MATH693A Homework 1

Name: Anuradha Agarwal

1.
$$f(\bar{x}) = 100(\alpha_{2} - \alpha_{1}^{2})^{2} + (1 - \alpha_{1})^{2}$$

$$\nabla f(x) = \begin{bmatrix} \frac{\partial}{\partial \alpha_{1}} (f(x)) \\ \frac{\partial}{\partial \alpha_{2}} (f(x_{2})) \end{bmatrix} = \begin{bmatrix} 2\omega(\alpha_{2} - \alpha_{1}^{2})(-2\alpha_{1}) + 2(\alpha_{1} - 1) \\ 2\omega(\alpha_{2} - \alpha_{1}^{2}) \end{bmatrix}$$

$$= \begin{bmatrix} 4\omega\alpha_{1}^{3} - 4\omega\alpha_{1}x_{2} + 2\alpha_{1} - 2 \\ 2\omega(\alpha_{2} - \alpha_{1}^{2}) \end{bmatrix}$$

$$\nabla^{2}f(x) = \begin{bmatrix} \frac{\partial^{2}}{\partial \alpha_{1}} & \frac{\partial^{2}}{\partial \alpha_{1}x_{2}} \\ \frac{\partial^{2}}{\partial \alpha_{2}\alpha_{1}} & \frac{\partial^{2}}{\partial \alpha_{2}^{2}} \end{bmatrix} = \begin{bmatrix} 12\omega\alpha_{1}^{2} - 4\omega\alpha_{2} + 2 & -4\omega\alpha_{1} \\ -4\omega\alpha_{1} & 2\omega \end{bmatrix}$$
We need Iterations k, \bar{x}^{T} , $f(\bar{x})$, \bar{p}^{SP} , d

Problem 1a(i)

Newton Method				
	$x_0 = [1.2]$	$[1.2]^T$, Stopping C	Friteria: $ f < 10^{-8}$	
P ₁	resent here the <u>first</u> 6 va	lues from your iteration	ns for the variables in the	e Table
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$\overline{\boldsymbol{p}}_{k}^{SD}$	α_k
0	1.2000000000000000000000000000000000000	5.8000000000000000	-0.00408163265306,	
	1.2000000000000000		0.230204081632653	1.0000000000000000
1	1.195918367346939,	0.038384034418534	-0.195267745952645,	
	1.430204081632653		-0.467031908145293	0.5000000000000000
2	1.098284494370616,	0.018762343235567	-0.033796335111792,	
	1.196688127560007		-0.064695278624755	1.0000000000000000
3	1.064488159258824,	0.004289183002068	-0.052496044128596,	
	1.131992848935252		-0.110620642498651	1.0000000000000000
4	1.011992115130228,	0.000903273286643	-0.007731028105105,	
	1.021372206436601		-0.012891644319282	1.0000000000000000
5	1.004261087025123,	0.000018514093528	-0.004210752701645,	
	1.008480562117319		-0.008397621375135	1.0000000000000000
6	1.000050334323477,	0.000000033970388	-0.000050156464258,	
	1.000082940742184		-0.000082587539385	1.0000000000000000

Problem 1a(ii)

Newton Method

 $x_0 = [1.2; 1.2]^T$, Stopping Criteria: $||f|| < 10^{-8}$

Present here the last 6 values from your iterations for the variables in the Table

Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$\overline{\boldsymbol{p}}_{k}^{SD}$	α_k
1	1.195918367346939,	0.038384034418534	-0.195267745952645,	0.5000000000000000
	1.430204081632653		-0.467031908145293	
2	1.098284494370616,	0.018762343235567	-0.033796335111792,	1.0000000000000000
	1.196688127560007		-0.064695278624755	
3	1.064488159258824,	0.004289183002068	-0.052496044128596,	1.0000000000000000
	1.131992848935252		-0.110620642498651	
4	1.011992115130228,	0.000903273286643	-0.007731028105105,	1.0000000000000000
	1.021372206436601		-0.012891644319282	
5	1.004261087025123,	0.000018514093528	-0.004210752701645,	1.0000000000000000
	1.008480562117319		-0.008397621375135	
6	1.000050334323477,	0.000000033970388	-0.000050156464258,	1.0000000000000000
	1.000082940742184		-0.000082587539385	

