

REFLECTION-TYPE LIQUID CRYSTAL DISPLAY DEVICE

Patent number: JP6075237
Publication date: 1994-03-18
Inventor: KANBE MAKOTO; MITSUI SEIICHI
Applicant: SHARP KK
Classification:
 - **international:** G02F1/1335; G02F1/1343; H01L21/336; H01L29/78;
 H01L29/786; G02F1/1362; G02F1/13; H01L21/02;
 H01L29/66; (IPC1-7): G02F1/1343; G02F1/1335;
 H01L29/784
 - **european:** G02F1/1335R
Application number: JP19920230082 19920828
Priority number(s): JP19920230082 19920828

Also published as:

- EP0586220 (A)
- US5526149 (A)
- EP0586220 (B)

[Report a data error](#)
Abstract of JP6075237

PURPOSE: To improve the brightness and contrast of the display by forming a reflecting electrode on an insulating film formed on the plural irregularly arranged protrusions and forming ruggednesses on the surface of the reflecting electrode. **CONSTITUTION:** A thin-film transistor 40 (TFT) is formed by a gate electrode 33, a gate insulating film 34, a semiconductor layer 35, a source electrode 36 and a drain electrode 37. Plural projecting members 42a are irregularly formed on a substrate formed with the TFT 40 except the region where a contact hole 43 is formed. An org. insulating film 42 is formed over the whole surface of the substrate to cover the protrusion 42a. A protrusion 42b corresponding to the protrusion 42 is formed in the insulating film 42. A reflecting electrode 38 of aluminum, silver, etc., is formed on the insulating film 42. The reflecting electrode 38 is connected to the drain electrode 37 in the contact hole 43. Consequently, the area of the reflecting electrode 38 is increased, hence the numerical aperture of the display screen is increased, and a bright display is obtained.

Data supplied from the **esp@cenet** database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平6-75237

(43) 公開日 平成6年(1994)3月18日

(51) Int.CI.⁵
G02F 1/1343
1/1335
H01L 29/784

識別記号

9018-2K
9225-2K
9056-4M

F I

H01L 29/78 311 A

審査請求 未請求 請求項の数2 (全9頁)

(21) 出願番号 特願平4-230082

(22) 出願日 平成4年(1992)8月28日

(71) 出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72) 発明者 神戸 誠

大阪府大阪市阿倍野区長池町22番22号 シ
ヤープ株式会社内

(72) 発明者 三ツ井 精一

大阪府大阪市阿倍野区長池町22番22号 シ
ヤープ株式会社内

(74) 代理人 弁理士 西教 圭一郎

(54) 【発明の名称】反射型液晶表示装置

(57) 【要約】

【目的】

【構成】スイッチング素子である薄膜トランジスタ40上に反射電極38を形成する際に、不規則な複数の凸部42a上に形成され、凸部42aに応じた凸部42bを有する有機絶縁膜42を形成し、その上に反射電極38を形成する。

【効果】有機絶縁膜42上に反射電極38を形成するため、薄膜トランジスタ40の影響を受けず、隣り合う反射電極38間の絶縁性を保つ範囲で反射電極38を大きく形成でき、開口率を90%以上にすることができる。

【特許請求の範囲】

【請求項 1】 液晶層を介在して対向配置される一対の透明基板のうち、一方基板上の液晶層側表面には、他方基板側からの入射光を反射する表示絵素である複数の反射電極と、各反射電極に表示のための電圧を印加する引回し電極とを形成し、他方基板上の液晶層側表面には、ほぼ全面にわたって透光性を有する共通電極を形成して構成される反射型液晶表示装置において、

前記反射電極は、一方基板上の液晶側であって、前記引回し電極を含む領域に不規則に配列された複数の凸部上に形成された絶縁膜上に形成されており、隣り合う反射電極が相互に間隙を介するように、予め定められた領域に形成されることを特徴とする反射型液晶表示装置。

【請求項 2】 前記凸部は、感光性樹脂から成ることを特徴とする請求項 1 に記載の反射型液晶表示装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、入射光を反射することによって表示を行う反射型液晶表示装置に関する。

