STOCHASTIC OF FINANCE (MTL733)

ANANTA KUMAR MAJEE

1. Introduction

The theory of stochastic processes turns to be a useful tool in solving problems in various fields such as engineering, genetics, statistics, economics, finance, etc. The word *stochastic* means *random* or *chance*. Stochastic processes can be thought of collection of random variables indexes by some parameter.

Definition 1.1 (Stochastic process). A real stochastic process is a collection of random variables $\{X(t): t \in \mathbf{T}\}$ defined on a common probability space $(\Omega, \mathbb{P}, \mathcal{F})$ with values in \mathbb{R} . For each $\omega \in \Omega$, the mapping $t \mapsto X(t, \omega)$ is the corresponding sample path. In general we observe a different sample path.

- T is called the index set of the process which is usually a subset of \mathbb{R} .
- $\{X(t): t \in \mathbf{T}\}$ is said to be continuous stochastic process if its sample function $X(t, \omega)$ is a continuous function of $t \in \mathbf{T}$ for almost every $\omega \in \Omega$.

Definition 1.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A filtration is a family of sub- σ algebras $\{\mathcal{F}_t : t \geq 0\}$ of \mathcal{F} such that $\mathcal{F}_s \subset \mathcal{F}_t$ for $s \leq t$.
- A stochastic process X(t) is said to be adapted to the filtration $\{\mathcal{F}_t\}$ if for each t, X(t) is \mathcal{F}_t -measurable i.e., $\{\omega \in \Omega : X(t,\omega) \in B\} \in \mathcal{F}_t$ for any Borel subset B of \mathbb{R} .

We think of X(t) as the price of some asset at time t and \mathcal{F}_t as the information obtained by watching all the prices in the market up to time t.

Example 1.1. Let $X(\cdot)$ be a real-valued stochastic process. Define

$$\mathcal{F}_t := \sigma(X(s) : 0 \le s \le t)$$

Then \mathcal{F}_t is a filtration. Moreover, X(t) is adapted to the filtration \mathcal{F}_t . This filtration is called the history of the process until (and including) time $t \geq 0$. Sometimes it is called **natural** filtration generated by the process $X(\cdot)$.

1.1. Conditional expectation. We now recall definition of conditional expectation and its important properties.

Definition 1.3 (Conditional expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{Y} is a sub- σ -algebra of \mathcal{F} . For any integrable random variable X, we define conditional expectation of X given the σ -algebra \mathcal{Y} , denoted by $\mathbb{E}(X|\mathcal{Y})$ to be a \mathcal{Y} -measurable random variable such that

$$\int_A X \, d\mathbb{P} = \int_A \mathbb{E}(X|\mathcal{Y}) \, d\mathbb{P} \quad \forall \, A \in \mathcal{Y}.$$

One can easily check that

- i) $\mathbb{E}[\mathbb{E}(X|\mathcal{Y})] = \mathbb{E}[X]$.
- ii) $\mathbb{E}(X|\mathcal{W}) = \mathbb{E}[X]$, where $\mathcal{W} = \{\emptyset, \Omega\}$ is the trivial σ -algebra.

Theorem 1.1. Let X be an integrable random variable. Then for each σ -algebra $\mathcal{Y} \subset \mathcal{F}$, the conditional expectation $\mathbb{E}(X|\mathcal{Y})$ exists and is unique up to \mathcal{Y} -measurable sets of probability zero.

2 A. K. MAJEE

Properties of conditional expectation: We now state some important properties of conditional expectation:

- a) For any Y-measurable integrable random variable, we have $\mathbb{E}(X|\mathcal{Y}) = X$ a.s.
- b) Linearity: for $a, b \in \mathbb{R}$, $\mathbb{E}(aX + bY|\mathcal{Y}) = a\mathbb{E}(X|\mathcal{Y}) + b\mathbb{E}(Y|\mathcal{Y})$ a.s..
- c) If X is Y-measurable and XY is integrable, then $\mathbb{E}(XY|\mathcal{Y}) = X\mathbb{E}(Y|\mathcal{Y})$ a.s..
- d) Tower property: For $\mathcal{W} \subset \mathcal{Y}$, we have

$$\mathbb{E}(X|\mathcal{W}) = \mathbb{E}(\mathbb{E}(X|\mathcal{Y})|\mathcal{W}) = \mathbb{E}(\mathbb{E}(X|\mathcal{W})|\mathcal{Y}) \text{ a.s..}$$

e) Monotonicity: $X \leq Y$ a.s. implies that $\mathbb{E}(X|\mathcal{Y}) \leq \mathbb{E}(Y|\mathcal{Y})$ a.s.

