Page . 2

23456

. 10 . 11 . 15 . 21

VEREIN DEUTSCHER INGENIEURE

Meteorologische Daten in der technischen Gebäudeausrüstung Gradtage

Meteorological data for technical building services purposes Degree days

VDI 4710

Blatt 2 / Part 2

Ausg. deutsch/englisch Issue German/English

Die deutsche Version dieser Richtlinie ist verbindlich.

The German version of this guideline shall be taken as authoritative. No guarantee can be given with respect to the English translation

Inhalt Seite	Contents
Vorbemerkung	Preliminary note
$\textbf{1} \ \textbf{Anwendungsbereich} \ldots \ldots 2$	1 Scope
2 Normative Verweise	2 Normative references
3 Begriffe und Definitionen 4	3 Terms and definitions
4 Formelzeichen	4 Symbols
5 Bestimmung der Gradtage 6	5 Determination of the degree days
6 Hilfsverfahren zur Berechnung der Jahres-Gradtage	6 Auxiliary method for calculating the annual degree days
7 Beispiele	7 Examples
Anhang A Tabellen	Annex A Tables
Anhang B Herleitung	Annex B Derivation
Anhang C Gradtagszahlenkarte Deutschland 22	Annex C Degree-day map of Germany

VDI-Gesellschaft Technische Gebäudeausrüstung

Zu beziehen durch / Available at Beuth Verlag GmbH, 10772 Berlin – Alle Rechte vorbehalten / All rights reserved © Verein Deutscher Ingenieure e.V., Düsseldorf 2007

Vorbemerkung

Der Inhalt dieser Richtlinie ist entstanden unter sorgfältiger Berücksichtigung der Vorgaben und Empfehlungen der Richtlinie VDI 1000.

Allen, die ehrenamtlich an der Erstellung dieser Richtlinie mitgewirkt haben, sei auf diesem Wege gedankt.

Alle Rechte vorbehalten, auch das des Nachdrucks, der Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, auszugsweise oder vollständig. Die Nutzung dieser VDI-Richtlinie als konkrete Arbeitsunterlage ist unter Wahrung des Urheberrechtes und unter Beachtung der VDI-Merkblätter 1 bis 7 möglich. Auskünfte dazu sowie zur Nutzung im Wege der Datenverarbeitung erteilt die Abteilung VDI-Richtlinien im VDI.

1 Anwendungsbereich

Diese Richtlinie für die Gradtagmethode gilt für beheizte Gebäude. Der Begriff "Gradtage" wird definiert, und die Gradtage werden für die durch DIN 4710 beschriebenen Repräsentanzstationen der 15 TRY-Regionen (TRY = Test Reference Year) Deutschland angegeben. Da hier nur vom Heizfall ausgegangen wird, handelt es sich um Heizgradtage. In dieser Hinsicht liefert die Richtinie auch die Grundlagen für die Anwendung der Richtlinie VDI 3807 Blatt 1.

Zusätzlich wird ein Hilfsverfahren eingeführt, mit dem die Gradtage eines bestimmten Zeitraums mit wenigen Stützwerten ermittelt werden können.

Zweck der Richtlinie ist die Definition der Gradtage, die Beschreibung des Gradtagverfahrens und die Bereitstellung von zugehörigen Daten.

Daraus ergeben sich beispielsweise die folgenden Anwendungsmöglichkeiten:

- Verbrauchsüberwachung eines Objekts über einen längeren Betrachtungszeitraum. Hier werden die unterschiedlichen Verbrauchswerte aus den entsprechenden Betrachtungszeiträumen auf ein mit Gradtagen beschriebenes Wetter umgerechnet.
- Umrechnung der Heizenergieverbräuche an verschiedenen Standorten mit dem zugehörigen Wetter auf ein durch Gradtage beschriebenes Einheitswetter
- Aufteilung von Verbrauchswerten auf kleinere Zeitabschnitte (Mieterwechsel)

Die Gradtagmethode ist ein Näherungsverfahren, das von den vielen Einflüssen auf den Heizenergiever-

Preliminary note

The content of this guideline has been developed under thorough consideration of the requirements and recommendations of guideline VDI 1000.

We wish to express our gratitude to all honorary contributors to this guideline.

All rights reserved including those of reprinting, reproduction (photocopying, microcopying), storage in data processing systems, and translation, either of the full text or of extracts. This VDI guideline can be used as a concrete project document without infringement of copyright and with regard to VDI notices 1 to 7. Information on this, as well as on the use in data processing, may be obtained by the VDI Guidelines Department at the VDI.

1 Scope

This guideline, describing the degree-day method, applies to heated buildings. The term "degree day" is defined, and degree days are given for the representative stations of the 15 TRY (test reference year) regions in Germany as per DIN 4710. This guideline only considers the heating case; the degree days given are, therefore, heating degree days. In this respect, the guideline also provides the basis for the application of VDI 3807 Part 1.

Furthermore, an auxiliary method is introduced for determining the degree days for a specified period of time from a few given points.

The guideline aims at defining the degree days, describing the degree-day method and providing the pertinent data.

The following are examples of the resulting potential applications:

- Monitoring the consumption of a building over an extended period under consideration. In this case, the consumption values, gathered during the respective periods under consideration, are converted to a weather situation characterised in terms of degree days.
- Conversion of heating-energy consumption values at different sites each having its particular weather to a standard weather characterised in terms of degree days
- Breaking down of consumption values into smaller periods (change of tenants)

The degree-day method is an approximation technique taking into account only the effect of the out-

brauch nur den Einfluss der Außenlufttemperatur berücksichtigt. Sie kann auf übliche Gebäude mit Wohn- oder Büronutzung angewendet werden. Weichen die Randbedingungen hiervon ab, ist die Methode auf die Nutzungsveränderung abzustimmen oder es sind andere, genauere Methoden heranzuziehen

Prinzipiell gilt, dass die Gradtagmethode in ihrer Aussagekraft abnimmt, wenn Dämmstandard und Innenlasten zunehmen.

Anmerkung: Gradtage sind **nicht** dazu geeignet, Energiebedarfswerte zu berechnen.

Eine grafische Darstellung der Verteilung der Gradtage in Deutschland bietet die Karte im Anhang C.

door air temperature, rather than the manifold influences, on the consumption of heating energy. It can be applied to typical residential and office buildings. Where the boundary conditions differ from this, the method shall be adapted to the different use, or other, more precise methods shall be used.

The significance of the degree-day method will, basically, decrease as thermal insulation and internal loads increase.

Note: Degree days are **not** suited for the calculation of energy demand values.

A graphical representation of the distribution of the degree days over Germany is given by the map in Annex C.

2 Normative Verweise / Normative references

DIN 4701-1:1983-03 Regeln für die Berechnung des Wärmebedarfs von Gebäuden; Grundlagen der Berechnung (Rules for calculating the heat requirement of buildings; Basic rules for calculation). Zurückgezogen / withdrawn 2003-08. Nachfolgedokument / following document DIN EN 12831

DIN 4701-2:1983-03 Regeln für die Berechnung des Wärmebedarfs von Gebäuden; Tabellen, Bilder, Algorithmen (Rules for calculating the heat requirement of buildings; Tables, pictures, algorithms). Zurückgezogen / withdrawn 2003-08. Nachfolgedokument / following document DIN EN 12831

DIN 4710:2003-01 Statistiken meteorologischer Daten zur Berechnung des Energiebedarfs von heiz- und raumlufttechnischen Anlagen in Deutschland (Statistics on German meteorological data for calculating the energy requirements for heating and air conditioning equipment). Berlin: Beuth Verlag

DIN 4710 Beiblatt 1:2003-01 Statistiken meteorologischer Daten zur Berechnung des Energiebedarfs von heiz- und raumlufttechnischen Anlagen in Deutschland; Korrelation zwischen der Lufttemperatur t und dem Wasserdampfgehalt χ (Statistics on meteorological data for calculating the energy requirement for heating and air conditioning

equipment in Germany; Correlation between air temperatur t and content of water vapor χ). Berlin: Beuth Verlag

DIN EN 12831:2003-08 Heizungsanlagen in Gebäuden; Verfahren zur Berechnung der Norm-Heizlast; Deutsche Fassung EN 12831:2003 (Heating systems in buildings; Method for calculation of the design heat load). Berlin: Beuth Verlag

DIN EN 12831 Beiblatt 1:2006-09 Heizsysteme in Gebäuden; Verfahren zur Berechnung der Norm-Heizlast; Nationaler Anhang NA (Heating systems in buildings; Method for calculation of the design heat load; National Annex NA). Berlin: Beuth Verlag

VDI 3807 Blatt 1:2007-03 Energie- und Wasserverbrauchskennwerte für Gebäude; Grundlagen (Characteristic value of energy and water consumption in buildings; Fundamentals). Berlin: Beuth Verlag

VDI 3807 Blatt 2:1998-06 Energieverbrauchskennwerte für Gebäude; Heizenergie- und Stromverbrauchskennwerte (Characteristic values of energy consumption in buildings; Heating and electricity). Berlin: Beuth Verlag

VDI 3807 Blatt 3:2000-07 Wasserverbrauchskennwerte für Gebäude und Grundstücke (Characteristic values of water consumption inside buildings and on adjacent ground). Berlin: Beuth Verlag

3 Begriffe und Definitionen

3.1 Tagesmitteltemperatur

Die Tagesmitteltemperatur $\vartheta_{\rm m}$ ist das arithmetische Mittel von 24 Stundenmesswerten der Außenlufttemperatur (24-Stunden-Methode) an einem festgelegten Ort. Ersatzweise gilt der Wert, der aus den drei Messwerten um 7:30 Uhr, 14:30 Uhr und 21:30 Uhr gebildet wird:

$$\vartheta_{\rm m} = \frac{\vartheta_7 + \vartheta_{14} + 2 \cdot \vartheta_{21}}{4} \tag{1}$$

Dabei ist

 ϑ_u Temperatur in °C um u Uhr

 $\vartheta_{\rm m}$ Tagesmitteltemperatur in °C

Die jeweilige Methode ist anzugeben.

