## 1 Forests

Let  $\Delta$  be a *d*-dimensional simplicial complex. Denote its set of *i*-faces by  $\Delta_i$ , and define  $f_i := |\Delta_i|$ .

**Definition 1.1.** A spanning forest of  $\Delta$  is a d-dimensional subcomplex  $\Upsilon \subseteq \Delta$  with  $\operatorname{Skel}_{d-1}(\Upsilon) = \operatorname{Skel}_{d-1}(\Delta)$  and satisfying the three conditions:

- 1.  $\widetilde{H}_d(\Upsilon) = 0;$
- 2.  $\tilde{\beta}_{d-1}(\Upsilon) = \tilde{\beta}_{d-1}(\Delta);$
- 3.  $f_d(\Upsilon) = f_d(\Delta) \tilde{\beta}_d(\Delta)$ .

If  $0 \le k < d$ , a k-dimensional spanning forest of  $\Delta$  is a k-dimensional spanning forest of the k-skeleton  $\operatorname{Skel}_k(\Delta)$ . In the case where  $\tilde{\beta}_{d-1}(\Delta) = 0$ , a d-dimension spanning forest called a spanning tree. The complex  $\Delta$  is called a forest if it is a spanning forest of itself, i.e., if  $\tilde{H}_d(\Delta) = 0$ .

**Remarks.** Let  $\Upsilon$  be a subcomplex of  $\Delta$  sharing the same (d-1)-skeleton.

1. The condition  $\widetilde{H}_d(\Upsilon) = 0$  is equivalent to the elements of the set

$$A := \{ \partial_{\Upsilon, d}(f) : f \in \Upsilon_d \}$$

being linearly independent (over  $\mathbb{Z}$  or, equivalently, over  $\mathbb{Q}$ ).

- 2. Since  $\Upsilon$  and  $\Delta$  have the same (d-1)-skeleton,  $\partial_{\Delta,d-1} = \partial_{\Upsilon,d-1}$ , and hence,  $\tilde{\beta}_{d-1}(\Upsilon) = \tilde{\beta}_{d-1}(\Delta)$  is equivalent to rank im  $\partial_{\Upsilon,d} = \operatorname{rank im} \partial_{\Delta,d}$ .
- 3. It follows from the above two remarks that  $\Upsilon$  is a spanning forest if and only if A, defined above, is a basis for im  $\partial_{\Delta,d}$  over  $\mathbb{Q}$ , i.e, the columns of the matrix  $\partial_{\Delta,d}$  corresponding to the d-faces of  $\Upsilon$  are a  $\mathbb{Q}$ -basis for the column space of  $\partial_{\Delta,d}$ . In particular, spanning forests always exist.

**Proposition 1.2.** Any two of the three conditions defining a spanning forest implies the remaining condition.

**Definition 1.3.** Define the *complexity* or *forest number* of  $\Delta$  to be

$$\tau := \tau_d(\Delta) := \sum_{\Upsilon \subset \Delta} |\mathbf{T}(\widetilde{H}_{d-1}(\Upsilon))|^2$$

where the sum is over all (d-dimensional) spanning forests of  $\Delta$ .

**Proposition 1.4.**  $\tau_d(\Delta) = 1$  if and only if  $\Delta$  is a forest.

Proof. Suppose that  $\tau_d(\Delta) = 1$ . Then  $\Delta$  possesses a unique spanning forest  $\Upsilon$ . It follows that the set columns of  $\partial_d$  has a unique maximal linearly independent subset—those columns corresponding to the faces of  $\Upsilon$ . Since the columns of  $\Delta$  are all nonzero, it must be that the columns corresponding to  $\Upsilon$  are the only columns, i.e.,  $|\Upsilon_d| = |\Delta_d|$ , and hence  $\Upsilon = \Delta$ .

Conversely, suppose that  $\Delta$  is a forest and that  $\Upsilon \subseteq \Delta$  is a spanning forest. Since  $\widetilde{H}_d(\Delta) = 0$ , it follows that

$$|\Upsilon_d| = |\Delta_d| - \tilde{\beta}_d(\Delta) = |\Delta_d|.$$

Hence,  $\Upsilon = \Delta$ , and  $\tau_d(\Delta) = |\mathbf{T}\widetilde{H}_{d-1}(\Delta)|^2 = 1$ .

