SCHOOL OF CIVIL ENGINEERING

INDIANA DEPARTMENT OF HIGHWAYS

JOINT HIGHWAY RESEARCH PROJECT

FHWA/IN/JHRP-93/2 Final Report

PAVEMENT DRAINAGE AND PAVEMENT-SHOULDER JOINT EVALUATION & REHABILITATION

Zubair Ahmed T. D. White P. L. Bourdeau

PURDUE UNIVERSITY

JOINT HIGHWAY RESEARCH PROJECT

FHWA/IN/JHRP-93/2 Final Report

PAVEMENT DRAINAGE AND PAVEMENT-SHOULDER JOINT EVALUATION & REHABILITATION

Zubair Ahmed T. D. White

P. L. Bourdeau

	85		
		 - 1	
			4
			1

Final Report

PAVEMENT DRAINAGE AND PAVEMENT-SHOULDER JOINT EVALUATION & REHABILITATION

by

Zubair Ahmed, T. D. White, and P. L. Bourdeau

Joint Highway Research Project

Project No.: C-36-15J File No.: 6-9-10

Prepared as Part of an Investigation
Conducted by the
Joint Highway Research Project
Engineering Experiment Station
Purdue University

In cooperation with the
Indiana Department of Transportation
and the
U.S. Department of Transportation
Federal Highway Administration

The contents of this report reflects the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard specification or regulation.

Department of Civil Engineering Purdue University West Lafayette, Indiana 47907

> March 1993 Revised February 1994

1. Report No.	2. Government Accession No.	3 Recipient & Catalog to	
FHWA/IN/JHRP-93/2		•	
4. Title and Subtitle PAVEMENT DRAINAGE AND P	AVEMENT-SHOULDER JOINT	S. Sepon Date March 1993	
EVALUATION AND REHABILI		6. Performing Organization Code	
7. Author's		jê. Performing Organ zation Repart No.	
Zubair Ahmed, T. D. Whi	te and P.L. Bourdeau	JHRP-93/2	
9. Performing Organization Name and	Address	10 York Unit No	
Joint Highway Research Civil Engineering Build Purdue University	11. Confrect of Stont No. Indiana-HPR-2018		
West Lafayette, Indiana 12. Sponsoring Agency Name and Addre	13. Type of Report and Period Covered		
Indiana Department of T State Office Building	Draft Final Report		
100 North Senate Avenue Indianapolis, Indiana 4	14. Spansaring Agency Code		
15 Supplementary Notes			

16. Abstroct

The objectives of this research were i) to evaluate the performance of pavement subdrainage systems ii) study the behavior of moisture conditions below pavements and iii) provide recommendations for improved drainage criteria based on analysis of field data.

Existing and retrofitted subdrainage collector systems were inspected through external visual inspection in combination with a probe for internal inspection. Distresses and deficiencies in construction observed were listed and compiled on video. A methodology for inspection is presented that can be used by highway agencies in monitoring the condition, need for maintenance, and performance of collector systems.

Pavements with various types of subdrainage systems were instrumented to monitor the effects of different parameters influencing flow. The instrumentation package included pressure transducers, moisture blocks, thermistor probe, rain gauge, tipping bucket flow meter and a data recording and storage system. Laboratory investigations were conducted on subgrade and subbase samples collected from instrumented sites to assess their material and hydraulic properties. Parameters obtained by fitting Brooks & Corey's model and Van Genuchten's model to experimental data have shown good correlations with measured values.

Data collected from instrumented sites show varying response rate and time of outflow with respect to precipitation for different types of pavements and collector systems. Statistical Analysis has shown significant influence of base permeability in addition to pavement and drain types on pavement outflow. High correlations exist between precipitation and pore pressure underneath pavements. Data from instrumentation and laboratory tests will help in calibrating and validating an analytical seepage program developed separately as part of this research project.

17. Key Words		18. Distribution Statement			
systems, inspection, instru	pavement subdrainage, collector systems, inspection, instrumentation permeability, precipitation, outflow, seepage program		No restrictions. This document is available to the public through the National Technical Information Service, Springfield, CA 22161		
19. Security Classif. (of this report)	20. Security Clas	sif. (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassif	ied			

			•	
	Divisional by the d	-1 A	-	
LYRASIS members and	Digitized by the Ir in 2011 with fu Sloan Foundation	ınding from	tment of Transpo	rtatior

http://www.archive.org/details/pavementdrainage00ahme

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Program Development Division, the Research and Training Center, and the Materials and Test Division of Indiana Department of Transportation for providing invaluable assistance during the data gathering and planning phase of the research. Special thanks are due to Mr. David Andrewski, Mr. Firooz Zandi and Ms. Becky McDaniel of INDOT for their assistance and advice in this study. Additionally, thanks are due to the District Offices of Crawfordsville, Fort Wayne, Greenfield, Laporte and Vincennes for their help during pavement instrumentation.

Thanks are extended to Dr. Eileen Kladivko and Cliff Keifer of the Agronomy Department, and to Tom Cooper of the Civil Engineering Department for their help in laboratory testing and field instrumentation activities. Special thanks go to Dr. Ahmed El-Sharief for sharing information on fin drains and conceiving the idea of the constant head head permeameter, and to Dr. T. Kuczek and Dr. C. F. Scholer for offering valuable input at various times during the study.

The financial support for this research project was provided by the Federal Highway Administration and the Indiana Department of Transportation through the Joint Highway Research Project, Purdue University, West Lafayette, Indiana.

			,			
	¢)					
				1973		
•						
		·				
						7.49

TABLE OF CONTENTS

		Page
LIST	OF TABLES	vi
LIST	OF FIGURES	.viii
LIST	OF ABBREVIATIONS	xv
IMPLE	EMENTATION REPORT	.xvii
CHAP	TER 1 - INTRODUCTION	1
	Problem Statement Research Objectives Outline of Report	3
CHAP'	TER 2 - LITERATURE REVIEW	5
	Historical Review. Elements of Subdrainage. Drainage Layers. Pavement-Shoulder Joints. Collector System Components. Drainage Design Criteria. Environmental Effects on Subdrainage. Moisture Movement Underneath Pavements. Saturated and Unsaturated Flow. Measurement of Hydraulic Conductivity. Measurement of Moisture Content. Measurement of Soil Suction. Chapter Summary.	15 24 31 36 40 41
СНАР	TER 3 - COLLECTOR SYSTEM INSPECTION METHODOLOGY	61
	Background Study Objectives Inspection of Existing Subdrainage Systems Site Information Condition Evaluation Equipment for Inspection Bore Hole Camera System Auxiliary Equipment	63

Page
Visual Observations. .75 Outlet Pipe Slope. .75 Outlet Condition. .77 Markers and Rodent Screens. .77 Vegetation. .77 Headwall and Erosion Control Apron. .81 Joint Connections. .83 Flow of Water. .83 Pipe Corrosion. .85 Sedimentation in Fin Drains. .88 Fin Drain Buckling. .88 Connector Angle. .90 Subdrain Inspection Process. .92 Site Information. .93
Condition Evaluation93
Visual and Camera Observations93
Information Logging94
Chapter Summary94
Chapter Dammary
CHAPTER 4 - FIELD TESTING AND INSTRUMENTATION97
Background
CHAPTER 5 - LABORATORY INVESTIGATIONS142
Background

			Page
	Suct Para Perm	ion-Mo Sampl Test Discu meter eabili Const Falli Field	Properties Tests
CHAPTER	6 - DAT	ANAL	YSIS AND DISCUSSION191
Moi CHAPTER Ins	Stat sture V Piez Mois 7 - CON pection Spec Reconstant	istica Variat Variat Variat CLUSIO O O O O O O O O O O O O O O O O O O	rs Outflow
LIST OF	REFREN	CES	252
APPENDIC	ES		
Apr Apr Apr Apr	endix endix endix endix endix endix	B - C - D - E -	Sample CR-10 Datalogger Program263 List and Cost of Instrumentation276 Condition Survey Data Sheets279 Soil Properties and Soil-Moisture Characteristics Data345 Regression Output and Figures for Parameter Estimation362 Data from Instrumented Sites382 Statistical Analysis Printouts418

LIST OF TABLES

Table		Page
2.1	Effect of underdrains and precipitation onpumping	9
2.2	Field permeability test data for two-layer drainage system study	18
2.3	Selected BSOG and NSOG gradation range for New Jersey concrete pavements	19
2.4	Subbase material properties for Pennsylvania drainage study	20
2.5	Quality of drainage for pavement sections	34
2.6	Methods of measuring hydraulic conductivity	48
3.1	Summary of collector systems inspected in Indiana	63
4.1	Instrumented Target Sections	.106
4.2	Test Section 1 Design Features	.107
4.3	Test Section 2 Design Features	.108
4.4	Test Section 3 Design Features	.109
4.5	Test Section 4 Design Features	.110
4.6	Test Section 5 Design Features	.111
4.7	Test Section 6 Design Features	.112
4.8	Test Section 7 Design Features	.113
4.9	Test Section 8 Design Features	114
4.10	Test Section 9 Design Features	115
4.11	Test Section 10 Design Features	116

Table		Page
4.12	Polynomial Coefficients for Converting Sensor Resistance to Bars and Resulting Polynomial Error.	123
4.13	Wiring Connections for CR-10 Datalogger	134
4.14	PCI Values and Ratings for Instrumented Sections.	140
5.1	Classification of subgrade soil samples	159
5.2	Hydraulic parameter values of subgrade soils	174
5.3	Goodness of fit values for estimated parameters	175
5.4	Permeability values of INDOT base materials	177
5.5	Permeability values of subgrade and subbase soils	189
6.1	Information on precipitation and outflow volumes.	192
6.2	Definition Matrix for Statistical Analysis	216
6.3	Analysis of Variance for Experimental Design	218

LIST OF FIGURES

Figur	Page
2.1	Effect of subdrainage on pumping8
2.2	Water seeping from overlaid concrete pavement12
2.3	Drainage Rehabilitation Decision Tree13
2.4	Experimental and control sections for two-layer drainage system study16
2.5	Pennsylvania open graded subbase gradation curve21
2.6	Effect of joint sealing on moisture content variation24
2.7	Typical cross sections of underdrain trench26
2.8	Core structural profiles for prefabricated edge drains28
2.9	Sources of moisture in pavement systems31
2.10	Drainage criteria for granular layers33
2.11	Moisture content variation for airfield pavements37
2.12	Variation in moisture content compared with fluctuations in groundwater table
2.13	Base Drainage Model42
2.14	Pavement cross section for infiltration analysis44
2.15	Soil moisture characteristics46
2.16	Hysteresis effects of drying and wetting on matric suction47
2.17	Permeability and gradation of base and filter materials50

Figur	re Page
2.18	Nomograph for estimating coefficient of permeability of granular materials51
2.19	View of a standard Tempe cell52
2.20	A permeameter for measuring unsaturated hydraulic conductivity53
2.21	Block diagram of Time-Domain Reflectometer56
2.22	Schematic illustration of parts of a tensiometer57
2.23	Schematic illustration of pressure chamber apparatus59
3.1	Cross section of underdrain used in Indiana64
3.2	Cross section of fin drain used in Indiana64
3.3	A sample condition survey form67
3.4	Inspection system for pipe edge drains68
3.5	Inspection system for prefabricated edge drains70
3.6	PLS inspection system for pipe drains70
3.7	Cues inspection system for pipe drains71
3.8	Types of guide sleeves used73
3.9	Clearing vegetation75
3.10	View of exposed and damaged outlet pipe77
3.11	View of crushed outlet pipe77
3.12	Mesh rodent screen78
3.13	Spear type rodent screen78
3.14	Spiral rodent screen79
3.15	Clearing grass at outlet pipe81
3.16	Erosion around newly constructed outlet pipe81
3.17	Setup of Olympus borescope system83
3.18	Water flowing freely from an outlet pipe85

Figur	Page
3.19	Gravel from a punctured outlet pipe86
3.20	Sedimentation deposits in an exposed fin drain86
3.21	Fine deposits on outer fabric of fin drain88
3.22	Roll over and fabric intrusion in fin drain90
3.23	Exposed fin drain indicating J-buckling90
3.24	Sample of completed inspection report form94
4.1	Geographic location of instrumented sections102
4.2	Typical cross section of flexible pavement103
4.3	Typical cross section of rigid pavement104
4.4	Typical cross section of overlaid pavement105
4.5	View of CR-10 datalogger and component systems118
4.6	Druck PDCR-831 depth/level transducer118
4.7	Modified gypsum block and circuit diagram121
4.8	View of rain gage124
4.9	View of outflow measuring device126
4.10	Schematic of instrumentation layout at test sites127
4.11	Sawcut in pavement for routing wires to datalogger129
4.12	Depth/level transducer installation in core hole129
4.13	Enclosure housing the monitoring instruments131
4.14	Connections for outlet pipe and lead wires
4.15	Auger boring for soil sample collection
4.16	Profile levelling plan for instrumented sites138
5.1	Cutting shelby tube with mechanical saw144
5.2	As-sampled gradation of US-31, Hamilton County soil147

Figur	re Page
5.3	As-sampled gradation of SR-37, Hamilton County soil148
5.4	As-sampled gradation of SR-37, Lawrence County soil149
5.5	As-sampled gradation of US-41, Sullivan County soil150
5.6	As-sampled gradation of US-30, Laporte County soil151
5.7	As-sampled gradation of US-31, St.Joseph County soil
5.8	As-sampled gradation of SR-9, Noble County soil153
5.9	As-sampled gradation of SR-43, Tippecanoe County soil
5.10	As-sampled gradation of SR-63, Vermillion County soil
5.11	As-sampled gradation of US-36, Hendricks County soil
5.12	Gradation and specification limit for #5D stabilized subbase157
5.13	Gradation and specification limit for #53 aggregate subbase158
5.14	Setup of pressure chambers with manifold system162
5.15	Subbase samples on soaked ceramic plate162
5.16	Sectional view of pressure chamber apparatus163
5.17	Packing soil samples with surcharge weight165
5.18	Sample data form for soil-moisture tests167
5.19	Soil-moisture characteristics curves of subgrade soils from instrumented sites168
5.20	Soil-moisture characteristic curves of base and subbase soils169
5.21	Measured vs Estimated Brooks & Corey function172
5.22	Measured vs Estimated Van Genuchten function173
5.23	Range of permeability for soils and rocks177

Figure Page				
5.24	Setup of the constant head permeameter180			
5.25	Flexi-wall permeameter cell and control column182			
5.26	Schematic of Field Permeability Testing Device184			
5.27	Setup of the Field Permeability Testing Device187			
5.28	Measurement subsystem of FPTD187			
6.1	<pre>Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 1)194</pre>			
6.2	<pre>Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 2)195</pre>			
6.3	<pre>Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 3)196</pre>			
6.4	<pre>Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set 1)197</pre>			
6.5	<pre>Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set 2)198</pre>			
6.6	<pre>Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set 3)199</pre>			
6.7	<pre>Influence of precipitation on outflow volume (US-41, Sullivan County; Data Set 1)</pre>			
6.8	<pre>Influence of precipitation on outflow volume (US-41, Sullivan County; Data Set 2)</pre>			
6.9	Influence of precipitation on outflow volume (SR-63, Vermillion County; Data Set 1)202			
6.10	<pre>Influence of precipitation on outflow volume (SR-63, Vermillion County; Data Set 2)</pre>			
6.11	Influence of precipitation on outflow volume (SR-9, Noble County)204			
6.12	Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 1)205			
6.13	Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 2)			

Figur	re Page
6.14	<pre>Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 3)</pre>
6.15	Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 4)208
6.16	Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 5)209
6.17	Influence of precipitation on outflow volume (US-31, St.Joseph County; Data Set 1)210
6.18	<pre>Influence of precipitation on outflow volume (US-31, St.Joseph County; Data Set 2)</pre>
6.19	Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 3)212
6.20	Piezometric head variation in subbase (Section 1)220
6.21	Piezometric head variation in subbase (Section 2)221
6.22	Piezometric head variation in subbase (Section 3)222
6.23	Piezometric head variation in subbase (Section 4)223
6.24	Piezometric head variation in subbase (Section 5)224
6.25	Piezometric head variation in subbase (Section 6)225
6.26	Piezometric head variation in subbase (Section 7)226
6.27	Piezometric head variation in subbase (Section 8)227
6.28	Piezometric head variation in subbase (Section 9)228
6.29	Piezometric head variation in subbase (Section 10)229
6.30	Piezometric head variation in subgrade (Section 2)232
6.31	Piezometric head variation in subgrade (Section 3)233
6.32	Piezometric head variation in subgrade (Section 5)234
6.33	Piezometric head variation in subgrade (Section 6)235
6.34	Piezometric head variation in subgrade (Section 8)236
6.35	Piezometric head variation in subgrade (Section 9)237

Figu	re	Page
6.36	Suction variation at Section 2	239
6.37	Suction variation at Section 3	240
6.38	Suction variation at Section 6	241
6.39	Suction variation at Section 8	242
6.40	Suction variation at Section 10	243

					1.21
				4.5	
					`
	*				
		*			
				•	

LIST OF ABBREVIATIONS

Abbreviation	Description
AADT	Average Annual Daily Traffic
AASHO	American Association of State Highway Officials
AASHTO	American Association of State Highway and Transporation Officials
APTM	Asphalt Treated Permeable Material
ASTM	American Society For Testing And Materials
BSOG	Bituminous Stabilized Open Graded
FHWA	Federal Highway Administration
FPTD	Field Permeability Testing Device
GLM	General Linear Model
IDOH	Indiana Department of Highways
INDOT	Indiana Department of Transportation
NCHRP	National Co-operative Highway Research Program
NSOG	Non-stabilized Open Graded
OECD	Organization for Economic Co-operation and Development
OGDL	Open Graded Drainage Layer
PCC	Portland Cement Concrete
PCI	Pavement Condition Index
Penn DOT	Pennsylvania Department of Transporation

Abbreviation

Description

PFED

Prefabricated Edge Drain

TDR

Time-domain Reflectometry

USGS

United States Geological Survey

WASHO

Western Association of State and Highway

Officials

IMPLEMENTATION REPORT

An extensive field inspection of subsurface edge drains in Indiana was carried out through visual observations and use of camera systems for internal inspection. The investigation pointed out numerous problems and distresses which result in poor performance of edge drain systems. These included improper construction practices, deficiencies in system design, deficiency of presently used prefabricated edge drain product and lack of inspection and maintenance procedures. An inspection methodology was developed which includes a collector system inspection form (attached) to aid in future inspection of edge drain systems by the Indiana Department of Transportation (INDOT). A video has also been prepared showing various inspection process steps and setup of the camera system, which will help in a systematic evaluation of edge drain performance.

An intensive research was conducted in the form of field instrumentation and laboratory investigations to identify the pattern of moisture movement beneath pavements. Data analysis from instrumented sites show outflow to be affected by base permeability and edge cracking. The analysis also indicated high pore pressure buildup in subbase layers in the absence of

a positive drainage system. Laboratory investigations were conducted on ten subgrade soils and five subbase materials to determine material and hydraulic properties.

Based on this research effort, specific recommendations suggested to INDOT for implementation include:

- Use of the camera system as a post construction inspection tool and for periodic inspections of existing edge drains.
- 2. Treatment of the area around outlet pipes through rip-rap protection and provision of a minimum of 4 inch freeboard. This will minimize vegetation growth, sedimentation and erosion around the outlet area as well as protect the outlet pipe from damage caused by mowing equipment.
- 3. Use of a clean-out assembly employing high water pressure to jet clean clogged edge drains, especially on flat grades. This will assist in preventing pumping and other forms of distresses to occur in the pavement subbase, through reduced pore pressure buildup.
- 4. Use of an improved prefabricated edge drain product as the type of fin drain inspected in this study has a tendency to buckle under load.
- 5. To facilitate cleaning and inspection, Y or L outlet to pipe connections be used, and no T-connections be allowed.

- 6. Use of a filter material as trench backfill instead of recompacted excavated earth to prevent external caking and internal clogging of edge drains.
- 7. Proper sealing of pavement-shoulder joints to reduce moisture infiltration and use of a permeable subbase to rapidly remove entrapped water is recommended.
- 8. Use of developed hydraulic parameter values of subgrade soils and subbase materials with PURDRAIN program.
- 9. Incorporation of the findings of this research into appropriate INDOT specifications and guidelines for improved subdrainage performance.

For further questions or information, contact Zubair Ahmed at (317)494-6243 or Prof. T. D. White at (317)494-2215 or Prof. P. L. Bourdeau at (317)494-5031.

CHAPTER 1 - INTRODUCTION

Problem Statement

Moisture accumulation in pavement base and/or subbase layers, either due to the absence of a positive drainage system or due to the material characteristics of the drainage layer leads to damage, and in some cases, complete failure of the pavement structure. This is true for both asphalt and concrete pavements.

Providing pavements with efficient internal drainage systems significantly reduces water related damages, which not only increases the pavement life, but also minimizes maintenance and rehabilitation costs. Moisture damage is directly related to the length of time moisture is retained in the pavement system. The effect of moisture is significant enough to warrant the inclusion of specific factors in the AASHTO Guide for Pavement Design (1986). These factors apply not only to the design of new pavements, but also to the evaluation of existing pavements.

A research program was developed to obtain information on the performance of subsurface drainage systems. This program included obtaining specific drainage data, developing an analysis procedure, and providing recommendations on materials, inspection and maintenance of subsurface drainage systems.

Research Objectives

The major objective of this study is to assess for the first time, the performance of the contemporary drainage schemes in use, and suggest ways and means of improving the existing drainage systems as well as to provide a tool by which the performance of new and retrofit drainage systems could be evaluated.

The following major areas were studied in detail:

of existing pavement subdrainage systems in Indiana.

This involved inspection and condition assessment of various types of pavement subdrainage systems by the use of borehole cameras, and identification of factors involved in the performance of these systems.

- development of a methodology for inspection of collector systems. Routine inspection would aid INDOT in scheduling maintenance and evaluating long term performance of pavement subdrainage collector systems.
- 3. development of an analytical model of subsurface systems accounting for different geometric and material characteristics of the sections comprising a pavement system.
- 4. obtain specific drainage data for calibration and validation of the analytical model through on-site pavement instrumentation.
- 5. determine in the laboratory, soil-water and other properties of base/subbase materials and subgrade soils for use in the analytical model.

 The third objective is being accomplished by Mr. David Espinoza and is being reported in a separate report (Espinoza et al., 1993).

Outline of Report

With the objectives stated in the previous section, this report is presented in seven chapters. The first chapter states the problem and objectives, while the second chapter

reviews the literature on present state-of-practice for subdrainage evaluation, design and material requirements and pavement instrumentation and inspection techniques.

Chapter three deals with the inspection and condition assessment of existing subdrainage systems in the state through the use of a videoimagescope and a borehole camera, and identification of factors involved in the performance of these systems. A methodology for inspection of collector systems is developed and described in the same chapter.

Chapter four describes the development and implementation of a plan for on-site subdrainage instrumentation on existing pavement sections, with the objective of collecting site specific data for use in the validation of the subsurface drainage computer program as well as in the evaluation of subsurface flow for different conditions.

Chapter five deals with the laboratory testing procedures undertaken to classify subgrade and subbase materials from pavement test sections. The chapter also contains test result values of parameters influencing flow in the drainage layer.

Chapter six uses the results of data collected from onsite instrumentation in making statistical and engineering analyses of the influence of various factors on pavement drainage. Finally, in Chapter 7 the summary and conclusions of the study are presented.

CHAPTER 2 - LITERATURE REVIEW

There is significant literature available on various aspects of subdrainage. Cedergren and O'Brien (1971) have listed 225 abstracts related to pavement subdrainage. Dempsey, Darter and Carpenter (1971) have presented a comprehensive state-of-the-art review of existing literature and current practices pertaining to subdrainage and moisture movement in pavement systems. Within the scope of this report, only the salient points from selected publications are summarized. The review deals with the historical development of drainage practice, field and laboratory studies conducted specifically with respect to the development of drainage layers and materials and moisture movement in pavement systems.

Historical Review

The benefits of rapid internal drainage of pavements and the detrimental effects due to its absence have been known since the early part of 16th century. Bruce (1932) credits Tresaguet with first applying a scientific approach to road improvement in France about 1764. He specified a base layer of large stones covered with a thin layer of smaller stones to provide better subsurface drainage.

John L. Macadam (1820) in an address to the London Board of Agriculture commented that: "If water passes through a road and fills up the native soil, the road, whatever its thickness, loses support and goes to pieces". Various types of pavements carrying his name and based on his philosophy have been built and used over the years. This philosophy still guides pavement design and construction in many areas of the world.

J.W. Gregory (1931) stated the chief source of weakness in a road to be stagnant water. He advocated the use of coarse, closely packed gravel as a foundation for ordinary roads, reasoning that it distributed the weight of the road evenly on the underlying material and was easily drained.

Two well known road tests, the WASHO Road Test (1955) and the AASHO Road Test (1962) proved that excess water was the prime factor in the failure of pavements, with the damage to pavements being greater in wet periods than in dry.

Highway researchers and practitioners are in agreement on the effect of water on pavement distresses (Yoder,1946; Barenberg et al.,1974; OECD,1978). In flexible pavements, the continued presence of moisture in conjuction with heavy vehicle loads may result in stripping of asphalt from aggregate, potholes and alligator and cracking. In concrete pavements, moisture may result in loss of support, degradation of the base material and concrete deterioration.

The major distress associated with absence of subdrainage in concrete pavements is 'pumping'. Trapped water in conjunction with moving wheel loads on the pavement surface produces high pore pressures in the base/subbase layers of the pavement system. If not dissipated within a reasonable time frame, such pressures cause pumping of material from the base and ultimately failure of the pavement.

Van Wijk and Lovell (1984) identified water in the pavement as one of the three components necessary for pumping in concrete pavements to occur. They also stated the results of a survey, in which almost 60% of the 46 states questioned indicated that pumping is a serious problem.

Figure 2.1 shows the results of a study made by Darter et al. (1983) on the effects of positive drainage on pumping. A low pumping level is reached in only 8 years for a concrete pavement without underdrains, whereas the same section with underdrains takes 30 years to reach the same pumping level. Data from the study indicated that for sections showing high severity pumping, most did not have underdrains (Table 2.1). Dempsey (1982) studied conditions which causes pumping and channeling in pavement systems through field and laboratory studies and concluded that the use of non-erodible base materials and good drainage practices can lead to improved performance of pavements during the design life.

Cedergren (1970, 1973, 1989a) has been a major proponent in emphasizing the design of pavement based on drainability

Figure 2.1 Effect of subdrainage on pumping (Darter, et.al, 1983)

Effect of underdrains and precipitation on pumping (Darter et al., 1983) Table 2.1

ΔI	ESAL's	1.6×10^{7}	1.67	1.71	1.76	
NO UNDERDRAINS	Cumulative 18-kip ESAL's	$3.0 \times 10^6 \ 8.0 \times 10^6 \ 1.6 \times 10^6$	1.22	1.27	1.31	
N(Cumulat	3.0×10^{6}	. 94	0.99	1.03	
			75	100	125	
ENT	ESAL's	1.6 × 10 ⁷	1.03	1.03	1.12	
UNDERDRAINS PRESENT	Cumulative 18-Kip ESAL's	3.0 × 10 ⁶ 8.0 × 10 ⁶ 1.6 × 10 ⁷	. 58	. 63	. 68	
UNDER	Cumulat	3.0 × 10 ⁶	.31	. 35	.40	
			75	100	125	1
	(യ ാ)	.qiɔ	₽ve	[enu	ıĄ

rather than on density and stability. He established the scope and provided the basis for modern subdrainage design for both highway and airfield pavements by describing procedures for estimating water inflows and outflows in pavement systems (Cedergren, 1974; Cedergren et al., 1972). Moulton (1980) detailed analysis presented a and design of highway including subdrainage system material requirements, groundwater control techniques and construction procedures.

Ridgeway (1982) has provided a comprehensive discussion of subsurface drainage design as well as installation of subdrainage as part of pavement rehabilitation projects. Ray and Christory (1989) presented observations conducted on the concrete pavements in the Paris region in France, and recommended full-width drainage layers with a high percentage of voids for satisfactory performance.

Carpenter et al. (1981) have given a procedure for classifying pavements as to the potential for moisture accelerated damage to occur. The analysis aids in evaluating drainage problems of particular materials and in developing maintenance strategies to alleviate moisture related problems. Woodstrom (1983) described improved base designs and pavement drainage systems in California for both new construction and rehabilitation. Majidzadeh (1976) evaluated subsurface drainage conditions underneath concrete pavements in Ohio and indicated that moisture and drainage related problems are quite significant.

When distressed concrete pavements are overlaid with asphalt layers without providing for the removal of entrapped water, the problem persists in the form of wet spots on the overlaid pavement. Figure 2.2 shows a section of Interstate I-64 in Indiana where entrapped water in the pavement started seeping out of the asphalt overlay within one year of construction. Kandhal et al.(1989) have presented three case histories of water damage to asphalt overlays over portland cement concrete (PCC) pavements in Pennsylvania. They found significant amount of free moisture in the pavement layers and damage due to stripping on asphalt overlays. Asphalt treated permeable material (APTM) was proposed to provide an effective subsurface drainage system for new pavements.

Economic studies (Cedergren, 1978, Forsyth et al., 1987) have shown that billions of dollars could be saved by the use of good drainage systems. Mathis (1989) has reviewed and compared the practices of ten states on the design, construction practices, use and cost performance of permeable bases. The Asphalt Institute (1966) and Portland Cement Association (1984) have incorporated methods for drainage and erosion analysis as part of the overall design process for flexible and rigid pavements.

Hall et al. (1989) have developed rehabilitation strategies for concrete pavements with consideration of drainage (Figure 2.3), joints and other pavement features. FHWA has conducted a special project (Baumgardner and Mathis,

Figure 2.2 Water seeping from overlaid concrete pavement

Drainage Rehabilitation Decision Tree (Hall et al., 1989) Figure 2.3

1989) with the objective to evaluate the effectiveness of retrofit longitudinal edge drains to remove water from PCC pavements. The study will also evaluate various non-destructive methods for monitoring pavement drainage systems.

Elements of Subdrainage

Most of the roads built during the past several decades were built with emphasis on strength and not on drainage for performance. The effect of moisture trapped inside the pavement and its rapid drainage from the system was never given the importance it deserved. This outlook changed in the early 1970's and a significantly different pavement design philosophy with emphasis on drainage was accepted.

The Organization for Economic Co-operation and Development (OECD) (1973) has summarized research work carried out in participating countries to predict moisture content of road subgrades. A number of field and laboratory studies combined with theoretical analysis have been conducted on the material characteristics of elements of subdrainage and on the extrinsic and intrinsic factors which influence subdrainage. A brief review of these studies follow.

Drainage Layers

The use of open graded drainage layers (OGDLs) has gained acceptance as a means of rapidly draining infiltrated water

from pavement structures, and represents a careful balance of permeability and stability of the base course material. These types of base and subbase layers have limited fines. The suggested range of OGDL permeabilities is quite wide, ranging from 1000 ft/day to 20,000 ft/day (Mathis, 1989).

strohm et al. (1967) conducted laboratory permeability tests on four gradations of base course materials. These tests indicated that the permeability decreased significantly with the increase of density and hydraulic gradient. They concluded that the gyratory compaction procedure developed in the investigation could be used to obtain uniformly prepared specimens for use in the evaluation of drainage characteristics of base course materials.

Barenberg and Tayabji (1974) tested six pavement sections with open-graded bituminous aggregate drainage layers. To simulate infiltration, water was passed through the drainage layers and dynamic loading applied to the test sections. Results from the study indicated a high permeability for the drainage layers.

Smith et.al (1970) reported the findings of a field evaluation study of a two-layer highway drainage system (Figure 2.4). The experimental section consisted of a flexible pavement over a two-layer drainage blanket. The drainage blanket consisted of an asphalt treated permeable material over a well graded aggregate layer. The performance of this two-layer system was compared to a control section which had

Experimental and control sections for two-layer drainage system study (Smith et al., 1970) Figure 2.4

a flexible pavement over a layer of permeable base course material. Field permeability tests from the study (Table 2.2) indicated that the drainage capacity of the two-layer system to be three to nine times that of the standard underdrain section, though both sections effectively drained all subsurface water at the site.

Kozlov et al. (1983) investigated drainage conditions and frost action due to surface water underneath concrete pavements. Different gradations of base course materials were tested in the laboratory to identify optimal materials for pavement drainage layers. Two types of drainage layer materials, a bituminous stabilized open graded material (BSOG) and a non-stabilized open graded material (NSOG) were developed. Gradation specifications for both materials are shown in Table 2.3.

Highlands and Hoffman (1987) described a project undertaken by the Pennsylvania Department of Transportation (PennDOT) in which five sections of base/subbase materials representing a range of permeability conditions were constructed (Table 2.4). Test results indicated that opengraded subbases have higher permeabilities as compared to dense graded subbases. Based on the results of the study, Penn DOT changed its specifications to require an open-graded subbase (Figure 2.5) as an interlayer between rigid pavements

Table 2.2 Field permeability test data for two-layer drainage system study (Smith et al., 1970)

Station	Permeability (gal/min) at 43-in. Constant Head		Remarks	
	Asph. Perm.	Two-Layer	Control	
485 + 65	-	7.20		
486 + 90	33.00	7.80		
487 + 90	31.80	16.20		Incomplete excavation through asph. perm.
488 + 50	-	4.80		4 ft from artificial spring
489 + 40			1.02^{2}	1 3
489 + 85			0.90^{2}	
490 + 50			6.60	4 ft from artificial spring—probably
Average	32.40	9.00	2.84 ^a	piping

^aAverage of low values 0.96.

Table 2.3 Selected BSOG and NSOG gradation range for New Jersey concrete pavements (Kozlov et al., 1983)

	% Passing (by weight)				
Sieve Size	NSOG		BSOG		
7	Max.	Min.	Max.	Min.	
1-1/2"	100	100	<u>-</u>	-	
1"	100	95	100	100	
3/4"	-	-	100	95	
1/2"	80	60	100	85	
3/8"	-	-	90	60	
#4	55	40	25	15	
#8	. 25	5	10	2	
#16	8	0	5	2	
#50	5	0	-	-	
#200	-	-	Add 2% (b mineral fille		
	·				

Subbase material properties for Pennsylvania drainage study (Highlands and Hoffman, 1987) Table 2.4

	Laboratory	Field	14					
	Permeability	Permeab	Permeabilities	Lab.	Field	Lab.	Lab. Field	Field
Subbase	× '	K1	K2	8 Junax.	Jumx.	nmin.	nmin.	
Type	(cm/s)	(cw/s)	(cm/s)	(Jod)	- 1	8	(8)	
Aggregate Cement	1 x 10 ⁻⁷ (1)	(7)	(7)	130.1	138.1	16	16 (4)	0.19
МГРМ	2.3 x 10 ⁰ (2)	1.90	2.14	112.7	106.9	31	33	0.51
2B Aggregate	7.6 x 10 ⁰ (2)	. 2.73	9.44	102.9	93.2 (5)	37	43 (5)	0.75
И.Р.	6.4 X 10 ⁰ (2)	6.10	6.28	110.0	100.0	32	39	0.63
2A Aggregate	1.6 × 10 ⁻⁴ (3)	0.014 (6)	0.0063	124.9	125.4	23	23	0.30

Triaxial test permeability 65632

Fabricated falling head test

Standard constant head permeameter

Data obtained from mix design testing

Data derived from fleld concrete design data

Due to limitations of test equipment, field permeability

No measurements because permeabilities were below the lower measurements in 2A Aggregate may not be accurate testing capabilities of the testing equipment (2)

K - Permeability

KI & K2 - Permeabilities in orthogonal (90 degrees apart) directions 84 m Dry denaity

n " poroalty

a - vold ratio

į

Pennsylvania open graded subbase gradation curve (Highlands and Hoffman, 1987) Figure 2.5

and dense graded aggregate subbases. Raad (1982) investigated the significance of permeability, compressibility, loading conditions and drainage efficiency on pumping of base course materials. He found that pore pressure increases as the base course permeability decreases. Also, he found the base course compressibility increases. Crovetti and Dempsey (1991) investigated the permeability of the standard Illinois base course materials. Two of these standard materials have permeabilities in excess of 5000 fpd. They recommended the use of Portland cement or asphalt as stabilizing agents if the materials were to be trafficked prior to final paving.

Hajek et.al (1992) in a field study of five paving projects incorporating asphalt treated and untreated open graded drainage layers (OGDLs) conclude that the existence of OGDLs alone does not guarantee better pavement performance. The OGDLs should also be combined in a total internal drainage design consisting of a permeable base and collection system.

The studies listed above underscore the fact that the use of an open graded material in combination with a subdrainage collection system is effective in increasing pavement service life. INDOT has recently developed standards for aggregate subbases, which require the use of open graded granular or stabilized layers in both asphalt and concrete pavements (INDOT, 1992). This will lead to an increase in the cost effectiveness of the highway network and to less frequent

maintenance and rehabilitation for highways in the state.

Pavement-Shoulder Joints

Improperly sealed or unsealed pavement-shoulder cracks and joints are entry points for moisture into a pavement. If a drainage system is not provided, the result will be premature deterioration of the pavement.

Research conducted on German motorways (Sulten, 1983) revealed that water penetrates through joints and stagnate at the slab-subbase interface resulting in disintegration of the bond between the slab and the hydraulically bound subbase. Barksdale and Hicks (1977) stated that it is possible for as much as 70 to 97 percent of rainfall to enter open joints with openings of 0.035 to 0.125 inch, when dry conditions existed beneath pavements. They indicated that deterioration of shoulders in the vicinity of the longitudinal joint was considerably more severe, when a significant quantity of water existed beneath the pavement and the shoulder.

Ring (1977) found that water entering through joints and cracks of concrete pavements is trapped causing high hydrostatic pressure. As a result, there is a loss of subgrade support and faulting due to redistribution of subbase materials. Guinnee and Thomas (1955) stated that the amount of water entering pavements at the edges is greater than that from any other source. Observations by Ridgeway (1976) indicated infiltration rates of up to 0.08 ft³/hr/ft of crack through joints and cracks in concrete pavements. Figure 2.6

Effect of joint sealing on moisture content variation (Dierstein and Mckenzie, 1974) Figure 2.6

Subgrade Density, Ibs. per cu. ft

shows a survey of lane-shoulder joints in Illinois (Dierstein and McKenzie, 1974) where moisture content was found to be higher under longitudinal unsealed lane-shoulder joints than sealed joints. This higher pressure was associated with premature failure of pavements. Dempsey and Robnett (1979) in a study of test sections in Georgia and Illinois found edge joint sealing of pavements reduced outflow by 11.6 percent in jointed concrete pavements and by 16.4 percent in continuously reinforced concrete pavements. Carpenter et al. (1987) stated that there is no consensus around the United States as to what constitutes an adequate lane/shoulder joint seal. The practice is performance dependent and varies from one area to another.

Collector System Components

A pavement subdrainage collector system collects water from the pavement drainage layers and conveys it outside the roadway limits through outlets. It consists of a perforated drainage pipe placed inside a trench with a filter envelope surrounding the pipe. Figure 2.7 shows a typical cross section of a drainage trench. The composition of the pipe and the envelope material play an important role in the efficiency of the subdrainage system.

Clay and concrete tiles and pipes were used in earlier drainage systems. These type of pipes have now been replaced with perforated corrugated metal or plastic pipes. The plastic pipes are flexible conduits and if improperly placed, they

Hote: See Typical Cross Section for limits and thickness of pavement and bass.

TYPE I EDGE DRAIN (FOR EXISTING HWY. FACILITY)

Figure 2.7 Typical cross sections of underdrain trench (Wells, 1985)

deflect excessively. NCHRP Project 4-11 (1980) discusses standards for evaluating plain and corrugated plastic pipes. Also, various state DOTs have their own specifications for the use of different materials for pipes.

The introduction of prefabricated edge drains (PFEDs) or fin drains, consisting of an inner polymer structural core around which a geotextile membrane is wrapped, has been an important development for both new and retrofitted pavement systems. Figure 2.8 shows some designs of fin drains used in highway subdrainage systems (Frobel, 1991). Proponents of prefabricated edge drains have listed ease of placement and relatively low cost as the major advantages over conventional pipe edge drains.

Koerner and Hwu (1991) presented a rational design procedure which can be used for a variety of fin drain products. Dempsey (1988) conducted a study to determine the core flow-capacity requirements of prefabricated edge drains. Six different fin drain materials were tested in a laboratory channel and their core flow capacities compared with conventional pipe edge drain systems. Results from the study indicate that flow zone capacities in excess of 200 gal/hr are required for fin drains to compare with standard pipe edge drain systems.

Studies have been conducted to evaluate and compare the effectiveness of pipe and prefabricated edge drain systems (Hinshaw, 1988; Allen and Fleckenstein, 1988; Highlands et

CORE PROFILES DESCRIPTIONS .25"__ | __ - 1.0" -LDPE Double cuspated A perforated core color - black weight 150 gm/ft² double cuspates (169/ft each side) conical cuspates (100/ft²) 1.3" HDPE Conical Cuspated perforated base В 1.0 color - yellow weight 181 gm/ft² perforated base 18 corrugations per foot-HDPE C Oblong corrugated pipe section slotted perforations color - black weight 377 gm/ft² .3" slotted perforations column supports in bottom corrugation throughout (18/ft²) D LDPE High profile columns perforated base color - black weight 223 gm/ft² hollow columns - $(225/ft^2)$ perforated base

Figure 2.8 Core structural profiles for prefabricated edge drains (Frobel, 1991)

al., 1991). The general conclusion is that performance problems exist with both systems. It is also difficult to isolate the effect of a subdrainage collector system from the overall pavement system performance.

The second component of a drainage trench is the envelope material. The primary reasons for placing envelope materials around edge drains as listed by Dempsey et al. (1971) are as follows:

- to prevent the migration of soil particles into drains to prevent clogging the drain.
- to provide a material in the immediate vicinity of drain openings which is more permeable than the surrounding soil.
- 3. to provide a suitable bedding for drains.
- 4. to stabilize the soil on which drains are being laid.

Cedegren and O'Brien (1971) and Moulton (1980) have recommended the following design criteria for drainage envelope materials for proper functioning:

$$(D_{15})$$
 backfill ≤ 5 (D_{85}) protected soil (2-1)

$$(D_{50})$$
 backfill \leq 25 (D_{50}) protected soil (2-2)

$$(D_{85})$$
 backfill > 1.2 (slot width of pipe) (2-3)

$$(D_{85})$$
 backfill > 1.0 (hole diameter of pipe) - (2-4)

trench width
$$\geq q_d / 2 (k_t)$$
 (2-5)

where: D_x = the particle size for which x percent of the material will be smaller

 q_d = design drainage rate

k, = permeability of backfill material

The protected soils specified in the above equations are the base/subbase and subgrade, as water from these layers are expected to flow into the trench. Three placement locations of the trenches have been practiced;

- at the pavement edge, which is more common for fin drains,
- 2) under the shoulder at some distance from the pavement edge which is more common for pipe edge drains,
- 3) at the shoulder outer edge.

Procedures for analysis and design of pipes and prefabricated edge drains have been given by Cedergren (1974), Moulton (1980) and Carpenter (1990).

Drainage Design Criteria

Design and performance of drainage layers and collector systems are not exercises in isolation. Rather, they are tied to an overall approach of draining water from various sources (Figure 2.9) out of the pavement system. To this end, two basic design philosophies are practiced (Ridgeway, 1982).

- a) Time required for a certain percentage of drainage of a saturated base or subbase should not exceed a certain value.
- b) An inflow-outflow criteria where the outflow rate is greater than or equal to the inflow rate.

Figure 2.9 Sources of moisture in pavement systems (Low and Lovell, 1959)

To meet the first criteria, Casagrande and Shannon (1951) and Barksdale and Hicks (1977) have given procedures for estimating the time required to remove 50 percent of the drainable water from the pavement system. The Corps of Engineers (1946) recommend a time of 10 days for airport pavements, whereas Barksdale and Hicks (1977) suggest a time of 2 to 6 hours for highway pavements. Darter and Carpenter (1987) have proposed a time of 5 hours as acceptable to reach an 85 percent saturation level (Figure 2.10). AASHTO Design Guide (1986) lists the times corresponding to different levels of drainage for improved performance (Table 2.5).

For the second criteria, there are two approaches to estimate infiltration of water through a pavement surface.

- a) The first approach by Cedergren et al. (1972) is based on the intensity of precipitation. A 1 hour/1 year frequency precipitation is multiplied by a coefficient to achieve a design infiltration rate. Suggested coefficients range from 0.33 to 0.5 for bituminous pavements and from 0.5 to 0.67 for concrete pavements.
- b) The second approach by Ridgeway (1976) is based on the duration of precipitation and the estimate of the water carrying capacity of a pavement crack or joint. For design purposes, an infiltration rate of 0.1 ft³/hr/ft of crack is recommended.

Moulton (1980) has summarized the recommended design criteria for drainage systems into the following five steps:

Figure 2.10 Drainage criteria for granular layers (Darter and Carpenter, 1987)

Table 2.5 Quality of drainage for pavement sections (AASHTO, 1986)

Quality of Drainage	Water Removed Within
Excellent	2 hours
Good	1 day
Fair	1 week
Poor	1 month
Very Poor	Will not drain

- Assemble all available data on highway and subsurface geometry, soil and material properties, and factors contributing to the quantity of moisture in pavements.
- Determine the quantity of water that must be removed by the pavement drainage system.
- 3. Design the pavement drainage layers for rapid removal of the net inflow.
- 4. Désign the collector system for removal of water from the drainage system.
- 5. Conduct a critical evaluation of the design with respect to expected long term performance, maintenance and cost.

Environmental Effects on Subdrainage

Climate, geologic location and other environmental factors have considerable influence on pavement performance. Precipitation and temperature control soil moisture conditions and influence the type and thickness of pavements required for roads and airfields.

A number of researchers have discussed the effects of these variables on moisture conditions in pavement systems (Eno, 1930; Coleman and Russam, 1961; Fang, 1969). In the words of Eno (1930),

"One of the very important, if not the most important phases of climate relative to its effects upon the highway is the amount, distribution, intensity, character, and disposition of precipitation".

A field study conducted by the Corps of Engineers (1955) at different airfield pavements shows the influence of high

precipitation on the moisture content of base and subgrade materials (Figure 2.11). Investigations by Marks and Haliburton (1969) indicated precipitation has a major effect on moisture variation in pavements with poor condition ratings. Stevens et.al (1949) stated that high precipitation during the fall season tended to saturate the subgrade and base and was related to the spring pavement breakup in Virginia.

Groundwater conditions may contribute to accumulation of moisture in a pavement system. A high groundwater table can allow both capillary water or water in vapor form to migrate towards the surface. Turner and Jumikis (1956) in a study of six New Jersey soils showed that precipitation could change the water table level and correspondingly the subgrade moisture content. Melting snow was more significant than rain. Chu et al. (1972) found a positive correlation between subgrade moisture content and high groundwater table for pavement systems in South Carolina (Figure 2.12).

The severity of the problem of moisture increases in areas where frost penetration or freeze-thaw cycles occur. Freezing temperatures during winter months result in the formation of ice crystals from the various sources of water which infiltrate and get trapped in the pavement layers. During spring-thaw periods, water from the melting crystals contribute to moisture content increase, which in turn results in early deterioration of the pavement. In a study of AASHO

a) Memphis Municipal Airports (35 in. of rainfall/year)

b) Kirtland Air Force Base (15 in. of rainfall/year)

Figure 2.11 Moisture content variation for airfield pavements (Corps of Engineers, 1955)

Variations in moisture content compared with fluctuations in groundwater table (Chu et al., 1972) Figure 2.12

Road Test results on flexible pavements, Benkelman (1962) found the detrimental effects of ground freezing and moisture to be the greatest during spring months.

There are several reports which describe the effects of temperature and frost on pavement performance (Johnson, 1952; Johnson and Lovell, 1953; Low and Lovell, 1959; OECD, 1974). The US Army Corps of Engineers (1959) has criteria and procedures for the design and construction of pavements for frost conditions. Moulton and Schaub (1969) developed a rational approach to the design of flexible pavements for resisting the detrimental effects of frost action. More recently, Chisholm and Phang (1983) undertook a 5 year program of measuring and predicting frost penetration in pavement structures across Ontario and developed a computer program capable of predicting the depth and time pattern of frost penetration beneath pavement structures.

Experiments conducted by the Ontario Ministry of Transportation (McMaster et al., 1982) show that surface water infiltration in frost areas has a detrimental effect on pavement performance. Removal of moisture from pavements through plastic pipe edge drains resulted in reduced heaving and distortion of asphalt pavements.

Moisture Movement Underneath Pavements

Moisture is a fundamental variable in all problems of soil behavior. It has special significance in highway

pavements. Highways are thin structures built on a soil foundation. Also, subbase and base layers are soil materials. These soils or subgrades may be subjected to large variations in moisture contents. Consequently, the control of moisture is of prime importance in pavement design, construction, behavior and performance.

Saturated and Unsaturated Flow

Moisture movement in underlying layers of pavements can be generalized into two systems. Saturated, in which all the voids are filled with water, and unsaturated, in which both air and water are present. The latter is the more common kind of flow in soils, as even in the case of practically saturated flow, one can expect about 2-10% of air voids. Both types of flow are caused by a driving force due to a potential gradient, with flow taking place in the direction of decreasing potential. For the same elevation, it is the gradient of a positive pressure potential for saturated flow, whereas in case of unsaturated flow, it is the negative pressure potential often termed as 'matric potential', 'moisture tension' or simply 'suction'.

Saturated flow is best described by Darcy's Law for flow in porous media, and for a one-dimensional flow may be given as:

$$q = k i A (2-6)$$

where: q = specific discharge rate

k = constant, defined as "hydraulic conductivity"

 $i = \partial h/\partial x = hydraulic gradient$

A = cross-sectional area normal to flow direction

 $h = piezometric head = z + u/\gamma_w$

z = elevation of the point of interest

u = water pressure

 γ_{w} = unit weight of water

x = direction of flow

For unsaturated flow, the above equation is extended and expressed as:

$$q = - [k(\theta)] vh (2-7)$$

where:

q = specific discharge rate

k(θ) = hydraulic conductivity as a function of unsaturated moisture content

v = Laplacian operator

h = piezometric head = $z - \psi$

z = elevation head

 ψ = matric potential or suction

Casagrande and Shannon (1951) presented a theoretical analysis of moisture movement through a saturated base course. The model considers both horizontal and sloping bases and a linear free water surface that changes with time (Figure 2.13). They defined the progress of drainage in terms of two dimensionless parameters:

a) Degree of Drainage 'U' defined as the ratio of drained area to total area.

(a) U EQUAL TO OR
GREATER THAN 50%

Time (1+at)

Time (1

Figure 2.13 Base Drainage Model (Casagrande & Shannon, 1951)

Assumed Progress of Free Water Surface—Sloping Base

b) Time factor 'T' which depends on the properties of the base material.

Liu et al. (1983) developed a model based on Casagrande and Shannon's work replacing the linear free water surface with a parabolic surface and incorporated other variations which make the model more suitable to field conditions. Cedergren (1989) has used the technique of flow nets for infiltration studies of base courses on impermeable foundations using Darcy's Law.

The main limitations of the methods described above are the assumptions that the base is fully saturated and that water is readily drained out from the system. As soil desaturates, some of the pores become air filled and suction develops, entailing a steep drop in hydraulic conductivity. This may result in very long times for any appreciable flow to occur. Still, the methods are a good first approximation in the design of pavement drainage systems.

Though soil physicists have been dealing with unsaturated moisture movement in soils for quite sometime, Wallace (1975, 1977) was the first to apply the concepts to pavement systems. A one-dimensional infiltration model based on finite difference approximation was introduced to analyze a simple pavement cross-section (Figure 2.14) and study the effectiveness of alternative forms of pavement subdrainage. Moisture movement profiles for various cross section designs were given therein. The seepage model 'PURDRAIN' developed in

Figure 2.14 Pavement cross section for infiltration analysis (Wallace, 1975)

parallel to the present study (Espinoza et al., 1993) is based on the work performed by Wallace.

The two fundamental relationships affecting moisture movement in unsaturated pavement systems are a) hydraulic conductivity-moisture content and b) suction-moisture content. This is due to the fact that hydraulic conductivity does not remain constant, but decreases as the degree of saturation decreases, or as suction increases as shown in Figure 2.15.

A moisture content-suction relationship can be defined by a characteristic curve as shown in Figure 2.16. The hysteretical nature of the relationship between moisture content and matric suction shows that the process of wetting-up and drying depends on the initial conditions and moisture content at a given point. The relationships between hydraulic conductivity, moisture content and suction are not unique. It is therefore necessary to obtain values of these parameters in forming relationships for different types of base/subbase materials and subgrade soils.

Measurement of Hydraulic Conductivity

Various field, laboratory and analytical methods exist for evaluating saturated and unsaturated hydraulic conductivities (Bouwer and Jackson, 1974; Klute and Dirksen, 1986; Cedergren, 1989b). Table 2.6 summarizes these methods. Moulton and Seals (1979) developed a prototype field device for measuring in-situ horizontal permeability of saturated

Figure 2.15 Soil moisture characteristics (Wallace, 1977)

Figure 2.16 Hysteresis effects of drying and wetting on matric suction (Janssen and Dempsey, 1980)

Table 2.6 Methods of measuring hydraulic conductivity (Bouwer and Jackson, 1974)

Saturated Hydi	Saturated Hydraulic Conductivity	Unsaturated
Below Water Table	Above Water Table	Conductivity
Auger Hole Method	Shallow well Pump-in Method	Two-Plate Method
Tube Mothod	Cylinder Permeameter Method	Long Column Method
Plezometer Method	Infiltration Gradient Technique	Advance of Wetting Front Method
Well Point Technique	Air-Entry Permeameter Technique	Pressure Plate Outflow Method
Two-well Technique	Double-Tube Method	Instantaneous Profile Method
Four-well Technique		Entrapped Air Method
Multiple-well Technique		Calculation of Conductivity from water characteristics a. Model of Marshall b. Model of Brooks & Corey
		Computer Techniques
		Ploid Techniques

base and subbase courses. A number of charts and nomographs have been developed to estimate permeability based on material properties. Two of the most frequently used in drainage design were developed by Cedergren (1974) (Figure 2.17) and by Moulton (1980) (Figure 2.18).

Elzeftway and Dempsey (1976) developed a method to predict the unsaturated hydraulic conductivity of pavement subgrade soils. This method utilizes moisture content-matric suction relationship of soils determined in the laboratory using 'Tempe' cells. Figure 2.19 shows a standard 'Tempe' cell. El Tani (1991) developed a permeameter for unsaturated soils by observing the way in which pore water recovers hydrostatic equilibrium. A cylinder containing unsaturated soil is supplied with two pressure transducers which indicate pressure values of pore water at the top and bottom of the sample. The cylinder is turned upside down every time the state of reference (or hydrostatic equilibrium) is reached. Hydraulic conductivity is deduced from curves of which represent pressure as a function of time at the top and bottom of the sample. The permeameter makes it possible to measure the hydraulic conductivity at very low degrees of saturation. A schematic of the permeameter is shown in Figure 2.20.

Measurement of Moisture Content

Moisture content can be expressed either in terms of gravimetric moisture content $'\omega'$ or volumetric moisture

U.S. STANDARD SIEVE SIZES

Figure 2.17 Permeability and gradation of base and filter materials (Cedergren, 1974)

Nomograph for estimating co-efficient of permeability of granular materials (Moulton, 1980) Figure 2.18

Figure 2.19 View of a standard Tempe cell

Figure 2.20 A permeameter for measuring unsaturated hydraulic conductivity (El Tani, 1991)

content ' θ '. There are direct and indirect methods of measuring soil moisture content (Gardner, 1965; Curtis and Trudgill, 1975; Hillel, 1982). The direct method called 'gravimetric method' is based on weighing a sample of a moist soil and drying it to a constant weight in an oven. The gravimetric moisture content, then is the ratio of the weight loss on drying to the dry weight of the sample.

Two common methods of measuring moisture content indirectly are through the use of electrical resistance blocks or by neutron moisture probes. The electrical resistance block consists of a gypsum cast around two electrodes. The gypsum block is wetted thoroughly and buried in the soil to ensure good contact between the soil and block. At equilibrium, resistance measurements are made using an ohm meter and converted to water content values using calibration curves.

In the neutron probe method fast neutrons are emitted into the soil through a probe. The fast neutrons collide with hydrogen atoms of water and are scattered. The proportion of neutrons returning to the probe is related to the water content. The probe method is more accurate but the electrical resistance method is more convenient for long term monitoring of soil moisture.

Time-domain reflectometry (TDR) is a relatively new technique being used to monitor soil water content. The technique involves measuring changes in the apparent dielectric permittivity of soil which in turn is related to

volumetric water content. Soil solids have a dielectric constant of 2 to 5 compared to water which has a value of 80. Thus a measure of the dielectric constant of soil is a good measure of its water content. A schematic of the system is shown in Figure 2.21. Topp et al. (1980) used a time-domain reflectometry (TDR) technique to measure the dielectric constant of a wide range of granular soils. They also developed an empirical relationship relating the dielectric constant to the water content of soils.

Measurement of Soil Suction

Suction is a stress property which expresses the attraction that soil has for capillary water. Evaluation of soil suction is as important as determining soil water content. Richards (1949) and Gardner (1965) described various methods of measuring soil suction. Fredlund (1989) presented a state-of-development in soil suction monitoring for roads and airfields.

Tensiometers are the most common and widely used devices for measuring of suction in the field. Such devices are illustrated in Figure 2.22. A tensiometer essentially consists of a fine porous ceramic pot connected by a tube to a manometer or vacuum gage. The porous pot is placed in intimate contact with the soil so that water passes through the pot until equilibrium is achieved between suction on the gage and the soil. To measure suction in a laboratory, use is made of

Block diagram of Time-Domain Reflectometer (Topp et al., 1980) Figure 2.21

Schematic illustration of parts of a tensiometer (Hillel, 1982) Figure 2.22

tempe cells for low suction ranges and of a pressure membrane apparatus for high suction ranges. A schematic of the pressure membrane apparatus is shown in Figure 2.23.

Janssen and Dempsey (1980) determined soil-moisture relations of 24 soils in Illinois using the above equipment and discussed the influence of soil type on matric suction and hydraulic conductivity. ASTM (1991) has set standards for measuring moisture-suction relationships for various soils. A detailed procedure is described in Chapter 5.

Chapter Summary

The concept of positive pavement drainage though not new was slow in being accepted and implemented. During recent years, considerable progress has been made in the use of new materials and in the analysis, design and performance of pavement subdrainage systems.

A better understanding of the moisture movement in pavement systems and the hydraulic properties controlling it has been achieved. The use and proper design of new drainage materials for base/subbase courses and edge drains to facilitate flow of moisture out of the pavement system will in the long run benefit the highway system in this country through reduced cost of maintenance and longer service life.

į

Schematic illustration of pressure chamber apparatus (ASTM, 1991) Figure 2.23

CHAPTER 3 - COLLECTOR SYSTEM INSPECTION METHODOLOGY

Background

A subdrainage system may be considered to include two basic components, drainable base/subbase layers and a collector system comprised of an edge drain and outlet pipe. In older pavements, the subdrainage system consists of only an edge drain and outlet pipe.

As referenced in Chapter 2, a number of research studies have been conducted to improve material properties associated with base/subbase layers. These studies have resulted in the development of permeable open graded drainage layers having a low percentage of fines. Edge drains receive water from the base/subbase layers and discharge it outside of the pavement system through outlet pipes. Cedergren et al. (1972) and Moulton (1980) have prepared guidelines and procedures for the design and construction of collector systems. But, literature on inspection procedures, cleaning and maintenance of edge drains is limited. Dempsey et al. (1982) described a system for jet cleaning conventional pipe edge drains. California (Wells, 1985) and Iowa (Steffes et al., 1991) have standard plans incorporated into their specifications for the cleanout and inspection of pipe edge drains. There are no cleaning

procedures for prefabricated edge drains (PFEDs).

To maintain subdrainage effectiveness, edge drains should be inspected both inside and outside. This chapter describes the inspection of existing subdrainage collector systems through external visual inspection in combination with a probe for internal inspection.

Study Objectives

This task was aimed at observing and recording distresses both around and within existing subdrainage collector systems. Results of the study will help the Indiana Department of Transportation (INDOT) better plan the construction and maintenance of edge drains.

The objectives of this study included:

- inspecting existing types of edge drains in Indiana
 with regard to their performance and operation,
- monitoring conditions inside edge drains by means of a video probe,
- preparing a video of significant observations made during inspection, and
- 4. developing a methodology for inspection of underdrains.

For the study, a comprehensive field survey was initiated to locate sections with the two basic types of subdrainage collector systems used in the state. These are the perforated pipe edge drains and geotextile fin drains. To achieve a comparative evaluation of performance, drains ten years and

older and drains placed for newly built road sections less than four years old were incorporated into the study. A total of seventy underdrains and fin drains were inspected through their outlet pipes. Visual and camera observations were recorded for these drains. A list of the surveyed sections and their corresponding type of collector systems is given in Table 3.1.

Inspection of Existing Subdrainage Systems

Site Information

Prior to inspection of the edge drains, specific information was needed for the selected sites. This was achieved through Project Log Records and Construction Plans. Log Records contain information on highway classification, route number, county and district in which the section is located, project and contract numbers, contract length and project location.

Construction plans helped in determining edge drain locations in the pavement sections and in determining types and sizes of these edge drains. Additionally, information on pavement cross sections and grades were also obtained from the construction plans. Edge drain design, placement and construction details used by different state highway agencies vary. In Indiana, a typical pipe edge drain design used for both old and new construction projects is shown in Figure 3.1.

Table 3.1 Summary of collector systems inspected in Indiana

ROUTE NUMBER	COUNTY	TYPE OF COLLECTOR	NO. OF DRAINS INSPECTED		
I-64	CRAWFORD	PIPE	12		
I-164	VANDERBURG	FIN	4		
∠ I− 65	SEYMOUR	FIN			
US-30	LAPORTE	FIN	3		
US-31	ST. JOSEPH	FIN	3 8		
US-31	HAMILTON	PIPE			
US-36	HENDRICKS	PIPE	5		
US-41	SULLIVAN	FIN	9		
US-50	DAVIESS	PIPE	3 4 3		
SR-3	ALLEN/DEKALB	PIPE			
SR-9	NOBLE	PIPE			
SR-37	HAMILTON	PIPE	12		
SR-38	TIPPECANOE	PIPE	3		
SR-63	VERMILLION	PIPE	4 5		
SR-469	ALLEN	PIPE			

Figure 3.1 Cross section of underdrain used in Indiana

Figure 3.2 Cross section of fin drain used in Indiana

This consists of a trench 18 inches wide by 30 inches deep. A perforated pipe is placed at the bottom of the trench to a required depth and the trench backfilled with Indiana size No.8 aggregate. Use of a geotextile filter as a trench liner or pipe wrap were not encountered in the sections included in overlay projects, For retrofit and study. prefabricated edge drain or fin drain is used and is connected to the outside by a 4 inch diameter plastic outlet pipe (Figure 3.2). Pipe underdrains are either located at the edge of the pavement under the shoulder or at any intermediate point beneath the shoulder, whereas fin drains are located next to the pavement at the pavement-shoulder joint. Location of the drain helps in determining in advance the length of the outlet pipe the inspection probe has to traverse before making a bend into the collector pipe.

Condition Evaluation

As part of the edge drain inspection process a pavement condition survey was conducted. The objective of these condition surveys was to quantify the extent of pavement deficiencies as related to the condition of the drainage facilities. Evidence of distresses such as pumping, alligator cracking and joint cracking could be related to poor subdrainage. Information gathered would supplement the inspection of edge drains in setting maintenance strategies for subdrainage rehabilitation.

Condition surveys was performed using the distress identification procedure developed by Shahin, et al. (1979). For newly constructed or overlaid sections, it would have been trivial to survey these pavements, therefore only edge drains were inspected. Pumping stains and bleeding of water from overlaid concrete pavement sections were noted at sites where edge drain outlets were either buried or clogged. A sample of the condition survey forms is shown in Figure 3.3.

Equipment for Inspection

Bore Hole Camera System

Internal inspection of edge drains is conducted with a videoimagescope or borehole camera. For this project, a market survey was made to find a camera system that would allow effective inspection of either four or six inch diameter edge drains and/or outlet pipes. Four systems were considered.

Two Olympus camera systems were evaluated. The first system consists of a 3/4 inch (20mm) diameter videoimagescope that is pushed inside a pipe edge drain through the outlet pipe to a working length of 70 feet (22 m). It has an interior 100 degree field of view that can be recorded on video. The light guide is built around the scope and is controlled by a portable light source. The system is shown in Figure 3.4.

