Package 'ML2Pvae'

October 12, 2022

Type Package

Title Variational Autoencoder Models for IRT Parameter Estimation

Version 1.0.0.1

Maintainer Geoffrey Converse <converseg@gmail.com>

Description Based on the work of Curi, Converse, Hajew-

ski, and Oliveira (2019) <doi:10.1109/IJCNN.2019.8852333>. This package provides easy-to-use functions which create a variational autoencoder (VAE) to be used for parameter estimation in Item Response Theory (IRT) - namely the Multidimensional Logistic 2-Parameter (ML2P) model. To use a neural network as such, nontrivial modifications to the architecture must be made, such as restricting the nonzero weights in the decoder according to some binary matrix Q. The functions in this package allow for straight-forward construction, training, and evaluation so that minimal knowledge of 'tensorflow' or 'keras' is required.

Note The developer version of 'keras' should be used, rather than the CRAN version. The latter will cause tests to fail on an initial run, but work on subsequent tries. To avoid this, use devtools::install_github(``rstudio/keras"). The user also must have an installation of 'Python 3'.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports keras (>= 2.3.0), reticulate (>= 1.0), tensorflow (>= 2.2.0), tfprobability (>= 0.11.0)

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat, R.rsp

VignetteBuilder R.rsp

Depends R (>= 3.6)

URL https://converseg.github.io

SystemRequirements TensorFlow (https://www.tensorflow.org), Keras (https://keras.io), TensorFlow Probability (https://www.tensorflow.org/probability)

2 .onLoad

<pre>Config/reticulate list(packages = list(list(package = ``keras", pip = TRUE), list(package = ``tensorflow", pip = TRUE), list(package = ``tensorflow-probability", pip = TRUE)))</pre>
NeedsCompilation no
Author Geoffrey Converse [aut, cre, cph], Suely Oliveira [ctb, ths], Mariana Curi [ctb]
Repository CRAN
Date/Publication 2022-05-23 08:02:16 UTC

R topics documented:

	17
validate_inputs	16
vae_loss_independent	15
vae_loss_correlated	14
train_model	13
1 6-	
•	
-	
· ·	
	7 7
	6
	5
	3
.onLoad	
	onLoad build_hidden_encoder . build_vae_correlated build_vae_independent correlation_matrix diff_true disc_true get_ability_parameter_estimates get_item_parameter_estimates ML2Pvae q_lpl_constraint q_constraint q_matrix responses sampling_correlated sampling_independent theta_true train_model vae_loss_correlated vae_loss_independent validate_inputs

 $. \, {\sf onLoad} \,$

Display a message upon loading package

Description

Display a message upon loading package

```
.onLoad(libnam, pkgname)
```

build_hidden_encoder 3

Arguments

libnam the library name
pkgname the package name

build_hidden_encoder Build the encoder for a VAE

Description

Build the encoder for a VAE

Usage

```
build_hidden_encoder(
  input_size,
  layers,
  activations = rep("sigmoid", length(layers))
)
```

Arguments

input_size an integer representing the number of items

layers a list of integers giving the size of each hidden layer

activations a list of strings, the same length as layers

Value

two tensors: the input layer to the VAE and the last hidden layer of the encoder

 $\begin{tabular}{ll} build_vae_correlated & \textit{Build a VAE that fits to a normal, full covariance $N(m,S)$ latent distribution \\ \end{tabular}$

Description

Build a VAE that fits to a normal, full covariance N(m,S) latent distribution

4 build_vae_correlated

Usage

```
build_vae_correlated(
  num_items,
  num_skills,
  Q_matrix,
  mean_vector = rep(0, num_skills),
  covariance_matrix = diag(num_skills),
  model_type = 2,
  enc_hid_arch = c(ceiling((num_items + num_skills)/2)),
  hid_enc_activations = rep("sigmoid", length(enc_hid_arch)),
  output_activation = "sigmoid",
  kl_weight = 1,
  learning_rate = 0.001
)
```