Problem 1a(iii)

Newton Method					
$x_0 = [-$	$[-1.2; 1]^T$, Stopping (Criteria: $ f < 10^{-8}$			
Present here the <u>first</u> 6	values from your iteration	ons for the variables in t	he Table		
_ T	c (= \)	_ CD			

	Tresent here the <u>thist</u> o	values from your nerati	ons for the variables in t	iic rabic
Iteration #	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$\overline{m{p}}_k{}^{SD}$	α_k
k				
0	-1.2000000000000000	24.19999999999999	0.024719101123596	1.0000000000000000
	1.0000000000000000		0.380674157303370	
1	-1.175280898876404	4.731884325266608	1.938395770052997	0.1250000000000000
	1.380674157303370		-4.555708012051856	
2	-0.932981427619779	4.087398662072179	0.150441348648932	1.0000000000000000
	0.811210655796888		-0.221474279984497	
3	-0.782540078970848	3.228672588621933	0.322542959901112	1.0000000000000000
	0.589736375812392		-0.482172987241705	
4	-0.459997119069736	3.213898091447576	0.066951484928344	1.0000000000000000
	0.107563388570687		0.042438980612811	
5	-0.393045634141392	1.942585420621423	0.734534900158846	0.2500000000000000
	0.150002369183498		-0.572928969929725	
6	-0.209411909101680	1.600193693646818	0.143692887705857	1.0000000000000000
	0.006770126701067		-0.023098782905090	

Problem 1a(iv)

		Newton Method		
	$x_0 = [-1.2]$; 1] ^T , Stopping Crit	eria: $ f < 10^{-8}$	
Pres	ent here the <u>last</u> 6 value	s from your iterations f	for the variables in the	Table
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$\overline{m{p}}_{k}{}^{SD}$	α_k
15	0.802785534446063	0.051535404874557	0.060705273659376	1
	0.633221011934572		0.108710233497953	
16	0.863490808105439	0.019992777967696	0.078587878341622	1
	0.741931245432525		0.139404951403058	
17	0.942078686447061	0.007169243633384	0.025913131024650	1
	0.881336196835582		0.055000471497104	
18	0.967991817471711	0.001069613679054	0.028218493287811	1
	0.936336668332686		0.055302031567464	
19	0.996210310759522	0.000077768464028	0.003269068300201	1
	0.991638699900150		0.007309642457909	

20	0.999479379059724	0.000000282466949	0.000519510558405	1
	0.998948342358059		0.001049166988210	

Problem 1a(iv)

Newton Method

 $x_0 = [1.2; 1.2]^T$, Stopping Criteria: $\|\nabla f(\overline{x}_k)\| < 10^{-8}$ Present here the <u>first</u> 6 values from your iterations for the variables in the Table

Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$\overline{m{p}}_k{}^{SD}$	α_k
0	1.2000000000000000	5.8000000000000000	-0.004081632653061	1.00000000000000000
	1.2000000000000000		0.230204081632653	
1	1.195918367346939	0.038384034418534	-0.195267745952645	0.5000000000000000
	1.430204081632653		-0.467031908145293	
2	1.098284494370616	0.018762343235567	-0.033796335111792	1.0000000000000000
	1.196688127560007		-0.064695278624755	
3	1.064488159258824	0.004289183002068	-0.052496044128596	1.0000000000000000
	1.131992848935252		-0.110620642498651	
4	1.011992115130228	0.000903273286643	-0.007731028105105	1.0000000000000000
	1.021372206436601		-0.012891644319282	
5	1.004261087025123	0.000018514093528	-0.004210752701645	1.0000000000000000
	1.008480562117319		-0.008397621375135	
6	1.000050334323477	0.000000033970388	-0.000050156464258	1.00000000000000000
	1.000082940742184		-0.000082587539385	

Problem 1a(vi)