The second Olympus system allows a single lens reflex camera to be attached to a rigid borescope. The light guide at

ASPHALT PAVEMENT INSPECTION SHEET

NB

BRANCH US-31 BANDASS . SAUTH REND SECTION NB												
DATE 8/17/91								_	SAMP	LE UN	<i>IT</i>	
SURVEYEDBY 2. AlimED							<u>=</u> n	_ /	AREA	OF SA	MPLE _	24×150
											-,	
Distress Typ											SKET	CH:
1. Alligator Cracking *IO. Long & Trans Cracking 2. Bleeding II. Patching & Util Cut Patching 3. Block Cracking I2. Polished Aggregate *4. Bumps and Sags *I3. Patholes 5. Corrugation I4. Railroad Crossing 6. Depression I5. Rutting **7. Edge Cracking I6. Shoving **8. Jt Reflection Cracking I7. Slippage Cracking **9. Lane/Shldr Drop Off I8. Swell												
19. Weathering and Raveling EXISTING DISTRESS TYPE.QUANTITY & SEVERITY												
	_	_	_				NG D	ISTRE	SSIY	PE QUAI	WILLIA F	SEVERTIT
TYPE	7	=	2	.8	/34	0	50	,		-+		
1		2.2 L 100 L					50		-	-	····	
_						172		34				
<u>_</u>	H											
QUANTITY & SEVERITY	Į											
												
12.	Н	L										
1	U	┝					 			 -		
3.	JEL 144			118		56					 -	
15g	교	۲	44		-//-8		50			-		
TOTAL SEVERITY	H	\vdash										†
- Y	=	_	-			P	CI CA	LCUL	ATION			
DISTRESS TYPE DENS				DENS	TY			DEDL	DEDUCT VALUE		-	
7												
7		-	2.33		<i>M</i>		-4 12		PCI = 100 - CDV =			
8		=	6.0		L		10		7:77			
10		4.91		<u> </u>		11		1	=			
			7.11		200		<u> </u>			-		
				1								
										RAT	ING = V	1 (-1)
q= .	3		TO	TAL DE	DUCT	VALUE		3	7			7000.
CORRECTED DEDUCT VALUE (CDV) 23												

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and IO Which Are Measured In Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

The section chosen was 1000 ft length x 24 mile: corresponding to the once around the unstrumented site.

Figure 3.3 A sample condition survey form

Figure 3.4 Inspection system for pipe edge drains (photo, courtesy of Olympus Corporation)

the tip of the borescope is controlled by a portable light supply. This system can be used to pierce through the fabric of the fin drain and record an interior view of the drain. The system is shown in Figure 3.5.

The PLS system uses a compact TV probe with an outside diameter of 1.62 inch (40mm) and length of 3 inches (76mm). It comes with 150 feet (46m) of camera cable, camera guide skids, push rod and reel and a control unit which includes a 9 inch color TV monitor/recorder. The system comes with two light heads, which are interchangeable. A view of the system is shown in Figure 3.6.

The final system considered (Cues) has a black and white camera system with built-in, field replaceable lighting system. The camera is 2.75 inches (70mm) in diameter tapering to 0.82 inches (21mm) at the ends and is mounted on a skid assembly. This system also comes with 150 feet of push cable mounted on a rotating drum and has to be connected to an external video recorder to record the image seen from the TV housed in the control unit. The system is shown in Figure 3.7.

A decision was made to purchase the PLS system and was based on the length of the cable available, the color image capability and the provision of the push rod and reel which would aid in pushing the probe manually through the pipe in the absence of a motorized unit. For inspection of fin drains, an Olympus borescope provided by Monsanto was used, as the company also wanted to evaluate the performance of their fin

Figure 3.5 Inspection system for prefabricated edge drains (photo, courtesy of Olympus Corporation)

Figure 3.6 PLS inspection system for pipe drains (photo, courtesy of PLS Corporation)

Figure 3.7 Cues inspection systme for pipe drains (photo, courtesy of Cues System)

drain product.

A trial run was made in the laboratory with a "T" type pipe joint prior to field application. This step was taken to develop techniques for camera operation, insertion and extraction. Two problems were encountered. One problem was that the guide attached to the camera head could not be easily manuevered through the 90 degree bend. The guide and attached camera was forced through the bend, but could not be extracted. The second problem was that the guide, because of its smaller diameter, "walked" up the sides of the pipe wall while being pushed. Another problem which was visualized was that for corrugated pipes, the probe would not ride smoothly over the corrugations, resulting in a distorted image. Modifications were subsequently made to the guides which are shown in Figure 3.8.

Auxiliary Equipment

Equipment used for field inspection, in addition to the camera system, were a generator, weed eater, metal detector and miscellaneous tools and equipment like shovels, crow bars, tapes, etc. To operate the camera with both types of light heads, a portable generator with a minimum rating of 750 watts is required. For this study, a Honda generator with a maximum output of 1000 watts was used. The unit is compact, quiet and easy to transport.

A weed eater is effective in clearing the area around the

Figure 3.8 Types of guide sleeves used

pipe outlet. For a majority of the drains inspected, tall grass and vegetation, as shown in Figure 3.9, were encountered that not only obstructed the flow of water but also made it difficult to inspect the outlet.

During the initial survey to locate the underdrain outlets, considerable difficulty was encountered on highway sections in service for more than ten years. In some cases, outlets were not marked and were not found at the stations listed on the construction plans. Outlets were found buried by landscaping of adjacent areas. To offset this problem, a metal detector was used with success.

Visual Observations

Drain inspection is carried out through visual and camera observations. A visual observation is made of the condition of the outlet pipe opening and the surrounding area. A number of problems were encountered and are discussed.

Outlet Pipe Slope

A general check of outlet pipe slope was made by measuring the vertical depth of the outlet pipe from the pavement surface and checking this measurement with construction plans. In case of flat terrain or longitudinal grades less than 1%, the outlets were found to have a negative or reverse slope. For this condition, ponded water was observed inside the outlets in the camera inspections.

Figure 3.9 Clearing vegetation

Outlet Condition

A frequent outlet condition found was that pipes were exposed for some length (Figure 3.10), or outlets were crushed (Figure 3.11). Crushed outlet pipes become clogged over time, rendering the drainage system ineffective. Crushing is associated with erosion of soil on flat slopes from around the outlet and operation of mowing equipment on the embankments.

Markers and Rodent Screens

In the majority of cases, outlet markers were not present or were bent or lying beside the outlet pipes. Rodent screens on outlet pipes were present in most of the sections inspected. Three outlet screen designs were found. The most common one was a mesh type screen (Figure 3.12), followed by a spear type (Figure 3.13) and a spiral type (Figure 3.14). The spear type screen did not cover the outlet pipe opening and could be easily lifted, allowing rodents and small animals to access the pipe.

Vegetation

A main difficulty in underdrain inspection is the growth of vegetation around outlet pipes. Moisture is retained around the pipe rendering placement of equipment for inspection difficult. Standing grass around outlets creates a barrier for flow from the pipes. Accumulation of sedimentation and vegetation growth progressively block the pipe from outside.

Figure 3.10 View of exposed and damaged outlet pipe

Figure 3.11 View of crushed outlet pipe

Figure 3.12 Mesh rodent screen

Figure 3.13 Spear type rodent screen

Figure 3.14 Spiral rodent screen

When vegetation was removed (Figure 3.15), any water standing in the outlet pipe started to flow.

Headwall And Erosion Control Apron

The presence of a headwall and an erosion control apron or rip-rap protection around outlet pipes was observed to have a positive effect on water outflow. In the absence of this protection, the soil around the outlet pipe erodes (Figure 3.16), exposing the pipe. The connection between the outlet pipe and the headwall may also be broken. A headwall or lined ditch at the outlet was also found to be effective in restricting the growth of vegetation around the outlet.

Camera Observations

The second stage in the inspection process involved use of the camera systems for internal inspection of edge drains, geo-composite fin drains and outlet pipes. Pipe edge drains were inspected by the PLS camera system. The same system was used to inspect outlet pipes for fin drains. Different colored plastic tape was tied to the camera cable and push rod at ten feet intervals for the purpose of determining the length of probe travel. This helped in ascertaining the distance to distresses described later and to determine where resistance to further advance was met.

Prefabricated edge drains (Monsanto) were inspected with the help of equipment and personnel provided by INDOT and the

Figure 3.15 Clearing grass at outlet pipe

Figure 3.16 Erosion around newly constructed outlet pipe

4

Monsanto Company. First a section of the shoulder next to the pavement-shoulder joint, about 15 inches square, was excavated. The excavation was made to a depth just above the top of the drain and then manual excavation was used to expose the top of the fin drain. The shaft of the Olympus borescope system was then inserted through the fabric into the core. Visual inspection was made of the conditions inside the core and a photographic record was made with a reflex camera which was fitted to the borescope with an adapter. A setup of the borescope is shown in Figure 3.17.

The condition and distresses observed for both types of drainage systems are described hereafter.

Joint Connections

Inspection of pipe interiors revealed that the joint connections are the most distressed part of the system. Specifications require the coupling to be flush with the pipe, but inspections revealed in some cases the absence of couplings and connections made by bending the pipe ends and forcing the bent end into the adjacent section. Plant roots were often observed to be penetrating through such connections into the pipe.

Flow of Water

In newer sections, those built within the last two or three years, water was found to be flowing freely both inside the underdrain and the outlet pipes. In older sections,

Figure 3.17 Setup of Olympus borescope system

standing water with fine particles in suspension was observed where there was a sag in the pipe along its length, or due to negative slopes for some outlet pipes. These deficiencies could be attributed to improper care during construction, as a result of settlement, or loads from vehicles or mowing equipment. Inspections made immediately after a rainfall event showed that water flows with high velocity in sections having a positive slope for outlet pipes or at sag points along the highway (Figure 3.18). This helped in flushing out fine particles entering the drain through slots and openings.

Pipe Corrosion

Most of the corrugated steel pipe underdrains viewed through the camera showed significant corrosion. This can be attributed to dissolved salts or other chemicals. This type of distress becomes more severe when there is standing water inside the pipe as it allows ample time for the dissolved chemicals to react with the pipe metal. In some of the inspected pipes, the corrosion severity had resulted in development of cavities and openings in the pipes. Ultimately, the pipe and without flow for a period of time, the pipe system becomes plugged. In one of the drains inspected, gravel used in the embankment was observed at the outlet (Figure 3.19). Plastic pipes inspected were free from this form of distress.

Figure 3.18 Water flowing freely from an outlet pipe

Figure 3.19 Gravel from a punctured outlet pipe

Figure 3.20 Sedimentation deposits in an exposed fin drain

Sedimentation In Fin Drains

Some of the inspected fin drains showed sedimentation at the bottom of the fabric. Typically the fin drains are 12 inches in height. However, in several cases, the shaft of the borescope could not be pushed beyond a maximum depth of 10 inches. This was attributed to sedimentation. A section of the fin drain was removed from along Interstate 65. The cross section of the drain which had been inplace for four years showed sedimentation deposits to a depth of 3 inches (Figure 3.20). This section of I-65 has a dense graded aggregate base. Fin drains installed along I-65 having bituminous stabilized subbases showed less of this problem and water flowed freely immediately after rainfall events.

Another form of sedimentation deposit observed was along the pavement side of the fabric. Migration of aggregate base fines had resulted in the formation of a filter cake along the fabric (Figure 3.21). As there is no technique yet to remove this sedimentation deposit, it would eventually affect the ability of the fin drain to remove water from the pavement system.

Fin Drain Buckling

Buckling was observed at most points along the fin drains with the aid of the borescope camera. The cuspations of the drain core would seem to arch along the horizontal plane. This was more pronounced at transverse joints along concrete

Figure 3.21 Fine deposits on outer fabric of fin drain

•

pavements. Section exposed at the joint showed the width of adjacent concrete slabs varying by as much as 1 to 2 inches. As the drain is placed immediately adjacent to the pavement/shoulder joint, projection of adjacent slabs causes the drain to bend in a horizontal plane. As a result, cuspations of the drain core bend inwards as shown in Figure 3.22, and tear or puncture the fabric. This in turn reduces the core flow capability of the drain.

A form of fin drain distress observed in the vertical plane is termed J-buckling (Figure 3.23). This is attributed to the design of the Monsanto fin drain as shown earlier in Figure 2.9. The drain core has a perforated base on one side with cuspations projecting from the base. The fabric is wrapped around the core. The cuspated side of the core is susceptible to buckling when loaded vertically. Such a vertical load is applied during trench backfilling and compaction. Also, the outlet pipe connections are not made at the same time the drain is installed. Thus the trench has to be reexcavated at the point of joint connections in order to connect the outlet pipes. Backfilling and compaction results in the drain buckling along its bottom edge, especially at the joints. This was observed with the PLS camera system while checking the fin drain outlet pipes.

Connector Angle

The type of edge drain to outlet pipe connector has a

Figure 3.22 Roll over and fabric intrusion in fin drain

Figure 3.23 Exposed fin drain indicating J-Buckling

significant impact on inspection, maintenance, and cleaning of subdrainage pipes. Connector angles have to be large enough to allow movement of the inspection camera probe. This is also true for injection cleaning equipment which may be utilized to clean the interior of the pipe. Evaluation of the existing drain connectors through the camera system has shown that the probe could be easily moved into an underdrain through the outlet connector if a Y-connector is used instead of a T-connector. For new underdrains inspected, it was observed that connectors sweeping an angle of 60 degrees on a horizontal plane proved to be the most efficient for movement of the camera through the joint.

Subdrain Inspection Process

A detailed account has been given of equipment and processes used to inspect subdrainage collector system. Also various types of distresses and deficiencies observed both visually and with the camera system have been described. This section logically summarizes the requirements of an inspection process.

The requirements of an inspection process includes:

- a. Site information (inventory and as built records).
- b. Condition evaluation of roadway.
- c. Visual and Camera Observations.
- d. Information logging.

Site Information

Accurate site information is vital to the inspection procedure. Information on the route, location, direction, project and contract numbers and year of construction can be obtained through inventory data maintained by INDOT. Construction plans help in determining the exact locations of outlets. This information is useful for periodic inspections of the same section.

Condition Evaluation

General observation of a pavements condition prior to drainage inspection gives an indication of distresses associated with trapped moisture. Moisture related distresses can be isolated from the overall condition of the pavement and their effect on the performance of subdrainage system quantified. The observations will supplement those made by visual and camera observations.

Visual and Camera Observations

Features and the geometry of outlet pipes are observed visually and noted as well as any unusual feature which would help in assessing the effectiveness or problem areas associated with a collector system. Camera observations are made using the PLS system for pipe edge drains and the Olympus system for prefabricated edge drains. With the PLS system, observing and recording take place simultaneously, whereas

with the Olympus system, the conditions inside the drain core are observed through a view port attached to the borescope and then recorded with a camera.

Information Logging

For ease and convenience of recording information, a standard inspection report form has been developed. A completed sample form is shown in Figure 3.24. This form provides for an organized recording of the data. Supplemental information in the form of photographs also aids in documenting any deficiencies not listed or recorded to obtain an overall picture of the site conditions.

A final report should include the inspection report form, photographs, narrative descriptions and other relevant information. This will provide a permanent record which can be used for reference in periodic inspections of both existing and retrofitted drains.

Chapter Summary

A method of inspecting subdrainage collector systems has been described. The method basically utilizes an imagescope to evaluate and monitor the performance of existing and retrofitted subdrainage systems. The information will lead to improved pavement maintenance, design, material specifications, construction specifications, and performance of subdrainage systems.

COLLECTOR SYSTEM INSPECTION FORM

SITE INFORMATION			
DISTRICT YINGENNES COUNT	CRAWFORD	HWY No	- DIRECTION ES
PROJECT No. =-12-1/34 7g CONTRA			
PROJECT LOCATION FILE PERM	CRE-FORD CO	. LINE TO 1.5	MILES WEST OF SEC-37
DATE OF INSPECTION 9/9/90			
DRAIN No. 2 DRAIN LOCATIO	ON _ PREIN	FROM PERR-	10 LINE SIZW
DISTANCE FROM PREVIOUS DRAIN		(IN FEET)	S-2 (IN MILES)
<u>OB</u>	SERVATIONAL	INFORMATION	
LOCATION OF COLLECTOR: (1EN	D OF PAVEMENT 2. E	ND OF SHOULDER	3. INTERMEDIATE POINT
TYPE OF COLLECTOR SYSTEM:	UNDERDRAIN OR	K-PIPE	[] FIN CR X-DRAIN
TYPE OF UNDERDRAIN PIPE: (1.x.) (CIRCLE ONE) 3.F	CORRUGATED STEEL PLASTIC CORRUGATED		
TYPE OF OUTLET PIPE: 1. (CIRCLE ONE) 3. F	CORRUGATED STEEL PLASTIC PLAIN		ATED CORRUGATED STEEL ED PLASTIC 5. OTHER
VERTICAL DEPTH OF OUTLET PIP	E FROM PAVEMENT	SURFACE	2.5 (FEET)
SIZE OF OUTLET PIPE:	6° DIA	4° DIA	OTHER
SLOPE OF OUTLET PIPE:	FCRWARD	REVERSE (FLAT
CONDITION/OF OUTLET OPENING	G: (FULL SIZE)	PARTIAL	DAMAGED
SCREEN PRESENT:	YES	NO .	TYPE MESH.
OUTLET MARKER PRESENT:	YES	NO	CONDITION GENT
HEAD WALL PRESENT:	YES	(0)	CONDITION
EROSION CONTROL APRON PRESENT:	YES	NO	TYPE LINED DITCH
CONDITION OF VEGETATION ON EMBANKMENT:	MOWED	NOT MOWED	
MOVEMENT OF PROBE:	FREE	PARTIAL	BLOCKED
WATER PRESENT INSIDE DRAINS	YES	NO	
IF YES:	FREE FLOWING	STANDING	
DISTANCE TRAVERSED BY PROBE			
CAMERA OBSERVATIONS: CARROSION OBSERVED ON SIDE WALLS: STENDING			
WATER AT SAS OF PIPE FROM 50 FT. ONWARDS.			
NO BLOCKAGE OBSERVED			
ADDITIONAL OBSERVATIONS: SECTION AT START OF DOWNHILL SLOPE			

Figure 3.24 Sample of completed inspection report form

The camera system can serve as a valuable tool for inspection of newly built drains prior to the project being handed over by the contractor to the state agency. Damage or distress due to construction practices can be located. Modifications of the original camera equipment that have been described will result in more efficient and trouble free operation. Major findings of the study and recommendations for improvement are listed in Chapter 7.

CHAPTER 4 - FIELD TESTING AND INSTRUMENTATION

Background

A number of simulation studies have been made to assess pavement performance due to variation of moisture in subbases and subgrades (Corey, et al., 1965; Wallace, 1977; Dempsey, 1979; Markow, 1982). Models based on these studies tend to incorporate assumed values of parameters for evaluation. Such complex evaluation procedures for moisture movement have underscored the need of accurately determining moisture conditions in pavements. Data from on-site instrumentation can be used to validate analytical models as well as to calibrate model response variables.

As part of this research study, a computer program 'PURDRAIN' was developed (Espinoza et al., 1993) to provide a rational tool for the analysis of pavement drainage systems for varying geometric, material and boundary characteristics. This chapter describes the development and application of various instruments to field sections. The purpose of instrumentation was to monitor moisture movement in pavement layers and to provide data for validation and calibration of the program 'PURDRAIN'.

Overview of PURDRAIN

PURDRAIN is a computer program which can analyze moisture flow in an unsaturated porous media. The program is written in PASCAL (Borland Int., 1988) and provides a user friendly environment for defining input parameters and generation of moisture migration predictions.

The numerical model implemented in the program is based on the theory of transient moisture flow in unsaturated porous media. The method of analysis incorporates two models of soilwater retention and conductivity. These are the Brooks & Corey Model (Brooks & Corey, 1964) and the Van Genuchten Model (Van Genuchten, 1980).

Brooks and Corey (1964) described the relationship between effective degree of saturation 'S,' and matric suction ' ψ ' by:

$$S_e = \left(\frac{\Psi}{PB}\right)^{-\frac{1}{\nu}} \quad \text{for } \Psi \ge PB$$
 4.1

$$S_e$$
=1 for $\psi < PB$ 4.2

where: PB = bubbling pressure of the soil

 ν = pore size distribution index

The effective degree of saturation 'S,' is related to the volumetric moisture content ' θ ' by

$$S_{\theta} = \frac{(\theta - \theta_0)}{(\theta_r - \theta_0)}$$
 4.3

where: $\theta_{\rm r}$ = volumetric moisture content at resaturation

 θ_{o} = irreducible volumetric moisture content

The values of θ , $\theta_{\rm r}$, and $\theta_{\rm 0}$ can be obtained by determining capillary-moisture relationships of soils. Laboratory tests to obtain these parameters are described in detail in Chapter 5.

Van Genuchten proposed the following empirical relation between matric suction $'\psi'$ and effective degree of saturation $'S_c'$:

$$S_e = \frac{1}{(1 + (\alpha \psi)^{\beta})^{\gamma}} \quad \text{for } \psi \ge 0$$

$$S_e=1$$
 for $\psi<0$

where α has the units of inverse of piezometric head whereas β and γ are dimensionless parameters. Evaluation of the dimensionless parameters is described in Chapter 5.

PURDRAIN is able to handle one and two-dimensional analyses of moisture infiltration and subsequent redistribution in a multi-layer system. The program evaluates relative degrees of saturation, piezometric heads and moisture contents. Pavement systems with various geometry, material and hydraulic properties can be modeled. Outflow from a pavement subdrainage system can also be predicted for precipitation events on a time basis.

Performance criteria of existing pavement subdrainage systems can be evaluated and prediction made of the behavior of new systems before implementation. A detailed description of the program and the mathematical formulation of the

numerical model is given in a separate report (Espinoza, et al., 1993).

Test Site Selection

Drainage studies were conducted to determine the influence of precipitation, pavement type and collector system configuration on subsurface drainage. This was achieved by instrumenting and measuring subbase and subgrade moisture profiles and system flow volumes. Pavement test sections that were instrumented were selected based on the following criteria.

- Locating sites in the northern and southern climatic regions of the state (Yoder and Colucci-Rios, 1980).
- 2. Considering of pavement sections with Average Annual Daily Traffic (AADT) greater than 3000 and daily truck traffic greater than 1000. These criteria were selected because of the effect of high traffic volumes and heavy wheel loads on the development of moisture accelerated distresses.
- 3. Including asphalt and concrete pavements.
- 4. Including sections incorporating pipe edge drains and prefabricated edge drains.

The Indiana Road Inventory database was studied and a preliminary random selection made for sections meeting the above criteria. Information on base courses, drainage systems and highway profiles for the selected sections were obtained from Log Reports and Construction Plans available through

INDOT Program Development Division. Ten target sections were finally selected for which complete pavement and material information was available (Table 4.1). The candidate sections included two sections without edge drains. Figure 4.1 shows the selected section locations. Site specific information on the target sections is given in Tables 4.2 to 4.11. The target sections incorporate flexible, rigid and overlaid pavements. Typical cross sections of each pavement type are shown in Figures 4.2 to 4.4.

Subdrainage Instrumentation

Instrumentation was selected to achieve the modeling goal and to measure associated responses of hydraulic parameters to infiltration of moisture into the pavement system. As described earlier in Chapter 2, a literature review was conducted to identify instruments which could be used in monitoring pavement response to moisture infiltration. The instrumentation was selected based on precision, compatibility with the monitoring system, cost and field worthiness. It is always advantageous to select instruments which have been proven in the field, and to this end, recommendations on some of the instruments were taken from an experimental project sponsored by the FHWA to study drainage characteristics of concrete pavements (Baumgardner and Mathis, 1989). The present study is broader than the FHWA study and considers asphalt, concrete and composite pavements as well as pipe and

Figure 4.1 Geographic Location of Instrumented Sections

Figure 4.2 Typical Cross Section of Flexible Pavement

Figure 4.3 Typical Cross Section of Rigid Pavement

Typical Cross Section of Overlaid Pavement Figure 4.4

Table 4.1 Instrumented Target Sections

SECTION NUMBER	ROUTE NUMBER	COUNTY	DISTRICT
1	US-31	HAMILTON	GREENFIELD
2	SR-37	HAMILTON	GREENFIELD
3	SR-37	LAWRENCE	VINCENNES
4	US-41	SULLIVAN	VINCENNES
5	US-30	LAPORTE	LAPORTE
6	US-31	ST.JOSEPH	LAPORTE
7	SR-9	NOBLE	FORT WAYNE
8	SR-43	TIPPECANOE	CRAWFORDSVILLE
9	SR-63	VERMILLION	CRAWFORDSVILLE
10	ŬS − 36	HENDRICKS	CRAWFORDSVILLE

Table 4.2 Test Section 1 Design Features

Instrumented Section Information		
County /District: Hamilton/Greenfield Route No: US-31, NB		
Contract No: (Old) R-9357 Project No: ST-F-222(9)		
(New) Max. Grade:		
Location: 0.4 miles north of I-465 Ict in Carmel near Indianapolis		
Station to Station: 283+60.00 546+52.57 Length: 4.983 Miles		
Year of Construction: 1975 Year of last major activity		
AADT / Year <u>22030/1985</u> %Truck <u>15</u>		
Design Information		
Pavement X-section: 1. Asphalt 2 JPCP/JRCP 3. Asp. Overlay on JPCP/JRCP (Circle one)		
Layer: Material Type Thickness		
Overlay		
Surface Concrete JRCP 11"		
Base		
Subbase Bit. Stabilized #5D 4"		
Shoulder Bit.Base/Agg. #5/Type O - 6"/9"		
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: I(#12)		
Longitudinal Slope 1.2 % Cross Slope 1.3 %		
Subgrade Information: Soil Type Sandy loam Depth 24-48 inches Unified Classification SM-SC		
AASHTO Classification A-4(0)		
Collector System Information:		
Type: (Circle one) 1. No drains (2.) Underdrains 3. X-Drains (Geo-comp)		
Distance of instrumented outlet from: Upstream outlet 1000 feet		
Downstream outlet 212 feet		
Special features:Upstream and downstream sections slope towards inst. outlet		

Table 4.3 Test Section 2 Design Features

Instrumented Section Information			
County /District: Hamilton/Greenfield	Route No:S	R-37, SB	
Contract No: (Old) R-3928		-824(3)	
(New)		.80%	
Location: Section North of SR-32			
Station to Station: 910+00 - 1049+85	Length:2	545 Miles	
Year of Construction: 1956	Year of last major	activity <u>1981</u>	
AADT /Year <u>9180/1985</u>	%Truck		
Design	Information		
Pavement X-section: Asphalt 2. I (Circle one)	JPCP/JRCP 3. Asp. (Overlay on JPCP/JRCI	
Layer: Material	Туре	Thickness	
Overlay			
Surface Asphalt	HAE	4"	
Base Macadam	Waterbound	8 3/4"	
Subbase Aggregate	#2stone	8"	
Shoulder Bit.Base/Crushed Agg	#5/Type P	3"/6"	
Joints Sealed: Yes No Shoulder S	ealed: Yes No	Type: <u><i>II</i></u>	
Longitudinal Slope% Cross Slope%			
Subgrade Information: Soil Type Sandy loam Unified Classification SM-SC	Depth24-36 inc	ches	
AASHTO Classification A-2-4			
Collector System Information:			
	nderdrains 3. X-Drain	ns (Geo-comp)	
		feet	
	ownstream outlet100	00 feet	
	ater flow at inst. section		

Table 4.4 Test Section 3 Design Features

Instrumented Section Information			
County /District: Lawrence/Vincennes	Route No:S	R-37, SB	
Contract No: (Old)R-8886	Project No:S		
(New)	Max. Grade:3.	.00%	
Location:b/w Bedford and Oolitic	(inst. section near SR-	58 Jct)	
Station to Station: <u>10+21 - 486+64</u>	Length:2.	993 Miles	
Year of Construction: 1974	Year of last major		
AADT /Year <u>16120/1985</u>	%Truck15		
	nformation		
Pavement X-section: 1. Asphalt 2 JI (Circle one)	PCP/JRCP 3. Asp. (Overlay on JPCP/JR(
Layer: Material	Туре	Thickness	
Overlay			
Surface Concrete	JRCP	10 1/2"	
Base			
Subbase Bit. Stabilized	#5D	4 1/2"	
Shoulder Bit.Base/Agg.	#5/Type O	3"/5"	
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: II(#12)			
Longitudinal Slope 2.9 %	Cross Slope2	.5 %	
Subgrade Information: Soil Type Silty Clay Depth 16-40 inches Unified Classification CL, CH			
AASHTO Classification A-6(15), A-7-6(34)			
Collector System Information:			
Type: (Circle one) 1.) No drains 2. Underdrains 3. X-Drains (Geo-comp)			
Distance of instrumented outlet from: Upstream outlet			
D	ownstream outlet		
Special features: Cut section with clay be	ackfill over limestone b	edrock	

Test Section 4 Design Features

Instrumented Section Information			
County /District: Sullivan/Vincennes Route No:	US-41, SB		
Contract No: (Old) R-8955 Project No:	F-35(11)		
(New) Max. Grade	:1.312%		
Location: South of Sullivan/Vigo County Line in Far	rmersburg		
Station to Station: 212+00 - 222+10 Length:	0.483 Miles		
Year of Construction: 1975 Year of last m	najor activity		
AADT / Year	20		
Design Information			
Pavement X-section: 1. Asphalt 2 JPCP/JRCP 3. A (Circle one)	Asp. Overlay on JPCP/JRCP		
Layer: Material Type	Thickness		
Overlay			
Surface Concrete Jointed Reinf	10 1/2"		
Base			
Subbase Bit. Stabilized 5D	4"		
Shoulder Bit.Base/Comp. Agg #5/Type P	<i>3"/9"</i>		
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: 1(#12) Longitudinal Slope 0.65 % Cross Slope 1.3 %			
Subgrade Information: Soil Type Silty Clay Depth 29-40 inches			
Unified Classification			
AASHTO Classification A-6(8)			
Collector System Information:			
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)			
Distance of instrumented outlet from: Upstream outlet	380 feet		
Downstream outlet			
Special features: Upstream and downstram sections slope toward	trds inst. outlet		

Table 4.6 Test Section 5 Design Features

Instrumented Section Information			
County /District: Laporte/Laporte Route No: US-30, WB			
Contract No: (Old)			
(New) <u>RS - 17329</u> Max. Grade: <u>1.00%</u>			
Location: Section b/w Wanatah and Hanna			
Station to Station:			
Year of Construction: 1959 Year of last major activity 1989			
AADT / Year			
Design Information			
Pavement X-section: 1. Asphalt 2. JPCP/JRCP (3) Asp. Overlay on JPCP/JRCP (Circle one)			
Layer: Material Type Thickness			
Overlay Asphalt HAE 6"			
Surface Concrete Jointed Reinf 9"			
Base			
Subbase Fine Sand 5"			
Shoulder Bit.Base/Comp. Agg #5/Type O 2"16"			
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: I(#12)			
Longitudinal Slope 0.2 % Cross Slope 2.4 %			
Subgrade Information: Soil Type Fine Sard Depth 24-35 inches			
Unified Classification SP-SM			
AASHTO Classification A-3(0)			
Collector System Information:			
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)			
Distance of instrumented outlet from: Upstream outlet 500 feet			
Downstream outlet Special features: Fill section			

Table 4.7 Test Section 6 Design Features

Instrumented Sec	tion Information
County /District: St.Joseph/Laporte	Route No: US-31, NB
Contract No: (Old) R-5464	Project No:F-720(5)
(New) <u>RS - 17563</u>	Max. Grade: 2.52%
Location: Section b/w Mayflower Rd. and	R-2 Intterchange on South Bend Bypa
Station to Station:	Length: 2.34 Miles
Year of Construction: 1963	Year of last major activity1989
AADT /Year	%Truck20
nocion 1	nformation
S	nformation
Pavement X-section: 1. Asphalt 2. J. (Circle one)	PCP/JRCP (3) Asp. Overlay on JPCF
Layer: Material	Type Thickness
Overlay Asphalt	HAE 3 1/2""
Surface Concrete	Jointed Reinf 9"
Base	
Subbase Crushed Agg.	Type II 5"
Shoulder Bit.Base/Comp. Agg	#5/Type P 3"/5"
Joints Sealed: Yes No Shoulder Se	
Longitudinal Slope 0.6 %	Cross Slope%
Subgrade Information: Soil Type Poorly graded Sand Unified Classification SP	Depth 30-54 inches
AASHTO Classification A-3(0)	-
Collector System Information:	
Type: (Circle one) 1. No drains 2. Ur	
Distance of instrumented outlet from: U	ostream outlet 937 feet
	wnstream outlet 937 feet
Special features: Upstream outlet dist	ance approximated (location buried)

Table 4.8 Test Section 7 Design Features

Instrumented Section Information		
County /District: Noble/Ft.Wayne Route No: SR-9, NB		
Contract No: (Old) <u>R-7475</u> Project No: <u>S-412(9)</u>		
(New) Max. Grade:		
Location: Section b/w Merriam and Albion (near Chain-o-Lakes State Park)		
Station to Station: 527+83.70 - 953+55 Length: 7.644 Miles		
Year of Construction: 1964 Year of last major activity		
AADT / Year %Truck		
Design Information		
Pavement X-section: Asphalt 2. JPCP/JRCP 3. Asp. Overlay on JPCP/JRCP (Circle one)		
Layer: Material Type Thickness		
Overlay		
Surface Asphalt HAE 3 1/2""		
Base Asphalt HAE#5 6"		
Subbase Crushed Gravel Type P 6"		
Shoulder Bit Base #53B 9" Avg.		
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: II(#12)		
Longitudinal Slope 0.12 % Cross Slope 3.0 %		
Subgrade Information: Soil Type Sand and gravelly sand Depth 24-40 inches Unified Classification SW AASHTO Classification A-1-a		
Collector System Information:		
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)		
Distance of instrumented outlet from: Upstream outlet 600 feet		
Downstream outlet 200 feet		
Special features: Groundwater present at instrumented site		

Table 4.9 Test Section 8 Design Features

Instrumented Section	Instrumented Section Information		
County /District: Tippecanoe/Crawfordsville	Route No:SR-43, NB		
Contract No: (Old) Force Account P	Project No: <u>M-6262</u>		
(New) <u>RS-13408</u>	Max. Grade :0.80%		
Location: North of West Lafayette; either	r side of US-52 overpass		
Station to Station: <u>0+00 - 228+50</u> Le	ength: 2.62 Miles		
Year of Construction: 1926 Ye	Year of last major activity		
AADT / Year <u>4550/1985</u> %7	Truck		
Design Inform	nation		
Pavement X-section: Asphalt 2. JPCP/JR(Circle one)			
Layer: Material	Type Thickness		
Overlay			
Surface Asphalt	HAE 5 1/2"		
Base Ballast	Road Mix 6"		
Subbase Gravelly Sand	Type P 5"		
Shoulder Crushed Agg.	9"		
Joints Sealed: Yes No Shoulder Sealed:	Yes No Type:		
Longitudinal Slope 0.8 % Cross Slope 1.2 %			
Subgrade Information:			
Soil Type Silty loam Depth 24-48 inches			
Unified ClassificationCL			
AASHTO Classification A-4(4)			
Collector System Information:			
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)			
Distance of instrumented outlet from: Upstream outlet			
Downstream outlet			
Special features: Two lane facility sloping	towards Wabash River		

Table 4.10 Test Section 9 Design Features

Instrumented Section Information					
County /District: Vermillion/Crawfordsville Route No: SR-63, SB					
Contract No: (Old) <i>R-10093</i> Project No: <i>ST-F-305</i> (22)					
(New) Max. Grade:					
Location: Section b/w US-36 and SR-71 near Newport					
Station to Station: <u>724+68.00 - 925+24.68</u> Length: <u>2.279 Miles</u>					
Year of Construction: 1977 Year of last major activity					
AADT / Year					
Design Information					
Pavement X-section: Asphalt 2. JPCP/JRCP 3. Asp. Overlay on JPCP/JRCP (Circle one)					
Layer: Material Type Thickness					
Overlay					
Surface Asphalt HAE 3"					
Base Asphalt HAE#5 91/2"					
Subbase Crushed Agg. #53 4 1/2"					
Shoulder Bit.Base #53B 9" Avg.					
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: II					
Longitudinal Slope 0.54 % Cross Slope 0.8 %					
Subgrade Information: Soil Type <u>Gravelly sand</u> Depth <u>26-50 inches</u> Unified Classification SW					
AASHTO Classification A-1-a					
Collector System Information:					
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)					
Distance of instrumented outlet from: Upstream outlet 248 feet					
Downstream outlet352 feet					
Special features: Special subgrade treatment; inst. section on hilltop					

Table 4.11 Test Section 10 Design Features

Instrumented Section Information						
County /District: Hendricks/Crawfordsville Route No: US-36, WB						
Contract No: (Old) Project No: F-076-2(4)						
(New) Max. Grade: 2.95%						
Location: From East of Danville to West of SR-267 in Avon						
Station to Station: <u>46+70 - 356+83.19</u> Length:						
Year of Construction: Year of last major activity						
AADT/Year						
Design Information Pavement X-section: 1. Asphalt (2) JPCP/JRCP 3. Asp. Overlay on JPCP/JRCP						
(Circle one)						
Layer: Material Type Thickness						
Overlay In Constant In Constan						
Surface Concrete JRCP 8 1/2"						
Base Subbase Bit. Stabilized #53B 6"						
Subbase						
Joints Sealed: Yes No Shoulder Sealed: Yes No Type: II(#12) Longitudinal Slope						
Subgrade Information: Soil Type Depth 30-54 inches Unified Classification CL						
AASHTO Classification A-4(3)						
Collector System Information:						
Type: (Circle one) 1. No drains 2. Underdrains 3. X-Drains (Geo-comp)						
Distance of instrumented outlet from: Upstream outlet 800 feet						
Downstream outlet						
Special features: Special subgrade treatment at section						

prefabricated edge drains. Also, the main emphasis was tp acquire data for calibration of the computer program PURDRAIN.

The instrumentation package utilized consisted of depth level pressure transducers to measure pressures in terms of hydraulic heads, gypsum blocks to measure availability of moisture in terms of moisture tension in the subbase and subgrade material, a thermistor probe to measure temperature variation within the subbase, a rain gage to measure precipitation, and a tipping bucket outflow measuring device. A battery powered data acquisition system was used to record the data.

Instrumentation was carried out over a period of two years between 1990 and 1991. Initially, a single set of instrumentation package was purchased and used for instrumentation of a pilot test site on US-31, Hamilton County. Subsequently two additional instrumentation packages were purchased. As a result, three sites could be instrumented and data collected at the same time.

Description of Instruments

Data Acquisition System

A Campbell Scientific CR-10 programmable measurement and control module with its supporting software was used to acquire and store data. The control module is compact, rugged and waterproof, and runs on a 12V battery power supply. It can be programmed for different instruments, either through its

keyboard display or through any IBM compatible computer using the software provided with the system. The program consists of a series of instructions designed to perform measurement, data processing, data storage, and logical control functions.

Program development is accomplished either with a prompt sheet and keyboard or through a prompt-driven, computer based datalogger program editor. A program written by USGS (Scott, 1989) was used with modifications for the instruments in this study. The program had to be modified for each site as a result of changes in the calibration constants of various instruments. A sample program is shown in Appendix A.

There are several data retrieval options available with the CR-10 datalogger. In this study, a storage module was used to store and retrieve the data from the site. The storage module is connected to the datalogger at the test site, and can be removed and brought to the laboratory for downloading the data into a personal computer. Figure 4.5 shows the CR-10 control module with its keyboard display and power pack.

Pressure Transducer

A depth/level pressure transducer was used to determine the hydrostatic pressure in pavements. The pressure transducer used is the Druck PDCR831 depth/level type transducer and is shown in Figure 4.6. The operating temperature range of the transducer is -5° to +175° F and the operating pressure range is ±2.5 psi. A hydraulic damper is incorporated in the

Figure 4.5 View of CR-10 datalogger and component systems

Figure 4.6 Druck PDCR-831 depth/level transducer

transducer to protect the device from high pressure pulses.

Each pressure transducer was calibrated by connecting it to the datalogger. The pressure range, supply voltage and span in mV was noted. Pressure is converted into piezometric head in terms of feet of water and a multiplier value is found by the use of the expression:

Multiplier = pressure(psig) x conversion factor span/supply voltage

Once the multiplier is determined, it is read into the data acquisition program in the datalogger. Initially the offset representing deviation from zero gage pressure for each transducer value is set to zero in the program. The diaphragm of the transducer is wetted by inserting it into a graduated cylinder filled with water. The transducer is removed from the cylinder after few seconds and the offset value is recorded. The new offset value is then entered into the program instead of the previous zero value.

The transducer is again inserted into the graduated cylinder to a certain depth, and the height of water from the tip of the diaphragm to the surface is recorded. The height of water should correspond to the reading displayed on the datalogger keyboard within a small deviation (1/100 th of an inch). The transducer is removed from the cylinder, held in the atmosphere and reading on the datalogger display checked. It should read zero. If not, the transducer vent pipe is checked for blockage, and the procedure repeated.

Gypsum Blocks

Soil moisture blocks were used in this study for estimating soil moisture potential. One inch diameter cylindrical blocks made of gypsum cast around two concentric mesh electrodes were used. This confines current flow to the interior of the block. With time, the pore water pressure in the gypsum reaches equilibrium with the soil surrounding it. The determination of moisture is made by relating the change in moisture tension to change in resistance of the block. The gypsum blocks are manufactured by Delmhorst and were modified for the pilot test section by adding four tantalum 100 mfd capacitors and a 1 Kohm metal film resistor to block galvanic action due to the differences in potential between the datalogger earth ground and electrodes in the block. Without it, there would have been rapid block deterioration. The block and its circuit diagram is shown in Figure 4.7. These modifications were also necessary because of configuration requirements with the datalogger system. Blocks for the remaining sections were factory modified to be compatible with the datalogger program.

Soil moisture potential is predicted by utilizing a 5th order polynomial processing instruction supplied by the datalogger manufacturer. The datalogger outputs sensor resistance which is converted to moisture potential using the polynomial coefficients listed in Table 4.12.

Conditioning of the gypsum block unit was done by first

Figure 4.7 Modified gypsum block and circuit diagram

Table 4.12 Polynomial Coefficients for Converting Sensor Resistance to Bars and Resulting Polynomial Error (Campbell Scientific, Inc.)

BARS = $C_0 + C_1(R_s) + C_2(R_s)^2 + C_3(R_s)^3 + C_4(R_s)^4 + C_5(R_s)^5$							
(BARS)	MULT. (R ₁)	⊆0	<u>Ç</u> 1	<u> 5</u> 2	<u>C</u> 3	<u>⊊</u> 4	<u>C</u> 5
0.1-10 0.1-2	0.1 1.0	.15836 .06516	6.1445 .95117	-8.4189 25159	9.2493 037 3 6	-3.1685 .03273	.3 33 92 00394

Polynomial Error - 2 Bar Range

BARS	$\underline{V}_{S}/\underline{V}_{X}$	<u>R</u> s	BARS COMPUTED	ERROR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.0566 0.115 0.2063 0.2701 0.3506 0.4286 0.4624 0.5238 0.5833	0.06 0.13 0.26 0.37 0.54 0.75 0.86 1.1	0.1213 0.1845 0.2949 0.3813 0.5021 0.6307 0.6894 0.7989 0.9057	0.0213 -0.0155 -0.0051 -0.0187 0.0021 0.0307 -0.0106 -0.0011 0.0057
1.0	0.6296	1.7	0.9889 1.506	0.006
1.5	0.7727	3.4		
1.8	0.8	4.0	1.7977	-0.0023
2.0	0.8333	5.0	2.005	0.005

Polynomial Error - 10 Bar Range

BARS	$V_{s}V_{x}$	₿s	BARS COMPUTED	ERROR
0.1	0.0566	0.006	0.1949	0.0949
0.2	0.115	0.013	0.2368	0.0368
0.3	0.2063	0.026	0.3126	0.0126
0.4	0.2701	0.037	0.3746	-0.0254
0.5	0.3506	0.054	0.4670	-0.0330
0.6	0.4286	0.075	0.5756	-0.0244
0.7	0.4624	0.086	0.6302	-0.0698
0.8	0.5238	0 11	0.7442	-0.0558
0.9	0.5833	C.14	0.8778	-0.0222
1.0	0.6296	0.17	1.0025	0.0025
1.5	0.7727	0.34	1.5970	0.0970
1.8	0.8000	0.40	1.7834	-0.0166
2	0.8333	0.50	2.0945	0.0945
3	0.8780	0.72	2.8834	-0.1166
6	0.9259	1.25	6.0329	0.0329
10	0.9444	1.70	9.9928	-0.0072

NOTE: ERROR (BARS) = ACTUAL - COMPUTED

letting the unit go through two cycles of wetting and drying. Each cycle consisted of soaking the gypsum block in water for one hour and then air drying it. This ensures block uniformity.

Temperature Probe

Variation in the subbase temperature was measured with a thermistor. Either a thermistor or a thermocouple would have given the same results. However, the thermocouple requires a reference thermocouple and would use two analog input terminal strips of the datalogger wiring panel. A thermistor probe makes a single ended measurement, and only one terminal strip is required.

Rain Gage

Precipitation was measured with a dual-chamber tipping bucket rain gage manufactured by Texas Instruments, shown in Figure 4.8. Rainfall at rates up to 2 inches per hour can be measured with an accuracy of ±1%. The bucket empties with each 0.01 inch of rainfall, and a signal is transmitted to the datalogger which is programmed to record the number of tips and convert it to inches of rainfall. A time base allows the duration of precipitation to be determined. The raingage was factory calibrated.

Figure 4.8 View of rain gage

Outflow Measuring Device

Edge drain outflow was also measured with a dual chamber tipping bucket device, shown in Figure 4.9. The tipping bucket works the same way as the raingage. Specifications for the outflow measuring device were obtained from the Wisconsin DOT. However, some modifications were incorporated prior to its fabrication by the Purdue University Central Machine Shop. Rubber pads were added at the base of the bucket to absorb impact when chambers tilt. Also the top portion of the bucket was modified to stop water spilling over the sides.

A laboratory calibration check was made of each outflow device prior to field use. Water was introduced into the chamber and the volume of water for each tip was recorded. Three readings were made for each chamber and the average value for both chambers was programmed into the datalogger. A list of the instruments and support systems and their respective costs are attached as Appendix B.

Instrumentation Setup

Pavement instrumentation was carried out with the assistance of the Indiana Department of Transportation personnel. A schematic of the instrumentation layout is shown in Figure 4.10. For the pilot test site on US-31, Hamilton County, four inch diameter cores for pressure transducers and two inch diameter cores for moisture blocks were removed from the pavement to the subbase and shoulder base levels. These

Figure 4.9 View of outflow measuring device

Figure 4.10 Schematic of instrumentation layout at test sites

holes were connected through a sawcut in the pavement and shoulder, so that lead wires from various instruments could be routed to the edge of the pavement and eventually to the datalogger (Figure 4.11).

Two changes were made in coring the remaining test sections. Four-inch diameter cores were also drilled for the moisture blocks to counter difficulty of removing the two-inch cores and placing the gypsum blocks. To obtain a better profile of moisture variation beneath the pavement, it was decided to place a transducer and moisture block at the subgrade level. Limitations of the datalogger channels precluded the use of additional sensors. As data from the pilot test site did not indicate a pronounced moisture change in the shoulder section, sensors from the shoulders were transferred to the pavement subgrade for the remaining nine test sections.

Pressure transducers were inserted into the 4 inch diameter holes as shown in Figure 4.12. Each transducer was wrapped with a permeable geofabric to shield the sensor diaphragm from soil contamination. The transducers were placed vertically in the holes which were backfilled with pea gravel. Care was taken to ensure that all the pressure transducers were at the same depth in the subbase. A temperature probe was placed along with the second pressure transducer.

The gypsum blocks were conditioned prior to placement by packing them in excavated subbase material. They were then

Figure 4.11 Sawcut in pavement for routing wires to datalogger

Figure 4.12 Depth/level transducer installation in core hole

allowed to saturate by placing them along with the packing material in a pan of water for 10 minutes. While still encased in the subbase material, the blocks were inserted into the cored holes which were then backfilled with excavated material. To cover the exposed sensor cables in the sawcut, first a cylindrical joint backer rod was placed in the cut which was then backfilled with asphalt mix. At some sites, use was made of asphalt felt for covering the sensor cables. For transducers and blocks placed at the subgrade level, the cores were sealed at the subgrade/subbase interface with a slurry of bentonite clay. The purpose of this step was to prevent water from infiltrating from the subbase, which otherwise would have resulted in a biased reading for the transducers and moisture blocks.

A custom built enclosure to house the datalogger, precipitation gage and outflow tipping bucket was fixed to a concrete pad on the embankment slope of each instrumented section (Figure 4.13). Lead wires from the instruments were run through the saw cuts and a trench in the embankment to the enclosure housing the datalogger. The datalogger control module, storage module and battery power pack were housed in a plastic box inside the enclosure.

The raingages were placed in the upper portion of the enclosure with their top open to the atmosphere. The outflow tipping buckets were placed in the lower portion of the enclosure and connected to the underdrain outlet pipe by means

Figure 4.13 Enclosure housing the monitoring instruments

of a connecting pipe and boot (Figure 4.14). Lead wires from the instruments were connected to the CR-10 wiring panel terminals. The connection diagram is shown in Table 4.13.

Subgrade soil samples were collected from test sites through auger borings, shelby tubes and split spoon samplers using a hydraulic coring rig (Figure 4.15). These samples were brought to Purdue University for determination of various soil properties as described in Chapter 5.

The instruments were left at each site for a period of two to three months to record at least one major precipitation event. Subsequently, the instruments were removed for installation at the next site. Prior to reinstallation, depth level transducers, raingage and outflow tipping bucket were checked and re-calibrated. A new set of moisture blocks were used for each site.

Programming and Data Retrieval

The data collection program was loaded through the datalogger keyboard. A variable sampling rate was used. For a rainfall event, data was recorded at five minute intervals, with cumulative values being recorded on fifteen minutes, hourly and daily basis. Data from other instruments were based on average values for the above time periods. In the absence of rainfall and flow, data is recorded on a daily basis to save battery power.

Data was retrieved on a monthly basis by disconnecting

Figure 4.14 Connections for outlet pipe and lead wires

Figure 4.15 Auger boring for soil sample collection

Table 4.13 Wiring Connection for CR-10 Datalogger

1 H	Druck # 1 Pos signal (yellow)	Druck # 4 Pos signal (yellow)	4 ::
lL	Druck # 1 Neg signal (blue)	Druck # 4 Neg signal (blue)	41
2 H	Druck # 2 Pos signal (vellow)	Delmhorst # 1 Signal (red)	5 %
2 L	Druck # 2 Neg signal (blue)	Delmhorst # 2 Signal (red)	5 L
3 H	Druck # 3 Pos signal (vellow)	Delmhorst # 3 Signal (red)	6 2
3L	Druck # 3 Neg signal (blue)	Temperature Signal (red)	δĻ
AG			AG
AG	Delmhorst Ground (bare wire)	Temperature Excitation (black)	E 3
E2	Delmhorst Excitation (3 black)	Temperature Ground	AG
El	Druck Excitation (4 red)		AG
AG	Druck Ground (4 white)		AG
AG			AG
P1	Rain tipping bucket (red) Flow tipping bucket (red)	Druck Shield (2 bare wires) Druck Shield (2 bare wires)	
		1	G
P2	Flow tipping bucket (red)	Druck Shield (2 bare vires)	G
P2 C8	Flow tipping bucket (red)	Druck Shield (2 bare vires)	G G
P2 C8 C7	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black)	G
P2 C8 C7 C6	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black)	G G
P2 C8 C7 C6	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black)	G G G
P2 C8 C7 C6 C5 C4	Flow tipping bucket (red)	Druck Shield (2 bare wires) Tipping bucket Ground (2 black)	0 0 0 0
P2 C8 C7 C6 C5 C4 C3	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black)	0 0 0 0 0
P2 C8 C7 C6 C5 C4 C3 C2	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black) Power Ground (black)	G G G G G G 12 V
P2 C8 C7 C6 C5 C4 C3 C2 C1	Flow tipping bucket (red)	Druck Shield (2 bare vires) Tipping bucket Ground (2 black) Power Ground (black) Power Positive (red)	G G G G G G 12 V

÷

the storage module and transporting it to Purdue University for downloading to a computer. A fresh storage device was left in the field so that data collection was uninterrupted. The datalogger has adequate internal memory storage capacity, such that data is not lost while the storage module is being replaced. For sections with continuous outflow from the drainage system, data retrieval was done on a bi-weekly basis.

Data acquired from instrumented sites was reduced through a software program supplied by Campbell Scientific and analyzed immediately to observe any suspect or missing data. This helped in identifying problems of instrument malfunction described in the following section.

Instrumentation Problems

A number of problems were encountered at various sites because of instrument malfunction, field conditions and human errors.

At some sites, flow tipping buckets stopped working a few days after installation. Inspections revealed microswitch problems, jamming of the lever on which bucket chambers were mounted, stones from punctured pipes blocking water from flowing into the chambers and rodents chewing away cables. At the SR-37, Hamilton County site, installation conditions resulted in reverse flow of water into the bucket immediately after a rainfall event. These problems resulted in missing data for outflow on some sections, which could only be

detected during data reduction. Actions were subsequently taken to rectify these problems with mixed results.

Problems with depth level transducers were primarily due to punctured lead wires. The wires were covered with roofing felt and asphalt mix in sawcuts, but stresses due to vehicle loads resulted in small cuts in the wires. The cuts could not be detected during recalibration, as only the depth end cone of transducers was immersed in water and values of constants checked. After reinstallation at the next site, water penetrated through the cuts and damaged the sensing element in the transducers which resulted in erratic data. At some sites, cuts in the lead wires were the result of improper removal methods for the sensors. The damaged transducers in these cases were shipped to the manufacturer for repairs, but without any success. Due to time and cost constraints, additional transducers were not purchased and at some sites data was obtained from a reduced number of sensors.

The use of fresh moisture blocks for each site avoided the problems of lead wire cuts. Instead, difficulty in achieving full contact between the block and the surrounding soil, especially for stabilized subbases resulted in erroneous data. In addition, saline and acidic soils degraded the blocks within one month at some sites. At some site only the block electrodes remained.

Field Surveys

Field surveys of instrumented sites were conducted to ascertain the profile of the section and to quantify the condition of pavement distress.

Profile Survey

sections Profiles of the instrumented helped in determining longitudinal and cross slopes of the road section. The method of differential leveling was used to determine differences in elevation between selected points on the pavement surface. An automatic level and a graduated measuring rod was used for this purpose. The level was set up at a short distance away from the instrumented outlet. Elevations of the surface at cored points were taken to determine the cross slope of pavement sections. Elevations of three additional points 200 feet upstream and downstream of the instrumented section were also recorded to determine the longitudinal slope of pavement at the instrumented site. An odometer was used for measuring the distance between selected elevation points. A schematic of the leveling plan is shown in Figure 4.16.

Visual Survey

Concurrently with field instrumentation, condition surveys were performed on each pavement section. These surveys determined the extent and severity of pavement surface distresses and pavement-shoulder joint conditions. The PAVER

Figure 4.16 Profile levelling plan for instrumented sites

(Shahin and Kohn, 1981) condition survey method was used with minor adjustments. The purpose of inspection was to identify moisture related distresses and pavement-shoulder conditions around the instrumented area. Therefore, instead of conducting a condition survey of the entire section, a length of 500 feet on either side of the sectional instrumented area was surveyed. This sample unit length was applied for both flexible and rigid pavements and provided data on the number and location of cracks consecutive outlets. This information was needed for calibration of the PURDRAIN program.

Table 4.14 gives a summary of the Pavement Condition Index (PCI) values and ratings for target sections surveyed. Completed inspection sheets are attached as Appendix C.

Chapter Summary

The process of field instrumentation and surveys carried out as part of this research project were described in this chapter. The nature and magnitude of the experimental program conducted for the first time in Indiana, imparted considerable experience in the use of various equipment and installation procedures. Data from some sites were lost due to instrument malfunctioning and field conditions. However, significant data was collected and will aid in calibrating the PURDRAIN program and in analyzing the pattern of moisture changes in the pavement systems from precipitation.

Table 4.14 PCI Values and Ratings for Instrumented Sections

SECTION NUMBER	ROUTE/ COUNTY	PCI (Average)	RATING (Average)
1	US-31 HAMILTON	71.1	V.GOOD
2	SR-37 HAMILTON	75.4	V.GOOD
3	SR-37 LAWRENCE	86.9	EXCELLENT
4	US-41 SULLIVAN	79.2	V.GOOD
5	US-30 LAPORTE	86.3	EXCELLENT
6	US-31 ST.JOSEPH	77.0	V.GOOD
7	SR-9 NOBLE	94.6	EXCELLENT
8	SR-43 TIPPECANOE	73.8	V.GOOD
9	SR-63 VERMILLION	36.8	POOR
10	US-36 HENDRICKS	96.6	EXCELLENT

CHAPTER 5 - LABORATORY INVESTIGATIONS

Background

Laboratory testing in this study was undertaken to determine the soil-moisture characteristics and saturated hydraulic conductivities of subbase materials and subgrade soils present at the instrumented sites. The specific objective to be achieved was to provide information on soil properties to be used in the PURDRAIN program. This chapter describes test methods used in the course of laboratory investigations.

There were three tasks associated with the laboratory testing. The first task involved classification of subbase materials and subgrade soils through conventional material tests. A number of conventional and non-conventional methods were used in this step, described later in this chapter. The second task consisted of testing each classified soil to determine the suction-moisture relationship and hydraulic conductivity. Finally, index parameters were determined for Brooks and Corey's and Van Genuchten's models. This was achieved using laboratory data and iterative procedures described later.

Conventional Material Tests

Tests performed included density and moisture content, grain size distribution, Atterberg limits and specific gravity. Standard ASTM or AASHTO methods were employed except for density measurements, where a non-conventional method was used to determine in-situ density of subgrade samples. A minimum of three replicate samples were prepared for each test.

Density and Moisture Content

Because the pavements included in the study were in service, standard methods such as sand cone tests or nuclear gages could not be used to determine in-situ density of subgrade soils. Shelby tube samples of subgrade soils were therefore collected from each site and brought to the laboratory for density measurements. The samples were stored in a controlled temperature and humidity chamber to minimize moisture loss prior to testing.

The samples while still in the tubes were cut at measured points with a mechanical saw as shown in Figure 5.1. The diameter of the cut samples was measured at two to three points and an average was determined. The length and weight of the samples were also recorded. Subtracting the weight of hollow tube from the overall weight of sample and tube provided data for determining in-situ density.

Moisture contents were determined by ASTM Method D-2216.

Figure 5.1 Cutting shelby tube with mechanical saw

Grain Size Distribution

Particle size analysis was performed on subgrade samples according to the ASTM Method D-422. Soil aggregate samples were prepared by the method prescribed in the AASHTO T-87. Washed sieve analysis of fine grained and cohesive soils were carried out using ASTM C-117. Sieve analysis was also performed on #5D bituminous stabilized and #53 crushed aggregate samples recovered from the sites. These are the predominant subbase materials used in Indiana.

Atterberg Limits

Atterberg limits of subgrade soils were determined using ASTM Method D-4318. Soil samples were prepared using demineralized water and allowed to stand 16 hours prior to testing. Liquid limit, plastic limit and plasticity index values were determined for each subgrade soil.

Specific Gravity

Specific gravities of soil samples were determined using two methods. AASHTO T-100 was used for fine grained soils. For samples composed of particles larger and smaller than the #4 (4.75mm) sieve size, apparent specific gravity of coarse particles was determined using AASHTO Method T-85. A weighted average specific gravity was then calculated using the following equation:

$$G_{avg} = \frac{1}{\frac{R_1}{100G_1} + \frac{P_1}{100G_2}}$$
 5.1

where: Gave = weighted average specific gravity of soils

R₁ = percent of soil particles retained on #4

sieve

P₁ = percent of soil particles passing #4 sieve

G₁ = apparent specific gravity of soil particles retained on #4 sieve

G₂ = specific gravity of soil particles passing
#4 sieve

Samples of clay soils for specific gravity measurements were prepared using the dispersing equipment specified in AASHTO T-88. Entrapped air was removed by boiling and then subjecting the contents to vacuum.

Test Results

The results of various laboratory tests on the subbase and subgrade soils are presented in Appendix D and include a sample description and soil properties for each of the soils tested. Graphical presentation of gradation analysis are shown in Figures 5.2 to 5.13. Subgrade soils were classified using the Unified Classification Method (ASTM D2487) and the AASHTO Method (AASHTO M-145). Table 5.1 lists the resulting classification by both methods.

Gradation of #5D bituminous stabilized subbase and #53 crushed aggregate subbase materials were compared with specification limits provided by the Indiana Department of Transportation. The stabilized subbase satisfied the gradation and binder specification ranges. Gradations of crushed aggregate samples obtained from two sites fell outside the

As-sampled gradation of US-31, Hamilton County soil Figure 5.2

As-sampled gradation of SR-37, Hamilton County soil Figure 5.3

Gradation curve not displayed for fat clayey soil (>50% pass #200)

As-sampled gradation of SR-37, Lawrence County soil Figure 5.4

As-sampled gradation of US-41, Sullivan County soil Figure 5.5

As-sampled gradation of US-30, Laporte County soil Figure 5.6

As-sampled gradation of US-31, St. Joseph County soil

As-sampled gradation of SR-9, Noble County soil Figure 5.8

As-sampled gradation of SR-43, Tippecanoe County soil Figure 5.9

Figure 5.10 As-sampled gradation of SR-63, Vermillion County soil

As-sampled gradation of US-36, Hendricks County soil Figure 5.11

Gradation and specification limit for #5D stabilized subbase Figure 5.12

Gradation and specification limit for #53 aggregate subbase Figure 5.13

Table 5.1 Classification of subgrade soil samples

Section Number	Route	County	USCS Classif.*	AASHTO Classif.	
1	US-31	Hamilton	SM-SC	A-4(0)	
2	SR-37	Hamilton	sc, sm-sc	A-4(0), A-2-4(0)	
3	SR-37	Lawrence	CL, CH	A-6(15), A-7-6(34)	
4	US-41	Sullivan	CL	A-6(8)	
5	US-30	Laporte	SP-SM	A-3(0)	
6	US-31	St.Joseph	SP	A-3(0)	
7	SR-9	Noble	SW	A-1-a(0)	
8	SR-43	Tippecanoe	CL	A-4(4)/A-6(5)	
9	SR-63	Vermillion	GW	A-1-a(0)	
10	US-36	Hendricks	CL	A-4(3)	

Unified Soil Classification System (ASTM, 1991)
AASHTO Classification System (AASHTO, 1986)

specification limits for the fine sizes. This can be attributed to excess pore water pressure displacing the fines towards the pavement edge. This was further confirmed by clogged edge drains at these sites.

Soil-Moisture Properties Tests

Tests of soil-moisture properties were conducted to obtain hydraulic parameters for analysis of moisture migration in pavement layers. Parameters that were determined are a) matric suction/moisture content (ψ/θ) and b) hydraulic conductivity/moisture content (K/θ) . Ten subgrade soils and five subbase materials were tested.

Suction-Moisture Test

Soil suction-moisture tests were carried out according to ASTM D-2325 and D-3152. These tests were conducted at the Purdue University Soil Physics laboratory of the Agronomy Department. The two test methods provide for determining capillary-moisture relationships for coarse and fine textured soils, respectively. Tests were determined on disturbed soil samples from augering and Shelby tube sampling.

Sample Preparation and Testing Equipment

Soil samples were prepared by air drying, pulverizing, and sieving through a No.10 (2.00mm) sieve. For stabilized subbase materials, two inch diameter undisturbed samples were

used. The soil suction-moisture content tests were conducted using a commercially available pressure membrane apparatus. The equipment operates in the 0-1 bar and 3-15 bar pressure ranges. In conducting the tests, soil samples were placed on a porous ceramic plate which is mounted in the extractor. The low pressure membrane apparatus can hold three ceramic plates, and the high pressure apparatus can hold one plate for each run, respectively. Figure 5.14 shows the setup of the two apparatuses with the pressure manifold system. The ceramic plates are approximately 10 inches in diameter, and have a metal screen and neoprene sheet backing to keep the bottom portion of the plate in contact with atmospheric pressure (Figure 5.15). On application of pressure in the chamber, a pressure difference is maintained across each porous plate. Water from the soil is forced out of the extractor through the ceramic plate and outflow tube due to the pressure differential. Flow ceases when an equilibrium moisture state is reached. Figure 5.16 shows a cross sectional view of the system.

Ceramic plates come with different pore size openings, permitting the tests to be run in 0-1 bar, 3, 5, and 10-15 bar pressure ranges. Prior to testing, the ceramic plates are soaked 3-4 days to ensure that all pores are filled with water which maintains a constant pressure difference through the plate.

Figure 5.14 Setup of pressure chambers with manifold system

Figure 5.15 Subbase samples on soaked ceramic plate

Figure 5.16 Sectional view of pressure chamber apparatus (ASTM, 1991)

Test Procedure

The general test procedure carried out for both pressure plate apparatuses was as follows: A soaked ceramic plate was mounted in the chamber. Soil samples weighing approximately 25 grams each were were poured into rigid plastic rings, 10mm (0.4 inch) in height with a 50mm (2 inch) inside diameter. Samples were levelled by pressing the top surface with a packer disk using an applied force of 9000 grams (Figure 5.17). Deaired water was added around the sample rings to saturate the samples for a 24 hour period.

At the end of the soaking period, excess water was removed with a pipette, and the extractor lid closed tightly to prevent air leakage. The end of the outflow tube was kept under water in a beaker to ensure a constant outflow environment and to check against air leaks from around the lid or through cracked ceramic plates. On initiation of the required pressure, water starts flowing into the beaker through the outlet tube. The equilibration time for each pressure was set to 3 days. Initial trials showed that no additional water draining after this period.