【0002】

【従来の技術】 近年、ワードプロセッサ、ラップトップパソコン、ポケットテレビなどへの液晶表示装置の応用が急速に進展している。特に、液晶表示装置の中でも外部から入射した光を反射させて表示を行う反射型液晶表示装置は、バックライトが不要であるため消費電力が低く、薄形であり、軽量化が可能であるため注目されている。

【0003】 従来から、反射型液晶表示装置には TN (ツイステッドネマティック) 方式、ならびに STN (スーパーツイステッドネマティック) 方式が用いられているけれども、これらの方では偏光板によって必然的に自然光の光強度の 1/2 が表示に利用されないことになり、表示が暗くなるという問題がある。

【0004】 このような問題に対して、偏光板を用いず、自然光の全ての光線を有効に利用しようとする表示モードが提案されている。このようなモードの例として、相転移型ゲスト・ホスト方式が挙げられる (D. L. White and G. N. Taylor: J. Appl. Phys. 45 4718 1974)。このモードでは、電界によるコレステリック・ネマティック相転移現象が利用されている。この方式に、さらにマイクロカラーフィルタを組合せた反射型マルチカラーディスプレイも提案されている (Tohru Koizumi and Tatsuo Uchida Proceedings of the SID, Vol. 29/2, 157, 1988)。

【0005】 このような偏光板を必要としないモードでさらに明るい表示を得るために、あらゆる角度からの入射光に対し、表示画面に垂直な方向へ散乱する光の強度を増加させる必要がある。そのためには、最適な反射

特性を有する反射板を作成することが必要となる。上述の文献には、ガラスなどから成る基板の表面を研磨剤で粗面化し、フッ化水素酸でエッチングする時間によって表面の凹凸を制御し、その凹凸上に銀の薄膜を形成した反射板について記載されている。図 10 はアクティブマトリクス方式に用いられるスイッチング素子である薄膜トランジスタ (以下、TFT と記す) 1 を有する基板 2 の平面図であり、図 11 は図 10 に示す切断面線 X1-X1 から見た断面図である。ガラスなどの絶縁性の基板 2 上に、クロム、タンタルなどから成る複数のゲートバス配線 3 が互いに平行に設けられ、ゲートバス配線 3 からはゲート電極 4 が分岐して設けられている。ゲートバス配線 3 は、走査線として機能している。

【0006】 ゲート電極 4 を覆って基板 2 上の全面に窒化シリコン (SiN_x)、酸化シリコン (SiO_x) などから成るゲート絶縁膜 5 が形成されている。ゲート電極 4 の上方のゲート絶縁膜 5 上には、非晶質シリコン (以下、a-Si と記す)、多結晶シリコン、CdSe などから成る半導体層 6 が形成されている。半導体層 6 の一方の端部には、チタン、モリブデン、アルミニウムなどから成るソース電極 7 が重畠形成されている。また、半導体層 6 の他方の端部には、ソース電極 7 と同様にチタン、モリブデン、アルミニウムなどから成るドレイン電極 8 が重畠形成されている。ドレイン電極 8 の半導体層 6 と反対側の端部には、ITO (Indium Tin Oxide) から成る絵素電極 9 が重畠されている。

【0007】 図 10 に示すように、ソース電極 7 にはゲートバス配線 3 に前述のゲート絶縁膜 5 を挟んで交差するソースバス配線 10 が接続されている。ソースバス配線 10 は、信号線として機能している。ソースバス配線 10 も、ソース電極 7 と同様な金属で形成されている。ゲート電極 4、ゲート絶縁膜 5、半導体層 6、ソース電極 7 およびドレイン電極 8 は TFT 1 を構成し、該 TFT 1 は、スイッチング素子の機能を有している。

【0008】 図 10 および図 11 に示す TFT 1 を有する基板 2 を反射型液晶表示装置に適応しようとすれば、絵素電極 9 をアルミニウム、銀などの光反射性を有する金属で形成するばかりでなく、ゲート絶縁膜 5 あるいはその上に凹凸を形成する必要がある。一般に、無機物から成る絶縁膜にテーパの付いた凹凸を均一に形成することは困難である。

