Assignment 2 MAT 458

5.6.67: Claim: $|S_n x - Px| \to 0$ as $n \to \infty$. First if $x \in M$, then

$$S_n x = \frac{1}{n} \sum_{i=0}^{n-1} U^i x = \frac{1}{n} \sum_{i=0}^{n-1} x = x$$

and Px = x. Now, if x = y - Uy, We see that

$$||S_n(x)|| = \frac{1}{n} \left| \left| \sum_{i=0}^{n-1} U^i y - \sum_{i=0}^{n-1} U^{i+1} y \right| \right| = \frac{1}{n} ||z - U^n z|| \le \frac{1}{n} ||z|| + ||Uz|| = \frac{2||z||}{n}.$$

Thus we can make $||S_n(x)||$ as small as we wish if x is of the above form.