Chapitre 10 Filtrage numérique linéaire

But recherché:

Traitement pour accentuer ou atténuer certaines caractéristiques propres à un signal.

Travail préparatoire avant l'extraction de l'information jugée pertinente.

Exemples:

Recherche de singularités dans un signal ou dans une image.

Diagnostic médical :

Détection d'anomalies dans les images médicales : sténoses artérielles, microcalcification dans les mammographies, etc...

Diagnostic de systèmes :

Détecter une anomalie dans un signal dont l'allure est supposée connue. Aide à la maintenance des systèmes : auto-diagnostic,

Inspection automatique:

Recherche de défauts sur des objets manufacturés. Identification de personnes, détection d'intrusion, etc.. Localisation automatique pour véhicules autonomes (robotique mobile).

1. Transmittance en z d'un filtre

Algorithme de filtrage :

Soit :
$$A(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}}$$
 RdC A_a (supposé causal)

On a :
$$Y(z) = A(z) \times X(z)$$
 d'où : $Y(z) = \frac{X(z)}{1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}}$

On obtient par inversion : $y(n) + a_1y(n-1) + a_2y(n-2) + a_3y(n-3) = x(n)$ (Equation aux différences finies)

D'où l'algorithme de filtrage :

$$y(n) = x(n) - a_1y(n-1) - a_2y(n-2) - a_3y(n-3)$$

Remarque : valable quelque soit l'entrée $\{x_n\}$.

2. Filtres RII et RIF

Réponse impulsionnelle :

$$x(n) = \delta(n)$$
 donc $X(z) = 1$ et $Y(z) = A(z)$

D'où la réponse impulsionnelle du filtre : $\{y_n\} = \{a_n\}$

Si A(z) est une fraction rationnelle, la RI $\{y_n\} = \{a_n\}$ comporte un nombre infini de termes (RII).

Si A(z) est un polynôme en z, la RI $\{y_n\} = \{a_n\}$ comporte un nombre fini de termes (**RIF**).

Forme RII :
$$C(z) = \frac{\displaystyle\sum_{j=0}^{M} b_j z^{-j}}{\displaystyle\sum_{i=0}^{N} a_i z^{-i}}$$
 fraction rationnelle avec $N \ge M$ (causalité) et $a_0 = 1$

On obtient:

$$y(n) = -a_1y(n-1) - a_2y(n-2) + ... - a_Ny(n-N) + b_0x(n) + b_1x(n-1) + ... + b_Mx(n-M)$$

forme ARMA (autoregressive moving average) La sortie dépend des entrées et des sorties.

Cas particuliers : forme AR si les bisont nuls.

3. Stabilité des filtres numériques : Généralités

Séquence bornée : $\{x_n\}$ est bornée si $\forall K > 0 \in R$ $|x_n| < K, \forall n$

Stabilité d'un filtre au sens BIBO (Bounded Input – Bounded Output)

Un filtre linéaire $\{a_n\}$ à coefficients constants est stable BIBO si :

 $\forall \{x_n\}$ bornée, $\{y_n\}$ est bornée telle que : $\forall K > 0 \in R$ $|y_n| \le K|x_n|$, $\forall n$

Théorème:

Un filtre linéaire $\{a_n\}$ à coefficients constants est stable BIBO si et seulement si :

$$\sum_{k} |a_{k}| < + \infty$$

(valable pour les filtres causaux et non causaux)

4. Stabilité suivant les pôles

Soit
$$\frac{\prod\limits_{j}(z-\lambda_{j})}{\prod\limits_{i}(z-\rho_{i})}$$

$$\lambda_{j},\;\rho_{i}\in\;\textbf{C},\;K\in\;\textbf{R},\quad\;\text{RdC}\quad A_{a}$$

Les pôles ρ_i génèrent des modes tels que :

mode causal : $\alpha_i \rho_i^n u(n)$

ou

mode anticausal : $-\alpha_i \rho_i^n u(-n-1)$

Le mode causal est amorti si : $|\rho_i| < 1$

Le mode anticausal est amorti si : $|\rho_i| > 1$

Stabilité:

Un filtre causal (à droite) est stable si $\forall \rho_i \in \text{int}(C_T)$, avec $C_T \subset A_a$

Un filtre anticausal (à gauche) est stable si $\forall \rho_i \in ext(C_T)$, avec $C_T \subset A_a$

Un filtre bilatéral stable satisfait les deux propriétés.

