Hazard Analysis Software Engineering

Team 21, Alkalytics Sumanya Gulati Kate Min Jennifer Ye Jason Tran

Table 1: Revision History

Date	Developer(s)	Change
	Name(s) Name(s)	Description of changes Description of changes
	•••	

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	2
5	Failure Mode and Effect Analysis	3
6	Safety and Security Requirements 6.1 Access Requirements 6.2 Integrity Requirements 6.3 Privacy Requirements 6.4 Audit Requirements 6.5 Immunity Requirements	7
7	Roadmap	8

1 Introduction

A hazard is any property or condition that has the potential to cause harm. This document serves as a hazard analysis for the application revolving around the capstone project "Alkalytics". This project aims to aids in the data management and analysis of an ocean alkalinity enhancement experiment. This document identifies the components of the system, and then the possible software hazards in these components, as well as ways to mitigate the risks they impose.

2 Scope and Purpose of Hazard Analysis

The purpose of the hazard analysis is to identify potential hazards and its causes, assess the effects, and set mitigation strategies to eliminate or lessen the risk of the hazard. It is important to consider all possible hazards associated with the Alkalytics project and its components, as the following losses could be incurred from an insufficient hazard assessment:

- Data loss: The data gets unintentionally lost, deleted, or corrupted.
- Data integrity: The data is not complete, accurate, nor correct which can lead to computational errors.
- System availability: Users are unable to access the system due to factors such as unstable internet connection or server crashes.
- Security: If there are no proper measures for authentication, unauthorized access to the data or user information may occur.

3 System Boundaries and Components

The system boundaries are used to define what is within the scope of the hazard analysis, in essence, where the system interacts with external systems, users and hardware. Some key boundaries for Alkalytics include:

• User Interaction Boundaries:

- 1. Interactions happen through the frontend interface, where users authenticate, input data, and retrieve visualizations and analytics.
- 2. Limit interactions in terms of user access levels, as only authenticated and authorized users are allowed to view or modify certain data.

• Data Boundaries:

- 1. Alkalytics handles data import (CSV files), processing, analysis, and export, requiring clear boundaries on data validity and format conformity.
- 2. The system is also bounded by its data storage capabilities, including access controls, data integrity safeguards, and secure handling of sensitive information.

• Network and External Connectivity Boundaries:

- 1. External connections, like internet-based server access and database queries, form a boundary where system security, speed, and availability must be managed.
- 2. Network performance, internet stability, and server downtime impact the accessibility and reliability of the system.

The system can be broken down into the following major components:

- 1. **Authentication System**: Ensures that only authorized users can access the Alkalytics platform and limits actions based on user permissions.
- 2. Comma-Separated Values (CSV) Data Migration Module: Handles the import of data from CSV files into the database, including checks for data format, completeness, and correctness.
- 3. **Data Visualization Module**: Generates graphs and visual representations of data, requiring accuracy in rendering and efficient performance.
- 4. Query Functionality: Processes user queries to retrieve data from the database, ensuring that correct data is returned promptly.
- 5. **Data Export Module**: Allows users to export data in CSV for external use, requiring accuracy and completeness.
- 6. **Backend Database**: Stores and retrieves all user and application data, requiring reliable connection management, data integrity, and sufficient storage.
- 7. Frontend Interface: Provides users with access to Alkalytics' functionalities through a web-based UI, handling data input validation and responsiveness.
- 8. Error Tracking System: Logs and categorizes system errors for troubleshooting and performance monitoring.
- 9. Machine Learning Analysis Module: Processes data to provide predictive insights or data analyses, requiring well-trained models and accurate data handling.

4 Critical Assumptions

The following are assumptions made about the software of the system.

- The data provided to this system is validated and correctly formatted before system ingestion
 - Errors can occur from badly formatted or invalid incoming data, which is not something the system can control
- The user of this application is not intentionally trying to misuse it
 - This assumption mitigates the risk of someone intentionally damaging the system
- Internet connection and server infrastructure will always be available, and will not suddenly go down and compromise the system

- This assumption mitigates the risk of a failing internet connection or fragile server infrastructure interrupting the system
- Users using this application understand how to use the application, whether through documentation or a tutorial
 - This assumptions ensures that user errors caused by lack of knowledge do not occur
- The system is regularly maintained for security and bug fixes
 - This assumption prevents any threats to the system due to poor maintenance
- The system is scalable and possesses enough computational resources to handle any volume of data
 - This assumption mitigates the risk of the system failing due to lack of resources

