ANALISIS DATA STATISTIK: UJI PERSYARATAN ANALISIS DALAM MODEL REGRESI BERGANDA

Outline

- 1. Uji Multikolinieritas
- 2. Uji Heteroskedastisitas
- 3. Uji Autokorelasi
- 4. Normalitas
- 5. Linearitas

1. Uji Multikolinieritas

- Multikolinearitas adalah keadaan di mana terjadi hubungan linier yang sempurna atau mendekati sempurna antar variabel independen dalam model regresi. Uji multikolinearitas digunakan untuk mengetahui ada atau tidaknya hubungan linearantarvariabel independen dalam model regresi.
- Uji multikolinearitas bertujuan untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas (independent variable).
- Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya multikolinearitas.
- Cara mendeteksi adanya multikolinear dengan dasar pada nilai Tolerance dan VIP (Variance inflating factor)--pendekatan dengan SPSS

Deteksi adanya Multikolinear

- 1. Melihat nilai korelasi antar variabel bebas
- 2. Melihat condition index dan eigen value
- Melihat nilai torelance dan VIP (variance inflating factor)

Kriteria Uji MUltikolinear

Pedoman Keputusan Berdasarkan Nilai Tolerance

- Jika nilai Tolerance lebih besar dari 0,10 maka artinya tidak terjadi multikolinieritas dalam model regresi.
- 2. Jika nilai Tolerance lebih kecil dari 0,10 maka artinya terjadi multikolinieritas dalam model regresi.

<u>Pedoman Keputusan Berdasarkan Nilai VIF (Variance Inflation Factor)</u>

- Jika nilai VIF < 10,00 maka artinya tidak terjadi multikolinieritas dalam model regresi.
- Jika nilai VIF > 10,00 maka artinya terjadi multikolinieritas dalam model regresi.

Contoh Kasus

- Penelitian yang berjudul PENGARUH PER DAN ROI TERHADAP HARGA SAHAM
- Berikut ini data hasil penelitian sebagai berikut:

No	Tahun	Y (Harga Saham)	X1 (PER%)	X2 (ROI%)
1	1991	7500	3.28	3.14
2	1992	8950	5.05	5.00
3	1993	8250	4.00	4.75
4	1994	9000	5.97	6.23
5	1995	8750	4.24	6.03
6	1996	10000	8.00	8.75
7	1997	8200	7.45	7.72
8	1998	8300	7.47	8.00
9	1999	10900	12.68	10.40
10	2000	12800	14.45	12.42
11	2001	9450	10.50	8.62
12	2002	13000	17.24	12.07
13	2003	8000	15.56	5.83
14	2004	6500	10.85	5.20
15	2005	9000	16.56	8.53
16	2006	7600	13.24	7.37
17	2007	10200	16.98	9.38
18	2008	10600	16.57	9.20
19	2009	9270	14.83	8.82
20	2010	11430	16.93	10.25

by. Dr. Tukiyat, SE, M.Si

No	Tahun	Y (Harga Saham)	X1 (PER%)	X2 (ROI%)			
1	1991	7500	3.28	3.14			
2	1992	8950	5.05	5.00			
3	1993	8250	4.00	4.75			
4	1994	9000	5.97	6.23			
5	1995	8750	4.24	6.03			
6	1996	10000	8.00	8.75			
7	1997	8200	7.45	7.72			
8	1998	8300	7.47	8.00			
9	1999	10900	12.68	10.40			
10	2000	12800	14.45	12.42			
11	2001	9450	10.50	8.62			
12	2002	13000	17.24	12.07			
13	2003	by. Dr. Tukiyat, SE, M.Si 8000	15.56	5.83			

b) Langkah-langkah pada Program SPSS

• Gunakan *input* yang sama dengan analisis Regresi Linier Berganda pada bagian sebelumnya.

 Klik Analyze >> Regression >> Linear. Selanjutnya akan terbuka kotak dialog Linear Regression seperti

berikut:

by. Dr. Tukiyat, SE, McSitak dialog Linier Regression

- Klik variabel Harga Saham dan masukkan ke kotak Dependent, kemudian klik variabel PER dan ROI lalu masukkan ke kotak Independent(s).
- Klik Statistics, pada kotak dialog Linear Regression: Statistics beri tanda centang pada Collinearity diagnostics. Selanjutnya klik Continue.

