

BITS Pilani
Pilani Campus

Machine Learning
AIML CZG565
Linear Models for Classification

Dr. Sugata Ghosal sugata.ghosal@pilani.bits-pilani.ac.in

Agenda

- Discriminant Functions
- Probabilistic Generative Classifiers
- Probabilistic Discriminative Classifiers
- Logistic Regression
- Applications: Text classification model, Image classification

Decision Theory & Classification Models

Inductive Learning Hypothesis: Interpretation

Target Concept : 1

Discrete : f(x) ∈ {Yes, No, Maybe} Classification

• Continuous : $f(x) \in [20-100]$ Regression

Probability Estimation : f(x) ∈ [0-1]

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport?
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change (No
Sunny	Warm	High	Strong	Cool	Change (Yes

Decision Theory

Target Concept : t

• Discrete : $f(x) \in \{Yes, No\}$ ie., $t \in \{0, 1\}$ Binary Classification

• Continuous : $f(x) \in [20-100]$

• Probability Estimation : $f(x) \in [0-1]$

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport?
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Decision Theory:

The decision problem: given x, predict t according to a probabilistic model p(x, t)

Target Concept : t

• Discrete : $f(x) \in \{Yes, No\}$ ie., $t \in \{0, 1\}$

• Continuous : $f(x) \in [20-100]$

Probability Estimation : $f(x) \in [0-1]$

 $p(x, C_k)$ is the (central!) inference problem

	Sky	AirTemp	Humidity	Wind	Water	Forecast	P(EnjoySport) =Yes)	
X =	Sunny ,	Warm ,	Normal ,	Strong ,	Warm ,	Same > ->	0.95 = P(C) X)	
	Sunny	Warm	High	Strong	Warm	Same	0.7	
	Rainy	Cold	High	Strong	Warm	Change	0.5	
	Sunny	Warm	High	Strong	Cool	Change	0.6	

 $n(\mathbf{x}|C_L)n(C_L)$

Classification Problem: Stages

Sky	AirTemp	Humidity	Wind	Forecast	Enjoy Sport?
Sunny	Warm	Normal	Strong	Same	Yes
Sunny	Warm	High	Strong	Same	Yes
Rainy	Cold	High	Strong	Change	No
Sunny	Warm	High	Strong	Change	Yes

Induction/ Inference step Learning algorithm

Learn
Model for p(x,C_k)

Apply Model

to find

optimal t

$p(\mathcal{C}_k \mathbf{x}) = \frac{1}{2}$	$\frac{p(\mathbf{x} \mathbf{c}_k)p(\mathbf{c}_k)}{p(\mathbf{x})}$.
$=\frac{p(x,C_k)}{1}$	$=$ $p(x, C_k)$
p(x)	$\sum_{k=1}^{2} p(x, C_k)$

Training Set

Sky	AirTemp	Humidity	Wind	Forecast	Enjoy Sport?
Rainy	Cold	High	Strong	Change	?
Sunny	Warm	High	Strong	Change	?
Rainy	Warm	Normal	Breeze	Same	?

Test Set

Deduction/ Decision Step Model

· ·

Decision Region

Misclassification Rate

$$p(C_k|x) = \frac{p(x, C_k)}{p(x)} :$$

Decision Theory - Summary

Linear Models for Classification

Types of Classification Inductive Learning Hypothesis: Interpretation

innovate achieve lead

Target Concept

• Discrete : $f(x) \in \{Yes, No, Maybe\}$ Classification

• Continuous : $f(x) \in [20-100]$ Regression

• Probability Estimation : $f(x) \in [0-1]$

Sky	AirTemp	Altitude	Wind	Water	Forecast	Humidity
Sunny	Warm	Normal	Strong	Warm	Same	60
Sunny	Warm	High	Strong	Warm	Same	75
Rainy	Cold	High	Strong	Warm	Change	70
Sunny	Warm	High	Strong	Cool	Change	45

Types of Classification

Output Labels

Types of Classification

Output Labels

Target Concept
 Multi Class

Prediction – Multi class Classification

OvA (except for SVM classifiers for which it uses OvO)

algorithm for a multi-class classification task, and it automatically runs

Prediction – Multi class Classification

One Vs One Strategy

 $N \times (N-1) / 2$ classifiers

Types of Classification

Decision Theory: Interpretation

innovate achieve lead

Model Building

Generative

$$P(Y \mid X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d \mid Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

Known as generative models, because by sampling from them it is possible to generate synthetic data points in the input space.

