

OVERVIEW

- generalizing to subjects and stimuli
 - dealing with "crossed" random factors
- random effects in complex designs
- non-convergence and model validation

GENERALIZING TO SUBJECTS AND STIMULI

LANGUAGE-AS-FIXED-EFFECT FALLACY

- Psycholinguistic experiments sample language materials as well as subjects
- Language stimuli should be treated as a random, not fixed factor
- Clark's suggestion: F', min-F'
- Modern solution: Linear-mixed effects with crossed random factors of subjects and stimuli

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, 59, 390-412.

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. *Journal of Verbal Learning and Verbal Behavior*, 12, 335-359.

CROSSED RANDOM FACTORS

```
inner join(subj, lists, "list id")
   subj_id list_id stim_id condition
                            A treatment
2
                            B treatment
3
                   1
1
2
2
2
                                 control
                                 control
          2
2
2
2
                                 control
                                 control
                            C treatment
8
                            D treatment
          3
3
3
9
                            A treatment
10
                            B treatment
                   1
1
2
2
11
                                 control
12
                                 control
13
                                 control
14
                                 control
15
                            C treatment
                   2
16
                            D treatment
```

GENERALIZING OVER ENCOUNTERS

The target of inference in much of psychology and related fields has been misidentified as a population of *subjects* or *stimuli*, when the actual target of inference is a population of events: **encounters**

- readers encountering particular types of words
- male participants judging attractiveness of female faces, or vice versa
- gamers encountering particular types of violent games
- audience members encountering particular types of dance movements
- insomniacs (versus controls) encountering emotional expressions
- birds hearing particular types of birdsongs

Barr, D. J. (2018). Generalizing Over Encounters. In the Oxford Handbook of Psycholinguistics.

SPECIFYING RANDOM EFFECTS

GENERAL PROCEDURE FOR FACTORIAL DESIGNS

for each random factor (subjects/stimuli):

- 1. identify within-unit factors
- 2. check highest-order combination of within-subject factors
 - NO pseudoreplications: no random slopes
 - YES pseudoreplications: all interactions/main effects get slopes

between-unit factors (or interactions involving them) never get random slopes

Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects models. Frontiers in Psychology, 4, 328.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68, 255-278.

DETERMINING THE DESIGN FROM DATA

three way design, subjects only random factor

```
# A tibble: 128 x 5
                                                         count(dat1, subj id, A, B, C)
                                   DV
   subj id A
     <int> <chr> <chr> <chr>
                                <dbl>
                                                        # A tibble: 32 x 5
         5 A1
                 B1
                        C2
                               4.80
                                                           subj id A
                                                                                           n
 2
         5 A1
                 B2
                       C1
                               7.40
                                                              <int> <chr> <chr> <chr> <int>
 3
         1 A2
                 B1
                       C2
                               0.444
                                                                  1 A2
                                                                          B1
                                                                                C1
         6 A2
                 В1
                               3.97
                                                                 1 A2
                                                                          B1
                                                                                C2
         4 A1
                 В1
                       C2
                               2.90
                                                                 1 A2
                                                                          B2
                                                                                C1
         4 A1
                 B2
                              -0.0699
                                                                  1 A2
                                                                          B2
                                                                                C2
         3 A1
                 B2
                               2.75
                                                                 2 A2
                                                                          B1
                                                                                C1
         1 A2
                 B2
                     C2
                            2.86
                                                                  2 A2
                                                                                C2
                                                                          B1
         3 A1
                 B2
                               0.452
                                                                  2 A2
                                                                          B2
                                                                                C1
10
         8 A1
                 B1
                              -0.694
                                                                  2 A2
                                                                          B2
                                                                                C2
# ... with 118 more rows
                                                         9
                                                                  3 A1
                                                                          B1
                                                                                C1
                                                        10
                                                                  3 A1
                                                                          B1
                                                                                C2
                                                        # ... with 22 more rows
```

