Generating graphs

Random graphs G(n,m)

- Random graph G(n,m), n vertices, m edges
 - repeat m times
 - uniformly at random choose a pair of nodes
 - better for sparse graphs, $m \ll n (n-1) / 2$

Interesting questions

- for fixed n, number of strong components as a function of m
- for fixed n, diameter as a function of m (small worlds)

Random graphs G(n,p)

- Random graph G(n,p), n vertices, p probability of there being and edge
 - for each pair of nodes, enter an edge with probability p
 - number of edges is p n (n-1) / 2 on average
 - better for dense graphs

Waxman model

- Place n nodes in an L x L 2dimensional grid
- For each pair of nodes u and v, there is an edge between u and v with probability $pe^{-bd(u,v)/L}$, where d(u,v) is the euclidean distance from u to v
- increase in p corresponds to increase in number of edges
- increase in b corresponds to larger ratio between long an short edges

Preferential attachment

Start with one node

Repeat n-1 times

- 1. with probability p make a link from the new node i to another node, chosen uniformly at random
- 2. with probability 1-p make a link to node i with probability k_i / $(\sum k_i)$ where k_i is the in-degree of node j, $0 \le j < i$

Start with one node

Repeat n-1 times

- with probability p make a link from the new node i to another node, chosen uniformly at random
- 2. with probability 1 p choose a node i uniformly at random
 - 1. if the chosen node is 0 link to node 0
 - 2. otherwise, link to the node that i points to