Kotak by Dal Tukiyat, SF, M.Si Regression: Statistics

 Klik OK, maka hasil output untuk uji multikolinearitas dapat dilihat pada output Coefficient s (VIF). Gambar seperti berikut:

Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics		
L	Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
ſ	1	(Constant)	4604.424	661.443		6.961	.000		
۱		PER (%)	-64.991	56.322	190	-1.154	.264	.490	2.039
L		ROI (%)	697.671	114.543	1.005	6.091	.000	.490	2.039

- a. Dependent Variable: Harga Saham
- Hasil perhitungan Nilai Tolerance menunjukkan variabel bebas memiliki nilai Tolerance lebih besar dari 0.10
 - Hasil perhitungan Nilai Variance Inflation Factor (VIF) menunjukkan tidak ada variabel bebas yang memiliki nilai VIF lebih dari 10

Coefficients^a

Unstandardized Coeffic		d Coefficients	Standardized Coefficients			Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	4604.424	661.443		6.961	.000		
	PER (%)	-64.991	56.322	190	-1.154	.264	.490	2.039
	ROI (%)	697.671	114.543	1.005	6.091	.000	.490	2.039

a. Dependent Variable: Harga Saham

$$Y = 4604,42 - 64,99$$
 PER + 697,67 Roi

- Dari output Coefficients di atas, kita lihat kolom VIF.
- Dapat diketahui bahwa nilai VIF untuk PER dan ROI sebesar 2,039.
- Karena nilai VIF kurang dari 10, maka dapat disimpulkan bahwa pada model regresi tidak ditemukan adanya masalah multikolinearitas.
- Dari hasil pemodelan korelasi mempunyai nilai korelasi 0,714 dimana nilai ini lebih kecil disbanding dengan 0,9. dengan demikian dapat disimpulkan model regresi tidak terdapat masalah multikoliner

Uji Heteroskedastisitas

- Heteroskedastisitas adalah keadaan di mana terjadi ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi.
- Uji heteroskedastisitas digunakan untuk mengetahui ada atau tidaknya ketidaksamaan varian dari residual pada model regresi.
- Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya masalah heteroskedastisitas.

Ada beberapa metoda pengujian yang bisa digunakan diantaranya:

- Uji Spearman's rho
- Uji Glejser
- 3. Uji Park
- 4. Melihat pola grafik regresi

Pada pembahasan ini akan dilakukan uji heteroskedastisitas dengan menggunakan Uji Spearman's rho, yaitu mengkorelasikan nilai residual (*Unstandardized residual*) dengan masing-masing variabel independen.

Dasar Keputusan dalam Uji Heteroskedatisitas dengan Rank Spearman

- Jika nilai signifikansi atau sign (2-tail) lebih besar dari 0,05, maka dapat disimpulkan model regresi tidak ada masalah heteroskedatisitas
- Jika nilai signifikansi atau sign (2-tail) lebih kecil dari 0,05, maka dapat disimpulkan model regresi ada masalah heteroskedatisitas

Langkah-langkah pada Program SPSS

- Menggunakan input yang sama dengan analisis Regresi Linier Berganda
- Klik Analyze >> Regression >> Linier. Selanjutnya akan terbuka kota dialog Linier Regression.
- Klik variabel Harga Saham dan masukkan ke kotal Dependent, dan kemudian klik variabel PER dan ROI lalu masukkan ke kotak Independent(s).
- Klik Save, pada kotak dialog Linear Regression: Save, beri tanda centang pada Unstandardized. Selanjutnya klik Continue.
- Klik OK, hiraukan hasil output karena kita hanya mencari nilai residualnya saja.
- Buka halaman Data View maka akan ada tambahan satu variabel yaitu RES_1 (nilai residual).