【0009】

【発明が解決しようとする課題】 図 10 および図 11 に示されるように、反射電極 9 とソースバス配線 10 とをゲート絶縁膜 5 上に形成する際には、反射電極 9 とソースバス配線 10 とが導通しないよう間に隙 9a が形成される。また、TFT 1 上に反射電極 9 を形成した場合、ソース電極 7 とドレイン電極 8 とが導通し、TFT 1 がスイッチング素子として機能しなくなるため、TFT 1 上に反射電極 9 を形成することができない。

【0010】表示の輝度を向上するためには、反射電極9は大きいほど好ましい。けれども、上述のように反射電極9はソースバス配線10と接触せず、またTFT1のドレイン電極8以外とは重ならないように形成しなければならず、反射電極9の面積が小さく、したがって輝度が低く、反射型液晶表示装置の表示品位が低いという問題がある。

【0011】本発明の目的は、上述の問題を解決し、表示品位が向上する反射型液晶表示装置を提供することである。

【0012】

【課題を解決するための手段】本発明は、液晶層を介在して対向配置される一対の透明基板のうち、一方基板上の液晶層側表面には、他方基板側からの入射光を反射する表示絵素である複数の反射電極と、各反射電極に表示のための電圧を印加する引回し電極とを形成し、他方基板上の液晶層側表面には、ほぼ全面にわたって透光性を有する共通電極を形成して構成される反射型液晶表示装置において、前記反射電極は、一方基板上の液晶側であって、前記引回し電極を含む領域に不規則に配列された複数の凸部上に形成された絶縁膜上に形成されており、隣り合う反射電極が相互に間隙を介するように、予め定められた領域に形成されることを特徴とする反射型液晶表示装置である。

【0013】また本発明は、前記凸部は、感光性樹脂から成ることを特徴とする。

【0014】

【作用】本発明に従えば、反射型液晶表示装置は、対向する一対の透明基板間に液晶層を介在して形成される。このとき、一方の基板の液晶層側表面には複数の反射電極と引回し電極とが形成され、他方の基板の液晶層側表面には共通電極が形成される。前記反射電極は表示絵素であり、前述の他方基板および共通電極を介して入射する入射光を反射することによって表示が行われる。ゲートバス配線、ソースバス配線および薄膜トランジスタなどで実現される前記引回し電極は、各反射電極に表示のための電圧を印加する。他方基板上に形成される前記共通電極は、他方基板ほぼ全面にわたって形成されている。

【0015】本発明においては、前記反射電極は、前記一方基板上に形成されたゲートバス配線、ソースバス配線および薄膜トランジスタなどの引回し電極上の薄膜トランジスタのドレイン電極など前記反射電極との接続部分を含む一方基板全面に不規則に配列された複数の凸部を覆い、たとえば高分子樹脂などから成る絶縁膜上の予め定められた領域に形成される。この際、隣り合う反射電極は、相互に間隙を介して形成されている。前記絶縁膜は前記凸部を覆って形成されるため、前記絶縁膜は前記凸部に応じた凹凸を有する。前述のように、反射電極は前記凹凸を有する絶縁膜上に形成されるため、反射電

極表面にもまた前記凹凸に対応する凹凸が形成される。光反射面に凹凸を形成することによって、あらゆる角度からの入射光に対し、表示画面に垂直な方向へ散乱する光の強度が増加して表示輝度が向上し、表示のコントラストが向上することが知られている。

【0016】また前記反射電極と引回し電極とは、接続部を除き、有機絶縁膜を介して形成される。このため、反射電極を形成する領域は、引回し電極に影響されることなく、隣り合う反射電極が電気絶縁状態を保つ範囲10内で面積を増加することが可能であり、表示の輝度が向上する。

【0017】

【実施例】図1は本発明の一実施例である反射型液晶表示装置30の断面図であり、図2は図1に示される基板31の平面図である。ガラスなどから成る絶縁性の基板31上に、クロム、タンタルなどから成る複数のゲートバス配線32が互いに平行に設けられ、ゲートバス配線32からはゲート電極33が分岐している。ゲートバス配線32は、走査線として機能している。

