

Programming and frameworks for ML

Data Cleaning with Python

About Me

Big Data Consultant at Indra / Big Data Lecturer

- More than 20 years of experience in different environments, technologies, customers, countries ...
- Passionate data and technology
- Enthusiastic Big Data world and NoSQL

Daniel Villanueva Jiménez

BigData Developer / Lecturer

INDRA • Universidad Pontificia de Salamanca

Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

Clean data

Happy families are all alike; every unhappy family is unhappy in its own way.

León Tolstói

Clean data

A clean dataset is easy to analyze, model or visualize

Tidy datasets are all alike, but every messy dataset is messy in its own way.

Hadley Wickham

• A **unit of analysis** represents the entity being analysed in a study, and which contains similar features

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

• An **observation** is data collected by observing behavior, events, or physical features.

country	year	cases	population	
Afghanistan	1999	745	19987071	
Afghanistan	2000	2666	20595360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174504898	
China	1999	212258	1272915272	
China	2000	213766	1280428583	

 A variable is a property or feature that can change depending on certain factors (the person, the weather, the country, etc.)

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

• A variable can take different **values**, which can be measured or observed.

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Rules

- Each variable must be in its own column
- Each observation should be in its own row
- Each value must have its own cell
- Each unit of analysis must be in its own table

We will display the same dataset in several formats

```
import pandas as pd
import numpy as np

table1 = pd.read_excel('tables.xlsx', 'table1')
table2 = pd.read_excel('tables.xlsx', 'table2')
table3 = pd.read_excel('tables.xlsx', 'table3')
table4a = pd.read_excel('tables.xlsx', 'table4a')
table4b = pd.read_excel('tables.xlsx', 'table4b')
table5 = pd.read_excel('tables.xlsx', 'table5')
table6 = pd.read excel('tables.xlsx', 'table6')
```


	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

• Variables such as values ...

		_		
+	ь	1	_	2
La	D	1	e	Z

	country	year	type	count
0	Afghanistan	1999	cases	745
1	Afghanistan	1999	population	19987071
2	Afghanistan	2000	cases	2666
3	Afghanistan	2000	population	20595360
4	Brazil	1999	cases	37737
5	Brazil	1999	population	172006362
6	Brazil	2000	cases	80488
7	Brazil	2000	population	174504898
8	China	1999	cases	212258
9	China	1999	population	1272915272
10	China	2000	cases	213766
11	China	2000	population	1280428583

• A single column with several features ...

table3				
	country	year	rate	
0	Afghanistan	1999	745/19987071	
1	Afghanistan	2000	2666/20595360	
2	Brazil	1999	37737/172006362	
3	Brazil	2000	80488/174504898	
4	China	1999	212258/1272915272	
5	China	2000	213766/1280428583	

• A feature separated into several columns...

table5				
--------	--	--	--	--

	country	century	year	rate
0	Afghanistan	19	99	745/19987071
1	Afghanistan	20	0	2666/20595360
2	Brazil	19	99	37737/172006362
3	Brazil	20	0	80488/174504898
4	China	19	99	212258/1272915272
5	China	20	0	213766/1280428583

- A separate unit of analysis in several tables
- Values in columns instead of cells ...

table4a					
	country	1999	2000		
0	Afghanistan	745	2666		
1	Brazil	37737	80488		
2	China	212258	213766		

	country	1999	2000
0	Afghanistan	19987071	20595360
1	Brazil	172006362	174504898
2	China	1272915272	1280428583

table4b

Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

Let's fix the 'variable as values' problem ...

tab	le2			
	country	year	type	count
0	Afghanistan	1999	cases	745
1	Afghanistan	1999	population	19987071
2	Afghanistan	2000	cases	2666
3	Afghanistan	2000	population	20595360
4	Brazil	1999	cases	37737
5	Brazil	1999	population	172006362
6	Brazil	2000	cases	80488
7	Brazil	2000	population	174504898
8	China	1999	cases	212258
9	China	1999	population	1272915272
10	China	2000	cases	213766
11	China	2000	population	1280428583

