	Lynne Diep lythiep @ acsc.edu	
	Mitales & acso. com	
	CMPS 130 HW 1	
	0.1 contains emply stress in	
	a) \$1,3,5,9.2.3	
	A set of odd numbers	
	b) &, -4, -2, 0, 12, 49 M3 for primaters	
	A set of alloeven integers	
	c) & nln= 2m for some m in N3	
	A set of all even natural numbers	
	d) & n lm = 2m for some man we and no	3K
	for some K in N3	
	A set of natural numbers divisible to	24
	3 and 2. [3 20 19/00 A	16
	· e) & who is a string of or and Is and weg	
	the veverse of w3	
	The set of all strings being a palmidiance	
	The set of all strings being a palmidiance	
	f) & nin is an integer and n=n+13	
	The set of all integers that are equal	
	to ove added to that number	
	0.2	
0)	containing numbers 1, 10- and 200 .	
	containing numbers 1, 10 and 100 2 20,1,233	
	sowe	
6)		
	integers greater than 5 ½ nln is an integer and n = 5 3	
0)	All natural numbers that are less than 5	
	Enly is a natural number and n	c53
d	set containing the string about 2 about	
-	4 aha Z	

e) set containg empty string 4 2 3 f) containing nothing at all 0.3 Let A = 2 X, 4, 23 B = 2x,43 A subset of B? No because B does not contain Z B subset of A? Yes, because X,4 is in set A, Ex,4,23 What is AUB = \$X,4, =3 = A 2) ANB. 2 x (43 = 081) 1 (130/000 x 10000000) (10 e) = 2 (x,x), (x,y), (= x), (y,x), (u,y), Power set lot B was these and many language 14 = 2 x, 2x3, 243, 2x, 433

1f A has a elements and B has b elements, how many elements are in AxB?

Deve are axb elements in AxB because
the cartesian product states that the product
set of A and set B, is the set that
contains all ordered pairs (a,b) for
which a belongs to A and b belongs
to B. So axb is the number of
elements.

1.5 If C is a set with c elements, how many elements are in the power set of C?

There are 2° elements in the power set of C because the the number of elements in the set S is n, then its power set consists of 2° elements. In set C, just replace n with C, thus there are 2° elements in power set of C.

Example, let $C = \{1, 2, 3, 3\}$ So, there should be $2^3 = 8$ elements in power set of C.

P(c) = 2 23, 213, 223, 233, 21,23, 21,33, 22,33, 21,23, 21,33, 21,23, 21

LIMIT WIS

	0.6						
	not finish of all 80	16	777	18	14 97	10	
	1 6	10	10	10	to.	90	
	2 7 2	7	8	a	10	6	
	2 7 2	1	17	8	8	9	
	4 7	19	8	7	6	10	
	5 6 5						
	and the state of the					1	
	X= 2 1,2,3,4,53						
	V= 26,7,8,9						
	, , , , , , , , , , , , , , , , , , , ,	,					
a)	value of f(2)						
	f(2) =	7-					
6)	range I domain of f						
	Vange =	26:	73				1
	to to very domain	+ 1211	2,3,1	10,5	3		
()	tratue of s g 12, 10 12 mg 12		Carried A				
	curlt, a NAW 11 glz	10) =	6				
	1 to the test remove on stars						
d)	range I domain of a	3					
	Pav	36 =	46,	1,8,9	103		
	100 We 7° = 8 HEREINT						
	= 2(1,6), (1,7), (1)						
	(2,6) (2,7) (2						
	87 17 (3,61) 13,771 4						
	(4.6) = [4,773]	9,50	14.41	(1)	10)		
	192,61 12,030	(5,8)	15,9	1.65	10) 2	5	
e)	Value of gl4, fl4)						
- 1	all all	4,-{(4)) = 8				
	71	A	-				

_	O.T. S. P. Chang, S. S. Shan and J. Jang Abanad
,	Give relation that satisfies the condition
a)	Reflexive and symmetric but not transitive
	101 A= 41,2,3,43
	relation $A_1 = \{2, (1,1), (2,2), (3,3), (2,1), (1,2), (3,2), (2,3)\}$
	(2,1) (1,21(3,2)(2,3)3
6)	Reflexive and transitive, but not symmetric
	Let A = 21,2,3,43
	relation Az= 4 (1,1), (2,2) (3,3), (1,2)3
()	Symmetric and transitive but not reflexive
	1d A = 1,2,3,43
	relation A = & U,17 (2,213)
	0.8
	andiverted graph G= (V, E)
	V = \$1,2,3,43 nodes
	F = 241,23, 22,53, 21,53, 27,43, 21,433, edges
	73 5 7 1 2 7 1 2 7 1 2 1 2 1 2 1 2 1 2 1 2 1
	Draw Graph G
	4 On the grant to the second
	SHX 8 - 8 1/2 8 5 18 40 8 1 2 18 3/18 1
	(2) (3)
	The same of the sa
	(4)
	Degree of Nodes: Node Degree
	Marie of nones.
-	2 3
	3 2
	4 2

