SOLUZIONI ESERCIZI

Esercizio 1

a)
$$x_1^* = 20$$
 $x_2^* = 22$

b)
$$x_1^* = \frac{1}{4}p^2$$

Esercizio 2

a)
$$q = s(p) = \begin{cases} = 4 & se \ p < 2 \\ \ge 4 & se \ p \ge 2 \end{cases}$$

b)
$$x_1 = x_1(p) = \begin{cases} 0 & \text{se } p < 2\\ \frac{q-4}{2} & \text{se } p \ge 2 \end{cases}$$

Esercizio 3

Sia
$$Q = q_1 + q_2$$

Se
$$c_1 \ge c_2$$
 $C(Q) = c_2 Q$

Se
$$c_1 < c_2$$

$$C(Q) = \begin{cases} c_1 Q & \text{se } Q \leq \overline{q} \\ c_1 \overline{q} + c_2 (Q - \overline{q}) & \text{se } Q > \overline{q} \end{cases}$$

Esercizio 4

a) Vedere appunti lezioni

b)
$$Q \ge \sqrt{\frac{F \cdot N \cdot (N+1)}{c}}$$

Esercizio 5

a)
$$x^* = 125$$
 $q^* = 1500$ profitto annuo = 700000

- b) $VAN \simeq 1301500$ acquisto conveniente.
- c) C < 184350

Nell'industria operano solo le 200 imprese appartenenti al secondo gruppo.

$$p^* \simeq 1,33$$
 $Q^* \simeq 33,33$ $q_i^* \simeq 0,167$ $\Pi_i^* \simeq -35,97$

Esercizio 7

a)
$$F_{max} = 450$$
 $N_{min} = 200$

Esercizio 8

- a) $p^* = 16$ $q_i^* = 1600$ $Q^* = 32000$ numero taxi $n^* = 20$
- b) prezzo massimo = 6400

Esercizio 9

a)
$$s_i(p) = \begin{cases} 0 & se \ p < 2 \\ 1 & se \ p \ge 2 \end{cases}$$
 $S(p) = \begin{cases} 0 & se \ p < 2 \\ n & se \ p \ge 2 \end{cases}$

b)
$$p^* = 2$$
 $q_i^* = \bar{q} = 1$ $n^* = 50 = Q^*$

c)
$$S(p) = \begin{cases} 0 & \text{se } p < 2 \\ 25 & \text{se } p \ge 2 \end{cases}$$
 $p^* = 3$ $q_i^* = \overline{q} = 1$ $\Pi_i^* = 1$

d) valore monetario max = 1

Esercizio 10

a)
$$s_i(p) = \begin{cases} = 0 & se \ p < c_i \\ \leq \overline{q}_i & se \ p \geq c_i \end{cases}$$
 $i = 1, 2, 3, 4, 5.$
$$S(p) = \begin{cases} = 0 & se \ p < 150 \\ \leq 250 & se \ 150 \leq p < 200 \\ \leq 450 & se \ 200 \leq p < 300 \\ \leq 550 & se \ 300 \leq p < 350 \\ \leq 850 & se \ 350 \leq p < 500 \\ \leq 1150 & se \ 500 \leq p \end{cases}$$

b)
$$p^* = 350$$
 $Q^* = 650$

$$q_2^* = \overline{q}_2 = 20, \quad \Pi_2^* = 3000$$
 $q_3^* = \overline{q}_3 = 10, \quad \Pi_3^* = 500$ $q_4^* = \overline{q}_4 = 25, \quad \Pi_4^* = 5000$ $q_5^* = 10, \quad \Pi_5^* = 0$

Imprese gruppo 1 escluse dal mercato

a)
$$CMG = 2$$

$$e = -1,5$$

b) perdita di benessere sociale = 8

Esercizio 12

All'impresa conviene utilizzare entrambi gli impianti ($q_1=20,\ q_2=10$). $\Pi=1480$

Esercizio 13

Vedi appunti lezioni.