5 Failure Mode and Effect Analysis

٠	r	`	
۲	١		•

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Action	\mathbf{SR}	Ref
Authentication	Unauthorized user access	Data breach, loss of data integrity	Weak security protocols	Strengthen authentication mechanisms	SR-1, SR-2	H1-1
	User unable to log in	Loss of productivity	System downtime, creden-	Ensure high system up-	FR-14,	H1-2
			tial errors	time and credential recov-	SR-1,	
				ery	SR-4	
CSV Data Mi-	Data not uploaded to the	Loss of data availability	Incorrect file format or	Validate file format and	FR-3,	H2-1
gration	database		server issue	ensure server uptime	FR-4,	
		T 1, 1, 1		T 1	SR-9	110.0
	Data partially uploaded	Incomplete data leads to	Timeout during upload,	Implement error-checking	FR-3, FR-2	H2-2
	Duplicate data entries	incorrect analysis Conflicting results in data	corrupted file No validation for dupli-	during upload Add duplicate data detec-	SR-5,	H2-3
	Duplicate data entries	analysis	cates	tion and rejection logic	FR-4,	П2-3
		anarysis	cates	tion and rejection logic	SR-7	
Data Visualiza-	Incorrect graph rendering	Misleading or inaccurate	Inaccurate parameter se-	Improve input validation,	FR-8,	H3-1
tion	incorrect graph rendering	data interpretation	lection	real-time graph updates	FR-9	110 1
0.1011	Slow graph rendering	Poor user experience	Large dataset or ineffi-	Optimize graph rendering	PR-5,	H3-2
	3 17	r	cient plotting algorithm	speed	PR-2	
Query Function-	Data not returned or de-	User frustration, inability	Database connection or	Optimize query perfor-	FR-5,	H4-1
ality	layed	to retrieve data	query input error	mance and error handling	FR-6,	
					PR-2	
	Incorrect data returned	Incorrect conclusions from	Misconfigured query logic	Validate query structure	PR-6,	H4-2
		user		and results	FR-5	
	Query results outdated	Decisions based on stale	Data not refreshed in	Implement data refresh	PR-14,	H4-3
		data	database	strategy	FR-6	
Data Export	CSV export generates cor-	Data cannot be used in ex-	Incorrect formatting logic	Implement robust export	FR-15,	H5-1
	rupted files	ternal systems		validation	PR-6,	
	Export missing data	Partial data exported, in-	Timeout during export or	Ensure export process	SR-3 FR-15,	H5-2
	Export missing data	complete reports	data truncation	Ensure export process handles large data vol-	PR-8	ПЭ-2
		complete reports	data truncation	umes	1 11-0	
	Session timeout too short	User repeatedly logged	Incorrect session configu-	Increase session timeout	FR-14,	H5-3
	Session timeout too short	out, inconvenience	ration	settings	SR-16,	110 0
			1001011	500011280	SR-4	
Backend	Database connection lost	Data retrieval fails, analy-	Network issues, server	Improve database fault-	PR-9,	H6-1
Database		sis halted	downtime	tolerance and backups	PR-10	
	Data corruption during	Loss of data integrity	Incorrect write operations	Implement database	SR-6,	H6-2
	storage		or hardware failure	checksums and backups	SR-7	
	Insufficient storage space	Application crashes or	Lack of storage planning	Increase storage capacity	PR-12,	H6-3
		stops accepting data		and monitor usage	PR-13	

