Examen de fin d'études secondaires 2012

Section: B et C

Branche: Chimie

Nº d'ordre	du candidat

QC = question de cours (19 p.); AT = question de transfert (23 p.); AN = application numérique (18 p.)

A. Substitution du méthane par le dibrome

- 1. Expliquer le rôle de l'énergie lumineuse et caractériser le type de mécanisme. (QC2)
- Montrer que la réaction peut évoluer théoriquement par deux voies distinctes. (QC4)
- Expliquer la formation d'un corps non prévu par la réaction globale. (QC1)

B. Composés oxygénés

L'ester représenté ci-dessous est un dérivé de l'acide salicylique et il est très utilisé comme parfum et comme arôme alimentaire sous le nom d'essence de Wintergreen.

Acide salicylique

Une analyse élémentaire montre que l'ester est formé de 31,6 % d'oxygène.

- 1. Calculer la masse molaire de l'ester et dessiner sa formule semi-développée. (AN3)
- 2. Proposer un nom pour cet ester. (AT1)

L'ester est soumis à une réaction d'hydrolyse en présence d'hydroxyde de sodium.

3. Dresser l'équation de cette réaction et donner le nom de l'alcool obtenu. (AT3)

L'alcool obtenu est soumis à une oxydation énergique complète en milieu acide en présence de dichromate de potassium.

- 4. Dresser les systèmes rédox qui traduisent cette transformation. (AT5)
- 5. Calculer la masse du produit organique obtenu après hydrolyse de 100 ml d'ester (p = 1,18 g/cm³) et oxydation complète de l'alcool. Le rendement global de l'opération est de 70 % (AN3)

Epreuve écrite

Examen de fin d'études secondaires 2012

Section: B et C

Branche: Chimie

C. Les composés azotés

- 1. Le benzène est transformé en mononitrobenzène à l'aide d'acide nitrique en présence d'acide sulfurique.
 - a) Dresser l'équation globale de la réaction et préciser le type de réaction. (QC3)
 - b) Etudier le mécanisme réactionnel. (QC5)
- 2. Comparer la volatilité des 3 classes d'amines avec les alcools et alcanes de masse moléculaire semblable. (QC4)
- 3. L'aminobenzène est une amine aromatique couramment appelée aniline.
 - a) Etablir les formules contributives à la mésomérie de l'aniline. Un deuxième substituant sera dirigé vers quelle(s) position(s) dans le cycle aromatique ? (AT4)
 - b) L'aniline et la diméthylamine ont respectivement un pK_b de 9,38 et de 3,13. Expliquer la différence de force de ces deux bases. (AT2)
- 4. Dessiner la formule semi-développée du tripeptide Gly-Ala-Ala. (Gly : acide aminé avec R = H et Ala : acide aminé avec R = CH₃) (AT2)
- 5. Représenter les formes D et L de l'alanine (Ala) en projection de Fischer, dessiner leurs formules spatiales et déterminer leurs configurations selon CIP. (AT3)

D. Acides, bases et pH

- 1. La solution A est une solution d'acide nitreux 0,1 M. Calculer son pH. (AN3)
- La solution B est préparée en dissolvant 8,5 g de nitrite de potassium dans 500 ml d'eau.
 Calculer le pH de cette solution B. (On néglige une variation de volume lors de la dissolution.) (AN4)
- 3. Le jaune d'alizarine, un indicateur coloré avec K_a = 10⁻¹¹, est jaune dans sa forme HInd et violet dans sa forme Ind⁻. Quelle couleur aura cet indicateur dans la solution A ainsi que dans la solution B ? Justifier ! (AT2)
- On mélange 500 ml de la solution A avec la solution B. Calculer le pH du mélange obtenu. (AN2)
- 5. On ajoute 25 ml d'une solution d'hydroxyde de sodium 1 M au mélange tampon obtenu en 4).
 - a) Montrer le fonctionnement de ce tampon par une équation de protolyse. (AT1)
 - b) Calculer le pH final. (AN3)

TABLEAU PERIODIQUE DES ELEMENTS

groupes principaux

groupes principaux

1,0]										III] IV] V	VI	VII	VIII 4,0
H																	He
6,9	9,0	1										10,8	12,0	14,0	16,0	19,0	20,2
Li	Be											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
23,0	24,3	1	groupes secondaires							27,0	28,1	31,0	32,1	35,5	39,9		
Na	Mg											Al	Si	P	S	CI	Ar
11	12	111	IV	V	VI	VII		VIII		1	11	13	14	15	16	17	18
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	165,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226,0	(260)	(261)	(262)	(266)	(264)	(269)	(268)									
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									
87	88	103	104	105	106	107	108	109	1				1				

la	nth	nan	id	es
7				

actinides

138,9	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
57	58	59	60	61	62	63	64	65	66	67	68	69	70
227,0	232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
89	90	91	92	93	94	95	96	97	98	99	100	101	102

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO₃	CIO ₃	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCI3COO-	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	нооссоо-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO₄ ⁻	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HCIO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄ ⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH₂CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH ₂ ICOOH	CH ₂ ICOO ⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN.	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ -	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

r				
ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	AI(H ₂ O) ₆ ³⁺	AI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO₃ ⁻	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ² -	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H₂O)₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H₂BO₃˙	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H₅OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO₃ ⁻	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH₃NH₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH ⁻	anion hydroxyde	15,74

acides de force négligeable

bases fortes
(plus fortes que OH⁻)
O²⁻, NH₂-, anion alcoolate RO⁻)