| AT<br>KW |  |
|----------|--|
| KL       |  |
| JG       |  |

| Name:    |       |
|----------|-------|
| Class:   | 12MTX |
| Teacher: |       |

#### CHERRYBROOK TECHNOLOGY HIGH SCHOOL



2010 AP4

YEAR 12 TRIAL HSC EXAMINATION

# **MATHEMATICS EXTENSION 1**

Time allowed - 2 HOURS (Plus 5 minutes' reading time)

#### **DIRECTIONS TO CANDIDATES:**

- > Attempt all questions.
- > All questions are of equal value.
- ➤ Each question is to be commenced on a new page clearly marked Question 1, Question 2, etc on the top of the page. \*\*
- > All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- > Approved calculators may be used. Standard Integral Tables are provided
- > Your solutions will be collected in one bundle stapled in the top left corner.

Please arrange them in order, Q1 to 7.

\*\*Each page must show your name and your class. \*\*

### Question 1 (12 Marks)

Marks

(a) Two points A and B have coordinates (-2,4) and (2,1) respectively.

Find the point *P* which divides the interval *AB* externally in the ratio 3 : 2.

2

(b) Find the acute angle between the lines y=3x-1 and 4x-2y=7

2

(c) Solve the inequality  $\frac{2x-1}{x+1} \ge 1$ .

3

(d) The equation  $x^3 - 2x^2 + 4x - 5 = 0$  has roots  $\alpha, \beta, \gamma$ 

(i) Write down the value of  $\alpha\beta + \beta\gamma + \gamma\beta$ 

1

(ii) Find the value of  $\alpha\beta\gamma$ 

1

(ii) Hence find the value of  $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ 

2

(e) Find  $\lim_{\theta \to 0} \frac{\tan 2\theta}{8\theta}$ 

1

### End of Question 1.

# Question 2 (12 Marks) Start a new page

(a)  $P(2ap, ap^2)$  is a point on the parabola  $x^2 = 4ay$ .

2

(i) Show that the equation of the normal at P is

 $x + py = 2ap + ap^3$ 

(ii) Q is the point with coordinates  $(0, 2a + ap^2)$ , find the coordinates

of M. the midpoint of PQ.

1

(iii) Find the equation of the locus of M,

### Question 2 continued......

**Marks** 

(b)

Use the substitution 
$$u = 1 - x$$
 to evaluate  $\int_{-15}^{0} \frac{x \, dx}{\sqrt{1 - x}}$ .

3

Find  $\int \sin^2 6x \, dx$ (c)

2

Sketch the graph y = |x-2|(d)

(ii) Hence solve for x

$$|x-2|<\frac{1}{2}x$$

2

#### End of Question 2.

# Question 3 (12 Marks) Start a new page

Solve the equation  $\sin 2x + \cos x = 0$  for  $0 \le x \le 2\pi$ . (a)

3

(i) Use the substitution  $t = tan \frac{\theta}{2}$  to show that (b)

$$cosec\theta + cot\theta = cot\frac{\theta}{2}$$

2

Hence show that (ii)



$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\cos ec\theta + \cot \theta) d\theta = \ln 2$$

(c) A tower is 828 metres tall. At a point due east of the tower, the angle of elevation is 53 degrees. At another point due south of P, the angle of elevation is θ degrees. The distance from P to Q is 840 metres.



(i) Prove that 
$$\cot \theta = \sqrt{\frac{828^2 \cot^2 53^\circ + 840^2}{828^2}}$$

(ii) Find  $\theta$ , correct to the nearest degree.

**End of Question 3.** 

(a) The circles intersect at J and K, LKM is a straight line.

*TL* and *TM* are tangents. Let  $\angle LMT = \alpha$  and  $\angle MLT = \beta$ .

NOT TO SCALE



Copy the diagram onto your answer sheet

Hence prove that TMJL is a cyclic quadrilateral.

3

- (b) A particle is moving along a straight line with acceleration  $x=8x^3$ , where x is the displacement from the origin O in metres. Intially the particle is 1 metre to the right of the origin moving with velocity  $v=2 ms^{-1}$ .
  - (i) Show that  $x = \frac{d(\frac{1}{2}v^2)}{dx}$ .

1

(ii) Show that  $v^2 = 4x^4$ .

2

 $\rightarrow$  (iii) Explain why the velocity  $\nu$  cannot be negative.

1

(iv) Find the time taken for the particle to travel to a point 2 metres to the right of the origin.