Selanjutnya melakukan analisis korelasi **Spearman's rho** dengan cara klik **Analyze** >> **Correlate** >> **Bivariate**. Kemudian akan terbuka kotak dialog **Bivariate Correlation** seperti berikut:

- Klik variabel Unstandardized Residual, PER, dan ROI dan masukkan ke kotak Variables.
- Pada Correlation Coefficients hilangkan tanda centang pada Pearson dan beri tanda centang pada Spearman.
- Jika sudah klik **OK**. Maka hasil *output* seperti berikut:

Correlations

			Unstandardiz ed Residual	PER (%)	ROI (%)
Spearman's rho	Unstandardized Residual	Correlation Coefficient	1.000	.038	.005
		Sig. (2-tailed)		.875	.985
		N	20	20	20
	PER (%)	Correlation Coefficient	.038	1.000	.732**
		Sig. (2-tailed)	.875		.000
		N	20	20	20
	ROI (%)	Correlation Coefficient	.005	.732**	1.000
		Sig. (2-tailed)	.985	.000	
		N	20	20	20

^{**.} Correlation is significant at the 0.01 level (2-tailed).

by. Dr. Tukiyat, SE, M.Si

- Dari output **Correlations** di atas, dapat diketahui korelasi antara PER dengan *Unstandardized Residual* menghasilkan nilai signifikansi 0,875 dan korelasi antara ROI dengan *Unstandardized Residual* menghasilkan nilai signifikansi 0,985.
- Karena nilai signifikansi korelasi lebih dari 0,05, maka dapat disimpulkan bahwa pada model regresi tidak ditemukan adanya masalah heteroskedastisitas.

Uji Autokorelasi

- Autokorelasi adalah keadaan di mana terjadinya korelasi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi.
- Uji autokorelasi digunakan untuk mengetahui ada atau tidaknya korelasi yang terjadi antara residual pada satu pengamatan periode t dengan pengamatan t-1 pada model regresi.
- Jika terjadi korelasi maka ada problem/masalah autokorelasi
- Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya autokorelasi.

Kriteria Uji Durbin-Watson

- Metode pengujian menggunakan uji Durbin-Watson (uji DW) dengan ketentuan sebagai berikut:
 - Jika d lebih kecil dari dl atau lebih besar dari (4-dl), maka hipotesis nol ditolak, yang berarti terdapat autokorelasi.
 - 2. Jika d terletak antara du dan (4-du), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.
 - Jika d terletak antara dl dan du atau di antara (4-du) dan (4-dl), maka tidak menghasilkan kesimpulan yang pasti.

Catatan:

```
    d = durbin watson
    dL dan du dapat dilihat pada tabel Durbin Watson (k;n)
    k = jumlah variabel bebas
    n = jumlah data
    by. Dr. Tukiyat, SE, M.Si
```

Kriteria umum

- Jika nilai DW di bawah -2, maka ada autokorelasi positif
- Jika nilai DW di antara -2 sampai +2, maka tidak ada autokorelasi
- Jika nilai DW di atas +2, maka ada autokorelasi negatif

Hipotesis:

H0 : tidak ada autokorelasi (r=0)

H1 : ada auto korelasi (r≠ 0)

Hipotesis Nol	Keputusan	Jika
Tidak ada autokorelasi positif	Tol;ak	0 < d < dL
Tidak ada autokorelasi positif	Tak ada kep.	$dL \le d \le dU$
Tidak ada autokorelasi negatif	Tolak	4 - dL < d < 4
Tidak ada autokorelasi negatif	Tak ada kep.	$4 - dU \le d \le 4 - dL$
Tidak ada autokorelasi positif/negatif	Terima	dU < d < 4 - dU

 Rumus uji Durbin Watson (Alhusin, 2003) sebagai berikut:

$$d = \frac{\sum (e_n - e_{n-1})^2}{\sum e_x^2}$$

Keterangan:

- d = nilai Durbin-Watson
- e = residual

Langkah-langkah pada Program SPSS

 Menggunakan input yang sama dengan analisis regresi linierberganda. Klik Analyze » Regression >> Linear. Selanjutnya akan terbuka kotak dialog Linear Regression seperti berikut:

by. Dr. Tukiyat, SE; M. Sidialog Linear Regression

- Klik variabel **Harga Saham** dan masukkan ke kotak **Dependent**, kemudian klik variabel **PER** dan **ROI** lalu masukkan ke kotak **Independent(s)**.
- Klik **Statistic**, pada kotak dialog **Linear Regression**: **Statistics**, beri tanda centang pada **Durbin-Watson**. Selanjutnya klik **Continue**.