**Definition 1.5.** The *i-th Laplacian* of  $\Delta$  is  $L_i := \partial_{i+1} \circ \partial_{i+1}^t$ . The *i-th critical group* of  $\Delta$  is

$$\mathcal{K}_i(\Delta) := \ker \partial_i / \operatorname{im} L_i.$$

**Theorem 1.6.** Suppose that  $\Upsilon$  is an i-dimensional spanning forest of  $\Delta$  such that  $\widetilde{H}_{i-1}(\Upsilon) = \widetilde{H}_{i-1}(\Delta)$ . Let  $\Theta := \Delta_i \setminus \Upsilon_i$ . Define the reduced Laplacian  $\widetilde{L}$  of  $\Delta$  with respect to  $\Upsilon$  to be the square submatrix of  $L_i$  consisting of the rows and columns indexed by  $\Theta$ . Then there is an isomorphism

$$\mathcal{K}_i(\Delta) \to \mathbb{Z}\Theta/\operatorname{im} \tilde{L}$$

obtained by setting the faces of  $\Upsilon_i$  equal to 0.

*Proof.* Considering the commutative diagram

$$\mathbb{Z}\Upsilon_{i} \xrightarrow{\partial_{\Upsilon,i}} \mathbb{Z}\Upsilon_{i-1} \xrightarrow{\partial_{\Upsilon,i-1}} \mathbb{Z}\Upsilon_{i-2} 
\downarrow \qquad \qquad \qquad \parallel \qquad \qquad \parallel 
\mathbb{Z}\Delta_{i} \xrightarrow{\partial_{\Delta,i}} \mathbb{Z}\Delta_{i-1} \xrightarrow{\partial_{\Delta,i-1}} \mathbb{Z}\Delta_{i-2}$$

we see

$$\operatorname{im} \partial_{\Upsilon,i} \subseteq \operatorname{im} \partial_{\Delta,i} \subseteq \ker \partial_{\Delta,i-1} = \ker \partial_{\Upsilon,i-1}.$$

Thus, there is an exact

$$0 \to \operatorname{im} \partial_{\Delta,i} / \operatorname{im} \partial_{\Upsilon,i} \to \widetilde{H}_{i-1}(\Upsilon) \to \widetilde{H}_{i-1}(\Delta) \to 0.$$

By hypothesis  $\widetilde{H}_{i-1}(\Upsilon) = \widetilde{H}_{i-1}(\Delta)$ , and hence

$$\operatorname{im} \partial_{\Upsilon,i} = \operatorname{im} \partial_{\Delta,i}$$
.

We now describe a basis for  $\ker_{\Delta,i}$ . For each  $\theta \in \Theta$ , since  $\operatorname{im} \partial_{\Upsilon,i} = \operatorname{im} \partial_{\Delta,i}$ ,

$$\partial_{\Delta,i}(\theta) = \sum_{\tau \in \Upsilon_i} a_{\theta}(\tau) \partial_{\Upsilon,i}(\tau) \tag{1}$$

for some  $a_{\theta}(\tau) \in \mathbb{Z}$ . Since  $\widetilde{H}_i(\Upsilon) = 0$ , the boundary mapping  $\partial_{\Upsilon,i}$  is injective, and thus the coefficients  $a_{\tau,\theta}$  are uniquely determined. Define

$$\alpha(\theta) := \sum_{\tau \in \Upsilon_i} a_{\theta}(\tau) \tau$$

and extend linearly to get a mapping  $\alpha: \mathbb{Z}\Theta \to \mathbb{Z}\Upsilon$ . For each  $\theta \in \Theta$ , let

$$\hat{\theta} := \theta - \alpha(\theta).$$

We claim

$$\ker \partial_{\Delta,i} = \{\hat{\theta} : \theta \in \Theta\}.$$

The  $\hat{\theta}$  are linearly independent elements of the kernel. To show they span, suppose that  $\gamma = \sum_{\sigma \in \Delta_i} b_\sigma \sigma \in \ker_{\Delta,i}$ . Consider

$$\gamma' := \gamma - \sum_{\theta \in \Theta} b_{\sigma} \hat{\sigma} = \sum_{\sigma \in \Upsilon_i} b_{\sigma} \sigma + \sum_{\sigma \in \Theta} b_{\sigma} (\sigma - \hat{\sigma}) = \sum_{\sigma \in \Upsilon_i} b_{\sigma} \sigma + \sum_{\sigma \in \Theta} b_{\sigma} \alpha(\sigma).$$

Then since  $\gamma$  and the  $\hat{\sigma}$  are in  $\ker_{\Delta,i}$ , so is  $\gamma'$ . Further, since each  $\alpha(\sigma) \in \mathbb{Z}\Upsilon_i$ , so is  $\gamma'$ . But  $\partial_{\Delta,i}$  restricted to  $\Upsilon_i$  is equal to  $\partial_{\Upsilon,i}$ , which is injective. It follows that

$$\gamma = \sum_{\sigma \in \Delta_i} b_{\sigma} \sigma = \sum_{\sigma \in \Theta} b_{\sigma} \hat{\sigma}.$$

