO2Bu' Me Me I-60 H NMe2 H H H CH2CO2Bu' Me Me I-61 H NEt2 H H H CH2CO2Bu' Me Me <td< td=""><td>I-56</td><td></td><td>NEt₂</td><td></td><td></td><td></td><td>CH₂CO₂Et</td><td>Me</td><td>Me</td></td<>	I-56		NEt ₂				CH ₂ CO ₂ Et	Me	Me
I-59 NMe2 H H H H H CH2CO2Bu¹ Me Me I-60 H NMe2 H H H CH2CO2Bu¹ Me Me I-61 H NEt2 H H H CH2CO2Bu¹ Me Me <td>I-57</td> <td></td> <td>Н</td> <td></td> <td>Ι</td> <td>Ι</td> <td>CH₂CO₂Bu¹</td> <td>Me</td> <td>Me</td>	I-57		Н		Ι	Ι	CH ₂ CO ₂ Bu ¹	Me	Me
I-60 H NMe2 H H H CH2CO2But Me Me I-61 H NEt2 H H H CH2CO2But Me							CH ₂ CO ₂ Bu ^t	Me	Me
I-61 H NEt2 H H H CH2CO2Bu¹ Me Me I-62 H NEt2 H H H Allyl Me Me I-63 Me NEt2 H H H Allyl Me Me I-64 Me NMe2 H H H Allyl Me Me I-65 NMe2 H H H H Allyl Et Et I-66 NMe2 H H H H H CH2CO2Bu² Et Et I-67 OMe H H H H H CH2CO2Bu² Et Et I-69 H <td>I-59</td> <td>NMe₂</td> <td></td> <td></td> <td>I</td> <td>Η</td> <td>CH₂CO₂Bu^t</td> <td>Me</td> <td>Me</td>	I-59	NMe ₂			I	Η	CH ₂ CO ₂ Bu ^t	Me	Me
I-62 H NEt2 H H H H Allyl Me Me I-63 Me NEt2 H H H Allyl Me Me I-64 Me NMe2 H H H Allyl Me Me I-65 NMe2 H H H H Allyl Et Et I-66 NMe2 H H H H CH2CO2But Et Et I-67 OMe H H H H CH2CO2But Et Et I-68 OMe H H H H Allyl Et Et I-69 H H H H Allyl Et Et							CH ₂ CO ₂ Bu ^t	Me	Me
I-63 Me NEt2 H H H Allyl Me Me I-64 Me NMe2 H H H Allyl Me Me I-65 NMe2 H H H H Allyl Et Et I-66 NMe2 H H H H CH2CO2But Et Et I-67 OMe H H H H Allyl Et Et I-68 OMe H H H H Allyl Et Et I-69 H H Et H H Allyl Et Et								Me	Me
I-64 Me NMe2 H H H Allyl Me Me I-65 NMe2 H H H H H H Et Et I-66 NMe2 H H H H H CH2CO2But Et Et Et I-67 OMe H H H H Allyl Et Et Et I-68 OMe H H H H H Allyl Et Et I-69 H H Et H H Allyl Et Et	I-62						Allyl	Ме	Me
I-65 NMe2 H H H H Allyl Et Et I-66 NMe2 H H H H H CH2CO2Bu' Et Et I-67 OMe H H H H Allyl Et Et I-68 OMe H H H H CH2CO2Bu' Et Et I-69 H H Et H H Allyl Et Et							Allyl	_ Me	Ме
I-66 NMe2 H H H H CH2CO2Bu² Et Et I-67 OMe H H H H Allyl Et Et I-68 OMe H H H H CH2CO2Bu² Et Et I-69 H H Et H Allyl Et Et							AllyI		Ме
I-67OMeHHHHAllylEtEtI-68OMeHHHHCH2CO2ButEtEtI-69HHEtHHAllylEtEt							Allyl	Et	Et
I-68 OMe H H H H CH ₂ CO ₂ Bu ^t Et Et I-69 H H Et H H Allyl Et Et	I-66						CH ₂ CO ₂ Bu ^t	Et	Et
I-69 H H Et H H Allyl Et Et								Et	Et
		OMe					CH ₂ CO ₂ Bu ^t	Et	Et
I-70 H H Et H H CH ₂ CO ₂ Bu' Et Et								Et	Et
	I-70	Н	Н	Et	Н	Н	CH ₂ CO ₂ Bu ¹	Et	Et

表 4

No	R ¹	R²	R³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
I-71	Н	Н	OCF₃	Н	Н	Allyl	Et	Et
I-72	Н	Η	OCF₃	Η	Ξ	CH ₂ CO ₂ Bu ^t	Et	Et
I-73	NMe₂	Н	Н	Н	Η	CH₂OMe	Et	Et
I-74	Pr [/]	Н	H	I	Н	Allyl	-(CH	2)4-
I-75	NMe ₂	Н	Н	Н	Ξ	Allyl	-(CH	2)4-
I-76	NMe₂	H	Н	H	Н	CH ₂ CO ₂ Bu ^t	-(CH	
I-77	Pr'	Н	Н	Н	Н	CH ₂ CO ₂ (CH ₂) ₂ OMe	-(CH	
I-78	Pr ^I	I	Н	Н	Η	−CH ₂ ← Me	-(CH	
I-79	OMe	I	Н	I	H	Allyl	-(CH	2)4-
I-80	OMe	H	Н	I	I	CH ₂ CO ₂ Bu ^r	-(CH	2)4-
I-81	NMe₂	Ι	Н	I	Η	CH₂OMe		
I-82	H	Н	Et	Η	Н	Allyl	-(CH	2)4-
I-83	Н	Н	OCF ₃	Н	Η	Allyl	-(CH	
I-84	NMe ₂	Н	Н	H	Н	Allyl	-(CH	2)5-
I-85	NMe₂	Н	Н	Η	Н	CH ₂ CO ₂ Bu ^t	-(CH	2)5-
I-86	OMe	Η	Н	Н	Н	Allyl	-(CH	2)5-
I-87	OMe	Ξ	Н	Н	Н	CH ₂ CO ₂ Bu ^t	-(CH	2)5-
I-88	Ξ	Н	Et	Η	Η	Allyl	-(CH	2)5-
1-89	Pr'	Н	Н	Н	Н	-CH2CH2O	-(CH	
I-90	Pr [/]	Н	Н	Н	Н	CH ₂ CH ₂ OH	-(CH	2)5-
I-91	Н	Н	OCF ₃	Н	Н	Allyl	-(CH	
I-92	Pr'	Н	Н	Н	Н	Allyl	-(CH ₂) ₂ O	
I-93	Pr [/]	Н	Н	Н	Н	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
I-94	Pr'	Н	H	Η	Н	CH₂CO₂H	Et	Et

表 5

	Α	R ⁶	R ⁷	R⁵	
1-95		Allyl	Ме	Ме	
1-96		CH₂CO₂Bu ^t	Ме	Ме	
1-97		CH ₂ CO ₂ (CH ₂) ₂ OMe	Ме	Me	
1-98		Allyl	Et	Et	
1-99		CH₂CO₂Bu ^t	Et	Et	
I-100		Allyi	Et	Et	
I-101		Allyl	-(C ⊢	l ₂) ₄ -	
I-102		CH₂CO₂Bu ^t	-(CF	l ₂) ₄ -	
I-103		Allyl	-(CH	l ₂) ₄ -	
I-104		Allyl	-(CH	l ₂) ₅ -	
I-105		Allyl	-(CH ₂) ₅ -		

表 6

					**		
R ¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
Pr [/]	Н	Н	Н	Н	-CF ₃	Me	Мө
Pr [/]	Н	Н	Н	Н	¬NSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	Me	Ме
Pr ⁱ	Н	Н	H	Н		Me	Me
Pr ⁱ	Н	Н	Ι	Н	-NO ₂	Me	Me
I	Н	Pr	Ι	Н	-CF ₃	Me	Me
Pr [/]	Ι	H	I	Н	-CF₃	Et	Et
Pr [/]	Н	Н	н	Н	N-N -√_S∕-CF ₃	Me	Me
Pr [/]	Н	Н	Ι	Η	CSSMe	-(CH₂)₂N(CH	l ₂ Ph)(CH ₂) ₂ -
	Pr' Pr' H Pr'	Pr' H Pr' H Pr' H Pr' H Pr' H Pr' H	Pr' H H Pr' H H	Pr' H H H Pr' H H H	R¹ R² R³ R⁴ R⁵ Pr¹ H H H H H H H H H Pr¹ H H H H H H H H H H H H H H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

表 7

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	R ¹	R ²	R ³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
I-114	Н	SMe	Н	Н	Н	Allyl	Et	Et
I-115	Н	SMe	Н	Н	Н	Allyl	-(CH	2)4-
I-116	Н	SMe	Н	Н	Н	Allyl	-(CH	
I-117	Н	Н	SMe	H	Н	Allyl	-(CH	
I-118	Н	Н	SMe	H	Н	Allyl	-(CH	
I-119	ОМе	Н	Et	Н	Н	Allyl	Me	Me
I-120	ОМе	Н	Pr'	Н	Н	Allyl	Ме	Me
I-121	Pr'	Н	OMe	Н	Н	Allyl	Me	Me
I-122	Pr [/]	Η	OEt	Н	Н	Allyl	Me	Me
I-123	Н	OEt	OEt	Н	Η	Allyl	Me	Me
I-124	Н	OPr	OPr	H	Н	Allyl	Me	Ме
I-125	Н	OMs	OEt	Н	Η	Allyl	Me	Me
I-126	Н	Н	(CH ₂) ₂ OEt	Н	Ι	Allyl	Me	Me
I-127	Н	OMe	OEt	Н	H	Allyl	Et	Et
I-128	Н	OEt	OEt	Н	Ξ	Allyl	Et	Et
I-129	Н	OEt	OPr	Н	Ι	Allyl	Et	Et
I-130	Н	OMs	OPr	Н	Н	Allyl	Et	Et
I-131	Н	OPr	OPr	H	Н	Allyl	Et	Et
I-132	Н	OPr ⁱ	OPr	H	Н	Allyl	Et	Et
I-133	Н	Н	(CH ₂) ₂ NMe ₂	H	H	Allyl	Me	Ме
I-134	Pr ⁱ	Н	Н	Н	H	CH ₂ CO ₂ B u ^t	-(CH	2)5-
I-135	Pr ⁱ	Н	H	H	Η	Me	-(CH ₂) ₂ N(M	e) (CH ₂) ₂ -
I-136	Pr ⁱ	Н	Н	Н	Н	Me	-(CH ₂) ₂ N(E	t) (CH ₂) ₂ -
I-137	F	Н	F	Н	Н	Allyl	Ме	Me
I-138	Н	CI	Cl	Н	Н	Allyl	Me	Ме
I-139	Me	Н	CI	Н	Н	Allyl	Ме	Ме
I-140	CI	Н	Me	Η	Н	Allyl	Me	Me
I-141	Н	H	(CH ₂) ₂ OMe	Н	H	Allyl	Me	Me
I-142	Н	Н	Pr [/]	Н	Н	Allyl	-(CH ₂	2)4-
I-143	Н	Н	Pr ⁱ	Н	Н	CH ₂ CO ₂ B u'	-(CH ₂	

WO 02/072562

PCT/JP02/01229

表 8

	R ¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-144	Н	Н	Pr [/]	Н	Н	Allyl	Et	Et
I-145	Н	Н	Pr ⁱ	Н	Н	CH₂CO₂B u'	Et	Et
I-146	Н	Н	Pr [/]	Н	Н	Allyl	-(CH	2)5-
I-147	OMe	Н	Н	Н	Н	CH ₂ CO ₂ B u ^t	Pr	Pr
I-148	OMe	Н	Н	Н	Н	CH ₂ CO ₂ B u ^t	Pr'	Pr [/]
I-149	OMe	Н	Н	Н	Н	Allyl	Pr	Pr
I-150	Bus	Н	Н	Н	Н	Me	-(CH ₂) ₂ N(M	e)(CH ₂) ₂ -

WO 02/072562

PCT/JP02/01229

表 9

	Α	R ⁶	R ⁷	R ⁸
I-151		CSSCH₂CO₂Bu ^t	-(CH ₂) ₅ -	
I-152		CSSCH₂CO₂Bu ^r	Et	Et
I-153	Pr	COSMe	-(CH ₂) ₂ N(N	/le)(CH₂)₂-
I-154	Bu ^s	COSMe	-(CH ₂) ₂ N(N	/le)(CH₂)₂-

5 上記の表に示される化合物の物性データ (融点、¹ H-N M R) を以下の表に示す。

表10

化合物番号		物性
No	融点	NMR (CHCl ₃)
I-1		1.20 (6H, d, J=6.9), 1.23 (6H, s), 2.66 (2H, s), 3.09 (1H,
		sept, J=6.9), 3.93-3.97 (2H, m), 4.49 (2H, s), 5.15-5.19
		(1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94
T.0	00.5	(1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)
I-2	93.5- 94.5	1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.20 (1H, t, J=2.6), 2.69
	94.0	(2H, s), 3.09 (1H, sept, J=6.9), 3.99 (2H, d, J=2.6), 4.49 (2H, s), 6.90-6.94 (1H, m), 7.14-7.22 (2H, m), 7.32-7.35
		(1H, m)
I-3		1.21 (6H, d, J=6.9), 1.25 (6H, s), 2.74 (2H, s), 3.02 (1H,
		sept, J=6.9), 4.00 (2H, s), 4.50 (2H, s), 6.87-6.90 (1H, m),
		7.15-7.22 (2H, m), 7.32-7.36 (1H, m)
I-4	73-74	1.21 (6H, d, J=6.9), 1.24 (6H, s), 2.67 (2H, s), 3.10 (1H,
		sept, J=6.9), 3.44 (3H, s), 4.48 (2H, s), 5.45 (2H, s), 6.92-
I-5		6.96 (1H, m), 7.16-7.20 (2H, m), 7.32-7.35 (1H, m) 1.19 (6H, d, J=6.9), 1.22 (6H, s), 1.71 (3H, d, J=6.6), 2.64
1-9		(2H, s), 3.15 (1H, sept, J=6.9), 3.88 (2H, d, J=6.9), 4.49
		(2H, s), 5.56-5.62 (1H, m), 5.69-5.78 (1H, m), 6.89-6.94
		(1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)
I-6		1.19 (6H, d, J=6.9), 1.23 (6H, s), 1.72 (3H, d, J=6.9), 2.65
		(2H, s), 3.15 (1H, sept, J=6.9), 3.89 (2H, d, J=6.9), 4.49
		(2H, s), 5.28-5.35 (1H, m), 6.87-6.92 (1H, m), 7.11-7.21
		(2H, m), 7.29-7.34 (1H, m)
I-7		1.19 (6H, d, J=6.9), 1.23 (6H, s), 2.47 (2H, q, J=7.4), 2.64
		(2H, s), 3.15 (1H, sept, J=6.9), 3.34 (2H, t, J=7.4), 4.48
		(2H, s), 5.01-5.14 (2H, m), 5.74-5.98 (1H, m), 6.82-6.89
I-8	92-96	(1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m) 1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.35 (3H, s), 2.70 (2H, s),
1-0	<i>34</i> -30	3.08 (1H, sept, J=6.9), 4.12 (2H, s), 4.46 (2H, s), 6.92-6.97
		(1H, m), 7.11-7.22 (2H, m), 7.30-7.35 (1H, m)
I-9		1.20 (6H, d, J=6.9), 1.24 (6H, s), 2.74 (2H, s), 3.05 (1H,
		sept, J=6.9), 4.17 (2H, s), 4.39 (2H, s), 6.93-6.97 (1H, m),
		7.18-7.24 (2H, m), 7.33-7.38 (1H, m)
I-10	82-83	1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.70 (2H, s), 3.09 (1H,
		sept, J=6.9), 3.75 (3H, s), 4.07 (2H, s), 4.48 (2H, s), 6.92-
Ll		6.95(1H, m), 7.13-7.21 (2H, m), 7.31-7.35 (1H, m)

表 1 1

化合物番		物性
号		
No	融点	NMR (CHCl₃)
I-11	95.5-	1.20 (6H, d, J=6.9), 1.22 (6H, s), 1.29 (3H, t, J=7.3), 2.70
	96.5	(2H, s), 3.09 (1H, sept, J=6.9), 4.06 (2H, s), 4.21 (2H, q,
1		J=7.3), 4.48 (2H, s), 6.92-6.96 (1H, m), 7.15-7.19 (2H, m),
		7.31-7.34 (1H, m)
I-12	83-86	0.96 (3H, t, J=7.3), 1.20 (6H, d, J=6.9), 1.22 (6H, s), 1.68
		(2H, sext, J=7.3), 2.70 (2H, s), 3.09 (1H, sept, J=6.9), 4.07
		(2H, s), 4.11 (2H, t, J=7.3), 4.48 (2H, s), 6.92-6.95 (1H,
T 10	05.00	m), 7.13-7.20 (2H, m), 7.31-7.34 (1H, m)
I-13	95-96	1.20 (6H, d, J=6.9), 1.22 (6H, s), 1.27 (6H, d, J=6.3), 2.70
		(2H, s), 3.09 (1H, sept, J=6.9), 4.02 (2H, s), 4.47 (2H, s),
1		5.06 (1H, sept, J=6.3), 6.92-6.97 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m)
I-14		1.20 (6H, d, J=6.9), 1.22 (6H, s), 1.47 (9H, s), 2.69 (2H, s),
1-1-		3.09 (1H, sept, J=6.9), 3.97 (2H, s), 4.47 (2H, s), 6.92-6.96
]		(1H, m), 7.11-7.20 (2H, m), 7.31-7.34 (1H, m)
I-15		1.21 (6H, d, J=6.9), 1.22 (6H, s), 2.70 (2H, s), 3.08 (1H,
		sept, J=6.9), 4.13 (2H, s), 4.48 (2H, s), 4.62 (1H, dd,
		J=6.3, 1.7), 4.95 (1H, dd, J=13.9, 1.7), 6.92-6.95 (1H, m),
		7.13-7.35 (4H, m)
I-16		1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.69 (2H, s), 3.08 (1H,
}		sept, J=6.9), 4.10 (2H, s), 4.47 (2H, s), 4.63-4.66 (2H, m),
		5.23-5.39 (2H, m), 5.86-5.98 (1H, m), 6.92-6.95 (1H, m),
		7.15-7.21 (2H, m), 7.31-7.34 (1H, m)
I-17		1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.70 (2H, s), 3.08 (1H,
1		sept, J=6.9), 3.40 (3H, s), 3.61-3.65 (2H, m), 4.11 (2H, d,
		J=2.3), 4.29-4.37 (2H, m), 4.47 (2H, s), 6.92-6.95 (1H, m), 7.13-7.20 (2H, m), 7.31-7.34 (1H, m)
I-18		1.19-1.23 (12H, m), 1.58 (3H, d, J=7.3), 2.62 (1H, d,
1 10		J=13.2), 2.74 (1H, d, J=13.2), 3.11 (1H, sept, J=6.9), 3.74
		(3H, s), 4.18 (1H, d, J=13.5), 4.66 (1H, q, J=7.3), 4.72 (1H,
		d, J=13.5), 6.91-6.94 (1H, m), 7.13-7.21 (2H, m), 7.31-7.35
		(1H, m)
I-19		1.21 (6H, d, J=6.9), 1.21 (6H, s), 1.28 (3H, t, J=7.3), 1.71
		(6H, s), 2.66 (2H, s), 3.14 (1H, sept, J=6.9), 4.18 (2H, q,
		J=7.3), 4.40 (2H, s), 6.88-6.92 (1H, m), 7.13-7.21 (2H, m),
		7.31-7.35 (1H, m)
I-20	117-	1.21 (6H, d, J=6.9), 1.24 (6H, s), 2.69 (2H, s), 3.05 (1H,
	119	sept, J=6.9), 4.03 (2H, s), 4.48 (2H, s), 5.35 (1H, brs), 6.50
}		(1H, brs), 6.89-6.92 (1H, m), 7.14-7.22 (2H, m), 7.32-7.35
		(1H, m)

表 1 2

化合物番		物性
号		
No	融点	NMR (CHCl ₃)
I-21		1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.69 (2H, s), 2.97 (3H, s),
		3.10 (1H, sept, J=6.9), 3.15 (3H, s), 4.20 (2H, s), 4.47 (2H,
		s), 6.94-6.97 (1H, m), 7.12-7.20 (2H, m), 7.30-7.33 (1H, m)
I-22		1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.71 (2H, s), 3.10 (1H,
		sept, J=6.9), 3.23 (3H, s), 3.82 (3H, s), 4.33 (2H, s), 4.47
		(2H, s), 6.95-7.00 (1H, m), 7.12-7.21 (2H, m), 7.30-7.34
		(1H, m)
I-23		1.20 (6H, d, J=6.9), 1.23 (6H, s), 2.68 (2H, s), 3.09 (1H,
		sept, J=6.9), 4.22 (2H, q, J=9.9), 4.50 (2H, s), 6.89-6.95
		(1H, m), 7.14-7.23 (2H, m), 7.31-7.36 (1H, m)
I-24		1.18 (6H, d, J=6.9), 1.23 (6H, s), 2.07 (3H, s), 2.67 (2H, s),
		3.09 (1H, sept, J=6.9), 3.57 (2H, t, J=6.6), 4.35 (2H, t,
		J=6.6), 4.49 (2H, s), 6.88-6.92 (1H, m), 7.13-7.22 (2H, m),
T 05		7.30-7.35 (1H, m)
I-25		1.20 (6H, d, J=6.9), 1.23 (6H, s), 2.65 (2H, s), 3.10 (1H,
		sept, J=6.9), 3.71 (2H, t, J=6.6), 4.29 (2H, t, J=6.6), 4.49
		(2H, s), 6.89-6.97 (4H, m), 7.15-7.21 (2H, m), 7.25-7.34
I-26	····	(3H, m) 1.21 (6H, d, J=6.9), 1.23 (6h, s), 2.66 (2H, s), 3.10 (1H,
1-20		sept, J=6.9), 3.60 (2H, t, J=6.6), 3.99-4.05 (3H, m),
		4.24(1H, dd, 14.2, 1.9), 4.49 (2H, s), 6.47 (1H, dd, 14.2,
[6.9), 6.89-6.94 (1H, m), 7.15-7.21 (2H, m), 7.31-7.34 (1H,
		m)
I-27		1.20 (6H, d, J=6.9), 1.23 (6H, s), 3.09 (1H, sept, J=6.9),
		3.64 (2H, s, J=4.6), 3.84-4.03 (4H, m), 4.49 (2H, s), 5.21
		(1H, t, J=4.6), 6.91-6.96 (1H, m), 7.12-7.21 (2H, m), 7.30-
		7.34 (1H, m)
I-28	124-	1.17 (6H, d, J=6.9), 1.23 (6H, s), 2.38 (3H, s), 2.67 (2H, s),
	126	3.06 (1H, sept, J=6.9), 4.50 (2H, s), 4.55 (2H, s), 6.05 (1H,
		s), 6.86-6.90 (1H, m), 7.12-7.19 (2H, m), 7.30-7.33 (1H, m)
I-29		0.94 (6H, d, J=6.6), 1.17 (6H, d, J=6.9), 1.23 (6H, s),
ŀ		1.93-2.08 (1H, m), 2.58 (2H, d, J=6.6), 2.66 (2H, s), 3.07
		(1H, sept, J=6.9), 4.50 (2H, s), 4.55 (2H, s), 6.05 (1H, s),
T 00	100	6.85-6.91 (1H, m), 7.12-7.19 (2H, m), 7.28-7.33 (1H, m)
I-30	129-	1.17 (6H, d, J=6.9), 1.23 (6H, s), 1.31 (9H, s), 2.67 (2H, s),
	130	3.08 (1H, sept, J=6.9), 4.51 (2H, s), 4.59 (2H, s), 6.00 (1H,
		s), 6.87-6.91 (1H, m), 7.14-7.19 (2H, m), 7.30-7.33 (1H, m)

