Data basics

ME 447/547 Visualizing Data

Richard Layton

March 2020

Rose-Hulman Institute of Technology

Preparing data for graphs starts with four basic skills

Obtain the raw data

Read raw data into R and examine it

Identify the structure of your data

Tidy the data and write to file

Data are everywhere

Data are provided in base R

Data are provided in R packages

Online sources are ubiquitous

- FiveThirtyEight https://data.fivethirtyeight.com/
- US government https://www.data.gov/
- NOAA climate data https://www.ncdc.noaa.gov/cdo-web/
- Publications for which code and/or data are available https://reproducibleresearch.net/reproducible-material/

You may even have data of your own from prior courses or research

For practice, use data in base R

data() to list data sets in base R

```
#> AirPassengers Monthly Airline Passenger Numbers
#> BJsales Sales Data with Leading Indicator
#> BOD Biochemical Oxygen Demand
#> CO2 Carbon Dioxide Uptake in Grass Plants
#> Formaldehyde Determination of Formaldehyde
etc.
```

4

For practice, use data in R packages

data(package = "dplyr") to list data sets in package dplyr

#> band_instruments Band membership

#> band_instruments2 Band membership

#> band_members
Band membership

See the help page for a data set by typing? data_name

```
library("graphclassmate")
data(package = "graphclassmate")
? metro_pop
```

metro_pop {graphclassmate} R Documentation
Population in the NY metro area
Description
A data set of population in the New York metropolitan area by county and race/ethinicty from the 2000 census.
Usage
metro_pop
Format
A tidy data frame (tibble) with 60 observations and 3 variables. An observation is the population in a county by race/ethnicity.
race
Race or ethnicity
county
Name of county
population
Number of residents from the 2000 US census

Data in base R and in R packages are automatically loaded

Save original data files in the data-raw directory

Data in their original form are never edited manually

We work with file manangement in detail during the data studio.

Read the raw data with R scripts

R scripts are saved in the carpentry or explore directories

We work with file manangement in detail during the data studio.

Suppose data-raw/ contains data in an Excel file

readxl is the package (you will have to install the package)

read_excel() is the function

We work with data tidying in detail during the data studio.

read_excel() to read an Excel file

We can pretty-print the data using knitr::kable()

```
library("knitr")
kable(tidy_data)
```

country	year	cases	population
 Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Suppose data-raw/ contains data in a CSV file

readr is the package (part of the tidyverse)

read_csv() is the function

We work with data tidying in detail during the data studio.

read_csv() to read a CSV file

```
library("tidyverse") # loads the readr package
tidy_data_2 <- read_csv(file = "data-raw/scanvote.csv")</pre>
```

We can pretty-print the top n rows with head()

```
tidy_data_2 %>%
  head(., n = 5L) %>%
  kable()
```

District	Yes	Pop	Country
Uusimaa	70.8	117.5	Fin
Turku ja Pori	53.4	32.0	Fin
Hame	57.8	39.5	Fin
Kymi	65.2	31.8	Fin
Ahvenanmaa	51.9	15.4	Fin

read_excel() and read_csv() produce tibbles

class(tidy data)

#> [1] "spec tbl df" "tbl df"

```
#> [1] "tbl_df" "tbl" "data.frame"

class(tidy_data_2)
```

"tbl"

"data.frame"

Confine your webscraping (for now) to data in ASCII format

Introduction Methodology Data Explanation

CANADA

Newfoundland Prince Edward Island

Nova Scotia
New Brunswick
Quebec
Ontario
Manitoba
Saskatchewan
Alberta
British Columbia
Northwest

Archives (Life Tables)

Yukon

Canadian Human Mortality Database

ALBERTA

CHMD Data	Age Interval x Year Interval						
1921-2011	1 x 1	1 x 5	1 x 10	5 x 1	5 x 5	5 x 10	
Births	<u>View</u>						
Deaths (Lexis triangle)	<u>View</u>			<u>View</u>			
Population size	<u>View</u>			<u>View</u>			
Exposure-to-risk	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	
Death rates	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	
Life tables - Male	<u>View</u>	<u>View</u>	<u>View</u>	View	<u>View</u>	View	
Life tables - Female	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	View	
Life tables - Total	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	<u>View</u>	
Life expectancy at birth	View						