Es ist nach anerkannten Regeln zu messen, oder es sind die Messwerte vom Wetteramt zu beziehen.

3.2 Heizgrenztemperatur

Die Heizgrenztemperatur ϑ_g ist der Wert der Tagesmitteltemperatur, unterhalb welchem rechnerisch nach der Gradtagmethode Heizen erforderlich ist, um die geforderte Rauminnentemperatur zu erreichen. Sie ist variabel und kann sich je nach Anwendung verändern, abhängig von Dämmung, Innenlasten und tatsächlicher Innentemperatur.

Anmerkung: Die Heizgrenztemperatur ist im Sinne dieser Richtlinie eine Rechengröße. Sie gilt nicht als "Abschalttemperatur" für die Heizanlage, das heißt, aus ihr können keine Anweisungen zum Betrieb der Heizanlage abgeleitet werden.

3.3 Norm-Innentemperatur/ Norm-Außentemperatur/Norm-Heizlast

Die Norm-Innentemperatur ϑ_i ist eine operative Temperatur, die sowohl die Lufttemperatur als auch die mittlere Umfassungsflächentemperatur berücksichtigt (DIN 4701-1). Sie ist eine rechnerische Größe.

Die Norm-Außentemperatur ϑ_a ist die niedrigste Zweitagesmitteltemperatur, die in einem Zeitraum von zwanzig Jahren an einem Ort zehn Mal erreicht oder unterschritten wurde (DIN 4701-1). Sie ist ein Rechenwert.

Als Norm-Heizlast $Q_{\rm N}$ eines Raumes wird die Wärmeleistung eines Raums bezeichnet, die dem Raum unter Norm-Klimabedingungen zugeführt werden muss, damit sich die geforderte Norm-Innentemperatur einstellt. Die Norm-Heizlast wird berechnet nach der bewährten, aber zurückgezogenen DIN 4701-1 (Ausgabe 1983-03) oder nach dem auf diese abgestimmten Beiblatt 1 zu DIN EN 12831 (Ausgabe 2006-09). Liegen lediglich Lastwerte vor, die mit

3 Terms and definitions

3.1 One-day average temperature

The one-day average temperature, $\vartheta_{\rm m}$, is the arithmetic mean of 24 measured one-hour values of the out-door air temperature (24-hour method) at a specified site. It may be substituted by the mean of the three measurements taken at 7:30 o'clock, 14:30 o'clock and 21:30 o'clock, as follows:

$$\vartheta_{\rm m} = \frac{\vartheta_7 + \vartheta_{14} + 2 \cdot \vartheta_{21}}{4} \tag{1}$$

where

 ϑ_u temperature, in °C, at u o'clock ϑ_m one-day average temperature, in °C

The method used shall be identified.

The measurements shall be taken in accordance with acknowledged rules; alternatively, measured values shall be obtained from the meteorological service.

3.2 Heating temperature limit

The heating temperature limit, ϑ_g , is that value of the one-day average temperature below which, on the basis of a calculation in accordance with the degree-day method, heating would be required in order to maintain the required indoor temperature in a room. It is variable and can change according to the application, depending on thermal insulation, internal loads and actual indoor temperature.

Note: The heating temperature limit, as used in this guideline, is a calculated quantity. It is not to be considered as the "shut-down temperature" for the heating installation, i.e. instructions referring to the operation of the heating installation cannot be derived from this quantity.

3.3 Standard indoor temperature/standard outdoor temperature/standard heating load

The standard indoor temperature, ϑ_i , is an operative temperature taking into account the air temperature as well as the average temperature of the room boundary surfaces (DIN 4701-1); it is a calculated quantity.

The standard outdoor temperature, ϑ_a , is the minimum two-day average temperature which occurred, or values below which occurred, at any one site, at least 10 times over a period of 20 years; it is a calculated quantity.

The standard heating load, $\dot{Q}_{\rm N}$, of a room is the thermal output to be supplied to a room, under standard climatic conditions, in order for the required standard indoor temperature to be achieved. The standard heating load is calculated using the proven, albeit withdrawn, DIN 4701-1 (1983-03 edition) or using DIN EN 12831, Addition 1 (2006-09 edition), which has been adapted to give results equivalent to the DIN 4701-1. Where only load values calculated us-

dem Beiblatt 1 zu DIN EN 12831 in der Ausgabe 2004-04 berechnet sind, darf als Norm-Heizlast nur die "Netto-Heizlast" verwendet werden, keinesfalls zusätzliche Aufheizleistungen. Auch dann kann der so bestimmte Wert 25 % bis 90 % über dem wohlbegründeten Erfahrungsniveau liegen.

Anmerkung: Bei Anwendung der DIN EN 12831 darf als Norm nur die "Netto-Heizlast" verwendet werden, keinesfalls zusätzliche Aufheizleistungen. Die aktuell für Auslegungsrechnungen gültige DIN EN 12831 darf nicht auf bestehende Gebäude angewendet werden; bei neuen Gebäuden liefert sie um 25 % bis 90 % überhöhte Werte.

3.4 Heiztage

Heiztage sind Tage, deren Tagesmitteltemperatur unter der Heizgrenztemperatur liegt. Es handelt sich um einen Rechenwert.

3.5 Gradtage

Ein Gradtag ist das Produkt aus einem Tag und der Differenz zwischen Heizgrenztemperatur und der an diesem Tag geltenden Tagesmitteltemperatur. Die Gradtage eines Betrachtungszeitraums sind die Summe aller einzelnen (diskreten) Gradtage innerhalb des Betrachtungszeitraums. (Einheit: $K \cdot d$)

3.6 Betrachtungszeitraum

Zusammenhängender Zeitraum, für den Gradtage ermittelt und angewandt werden.

3.7 Außentemperaturunabhängiger Wärmeverbrauch

Mit der Gradtagmethode ist nur der von der Außentemperatur abhängige Verbrauch zu bewerten. Der außentemperatur**un**abhängige Verbrauch $Q_{3,P}$ (z. B. zum Zweck der Trinkwassererwärmung oder allgemein Prozesswärme) ist von dem Gesamtverbrauch $Q_{3,ges}$ abzuziehen.

3.8 Heizenergieverbrauch Q₃

Gemessener Energieverbrauch an der Stelle der Brennstoffzufuhr oder an der Abrechnungsstelle für leitungsgebundene Energien (Fernwärme, Strom, Gas).

4 Formelzeichen

4.1 Formelzeichen

Fomel -	Bedeutung	Ein-
zeichen		heit
\boldsymbol{A}	Temperaturamplitude	$^{\circ}\mathrm{C}$
\boldsymbol{B}	Frequenzänderung	1/d
C	Phasenverschiebung	d
D	Temperaturverschiebung	$^{\circ}\mathrm{C}$
f_1, f_2	Hilfsfunktionen	

ing DIN EN 12831, Addition 1 as of 2004-04 are available, only the "net heating load" shall be used as standard heating load; any additional heat-up loads must be neglected. Even then, the value thus determined may exceed the well-founded empirical value by 25 % to 90 %.

Note: DIN EN 12831 allows but the "net heating load", excluding any additional heat-up loads, to be used as standard heating load. Being valid for design calculations, the current edition of DIN EN 12831 must not be applied to existing buildings; for new buildings, it yields values which are higher by 25 % to 90 %.

3.4 Heating days

Heating days are those days where the one-day average temperature is less than the heating temperature limit. The figure is a calculated quantity.

3.5 Degree days

A degree day is one day multiplied by the difference between the heating temperature limit and the one-day average temperature for the day in question. The degree days for a period under consideration are the sum total of all individual (discrete) degree days within the period under consideration. (The unit is $K \cdot d$.)

3.6 Period under consideration

Uninterrupted period of time for which degree days are determined and applied.

3.7 Heat consumption independent of outdoor temperature

The degree-day method can only be used to rate the consumption depending on the outdoor temperature. The consumption **in**dependent of the outdoor temperature, $Q_{3,P}$ (e.g. for drinking-water heating, or process heat in general) shall be deducted from the total consumption, $Q_{3,ges}$.

3.8 Heating-energy consumption, Q_3

Measured energy consumption at the point of fuel supply or, in case of pipeline-bound energies (such as district heat, electricity, gas), at the handover point.

