Gaussian Analysis

Liam Mulligan - s1806984

The University of Edinburgh

29 March 2022

Outline

Gaussian Measures

Structure of a Gaussian measure space

Main results

Malliavin Calculus

Gaussian measures on $\mathbb R$

Definition

 γ is a **Gaussian** measure on $\mathbb R$ if it is either the *Dirac measure*, δ_a , or has density given by

$$p(x; a, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right).$$

The Fourier transform

Proposition

If γ is a Gaussian measure on \mathbb{R} , then its Fourier transform is of the form

$$\widehat{\gamma}(y) = \exp\left(iay - \frac{1}{2}\sigma^2y^2\right).$$

Gaussian measures on arbitrary Banach spaces

Definition ([1])

Let X be a Banach space, with continuous dual X^* .

Then γ is a Gaussian measure on $\mathcal{E}(X,X^*)$ if for any $f\in X^*$, the induced measure $\gamma\circ f^{-1}$ on $\mathbb R$ is Gaussian.

The Fourier transform

Theorem

A measure γ on a Banach space X is Gaussian if and only if it has fourier transform of the form

$$\widehat{\gamma}(f) = \exp\left(ia_{\gamma}(f) - \frac{1}{2}R_{\gamma}(f)(f)\right).$$

Example

• C[0,1]

Example

- C[0,1]
- with the minimal σ -algebra $\mathcal C$ such that all evaluation maps are measurable

Example

- C[0,1]
- with the minimal σ -algebra $\mathcal C$ such that all evaluation maps are measurable
- for a given Brownian motion $B = \{B_t\}_{t \in [0,1]}$, and probability space (Ω, Σ, P) :

$$\phi: \Omega \longrightarrow C[0,1] \ \omega \longmapsto B_* := (t \mapsto B_t(\omega))$$

Example

- C[0,1]
- with the minimal σ -algebra $\mathcal C$ such that all evaluation maps are measurable
- for a given Brownian motion $B = \{B_t\}_{t \in [0,1]}$, and probability space (Ω, Σ, P) :

$$\phi: \Omega \longrightarrow C[0,1]$$
 $\omega \longmapsto B_* := (t \mapsto B_t(\omega))$

• the Wiener measure is $P^W = P \circ \phi^{-1}$

Cameron-Martin space

Definition

For $h \in X$

$$|h|_{H(\gamma)} := \sup \{f(h) : f \in X^*, R_{\gamma}(f)(f) \le 1\}.$$

The Cameron-Martin space is then

$$H(\gamma) := \left\{ h \in X : |h|_{H(\gamma)} < \infty \right\}.$$

Cameron-Martin theorem

Theorem

Let γ be a Gaussian measure on X.

- 1. If $h \notin H(\gamma)$, then γ and $\gamma_h := \gamma(\cdot h)$ are mutually singular.
- 2. If $h \in H(\gamma)$, then γ and γ_h are equivalent.

Outline of proof

- 1. If $h \notin H(\gamma)$
 - Show that the **total variation distance** $\|\gamma \gamma_h\| = 1$.

Outline of proof

- 1. If $h \notin H(\gamma)$
 - Show that the **total variation distance** $\|\gamma \gamma_h\| = 1$.
- 2. If $h \in H(\gamma)$
 - Show that the measure with density with respect to γ

$$\rho_h(x) := \exp\left(g(x) - \frac{1}{2}|h|_{H(\gamma)}^2\right)$$

is γ_h .

Examples

Example

- 1. If γ is a nondegenerate measure on \mathbb{R}^n , then $H(\gamma) = \mathbb{R}^n$;
- 2. If γ is a degenerate measure, then $H(\gamma)$ is the support of γ .

