<u>Help</u>

sandipan_dey >

<u>Dates</u> <u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u>

☆ Course / Unit 2: Geometry of Derivati... / Lecture 5: Finding vectors normal to level cur...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:13:36

Lecture due Aug 18, 2021 20:30 IST Completed

Practice

The dot product is?

1/1 point (graded)

The dot product of two vectors is

1	

a number

_		
	а	VAC

a vector

Solution:

The dot product of two vectors $\langle a,b
angle$ and $\langle x,y
angle$ is a number, which is the sum of the component-wise products

$$\langle a,b
angle \cdot \langle x,y
angle = ax+by.$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Order the dot products

4/4 points (graded)

Consider the dot product of each of the following pairs of vectors. Put the dot products in order from smallest to largest.

(Hint: negative numbers are smaller than zero.)

(Enter the letter A,B,C, and D in the order such that the dot products of the vectors pictured go in order from least to greatest.)

Solution:

When two vectors \vec{v} and \vec{w} are separated by an angle heta when drawn from the same point, their dot product is given by

$$ec{v}\cdotec{w}=|ec{v}||ec{w}|\cos{(heta)}$$
 .

Note that $|\vec{\boldsymbol{v}}|$ and $|\vec{\boldsymbol{w}}|$ are both greater than 0.

Let us use this definition to understand the relative sizes of the dot products of the vectors pictured.

- The dot product of the first two vectors is zero because they are orthogonal, and so $heta=\pi/2$ and $\cos{(heta)}=0$.
- The dot product of the second two vectors is a positive number because they are separated by an angle $\theta < \pi/2$ and $\cos{(\theta)} > 0$. Therefore the dot product is positive.
- The dot product of the third pair of vectors is positive but small because they are separated by a small acute angle, so $\cos(\theta) > 0$, but one of the vectors is small in length. This dot product is a positive number that is smaller than the previous dot product.
- The dot product of the fourth pair of vectors is negative because the vectors are separated by an angle $\theta > \pi/2$, so $\cos(\theta) < 0$. Therefore these two vectors have the smallest dot product.

Therefore the order of the dot products from smallest to largest is:

$$D < A < C < B$$
.

Submit You have used 1 of 3 attempts

Answers are displayed within the problem

3. Warmup problem

Topic: Unit 2: Geometry of Derivatives / 3. Warmup problem

Add a Post

Hide Discussion

Show all posts by recent activity by recent activity by recent activity shows all posts by recent activity shows a latter are Marked Incorrect

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>