Einführung in die Theoretische Informatik Zusammenfassung

Efe Kamasoglu

 $\mathrm{May}\ 6,\ 2023$

1 Grundbegriffe und Grammatiken

1.1 Grundbegriffe

- Alpabet Σ , endliche Menge
- Wort/String wüber $\Sigma,$ endliche Menge von Zeichen aus Σ
- |w|, Länge des Wortes w
- ϵ , das leere Wort mit der Länge 0
- Wörter u und v, uv ist ihre Konkatenation
- Wort w, w^n definiert durch:

$$- w^0 = \epsilon$$

$$- w^{n+1} = ww^n$$

$$-$$
 Beispiel: $(ab)^3 = ababab$

- Σ^* , Menge aller Wörter über Σ
- Teilmenge $L \subseteq \Sigma^*$, formale Sprache

- Beispiel:
$$\emptyset$$
, $\{\epsilon\}$, $L_1 = \{\epsilon, ab, aabb, aaabbb, ...\} = \{a^nb^n \mid n \in \mathbb{N}\}$

1.2 Operationen auf Sprachen

Sprachen $A, B \subseteq \Sigma^*$

• Konkatenation: $AB = \{uw \mid u \in A \land w \in B\}$

$$- \textit{Beispiel: } \{ab, b\}\{a, bb\} = \{aba, abbb, ba, bbb\}$$

$$- A^n = \{w_1...w_n \mid w_1, ..., w_n \in A\} = \underbrace{A...A}_{}$$

$$-A^0 = {\epsilon}, A^{n+1} = AA^n$$

$$-A^* = \{w_1...w_n \mid n \ge 0 \land w_1, ..., w_n \in A\} = \bigcup_{n \in \mathbb{N}} A^n$$

*
$$A^*$$
enthält ϵ immer

$$-A^{+} = AA^{*} = \bigcup_{n>1} A^{n}$$

*
$$\epsilon \in A \ gdw. \ \epsilon \in A^+$$

• Kartesisches Produkt: $A \times B$

- Beispiel:
$$\{ab, b\} \times \{a, bb\} = \{(ab, a), (ab, bb), (b, a), (b, bb)\}$$

- Rechenregeln über Sprachen:
 - Für alle $A: \epsilon \in A^*$
 - $-\ \epsilon \not \in \emptyset$

$$- \emptyset^* = \{\epsilon\} = \emptyset^0$$

$$- A\{\epsilon\} = \{\epsilon\}A = A$$

$$- A\emptyset = \emptyset A = \emptyset$$

$$- A \times \emptyset = \emptyset$$

$$- A(B \cup C) = AB \cup AC$$

$$- (A \cup B)C = AC \cup BC$$

$$- A(B \cap C) = AB \cap AC \text{ gilt i.A. nicht}$$

$$- A(B \setminus C) = AB \setminus AC \text{ gilt i.A. nicht}$$

1.3 Grammatiken

• Grammatik, 4-Tupel $G = (V, \Sigma, P, S)$

 $-A^*A^* = (A^*)^* = A^*$

- -V, endliche Menge von **Nichtterminalen**
- $-\Sigma$, endliche Menge von **Terminalen**, disjunkt von V
- $-P\subseteq (V\cup\Sigma)^*\times (V\cup\Sigma)^*$, Menge von **Produktionen**
- $-S \in V$, Startsymbol
- Eine Grammatik G induziert eine **Ableitungsrelation** \to_G auf Wörtern über $V \cup \Sigma$:
 - $-\alpha \to \alpha'$ gdw. es eine Regel $\beta \to \beta'$ in P und Wörter α_1, α_2 gibt, so dass $\alpha = \alpha_1 \beta \alpha_2 \ \land \ \alpha' = \alpha_1 \beta' \alpha_2$
- Eine Sequenz $\alpha_1 \to_G \alpha_2 \to_G ... \to_G \alpha_n$ ist eine Ableitung von α_n aus α_1 .
- Wenn $\alpha_1 = S$ und $\alpha_n \in \Sigma^*$, dann **erzeugt** G das Wort α_n . Erzeugte Wörter bestehen nur aus **Terminalzeichen**.
- Die Sprache von G ist die Menge aller Wörter (Σ^*) , die von G erzeugt werden: L(G)
- Chomsky Hierarchie: Eine Grammatik G ist vom
 - **Typ 0** immer
 - Typ 1 falls für jede Produktion $\alpha \to \beta$ ausser $S \to \epsilon$ gilt $|\alpha| \le |\beta|$
 - Typ ${\bf 2}$ falls Gvom Typ1ist und für jede Produktion $\alpha \to \beta$ gilt $\alpha \in V$
 - **Typ 3** falls G vom Typ 2 ist und für jede Produktion $\alpha \to \beta$ ausser $S \to \epsilon$ gilt $\beta \in \Sigma \cup \Sigma V$
 - Typ $3 \subset$ Typ $2 \subset$ Typ $1 \subset$ Typ 0
 - $-L(\text{Typ }3) \subset L(\text{Typ }2) \subset L(\text{Typ }1) \subset L(\text{Typ }0)$

