Equation Sheet of Exam #3

$$E[g(X)] = \sum_{x} g(x) P_X(x)$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$\mu_X = E[X], \quad Var[X] = E[X^2] - \mu_X^2$$

$$P_{X|B}(x) = \begin{cases} \frac{P_X(x)}{P[B]}, x \in B\\ 0, otherwise \end{cases}$$

$$f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{P[B]}, x \in B\\ 0, otherwise \end{cases}$$

If
$$Y = aX + b$$
, then

$$\mu_V = a\mu_V + b, Var[Y] = a^2 Var[X]$$

$$[\hat{x}_L(y) - \mu_x] = \frac{\rho_{X,Y}\sigma_X}{\sigma_Y}(y - \mu_Y)$$

$$P[|M_n(X) - \mu_X| \ge c] \le \alpha$$

$$\alpha = \frac{Var[X]}{nc^2}$$

$$P_X(x) = \sum_{x} P_{X,Y}(x, y)$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

$$E[g(x,y)] = \sum_{x} \sum_{y} g(x,y) P_{X,Y}(x,y)$$

$$E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) d_y d_x$$

$$P_{X \mid Y}(x \mid y) = \frac{P_{X,Y}(x,y)}{P_{Y}(y)}$$

$$f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

$$r_{X,Y} = E[XY]$$

$$Cov[X,Y] = E[XY] - \mu_X \mu_Y$$

$$\rho_{X,Y} = \frac{Cov[X,Y]}{\sigma_X \sigma_Y}$$

If X and Y are $N(\mu_X, \mu_Y; \sigma_X, \sigma_Y; \rho)$,

1. X is
$$N(\mu_{\scriptscriptstyle Y}, \sigma_{\scriptscriptstyle Y})$$
, Y is $N(\mu_{\scriptscriptstyle Y}, \sigma_{\scriptscriptstyle Y})$

2.
$$f_{X|Y}(x|y)$$
 is $N(\tilde{\mu}_X(y), \tilde{\sigma}_X)$

$$\widetilde{\mu}_X(y) = \mu_X + \rho \frac{\sigma_X}{\sigma_Y}(y - \mu_Y), \widetilde{\sigma}_X^2 = \sigma_X^2(1 - \rho^2)$$

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

If $X_i s, i = 1, ..., n$, are iids, then

 $W = \sum_{i=1}^{n} X_i$ is approximately Gaussian with

$$\mu_W = n\mu_X$$
 and $Var[W] = nVar[X]$

Table 1: Families of Discrete Random Variables

If X is a Bernoulli(p) RV,	If X is a Geometric(p) RV,
$\mu_X = p \qquad Var[X] = p(1-p)$	$\mu_X = \frac{1}{p} \qquad Var[X] = \frac{1-p}{p^2}$
$P_X(x) = \begin{cases} 1 - p &, x = 0 \\ p &, x = 1 \\ 0, & \text{otherwise} \end{cases}$	$\mu_{X} = \frac{1}{p} \qquad Var[X] = \frac{1-p}{p^{2}}$ $P_{X}(x) = \begin{cases} p(1-p)^{x-1} &, & x = 1,2,\\ 0 &, & otherwise \end{cases}$
	$F_X(x) = \begin{cases} 1 - (1-p)^x & , & x = 1,2, \\ 0 & , & otherwise \end{cases}$
If X is a $Poisson(\alpha)$ RV,	If X is a Binomial (n, p) RV,
$\mu_X = \alpha \qquad Var[X] = \alpha$	$\mu_X = np \qquad Var[X] = np(1-p)$
$P_X(x) = \begin{cases} \frac{\alpha^x e^{-\alpha}}{x!} &, & x = 0,1,2,\\ 0 &, & otherwise \end{cases}$	$P_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{(n-x)}, & x = 0,1,2,,n \\ 0, & otherwise \end{cases}$
If X is a discrete Uniform (k, l) RV ,	If X is a Pascal (k, p) RV,
$\mu_{X} = (k+l)/2 Var[X] = (l-k)(l-k+2)/12$ $\chi = k, k+1, \dots, l$	$\mu_X = k / p Var[X] = k(1-p) / p^2$ $P_X(x)$
$P_X(x) = \begin{cases} \frac{1}{l-k+1} &, & x = k, k+1,, l\\ 0 &, & therwise \end{cases}$	$= \begin{cases} \binom{x-1}{k-1} p^k (1-p)^{(x-k)}, & x = k, k+1, \dots \\ 0, & otherwise \end{cases}$

Table 2: Families of Continuous Random Variables

If X is a Uniform(a, b) RV,	If X is a Gaussian (μ, σ) RV,
$\mu_X = \frac{a+b}{2} \qquad Var[X] = \frac{(b-a)^2}{12}$	$\mu = \mu, Var[X] = \sigma^2$
$f_X(x) = \begin{cases} \frac{1}{b-a} & , & a \le x < b \\ 0 & , & therwise \end{cases}$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X-\mu)^2}{2\sigma^2}}$ $Z = \frac{X-\mu}{2\sigma^2}$
$F_X(x) = \begin{cases} 0 & , & x \le a \\ \frac{x - a}{b - a} & , & a < x \le b \\ 1 & , & x > b \end{cases}$	$Z = \frac{1}{\sigma}$
If X is Exponential(λ),	
$\mu_X = \frac{1}{\lambda} \qquad Var[X] = \frac{1}{\lambda^2}$	
$f_X(x) = \begin{cases} \lambda e^{-\lambda x} &, & x \ge 0 \\ 0 &, & therwise \end{cases}$	
$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & , & x \ge 0 \\ 0 & , & therwise \end{cases}$	