表 1 3

No 融点	化合物番		物性
I-31	4		
Sept, J=6.9), 4.52 (2H, s), 4.64 (2H, s), 6.61 (1H, s), 6.88-6.91 (1H, m), 7.12-7.19 (2H, m), 7.29-7.33 (1H, m), 7.41-7.48 (3H, m), 7.71-7.76 (2H, m) I.32	No	融点	NMR (CHCl₃)
1-32	I-31		
1.32]	
I-32			
3.06 (1H, sept, J=6.9), 4.48 (2H, s), 4.58 (2H, s), 6.09 (1H, s), 6.87-6.92 (1H, m), 7.13-7.20 (2H, m), 7.28-7.34 (1H, m) 1.33			
S, 6.87-6.92 (1H, m), 7.13-7.20 (2H, m), 7.28-7.34 (1H, m)	1-32		
1-33 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.25 (6H, d, J=6.9), 2.66 (2H, s), 3.02 (1H, sept, J=6.9), 3.04 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.12 (1H, s), 6.88-6.92 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) 1-34 0.94 (6H, d, J=6.6), 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) 1-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) 1-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) 1-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1-38 123.5- 120 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.60 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),		}	
(2H, s), 3.02 (1H, sept, J=6.9), 3.04 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.12 (1H, s), 6.88-6.92 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-34 0.94 (6H, d, J=6.6), 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) I-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 I-37 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.81 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 120 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 124.5 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	T 00	ļ	
(2H, s), 4.59 (2H, s), 6.12 (1H, s), 6.88-6.92 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) 1-34 0.94 (6H, d, J=6.6), 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) 1-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 125 (3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) 1-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) 1-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	1-33	<u> </u> 	
I-34 I-34 0.94 (6H, d, J=6.6), 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) I-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 I.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 I.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
I-34 0.94 (6H, d, J=6.6), 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) I-35 124- 118 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
1.88-2.05 (1H, m), 2.49 (2H, d, J=6.6), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) 1-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) 1.36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) 1.37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1.38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1.39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1.40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	I-34		
(1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.09 (1H, s), 6.87-6.91 (1H, m), 7.13-7.20 (2H, m), 7.29-7.34 (1H, m) I-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
I-35 124- 1.18 (6H, d, J=6.9), 1.21 (6H, s), 1.30 (9H, s), 2.65 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
125 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.15 (1H, s), 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m) I-36 1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 1.28 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
S, 6.88-6.93 (1H, m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m)	I-35		
I-36 I.17 (6H, d, J=6.9), 1.22 (6H, s), 1.26 (9H, s), 2.67 (2H, s), 3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) I-37 I.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 I23.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),		125	
3.07 (1H, sept, J=6.9), 4.49 (2H, s), 4.59 (2H, s), 6.61 (1H, s), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m) 1.37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1.38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
S), 6.88-6.92 (1H, m), 7.11-7.18 (2H, m), 7.29-7.32 (1H, m)	1-36		
I-37 1.21 (6H, d, J=6.9), 1.23 (6H, s), 2.52-2.56 (4H, m), 2.65 (2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5-	<u> </u>		
(2H, s), 2.68-2.73 (2H, m), 3.11 (1H, sept, J=6.9), 3.41-3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	T 27		
3.52 (2H, m), 3.70-3.73 (4H, m), 4.48 (2H, s), 6.87-6.92 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	1-01		
(1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m) 1-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) 1-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
I-38 123.5- 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.38 (6H, s), 2.67 (2H, s), 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
124.5 2.80 (2H, s), 3.08 (1H, sept, J=6.9), 4.32 (2H, s), 4.49 (2H, s), 6.87-6.91 (1H, m), 7.16-7.21 (2H, m), 7.31-7.35 (1H, m) I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	I-38	123.5-	
I-39 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.47-1.62 (4H, m), 2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	1	124.5	
2.61 (2H, s), 3.08 (1H, sept, J=6.9), 3.93-3.97 (2H, m), 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86- 6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30- 7.36 (1H, m) 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
I-40 4.43 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),	I-39		
I-40 6.01 (1H, m), 6.89-6.94 (1H, m), 7.16-7.21 (2H, m), 7.30-7.36 (1H, m) 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
7.36 (1H, m) 1-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),		•	
I-40 0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.28 (3H, t, J=7.3), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),			
	1-40		
			4.06 (2H, s), 4.21 (2H, q, J=7.3), 4.43 (2H, s), 6.91-6.96
(1H, m), 7.15-7.19 (2H, m), 7.31-7.34 (1H, m)			

表 1 4

化合物	T	物性
番号		
No	融点	NMR (CHCl₃)
I-41		0.87 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.27 (6H, d, J=7.0), 1.48-1.63 (4H, m), 2.65 (2H, s), 3.11 (1H, sept, J=6.9), 4.02 (2H, s), 4.43 (2H, s), 5.01 (1H, sept, J=7.0), 6.01 (1H, m), 7.15 7.10 (9H, m), 7.21 7.24 (1H, m)
I-42		6.91-6.96 (1H, m), 7.15-7.19 (2H, m), 7.31-7.34 (1H, m) 0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.46 (9H, s), 1.42-1.60 (4H, m), 2.64 (2H, s), 3.11 (1H, sept, J=6.9),
		3.90 (2H, s), 4.42 (2H, s), 6.89-6.96 (1H, m), 7.18-7.23 (2H, m), 7.31-7.34 (1H, m)
I-43		0.88 (6H, t, J=7.4), 1.20 (6H, d, J=6.9), 1.26 (3H, t, J=7.0), 1.42-1.60 (4H, m), 2.60 (2H, s), 2.79 (2H, t, J=7.2), 3.08 (1H, sept, J=6.9), 3.54 (2H, t, J=7.2), 4.16 (2H, q, J=7.0), 4.43 (2H, s), 6.89-6.94 (1H, m), 7.15-7.19 (2H, m), 7.31-7.34 (1H, m)
I-44		0.88 (6H, t, J=7.4), 1.19 (6H, d, J=6.9), 1.50-1.70 (4H, m), 1.71 (3H, d, J=6.9), 2.61 (2H, s), 3.15 (1H, sept, J=6.9), 3.88 (2H, d, J=6.9), 4.43 (2H, s), 5.56-5.62 (1H, m), 5.69-5.78 (1H, m), 6.89-6.94 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)
I-45		0.88 (6H, t, J=7.2), 1.19 (6H, d, J=6.9), 1.48-1.65 (4H, m), 1.72 (6H, d, J=6.9), 2.61 (2H, s), 3.15 (1H, sept, J=6.9), 3.89 (2H, d, J=6.9), 4.44 (2H, s), 5.28-5.35 (1H, m), 6.87-6.92 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)
I-46		0.88 (6H, t, J=7.1), 1.19 (6H, d, J=6.9), 1.48-1.65 (4H, m), 2.47 (2H, q, J=7.4), 2.60 (2H, s), 3.12 (1H, sept, J=6.9), 3.34 (2H, t, J=7.4), 4.44 (2H, s), 5.01-5.14 (2H, m), 5.74-5.98 (1H, m), 6.82-6.89 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)
I-47		0.85 (3H, t, J=7.4), 1.18 (3H, d, J=7.4), 1.23 (6H, s), 1.26 (3H, t, J=7.0), 1.42-1.60 (4H, m), 2.68 (2H, s), 3.11 (1H, sext, J=7.0), 4.06 (2H, s), 4.15 (2H, q, J=7.0), 4.38 (1H, d, J=13.5), 4.57 (1H, d, J=13.5), 6.83-6.90 (1H, m), 7.11-7.19 (2H, m), 7.28-7.31 (1H, m)
I-48		0.85 (3H, t, J=7.4), 1.18 (3H, d, J=7.4), 1.23 (6H, s), 1.47 (9H, s), 1.42-1.60 (4H, m), 2.68 (2H, s), 3.00 (1H, sext, J=7.0), 4.01 (2H, s), 4.38 (1H, d, J=13.5), 4.57 (1H, d, J=13.5), 6.89-6.95 (1H, m), 7.11-7.19 (2H, m), 7.28-7.31 (1H, m)
I-49		0.82-0.91 (9H, m), 1.17 (3H, d, J=6.9), 2.61 (2H, s), 2.87 (1H, sext, J=6.9), 3.65 (2H, d, J=6.9), 4.30 (1H, d, J=13.5), 4.57 (1H, d, J=13.5), 5.15-5.35 (2H, m), 5.86-5.99 (1H, m), 6.88-6.92 (1H, m), 7.11-7.28 (3H, m)
I-50		0.83-0.92 (9H, m), 1.18 (3H, d, J=6.9), 1.47-1.69 (6H, m), 2.06 (3H, s), 2.62 (2H, s), 2.87 (1H, sext, J=6.9), 3.58 (2H, t, J=6.6), 4.31 (1H, d, J=13.9), 4.35 (2H, t, J=6.6), 4.55 (1H, d, J=13.9), 6.88-6.91 (1H, m), 7.11-7.20 (2H, m), 7.25-7.29 (1H, m)

表 1 5

化合物		物性
番号		
No	融点	NMR (CHCl ₃)
I-51		0.83-0.92 (9H, m), 1.18 (3H, d, J=6.9), 2.53-2.56 (4H, m),
ļ		2.60 (2H, s), 2.71 (2H, t, J=7.3), 2.90 (1H, sept, J=6.9),
1		3.45 (2H, t, J=7.3), 3.69-3.73 (6H, m), 4.32 (1H, d,
		J=13.9), 4.55 (1H, d, J=13.9), 6.89-6.91 (1H, m), 7.14-7.20
		(2H, m), 7.25-7.29 (1H, m)
I-52		1.22 (6H, s), 1.24 (3H, t, J=7.3), 1.33 (3H, t, J=7.2), 2.64
		(2H, q, J=7.3), 2.66 (2H, s), 4.06 (2H, s), 4.20 (2H, q,
		J=7.2), 4.48 (2H, s), 6.97 (2H, d, J=8.3), 7.20 (2H, d,
	ļ	J=8.3)
I-53		1.22 (6H, s), 1.26 (6H, d, J=6.9), 1.29 (3H, t, J=7.2), 2.70
		(2H, s), 2.94 (1H, sept, J=6.9), 4.06 (2H, s), 4.12 (2H, q,
	1	J=7.2), 4.49 (2H, s), 6.85-6.90 (2H, m), 7.04-7.10 (1H, m),
TEA		7.31-7.34 (1H, m)
I-54		1.23 (6H, s), 1.29 (3H, t, J=7.3), 2.68 (2H, s), 2.72 (6H, s),
		4.07 (2H, s), 4.22 (2H, q, J=7.3), 4.49 (2H, s), 6.98-7.10 (4H, m)
I-55		1.27 (6H, s), 1.33 (3H, t, J=7.3), 2.73 (2H, s), 3.01 (6H, s),
1.00		4.10 (2H, s), 4.25 (2H, q, J=7.3), 4.54 (2H, s), 6.41 (1H, d,
!		J=2.3), 6.48 (1H, d, J=7.6), 6.60 (1H, dd, J=7.6, 2.3), 7.20
		(1H, d, J=7.6)
I-56		1.16 (6H, t, J=7.3), 1.21 (6H, s), 1.28 (3H, t, J=7.3), 2.68
		(2H, s), 3.35 (4H, q, J=7.3), 4.05 (2H, s), 4.19 (2H, q,
		J=7.3), 4.48 (2H, s), 6.29 (1H, d, J=2.3), 6.32 (1H, d,
	<u> </u>	J=8.6), 6.50 (1H, dd, J=8.6, 2.3), 7.20 (1H, d, J=8.6)
I-57		1.21 (6H, s), 1.22 (3H, t, J=7.6), 1.46 (9H, s), 2.65 (2H, q,
		J=7.6), 2.69 (2H, s), 3.96 (2H, s), 4.48 (2H, s), 6.97 (2H, d,
		J=8.3), 7.20 (2H, d, J=8.3)
I-58		1.21 (6H, s), 1.25 (6H, d, J=6.9), 1.56 (9H, s), 2.69 (2H, s),
	1	2.90 (1H, sept, J=6.9), 3.97 (2H, s), 4.48 (2H, s), 6.85-6.90
7 50	<u> </u>	(2H, m), 7.04-7.10 (1H, m), 7.31-7.34 (1H, m)
I-59		1.21 (6H, s), 1.56 (9H, s), 2.67 (2H, s), 2.69 (6H, s), 3.96
I-60		(2H, s), 4.47 (2H, s), 6.98-7.10 (4H, m)
1-60		1.21 (6H, s), 1.47 (9H, s), 2.68 (2H, s), 2.96 (6H, s), 3.96
		(2H, s), 4.48 (2H, s), 6.36 (1H, d, J=7.6), 6.37 (1H, d, J=2.3), 6.55 (1H, dd, J=7.6, 2.3), 7.20 (1H, d, J=7.6)
	L	[0-2.5], 0.00 (111, uu, $0-7.5$, 2.5), 7.20 (111, d, $0=7.5$)

表 1 6

化合物	物性
番号 No	融点 NMR (CHCl ₃)
I-61	1.16 (6H, t, J=7.3), 1.21 (6H, s), 1.57 (9H, s), 2.68 (2H, s), 3.35 (4H, q, J=7.3), 3.93 (2H, s), 4.48 (2H, s), 6.29 (1H, d, J=2.3), 6.32 (1H, d, J=8.6), 6.50 (1H, dd, J=8.6, 2.3), 7.20 (1H, d, J=8.6)
I-62	1.15 (6H, t, J=7.2), 1.22 (6H, s), 2.65 (2H, s), 3.31 (4H, q J=7.3), 3.93-3.97 (2H, m), 4.49 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.28 (1H, d, J=2.2) (6.32 (1H, d, J=8.6), 6.50 (1H, dd, J=8.6, 2.2), 7.20 (1H, dd, J=8.6)
I-63	0.97 (6H, t, J=7.2), 1.22 (6H, s), 2.15 (3H, s), 2.64 (2H, s), 2.97 (4H, q, J=7.3), 3.93-3.97 (2H, m), 4.49 (2H, s), 5.15 (5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.64 (1H, d, J=7.9), 6.90 (1H, d, J=7.9), 7.15 (1H, d, J=7.9)
I-64	1.22 (6H, s), 2.16 (3H, s), 2.64 (2H, s), 2.68 (6H, s), 3.93 3.97 (2H, m), 4.49 (2H, s), 5.15-5.19 (1H, m), 5.28-5.39 (1H, m), 5.86-6.01 (1H, m), 6.63 (1H, d, J=7.9), 6.85 (1H, d, J=7.9), 7.12 (1H, d, J=7.9)
I-65	0.88 (6H, t, J=7.3), 1.43-1.65 (4H, m), 2.60 (2H, s), 2.70 (6H, s), 3.94 (2H, d, J=6.9), 4.43 (2H, s), 5.16 (2H, d, J=10.2), 5.31 (1H, dd, J=16.8, 1.3), 5.86-6.01 (1H, m), 6.93-7.03 (3H, m), 7.08-7.14 (1H, m)
I-66	0.87 (6H, t, J=7.3), 1.47 (9H, s), 1.48-1.63 (4H, m), 2.62 (2H, s), 2.70 (6H, s), 3.96 (2H, s), 4.43 (2H, s), 6.92-7.14 (4H, m)
I-67	0.88 (6H, t, J=7.6), 1.47-1.65 (4H, m), 2.60 (2H, s), 3.82 (3H, s), 3.92-3.95 (2H, m), 4.48 (2H, s), 5.14-5.19 (1H, m), 5.32 (1H dd, J=16.8, 1.3), 5.87-6.00 (1H, m), 6.93-7.00 (3H, m), 7.10-7.17 (1H, m)
I-68	0.87 (6H, t, J=7.6), 1.47 (9H, s), 1.51-1.60 (4H, m), 2.63 (2H, s), 3.83 (3H, s), 3.96 (2H, s), 4.47 (2H, s), 6.93-7.03 (3H, m), 7.10-7.14 (1H, m)
I-69	0.86 (6H, t, J=7.6), 1.24 (3H, t, J=7.6), 1.41-1.65 (4H, m), 2.61-2.71 (4H, m), 3.94 (2H, d, J=7.3), 4.45 (2H, s), 5.16 (1H, d, J=9.9), 5.28-5.34 (1H, m), 5.86-6.01 (1H, m), 6.94-6.98 (1H, m), 7.18-7.21 (2H, m)
I-70	0.88 (6H, t, J=7.6), 1.47 (9H, s), 1.49-1.58 (4H, m), 2.61-2.70 (4H, m), 3.97 (2H, s), 4.45 (2H, s), 6.96-6.99 (2H, m), 7.18-7.21 (2H, m)

表 1 7

化合物	1	物性
番号		
No	融点	NMR (CHCl ₃)
I-71		0.89 (6H, t, J=7.6), 1.47-1.65 (4H, m), 2.64 (2H, s), 3.94
	1	(2H, d, J=7.3), 4.45 (2H, s), 5.18 (1H, d, J=9.9), 5.32 (1H,
-		dd, J=17.2, 1.3), 5.86-6.01 (1H, m), 7.01-7.06 (2H, m),
	ļ	7.20-7.23 (2H, m)
I-72	ł	0.88 (6H, t, J=7.3), 1.47 (9H, s), 1.48-1.66 (4H, m), 2.67
	}	(2H, s), 3.97 (2H, s), 4.44 (2H, s), 7.03-7.08 (2H, m),
	ļ	7.20-7.26 (2H, m)
I-73	103.5-	0.88 (6H, t, J=7.3), 1.50-1.63 (4H, m), 2.62 (2H, s), 2.72
1	104.5	(6H, s), 3.43 (3H, s), 4.43 (2H, s), 5.45 (2H, s), 6.95-7.18
	} -	(4H, m)
I-74		1.20 (6H, d, J=6.9), 1.60-1.87 (8H, m), 2.74 (2H, s), 3.10
1		(1H, sept, J=6.9), 3.93-3.96 (2H, m), 5.15 (1H, dd, J=9.9,
		1.3), 5.31 (1H, dd, J=17.1, 1.3), 5.86-6.01 (1H, m), 6.90-
I-75	 	9.94 (1H, m), 7.12-7.20 (2H, m), 7.31-7.34 (1H, m) 1.62-1.86 (8H, m), 2.72 (6H, s), 3.92-3.95 (2H, m), 4.55
1-75	Į.	(2H, s), 5.15 (1H, d, J=10.0), 5.26-5.33 (1H, m), 5.86-5.98
j		(1H, m), 6.93-7.01 (3H, m), 7.09-7.16 (1H, m)
I-76	 	1.47 (9H, s), 1.64-1.76 (8H, m), 2.71 (6H, s), 2.76 (2H, s),
1		3.95 (2H, s), 4.54 (2H, s), 6.92-7.05 (3H, m), 7.09-7.15
ł		(1H, m)
I-77	85.5-	1.20 (6H, d, J=6.9), 1.60-1.84 (8H, m), 2.79 (2H, s), 3.09
}	87.5	(1H, sept, J=6.9), 3.40 (3H, s), 3.61-3.64 (2H, m), 4.09
1	j	(2H, s), 4.29-4.32 (2H, m), 4.52 (2H, s), 6.92-6.95 (1H, m),
		7.13-7.20 (2H, m), 7.31-7.34 (1H, m)
I-78		1.19 (6H, d, J=6.9), 1.60-1.87 (8H, m), 2.23 (3H, s), 2.76
		(2H, s), 3.06 (1H, sept, J=6.9), 4.53 (2H, s), 4.57 (2H, s),
	,	6.09 (1H, s), 6.87-6.92 (1H, m), 7.13-7.20 (2H, m), 7.29-
		7.34 (1H, m)
I-79		1.64-1.84 (8H, m), 2.75 (2H, s), 3.83 (3H, s), 3.93 (2H, d,
		J=6.9), 4.56 (2H, s), 5.16 (1H, d, J=9.9), 5.31 (1H, dd,
	}	J=17.1, 1.7), 5.87-5.99 (1H, m), 6.92-7.01 (3H, m), 7.11-
TOO		7.18 (1H, m)
I-80		1.47 (9H, s), 1.64-1.83 (8H, m), 2.78 (2H, s), 3.84 (3H, s), 3.96 (2H, s), 4.55 (2H, s), 6.92-7.04 (3H, m), 7.11-7.18
		(1H, m)
L		(111, III/

表 1 8

化合物	_	物性
番号		·
No	融点	NMR (CHCl ₃)
I-81		1.57-1.86 (8H, m), 2.73 (6H, s), 2.74 (2H, s), 3.42 (3H, s),
	Ì	4.55 (2H, s), 5.44 (2H, s), 6.94-7.04 (3H, m), 7.11-7.17
		(1H, m)
I-82		1.24 (3H, t, J=7.6), 1.65-1.87 (8H, m), 2.65 (2H, m), 3.93-
ļ		3.95 (2H, m), 4.54 (2H, m), 5.16 (1H, d, J=9.9), 5.27-5.35
		(1H, m), 5.86-6.01 (1H, m), 6.93-6.98 (2H, m), 7.19-7.22
		(1H, m)
I-83		1.55-1.84 (8H, m), 2.77 (2H, s), 3.92-3.95 (2H, m), 4.55
		(2H, s), 5.18 (1H, d, J=9.9), 5.28-5.35 (1H, m), 5.86-6.01
ļ <u>.</u>		(1H, m), 7.01-7.06 (2H, m), 7.22 (2H, d, J=8.9)
I-84		1.37-1.60 (8H, m), 1.73-1.86 (2H, m), 2.65 (2H, s), 2.70
		(6H, s), 3.94 (2H, d, J=7.3), 4.52 (2H, s), 5.15 (1H, d,
		J=9.9), 5.30 (1H, dd, J=17.2, 1.3), 5.86-6.01 (1H, m),
T 0.5	 	6.93-7.15 (4H, m)
I-85		1.36-1.62 (8H, m), 1.47 (9H, s), 1.69-1.82 (2H, m), 2.67
		(2H, s), 2.70 (6H, s), 3.79 (2H, s), 4.52 (2H, s), 6.93-7.14 (4H, m)
I-86	108.5-	1.33-1.62 (8H, m), 1.75-1.82 (2H, m), 2.65 (2H, s), 3.82
100	109.5	(3H, s), 3.94 (2H, d, J=6.9), 4.56 (2H, s), 5.15 (1H, d,
		J=10.2), 5.31 (1H, dd, J=17.2, 1.6), 5.88-6.02 (1H, m),
		6.93-7.02 (3H, m), 7.10-7.17 (1H, m)
. I-87		1.23-1.78 (10H, m), 1.46 (9H, s), 2.67 (2H, s), 3.83 (3H, s),
		3.97 (2H, s), 4.55 (2H, s), 6.89-7.05 (3H, m), 7.10-7.17
		(12H, m)
I-88	98-100	1.24 (3H, t, J=7.6), 1.36-1.54 (8H, m), 1.76-1.81 (2H, m),
		2.61-2.69 (4H, m), 3.94 (2H, d, J=6.9), 4.53 (2H, s), 5.16
		(1H, d, J=9.9), 5.27-5.34 (1H, m), 5.86-5.98 (1H, m),
		6.95-6.98 (2H, m), 7.18-7.21 (2H, m)
I-89		1.20 (6H, d, J=6.9), 1.37-1.90 (16H, m), 2.66 (2H, s), 3.10
		(1H, sept, J=6.9), 3.47-3.59 (3H, m), 3.69-4.06 (3H, m),
		4.45 (1H, d, J=13.9), 4.59 (1H, d, J=13.9), 4.65-4.68 (1H,
		m), 6.90-6.93 (1H, m), 7.12-7.19 (2H, m), 7.29-7.34 (1H, m)
I-90	 	1.20 (6H, d, J=6.9), 1.30-1.60 (8H, m), 1.72-1.83 (2H, m),
1-30		2.04 (2H, brs), 2.67 (2H, s), 3.09 (1H, sept, J=6.9), 3.56
		(2H, t, J=5.9), 3.93 (2H, brs), 4.51 (2H, s), 6.91-6.94 (1H,
]		m), 7.13-7.21 (2H, m), 7.29-7.34 (1H, m)
	L	