Source: Canadian Human Mortality Database

On any online data page, right-click > View page source

Canada	-Alberta,	Population s	ize (1-year)	Last modified	: 31-Jul-2014, MPv5	(May07)
Year	Age	Female	Male	Total		
1921	0	7864.85	8133.86	15998.71		
1921	1	7936.45	8142.91	16079.36		
1921	2	8024.81	8240.34	16265.15		
1921	3	8017.72	8244.01	16261.73		
1921	4	7925.59	8154.78	16080.37		
1921	5	7760.15	7991.74	15751.89		
1921	6	7530.77	7768.78	15299.55		
1921	7	7250.42	7495.09	14745.51		
1921	8	6926.93	7181.14	14108.07		
1921	9	6568.14	6829.25	13397.39	Back	Alt+Left Arrow
1921	10	6177.87	6440.22	12618.09	Forward	Alt+Right Arrow
1921	11	5832.52	6104.80	11937.32	Reload	Ctrl+F
1921	12	5561.03	5857.21	11418.24	Save as	Ctrl+5
1921	13	5341.23	5669.97	11011.20	Print	Ctrl+F
	14	5112.95	5478.27	10591.22	Cast	Calve
1921			F300 30	10101 03	Cast	
1921 1921	15	4892.53	5302.30	10194.83	Tourstate to Foot	
1921	15 16	4892.53 4701.44	5302.30	9848.89	Translate to Engli	ish
					Translate to Engli Search	ish
1921 1921	16	4701.44	5147.45	9848.89	Search	
1921 1921 1921	16 17	4701.44 4557.01	5147.45 5008.00	9848.89 9565.01		

Data formatted in ASCII (text) is easily recognized

Year 1921 1921	Age 0 1	Female 7864.85	Male	T-4-1		
1921		7864 85		Total		
	1	,007.00	8133.86	15998.71		
4004		7936.45	8142.91	16079.36		
1921	2	8024.81	8240.34	16265.15		
1921	3	8017.72	8244.01	16261.73		
1921	4	7925.59	8154.78	16080.37		
1921	5	7760.15	7991.74	15751.89		
1921	6	7530.77	7768.78	15299.55		
1921	7	7250.42	7495.09	14745.51		
1921	8	6926.93	7181.14	14108.07		
1921	9	6568.14	6829.25	13397.39		
1921	10	6177.87	6440.22	12618.09		
1921	11	5832.52	6104.80	11937.32		
1921	12	5561.03	5857.21	11418.24		
1921	13	5341.23	5669.97	11011.20		
1921	14	5112.95	5478.27	10591.22		
1921	15	4892.53	5302.30	10194.83		
1921	16	4701.44	5147.45	9848.89		
1921	17	4557.01	5008.00	9565.01		

Data formatted in HTML is also easily recognized

```
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 TRANSITIONAL//EN"
a <HTML LANG="en">
4 <head>
5 <script>
o if (document.lavers)
    WM scaleFont(initialFontSize, fontUnits);
8 </script>
<title>Historical Census of Housing Tables Home Values - Housing Topics - U.S. Census
  Bureau</TITLE>
11 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
13 <meta name="DC.title" content="US Census Bureau Historical Census of Housing Tables Home</pre>
  Values" />

's <meta name="DC.description" content="Selected housing characteristics data from decennial</pre>
  census housing files are presented here for the United States and for each state. Trend
  analyses are discussed, with graphic illustration at the national level." />
17 <meta_name="DC.creator" content="SFHSD Division" />
/meta name="DC.date.created" scheme="ISO8601" content="2000-06-01" />
cmeta name="DC.date.reviewed" scheme="IS08601" content="2000-06-01" />
cmeta name="DC.language" scheme="DCTERMS.RFC1766" content="EN-US" />
cmeta name="author" content="US Census Bureau Historical Census of Housing Tables Home
```

With online data in ASCII format, webscraping is easy

utils is the package

```
read.table() is the function
library("utils")
url <-
  "http://www.prdh.umontreal.ca/BDLC/data/alb/Population.txt"
df <- read.table(url,</pre>
                   skip = 2,
                   header = TRUE,
                   stringsAsFactors = FALSE)
df <- as tibble(df)</pre>
```

Examine it and write it to the data-raw directory

```
glimpse(df)
#> Observations: 10,212
#> Variables: 5
#> $ Year <int> 1921, 1921, 1921, 1921, 1921, 1921, 192
#> $ Age <chr> "0", "1", "2", "3", "4", "5", "6", "7",
#> $ Female <dbl> 7864.85, 7936.45, 8024.81, 8017.72, 792
#> $ Male <dbl> 8133.86, 8142.91, 8240.34, 8244.01, 815
#> $ Total <dbl> 15998.71, 16079.36, 16265.15, 16261.73,
write_csv(df, "data-raw/alberta_mortality.csv")
```

When the data are not tidy, ...