Lemma 1.2 (Conditional Jensen's inequality:). Suppose $\phi : \mathbb{R} \to \mathbb{R}$ is convex with $\mathbb{E}[|\phi(X)|] < +\infty$. Then

$$\phi(\mathbb{E}(X|\mathcal{Y})) \le \mathbb{E}(\phi(X)|\mathcal{Y}) \ a.s..$$

Definition 1.4 (Martingale). A stochastic process $\{X(t): t \in \mathbf{T}\}$ is called a **martingale** with respect to a filtration $\{\mathcal{F}_t\}$ if

- a) $\{X(t): t \in \mathbf{T}\}\$ is adapted to the filtration $\{\mathcal{F}_t\}_{t \in \mathbf{T}}$
- b) $\mathbb{E}[|X(t)|] < +\infty$ for all $t \in \mathbf{T}$.
- c) for all $s \leq t$, $\mathbb{E}[X(t)|\mathcal{F}_s] = X(s)$ a.s.
- If condition c) is replaced by: $\mathbb{E}[X(t)|\mathcal{F}_s] \geq X(s)$ a.s. for all $s \leq t$, then it is called **submartingale**.
- If condition c) is replaced by: $\mathbb{E}[X(t)|\mathcal{F}_s] \leq X(s)$ a.s. for all $s \leq t$, then it is called **supermartingale**.

Observe that if X(t) is a martingale, then $\mathbb{E}[X(t)]$ is constant.

Example 1.2. Let $\{X(t): t \geq 0\}$ be a stochastic process with stationary and independent increments such that $\mathbb{E}[|X(t)|] < +\infty$ for all $t \geq 0$. Then $\{X(t): t \geq 0\}$ is a martingale/submartingale/supermartingale with respect to its natural filtration if $\mathbb{E}[X(t)] = 0/\mathbb{E}[X(t)] \geq 0/\mathbb{E}[X(t)] \leq 0$ for all $t \geq 0$ respectively.

Solution: For s < t, we have

$$\mathbb{E}[X(t)|\mathcal{F}_s] = \mathbb{E}[X(t) - X(s) + X(s)|\mathcal{F}_s] = \mathbb{E}[X(t) - X(s)|\mathcal{F}_s] + \mathbb{E}[X(s)|\mathcal{F}_s]$$

$$= \mathbb{E}[X(t) - X(s)] + X(s) = \mathbb{E}[X(t - s)] + X(s) \text{ a.s.}$$

Thus, we have

$$\mathbb{E}[X(t)|\mathcal{F}_s] \begin{cases} = X(s) \ a.s. & if \ \mathbb{E}[X(t)] = 0 \\ \ge X(s) \ a.s. & if \ \mathbb{E}[X(t)] \ge 0 \\ \le X(s) \ a.s. & if \ \mathbb{E}[X(t)] \le 0. \end{cases}$$

Remark 1.1. Poisson process N(t) with respect to its natural filtration is a submartingale.

Definition 1.5 (Stopping time). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space equipped with the filtration $\{\mathcal{F}_t\}$. A random time $\tau: \Omega \mapsto [0, \infty]$ is called a **stopping time** with respect to the filtration \mathcal{F}_t if

$$\{\tau \leq t\} \in \mathcal{F}_t \quad \forall t \geq 0.$$

Every random time equal to a nonnegative constant is a stopping time.

2. Brownian motion

We will discuss a more useful stochastic process so called Brownian motion and its essential properties. R. Brown in 1826-27 observed the irregular motion of pollen particles suspended in water. He and others noted that

- a) the path of a given particle is very irregular, having a tangent at no point, and
- b) the motions of two distinct particles appear to be independent.

The mathematical description of the above observation can be given as follows:

Definition 2.1 (Brownian motion). A real-valued stochastic process $\{B(t): t \geq 0\}$ is called a Brownian motion if

- a) B(0) = 0 a.s.
- b) B(t) B(s) is $\mathcal{N}(0, t s)$ for all $t \ge s \ge 0$
- c) for all times $0 < t_1 < t_2 < \ldots < t_n$, the random variables $B(t_1), B(t_2) B(t_1), \ldots, B(t_n) B(t_{n-1})$ are independent.
- d) sample paths are continuous with probability 1.