表19

化合物番	Γ	物性
号		70 II
No	融点	NMR (CHCl ₃)
I-91	}	1.30-1.63 (8H, m), 1.75-1.82 (2H, m), 2.68 (2H, s), 3.93-
		3.96 (2H, m), 4.54 (2H, s), 5.17 (1H, dd, J=9.9, 1.3), 5.28-
1		5.35 (1H, m), 5.86-6.01 (1H, m), 7.01-7.07 (2H, m), 7.20-
<u> </u>		7.23 (2H, m)
I-92	73.5-	1.20 (6H, d, J=6.9), 1.58-1.67 (2H, m), 1.89-1.95 (2H, m),
	75.0	2.73 (2H, s), 3.09 (1H, sept, J=6.6), 3.94 (2H, d, J=7.3),
		4.66 (2H, s), 5.18 (1H, d, J=9.9), 5.29-5.36 (1H, m), 5.87-
T 00	107	5.98 (1H, m), 7.15-7.19 (2H, m), 7.31-7.35 (1H, m)
I-93	127-	1.21 (6H, d, J=6.6), 1.55-1.67 (2H, m), 1.89-1.97 (2H, m),
1	128	2.65 (3H, s), 2.74 (2H, s), 3.09 (1H, sept, J=6.6), 3.69-3.76 (4H, m), 4.69 (2H, s), 6.89-6.92 (1H, m), 7.13-7.21 (2H,
		m), 7.30-7.35 (1H, m)
I-94		0.90 (6H, t, J=7.3), 1.20 (6H, d, J=7.3), 1.48-1.62 (4H, m),
1-04		2.69 (2H, s), 3.05 (1H, sept, J=7.3), 4.16 (2H, s), 4.38 (2H,
	ļ	s), 4.97 (1H, brs), 6.92-6.96 (1H, m), 7.13-7.21 (2H, m),
		7.32-7.36 (1H, m)
I-95	98-99	1.23 (6H, s), 2.65 (2H, s), 4.00 (2H, d, J=6.9), 4.58 (2H, s),
		5.19 (1H, d, J=6.9), 5.35 (1H, dd, J=17.2, 1.3), 5.90-6.03
		(1H, m), 7.09 (1H, d, J=7.3), 7.42-7.53 (3H, m), 7.67 (1H,
		d, J=8.2), 7.85 (1H, dd, J=7.3, 3.0), 8.05 (1H, d, J=6.9)
I-96	120-	1.23 (6H, s), 1.49 (9H, s), 2.69 (2H, s), 4.01 (2H, s), 4.57
	121	(2H, s), 7.11 (1H, d, J=8.2), 7.42-7.51 (3H, m), 7.67 (1H, d,
		J=8.2), 7.84-7.87 (1H, m), 8.06 (1H, d, J=7.6)
I-97		1.23 (6H, s), 2.69 (2H, s), 3.40 (3H, s), 3.61-3.65 (2H, m),
		4.15 (2H, s), 4.30-4.33 (2H, m), 4.56 (2H, s), 7.11 (1H, dd,
		J=7.3, 1.0), 7.42-7.54 (3H, m), 7.67 (1H, d, J=8.2), 7.84-
I-98	99-100	7.88 (1H, m), 8.04 (1H, dd, J=6.9, 3.3) 0.92 (6H, t, J=7.3), 1.22-1.60 (4H, m), 2.62 (2H, s), 4.00
1.90	33-100	(2H, s), 4.54 (2H, s), 5.19 (1H, d, J=9.9), 5.35 (1H, dd,
		J=17.2, 1.7), 5.93-6.03 (1H, m), 7.09 (1H, d, J=7.3), 7.42-
		7.52 (3H, m), 7.66 (1H, d, J=8.2), 7.83-7.86 (1H, m), 8.06
		(1H, d, J=7.9)
I-99	111-	0.90 (6H, t, J=6.9), 1.16-1.56 (4H, m), 1.49 (9H, s), 2.65
	113	(2H, s), 4.02 (2H, s), 4.54 (2H, s), 7.10-7.12 (1H, m),
}		7.42-7.53 (3H, m), 7.66 (1H, d, J=8.2), 7.83-7.86 (1H, m),
		8.05-8.08 (1H, m)
I-100	86-87	0.90 (6H, t, J=7.3), 1.43-1.66 (4H, m), 2.63 (2H, s), 4.00
]		(2H, d, J=6.9), 4.54 (2H, s), 5.20 (2H, d, J=9.9), 5.35 (1H,
[dd, J=16.8, 1.3), 5.90-6.05 (1H, m), 7.15-7.18 (1H, m),
		7.38 (1H, dd, J=8.6, 4.3), 7.69 (1H, dd, J=8.6, 7.3), 7.92
		(1H, d, J=8.6), 8.45 (1H, d, J=7.3), 8.93 (1H, dd, J=4.3,
		1.7)

表 2 0

化合物番		物性
号		五 五 五 五 五
No	融点	NMR (CHCl ₃)
I-101	103-	1.59-1.84 (8H, m), 2.74 (2H, s), 3.97 (2H, d, J=6.9), 4.61
	104	(2H, s), 5.17 (1H, d, J=10.2), 5.32 (1H, dd, J=16.8, 1.3),
		5.88-6.01 (1H, m), 7.08 (1H, d, J=8.2), 7.41-7.52 (3H, m),
		7.60 (1H, d, J=8.2), 7.84 (1H, dd, J=7.3, 2.6), 8.02 (1H, d,
		J=6.6)
I-102		1.49 (9H, s), 1.54-1.90 (8H, m), 2.79 (2H, s), 4.00 (2H, s),
		4.61 (2H, s), 7.11 (1H, dd, J=7.6, 1.3), 7.42-7.53 (3H, m),
		7.67 (1H, d, J=8.2), 7.84-7.89 (1H, m), 8.02-8.06 (1H, m)
I-103		1.58-1.85 (8H, m), 2.77 (2H, s), 3.99 (2H, d, J=7.3), 4.62
		(2H, s), 5.19 (1H, d, J=8.9), 5.31-5.38 (1H, m), 5.91-6.04
1		(1H, m), 7.17 (1H, d, J=7.6), 7.39 (1H, dd, J=8.6, 4.3),
		7.66-7.73 (1H, m), 7.93 (1H, d, J=8.6), 8.42 (1H, d, J=8.6),
T 104	100	8.93 (1H, dd, J=4.3, 2.0)
I-104	109-	1.33-1.84 (10H, m), 2.66 (2H, s), 4.00 (2H, d, J=6.9), 4.63
	110	(2H, s), 5.19 (1H, d, J=9.9), 5.35 (1H, dd, J=16.8, 1.3),
		5.91-6.06 (1H, m), 7.10 (1H, d, J=7.3), 7.42-7.52 (3H, m),
I-105		7.66 (1H, J=8.2), 7.83-7.86 (1H, m), 8.06 (1H, d, J=7.3) 1.30-1.63 (8H, m), 1.72-1.84 (2H, m), 2.68 (2H, s), 4.00
1-105		(2H, d, J=6.9), 4.62 (2H, s), 5.20 (1H, d, J=9.9), 5.35 (1H,
		dd, J=16.8, 1.3), 5.92-6.04 (1H, m), 7.17 (1H, d, J=6.9),
,		7.38 (1H, dd, J=8.6, 4.3), 7.66-7.72 (1H, m), 7.93 (1H, d,
		J=8.6), 8.45 (1H, d, J=8.6), 8.93 (1H, dd, J=4.3, 1.7)
I-106		1.15 (6H, s), 1.22 (6H, d, J=6.9), 2.67 (2H, s), 3.02 (1H,
		sept, J=6.9), 4.08 (2H, s), 6.77-6.80 (1H, m), 7.07-7.18
		(2H, m), 7.28-7.31 (1H, m), 7.77 (1H, dd, J=8.6, 2.6), 8.11
		(1H, d, J=8.9), 8.57-8.58 (1H, m)
I-107	121.5-	1.23 (6H, d, J=6.9), 1.27 (6H, s), 2.80 (2H, s), 3.17 (1H,
	122.5	sept, J=6.9), 4.36 (2H, s), 6.80-6.84 (1H, m), 7.13-7.23
		(3H, m), 7.32-7.42 (2H, m), 7.70-7.79 (2H, m)
I-108	158.5-	1.20 (6H, s), 1.27 (6H, d, J=6.9), 2.72 (2H, s), 3.29 (1H,
}	159.5	sept, J=6.9), 3.99 (2H, s), 6.80-6.84 (1H, m), 7.09-7.39
		(6H, m), 7.53-7.56 (1H, m)
I-109		1.16 (6H, s), 1.23 (6H, d, J=6.9), 2.67 (2H, s), 3.00 (1H,
		sept, J=6.9), 4.19 (2H, s), 6.79-6.83 (1H, m), 7.11-7.21
		(2H, m), 7.30-7.34 (1H, m), 8.18 (1H, d, J=9.2), 8.32 (1H,
		dd, J=9.2, 2.6), 9.17 (1H, d, J=2.6)
I-110		0.94 (2H, t, J=7.3), 1.14 (6H, s), 1.57-1.71 (2H, m), 2.57
, l		(2H, t, J=7.3), 2.67 (2H, s), 4.09 (2H, s), 6.81-6.87 (2H,
<u> </u>		m), 7.08-7.16 (2H, m), 7.75 (1H, dd, J=8.9, 2.6), 8.09 (1H,
		d, J=8.9), 8.55 (1H, s)

表 2 1

/L A Am 37	r	String Little
化合物番		物性
No	融点	NMR (CHCl ₃)
I-111	113,47774	0.88 (6H, t, J=7.4), 1.22 (6H, d, J=6.9), 1.42-1.52 (4H, m),
1		2.61 (2H, s), 3.06 (1H, sept, J=6.9), 4.11 (2H, s), 6.75-6.80
		(1H, m), 7.07-7.18 (2H, m), 7.29-7.34 (1H, m), 7.75 (1H,
		dd, J=8.6, 2.6), 8.08 (1H, d, J=8.9), 8.57-8.58 (1H, m)
I-112		1.20 (6H, d, J=6.9), 1.28 (6H< s), 2.85 (2H, s), 2.95 (1H,
1-112		sept, J=6.9), 4.34 (2H, s), 6.72-6.79 (1H, m), 7.14-7.20
		(2H, m), 7.31-7.36 (1H, m)
I-113	120-	1.19 (6H, d, J=6.9), 1.58-1.66 (2H, m), 1.88-1.98 (2H, m),
1-110	121	2.38-2.60 (4H, m), 2.64 (3H, s), 2.69 (2H, s), 3.08 (1H,
	121	sept, J=6.9), 3.52 (2H, s), 4.59 (2H, s), 6.89-6.92 (1H, m),
		7.12-7.34 (8H, m)
I-114		0.89 (6H, t, J=7.3), 1.43-1.65 (4H, m), 2.49 (3H, s), 2.62
1-114		(2H, s), 3.93-3.96 (2H, m), 4.45 (2H, s), 5.17 (1H, m), 5.31
		(1H, m), 5.89 (1H, m), 6.80 (1H, m), 6.91 (1H, m), 7.04
1		(1H, m), 7.24-7.30 (2H, m)
I-115		1.57-1.88 (8H, m), 2.49 (3H, s), 2.75 (2H, s), 3.95 (2H, m),
1110		4.55 (2H, s), 5.17 (1H, m), 5.32 (1H, m), 5.93 (1H, m), 6.80
		(1H, m), 6.91 (1H, m), 7.05 (1H, m), 7.29 (1H, m)
I-116		1.32-1.60 (8H, m), 1.72-1.84 (2H, m), 2.49 (3H, s), 2.66
		(2H, s), 3.95 (2H, m), 4.54 (2H, s), 5.17 (1H, d, J=10.2),
		5.32 (1H, dd, J=17.2, 1.3), 5.89 (1H, m), 6.80 (1H, m), 6.91
		(1H, m), 7.04 (1H, m), 7.28 (1H, m)
I-117		1.65-1.86 (8H, m), 2.49 (3H, s), 2.75 (2H, s), 3.93 (2H, m),
1		4.54 (2H, s), 5.17 (1H, m), 5.31 (1H, m), 5.89 (1H, m),
		6.96-7.01 (2H, m), 7.26-7.31 (2H, m)
I-118	111-	1.37-1.63 (8H, m), 1.73-1.84 (2H, m), 2.49 (3H, s), 2.67
	112	(2H, s), 3.94 (2H, m), 4.53 (2H, s), 5.17 (1H, d, J=10.2),
		5.31 (1H, dd, J=17.2, 1.7), 5.92 (1H, m), 6.97-7.01 (2H,
		m), 7.26-7.30 (2H, m)
I-119		1.22 (6H, s), 1.25 (3H, t, J=6.9), 2.62 (2H, s), 2.65 (2H, q,
		J=6.9), 3.81(3H, s), 3.95 (2H, m), 4.50 (2H, s), 5.17 (1H,
		m), 5.29 (1H, m), 5.94 (1H, m), 6.80-6.84 (2H, m), 6.93
		(1H, m).
I-120		1.22 (6H, s), 1.24 (6H, d, J=6.9), 2.64 (2H, s), 2.89 (1H,
		sept, J=6.9), 3.82 (3H, s), 3.95 (2H, m), 4.49 (2H, s),
		5.17 (1H, m), 5.28 (1H, m), 5.94 (1H, m), 6.89-6.94 (2H,
		m), 6.93 (1H, m).
I-121		1.18 (6H, d, J=6.9), 1.22 (6H, s), 2.64 (2H, s), 3.10 (1H,
		sept, J=6.9), 3.81 (3H, s), 3.95 (2H, m), 4.47 (2H, s), 5.17
		(1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.72 (1H, m), 6.85-
		6.95 (2H, m).
I-122		1.17 (6H, d, J=6.9), 1.22 (6H, s), 1.43 (3H, t, J=7.5), 2.65
		(2H, s), 3.05 (1H, sept, J=6.9), 3.95 (2H, m), 4.05 (2H, q,
		J=7.5), 4.46 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H,
		m), 6.72 (1H, m), 6.85-6.90 (2H, m).

表 2 2

化合物番	T	物性
号		70 III.
No	融点	NMR (CHCl ₃)
I-123		1.22 (6H, s), 1.45 (6H, t, J=7.4), 2.64 (2H, s), 3.95 (2H, m), 4.10 (4H, q, J=7.4), 4.48 (2H, s), 5.17 (1H, m), 5.28 (1H,
I-124		m), 5.97 (1H, m), 6.55-6.63 (2H, m), 6.88 (1H, m). 1.05 (6H, t, J=7.4), 1.22 (6H, s), 1.78-1.86 (4H, m), 2.66
		(2H, s), 3.93 (4H, q, J=7.4), 3.95 (2H, m), 4.48 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.55-6.68 (2H, m), 6.88 (1H, m).
I-125	86-88	1.23 (6H, s), 1.45 (3H, t, J=7.4), 2.67 (2H, s), 3.22(3H, s), 3.95 (2H, m), 4.12 (2H, q, J=7.4), 4.47 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.95-6.99 (2H, m), 7.12 (1H, m).
I-126	65-66	1.22 (6H, s), 1.25 (3H, t, J=6.9), 2.65 (2H, s), 3.54 (2H, q, J=6.9), 3.95 (2H, m), 4.49 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.99 (2H, d, J=7.9), 7.34 (2H, d, J=7.9).
I-127		0.88 (6H, t, J=7.4), 1.45 (3H, t, J=7.4), 1.44-1.58 (4H, m), 2.62 (2H, s), 3.80 (3H, s), 3.95 (2H, m), 4.11 (2H, q, J=7.4), 4.45 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.50-6.65 (2H, m), 6.88 (1H, m).
I-128		0.88 (6H, t, J=7.4), 1.45 (6H, t, J=7.4), 1.44-1.58 (4H, m), 2.62 (2H, s), 3.95 (2H, m), 4.11 (4H, q, J=7.4), 4.45 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.55-6.65 (2H, m), 6.88 (1H, m).
I-129	62-64	0.88 (6H, t, J=7.4), 1.04 (3H, t, J=7.4), 1.43 (3H, t, J=7.4), 1.44-1.58 (4H, m), 1.86 (2H, sext, J=7.4), 2.62 (2H, s), 3.95 (2H, m), 3.98 (2H, t, J=7.4), 4.10 (2H, q, J=7.4), 4.49 (2H, s), 5.13 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.55-6.65 (2H, m), 6.88 (1H, m).
I-130	104- 105	0.88 (6H, t, J=7.4), 1.06 (3H, t, J=7.4), 1.44-1.58 (4H, m), 1.86 (2H, sext, J=7.4), 2.62 (2H, s), 3.21 (3H, s), 3.95 (2H, m), 3.98 (2H, t, J=7.4), 4.43 (2H, s), 5.13 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.84-688 (2H, m), 7.13 (1H, m).
I-131	70-72	0.88 (6H, t, J=7.4), 1.04 (6H, t, J=7.4), 1.44-1.58 (4H, m), 1.86 (4H, m), 2.64 (2H, s), 3.95 (2H, m), 3.98 (2H, t, J=7.4), 4.49 (2H, s), 5.13 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.55-6.65 (2H, m), 6.88 (1H, m).
I-132	59-60	0.88 (6H, t, J=7.4), 1.04 (3H, t, J=7.4), 1.35 (6H, d, J=6.9), 1.44-1.58 (4H, m), 1.79 (2H, sext, J=7.4), 2.62 (2H, s), 3.95 (2H, m), 3.98 (2H, t, J=7.4), 4.46 (1H, sept, J=6.9), 4.46 (2H, s), 5.13 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.52-6.61 (2H, m), 6.88 (1H, m).
I-133		1.22 (6H, s), 2.30 (6H, s), 2.51-2.60 (2H, m), 2.65 (2H, s), 2.81-2.88 (2H, m), 3.95 (2H, m), 4.49 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.98 (2H, d, J=7.9), 7.20 (2H, d, J=7.9).

表23

化合物番		物性
号 No	融点	NMR (CHCl _s)
I-134	THI EUM	
1-134		1.20 (6H, d, J=6.9), 1.32-1.60 (8H, m), 1.47 (9H, s), 1.70-
		1.81 (2H, m), 2.70 (2H, s), 3.09 (1H, sept, J=6.9), 3.97
		(2H, s), 4.52 (2H, s), 6.95 (1H, m), 7.11-7.20 (2H, m), 7.31
T 105	<u> </u>	(1H, m)
I-135		1.20 (6H, d, J=6.9), 1.58-1.68 (2H, m), 1.93-1.97 (2H, m),
		2.31 (3H, s), 2.38-2.59 (4H, m), 2.64 (3H, s), 2.68 (2H, s),
		3.09 (1H, sept, J=6.9), 4.59 (2H, s), 6.91 (1H, m), 7.13-
T 100	· · · · · · · · · · · · · · · · · · ·	7.21 (2H, m), 7.33 (1H, m)
I-136		1.11 (3H, t, J=6.9), 1.20 (6H, d, J=6.9), 1.65-1.70 (2H, m),
.		1.94-2.00 (2H, m), 2.41-2.50 (4H, m), 2.56-2.69 (2H, m),
		2.65 (3H, s), 2.69 (2H, s), 3.09 (1H, sept, J=6.9), 4.60 (2H,
I-137		s), 6.91 (1H, m), 7.13-7.21 (2H, m), 7.33 (1H, m)
1.137	07.00	1.22 (6H, s), 2.65 (2H, s), 3.93-3.97 (2H, m), 4.45 (2H, s),
	67-68	5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.85-6.91 (2H,
T 100		m), 7.02 (1H, m).
I-138	00.00	1.22 (6H, s), 2.66 (2H, s), 3.95 (2H, m), 4.46 (2H, s), 5.17
	80-82	(1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.85 (1H, dd,
		J=8.2,2.0), 7.16 (1H, d, J=2.0),
I-139		7.44 (1H, d, J=8.2). 1.22 (6H, s), 2.21 (3H, s), 2.64 (2H, s), 3.93-3.97 (2H, m),
1.199		4.51 (2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.85
		(1H, d, J=8.2), 7.16 (1H, dd, J=8.2, 2.0), 7.22 (1H, d,
		J=2.0).
I-140		1.22 (6H, s), 2.30 (3H, s), 2.64 (2H, s), 3.95 (2H, m), 4.51
1,140		(2H, s), 5.17 (1H, m), 5.28 (1H, m), 5.97 (1H, m), 6.89 (1H,
·		d, J=8.2), 7.16 (1H, dd, J=8.2, 2.0), 7.30 (1H, d, J=2.0).
I-141		1.22 (6H, s), 2.65 (2H, s), 2.88 (2H, t, J=7.1), 3.36 (3H, s),
		3.66 (2H, t, J=7.1), 3.95 (2H, m), 4.49 (2H, s), 5.17 (1H,
		m), 5.28 (1H, m), 5.97 (1H, m), 6.98 (2H, d, J=8.3), 7.20
		(2H, d, J=8.3).
I-142		1.25 (6H, d, J=6.9), 1.55-1.87 (8H, m), 2.72 (2H, s), 2.91
[(1H, sept, J=6.9), 3.93 (2H, m), 4.54 (2H, s), 5.16 (1H, m),
		5.30 (1H, m), 5.93 (1H, m), 6.95-7.00 (2H, m), 7.21-7.24
<u> </u>		(2H, m)
I-143		1.25 (6H, d, J=6.9), 1.47 (9H, s), 1.63-1.85 (8H, m), 2.78
		(2H, s), 2.91 (1H, sept, J=6.9), 3.95 (2H, s), 4.53 (2H,),
		6.96-7.01 (2H, m), 7.20-7.24 (2H, m)

表 2 4

1	L合物	T	
1	番号		M.T.
. L	No	点癌	NMR (CHCl ₃)
	I-144		0.88 (6H, t, J=7.3), 1.25 (6H, d, J=6.9), 1.43-1.68 (4H, m),
			2.61 (2H, s), 2.90 (1H, sept, J=6.9), 3.94 (2H, m), 4.45
			(2H, s), 5.15 (1H, m), 5.31 (1H, m), 5.94 (1H, m), 6.95-6.99
_			(2H, m), 7.20-7.24 (2H, m)
1	I-145	[0.87 (6H, t, J=7.3), 1.25 (6H, d, J=6.9), 1.47 (9H, s),
			1.48-1.70 (4H, m), 2.65 (2H, s), 2.90 (1H, sept, J=6.9),
			3.96 (2H, s), 4.44 (2H, s), 6.97-7.01 (2H, m), 7.20-7.23
_	T 4 4 0		(2H, m)
1	I-146	90.5-	1.25 (6H, d, J=6.9), 1.30-1.62 (8H, m), 1.73-1.85 (2H, m),
ł		92.5	2.66 (2H, s), 2.91 (1H, sept, J=6.9), 3.94 (2H, m), 4.54
			(2H, s), 5.16 (1H, dd, J=9.9, 1.3), 5.31 (1H, m), 5.94 (1H,
\vdash	I-147	<u> </u>	m), 6.96-7.00 (2H, m), 7.20-7.24 (2H, m)
1	1-14/		0.90 (6H, t, J=6.9), 1.15-1.57 (8H, m), 1.47 (9H, s), 2.64 (2H, s), 3.83 (3H, s), 3.96 (2H, s), 4.46 (2H, s), 6.92-6.97
1			(2H, m), 7.02 (1H, dd, J=7.9, 1.6), 7.13 (1H, m)
\vdash	I-148		1.00 (6H, d, J=6.9), 1.06 (6H, d, J=6.9), 1.46 (9H, s), 2.01
	1-140		(2H, sept, J=6.9), 2.80 (2H, s), 3.82 (3H, s), 3.87 (2H, s),
			4.66 (2H, s), 6.91-7.01 (3H, m), 7.13 (1H, m)
\vdash	I-149		0.92 (6H, t, J=7.3), 1.16-1.54 (8H, m), 2.61 (2H, s), 3.82
			(3H, s), 3.94 (2H, dd, J=6.9, 1.0), 4.47 (2H, s), 5.16 (1H,
			m), 5.32 (1H, m), 5.94 (1H, m), 6.92-7.01 (3H, m), 7.13
			(1H, m)
	I-150		0.85 (3H, t, J=7.3), 1.18 (3H, d, J=6.9), 1.47-1.68 (4H, m),
			1.90-2.00 (2H, m), 2.31 (3H, s), 2.39-2.63 (4H, m), 2.65
			(3H, s), 2.69 (2H, d, J=2.3), 2.89 (1H, sext, J=7.3), 4.46
1			(1H, d, J=13.8), 4.71 (1H, d, 13.8), 6.92 (1H, m), 7.12-7.29
-	T 161		(3H, m)
1	I-151		1.37-1.63 (8H, m), 1.48 (9H, s), 1.70-1.83 (2H, m), 2.67
			(2H, s), 4.02 (2H, s), 4.62 (2H, s), 7.11 (1H, dd, J=7.6, 1.3), 7.42-7.53 (3H, m), 7.67 (1H, d, J=8.2), 7.85 (1H, dd,
1			J=6.9, 3.3, 8.07 (1H, m)
	I-152		0.88 (6H, t, J=7.3), 1.44-1.65 (4H, m), 1.49 (9H, s), 2.65
			(2H, s), 4.02 (2H, s), 4.54 (2H, s), 7.11 (1H, dd, J=7.3,
			1.0), 7.42-7.53 (3H, m), 7.67 (1H, J=8.2), 7.85 (1H, dd,
			J=5.6, 3.3), 8.07 (1H, dd, J=7.3, 3.3)
	I-153		1.21 (6H, d, J=6.9), 1.58-1.67 (2H, m), 2.31 (3H, s), 2.33
1			(3H, s), 2.41-2.45 (4H, m), 2.67 (2H, s), 3.13 (1H, sept,
			J=6.9), 3.89 (2H, s), 6.80 (1H, m), 7.10-7.18 (2H, m), 7.31
L			(1H, m)
	I-154		0.85 (3H, t, J=7.3), 1.19 (3H, d, J=7.3), 1.47-1.81 (6H, m),
			2.31 (3H, s), 2.32 (3H, s), 2.40-2.50 (4H, m), 2.67 (2H, s),
	-		2.92 (1H, sext, J=7.3), 3.84 (1H, d, J=13.9), 6.80 (1H, m),
\Box			7.11-7.17 (2H, m), 7.25 (1H, m)