Eg., Gaussians, **Naïve Bayes**, Mixtures of multinomials , **Mixtures of Gaussians**, Bayesian networks

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

Sky	AirTemp	Humidity	Wind	Forecast	Enjoy Sport?
Sunny	Warm	Normal	Strong	Same	Yes
Sunny	Warm	High	Strong	Same	No
Rainy	Cold	High	Strong	Change	No
Sunny	Warm	Normal	Breeze	Same	Yes
Sunny	Hot	Normal	Breeze	Same	No
Rainy	Cold	High	Strong	Change	No
Sunny	Warm	High	Strong	Change	Yes
Rainy	Warm	Normal	Breeze	Same	Yes

Types of Classification

Decision Theory: Interpretation

innovate achieve lead

Model Building

IF OUTLOOK = Overcast THEN PLAY = Yes

ELSE

IF OUTLOOK = Rain AND WIND = Strong

THEN PLAY = No

Logistic regression, SVMs, tree based classifiers (e.g. decision tree) Traditional neural networks, Nearest neighbor

\	R	Sky	AirTemp	Humidity	Wind	Forecast	Enjoy / Sport?
	X	Sunny	Warm	Nor mal	Strong	Same	Yes
	+	Sunny	Warm	High	Strong	Same	No
	1	Rainy	Cold	High	Strong	Change	No
		Sunny	Warm	Normal	Breeze	Same	Yes
		Sunny	Hot	Normal	Breeze	Same	No
		Rainy	Cold	High	Strong	Change	No
		Sunny	Warm	High	Strong	Change	Yes
l	<u> </u>	Rainy	Warm	Normal	Breeze	Same	Yes

Logistic Regression vs Least Squares Regression

- Tumor Size
- Can we solve the problem using linear regression? E.g., fit a straight line and define a threshold at 0.5
- Threshold classifier output h_θ(x) at 0.5:

A Discriminant function f (x) directly map input to class labels In two-class problem, f (.) is binary valued

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Decision Rules

Classifier:

$$f(\mathbf{x}, \mathbf{w}) = w_o + \mathbf{w}^T \mathbf{x}$$
 (linear discriminant function)

Decision rule is

$$y = \begin{cases} 1 & \text{if } f(\mathbf{x}, \mathbf{w}) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Mathematically

$$y = sign(w_0 + \mathbf{w}^T \mathbf{x})$$

This specifies a linear classifier: it has a linear boundary (hyperplane)

$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

A discriminant is a function that takes an input vector x and assigns it to one of K classes, denoted C_k .

Learning model parameters

- Training set:
- m examples

$$\{\underbrace{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})}_{x_0 = 1, y \in \{0, 1\}}$$

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}}}$$

$$\frac{n_{\theta}(x)}{1 + e^{-\theta^T x}}$$

- At decision boundary output of logistic regression is 0.5
- $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ - e.g., $\theta_0 = -3$, $\theta_1 = 1$, $\theta_2 = 1$

Slide credit: Andrew Ng

• Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$

•
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \cdots)$$

- Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples n features
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters (feature weights)? Θ

- Training set: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$
- How to choose parameters (feature weights)? Θ

lead

2201-603

Logistic regression cost function (cross entropy)

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost=0; If y=0 and $h_{\theta}(x)=0$

lead

Cost function

avegage loss

 $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$ $= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$

To fit parameters θ : Apply Gradient Descent Algorithm $\min_{\theta} J(\theta)$

To make a prediction given new:

Output:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent Algorithm

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Goal:
$$\min_{\theta} J(\theta)$$
Repeat
$$\{ \underline{\theta_j} \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \}$$

$$\frac{\partial}{\partial \theta_{\underline{j}}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{\underline{j}}^{(i)}$$

Gradient Descent Algorithm

Linear Regression

Logistic Regression

Repeat {
$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\underline{\theta}}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$
}

$$h_{\theta}(x) = \theta^{\mathsf{T}} x$$

Repeat { $\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ }

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

Slide credit: Andrew Ng

Sentiment Features

Example: Sentiment Analysis

 χ_5

 χ_6

0 otherwise

log(word count of doc)

NLP

It's hokey. There are virtually no surprises, and the writing is second-rate.

So why was it so enjoyable? For one thing, the cast is

the couch and start dancing. It sucked in in , and it'll do the same to ...

Var	Definition $x_1=3$ $x_5=0$	$x_6 = 4.19$ Value in Fig. 5.2
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2 —
x_3	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1_
χ_4	$count(1st \text{ and } 2nd \text{ pronouns} \in dc$	oc) 3
	$\int 1 \text{ if "!"} \in \text{doc}$	0

Classifying sentiment using logistic regression

Suppose
$$w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$$

$$b = 0.1 \rightarrow W_0 = 0$$

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b) \rightarrow 0 \rightarrow 0$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

$$= 0.30$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

$$\frac{\alpha(n)}{1+e^{-n}}$$

$$\frac{\alpha(n)}{1+e^{-n}}$$

$$\frac{\alpha(n)}{1+e^{-n}}$$

$$\frac{\alpha(n)}{1+e^{-n}}$$

Logistic Regression – Fit a Model

('A')	0		
<u> </u>			
CGPA	∫ IQ	IQ	Job Offered
5.5	6. /	100	1
5	/	105	0
8	6	90	1
9	/ 7	105	1
6	8	120	0
7.5	7.3	110	0

$$\theta_0 := \theta_0 - 0.3 \frac{1}{6} \sum_{i=1}^{6} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
(1)

$$\theta_{CGPA} := \theta_{CGPA} - 0.3 \frac{1}{6} \sum_{i=1}^{6} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{CGPA}^{(i)}$$

$$\theta_{IQ} := \theta_{IQ} - 0.3 \frac{1}{6} \sum_{i=1}^{6} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{IQ}^{(i)}$$

$$\theta_{IQ} := \theta_{IQ} - 0.3 \frac{1}{6} \sum_{i=1}^{6} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{IQ}^{(i)}$$