Pressures of 0.1, 0.33, 0.67, 1.0, 3.0, 5.0, and 15 bars were applied. Six replicates of each soil sample were tested for each pressure. At the end of each run, the outflow tube to the beaker was clamped to prevent water backflow and the pressure was slowly released. The specimens were transferred to containers and weighed. The specimens were then dried in an

Figure 5.17 Packing soil samples with surcharge weight

oven at 110 °C for a 24 hour period and weighed. Moisture content values were calculated for each applied pressure and its relationship with matric potential was plotted. A data form for recording of the laboratory test results is presented in Figure 5.18. Figure 5.19 shows suction-moisture characteristic curves for the ten subgrade soils tested and Figure 5.20 shows similar curves for the subbase samples. Results of suction-moisture tests on subgrade soils and subbase materials are presented in Appendix D. Variability of the test results is also reported in the appendix.

Discussion of Results

ASTM does not give precision and accuracy statement for these tests. However, the variability between replicates was found to be within an acceptable range of moisture content for most sandy and clayey soils. Variability of results was more pronounced between auger samples and Shelby tube samples of granular soils. This can be attributed to the larger top size of these soils. Shelby tubes are 3 inches in diameter and may not provide a representative sample for coarse grained soils.

The shape of soil-water characteristics curves in Figure 5.19 indicate the sensitivity of soils to moisture changes. Cohesive soils retain more moisture than cohesionless soils even at high suction ranges. High plasticity clays retained the highest irreducible moisture content whereas poorly graded sands retained the lowest. Loams have irreducible moisture

CAPILLARY-MOISTURE RELATIONSHIP FOR BASE AND SUBGRADE SAMPLES "PAVEMENT DRAINAGE PROJECT"

ROUTE NO: US-41 COUNTY SULLIVAN CONTRACT NO: F-35 (II) SECTION CL; A-6(%) IN-SITU MOISTURE CONTENT: 16.C % SAMPLE TYPE DISTURBED IN-SITU DENSITY: 134.0S PCF; POROSITY SI.9 % SPECIFIC GRAVITY: 2.75 REMARKS:						
(1) Tension. 1.0 BAR	AA	AS	ВА	ßs	CA	cs .
(2) Container Number	4	5	6	7	8	9
(3) Wt. of container, +wet sample, g	29.51	29.57	29-47	29.31	29.57	29.42
(4) Wt. of container, +dry sample, q	25.41	25-37	2 5.26	25.CA	25.34	25.18
(5) Wt. of moisture, g (3 - 4)	4.1	4.20	4-21	4-27	4.23	A-24
(6) Wt. of container	1-31	1-31	1.31	1.06	1-29	0.98
(7) Wt. of dry sample, g (4 - 6)	24.10	24-06	23.95	23.98	24.05	24.20
(8) Moisture content, % (む).(5 ÷ 7) × 100	17-01	17.46	17-58	17.81	17.59	17-52
(9) Unit wt. of dry sample, γ_d			1.66			
(10) Moisture content, vol. percent (克) (8 x 9)		-	23.83			

マ=17-5%

Figure 5.18 Sample data form for soil-moisture tests

Figure 5.19 Soil-moisture characteristic curves of subgrade soils from instrumented sites

Figure 5.20 Soil-moisture characteristic curves of base and subbase soils

contents between the clays and sands. This can be attributed to the nature of the pore system. Sandy soils are composed of macroscopic particles and drain readily. Clayey soils, composed of microscopic particles, are highly impervious. However, some similarities are observed for all soils. The curves show a substantial drop in moisture content when the suction is increased to 1 bar. The curves then show a gradual decrease of moisture content until the suction reaches 5 bars. There is minimal water content decrease beyond the 5 bar range.

For subbase materials, the variation in moisture content for a large suction increase is low. The number 73 crushed aggregate and the 5D bituminous stabilized subbase had the highest and lowest variation in moisture content between suctions of zero and 15 bars, respectively. In general, the suction-moisture characteristics of unstabilized subbase materials are similar to sandy soils.

Parameter Development for Infiltration Models

Results of the laboratory measurements of soil-moisture characteristics of subgrades and subbase materials were used to obtain soil parameter values for the Brooks & Corey and Van Genuchten models incorporated in the PURDRAIN program. These models were described in Chapter 4.

Typical values for the fitting parameters PB and ν for the Brooks and Corey Model were determined by utilizing

suction and moisture content values for each subgrade and subbase type. The effective degree of saturation corresponding to each suction value was found using Equation 4.1. An iterative procedure was applied to determine the parameter values. The values were then fitted into the model and checked against experimental results. A similar procedure was adopted for the determination of α , β and γ values for the Van Genuchten model using Equation 4.4.

Table 5.2 lists the parameter values for both models and Figures 5.21 and 5.22 provide a comparison of the measured vs estimated $\psi(\theta)$ function for one subgrade soil using Brooks & Corey and Van Genuchten models, respectively. Comparisons for other soils are shown in Appendix E. The plots show the estimated values are in close agreement with measured values for both models at low suction values. Similar results were obtained for the remaining subgrade soils and subbase materials. As most of the moisture movement takes place at low suction or at higher moisture contents, the results seem to be valid. A regression analysis was conducted for calibration purposes between measured values of effective degree of saturation and values predicted by Brooks & Corey's and by Van Genuchten's models for subbase materials and subgrade soils. High correlations were obtained for both models as shown in Table 5.3. Regression results are included in Appendix E.

Figure 5.21 Measured vs Estimated Brooks & Corey function

Figure 5.22 Measured vs Estimated Van Genuchten function

Table 5.2 Hydraulic Parameter Values of Subgrade Soils

	,						
Route/ County	Soil Type*	Brooks & Corey Model		Van Genuchten Model			
or Base #	or Base Type ^b	PB cm	ν_d	α cm ⁻¹	β	γ	
US-31 Hamilt	SM-SC	52	3.1	.008	1.45	0.31	
SR-37 Hamilt	sc	68.5	3.18	.0054	1.46	0.315	
SR-37 Lawrnc	СН	67.5	2.8	.0048	1.665	0.399	
US-41 Sullvn	CL	60	3.0	.008	1.48	0.324	
US-30 Laprt	SP-SM	87	2.6	.0029	1.80	0.444	
US-31 StJosh	SP	78	2.34	.0048	1.665	0.339	
SR-9 Noble	SW	82	3.2	.00245	1.87	0.465	
SR-43 Tippcn	CL	61.5	3.0	.013	1.35	0.259	
SR-63 Vermil	GW	80	2.31	.0048	1.68	0.405	
US-36 Hendrk	CL	72	2.78	.00625	1.502	0.334	
Base1	#24	73	2.5	.0064	1.569	0.363	
Base2	#53	79	1.92	.0052	1.735	0.423	
Base3	#73	85	3.15	.0028	1.55	0.355	
Base4	#53B	122	2.3	.0028	1.685	0.4065	
Base5	#5D	88	2.11	.0028	1.685	0.4065	

Unified Soil Classification System (ASTM,1991)
 Standard Specifications (IDOH,1988)

Table 5.3 Goodness of fit values for estimated parameters

Route/Cnty	Soil Type	Goodness of Fit 'R2' values			
or Base No.	or Base Type ^b	Brooks & Corey Model	Van Genuchten Model		
US-31 Hamilton	SM-SC	0.929	0.912		
SR-37 Hamilton	SM-SC	0.724	0.879		
SR-37 Lawrence	СН	0.815	0.976		
US-41 Sullivan	CL	0.729	0.895		
US-30 Laporte	SP-SM	0.908	0.991		
US-31 St.Joseph	SP	0.846	0.851		
SR-9 Noble	sw	0.750	0.996		
SR-43 Tippecanoe	CL	0.890	0.866		
SR-63 Vermillion	G₩	0.927	0.978		
US-36 Hendricks	CL	0.870	0.948		
Base No.1	#24	0.965	0.961		
Base No.2	#53	0.919	0.944		
Base No.3	#73	0.670	0.867		
Base No.4	#53B	0.940	0.965		
Base No.5	#5D	0.829	0.934		

Unified Soil Classification System (ASTM,1991)
 Standard Specifications (IDOH,1988)

Permeability

As described in Chapter 2, Darcy's Law is used to estimate the hydraulic conduct ivity or permeability of saturated materials. Permeability is the only property which varies widely for a given material, and cannot be considered to be a constant for a given type of subbase or subgrade. A range of expected values for permeability of different soils have been given by Lambe (1951), Terzhagi and Peck (1967), and Freeze and Cherry (1979). Figure 5.23 shows typical ranges for soils and rocks.

Permeability measurements were made on soil samples obtained from test sites using constant head and falling head permeameters which are described below. A constant head permeability test was used for coarse grained soils, whereas falling head method was employed for fine grained soils. Undisturbed soil samples could not be obtained for granular soils and therefore the constant head permeability test was run on disturbed soil samples. Tests of cohesive soils were made using Shelby tube samples.

INDOT Division of Materials and Tests had performed tests to determine permeability of typical base and subbase materials used in the state. To avoid duplication of effort, permeability tests on base and subbase materials were not performed and results obtained by INDOT were used, see Table 5.4. A field permeability testing device (FPTD) on loan from the FHWA was used to carry out permeability tests on #53

Figure 5.23 Range of permeability for soils and rocks (Freeze and Cherry, 1979)

Table 5.4 Permeability Values of INDOT Base Materials'

Material	Pemeability 12" head cm/sec	Permeability 24" head cm/sec	Average Permeability ft/day
#24 Sand w/ 3% passing #200 sieve	0.96x10 ⁻³	1.1x10 ⁻³	1.4
#24 Sand w/ 6% passing #200 sieve	4.1x10 ⁴	4.5x10⁴	1.2
#53 Stone w/ 5% passing #200 sieve	_	-	0.10
#53 Stone w/ 10% passing #200 sieve	_	-	0.12
#53 Special Subbase 100% Crushed	-	-	499
#73 Stone w/ 7½% passing #200 sieve	7.03x10 ⁻²	6.53x10 ⁻²	192
#73 Stone w/ 10% passing #200 sieve	4.22x10 ⁻²	3.29x10 ⁻²	106
#53B base w/ 2½% passing #200 sieve	2.98x10 ⁻²	2.23x10 ⁻²	74
#53B base w/ 5% passing #200 sieve	0.95x10 ⁻²	0.84x10 ⁻²	25
#5D HAC base	2.02x10 ⁴	1.93x10 ⁴	0.6

^{*} Source: INDOT Division of Materials and Testing

subbase. Permeability values obtained were compared with results achieved by INDOT on similar sample. The FPTD is described later.

Constant Head Permeameter

A constant head permeameter was fabricated at Purdue University for testing granular soils with larger aggregates. The permeameter is rigid-wall type and has an 8 inch (20 cm) internal diameter. Specimens can be placed to a height of 12 inches inside the cylinder. The height of the inflow chamber is fixed, whereas the outflow chamber height can be adjusted prior to testing. This ensures that a desirable height difference can be achieved between the two chambers. A series of manometers are connected to the permeameter at various points. A setup of the permeameter is shown in Figure 5.24.

Soil samples obtained from test sites were air dried and pulverized with a wooden mallet. Care was taken to avoid crushing particles. The samples were wetted uniformly in stages to the desired moisture content using a spray bottle, and placed in a temperature controlled chamber prior to testing. The prepared soils were then placed in the permeameter and compacted with a standard compactive effort of 12,375 ft-lb (Holtz and Kovacs, 1981) using a sliding weight tamper. Permeability tests were run according to ASTM D-2434. Coefficient of permeability of the samples were calculated using the relation:

Figure 5.24 Setup of the constant head permeameter

$$k = \frac{QL}{A + b}$$
 5.2

where:

k = coefficient of permeability

Q = quantity of flow

L = height of compacted specimen
A = cross-sectional area of specimen

h = head difference between upper and lower chambers

t = time of discharge measurement

Falling Head Permeameter

Falling head permeability tests were conducted on four subgrade soil types using a flexi-wall permeability cell. The cell and its permeameter control column are shown in Figure 5.25. Soil samples were extruded from Shelby tubes using a hydraulic sample extruder. For each sample, a latex membrane was fitted inside a plastic cylinder equal in diameter to the shelby tube. A vacuum of 2 psi was employed to remove air trapped between the membrane and the cylinder. The sample was placed inside the cylinder and the top and bottom surfaces levelled. On releasing the vacuum, the membrane adjusted to the contours of the soil sample. This was necessary to avoid piping around the edges during permeability testing.

Samples were subsequently placed inside the permeability cell and tubing connections made to the regulator valves. Sample saturation was initiated by first applying a vacuum of 11 psi to remove entrapped air from the sample. This was followed by applying an initial backpressure of 5 psi and recording the water intake. When water intake stopped, backpressure was raised another 5 psi and the process

Figure 5.25 Flexi-wall permeameter cell and control column

repeated. The elapsed time between increments depend entirely on the permeability of the sample. The backsaturation process was terminated when less than 0.1 cc of water intake was recorded for a 5 psi increment in backpressure. According to information supplied with the permeameter, this criteria results in a state close to 100% saturation.

Permeability measurements were made by recording the drop in water level for a suitable time interval. Three tests were conducted on each sample and the average water drop determined. These data are used in equation 5.3 (Holtz and Kovacs, 1981) to evaluate permeability.

$$k=2.3\frac{aL}{At}\log\frac{h_1}{h_2}$$

where:

k = coefficient of permeability

a = cross sectional area of standpipe

L = length of soil specimen

A = cross sectional area of specimen t = time of water drop measurement h₁= initial height of water column h₂= final height of water column

Field Permeability Testing Device (FPTD)

The Field Permeability Testing Device (FPTD) was developed by Moulton and Seals (1979) for the Federal Highway Administration (FHWA). Use of the device involves:

i) establishing a saturated, steady state flow in the base or subbase layer by injecting water through a port located at the center of a circular plate. Water is added until the layer becomes fully saturated. Figure 5.26

Figure 5.26 Schematic of Field Permeability Testing Device (Moulton and Seals, 1979)

shows a schematic of the permeability device.

- ii) determining flow velocity from the time of seepage along a streamline or flow path between two points that are a known distance apart. This is achieved by injecting an electrolytic solution (Ammonium Chloride mixed with water) through the injection port. The time for the electrolytic solution to flow between two points on a streamline is sensed by means of electrical probes.
- iii) determining the head loss between the sensing probes by measuring fluid pressures with differential pressure transducers at the ends of the electrical conductivity probes.

The coefficient of permeability is calculated by the relation (Moulton and Seals, 1979):

$$k = \frac{L^2 n}{t(\Delta h)}$$
 5.4

where:

k = coefficient of permeability

L = probe spacing

n = porosity of the material
t = time of flow between probes
Δh = head loss between two points

The FPTD was acquired from FHWA for a limited time to determine in-situ permeabilities of base materials used in Indiana. Unfortunately, during this period, no base course was exposed on any ongoing highway project. It was therefore not possible to use the device on field projects. A decision was made to test base samples in the laboratory using the FPTD device.

Operation of FPTD

As shown in Figure 5.27, a 4 ft x 4 ft x 1 ft height test chamber was fabricated with drain outlets at one end. Indiana #53 crushed aggregate material was placed in the chamber and compacted with a tamping rod to a depth of six inches. The horizontal plate of the FPTD was positioned on the aggregate surface with the water injection and sensing probes inserted through the plate into predriven holes. A surcharge weight was placed on the plate and transducer and electrical connections made. Water flow was initiated through the system. A steady state flow was indicated by water flowing out of the drain tubes at the bottom of the chamber.

A charge of electrolytic solution was introduced into the subbase through the water injection port. When the electrolytic solution passes the upstream probe the timing mechanism is triggered. Time of flow is determined when the solution passes the downstream probe, and head differential is displayed on the measurement subsystem (Figure 5.28). The test is completed by flushing the system with fresh water.

Functional Problems of FPTD

Several problems were encountered during operation of the FPTD. The nature of the material tested made driving and removing the rods used to form the holes for the injection and sensing probes difficult. Piping was observed around the plate with the water supply valve full open. The function of the sensing probes was also erratic. In some cases, neither probe

Figure 5.27 Setup of Field Permeability Testing Device

Figure 5.28 Measurement subsystem of FPTD

triggered the timing mechanism and in others, only one probe functioned. This could be attributed to the electrolytic solution bypassing the upstream or downstream probe.

To overcome problems with the probe, they were placed one inch apart and away from the central injection port. Water flow was initiated slowly to avoid piping. This resulted in better response.

After five runs were made, the differential pressure transducer stopped working. Problems were noted and the unit was returned to FHWA.

Discussion of Results

Results from the constant and falling head permeability devices on subbase materials and subgrade soils and from the Field Permeability Testing Device on the #53 subbase are listed in Table 5.5. The measured coefficients of permeability were compared with the values given by Freeze and Cherry (1976) for soils and with INDOT values for the #53 subbase. It is observed that laboratory determinations of permeability for the subgrade soils lie within the range specified for each soil type. Permeability value for the #53 subbase is also close to the INDOT specified value. Permeability of other bases could not be tested with the FPTD because of functional problems.

Table 5.5 Permeability values of subgrade and subbase soils

Route/County or Base Type	Soil Type	Permeameter Type	Coefficient of permeability cm/sec
US-31 Hamilton	SM-SC	Flexi-wall	2.44x10 ⁻⁶
SR-37 Hamilton	SM-SC	Flexi-wall	1.31x10⁴
SR-37 Lawrence	СН	Flexi-wall	2.10x10 ⁻⁷
US-41 Sullivan	CL	Flexi-wall	6.03x10⁴
US-30 Laporte	SP-SM	Constant Head	1.05x10 ⁻³
US-31 St.Joseph	SP	Constant Head	2.09x10 ⁻³
SR-9 Noble	SW	Constant Head	3.37x10 ⁻³
SR-43 Tippecanoe	CL	Flexi-wall	5.09x10 ⁻⁵
SR-63 Vermillion	GW	Constant Head	5.97x10 ⁻³
US-36 Hendricks	CL	Flexi-wall	1.10x10 ⁻⁵
Subbase	#53 ^b	FPTD	0.168

Unified Soil Classification System (ASTM, 1991) Standard Specifications (IDOH, 1988)

Chapter Summary

A comprehensive laboratory investigation was completed to identify the subbase materials and subgrade soils obtained from instrumented test sites. Permeability measurements were made using specially designed constant head and state-of-the-art flexi-wall permeameters. The FHWA Field Permeability Testing Device was evaluated. Determination of the hydraulic properties of a wide variety of subbase materials and subgrade soils has resulted in development of a database, which can be used with the PURDRAIN program in analyzing moisture infiltration in pavement structures. Parameters were estimated for foundation soils and subbases for the two constitutive models built into the PURDRAIN program.

CHAPTER 6 - DATA ANALYSIS AND DISCUSSION

The drainage study incorporated ten pavement sections. Two of these sections did not have edge drains. Outflow volumes could not be recorded for SR-37, Hamilton County test site due to malfunctioning of the tipping bucket flow meter as described in Chapter 4. Data from test sections were reduced to a spreadsheet format. The data was further analyzed to isolate individual precipitation events and corresponding outflow volumes for each test site.

Each test section length was selected to correlate with the distance between the instrumented and upstream outlets, as obtained through profile readings. For sections on sag curves, the length considered was between outlets, preceding and following the instrumented outlet. Water obviously would flow from both directions towards the instrumented outlet. The width of the section was taken as the distance to the trench for pipe edge drains, and to the pavement-shoulder joints for prefabricated edge drains. Table 6.1 shows precipitation and outflow data from seven test sections, for which outflow volumes were recorded. Condition of the pavement-shoulder are also displayed for analysis purposes. consistency, the sections are numbered in the same order as in

Table 6.1 Information on precipitation and outflow volumes

ROUTE	SECT No.	PVMT. TYPE	DRAIN TYPE	CUMUL PRECP cft	CUMUL FLOW cft	PCI/ DISTRESS	OFLOW/ PRECP. VOLUME
US-31, HAMILT	1	CONC.	PIPE	665 2815 2042	36.8 1137 542.0	71.1 EDGE CRACK/JT SEAL DAMAGE	5.53 40.40 26.52
US-36, HENDRK	10	CONC.	PIPE	251 502 377	175.5 161.5 127.5	96.6 EDGE CRK	69.82 32.12 33.83
US-41, SULLVN	4	CONC.	FIN	347 179	208.1 61.9	79.2 EDGE CRK /SHLDR. DAMAGE	59.92 34.63
SR-63, VERMLN	9	ASP.	PIPE	69 120	34.9 50.0	36.8 MAJOR DISTRESS	50.64 41.72
SR-9, NOBLE	7	ASP.	PIPE	1479	389.2	94.6 EDGE CRK	26.31
US-30, LAPORT	5	OVRLY	FIN	150 1520 2290 75 1030	2.0 36.5 8.1 1.7 29.1	86.3 EDGE CRK /REFLEX. CRK	1.35 2.40 2.84 2.21 2.82
US-31, STJOSH	6	OVRLY	FIN	1845 768 974	4.4 4.0 1.0	77.0 EDGE CRK /REFLEX. CRK	0.24 0.51 0.10

Table 4.1. Figures 6.1 to 6.19 show precipitation and outflow as functions of time for the test sections. Data sets for the test sites are listed in Appendix F.

Precipitation vs Outflow

A study of Figures 6.1 to 6.19 show the outflow response to be instantaneous with precipitation for all test sites, except for data set 1 at US-31, Hamilton County. For this recorded precipitation event, pipe outflow lags by several hours. This might be attributed to the low precipitation intensity as well as the base being in a relatively dry condition prior to the rainfall event. These figures also indicate that 40 to 60 percent of the cumulative outflow volume takes place within the first four hours. The outflow volumes then continue to diminish over a period of 24 hours except when there is a second rainfall event within this period. This triggers an immediate rise in outflow volumes.

The immediate response to precipitation is attributed to the pavement-shoulder joint condition at these sites. Condition surveys indicated edge cracking, longitudinal and transvers cracks or poorly sealed pavements at all the test sites. This resulted in higher percent of water infiltrating through the cracks and joints at the start of a precipitation event. Once the pavement cracks and pores of the subbase become saturated, the infiltration into the pavement layers will depend upon the rate at which water flows laterally in

Figure 6.1 Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 1)

Figure 6.2 Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 2)

Figure 6.3 Influence of precipitation on outflow volume (US-31, Hamilton County; Data Set 3)

Figure 6.4 Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set 1)

Figure 6.5 Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set2)

Figure 6.6 Influence of precipitation on outflow volume (US-36, Hendricks County; Data Set 3)

Figure 6.7 Influence of precipitation on outflow volume (US-41, Sullivan County; Data Set 1)

Figure 6.8 Influence of precipitation on outflow volume (US-41, Sullivan County; Data Set 2)

Figure 6.9 Influence of precipitation on outflow volume (SR-63, Vermillion County; Data Set 1)

Figure 6.10 Influence of precipitation on outflow volume (SR-63, Vermillion County; Data Set 2)

Figure 6.11 Influence of precipitation on outflow volume (SR-9, Noble County; Data Set 1)

Figure 6.12 Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 1)

Figure 6.13 Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 3)

Figure 6.14 Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 3)

Figure 6.15 Influence of precipitation on outflow volume (US-30, Laporte County; Data Set 4)

Figure 6.16 Influence of precipitation on outflow volume (US-31, Laporte County; Data Set 5)

Figure 6.17 Influence of precipitation on outflow volume (US-31, St.Joseph County; Data Set 1)

Figure 6.18 Influence of precipitation on outflow volume (US-31, St.Joseph County; Data Set 2)

Figure 6.19 Influence of precipitation on outflow volume (US-31, St.Joseph County; Data Set 3)

the subbase layer towards the drain. The rate of flow in turn will depend upon pavement geometry, hydraulic properties of the pavement layers and condition of the edge drains.

A study of Table 6.1 shows high outflow volumes for both concrete and asphalt pavements as compared to overlaid pavements. In fact, the percentage of outflow volume for overlaid pavements is negligible. Overlaid pavement sections 5 and 6, have the same type of edge drains, and the outflow percentage is lower for section 6. The lower permeability of the base layer is considered to be the reason for reduced flow for this section.

Sections 9 and 7 are asphalt pavements with edge drains. However, both outflow response is faster, with outflow percentage higher for section 9. This is attributed to the difference in pavement condition of the two sections. Both sections had edge cracking, but section 9 had higher levels of longitudinal and transverse cracking. The increase in the number of surface cracks would contribute to higher surface infiltration and subsequently higher outflow. For concrete pavements of sections 1, 4 and 10, there is no marked difference in the performance of the subdrainage systems. The minor difference in outflow volumes is attributed to the degree pavements are saturated at the start of a precipitation event. Section 10 incorporating a fin drain also exhibited high outflow volumes. The poor condition of shoulder seal and the presence of an impermeable subgrade would increase the

lateral flow towards the drain.

Field data collected in the current study does not indicate a trend of higher outflow volume with increased rainfall intensity. At most of the sections, a lower intensity of precipitation yielded similar outflow volumes. For concrete pavements, the percentage outflow from edge drains are between 0.05 and 0.70. For asphalt pavements, the outflow percentage lies between 0.26 and 0.50. For overlaid pavements, the outflow percentage is still lower. Outflow data shows, that the concept of pavement subsurface drainage criteria based on design precipitation rates only (Cedergren, 1973) is conservative. The actual infiltration of water is a complex phenomenon. Pavement type and condition, edge drain type and layer properties have an effect on the amount of water entering and exiting a pavement.

Statistical Analysis

In an effort to determine the effect of precipitation and pavement factors on outflow volume, a statistical analysis was conducted using the method of least squares as outlined in the SAS General Linear Models (GLM) procedure (SAS Institute, 1985). The GLM procedure was used because of missing and unequal number of observations for the different combinations of pavement and edge drain types. For example, there is no combination existing for some of the levels, as fin drains are not used with full depth asphalt pavements in Indiana. For some sites, data from only a single precipitation event was

recorded because of instrument malfunction.

Pavement and edge drain types were considered as class variables. Three pavement types: asphalt, concrete and composite pavements, were included. Pipe and fin drains comprise the two qualitative levels of edge drains. The response variable is the ratio of outflow to precipitation volume expressed as a percentage. Permeability of the base/subbase layer was included in the model as a covariate for increased precision in determining the effects of pavement and edge drain types on the outflow volume. Logarithmic transformation of the response data was carried out to achieve normality. The resulting definition matrix is shown in

Analysis of covariance technique was used to reduce the error term variability and make the statistical analysis more robust for comparing pavement and edge drain effects. The analysis of co-variance model based on the above design is expressed as:

The GLM procedure was run in two stages. In the first stage, the regressor variable was not included. The

i = 1..3; j = 1,2; k = 1..18

Table 6.2 Definition Matrix for Statistical Analysis

Factor A (Pavement Type)	Factor B (Drain Type)					
	Pipe Edge I	Orain (j=1)	Fin Drain (j=2)			
	% outflow (Y)	base perm. (X)	% outflow (Y)	base perm. (X)		
Concrete i=1	5.53 40.40 26.52	0.6 0.6 0.6	59.92 34.63	74 74		
-	69.82 32.12 33.83	0.6 0.6 0.6				
Asphalt i=2	50.64 41.72	0.12 0.12	*	*		
	26.31	0.12				
Overlay i=3	*	*	1.35 2.40 2.84 2.21 2.82	1.2 1.2 1.2 1.2		
-			0.24 0.51 0.10	0.12 0.12 0.12		

^{*} combination does not exist

resulting analysis showed the pavement type to be significant at 95% confidence interval (α =0.05) with an F-value of 11.74, whereas the edge drain type was insignificant. The goodness of fit value was 0.79. In the second run, base permeability was included as a regressor variable. The corresponding analysis showed base permeability in addition to pavement and edge drain types to be significant at 95% confidence interval. The goodness of fit value in this case was 0.92. Table 6.3 shows the correponding F-values for pavement type, edge drain and base permeability. Appendix G contains the statistical input and output files for the SAS program.

The statistical analysis confirms and complements the engineering analysis described earlier. There is a significant effect of pavement and edge drain types on the amount of water being removed from a pavement system. It is an accepted fact that higher base permeabilities result in less water being trapped in the pavement subsystems for extended periods of time. The statistical significance of base permeability on percentage of water coming out of the pavement system reinforces this issue.

Moisture Variation Below Pavements

Results of instrumentation yielded considerable data on piezometric head variation and suction changes in pavement subbases and subgrades. At some sites, reduced numbers of sensors and poor performance of soil moisture blocks resulted

Table 6.3 Analysis of Variance for Experimental Design

Case 1: Without Regressor Variable						
Source	DF	TypeIII SS	Mean Square	F-Value	Pr>F	
PVMT	2	4.57029000	2.28514500	11.74	0.0009	
DRAIN	1	0.07150417	0.07150417	0.37	0.5536	
Case 2: With Base Permeability as Regressor Variable						
Source	DF	TypeIII SS	Mean Square	F-value	Pr>F	
PVMT	2	1.79637403	0.89818702	11.48	0.0011	
DRAIN	1	1.81297567	1.81297567	23.18	0.0003	
BASEK	1	1.82533333	1.82533333	23.33	0.0003	

in missing or erratic data. Analysis of moisture variation is restricted to reasonable data sets.

Piezometric Head Variation

Figures 6.20 to 6.29 show piezometric head variation in subbase layers for the instrumented sites. All sections show similar trend of head buildup immediately after a precipitation event. The immediate response can be partly attributed to the condition of the core holes. After placement of sensors, the cores were backfilled with pea gravel and topped with asphalt mix. The discontinuity of pavement and patch materials resulted in water infiltrating into the core holes through the cracks. Additional sources of intrusion were surface cracks and pavement-shoulder joint openings.

A comparison of head buildups in Sections 1 and 3 shows a constant pressure head at the subbase level for a considerable period of time at Section 3, whereas it gradually decreases at Section 1. Both sections are concrete pavements and have identical subbases. The prolonged head buildup at Section 3 can be attributed to a number of factors. The section was in a cut and did not have an edge drain. The base was not daylighted. The subgrade permeability was very low and prevented vertical migration of moisture. Thus water was trapped in the subbase layer resulting in pore pressure buildup. The pressure head was confirmed by the presence of moisture when the sensors were removed from Section 3.

Figure 6.20 Piezometric head variation in subbase (Section 1)

Figure 6.21 Piezometric head variation in subbase (Section 2)

Figure 6.22 Piezometric head variation in subbase (Section 3)

Figure 6.23 Piezometric head variation in subbase (Section 4)

Figure 6.24 Piezometric head variation in subbase (Section 5)

Figure 6.25 Piezometric head variation in subbase (Section 6)

Figure 6.26 Piezometric head variation in subbase (Section 7)

Figure 6.27 Piezometric head variation in subbase (Section 8)

Figure 6.28 Piezometric head variation in subbase (Section 9)

Figure 6.29 Piezometric head variation in subbase (Section 10)

Section 2, an asphalt pavement with a large stone aggregate subbase, did not indicate significant head variation. The top size of aggregate for the subbase was found to be 2 inches. It is likely that the open graded nature of the subbase resulted in rapid removal of water from the pavement system and consequently low piezometric head.

Significant head buildup was recorded in sections 4 and 10, which are concrete pavements having different edge drain types. The piezometric head dissipates much slower at section 4 having a fin drain as compared to section 10, which has a pipe edge drain. This is apparently due to the higher flow capacity of pipe edge drains.

Sections 5 and 6, which are overlaid pavements incorporating fin drains do not indicate a substantial variation in head. The slightly higher head at Section 5 is believed to be related to the higher precipitation intensity during data collection. Once rainfall ceased, there was an immediate drop in the head. Both sites have sandy subgrade, which allows for vertical movement of infiltrated water at these sites. This also accounts for the low outflow volumes recorded at these sites.

A high intensity precipitation event was recorded within a 24 hour period. The constant nature of piezometric head at this site is attributed to the presence of groundwater. Each precipitation event produced an immediate rise in groundwater elevation. Additional moisture resulted in the drainage

capacity of the edge drain being exceeded. As a result, moisture is retained in the subbase and causes head buildup.

Section 8 is an asphalt section with an unsealed aggregate shoulder and without edge drains. Piezometric head variation is not significant at this site. It is believed that the positive surface drainage (site is adjacent to the Wabash River) and the aggregate shoulder contributes to minimal head buildup.

A study of the figures indicates that piezometric head across a section varies. For a majority of the instrumented sections. The area around the lane center showed the highest head buildup as compared to the wheel paths. This could be attributed to the flowpath of moisture within the subbase layer. The source of entry for water is at the inner and outer pavement edges. When the drainage capacity is exceeded, additional moisture infiltration results in the formation of a perched water table in the subbase. The crest of the piezometric surface is believed to be formed within an area around the lane center.

For Section 9, densification indicated by rutting has led to reduced permeability and is believed to be responsible for a prolonged head buildup.

Only limited data was obtained for subgrade moisture variations because of transducer malfunctions. Figures 6.30 to 6.35 show piezometric head variations in the subgrade at six sites. The figures indicate a rise in pressure head

Figure 6.30 Influence of precipitation on subgrade (Section 2)

Figure 6.31 Piezometric head variation in subgrade (Section 3)

Figure 6.32 Piezometric head variation in subgrade (Section 5)

Figure 6.33 Piezometric head variation in subgrade (Section 6)

Figure 6.34 Piezometric head variation in subgrade (Section 8)

Figure 6.35 Piezometric head variation in subgrade (Section 9)

immediately following a precipitation event. The head then continues to dissipate typically over a period of 24 hours. The maximum head in the subgrade at the test sites did not increase beyond the subbase-subgrade interface. This suggests that most of the head buildup in the subbase layers is due to the development of a perched water table. The low pore pressures in the subgrade would not be expected to promote intrusion of fines into the subbase.

Moisture Tension Variation

Moisture tension variation at test sites measured with the gypsum blocks is shown in Figures 6.36 to 6.40. As described in Chapter 4, erratic suction were recorded at most of the sites due to poor block performance. Only data from the test sites where consistent data was achieved is shown in the figures.

As the soil becomes saturated from surface infiltration, its moisture content increases with a corresponding decrease in suction. Once precipitation ceases and with drainage, suction values tend to increase. Analysis of results from the test sites are in agreement with this concept. A study of the suction-moisture characteristics of subbase and subgrade soils (Appendix D) shows that moisture content changes associated with corresponding suction variation is insignificant.

Moisture variations in pavement layers do not indicate a specific trend. This is due to the short time period in which

Figure 6.36 Suction variation in Section 2

Figure 6.37 Suction variation in Section 3

Figure 6.38 Suction variation in Section 6

Figure 6.39 Suction variation in Section 8

Figure 6.40 Suction variation in Section 10

investigations were carried out at each site. A more complete picture of the moisture variation can be obtained if studies are conducted over an annual cycle to account for the effects of freeze thaw.

CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

Research was conducted on the performance characteristics of existing pavement subsurface drainage systems through inspection of collector systems and using instrumentation techniques for monitoring the effects of moisture movement. Subgrade soils from the instrumented sections were studied in the laboratory to provide a data base on material properties, with special emphasis on application to the computer program PURDRAIN.

Inspection Process Conclusions

Specific Findings

Inspection of both old and new edge drain installations have resulted in the following conclusions:

- Edge drains are effective in removing infiltrated water if care is taken during construction regarding slope, backfill compaction and outlet treatment.
- 2. Mesh type screens are more effective than other designs in preventing rodents and small animals from getting into the outlet pipes.
- 3. Treatment of the area around outlet pipes contribute

significantly to the proper functioning of collector systems. Vegetation growth, sedimentation and erosion around the outlet area reduce effectiveness of the system.

- 4. Edge drains on flat grades or at minimum slopes were observed to have the most problem with clogging. The outlet pipes at these points were partially buried due to absence of a freeboard between the outlet and roadside surface drainage,
- 5. Smooth walled plastic outlet pipes perform better than corrugated steel pipes as corrosion and sedimentation are more pronounced in the latter.
- 6. Care is required in backfilling and compacting trenches to avoid sags and collapse of the underdrain pipes and buckling of geotextile drains.
- 7. The type of fin drain inspected in this study has a tendency to buckle, as evident by camera observations and field excavations.
- 8. Infiltration of fines from base and subgrade soils surrounding the trench have resulted in clogged pipes, especially on flat slopes.
- 9. Most of the damage to outlet pipe openings result from mowing equipment.
- 10. T-connections are an impediment to inspection of pipe edge drains.
- 11. Backfilling around prefabricated edge drains with

excavated material results in an impervious layer coating the outside of the filter fabric. This tends to restrict water from entering the edge drains.

Recommendations

The following recommendations should be considered in performance improvment of collector systems:

- 1. The inspection methodology developed is recommended for use by INDOT in scheduling maintenance on edge drains.
- 2. The video imagescope serves as a valuable tool and its use is recommended for periodic inspection of collector systems.
- 3. Provide rip-rap protection or concrete pads to prevent erosion around the outlet area and damage by mowing equipment.
- 4. The outlet pipe should extend to the drainage ditch with a minimum freeboard of six inches.
- 5. Employ proper backfilling and compacting procedures be during construction to prevent sags and collapse of edge drains.
- 6. Use of a clean-out port and assembly using high water pressure is recommended for preventing sedimentation build-up and for clearing clogged pipes. The hose can be attached to a push rod as used with the camera system and inserted into the pipe from the outlet end.
- 7. Use is recommended of an improved product for

- prefabricated edge drains.
- 8. Connect outlet pipes to edge drains with a 60 degree Y-connection to facilitate inspection and cleaning.
- Backfill prefabricated edge drain trench with filter
 material to prevent clogging of drains.
- 10. Preparation of appropriate guidelines and directions by INDOT to incorporate, where appropriate, the findings of this research into the construction, inspection, maintenance and long term performance evaluation of edge drains.

Field And Laboratory Investigation Conclusions

The analysis of field and laboratory data has resulted in the following conclusions:

- Pavement instrumentation can be used effectively in monitoring response of subdrainage systems to moisture infiltration. The selection of appropriate instruments is a key factor in acquiring good data on pavement subdrainage performance.
- 2. Gypsum moisture blocks used in the study, deteriorate rapidly in constant wet conditions or if placed in materials having high salt content. Results of performance of this study indicate it is not appropriate for pavement moisture studies.
- 3. Comprehensive laboratory testing has resulted in the development of a database on the hydraulic properties of

- base/subbase materials and subgrade soils. This will help in calibrating and validating the computer program PURDRAIN and also in the analysis of new or retrofitted subdrainage systems by state highway agencies.
- 4. Measured values of the soil-moisture characteristic function $\psi(\theta)$ compare very well with those estimated by Brooks and Corey's and Van Genuchten's models for subbase materials and subgrade soils. High correlations between measured and estimated values were obtained for both models.
- 5. The constant head permeameter used in the study is suitable for measuring permeabilities of cohesionless subgrade soils and base course materials having large size aggregates.
- 6. Edge drain outflow increases immediately for a precipitation event for pavements with unsealed edge joints. This indicates the pavement-shoulder joint to be a major source of surface moisture infiltration. Sealing edge joints will reduce this form of moisture infiltration.
- 7. Drainage outflow volumes are not solely influenced by intensity of precipitation. Material behavior and environmental conditions also affect the flow from the pavement subdrainage system.
- 8. Pavement and edge drain types have significant effects on the response of drainage outflow to precipitation.

- 9. The nature of the base/subbase layer has a major effect on the drainage outflow volumes. For identical pavement geometry, sections with more permeable base layers exhibited higher outflow volumes.
- 10. Most of the head buildup in subbase layers is due to development of a perched water table. Higher head values were recorded under pavement centers as compared to wheel paths.
- 11. Prolonged head buildup underneath pavements can lead to pumping.
- 12. Suction variation at test sites was insignificant due to fully or partially saturated condition of pavement layers and shorter duration of measurement.
- 13. Datalogger requirements restricted the number and placement depth of sensors in this study. Replicate sensors placed at various depths in pavement layers would provide better information on moisture movement.

Recommendations for Further Study

During the course of the project, the following areas were identified for further research.

- Evaluation of suitable filter materials for trench backfills to address the problem of edge drain clogging.
- 2. Further research on monitoring pavement response to moisture infiltration using promising methods like Timedomain reflectrometry (TDR).

- 3. Development of a laboratory device to measure horizontal permeability of base layers. The permeameter should incorporate provisions for applying surcharge loads to simulate field conditions.
- 4. Studies on controlled test sections incorporating open graded and filter layers to optimize pavement subdrainage performance.

LIST OF REFERENCES

Allen, D.L., and Fleckenstein, L.J., "Evaluation of Hydraway Edge Drain on Pennyrille Parkway", Report UKTRP-88-15, Kentucky Transportation Research Program, University of Kentucky, KY, 1988.

American Association of State Highway and Transportation Officials, "Guide for Design of Pavement Structures", Washington, D.C., 1986.

American Association of State Highway and Transportation Officials (AASHTO), "AASHTO Materials: Part I and II", 14th Edition, Washington, D.C., 1986.

American Society For Testing And Materials (ASTM), "Soil and Rock: Dimension Stone; Geosynthetics", Annual Book of ASTM Standards - Volume 04.08, PA, 1991.

Barenberg, E.J., Bartholomew, C.L., and Herrin, M., "Pavement Distress Identification and Repair," Technical Report P-6, Department of the Army Construction Engineering Research Laboratory, Champaign, IL, 1974.

Barenberg, E.J., and Tayabji, S.D., "Evaluation of Typical Pavement Drainage System Using Open Graded Bituminous Aggregate Mixture Drainage Layers", Transportation Engineering Series No.10, Illinois Co-operative Highway Research Program Series No. 151, Urbana, IL, May 1974.

Barksdale, R.D., and Hicks, R.G., "Drainage Considerations to Minimize Distress at the Pavement-Shoulder Joint", Proceedings of the Int'l Conference on Concrete Pavement Design, Purdue University, 1977. pp 383-398

Baumgardner, R.H., and Mathis, D.M., "Experimental Project No.12, Concrete Pavement Drainage Rehabilitation; State of the Practice Report", Federal Highway Administration, Demonstration Projects Division, Washington, D.C., 1989.

Benkelman, A.C., "Structural Deterioration of Test Pavements: Flexible", Special Report 73, Highway Research Board, National Research Council, Washington, D.C., 1962.

Borland International, "TURBO PASCAL; Version 5.5", Borland International, Scotts Valley, CA, 1988.

Bouwer, H., and Jackson, R.D., "Determining Soil Properties", In Drainage For Agriculture, Agronomy Monograph No.17, American Society of Agronomy, Inc., Madison, WI, 1974.

Bruce, A.G., <u>Highway Design and Construction</u>, International Textbook Company, Scranton, PA, 1932.

Campbell Scientific, Inc., "Model 227 Delmhorst Cylindrical Soil Moisture Block Instruction Manual", Logan, UT, 1990.

Carpenter, S.H., Darter, M.I., Dempsey, B.J., and Herrin, S., "A Pavement Moisture Accelerated Distress (MAD) Identification System - Vol.1", Report FHWA/RD-81/079, Federal Highway Administration, September 1981.

Carpenter, S.H., Tirado, M.R., Rmeili, E.H., and Perry, G.L., "Methods for Shoulder Joint Sealing - Vol.I", Report FHWA/RD-87/002, Federal Highway Administration, Washington, D.C., 1987.

Casagrande, A., and Shannon, W.L., "Base Course Drainage for Airport Pavements", Proceedings, American Society of Civil Engineers, Volume 77, June 1951.

Cedergren, H.R., "Subdrains Can Protect Streets From Seepage", The American City, Volume 85, October 1970.

Cedergren, H.R., and O'Brien, K., "Development of Guidelines for the Design of Pavement Subdrainage Systems", Literature Review Abstracts, Federal Highway Administration, Washington, D.C., 1971.

Cedergren, H.R., O'Brien, K., and Arman, J.A., "Guidelines for the Design of Subsurface Drainage Systems for Highway Structural Sections", Report FHWA/RD-72/30, Federal Highway Administration, Washington, D.C., 1972.

Cedergren, H.R., "Maybe McAdam Was Right After All", Rural and Urban Roads, May 1973.

Cedergren, H.R., <u>Drainage of Highway & Airfield Pavements</u>, John Wiley & Sons, Inc. N.Y., 1974.

Cedergren, H.R., "Poor Pavement Drainage Could Cost \$15 Billion Yearly", Engineering News Record, New York, June 1978. p 21

Cedergren, H.R., "Why All Important Pavements Should Be Well Drained", TRR 1188, Transportation Research Board, National Research Council, Washington, D.C., 1989a. pp 56-62

Cedergren, H.R., <u>Seepage</u>, <u>Drainage And Flow Nets</u>, 3rd Edition, John Wiley & Sons, Inc., New York, 1989b.

Chisholm, R.A., and Phang, W.A., "Measurement and Prediction of Frost Penetration in Highways", Transportation Research Record 918, TRB, National Research Council, Washington, D.C., 1983. pp 1-10

Chu, T.Y., Humphries, W.R., and Chen S.N., "A Study of Subgrade Moisture Conditions in Connection with the Design of Flexible Pavement Structures", Proceedings, Third International Conference on the Structural Design of Asphalt Pavements - Vol:1, University of Michigan, MN, September 1972. pp 53-66

Coleman, J.D., and Russam, K., "The Effect of Climatic Factow on Subgrade Moisture Conditions", Geotechnique, Volume 11, 1961. pp 22-28

Corey, A.T.., and Brooks, R.H., "Hydraulic Properties of Porous Media", Hydrology Paper No.3, Colorado State University, Fort Collins, Colorado, March 1964.

Corey, G.L., Corey, A.T., and Brooks, R.H., "Similitude for Non-steady Drainage of Partially Saturated Soils", Hydrology Paper No.9, Colorado State University, Fort Collins, Colorado, August 1965.

Corps of Engineers., U.S. Army, "Subsurface Drainage Facilities for Airfields", Engineering Manual for Military Construction, Pt. XIII, Chapter 2, March 1946.

Corps of Engineers., US Army, "Field Moisture Content Investigations, Report No.2", Technical Memorandum No.3-401, Waterways Experiment Station, Vicksburg, MS, April 1955.

Corps of Engineers., US Army, "Engineering and Design - Pavement Design for Frost Conditions", Manual EM1110-345-306, 1959.

Crovetti, J.A., and Dempsey, B.J., "Pavement Subbases", Report UILU-ENG-91-2005, University of Illinois, Urbana-Champaign, IL, May 1991.

Curtis, L.F., and Trudgill, S., "The Measurement of Soil Moisture", Technical Bulletin No.13, British Geomorphological Research Group, 1975.

- Darter, M.I., Becker, J.M., and Snyder, M.B., "Concrete Pavement Evaluation System (COPES)", NCHRP Project No. 1-19, University of Illinois at Urbana-Champaign, IL, 1983.
- Darter, M.I. and Carpenter, S.H., "Techniques for Pavement Rehabilitation A Training Course", Report FHWA-HI-90-022, Federal Highway Administration, Washington, D.C., 1987.
- Dempsey, B.J. and Thompson, M.R., "A Heat-Transfer Model for Evaluating Frost Action and Temperature-Related Effects in Multi-layered Pavement Systems", Highway Research Record 342, HRB, National Research Council, Washington, D.C., 1970. pp 39-56
- Dempsey, B.J., Darter, M.I., and Carpenter, S.H., "Improving Subdrainage and Shoulders of Existing Pavements State of the Art", Report FHWA/RD-81/077, Federal Highway Administration, Washington, D.C., 1971.
- Dempsey, B.J., and Robnett, Q.L., "Influence of Precipitation, Joints and Sealing on Pavement Drainage", TRR 705, Transportation Research Board, National Research Council, Washington, D.C., 1979. pp 13-23
- Dempsey, B.J., "Laboratory and Field Studies of Channeling and Pumping", TRR 849, Transportation Research Board, National Research Council, Washington, D.C., 1982. pp 1-12
- Dempsey, B.J., Carpenter, S.H., and Darter, M.I., "Improving Subdrainage and Shoulders of Existing Pavements", Report FHWA/RD-81-0781, Federal Highway Administration, Washington, D.C., 1982.
- Dempsey, B.J., "Core Flow-Capacity Requirements of Geocomposite Fin Drain Materials Used in Pavement Subdrainage", TRR 1159, Transportation Research Board, National Research Council, Washington, D.C., 1988. pp 21-29
- Dierstein, P.G., and McKenzie, J.L., "Behavior of Rubber-Asphalt Sealants in Pavement-Shoulder Joints in Illinois", Interim Report No. 404, Illinois Department of Transportation, 1974.
- El Tani, M., "A Permeameter for Unsaturated Soils", Transport in Porous Media, Volume 6, Netherlands, 1991. pp 101-114
- Elzeftway, A., and Dempsey, B.J., "A Method of Predicting Hydraulic Conductivity and Water Diffusivity for Pavement Subgrade Soils", Civil Engineering Studies, Transportation Engineering Series No:16, University of Illinois, Urbana, IL, 1976.

Eno, F.H., "The Influence of Climate on the Building, Maintenance and Use of Roads in the United States", Proceedings, Volume 9, Highway Research Board, National Research Council, Washington, D.C., 1930. pp 211-243

Espinoza, D., Bourdeau, P.L., and White, T.D., "PURDRAIN - A computer program for infiltration analysis into unsaturated porous media; User's Guide", Interim Report, FHWA/JHRP/IN93-3, Purdue University, 1993.

Fang, H.Y., "Influence of Temperature and Other Climatic Factors on the Performance of Soil-Pavement Systems", Special Report 103, Highway Research Board, National Research Council, Washington, D.C., 1969.

Federal Highway Administration, "Pavement Design Process Review", Federal Highway Administration, Indiana Division, November 1990.

Forsyth, R.A., Wells, G.K., and Woodstrom, J.H., "The Economic Impact of Pavement Subdrainage", TRR 1121, Transportation Research Board, National Research Council, Washington, D.C., January, 1987. pp 77-86

Fredlund, D.G., "Soil Suction Monitoring for Roads and Airfields", Symposium; State of the Art of Pavement Response Monitoring System for Roads and Airfields, West Lebanon, NH., 1989.

Freeze, R.A., and Cherry, J.A., <u>Groundwater</u>, Prentice Hall, Inc., New Jersey, 1979.

Frobel, R.K., "Eccentric (Angled) Loading of Prefabricated Higway Edge Drains", TRR 1329, Transportation Research Board, National Research Council, Washington, D.C., 1991. pp 6-13

Gardner, W.H., In "Methods of Soil Analysis - Part I", Agronomy Monograph No:9, American Society of Agronomy, Inc., Madison, WI, 1965.

Gregory, J.W., <u>The Story of the Road</u>, 2nd Edition, Adams & Charles Black, Glasgow, 1931.

Guinnee, J.W., and Thomas, C.E., "Subgrade Moisture Conditions Under an Experimental Pavement", Bulletin 111, Highway Research Board, National Research Council, Washington, D.C., 1955.

Hajek, J.J., Kazmierowski, T.J., Sturn, H., Bathurst, R.J., and Raymond, G.P., "Field Performance of Open Graded Drainage Layers", Paper presented at 71st Annual Meeting of Transportation Research Board, Washington, D.C., January 1992.

Hall, K.T., Connor, J.M., Darter, M.I., and Carpenter, S.H., "Rehabilitation of Concrete Pavements - Vol.3", Report FHWA/RD-88/073, Federal Highway Administration, Washington, D.C., 1989.

Highlands, K.L., Turgeon, R., and Hoffman, G.L., "Prefabricated Pavement Base Drain", TRR 1329, Transportation Research Board, National Research Council, Washington, D.C., 1991. pp 42-48

Highlands K.L., and Hoffman, G.L., "Subbase Permeability and Pavement Performance", Report FHWA/PA-87/008+79-03, Federal Highway Administration, Washington, D.C., September 1987.

Hillel, D., <u>Introduction to Soil Physics</u>, Academic Press, Inc., Florida, 1982.

Hinshaw, K.T., "Hydraway Edge Drain Experience in Ohio", TRR 1159, Transportation Research Board, National Research Council, Washington, D.C., 1988. pp 30-38

Holtz, R. D., and Kovacs, W.D., <u>An Introduction to Geotechnical Engineering</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

Indiana Department of Highways, Standard Specifications, 1988.

Indiana Department of Transportation, Personal Communication, Division of Materials and Testing, Indianapolis, IN, 1992.

Janssen, D.J., and Dempsey, B.J., "Soil Water Properties of Subgrade Soils", Civil Engineering Studies, Transportation Engineering Series No.27, University of Illinois, Urbana, IL, April 1980.

Johnson, A.W., "Frost Action in Roads and Airfields - A Review of Literature", Special Report 1, Highway Research Board, National Research Council, Washington, D.C., 1952.

Johnson, A.W., and Lovell, C.W., Jr., "Frost Action Research Needs", Bulletin 71, Highway Research Board, National Research Council, Washington, D.C., 1953.

Kandhal, P.S., Lubold, C.L., and Roberts, F.L., "Water Damage to Asphalt Overlays: Case Histories", <u>Proceedings</u>, Association of Asphalt Paving Technologists, Vol.58, 1989. pp 40-76

Klute, A., and Dirksen, C., "Hydraulic Conductivity and Diffusivity: Laboratory Methods", Methods of Soil Analysis, Part I: Physical and Mineralogical Methods, Agronomy Monograph No:9, Soil Science Society of America, 1986.

Koerner, R.M., and Hwu, B., "Prefabricated Highway Edge Drains", TRR 1329, Transportation Research Board, National Research Council, Washington, D.C., 1991. pp 14-20

Kozlov, G.S., Mottola, V., and Mehalchich, G., "Improved Drainage and Frost Action Criteria for New Jersey Pavement Design, Vol.1 - Investigation for Subsurface Draiange Design", Report FHWA/NJ-84/0032, Federal Highway Administration, Washington, D.C., 1983.

Lambe, T.W., Soil Testing for Engineers, John Wiley & Sons, Inc., New York, 1951.

Liu, S.J., Jeyapalan, J.K., and Lytton, R.L., "Characteristics of Base and Subgrade Drainage of Pavements", Transportation Research Record 945, TRB, National Research Council, Washington, D.C., 1983. pp 1-10

Low, P.F., and Lovell, C.W., Jr., "The Factor of Moisture in Frost Action", Bulletin 225, Highway Research Board, National Research Council, Washington, D.C., 1959.

Majidzadeh, K., "Evaluation of Pavement Subsurface Drainage Conditions in Ohio", Report OHIO-DOT-05,76, Ohio Department of Transportation, OH, December 1976.

Markow, Michael J., "Simulating Pavement Performance Under Various Moisture Conditions", TRR 849, Transportation Research Board, National Research Council, Washington, D.C., 1982. pp 24-29

Marks, B.D., III., and Haliburton, T.A., "Subgrade Moisture Variations Studied with Nuclear Depth Gages", HRR 276, Highway Research Board, National Research Council, Washington, D.C., 1969. pp 14-24

Mathis, D.M., "Permeable Base Design and Construction", Proceedings, Fourth International Conference on Concrete Pavement Design and Rehabilitation, Purdue University, April 1989. pp 663-670

McAdam, J.L., "Report to the London Board of Agriculture", 1820.

McMaster, J.B., Wrong, G.A., and Phang, W.A., "Pavement Design in Seasonal Frost Area, Ontario", Transportation Research Record 849, TRB, National Research Council, Washington, D.C., 1982. pp 18-24 Moulton, L.K., and Seals, R.K., "Determination of the In-situ Permeability of Base and Subbase Course", Final Report, Report No: FHWA-RD-79-88, Federal Highway Administration, Washington, D.C., 1979.

Moulton, L.K., "Highway Subdrainage Design", Report FHWA/TS-80/224, Federal Highway Administration, Washington, D.C., 1980.

Moulton, L.K., and Schaub, J.H., "A Rational Approach to the Design of Flexible Pavements to Resist the Detrimental Effects of Frost Action", Highway Research Record 276, HRB, National Research Council, Washington, D.C., 1969. pp 25-38

National Co-operative Highway Research Program, "Plastic Pipe for Subsurface Drainage of Transportation Facilities", NCHRP Project 4-11, Report 225, Washington, D.C., 1980.

Organization for Economic Co-operation and Development (OECD), "Water in Roads: Prediction of Moisture Content of Road Subgrades", Paris, France, 1973.

Organization For Economic Co-operation And Development (OECD), "Frost Action On Roads", <u>Proceedings</u>, Symposium on Frost Action on Roads, Paris, France, 1974. pp 1-220

Organization for Economic Co-operation and Development (OECD), "Catalogue of Road Surface Deficiencies", Paris, France, 1978.

Portland Cement Association, "Thickness Design for Concrete Highway and Street Pavements", Skokie, IL, 1984.

Raad, L., "Pumping Mechanism of Foundation Soils Under Rigid Pavements", TRR 849, Transportation Research Board, National Research Council, Washington, D.C., 1982. pp 29-37

Ray, M., and Christory, J.P., "Combating Concrete Pavement Slab Pumping, State of the Art and Recommendations", Proceedings, Fourth International Conference on Concrete Pavement Design and Rehabilitation, Purdue University, April 1989. pp 725-733

Richards, L.A., "Methods of Measuring Soil Moisture Tension", Soil Science, Vol. 68, 1949. pp 95-112

Ridegway, H.H., "Infiltration of Water Through the Pavement Surface", TRR 616, Transportation Research Board, National Research Council, Washington, D.C., 1976. pp 98-100

Ridgeway, H.H., "Pavement Subsurface Drainage Systems", NCHRP Synthesis of Highway Practice 96, Transportation Research Board, National Research Council, Washington, D.C., 1982.

Ring, G.W., "Drainage of Concrete Pavement Structures", Proceedings, International Conference on Concrete Pavement Design, Purdue University, 1977. pp 365-381

SAS Institute, Inc., "SAS/STAT Guide for Personal Computers", Version 6 Edition, SAS Institute, Inc., Cary, North Carolina, 1985. pp 183-260

Shahin, M.Y. and Kohn, S.D., "Pavement Maintenance Management for Roads and Parking Lots", Technicl Report M-294, Corps of Engineers, US Army, Washington, D.C., 1981.

Smith, T., Forsyth, R., and Gray, W., "Performance of an Asphalt Treated Drainage Blanket in a Flexible Pavement Section", HRR 310, Highway Research Board, National Research Council, Washington, D.C., 1970. pp 40-51

Steffes, R.F., Marks, V.J., and Dirks, K.L., "Video Evaluation of Highway Drainage Systems", In Transportation Research Record 1329, TRB, National Research Council, Washington, D.C., 1991. pp 27-35

Stevens, J.C., Maner, A.W., and Shelburne, T.E., "Pavement Performance Correlated With Soil Areas", Volume 29, Highway Research Board, National Research Council, Washington, D.C., 1949. pp 445-465

Strohm, W.E., Nettles, E.H., and Calhoun, C.C., Jr., "Study of Drainage Characteristics of Base Course Materials", HRR 203, Highway Research Board, National Research Council, Washington, D.C., 1967. pp 8-28

Sulten, P., "Water Under Concrete Pavements - Current Research in Bundensanstalt for Strassenwesen", International Seminar on Drainage and Erodibility at the Concrete Slab-Subbase-Shoulder Interface", Paris, France, 1983. pp 1-10

Terzhagi, K., and Peck, R.B., <u>Soil Mechanics and Engineering</u> <u>Practice</u>, John Wiley & Sons, Inc., New York, 1948.

The Asphalt Institute, "Drainage of Asphalt Pavement Structures", Manual Series No.15, College Park, MD, 1966.

The AASHO Road Test, "Report 7: Summary Report", Special Report 61G, Transporation Research Board, National Research Council, Washington, D.C., 1962. pp 60

The WASHO Road Test, "Part 2: Test Data, Analyses, Findings", Special Report 22, Highway Research Board, National Research Council, Washington, D.C., 1955. pp 212

Topp, G.C., Davis, J.L., and Annan, A.P., "Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines", Water Resources Research, Vol.16, No:3, June 1980.

Turner, K.A., and Jumikis, A.R., "Subsurface Temperatures and Moisture Contents in Six New Jersey Soils, 1954-1955", Bulletin 135, Highway Research Board, National Research Council, Washington, D.C., 1956.

Van Genuchten, M. Th., "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil Science Society of America Journal, Volume 44, No.5, September-October 1980. pp 892-898

Van Wijk, A.J., and Lovell, C.W., Jr., "Importance of Drainage to Rigid Pavement Performance", <u>Proceedings</u>, Fifteenth Ohio River Valley Soils Seminar on Practical Application of Drainage in Geotechnical Engineering, Kentucky, November 1984. pp 1-25

Wallace, K.B., "Moisture Transients at the Pavement Edge: Analytical Studies of the Influence of Materials and Cross Section Design", Geotechnique, Vol. 27, Paper No:4, 1977. pp 497-516

Wallace, K.B., "The Analysis of Surface Infiltration into Earth Structures", <u>Proceedings</u>, Fourth South East Asian Conference on Soil Engineering, Kuala Lumpur, Malaysia, 1975. pp 3.29-3.38

Wells, G.K., "Evaluation of Edge Drain Performance", Office of Transportation Laboratory, California DOT, CA, November 1985.

Woodstrom, J.H., "Concrete Pavement Drainage in California", International Seminar on Drainage and Erodibility at the Slab-Subbase-Shoulder Interfaces, Paris, France, March 1983. pp 1-24

Yoder, E.J., and Colucci-Rios, B., "Truck Size and Weight Issues", <u>Proceedings</u>, 66th Purdue Road School, Purdue University, March 1980.

Yoder, E.J., "Pumping of Highway and Airfield Pavements", Joint Highway Research Project, Purdue University, 1946.

· •				
				٥
	49			
		Ġ.		

APPENDICES

Appendix	A	-	Sample CR-10 Datalogger Program	. 263
Appendix	В	-	List and Cost of Instrumentation	. 276
Appendix	C	-	Condition Survey Data Sheets	.279
Appendix	D	-	Soil Properties and Soil-Moisture	
			Characteristics Data	.345
Appendix	E	-	Regression Output and Figures for	
			Parameter Estimation	.362
Appendix	F	-	Data from Instrumented Sites	.382
Appendix	G	-	Statistical Analysis Printouts	.418

ÿ.			
			ç.