Newton Method

 $x_0 = [1.2; 1.2]^T$, Stopping Criteria: $\|\nabla f(\bar{x}_k)\| < 10^{-8}$

	Present here the <u>last 6</u> values from your iterations for the variables in the Table				
Iteration # k	$\overline{oldsymbol{x}}_{k}^{T}$	$f(\overline{\boldsymbol{x}}_k)$	$oldsymbol{ar{p}}_k{}^{SD}$	α_k	
3	1.098284494370616	0.018762343235567	-0.033796335111792	0.5000000000000000	
	1.196688127560007		-0.064695278624755		
4	1.064488159258824	0.004289183002068	-0.052496044128596	1.00000000000000000	
	1.131992848935252		-0.110620642498651		
5	1.011992115130228	0.000903273286643	-0.007731028105105	1.00000000000000000	
	1.021372206436601		-0.012891644319282		
6	1.004261087025123	0.000018514093528	-0.004210752701645	1.00000000000000000	
	1.008480562117319		-0.008397621375135		
7	1.000050334323477	0.000000033970388	-0.000050156464258	1.00000000000000000	
	1.000082940742184		-0.000082587539385		
8	1.000000177859219	0.0000000000000032	-0.000000177859130	1.00000000000000000	
	1.000000353202799		-0.000000353202652		

Problem 1a(vii)

Newton Method

 $x_0 = [-1.2; 1]^T$, Stopping Criteria: $\|\nabla f(\overline{x}_k)\| < 10^{-8}$

Present here the first 6 values from your iterations for the variables in the Table

resent here the <u>mist</u> o values from your iterations for the variables in the rable					
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$oldsymbol{ar{p}}_k{}^{SD}$	α_k	
0	-1.2000000000000000	24.19999999999999	0.024719101123596	1.00000000000000000	
	1.0000000000000000		0.380674157303370		

1	-1.175280898876404	4.731884325266608	1.938395770052997	0.1250000000000000
	1.380674157303370		-4.555708012051856	
2	-0.932981427619779	4.087398662072179	0.150441348648932	1.00000000000000000
	0.811210655796888		-0.221474279984497	
3	-0.782540078970848	3.228672588621933	0.322542959901112	1.00000000000000000
	0.589736375812392		-0.482172987241705	
4	-0.459997119069736	3.213898091447576	0.066951484928344	1.00000000000000000
	0.107563388570687		0.042438980612811	
5	-0.393045634141392	1.942585420621423	0.734534900158846	0.2500000000000000
	0.150002369183498		-0.572928969929725	
6	-0.209411909101680	1.600193693646818	0.143692887705857	1.00000000000000000
	0.006770126701067		-0.023098782905090	

Problem 1a(viii)

		Newton Method		
	$x_0 = [-1.2; 1]$	1] ^T , Stopping Criteri	$\mathbf{a:} \ \nabla f(\overline{\mathbf{x}}_k)\ < 10^{-8}$	
Prese	ent here the <u>last</u> 6 value	s from your iterations f	for the variables in the	Table
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{\boldsymbol{x}}_k)$	$\overline{m{p}}_k{}^{SD}$	α_k
16	0.863490808105439	0.019992777967696	0.078587878341622	1
	0.741931245432525		0.139404951403058	
17	0.942078686447061	0.007169243633384	0.025913131024650	1
	0.881336196835582		0.055000471497104	
18	0.967991817471711	0.001069613679054	0.028218493287811	1
	0.936336668332686		0.055302031567464	
19	0.996210310759522	0.000077768464028	0.003269068300201	1
	0.991638699900150		0.007309642457909	
20	0.999479379059724	0.000000282466949	0.000519510558405	1
	0.998948342358059		0.001049166988210	
21	0.999998889618128	0.000000000008517	0.000001110321938	1
	0.999997509346269		0.000002490532631	

Problem 1a(ix)