【0018】ゲート電極33を覆って基板31上の全面に、窒化シリコン(SiN_x)、酸化シリコン(SiO_x)などから成るゲート絶縁膜34が形成されている。ゲート電極33の上方のゲート絶縁膜34上には、非晶質シリコン(以下、a-Siと記す)、多結晶シリコン、CdSeなどから成る半導体層35が形成されている。半導体層35の両端部には、a-Siなどから成るコンタクト電極41が形成されている。一方のコンタクト電極41上には、チタン、モリブデン、アルミニウムなどから成るソース電極36が重疊形成され、他方のコンタクト電極41上には、ソース電極36と同様に、チタン、モリブデン、アルミニウムなどから成るドレイン電極37が重疊形成されている。

【0019】図2に示すようにソース電極36には、ゲートバス配線32に前述のゲート絶縁膜34を挟んで交差するソースバス配線39が接続されている。ソースバス配線39は、信号線として機能している。ソースバス配線39も、ソース電極36と同様の金属で形成されている。ゲート電極33、ゲート絶縁膜34、半導体層35、ソース電極36およびドレイン電極37は薄膜トランジスタ(以下、TFTと記す)40を構成し、該TFT40は、スイッチング素子の機能を有する。

【0020】TFT40が形成された基板31上には、複数の凸部42aが後述するコンタクトホール43が形成される領域を除いて、不規則に形成されている。コンタクトホール43領域には凸部42aを形成しないようにしてもよく、また全面に凸部42aを形成後、コンタクトホール43領域上に形成された凸部42aを除去するようにしてもよい。凸部42aを覆って、基板31上全面に有機絶縁膜42が形成されている。有機絶縁膜42には、凸部42aに応じた凸部42bが生じる。ドレ

イン電極37部分には、コンタクトホール43が形成されている。有機絶縁膜42上にアルミニウム、銀などから成る反射電極38が形成され、反射電極38はコンタクトホール43においてドレイン電極37と接続される。さらにその上には、配向膜44が形成される。

【0021】反射電極38は、図2に示されるようにゲートバス配線32の一部およびソースバス配線39の一部に有機絶縁膜42を介して重疊されるように形成されている。このため反射電極38は、隣り合う反射電極38が電気的に絶縁状態を保つ範囲で面積を大きくすることができます。このため、表示画面の開口率が大きくなり、明るい表示が可能となる。本実施例に従えば、開口率を90%以上にすることができる。

【0022】基板45上には、カラーフィルタ46が形成される。カラーフィルタ46の基板31の反射電極38に対向する位置には、マゼンタまたはグリーンのフィルタ46aが形成され、反射電極38に対向しない位置にはブラックのフィルタ46bが形成される。カラーフィルタ46上の全面には、ITO(Indium Tin Oxide)などから成る透明な電極47、さらにその上には配向膜48が形成される。

【0023】両基板31、45は、反射電極38とフィルタ46aとが一致するように対向して貼り合わせられ、間に液晶49が注入されて反射液晶表示装置30が完成する。

【0024】図3は図1および図2に示される凸部42aを有する反射電極38を基板31上に形成する形成方法を説明する工程図であり、図4は図3に示す形成方法を説明する断面図であり、図5は図3の工程a5で用いられるマスク51の平面図である。図4(1)は図3の工程a4を示し、図4(2)は図3の工程a5を示し、図4(3)は図3の工程a6を示し、図4(4)は図3の工程a8を示し、図4(5)は図3の工程a9を示している。

【0025】工程a1ではガラスなどから成る絶縁性の基板31上にスパッタリング法によって3000Åの厚さのタンタル金属層を形成し、この金属層をホトリソグラフ法およびエッチングによってパターニングを行い、ゲートバス配線32およびゲート電極33を形成する。工程a2では、プラズマCVD法によって4000Åの厚さの窒化シリコン(SiN_x)から成るゲート絶縁膜34を形成する。

【0026】工程a3では半導体層35となる厚さ1000Åのa-Si層と、コンタクト層41となる厚さ400Åのn'型a-Si層とをこの順で連続的に形成する。形成されたn'型a-Si層およびa-Si層のパターニングを行い、半導体層35およびコンタクト層41を形成する。工程a4では、基板31の全面に厚さ2000Åのモリブデン金属をスパッタ法によって形成し、このモリブデン金属層のパターニングを行って、ソ

ース電極36、ドレイン電極37およびソースバス配線39を形成し、TFT40が完成する。図4(1)は、工程a4までの処理終了後のTFT40が形成された基板31の断面図である。

