

Executive Summary

Project Goal: Target variable is predict the 'property_quality' for Airbnb listings with zero reviews.

Classifying zero review listings on 'property_quality' will eliminate bias when booking a newly listed Airbnb.

Data Cleaning: Created a single dataset that contains 184,984 rows with 27 columns, which encompasses 15 cities

- Narrowed 75 columns to 22 columns before doing feature engineering.
- Created imputation logic and removed entries where price or accommodates is either 0 and/or missing.

EDA: Generated plots on both a regional and collective 15 cities basis

Plots showed that there are only minimal regional differences for amenities.

Feature Transformation: Conducted six feature transformations to pass into modelling

• New features include aggregating amenities, identifying key host information, and parsing out property information in a more meaningful manner.

Modelling: Decision Tree Classifier

VANDERBILT

• Encoded categorical variables, selected relevant features, split the dataset, trained a model, evaluated its performance, predicted property quality on 0 review data new data

Data Cleaning

1. Addressing Missing Values

- **Bathrooms**: Fill in the same numeric value as 'bedrooms'. If the 'bedrooms' column is also N/A, fill N/As with 1/'beds'
- Bedrooms Fill in with the rounded up value of # of bathrooms
- **Beds**: Fill in with the same numeric value as 'bedrooms'
- There was no case that all three columns are NULL.
- Host_since: Put the most recent date that is available in host since column
- Host_location: Put `unknown', which is already in the dataset
- **host_is_superhost**: Put `f' as false
- host_verifications: Put 'None' for NAs and entries with empty list ('[]')
- **host_identity_verified**: Put `f' as false
- **host has profile pic**: Put 'f' as false

2. Delete Unnecessary Columns

- Left with:
- 'id', 'host_id', 'host_since', 'host_location',
 'host_is_superhost', 'host_listings_count',
 'host_total_listings_count', 'host_verifications',
 'host_has_profile_pic', 'host_identity_verified',
 'neighborhood', 'latitude', 'longitude', 'room_type',
 'accommodates', 'bathrooms', 'bathrooms_text',
 'bedrooms', 'beds', 'amenities', 'price',
 'number_of_reviews','review_scores_value','calculat ed_host_listings_count'

3. Remove Entries Where 'price' and 'accommodates' are Zero or NA

4. Add New Column 'city'

 For the purpose when concatenating all 15 cities all together.

EDA

- Conducted EDA for each U.S. region and on the collective dataset encompassing all regions
 - Created plots for time-series, categorical, numerical, and geojson data
 - After exploring seven different tables for each city, we determined to focus on the listings_detailed tables for further EDA understanding.
- Important Highlights:
 - Identified that many listings with no reviews will likely have review_scores_value missing
 - Determined that having host_response_time is not substantially related to zero reviews
 - The median number of amenities per listing is similar for all cities
 - Airbnb experienced rapid business expansion in the mid-2010s through host sign-ups
 - Despite regional differences, many listings contain the five essential amenities across cities
 - Time-series price data shows seasonality or disruptions from COVID

Feature Transformations

1. Count Amenities

a. Counted total number of amenities each listing has

2. Count Essential Amenities

- a. essential_ammenities = [Fridge, AC, Kitchen, WiFi, Essentials]
- b. Make new column called essential_amenities and count how many are included in the listing (max num: 5, min: 0)
- c. Error handling to include amenities that have similar name

3. Bathroom

a. Parse out to include the decimal digit for bathrooms, and deleted text part to make it numeric column

4. City-Neighborhood

- a. Make a new column that has city and neighborhood together to resolve potential naming duplicates in neighborhoods
- b. For example, Hollywood, CA, and Hollywood in Broward County Florida

5. Full-time Host

- a. If host_listings_count is >= 10, the hosts are more experienced/dedicated hosts who treat AirBnB as a full-time job
- b. 'T' for true if >=10, and 'F' for false if <10

6. Host Verification

a. Due to Spark data read-in issue, change the host_verification column to be string, not list object.


```
def categorize_verifications(verification_str):
    # Mapping of verification strings to codes
    verifications_to_code = {
        "['phone']": 'p',
        "['email']": 'e',
        "['email', 'phone']": 'ep',
        "['phone', 'work_email']": 'ew',
        "['email', 'phone', 'work_email']": 'epw',
        "['email', 'phone', 'work_email']": 'epw',
        "['email', 'phone', 'photographer', 'work_email']": 'eppw',
        "['email', 'phone', 'photographer']": 'epp',
        'None': 'none' # Handling the string 'None'
}

# Return the corresponding code or a default value if not found
return verifications_to_code.get(verification_str, 'none') # Us
```

Features

Original Dataset:

185,989 Rows, 75 Columns

After Cleaning and Feature Transformation:

184,984 Rows, 27 Columns

amenities_count	essential_amenities	num_bath	neighborhood_city	full_time_host	host_verifications_clean
10	3	1.0	Fort Lauderdale Broward County	f	р
29	3	2.0	Pompano Beach Broward County	f	ер
14	3	3.0	Southwest Ranches Broward County	f	ер
22	4	2.0	Pompano Beach Broward County	f	pw
17	3	2.0	Hollywood Broward County	f	ер
40	5	1.0	Lincoln Park Chicago	f	ер
44	5	2.0	Logan Square Chicago	f	ер
40	5	1.5	Uptown Chicago	f	epw
43	5	1.0	West Town Chicago	f	ер
36	5	1.0	West Town Chicago	f	ер

Modelling

1. Baseline Model

a. Decision Tree

2. Steps

- a. Preprocess Data
 - . Check missing values
 - ii. Encode categorical variables
 - iii. Feature selection
- b. Splitting Data
- c. Train the Decision Tree Classifier
- d. Model Evaluation
 - i. Precision, Recall, F1-score
 - ii. Confusion Matrix

Conclusion & Open Issues

1. Initial Model Output

a. Precision - Good: 0.94, Mediocre: 0.21, Poor: 0.10

2. Open Issue 1: Modeling

- a. Hyperparameter tuning
- b. More diverse model such as Random Forest, Ensemble Model
- c. Parallel processing pyspark
 - How are we planning to split the data efficiently and process it parallely
- d. Convert string columns to be numeric, and put it into vector for Spark modeling

3. Open Issue 2: Spark

a. Spark data loading issue when special characters in the data matches to the file's delimiter