вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Писмен изпит по ЕАИ 29.06.2019 г.

Зад. 1 (1.0 точки). Нека $\Sigma=\{a,b\}$. Докажете, че за всеки регулярен език L_1 над Σ и всеки контекстно свободен език L_2 над Σ езикът

$$L_3 = \bigcup_{\alpha \in L_1} L_2^{|\alpha|}$$

е контекстно свободен език над Σ .

Зад. 2. Нека $\Sigma=\{0,1,2\}$. За $z\in\Sigma$ и $\alpha\in\Sigma^*$ дефинираме $\#_z(\alpha)=|\{i\mid\alpha_i=z\}|$, т.е. $\#_z(\alpha)$ е броят на срещанията на символа z в думата α . За произволен език $L\subseteq\Sigma^*$ дефинираме $perm(L)=\{v\in\Sigma^*\mid\exists u\in L:\#_0(u)=\#_0(v)\wedge\#_1(u)=\#_1(v)\wedge\#_2(u)=\#_2(v)\}.$

- (1.5 точки) Докажете, че не е вярно, че за всеки регулярен език L над Σ езикът perm(L) е регулярен език над Σ .
- (1.5 точки) Докажете, че не е вярно, че за всеки контекстно свободен език L над Σ езикът perm(L) е контекстно свободен език над Σ .

Зад. 3 (1.0 точки). Нека $L_1=\{a^k\mid k\in\mathbb{N}, k$ не е просто $\}$ и $L_2=\{a\}^*\setminus L_1$. Вярно ли е, че езикът $L=L_1\cdot L_2$ е регулярен над $\{a\}$? Защо?

Оценката се получава по формулата $\min\{6,2+$ получени точки $\}$. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Писмен изпит по ЕАИ 29.06.2019 г.

Зад. 1 (1.0 точки). Нека $\Sigma = \{a,b\}$. Докажете, че за всеки регулярен език L_1 над Σ и всеки контекстно свободен език L_2 над Σ езикът

$$L_3 = \bigcup_{\alpha \in L_1} L_2^{|\alpha|}$$

е контекстно свободен език над Σ

Зад. 2. Нека $\Sigma=\{0,1,2\}$. За $z\in\Sigma$ и $\alpha\in\Sigma^*$ дефинираме $\#_z(\alpha)=|\{i\mid\alpha_i=z\}|$, т.е. $\#_z(\alpha)$ е броят на срещанията на символа z в думата α . За произволен език $L\subseteq\Sigma^*$ дефинираме $perm(L)=\{v\in\Sigma^*\mid\exists u\in L:\#_0(u)=\#_0(v)\wedge\#_1(u)=\#_1(v)\wedge\#_2(u)=\#_2(v)\}.$

- (1.5 точки) Докажете, че не е вярно, че за всеки регулярен език L над Σ езикът perm(L) е регулярен език над Σ .
- (1.5 точки) Докажете, че не е вярно, че за всеки контекстно свободен език L над Σ езикът perm(L) е контекстно свободен език над Σ .

Зад. 3 (1.0 точки). Нека $L_1=\{a^k\mid k\in\mathbb{N}, k$ не е просто $\}$ и $L_2=\{a\}^*\setminus L_1$. Вярно ли е, че езикът $L=L_1\cdot L_2$ е регулярен над $\{a\}$? Защо?

Оценката се получава по формулата min{6,2+получени точки}. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по ЕАИ 29.06.2019 г.

 ${f 3}$ ад. 1 (1.0 точки). Нека $\Sigma=\{0,1\}$. Докажете, че за всеки регулярен език L_1 над Σ и всеки контекстно свободен език L_2 над Σ езикът

$$L_3 = \bigcup_{\alpha \in L_1} L_2^{|\alpha|}$$

е контекстно свободен език над Σ .

Зад. 2. Нека $\Sigma=\{a,b,c\}$. За $x\in\Sigma$ и $w\in\Sigma^*$ дефинираме $\#_x(w)=|\{i\mid w_i=x\}|$, т.е. $\#_x(w)$ е броят на срещанията на символа x в думата w. За произволен език $L\subseteq\Sigma^*$ дефинираме $perm(L)=\{y\in\Sigma^*\mid\exists x\in L:\#_a(x)=\#_a(y)\land\#_b(x)=\#_b(y)\land\#_b(x)=\#_b(y)\}$.

- (1.5 точки) Докажете, че не е вярно, че за всеки регулярен език L над Σ езикът perm(L) е регулярен език над Σ .
- (1.5 точки) Докажете, че не е вярно, че за всеки контекстно свободен език L над Σ езикът perm(L) е контекстно свободен език над Σ .

Зад. 3 (1.0 точки). Нека $L_1=\{a^n\mid n\in\mathbb{N}, n\text{ е просто}\}$ и $L_2=\{a\}^*\setminus L_1.$ Вярно ли е, че езикът $L=L_1\cdot L_2$ е регулярен над $\{a\}$? Защо?

Оценката се получава по формулата $\min\{6, 2+$ получени точки $\}$. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по ЕАИ 29.06.2019 г.

Зад. 1 (1.0 точки). Нека $\Sigma=\{0,1\}$. Докажете, че за всеки регулярен език L_1 над Σ и всеки контекстно свободен език L_2 над Σ езикът

$$L_3 = \bigcup_{\alpha \in L_1} L_2^{|\alpha|}$$

е контекстно свободен език над Σ .

Зад. 2. Нека $\Sigma = \{a,b,c\}$. За $x \in \Sigma$ и $w \in \Sigma^*$ дефинираме $\#_x(w) = |\{i \mid w_i = x\}|$, т.е. $\#_x(w)$ е броят на срещанията на символа x в думата w. За произволен език $L \subseteq \Sigma^*$ дефинираме $perm(L) = \{y \in \Sigma^* \mid \exists x \in L : \#_a(x) = \#_a(y) \land \#_b(x) = \#_b(y) \land \#_c(x) = \#_c(y)\}.$

- (1.5 точки) Докажете, че не е вярно, че за всеки регулярен език L над Σ езикът perm(L) е регулярен език над Σ .
- (1.5 точки) Докажете, че не е вярно, че за всеки контекстно свободен език L над Σ езикът perm(L) е контекстно свободен език над Σ .

Зад. 3 (1.0 точки). Нека $L_1=\{a^n\mid n\in\mathbb{N}, n\text{ е просто}\}$ и $L_2=\{a\}^*\setminus L_1$. Вярно ли е, че езикът $L=L_1\cdot L_2$ е регулярен над $\{a\}$? Защо?

Оценката се получава по формулата $\min\{6, 2+$ получени точки $\}$. Екипът Ви пожелава успех.