【0027】工程a5では、TFT40を形成した基板31上全面に光感性樹脂であるホトレジスト(OFPRE-800)を1200Åの厚さに塗布し、図5に示されるマスク51を用いて、図4(2)に示されるように凸部42aを形成する。マスク51には、斜線で示す円形の遮光領域51a、51bが不規則に形成されている。遮光領域51aの直径の長さD1は、遮光領域51bの直径の長さD2よりも大きく形成されている。たとえばD1は10μmであり、D2は5μmである。

【0028】本実施例では、2種の遮光領域51a、51bを有するマスク51を用いたけれども、マスク51はこれに限定されない。遮光領域は1種類の円形でもよく、また3種類以上の円形でもよい。マスク51の、後述する工程a7でコンタクトホール43を形成する領域に、遮光領域51a、51bを形成しないようにすれば、コンタクトホール43領域に凸部42aを形成することが防止される。全面に凸部42aを形成した場合には、この段階でコンタクトホール43領域の凸部42aを除去してもよく、また、後述する工程a7でコンタクトホール43を形成する際に除去してもよい。

【0029】工程a6では、基板31上全面にポリイミド樹脂を1μmの厚さに塗布し、図4(3)に示されるように有機絶縁膜42を形成する。工程a7では、ホトリソグラフ法およびドライエッチング法を用いて有機絶縁膜42にコンタクトホール43を形成する。

【0030】工程a8では、凸部42bを有する有機絶縁膜42上全面に図4(4)に示されるようにアルミニウムから成る金属薄膜を形成し、工程a9では図4(5)に示されるように凸部42b上に反射電極38をパターニングする。反射電極38は、有機絶縁膜42に形成されたコンタクトホール43を介してTFT40のドレイン電極37と接続されている。反射電極38のパターニング時に、有機絶縁膜42の下のホトレジストから成る凸部42aは、露光、現像、アルミニウムのエッチング、レジストの剥離の工程を通して、何の変化も見られないことを確認している。

【0031】凸部42aの形状は、マスク51の形状、凸部42aとなるホトレジストの厚さによって制御することができることが確認されている。また、凸部42aの角は、凸部42aの形成後、熱処理をすることによって容易に取ることができる。

【0032】図1に示される他方の基板45に形成される電極47は、たとえばITOから成り、厚さは1000Åである。電極38、47上の配向膜44、48は、ポリイミドなどを塗布後、焼成することによって形成されている。基板31、45間には、たとえば7μmある

いは $12 \mu\text{m}$ のスペーサを混入した図示しない接着性シール剤をスクリーン印刷することによって液晶49を封入する空間が形成され、前記空間を真空脱気することによって液晶49が注入される。液晶49としては、たとえば黒色色素を混入したゲストホスト液晶（メルク社製、商品名 Z L I 2 3 2 7）に光学活性物質（メルク社製、商品名 S 8 1 1）を4.5%混入したものを使いる。

【0033】図6は本発明の反射型液晶表示装置30の反射特性の測定に用いられる反射板70の製造工程を説明する図であり、図7は図6の工程を説明する断面図である。工程b1では、図7(1)に示すように厚さ1.1mmのガラス（商品名7059コーニング社製）71の一方表面に、光感性樹脂であるレジスト材料として、たとえばO F P R - 8 0 0（東京応化社製）を好ましくは500r p m ~ 3000r p mでスピンドルコートによって塗布する。本実施例では、3000r p mで30秒間塗布し、レジスト72を $1.2 \mu\text{m}$ 成膜した。工程b2では、レジスト72を100°Cで30分間ブリペークし、工程b3では、図7(2)に示すように、レジスト72上に円形の遮光領域51a、51bを有するホトマスク51を配置して露光を行い、工程b4では、図7(3)に示すようにレジスト72を現像し、基板71表面に不規則な円形の凸部74を形成した。現像液として、2.38%のNMD-3（東京応化社製）を用いた。

