

BACHELORARBEIT

in der Fachrichtung Wirtschaftsinformatik

THEMA

Konzeption einer DSL zur Beschreibung von Benutzeroberflächen für profil c/s auf der Grundlage des Multichannel-Frameworks der deg

Eingereicht von: Niels Gundermann (Matrikelnr. 5023)

Willi-Bredel-Straße 26

17034 Neubrandenburg

E-Mail: gundermann.niels.ng@googlemail.com

Erarbeitet im: 7. Semester

Abgabetermin: 16. Februar 2015

Gutachter: Prof. Dr.-Ing. Johannes Brauer

Co-Gutachter: Prof. Dr. Joachim Sauer

Betrieblicher Gutachter: Dipl.-Ing. Stefan Post

Woldegker Straße 12

17033 Neubrandenburg

Tel.: 0395/5630553

E-Mail: stefan.post@data-experts.de

I

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Neubrandenburg, Februar 2015
Niels Gundermann

Inhaltsverzeichnis

Al	bbild	ungsverzeichnis	V
Ta	belle	enverzeichnis	VI
Li	sting	s	VII
1	Mot	tivation	1
2	Pro	blembeschreibung und Zielsetzung	3
	2.1	Allgemeine Anforderungen an Benutzeroberflächen von pro-	
		fil c/s	3
	2.2	Umsetzung der Benutzerschnittstellen für mehrere Plattfor-	
		men in der deg (Ist-Zustand)	4
		2.2.1 Multichannel-Framework	4
		2.2.2 JWAM	6
	2.3	Probleme des Multichannel-Frameworks	8
	2.4	Zielsetzung	ç
3	Dor	nänenspezifische Sprachen	10
	3.1	Begriffsbestimmungen	10
	3.2	Anwendungsbeispiele	14
	3.3	Model-Driven Software Development (MDSD)	14
	3.4	Abgrenzung zu GPL	15
	3.5	Vor- und Nachteile von DSL gegenüber GPL	16
	3.6	Interne DSLs	22
		3.6.1 Implementierungstechniken	23
	3.7	Externe DSLs	25
		3.7.1 Implementierungstechniken	25

Inhaltsverzeichnis III

	3.8	Nicht-	-textuelle DSL	29
4	GU!	I-DSL		30
	4.1	Motiv	ation des Ansatzes	30
	4.2	Anfor	derungen an die GUI-DSL	31
5	Entv	wickluı	ng einer Lösungsidee	33
	5.1	Allgei	meine Beschreibung der Lösungsidee	33
	5.2	Konze	ept	33
6	Eva	luation	des Frameworks zur Entwicklung der DSL	35
	6.1	Vorste	ellung ausgewählter Frameworks	35
		6.1.1	PetitParser	35
		6.1.2	Xtext	36
		6.1.3	Meta Programming System	36
	6.2	Vergle	eich und Bewertung der vorgestellten Frameworks	37
7	Fest	legung	en für die Entwicklung des Prototypen	40
	7.1	Vorge	hensmodell	40
	7.2	Grobk	conzept der DSL-Umgebung (Vision)	42
		7.2.1	1. Iteration	42
		7.2.2	2. Iteration	46
		7.2.3	3. Iteration	48
8	Entv	wickluı	ng einer DSL zur Beschreibung der GUI in profil c/s	51
	8.1	1. Iter	ation	51
	8.2	2. Iter	ation	57
	8.3	3. Itera	ation	63
9	Entv	wickluı	ng des Generators zur Generierung von Klassen für das	;
	Mul	ltichani	nel-Framework	72
	9.1	Besch	reibung der GUI-, FP- und IP-Klassen	73
	9.2	Umse	tzung des frameworkspezifischen Generators	74
10	Zus	ammen	nfassung und Ausblick	85
A	Zuv	vendun	gsblatt für Web- und Standalone-Client	X

Inhaltsverzeichnis	IV
B Generierte Explorer-GUI	XIII
C Inhalt des beiliegenden Datenträgers	XIV
Glossar	XV
Literaturverzeichnis	XVIII

Abbildungsverzeichnis

2.1	Architektur des Multichannel-Frameworks	5
2.2	Architektur eines komplexen Werkzeugs mit Benutzt-Beziehung	7
3.1	Die grundlegenden Ideen hinter dem MDSD	15
3.2	Parsen allgemein	26
3.3	Funktionsweise von Parser-Kombinatoren	28
5.1	Grundlegendes Konzept	34
5.2	Grundlegende Idee für den Prototypen	34
7.1	Inkrementelles Modell	41
7.2	Konzeption der DSL-Umgebung (1. Iteration)	43
7.3	Beispiel: Suchfeld für Name	45
7.4	Beispiel: Suchmaske	45
7.5	Konzeption der DSL-Umgebung (2. Iteration)	47
7.6	Konzeption der DSL-Umgebung (3. Iteration)	48
8.1	1. Iteration: UIDescription	54
8.2	Teil 2: GUI-Beschreibungsmodel Version 1	54
8.3	Teil 3: GUI-Beschreibungsmodel Version 1	55
8.4	Teil 4: GUI-Beschreibungsmodel Version 1	55
8.5	Teil 1: GUI-Beschreibungsmodell Version 2	58
8.6	Teil 2: GUI-Beschreibungsmodell Version 2	58
8.7	Teil 3: GUI-Beschreibungsmodell Version 2	59
8.8	Teil 4: GUI-Beschreibungsmodell Version 2	60
8.9	Teil 5: GUI-Beschreibungsmodell Version 2	60
8.10	3. Iteration: UIDescription	66
8 11	3. Iteration: Definition	67

8	3.12	3. Iteration: Button	•
8	8.13	3. Iteration: TabView	
8	3.14	3. Iteration: TabView	
8	3.15	3. Iteration: TabView	(
Ç	9.1	Aufbau eines Explorers	
Ç	9.2	Generierte GUI des Inhalts- und Verweisebaums	
1	A.1	Standalone-Client: Zuwendungsblatt	
1	A.2	Web-Client: Zuwendungsblatt XI	
1	A.3	Multiselection-Komponenten XII	
1	R 1	Generierte Explorer-GIII XIII	ſ

Tabellenverzeichnis

2.1	Prioritäten der Anforderungen an die GUI	4
3.1	Implementierung einfacher Grammatik-Regeln mit einem RD-	
	Parser	27
6.1	Bewertung der Frameworks für die Entwicklung von DSLs	38
8.1	Basiskomponenten mit spezifischen Metadaten	65

Listings

3.1	Beispiel: Fluent Interface	24
8.1	1. Iteration: Syntax	56
8.2	2. Iteration: Properties	61
8.3	2. Iteration: Interaktion	61
8.4	2. Iteration: Definition komplexer Komponenten	61
8.5	2. Iteration: Button und Label (1)	61
8.6	2. Iteration: Area-Zuweisung (2)	62
8.7	2. Iteration: Verändern von Komponenten eingebundener GUI-	
	Beschreibungen	62
8.8	2. Iteration - Verändern von Komponenten eingebundener GUI-	
	Beschreibungen mit Namensüberschneidung	63
8.9	3. Iteration: Properties- und Layout-Dateien	69
8.10	3. Iteration: Eingebundene <i>GUI-Komponenten</i>	70
8.11	3. Iteration: Button und Label	70
8.12	3. Iteration: Textfield und Textarea	70
8.13	3. Iteration: Table und Tree	70
8.14	3. Iteration: TabView	71
8.15	3. Iteration: TabView	71
8.16	3. Iteration: Struktur	71
9.1	GUI-Skript für den Inhaltsbaum	74
9.2	GUI-Skript für den Verweisebaum	74
9.3	Speichern der Importe und der globalen Variablen	74
9.4	Generierung eines Innercomplex	75
9.5	Generierung der Methode <i>init</i> der GUI-Klassen	76
9.6	Generierung eines Labels	76
9.7	Generierung eines Trees	77

Listings

9.8	GUI-Skript für das Exlporer-GUI	78
9.9	Generierung eines Windows	78
9.10	Generierung der Einbindung anderer GUI-Skripte	79
9.11	Generierung einer Interchangeable-Komponente	79
9.12	Generierung der FP-Klasse	80
9.13	Generierung der IP-Klasse	80
9.14	Generierung der Interaktionsformen	81
9.15	Generierung der Standard-Interaktionsformen von Trees	82
9.16	Generierung einer Interaktionsform	82
9.17	Generierung der Kommandoinitialisierung	83
9.18	Generierung der Methoden zur Bestimmung der auszufüh-	
	renden Aktionen bei einer Interaktion	83

Kapitel 1

Motivation

In der heutigen Zeit werden Programme auf vielen unterschiedlichen Geräten (bspw. Desktop, Smartphone, Tablet) ausgeführt. Die *Usability* ist ein wichtiger Faktor bei der Entwicklung von Anwendungen. Denn "schlechte Usability führt zu Verwirrung und Miss- bzw. Unverständnis" [Use12] beim Kunden, wodurch letztendlich Umsatz verloren geht. Die *Usability* wird hauptsächlich vom *Graphical User Inferface (GUI)* bestimmt. Folglich ist die Benutzeroberfläche neben der internen Umsetzung ein wichtiger Faktor für den Erfolg einer Anwendung (vgl. [LW]).

Wenn ein Programm auf unterschiedlichen Geräten ausgeführt wird, muss der Entwickler bei der *traditionellen GUI-Entwicklung* mehrere *GUIs* manuell implementieren. Folglich werden mehrere *GUIs* mit unterschiedlichen Toolkits oder Frameworks entworfen. Diese Framworks haben einen starken imperativen Charakter, sind schwer zu erweitern und verhalten sich je nach Plattform unterschiedlich. (vgl. [KB11]) Daraus folgt, dass Entwickler bei dem *traditionellen* Ansatz das GUI für jedes Framework explizit beschreiben müssen.

Ein anderer Ansatz zur Beschreibung von Benutzeroberflächen ist das *Model-Driven Development* (siehe Kapitel 3.3). Damit sollen bspw. *GUIs* anhand der modellierten Funktionalitäten automatisch erzeugt werden (vgl. [SKNH05]). Laut Myers et. al. wurden die Darstellungen dieser generierten *GUIs* in der Vergangenheit von den Darstellungen *traditionell* implementierter Benutzerschnittstellen übertroffen (vgl. [MHP99]). Grund dafür ist, dass die Abstraktionsebene, auf der die Beschreibung der *GUIs* beim *Model-Driven*

Development stattfindet, oft nicht an die Gestaltung der GUI, sondern an fachliche Konzepte der Domäne angepasst wird.

Daraus ergibt sich die Überlegung, ob diese beiden Ansätze zur Implementierung von *GUIs* (*traditionell* und *Model-Driven*) verbunden werden können (*kombinierter Ansatz*). Somit könnte die genaue Beschreibung der Darstellung mit einer höheren Abstraktion verbunden werden. Dieser Versuch wurde bspw. von Baciková im Jahr 2013 unternommen (vgl. [BPL13]). Dort wurde nachgewiesen, dass eine *GUI* eine Sprache definiert.

In dieser Arbeit wird versucht den kombinierten Ansatz in einem speziellen Fachbereich umzusetzen, um die Unterstützung einer *GUI* auf unterschiedlichen Plattformen zu gewährleisten. Bei der Umsetzung wird sich auf die *GUIs* der Anwendung *profil c/s* bezogen. Profil c/s ist eine *JEE-Anwendung* die *InVeKoS* umsetzt und von der *data experts GmbH* (*deg*) entwickelt wird.

Kapitel 2

Problembeschreibung und Zielsetzung

2.1 Allgemeine Anforderungen an Benutzeroberflächen von profil c/s

Die erste Anforderung bezieht sich auf die Plattform, auf die der Clients von *profil c/s* dargestellt werden muss. Dieser soll sowohl in Web-Browsern (*Web-Client*) als auch standalone auf einem PC (*Standalone-Client*) ausgeführt werden können.

Um die Darstellung auf unterschiedlichen Plattformen umzusetzen werden unterschiedliche Frameworks zur Darstellung der *GUI* verwendet. Dabei besteht die Möglichkeit, dass verwendete Frameworks veralten, woraus sich der Bedarf an einer Überführungsmöglichkeit der *GUIs*, die mit älteren Frameworks dargestellt werden, in *GUIs*, die mit aktuellen Frameworks dargestellt werden, ergibt.

Da die Nutzer an einen bestimmten Aufbau der *GUIs* gewöhnt sind, ist es von Vorteil, wenn beide Clients eine ähnliche *GUI* bieten. Von daher ist die Ähnlichkeit der *GUIs* auf unterschiedlichen Plattformen eine weitere Anforderung.

Um eine effiziente Arbeitsweise zu ermöglichen, ist es wichtig, dass die verwendeten Frameworks um wiederverwendbare Komponenten erweitert werden können. So ist es möglich redundante Implementierungen zu verallgemeinern und letztendlich zu reduzieren.

Abschließend ist die Ausdruckskraft der Syntax, in der die *GUIs* entwickelt werden, als Kriterium zu nennen. Dies fördert die Lesbarkeit des Quellcodes und damit letztendlich das Verständnis dessen, sowie die Effizienz mit der die *GUIs* entwickelt werden (vgl. [VBK+13, S.70]).

Diese Anforderungen an die *GUIs* haben in der *deg* unterschiedliche Prioritäten (1 = höchste Priorität, 3 = niedrigste Priorität), die in folgender Tabelle beschrieben werden.

Nr.	Anforderung	Priorität
AA1	Bereitstellung für den Standalone- und Web-Bereich	1
AA2	Überführungsmöglichkeit in andere Frameworks	1
AA3	Ähnlicher Aufbau auf unterschiedlichen Plattformen	2
AA4	Erweiterbarkeit der verwendeten Frameworks	1
AA5	Ausdrucksstarke Syntax	3

Tabelle 2.1: Prioritäten der Anforderungen an die GUI

2.2 Umsetzung der Benutzerschnittstellen für mehrere Plattformen in der *deg* (Ist-Zustand)

2.2.1 Multichannel-Framework

Die Clients werden in der Programmiersprache *Java* entwickelt. Für die Realisierung des *Standalone-Clients* wird in der deg das *Swing*-Framework verwendet. Für den Web-Client wird auf *wingS* zurückgegriffen. Um eine Vorstellung des Ist-Zustandes zu vermitteln, sind in Abbildung A.1 und in Abbildung A.2 (siehe Anhang A) die *GUIs* eines *Zuwendungsblattes* und eines *Förderantrags* für den Web-Client und den Standalone-Client abgebildet.

In diesen *GUIs* ist nur ein bestimmter Teil für die fachlichen Informationen relevant. Dies sind lediglich die Tabelle und die darunter stehenden Schaltflächen, sowie das Bemerkungsfeld (im *Web-Client* auf der rechten Seite und im *Standalone-Client* in der Mitte). Dieser Bereich der *GUI* ist in beiden Clients gleich aufgebaut. Andere Teile des *GUIs* haben derzeit einen unterschiedlichen Aufbau, was den unterschiedlichen Frameworks für die

Umsetzung von Web- und Standalone-Client geschuldet ist.

Dass der Aufbau der *GUI* in beiden Clients ähnlich ist, liegt an der Umsetzung der *GUI*, die im folgenden erläutert wird.

Aufgrund von Anforderung AA1 wurden in der Vergangenheit zwei GUIs mit unterschiedlichen Frameworks von der

deg entwickelt. Dieses Verfahren erwies sich mit komplexer werdenden *GUIs* als sehr ineffizient. Daher hat die *deg* eine Lösung erarbeitet mit der es möglich ist, eine einmal beschriebene *GUI* auf mehrere Plattformen zu portieren. Durch diese Abstraktion wird der Aufwand der Entwicklung neuer *GUIs* stark reduziert. Zugleich fördert die einmalige Beschreibung auch einen ähnlichen Aufbau der *GUIs* im *Web*- und *Standalone-Client*, was der Anforderung *AA3* nachkommt. Die Lösung der *deg* ist das *Multichannel-Framework* (*MCF*).

Die Architektur des *Multichannel-Frameworks* ist Abbildung 2.1 zu entnehmen. Innerhalb des *MCF* werden die *GUIs* mittels so genannter *Präsentationsformen* beschrieben.

Abbildung 2.1: Architektur des Multichannel-Frameworks (vgl. [Ste07])

Aus *Präsentationsformen* können mithilfe der *Component-Factories GUIs* erzeugt werden, die auf unterschiedlichen Frameworks basieren und das *Component-Interface* implementieren. (Bei den verwendeten Frameworks handelt es sich um *Swing*, *ULC* und *wingS*. Wobei *ULC* bei der *deg* nicht mehr im Einsatz ist.) Das *Component-Interface* wird für die Interaktion mit den Komponenten

der unterschiedlichen Frameworks benötigt. Mit dem *MCF* ist die *deg* in der Lage ihre *GUIs* für das Swing -Framework und für das wingS -Framework mit nur einer *GUI*-Beschreibung zu erzeugen.

Die Anbindung anderer Frameworks ist bei Betrachtung der Architektur des *MCF* unproblematisch. Dadruch scheint die *deg* mit diesem Ansatz auch auf den Einsatz neuer Frameworks (siehe Anforderung *AA*2) vorbereitet zu sein.

Wie bereits erwähnt werden die Clients mit *Java* entwickelt. Für die Architektur der Clients wird der *WAM-Ansatz* verwendet, welcher im folgenden Kapitel kurz erläutert wird.

2.2.2 JWAM

"JWAM ist eine Realisierung des WAM-Ansatzes in der Programmiersprache Java" [SdS03, S.30]

Die Bezeichnung WAM steht für Werkzeug und Material-Ansatz. Es handelt sich dabei um einen Ansatz zur Softwarearchitektur, welcher die anwendungsorienten Ansatz der Softwareentwicklung fördert. Der Benutzer der Software steht im Mittelpunkt, wodurch die Gestaltung der Funktionalitäten, Benutzerschnittstellen und die Schnittstelle des Entwicklungs- und Implementierungsprozesses beeinflusst werden (vgl. [Sch05, S.13]). Weiterhin werden Entwurfsmetaphern verwendet, die den Entwicklern und Anwendern das Entwickeln und Verstehen der Software vereinfachen sollen (vgl. [SdS03, S.30]). Diese Entwurfsmetapher beschreiben "[...] Elemente und Konzepte der Anwendung durch bildhafte Vorstellungen von realen Gegenständen [...]" [SdS03, S.30]. Die grundlegenden Metaphern werden im Folgenden kurz erläutert. Ein *Material* kann nicht direkt vom Nutzer bearbeitet werden. Sie besitzen jedoch eine Schnittstelle, die fachliche Operationen erlaubt. Diese Operationen können bspw. von einem Werkzeug aufgerufen werden, um den Zustand des Materials zu verändern. Dabei verfügen Werkzeug über eine Präsentation und geben somit eine Handhabung vor.

Bei Werkzeug werden zwei Arten unterschieden - monolithische- und komplexe Werkzeuge (vgl. [Hof06, S.5]). Da in der deg hauptsächlich komplexe Werkzeu-

ge Anwendung finden, werden die monolithische Werkzeuge in dieser Arbeit nicht weiter erläutert. Komplexe Werkzeuge gliedern sich in Oberfläche, Interaktion und Fachlogik auf. Dabei muss die Funktionskomponente (FunctionPart - FP) vollständig von der GUI abstrahieren und sich somit auf die Fachlogik beschränken. Zwischen diesen Komponenten steht eine Interaktionskomponente (InteractionPart - IP), die für die Abstraktion Sorge trägt. Eine Werkzeug-Klasse umschließt diese drei Komponenten (siehe Abbildung 2.2). (vgl. [Hof06, S.5f])

Abbildung 2.2: Architektur eines komplexen Werkzeugs mit Benutzt-Beziehung

Automaten können selbstständig Routinearbeiten erledigen. (vgl. [SdS03, S.30]) Sie können ebenfalls Materialien bearbeiten. (vgl. [Sch05, S.14])

Gegenstände, die mit diesen Metaphern assoziiert werden, können in *Arbeitsumgebungen* abgelegt werden. Dabei werden zwei *Arbeitsumgebungen* unterschieden. Erstens die persönlichen Arbeitsplätze der Benutzer und zweitens Räume der *Arbeitsumgebung*, die für alle zugänglich sind und über die somit die Zusammenarbeit statt findet (vgl. [SdS03, S.31], [Sch05, S.15]).