本発明化合物には、以下の表に示される化合物も含まれる。これらの化合物は、

上記実施例と同様に合成することができる。なお、表中の左カラムの数字は化合物 No. を表わす。

表 2 5

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^5

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^8	R ⁴	R ⁸	R ⁶	\mathbb{R}^7	R ⁸
A-1	H	H	H	H	H	Allyl	Me	Me
A-2	Cl	H	H	H	H	Allyl	Me	Me
A-3	Br	H	H	H	H	Allyl	Me	Me
A-4	Me	H	H	H	H	Allyl	Me	Me
A-5	Et	H	H	H	H	Allyl	Me	Me
A-6	Pr	H	H	H	H	Allyl	Me	Me
A-7	Bu	H	H	H	H	Allyl	Me	Me
A-8	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	H	Allyl	Me	Me
A-9	Bu ^t	H	H	H	H	Allyl	Me	Me
A-10	OMe	H	H	H	H	Allyl	Me	Me
A-11	OEt	H	H	H	H	Allyl	Me	Me
A-12	OPr^{i}	H	H	H	H	Allyl	Me	Me
A-13	OPr	H	H	H	H	Allyl	Me	Me
A-14	OCHF ₂	H	H	H	H	Allyl	Me	Me
A-15	OCF ₃	H	H	H	H	Allyl	Me	Me
A-16	CF_3	H	H	H	H	Allyl	Me	Me
A-17	SMe	H	H	H	H	Allyl	Me	Me
A-18	SEt	H	H	H	H	Allyl	Me	Me
A-19	${ m SPr}^i$	H	H	H	H	Allyl	Me	Me
A-20	NMe_2	H	H	H	H	Allyl	Me	Me
A-21	NEt_2	H	H	H	H	Allyl	Me	Me
A-22	H	Cl	H	H	H	Allyl	Me	Me
A-23	H	Br	H	H	H	Allyl	Me	Me
A-24	H	Me	H	H	H	Allyl	Me	Me
A-25	H	Et	Н	Н	Н	Allyl	Me	Me

表 2 6

$$R^2$$
 R^3
 R^4
 R^6
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	R ²	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R ⁷	\mathbb{R}^8
A-26	H	Pr	Н	H	Н	Allyl	Me	Me
A-27	Н	\Pr^i	H	H	H	Allyl	Me	Me
A-28	H	Bu	Н	H	Н	Allyl	Me	Me
A-29	H	$\mathbf{B}\mathbf{u}^{j}$	H	H	H	Allyl	Me	Me
A-30	H	Bu ^s	H	H	H	Allyl	Me	Me
A-31	H	Bu ^t	H	H	H	Allyl	Me	Me
A-32	H	OMe	H	H	H	Allyl	Me	Me
A-33	H	OEt	H	H	H	Allyl	Me	Me
A-34	H	OPr	H	H	H	Allyl	Me	Me
A-35	H	OPr^i	H	H	H	Allyl	Me	Me
A-36	H	OCHF ₂	H .	H	H	Allyl	Me	Me
A-37	H	OCF ₃	H	H	H	Allyl	Me	Me
A-38	H	CF_3	H	H	H	Allyl	Me	Me
A-39	H	SMe	H	H	H	Allyl	Me	Me
A-40	H	SEt	H	H	H	Allyl	Me	Me
A-41	H	${ m SPr}^i$	H	H	H	Allyl	Me	Me
A-42	H	NMe ₂	H	H	H	Allyl	Me	Me
A-43	H	$_$ NEt $_2$	H	H	H	Allyl	Me	Me
A-44	H	H	Cl	H	H	Allyl	Me	Me
A-45	H	H	Br	H	H	Allyl	Me	Me
A-46	H	H	Me	H	H	Allyl	Me	Me
A-47	H	H	Et	H	H	Allyl	Me	Me
A-48	H	H	Pr	H	H	Allyl	Me	Me
A-49	H	H	\Pr^i	H	H	Allyl	Me	Me
A-50	H	H	Bu	H	H	Allyl	Me	Me

....

表 2 7

	\mathbb{R}^1	\mathbb{R}^2	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R ⁷	\mathbb{R}^8
A-51	H	H	Bu^i	H	H	Allyl	Me	Me
A-52	H	H	Bu ^s	Н	H	Allyl	Me	Me
A-53	H	H	Bu*	H	H	Allyl	Me	Me
A-54	H	Н	ОМе	Н	Н	Allyl	Me	Me
A-55	H	H	OEt	H	H	Allyl	Me	Me
A-56	H	H	OPr	H	Н	Allyl	Me	Me
A-57	H	H	OPr^i	H	Н	Allyl	Me	Me
A-58	Н	H	OCHF ₂	H	H	Allyl	Me	Me
A-59	H	H	OCF ₃	H	H	Allyl	Me	Me
A-60	H	H	CF ₃	H	H	Allyl	Me	Me
A-61	H	H	SMe	H	H	Allyl	Me	Me
A-62	_ H	H	SEt	Н	H	Allyl	Me	Me
A-63	H	H	\mathbf{SPr}^i	H	H	Allyl	Me	Me
A-64	H	H	NMe_2	H	H	Allyl	Me	Me
A-65	H	H	NEt_2	H	H	Allyl	Me	Me
A-66	Et	NMe_2	Н	H	H	Allyl	Me	Me
A-67	NM e ₂	Cl	H	H	H	Allyl	Me	Me
A-68	Et	NEt_2	H	H	H	Allyl	Me	Me
A-69	H	NEt ₂	Me	H	H	Allyl	Me	Me
A-70	Bu*	H	H	H	H	Allyl	Me	Me
A-71	OMe	H	OMe	H	H	Allyl	Me	Me
A-72	H	OMe	OMe	H	Н	Allyl	Me	Me
A-73	H	OMe	OEt	H	H	Allyl	Me	Me
A-74	H	OEt	OMe	H	H	Allyl	Me	Me
A-75	OMe	H	Me	H	H	Allyl	Me	Me
A-76		$H_2)_3$ -	H	H	H	Allyl	Me	Me
A-77	-(C)	$H_2)_4$ -	H	H	H	Allyl	Me	Me

表 2 8

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^5
 R^7
 R^8
 R^8

	R1	R ²	R ³	\mathbb{R}^4	\mathbb{R}^5	R ⁶	R ⁷	R ⁸
B-1	H	H	H_	H	H	Allyl	Et	Et
B-2	Cl	H	H	H	H	Allyl	Et	Et
B-3	Br	Н	H	H	H	Allyl	Et	Et
B-4	Me	H	H	H	H	Allyl	Et	Et
B-5	Et	H	H	H	H	Allyl	Et	Et
B-6	Pr	H	H	H	H	Allyl	Et_	Et
B-7	Bu	H	H	H	H	Allyl	Et	Et
B-8	Bu ⁱ	H	H	H	H	Allyl	Et	Et
B-9	Bu*	H	H	H	H	Allyl	Et	Et
B-10	OMe	H	Et	H	H	Allyl	Et	Et
B-11	OEt	H	H	H	H	Allyl	Et	Et
B-12	OPr^i	H	H	H	H	Allyl	Et	Et
B-13	OPr	H	H	H	H	Allyl	Et	Et
B-14	OCHF ₂	H	H	H	H	Allyl	Et	Et
B-15	OCF ₃	H	H	H	H	Allyl	Et	Et
B-16	CF ₃	H	H	H	H	Allyl	Et	Et
B-17	SMe	H	H	H	H	Allyl	Et	Et
B-18	SEt	H	H_	Ή	H	Allyl	Et	Et
B-19	SPr^i	H	H	H	H	Allyl	Et	Et
B-20	OEt	H	Et	H	H	Allyl	Et	Et
B-21	NEt ₂	H	H	H	H	Allyl	Et	Et
B-22	H	Cl	H	H	H	Allyl	Et	Et
B-23	H	Br	H	H	H	Allyl	Et	Et
B-24	H	Me	H	Н	H	Allyl	Et	Et
B-25	H	Et	H	Н	Н	Allyl	Et	Et

表 2 9

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	\mathbb{R}^5	\mathbb{R}^6	R ⁷	R ⁸
B-26	H	Pr	H	H	H	Allyl	Et	Et
B-27	H	\Pr^{i}	H	H	H	Allyl	Et	Et
B-28	H	Bu	H	Н	H	Allyl	Et	Et
B-29	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	Allyl	Et	Et
B-30	H	Bu ^s	H	H	H	Allyl	Et	Et
B-31	H	Bu ^t	H	Н	H	Allyl	Et	Et
B-32	H	OMe	H	Н	H	Allyl	Et	Et
B-33	H	OEt	H	H	H	Allyl	Et	Et
B-34	H	OPr	H	H	H	Allyl	Et	Et
B-35	H	\mathbf{OPr}^i	H	H	H	Allyl	Et	Et
B-36	H	OCHF ₂	H	H	H	Allyl	Et	Et
B-37	H	OCF_3	H	H	H	Allyl	Et	Et
B-38	H	CF ₃	H	H	H	Allyl	Et	Et
B-39	H	SMe	H	H	H	Allyl	Et	Et
B-40	H	SEt	H	H	H	Allyl	Et	Et
B-41	H	SPr^i	H	H	H	Allyl	Et	Et
B-42	H	NMe_2	H	H	H	Allyl	Et	Et
B-43	H	$\mathbf{NEt_2}$	H	H	H	Allyl	Et	Et
B-44	H	H	C1	H	H	Allyl	Et	Et
B-45	H	H	Br	H	H	Allyl	Et	Et
B-46	H	H	Me	H	H	Allyl	Et	Et
B-47	H	H	CH ₂ OMe	H	H	Allyl	Et	Et
B-48	H	H	Pr	H	H	Allyl	Et	Et
B-49	MeO	H	Me	H	H	Allyl	Et	Et
B-50	H	H	Bu	H	H	Allyl	Et	Et

表30

	\mathbb{R}^1	\mathbb{R}^2	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R7	\mathbb{R}^8
B-51	H	H	Bu ^j	H	H	Allyl	Et	Et
B-52	H	H	Bu ^s	H	H	Allyl	Et	Et
B-53	H	H	Bu ^t	H	H	Allyl	Et	Et
B-54	H	H	OMe	H	H	Allyl	Et	Et
B-55	H	H	OEt	H	H	Allyl	Et	Et
B-56	H	H	OPr	H	H	Allyl	Et	Et
B-57	H	H	OPr^{j}	H	H	Allyl	Et	Et
B-58	H	H	OCHF ₂	Н	H	Allyl	Et	Et
B-59	H	H	OCF ₃	H	H	Allyl	Et	Et
B-60	H	H	CF ₃	H	H	Allyl	Et	Et
B-61	H	H	SMe	H	H	Allyl	Et	Et
B-62	H	H	SEt	H	H	Allyl	Et	Et
B-63	H	H	SPr ⁱ	H	H	Allyl	Et	Et
B-64	H	H	NMe ₂	H	H	Allyl	Et	Et
B-65	H	H	NEt ₂	H	H	Allyl	Et	Et
B-66	Et	NMe_2	H	H	H	Allyl	Et	Et
B-67	NMe ₂	Cl	H	H	H	Allyl	Et	Et
B-68	Et	NEt_2	H	H	H	Allyl	Et	Et
B-69	H	NEt_2	Me	H	H	Allyl	Et	Et
B-70	Me	NEt_2	H	H	H	Allyl	Et	Et
B-71	OMe	H	OMe	H	H	Allyl	Et	Et
B-72	H	OMe	OMe	H	H	Allyl	Et	Et
B-73	OMe	H	Et	H	H	Allyl	Et	Et
B-74	H	OEt	OMe	H	H	Allyl	Et	Et
B-75		$H_2)_8$ -	H	H	H	Allyl	Et	Et
B-76	-(C)	H ₂) ₄ -	H	H	H	Allyl	\mathbf{Et}	Et

表 3 1

$$R^2$$
 R^1
 R^8
 R^3
 R^4
 R^5
 R^5

	\mathbb{R}^1	R ²	$\mathbf{R^{8}}$	\mathbb{R}^4	R ⁵	\mathbb{R}^{6}	\mathbb{R}^7 \mathbb{R}^8
C-1	H	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-2	Cl	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-3	Br	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-4	Me	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-5	Et	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-6	Pr	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-7	Bu	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-8	Bu^{i}	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-9	Bu*	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-10	OMe	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-11	OEt	H	H	H	H	Allyl	$-(CH_2)_2$ -
C-12	OPr^i	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-13	OPr	Н	H	H	H	Allyl	-(CH ₂) ₂ -
C-14	OCHF ₂	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-15	OCF_3	H	H	H	H	Allyl	$-(CH_2)_2-$
C-16	CF_3	H	H	H	H	Allyl	$-(CH_2)_2-$
C-17	SMe	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-18	SEt	Н	H	H	H	Allyl	-(CH ₂) ₂ -
C-19	SPr^i	Н	H	H	H	Allyl	$-(CH_2)_2$
C-20	NMe ₂	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-21	NEt_2	H	H	H	H	Allyl	$-(CH_2)_2$ -
C-22	H	Cl	H	H	H	Allyl	-(CH ₂) ₂ -
C-23	H	Br	H	H	H	Allyl	-(CH ₂) ₂ -
C-24	H	Me	H	H	H	Allyl	-(CH ₂) ₂ -
C-25	H	Et	H	H	H	Allyl	-(CH ₂) ₂ -

表32

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 $CSSR^6$

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R ⁵	\mathbb{R}^6	R^7 R^8
C-26	H	Pr	H	H	H	Allyl	-(CH ₂) ₂ -
C-27	H	\Pr^i	H	H	H	Allyl	·(CH ₂) ₂ -
C-28	H	Bu	H	H	H	Allyl	-(CH ₂) ₂ -
C-29	H	Bu^i	H	H	H	Allyl	-(CH ₂) ₂ -
C-30	H	Bu*	H	H	H	Allyl	-(CH ₂) ₂ -
C-31	H	Bu ^t	H	H	H	Allyl	-(CH ₂) ₂ -
C-32	H	OMe	H	H	H	Allyl	-(CH ₂) ₂ -
C-33	H	OEt	H	H	H	Allyl	·(CH ₂) ₂ -
C-34	H	OPr	H	H	H	Allyl	-(CH ₂) ₂ -
C-35	H	OPr^i	H	H	H	Allyl	-(CH ₂) ₂ -
C-36	H	OCHF ₂	H	H	H	Allyl	-(CH ₂) ₂ -
C-37	H	OCF_{s}	H	H	H	Allyl	-(CH ₂) ₂ -
C-38	H	CF ₃	H	H	H	Allyl	-(CH ₂) ₂ -
C-39	H	SMe	H	H	H	Allyl	-(CH ₂) ₂ -
C-40	H	SEt	H	H	H	Allyl	-(CH ₂) ₂ -
C-41	H	SPr^{i}	H	H	H	Allyl	-(CH ₂) ₂ -
C-42	H	NMe ₂	H	H	H	Allyl	-(CH ₂) ₂ -
C-43	H	NEt_2	H	H	H	Allyl	-(CH ₂) ₂ -
C-44	H	H	Cl	H	H	Allyl	-(CH ₂) ₂ -
C-45	H	H	Br	H	H	Allyl	-(CH ₂) ₂ -
C-46	H	H	Me	H	H	Allyl	-(CH ₂) ₂ -
C-47	H	H	Et	H	H	Allyl	-(CH ₂) ₂ -
C-48	Η	H	Pr	H	H	Allyl	-(CH ₂) ₂ -
C-49	H	H	\Pr^i	H	H	Allyl	-(CH ₂) ₂ -
C-50	H	H	Bu	H	H	Allyl	-(CH ₂) ₂ -

表33

			<u>-</u>				
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	\mathbb{R}^5	\mathbf{R}^{6}	R^7 R^8
C-51	H	H	Bu^{I}	H	H	Allyl	-(CH ₂) ₂ -
C-52	H	H	Bu ^s	H	H	Allyl	-(CH ₂) ₂ -
C-53	H	H	Bu*	H	H	Allyl	-(CH ₂) ₂ -
C-54	H	H	OMe	H	H	Allyl	-(CH ₂) ₂ -
C-55	H	H	OEt	H	H	Allyl	-(CH ₂) ₂ -
C-56	H	H	OPr	H	H	Allyl	-(CH ₂) ₂ -
C-57	H	H	OPr^i	H	H	Allyl	$-(CH_2)_2$ -
C-58	H	H	OCHF ₂	H	H	Allyl	-(CH ₂) ₂ -
C-59	H	H	OCF ₃	H	H	Allyl	-(CH ₂) ₂ -
C-60	H	H	CF ₈	H	H	Allyl	-(CH ₂) ₂ -
C-61	H	H	SMe	H	H	Allyl	-(CH ₂) ₂ -
C-62	H	H	SEt	H	H	Allyl	-(CH ₂) ₂ -
C-63	H	H	${f SPr}^i$	H	H	Allyl	-(CH ₂) ₂ -
C-64	H	H	NMe_2	H	H	Allyl	-(CH ₂) ₂ -
C-65	H	H	NEt_2	H	H	Allyl	-(CH ₂) ₂ -
C-66	Me	NMe_2	H	H	H	Allyl	-(CH ₂) ₂ -
C-67	NMe ₂	Cl	H	H	H	Allyl	-(CH ₂) ₂ -
C-68	Me	NEt_2	H	H	H	Allyl	-(CH ₂) ₂ -
C-69	H	NEt_2	Me	H	H	Allyl	-(CH ₂) ₂ -
C-70	Bu"	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-71	\Pr^i	H	H	H	H	Allyl	-(CH ₂) ₂ -
C-72	H	OMe	OMe	H	H	Allyl	-(CH ₂) ₂ -
C-73	H	OMe	OEt	H	H	Allyl	-(CH ₂) ₂ -
C-74	H	OEt	OMe	H	H	Allyl	-(CH ₂) ₂ -
C-75	H	OEt	OEt	H	H	Allyl	-(CH ₂) ₂ -
C-76	ОМе	H	Me	H	H	Allyl	-(CH ₂) ₂ -
C-77	ОМе	H	Et	H	H	Allyl	-(CH ₂) ₂ -
C-78	-(CI	${\rm H}_2)_3$ -	Н	H	H	Allyl	$-(CH_2)_2$ -
C-79	-(CI	$I_2)_4$ -	H	H	H	Allyl	-(CH ₂) ₂ -

表 3 4

	\mathbb{R}^1	\mathbb{R}^2	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R ⁷ R ⁸
D-1	H	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-2	Cl	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-3	Br	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-4	Me	H	H	Н	H	Allyl	-(CH ₂) ₄ -
D-5	Et	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-6	Pr	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-7	Bu	H	H	H	Н	Allyl	-(CH ₂) ₄ -
D-8	Bu ⁱ	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-9	Bu*	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-10	OMe	H	Et	H	H	Allyl	-(CH ₂) ₄ -
D-11	OEt	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-12	OPr ⁱ	H	H	H	H_	Allyl	-(CH ₂) ₄ -
D-13	OPr	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-14	OCHF ₂	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-15	OCF ₃	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-16	CF ₃	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-17	SMe	H	H	Н	H	Allyl	-(CH ₂) ₄ -
D-18	SEt	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-19	${f SPr}^i$	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-20	OEt	H	Et	H	H	Allyl	-(CH ₂) ₄ -
D-21	NEt ₂	H	H	Н	H	Allyl	-(CH ₂) ₄ -
D-22	H	Cl	H	H	H	Allyl	-(CH ₂) ₄ -
D-23	H	Br	H	H	H	Allyl	-(CH ₂) ₄ -
D-24	H	Me	Н	H	H	Allyl	-(CH ₂) ₄ -
D-25	H	Et	H	Н	H	Allyl	-(CH ₂) ₄ -

表35

	R ¹	R ²	\mathbb{R}^8	R ⁴	R ⁵	R^{6}	R^7 R^8
D-26	H	Pr	H	H	H	Allyl	-(CH ₂) ₄ -
D-27	H	\mathbf{Pr}^I	H	H	H	Allyl	-(CH ₂) ₄ -
D-28	H	Bu	H	H	H	Allyl	-(CH ₂) ₄ -
D-29	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	Allyl	-(CH ₂) ₄ -
D-30	H	Bu ^s	H	H	H	Allyl	-(CH ₂) ₄ -
D-31	H	Bu*	H	H	H	Allyl	-(CH ₂) ₄ -
D-32	H	OMe	H	H	H	Allyl	-(CH ₂) ₄ -
D-33	H	OEt	H	H	H	Allyl	-(CH ₂) ₄ -
D-34	H	OPr	H	H	H	Allyl	-(CH ₂) ₄ -
D-35	H	OPr^i	H	H	H	Allyl	-(CH ₂) ₄ -
D-36	H	OCHF ₂	H	H	H	Allyl	-(CH ₂) ₄ -
D-37	H	OCF ₃	H	H	H	Allyl	-(CH ₂) ₄ -
D-38	H	CF ₃	H	H	H	Allyl	-(CH ₂) ₄ -
D-39	OMe	H	Me	H	H	Allyl	-(CH ₂) ₄ -
D-40	H	SEt	H	H	H	Allyl	-(CH ₂) ₄ -
D-41	H	SPr^i	H	H	H	Allyl	-(CH ₂) ₄ -
D-42	H	NMe ₂	H	H	H	Allyl	·(CH ₂) ₄ -
D-43	H	NEt_2	H	H	H	Allyl	-(CH ₂) ₄ -
D-44	H	H	Cl	H	H	Allyl	-(CH ₂) ₄ -
D-45	H	H	Br	H	H	Allyl	·(CH ₂) ₄ -
D-46	H	H	Me	H	H	Allyl	-(CH ₂) ₄ -
D-47	H	OMe	Et	H	H	Allyl	-(CH ₂) ₄ -
D-48	H	H	Pr	H	H	Allyl	-(CH ₂) ₄ -
D-49	H	H	\mathtt{Pr}^i	H	H	Allyl	-(CH ₂) ₄ -
D-50	H	H	Bu	H	H	Allyl	-(CH ₂) ₄ -