Notice in particular that

$$\mathbb{E}[B(t)] = 0$$
, $\mathbb{E}[B^2(t)] = t$ for each time $t \ge 0$.

Again, from the definition, we see that for all t > 0 and $a \ge b$

$$\mathbb{P}(a \le B(t) \le b) = \frac{1}{\sqrt{2\pi t}} \int_a^b e^{-\frac{x^2}{2t}} dx.$$

Moreover, we can find the joint probability as follows: for $0 < t_1 < t_2 < \ldots < t_n$ and $a_i \le b_i$ $i = 1, 2, \ldots, n$, the joint probability is given by

$$\mathbb{P}\left(a_1 \leq B(t_1) \leq b_1, a_2 \leq B(t_2) \leq b_2, \dots, a_n \leq B(t_n) \leq b_n\right) \\
= \int_{a_1}^{b_1} \int_{a_2}^{b_2} \dots \int_{a_n}^{b_n} g(x_1, t_1|0) g(x_2, t_2 - t_1|x_1) \dots g(x_n, t_n - t_{n-1}|x_{n-1}) dx_n dx_{n-1} \dots dx_2 dx_1 \\
\text{where } g(x, t|y) = \frac{1}{\sqrt{2\pi}t} e^{-\frac{(x-y)^2}{2t}}.$$

Remark 2.1. In view of Example 1.2, it is easy to see that Brownian motion is a martingale with respect to its natural filtration.

Theorem 2.1. Let B(t) be a Brownian motion. Then the processes $X(t) := B^2(t) - t$ and $M(t) := \exp(\sigma B(t) - \frac{1}{2}\sigma^2 t)$, $\sigma \in \mathbb{R}$ are martingale with respect to its natural filtration \mathcal{F}_t . M(t) is called **exponential martingale**.

Proof. First we prove that X(t) is a martingale. For t > s > 0, we have

$$\mathbb{E}[X(t)|\mathcal{F}_s] = \mathbb{E}[B^2(t) - B^2(s) + B^2(s) - t|\mathcal{F}_s] = \mathbb{E}[(B^2(t) - B^2(s))|\mathcal{F}_s] + B^2(s) - t$$

$$= \mathbb{E}[\{(B(t) - B(s))^2 + 2B(s)(B(t) - B(s))\}|\mathcal{F}_s] + B^2(s) - t$$

$$= \mathbb{E}[\{(B(t) - B(s))^2|\mathcal{F}_s] + 2\mathbb{E}[B(s)(B(t) - B(s))|\mathcal{F}_s] + B^2(s) - t$$

Since B(t)-B(s) is \mathcal{F}_s independent and B(s) is \mathcal{F}_s -measurable, by using properties of conditional expectation, we have

$$\mathbb{E}[\{(B(t) - B(s))^2 | \mathcal{F}_s] = \mathbb{E}[(B(t) - B(s))^2] = t - s$$

$$\mathbb{E}[B(s)(B(t) - B(s)) | \mathcal{F}_s] = B(s)\mathbb{E}[(B(t) - B(s)) | \mathcal{F}_s] = B(s)\mathbb{E}[B(t) - B(s)] = 0.$$

Thus, we obtain

$$\mathbb{E}[X(t)|\mathcal{F}_s] = (t-s) + B^2(s) - t = X(s) \text{ a.s.}$$

This shows that X(t) is a martingale.

We now show that M(t) is a martingale. First of all, M(t) is integrable. Indeed,

$$\mathbb{E}[e^{\sigma B(t)}] = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{\sigma x} e^{-\frac{x^2}{2t}} dx = e^{\frac{1}{2}\sigma^2 t} \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\sigma t)^2}{2t}} dx = e^{\frac{1}{2}\sigma^2 t}$$

A. K. MAJEE

$$\implies \mathbb{E}[M(t)] = 1.$$

Since for any $t \ge s \ge 0$, $B(t) - B(s) \sim \mathcal{N}(0, t - s)$, by using similar calculation, we see that

$$\mathbb{E}\Big[\exp\big\{\sigma(B(t)-B(s))\big\}\Big] = \exp\big\{\frac{1}{2}\sigma^2(t-s)\big\}.$$