Hyper parameters:

Learning Rate = 0.3Initial Weights = (0.5, 0.5, 0.5)Regularization Constant = 0

$$\theta^{T}X = 0.5 + 0.5 \text{ CGPA} + 0.5 \text{ IQ}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-(0.5 + 0.5 CGPA + 0.5 IQ)}}$$

Approx. : New weights
$$\theta_0 = 0.4$$
 $\theta_{1=CGPA} = -0.4$ $\theta_{2=IO} = -0.6$

Logistic Regression – Inference & Interpretation

CGPA	IQ	IQ	Job Offered
5.5	6.7	100	1
5	7	105	0
8	6	90	1
9	7	105	1
6	8	120	0
7.5	7.3	110	0

Assume: 0.4+0.3CGPA-0.45IQ

Predict the Job offered for a candidate: (5, 6)

h(x) = 0.31

Y-Predicted = 0 / No

Note:

The exponential function of the regression coefficient (e^{w-cpga}) is the odds ratio associated with a one-unit increase in the cgpa.

+ The odd of being offered with job increase by a factor of 1.35 for every unit increase in the CGPA [np.exp(model.params)]

Logistic regression (Classification)

Model

$$h_{\theta}(x) = P(Y = 1 | X_1, X_2, \dots, X_n) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})) \qquad \operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Learning

Gradient descent: Repeat
$$\{\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}\}$$

Inference

$$\hat{Y} = h_{\theta}(x^{\text{test}}) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x^{\text{test}}}}$$

Note:

- $\sigma(t) < 0.5$ when t < 0, and $\sigma(t) \ge 0.5$ when $t \ge 0$, so a Logistic model predicts 1 if $xT\theta$ is positive, and 0 if it is negative
- logit(p) = log(p / (1 p)), is the inverse of the logistic function. Indeed, if you compute the logit of the estimated probability p, you will find that the result is t. The logit is also called the log-odds

Overfitting vs Underfitting

Overfitting

- Fitting the data too well
 - Features are noisy / uncorrelated to concept

Underfitting

- Learning too little of the true concept
 - Features don't capture concept
 - Too much bias in model

Regularization

Note: This topic is already covered in the module 3. Refresher & few more points added here

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_j
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Ways to Control Overfitting

Regularization

$$Loss(S) = \sum_{i}^{n} Loss(y_{i}^{\hat{}}, y_{i}) + \alpha \sum_{j}^{\text{\#Weights}} |\theta_{j}|$$

Note:

The hyperparameter controlling the regularization strength of a Scikit-Learn LogisticRegression model is not alpha (as in other linear models), but its inverse: C. The higher the value of C, the less the model is regularized.

Regularization

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
 model fit to data regularization

- $-\lambda$ is the regularization parameter ($\lambda \geq 0$
- No regularization on θ_0 !

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

- Note that $\sum_{i=1}^d heta_j^2 = \|oldsymbol{ heta}_{1:d}\|_2^2$
 - This is the magnitude of the feature coefficient vector!
- We can also think of this as:

$$\sum_{j=1}^{a} (\theta_j - 0)^2 = \|\boldsymbol{\theta}_{1:d} - \vec{\mathbf{0}}\|_2^2$$

L₂ regularization pulls coefficients toward 0

Ridge Regression / Tikhonov regularization

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- · Gradient update:

$$\frac{\partial}{\partial \theta_0} J(\theta) \qquad \theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) \qquad \theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} - \lambda \theta_j$$
regularization

$$\theta_j \leftarrow \theta_j \left(1 - \alpha \lambda\right) - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}\left(\boldsymbol{x}^{(i)}\right) - y^{(i)}\right) x_j^{(i)}$$

lead

Lasso Regression (Least Absolute Shrinkage and Selection Operator Regression)

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} |\theta_{j}|$$

- Fit by solving $\min_{\theta} J(\theta)$
- · Gradient update:

$$\frac{\partial}{\partial \theta_0} J(\theta) = \begin{cases} \theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) \\ \frac{\partial}{\partial \theta_j} J(\theta) \end{cases} = \theta_j - \frac{\alpha}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) \boldsymbol{x}_j^{(i)} - \alpha \lambda \operatorname{sign}(\theta_j)$$
regularization

where sign
$$(\theta_i) = \begin{cases} -1 & \text{if } \theta_i < 0 \\ 0 & \text{if } \theta_i = 0 \\ +1 & \text{if } \theta_i > 0 \end{cases}$$

Thank you!

Required Reading for completed session:

T1 - Chapter #6 (Tom M. Mitchell, Machine Learning)

R1 – Chapter # 3,#4 (Christopher M. Bhisop, Pattern Recognition & Machine

Learning) & Refresh your MFDS course basics

Next Session Plan:

Module 5 – Decision Tree Classifier