

Diego Bertolini diegobertolini diego

Extração de Características

- -Entender os conceitos de padrões (formas).
- -O que são características e por que elas são importantes.
- -Introdução a percepção
- -Apresentar diferentes tipos de características.

Padrões

- A facilidade com que nós humanos classificamos e interpretamos os padrões que nos cercam, dão a falsa idéia de que é fácil automatizar tal processo.

Como reconhecemos um determinado padrão?

Mesmo sem perceber, extraímos suas características relevantes.

Qualquer medida que se possa extrair de um determinado objeto.

- Simbólicas
- Numéricas contínuas.
- Numéricas binárias.

Exemplo de característica simbólica:

Cor do objeto.

Exemplo de característica numérica continua.

Peso do objeto.

Característica numérica binária.

 Determinam a presença ou ausência de uma determinada característica.

Objetivo: Caracterizar um objeto através de medidas, as quais são bastante similares para objetos da mesma classe, e bastante diferentes para objetos de outras classes.

Características discriminantes e invariantes.

Globais

Extrair características de uma maneira global usando todo sinal.

Maneira como os humanos reconhecem objetos

Gestalt (Percepção)

Locais

Segmentar em partes menores para então extrair características.

Percepção

Processo de adquirir, interpretar, selecionar e organização informações sensoriais.

Gestalt

Enfatiza o todo

Processo de reconhecimento se dá pelas propriedades globais (holístico) e não pelas partes.

Baseia-se em princípios tais como

• Emergência, Construtivismo, Invariância

Prova de que reconhecemos a partir do todo e não por partes.

Prova de que reconhecemos a partir do todo e não por partes.

Construtivismo

Conseguimos identificar características não presentes a partir da percepção de características presentes.

Invariância

Objetos são reconhecidos independentemente de rotação, translação, escala e ruído.

Holístico X Local

Muitas vezes características globais, como as defendida pela Gestalt, não apresentam desempenho satisfatório.

Nesses casos, características locais se tornam bastante interessantes.

Padrões

A maioria das coisas que nos cerca podem ser definidas como padrões.

No nosso exemplo dos peixes:

Devemos procurar características invariantes a rotação e translação.

Não sabemos como o peixe estará posicionado na esteira.

Tamanho é uma boa característica?

 Não, pois um salmão jovem é menor que um salmão adulto, mas continua salmão (escala).

Então que tipo de características deveríamos empregar?

Características ligadas a cor e textura geralmente são invariantes a rotação e translação.

Características Estatísticas

Geralmente extraem coeficientes estatísticos do padrão como um todo. Entre elas podemos citar

Templates

Momentos de

- Hu (invariante a rotação, translação e escala)
- Zernike (invariante a rotação)

PCA (Principal Component Analysis)

Correlação

Template Matching

Usa as características de mais baixo nível conhecidas:

- Pixel

O processo é simples e funciona quando os padrões são bem comportados.

Basicamente consiste em:

Criar um *template* para cada classe do problema em questão.

Comparar o exemplo de teste com todos os templates disponíveis.

Template Matching

Ruídos devido aquisição Aumentam a variabilidade, diminuindo assim a eficiência do *template matching*

Template Matching

Uma outra forma de usar template matching consiste em fazer a comparação usando um esquema de zoneamento.

- Enfatizar diferenças locais

Uma variante do template matching é o feature matching.

Nesse caso, a comparação se dá no nível das características.

Momentos

Momentos de HU:

- Característica Global e Invariante
- Medidas puramente estatísticas da distribuição dos pontos.
- Considere a imagem binária de um objeto MxN onde I(x,y) representa o estado do pixel (x,y) preto ou branco.

Um Exemplo - Momentos de HU

Um Exemplo - Momentos de HU

Momento	R1	R2	R3	R4	R5	R6	
1	1.67E-01	1.94E-01	2.08E-01	1.67E-01	1.94E-01	1.94E-01	
2	0.00E+00	6.53E-03	1.56E-02	0.00E+00	6.53E-03	6.53E-03	
3	0.00E+00	1.02E-03	0.00E+00	0.00E+00	1.02E-03	1.02E-03	
4	0.00E+00	4.56E+05	0.00E+00	0.00E+00	4.56E+05	4.56E+05	
5	0.00E+00	4.25E-09	0.00E+00	0.00E+00	4.25E-09	4.25E-09	
6	0.00E+00	1.70E+06	0.00E+00	0.00E+00	1.70E+06	1.70E+06	
7	0.00E+00	-8.85E+09	0.00E+00	0.00E+00	-8.85E+09	-8.85E+09	

R1 e R4, R2 e R5 são diferentes escalas do mesmo objeto

R6 é a versão rotacionada de R2 e R5

Um Exemplo - Momentos de HU

Analisando os resultados:

Podemos verificar que os momentos são invariantes a rotação, translação e escala.

Note que R3 é o único objeto diferente, e portanto produz diferentes valores.

Características Estruturais

Extraem informações da estrutura do padrão.

- Concavidades
- Contornos
- Esqueleto
- Perfil
- Área, Distribuição

Muitas vezes informações estatísticas são computadas a partir das informações estruturais.

Concavidades

Nesse caso podemos identificar 4 tipos de concavidades

Baseia-se na quantidade de vizinhos pretos

Concavidades

Como armazenar as informações?

Vetor de características:

Cada posição do vetor corresponde a uma possível configuração. Nesse caso, teríamos um vetor de quatro posições.

Distribuição de Pixels

Nesse caso podemos usar um histograma para representar a distribuição dos pixels da imagem.

Contorno

Para cada pixel do contorno, contabiliza-se a direção do próximo pixel.

Vetor de características teria 8 posições onde cada posição teria a soma das direções.

Zoneamento

Zoneamento é uma estratégia bastante usada para enfatizar determinadas regiões de um padrão.

Características locais

Zonas Simétricas e Assimétricas

Depende do problema que está sendo abordado.

Normalização implícita.

Zoneamento

zonas simétricas

Com base na informação das duas zonas inferiores somente, temos informações similares ao dígito 3

Qual seria a melhor estratégia de zoneamento?

Mapas de Pixels

Também conhecidos como Edge Maps

Se o objeto puder ser reduzido a um conjunto de linhas horizontais, verticais e diagonais, esses mapas podem fornecer características discriminantes.

Inicialmente a imagem deve ser esqueletizada. Utiliza simples detectores de linhas

-1	-1	-1		-1	2	-1	-1	-1	2	2	-1	-1
2	2	2		-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1		-1	2	-1	2	-1	-1	-1	-1	2
(a)			(b)			(c)			(d)			

horizontal vertical Diagonal 45º Diagonal -45º

Mapas de Pixels

Após a detecção das linhas, as mesmas são compactadas em mapas menores Diminuir custo computacional Retêm informações mais importantes

Distâncias

Outra característica com um bom poder de discriminação é a DDD (*Directional Distance Distribution*)

Calcula a distância de cada pixel branco (preto) para seu mais próximo vizinho preto (branco).

Utiliza 8 direções

Perguntas?

Dúvidas, Críticas, Sugestões, Reclamações?

diegobertolini@utfpr.edu.br