- Grammatiken und Sprachklassen:
 - Typ 3, Rechtslineare Grammatik, Reguläre Sprachen
 - Typ 2, Kontextfreie Grammatik, Kontextfreie Sprachen
 - Typ 1, Kontextsensitive Grammatik, Kontextsensitive Sprachen
 - Typ 0, Phrasenstrukturgrammatik, Rekursiv aufzählbare Sprachen

2 Reguläre Sprachen

2.1 Deterministische endliche Automaten (DFA)

- DFA, 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$
 - Q, endliche Menge von **Zuständen**
 - $-\Sigma$, endliches **Eingabealphabet**
 - $-\delta: Q \times \Sigma \to Q$, totale **Übergangsfunktion**
 - $-q_0 \in Q$, ein **Startzustand**
 - $-F \subseteq Q$, endliche Menge von **Endzuständen**
- Die von DFA M akzeptierte Sprache ist $L(M) = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F\}$, wobei $\hat{\delta}: Q \times \Sigma^* \to Q$ induktiv definiert durch:
 - $-\delta(q,a)$, Zustand, den man aus q mit einem **Zeichen** a erreicht
 - $\hat{\delta}(q,w),$ Zustand, den man aus qmit einem Wort werreicht
 - $-\hat{\delta}(q,\epsilon) = q$
 - $-\hat{\delta}(q, aw) = \hat{\delta}(\delta(q, a), w)$ für $a \in \Sigma, w \in \Sigma^*$

2.2 Nicht-Deterministische endliche Automaten (NFA)

- NFA, 5-Tupel $N=(Q,\Sigma,\delta,q_0,F)$
 - $-Q, \Sigma, q0$ und F wie beim DFA
 - $-\delta: Q \times \Sigma \to \mathcal{P}(Q)$, wobei $\mathcal{P}(Q)$ Menge aller Teilmengen von Q

- Die von NFA N akzeptierte Sprache ist $L(N) = \{w \in \Sigma^* \mid \hat{\bar{\delta}}(\{q_0\}, w) \cap F \neq \emptyset\}$, wobei
 - $-\ \overline{\delta}(S,a)=\bigcup_{q\in S}\delta(q,a),$ Menge aller Zustände, die man von einem Zustand in Saus mit einem **Zeichen** aerreicht
 - $\bar{\bar{\delta}}(S,w),$ Menge aller Zustände, die man von einem Zustand in S aus mit einem Wort werreicht
 - $-\overline{\delta}: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$
 - $-\hat{\overline{\delta}}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$

2.3 Rechtsline are Grammatik \rightarrow NFA

- 1. Füge einen Zustand für jedes Nichtterminal, Startsymbol wird zum Startzustand
- 2. Füge einen Endzustand für jedes Terminal, falls es $S \to \epsilon$ gibt, dann Startzustand ist auch ein Endzustand
- 3. Für jede Kombination $Y \to aX$ füge eine Kante von Ynach Xmit dem Zeichen a
- 4. Für jede Kombination $Y \to a$ füge eine Kante von Ynach dem Endzustand mit dem Zeichen a

Beispiel:

2.4 NFA \rightarrow DFA, Potenzmengenkonstruktion

Für jede NFA mit n Zuständen kann der DFA max bis zu 2^n Zustände haben.

