$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

See the minireview under $\eta(1405)$.

f₁(1420) MASS

<i>VALUE</i> (N	1eV)			EVTS	DOCUMENT ID		TECN	COMMENT
1426.	4±	0.9	OUR	AVERAGE	Error includes sca	le fac	tor of 1.	
1434	±	5	± 5	133	¹ ACHARD	07	L3	$^{183-209}_{e^{+}e^{-}}\overset{e^{+}e^{-}}{\kappa_{S}^{0}}\overset{\rightarrow}{\kappa^{\pm}_{\pi}^{\mp}}$
1426	±	6		711	ABDALLAH	03н	DLPH	1
1420	± 1	14		3651	NICHITIU	02	OBLX	J
1428	土	4	± 2	20k	ADAMS	01 B	B852	18 GeV $\pi^- p \rightarrow K^+ K^- \pi^0 n$
1426	±	1			BARBERIS	97 C	OMEG	$450 pp \rightarrow pp K_S^0 K^{\pm} \pi^{\mp}$
1425	±	8			BERTIN	97	OBLX	$0.0 \overline{p}p \rightarrow K^{\pm}(K^{0})\pi^{\mp}\pi^{+}\pi^{-}$
1435	\pm	9			PROKOSHKIN	97 B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
1430	±				² ARMSTRONG			85,300 $\pi^+ p$, $pp \rightarrow$
		-						$\pi^+ p, pp(K\overline{K}\pi)$
1462	± 2	-			³ AUGUSTIN	92	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
1443	+	6	+ 3	1100	BAI	90 C	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1425	±:	10	_	17	BEHREND	89	CELL	$\gamma\gamma \to K_S^0 K^{\pm} \pi^{\mp}$
1442	\pm	5	$^{+10}_{-17}$	111	BECKER	87	MRK3	e^+e^- , $\omega K \overline{K}\pi$
1423	\pm	4			GIDAL	87 B		$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
1417	± 1	13		13	AIHARA	8 6 C	TPC	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
1422	\pm	3			CHAUVAT	84	SPEC	ISR 31.5 pp
1440	± 1	10			⁴ BROMBERG	80	SPEC	100 $\pi^- p \rightarrow K \overline{K} \pi X$
1426	\pm	6		221	DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
1420	± 2	20			DAHL	67	HBC	1.6 – $4.2 \pi^- p$
• • • W	/e d	o n	ot use	the following	data for averages	, fits,	limits, e	tc. • • •
1430.8	8±	0.9	9		⁵ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
1433.4	4+	0.8	3		⁵ SOSA	99	SPEC	$(K_S^0 K^+ \pi^-) p_{\text{fast}}$ $pp \to p_{\text{slow}}$
1100.	. —	0.0			3337.	33	0. 20	$(K_S^0 K^- \pi^+) p_{\text{fast}}$
1429	\pm	3		389	ARMSTRONG	89	OMEG	300 $pp \rightarrow K\overline{K}\pi pp$
1425	土	2		1520	ARMSTRONG	84		85 $\pi^+ p$, $pp \rightarrow (\pi^+, p)(K\overline{K}\pi)p$
\sim 1420					BITYUKOV	84	SPEC	32 $K^-p \rightarrow$
-1								$K^+K^-\pi^0Y$

 $^{^1\}mathrm{From}$ a fit with a width fixed at 55 MeV. $^2\mathrm{This}$ result supersedes ARMSTRONG 84, ARMSTRONG 89. $^3\mathrm{From}$ fit to the $K^*(892)K$ 1 $^+$ + partial wave. $^4\mathrm{Mass}$ error increased to account for $a_0(980)$ mass cut uncertainties.

⁵ No systematic error given.

