EE2000 Logic Circuit Design

Lecture 1 – Logic Function and Boolean Algebra

Prove that the above Circuit (a) is equivalent to Circuit (b).

Solution by Boolean Algebra Simplification

$$AB + A(B+C) + B(B+C)$$

 $AB + AB + AC + BB + BC$
 $AB + AB + AC + B + BC$
 $AB + AC + B + BC$
 $AB + AC + B$
 $B+BC=B$
 $B+BC=B$
 $B+BC=B$
 $Absorption$

Simplify the following function.

$$f(w, x, y, z) = wxy' + w'y'z + wx'y' + xy'z + w'z$$

$$f(w,x,y,z) = wxy' + w'y'z + wx'y' + xy'z + w'z$$

$$= wxy' + wx'y' + xy'z + w'z$$
 adsorption
$$= wy' + w'z + xy'z$$
 adjacency

Term 1	Term 2	Consensus Term
wy'	w'z	y'z

$$= wy' + w'z + xy'z + y'z$$
Add the consensus term
$$= wy' + w'z + y'z \quad \text{adsorption}$$

$$= wy' + w'z$$
Remove the

consensus term

48

- 1. Derive the Boolean functions to describe the operations of the logic circuit as shown.
- 2. Simplify the functions and draw the circuit.

$$F = AB$$
 $G = AB(B + C)'$
 $= ABB'C'$ deMorgan
 $= 0$ Complement
 $H = AB(B + C)' + D = D$

Work out the Boolean functions of the following circuits. Which standard logic gate does each of them represent?

$$F = \{ [x(xy)']'[y(xy)']' \}'$$

$$= [x(xy)']'' + [y(xy)']''$$

$$= x(xy)' + y(xy)'$$

$$= x(x' + y') + y(x' + y')$$

$$= xy' + yx' = x \oplus y$$

Inputs			Output
x	у	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$f(x, y, z) = \sum m(1,3,6,7) = \prod M(0,2,4,5)$$

$$f(x,y,z) = x'y'z + x'yz + xyz' + xyz$$

= $x'z + xy$

