Name:	ANSWERS	Date:	
Baldivis Secondary College	Year 12 Mathematics: Es	sentials	
	Investigation 1, 2018		
	Topic - Measurement / 26		
	IN CLASS ONLY		
Total Time:	45 mins		%
Weighting:	7 %		
Equipment:	Take home component, Scientific calc	ulator	
Part 1: nfant's and yo	ore sensitive than adults to medi sture systems, and metabolism.	AGES cations because of their weight, height must be converted to kilograms to ments.	[6
	The formula:	2.2 lb = 1 kg	
Question 1. decimal p	_A child weighs 47 lb. Convert	the child's weight to kilograms (round	
4	7 x 2.2.	47 - 2	
=	103.40kg	= 21,36	kg
Question 2. decimal p	A child weighs 92 lb. Convert laces)	he child's weight to kilograms (round t	02 /
	92 22 2	92 + 2.	2

= 202,40 kg

= 41.82 kg

A child weighs 9.5kg. Convert the child's weight to pounds (round to 2 decimal Question 3. places)

9.5 - 2.2

=4.32 Lb.

=20.90 Lb.

Paediatric patients, which include both infants and children, require special dosing that is adjusted for their body weight. A number of formulas have been used throughout the years to determine the best dose for paediatric patients.

FORMULA	Pediatric Dosing
Fried's Rule	AL II
	Child's dosage = $\frac{\text{Age in months}}{150} \times \text{Adult dosage}$
Young's Rule	
Chi	ld's dosage = $\frac{\text{Age of child in years}}{\text{Age of child in years} + 12} \times \text{Adult dosage}$
Clark's Rule	
Ch	ild's dosage = Child's weight in pounds
	ild's dosage = X Aduit dosage

Using Fried's rule:

A child, 2 years old, needs acetaminophen, and the normal adult dose is 650 mg. What is the appropriate dosage for the child?

$$\frac{24}{150}$$
 × 650 = 104 mg

An 18-month-old needs amikacin sulfate, and the normal adult dose is 250 Question 2. mg. What is the appropriate dosage for the child?

$$\frac{18}{150}$$
 × 250 = 30 mg

Using Young's rule:

A 24-month-old child is prescribed amoxicillin, and the normal adult dose is 500 mg. What is the appropriate dosage for the child?

$$\frac{2}{14} \times 500 = 71.43 \,\mathrm{mg}$$

Question 4. A 42-month-old needs propylthiouracil, and the normal adult daily dose is 150 mg. What is the appropriate dosage for the child?

$$\frac{3.5}{15.5}$$
 × 150 = 33.87 mg

Using Clark's rule:

Question 5. A child, weighing 85 pounds, is prescribed hydrochlorothiazide, and the normal adult dose is 50 mg. What is the appropriate dosage for the child?

$$\frac{85}{150}$$
 × 50 mg = 28,33 mg

Question 6. A child, weighing 70 pounds, is prescribed quinine sulfate, and the normal adult dose is 325 mg TID. What is the appropriate dosage for the child?

$$\frac{70}{150}$$
 + 325 = 151.67 mg

The formula:

$$rate(ml/h) = \frac{volume (mL)}{time (h)}$$

Conversion Tip
×1000

L mL

Question 1. Mr Smith is to receive 800mL of an antibiotic via an IV infusion over 15 hours. Calculate the flow rate to be set.

$$\frac{800}{15} = 53.33 \text{ mL/h}.$$

Question 2. 0.5L is to infuse over a 5hour period. Find the flow rate in mL/h.

$$0.5 \times 1000$$

$$= 500$$

$$= 500$$

$$V$$

Question 3. 500 mL of antibiotic is to be infused over the 120 minutes by an infusion pump. Calculate the flow rate (mL per hour).

$$\frac{500}{2}$$
 = 250 mL/h