4 Symbols

4.1 Symbols

Symbol	Meaning	Unit
A	Temperature amplitude	°C
B	Frequency shift	1/d
C	Phase shift	d
D	Temperature shift	$^{\circ}\mathrm{C}$
f_1, f_2	Auxiliary functions	

Fomel - zeichen	Bedeutung	Ein- heit	Symbol	Meaning	Unit
$G_{15/20}$	Gradtagszahl für feste Heizgrenze 15 °C und feste Rauminnentemperatur 20 °C		$G_{15/20}$	Degree-day number for a specified heating temperature limit of 15 °C and a specified indoor temperature of 20 °C	
$G_{artheta \mathrm{g}}$	Gradtagszahl für eine bestimmte Heizgrenztemperatur Laufvariable	K · d	$G_{artheta_{\mathbf{g}}}$	Degree-day number for a specific heating temperature limit Counter	K · d
n Ò	Norm-Heizlast eines Raums	kW	n Ò		kW
$Q_{\rm N}$	Heizenergieverbrauch	kWh	$Q_{\rm N}$	Standard heating load of a room Heating-energy consumption	kWh
Q_3 $Q_{3, ext{bereinigt}}$	gemessener Heizenergieverbrauch nach Wetterbereinigung		Q_3 $Q_{3, ext{bereinigt}}$	Measured heating-energy consumption after correction for out-door temperature	kWh
$Q_{3,\mathrm{ges}}$	Gesamtverbrauch	kWh	$Q_{3,\mathrm{ges}}$	Total consumption	kWh
$Q_{3,\mathrm{Mess}}$	gemessener Heizenergieverbrauch	kWh	$Q_{3,\mathrm{Mess}}$	Measured heating-energy consumption	kWh
$Q_{3,\mathrm{P}}$	außentemperatur un abhängiger Verbrauch, Prozesswärmever- brauch	kWh	$Q_{3,\mathrm{P}}$	Outdoor-temperature- in dependent consumption, process heat consumption	kWh
X	Tageslaufnummer nach Tabelle A1		X	Day number as per Table A1	
X	Hilfsgröße		X	Auxiliary quantity	
z	Anzahl der Heiztage		Z	Number of heating days	
ϑ	Temperatur	°C	ϑ	Temperature	°C
$artheta_{ m g}$	Heizgrenztemperatur	°C	$artheta_{ m g} \ artheta_{ m i}$	Heating temperature limit	°C
$\vartheta_{\mathrm{i}}^{\circ}$	Norm-Innentemperatur	°C	$\vartheta_{\mathrm{i}}^{\circ}$	Standard indoor temperature	°C
$egin{array}{l} oldsymbol{artheta}_{ m g} \ oldsymbol{artheta}_{ m i} \ oldsymbol{artheta}_{ m K} \end{array}$	Tiefsttemperatur	°C	$artheta_{ m K}$	Minimum temperature value	°C
$artheta_{ m m}$	Tagesmitteltemperatur	°C	$artheta_{ m m}$	One-day average temperature	°C
$artheta_{ m max}$	Maximaltemperatur	°C	$\vartheta_{ ext{max}}$	Maximum temperature	°C
$\vartheta_{\mathrm{m},n}$	Tagesmitteltemperatur des Tages <i>n</i>	°C	$\vartheta_{\mathrm{m},n}$	One-day average temperature of day n , in $^{\circ}$ C	°C
$artheta_{ ext{Monat}}$	Monatsmitteltemperatur	°C	$artheta_{ m Monat}$	One-month average temperature	°C
$artheta_{ m W}$	Höchstemperatur	°C	$artheta_{ m W}$	Maximum temperature value	°C

5 Bestimmung der Gradtage

5.1 Ortszuweisung

Liegen für den tatsächlichen geografischen Standort des Gebäudes keine Messwerte der Tagesmitteltemperatur vor, ist der Ort der nächstgelegenen Wetterstation oder der zugehörigen TRY-Region nach DIN 4710¹⁾ zuzuordnen. Regionale Besonderheiten, wie große Höhenunterschiede, Gewässernähe usw., sind zu berücksichtigen. Auskunft erteilt der Deutsche Wetterdienst.

Anmerkung: Generell kann man in Norddeutschland über 600 m Höhe, in Süddeutschland über 1000 m Höhe eine Korrektur von –1 K/100 m Höhe vorsehen.

5 Determination of the degree days

5.1 Geographical assignment

Where measured values of the one-day average temperature are not available for the actual geographic site of the building, assign the site to the nearest meteorological station or the corresponding TRY region as per DIN 4710¹). Regional particularities such as pronounced differences in the height of the terrain, the vicinity of bodies of water, etc., shall be taken into account; pertinent information can be obtained from Deutscher Wetterdienst (Germany's National Meteorological Service).

Note: In general, a correction of -1 K/100 m gain in height can be assumed for heights exceeding 600 m in Northern Germany and 1000 m in Southern Germany.

¹⁾ Die zur Berechnung der Gradtage in den Tabellen A3 herangezogenen Tagesmitteltemperaturen hat der Deutsche Wetterdienst zur Verfügung gestellt.

¹⁾ The one-day average temperatures used for calculating the degree days given in Tables A3 were provided by Deutscher Wetterdienst (Germany's National Meteorological Service).

5.2 Betrachtungszeitraum

Der übliche Betrachtungszeitraum beträgt 12 Monate (z.B. 1. Oktober eines Jahres bis 30. September des folgenden Jahres). Die Länge des Betrachtungszeitraums ist abhängig vom Anwendungszweck. Bei Verwendung langjähriger Gradtage ist der kleinstmögliche Betrachtungszeitraum ein Monat. Bei einer Verbrauchsüberwachung eines Objekts mit für den jeweiligen Zeitraum gemessenen Wetterdaten sollte eine Woche nicht unterschritten werden.

5.3 Heizenergieverbrauch

Der Heizenergieverbrauch Q_3 ist die Differenz zwischen Gesamtenergieverbrauch $Q_{3,ges}$ und außentemperatur**un**abhängigem Verbrauch $Q_{3,P}$ für den jeweils festgelegten Betrachtungszeitraum. Der außentemperatur unabhängige Verbrauch kann auf folgende Weise bestimmt werden:

- Messung mit Wärmemengenzählern oder Wasserzählern
- Berechnung des Bedarfs und des Aufwands mit VDI 2067 Blatt 12 und Blatt 22
- Bestimmung aus einer größeren, über das Jahr verteilten Anzahl von abschnittsweisen Messungen des Gesamtverbrauchs mit dem vereinfachten Ansatz, dass der zeitbezogene außentemperaturunabhängige Verbrauch konstant ist (Bild 1). Der jeweilige Zeitabschnitt sollte mindestens eine Woche, höchstens einen Monat umfassen.

Bild 1. Bestimmung des außentemperatur**un**abhängigen Verbrauchs

5.4 Heizgrenze

5.4.1 Einfluss des Parameters Heizgrenze auf die Gradtage

Die Heizgrenztemperatur beeinflusst entscheidend die Verteilung der Gradtage übers Jahr.

Bild 2 und Tabelle 1 zeigen beispielhaft den prozentualen Anteil der einzelnen Monate für drei ver-

5.2 Period under consideration

The typical period under consideration is 12 months (like October 1st to September 30th of the next year). The duration of the period under consideration depends on the intended application. Where long-term degree days are considered, the shortest period under consideration shall be one month. Where the consumption of a building is to be monitored using meteorological data measured for the specific period under consideration, the period under consideration should not be less than one week.

5.3 Heating-energy consumption

The heating-energy consumption, Q_3 , is the difference between the total energy consumption, $Q_{3,ges}$, and the consumption **in**dependent of outdoor temperature, $Q_{3,p}$, for the specified period under consideration. The consumption independent of outdoor temperature can be determined as follows:

- Measurement using heat meters or water meters
- Calculation of demand and effort using VDI 2067 Part 12 and Part 22
- Determination from a significant number of measurements of the total consumption for isolated periods distributed over the year, using the simplified approach that the consumption per unit time, independent of outdoor temperature, is constant (Figure 1). The individual period of time in question should not be less than one week and not more than one month.

Average temperatures during individual period, in °C

Figure 1. Determination of consumption independent of outdoor temperature

5.4 Heating temperature limit

5.4.1 Influence of heating temperature limit on degree days

The heating temperature limit has a significant impact on the distribution of the degree days over the year.

Figure 2 and Table 1 illustrate, by way of example, the percentage distribution for each month for three

schiedene Heizgrenztemperaturen. Als Datengrundlage wird hier die TRY-Region 13 nach DIN 4710 verwendet.

Bild 2. Prozentuale Verteilung der Gradtage übers Jahr für verschiedene Heizgrenztemperaturen (Datensatz TRY-Region 13)

Tabelle 1. Prozentuale Verteilung der Gradtage übers Jahr für verschiedene Heizgrenztemperaturen (Datensatz TRY-Region 13)

		Heizgrenze	
Monat	12°C	15 °C	18°C
Jan	23,1	20,0	17,6
Feb	17,9	15,9	14,3
Mrz	13,8	13,5	12,7
Apr	4,7	6,5	7,5
Mai	2,5	3,5	4,7
Jun	0,1	0,7	2,2
Jul	0,0	0,5	1,1
Aug	0,0	0,2	0,8
Sep	1,6	2,9	4,0
Okt	5,5	7,3	8,1
Nov	12,3	12,3	11,8
Dez	18,5	16,8	15,2

5.4.2 Heizgrenze, berechnet aus einem Heizenergieverbrauchswert

Liegt ein Gesamtenergieverbrauchswert $Q_{3,ges}$ vor, wird zunächst der außentemperatur**un**abhängige Verbrauchswert $Q_{3,p}$ abgezogen, sodass der außentemperaturabhängige Verbrauch Q_3 übrig bleibt. Von dem zu bewertenden Gebäude ist die Summe $\Sigma \dot{Q}_{\rm N}$ der Norm-Heizlasten der Einzelräume aus der Gebäudedokumentation oder aus einer Nachrechnung bekannt.

Mit Bild 3 lässt sich aus dem Verhältnis der beiden Größen dividiert durch die Anzahl der Stunden im Jahr die Heizgrenztemperatur bestimmen.

different heating temperature limits. The data are based on TRY region 13 as per DIN 4710.

Figure 2. Percentage distribution of the degree days over the year for different heating temperature limits (data for TRY region 13)

Table 1. Percentage distribution of the degree days over the year for different heating temperature limits (data for TRY region 13)

	Heati	ng temperature	e limit
Month	12 °C	15 °C	18°C
Jan	23,1	20,0	17,6
Feb	17,9	15,9	14,3
Mrch	13,8	13,5	12,7
Apr	4,7	6,5	7,5
May	2,5	3,5	4,7
Jun	0,1	0,7	2,2
Jul	0,0	0,5	1,1
Aug	0,0	0,2	0,8
Sep	1,6	2,9	4,0
Oct	5,5	7,3	8,1
Nov	12,3	12,3	11,8
Dec	18,5	16,8	15,2

5.4.2 Heating temperature limit, calculated from a heating-energy consumption value

Where a total energy consumption value, $Q_{3,\mathrm{ges}}$, is available, begin by deducting the consumption **in**dependent of outdoor temperature, $Q_{3,\mathrm{P}}$ leaving but the outdoor-temperature-dependent consumption, Q_3 . The sum of the standard heating loads of the individual rooms in the building under consideration, $\Sigma \dot{Q}_{\mathrm{N}}$, is known from the building documentation or from a subsequent calculation.