We thus have an isomorphism

$$\pi \colon \mathbb{Z}\Theta \xrightarrow{\sim} \ker \partial_{\Delta,i}$$

determined by  $\sigma \mapsto \hat{\sigma}$  with inverse given by setting elements of  $\Upsilon_i$  equal to 0:

$$\sum_{\sigma \in \Delta_i} b_{\sigma} \sigma \longmapsto \sum_{\sigma \in \Theta} b_{\sigma} \sigma.$$

Next, we claim there is a commutative diagram with exact rows

$$\mathbb{Z}\Theta \xrightarrow{\tilde{L}} \mathbb{Z}\Theta \longrightarrow \operatorname{cok} \tilde{L} \longrightarrow 0$$

$$\downarrow^{\iota} \qquad \downarrow^{\pi} \qquad \downarrow$$

$$\mathbb{Z}\Delta_{i} \xrightarrow{L_{i}} \operatorname{ker} \partial_{\Delta_{i}} \longrightarrow \mathcal{K}_{i}(\Delta) \longrightarrow 0$$

where  $\iota$  is the natural inclusion. To check commutativity of the square on the left, let  $\theta \in \Theta$ . Then

$$L_i\iota(\theta) = \rho + \tilde{L}\theta$$

for some  $\rho \in \mathbb{Z}\Upsilon$ . We then have  $\pi^{-1}(\rho + \tilde{L}\theta) = \tilde{L}\theta$ . Hence, there is a well-defined vertical mapping on the left. By the snake lemma, that mapping is an isomorphism if and only if

$$\mathbb{Z}\Theta \xrightarrow{\iota} \mathbb{Z}\Delta_i / \ker L_i$$

is surjective. Therefore, to finish the proof, we must show that for all  $\gamma \in \Upsilon_i$ , there exists  $\delta \in \mathbb{Z}\Theta$  such that  $\gamma + \delta \in \ker L_i$ .

Now  $\ker L_i = \ker \partial_{\Delta,i} \partial_{\Delta,i}^t = \ker \partial_{\Delta,i}^t$ . To get a description of  $\ker_{\Delta,i}^t$ , consider the exact sequence

$$\mathbb{Z}\Delta_{i+1} \xrightarrow{\partial_{\Delta,i+1}} \mathbb{Z}\Delta_i \to \operatorname{cok} \partial_{\Delta,i+1} \to 0.$$

Applying the left-exact functor  $\operatorname{Hom}(\cdot,\mathbb{Z})$ , gives the exact sequence

$$\mathbb{Z}\Delta_{i+1} \stackrel{\partial_{\Delta,i+1}^t}{\longleftarrow} \mathbb{Z}\Delta_i \leftarrow (\operatorname{cok}\partial_{\Delta,i+1})^* \leftarrow 0, \tag{2}$$

where we have identified each  $\mathbb{Z}\Delta_j$  with its dual using dual bases. There is an exact sequence,

$$0 \to \ker \partial_{\Delta,i} / \operatorname{im} \partial_{\Delta,i+1} \to \mathbb{Z}\Delta_i / \operatorname{im} \partial_{\Delta,i+1} \to \mathbb{Z}\Delta_i / \ker \partial_{\Delta,i} \to 0,$$

i.e,

$$0 \to \widetilde{H}_i(\Delta) \to \operatorname{cok} \partial_{\Delta,i+1} \to \mathbb{Z}\Delta_i / \ker \partial_{\Delta,i} \to 0.$$
 (3)

However,

$$\mathbb{Z}\Delta_i/\ker\partial_{\Delta,i}\stackrel{\sim}{\longrightarrow} \operatorname{im}\partial_{\Delta,i} = \operatorname{im}\partial_{\Upsilon,i} \approx \mathbb{Z}\Upsilon$$

since  $\partial_{\Upsilon,i}$  is injective. Since  $\mathbb{Z}\Upsilon$  is free, sequence (3) splits:

$$\operatorname{cok} \partial_{\Delta,i+1} \approx \widetilde{H}_i(\Delta) \oplus \mathbb{Z}\Upsilon.$$

Given  $\gamma \in \Upsilon$ , let  $\gamma^*$  be the dual function. Using the above isomorphism, we identify  $\gamma^*$  with an element of  $(\operatorname{cok} \partial_{\Delta,i+1})^*$ . Using equation (1), its image in  $\mathbb{Z}\Delta_i$  under the mapping in (2) is

$$\gamma + \sum_{\theta \in \Theta} a_{\theta}(\gamma)\theta,$$

which by exactness of (2) is an element of ker  $\partial_{\Delta,i+1}^t$ . Letting  $\delta := \sum_{\theta \in \Theta} a_{\theta}(\gamma)\theta$ , we see  $\gamma + \delta \in \ker \partial_{\Delta,i+1}$ , as required.

