



# Enabling Advanced Semiconductor High-Volume Manufacturing with Deep Learning

Arvind Jayaraman
Al Algorithm Engineer
KLA Ann Arbor

@ Stanford EE392b

April, 2025

#### About Me: Arvind Jayaraman

- Year joined KLA: 2019
- Education: Master's Degree in EE:Systems Univ. Of Michigan, Ann Arbor.
- Career path: Algo Engineer in Metrology division to now leading a team that enables Rapid Prototyping of AI & HPC Algos for Optical Inspection Tools.
- What I work on: Optical inspection tools
- Why I chose KLA:
  - Innovation in bringing products to market that leverage AI
  - KLA is a market leader and a great place to work!







#### KLA's Process Control Tools Power the Chip Industry Today!





LCD Screen

Cellular Phone









Cloud

Exploration





#### Today's Talk

• What is semiconductor process control?

Big data to see tiny things

• Artificial Intelligence: not hype, for real!

High Performance Computing: Making Rubber Meet the Road





### What is semiconductor process control?

#### What is a Chip?









#### How is a Chip Manufactured?







## >1000

**Process Steps** 

## 3-6 months

From Bare Wafer → Electrical Test





#### The Manufactured Devices have Complex Geometries

## Gate All Around Complex device features, film stacks More process steps, variability





#### **KLA Tools Monitor Semiconductor Manufacturing**

Process Control Enables Faster Yield Ramp & Predictable Product Delivery





Improved 🚤

Predictability

#### We Create the Most Advanced Process Control Systems in the World

#### Inspection Find Critical Defects









Statistically: Outlier Detection

1995: First ever classification system (KLA 2135) 2018: First ever physics-based DL system (KLA eSL10™)





Statistically: Measure  $\mathcal{N}$  (  $\mu$  ,  $\sigma^2$  )

1993: First ever NN-based metrology system (KLA Films) 2017+: Models enhanced by DL



#### Core Technologies and Expertise

Illumination sources



broadband plasmas, lasers, LEDs, X-rays, electron-beams





objectives, lenses, mirrors, polarizers, filters for DUV/UV/Vis/IR light, X-rays and electron-beams

**Sensors** 



image sensors, photo multiplier tubes, CMOS sensors, cameras

**Mechanics** 



precision stages, motion control, robotics

Image and data processing



high-speed data processing, high performance computing, AI/ML/DL, algorithms, computational physics



#### A KLA Tool in Action





#### A KLA Tool in Action





## 10 Billion

number of pixels collected in a  $100\mu m^2$  area with a single scan using Yellowstone™ mode



#### A KLA Tool in Action









Image: KLA

Image: Litho Workshop 2019, imec and KLA

<10NM

size of the defects that are detected





## Artificial Intelligence: not hype, for real!

#### Our Software and Algorithms

#### Classification

- Random Forests
- **Boosted Decision Trees**
- **MLPs**
- **CNNs**





#### Reference Generation

- **Conditional GANs**
- **VAEs**

#### **Natural Grouping** and Clustering

- Auto encoders
- Hand crafted features





#### **Active Research** Areas

- Physics-based ML
- Pixel CNN





### Reference Generation using GANs

Sample of Active DL R&D at KLA

#### Challenge: Inspect Patch for Defects wrt Design

Defect Patch



Circuit Design



Defect-free Image



- Manufactured circuit very different from design due to quantum effects
- How do we get a good reference to identify defects?
  - Circuit design looks too different!
  - SEM (Scanning Electron Microscope) too slow to generate ground truth for every design / layer / patch



#### Train a GAN to Generate Reference Images





#### Generated Images Are Very Close to Ground Truth

Subtle variations in patterns and imaging artifacts are faithfully reproduced



Circuit Design (Input, d)



SEM Image (Ground Truth)



Generated Image, G(d)



#### Generated Images Can Help Identify Defects





## Metrology Using Machine Learning

Sample of Active DL R&D at KLA

#### Challenge: Measure Critical Dimensions to Track Process Variation





#### Model-less vs. Model-based ML Recipe Development





- Physics-assisted Machine Learning (ML) is part of our product portfolio for optical metrology tools
- It provides both model-less ML and enhanced model-based ML for robustness and matching



#### Challenges in Metrology

■ Low sensitivity and high correlation parameters → challenging measurements

• Information in signals < information in model. DOF(Signal) < DOF(Model).</p> How do we solve this?





#### Challenging Issues Compared to Other Industry Applications

- Insufficient labeled (referenced) data
- Training samples may not cover large process variation (lack of training sample size)
- How to judge the quality of trained ML recipe for monitoring recipe robustness/process change without knowing ground truth?
- Multiple specs need to be achieved according to chip manufacturers' requirements (error control)
- Reference uncertainty





## High Performance Computing: Making Rubber Meet the Road

#### **KLA's Computation Stack**



#### **Optics**



Optical: 200-1000 nm

SEM: 1 nm



Image | Data **Processing** 



Computing stack



■ 1-50 GB / sec



**SEM Verification** 



**Optical Detection** 

**IMC Stack** 

ASIC/FPGA **Real Time** 

**Raw Input** 

**CPU Structured Data GPU** 

GPU & **CPU-SIMD Bulk processing** 

**FPGA Near Real Time** 



#### The Upside of moving Computations to GPUs



#### Moving to a Future Vendor-Agnostic SW Stack

- Performance portability is an important aspect to consider for future hardware
- OpenAl's Triton programming language has a lot of recent industry momentum
  - Python-like programming abstraction for device kernels with CUDA-like performance



- Leveraging Compilers based on MLIR framework may deliver the holy-grail promise!
  - Progressive lowering enables data-science abstraction to reach perf of domain-specific hand-tuning







#### Our circle of AI & HPC



#### In Conclusion

Semiconductors are becoming an even more critical part of the global economy

KLA's semi inspection & metrology tools enable continued scaling of Moore's law

Inspection & Metrology requires cutting edge AI + HPC technologies to keep progressing





#### Why Join Us?

#### **INVESTING IN INNOVATION**

- We are committed to solving the most daunting technical challenges through innovation.
- We make large investments into research and development.