Koby ProTukiyat, SE Mesar Regression: Statistics

- Klik **OK**, maka hasil *output* pada **Model Summary** seperti berikut:
- Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.879ª	,773	.746	860.648	1.277

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.879ª	.773	.746	860.648	1.277

a. Predictors: (Constant), ROI (%), PER (%)

b. Dependent Variable: Harga Saham

- Dari output di atas didapat nilai DW yang dihasilkan dari model regresi adalah 1,277.
- Sedangkan dari tabel DW dengan signifikansi 0,05 dan jumlah data (n) = 20, seta k= 2 (k adalah jumlah variabel independen) diperoleh nilai dl sebesar 1,100 dan du sebesar 1,537 (lihat Tabel Durbin-Watson).
- Kriteria uji tidak ada Autokorelasi:

$$dU < d < 4 - dU$$

1,537 < 1,277 < 2,463 → kriteria tidak terpenuhi

Karena kriteria tidak terpenuhi dan d berada pada daerah antara dl dan du, maka tidak menghasilkan kesimpulan yang pasti (berada di daerah keragu-raguan).

Tabel Durbin-Watson (DW), α = 5%

L	k=	1	k=2	2	k=	3	
n	dL	dU	dL	dU	dL	dU	dI
6	0.6102	1.4002					
7	0.6996	1.3564	0.4672	1.8964			
8	0.7629	1.3324	0.5591	1.7771	0.3674	2.2866	
9	0.8243	1.3199	0.6291	1.6993	0.4548	2.1282	0.295
10	0.8791	1.3197	0.6972	1.6413	0.5253	2.0163	0.3760
11	0.9273	1.3241	0.7580	1.6044	0.5948	1.9280	0.444
12	0.9708	1.3314	0.8122	1.5794	0.6577	1.8640	0.512
13	1.0097	1.3404	0.8612	1.5621	0.7147	1.8159	0.574
14	1.0450	1.3503	0.9054	1.5507	0.7667	1.7788	0.632
15	1.0770	1.3605	0.9455	1.5432	0.8140	1.7501	0.685
16	1.1062	1.3709	0.9820	1.5386	0.8572	1.7277	0.734
17	1.1330	1.3812	1.0154	1.5361	0.8968	1.7101	0.779
18	1.1576	1.3913	1.0461	1.5353	0.9331	1.6961	0.820
19	1.1804	1.4012	1.0743	1.5355	0.9666	1.6851	0.858
20	1.2015	1,4107	1.1004	1.5367	0.9976	1.6763	0.894
21	1.2212	1.4200	1.1246	1.5385	1.0262	1.6694	0.927
22	1.2395	1.4289	1.1471	1.5408	1.0529	1.6640	0.957
23	1.2567	1.4375	1.1682	1.5435	1.0778	1.6597	0.986
24	1.2728	1.4458	1.1878	1.5464	1.1010	1.6565	1.013
25	1.2879	1.4537	1.2063	1.5495	1.1228	1.6540	1.038
26	1 202 by.	Dr. Tukiyat, \$1	E, MiSinza	1 5570	1 1422	1 4577	1.061

UJI NORMALITAS

Uji Normalitas

- Uji normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau residual memiliki distribusi normal.
- Ada 2 cara mendeteksi apakah residual bersiatribusi normal atau tidak, yaitu dengan analisis grafik dan uji statistik (melihat nilai kurtosis dan skewness dari residual dan uji statistik non-parametrik Kolmogorov-Smirnov (K-S))

Kriteria Uji Normalitas Data, dengan Kolmogorov-Smirnov

- Jika nilai sign lebih besar dari 0,05, maka data berdistribusi Normal
- Jika nilai Sign lebih kecil dari 0,05, maka data berdistribusi tidak normal

Langkah-Langkah Uji Normalitas dengan SPSS

- Bukan File multiple_reg
- Menu Analize —> Regression —> Linear .. Tampak di Layar windows Linear Regression
- Pada kotak Dependent isikan variabel Harga Saham
- Pada kotak Independent isikan variabel PER dan ROI
- Kemudian Save dan dalam bagian residual contreng pada unstandardize, lalu klik ok
- Selanjutnya saduara buka di data View ada Res_1

Untuk menguji K-S selanjutnya buka Analizi ---non parametric ----legacy dialog ---- 1 sample K-S

One-Sample Kolmogorov-Smirnov Test

		Unstandardiz ed Residual
N		20
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	814.0915262
Most Extreme Differences	Absolute	.125
	Positive	.096
	Negative	125
Test Statistic		.125
Asymp. Sig. (2-tailed)		.200 ^{c,d}

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- d. This is a lower bound of the true significance.

