

TABLE OF CONTENTS

01

02

PROBLEM STATEMENT

Context and Problem
Definition

DATASETS

Traps (Train & Test), Weather, Spray

03

04

05

DATA CLEANING & EDA

Mosquitoes species, map for spray & trap, time series

MODELLING

Classifiers HP tuning Model Evaluation

RECOMMENDATIONS

Cost-benefit analysis, Way forward

01

PROBLEM STATEMENT

PROBLEM STATEMENT

To predict the probability of West Nile virus presence for a given location, date, and mosquitoes species

The findings will provide insights on where and when to spray airborne pesticides throughout the Chicago city, to optimize pesticide effectiveness with minimum cost.

DATASETS

DATASETS

DATASET	Shape	Description	Recorded Date
Trap (Train Set)	10506 X 12	Date & location Test on trapped mosquitoes Virus carrier No. of mosquitoes	May-Oct 2007 May-Oct 2009 Jun-Sept 2011 Jun-Sept 2013
Trap (Test Set)	116293 X 11	Date & location Test on trapped mosquitoes	Jun-Sept 2008 Jun-Oct 2010 Jun-Sept 2012 Jun-Oct 2014
Weather	2944 X 22	Weather conditions from TWO weather stations	Jan-Dec 2007-14
Spray	14835 X 4	Date & location of spray of airborne pesticides	Jun-Sept 2011 Aug-Sept 2013

Source: Chicago Department of Public Health

O3 DATA CLEANING & EDA

DATA CLEANING CHALLENGES

TRAIN

813 of duplicate(s)? Not so.. New entry where mosquitos exceed 50

SOLUTION: Groupby date, trap, and species, lat, long, sum the mosquitos.

WNV Presence

WNV Class imbalance:: Negative WNV: 8153 Positive WNV: 457

SOLUTION: SMOTE

WEATHER

Weather data incomplete E.g. Missing value represented by 'M', 'T'

SOLUTION: Requires to study noaa_weather_qclcd documentation. Converted 'M' to NaN, filled in 'T' values

SPRAY

Missing value on time column

SOLUTION: Using date as areas sprayed

over time

MOSQUITOES SPECIES

WNV Vectors

PIPENS RESTUANS

MAP OF TRAPS & SPRAY COVERAGE

Mosquito Counts for Each Year

Potential contributors of outbreak

- Trap quantity changed?
- Trap location changed?
- Increased collections from traps?

Examine Potential Factors: Weather Conditions - Daylight

Examine Potential Factors: Weather Conditions - Average Temperature

Examine Potential Factors: Weather Conditions - Wind Speed

Examine Potential Factors: Weather Conditions - Rain Fall

SUMMARY: FACTORS LEADING TO 2013 OUTBREAK

- No spraying in months prior to July
- Spraying if done, missed areas of traps with high wnv (more than 100).

O4 MODELLING

MODELLING

- Resampling (SMOTE Upsample)
- Std Scale (where relevant)
- **Logistic Regression**
- **Support Vector Machine (SVM)**
- **K Nearest Neighbours (KNN)**
- **Decision Tree Classifier**
- **Random Forest***
- **Gradient Boosting Classifier**

^{*}Downsampling + Upsampling explored

SUMMARY

	LogReg	KNN	DT	RF(Smote O&U)	GBc	XGBc	XGBc(Smote O&U)
accuracy(val)	0.945	0.933	0.799	0.856	0.91	0.908	0.846
sensitivity	0	0.088	0.672	0.657	0.226	0.27	0.613
precision	0	0.2	0.162	0.217	0.196	0.213	0.196
F1	NaN	0.122	0.261	0.326	0.21	0.238	0.297
roc_auc	0.791	0.672	0.774	0.862	0.837	0.849	0.855

- Kaggle ROC_AUC Public:
- XGBoost (Smote U): 0.74579
- RandForest (Smote O&U): 0.73374
- XGBoost (Smote O&U): 0.75410

05 RECOMMENDATIONS

COST-BENEFIT ANALYSIS (Year 2018)

Zenivex coverage (acre) per barrel = 30(gal barrel) $\times 1.48$ (Al per barrel) / 0.007 (appln rate) = 6343 acre

Recommended area coverage = 128,000 + 35,200 = 163,200 acre (area 1 Lat 42.05 to 41.9 Lon -87.9 to -87.62, area 2 Lat 41.79 to 41.68 Lon -87.75 to -87.6)

Budget allocated for Public Health = 5,235,000 USD Expected cost per spray run = 277,881 USD Recommended Sprays (2 per month, Jun to Aug) = 6

Potential Losses = 176(Wnv cases) x 38,000(Mean cost per case) = 6,688,000 USD

Cost-Benefit Analysis = 277,881 x 6 / 6688000 = **0.25** case reduction to be C/B neutral

RECOMMENDATIONS

To improve cost-effectiveness of pesticide deployment, the proposed recommendations relies on timing and coverage area:

- Spraying should be focused in the months of Jun to Jul (periods of high rainfall),
 and targeted at region of traps with high wnv as a start.
- Future deployments should be tailored accordingly to match rainfall patterns; mosquito population generally spike 2 weeks after heavy rainfall.
- 0.25 WNV case reduction to be considered C/B neutral.
- Data on the type of pesticide and cost per spray could be collected to provide more precise cost benefit spray recommendations
- Alternatives of control: larvicides, natural predators (guppies, koi) to further check mosquito population

RECOMMENDATIONS

- The classifier model could be used to provide insights to areas for targeted spraying in the longer term, as new data on wnv clusters, and weather data is available.
- Other sources of data could further improve analytics and model prediction: residential areas, schools, and nursing homes. Potential insights to
 - types and general state of the residential areas; to better inform alternative mosquito control programs through public outreach campaigns,
 - identify potential sites (e.g. work areas where rainwater may pool unnoticed) for mosquito breeding for early prevention efforts
 - areas of higher risk (i.e. children and older folks) that could influence spraying times

THANKS

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**

LITERATURE REVIEW

Cases in Chicago	https://www.cdc.gov/westnile/statsmaps/cumMapsData.html #one			
Mean cost per case averted for year 2018 (USD)	"Cost effectiveness of a targeted age-based West Nile virus vaccination program" by Shankar, et al. Elsevier public health journal, May 2017			
Cost of pesticide (USD) per 30 gallon barrel	https://www.dnainfo.com/chicago/20160907/north-park/city-spray-north-park-for-mosquitoes-wednesdayhttps://www.forestrydistributing.com/aqua-zenivex-e20-ulv-insecticide-zeocon			
	1.48 lbs Etofenprox per gallon, 0.007Al/acre appln rate			
Budget allocated for Public Health	https://www.chicago.gov/content/dam/city/depts/obm/supp_i nfo/2018Budget/2018_Budget_Overview.pdf			