MATH 1210 Assignment 1

Due: 1:30 pm Friday 23 January 2009 (at your instructor's office)

NOTES:

- 1. Late assignments will NOT be accepted.
- 2. If your assignment is not accompanied by a signed Faculty of Science "Honesty Declaration", it will NOT be graded.

Provide a complete solution to each of the following problems:

1. Verify that, for all $n \geq 1$,

$$1 + 4 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}.$$

[HINT: You might find it useful to write the left-hand side of this equation using sigma notation.]

- 2. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^n 1$ is divisible by 5.
- 3. Verify that, for all $n \ge 1$, the sum of the squares of the first 2n positive integers is given by

$$1^{2} + 2^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}.$$

[HINT: You might find it useful to write the left-hand side of this equation using sigma notation.]

4. Consider the sequence of real numbers defined by the relations

$$x_1 = 1$$
 and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n > 1$.

Use the Principle of Mathematical Induction to show that $x_n < 4$ for all $n \ge 1$.

- 5. Show that $n! > 3^n$ for $n \ge 7$.
- 6. Let $p_0 = 1$, $p_1 = cos(\theta)$ (for θ some fixed constant) and $p_{n+1} = 2 p_1 p_n p_{n-1}$ for $n \ge 1$. Use an extended Principle of Mathematical Induction (see below) to prove that $p_n = cos(n \theta)$ for $n \ge 0$.

1

[HINT: You may find it useful to employ the compound-angle formula for $cos((n+1)\theta)$ and $cos((n-1)\theta)$ in order to complete this problem.]

- 7. Consider the famous Fibonacci sequence $\{x_n\}_{n=1}^{\infty}$, defined by the relations $x_1 = 1$, $x_2 = 1$ and $x_n = x_{n-1} + x_{n-2}$ for $n \ge 3$.
 - (a) Compute x_{20} ,
 - (b) Use an extended Principle of Mathematical Induction (see below) in order to show that

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] \text{ for } n \ge 1,$$

(c) Use a calculator and the formula of part (b) to compute x_{20} .

For the last two problems you will need the following result.

An extended version of the Principle of Mathematical Induction:

Consider the infinite sequence of statements $\{P_n\}_{n=N}^{\infty}$ for N a fixed integer.

IF

- (A) P_N and P_{N+1} are both true,
- (B) the truth of both P_k and P_{k+1} implies the truth of P_{k+2} for $k \geq N$, THEN
- (C) we may conclude that P_n is true for all $n \geq N$.