

(REAL NUMBER)

2.1 ଉପକ୍ମଣିକା (Introduction) :

ମାନବ ସଭ୍ୟତାର ଅଗ୍ରଗତିରେ ସଂଖ୍ୟା ଜଗତର ଭୂମିକା ସର୍ବଶ୍ରେଷ । ସଂଖ୍ୟାମାନଙ୍କ ବ୍ୟବହାର ମଣିଷ କେବେ କରିଥିଲା, ତାହାର ଆଲୋଚନା ଅତି ଜଟିଳ । ଏତିକି ମାତ୍ର ଜାଣିବା ଦରକାର ଯେ, ଆବଶ୍ୟକତା ଦୃଷ୍ଟିରୁ ସଂଖ୍ୟା ଜଗତର ସୃଷ୍ଟି ହୋଇଥିଲା ଓ ସଂଖ୍ୟା ଜଗତ ବିନା ଆମର ଏ ସଭ୍ୟତାକୁ ପରିକଳ୍ପନା କରାଯାଇପାରିବ ନାହିଁ ।

ସଂଖ୍ୟାମାନଙ୍କ ମଧ୍ୟରେ ପ୍ରଥମେ ଆସିଥା'ନ୍ତି **ଗଣନ ସଂଖ୍ୟା (Counting Numbers) କିୟା ସ୍ୱାଭାବିକ** ସଂଖ୍ୟା (Natural Numbers) । ଏଗୁଡ଼ିକ ହେଲେ 1,2,3,4,5,... । ସମୟ ଗଣନ ସଂଖ୍ୟାର ସେଟ୍ର ସଂକେତ N ଓ ଏହାକୁ ତାଲିକା ପ୍ରଣାଳୀରେ ଲେଖିବା $N=\{1,2,3,...\}$ ।

ଏହା ପରେ ଆସିଥା'ନ୍ତି ପୂର୍ଣ୍ଣ ସଂଖ୍ୟାଗୁଡ଼ିକ ଏବଂ ସମସ୍ତ **ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା (Integers)** ମାନଙ୍କ ସେଟ୍ର ସଂକେତ Z ଏବଂ $Z=\{....,-3,-2,-1,0,1,2,3,....\}$ । ଅର୍ଥାତ୍ ସମସ୍ତ ଗଣନ ସଂଖ୍ୟା, 0 (ଶୂନ) ଏବଂ ସମସ୍ତ ରଣାତ୍ମକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟାର ସେଟ୍ । ଏଠାରେ ଉଲ୍ଲେଖଯୋଗ୍ୟ ଯେ N ସେଟ୍ରେ 0 (ଶୂନ) ଉପାଦାନଟିକୁ ନେଇ ବିଚାର କଲେ ଆମେ N^* ସେଟ୍ ପାଇଥାଉ ଓ ଏହାକୁ **ସଂପ୍ରସାରିତ ସ୍ୱାଭାବିକ ସଂଖ୍ୟାସେଟ୍** N^* କୁହାଯାଏ । ଉକ୍ତ ସେଟ୍କୁ ତାଲିକା ପ୍ରଣାଳୀରେ $N^*=\{0,1,2,3,....\}$ ଲେଖାଯାଏ ।

ଦ୍ରଷଦ୍ୟ : ଶୂନ (0) ଏବଂ ରଣାତ୍ମକ ପୂର୍ତ୍ତସଂଖ୍ୟା (...-3,-2,-1) ପ୍ରାଚୀନ ଭାରତୀୟଙ୍କ ଅବଦାନ । ବ୍ରହ୍ମଗୁପ୍ତ (ଖ୍ରୀଷ୍ଟାବ୍ଦ 598ରେ ଜନ୍ନ) ତାଙ୍କ ଦ୍ୱାରା ଲିଖିତ 'ବ୍ରହ୍ମସିଦ୍ଧାନ୍ତ' ପୁଷ୍ଟକରେ ରଣାତ୍ମକ ସଂଖ୍ୟା କଥା ଉଲ୍ଲେଖ କରିଛନ୍ତି ।

ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ସେଟ୍ Z ର ସଂପ୍ରସାରଣ ହେତୁ ସମୟ **ପରିମେୟ ସଂଖ୍ୟା (Rational Numbers)** ସେଟ୍ର ସୃଷ୍ଟି । ଯେକୌଣସି ପରିମେୟ ସଂଖ୍ୟାର ବ୍ୟାପକ ରୂପ $\frac{p}{q}$ ଅଟେ, ଯେଉଁଠାରେ p ଓ q ପୂର୍ଣ୍ଣସଂଖ୍ୟା ଓ $q \neq 0$ । ସମୟ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ର ସଂକେତ Q ଅଟେ ଏବଂ $Q = \left\{\frac{p}{q}: p$ ଓ q ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ଓ $q \neq 0$ $\right\}$ ।

ଯେକୌଣସି ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ମଧ୍ୟ ଗୋଟିଏ ପରିମେୟ ସଂଖ୍ୟା । ଧନାତ୍ମକ ପରିମେୟ ସଂଖ୍ୟାର ସୃଷ୍ଟି ବହୁ ପୁରାତନ । ଏହାର ଉଦ୍ଭାବନ ସୟବତଃ ଖ୍ରୀଷ୍ଟପୂର୍ବ 3000-2000 ମସିହାର ଘଟଣା ।

ଏଠାରେ ମନେ ରଖିବା ଉଚିତ୍ ଯେ, $N \subset N^* \subset Z \subset Q$

N ସେଟ୍, Z ସେଟ୍ ଓ Q ସେଟ୍ର ଯେକୌଣସି ଦୁଇଟି ଉପାଦାନ x ଓ y ନେଇ ସେମାନଙ୍କ ମଧ୍ୟରେ ଯୋଗ(ମିଶାଣ) ଓ ଗୁଣନ ପ୍ରକ୍ରିୟା କିପରି କରାଯାଏ ତାହା ଆମେ ଜାଣିଛେ । ଏହି ପ୍ରକ୍ରିୟାମାନଙ୍କୁ ଯଥାକ୍ରମେ + ଓ x ଲେଖି ସୂଚାଯାଏ । ଅଷ୍ଟମ ଶ୍ରେଣୀର ସରଳ ଗଣିତ (ବୀଜଗଣିତ) ପୁଞ୍ଚକରେ ଏହି ପ୍ରକ୍ରିୟା ଦୁଇଗୋଟିର ବୀଜଗାଣିତିକ ଧର୍ମ (algebraic properties) ସମ୍ପନ୍ଧରେ ଆଲୋଚନା କରାଯାଇଛି । Q ସେଟ୍ର ପୁନଃ ସମ୍ପ୍ରସାରଣ କରିବା ପୂର୍ବରୁ ସେହି ବୀଜଗାଣିତିକ ଧର୍ମ ଗୁଡ଼ିକୁ ସ୍ମରଣ କରିବା ଉଚିତ୍ ।

2.2 N ସେଟ୍ରେ ଯୋଗ ଓ ଗୁଣନ ପ୍ରକ୍ରିୟାର ବୀଜଗାଣିତିକ ଧର୍ମ

ପ୍ରଥମେ ଗଣନ ସଂଖ୍ୟା ସେଟ୍ N ର ବୀଜଗାଣିତିକ ଧର୍ମ ଗୁଡ଼ିକୁ ଆଲୋଚନା କରିବା । ଏଠାରେ ବ୍ୟବହୃତ ସଂକେତ m,n ଓ p ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ଗଣନ ସଂଖ୍ୟା । ଅର୍ଥାତ୍ $m,n,p\in N$

ଯୋଗ ପ୍ରକ୍ରିୟାର ଧର୍ମ :

- 1. **ସଂବୃତ୍ତି ଧର୍ମ** (Closure property) : $m+n\in N$ । ଅର୍ଥାତ୍ ଦୁଇଟି ଗଣନ ସଂଖ୍ୟାର ଯୋଗଫଳ ଏକ ଗଣନ ସଂଖ୍ୟା ।
 - 2. କୁମବିନିମୟୀ ଧର୍ମ (Commutative property) : m + n = n + m
 - 3. ସହଯୋଗୀ ଧର୍ମି (Associative property) : m + (n + p) = (m + n) + p

