OCR

Capcha recognition and other problems

Области применения OCR

- Распознавание автомобильных номеров
- Распознавание документов
- Создание электронных версий бумажных документов
- Перевод текста по фото

•

Самый первый в OCR

Пионер!!!!

Густав Таушек

Эпоха до DL

- Сегментация изображения, выделение отдельных слов/символов
- Препроцессинг бинаризация, морфологические операции, выделение признаков (любого рода)
- Классические методы МК (KNN, SVM, Bayesian)
- N-граммы вместо NLP

Kannada Character Recognition System: A Review

Качество сканирования

Вопросы образования и деятельности органов автеся актов фанданского состания за территориих орбанетов Российской Адариации реше отста орбанетов Российской Адариации самостивации образования реше отста орбанетов Российской Адариации самостивации образования от пределения образования образовани

Применяем DL "в лоб"

- Обучаем мультиклассовый детектор
- Сортируем боксы по оси х
- Собираем ответ

Применяем DL "в лоб"

Распознавание 90К слов

Reading Text in the Wild with Convolutional Neural Networks

Какие еще есть идеи?

Какие еще есть идеи?

Как это будет работать

CTC Loss Connectionist Temporal Classification

- Решение seq2seq задач
- Не требуется выравнивание данных (Weakly aligned data)
- Задачи ASR / OCR

Что мы хотим получить?

$$X \to Y$$

Speech recognition

Optical character recognition (OCR)

Hallo world"

Компоненты системы с CTC Loss

- 1. Visual feature extraction (CNN)
- 2. Sequential modeling based on visual feature sequence (RNN)
- 3. CTC layer to map input sequence (visual feature sequence) to output sequence (character sequence)

Формальности

- Конечный алфавит $A = \{a, b, c ... z, -\}$
- Целевая последовательновть Y = (a, b, c)
- *X* изображение
- Выход нейронной сети $f_{\theta}(X) = M$

$$M = \begin{pmatrix} P(a)_{t1} & \cdots & P(a)_{tn} \\ \vdots & \ddots & \vdots \\ P(-)_{t1} & \cdots & P(-)_{tn} \end{pmatrix}$$

Типовая архитектура

Visual feature extraction

Типовая архитектура

Sequential modeling based on visual feature sequence (RNN)

	x1	x2	х3	•••	xn
P(A)	0.01	0.1	0.05	0.1	0.009
P(B)	0.2	0.05	0.07	0.005	0.01
	0.8	0.006	0.005	0.001	0.3
P(-)	0.03	0.006	0.22	0.2	0.004

Типовая архитектура

CTC layer to map input to output sequence

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

Признаки строго соответствуют участку изображения

Пример

	x1	x2	х3	x4	x 5	х6	x7	x8
P(I)	0.8	0.7	0.1	0.2	0.0258	0.175	0.1	0.075
P(M)	0.05	0.075	0.1	0.13	0.0258	0.3	0.1	0.05
P(O)	0.05	0.075	0.1	0.13	0.0258	0.175	0.1	0.0416
P(T)	0.05	0.075	0.1	0.4	0.0258	0.175	0.1	0.0416
P(-)	0.05	0.075	0.6	0.13	0.5	0.175	0.6	0.0416

Blank

• Blank – спецсимвол, для разделения букв (не пробел!)

Intellectual Information Technologies IIT [IIT] "IT"

CTC Loss Собираем ответ

	x1	x2	х3	x4	x5	х6	x7	x8
P(I)	0.8 —	0.7	0.1	0.2	0.0258	0.175	0.1	0.13
P(M)	0.05	0.075	0.1	0.13	0.0258	0.3	0.1	0.1
P(O)	0.05	0.075	0.1	0.13	0.0258	0.175	0.1	0.5
P(T)	0.05	0.075	0.1	0.4	0.0258	0.175	0.1	0.13
P(-)	0.05	0.075	0.6	0.13	0.5	0.175	0.6	0.13

$$P("II-T-M-O") = p_I^1 p_I^2 p_-^3 p_T^4 p_-^5 p_M^6 p_-^7 p_O^8$$

CTC Loss Примеры путей

$$P("II-T-M-O") = p_I^1 p_I^2 p_-^3 p_T^4 p_-^5 p_M^6 p_-^7 p_O^8 \rightarrow "ITMO"$$

$$P("IT-MM--O") = p_I^1 p_T^2 p_-^3 p_M^4 p_M^5 p_-^6 p_-^7 p_O^8 \rightarrow "ITMO"$$

CTC Loss Примеры путей

$$P("II-T-M-O") = p_I^1 p_I^2 p_-^3 p_T^4 p_-^5 p_M^6 p_-^7 p_O^8 \rightarrow "ITMO"$$

$$P("IT-MM--O") = p_I^1 p_T^2 p_-^3 p_M^4 p_M^5 p_-^6 p_-^7 p_O^8 \rightarrow "ITMO"$$

CTC Loss Вероятность лейблига Y

$$p(y|x) = \sum_{x_{\pi} \in B^{-1}(y)} p(\pi|x)$$

 π — путь

х – изображение

y — лейбел (последовательность)

B — функция сжатия

Вероятность лейблинга – сумма вероятностей всех путей, которые ведут в данный лейбел

CTC Loss

 $CTC\ Loss = -\ln P("ITMO")$

$$N_{paths} = |A|^k$$

k — количество шагов RNN

CTC Loss Как считать

CTC Loss Как считать

 $\alpha_t(s)$ — суммарная вероятность всех подпутей для символа с индексом s в момент времени t