- 1. Für alle Zustände wiederhole (beginnend mit Startzustand q_0):
 - (a) Bestimme wohin man mit welcher Kante geht
 - (b) Erzeuge neue Zustände durch Vereinigung der auf der rechten Seite stehenden Zuständen mit der selben Kanten, verbinde diese
 - (c) Mindestens einer von den Zuständen, die in dem neuen Zustand sind, ist ein Endzustand \rightarrow der neue Zustand wird ein Endzustand

Beispiel:

2.5 ϵ -NFA

• Ein NFA mit ϵ -Übergängen ist ein NFA mit $\epsilon \not\in \Sigma$ und $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$

2.6 ϵ -NFA \rightarrow NFA

1. Lösche überflüssige Zustände:

2. Verbinde die Zustände in der Form mit einer einzigen Kante:

- 3. Lösche nicht erreichbare Zustände
- 4. Falls ϵ in der Sprache ist, dann mache den Startzustand Endzustand

2.7 Reguläre Ausdrücke (REs)

- Reguläre Ausdrücke sind induktiv definiert:
 - _ 0
 - $-\epsilon$
 - Für jedes $a \in \Sigma$
 - Wenn α , β RE, auch:

$$-\alpha\beta$$
$$-\alpha \mid \beta = \alpha + \beta$$
$$-\alpha^*$$

- *, Kleene'sche Iteration
- Für RE γ ist die Sprache induktiv definiert:

$$-L(\emptyset) = \emptyset$$

$$-L(\epsilon) = \{\epsilon\}$$

$$-L(a) = \{a\}$$

$$-L(\alpha\beta) = L(\alpha)L(\beta)$$

$$-L(\alpha \mid \beta) = L(\alpha) \cup L(\beta)$$

$$-L(\alpha^*) = L(\alpha)^*$$

- $\alpha \equiv \beta$ gdw. $L(\alpha) = L(\beta)$
- Rechenregeln über REs:
 - Null und Eins Lemma:

$$- \emptyset \mid \alpha \equiv \alpha \mid \emptyset \equiv \alpha$$

$$- \emptyset \alpha \equiv \alpha \emptyset \equiv \emptyset$$

$$- \epsilon \alpha \equiv \alpha \epsilon \equiv \alpha$$

$$- \emptyset^* \equiv \epsilon$$

$$- \epsilon^* \equiv \epsilon$$

- Assoziativität:
 - $(\alpha \mid \beta) \mid \gamma \equiv \alpha \mid (\beta \mid \gamma)$ - $\alpha(\beta\gamma) \equiv (\alpha\beta)\gamma$
- Kommutativität:

-
$$\alpha \mid \beta \equiv \beta \mid \alpha$$

Distributivität:

-
$$\alpha(\beta \mid \gamma) \equiv \alpha\beta \mid \alpha\gamma$$

- $(\beta \mid \gamma)\alpha \equiv \beta\alpha \mid \gamma\alpha$

- Idempotenz:

-
$$\alpha \mid \alpha \equiv \alpha$$

- Stern Lemma:
 - $\epsilon \mid \alpha \alpha^* \equiv \alpha^*$
 - $\alpha^* \alpha \equiv \alpha \alpha^*$
 - $(\alpha^*)^* \equiv \alpha^*$

2.8 RE $\rightarrow \epsilon$ -NFA

- 1. Wende folgende Ersetzungsregeln an
- 2. Wende folgende Transformationsregeln an

Konkatenation: $q \xrightarrow{\gamma_1 \gamma_2} p \xrightarrow{} q \xrightarrow{\gamma_1} \xrightarrow{\gamma_2} p$

Auswahl: $q \xrightarrow{\gamma_1 \mid \gamma_2} p \xrightarrow{} q \xrightarrow{\gamma_1} p$

Iteration: $q \xrightarrow{\gamma^*} p \longrightarrow q \xrightarrow{\epsilon} p$

Beispiel:

2.9 ϵ -NFA \rightarrow RE

- 1. Hat Startzustand q_1 eingehende Übergänge, füge einen neuen Startzustand q_0 mit einem ϵ -Übergang nach q_1
- 2. Füge einen neuen Endzustand q_3 und ϵ -Übergänge nach q_3 von allen Endzuständen (q_2 in diesem Beispiel)

3. Wende die Transformationsregeln von 2.8 an, aber umgekehrt

Beispiel:

2.10 Ardens Lemma

• Sind A, B, X Sprachen mit $\epsilon \notin A$, so gilt:

$$X = AX \cup B \Longrightarrow X = A^*B$$

• Sind α, β, X REs mit $\epsilon \notin L(\alpha)$, so gilt:

$$X \equiv \alpha X \mid \beta \Longrightarrow X \equiv \alpha^* \beta$$

• Bemerkungen:

$$- \ X \equiv X\alpha \mid \beta \Longrightarrow X \equiv \beta\alpha^*$$

- $-X \equiv \alpha X \mid \beta \text{ für } \epsilon \in L(\alpha)$
 - * hat keine eindeutige Lösung: jede Sprache $B\subseteq X$ ist Lösung
 - * <u>Beispiel:</u> für $\alpha = \epsilon$ und $\beta = b$ kann X = b oder $X = a \mid b$ oder $X = aba \mid b$
- $-X \equiv X \mid aX$
 - * hat keine eindeutige Lösung: $X = \emptyset$ oder $X = \Sigma^*$ oder $X = a^*$
- $-X \equiv \alpha X \text{ für } \epsilon \notin L(\alpha)$
 - * hat eine eindeutige Lösung: $X = \emptyset$
- $-X \equiv \alpha X \text{ für } \epsilon \in L(\alpha)$
 - * hat keine eindeutige Lösung: $X = \Sigma^*$ oder $X = ab^*a$
- $-X \equiv aXb \mid \epsilon$
 - * hat keine reguläre Lösung: X = L für $L = \{a^n b^n, n \ge 0\}$
- $-X \equiv abX \mid \epsilon$
 - * hat eine eindeutige Lösung: $X = (ab)^* \epsilon = (ab)^*$

2.11 FA \rightarrow RE mittels Ardens Lemma

- 1. FA als Gleichungssystem schreiben
 - für jeden Endzustand X_f füge $X_f \equiv \epsilon$ ein
 - \bullet für jeden Zustand X mit

mache $X \equiv aX_1$

- 2. Gleichungen einsetzen und damit eliminieren
- 3. Rechenregeln über REs und Ardens Lemma verwenden

2.12 Konversionen bezüglich regulärer Sprachen

 $\mathsf{RE} \to \epsilon\text{-NFA}$: RE der Länge $n \leadsto O(n)$ Zustände

 $\epsilon\text{-NFA} \to \mathsf{NFA} \colon \quad Q \leadsto Q$

 $\begin{array}{ll} \mathsf{NFA} \to \mathsf{DFA} \colon & n \; \mathsf{Zust"ande} \leadsto O(2^n) \; \mathsf{Zust"ande} \\ \mathsf{NFA} \to \mathsf{RE} \colon & n \; \mathsf{Zust"ande} \leadsto \mathsf{RE} \; \mathsf{der} \; \mathsf{L"ange} \; O(3^n) \end{array}$

2.13 Abschlusseigenschaften regulärer Sprachen

Seien $R, R_1, R_2 \subseteq \Sigma^*$ reguläre Sprachen, dann sind auch

- R_1R_2
- $R_1 \cup R_2, R_1 \cap R_2, R_1 \setminus R_2$
- \overline{R} bzw. $\Sigma^* \setminus R$
- R*
- R^R (Spiegelung von R)

2.14 Komplementierung \overline{R} bezüglich FAs

- Für DFAs: Vertauschen von Endzuständen und Nicht-Endzuständen
- Für NFAs: funktioniert das Vertauschen nicht

2.15 Schnitt zweier DFAs, Produktkonstruktion

- Sind M_1 und M_2 DFAs. Dann ist der **Produkt-Automat M** mit $L(M) = L(M_1) \cap L(M_2)$.
- Produktkonstruktion für M_1 und M_2 :
 - 1. Erzeuge einen neuen Startzustand aus den Startzuständen der M_1 und M_2
 - 2. Bestimme wohin man mit welcher Kante geht
 - 3. Erzeuge neue Zustände durch Vereinigung der auf der rechten Seite stehenden Zuständen mit der selben Kanten, verbinde diese
 - 4. Alle Zustände, die in dem neuen Zustand sind, sind Endzustände

 → der neue Zustand wird ein Endzustand

2.16 Vereinigung zweier DFAs

- Sind M_1 und M_2 DFAs. Dann ist M mit $L(M) = L(M_1) \cup L(M_2)$.
- Konstruktion f
 ür M₁ und M₂: Gleich wie die Produktkonstruktion bis auf 4.
 - 4. Mindestens einer von den Zuständen, die in dem neuen Zustand sind, ist ein Endzustand \rightarrow der neue Zustand wird ein Endzustand

2.17 Pumping Lemma