Lycée Buffon DS 7
MPSI Année 2020-2021

Devoir du 13/02/2021

Exercice 1:

- 1. Montrer que pour tout entier $n, n \equiv 0$ [7] $\iff 2n \equiv 0$ [7].
- 2. Soit $(a,b) \in \mathbb{N} \times [0,9]$. Montrer que n=10a+b est un multiple de 7 si, et seulement si, $a-2b \equiv 0$ [7].
- 3. L'entier 1234567 est-il un multiple de 7?

Exercice 2:

On considère les ensembles

$$F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = x + z = 0\}.$$

- 1. Donner, avec justification, une base de F et une base de G.
- 2. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Exercise 3: Soit $F = \{ f \in \mathcal{C}^1([0,1],\mathbb{R}) : f(0) = f(1) = f'(0) \}.$

- 1. Montrer que F est un espace-vectoriel.
- 2. Soit G l'ensemble des fonctions de E affines. Montrer que F et G sont supplémentaires dans E.

Exercice 4:

Soient E et F deux \mathbb{K} -espaces et $f \in \mathcal{L}(E, F)$.

On considère $(e_1,...,e_s)$ une base de Kerf et $(y_1,...,y_r)$ une base de Imf

- 1. (a) Montrer qu'il existe $(x_1, ..., x_r) \in E^r$ tels que : $\forall i \in [1, r], f(x_i) = y_i$.
 - (b) Montrer que la famille $(x_1, ..., x_r)$ est libre.
- 2. Prouver que la famille $(x_1,...,x_r,e_1,...,e_s)$ est une base de E.

Problème 1 : Dans la suite E et E' sont deux \mathbb{K} -espaces vectoriels.

1. Pour tout vecteur a de E, on appelle translation de vecteur a l'application

$$\tau_a: E \mapsto E, \ x \mapsto a + x$$

- (a) Soient $(a,b) \in E^2$, déterminer $\tau_a \circ \tau_b$.
- (b) En déduire que, pour tout $a \in E$, τ_a est bijective et déterminer $(\tau_a)^{-1}$.
- (c) Prouver que l'ensemble $T = \{\tau_a, a \in E\}$ est un groupe.
- 2. Soit F un sous-espace vectoriel de E et $a \in E$. Montrer que $\tau_a(F) = F \Leftrightarrow a \in F$.
- 3. Soient F et G deux sous-espaces vectoriels de E et $(a,b) \in E^2$ tels que $\tau_a(F) = \tau_b(G)$. Prouver que $b a \in F \cap G$ et que F = G.

On appelle sous-espace affine de E toute partie \mathcal{F} de E de la forme $\tau_a(F)$ où a est un vecteur de E et F un sous-espace vectoriel de E.

On dit que \mathcal{F} est le translaté de F par le vecteur a.

D'après la question précédente, si \mathcal{F} est un sous-espace affine, il existe un unique sous-espace vectoriel dont il soit le translaté. Ce sous-espace vectoriel est appelé la direction de F. Il n'y a par contre pas unicité du vecteur de translation comme le montre la question suivante.

- 4. Soit \mathcal{F} un sous-espace affine de direction F. Prouver que, pour tout $a \in \mathcal{F}$, on a $\mathcal{F} = \tau_a(F)$.
- 5. Montrer que l'intersection de deux sous-espaces affines de directions respectives F_1 et F_2 est soit vide, soit un sous-espace affine de direction $F_1 \cap F_2$.
- 6. Soit $u \in \mathcal{L}(E, E')$ et \mathcal{F} un sous-espace affine de E de direction F. Prouver que $u(\mathcal{F})$ est un sous-espace affine de E' de direction u(F).
- 7. Soit $u \in \mathcal{L}(E, E')$ et \mathcal{F} un sous-espace affine de E' de direction F. Prouver que $u^{-1}(\mathcal{F})$ est soit vide, soit un sous-espace affine de E.

Problème 2:

On dit qu'une suite réelle u est **ultimement périodique** lorsqu'elle est périodique à partir d'un certain rang, i.e. s'il existe $n_0 \in \mathbb{N}$ et $p \in \mathbb{N}^*$ tels que $\forall n \geq n_0, u_{n+p} = u_n$. On dit alors que p est une pseudo-période de u.

