EPITA / InfoS2		Mars 2022
NOM ·	Prénom ·	Groupe:

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (3 points – pas de points négatifs)

Choisissez la ou les bonnes réponses :

1. Soit une bobine d'inductance L. On note u(t), la tension à ses bornes et i(t), le courant qui la traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte :

b.
$$i(t) = \frac{1}{L} \cdot \frac{du(t)}{dt}$$

c.
$$u(t) = L \cdot \frac{di(t)}{dt}$$

d.
$$i(t) = L \cdot \frac{du(t)}{dt}$$

2. En quelle l'unité s'exprime la capacité C d'un condensateur ?

a. en Ohm (Ω)

c. en Farad (F)

b. en Henry (H)

d. en Newton (N)

3. En régime permanent continu (DC), un condensateur se comporte comme :

a. un fil

c. une résistance

b. un interrupteur ouvert

d. une bobine

4. En régime permanent continu (DC), une bobine se comporte comme :

a. un fil

c. une résistance

b. un interrupteur ouvert

d. un condensateur

- 5. Quelles sont les affirmations correctes (2 réponses)
 - a. Le courant qui traverse un condensateur ne peut pas varier brutalement.
 - b. La tension aux bornes d'un condensateur ne peut pas varier brutalement.
 - c. Le courant qui traverse une bobine ne peut pas varier brutalement.
 - d. La tension aux bornes d'une bobine ne peut pas varier brutalement.

Exercice 2. Les régimes transitoires (12 points)

On considère le circuit suivant. Pour t < 0, le condensateur – de capacité \mathcal{C} – est déchargé.

A. A t = 0, on ferme l'interrupteur K.

1. <u>Etude Qualitative</u>: Remplir le tableau suivant. Vous exprimerez les résultats non nuls en fonction de E et de R.

	$i_2(t)$	$u_R(t)$	$u_{\mathcal{C}}(t)$	$u_{2R}(t)$
$t = 0^+$				
$t \to \infty$				

- 2. Etude Quantitative:
 - a. Montrer que l'équation différentielle qui permet de déterminer $u_c(t)$ s'écrit :

$$\frac{du_c}{dt} + \frac{1}{2RC} \cdot u_c = \frac{E}{2RC}$$

En déduire la constante de temps τ du circuit.

b. Résoudre cette équation différentielle pour en déduire $u_{\mathcal{C}}(t)$.

				_
B.	Une fois le régime	nermanent établi, or	i ouvre l'interrupteu	r. On pose alors $t'=0$.
	0116 1015 16 1651116	permanent etabil, on	. oarre i micei i apcea	o pose a.o.s c

Remplir le tableau suivant. Vous exprimerez les résultats non nuls en fonction de E et de R.

	$i_2(t')$	$u_R(t')$	$u_{\mathcal{C}}(t')$	$u_{2R}(t')$
$t'=0^+$				
$t' \to \infty$				

EPITA / InfoS2 Mars 2022

Exercice 3.	Théorème de Millman (5	points))
-------------	-----------------------	---	---------	---

Soit le montage ci-contre. En utilisant le théorème de Millman, déterminer l'expression de la tension U. Vous exprimerez votre résultat en fonction de E, I et R et le présenterez sous la forme $\frac{A}{B}$ (pas de fraction de fraction)

