Variability-aware smells: Experimental study protocol

In order to collect further evidence and expand the knowledge on the proposed variability-aware smells (Poor annotation trace, Redundant annotation, Unnecessary annotation, Bad annotation name, and Lack of annotation) in projects implemented by #ifdef directives (Conditional Compilation), we present an experimental validation study protocol to be performed in an industry setting.

1. Goal

The goal of the experimental study is strengthen evidence of the proposed variability-aware smells in the context of professional software developers. Moreover, this study want to investigate if there is difference on variability-aware smells perception among the inspector profiles (software development experience and programming language).

The objectives of this experimental validation are:

Objective 1: Validate occurrences of the proposed variability-aware smells in the studied SPL projects.

Objective 2: Investigate the impact of these smells on the quality attributes Program Comprehension, Maintainability, and Evolvability.

Objective 3: Investigate if the software development experience and main programming language of the developer are related to developer's variability-aware smell detection abilities.

2. Research Question and Metrics

- RQ1. What is the developer perception and opinion about the proposed variability-aware smells? (Objective 1 and 2)
- RQ2. Is there difference in variability-aware smell detection among developer profiles? (Objective 3)
 - RQ2.1. Is there a difference in variability-aware smell detection between full and senior developers?
 - RQ2.2. Is there a difference in variability-aware smell detection between Java and Non-Java developers?

Metric 1: Precision of variability-aware smell occurrences detected per participant.

Metric 2: Effectiveness of variability-aware smell occurrences detected per participant.

Metric 3: Efficiency on variability-aware smell occurrences detection per participant.

The **Precision** of the variability-aware smell detected is calculated through Equation 1, where the *truepositivesmells* variable represents the number of true positive smells identified, and the *totalreportedsmells* variable represents the total number of variability-aware smells reported by participants.

Equation 1

 $\frac{true positive smells}{total reported smells} x 100\%$

The **Effectiveness** of the variability-aware smell detected is calculated through, where the *identifiedsmells* variable represents the number of true positive smells identified, and the *totalsmells* variable represents the total number of known variability-aware smells, based on the current variability-aware smell occurrence oracle version for each proposed smell in the SPL projects inspected.

Equation 2

 $\frac{identifieds mells}{total smells} x \ 100\%$

The **Efficiency** of the variability-aware smell detection is calculated through *Equation*Equation, where the *identifiedsmells* variable represents the number of true positive smells identified, and the *time* variable represents the total time spent to detect true positive variability-aware smells.

Equation 3

 $\frac{identifieds mells}{time}$

3. Analysis Mechanism

To undertake the experimental study research questions, the following analysis mechanisms for the collected data were adopted:

 Comparison between smell occurrences reported from participants (inspectors) of the study and smells occurrences previously recorded in the variability-aware smell oracle.

- Verification and removal of false-positive variability smells occurrences reported by the inspectors.
- Verification of new entrance of variability-aware smell occurrence not previously recorded.

4. Experiment Preparation and Procedure

The experiment instrumentation follows four basic steps, described next.

- Step 1: Variability-Aware Smell Training: in this activity, participants attended an introductory training about variability-aware smells and variability-aware smells detection.
- Step 2: Variability-Aware Smell Detection: in this step, participants review the SPL project feature models and source codes. At the end of this activity, participants send the detection report and answer a feedback form.
- Step 3: Variability-Aware Smell Inspection Reports Aggregation Analysis: in this
 activity, study researchers make an aggregation analysis in order to verify false
 positive smell occurrence and new entrance not previously recorded in smell
 occurrences oracle.

5. Experimental Design

Each participant should perform variability-aware smell detection in feature model and source code artifacts. Then, the participants will send the variability-aware smell occurrences report and answer the experiment feedback form.

5.1. Factors and Treatments

Software Development Experience

For the software development experience factor, we define two treatments: Expert developers and Novice developers.

Programming Language Experience

For the programming language experience factor, we define three treatments: Expert Java developers, Novice Java developers and Other programming language developers.

6. SPL Open Source Projects

Two SPL projects composed the set of study object in that experiment and they are distributed in two application domains (i.e., e-commerce and instant messenger). Table Table 1 summarizes the projects to be reviewed and inspected in the experimental study. All projects were implemented with annotation-based approach through #ifdef directives in Java language.

Project Domain #Features #LOC #Classes SPL e-commerce 5 20 1733 WebStore SPL Chat Instant 24 1617 8 Messenger

Table 1

7. Data Collection

In this experimental study will be collected the following data:

- Participants Background
- Variability-Aware Smell Report
- Variability-Aware Smell detection time
- Participants Opinion on Variability-Aware Smell impact

8. Data Analysis

In this experimental study will analysis data in order to:

- Remove False positives.
- Calculate Variability-Aware Smell detection Precision, Effectiveness, and Efficiency per participant.