The heating temperature limit can be determined from Figure 3 as the ratio of these two quantities, divided by the number of hours in a year.

Bild 3. Abhängigkeit der Heizgrenztemperatur vom Energieverbrauch und der Norm-Heizlast (zur Herleitung siehe Anhang B)

Figure 3. Dependence of heating temperature limit on energy consumption and standard heating load (derivation see Annex B)

$$x = \frac{Q_3}{\dot{Q}_N \cdot 8760 \,\mathrm{h}} \tag{2}$$

Dabei ist

x Hilfsgröße

 Q_3 Heizenergieverbrauch für ein Jahr

 $\dot{Q}_{\rm N}$ Norm-Heizlast

Die Verwendung des in einem Jahr gemessenen Heizenergieverbrauchs ist für diesen Anwendungsfall hinreichend genau, obwohl der gemessene Verbrauch zunächst den Temperaturwerten des Testreferenzjahrs zugeordnet wird.

Die Herleitung der Kurve ist in Anhang B zu finden. Sie kann durch folgende Gleichung angenähert werden:

$$\vartheta_{\sigma} = -4.05 + 41.22 \cdot x^{0.5} \tag{3}$$

Dabei ist

 $\vartheta_{\rm g}$ Heizgrenztemperatur in °C

x aus Gleichung (2)

5.4.3 Heizgrenze, berechnet aus mehreren Verbrauchswerten

Liegen mehrere Gesamtenergieverbrauchswerte für den Betrachtungszeitraum vor, davon mindestens drei außerhalb der Heizzeit, kann sowohl die Heizgrenze wie auch der außen temperatur**un**abhängige Verbrauch aus Bild 1 abgelesen werden.

5.5 Gradtage

Die Gradtage G werden nach Gleichung (4) berechnet. Als Index wird die verwendete Heizgrenztemperatur $\vartheta_{\rm g}$ angegeben.

$$x = \frac{Q_3}{\dot{Q}_{\rm N} \cdot 8760 \,\mathrm{h}} \tag{2}$$

where

x auxiliary quantity

 Q_3 heating-energy consumption for one year

 $\dot{Q}_{\rm N}$ standard heating load

Using the heating-energy consumption measured in one year results in sufficient accuracy for this application, although the measured consumption is initially allocated to the temperatures of the test reference year.

The derivation of the curve can be found in Annex B; it can be approximated by the following equation:

$$\vartheta_{g} = -4,05 + 41,22 \cdot x^{0,5} \tag{3}$$

where

 $\vartheta_{\rm g}$ heating temperature limit, in °C

x from Equation (2)

5.4.3 Heating temperature, calculated from several consumption values

If several values of total energy consumption are available for the period under consideration, no less than three of which for times outside the heating season, the heating temperature limit as well as the consumption **in**dependent of outdoor temperature can be extracted from Figure 1.

5.5 Degree days

The degree days, G, are calculated using Equation (4). The heating temperature limit used, ϑ_g , is given as a subscript.

$$G_{\vartheta_{g}} = 1 d \cdot \sum_{n=1}^{z} (\vartheta_{g} - \vartheta_{m,n})$$
 (4)

Dabei ist

 G_{ϑ_g} Gradtag in K · d ϑ_g Heizgrenze in °C

 $\vartheta_{m,n}$ Mitteltemperatur des Tages n

z Anzahl der Heiztage

n Laufvariable

In der Vergangenheit veröffentlichte Gradtage basieren auf der Annahme einer festen Heizgrenze von $15\,^{\circ}\text{C}$ und einer festen Rauminnentemperatur von $20\,^{\circ}\text{C}$ ($G_{15/20}$). Dies stellt eine Annäherung an die Berechnung der Gradtage nach Gleichung (4) mit einer festen Heizgrenze von $19.4\,^{\circ}\text{C}$ dar.

6 Hilfsverfahren zur Berechnung der Jahres-Gradtage

Liegen für einen Standort keine Messwerte oder kein Datensatz vor, kann für die Bestimmung der Gradtage das im Folgenden beschriebene Hilfsverfahren angewendet werden. Es dient ausschließlich als Ersatz für langjährige Tagesmitteltemperaturen, nicht jedoch für einzelne Tagestemperaturen. Es werden dazu die mittleren Monatstemperaturen für Januar $\vartheta_{\rm Jan}$ und Juli $\vartheta_{\rm Jul}$ benötigt. Diese Monatsmittelwerte sind z.B. in der DIN 4710 dokumentiert.

Die einzusetzenden Extremwerte liegen um 0,5 K verschoben, sodass gilt:

Tiefsttemperatur $\vartheta_{\rm K}$

$$\vartheta_{K} = \vartheta_{Ian} - 0.5 \text{ K} \tag{5}$$

Höchsttemperatur ϑ_{W}

$$\vartheta_{\rm W} = \vartheta_{\rm Iul} + 0.5 \text{ K} \tag{6}$$

Der Temperaturverlauf lässt sich durch eine harmonische Funktion annähern.

$$\vartheta = A \cdot \sin[B \cdot (X - C)] + D \tag{7}$$

Dabei ist

X Tageslaufnummer nach Tabelle A1

A Temperaturamplitude

$$A = \frac{(\vartheta_{W} - \vartheta_{K})}{2} \tag{8}$$

B Frequenzänderung

$$B = \frac{2 \cdot \pi}{365 \,\mathrm{d}} \tag{9}$$

C Phasenverschiebung in d

$$C = 116,75 \text{ d}$$
 (10)

D Temperaturverschiebung in K

$$D = \frac{(\vartheta_{\rm W} - \vartheta_{\rm K})}{2} \tag{11}$$

$$G_{\vartheta_{g}} = 1 \,\mathrm{d} \cdot \sum_{n=1}^{z} (\vartheta_{g} - \vartheta_{\mathrm{m},n})$$
 (4)

where

 G_{ϑ} degree day, in K · d

 $artheta_{
m g}^{}$ heating temperature limit, in $^{\circ}{
m C}$

 $\vartheta_{m,n}$ average temperature of day n

z number of heating days

n counter

Degree days published in the past are based on the assumption of a fixed heating temperature limit of $15\,^{\circ}\text{C}$ and a fixed indoor temperature of $20\,^{\circ}\text{C}$ ($G_{15/20}$). This is an approximation of the calculation of the degree days as per Equation (4) with a fixed heating temperature limit of $19.4\,^{\circ}\text{C}$.

6 Auxiliary method for calculating the annual degree days

Where no measured values or data record are available for a site, the degree days can be calculated using the auxiliary method described below. It serves solely as a substitute for one-day average temperatures over several years, but not for individual one-day temperatures. The method requires the one-month average temperatures for January, $\vartheta_{\rm Jan}$, and July, $\vartheta_{\rm Jul}$. These one-month average temperatures are documented, e.g., in DIN 4710.

The extremal values to be used are shifted by 0,5 K, so that:

Minimum temperature value ϑ_{K}

$$\vartheta_{K} = \vartheta_{Ian} - 0.5 \text{ K} \tag{5}$$

Maximum temperature value ϑ_W

$$\vartheta_{\rm W} = \vartheta_{\rm Jul} + 0.5 \text{ K} \tag{6}$$

The temperature history can be approximated by a harmonic function.

$$\vartheta = A \cdot \sin[B \cdot (X - C)] + D \tag{7}$$

where

X day number as per Table A1

A temperature amplitude

$$A = \frac{(\vartheta_{\rm W} - \vartheta_{\rm K})}{2} \tag{8}$$

B frequency shift

$$B = \frac{2 \cdot \pi}{365 \,\mathrm{d}} \tag{9}$$

C phase shift, in d

$$C = 116.75 \text{ d}$$
 (10)

D temperature shift, in K

$$D = \frac{(\vartheta_{\rm W} - \vartheta_{\rm K})}{2} \tag{11}$$

Lautet die Fragestellung, am wievielten Tag des Jahres eine bestimmte Mitteltemperatur statistisch verläuft, ist Gleichung (7) wie folgt umzustellen:

$$X = \frac{\arcsin\left(\frac{(\vartheta - D)}{A}\right)}{R} + C \tag{12}$$

Liegt die Heizgrenztemperatur oberhalb des auftretenden Maximalwerts, liefert Gleichung (12) einen Fehler. Die Gradtage sind dann um $z \cdot (\vartheta_g - \vartheta_W)$ zu erhöhen.

Die Gradtage in Abhängigkeit von der Heizgrenztemperatur ϑ_g liegen zwischen den Funktionen f_1 (siehe Gleichung (13)) und f_2 (siehe Gleichung (14)):

$$f_1: \quad \vartheta = A \cdot \sin[B \cdot (X - C)] + D$$
 (13)

$$f_2$$
: $\vartheta = \vartheta_g$ (14)

Einfacher ist es, wegen der Symmetrie die halbe Fläche in den Grenzen zwischen dem kältesten Tag $X_{\rm K} = 25,5$ und dem Tag der Grenztemperatur $X_{\vartheta_{\rm g}}$ zu berechnen und sie dann zu verdoppeln. Es gilt dann:

$$G_{\vartheta_{g}} = 2 \cdot \int_{25.5}^{X_{\vartheta_{g}}} (f_{2} - f_{1}) dX$$
 (15)

Die Lösung des Integrals zwischen den Grenzen $X_{\vartheta_{\mathrm{g}}}$ und 25.5 lautet

$$G_{\vartheta_{g}} = 2 \cdot (\vartheta_{g} - D) \cdot (X_{\vartheta_{g}} - 25,5)$$

$$+ 2 \cdot \left(\frac{A}{B}\right) \cdot \cos[B \cdot (X_{\vartheta_{g}} - C)] \qquad (16)$$

7 Beispiele

7.1 Anwendungsbeispiele

Beispiel 1

Der Betreiber einer Liegenschaft möchte beurteilen, wie sich ihr Verbrauch über die Heizperioden der Jahre 2000 bis 2002 entwickelt hat. Zur Verfügung stehen die Norm-Heizlast, die jeweiligen Heizenergiejahresverbräuche und die vom zugehörigen Wetteramt gemessenen Tagesmitteltemperaturen in den betreffenden Jahren.