Arguments

an integer giving the number of items on the assessment; also the number of nodes in the input/output layers of the VAE		
an integer giving the number of skills being evaluated; also the dimensionality of the distribution learned by the $V\!AE$		
a binary, num_skills by num_items matrix relating the assessment items with skills		
a vector of length num_skills specifying the mean of each latent trait; the default of $rep(0, num_skills)$ should almost always be used		
rix		
a symmetric, positive definite, num_skills by num_skills matrix giving the covariance of the latent traits		
either 1 or 2, specifying a 1 parameter (1PL) or 2 parameter (2PL) model; if $1PL$, then all decoder weights are fixed to be equal to one		
a vector detailing the size of hidden layers in the encoder; the number of hidden layers is determined by the length of this vector		
hid_enc_activations		
a vector specifying the activation function in each hidden layer in the encoder; must be the same length as enc_hid_arch		
output_activation		
a string specifying the activation function in the output of the decoder; the ML2P model always used 'sigmoid'		
an optional weight for the KL divergence term in the loss function		
an optional parameter for the adam optimizer		

Value

returns three keras models: the encoder, decoder, and vae

build_vae_independent

Examples

build_vae_independent Build a VAE that fits to a standard N(0,I) latent distribution with independent latent traits

Description

Build a VAE that fits to a standard N(0,I) latent distribution with independent latent traits

Usage

```
build_vae_independent(
  num_items,
  num_skills,
  Q_matrix,
  model_type = 2,
  enc_hid_arch = c(ceiling((num_items + num_skills)/2)),
  hid_enc_activations = rep("sigmoid", length(enc_hid_arch)),
  output_activation = "sigmoid",
  kl_weight = 1,
  learning_rate = 0.001
)
```

Arguments

num_items	an integer giving the number of items on the assessment; also the number of nodes in the input/output layers of the VAE
num_skills	an integer giving the number of skills being evaluated; also the dimensionality of the distribution learned by the VAE
Q_matrix	a binary, num_skills by num_items matrix relating the assessment items with skills
model_type	either 1 or 2, specifying a 1 parameter (1PL) or 2 parameter (2PL) model; if 1PL, then all decoder weights are fixed to be equal to one
enc_hid_arch	a vector detailing the size of hidden layers in the encoder; the number of hidden layers is determined by the length of this vector

6 correlation_matrix

```
hid_enc_activations
```

a vector specifying the activation function in each hidden layer in the encoder; must be the same length as enc_hid_arch

output_activation

a string specifying the activation function in the output of the decoder; the $\mbox{\rm ML2P}$

model always uses 'sigmoid'

kl_weight an optional weight for the KL divergence term in the loss function

learning_rate an optional parameter for the adam optimizer

Value

returns three keras models: the encoder, decoder, and vae.

Examples

correlation_matrix

Simulated latent abilities correlation matrix

Description

A symmetric positive definite matrix detailing the correlations among three latent traits.

Usage

```
correlation matrix
```

Format

A data frame with 3 rows and 3 columns

Source

Generated using the python package SciPy

diff_true 7

diff_true

Simulated difficulty parameters

Description

Difficulty parameters for an exam with 30 items.

Usage

diff_true

Format

A data frame with 30 rows and one column. Each entry corresponds to the true value of a particular difficulty parameter.

Source

Each entry is sampled uniformly from [-3,3].

disc_true

Simulated discrimination parameters

Description

Difficulty parameters for an exam of 30 items assessing 3 latent abilities.

Usage

disc_true

Format

A data frame with 3 rows and 30 columns. Entry [k,i] represents the discrimination parameter between item i and ability k.