- Berdasar hasil output diperoleh nilai sign 0,200 dan nilai ini lebih besar dibanding dengan 0,05, maka dapat disimpulkan bahwa data berdistribusi Normal
- Dengan demikian, maka persyaratat normalitas data dapat dipenuhi

UJI LINEARITAS

Uji Linearitas

- Uji linearitas dimaksudkan untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak
- Model regresi/korelasi yang baik seharusnya mempunyai hubungan antara variaebl prediktor/variabel bebas (X) dengan variabel terikat (Y)

Kriteria Uji Linearitas

*Membandingkan Nilai Signifikansi (Sig.) dengan 0,05

- 1. Jika nilai Deviation from Linearity Sig. > 0,05, maka ada hubungan yang linear secara signifikan antara variabel independent dengan variabel dependent.
- Jika nilai Deviation from Linearity Sig. < 0,05, maka tidak ada hubungan yang linear secara signifikan antara variabel independent dengan variabel dependent.

*Membandingkan Nilai F hitung dengan F tabel

- Jika nilai F hitung < F tabel, maka ada hubungan yang linear secara signifikan antara variabel independent dengan variabel dependent.
- Jika nilai F hitung > F tabel, maka tidak ada hubungan yang linear secara signifikan antara variabel independent dengan variabel dependent.

- Analize ----compare mean -----dan pilih mean
- Dalam dialog mean, masukkan dependen list dan independen list
- Selanjutnya klik option dan pada bagian statistic firt of layer ----pilih test of linearity---- klik continue
- ok

Contoh

Pengaruh minat terhadap prestasi

Nomor	Minat	Prestasi
1	75	85
2	60	75
3	65	75
4	75	90
5	65	85
6	80	85
7	75	95
8	80	95
9	65	80
10	80	90
11	60	75
12	65	75

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Prestasi * Minat	Between Groups	(Combined)	311.000	4	77.750	1.561	.284
		Linearity	305.899	1	305.899	6.141	.042
		Deviation from Linearity	5.101	3	1.700	.034	.991
	Within Groups		348.667	7	49.810		
	Total		659.667	11			

Bedasar pada nilai sign pada deviation of linearity sebesar 0,991 dan > 0,05, maka dapat disimpulkan terdapat hubungan linerar antara vairabel bebas dengan variabel terikat

Berdasr paa uji F, diperoleh nilai f hitung lebih kecil dibanding dengan f tabel

Catatan: Nilai F tabel dicari dengan rumus (df) Deviation from Linearity; Within Gorups. Berdasarkan output SPSS di atas diketahui nilai df adalah (3; 7). Kemudian kita tinggal melihat distribusi nilai F tabel pada signifikansi 5% atau 0,05 dengan berpedoman pada nilai df tersebut. Maka ditemukan nilai F tabel adalah sebesar 4,35. Lihat gambar di bawah ini.

	1	2	3	4	5
1	161	200	216	225	230
2	18,5	19,0	19,2	19,2	19,3
3	10,1	9,55	9,28	9,12	9,01
4	7,71	6,94	6,59	6,39	6,26
5	6,61	5,79	5,41	5,19	5,05
6	5,99	5,14	4,76	4,53	4,39
7	5,59	4,74	4,35	4,12	3,97
8	5,32	4,46	4,07	3,84	4,69
9	5,12	4,26	3,86	3,63	3,48
10	4,96	4,10	3,71	3,48	3,33
11	4,84	3,98	3,59	3,36	3,20
12	4,75	3,89	3,49	3,26	3,11
13	4,67	3,81	3,41	3,13	3,03
14	4,60	3,74	3,34	3,11	2,96

Distribution Nilai Tabel F_{0.05}

Karena nilai F hitung lebih kecil dari pada F tabel, maka dapat disimpulkan terdapat hubungan linera antara vairabel bebas dengan variabel terikan

TERIMA KASIH