Darüber hinaus gibt es *fachliche Services*, die als Dienstleister Funktionalität zur Verfügung stellen. Diese können *Materialien* verwalten, verfügen jedoch über keine eigene Präsentation (vgl. [SdS03, S.30f]).

Durch fachliche Services ist mit dem WAM-Ansatz Multi-Channeling möglich (vgl. [SdS03, S.42]). Das Multi-Channeling des WAM-Ansatzes setzt dabei auf einer anderen Ebene an als das MCF. Das Multi-Channeling des WAM-Ansatzes basiert darauf, dass [...] Funktionalität unabhängig von der konkreten Handhabung, Präsentation und Technik bereitgestellt wird. [SdS03, S.42] Das MCF hingegen basiert darauf, dass eine Präsentation unabhängig von der Technik bereitgestellt werden kann. Es setzt demnach an einer höheren Ebene an, als das Multi-Channeling des WAM-Ansatzes. Die Mechanismen, die

das *Multi-Channeling* im *WAM-Ansatz* bietet, werden jedoch auch im *MCF* verwendet.

2.3 Probleme des Multichannel-Frameworks

Bezogen auf die Anforderungen wurden Anforderungen werden AA3) und AA5) nicht durch das MCF umgesetzt. (Fakt ist, dass jede Sprache eine gewisse Ausdruckskraft hat. Da in dieser Arbeit versucht wird die GUI-Entwicklung mittels einer ausdrucksstarken domänenspezifischen Sprache (DSL), die sich auf die Domäne von profil c/s bezieht, umzusetzen, ist die Ausdruckskraft herkömmlicher Programmiersprachen als unzureichend anzusehen). Ein weiteres Problem bezieht sich auf die integrierten Framworks (Swing und wingS). Beide Frameworks sind veraltet und werden nicht mehr gewartet. (Analysen dafür wurden in [Gun13] und [Gun14b] durchgeführt.) Um auch in der Zukunft den Anforderungen der Kunden nachkommen zu können müssten beide Frameworks von den Entwicklern der deg selbst weiterentwickelt werden. Eine andere Möglichkeit wäre es, andere und modernere Frameworks einzusetzen, um den nötigen Support der Framework-Entwickler nutzen zu können.

Das *MCF* ist in der Theorie so konzipiert, dass es leicht sein sollte neue Frameworks zu integrieren (siehe Abbildung 2.1). In der Praxis wurde die Einfachheit einer solchen Integration jedoch widerlegt. Ein Problem, welches bei der Integration neuer Frameworks aufkommt, ist, dass sich das *MCF* sehr stark an *Swing* orientiert und die *GUIs* vor allem vom *GridBagLayout* stark beeinflusst werden. Ein solche Layoutmanager steht nicht in allen *GUI*-Frameworks zur Verfügung. Da die Beschreibung der *GUI* über ein solches Layout vollzogen wird, ist der Umgang mit dem *GridBagLayout* innerhalb des Frameworks eine Voraussetzung für die Integration in das *MCF*. Zusammenfassend sind folgende Probleme des *MCF* zu nennen:

- **P1** Verwendete Frameworks sind inaktuell
- **P2** Starke Orientierung an *Swing*

2.4 Zielsetzung 9

Dazu kommen lästige Routinearbeiten, die in der *deg* bei der Entwicklung von *GUIs* getätigt werden müssen.

- **R1** Vergebene Bezeichnungen für *GUI-Komponenten* müssen in unterschiedlichen Klassen (*IP* und *GUI-Klassen*) gepflegt werden.
- **R2** Beim Erstellen von Tabellen müssen viele Methoden überschrieben werden.
- **R3** Die Werte für Aufschriften, Größeneinstellungen u.ä. für *GUI-Komponenten* werden bei der *deg* in Properties-Dateien festgehalten. Das Erstellen und Pflegen wird als Fehleranfällig betrachtet.

2.4 Zielsetzung

Das langfristige Ziel der *deg* bzgl. der *GUIs* ist es, eine Lösung zu entwickeln, welche das *MCF* ablösen kann. Anzustreben ist eine Lösung, die neben der Umsetzung der oben genannten Anforderungen auch die genannten Routinearbeiten mindert.

In dieser Arbeit wird ein Ansatz untersucht, bei dem es möglich ist, die oben genannten Anforderungen vollständig umzusetzen. Kern des Ansatzes ist eine *DSL*, mit deren Hilfe die *GUIs* beschrieben werden sollen (im Folgenden als *GUI-DSL* bezeichnet). Eine *DSL* könnte so konzipiert werden, dass sie ausreichend abstrakt und erweiterbar ist und bzgl. der Ausdruckskraft das *MCF* übertrifft.

Die genaue Lösungsidee mittels *GUI-DSL* , welche in dieser Arbeit verfolgt wird, ist in Kapitel 5 beschrieben.

Kapitel 3

Domänenspezifische Sprachen

3.1 Begriffsbestimmungen

Sprache/Programmiersprache

Formal betrachtet ist eine Sprache eine beliebige Teilmenge aller Wörter über einem Alphabet. "Ein Alphabet ist eine endliche, nicht leere Menge von Zeichen (auch Symbole oder Buchstaben genannt)." [Hed12, S.6] Zur Verdeutlichung der Definition einer Sprache sei V ein Alphabet und $k \in N$ (N ist die Menge der natürlichen Zahlen einschließich der Null). (vgl. [Hed12, S.6]) "Eine endliche Folge (x_1, \ldots, x_k) mit $x_i \in V(i = 1, \ldots, k)$ heißt Wort über V der Länge k" [Hed12, S.6].

Programmiersprachen werden dazu verwendet, um mit einem Computer Instruktionen zukommen zu lassen. (vgl. [FP11, S.27], [VBK+13, S.27]) In diesem Kontext werden die Bestandteile einer Sprache wie folgt abgegrenzt:

Konkrete Syntax

Die konkrete Syntax beschreibt die Notation der Sprache. Demnach bestimmt sie, welche Sprachkonstrukte der Nutzer einsetzen kann, um ein Programm in dieser Sprache zu schreiben. (vgl. [Aho08, S.87])

Abstrakte Syntax

Die abstrakte Syntax ist eine Datenstruktur, welche die Kerninformationen eines Programms beschreibt. Sie enthält keinerlei Informationen über Details bezüglich der Notation. Zur Darstellung dieser Datenstruktur werden abstrakte Syntaxbäume genutzt. (vgl. [VBK+13,

S.179])

Statische Semantik

Die statische Semantik beschreibt die Menge an Regeln bzgl. des Typ-Systems, die ein Programm befolgen muss. (vgl. [VBK+13, S.26])

Ausführungssemantik

Die Ausführungssemantik ist abhängig vom Compiler. Sie beschreibt wie ein Programm zu seiner Ausführung funktioniert. (vgl. [VBK+13, S.26])

General Purpose Language (GPL)

Bei GPLs handelt es sich um Programmiersprachen, die Turing-vollständig sind. Das bedeutet, dass mit einer GPL alles berechnet werden kann, was auch mit einer *Turing-Maschine* berechenbar ist. Völter et al. behaupten, dass alle GPLs aufgrund dessen untereinander austauschbar sind. Dennoch sind Abstufungen bzgl. der Ausführung dieser Programmiersprachen zu machen. Unterschiedliche GPLs sind für spezielle Aufgaben optimiert. (vgl. [VBK+13, S.27f])

Domain Specific Language (DSL)

Eine DSL (zu dt. Domänenspezifische Sprache) ist eine Programmiersprache, welche für eine bestimmte *Domäne* optimiert ist. (vgl. [VBK+13, S.28]) Das Entwickeln einer DSL ermöglicht es, die Abstraktion der Sprache der Domäne anzupassen. (vgl. [gho11, S.10]) Das bedeutet, dass Aspekte, welche für die Domäne unwichtig sind, auch in der Sprache außer Acht gelassen werden können. Semantik und Syntax sollten demnach der jeweiligen Abstraktionsebene angepasst sein. Eine DSL ist demnach in ihren Ausdrucksmöglichkeiten eingeschränkt. Je stärker diese Einschränkung ist, desto besser ist die Unterstützung der Domäne sowie die Ausdruckskraft der DSL. (vgl. [FP11, S.27f])

Darüber hinaus sollte ein Programm, welches in einer DSL geschrieben wurde, alle Qualitätsanforderungen erfüllen, die auch bei einer Umsetzung des Programms mit GPLs realisiert werden. (vgl. [gho11, S.10f])

Es gibt verschiedene Arten von DSLs. Neben internen und externen DSLs (siehe Kapitel 3.6 und 3.7) findet eine Unterscheidung zwischen technischen DSLs und fachlichen DSL statt. Markus Völter et al. unterscheiden diese beiden Kategorien im Allgemeinen dahingehend, dass technische DSLs von Programmierern genutzt werden und fachliche DSL von Personen, die keine Programmierer sind (bspw. Kunden). (vgl. [VBK+13, S.26])

Grammatik

Grammatiken und insbesondere Grammatik-Regeln werden zur Beschreibung von Sprachen verwendet. (vgl. [Hed12, S.23f]) Für die Definition einer Grammatik verweise ich auf den Praxisbericht [Gun14a]. Grammatiken können in einer Hierachie dargestellt werden (*Chomsky-Hierarchie*). (vgl. [Hed12, S.32f]) Bei Programmiersprachen handelt es sich um *kontextfreie Sprachen*. Diese sind entscheidbar und somit von einem Compiler verarbeitet werden. (vgl. [Hed12, S.16f])

Lexikalische Analyse

Bevor ein DSL-Skript (Text, der in der Syntax einer DSL geschrieben wurde) verarbeitet werden kann, muss das Skript vom sog. *Lexer* oder *Scanner* gelesen werden. (vgl. [FP11, S.221]) Dabei wird ein Text aus diesem Skript als Input-Stream betrachtet. Der Lexer wandelt diesen Input-Stream in einzelne Tokens um. (vgl. [gho11, S.220]) Allgemein ist der Lexer die Instanz innerhalb der *DSL-Umgebung*, die für das Auslesen des DSL-Skriptes verantwortlich ist.

Parser

Ein Parser ist ebenfalls ein Teil der DSL Umgebung. (vgl. [gho11, S.211]) Er ist dafür verantwortlich aus dem Ergebnis der lexikalischen Analyse ein Output zu generieren, mit dem weitere Aktionen durchgeführt werden können. (vgl. [gho11, S.212]) Der Output wird in Form eines Syntax-Baums (AST) generiert. (vgl. [FP11, S.47]) Ein solcher Baum ist laut Martin Fowler et al. eine weitaus nutzbarere Darstellung dessen, was mit dem DSL-Skript

dargestellt werden soll. Daraus lässt sich auch das semantische Modell generieren. (vgl. [FP11, S.48])

Semantisches Modell

Das semantische Modell ist ebenfalls eine Repräsentation dessen, was mit der DSL beschrieben wurde. Es wird laut Martin Fowler et al. auch als die Bibliothek betrachtet, welche von der DSL nach außen hin sichtbar ist. (vgl. [FP11, S.159]) In Anlehnung an Ghosh sowie Martin Fowler et al. wird das semantische Modell als Datenstruktur betrachtet, deren Aufbau von der Syntax der DSL unabhängig ist. (vgl. [gho11, S.214], [FP11, S.48])

Generator

In Anlehnung an Martin Fowler ist ein Generator der Teil der DSL Umgebung, welcher für das Erzeugen von Quellcode für die *Zielumgebung* zuständig ist. (vgl. [FP11, S.121]) Bei der Generierung von Code wird zwischen zwei Verfahren unterschieden.

Transformer Generation

Bei der Transformer Generation wird das semantische Modell als Input verwendet. Aus diesem Input wird Quellcode für die Zielumgebung generiert. (vgl. [FP11, S.533f]) Ein solches Verfahren wird oft verwendet, wenn ein Großteil des Output generiert wird und die Inhalte des semantischen Modells einfach in den Quellcode der Zielumgebung überführt werden können. (vgl. [FP11, S.535])

Templated Generation

Bei der Templated Generation wird eine Vorlage benötigt. In dieser Vorlage befinden sich Platzhalter. Diese dienen dazu, dass vom Generator erzeugter Quellcode an diesen Stellen eingesetzt werden kann. (vgl. [FP11, S.539f]) Dieses Codegenerierungsverfahren wird oft verwendet, wenn sich im zu generierenden Quellcode für die Zielumgebung viele statische Inhalte befinden und der Anteil dynamischer Inhalte sehr einfach gehalten ist. (vgl. [FP11, S.541])

3.2 Anwendungsbeispiele

Die Anwendungsbereiche für DSLs sind breit gefächert. Die bekanntesten DSLs sind Sprachen wie *SQL* (zur Abfrage und Manipulation von Daten in einer realationalen Datenbank), *HTML* (als Markup-Sprache für das Web) oder *CSS* (als Layoutbeschreibung). (vgl. [gho11, S.12]) Alle Sprachen sind in ihren Ausdrucksmöglichkeiten eingeschränkt und von der Abstraktion her direkt auf eine Domäne (jeweils dahinter in Klammern genannt) zugeschnitten. [gho11]12f

Weitere Beispiele für DSLs befinden sich im Bereich der Sprachen für Parser-Generatoren (*YACC*, *ANTLR*) oder im Bereich der Sprachen für das Zusammenbauen von Softwaresystemen (*Ant*, *Make*). (vgl. [gho11, S.12])

3.3 Model-Driven Software Development (MDSD)

In der Einleitung wurde schon der Model-Driven Ansatz in Verbindung mit GUI-Entwicklung erwähnt. Dieser Ansatz versucht den technischen Lösungen der IT-Industrie einen gewissen Grad an Agilität zu verleihen. (vgl. [SKNH05]) Das ist damit verbunden, dass die Produktion von Softwareprodukten schneller und besser vonstatten geht und mit weniger Kosten verbunden ist. (vgl. [DM14, S.71])

Erreicht wird dies, indem die Modelle formaler, strenger, vollständiger und konsistenter beschrieben werden. (vgl. [VBK+13, S.31]) Die Grundidee ist, dass die Modelle Quell-Code oder Funktionalitäten beschreiben und diese in der Evolution der Software immer wiederverwendet werden können. (vgl. [DM14, S.72]) Somit wird redundanter oder schematischer Quellcode vermieden und es ist möglich diese Modelle auch in anderen Anwendungen zu verwenden. (vgl. [DM14, S.72])

Daraus lassen sich folgende Ziele des MDSD ableiten:

- Schnelleres Entwickeln durch Automatisierungen
- Bessere Softwarequalität durch automatisierte Transformationen und formalen Modell-Definitionen
- Verhinderung von Wiederholungen und besseres Management von

veränderbaren Technologien durch die Trennung der Funktionsbereiche (Separation of Concers)

- Architekturen, Modellierungssprachen (bspw. eine DSL) und Generatoren/Transformatoren können besser wiederverwendet werden
- Verringerte Komplexität durch höhere Abstraktion

(vgl. [mds06, S.13f])

Die Modelle sind somit nicht länger nur zur Dokumentation geeignet, sondern sind ein Teil der Software. (vgl. [mds06, S.14f]) Dabei sind sie auf ein bestimmtes Domänenproblem angepasst. Die Beschreibung dieser Modelle kann bspw. über eine DSL erfolgen. (vgl. [mds06, S.15]) In Abbildung 3.3 ist die Idee des MDSD schematisch dargestellt.

Abbildung 3.1: Die grundlegenden Ideen hinter dem MDSD (vgl. [mds06, S.15])

3.4 Abgrenzung zu GPL

Wie zu Beginn dieses Kapitels bereits erwähnt, sind GPLs Sprachen mit denen alles berechnet werden kann, was auch mit einer Turing-Maschine berechenbar ist. Folglich kann mit einer GPL jedes berechenbare Problem gelöst werden. Eine DSL hat diese Eigenschaft nicht. Da sie auf eine bestimm-

te Domäne zugeschnitten ist, können auch nur Probleme innerhalb dieser Domäne mit ihr gelöst werden. (vgl. [VBK+13, S.28]) Martin Fowler et al. bezeichnen diese Eigenschaft des Domänen-Fokus als ein Schlüsselelement der Definition einer DSL. (vgl. [FP11, S.27f])

3.5 Vor- und Nachteile von DSL gegenüber GPL

Vorteile

Ausdruckskraft

Laut Ghosh sollten DSLs so umgesetzt werden, dass sie präsize sind. Diese Präzision bedingt, dass eine DSL einfach zu verstehen ist. Sie sollte demnach den von Dan Roam beschriebenen Prozess des visuellen Denkens (sehen - betrachten - verstehen - zeigen) (vgl. [Roa09]) so schnell wie möglich abzuarbeiten.

Weiterhin ist es wichtig bei der Entwicklung einer DSL darauf zu achten, dass sich die Abstraktion der Sprache an der Semantik der Domäne orientiert. (vgl. [gho11, S.20]) Sind diese Empfehlungen umgesetzt ist wächst das Verständnis für das, was entwickelt werden soll, da die semantische Lücke zwischen Programm und Problem kleiner wird. (vgl. [gho11, S.20], [BCK08]) Außerdem bleibt die Komplexität durch eine höhere Abstraktionsebene beherrschbar. (vgl. [BCK08])

Höhere Qualität

Bei der Entwicklung einer DSL werden Sprachkonstrukte und Freiheitsgrade der Sprache festgelegt. Richtig konzipiert, schränken sie den Entwickler beim Umgang mit dieser DSL so ein, dass die Möglichkeit doppelten Code zu schreiben oder doppelte Arbeit durchzuführen kaum noch besteht. Zusätzlich wird die Anzahl von Fehlern verringert. (vgl. [VBK+13, S.40f]) Auch durch die starke Abstraktion einer DSL wird die Wiederverwendung gefördert, was ebenso zu qualitativ höherwertigen Quellcode führt. [gho11]21

Verbesserte Produktivität bei der Entwicklung der Software

Durch die Ausdruckskraft und die Abstraktion der Sprache muss i.d.R. auch weniger DSL-Code für die Implementierung eines Programms geschrieben werden, als wenn dieses Programm mit einer GPL implementiert wird. Wobei man mit einem entsprechenden Framework für GPLs ähnliches erreichen könnte. (vgl. [VBK+13, S.40])

Die stärkere Ausdruckskraft führt zu einer bessere Lesbarkeit von DSL-Code im Verlgeich zu GPL-Code, wodurch DSL-Code einfacher zu verstehen ist. Dadurch ist es auch einfacher Fehler in diesem Code zu finden, sowie Anpassungen an dem System vorzunehmen. Bei einer GPL werden diese Vorteile durch Dokumentationen, ausdrucksvolle Variablenbezeichnungen und festgelegten Konventionen angestrebt. (vgl. [FP11, S.33]) Allerdings ist der Entwickler zur Einhaltung diese Vorschriften nicht gezwungen. Bei der Verwendung einer DSL hingegen kann dem Entwickler dieser Freiheitsgrad entzogen werden. Damit ist er gezwungen lesbaren Quellcode zu schreiben, da die Sprache es nicht anders zulässt.

Bessere Kommunikation mit Domänen-Experten und Kunden

Aufgrund domänenspezifischer- und präziser Ausdrücke, die in der Sprache verwendet werden, sind die Domänen-Experten bzw. die Kunden vertrauter mit der Implementierung, als wenn für die Umsetzung eine GPL verwendet werden würde. (vgl. [VBK+13, S.42]) Die hohe Ausdruckskraft fördert das Verständnis dieser DSL. Damit ist es einfacher die Kunden in die Entwicklung mit einzubeziehen. Dabei sollten jedoch zusätzliche Hilfsmittel wie Visualisierungen oder Simulationen verwendet werden. (vgl. [FP11, S.34], [VBK+13, S.42]) Somit kann die oft vernachlässigte Kommunikation zwischen Kunden und Auftragnehmern verbessert werden. Martin Fowler et al. beschreiben sogar den Einsatz einer DSL als reine Kommunikationplattform als vorteilhaft. (vgl. [FP11, S.34f]) Grund dafür ist, dass bereits bei der Entwicklung einer DSL das Verständnis des Auftragnehmers über die Domäne gesteigert wird. (vgl. [VBK+13, S.41])

Plattformunabhängigkeit

Durch die Nutzung einer DSL kann bspw. ein Teil der Logik von der Kompilierung in den Ausführungskontext überführt werden. Die Definition der Logik findet dabei in der DSL statt, welche erst bei der Ausführung evaluiert wird. Ein solches Verfahren wird oft unter der Verwendung von XML verwendet. (vgl. [FP11, S.35]) Dadurch ist es möglich die Logik auf unterschiedlichen Plattformen auszuführen. (vgl. [VBK+13, S.43]) Dieser Vorteil ist besonders für den praktischen Teil dieser Arbeit interessant. (Allerdings weniger in Bezug auf Logik, sondern in Bezug auf Benutzerschnittstellen.)

