Wave Optics Simulator

Amirali Ekhteraei

Sepehr Babapour

Contents

- Theoretical Approach
- Say Hello to the Application
 Single Slit experiment
 Double Slit experiment
- Single Lens Simulations

Point Spread Function

Abboration Test

Best Image Finder

Fourier Operation

Focusing

Perfect Lensing

Far Objects

Holography

Black-Hole weak Gravitational Lensing

Multi Lens Simulations

Telescope and Allignment

Hybrid Images

High-order Lens

Metasurface

Theoretical Approach

Scalar Wave Equation

Helmholtz equation:
$$\vec{r} + \vec{k} + \vec{k} = 0$$
 Source free

Where $\vec{V}(\vec{r})$ is the Electro-Magnetic field

and we have the intensity: $\vec{I}(\vec{r}) = |\psi(\vec{r})|^2$
 $i\vec{k} \cdot \vec{r}$

Plane waves: $\psi(\vec{r}) = 0$

(a complete solution for the problem)

 $\psi(\vec{r}) = 0$

Green Function

Green function:
$$\nabla^2 G + k^2 G = \delta (\vec{r} - \vec{r}')$$
, $G = G (\vec{r}, \vec{r}')$

$$G = G (\vec{r}, \vec{r}') = G (\vec{r} - \vec{r}') = \frac{e^{i\vec{k}\cdot(\vec{r} - \vec{r}')}}{4\vec{r} | \vec{r} - \vec{r}'|}$$

isotropic

homogeneous

space

Planar POV

Huygens Principle

Green's 3rd theorem:
$$\int (U \nabla^2 V - V)$$

$$i + i \quad V = G(\dot{\tau}, \dot{\tau}, \dot{\tau})$$

Green's 3" theorem:
$$\int (U \nabla^2 V - V \nabla^2 U) dV = \int (U \nabla V - V \nabla U) dS^{n}$$

$$if: V = G(\dot{\tau}, \dot{\tau},) \qquad \nabla^2 G = -\delta(\dot{\tau} - \dot{\tau}_0) - k^2 G$$

$$U = \psi(\vec{r}| = 0 \quad \forall \vec{r} = -k^{2}\psi$$

$$= 0 \quad U(\vec{r}_{1}) = \frac{1}{j\lambda} \quad \text{is } \cos \theta \quad \frac{e^{jk|\vec{r}_{1} - \vec{r}_{0}|}}{|\vec{r}_{1} - \vec{r}_{0}|} \quad \text{is } u(\vec{r}_{0})$$

$$= 0 \quad \text{on the hole} \quad \text{each point } radiates \text{ in sphere}$$

Near Field to Far Field

Abtuna vier:

ment field

Fersnel Field

tar tield (Frankater field)

202

distance

Paraxial Approximation

$$\mathcal{T}(x,y) = \frac{1}{j\lambda} \sum_{k=1}^{\infty} \left[\nabla(x,y) \frac{e^{jkT_{0j}}}{r_{0j}} \cos dx \right]$$

$$\mathcal{T}(x,y) = \frac{1}{j\lambda} \sum_{k=1}^{\infty} \left[\nabla(x,y) \frac{e^{jkR}}{R^2} dx dy \right], \quad R^2 = 2^2 + (\alpha - 2)^2 + (\alpha - 1)^2$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} + \cdots \quad \left[|\alpha| < 1 \Rightarrow R = 2 \left(1 + \left(\frac{x-2}{2} \right)^2 + \left(\frac{y-y}{2} \right)^2 \right) \approx 2 \left(1 + \frac{y}{2} \frac{(x-2)^2 + (y-y)^2}{2} \right)$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dx dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

$$\mathcal{T}(x,y) = \frac{e^{jkR}}{J\lambda} \int_{\mathbb{R}^2} \left[\nabla(x,y) \exp\left(\frac{jk}{2} \right) (x-y)^2 + (y-y)^2 \right] dy dy$$

Free Space as a Transfer Function

Lens Transfer Fubction

Imaging Condition

For having a point image of an initial point input we should satisfy the condition:

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{P}$$

Light as Quantum Photons

Instead of the classical coherent light we can shine the coherent state, although it has uncertaibty in

both amplitude and phase.

Displacement

Displacement

$$X_1$$
 X_2
 X_3
 X_4
 X_4
 X_5
 X_6
 X_6
 X_7
 X_8
 X_8

Light as Quantum Photons

For different modes summing we will have the same wavefront for the coherent state which changes in the linear optical system.

Set of
$$a_{k}^{\dagger}$$
, $[a_{k}^{\dagger}, a_{k}^{\dagger}] = \delta_{k,k'}$ in moneyton set if a_{k}^{\dagger} , $[a_{k}^{\dagger}, a_{k'}] = f(k-k')$ in position $a_{k'}^{\dagger}$ of $a_{k'}^{$

No Lens Test

Photons Sampling

Single Slit

Double Slit

Single Lens Simulations

Single Lens

Single Lens

2f System

Focusing

Two Stars Reileigh Criterion

Comma Abboration

Point Spread Function

Perfect Lens

Perfect Lens

Black Hole as a Lens

Multi Lens Simulations

4f System

35

Low Pass Filter

High Pass Filter

Hybrid Image

Hybrid Image

Say Hello to the Application

User Interface

Appendix

Any question?

Refrences

- <u>J. Goodman</u>. Introduction to Fourier optics, 3rd ed., by JW Goodman. Englewood, CO: Roberts & Co. Publishers, 2005, (2005)
- M. Rezai and J. A. Salehi, "Quantum fourier optics (QFO)," 2023

Materials

Found around the house!

- 2 drinking glasses
- Table salt
- 2 eggs
- Water