Steepest Descent Method						
	$x_0 = [1.2; 1.2]^T$, Stopping Criteria: $ f(\bar{x}_k) < 10^{-8}$					
	Present here the <u>first</u> 6	values from your iterat	ions for the variables in th	e Table		
Iteration # k	$\overline{oldsymbol{x}}_k^{T}$	$f(\overline{x}_k)$	$\overline{m{p}}_k{}^{SD}$	α_k		
0	1.2000000000000000	5.8000000000000000	-0.923548958248274,	0.1250000000000000		
	1.2000000000000000		0.383480536296861			
1	1.084556380218966	0.520844867766157	0.907267511011767,	0.0312500000000000		
	1.247935067037108		-0.420553995894122			
2	1.112908489938083	0.014171542193907	-0.929746279393009,	0.001953125000000		
	1.234792754665416		0.368200836439649			
3	1.111092579236144	0.012438618590703	0.738272817499907,	0.000488281250000		
	1.235511896924087		-0.674502221598083			
4	1.111453064010314	0.012423898527980	-0.994927136179291,	0.000488281250000		
	1.235182550136198		0.100598179377539			
5	1.110967259744601	0.012410443854420	0.737967725727800,	0.000488281250000		
	1.235231670340972		-0.674836006585406			
6	1.111327595548179	0.012395990435597	-0.994837249380813,	0.000488281250000		
	1.234902160572131		0.101483236272889			

Problem 1a(x)

Steepest Descent Method

 $x_0 = [1.2; 1.2]^T$, Stopping Criteria: $||f(\bar{x}_k)|| < 10^{-8}$ Present here the <u>last</u> 6 values from your iterations for the variables in the Table

Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k) (1.06-07)^*$	$\overline{m{p}}_{k}{}^{SD}$	$\alpha_k (1.0e-04)^*$
7606	1.000081174691810	0.369083378513680	0.890153412020434	0.152587890625000
	1.000179768326973		-0.455660951880210	
7607	1.000094757354957	0.368953384990326	-0.899347775422549	0.152587890625000
	1.000172815492624		0.437234009247351	
7608	1.000081034396958	0.368836293106411	0.890160866132626	0.152587890625000
	1.000179487154142		-0.455646389655414	
7609	1.000094617173846	0.368706693310531	-0.899340579484607	0.152587890625000
	1.000172534541995		0.437248810281162	
7610	1.000080894325648	0.368589994581223	0.890168308133889	0.152587890625000
	1.000179206429359		-0.455631850504385	
7611	1.000094477216092	0.368460787267332	-0.899333394765663	0.076293945312500
	1.000172254039062		0.437263587621092	

Problem 1a(xi)

Steepest Descent Method

 $x_0 = [-1.2; 1]^T$, Stopping Criteria: $||f(\bar{x}_k)|| < 10^{-8}$ Present here the first 6 values from your iterations for the variables in the Table

	Fresent here the <u>first</u> o values from your iterations for the variables in the rable				
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\overline{x}_k)$	$oldsymbol{ar{p}}_k{}^{SD}$	α_k	
0	-1.2000000000000000	24.199999999999996	0.925847643695199	0.2500000000000000	
	1.0000000000000000		0.377896997426612		
1	-0.968538089076200	6.321495316645379	-0.875432951101911	0.1250000000000000	
	1.094474249356653		-0.483339578479767		
2	-1.077967207963939	5.955234291215230	0.918220469788388	0.0625000000000000	
	1.034056802046682		0.396069651528102		
3	-1.020578428602165	4.112427323765298	-0.655722192375562	0.007812500000000	
	1.058811155267188		-0.755002255908012		
4	-1.025701258230099	4.103537774540148	0.998948670078196	0.007812500000000	
	1.052912700142907		-0.045842715331914		
5	-1.017896971745113	4.098936564058504	-0.628663418320573	0.007812500000000	
	1.052554553929377		-0.777677508010546		
6	-1.022808404700743	4.091765532760610	0.999846763052762	0.007812500000000	
	1.046478948398044		-0.017505725146787		

Problem 1a(xii)

Steepest 1	Descent	Metho	d
_			

 $x_0 = [-1.2; 1]^T$, Stopping Criteria: $||f(\bar{x}_k)|| < 10^{-8}$ Present here the last 6 values from your iterations for the variables in the Table

1	resent here the <u>last</u> o values from your relations for the variables in the rable				
Iteration # k	$\overline{oldsymbol{x}}_k{}^T$	$f(\overline{x}_k)$ 1.0e-07	$oldsymbol{ar{p}}_k{}^{SD}$	α_k	
8294	0.999905081983656	0.369161209155554	0.899324924712471	0.152587890625000	
	0.999826878272635		-0.437281007809519		
8295	0.999918804592981	0.369031025773857	-0.890120931130621	0.152587890625000	
	0.999820205893976		0.455724399130831		
8296	0.999905222425453	0.368913736898251	0.899317757372434	0.152587890625000	
	0.999827159696453		-0.437295748063728		

