MTXQCvX - Part1: pSIRM *

test test

Contents

MTXQCvX part1	1
Summary	1
General project settings	1
Data import	
MTXQC - GC-MS perfomance	2
Alkane standards	2
Data normalization	
Derivatization check	5
HeatMap - GC-MS performance	
MTXQC - Quantitative metabolomics	5
Generation of ManualQuantTable: Quant-Standards (Qstd)	5
Generation of ManualQuantTable: Additional calibration curves (Qadd)	
Determination of calibration curves	
Evaluation of experimental data	
HeatMap - Quantification	
MTXQC - Stable isotope incorporation	11
NA count	11
3-Lowest of MID	11
3-Lowest of MID	
¹³ C-Isotope incorporation	
MTXQC Heatmap compilation: Quantifitation and stable isotope incorporation	13

This document provides an evaluation of GC-MS derived metabolomics data. It assesses GC-MS performance, the absolute quantification and the stable isotope incorporation. ADD HERE FURTHER PROJECT RELEVANT FACTS.

Keywords: MTXQCvX, GC-MS, metabolomics, data analysis and processing

MTXQCvX part1

Summary

** Summarise your major findings and important details. DO NOT skip this part.**

General project settings

##

Attaching package: 'gplots'

^{*}Kempa Lab - Template MTXQCvX part1 - processed 'September 21, 2018'

```
## The following object is masked from 'package:stats':
##
##
       lowess
Data import
## MTXQCparams.csv imported!
## Metmax_params.csv imported.
## Experimental setup does not include additional quantification standards!
## File imported! annotation.csv
## File imported! Sample_extracts.csv
## File imported! InternalStandard.csv
## File imported! Alcane_intensities.csv
## File imported! MassSum-73.csv
## File imported! PeakDensities-Chroma.csv
## File imported! quantMassAreasMatrix.csv
## File imported! pSIRM_SpectraData.csv
## File imported! DataMatrix.csv
## Correct column names in file sample_extracts.csv
## Correct column names in sample annotation
## Input files checked!
## Annotation and Sample_extract.csv correctly imported!
MTXQC - GC-MS perfomance
Alkane standards
## QC-metric successfully exported: alkanes
Data normalization
Internal standard cinnamic acid
## QC-metric successfully exported: cinacid
Sum of Area of annotated metabolites per file
## Files with less than 50% of max(N) should be excluded from SumofArea normalisation.
## QC-metric successfully exported: sumofarea
```


Figure 1: Alkane intensities summarised per each file. Drop of intensities shows questionable files.

Figure 2: Quantification of internal extraction standard

Count: Annotated metabolites per file

Figure 3: Count N: Annotated intermediates per file. Evaluate careful for SumOfArea normalisation.

Batch_Id	n_50
f16328ba	5.5

Derivatization check

QC-metric successfully exported: mz73

HeatMap - GC-MS performance

Table 2: Summary of parameter evaluating GC-Performance

qc_metric	title
0.9449839	alkanes
0.6998855	cinacid
0.9533990	mz73
0.8627827	sumofarea
	0.9449839 0.6998855 0.9533990

Export of GC-Performance values done!

MTXQC - Quantitative metabolomics

Figure 4: Total peak area of all annotated metabolite per file.

Figure 5: Calibration curves: Nb. of data points.

Figure 6: Limits of quantifiable range per metabolite

Fraction of measurements regarding quantification curve

Figure 7: Distribution of data points regarding linear range of the calibration curve

- ## The sample factor for that experimental setup: 1

Quantification range and limits

Position of data points regarding calibration curves evaluated.

Absolute quantification samples

Normalisation of absolute quantities

Absolute quantification and normalisation have been performed: CalculationFileData.csv

Concentration (pmol)

HeatMap - Quantification

Proportion of NA counts (in comparison to Backup MID)

Figure 8: Missing values in mass isotopomer distributions (MID).

MTXQC - Stable isotope incorporation

NA count

3-Lowest of MID

3-Lowest of MID

¹³C-Isotope incorporation

No data for t=0 in the experimental setup defined!

Figure 9: MID quality

Heatmap Isotope incorporation

MTXQC Heatmap compilation: Quantifitation and stable isotope incorporation

End of the document

Absolute quantification and stable isotope incorporation

Figure 10: MTXQCvX - Heatmap overview