Source

Each entry is sampled uniformly from [0.25,1.75]. If an entry in q_matrix.rda is 0, then so is the corresponding entry in disc_true.rda.

```
get_ability_parameter_estimates
```

Feed forward response sets through the encoder, which outputs student ability estimates

Description

Feed forward response sets through the encoder, which outputs student ability estimates

Usage

```
get_ability_parameter_estimates(encoder, responses)
```

Arguments

encoder a trained keras model; should be the encoder returned from either build_vae_independent()

or build_vae_correlated

responses a num_students by num_items matrix of binary responses, as used in training

Value

a list where the first entry contains student ability estimates and the second entry holds the variance (or covariance matrix) of those estimates

Examples

```
data <- matrix(c(1,1,0,0,1,0,1,1,0,1,1,0)), nrow = 3, ncol = 4)

Q <- matrix(c(1,0,1,1,0,1,1,0)), nrow = 2, ncol = 4)

models <- build_vae_independent(4, 2, Q, model_type = 2)

encoder <- models[[1]]

ability_parameter_estimates_variances <- get_ability_parameter_estimates(encoder, data)

student_ability_est <- ability_parameter_estimates_variances[[1]]
```

```
get_item_parameter_estimates
```

Get trainable variables from the decoder, which serve as item parameter estimates.

Description

Get trainable variables from the decoder, which serve as item parameter estimates.

```
get_item_parameter_estimates(decoder, model_type = 2)
```

ML2Pvae 9

Arguments

decoder a trained keras model; can either be the decoder or vae returned from build_vae_independent()

or build_vae_correlated

model_type either 1 or 2, specifying a 1 parameter (1PL) or 2 parameter (2PL) model; if 1PL,

then only the difficulty parameter estimates (output layer bias) will be returned; if 2PL, then the discrimination parameter estimates (output layer weights) will

also be returned

Value

a list which contains item parameter estimates; the length of this list is equal to model_type - the first entry in the list holds the difficulty parameter estimates, and the second entry (if 2PL) contains discrimination parameter estimates

Examples

```
Q <- matrix(c(1,0,1,1,0,1,1,0), nrow = 2, ncol = 4)
models <- build_vae_independent(4, 2, Q, model_type = 2)
decoder <- models[[2]]
item_parameter_estimates <- get_item_parameter_estimates(decoder, model_type = 2)
difficulty_est <- item_parameter_estimates[[1]]
discrimination_est <- item_parameter_estimates[[2]]</pre>
```

ML2Pvae

ML2Pvae: A package for creating a VAE whose decoder recovers the parameters of the ML2P model. The encoder can be used to predict the latent skills based on assessment scores.

Description

The ML2Pvae package includes functions which build a VAE with the desired architecture, and fits the latent skills to either a standard normal (independent) distribution, or a multivariate normal distribution with a full covariance matrix. Based on the work "Interpretable Variational Autoencdoers for Cognitive Models" by Curi, M., Converse, G., Hajewski, J., and Oliveira, S. Found in International Joint Conference on Neural Networks, 2019.

10 q_constraint

q_1pl_constraint	A custom kernel constraint function that forces nonzero weights to be equal to one, so the VAE will estimate the 1-parameter logistic model. Nonzero weights are determined by the O matrix.
	Nonzero weights are determined by the Q matrix.

Description

A custom kernel constraint function that forces nonzero weights to be equal to one, so the VAE will estimate the 1-parameter logistic model. Nonzero weights are determined by the Q matrix.

Usage

```
q_1pl_constraint(Q)
```

Arguments

Q a binary matrix of size num_skills by num_items

Value

returns a function whose parameters match keras kernel constraint format

q_constraint	A custom kernel constraint function that restricts weights between the learned distribution and output. Nonzero weights are determined by
	the Q matrix.

Description

A custom kernel constraint function that restricts weights between the learned distribution and output. Nonzero weights are determined by the Q matrix.

Usage

```
q_constraint(Q)
```

Arguments

Q a binary matrix of size num_skills by num_items

Value

returns a function whose parameters match keras kernel constraint format

q_matrix 11

q_matrix

Simulated Q-matrix

Description

The Q-matrix determines the relation between items and abilities.