Indicate path from node 3 to node 4: 3) 104157 0.9 spoksymble thing find swiftinget but survival (d Formal description of graph Symmetrice (3) V, set of nodes = \$1,2,3,4,5,63 E, edges = 2 21,43, 21,53, 21,63 22,43, 22,53, 22,63 23,43, 23,53, 23,63 3 Formal description -(41,2,3,4,5,63, 4 21,43, 21,53, 21,63, 27,43, 27,53 年2.63, 至3, 93, 至3, 53, 至3, 633) Shows all nodes and edges

0.10 Given Proof - 11 · consider a= b Z Multiply both sides by a to obtain a = ab 3 Subtract be from both sides to get a=b=ab-b 4 factor each side (a+b) (a-b) = b(a-b) Divide puch side by (a-b) to get a+b=b 6 let a=1, b=1+ Shows Z=1 Evvor:

The evory is at line 6. Since a=1, b=1 (a-b) equals 0. Division by 0 is undefined, so the organism of the proof is not valid.

0.12

Find Evrov

aann - any set of h houses, all houses are Same edor Proof - induction on h

Error: Base case fails for when h= 2. Wen h=2, one house can have a color and house 2 can have a peculiar color. Theretore, the is no wearing to conclude that the houses have the Save color.

0.13

show every graph with 2 or more nodes contain 2 nodes that have equal degrees.

Proof by contradiction:

Prove that 2 nodes contain unique degrees. Let the degrees for a graph with n vertices be:

Assign degree 0 to one vertex, which means that vertex is not connected to any other vertex.

Assign degree n-1 to a vertex, and it is convected to every other vertex in the graph.

This is a contradiction because, that vertex cannot be connected to every other vertex, including a vertex that is not connected to anyone (degree o). So by contradiction, there are at least 2 nodes that have equal degree in a graph with 2 or more hodes. I

```
Prove
     (AAB) = (AUB) / 1 / 1917
 Proof: (ANB) = (AUB)
           if and only if
ANB E AUB and AUB E ANB
  Show ANB & AUB:
  Assume x is an element of ANB, so
        XE ANB X X ANB.
     By De Morgan's Law, XEA and XEB
  Henre, XE AUB
       SO, AMB & AUB
Show AUB & ANBI:
   Assume X is an element of AUB. Then XXA
    and V&B. By De Morgan's Law, X & ANB.
    This shows X & AMB.
      SO, AUB & AMB.
  Somehis proves (ANB)= (A UB) III
Prove set of odd numbers is countable
    Let 2n-1 be odd positive integers
    Prove mjectivity -
        f(a) = f(b) -> a=b
       So, 2a-1 = Zb-1
      This implies a=b, so injectivity is established
   Prove surjectivity -
    Function is surjective for every be B, there
    exists a E A, such that f(a) = b
   So, lets prove by contradiction:
      suppose there is some odd integer b such
     that tx Z Z Zx -1 + b
   This implies by is not an integer
```

Since b is odd, bill is even which weams bill is divisible by 2, yielding a contradiction.

We showed there is a bijection, so the set of odd integers is countably infinite.

Prove by induction on n $\frac{n}{2} = \frac{n(n+1)(2n+1)}{6}$

Proof:

1) Base case - when $1, n = 1 \rightarrow 1^2 = 1(1+1)(2+1)$ $\Rightarrow 1 = 1(2)(3) = 6 = 1 \vee 6$

So bose case is true.

11) By hypothesis, 1912 = n+1 (N+2) (2n+3),

lets prove it.

Induction hypothesis is $n \neq z = n(n+1)(2n+1)$

 S_0 , N+1 $Z = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$

 $= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^2}{6}$

= (n+1) [n(2n+1) + 6(n+1)]

= (n+1) [2n2+ n +6n+6]

6

 $= \frac{(n+1)(2n^2+7n+6)}{6} = \frac{(n+1)((n+2)(2n+3))}{6}$ $= \frac{(n+1)(n+2)(2n+3)}{6}$ By induction, our conclusion of $\frac{n+1}{2}$; $\frac{1}{2}$ = $\frac{(n+1)(n+2)(2n+3)}{6}$; holds true. Hence, $\frac{n}{2}$; $\frac{1}{12}$; $\frac{n}{6}$; $\frac{1}{12}$; $\frac{1$