ଗୁଣନ ପୁକ୍ତିୟାର ଧର୍ମ :

- 5. *କ୍ମ ବିନିମୟୀ ଧର୍ମ* : mn = nm
- 6. *ସହଯୋଗୀ ଧର୍ମ* : m(np) = (mn)p
- 7. ଅଭେଦ ଧର୍ମ (Identity property) : ଗୁଣନ ପ୍ରକ୍ରିୟାରେ ସଂଖ୍ୟା 1 (ଏକ) ଅଭେଦ ଓ m**.**1=m |
 - 1 କୁ ମଧ୍ୟ ଗୁଣନାତ୍ମକ ଅଭେଦ (Multiplicative Identity) କୁହାଯାଏ ।
- 8. **ବଞ୍ଜନ ଧର୍ମ** (distributive property) : m(n+p)= mn+mp ଅର୍ଥାତ୍ ଗୁଣନ ପ୍ରକ୍ରିୟା ଯୋଗ ପ୍ରକ୍ରିୟାକୁ ବଣ୍ଟନ କରିଥାଏ ।

ଗଣନ ସଂଖ୍ୟାରେ କ୍ରମ (Order) :

N ସେଟ୍ର ଉପାଦାନଗୁଡ଼ିକ କ୍ରମିତ (ordered) । ଅର୍ଥାତ୍ ଦୁଇଟି ଗଣନ ସଂଖ୍ୟା m ଓ n ଦିଆଗଲେ କେଉଁଟି ବଡ଼ ଓ କେଉଁଟି ସାନ କହିବା ସୟବ । n ଅପେକ୍ଷା m ବଡ଼ ହେଲେ m>n କିୟା n< m ବୋଲି ଲେଖାଯାଏ । ବସ୍ତୁତଃ

N ସେଟ୍ ପରିବର୍ତ୍ତେ N* ସେଟ୍ (ସଂପ୍ରସାରିତ ସ୍ୱାଭାବିକ ସଂଖ୍ୟା ସେଟ୍) ନେଲେ ଉପରଲିଖିତ ସମୟ ଧର୍ମ ବ୍ୟତୀତ ନିମୁଲିଖିତ ଧର୍ମଟି ମଧ୍ୟ ସତ୍ୟ ହେବ ।

ଯୋଗର ଅଭେଦ ଧର୍ମ : ଯେକୌଣସି ଉପାଦାନ $m \in N^*$ ହେଲେ 0+m=m ।

0 (ଶୂନ)କୁ ଯୋଗାତ୍ମକ ଅଭେଦ (Additive Identity) କୁହାଯାଏ ।

 N^* ସେଟ୍ରେ ସିଦ୍ଧ ହେଉଥିବା ଯୋଗ ଓ ଗୁଣନ ପ୍ରକ୍ରିୟାର ସମୟ ଧର୍ମ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ସେଟ୍ Z ରେ ସତ୍ୟ ଅଟନ୍ତି । ଏଡଦ୍ବ୍ୟତୀତ ଆଉ ଗୋଟିଏ ଧର୍ମ ମଧ୍ୟ ସତ୍ୟ ହୋଇଥାଏ । ତାହା ନିମ୍ନରେ ଦିଆଗଲା ।

ଯୋଗ ପ୍ରକ୍ରିୟା ପାଇଁ ବିଲୋମୀ ଧର୍ମ (Inverse property) : ଯେକୌଣସି ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା m ପାଇଁ ଏହାର ବିଲୋମୀ (inverse) ଟି -m ଓ -m є Z ଏବଂ m+(-m)=0=(-m)+m ।

m ଓ -m ପରସ୍କରର ବିଲୋମୀ ଅଟନ୍ତି ।

ସଂଖ୍ୟା 0 ର ବିଲୋମୀ -0 ଓ -0=0

Z ସେଟ୍ଟି ମଧ୍ୟ କ୍ରମିତ ଅର୍ଥାତ୍ ... -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < ...