$f_1(1420)$ WIDTH

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
54.	9± 2.0	OUR A	AVERAGE				
51	± 14		711	ABDALLAH	03н	DLPH	$^{91.2}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
61	\pm 8		3651	NICHITIU	02	OBLX	
38	± 9	± 6	20k	ADAMS	01 B	B852	18 GeV $\pi^- p \rightarrow K^+ K^- \pi^0 n$
58	± 4			BARBERIS	97 C	OMEG	$450 pp \rightarrow pp K_S^0 K^{\pm} \pi^{\mp}$
45	± 10			BERTIN	97	OBLX	$0.0 \overline{p} p \to K^{\pm} (K^0) \pi^{\mp} \pi^{+} \pi^{-}$
90	± 25			PROKOSHKIN	97 B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
58	± 10			⁶ ARMSTRONG	92E	OMEG	85,300 $\pi^+ p$, $pp \rightarrow \pi^+ p$, $pp(K\overline{K}\pi)$
129	± 41			⁷ AUGUSTIN	92	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
68	$^{+29}_{-18}$	$^{+8}_{-9}$	1100	BAI	90 C		$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
42	± 22		17	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
40	$+17 \\ -13$	± 5	111	BECKER	87	MRK3	$e^+e^- o \omega K \overline{K} \pi$
35	$+47 \\ -20$		13	AIHARA	86 C	TPC	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
47	± 10			CHAUVAT	84	SPEC	ISR 31.5 pp
62	± 14			BROMBERG	80	SPEC	$100 \pi^- p \to K \overline{K} \pi X$
40	± 15		221	DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
60	± 20			DAHL	67	HBC	1.6 – $4.2 \pi^- p$
• • • '	We do	not use	the following	data for averages	, fits,	limits, e	tc. • • •
68.	7± 2.9	9		⁸ SOSA	99	SPEC	$pp \rightarrow p_{slow} \ (K_S^0 K^+ \pi^-) p_{fast}$
58.	8± 3.3	3		⁸ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
							$(\kappa_S^0 \kappa^- \pi^+) p_{\text{fast}}$
58	± 8		389	ARMSTRONG	89		300 $pp \rightarrow K\overline{K}\pi pp$
62	± 5		1520	ARMSTRONG	84	OMEG	85 $\pi^+ p$, $pp \rightarrow (\pi^+, p)(K\overline{K}\pi)p$
\sim 50				BITYUKOV	84	SPEC	32 $K^-p \rightarrow$
6							$K^+K^-\pi^0Y$
⁷ Fro	m fit t	the K		RONG 84, ARMS + partial wave.	TROI	NG 89.	

$f_1(1420)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\overline{K}\pi$	dominant
Γ_2	$K\overline{K}^*$ (892) $+$ c.c.	dominant
Γ_3	$\eta\pi\pi$	possibly seen
Γ_4	$a_0(980)\pi$	

 Γ_5 $\pi\pi\rho$ Γ_6 4π $\rho^{0}\gamma$ Γ_7 $\phi \gamma$

$f_1(1420) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma\gamma^*)/\Gamma_{\text{total}}$

` '	•	, -				
VALUE (keV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
1.9±0.4 OUR	AVEF	RAGE				
$3.2 \pm 0.6 \pm 0.7$		133	^{9,10} ACHARD	07	L3	$183-209 e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow \kappa_{S} K^{\pm} \pi^{\mp}$ $e^{+}e^{-} \rightarrow e^{+}e^{-} \kappa_{S}^{0} K \pi$
$3.0\pm0.9\pm0.7$			^{11,12} BEHREND	89	CELL	$e^+e^- \rightarrow e^+e^- K_S^0 K \pi$
$2.3^{+1.0}_{-0.9}\pm0.8$			HILL	89	JADE	$\stackrel{e^+e^-}{_{e^+e^-}} \stackrel{\rightarrow}{_{K^\pm}} \stackrel{\kappa_0}{_{S^\pi}} =$
$1.3 \pm 0.5 \pm 0.3$			AIHARA	88 B	TPC	$e^+e^- \rightarrow e^+e^- K^{\pm} K^0_S \pi^{\mp}$ $e^+e^- \rightarrow e^+e^- K\overline{K}\pi$
$1.6\!\pm\!0.7\!\pm\!0.3$			^{11,13} GIDAL	87 B	MRK2	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
• • • We do not	t use t	he foll	owing data for averag	es, fit	s, limits,	etc. • • •
<8.0	95		JENNI	83	MRK2	$e^+e^- ightarrow e^+e^- K \overline{K} \pi$

