Aula 12: Circuitos com BJTs – Parte 1

Objetivos

- Aprender a testar BJTs e identificar suas regiões de operação.
- Implementar BJTs como chave eletrônica.

Lista de material

- Osciloscópio, gerador de sinais e multímetro;
- Resistores: 100Ω , $1,5 k\Omega$, $15 k\Omega$, $680 k\Omega$;
- Lâmpada de 12 V;
- Transistor BC547B.

Instruções

Roteiro da experiência

1) Teste do transistor BJT.

- a) Posicione a chave seletora do multímetro na escala de medir diodo e faça os seguintes testes preenchendo a Tabela 1:
 - A. Coloque a ponteira vermelha (positiva) na base (B) e a ponteira preta (negativa) no emissor (E). Espera-se uma tensão próxima de 0,7 V.
 - B. Coloque a ponteira preta (negativa) na base (B) e a ponteira vermelha (positiva) no emissor (E). Espera-se a indicação de circuito aberto.
 - C. Coloque a ponteira vermelha (positiva) na base (B) e a ponteira preta (negativa) no coletor (C). Espera-se uma tensão próxima de 0,7 V.
 - D. Coloque a ponteira preta (negativa) na base (B) e a ponteira vermelha (positiva) no coletor (C). Espera-se a indicação de circuito aberto.
 - E. Coloque a ponteira vermelha (positiva) no coletor (C) e a ponteira preta (negativa) no emissor (E). Espera-se a indicação de circuito aberto.
 - F. Coloque a ponteira preta (negativa) no coletor (C) e a ponteira vermelha (positiva) no emissor (E). Espera-se a indicação de circuito aberto.
- b) Posicione a chave seletora do multímetro na escala de medir hfe (β), coloque o transistor na posição indicada pelo multímetro e meça o ganho β . Experimente inverter o emissor e o coletor para medir o ganho β_R .

Tabela 1

Teste	Confere?	Teste	Confere?
A		D	
В		Е	
С		F	

2) Considere o circuito abaixo, em que V_{cc} = 5 V e R_c = 1,5 $k\Omega$.

- a) Identifique no circuito acima os três terminais do transistor: base (B), emissor (E), coletor (C). Rotule também as tensões V_{BE} (base-emissor) e V_{CE} (coletor-emissor), assim como as tensões V_{RB} (queda de tensão no resistor R_B) e V_{RC} (queda de tensão no resistor R_C).
- b) Monte o circuito, usando R_B = 15 k Ω . Preencha a Tabela 2 realizando medições com o multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o transistor se encontra. Justifique na janela abaixo.

c)	Faça agora R_B = 680 k Ω . Novamente preencha a Tabela 2 realizando medições com o
	multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o
	transistor se encontra. Justifique na janela abaixo.

d) Desconecte o resistor R_B = 680 $k\Omega$ de V_{cc} e conecte ao terra, conforme a figura abaixo. Novamente preencha a Tabela 2 realizando medições com o multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o transistor se encontra. Justifique na janela abaixo.

e) Faça novamente R_B = 15 k Ω , conectado a V_{cc} , mas inverta o coletor com o emissor, conforme a figura abaixo. Preencha a Tabela 2 realizando medições com o multímetro e identifique a região de operação em que o transistor se encontra. Justifique na janela abaixo.

- f) Estime o valor de β a partir das medidas obtidas. (Dica: lembre-se que na RAD $I_C = \beta I_B$)
- g) Estime o valor de β_R a partir das medidas obtidas. (Dica: lembre-se que na RAR $I_C = \beta_R I_B$)

Tabela 2

	$I_{\rm B} = V_{\rm RB}/R_{\rm B}$	V_{BE}	$I_{\rm C} = V_{\rm RC}/R_{\rm C}$	V _{CE}	Região
$R_B = 15 \text{ k}\Omega^{\text{b}}$					
$R_B = 680 \text{ k}\Omega^{c}$					
$R_B = 680 \text{ k}\Omega^{d}$					
$R_B = 15 \text{ k}\Omega^{e)}$					

3) Chave Eletrônica.

a) Considerando que R_C = 100 Ω , que o sinal de controle v_{co} pode ser 0 ou 5 V e que a resistência interna da lâmpada R_L é de aproximadamente 200 Ω a 40 mA, escolha um valor adequado de R_B para que o transistor funcione como chave eletrônica. Lembrando que:

$$\begin{split} I_{B} > & \frac{I_{Csat}}{\beta} \\ I_{B} \approx & \frac{V_{co} - 0.7}{R_{B}} \\ I_{Csat} \approx & \frac{V_{cc} - 0.2}{R_{C} + R_{L}} \end{split}$$

b) Monte o circuito com \mathbf{v}_{co} = 5 \mathbf{V} e o resistor \mathbf{R}_B calculado. Meça \mathbf{I}_B , \mathbf{I}_C , \mathbf{V}_L e \mathbf{V}_{CE} e preencha a Tabela 3.

c) Faça agora v_{co} = 0 V. Meça novamente I_B , I_C , V_L e V_{CE} e preencha a Tabela 3.

d) Com \mathbf{v}_{co} = 5 \mathbf{V} , utilize outros valores \mathbf{R}_B (que mantenham a operação na região de saturação) e observe a variação na tensão \mathbf{V}_{CE} . Compare com a curva I_C x V_{CE} estudada em aula.

Tabela 3

	I_B	I_{C}	$V_{\rm L}$	\mathbf{V}_{CE}
$v_{co} = 5 V$				
$v_{co} = 0 V$				