ଏଠାରେ ଲକ୍ଷ୍ୟ କର ଯେ N କିୟା N* ସେଟ୍ରେ ବିୟୋଗ ପ୍ରକ୍ରିୟାର ସଂଜ୍ଞା ପ୍ରକରଣ ଅସୟବ । ମାତ୍ର Z ସେଟ୍ର ସୃଷ୍ଟି ହେତୁ ବିୟୋଗ ପ୍ରକ୍ରିୟାଟିର ସଂଜ୍ଞା ପ୍ରକରଣ ସୟବ ହୋଇ ପାରିଲା ।

ମନେରଖ ଯେ, ଦୁଇଗୋଟି ପୂର୍ଷ ସଂଖ୍ୟାର ବିୟୋଗଫଳ ଏକ ପୂର୍ଷ ସଂଖ୍ୟା । ତେଣୁ ବିୟୋଗ ପ୍ରକ୍ରିୟାଟି Z ସେଟ୍ରେ ସଂବୃତ୍ତି ନିୟମ ପାଳନ କରେ; ମାତ୍ର ବିୟୋଗ ପ୍ରକ୍ରିୟା ସହଯୋଗୀ କିୟା କ୍ରମ ବିନିମୟୀ ନୁହେଁ ।

ଦ୍ରଷ୍ଟବ୍ୟ : ପୂର୍ଣ୍ଣସଂଖ୍ୟାମାନଙ୍କ ପାଇଁ ନିମ୍ନଲିଖିତ ଉକ୍ତି ଗୁଡ଼ିକ ସତ୍ୟ ।

(i)
$$-(-m) = m$$
 (ii) $(-m)(-n) = mn$ (iii) $0 \times m = m \times 0 = 0$

କେତେକ ଗୁରୁତ୍ପୂର୍ଷ ଧାରଣା :

(a) ଇଉକ୍ଲିଡୀୟ ପଦ୍ଧତି (Euclidean algorithm) : ଯଦି ମୋ ପାଖରେ 6 ଟି ପେନ୍ସିଲ୍ ଅଛି ଓ ଏହାକୁ 3 ଜଣ ପିଲାଙ୍କୁ ବାଣ୍ଟିବାକୁ ହେବ ତେବେ, ପ୍ରତ୍ୟେକ ପିଲାକୁ 2 ଟି କରି ପେନ୍ସିଲ୍ ଦେଇ ହେବ । କାରଣ $3 \times 2 = 6$ । ମାତ୍ର ଯଦି ମୋ ପାଖରେ 10 ଟି ପେନ୍ସିଲ୍ ଅଛି ତେବେ ଜଣକୁ ତିନୋଟି କରି ଦେଇ ଦେଲା ପରେ ଆଉ ଗୋଟିଏ ବଳକା ରହିବ । କାରଣ $10 = 3 \times 3 + 1$ । ଏହି ଧାରଣା ହିଁ ଇୟୁକ୍ଲିଡ଼ୀୟ ପଦ୍ଧତି । ଏହା ବ୍ୟାପକ ରୂପେ ନିମ୍ନରେ ପ୍ରଦତ୍ତ ହେଲା ।

$$p>1$$
 ଏକ ସ୍ୱାଭାବିକ ସଂଖ୍ୟା ଓ n ଏକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ହେଲେ $n=mp+r$

ଯେଉଁଠାରେ m ଓ r ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ଓ $0 \le r < p$ । n = mp + r ପରିପ୍ରକାଶଟି ଅନନ୍ୟ (ଅର୍ଥାତ୍ ଏପରି ଏକାଧିକ ପରିପ୍ରକାଶ ନାହିଁ) । ଉଦାହରଣ ସ୍ୱରୂପ p = 4, n = 11 ହେଲେ $11 = 2 \times 4 + 3$ ଓ ଏଠାରେ m = 2, r = 3 । ଏହି ପଦ୍ଧତିରେ n ଭାଜ୍ୟ (devidend) , p ଭାଜକ (divisor), m ଭାଗଫଳ (quotient) ଓ r ଭାଗଶେଷ (remainder କିୟା residue) । ଅର୍ଥାତ୍ ଭାଜ୍ୟ = (ଭାଜକ) \mathbf{x} (ଭାଗଫଳ) + ଭାଗଶେଷ ।