Appendix A Sample CR-10 Datalogger Program

	(2)	
		♠
Ç.		

```
PURDUE UNIVERSITY
                         Site: US-31, HAMILTON COUNTY IN CARMEL Written: 10/20/90
Flag Usage: 1 - ACTIVATE 15 MINUTE OUTPUT 2 - ACTIVATE HOURLY OUTPUT
Input Channel Usage:
             Channel Usage:

1D - DRUCK PDCR 831 PR. TRANSDUCER

S/N 340581, 2.5 PSIG

HOLE # 1, 14.50" DEPTH

2D - DRUCK PDCR 831 PR. TRANSDUCER

S/N 340582, 2.5 PSIG

HOLE # 3, 14.25" DEPTH

3D - DRUCK PDCR 831 PR. TRANSDUCER

S/N 340583, 2.5 PSIG

HOLE # 5, 14.50" DEPTH

4D - DRUCK PDCR 831 PR. TRNASDUCER

S/N 340584, 2.5 PSIG

HOLE # 6, 14.50" DEPTH

9S - DELMHORST SOIL MOISTURE BLOCK

HOLE # 2, 14.5" DEPTH
                           HOLE # 2, 14.5" DEPTH
DELMHORST SOIL MOISTURE BLOCK
HOLE # 4, 14.00" DEPTH
DELMHORST
           HOLE # 4, 14.00" DEPTH

11S - DELMHORST SOIL MOISTURE BLOCK
HOLE # 7, 14.50" DEPTH

12S - THERMISTOR SOIL TEMPERATURE PROBE
HOLE # 3, 14.50" DEPTH

NOTE: D = DIFFERENTIAL; S = SINGLE EN
                                                                               S = SINGLE ENDED INPUTS
Excitation Channel Usage:
           1 - DRUCK PRESSURE TRANSDUCERS, 2500 MILLIVOLTS
2 - DELMHORST SOIL MOISTURE BLOCKS, 2500 MILLIVOL
3 - THERMISTOR TEMPERATURE PROBE, 2000 MILLIVOLTS
Control Port Usage:
Pulse Input Channel Usage:
1 - RAIN GAGE, 0.01" PER TIP
2 - FLOW TIPPING BUCKET, 1.1 LITERS PER TIP
Output Array Definitions:

FIVE MINUTE OUTPUT

1 - ARRAY ID (0001)
                       - ARRAY ID (0001)
- STATION ID
- DAY OF YEAR
- TIME (hhmm)
- RAIN (inches)
- AVG. FLOW FOR 5 MINUTES (gallons/minute)
           FIFTEEN MINUTE OUTPUT
                    1 - ARRAY ID (0002)
2 - STATION ID
                        - DAY OF YEAR
                        - TIME (hhmm)
- RAIN (inches)
```

Program: PAVEMENT SUBDRAINAGE STUDY

JOINT HIGHWAY RESEARCH PROJECT

```
6 - AVG. FLOW FOR 15 MINUTES (gallons/min)
7 - DRUCK #1 (FT)
                                                FT
                  - DRUCK #2
            9 - DRUCK #3
10 - DRUCK #4
11 - DELMHORST
            10 - DRUCK #4 (FT)
11 - DELMHORST #1 (FT)
12 - DELMHORST #2 (FT)
13 - DELMHORST #3 (FT)
                  - SOIL TEMPERATURE (DEGREES FARENHEIT)
       14 - SOIL TEMPERATURE (DEGREES FAREMETT)
HOURLY OUTPUT

1 - ARRAY ID (0003)
2 - STATION ID
3 - DAY OF YEAR
4 - TIME (hhmm)
5 - RAIN (inches)
6 - AVERAGE FLOW FOR 1 HOUR (gallons/min)
            7 - DRUCK #1 (FT)
8 - DRUCK #2 (FT)
9 - DRUCK #3 (FT)
10 - DRUCK #4 (FT)
            10 - DRUCK #4 (FT)
11 - DELMHORST #1
12 - DELMHORST #2
13 - DELMHORST #3
                                                          (FT)
(FT)
(FT)
       13 - DELMHORST #3 (FT)
14 - SOIL TEMPERATURE (DEG.
DAILY OUTPUT (AT 2400 HOURS)
1 - ARRAY ID (0004)
2 - STATION ID
3 - DAY OF YEAR
4 - TIME (hhmm)
5 - RAIN (inches)
6 - AVERAGE FLOW FOR 24 H
                                                                    (DEGREES FARENHEIT)
                   - AVERAGE FLOW FOR 24 HOURS (gallons/min)
- DRUCK #1 (FT)
- DRUCK #2 (FT)
- DRUCK #3 (FT)
- DRUCK #4 (FT)
                8
                                                 (FT)
                   - DRUCK #4
             10
             11 - DELMHORST #1 (FT)

12 - DELMHORST #2 (FT)

13 - DELMHORST #3 (FT)

14 - SOIL TEMPERATURE (

15 - BATTERY (VOLTS DC)
                                                                    (DEGREES FARENHEIT)
                                 Table 1 Programs
Sec. Execution Interval
    01: 300
01: P30
                                  z=F
    01: 3129
02: 00
                                  Exponent of 10
                                  Z Loc [:STAT'N ID]
    03: 1
                                 Resolution
02: P78
                                  High Resolution
     01: 1
```

```
Pulse
     P3
03:
                    Rep
Pulse Input Chan
Switch closure
   01: 1
   02:
   03: 2
                     Loc [:RAIN TIPS]
   04: 2
05: 1
   06: 0.0000
                     Offset
04: P37
01: 2
02: 0.01
03: 3
                     Z=X*F
                     X Loc RAIN TIPS
                     Z Loc [:RAIN/5MIN]
                     Z=X+Y
05: P33
                     X Loc RAIN/5MIN
Y Loc RAIN/15MN
Z Loc [:RAIN/15MN] Rain(inches)for 15 minute cut
   01: 3
02: 4
   03:
                     X Loc RAIN/5MIN
Y Loc RAIN/1HR
Z Loc [:RAIN/1HR ] Rain(inches) for hourly output
06: P33
                      Z=X+Y
   01: 3
02: 5
03: 5
                      Z=X+Y
 07: P33
                      X Loc RAIN/5MIN
Y Loc RAIN/DAY
   01: 3
02: 6
                      Z Loc [:RAIN/DAY ] Rain(inches) for daily output
    03: 6
                      Pulse
 08: P3
                      Rep
Pulse Input Chan
Switch closure
Loc [:FLOW TIPS]
Mult
    01: 1
   02: 2
03: 2
04: 7
05: 1
06: 0
                      Offset
                      z=x*F
 09: P37
                      X Loc FLOW TIPS
    01: 7
02: .26839
03: 8
                       ar{	ilde{	imes}} Loc [:FLOW/5MIN] (converts tips to gallons)
                       Z=X+Y
 10: P33
                      X Loc FLOW/5MIN
Y Loc FLOW/15MN
Z Loc [:FLOW/15MN] Flow(gal) for 15 minute outpo
    01: 8
02: 9
    03: 9
                       Z=X+Y
 11: P33
                      X Loc FLOW/5MIN
Y Loc FLOW/1 HR
Z Loc [:FLOW/1 HR] flow(gal) for hourly output
    01: 8
02: 10
03: 10
                       Z=X+Y
  12: P33
                       X Loc FLOW/5MIN
Y Loc FLOW/DAY
     01: 8
02: 11
                       Z Loc [:FLOW/DAY ] Flow (gal) for daily output
     03: 11
```

```
13: P89
                    If X <=> F
   01: 2
02: 3
03: 1
04: 30
                    X Loc RAIN TIPS
                    >=
                    Then Do
 14: P86
   01: 1
                    Call Subroutine 1
15: P94
                    Else
 16: P89
                    If X \le F
   01: 7
02: 3
03: 1
04: 30
                    X Loc FLOW TIPS
                    >=
                    F
                    Then Do
17: P86
01: 1
                    Call Subroutine 1 5 minute output
18: P95
                    End
19: P95
                    End
20: P91
01: 11
02: 30
                   If Flag/Port
Do if flag 1 is high
                    Then Do
                   If time is minutes into a minute interval
21: P92
   01: 0
02: 15
03: 30
                   Then Do
22: P32
01: 12
                    Z=Z+1
                   Z Loc [:TIMER 15M] Keeps 15 min. output active 6 hrs
23: P86
01: 2
                   Call Subroutine 2 DELMHORST AND DRUCK SENSING
24: P86
  01: 3
                   Call Subroutine 3
                                                        15 MINUTE OUTPUT
25: P95
                   End
26: P95
                   End
27: P91
01: 12
02: 30
                   If Flag/Port
Do if flag 2 is high
Then Do
28: P92
01: 0
02: 60
03: 30
                   If time is minutes into a minute interval
                   Then Do
29: P32
01: 23
                   Z=Z+1
                   Z Loc [:TIMER 1HR] Keeps 1 hour output active 24 hrs
```

30: P86 01: 2	Do Call Subroutine 2 DELMHORST AND DRUCK SENSING
31: P86 01: 4	Do Call Subroutine 4 TEMPERATURE SENSING
32: P86 01: 5	Do Call Subroutine 5 HOURLY OUTPUT
33: P95	End
34: P95	End .
35: P92 01: 0 02: 1440 03: 30	If time is minutes into a minute interval Then Do
36: P10 01: 27	Battery Voltage Loc [:BATTERY] Monitors battery voltage
37: P86 01: 2	Do Call Subroutine 2
38: P86 01: 4	Do Call Subroutine 4
39: P86 01: 6	Do Call Subroutine 6 DAILY OUTPUT (at 2400 hrs)
40: P95	End
41: P96 01: 71	Serial Output SM192/SM716
42: P	End Table 1
* 2 · 01: 0.0000	Table 2 Programs Sec. Execution Interval
01: P	End Table 2
* 3	Table 3 Subroutines
01: P85 01: 1	Beginning of Subroutine 5 MINUTE OUTPUT Subroutine Number
02: P37 01: 8 02: .2	Z=X*F X Loc FLOW/5MIN F
03: 13	Z Loc [:flow1 GPM] Average 5 min. flow in gal/min
03: P86 01: 10	Do Set high Flag O (output)

```
Set Active Storage Area
Final Storage Area 1
Array ID or location
04: P80
   o1: 1
    02: 1
05: P70
01: 1
02: 1
                        Sample
                       Reps
                        Loc STAT'N ID
06: P77
                        Real Time
                        Day, Hour-Minute
   01: 220
07: P70
01: 1
02: 3
                        Sample
                        Reps
                        Loc RAIN/5MIN
08: P70
                       Sample
   01: 1
02: 13
                       Reps
                        Loc flow1 GPM
09: P86
   01: 11
                       Set high Flag 1
10: P30
                        z=F
   01: 0
                       F
   02: 0
03: 12
                       Exponent of 10
                       Z Loc [:TIMER 15M]
                                                          Reset Timer while rain occurs
11: P30
                       z=F
   01: 0
02: 0
                       Exponent of 10 Z Loc [:TIMER 1HR]
   03: 23
                                                          Reset Timer during flow periods
12: P95
                       End
13: P85
                       Beginning of Subroutine
   01: 2
                       Subroutiñe Number
                                                            DELMHORST AND DRUCK SENSING
14: P6
                       Full Bridge
01: 4
02: 23
03: 1
04: 1
05: 2500
06: 14
                       Reps
25 mV 60 Hz rejection Range
IN Chan
                       Excite all reps w/EXchan 1 mV Excitation
Loc [:DRUCK #1 ]
Mult
   08: 0
                       Offset
                       Scaling Array (A*loc +B)
Start Loc [:DRUCK #1 ]
Al Druck 1 (340581) Multiplier
Bl Druck 1 Offset
A2 Druck 2 (340582) Multiplier
B2 Druck 2 Offset
A3 Druck 3 (340583) Multiplier
B3 Druck 3 Offset
B4 Druck 4 (340584) Multiplier
15: P53
01: 14
02: 2.3586
03: -.0556
   04: 2.3347
05: -.0978
06: 2.3328
   07: -.433
   08: 2.3395
                                 Druck 4 (340584) Multiplier
Druck 4 Offset
   09: -.1915
```

```
Reps
2500 mV fast Range
IN Chan
Excite all reps w/EXchan 2
mV Excitation
Loc [:DELM SM 1]
Mult
Officet
    04: 2
05: 2500
06: 18
07: 1
    08: 0
                          Offset
 18: P59
                          BR Transform Rf[X/(1-X)]
    01: 3
02: 18
                          Reps
                          Loc [:DELM SM 1]
Multiplier (Rf)
   9: P55

01: 3

02: 18

03: 18

04: .06516

05: .95117

06: -.25159

07: -.03736

08: .03723

09: -.00394
 19:
                          Polynomial
                         Reps
X Loc DELM SM 1
F(X) Loc [:DELM SM 1]
C0
C1
C2
                         C3
C4
C5
                         Scaling Array (A*loc +B)
Start Loc [:DELM SM 1]
Al Bars to feet conversion factor
20: P53
   01: 18
02: 33.456
                         B1
A2
   03: 0
   04: 33.456
                                      Bars to feet conversion factor
   05: 0
                         B2
   06: 33.456
07: 0
                         AЗ
                                      Bars to feet coversion factor
                         B3
   08: 1
                         A4
   09: 0
                         B4
21:
        P95
                         End
22:
       P85
                         Beginning of Subroutine
   01: 3
                         Subroutiñe Number
                                                                           15 MINUTE OUTPUT
```

Scaling Array (A*loc +B)
Start Loc [:DRUCK #1]

Druck 1 Datum Correction

Druck 2 Datum Correction

Druck 3 Datum Correction

Druck 4 Datum Correction

16: P53

01: 14 02: 1 03: 0

04: 1

05: 0

07: 0

08: 1

09: 0

01: 3 02: 15 03: 9

17: P5

06: 1 Αl Bl

A2

B2

A3

B3

Α4

B4

AC Half Bridge

```
23: P89
01: 12
02: 4
03: 25
04: 30
                    If X<=>F
X Loc TIMER 15M
                    Then Do
24: P30
                    Z=F
   01: 15
02: 0
03: 21
                    Exponent of 10 Z Loc [:FACTOR 15]
                                                 For 15 minute flow calculations
                     Z=X/Y
25: P38
   01: 9
02: 21
03: 22
                    X Loc FLOW/15MN
Y Loc FACTOR 15
Z Loc [:FLOW2 GPM]
                                                    Average 15 minute flow in GPM
26: P86
01: 10
                    Set high Flag 0 (output)
27: P80
                     Set Active Storage Area
                    Final Storage Area 1
Array ID or location
   01: 1
02: 2
                                                      Sets ID for 15 min. output
28: P70.
01: 1
02: 1
                     Sample
                    Reps
                    Loc STAT'N ID
                    Real Time
29: P77
                    Day, Hour-Minute
   01: 220
30: P70
                     Sample
   01: 1
02: 4
                    Reps
Loc RAIN/15MN
31: P70
                     Sample
   01: 1
02: 22
                    Reps
Loc FLOW2 GPM
32: P70
01: 7
02: 14
                     Sample
                     Reps
                     Loc DRUCK #1
33: P30
01: 0
02: 0
                     z=F
                     Exponent of 10 Z Loc [:RAIN/15MN]
   03: 4
34: P30
                     Z = F
   01: 0
02: 0
03: 9
                     Exponent of 10 Z Loc [:FLOW/15MN]
35: P86
                     Set high Flag 2
   01: 12
36: P94
                     Else
```

```
37: P86
                   Do
                   Set low Flag 1
  01: 21
38:
      P95
                   End
39: P95
                   End
                   Beginning of Subroutine
Subroutine Number
40: P85
01: 4
                                                           TEMPERATURE SENSING
41: P11
01: 1
02: 12
03: 3
04: 24
05: 1.8
06: 32
                   Temp 107 Probe
                   Rep
                   IN Chan
                  Excite all reps w/EXchan 3
Loc [:temp'ture]
Mult
                                  CONVERTS DEGREE CELSIUS INTO FARENHEIT
                   Offset
42: P95
                   End
                   Beginning of Subroutine
43: P85
                                                             HOURLY OUTPUT
  01: 5
                   Subroutine Number
44: P89
                   If X <=>F
  01: 23
02: 4
03: 25
04: 30
                   X Loc TIMER 1HR
                   F
                   Then Do
45: P30
                   z=F
  01: 60
02: 0
03: 25
                   F
                   Exponent of 10 Z Loc [:FACTOR 1H]
                                                  For hourly flow calculation
                   Z=X/Y
X Loc FLOW/1 HR
Y Loc FACTOR 1H
Z Loc [:FLOW3 GPM]
46: P38
  01: 10
02: 25
03: 26
                                                 Average hourly flow in GPM
47: P86
   01: 10
                   Set high Flag 0 (output)
48: P80
                   Set Active Storage Area
  01: 1
02: 3
                   Final Storage Area 1 Array ID or location
                                                  Sets ID for hourly output
49: P70
                   Sample
   01: 1
02: 1
                   Reps
                   Loc STAT'N ID
50: P77
                   Real Time
   01: 220
                   Day, Hour-Minute
51: P70
                   Sample
   01: 1
02: 5
                   Reps
```

Loc RAIN/1HR

```
52: P70
                   Sample
  01: 1
02: 26
                   Reps
Loc FLOW3 GPM
53: P70
                   Sample
  01: 7
02: 14
                  Reps
Loc DRUCK #1
54: P70
                   Sample
  01: 1
02: 24
                   Reps
                   Loc temp'ture
55: P30
                   z=F
  01: 0
                   Exponent of 10 Z Loc [:RAIN/1HR]
  02: 0
03: 5
56: P30
                   Z=F
  01: 0
02: 0
03: 10
                   Ē
                   Exponent of 10
                   Z Loc [:FLOW/1 HR]
57: P94
                   Else
58: P86
                   Set low Flag 2
  01: 22
59: P30
                   Z=F
  01: 0
02: 0
03: 23
                   Exponent of 10 Z Loc [:TIMER 1HR]
60: P95
                   End
61: P95
                   End
62: P85
01: 6
                   Beginning of Subroutine
                                                           DAILY OUTPUT
                   Subroutine Number
63: P30
01: 1440
02: 0
03: 28
                   z=F
                   Exponent of 10
                   Z Loc [:FACTOR dy]
                                                  For daily flow calculations
64: P38
                   Z=X/Y
  01: 11
02: 28
03: 29
                   X Loc FLOW/DAY
Y Loc FACTOR dy
Z Loc [:FLOW4 GPM]
                                                Average daily flow in GPM
65: P86
  01: 10
                   Set high Flag 0 (output)
66: P80
                   Set Active Storage Area
  01: 1
02: 4
                   Final Storage Area 1
Array ID or location
                                                  Sets ID for daily output
```

```
67: P70
                       Sample
   01: 1
02: 1
                       Reps
Loc STAT'N ID
                       Real Time
68: P77
01: 321
                       Day, Hour-Minute
69: P70
                       Sample
   01: 1
02: 6
                       Reps
Loc RAIN/DAY
70: P70
01: 1
02: 29
                        Sample
                       Reps
Loc FLOW4 GPM
71: P70
01: 7
02: 14
                        Sample
                       Reps
Loc DRUCK #1
72: P70
01: 1
02: 24
                        Sample
                       Reps
Loc temp'ture
73: P70
01: 1
02: 27
                        Sample
                        Reps
Loc BATTERY
74: P30
                        z=F
   01: 0
02: 0
03: 6
                        Exponent of 10 Z Loc [:RAIN/DAY ]
                                                                 Reset rain counter:
75: P30
                        z=F
   01: 0
02: 0
03: 11
                        Exponent of 10 Z Loc [:FLOW/DAY ]
                                                                  Reset flow counter:
                        End
 76:
         P95
                        End Table 3
 77:
         P
                        Mode 10 Memory Allocation
Input Locations
Intermediate Locations
Final Storage Area 2
    A
01: 29
02: 64
03: 0.0000
                        Mode 12 Security
LOCK 1
LOCK 2
LOCK 3
          С
    01: 0
02: 0
03: 0000
```

```
Key:
T=Table Number
E=Entry Number
L=Location Number
T:
         E:
                 L:
                         Z Loc [:STAT'N ID]
Loc [:RAIN TIPS]
1:
         1:
                 1:
1:
         3:
                 2:
                                      [:RAIN/5MIN]
[:RAIN/15MN]
[:RAIN/15MN]
                          Z Loc
                 3:
1:
                          Z Loc
Z Loc
         5:
                                                                  Rain(inches) for 15 minute output
1:
      33:
                                       :RAIN/1HR
        6:
                          Z Loc
                                                                  Rain(inches) for hourly output
                         Z Loc
Z Loc
                                      RAIN/1HR
RAIN/DAY
RAIN/DAY
                 5:
      55:
                                                                  Rain(inches) for daily output
Reset rain counter
                 6:
                 6:
                          Z Loc
                         Loc [:FLOW TIPS]
        8:
                 7:
                                      [:FLOW/5MIN]
[:FLOW/15MN]
        9:
                 8:
                          Z Loc
1:
                                                                 (converts tips to gallons)
Flow(gal) for 15 minute output
                 9:
      10:
                          Z Loc
1:
                 9:
                         Z Loc
Z Loc
                                       :FLOW/15MN
      34:
                                      FLOW/1 HR
FLOW/1 HR
FLOW/DAY
FLOW/DAY
FLOW/DAY
TIMER 15M
TIMER 15M
Flow/Flow
Flow/Flow
Flow/Flow
Flow/15M
      11:
               10:
                                                                  flow(gal) for hourly output
                         Z Loc
Z Loc
      56:
               10:
              11:
                                                                 Flow (gal) for daily output
Reset flow counter.
      12:
                         Z Loc
Z Loc
Z Loc
      75:
              11:
              12:
12:
                                                                 Keeps 15 min. output active 6 hrs
Reset Timer while rain occurs
Average 5 min. flow in gal/min
      22:
      10:
                        Z Loc [:flow1 GPM] A
Loc [:DRUCK #1 ]
Start Loc [:DRUCK #1 ]
Start Loc [:DRUCK #1 ]
Loc [:DELM SM 1]
Loc [:DELM SM 1]
F(X) Loc [:DELM SM 1]
Z Loc [:FACTOR 15] F
Z Loc [:FLOW2 GPM]
Z Loc [:TIMER 1HR] Kee
Z Loc [:TIMER 1HR] R
Z Loc [:TIMER 1HR]
Loc [:temp'ture]
Z Loc [:FLOW3 GPM]
Loc [:BATTERY]
                          Z Loc
        2:
              13:
      14:
              14:
      15:
              14:
      16:
              14:
      17:
              18:
      18:
              18:
      19:
              18:
      20:
              18:
                                                                 For 15 minute flow calculations
Average 15 minute flow in GPM
Keeps 1 hour output active 24 hrs
Reset Timer during flow periods
      24:
              21:
      25:
               22:
      29:
              23:
              23:
3:
      11:
      59:
              23:
              24:
      41:
                                                                        For hourly flow calculations Average hourly flow in GPM
      45:
              25:
              26:
27:
3:
      46:
                         Loc [:BATTERY ]
Z Loc [:FACTOR dy]
Z Loc [:FLOW4 GPM]
      36:
                                                                         Monitors battery voltage
      63:
              28:
                                                                       For daily flow calculations Average daily flow in GPM
3:
      64:
              29:
```

Appendix B List and Cost of Instrumentation

.

DATALOGGER SYSTEM

Item	Description	Qty.	Unit Price	Total Cost
1	Campbell Scientific CR10 Measurement and Control Module w/WP Wiring Panel	1		1010.00
2	CR-10 Keyboard and Display	1		250.00
3	Solid State Storage Module (96,000 data values) for CR-10, SM#192	1		450.00
4	Peripheral Connector Cable for Datalogger, #SC12	2	20.00	40.00
5	C-Cell Battery Pack for CR-10, #10ALK/C (12volts)	1		60.00
6	Clock-S.O Tape Read Card and software for IBM-PC #PC20	1		500.00
7	PC-201 Storage Module Connector Cable, #SC 209	1		25.00
8	Datalogger Support Software #PC 208	1		200.00
	MEASUREMENT S	YSTEMS		
1	Delmhorst Gypsum Moisture Blocks, #GB-1	5	7.00	35.00
2	Tantalum 100 microfarad capacitors for gypsum blocks	20	2.50	60.00
3	1 kohm resistors for gypsum	5	0.60	3.00
4	Druck Depth/Level Pressure Transducer PDCR831 w/300 feet additional lead cables	4	656.00	2624.00
5	Campbell Scientific Thermistor Temperature Probe w/additional lead cable, #107B			57.00

Item	Description	Qty	Unit Price	Total Cost
6	Texas Instrument Raingage #TE525	1		246.00
7	Outflow Tipping Bucket, Purdue University Central Machine Shop	1		400.00
	MISCELLANE	<u>ous</u>		
1	Wooden Enclosure House, Purdue University Physical Plant, Carpentry Section	1		400.00
2	PVC Junction Box with removable lid	1		32.00
3	PVC Flexible Coupling 4"x6"	1		20.00
4	PVC Pipe 2" diameter	50′	0.50	25.00
5	PVC Fittings 2" dia.	12	0.50	6.00

Appendix C Condition Survey Data Sheets

÷			
Ç.			
	·		

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent spincy is USACE.

(BRANCE DATE_	ist	-31 - Warres 522 7 40	SAMPLE UNIT
		SURVE	YED BY .	7. 100000	SLAB SIZE 24 × 40
C	40°	9 27 L 8 27 L 7 27 L 7 27 L 6 27 L 28 L 27 L 28 L 27 L 28 L 27 L 31 L 28 L 27 L 31 L 28 L 27 L	31L 27L 31L 37L 37L 37L 27L 27L 25L 25L 31L 31L 27L 25L 25L 31L 31L		Distress Types 21. Blow-Up Buckling/Shattering 22. Corner Break 23. Divided Slab Cracking 24. Durability ("D") 34. Punchout Cracking 25. Faulting 26. Jaint Seal Damage 27. Lane/Shldr Drop Off 28. Linear Cracking 29. Patching, Large 8 38. Spalling, Corner Util Cuts 39. Spalling, U 30. Patching, Smal. 7///////////////////////////////////
	\$PÓ	23/L 27L	27L 31L	• • • •	q= TOTAL DEDUCT VALUE CORRECTED DEDUCT VALUE (CDV) PCI = 100 - CDV =
	. —	276	28M. 31V	shloh	RATING =
 "	. Ø	Distress26 ⇒	, Which Is		Figure E-1.

392-510 0 - 83 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET

For use of this form, see TM 8-623; the proponent agency is USACE.

BRANCH VS-31	_ SECTION JRLI				
DATE 13 - 13	SAMPLE UNIT				
SURVEYED BY Z. ALIMED	SL	4 <i>B SIZ</i>	ZE	- x 40°	
37M 31L 27L. 32M 31L 9 28M 31M. 21L 28L. 21L 28L. 8 39L. 31L. 21L 31L. 40	21. Blaw- Buckl 22. Corne 23. Divid 24. Dura Crac. 25. Fault 26. Jaint 27. Lane. 28. Line. 29. Patch Util (30. Patch	Up ing/Sha ir Breal ied Slot bility (' king ing Seal Do /Shldr L r Crack ing, Lan Cuts ing, Sn	ttering (3. "D") 3. 3. mage 3. mage 3. mage 3. mage 3. mage 3. mage 3.	II. Polished Aggrego 2. Popouts 3. Pumping 4. Punchou 5. Roitrood Crossing 5. Scaling	rte d d d Map d/Crazing me Cracks , Corner
28M. 27M. 7 6 21L. 28M 31L	DIST. TYPE	SEV.	NO. SLABS	% SLAES	DEDUCT VALUE
5 217L 27L	26# 27 27 28	L ~	///// /5 / 2-	75 5	
28M. 25/4 4 27L 27L	28 31 39	7 4	7 8	35 do	
3 27 27	39	1	2	10	
2 28M. 27L 27L : 28M	q= CORRECT		DEDUCT VALUE		
27L 31L	_ P		00 - CDV		
1 2 3 4					

** All Distresses Are Counted On A Slab-By-Slab Basis Except Distress 26, Which Is Rated For the Entire Sample Unit.

DA FORM 5145-R, NOV 82

(

Figure E-1.

392-550 0 - 83 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET

For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANC	н	75-3	<i>t</i>	_ SEC	CTION		S/B	JRCP		
	DATE .	10.	1-11-,		SAM	MPLE	UNIT	<u> </u>			
	SURVE	YED BY.	2.4	وعسد	SLA	AB SIZ	E	2'×20.			
10	28L	27L 1 28L 31L	•	•		Up ing/Shat	ttering	II. Polished Aggrega	te		
9	2rL 39L	2737 L. 28 L. 39 L.		•	22. Corner Break 3.2. Papouts 23. Divided Slab 3.3. Pumping 24. Durability ("D") 3.4. Punchout Cracking 35. Railroad 25. Faulting Crossing						
8	376	37L 31L			26. Joint 27. Lane 28. Linea	/Shidr D r Crack	rop Off ing 31	7. Shrinka	/Crazing ge Cracks		
7	3.0	276		·	29. Patch Util (30. Patch	Cuts ing , Sa	ali.	8. Spalling 9. Spalling Joint	, <i>u</i>		
6	37L.	シャンションションションションションションションションションションションションション	•	•	DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE		
5	3/6	27L 31.L	•	•	27 28 28	L	8 7	4° 35			
4	28L 39L	31L 27L 28L 37L		•	30 31 37	L L	14	5 70 20			
3	31L	31L 72	•	20	37	M	+	5			
2	28L-	29L 27L 28M 39M	. •		q= CORRECT		DEDUCT VALU				
,		30L 27L		21	1	CI = K ATING	00 - CDV =	*			
- 1	1	2	3	4 .	Slab Basis I						

** All Distresses Are Counted On A Slab-By-Slab Basis Except Distress 26, Which Is Rated For the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

397-510 0 - 63 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANC	н	سمع فق المغيدة و	ومرساء	_ SE	CTION	FIC	3	5RS		
	DATE .		17/92		SAI	MPLE	UNIT	<u> </u>			
	SURVE	YED BY	2. A-in:	<u>ro</u>	SL	AB SIZ	E2	2.10			
	1 ~2	314	•	•		٥	istress	Types			
10	ヹ゚ヮー				21. Blaw- Buckl		tterina :	31. Pálished Aggrega			
9	37L 28L 17L	39L 27L	•	•	22. Corner Break 32. Popouts 23. Divided Stab 33. Pumping 24. Durability ("D") 34. Pumchout						
8	2n ←	384	•	•	Cracking 35. Railroad 25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Crazing 28. Linear Cracking 37. Shrinkage Crocks						
7	32 L 28 M 37 L	38L 32L 28M	•	•	29. Patel Util (30. Patel	ing, Lai Cuts ing, Sn	rge & 3 nali	8. Spalling 9. Spalling Joint	. Corner		
6	324	38L 32L			DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE		
•	2811	28M	•	•	26 *	L.	7////	35			
5		396			28	-	2	73			
	396			_	28	M	6	53			
		276	•	•	31	4	1	Š			
4	32 -	32 L			32	L	10	50			
•		b	• -'	•	38		3	15			
3 !	32L	201	١,	٥.	39		5	ひ			
١	276	324),				·				
2	28 M	2814	10	• ·	q=		DEDUCT				
			• 1/4	:	CORRECT	ED DED	UCT VALU	E (CDV)			
1	326	324	20,		PCI = 100 - CDV =						
	1	2	3 4	-					-		

* All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated For the Entire Sample Unit.

DA FORM 5145-R, NOV 82

at Allijeto hacho on the Scaled Figure E-1. Thouseon next to embanhment slape.

397-510 0 - 63 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANCH US 31 PAMILION	SECTION NB TREP				
(DATE 10/7/90	SAMPLE UNIT 5				
	SURVEYED BY Z . A PMED	SLAB SIZEZA' x 40'				
		Distress Types				
2 Locativil 7	31L- 31M 39H 28 M. 28 Ag 37 L 37 L 37 L 37 L 7 Ge & C 1 Ge & C 1 Graph considered	21. Blow-Up 31. Polished Buckling/Shattering 22. Corner Break 32. Papouts 23. Divided Slab 33. Pumping 24. Durability ("D") 34. Pumphout Cracking 35. Railroad 25. Faulting Crossing				
Can be seen + 6	37L 37L	DIST. NO. % DEDUCT				
Comba seem 6	32M 18M 28M 31L	TYPE SEV. SLABS SLABS VALUE 26* V///////				
7 9 1	*	27 L 3 K 28 L 3 K				
- Care		28 L 3 15 28 M 5 W				
	28L 28L	31 4 1 5				
4	39L 39L	32 M 2 10 37 L 5 25				
	•	39 L 4 20				
3		37 M 1 5				
	39L 139LL	39 17 2 10				
2	28L- 28M	q= TOTAL DEDUCT VALUE				
	374.	CORRECTED DEDUCT VALUE (CDV)				
	274	PCI = 100 - CDV = 67.72				
		RATING = Soud				
	1 2 3 4	<u> </u>				
* A	All Distresses Are Counted On A Slab-By-S Distress26, Which Is Rated For the Entire S	Sample Unit mushel				
·	DA FORM 5145-R, NOV 82	17-28-74				
*-	In front of to Central Price Fi	igure E-1.				
O	In front of to center lyce Fi when the inhumentation is g	ong to be done.				
10						

ASPHALT PAVEMENT INSPECTION SHEET

Distress Types SKETCH:	SECTION 2 S.B SAMPLE UNIT 1 AREA OF SAMPLE 250 11				
1. Alligator Cracking 2. Bleeding 3. Block Cracking 4. Bumps and Sags 5. Corrugation 6. Depression 7. Edge Cracking 8. Jt Reflection Cracking 16. Shoving 8. Jt Reflection Cracking 17. Slippage Cracking 8. Jt Reflection Cracking 18. Swell 19. Weathering and Raveling	316 52.70g				
EXISTING DISTRESS TYPE.QUANTITY & SEVE	RITY				
(24'x3 L 5 L 20x 3' L					
> 200' L.					
SEVERITY SEVERITY					
SEV					
TEL 253 5 600					
C M 96					
PCI CALCULATION					
TYPE DENSITY SEVERITY VALUE					
7 0.104 L. O BCI = 100 - COV =	- 1				
10 2 10 101 -100 - 100 =					
15 12·5 L 30	=				
PATRICE					
q= 3 TOTAL DEDUCT VALUE 55	_				
CORRECTED DEDUCT VALUE (CDV) 135	_				
** All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes. DA FORM 5146-R, NOV 82					
* All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.					

ASPHALT PAVEMENT INSPECTION SHEET

BRANCH DATE SURVEYE	7/17/)	_	SAMPL	E UNI	-5 P. T7 MPLE _		`
Distress Types I. Alligator Cracking #IO. Long & Trans Cracking 2 Bleeding II. Patching & Util Cut Patching 3. Block Cracking I2. Polished Aggregate #4. Bumps and Sags #I3. Potholes 5. Corrugat Ion I4. Railroad Crossing 6. Depression I5. Rutting #7. Edge Cracking I6. Shoving #8. Jt Reflection Cracking I7. Slippage Cracking #9. Lane/Shldr Drop Off I8. Swell I9. Weathering and Raveling									
EXISTING DISTRESS TYPE.QUANTITY & SEVERITY									
TYPE	0 M	15 200'x		0 /-	19	277 17	1x 4' L.	17	
	2 M	200 ×		1 1	12'10			2 (/ =	
1 1	D' 1-		20'×		700				
	,		150'				-		
SEVERITY								سنزت من مينهم	
QUANTI & SEVE								•	
JE L	100	60	0 311	ß	700		48	4	
ES M	52		24	-					
TOTAL SEVERITY H M I									
	-		PCI CA	LCUL	ATION				
DISTRES	: [DEDL					
		SEVERITY							
			4						
7						PCI	=100 - CL	ov =	
7			M	8				63	
10 6.6			- <u>~</u> '	1 11			==	===	

★ All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and io Which Are Measured in Linear Ft; Distress 13 is Measured in
Number of Potholes.

1

12.5

14.6

CORRECTED DEDUCT VALUE (CDV)

TOTAL DEDUCT VALUE

DA FORM 5146-R, NOV 82

10 15

19

q=5

* Gyross not mound alongside the shoulder. and median

I transverse Grades at eng 15 > 20' on the 1 shoulder propagating
towards put.

There is a definite line of long are chip at 14 from the amedian
edge of the put.

29

6

.73

37

RATING =

GOOD

BRANCH	1/17/90		\$	AMPL	LEU	2) S B INIT SAMPLE _				
I. Alligator (2 Bleeding 3. Block Crac #4. Bumps and 5. Corrugat (6. Depressio #7. Edge Crac #8. Jt Reflecti #9. Lane/Shlo	Cracking cking d Sags lon on cking cking ion Cracking	II. Patchi I2. Polish #13. Potho #4. Railro I5. Ruttin I6. Shovii I7. Slippa	Trans ing B.Uti ed Agg les od Cros g ng ge Crac	il Cut P regate ising king	atchi.	SKETO	.24	RE 15.02 GE SURVEY		
		XISTING D				ANTITY & S	EVERITY			
TYPE /			5 ' x 2/L	13		30 × 2' L				
S SEVERITY S SEVERITY S SEVERITY	<u></u>									
JE L 322	- 80	0 40	, o	11		60				
SEVERAL M H SEVERAL M 327				<u> </u>		9				
- # H										
		PCI CA								
DISTRESS TYPE	DENSITY	SEVERITY	DEDU VALUE							
1										
10	10 6.7 L					13 PCI =100 - CDV =				

※ All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in
Number of Potholes.

DA FORM 5146-R, NOV 82

15 19

にからなるがののできる。

Figure E-2

26

- 64

33

RATING =

600D

* Sh. Trame aacho every 15 to 20

8.33

16.67

q= STOTAL DEDUCT VALUE CON CORRECTED DEDUCT VALUE (CDV)

* Rulting is at 14' from the modian side, where also the longitudine in cache are located.

SECTION '2' SA BRANCH. 7/17/90 4 SAMPLE UNIT _ DATE . SURVEYEDBY 2 A AREA OF SAMPLE ASMILL Distress Types SKETCH: ¥10. Long & Trans Cracking 1 71K 1. Alligator Cracking II. Patching & Util Cut Patching 2 Bleeding 3. Block Cracking 12. Polished Aggregate ¥13. Potholes **≭4.** Bumps and Sags 200 5. Corrugation 14. Railrood Crossing 15. Rutting 16. Shoving 6. Depression *7. Edge Cracking 24' **¥**8. Jt Reflection Cracking 17. Slippage Cracking **¥9. Lane/Shidr Drop Off** 18. Swell 19. Weathering and Raveling 2. EXISTING DISTRESS TYPE.QUANTITY & SEVERITY 10 TYPE -24 4 2 4 3'x3' == 701 15'- 1' 4 501. L QUANTITY & SEVERITY 4 15 2×10' 4 1 = 5' 301 22 70 202

		PCI CA	LCULATION	
DISTRESS TYPE	DENSITY	SEVERITY	DEDUCT VALUE	
1 .	0.26	4	6]
7	1.26	L	3	PCI = 100 - CDV =
10	4.2	L.	9	
] =====
				4
		1	_	RATING = V.LOOD
q=2 170	TAL DEDUCT	VALUE	- 18	
CORRECTED	DEDUCT VA	LUE (CDV)	13	#

** All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and IO Which Are Measured In Linear F1; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

x Sold . Trans. Charles propagate into pot.

BRANCH DATE SURVEYE	7/17	190 2-A			SECTION (2) S-B. SAMPLE UNIT 5 AREA OF SAMPLE					
2. Bleed	Cracking and Sogs gation ssion Cracking ection Cra	II. 12. 13. 14. 15. 16. cking 17.	Long Patch Polisi Potho Railro Shovi Slippo Swell	ATrans ning AU hed Agg oles cod Cra ng	til Cut i gregati issing cking	Paichi e	- i	ETC	24	112 · 5=
		EXIST	ING D	ISTRE:	SS TY	PE.OU	ANTITY	& SI	EVERTTY	₹
TYPE +	1		<u> </u>	.7	19	?	15		212/411	-
1 (1 -/-	× 3.7	12' 4	5	x1'L	120'x 21 10'x 1'L					j
-		20, T.	+-		<u> </u>					4
QUANTITY & SEVERITY		10' L.								-
IE ₹ { } —		100'L.	<u> </u>							1
152]
F-4			├-]
								-+		4
4 E T	21.	154	6		480		10	-+		-
SEVERITY H W L								-		-
-8 H				1				_		1
		P	CI CA	LCULA	TION					1
DISTRESS TYPE	DENSIT	Y SEVE	RITY	DEDU VALUE	CT			-		
/	0.44	- 1		6						
10	3.21			7		PC	T = 100 -			
15	0.21			2					85	
	· 19 10 L						=		===	
744	10			5						
q= 2 TO	TAI DEDU	CT VALUE		- 20	$-\parallel$	RAT	ING =	0.0	5000	
CORRECTED							=		===	
	320001	TALUE (2011	15	1					
* All Distres	ses Are A	leasured l	n Squa	re Fee:	Excep	t Distr	esses 4	789		

** All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2

& Ref. backing from Shoulder propagating 4' into put

Distress Types SKETCH:	BRANC DATE SURVE		7/1	7/9	Ö	אוות:	_	SAMPL	E UNI	ITG MPLE _		
TYPE 1 10 7	2, 81 3, 81 ¥4, 80 5, Cd 47, Ed *8, J1	leeding lock Cr imps a prruga epressi dge Cri Reflec	nacking nd Sag tion ion acking tion Cr	ing is acking	*10. L 11. F 12. F *13. F 15. F 16. S 17. S 18. S	ong & Patching Polishe Pothole Pailroc Putting Shoving Swell	Trons Ing & Uf Ind Agg Ind Cros Ing Ing Ing Ing Ing Ing Ing In	il Cut P regate ssing cking	atching	1 .T	. 3/K-	SULVEY
				Ε	XIST	NG DI	STRES	SS TY	E.QUAN	TITY & S	SEVERITY	
In	TYPE-	•	1] '
25'x1'L 10' L) (ļ Ī	1
PCI CALCULATION DEDUCT VALUE	I≥∖	25'	11'L	10'	4							1
PCI CALCULATION DEDUCT VALUE	≥≅]							-			 	
PCI CALCULATION DEDUCT VALUE		- W		241	2: 5-]
PCI CALCULATION DEDUCT VALUE	NS.			24	47. L						ļ	1.
DISTRESS DENSITY SEVERITY VALUE		}		 						····	 	1
DISTRESS DENSITY SEVERITY VALUE	μÈ L	/2	13	13	8	110]
DISTRESS DENSITY SEVERITY VALUE	W KG			3								4
DISTRESS TYPE DENSITY SEVERITY VALUE 1 2.56 L /8 7 2.29 L 4 10 2.88 L 6 10 0.06 M 0 RATING = V.4000	-8 H	<u> </u>						4 = 40 + 4	!_		<u> </u>	1
TYPE DENSITY SEVERITY VALUE 1 2.56 L. /8 7 2.29 L. 4 10 2.88 L. 6 10 0.06 M 0 RATING = V.4000		2500			P (SI CA						-
7 2.29 L A PCI =100 - CDV = 79 10 2.88 L G 79 10 0.06 M 0 RATING = V.4000			DENS	TY	SEVE	RITY			1			
10 2.88 L G 79 10 0.06 M 0 RATING = V.400p	1		2.5	56	4		18		1			
10 0.06 M 0 RATING = V.400D g= 2 TOTAL DEDUCT VALUE 28	7				_		-		PCI	=100 - C	DV =	
q= 2 TOTAL DEDUCT VALUE 28							<i>19</i>					
g= 2 TOTAL DEDUCT VALUE 28		10 0.06 M			<u> </u>		1					
g= 2 TOTAL DEDUCT VALUE 28								1				
								RAT	ING = ν .	200D		
CORRECTED DEDUCT VALUE (CDV) 21	q= 2					- 2	-28					
	CORRE	CTED	DEDU	CT VA	LUE	(CDV)	2	1	L			

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

* Shoulder Transmer Cracks propagate 4' into

SURVEYEDBY 7.A. ARE						SAMP.	LE U	INIT .		R 7 420:2	-	
2 3 #4. 5. (6. #7.	Distress Types 1. Alligator Cracking								200	SKETO	CH:	Din - 05
			- 1	EXIST	NG D	ISTRE	SS TY	E.QU	ANTI	Y & S	EVERITY	1
TAbe	7.4	10		// 	1	1 L	19]
		<u></u>	<u> </u>	<u> Υ Ι</u>		* 1 L						1
≥			- 1: -						1			
QUANTITY & SEVERITY]├—		 -		-	<u> </u>]
EST	í⊢											{
NA I							-					1
0-3										_		1
 	4											
128	- 5 4 2			<u>'</u>	6.	2	20					
SEVERITY TINITY	7		-		-							
-				Pi	CT CA	LCUL	TION			_	<u> </u>	
DIST	RESS					DEDU		$\overline{}$				
	PE	DENS	TY.	SEVE	RITY	VALU						
	1 .	1-2	9	L		12	-					
	0	0.1		L		· ō		PC	I = 10	10 - CL	ov =	
	10 0.5 M			4					82			
	7		0.04 L			0		ŀ				
 	19 0.83 L					2	•					
						·	04	TING	_			
	q= TOTAL DEDUCT VALUE							KA	TING .	_ V.	6000	
q= I	PRRECTED DEDUCT VALUE (CDV)					18				=		
3013/1	LUIED	DEDUC	, , VA	LUE (UV /	:18	`					

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and IO Which Are Measured In Linear Ft; Distress !3 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

* Should Train Gade in propagating its the

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-523; the proponent agency is USACE.

7		SR-37.				CT ION	50	<u></u>	•				
Distress Types 21. Blaw-Up 31. Polished Buckling/Shattering Aggregate 22. Corner Break 32. Papouts 23. Divided Slab, 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railrood Cracking 35. Railrood Cracking 36. Scaling/Map 27. Lane/Shldr Drap Off 28. Linear Cracking 37. Shrinkage Cracks 29. Patching, Large 8 38. Spalling, Carner Util Cuts 39. Spalling, U Joint DIST. NO. 8 DEDUCT TYPE SEV. SLABS SLABS VALUE 26* 31	DATE	9/25/9	<u> </u>		SAI	MPLE	UNIT	/					
10	SURVEYE	BY Z AL	الداوس	-	SLAB SIZE 17 × 20								
Buckling/Shattering Aggregate 22. Corner Break 32. Papouts 23. Divided Slab, 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad 25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Crazing 28. Linear Cracking 37. Shrinkage Cracks 29. Patching, Large 8 38. Spalling, Carner Util Cuts 39. Spalling, U 30. Patching, Smal. 7 12 13 30. Patching, Smal. 7 11 12 DIST. NO. % DEDUCT TYPE SEV. SLABS SLABS VALUE 26 *	• •	•		•		<u>D</u>	istress T	ypes					
9 1 23 Divided Slab 33. Pumping 34. Punchout Cracking 35. Railroad Crossing 25. Faulting 35. Railroad Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking 47. Shrinkage Cracks 29. Patching, Large 8 38. Spalling, Carner Util Cuts 39. Spalling, U 30. Patching, Smal. Joint 12 13 14 15 16 17 17 17 17 17 17 17	10	18	٠٠.	1:0	Bucki	ing/Sha	ttering	Aggrego	te				
26. Jaint Seal Damage 36. Scaling/Map 27, Lane/Shldr Drop Off Cracking/Crazing 28. Linear Cracking 37. Shrinkage Cracks 29. Patching, Large 8 38. Spalling, Carner Util Cuts 39. Spalling, U 30. Patching, Smal. Joint 7	9	1,	10,	0	23. Divid 24. Dura Crac	led Slab bility (king	"ם") 3 3	3. Pumping 4. Punchou 5. Railroad	t f				
7 13 13 39. Spalling, U Joint Joint	8	15	11.	- 1	26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Crazin 28. Linear Cracking 37. Shrinkage Crack								
6 12 DIST. TYPE SEV. SLABS SLABS VALUE 26 **	7	13	18		29. Patching, Large & 38. Spalling, Carne Util Cuts 39. Spalling, U 30. Patching, Smal. Joint								
5	6	1	12		DIST. TYPE		NO.	%	DEDUCT VALUE				
q= TOTAL DEDUCT VALUE CORRECTED DEDUCT VALUE (CDV) PCI = 100 - CDV =	5	9]; >	70'		-	-w	183.					
q= TOTAL DEDUCT VALUE CORRECTED DEDUCT VALUE (CDV) PCI = 100 - CDV =	4	7	٤	70									
CORRECTED DEDUCT VALUE (CDV)	3	5	6										
. PCT = 100 - CDV =	2	3	4	'س <u>ا</u>	! '								
rating =	1 -	1		70	ł			=					
* All Distresses Are Counted On A Slab-By-Slab Basis Except And A Slab Basis Except A Slab Bas	* All Distresses	Are Counted (On A Sial	b-By-S	tab Basis l	Except	مهم منابعة المعانمة	g. PCI	: 85-97 Evilla				

197-110 0 - 23 - 11 | IL 1

For use of this form, see TM 5-523; the proponent egency is USACE.

BRANCH_	51-37 1	redford	SECTIONSB						
DATE	9/2/14	<u>'</u>	SAMPLE UNIT						
SURVEYED	BY 2. A.	75D;H	· COSICE SLAB SIZE						
10	76 H.	28H 72	Distress Types 21. Blow-Up Buckling/Shattering 22. Corner Break 23. Divided Slab 24. Durability ("D") 34. Punchout						
9 • •	17	16	Cracking 35. Railrand 25. Faulting Crossing 26. Joint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Crozing						
• • 7	/3	14	28. Linear Cracking 37. Shrinkage Cracks 29. Patching, Large 8 38. Spalling, Corner Util Cuts 39. Spalling, U 30. Patching, Smal						
6	11.	12	DIST. NO. % DEDUCT TYPE SEV. SLABS SLABS VALUE 26*						
5	9	10	31 L 20 In 30 L I 5 28 L I 5						
4	?	8	28 H 2 10						
3	5	6							
2	3	304	q= TOTAL DEDUCT VALUE CORRECTED DEDUCT VALUE (CDV)						
	1	2	PCI = 100 - CDV =						
1 2	2 3	4	•						

★ All Distresses Are Counted On A Slab-By-Slab Basis Except Distress 26, Which Is Rated For the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Section ator of Suntallato Figure E-1.

397-510 0 - 83 - 11 : 01 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-523; the proponent egéncy is USACE.

SECTION _

BRANCH SA-31, BEDFIELD

DATE	9/25/	91		SAM	APLE (UNIT		
SURVEYE	BY 3-211	و بردر	4. 50	<u>:/*</u> > SLA	AB SIZ	E	2 ~ 70	
	9		ì		<u>D</u>	istress T	ypes	
10	[19]	w		21. Blow- Buckli 22. Corne	ng/Shai	tering	l. Polished Aggrega 2. Popouts	te
9	1	18		23. Divide 24. Dural Crack	ed Slab bility ('D") 3	3. Pumping 4. Punchou 5. Railraga	t t
8	15	16		25. Fault 26. Joint 27. Lane 28. Linea	ing Seal Da 'Shidr D r Crack	mage 36 Prop Off ina 31	Crossing 5. Scaling/	7 'Map 1/Crazing
7	13	14		29. Patch Util (30. Patch	ing, Lai Suts	rge & 3 i	B. Spalling 9. Spalling Joint	, Corner , U
6	11	12		DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
• • 5	9	10		31	L	/////	150	
4	1	8						
3	5	G						
2	3	4		† ·		DEDUCT VALU		,
1	(ν			CI = K ATING	00 - CDV =	-	
1 .	2 3	4						

★ All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated Far the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

397-510 0 - 83 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proponent agency is USACE.

BRANCH SP-BT Bedford.	SECTION SB
DATE 925/91.	SAMPLE UNIT4
SURVEYED BY ? A 4MED! H. COSMO	SLAB SIZE 12 4 36

•	•		1		.		<u>D</u>	istress 7	ypes				
10	_		19	20		21. Blow-Up 31. Polished Buckling/Shattering Aggregate 22. Corner Break 32. Papouts 23. Divided Slab, 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad							
9			17	18									
8			15	16		25. Fault 26. Jaint 27. Lanes 28. Linea	Seal Da /Shidr D r Crack	rop Off ing 3:	7. Shrinka	Map //Crazing re Cracks			
7	•		/3	14		29. Patch Util (30. Patch	Cuts ning, Sa	3:	8. Spalling 9. Spalling Joint	, Corner , U			
6	•	·	11	12		DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE			
5	•		9	10		31 38 33.38	<u>L</u>	72 1	iro S				
4]]	ç		27	L	4.	20				
3	•		5	6									
2			3	4		q= CORRECT		DEDUCT VALU					
1	•		(2		1	CI = K ATING	00 - COV =	=				
•	, •	2	3	4	₹~_ :								

* All Distresses Are Counted On A Slab-By-Slab Basis Except
Distress 26, Which Is Rated For the Entire Sample Unit.

DA FORM S145-R, NOV 82

Figure E-1.

397-510 0 - E3 - 11 : CL 3

For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANCH_	51	-3)	BEDI	0.2.1	SEC	TION	513		
	DATE	c	1/25/9	1		SAN	APLE !	UNIT	5	
	SURVEYE	D BY	2.AHr	153; L	. 605	<u>~</u> ∂ SLA	AB SIZ	'E	12 x 2	o´
	• •	1		•	1		D	istress 7	ypes	
10			19	20		21. Blow- Buckli 22. Corne	ng/Shai	tering	I. Polished Aggrego 2. Popouts	ite
9			17	18		23. Divide 24. Dural Crack 25. Fault	ed Slab bility (king	'D") 3.	2. Pumping 3. Pumping 4. Punchou 5. Railraad Crossing	T rt d
8			IT	16		26. Joint 27. Lane 28. Linea	Seal Da 'Shidr D r Crack	rop Off ina 37	6. Scaling) Cracking 7. Shrinka	/Map g/Crazing ge Cracks
7			.) _}	14		29. Patch Util (30. Patch	Cuts ing , Sa	al.	8. Spalling 9. Spalling Jaint	, <i>u</i>
6	•		//	12		DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
5	• •		9	10		38	<u>L</u>	2V	100	
•	• •				+	21	<u></u>	/	3	
4			.7	8						
3			5	6				-		
,	•					q= ,	TOTAL	DEDUCT 1	/ALUE	
2			3	4		CORRECT	ED DED	UCT VALU	E (CDV)	
,				2			CI = IC ATING	00 - CDV =	-	
	_ /	2	• 3	4						

★ All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated Far the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

397-550 0 - 63 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-523; the proponent agency is USACE.

	BRANCI	4 0 2	-41.5	sulv	MM	SEC	CTION	ട്ര						
(DATE _	_5 15	192			SAI	MPLE	UNIT	1_					
	SURVE	YED BY	2.AH	4 <u>ED</u>		SLAB SIZE 12 × 20								
	•		·27L	294				istress 7						
. 10) 			276			ing/Sha	ttering	I. Polished Agarega	1e				
9				29L 27L		22. Corner Break 32. Papouts 23. Divided Slab 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad								
€ .	•			28 L · 29 L 27 L	•	25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Cra 28. Linear Cracking 37. Shrinkage Cra								
. 7	• •			29L. 27L	•	29. Patch Util (30. Patch	ing, Lai Cuts	rge & 31 33	8. Spalling 9. Spalling Joint	, Corner				
6	• •			29L 27L	•	DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE				
	• •	1		25 L	•	26*	<u>L</u>	5	25	2				
5			:	·		28	<i>L</i>	2	10	6				
	• •	· ·		306		29 '-	<u></u>	2	25	9				
Saut 4			ૠ	300		30		_6	3 0					
NUD	• •	•	3°1	301	:									
1 3			, ,											
	• •	İ	306-	302		a= 2_ 1	TOTAL	DEDUCT 1	/AI 11F	21				
2						'		OCT VALU		16				
	•	1		•				00 - CDV		84				
1				`		R.	ATING	=. <u></u>	· Snd					
-	' '	2	3	4										
D	istress26.	Which Is.	And a	or the Ent	ire S	lob Basis E ample Unit Cover A	" Las	Started	hs pul PCI=	79-17				
					Fi	gure E-1.		Rating	=	6000				

392-550 0 - 83 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANCH 115	-41, SUL	LIVAN	SE	CTION	<u>\$B</u>		
C	DATE	15/92		SAI	MPLE (UNIT	2	
	SURVEYED E	34 2 . Ar	theD	SLA	AB SIZ	E	טק א	
	10	226	74L 78L 30L	21. Blow- Buckl	·Up ing/Shat	tering	ypes II. Polished Aggrega	
	9	24L	244	22. Corne 23. Divid 24. Dura Craci	ed Slab bility (* king	'D") 3.	2. Papouts 3. Pumping 4. Punchou 5. Railrago	it
	8		24L .	25. Fault 26. Joint 27. Lane 28. Lined 29. Patch	Seal Da /Shidr D ar Cracki	rop Off ing 31	Crossing 5. Scaling/ Cracking 7. Shrinkag 8. Spalling	Map Crazing Cracks
	7		28!-	Util (30. Patch	Cuts ning , Sm	3:	9. Spalling Joint	, Corner , U
	6		24.6	DIST. TYPE 26*	SEV.	NÒ. SLABS	% SLA8S	DEDUCT VALUE Z_
	5	242	244	24 · 28 29	L L	8 7 1	40 35 5	13 14 0
C	4	282	35L	30	L	3	15	0
	3	281	30V					
C	2		284	i i		DEDUCT VALU		29 23
from UD	1		296.	1	PCI = IC ATING	00 - CDV = \==	= V. 5 rod .	7)
from UD	1 2	3	4	•			•	

★ All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated Far the Entire Sample Unit.

DA FORM S145-R, NOV 82

Figure E-1.

397-510 0 - 63 - 11 : QL 3

For use of this form, see TM 5-523; the proponent agency is USACE.

	BRANCH_US-	41 SUL	LIVAN		. SE	CTION	<u></u>		-
	DATESIS	192			SA	MPLE	UNIT	3	
	SURVEYED BY	2-AH			SL				
*	• •		22L		21. Blow- Buckl			ypes II. Polished Aggrego	
	9		226	•	22. Corne 23. Divid 24. Dura Crac	er Bread led Slat bility (kina	k 3. 3. 3. "O") 3.	2. Popouts 3. Pumping 4. Punchou 5. Railraac	า กำ สำ
	8		24M 22L	,	25. Fault 26. Jaint 27. Lane 28. Linea	Seal Do /Shidr D or Crack	Prop Off ing 31	7. Shrinka	/Map //Crazing de Cracks
	7		:		29. Patel Util (30. Patel	Culs ning , Sn	3: nal.	B. Spalling 9. Spalling Joint	, Corner , U
	6		24L 22L		DIST. TYPE 26*	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
	5		30 L 28 L		22 24	L M	8	40 5	32
(s	4	31 L	30L 31/4 28L		28 28 30	<u>L</u> M	3	/S S	2 5 8 5
grom :	3	35 L	28M 30 L		30	H	. /	5	2
ž	2	124	22 L				DEDUCT VALUE		ς7 33
		22:L 22:L	286			CI = IC	00 - CDV =	4001	7

* All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated For the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

397-510 0 - 83 - 11 . 01 3

For use of this form, see TM 5-523; the proponent agency to USACE.

	BRANC	H_OS-	41, SUL	LIVEN		SEC	CTION	SB		
	DATE .	5/15	92			SAM	MPLE	UNIT	4	
		YED BY		HiED		SLA	AB SIZ	E 12	× 20	
	•	•		28L.			<u>D</u>	istress T	ypes	
	10					21. Blow- Buckli	Up na/Sha	3 ttering	l. Polished Aggrega	
	•	• •				22 Corne	r Break	3	2. Popouts	
	9					23. Divid	ea Siad bility ("D") 3	3. Pumping 4. Punchou	t
	•	•				Craci 25. Fault	kina	3;	5. Pailrood Crossing	,
	8		22L			26. Joint 27. Lane 28. Linea	Seal Do /Shidr D or Crack	Prop Off ing 31	6. Scaling/ Cracking 7. Shrinkag	Map /Crazing ge Crocks
	7		27.1-	2.FL		29. Patch Util (30. Patch	Cuts ning, Sn	3: na!i	8. Spalling 9. Spalling Joint	, <i>u</i>
	_									
	6	•		28 L.		DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
	6	•				DIST. TYPE 26*	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
	•	•		28L.		DIST. TYPE 26* 22	SEV.	NQ SLABS /////	%	DEDUCT VALUE 2- 17
	6 • 5					DIST. TYPE 26*	SEV.	NO. SLABS	% SLABS ///// 20	DEDUCT VALUE
	•	•				DIST. TYPE 26* 22- 24	SEV.	NO. SLABS ////// 4- 3	% SLABS ////// 20 /5	DEDUCT VALUE 2- 17 6
1	•	•				DIST. TYPE 26* 22- 24	SEV.	NO. SLABS ////// 4- 3	% SLABS ////// 20 /5	DEDUCT VALUE 2- 17 6
1	•				(<u>9</u>)	DIST. TYPE 26* 22- 24	SEV.	NO. SLABS ////// 4- 3	% SLABS ////// 20 /5	DEDUCT VALUE 2- 17 6
7,	•				(<u>a</u>)	DIST. TYPE 26* 22- 24	SEV.	NO. SLABS ////// 4- 3	% SLABS ////// 20 /5	DEDUCT VALUE 2- 17 6
7	5			-	(<u>a</u>)	DIST. TYPE 26* 22- 24	SEV.	NO. SLABS ////// 4- 3	% SLABS ////// 20 /5	DEDUCT VALUE 2- 17 6
1,	• 5 • 4 • 3 • • •			746	(S)	DIST. TYPE 26 ** 2.2- 2.4- 2.8	SEV.	NO. SLABS ////// 4- 3	% SLABS /////// % 15 10	DEDUCT VALUE 2- 17 6
7,	5			-	(<u>§</u>)	DIST. TYPE 26* 22- 24- 28	SEV.	NO. SLABS	SLABS ////// // // // // // // // // // // /	DEDUCT VALUE 2- 17 6
1	• 5 • 4 • 3 • • •			746	(S)	DIST. TYPE 26* 2.2- 2.4- 28 q= 3 CORRECT	SEV.	NO. SLABS 4- 3 2 DEDUCT	SLABS ////// 20 //S //O VALUE //E (CDV)	DEDUCT VALUE 2- 17 6 6

★ All Distresses Are Counted On A Slab-By-Slab Basis Except Distress 26, Which Is Rated Far the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

392-550 0 - 83 - 11 : QL 3

For use of this form, see TM 6-623; the proponent agency is USACE.

	S15/9L				<u> </u>		-
	BY 2. Au				ZE 12/x		
• • • • • • • • • • • • • • • • • • •	37L 30L 14L	29L 29L	22. Corne 23. Divid 24. Dura	-Up ling/Sha er Bread led Stat bility (ttering k 3 'D") 3	Types 31. Polished Aggrego 2. Popouts 3. Pumpin 4. Puncho	ate 5
	30L	30L 30L 34L	Crac 25. Fault 26. Joint	king Seal Do /Shldr D or Grack ning, La Cuts	3 Drop Off ing 3: rge & 3:	5. Raitrea Crossin 6. Scaling	d g /Map g/Crazing ge Cracks . Corner
6 • •	302	304			NO. SLABS	% SLABS	DEDUCT VALUE
5 • • •		22L -	24 21 30 39	L L L	3 1 8 /	5 15 5 40	4 6 0 2 1
70m 3 0.D. • •			CORRECT	ED DED	DEDUCT VALUE	E (CDV)	15 15
1				TING		V-Good	<u></u>

* All Distresses Are Counted On A Slab-By-Slab Basis Except Distress 26, Which Is Rated Far the Entire Sample Unit.

DA FORM 5145-R, NOV 82

Figure E-1.

3°7-550 0 - 83 - 31 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

			15-21.				CTION	SB		
Ĺ	DAT	TE	11/142	<u> </u>		SAI	MPLE	UNIT	6	
			BY 2 - A+					E	/ 7g'	
	301	TVETED	<i>BI</i> <u> </u>			32,	10 312			
	•	•	<u></u>		-			istress 7	Trings	
	10		:			21. Blow-			II. Polished	,
	10				1	Bucki	ing/Sha	ttering	Aggrega	ite
	•	•		28L.)	22. Corne	r Breai ed Siat	k 3.	2. Papouts 3. Pumping	,
	9		:			23. Divid 24. Duroi	bility ("o") 3	4. Punchou	rt
	•	•		•		Craci 25. Fault		ے.	5. Raitroad Crossing	
	B			•	•	26. Joint 27. Lane	Seal Do	mage 3	6. Scaling	/Map g/Crazing
		_	!			28. Linea	r Crack	ing 3	7. Shrinka	e Cracks
	•	•			•	29. Patch Util		rge & 3.	8. Spalling 9. Spalling	, Corner
	7		İ	:	į	30. Patel	ing, Sn	nal.	Join1	, •
	•	•	• 0	•	i	77777	77772			05000
	6		;	396	•	DIST. TYPE	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
	•	•	•	•		26≭	L	/////	//////	2
	_			28 _		22	<i>L</i>	2	70	8
_	5				:	27 28	<u>L</u>	3	15	8
(N	•	•	•	221	i	29	4	2	10	2-
i	. 4		·			39	4	2_	10	2
1	•	•	•	• 29L.	•					
from	<u>~</u> 3		172.	294			-	 	-	
U	D. 3			1 33-				<u> </u>		
	•	•	274	1310		q=2	TOTAL	DEDUCT	VALUE	24
	2			29 6				OUCT VALU		19
	•	•	372	27L				00 - CDV		81
	1		270	394			ATING		V.5Nd	
	•	•	-	-						
~;	•	1 2	3	4						
	≭ All Dis	stresses A	re Counted	On A Slab	-By-S	ab Basis E	Except			
	Distres	is 26, Whic	h Is Rated F	For the En	tire S	ample Unit	·.	" a Home	_tid	
	×-	-Draw o	or both	adas.			\$	1	N 20/	× _D
	DA FO	RM 5145-R,	NOV 82		X7	520		1213	67 k 3	5 1
					Fi	gure E-1.	<u> </u>	a -		
							SloTE.		- 96/	æ
(> - /~ /			
_										

397-510 0 - E3 - 11 : QL 3

ASPHALT PAVEMENT INSPECTION SHEET FOR USE OF STRING FOR USE OF STR

_											24' 100
2.3.4.1 5.6.1 47.1 *8.1	Bleedin Block C Bumps Carruge Depress Edge C It Refle	racking and Sa ation	king 1 gs	II. I2. ¥13. I4. I5. I6. I7. ff I8.	Long i Patch Potho Raitro Ruttir Shovi Slippa Swell	B Transing B U led Age les lod Cra ling	Itil Cut gregat ossing ocking	<i>Patc</i> hi. Ie		SKET	CH:
				EXIST	ING D	ISTRE	SS T	YPF OU	ANTIZ		SEVERITY
TYPE		7	_	0	I		T				JETERATI
	100	<u>_</u>		1							
	15	L.		<u>. r</u>	-		↓				
Œ.	-		_	<u> </u>	-		 		-		
- E	' T		/20		 		 				
SEVERIT											
& SEV											
	.1—				├	-	⊢—				
<u>. E 1</u>	115		14	9	-		 				
マミー	11 '/ 2			<u> </u>			-			•	
SEVERITY HINITY	1-				 		_				
¥1 ···		لبي		P	CT.CA	LCUL	ATION				<u> </u>
DIST	RESS					DEDL		1			
	PE	DENS	TY	SEVE	RITY	VALU		H			
-		1.	8	<i>L</i>		フ		-			
70		6.				1/3		PC	I = 10	0 - CL)V =
								1			90
					·			1		=	
				-				1			
								1			
								RA	TING =	En	cellent
Q= .	· 701	AL DEL	DUCT	VALUE	: 1	20	,				===
				LUE (- /		1			

DA FORM 5146-R, NOV 82

Ornall PCI = 86.3.

For use of this form, see TM 5-623; the proponent agency is USACE.