表36

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8
 R^8

	R1	R ²	R ⁸	R ⁴	R ⁶	\mathbb{R}^6	R ⁷ R ⁸
D-51	H	H	Bu ⁱ	H	H	Allyl	-(CH ₂) ₄ -
D-52	H	н	Bu*	H	H	Allyl	-(CH ₂) ₄ -
D-53	H	H	Bu*	H	H	Allyl	-(CH ₂) ₄ -
D-54	H	H	OMe	H	H	Allyl	-(CH ₂) ₄ -
D-55	H	H	OEt	H	H	Allyl	-(CH ₂) ₄ -
D-56	H	H	OPr	H	H	Allyl	-(CH ₂) ₄ -
D-57	H	H	OPr^i	H	H	Allyl	-(CH ₂) ₄ -
D-58	H	H	OCHF ₂	H	H	Allyl	-(CH ₂) ₄ -
D-59	Et	NMe_2	H	H	H	Allyl	-(CH ₂) ₄ -
D-60	H	H	CF_3	H	H	Allyl	-(CH ₂) ₄ -
D-61	MeO	H	Et	H	H	Allyl	-(CH ₂) ₄ -
D-62	H	H	SEt	H	H	Allyl	-(CH ₂) ₄ -
D-63	H	H	\mathtt{SPr}^i	H	H	Allyl	-(CH ₂) ₄ -
D-64	H	H	NMe ₂	H	H	Allyl	-(CH ₂) ₄ -
D-65	H	H	NEt ₂	H	H	Allyl	-(CH ₂) ₄ -
D-66	Me	NMe ₂	H	H	H	Allyl	-(CH ₂) ₄ -
D-67_	NMe ₂	Cl	H	H	H	Allyl	·(CH ₂) ₄ -
D-68	Me	NEt ₂	H	H	H	Allyl	-(CH ₂) ₄ -
D-69	H	NEt ₂	Me	H	H	Allyl	-(CH ₂) ₄ -
D-70	Bu ^s	H	H	H	H	Allyl	-(CH ₂) ₄ -
D-71	Et	NEt_2	H	H	H	Allyl	-(CH ₂) ₄ -
D-72	H	OMe	OMe	H	H	Allyl	-(CH ₂) ₄ -
D-73	H	OMe	OEt	H	H	Allyl	-(CH ₂) ₄ -
D-74	H	OEt	OMe	H	H	Allyl	-(CH ₂) ₄ -
D-75	H	OEt	OEt	H	H	Allyl	-(CH ₂) ₄ -
D-76	-(CI	$I_2)_8$ -	H	H	H	Allyl	-(CH ₂) ₄ -
D-77	-(CI	$I_2)_4$ -	H	H	H	Allyl	-(CH ₂) ₄ -

表37

$$R^2$$
 R^3
 R^3
 R^4
 R^5
 R^5
 R^8
 R^8
 R^8
 R^8

	\mathbb{R}^{1}	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷ R ⁸
E-1	H	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-2	Cl	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-3	Br	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-4	Me	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-5	Et	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-6	Pr	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-7	Bu	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-8	Bu ⁱ	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-9	Bu*	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-10	OMe	H	Et	H	H	Allyl	-(CH ₂) ₅ -
E-11	OEt	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-12	OPr'	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-13	OPr	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-14	OCHF ₂	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-15	OCF ₃	H	H	H	Η	Allyl	-(CH ₂) ₅ -
E-16	CF ₈	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-17	SMe	H	H	H	H_	Allyl	-(CH ₂) ₅ -
E-18	SEt	H	H _	H	H	Allyl	-(CH ₂) ₅ -
E-19	SPr ⁱ	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-20	OEt	H	Et	H	H	Allyl	-(CH ₂) ₅ -
E-21	NEt ₂	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-22	H	Cl	H	H	H	Allyl	-(CH ₂) ₅ -
E-23	H	Br	H	H	H	Allyl	-(CH ₂) ₅ -
E-24	H	Me	H	H	H	Allyl	-(CH ₂) ₅ -
E-25	H	Et	H	H	H	Allyl	-(CH ₂) ₅ -

表38

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8
 R^8

	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷ R ⁸
E-26	H	Pr	H	H	H	Allyl	-(CH ₂) ₅ -
E-27	H	Pr ^I	H	H	H	Allyl	-(CH ₂) ₅ -
E-28	H	Bu	H	H	H	Allyl	-(CH ₂) ₅ -
E-29	H	Bu ⁱ	H	H	H	Allyl	-(CH ₂) ₅ -
E-30	H	Bu ^s	H	H	H	Allyl	-(CH ₂) ₅ -
E-31	H	Bu ^t	H	H	H	Allyl	-(CH ₂) ₅ -
E-32	H	OMe	H	H	H	Allyl	-(CH ₂) ₅ -
E-33	H	OEt	H	H	H	Allyl	-(CH ₂) ₅ -
E-34	H	OPr	H	H	H	Allyl	-(CH ₂) ₅ -
E-35	H	OPr^i	H	H	H	Allyl	-(CH ₂) ₅ -
E-36	H	OCHF ₂	H_	H	H	Allyl	-(CH ₂) ₅ -
E-37	H	OCF ₃	H	H	H	Allyl	-(CH ₂) ₅ -
E-38	H	CF ₃	H_	H	H	Allyl	-(CH ₂) ₅ -
E-39	OMe	H	Me	H	H	Allyl	-(CH ₂) ₅ -
E-40	H	SEt	H	H	H	Allyl	-(CH ₂) ₅ -
E-41	H	SPr^{i}	H_	H	H	Allyl	-(CH ₂) ₅ -
E-42	H	NMe ₂	H	H	H	Allyl	-(CH ₂) ₅ -
E-43	H	NEt ₂	H	H	H	Allyl	-(CH ₂) ₅ -
E-44	H	H	Cl	H	H	Allyl	-(CH ₂) ₅ -
E-45	H	H	Br	H	H	Allyl	-(CH ₂) ₅ -
E-46	H	H	Me	H	H	Allyl	-(CH ₂) ₅ -
E-47	H	OMe	Et	H	H	Allyl	-(CH ₂) ₅ -
E-48	H .	H	Pr	H	H	Allyl	-(CH ₂) ₅ -
E-49	H	H	\Pr^i	H	H	Allyl	-(CH ₂) ₅ -
E-50	H	H	Bu	H	H	Allyl	-(CH ₂) ₅ -

表39

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

		_					
	\mathbb{R}^{1}	R ²	\mathbb{R}^8	R ⁴	R ⁵	\mathbb{R}^6	R ⁷ R ⁸
E-51	H	H	Bu^i	Н	H	Allyl	-(CH ₂) ₅ -
E-52	H	H	Bu*	H	H	Allyl	-(CH ₂) ₅ -
E-53	H	H	Bu*	H	H	Allyl	-(CH ₂) ₅ -
E-54	H	H	OMe	H	H	Allyl	-(CH ₂) ₅ -
E-55	H	H_	OEt	H	H	Allyl	-(CH ₂) ₅ -
E-56	H	H	OPr	H	H	Allyl	-(CH ₂) ₅ -
E-57	H	H	OPr ⁱ	H	H	Allyl	-(CH ₂) ₅ -
E-58	H	H	OCHF ₂	H	H	Allyl	-(CH ₂) ₅ -
E-59	Et	NMe ₂	H	H	H	Allyl	-(CH ₂) ₅ -
E-60	H	H	CF ₃	H	H	Allyl	-(CH ₂) ₅ -
E-61	MeO	H	Et	H	H	Allyl	-(CH ₂) ₅ -
E-62	H	H	SEt	H	H	Allyl	-(CH ₂) ₅ -
E-63	H	H	\mathbf{SPr}^i	H	H	Allyl	-(CH ₂) ₅ -
E-64	H	H	NMe_2	H	H	Allyl	-(CH ₂) ₅ -
E-65	H	H	NEt ₂	H	H	Allyl	-(CH ₂) ₅ -
E-66	Me	NMe ₂	H	H	H	Allyl	-(CH ₂) ₅ -
E-67	NMe ₂	C1	H	H	H	Allyl	-(CH ₂) ₅ -
E-68	Me	NEt_2	H	H	H	Allyl	-(CH ₂) ₅ -
E-69	H	NEt_2	Me	H	H	Allyl	-(CH ₂) ₅ -
E-70	Bu*	H	H	H	H	Allyl	-(CH ₂) ₅ -
E-71	Et	NEt_2	H	H	H	Allyl	-(CH ₂) ₅ -
E-72	H	OMe	OMe	H	Н	Allyl	-(CH ₂) ₅ -
E-73	H	OMe	OEt	H	H	Allyl	-(CH ₂) ₅ -
E-74	H	OEt	OMe	H	H	Allyl	-(CH ₂) ₅ -
E-75	H	OEt	OEt	H	H	Allyl	-(CH ₂) ₅ -
E-76	-(CI	I ₂) ₃ -	H	H	H	Allyl	-(CH ₂) ₅ -
E-77	-(CI	$I_2)_4$ -	H	H	H	Allyl	-(CH ₂) ₅ -

表 4 0

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8
 R^8

	R ¹	\mathbb{R}^2	R ³	R ⁴	R^5	R ⁶	\mathbb{R}^7 \mathbb{R}^8
F-1	H	H	H	H	H	Allyl	-(CH ₂) ₂ O(CH ₂) ₂ -
F-2	Cl	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-3	Br	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-4	Me	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-5	Et	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-6	Pr	H	H	H	H	Allyl	-(CH2)2O(CH2)2-
F-7	Bu	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-8	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2$
F-9	Bu*	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-10	OMe	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2$
F-11	OEt	H	H	H	Η	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-12	OPr^i	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-13	OPr	H	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-14	OCHF ₂	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-15	OCF ₃	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2$
F-16	CF ₃	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2$
F-17	SMe	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-18	SEt	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-19	\mathtt{SPr}^i	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-20	NMe_2	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-21	NEt_2	H	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2$ -
F-22	H	Cl	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-23	H	Br	H	H	H	Allyl	$-(CH_2)_2O(CH_2)_2-$
F-24	H	Me	H	H	H	Allyl	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
F-25	H	Et	H	H	H	Allyl	-(CH ₂) ₂ O(CH ₂) ₂ -

表 4 1

	\mathbb{R}^1	\mathbb{R}^2	R^8	R ⁴	R^{5}	\mathbb{R}^6	R^7	\mathbb{R}^8
F-26	H	Pr	H	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-27	H	\Pr^i	H	H	Н	Allyl		$O(CH_2)_2$ -
F-28	H	Bu	H	H	H	Allyl		$O(CH_2)_2$ -
F-29	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	Allyl		$O(CH_2)_2$ -
F-30	H	Bu ^g	H	H	H	Allyl		$O(CH_2)_2$ -
F-31	H	But	H	H	H	Allyl		O(CH ₂) ₂ -
F-32	H	OMe	H	H	H	Allyl		$O(CH_2)_2$ -
F-33	H	OEt	H	H	H	Allyl		O(CH ₂) ₂ -
F-34	H	OPr	H	H	H	Allyl		O(CH ₂) ₂ -
F-35	H	OPr^i	H	H	H	Allyl		$O(CH_2)_2$ -
F-36	H	OCHF ₂	H	H	H	Allyl		O(CH ₂) ₂ -
F-37	H	OCF ₈	H	H	H	Allyl	-(CH ₂) ₂ (O(CH ₂) ₂ -
F-38	Н	CF ₃	H	H	Н	Allyl		$O(CH_2)_2$ -
F-39	H	SMe	H	H	H	Allyl	$-(CH_2)_2$	O(CH ₂) ₂ -
F-40	H	SEt	H	H	Н	Allyl	-(CH ₂) ₂ ($O(CH_2)_2$ -
F-41	H	${ m SPr}^i$	H	H	Н	Allyl	$-(\mathrm{CH_2})_2$	O(CH ₂) ₂ -
F-42	H	NMe_2	H	H	H	Allyl	$-(CH_2)_2$	O(CH ₂) ₂ -
F-43	H	NEt_2	H	H	Н	Allyl	-(CH ₂) ₂ ($O(CH_2)_2$ -
F-44	Н	H	Cl	H	Н	Allyl	$-(\mathrm{CH_2})_2$	O(CH ₂) ₂ -
F-45	H	H	Br	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-46	H	Н	Me	Н	H	Allyl		$O(CH_2)_2$ -
F-47	H	H	Et	H	H	Allyl	$-(CH_2)_2($	$O(CH_2)_2$ -
F-48	H	H	Pr	H	H	Allyl	-(CH ₂) ₂ ($O(CH_2)_2$ -
F-49	Н	H	Pr'	H	H	Allyl	-(CH ₂) ₂ (O(CH ₂) ₂ -
F-50	H	H	Bu	H	Н	Allyl		$O(\mathrm{CH_2})_2$ -

表 4 2

	$\overline{\mathbb{R}^1}$	R^2	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R ⁷	\mathbb{R}^8
F-51	H	H	_ Bu ⁱ	H	H	Allyl	$-(CH_2)_2$	O(CH ₂) ₂ -
F-52	H	Н	Bu ^s	H	H	Allyl	$-(\mathrm{CH_2})_2$	$O(CH_2)_2$ -
F-53	H	Н	But	H	H	Allyl		$O(CH_2)_2$ -
F-54	H	H	OMe	H	H	Allyl		$O(CH_2)_2$ -
F-55	H	H	OEt	H	H	Allyl		$O(CH_2)_2$ -
F-56	H	H	OPr	H	H	Allyl		$O(CH_2)_2$ -
F-57	H	H	OPr^{i}	H	Н	Allyl		$O(CH_2)_2$ -
F-58	H	H	OCHF ₂	Η	H	Allyl		$O(CH_2)_2$ -
F-59	H	H	OCF ₃	H	H	Allyl	$-(\mathrm{CH_2})_2$	$O(CH_2)_2$ -
F-60	H	H	CF ₃	H	Н	Allyl	$-(CH_2)_2$	O(CH ₂) ₂ -
F-61	H	H	SMe	H	H	Allyl	$-(\mathrm{CH_2})_2$	$O(CH_2)_2$ -
F-62	H	H	SEt	H	H	Allyl		$O(\mathrm{CH_2})_2$ -
F-63	H	H	\mathbf{SPr}^i	Н	H	Allyl		O(CH ₂) ₂ -
F-64	H	Н	NMe ₂	H	H	Allyl		$O(CH_2)_2$ -
F-65	H	Н	NEt ₂	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-66	Me	NMe_2	H	Н	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-67	NMe_2	Cl	H	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$
F-68	Me	NEt_2	H	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-69	H	NEt ₂	Me	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-70	Bu*	H	H	Η	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-71	OMe	H	OMe	H	H	Allyl	$-(\mathrm{CH_2})_2$	$O(CH_2)_2$
F-72	H	OMe	OMe	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-73	H	OMe_	OEt_	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-74	_H	OEt	OMe	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-75	H	OEt	OEt	H	H	Allyl		$O(CH_2)_2$ -
F-76	OMe	H	Me	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-77	OMe	H	Et	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -
F-78		I ₂) ₈ -	H	H	H	Allyl	$-(\mathrm{CH_2})_2$	$O(CH_2)_2$ -
F-79	-(CI	$I_{2})_{4}$ -	H	H	H	Allyl	$-(CH_2)_2$	$O(CH_2)_2$ -

表 4 3

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R^5	R ⁶	\mathbb{R}^7	\mathbb{R}^8
G-1	H	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-2	C1	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-3	Br	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-4	Me	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-5	Et	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-6	Pr	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-7	Bu	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-8	$\mathbf{B}\mathbf{u}^{i}$	H	Н	H	H	CH ₂ CH=CHMe	Me	Me
G-9	Bu*	H	H	H	Н	CH ₂ CH=CHMe	Me	Me
G-10	OMe	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-11	OEt	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-12	OPr^i	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-13	OPr	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-14	OCHF ₂	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-15	OCF ₃	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-16	$\mathbf{CF_3}$	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-17	SMe	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-18	SEt	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-19	SPr ⁱ	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-20	NMe ₂	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-21	NEt_2	H	H	H	H	CH ₂ CH=CHMe	Me	Me
G-22	H	Cl	H	H	H	CH ₂ CH=CHMe	Me	Me
G-23	H	Br	H	H	H	CH ₂ CH=CHMe	Me	Me
G-24	Н	Me	H	H	H	CH ₂ CH=CHMe	Me	Me
G-25	Н	Et	Н	Н	H	CH ₂ CH=CHMe	Me	Me

表 4 4

	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸
G-26	H	Pr	H	H	H	CH ₂ CH=CHMe	Me	Me
G-27	H	Pr ⁱ	H	H	H	CH ₂ CH=CHMe	Me	Me
G-28	H	Bu	H	H	H	CH ₂ CH=CHMe	Me	Me
G-29	H	Bu ⁱ	Н	H	H	CH ₂ CH=CHMe	Me	Me
G-30	H	Bu ^s	H	H	H	CH ₂ CH=CHMe	Me	Me
G-31	H	Bu*	H	H	H	CH ₂ CH=CHMe	Me	Me
G-32	H	OMe	H	H	H	CH ₂ CH=CHMe	Me	Me
G-33	H	OEt	H	H	H	CH ₂ CH=CHMe	Me	Me
G-34	H	OPr	H	H	H	CH ₂ CH=CHMe	Me	Me
G-35	H	OPr^i	H	H	H	CH ₂ CH=CHMe	Me	Me
G-36	H	OCHF ₂	H	H	H	CH ₂ CH=CHMe	Me	Me
G-37	H	OCF ₈	H	Н	H	CH ₂ CH=CHMe	Me	Me
G-38	H	CF_8	H	H	H	CH ₂ CH=CHMe	Me	Me
G-39	H	SMe	H	H	H	CH ₂ CH=CHMe	Me	Me
G-40	H	SEt	H	H	H	CH ₂ CH=CHMe	Me	Me
G-41	H	SPr'	Н	H	H	CH ₂ CH=CHMe	Me	Me
G-42	H	NMe ₂	H	H	Н	CH ₂ CH=CHMe	Me	Me
G-43	H	NEt_2	H	H	H	CH ₂ CH=CHMe	Me	Me
G-44	H	H	Cl	H	H	CH ₂ CH=CHMe	Me	Me
G-45	H	H	Br	H	H	CH ₂ CH=CHMe	Me	Me
G-46	H	Н	Me	H	H	CH ₂ CH=CHMe	Me	Me
G-47	H	H	Et	H	H	CH ₂ CH=CHMe	Me	Me
G-48	H	H	Pr	H	H	CH ₂ CH=CHMe	Me	Me
G-49	H	H	Pr^i	H	H	CH ₂ CH=CHMe	Me	Me
G-50	H	H	Bu	H	H	CH ₂ CH=CHMe	Me	Me

表 4 5

	\mathbb{R}^1	\mathbb{R}^2	R ⁸	R ⁴	\mathbb{R}^5	R ⁶	R ⁷	R ⁸
G-51	H	H	$\mathbf{B}\mathbf{u}^i$	H	H	CH ₂ CH=CHMe	Me	Me
G-52	H	H	Bu ^s	H	_H	CH ₂ CH=CHMe	Me	Me
G-53	H	H	Bu ^t	H	H	CH ₂ CH=CHMe	Me	Me
G-54	H	H	OMe	H	H	CH ₂ CH=CHMe	Me	Me
G-55	H	H	OEt	Н	H	CH ₂ CH=CHMe	Me	Me
G-56	H	H	OPr	H	H	CH ₂ CH=CHMe	Me	Me
G-57	H	H	OPr^i	H	H	CH ₂ CH=CHMe	Me	Me
G-58	H	H	OCHF ₂	H	H	CH ₂ CH=CHMe	Me	Me
G-59	H	Н	OCF ₃	H	H	CH ₂ CH=CHMe	Me	Me
G-60	H	H	CF_3	H	H	CH ₂ CH=CHMe	Me	Me
G-61	H	H	SMe	Η	H	CH ₂ CH=CHMe	Me	Me
G-62	H	H	SEt	Н	H	CH ₂ CH=CHMe	Me	Me
G-63	H	H	SPr^{i}	H	_H	CH ₂ CH=CHMe	Me	Me
G-64	H	Н	NMe_2	H	$_{ m H}$	CH ₂ CH=CHMe	Me	Me
G-65	Н	H	NEt_2	H	H	CH ₂ CH=CHMe	Me	Me
G-66	Et	NMe_2	H	H	H	CH ₂ CH=CHMe	Me	Me
G-67	NMe_2	Cl	H	H	H	$CH_2CH=CHMe$	Me	Me
G-68	Et	NEt_2	H	H	H	CH ₂ CH=CHMe	Me	Me
G-69	H	NEt_2	Me	H	H	CH ₂ CH=CHMe	Me	Me
G-70	Bu*	H	H	H	_H	CH ₂ CH=CHMe	Me	Me
G-71	OMe	H	OMe	H	H	CH ₂ CH=CHMe	Me	Me
G-72	Н	OMe	OMe	H	H	CH ₂ CH=CHMe	Me	Me
G-73	H	OMe	OEt	H	_H	CH ₂ CH=CHMe	Me	Me
G-74	H	OEt ·	OMe	H	H	CH ₂ CH=CHMe	Me	Me
G-75	H	OEt	OEt	H	H	CH ₂ CH=CHMe	Me	Мe
G-76	OMe	H	Me	H	H	CH ₂ CH=CHMe	Me	Me
G-77	OMe	H	Et	H	_H	CH ₂ CH=CHMe	Me	Me
G-78	-(CH		H	H	_H	CH ₂ CH=CHMe	Me	Me
G-79	-(CH	2)4-	H	H	H	CH ₂ CH=CHMe	Me	Me

表 4 6

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8

	R ¹	R ²	R ⁸	R ⁴	\mathbb{R}^5	\mathbb{R}^6	\mathbb{R}^7	R ⁸
H-1	H	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-2	Cl	H	Н	H	H	CH ₂ CH=CHMe	Et	Et
H-3	Br	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-4	Me	H	Н	H	Н	CH ₂ CH=CHMe	Et	Et
H-5	Et	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-6	Pr	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-7	Bu	H	H	Н	H	CH ₂ CH=CHMe	Et	Et
H-8	$\mathbf{B}\mathbf{u}^{I}$	H	Н	H	Н	CH ₂ CH=CHMe	Et	Et
H-9	Bu ^t	H	H	H	Н	CH ₂ CH=CHMe	Et	Et
H-10	OMe	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-11	OEt	Н	H	Н	H	CH ₂ CH=CHMe	Et	Et
H-12	OPr'	H	H	H	Η	CH ₂ CH=CHMe	Et	Et
H-13	OPr	H	H	H	Н	CH ₂ CH=CHMe	Et	Et
H-14	OCHF ₂	Н	H	Н	H	CH ₂ CH=CHMe	Et	Et
H-15	OCF ₃	Н	H	H	H	CH ₂ CH=CHMe	Et	Et
H-16	$\mathbf{CF_{3}}$	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-17	SMe	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-18	SEt	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-19	${ m SPr}^i$	H	H	Н	Н	CH ₂ CH=CHMe	Et	Et
H-20	NMe_2	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-21	NEt_2	H	H	H	H	CH ₂ CH=CHMe	Et	Et
H-22	H	C1	H	H	H	CH ₂ CH=CHMe	Et	Et
H-23	H	Br	H	H	H	CH ₂ CH=CHMe	Et	Et
H-24	H	Me	H	Н	Н	CH ₂ CH=CHMe	Et	Et
H-25	Н	Et	H	H	Н	CH ₂ CH=CHMe	Et	Et

