Let \mathcal{A} be a *good* category (abelian, exact, triangulated) and \mathcal{W} a full subcategory of \mathcal{A} closed by direct summands and extensions, and consider the category $\underline{\mathcal{A}} = \frac{\mathcal{A}}{\mathcal{W}}$.

Let $(\mathcal{X}, \mathcal{Y})$ be a orthogonal pair in $\underline{\mathcal{A}}$ and consider the following classes in $\dot{\mathcal{A}}$:

$$\mathcal{T} = \{ T \in \mathcal{A} | \underline{T} \in \mathcal{X} \}$$
$$\mathcal{F} = \{ F \in \mathcal{A} | \underline{F} \in \mathcal{Y} \}.$$

Lemma 1. In the previous notation, $(\mathcal{T}, \mathcal{T}^{\perp})$ is a orthogonal pair.

Proof. In order to prove it we need to show that $^{\perp}(\mathcal{T}^{\perp}) = \mathcal{T}$. Let $M \in ^{\perp}(\mathcal{T}^{\perp})$, this means that

$$\mathcal{A}(M,Y) = 0 \tag{1}$$

whenever

$$\mathcal{A}(T,Y) = 0 \,\forall T \in \mathcal{T}.\tag{2}$$

However, if $\mathcal{A}(T,Y) = 0 \ \forall T \in \mathcal{T}$, then $\underline{\mathcal{A}}(\underline{X},\underline{Y}) = 0 \ \forall \underline{X} \in \mathcal{X}$. Hence, $\underline{Y} \in \mathcal{Y}$. So $\underline{\mathcal{A}}(\underline{M},\underline{Y}) = 0 \ \forall \underline{Y} \in \mathcal{Y}$. Hence, $\underline{M} \in \mathcal{X}$ and so $M \in \mathcal{T}$.

We have proved that $^{\perp}(\mathcal{T}^{\perp}) \subseteq \mathcal{T}$, the converse inclusion is trivial.

Remark. The dual statement holds for \mathcal{F} . Notice that have we also proved that if $\mathcal{A}(T,Y)=0 \ \forall T\in\mathcal{T}$, then $\underline{Y}\in\mathcal{Y}$ and hence $Y\in\mathcal{F}$. That is, $\mathcal{T}^{\perp}\subseteq\mathcal{F}$ and dually ${}^{\perp}\mathcal{F}\subseteq\mathcal{T}$.

Properties of $(\mathcal{T}, \mathcal{T}^{\perp})$ and $(^{\perp}\mathcal{F}, \mathcal{F})$:

- 1. $^{\perp}\mathcal{F} \subseteq \mathcal{T}$ and $\mathcal{T}^{\perp} \subseteq \mathcal{F}$.
- 2. $\mathcal{T} \cap \mathcal{F} = \mathcal{W}$. In fact, $M \in \mathcal{T} \cap \mathcal{F}$ iff $\underline{M} \in \mathcal{X} \cap \mathcal{Y} = 0$, which happens iff $M <_{\oplus} W$ for some $W \in \mathcal{W}$, but \mathcal{W} is closed by direct summands, hence $M \in \mathcal{W}$.
- 3. If $N \in \mathcal{T}^{\perp} \cap {}^{\perp}\mathcal{F}$, then N = 0. It follows from $N \in \mathcal{T}^{\perp} \cap {}^{\perp}\mathcal{F} \subseteq \mathcal{F} \cap \mathcal{T} = \mathcal{W}$. But $\mathcal{W} \subseteq \mathcal{T}$, hence $\mathcal{A}(W', N) = 0 \ \forall W' \in \mathcal{W}$, in particular $\mathcal{A}(N, N) = 0$, i.e. N = 0.

If $\mathbb{t} = (\mathcal{T}, \mathcal{F})$ is a orthogonal pair in an abelian and locally small category \mathcal{A} , then \mathbb{t} is a torsion pair.