BRANCH _	US -	30	LAPU	17 <u>E</u>	SECTION					
DATE	10/1	<u> 3/9</u>	/			SAM	PLE U	NIT	2_	
SURVEYEL	DRY 2	AHA	En; N	. Cos	<u>~u</u>	ARE	A OF S	AMPL	E _3	24×100'
	•	D	istres	s Typ	es			SK	ETC	CH:
I. Alligate		ring			Trans					
2. Bleedin	ig Trackina		11. 1		ng a:U: ed Ago		Patchin	ן עי	1	
3. Block C ¥4. Bumps	and Sag	75	¥13.	Pot hol	es		`	- 1		· /
5. Corruge	at ion		14. 1		od Cro	ssing				1
5. Corrugi 6. Depres: *7. Edge C	sion rackina		15. i 16. i	Ruttin Shovir					1	liw
¥8. Jt Refle ¥9. Lane/S	ction Cr	ackin	g 17.	Slippa	ge Cra	cking				
₹9. Lane/S	hidr Dr	op Oi	ff 18. :	Swell				-	<u>`</u>	
					ering o				_	.4
			EXIST	ING D	ISTRE	SS T	YPE.QU	ANTITY	8 5	EVERITY
	10	1	7							
I I	2 L .		a L	-				_		
	<u> </u>		2 L ·	-		 				
EVERITY		35	<u>L</u> .							
[[]]				ļ		├				
& SEVI										
o =										
		1								
SEVERITY 197	r	17.	4			_				<u> </u>
25 []				 		 				
F-8.,,			D	CT CA	LCUL	ATIO	<u>-</u>			
DISTRESS	ı —		1	J1 UM	DEDU		T I			
TYPE	DENS	ITY	SEVE	RITY	VALU	IE I				
7			<i>L</i>		3.		-			
10	1 1 1					-	PC.	I =100	-ce)V =
	" 1.3 L						7		e	22.5
							 	Ξ	===	
							╣			
			L			-5	$\dashv RA$	TING =	V.	Soul.
, ,							4	=	==	
CORRECTED	DEDUC	TV	LUE (CDV)	.17	.5				

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Patholes.

DA FORM 5146-R, NOV 82

Figure E-2.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proponent squarcy is USACE.

DATE	CH <u>US- 3</u> '0	13/91		SECTION SAMPLE UN AREA OF SA	MB IIT 3 AMPLE 244105	
2.8 3.8 4.8 5.0 *7.5 *8.J	Uligatar Crack leeding lock Cracking umps and Saq orrugation epression dge Cracking I Reflection Cr ane/Shldr Dri	king ¥10. 11. 12. 13. 14. 15. 16. 16. 17. 19. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	Patching & L Palished Ag Patholes Railrood Cr Rutting Shoving Slippage Cr Swell	ossing .	SKETCH:	~
		EXIST	NG DISTRE		NTITY & SEVERITY	
TYPE -	10	7	8			
				1		
	12-6	36	24			_
		3/				_
	12-6	36				_
	12-L 22-L 18-L 3-L	31				_
	12-L 22-L 78-L 3-L 2415-L	31				
	12 L 22 L 9 E L 3 L 22 15 L	31				
	12-L 22-L 78-L 3-L 2415-L	36				
QUANTITY & SEVERITY	12 L 22 L 9 E L 3 L 22 15 L	31				
QUANTITY & SEVERITY	12-L 22-L 98-L 3-L 22-15-L 15-L		2-4			
QUANTITY & SEVERITY	12-L 22-L 98-L 3-L 22-15-L 15-L	36				
	12-L 22-L 98-L 3-L 22-15-L 15-L		2-4			

PCI CALCULATION DEDUCT VALUE DISTRESS TYPE DENSITY SEVERITY 0 0-1 PCI = 100 - CDV = 8 4 ン 10 3.8 9 RATING = Exullent TOTAL DEDUCT VALUE 11 q= TOTAL DEDUCT VALUE

CORRECTED DEDUCT VALUE (CDV) - 11

★ All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and IO Which Are Measured in Linear Ft; Distress 13 is Measured in
Number of Patholes.

DA FORM 5146-R, NOV 82

Figure E-2

For use of this form, see TM 5-623; the proponent agency is USACE.

BRANG	CH _	US-	30 /	APO	17E		SECT					
DATE		10/1	3/9/				SAMP.	LE UN	IIT <u> </u>	7		
SURVE	EYEL	BY_2	- 1	MEA;	4. (4.	suo.	AREA	OF S	AMPLE	24'1N'		
İ			_	istres					SKE	TCH:		
1. A	lligato	or Craci	king	*10 .	Long &	Trans	Crack	ing	-			
	leedin	g racking		11. 1	Patan Bolish	ng & U	til Cut F gregate	'atching				
		and Sa		*13.	Pot hai	eu Ayç ies	, eyure	`	1 1	· • • • •		
		at ion		14.	Railro	od Cro	ssing			! !!		
_6. De	pres	ion		15.	Ruttin	9				1		
# 8 JI	 K7. Edge Cracking 16. Shoving K8. J1 Reflection Cracking 17. Slippage K9. Lane/Shldr Drop Off 18. Swell 					ng co Cra	ckina					
¥9. La	ne/S	hidr Dr	op 01	f 18.	Swell	ye cro	Cknig		1 -	21.		
			Ī.			ering o	ind Rav	eling				
	·			FYIST	NG D	ISTRE	SS TY	PE NIIA	NTITY &	SEVERITY		
TYPE -	→	10	<u> </u>	7		8	1	2.000		JETERATI		
1	2	زأد	60	16.	2	+ L.						
1) し・										
QUANTITY & SEVERITY		<u>ا ا</u>			-		 					
		<u> </u>	 					\rightarrow		+		
		L.										
SA												
100												
13.		19		0	24	£	 					
1 25 7		<u>' '</u>	Ŭ		- 27	<u> </u>	 			+		
TOTAL SEVERITY TET												
-8	-				CT CA	LCUL	ATION					
DISTR	CCC	-			J1 CM	DEDU		•				
TYF		DENS	ITY	SEVE	RITY							
7		2.		L		4						
8		7				-2	-	PCI	=100 -0	CDV =		
70					14				80			
70 7.3								=				
					e l			}				
								RATI	NG = ,	1 days		
. q=	g= TOTAL DEDUCT VALUE						20 Mainto V food					
	DERECTED DEDUCT VALUE (COV						0					

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 8-823; the proponent spency is UEACE

BRANCH -					SECTION WIS SAMPLE UNIT 5					
DATE		:/9				SAMF	LE L	INIT	5	
SURVEYE	DBYŁ	. por	CA; H	cos	-	AREA	OF:	SAMPL	E 24	1010/
		D	istress	Ту	es			SK	ЕТСН	:
I. Alligot 2. Bleedi 3. Block (#4. Bumps 5. Corres 6. Depres #7. Edge (#8. J1 Refl #9. Lane/	ng Cracking and Sag lation ision Cracking ection Ci	gs ackin	II. F 12. F ¥13. F 14. F 15. F 16. S 17. S 17. S	Patchi Polish Pothol Railro Ruttin Shovin Slippa Swell	od Cro g va	til Cut gregat essing cking	Patchii e	ng	23	120
				NG D	ISTRE.	SS TY	PE.QU	ANTITY	& SEV	ERITY
TYPE	7		0							
1 1	30 L		AL.			!			_	
	50L.		<u>u</u> :			 				
& SEVERITY	86	8	4			├			\rightarrow	
		 -				-			- -	
						-			- 	
						 				
O =										
JE L	86	3	8							
E M										
P & H									$\neg \vdash$	
SEVERITY H M L			PC	I CA	LCUL	ATION				
DISTRESS TYPE	DENS	тү	SEVE	RIŤY.	DEDL VALU	ICT IE				
7 .	3.	6	4		6		1			
10	1.6	,	L		4		PC	I =100 ·	-CDV	=
	7.6						1		90	
							1	Ξ	==	=== :
							1			
							RA	TING =	c/	10. 1
70	TAL DE	DUCT	VALUE		10)		=	-xw	
	= TOTAL DEDUCT VALUE PRRECTED DEDUCT VALUE (CDV)					0	1	-		
		. , ,,		~ / /			11			

DA FORM 5146-R, NOV 82

Figure E-2

[#] All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.

For use of this form, see TM 5-623; the proponent agency is USACE.

	US-31 B- 8/17/9	1PASS . SAUT			<u> </u>	
SURVEYED				PLE UNI A OF SAI		74×150
		istress Typ			SKET	
2. Bleedin 3. Block Ci #4. Bumps Ci 5. Corrugo 6. Depress #7. Edge Ci	r Cracking g racking and Sags at ion sion rackina	#IO. Long & II. Patchi I2. Polish #I3. Pothol I4. Railro I5. Ruttin I6. Shovin	Trans Craing & Util Cut ed Aggrega les ad Crossing g	t Patching te	Mest 1	
¥9, Lane/S	hidr Drop O	g 17. Slippa ff 18. Swell 19. Weath	ge Cracking ering and Ri	aveling		24.
		EXISTING D	ISTRESS T	YPE.QUAN	TITY &	SEVERITY
TYPE		0 7 50	2-			
1/17	1- 17	24 50	1			
QUANTITY & SEVERITY	0	6	-			
[[]]						
SE						
0.3						
JE L 141	· //	3 56				
SEVERITY H M T		20				
-8 H		967.64	V CUL 4710			<u> </u>
DISTRESS	· ·	PULLA	LCULATIO	N		
TYPE	DENSITY	SEVERITY	VALUE			
7	2,33	L	4] oct.	=100 ÷ C	- D17 -
8	2.08	<u>M.</u>	10		-100-0	77.
10	4.91	<i>L</i>	11	-	=	′′
		7.(\$).				
			<u> </u>	RATIN	<i>ic</i> -	
q= 3 70	TAL DEDUCT	VALUE	- 37		<u> </u>	1. 400d
		ALUE (CDV)		1		*
# All Distres	ses Are Med	sured in Squ	are Feet Ex	: cept Distre:	ses 4,7,0	3,9

★ All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and IO Which Are Measured in Linear Ft; Distress 13 is Measured in
Number of Potholes.

DA FORM 5146-R, NOV 82

Comment / Frant digit Figure E.2

The section chosen was 1000 ft langth x 22 wide, corresponding to the once around the instrumented site.

world Hear COV. 80.2 Jahry: - Very Good

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proportion agency is UEACE.

DATE	8/17	14	<i>'</i>			SAMP	LE L	JNIT .		2
SURVEYE	DBY <u>2</u>	. 1	muer			AREA	OF.	SAMF	PLE .	24 cos/1
		D	istress	з Ту	pes	-		3	KET	CH: NN
I. Alligati 2 Bleedii 3. Block (*4. Bumps 5. Corrug 6. Depres *7. Edge C *8. J1 Refle *9. Lane/S	ng cracking and Sa at ion sion racking ection Ci	gs ackin	II. I I2. I ¥13. I I4. I I5. I I6. S I7. S Iff I8. S	Patchi Polish Potho Railra Ruttin Shovid Slippa Swell	od Cro	til Cut I gr e gate ssing cking	Patchi.		esk:	20
								IANTI	TY & S	SEVERITY
TYPE	7 5L		24L	- /	<u>L</u> .	1. 4×				
	5M		<u></u>	100		- X	<u> </u>			
<u> </u>										
		_						-		
QUANI	_							-		
	-									
70-	15	14	8	104	٤	8				
	5									
8.7		-		TCA	LCULA	TION				
DISTRESS				,1 02	DEDU					
TYPE	DENS	πY	SEVE	RITY	VALU					
1 .	01.3	3	<i>L</i>		9	5				
7	3.		ك		5		PC	I = IC	x0 - c1	
- 7	:1:0		M	_	- 8				<u> </u>	<u> 71 </u>
10	6.1 4.	_	- 6							
							RA	TING :	= v.	Sod-
			VALUE		_ 3	7				
CORRECTED	DEDUC	T VA	LUE (C	DV)	2	3				
* All Distres and 10 White Number of F DA FORM 5148 owner he new ser	ch Are l Potholes	Heasi i.	ured In i	Linea	rFI; I	Distres	of D ist is 13 i	resses Is Med	s 4,7,8, ssured	9 In

For use of this form, see TM 6-623; the proponent epency is USACE.

BRANCH 👱	431 137PA	145005. 25			
DATE	_			PLE UNIT3	16
SURVEYED	BY	MIMED	AREA	A OF SAMPLE 2473	
	Di	stress Typ	es	SKETCH:	
2 Bleedin		II. Patchii	Trans Cracing & Util Cut	Patchina	Ž
3. Block C		¥13. Pothol	ed Aggrega. es	ie weeking	
5. Corrugo	nt ion	14. Railro	od Crossing	100 50	Jo-
6. Depress		15. Ruttin 16. Shavin			
		g 17. Slippa	ge Cracking		
¥9. Lane/S	niar Drop Oi		ering and Ro	oveling	
				YPE.QUANTITY & SEVERITY	
TYPE +>			0	TPE.QUARTITI & SEVERITI	
(/		0 L 5			
_ { 		41			
₋ = -					
E E E E E					
& SEI					_
F-2					
E / 78	14 14	8 5			
M ES	74 1 77	- -			
SEVERIAL H					
•		PCI CA	LCULATIO	N	
DISTRESS TYPE	DENSITY	SEVERITY	DEDUCT VALUE		
7			8	PCI = 100 - CDV =	
	·8 6·2 1		1	85	
1	10 0.21 1		-		≣ -
		2-V			
				0.500 - 5 24 4	
	T44 B5505	1/61 UF	3.0	RATING = Excellent	_
	TAL DEDUCT		20		
CORRECTED	DEDUCT VA	LUE (CDY)	./3		

** All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, use TM 6-823; the proponent specty is USACE.

BRANCH 4				Scv	ir rero	SECT	ION	•	NI	3	
DATE	DATE					SAMF	LE I	UNI	T	2	-
SURVEYE	SURVEYEDBY 2 · MMED					AREA	OF	SA	WPLE	_	24035/5
	Distress Type								SKE	TC	Ή:
I. Alligat		king	¥10.	Long	& Trans	Crod	king			-	la' î
2. Bleedii 3. Block (,	11.	Patch. Palish	ing & U ied Agg	til Cut i	Patch •	ing	ī		-1.1
1			¥13.	Potho	les	, eyon	-			100	('
5. Corrug 6. Depres	ot ion			Roitro Ruttir	od Cro	ssing			med.	100	لمؤندانة ا
₹7. Edge C	rocking		16.	Shovi	na .						
¥8. J1 Refle ¥9. Lane/S	ection Ci	rackir	o 17.	Slipod	ige Cra	cking					<u>.</u>
- 9. Lane/S	miar ur	ор О			ering d	and Rav	eling				
				ING D	ISTRE	SS TY	PE.Q	UAN	ITY 8	S	EVERITY
TYPE	7				0			\Box		\Box	
	<u>かし</u> 3レ・		or D		<u>レ・</u>	 		┼-			
-		_	41						-		
 ≥≅ }—				1,7	<u>. L. :</u>					\Box	
SEVERIT		-		-		-		╁		+	
QUANT S EV											
°° (—								<u> </u>		\dashv	
JEL /	03	14	8	80	7 .			╁╴		\dashv	
TOTAL SEVERITY H K L						_		\vdash		-	
F W H											
			PC	CI CA	LCUL	TION					
DISTRESS TYPE	DENS	TΥ	SEVE	RITY	DEDL VALU						
7 43 L			.8								
8 6.2 L		L.		1//		PC	:I =	100 -		_	
10 3.7. L			- 8						84		
	-		_								
				_							
							RA	TIN	s = 4	5	NI
q= 3 70	TAL DE	DUCT	VALUE		27				=		
CORRECTED					16						· .
				-						_	

: DA FORM 5146-R, NOV 82

Commel: -

· Figure E-1.

^{*} All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 is Measured in Number of Potholes.

For use of this form, see TM 6-623; the proponent agency is USACE.

BRANC					0074						_	
DATE .			<u> 19</u>			_	SAM	PL	E UN	<i>IIT</i>		
SURVE	YEL	BY_	2.1	المراب	η) 	_	ARE.	A C	of Sa	AMPLE		-ansh
	Distress Types					es				SKE	TCH	1:
1. Alligator Cracking 2. Bleeding 3. Block Cracking 4. Bumps and Sags 5. Corrugatian 6. Depression 7. Edge Crocking 8. Jt Reflection Cracking 9. Lane/Shldr Drop Off 19. Weathering and Raveling 11. Patching & Util Cut Patch 12. Polished Aggregate 12. Polished Aggregate 13. Potholes 14. Railroad Crossing 15. Rutting 16. Shoving 17. Slippage Cracking 18. Swell 19. Weathering and Raveling					tching	Prof.		such				
								_		NTITY &	SE	VEDITY
TYPE-	<u> </u>	10		7	100 0		1 '	11-2	1.000		T	ILAII
11196		84	_	DL .		٥٤.	 		\dashv		\dashv	-
1 11	9	201				aL.						
≥ [2				2-4						\perp	
QUANTITY & SEVERITY										4		
15回引									+		+	
NE SI									-		┿	
13-3			×						_		+	
L_U		-										
75 7	8	8	13	0	14	8			T		Т	
E M									\Box		Т	
SEVERITY H												
				P	CI CA	LCUL	AT IOI	N				
DISTRI TYP		DENS	ΊΤΥ	SEVE	RITY	DEDL VALU						
7		5.4	-	L.		8						
8		6.2		4		11			PCI	=100 -	CDV	' =
10			_	4		8					8.	4
				-					=		=== :	
]	RATI	ING = V	-61	nod.
q= 3		TAL DE				27		_		Ė	1.	=
CORREC	TED	DEDUC	T VA	LUE (CDV)	16		-				

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 is Measured in Number of Patholes.

DA FORM 5146-R, NOV 82

Figure E-2.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 8-823; the proponent egency is USACE.

BRANCH SKET, NOISCE	SECTION 1/2 Morrian + AUsis
DATE9/12/91	SAMPLE UNIT
SURVEYEDBY Z. ALIMED	AREA OF SAMPLE 240:11
Distress Types	
1. Alligator Cracking #10. Long & Tro	Agregate Crossing Cracking
TYPE - 17 7	ESS TYPE.QUANTITY & SEVERITY
Skx9'L. Fyo L	
50 L	
& SEVERITY & SEVERITY	
FE 1	
N SEVI	
300	
JEL 0.28 100	
L 0.25 /10	 -
F & H	
PCI CALCUL	LATION
DISTRESS	DUCT
7 0 0	UE
17 0.01 6	PCI =100 - CDV =
	RATING =
q= TOTAL DEDUCT VALUE	
CORRECTED DEDUCT VALUE (CDV)	
All Distresses Are Measured in Square Fe and 10 Which Are Measured in Linear Ft; Number af Pothales.	Distress is is Measured in
A FORM 5146-R, NOV 82	Aug. PCI = 94.56 Aug. Noting = Excellent

Figure E-2

DA FORM 5146-R, NOV 82

Comments: - down day hack a work of it mid-width of the la-

For use of this form, see TM 5-623; the proponent agency is USACE.

BRANCH SA-9 NOBLE	SECTION bles Morriage & Alla
DATE	SAMPLE UNIT
SURVEYEDBY 2 .A.	SAMPLE UNIT
Distress Types	SKETCH:
3. Block Cracking 12. Palished A *4. Bumps and Sags *13. Potholes 5. Corrugation 14. Railroad (6. Depression 15. Rutting *7. Edge Cracking 16. Shoving *8. Jt Reflection Cracking 17. Slippage (*9. Lane/Shldr Drop Off 18. Swell	Autil Cut Patching Aggregate Crossing
	RESS TYPE.QUANTITY & SEVERITY
TYPE - 17 7 -	ALSS TIPE QUANTITY & SEVERITY
12/23/8 4 11' 4.	
<u></u>	
ENTITY EN	
Seve	
84	
H WEREL	
25 M	
· PCI CALC	UI ATION
DISTRESS DI	EDUCT
	ALUE
7 0.46 2	PCI = 100 - CDV =
17 0.02 L	
	· RATING =
q= TOTAL DEDUCT VALUE	
CORRECTED DEDUCT VALUE (CDV)	

** All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-823; the proponent agency is USACE,

BRANCH SA-9 NOBLE DATE 9 12/21 SURVEYEDBY 2 AHMED Distress Types 1. Alligator Crocking *10. Long & Tr					Des_	SAMP AREA	LE UN OF SA	IIT	3 2005 SIT	
2.8 3.8 *4.8 5.0 *7.E *8.J	leedin lock C umps orruge epress dge C	ng Fracking and Sa at Ion	gs gs	11. 12. *13. 15. 16. 17. 18.	Patchi Polish Potho Roilro Ruttin Shovii Slippo Swell	ing & U led Agg les lod Cro log ng lge Cro	til Cut I gregate ossing	Patching !		124
	-			EXIST	ING D	ISTRE	SS TY	PE.QUAI	A YTITH	SEVERITY
TYPE-	10	7	-		┼					
1 1	1		t-		-		 			
≥										
ĭ₽₩	 		<u> </u>		├					
	├──	_	 		├		 			
QUANTITY & SEVERI							 			1
0-3										
13.	 	00	_		├					
KE 7	 	00								
TOTAL SEVERITY H X T			 				 			+
				D	CT CA	I CIII	ATION			
DIST		DENS	SITY		RITY	DEDL	ICT			
7		4.	12		_	-				
			<u> </u>			-		PCI	=100 - C	DV =
									=	
	120	FAL DE	DUG=					RATI	NG =	
q=		TAL DE							==	
CORRE	JIED	DEDUC	it VA	LUE (CDV)					

All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9
and IO Which Are Measured In Linear Ft; Distress 13 Is Measured In
Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

BRANCH _	51-9 A	JOBLE	_ SECT	ION blw Morran & All-
DATE	9/12/9	/		PLE UNIT
SURVEYED	BY 2 . F	HMED	AREA	OF SAMPLE 24 P ST
	Di	stress Typ	es	SKETCH: N : + 10
2. Bleedin 3. Block C #4. Bumps (5. Corrugo 6. Depress #7. Edge Ci #8. Ji Refle	racking and Sags ation sion rackina	II. Patchii I2. Potishe *I3. Pothol I4. Railroc I5. Ruttin I6. Shovin g I7. Slippag f I8. Swell	od Crossing g na	Poiching e
	l	EXISTING D	ISTRESS TY	PE.QUANTITY & SEVERITY
AL GUANTITY AM & SEVERITY COL		PCI CA		
DICTORCO		PCI CA	LCULATION	<u></u>
DISTRESS TYPE 7 7	DENSITY 4-17 1-0	SEVERITY L	DEDUCT VALUE	PCI = 100 - CDV =
7	TAL DEDUCT	VALUE ALUE (CDV)		RATING =

and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Comments: - Med. Ser. Else bedsing & pt. when grandone tructor entra
from form to 502-9.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

BRANCH DATE SURVEYED	9/12/91		SAMPL	LE UNIT	- <u> </u>	5	<i>s</i> ~
1. Alligator 2. Bleeding 3. Block Cr **4. Bumps a 5. Corruga 6. Depress **7. Edge Cr **8. J1 Reflect **9. Lane/Sh	r Crocking Tocking Ind Sags It ion Tocking Tocking Tocking Tocking	II. Patchin I2. Polishe *I3. Pothole I4. Railrod I5. Rutting I6. Shovin I7. Slippog I8. Swell	Trans Cracki og & Util Cut F ed Aggregate es od Crossing g	Patching	SKETO	CH: 1/4 1" 1 /2"	
(10.	7		STRESS TYI	PE.QUANT	TITY &	SEVERITY	
DISTRESS TYPE 7 7 q= TOT CORRECTED	DENSITY 4.58 FAL DEDUCT DEDUCT VA	SEVERITY L VALUE	DEDUCT VALUE	PCI =	: 100 - C	DV =	Trans- 60 6 win- 6 66 f=2 00 NB

DA FORM 5146-R, NOV 82

Comment. - The edge archy both more like a breaking pt. of a the old particle and the row of overlay. I Seed Coating has been done on both lanes when I perm a continger lay auch head farmed

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

BRANCH SA -	9 INDI	SLE	_	_ SECTION blu Morrian & Polis						
DATE9	DATE9/12/91				SAMPLE UNIT6					
	SURVEYEDBY 2 - AHMED					AREA OF SAMPLE 2400 SIL				
I. Alligator Crac 2. Bleeding 3. Block Crackin #4. Bumps and S 5. Corrugation 6. Depression #7. Edge Crackin #8. Jt Reflection (#9. Lane/Shldr D	Distres cking *10.	Long & Patchin Patchin Polishe Pathole Railroo Rutting Shovin Slippag Swell Weathe	es Trans og & Ut ed Agg es od Cro og g ering a	Cracking Cking Rove	ng atching	SKETO	SH:			
TYPE 7	- -	+								
SEVERITY H M 7										
<u> </u>	F	CI CA								
7 . 2	DEDUCT VALL		VALU	IE		I = 100 - CI	DV =			
# All Distresses A and 10 Which Ar Number of Potho DA FORM 5146R, N Common Common Cut a ful Rathing To Lawren Ed	e Measured I les.	n Linea	r Ft;	Distres	ot Dist	resses 4,7,6 Is Measured	3,9 In			

Ö

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proponent agency is USACE.

	011-			OF SAMPLE 2005K-
I. Alligate 2. Bleedin 3. Block C #4. Bumps 5. Corruge 6. Depres #7. Edae C	<u>D</u> or Cracking or or or or or or or or or o	*IO. Long & II. Patchi I2. Polish *I3. Pothol I4. Railro I5. Ruttin I6. Shovii g I7. Slippa ff 18. Swell	Des ATrans Grack Ing & Util Cut I ed Aggregate es od Grassing g	SKETCH: Soft Up Patching Patching
& SEVERITY	7			PE.QUANTITY & SEVERITY
DISTRESS TYPE - 7	DENSITY § · 3 3 TAL DEDUCT DEDUCT VA	SE VERITY L VALUE		PCI = 100 - CDV =

Number of Potholes.

DA FORM 5146-R, NOV 82

(

Conment: -	Figure E-2		0.4
UD at 200 from	drain untimested.	. fru flourg .	S. of prival
Cut a fill oction	•		
Draw on Gut sie	Figure E-2 drain intrincited.		

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623: the proponent agency is USACE.

BRANCH > 1/ - 7		_ SECTION						
DATE 9/12/	91	SAMPL	_ SAMPLE UNIT					
SURVEYEDBY 2	AHMED	_ AREA	OF SAMPLE _					
1. Alligator Cracking 2. Bleeding 3. Block Cracking *4. Bumps and Sags 5. Corrugation 6. Depression *7. Edge Cracking *8. Jt Reflection Crac *9. Lane/Shldr Drap	II. Patchin I2. Polishe *I3. Pothole I4. Railroo I5. Rutting I6. Shaving cking I7. Slippag o Off I8. Swell	Trons Gracki g & Util Cut F d Aggregate s d Crossing	Patching					
			PE.QUANTITY & S	EVERTTY				
TYPE → 7	EXISTING DI	31KE33 111	-E.QUARTITI & S	I				
54'L.								
. ≥ II————				ļ.———				
& SEVERIT			- 					
Es								
0-43								
E / C								
₹£ L 54		` 		<u> </u>				
A SEVERAL M T SA								
<u> </u>	PCT CAL	CULATION		<u> </u>				
DIOTOFOC I	· PCI CAI	CULATION	<u> </u>					
DISTRESS TYPE DENSI		DEDUCT VALUE	PCI = 100 - CI	ov =				
		× .	RATING =					
q= TOTAL DED	UCT VALUE	, -						
CORRECTED DEDUCT	VALUE (CDV)							

ond IO Which Are Measured In Linear F1; Distress 13 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Cut of fell section

Figure E-2.

-		NIBUE	SEC			
DATE				_ SAMPLE UNITS		
SURVEYED	BY_2.	AHMEN	ARE	_ AREA OF SAMPLE		
	D	istress Typ	es	SKETCH:		
2. Bleedin 3. Block C *4. Bumps C 5. Corrugo 6. Depress *7. Edoa C	racking and Sags at lon sion acking ction Crackin	II. Patchi I2. Palish *I3. Potho I4. Roitro I5. Ruttin I6. Shovii g I7. Slippa ff I8. Swell	od Crossing g	Patching te		
				YPE.QUANTITY & SEVERITY		
TYPE	7	.]				
3	GL					
11						
≥						
						
S 1		- -				
& SEV			 			
743						
₹ <u>L 3</u>	0					
SE M						
SEVERITY H W T						
		PCI CA	LCULATION	V		
DISTRESS TYPE	DENSITY	SEVERITY	DEDUCT			
	1-25		VALUE	4		
7	1.63	<u></u>		PCI = 100 - CDV =		
				1 701 -100 - 604 -		
				╣ = = = =		
	<i>a</i> •			-		
				-		
				4		
				RATING =		
	AL DEDUCT					
ORRECTED	DEDUCT VA	LUE (CDV)		#		

Number of Potholes.

DA FORM 5146-R, NOV 82

Concertation on both wider. Surface drawn present

BRANCH <u>S1-9, NOBUS</u> DATE <u>91:21 91</u>			SECTION			
SURVEYED	BY Z .	AILMED	AREA	OF SAMPLE		
I. Alligator 2. Bleeding 3. Block Cr #4. Bumps of 5. Corruga 6. Depress #7. Edge Cr #8. Jt Reflec #9. Lane/St	r Cracking g racking and Sags at ion ion ackina	II. Patchii I2. Polishe *I3. Pathol I4. Railroc I5. Ruttin I6. Shovin I7. Slippag IB. Swell	Trans Crack og & Util Cut led ed Aggregate es od Crossing a	Patching le		
QUANTITY & SEVERITY A SEVERIT	7 4			YPE.QUANTITY & SEVERITY		
DISTRESS TYPE 10 q= TO CORRECTED	DENSITY 0.17 TAL DEDUCT DEDUCT VA	SEVERITY L: VALUE		PCI = 100 - CDV =		

and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Comment Figure E-2

Plantisters Tram. Grad propagating from Sheen outs

parent

Cut section on both side.

•
-
<u>-</u> .
•
٠.
•
•
,
٥.
3
•
5
₹.
•
:
-

SECTION ___ DATE 719190 SAMPLE UNIT _ SURVEYEDBY ? 4 57 2 44 AREA OF SAMPLE _ Distress Types SKETCH:

2 3. #4. 5. 6. #7.	BI BI BU Co De Ed	eedin ock C mps rruge pres: lae C	racking and Sag ation	ıs	11. 12. 13. 14. 15. 16. 17. 18.	Patchii Polishi Pothol Railro Ruttin Shovin Slippo Swell	ng & Ui ed Agg es od Cro g g ge Cra	regate ssing	Patching	200	
						ING D	ISTRE	SS TY	PE.QUAN	TITY & S	EVERITY
TYPE	_		9		19						
	1	1 7	10/M	30	× 20'	ļ		ļ			
	H										
≿	11					↓		<u> </u>			
l≿≅	11					<u> </u>					
II ÿ	۲1										
NE	Н					<u> </u>					
QUANTITY & SEVERIT	Н					 					
1	H					 					
	~					 					
TOTAL	늬					<u> </u>					
62.	М		<u>M</u>		<u> </u>						
7.87	Н										
					P	CI CA	LCUL	ATION			
	TR YF	ESS E	DENS	ΊΤΥ	SEVE	RITY	DED. VALU				
	9		4.	16	~	1	-)	1		
	4		92.	5	1				PCI :	=100 - CL	V = 90
	Ť		100			_			1		
			 				_		1	=	
	-		 						1		
	-		-						{		
	_		 								
<u> </u>			<u> </u>						RATIN	HG = Exc	EUEN.
. q=		70	TAL DE	DUCT	VALUE		15		H		
	FC	_	DEDLK				10		1	·	

DA FORM 5148-R, NOV 82

Figure E-2

^{*} All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Patholes.

ASPHALT PAVEMENT INSPECTION SHEET

For use of this form, see TM 8-623; the proponent agency is USACE.

BRANC	H			Tour-	L 71	<u>LAF</u> S	SECTI	_ Й С	SR-4	<u> </u>
DATE .		7/91	90						NIT	
SURVE	YED	BY <u>2</u>	<u>د بم به</u>	•		_ 4	REA	OF S	SAMPLE _	4800 5
			Dis	stress	Тур	es			SKETO	CH:
2. Bld 3. Bld #4. But 5. Co	eeding ock Cr mps a rruga pressi ge Cri Reflec	acking and Sag tion ion ocking tion Cr	ocking op Ofi	II. F 12. F 13. F 14. F 15. F 16. S 17. S 18. S 19. V	Patchin Polishe Pothok Railroc Rutting Shovin Slippag Swell Veathe	ng B.Uf nd Agg es nd Cros g g ge Cros ering o	king nd Rave	atchir		1 24
		<u> </u>	E	XISTI				E.QU	ANTITY &	EVERITY -
TAbe		4	-			5 < 5'L	10	D'L		
1 1		5M			9,	< > L	24 ×1		•	-
-		-3 -					2	-		
QUANTITY & SEVERITY	Ī.,									
[[连]					-					
SE II										
B-5										
L \	-									
7 3 F	2	0_0			7	'5	69	72		
	2	5	7							
TOTAL SEVERITY TINI										
				P	CI CA	LCUL	4TION			
DISTR		DENS	πγ	SEVE	RITY	DEDL VALU				
9		411	7	-		6				
4		0.5			ज	- 4		PC	CI = 100 - C.	DV =
15		0.3		- 1		2	_			70
10		14.	_	4		3	1			
	•									
					·					000 ZI .
				L				RA		4000
q=	70	TAL DE	DUCT	VALUE		- 4	13	ŧ	=	
CORREC	CTED	DEDU	CT VA	LUE (CDV)	13	0	1.		

* All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

3	2	5

BRAI DATE SUR	Ε	9						SAMF	LE C	SR UNIT SAMPLE	-43 3 48005)
2 3. #4. 5. 6. #7.	B B B C C D C	leedi lock (umps orrug epres dae ()	Cracking and Sa ation sion Cracking	king gs	II. 12. 13. 14. 15. 16. 17. 17. 18.	Long Patch Polisi Potho Railro Rutti Shovi Slippo Swell	BTransing & United Ageles cod Cranging age Cranging	s Craci til Cut i gregati ossing	king Patchii	SKET	
<u></u>					EXIST.	ING E	ISTRE	SS TY	PE.QU	& YTITAN	SEVERITY
TYPE	_		9	 		<u> </u>		10		/3	19 60
1	Ľ	 	60'M	├		├		-580	<u> </u>	<u>'</u>	これコメンマンニ
>	> \					┼			· 3'L	 	
QUANTITY & SEVERIT	I					_		TRA		 -	
に置く	!										+
E	П			L_{-}							+
3.	Н										
	П										
13.	4		40	 		 					
FOTAL SEVERITY FINIT	7	- 1	60		:	<u> </u>		52	2		600
103 Y	7		00			<u> </u>					
-8.	7	===				<u></u>	<u> </u>				<u> </u>
-	_				<u>P(</u>	CI CA	LCUL				
DIST TY			DENS	TY.	SEVE	RITY	DEDU VALU				
	7		0.8	3	11		2				- 1
7	7		1.2	5	7	1 -	- 5		PC.	I = 100 - C	ov = -
/	Þ		11.9	2	1	,	10				8 2_
	3		0.0	2	L		6	-			
1	7		.12.	5	L		6	,	,		
	_										
	_								RAT	TING = V	160017
q=		TO	TAL DE	DUCT	VALUE		.3 3	.			
	c				LUE (:18			-	
	_					~-/	""				

* All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Patholes.

DA FORM 5146-R, NOV 82

Figure E-2

BRANCH		<u></u>	1						(C-1=	<u> </u>
SURVEY	'ED	BY	2-6			_ ^	REA	OF SA	MPLE _	4800
I. Allig 2. Blee 3. Bloc *4. Bum 5. Corr 6. Depr *7. Edge *8. Jt Re *9. Lane	ding k Cr ps a ruga ressi e Cri eflec	racking nd Sag tion ion acking tion Cr	ing is acking op Of	II. F 12. F 13. F 14. F 15. F 16. S 17. S 18. S 19. V	ong 8 Patchin Potishe Potholo Raitro Rutting Shovin Blippag Swell Weathe	Trans og & Ut ed Agg es od Cros og g g ering a	king nd Rave	atching eling	-10 1	1
									NTITY & S	
TYPE	<u>→</u>	00'M		70' L		» <u>L</u>	1	_	19 12 L	7 7 M
QUANTITY & SEVERITY										
QUAN & SE										
SEVERTY H T T			74)	36	<u>.</u>	,		12_	
55 H	70	20			<u> </u>			\dashv		7
				P	CI CA	LCUL	ATION			
DISTRE TYPE		DENS	тү		RIŤY	DEDU	ICT.		4	
7	ŀ	0./5		~		4		PC.	=100-00	117 -
9		1.4	_	2	_	3		101	-100 - 01	75
10		15		L		20			=	-
/3		0.0		L		6				
19		0.2	5	L		1		R∆T	ING = .	
q= CORRECT	-			VALUE (-4				.6000

***** All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

三日から こうなない

1

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-823; the proponent egency is USACE.

BRANCH DATE SURVEYED	7 BY_2	- A			_ 3	SAMPL	LE U	SIL- NITS SAMPLE _	
1. Alligato 2. Bleedin 3. Block Ci #4. Bumps Ci 5. Corrugo 6. Depress #7. Edge Cr #8. Jt Reflect #9. Lane/Si	g racking and Sag at lon ion acking ction Cr	ing as acking ap Of	11. 1 12. 1 13. 1 14. 1 15. 1 16. 3 17. 3 19. 1	Long & Patchin Polishe Pothol Railro Ruttin Shovin Slippo Swell Weathe	Trans ng & Ut ed Agg es od Cro g ng ge Crac ering a	king nd Ravi	eling	20	
						SS TY	PE.QU	ANTITY & S	EVERITY
TYPE	9		ਹ		10	- 2		15	<u> </u>
) (H-2	רא ע	200	12m2.	24	8 'M	るいさ	a.5 <u>L</u>	210×3.7	
QUANTITY & SEVERITY			<u>L</u>						
JEL 2	20	5	92	·		500	,	600	
ES M				4	8			-	
SEVERITY H W T								-	1
			P	CI CA	LCUL	TION			
DISTRESS TYPE 2-	DENS		SEVE	RITY	DEDL VALU	ICT			
9.	100	17	<u></u>				PC	I = 100 - CI	0V =
10	12.		-		13				63
10	12		- M		1				<u> </u>
15	12.		- 4		2				
				-			RA	TING = 6	000
Q= TO	DEDUC				13			==	

DA FORM 5146-R, NOV 82

[★] All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and IO Which Are Measured in Linear Ft; Distress 13 is Measured in
Number at Pathales.

Sir.

かっ かがらのからの間間でしている

2 8 3. 8 4. 8 5. 0 *7. 8 *8. J	E SILE SILE SILE SILE SILE SILE SILE SIL	T/ YED: igator eding ock Cr mps a rruga pressi ge Cri Reflect	Crack acking nd Sag tion ion acking tion Cri	Dis ing	*IO. L. II. P I2. P *I3. P I4. R I5. R I6. S I7. S I I8. S	ong & otchin Polishe Pothole Pailroo P	es Trans g & Und ed Agg es ad Cross g g ge Crad	Crackii il Cut Pi regate ssing	E UN OF SA	AMPLE SKETC	H: 1	TIPPECANÒE
_	_			F	XISTI	NG DI	STRES	SS TYF	E.OUA	NTITY & S	EVERITY	-
TYPE	7		2			9		1		15	(0)	
-	7	200	×811	41	54	7.	シレ	2014	2.51	200'M	. 35.	_
1	H	·						ļ				
QUANTITY & SEVERITY	11								-+	-		
	H							1	_			
	lł				$\neg \neg$							
NA I	I											
0-3	ł											
<u> </u>	Ц											
1 4 E 7	_			4	٠	20	<u> </u>	20	`		35	_
TOTAL SEVERITY TINIT	4	16	10				•			200		
38	<u>/ </u>	- 14										=
					PC	CI CA	LCUL	ATION				
DIST	r	ESS					DEDL					
· <i>T</i>)	ſF	Έ	DENS	TY	SEVE	RITY	VALL	IE				
· 1			10.4	71	1		3	3				
2	_		33		~	1	2	2	PC	T = 100 - CL	OV =	
7			0.8	_	4			3 <i>i</i>	,		45	
9	_		4.		4			6		==		
10	_		0.7	3	L			1				
15	5		4.1		~		3	12				
					-				RAT	TING = E	AIR.	
q=		: 70	TAL DE	DUCT	VALUE		- 9	7			AIL.	:
		_			LUE (- 3					
30,00		,, <u>LU</u>		<u> </u>	1402 1	5017		٠	l			

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and IO Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2.

Control of the Contro

ASPHALT PAVEMENT INSPECTION SHEET

BRANCH	2	SECTION SR-43
DATE _ 7/17		SAMPLE UNIT/
		AREA OF SAMPLE 4870 :

		וט	stress	: гур	<u>es</u>			SKETO	;H;
1. Alligato. 2. Bleeding 3. Block Gi #4. Bumps G 5. Corruga 6. Depress #7. Edge Cr #8. J1 Reflec #9. Lane/St	g racking and Sag at ion ion acking ation Cri	is acking	11. 1 12. 1 *13. 1 15. 1 16. 5 17. 5 1 18. 5	Patchii Polishe Pothol Railro Ruttin Shavin Slippa Swell	ng & Ut ed Agg es od Cros g g g e Cros	Ţ	atching -	7-2 7	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Ε	XIST	NG D	STRES	S TYP	E.QUA	ITITY & S	EVERITY
TYPE	a	10	,			a			
, a	OM	77.5~				60	· L		
1		_	221						
-		Ano							
& SEVERITY		,				•			
			_				-		
IES II—							-		
							_		
[⋧•₃ }──				-			- 		
ι ત⊢—				}					
E / 1	, 			-					
48 []		66	4			.60	-		
02	io								<u> </u>
F & H								<u> </u>	
			P	CI CA	LCUL	ATION			
DISTRESS : TYPE	DENS	TY	SEVE	RITY	DEDU VALU			-	//
9	1.2	2	L		/3			•	
4	1.8		~	1	6		PCI	=100 - CL	ov =
10	13-1		1		2		- 5		78
-,,	/	-0-				12.51			== :
	Ţ			C + 4		12			
			*,. **,	· •=	5-5-1	A 10 mm			
		,*	• • •				RATI	NG = ,,	
q= 170	TAL DE	DUCT	VALUE	5. 2 (\$7)	. 25	1.00			6001)
CORRECTED	DEDUC	T VA	LUE (CDV)	:22	- street			

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 Is Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Figure Fat

frank Shoulde "
Water bonding on som section of shoulder after rainface!

DATE 710/40 SAMPLE UNIT 7 SURVEYEDBY AREA OF SAMPLE \$20 Distress Types 1. Alligator Cracking *IO. Long & Trans Cracking 2 Bleeding II. Patching & Util Cut Patching 3. Block Cracking 12 Polished Aggregate *4. Bumps and Sags *13. Potholes 5. Corrugation 14. Railroad Crossing	o ri
Distress Types 1. Alligator Cracking	o si
1. Alligator Cracking **IO. Long & Trans Cracking 2. Bleeding II. Patching & Util Cut Patching 3. Block Cracking I2. Polished Aggregate **4. Bumps and Sags **I3. Potholes 5. Corrugation I4. Railroad Crossing	
2. Bleeding 3. Block Cracking 4. Bumps and Sags 5. Corrugation II. Patching & Util Cut Patching I2. Polished Aggregate **I3. Potholes I4. Railroad Crossing	74
6. Depression 15. Rutting **7. Edge Cracking 16. Shoving **8. Jt Reflection Cracking 17. Slippage Cracking **9. Lane/Shldr Drop Off 18. Swelt 19. Weathering and Raveling	235
EXISTING DISTRESS TYPE.QUANTITY & SEVER	TY
TYPE 19 2 10	
200 × 11 L 300 × 11 L 9' M	
> 1 102 -	
>=	
SEVER I	
SEVET	
80	
	-
JEL 200 300 104 -	
1 L 200 300 104	
PCI CALCULATION	
DISTRESS DEDUCT TYPE DENSITY SEVERITY VALUE	
2 6.25 L 2	
10 2.17 L 5 PCI = 100 - CDV =	
10 0.19 M 1	
19 4-17 4 3	=
RATING = V. / COS	
RATHO - V. 600D	
q= TOTAL DEDUCT VALUE 1/	=.
CORRECTED DEDUCT VALUE (CDV) 1)	

Number of Potholes.

DA FORM 5146-R, NOV 82

T PAVEMENT INSPECTION SHEET

Distress Types 1. Alligator Cracking	
2 Bleeding 3. Block Cracking 12. Polished Aggregate #4. Bumps and Sags 5. Corrugation 6. Depression 15. Rutting 7. Edge Cracking 16. Shoving #8. JI Reflection Cracking 17. Slippage Cracking #9. Lane/Shidr Drop Off 18. Swell 19. Weathering and Raveling EXISTING DISTRESS TYPE.QUANTITY & SEVERI TYPE 9. 15 19 9 10 ##9. Lane/Shidr Drop Off ##9. Lane/Sh	•
# 7. Edge Cracking 16. Shoving # 8. JI Reflection Cracking 17. Slippage Cracking # 9. Lane/Shldr Drop Off 18. Swell 19. Weathering and Raveling EXISTING DISTRESS TYPE.QUANTITY & SEVERI TYPE 9 15 19 9 10 ## 10 15 19 9 10 ## 10 15 19 9 10	•
1YPE - 9 15 19 9 10 27 L 20 x 1 L 10 x 1 L 60' M 6 x 24'1	TY
2n'L 20'x1'L 10'x1'L 60' M 6x24'	
EAST CONTRACTOR OF THE PROPERTY OF THE PROPERT	
S SEVI	
o	
JEL 300 20 100 140	
ES M	
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PCI CALCULATION	
DISTRESS TYPE DENSITY SEVERITY VALUE	
9 6.25 L 8	
9 1.25 M .5 PCI = 100 - CDV =	
10 3.0 4 7 82	Ì
15 0.42 6 3	= :
17 2.08 4 2	
RATING = V.600	
q= TOTAL DEDUCT VALUE 28	<u> </u>
CORRECTED DEDUCT VALUE (CDV) 18	

Number of Potholes.

DA FORM 5146-R, NOV 82

*Open whitch on the side of Wahash Hospital. * long of Francis Caches have opened up from soil costings

BRANCH _	-/	<u> </u>				SECTI				
DATE	7/1					SAMP				4
SURVEYED	BY_{2}	- 'A	<u>. </u>	μ. μ	<u> </u>	AREA	OF S	SAN	IPLE _	4400 sif
		Di	stress	Тур	es				SKETO	: , ^~
I. Alligate 2 Bleedin 3. Block C #4. Bumps 5. Corruge 6. Depress *7. Edge Ci *8. Ji Refle *9. Lane/S	g racking and Saga ation sion racking ction Cre	s ackini	II. I I2. I I3. I I4. I I5. I I6. S g I7. S	Patchii Polishe Pothol Raitroc Rutting Shavin Slippag Swell	ng & Ui ed Agg es od Cro ig ig Cro		a tchir	קי	0	200
		E	XIST	NG D	STRES	SS TY	PE.QU	ANT	ITY & S	EVERITY
TYPE	19	-		٥	<u></u>	13			7	
700	~ 3 M	1	M' 67	2	10 /L	2	L	<u> </u>	30 L	
_ 1						<u> </u>		<u> </u>		
SEVERITY		-				<u> </u>		_		
三										
& SEVI										
\								-		
JE L			-	20	a	2		_	3/0	
EE M 60	2	10	¹ D					F	7	
SEVERITY TOTAL	*		<u> </u>							
		-	P	CI CA	LCUL	ATION				
DISTRESS TYPE	DENS	ΙΤΥ	SEVE	RITY	DEDL VALU					
Ź.	0.62	5	4		3	•)			•	
9	4.1.	7 .	/L	-	76		PC	I =	100 - CE	
9	2.00	28		1	6					87
13	0.0	<u> </u>	L		- 11				===	
	120	5	~		6					
	1.0			·					_	
							RA	TIŅ	J. V.	4000
7	TAL DEI				- 3				=	===.
CORRECTED	DEDUC	T VA	LUE (CDV)	: 13	,				
¥ All Distres and IO Whi	ses Are	Мес	sured	In Squ	are Fe	et Exce	pt Dis	res Is N	ses 4,7,8 leasured	9 In

DA FORM 5146-R, NOV 82

-24

And 10 Which are Measured in Linear FI; Distress is is measured at Number of Potholes.

DA FORM 5145-R, NOV 82

Figure E-2

** Gran Drain Pape 24 b at this section

+ Gran at at the eater of P. A. Shoulden not visible

DATE	H	2 :-1=0 2 4 · .	9	AMPLE U	S/2 - 23 INIT SAMPLE						
		Distress	Types		SKETCH:						
2. BI 3. BI #4. Bu 5. Co 6. De #7. Ed #8. J1	lligator Crock leeding lock Cracking imps and Sog prrugation lepression fige Cracking Reflection Cr ne/Shidr Dro	II, F I2 F I3 F I4. R I5. R I6. S acking I7. S op Off I8. S	hoving Tippage Crac	il Cut Patchii regale sing king	24						
					ANTITY & SEVERITY						
TYPE-	19	19. 200'x1'M	7	15 150 L							
	270 4 4 1	200 2 1 7	210 4/6	130 L							
=											
QUANTITY & SEVERIT											
		-									
S S		·									
1 (
OTAL VERITY	3600 .	•	200 .	200							
FE M		200									

		PCI CA	LCULATION	/
DISTRESS TYPE	DENSITY	SEVERITY	DEDUCT VALUE	
2 .	4:17	4	1	1
15	8.33	4 2	26	PCI = 100 - CDV =
19	75.0	4	14	3 67
19	4.17	M	12]
	6.0	300		. ·
	0.45 c	- 300		1 22
	·:			RATING = 6000 .
g= . 70	TAL DEDUCT	VALUE	. 53	1 2000
CORRECTED	DEDUCT VA	LUE (COV)	33	

* All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Patholes.

DA FORM 5146-R, NOV 82

France E 2

The South Bound has open ditch at the should ide to least with 16 size stone.

I the North aid her water standing on the shoulder due to water scaping from high ground of an adj. property

worked away involving it min old by had soft

For use of this form, see TM 6-623; the proponent agency is USACE.

BRANCH _		<u> </u>			_ :	SECTI	ON _	586-	
DATE	7/11	100	>		_ :	SAMP	LE U	NIT	4
SURVEYED	BY	- 4		ہنر نسا	<u>'. </u>	AREA	OF S	SAMPLE _	#800 V
		Di	stress	Тур	es			SKETO	:H: '₹
I. Alligato	r Craci	ing				Crack			
2 Bleedin	g					il Cut F		7	- 1
3. Block C. ¥4. Bumps c	racking and Soc	7<	*13. I	2011SDC Pat bol	ed Agg es	regate	•	1	
5. Corrugo	rt ion	,,,	14. F	Railro	od Cro	ssing			243
6. Depress *7. Edge Cr			15. F	Rutting Shovin				1 / 1	
*8. Jt Refle	ction Cr	ackin	a 17. S	Slipoa	y se Crai	okina			
* 9. Lane/S	hidr Dr	op Of	f 18. 3	Swell					24
			19. 1	Veathe	ering a	nd Rav	eling		
		L	EXISTI			SS TY	PE.QU	ANTITY & S	EVERITY
TYPE +	7	0		10		. •5		10	
	70.M		:3 L	240	~7'M	701	× 27	25' L	-
_				#U \	P 191			5 A Co	
- 									
[[豐]									
QUANTITY & SEVERITY		_					-		
5-s									
								0.1	
1 5 5 1		15	0	96	<u> </u>	140	2	8⇒	
SEVERITY H W L1-	0	-		96	.0				
F 8 1/1			P.	CT CA	LCUL	TION			<u> </u>
DISTRESS		• 1			DEDL		1		
TYPE	DENS	ITY	SEVE	RITY					
7	3	SA	~	1		8			
9	3.1	25	4			5	PC	I = 100 - Cl	DV =
10	10 1.85		4	Γ		4	1	<u> </u>	5)
15						6		. ====	
17	19 20			1	2	4		.00.*	
<u> </u>	-		-			-	RA	TING =	
170	TOTAL DEDUCT VALUE					7	"~	<u> </u>	000
, , , , , , , , , , , , , , , , , , , ,	q= TOTAL DEDUCT VALUE .							===	
CONNECTED	DEDU	11 47	LUE I	W 7 /		13			

* All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

.....

Figure E-2.

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proponent spency is UEACE.

SECTION __ 5/3

BRANCH SR-63 VEILA-LLION

2	leed lock umps orruge epre: dge (Ref)	Cracking and Sogation Scientification Control of Contro	eking g igs	II. 12. 13. 14. 15. 16. ing 17. Off 18.	Pate Pate Pate Rail Rutt Show Slipp Swel Weat	g & Tro ching & shed A holes rood C hing ring page Ci ll thering	Util (ggre rassii rackin and i	ng g Raveling		SKET		,	
PE -		10		7	T	1	133	3	T	15	SEVERI		_
1	8 4		_	2	2'	(00' L	-	OL.	100	1 2 m	-		-
	20		3	9L.			1			2.4	+	·= =	-
11		11-	<u> </u>							12/4.			1
11		1	<u> </u>		4_				_	. N. Z. M.	 		1
11	10	L OM			-		$oldsymbol{\Box}$						1
11	_	5L.			-								1
H	2)				├		+_						1
V					-		┼						1
4	2.	96	/3	3	e	. .	┼						
L M H					- 8		+	20			450		
7							╀		3	360			
			=			LCUL	<u> </u>			4 0			ĺ
ist O W	TOT.	es Are M Are M otholes.	S 4 7 JCT VA Measure	LUE (C sured in tred in L	DV)	, _	JE Exc	RAT	ING esse: Med	00-CD		= 36 Pos	. 8 2
9	 um	South Lom	V	UD .	 	-4 r	ayij	from .	بدبر	with cr	ر د د د ع	4	lio terst

513

BRANC DATE	ЭН	10/2	13.0	91	·uro	~ 9	SECT	ION _	NIT	53		-	
SURVE	EYED	BY_2	A	بركدم شا	M. C	2540	REA	OF S	SAN	IPLE 2	4 x	175	
<u></u>				stress					\exists	SKETO			
2. 81 3. 81 ¥4. 84 5. Cd 6. De ¥7. Ed	leeding lock Ci imps o preugo epress lae Cr	racking and Soq at ion sion rackina	7 s		Patchii Polishi Polhol Railroi Ruttin Shovin Slippa Swell	od Cro: g na -	il Cut I regate ssing cking	Patchii 1	rg		24	~	
			l	XIST					ANT	ITY & S	EVER	ΤY	
TYPE -		7	10		3					19			
1	10	<u>L</u> ·	181		100'×	12'			20	7×2'L	 -		
	> \			L.			10 ×		 				
LE I	<u>È</u> I├──			<u> </u>	-		10 ×		┢─				
ER J	SEVERIT							3M	┢				
ַבַּב <u>ּ</u>			_			_			\vdash				
QUAN SE						-			_				
⊙ •5													
TOTAL SEVERITY H ₹	10	<u> </u>	/0	8	120	×			4	-00			
W KO							480		<u> </u>				
<u> </u>	<u> </u>		L		<u> </u>		120		<u> </u>				
				P	CI CA	LCUL	TION						
DISTR		DENS	:: RITY	SEVE	RITY	DEDU VALU							
7		4.	2:	L				71		•			
/0		A.	5	-				PC	:I =	100 - CE	ov =		
3		30		L.	>			1		٠.			
15	15 20			M				1 ⋅				= '	
15				H	:	1		1					
. 19		16:)	4	·			1		•.			
				- 10				∥ RA	TIN	G =			
q=	_			VALUE						=		= [
CORRE	CTED	DEDUC	T VA	LUE (CDV)								
							- 2						

All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9
and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in
Number of Potholes.

DA FORM 5146-R, NOV 82

& Section South of UD

ASPHALT PAVEMENT INSPECTION SHEET For use of this form, see TM 6-623; the proponent agency is USACE.

				-1-00	T				AMPLE :	
2. 81 3. 81 #4. 80 5. Co 6. De #7. Ed	leedin lock Ci imps c prrugo epress lae Cr	racking and Sag at ion sion rackina	ing is	11. 1 12. 1 *13. 1 14. 1 15. 1 16. 5 17. 5	Long 6 Patchishe Pothol Railro Ruttin Shovin Slippa Swell	Trans ng & Ui ed Agg es od Cro g g ge Cro		Patching	SKETC	
								PE.QUA	NTITY & S	EVERITY
TYPE -	-		,,		10		7		19	
1		×3' M	12'	as L		M.	64		1N/12 L.	
_ 1		23 M				<u>L</u> .	15L	\rightarrow		
<u>,</u>	⊢ 1				10		18L			-
に関う	SEVERI				20 [<u>.</u> .	10 L			
					10 [- : _				
QUAN										
_ (<u> </u>			ļ
JEL	-	7.	48	20	70	>	58		200	
MEN	_	70			. 20			-	200	1
SEVERITY TITI		0					-			
1/				P	CI CA	LCUL	ATION			
DISTR		DENS	πΥ	SEVE	RITY	DEDL VALU				
15	-	23	, ç	74						
15		1.2		H		1		PCI	=100 - CL)V =
3		20		4						
Ю		2.	7	4				-	=	==
/0		0.8	ን	H						
7	2.4 4						•			
19]	8.3		U				RAT	ING =	
q=	TO1	TAL DE	DUCT	VALUE						
	CTED	DEDUC	TV	LUE (CDV)					

DA FORM 5146-R, NOV 82

7.

Figure E-2	
& Section is on an enhantement	A. & The direct on E
- 50 to 60 feet level.	
+ Section south of up.	. •

For use of this form, see TM 6-623; the proponent agency is USACE.

BRANCH	31-5	3 V.	Enm			SECT				
DATE	0/22/	91			3	SAMPL	E UN	IT <u>4</u>		
SURVEY	EDBY 2	- 17	M FA /1	4.00500	2 /	REA	OF SA	AMPLE _	20173	
			stress		_	Cracki		SKETO	H:	
3. Block #4. Bump 5. Corru 6. Depre #7. Edge #8. JI Res	2. Bleeding II. Patching & Util Cut Patching 3. Block Cracking I2. Polished Aggregate #4. Bumps and Sags #13. Potholes 5. Corrugation I4. Railroad Crossing 6. Depression I5. Rutting #7. Edge Cracking I6. Shaving #8. JI Reflection Cracking I7. Slippage Cracking #9. Lane/Shldr Drop Off I8. Swell I9. Weathering and Raveling EXISTING DISTRESS TYPE.QUANTITY & SEVERITY									
		_		NG D	ISTRES		PE.QUA	NTITY & S	EVERITY	
	15 70'x 3' ~	3/			6'M.	19	L -	04.1		
	N' 4 3 M	6		24,7	· B 7-1.	12 +2		7		
l II—			ra L							
QUANTITY & SEVERITY		20			_					
仁思人仁		/9 ′	ייי							
		10"	۷٠ -							
122 I		12								
			<i>۳</i> ۱.	<u> </u>						
<u> </u>			<u> </u>							
¥\(\bullet		81			٠	200	9			
SEVERITY H W T	600	11:	<u> </u>	27.	0	<u> </u>				
- H H				<u> </u>					<u> </u>	
			P	CI CA	LCUL					
DISTRES TYPE	DEN:		SEVE		VALU					
15	. 25		M					- 100 0	N/ -	
10	3.	5.	L				PCI	: =100 - CL)V =	
10.						'				
3 11.3								==		
15										
	0.	4	L	٠ نــ						
							RAT	ING =		
q=	POTAL DE	DUCT	VALUE	:	-		ı	=		
CORRECT								•		
W 411 Oi-4		. 442		In Com			nd Dint	470		

* All Distresses Are Measured In Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured In Linear Ft; Distress 13 to Measured In Number of Potholes.

DA FORM 5146-R, NOV 82

Section or a Got Section Figure E

I. Alligator 2. Bleeding				15 20 5	ARE	4 OF	UNIT SAMPLE	20 4.20
3. Block Cr #4. Bumps at 5. Corrugal 6. Depressi #7. Edge Cro #8. Jt Reflect #9. Lane/Shi	r Cracking 7 acking nd Sags tion ion acking tion Cracki	II. 12. ¥13. 14. 15. 16. 16. 17. 18.	S Ty Long Patal Polis Path Railr Rutti Shov Slipp Swell	ATranhing & L hed Ag oles ood Cri ing	is Croc Itil Cut Igregal ossing acking	king Patch le	ing SKET	
C SEVERITY C SEVE	: H· 3:	EXIST I	12 50 34 33	L. L.	7	PE.QU	ANTITY & 15	
SEVERAL SEVERAL N 4 70		33	12	,	20		240	
/5 7 /0 /0 /0 /5	DENSITY -17-5 /-4 5-25 4-6 7-5: 0-8	SE VER	RITY	DEDU VALU	CT		T = 100 - CL - - ING =	DV = .

** All Distresses Are Measured in Square Feet Except Distresses 4,7,8,9 and 10 Which Are Measured in Linear Ft; Distress 13 is Measured in Number of Potholes.

DA FORM 5146-R, NOV 82

Figure E-2

or that South of UD.

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-623; the proponent agency is USACE.

	BRANCH	_				! •		
ſ,	DATE	113/92		SAI	MPLE .	UNIT		
	SURVEYED							
	• •	•			D	istress 7	vnes	
	10			21. Blow-	·Up .	3	I. Polished	
	• •			22. Corne	ing/Sha: er Break	· 3	Aggrega 2. Papouts	
	9			23. Divid 24. Durai Craci	king	"D") 3.	3. Pumping 4. Punchou 5. Railroad	<i>t</i>
	•		Ì	25. Fault 26. Joint		mage 3	Crossing / Craling	
•	8			27. Lane	/Shidr D	rop Off	Cracking 7. Shrinkag	/Crazing
	•			29. Patch Util (ing, Lai	rge 8 3	B. Spalling 9. Spalling	, Carner
	7			30. Patch	ning , Sn	nal.	Joint	
	•		•	DIST.		NO.	%	DEDUCT
	6			TYPE 26≭	SEV.	SLABS	SLABS	VALUE 2
			Ĭ				,,,,,,	
$\overline{}$	5							
O	•							
	4] - [
	3							
į	•	:						
Ì	•		• 1	q=	TOTAL	DEDUCT	VALUE	2 .
EDA	2			CORRECT	ED DED	OUCT VALU	E (CDV)	2_
1				P	CI = I	00 - CDV		98
	· ·			R.	ATING.	= <u>-</u>	Exce	LENT
•	1 2	3	4	U		1 Maril	5 East	d D
	₩ All Distresses Al Distress26, Which							2.
1		\sim_0	Dishtras	Pousent		114 71	is as	(مک
	DA FORM 5145-R,	NOV 82	Dishiros There is	26 ()	1.4 - S Hw	Put 4 8	el at o	he jout
	OUERALL PCI	: 96.6	There is F	igure E-T.	<u> </u>		· .	
i.	RATING = EXCEL	~~~	Longitudent in good	el and.	Trans	vere J.	out m	Server C
			Chowal 1	avenent	cand	wichnic	1 joints	. ,
	397-550 O - 83 - 11 :	CL 3	Groowed P	Pavement	- Scho	or ho	(very	sma concl

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 8-623; the proponent egency is USACE.

DRANC		3-35	FF7211)[CTIO		13	_
DATE_	571	3/92			<i>SA</i>	MPLE	UNIT	2	
			HMED						.1
•	•	•	•				Distress	Types	
10			1		21. Blow	-Up		31. Polisher	
9	•				22. Corne 23. Divid 24. Dura	er Brea led Slai bility (k 3 b 3 "D") 3	Aggrege 2. Papout: 3. Pumpin 4. Puncho	s g ut
. •		•			25. Fault	ing		5. Railroa Crossin	a l
<i>8</i> • •					26. Joint 27. Lane. 28. Linea 29. Patal Util (/Shidr (ar Crack hing, La	Drop Off ing 3 rge 8 3	7. Shrinka 8. Spalling	g/Crazing ge Cracks , Corner
					30. Patch	ning, Sn	nal.	9. Spalling Jaint	, 0
6		•			DIST. TYPE	SEV.	NO. SLABS	% SLAES	DEDUCT VALUE
• •	ŀ	•	·	-	26*	1		/////	2
5				I					
4		•							
• •			-	}					
3				F					
2				-	q=	TOTAL	DEDUCT V	ALUE	2
• •				[CORRECTE				2_
						CI = 10 TING =	0 - CDV : <u>E</u> x	CEUENT.	
1	2	3	4 .	:	No I	ritien	~ Exce	et Put	- Shea Ju
* All Distresse Distress26, W	s Are C hich Is i	ounted Oi Rated Fo	n A Slab-By r the Entire	-Slat	b Basis Exmple Unit.	ccep1	Type =	ni Shla E Seal	- Shea June Leney 30 Coat on
DA FORM 5145	FR, NOV	' 82	•	-					-
				Figu	re E-1.				