 The pivot_table() function is used to distribute a key/value pair across the columns of the table

 We have to use the **first** aggregation function if the values are not numbers ...

df			
	column_A	column_B	column_C
0	C1	Х	91
1	C1	Y	91
2	C2	Х	204

In the case of having a DataFrame with more than 3 columns ...

df				
	column_A	column_B	column_C	column_D
0	C1	Х	Α	38
1	C1	X	С	67
2	C1	Υ	Α	50
3	C1	Υ	С	59
4	C2	X	Α	83
5	C2	X	В	95
6	C2	X	С	13

A column_	B column	_C colum	n_D
:1	X	Α	38
:1	Х	С	67
:1	Y	Α	50
:1	Υ	С	59
2	X	Α	83
2	X	В	95
2	Х	С	13
		11 X 11 X 11 X 11 X 11 Y 11 Y 11 Y 11 X 1	C1 X C C1 Y A C1 Y C C2 X A C2 X B

	column_C	A	В	С
column_B	column_A			
X	C1	38.0	NaN	67.0
	C2	83.0	95.0	13.0
Υ	C1	50.0	NaN	59.0

 We can reset the index of the result thanks to the reset_index() function

```
result = df.pivot table(index = ["column B", "column A"],
         columns = "column C",
        values = "column D")
result
          column C
column B column A
    Χ
                    38.0 NaN 67.0
                   83.0 95.0 13.0
    Υ
             C1
                    50.0 NaN 59.0
result = result.reset index()
result.columns.name = ''
result
   column B column A
                  C1 38.0 NaN 67.0
                  C2 83.0 95.0 13.0
                  C1 50.0 NaN 59.0
```

df				
	column_A	column_B	column_C	column_D
0	C1	Х	Α	38
1	C1	X	С	67
2	C1	Y	Α	50
3	C1	Y	С	59
4	C2	Х	Α	83
5	C2	X	В	95
6	C2	Х	С	13

Exercise 1(1/2)

Load the following tables from the 'tables.xlsx' file

import pandas as pd

```
table1 = pd.read_excel('tables.xlsx', 'table1')
table2 = pd.read_excel('tables.xlsx', 'table2')
table3 = pd.read_excel('tables.xlsx', 'table3')
table4a = pd.read_excel('tables.xlsx', 'table4a')
table4b = pd.read_excel('tables.xlsx', 'table4b')
table5 = pd.read_excel('tables.xlsx', 'table5')
table6 = pd.read_excel('tables.xlsx', 'table6')
```


Exercise 1 (2/2)

 Converts the dataset "table2" into a clean dataset, as seen in "table1"

table1

table2					
			4		
	country	year	type	count	
0	Afghanistan	1999	cases	745	
1	Afghanistan	1999	population	19987071	
2	Afghanistan	2000	cases	2666	
3	Afghanistan	2000	population	20595360	
4	Brazil	1999	cases	37737	
5	Brazil	1999	population	172006362	
6	Brazil	2000	cases	80488	
7	Brazil	2000	population	174504898	
8	China	1999	cases	212258	
9	China	1999	population	1272915272	
10	China	2000	cases	213766	
11	China	2000	population	1280428583	

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583
,	Offilia	2000	213700	1200420303

Exercise 1 - Solution

```
# Carga las siguientes tablas del fichero "tables.xlsx"
import pandas as pd
table1 = pd.read excel('tables.xlsx', 'table1')
table2 = pd.read excel('tables.xlsx', 'table2')
table3 = pd.read excel('tables.xlsx', 'table3')
table4a = pd.read excel('tables.xlsx', 'table4a')
table4b = pd.read excel('tables.xlsx', 'table4b')
table5 = pd.read excel('tables.xlsx', 'table5')
table6 = pd.read excel('tables.xlsx', 'table6')
# Convierte el dataset "table2" en un dataset limpio
df = table2.pivot table(index = ["country", "year"],
               columns = "type",
               values="count").reset index()
df.columns.name = ''
df
```