Question. Is there still a mapping between these two groups in the case  $\widetilde{H}_{d-1}(\Delta) \neq \widetilde{H}_{d-1}(\Upsilon)$ ?

**Definition 1.7.** Define the cut and flow spaces and the cut and flow lattices of  $\Delta$  by:

$$\operatorname{Cut}(\Delta) := \operatorname{im}_{\mathbb{R}} \partial_d^t, \qquad \operatorname{Flow}(\Delta) := \ker_{\mathbb{R}} \partial_d$$
$$\mathcal{C}(\Delta) := \operatorname{im}_{\mathbb{Z}} \partial_d^t, \qquad \mathcal{F}(\Delta) := \ker_{\mathbb{Z}} \partial_d.$$

(NOTE: Need to define the cocritical group.)

Theorem 1.8. There are exact sequences

$$0 \to \mathbb{Z}^n/(\mathcal{C} + \mathcal{F}) \to \mathcal{C}^{\sharp}/\mathcal{C} \approx \mathbf{T}(\mathcal{K}_{d-1}(\Delta)) \to \mathbf{T}(\widetilde{H}_{d-1}(\Delta)) \to 0$$

$$0 \to \mathbf{T}(\widetilde{H}_{d-1}(\Delta)) \to \mathbb{Z}^n/(\mathcal{C} + \mathcal{F}) \to \mathcal{F}^{\sharp}/\mathcal{F} \approx \mathbf{T}(\mathcal{K}_{d-1}^*(\Delta)) \to 0$$

Further,  $|\mathbf{T}(\mathcal{K}_{d-1}(\Delta))| = \tau(\Delta)$ .

#### OLD STUFF

Fix the standard inner product on  $\mathbb{R}^n$ . If  $\mathcal{L} \subseteq \mathbb{Z}^n$ , define the dual lattice of  $\mathcal{L}$  by

$$\mathcal{L}^{\sharp} := \{ v \in \mathcal{L} \otimes \mathbb{R} : \langle v, w \rangle \in \mathbb{Z} \ \forall w \in \mathcal{L} \}.$$

**Proposition 1.9.** With notation as above, we have

1.  $\mathcal{L}^{\sharp} \approx \operatorname{Hom}_{\mathbb{Z}}(\mathcal{L}, \mathbb{Z})$ .

2. 
$$(\mathcal{L}^{\sharp})^{\sharp} = \mathcal{L}$$
.

Proof.

**Proposition 1.10.** Suppose that  $\Delta$  is a d-dimensional simplicial complex. Then  $\Delta$  possesses a simplicial spanning tree if and only if  $\tilde{\beta}_{d-1}(\Delta) = 0$ . We say that such complexes are acyclic in codimension 1.

*Proof.* First suppose that  $\Upsilon$  is a spanning tree of  $\Delta$ . Then  $C_d(\Upsilon) \subset C_d(\Delta)$ ,  $C_{d-1}(\Upsilon) = C_{d-1}(\Delta)$ , and  $\operatorname{im}(\partial_{\Upsilon,d}) \subseteq \operatorname{im}(\partial_{\Delta,d})$ . It follows that there is a surjection

$$\widetilde{H}_{d-1}(\Upsilon) = C_{d-1}(\Upsilon)/\operatorname{im}(\partial_{\Upsilon,d}) \twoheadrightarrow C_{d-1}(\Delta)/\operatorname{im}(\partial_{\Delta,d}) = \widetilde{H}_{d-1}(\Delta).$$

Since  $\widetilde{H}_{d-1}(\Upsilon)$  is finite, it follows that  $\widetilde{H}_{d-1}(\Delta)$  is also finite, hence  $\widetilde{\beta}_{d-1}(\Delta) = 0$ . Now suppose that  $\Delta$  is acyclic in codimension 1. To construct a spanning tree, start with  $\Upsilon = \Delta$ . If  $\widetilde{H}_d(\Upsilon) = 0$ , then  $\Upsilon$  is a spanning tree, and we are done. If not, then there is an integer-linear combination of facets  $\sigma_i$  in the kernel of  $\partial_d$ :

$$a_1\sigma_1 + a_2\sigma_2 + \cdots + a_k\sigma_k$$

where we assume that  $a_1 \neq 0$ . If we work over the rational numbers, then we may assume  $a_1 = 1$ . Still working over the rationals, we see that