397-010 0 - E3 - 11 : QL 1

CONCRETE PAVEMENT INSPECTION SHEET

For use of this form, see TM 5-623; the proponent agency is USACE.

	RANCH		HENDR	uus	SEC	TION	~	<u> </u>	
L	DATE	13/92			SAM	APLE (אואע	<u> </u>	
	SURVEYED I		MED		SLA	AB SIZ	E	x (18-19	,′)
•	•	•		•		D	istress T	ypes	
10 9 8 7	•				21. Blaw- Buckli 22. Corne 23. Divid 24. Duracl 25. Fault 26. Joint 27. Lane 29. Patch Util (30. Patch	Up ing/Shai r Break ed Stab bility (' king Seal Da YShldr D r Crack ing, Lai Cuts	tering 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	I. Polished Aggrega 2. Popouts 3. Pumping 4. Punchou 5. Raitroad Crossing 6. Scaling	t Map Crazing Cracks Carner
6	·				DIST. TYPE 26*	SEV.	NO. SLABS	% SLABS	DEDUCT VALUE
5	•		36L	•	36	4	3	15	7
4	•			•					
3	•								
2	•	361	361		q=	TOTAL	DEDUCT	VALUE	9
-		1 1		ci ni	CORRECT		VET MALL	r /coi/	a

** All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated For the Entire Sample Unit.

DA FORM \$145-R, NOV 82

Figure E-1.

PCI = 100 - CDV =

RATING =

397-510 0 - 83 - 11 : QL 3

wh

CONCRETE PAVEMENT INSPECTION SHEET For use of this form, see TM 5-523; the procedurit agency is USACE.

SURVEYED BY 2 PP P C SLAB SIZE 12 Y 16 Distress Types 21. Blow-Up 31. Polished Buckling/Shattering Aggregate 22. Corner Break 32. Popouts 23. Divided Slab 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad Cracking Crossing 25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Cracking/Crazin 28. Linear Cracking 37. Shrinkage Crack 29. Patching, Large 8 38. Spalling, Corner Util Cuts 39. Spalling, U 30. Patching, Smal. Jaint	BRANCH	113-36 HIM. Drick	g SE	CTION	100	·	
Distress Types 21. Blow-Up 31. Polished Buckling/Shattering Aggregate 22. Corner Break 32. Popouts 23. Divided Slab 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Raitrood 25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Crocking/Crazi 28. Linear Cracking 37. Shrinkage Crock 29. Patching, Large 8 38. Spalling, Corne Util Cuts 39. Spalling, U 30. Patching, Smal. 7 DIST. NO. % DEDUC TYPE SEV. SLABS SLABS VALUE 26* L. V///////// 2_ 5	DATE	1712/92	SAI	MPLE (UNIT	4	
21. Blow-Up 31. Polished Buckling/Shattering Aggregate 22. Corner Break 32. Popouts 23. Divided Stab, 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad 25. Faulting Crossing 26. Jaint Seal Damage 36. Scaling/Map 27. Lane/Shldr Drop Off Crccking/Crazii 28. Linear Cracking 37. Shrinkage Crock 29. Patching, Large 8 38. Spalling, U 30. Patching, Smal. Joint 7 DIST. NO. % DEDUC TYPE SEV. SLABS SLABS VALUE 26** L. V/////// 2_ 5	SURVEYED B	Y 2 · AHMED	SL/	AB SIZ	E	1×18	
Cracking 35. Railroad Crossing 25. Faulting Crossing 26. Jaint Seal Damage 36. Scating/Map 27. Lane/Shldr Drop Off Crccking/Crazi. 28. Linear Cracking 37. Shrinkage Crock 29. Patching, Large 8 38. Spalling, Corne Util Cuts 39. Spalling, U 30. Patching, Smal. Jaint 7. Jaint DIST. NO. 76 DEDUC TYPE SEV. SLABS SLABS VALUE 26* L. ////////// 2	• •		Buckl 22. Corne	-Up ling/Shat er Break	3 ttering : 3	II. Polished Aggrego 2. Popouts	ite
26. Jaint Seal Damage 36. Scaling Map 27. Lane/Shldr Drop Off Crccking/Crazii 28. Linear Cracking 37. Shrinkage Cracki 29. Patching, Large 8 38. Spalling, Corne Util Cuts 39. Spalling, U 30. Patching, Smal. Joint 77777777777777777777777777777777777	,		Crac	king	'D'') 3.	4. Punchoù 5. Railraac	n 1
30. Patching, Smal. Joint 77777777777777777777777777777777777	•		26. Jaint 27. Lane 28. Lines 29. Pata	Seal Da /Shidr D ar Crack hing , Lai	Orop Off ing 3: rge & 3:	6. Scaling) Crecking 7. Shrinka 8. Spalling	/Map g/Crazing ge Cracks , Corner
DIST. NO. % DEDUCTION OF STARTS VALUE 5 DIST. NO. % DEDUCTION OF STARTS VALUE 26** L. ///////// 2 4			30. Pata	hing, Sπ	nal.		
4	;		DIST. TYPE		NO.		DEDUCT VALUE
3				<u>L:</u>	//////		
3							
	3						
3	• •		q=	TOTAL	DEDUCT	VALUE	48 2
CORRECTED DEDUCT VALUE (CDV) 2			CORRECT	TED DED	OUCT VALU		<u></u>
PCI = $100 - CDV = \frac{98}{E \times CELLENT}$	1		1				
1 2 3 4 ** All Distresses Are Counted On A Slab-By-Slab Basis Except			Slab Basis	Except			

DA FORM 5145-R, NOV 82

Figure E-1.

797-550 0 - 83 - 11 : QL 3

CONCRETE PAVEMENT INSPECTION SHEET

For use of this form, see TM 6-623; the proponent agency is USACE

BRANCH US 36 LIENDAICHS SECTION.

DATE SIN 92	SAMPLE UNIT
SURVEYED BY 2 - A HIM EN	_ SLAB SIZE _ 12 'x (8-19)'
9 8 7	Distress Types 21. Blow-Up Buckling/Shottering 22. Corner Break 32. Papouts 23. Divided Slab 33. Pumping 24. Durability ("D") 34. Punchout Cracking 35. Railroad Crassing 25. Faulting Crassing 26. Jaint Seal Damage 27. Lane/Shldr Drop Off 28. Linear Crocking 37. Shrinkage Cracks 29. Patching, Large 8 Util Cuts 39. Spalling, U 30. Patching, Smal.
6	DIST. NO. % DEDUCT TYPE SEV. SLABS SLABS VALUE 26* \(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right(\right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right) \right) \right(\frac{1}{2} \right) \right) \right) \right(\frac{1}{2} \right) \right) \right) \right(\frac{1}{2} \right) \right) \right) \right(\frac{1}{2} \right) \right) \right) \right) \right) \right) \right) \right) \right\left(\frac{1}{2}
5	
4	
3	
2	q= TOTAL DEDUCT VALUE 2
• • • •	CORRECTED DEDUCT VALUE (CDV) 2 PCI = 100 - CDV = 98
'	RATING = Excellent
1 2 3 4 .	

** All Distresses Are Counted On A Slab-By-Slab Basis Except Distress26, Which Is Rated For the Entire Sample Unit.

DA FORM \$145-R, NOV 82

Figure E-1.

397-550 O - 83 - 11 : QL 3

őe:				
		(-)		
				**

Appendix D Laboratory Data on Soil-Moisture Properties

US-31, NB; Hamilton County, Greenfield District; Section at Carmel near St. Vincent Hospital Sample Site:

Project No: ST-F-222(9)

11" JRCP over 4" Bituminous Stabilized Subbase #5D Pavement Type:

Joint Condition: Unsealed

24-48 inches from surface Sample Depth:

Parent Material: Loamy and silty soils in glacial till

Soil Association: L

Well drained Int. Drainage:

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: 20 In-situ Density: 130.63 pcf

Dry Density: 94.40 pcf

Plasticity Index: 6 In-situ Moisture: 9.0 %

AASHTO Class: A-4(0)Specific Gravity: 2.83

Unified Class: $2.4 \times 10^{-6} \, \text{cm/sec}$ SM-SC Permeability: $6.0 \times 10^{-3} \text{ ft/day}$

USDA Text. Class: Sandy loam Porosity: 29.3 %

% Passing #200: 47

MOISTURE CHARACTERISTICS DATA

Suction (in (in	bars) cm H ₂ O)	0.0		0.33 403		1.0 1220			15.0 18300
ω %		19.4	17.63	13.95	12.67	11.43	8.66	7.12	6.27
θ %		29.3	26.6	21.1	19.1	17.3	13.1	10.8	9.5
Sr, %		100.0	90.9	71.9	65.3	58.9	44.6	36.7	32.3
Se,		1.00	0.86	0.58	0.49	0.39	0.18	0.06	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content 'θ,': 0.095 Vol. Water Capacity '0,-0,': 0.198

Brooks & Corey: PB₄: 52 cm 3.1 η: 9.2 v_d :

Van Genuchten: α : 0.008 cm⁻¹ β: 1.45 y: 0.31

Sample Site: SR-37, SB; Hamilton County, Greenfield District;

Section at Noblesville, north of SR-32 Jct.

Project No: F-824(3)

Pavement Type: 95" Full Depth Asphalt over 8" #2 Aggregate Subbase

Joint Condition: Unsealed

Sample Depth: 24-36 inches from surface

Parent Material: Loamy silt on flood plain

Soil Association: A

Int. Drainage: Well drained

Groundwater: Present

ROADBED SOIL PROPERTIES

Liquid Limit: 20 In-situ Density: 127.65 pcf

Dry Density: 111.38 pcf

Plasticity Index: 6 In-situ Moisture: 13.0 %

AASHTO Class: A-2-4(0), A-4(0) Specific Gravity: 2.81

Unified Class: SM-SC, SC Permeability: 1.3 x 10⁴ cm/sec

0.325 ft/day

USDA Text. Class: Sandy loam Porosity: 20.2 %

% Passing #200: 35

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0	0.1 122	0.33 403	0.6 732		3.0 3660		
⊌ %	11.75	10.91	8.82	7.72	7.0	4.17	3.77	2.97
θ %	20.2	18.8	15.2	13.28	12.0	7.2	6.5	5.1
Sr, %	100.0	92.9	75.1	65.7	59.6	35.5	32.1	25.3
Se,	1.0	0.90	0.67	0.54	0.46	0.14	0.09	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ ': 0.051 Vol. Water Capacity ' θ - θ ': 0.151

Brooks & Corey: PB_d: 68.5 cm v_d : 3.18 η : 9.36

Van Genuchten: α : 0.0054 cm⁻¹ β : 1.46 γ : 0.315

Sample Site: SR-37, SB; Lawrence County, Vincennes District:

Section on uphill terrain at Jct SR-58 near Bedford.

Project No: ST-F-819(2)

Pavement Type: 103" JRCP over 43" Bit. Stabilized Subbase #5D

Joint Condition: Unsealed

Sample Depth: 16-40 inches from surface

parent Material: Silty and clayey soils in loess and weathered limestone

Soil Association: Q

Int. Drainage: Moderate

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: 36, 52 In-situ Density: 123.83 pcf

Dry Density: 99.63 pcf

Plasticity Index: 16,30 In-situ Moisture: 25.0%

AASHTO Class: A-6(15), A-7-6(34) Specific Gravity: 2.70, 2.82

Unified Class: CL, CH Permeability: 2.1 x 10-7 cm/sec

6.0 x 104 ft/day

USDA Text. Class: Silty clay loam/silty Porosity: 65.9 %

loam

% Passing #200: >50

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0	0.1 122		0.6 732	1.0 1220		5.0 6100	15.0 18300
ω %	42.25	39.62	33.18-	31.12	28.84	23.32	22.68	21.22
θ %	65.9	61.8	51.8	48.6	45.0	36.4	35.4	33.1
Sr, %	100.0	93.8	78.5	73.7	68.3	55.2	53.7	50.2
Se,	1.00	0.87	0.57	0.47	0.36	0.10	0.07	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_i ': 0.331 Vol. Water Capacity ' θ_i - θ_i ': 0.328

Brooks & Corey: PB_d : 67.5 cm v_d : 2.8 η : 8.6

Van Genuchten: α : 0.0048 cm⁻¹ β : 1.665 γ : 0.399

Sample Site: US-41, SB; Sullivan County, Vincennes District;

Section at Farmersburg, south of Terre Haute.

Project No: F-35(11)

Pavement Type: 104" JPCP over 3-4 inches Bituminous Stabilized Subbase

Joint Condition: Unsealed

Sample Depth: 29-40 inches from surface

Parent Material: Silty soils in loess

Soil Association: I

Int. Drainage: Poor

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: 15 In-situ Density: 134.08 pcf

Dry Density: 113.99 pcf

Plasticity Index: 17 In-situ Moisture: 16.0 %

AASHTO Class: A-6(8) Specific Gravity: 2.75

Unified Class: CL Permeability: 6 x 10⁴ cm/sec

1.5 ft/day

USDA Text. Class: Silty clay loam Porosity: 51.9 %

% Passing #200: 62

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm $\mathrm{H}_2\mathrm{O}$)	0.0	0.1 122	0.33 403	0.6 732	1.0 1220	3.0 3660		15.0 18300
ω %	31.25	28.97	23.38	21.12	17.50	15.73	13.92	12.89
θ %	51.9	48.1	38.8	35.1	29.1	26.1	23.1	21.4
Sr, %	100.0	92.7	74.82	67.58	56.0	50.34	44.54	41.25
Se,	1.00	0.88	0.57	0.45	0.25	0.15	0.06	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_i ': 0.214 Vol. Water Capacity ' θ_i - θ_i ': 0.305

Brooks & Corey: PB_d : 60 cm v_d : 3.0 η : 9.0

Van Genuchten: α : 0.008 cm⁻¹ β : 1.48 γ : 0.324

Sample Site: US-30, WB; Laporte County, Laporte District

Section b/w Wanatah and Hanna near KOA campground.

Project No: F-77(18 & 20)

Pavement Type: 6" Asphalt overlay over 9" JRCP over 5" sandy subbase

Joint Condition: Unsealed

Sample Depth: 24-35 inches from surface

Parent Material: Sandy soils

Soil Association: B

Int. Drainage: Poor

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: N/A In-situ Density: 136.92 pcf

Dry Density: 123.33 pcf

Plasticity Index: NP In-situ Moisture: 7.8 %

AASHTO Class: A-3(0) Specific Gravity: 2.67

Unified Class: SP-SM Permeability: 1.1 x 10⁻³ cm/sec

2.63 ft/day

USDA Text. Class: Fine Sand Porosity: 18.3 %

% Passing #200: 6

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H ₂ O)				0.6 732		3.0 3660		15.0 18300
ω %	10.42	10.15	8.45	6.66	5.95	4.44	3.99	2.88
θ %	18.3	17.9	14.9	11.8	10.5	7.8	7.0	5.1
Sr, %	100.0	97.41	81.09	63.92	57.10	42.61	38.29	27.64
Se,	1.00	0.96	0.74	0.50	0.41	0.21	0.15	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_i ': 0.051 Vol. Water Capacity ' θ_i - θ_i ': 0.132

Brooks & Corey: PB_d : 87 cm v_d : 2.6 η : 8.2

Van Genuchten: $\alpha: 0.0029 \text{ cm}^{-1}$ $\beta: 1.80$ $\gamma: 0.444$

Sample Site: US-31, NB; St. Joseph County, Laporte District:

Section on US-31 Bypass b/w Jct SR-2 and Mayflower Rd.

Project No: F-720(5)

Pavement Type: 3½" Asphalt Overlay on 9" JRCP over 5" Crushed Agg. Base

Joint Condition: Unsealed

Sample Depth: 20-42 inches from surface

Parent Material: Loamy sand

Soil Association: F

Int. Drainage: Well drained

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: N/A In-situ Density: 115.96 pcf

Dry Density: 103.51 pcf

Plasticity Index: NP In-situ Moisture: 8.0 %

AASHTO Class: A-3(0) Specific Gravity: 2.66

Unified Class: SP Permeability: 2.1 x 10⁻³ cm/sec

5.23 ft/day

USDA Text. Class: Sand Porosity: . 12.1 %

% Passing #200: < 1

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0	0.1 122	0.33 403	0.6 732	1.0 1220	3.0 3660	5.0 6100	15.0 18300
ω %	8.25	7.71	5.67 .	5.25	4.62	2.91	2.83	2.74
θ %	12.1	11.3	8.3	7.7	6.8	4.3	4.2	4.0-
Sr, %	100.0	93.5	68.7	63.6	56.0	35.3	34.3	33.2
Se,	1.0	0.90	0.53	0.46	0.34	0.03	0.02	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_r ': 0.04 Vol. Water Capacity ' θ_r - θ_r ': 0.081

Brooks & Corey: PB_d : 78 cm v_d : 2.34 η : 7.68

Van Genuchten: α : 0.0048 cm⁻¹ β : 1.665 γ : 0.339

Sample Site: SR-9, NB; Noble County, Fort Wayne District;

Section between Albion and Merrian near Burr Oaks.

Project No: S-412(9)

Pavement Type: 94" Full Depth Asphalt over 6" Type P gravelly subbase

Joint Condition: Unsealed

Sample Depth: 24-40 inches from surface

Parent Material: Clayey soils in glacial till

Soil Association: M

Int. Drainage: Poor

Groundwater: Present

ROADBED SOIL PROPERTIES

Liquid Limit: N/A In-situ Density: 131.35 pcf

Dry Density: 110.40 pcf

Plasticity Index: NP In-situ Moisture: 9.70 %

AASHTO Class: A-1-a(0) Specific Gravity: 2.70

Unified Class: SW Permeability: 3.4 x 10⁻³ cm/sec

8.5 ft/day

USDA Text. Class: Sandy/gravelly sand Porosity: 20.3 %

% Passing #200: < 1

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0		0.33 403			3.0 3660	5.0 6100	
ω %	11.48	11.35	9.69 -	8.55	7.54	5.86	5.33	4.54
θ %	20.3	20.1	17.1	15.2	13.3	10.4	9.4	8.0
Sr, %	100.0	98.9	84.4	74.5	65.7	51.0	46.4	39.5
Se.	1.0	0.98	0.74	0.58	0.43	0.19	0.11	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_i ': 0.08 Vol. Water Capacity ' θ_i - θ_i ': 0.123

Brooks & Corey: PB_d : 82 cm v_d : 3.2 η : 9.4

Van Genuchten: α : 0.00245 cm⁻¹ β : 1.87 γ : 0.465

Sample Site: SR-43, NB; Tippecanoe County, Crawfordsville District.

Section near US-52 overpass in W. Lafayette.

Project No: M-6262 Force Account

Pavement Type: 65" Asphalt over 2-3 inches Ballast mixed with road oil

over 4" crushed aggregate

Joint Condition: Unsealed (Aggregate shoulder)

Sample Depth: 24-36 inches from surface

Parent Material: Loamy soils on flood plains

Soil Association: A

Int. Drainage: Moderately drained

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: 25 In-situ Density: 133.68 pcf

Dry Density: 116.84 pcf

Plasticity Index: 10-11 In-situ Moisture: 16.0 %

AASHTO Class: A-4(4)/A-6(5) Specific Gravity: 2.77

Unified Class: CL Permeability: 5.1 x 10-5 cm/sec

0.128 ft/day

USDA Text. Class: Silty loam Porosity: 38.6 %

% Passing #200: 70

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0	0.1 122	0.33 403	0.6 732	1.0 1220	3.0 3660	5.0 6100	
ω %	23.25	20.71	16.73.	15.08	13.67	11.04	10.18	7.8
θ %	38.6	34.4	27.8	25.0	22.7	18.3	16.9	12.9
Sr, %	100.0	89.0	71.9	64.9	58.8	47.5	43.8	33.5
Se,	1.00	0.84	0.58	0.47	0.38	0.21	0.15	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content '0,': 0.129 Vol. Water Capacity '0,-0,': 0.257

Brooks & Corey: PB_d : 61.5 cm v_d : 3.0 η : 9.0

Van Genuchten: α : 0.013 cm⁻¹ β : 1.35 γ : 0.259

Sample Site: SR-63, SB; Vermillion County, Crawfordsville District.

Section near Newport past JCT SR-71 on uphill terrain.

Project No: ST-F-305(22)

Pavement Type: 12" Full Depth Asphalt over 4½" crushed aggregate subbase

Joint Condition: Unsealed

Sample Depth: 26-50 inches from surface

Parent Material: Loamy and silty soil in glacial till

Soil Association: L

Int. Drainage: Well drained on sloping surface

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: N/A In-situ Density: 132.74 pcf

Dry Density: 121.72 pcf

Plasticity Index: NP In-situ Moisture: 9.76 %

AASHTO Class: A-1-a(0) Specific Gravity: 2.73

Unified Class: GW Permeability: 6 x 10⁻³ cm/sec

15 ft/day

USDA Text. Class: stratified sand/ Porosity: 29.4 %

gravelly sand

% Passing #200: 2

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)						3.0 3660		15.0 18300
ω %	20.30	19.29	14.64.	13.62	11.92	9.42	8.41	7.82
θ %	29.4	27.9	21.2	19.8	17.3	13.7	12.2	11.3
Sr, %	100.0	95.0	72.2	67.1	58.7	46.4	41.4	38.5
Se.	1.00	0.92	0.55	0.46	0.33	0.13	0.05	0.00

Model Parameter Values

Irreduc. Moist. Content 'θ,': 0.113 Vol. Water Capacity 'θ,-θ,': 0.181

Brooks & Corey: PB_d: 80 cm v_d : 2.31 η : 7.62

Van Genuchten: α : 0.0048 cm⁻¹ β : 1.68 γ : 0.405

Sample Site: US-36, WB; Hendricks County, Crawfordsville District;

Section near Danville just pass CR-300

Project No: F-076-2(4)

Pavement Type: 84" JPCP over 6" Bit. Stabilized Subbase

Joint Condition: Unsealed

Sample Depth: 30-54 inches from surface

Parent Material: Loamy and silty soil in glacial till

Soil Association: L

Int. Drainage: Poor

Groundwater: Not present

ROADBED SOIL PROPERTIES

Liquid Limit: 23 In-situ Density: 130.78 pcf

Dry Density: 111.74 pcf

Plasticity Index: 8 In-situ Moisture: 11.5%

AASHTO Class: A-4(3) Specific Gravity: 2.64

Unified Class: CL Permeability: 1.1 x 10⁻⁵ cm/sec

 $2.8 \times 10^{-2} \text{ ft/day}$

USDA Text. Class: Loam Porosity: 32.8 %

% Passing #200: 58

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H ₂ O)								15.0 18300
ω %	21.75	20.11	16.82 -	13.45	12.89	9.99	8.52	7.14
θ %	32.8	30.4	25.4	20.3	19.5	15.1	12.9	10.8
Sr, %	100.0	92.5	77.3	61.8	59.3	45.9	39.2	32.8
Se,	1.00	0.89	0.66	0.43	0.39	0.20	0.09	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content 'θ,': 0.108 Vol. Water Capacity 'θ,-θ,': 0.22

Brooks & Corey: PB_d: 72 cm v_d : 2.78 η : 8.56

Van Genuchten α : 0.00625 cm⁻¹ β : 1.502 γ : 0.334

BASE\SUBBASE #1

SOIL PROPERTIES

TYPE: FINE AGGREGATE #24

GRAIN SIZE:

% PASSING (3/8 in.) 100 (#4 95-100 70-100 (#8 (#16 40-85 **(#**30 20-60 **(#**50 7-40 (#100 1-20 (**#**200 0-6

Density(dry): 115 pcf

Opt. Moisture: 2.5%

Sp. Gravity: 2.66

Permeability: 1.1 x 10⁻³ cm/sec (1.2 ft/day)

Porosity: 4.8 %

MOISTURE CHARACTERISTICS DATA

Suction	(in bars) (in cm H ₂ O)					1.0 1220			15.0 18300
ω &		2.6	2.44	1.79	1.68	1.64	1.38	1.23	1.12
θ %		4.8	4.5	3.3	3.1	3.0	2.5	2.3	2.1
Sr, %		100	93.8	68.8	64.2	63.1	53.1	47.3	43.1
Se,		1.00	0.89	0.45	0.38	0.35	0.18	0.07	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_r ': 0.0021 Vol. Water Capacity ' θ_r - θ_r ': 0.0027

Brooks & Corey: PB_d : 73 cm v_d : 2.5 η : 8.0

Van Genuchten: $\alpha: 0.0064 \text{ cm}^{-1}$ $\beta: 1.569$ $\gamma: 0.363$

BASE\SUBBASE #2

SOIL PROPERTIES

TYPE: COARSE AGGREGATE #53 (Type O)

GRAIN SIZE:

% PASSING (1 1/2 in.) 100 (1 in.) 80-100 (3/4 in.)70-90 (1/2 in.)55-80 (#4 35-60 (#8 (#30 25-50 12-30 (#200) 5-10

Density(dry):

143 lb/ft 3

Opt. Moisture:

7.08%

Sp. Gravity:

2.53

Permeability:

 $3.6 \times 10^{-5} \text{ cm/sec } (0.12 \text{ ft/day})$

0.15 cm/sec (499 ft/day) for #53 special subbase gradation

Porosity:

10.8 %

MOISTURE CHARACTERISTICS DATA

Suction	(in bars) (in cm H ₂ O)			0.33 403	0.6 732	31.0 1220	3.0 3660	5.0 6100	15.0 18300
ω %		7.86	7.19	4.21	3.77	3.3	2.38	1.45	1.37
θ %		10.8	9.9	5.8	5.2	4.6	3.3	2.0	1.9
Sr, %		100	91.5	53.6	47.9	41.9	30.3	18.4	17.4
Se,		1.00	0.89	0.44	0.37	0.30	0.16	0.01	0.00

NODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_r ': 0.019 Vol. Water Capacity ' θ_s - θ_r ': 0.089

Brooks & Corey: PB_d: 79 cm

 v_d : 1.92

η: 6.84

Van Genuchten:

 α : 0.0052 cm⁻¹

β: 1.735

y: 0.423

BASE/SUBBASE #3

SOIL PROPERTIES

TYPE: COARSE AGGREGATE #73

GRAIN SIZE:

% PASSING (1 in.) 100 (3/4 in.) 90-100 (1/2 in.) 60-90 (#4) 35-60 (#30) 12-30 (#200) 5-10

Density(dry): 132 pcf

Opt. Moisture: 7.1%

Sp. Gravity: 2.72

Permeability: $7.03 \times 10^{-2} \text{ cm/sec}$ (192 ft/day)

Porosity: 13.6 %

MOISTURE CHARACTERISTICS DATA

Suction	(in bars) (in cm H ₂ O)								15.0 18300
ω %		9.9	9.44	7.73	7.31	6.49	3.32	3.17	2.39
θ %		13.6	12.9	10.6	10.0	8.9	4.6	4.3	3.3
Sr, %		100	95.4	78.1	73.8	65.6	33.5	32.0	24.1
Se,		1.00	0.94	0.71	0.66	0.55	0.12	0.10	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_{r} ': 0.033 Vol. Water Capacity ' θ_{r} - θ_{r} ': 0.103

Brooks & Corey: PB_d: 85 cm · ν_d: 3.15 η: 9.3

Van Genuchten: α : 0.0028 cm⁻¹ β : 1.55 γ : 0.355

BASE/SUBBASE #4

SOIL PROPERTIES

TYPE: BITUMINOUS STABILIZED BASE #53B

GRAIN SIZE:

* Passing (1 1/2 in.) - 100 (1 in.) - 90 (3/4 in.) - 80 (1/2 in.) - 68 (#4) - 48 (#8) - 38 (#30) - 21 (#200) - 8

Asphalt Content: 4%

Density: 140 lb/ft³

Bulk Sp. Gravity: 2.37

Permeability: $2.23 \times 10^{-2} \text{ cm/sec}$ (74 ft/day)

Porosity: 5.2 %

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)		0.33 403	1.0 1220	3.0 3660	10.0 12200	15.0 18300
ω %	2.28	2.18	2.01	1.98	1.90	1.86
θ %	5.15	4.80	4.54	4.47	4.29	4.20
Sr, %	100	93.2	88.2	86.8	83.3	81.6
Se,	1.0	0.76	0.36	0.28	0.11	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_r ': 0.042 Vol. Water Capacity ' θ_r - θ_r ': 0.0095

Brooks & Corey: PB_d : 122 cm v_d : 2.3 η : 7.6

Van Genuchten: α : 0.0028 cm⁻¹ β : 1.685 γ : 0.4065

BASE/SUBBASE #5

SOIL PROPERTIES

TYPE: Bituminous Stabilized Subbase #5D

GRAIN SIZE:

% PASSING (11/2 in.)100 (1 in.) (3/4 in.) 80-99 68-90 (1/2 in.) 54-76 (3/8 in.) 45-67 35-45 (#4 (#8 20-45 (#16 12-36 (#30 7-28 *(* #100 1-12 (**#**200 0-4

Asphalt Content: 4.2%

Density (Dry): 144.8 lb/ft 3

Opt. Moisture: 0.5%

Sp. Gravity: 2.33

Permeability: 2.1 x 10⁴ cm/sec (0.6 ft/day)

Porosity: 3.37 %

MOISTURE CHARACTERISTICS DATA

Suction (in bars) (in cm H_2O)	0.0	0.1 122	0.33 403	0.60 732	1.0 1220	3.0 3660	5.0 6100	15.0 18300
ω %	1.48	1.43	1.38	1.35	1.24	1.21	1.18	1.15
θ %	3.37	3.26	3.15	3.08	2.83	2.76	2.70	2.62
Sr, %	100	96.7	93.5	91.4	83.9	81.9	80.1	77.7
Se,	1.00	0.85	0.71	0.61	0.28	0.19	0.11	0.00

MODEL PARAMETER VALUES

Irreduc. Moist. Content ' θ_r ': 0.0262 Vol. Water Capacity ' θ_i - θ_r ': 0.0075

Brooks & Corey: PB_d : 88 cm v_d : 2.11 η : 7.22

Van Genuchten: α : 0.0028 cm⁻¹ β : 1.685 γ : 0.4065

Mean and Standard Deviation Values for Gravimetric Moisture Content

Route, County	Soil Type	Pressure in cm of water							
	,	122	403	732	1220	3660	6100	18300	
110 04 II "H	CM CC	17.00	10.05	10.67	11.40	0.00	710	6.07	
US-31, Hamilton	SM-SC	17.63	13.95	12.67	11.43	8.66	7.12	6.27	
		1.6	1.37	1.24	1.17	0.82	8.0	0.72	
SR-37, Hamilton	SM-SC	10.91	8.82	7.72	7	4.17	3.77	2.97	
,		0.02	0.43	0.42	0.28	0.16	0.15	0.29	
SR-37, Lawrence	СН	39.62	33.18	31.12	28.84	23.32	22.68	21.22	
orror, Edwichee		4.81	4.26	4.16	4.19	3.48	3.05	4.14	
US-41, Sullivan	CL	28.97	23.38	21.12	17.15	15.73	13.92	12.89	
US-41, Sullivai	ا	0.75	0.46	0.28	0.26	0.75	0.4	0.74	
	ļ	0.75	0.40	020	0.20	0.75	0.4	0.74	
US-30, Laporte	SP-SM	10.15	8.45	6.66	5.95	4.44	3.99	2.88	
		2.4	2.43	1.8	1.52	1.01	0.71	0.37	
US-31, St.Joseph	SP	7.71	5.67	5.25	4.62	2.91	2.83	2.74	
00 01, 01.000pm		0.72	0.56	0.56	0.71	0.41	0.32	0.59	
SR-9, Noble	sw	11.61	11.35	8.55	7.54	5.86	5.33	4.54	
Sh-3, Nobie	SVV	2.27	2.12	2.15	1.9	1.52	1.48	1.35	
		ج.د،	2.12	2.10	1.5	1.52	1.40	1.00	
SR-43, Tippecanoe	CL	20.7	16.73	15.08	13.67	11.04	10.18	7.8	
		1.12	0.98	0.97	0.95	1.1	0.96	1.14	
SR-63, Vermillion	GW	19.29	14.64	13.62	11.92	9.42	8.41	7.82	
511 55, 15		0.97	0.65	0.76	0.82	0.41	0.34	0.57	
US-36, Hendricks	CI	20.11	16.82	13.45	12.89	9.9	8.52	7.14	
US-So, mendricks	CL	1	1.25	1.06					
		1.4	1,25	1.06	0.72	0.78	0.73	0.76	
Base No.1	No.24	2.44	1.79	1.68	1.64	1.38	1.23	1.12	
		0.15	0.007	0.02	0.007	0.008	0.008	0.02	
Base No.2	No.53	7.19	4.21	3.77	3.3	2.38	1.45	1.37	
Dasc 110.2	110.55	0.06	0.5	0.38	0.27	0.03	0.1	0.06	
		0.00	0.0	0.00	ů.	0.00	0		
Base No.3	No.73	9.44	7.73	7.31	6.49	3.32	3.17	2.39	
		0.16	0.09	0.41	0.32	0.007	80.0	0.007	
Base No.4	No.53B	2.28	2.18		2.01	1.98	1.9	1.86	
2300 110. 1		0.2	0.18	•	0.3	0.18	0.2	0.19	
D. 11.5	50	4.0	4.00	4.05	4.04	4.04	4.40	4 4 5	
Base No.5	No.5D	1.43	1.38	1.35	1.24	1.21	1.18	1.15	
		0.54	0.53	0.53	0.42	0.43	0.43	0.43	

Appendix E
Regression Output and Figures for Parameter Estimation

Measured vs Estimated Soil-Moisture Characteristics

suction 122 403 7732 1220 3660 6100 18300	ham31 measurd 0.86 0.58 0.49 0.39 0.18 0.06	0.516569 0.199187 0.361368 0.253536 0.215018	ham31 VanG 0.811019 0.560832 0.156471 0.355126 0.218662 0.174011 0.10629	0.67 0.54	0.572773 0.226218 0.404304 0.2862 0.243728	0.64058 0.179498 0.412096 0.252513	0.57 0.47	lawmc37 B&C 0.809458 0.528271 0.183928 0.355673 0.240243 0.200179 0.135213	lawmc37 VanG 0.871826 0.575155 0.090549 0.302793 0.148466 0.105945 0.051125
suction	lprt30	lprt30	lprt30	josh31	josh31	josh31	sullvn41	sullvn41	sullvn41
	measurd	B&C	VanG	measurd	B&C	VanG	measurd	B&C	VanG
122	0.96	0.878057	0.938353	0.9	0.826001	0.889996	0.88	0.789339	0.803476
403	0.74	0.554534	0.687697	0.53	0.495689	0.625039	0.57	0.530008	0.541131
7732	0.5	0.178021	0.083141	0.46	0.140257	0.12994	0.45	0.197979	0.138256
1220	0.41	0.362166	0.348782	0.34	0.308767	0.362389	0.25	0.366379	0.331734
3660	0.21	0.237355	0.15045	0.03	0.193078	0.197785	0.15	0.254033	0.197607
6100	0.15	0.195017	0.100398	0.02	0.155212	0.148486	0.06	0.21426	0.154854
18300	0	0.12781	0.041817	0	0.097057	0.079951	0	0.148559	0.091515
suction	noble9	noble9	noble9	tippcn43	tippcn43	tippcn43	vermil63	vermā63	vermil63
	measurd	B&C	VanG	measurd	B&C	VanG	measurd	B&C	VanG
122	0.98	0.883241	0.954823	0.84	0.795863	0.761465	0.92	0.833033	0.870851
403	0.74	0.608008	0.728468	0.58	0.534388	0.545871	0.55	0.496605	0.568676
7732	0.58	0.241533	0.077333	0.47	0.199616	0.199387	0.46	0.138231	0.085445
1220	0.43	0.43011	0.364749	0.38	0.369407	0.378138	0.33	0.307441	0.294387
3660	0.19	0.305126	0.147337	0.21	0.256132	0.258749	0.13	0.19108	0.141798
6100	0.11	0.260107	0.094937	0.15	0.216031	0.216577	0.05	0.153171	0.100356
_18300	0	0.184523	0.036616	0	0.149787	0.147579	0	0.095199	0.047579
suction	hendrk36	hendrk36	hendrk36	base24	hanaO4	h04	h50		
00000	measurd	B&C	VanG		base24	base24	base53	base53	base53
122	0.89	0.827211	0.843349	measurd 0.89	B&C	VanG	measurd	B&C	VanG
403	0.66	0.538202	0.58399	0.69	0.814301	0.82866	0.89	0.797447	0.853359
7732	0.43	0.185968	0.142783	0.45	0.504902 0.397672	0.541377	0.44	0.427974	0.523442
1220	0.39	0.36133	0.355389	0.35	0.324179	0.402364 0.305849	0.37	0.313628	0.359827
3660	0.2	0.243376	0.207367	0.33	0.208899	0.303649	0.3	0.240363	0.252927
6100	0.09	0.202524	0.160749	0.18	0.200099		0.16	0.135634	0.114431
18300	0.00	0.136411	0.092744	0.07	0.170293	0.123897 0.066333	0.01	0.103949	0.078731
		0.100177	0.0027	U	0.109730	0.000	U	0.058657	0.035146
suction	base73	base73	base73	base53b	base53b	base53b	base5d	base5d	base5d
	measurd		VanG	measurd	B&C	VanG	measurd	B&C	VanG
122	0.94	0.891615	0.940335	1	1	1	0.85	0.856564	0.940242
403	0.71	0.610145		0.76	0.594801	0.722356	0.71	0.486199	0.722356
732	0.66	0.50483	0.609085	0.57	0.458853	0.550069	0.71	0.36641	0.722330
1220	0.55	0.429257	0.4842	0.36	0.367466	0.410758		0.287625	0.410758
3660	0.12	0.302866	0.275276		0.227915	0.20151		0.170884	0.20151
6100	0.1	0.257527	0.208901	0.22	0.182523		0.11	0.134141	
18300	0	0.1817	0.114536	0			0.17		0.067417
						2.227 7		3.07000	5.007 717

Measured vs Estimated Soil-Moisture Characteristics

Denotes 9 /	`	Regression Analy	ysis For Base #24		
Brooks & 0 Regressio	•		Van Genu Regressio		
Constant	Опфас	o	Constant	поции	0
Std Err of Y Est		0.053472	Std Err of Y Est		0.059796
R Squared		0.965107	R Squared		0.961388
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
V 045-'			*** ** * * * * *		
X Coefficient(s) Std Err of Coef.	0.99698		X Coefficient(s) Std Err of Coef.	1.051916 0.053736	
Std Ell of Coet.	0.048052		Sta Err or Coer.	0.053736	
		Regression Analy	rsis For Base #53		
Brooks & 0	Corey	-	Van Genu	chten	
Regression	n Output:		Regressio	n Output:	
Constant		a	Constant		0
Std Err of Y Est		0.074983	Std Err of Y Est		0.066116
R Squared		0.919174	R Squared		0.944211
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
X Coefficient(s)	1.057428		X Coefficient(s)	1.049181	
Std Err of Coef.	0.065795		Std Err of Coef.	0.058014	
		Regression Analy	reie For Race #73		
Brooks & C	Corev	, logicocion, ruaj	Van Genu	chten	
Regression			Regressio		
Constant		0	Constant		0
Std Err of Y Est		0.149321	Std Err of Y Est		0.111032
R Squared		0.669958	R Squared		0.867406
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
X Coefficient(s)	0.940962		X Coefficient(s)	1.041759	
Std Err of Coef.	0.101832		Std Err of Coef.	0.075719	
Donale & C		Regression Analy	rsis For Base #538		
Brooks & C Regression			Van Genu Rogressio		
Constant	Cuput	0	Regression Constant	ГОцфас	0
Std Err of Y Est		0.073936	Std Err of Y Est	•	0.063138
R Squared		0.940141	R Sourced		0.965001
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
V 045-1W-1					
X Coefficient(s) Std Err of Coef.	0.935289		X Coefficient(s)	1.012422	
Sid Eff of Coef.	0.05032		Std Err of Coef.	0.042971	
		Regression Analy	rsis For Base #50		
Brooks & 0	Corey	<u> </u>	Van Genu	chten	
Regression	n Output:		Regressio	n Output:	
Constant		0	Constant		0
Std Err of Y Est		0.122469	Std Err of Y Est		0.083827
R Squared		0.829899	R Squared		0.934177
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
X Coefficient(s)	0.905366		X Coefficient(s)	1.106527	
Std Err of Coef.	0.093238		Std Err of Coef.	0.063819	
			5.5 E., 51 GOC.	0.000013	

Regression Analysis for SP-Soil (US-31, St.Jos	iseoh County)
--	---------------

Brooks 8	Corey	•	Van Genuchten				
Regress	ion Output:		Regression Output:				
Constant		0	Constant		0		
Std Err of Y Est		0.107916	Std Err of Y Est		0.114383		
R Squared		0.845961	R Squared	0.851323			
No. of Observations		7	No. of Observations	7			
Degrees of Freedom	1	6	Degrees of Freedom		6		
X Coefficient(s)	0.994909		X Coefficient(s)	1.099939			
Std Err of Coef.	0.09058		Std Err of Coef.	0.096009			

Regression Analysis for SM-SC Soil (US-31, Harnitton County)

Brooks a	& Corey			Van Genuchten			
Regress	sion Output:			Regression Output:			
Constant		0		Constant		0	
Std Err of Y Est		0.054318		Std Err of Y Est		0.075897	
R Squared		0.929678 R Squared		0.9119			
No. of Observations	5		No. of Observations		7		
Degrees of Freedon	n	4	.•	Degrees of Freedom	ı	6	
X Coefficient(s)	0.957485			X Coefficient(s)	1.004577		
Std Err of Coef.	0.044342			Std Err of Coef.	0.061883		

Regression Analysis for SM-SC Soil (SR-37, Hamilton County) Brooks & Corey Van Genuchten

Regression	Output		Regression Output:			
Constant		0		Constant		0
Std Err of Y Est		0.12714		Std Err of Y Est		0.09445
R Squared		0.723978		R Squared		0.879563
No. of Observations		7		No. of Observations		7
Degrees of Freedom		6		Degrees of Freedom		6
X Coefficient(s)	0.973431			X Coefficient(s)	1.017807	
Std Err of Coef.	0.095034			Std Err of Coef.	0.070599	

Regression Analysis for CH Soil (SR-37, Lawrence County) Brooks & Corey Van Genuchten

Regress	ion Output:		Regression Output:				
Constant	0	Constant		0			
Std Err of Y Est	0.107274	Std Err of	Y Est	0.047179			
R Squared 0.815088		R Square	R Squared 0				
No. of Observations	7	No. of Ob	No. of Observations				
Degrees of Freedon	ո 6	Degrees of	of Freedom	6			
X Coefficient(s)	1.017196	X Coeffici	ient(s) 1.03	9063			
Std Err of Coef.	0.089172	Std Err of	Coef. 0.03	9218			

Regression Analysis for SP-SM Soil (US-30, Laporte County) Brooks & Corey Van Genuchten

Regress	ion Output:		Regression Output:					
Constant		0	Constant		0			
Std Err of Y Est	0	.084914	Std Err of Y Est		0.031992			
R Squared	0	.907808	R Squared		0.991057			
No. of Observations		7	No. of Observations		7			
Degrees of Freedom	1	6	Degrees of Freedom		6			
X Coefficient(s)	0.939057		X Coefficient(s)	1.000122				
Std Err of Coef,	0.060748		Std Err of Coef.	0.022887				

Measured vs Estimated Soil-Moisture Characteristics

	Regression	n Analysis for CL S	Soil (US-41, Sullivan County)		
Brooks & C	-		Van Genu	chten	
Regression	•		Regressio		
	Оифис	•		· · · Output	_
Constant		0	Constant		0
Std Err of Y Est		0.122624	Std Err of Y Est		0.083921
R Squared		0.729074	R Squared		0.895427
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
3		-			·
V Conffrient/o\	4 005000		V Confficient(s)	4.040007	
X Coefficient(s)	1.025082		X Coefficient(s)	1.010887	*
Std Err of Coef.	0.103993		Std Err of Coef.	0.071171	
	Regression	Analysis for SW	Soil (Noble County)		
Brooks & C	>orey		Van Genu	chten	
Regression	Output:		Regressio	n Output:	
Constant		0	Constant		0
Std Err of Y Est		0.127734	Std Err of Y Est		0.022466
R Squared		0.750042	R Squared		0.995912
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
		_	g		_
X Coefficient(s)	0.961473		X Coefficient(s)	1.004715	
` '			Std Err of Coef.		
Std Err of Coef.	0.088621		Sto Err of Coel.	0.015586	
	Regression	Analysis for CL S	Soil (SR-43, Tippecanoe Cour	nty)	
Brooks & C	Correy		Van Genu	chten	
Regression			Regressio		
Constant	Оцфос	0		поофос	^
			Constant		0
Std Err of Y Est		0.078693	Std Err of Y Est		0.080947
R Squared		0.890243	R Squared		0.865933
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
Dagicas of Freadom		Ū	Degrees of Freedom		0
X Coefficient(s)	1.022122		X Coefficient(s)	0.99955	
, ,			, ,		
Std Err of Coef.	0.064819		Std Err of Coef.	0.066676	
	Danasaina	Annh min for CW	Call (CD CO Manuffer Course		
Danaler 9 C	-	i Ai kaiysis IUI GVV	Soil (SR-63, Vermillion Count	••	
Brooks & C			Van Genu		
Regression	1 Output		Regressio	n Output:	
Constant		0	Constant	•	0
Std Err of Y Est		0.075233	Std Err of Y Est		0.045025
R Squared		0.927156	R Squared		0.978158
No. of Observations			•		_
		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
X Coefficient(s)	0.988881		X Coefficient(s)	1.015568	
Std Err of Coef.	0.061658		Std Err of Coef.	0.036901	
			3.3 2.1 3. 333		
D		1 Analysis for CL S	Soil (US-36, Hendricks Count)		
Brooks & C	•		Van Genu		
Regression	n Output:		Regressio	n Output:	
Constant		0	Constant		0
Std Err of Y Est		0.092131	Std Err of Y Est		0.062525
		0.870245			
R Squared			R Squared		0.947696
No. of Observations		7	No. of Observations		7
Degrees of Freedom		6	Degrees of Freedom		6
				•	
X Coefficient(s)	0.989204		V Caaffaiaa4a	1.000653	
	0.505204		A Coellicientisi		
Std Err of Coef.	0.903204		X Coefficient(s) Std Err of Coef.	0.049234	

•					
		•	•		
	•				
		•			
					4 . 1 1

Appendix F Data From Instrumented Sites

US-31, Hamilton County (DATA SET 1 for Rain and Flow)

CUM.FLO	FLOW cft	FLOW gpm	CUM,RAIN cft	RAIN cft	RAIN INCHES	TIME	JULNDAY	RTE/CNTY	TOT.HRS F
-	0	0	48.3332	48.3332	0.04	2400	325	3129	1
0	0	a	132,9163	84.5831	0.07	100	326	3129	2
0	0	0	265.8326	132.9163	0.11	200	326	3129	3
0	0	0	338.3324	72.4998	0.06	300	326	3129	4
0	0	0	374.5823	36.2499	0.03	400	326	3129	5
0	0	a	507.4986	132.9163	0.11	500	326	3129	6
0	0	0	579.9984	72,4998	0.06	600	326	3129	7
0	0	0	616.2483	36.2499	0.03	700	326	3129	8
0	0	0	640.4149	24.1666	0.02	800	326	3129	9
0	0	0	664.5815	24.1666	0.02	900	326	3129	10
0	0	0	664.5815	0	0	1000	326	3129	11
0	0	0	664.5815 664.5815	0	0	1100 1200	326 326	3129 3129	12 13
0	0	0	664.5815	0	0	1300	326	3129	14
o	0	ā	664.5815	ŏ	ò	1400	326	3129	15
o	0	o	664.5815	0	ŏ	1500	326	3129	16
o	ŏ	a	664.5815	o	o	1600	326	3129	17
o	ő	ā	664.5815	ŏ	ō	1700	326	3129	18
0	ŏ	ō	664.5815	ŏ	ō	1800	326	3129	19
0	o	a	664.5815	0	0	1900	326	3129	20
ō	ō	0	664.5815	ō	0	2000	326	3129	21
0	ō	0	664.5815	ō	0	2100	326	3129	22
0	0	0	664.5815	0	0	2200	326	3129	23
0	0	o	664,5815	0	0	2300	326	3129	24
o	0	0	664.5815	0	0	2400	326	3129	25
0	0	a	664.5815	0	0	100	327	3129	26
0	0	0	664.5815	0	0	200	327	3129	27
0	0	0	664.5815	0	0	300	327	3129	28
0	0	0	664.5815	0	0	400	327	3129	29
0	0	0	664.5815	0	0	500	327	3129	30
0	0	0	664.5 815	0	0	600	327	3129	31
0	0	0	664.5 815	0	0	700	327	3129	32
0	0	0	664.5815	0	0	800	327	3129	33
0.035877	0.035877	0.00447	664.5815	0	0	1500	327	3129	34
3.123476	3.087599	0.38469	664.5815	0	0	1600	327	3129	35
5.816186	2.69271	0.33549	664.5815	0	0	1700	327	3129	36
8.257595	2.44141	0.30418	664.5815	0	0	1800	327	3129	37
10.48358	2.225986	0.27734	664.5815	0	0	1900	327	3129	38
12.53002	2.04644	0.25497	664.5815	0	0	2000	327	3129	39
14.18157	1.651551	0.20577	664.5815	0	0	2100	327	3129	40
15.79717	1.615594	0.20129	664.5815	0	0	2200	327	3129	41
17.37688	1.579717	0.19682	664.5815	0	0	2300	327	3129	42
18.88477	1.507882	0.18787	664.5815	0	0	2400 100	327 328	3129	43 44
20.28494	1.400171	0.17445 0.16551	664.5815 664.5815	0	0	200	328	3129 3129	45
21.61335	1.328416	0.14761	664.5815	0	o	300	328	3129	46
23.87514	1.077036	0.13419	664.5815	0	0	400	328	3129	47
24.95217	1.077036	0.13419	664.5815	0	ŏ	500	328	3129	48
26.02921	1.077036	0.13419	664.5815	0	ō	600	328	3129	49
26.99861	0.969404	0.12078	664.5815	0	ŏ	700	328	3129	50
27.93206	0.933447	0.1163	664.5815	ŏ	ŏ	800	328	3129	51
28.79375	0.861693	0.10736	664.5815	ò	ŏ	900	328	3129	52
29.61949	0.825735	0.10288	664.5815	ŏ	ŏ	1000	328	3129	53
30.40935	0.789858	0.09841	664.5815	0	0	1100	328	3129	54
31,1992	0.789858	0.09841	664.5815	0	0	1200	328	3129	55
31.98906		0.09841	664.5815	0	0	1300	328	3129	56
32.8148	0.825735	0.10288	664.5815	0	0	1400	328	3129	57
33,60466		0.09841	664.5815	0	0	1500	328	3129	58
34.35864	0.753981	0.09394	664.5815	0	0	1600	328	3129	59
		0.08946	664.5815	0	0	1700	328	3129	60
35.50751		0.05368	664.5815	0	0	1800	328	3129	61
35.9024	0.394889	0.0492	664.5815	0	0	1900	328	3129	62
36.29729	0.394889	0.0492	664.5815	0	0	2000	328	3129	63
36.6563	0.359012	0.04473	664.5815	0	0	2100	328	3129	64
34,000				_	_	2222	220	3129	65
	0.143589	0.01789	664.5815	0	0	2200 2300	328 328	0.20	•

CUMUL 0.55 664.5815
VOLUME IN CFT 664.5833
Outflow vol. as percentage of precip, volume

4.58497 36.79989 36.79989 5.537287

US-31, Hamilton County (DATA SET 2 for Rain and Flow)

CUMLE	FLOW cft	FLOW	CUM.RAIN cft	RAIN	RAIN	TIME	JULNDAY	RTE/CNT	OT.HRS
	0	0	12.0833	12.0833	0.01	100	331	3129	1
3.3748	3.374857		507.4986	495.4153	0.41	200	331	3129	2
18.48 37.589	15.11494	1.8832 2.3797	507.4986 628.3316	0 120,833	0.1	300 400	331 331	3129 3129	3
71.553	33.96367		894.1642	265.8326		500	331	3129	5
107.49	35,93811		1039.1638	144.9996	0.12	600	331	3129	6
143.64	36.15402	4.5045	1135.8302	96.6664	0.08	700	331	3129	7
179.6	36.04647	4.4911	1196.2467	60.4165	0.05	800 900	331 331	3129 3129	8 9
211.35	31.66577 30.44498		1196.2467 1377.4962	0 181.2495	0.15	1000	331	3129	10
277.56	35.75913	4.4553	1425.8294	48.3332	0.04	1100	331	3129	11
309.73	32.16901	4.008	1474.1626	48.3332	0.04	1200	331	3129	12
341.03	31.307	3.9006	1486.2459	12.0833	0.01	1300	331	3129	13
368.86		3.4667	1486.2459 1486.2459	0	0	1400 1500	331 331	3129 3129	14 15
393,77		2.9255	1486.2459	Ö	0	1600	331	3129	16
440.02	22.7623	2.836	1486.2459	ō	ŏ	1700	331	3129	17
462.20	22.18763	2,7644	1486.2459	0	0	1800	331	3129	18
483.21	21.00296		1486.2459	0	0	1900	331	3129	19
502.99 522.20	19.78218	2.4647 2.3931	1486.2459 1486.2459	0	0	2000 2100	331 331	3129 3129	20 21
540.47	18.27405		1486.2459	0	ŏ	2200	331	3129	22
557.99	17.52039	2.1829	1486.2459	ō	o	2300	331	3129	23
574.97	16.98183	21158	1546.6624	60.4165	0.05	2400	331	3129	24
601.1	26.17264		1824.5783	277.9159	0.23	100	332	3129	25
636.29	35.14834		2078.3276 2392.4934	253.7493 314.1658	0.21 0.26	200 300	3 32 3 32	3129 3129	26 27
672.704 710.54	36.40524 37.84113		2754.9924	362,499	0.26	400	332	3129	28
746.017	35.47179		2815.4089	60.4165	0.05	500	332	3129	29
778.40	32.38411	4.0348	2815.4089	0	0	600	332	3129	30
804.61	26.20875		2815.4089	0	0	700	332	3129	31
827.37	22.7623	2.836	2815.4089	0	0	800 900	332 332	3129 3129	32 33
848.626 868.803	21.25418		2815.4089 2815.4089	0	0	1000	332	3129	34
888.19	19.38729		2815.4089	ŏ	ŏ	1100	332	3129	35
906.070	17.87916	2.2276	2815.4089	0	0	1200	332	3129	36
923,483	17.41284		2815.4089	0	0	1300	332	3129	37
939.711	16.22817		2815.4089	0	0	1400	332 332	3129 3129	38 39
955.077 969.546	15,36616 14,46883		2815.4089 2815.4089	0	0	1500 1600	332 332	3129	40
983.440			2815.4089	ō	ō	1700	332	3129	41
996.508			2815.4089	0	0	1800	332	3129	42
1008.46	11.95583	1.4896	2815.4089	0	0	1900	332	3129	43
1019.8	11.34503		2815.4089	0	0	2000	332	3129 3129	44 45
1030.43	10.62749 9,694044		2815.4089 2815.4089	0	0	2100 2200	332 332	3129	46
1040,10	8.795913		2815.4089	ŏ	ŏ	2300	332	3129	47
1057.07			2815.4089	ō	0	2400	332	3129	48
1064.32	7.252314	0.90358	2815.4089	0	0	100	333	3129	49
1071.07	6.749713		2815.4089	0	0	200	333	3129	50 51
1076.60	•		2815.4089 2815.4089	0	0	300 400	333 333	3129 3129	52
1081.59		0.62177 0.58151	2815.4089	ŏ	ŏ	500	333	3129	53
1090.57			2815.4089	0	0	600	333	3129	54
1094.48			2815.4089	0	0	700	333	3129	5 5
1098.00			2915.4089	0	0	800 900	333 333	3129 3129	56 57
1101.20 1104.03	3.19531 2.836299	0.39811	2815.4089 2815.4089		0	1000	333	3129	58
	2477287		2815.4089		ŏ	1100	333	3129	59
	2.190029		2815.4089		0	1200	333	3129	60
1110.64	1.938729	0.24155	2815.4089	0	0	1300	333	3129	61
	1.79514	0.22366	2815.4089	0	0	1400	333	3129	62 63
1114.0	1.651551		2815.4089 2815.4089		0	1500 1600	333 333	3129 3129	64
	1.507882		2815.4089		0	1700	333	3129	65
	1.220705		2815.4089		0	1800	333	3129	66
	1.005282		2815.4089		0	1900	333	3129	67
	0.933447		2815.4089		0	2000	333	3129	68
	0.89757	0.11183	2815.4089		0	2100 2200	333 333	3129 3129	69 70
1121.77 1122.52	0.718024 0.753981		2815.4089 2815.4089		0	2300	333	3129	71
1123.28			2815.4089		ō	2400	333	3129	72
	0.682147		2815.4089		o	100	334	3129	73
1123.96				•	0	200	334	3129	74
1124.53	0.574435 0.538558		2815,4089 2815,4089	0	0	300	334	3129	75

บร-3	1, Hamilto	on County (C	DATA SET	2 for Rain and	i Flow)					
	77	3129	334	500	0	0	2815.4089	0.04473	0.359012	1125.794
	78	3129	334	600	0	0	2815.4089	0.02237	0.179546	1125,974
	79	3129	334	700	0	0	2815.4089	0	0	1125,974
	80	3129	334	800	0	0	2815,4089	0	0	1125,974
	81	3129	334	900	0	0	2815.4089	0.01789	0.143589	1126.118
	82	3129	334	1000	0	0	2815.4089	0.05815	0.466724	1126.584
	83	3129	334	1100	0	0	2815.4089	0.07157		1127.159
	84	3129	334	1200	0	0	2815.4089	0.0671	0.538558	1127.697
	85	3129	334	1300	0	0	2815.4089	0.05815	0.466724	1128.164
	86	3129	334	1400	0	0	2815.4089	0.07157	0.574435	1128.738
	87	3129	334	1500	0	0	2815.4089	0.07157	0.574435	1129.313
	88	3129	334	1600	0	0	2815.4089	0.0492	0.394889	1129.708
	89	3129	334	1700	0	0	2815.4089	0.06262	0.502601	1130.21
	90	3129	334	1800	0	0	2815.4089	0.06262	0.502601	1130,713
	91	3129	334	1900	0	0	2815.4089	0.06262	0.502601	1131.216
	92	3129	334	2000	0	0	2815.4089	0.0671	0.538558	1131,754
	93	3129	334	2100	0	0	2815.4089	0.0671	0.538558	1132.293
	94	3129	334	2200	0	0	2815.4089	0.0671	0.538558	1132.831
	95	3129	334	2300	0	0	2815.4089	0.05815	0.466724	1133,298
	96	3129	334	2400	0	0	2815,4089		0.394889	1133.693
	97	3129	335	100	0	0	2815.4089		0.394889	1134.088
	98	3129	335	200	0	0	2815.4089		0.287258	1134.375
	99	3129	335	360	0	0	2815.4089		0.323135	1134.698
	100	3129	335	400	0	0	2815.4089		0.359012	1135.057
	101	3129	335	500	0	0	2815.4089	0.03579	0.287258	1135.344
	102	3129	335	600	0	0	2815.4089	0.03579	0.287258	1135.632
	103	3129	335	700	0	0	2815.4089	0.04026		1135.955
	104	3129	335	800	0	0	2815.4089	0.04026	0.323135	1136 <i>.2</i> 78
	105	3129	335	900	0	0	2815.4089	0.04026	0.323135	1136,601
	106	3129	335	1000	0	0	2815.4089	0.03131	0.2513	1136.852
	107	3129	335	1100	0	0	2815.4089	0.03131	0.2513	1137.104
	108	3129	335	1200	0	0	2815.4089	0.03579	0.287258	1137.391
	109	3129	335	1300	0	0	2815.4089	0.02684	0.215423	1137.606

141.7366 1137.606 1137.606 40.40632

CUMUL 2.33 2815.409
VOLUME IN CFT 2815.417
Outflow vol. as percentage of precip. volume

US-31, Hamilton County (DATA SET 3 for rain and flow)

TOT.HRS	RTE/CNT	JULNDAY	TIME	RAIN INCHES	RAIN	CUM.RAIN	FLOW gpm	FLOW	CUM.FLO
1 2	3129 3129	337 337	100 200	0.02	24.1666 191.2495	24.1666 205.4161	0.00447	0.035877	0.035877
3	3129	337	300	0.3	362,499	567.9151	ŏ	ŏ	0.035877
4	3129	337	400	0.26	314.1658	882.0809	o	0	0.035877
5	3129	337	500	0.23		1159.9968	0	0	0.035877
6	3129	337	600	0.48	579,9984	1739.9952	0.40258	3.231188	3.267065
7 8	3129 3129	337 337	700 800	0.09 0.01	108.7497	1848.7449 1860.8282	4.6655 4.5045	37.44624 36.15402	40.7133 76.86732
9	3129	337	900	0.01	12.0633	1872.9115	3.7127	29.79887	106.6662
10	3129	337	1000			2017.9111	3.2296	25.92142	132.5876
11	3129	337	1100	0.02	24.1666	2042.0777	3.8067		163.1409
12	3129	337	1200	0	0	2042.0777		23.26474	186,4057
13 14	3129 3129	337 337	1300 1400	0	0	2042.0777	1 500	0 12.74561	186.4057 199.1513
15	3129	337	1500	ŏ	0	2042.0777	2,4781	19.88973	219.041
16	3129	337	1600	ŏ	ŏ	2042.0777		19.06463	238.1057
17	3129	337	1700	0	0	2042.0777	2.2813	18.31017	256.4158
. 18	3129	337	1800	0	0	2042.0777		17.41284	273.8287
19	3129	337	1900	0	0	2042.0777	2.0934	16.80205	290.6307
20 21	3129 3129	337 337	2000 2100	0	0	2012.0777	1.9369	16.40716 15.54595	307.0379 322.5838
22	3129	337	2200	ŏ	ō	2042.0777		14.72005	337,3039
23	3129	337	2300	o	0	2042.0777	1.749	14.03782	351.3417
24	3129	337	2400	0	0	2042.0777	1.6819	13.49927	364.841
25	3129	338	100	0	0	2042.0777	1.6103	12.92459	377.7655
26	3129	338	200	0	0	2042.0777		12.35072	390.1163
27 28	3129 3129	338 338	300 400	0	0	2042.0777	1.4538 1.3598	11.66849	401.7847 412.6988
29	3129	338	500	ŏ	ŏ	2042.0777	1.2525	10.05282	422,7516
30	3129	338	600	ŏ	ō	2042.0777	1.1585	9.298353	432.0499
31	3129	338	700	0	0	2042.0777	1.0557	8.473259	440.5232
32	3129	338	800	0	0	2042.0777	0.95278	7.647203	448,1704
33	3129	338	900	0	0	2042.0777	0.88569	7.108725	455.2791
34 35	3129 3129	338 338	1000 1100	0	0	2042.0777	0.81859 0.75596	6.570167 6.067486	461.8493 467.9168
36	3129	338	1200	ŏ	ő	2042.0777		5.852143	473.7689
37	3129	338	1300	ō	ō	2042.0777	0.69781	5.600763	479.3697
38	3129	338	1400	0	0	2042.0777	0.65308	5.241751	484.6114
39	3129	338	1500	0	0	2042.0777		4.703193	489.3146
40 41	3129	338 338	1600 1700	0	0	2042.0777	0.50547		493.3716
42	3129 3129	338	1800	0	0	2042.0777	0.47416 0.43837		497.1773 500.6958
43	3129	338	1900	ŏ	ŏ	2042.0777	0.38917	3.123556	503.8193
44	3129	338	2600	0	0	2042.0777	0.35338	2.836299	506.6556
45	3129	338	2100	0	0	2042.0777	0.32207	2.584998	509.2406
46	3129	338	2200	0	0	2042.0777		2.333698	511.5743
47 48	3129 3129	338 338	2300 2400	0	0	2042.0777 2042.0777	0.25497 0.2326	2.04644 1.866894	513.6208 515.4877
49	3129	339	100	ŏ	0	2042.0777		1.687428	517.1751
50	3129	339	200	ō	ō	2042.0777	0.18787	1.507882	518.683
51	3129	339	300	0	0	2042.0777	0.16998	1.364293	520.0473
52	3129	339	400	0	0	2042.0777	0.15656	1.256582	521.3039
53 54	3129	339	500	0	0	2042.0777		1.220705	522.5246
54 55	3129 3129	339 339	600 700	0	0	2042.0777		1.041159	523.5657 524.6069
56	3129	339	800	ŏ	o	2042.0777		0.933447	525.5403
57	3129	339	900	0		2042.0777			526.4379
58	3129	339	1000	0		2042.0777		0.861693	
59 60	3129 3129	339 339	1100 1200	0		2042.0777		0.861693	
61	3129	339	1300	0		2042.0777		0.825735 0.825735	528.987 529.8128
62	3129	339	1400	ō		2042.0777		0.861693	
63	3129	339	1500	0	0	2042.0777	0.10736	0.861693	531.5361
64	3129	339	1600	0	0	2042.0777	0.10736	0.861693	532.3978
65 66	3129	339	1700	0		2042.0777		0.861693	
66 67	3129 3129	339 339	1800 1900	0		2042.0777			534.1571
68	3129	339	2000	0		2042.0777		0.825735 0.753981	
69	3129	339	2100	ŏ		2042.0777		0.718024	
70	3129	339	2200	0		2042.0777		0.610312	
71	3129	339	2300	0		2042.0777		0.538558	
72		339	2400	0		2042.0777		0.466724	
73 74		340 340	100 200	0		2042.0777		0.359012	
75		340	300	0		2042.0777 2042.0777		0.394889	
76		340	400	o		2042.0777		0.215423	

11 1 6 115

11 11 1

77	3129									
	0.20	340	500	0	0	2042.0777	0.01342	0.107712	539,4706	
78	3129	340	600	0	0	2042.0777	0.00895	0.071834	539,5424	
79	3129	340	700	0	0	2042.0777	0.01342	0.107712	539,6501	
80	3129	340	800	0	0	2042.0777	0.01342	0.107712	539,7579	
81	3129	340	900	0	0	2042.0777	0.00895	0.071834	539.8237	
82	3129	340	1000	0	0	2042.0777	0.00447	0.035877	539.8656	
83	3129	340	1100	0	0	2042.0777	0.02237	0.179546	540,0451	
84	3129	340	1200	0	0	2042.0777	0.01342	0.107712	540.1528	
85	3129	340	1300	0	0	2042.0777	0.01342	0.107712	540,2605	
86	3129	340	1400	0	0	2042.0777	0.01342	0.107712	540.3682	
87	3129	340	1500	0	0	2042.0777	0.00447	0.035877	540,4041	
88	3129	340	1600	0	0	2042.0777	0.01342	0.107712	540.5118	
89 ·	3129	340	1700	0	0	2042.0777	0.01342	0.107712	540.6195	
90	3129	340	1800	0	0	2042.0777	0.02237	0.179546	540,7991	
91	3129	340	1900	0	0	2042.0777	0.01342	0.107712	540.9068	
92	3129	340	2000	0	0	2042.0777	0.02237	0.179546	541.0864	
93	3129	340	2100	0	0	2042.0777	0.01789	0.143589	541,2299	
94	3129	340	2200	0	0	2042.0777	0.01342	0.107712	541.3377	
95	3129	340	2300	٥	0	2042.0777	0.02237	0.179546	541.5172	
96	3129	340	2400	٥	0	2042.0777	0.01342	0.107712	541.6249	
97	3129	341	100	٥	0	2042.0777	0.01342	0.107712	541.7326	
98	3129	341	200	0	0	2042,0777	0.00895	0.071834	541.8045	
99	3129	341	300	0	0	2042.0777	0.00895	0.071834	541.8763	
100	3129	341	400	0	0	2042.0777	0.00895	0.071834	541.9481	
101	3129	341	500	0	0	2042.0777	0.00895	0.071834	542.02	

CUMUL 1.69 2042.078
VOLUME IN CFT 2042.083
Outflow vol. as percentage of precip, volume

67.53133 542.02 26.5425

542.02

.