Fernique's theorem

Theorem

If γ is a centred Gaussian measure on X, and q a $\mathcal{E}(X)$ -measurable norm. Then there exists $\alpha > 0$ such that

$$\int_X \exp\left(\alpha q^2\right) \, \mathrm{d}\gamma < \infty.$$

Application of Fernique's theorem

ullet Recall the Wiener space $\Big(extit{C} \left[0,1
ight], \, \mathcal{C}, \, P^W \Big)$

Application of Fernique's theorem

- ullet Recall the Wiener space $\Big(extit{C} ig[0,1 ig] \,,\, \mathcal{C},\, P^{W} \Big)$
- Via a theorem by Kolmogorov [2], for $p \in \left(0, \frac{1}{2}\right)$ then P^W gives full measure to the subspace of p-Hölder continuous functions

Application of Fernique's theorem

- ullet Recall the Wiener space $\left(\mathit{C}\left[0,1\right] ,\mathit{C},\mathit{P}^{W}
 ight)$
- Via a theorem by Kolmogorov [2], for $p \in \left(0, \frac{1}{2}\right)$ then P^W gives full measure to the subspace of p-Hölder continuous functions
- By Fernique's theorem there exists $\alpha > 0$ such that

$$\mathbb{E}\exp\left(\alpha\|\mathbf{w}\|_{p\text{-H\"ol}}^2\right)<\infty.$$

Borel's Isoperimetric inequality

Theorem

Let γ_n be the standard Gaussian measure on \mathbb{R}^n , and U be the closed unit ball. Then for any measurable A, $\varepsilon > 0$

$$\Phi^{-1}\left\{\gamma_n\left(A+\varepsilon U\right)\right\} \geq \Phi^{-1}\left\{\gamma_n(A)\right\} + \varepsilon.$$

Outline of proof

• From Borell [3] we have Ehrhard's inequality

$$\Phi^{-1}\left\{\gamma_n\left(\lambda A + (1-\lambda)B\right)\right\} \ge \lambda \Phi^{-1}\left\{\gamma_n(A)\right\} + (1-\lambda)\Phi^{-1}\left\{\gamma_n(B)\right\}$$

Outline of proof

• From Borell [3] we have Ehrhard's inequality

$$\Phi^{-1}\left\{\gamma_n\left(\lambda A + (1-\lambda)B\right)\right\} \ge \lambda \Phi^{-1}\left\{\gamma_n(A)\right\} + (1-\lambda)\Phi^{-1}\left\{\gamma_n(B)\right\}$$

• Apply the above to $\lambda^{-1}A$ and $(1-\lambda)^{-1}\varepsilon U$

Wiener integral

• Take $H=L^{2}\left(\left[0,1\right] ;\mathbb{R}
ight) ,$ with orthonormal basis $\left\{ e_{n}
ight\} _{n\in\mathbb{N}}$

Wiener integral

- Take $H=L^{2}\left(\left[0,1\right] ;\mathbb{R}
 ight)$, with orthonormal basis $\left\{ e_{n}
 ight\} _{n\in\mathbb{N}}$
- Define $W: H \to L^2(\Omega)$ by

$$W(e_n) = \xi_n \sim \mathcal{N}(0,1)$$

The Derivative operator

Definition

Define

$$\mathcal{S}:=\left\{f\left(W(h_1),\cdots,W(h_n)\right):f\in C^{\infty}\left(\mathbb{R}^n\right),\,h_i\in H\right\}$$

The Derivative operator

Definition

Define

$$\mathcal{S}:=\left\{f\left(W(h_1),\cdots,W(h_n)\right):f\in C^\infty\left(\mathbb{R}^n\right),\,h_i\in H\right\}$$

• For $F \in \mathcal{S}$ define

$$\mathscr{D}_t F := \sum_{1 \leq i \leq n} \frac{\partial}{\partial x_i} f(W(h_1), \cdots, W(h_n)) h_i(t)$$

The Derivative operator

Definition

Define

$$\mathcal{S} := \left\{ f\left(W(h_1), \cdots, W(h_n)\right) : f \in C^{\infty}\left(\mathbb{R}^n\right), h_i \in H \right\}$$

• For $F \in \mathcal{S}$ define

$$\mathscr{D}_t F := \sum_{1 \leq i \leq n} \frac{\partial}{\partial x_i} f(W(h_1), \cdots, W(h_n)) h_i(t)$$