Einfachere Validierung und Verifizierung

Da DSLs bestimmte Details der Implementierung ausblenden, sind sie auf semantischer Ebene reichhaltiger als GPLs. Das führt dazu, dass Analysen einfacher umzusetzen sind und Fehlermeldungen verständlicher gestaltet werden können, indem die Terminologie der Domäne verwendet wird. Dadurch und durch die vereinfachte Kommunikation mit den Domänen-Experten werden Reviews und Validierungen des DSL-Codes weitaus effizienter. (vgl. [VBK+13, S.41])

Unabhängigkeit von Technologien

Die Modelle, welche zur Beschreibung von Systemen verwendet werden, können so gestaltet werden, dass sie von Implementierungstechniken unabhängig sind. Dies wird durch ein hohes Abstraktionsniveau erreicht, welches an die Domäne angepasst ist. Dadurch kann die Beschreibung der Modelle von den genutzten Technologien weitgehend entkoppelt werden. (vgl. [VBK+13, S.41])

Skalierbarkeit des Entwicklungsprozesses

Die Integration von neuen Mitarbeitern in ein Entwicklerteam fordert immer eine gewisse Einarbeitungszeit. Dieser Zeitraum kann durch die Nutzung einer DSL verkürzt werden, wenn die DSL einen hohen Abstraktionsgrad hat und dadurch leichter zu verstehen und zu erlernen ist. (vgl. [gho11, S.21])

Innerhalb eines Entwicklerteams haben die Mitarbeiter oft einen unterschiedlicher Erfahrungsstand bzgl. einer speziellen Programmiersprache, die zur Entwicklung genutzt werden soll. Erfahrene Teammitglieder könnten sich mit der Implementierung der DSL befassen und die Grundlage für die anderen Teammitglieder schaffen. Diese wiederum nutzen die DSL, um die fachlichen Anforderung der Kunden zu implementieren. (vgl. [gho11, S.21]) Das führt im ersten Moment zu einer effizienteren Arbeitsweise, als wenn sich jeder Entwickler mit allem auskennen muss. Markus Völter hingegen sieht die Teilung der Programmieraufgaben als Gefahr bzw. Nachteil. (vgl. [VBK+13, S.44])

Nachteile

Großes Know-How gefordert

Bevor die Vorteile einer DSL genutzt werden können, muss die DSL entwickelt werden. (vgl. [VBK+13, S.43]) Das Designen einer Sprache ist eine komplexe Aufgabe, die nur schwer skalierbar ist. (vgl. [gho11, S.21]) Die Vorteile, die eine DSL bietet, können nur geboten werden, wenn die DSL ausreichend gut konzipiert ist. Dazu muss einerseits der richtige Abstraktionsgrad gefunden werden und andererseits die Sprache so einfach wie möglich gehalten werden. Für beide Aufgaben werden Entwickler benötigt, die viel Erfahrung mit Sprach-Design haben. (vgl. [VBK+13, S.44])

Kosten für die Entwicklung der DSL

Bei wirtschaftlichen Entscheidungen wird der monetäre Input mit dem monetären Output verglichen. Investitionen führen dazu, dass der Input größer wird. Da eine DSL vor dem Einsatz zuerst entwickelt werden muss, ist es notwendig Investitionen für die Entwickler der DSL zu tätigen. Ob sich eine Investition lohnt, muss vorher durch entsprechende Analysen überprüft werden. Dabei muss festgestellt werden, ob die Entwicklung der DSL gerechtfertigt ist. Im Bereich der technischen DSLs fällt die Rechtfertigung einfach, da diese DSLs oft wiederverwendet werden können. Fachliche DSL hingegen haben oft eine weitaus kompaktere Domäne, als eine technische DSL. Daher ergeben sich die Möglichkeiten zur Wiederverwendung erst

zu einem späteren Zeitpunkt und können nur schwer von der im Vorfeld durchgeführten Analysen wahrgenommen werden. (vgl. [VBK+13, S.43]) Weiterhin ist in der Phase, in der die DSL entwickelt wird, keine große positive Änderungen bzgl. der Kosten zu erwarten. Die Kosten reduzieren sich i.d.R erst, wenn die DSL eingesetzt wird. (vgl. [gho11, S.21]) Bevor eine DSL entwickelt werden kann, sollte ein entsprechendes Know-How aufgebaut werden. Der Aufbau dieses Wissens verursacht weitere Ko-

Investitionsgefängnis

sten. (vgl. [FP11, S.37])

Der Begriff stammt von Markus Völter et al. Er beruht auf der Annahme, dass sich ein Unternehmen dessen bewusst ist, dass höhere Investitionen in wiederverwendbare Artefakte zu einer besseren Produktivität führen. Artefakte, die wiederverwendet werden können, führen dennoch zu Einschränkungen. Die Flexibilität geht dabei verloren. Weiterhin besteht dabei die Gefahr, dass bestimmte Artefakte aufgrund geänderter Anforderungen unbrauchbar werden. Darüber hinaus ist es gefährlich Artefakte zu verändern, die häufig wiederverwendet werden, weil dadurch unerwünschte Nebeneffekte auftreten können. Somit wäre das Unternehmen wiederum zu Investitionen gezwungen, um die Anforderungen umzusetzen. Von daher der verwendete Begriff *Investitionsgefängnis*. (vgl. [VBK+13, S.45])

Kakophonie

Eine DSL abstrahiert von Domänen-Modell. (vgl. [gho11, S.22]) Je besser diese Abstraktion ist, desto eufonischer und ausdrucksstärker ist die Sprache.

Normalerweise werden für eine Applikation mehrere DSLs benötigt. Diese unterschiedlichen DSLs haben i.d.R unterschiedliche syntaktische Strukturen. Das führt dazu, dass Mitarbeiter unterschiedliche Sprachen beherrschen müssen. Das wiederum führt dazu, dass die Entwickler öfter umdenken, als wenn sie fortwährend mit einer Sprache arbeiten würden. Das macht den Entwicklungsprozess weitaus komplizierter. (vgl. [FP11, S.37])

Ghetto-Sprache

Wenn ein Unternehmen nur mit eigenen DSLs arbeitet, gleichen diese Sprachen einer Ghetto-Sprache, die von keinem anderen Unternehmen verstanden wird. Dadurch ist es schwer neue Technologien von anderen Unternehmen in den Bereichen, wo vermehrt DSLs eingesetzt werden, zu integrieren. Denn diese Technologien werden kaum mit den eigenen DSLs kompatibel sein. Außerdem ist es kaum möglich von neuen Mitarbeitern in diesem Bereichen zu profitieren, da sie sich höchstwahrscheinlich nicht einmal diese DSLs und ihren Zweck kennen werden. [FP11]38

Dieser Punkt ist auch in Verbindung mit dem *Investitionsgefängnis* zu betrachten. Durch die Verwendung übermäßig vieler DSLs ist das Unternehmen gezwungen, diese durch eine große Investition abzusetzen und allgemein bekannte Technologien einzuführen, um von diesen zu profitieren. Eine andere Möglichkeit ist es, weiter in die Entwicklung eigener DSLs zu investieren, um seine Systeme aufrecht zu erhalten.

Engstirnigkeit durch Abstraktion

Abstraktion ist von großer Wichtigkeit für eine DSL. Wenn ein Entwickler mit der Arbeit an einer DSL begonnen hat, hat dieser die Abstraktion in einem bestimmen Maß bereits festgelegt. Ein Problem tritt auf, wenn im Nachhinein etwas mit der Sprache beschrieben werden soll, dass nicht zu dieser Abstraktionsebene passt.

Dabei besteht die Gefahr, dass der Entwickler sich von der Abstraktion der Sprache gefangen nehmen lässt. Das bedeutet, dass der Entwickler versucht, das Problem aus der realen Welt auf seine Abstraktion anzupassen. Der richtige Weg hingegen ist es, die Sprache und deren Abstraktionsebene so anzupassen, dass das Problem beschrieben werden kann. (vgl. [FP11, S.39])

Kulturelle Herausforderungen

Die genannten Nachteile den Einsatzes von DSLs führen zu Äußerungen wie Die Entwicklung von Sprachen ist kompliziert, Domänen-Experten sind keine Programmieren oder Ich möchte nicht schon wieder eine neue Sprache lernen (Yet-

3.6 Interne DSLs 22

Another-Language-To-Learn Syndrom (vgl. [gho11, S.22])).

Solche kulturellen Probleme i.d.R. dann, wenn etwas neues eingeführt werden soll. [VBK⁺13]45 Die Mitarbeiten müssen demnach entsprechend geschult und motiviert werden.

Unvollständige DSLs

Wenn ein Unternehmen viel Erfahrung bei der Entwicklung von DSLs aufgebaut hat und die Entwicklung durch entsprechende Tools vereinfacht wird, besteht die Gefahr, dass neue DSLs zu frühzeitig entwickelt werden. Damit ist gemeint, dass die Überlegungen über die Notwendigkeit einer neuen DSL nicht ausreichend durchgeführt werden. Durch die einfache Entwicklung scheint es weniger aufwendig eine neue DSL zu entwickeln, als nach bestehenden Ansätzen für das gleiche Problem zu suchen. (vgl. [VBK+13, S.44f]) Der Gedanke daran, dass sich die Investition in die Entwicklung einer DSL zu einem späteren Zeitpunkt amortisieren wird, unterstützt dies. (vgl. [FP11, S.38]) Dadurch entstehen immer mehr DSLs, die auf gleichen Problemen basieren, aber untereinander inkompatibel sind. Außerdem führt der Fakt, dass die Entwicklung einer DSL zum Verstehen der Domäne sehr hilfreich ist, dazu, dass eine DSL nur aus diesem Grund entwickelt wird. (vgl. [FP11, S.38]) Das wiederum führt dazu, dass mehrere halb-fertige DSLs existieren. Markus Völter et al. nennen dieses Phänomen die DSL Hell. (vgl. $[VBK^{+}13, S.44f])$

Zusammenfassend ist zu sagen, dass der Aufwand für die Vorbereitung des Einsatzes einer DSL sehr hoch ist. Wurde eine DSL jedoch eingeführt, wird sich der Arbeitsaufwand um ein Vielfaches verringern und der letztendliche Gewinn höher ausfallen. (vgl. [gho11, S.21])

3.6 Interne DSLs

Bei einer internen DSL handelt es sich um eine DSL, die in eine GPL integriert ist. Sie übernehmen dabei das Typ-System der GPL. (vgl. [VBK+13, S.50]) In Bezug auf die Ziele aus Kapitel 3.3 können einige dieser mit Ap-

3.6 Interne DSLs 23

plication Programming Interfaces (API) erreichen werden. In vielen Fällen ist eine DSL nicht mehr als ein API. Martin Fowler sieht den größten Unterschied zwischen API und DSL darin, dass eine DSL neben einem abstrahierten Vokabular auch eine spezifische Grammatik nutzt. ((vgl. [FP11, S.29])) Ein API hingegen besitzt die gleichen syntaktischen Strukturen wie die GPL, in der das API bereitgestellt wurde. Somit werden überflüssige Notationsformen in das API übernommen, was bei einer DSL nicht der Fall ist. [VBK+13, S.30] Weiterhin können DSLs so konstruiert werden, dass durch Restriktionen und Limitierungen nur korrekte Programme geschrieben werden können. Markus Völter et al. bezeichnen diese Eigenschaft als *correct-by-construction*. (vgl. [VBK+13, S.30])

3.6.1 Implementierungstechniken

Parse-Tree Manipulation

Allgemein betrachtet funktioniert diese Technik wie folgt. Ein Code-Fragment, welches zu einem späteren Zeitpunkt ausgewertet werden soll, als es gelesen wurde, wird in einem Parse-Tree hinterlegt. Dieser Parse-Tree wird noch vor der Ausführung modifiziert. Um diese Implementierungstechnik nutzen zu können, muss eine Umgebung vorliegen in der es möglich ist ein Code-Fragment in einen Parse-Tree umzuformen und diesen zu bearbeiten. Diese Möglichkeit existiert nur in wenigen Sprachen. Martin Fowler et al. geben hierzu nur die Beispiele C#, ParseTree (Ruby) und Lisp. (vgl. [FP11, S.45f])

Anders als Lisp bieten die anderen Beispiele die Möglichkeit über den Parse-Tree zu iterieren. Bei Lisp-Code handelt es sich schon um einen Parse-Tree von verschachtelten Listen. Bei der Iteration über den Parse-Tree ist aufgrund der Performance darauf zu achten, dass möglichst nur die notwendigen Teile des Baumes beachtet werden. (vgl. [FP11, S.46])

Konstrukte, die in der Wirtsprache geschrieben wurden und nicht verändert werden sollen, spielen bei der Parse-Tree Manipulation keine Rolle, um das semantische Modell zu erzeugen. (vgl. [FP11, S.46])

3.6 Interne DSLs 24

Fluent Interfaces

In einem klassischen API hat jede Methode eine eigene Aufgabe und ist nicht von anderen Methoden in diesem API abhängig. (vgl. [FP11, S.28]) In einer internen DSL hingegen ist es möglich Methoden bereitzustellen, die hintereinander gekettet werden können und somit komplette Sätze darstellen. Somit wird der Output einer Methode zum Input der folgenden Methode. Die Lesbarkeit der DSL wird dadurch weitaus besser, da es einer Sequenz von Aktionen gleicht, die in der Domäne ausgeführt werden (vgl. [gho11, S.94]) und ohne eine Vielzahl von Variablen aufgerufen werden müssen. (vgl. [FP11, S.68]) Eine solche Verkettung von Methoden wird als *Fluent Interface* bezeichnet. Das Fluent Interface steht laut Voelter et al. zwischen dem API und einer internen DSL. (vgl. [VBK+13, S.50]) Ein einfaches Beispiel für ein Fluent Interface beschreiben Martin Fowler et al. Dabei wird ein Computer mit einem Prozessor und zwei Festplatten beschrieben.

Listing 3.1: Beispiel: Fluent Interface

(vgl. [FP11, S.68])

Annotationen

Annotationen sind ein Teil der Informationen über ein Programmelement, wie Methoden oder Variablen. Diese Informationen können zur Laufzeit oder zur Übersetzungszeit (wenn die Umgebung die Möglichkeit dazu bietet) manipuliert werden. (vgl. [FP11, S.445])

Bevor eine Annotation verarbeitet werden kann, muss sie definiert werden. Die Definition von Annotationen variiert bei unterschiedlichen Sprachen. 3.7 Externe DSLs 25

(vgl. [FP11, S.446]) Die Verarbeitung von Annotationen findet normalerweise zu frei bestimmten Zeitpunkten statt. Zum Zeitpunkt der Übersetzung, zum Zeitpunkt des Ladens des Programms oder zum Zeitpunkt der Ausführung des Programms. (vgl. [FP11, S.447]) Verarbeitungen während der Laufzeit beeinflussen i.d.R. das Verhalten von Objekten. Beim Laden des Programms werden meist Validierungs-Annotationen verwendet. Solche Annotationen werden bspw. verwendet, um Mapping für Datenbanken auszulesen. Somit wird die Definition von Elementen von der Verarbeitung getrennt, was zu einem übersichtlichen und lesbaren Code beiträgt. (vgl. [FP11, S.449])

3.7 Externe DSLs

Eine externe DSL ist eine separate Sprache, welche die Infrastruktur vorhandener Sprachen nicht nutzt. (vgl. [gho11, S.18]) Das bedeutet, dass eine externe DSL eine eigene Syntax sowie ein eigenes Typ-Sytem besitzt. In der Regel wird mit einer externen DSL ein Skript geschrieben, welches von einem Programm gelesen wird. Dieser Vorgang wird auch als *Parsen* bezeichnet. (vgl. [FP11, S.28]) Für den Parser die lexikalische Analyse werden oft vorhandene Infrastrukturen genutzt. (vgl. [gho11, S.19])

3.7.1 Implementierungstechniken

Bei den Implementierungstechniken von externen DSL geht es um die Art und Weise, wie der DSL-Code vom Parser in ein semantisches Modell oder einem AST überführt wird. (vgl. [FP11, S.89]) Die allgemeine Vorgehensweise bei der Verwendung von Parsern ist Abbildung 3.2 zu entnehmen.

3.7 Externe DSLs 26

Abbildung 3.2: Parsen allgemein

Parser Generator

Bei der Generierung von Parsern muss der Parser nicht manuell implementiert werden. Diese Aufgabe wird an den Generator delegiert. Damit dies möglich ist, müssen zwei Artefakte definiert werden. Erstens muss eine Grammatik in der erweiterten Backus-Naur Form (EBNF) beschrieben werden. Zweitens werden bestimmte Aktionen benötigt, die bei der Bestätigung bestimmter Grammatik-Regeln ausgeführt werden sollen (Validierungs-Regeln). (vgl. [gho11, S.218]) Wird der Parser Generator ausgetauscht führt dies auch häufig dazu, dass die notwendigen Artefakte (Grammatik und Aktionen) neu definiert werden müssen. (vgl. [FP11, S.269]) Weiterhin arbeiten die meisten Parser Generatoren mit Code-Generierung, wodurch der Build-Prozess komplexer wird. (vgl. [FP11, S.272]) Vorteile dieser Technik im Vergleich dazu, dass der Parser manuell entwickelt wird, sind die folgenden.

- Möglichkeit des Programmierens auf einem höheren Abstraktionsniveau (vgl. [gho11, S.218])
- Weniger Code zum Implementieren des Parsers benötigt (vgl. [gho11, S.218])
- Möglichkeit des Generieren eines Parser in unterschiedlichen Sprachen (vgl. [gho11, S.218], [FP11, S.270])
- Validierung der Grammatik durch Fehlererkennung und -behandlung (vgl. [FP11, S.272])

3.7 Externe DSLs 27

Recursive Decent Parser (RD-Parser)

Dieser Parser basiert auf Funktionen, die rekursiv aufgerufen werden. Es handelt sich dabei um einen *Top-Down Parser* . (vgl. [gho11, S.226]) Die Funktionen implementieren dabei die Parsing-Regeln für die nonterminalen Symbole der Grammatik. [FP11]245 Die Funktionen geben dabei einen Boolean-Wert zurück, der Auskunft darüber gibt, ob die Symbole aus dem DSL-Skript mit den Symbolen übereinstimmen, die laut Grammatik erwartet werden. (vgl. [FP11, S.246]) Tabelle 3.1 enthält die Implementierungsmöglichkeiten von einfachen Grammatik-Regeln.

Grammatik-Regel	Implem	enti	erung	
A B	1 if (A())			
	2	then	true	
	3	else	if (B())	
	4		then	true
	5		else	false
АВ	1 if (A())			
	2	then	if (B())	
	3		then	true
	4		else	false
	5	else	false	
A?	1A();			
	2 true			
A*	1 while (A(());		
	2 true			
A+	1 if (A())			
	2	then	while (A	());
	3	else	false	

Tabelle 3.1: Implementierung einfacher Grammatik-Regeln mit einem RD-Parser (vgl. [FP11, S.248])

Da dieser Parser direkt implementiert werden kann, ist es ebenso möglich diesen Parser zu debuggen. Das ist neben der einfachen Implementierung (solange es sich um eine einfache Grammatik handelt) ein großer Vorteil dieser Technik. (vgl. [FP11, S.249]) Ein Nachteil ist, dass keine Grammatik definiert wird. Laut Fowler et. al. wird dadurch einer DSL ein gravierender Vorteil entzogen. (vgl. [FP11, S.249])

3.7 Externe DSLs 28

Parser-Kombinator

Bei der Kombination von Parsern wird die Grammatik mittels einer Struktur von Parser Objekten implementiert. (vgl. [FP11, S.256]) Wenn ein Teil des Input-Streams von einem Parser erfolgreich oder fehlerhaft verarbeitet wurde, kann der Rest den Input-Streams an einen anderen Parser übergeben werden. Somit ist es möglich Parser beliebig zu verketten. (vgl. [gho11, S.242]) Die Elemente, die verkettet werden können werden *Parser-Kombinatoren* genannt. Abbildung 3.3 stellt schematisch diese Funktionsweise dar.