1.

US-36, Hendricks County (DATA SET 1 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW	FLOW	CUM.FLO
-			 	INCHES			gpm		cft.
1	3632	331	2200	0.01	9.6667	9.6667	0	8	0
2	3632	331	2300	0.01	9.6667	19.3334	0	G	. 0
. 3	3632	331	2400	0.06	58.0002	77.3336	0	C	0
4	3632	332	100	0.06	58.0002	135.3338	0.95325	7.650975	7.650975
5	3632	332	200	0.02	19.3334	154.6672	3.1852	25.56505	33.21603
6	3632	332	300	0.09	87.0003	241.6675	2.967	23.81374	57.02976
7	3632	332	400	0	0	241.6675	2.8023	22.49182	79.52158
8	3632	332	500	0.01	9.6667	251.3342	2.5535	20.4949	100.0165
9	3632	-332	600	0	0	251.3342	1.5734	12.62842	112.6449
10	3632	332	700	0	0	251.3342	1.1944	9.586493	122.2314
11	3632	332	800	0	0	251.3342	0.95708	7.681715	129.9131
12	3632	332	900	0	0	251.3342	0.80395	6.452663	136.3658
13	3 632	332	1000	0	0	251.3342	0.69293	5.561595	141.9274
14	3632	332	1100	0	0	251.3342	0.6087	4.885548	146.8129
15	3632	332	1200	0	0	251.3342	0.52831	4.240322	151.0532
16	3632	332	1300	0	0	251.3342	0.47471	3.810117	154.8634
17	3632	332	1400	0	0	251.3342	0.42494	3.410653	158 <i>.</i> 274
18	3632	332	1500	0	0	251.3342	0.37135	2.980529	161.2545
19	3632	332	1600	0	0	251.3342	0.31392	2.519585	163.7741
20	363 2	332	1700	0	0	251.3342	0.29095	2.335223	166.1094
21	3632	332	1800	0	0	251.3342	0.27947	2.243082	168.3524
22	3 632	332	1900	0	0	251.3342	0.26415	2.120121	170.4726
23	3632	332	2000	0	0	251.3342	0.25267	2.02793	172.5005
24	36 32	332	2100	0	0	251.3342	0.21822	1.751477	174.252
25	3632	332	2200	0	0	251.3342	0.08422	0.675967	174.928
26	3632	332	2300	0	0	251.3342	0.03828	0.307243	175.2352
27	3632	332	2400	0	0	251.3342	0.02297	0.184362	175.4196
28	3632	333	100	0	0	251.3342	0.00766	0.061481	175.4811
29	3632	333	200	0	0	251.3342	0	C	175.4811
30	3632	333	300	0	0	251.3342	0	0	175.4811
31	3632	333	400	0	•	251.3342	0	G	175.4811
			010411		·	·			
		VOLUMEIN	CUMUL.	0.26			21.86353		٠.

 VOLUME IN CFT
 251.3333
 175.4811

 Outflow vol. as percentage of precip. volume
 69.82005

US-36, Hendricks County (DATA SET 2 for Rain and Flow)

TOT.HRS	RITE/CNTY	JULNDAY	TIME	RAIN	RAIN	CUM FAIN	FLOW	FLOW	CUM.FLO
				INCHES	cft	cft	gpm	cft	ct.
1	3632	334	200	0.03	29.0001	29.0001	0.0268	0.215102	0.215102
2	3632	334	300	0.45	435.0015	464.0016	4.7012	37.73277	37 94787
3	3632	334	400	0	0	464.0016	5.4171	43.47873	81.4266
4	3632	334	500	0.01	9.6667	473 6683	2.5076	20.1265	101.5531
5	3632	334	600	0	0	473 6683	1.4203	11.39961	112.9527
6	3632	334	700	0	0	473.6683	1.0336	8.29588	121.2486
7	3632 3632	334 334	800 900	0	o o	473.6683 473.6683	0.66996	6.637025 5.377233	127,8856 133 2629
8	3632	334	1000	0	0	473.6683	0.56276	4.516824	137,7797
10	3632	334	1100	0	o	473 6683	0.49768	3.994479	141.7742
11	3632	334	1200	0	0	473.6683	0.43643	3.502874	145.277
12	3632	334	1300	ō	ō	473.6683	0.35986	2.883308	148.1653
13	3632	334	1400	0	0	473.6683	0.29861	2.396704	150.562
14	3632	334	1500	Ö	0	473.6683	0.22204	1.782137	152.3442
15	3632	334	1600	0	0	473.6683	0.16079	1.290533	153.6347
16	3632	334	1700	0	0	473.6683	0.09954	0.798928	154 4336
17	3632	334	1800	0	0	473.6683	0.06891	0.553065	154.9867
18	3632	334	1900	0	0	473.6683	0.02297	0.184362	155.1711
18	3632	334	2000	0	0	473.6683	0.01531	0.122881	155.294
20	3632	334	2100	0	0	473.6683	0.00766	0.061481	155.3554
21	3632	334	2200	0	0	473.6683	0.00766	0.061481	155.4169
22	3632	334	2300	0	0	473.6683	0.00766	0.061481	155.4784
23	3632	334	2400	0	0	473.6683	0.00766	0.061481	155.5399
24	3632	33 5	100	0	0	473.6683	0.00766	0.061481	155.6014
25	3632	335	500	0	0	473.6683	0.00766	0.061481	155.6629
26	3632	335	300	0	0	473.6683	0.00766	0.061481	155.7243
27	3632	335	400	٥	0	473.6683	0.01531	0.122881	155.8472
28	3632	335	500	0	0	473.6683	0.02297	0.184362	156.0316
29	3632	335	600	0	0	473.6683	0.0268	0.215102	156.2467
30	3632	335	700	0	0	473.6683	0.0268	0.215102	156.4616
31	3632	335	800	0	0	473.6683	0.02297	0 184362	156.6461
32	3632 3632	335 335	900	. 0	0	473.6683 475.6683	0.02297 0.02297	0.184362 0.184362	156.8305 157.0149
33 34	3632	335	1000 1100	0	0	473.6583	0.02237	0.153621	157.1685
35	3632	335	1200	0	0	473.6683	0.01914	0.153621	157.3221
36	3632	335	1300	0	0	473.6683	0.01531	0.122881	157.445
37	3632	335	1400	o	0	473.6683	0.02297	0.184362	157.6294
38	3632	335	1500	o	0	473.6683	0.03063	0.245843	157.8752
39	3632	335	1600	0	0	473.6683	0.00766	0.061481	157.9367
40	3632	335	1700	0	0	473.6683	0	0	157.9367
41	3632	335	1800	0	0	473.6583	0	0	157.9367
42	3632	335	1900	0	0	473.6683	0	0	157.9367
43	3632	335	2000	0	0	473.6683	0	0	157.9367
44	3632	335	2100	0	0	473.6683	0.02297	0.184362	158.121
45	3632	335	2200	0	0	473.6683	0.03445	0.276503	158,3975
48	3632	335	2300	0.01	9.6667	483.335	0.03063	0.245843	158.6434
47	3632	335	2400	0	0	483.335	0.03445	0.276503	158.9199
48	3632	336	100	0.01	9.6667	493.0017	0.03445	0.276503	159,1964
49	3632	336	200	0.01	9.6667	502.6684	0.03063	0.245843	159.4422
50	3632	336	300	0	0	502.6684	0.0268	0.215102	159.6573
51	3632	336	400	0	0		0.02297	0.184362	159.8417
52	3632	336	500	0	0		0.0268	0.215102	
53	3632	336	600 700	0	0		0.0268	0.215102	
54 55	3632 3632	336 336	700 800	0	0		0.0268 0.0268	0 215102	
55 56	3632	336	900	0	0		0.0268	0.215102	
57	3632	336	1000	0	0		0.02297	0.213162	161,1016
58	3632	336	1100	0	0		0.0268	0.215102	161.3167
59	3632	336	1200	0	0		0.02297	0.184362	161 501
30			,						

CUMUL 0.52
VOLUME IN CFT 502.6667
Outflow vol. as percentage of precip. volume

20.12173 161.501 32.12885

US-36, Hendricks County (DATA SET 3 for Rain and flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO cft
1	3632	336	1400	0.01	9.6667	9.6667	0.00766	0.061481	0.061481
2	3632	336	1500	0.05	48.3335	58.0002	0.00766	0.061481	0.122961
3	3632	336	1600	0.17	164.3339	222.3341	1.2404	9.955698	10.07866
4	3632	336	1700	0.11	106.3337	328.6678	` 0	0	10.07866
5	3632	336	1800	0.03	29.0001	357.6679	2.2357	17.94418	28.02284
6	3632	336	1900	0	0	357.6679	3.2388	25.99526	54.01809
7	3632	336	2000	0	0	357.6679	1.9333	15.51705	69.53514
8	3632	336	2100	0	0	357.6679	1.4012	11.24631	80.78146
9	363 2	336	2200	0.01	9.6667	367.3346	1.1791	9.463692	90.24515
10	3632	336	2300	0	0	367.3346	1.0298	8.265381	98.51053
11	3632	336	2400	0	0	367.3346	0.93794	7.528094	106.0386
12	3632	337	100	0.01	9.6667	377.0013	0.9188	7.374473	113.4131
13	3632	337	200	0	0	377.0013	0.92263	7.405213	120.8183
14	3632	337	300	0	0	377.0013	0.8384	6.729166	127.5475
			CUMUL	0.39			15.89139		
		VOLUME IN	CFT	377			127.5475		
	Outflow vol.	as percentag	ge of precip.	volume			33.83222		

US-41, Sullivan County (DATA SET 1 for Rain and Flow)

TOTUDO		HHAIDAY	****	Date	0444	Comp. Com.	F: 044	ri ou	~
IOI.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	cti	CUM RAIN	FLOW	cft	CUM FLOW cft
1	4177	2	300	011	50.27			1.59938067	
2	4177 4177	2 2	400 500	0.07 0.04	31.99 18.28		1 3501	10.6361726	
4	4177	2	600	0.01	4.57	105.11	1.5708		37.0462906
6	4177	2	700	αœ	13.71	118.82		14.6223336	
6	4177	2	800	0	0	118.82	1,403	11,2607586	62,9299629
7	4177	2	900	0.02	914		0.244		64.8883757
6	4177	2	1000	0.02	914	137.1		6.16893732	
10	4177 4177	2	1100	0.05 0.07	22.85 31.99	159.95 191.94		16.2875677	99.834366
11	4177	2	1300	0.07	4 57			13.9045689	
12	4177	2	1400	0	0			3.72094632	
13	4177	2	1500	0 01	4 57	201.06	0		116.459921
14	4177	2	1600	0.03	13.71	214.79		6.62586889	123.08579
15 16	4177 4177	2	1700 1800	0.07	31.99	246.78		9.69404436	
17	4177	2	1900	0.05	31.99 22.85	278 77 301,62		0.92279106 10.5103089	
18	4177	. 2	2000	0.02	914	310 76		10.5753211	
10	4177	2	2100	0.06	22.85	333.61	1.4477	11.6196297	175.407785
20	4177	2	2200	0	0	333.61	1.5169	12.1749428	187.582728
21	4177	2	2300	0.01	4.57	338.18		3.10076185	190,68349
22 23	4177 4177	2	2400 100	0.01	4.57	342.75		3.00284221	
24	4177	3	200	0.01	0 4.57	342.75 347.32		2.18689671	
25	4177	3	300	0	0	347.32		1.66463388	
26	4177	3	400	0	0	347.32	0 15453	1.24028869	200.573374
27	4177	3	500	0	0	347.32	0 11793	0.94652977	201.519903
28	4177	3	600	0	0	347.32		0.84861013	
29 30	4177 4177	3	700	0	0	347.32		0.45693157	
31	4177	3 3	900	0	0	347.32 347.32		0.16317265	
322	4177	3	1000	0	0	347.32		0.26109229	
33	4177	3	1100	0	0	347.32		0.26109229	
34	4177	3	1200	0	0	347.32	0 02847	0.22850591	203.935147
35	4177	3	1300	0	0	347.32		0.22850591	
35 37	4177 4177	3 3	1400 1500	0	0	347.32 347.32		0.16317265 0.19583926	
38	4177	3	1600	0	0	347.32		0.22850591	
39	4177	3	1700	0	0	347.32		0.19583928	204,94701
40	4177	3	1900	0	0	347.32	0.03253	0.26109229	205.208103
41	4177	3	1900	0	0	347.32	0 03253	0.26109229	205,469195
42 43	4177 4177	3	2000 2100	0	0	347.32		0.19583928	
4	4177	3	2200	0	0	347.32 347.32		0.22850591	206.89354
45	4177	3	2300	0		347.32		0.19583928	
46	4177	3	2400	0	0	347.32		0.13058627	
47	4177	4	100	0	0	347.32	0 02033	0.16317265	206.546311
48	4177	4	500	0	0	347.32		0.13058627	
49 50	4177 4177	4	300 400	0	0	347.32 347.32		0.13058627 0.13058627	
61	4177	4	500	0	0	347.32		0.09791964	206.93807
52	4177	4	600	o	0	347.32		0.09791964	
53	4177	4	700	0	0	347.32	0 01 22	0.09791964	207.231829
54	4177	4	800	0	0	347.32			207.297082
55 55	4177	4	900	0	0	347.32			207.362335
57	4177 4177	4	1000	0	0	347.32 347.32		0.06525301	
58	4177	4	1200		0	347.32		0.06525301	
50	4177	4	1300	o	o	347.32		0.06525301	
60	4177	4	1400	0	0	347.32	0.0122	0.09791964	207.721266
e1	4177	4.	1500	0	0	347,32		0.06525301	
හ ස	4177 4177	4	1600 1700	0	0	347.32		0.06525301	
64	4177	4	1900	0	0	347.32 347.32		0.06525301	
65	4177	4	1500	0	0	347.32		0.06525301	
66	4177	4	2000	0	0	347 32		0.03266663	
67	4177	4	2100	0	0	347 32	0 00407	0.03266663	208.112965

CUMUL. 0.76
VOLUME IN CFT 347.32
Outflow vol. as percentage of precip, volume

25 92919 206 112965 59 9196317

1111

11 1 914

US-41, Sullivan County (DATA SET 2 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN	RAIN	CUM.RAIN	FLOW	FLOW	CUM.FL
				INCHES	cft	cft	gpm	cft	
1	4177	8	900	0.02	11.54	11.54	0	0	
2	4177	8	1000	0.06	34.62	46.16	0.0488	0.391679	0.39167
3	4177	8	1100	0.14	60.78	126.94	1.7161	13.77376	14.1654
4	4177	8	1200	0.02	11.54	138.48	1.4152	11.35868	25.524
5	4177	8	1300	0.05	28.85	167.33	1.4925	11.9791	37.5033
6	4177	8	1400	0	0	167.33	1.0167	8.160238	45.6634
7	4177	8	1500	0	0	167.33	0.23587	1.89314	47.55
8	4177	8	1600	0	0	167.33	0.15047	1.207702	48.76
9	4177	8	1700	0	0	167.33	0.11387	0.913943	49.678
10	4177	8	1800	0	0	167.33	0.06913	0.554851	50.23
- 11	4177	8	1900	0	0	167.33	0.0244	0.195839	50.428
12	4177	8	2000	0	0	167.33	0.0244	0.195839	50.624
13	4177	8	2100	0.01	5.77	173.1	0.03253	0.261092	50.885
14	4177	8	2200	0	0	173.1	0.10167	0.816024	51.701
15	4177	8	2300	0	0	173.1	0.13827	1.109783	52.811
16	4177	8	2400	0	0	173.1	0.11387	0.913943	53.725
17	4177	9	100	0.01	5.77	178.87	0.1342	1.077116	54.802
18	4177		200	0	0	178.87	0.12607	1.011863	55.81
19	4177	9 9	300	0	0	178.87	0.07727	0.620184	56.434
20 21	4177	9	400	0	0	178.87	0.0244	0.195839	56.630
22	4177 4177	9	500 600	0	. 0	178.87	0.02847	0.228506	56.859
23	4177	9	700	0	0	178.87	0.02847	0.228506	57.087
24	4177	9	800	0	0	178.87 178.87	0.02033	0.163173	57.25 57.479
25	4177	9	900	0	0	178.87	0.02847	0.228506 0.228506	
26	4177	9	1000	o	0	178.87	0.02847	0.228506	57.707
27	4177	9	1100	0	0	178.87	0.03253	0.261092	57.936
28	4177	9	1200	o	0	178.87	0.0244	0.195839	58.197 58.393
29	4177	9	1300	ŏ	0	178.87	0.02847	0.228506	58.621
30	4177	9	1400	Ö	0	178.87	0.02033	0.163173	58.784
31	4177	9	1500	ō	o	178.87	0.0244	0.195839	58.980
32	4177	9	1600	ō	0	178.87	0.02033	0.163173	59.143
33	4177	9	1700	ō	ō	178.87	0.02033	0.163173	59.307
34	4177	9	1800	0	0	178.87	0.01627	0.130586	59.43
35	4177	9	1900	0	ō	178.87	0.01627	0.130586	59.568
36	4177	9	2000	0	0	178.87	0.0122	0.09792	59.666
37	4177	9	2100	0	o	178.87	0.0122	0.09792	59.764
38	4177	9	2200	0	О	178.87	0.0122	0.09792	59.862
39	4177	9	2300	0	0	178.87	0.00813	0.065253	59.92
40	4177	9	2400	0	0	178.87	0.0122	0.09792	60.025
41	4177	10	100	0	0	178.87	0.00813	0.065253	60.090
42	4177	10	200	0	0	178.87	0.00813	0.065253	60.155
43	4177	10	300	0	0	178.87	0.00813	0.065253	60.220
44	4177	10	400	0	0	178.87	0.01627	0.130586	60.351
45	4177	10	500	0	0	178.87	0.0244	0.195839	60.547
46	4177	10	600	0	0	178.87	0.01627	0.130586	60.677
47	4177	10	700	0	0	178.87	0.01627	0.130586	60.808
48	4177	10	800	0	0	178.87	0.01627	0.130586	60.939
49	4177	10	900	0	0	178.87	0.0122	0.09792	61.037
50	4177	10	1000	0	0	178.87	0.0122	0.09792	61.13
51	4177	10	1100	0	0	178.87	0.0122	0.09792	61.232
52	4177	10	1200	0	0	178.87	0.00813	0.065253	61.298
53	4177	10	1300	0	0	178.87	0.0122	0.09792	61.39
54	4177	10	1400	0	0	178.87	0.00813	0.065253	61.461
55	4177	10	1500	0	0	178.87	0.0122	0.09792	61.5592
56	4177	10	1600	0	0	178.87	0.0122	0.09792	61.657
57	4177	10	1700	0	0	178.87	0.00813	0.065253	61.722
58	4177	10	1800	0	0	178.87	0.01627	0.130586	61.8530
59	4177	10	1900	0	0	178.87	0.00407	0.032667	61.8856
60	4177	10	2000	0.	0	178.87	0.00813	0.065253	61.9509
									
			CUMUL	0.31			7.71859		

 CUMUL
 0.31
 7.71859

 VOLUME IN CFT
 178.87
 61.95095

 Outflow vol. as percentage of precip. volume
 34 63462

* 1 april 1:

1:1 ..

SR-9, Noble County (DATA SET for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN	RAIN	CUM.RAIN	FLOW	FLOW	CUM.FLO	
				INCHES	cft	cft	gpm	cft	दर् गी	•
1	957	277	200	0.59	427.75	427.75	0	0	5	
2	957	277	300	0.88	638	1065.75	0.3373	2.707237	2.707237	
3	957	277	400	0.21	152.25	1218	0.05741	0.460784	3.168021	
4	957	277	500	0.26	188.5	1406.5	0.05741	0.460784	3.628606	
5	957	277	600	0.08	58	1464.5	0.06818	0.547226	4.176032	
6	957	277	700	0.01	7.25	1471.75	0.40189	3.22565	7.401681	
7	957	277	800	0.01	7.25	1479	0.75355	6.048143	13.44962	
8	957	277	900	0	0	1479	1.0155	8.150606	21,60043	
9	957	277	1000	0	0	1479	1.2774	10.25267	31.8531	
10	957	277	1100	0	0	1479	1.5071	12.09629	43.94938	
11	957	277	1200	0	0	1479	1.6255	13.04659	56.99597	1 21
12	957	277	1300	0	0	1479	1.6722	13.42141	70.41738	* * *
13	957	277	1400	0	0	1479	1.6901	13.56508	83.98246	
14	957	277	1500	0	0	1479	1.6793	13.4784	97.46056	
15	957	277	1600	0	0	1479	1.6578	13.30583	110.7667	
16	957	277	1700	0	0	1479	1.6363	13.13327	123.9	
17	957	277	1800	0	0	1479	1.5968	12.81624	136.71€2	
18	957	277	1900	0	0	1479	1.5609	12.5281	149.2443	
19	957	277	2000	0	0	1479	1.4999	12.0385	161.2828	
20	957	277	2100	0	0	1479	1.4497	11.63558	172.9164	
21	957	277	2200	0	0	1479	1.3994	11.23186	184.1502	
22	957	277	2300	0	0	1479	1.3456	10.80005	194.9503	
23	957	277	2400	0	0	1479	1.2954	10.39714	205.3474	
24	957	278	100	0	0	1479	1.2523	10.05121	215.3986	
25	957	278	200	0	0	1479	1.1985	9.619401	225.018	
26	957	278	300	0	0	1479	1.22	9.791964	234.81	
27	957	278	400	0	0	1479	1.2846	10.31046	245.1205	
28	957	278	500	0	0	1479	1.2595	10.109	255.2295	
56	957	279	900	0	0	1479	0.3423	2.747368	257.9766	
97	957	281	300	0	0	1479	0.006	0.048157	258.025	
			CUMUL.	2.04		***************************************	32.14784			
		VOLUME IN	CFT	1479			258.025			
	Outflowwal		0.06.000.:-				47.44504			

Outflow vol. as percentage of precip. volume 17.44591

SR-63, Vermillion County (DATA SET 1 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO cft
1	6383	276	200	0.07	20.9769	20.9769	0	0	0
2	6383	276	300	0.11	32.9637	53.9406	0.50512	4.054194	4.054194
3	6383	276	400	0.03	8.9901	62.9307	1.5924	12.78092	16.83512
4	63 83	276	500	0.01	2.9967	65.9274	0.63448	5.092463	21.92758
5	63 83	276	600	0	0	65.9274	0.4774	3.831708	25.75929
6	6383	276	700	0	0	65.9274	0.38808	3.114808	28.87409
7	63 83	276	800	0	0	65.9274	0.24948	2.002376	30.87647
8	6383	276	900	0	0	65.9274	0.15092	1.211314	32.08778
9	6383	276	1000	0	0	65.9274	0.09856	0.791062	32.8 7885
10	6383	276	1100	0	0	65.9274	0.07392	0.593297	33.47214
11	6383	276	1200	0	0	65.9274	0.01232	0.098883	33.57103
12	6383	276	1300	0	0	65.9274	0.02464	0.197766	33.76879
13	6383	276	1400	0	0	65.9274	0.01848	0.148324	33.91712
14	6383	276	1500	0	0	65.9274	0.02464	0.197766	34.11488
15	6383	276	1600	0	0	65.9274	0.02464	0.197766	34.31265
16	6383	276	1700	0	0	65.9274	0.01848	0.148324	34.46097
17	6383	276	1800	0	0	65.9274	0.01848	0.148324	34.6093
18	6383	276	1900	0	0	65.9274	0.01232	0.098883	34.70818
19	6383	276	2000	0	0	65.9274	0.00616	0.049441	34.75762
20	63 83	276	2100	0.01	2.9967	68.9241	0.00924	0.074162	34.83178
21	638 3	276	2200	0	0	68.9241	0.00308	0.024721	34.8565
22	6383	276	2300	0	0	68.9241	0.00616	0.049441	34.90594
			CUMUL.	0.23			4.349		
		VOLUME IN	CFT	68,92333			34.90594		
	0.45						50.0440		

Outflow vol. as percentage of precip. volume 50.6446

SR-63, Vermillion County (DATA SET 2 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN		CUM.RAIN	FLOW		CUM.F_O
				INCHES	cft	cft	gpm		5 †;
1	6383	277	500	0.29	86.9043	86.9043	0.68992	5.537436	5.537436
2	6383	277	600	0.09	26.9703	113.8746	3.0122	24.17652	29.71396
3	6383	277	700	0.02	5.9934	119.868	1.3675	10.975≋	40.685™€
4	6383	277	800	0	0	119.868	0.48356	3.881143	44.57053
5	6383	277	900	0	0	119.868	0.32648	2.620334	47.19133
6	6383	277	1000	0	0	119.868	0.19096	1.532623	48.72401
7	6383	277	1100	0	0	119.868	0.09856	0.791052	49.51527
8	6383	277	1200	0	0	119.868	0.03388	0.271925	49.757
9	6383	277	1300	0	0	119.868	0.02156	0.173045	49.96005
10	6383	277	1400	0	0	119.868	0.00616	0.049441	50.00549
			CUMUL	0.4			6.23078		
		VOLUME IN	CFT	119.8667			50.00949		
	Outflow vol.	as percenta	ae of precip.	volume			41.72093		

US-30, Laporte County (DATA SET 1 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO cft
1	3046	275	2200	0.04	20	20	0	0	0
2	3046	275	2300	0.1	50	70	0	0	0
3	304 6	275	2400	0.08	40	110	0	0	٥
4	3046	276	100	0.07	35	145	0.0467	0.374824	0.374824
5	3046	276	200	0.01	5	150	0.09729	0.780869	1.155693
6	3046	276	300	0	0	150	0.05837	0.468489	1.624182
7	3046	276	400	0	0	150	0.01946	0.15619	1.780372
8	3046	276	500	0	0	150	0.01167	0.093666	1.874037
9	3046	276	600	0	0	150	0.00778	0.062444	1.936481
10	3046	276	700	0	0	150	0.00389	0.031222	1.967703
11	3046	276	800	0	0	150	0.00389	0.031222	1.998925
12	3046	276	900	0	0	150	0.00389	0.031222	2.030147
		c	UM.	0.3		·	0.25294		
		VOLUME IN C	FT	150			2.030147		
	Outflow vol.	as percentag	e of precip.	volume			1.353431		

US-30, Laporte County (DATA SET 2 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN		CUM,RAIN	FLOW	FLOW	CUM.FLO
	·			INCHES	cft	cft	gpm	cft	cft
1	3046	276	2300	0	0	0	0	0	0
2	3046	276	2400	0.13	65	65	0	0	0
3	3046	277	100	0.07	3 5	100	0.05448	0.437267	0.437267
4	3046	277	200	0.1	50	150	0.08951	0.718425	1.155693
5	3046	277	300	0.27	135	285	0.19069	1.530516	2.686209
6	3046	277	400	0.47	235	520	0.25296	2.030308	4.716516
7	3046	277	500	0.07	35	55 5	0.29966	2.405131	7.121647
8	3046	277	600	0.03	15	570	0.24128	1.936562	9.058209
9	3046	277	700	0.01	5	575	0.1868	1.499294	10.5575
10	3046	277	800	0	0	575	0.11675	0.937059	11.49456
11	3046	277	900	0	0	575	0.06616	0.531013	12.02558
12	304 6	277	1000	0	0	575	0.06227	0.499791	12.52537
13	3046	277	1100	0.01	5	580	0.04281	0.343602	12.86897
14	3046	277	1200	0.13	65	645	0.05448	0.437267	13.30624
15	3046	277	1300	О	0	645	0.12842	1.030725	14,33696
16	3046	277	1400	0	0	645	0.08172	0.655901	14.99286
17	3046	277	1500	0.01	5	650	0.06227	0.499791	15.49265
18	3046	277	1600	0.03	15	665	0.05448	0.437267	15.92992
19	304 6	277	1700	0	0	665	0.06616	0.531013	16.46093
20	3046	277	1800	0	0	665	0.04281	0.343602	16.80454
21	3046	277	1900	0	0	665	0.01557	0.124968	16.9295
22	30 46	277	2000	0.03	15	680	0.01557	0.124968	17.05447
23	3046	277	2100	0.3	150	830	0.03113	0.249856	17.30433
24	304 6	277	· 2200	0.38	190	1020	0.14399	1.155693	18.46002
25	3046	277	2300	0.3	150	1170	0.23739	1.90534	20.36536
26	3046	277	2400	0.5	250	1420	0.31912	2.561321	22.92668
27	3046	278	100	0.11	55	1475	0.36971	2.967366	25.89405
28	304 6	278	200	0.08	40	1515	0.35414	2.842398	28.73644
29	304 6	278	300	0.01	5	1520	0.31522	2.530019	31.26646
30	3046	278	400	0	0	1520	0.24128	1.936562	33.20302
31	3046	278	500	0	Ω	1520	0.17123	1.374326	34.57735
32	3046	278	600	0	0	1520	0.08951	0.718425	35.29578
33	3046	278	700	0	0	1520	0.05837	0.468489	35.76427
34	3046	278	800	О	0	1520	0.03502	0.281078	36.04534
35	3046	278	900	0	0	1520	0.01557	0.124968	36.17031
36	3046	278	1000	0	0	1520	0.01167	0.093666	36.26398
37	3046	278	1100	0	0	1520	0.01167	0.093666	36.35764
38	3046	278	1200	0	0	1520	0.00778	0.062444	36.42009
39	3046	278	1300	0	0	1520	0.00778	0.062444	36.48253
40	3046	278	1400	0	0	1520	0.00389	0.031222	36.51375
									

CUMUL. 3.04
VOLUME IN CFT 1520
Outflow vol. as percentage of precip. volume

4.54543

36.48253

2.400166

US-30, Laporte County (DATA SET 3 for Rain and Flow)

TOT.HRS	RTE/CNTY	YADNJUL	TIME	RAIN INCHES	RAIN	CUM.RAIN cft	FLOW	FLOW	CUM.FLOW cft
1	3046	296	500	0.01		5	0	0	
2	3046	296	600	1,17	585	590	0.0467	0.37482354	0.37482354
3	3046	298	700	0.06	జ	6 15	0.15177	1.21813637	1.59295991
4	3046	298	800	0.33	165	780		1.46807224	3.06103216
6	3046	298	900	0.89	445	1225			4.67270602
6 7	3046 3046	298 298	1000	0.02	10	1225 1236	0.28862	2.15519522 1.8741177	7.02790124 8.90201894
8	3046	298	1200	0.13	66	1300		1.65548401	10.567503
9	3046	298	1300	0.09	45	1345			12.4940645
10	3046	298	1400	0.02	10	1355		1.84289578	14,3369603
11	3046	296	1500	0.06	30	1385	0.19069	1.53051608	15.8674764
12	3046	298	1600	0.04	20	1405	0.20626	1.65548401	17.5229604
13	3046	298	1700	0	0	1405		1.43685032	18.9598107
14	3046	298	1800	0	0	1405		0.84331283	19.8001235
15	3046	299	1900	0	0	1405		0.46848929	20.2716128
16	3046	296 296 ·	2000 2100	0	0	1405 1405	0.05448	0.43726738	20.7088802
17 16	3046 3046	298	2200	0	0	1405		Q3123797 Q18741177	21.0212599 21.2086717
19	3046	298	2300	0	0	1405			21.3336396
20	3046	298	2400	0.17	85	1490			21.4586075
21	3046	299	100	0.69	345	1836		1.12447062	22.5830782
22	3046	299	200	0.03	15	1850		1,84289578	24.4259739
23	3046	299	300	o	0	1850	0.22961	1.84289578	26.2688697
24	3046	299	400	0,01	5	1855	0.19458	1,551738	27.8306077
25	3046	299	500	0.04	20	1875	Q 16734	1.34310431	29,173712
. 26	3046	299	600	0.01	5	1880		1.59295991	30,7666719
27	3046	299	700	0.03	15	1895		1.46807224	32.2347442
28	3046	299	800	0.02	10	1905		1.34310431	33,5778485
29 30	3046 3046	299 299	900 1000	0.04	20 50	1925 1975		1,31188239	34.8897309
31	3046	299	1100	0.01	5	1975		1.74914977	38.2318406
32	3046	299	1200	0	0	1980		1.62426209	39.8561027
33	3046	299	1300	0	٥	1980		1,31188239	41,167985
34	3046	299	1400	0	0	1980		0 87461501	42.0426001
35	3046	299	1500	0 01	5	1985	0 06227	0 49979147	42 5423915
35	3046	299	1600	0.01	5	1560	0.0467	0.37482354	42.9172151
37	3046	299	1700	0	0	1990		0.43726736	43.3544824
38	3046	299	1800	0.01	5	1995		0.34360162	43,6980841
39	3046	299	1900	0.22	110	2105		0.46848929	44 1665734
40 41	3046	299	2000	0.13	65	2170		1.43685032	45.6034237
42	3046 3046	299 299	2100 2200	0.03 0.01	15 5	2185 2190	0.2336	1.8741177	47.4775414 49.4141029
43	3046	299	2300	0.03	15	2205		1.68670593	51.1008089
44	3046	299	2400	0.13	65	2270	0.2335	1.8741177	52.9749266
45	3046	300	100	0.03	15	2285	0.26852	2.15519522	55.1301218
46	3046	300	200	0	o	2285	0.26074	2.09275139	57.2228732
47	3046	300	300	0.01	5	2290	0.23739	1.90533962	59.1282128
48	3046	300	400	0	0	2290		1.65548401	60,7836968
49	3046	300	500	0	o	2290		1.40554814	62.1892449
50	3046	300	600	0	0	2290		0.87461501	63'063%
51	3046	300	700	0	0	2290		0.24985561	63.3137156
52 53	3046 3046	300	900	0	0	2290		0.37482354	63,6885391
53 54	3046	300	900 1000	0	0	2290 2290	0.03892	Q 18741177	
 55	3046	300	1100	0	0	2290		0.12496793	
56	3046	300	1200	o	0	2290		0.12496793	
57	3046	300	1300	0	0	2290		0.08366575	
58	3046	300	1400	0	o	2290		0.09366575	
59	3046	300	1500	0	o	2290		0.09366575	
60	3046	300	1600	0	0	2290	0.00778	0.06244384	64.7817079
61	3046	300	1700	0	0	2290	0 00778	0.06244384	64,8441514
62	3046	300	1800	0	o	2290		0.03122192	
63	3046	300	1500	0	0	2290		0.06244384	
64 6 5	3046 3046	300	2000	0	0	2290		0.03122192	
65	3046	300 300	2100 2200	0	0	2290 2290		0.03122192	
67	3046	300	2300	0	0	2290		0.03122192	
•	3040	340	٠					uwi22192	JJ. UGZ/U48
		~	JMUL .	4 58			8.10629		
		MON TIME IN CE					u. 10029		

VOLUME IN CFT 2290

Outflow vol. as percentage of precip volume

65 0627048 2 84116615

US-30, Laporte County (DATA SET 4 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	ПМЕ	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO
. 1	3046	301	1500	0.02	10	10	0	0	- 0
2	3046	301	1600	0.06	30	40	0.00389	0.031222	0.031222
3	3046	301	1700	0.02	10	50	0.03892	0.31238	0.343602
4	3046	301	1800	0.02	10	60	0.04281	0.343602	0.687203
5	304 6	301	1900	0	0	60	0.03502	0.281078	0.968281
6	3046	301	2000	0	0	60	0.01167	0.093666	1.061947
7	3046	301	2100	0	0	60	0.01557	0.124968	1.186914
8	3046	301	2200	0	0	60	0.01167	0.093666	1.28058
9	3046	301	2300	0	0	60	0.00778	0.062444	1.343024
10	3046	301	2400	0	0	60	0.00778	0.062444	1.405468
11	3046	302	100	0	0	60	0.00389	0.031222	1.43669
12	3046	302	200	0	0	60	0.00389	0.031222	1.467912
13	3046	302	300	0	0	60	0.00389	0.031222	1.499134
14	3046	302	400	0.01	5	65	0.00389	0.031222	1.530356
15	3046	302	500	0	0	65	0.00389	0.031222	1.561577
16	3046	302	600	0	0	65	0.00389	0.031222	1.592799
17	3046	302	700	0.02	10	75	0.00389	0.031222	1.624021
18	3046	302	800	0	0	75	0.00389	0.031222	1.655243
19	3046	302	900	0	. 0	75	0.00389	0.031222	1.686465
		c	UMUL	0.15		·	0.20623		
		VOLUME IN C	CFT	7 5			1.655243		
	Outflowwol	as parcontag	e of procin	volume			2 206991		

Outflow vol. as percentage of precip. volume 2.206991

US-30, Laporte County (DATA SET 5 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO cft
1	3046	302	2000	0.06	30	30	. 0	0	. 0
2	3046	302	2100	0.05	25	55	. 0	0	0
3		302	2200	0.05	225	280	0	0	
	3046						,	_	0
4	3046	302	2300	0.21	105	385	0	0	0
5	3046	302	2400	0.09	45	430	0.03892	0.31238	0.31238
6	3046	303	100	0.41	205	635	0.22572	1.811674	2.124054
7	3046	303	200	0.06	30	665	0.26852	2.155195	4.279249
8	3046	303	300	0.1	50	715	0.28409	2.280163	6.559412
9	3046	303	400	0.07	3 5	750	0.29577	2.373909	8.933321
10	3046	303	500	0.05	25	775	0.27631	2.217719	11.15104
11	3046	303	600	0.07	35	810	0.28409	2.280163	13.4312
12	3046	303	700	0.06	30	840	0.26852	2.155195	15.5864
13	3046	303	800	0.08	40	880	0.26074	2.092751	17.6 7 915
14	3046	303	900	0.05	25	905	0.25296	2.030308	19.70946
15	3046	303	1000	0.02	10	915	0.22572	1.811674	21.52113
16	3046	303	1100	0.05	25	940	0.19847	1.59296	23.11409
17	3046	303	1200	0.1	50	990	0.1868	1.499294	24.61339
18	3046	303	1300	0.06	30	1020	0.21404	1.717928	26.33131: :
19	3046	303	1400	0.02	10	1030	0.20626	1.655484	27.9868
20	3046	303	1500	0	0	1030	0.12064	0.968281	28.95508
21	304 6	303	1600	0	0	1030	0.01167	0.093666	29.04874
			CUMUL.	2.06			3.61924		
		VOLUME IN C	FT	1030			29.04874		

Outflow vol. as percentage of precip. volume 2.820266

US-31, St.Joseph County (DATA SET 1 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM,RAIN cft	FLOW gpm	FLO₩ ⇔:	CUM.FLO cft
1	3171	220	600	0.05	46.85	46.85	0	0	0
2	3171	220	700	0.05	46.85	93.7	0.00753	0.060452	0.060452
3	3171	220	800	0.41	384.17	477.87	0.01129	0.090638	0.151091
4	3171	220	900	0.35	327.95	805.82	0.04518	0.362714	0.513805
5	3171	220	1000	0.64	599.68	1405.5	0.1393	1.118328	1,632133
6	3171	220	1100	0.37	346.69	1752.19	0.15436	1.239233	2.871366
7	3171	220	1200	0.08	74.96	1827.15	0.07153	0.574257	3.445623
8	3171	220	1300	0	0	1827.15	0.04518	0.362714	3.808337
9	3171	220	1400	0	0	1827.15	0.01882	0.151091	3.959428
10	3171	220	1500	0	0	1827.15	0.01129	0.090638	4,050066
11	3171	220	1600	0	0	1827.15	0.00753	0.060452	4.110519
12	3171	220	1700	0	0	1827.15	0.00753	0.060452	4.170971
13	3171	220	1800	0.02	18.74	1845.89	0.00376	0.030186	4.201157
14	3171	220	1900	0	0	1845.89	0.00753	0.060452	4.261609
15	3171	220	2000	0	0	1845.89	0.00376	0.030186	4.291795
16	3171	220	2100	0	0	1845.89	0.00376	0.030186	4.321981
17	3171	220	2200	0	0	1845.89	0.00376	0.030186	4.352168
18	3171	220	2300	0	0	1845.89	٥	0	4,352168
			CUMUL.	1.97		<u> </u>	0.54211		
		VOLUME IN	CFT	1845.89			4.351083		
	Outflow vol.	as percentag	ge of precip.	volume			0.235717		

US-31, St.Joseph County (DATA SET 2 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM.RAIN cft	FLOW gpm	FLOW cft	CUM.FLO cft
1	3171	231	1000	0.06	56.22	56.22	0	0	.0
2	3171	231	1100	0.07	65.59	121.81	0.01506	0.120875	0.120875
3	3171	231	1200	0	0	121.81	0.00376	0.030179	0.151053
4	3171	231	1300	0.17	159.29	281.1	0.03012	0.241749	0.392802
5	3171	231	1400	0.33	309.21	590.31	0.07906	0.634551	1.027354
6	3171	231	1500	0.08	74.96	665.27	0.11671	0.936738	1.964091
7	3171	231	1600	0.06	56.22	721.49	0.07906	0.634551	2.598643
8	3171	231	1700	0.05	46.85	768.34	0.07906	0.634551	3.233194
9	3171	231	1800	O	0	768.34	0.04894	0.392802	3.625996
10	3171	231	1900	0	0	768.34	0.01506	0.120875	3.746871
11	3171	231	2000	0	0	768.34	0.01129	0.090616	3.837487
12	3171	231	2100	0	0	768.34	0.00376	0.030179	3.867665
13	3171	231	2200	0	. 0	768.34	0.00376	0.030179	3.897844
14	3171	231	2300	0	0	768.34	0.00376	0.030179	3.928022
			CUMUL.	0.82			0.4894	-	
		VOLUME IN	CFT	768. 34			3.928022		
	Outflow vol.	as percenta	ge of precip.	volume			0.511235		

US-31, St.Joseph County (DATA SET 3 for Rain and Flow)

TOT.HRS	RTE/CNTY	JULNDAY	TIME	RAIN INCHES	RAIN cft	CUM,RAIN cft	FLOW	FLOW cft	CUM.FLO
1	3171	246	700	0.5	468.5	468.5	0.01129	0.090616	0.090616
2	3171	246	800	0.14	131.18	599.68	0.03012	0.241749	0.332365
3	3171	246	900	0.01	9.37	609.05	0.00753	0.060437	0.392802
4	3171	246	1000	0	0	609.05	0.00376	0.030179	0.422981
5	3171	246	1100	0	0	609.05	0.00376	0.030179	0.453159
6	3171	246	1200	0	0	609.05	0	0	0.453159
7	3171	246	1300	0	0	609.05	0	. 0	0.453159
8	3171	246	1400	0	0	609.05	0	0	0.453159
9	3171	246	1500	0	0	609.05	0	0	0.453159
10	3171	246	1600	0.28	262.36	871.41	0.01506	0.120875	0.574034
11	3171	246	1700	0.09	84.33	955.74	0.02259	0.181312	0.755346
12	3171	246	1800	0	0	955.74	0.00376	0.030179	0.785524
13	3171	246	1900	0.02	18.74	974.48	0.00753	0.060437	0.845961
14	3171	246	2000	0	0	974.48	0.00753	0.060437	0.906399
15	3171	246	2100	О	0	974.48	0.00376	0.030179	0.936577
16	3171	246	2200	0	0	974.48	0.00376	0.030179	0.966756
17	3171	246	2300	0	0	974.48	0.00376	0.030179	0.996934
			CUMUL.	1.04			0.12421		
	•	VOLUME IN	CFT	974.48			0.996934		
	Outflow vol.	as percentaç	ge of precip.	volume			0.102304		

......

TOT.HRS	RTE/CNT	TIME	RAIN	FLOW	HEAD1	HEAD2	HEADS	TENSION	TENSION	TENSION	TEMP
	шдош	.,,,,,	10-411	12011	inner	center	outer	inner	center		TEMP. subbase
			[cm]	[cm3]	[cm]	[cm]	[cm]	[cm]	(cm)	[cm]	deg. 'F
1	3129	1600	0	1015.255	1.48529	1.052779	6.605626	8.906727	7.452892	8.329343	50.831
2	3129	1700	0		1.697126			6.623929		8.16104	51.302
3	3129	1800	0			0.610819					51.694
4 5	3129 3129	1900 2000	0	0 1015.255		0.425196 0.263652				8.985262	51.985 52.101
6	3129	2100	ō	0		0.007315					52.163
7	3129	2200	0	0	1.466393			6.411383		8.936834	52.059
8	3129 - 3129	2300 2400	0	0	1.490777			6.429618		8.95208	51.859
10	3129	100	ő	ŏ	1,491386			6.438586			51,655 51,353
11	3129	200	0	0	1.467612	-1.25212	6.059119	6.471171			51.073
12 13	3129 3129	300 400	. 0	0	1.515161		6.013399			9.043556	50,763
14	3129	500	0	0	1.515466			6.534845 6.539628			50.453 50.121
15	3129	600	ō	ō	1.515466	-2.81727			7.422699		49.825
16	3129	700	0	0		0.196901					49.53
17 18	3129 3129	900	0	0	1.515466 1.51577		6.063082	6.617951 8.645453		8.145495	49.271
19	3129	1000	ő		1.515161		6.526682			9.185553	48.975 48.765
20	3129	1100	0	0	1,491082				7.617608		48.557
21	3129	1200	0	0	1.490472		6.216701			9.204685	48.412
22 23	3129 3129	1300 1400	0	0	1.489558	0.241097		6.68581 6.68581	7.607743 7.60296	9,18914 9,16373	48,484 48,637
24	3129	1500	ō	ŏ		0.309372			7.640627		48.893
25	3129	1600	0			0.308762			7.578447		49.201
26 27	3129 3129	1700 1800	0	0		0.448666 0.285598			7.626278	8.025619 8.970315	49.586
28	3129	1900	0	Ö		0.283338				8.935339	49.947 50.236
29	3129	2400	0.1016	0	10.74207	27.95961		6.047273			56.212
30 31	3129	100 200	0.1778	0		28.73258		6.029635			56.184
32	3129 3129	300	0.2794 0.1524	0		28.94716 28.13761				7.87679	56.197 56.148
33	3129	400	0.0762	-		28.51252			6.944992		56.13
34	3129	500	0.2794			28.16413				8.267207	56.073
35 36	3129 3129	600 700	0.1524 0.0762	0	£156753	28.14005 27.74716		6.300475		8.321016 8.39037	55.984 55.927
37	3129	800	0.0508	0	5.800954			6.451142			55.838
38	3129	900	0.0508	0	6.414516			6.515414			55.698
39	3129	1000	0	0	3.067507			6.607189			55. 503
40 41	3129 3129	1100 1200	0		1.865376	24.76652		6.639474 6.718096			55.341 55.182
42	3129	1300	ŏ	ō		22.94778					55.005
43	3129	1400	0	0	1.157935			6.814953			54.9 3 2
44 45	3129 3129	1500 1600	0	0	1.20457 0.733044			6.860989 6.907624			54.927 54.999
46	3129	1700	ō	ŏ	1.298753			6.907923			55.088
47	3129	1800	0	0	1.370076			6.954259			55.162
48 49	3129 3129	1900 2000	0	0	1.441094			6.978174			55.178
50	3129	2100	ō		1.347826	15.6719		7.Q10759 7.067259			55.129 55.018
51	3129	2200	0	0	1.34813	14.78737		7.086391			54,844
52 53	3129 3129	2300 2400	0	0	1.324966			7.133324		8.65015	54.643
54	3129	100	0		1.32527	13.27404		7.184742 7.227491	7.227192 7.24184		54.33 53.993
\$ 5	3129	200	0			12.0399					53.641
56	3129	300	0			11.40958					53.257
57 58	3129 3129	400 500	0							8.886612 8.921887	
59	3129	600	ā							8.962244	
60	3129	700	0							8.997519	
61 62	3129 3129	800 1500	0							9.023228	
63	3129	1600								8.838781 8.763747	
64	3129	1700	0	76198.66	1.251509	4.718609	8.273186	7.582931	7.430173	8.693496	51.519
65	3129	1800								8.638491	
66 67	3129 3129	1900 2000								8.584682 8.564354	
68	3129	2100		46735.81						8.554788	52.329
69	3129	2200	0	45718.29	0.758647	2.57617	7.869326	7.564995	7.379054	8.560169	52.262
70 71	3129 3129	2300 2400		44703.03							52.069
72	3129	100		42670.25 39622.21				7.603259 7.617608			51.859 51.632
73	3129	200	0	37591. 7	1.278026	1.900123	7.431024	7.641225	7.383538	B.62474	51.369
74	3129	300	0	33526.14	1.301801	1.596542	7.408164	7.660656	7.407453	8,649851	51.16

HOURLY DATA (US-31, Hamilton County)

URLY DA	TA (US-31	, Hamilton	County)								
75	3129	400	0	30478.1	1.278331	1.339901	7.315505	7.689653	7,440636	8.66988	50.899
76	3129	500	0		1.254862				7.446016		50.635
77 78	3129	600 700	0		1.231392				7.474117 7.488466		50.461
79	3129 3129	800	0						7.459768		50,201
80	3129	900	ŏ						7.545564		49.833
81	3129	1000	0						7.502815		49.676
82	3129	1100							7.526432		49.521
83 84	3129 3129	1200 1300	0			0.287122			7.540183 7.544966		49.538 49.602
95	3129	1400							7.515969		49.862
86	3129	1500							7.501321		50.248
87	3129	1600	0	21336.26	1.179578	0.260604			7.501619		50.677
88	3129	1700	0		1.485595				7.463056		51,149
89 80	3129 3129	1800 1900	0						7.401474 7.415823		51.624 52.027
91	3129	2000	ŏ		1.251509				7.373075		52.309
92	3129	2100	0	10159.37					7.373075		52.453
93	3129	2200	0						7.364107		52.519
94	3129	2300	0						7.368591		52.54
95 96	3129 3129	2400 100	0	0					7.316276 7.321358		52.491 52.435
97	3129	200	ŏ	ŏ	0.710184				7.359623		52.364
98	3129	300	ō	0					7.330924		52.28
99	3129	400	0	0					7.335707		52.157
100	3129	500	0						7.331223		52.012
101 102	3129 3129	600 700	0	0		0.333756			7.34049	8.445375	51.891 51.751
103	3129	800		ŏ	1.229868				7.368591		51.751
104	3129	900	ŏ	ŏ					7.340789		51,404
105	3129	1000	0	0	1.206398	0.310896	6.000902	7.640627	7.354541	8.484836	51,243
106	3129	1100	0	0	1.205789				7.378456		51.105
107 108	3129	1200 1300		1015.255					7.373374		
108	3129 3129	1400	0		1.157021				7.353943 7.353644		51.188 51.433
110	3129	1500	ō	ŏ					7.339295		51.777
111	3129	1600	0	0	1.178966	0.259994	5.906414	7,548852	7.310895	8.36496	52.214
112	3129	1700	0	0		0.283464				8.315336	52.641
113 114	3129 3129	1800 1900	0	0		0.259994			7.211647 7.197896	8.26631	53.082
115	3129	2000	٥	ŏ					7.197896		53,419 53,685
116	3129	2100	ŏ	ŏ					7.202679		53.793
117	3129	2200	0	0	1.205179	0.356311	5.713781	7.425689	7.15156	8.193667	53.863
118	3129	2300	0	0					7.189525		53.833
119 120	3129 3129	2400 100	0	0		0.404165			7.156343 7.175475		53.743 53.602
121	3129	200	ŏ	ŏ		0.311201				8.24359	53,423
122	3129	300	0	0					7.147375		53.226
123	3129	400	0	0	1.136294				7.180258		53.021
124 125	3129 3129	500	0	0					7.180258		52.767
125	3129	600 700	0	0	1.159459		5.04444		7.217925 7.203277		52.579 52.437
127	3129	800	ŏ	ŏ					7.170393		52.368
128	3129	900	0	0	1.13538	0.333756	4.995367	7.550048	7.231975	8.326995	52.293
129	3129	1000	0	0	1.111301			7.559614		8.33686	52.243
130 131	3129 3129	1100 1400	0.0254	0					7.217327 7.193113		52.274
132	3129	1500	0	ō					7.099245		52.73 52.909
133	3129	1600	0	0					7.174578		53.134
134	3129	1700	0						7.240345		53.385
135 136	3129 3129	1800 1900	0			0.260909			7.18833		53.683
137	3129	2000	Ö						7.132129	8.148826 8.134477	53.845 54.0 5 9
138	3129	2100	0						7.118078		54.238
139	3129	2200	0	0					7.225996		54.396
140	3129	2300	0	0					7.113295		54.537
141 142	3129 3129	2400 100	0.0254	0					7.174279		54.659
143	3129	200							7.164414 7.132129		54.874 55.21
144	3129	300							7.107914		55.352
145	3129	400	0.254	540492.9	12.86256	28.44973	17.50832	7.18833	7.13183	7.963483	55.572
146	3129	500		961108.4					7.052013		55.691
147 148	3129 3129	600 700							7.080113 7.071145		55.838 55.946
149	3129	800							7.03856		55.998
150	3129	900	0	896082.1	3.959047	27.28631	14.78463	7.169795	7.136912	7.97843	56.107
151	3129	1000							6.977277		56.196
152 153	3129 3129	1100 1200		1011917					7.122563 6.976978		56.287
154	3129	1300							6.981761		56,479 56,662
155	3129	1400							7.009862		56.663

HOURLY DATA (US-31, Hamilton County)

156	3129	1500	0	705091.4	2.521915	25.76932	13.805	7.268446	7.131531	7.885758	56.915
157	3129	1600	0	664458.5	2.02692	24.64857	13.52398	7.348562	6.953362	7.860946	57.084
158	3129	1700	0	644130.7	1.579169	23.6665	13.21826	7.192515	7.079515	7.870512	57.243
159	3129	1800	0	627868.4	1.484681	22.89475	13.02959	7.296546	6.925561	7.841814	57.438
160	3129	1800	0	594344.5	1.343558	22.19889	12,73028	7.244231	7.089081	7.846298	57.709
161	3129	2000	0	559798.6	1.48529	21.38477	12.61598	7.291763	6.948878	7.832248	57.891
162	3129	2100	0	543536.4	1.24968	20.52249	12.38341	7.225697	7.03288	7.841814	58.021
163	3129	2200	0	517121.5	1.014374	19,73001	12.10422	7,253798	6.916293	7.841814	58.074
164	3129	2300	0	495794.4	0.96713	18.91375	11.87105	7.188031	6.930344	7.856462	58.199
165	3129	2400	0.127	480554.2	11.07277	28.89413	17.09014	7.211647	6.911809	7.837031	58.277
166	3129	100	0.5842	740636.7	27.46766	28,80025	23.8695	7.169197	6,869659	7.78382	58.277
167	3129	200	0.5334	994632.2	29.23276	28.72923	29,66923	7.131531	6.897759	7.808034	58.37
168	3129	300	0.6604	1030200	29.24068	28.94716	29.35376	7.141396	6.944693	7.837629	58,391
169	3129	400	0.762	1070833	29.50464	28.9752	29,31353	7.240345	6.907325	7.861843	58.333
170	3129	500	0.127	1003785	14.07201	27.50942	16,12575	7.259477	6.926158	7.862142	58.241
171	3129	600	٥	916409.9	6.931457	26.81112	14,70508	7.221512	6.95396	7.905488	58.043
172	3129	700	0	741658.8	4.339742	24.99482	13.98575	7.302226	6.935725	7.954216	57.901
173	3129	800	0	644130.7	3.42138	23,60097	13.47917	7.302525	7.024809	8.013107	57.669
174	3129	900	Ó	601453.6	3.186989			7.307308	6.968907		57.412
175	3129	1000	Ó	570973.2	2.975458	21,44116	12.86073	7.417019	7.011357	8.17035	57.194
176	3129	1100	Ó	548624	2.692908	20.2058	12 55989	7.379054	6.889987		56.761
177	3129	1200	ō	505946.9	2.457907	19.04238			6.946188	8.322511	56.436
178	3129	1300	٥	492750.9	2.127504	17.75826	11.88811	7.450202	7.185041	8.391566	56.081
179	3129	1400	0	459227	1.891589	16.59087	11.63208	7.38862	7.147375	8.451055	55,688
180	3129	1500	0	434833.6	1.797406		11.33033		7.100441	8,505463	55,222
181	3129	1600	ō			14.35059		7.407453		8,560169	54.886
182	3129	1700	0		1.420368					8.610391	54.563
183	3129	1800	0	369807.3	1.278941	12.50777	10.4016	7.641823	7.063073	8,65015	54.164
184	3129	1900	0	338327.6	1.043026	11.64306	10.28395	7.603857	7.204472	8.705753	53,749
185	3129	2000	0	321043.3	0.972007			7.560212	7,12884	8.76016	53.413
186	3129	2100	0	300738.2	0.688848	10.24098	10.0267	7,622989	7,214038	8.785869	53,118
187	3129	2200	0	274323.4	0.618439	9.611868		7.695034	7.256488	8.780787	52.638
188	3129	2300	0	248907.9	0.547726	8.958986	9.938614	7.699817	7.312988	8.845956	52.273
189	3129	2400	٥	230624.2	0.406298	8.304886	9.775546	7.743761	7.332718	8.912321	51.799
190	3129	100	Ó	205226.9	0.264566	7.914462	9.683191	7.830155	7.327636	8.941916	51.399
191	3129	200	0	191004.3	0.123139	7.278319	9.545422	7.805941	7.394001	9,002601	50.976
192	3129	300	0	156460.6	0.477317				7.388919	9.032495	50.472
193	3129	400	ō	141220.4	1.04394	6.203594			7.427482	9.088995	50.092
194	3129	500	0	132076.3	1.02047	5.712866			7.432265	9.109323	49.723
195	3129	600	ō	121916.9		5.270297			7.570675	9.134434	49.307
196	3129	700	0	1107423	0.950062		-		7.489662		48.908
197	3129	800	0	99565.43	_	4.452518	8.384134		7.53241	9.124569	48,577
198	3129	900	ō	90421.32	0.78486	4.288536		7.951824	7.685767	9.124569	48.184
199	3129	1000	ō		0.902513	3.563417	8.240878		7.518061	9.114405	47.805
200	3129	1100	ō	70102.58	0.854659	2.954426	7.90895	8.08276	7.709383	9.154463	47.562
201	3129	1200	ō		0.901294				7,617907	****	47.332
202	3129	1300	ō	54862.4		2.227478		8.150321	7.646008	9.06209	47.243
203	3129	1400	ō	50799.11		1.969618			7.646307		47.36
204	3129	1500	ō		0.970483		7,471258		7.627175	8.99154	47.598
205	3129	1600	ŏ	42670.25			7.353605		7.717754	8.96045	47.945

HOURLY DATA (SR-37, Hamilton County)

TOT.HRS	RTE/CNT	TIME	RAIN	FLOW	HEAD1	HEAD2	HEAD3		TENSION	TENSION	TEMSION	TEMP
			[cm]	[cm3]	inner (cm)	center [cm]	outer [cm]	[cm]	center [cm]	(cm)	subgrade (cm)	deg. "F
1	3129	100	0	1539.917	-1.84967	0.258775	47,60671	-0.04511	5.078882	5.001768	5.230063	84L155
2	3129	200	0	1539.917			47,49698	-0.1143		5.018837	5.24317	\$7.47
3	3129	300	0	1539.917					5.088026			E7,441
4 5	3129 3129	400 500	0	3079.835 3079.835		0.283159		-0.06675 -0.37003			5.238902	87,143 96,767
6	3129	600	ŏ	1539,917					5.127041			86.256
7	3129	700	ŏ	0	-4.89814				5.131308			85.850
8	3129	800	0	3079.835	-4.89814						5.247742	85.43
9	3129	900	0			0.165202			5.126126			85,036
10	3129	1000	0						5.126431	5.057546	5.230063	84.863
11	3129	1100		6929.629		0.162154			5.10479		5.247437	84.833
12	3129	1200	0						5.082845			84.96
13 14	3129 3129	1300 1400	0	16939.09					5.061204 5.009998		5.24256	85.49
15	3129	1500	ŏ	16939.09			46,44847		4.992929			86.14 86.93
16	3129	1600	ŏ						4941722		5.24317	87.914
17	3129	1700	ō						4941722			84.793
18	3129	1800	0	16169.13	-4.91795	0.349301	48.11878	-0.04938	4.903318	4.860646	5.221529	89,469
19	3129	1900	0								5.206422	89.931
20	3129	2000	0								5.186782	90.228
21 22	3129	2100							4.911547		5.18221	90.356
23	3129 3129	2200 2300		13859.26 11549.38	4.96672	0.420929			4.920082			90.395
24	3129	2400			4.99049				4.941418			90.258
25	3129	100		10009.46	-4.9914		47.74997	-0.1146		4.894783		89.GR2
26	3129	200		8469,546	4.9914		47.66158			4.903318		89.297
27	3129	300	0	6929.629	-4.99201	0.23622	47.60062	-0.11339	4.971898			82.574
29	3129	400	0	6159.67	4.99232	0.213055	47.48784	-0.11308	4.989271	4.929226	5.161483	88.432
29	3129	500	0	3849.794	-5.03926	0.21336		-0.15972			5.178552	87,986
30	3129	600	0	3079.835	-5.03956				5.015179			87.607
31	3129	700		2309,876					5.027981			87.102
32 33	3129 3129	800 900	0	2309.876 3079.835		0.120091 0.166421			5.023714			86.689
34	3129	1000	ŏ	4619.752					5.031638		5.169713	85.901
35	3129	1100	ŏ	4619.752		0.163373				4.954524		85.759
36	3129	1200	o	1539.917		0.185623			4.988662			85.833
37	3129	1300	0	769.9587	-4.98744	0.255118	46.42409	-0.12131		4.90728	5.18221	86.245
38	3129	1400	0	0		0.278282			4.90728		5.177942	96.905
39	3129	1500	0	0					4.881982			87.792
40	3129	1600	0						4.852111			88.758
41 42	3129 3129	1700 1800	0	0		0.348691			4.817974			89.706
43	3129	1900	0	0		0.348691			4.813706	4.758538		90.485 91.152
44	3129	2000	0	ŏ		0.348996			4.779569			91,648
45	3129	2100	ō	ō					4.796638		5.10479	91,911
46	3129	2200	0	o		0.326441		-0.11887			5.109362	91.968
47	3129	2300	0	0	-4.98927	0.326746	47.87798	-0.14143	4.817974	4.762805	5.100523	91,899
48	3129	2400	0	0	-4.99019				4.834738			91.662
49	3129	100	0	769.9587		0.304495			4.830166			91,396
50 51	3129 3129	200	0	0	4.99049				4.847539			91.074
52	3129	300 400	0	0	4.9911		47.50613 47.44517		4.851806		5.067417	90.647
53	3129	500	٥	٥	4.9914				4.80918	4.805172		90.252 89.807
54	3129	600	ŏ	ŏ		0.259385			4.881982			89.372
55	3129	700	0	0					4.899355			86.903
56	3129	800	0	0							5.096256	88.476
57	3129	900	0	0	-5.01457	0.25847	46.67402	-0.20848	4.903013	4.839005	5.100218	88.064
58	3129	1000	0								5.104486	
59 60	3129 3129	1100	0								5.100523	
61	3129	1200 1300	0								5.117897 5.113325	
62	3129	1400	ŏ								5.117267	\$8.077
63	3129	1500	ŏ								5.113325	
64	3129	1600	ō								5.126431	
65	3129	1700	0								5.100523	90.963
66	3129	1800	0								5.109058	
67	3129	1900	0								5.109058	92.468
68	3129	2000	0								5.091989	92.88
69 70	3129 3129	2100 2200	0								5.067722	\$3.1
71	3129	2300	0								5.074615	
72	3129	2400	0						4.766767 4.762805		5.052974	93,125 93,57
73	3129	2100	0.6096								5.035906	92.677
74	3129	2200	0.2032								5.044745	92,774