We have

$$\mathbb{E}\left[M(t)|\mathcal{F}_s\right] = \mathbb{E}\left[\exp\{\sigma(B(t) - B(s))\}\exp\{\sigma B(s) - \frac{1}{2}\sigma^2 t\}|\mathcal{F}_s\right]$$

$$= \exp\{\sigma B(s) - \frac{1}{2}\sigma^2 t\}\mathbb{E}\left[\exp\{\sigma(B(t) - B(s))\}|\mathcal{F}_s\right]$$

$$= \exp\{\sigma B(s) - \frac{1}{2}\sigma^2 t\}\mathbb{E}\left[\exp\{\sigma(B(t) - B(s))\}\right]$$

$$= \exp\{\sigma B(s) - \frac{1}{2}\sigma^2 t\}\exp\left\{\frac{1}{2}\sigma^2 (t - s)\right\} = M(s) \text{ a.s.}$$

Thus, M(t) is a martingale.

Lemma 2.2. Let $B(\cdot)$ be a one-dimensional Brownian motion. Then

$$\mathbb{E}[B(t)B(s)] = t \land s = \min\{t, s\} \quad t, s \ge 0.$$

Proof. Assume that $t \geq s \geq 0$. Then

$$\mathbb{E}[B(t)B(s)] = \mathbb{E}[(B(s) + B(t) - B(s))B(s)] = \mathbb{E}[B^{2}(s)] + \mathbb{E}[(B(t) - B(s))B(s)]$$

= $s + \mathbb{E}[B(t) - B(s)]\mathbb{E}[B(s)] = s = t \wedge s.$

In the above, we have used the fact that B(s) is normally distributed with mean zero and variance s and B(t) - B(s) is independent of B(s).

Example 2.1. Let B(t) be a Brownian motion . Define a stochastic process

$$X(t) = \begin{cases} 0, & t = 0 \\ tB(\frac{1}{t}), & t > 0. \end{cases}$$

Then X(t) is a Brownian motion. Indeed, for t > s, we have

$$X(t) - X(s) = (t - s)B(\frac{1}{t}) + s(B(\frac{1}{t}) - B(\frac{1}{s}))$$

Observe that

$$s\left(B(\frac{1}{t}) - B(\frac{1}{s})\right) \sim \mathcal{N}\left(0, s^2\left(\frac{1}{s} - \frac{1}{t}\right)\right), \quad (t - s)B(\frac{1}{t}) \sim \mathcal{N}\left(0, \frac{(t - s)^2}{t}\right).$$

Moreover, $s(B(\frac{1}{t}) - B(\frac{1}{s}))$ and $(t - s)B(\frac{1}{t})$ are independent. Hence X(t) - X(s) is a normally distributed random variable with mean zero and variance $s^2(\frac{1}{s} - \frac{1}{t}) + \frac{(t-s)^2}{t} = t - s$. In other words, the increments X(t) - X(s) is $\mathcal{N}(0, t - s)$ for all $t \geq s > 0$. Next we show that it has independent increments. Note that

$$Cov(X(t), X(s)) = \mathbb{E}[X(t)X(s)] = st\mathbb{E}[B(\frac{1}{t})B(\frac{1}{s})] = stCov(B(\frac{1}{t}), B(\frac{1}{s}))$$
$$= st\min(\frac{1}{t}, \frac{1}{s}) = \min(s, t).$$

Let s < t. Then

$$Cov(X(s), X(t) - X(s)) = Cov(X(s), X(t)) - Cov(X(s), X(s)) = min(s, t) - s = 0.$$

Since X(s) and X(t) - X(s) are normal random variables, and Cov(X(s), X(t) - X(s)) = 0, we conclude that they are independent. It remains to show that sample paths are continuous with

probability 1. Observe that X(t) is continuous for t > 0. We show that X(t) is continuous at t = 0.

$$\lim_{t \to 0} X(t) = \lim_{t \to 0} tB(\frac{1}{t}) = \lim_{n \to \infty} \frac{1}{n}B(n) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \{B(i) - B(i-1)\}$$

Note that B(i) - B(i-1) are **i.i.d** sequence of random variables with mean zero. Hence by SLLN, we get

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \{B(i) - B(i-1)\} = 0 \quad a.s.$$

This completes the proof.