Abbildung 3.3: Funktionsweise von Parser-Kombinatoren (in Anlehnung an [gho11, S.243])

Bezogen darauf, dass ein Parser aus Funktionen besteht, sind diese Parser-Kombinatoren Funktionen erster Ordnung, die unterschiedlich kombiniert werden können. (vgl. [gho11, S.243], [FP11, S.256]) Durch diese Kombination wird eine Struktur gebildet, welche das semantische Model repräsentiert. (vgl. [FP11, S.256]) Ein großer Vorteil dieser Technik ist, dass einfache Parser zu komplexeren Parsern zusammengefügt werden können. Weiterhin wird durch die Kombination mehrerer Grammatik-bestimmender Komponenten auch die Lesbarkeit der Grammatik gefördert, was bei einem RD-Parser ein großer Nachteil war. Daher bezeichnen Fowler et al. Parser-Kombinatoren auch als Mittelweg zwischen RD-Parsern und Parser Generatoren. [FP11]261

3.8 Nicht-textuelle DSL

Die Kapitel 3.6 und 3.7 bezogen sich auf textuelle DSLs. Auch wenn eine DSL eine bestimmte Domäne repräsentiert, bedeutet dies nicht, dass diese Repräsentation immer textuell erfolgen muss. (vgl. [gho11, S.19]) Es gibt einige Gründe, mit einer nicht-textuellen DSL zu arbeiten:

- Viele Domänenprobleme können von den Domänen-Nutzern besser durch Tabellen oder grafische Darstellungen erklärt werden
- Domänenlogik ist in textueller Form oft zu komplex und enthält zu viele syntaktische Strukturen
- Visuelle Modelle sind von Domänenexperten einfacher zu durchdringen und zu verändern

(vgl. [gho11, S.19])

Für diesen Ansatz muss der Domänen-Nutzer die Repräsentation des Wissens über eine Domäne in einem projektionalen Editor visualisieren. Mit diesem Editor kann der Domänen-Nutzer die Sicht auf die Domäne verändern, ohne auch nur eine Zeile Code schreiben zu müssen. Im Hintergrund generiert dieser Editor den Code, welcher Sicht auf die Domäne modelliert. (vgl. [gho11, S.19f])

Kapitel 4

GUI-DSL

4.1 Motivation des Ansatzes

Eine GUI ermöglicht die Interaktion mit einem Programm mit Hilfe unterschiedlicher GUI-Komponenten (vgl. [Gal07, S.4]). Mithilfe dieser Komponenten werden Informationen dargestellt, oder Eingaben vom Nutzer getätigt. Um die Zusammensetzung der GUI über eine DSL zu beschreiben gibt unterschiedliche Ansätze, wovon zwei im Folgenden vorgestellt werden.

- Der erste Ansatz zeichnet sich dadurch aus, dass die GUI auf der Grundlage von fachlichen Modellen generiert wird. (vgl. [SKNH05])
 Das bedeutet, dass in der Beschreibung der GUI-DSL keine GUI-Komponenten verwendet werden, wie es bei traditionellen GUI-Frameworks (JavaFX, Swing) der Fall ist.
- 2. Der zweite Ansatz beschreibt ein Modell der GUI, welches in andere GUI-Modelle überführt werden kann. Somit wird die Trennung zwischen der GUI und den fachlichen Aspekten in der Software erhalten und das Domänenproblem auf die GUI reduziert.

Die Komplexität des zweiten Ansatzes ist weitaus geringer, da lediglich die Aspekte, welche die GUI betreffen, auf MDSD umgestellt werden müssen. Außerdem soll den Entwicklern weiterhin die Möglichkeit gegeben werden, die GUIs selbst zu entwerfen, was bei dem ersten Ansatz streng genommen nicht möglich ist, da die GUI vollständig generiert wird. Beim zweiten Ansatz hingegen werden weiterhin GUI-Komponenten verwendet, was dem

Entwicklern die Anpassung der GUIs ermöglicht.

Von daher wird der zweite Ansatz weiter verfolgt und eine *GUI-DSL* konzipiert, welche die nachfolgenden Anforderung erfüllen soll.

4.2 Anforderungen an die GUI-DSL

Die allgemeinen Anforderung an die GUI und an die Sprache zur Beschreibung dieser wurden in Kapitel 2.1 erläutert. Die folgenden Festlegungen beziehen sich auf die Ausdrucksmöglichkeit der *GUI-DSL*, wodurch eine GUI beschrieben werden soll.

- AS1 Beschreibung von GUIs über die Zusammensetzung von GUI-Komponenten
- **AS2** Wiederverwendung und Erweiterung bzw. Veränderung beschriebener GUIs
- AS3 Verwendung einer abstrakten Layoutbeschreibung
- AS4 Weniger Quellcode zur Beschreibung von GUIs
- **AS5** Beschreibung von Interaktionen an GUI-Komponenten
- AS6 Erweiterung um neue GUI-Komponenten

Wie im vorherigen Abschnitt bereits erwähnt, sollen die Entwickler in der Lage sein eine GUI relativ frei zu gestalten. Daraus folgt, dass die einzelnen GUI-Komponenten unterschiedlich kombinierbar sein müssen (siehe Anforderung AS1). Außerdem sollten die beschriebenen GUIs auch in anderen GUI-DSL-Skripten (GUI-Skripten) wiederverwendet werden können (siehe Anforderung AS2)), da viele GUIs in profil c/s ähnlich aufgebaut sind. In Bezug auf das Layout muss erwähnt werden, dass in der traditionellen GUI-Entwicklung die Strukturierung der GUI-Komponenten mit Hilfe von Layout-Containern vorgenommen wird. In der Vergangenheit hat

fer GUI-Entwicklung die Strukturierung der GUI-Komponenten mit Hilfe von Layout-Containern vorgenommen wird. In der Vergangenheit hat sich gezeigt, dass die Strukturierung über ein spezifisches Layout zu einer Orientierung an ein bestimmtes Framework führt (Beispiel: MCF orientiert sich an Swing). Das ist nicht vorteilhaft, da bestimmte Layouts auf anderen Plattformen (Bspw. Web oder Mobil) nicht dargestellt werden können, da entsprechende Layout-Manager nicht vorhanden sind. Von daher ist das

Layout in der *GUI-DSL* so zu beschreiben, dass es auf allen Plattformen gleichermaßen gut dargestellt werden kann (siehe Anforderung AS3).

Für eine Steigerung der Effizienz der deg ist bei der Einführung neuer Technologien außerdem darauf zu achten, dass weniger Quellcode geschrieben werden muss, als zuvor. Die Qualität darf darunter jedoch nicht leiden (siehe Anforderung AS4).

Da eine GUI ohne Interaktionsmöglichkeiten ihren Zweck nicht erfüllen kann, ist die Beschreibung dieser neben der Angabe von Informationen über die Darstellen ebenso von Belang (siehe Anforderung AS5).

Außerdem darf die Erweiterung um neue GUI-Komponenten nicht vernachlässigt werden (siehe Anforderung AS6), da anderen Falls die Gefahr besteht, dass die GUI-DSL unbrauchbar wird.

Kapitel 5

Entwicklung einer Lösungsidee

5.1 Allgemeine Beschreibung der Lösungsidee

Eine Lösungsidee für die in Kapitel 2.3 beschriebenen Probleme wurde im Kapitel 2.4 bereits angedeutet. Kern dieser Idee ist, die im vorherigen Kapitel angesprochene GUI-DSL zur Beschreibung von GUIs zu nutzen. Diese GUIs sollen so beschrieben werden, dass sie in der Domäne von profil c/s für unterschiedliche GUI-Frameworks genutzt werden können. Diese Beschreibung soll weiterhin nur einmal stattfinden. Der Quellcode, welcher die GUI im entsprechenden Framework darstellt, wird frameworkspezifisch aus der GUI-Beschreibung generiert. Langfristig betrachtet könnte das MCF damit abgelöst werden.

Die Anforderungen für die GUI-DSL wurden bereits beschrieben. Diese sollen so weit wie möglich im Prototypen, welcher im Zuge dieser Arbeit entwickelt wird, umgesetzt werden. Der Prototyp soll Quellcode erzeugen, der eine GUI mit den syntaktischen Strukturen des MCF beschreibt. Somit kann geprüft werden, ob sich der generierte Quellcode in profil c/s einbinden lässt.

5.2 Konzept

Die *GUI-DSL* wird für die abstrakte Beschreibung der GUI verwendet. Somit ist gewährleistet, dass die GUI weiterhin nur einmal beschrieben werden muss. Wie in Abschnitt 5.1 beschrieben, wird der Quellcode zur Dar-

5.2 Konzept 34

stellung der GUI frameworkspezifisch, mit Hilfe eines speziellen Generators, erzeugt. Daraus folgt, dass die Integration neuer Frameworks (siehe Anforderung AA2) an die Implementierung eines spezifischen Generators gekoppelt ist. Abbildung 5.1 zeigt das grundlegende Konzept für diesen Ansatz auf. Dabei wurden exemplarisch drei unterschiedliche Generatoren für bestimmte Frameworks verwendet.

Abbildung 5.1: Grundlegendes Konzept

Der Prototyp wird aus einem GUI-Skript Quellcode erzeugen, welcher in das MCF eingebunden werden kann. Somit lässt sich prüfen, ob die GUI-DSL für existierende GUIs von profil c/s genügt. In Anlehnung an Abbildung 3.1 in Kapitel 3.3 wird eine GUI mit sinnvollen Interaktionen nicht allein über die GUI-DSL nicht umsetzbar sein, da die dafür notwendigen Informationen nicht in der GUI-DSL beschrieben werden. Folglich ist zumindest zur Erzeugung dieser Informationsquellen individueller Quellcode von Nöten. Abbildung 5.2 zeigt diese grundlegende Idee schematisch auf.

Abbildung 5.2: Grundlegende Idee für den Prototypen

Kapitel 6

Evaluation des Frameworks zur Entwicklung der DSL

6.1 Vorstellung ausgewählter Frameworks

Zur Umsetzung der GUI-DSL und der Generatoren wird ein Framework benötigt, welches die dafür notwendigen Funktionalitäten bereitstellt. Hierzu werden die Frameworks *PetitParser*, *Xtext* und *MPS* kurz vorgestellt und im Anschluss verglichen.

6.1.1 PetitParser

Dieses Framework arbeitet mit Parser-Kombinatoren. Somit ist es mit Patit-Parser einfach Grammatiken zusammenzustellen, zu transformieren oder zu erweitern, sowie Teile dieser dynamisch wiederzuverwenden. Alles geschieht auf der Basis von Pharo Smalltalk, womit das Framework ursprünglich implementiert wurde (vgl. [RDGN10]). Es existieren auch Versionen des Frameworks für Java¹, Dart² und PHP³.

Einfache Parser bestehen aus Sequenzen von Funktionen, welche die Produktionsregeln (Produktionen) der Grammatik abbilden. Komplexe Parser werden durch die Kombination anderer Parser implementiert (vgl. [RDGN10]). Die Implementierung dieser Kombination kann in einer einzelnen Methode

¹https://github.com/petitparser/java-petitparser

²https://github.com/petitparser/dart-petitparser

³https://github.com/mindplay-dk/petitparserphp

vorgenommen werden, wodurch der Parser einem Skript ähnelt. Alternativ können die zu kombinierenden Parser auch in Methoden von Unterklassen des PetitParsers implementiert werden (vgl. [bra10, S.6]). Das fördert die Lesbarkeit, Übersichtlichkeit und schließlich die Wartbarkeit des Codes. Tool Support ist für dieses Framework gewährleistet. Mithilfe dessen können Produktionen editiert und grafisch abgebildet werden. Weiterhin können Zufallsbeispiele für ausgewählte Produktionen generiert werden, um somit Fehler in der Grammatik aufzudecken. Darüber hinaus wird die Effizienz einer Grammatik durch die Darstellung und Behebung direkter, ineffizienter Zyklen in der Grammatik verbessert (vgl. [RDGN10]).

6.1.2 Xtext

Bei Xtext handelt es sich um eine Open-Source-Lösung für einen ANTLR-basierten Parser- und Editorgenerator mit dem externe, textuelle DSLs entwickelt werden können. Die Grammatiken für den Parser-Generator werden in der EBNF definiert. Durch die Integration in Eclipse kann der Eclipse-Editor für sämtliche Artefakte der Infrastruktur von Xtext verwendet werden. Aus der Grammatik wird der Parser sowie ein Modell, mit dessen Hilfe weitere Artefakte der DSL-Umgebung implementiert werden können, generiert. Die Klassen für Validierungs-Regeln und den Generator werden ebenfalls vom Tool erzeugt. Diese müssen im Anschluss daran vom Nutzer entsprechend erweitert werden (vgl. [114]). Zum Editieren der entsprechenden Dateien wird eine eigene Syntax verwendet, die meiner Meinung stark an die Java-Syntax erinnert.

Wenn der Parser generiert wurde, ist es möglich einen in Eclipse integrierten Editor zu erzeugen (vgl. [ML09, S.1]). Dieser Editor ist in der Lage die Validierungs-Regeln auf die DSL-Skripte anzuwenden. Darüber hinaus wird auch Code-Completion vom Editor angeboten.

6.1.3 Meta Programming System

Das Meta Programming System (MPS) ist ebenfalls eine Open-Source-Lösung, bei der die Entwicklung externer DSLs im Vordergrund stehen. Bei der Entwicklung der Sprache mit MPS ist weder eine Grammatiken noch ein Parser involviert. Die Sprache wird mit diesem Tool projektional entworfen. Das bedeutet, dass die Sprache nicht nur in Text-Form definiert werden kann, sondern auch mittels Symbolen, Tabellen oder Grafiken (vgl. [VBK⁺13, S.16]).

Zur Unterstützung der Entwicklung wird von der Firma JetBrains ein projektionaler Editor zur Verfügung gestellt⁴.

Der Generator kann die Konstrukte der neuen Sprache in bestimmte Basis-Sprachen überführen. Diese Basis-Sprachen sind *C, Java* oder *XML*. Auch die Transformation in einfachen Text ist gewährleistet (vgl. [Vol11]).

Des Weiteren wird ein Editor für die Arbeit mit der DSL zur Verfügung gestellt. Dieser bietet mehrere Funktionalitäten wie Code-Completion, Refactoring-Möglichkeiten oder einen Debugger (vgl. [PSV13]).

Die Integration in Eclipse war laut Pech et al. Ende 2013 geplant (vgl. [PSV13]). Im Oktober 2014 wies Vaclav Pech jedoch im Jet-Brains-Forum darauf hin, dass die Integration von MPS in Eclipse aufgrund von wichtigeren Features zurückgestellt wurde (vgl. [Pec14]). Ein Plugin für Eclipse ist demnach in absehbarer Zeit nicht zu erwarten.

6.2 Vergleich und Bewertung der vorgestellten Frameworks

In diesem Abschnitt wird das Framework für die Umsetzung des Prototypen evaluiert. Dabei sind folgende Kriterien von Belang.

Machbarkeit der Integration in Eclipse

Dieser Punkt ist wichtig, da die deg hauptsächlich mit Eclipse arbeitet und so wenig wie möglich von anderen Tools Gebrauch machen möchte. Grund dafür ist, dass die gewohnte Arbeitsweise der Entwickler bzgl. des Tools nicht beeinträchtigt werden soll.

Erweiterung der Grammatik

Die Grammatik muss erweiterbar sein, weil die GUI in profil c/s kein abgeschlossenes Konzept ist. Es ist davon auszugehen, dass neue Kom-

⁴https://www.jetbrains.com/mps/

ponenten in Zukunft benötigt werden

Bereitstellung eines Editors für DSL-Skripte

Ein Editor soll die effiziente Entwicklung unterstützen. Features wie Code-Completion oder ausdrucksvolle Fehlermeldungen sind der deg daher wichtig.

Erweiterung der Validierungen

Um ausdrucksvolle Fehlermeldungen verwenden zu können, ist es notwendig Validierungen durchzuführen, die entsprechende Fehler aufdecken können. Die Standard-Validierungen prüfen i.d.R. nur die Syntax der Sprache und keine fachlichen Zusammenhänge.

Vorhandenes Know-How

Um eine DSL effizient zu entwickeln ist neben dem Sprachdesign auch der Umgang mit dem Framework wichtig. Von daher werden die Erfahrungen der deg mit den vorgestellten Frameworks ebenfalls mit einbezogen.

Die Bewertung ist Tabelle 6.1 zu entnehmen. Dabei wurden drei Bewertungsstufen (Gut (+), Ausreichend (O) und Ungenügend (-)) verwendet.

Kriterium	PetitParser	Xtext	MPS
Machbarkeit der Intergration in Eclipse	+	+	-
Erweiterung der Grammatik	+	+	+
Bereistellung eines Editors für DSL-Skripte	+	+	O
Erweiterung der Validierungen	O	+	+
Vorhandenes Know-How	-	O	-

Tabelle 6.1: Bewertung der Frameworks für die Entwicklung von DSLs

Die Machbarkeit der Integration von MPS in Eclipse ist derzeit noch nicht gewährleistet. Da für Xtext ein entsprechendes Plugin und für PetitParser eine Java-Version existiert, ist auch die Integration dieser beiden Frameworks in Eclipse möglich.

Bei der Möglichkeit zur Erweiterung der Grammatik müssen nirgends Abstriche gemacht werden.

Die Bereitstellung eines Editors für DSL-Skripte ist bei der Verwendung von

MPS schlechter ausgefallen, als bei den anderen Frameworks. Grund dafür ist, dass der Editor nicht in Eclipse verwendet werden kann.

Die Validierungen bzgl. der DSL-Skripte können bei PetitParser durch die Parser-Kombinationen umgesetzt werden. Ausdrucksvolle Fehlermeldungen können jedoch nicht bereitgestellt werden. Die anderen Frameworks bieten dafür weitaus bessere Möglichkeiten.

Der letzte und entscheidende Punkt ist das vorhandene Know-How. Die deg hat bzgl. PetitParser und MPS keine Erfahrungen. Die Erfahrungen mit Xtext halten sich zwar in Grenzen, übersteigen aber dennoch die Affinität mit den anderen Frameworks.

Nach dieser Analyse ist Xtext vor allem aufgrund des vorhandenen Know-Hows auszuwählen.

Kapitel 7

Festlegungen für die Entwicklung des Prototypen

7.1 Vorgehensmodell

Das Vorgehensmodell für die Entwickler des DSL-Prototypen ist ein inkrementelles Modell. Das bedeutet, dass mehrere Iterationen durchlaufen werden (inkrementell), in denen unterschiedliche Versionen des Prototyps entwickelt werden (vgl. [Sau10, S.5]). In Abbildung 7.1 ist das Vorgehensmodell schematisch dargestellt.

Abbildung 7.1: Inkrementelles Modell

Nach der Definition der Anforderungen wird der Prototyp für die aktuelle Iteration entworfen und entwickelt. Im folgenden Verlauf werden diese beiden Phasen nicht separiert. An die Implementierung des Prototypen der aktuellen Iteration schließt sich ein Review an. Innerhalb des Reviews wird der Prototyp der aktuellen Iteration vorgestellt und weitere Anforderungen festgelegt, bestehende Anforderungen geändert oder Änderungen am gesamten Konzept gemacht. Das führt wiederum zu einem neuen Entwurf, woran sich eine weitere Implementierung anschließt. Dieser Zyklus wird somit mehrmals durchlaufen (Iteration) (vgl. [Sau10, S.5]).

Grund für dieses Vorgehen ist, dass in der deg bzgl. DSL-Entwicklung wenig Know-How existiert. Aus den Iterationen soll so viel Erfahrung und Wissen wie möglich geschöpft werden. Außerdem werden somit auch Irrwege aufgezeigt, die bei Entwicklung anderer DSLs Beachtung finden können. Weiterhin können Anforderungen flexibel angepasst und Missverständnisse reduziert werden, da der Entwicklungsprozess transparent ist. (vgl. [Sau10, S.67])

Der weitere Verlauf (Kapitel 7.2, 8 und 9) wird die durchgeführten Iterationen beschrieben. Dabei werden folgende Aspekte beleuchtet.

Vision (siehe Kapitel 7.2)

Dadurch werden die Anforderungen an die DSL-Umgebung beschrieben. Die in Kapitel 4 vorgestellten Anforderungen sind das Resultat der in dieser Arbeit durchgeführten Iterationen.