HOURLY DATA (SR-37, Lawrence County)

TOT.HRS	RTE/CNTY	TIME	RAIN	HEAD1	HEAD2	HEAD4	TENSION	TENSION	TENSION	TEMP
			[cm]	inner [cm]	center [cm]	subgrade [cm]	center [cm]	outer [cm]	subgrade [cm]	subbase deg. 'F
			····			[6.11]	[6,11]	[0:11]	[(44)	
1	3747	1300	0.127	0	0	0	1.863852	1.8492216	1.915668	0
2	3747	1400	0.2286	0	0	0	1.8492216	1.8342864	1.915668	0
3	3747	1500	0	0	2.980944	5.83692	1.9860768	1.8934176	1.9488912	. 0
4	3747	1600	0	-0.283769	7.8065376	11.350142	6.8918328	7.0506336	6.367272	80.909
5	3747	1700	0.0762	-0 .6129 53	8.1323688	11.326063	6.9055488	7.0878192	6.4218312	81.407
6	3747	1800	0	-0.824789	8.3884008	11.372393	6.9287136		6.4581024	81.478
7	3747	1900	0	-1.083869	8.5048344	11.395558	6.9424296	7.1484744	6.4806576	81.532
8	3747	2000	0	-1.295705	8.5746336	11.395253	6.9610224	7.1624952	6.5126616	81.578
9	3747	2100	0	-1.554785	8.2716624	11.442192	6.9564504	7.171944	6.5495424	81,599
10	3747	2200	0	-1.766621	8.2253328	11.465966	6.966204	7.1722488	6.5681352	81.532
11	3747	2300	0	-2.167433	8.1558384	11.512906	6.9756528	7.1725536	6.595872	81.46
12	3747	2400	0	-2.450287	8.2030824	11.536985		7.1774304	6.600444	81.296
13	3747	100 200	0	-1.744066 -1.744066	8.0168496 7.99338	11.584229 11.583924	6.9805296 6.9759576	7.1728584 7.1634096	6.6190368 6.6144648	81.151 80.955
14 15	3747 3747	300	0	-1.744066	7.9702152	11.607394	6.9765672	7.1534096	6.6196464	80.81
16	3747	400	0	-1.767535	7.8537816	11.654333	6.9948552	7.1402448	6.6239136	80.544
17	3747	500	0	-1.79131	7.7370432	11.700967	6.9762624	7.1542656	6.6284856	80.354
18	3747	600	0	-1.79131	7.6907136	11.724437	6.9811392	7.1311008	6.6287904	80.12
19	3747	700	0	-1.814779	7.5739752	11.724437	6.9671184	7.1265288	6.6519552	79.853
20	3747	800	0	-1.838249	7.4106024	11.724132	6.9625464	7.11708	6.6101976	79.649
21	3747	900	0	-2.851099	6.6412872	11.794236	6.9527928	7.1118984	6.6193416	79.448
22	3747	1000	0	-1.884883	6.990588	11.746687	6.9384672	7.0975728	6.586728	79.344
23	3747	1100	0	-1.860194	6.9424296	11.791493	6.9195696	7.0878192	6.5864232	79.346
24	3747	1200	0	-1.882445	6.9643752	11.766194	6.9012816	7.0695312	6.573012	79.688
25	3747	1300	0	-1.92786	6.8927472	11.810086	6.864096	7.027164	6.559296	80.301
26	3747	1400	0	-1.950415	7.0082664	11.855196	6.8311776	6.9802248	6.5403984	81.174
27	3747	1500	0	-1.97358	7.1240904	11.831117	6.8080128	6.9290184	6.5315592	82.318
28	3747	1600	0	-1.878787	7.6818744	11.830202	6.7385184	6.9055488	6.5266824	83.68
59	3747	2400	0.0254	7.7196696	33.384744	12.233453	6.3172848	6.3447168	6,3310008	88.148
. 60	3747	100	0.0254	23.326039	32.385	13.004597	6.1990224	6.2624208	6.2715648	87.907
61	3747	200	0	23.208082	32,128968	13.54135	6.1536072	6.27126	6.2349888	87.539
62	3747	300	0	24.622354	32.595312	13.378586	6.144768	6,298692	6.2170056	87.12
63	3747	400	0.0508	24.435511	32.482536	14.289938	6.144768	6,3303912	6.1990224	86.491
64	3747	500	0	23.896015	31.879032	13.566648	6.1490352	6.3575184	6.1853064	86.038
65	3747	600	0	23.473562	31.366968	12.492838	6.158484	6.3898272	6.1718952	85.599
66	3747	700	0	23.096525	30.644592	12.189257	6.1673232	6.4306704	6.1581792	85.145
67 68	3747 3747	800 900	0	22.884994 25.239878	29.689958	12.002414	6.1761624 6.1853064	6.4715136	6.1536072	84.81 84.422
69	3747	1000	0	23.921009	32.650176 31.601664	12.189257 12.305995	6.1990224	6.5218056 6.5724024	6.1444632 6.1359288	84.112
70	3747	1100	Ŏ	24.48306	32.366712	12.165178	6.2307216	6.6138552	6.1313568	83.935
71	3747	1200	0	23.680826	31.781496	14.59291	6.2127384	6.6601848	6.1405008	83.655
72	3747	1300	ō			14.428318				83.668
73	3747	1400	0	23.135539		14.311274				83.812
74	3747	1500	0			14.358518				84.067
75	3747	1600	0	22.574402	28.169616	14.779752	6.2352936	6.7616832	6.153912	84.115
76	3747	1700	0	22.38817	27.379879	15.107412	6.2349888	6.7845432	6.1267848	84.137
77	3747	1800	0	22.154998	26.450239	15.038527	6.2352936	6.793992	6.1359288	84.059
78	3747	1900	0	21.897746	25.403251	14.82913	6.2441328	6.8171568	6.1267848	84.009
79	3747	2000	0	21.662746	24.424843	14.361871	6.2490096	6.8406264	6.1270896	83.912
80	3747	2100	0	21.474379	23.608894	13.637971	6.2487048	6.8543424	6.1313568	83.711
81	3747	2200	0	21.192744	22.631095	12.167006	6.2855856	6.868668	6.1228224	83.488
82		2300	0		21.747785	11.396777		6.9153024	6.1136784	83.183
83		2400	0	20.72579		10.532669		6.9247512		82.885
84		100	0		20.117105	9.73836		6.9530976	6.1231272	82.508
85		200	0	20.750479	19.861682	9.294876	6.2950344	6.986016	6.1054488	82.116
86	3747	300	0	20.045172	18.603773	8.6173056	6.3087504	7.0235064	6.11886	81.649

HOURLY DATA (US-41, Sullivan County)

TOT.HRS	RTE/CNT	TIME	RAIN	FLOW	HEAD2				TENSION	TEMP.
			(cm)	(cm3)	(cm)	outer (cm)	center [cm]	[cm]	[cm]	deg. 'F
1	4177	1400	0	0	0.893064	4.11541	6.537237	8.100697	5,589295	93.183
2	4177	1500	0	0		4.112362			5.572256	101.33
3	4177 4177	1600 1700	0	0	0.84521		6.425433 6.385375		5.572555 5.572854	105.01 104.15
5	4177	1800	ŏ	ŏ		4.085844		7,87679	5.60783	97.045
6	4177	1900	ō	o	0.961339	4.018483	6.344121	7.856761	5.62457	90.095
7	4177	2000	0	0		3.973678			5.628457	84.049
8	4177	2100 2200	0	924.4047		3.837432		7,86543	5.623973 5.619488	80.44 86.572
10	4177	2300	0	٥			6,388663		5.628457	39,991
11	4177	2400	ō	ŏ		3.376574		7.922528	5.641311	39.402
12	4177	100	0	0		3.122066		7.946144	5,632343	38.991
13	4177	200	0	0	-	2.959913			5.649383	38.595
14 15	4177 4177	300 400	0	0		2.657246		8.051073	5.671205 5.679576	38.227 37.884
15	4177	500	0	ŏ		1,515466		8.09412		37.487
17	4177	600	ō	ŏ		0.839724			5.723221	37.224
18	4177	700	0	0	0.919277	0.140513	6,635887	8.190678	5.749528	36,927
19	4177	800	0	0	0.919277			8.219675	5.684359	36.615
20	4177	900 1000	0	0		1,562405 1,492606	6.662792		5.732189 5.736374	36,301 36,119
21 22	4177 4177	1100	0	0			6,658308			48.937
23	4177	1200	ŏ	ŏ		1.535582			5.715448	75.531
24	4177	1300	0	0	0.824179	1.463345	6.6323	8.260331	5.676586	76.231
25	4177	1400	0	0		1.414577			5.658949	82,383
26	4177	1500	0	0		1,436218			5.62457 5.615901	85.116 85.413
27 28	4177 4177	1600 1700	0	0		1.435913			5.615901	84.368
29	4177	1800	ŏ	ŏ		1.505712			5.611716	80.836
30	4177	1900	0	0		1.506322	6.406898	7.966472	5.632941	77.612
31	4177	2000	0	0	0.985723		6.397332		5.64161	74.932
32	4177	1900	0.0254	0		1,507846	6.442771 6.415867		5.598264 5.58511	65.296 64.725
33 34	4177 4177	2000 2100	0	0	0.939698	1,555394			5.588996	63,915
35	4177	2200	ŏ	ō	0.916534	1.53223	6.379396		5.59378	63.278
36	4177	2300	0	0	0.916534	1.532534		7.898912		62,885
37	4177	2400	0	0	0.916534	1.4859			5.597666	62.534
38 39	4177 4177	100 200	0	0	0.939698	1.50937	6.379097 6.384179	7.917745 7.92761		62,074 61,705
40	4177	300	ŏ	ŏ	0.916534	1.50937		7.927909		61.435
41	4177	400	ō	0	0.916838				5.624271	61.1
42	4177	500	0	0	0.893674	1.48651		7,941959		60.645
1	4177	600	0	0		1.533754			5.628457	60.481
2	4177 4177	700 800	0	0	0.940308	1,510284		7.966472 7.976038		60,084 59,991
4	4177	900	ō	ŏ	0.893978	1.510589		7.985903	5.628756	59.753
5	4177	1000	0	0	0.917143	1.510894	6,442173	7.999356	5.628457	59.525
6	4177	1100	0	0	0.893978	1.510894	6.447255		5.628457	59.468
7 8	4177 4177	300 400	0.2794	45259.49 306643.4	5.949391 5.184038	12.5669 10.98347	6.447255	8.00952 8.014004		59.575 59.702
9	4177	500	0.1016	311276.8	4.511345	10.37783			5.632642	59.737
10	4177	600	0.0254	385181.1					5.632941	59.755
11	4177	700		413801.7			6.455925			59.771
12	4177	800							5.645795	59.701 59.37
13 14	4177 4177	900 1000		55418.86 174569.4					5.637425 5.641909	
15		1100							5.59378	
16		1200							5.567772	
17		1300							5.567772	
18		1400							5.576441	
19 20		1500 1600	0.0254						5.571957 5.567473	
21		1700							5.558803	
22		1800							5.558803	
23		1900	0.127	287422.1	4.672279	10.49152	6.465192	7.746751	5.550433	54.203
24		2000							5.541764	
25 26		2100 2200	0.127						5.528909 5.533393	
27		2300							5.533393	
28		100							5.52024	
29		200							5.524425	
30		300							5.52024	
31 32	4177 4177	400 500		35097.85 26785.02					5.52024 5.516055	
33		600							5.524425	

н	OURLY DA	TA (US-41	, Sullivan C	ounty)							
	34	4177	700	o	12930.31	2.608783	9.561271	6.460708	7 690251	5.52024	52.632
	35	4177	800	0			9.491777		7.050251	3.52.02.4	32032
	36	4177	900	0	5541.886	2,37683	9.491167				
	37	4177	1000	0	7388,424	2.121713	9.374734				
	38	4177	1100	0		2.005889					
	39	4177	1200	0	6466.291	1.820266	9.211666				
	40	4177	1300	0	6466.291	1.773631	9.211056				
	41	4177	1400	0	4617.481	1.680667	9.093708				
	42	4177	1500	0	5541.886	1.37922	8.55787				
	43	4177	1600	0	6466.291	1.680667	8.93003				
	44	4177	1700	0	5541.886	1.610868	8.859622				
	45	4177	1800	0	7388,424	1,40208	8.836152				
	46	4177	1900	0	7388.424	1.147267					
	47	4177	2000	0	5541.886	0.776326	8.464601				
	48	4177	2100	0	6466.291	0.776326	8.674608				
	49	4177	2200			0.452018					
	50	4177	2300	0	5541.886	0.011582	8.560003				

HOURLY DATA (US-30, Laporte County)

01.1165	RTE/CNTY	TIME	RAIN	FLOW	HEAD1 inner	HEAD2 center	HEAD3 outer	HEAD4 subgrade	TENSION	TENSION subgrade	TEI
			(cm)	[cm3]	[cm]	(cm)	[cm]	[cm]	[cm]	[cm]	deg
1	3046	2200	0.1016	0	2.351227	1.184758	2.693822	1.442923	5.192601	5.398571	71.2
2	3046	2300	0.254	0	4.970983	8.238744	4.559808	1,46365	5.196786	5.377645	71.2
3	3046	2400	0.2032	0	8.228076	10.14374	8.123834	1.416101	5.17586	5.368976	71.1
4	3046	100	0.1778	10606.91	11.15629	9.040673	3.381756	1.414272	5.183932	5.356122	70.9
5	3046	200	0.0254	22097.13	8.749284	1.938833	1.811782	1.390498	5.196487	5.351936	70.4
8	3046	300	0	13257.37	6.719316	0.598627	0.313639	1.319784	5.209043	5.343566	70.6
7	3046	400	0	4419.881	5.0673	0,410566	1.140257	1.31887	5.209043	5.343566	70
8	3046	500	0	2650,566	3,793236	0.269748	1,141171	1,340815	5.217114	5.339082	70.
9	3046	600	0	1767.044	2.447544	0.505054	1.283208	1.34051	5.229969	5.339082	70.
10	3046	700	0	883.522	1.432255	0.034747	1.118006	1.246327	5.238339	5.334897	69.
11	3046	800	0	883.522	-0.05517	0.011278	1.18872	1.316431	5.23804	5.326526	69.
12	3046	900	0	883.522	1.573987	-0.31821	1.18872	1.269492	5.250894 5.25508	5.322042	69.
13	3046	1000	0	0 883.522	1.550213	-0.41239 -0.55352	1.118006		5.259265	5.318156	69
14	3046	1100	0	0	1.502664	-0.53352 -0.62454	1.092708	1,294181	5.251193	5.313971 5.309786	
15 16	3046 3046	1200 1300		0	1.478585	-0.64831	1.067105	1,370076	5.251193	5.297529	68.
17	3046	1400	Ö	0	1.477975	0.126797	1.088441	1.256995	5.251492	5.293344	68.
18	3046	1500	ŏ	ŏ	1.477366	0.783336	1.132942	1.309116	5.242823	5.28886	68.
19	3046	1600	ŏ	ŏ	1.524305	0.665378	1.107948	1.28839	5.238937	5.284974	64.
20	3046	1700	ŏ	ŏ	1.54747	0.429768	1.412748	1.267968	5.230566	5.310384	69.
21	3046	1800	ō	o	1,524	-0.06309	1.059485	1.360932	5.235051	5.314569	69.
22	3046	1900	ŏ	ō	1.547774	-0.22708	1.061009	1.358494	5.251492	5.322939	69.
23	3046	2000	ō	ō	1.548384	-0.41422	1.133551	1.143914	5.251492	5.32264	69.
24	3046	2100	Ö	ō	1.519707	-0.55474	1.136294	1.466698	5.272119	5.33131	69.
25	3046	2200	0	0	1.620317	-0.67178	1.161593	1.46365	5.272119	5.327124	70.
26	3046	2300	0	0	1,620622	-0.76566	1.139342	1.274064	5.276304	5.327124	70.
27	3046	2400	0.3302	0	8,796528	12.3572	8.976665	1.55448	5.26345	5.297529	70.
28	3046	100	0.1778	12373.85	8.985809	8.547811	2.20218	1.319479	5.246709	5.284675	69.
29	.3046	200	0.254	20330.09	13,68491	14.73525	4.422343	1.458773	5.267934	5.28049	69.
30	3046	300	0.6858	43310.75	28.58414	30.7787	6.477305	1.575511	5.28049	5.276005	69.
31	3046	400	1.1938	57453.91	30.1432	30.7086	8.956548	2.27899	5.284675	5.26345	68.
32	3046	500	0.1778	68060.72	28,3022	24.80615	3.172054	1.739189	5.292447	5.263151	68.
33	3046	600	0.0762	54801.07	24.80767	18.87779	1.330452	2.138172	5.309487	5.263151	68.
34	3046	700	0.0254	42427.22	20,74682	14.62004	0.055474	1.809598	5.322341	5.259265	6
35	3046	800	0	26517.02	15.74109	9,421063	1.070762	1,269492	5.347751	5.26345	68
36	3046	900	0	15026.69	12.05758	5.116068	1.118006	1.292962	5,360008	5.258966	68.
37	3046	1000	0	14143.17	9.389364	2.246071	1.070762	1.434064	5.377047	5.258966	66.
38	3046	1.100	0.0254	9723.284	7.429195	2.081174	1.070458	1.317041	5.385418	5.25508	67.
39	3046	1200	0.3302	12373.85	27.68468	29.8832	5.03621	1.787347	5.402457	5.25508	67.
40	3046	1300	0	29167.58	19.46758	20.02597	1.069543	1.577035	5.415013	5.251193	67.
41	3046	1400	0	18560,78	14,50939	12.73424	1.258214	1.671218	5.427867	5.251193	67.
42	3046	1500	0.0254	14143.17	11.15751	8.171688	1.093013	1.413053	5.440722	5.246709	67.
43	3046	1600	0.0762	12373.85	16.44487	11.08771	2.485644	1.577645	5.461947	5.251193	67.
44	3046	1700	0	15026.69	12.76198	7.418527	1.068934	1.57795	5.465833	5.251193	67.
45 46	3046 3046	1800 1900	0	9723.284 3536.359	9.479585 6.552286	3.490265 1.984858	1.068324	1.438656	5.487656	5.247008	67.
47	3046	2000	0.0762	3536.359	4.050792	1.514551	1.06741	1.439875	5.50888	5.247008	67.
48	3046	2100	0.762	7070.447	30.0292	30.68726	1.043635	1,440485	5.508581 5.546846	5.246709 5.251193	67.
49	3046	2200	0.9652	32703.94	29,6988	30.24165	5,620817	1.159764 2.61366	5.529806	5.242524	67.
50	3046	2300	0.762	53917.55	30.03164	30.62021	5.620817	2.94132	5.547145	5.242524	66. 66.
51	3046	2400	1.27	72480.6	29.96154	30.50438	6.4008	3.808781	5.547145	5.243122	66
52	3046	100	0.2794	83970.93	29.65856	29.37937	3.994709	3.596945	5.542661	5.242823	66
53	3046	200	0.2032	80434.57	29.84937	26.44201	5.316931	2.892552	5.547145	5.247008	6
54	3046	300	0.0254	71594.81	27.20706	18.42394	1.72974	211775	5.551031	5.238339	66.
55	3046	400	0	54801.07	21,66092	12.47485	0.99822	1.812646	5.551031	5.242524	66.
56	3046	500	0	38890.87	17.39219	7.655966	0.999439	1.481938	5.563885	5.246709	66
57	3046	600	0	20330.09	13,04971	3.186989	1.000049	1.691945	5.576441	5.250894	66
58	3046	700	0	13257.37	8.683142	2.01168	0.977494	1.689811	5.588996	5.25508	66
59	3046	800	0	7953.969	4.74025	1.636166	0.979018	1.358494	5.622777	5.254781	66
60	3046	900	0	3536.359	2.37805	1.236269	0.979627	1.146048	5.631147	5.262852	66.
61	3046	1000	0	2650.566	-0.36241	0.977494	0.979932	1.02809	5.648187	5.258667	66
62	3046	1100	0	2650.566	1.433474	0.860146	0.957072	1.049731	5.65 6856	5.262852	65.
63	3046	1200	0	1767.044	1.433474	0.64831	0.981151	1.190244	5.673896	5.258667	65.
64	3046	1300	0	1767.044	1.456944	0.506882	1.004011	1,238707	5.665226	5.254482	65.
65											

HOURLY DATA (US-31, St.Joseph County)

TOT.HRS	RTE/CNTY	TIME	RAIN	FLOW	HEAD1 inner	HEAD2 center	HEAD3 outer	HEAD4 aubgrade	TENSION center	TENSION outer	TENSION subgrade	TEMP
			(cm)	(cm3)	. [cm]	[cm]	[cm]	(cm)	[cm]	[cm]	[cm]	deg. 1
1	3171	100	0	0	-0.611734	0.9183624	0.7522464	3.3881568	3.3881568	5.7817512	5.3391816	80.59
2	3171	200	0	0	-0.635203	0.9424416	0.7531608	3.0117288	3.0117288	5.7817512	5.3434488	80.55
3	3171	300	0	0	-0.611429	0.8958072	0.7537704	2.65938	2.65938	5.7991248	5.3565552	80,45
4	3171	400	0	0	-0.611429	0.9192768	0.7540752	2.0961096	2.0961096	5.7948576	5.3519832	80.31
5	3171	500	0	0	-0.635203	0.9427464	0.7540752	1.5099792	1.5099792	5.8164984	5.3565552	80,17
6	3171	600	0	0	-0.587959	0.9192768	0.7306056	0.618744	0.618744	5.8122312	5.3650896	79.98
7	3171	700	0	0	-0.587959	0.9192768	0.7537704	-0.06035	-0.06035	5.8293	5.3733192	79.80
8	3171	800	0	0	-0.611429	0.9427464	0.7303008	-0.741274	-0.741274	5.855208	5.3943504	79.64
9	3171	900	0	0	-0.611429	0.9195816	0.707136	-1.586178	-1.586179	5.8463688	5.385816	79.50
10	3171	1000	0.1524	0	1,2057888	2.6831544	6.4187832	2.5402032	2.5402032	5.8207656	5.3605176	77.58
11	3171	1100	0.1778	3420.5246	-0.705612	0.8726424	0.0469392	19.426428	19.426428	5.876544	5.36448	73.97
12	3171	1200	0	853,99553	-0.587654	0.943356	0.7552944	17.597628	17.597628	5.8896504	5.3943504	76.28
13	3171	1300	0.4318	6841.0493	6.8448936	9.5240856	9.2022168	31.738824	31.738824	5.9670696	5.3562504	68,49
14	3171	1400	0.8382	17956,619	5.7122568	8,6541864	8.6355936	35,210496	35.210496	6,0935616	5.3733192	69.52
15	3171	1500	0.2032	26507.93	0.9695688	3.6466272	5.6153304	29.768597	29.768597	6.2069472	5.4748176	68.99
16	3171	1600	0.1524	17956,619	1.0162032	3.857244	5.9204352	29.718305	29.718305	6.2246256	5.5513224	69.59
17	3171	1700	0.127	17956,619	-1,53162	0.5663184	4.2446448	28.427172	28.427172	6.2288928	5.6150256	70.52
18	3171	1800	0	11115.569	-0.635203	0.8955024	-2.478634	25,637033	25.637033	6.1850016	5.6704992	72.52
19	3171	1900	ŏ	3420.5246	-0.6S8978	0.8951976	0.6821424	24.182832	24.182832	6.1673232	5.7174384	73.28
20	3171	2000	ŏ	2564.2578	-0.658978	0.9186672	0.6348984	23.268432	23.268432	6.158484	5.756148	73.7
21	3171	2100	o	853,99553	-0.658673	0.8955024	0.6586728	22,424746	22.424746	6.158484	5.7860184	74.03
22	3171	2200	0	853,99553	-0.587959	0.9427464	0.7068312	21.887383	21.887383	6.1587888	5.8076592	74.19
23	3171	2300	o	853,99553	-0.634898	0.943356	0.6605016	21.325942	21,325942	6.1542168	5.824728	74.
24	3171	2400	0	0	-0.587654	0.9668256	0.6839712	20.974202	20.974202	6.1627512	5.8463688	74.32
25	3171	100	0	0	-0.587654	0.8964168	0.6608064	20,48256	20,48256	6.158484	5.8591704	74.38
26	3171	200	o	ŏ	-0.587654	0.9436608	0.7083552	20.107656	20.107656	6.1627512	5.8677048	74.3
27	3171	300	ō	853,99553	-0.634594	0.920496	0.6623304	19.781215	19.781215	6.1715904	5.8808112	74.30
28	3171	400	o	0	-0.611124	0.8973312	0.6388608	19.406006	19.406006	6.1715904	5.8936128	74.28
29	3171	500	ō	ō	-0.611124	0.9208008	0.6623304	19.007023	19.007023	6.1715904	5.9021472	74.17
30	3171	600	ŏ	853.99553	-0.634594	0.8973312	0.6864096	18.655894	18.655894	6.1801248	5.9152536	74.12
31	3171	700	ŏ	0	-0.610819	0.9211056	0.710184	18.327624	18.327624	6.1801248	5.923788	74.08
32	3171	800	ŏ	ŏ	-0.634594	0.897636	0.7104888	18.070068	18.070068	6.184392	5.9277504	73.9
33	3171	900	0	0	-0.610819	0.9211056	0.66294		17.717719		5.9323224	73.83
34	3171	1000	0	0				17.717719		6.1801248		
35	3171	1100	0	0	-0.634898 -0.658978		0.5910072	17.45803	17.45803	6.188964	5.9368944	73.80
36	3171	1200	0	0		0.8951976	0.6821424	17.196206	17.196206	6.1761624	5.9326272	73.71
37	3171	1300	0	0	-0.635813 -0.659587	0.8939784	0.679704	16.935298	16.935298	6.1761624	5.92836	73.67
38	3171	1400	0	0		0.8924544	0.6528816	16.838066	16.838066	6.1725048	5.9332368	73.71
39			-	_	-0.73091	0.9147048	0.6739128	16.788384	16.788384	6.1770768	5.9292744	73.83
-	3171	1500	0	0	-0.731215	0.8668512	0.6717792	16.669207	16.669207	6.1728096	5.9292744	74.10
40	3171	1600	0	0	-0.707746	0.8665464	0.6711696	16.434511	16.434511	6.1642752	5.925312	74
41	3171	1700	0	0	-0.7 07746	0.9131808	0.6946392	16.411042	16.411042	6.1688472	5.9210448	74.7

HOURLY DATA (SR-9, Noble County)

TOT.	HRS	RTE/CNTY	TIME	RAIN	FLOW	HEAD2 center	HEAD3 outer	TENSION center		TENSION subgrade	TEMP
******				[cm]	[cm3]	[cm]	[cm]	[cm]	[cm]	[cm]	deg. 'F
	1	957	100	0	0	15.28938	7.155485	6.220054	4.738421	4.843272	72.093
	2	957	200	1.4986	0	28.05806	15.17386	6.251448	4.746955	4.843272	71.692
	3	957	300	2.2352	76609.76	26.08417	13.28501	6.269431	4.751222	4.843272	71.223
	4	957	400	0.5334	13039.33	27.69078	14.7825	6.305093	4.767986	4.847539	70.75
	5	957	500	0.6604	13039.33	27.59903	14.3445	6.341059	4.78475	4.843272	70.234
	6	957	600	0.2032	15485.48	22.47748	12.93906	6.372454	4.79298	4.851806	69.772
	7	957	700	0.0254	91279.86	23.00508	13.12316	6.40842	4.805782	4.864608	69.332
	8	957	800	0.0254	171151.2	22,38573	12.68578	6.440119	4.814011	4.864608	68,979
	9	957	900	0	230646.9	21.53534	12.22461	6.46237	4.818278	4.877105	68.678
	10	957	1000	0	290131.4	21.30461	11.80948	6.480353	4.826508	4.885334	68.456
	11	957	1100	0	342302.3	21.25492	11.62355	6.498336	4.822546	4.889602	68.255
	12	957	1200	0	369194.1	21.02175	11.48395	6.498641	4.818278	4.893869	68.287
	13	957	1300	0	379800.9	20.81083	11.29802	6.471514	4.814011	4.902403	68,485
	14	957	1400	0	383866.4	20.68921	11.22609	6.444691	4.793285	4.898441	68.897
	15	957	1500	0	381413.5	20.6374	11.15477	6.422441	4.772558	4.898441	69.527
	16	957	1600	0	376530.3	20.54413	11.06211	6.381902	4.743298	4.889906	70.165
	17	957	1700	0	371647	20.51944	10.87709	6.364224	4.718304	4.894478	70.81
	18	957	1800	0	362675.5	20.33534	10.69299	6.341669	4.714037	4.898441	71.364
	19	957	1900	0	354521.7	20.06102	10.5092	6.328258	4.705807	4.894478	71.654
	20	957	2000	0	340667	19.83242	10.41745	6.332525	4.70977	4.894174	71.674
	21	957	2100	0	329265.2	19.53524	10.14161	6.346241	4.717999	4.894174	71,581
	22	957	2200	0	317840.8	19.28348	9.888626	6.37733	4.738726	4.898136	71.371
	23	957	2300	0	305621.4	19.00916	9.681972	6.386474	4.742993	4.889906	71.234
	24	957	2400	0	294219.6	18.80281	9.405823	6.395314	4.742993	4.885639	71.029
	25	957	160	0	284430.5	18.71381	9.176614	6.40019	4.73903	4.881677	70.809
	26	957	200	0.4826	272211.1	23.14011	13.64132	6.422136	4.751527	4.889906	70.661
	27	957	300	0.4064	277094.3	27.54935	15.30035	6.453835	4.764024	4.898441	70.426
	28	957	400	0.1778	291766.7	21.49693	12.42517	6.480658	4.776216	4.898136	70.088
	29	957	500	0.1524	286065.8	22.69571	13.74008	6.50748	4.789018	4.893869	69.635

HOURLY DATA (SR-43, Tippecanoe County)

TOT,HRS	RTE/CNTY	ПМЕ	RAIN [cm]	HEAD1 Inner [cm]	HEAD2 center [cm]	HEAD3 outer [cm]	HEAD4 subgrade [cm]	TENSION center [cm]	TENSION outer [cm]	TENSION subgrade [cm]	TEMP. subbase deg. 'F
							[]				
1	4379	100	0	-0.267	0.030785	6.804965	-0.27584	5.500116	5.831129	4.835042	87.897
2	4379	200	0	-0.28986	-0.01524	6.78241	-0.27584	5.517185	5.853074	4.830775	87,508
3	4379	300	0	-0.38191	-0.01494	6.75955	-0.32248	5.543093	5.870448	4.860341	87.062
4	4379	400	0	-0.42763	0.007925	6.736994	-0.34564	5.526024	5.870448	4.851806	86.635
5	4379	500	0	-0.51907	-0.01494	6.714439	-0.32278	5.534558	5.87502	4.843577	86.209
6	4379	600	0	-0.5651	-0.01494	6.783629	-0.29992	5.569306	5.914339	4.872838	85.781
7	4379	700	0	-0.58735	-0.06066	6.715354	-0.3002 3	5.564734	5.909767	4.864303	85.191
8	4379	800	0	-0.6794	-0.06066	6.715963	-0.30053	5.608015	5.971337	4.906366	84.735
9	4379	900	0	-0.6797	-0.01494	6.738214	-0.30023	5.616854	5.976214	4.906366	84.326
10	4379	1000	0	-0.70378	-0.01494	6.759854	-0.27615	5.616854	5.980786	4.90667	83.962
11	4379	1100	0	-0.68153	0.053645	6.87385	-0.20635	5.612892	5.963412	4.889906	83.968
12	4379	1200	0	-0.70653	0.0762	6.802222	-0.27432	5.582717	5.924093	4.873447	84.354
13	4379	1300	0	-0.63856 0.53517	0.12192	6.777533	-0.22708	5.565648	5.889041	4.869485	85.029
14 28	4379 4379	1400 300	0 1.3462	-0.52517	0.213055	6.821424	-0.29535	5.548884	5.863133	4.865522	85.897
				1.183843	4.619854	13.61999	16.91792	5.543093	5.826557	4.902403	86.589
29 30	4379 4379	400 500	0.5842 0.1524	1,207313 1,184758	7.420051 7.879385	14.42679	16.91975	5.582107	5.914644	4.957267	85.744
						14.22014	17.63817	5.616854	5.984748	5.003597	84.739
31 32	4379 4379	600 700	0	1.116178	5.975299	13.66876	15.64904	5.660441	6.01157	5.024933	84.298
33	4379	800	0	1.024128	3.978859	13.16279	14.4463	5.725973	6.095695	5.079797	83.971
34	4379	900	0 0.0508	0.817778 1.139952	2.716987 2.716987	12.58885 12.33495	13.47582 13.66053	5.716829 5.734507	6.14873	5.088331	83.349
35	4379	1000	0.0308	1.000658	1.338986	11.98748	12.50046		6.184392 6.27827	5.130698	82.951
36	4379	1100	0.9652	1.344778	8.106766	14.74683	22.60915	5.765292 5.787238	6.305398	5.152339 5.190744	82.474 81.949
37	4379	1200	0.5052	1.229258	5.743042	13.0427	15.54998	5.787238	6.291986	5.216347	82
38	4379	1300	0.1778	1.251814	7.096354	12.83482	17.53911	5.782666	6.336792	5.24195	81.994
39	4379	1400	0.2032	1,344168	7.669987	13.20363	21.01047	5.800344	6.412992	5.259019	81.812
40	4379	1500	0.9144	1.275283	7.647432	14.60784	18.74368	5.82229	6.548323	5.31053	80.898
41	4379	1600	0.5144	1.183234	6.592214	13.29599	16.10594	5.831129	6.503213	5.336134	81.286
42	4379	1700	0.0254	1.321308	7.441082	12.69766	16.03644	5.844235	6.489497	5.348935	81.14
43	4379	1800	0.0762	1.275283	7.142988	12.83604	17.00875	5.857342	6.548323	5.374843	80,763
44	4379	1900	0	1.229563	6.041746	12.42182	15.2272	5.883859	6.543751	5.387645	80.548
45	4379	2000	0.127	1.368552	7.442911	13.02228	19.60382	5.905805	6.647993	5.41782	80.202
46	4379	2100	0.0508	1.276807	6.800698	12.70041	16.36471	5.92775	6.675425	5.456834	79.715
47	4379	2200	0	1.207922	6.181344	12.28649	15.25433	5.954268	6.675425	5.473903	79.507
48	4379	2300	0	1.185062	5.309616	11.96431	14.76878	5.9\$8535	6.688836	5.491277	79.255
49	4379	2400	0	1.070153	4.621378	11.78082	14.46855	5.976214	6.69798	5.50865	78.962
50	4379	10 0	0	0.932383	4.185818	11.66683	14.21557	6.011266	6.766255	5.534254	78.685
51	4379	200	0	0.840638	4.140403	11.52906	13.9385	6.024677	6.798259	5.564734	78.32
52	4379	30 0	0	0.748589	3.681374	11.39129	13.59164	6.02041	6.775399	5.569001	78.067
53	4379	400	0	0.748894	2.671267	11.25352	13.31458	6.033516	6.752539	5.595214	77.863
54	4379	500	0	0.656844	1.730045	11.2078	12.80556	6.05089	6.784238	5.612282	77.533
55	4379	600	0	0.656844	0.673913	11.09259	12.22675	6.077712	6.807403	5.629961	77.308
56	4379	700	0	0.51877	-0.2212 8	10.95482	11.48608	6.077712	6.816242	5.651297	77.131
57	4379	800	0	0.51877	-1.00218	10.90879	10.76828	6.081979	6.83453	5.655564	76.904
58	4379	900	0	0.472745	-1.3463	10.8396	10.14283	6.086856	6.848551	5.673547	76.724
59	4379	1000	0	0.448666	-1.73645	10.74542	9.793529	6.086856	6.867144	5.686654	76.546
60	4379	1100	0	0.423977	-1.85044	10.62655	9.511894	6.060338	6.83514	5.677814	76.714
61	4379	1200	0	0.399898	-1.80411	10.55553	9.301582	6.042965	6.794602	5.678424	77.132
62	4379	1300	0	0.512674	-1.75748	10.5281	9.20435	5.999074	6.708343	5.661355	77.865
63	4379	1400	0	0.511454	-2.21529	10.52566	9.086698	5.950915	6.640373	5.635447	78.882
64	4379	1500	0	0.55687	-2.37531	10.47841	9.108338	5.889041	6.567526	5.613502	80.126
65	4379	1600	0	0.602285	-2.12324	10.50066	8.96874	5.840578	6.490411	5.587289	81.313
66	4379	1700	0	0.55565	-2.48961	10.33851	8.782812	5.788152	6.450178	5.569915	82.301
67	4379	1800	0	0.533095	-1.22987	10.27024	8.667902	5.7531	6.418478	5.544007	83.011
68	4379	1900	0	0.48768	0.213665	10.27146	8.414918	5.7531	6.414211	5.509565	83. 63 6
69	4379	2000	0	0.442874	0.0762	10. 089 18	8.162544	5.713781	6.409639	5.513527	83.932

HOURLY DATA (SR-63, Vermillion County)

тот.н	IRS	RTE/CNTY	TIME	RAIN	FLOW	HEAD1 inner	HEAD2 center	HEAD4 subgrade	TENSION center	TENSION outer		TEMP
				(cm)	[cm3]	[cm]	[cm]	[cm]	(cm)	(cm)	[cm]	deg. 'F
	1	6383	1600	0	699.5495	-1,43226	-1.27 65	-0.54864	6.770522	6.53095	8.009534	77,07
	2	6383	1700	0	0	-1.31491	-1.25303	-0.38496	6.780276	6.563563	8.318602	76.936
	3	6383	1800	0	0	-1.26858	-1.182 62	-0.29078	6.789725	6.586728	8.601151	76,998
	4	6383	1900	0	0	-1.24541	-1.15885	-0.24354	6.817462	6.605016	8.865632	77,015
	5	6383	2000	0	0	-1.17561	-1.15824	-0.17252	6.822338	6.619037	9.129574	77,057
	6	6383	2100	0	0	-1.17622	-1.111	-0.07864	6.83575	6.650736	9.379001	77,072
	7	6383	2200	0	0	-1.15367	-1.06375	-0.00732	6.849466	6.655003	9.651797	76.982
	8	6383	2300	0	0	-1.15397	-1.063 45	0.039929	6.85861	6.669024	9.953854	76.865
	9	6383	2400	0	0	-1.13111	-1.062 84	0.133807	6.87324	6.669329	10.28121	76.633
	10	6383	100	0	699.5495	-1.08417	-1.086	0.064313	6.882384	6.68335	10.63325	76.537
	11	6383	200	0.1778	0	28.92034	30.99206	21.83648	6.444691	6.453835	7.196328	75.064
	12	6383	300	0.2794	114726.1	30.00268	33.50971	43.14139	6.458712	6.495288	6.716268	75.53
	13	6383	400	0.0762	361676.2	28.33634	28.06141	29.27177	6.477	6.541008	6.845808	75.57
	14	6383	500	0.0254	144107.2	28.1495	19.87845	21.11898	6.513576	6.587033	6.952793	75.325
	15	6383	600	0	108430.2	27.53898	14.12016	17,26509	6.541618	6.633362	7.042099	74.952
	16	6383	700	0	88143.24	26.76418	11.09045	14.88369	6.573926	6.670548	7.103059	74.672
	17	6383	800	0	56663.51	26.03632	9.66917	13.48313	6.60593	6.69798	7.159447	74.348
	18	6383	900	0	34277.93	25.42367	8.52617	12,4081		. 6.725717	7.182917	73.996
	19	6383	1000	0	22385.58	24.85796	6.217006	11.68359	6.651955	6.753454	7.206691	73.668
	20	6383	1100	0	16789.19	24.51933	4.440631	10.90574	6.665062	6.771132	7.210349	73,34
	21	6383	1200	0	2798.198	24.13345	3.085186	10.80607	6.673596	6.779971	7.18627	73.205
	22	6383	1300	0	5596.396	23.70064	1.986991	10.12241	6.674206	6.789725	7.205472	73.356
	23	6383	1400	0	4197.297	23,3678	1.240536	9.863328	6.674206	6.785153	7.205777	73.706
	24	6383	1500	0	5596.396	23.1264	0.819607	9.205874	6.655613	6.775704	7.219493	74.345
	25	6383	1600	0	5596.396	2 2.74936	0.21397	9.041892	6.63702	6.752539	7.219493	75.099
	26	6383	1700	0	4197.297	22.40006	-0.27402	8.764524	6.609588	6.734251	7.22437	75.927
	27	6383	1800	0	4197.297	22.09861	-0.8321	8.277149	6.581851	6.701638	7.214921	76.651
	28	6383	1900	0	2798.198	21.84075	-1.34447	7.927543	6.559296	6.683654	7 <i>.</i> 219798	77.241
	29	6383	2000	0	1399.099	21.56033	-1.88001	7.929067	6.535826	6.673596	7.219188	77.607
	30	6383	2100	0.0254	2098.649	21.28357	-1.83276	7.232294	6.521806	6.669024	7.204852	77.784
	31	6383	2200	0	699.5495	21.1202	-1.66939	7.326478	6.512966	6.669329	7.200595	77.783
·	32	6383	2300	0	1399.099	20.91294	-1.78521	7.37616	6.513271	6.678778	7.2009	77.793
	33	6383	2400	0	699.5495	20.79498	-1.99522	7.165848	6.518148	6.692798	7.191756	77.581
	34	6383	100	0	0	20.58284	-2.22 809	6.581851	6.527292	6.706514	7.149389	77.306
	35	6383	200	0	0	20.39447	-2.507 89	5.437022	6.527292	6.715963	7.144512	75.974
	36	6383	300	0	0	20.39447	-2.7877	4.17576	6.540703	6.715658	7.139635	76.648
	37	6383	400	0	0	20.25305	-3.25404	1.442618	6.54558	6.734251	7.13994	76,423
	38	6383	500	0.7366	156699.1	28.85023	33.11347	25.31791	6.517843	6.715658	7.107022	76.149
	39	6383	600	0.2286	684150.4	28.28422	30.432 76	31.53156	6.550152	6.743395	7.102145	75.882
	40	6383	700	0.0508	310595.4	27.62524	26.61026	30.73603	6.563868	6.761988	7.11547	75.569
	41	6383	800	0	109829.3	27.20553	14.21069	28.82737	6.577889	6.794906	7.116775	75.321
	42	6383	900	0	74152.25	26.6889	10.38758	27.17079	6.591605	6.813194	7.116775	74.975
	43	6383	1000	0	43372.07	26.44993	8.753551	14.03604	6.596482	6. 827 52	7.112203	74,708
	44	6383	1100	0	22385.58	25.99914	7.562698	12.8653	6.600444	6.82691	7.121042	74.452
	45	6383	1200	0	7695.045	25.6157	6.137758	12.08959	6.604711	6.84977	7.106412	74.332
	46	6383	1300	0	4896.847	25.32492	4.619549	11.4998	6.605321	6.854647	7.11547	74.534
	47	6383	1400	0	1399.099	25.03627	3.080004	11.30899	6.5913	6.84977	7.116166	74.93
	48	6383	1500	0	699.5495	24.89027	2.356409	11.63208	6.568135	6.836054	7.120738	75.496
	49	6383	1600	0	0	24.48885	1.587703	10.95451	6.540398	6.817157	7.134758	76. <u>22</u> 7
	50	6383	1700	0	0	24.34803	0.935 736	11.25779	6.513271	6.775704	7.092696	76.889
	51	6383	1800	0	0	24.14077	0.308153	11.77442	6.481267	6.752539	7.102145	77.649
	52	6383	1900	0	0	23.88382	-0.27371	10.3059	6.458407	6.724802	7.106717	78 <i>.2</i> 31
	53	6383	2000	0	0	23.60524	-0.73914	10.70519	6.440119	6.711086	7.097573	78.623
	54	6383	2100	0	0	23.22972	-1.274 67	10.33242	6.430975	6.711086	7.097573	78.679
	55	6383	2200	0	0	23.06635	-1.81021	10.31016	6.426403	6.701638	7.097268	78.996
	56	6383	2300	0.6096	0	31.44317	34.1376	13.46119	6.40781	6.678473	7.087519	78.938

HOURLY DATA (US-36, Hendricks County)

TOT.HRS	RTE/CNT	TIME	RAIN	FLOW	HEAD2	HEAD3				TENSION	темр.
			[cm]	[cm3]	center [cm]	[cm]	subgrade [cm]	outer [cm]	center [cm]	subgrade [cm]	deg. 'F
. 1	3632	1600	0	43476.55	-1.23505	0.64069	19.37492	13.45966	8 2296	12,69553	40,609
2	3632	1700	ő	0						12.67297	40.999
3	3632	1800	0	0				13.38651		12.65743	41.357
4 5	3632 3632	1900 2000	0	0		0.640994		13.35847 13.34719			41.691 41.972
6	3632	2100	0	o	-1.23505	0.665074	18.76623	13.32464	8.19211	12.56904	42.228
7	3632 3632	2200 2300	0.0254 0.0254	0		0.641604		13.26185		12.52454	42.384
9	3632	2400	0.1524	ŏ		7.111594				12.41938	42,535 42,601
10	3632	100		216508.3	-1.25852	8.706917	29.59821	13.10914	8.049768	12.38067	42.666
11 12	3632 3632	200 300		723443.2	-1.23535 1.732483			13.04757			42.781 42.781
13	3632	400	0.2286			.7.113727		12.18895		11.60465 11.67933	42.781
14	3632	500		579967.4		4.980127	23.78385	1261323	8.06897	12.04234	42.945
15 16	3632 3632	600 700	0			2.916936 1.650797		1271869	8.059522 8.058912		42,996
17	3632	800	0	217378.2				12.77386			43.046 43.11
18	3632	900	0	182598.3	-1.25852	0.173431	20.56668	1279002	8.05434	12.20511	43.142
19	3632 3632	1000	0	157382.7			20.37588			12.21669	43.204
20 21	3632	1100 1200	0	138251.9 119993.2	-1.25852 -1.28199	0.617525		12.79672 12.79581		12.22797	43.268 43.355
22	3632	1300	0	107819.2				12.78423			43.523
23	3632 3632	1400	0	96515.12			19.77116		8.00801		43.752
24 25	3632	1500 1600	0	84343.41 71299.54				12.71839 12.69157			44.073 44.423
26	3632	1700	ō	66082.45	-1.25821			12.66993			44.793
27	3632	1800	0	63475.03				12.64188			45.226
29 29	3632 3632	1900 2000	0	59995.46 57388.05	-1.18811 -1.21158	0.684581		12.60836		12.05362 12.04265	45.581 45.844
30	3632	2100	ŏ	49563.54	-1.16495			12.58062			46.092
31	3632	2200		19128.59	-1.16495			12.55837			46.327
32 33	3632 3632	2300 2400	0	8694.401 5217.095				12.54191 12.53094			46.514
34	3632	100	ő	1739,789				12.53094			46.676 46.765
3 5	3632	200	0	. 0	-1.18842			12.52515			46.862
36 37	3632 3632	300 400	0	0	-1.14148	0.66294		12.50838			46.946
38	3632	500	0	1739.789	-1.14148 -1.14148	0.63947		12.49771 12.49162			46.993 47.026
39	3632	600	٥	0		0.662635		1247516			47.109
40 41	3632 3632	700	0	0				12.46967			47.192
42	3632	800 900	0	1739.789		0,639166		12.4587 12.44224	7.824826 7.815682		47.257 47.37
43	3632	1000	0	0	-1.16495	0.66233	18.63395	12.43096			47.466
44 45	3632 3632	1100 1200	0	1739.789		0.638251			7.792212		47.593
46	3632	1300	0	0		0.684276 0.613562			7.783373	11.87013	47.748 47.987
47	3632	1400	o	1739.788				12.33465			48.295
48	3632	1500	0	0		0.658673			7.728204		48,643
49 50	3632 3632	1600 1700	0	1739.789 0		0.588264 0.611429			7.709611 7.714183		49.035 49.439
51	3632	1800	ō	ō		0.634898		•	7.705039		49.853
52	3632	1900	0	1739,789				12.17524			50.148
53 54	3632 3632	2000 2100	0	3477,306 4347,201		0.683057			7.695286 7.690714		50.416 50.64
55	3632	2200	ŏ	6086.989				12.12647			50.757
56	3632	2300		6086,989				12.1155			50.878
57 58	3632 3632	2400 100		5217,095 6956.884	-1.04821			12.10361			50.995
59	3632	200			-1.14148						51.059 51,161
60	3632	300	1.143	1067767	8.097622	11.26327	32.59836	9.868205	7.007352	9.686849	54.141
61 62	3632 3632	400 500		1230367 569542.3	0.048463			10.65124			52.599
63	3632	600		322587.7				11.40287 11.47176			52.029 51.849
64	3632	700		234757.8	-1.09484	0.965302	21.27199	11.5251	7.481621	11.17945	51.767
65 66	3632 3632	800 900		187815.4				11.56838			51.751
67	3632	1000		152165.6 127817.7	-1.07137 -1.09484			11.57874 11.60556			51.702 51.723
68	3632	1100	0	113036.3	-1.02474	0.707746	-103.568	11.61075	7.509053	11.26937	51.684
69 70	3632 3632	1200			-1.04821	0.707746	-3047970	11.58941	7.476744	11.26419	51.662
71	3632	1300 1400		81733.73 67822.24	-1.04821 -1.07137			11.61075 11.61562			51.682 51.775
72	3632	1500	0	50431.16	-1.07168			11.62141			51.854
73	3632	1600		36519.67	-1.09484	0.686714	-3047970	11.63635	7.503871	11.316	51.905
74 75	3632 3632	1700 1800		22608.17 15651.29	-1.11831 -1.16495			11.66287		11.32088 11.34313	51.88 51.844
_			_			3.5 41233	20.7010		1.01302	10 10	5,,044

нос	JRLY D. 76	ATA (US-36, 3632	1900	ka County)	5217 095	-1 14178	0.641909	-3047970	11.70766	7.545934	11.36447	51.718
	77	3632	2000	ŏ			0.689458		11.7284		11,3858	51,531
	78	3632	2100	0	1739.789		0.689762				11.41781	51,339
	79	3632	2200	0	1739.789					7.568489		51.085
	80	3632	2300 2400	0	1739.789		0.713842			7.58251		50,82 50,583
	81 82	3632 3632	100	0	1739.789					7.596226		50.322
	83	3632	200	ō	1739.789					7.609942		50.05
	84	3632	300	0	1739.789					7.619086		49.798
	85	3632	400	0	3477.306					7.623962		49,514
	86	3632	500	0	5217.095					7.637678		49,299
	87	3632	600	0	6086,989		0.668426			7.656271 7.651394		49,05 48,801
	88 89	3632 3632	700 800	0	5217.095		0.645262				11,69944	48.589
	90	3632	900	ŏ	5217.095					7.684008		48.342
	91	3632	1000	0	5217.095	-1.23566	0.645566	-3047970	12.08959	7.68858	11.75918	48.107
	92	3632	1100	0	4347.201					7.692847		47,872
	93	3632	1200	0	4347,201				12.13287		11.7857	47.707 47.552
	94 95	3632 3632	1300 1400	0	3477.306 5217.095		0.668426			7.693457 7.702906		47.401
	96	3632	1500		6956.884		0.644042				11.82959	47,333
	97	3632	1600	ō	1739.789					7.707478		47.252
	98	3632	1700	0	0	-1.21188	0.644042	-3047970	12.17188	7.730642	11.85672	47.205
	99	3632	1800	0	0					7.716622		47,169
	100	3632	1900	0	0		0.667512			7.730642		47.139 47.067
	101	3632	2000 2100	0	0 5217.095					7.744663		47.002
	102 103	3632 3632	2200	0	7824.507					7.763256		46.872
	104	3632	2300	0.0254	6956,884		0.621792			7.767523	11.9317	46.757
	105	3632	2400	0	7824.507	-1.25882	0.645262	-3047970	12.25906	7.777277	11.93749	46.615
	106	3632	100*	0Y0.0254	7824.507				12.26972			46.464
	107	3632	200	0.0254	6956.884				12.25266	7.767523		46.3
	108	3632	300	0	6086.989 5217.095				12.22583	7.762951 7.753502		46.086 45.874
	109	3632 3632	400 500	0	6086,989					7.776972		45.706
	110 111	3632	600	ŏ	6086.989					7.790993		45.542
	112	3632	700	0	6086,989	-1.28229	0.645566	-3047970	12.26942	7.809586	11.98047	45,362
	113	3632	800	0	6086,989	-1.56301		-3047970		7.804709	120016	45.197
	114	3632	900	0	6086,989				12.29716	7.814158		45.063
	115	3632 3632	1000 1100	0	5217.095 6086.989					7.819034 7.819034		44.898 44.781
	116 117	3632	1200		5217.095					7.819339		44.713
	118	3632	1300	ŏ	3477,306				12.34714			44.665
	119	3632	1400	0.0254	1739.789	-1.28229	0.621487	-3047970	1234135	7.851953	12.06795	44.615
	120	3632	1500	0.127			8.270748				12.01867	43.251
	121	3632	1600							7.720889		41.309
	122 123	3632 3632	1700 1800	0.2794			11.46231			7.68858	12.28618	42.031 42.583
	124	3632	1900		735617.2					7.730642		43.223
	125	3632	2000	0						7.763256		43.552
	126	3632	2100	0	318249.6	-1.3524	3.10896	-3047970	13.18687	7.7724	12.63335	43.549
	127	3632	2200			-1.32893				7.781849		43.584
	128	3632	2300	0	233894.8				13.18199	7.786726		43.533
	129 130	3632 3632	2400 100	0.0254	213031 208683.8					7.786726 7.786726		43.465 43.432
	131	3632	200	0.02.54	209553.7				13.21003			+3.416
	132	3632	300	0	190422.8					7.800746		43,414
	133	3632	400	0	144338.9	-1.3524	-0.43434	-3047970	13.2777	7.814767	12,73973	43,368
	134	3632	500	0						7.823911		43.337
	135	3632	600	0						7.842809		43.27 43.205
	136 137	3632 3632	700 800	0	0					7.847381 7.847076		43.123
	138	3632	900	ŏ	ŏ					7.875422		43.027
	139	3632	1000	o	0		0.669036			7.865974		42.96
	140	3632	1100	0	0					7,87969		42,849
	141	3632	1200	0	0					7.884262		42.751
	142	3632	1300	0	0					7.907426		42,671
	143 144	3632 3632	1400 1500	0	0					7.912303 7.916875		42,607 42,509
	145	3632 3632	1600	0						7.935468		42309
	146	3632	1700	ŏ						7.341718		42.312
	147	3632	1800	0				-3047970		5.540654		42.231
	148	3632	1900							5.562295		42 104
	149	3632	2000	_						5.524195		41.96
	150 151	3632 3632	2100 2200						5.032858	5.53273 5.553761	4.555846	41.622 41.601
	151	3632	2300							5.562295		
					_							

·		

Appendix G Statistical Analysis Printouts

	·		*				
					*		
		,					
				•			

```
draina.in
                 Tue Feb 16 16:13:46 1993
                                                 1
data drainage;
   input pvmt $ drain $ basek y 60;
   cards;
C P 0.6 0.74
C P 0.6 1.61
C P 0.6 1.42
C P 0.6 1.84
C P 0.6 1.51
C P 0.6 1.53
C F 74 1.78
C F 74 1.54
A P 0.12 1.70
A P 0.12 1.70
A P 0.12 1.42
O F 1.2 0.13
O F 1.2 0.38
O F 1.2 0.45
O F 1.2 0.34
O F 1.2 0.45
O F 0.12 -0.62
O F 0.12 -0.29
O F 0.12 -1.0
title 'STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT';
proc glm;
  class pvmt drain;
  model y=pvmt drain / solution;
  lsmeans pvmt drain / stderr pdiff;
  output out=draino p=yhat r=resid;
proc plot;
 plot resid*yhat;
 plot resid*pvmt;
 plot resid*drain;
proc glm;
  class pvmt drain;
 model y = pvmt drain basek / solution;
 1smeans pumt drain / stderr pdiff;
 output out=drainol p=yhat1 r=resid1;
proc plot;
 plot residl*pvmt;
 plot residl*drain;
 plot resid1*basek='*';
 plot residl*yhat1;
run;
```

adrain.o Wed Jan 27 03:46:42 1993 1

> STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 03:44 Wednesday, January 27, 1993

General Linear Models Procedure Class Level Information

Class	Levels	Values
PVMT	3	A C O
DRAIN	2	F P

Number of observations in data set = 19

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 03:44 Wednesday, January 27, 1993

General Linear Models Procedure

Dependent	Variable:	Y		c				
Source		DF		Sum of quares		Mean Square	F Value	Pr > F
Model		3	11.17	332368	3.7	2444123	19.13	0.0001
Error		15	2.92	055000	0.1	9470333		
Corrected	Total	18	14.09	387368				
	R-5	Square		c.v.	R	oot MSE		Y Mean
	0.7	792779	50	.41364	0.	4412520		0.8752632
Source		DF	Тур	e I SS	Mean	Square	F Value	Pr > F
PVMT DRAIN	STATIS	2 1 STICAL ANA	0.07	181952 150417 F PAVEM	0.0 ENT DRAI		28.51 0.37 ECT y, January	0.0001 0.5536 3 27, 1993
		_						
		Genera	al Linea:	r Model	s Proced	ure		
Dependent	Variable: N		al Linea:	r Model	s Proced	ure		
Dependent Source	Variable: N				•	ure Square	F Value	Pr > F
_	Variable: N	c	Type :		Mean 2.2			Pr > F 0.0009 0.5536
Source PVMT	Variable: Y	DF 2 1	Type :	III SS 029000 150 4 17 T fo	Mean 2.2	Square 85145 0 0	11.74 0.37	0.0009 0.5536 or of
Source PVMT DRAIN	A C	DF 2 1 Est -0.2383 1.8450 1.6800	Type : 4.570	III SS 029000 150 4 17 T fo	Mean 2.2: 0.0 THO: meter=0 -0.61 3.94 4.82	Square 8514500 7150417	11.74 0.37 Std Err Estim 0.392 0.468	0.0009 0.5536 or of ate 60685 01843
Source PVMT DRAIN Parameter INTERCEPT	A	DF 2 1 Est -0.2383 1.8450 1.6800 0.0000 0.2183	Type : 4.570	III SS 029000 150417 T fo Param	Mean 2.2 0.0 or H0: eter=0 -0.61 3.94	Square 8514500 7150417 Pr > T 0.5529 0.0013	11.74 0.37 Std Err Estim 0.392 0.468 0.348	0.0009 0.5536 or of ate 60685 01843 84034

adrain.o Wed Jan 27 03:46:42 1993 2

was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 4

03:44 Wednesday, January 27, 1993

General Linear Models Procedure Least Squares Means

PVMT	Y LSMEAN	Std Err LSMEAN	Pr > T H0:LSMEAN=0	LSMEAN Number
A	1.71583333	0.31201229	0.0001	1
С	1.55083333	0.18014038	0.0001	2
0	-0.12916667	0.23830332	0.5958	3

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/j 1 2 3 1 . 0.6047 0.0013 2 0.6047 . 0.0002 3 0.0013 0.0002 .

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 5
03:44 Wednesday, January 27, 1993

General Linear Models Procedure Least Squares Means

DRAIN	y	Std Err	Pr > T	Pr > T H0:
	Lsmean	LSMEAN	H0:LSMEAN=0	LSMEAN1=LSMEAN2
F	1.15500000	0.23830332	0.0002	0.5536
P	0.93666667	0.18749605	0.0002	

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 6
03:44 Wednesday, January 27, 1993

Plot of RESID*YHAT. Legend: A = 1 obs, B = 2 obs, etc.

YHAT

adrain.o

Wed Jan 27 03:46:42 1993 3

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 03:44 Wednesday, January 27, 1993

Plot of RESID*PVMT. Legend: A = 1 obs, B = 2 obs, etc.

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 03:44 Wednesday, January 27, 1993

Plot of RESID*DRAIN. Legend: A = 1 obs, B = 2 obs, etc.

DRAIN

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 03:44 Wednesday, January 27, 1993

> General Linear Models Procedure Class Level Information

Class	Levels	Values
PVMT	3	ACO
DRAIN	2	FP

adrain.o Wed Jan 27 03:46:42 1993 4

Number of observations in data set = 19

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 10 03:44 Wednesday, January 27, 1993

General Linear Models Procedure

Dependent Variable: Y						
		Sum		Mean		
Source	DF	Squar	es	Square F	Value	9: > F
Model	4	12.998657	02 3.24	4966425	41.54	0.0001
Error	14	1.095216	67 0.07	7822976		
Corrected Total	18	14.093873	68			
	R-Square	c.	V. Ro	oot MSE		Y Mean
	0.922291	31.955	63 0.2	2796958		0.8752632
Source	DF	Type I	SS Mean	Square F	Value	Pr > F
PVMT	2	11.101819	52 5.55	5090976	70.96	0.0001
DRAIN	1	0.071504	17 0.07	7150417	0.91	0.3553
BASEK	1	1.825333	33 1.82	2533333	23.33	0.0003
	STATISTICAL	ANALYSIS OF PA	VEMENT DRAIN	NAGE PROJEC	T	11
			03:44	Wednesday,	January	27, 1993

General Linear Models Procedure

Dependent Variable: Y

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PVMT	2	1.79637403	0.89818702	11.48	0.0011
DRAIN	1	1.81297567	1.81297567	23.18	0.0003
BASEK	1	1.82533333	1.82533333	23.33	0.0003

Paramete	.	Estimate	T for H0: Parameter=0	Pr > T	Std Error of Estimate
INTERCEP	r	66.09216049 B	4.81	0.0003	13.73407615
PVMT	A	-64.59512346 B	-4.70	0.0003	13.75771583
	С	-65.19864198 B	-4.71	0.0003	13.84706519
	0	0.00000000 B			•
DRAIN	F	-66.83845679 B	-4.81	0.0003	13.88405834
	P	0.0000000 B	•	•	•
BASEK		0.91358025	4.83	0.0003	0.18913052
		STATISTICAL ANALYSIS O	F PAVEMENT DRAI	NAGE PROJEC	T 12
			03:44	Wednesday,	January 27, 1993

General Linear Models Procedure

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

adrain.o

Wed Jan 27 03:46:42 1993

5

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 13 03:44 Wednesday, January 27, 1993

General Linear Models Procedure Least Squares Means

PVMT	Y LSMEAN	Std Err LSMEAN	Pr > T H0:LSMEAN=0	LSMEAN Number
A	-24.3096637	5.3914595	0.0005	1
С	-24.9131823	5.4798032	0.0005	2
0	40.2854597	8.3680496	0.0003	3

Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

i/j 1 2 3 1 . 0.0149 0.0003 2 0.0149 . 0.0003 3 0.0003 0.0003 .

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 14
03:44 Wednesday, January 27, 1993

General Linear Models Procedure Least Squares Means

DRAIN	Y	Std Err	Pr > T	Pr > T H0:
	LSMEAN	LSMEAN	H0:LSMEAN=0	LSMEAN1=LSMEAN2
F	-36.3983572	7.7758100	0.0004	0.0003
P	30.4400996	6.1089935	0.0002	

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 15
03:44 Wednesday, January 27, 1993

Plot of RESID1*PVMT. Legend: A = 1 obs, B = 2 obs, etc.

PVMT

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 16
03:44 Wednesday, January 27, 1993

adrain.o Wed Jan 27 03:46:42 1993 6

Plot of RESID1*DRAIN. Legend: A = 1 obs, B = 2 obs, etc.

DRAIN

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 17 03:44 Wednesday, January 27, 1993

Plot of RESID1*BASEK. Symbol used is '*'.

NOTE: 8 obs hidden.

STATISTICAL ANALYSIS OF PAVEMENT DRAINAGE PROJECT 18
03:44 Wednesday, January 27, 1993

Plot of RESID1*YHAT1. Legend: A = 1 obs, B = 2 obs, etc.

RESID1 0.5 +			
1	A		A
i 0.0 +	A	B B	C B A
1		A	A A
j	A		

		i i	
			. 5
	7		