8297	0.999918944925413	0.368783948218213	-0.890128445423160	0.152587890625000
	0.999820487092875		0.455709721915770	
8298	0.999905362643225	0.368667053415349	0.899310601230380	0.152587890625000
	0.999827440671396		-0.437310464675444	
8299	0.999919085033991	0.368537658165347	-0.890135947481463	0.076293945312500
	0.999820767843261		0.455695068001924	

Problem 1a(xiii)

Steepest Descent Method
$x_0 = [1.2; 1.2]^T$, Stopping Criteria: $\ \nabla f(\bar{x}_k)\ < 10^{-8}$
Present here the <u>first 6</u> values from your iterations for the variables in the Table

Iteration # k $f(\overline{\boldsymbol{x}}_k)$ α_k 5.8000000000000000 0.1250000000000000 1.2000000000000000 -0.923548958248274 1.2000000000000000 0.383480536296861 0.520844867766157 0.0312500000000000 1.084556380218966 0.907267511011767 -0.420553995894122 1.247935067037108 0.014171542193907 2 1.112908489938083 -0.929746279393009 0.0019531250000001.234792754665416 0.368200836439649 0.012438618590703 0.000488281250000 3 1.111092579236144 0.738272817499907 1.235511896924087 -0.674502221598083 0.012423898527980 1.111453064010314 -0.994927136179291 0.000488281250000 4 1.235182550136198 0.100598179377539 0.012410443854420 5 1.110967259744601 0.737967725727800 0.000488281250000 1.235231670340972 -0.674836006585406 0.012395990435597 1.111327595548179 -0.994837249380813 0.000488281250000

Problem 1a(xiv)

1.234902160572131

6

Steepest Descent Method

 $x_0 = [1.2; 1.2]^T$, Stopping Criteria: $\|\nabla f(\bar{x}_k)\| < 10^{-8}$

0.101483236272889

	Present here the <u>last</u> 6 values from your iterations for the variables in the Table			
Iteration # k	$\overline{\boldsymbol{x}}_{k}^{T}$	$f(\bar{x}_k)(1.0e-17)^*$	$oldsymbol{\overline{p}}_k{}^{SD}$	α_k (1.0e-09)*
18056	1.000000001276563	0.869594976121798	0.890005127502390	0.232830643653870
	1.000000002818952		-0.455950515976739	
18057	1.000000001483784	0.869261495518173	-0.899459402743036	0.232830643653870
	1.000000002712793		0.437004328144632	
18058	1.000000001274362	0.868987389242565	0.890012828641190	0.232830643653870
	1.000000002814541		-0.455935483214575	
18059	1.000000001481584	0.868653367289376	-0.899452032306886	0.232830643653870
	1.000000002708385		0.437019497939180	
18060	1.000000001272164	0.868381676977442	0.890020516853457	0.232830643653870
	1.000000002810137		-0.455920475061063	
18061	1.000000001479388	0.868047259352685	-0.899444673243412	0.116415321826935
	1.000000002703985		0.437034643677194	

Problem 1a(xv)

Steepest Descent Method

 $x_0 = [-1.2; 1]^T$, Stopping Criteria: $\|\nabla f(\overline{x}_k)\| < 10^{-8}$

Present here the first 6 values from your iterations for the variables in the Table

Iteration # k	$\overline{oldsymbol{x}}_k^{T}$	$f(\overline{x}_k)$	$oldsymbol{ar{p}}_k{}^{SD}$	α_k
0	-1.2000000000000000	24.19999999999999	0.925847643695199	0.2500000000000000
	1.0000000000000000		0.377896997426612	
1	-0.968538089076200	6.321495316645379	-0.875432951101911	0.1250000000000000
	1.094474249356653		-0.483339578479767	
2	-1.077967207963939	5.955234291215230	0.918220469788388	0.0625000000000000
	1.034056802046682		0.396069651528102	
3	-1.020578428602165	4.112427323765298	-0.655722192375562	0.007812500000000
	1.058811155267188		-0.755002255908012	
4	-1.025701258230099	4.103537774540148	0.998948670078196	0.007812500000000
	1.052912700142907		-0.045842715331914	
5	-1.017896971745113	4.098936564058504	-0.628663418320573	0.007812500000000
	1.052554553929377		-0.777677508010546	
6	-1.022808404700743	4.091765532760610	0.999846763052762	0.007812500000000
	1.046478948398044		-0.017505725146787	