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Action	SR	Ref
Frontend Inter-	UI unresponsive	Poor user experience,	JavaScript errors, re-	Debug UI code, efficient	FR-7,	H7-1
face		tasks uncompleted	source overload, slow	resource management	PR-3	
			internet			
	Elements not displayed	Confusion, incorrect ac-	Browser compatibility is-	Test for compatibility	LFR-1,	H7-2
	correctly	tions performed	sues	across browsers	OER-3	
	Data input fields allow in-	Corrupted data entered	No input validation	Enforce input validation	FR-1,	H7-3
	valid entries	into system		on frontend	FR-4,	
					SR-7	
Performance	Slow page load times	User frustration, reduced	Unoptimized fron-	Optimize code and	PR-3,	H8-1
		productivity	tend/backend code	database queries	PR-5	
	High CPU/memory usage	System instability, crashes	Inefficient data processing	Implement memory man-	PR-4,	H8-2
			or memory leaks	agement and resource	PR-2	
				monitoring		
Error Tracking	Errors not logged	Difficulty identifying and	Lack of error handling in	Implement detailed error	FR-12,	H9-1
		resolving issues	code	logging	FR-13	
	Logged errors not dis-	Users unaware of issues	Incomplete error-handling	Display errors to user,	MSR-5,	H9-2
	played to user		UI	troubleshooting tips	PR-9	
	Errors logged but not cat-	Troubleshooting becomes	Poor error categorization	Create detailed error cat-	MSR-5,	H9-3
	egorized	complex		egories and log structure	FR-12	
Machine Learn-	Incorrect data prediction	Misleading trends, faulty	Inaccurate algorithm con-	Improve machine learning	FR-11	H10-1
ing Analysis		decisions	figuration	validation steps		
	Model training incomplete	Model unable to provide	Insufficient data or faulty	Ensure ample, clean train-	FR-11,	H10-2
		accurate predictions	training process	ing data	PR-8	
	Training data overfitting	Model provides unreliable	Model too tightly fitted to	Implement regularization	FR-11	H10-3
		results	training data	techniques		

6 Safety and Security Requirements

New safety and security requirements have been discovered and will be integrated within the SRS document. Note that the entire requirement codes have been changed with the new additions having expanded information, and the previous requirements displaying new codes.

6.1 Access Requirements

- **SR-1.** Access to the application must be restricted to authorized personnel, with an authentication mechanism.
- **SR-2.** Only authenticated users should have the ability to query or modify the data, and each user's access must be limited to their capabilities within the application.
- **SR-3.** The application must restrict sensitive operations (e.g., data export) to authorized personnel only.
 - Rationale: Prevents unauthorized users from exporting or sharing sensitive data, protecting data integrity.
 - Fit Criterion: Only authorized users must be able to perform sensitive operations like data export.
 - Traceability: FR-15, SR-2.
- **SR-4.** The application must enforce session timeout and automatic logouts after a period of inactivity.
 - Rationale: Protects the application from unauthorized access if users leave their session unattended.
 - Fit Criterion: Sessions must time out and log users off automatically after a specified inactivity period.
 - Traceability: FR-14, SR-1, SR-4.

6.2 Integrity Requirements

- **SR-5.** The application must validate data inputs to ensure they conform to expected formats and values before they are processed.
- SR-6. The application must not modify the data unnecessarily through its transfer process.
- **SR-7.** The application must ensure that any data processed or transferred is free from duplication or inconsistencies.
- **SR-8.** The application must have safeguards in place to maintain the accuracy of the transferred data.

- **SR-9.** The application must validate CSV data thoroughly before upload to prevent corrupted or incomplete data entries.
 - Rationale: Ensures that only valid, complete, and accurate data enters the application to prevent faulty analysis.
 - Fit Criterion: The application shall reject any data that does not meet the validation criteria.
 - Traceability: FR-3, FR-4.

6.3 Privacy Requirements

- **SR-10.** All personal information related to experimental participants or stakeholders, if applicable, must be anonymized and handled in accordance with relevant privacy laws and regulations.
- **SR-11.** The application must restrict data sharing with external parties unless expressly authorized by stakeholders, and users must be fully informed about the privacy policies.
- **SR-12.** The application must monitor database storage capacity and alert administrators when thresholds are reached to prevent application crashes.
 - Rationale: Ensures the application continues operating smoothly by addressing storage limits proactively.
 - Fit Criterion: The application shall send alerts when storage capacity exceeds 80% usage.
 - Traceability: PR-12, PR-13.

6.4 Audit Requirements

- **SR-13.** The application must maintain a comprehensive audit trail, logging all access and modification events, including timestamps and identities of users performing actions.
- SR-14. Audit logs must be securely stored and accessible only by authorized personnel.
- **SR-15.** The application must display real-time error logs to users to enhance troubleshooting when applicable.
 - Rationale: Ensures users are informed about application issues and can take corrective action promptly.
 - Fit Criterion: All errors must be logged and displayed clearly to users in real-time.
 - Traceability: FR-12, MSR-5.

6.5 Immunity Requirements

SR-16. The application must have proactive measures to detect and mitigate suspicious activities, such as repeated unauthorized access attempts, ensuring the application remains secure at all times.

SR-17. Real-time monitoring and optimization of application resources must be implemented to avoid crashes due to resource overload.

