Ebird Data Exploration

Ariel Mundo

BIOL 580V

Department of Biomedical Engineering University of Arkansas Fayetteville, AR, USA

Introduction

This presentation shows the work done to analyze the Ebird dataset, which was provided in the BIOL 580V course.

These are the steps I took to analyze the data:

- Load libraries for plotting and data cleaning
- Data cleaning
- Quick analysis to decide direction of analysis
- Visualization

Loading and cleaning the data

- Load data, the separator for the data was tab or "\t".
- The dataset contains many columns that we might not be interested in. I was interested in the Common Name, Genus, Species Count, Location Name, Latitude, Longitude and observation date.

Loading data

Dataset head

```
data<-read.csv(here("data/ebird.csv"),header=FALSE,sep="\t", quote="")
data<-data%>%
    separate(col=V2,into=c("Date_1","Time_1"),sep=' ')
```

Loading and cleaning the data

- Load data, the separator for the data was tab or "\t".
- The dataset contains many columns that we might not be interested in. I was interested in the Common Name, Genus, Species Count, Location Name, Latitude, Longitude and observation date.

Loading data Dataset head

```
head(data,n =3)
```

```
##
                                                V1
                                                       Date 1 Time 1
                                                                                  ٧4
## 1 URN:CornellLabOfOrnithology:EBIRD:OBS61941867 2013-03-08 15:36:52 26621 species
                                                                                        Euror
## 2 URN:CornellLabOfOrnithology:EBIRD:OBS48090318 2014-01-22 16:28:47 21939 species Ruby-crc
## 3 URN:CornellLabOfOrnithology:EBIRD:OBS48090321 2014-01-22 16:28:47 27956 species
                                                                                          Pra
                     V6 V7 V8 V9 V10 V11 V12
##
                                                       V13 V14
                                                                    V15
                                                                          V16
                                                                                 V17
                                                                                           V1
## 1
     Sturnus vulgaris
                                         NA United States US New York US-NY Wayne US-NY-11
     Regulus calendula
                                         NA United States US New York US-NY Oswego US-NY-07
## 3 Setophaga discolor
                                          NA United States US New York US-NY Oswego US-NY-07
```

Data Cleaning

Since there are no headers in this dataset, I assumed that the 9th column of the original dataset (which has been renamed as Species_Count) contains the number of observations for each species.

- I set the "Date" column with a date format, and make "Species_Count" column numeric.
- Where are these observations being made? And how many different species of birds there are in the dataset?

Country State Number of species

Country<-unique(data_clean\$Country)
Country</pre>

[1] "United States"

Data Cleaning

Since there are no headers in this dataset, I assumed that the 9th column of the original dataset (which has been renamed as Species_Count) contains the number of observations for each species.

- I set the "Date" column with a date format, and make "Species_Count" column numeric.
- Where are these observations being made? And how many different species of birds there are in the dataset?

Country State Number of species

State<-unique(data_clean\$State)
State</pre>

Data Cleaning

Since there are no headers in this dataset, I assumed that the 9th column of the original dataset (which has been renamed as Species_Count) contains the number of observations for each species.

- I set the "Date" column with a date format, and make "Species_Count" column numeric.
- Where are these observations being made? And how many different species of birds there are in the dataset?

Country State Number of species

```
all_species<-length(unique(data_clean$Genus))
all_species</pre>
```

[1] 408

Quick data exploration

- All observations are done within the state of NY, 408 different species
- I chose 5 species with the highest number of counts in the dataset.

I grouped the data by *Genus*, and counted the number of occurrences. Then, picked the top 5 rows. The most common bird found in the dataset is the American Crow.

Results

Plotting the data

- I decided to plot the count per each type of bird using the {ggplot} and {maps} packages.
- Later, animated using the {gganimate} package to see how bird sightings change over time.
- The result is this animation: bird sightings have been recorded for crows, bluejays, robins, Black-capped Chickadees and Mourning doves.

Future work

- I would like to include more species in the analysis
- Also implement a 3-D map animation that shows where birds are being sighted with the inclusion of terrain data.