Die Norm-Heizlast ist 55 kW.

Die Heizenergiejahresverbräuche sind in einer Nahwärmestation mit Wärmezählern gemessen (Tabelle 2). Mit Gleichung (2) wird die Hilfsgröße x berechnet und aus ihr mit Gleichung (3) die Heizgrenztemperatur $\vartheta_{\rm g}$ (Ergebnisse in Tabelle 2).

Where it is to be determined at which day of the year, statistically, a particular average temperature is found, rearrange Equation (7) as follows:

$$X = \frac{\arcsin\left(\frac{(\vartheta - D)}{A}\right)}{R} + C \tag{12}$$

Where the heating temperature limit exceeds the maximum temperature value determined, Equation (12) will return an error. In this case, increase the degree days by $z \cdot (\vartheta_g - \vartheta_W)$.

The degree days as a function of the heating temperature limit, ϑ_g , lie between the functions f_1 (see Equation (13)) and f_2 (see Equation (14)):

$$f_1: \quad \vartheta = A \cdot \sin[B \cdot (X - C)] + D$$
 (13)

$$f_2$$
: $\vartheta = \vartheta_g$ (14)

Thanks to the symmetry, it proves easier to calculate half the area delimited by the coldest day, $X_{\rm K}=25.5$, and the day of the heating temperature limit, $X_{\vartheta_{\rm g}}$, and to double its value. Then:

$$G_{\vartheta_{g}} = 2 \cdot \int_{25.5}^{X_{\vartheta_{g}}} (f_{2} - f_{1}) dX$$
 (15)

The solution to this integral between the integration limits X_{ϑ_a} and 25,5 is

$$G_{\vartheta_{g}} = 2 \cdot (\vartheta_{g} - D) \cdot (X_{\vartheta_{g}} - 25,5)$$

$$+ 2 \cdot \left(\frac{A}{B}\right) \cdot \cos[B \cdot (X_{\vartheta_{g}} - C)] \qquad (16)$$

7 Examples

7.1 Case studies

Case study 1

The user of a real property wishes to assess the development of consumption over the heating seasons in the years 2000 to 2002. The following quantities are available: standard heating load, the annual heating-energy consumptions for the years in question and the one-day average temperatures for the years in question, measured by the local meteorological service.

The standard heating load is 55 kW.

The annual heating-energy consumptions were measured in a local heating station using heat meters (Table 2). Equation (2) is used to calculate the auxiliary quantity, x, from which the heating temperature limit, ϑ_g , is determined using Equation (3) (results shown in Table 2).

Die Differenzen der Tagesmitteltemperaturen zur Heizgrenztemperatur im jeweiligen Jahr werden bis zur Heizgrenztemperatur aufsummiert und ergeben so die Gradtage dieses Jahres (Tabelle 2). Der Bezugswert für die Wetterbereinigung wird mit dem Mittelwert der Heizgrenztemperaturen ($\vartheta_{\rm gm}=19,42\,^{\circ}{\rm C}$) und dem zugehörigen Wert der Gradtage $G_{\vartheta_{\rm g}}=3343~{\rm K}\cdot{\rm d}$ aus Tabelle A2, hier für die Repräsentanzstation Mannheim, hergestellt.

Tabelle 2. Daten zum Beispiel 1

Jahr	Q _{3,Mess}	х	ϑ_{g}	$oldsymbol{G}_{artheta_{oldsymbol{\mathrm{g}}}}$	Q _{3,bereinigt}
	in kWh	in s/h	in °C	in K ⋅ d	in kWh
2000	150 123	0,312	18,96	3145	159 574
2001	141 723	0,294	18,31	3172	149 363
2002	177 575	0,369	21,00	3974	149 379

Beispiel 2

Ein Vermieter muss den Verbrauch bei einem Mieterwechsel auf die beiden Parteien aufteilen. Die Norm-Heizlast des Gebäudes beträgt 75 kW, der Verbrauchswert für die gesamte Heizperiode 116 MWh. Die betroffene Wohneinheit hat daran einen Anteil von 5 %. Die Wohnung wurde Anfang März von einem neuen Mieter übernommen.

$$x = \frac{116 \text{ MWh}}{75 \text{ kW} \cdot 8760 \text{ h}} = 0,177 \tag{17}$$

Aus Bild 3 wird damit eine Heizgrenztemperatur von 13,5 °C abgelesen. (Zur Herleitung von Bild 3 siehe Anhang B.)

Die zugehörige Testreferenzjahrzone ist TRY 01 Bremerhaven. Aus Tabelle A3 wird aus der nächstgelegenen Spalte (14 °C) für den Zeitraum September bis Februar ein Anteil von 73 % und für März bis Mai ein Anteil von 27 % abgelesen. Dementsprechend werden die Kosten auf die verschiedenen Zeiträume aufgeteilt.

Beispiel zum Hilfsverfahren

Am Beispiel der Station Hof soll im Folgenden aufgezeigt werden, wie das Hilfsverfahren angewendet wird und welche Abweichungen von den tatsächlichen langjährigen Mittelwerten zu erwarten sind. Für die Monate Januar und Juli seien die Monatsmittelwerte bekannt.

$$\vartheta_{Jan} = -3 \,^{\circ} C \tag{18}$$

$$\vartheta_{\text{Iul}} = 15 \,^{\circ}\text{C}$$
 (19)

Damit folgt aus Gleichung (5) bis Gleichung (16) (siehe Abschnitt 4):

The differences between the one-day average temperatures and the heating temperature limit for the year in question are totalled up to the heating temperature limit to give the degree days of this year (Table 2). The reference value for the meteorological correction is calculated using the mean value of the heating temperature limits ($\vartheta_{\rm gm}$ = 19,42 °C) and the associated value of the degree days, G_{ϑ_g} = 3343 K · d, as per Table A2, in this case for the representative station at Mannheim.

Table 2. Data for case study 1

Year	Q _{3,Mess}	x	ϑ_{g}	$oldsymbol{G}_{artheta_{oldsymbol{g}}}$	Q _{3,bereinigt}
	in kWh	in s/h	in °C	in K ⋅ d	in kWh
2000	150 123	0,312	18,96	3145	159 574
2001	141 723	0,294	18,31	3172	149 363
2002	177 575	0,369	21,00	3974	149 379

Case study 2

Due to a change of tenants, a landlord is faced with the necessity of distributing the share of consumptions between the two tenants. The standard heating load is 75 kW, the consumption over the entire heating season is 116 MWh. The flat in question accounts for 5% thereof. The new tenant took over the flat at the beginning of March.

$$x = \frac{116 \text{ MWh}}{75 \text{ kW} \cdot 8760 \text{ h}} = 0,177 \tag{17}$$

Using this, a heating temperature limit of 13.5 °C is taken from Figure 3. (The derivation of Figure 3 is explained in Annex B.)

The flat is allocated to the test reference year zone TRY 01 Bremerhaven. According to Table A3, in the column corresponding most closely to the calculated heating temperature limit (i.e. the one for 14 °C), the period from September through February accounts for 73 %, the period from March through May for 27 % of the consumption. The costs are shared accordingly.

Example of auxiliary method

Using the station Hof as an example, the following calculation illustrates the application of the auxiliary method and shows the deviations from the actual averages over several years to be expected. The average values for the months January and July are assumed to be known.

$$\vartheta_{Jan} = -3 \,^{\circ}C \tag{18}$$

$$\vartheta_{\text{Iul}} = 15 \,^{\circ}\text{C}$$
 (19)

It then follows from Equation (5) through Equation (16) (see Section 4):

$$\vartheta_{K} = \vartheta_{Jan} - 0.5 \text{ K}$$

= -3 °C - 0.5 K
= -3.5 °C

$$\vartheta_{\text{W}} = \vartheta_{\text{Jul}} - 0.5 \text{ K}$$

= 15.3 °C + 0.5 K
= 15.8 °C

Die zunächst betrachtete Heizgrenztemperatur soll bei $\vartheta_g = 14$ °C liegen.

$$A = \frac{\vartheta_{W} - \vartheta_{K}}{2}$$

$$= \frac{15.8 \text{ }^{\circ}\text{C} + 3.5 \text{ }^{\circ}\text{C}}{2}$$

$$= 9.65 \text{ }^{\circ}\text{C}$$
(22)

$$B = \frac{2 \cdot \pi}{365 \,\mathrm{d}} \tag{23}$$

$$C = 116,75 \text{ d}$$
 (24)

$$D = \frac{\vartheta_{\text{W}} + \vartheta_{\text{K}}}{2}$$

$$= \frac{15.8 \,^{\circ}\text{C} + 3.5 \,^{\circ}\text{C}}{2}$$

$$= 6.15 \,^{\circ}\text{C}$$
(25)

Der Tag, an dem die Tagesmitteltemperatur $\vartheta_{\rm g}$ beträgt, ist:

$$x_{\vartheta g} = \frac{\arcsin\left(\frac{\vartheta_{g} - D}{A}\right)}{B} + C$$

$$x_{\vartheta g} = \frac{\arcsin\left(\frac{(14 - 6,15) \text{ °C}}{9,65 \text{ °C}}\right)}{\frac{2 \cdot \pi}{365 \text{ d}}} + 116,75 \text{ d}$$

$$= 171.94 \text{ d}$$
(26)

Wird dies in Gleichung (16) für die Gradtage eingesetzt, folgt:

$$G_{14} = 2 \cdot \left((\vartheta_{g} - D) \cdot (x_{\vartheta g} - 25, 5) + \frac{A}{B} \right)$$

$$\cos[B \cdot (x_{\vartheta g} - C)]$$

$$= 2951 \text{ K} \cdot \text{d}$$
(27)

Dieses Ergebnis weicht um 3,3 % vom Wert der tatsächlichen Gradtage G_{14} (siehe Tabelle A3) ab.