Usage

q_matrix

Format

A data frame with 3 rows and 30 columns. If entry [k, i] = 1, then item i requires skill k.

Source

Generated by sampling each entry from Bernoulli(0.35), but ensures each item assess at least one latent ability

responses

Response data

Description

Simulated response sets for 5000 students on an exam with 30 items.

Usage

responses

Format

A data frame with 30 columns and 5000 rows. Entry [j,i] is 1 if student j answers item i correctly, and 0 otherwise.

Source

Generated by sampling from the probability of student success on a given item according to the ML2P model. Model parameters can be found in diff_true.rda, disc_true.rda, and theta_true.rda.

sampling_correlated

A reparameterization in order to sample from the learned multivariate normal distribution of the VAE

Description

A reparameterization in order to sample from the learned multivariate normal distribution of the VAE

Usage

```
sampling_correlated(arg)
```

Arguments

arg

a layer of tensors representing the mean and log cholesky transform of the covariance matrix

sampling_independent

A reparameterization in order to sample from the learned standard normal distribution of the VAE

Description

A reparameterization in order to sample from the learned standard normal distribution of the VAE

Usage

```
sampling_independent(arg)
```

Arguments

arg

a layer of tensors representing the mean and variance

theta_true 13

theta_true

Simulated ability parameters

Description

Three correlated ability parameters for 5000 students.

Usage

theta_true

Format

A data frame with 5000 rows and 3 columns. Each row represents a particular student's three latent abilities.

Source

Generated by sampling from a 3-dimensional multivariate Gaussian distribution with mean 0 and covariance matrix correlation_matrix.rda.

train_model

Trains a VAE or autoencoder model. This acts as a wrapper for keras::fit().

Description

Trains a VAE or autoencoder model. This acts as a wrapper for keras::fit().

```
train_model(
  model,
  train_data,
  num_epochs = 10,
  batch_size = 1,
  validation_split = 0.15,
  shuffle = FALSE,
  verbose = 1
)
```

14 vae_loss_correlated

Arguments

the keras model to be trained; this should be the vae returned from build_vae_independent() or build_vae_correlated train_data training data; this should be a binary num_students by num_items matrix of student responses to an assessment num_epochs number of epochs to train for batch_size batch size for mini-batch stochastic gradient descent; default is 1, detailing pure SGD; if a larger batch size is used (e.g. 32), then a larger number of epochs should be set (e.g. 50) validation_split split percentage to use as validation data shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch message			
num_epochs number of epochs to train for batch_size batch size for mini-batch stochastic gradient descent; default is 1, detailing pure SGD; if a larger batch size is used (e.g. 32), then a larger number of epochs should be set (e.g. 50) validation_split split percentage to use as validation data shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch		model	
batch_size batch size for mini-batch stochastic gradient descent; default is 1, detailing pure SGD; if a larger batch size is used (e.g. 32), then a larger number of epochs should be set (e.g. 50) validation_split split percentage to use as validation data shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch		train_data	
SGD; if a larger batch size is used (e.g. 32), then a larger number of epochs should be set (e.g. 50) validation_split split percentage to use as validation data shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch		num_epochs	number of epochs to train for
split percentage to use as validation data shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch		batch_size	SGD; if a larger batch size is used (e.g. 32), then a larger number of epochs
shuffle whether or not to shuffle data verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch	validation_split		t
verbose verbosity levels; 0 = silent; 1 = progress bar and epoch message; 2 = epoch			split percentage to use as validation data
		shuffle	whether or not to shuffle data
		verbose	

Value

a list containing training history; this holds the loss from each epoch which can be plotted

Examples

```
data <- matrix(c(1,1,0,0,1,0,1,1,0,1,1,0), nrow = 3, ncol = 4)
Q <- matrix(c(1,0,1,1,0,1,1,0), nrow = 2, ncol = 4)
models <- build_vae_independent(4, 2, Q)
vae <- models[[3]]
history <- train_model(vae, data, num_epochs = 3, validation_split = 0, verbose = 0)
plot(history)</pre>
```

vae_loss_correlated

A custom loss function for a VAE learning a multivariate normal distribution with a full covariance matrix