$$\partial_d(\sigma_1) = -\sum_{i=2}^k a_i \partial_d(\sigma_i).$$

Hence, if we remove the facet  $\sigma_1$  from  $\Upsilon$ , we obtain a smaller subcomplex  $\Upsilon'$  without changing the image of the rational boundary map:  $\operatorname{im}(\partial_{\Upsilon,d}) = \operatorname{im}(\partial_{\Upsilon',d})$ . It follows from rank-nullity that

$$\tilde{\beta}_d(\Upsilon') = f_d(\Upsilon') - \text{rank im}(\partial_{\Upsilon',d}) = f_d(\Upsilon) - 1 - \text{rank im}(\partial_{\Upsilon,d}) = \tilde{\beta}_d(\Upsilon) - 1,$$

and  $\tilde{\beta}_{d-1}(\Upsilon') = \tilde{\beta}_{d-1}(\Upsilon) = 0$ . Continuing to remove facets in this way, we eventually obtain a spanning tree of  $\Delta$ .

Corollary 1.11. If  $0 \le i \le d$ , then  $\Delta$  has an i-dimensional spanning tree if and only if  $\tilde{\beta}_{i-1}(\Delta) = 0$ .

*Proof.* This follows from the previous proposition since  $\tilde{\beta}_{i-1}(\operatorname{Skel}(\Delta)) = \tilde{\beta}_{i-1}(\Delta)$ .

**Proposition 1.12.** If  $\Delta$  has a unique d-dimensional spanning tree  $\Psi$ , then  $\Delta = \Psi$ .

*Proof.* To come. 
$$\Box$$

Let  $0 \le i \le d$ . The *i-th tree number* for  $\Delta$  is

$$\tau_i := \tau_i(\Delta) := \sum_{\Psi} |H_{i-1}(\Psi)|^2,$$

where the sum is over all *i*-dimensional spanning trees of  $\Delta$ .

Corollary 1.13.  $\tau_d(\Delta) = 1$  if and only if  $\Delta$  is a tree and  $\widetilde{H}_{d-1}(\Delta) = 0$ , i.e., if and only if  $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$ .

*Proof.* This follows directly from the definition of  $\tau_d(\Delta)$  and Proposition 1.12.

Suppose that  $\beta_{i-1}(\Delta) = 0$ . It follows that  $\Delta$  has an *i*-dimensional spanning tree  $\Upsilon$ . Let

$$\widetilde{D}_i := \Delta_i(\Delta) \setminus \Delta_i(\Upsilon),$$

the *i*-faces of  $\Delta$  not contained in  $\Upsilon$ , and let  $\widetilde{L}_i$  be the *i*-Laplacian of  $\Delta$  with the rows and columns corresponding to faces in  $\Delta_i(\Upsilon)$  removed.

Theorem 1.14 (Duval, Klivans, Martin).

(i) If  $\widetilde{H}_{i-1}(\Upsilon) = 0$ , there is an isomorphism

$$\psi \colon \mathcal{K}_i(\Delta) \to \mathbb{Z}\widetilde{D}_i/\operatorname{im}(\widetilde{L}_i),$$

defined by dropping i-faces of  $\Upsilon$ : if  $c = \sum_{f \in \Delta_i(\Delta)} c_f \cdot f \in \ker \partial_i$  represents an element of  $\mathcal{K}_i(\Delta)$ , then

$$\psi(c) = \sum_{f \in \widetilde{D}_i} c_f \cdot f \mod \operatorname{im}(\widetilde{L}_i).$$

(ii) (Simplicial matrix-tree theorem)

$$\tau_{i+1} = \frac{|\widetilde{H}_{i-1}(\Delta)|^2}{|\widetilde{H}_{i-1}(\Upsilon)|^2} \det(\widetilde{L}_i).$$

# 2 Degrees

**Definition 2.1.** Let  $0 \le i \le d$ . The *i-th positive kernel* for  $\Delta$  is the pointed cone

$$\ker^+ L_i := \{ D \in \mathbb{Z}\Delta_i : D(\sigma) \ge 0 \text{ for all } \sigma \in \Delta_i \}.$$

Fixing an ordered Hilbert basis  $H_i = (h_1, \ldots, h_\ell)$  for  $\ker^+ L_i$ , define the degree of a chain  $D \in \mathbb{Z}\Delta_i$  by

$$\deg(D) := (D \cdot h_1, \dots, D \cdot h_\ell)$$

where  $D \cdot h_j := \sum_{\sigma \in \Delta_i} D(\sigma) h_j(\sigma)$ . We say  $d \in \mathbb{Z}^{\ell}$  is a winning degree (in dimension i) if each  $D \in \mathbb{Z}\Delta_i$  with  $\deg(D) \geq d$  is winnable.