Sollen mit diesem Verfahren die Gradtage für höhere Grenztemperaturen berechnet werden, liefert der arcsin einen Fehler. Die Grenztemperatur liegt dann über der maximalen durch die Sinuskurve beschriebenen Temperatur. Die maximale Temperatur tritt auf, wenn die Sinusfunktion in Gleichung (7) den Wert 1 annimmt. Sie beträgt dann:

$$\vartheta_{K} = \vartheta_{Jan} - 0.5 \text{ K}$$

$$= -3 \text{ °C} - 0.5 \text{ K}$$

$$= -3.5 \text{ °C}$$
(20)

$$\vartheta_{W} = \vartheta_{Jul} - 0.5 \text{ K}$$

= 15.3 °C + 0.5 K
= 15.8 °C (21)

Initially, the heating temperature limit considered should be $\vartheta_g = 14$ °C.

$$A = \frac{\vartheta_{W} - \vartheta_{K}}{2}$$

$$= \frac{15.8 \text{ }^{\circ}\text{C} + 3.5 \text{ }^{\circ}\text{C}}{2}$$

$$= 9.65 \text{ }^{\circ}\text{C}$$
(22)

$$B = \frac{2 \cdot \pi}{365 \,\mathrm{d}} \tag{23}$$

$$C = 116,75 \text{ d}$$
 (24)

$$D = \frac{\vartheta_{\text{W}} + \vartheta_{\text{K}}}{2}$$

$$= \frac{15.8 \,^{\circ}\text{C} + 3.5 \,^{\circ}\text{C}}{2}$$

$$= 6.15 \,^{\circ}\text{C}$$
(25)

The day when the one-day average temperature is ϑ_g , is:

$$x_{\vartheta g} = \frac{\arcsin\left(\frac{\vartheta_{g} - D}{A}\right)}{B} + C$$

$$x_{\vartheta g} = \frac{\arcsin\left(\frac{(14 - 6,15) \, ^{\circ}\text{C}}{9,65 \, ^{\circ}\text{C}}\right)}{\frac{2 \cdot \pi}{365 \, \text{d}}} + 116,75 \, \text{d}$$

$$= 171.94 \, \text{d}$$
(26)

This is inserted into Equation (16) for the degree days to give:

$$G_{14} = 2 \cdot \left((\vartheta_{g} - D) \cdot (x_{\vartheta g} - 25,5) + \frac{A}{B} \right)$$

$$\cos[B \cdot (x_{\vartheta g} - C)]$$

$$= 2951 \text{ K} \cdot \text{d}$$
(27)

This result deviates by 3,3 % from the actual degreeday value, G_{14} (see Table A3).

When this method is to be used to calculate the degree days for higher temperature limits, the arcsine function returns an error. The limit temperature then exceeds the simulated maximum temperature described by the sine curve. The simulated maximum temperature occurs at the value 1 of the sine function, see Equation (7). It is, then:

$$\vartheta_{\text{max}} = A + D$$

= 9,65 °C + 6,15 °C (28)
= 15,8 °C

Für diese Temperatur können die Gradtage noch berechnet werden:

$$G_{15.8} = 3487 \text{ K} \cdot \text{d}$$
 (29)

Für die Gradtage mit der Grenztemperatur 18 °C ist zusätzlich die Differenz zwischen 18 °C und 15,8 °C zu addieren.

$$G_{18} = G_{15,8} + 365 \text{ d} \cdot (18 \text{ °C} - 15,8 \text{ °C})$$

= 3487 K · d + 803 K · d (30)
= 4290 K · d

Die Abweichung gegenüber dem tabellierten Wert beträgt hier ca. 1,3 %.

$$\vartheta_{\text{max}} = A + D$$

= 9,65 °C + 6,15 °C (28)
= 15,8 °C

For this temperature, degree days can still be calculated:

$$G_{15.8} = 3487 \text{ K} \cdot \text{d}$$
 (29)

For the degree days with the temperature limit of 18 °C, the difference between 18 °C and 15,8 °C must be added.

$$G_{18} = G_{15,8} + 365 \text{ d} \cdot (18 \text{ °C} - 15,8 \text{ °C})$$

= 3487 K · d + 803 K · d (30)
= 4290 K · d

The deviation from the tabulated value is approximately 1,3 % in this case.

Anhang A Tabellen Annex A Tables

Tabelle A1. Tagesnummer *X* im Jahr (für Gleichung (7))
Table A1. Day number, *X*, within the year (for Equation (7))

	Januar / January	Februar / February	März / March	April	Mai / May	Juni / June	Juli / July	August	September	Oktober / October	November	Dezember / December
1	1	32	60	91	121	152	182	213	244	274	305	335
2	2	33	61	92	122	153	183	214	245	275	306	336
3	3	34	62	93	123	154	184	215	246	276	307	337
4	4	35	63	94	124	155	185	216	247	277	308	338
5	5	36	64	95	125	156	186	217	248	278	309	339
6	6	37	65	96	126	157	187	218	249	279	310	340
7	7	38	66	97	127	158	188	219	250	280	311	341
8	8	39	67	98	128	159	189	220	251	281	312	342
9	9	40	68	99	129	160	190	221	252	282	313	343
10	10	41	69	100	130	161	191	222	253	283	314	344
11	11	42	70	101	131	162	192	223	254	284	315	345
12	12	43	71	102	132	163	193	224	255	285	316	346
13	13	44	72	103	133	164	194	225	256	286	317	347
14	14	45	73	104	134	165	195	226	257	287	318	348
15	15	46	74	105	135	166	196	227	258	288	319	349
16	16	47	75	106	136	167	197	228	259	289	320	350
17	17	48	76	107	137	168	198	229	260	290	321	351
18	18	49	77	108	138	169	199	230	261	291	322	352
19	19	50	78	109	139	170	200	231	262	292	323	353
20	20	51	79	110	140	171	201	232	263	293	324	354
21	21	52	80	111	141	172	202	233	264	294	325	355
22	22	53	81	112	142	173	203	234	265	295	326	356
23	23	54	82	113	143	174	204	235	266	296	327	357
24	24	55	83	114	144	175	205	236	267	297	328	358
25	25	56	84	115	145	176	206	237	268	298	329	359
26	26	57	85	116	146	177	207	238	269	299	330	360
27	27	58	86	117	147	178	208	239	270	300	331	361
28	28	59	87	118	148	179	209	240	271	301	332	362
29	29		88	119	149	180	210	241	272	302	333	363
30	30		89	120	150	181	211	242	273	303	334	364
31	31		90		151		212	243		304		365

Tabelle A2. Gradtage der einzelnen TRY-Regionen mit ihren Repräsentanzstationen nach DIN 4710

Zone	Repräsentanzstation für Temperatur/Feuchte/ Sonnenscheindauer/Wind/Erdbodentemperatur
1	Bremerhaven, t_E von Cuxhaven
2	Rostock-Warnemünde
3	Hamburg-Fuhlsbüttel
4	Potsdam
5	Essen
6	Bad Marienberg
7	Kassel
8	Braunlage
9	Chemnitz
10	Hof
11	Fichtelberg
12	Mannheim
13	Passau
14	Stötten
15	Garmisch-Partenkirchen

Table A2. Degree days of the individual TRY regions with their representative stations as per DIN 4710

Zone	Representative station for temperature/humid- ity/sunshine duration/wind/ground temperature
1	Bremerhaven, t_E for Cuxhaven
2	Rostock-Warnemünde
3	Hamburg-Fuhlsbüttel
4	Potsdam
5	Essen
6	Bad Marienberg
7	Kassel
8	Braunlage
9	Chemnitz
10	Hof
11	Fichtelberg
12	Mannheim
13	Passau
14	Stötten
15	Garmisch-Partenkirchen

Tabelle A3. Gradtage für verschiedene Repräsentanzstationen²⁾ (alphabetisch geordnet) /

Table A3. Degree days for various representative stations²⁾ (in alphabetical order) Braunlage Heizgrenze in °C / Heating temperature 19,4 limit, in °C Jan Feb σ Mrz / Mrch Gradtage / Degree days in K Apr Mai / May Jun Jul Aug Sep Okt / Oct Nov Dez / Dec Jahr gesamt / Yearly total Bremerhaven Heizgrenze in °C / 19,4 Heating temperature limit, in °C Jan Feb Mrz / Mrch Υ. Apr Gradtage / Degree days in Mai / May Jun Jul Aug Sep Okt / Oct Nov Dez / Dec Jahr gesamt / Yearly total Chemnitz Heizgrenze in °C / Heating temperature 19,4 limit, in °C Jan Feb σ Mrz / Mrch ¥ Apr Gradtage / Degree days in Mai / May Jun Jul Aug Sep Okt / Oct Nov

Dez / Dec

Jahr gesamt / Yearly total

²⁾ Die Daten wurden dankenswerterweise vom Deutschen Wetterdienst (DWD) zur Verfügung gestellt (www.dwd.de). / Data provided by courtesy of Deutscher Wetterdienst (DWD; www.dwd.de).