On note UP l'ensemble des suites ultimement périodiques de réels.

Partie I:

- 1. Montrer que UP est un anneau.
- 2. Montrer que UP est un \mathbb{R} -espace vectoriel.
- 3. Soit u un élément de UP et $\mathcal{P}(u)$ l'ensemble des pseudo-périodes de u. Montrer qu'il existe un entier $T \geq 1$ (que l'on appellera la période de a) tel que :

$$\mathcal{P}(u) = \mathbb{N}^* T = \{kT, \ k \in \mathbb{N}^*\}.$$

4. Soit $x = \frac{a}{b}$ un rationnel strictement positif, donné sous forme irréductible.

On définit deux suites d'entiers $(r_n)_{n\in\mathbb{N}}$ et $(d_n)_{n\in\mathbb{N}}$ par :

- $d_0 = E(x)$ (partie entière) et r_0 est le reste de la division euclidienne de a par b.
- \bullet pour tout $n\geq 1,\, r_n$ (resp. d_n) est le reste (resp. le quotient) de la division euclidienne de $10.r_{n-1}$ par b.
- (a) Dans cette question (uniquement), $x = \frac{22}{7}$. Déterminer d_0, d_1, \dots, d_{10} .
- (b) Montrer que la suite $(r_n)_{n\in\mathbb{N}}$ est ultimement périodique.
- (c) Soit $n \in \mathbb{N}$. Exprimer x en fonction de $d_0, d_1, \dots d_n$ et r_n .

En déduire que
$$x = \lim_{n \to +\infty} \sum_{k=1}^{n} d_k 10^{-k}$$
.

Partie II:

Soit $(a_n)_{n\in\mathbb{N}}$ la suite définie par, pour tout n de \mathbb{N}^* , $a_n=1$ si $\sin n>0$, $a_n=0$ sinon.

- 1. On suppose que cette suite est ultimement périodique.
 - (a) Montrer qu'il existe un entier N et un entier strictement positif T tels que, pour tout entier k supérieur ou égal à N, le signe de $\sin(kT)$ soit constant.
 - (b) En déduire que la suite $(\cos(kT))_{k\in\mathbb{N}}$ est composée de réels strictement positifs à partir d'un certain rang.
- 2. Soit $G = \mathbb{Z}T + 2\pi\mathbb{Z} = \{nT + 2k\pi, (n, k) \in \mathbb{Z}^2\}.$
 - (a) Montrer que G est un sous-groupe additif de $\mathbb R$. Existe-t-il $a\in\mathbb R$ tel que $G=a\mathbb Z$?
 - (b) On pose $G^+ = G \cap \mathbb{R}^{+*}$. Montrer que G^+ possède une borne inférieure a.
 - (c) On suppose $a \in G^+$. Montrer que $G = a\mathbb{Z}$. Ainsi, $a \notin G^+$.
 - (d) Supposant a > 0, montrer que l'on peut trouver deux éléments g et g' de G^+ tels que a < g' < g < 2a. En déduire a = 0.
- 3. (a) Montrer que, pour tout $n \in \mathbb{N}$, il existe $g_n \in G$ tel que $0 < g_n < 10^{-n}$.

- (b) Soit x un réel. Construire une suite d'éléments de G convergeant vers x.
- 4. (a) Montrer l'existence de $(k_n)_{n\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}}$ telle que la suite $(\cos(k_nT))_{n\in\mathbb{N}}$ converge vers $-\frac{1}{2}$ puis que l'ensemble $\{\cos(k_nT), n\in\mathbb{N}\}$ des termes de cette suite n'est pas de cardinal fini.
 - (b) Construire alors une suite strictement croissante $(y_n)_{n\in\mathbb{N}}$ extraite de $(k_n)_{n\in\mathbb{N}}$ telle que la limite de $(\cos(y_nT))_{n\in\mathbb{N}}$ soit -1/2.
 - (c) La suite $(a_n)_{n\in\mathbb{N}}$ est-elle ultimement périodique?