1

2

- Let T be the temperature of a cup of tea at time t minutes after it has been brought into a room of temperature A. The Newton's Law of Cooling states that the rate of change of temperature T is proportional to (T-A), that is  $\frac{dT}{dt} = -k(T-A)$ , where k is a positive constant.
  - (i) Show that  $T = A + Be^{-kt}$ , where B is a constant, satisfies Newton's Law of Cooling.
  - (ii) A cup of tea, with an initial temperature of  $95^{\circ}C$ , is brought into a room of temperature  $25^{\circ}C$ . After 10 minutes, the temperature of the tea drops to  $60^{\circ}C$ . Find the temperature of the tea after another 5 minutes.

### **End of Question 4.**

# Question 5 (12 Marks) Start a new page

(a) A particle is moving in a straight line so that its displacement x metres from a fixed point on the line at any time t seconds is given by

$$x = \frac{3}{2}\sin 2t + 2\cos 2t$$

- (i) Show that  $x = -n^2x$ , describe the motion of the particle and state the period of the motion
- (ii) Find the maximum displacement of the particle.

2

(b)

#### NOT TO SCALE



A particle is projected from a point O with speed  $Vms^{-1}$  at an angle  $\alpha$  radians above the horizontal, where  $0 \le \alpha \le \frac{\pi}{2}$ . It moves in a vertical plane subject to gravity where the acceleration due to gravity is  $10\,ms^{-2}$ . At time t seconds, it has horizontal and vertical displacements x metres and y metres respectively from O. At point P where it attains its greatest height the angle of elevation of the particle from O is  $\beta$  radians.

- (i) Use integration to show that  $x = Vt \cos \alpha$  and  $y = Vt \sin \alpha 5t^2$
- (ii) Show that  $\tan \beta = \frac{1}{2} \tan \alpha$ .
- (iii) If the particle has greatest height 80 metres above O at a horizontal distance 120 metres from O, find the exact values of  $\alpha$  and V.

#### End of Question 5.

## Question 6 (12 Marks) Start a new page

Marks

(a) Find  $\frac{d}{dx} (e^x \tan^{-1} x)$ 

2

(b) Find the exact value of  $\int_{1}^{\sqrt{3}} \frac{2 dx}{\sqrt{4 - x^2}}$ 

3

(c) (i) State the domain and range for  $y = \cos^{-1} 4x$ 

1

(ii) Sketch the graph of  $y = \cos^{-1} 4x$ 

1

- (iii) Find the equation of the tangent to  $y = \cos^{-1} 4x$  at  $x = -\frac{1}{8}$ .
- ----
- Leave answer in exact form.

3

- (d) (i) Sketch the graphs of  $y = \sin^{-1} x$ , for  $0 \le x \le 1$ 
  - and  $y = \sin x$ , for  $0 \le x \le \frac{\pi}{2}$  on separate diagrams.

- 1
- (ii) By considering your graphs drawn in part (i), find the exact value of

$$\int_{0}^{1} \sin^{-1} x \, dx + \int_{0}^{\frac{\pi}{2}} \sin x \, dx$$

1

### End of Question 6.

# Question 7 (12 Marks) Start a new page

- (a) Prove, using the method of mathematical induction,
  - that  $4^n + 14$  is divisible by 6 for all  $n \ge 1$ .

# Question 7 continued.....

Marks

(b) The curve  $f(x) = (x^3 - 12x)^{\frac{1}{3}}$  is shown below.



(i) Find f'(x). (No need to simplify your answer.)

1

(ii) Taking an initial estimate of  $x_1 = -3 \cdot 3$ , use one application of Newtons' Method to obtain another approximation to the root of f(x) = 0.

1

(iii) Explain why using  $x_1 = -3.3$  does not produce a better approximation to the root than the original estimate.

1

(c) Find the term independent of x in the expansion of  $\left(x^2 - \frac{2}{x}\right)^9$ 

Question 7 Continued.....

**Marks** 

(d) (i) Using the expansion of  $(1+x)^{n-1}$  show that

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{n-2} = 2^{n-1} - 2.$$

2

(ii) Find the least positive integer n, such that

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{n-2} > 1 \ 000$$

2

#### **END OF EXAM**

Ext | TRIAL 2010

P= 
$$\frac{3x^2+2x-2}{3x+2x-2}$$
,  $\frac{3x+2x+4}{3x+2}$  (i)  $\frac{dy}{dy} = \frac{2x}{2a}$ 

=  $(10,5)$  at  $x = 2ap$ 
 $\frac{dy}{dx} = p$ 

(b)  $y = 3x-1$   $4x-2y=7$  Get of wormed =  $\frac{1}{p}$ 
 $\frac{1}{p} = \frac{3}{p} = \frac{2x-7}{p}$   $\frac{1}{p} = \frac{1}{p} (x-2ap)$ 
 $\frac{1}{p} = \frac{3}{p} = \frac{2x-7}{p} = \frac{1}{p} (x-2ap)$ 
 $\frac{1}{p} = \frac{3}{p} = \frac{2x-7}{p} = \frac{1}{p} (x-2ap)$ 
 $\frac{1}{p} = \frac{3}{p} =$ 



