Homework 6

** Problem 1. Let V be a normed linear space over \mathbb{R} and let W be a subspace of V. Let $f \in W^*$ and let $v_0 \in V \setminus W$ such that $W' = W + \{\lambda v_0 \mid \lambda \in \mathbb{R}\}$. We define $F : W' \to V$ such that $F(w + \lambda v_0) = f(w) + \lambda c$. The constant c is chosen as follows. Suppose that ||f|| = 1. Then

$$\sup_{w_1 \in W} -f(w_1) - ||w_1 - v_0|| \le c \le \inf_{w_2 \in W} ||w_2 - v_0|| - f(w_2).$$

Now we must show that ||F|| = 1.

Proof. For $\lambda \neq 0$ we have

$$|F(w + \lambda v_0)| = |\lambda||F\left(\frac{1}{\lambda}w + v_0\right)| = |\lambda||f\left(\frac{1}{\lambda}w\right) + c|.$$

Thus

$$|\lambda||f\left(\frac{1}{\lambda}w\right)-c|=|F\left(\frac{1}{\lambda}w-v_0\right)|\leq ||F|||\frac{1}{\lambda}w-v_0|$$

and thus based on our choice of c, this forces ||F|| = 1.

** Problem 2. Suppose V is a Banach space over \mathbb{R} and that p is a subadditive functional on V. Take $v \neq 0$ in V and let $W = \{\alpha v \mid \alpha \in \mathbb{R}\}$. Define a function $f: W \to \mathbb{R}$ by $f(\alpha v) = \alpha p(v)$ for all $\alpha \in \mathbb{R}$. Show that, $f(w) \leq p(w)$ for all $w \in W$.

Proof. Note that $0 = 0p(v) = p(0 \cdot v) = p(0)$. For $\alpha \ge 0$ we have $f(\alpha v) = \alpha p(v) = p(\alpha v)$. For $\alpha < 0$ we have $p(\alpha v - \alpha v) \le p(\alpha v) + p(-\alpha v)$. Thus $0 \le p(\alpha v) - \alpha p(v)$ and so $f(\alpha v) = \alpha p(v) \le p(\alpha v)$.

** Problem 3. Let V be a normed linear space. Show that the Hahn-Banach Theorem implies a linear functional can be extended when the subadditive functional on V is the norm.

Proof. We must show that the norm is subadditive for $v, w \in V$. But these are simply properties of the norm function. That is, for all $\alpha \geq 0$ we have $||\alpha v|| = \alpha ||v||$. Additionally we have $||v + w|| \leq ||v|| + ||w||$. Since these properties are true for all $v, w \in V$, and because of the way the norm of $f \in V^*$ is defined, a linear functional on a subspace of V can be extended to a functional with the same norm.

** Problem 4. Let p be a subadditive functional on $\ell^{\infty}(\mathbb{R})$ such that for $c = (c_n) \in \ell^{\infty}(\mathbb{R})$

$$p(c) = \inf \left\{ \limsup_{n \to \infty} \frac{1}{k} \sum_{j=1}^{k} c_{n+i_j} \mid i_1, i_2, \dots i_k \text{ is a finite sequence in } \mathbb{N} \right\}.$$

Let $f \in (\ell^{\infty})^*$ be the extended linear functional defined in ** Problem 2. Show that $f((c_{n+1})) = f((c_n))$. Show that if $c_n = 1$ for all n then $f((c_n)) = 1$. *Proof.* Let $c = (c_n)$ and $c' = (c_{n+1})$. Then we have

$$p(c) = \inf \left\{ \limsup_{n \to \infty} \frac{1}{k} \sum_{j=1}^{k} c_{n+i_j+1} \mid i_1, i_2, \dots i_k \text{ is a finite sequence in } \mathbb{N} \right\}$$
$$= \inf \left\{ \limsup_{n \to \infty} \frac{1}{k} \sum_{j=1}^{k} c_{n+i_j} \mid i_1, i_2, \dots i_k \text{ is a finite sequence in } \mathbb{N} \right\}$$
$$= p(c').$$

Note that $f(c) - f(c') = f(c - c') \le p(c - c') \le p(c) + p(-c') = 0$. Likewise f(c') - f(c) = 0. Therefore f(c) = f(c').

Suppose that $c_n = 1$ for all n. Then the quantity

$$\frac{1}{k} \sum_{j=1}^{\infty} c_{n+i_j} = 1$$

for all n and all finite sequences of natural numbers. Thus $f(c) \le p(c) = 1$. Moreover, p(-c) = -1 for the same reasons and $f(-c) \le p(-c)$. Then $f(c) = -f(-c) \ge -p(-c) = 1$. Thus $f(c) \le 1 \le f(c)$ and f(c) = 1.