Description

A custom loss function for a VAE learning a multivariate normal distribution with a full covariance matrix

```
vae_loss_correlated(
  encoder,
  inv_skill_cov,
  det_skill_cov,
  skill_mean,
```

vae_loss_independent 15

```
kl_weight,
rec_dim
)
```

Arguments

encoder the encoder model of the VAE, used to obtain z_mean and z_log_cholesky from

inputs

inv_skill_cov a constant tensor matrix of the inverse of the covariance matrix being learned

det_skill_cov a constant tensor scalar representing the determinant of the covariance matrix

being learned

skill_mean a constant tensor vector representing the means of the latent skills being learned

kl_weight weight for the KL divergence term

rec_dim the number of nodes in the input/output of the VAE

Value

returns a function whose parameters match keras loss format

 ${\tt vae_loss_independent} \quad \textit{A custom loss function for a VAE learning a standard normal distribution} \\$

Description

A custom loss function for a VAE learning a standard normal distribution

Usage

```
vae_loss_independent(encoder, kl_weight, rec_dim)
```

Arguments

encoder the encoder model of the VAE, used to obtain z_mean and z_log_var from inputs

kl_weight weight for the KL divergence term

rec_dim the number of nodes in the input/output of the VAE

Value

returns a function whose parameters match keras loss format

validate_inputs

validate_inputs

Give error messages for invalid inputs in exported functions.

Description

Give error messages for invalid inputs in exported functions.

Usage

```
validate_inputs(
  num_items,
  num_skills,
  Q_matrix,
  model_type = 2,
  mean_vector = rep(0, num_skills),
  covariance_matrix = diag(num_skills),
  enc_hid_arch = c(ceiling((num_items + num_skills)/2)),
  hid_enc_activations = rep("sigmoid", length(enc_hid_arch)),
  output_activation = "sigmoid",
  kl_weight = 1,
  learning_rate = 0.001
)
```

Arguments

num_items	the number of items on the assessment; also the number of nodes in the input/output layers of the VAE	
num_skills	the number of skills being evaluated; also the size of the distribution learned by the VAE	
Q_matrix	a binary, num_skills by num_items matrix relating the assessment items with skills	
<pre>model_type</pre>	either 1 or 2, specifying a 1 parameter (1PL) or 2 parameter (2PL) model	
mean_vector	a vector of length num_skills specifying the mean of each latent trait	
covariance_mat	rix	
	a symmetric, positive definite, num_skills by num_skills, matrix giving the covariance of the latent traits	
enc_hid_arch	a vector detailing the number an size of hidden layers in the encoder	
hid_enc_activations		
	a vector specifying the activation function in each hidden layer in the encoder; must be the same length as enc_hid_arch	
output_activation		
	a string specifying the activation function in the output of the decoder; the ML2P model alsways used 'sigmoid'	
kl_weight	an optional weight for the KL divergence term in the loss function	
learning_rate	an optional parameter for the adam optimizer	

Index

```
* datasets
    correlation_matrix, 6
    diff_true, 7
    disc\_true, 7
    q_matrix, 11
    responses, 11
    theta_true, 13
.onLoad, 2
build_hidden_encoder, 3
build_vae_correlated, 3
build_vae_independent, 5
correlation_matrix, 6
diff_true, 7
disc_true, 7
get_ability_parameter_estimates, 8
{\tt get\_item\_parameter\_estimates}, 8
ML2Pvae, 9
q_1pl_constraint, 10
q_constraint, 10
q_matrix, 11
responses, 11
sampling_correlated, 12
{\tt sampling\_independent}, \\ 12
theta_true, 13
train_model, 13
vae_loss_correlated, 14
vae_loss_independent, 15
validate_inputs, 16
```