CTC Loss Как считать

$$\alpha_3(4) = p("-IT") + p("IIT") + p("I-T") + p("ITT")$$

Подсчет вероятностей для произвольной ячейки

1. В текущий момент времени прогнозируем blank

$$\alpha_t(s) = (\alpha_{t-1}(s) + \alpha_{t-1}(s-1)) \cdot p_{seq(s)}^t \qquad \alpha_3(3) = (\alpha_2(3) + \alpha_2(2))p_{-}^3$$

Подсчет вероятностей для произвольной ячейки

2. Символ, аналогичный тому, который был два шага назад

$$\alpha_t(s) = (\alpha_{t-1}(s) + \alpha_{t-1}(s-1)) \cdot p_{seq(s)}^t \qquad \alpha_5(4) = (\alpha_4(4) + \alpha_4(3)) \cdot p_I^5$$

Подсчет вероятностей для произвольной ячейки

3. Все остальные случаи

$$\alpha_t(s) = \left(\alpha_{t-1}(s) + \alpha_{t-1}(s-1) + \alpha_{t-1}(s-2)\right) \cdot p_{seq(s)}^t \qquad \alpha_3(4) = \left(\alpha_2(4) + \alpha_2(3) + \alpha_2(2)\right) \cdot p_T^3$$

Итоговая вероятность

Forward pass done!

$$p("ITMO") = \alpha_8(8) + \alpha_8(9)$$
 $CTC loss = -\ln p("ITMO") = -\ln(\alpha_8(8) + \alpha_8(9))$

Backward pass

 $\beta_t(s)$ — вероятность всех подпутей, которые приводят к ground true лейбел

$$\beta_6(7) = p(" - O") + p(" - OO") + p(" - O - ")$$

Backward pass

Для вычисления $\beta_t(s)$:

- 1. Изменяем связи на противоположные
- 2. Применяем ту же логику, что и для подсчета $\alpha_t(s)$

Backward pass

Для вычисления $\beta_t(s)$:

- 1. Изменяем связи на противоположные
- 2. Применяем ту же логику, что и для подсчета $\alpha_t(s)$

Вероятность пути через ячейку

$$\alpha_5(2) = p("----I") + p("---II") + p("--III") + p("-IIII") + p("IIII")$$

$$\beta_5(2) = p("ITMO") = p_I^5 \cdot p_T^6 \cdot p_M^7 \cdot p_O^8$$

Вероятность пути через ячейку

$$\frac{lpha_5(2) \cdot eta_5(2)}{p_I^5}$$
 — сумма верояностей всех путей, прохожящих через ячейку

Вероятность лейблинга в момент времени

$$p("ITMO") = \sum_{s=1}^{4} \frac{\alpha_2(s) \cdot \beta_2(s)}{p_{seq(s)}^2}$$

Backprop

$$\frac{\partial \left(-\ln \left(p("ITMO")\right)\right)}{\partial y_k^t} = -\frac{1}{p("ITMO")} \cdot \frac{\partial p("ITMO")}{\partial y_k^t}$$

$$\frac{\partial \left(-\ln \left(p("ITMO")\right)\right)}{\partial y_k^t} = -\frac{1}{y_k^{t^2}} \cdot \sum_{s:seq(s)=k} \alpha_t(s) \cdot \beta_t(s)$$

Заключение

Вычисляем α для вычисления ctc loss Вычисляем θ – можно посчитать градиенты

Возможные улучшения

• Накрутить поверх распознавания Encoder-Decoder

Хороший пример по данной теме — соревнование 2020 года "Digital Peter: recognition of Peter the Great's manuscripts"

Baseline – модель с CTC loss, улучшение – приделать трансформер

Ссылка на гитхаб соревнования

Еще более новые подходы

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Encoder – Transformer-based vision model Decoder – NLP model

Библиотека с реализацией https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder

Трансформеры, транс... Я не понимаю даже, что это такое

Владимир Путин президент России

Полезные ссылки

- https://www.youtube.com/watch?v=SAfJ6nP2rrl (How to build end-to-end recognition system (Part 1): best practices [RU])
- https://www.youtube.com/watch?v=eYIL4TMAeRI (How to build end-to-end recognition system (Part 2): CTC Loss [RU]
- https://www.youtube.com/watch?v=ZPNsYTs2Zx4 (Как нейронная сеть распознает текст? Лекция 1 по Advanced Computer Vision)
- https://www.youtube.com/watch?v=F2ERzhLFeuo (Распознавание текста. Обратное распространение через СТС Loss. Лекция 2 по Advanced Computer Vision)
- https://cseweb.ucsd.edu/classes/wi19/cse291-g/student_presentations/CTC_OCR.pdf (Connectionist Temporal Classification (CTC) with application to Optical Character Recognition)
- https://www.audiolabs-erlangen.de/content/05-fau/professor/00-mueller/02teaching/2021s_dla/2021_DLA-09_ZalkowMueller_CTC.pdf (Connectionist Temporal Classification (CTC) Loss)
- http://www.machinelearning.ru/wiki/images/c/c6/Digital_Signal_Processing%2C_lecture_7.pdf (Распознавание речи. Современные подходы)
- https://ogunlao.github.io/blog/2020/07/17/breaking-down-ctc-loss.html (Breaking down the CTC Loss)

Спасибо за внимание!