Eksamen på Økonomistudiet. Sommeren 2012

DYNAMISKE MODELLER

Valgfag på 2. årsprøve

Mandag den 13. august 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2. ÅRSPRØVE 2012 S-2 DM rx

SKRIFTLIG EKSAMEN I DYNAMISKE MODELLER

Mandag den 13. august 2012

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter tredjegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved

$$\forall z \in \mathbf{C} : P(z) = z^3 + z^2 + 4z + 4.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + \frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0$$

og

$$\frac{d^3x}{dt^3} + \frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 10e^{-t}.$$

- (1) Vis, at z = -1 er rod i polynomiet P, og bestem de andre rødder i dette polynomium.
- (2) Bestem mængden af de r>0, så alle rødderne i polynomiet P ligger i mængden

$$K(r) = \{ z \in \mathbf{C} \mid |z| \le r \}.$$

- (3) Bestem den fuldstændige løsning til differentialligningen (*), og godtgør, at (*) ikke er globalt asymptotisk stabil.
- (4) Bestem den fuldstændige løsning til differentialligningen (**).
- (5) Find den fuldstændige løsning til differentialligningen

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0.$$

(6) Bestem de løsninger til (&), som også er løsninger til (**).

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

og vektordifferentialligningen

$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

- (1) Bestem egenværdierne og de tilhørende egenrum for matricen A.
- (2) Bestem den fuldstændige løsning til vektordifferentialligningen (§).
- (3) Bestem resolventen P(t,0) (svarende til punktet $t_0 = 0$) for vektordifferentialligningen (§).
- (4) For ethvert $v \in \mathbf{R}$ betragter vi 3×3 matricen

$$B(v) = \left(\begin{array}{ccc} v & 1 & 0 \\ 1 & v & 1 \\ 0 & 1 & v \end{array}\right)$$

og vektordifferentialligningen

(§§)
$$\frac{d\mathbf{z}}{dt} = B(v)\mathbf{z}.$$

Bestem de $v \in \mathbf{R}$ for hvilke vektordifferentialligningen (§§) er globalt asymptotisk stabil.

Opgave 3. For ethvert $r \in \mathbf{Q}_+$ betragter vi mængden

$$C(r) = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = r^2\}.$$

(1) Betragt mængden

$$M = \bigcup_{r \in \mathbf{Q}_+} C(r).$$

Bestem det indre M^o , afslutningen \overline{M} og randen $\partial(M)$ af mængden M.

(2) Betragt korrespondancen $F: \mathbf{R}_+ \to \mathbf{R}^2$, som er givet ved

$$F(r) = \begin{cases} C(r), & \text{for } r \in \mathbf{Q}_+ \\ \{(0,0)\}, & \text{for } r \in \mathbf{R}_+ \setminus \mathbf{Q}_+ \end{cases},$$

og funktionen $f: \mathbf{R}^2 \to \mathbf{R}$ med forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2.$$

Bestem en forskrift for værdifunktionen $V: \mathbf{R}_+ \to \mathbf{R}$, som er givet ved

$$\forall r \in \mathbf{R}_{+} : V(r) = \max\{f(x, y) \mid (x, y) \in F(r)\}.$$

(3) Bestem maksimumskorrespondancen $Y^*: \mathbf{R}_+ \to \mathbf{R}^2$, som er defineret ved

$$\forall r \in \mathbf{R}_{+} : Y^{*}(r) = \{(x, y) \in \mathbf{R}^{2} \mid f(x, y) = V(r)\}.$$

Opgave 4. Vi betragter funktionen $F: \mathbf{R}^3 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (t, x, y) \in \mathbf{R}^3 : F(t, x, y) = 2te^{t^2} + y^2,$$

og integralet

$$I(x) = \int_0^1 \left(2te^{t^2} + \left(\frac{dx}{dt}\right)^2\right) dt.$$

- (1) Vis, at for ethvert $t \in \mathbf{R}$ er funktionen F = F(t, x, y) konveks som funktion af $(x, y) \in \mathbf{R}^2$.
- (2) Bestem den funktion $x^* = x^*(t)$, som minimerer integralet I(x), når betingelserne $x^*(0) = 4$ og $x^*(1) = 5$ er opfyldt.