

256K (32K x 8) Static RAM

Features

- · High speed: 55 ns and 70 ns
- Voltage range: 4.5V-5.5V operation
- Low active power (70 ns, LL version)
 - -275 mW (max.)
- Low standby power (70 ns, LL version)
 - 28 μW (max.)
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power
- Package available in a standard 450-mil-wide (300-mil body width) 28-lead narrow SOIC, 28-lead TSOP-1, 28-lead reverse TSOP-1, and 600-mil 28-lead PDIP packages

Functional Description[1]

The CY62256 is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the eight data input/output pins $(I/O_0$ through I/O_7) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$ active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied0°C to +70°C

Supply Voltage to Ground Potential

(Pin 28 to Pin 14)-0.5V to +7.0V

DC Input Voltage ^[2]	-0.5 V to V _{CC} + 0.5V
Output Current into Outputs (LOW))20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				С	Y62256-	-55	С	Y62256-	-70	
Parameter	Description	Test Conditions		Min.	Typ . ^[3]	Max.	Min.	Typ . ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$		2.4			2.4			V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1 \text{ mA}$				0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	2.2		V _{CC} +0.5V	V
V_{IL}	Input LOW Voltage			-0.5		8.0	-0.5		8.0	V
I _{IX}	Input Leakage Current	$GND \leq V_1 \leq V_{CC}$		-0.5		+0.5	-0.5		+0.5	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Dis	abled	-0.5		+0.5	-0.5		+0.5	μΑ
I _{CC}	V _{CC} Operating Supply	$V_{CC} = Max., I_{OUT} = 0 mA,$			28	55		28	55	mΑ
	Current	$f = f_{MAX} = 1/t_{RC}$	L		25	50		25	50	mA
			LL		25	50		25	50	mA
I _{SB1}		Max. V_{CC} , $\overline{CE} \ge V_{IH}$,			0.5	2		0.5	2	mΑ
	Power-down Current— TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	L		0.4	0.6		0.4	0.6	mA
	I I L IIIputo		LL		0.3	0.5		0.3	0.5	mΑ

^{2.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

^{3.} Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.

Electrical Characteristics Over the Operating Range (continued)

				С	Y62256	-55	С	Y62256-	-70	
Parameter	Description	Test Conditions		Min.	Typ. ^[3]	Max.	Min.	Typ . ^[3]	Max.	Unit
I _{SB2}		Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$			1	5		1	5	mA
	Power-down Current— CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$. f = 0	L		2	50		2	50	μΑ
	Owoc inputo	0.0 v, 1 = 0	LL		0.1	5		0.1	5	μА
		Indust'l Temp Range	LL		0.1	10		0.1	10	μА

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Data Retention Characteristics

Parameter	Description		Conditions ^[5]	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0			V
I _{CCDR}	Data Retention Current	L	$V_{CC} = 3.0V, \overline{CE} \ge V_{CC} - 0.3V,$		2	50	μΑ
		LL	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$		0.1	5	μΑ
		LL Ind'I			0.1	10	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Re	tention Time		0			ns
t _R ^[4]	Operation Recovery Time)		t _{RC}			ns

Data Retention Waveform

- 4. Tested initially and after any design or process changes that may affect these parameters. 5. No input may exceed V_{CC} + 0.5V.

Switching Characteristics Over the Operating Range^[6]

		CY62	CY62256-55			T	
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
Read Cycle		1		1			
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	5		5		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[7]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		20		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[7]	5		5		ns	
t _{HZCE}	CE HIGH to High-Z ^[7, 8]		20		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
Write Cycle ^[9, 10]		1	•	1	•	•	
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		50		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[7, 8]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[7]	5		5		ns	

Switching Waveforms

Read Cycle No. 1 $^{[11, 12]}$

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 100-pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the Write.
 The minimum Write cycle time for Write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}

- 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{II}$.
- 12. WE is HIGH for Read cycle.

Switching Waveforms (continued)

- Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW) [10, 15]

Note:

16. During this period, the I/Os are in output state and input signals should not be applied.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62256LL-55SNI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Industrial
	CY62256LL-55ZI	Z28	28-lead Thin Small Outline Package	
70	CY62256-70SNC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Commercial
	CY62256L-70SNC			
	CY62256LL-70SNC			
	CY62256L-70SNI			Industrial
	CY62256LL-70SNI			
	CY62256LL-70ZC	Z28	28-lead Thin Small Outline Package	Commercial
	CY62256LL-70ZI	Z28		Industrial
	CY62256-70PC	P15	28-lead (600-Mil) Molded DIP	Commercial
	CY62256L-70PC	P15		
	CY62256LL-70PC	P15		
	CY62256LL-70ZRI	ZR28	28-lead Reverse Thin Small Outline Package	Industrial

Package Diagrams

28-lead (600-mil) Molded DIP P15

28-lead (300-mil) SNC (Narrow Body) SN28

Package Diagrams (continued)

28-lead Thin Small Outline Package Type 1 (8 x 13.4 mm) Z28

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER
AS SHOWN IN OPTION 1 OR OPTION 2

28-lead Reverse Type 1 Thin Small Outline Package (8 x 13.4 mm) ZR28

All product and company names mentioned in this document are the trademarks of their respective holders.

Document Title: CY62256 256K (32K x 8) Static RAM Document Number: 38-05248							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	113454	03/06/02	MGN	Change from Spec number: 38-00455 to 38-05248 Remove obsolete parts from ordering info, standardize format			
*A	115227	05/23/02	GBI	Changed SN Package Diagram			
*B	116506	09/04/02	GBI	Added footnote 1. Corrected package description in Ordering Information table			

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.