Q2:

8.1:

[A] :the concentration of A

The rate of change of E:

$$\frac{d[E]}{dt} = (k_2 + K_3)[ES] - k_1[E][S]$$

The rate of change of S:

$$\frac{d[S]}{dt} = k_2[ES] - k_1[E][S]$$

The rate of change of ES:

$$\frac{d[ES]}{dt} = k_1[E][S] - (k_2 + k_3)[ES]$$

The rate of change of P:

$$\frac{d[p]}{dt} = k_3[ES]$$

8.2

Code:(Matlab)
%odefun.m
function dy= fun(t,y)
dy= zeros(4,1);
dy(1)=750*y(3)-100*y(1)*y(2);
dy(2)=600*y(3)-100*y(1)*y(2);
dy(3)=100*y(1)*y(2)-750*y(3);

```
dy(4)=150*y(3);
end
%testtold45.m
Clear
clc
[T,Y]=ode45(@fun,[0 1],[1 10 0 0]);
plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.',T,Y(:,4),'--');
legend('c(E)','c(S)','c(ES)','c(P)');
xlabel('t/min');
ylabel('concentration/μM');
```

8.3

I used Origin to make this plot. Normally, we use Origin to fit function, after we get data from experiment. Here, I calculated the V_{max} and K_m and put them in the function of $V = \frac{v_{max}*[S]}{K_m+[S]}$. After that, I simulates the data of the concentration of the substrate S and the velocity V and using Origin to plot the velocity V as a function of the concentration of the substrate S.

The functions are:

We define the velocity, V, of the enzymatic reaction to be the rate of change of the product P:

$$V = \frac{d[p]}{dt} = k_3[ES]$$

Michaelis-Menten derivation:

$$k_1[E][S] = (k_2 + k_3)[ES]$$

$$[ES] = \frac{k_2 + k_3}{k_1} [E][S]$$

$$K_m = \frac{k_2 + k_3}{k_1}$$
Since: $[E] = [E_0] - [ES]$, $[E_0]$ is Enzyme total at T_0

$$[ES] = \frac{[E_0] * [S]}{K_m + [S]}$$
Since: $V = k_3 [ES]$

$$V = \frac{k_3 [E_0] * [S]}{K_m + [S]}$$

Since[S]>>>[E], at steady state, $[E_0]=[ES]$, then reaction is at $V_{max}=k_3[E_0]$, so $V=\frac{V_{max}*[S]}{K_m+[S]}$.

From the plot,I could find that, when the concentrations of S are small, the velocity V increases approximately linearly. At large concentrations of S, however, the velocity V saturates to a maximum value.