Linear Algebra for Computer Science

An incremental document:

From Systems and Matrices to Eigenvalues and Eigenvectors

Francisco Escolano

Formulating & Solving **Linear Systems**

Gauss-Jordan

Linear vs non-Linear

Echelon form

Dirichlet problems Homogeneous **Neural Networks Traffic problems** Least squares **Curve fitting** Systems

Linear Transformations

Properties Matricial rep Robotics Graphics Vision **Kernel and Range Isomorphism** Geometric Isometry

Vectors & Matrices

Matrices and Systems

Properties of **Franspose** matrices **Product**

Elementary Matrices

Inverse of a matrix

Application to Graphs

Vector Spaces & Matrices

Polynomials Lines, planes, hyperplanes

Spaces and subspaces Linear combinations Bases and dimension Change of basis

Rank & **Nullity**

Norms and projections Dot & Cross products Stochastic matrices

Eigenvalues and Eigenvectors

Eigenvectors/values and transformations Finding eigenpairs Eigenspaces

Systems of Differential equations

Quadratic forms and their rotation Matrix exponentiation

Similarity & Diagonalization

characterization & PageRank

Graph

Solving an Homogeneous System per eigenvalue

For largest eigenvalue NO NEED OF system solving

 $A\mathbf{x} = \lambda \mathbf{x}$

Each eigenvalue determines a subspace and the dimensions indicate whether A is diagonalizable

Eigenpairs allow both lossless and lossy changes of basis (PCA)

Eigenvalues and Eigenvectors

Eigenvectors/values and transformations Finding eigenpairs Eigenspaces

Quadratic forms and their rotation Similarity & Diagonalization

Matrix exponentiation Systems of Differential equations

Graph characterization & PageRank

Eigenvectors and eigenvalues
Define rotation matrices/axes
In 2D and 3D

Symmetric Matrices have Real eigenvalues and are diagonalizable

Diagonalization enables new operations In matrices, e.g. expm,() logm(), sin(), some of them are useful in graphs Spectra define the DNA of graphs & eigenvectors give the steady state of random walks

1. Formulating and solving linear systems

Linearity vs non-linearity, examples of applications, Gauss and Gauss-Jordan reduction, Echelon form, Homogeneous systems:

Francisco Escolano

Linear Systems are Geometric configurations

$$A\mathbf{x} = \mathbf{b}$$

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} x \ y \end{bmatrix} \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$f(x,y) = x^2 + xy + y^2$$

Harmonic Analysis When the UNKNOWNS are the INNER NODES GIVEN THE KNOWN ONES

Harmonic (Linear) hypothesis:

$$T_i = \frac{1}{|N_i|} \sum_{j \in N_i} T_j$$

Find the Temperature in T_i Given those of the border

$$T_{1} = \frac{1}{4}(50 + 100 + T_{2} + T_{4})$$

$$T_{2} = \frac{1}{4}(T_{1} + 100 + T_{3} + T_{5})$$

$$T_{3} = \frac{1}{4}(T_{2} + 100 + 50 + T_{6})$$

$$T_{4} = \frac{1}{4}(50 + T_{1} + T_{5} + T_{7})$$

$$T_{5} = \frac{1}{4}(T_{4} + T_{2} + T_{6} + T_{8})$$

$$T_{6} = \frac{1}{4}(T_{5} + T_{3} + 50 + T_{9})$$

$$T_{7} = \frac{1}{4}(50 + T_{4} + T_{8} + 0)$$

$$T_{8} = \frac{1}{4}(T_{7} + T_{5} + T_{9} + 0)$$

$$T_{9} = \frac{1}{4}(T_{8} + T_{6} + 50 + 0)$$

Unique solution in this case. Why?

Curve Fitting When the UNKNOWNS are the COEFICIENTS OF A CURVE

$$p(x) = a_0 + a_1 x + a_2 x^2$$

$$p(x_1) = a_0 + a_1 x_1 + a_2 x_1^2$$

$$p(x_2) = a_0 + a_1 x_2 + a_2 x_2^2$$

$$p(x_3) = a_0 + a_1 x_3 + a_2 x_3^2$$

$$p(x) = a_0 + a_1 x + a_2 x^2 \qquad x_i, p(x_i) = \{(1,4), (2,0), (3,12)\}$$

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} p(x_1) \\ p(x_2) \\ p(x_3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1^2 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 12 \end{bmatrix}$$

Solution=(24, -28, 8)

Network flows

When the EQUATIONS are GIVEN BY JUNCTIONS

$$300 = x_1 + x_2$$

$$200 = x_2 - x_3 - x_5$$

$$150 = x_1 + x_3 + x_4$$

$$350 = x_4 + x_5$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 300 \\ 200 \\ 150 \\ 350 \end{bmatrix}$$

Solution in Sympy:
A.gauss_jordan_solve(b)

$$\begin{bmatrix}
\tau_0 + 150 \\
150 - \tau_0 \\
-350 \\
350 - \tau_0 \\
\tau_0
\end{bmatrix}, [\tau_0]$$

Solving with SymPy

Desarrollos optativos para subir nota (NOTA EXTRA)

def example_flow():
 from sympy.interactive.printing import init_printing
 init_printing(use_unicode=False, wrap_line=False)
 from sympy.matrices import Matrix
 A= Matrix([[1,1,0,0,0],[0,-1,-1,0,-1],[1,0,1,1,0],[0,0,0,1,1]])
 b=Matrix([300,200,150,350])
 sol,params=A.gauss_jordan_solve(b)
 return sol

TO BE CONTINUED...