表 4 7

	R ¹	\mathbb{R}^2	R ³	R ⁴	\mathbb{R}^5	$ m R^6$	R ⁷	\mathbb{R}^8
H-26	H	Pr	Н	Н	H	CH ₂ CH=CHMe	Et	Et
H-27	H	\mathbf{Pr}^{i}	H	H	H	CH ₂ CH=CHMe	Et	Et
H-28	H	Bu	H	H	H	CH ₂ CH=CHMe	Et	Et
H-29	H	Bu ⁱ	H	H	H	CH ₂ CH=CHMe	Et	Et
H-30	H	Bu*	H	H	H	CH ₂ CH=CHMe	Et	Et
H-31	H	Bu ^t	H	H	H	CH ₂ CH=CHMe	Et	Et
H-32	H	OMe	H	H	Н	CH ₂ CH=CHMe	Et	Et
H-33	H	OEt	H	H	H	CH ₂ CH=CHMe	Et	Et
H-34	H	OPr	H	H	H	CH ₂ CH=CHMe	Et	Et
H-35	H	OPr^i	H	H	H	CH ₂ CH=CHMe	Et	Et
H-36	H	OCHF ₂	H	H	H	CH ₂ CH=CHMe	Et	Et
H-37	H	OCF ₃	_ H	H	H	CH ₂ CH=CHMe	Et	Et
H-38	H	CF ₃	H	H	H	CH ₂ CH=CHMe	Et	Et
H-39	H	SMe	H	H	H	CH ₂ CH=CHMe	Et	Et
H-40	H	SEt	H	H	H	CH ₂ CH=CHMe	Et	Et
H-41	H	${ m SPr}^i$	H	H	H	$CH_2CH=CHMe$	Et	Et
H-42	H	NMe ₂	H	H	H	CH ₂ CH=CHMe	Et	Et
H-43	H	NEt ₂	H	H	H	CH ₂ CH=CHMe	Et	Et
H-44	H	H_	C1	H	H	CH ₂ CH=CHMe	Et	Et
H-45	H	H	Br	H	H	$CH_2CH=CHMe$	Et	Et
H-46	H	H	Me	H	H	CH ₂ CH=CHMe	Et	Et
H-47	H	H	Et	H	H	CH ₂ CH=CHMe	Et	Et
H-48	H	H	Pr	H	H	CH ₂ CH=CHMe	Et	Et
H-49	H	H	\mathbf{Pr}^{i}	H	H	CH ₂ CH=CHMe	Et	Et
H-50	H	Н	Bu	H	Н	CH ₂ CH=CHMe	Et	Et

表 4 8

	Ri	R ²	R ⁸	R ⁴	R^5	\mathbb{R}^6	\mathbb{R}^7	R ⁸
H-51	H	H	Bu ⁱ	H	H	CH ₂ CH=CHMe	Et	Et
H-52	H	H	Bu ^s	H	H	CH ₂ CH=CHMe	Et	Et
H-53	H	H	Bu*	H	H	CH ₂ CH=CHMe	Et	Et
H-54	H	H	OMe	H	Н	CH ₂ CH=CHMe	Et	Et
H-55	H	H	OEt	H	H	CH ₂ CH=CHMe	Et	Et
H-56	H	H	OPr	H	H	CH ₂ CH=CHMe	Et	Et
H-57	H	H	OPr^{i}	H	Н	CH ₂ CH=CHMe	Et	Et
H-58	H	H	OCHF ₂	H	Н	CH ₂ CH=CHMe	Et	Et
H-59	H	H	OCF ₃	H	H	CH ₂ CH=CHMe	Et	Et
H-60	H	H	CF ₃	H	Н	CH ₂ CH=CHMe	Et	Et
H-61	H	H	SMe	H	H	CH ₂ CH=CHMe	Et	Et
H-62	H	H	SEt	H	Н	CH ₂ CH=CHMe	Et	Et
H-63	H	H	SPr^{i}	H	H	CH ₂ CH=CHMe	Et	Et
H-64	H	H	NMe_2	H	H	CH ₂ CH=CHMe	Et	Et
H-65	H	H	NEt_2	H	H	CH ₂ CH=CHMe	Et	Et
H-66	Et	NMe ₂	H	H	H	CH ₂ CH=CHMe	Et	Et
H-67	NMe ₂	Cl	H	H	H	CH ₂ CH=CHMe	Et	Et
H-68	Et	NEt_2	H	H	H	CH ₂ CH=CHMe	Et	Et
H-69	H	NEt ₂	Me	H	H	CH ₂ CH=CHMe	Et	Et
H-70	Bu*	H	Н	H	H	CH ₂ CH=CHMe	Et	Et
H-71	OMe	H	ОМе	H	H	CH ₂ CH=CHMe	Et	Et
H-72	H	OMe	OMe	H	H	CH ₂ CH=CHMe	Et	Et
H-73	Н	OMe	OEt	H	Н	CH ₂ CH=CHMe	Et	Et
H-74	Н	\mathbf{OEt}	OMe	H	H	CH ₂ CH=CHMe	Et	Et
H-75	H	OEt	OEt	H	Н	CH ₂ CH=CHMe	Et	Et
H-76	OMe	H	Me	H	H	CH ₂ CH=CHMe	Et	Et
H-77	OMe	H	Et	H	H	CH ₂ CH=CHMe	Et	Et
H-78	-(CH		H	H	H	CH ₂ CH=CHMe	Et	Et
H-79	-(CH	2)4-	H	H	Η	CH ₂ CH=CHMe	Et	Et

表 4 9

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R^{5}	$ m R^6$	\mathbb{R}^7 \mathbb{R}^8
J-1	H	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-2	Cl	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-3	Br	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-4	Me	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-5	Et	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-6	Pr	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-7	Bu	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-8	Bu^i	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-9	Bu*	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-10	ОМе	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-11	OEt	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-12	OPr^i	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-13	OPr	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-14	OCHF ₂	H	Н	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-15	OCF ₃	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-16	$\mathbf{CF_8}$	Н	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-17	SMe	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-18	SEt	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-19	${f SPr}^i$	Н	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-20	NMe_2	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-21	NEt_2	H	H	Н	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-22	H	Cl	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-23	H	Br	H	Н	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-24	H	Me	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-25	H	Et	Н	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -

表 5 0

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	Ri	\mathbb{R}^2	R³	\mathbb{R}^4	R^{5}	\mathbb{R}^6	R^7 R^8
J-26	H	Pr	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-27	H	Pr^i	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-28	H	Bu	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-29	H	Bu^i	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-30	H	Bu ^s	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-31	H	Bu ^t	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-32	H	OMe	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-33	H	OEt	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-34	H	OPr	Н	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-35	H	OPr^i	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-36	H	OCHF ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-37	H	OCF ₃	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-38	H	CF ₃	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-39	H	SMe	H	H	_H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-40	H	SEt	H	Н	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-41	H	SPr^i	H	Н	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-42	H	NMe_2	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-43	H	NEt_2	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-44	H	H	Cl	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-45	H	\mathbf{H}	Br	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-46	H	H	Me	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-47	H	H	Et	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-48	<u>H</u>	H	Pr	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-49	H	H	\mathbf{Pr}^{i}	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-50	H	H	Bu	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -

表 5 1

<u> </u>	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	\mathbb{R}^5	R ⁶	R7 R8
J-51	H	H	Bu^i	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-52	H	H	Bu*	Н	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-53	H	H	Bu*	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-54	H	H	OMe	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-55	H	H	OEt	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-56	H	H	OPr	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-57	H	H	OPr^i	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-58	H	H	OCHF ₂	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-59	H	H	OCF ₃	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-60	H	H	CF ₃	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-61	H	H	SMe	Η	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-62	H	H	SEt	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-63	H	H	${ m SPr}^i$	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-64	H	H	NMe_2	Η	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-65	H	H	NEt_2	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-66	Me	NMe ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-67	NMe_2	Cl	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-68	Me	NEt ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-69	H	NEt ₂	Me	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-70	Bu*	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-71	\Pr^{j}	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-72	H	OMe	OMe	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-73	H	OMe	OEt	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-74	H	OEt	OMe	H	H	CH ₂ CH≃CHMe	-(CH ₂) ₄ -
J-75	H	OEt	OEt	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-76	OMe	H	Me	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-77	OMe	H	Et	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-78	-(CH	[₂) ₃ -	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -
J-79	-(CH	[₂) ₄ -	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₄ -

表 5 2

	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	\mathbb{R}^5	\mathbb{R}^6	R^7 R^8
K-1	H	Н	Н	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-2	C1	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-3	Br	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-4	Me	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-5	Et	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-6	Pr	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-7	Bu	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-8	Bu ⁱ	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-9	Bu*	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-10	OMe	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-11	OEt	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-12	OPr^i	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-13	OPr	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-14	OCHF ₂	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-15	OCF ₃	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-16	CF ₃	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-17	SMe	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-18	SEt	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-19	SPr^i	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-20	NMe ₂	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-21	NEt ₂	H	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-22	H	Cl	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-23	H	Br	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-24	H	Me	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-25	H	Et_	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -

表53

				H. H			
	R ¹	R ²	R ³	R ⁴	R ⁵	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
K-26	H	Pr	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-27	H	\mathbf{Pr}^{i}	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-28	H	Bu	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-29	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-30	H	Bu*	H	H_	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-31	H	Bu ^t	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-32	H	OMe	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-33	H	OEt	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-34	H	OPr	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-35	H	OPr^i	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-36	H	OCHF ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-37	H	OCF ₃	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-38	H	CF ₃	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-39	H	SMe	Н	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-40	H	SEt	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-41	H	SPr ⁱ	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-42	H	NMe ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-43	H	NEt ₂	H	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-44	H	H	Cl	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-45	H	H	Br	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-46	H	H	Me	H	Н	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-47	H	H	Et	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-48	H	H	Pr	Η	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-49	H	H	\Pr^i	H	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -
K-50	Н	H	Bu	Η	H	CH ₂ CH=CHMe	-(CH ₂) ₅ -

表 5 4

	\mathbb{R}^1	R ²	R ⁸	R ⁴	\mathbb{R}^5	\mathbb{R}^6	\mathbb{R}^7	R8
K-51	H	H	$\mathbf{B}\mathbf{u}^{j}$	H	H	CH ₂ CH=CHMe	·(CH	2)5-
K-52	H	H	$\mathbf{B}\mathbf{u}^s$	H	H	CH ₂ CH=CHMe	-(CH	
K-53	H	H	Bu*	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-54	H	H	OMe	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-55	H	H	OEt	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-56	H	H	OPr	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-57	H	H	OPr^i	H	H	CH ₂ CH=CHMe	-(CH	
K-58	H	H	OCHF ₂	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-59	H	H	OCF ₃	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-60	H	H	CF ₃	Н	H	CH ₂ CH=CHMe	-(CH	
K-61	H	H	SMe	Η	H	CH ₂ CH=CHMe	-(CH	₂) ₅ -
K-62	H	H	SEt	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-63	H	H	${ m SPr}^i$	H	H	CH ₂ CH=CHMe	-(CH	
K-64	H	H	NMe_2	H	H	CH ₂ CH=CHMe	-(CH	
K-65	H	H	NEt_2	H	H	CH ₂ CH=CHMe	-(CH	₂) ₅ .
K-66	Me	NMe_2	H	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-67	NMe_2	Cl	H	H	H	CH ₂ CH=CHMe	-(CH	₂) ₅ -
K-68	Me	NEt_2	H	H	H	CH ₂ CH=CHMe	-(CH	₂) ₅ -
K-69	H	NEt_2	Me	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-70	Bu*	H	H	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-71	\Pr^i	H	H	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-72	H	OMe	OMe	H	H	CH ₂ CH=CHMe	-(CH	₂) ₅ -
K-73	H	OMe	OEt	H	H	CH ₂ CH=CHM _e	-(CH	₂) ₅ -
K-74	H	OEt	OMe	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-75	H	OEt	OEt	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-76	OMe	H	Me	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-77	OMe	H	Et	H	H	CH ₂ CH=CHMe	-(CH	₂) ₅ -
K-78	-(CH	2)3-	H	H	H	CH ₂ CH=CHMe	-(CH	2)5-
K-79	-(CH	2)4	H	H	H	CH ₂ CH=CHMe	-(CH	2)5-

表 5 5

	R ¹	R ²	\mathbb{R}^8	R ⁴	\mathbb{R}^5	R ⁶	\mathbb{R}^7	\mathbb{R}^8
L-1	H	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-2	C1	H	H	H	H	CH ₂ CO ₂ Bu	Me	Me
L-3	Br	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-4	Me	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-5	Et	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-6	Pr	H	H	H	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-7	Bu	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-8	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-9	Bu ^t	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-10	OMe	H	Et	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-11	OEt	H	H	Η	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-12	OPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-13	OPr	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-14	OCHF ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-15	OCF_3	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-16	$\mathbf{CF_{a}}$	H	Н	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-17	SMe	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-18	SEt	H	H	H	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-19	SPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-20	OEt	H	Et	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-21	NEt_2	H	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-22	H	Cl	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-23	H	Br	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-24	H	Me	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-25	H	Et	H	H	Н	CH ₂ CO ₂ Bu ^t	Me	Me

表 5 6

	\mathbb{R}^1	R^2	\mathbb{R}^{8}	\mathbb{R}^4	\mathbb{R}^5	$ m R^6$	\mathbb{R}^7	R ⁸
L-26	H	Pr	_ H	H	H	CH ₂ CO ₂ Bu ^t	Ме	Me
L-27	OMe	H	Et	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-28	H	Bu	H	Н	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-29	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-30	H	Bu*	H	Η	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-31	H	Bu ^t	H	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-32	H	OMe	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-33	H	OEt	H	Η	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-34	H	OPr	H	Η	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-35	H	OPr^i	H	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-36	H	OCHF ₂	H	H	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-37	H	OCF ₃	H	H	Η	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-38	H	$\mathrm{CF_3}$	H	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-39	H	SMe	H	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-40	H	SEt	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-41	H	\mathtt{SPr}^I	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-42	OEt	H	Et	H	Η	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-43	\Pr^i	H	OMe	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-44	H	H	Cl	H	H	CH2CO2Bu4	Ме	Me
L-45	H	H	Br	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-46	Н	H	Me	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-47	H	H	CH ₂ OMe	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-48	H	H	Pr	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-49	H	H	\Pr^i	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-50	H	H	Bu	H	H	CH ₂ CO ₂ Bu'	Me	Me

表 5 7

	R ¹	R ²	R ³	R ⁴	R ^g	\mathbb{R}^6	R ⁷	R ⁸
L-51	H	H	$\mathbf{B}\mathbf{u}^{i}$	H	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-52	H	H	Bu ^s	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-53	H	H	Bu ^t	H	Н	CH ₂ CO ₂ Bu ^t	Me	Me
L-54	H	H	OMe	н	Н	CH ₂ CO ₂ Bu ⁴	Me	Me
L-55	H	H	OEt	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-56	H	H	OPr	Н	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-57	H	H	OPr^i	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-58	H	H	OCHF ₂	H	H	CH ₂ CO ₂ Bu ⁴	Me	Me
L-59	H	H	OCF ₃	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-60	H	H	CF ₈	Η	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-61	H	H	SMe	H	H	CH2CO2Bu*	Me	Ме
L-62	H	H	SEt	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-63	H	H	SPr^i	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-64	Н	H	NMe ₂	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-65	H	H	$\mathbf{NEt_2}$	Η	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-66	Et	NMe_2	H	H	Η	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
L-67	NMe ₂	Cl	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-68	Et	NEt ₂	H	Н	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-69	H	NEt_2	Me	Η	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-70	Me	NEt_2	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-71	OMe	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-72	Н	OMe	OMe	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-73	H	ОМе	OEt	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-74	Н	OEt	OMe	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-75	H	OEt	OEt	H	H	CH ₂ CO ₂ Bu ^t	Me	Me
L-76	OMe	H	Me	H	Η	CH ₂ CO ₂ Bu ⁴	Me	Me
L-77	OMe	H	Et	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-78	-(CI	H ₂) ₈ -	H	H	Η	CH ₂ CO ₂ Bu ^t	Me	Me
L-79		$H_2)_4$ -	H	H	H	CH ₂ CO ₂ Bu ^t	Me	Me

表 5 8

	R ¹	R ²	R ⁸	R ⁴	\mathbb{R}^5	R^6	\mathbb{R}^7	R ⁸
M-1	H	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-2	Cl	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-3	Br	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-4	Me	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-5	Et	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-6	Pr	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-7	Bu	H	H	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-8	$\mathbf{B}\mathbf{u}^i$	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-9	Bu ^t	H	H	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-10	OMe	H	Et	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-11	OEt	H	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-12	OPr^i	H	H	Η	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-13	OPr	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-14	OCHF ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-15	OCF_3	H	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-16	CF_{8}	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-17	SMe	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-18	SEt	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-19	SPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-20	OEt	H	Et	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-21	NEt ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-22	H	Cl	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-23	H	Br	H	Η	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-24	H	Me	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-25	H	Et	Н	H	Н	CH ₂ CO ₂ Bu ^t	Et	Et

表 5 9

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	R ¹	\mathbb{R}^2	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸
M-26	H	Pr	H	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-27	H	\mathbf{Pr}^{i}	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-28	H	Bu	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-29	H	Bu ⁱ	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-30	H	Bu ^s	H	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-31	H	Bu ^t	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-32	Н	OMe	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-33	H	OEt	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-34	H	OPr	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-35	H	OPr^i	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-36	H	OCHF ₂	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-37	H	OCF ₃	H	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-38	H	CF ₃	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-39	H	SMe	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-40	H	SEt	H	H	Η	CH ₂ CO ₂ Bu ^t	Et	Et
M-41	H	SPr ⁱ	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-42	OEt	H	Et	Η	Η	CH ₂ CO ₂ Bu ^t	Et	Et
M-43	\Pr^i	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-44	H	H	Cl	H	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-45	H	H	Br	Н	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-46	H	H	Me	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-47	Н	H	CH ₂ OMe	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-48	H	H	Pr	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-49	ОМе	H	Me	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-50	H	H	Bu	H	H	CH ₂ CO ₂ Bu ^t	Et	Et

表 6 0

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	R ²	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	\mathbb{R}^7	R ⁸
M-51	H	H	$\mathbf{B}\mathbf{u}^i$	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-52	H	H	Bu*	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-53	H	H	Bu ^t	H	H	CH2CO2But	Et	Et
M-54	H	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-55	H	H	OEt	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-56	H	H	OPr	H	Н	CH ₂ CO ₂ Bu ^t	Et	Et
M-57	Н	H	OPr^i	H	H	CH ₂ CO ₂ Bu ⁴	Et	Et
M-58	H	H	OCHF ₂	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-59	_Bu ⁱ	H	H	H	H	CH ₂ CO ₂ Bu ^t	_Et	Et
M-60	H	H	CF ₃	Н	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-61	H	H	SMe	Η	Н	CH ₂ CO ₂ Bu ^t	Et	Et
M-62	H	H	SEt	H	Н	CH ₂ CO ₂ Bu ^t	Et	Et
M-63	H	H	SPr ⁱ	Н	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-64	H	H	NMe ₂	Н	Η	CH ₂ CO ₂ Bu ^t	Et	Et
M-65	H	H	NEt ₂	H	Η	CH ₂ CO ₂ Bu ^t	Et	Et
M-66	Et	NMe ₂	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-67	NMe_2	Cl	H	H	Η	CH ₂ CO ₂ Bu ^t	Et	Et
M-68	Et	NEt ₂	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-69	H	NEt ₂	Me	H	Н	CH ₂ CO ₂ Bu ^t	Et	Et
M-70	Me	NEt_2	H	Η	Η	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
M-71	OMe	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-72	H	OMe	OMe	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-73	_ H	OMe	OEt	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-74	HH	OEt	OMe	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-75	H	OEt	OEt	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-76		$H_2)_3$ -	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
M-77	-(C)	H ₂) ₄ -	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et

表 6 1

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^5
 R^7
 R^8
 R^8
 R^8

	R ¹	R^2	R^3	R ⁴	R ⁵	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
N-1	H	H	H	H	H	CH ₂ CO ₂ Bu'	-(CH ₂) ₄ -
N-2	Cl	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-3	Br	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-4	Me	H	H	H	H	CH2CO2But	-(CH ₂) ₄ -
N-5	Et	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-6	Pr	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-7	Bu	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-8	Bu ⁱ	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-9	Bu*	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-10	OMe	H	Et	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-11	OEt	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-12	OPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-13	OPr	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-14	OCHF ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-15	OCF ₃	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-16	CF ₃	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-17	SMe	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-18	SEt	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-19	SPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-20	OEt	H	Et	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-21	NEt ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-22	H	CI	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-23	H	Br	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-24	H	Me	H	H	H	CH ₂ CO ₂ Bu ⁴	-(CH ₂) ₄ -
N-25	H	Et	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -

表 6 2

	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	R ⁵	\mathbb{R}^6	R ⁷ R ⁸
77.00							
N-26	H	Pr	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-27	<u>H</u>	Pr^i	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-28	H	Bu	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-29	H	Bu ⁱ	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-30	H	Bu*	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-31	H	Bu*	н	н	н	CH2CO2Bu'	-(CH ₂) ₄ -
N-32	H	OMe	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₄ -
N-33	H	OEt	Н	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-34	H	OPr	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-35	H	OPr^i	H	H_	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-36	H	OCHF ₂	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-37	H	OCF ₃	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-38	H	$\mathbf{CF_8}$	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-39	H	SMe	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-40	H	SEt	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-41	H	SPr^i	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-42	H	NMe ₂	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₄ -
N-43	H	NEt ₂	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-44	H	Н	Cl	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-45	H	H	Br	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-46	H	H	Me	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-47	H	OMe	Et	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-48	H	H	$\overline{{ t Pr}}$	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-49	ОМе	Н	Me	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
N-50	H	H	Bu	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -

表 6 3

R ¹	R ²	R ³	R ⁴	\mathbb{R}^5	$ m R^6$	R^7 R^8
H	H	Bu^i	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	Bu*	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	Bu*	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	OEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	OPr	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	OPr^i	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	OCHF ₂	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
Et	NMe_2	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	CF ₃	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	SMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	SEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	SPr^i	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	NMe ₂	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	H	NEt_2	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
Me	NMe_2	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
NMe_2	Cl	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
Me	NEt_2	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	NEt_2	Me	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
Bu ^s	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
_Et	$ m NEt_2$	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	OMe	OMe	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₄ -
H	OMe	OEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	OEt	OMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
H	OEt	OEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
		H	_ <u>H</u> _	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₄ -
-(CI	I ₂) ₄ -	H	H	H	CH2CO2Bu*	-(CH ₂) ₄ -
	H H H H H H H H H H H H H H H H H H H	H H	H H Bu' H Bu' H H Bu' H H Bu' H H OMe H H OOT H H OOT H H OOT H H OOT H H CF3 H H SMe H H SSE H H H SE H H NEt2 H NMe2 H NMe2 H NMe2 H NEt2 H H NEt2 H NOME NET2 H H NET2 H NOME NOME H OME NOME H OME H OME H OME H OME H OOT H OOT H OOT H OOT H OET	H H Bu' H H Bu' H H Bu' H H H Bu' H H H OMe H H H OOEt H H H OPr H H H OPr' H H H OCHF2 H Et NMe2 H H H H SMe H H H SSE H H H SSE H H H SPr' H H H NMe2 H H H NEt2 H H H H NEt2 H H H H NEt2 H Me NMe2 H H H H H NEt2 H H H OME OME H H H OME OME H H OME OME H H OOET OME H H OET OME H -(CH2)3- H	H H Bu' H H H Bu' H H H H Bu' H H H H Bu' H H H H OMe H H H H OOFT H H H H OPT H H H H OCHF2 H H H H CF3 H H H H SMe H H H H SSET H H H H SPT' H H H H SPT' H H H H NMe2 H H H H NEt2 H H H H H H H NMe NMe2 H OME OME H H H H OME OME H H H OET OME H H H H OET OME H H	H H Bu' H H CH2CO2Bu' H H H Bu' H H CH2CO2Bu' H H H OMe H H CH2CO2Bu' H H H OPr H H CH2CO2Bu' H H H OPr H H CH2CO2Bu' H H H OPr H H CH2CO2Bu' H H H OPr' H H CH2CO2Bu' Et NMe2 H H CH2CO2Bu' H H SMe H H CH2CO2Bu' H H H SEt H H CH2CO2Bu' H H H SPr' H H CH2CO2Bu' H H H NMe2 H H CH2CO2Bu' H H H NMe2 H H CH2CO2Bu' H H H NMe2 H H CH2CO2Bu' H H H NEt2 H H CH2CO2Bu' H H H NEt2 H H CH2CO2Bu' H H H NET2 H H CH2CO2Bu' NMe NMe2 H H CH2CO2Bu' NMe NMe4 H H CH2CO2Bu' NMe NET4 H H CH2CO2Bu' H H H CH2CO2Bu' H H H CH2CO2Bu' H OME OME H H CH2CO2Bu'