Problem 1a(xvi)

Problem 1a(xvi)						
	Steepest Descent Method					
	$x_0 = [-1.2; 1]^T$, Stopping Criteria: $\ \nabla f(\overline{x}_k)\ < 10^{-8}$					
	Present here the <u>last</u> 6	values from your iterat	ions for the variables in th	e Table		
Iteration # k	$\overline{oldsymbol{x}}_k{}^T$	$f(\bar{x}_k)(1.0e-16)^*$	$\overline{m{p}}_k{}^{SD}$	α_k 1.0e-09 *		
17907	0.999999997541248	0.342704702412173	-0.890170080526777	0.465661287307739		
	0.999999994551224		0.455628387762387			
17908	0.999999997126730	0.342587312615089	0.899301246426697	0.465661287307739		
	0.999999994763392		-0.437329701913087			
17909	0.999999997545500	0.342477858246364	-0.890177511458841	0.465661287307739		
	0.999999994559745		0.455613869513369			
17910	0.999999997130979	0.342360669666160	0.899294120468562	0.465661287307739		
	0.999999994771906		0.437344355046084			
17911	0.999999997549745	0.342251708127245	-0.890184930294359	0.465661287307739		
	0.999999994568252		0.455599374315666			
17912	0.999999997135221	0.342134776332514	0.899287005378874	0.232830643653870		
	0.999999994780407		-0.437358985224606			

Problem 1b(i)

Present here the number of	of iterations number of i	terations required in order to achieve convergence
Line Search Method	Stopping Criteria	Number of iterations required in order to achieve convergence
Newton Method		
$x_0 = (1.2, 1.2)^T$	$\ \nabla f(\overline{x}_k)\ < 10^{-8}$	8
$x_0 = (1.2, 1.2)^T$	$ f(\overline{x}_k) < 10^{-8}$	7
$x_0 = (-1.2; 1)^T$	$\ \nabla f(\overline{x}_k)\ < 10^{-8}$	21
$x_0 = (-1.2; 1)^T$	$ f(\overline{x}_k) < 10^{-8}$	20
Steepest Descent Method		
$x_0 = (1.2, 1.2)^T$	$\ \nabla f(\overline{x}_k)\ < 10^{-8}$	18061
$x_0 = (1.2, 1.2)^T$	$ f(\overline{x}_k) < 10^{-8}$	7611
$x_0 = (-1.2; 1)^T$	$\left\ \nabla f(\overline{x}_k)\right\ < 10^{-8}$	17912
$x_0 = (-1.2; 1)^T$	$ f(\overline{x}_k) < 10^{-8}$	8299

Problem 1b(ii)

Discuss your observation with regards to number of iterations required in order to achieve convergence:

We can see that Newton's method converges a lot faster than Steepest descent. We also see that when we are calculating the minimum using am initial guess closer to the actual minimum the number of iterations is less for Newtons method. Interesting we see that steepest descent takes a fewer iterations for the farther point compared to the closer.

Problem 2(i) and (ii)

- 1. Steepest Descent
 - Function(x) $> 10^-8$

- Gradient(f(x)) > 10^-8

2. Newtons method

- $F(x) > 10^{-8}$

- Gradient(f(x)) > 10^-8

Problem 2(iii)

Compare the graph obtained in (i) with the one obtained in (ii). What can you infer about the convergence of the steepest descent and Newton algorithm.

We see that the graphs for steepest descent the graph is in a linear fashion with some bumps. Whereas for the newtons methods we clearly see that the method is quadratic. Which aligns with the theorem that steepest descent has a linear convergence and newtons method has a quadratic convergence.

Problem 3(a)

3)
$$f(x,y) = 5-5x-2y+2x^2+5xy+6y^2$$

Is this function convex?