Exercise 2

 Convert the dataset "table1" into another one showing the evolution of the population by years

table1						
	country	year	cases	population		
0	Afghanistan	1999	745	19987071		
1	Afghanistan	2000	2666	20595360		
2	Brazil	1999	37737	172006362		
3	Brazil	2000	80488	174504898		
4	China	1999	212258	1272915272		
5	China	2000	213766	1280428583		

	country	1999	2000
0	Afghanistan	19987071	20595360
1	Brazil	172006362	174504898
2	China	1272915272	1280428583

Exercise 2 - Solution

Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

• Let's fix the 'Value as Column' problem ...

	country	1999	2000
0	Afghanistan	745	2666
1	Brazil	37737	80488
2	China	212258	213766

 The melt() function takes multiple columns and collects them into a key/value pair

• We can 'reserve' as much columns as we want

 We can also specify the names of the variable and value columns with the var_name and value_name parameters

lf						
	column_A	column_B	column_C			
0	C1	Х	91			
1	C1	Υ	91			
2	C2	X	204			
-	02	^	204			
	.melt(id_va	ars =['col		le_colu	mn',	
	.melt(id_va	ars =['col	umn_A', 'c = 'variab me = 'valu	ole_colum	mn', in')	_colum
	.melt(id_va	ars =['col var_name value_na	umn_A', 'c = 'variak me = 'valu variable_	ole_colum	mn', in')	_column
df.	.melt(id_va	var_name value_na	umn_A', 'c = 'variab me = 'valu variable_	le_colum column	mn', in')	_

Exercise 3

 Convert the dataset "table1" into a narrow table with the following shape:

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

	country	year	column	data
0	Afghanistan	1999	cases	745
1	Afghanistan	2000	cases	2666
2	Brazil	1999	cases	37737
3	Brazil	2000	cases	80488
4	China	1999	cases	212258
5	China	2000	cases	213766
6	Afghanistan	1999	population	19987071
7	Afghanistan	2000	population	20595360
8	Brazil	1999	population	172006362
9	Brazil	2000	population	174504898
10	China	1999	population	1272915272
11	China	2000	population	1280428583

Exercise 3 - Solution

Exercise 4

 Converts the datasets "table4a" and "table4b" into a clean dataset, as seen in "table1"

tal	ole4a				
	country	1999	20	000	
0	Afghanistan	745	26	666	
1	Brazil	37737	804	488	
2	China	212258	2137	766	
tal	country	1	999		2000
0	Afghanistan	19987	071	2	0595360
1	Brazil	172006	362	17	4504898
2	China	1272915	272	128	0428583

table1					
	country	year	cases	population	
0	Afghanistan	1999	745	19987071	
1	Afghanistan	2000	2666	20595360	
2	Brazil	1999	37737	172006362	
3	Brazil	2000	80488	174504898	
4	China	1999	212258	1272915272	
5	China	2000	213766	1280428583	

Exercise 4 - Solution

Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

Separating columns

We are to fix the 'Two values in one column' problem ...

tal	ble3		
	country	year	rate
0	Afghanistan	1999	745/19987071
1	Afghanistan	2000	2666/20595360
2	Brazil	1999	37737/172006362
3	Brazil	2000	80488/174504898
4	China	1999	212258/1272915272
5	China	2000	213766/1280428583

Separating columns

 Another common operation is to separate the value of a column into several columns ...


```
def parse_value(s):
    return s[-1]

df["column_C1"] = df.column_C.map(lambda s: s[0])
df["column_C2"] = df.column_C.map(parse_value)
df = df.drop('column_C', axis = 1)
df
```

	column_A	column_B	column_C1	column_C2
0	C1	Х	Α	1
1	C1	Y	Α	2
2	C2	X	В	1
3	C2	Υ	В	2