33 ()i) In DPAB (a)  $\sin 2x + \cos x = 0$ tan 53° = 828 GON (25112+1)=0 AP = 828 cot 53° Corx = 0 or Sinx = -1 In DABQ  $\frac{\tan \theta = 828}{AQ}$ AQ = 828 cot 0 In APQ. AP2+8402 = AQ2 828 cot 53+8402=828 ati b) (i) t= tan = cot'd = 828 cot'53°+8402 LHS = Crocco + coto 1+t2+1-t2 2t (i) 0 = 38.35°

94 i) d (2v-) = 8x3 +v2= (8x3d2 = 2x4+c when x=1, V=2, : C = 0. 1, v= 2 xx V2 = 4x4 111) since 2 >1 , z'acolerati LT MK = L MJK 8n3 20 , valory 12= = x (alternati segment which >0 and in tral VYO .: V cannot be negative = B (allenete algment In D LMT therren)  $(1) \ V > 0 \ \ \ \ \ \ V = 2x^2$ /LTM = 180 - (x+B) (< Sund b) LMJL=X+B (adjacent (1) : LMJL + LMJI = (d+B)+180-(d+B)  $t = \frac{1}{2} \int x^{-2} dx$ =1800 i. opposite L's supplemental = ユメナー . TMJL is exclic quedalatral Whent = 0, x = 1, C = 1 t = = x + + 1  $(i) d(\frac{1}{2}v^2) = d(\frac{1}{2}v^2) \cdot dv$ t = -1 x27 +1 tre = V dy = dx. dv = 4 seconds = V x dy Insteally voo and x=1. To change dies veo, but veo whe x=0 : , possible

| لم ما لم الم                                          | QC.                                                                                                |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| c) D T=A+Be  dT=Be-R+X-R                              | a) X= 3 sin 2t + 2 cos 2t                                                                          |
| dI - Be-Rt X-k                                        | <b>,</b>                                                                                           |
| A) [-                                                 | 2=3 cos 2t - 4 six 2t                                                                              |
| $= -kBe^{-kt}$ $= -k(A + Be^{-A}) /$                  | $     \dot{x} = -6 \sin 2t - 8 \cos 2t       = -4 \left[ \frac{3}{2} \sin 2t + 2 \cos 2t \right] $ |
| = -k(A+Be-A) /                                        | $=-4 \frac{3}{2} \sin 2t + 2 \cos 2t$                                                              |
| =-k(T-A)                                              | = -1 2                                                                                             |
|                                                       | = -4 x<br>: Motion is SHM.                                                                         |
| ii) A=25 -ret                                         | osallating about origin /                                                                          |
| :T = 25+Be                                            | period = records.                                                                                  |
| when $t=0$ , $T=95$                                   | \                                                                                                  |
| 95=25+B                                               | OR.                                                                                                |
| ·: B = 70                                             | $\chi = Rsin(2t+\alpha)$                                                                           |
| T=25+70e                                              | $R = \sqrt{(\frac{2}{3})^2 + 2^2} = \frac{5}{2}$                                                   |
| when $t = 10$ , $T = 60$                              |                                                                                                    |
| 60 = 25 + 70 e lok<br>70e = 35                        | $\frac{2}{2} = \frac{5}{2} \sin(2t + \alpha)$                                                      |
| e-10k = 1                                             | $\dot{x} = 2 \times 5  \text{co} \left( 2t + \alpha \right)$                                       |
| · · · · · · · · · · · · · · · · · · ·                 | <u></u>                                                                                            |
| $R = -\frac{1}{10} \ln \frac{1}{2} t$ $T = 25 + 70 e$ | $= 5 as (at + \alpha)$                                                                             |
| 1 = 25 + 70 e                                         | $x = -10 \sin(2t+a)$                                                                               |
| T = 25 + 70 0 (6 hg) x 15                             | $=-4\left(\frac{5}{2}\sin(2t+\alpha)\right)$                                                       |
| = 49.75°C                                             | =-4 x                                                                                              |
|                                                       | · Mohan is SHM with                                                                                |
|                                                       | Centre x = 0                                                                                       |
|                                                       | and penod T= 29                                                                                    |
|                                                       | =7.                                                                                                |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |
|                                                       |                                                                                                    |

. .

.









| $(ii)$ $2^{n-1}-2 > 1000$         |
|-----------------------------------|
|                                   |
| 2" > 1002                         |
|                                   |
| $(n-1) \ln 2 > \ln (002)$         |
|                                   |
| h-1 > ln 1002<br>ln 2             |
|                                   |
| n > ln 1002 +1                    |
| ln 2                              |
| n > 10.9.                         |
|                                   |
| i least positive integer is n=11. |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |

-