5. Structure des filtres numériques

Structure mathématiques :

Soit la transmittance
$$H(z) = \frac{\sum\limits_{j=0}^{M} b_j z^{-j}}{\sum\limits_{i=0}^{N} a_i z^{-i}} \quad \text{avec } N \geq M \text{ (causalité) et } a_0 = 1$$

 $M, N \neq 0$

- structure RII **ARMA** (autoregressive moving average) Stabilité si tous les pôles $\rho_i \in int(C_T)$

Cas particuliers:

M=0- structure **AR** (autoregressive) dite « tout pôle »

Stabilité si tous les pôles $\rho_i \in int(C_T)$

N=0- structure **MA** (moving average) dite « tout zéro »

RdC: $plan - \{z = 0\}$ donc toujours stable

5. Structure des filtres numériques

Structure matérielle :

N + M retards, N + M multiplicateurs, N additionneurs

Structure MA: pas de boucle

Structure AR : existence de boucles (récursivité)

pb de pécision (cumul des erreurs de chute)

6. Réponse fréquentielle d'un filtre numérique

Régime harmonique

En continu: $p \in C$ $p = \alpha + j\omega$ p parcourt tout le plan complexe.

Régime harmonique : restriction du plan complexe à l'axe imaginaire

$$p \xrightarrow{\alpha=0} j_{\omega} \qquad \omega \in [-\infty, +\infty]$$

$$\omega \in [-\infty, +\infty]$$

En numérique :

Par définition
$$z = e^{pT_e} = \rho e^{j\omega T_e}$$
 $z \in \text{plan complexe } (\omega : \text{pulsation vraie})$

On introduit :
$$\frac{\omega_{\text{réduite}}}{\omega_{\text{e}}} = \frac{\omega_{\text{vraie}}}{\omega_{\text{e}}}$$
 et $\frac{f_{\text{réduite}}}{f_{\text{e}}} = \frac{f_{\text{vraie}}}{f_{\text{e}}}$

 $f_{\mbox{\scriptsize e}}$: fréquence d'échantillonnage et $\omega_{\mbox{\scriptsize e}}$: pulsation d'échantillonnage

Le théorème de l'échantillonnage doit être respecté d'où :

$$|f_{\text{vraie}}| \le f_{\text{e}}/2$$
 $|f_{\text{réduite}}| \le 1/2$

Régime harmonique : passage en variable réduite d'où : T_e =f_e =1

$$p \xrightarrow{\alpha=0} j\omega$$
 donc $z \xrightarrow{\rho=1} e^{j\omega}$

restriction du plan au cercle unité

Intervalle utile sur le cercle : $\omega \in \left[-\pi, +\pi\right]$ soit $f \in \left[-\frac{1}{2}, +\frac{1}{2}\right]$

Attention: ce passage introduit ω ou f en *valeurs réduites*.

6. Régime harmonique (suite)

6. Analyse harmonique

Analyse harmonique:

$$A(z) \xrightarrow{z=e^{j\omega}} A(e^{j\omega})$$

 ω

Périodicité de la transmittance : $A(e^{j\omega}) = A(e^{j(\omega+2k\pi)})$ période 2π

Etude de la fonction : $A(e^{j\omega}) \longrightarrow \begin{cases} A(e^{j\omega}) & : spectre \\ arg(A(e^{j\omega}): phase \end{cases}$

Exemple:
$$A(z) = (1 + 2z^{-1} + z^{-2})/4$$

$$|A(e^{j\omega})| = \frac{1}{2}(1 + \cos \omega)$$

$$\phi(e^{j\omega}) = -\omega$$

$$A(\omega) = 0.5$$

$$0.5$$

$$0.5$$

$$0.3.14$$

Exemples

G1(z) :=
$$\frac{207 + .413 \cdot z^{-1} + 207 \cdot z^{-2}}{1 - .37 \cdot z^{-1} + .196 \cdot z^{-2}}$$

$$D := \frac{\left(0.253 - 0.507z^{-2} + 0.253z^{-4}\right) \cdot \left(0.184 - 0.368 \cdot z^{-2} + 0.184 \cdot z^{-4}\right)}{\left(1 + 0.453 \cdot z^{-2} + 0.466 \cdot z^{-4}\right) \cdot \left(1 + 0.329 \cdot z^{-2} + 0.065 \cdot z^{-4}\right)}$$

Exemples

Intervalle fréquentiel utile :
$$f \in \left[-\frac{1}{2}, +\frac{1}{2} \right]$$
 ou $f \in \left[0, +\frac{1}{2} \right]$

f : fréquence réduite

Passage des fréquences reduites aux fréquences réelles :