** Problem 5. Let $f: \ell^{\infty} \to \mathbb{R}$ be defined as in ** Problem 4 and let $c = (c_n) \in \ell^{\infty}(\mathbb{R})$. Show that

$$\liminf_{n \to \infty} c_n \le f(c) \le \limsup_{n \to \infty} c_n.$$

Proof. Note that for arbitrary finite sequences of natural numbers i_1, i_2, \ldots, i_j we have

$$\limsup_{n \to \infty} \frac{1}{k} \sum_{i=1}^{k} c_{n+i_j} \le \limsup_{n \to \infty} c_n$$

because the terms on the left are averages of groups of terms on the right. Then it must be the case that

$$f(c) \le p(c) \le \limsup_{n \to \infty} c_n$$
.

We know that $-\liminf_{n\to\infty} c_n = \limsup_{n\to\infty} -c_n$. Since (c_n) is an arbitrary element of $\ell^{\infty}(\mathbb{R})$ we have

$$-f(c) = f(-c) \le \limsup_{n \to \infty} -c_n = -\liminf_{n \to \infty}$$

and thus $\liminf_{n\to\infty} \leq f(c)$. Therefore

$$\liminf_{n \to \infty} c_n \le f(c) \le \limsup_{n \to \infty} c_n.$$

** Problem 6. 1) Show that $p((c_n)) = \limsup_{n \to \infty} c_n$ defines a subadditive functional on $\ell^{\infty}(\mathbb{R})$.

- 2) Use this subadditive functional, p, to construct a different functional, f, on $\ell^{\infty}(\mathbb{R})$ and show that $f((c_n)) \geq 0$ if $c_n \geq 0$ for all n and $f((c_n)) = 1$ if $c_n = 1$ for all n.
- 3) Show that f may be constructed in such a way that $f((c_{n+1})) \neq f((c_n))$.

Proof. 1) For $\alpha \geq 0$ in \mathbb{R} we have

$$\begin{split} p(\alpha(c_n)) &= \limsup_{n \to \infty} \alpha c_n \\ &= \inf \{ \sup \{ \alpha c_m \mid m \ge n \} \mid n \ge 1 \} \\ &= \inf \{ \alpha \sup \{ c_m \mid m \ge n \} \mid n \ge 1 \} \\ &= \alpha \inf \{ \sup \{ c_m \mid m \ge n \} \mid n \ge 1 \} \\ &= \alpha \limsup_{n \to \infty} c_n \\ &= \alpha p((c_n)). \end{split}$$

Let $(d_n) \in \ell^{\infty}(\mathbb{R})$. Then we have

$$p((c_n) + (d_n)) = p((c_n + d_n))$$

$$= \limsup_{n \to \infty} c_n + d_n$$

$$= \inf \{ \sup \{ c_m + d_m \mid m \ge n \} \mid n \ge 1 \}$$

$$\leq \inf \{ \sup \{ c_m \mid m \ge n \} + \sup \{ d_m \mid m \ge n \} \mid n \ge 1 \}$$

$$= \inf \{ \sup \{ c_m \mid m \ge n \} \mid n \ge 1 \} + \inf \{ \sup \{ d_m \mid m \ge n \} \mid n \ge 1 \}$$

$$= \limsup_{n \to \infty} c_n + \limsup_{n \to \infty} d_n$$

$$= p((c_n)) + p((d_n)).$$

- 2) Suppose that $c_n \geq 0$ for all n. Then we must have $p(c) \limsup_{n \to \infty} c_n \geq 0$. Likewise $p(-c) \leq 0$. Then $f(-c) \leq p(-c) \leq 0$ and so $f(c) = -f(-c) \geq -p(-c) \geq 0$. Now suppose that $c_n = 1$ for all n. We have $\limsup_{n \to \infty} c_n = 1$ and $-\limsup_{n \to \infty} c_n = -1$. Then $f(c) \leq p(c) = 1$. Additionally we have $f(-c) \leq p(-c) = -1$ and so $f(c) = -f(-c) \geq -p(-c) = 1$. Thus $1 \leq f(c) \leq 1$.
- 3) Because p no longer takes the average over terms in a sequence, it is possible to create a functional on $\ell^{\infty}(\mathbb{R})$ which maps to a different number if the sequence is shifted. A sequence such as $c_n = (-1)^{n+1}$ will either map to 1 or -1 depending on whether the sequence starts on n = 1 or n = 2. Thus $f(c_n) \neq f(c_{n+1})$.