**Proposition 2.2.** The degree of a chain depends only on its linear equivalence class.

*Proof.* It suffices to show that every element of im  $L_i$  has degree zero. If  $\tau \in \ker L_i$  and  $\sigma \in \mathbb{Z}\Delta_i$ ,

$$\langle \tau, L_i \sigma \rangle = \langle L_i^t \tau, \sigma \rangle = \langle L_i \tau, \sigma \rangle = 0,$$

since  $L_i$  is symmetric.

Corollary 2.3. If a chain D is winnable, then  $deg(D) \ge 0$ .

*Proof.* If D is winnable, then  $D \sim E$  for some  $E \geq 0$ . Then  $\deg(D) = \deg(E)$ , and since each element of the Hilbert basis has nonnegative coefficients,  $\deg(E) \geq 0$ .  $\square$ 

*Proof.* See Jesse Kim's thesis for a "minimal criminal" argument using the stars,  $\partial_i^t(\sigma)$ , of elements  $\sigma \in \Delta_{i-1}$ .

**Lemma 2.4.** For each i, there is a strictly positive element  $\alpha \in \ker L_i$ , i.e., such that  $\alpha_i > 0$  for all j.

Corollary 2.5. For each i, the  $\mathbb{Z}$ -span of  $\ker^+ L_i$  is  $\ker L_i$ . Hence,

$$(\ker^+ L_i)^{\perp} = (\ker L_i)^{\perp} = (\ker \partial_{i+1}^t)^{\perp}.$$

*Proof.* Take a strictly positive element  $\alpha \in \ker L_i$  that is primitive, i.e., such that the components of  $\alpha$  are relatively prime. We can then complete  $\{\alpha\}$  to a basis  $\{\alpha, \beta_1, \ldots, \beta_k\}$ . (To see this, consider the exact sequence

$$0 \to \mathbb{Z}\alpha \to \mathbb{Z}^n \to \mathbb{Z}^n/\mathbb{Z}\alpha \to 0.$$

Since  $\mathbb{Z}^n/\mathbb{Z}\alpha$  is torsion free, so the sequence splits.) Then, for each nonzero  $N \in \mathbb{Z}$ , the set  $\{\alpha, \beta_1 + N\alpha, \dots, \beta_k + N\alpha\}$  is still a basis for ker  $L_i$ . By taking  $N \gg 0$ , this basis will consist solely of elements of ker<sup>+</sup>  $L_i$ .

Proposition 2.6. For  $0 \le i \le d$ ,

$$(\ker L_i)^{\perp}/\operatorname{im}(L_i) \approx \mathbf{T}(\mathcal{K}_i(\Delta)).$$

Hence, the group of i-chains of degree 0 modulo firing rules is isomorphic to the torsion part of the i-th critical group of  $\Delta$ .

*Proof.* To see that im  $L_i \subseteq (\ker L_i)^{\perp}$ , let  $\sigma \in \mathbb{Z}\Delta_i$  and  $\tau \in \ker L_i = \ker \partial_{i+1}^t$ . Then

$$\langle \tau, L_i \sigma \rangle = \langle \tau, \partial_{i+1} \partial_{i+1}^t \sigma \rangle = \langle \partial_{i+1}^t \tau, \partial_{i+1}^t \sigma \rangle = \langle 0, \partial_{i+1}^t \sigma \rangle = 0.$$

We also have  $(\operatorname{im} \partial_i^t) \subseteq \ker \partial_i$ . To see this, take  $\sigma \in (\operatorname{im} \partial_i^t)^{\perp}$  and  $\tau \in \mathbb{Z}\Delta_i$ . Then

$$0 = \langle \sigma, \partial_i^t \tau \rangle = \langle \partial_\sigma, \tau \rangle.$$

Since  $\tau$  is arbitrary,  $\partial_i \sigma = 0$ .

Next,

$$\operatorname{im} \partial_i^t \subseteq \ker \partial_{i+1}^t \Rightarrow (\ker L_i)^{\perp} = (\ker \partial_{i+1}^t)^{\perp} \subseteq (\operatorname{im} \partial_i^t)^{\perp} \subseteq \ker \partial_i.$$

Hence,

$$(\ker L_i)^{\perp}/\operatorname{im} L_i \subseteq \ker \partial_i/\operatorname{im} L_i =: \mathcal{K}_i(\Delta).$$