Soit un échantillonnage temporel à $f_e = 2500 \, \text{Hz}$

Les bornes de l'intervalle fréquentiel sont : $\left[-\frac{f_e}{2}, +\frac{f_e}{2} \right]$

Donc : [-1250, +1250]Hz

Exemple: f = 0.3 correspond à 750Hz

7. Influence des pôles et des zéros sur la réponse fréquentielle

Soit
$$H(z) = \frac{\sum_{j=0}^{Q} b_j z^{-j}}{\sum_{i=0}^{N} a_i z^{-i}}$$
 $(N \ge Q)$, on a aussi : $H(z) = \frac{b_0}{a_0} z^{N-Q} \frac{\prod_{j=1}^{Q} (z - z_j)}{\prod_{i=1}^{N} (z - p_i)}$

 z_i : zéros de H(z) et p_i : pôles de H(z)

Etude harmonique de H(z):

$$H(e^{j\omega}) = \frac{b_0}{a_0} e^{j\omega(N-Q)} \frac{\displaystyle\prod_{j=1}^Q (e^{j\omega}-z_j)}{\displaystyle\prod_{i=1}^N (e^{j\omega}-p_i)} \qquad \qquad \text{Spectre}: \left|H(e^{j\omega})\right| = \left|\frac{b_0}{a_0}\right| \frac{\displaystyle\prod_{j=1}^Q \left|(e^{j\omega}-z_j)\right|}{\displaystyle\prod_{i=1}^N \left|(e^{j\omega}-p_i)\right|}$$

7. Influence des pôles et des zéros sur la réponse fréquentielle (suite 1)

Interprétation géométrique :

Soit M l'affixe de $e^{j\omega}$. Soient Z_j les affixes des zéros.

Soient P_j les affixes des pôles.

$$\left|H(e^{j\omega})\right| = \left|\frac{b_0}{a_0}\right| \frac{\displaystyle\prod_{j=1}^{Q} \left|(MZ_j)\right|}{\displaystyle\prod_{i=1}^{N} \left|(MP_i)\right|}$$

Quand ω varie, M parcourt le cercle unité.

 $|H(e^{j\omega})|$ varie alors comme

dis tances de M aux zéros dis tances de M aux pôles

Pôles

Zéros

7. Influence des pôles et des zéros sur le réponse fréquentielle (suite 2)

Cas particuliers:

Pour des zéros :

$$\begin{split} M \to Z_j & \Rightarrow \left| MZ_j \right| \text{ minimal} \Rightarrow \left| H(e^{j\omega}) \right| \to \text{minimum (local)} \\ \text{Si } Z = Z_j & \Rightarrow \left| H(e^{j\omega}) \right| = 0 \text{ en particulier } Z_j = \pm 1 \Rightarrow \left| H(e^{j\omega}) \right| = 0 \end{split}$$

Pour des pôles :

$$\begin{array}{ll} M \to Pi & \Rightarrow \left| MP_i \right| \;\; \text{minimal} \Rightarrow \left| H(e^{j\omega}) \right| \to \text{maximum (local)} \\ \text{Si} \;\; \left| Z = P_i \; \Rightarrow \; \left| H(e^{j\omega}) \right| \to +\infty \;\; \text{en particulier} \; \left| P_i = +1 \Rightarrow \; \left| H(e^{j\omega}) \right| \to +\infty \\ & \text{(type intégrateur)} \end{array} \right.$$

Remarque:

Les pôles $P_i = 0$ ne jouent aucun rôle dans le spectre. En revanche, ils introduisent des retards dans la phase.

Idem pour les zéros $Z_i = 0$.

Exercices

Exercice 1:

Etudier la réponse fréquentielle de H(z) = K $\frac{z^2 - 1}{z^2 + 0.25}$

Calculer K pour normaliser le gain maximum à 1.

Comment pourrait-on réduire la bande passante ?

Exercice 2:

Affecter les courbes de spectre présentées ci-après aux différentes transmittances T1, T2 et T3. Justifier et calculer la valeur des gains K1, K2 et K3.

Exercice 3:

On traite, à l'aide du filtre correspondant à la courbe G1 ci-dessus, un signal sinusoïdal de fréquence f_1 = 6 kHz, d'amplitude 2 , échantillonné à la fréquence f_e = 18 kHz. Quelle sera, d'après la courbe, l'amplitude du signal après filtrage (en régime établi) ?