【0034】工程b5では、ガラス基板71上の凸部74を好ましくは120°C~250°Cで熱処理すると、図7(4)に示されるように角がとれて滑らかな凸部74が形成される。本実施例では、180°Cで30分間熱処理を行った。工程b6では、図7(5)に示すように凸部74を形成した基板71上に有機絶縁膜74aを形成した。有機絶縁膜74aとしては、ポリイミド樹脂を好ましくは920r p m ~ 3500r p mで20秒間スピンドルコートによって塗布する。本実施例では、2200r p mで20秒間塗布し、 $1 \mu\text{m}$ の厚さの有機絶縁膜74aを成膜した。有機絶縁膜74aには、凸部74に応じた凸部が生じるが、凸部74よりは滑らかである。工程b7では、図7(6)に示すように有機絶縁膜74aに金属薄膜75を形成した。金属薄膜75の厚さは、 $0.01 \mu\text{m}$ ~ $1.0 \mu\text{m}$ 程度が適している。本実施例では、アルミニウムを真空蒸着することによって金属薄膜75を形成した。金属薄膜75としては、アルミニウム、ニッケル、クロム、銀、銅をあげることができる。金属薄膜75は、凸部74に沿って形成された有機絶縁膜74a上に形成されているため、凸部74に応じた不規則な円形の凸部75aを有している。以上によって反射板70を得た。

【0035】図8は、反射板70の反射特性の測定法を説明する側面図である。通常、液晶表示装置30に用い

られる基板31、45および液晶49層の屈折率は、各々約1.5である。反射板70の表面と液晶49層とが接する構成を想定し、本実施例では屈折率1.5の紫外線硬化樹脂77を用いてガラス基板76を反射板70に密着させて、反射板70の反射特性を測定した。この測定結果は、反射板75の表面と液晶49層の境界における反射特性と同様の結果を与えることを確認している。

【0036】図8に示すように、反射特性の測定は、反射板70に入射する入射光79の散乱光80をホトマルチメータ78で検出することによって行われる。反射板70には、その法線に対し角度 θ をもって入射光79が入射する。ホトマルチメータ78は、金属薄膜75上の入射光79が照射される点を通る反射板70の法線方向に固定されている。入射光79の入射角度 θ を変えてホトマルチメータ78で金属薄膜75による散乱光80の強度を測定することによって、反射特性が得られた。

【0037】図9は、入射角度 θ と反射強度との関係を示すグラフである。入射角度 θ である入射光79の反射強度は、 $\theta = 0^\circ$ の線に対する角度 θ の方向に、原点0からの距離として表されている。 $\theta = 70^\circ$ の反射強度をP1、 $\theta = 60^\circ$ の反射強度をP2、 $\theta = 40^\circ$ の反射強度をP3、 $\theta = 30^\circ$ の反射強度をP4、 $\theta = -30^\circ$ の反射強度をP5、 $\theta = -40^\circ$ の反射強度をP6、 $\theta = -60^\circ$ の反射強度をP7、 $\theta = -70^\circ$ の反射強度をP8で示している。

【0038】図9では、酸化マグネシウムの標準白色板の反射特性曲線を破線81で示している。 $\theta = 30^\circ$ の反射強度P4は、 $\theta = 30^\circ$ の酸化マグネシウムの反射強度P10よりも優れしており、 $\theta = -30^\circ$ の反射強度もまた $\theta = -30^\circ$ の酸化マグネシウムの反射強度P1よりも優れていることが判る。

【0039】以上のように本実施例によれば、形状の制御が容易であり、再現性を有するホトレジストから成る凸部42a上に凸部42aに沿って形成された凸部42bを有する有機絶縁膜42上に、凸部42bに沿った反射電極38を形成する。凸部42aの形状を制御することによって良好な反射特性を有する反射電極38が得られ、反射型液晶表示装置の表示品位が向上する。

【0040】本実施例では、スイッチング素子としてTFT40を用いるアクティブマトリクス駆動方式の反射型液晶表示装置30について説明したけれども、これに限られるものではなく、単純マトリクス駆動方式などの反射型液晶表示装置でも同様の効果が得られる。

