Propiedades de funciones simples:

Notación: (X, A) espació memable.

$$\mathcal{E}^{\dagger} = \mathcal{E}(A)^{\dagger} = \mathcal{I} f \text{ simples no-negativas} \qquad \mathcal{E} = \mathcal{E}(A) = \mathcal{I} f \text{ simple negativas}$$
 \mathcal{M}^{\dagger}

$$P_{\underline{t}\underline{b}\underline{p}}$$
: $f,g \in \mathcal{E}(\underline{p}) \Rightarrow f^{\pm}g$, fg , $cf \in \mathcal{E}(\underline{p})$, $c_{\epsilon}R$.

Prueba:

$$f = \sum_{i=1}^{M} C_i \mathbf{1}_{A_i}$$
 $A_i \in A$ disjuntos $g = \sum_{i=1}^{M} d_i \mathbf{1}_{B_i}$ $B_j \in A$ disjuntos

$$\Rightarrow f \pm g = \sum_{i=1}^{n} \sum_{j=1}^{n} (c_i \pm d_j) 1_{A_i \cap B_j}, \quad \exists_{g} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i d_j 1_{A_i \cap B_j}, \quad cf = \sum_{i=1}^{n} cc_i 1_{A_i}$$

$$\begin{array}{c} \bullet \left(1 \atop A_i + 1 \atop B_j \right)(x) = \left\{ \begin{array}{c} 1; & \chi \in A_i, \chi \notin B_j \\ 1; & \chi \in B_j, \chi \notin A_i' \\ 2; & \chi \in A_i \cap B_j' \\ 0; & cano contrario \end{array} \right\} = \left(1 \atop A_i - B_j' + 2 \atop A_i \cap B_j' + 1 \atop A_i \cap B$$

•
$$a \mathcal{I}_{A_i} + b \mathcal{I}_{B_j} = a \mathcal{I}_{A_i - B_j} + (a+b) \mathcal{I}_{A_i \cap B_j} + b \mathcal{I}_{B_j - A_i}$$
.

$$(a \mathcal{I}_{A_i})(b \mathcal{I}_{B_i}) = ab \mathcal{I}_{A_i \cap B_i}.$$

Oh! M(A) es m 1R-espario rectorial.

$$\mathcal{E}(\mathbf{A})$$
 " " $\mathcal{E}(\mathbf{A})$ es subespació de $\mathcal{M}(\mathbf{A})$.

Corolarios al Lona del Sombrero:

Corolario I: Sea (X,A) espario mesurable. Si funtazi son funciones nusurables, un: X - TR, entonies

sup un, Inf un, limenpun y liminf un mon

son mesurables.

lim sup
$$u_n(x) = \inf_{n \ge k} \left[\sup_{n \ge k} u_n(x) \right] = \lim_{n \ge k} \left(\sup_{n \ge k} u_n(x) \right)$$

lim (of $u_n(x) = \sup_{n \ge k} \left[\inf_{n \ge k} u_n(x) \right] = \lim_{n \ge k} \left(\inf_{n \ge k} u_n(x) \right)$

lim inf $u_n(x) \le \lim_{n \ge k} u_n(x) \le \lim_{n \ge k} u_n(x)$

monor punto

de aumphoria

Pruba: supun: Verificamos que 2 supun 72} Un: X-> TR

Africanosque $\begin{cases} x_{n \in \mathbb{N}} & \text{ for } x_{n \neq 1} \\ \text{ for } x_{n \neq 1} \\ \text{ for } x_{n \neq 1} \end{cases} = \begin{cases} x_{n \neq 1} & \text{ for } x_{n \neq 1} \\ \text{ for } x_{n \neq 1} \end{cases} = \begin{cases} x_{n \neq 1} & \text{ for } x_{n \neq 1} \\ \text{ for } x_{n \neq 1} \end{cases}$

- (2) $x \in \bigcup_{n \geq 1} \{u_n > a\} \Rightarrow \exists n \in \mathbb{N} \text{ the que } x \in \{u_n > a\} \Rightarrow u_n(x) > a$ $\Rightarrow \sup_{n \in \mathbb{N}} u_n(x) \geq u_n(x) > a \Rightarrow x \in \{\sup_{n \in \mathbb{N}} u_n > a\}.$
- (c) Si $x \in 1$ supun > $a^2 \Rightarrow \sup_{n \in \mathbb{N}} u_n(x) > a$. Supongamos que $x \notin \bigcup_{n \geq 1} u_n > a^2$. $\Rightarrow u_n(x) \leq a$, $\forall n \in \mathbb{N} \Rightarrow \sup_{n \in \mathbb{N}} u_n(x) \leq a$ ($\rightarrow \leftarrow$) $\Rightarrow x \in \bigcup_{n \geq 1} u_n > a^2$.

Como frepunsa? = \(\frac{1}{nz_1} \) funsa? \(\int A. \) = supun mennable.

· -un ∈A: h-un==1 = hun ≤-27 ∈ A, to ∈R => -un mesurable.

in) Infun = $-\sin p(-u_n) \in M \Rightarrow (infun missible.)$ egh egh egh egh iii) $lim sup u_n = (inf(sup u_n) \in M \Rightarrow lim sup u_n messible now pun for <math>egh$ iv) $lim infun = -lim sup (-u_n) \in M$.

Corolanio 2: (X,A) esp. mesurable. $u,v:X \to \mathbb{R}$ funciones mesurable. Entonies $u \neq v$, uv, $max \{u,v\} = u \vee v$ y $min \{u,v\} = u \wedge v$. Non mesurables. m $|u \neq v| = \frac{1}{2}(u+v+|u-v|) \quad u \wedge v = \frac{1}{2}(u+v-|u-v|)$ Corolario 3: v:X > R mesurable (=> ut, ut pou mesurables.

Teoroma: (Lema de Faitoración)

Sea T: (X,A) -> (X',A') un mapa menuable. Entonces, la

función u: X -> IR es mesurable. \Rightarrow u = WoT, donde

N: X' -> IR o mesurable.

$$A \subseteq X \xrightarrow{T} X' \supseteq A'$$
 $W \circ T = u$
 $B(\overline{R})$

Teorema (Lema de Clases Honótonas, para funciones).

Sea GEP(X) ma familie N-estable, y sea V un espacio vectorial de funciones u: X->1R tal que

- 1) $1 = 1 \times \in V$ y $1 \in V$, $\forall G \in G$.
- 2) para to de secrencia $0 \le u_1 \le u_2 \le u_3 \le ... \le u_n \in V$, con $u(x) = \sup_{1 \le i \le n} u_i(x) < \infty$, $\forall x$, $\Rightarrow u(x) \in V$.

Entenus $f(\sigma(G)) \subseteq V$.