Since  $\dim_{\mathbb{Q}}(\ker L_i)^{\perp} = \dim_{\mathbb{Q}} \operatorname{im} L_i$ , the group  $(\ker L_i)^{\perp}/\operatorname{im} L_i$  is finite, and hence torsion. So it is a subset of  $\mathbf{T}(\mathcal{K}_i(\Delta))$ . To show the opposite inclusion, let  $\sigma \in \ker \partial_i$ , and suppose there exists a positive integer n such that  $n\sigma \in \operatorname{im} L_i$ . Say  $n\sigma = L_i\tau$ , and let  $\nu \in \ker L_i = \ker \partial_{i+1}^t$ . Then

$$n\langle \nu, \sigma \rangle = \langle \nu, n\sigma \rangle = \langle \nu, L_i \tau \rangle = \langle \partial_{i+1}^t \nu, \partial_{i+1}^t \tau \rangle = 0.$$

Therefore,  $\langle \nu, \sigma \rangle = 0$ . So each torsion element of  $\mathcal{K}_i(\Delta)$  is an element of  $(\ker L_i)^{\perp}$ .  $\square$ 

**Proposition 2.7.** All divisors (cycles of codimension 1) of degree 0 on  $\Delta$  are winnable if and only if  $\tau(\Delta) = 1$ , i.e., if and only if  $\Delta$  is a forest.

*Proof.* The divisors of degree 0 are  $(\ker L_{d-1})^{\perp}$ , and hence, by Proposition 2.6, these divisors are winnable if and only if  $\mathbf{T}(\mathcal{K}_{d-1})(\Delta) = 0$ . The result then follows from Theorem 1.8.

**Definition 2.8.** The positive lattice is

$$\Lambda(\Delta) = \operatorname{Span}_{\mathbb{N}} \left\{ \partial_{d-1}(e) : e \in \Delta_{d-1} \right\}.$$

**Lemma 2.9.** The natural surjection  $\mathcal{K}_i(\Delta) \to \widetilde{H}_i(\Delta)$  is an isomorphism when restricted to the free parts of  $\mathcal{K}_i(\Delta)$  and  $\widetilde{H}_i(\Delta)$  and a surjection when retricted to the torsion parts.

*Proof.* Consider the exact sequence

$$0 \to \operatorname{im} \partial_{i+1} / \operatorname{im} L_i \to \mathcal{K}_i(\Delta) \to \widetilde{H}_i(\Delta) \to 0.$$

We have

$$\operatorname{im} L_i \subseteq \operatorname{im} \partial_{i+1} \subseteq (\ker L_i)^{\perp}$$
.

So from Proposition 2.6, it follows that im  $\partial_{i+1}/\operatorname{im} L_i$  is finite. Tensoring the sequence by  $\mathbb{Q}$  then gives the result about the free parts, and since the torsion functor  $\mathbf{T}(\cdot,)$  is left-exact, there is a surjection for the torsion parts.

## Proposition 2.10. Let

$$X := \{ D \in \mathbb{Z}\Delta_{d-1} : \partial_{d-1}(D) \in \Lambda(\Delta) \}.$$

Then every  $D \in X$  is winnable if and only if  $\Delta$  is a forest, acyclic in codimension 1, i.e., if and only if  $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$ .

*Proof.* Note that  $D \in \Lambda(\Delta)$  if and only if D = E + A for some  $E \geq 0$  and  $A \in \ker \partial_{d-1}$ . Thus, the condition that every  $D \in \Lambda(\Delta)$  is winnable is equivalent to the condition that  $\ker \partial_{d-1} = \operatorname{im} L_{d-1}$ , i.e,  $\mathcal{K}_{d-1}(\Delta) = 0$ .

- ( $\Rightarrow$ ) Suppose every  $D \in \Lambda(\Delta)$  is winnable so that  $\mathcal{K}_{d-1}(\Delta) = 0$ . By Theorem 1.8, we have  $|\mathbf{T}(\mathcal{K}_{d-1})| = \tau_d(\Delta)$ . Thus,  $\tau_d(\Delta) = 1$ , so that  $\Delta$  is a forest, or equivalently,  $\widetilde{H}_d(\Delta) = 0$ . Further, there is a surjection  $\mathcal{K}_{d-1}(\Delta) \twoheadrightarrow \widetilde{H}_{d-1}(\Delta)$ . So  $\widetilde{H}_{d-1}(\Delta) = 0$ .
- ( $\Leftarrow$ ) Conversely, suppose that  $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$ . The fact that  $\widetilde{H}_d(\Delta) = 0$  says  $\Delta$  is a forest. So  $\tau_d(\Delta) = 1$ , which implies that  $\mathcal{K}_{d-1}(\Delta)$  is free by Theorem 1.8. However, the free part of  $\mathcal{K}_{d-1}(\Delta)$  is the same as the free part of  $\widetilde{H}_{d-1}(\Delta)$ . Therefore,  $\mathcal{K}_{d-1}(\Delta) = 0$ .