Esercizio 14

$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$

Esercizio 15

Sia $Q = q_A + q_B$

a)
$$p = 14$$
, $Q = 14$, $\Pi = 130,67$

b)
$$Q = 28$$
, $\Pi = 278$

c)
$$p_1 \simeq 12,34$$
 $q_1 \simeq 7,67$ $p_2 \simeq 17,34$ $q_2 \simeq 6,34$ $\Pi = 139$ $e_1 = -1,61$ $e_2 = -1,37$ $p_1 < p_2$ $|e_1| > |e_2|$

Esercizio 16

a) Se c < 0.585 allora il monopolista vende a entrambi i gruppi di consumatori:

$$q^* = 3 - c$$
, $p^* = \frac{3}{2} + \frac{1}{2}c$, $\Pi^* = \frac{1}{2}c^2 - 3c + \frac{9}{2}$

Se 0,585 < c < 4 allora il monopolista vende solo al gruppo A:

$$q^* = 2 - \frac{1}{2}c$$
, $p^* = 2 + \frac{1}{2}c$, $\Pi^* = \frac{1}{4}c^2 - 2c + 4$

b)
$$c < 4$$
, $q_A^* = 2 - \frac{1}{2}c$, $p_A^* = 2 + \frac{1}{2}c$, $\Pi_A^* = \frac{1}{4}c^2 - 2c + 4$

$$c < 2$$
, $q_B^* = 1 - \frac{1}{2}c$, $p_B^* = 1 + \frac{1}{2}c$, $\Pi_A^* = \frac{1}{4}c^2 - c + 1$

a)
$$\Pi_{\alpha} = 378,125$$
 $\Pi_{\beta} = 189,0625$

b)
$$\Pi_{int} = 756,25$$

c)
$$T(q) = 756,25 + 3q$$

d)
$$T(q) = 1512.5 + 3q$$

Esercizio 18

a)
$$\Pi_{\alpha} = 376,04$$
 $\Pi_{\beta} = 392,1772$

b)
$$\Pi_{int} = 956,25$$

c)
$$T(q) = 956,25 + 3q$$

Esercizio 19

a)
$$\Pi_{\alpha} = 338$$
 $\Pi_{\beta} = 169$

b)
$$p_{\alpha} = 30$$
 $p_{\beta} = 32$

- c) Altrimenti il profitto dell'impresa k sarebbe negativo: $\Pi = -k$
- d) Il rischio è interamente a carico dell'impresa α

e)
$$T(q) = 676 + 4q$$

f) Il rischio è interamente a carico dell'impresa β

Esercizio 20

a)
$$\Pi_{\alpha} = 338 \quad \Pi_{\beta} = 169$$

b)
$$\Pi_{int} = 676$$

c)
$$p_{\alpha} = 30$$
 $p_{\beta} = 32$

d)
$$T(q) = 676 + 4q$$

- e) Il rischio è interamente a carico dell'impresa β
- f) k < 26

g)
$$k < 6,967$$

Nel caso di decisioni simultanee relative alle quantità 3, 6, 9 sono possibili 2 equilibri.

a) primo equilibrio: $p^* = 10$ secondo equilibrio: $p^* = 10$

b) primo equilibrio: $q_1^* = 6$, $q_2^* = 6$ secondo equilibrio: $q_1^* = 9$, $q_2^* = 3$

c) primo equilibrio: $\Pi_1^*=36$, $\Pi_2^*=24$ secondo equilibrio: $\Pi_1^*=54$, $\Pi_2^*=12$

La strategia $q_1 = 9$, scelta dall'impresa 1 nel secondo equilibrio, è debolmente dominata dalla strategia $q_1 = 6$. Quindi possiamo scartare il secondo equilibrio.

Nel caso di decisioni sequenziali si ha:

d)
$$p^* = 10$$

e)
$$q_1^* = 9$$
, $q_2^* = 3$

f)
$$\Pi_1^* = 54$$
, $\Pi_2^* = 12$

Nel caso in cui le imprese possono scegliere un qualsiasi livello di output si ha:

g) decisioni simultanee: $p^* = 10$, $q_1^* = 6$, $q_2^* = 6$, $\Pi_1^* = 36$, $\Pi_2^* = 24$

decisioni sequenziali: $p^*=10$, $q_1^*=6$, $q_2^*=6$, $\Pi_1^*=36$, $\Pi_2^*=24$