Entwicklung

Die Entwicklung beschreibt die Phasen *Entwerfen* und *Implementieren*. Sie teilt sich in zwei weitere Bereiche auf.

- Entwicklung der DSL (siehe Kapitel 8)
- Entwicklung eines Generators (siehe Kapitel 9)

7.2 Grobkonzept der DSL-Umgebung (Vision)

7.2.1 1. Iteration

Die DSL-Umgebung soll sich in zwei Bereiche unterteilen.

- DSL zur Beschreibung der GUI
- Generator zur Generierung von Quellcode

In Abbildung 7.2 sind die Artefakte mit den Funktionen (blauer Kasten), die von ihnen umgesetzt werden sollen dargestellt.

Abbildung 7.2: Konzeption der DSL-Umgebung (1. Iteration)

Die elementare Aufgabe der GUI-DSL ist es, die *GUI-Komponenten*, die in dem GUI verwendet werden sollen, zu definieren (siehe Anforderung AS1). Ausgehend von den für profil c/s verwendeten *GUI-Komponenten*, können diese in drei Kategorien unterteilt werden.

Basiskomponenten

Dabei handelt es sich um GUI-Komponenten, deren Funktionen in unterschiedlichen GUI-Frameworks ähnlich sind und in unterschiedlichen Anwendungen eingesetzt werden können. Das bedeutet, dass sie nicht als domänenspezifisch angesehen werden können. Beispiele hierfür sind GUI-Komponenten wie der *Button* oder das *Label*.

Komplexe Komponenten

Diese zeichnen sich dadurch aus, dass sie domänenspezifisch sind und speziell für profil c/s entwickelt wurden und Interaktionen und Funktionalitäten bereits festgelegt sind und nicht verändert werden können. Ein Beispiel für eine komplexe Komponenten ist die *Multiselection-Komponente*.

Layout-Komponenten

Dabei handelt es sich um Komponenten, welche die Struktur der GUI

bestimmen. In anderen GUI-Frameworks sind dies bspw. *Panel* (*Swing*), *Div* (HTML) oder *Pane* (JavaFX).

Bei den Beschreibungen der *Basiskomponenten* muss auch die Möglichkeit bestehen Interaktionen festzulegen (siehe Anforderung AS5). Zu einer Interaktion gehört die Art der Interaktion und bestimmte Aktionen, die bei der Interaktion ausgeführt werden. Die anderen *GUI-Komponenten* haben festgelegte Interaktionsmöglichkeiten (*komplexe Komponenten*) oder es ist nicht möglich mit ihnen zu interagieren (Layout-Komponenten).

Bezüglich der *komplexen Komponenten* ist darauf zu achten, dass sie für jedes verwendete GUI-Framework implementiert werden müssen. Damit wird verhindert, dass die Entwickler, die mit der *GUI-DSL* arbeiten, eigene *komplexe Komponenten* entwerfen, deren Wiederverwendungsgrad niedriger ist, als wenn diese Komponenten nach ausreichender Evaluation an einer zentralen Stelle implementiert und bereitgestellt werden. Die Notwendigkeit dessen, dass die Quellen für diese *komplexen Komponenten* sowohl zur Entwicklungszeit, als auch zur Laufzeit vorhanden sein müssen, ist ein Nachteil dieses Konzeptes.

Bei den Layout-Komponenten ist besonders auf die Ausdruckskraft der für die Beschreibung dieser Komponenten verwendeten Bezeichnungen zu achten. Grund dafür ist, dass die GUI auf unterschiedlichen Plattformen abgebildet werden soll, die spezielle Layout-Bereiche unterstützen. Beispielsweise lässt sich ein Programmfenster auf dem Desktop als oberste Layout Komponente festlegen. In einem Web-Browser ist der Begriff *Fenster* als oberste Layout Komponenten in der *deg* nicht geläufig. Die Komponente, die in einem Browser mit dem Programmfester auf dem Desktop assoziiert wird, ist in der *deg* das Tab.

Darüber hinaus sollen die Skripte für die Beschreibung der *GUIs* so konzipiert werden, dass es möglich ist andere GUI-Beschreibungen dort einzubinden (siehe Anforderung AS1). Somit werden eingebundene GUIs wiederum zu *GUI* -Komponenten. Ziel dessen ist es, dass die Entwickler aus mehreren einfachen *GUIs* ein komplexes *GUI* erstellen können (Modularisierung). Die Gefahr die dabei besteht ist, dass mit der Zeit viel einfache GUI-Beschreibungen mit ähnlicher Strukturiert entwickelt werden. Da die

deg bei den GUIs von profil c/s ein bestimmtes Schema verfolgt (Cooperate Design), sollte dieses Problem dadurch ausreichend eingedämmt sein. Wichtig ist hierbei zu betonen, dass die DSL keine Sprache sein soll, mit der jedes GUI beschrieben werden kann. Sie soll lediglich UIs für profil c/s beschreiben können. Der Vorteil, der sich aus dieser starken Modularisierung ergibt, ist dass viele GUI-Beschreibungen wiederverwendet werden können. So ist es meiner Meinung nach möglich komplexe GUI-Beschreibungen zu entwickeln, die in Fachabteilungen mit fachlichen Konzepten assoziiert werden können.

Beispielsweise können Suchmasken nach diesem Konzept gestaltet, beliebig wiederverwendet und kombiniert werden. Hierzu werden unterschiedliche Suchfelder definiert, die aus einem Label und einem Textfeld bestehen (Beispiel siehe Abbildung 7.3).

Name:	

Abbildung 7.3: Beispiel: Suchfeld für Name

In eine Suchmaske können mehrere dieser Suchfelder beliebig komponiert werden. (Beispiel siehe Abbildung 7.4).

Name:	
Straße:	
Nr.:	
PLZ:	
Ort:	
Suchen	

Abbildung 7.4: Beispiel: Suchmaske

Durch diese Möglichkeit der Komposition können auch komplexere fachliche Konzepte auf die GUI bezogen werden, wie z.B. *Personensuche*.

Um die miteinander komponierten GUI-Komponenten zu strukturieren ist es

notwendig, dass die GUI-DSL Informationen über die Anordnung der GUI-Komponenten enthält. Diese Informationen müssen ausreichend abstrakt sein, damit sich diese Struktur auf unterschiedliche GUI-Frameworks beziehen lässt. Dazu wird die Struktur innerhalb einer GUI als Anordnung von Bereichen betrachtet. In der GUI-DSL werden diesen Bereichen die GUI-Komponenten zugeordnet. Genauere Informationen über die Anordnung dieser Bereiche dürfen nicht enthalten sein, da dies eine Orientierung an bestimmte Layouts bedingt (siehe Anforderung AS3). Dazu ist weiterhin wichtig, dass den Bereichen jeweils nur eine Komponente zugeordnet werden kann. Dadurch wird der Zwang zur vorher beschriebenen Komposition von eingebundenen GUI-DSL -Skripten und definierten GUI-Komponenten verstärkt werden. Der Generator übernimmt beim Erzeugen des frameworkspezifischen Quellcodes die konkrete Anordnung der beschriebenen Bereiche. Grund dafür ist, dass die Anordnung der Komponenten frameworkspezifisch ist und teilweise unterschiedliche Layoutmanager in unterschiedlichen Frameworks unterstützt werden. Da für jedes eingesetzte Framework ein eigener Generator implementiert werden muss (siehe Kapitel 5), ist es theoretisch möglich diese Aufgabe weitgehend unabhängig von der Beschreibung der verwendeten *GUI* -Komponenten zu erfüllen.

7.2.2 2. Iteration

Nach dem Review der ersten Iteration des Prototypen wurde das grundsätzliche Konzept um ein Artefakt erweitert (siehe Abbildung 7.5).

Abbildung 7.5: Konzeption der DSL-Umgebung (2. Iteration)

Eine Änderung, die in dieser Grafik nicht dargestellt wird, ist, dass die Aktionen, die bei Interaktionen mit *GUI-Komponenten* ausgeführt werden, nicht in der GUI-DSL definiert werden sollen. Grund dafür ist, dass diese Aktionen sehr unterschiedlich sind und somit kaum abstrahiert werden können. Eine weitere Änderung ist, dass die *GUI-Komponenten*, die einem GUI-DSL-Skript direkt definiert werden, in einer anderen Beschreibung, wo jenes GUI-DSL-Skript eingebunden ist, verändert werden können. Dadurch werden die wiederverwendeten Beschreibungen anpassbar, was die Flexibilität enorm steigert (siehe Anforderung AS2).

Darüber hinaus soll die Möglichkeit bestehen, bestimmte Werte, welche die Attribute von *GUI-Komponenten* annehmen können, in Properties-Dateien auszulagern, wodurch die GUI-DSL weitgehend entlastet wird. Allerdings muss für die Zuweisung von *GUI-Komponenten* zu Wert-Beschreibung in der Properties-Datei und dem DSL-Skript ein eindeutiger Schlüssel definiert werden.

Der Generator muss die festgelegten Properties-Dateien in die Generierung mit einbeziehen und ihnen die entsprechenden Werte entnehmen. Dabei gilt die Festlegung, dass wenn in dem GUI-DSL-Skript einem Attribut ein bestimmter Wert zugewiesen ist, wird in der Properties-Datei (wenn diese nebst Schlüssel festgelegt wurde) nicht mehr nach diesem Attribut der Komponente gesucht.

7.2.3 3. Iteration

In dem Review, welches vor der 3. Iteration durchführt wurde, entstanden die letzten Änderungen, die bzgl. der Sprache innerhalb dieser Arbeit Beachtung finden. Das grundsätzliche Konzept wurde nochmals erweitert. Neben den bekannten Artefakten der DSL-Umgebung kommt ein weiteres Artefakt hinzu. Dabei handelt es sich um eine Layout-Beschreibung. Somit findet die Beschreibung des Layout nicht mehr im Generator statt, sondern muss nur noch frameworkspezifisch generiert werden. In Abbildung 7.6 ist das neue Konzept schematisch dargestellt.

Abbildung 7.6: Konzeption der DSL-Umgebung (3. Iteration)

Da die Layout-Beschreibung in eine separate Datei ausgegliedert wurde, muss die Referenzierung von *GUI-Komponenten* aus dem GUI-Skript mit den Festlegungen in der Layout-Datei referenziert werden können.

Bezogen auf die im GUI-Skript definierten Bereiche ist aufgefallen, dass die Angabe der Anzahl der Bereiche nicht notwendig ist. Grund dafür ist, dass dieser Wert doppelt definiert weden würde. Einerseits direkt in der Angabe der Anzahl und andererseits indirekt durch die Zuweisung der GUI-Komponenten und eingebundenen GUI-Skripte zu den Bereichen. Ursprünglich war die Idee, dass auf Basis dieser doppelten Angabe Validierungen

ausgeführt werden können. Die doppelte Deklarierung widerspricht jedoch der Anforderung, dass so wenig Codezeilen wie möglich geschrieben werden sollen, um eine GUI zu beschreiben (siehe Anforderung AS4).

Weiterhin ist aufgefallen, dass in einem GUI-Skript nur eine Properties Datei angegeben werden kann. In den GUI-Klassen der deg können jedoch mehrere Properties-Dateien angegeben werden. Dies ist auch in der GUI-DSL zu beachten.

Neben den *Basiskomponenten Button* und *Label* müssen folgende weitere *Basiskomponenten* definiert werden können.

Textfield

Ein Feld in dem ein einzeiliger Text editiert werden kann.

Textarea

Ein Feld in dem ein mehrzeiliger Text editiert werden kann.

Tree

Eine Baumstruktur in der mehrere Element eingebunden werden können.

Table

Eine Tabellenstruktur in der mehrere Elemente eingebunden werden können.

TabView

Eine Ansicht in der aus mehreren Taben eine Tab betrachtet werden kann.

Interchangeable

Ein Bereich, in dem während der Laufzeit unterschiedliche GUIs eingebunden werden können.

Weiterhin müssen die Bezeichnungen der Interaktionstypen den Bezeichnungen der Interaktionsformen (IF) der deg angeglichen werden. Darüber hinaus sollen folgende Standard-Interaktionstypen in den *GUI-Komponenten*, die für den Prototypen benötigt werden, verwendet werden. (Zuerst wird die Komponente genannt und anschließend die Standard-Interaktionstypen)

Label: IfTextDisplay

• Tree: IfTree, IfActivator

Diese Standard-Interaktionstypen müssen nicht in den jeweiligen Komponenten definiert werden.

Kapitel 8

Entwicklung einer DSL zur Beschreibung der GUI in profil c/s

8.1 1. Iteration

Analyse der Metadaten

Die Beschreibung einer GUI wird in der *GUI-DSL* als eigener Komplex betrachtet (siehe semantisches Modell *UIDescription*). Innerhalb dieses Komplexes werden die entsprechenden Komponenten definiert. Die Bereiche die innerhalb einer Beschreibung festgelegt werden sollen, müssen *GUI-Komponenten* zugeordnet werden können (siehe semantisches Modell *AreaAssignment*). Diese Bereiche sollten vor der Entwicklung bereits festgelegt werden. Um abzusichern, dass die Anzahl der festgelegten Bereiche genau eingehalten wird, muss diese Anzahl in der GUI-Beschreibung angegeben werden (siehe semantisches Modell *AreaCount*).

Für die Beschreibung der Layout-Komponenten werden zwei Typen unterschieden (siehe semantisches Model *TypeDefinition*), um zwischen obersten Layout-Komponenten und anderen zu differenzieren.

Ein weiterer Aspekt in dem GUI-Skript ist die Verwendung von anderen GUI-Skripten (siehe semantisches Modell *Use*).

Zusammenfassend sind für die Beschreibung der GUI folgende Metadaten nötig.

Anzahl der Bereiche

- Zuweisung der GUI-Komponenten zu den Bereichen
- Angabe des Layout-Typs
- Angabe der Verwendeten GUI-Beschreibungen
- Definition von *GUI-Komponenten*

Die Definitionen der *GUI-Komponenten* nehmen einen eigenen Komplex innerhalb der GUI-Beschreibung ein. Bezogen auf die *Basiskomponenten* der GUI ist die Beschreibung eines Textes wichtig. Im Falle eines Buttons oder eines Labels (andere *Basiskomponenten* sind in dieser Iteration nicht umgesetzt) beschreibt dieser die Aufschrift der Komponente. Weiterhin ist es für die Zuweisung zu einem Bereich wichtig, dass diese Komponenten innerhalb der Datei referenziert werden können. Daher muss für jede *GUI-Komponente* eine Bezeichnung definiert werden, die innerhalb der Datei eindeutig ist.

An den *Basiskomponenten* können darüber hinaus Interaktionen beschrieben werden. Hierzu sind Informationen über den Interaktionstyp nötig. Der einzige, in dieser Iteration umgesetzte, Interaktionstyp ist ein Klick auf die Komponente. An dieser Interaktion können ebenso Aktionen definiert werden, die Auswirkungen auf andere Komponenten haben. Zusammenfassend ergeben sich folgende Metadaten der *Basiskomponenten*.

- Typ
- Bezeichnung
- Text
- Interaktion (siehe semantisches Modell Interaction)

Die Interaktion benötigt folgende Attributen, die beschrieben werden müssen.

- Bezeichnung
- Interaktionstyp
- Aktion

Aktionen nehmen wiederum einen eigenen Komplex innerhalb der Komponentendefinition ein. Dabei werden folgende Informationen benötigt.

- Aktionstyp
 Zur Unterscheidung zwischen Interaktionen mit anderen GUI-Komponenten oder fachlichen Modellen
- Element
 Ein Verweis auf das Element, mit dem interagiert werden soll.
- Attribute (siehe semantisches Modell *Property*)
 Die zu verändernden Attribute des Elements.

Die komplexen Komponenten werden in einer eigenen Komponentendefinition beschrieben. Grund dafür ist, dass neben den vordefinierten Funktionalitäten der komplexen Komponenten auch weitere optionale Wertzuweisungen möglich sein sollen. Dazu wird nach der Implementierung der Komponente für jedes Framework ein neues Schlüsselwort für eine Komponentendefinition in die Grammatik eingebaut. Jede komplexe Komponente benötigt darüber hinaus eine Bezeichnung um referenziert zu werden. In dieser Iteration ist eine Multiselection-Komponente umgesetzt. Diese Komponente ist generisch implementiert. Der generische Typ muss innerhalb der Komponenten in der GUI-Beschreibung definiert werden. Ebenso müssen die Werte, die in dieser Komponente selektiert werden können, angegeben werden. Zusätzlich sollen optional auch die Werte angegeben werden, die bereits selektiert wurden.

Semantisches Modell

Das Artefakt, welches beim diesem Modell im Mittelpunkt steht ist die *UI-Description* (siehe Abbildung 8.2). Die Methoden werden zum Erhalt der Übersichtlichkeit nur in den Interfaces abgebildet. In den Klassen sind lediglich die globalen Variablen dargestellt. Die aggregierten Artefakte auf die schon im vorherigen Abschnitt verwiesen wurde, sind aus dem Diagramm gut zu entnehmen.

Abbildung 8.1: 1. Iteration: UIDescription

Abbildung 8.2: Teil 2: GUI-Beschreibungsmodel Version 1

Die Klasse *DefinitionImpl* aggregiert weitere Artefakte des Modells. Diese sind um die Übersicht zu wahren Abbildung 8.4 zu entnehmen.

Abbildung 8.3: Teil 3: GUI-Beschreibungsmodel Version 1

Abbildung 8.4: Teil 4: GUI-Beschreibungsmodel Version 1

Dort sind die drei umgesetzten Ausprägungen einer *Definition* zu erkennen. Dabei handelt es sich um *Label, Button* und *MultiSelection*. Weiterhin ist zu erkennen, dass nur der Button eine *Interaction* enthalten kann. Das Interface *Property* wird benötigt um bestimmte Werte an *GUI-Komponenten* zu setzen, ohne wissen zu müssen um welchen Komponententyp es sich han-

delt. Dazu wurden die allgemein gültigen Einstellungsmöglichkeiten von *Basiskomponenten* in *CommonProperty* zusammengefasst.

Konkrete Syntax

Folgender Auszug aus einem GUI-Skript enthält sämtliche Features, die im Prototypen der ersten Iteration umgesetzt wurden.

Listing 8.1: 1. Iteration: Syntax

```
1 type: WINDOW use: "AnotherDescription"
2 DEF Label as "HEAD" :
3 END DEF
4 DEF Button as "Interactbt":
          text="Interagiere"
          interaction = "btinteraction" type=CLICK with actions:type=UiAction element
              ="HEAD": Text="Du hast interagiert"
7 END DEF
8 DEF MultiSelection as "Multiselect":
          inputType="valuepackage. Values"
          selectable Values = "valuepackage. Values. as List()"
11 END DEF
12 Area:1<-"HEAD"
13 Area:2<-"AnotherDescription"
14 Area:3<-"Interactbt"
15 Area:4<-"Multiselect"
```

Die Bezeichnung *Area* wurde bewusst so gewählt, da dieser Begriff abstrakter ist als die in verschiedenen GUI-Frameworks verwendeteten Begriffe wie, Panel oder Pane. In der Syntax dieser DSL gilt es sich vor allem bzgl. des Aufbaus der GUI an keinem GUI-Framework zu orientieren. Die einzelnen Komponentendefinitionen werden durch das Schlüsselwort *DEF* eingeleitet und durch das Schlüsselwort *END DEF* abgeschlossen. Der Definitionskopf wird durch das Zeichen : beendet. Dort sind die Pflichtfelder der Komponentendefinition zu finden (*Titel* und *Typ*). Bei der Multiselection-Komponente fällt auf, dass ein Referenz-Wert verwendet wird, der in dieser Beschreibung nicht deklariert wurde (*valuespackage.Values*). Dabei handelt es sich um einen qualifizierten Namen einer Klasse.

Die dazugehörige Grammatik befindet sich im Anhang ??.

8.2 2. Iteration

Analyse der Metadaten

In den Metadaten der GUI-Beschreibung muss in dieser Iteration eine Properties-Datei angegeben werden, in der bestimmte Werte für die Attribute der GUI-Komponenten enthält.

Da die Möglichkeit bestehen soll die, in den eingebundenen GUI-Skripte definierten, Komponenten in dieser Iteration zu verändert, wird eine weitere Ergänzung für die GUI-Beschreibung benötigt. Diese Veränderungen sollen sich sowohl semantisch als auch syntaktisch von der Komponentendefinition abgrenzen (siehe semantisches Modell *Refinement*). Um die eindeutige Referenzierung zu ermöglichen muss bei der Bezeichnung der eingebundenen GUI-Skripte sowie bei der veränderten Komponente der qualifizierte Name angegeben werden.

