ESERCIZI EM 17/18 1. NOTAZIONE PER INSIEMI E PRIME OPERAZIONI

(1) Siano A, B, C, D, E i seguenti insiemi:

$$A = \{0, -1, 1\}, \qquad B = \{x \in \mathbb{Z} : x(x^2 - 1) = 0\}$$

$$C = \{x \in \mathbb{N} : x \text{ è un numero pari}\} \quad D = \{x \in \mathbb{N} : x < 0\}$$

$$E = \{x \in \mathbb{N} : x(x^2 - 1) = 0\}.$$

Stabilire quali delle seguenti affermazioni sono vere e quali sono false.

$$\emptyset \in A \quad \boxed{\mathbf{V} \mathbf{F}} \quad \{0\} \in \mathcal{A} \quad \boxed{\mathbf{V} \mathbf{F}} \quad \{1\} \not\subset A \quad \boxed{\mathbf{V} \mathbf{F}}$$

$$2 \in C \quad \boxed{\mathbf{V} \mathbf{F}} \quad \{1, 2\} \subseteq C \quad \boxed{\mathbf{V} \mathbf{F}} \quad \{1, 2\} \in C \quad \boxed{\mathbf{V} \mathbf{F}}$$

$$-1 \in D \quad \boxed{\mathbf{V} \mathbf{F}} \quad A = B \quad \boxed{\mathbf{V} \mathbf{F}} \quad B = E \quad \boxed{\mathbf{V} \mathbf{F}}$$

$$\{1\} \subseteq C \quad \boxed{\mathbf{V} \mathbf{F}} \quad 3 \in B \quad \boxed{\mathbf{V} \mathbf{F}} \quad A \subseteq B \quad \boxed{\mathbf{V} \mathbf{F}}$$

$$B \subseteq A \quad \boxed{\mathbf{V} \mathbf{F}} \quad A \neq B \quad \boxed{\mathbf{V} \mathbf{F}} \quad \emptyset \in D \quad \boxed{\mathbf{V} \mathbf{F}}$$

$$\emptyset \subseteq D \quad \boxed{\mathbf{V} \mathbf{F}} \quad \emptyset = D \quad \boxed{\mathbf{V} \mathbf{F}} \quad D \in \emptyset \quad \boxed{\mathbf{V} \mathbf{F}}$$

(2) Quali fra le seguenti notazioni sono corrette per denotare l'insieme dei numeri naturali che sono potenze del numero 10? In caso negativo, spiegare perché la notazione non è corretta.

a.
$$1, 10, 100, \dots, 10^n, \dots$$
 b. $\{10^n : n \in \mathbb{N}\}$ c. 10^n d. $\{1, 10, 100, \dots 10^n\}$ e. $\{10^n\} : n \in \mathbb{N}$ f. $\{x : x \text{ è una potenza di } 10\}$ g. $\{x \in \mathbb{N} : x \text{ è una potenza di } 10\}$ h. $\{1, 10, 100, \dots, 10^n, \dots\}$

(3) Trovare il maggior numero di notazioni corrette per ognuno dei seguenti insiemi, descritti nel linguaggio naturale. Se viene indicato il termine "con operazione" almeno una notazione deve usare l'unione o l'intersezione fra insiemi (come nella soluzione del primo punto seguente).

(a) l'insieme dei numeri naturali compresi fra 4 e 7, con operazione possibili soluzioni:

$$\{n \in \mathbb{N} : 4 < n < 7\}, \text{ oppure } \{n \in \mathbb{N} : 4 < n\} \cap \{n \in \mathbb{N} : n < 7\}$$

- (b) l'insieme di numeri naturali maggiori di 7;
- (c) l'insieme vuoto;
- (d) l'insieme che contiene sia i numeri naturali dispari che i multipli di 6, con operazione;
- (e) l'insieme che contiene i numeri naturali dispari maggiori di 11, con operazione;
- (f) l'insieme dei numeri naturali che hanno resto 2 nella divisione per 3;
- (g) l'insieme dei numeri naturali che hanno 1 come ultima cifra decimale;
- (h) l'insieme delle stringhe di 4 caratteri binari 0, 1;
- (i) l'insieme delle stringhe di 4 caratteri binari 0, 1 che iniziano e finiscono con lo stesso carattere, con operazione;
- (j) l'insieme dei numeri interi che non sono divisibili né per 3, né per 4, con operazione.
- (4) Siano A l'insieme dei numeri primi, C l'insieme dei numeri pari, D l'insieme dei multipli di 4. Si ha:

$4 \in A \cup C$	è	$\mathbf{V} \mathbf{F}$	perché
$2 \in A \cup C$	è	$\mathbf{V} \mathbf{F}$	perché
$A\subseteq C$	è	$\mathbf{V} \mathbf{F}$	perché
$C \subseteq D$	è	$\mathbf{V} \mathbf{F}$	perché
$D \subseteq C$	è	$\mathbf{V} \mathbf{F}$	perché

