Accionlabs

AI USAGE & OUTCOME IN ENGAGEMENTS

Al Enabled Product & Project Management

Area	Al Approaches Taken	Outcomes		Before (Traditional)	After(Al-Assisted)
Requirements Management	 Al-assisted user story & acceptance criteria generation NLP for refining requirements Automated requirement traceability 	More clarity in requirements, reduced rework	•	Avg. 25% of stories required rework Requirements grooming: 20 hrs per sprint	 Rework dropped to 8% Grooming effort: 8 hrs per sprint
Product Roadmapping	 GenAl for market trend analysis Al clustering of feature ideas Automated roadmap drafting 	Faster roadmap creation, better alignment with market trends	•	Roadmap drafting: 3 weeks effort Market input coverage: 50%	Roadmap drafting: 1 week Market input coverage: 90%
Prioritization	 Al-based value vs effort scoring Predictive analytics for ROI Automated backlog ranking 	Objective prioritization, faster decision-making	•	Prioritization effort: 10 hrs per sprint Business alignment: 60%	Effort reduced to 2 hrs per sprint Alignment: 90%
Agile Planning	 Al sprint capacity forecasting Velocity prediction Automated risk flagging for dependencies 	Improved predictability, fewer spillovers	•	Sprint spillover: 25% avg Planning effort: 12 hrs per sprint	Sprint spillover: 8% avg Planning effort: 4 hrs per sprint

25% → **8%**

3 Weeks → 1 Week

10 Hrs → **2 Hrs**

25% → **8%**

% Reduction of Stories for Grooming Rework Roadmap Drafting with 90% coverage

Prioritization effort per Sprint

Sprint spillover: 8% avg Planning effort

Note: Data related to the engagements Hivemindd & Chirp are being used

Al & Agentic Assistance in Coding

Key Trends

- Traditional Al adoption (Copilot, automation support): Improvements in the 15-30% range (Everbridge, Zuum, Dell).
- Al for data & insights (Affinius): ~70% improvement, showing Al's big impact in repetitive, query-driven tasks.
- Next-gen Al adoption (Agentic IDEs, Vibe coding): 75– 80% improvement, demonstrating that multi-agent and autonomous coding environments can redefine delivery velocity.
- Overall: The dataset shows a clear evolution curve —
 from modest productivity gains with early Al to
 exponential improvements with agentic, vibe coding
 approaches.

Improvements Observed in Quality Engineering

Key Trends

Traditional Al adoption (Copilot, GenAl for automation):
 QA effort savings in the 20-40% range.

 Data-focused engagements (Affinius): 50%+ savings due to Al-driven validation and automation

 Next-gen agentic IDEs & vibe coding (Hivemindd V2, Chirp): The largest savings (60-65%), indicating these approaches dramatically optimize QA.

Infrastructure Setup, Monitoring & Maintenance - Engagement View

1. Infrastructure Setup

- Al-driven IaC (Infrastructure-as-Code) → Copilot-assisted
 Terraform/Helm/CloudFormation templates.
- Agentic IDEs → Auto-generate infra scaffolding for cloud & API platforms.
- **Al-powered cloud provisioning** → Automated environment creation, resource allocation, and configuration.
- Generative Al pipelines → Auto-generate Snowflake/Databricks/Data pipelines infra.

Impact \rightarrow Setup effort reduced by **65–90%** (days \rightarrow hours).

2. Monitoring

- Al anomaly detection → Proactive pattern recognition in logs, metrics & API traffic.
- Intelligent alert grouping → Reduced noise & eliminated false positives.
- Agentic AlOps dashboards → Self-learning systems that autoprioritize issues.
- LLM-driven root cause analysis \rightarrow Natural language queries for fast RCA.

3. Maintenance

- Predictive patching → Al suggests optimal patching windows & auto-rollout.
- **Self-healing infra** → Autonomous remediation (restart services, reallocate capacity).
- Capacity scaling optimization → AI predicts demand and optimizes infra spend.
- Schema/infra drift detection → Al auto-flags drifts, reducing rework.

Impact \rightarrow Downtime, patch cycles, and rework reduced by **70–80**%.

4 Overall Trend:

Al shifted infra management from **reactive & manual** \rightarrow **predictive & autonomous**, improving speed, reliability, and cost efficiency across all engagements.

Impact \rightarrow Mean time to detect (MTTD) dropped from 4-8 hrs \rightarrow 20-45

Infrastructure Setup, Monitoring & Maintenance - Engagement View

Area

Engagement

Hivemindd	Infra Setup	Al-driven IaC + auto cloud provisioning	Setup: 4 days	Setup: 1 day	75% faster environment readiness
Monitoring	Al anomaly detection + intelligent alert grouping	MTTD: 5 hrs	MTTD: 40 mins	87% faster issue detection	
Maintenance	Predictive patching + automated rollout	Patching: 2 weeks	Patching: 5 days	65% faster cycles	
Zuum (API Platform Modernization)	Infra Setup	Al-assisted API gateway + cloud infra scaffolding	Setup: 6 days	Setup: 2 days	67% faster
Monitoring	AI-based API traffic anomaly detection	MTTD: 4 hrs	MTTD: 30 mins	88% faster detection	
Maintenance	Predictive capacity scaling	Infra spend variance: ±18%	±6%	More predictable costs	
Dell (E-commerce Revamp)	Infra Setup	Al-assisted multi-cloud setup	Setup: 5 days	Setup: 1.5 days	70% faster
Monitoring	AI + log intelligence	MTTD: 7 hrs	45 mins	89% faster	
Maintenance	AI-guided patching windows	Patch cycle: 3 weeks	1 week	67% faster	
Affinius (Data Engg & Insights)	Infra Setup	Al-generated infra pipelines (Snowflake, Databricks)	Setup: 2 days	Setup: 6 hrs	75% faster
Monitoring	Al usage anomaly detection	Alert noise: 45%	15%	67% reduction	
Maintenance	Automated schema/infra drift detection	Rework: 12%	3%	75% less rework	
Hivemindd V2 (Vibe Coding)	Infra Setup	AI + agentic IDE auto-infra creation	Setup: 3 days	Setup: 8 hrs	89% faster
Monitoring	Agentic AlOps dashboards	MTTD: 6 hrs	20 mins	95% faster	
Maintenance	Al-driven self-healing infra	Downtime: 6 hrs/mo	1 hr/mo	83% less downtime	
Chirp (Agentic IDEs)	Infra Setup	Agentic IDE + Al IaC assistant	Setup: 4 days	Setup: 12 hrs	87% faster
Monitoring	LLM-driven infra query & root cause	RCA time: 8 hrs	1 hr	88% faster	
Maintenance	Autonomous patching + optimization	Cloud spend waste: 20%	5%	75% cost savings	

Al Approaches Taken

Before (Manual) After (Al-Assisted)

Outcome