GAN based Heuristics for Sampling-based Path Planning

Author:

Alberto García Hernández

Background

Path planning

- Methodology to find a feasible path (no collision) to move a robot from source to destination
- O Different approaches:
 - Gradient Based
 - Combinatorial / Exact Algorithms
 - Sampling Based

Background: Sampling Based

Sampling Based

- o RRT and RRT*
- Very effective
 - Find feasible path fast
- (Most) Probabilistically complete
- Finding optimal path
 - Computationally expensive
 - Not always realistic for some applications

RRT*

- One of the most widely used sampling-based algorithms for asymptotically-optimal motion planning.
- Based on Near Neighbour search and Tree rewiring.

Motivation: Can we make RRT* more efficient?

Heuristic Based RTT/RTT*

Generative Adversarial Network (GAN)

- Delimiting a Region of Interest (ROI).
- Sample ROI

(a) RRT*.

(b) GAN-based heuristic RRT*.

X: state space

X_goal: goal state

X_init: initial state

Image Based Heuristic for RRT*

```
Algorithm 2: Comparison of RRT* and Heuristic
 RRT*
   Input: x_{init}, \mathcal{X}_{goal}, \mathcal{H}, Map and UseHeuristic
   Output: G(V, E)
1 V = x_{init}, E = \emptyset;
2 for i=1\cdots N do
       if UseHeuristic = True then
            if Rand() > \mu then
                 x_{rand} \leftarrow \text{Non-uniformSample}(\mathcal{X}_H)
             else
 6
                 x_{rand} \leftarrow \text{UniformSample}();
 7
       else
8
            x_{rand} \leftarrow \text{UniformSample()};
        x_{nearest} \leftarrow \text{Nearest}(G, x_{rand});
10
        x_{new} \leftarrow \text{Steer}(x_{nearest}, x_{rand});
11
        if ObstacleFree(x_{nearest}, x_{rand}) then
12
             Extend(G, x_{new});
13
             Rewire();
14
            if x_{new} \in \mathcal{X}_{qoal} then
15
                 Return G(V, E);
16
        Return failure;
17
```

- Samples are randomly chosen from
 - o non-uniform sampling
 - GAN heuristic
- Trade-off between:
 - Efficiency
 - Still guarantee probabilistic completeness

GAN based heuristic

- Architecture based on Pix2Pix
- •Generator: input 64×64 map + (x_init, x_goal)
- Discriminator: input 64×64 map + (x_init, x_goal) + ROI

30

40

GAN based heuristic

Dataset:

- 10.000 samples of different environment maps.
- Ground truth obtained running RRT* multiple times.
- 20 starting points -> sampled uniformly

Connectivity:

Cases where the generator fails to provide a good mapping for a given input

Generalization:

- Shows good adaptability on unseen environments.
- Success rate of 81.9% on a different dataset

Evaluation

- We test on 5 maps, 10 runs per experiment using random start, goal positions
- Metrics:
 - Cost(Euclidean distance)
 - o Time
 - Nodes expanded

Limitations

- Possible connectivity issues -> forces the path planner to use traditional RRT*.
- Input map must follow the same distribution as training data.
- Need for specialized hardware to run inference on the real robot
 - (Nvidia Jetson, Google Coral)
- Decreased performance when generating regions that cross long distances.
 - long-distance paths account for a small ratio in the randomly-generated dataset.

Conclusions

- Image-based heuristic to guide path planning algorithms shows significant improvement:
 - The quality of paths
 - Accelerates the convergence speed to the optimum.
- Modifications can be done to improve our implementation:
 - Apply the model to dynamic environments
 - Fine-tune the model for long distance paths
 - Explore more lightweight architectures

Demo: RRT* GAN

Demo: RRT*

