The Approximation of the Distribution by MC

Guangzi Liu

2020/3/27

Abstract

This report considers the approximation of the distribution function N(0,1) by using the Monte Carlo methods. Then use rmarkdown to produce a report which includes math equations, tables, graphs, and R code. Further, repeat the experiment 100 times and draw box plots of the 100 approximation errors at each t using ggplot2 for each n. # Math Equations In this part, I consider approximation of the distribution function of N(0,1):

$$\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{(-y^2)/2} \, \mathrm{d}y,\tag{1}$$

by the Monte Carlo methods:

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le t), \tag{2}$$

Where X_i is a random sample from N(0,1), $I(\cdot)$ is the indicator function. Experiment with the approximation at $n \in \{10^2, 10^3, 10^4\}$ at $t \in \{0.0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72\}$ to form a table.

Table

The approximation results are shown in the following table:

```
library(tidyverse)
t=c(0.0,0.67, 0.84,1.28,1.65,2.32,2.58,3.09,3.72)
x=pnorm(t, mean = 0, sd = 1)
n1=10<sup>2</sup>
z1=c(rep(0,9))
w1=matrix(0,9,n1)
y1=c(rnorm(n1,mean=0,sd=1))
for(k in 1:9)
{
  for(j in 1:n1)
  {w1[k,j]=sign(y1[j]<=t[k])}
  z1[k]=sum(w1[k,])/n1
n2=10<sup>3</sup>
z2=c(rep(0,9))
w2=matrix(0,9,n2)
y2=c(rnorm(n2,mean=0,sd=1))
```

```
for(k in 1:9)
  for(j in 1:n2)
  \{w2[k,j]=sign(y2[j]<=t[k])\}
  z2[k]=sum(w2[k,])/n2
n3=10<sup>4</sup>
z3=c(rep(0,9))
w3=matrix(0,9,n3)
y3=c(rnorm(n3,mean=0,sd=1))
for(k in 1:9)
  for(j in 1:n3)
  {w3[k,j]=sign(y3[j]<=t[k])}
  z3[k]=sum(w3[k,])/n3
tb<-tibble(
  t=t,
  true=x,
  '100'=z1,
  '1000'=z2,
  '10000'=z3
knitr::kable(head(tb), booktabs = TRUE,
             caption = 'table')
```

Table 1: table

t	true	100	1000	10000
0.00	0.5000000	0.58	0.476	0.5005
0.67	0.7485711	0.76	0.720	0.7448
0.84	0.7995458	0.81	0.777	0.7979
1.28	0.8997274	0.87	0.884	0.9010
1.65	0.9505285	0.92	0.945	0.9528
2.32	0.9898296	0.97	0.989	0.9908

Graphs

Repeat the experiment 100 times. And draw box plots of the 100 approximation errors at each t using ggplot2 for each n. When t=0 and n=100,n=1000,n=10000, the graph showing the error of Monte Carlo method is as follows:

```
library(ggplot2)
library(lattice)
library(plyr)
library(Rmisc)

p1<-ggplot(data=plot_data,aes(y=V1,x=label1))+geom_boxplot(
  fill="pink",colour="black")+
  labs(title="Error at t=0, n=100",y="error",</pre>
```

knitr::include_graphics("IMG/graph1.png",dpi=NA)

When t = 0.67 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 0.84 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 1.28 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 1.65 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 2.32 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 2.58 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 3.09 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

When t = 3.72 and n = 100, n=1000, n=10000, the graph showing the error of Monte Carlo method is as follows:

Conclusion

When we consider the approximation of the distribution function N(0,1) by using the Monte Carlo methods, we can get a conclusion from the above boxplots, the more times the experiment is, the smaller error is, the closer the true value is.