f1(1420) BRANCHING RATIOS

DOCUMENT ID TECN COMMENT

$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(K\overline{K}\pi)$

 Γ_2/Γ_1

• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •
0.76 ± 0.06		BROMBERG	80	SPEC	$100 \pi^- p \rightarrow K \overline{K} \pi X$
0.86 ± 0.12		DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
$\Gamma(\pi\pi\rho)/\Gamma(K\overline{K}\pi)$					Γ_5/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •
< 0.3	95	CORDEN	78	OMEG	12–15 $\pi^- p$
< 2.0		DAHL	67	HBC	$1.6 - 4.2 \pi^{-} p$
$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K}\pi)$					Γ_3/Γ_1
$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K}\pi)$	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	Γ ₃ /Γ ₁
. , , , ,	<u>CL%</u> 95		91 B		·, -
VALUE	95	ARMSTRONG		OMEG	$\frac{\textit{COMMENT}}{300 \ \textit{pp} \rightarrow \ \textit{pp} \eta \pi^{+} \pi^{-}}$
<u>VALUE</u> <0.1	95	ARMSTRONG		OMEG limits, e	$\frac{\textit{COMMENT}}{300 \ \textit{pp} \rightarrow \ \textit{pp} \eta \pi^{+} \pi^{-}}$
<u>VALUE</u> <0.1 • • • We do not use the	95	ARMSTRONG	s, fits,	OMEG limits, 6	$\frac{\textit{COMMENT}}{300 \ \textit{pp} \rightarrow \ \textit{pp} \eta \pi^+ \pi^-}$ etc. • •
VALUE <0.1 • • • We do not use the 1.35±0.75	95 e following o	ARMSTRONG data for averages KOPKE	s, fits, 89	OMEG limits, 6 MRK3 MRK2	COMMENT $300 \ pp \rightarrow pp\eta\pi^{+}\pi^{-}$ etc. • • • $J/\psi \rightarrow \omega\eta\pi\pi(\overline{K}\pi)$ $e^{+}e^{-} \rightarrow$

HTTP://PDG.LBL.GOV

Page 3

 $^{^9}$ From a fit with a width fixed at 55 MeV. 10 The form factor parameter from the fit is 926 \pm 78 MeV. 11 Assume a $\rho\text{-pole}$ form factor. 12 A ϕ - pole form factor gives considerably smaller widths. 13 A ϕ - pole form factor gives considerably smaller widths.

¹³ Published value divided by 2.

$\Gamma(a_0(980)\pi)/\Gamma(\eta\pi\pi)$ VALUE	<u>CL%</u>	DOCUMENT ID		TECN	Γ_4/Γ_3
>0.1	90				$\frac{100 \ \pi^- p \rightarrow \ \eta \pi^0 \pi^0 n}{100 \ \pi^- p \rightarrow \ \eta \pi^0 \pi^0 n}$
• • • We do not use the	following d				
not seen in either mode		ANDO	86	SPEC	8 π ⁻ p
not seen in either mode		CORDEN	78	OMEG	12–15 $\pi^- p$
0.4 ± 0.2		DEFOIX	72	HBC	$0.7 \ \overline{p}p \rightarrow 7\pi$
$\Gamma(4\pi)/\Gamma(K\overline{K}^*(892)-$	+ c.c.)				Γ_6/Γ_2
VALUE	•	DOCUMENT ID		TECN	-
ullet $ullet$ We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
< 0.90	95	DIONISI	80	HBC	4 π ⁻ ρ
$\Gamma(\overline{K}\overline{K}\pi)/[\Gamma(\overline{K}\overline{K}^*(8))]$	92)+c.c.)	*	, -		$\Gamma_1/(\Gamma_2+\Gamma_4)$
<u>VALUE</u>		DOCUMENT ID			
• • • We do not use the	_	· DIONISI			
0.65 ± 0.27			80	_	4 π ⁻ p
14 Calculated using $\Gamma(K)$	$K)/\Gamma(\eta\pi)$	$= 0.24 \pm 0.07 \text{ t}$	or a ₀	(980) tra	actions.
$\Gamma(a_0(980)\pi)/\Gamma(K\overline{K}^*$		·		TECN	Γ_4/Γ_2
<u>VALUE</u> 0.04±0.01±0.01	<u>CL%</u>	BARBERIS			450 pp →
• • We do not use the	following d				$p_f f_1(1420) p_s$
<0.04	68	ARMSTRONG			
$\Gamma(4\pi)/\Gamma(K\overline{K}\pi)$					Γ_6/Γ_1
·	<u>CL%</u>	DOCUMENT ID			COMMENT
<0.62	95	ARMSTRONG	89G	OMEG	$85 \pi p \rightarrow 4\pi X$
$\Gamma(ho^0\gamma)/\Gamma_{ m total}$					Γ ₇ /Γ
VALUE	CL%				COMMENT
< 0.08	95 15	ARMSTRONG	92C	SPEC	300 $pp \rightarrow pp\pi^+\pi^-\gamma$
15 Using the data on the	$\overline{K}K\pi$ mod	de from ARMST	RON	G 89.	
$\Gamma(ho^0\gamma)/\Gamma(K\overline{K}\pi)$					Γ_7/Γ_1
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT
<0.02	95	BARBERIS	98C	OMEG	$ \begin{array}{c} 450 \ p p \rightarrow \\ p_f f_1(1420) p_s \end{array} $
$\Gamma(\phi\gamma)/\Gamma(K\overline{K}\pi)$					Γ_8/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT
0.003±0.001±0.001		BARBERIS	98 C	OMEG	$\begin{array}{c} 450 \ pp \rightarrow \\ p_f f_1(1420) p_s \end{array}$