> Find hessian

-> Check if the eigenvalues are positive

$$f_{\alpha}(x,y) = -5+4x + 5y$$

 $f_{y}(x,y) = -2+5x + 12y$

$$f_{\chi\chi}(\chi_{3}y) = \frac{9}{2\pi}(-5+4\chi+5y) = 4$$

$$f_{\chi\chi}(\chi_{3}y) = \frac{9}{2\pi}(-5+4\chi+5y) = 5$$

$$f_{\chi\chi}(\chi_{3}y) = \frac{9}{2\pi}(-5+4\chi+5y) = 12$$

$$f_{\chi\chi}(\chi_{3}y) = \frac{9}{2\pi}(-2+5\chi+12y) = 12$$

$$f_{\chi\chi}(\chi_{3}y) = \frac{9}{2\pi}(-2+5\chi+12y) = 5$$

$$= (4-\lambda)(12-\lambda) - 25$$

$$= 48 - 12\lambda - 4\lambda + \lambda^{2} - 25$$

$$= \lambda^{2} - 16\lambda + 23$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{16 \pm \sqrt{16^2 - (4)(23)}}{2} = 8 \pm \sqrt{41}$$

$$\sqrt{41} \text{ is approx } 6.4 \text{ so both eigenvalues}$$

$$\text{are } > 0. \text{ Therefore the function is convex.}$$

Problem 3(b)

Create a contour plot of the function using a programming language of your choice.

Problem 4(i) and (ii)

Present your solution below

We can see that
$$x_{k} entrigon 1$$
 as $k entrigon \infty$

We can see that $x_{k} entrigon 1$ as $k entrigon \infty$

$$\frac{\left|x_{k+1}^{-1}\right|^{2}}{\left|x_{k}^{-1}\right|^{2}} = \frac{\left(0.5^{2^{k}}\right)^{2}}{\left(0.5^{2^{k}}\right)^{2}} = \frac{0.5^{2^{k}}}{\left(0.5\right)^{2^{k}}} = \frac{0.5^{2^{k}}}{0.5^{2^{k}}}$$

We see that we have
$$\frac{0.5^{2^{k}}}{0.5^{2^{k}}} = 1$$

Therefore x_{k} is quadratically convergent

Checking for α -Superlinearity:
$$\lim_{k \to 0} \frac{\left|x_{k+1}^{-1}\right|}{\left|x_{k-1}\right|} = \frac{\left(0.5\right)^{2}}{0.5^{2^{k}}} = 0.5$$

as $k \to \infty$ o. $5^{2^{k}} \to 0$. Therefore x_{k} is convergent super linearly.

We can also say that it converges linearly as well since for a large k the value of the function is between $0 \le 1 \to range(0,1)$

We can conclude that x_k is Q-Quadratically convergent!

4b)
$$x_{k} = \frac{1}{k!}$$

We know that $\frac{1}{k!}$ tends to 0 as k tends to ∞

$$\frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} = \frac{1}{k+1} \text{ which tends to 0 as } k \text{ tends to } \infty$$

Since $\lim_{k \to \infty} \frac{\|\overline{x}_{k+1} - \overline{x}^*\|}{\|\overline{x}_{k} - \overline{x}^*\|} = 0$ we can say that $\lim_{k \to \infty} \frac{\|\overline{x}_{k+1} - \overline{x}^*\|}{\|\overline{x}_{k} - \overline{x}^*\|} = 0$ we can say that $\lim_{k \to \infty} \frac{\|\overline{x}_{k+1} - \overline{x}^*\|}{\|\overline{x}_{k} - \overline{x}^*\|} = 0$ we can say that $\lim_{k \to \infty} \frac{\|\overline{x}_{k+1} - \overline{x}^*\|}{\|\overline{x}_{k} - \overline{x}^*\|} = 0$ we can say that $\lim_{k \to \infty} \frac{\|\overline{x}_{k+1} - \overline{x}^*\|}{\|\overline{x}_{k} - \overline{x}^*\|} = 0$ which tends to ∞ as k tends to ∞ .

Checking for q -quadratic for a large enough k .

$$\frac{1}{(k+1)!} = \frac{k!}{k!} \text{ which tends to } \infty \text{ as } k \text{ tends to } \infty$$

Since we can't find an upper bound.

We can conclude that x_k is Q-superlinearly convergent!