Intervals, Transformations, and Slope Solution (version 29)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8,-1) \cup (2,6)$
Negative	$(-10, -8) \cup (-1, 2)$
Increasing	$(-9, -7) \cup (1, 6)$
Decreasing	$(-10, -9) \cup (-7, 1)$
Domain	(-10,6)
Range	(-3,4)

Intervals, Transformations, and Slope Solution (version 29)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=29$ and $x_2=57$. Express your answer as a reduced fraction.

$$\frac{g(57) - g(29)}{57 - 29} = \frac{14 - 77}{57 - 29} = \frac{-63}{28}$$

The greatest common factor of -63 and 28 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{4}$$

2