Bei den Interaktionen der *Basiskomponenten* fällt die Aktion komplett weg. Somit muss nur noch der Interaktionstyp angegeben werden.

In den Definitionen der *Basiskomponenten* muss aufgrund des Properties-Konzeptes die Möglichkeit bestehen, einen Property-Schlüssel anzugeben. Alle anderen Metadaten für die *Basiskomponenten* bleiben bestehen.

Bezogen auf die *komplexen Komponenten* ist es lediglich notwendig den Input-Typ anzugeben. Die Festlegung über selektierbare und selektierte Elemente in der Multiselection-Komponente wird nicht benötigt. Das ermöglicht, die *komplexen Komponenten* mittels *use* (siehe semantisches Modell *UsedDefinitions*) in die GUI-Beschreibung einzubinden (siehe konkrete Syntax).

Semantisches Modell

In dieser Iteration wurden an den Artefakten *AreaCount*, *TypeDefinition* und *AreaAssignment* keine Änderungen vorgenommen. Artefakte wie *Property* und *Refinement* sind hinzugekommen. Die weiteren Artefakte, die von *UI-DescriptionImpl* aggregiert werden (siehe Abbildung 8.4), wurden verändert.

Abbildung 8.5: Teil 1: GUI-Beschreibungsmodell Version 2

Das Artefakt *Property* bildet die Property-Datei ab. Sie ist nicht zu verwechseln mit dem Artefakt *Properties*, welches die Eigenschaften von Komponenten abbildet. Abbildung 8.6 zeigt beide Artefakte auf.

Abbildung 8.6: Teil 2: GUI-Beschreibungsmodell Version 2

Die *UsedDescription* enthält in dieser Version einen *DefinitionType*. Dieser bestimmt, ob es sich bei der importierten Komponente um ein eingebundenes GUI-Skript handelt, oder um eine komplexe Komponente, für die ein Input-Typ (*inputType*) festgelegt werden kann.

Abbildung 8.7: Teil 3: GUI-Beschreibungsmodell Version 2

Weiterhin wird eine Unterscheidung zwischen *Definition* und *Refinement* vorgenommen. Die *Definition* bildet neu definierte Komponenten für das GUI ab. Ein *Refinement* hingegen beschreibt die veränderten Komponenten importierter GUI-Skripte (siehe Abbildung 8.8 und Abbildung 8.9).

Abbildung 8.8: Teil 4: GUI-Beschreibungsmodell Version 2

Abbildung 8.9: Teil 5: GUI-Beschreibungsmodell Version 2

Konkrete Syntax

Eine Veränderungen der Syntax in der zweiten Iteration ist ein neues Schlüsselwort zur Festlegung der Properties-Dateien. Um eine Properties-Datei einzubinden muss, wie in Listing 8.2, eine entsprechende Datei angegeben werden und in den Komponentendefinitionen entsprechende Schlüssel deklariert werden. Das Label mit der Bezeichnung *OneLabel* enthält keinen

Property-Key. In diesem Fall wird der Titel als solcher verwendet.

Listing 8.2: 2. Iteration: Properties

Aufgrund der Reduzierung der Menge der Metadaten für eine Interaktion stand die Frage offen, ob die Interaktionstypen einfach hintereinander mit Komma, oder untereinander mit dem entsprechenden Schlüsselwort aufgezählt werden sollen. Aufgrund der Anforderung AS4, wird die erste Variante bevorzugt (siehe Listing 8.3).

Listing 8.3: 2. Iteration: Interaktion

```
1 "InteractButton":
2          interactiontype=Click , ChangeText
3 END DEF
```

Die komplexen Komponenten werden wie in Listing 8.4 mit der Komponente Multiselection gezeigt ist, über das Schlüsselwort *use* eingebunden werden. Der Input-Typ kann dabei optional innerhalb der Zeichen < und > angegeben werden.

Listing 8.4: 2. Iteration: Definition komplexer Komponenten

```
1 type: WNDOW
2 use: Multiselection <'valuepackage.Values'> as: 'Multi'
```

Für die Zuweisung mehrerer Komponenten zu den Areas kamen zwei Lösungen in Betracht. Bei der einen finden die Definitionen der Komponenten zusammen mit der Zuweisung zu dem Area statt. Dies könnte bspw. wie in Listing 8.5 dargestellt werden.

Listing 8.5: 2. Iteration: Button und Label (1)

Eine andere Möglichkeit wäre es, die aktuelle Form der Zuweisung zu verfeinern und somit die Komponenten bei der Zuweisung mit Komma getrennt von einander aufzählen. Die erste Möglichkeit würde sich sehr gut eignen, wenn nur die in der Datei definierten Komponenten dem Area zugewiesen werden müssten. Da die mit *use* eingebundenen Komponenten auch Areas zugeordnet werden, würde für dieses Verfahren ein zusätzliches syntaktisches Konzept innerhalb der Area-Zuweisung benötigt werden. Um dies zu umgehen wurde die Entscheidung getroffen, das alte Verfahren zu verfeinern. Listing 8.6 ist ein Beispiel für die Area-Zuweisung von drei Komponenten zu entnehmen.

Listing 8.6: 2. Iteration: Area-Zuweisung (2)

```
1 Area count: 1
2 type: WINDOW
3 DEF Label as "OneLabel" END DEF
4 DEF Label as "AnotherLabel" END DEF
5 DEF Button as "InteractButton":
6 interactiontype=Click, ChangeText
7 END DEF
8 Area:1<-"OneLabel", "InteractButton", "AnotherLabel"
```

Das Überschreiben der Werte von Komponenten, die in einem eingebundenen GUI-Skript definiert wurden, können über das Schlüsselwort *REFINE* getätigt werden. Der erste Teil von Listing 8.7 zeigt die Originaldatei, deren Beschreibung eingebunden wird. Diese trägt den Namen *LabelAndButton* und befindet sich im Package *guidescription*. Der zweite Teil zeigt, wie die Aufschrift einer Komponente *Button* überschrieben wird.

Listing 8.7: 2. Iteration: Verändern von Komponenten eingebundener GUI-Beschreibungen

```
1 PART 1 Area count: 2
2 type: INNERCOMPLEX
3 DEF Label as "Label":
4 text="Text"
5 END DEF
6 DEF Button as "Button":
7 text="AlterText"
8 END DEF
9 Area:1<-'Label'
10 Area:2<-"Button"
11
12
13 PART 2
```

Sollten mehrere GUI-Skripte eingebunden sein, in denen Komponenten mit demselben Namen definiert sind, muss die Bezeichnung der eingebundenen Ressource zur eindeutigen Identifikation in der Referenz stehen (siehe Listing 8.8).

Listing 8.8: 2. Iteration - Verändern von Komponenten eingebundener GUI-Beschreibungen mit Namensüberschneidung

Die dazugehörige Grammatik, welche in der zweiten Iteration entwickelt wurde, ist im Anhang ?? zu finden.

8.3 3. Iteration

Analyse der Metadaten

Um eine Referenzierung von *GUI-Komponenten* und dem entsprechenden Layout aus der Layout-Datei zu ermöglichen, ist es wie bei den Properties-Dateien notwendig, die Layout-Datei innerhalb des GUI-Skripts anzugeben. Weiterhin wird in den einzelnen Komponentendefinitionen ein Schlüssel benötigt, über den die Komponente eindeutig referenziert werden kann. Dafür kann die Bezeichnung der *GUI-Komponente* verwendet werden. Um in der Layout-Datei nicht alle einzelnen *GUI-Komponenten* unterscheiden zu müssen, wird innerhalb der GUI-Beschreibung ein optionales Feld benötigt, mittels dessen unterschiedlichen *GUI-Komponenten* derselbe Layout-Schlüssel zugeordnet werden kann.

Da die Anzahl der Bereiche nicht mehr angegeben werden muss, fällt dies aus den Metadaten heraus. Die Zuweisung der GUI-Komponenten zu den

Bereichen entfällt ebenfalls. Die Strukturierung wird über eine Aufzählung der *GUI-Komponenten* vorgenommen.

Zusammenfassend werden folgende Metadaten für die Beschreibung einer GUI mit der GUI-DSL benötigt.

- Typ
- Properties-Dateien
- Layout-Dateien
- Eingebundene GUI-Komponenten
- Veränderte eingebundene Komponentendefinitionen
- Komponentendefinitionen
- Struktur

Alle Komponentendefinitionen und die Veränderten eingebundenen Komponentendefinitionen benötigen durch die genannten Änderung folgende Metadaten.

- Bezeichnung
- Property-Schlüssel (optional)
- Layout-Schlüssel (optional)
- Interaktionen (optional)

Über die konkreten Kompnentendefinitionen müssen mehrere *Basiskomponenten* beschrieben werden können. *Basiskomponenten* die spezielle Metadaten benötigen sind mit diesen in folgender Tabelle aufgelistet.

Basiskomponente	Spezifische Metadaten
Label	Aufschrift
Button	Aufschrift
Textfield	Text, Editierbarkeit
Textarea	Text, Editierbarkeit
Tree	Input-Modell
Table	Input-Modell
TabView	GUI-Beschreibungen für die einzelnen Tabe

Tabelle 8.1: Basiskomponenten mit spezifischen Metadaten

Mit Ausnahme der Metadaten des TabViews sind alle Angaben zu anderen Basiskomponenten optional.

Semantisches Modell

Das semantische Modell hat sich durch die vielen Änderungen in dieser Iteration ebenso stark verändert. Bei der Betrachtung der *UIDescription* (siehe Abbildung 8.10) fällt auf, dass *Area* und *AreaCount* nicht mehr vorhanden sind. Hinzugekommen sind *Structure* (worin die Anordnung der *GUI-Komponenten* (*Element*) in einer Liste abgelegt wird) und Layout (worin die zu verwendeten Layout-Dateien in einer Liste abgelegt werden).

Eine weitere Änderungen ist bei *Property* zu finden. Dort ist ebenfalls eine Liste vorhanden und kein allein stehender Wert.

Abbildung 8.10: 3. Iteration: UIDescription

An TypeDefinition und UsedDescription wurden keine signifikanten Änderungen vorgenommen. Die meisten Änderungen wurden bei den Artefakten Refinement und Definition vorgenommen. Der Aufbau der dieser Artefakte ist ähnlich. Das Interface (Refinement und Definition) wird von einer Klasse implementiert (RefinementImpl und DefinitionImpl), die mehrere Objekte bestimmter Klassen, die das Interface ComponentRefinement oder ComponentDefinition implementieren, enthält. In Abbildung 8.11 ist diese Struktur für die Definition abgebildet.

Abbildung 8.11: 3. Iteration: Definition

Die benannten Klassen bilden die unterschiedlichen *Basiskomponenten* ab, die definiert oder verändert werden können. Jede dieser Klassen aggregiert ein Objekt des Typen *CommonProperties* ein. Dieses Interface bildet die allgemeinen Properties ab. Bei den *Basiskomponenten* Label, Button, Textfield und Textarea ist diese Aggregation transitiv, da die speziellen Properties dieser *Basiskomponenten* als eigenes Artefakt implementiert sind. Abbildung 8.12 zeigt dies für einen Button auf.

Abbildung 8.12: 3. Iteration: Button

Eine direkte Aggregation der *CommonProperties* findet bei den *Basiskomponenten* TabView, Table und Tree statt. Für die speziellen Properties dieser *Basiskomponenten* existieren keine einzelnen Klassen. Die folgenden Abbildungen (8.13, 8.14 und 8.15) zeigen diese drei *Basiskomponenten* (*Refinement* und *Definition*) mit der Aggregation der *CommonProperties*.

Abbildung 8.13: 3. Iteration: TabView

Die *Basiskomponente* TabView benötigt eine Menge von *TabDefinitions*. Diese Klasse bildet die Referenz zu den in die TabView einzubindenden *GUI-Komponenten*. Die *Basiskomponenten* Tree und Table benötigen lediglich eine Referenz auf den Input-Typen, den sie abbilden sollen, in Form einer Zeichenkette (siehe Abbildung 8.14 und 8.15).

Abbildung 8.14: 3. Iteration: TabView

Abbildung 8.15: 3. Iteration: TabView

Konkrete Syntax

Die syntaktischen Konstrukte wurden in dieser Iteration stark vermehrt. Das liegt vor allem daran, dass viele neue *Basiskomponenten* hinzugekommen sind. Der grundsätzliche syntaktische Aufbau eines GUI-Skripts hat sich jedoch nicht verändert. Eingeleitet wird die Beschreibung weiterhin mit der Typ-Definition, gefolgt von der Angabe der Properties-Dateien. Sofern mehrere Properties-Dateien vorhanden sind, werden diese mit Komma getrennt voneinander aufgezählt.

Dasselbe Prinzip wird bei der sich anschließenden Angabe der Layout-Dateien verwendet. Das Semikolon gilt ab sofort als Trennzeichen für einen abgeschlossen definierten Komplex (siehe Listing 8.9).

Listing 8.9: 3. Iteration: Properties- und Layout-Dateien

```
1 type: INNERCOMPLEX;
2 get properties from: 'properties1', 'properties2';
3 get layout from: 'layout1', 'layout2';
```

Für die eingebundenen *GUI-Komponenten* wurden keine großen syntaktischen Veränderungen vorgenommen. Lediglich das Semikolon wird für den Abschluss des Komplexes benötigt (siehe Listing 8.10).

Listing 8.10: 3. Iteration: Eingebundene GUI-Komponenten

```
1 use: Multiselection <Input> as: "multi";
```

Die Definitionen der einzelnen *Basiskomponenten* hat sich syntaktisch stark verändert. Grund dafür ist vor allem, dass die Anforderungen AA5 und AS4 mehr Beachtung finden sollen. Somit werden die bekannten *Basiskomponenten* wie folgt definiert (siehe Listing 8.11).

Listing 8.11: 3. Iteration: Button und Label

```
1 Button as: "Button" -> propertyKey='buttonproperty' layoutKey='buttonlayout'
2 interactiontype=IfViewImage text='buttontext';
3
4 Label as: 'Label' -> propertyKey='labelproperty' layoutKey='labellayout'
5 interactiontype=IfActivator text='labeltext';
```

Bei den Definitionen der anderen *Basiskomponenten* werden die allgemeinen Properties wie im vorherigen Beispiel zugewiesen. In den Fällen der *Basiskomponenten* Textflied und Textarea werden die speziellen Properties nach demselben Prinzip definiert (siehe Listing 8.12).

Listing 8.12: 3. Iteration: Textfield und Textarea

```
1 Textfield as: 'Textfield' -> propertyKey='textfieldproperty'
2 layoutKey='textfieldlayout' interactiontype=IfActivator
3 text='textfieldtext' editable=TRUE;
4
5 Textarea as: 'Textarea' -> propertyKey='textareaproperty'
6 layoutKey='textarealayout' interactiontype=IfActivator
7 text='textareatext' editable=TRUE;
```

Die Syntax für die Definition der *Basiskomponenten* Table und Tree sind ähnlich. Der benötigte Input-Typ wird nach dem Schlüsselwort angegeben, welches die *GUI-Komponente* bestimmt (siehe Listing 8.13).

Listing 8.13: 3. Iteration: Table und Tree

```
1 Table<tablemodel> as: 'Table' -> propertyKey='tableproperty'
2 layoutKey='tablelayout' interactiontype=IfActivator;
3
4 Tree<treemodel> as: 'Tree' -> propertyKey='treeproperty'
5 layoutKey='treelayout' interactiontype=IfActivator;
```

Die Basiskomponenten TabView werden die verwendeten GUI-Komponenten der einzelnen Tabs ebenfalls nach dem Schlüsselwort angegeben, welches die GUI-Komponente festlegt. Hierbei können anderes als bei den Basiskomponenten Table und Tree mehrere Angaben getätigt werden (siehe Listing

8.14).

In den folgenden Beispielen wird davon ausgegangen, dass die vorher genannten Beispiele für die *Basiskomponenten* Tree, Table und Textarea in demselben GUI-Skript definiert wurden. Durch das syntaktische Konstrukt in Listing 8.14 wird eine Tab-Ansicht mit drei Taben beschrieben. Das erste Tab enthält den Tree, das zweite die Table und das dritte die Textarea.

Listing 8.14: 3. Iteration: TabView

```
1 TabView[Tree][Table][Textarea] as: 'tabview' -> propertyKey='tabviewproperty'
2 layoutKey='tabviewlayout' interactiontype=IfViewImage;
```

Dabei ist zu erwähnen, dass die Angabe der Properties in den meisten Fällen optional ist. Lediglich die speziellen Properties der *Basiskomponenten* Table, Tree und TabView müssen zwingend angegeben werden.

Die Syntax zur Veränderung einer *Basiskomponente* eines eingebundenen GUI-Skripts ähnelt der Definition einer *Basiskomponente* des gleichen Typs. Es muss lediglich angegeben werden, welche *GUI-Komponenten* in welcher GUI-Beschreibung verändert werden soll.

Folgendes Beispiel zeigt, wie die Aufschrift eines Buttons eines eingebundenen GUI-Skripts verändert wird (siehe Listing 8.15). Der Button trägt die Bezeichnung *EmbeddedButton*. Das GUI-Skript liegt im Package *guidescription* und trägt die Bezeichnung *Embedded*.

Listing 8.15: 3. Iteration: TabView

```
1 use: "guidescription.Embedded" as: "embedded";
2 Button change:'embedded.EmbeddedButton' -> text='Neuer Text';
```

Der letzte Teil einer GUI-Beschreibung beinhaltet die Angabe der Struktur. Diese Angabe ähnelt der Zuweisung von *GUI-Komponenten* zu Bereichen, wie es auch der ersten und zweiten Iteration bekannt ist. Da dieses Konstrukt vereinfacht werden sollte, werden die *GUI-Komponenten* in der richtigen Reihenfolgen nach dem Schlüsselwort *Structur* aufgezählt (siehe Listing 8.16).

Listing 8.16: 3. Iteration: Struktur

```
1 Structure: 'Button', 'Label', 'Textfield', 'tabview';
```

Die damit für diese Arbeit endgültige Grammatik ist, wie die Grammatiken der anderen Iterationen, im Anhang ?? zu finden.

Kapitel 9

Entwicklung des Generators zur Generierung von Klassen für das Multichannel-Framework

Alle Umsetzungen die in diesem Kapitel beschrieben werden, fanden in der 3. Iteration statt. Von daher wird nicht mehr zwischen Iterationen unterschieden.

Ziel ist es mit dem Generator und einem entsprechenden GUI-Skript eine Exploreransicht zu erstellen, wie sie in profil c/s geläufig ist. Abbildung 9.1 zeigt den Aufbau einer solchen GUI. Darin enthalten sind zwei Bäume (auf der linken Seite) und ein Interchangeable (auf der rechten Seite), worin der Inhalt der ausgewählten Elemente des Inhaltsbaums angezeigt werden soll. Das Anzeigen des Inhalts wird jedoch nicht umgesetzt.

Abbildung 9.1: Aufbau eines Explorers

Die notwendigen GUI-Skripte werden bei der Umsetzung vorgestellt.

9.1 Beschreibung der GUI-, FP- und IP-Klassen

Durch die Beschreibung der GUIs mit der entwickelten *GUI-DSL*, ist es möglich die GUI-, FP- und die IP-Klassen (siehe Kapitel 2) zu generieren. Die GUI-Klasse soll dabei vollständig generiert werden. Dafür werden Informationen über das Layout aus der Layout-Datei benötigt. Die Umsetzung und Einbindung der Layout-Datei wird nicht in dieser Arbeit behandelt. Aus diesem Grund wird im Generator ein Layout festgelegt. Die IP-und FP-Klassen sollen nur teilweise generiert werden. Somit unterteilt sich das folgende Kapitel in drei Abschnitte (GUI-Klassen, FP-Klassen und IP-Klassen).

In den GUI-Klassen der deg werden die GUI-Komponenten durch Präsentationsformen beschrieben (siehe Kapitel 2). Alle GUI-Komponenten sind in diesen Klassen global verfügbar. Die globalen Variablen stehen bei der deg am Ende der Klasse. Die bestehende Struktur der Klassen soll nicht verändert werden. Da die Interaktion von der Präsentation getrennt ist, müssen zur Referenzierung von Interaktionen zu GUI-Komponenten entsprechende Schlüssel vergeben werden (siehe Routinearbeit R1).