ଏହି ପଦ୍ଧତିରୁ ଭାଗ ପ୍ରକ୍ରିୟା (division) ର ସୃଷ୍ଟି । ଯଦି r=0 (ଭାଗଶେଷ = 0) ତେବେ ଆମେ କହିଥାଉ n ସଂଖ୍ୟାଟି p ଦ୍ୱାରା ବିଭାଜ୍ୟ ।

(b) ଯୁଗୁ ଓ ଅଯୁଗୁ ସଂଖ୍ୟା (Even and Odd Numbers):

ଯେଉଁ ପୂର୍ତ୍ତ ସଂଖ୍ୟାଗୁଡ଼ିକ 2 ଦ୍ୱାରା ବିଭାଜ୍ୟ ସେଗୁଡ଼ିକ ଯୁଗ୍ମ ସଂଖ୍ୟା $1\ 0,\pm 2,\pm 4,\pm 6\dots$ ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ଯୁଗ୍ମ ସଂଖ୍ୟା $[\pm 2$ ର ଅର୍ଥ 2 କିୟା -2] । ଯେଉଁ ପୂର୍ତ୍ତ ସଂଖ୍ୟାଗୁଡ଼ିକ 2 ଦ୍ୱାରା ବିଭାଜ୍ୟ ନୂହଁ छି ସେଗୁଡ଼ିକ ଅଯୁଗ୍ନ ସଂଖ୍ୟା ଓ । $\pm 1,\pm 3,\pm 5\dots$ ଇତ୍ୟାଦି ଅଯୁଗ୍ନ ସଂଖ୍ୟା ।

ଗୋଟିଏ ଯୁଗ୍ମ ସଂଖ୍ୟାକୁ 2m, $(m \in Z)$ ଓ ଅଯୁଗ୍ମ ସଂଖ୍ୟାକୁ 2m+1, $(m \in Z)$ ଆକାରରେ ପ୍ରକାଶ କରାଯାଏ । ଦୁଇଟି ସଂଖ୍ୟା ପରୟର ମୌଳିକ (relatively prime) ଯଦି ସେମାନଙ୍କ ଗ.ସା.ଗୁ. 1 । ଅର୍ଥାତ୍ m ଓ n ପରୟର ମୌଳିକ ଯଦି (m,n)=1 । $2,3;\ 5,8;\ 8,9$ ଆଦି ପରୟର ମୌଳିକ ସଂଖ୍ୟାଯୋଡ଼ା ଅଟନ୍ତି ।

(c) ମୌଳିକ ଓ ଯୌଗିକ ସଂଖ୍ୟା (Prime & Composite Numbers) :

1 ଅପେକ୍ଷା ବୃହତ୍ତର ଏକ ସ୍ୱାଭବିକ ସଂଖ୍ୟା P କେବଳ 1 ଓ P ଦ୍ୱାରା ବିଭାଜ୍ୟ ହେଉଥିଲେ, ସଂଖ୍ୟାଟି ଏକ ମୌଳିକ ସଂଖ୍ୟା । ଅର୍ଥାତ୍ ଏକଠାରୁ ବୃହତ୍ତର ସ୍ୱାଭବିକ ସଂଖ୍ୟାଟି ମୌଳିକ ସଂଖ୍ୟା ଯଦି ଏହାର 1 ଓ ସେହିସଂଖ୍ୟା ଭିନ୍ନ ଅନ୍ୟ କୌଣସି ଉତ୍ପାଦକ ନ ଥିବ ।

2,3,5,7,11,13,17,19,23... ଇତ୍ୟାଦି ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ମୌଳିକ ସଂଖ୍ୟା ।

ଦ୍ରଷ୍ଟବ୍ୟ (1) : ପ୍ରତ୍ୟେକ ଗଣନ ସଂଖ୍ୟାର ସେ ନିଜେ ଓ 1 ଉତ୍ପାଦକଦ୍ୱୟ ରହିଲେ ଏହି ଦୁଇଗୋଟି ଉତ୍ପାଦକକୁ ନଗଣ୍ୟ ଉତ୍ପାଦକ (Trivial factors) କୁହାଯାଏ ।