Example

• $\mathscr{D}W(h) = h$

The Divergence operator

Definition

Define

$$\mathcal{S}_H := \left\{ \sum_{1 \leq j \leq n} F_j h_j(t) : F_j \in \mathcal{S}, \ h_j \in H
ight\}$$

The Divergence operator

Definition

Define

$$\mathcal{S}_{H} := \left\{ \sum_{1 \leq j \leq n} F_{j} h_{j}(t) : F_{j} \in \mathcal{S}, \ h_{j} \in H
ight\}$$

• For $u \in \mathcal{S}_H$ define

$$\delta u := \sum_{1 \leq j \leq n} \left(F_j W(h_j) - \langle \mathscr{D} F_j, h_j \rangle_H \right)$$

The Divergence operator

Definition

Define

$$\mathcal{S}_{H} := \left\{ \sum_{1 \leq j \leq n} F_{j} h_{j}(t) : F_{j} \in \mathcal{S}, \ h_{j} \in H \right\}$$

• For $u \in \mathcal{S}_H$ define

$$\delta u := \sum_{1 \leq j \leq n} \left(F_j W(h_j) - \langle \mathscr{D} F_j, h_j \rangle_H \right)$$

Example

• $\delta h = W(h)$

Derivative & Divergence

Is it true for $F \in L^2(\Omega)$ that $\delta \mathscr{D} F = F$?

Derivative & Divergence

Is it true for $F \in L^2(\Omega)$ that $\delta \mathscr{D} F = F$? Not in general!

Derivative & Divergence

Is it true for $F \in L^2(\Omega)$ that $\delta \mathscr{D} F = F$? Not in general!

However, δ and \mathscr{D} are **adjoint** in the sense that

$$\mathbb{E}\left(\left\langle \mathcal{D}F,u\right\rangle _{H}\right)=\mathbb{E}\left(F\delta u\right).$$

The Ornstein-Uhlenbeck operator

So how does $\delta \mathscr{D}$ act on $L^2(\Omega)$?

The Ornstein-Uhlenbeck operator

So how does $\delta \mathscr{D}$ act on $L^2(\Omega)$?

Definition

We define the **Ornstein-Uhlenbeck operator**,

$$\mathcal{L}: L^2(\Omega) o L^2(\Omega)$$
, by

$$\mathcal{L}F := -\delta \mathscr{D}F.$$

Wiener Chaos decomposition

Definition

Define the *n*-th Wiener Chaos, \mathcal{H}_n , by

$$\mathcal{H}_{n} = \overline{\operatorname{span}\left\{H_{n}\left(W(h)\right): \|h\|_{H} = 1\right\}}.$$

Wiener Chaos decomposition

Definition

Define the *n*-th Wiener Chaos, \mathcal{H}_n , by

$$\mathcal{H}_n = \overline{\operatorname{span}\left\{H_n\left(W(h)\right): \|h\|_H = 1\right\}}.$$

Proposition

If $G_n \in \mathscr{H}_n$ then

$$\mathcal{L}G_n = -nG_n$$
.

Conclusion

Gaussian Measures

Structure of a Gaussian measure space

Main results

Malliavin Calculus

- [1] Vladimir Bogachev. *Gaussian Measures*. Vol. 62. American Mathematical Society, Sept. 1998. DOI: 10.1090/surv/062. URL: http://www.ams.org/surv/062.
- [2] Olav Kallenberg. Foundations of Modern Probability. eng. 3rd ed. 2021. Vol. 99. Probability Theory and Stochastic Modelling. Cham: Springer International Publishing. ISBN: 3030618706.
- [3] Christer Borell. "The Ehrhard inequality". In: C. R. Math. Acad. Sci. Paris 337.10 (2003), pp. 663-666. ISSN: 1631-073X. DOI: 10.1016/j.crma.2003.09.031. URL: https://doi.org/10.1016/j.crma.2003.09.031.