

Universitatea din București Facultatea de Matematică și Informatică Specializarea Tehnologia Informației

Lucrare de licență

MAȘINĂ SEMIAUTONOMĂ CU ASISTENT DE CONDUCERE

Coordonatori Științifici Conf. Dr. Alexe Bogdan Drd. Dumitriu Andrei

Absolvent Enescu Horia Teodor

Cuprins

- Introducere
- Soluția propusă
- Implementare
- Rezultate
- Concluzii

Introducere

Peste 90% din accidentele rutiere sunt provocate de erori umane

- Oboseala
- Lipsa de atenție
- Graba

Introducere

Mașinile semiautonome dotate cu senzori, camere și algoritmi de inteligență artificială sprijină șoferii.

Soluția propusă

Proiectul de față reprezintă un prototip de astfel de mașină în miniatură, ghidată prin telecomandă, cu următoarele dotări:

- Detecția semnelor de circulație
- Detecția părăsirii benzii
- Intervenție la nevoie pentru evitarea accidentelor
- Ecran LCD informativ

- Obținerea unui mecanism de virare realist
- Construirea șasiului și a telecomenzii
- Configurarea unui sistem eficient de comunicare wireless
- Obținerea unui model YOLOv8 cu acuratețe ridicată pentru detecția semnelor de circulație

Sistemul de virare utilizat: Mecanismul Ackermann

Piesă proiectată în Fusion

Piese printate 3D

Comunicarea wireless s-a realizat prin module radio NRF24L01

Antrenarea unui YOLOv8 folosind 2558 de imagini de antrenare și validare

Rezultate

Concluzii

- Proiectul îmbină multiple noțiuni de robotică, dar și noțiuni de inteligență artificială
- Poate fi îmbunătățit prin inlocuirea unor componente hardware cu altele mai performante
- Poate fi extins pe viitor, asistentul poate să intervină diferit în funcție de semnul de circulație

Vehiculul în forma finală