Essen

Feb 98 154 210 266 322 350 378 434 474 490 546 602 658 714 Mrz / Mrch 33 90 152 214 276 307 338 400 444 462 524 586 648 714 Apr 0 10 46 105 165 195 225 285 327 345 405 465 525 585 Mai / May 0 0 0 4 35 65 96 158 202 220 282 344 406 465 Jun 0 0 0 0 0 1 13 69 111 129 189 249 309 365 Aug 0 0 0 0 0 0 0 1 27 69 87 149 211 273 335 Sep 0 0 0 0 0 6 22 48 108 150 168 228 288 348 406 Okt / Oct 0 0 11 47 104 135 166 228 271 290 352 414 476 535 Nov 21 70 129 189 249 279 309 369 411 429 489 549 609 665 Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77		Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
Mrz / Mrch 33 90 152 214 276 307 338 400 444 462 524 586 648 710		Jan	129	191	253	315	377	408	439	501	544	563	625	687	749	811
Apr 0 10 46 105 165 195 225 285 327 345 405 465 525 585 Mai / May 0 0 0 4 35 65 96 158 202 220 282 344 406 465 Jun 0 0 0 0 0 0 1 13 69 111 129 189 249 309 365 Jul 0 0 0 0 0 0 0 0 0 1 27 69 87 149 211 273 335 Sep 0 0 0 0 0 0 6 22 48 108 150 168 228 288 348 406 Okt / Oct 0 0 11 47 104 135 166 228 271 290 352 414 476 535 Nov 21 70 129 189 249 279 309 369 411 429 489 549 609 665 Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77		Feb	98	154	210	266	322	350	378	434	474	490	546	602	658	714
Mai / May		Mrz / Mrch	33	90	152	214	276	307	338	400	444	462	524	586	648	710
Mai / May 0 0 0 4 35 65 96 158 202 220 282 344 406 468		Apr	0	10	46	105	165	195	225	285	327	345	405	465	525	585
Sep O O O O O O O O O		Mai / May	0	0	0	4	35	65	96	158	202	220	282	344	406	468
Sep 0 0 0 6 22 48 108 150 168 228 288 348 408 Okt / Oct 0 0 11 47 104 135 166 228 271 290 352 414 476 538 Nov 21 70 129 189 249 279 309 369 411 429 489 549 609 669 Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77	ep e	Jun	0	0	0	0	0	1	13	69	111	129	189	249	309	369
Sep 0 0 0 6 22 48 108 150 168 228 288 348 408 Okt / Oct 0 0 11 47 104 135 166 228 271 290 352 414 476 538 Nov 21 70 129 189 249 279 309 369 411 429 489 549 609 669 Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77	gre	Jul	0	0	0	0	0	0	0	21	63	82	144	206	268	330
Sep 0 0 0 6 22 48 108 150 168 228 288 348 408 Okt / Oct 0 0 11 47 104 135 166 228 271 290 352 414 476 538 Nov 21 70 129 189 249 279 309 369 411 429 489 549 609 669 Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77		Aug	0	0	0	0	0	0	1	27	69	87	149	211	273	335
Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77		Sep	0	0	0	0	6	22	48	108	150	168	228	288	348	408
Dez / Dec 95 157 219 281 343 374 405 467 510 529 591 653 715 77	ıdta	Okt / Oct	0	0	11	47	104	135	166	228	271	290	352	414	476	538
	Gre	Nov	21	70	129	189	249	279	309	369	411	429	489	549	609	669
Jahr gesamt / Yearly total 376 672 1020 1422 1877 2137 2419 3068 3575 3794 4524 5254 5984 671		Dez / Dec	95	157	219	281	343	374	405	467	510	529	591	653	715	777
9 ,		Jahr gesamt / Yearly total	376	672	1020	1422	1877	2137	2419	3068	3575	3794	4524	5254	5984	6714

Fichtelberg

	•														
	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	343	405	467	529	591	622	653	715	759	777	839	901	963	1025
	Feb	302	358	414	470	526	554	582	638	677	694	750	806	862	918
ō	Mrz / Mrch	261	323	385	447	509	540	571	633	677	695	757	819	881	943
Ë	Apr	140	200	260	320	380	410	440	500	542	560	620	680	740	800
days	Mai / May	12	53	115	177	239	270	301	363	406	425	487	549	611	673
e de	Jun	0	0	20	73	133	163	193	253	295	313	373	433	493	553
Degree	Jul	0	0	0	27	87	118	149	211	255	273	335	397	459	521
	Aug	0	0	3	30	87	118	149	211	254	273	335	397	459	521
ge /	Sep	0	9	54	114	174	204	234	294	336	354	414	474	534	594
Gradtage	Okt / Oct	49	107	169	231	293	324	355	417	461	479	541	603	665	727
Gre	Nov	207	267	327	387	447	477	507	567	609	627	687	747	807	867
	Dez / Dec	306	368	430	492	554	585	616	678	722	740	802	864	926	988
	Jahr gesamt / Yearly total	1620	2090	2643	3297	4020	4385	4750	5480	5991	6210	6940	7670	8400	9130

Garmisch-Partenkirchen

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	269	331	393	455	517	548	579	641	684	703	765	827	889	951
	Feb	197	253	309	365	421	449	477	533	572	589	645	701	757	813
٥.	Mrz / Mrch	121	183	245	307	369	400	431	493	537	555	617	679	741	803
i X	Apr	10	53	113	173	233	263	293	353	395	413	473	533	593	653
days i	Mai / May	0	0	4	34	95	126	157	219	262	281	343	405	467	529
e de	Jun	0	0	0	0	13	34	61	121	163	181	241	301	361	421
Degree	Jul	0	0	0	0	0	0	9	65	109	127	189	251	313	375
/ De	Aug	0	0	0	0	3	13	31	88	132	150	212	274	336	398
	Sep	0	0	0	8	49	79	109	169	211	229	289	349	409	469
Gradtage	Okt / Oct	4	31	73	133	195	226	257	319	363	381	443	505	567	629
Great	Nov	120	180	240	300	360	390	420	480	522	540	600	660	720	780
	Dez / Dec	256	318	380	442	504	535	566	628	671	690	752	814	876	938
	Jahr gesamt / Yearly total	977	1348	1756	2217	2759	3062	3389	4109	4620	4839	5569	6299	7029	7759

Hamburg Heizgrenze in °C / Heating temperature 19,4 limit, in °C Jan Feb Mrz / Mrch Gradtage / Degree days in K Apr Mai / May Jun Jul

Jahr gesamt / Yearly total Hof

Aug Sep

Okt / Oct

Nov

Dez / Dec

	1101														
	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	276	338	400	462	524	555	586	648	692	710	772	834	896	958
	Feb	222	278	334	390	446	474	502	558	597	614	670	726	782	838
ο.	Mrz / Mrch	140	202	264	326	388	419	450	512	556	574	636	698	760	822
iЯ	Apr	22	73	133	193	253	283	313	373	415	433	493	553	613	673
days i	Mai / May	0	0	8	45	107	138	169	231	274	293	355	417	479	541
ep e	Jun	0	0	0	0	14	38	66	126	168	186	246	306	366	426
Degree	Jul	0	0	0	0	0	2	20	81	124	143	205	267	329	391
	Aug	0	0	0	0	5	18	37	95	139	157	219	281	343	405
ge /	Sep	0	0	0	17	68	98	128	188	230	248	308	368	428	488
Gradtage	Okt / Oct	8	38	85	147	209	240	271	333	377	395	457	519	581	643
Gre	Nov	123	183	243	303	363	393	423	483	525	543	603	663	723	783
	Dez / Dec	232	294	356	418	480	511	542	604	647	666	728	790	852	914
	Jahr gesamt / Yearly total	1022	1406	1823	2302	2858	3169	3507	4233	4744	4963	5693	6423	7153	7883

Kassel

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	179	241	303	365	427	458	489	551	594	613	675	737	799	861
	Feb	135	191	247	303	359	387	415	471	510	527	583	639	695	751
o.	Mrz / Mrch	53	112	174	236	298	329	360	422	466	484	546	608	670	732
Ë	Apr	0	13	52	112	172	202	232	292	334	352	412	472	532	592
days i	Mai / May	0	0	0	5	35	65	96	158	201	220	282	344	406	468
ep e	Jun	0	0	0	0	0	0	9	59	101	119	179	239	299	359
Degree	Jul	0	0	0	0	0	0	0	16	58	76	138	200	262	324
	Aug	0	0	0	0	0	0	1	28	68	87	149	211	273	335
ge /	Sep	0	0	0	0	14	35	63	123	165	183	243	303	363	423
Gradtage	Okt / Oct	0	4	30	75	137	168	199	261	304	323	385	447	509	571
Gre	Nov	48	106	166	226	286	316	346	406	448	466	526	586	646	706
	Dez / Dec	142	204	266	328	390	421	452	514	557	576	638	700	762	824
	Jahr gesamt / Yearly total	556	869	1238	1649	2117	2380	2660	3300	3806	4025	4755	5485	6215	6945

Mannheim

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	148	210	272	334	396	427	458	520	563	582	644	706	768	830
	Feb	98	154	210	266	322	350	378	434	473	490	546	602	658	714
þ.	Mrz / Mrch	21	64	126	188	250	281	312	374	417	436	498	560	622	684
ï	Apr	0	0	16	62	122	152	182	242	284	302	362	422	482	542
days	Mai / May	0	0	0	0	9	23	49	111	155	173	235	297	359	421
e de	Jun	0	0	0	0	0	0	0	17	54	72	132	192	252	312
Degree	Jul	0	0	0	0	0	0	0	0	4	17	78	140	202	264
/ De	Aug	0	0	0	0	0	0	0	6	26	38	99	161	223	285
	Sep	0	0	0	0	2	11	26	80	122	140	200	260	320	380
Gradtage	Okt / Oct	0	2	20	58	113	144	175	237	280	299	361	423	485	547
Gre	Nov	32	84	144	204	264	294	324	384	426	444	504	564	624	684
	Dez / Dec	118	180	242	304	366	397	428	490	533	552	614	676	738	800
	Jahr gesamt / Yearly total	415	693	1028	1414	1842	2078	2331	2893	3336	3544	4271	5001	5731	6461