(5) Siano A, B, C, D i seguenti insiemi:

$$A = \{3n : n \in \mathbb{N} \text{ e } n > 2\}, \quad B = \{x \in \mathbb{N} : x(x-1) = 2\}$$

$$C = \{x \in \mathbb{Z} : x(x-1) = 2\}, \quad D = \{n \in \mathbb{N} : n \text{ è divisibile per 3}\}$$

Stabilire la verità o meno delle seguenti affermazioni:

$$A \cup C = A$$
 $\boxed{\mathbf{V} \mid \mathbf{F}}$ $A \cap C = C$ $\boxed{\mathbf{V} \mid \mathbf{F}}$ $B = C \cup B$ $\boxed{\mathbf{V} \mid \mathbf{F}}$ $A \cap B \subseteq C$ $\boxed{\mathbf{V} \mid \mathbf{F}}$ $D \cup A = D$ $\boxed{\mathbf{V} \mid \mathbf{F}}$ $D \cap A = D$ $\boxed{\mathbf{V} \mid \mathbf{F}}$

(6) Siano A l'insieme dei numeri primi, C l'insieme dei numeri pari, D l'insieme dei multipli di 4. Si ha:

```
3 \in (A \cup C) \cap D;
\mathbf{V} \mid \mathbf{F} \mid 4 \notin (A \cup C) \cap D;
\mathbf{V} \mid \mathbf{F} \mid 3 \not\in A \cup (C \cap D);
              4 \in A \cup (C \cap D).
```

(7) Considerare i seguenti insiemi:

$$A = \{2n+1 : n \in \mathbb{N}\}, B = \{2n-1 : n \in \mathbb{N} \text{ e } n \ge 1\},$$

$$C = \{2(n+1) : n \in \mathbb{N}\}, D = \{2(n+1)-1 : n \in \mathbb{N}\}$$

Stabiire quali delle seguenti affermazioni sono vere:

- $\mathbf{V}|\mathbf{F}|$ A=B; $\mathbf{V} | \mathbf{F} |$ $A \subseteq B$; $\overline{\mathbf{V} \mid \mathbf{F} \mid} \quad A \subseteq C;$ $A \subseteq D$; $\mathbf{V} | \mathbf{F} |$ $D \subseteq A$.
- (8) (a) Se $B = \emptyset$, a cosa è uguale l'insieme $A \setminus (B \setminus C)$? E l'insieme $(A \setminus B) \setminus C$?
 - (b) L'operzione di differenza fra insiemi è associativa?
- (9) Stabilire quali delle seguenti affermazioni sono sempre vere, qualsiasi siano gli insiemi A, C, D. Nel caso in cui l'affermazione non sia sempre vera, indicare concretamente tre insiemi A, C, D per cui la proprietà non vale.

$$(A \cup C) \cap D \subseteq D;$$

$$(A \cup C) \cap D \subseteq A;$$

$$(A \cup C) \cap D \subseteq A \cup D;$$

 $C \cap D \subseteq (A \cup C) \cap D$.

(10) Siano A, B insiemi qualsiasi. Stabilire quali delle seguenti affermazioni sono sempre vere e quali sono false per opportune scelte di A, B.

$$a \in A \cup B \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in A \cap B \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in (A \cup B) \setminus B \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in (A \cup B) \setminus A \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in (A \cap B) \cup C \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in A \cap (B \cup C) \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in A \cap (B \cup C) \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in A \cap (B \cup C) \implies a \in A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \in A \cap B \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin A \cup B \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin A \cup B \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus B \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \setminus A \implies a \notin A \qquad \qquad \mathbf{V} \mid \mathbf{F} \qquad a \notin (A \cup B) \mid \mathbf{F} \qquad a \notin (A \cup B) \mid \mathbf{F} \qquad a \notin (A \cup B) \mid \mathbf{$$

(11) Considera i seguenti insiemi A_i , con $i \in \mathbb{N}$:

Determinare gli insiemi
$$\bigcup_{i=0}^3 A_i, \quad \bigcup_{i=0}^n A_i, \quad \bigcup_{i=0}^\infty A_i, \quad \bigcap_{i=0}^3 A_i, \quad \bigcap_{i=0}^n A_i, \quad \bigcap_{i=0}^\infty A_i.$$

 $A_i = \{-i, -(i-1), \dots, -1, 0, 1, \dots, i-1, i\}$

(12) Dimostrare che, dati due insiemi A, B vale:

$$A \setminus B = B \setminus A \ \text{ se e solo se } \ A = B$$
 (not
are il se e solo se. . .)