

Scientific Computing Lab

Ordinary Differential Equations

Explicit Discretization

Equation with a function f(x) and derivatives of f(x)

$$f(x)+f'(x)=0$$

$$\sum_{i=0}^{\infty} a_i f^{(i)}(x) = 0$$

typical: development of a variable over time

- Example: radioactive decay
 - Half-life: Period of time in which half of the atoms decay
 - Decay constant k: Describes rate of decay and thus half-life

$$\frac{dr(t)}{dt} = -k \cdot r(t)$$

Example: pendulum

$$\frac{d^2\alpha}{dt^2} + \frac{k}{m} \cdot \frac{d\alpha}{dt} + \frac{g}{I} \cdot \sin(\alpha) = 0$$

- Example: population growth
- populations P and Q

$$\frac{dp(t)}{dt} = (2 - p - q) \cdot p$$

$$\frac{dq(t)}{dt} = (2 - p - q) \cdot q$$

competition

Example: population growth populations P and Q – predator-prey

$$\frac{dp(t)}{dt} = (2-p+q) \cdot p$$

$$\frac{dq(t)}{dt} = (2 - 10p - q) \cdot q$$

- Solving = finding f(x)
- Two ways to solve the ODE:
 - Analytically
 - Numerically
 - → Needs discretization (timestepping)

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

- Time in seconds, f'(t) in m/s
- Any ideas what f(t) describes?

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

Time t	0	5	10	15	20	25	30	35	40	45
f'(t)	5	1	0	-1	0	0	0	0	2	5

- explicit Euler
- method of Heun
- Runge-Kutta

$$f^{(x+\Delta x)} = F(f^{(x)}, x, \Delta x)$$

explicit Euler

$$f^{(x+\Delta x)} = f^{(x)} + \Delta x \cdot f^{(x)}$$

with

$$f'^{(x)} = f'(f^{(x)}, x)$$

method of Heun

$$f^{(x+\Delta x)} = f^{(x)} + \Delta x \cdot \frac{1}{2} (f'^{(x)} + \tilde{f}'^{(x+\Delta x)})$$

with

$$\tilde{f}'^{(x+\Delta x)} = f'(f^{(x)} + \Delta x \cdot f'^{(x)}, x + \Delta x)$$

Runge-Kutta

$$f^{(x+\Delta x)} = f^{(x)} + \Delta x \cdot \frac{1}{6} (f'_1 + 2f'_2 + 2f'_3 + f'_4)$$
 with

$$f'_{1} = f'(f(x), x)$$

$$f'_{2} = f'(f(x) + \frac{\Delta x}{2} \cdot f'_{1}, x + \frac{\Delta x}{2})$$

$$f'_{3} = f'(f(x) + \frac{\Delta x}{2} \cdot f'_{2}, x + \frac{\Delta x}{2})$$

$$f'_{4} = f'(f(x) + \Delta x \cdot f'_{3}, x + \Delta x)$$

What is Efficiency?

- number of operations?
- runtime?
- accuracy?

What is Efficiency?

- number or operations?
- runtine?
- accuracy

relation accuracy/cost !!!!!

Accuracy

definition of convergence:

$$||u_{exact} - u_{approx}|| = O(dt^p)$$

experimental computation?