**Example 2.11.** Consider the simplicial complex  $\Delta$  pictured in Figure 1. Since  $\widetilde{H}_2(\Delta) = 0$ , the complex is a forest, but since  $\widetilde{H}_1(\Delta) = \mathbb{Z} \neq 0$ , it is not a tree. Thus, by Proposition 2.7, a divisor is winnable if and only if its degree is 0. Order the edges lexicographically. Consider a generator for the first homology such as

$$D = (0, 1, -1, 0, 0, 1) = \overline{02} + \overline{23} - \overline{03}.$$

The Hilbert basis for the positive kernel is given by the rows of the matrix

$$\left(\begin{array}{cccccc} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{array}\right).$$

Therefore, deg(D) = (-1, 1, 1, 1), so D is not winnable. However,  $\partial_1(D) = 0 \in \Lambda(\Delta)$ .



Figure 1: A hollow tetrahedron with two missing facets.

### OLD STUFF

**Theorem 2.12.** If  $\tau_d(\Delta) = 1$ , then 0 is a winning degree in dimension d-1.

*Proof.* Since  $\tau_d(\Delta) = 1$ , by Proposition 1.13, we have  $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$ . Thus,  $\partial_d$  is injective, and im  $\partial_d = \ker \partial_{d-1}$ . The universal coefficient theorem gives an exact sequence

$$0 \to \operatorname{Ext}^1(H_{d-1}(\Delta), \mathbb{Z}) \to H^d(\Delta) \to \operatorname{Hom}(H_d(\Delta), \mathbb{Z}) \to 0,$$

which implies that  $H^d(\Delta) = 0$ . We have  $\widetilde{H}^d(\Delta) = \widetilde{H}^d(\Delta)$  for d > 0. In the case where d = 0, we have that  $\tau_d(\Delta) = 1$  implies that  $\Delta$  is a single point,  $\partial_0$  is an isomorphism, and thus, every (d-1)-cycle is linearly equivalent to 0. So we will assume d > 0 from now on.

To show 0 is a winning degree in dimension d-1, we must show  $\mathcal{K}_{d-1}(\Delta)$  is also torsion-free. So let  $\alpha \in \ker \partial_{d-1}$  and suppose there exists an integer n > 0 such that  $n\alpha \in \operatorname{im}(L_{d-1})$ . So there exists  $\beta \in C_{d-1}(\Delta)$  such that

$$n\alpha = L_{d-1}\beta = \partial_d \partial_d^t \beta.$$

Since  $\widetilde{H}_{d-1}(\Delta) = 0$ , there exists  $\gamma \in C_d(\Delta)$  such that  $\partial_d \gamma = \alpha$ . Since  $\partial_d$  is injective,  $n\gamma = \partial_d^t \beta$ . Since  $\widetilde{H}^d(\Delta) = C^d(\Delta)/\operatorname{im} \partial_d^t = 0$ , it follows that  $\gamma = \operatorname{im} \partial_d^t$ , and hence,  $\alpha \in \operatorname{im} L_{d-1}$ , as required.

**Example 2.13.** Figure 2 illustrates a 2-dimensional complex P which is a triangulation of the real projective plane. We have  $\widetilde{H}_0(P) = \widetilde{H}_2(P) = 0$ , and  $\widetilde{H}_1(P) \approx \mathbb{Z}/2\mathbb{Z}$ . From the definition of the tree number,  $\tau_2(P) = 4$ , and it follows from the matrixtree theorem that  $\det(\widetilde{L}_0) = 4$  with respect to any 1-dimensional spanning tree of P. (There are  $6^4$  such spanning trees since the 1-skeleton of P is the completer graph  $K_6$ .) The cycle  $C := \overline{01} + \overline{12} - \overline{02}$  has degree (0,0,0,0,0) but is not winnable. We have  $K_1(P) \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ , and hence 2C is winnable.



Figure 2: A triangulation of the real projective plane,  $\mathbb{RP}^2$ .

Question. Can we find an example where  $\tau_d(\Delta) = 1$  and 0 is not a winning degree in dimension d-1? The 2-dimensional chessboard complex is an example of a non-tree for which 0 is a winning degree in dimension 1.

### Question.

NOTE: The dual of an intersection of cones is the minkowski sum of the duals of the cones in the intersection. For example, over the rationals,

$$(\ker L_i \cap \mathcal{O}^+)^* = (\ker L_i)^* + (\mathcal{O}^+)^* = (\ker L_i)^{\perp} + \mathcal{O}^+.$$

The expression on the left is the dual of the positive kernel (as a cone), which is the set of divisors of nonnegative degree. The expression on the right is the set of divisors having the same degree as an effective divisor.