Separating columns

 Another common operation is to separate the value of a column into several columns ...


```
def parse_value(s, separator, chunk):
    return s.split(separator)[chunk]

df["column_C1"] = df.column_C.map(lambda s: s.split(':')[0])

df["column_C2"] = df.column_C.apply(parse_value, separator = ':', chunk = 1)

df = df.drop('column_C', axis = 1)

df
```

	column_A	column_B	column_C1	column_C2
0	C1	Х	Α	1
1	C1	Y	Α	2
2	C2	Х	В	1
3	C2	Υ	В	2

Exercise 5

 Converts the dataset "table3" into a clean dataset, as seen in "table1"

table1

Make sure the new columns have the int datatype

tal	ble3		
	country	year	rate
0	Afghanistan	1999	745/19987071
1	Afghanistan	2000	2666/20595360
2	Brazil	1999	37737/172006362
3	Brazil	2000	80488/174504898
4	China	1999	212258/1272915272
5	China	2000	213766/1280428583

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

df = table3.copy()

Exercise 5 - Solution

```
# Convierte el dataset "table3" en un dataset limpio, tal y como se ve en "table1"

def parse_value(data, separator, chunk):
    return int(data.split(separator)[chunk])

df = table3.copy()

df['cases'] = df.rate.apply(parse_value, separator = '/', chunk = 0)

df['population'] = df.rate.apply(parse_value, separator = '/', chunk = 1)

df = df.drop('rate', axis = 1)

df

# Aseguraté de que las nuevas columnas son de tipo entero

df.info()
```


Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

Joining columns

 We are to fix the 'Same value in two diferent columns' problem ...

tak	ole7				
	country	century	year	cases	population
0	Afghanistan	19	99	745	19987071
1	Afghanistan	20	0	2666	20595360
2	Brazil	19	99	37737	172006362
3	Brazil	20	0	80488	174504898
4	China	19	99	212258	1272915272
5	China	20	0	213766	1280428583

Joining columns

 There are times when we need to join two columns into one...

```
df
   column A column B column C
0
         C1
                    Χ
                             23
         C1
                    Υ
                             33
                             10
         C2
                    Υ
                             34
df["column_AB"] = df.apply(lambda row: "%s:%s" % (row['column_A'], row['column_B']), axis = 1)
df = df.drop(['column A', 'column B'], axis = 1)
df.columns = ["column AB", "colum C"]
df
   column AB colum C
                 C1:X
          33
                 C1:Y
          10
                 C2:X
          34
                 C2:Y
```


Exercise 6

- Converts the dataset "table5" into a clean dataset, as seen in "table1"
- Make sure the columns are the right type

tal	ble5			
	country	century	year	rate
0	Afghanistan	19	99	745/19987071
1	Afghanistan	20	0	2666/20595360
2	Brazil	19	99	37737/172006362
3	Brazil	20	0	80488/174504898
4	China	19	99	212258/1272915272
5	China	20	0	213766/1280428583

tai	ble1			
	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

Execise 6 - Solution

```
# Convierte el dataset "table5" en un dataset limpio, tal y como se ve en "table1"

def parse_value(data, separator, chunk):
    return int(data.split(separator)[chunk])

def join_columns(row):
    return row['century'] + row['year']

df = table5.copy()

df['cases'] = df.rate.apply(parse_value, separator = '/', chunk = 0)

df['population'] = df.rate.apply(parse_value, separator = '/', chunk = 1)

df['year'] = df.apply(join_columns, axis = 1)

df = df.drop(['century', 'rate'], axis = 1)

df

# Aseguraté de que las columnas del dataset tienen el tipo correcto

df.info()
```


Index

- Introduction
- Widening tables
- Narrowing down tables
- Separating columns
- Joining columns
- Missing data

Missing Data

We can have two different strategies to treat missing data:

- Removing the data that is null
- Filling the voids

Removing nulls

• The **dropna**() function removes all rows that contain any null value

df				
	column_A	column_B	column_C	column_D
0	NaN	NaN	Α	23.0
1	C1	NaN	Α	33.0
2	C2	Х	В	10.0
3	NaN	NaN	NaN	NaN
df.	dropna()			
	column_A	column_B	column_C	column_D
2	C2	Х	В	10.0

Removing nulls

 The 'how' parameter allows to specify if all the columns have to be null in order to delete the row

df				
	column_A	column_B	column_C	column_D
0	NaN	NaN	Α	23.0
1	C1	NaN	Α	33.0
2	C2	Х	В	10.0
3	NaN	NaN	NaN	NaN
df.	.dropna (how	v = 'all')		
df.	-	v = 'all') column_B	column_C	column_D
df.	-		column_C	column_D 23.0
	column_A	column_B		
0	column_A	column_B NaN	A	23.0

Removing nulls

 The 'subset' parameter allows you to specify the columns that must be set to zero to delete the row

df					
	column_A	column_B	column_C	column_D	
0	NaN	NaN	Α	23.0	
1	C1	NaN	Α	33.0	
2	C2	Х	В	10.0	
3	NaN	NaN	NaN	NaN	
df.	dropna (sul	oset = ['c	olumn_A',	'column_B'	'], how = 'all')
	column_A	column_B	column_C	column_D	
1	C1	NaN	Α	33.0	
2	C2	X	В	10.0	

Filling in the voids

• The **fillna**() function replaces the nulls with the values specified in each column

df					
	column_A	column_B	column_C	column_D	
0	C1	NaN	Α	23.0	
1	C0	Υ	Α	33.0	
2	NaN	Х	В	NaN	
	lues = {'co	_	'C1', 'co	lumn_B':	'x'}
	fillna(val	_			'x'}
	fillna(val	lues)	column_C		'x'}
df.	.fillna(val	lues)	column_C	column_D	'x'}

Filling in the voids

 We could fill in the nulls of a column with their mean value

df				
	column_A	column_B	column_C	column_D
0	C1	NaN	Α	23.0
1	C0	Υ	Α	33.0
2	NaN	X	В	NaN
df.	.fillna({'c	column_D'	: df.colum	n_D.mean()
	column_A	column_B	column_C	${\tt column_D}$
0		column_B	column_C	_
0			A	

Filling in the voids

• **fillna**() provides a '**method**' parameter to fill in the nulls with the previous value ...

df				
	column_A	column_B	column_C	column_D
0	C1	Х	Α	23
1	C0	Υ	Α	33
2	NaN	Х	В	54
df.	fillna (met		·	
df.		chod = 'ff	·	column_D
df.			·	
	column_A	column_B	column_C	

Exercise 7

• Turn the dataset table6 into a clean dataset

table6

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	NaN	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	NaN	2000	80488	174504898
4	China	1999	212258	1272915272
5	NaN	2000	213766	1280428583

table1

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

Exercise 7 - Solution

```
# Convierte el dataset "table7" en un dataset limpio
table6.fillna(method='ffill')
```


Exercise 8

 Convert the dataset "table1" into a narrow table with the following shape:

table1

	country	year	cases	population
0	Afghanistan	1999	745	19987071
1	Afghanistan	2000	2666	20595360
2	Brazil	1999	37737	172006362
3	Brazil	2000	80488	174504898
4	China	1999	212258	1272915272
5	China	2000	213766	1280428583

	country	cases_1999	cases_2000	population_1999	population_2000
0	Afghanistan	745	2666	19987071	20595360
1	Brazil	37737	80488	172006362	174504898
2	China	212258	213766	1272915272	1280428583

THANKS FOR YOUR ATTENTION

Daniel Villanueva Jiménez

daniel.villanueva@immune.institute

@dvillaj