2.1. First and Quadratic Variation. Let f be a function defined on [0,T] and $\Pi = \{0 = t_0 < t_1 < t_2 < \ldots < t_n = T\}$ be a partition of [0,T]. We define first-variation of f up to time T as

$$FV_T(f) := \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)|.$$

The quadratic variation of f up to time T is defined by

$$[f, f](T) := \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} (f(t_{j+1}) - f(t_j))^2.$$

Observe that if $f:[0,T]\to\mathbb{R}$ such that |f'| is Riemann integrable on [0,T], then

$$FV_T(f) = \int_0^T |f'(t)| dt.$$

Indeed, by MVT, there exists $t_i^* \in (t_j, t_{j+1})$ such that

$$f(t_{j+1}) - f(t_j) = f'(t_j^*)(t_{j+1} - t_j).$$

This implies that

$$\sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)| = \sum_{j=0}^{n-1} |f'(t_j^*)| (t_{j+1} - t_j)$$

$$\implies \text{FV}_T(f) = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)| = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |f'(t_j^*)| (t_{j+1} - t_j) = \int_0^T |f'(t)| \, dt \, .$$

Notice that if f has continuous derivative then [f, f](T) = 0. Indeed, by using MVT we have

$$\sum_{j=0}^{n-1} \left(f(t_{j+1}) - f(t_{j}) \right)^{2} = \sum_{j=0}^{n-1} |f'(t_{j}^{*})|^{2} (t_{j+1} - t_{j})^{2} \le \|\Pi\| \sum_{j=0}^{n-1} \|f'(t_{j}^{*})|^{2} (t_{j+1} - t_{j})$$

$$\implies [f, f](T) \le \lim_{\|\Pi\| \to 0} \left\{ \|\Pi\| \sum_{j=0}^{n-1} \|f'(t_{j}^{*})|^{2} (t_{j+1} - t_{j}) \right\} = \lim_{\|\Pi\| \to 0} \|\Pi\| \cdot \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} \|f'(t_{j}^{*})|^{2} (t_{j+1} - t_{j})$$

$$= \lim_{\|\Pi\| \to 0} \|\Pi\| \int_{0}^{T} \|f'(t)|^{2} dt.$$

Since f' is continuous, $\int_0^T |f'(t)|^2 dt$ is finite and hence we obtain that [f, f](T) = 0.

Theorem 2.3. Let $B(\cdot)$ be a one-dimensional Brownian motion. Then [B,B](T)=T for all $T\geq 0$ a.s.

Proof. Let $\Pi = \{0 = t_0 < t_1 < t_2 < \ldots < t_n = T\}$ be a partition of [0, T]. Consider the random variable $Q_T^n := \sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2$. Then

$$\mathbb{E}\left[\left(Q_T^n - T\right)^2\right] = \mathbb{E}\left[\left(\sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 - (t_{j+1} - t_j)\right)^2\right]$$

$$= \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \mathbb{E}\left[\left((B(t_{j+1}) - B(t_j))^2 - (t_{j+1} - t_j)\right)\left((B(t_{k+1}) - B(t_k))^2 - (t_{k+1} - t_k)\right)\right].$$

Thanks to independent increments and the fact that $B(t) - B(s) \sim \mathcal{N}(0, t - s)$ for all $t \geq s \geq 0$, we have for $k \neq j$

$$\mathbb{E}\Big[\Big((B(t_{j+1}) - B(t_j))^2 - (t_{j+1} - t_j)\Big)\Big((B(t_{k+1}) - B(t_k))^2 - (t_{k+1} - t_k)\Big)\Big] = 0.$$

Thus, we get that

$$\mathbb{E}[(Q_T^n - T)^2] = \sum_{k=0}^{n-1} \mathbb{E}[(Y_k^2 - 1)^2 (t_{k+1} - t_k)^2]$$

where

$$Y_k := \frac{B(t_{k+1}) - B(t_k)}{\sqrt{t_{k+1} - t_k}} \sim \mathcal{N}(0, 1).$$

Hence, for some constant C > 0, we have

$$\mathbb{E}[(Q_T^n - T)^2] \le C \sum_{k=0}^{n-1} (t_{k+1} - t_k)^2 \implies \lim_{\|\Pi\| \to 0} \mathbb{E}(Q_T^n - T)^2 = 0.$$

Therefore, there exists a sub-sequence along which the convergence is almost surely. Thus, [B,B](T)=T for all $T\geq 0$ a.s.

Remark 2.2. Brownian motion accumulates b-a units of quadratic variation over the interval [a,b].