 $oldsymbol{A}$ is between, $oldsymbol{BC}$ within, 4 obs / cell

$$DV \sim A * B * C + (B * C | subj_id)$$

EXAMPLE WITH CROSSED RANDOM FACTORS

```
DV \sim A * B * C + (? | subj_id) + (? | item_id)
```

```
dat2
# A tibble: 128 x 6
   subj id item id A
                                          DV
             <int> <chr> <chr> <chr>
                                       <dbl>
     <int>
                13 A1
                                       1.41
                                C2
 2
                 6 A1
                                C2
                                       3.62
                          B1
 3
4
5
                 1 A2
                                C2
                          B2
                                       2.79
                 4 A1
                                C1
                                       -1.41
                                C1
                                       0.971
                10 A2
                          В1
 6
                 5 A2
                          B2
                                C2
                                       8.12
                16 A2
                          B1
                                C1
                                      7.66
         6
                3 A2
                          B1
                                      3.00
 9
                10 A1
                          В1
                                      0.644
10
                 9 A2
                                      10.7
# ... with 118 more rows
```

BY-SUBJECT RANDOM EFFECTS

```
dat2 %>%
  count(subj id, A, B, C)
# A tibble: 64 \times 5
   subj_id A
     <int> <chr> <chr> <chr> <int>
         1 A1
                         C1
                  B1
         1 A1
                        C2
                  B1
         1 A1
                        C1
                  B2
         1 A1
                        C2
                  B2
                        C1
         1 A2
                  B1
 6
                        C2
         1 A2
                  B1
                        C1
         1 A2
                  B2
                        C2
         1 A2
 8
                  B2
         2 A1
                        C1
 9
                  B1
         2 A1
10
                  B1
                         C2
# ... with 54 more rows
```

DV ~ A * B * C + (A * B * C | subj_id) + (? | item_id)

BY-STIMULUS RANDOM EFFECTS

```
dat2 %>%
  count(item id, A, B, C)
# A tibble: 128 x 5
   item id A
     <int> <chr> <chr> <chr> <int>
         1 A1
                        C1
                 B1
         1 A1
                 B1
                       C2
         1 A1
                 B2
                       C1
                        C2
         1 A1
                 B2
                        C1
         1 A2
                 B1
 6
                        C2
         1 A2
                 B1
         1 A2
                        C1
                 B2
                        C2
 8
         1 A2
                 B2
 9
         2 A1
                 B1
                        C1
10
         2 A1
                  B1
# ... with 118 more rows
```

 $DV \sim A * B * C + (A * B * C | subj_id) + (1 | item_id)$

NON-CONVERGENCE AND MODEL VALIDATION

NON-CONVERGENCE

When you get a convergence warning you should in the first instance:

- double-check the model specification
- make sure all predictors are scaled and centred

then re-fit the model. If it still does not converge, seek to reduce the random effects structure, but **proceed with caution.**

You can also try different optimizers (see ?lme4::convergence)

"model is singular" is NOT a convergence warning

REDUCING RANDOM EFFECTS STRUCTURE

Reducing random effects can help convergence, but the worst thing you can do is remove the slope for a theory-critical predictor.

- 1. Remove random correlations and re-fit
 - Use (A * B | | subject)
- 2. Worst case scenario: effectwise testing, e.g.:
 - test A using (A | subject) + (A | stimulus)
 - test B using (B | subject) + (B | stimulus)
 - test AB using (A:B | subject) + (A:B | stimulus)

CHECKING ASSUMPTIONS

- linearity
- homogeneity of variance
- normality of residuals
 - outliers
 - multimodality
 - other weirdness (skew, etc)

LINEARITY

• fitted (line) v. observed (points)

HOMOGENEITY OF VARIANCE

NORMALITY OF RESIDUALS

don't visualize the raw DV to check for normality!

https://dalejbarr.shinyapps.io/raw_vs_resids/

VISUAL CHECKS

histogram

```
## resids from the model fit to sleepst
my_resids <- residuals(mod)

## it is a vector, must put into a tibk
## for ggplot
rtbl <- tibble(residual = my_resids)

ggplot(rtbl, aes(residual)) +
   geom_histogram()</pre>
```


Q-Q plot (quantile-quantile)

```
## sadly there is no qqplot for ggplot
## so we use base::qqnorm()
qqnorm(my_resids)
```


Vanhove, J. (2018). *Checking the assumptions of your statistical model without getting paranoid.* Preprint at https://psyarxiv.com/zvawb/.

