

Credit Card × Fraud Detection System

Presented by:

- David Higuera
- Diana Reyes
- Maria Melencio
- Michael Montanez

Table of contents

02Data collection and

preparation

03

Methodology

07UI Demo

04

Analysis and Results

O5Discussion

06

Conclusion

O1Introduction

Problem Statement

Project develops advanced Credit Card Fraud Detection Model to proactively identify and prevent fraud in real-time, addressing increasing sophistication in transactions

Fraud Response

Project addresses sophisticated credit card fraud with effective detection methods to safeguard financial transactions

Security Boost

Using tech to boost fraud detection accuracy for secure financial transactions

Scalability and Adaptability

Designing scalable model for adaptable fraud detection to accommodate growing credit card transactions

02

Data collection and preparation

Data collection

Credit Card Fraud Detection Dataset

https://www.kaggle.com/data sets/mlg-ulb/creditcardfraud? resource=download

Numerical input variables which are the result of a PCA transformation, due to confidentiality.

Feature Class is the response variable value 1 = Fraud Value 0 = No Fraud.

The only features which have not been transformed with PCA are Time and Amount.

Features V1, V2, ... V28 are the principal components obtained with PCA;

Data preparation

Data Preparation	Data Pre-processing	Exploratory Data Analysis(EDA)	Feature Engineering	

- Acquiring Essential Libraries
- 2. Establishing Connectivity
- 3. Data Preparation Process

- Check for missing values
 - Check data unbalance

2.

3. Identify data types of the features

- 1. Summary Statistics
- 2. Distribution
 Analysis
- Exploratory Visualizations

- Time Feature Day Representation
- 2. Correlation Matrix

Exploratory Data Analysis (EDA)

Model Selection

Random Forest Classifier

- Robustness
- Ability to handle complex data
- Handling imbalanced datasets with ensemble learning

XGBoost Classifier

Efficiency and effectiveness 2 in sequential boosting.

Resampling Techniques

Utilize RandomUnderSampler, **Balanced Random Forest** Classifier, and SMOTE to address class imbalance

Model Training, Validation, and Evaluation

Hyperparameter tuning and modifications

Implement Grid Search
to find optimal
hyperparameters in
models, such as the
Balanced Random
Forest Classifier.

Randomized Search Cross-Validation

Apply Randomized Search CV for efficient hyperparameter sampling post-SMOTE

Fine-Tuning

Iterate parameter tuning rounds for optimal model performance with evaluation.

Feature Engineering

Correlation Matrix

Eliminated around 50% of the features with correlation close to 0

Modify 'Time' feature to capture time-of-day patterns in fraud.

Results of Models

Models		Precision	Recall	
1	Random Forest Classifier	0.953488	0.836735	•••••
2	XGB classifier	0.864583	0.846939	
3	Random Forest Classifier after RandomUnderSampler	0.039190	0.908163	
4	Balanced Random Forest Classifier	0.048276	0.928571	
5	Balanced Random Forest Classifier After SMOTE	0.625899	0.887755	

Results of Models

Random Forest Classifier

Balanced Random Forest + SMOTE

05

Discussion

Conclusions

- Random Forest and XGB Classifiers: High precision; recall varied for fraud.
- Balanced RF and SMOTE models: Improved recall, lowered precision.
- Trade-off: Recall vs. precision; higher recall may affect precision.
- RandomUnderSampler and SMOTE enhanced recall, penalizing precision.
- Future: Explore advanced ensemble models or deep learning algorithms for better balance. Also going deep into the current models checking documentation to increase as much as possible the performance.

References

Mrozek, P., Panneerselvam, J., & Bagdasar, O. (2020). Efficient resampling for fraud detection during anonymised credit card transactions with unbalanced datasets.
 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). https://doi.org/10.1109/ucc48980.2020.00067.

Credit Card Fraud Detection

About

Credit card fraud is a form of identity theft that involves an unauthorized taking of another's credit card information for the purpose of charging purchases to the account or removing funds from it.

This Streamlit application employs a Machine Learning model to identify fraudulent credit card transactions using 2 Known feautures and 15 PCA-transformed features.

The notebook, model and documentation are available on GitHub.

Contributors:

- Cecille Jatulan
- David Higuera
- Diana Reyes
- Mike Montanez
- Maria Melencio

Enter an input array

Enter your input array (separated by commas):

Make Prediction

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