... the read results can be weird.

```
untidy_data <- read_excel(path = "data-raw/VADeaths.xlsx",
                         sheet = "VADeaths") %>%
               glimpse()
#> Observations: 6
#> Variables: 5
#> $ ...1 <chr> "Group", "50-54", "55-59", "60-64", "65-69", '
#> $ Rural <chr> "Men", "11.7", "18.10000000000001", "26.9", '
#> $ ...3 <chr> "Women", "8.6999999999993", "11.7", "20.3"
#> $ Urban <chr> "Men", "15.4", "24.3", "37", "54.6", "71.09999
#> $ ...5 <chr> "Women", "8.4", "13.6", "19.3", "35.1", "50"
```

All the cells have been converted to character data

The result is more easily seen using knitr::kable()

kable(untidy_data)

1	Rural	3	Urban	5
Group	Men	Women	Men	Wom
50-54	11.7	8.699999999999993	15.4	8.4
55-59	18.1000000000000001	11.7	24.3	13.6
60-64	26.9	20.3	37	19.3
65-69	41	30.9	54.6	35.1
70-74	66	54.3	71.099999999999994	50

The first row is not an observation—that's the problem

When reading the file, we need to skip the first row

The data are at least readable but we have lost information

Group	Men2	Women3	Men4	Women5
50-54	11.7	8.7	15.4	8.4
55-59	18.1	11.7	24.3	13.6
60-64	26.9	20.3	37.0	19.3
65-69	41.0	30.9	54.6	35.1
70-74	66.0	54.3	71.1	50.0

Carpentry on untidy data is a large fraction of your effort

It is often said that 80% of data analysis is spent on the process of cleaning and preparing the data.

Data preparation is not just a first step, but must be repeated many times over the course of analysis as new problems come to light or new data is collected.

—Hadley Wickham, Tidy Data

Understanding data structure is necessary for tidying

Number of variables? Continuous or discrete?

Number of variables? Nominal or ordinal? Number of levels each?

Transforming data to tidy form is necessary for productivity

- · how you tidy the data set before graphing
- the graph types that are suitable
- how easy it is to get ggplot to do your bidding
- · how productively you spend your time

For graphical productivity, data has to be tidy

In a tidy data set:

Each **variable** is saved in its own **column**

Each **observation** is saved in its own **row**

 $Source: \ data-wrangling-cheatsheet, \ https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf$

Every column is a variable, every row is an observation

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583
	ta	ble1	

Source: Data Science with R by Garrett Grolemund, http://garrettgman.github.io/tidying/

Sadly, untidy data is common

				country	vear	key	▲ value
country	year	key	value	Afghaistan	140	cases	١.
Afghanistan	1999	cases	745	Afghanistan Afghanistan	1999	population cases	>870
				Afghanistan	2000	population	5953
Afghanistan	1999	population	19987071	Brazil	1989	cases	(st
Afghanistan	2000	cases	2666	Brazi	1999	population	10060
Aignanistan	2000	Cases	2000	Brazil Brazil	2000	cases	C.0.
Afghanistan	2000	population	20595360	China	1999	cases	212
				China	1999	population	12 9152
Brazil	1999	cases	37737	China	2000	cases	213
Brazil	1999	population	172006362	Chin	*	population	12854285
Diazii	1000	population	172000002		var	iables	
Brazil	2000	cases	80488	country	year	key	value
Brazil	2000	population	174504898	Afghanistan	1995	- unacon	19987
Obles	1000		040050	Afghanistan		4	20595
China	1999	cases	212258	Brazil			37
China	1999	population	1272915272	Brazil	1000	←	1720063
China	2000	cases	213766	Brazii	1000	←	174504
China	2000	population	1280428583	China		←	1212915
				China		-	213
	ta	ble2			obs	ervations	

Sadly, untidy data is common

Source: Data Science with R by Garrett Grolemund, http://garrettgman.github.io/tidying/

Some industry or government spreadsheets are horribly untidy

Source: Extract tables from messy spreadsheets with jailbreakr, http://blog.revolutionanalytics.com/2016/08/jailbreakr.html

Data beyond the "raw" stage are written to file

Write functions

```
write_csv() # use CSV generally
saveRDS() # use RDS to preserve factors
```

Read functions for further data carpentry

```
read_csv()
readRDS()
```

Data beyond the "raw" stage reside in the data directory

In the data studio, you'll start practicing the skills we've outlined

Obtain the raw data

Read raw data into R and examine it

Identify the structure of your data

Tidy the data and write to file