$f_1(1420)$ REFERENCES

ACHARD ABDALLAH NICHITIU	07 03H 02	JHEP 0703 018 PL B569 129 PL B545 261	P. Achard <i>et al.</i> J. Abdallah <i>et al.</i> F. Nichitiu <i>et al.</i>	(L3 Collab.) (DELPHI Collab.) (OBELIX Collab.)
ADAMS	01B	PL B516 264	G.S. Adams <i>et al.</i>	(BNL E852 Collab.)
SOSA BARBERIS	99 98C	PRL 83 913	M. Sosa <i>et al.</i>	()A/A 100 C-II-L)
BARBERIS	98C 97C	PL B440 225 PL B413 225	D. Barberis <i>et al.</i> D. Barberis <i>et al.</i>	(WA 102 Collab.) (WA 102 Collab.)
BERTIN	97 C	PL B413 225 PL B400 226	A. Bertin <i>et al.</i>	(OBELIX Collab.)
PROKOSHKIN		PD 42 298	Yu.D. Prokoshkin, S.A. Sa	,
1 NONOSIII III	310	Translated from DANS 3		adovsky
ARMSTRONG	92C	ZPHY C54 371	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
ARMSTRONG	92E	ZPHY C56 29	T.A. Armstrong et al.	(ATHU, BARI, BIRM+) JPC
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong et al.	(ATHU, BARI, $BIRM+$)
BAI	90C	PRL 65 2507	Z. Bai <i>et al.</i>	(Mark III Collab.)
ARMSTRONG		PL B221 216	T.A. Armstrong et al.	(CERN, CDEF, BIRM+) JPC
ARMSTRONG		ZPHY C43 55	T.A. Armstrong et al.	(CERN, BIRM, BARI+)
BEHREND	89	ZPHY C42 367	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
HILL	89	ZPHY C42 355	P. Hill <i>et al.</i>	(JADE Collab.) JP
KOPKE	89	PRPL 174 67	L. Kopke <i>et al.</i>	(CERN)
AIHARA	88B	PL B209 107	H. Aihara <i>et al.</i>	(TPC-2 γ Collab.)
BECKER	87	PRL 59 186	J.J. Becker <i>et al.</i>	(Mark III Collab.) JP
GIDAL	87	PRL 59 2012	G. Gidal <i>et al.</i>	(LBL, SLAC, HARV)
GIDAL	87B	PRL 59 2016	G. Gidal <i>et al.</i>	(LBL, SLAC, HARV)
AIHARA	86C	PRL 57 2500	H. Aihara <i>et al.</i>	(TPC-2 γ Collab.) JP
ANDO	86	PRL 57 1296	A. Ando <i>et al.</i>	(KEK, KYOT, NIRS, SAGA $+$)
ARMSTRONG	84	PL 146B 273	T.A. Armstrong et al.	(ATHU, BARI, BIRM+) JP
BITYUKOV	84	SJNP 39 735 Translated from YAF 39	S. Bityukov <i>et al.</i>	(SERP)
CHAUVAT	84	PL 148B 382	P. Chauvat <i>et al.</i>	(CERN, CLER, UCLA+)
JENNI	83	PR D27 1031	P. Jenni <i>et al.</i>	(SLAC, LBL)
BROMBERG	80	PR D22 1513	C.M. Bromberg <i>et al.</i>	(CIT, FNAL, ILLC+)
DIONISI	80	NP B169 1	C. Dionisi <i>et al.</i>	(CERN, MADR, CDEF+) IJP
CORDEN	78	NP B144 253	M.J. Corden <i>et al.</i>	(BIRM, RHEL, TELA+)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
DAHL	67	PR 163 1377	O.I. Dahl <i>et al.</i>	(LRL) IJP
Also	01	PRL 14 1074	D.H. Miller et al.	(LRL, UCB)
				, - ,