Die IP-Klassen ordnen den *GUI-Komponenten* mit Hilfe dieses Schlüssels entsprechende Interaktionen und darauf folgende Kommandos zu. Was genau bei der Interaktion gesehen soll, kann vom Generator nicht erzeugt werden. Dies muss vom Entwickler nachgepflegt werden.

In den FP-Klassen ist die Funktionalität des Werkzeugt beschrieben. Eine komplette Generierung der FP-Klassen kann mit der DSL nicht angestrebt werden, weil dafür entsprechende Informationen fehlen. Dennoch kann der Klassen-Rumpf und der Konstruktor erzeugt werden.

Für die Generierung der Klassen wird in dieser Arbeit Transformer Generation (siehe Kapitel 3) verwendet. Für die Generierung der IP- und FP- Klassen ist auch die Templated Generation (siehe Kapitel 3) in Erwägung zu ziehen. Um bei der Art der Generation einheitlich zu sein, wird auf diese Möglichkeit nicht weiter eingegangen.

9.2 Umsetzung des frameworkspezifischen Generators

GUI-Klassen

Bei Betrachtung der Präsentation aus Abbildung 9.1 können die Bäume auf der linken Seite als einzelne GUI-Beschreibungen betrachtet werden, die jeweils mit einem fachlichen Konzepten assoziiert werden können. Der obere Baum kann mit dem fachlichen Konzept des *Inhaltsbaumes* in Verbindung gebracht werden und der untere mit dem des *Verweisebaums*. Da sich die fachlichen Konzepte erkennen lassen, sollten separate GUI-Skripte erstellt werden (siehe Listing 9.1 und 9.2).

Listing 9.1: GUI-Skript für den Inhaltsbaum

```
1 type: INNERCOMPLEX;
2 Label as: 'kopfzeile'->text='Inhaltsbaum';
3 Tree[testwerkzeuge.modelle.InhaltsModell] as: 'inhaltsbaum';
4 Structure:'kopfzeile','inhaltsbaum';
```

Listing 9.2: GUI-Skript für den Verweisebaum

```
1 type: INNERCOMPLEX;
2 Label as: 'kopfzeile'->text='Verweisebaum';
3 Tree[testwerkzeuge.modelle.VerweiseModell] as: 'verweisebaum';
4 Structure:'kopfzeile','verweisebaum';
```

Bei der Generierung betrachtet Xtext eine GUI-Beschreibung im Ganzen. Für jede GUI-Beschreibung soll eine eigene GUI-Klasse angelegt werden. Die Klassen enthalten in diesen beiden Fällen zwei globale Variablen. Darüber hinaus enthalten sie Importe, die am Anfang der beiden Klassen stehen. Um das GUI-Skript für jede zu generierende Datei nur einmal analysieren zu müssen, ist es notwendig Importe, Methoden und globale Variablen zwischen zu speichern. Die Methoden in Listing 9.3 realisieren das Speichern der Importe und globalen Variablen beim generieren der Methoden. So ist es möglich die bestehende Struktur der Klassen der deg beizubehalten.

Listing 9.3: Speichern der Importe und der globalen Variablen

Zu Beginn einer Generierung muss zwischen den Typen der GUI-Beschreibung unterschieden werden. Je nachdem ob die Beschreibung als *Window* oder *Innercomplex* definiert ist, werden entsprechende Importe benötigt. In den Fällen der oben genannten Bäume wird ein *Innercomplex* definiert (siehe Listing 9.4).

Listing 9.4: Generierung eines Innercomplex

```
1 def compileComplex(UIDescription description) '''
          «addImport("import DE.data_experts.jwammc.core.pf.PfPanel;")»
          public class «guiFilename» extends PfPanel{
          «description.genRest»
          }
8 def genRest(UIDescription description) ""
          «addImport("import java.awt.BorderLayout;")»
          public «guiFilename»(){
10
11
                  super( new BorderLayout() );
12
                   try {
                   init();
13
          }
14
15
          catch (Exception e) {
                   e.printStackTrace();
16
17
18
          «description.init»
19
          «genGlobalVars»
20
21 ′′′
```

In der Methode *compileComplex* wird festgelegt, dass sich die *GUI-Komponenten* auf einem Border-Layout anordnen. Wenn die Layout-Datei verwendet wird, muss der Generator aus dem Inhalt dieser Datei auf einen entsprechenden Layout-Container schließen. Zum Abschluss der Methode *genRest* werden zwei weitere Methoden aufgerufen. Die erste Methode (*descrition.init*) generiert die im Konstruktor aufgerufene Methode *init*. Die andere Methode *genGlobalVars* ist für die Generierung der globalen Variablen zuständig. In der Methode *init* werden alle *GUI-Komponenten* und das Layout definiert.

Da für das Layout in dieser Arbeit keine Beschreibung existiert, müssen diese Angaben nachgepflegt werden. Die Definition der *GUI-Komponenten* mit ihren Properties können jedoch erzeugt werden. Listing 9.5 zeigt die Methode *init* ohne Berücksichtigung des Layouts.

Listing 9.5: Generierung der Methode init der GUI-Klassen

In der Methode *compileComponent* wird geprüft um welche *GUI-Komponente* es sich handelt. Diese wird anschließend compiliert, wobei der entsprechende Quellcode zur frameworkspezifischen Definition der Komponente generiert wird. Im Fall des Labels werden der entsprechende Import und die globale Variable hinzugefügt. Weiterhin muss die Referenz für die IP-Klasse definiert werden, da Labels Standardinteraktionen besitzen. Wenn vorhanden, müssen letztlich die Properties am Label gesetzt werden (siehe Listing 9.6).

Listing 9.6: Generierung eines Labels

```
1 def compileLabel(LabelDefinition definition) '''
2
          «addImport("import DE.data_experts.jwammc.core.pf.PfLabel;")»
          «addGlobalVar("PfLabel " + definition.id + ";")»
3
          «definition.id» = new PfLabel();
          «definition.id».setIfName(" «definition.id»");
          «IF definition.properties != null»
                   \verb| "genProperty| ( | definition.id|, | 'setText', definition.properties.text', \\
                        true)»
          «ENDIF»
9
10
11 def genProperty(String id, String method, String value, Boolean isString) '''
          «IF value != null»
12
                   «IF isString»
13
                            «id». «method» (" «value» ");
14
                   «ELSE»
15
                            «id» . «method» ( «value» );
16
                   «ENDIF»
17
          «ENDIF»
18
           ,,,
19
20 ′′′
```

Die Eigenschaften aus den Properties-Dateien müssten an dieser Stelle zusätzlich berücksichtigt werden. Dies wurde aus Zeitgründen nicht umgesetzt.

Der Quell-Code für den Baum wird ähnlich generiert. Wenn der Input-Typ des Baumes nicht gesetzt ist, muss ein Standard-Wert dafür eingesetzt werden. Des Weiteren muss für den Baum ein *CellRenderer* definiert werden (siehe Listing 9.7).

Listing 9.7: Generierung eines Trees

```
1 def compileTree(TreeDefinition definition)'''
          «addImport("import DE.data_experts.jwammc.core.pf.PfTree;")»
3
          «addImport("import DE.data_experts.jwammc.core.pf.TreeCellRenderer;")»
          «addImport("import DE.data_experts.jwammc.core.pf.PfTree;")»
          «addImport("import javax.swing.tree.DefaultTreeModel;")»
5
          «addGlobalVar("PfTree " + definition.id + ";")»
          «definition.id» = new PfTree();
          «definition.id».setIfName(" «definition.id»");
          «IF definition.inputType == null»
                  «addImport("import DE.data_experts.util.ObjectNode;")»
10
                  «definition.id».setTreeModel( new DefaultTreeModel( new ObjectNode
11
                      () );
12
          «ELSE»
                  «definition.id».setTreeModel( new DefaultTreeModel(
13
                 new «definition.inputType.substring(1,definition.inputType.length
14
                      -1)»() );
         «ENDIF»
15
                  «definition.id».setCellRenderer( new TreeCellRenderer() );
16
17 ′′′
```

Durch die genannten Methoden kann der Generator die beiden GUI-Skripte zur Beschreibung des Inhalts- und des Verweisebaums in GUI-Klassen transformieren, die innerhalb der MCF ausgeführt werden können.

Die generierten Dateien (*GuiInhaltsbaum.java* und *GuiVerweisebaum.java*) befinden sich auf dem beiliegenden Datenträger (siehe Anlage) im Projekt *Explorer*. Abbildung 9.2 zeigt die beiden GUIs, welche bei der Ausführung der generierten Dateien im Kontext von profil c/s erzeugt werden.

Abbildung 9.2: Generierte GUI des Inhalts- und Verweisebaums

Um die Explorer-GUI zu generieren, müssen diese beiden Bäume zusammen mit einem austauschbaren Bereich in einem GUI-Skript definiert werden (siehe Listing 9.8).

Listing 9.8: GUI-Skript für das Exlporer-GUI

```
1 type: WNDOW;
2 use: "Inhaltsbaum" as: 'inhaltsbaum';
3 use: "Verweisebaum" as: 'verweisebaum';
4 Interchangeable as: "austauschbarerBereich";
5 Structure:'inhaltsbaum', 'verweisebaum', 'austauschbarerBereich';
```

Da es sich um ein *Window* handelt, wird in diesem Fall die Methode *compileWindow* aufgerufen. Der einzige Unterschied zur Methode *compileComplex* ist in diesem Fall die Oberklasse (siehe Listing 9.9).

Listing 9.9: Generierung eines Windows

Ebenso wie bei der Generierung der ersten beiden GUIs, wird hier als Layout-Container ein Border-Layout verwendet. Um die Anordnung der Bäume wie gewünscht zu erhalten, wird ein weiterer Layout-Container benötigt. Da sich diese Information auf das Layout bezieht, muss sie normalerweise von der Layout-Datei geliefert werden.

Die GUI-Klassen der eingebundenen Gui-Skripte für die Bäume werden in der zu generierenden GUI-Klasse für den Explorer deklariert. Dabei muss der Typ der *UsedDescription* im Vorfeld überprüft werden. Handelt es sich um den Typ *UIDescriptionImport*, ist lediglich die Deklarierung der *GUI-Komponente* und die Einbindung in einen Layout-Container nötig (siehe Listing 9.10). Anderenfalls müssen die spezifischen Eigenschaften komplexer Komponenten untersucht werden. Darauf wird in dieser Arbeit jedoch nicht weiter eingegangen.

Listing 9.10: Generierung der Einbindung anderer GUI-Skripte

Die letzte Komponente, die damit noch nicht in der GUI-Klasse deklariert wurde ist die Interchangeable-Komponente. Da diese *GUI-Komponenten* keine speziellen Properties besitzt, ist die Methode zur Generierung des Quellcodes recht einfach gehalten (siehe Listing 9.11).

Listing 9.11: Generierung einer Interchangeable-Komponente

Die generierten Dateien sind auf dem beiliegenden Datenträger (siehe Anlage) zu finden. Es handelt sich um die Dateien *GuiInhaltsbaum.java*, *GuiVerweisebaum.java* und *GuiExplorer.java*. Abbildung B.1 (in Anhang B) zeigt die *GUI*, welche durch die Klasse *GuiExplorer.java* erzeugt wird.

FP-Klassen

Da für die FP-Klassen lediglich der Klassen-Rumpf und der Konstruktor generiert wird, ist diese Aufgabe entsprechend einfach. Dafür werden lediglich eine Oberklasse und entsprechende Importe benötigt, wie Listing 9.12 zu entnehmen ist.

Listing 9.12: Generierung der FP-Klasse

IP-Klassen

Um ein Objekt der IP-Klasse zu instantiieren wird ein Objekt der dazugehörigen FP-Klasse benötigt. Die Generierung der IP-Klasse beginnt wiederum mit der Generierung des Klassenkopfs und entsprechend benötigten Imports (siehe Listing 9.13).

Listing 9.13: Generierung der IP-Klasse

```
initCommands();
11
                                 initIAFs( iafContext );
12
13
                    catch ( Exception ex ) {
14
                             ExceptionManager.getManager().addAndShow( ex );
15
16
                    }
17
                    «description.genIAF»
18
                    «description.genCommands»
19
                    «description.genCommandMethods»
20
                    «genGlobalVars»
21
22
          }
23 ′′′
```

Wie bei den GUI-Klassen müssen hier ebenfalls die globalen Variablen am Ende der Klasse stehen. Zwischen dem Konstruktor und den globalen variablen werden die Interaktionsformen mit den Kommandos bestimmt (*genIAF* - siehe Listing 9.14), den Kommandos bestimmte Methoden zugeordnet (*genCommands* - siehe Listing 9.17) und die Rümpfe für diese Methoden generiert (*genCommandMethods* - siehe Listing 9.18).

Bei der Bestimmung der Interaktionsformen werden die im GUI-Skript definierten *GUI-Komponenten* durchlaufen und deren Standard-Interaktionsformen und spezielle Interaktionsformen übersetzt (siehe Listing 9.14).

Listing 9.14: Generierung der Interaktionsformen

```
1 def genIAF(UIDescriptiondescription)'''
         protected void initIAFs( IAFContext iafContext ) {
                «FOR definition : description.definitions»
3
                       «definition.compileIAF»
                «ENDFOR»
9 def compileIAF (Definition definition) '''
         «IF definition.concreteDefition.name == 'Label'»
10
                «(definition.concreteDefition as LabelDefinition).
11
                    compileLabelStandardIAF»
         «ELSEIF definition.concreteDefition.name == 'Tree'»
12
                «(definition.concreteDefition as TreeDefinition).
13
                    «ENDIF»
14
15
                       Spezielle Interaktionsformen
         «««
                16
17
```

Für die Standard-Interaktionsformen muss unterschieden werden um welche *GUI-Komponente* es sich handelt.

Zu jeder Interaktionsform gibt es ein entsprechendes Kommando, welches zur Generierung des Quell-Codes relevant ist. Die Zuordnung von Kommando zu Interaktionsform wird vom Generator vorgenommen (Beispiel Tree - siehe Listing 9.15). Die dafür verwendeten Methoden (z.B. *genIAFActivator* oder *genIAFTree*) können häufig wiederverwendet werden.

Listing 9.15: Generierung der Standard-Interaktionsformen von Trees

Die Methode *genIAFSource* hat ebenfalls einen sehr hohen Wiederverwendungsgrad. Sie wird von allen Methoden, die für die Zuordnung von Interaktionsform zu Kommando zuständig sind verwendet. In dieser Methode wird der Quellcode letztendlich generiert (siehe Listing 9.16).

Listing 9.16: Generierung einer Interaktionsform

```
1 def genIAFSource(String iafSource, String commandSource, String id) '''
         «addImport("import "+ iafSource + ";")»
         «var iafNameWithPrefix = iafSource.split("\\.").last»
         «var iafName = iafNameWithPrefix.substring(2)»
         «addGlobalVar(iafNameWithPrefix + " "+id+iafName+';')»
         «id+iafName» = («iafNameWithPrefix») iafContext.interactionForm(
              «iafNameWithPrefix».class, "«id»" );
         «IF !commandSource.equals("")»
                  «addImport("import "+ commandSource + ";")»
                  «var commandNameWithPrefix = commandSource.getClassOfSource»
                  «var commandName = commandNameWithPrefix.substring(3)»
10
                  «id + iafName».attach«commandName»Command( «id +
11
                      commandName»Command);
12
                  «addCommand(id, commandName)»
         «ENDIF»
13
14
15
16 def addCommand(String id, String commandName) {
         addGlobalVar("cmd"+commandName + ' ' + id + commandName + "Command;")
```

Die Einzelheiten dieser Methode sind unter anderem abhängig von den Konventionen die bzgl. Namensgebung in der deg getroffen wurden. Der Aufruf der Methode addCommand ist für weitere Generierungen von Belang. Nach Abschluss der Generierung des Quell-Codes zur Bestimmung der Interaktionsformen und Kommandos, müssen den Kommandos entsprechende Methoden zugeordnet werden. Die Referenz auf die Kommandos bietet die Liste commands, die durch den Aufruf der Methode addCommand (siehe Listing 9.16) gefüllt wird. Die Methode genCommands ist für die beschriebene Zuordnung zuständig (siehe Listing 9.17).

Listing 9.17: Generierung der Kommandoinitialisierung

```
1 def genCommands(UIDescription description) ^{\prime\prime\prime}
            protected void initCommands() {
                   «FOR id : commands.keySet»
                            «var commandName = commands.get(id)»
                            «addImport ("import DE. data_experts.jwam. util. CmdAusfuehrer
                                 " + commandName + ";")»
                            «id»Command = new CmdAusfuehrer«commandName»(
                                 getAusfuehrer() ) {
                            @Override
                            public void ausfuehren() {
                                     «id»();
10
11
                   };
                   «ENDFOR»
12
13
           }
14 ′′′
```

Die genauen Bezeichnungen ergeben sich wiederum aus den Konventionen für die Bezeichnungen innerhalb des MCF der deg.

Um Compilierungsfehler zu vermeiden, müssen die Methoden, die vom generierten Quell-Code verwendet werden, ebenfalls generiert werden. Dafür ist die Methode *genCommandMethods* zuständig. In dieser Methode wird die Liste *commands* nochmals benutzt, um die Methoden-Rümpfe zu erzeugen (siehe Listing 9.18). Die Implementierung der generierten Methoden muss der Entwickler übernehmen.

Listing 9.18: Generierung der Methoden zur Bestimmung der auszuführenden Aktionen bei einer Interaktion

Die Generator-Klasse ist auf dem beiliegenden Datenträger zu finden (siehe Anlage). In den Methoden zur Generierung von *GUI-Komponenten* für die GUI-Klassen sind die Code-Abschnitte, die das Layout bestimmen, entsprechend gekennzeichnet.

Kapitel 10

Zusammenfassung und Ausblick

Mit der *GUI-DSL* ist es möglich *GUIs* zu beschreiben, die für *profil c/s* verwendet werden können. Die Entwicklung der *GUI-DSL* ist mit der 3. Iteration bei weitem nicht abgeschlossen. Es wurde jedoch gezeigt, dass es möglich ist, aus einem GUI-Skript die für *profil c/s* relevanten *GUI-, IP-* und *FP-Klassen* zu generieren. Dabei ist es gelungen, die allgemeinen Anforderung (*AA1* bis *AA5*) durch die Konzeption der *GUI-DSL* umzusetzen.

Durch die Verwendung unterschiedlicher Generatoren, ist es möglich verschiedene GUI-Frameworks einzusetzen, mit denen die Darstellung im Webund Standalone-Bereich gelingt (siehe Anforderung *AA1* und *AA2*).

Dass die GUIs auf beiden Plattformen ähnlich aufgebaut sind, hängt von der Verwendung ähnlicher Layout-Dateien ab. Insofern ist ein ähnlicher Aufbau nicht erzwungen worden, aber dennoch umsetzbar (siehe Anforderung AA3).

Auf die Möglichkeiten der Erweiterung verwendeter Frameworks, hat die *GUI-DSL* keinen Einfluss (siehe Anforderung *AA4*). Diese Anforderung muss bei der Evaluation neuer GUI-Frameworks beachtet werden.

Die Ausdruckskraft der *GUI-DSL* (siehe Anforderung *AA5*) kann nicht objektiv bewertet werden, weshalb unterschiedliche Meinungen darüber existieren werden, ob diese Anforderung mit der *GUI-DSL* umgesetzt wurde. Die Anforderungen an die Sprache (siehe Anforderung *AS1* bis *AS6*) wurden bis auf Anforderung *AS3* und *AS5* vollständig umgesetzt.

Die Beschreibung von Interaktionen erwies sich als schwierig, da die Aktionen, welche bei den Interaktionen ausgeführt werden sollen, nur schwer abstrahiert werden können. Von daher mussten bei dieser Anforderung Abstriche gemacht werden, sodass mit der *GUI-DSL* nur die Interaktionsform beschrieben werden kann.

Ob die Abstraktionsebene der Layoutbeschreibung (siehe Anforderung *AS3*) ausreicht, kann erst entschieden werden, wenn die *GUI-DSL* weiter eingesetzt wird und die Layout-Dateien vom Generator verwendet werden.

