Grating Efficiency Analysis

REIXS Spectrometer, CLS

Mark Boots
December 2007

Background

- Project 2005: optical design of REIXS spectrometer
 - David: resolving power
 - Mark: efficiency (photon out / photons in)
- Why concern with efficiency?
 - 2X increase in efficiency means twice as many experiments per shift
 - Allows measurement of low-concentration samples

Where are we now...

- Nov/Dec 2007: gratings delivered (Bach Research)
- Mechanical design... Looks beautiful on paper!

Grating efficiency

 Dec: Measured actual efficiency using diffractometer on BL 6 (ALS)

Design Summary: 6 gratings

- LEG: low energy use: 30-300eV (Au coating)
- IMP: high-efficiency over large range, up to 800eV (Ni coating)
- MEG: good resolution + efficiency up to 800eV (Ni coating)
- HEG: high energy use, high resolution (400eV+)
 (Pt coating)
- HRMEG, HRHEG: ultra-high resolution 3rd-order gratings

Results:

- All gratings measured lower efficiencies than the calculations predicted
- Some factor lower (0.9, 0.85, etc.) expected due to simple surface roughness
- Deeper analysis shows manufacturing problems...

LEG: Predicted

Very efficient: up to 40% @ Si edge

LEG: Measured

What happened? Peaks shifted, 2nd order messed

LEG: Hypothesis

 Hypothesis: manufacturer missed blaze angle target of 1.85 degrees. Closer to 2.26 (estimated).

IMP: Predicted

Wide high-efficiency range

IMP: Measured

What happened? Shifted again, but also...
 Drop-off near 520eV... Hmm... O-edge?

IMP: Hypothesis

- Fitted: modeled as Nickel Oxide, I.38deg blaze angle.
- Conclusion: Missed target blaze; Grating is oxidized.

MEG: Predicted

• Same story as IMP...

MEG: Measured

What happened? Drop-off near 520eV... Hmm...
 O-edge?

MEG: Hypothesis

- Fitted: modeled as Nickel Oxide, I.86deg blaze angle.
- Conclusion: Missed target blaze; Grating is oxidized.

HEG: a total dud...

- Hypothesis: ???(Did they mark the blaze direction backwards?)
- Even high-res gratings in 3rd order get better efficiency

HEG: a total dud...

- Very disappointing; HEG is a critical grating.
 - Pt-coated: crucial for measuring above Ni-edge.
 - Covers entire range from 400 I300eV
- Even high-res gratings in 3rd order get better efficiency

- Best scenario: Direction of blaze was marked backwards, so simply rotating the grating 180deg. will fix it.
- If not...???
 - AFM scan will reveal if this is the case.

Next steps...

- Conduct AFM scans of all gratings to actually measure the groove profile / blaze angle
 - Fitting estimates show all blaze angles are 0.3deg to 0.4deg too large.
 - If so, gratings are off-spec (±10%) and should be fixed by Bernie and co.
- Find a chemical that will dissolve nickelous oxides but not nickel...
- Find out what happened with HEG.

HR gratings

- Still working on analyzing data from HR gratings.
 - Beamline 6 normalizing software had bug with offset points (apparent only near absorption edges)
 - Need to normalize manually, or fix software:

Conclusions:

- 2 problems with gratings apparent in measurements
 - Calculations can match measurements, only if:
 - Assume blaze angles too large (consistantly +0.35deg)
 - Nickel gratings are oxidized
- Todo:
 - Reverse oxidization? Is it possible?
 - Confirm blaze angles with AFM scan.