Lemma 2.4. For any T > 0, the first variation of Brownian motion $B(\cdot)$ up to time T is infinite almost surely.

Proof. Let $\Pi = \{0 = t_0 < t_1 < t_2 < \ldots < t_n = T\}$ be a partition of [0, T]. Observe that

$$\sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 \le \sup_{0 \le k \le n-1} |B(t_{k+1}) - B(t_k)| \sum_{j=0}^{n-1} |B(t_{j+1}) - B(t_j)|$$

We know that $\sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 \to T$ a.s. Pick an ω for which this holds and the sample paths of Brownian motion is continuous. Then

$$0 < T \le \lim_{\|\Pi\| \to 0} \sup_{0 \le k \le n-1} |B(t_{k+1}) - B(t_k)| \sum_{j=0}^{n-1} |B(t_{j+1}) - B(t_j)|$$

Since $\lim_{\|\Pi\|\to 0} \sup_{0\leq k\leq n-1} |B(t_{k+1}) - B(t_k)| = 0$, we see that the sample paths have infinite variation with probability one:

$$FV_T(B) := \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |B(t_{j+1}) - B(t_j)| = \infty.$$

We now show how to use the quadratic variation of Brownian motion to identify the volatility σ in asset-price model used in the Black-Scholes-Merton option-pricing formula. Consider the **geometric Brownian motion**

$$S(t) = S(0) \exp{\{\sigma B(t) + (\alpha - \frac{1}{2}\sigma^2)t\}}$$

where α and $\sigma > 0$ are constant. Let $0 \le T_1 < T_2$ be given and suppose we observe geometric Brownian motion S(t) for $T_1 \le t \le T_2$. Let $\Pi = \{T_1 = t_0 < t_1 < \ldots < t_n = T_2\}$ be a partition of $[T_1, T_2]$. Then we have

$$\log \frac{S(t_{j+1})}{S(t_{j})} = \sigma \left(B(t_{j+1}) - B(t_{j}) \right) + \left(\alpha - \frac{1}{2} \sigma^{2} \right) (t_{j+1} - t_{j})$$

$$\implies \sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_{j})} \right)^{2} = \sigma^{2} \sum_{j=0}^{n-1} \left(B(t_{j+1}) - B(t_{j}) \right)^{2} + \left(\alpha - \frac{1}{2} \sigma^{2} \right)^{2} \sum_{j=0}^{n-1} (t_{j+1} - t_{j})^{2}$$

$$+ 2\sigma \left(\alpha - \frac{1}{2} \sigma^{2} \right) \sum_{j=0}^{n-1} \left(B(t_{j+1}) - B(t_{j}) \right) (t_{j+1} - t_{j})$$

$$\equiv \sigma^{2} \mathcal{A}_{1} + \mathcal{A}_{2} + \mathcal{A}_{3}. \tag{2.1}$$

Observe that

$$\lim_{\|\Pi\| \to 0} A_1 = T_2 - T_1, \quad \lim_{\|\Pi\| \to 0} A_2 = 0$$

We claim that $\lim_{\|\Pi\| \to 0} A_3 = 0$. Indeed,

$$\left| \left(B(t_{j+1}) - B(t_j) \right) (t_{j+1} - t_j) \right| \leq \max_{0 \leq k \leq n-1} \left| B(t_{k+1}) - B(t_k) \right| (t_{j+1} - t_j)
\implies \left| \sum_{j=0}^{n-1} \left(B(t_{j+1}) - B(t_j) \right) (t_{j+1} - t_j) \right| \leq \max_{0 \leq k \leq n-1} \left| B(t_{k+1}) - B(t_k) \right| \sum_{j=0}^{n-1} (t_{j+1} - t_j)
= (T_2 - T_1) \max_{0 < k < n-1} \left| B(t_{k+1}) - B(t_k) \right|$$

Since $B(\cdot)$ is continuous on $[T_1, T_2]$, we see that $\max_{0 \le k \le n-1} |B(t_{k+1}) - B(t_k)|$ converges to zero as $\|\Pi\| \to 0$. Thus $\lim_{\|\Pi\| \to 0} A_3 = 0$. Hence, from (2.1) we conclude that when the maximum step size $\|\Pi\|$ is small, we approximate the volatility σ as

$$\sigma^2 \approx \frac{1}{T_2 - T_1} \sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_j)} \right)^2.$$