Marienberg

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	235	297	359	421	483	514	545	607	651	669	731	793	855	917
	Feb	192	248	304	360	416	444	472	528	567	584	640	696	752	808
9	Mrz / Mrch	118	180	242	304	366	397	428	490	534	552	614	676	738	800
Ë	Apr	19	67	127	187	247	277	307	367	409	427	487	547	607	667
days	Mai / May	0	0	9	45	107	138	169	231	274	293	355	417	479	541
ep e	Jun	0	0	0	0	21	48	78	138	180	198	258	318	378	438
Degree	Jul	0	0	0	0	0	4	25	85	128	147	209	271	333	395
	Aug	0	0	0	0	2	13	33	93	137	155	217	279	341	403
ge /	Sep	0	0	0	13	63	93	123	183	225	243	303	363	423	483
Gradtage	Okt / Oct	3	25	69	130	192	223	254	316	360	378	440	502	564	626
Gre	Nov	102	162	222	282	342	372	402	462	504	522	582	642	702	762
	Dez / Dec	194	256	318	380	442	473	504	566	610	628	690	752	814	876
	Jahr gesamt / Yearly total	864	1236	1651	2123	2682	2997	3341	4067	4578	4797	5527	6257	6987	7717

Passau

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	260	322	384	446	508	539	570	632	675	694	756	818	880	942
	Feb	177	233	289	345	401	429	457	513	552	569	625	681	737	793
٥	Mrz / Mrch	79	140	202	264	326	357	388	450	493	512	574	636	698	760
i X	Apr	0	13	60	120	180	210	240	300	342	360	420	480	540	600
days i	Mai / May	0	0	0	6	39	69	100	162	206	224	286	348	410	472
e de	Jun	0	0	0	0	0	3	15	66	108	126	186	246	306	366
Degree	Jul	0	0	0	0	0	0	0	18	60	79	141	203	265	327
	Aug	0	0	0	0	0	0	7	41	82	100	162	224	286	348
ge /	Sep	0	0	0	2	23	47	76	136	178	196	256	316	376	436
Gradtage	Okt / Oct	1	20	54	109	171	202	233	295	338	357	419	481	543	605
Gree	Nov	100	160	220	280	340	370	400	460	502	520	580	640	700	760
	Dez / Dec	213	275	337	399	461	492	523	585	629	647	709	771	833	895
	Jahr gesamt / Yearly total	830	1163	1546	1971	2449	2718	3009	3658	4165	4384	5114	5844	6574	7304

Potsdam

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	211	273	335	397	459	490	521	583	626	645	707	769	831	893
	Feb	162	218	274	330	386	414	442	498	538	554	610	666	722	778
p.	Mrz / Mrch	73	134	196	258	320	351	382	444	488	506	568	630	692	754
ï	Apr	0	16	59	118	178	208	238	298	340	358	418	478	538	598
days i	Mai / May	0	0	0	4	26	54	85	147	190	209	271	333	395	457
e de	Jun	0	0	0	0	0	0	2	41	83	101	161	221	281	341
Degree	Jul	0	0	0	0	0	0	0	7	44	63	125	187	249	311
	Aug	0	0	0	0	0	0	0	24	62	80	142	204	266	328
ge /	Sep	0	0	0	1	19	39	65	125	167	185	245	305	365	425
Gradtage	Okt / Oct	0	8	36	82	144	175	206	268	311	330	392	454	516	578
Gre	Nov	55	112	172	232	292	322	352	412	454	472	532	592	652	712
	Dez / Dec	215	277	339	401	463	494	525	587	630	649	711	773	835	897
	Jahr gesamt / Yearly total	716	1038	1411	1824	2287	2547	2818	3433	3932	4151	4881	5611	6341	7071

Rostock

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	180	242	304	366	428	459	490	552	596	614	676	738	800	862
	Feb	149	205	261	317	373	401	429	485	525	541	597	653	709	765
þ	Mrz / Mrch	90	152	214	276	338	369	400	462	506	524	586	648	710	772
Ϋ́	Apr	11	50	110	170	230	260	290	350	392	410	470	530	590	650
days i	Mai / May	0	0	4	27	84	115	146	208	251	270	332	394	456	518
e da	Jun	0	0	0	0	1	9	31	90	132	150	210	270	330	390
egree	Jul	0	0	0	0	0	0	0	38	82	100	162	224	286	348
	Aug	0	0	0	0	0	0	1	40	83	102	164	226	288	350
ge /	Sep	0	0	0	0	16	37	64	124	166	184	244	304	364	424
Gradtage	Okt / Oct	0	3	23	66	128	159	190	252	295	314	376	438	500	562
Gre	Nov	30	83	143	203	263	293	323	383	425	443	503	563	623	683
	Dez / Dec	127	189	251	313	375	406	437	499	543	561	623	685	747	809
	Jahr gesamt / Yearly total	588	924	1311	1738	2236	2508	2800	3483	3994	4213	4943	5673	6403	7133

Stoetten

	Heizgrenze in °C / Heating temperature limit, in °C	6	8	10	12	14	15	16	18	19,4	20	22	24	26	28
	Jan	250	312	374	436	498	529	560	622	666	684	746	808	870	932
	Feb	198	254	310	366	422	450	478	534	573	590	646	702	758	814
þ.	Mrz / Mrch	119	181	243	305	367	398	429	491	534	553	615	677	739	801
Ë	Apr	13	61	121	181	241	271	301	361	403	421	481	541	601	661
days i	Mai / May	0	0	10	50	112	143	174	236	280	298	360	422	484	546
e de	Jun	0	0	0	0	21	46	76	136	178	196	256	316	376	436
Degree	Jul	0	0	0	0	0	2	17	75	118	137	199	261	323	385
/ De	Aug	0	0	0	0	2	13	30	85	129	147	209	271	333	395
	Sep	0	0	0	7	46	76	106	166	208	226	286	346	406	466
Gradtage	Okt / Oct	3	24	65	126	188	219	250	312	355	374	436	498	560	622
Gre	Nov	110	170	230	290	350	380	410	470	512	530	590	650	710	770
	Dez / Dec	217	279	341	403	465	496	527	589	632	651	713	775	837	899
	Jahr gesamt / Yearly total	910	1281	1693	2164	2711	3022	3356	4076	4587	4806	5536	6266	6996	7726

Anhang B Herleitung

Bild B1. Veranschaulichung zur Herleitung des Gradttagsverfah-

Das Gradtagsverfahren wird anhand des folgenden Gedankengangs hergeleitet:

- a) Hätte das ganze Jahr die Außentemperatur ϑ_a geherrscht, wären $(\vartheta_g - \vartheta_a) \cdot 365$ d Gradtage aufgetreten.
- b) Die zugehörige Energiemenge (graues Rechteck in Bild B1) hätte dann

$$\frac{(\vartheta_{\rm g} - \vartheta_{\rm a})}{(\vartheta_{\rm i} - \vartheta_{\rm a})} \cdot \dot{Q}_{\rm N} \cdot 8760 \, \text{h betragen.}$$

- c) Tatsächlich sind $G_{\vartheta_{\mathbf{g}}}$ Gradtage aufgetreten.
- d) Der tatsächliche Verbrauch beträgt Q_3 .
- e) Ins Verhältnis gesetzt ergibt sich

$$\frac{Q_3}{\frac{(\vartheta_g - \vartheta_a)}{(\vartheta_i - \vartheta_a)} \cdot \dot{Q}_N \cdot 8760 \text{ h}} = \frac{G_{\vartheta g}}{(\vartheta_g - \vartheta_a) \cdot 365 \text{ d}} \quad (B1)$$

oder

$$\frac{Q_3}{\dot{Q}_{\text{N}} \cdot 8760 \,\text{h}} = \frac{G_{\vartheta \text{g}}}{(\vartheta_{\text{i}} - \vartheta_{\text{a}}) \cdot 365 \,\text{d}}$$
 (B2)

f) Wird dieser mathematische Ausdruck mit dem TRY 13 ausgewertet, ergibt sich Bild 3.

Annex B Derivation

Figure B1. Graphical illustration of the derivation of the degreeday method

The degree-day method is based on the following train of thought:

- a) Had the outdoor temperature been ϑ_a all year, the number of degree days would have been $(\vartheta_{\rm g} - \vartheta_{\rm a}) \cdot 365 \,\mathrm{d}.$
- b) The energy corresponding to this number (grey rectangle in Figure B1) would have been, then:

$$\frac{(\vartheta_{\rm g} - \vartheta_{\rm a})}{(\vartheta_{\rm i} - \vartheta_{\rm a})} \cdot \dot{Q}_{\rm N} \cdot 8760 \, \rm h$$

- c) The actual number of degree days was G_{η_2} .
- d) The actual consumption was Q_3 .
- e) The ratio is

$$\frac{Q_3}{\frac{(\vartheta_g - \vartheta_a)}{(\vartheta_i - \vartheta_a)} \cdot \dot{Q}_N \cdot 8760 \text{ h}} = \frac{G_{\vartheta g}}{(\vartheta_g - \vartheta_a) \cdot 365 \text{ d}} \quad (B1)$$

or

$$\frac{Q_3}{\dot{Q}_{\rm N} \cdot 8760 \,\mathrm{h}} = \frac{G_{\vartheta \mathrm{g}}}{(\vartheta_{\mathrm{i}} - \vartheta_{\mathrm{a}}) \cdot 365 \,\mathrm{d}} \tag{B2}$$

f) Evaluating this expression using TRY 13 yields Figure 3.

Anhang C Gradtagszahlenkarte Deutschland

Annex C Degree-day map Germany

Mittlere Jahresgradtage in Deutschland

Bezugszeitraum 1991 bis 2000