【0041】凸部42aを形成するホトレジストなどの光感光性樹脂の種類や膜厚、熱処理温度を適当に選択すると凸部42aの傾斜角度を自由に制御することができ、これにより反射強度の入射角 θ 依存性を制御できることを確認している。その上に塗布する有機絶縁膜42の種類や膜厚を変えることによっても、反射強度を制御できることを確認している。マスク51の遮光領域51

a, 51 b の占める割合を変えることにより、正反射成分の大きさをも制御することができる。

【0042】また、反射電極 38 と電極 47 との間に電圧印加した場合、ある角度 ($\theta = 30^\circ$) から入射した光に対するパネル法線方向の反射率は約 20 % で、コントラスト比は 5 であった。

【0043】本実施例の反射型液晶表示装置 30 では、基板 31 の反射電極 38 を形成した面が、液晶層側に配されているので視差がなくなり、良好な表示品位が得られる。本実施例では、基板 31 の反射薄膜である反射電極 38 が液晶 49 層側、すなわち液晶 49 層にほぼ隣接する位置に配されている構成となるので、凸部 42 b の高さはセル厚さよりも小さく、凸部 42 b の傾斜角度は液晶 49 の配向を乱さない程度に穏やかにするのが望ましい。

【0044】さらに本実施例では、有機絶縁膜 42 のパターニングをドライエッチング法によって行ったが、有機絶縁膜 42 がポリイミド樹脂の場合にはアルカリ溶液によるウエットエッチング法によって行っててもよい。また、有機絶縁膜 42 としてポリイミド樹脂を用いたが、アクリル樹脂などの他の有機材料を用いててもよい。さらに本実施例では、基板 31 として、ガラスなどから成る透明な材料を用いたが、シリコン基板のような不透明な材料でも同様な効果が発揮され、この場合には回路を基板上に集積できる利点がある。

【0045】なお、前記実施例においては、表示モードとして相転移型ゲスト・ホストモードを取り上げたけれども、これに限定されることではなく、たとえば 2 層式ゲスト・ホストのような他の光吸収モード、高分子分散型液晶表示装置のような光散乱形表示モード、強誘電性液晶表示装置で使用される複屈折表示モードなどでも同様の効果が得られる。また本実施例では、スイッチング素子として TFT 40 を用いた場合について説明したが、たとえば MIM (Metal-Insulator-Metal) 素子、ダイオード、バリスタなどを用いたアクティブマトリクス基板にも適用することができる。

【0046】

【発明の効果】以上のように本発明によれば、感光性樹脂を露光、現像し、熱処理を行って得られた複数の不規則な凸部上に、前記凸部に沿って形成された絶縁膜上に、金属薄膜から成る反射板を絶縁膜の凸部に沿って形

成する。反射板の形状は、感光性樹脂の形状によって決定される。感光性樹脂は、容易に、かつ均一に再現性よく制御することが可能であるため、良好な反射特性を有する反射板を容易に形成することができ、反射型液晶表示装置の表示品位が向上する。

【0047】また、絶縁膜上に反射電極を形成するため、薄膜トランジスタなどの引回し電極の影響を受けず、隣り合う反射電極間の絶縁性を保つ範囲で反射電極を大きく形成でき、開口率を 90 % 以上にすることができる。

【図面の簡単な説明】

【図 1】本発明の一実施例である反射型液晶表示装置 30 の断面図である。

【図 2】図 1 に示される基板 31 の平面図である。

【図 3】図 1 および図 2 に示される凸部 42 a を有する反射電極 38 を形成する形成方法を説明する工程図である。

【図 4】図 3 に示す形成方法を説明する断面図である。

【図 5】図 3 の工程 a 5 で用いるマスク 51 の平面図である。

【図 6】本発明の反射型液晶表示装置 30 の反射特性の測定に用いられる反射板 70 の製造工程を説明する工程図である。

【図 7】図 6 の工程を説明する断面図である。

【図 8】反射板 70 の反射特性の測定法を説明する斜視図である。

【図 9】入射角度 θ と反射強度との関係を示すグラフである。

【図 10】アクティブマトリクス方式に用いられるスイッチング素子である薄膜トランジスタ 1 を有する基板 2 の平面図である。

【図 11】図 10 に示す切断面線 X1-X1 から見た断面図である。

【符号の説明】

30 反射型液晶表示装置

31, 45 基板

38 反射電極

42 有機絶縁膜

42 a, 42 b 凸部

49 液晶

51 ホトマスク

【図 11】

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図 7】

【図 8】

【図 9】

【図 10】