表 6 4

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

				H. H			
	\mathbb{R}^1	\mathbb{R}^2	R ³	_ R ⁴	R^5	R ⁶	R^7 R^8
0-1	H	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-2	Cl_	H	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₅ -
0-3	Br	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-4	Me	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-5	Et_	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-6	Pr	_H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-7	Bu	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-8	$\mathbf{B}\mathbf{u}^{i}$	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-9	Bu ^t	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-10	OMe	_ H	Et	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0.11	OEt	H	H	_ H_	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-12	OPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-13	OPr	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-14	OCHF ₂	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-15	OCF_3	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-16	CF ₃	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-17	SMe	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-18	SEt	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-19	SPr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-20	OEt	H	Et	H	H	CH ₂ CO ₂ Bu ⁴	-(CH ₂) ₅ -
0-21	NEt_2	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-22	H	Cl	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-23	H	Br	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-24	H	Me	H	<u>H</u>	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-25	H	Et_	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -

表 6 5

	\mathbb{R}^1	R ²	R^3	R ⁴	\mathbb{R}^5	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
0-26	H	Pr	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-27	H	\Pr^i	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-28	H	Bu	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-29	H	Bu ⁱ	H	H	Н	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-30	H	Bu ^s	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-31	H	Bu ^t	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-32	H	OMe	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-33	H	OEt	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-34	H	OPr	H	H	H	CH2CO2But	-(CH ₂) ₅ -
O-35	H	OPr^i	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-36	H	OCHF ₂	H	H	H	CH ₂ CO ₂ Bu ^t	·(CH ₂) ₅ ·
0-37	H	OCF ₃	H	H	H	CH2CO2Bu'	-(CH ₂) ₅ -
O-38	H	CF ₃	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-39	H	SMe	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-40	H	SEt	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-41	H	SPr ⁱ	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₅ -
0-42	H	NMe_2	H	H	H	CH ₂ CO ₂ Bu ^t	·(CH ₂) ₅ -
O-43	H	NEt_2	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-44	H	H	Cl	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-45	H	H	Br	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-46	H	H	Me	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-47	Н	OMe	Et	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-48	H	H	Pr	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-49	H	H	\Pr^{j}	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
O-50	H	H	Bu	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -

表 6 6

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R^{5}	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
0-51	H	H	Bu^i	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-52	H	H	Bu ^s	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-53	H	H	Bu*	H	H	CH2CO2Buf	-(CH ₂) ₅ -
0-54	H	H	OMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-55	H	H	OEt	H	Н	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-56	H	H	OPr_	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₅ -
0-57	H	H	OPr^i	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-58	H	H	OCHF ₂	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-59	Et	NMe_2	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₅ -
O-60	H	H_	CF ₃	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-61	_H	H	SMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-62	H	H	SEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-63	Н	H	${ m SPr}^i$	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-64	Н	H	NMe_2	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-65	Η	H	NEt_2	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-66	Me	NMe_2	H	H	H	CH2CO2Bu*	-(CH ₂) ₅ -
0-67	NMe_2	Cl	H	H	H	CH2CO2Bu*	-(CH ₂) ₅ -
0-68	Me	NEt_2	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-69	H	NEt_2	Me	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-70	Bu ^s	H	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-71	Et	NEt_2	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂) ₅ -
0-72	H	OMe	OMe_	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-73	H	OMe	OEt	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-74	H	OEt	OMe	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-75	H	OEt	OEt	H	H	CH ₂ CO ₂ Bu ^t	·(CH ₂) ₅ -
0-76	-(CI	I ₂) ₃	H	H	H	CH ₂ CO ₂ Bu ^t	-(CH ₂) ₅ -
0-77	-(CI	I ₂) ₄ -	H	H	H	CH ₂ CO ₂ Bu ⁴	-(CH ₂) ₅ -

表 6 7

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 $CSSR^6$

	\mathbb{R}^1	R ²	R ³	R4	R	R ⁶	R7	R ⁸
P-1	H	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-2	Cl	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-3	Br	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-4	Me	H	H_	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-5	Et	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-6	Pr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-7	Bu	H	Н	H	Н	(3-Me-5-isoxazolyl)methyl	Me	Me
P-8	Bu^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-9	Bu ^t	Н	H	Н	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-10	OMe	Н	H	H	Н	(3-Me-5-isoxazolyl)methyl	Ме	Me
P-11	OEt_	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-12	OPr^i	_ H _	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-13	OPr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-14	OCHF ₂	H	H	H	Н	(3-Me-5-isoxazolyl)methyl	Me	Me
P-15	OCF_8	H	H	H	Η	(3-Me-5-isoxazolyl)methyl	Me	Me
P-16	CF_3	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-17	SMe	H_	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-18	SEt	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-19	SPr^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-20	NMe_2	H	H	H	Η	(3-Me-5-isoxazolyl)methyl	Me	Me
P-21	NEt_2	H	H	Н	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-22	H	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-23	H	Br	Н	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-24	H	Me	H	Н	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-25	Н	Et	Н	Н	Н	(3-Me-5-isoxazolyl)methyl	Me	Me

表 6 8

	R ¹	R ²	R ³	R ⁴	\mathbb{R}^5	R ⁶	R ⁷	R ⁸
P-26	H	Pr	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-27	Н	\mathbf{Pr}^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-28	H	Bu	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-29	H	Bu^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-30	H	$\mathbf{B}\mathbf{u}^{s}$	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-31	H	Bu*	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-32	H	OMe	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-33	H	OEt	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-34	H	OPr	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-35	_H_	OPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-36	H	OCHF ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-37	H	OCF_3	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-38	H	CF ₃	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-39	H	SMe	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-40	H	\mathbf{SEt}	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-41	H	SPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-42	H	NMe_2	H	H	Η	(3-Me-5-isoxazolyl)methyl	Me	Me
P-43	H	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-44	H	H_	Cl	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-45	H	H_	Br	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-46	H	H	Me	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-47	_H	H	Et	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-48	H	H	Pr	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-49	H_	H	\Pr^i	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-50	H	H	Bu	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me

表 6 9

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8

	R ¹	R ²	R³	R ⁴	R ⁵	R ⁶	R7	R8
P-51	H	H	$\mathbf{B}\mathbf{u}^i$	H	Н	(3-Me-5-isoxazolyl)methyl	Me	Me
P-52	H	H	Bu ^s	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-53	H	H	Bu*	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-54	H	Н	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-55	H	H	OEt	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-56	H	H	OPr	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-57	H	H	OPr^i	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-58	H	H	OCHF ₂	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-59	H	H	OCF_3	H	Η	(3-Me-5-isoxazolyl)methyl	Me	Me
P-60	H	H_	CF ₃	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-61	H	H	${ m SMe}$	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-62	H	H	SEt	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-63	H	H	SPr^i	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-64	H	H	NMe_2	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-65	H	H	NEt_2	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-66	Et	NMe_2	H	Η	H_	(3-Me-5-isoxazolyl)methyl	Me	Me
P-67	NMe_2	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-68	Et	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-69	H	$\mathbf{NEt_2}$	Me	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-70	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-71	OMe	H	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-72	H	OMe	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-73	H	OMe	OEt	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-74	H	OEt	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me
P-75	H	OEt	OEt	H	H	(3-Me-5-isoxazolyl)methyl	Me	Me

表70

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	RI	R ²	R ³	R ⁴	R ⁵	$ m R^6$	R ⁷	.R8
Q-1	H	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-2	Cl	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-3	Br	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-4	Me	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-5	$\mathbf{E}\mathbf{t}$	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-6	Pr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-7	Bu	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-8	Bu^i	H_	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-9	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-10	OMe	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-11	OEt	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-12	$\overline{\mathrm{OPr}^i}$	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-13	OPr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-14	OCHF ₂	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-15	OCF_3	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-16	CF_{s}	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-17	SMe	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-18	SEt	H	H	H	Η	(3-Me-5-isoxazolyl)methyl	$\mathbf{E}\mathbf{t}$	Et
Q-19	${f SPr}^i$	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-20	NMe_2	H	H	H	Η	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-21	NEt_2	H	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-22	H	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-23	H	Br	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-24	H	Me	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-25	H	Et	H	Н	H	(3-Me-5-isoxazolyl)methyl	Et	Et

表71

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^8
 R^8
 R^8

	R ¹	R ²	R ³	R ⁴	\mathbb{R}^5	\mathbb{R}^6	\mathbb{R}^7	R ⁸
Q-26	H	Pr	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-27	H	\mathbf{Pr}^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-28	H	Bu	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-29	H	$\mathbf{B}\mathbf{u}^i$	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-30	H	Bu*	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-31	H	Bu ^t	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-32	Н	OMe	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-33	H	OEt	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-34	H	OPr	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-35	H	OPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-36	H	OCHF ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-37	H	OCF_3	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-38	H	CF ₃	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-39	H	SMe	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-40	H	SEt	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-41	H	SPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-42	H	NMe_2	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-43	H	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-44	H	H	Cl	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-45	H	H	Br	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-46	H	H	Me	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-47	H	H	Et	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-48	H	H	Pr	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-49	H	H	\Pr^i	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-50	H	H	Bu	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et_

表72

	R ¹	R^2	R ³	R ⁴	\mathbb{R}^{5}	\mathbb{R}^6	\mathbb{R}^7	R ⁸
Q-51	H	H	Bu^i	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-52	Н	H	Bu ^s	н	Н	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-53	H	H	Bu*	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-54	H	H	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-55	H	H	OEt	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-56	H	H	OPr	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-57	H	H	OPr^i	H	Н	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-58	H	H	OCHF ₂	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-59	H	H	OCF ₃	H	Н	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-60	H	H	CF ₃	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-61	H	H	SMe	H	Η	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-62	H	H	SEt	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-63	H	H	SPr^i	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-64	H	H	NMe_2	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-65	H	H	NEt_2	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-66	Et	NMe ₂	H	Н	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-67	NMe_2	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-68	Et	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-69	H	NEt_2	Me	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-70	Bu ^s	Н	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-71	OMe	H	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-72	H	OMe	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-73	H	OMe	OEt	Η	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-74	H	OEt	OMe	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-75	H	OEt	OEt	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-76	-(CI	I ₂) ₃ -	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et
Q-77	-(CF	$I_2)_4$ -	H	H	H	(3-Me-5-isoxazolyl)methyl	Et	Et

表73

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	R ²	R ⁸	R ⁴	R ⁵	\mathbb{R}^6	R ⁷ R ⁸
R-1	H	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-2	Cl	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-3	Br	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-4	Me	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-5	Et	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-6	Pr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-7	Bu	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-8	Bu ⁱ	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-9	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-10	OMe	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-11	OEt	Н	H	H	Н	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-12	OPr^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-13	OPr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-14	OCHF ₂	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-15	OCF ₃	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-16	CF ₃	H	Н	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-17	SMe	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-18	SEt	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-19	SPr^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$ -
R-20	NMe_2	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-21	NEt ₂	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-22	H	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-23	H	Br	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-24	H	Me	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-25	H	Et	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -

表 7 4

	\mathbb{R}^1	R ²	R³	R ⁴	R ⁵	$ m R^6$	\mathbb{R}^7	R ⁸
R-26	H	Pr	H	H	H	(3-Me-5-isoxazolyl)methyl	-(C)	$H_2)_4$ -
R-27	H	\Pr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-28	H	Bu	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₄ -
R-29	H	Bu ⁱ	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-30	H	Bu ^s	H	H	H	(3-Me-5-isoxazolyl)methyl		$H_2)_4$ -
R-31	H	Bu*	н	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_{2})_{4}$ -
R-32	H	OMe	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$H_2)_4$ -
R-33	H	OEt	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$\overline{{\rm H}_2)_4}$ -
_R-34	H	OPr	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-35	H	OPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_4$ -
R-36	H	$OCHF_2$	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-37	H	OCF ₃	H	Н	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₄ .
R-38	H	CF ₃	H_	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₄ .
R-39	H	SMe	H	H	H	(3-Me-5-isoxazolyl)methyl	(CI	$\overline{\mathrm{I_2)_4}}$
R-40	H	SEt	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-41	H	SPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-42	H	NMe ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-43	H	NEt ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-44	H	H	Cl	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-45	H	H	Br	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-46	H	H	Me_	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-47	H	H	Et	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-48	H	H	Pr	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	
R-49	H	H	\Pr^i	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$ -
R-50	H	H	Bu	$_{ m H}_{ m -}$	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_4$.

表75

	R ¹	\mathbb{R}^2	R ⁸	R ⁴	\mathbb{R}^5	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
R-51	H	H	Bu ⁱ	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-52	H	H	Bu ^s	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$
R-53	H	H	Bu*	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$
R-54	H	H	OMe	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$
R-55	H	<u> </u>	OEt	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$ -
R-56	H	H	OPr	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$ -
R-57	H	H	OPr'	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$ -
R-58	H	H	OCHF ₂	H	H	(3-Me-5-isoxazolyl)methyl	$-(CH_2)_4$
R-59	<u> </u>	H	OCF ₈	H	H	(3-Me-5-isoxazolyl)methyl	
R-60	H	H	CF ₈	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-61	- н	H	SMe	H	Н		-(CH ₂) ₄ -
				H		(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-62	H	H	SEt CD /		H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-63	H	<u>H</u>	SPr ⁱ	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-64	H	H	NMe ₂	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-65	H	H	NEt_2	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-66	Me	NMe_2	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-67	NMe_2	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-68	Me	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-69	H	NEt ₂	Me	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-70	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-71	OMe	H	Et	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-72	H	OMe	OMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-73	H	OMe	OEt	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-74	H	OEt	OMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-75	H	OEt	OEt	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-76	-(C	$H_2)_8$ -	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -
R-77		$H_2)_4$ -	H	H	Н	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₄ -

表 7 6

	R ¹	R ²	R ⁸	\mathbb{R}^4	R ⁵	$ m R^6$	R^7	R ⁸
S-1	H	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-2	Cl _	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₅ -
S-3	Br	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-4	Me	H	H	H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_5$ -
S-5	Et	H	H_	H	H	(3-Me-5-isoxazolyl)methyl		I ₂) ₅ -
S-6	Pr	H	H	H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_5$ -
S-7	Bu	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₅ -
S-8	Bu^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_5$ -
S-9	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₅ -
S-10	OMe	H	H	H	Н	(3-Me-5-isoxazolyl)methyl		I ₂) ₅ -
S-11	OEt	H	H	H	Н	(3-Me-5-isoxazolyl)methyl		I ₂) ₅ -
S-12	OPr^i	H	H	H	Н	(3-Me-5-isoxazolyl)methyl		I ₂) ₅ -
S-13	OPr	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-14	OCHF ₂	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-15	OCF ₃	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-16	CF ₃	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-17	SMe	H	H	H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_5$ -
S-18	SEt	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-19	SPr^i	H	H	H	H	(3-Me-5-isoxazolyl)methyl	(CI	$I_2)_5$ -
S-20	NMe ₂	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₅ -
S-21	NEt ₂	H	$_{ m H}$	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	I ₂) ₅ -
S-22	H	C1	H	_H	H	(3-Me-5-isoxazolyl)methyl		$I_2)_5$ -
S-23	H	Br	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -
S-24	H	Me	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	
S-25	H	Et	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CI	$I_2)_5$ -

表77

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^5
 R^7
 R^8
 R^8

	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	R ⁶	R ⁶	\mathbb{R}^7	\mathbb{R}^8
S-26	H	Pr	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-27	Н	\Pr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-28	Н	Bu	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-29	H	Bu^i	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-30	H	Bu*	Η	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-31	H	Bu*	H	Н	Н	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-32	H	OMe	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-33	H	OEt	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-34	H	OPr	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-35	H	OPr^i	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-36	H	OCHF ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-37	H	OCF ₃	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-38	H	CF ₃	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-39	H	SMe	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-40	H	SEt	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-41	H	SPr^{i}	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-42	H	NMe ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-43	H	NEt_2	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-44	H	H	Cl	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-45	H	H	\mathbf{Br}	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-46	H	H	Me	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-47	H	H	Et	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-48	H	H	Pr	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂)5-
S-49	H	H	\Pr^i	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	
S-50	H	H	Bu	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂	

表 7 8

	D 1	nº	D.3	D4	D.5	D.6	T07 T08
<u> </u>	R¹_	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷ R ⁸
S-51	H	H	Bu^i	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-52	H	H	Bu*	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-53	H	H	Bu ^t	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-54	H_	H	OMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-55	H_	H	OEt	H	Н	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-56	H	H_	OPr	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-57	H	H	OPr^i	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-58	H	H	OCHF ₂	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-59	H	H	OCF ₃	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-60	H	H	CF_3	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-61	H	H	SMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-62	H	H	SEt	H	Н	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-63	H	H	SPr^i	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-64	H	H	NMe_2	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-65	H	H	NEt ₂	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-66	Me	NMe_2	H	Η	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-67	NMe ₂	Cl	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-68	Me	NEt ₂	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-69	H	NEt_2	Me	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-70	Bu*	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-71	$-\operatorname{Pr}^i$	H	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-72	H	OMe	OMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-73	H	OMe	OEt	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-74	H	OEt	OMe	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-75	H	OEt	OEt	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-76	-(CF	$I_2)_{3}$ -	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -
S-77	-(CF	[₂) ₄ -	H	H	H	(3-Me-5-isoxazolyl)methyl	-(CH ₂) ₅ -

表79

$$R^3$$
 R^4
 R^5
 R^6
 R^8
 R^8
 R^8
 R^8

	R¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	$ m R^5$	\mathbb{R}^6	\mathbb{R}^7 \mathbb{R}^8
T-1	H	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-2	C1	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-3	Br	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-4	Me	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-5	Et	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-6	Pr	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-7	Bu	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-8	Bu ⁱ	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-9	Bu ^t	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-10	ОМе	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-11_	OEt	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-12	OPr^i	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-13	OPr	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-14	OCHF ₂	H	H_	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-15	OCF ₃	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-16	CF ₃	H	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-17	SMe	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-18	SEt	H	H_	H_	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-19	${ m SPr}^i$	H	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-20	NMe ₂	H	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-21	NEt ₂	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-22	H	Cl	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-23	H_	Br	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-24	H	Me	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-25	H	Et _	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$

表 8 0

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^7
 R^8
 R^8
 R^8

	\mathbb{R}^1	\mathbb{R}^2	R ⁸	R ⁴	R^5	${f R^6}$	\mathbb{R}^7 \mathbb{R}^8
T-26	H	Pr	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-27	H	\Pr^{i}	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-28	H	Bu	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-29	H	Bu^i	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-30	H	Bu ^s	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-31	H	But	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-32	H	OMe	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-33	H	OEt	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-34	H	OPr	H	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-35	H	OPr^i	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-36	H	OCHF ₂	H	H	Н	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-37	H	OCF ₈	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-38	H	CF_3	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-39	H	SMe	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-40	H	SEt	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-41	H	SPr^i	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-42	H	NMe ₂	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-43	H	NEt_2	H	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-44	H	H	C1	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-45	H	H	Br	Η	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-46	H	H	Me	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-47	H	H	Et	H	H	Me	-(CH ₂) ₂ O(CH ₂) ₂ -
T-48	H	H	Pr	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
T-49	H	H	\Pr^i	H	H	Me	$-(CH_2)_2O(CH_2)_2-$
T-50	H	H	Bu	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$

表 8 1

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R ⁵	\mathbb{R}^6	\mathbb{R}^7	R ⁸
T-51	H	H	Bu^i	H	H	Me	-(CH ₂) ₂ C)(CH ₂) ₂ -
T-52	H	H	Bu ^s	H	H	Me	$-(CH_2)_2C$	
T-53	H	H	Bu*	H	H	Me	$-(CH_2)_2C$)(CH ₂) ₂ -
T-54	H	H	OMe	H	H	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -
T-55	H	H	OEt	H	H	Me	-(CH ₂) ₂ C	$(CH_2)_2$ -
T-56	H	H	OPr	H	H	Me	-(CH ₂) ₂ C	
T-57	H	H	OPr^i	H	H	Me	$-(CH_2)_2C$	$(CH_2)_2$
T-58	H	H	OCHF ₂	H	H	Me	$-(CH_2)_2C$	$(CH_2)_2$ -
T-59	H	H	OCF ₃	H	H	Me	-(CH ₂) ₂ C	(CH ₂) ₂ -
T-60	H_	H	CF ₃	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-61	· H	H	SMe	H	H	Me	-(CH ₂) ₂ C	$(CH_2)_2$
T-62	H_	H	SEt	H	H	Me	$-(CH_2)_2C$	(CH ₂) ₂ -
T-63	H	H	${f SPr}^i$	H	H	Me	-(CH ₂) ₂ C	(CH ₂) ₂ -
T-64	H	H	NMe ₂	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-65	H_	H	NEt_2	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-66	Me	NMe_2	H	H_	H	Me	-(CH ₂) ₂ C	(CH ₂) ₂ -
T-67	NMe ₂	Cl	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-68	Me	NEt_2	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
T-69	H	NEt_2	Me	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-70	Bu*	H	H	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
T-71	OMe	H	OMe	H	H	Me	$-(CH_2)_2C$	(CH ₂) ₂ -
T-72	H	OMe	OMe	Η	H	Me	$-(CH_2)_2C$	(CH ₂) ₂ -
T-73	H	OMe	OEt	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
T-74	H	OEt	OMe	H	H	Me	$-(\mathrm{CH}_2)_2\mathrm{C}$	(CH ₂) ₂ -
T-75	H	OEt	OEt	H	H	Me	$-(\mathrm{CH_2})_2\mathrm{C}$	
T-76	-(CI	I ₂) ₃ -	H	H	H	Me	-(CH ₂) ₂ C	(CH ₂) ₂ -
T-77	-(CI		H	H	H	Me	-(CH ₂) ₂ C	$(\mathrm{CH_2})_2$ -

表 8 2

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	\mathbb{R}^5	R ⁶	R ⁷ R ⁸
U-1	H	H	H	H	H_	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-2	Cl	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-3	Br	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U4	Me	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-5	Et	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-6	Pr	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-7	Bu	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-8	Bu ⁱ	H	H	H	H	_Et	-(CH ₂) ₂ O(CH ₂) ₂ -
Ŭ-9_	Bu*	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-10	OMe	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-11	OEt	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-12	OPr ⁱ	H	H	H	H	Et	·(CH ₂) ₂ O(CH ₂) ₂ -
U-13	OPr_	H	H	H	H	Et	-(CH ₂) ₂ O(CH ₂) ₂ -
U-14	OCHF ₂	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-15	OCF_3	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-16	CF ₃	H	H	H	H_	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-17	SMe	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-18	SEt	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-19	${ m SPr}^i$	H	H	H	H	<u>Et</u>	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-20	NMe_2	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-21	NEt ₂	H	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-22	H	Cl	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-23	H	Br	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-24	H	Me	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$
U-25	H	Et	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}(\mathrm{CH_2})_2-$

表83

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	R ¹	R ²	\mathbb{R}^3	R ⁴	\mathbb{R}^5	R ⁶	\mathbb{R}^7	R ⁸
U-26	H	Pr	H	H	H	Et	-(CH ₂) ₂ C	(CH ₂) ₂ -
U-27	H	\Pr^i	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	
U-28	H	Bu	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-29	H	Bu^i	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-30	H	Bu*	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-31	H	Bu*	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-32	H	OMe	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-33	H	OEt	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-34	H	OPr	H	Н	H	_ Et _	$-(CH_2)_2C$	$(CH_2)_2$
U-35	H	OPr^i	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-36	H	OCHF ₂	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-37	H	OCF ₃	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-38	H	CF ₃	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-39	H	SMe	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-40	H	SEt	H	Η	H	Et	$\cdot (\mathrm{CH_2})_2 \mathrm{C}$	$(CH_2)_2$ -
U-41	H	SPr ⁱ	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-42	H	NMe ₂	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-43	H	NEt ₂	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-44	H	H	Cl	H	H	Et_	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-45	H	H	Br	H	_H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-46	H	H	Me	H	H	Et	-(CH ₂) ₂ C	(CH ₂) ₂ -
U-47	H	H	Et	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-48	H	H	Pr	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-49	H	H	\Pr^i	H	H	Et_	-(CH ₂) ₂ C	$(CH_2)_2$ -
U-50	H	H_	Bu	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -

表 8 4

	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R ⁵	R ⁶	R ⁷	\mathbb{R}^8
U-51	H	H	Bu ⁱ	H	H	Et	-(CH ₂) ₂ C	(CH ₂) ₂ -
U-52	H	H	Bu ^s	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	
U-53	H	H	Bu*	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	
U-54	H	H	OMe	H	H	Et	-(CH ₂) ₂ C)(CH ₂) ₂ -
U-55	H	H	OEt	H	H	Et	$-(CH_2)_2C$	$(CH_2)_2$ -
U-56	H	H	OPr	Н	Н	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	
U-57	H	H	OPr^i	H	H	Et	$-(CH_2)_2C$	
U-58	H	H	OCHF ₂	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-59	H	H	OCF ₃	Н	H	Et	$-(CH_2)_2C$	
U-60	H	H	CF ₃	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-61	H	H	SMe	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-62	H	H	SEt	H	H	Et	-(CH ₂) ₂ C	
U-63	H	H	${ m SPr}^i$	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	(CH ₂) ₂ -
U-64	H	H	NMe ₂	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-65	H	H	NEt ₂	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-66	Me	NMe_2	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$
U-67	NMe ₂	Cl	H	H	H	Et	$-(CH_2)_2C$	(CH ₂) ₂ -
U-68	Me	NEt_2	H	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{C}$	$(CH_2)_2$ -
U-69	H	$\mathbf{NEt_2}$	Me	H_	Η	Et	$-(CH_2)_2C$	$(CH_2)_2$ -
U-70	Bu ^s	H	H	H	H	Et	$-(CH_2)_2C$	$(CH_2)_2$ -
U-71	OMe	H_{-}	OMe	H	H	$\mathbf{E}\mathbf{t}$	$-(CH_2)_2C$	$(CH_2)_2$ -
U-72	H	OMe	OMe_	H_	H	Et	-(CH ₂) ₂ O	$(CH_2)_2$ -
U-73	H	OMe	OEt	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}$	$(CH_2)_2$ -
U-74	H	OEt	OMe	H	H	Et	$-(\mathrm{CH_2})_2\mathrm{O}$	$(CH_2)_2$ -
U-75	H	OEt	OEt	H	H	Et	$-(CH_2)_2O$	$(CH_2)_2$ -
U-76	-(CI	$I_2)_3$ -	H	H	H	Et	$-(CH_2)_2O$	$(CH_2)_2$ -
U-77	-(CF	I ₂) ₄	H	H	H	Et	$-(CH_2)_2O$	$(CH_2)_2$ -

上記の本発明化合物の試験例を以下に示す。

5 試験例1 ヒト CB2 受容体結合阻害実験

10

ヒト CB2 受容体をコードする cDNA 配列 (Munro 等, Nature, 1993, 365, 61-65) を、動物 細胞 用発 現 ベクターである pSVL SV40 Late Promoter Expression Vector (Amersham Pharmacia Biotech 社) のプロモーター下流域に順方向に挿入した。得られた発現ベクターを LipofectAMINE 試薬 (Gibco BRL社) を用いて、宿主細胞 CHO に使用説明書にしたがってトランスフェクションし、CB2 受容体安定発現細胞を得

た。

10

15

CB2 受容体を発現させた CHO 細胞から調製した膜標品を、被検化合物及び 38,000 dpm の[³H]CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製) とともに、アッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HCl 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2 時間インキュペーションした後、1% ポリエチレンイミン処理したグラスフィルターGF/C にて濾過した。0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10 μM WIN55212-2 (US 5081122 記載のカンナピノイド受容体アゴニスト、Research Biochemicals International 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (IC₅₀値)を求めた。

ヒト CB1 受容体に対する結合実験は、CB1 受容体を安定発現する CHO 細胞を上記と同じ方法で作製し、その膜画分を用いて行った。これらの結合実験の結果、得られた被検化合物の各ヒトカンナビノイド受容体に対する K_i値を表に示した。表に示したとおり、本発明の一連の化合物は、CB1 受容体に比べて CB2 受容体への CP55940 (US 4371720 記載のカンナビノイド受容体アゴニスト) の結合をより強く 阻害した。

表85

化合物	Ki (nM)		
	CB1受容体	CB2受容体	
I-13	n.t.	6	
I-14	>5000	2	
I-17	n.t.	8	
1-39	906	2	
I-40	n.t.	0.5	
I-41	n.t.	1	
I-42	>5000	0.3	
I-44	321	1.1	
I-45	386	1.2	
I-46	3226	2	
I-49	1116	2.9	
1-74	704	1.2	
I-78	1015	8	
1-80	>5000	2.2	
1-88	n.t.	8	
1-89	n.t.	8	
I-92	1312	6	
1-93	1537	3	

n.t.: not tested

試験例2 ヒト CB2 受容体を介する cAMP 生成阻害実験

ヒト CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュベーションの後、フォルスコリン (終濃度 4 μM、SIGMA社)を加えて 20 分間インキュベーションした。 1N HCl を添加して反応を停止させた後、上清中の cAMP 量を Amersham Pharmacia Biotech 社製の BIA kit を用いて測定した。フォルスコリン刺激による cAMP 生成をフォルスコリン無刺激に対して 100%とし、50%の抑制作用を示す被検化合物の濃度 (IC50値)を求めた。この結果得られた被検化合物の IC50値を

以下の表に示す。以下の表に示すとおり、本発明の化合物は、CB2 受容体に対してアゴニスト作用を示した。

表86

化合物	IC ₅₀ (nM)
I-46	5.4
I-39	13.7
I-49	2.2
I-74	1.6
I-92	<0.2
I - 93	0.6

5 上記に示した化合物以外の本発明化合物も、上記と同様、あるいはそれ以上の カンナビノイド 2 型受容体親和作用及びアゴニスト作用を示した。

なお、本発明化合物は以下に示すインビボでの試験により、抗炎症効果を確認することができる。

10 試験 ヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル実験

雌性 ddY マウス(7週令)を用い、10⁷個の SRBC をマウス左後肢足蹠皮内(40 μ1)に注射することにより感作する。感作から 5 日後に 10⁸個の SRBC をマウス右後肢足蹠皮内(40 μ1)に注射することにより DTH 反応を惹起する。カンナビノイド 2 型 受容体親和性化合物である本発明化合物を 0.6%アラビアゴム溶液に懸濁し、DTH 反応惹起 1 時間前および 5 時間後に経口投与(10 ml/kg)する。SRBC 注射 24 時間後に左右後肢の容積を水置換法により測定し、右足容積と左足容積の差を求めることにより足浮腫容量を算出して DTH 反応の指標とする。なお、統計的検定は Welchの t 検定法により行なうことができ、P<0.05 のとき有意差ありと判定することにより、本発明化合物の抗炎症効果を確認することができる。

20

15

また、本発明化合物は、代謝に対する安定性が高く、優れた医薬組成物である。

製剤例

以下に示す製剤例 1 ~ 8 は例示にすぎないものであり、発明の範囲を何ら限定することを意図するものではない。「活性成分」なる用語は、式(I)で示される化合 物、その互変異性体、それらのプロドラッグ、それらの製薬的に許容される塩またはそれらの溶媒和物を意味する。

(製剤例1)

硬質ゼラチンカプセルは次の成分を用いて製造する:

用量

10	•	(mg/カプセル)
	活性成分	2 5 0
	デンプン(乾燥)	2 0 0
	ステアリン酸マグネシウム	1 0
•	合計	4 6 0 m g

15 (製剤例2)

錠剤は下記の成分を用いて製造する:

		用量
		(mg/錠剤)
	活性成分	2 5 0
20	セルロース (微結晶)	4 0 0
	二酸化ケイ素 (ヒューム)	1 0
	ステアリン酸	5
	合計	6 6 5 m g

成分を混合し、圧縮して各重量665mgの錠剤にする。

25 (製剤例3)

以下の成分を含有するエアロゾル溶液を製造する:

		重	量	
		_	- CO-S.	

活性成分0.25エタノール25.75プロペラント22 (クロロジフルオロメタン)74.00合計100.00

5 活性成分とエタノールを混合し、この混合物をプロペラント22の一部に加え、-30℃に冷却し、充填装置に移す。ついで必要量をステンレススチール容器へ供給し、残りのプロペラントで希釈する。バブルユニットを容器に取り付ける。

(製剤例4)

活性成分60mgを含む錠剤は次のように製造する:

10	活性成分	60mg
	デンプン	4 5 m g
	微結晶性セルロース	3 5 m g
	ポリビニルピロリドン (水中10%溶液)	4 m g
	ナトリウムカルボキシメチルデンプン	4.5 mg
15	ステアリン酸マグネシウム	0.5 mg
	滑石	1 m g
	合計	150mg

活性成分、デンプン、およびセルロースはNo. 45メッシュU. S. のふるいにかけて、十分に混合する。ポリビニルピロリドンを含む水溶液を得られた粉末と混合し、ついで混合物をNo. 14メッシュU. S. ふるいに通す。このようにして得た顆粒を50℃で乾燥してNo. 18メッシュU. S. ふるいに通す。あらかじめNo. 60メッシュU. S. ふるいに通したナトリウムカルボキシメチルデンプン、ステアリン酸マグネシウム、および滑石をこの顆粒に加え、混合した後、打錠機で圧縮して各重量150mgの錠剤を得る。

25 (製剤例5)

20

活性成分80mgを含むカプセル剤は次のように製造する:

活性成分 80mg

 デンプン
 59mg

 微結晶性セルロース
 59mg

 ステアリン酸マグネシウム
 2mg

合計 200mg

5 活性成分、デンプン、セルロース、およびステアリン酸マグネシウムを混合し、 No. 45メッシュU. S. のふるいに通して硬質ゼラチンカプセルに200mg ずつ充填する。

(製剤例6)

活性成分225mgを含む坐剤は次のように製造する:

10活性成分2 2 5 m g飽和脂肪酸グリセリド2 0 0 0 m g合計2 2 2 5 m g

活性成分をNo.60メッシュU.S.のふるいに通し、あらかじめ必要最小限に加熱して融解させた飽和脂肪酸グリセリドに懸濁する。ついでこの混合物を、みかけ2gの型に入れて冷却する。

(製剤例7)

活性成分50mgを含む懸濁剤は次のように製造する:

活性成分50mgナトリウムカルボキシメチルセルロース50mg20シロップ1.25ml安息香酸溶液0.10ml香料q. v.色素q. v.精製水を加え合計5ml

25 活性成分をNo. 4 5 メッシュ U. S. のふるいにかけ、ナトリウムカルボキシメチルセルロースおよびシロップと混合して滑らかなペーストにする。安息香酸溶液および香料を水の一部で希釈して加え、攪拌する。ついで水を十分量加えて必要

な体積にする。

(製剤例8)

静脈用製剤は次のように製造する:

活性成分

100mg

5 飽和脂肪酸グリセリド

1000ml

上記成分の溶液は通常、1分間に1mlの速度で患者に静脈内投与される。

産業上の利用可能性

式(I)で示される本発明化合物は、カンナビノイド2型受容体(CB2R)に 10 結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。従って、カンナビノイド2型受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。

請求の範囲

1. 式(I):

$$(CH_2)_m$$
 R^2
 R^3
 (I)

5 (式中、

 R^{-1} は置換されていてもよい複素環式基又は式:-C(=Z) $W^{-R^{-4}}$ (式中、Zは酸素原子又は硫黄原子; W^{-1} は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基;

10 R²及びR³はそれぞれ独立して水素原子、置換されていてもよいアルキル、置換されていてもよいアルコキシアルキル、置換されていてもよいアミノアルキル又は置換されていてもよいシクロアルキル;又は

 R^2 及び R^3 は一緒になって置換されていてもよいヘテロ原子を含んでいてもよいアルキレン;

15 mは0~2の整数;

20

Aは置換されていてもよい芳香族炭素環式基又は置換されていてもよい芳香族複素 環式基;

但し、 R^1 が式:-C (=Z) $W-R^4$ (式中、Z は酸素原子又は硫黄原子;W は酸素原子又は硫黄原子; R^4 は非置換アルキル)で示される基の場合、 R^2 及び R^3 は一緒になって置換されていてもよいヘテロ原子を含んだアルキレンである)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。2. 式:

で示される基が、式:

(式中、

20

5 R⁶およびR⁶はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、 置換されていてもよいアミノ、置換されていてもよいアリール、置換されていても よいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアル キル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコ キシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキ 10 ル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシア ルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換 されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(= O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換され ていてもよい非芳香族複素環式基)で示される基;又は

15 R⁵及びR⁶は一緒になってアルキレンジオキシを表わし; Aは芳香族炭素環式基又は芳香族複素環式基を表わす。) である請求の範囲第1項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。

3. R⁵が水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、ジメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロメトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、エタンスルフ

ィニル、メタンスルホニル、エタンスルホニル、アセチル、メトキシメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピペリジノ、2-オキソピロリジノ、1-メトキシイミノエチル又はモルホリノカルボニルであり;R⁶が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキシ又はエトキシであり;又はR⁶及びR⁶が一緒になって-O-CH₂-O-であり;Aがフェニル、ナフチル、ピリジル又はキノリニルである請求の範囲第2項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。

4. R⁵およびR⁶がそれぞれ独立して水素、アルキル、アルコキシ又はアルキル チオであり; Aが芳香族炭素環式基である請求の範囲第2項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。

10

- 5. mが0である請求の範囲第1項~第4項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。
- 6. R¹が置換されていてもよい複素環式基である請求の範囲第5項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。
- 15 7. R¹が置換されていてもよいビリジル、置換されていてもよいベンゾチアゾリル、置換されていてもよいベンゾオキサゾリル又は置換されていてもよいチアジアゾリルである請求の範囲第6項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。
- 8. R¹が式:-C(=Z)W-R⁴(式中、Zは酸素原子又は硫黄原子;Wは酸素 原子又は硫黄原子;R⁴は置換されていてもよいアルキル、置換されていてもよい アルケニル又は置換されていてもよいアルキニル)で示される基である請求の範囲 第5項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれら の溶媒和物。
- 9. Z及びWが硫黄原子である請求の範囲第8項記載の化合物、そのプロドラッ 25 グ、それらの製薬上許容される塩又はそれらの溶媒和物。
 - 10. R²及びR³がそれぞれ独立してメチル、エチル、プロピル又はメトキシメチル;又は一緒になってエチレン、トリメチレン、テトラエチレン、ペンタメチレ

ン又はエチレンオキシエチレンである請求の範囲第1項~第9項のいずれかに記載 の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。 11. 式:

$$R^{6}$$
 R^{5}
 R^{3}
 R^{4}

5 (式中、 R^2 及び R^3 はそれぞれ独立して置換されていてもよいアルキル;又は R^2 及び R^3 は一緒になって置換されていてもよいヘテロ原子を含んでいてもよい アルキレン;

R⁴は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル;

10 R^5 はアルキル、アルコキシ又は置換されていてもよいアミノ;

R⁶は水素、アルキル、アルコキシ、置換されていてもよいアミノ、ハロアルコキシである)である請求の範囲第1項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。

- 12. R⁴が置換されていてもよいアルキル(置換基としては、シアノ、アルコキシ、アルキルカルボニル、カルボキシ、アルコキシカルボニル、アルケニルオキシカルボニル、アルコキシアルコキシカルボニル、置換されていてもよいカルバモイル(置換基としては、アルキル、アルコキシ)、ハロゲン、アルキルカルボニルオキシ、アリールオキシ、置換されていてもよい非芳香族複素環式基(置換基としては、アルキル)、置換されていてもよい芳香族複素環式基(置換基としては、アルキル)、置換されていてもよい芳香族複素環式基(置換基としては、アルキル、アリール)、式:-O-R^I(Rは非芳香族複素環式基)で示される基)、アルケニル又はアルキニルである請求の範囲第11項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。
 - 13. Aが置換されていてもよいフェニル、置換されていてもよいナフチル又は

置換されていてもよいキノリルである請求の範囲第1項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物。

- 14. 請求の範囲第1項~第13項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩又はそれらの溶媒和物を含有する医薬組成物。
- 5 15. カンナビノイド 2 型受容体親和性である請求の範囲第 1 4 項記載の医薬組成物。
 - 16. カンナビノイド2型受容体作動性である請求の範囲第15項記載の医薬組成物。
- 17. 抗炎症剤である請求の範囲第14項~第16項のいずれかに記載の医薬組 10 成物。
 - 18. 請求の範囲第1項記載の化合物を投与することを特徴とする炎症の治療方法。
 - 19. 抗炎症剤を製造するための請求の範囲第1項記載の化合物の使用。

International application No.

PCT/JP02/01229

	ATION OF SUBJECT						
Int.Cl7	C07D279/06,	08,	417/12,	513/10,	A61K31/54,	541,	5415
	547, A61P43,	/00,	29/00				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ CO7D279/06, 08, 417/12, 513/10, A61K31/54, 541, 5415, 547, A61P43/00, 29/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), CAOLD (STN), REGISTRY (STN), WPI/L (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 01/19807 A1 (Shionogi & Co., Ltd.), 22 March, 2001 (22.03.01),	1-5,8-17, 19
Р, Ү	All pages & AU 6877300 A	6-7
Y	JP 62-120374 A (Yoshitomi Pharm Ind. Kabushiki Kaisha), 01 June, 1987 (01.06.87), All pages (Family: none)	1-5,8-14, 17,19
Y	US 4931444 A (Jannsen Pharmaceutica N.V.), 05 June, 1990 (05.06.90), Claims; column 13, line 62 to column 15, line 30; column 27, table 2, etc. & EP 331232 A2 & JP 2-3678 A	1-5,8-14, 17,19

×	Further documents are listed in the continuation of Box C.		See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
"O"	document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art
"P"	document published prior to the international filing date but later than the priority date claimed	"&"	document member of the same patent family
Date	of the actual completion of the international search	Date	of mailing of the international search report
	18 April, 2002 (18.04.02)		21 May, 2002 (21.05.02)
Nam	and mailing address of the ISA/	Auth	orized officer
	Japanese Patent Office		
Facsi	mile No.	Tele	phone No.

International application No.
PCT/JP02/01229

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.						
Y	US 5433829 A (The Texas A&M University System), 06 September, 1994 (06.09.94), All pages & WO 93/10790 A1	1-5,8-14, 17,19						
Y	Zawisza, Tadeusz, et al., Synthesis and pharmacological analysis of new derivatives of tetrahydro-[1, 3]-thiazine and 2-thiobarbituric acid, Arch. Immunol. Ther. Exp., 1981, Vol.29, No.2, pages 235 to 248 Particularly, refer to the compounds etc. describing on pages 238, 240 to 241	1-5,8-14, 17,19						
Y	Gieldanowski, Jerzy, et al., Pharmacological activityin the group of new substituted thiazoloacetic and thiazinocarboxyl acid derivatives, Arch. Immunol. Ther. Exp., 1978, Vol.26, Nos. 1 to 6, pages 921 to 929 Particularly, refer to the compounds etc. describing on page 927	1-5,8-14, 17,19						
A	WO 00/10968 A1 (Bayer AG.), 02 March, 2000 (02.03.00), All pages & EP 1105371 A1	15-16						
A	Soderstrom, Ken, et al., Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor, Journal of Neurochemistry, 2000, Vol.75, No.1, pages 413 to 423	15-16						

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP02/01229

<u>Continuat</u>	ion of Box	No.I-1 of	continuation of	first sheet(1)
international	search.			
•				

Form PCT/ISA/210 (extra sheet) (July 1998)

International application No.

PCT/JP02/01229

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 18 because they relate to subject matter not required to be searched by this Authority, namely: Claim 18 pertains to a method for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to make an 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. ⁷ C07D279/06, 08, 417/12, 513/10, A61K31/54, 541, 5415, 547, A61P43/00, 29/00					
 B. 調査を行	テった分野				
	りたの式				
Int. Cl. 7 (CO7D279/06, 08, 417/12, 513/10, A61K31/54, 541,	5415, 547, A61P43/00, 29/00			
•					
最小限資料以外	トの資料で調査を行った分野に含まれるもの				
			ŕ		
国際調査で使用	目した電子データベース (データベースの名称、	調査に使用した用語)			
CAPLUS (STN), CAOLD (STN), REGISTRY (STN), WPI/L (DIALOG				
C. 関連する	5と認められる文献		•		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときけ その即連する笹酢の本元	関連する 請求の範囲の番号		
PX	WO 01/19807 A1 (SHIONOGI & CO.,		1-5, 8-17, 19		
PY	全頁を参照。	EID. 7 2001. 00. 22	6-7		
	&AU 6877300 A				
Y	TD 69190974 A (VOCULTOUT DUADU	TAID VIV) 1007 OC 01	1 5 0 14		
1	JP 62-120374 A(YOSHITOMI PHARM 全頁を参照。	IND KK) 1987. 00. 01	1-5, 8-14, / 17, 19		
	(ファミリーなし)		21, 20		
Y	US 4931444 A(JANNSEN PHARMACEUT 請求の範囲、第13欄第62行〜第:		1-5, 8-14,		
	間外の配置、第13個第0211~第1		17, 19		
図 C欄の続き	とにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献の		の日の後に公表された文献			
「A」特に関連 もの	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ 出願と矛盾するものではなく、			
「E」国際出席	頁日前の出願または特許であるが、国際出願日	・の理解のために引用するもの			
	☆表されたもの E張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、当 の新規性又は進歩性がないと考え			
	は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当	1該文献と他の1以		
文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」口頭による開示、使用、展示等に貫及する文献 よって進歩性がないと考えられるもの					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了した日		国際調査報告の発送日 21.0	5.02		
	18.04.02	(language	· · · · · · · · · · · · · · · · · · ·		
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	4P 3040		
日本国特許庁 (ISA/JP) 郵便番号100-8915		上條のぶよ	<i>y</i> (
東京都千代田区霞が関三丁目4番3号		電話番号 03-3581-1101	内線 3490		

_ /**		
C (続き). 引用文献の	関連すると認められる文献	BB W-J
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	TABLE 2 等を参照。 &EP 331232 A2 &JP 2-3678 A	HISTORY PUBLIC TO PAGE
Y	US 5433829 A (THE TEXAS A&M UNIVERSITY SYSTEM) 1994.09.06 全頁を参照。 &WO 93/10790 A1	1-5, 8-14, 17, 19
Υ .	Zawisza, Tadeusz, et al., Synthesis and pharmacological analysis of new derivatives of tetrahydro-[1,3]-thiazine and 2-thiobarbituric acid, Arch. Immunol. Ther. Exp., 1981, Vol. 29, No. 2, p. 235-248 特に、第238, 240~241頁に記載の化合物等を参照。	1-5, 8-14, 17, 19
Y	Gieldanowski, Jerzy, et al., Pharmacological activity in the group of new substituted thiazoloacetic and thiazinocarboxyl acid derivatives, Arch. Immunol. Ther. Exp., 1978, Vol. 26, No. 1-6, p. 921-929 特に、第927頁に記載の化合物等を参照。	1-5, 8-14, 17, 19
A	WO 00/10968 A1 (BAYER AG.) 2000.03.02 全頁を参照。 &EP 1105371 A1	15-16
A	Soderstrom, Ken, et al., Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor, Journal of Neurochemistry, 2000, Vol.75, No.1, p.413-423	15-16
Ą		

1. X	請求の範囲 18 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、 請求の範囲 18は、治療による人体の処置方法に関するものであって、PCT 17条(2)(a)(i)及び P CT 規則 39. 1(iv)の規定により、この国際調査機関が国際調査をすることを要しない対象に係る ものである。
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. []	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ櫚	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に並	☆べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった衣の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	至手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出題人から異議申立てがあった。] 追加調査手数料の納付と共に出題人から異議申立てがなかった。