- Rationale: Prevents application downtime by ensuring efficient use of CPU and memory.
- Fit Criterion: The application must manage memory and CPU usage dynamically to avoid overloads.
- Traceability: PR-4, PR-9.

7 Roadmap

The following table outlines a proposed roadmap of when each safety requirement will be implemented within the capstone timeline and justifications.

Stage	Req. Category	Req. ID(s)	Rationale
PoC Demo (Nov 11)	Access	N/A	The PoC plan will not consider user access features at this time.
	Integrity	SR-5, SR-6, SR-7, SR-8, SR-9	The database must adhere to these requirements for a successful PoC.
	Privacy	N/A	Since the PoC plan will
	Audit	N/A	only have the database
	Immunity	N/A	these requirements are not applicable.
Rev0 Demo (Feb 3)	Access	SR-1	User authentication should be implemented during front-end development.
	Integrity	N/A	The crucial integrity requirements will have already been implemented by the PoC demo.
	Privacy	SR-10, SR- 11	At this point there will be user access, thus these requirements must be implemented.
	Audit	N/A	These requirements
	Immunity	N/A	are not high-priority.

Stage	Req. Category	Req. ID(s)	Rationale
Rev1 Final Demo (Mar 24)	Access	SR-2, SR-3	User access must be extended to permissions and capabilities prior to release.
	Integrity	N/A	The crucial integrity requirements will have already been implemented by the PoC demo.
	Privacy	SR-12	This requirement is nec- essary for system avail- ability and robustness to extend past capstone.
	Audit	SR-15	Client and users must be informed about sys- tem issues and be able to troubleshoot even with- out the original develop- ment team.
	Immunity	SR-17	This requirement is necessary for system availability and robustness to extend past capstone.
Future considerations	Access	SR-4	This requirement is out of scope for the project timeline.
	Integrity	SR-11	This requirement is out of scope for the project timeline.
	Privacy	N/A	All privacy requirements have been covered.
	Audit	SR-13, SR- 14	These requirements would be nice-to-haves but are not essential for the project.
	Immunity	SR-16	This requirement is out of scope for the project timeline.

Table 3: Roadmap of the implementation of the safety and security requirements.

Appendix — Reflection

1. What went well while writing this deliverable?

Writing a comprehensive Software Requirements Specification right before this milestone helped tremendously because as a team, we had been nudged into considering multiple aspects of the project we had not thought of earlier. All this research and decision-making ensured that coming into this milestone, we had most of the relevant things figured out prior to writing this documentation.

2. What pain points did you experience during this deliverable, and how did you resolve them?

One major pain point we experienced was the lack of time we could dedicate to this milestone as a team. Since this milestone was due the week after reading week when most of us had &2 midterms along with multiple other assignments, it was harder to coordinate times to meet up and get a lot of the work done a couple of days before the deadline, which is what we ideally like to do. As an instance, due to the time constraints, we did not have enough time to get our Pull Requests (PRs) reviewed and approved by all the team members before merging.

Additionally, since most of the sections are a lot more interwoven as compared to prior milestones (which although connected, could be written somewhat independently), it was a lot harder to divide the sections. This ties back to the aforementioned time-contraints and we believe that, if we had more time to meet up as a team, the division of tasks would have been easier to manage. We resolved this by effectively communicating with each other over text instead.

3. Which of your listed risks had your team thought of before this deliverable, and which did you think of while doing this deliverable? For the latter ones (ones you thought of while doing the Hazard Analysis), how did they come about?

Our team and thought of a majority of the risks before this deliverable. The ones that we had not considered include unresponsiveness of the frontend, performance related failures and error tracking related hazards. These came about after we had identified all the system boundaries and when we focused on those components in particular and tried to consider all the potential ways the component can fail.

4. Other than the risk of physical harm (some projects may not have any appreciable risks of this form), list at least 2 other types of risk in software products. Why are they important to consider?

Beyond the risk of physical harm, software products may have the following types of risks:

(a) **Security Risks**: These involve vulnerabilities that can be exploited, leading to unauthorized access, data breaches or malicious attacks. For projects that are data centric like ours, these risks are critical because they can lead to the loss of sensitive information.

(b) **Operational Risks**: These risks arise from failures in the software's functionality, reliability, or performance under real-world conditions. Operational risks are important to consider because any failure in the software's expected behavior can disrupt business operations, cause customer dissatisfaction, lead to unexpected maintenance costs, or more.