Die Beschreibung von *GUIs* durch die Zusammensetzung von *GUI-Komponenten* (siehe Anforderung *AS1*), sowie auch die Wiederverwendung und Erweiterung von *GUI-Komponenten* (siehe Anforderung *AS2*) wurde umgesetzt und in Kapitel 8 demonstriert.

Dass die *GUI-DSL* um neue *GUI-Komponenten* erweitert werden kann (siehe Anforderung *AS6*), wurde ebenfalls gezeigt.

Der bei der Demonstration verwendetet Quellcode erwies sich als weitaus kürzer, als der generierte Quellcode. In der *GUI-DSL* wurden lediglich 13 Codezeilen benötigt. Der Generator erzeugte daraus ca. 200 Codezeilen. Ob Anforderung *AS4* damit umgesetzt ist, ist wiederrum eine subjektive Entscheidung. Dabei muss jedoch erwähnt werden, dass der Quellcode, der für die Implementierung des Generators und der Grammatik bei dieser Anforderung nicht berücksichtigt wird.

Die in Kapitel 2 beschriebenen Probleme des *MCF* werden durch die *GUI-DSL* nicht vollständig gelöst. Die wegfallende Orientierung an ein spezifisches GUI-Framework (siehe Problem *P2*), führt dazu dass die Überführung der GUI-Skripte in andere GUI-Frameworks einfacher erscheint. Das setzt jedoch voraus, dass die Implementierung eines entsprechenden Generators einfacher ist, als die Anpassung eines neuen GUI-Frameworks an Swing, ist diese Eigenschaft ein Vorteil gegenüber dem *MCF*. Der in dieser Arbeit entwickelte Prototyp realisiert das Generieren von Klassen für das *MCF*. Es wird jedoch nicht geprüft, ob die Entwicklung von Generatoren, die Quellcode für andere GUI-Frameworks generieren, mehr oder weniger Aufwand erfordert.

Das Problem, dass die verwendeten GUI-Frameworks nicht aktuell sind (siehe Problem *P1*, wird durch die *GUI-DSL* alleine nicht gelöst. Entschei-

dungen über die Integration neuer Frameworks müssen von der *deg* getroffen werden.

Allerdings ist es möglich durch die Verwendung der *GUI-DSL* und eines spezifischen Generators für das *MCF* den Entwicklern bestimmte Routineaufgaben abzunehmen.

Beispielsweise kann das Pflegen der korrekten Bezeichnungen in den *IP*und *GUI-Klassen* (siehe Routinearbeit *R1*) vom Generator übernommen werden. Dies wurde mit den Umsetzungen in Kapitel 9 realisiert und kann in
den generierten Klassen, die sich auf dem beigelegten Datenträger befinden, nachvollzogen werden.

Über das Erstellung von Klassen, die für die Darstellung von Tabellen benötigt werden (betrifft Routinearbeit *R*2), kann an dieser Stelle keine Auskunft gegeben werden, da im Prototypen diese Klassen nicht generiert werden.

Die dritte genannte Routinearbeit (R3) wird den Entwicklern nicht abgenommen, da die Pflege der Attribute der GUI-Komponenten weiterhin über die Properties-Dateien erfolgen kann.

Abgesehen von der Umsetzung der Anforderungen sind für den Einsatz der *GUI-DSL* weitere Aspekte in Betracht zu ziehen, die in dieser Arbeit nicht angesprochen wurden.

Beispielsweise ist die Frage, wie die *GUI-DSL* in den Enticklungsprozess der *deg* eingebettet werden kann, offen. Mit *Xtext* ist es zwar möglich einen Editor zu generieren, aber wie dieser in die *Eclipse IDE* dauerhaft eingebunden werden kann, wurde nicht beschrieben.

Wenn eine *GUI* beschrieben wurde, wäre es von Vorteil, wenn diese im Anschluss daran getestet werden kann, bevor es zur Generierung kommt. Bei der Entwicklung eines solchen Test-Konzeptes, ist auch die Entwicklung eines grafischen Editors für die *GUI-DSL* in Betracht zu ziehen. Damit wäre es nicht nötig, dass das zur Entwicklung der *GUI-DSL* verwendete Framework einen Editor mit anpassbaren Validierungen bereitstellt.

Für einen solchen Test wäre auch die Layout-Dateien relevant. Der Aufbau dieser Dateien muss noch festgelegt werden. Entweder die *deg* verwendet dafür bestehende Sprachen wie *CSS*, oder Definiert eine neue *DSL*, mit der es ausschließlich möglich ist das Layouts zu beschreiben.

Bei der Generierung der Klassen sind Überlegungen über die Art der Trans-

formation (*Transformer Generation* oder *Templated Generation*) anzustellen. In Kapitel 9 wurde festgelegt, dass für den Prototypen *Transformer Generation* verwendet wird. Andererseits wurde auch darauf hingewiesen, dass bei der Generierung der *IP*- und *FP-Klassen* die *Templated Generation* in Betracht gezogen werden sollte, da nur bestimmte Teile des Quellcodes verändert werden müssen.

Zusammenfassend ist zu sagen, dass noch viele Fragen geklärt werden müssen, bevor entschieden werden kann, ob die *GUI-DSL* in der *deg* eingesetzt werden kann. Ein erster Schritt wäre es zu prüfen, ob der Generator in der Lage ist, alle anderen GUI-Komponenten, deren Generierung nicht demonstriert wurde, genauso gut erzeugen, wie die, welche bereits im Prototypen verwendet wurden. Darüber hinaus wird die Weiterentwicklung des Generators für das *MCF* und die Implementierung von Generatoren für andere GUI-Frameworks zeigen, ob die *GUI-DSL* ausreichend abstrakt, oder nicht abstrakt genug für *profil c/s* und die verwendeten GUI-Frameworks ist. Das Konzept welches im Zuge dieser Arbeit entstand (siehe Kapitel 5) ist jedoch vielversprechend, wenn es mit dem Konzept des *MCF* verglichen wird. Das beweist vor allem die Umsetzung der allgemeinen Anforderungen. Allerdings ist aufgrund des Entwicklungsstandes an eine kurzfristigen Ablösung des *MCF* durch die *GUI-DSL* nicht zu denken.

Anhang A

Zuwendungsblatt für Web- und Standalone-Client

Abbildung A.1: Standalone-Client: Zuwendungsblatt (vgl. [deG07])

Abbildung A.2: Web-Client: Zuwendungsblatt (vgl. [deG07])

Abbildung A.3: Multiselection-Komponenten

Anhang B

Generierte Explorer-GUI

Abbildung B.1: Generierte Explorer-GUI

Anhang C

Inhalt des beiliegenden Datenträgers

Grammatik aus der 1. Iteration: Iterationen/1/Grammatik.xtext

Grammatik aus der 2. Iteration: Iterationen/2/Grammatik.xtext

Grammatik aus der 3. Iteration: Iterationen/3/Grammatik.xtext

Glossar

- **Domäne** oder Anwendungsdomäne beschreibt ein abgegrenztes Wissenoder Interessengebiet (vgl. [sof08, S.170]).
- **DSL-Umgebung** beinhaltet den Parser, den Lexer und die Verarbeitungslogik (vgl. [gho11, S.211]).
- **Förderantrag** [...] ist ein Antrag, den der Begünstigte einreicht, wenn er sich eine Maßnahme fördern lassen möchte [dat14].
- **Graphical User Interface** ist die Bezeichnung für die Schnittstelle zwischen dem Benutzer und dem Programm (vgl. [DAT]). Die Kurzform *GUI* wird in dieser Arbeit aufgrund des allgemeinen Sprachgebrauchs als feminines Nomen verwendet (die GUI).
- **GridBagLayout** ist ein Layoutmanager innerhalb von Swing, welcher die Komponenten horizontal, vertikal und entlang der Grundlinie anordnet. Dabei müssen die Komponenten nicht die gleiche Größe haben (vgl. [Oraa]).
- **Inhaltsbaum** einer Antragsmappe enthält die Dokumente die in dieser Antragsmappe vorliegen.
- InVeKoS ist die Abkürzung für Integriertes Verwaltungs- und Kontrollsystem. Mit einem solchen Systemen wird im allgemeinen sichergestellt, dass die durch den Europäischen Garantiefonds für die Landwirtschaft finanzierten Maßnahmen ordnungsgemäß umgesetzt wurden. Im speziellen bedeutet dies die Absicherung, von Zahlungen, die

Glossar XVI

korrekte Behandlung von Unregelmäßigkeiten und das wieder Einziehen von zu unrecht gezahlter Beiträge [Gen14].

Multiselection-Komponente stellt in *profil c/s* ein Werkzeug zur Auswahl mehrerer Objekte dar. Die *GUI* einer Multiselection-Komponenten ist in Abbildung A.3 in Anhang A dargestellt. Es wird zwischen einem Container, der die Objekten, die zur Auswahl zur Verfügung stehen (linke Seite), enthält und einem Container, der die Objekten, die bereits ausgewählt sind, enthält (rechte Seite) unterschieden. Mit den in der Mitte befindlichen Schaltflächen ist es möglich die Objekte von einem Container in den anderen zu navigieren. In der Abbildung bestehen keine Auswahlmöglichkeiten.

Swing ist ein GUI-Framework für Java Applikationen (vgl. [Orab]).

- **Top-Down Parser** erzeugen den Parse-Tree ausgehend von der Wurzel. Im Gegensatz dazu stehen Bottom-Up Parser, welche den Parse-Tree von den Blätter aus erzeugen (vgl. [gho11, S.225]).
- Traditionelle GUI-Entwicklung beschreibt die GUI-Entwicklung unter Verwendung von traditionellen GUI-Toolkits gearbeitet. Bei diesen Toolkits wird Aufbau der GUI genau beschrieben. Für die Interaktion mit den GUI-Widgets, werden Listener implementiert, die auf andere Events reagieren, die von anderen Widgets erzeugt generiert wurden. Events können zu unterschiedlichen Zeitpunkten generiert werden und es wird nicht festgelegt in welcher Reihenfolge sie bei anderen Widgets ankommen (vgl. [KB11]).
- **Turing-Maschine** ist ein Automatenmodell welches vom Alan M. Turing 1936 vorgestellt wurde. Die Turing-Maschine abstrahiert die generelle Arbeitsweise heutiger Rechner (vgl. [Hed12, S.145ff]).
- **Usability** beschreibt die Nutzerfreundlichkeit einer Software (vgl. [Dir00, S.10]).
- **Verweisebaum** einer Antragsmappe enthält Verweise auf Dokumente, die mit dieser Antragsmappe in Verbindung stehen.

Glossar XVII

wingS ist ein Framework für die komponentenorientierte von Webapplikationen (vgl. [Sch07]).

- **Zielumgebung** einer DSL beschreibt, die Infrastruktur, in der die Generierten Artefakte integriert werden können (vgl. [VBK⁺13, S.26]).
- **Zuwendungs-Berechner** ist ein Werkzeug innerhalb von profil c/s. Mit diesem Werkzeug kann der Sachbearbeiter die Zuwendung, die dem Antragsteller bewilligt werden soll, nach einem standardisierten Verfahren berechnen [...]. Das Ergebnis wird im Zuwendungsblatt dokumentiert, das auch später mit demselben Werkzeug angesehen werden kann [deG07].
- **Zuwendungsblatt** ist die grafische Dokumentation der Ergebnisse des Zuwendungs-Berechners innerhalb von profil c/s (vgl. [deG07]).

Literaturverzeichnis

- [114] Xtext Documentation. URL: http://www.eclipse.org/Xtext/cumentation/2.6.0/Xtext Documentation.pdf, September 2014.

 Zuletzt eingesehen am 24.11.2014.
- [Aho08] AHO, ALFRED V: Compiler: Prinzipien, Techniken und Werkzeuge. Pearson Studium, 2008.
- [BCK08] BRAUER, JOHANNES, CHRISTOPH CRASEMANN und HARTMUT KRASEMANN: Auf dem Weg zu idealen Programmierwerkzeugen Bestandsaufnahme und Ausblick. Informatik Spektrum, 31(6):580–590, 2008.
- [BPL13] BACIKOVÁ, MICHAELA, JAROSLAV PORUBÄN und DOMINIK LAKATOS: Defining Domain Language of Graphical User Interfaces. In: OASIcs-OpenAccess Series in Informatics, Band 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.
- [bra10] Eine DSL für Harel-Statecharts mit PetitParser. Arbeitspapiere der Nordakademie. Nordakad., 2010.
- [DAT] DATACOM BUCHVERLAG GMBH: GUI (graphical user interface). URL: www.itwissen.info/definition/lexikon/graphical-user-interface-GUI-Grafische-Benutzeroberflaeche.html. Zuletzt eingesehen am 29.01.2015.
- [dat14] DATA EXPERTS GMBH: *Förderantrag*. Profil Wiki der deg, März 2014. Zuletzt eingesehen am 02.12.2014.

Literaturverzeichnis XIX

[deG07] GMBH DATA EXPERTS: Detailkonzept ELER/i-Antragsmappe, Januar 2007.

- [Dir00] DIRNBAUER, KURT: *Usability*. Libri Books on Demand, 2000.
- [DM14] DANIEL, FLORIAN und MARISTELLA MATERA: *Model-Driven Software Development*. In: *Mashups*, Data-Centric Systems and Applications, Seiten 71–93. Springer Berlin Heidelberg, 2014.
- [FP11] FOWLER, MARTIN und REBECCA PARSON: *Domain-Specific Languages*. Addison-Wesley, 2011.
- [Gal07] GALITZ, WILBERT O.: The Essential Guide to User Interface Design
 An Introduction to GUI Design Principles and Techniques. John
 Wiley Sons, New York, 2007.
- [Gen14] GENERALDIREKTION LANDWIRTSCHAFT UND LÄNDLICHE ENTWICKLUNG: Das Integrierte Verwaltungs- und Kontrollsystem (InVeKoS). URL: http://ec.europa.eu/agriculture/direct-support/iacs/index_de.htm, November 2014. Zuletzt eingesehen am 02.12.2014.
- [gho11] DSLs in Action. Manning Publications Co., 2011.
- [Gun13] GUNDERMANN, NIELS: Prototypische Implementierung eines JavaFX-Channels zur Integration ins MulitChannel-Framework der deg, 2013. Praxisbericht.
- [Gun14a] GUNDERMANN, NIELS: Entwicklung einer Grammatik für eine DSL mit xText am Beispiel einer Sprache zur Definition von Pflichtprüfungen in profil c/s, 2014. Praxisbericht.
- [Gun14b] GUNDERMANN, NIELS: Prototypische Implementierung eines JavaFX/Web-Channels zur Integration ins Multichannel-Framework der deg, 2014. Praxisbericht.
- [Hed12] HEDTSTUECK, ULRICH: Einführung in die Theoretische Informatik, Band 5. Auflage. Oldenbourg Verlag, 2012.

Literaturverzeichnis XX

[Hof06] HOFER, STEFAN MICHAEL: Refactoring-Muster der WAM-Modellarchitektur. Diplomarbeit, FH Oberösterreich, 2006. Online verfügbar URL:http://swt-www.informatik.uni-hamburg.de/uploads/media/DA_StefanHofer.pdf . Zuletzt eingesehen am 09.01.2015.

- [KB11] KRISHNASWAMI, NEELAKANTAN R. und NICK BENTON: *A Semantic Model for Graphical User Interfaces*. Microsoft Research, September 2011. Verfügar unter URL:.
- [LW] Lu, Xudong und Jiancheng Wan: *Model Driven Development of Complex User Interface*. Technischer Bericht, Shandong University. Verfügar unter URL: http://ceur-ws.org/Vol-297/paper7.pdf.
- [mds06] *Model-Driven Software Development*. John Wiley Sons Ltd, Februar 2006.
- [MHP99] MYERS, BRAD, SCOTT E. HUDSON und RANDY PAUSCH: *Past, Present and Future of User Interface Software Tools*. Technischer Bericht, Carnegie Mellon University, September 1999. Verfügar unter URL: http://www.cs.cmu.edu/amulet/papers/futureofhci.pdf.
- [ML09] MARKUS VOELTER und LARS CORNELIUSSEN: *Carpe Diem*. Dot-NetPro, 5 2009.
- [Oraa] ORACLE: Class GridBagLayout. URL: htt-ps://docs.oracle.com/javase/7/docs/api/java/awt/GridBagLayout.html. Zuletzt eingesehen am 02.12.2014.
- [Orab] ORACLE: *Swing*. URL: https://docs.oracle.com/javase/jp/8/technotes/guides/swing/index.html. Zuletzt eingesehen am 02.12.2014.
- **MPS** [Pec14] PECH, VACLAV: Can be integrated in *Eclipse* Plugin similar *Xtext? Eclipse* to as URL:http://forum.jetbrains.com/thread/Meta-Programming-System-1033, Oktober 2014. Zuletzt eingesehen am 12.01.2015.

Literaturverzeichnis XXI

[PSV13] PECH, VACLAV, ALEX SHATALIN und MARKUS VOELTER: Jet-Brains MPS as a tool for extending Java. In: Proceedings of the 2013 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, Seiten 165–168. ACM, 2013.

- [RDGN10] RENGGLI, LUKAS, STEPHANE DUCASSE, TUDOR GÎBRA und OSCAR NIERSTRASZ: Practical Dynamic Grammars for Dynamic Languages. In: 4th Workshop on Dynamic Languages and Applications (DYLA 2010), 2010. Online verfügbar unter URL: http://bergel.eu/download/Dyla2010/dyla10_submission_4.pdf Zuletzt eingesehen am 6.1.2015.
- [Roa09] ROAM, DAN: The Back of the Napkin (Expanded Edition) Solving Problems and Selling Ideas with Pictures. Penguin, New York, Expanded Auflage, 2009.
- [Sau10] SAUER, JOACHIM: Architekturzentrierte agile Anwendungsent-wicklung in global verteilten Projekten. Doktorarbeit, Universität Hamburg, 2010. Online verfügbar URL:http://ediss.sub.uni-hamburg.de/volltexte/2011/4959/pdf/Dissertation_Sauer.pdf Zuletzt eingesehen am 08.01.2015.
- [Sch05] SCHMELZER, Robert FRANZ: Realisierung teilautomatisierter **Prozesse** durch die Kombination Ablaufund unterstützter Kooperation. Diplomarsteuerung 2005. Online verfügbar beit, Oberösterreich, URL:http://www.schmelzer.cc/Downloads/Files/ Diplomarbeit_Schmelzer.pdf . Zuletzt eingesehen am 09.01.2015.
- [Sch07] SCHMID, BENJAMIN: *Get your wingS back!* URL: http://jaxenter.de/artikel/Get-your-wingS-back, Dezember 2007. Zuletzt eingesehen am 02.12.2014.
- [SdS03] SAUER, JOACHIM und AUSGEWÄHLTE THEMEN DER SOFTWARETECHNIK: Gestaltung von Anwendungssoftware

Literaturverzeichnis XXII

nach dem WAM-Ansatz auf mobilen Geräten. Diplomarbeit, Fachbereich Informatik, Universität Hamburg, 2003. Online verfügbar URL:http://swt-www.informatik.uni-hamburg.de/uploads/media/Diplomarbeit_Joachim_Sauer.pdf. Zuletzt eingesehen am 09.01.2015.

- [SKNH05] SUKAVIRIYA, Noi, SANTHOSH KUMARAN, Prabir Nandi und TERRY HEATH: Integrate Model-driven UI *Transformations:* with Business Shifting Focus of Modeldriven UI. Technischer Bericht, IBM T.J. Watson Research Center, Oktober 2005. Verfügar unter URL: http://www.research.ibm.com/people/p/prabir/MDDAUI.pdf.
- [sof08] *Software-Architektur*. Springer Science Business Media (Berlin Heidelberg), 2008.
- [Ste07] STECHOW, DIRK: JWAMMC Das Multichannel-Framework der data-experts gmbh. Vortrag, Dezember 2007.
- [Use12] USERLUTIONS GMBH: 3 Gründe, warum gute Usability wichtig ist. URL: http://rapidusertests.com/blog/2012/04/3-gute-grunde-fuer-usability-tests/, April 2012. Zuletzt eingesehen am 01.12.2014.
- [VBK⁺13] VÖLTER, MARKUS, SEBASTIAN BENZ, LENNART KATS, MATS HELANDER, EELCO VISSER und GUIDO WACHSMUTH: *DSL Engineering*. CreateSpace Independent Publishing Platform, 2013.
- [Vol11] VOLTER, MARKUS: From programming to modeling-and back again. Software, IEEE, 28(6):20–25, 2011.