ମାତ୍ର ଯୌଗିକ ସଂଖ୍ୟାଗୁଡିକର ଏହି ନଗଣ୍ୟ ଉତ୍ପାଦକ ବ୍ୟତୀତ ଗଣ୍ୟ ଉତ୍ପାଦକ (Non - trivial factors) ମଧ୍ୟ ଥାଏ । ଲକ୍ଷ୍ୟ କର ଯେ, ମୌଳିକ ସଂଖ୍ୟାଗୁଡିକର କେବଳ ନଗଣ୍ୟ ଉତ୍ପାଦକ ଥାଏ । କିନ୍ତୁ ଯୌଗିକ ସଂଖ୍ୟାମାନଙ୍କର ନଗଣ୍ୟ ଏବଂ ଗଣ୍ୟ ଉଭୟ ପ୍ରକାର ଉତ୍ପାଦକ ଥାଏ ।

ଦ୍ରଷ୍ଟବ୍ୟ (2) : ପରୀକ୍ଷା କରି ଦେଖାଯାଇଛି ଯେ, 1 ରୁ 1000 ମଧ୍ୟରେ 168 ଟି, 1000 ରୁ 2000 ମଧ୍ୟରେ 135ଟି, 2000 ରୁ 3000 ମଧ୍ୟରେ 127 ଟି, 3000 ରୁ 4000 ମଧ୍ୟରେ 120 ଟି ଓ 4000 ରୁ 5000 ମଧ୍ୟରେ 119ଟି ମୌଳିକ ସଂଖ୍ୟା ଅଛି । ପ୍ରକୃତରେ **ମୌଳିକ ସଂଖ୍ୟା ମାନଙ୍କର ସେଟ୍ ଅସୀମ** ।

ଲକ୍ଷ୍ୟକର ଯେ, ପ୍ରତ୍ୟେକ ସ୍ୱାଭାବିକ ସଂଖ୍ୟା (1 ଭିନ୍ନ), ଏକ ମୌଳିକ ସଂଖ୍ୟା ଅଥବା ଏହାକୁ କେତେକ ମୌଳିକ ସଂଖ୍ୟାର ଗୁଣଫଳରେ ପ୍ରକାଶ କରାଯାଇପାରେ ।

ଯଥା : 6 = 2 x 3, 24 = 2 x 2 x 2 x 3, 94860 = 2 x 2 x 3 x 3 x 5 x 17 x 31 ଇତ୍ୟାଦି ।

ସ୍ୱାଭାବିକ ସଂଖ୍ୟାର ଏହି ପ୍ରକାର ଉତ୍ପାଦକୀକରଣ ଅନନ୍ୟ (Unique) ; ଅର୍ଥାତ୍ କୌଣସି ସ୍ୱାଭାବିକ ସଂଖ୍ୟାକୁ ଦୁଇପ୍ରକାର ମୌଳିକ ସଂଖ୍ୟାର ଉତ୍ପାଦକର ଗୁଣଫଳରେ ପ୍ରକାଶ କରାଯାଇ ନପାରେ । ଅବଶ୍ୟ କ୍ରମରେ ପରିବର୍ତ୍ତନ କରାଯାଇପାରେ; ଯଥା : $6=2 \times 3=3 \times 2$ । ଏହି ତଥ୍ୟ ନିମ୍ନ ଉପପାଦ୍ୟରେ ଲିପିବଦ୍ଧ ଯାହାକି Fundamental Theorem of Arithmetic ବା Unique Factorisation Theorem ନାମରେ ଅଭିହିତ ।

1 ଭିନ୍ନ ପ୍ରତ୍ୟେକ ସ୍ୱାଭାବିକ ସଂଖ୍ୟା ଅନନ୍ୟ ଭାବରେ ମୌଳିକ ସଂଖ୍ୟାର ଗୁଣଫଳରେ ପ୍ରକାଶ କରାଯାଇପାରେ ।

ମନେରଖ - 1 ଗୋଟିଏ ମୌଳିକ ସଂଖ୍ୟା ନୃହେଁ ।

ଯୌଗିକ ସଂଖ୍ୟାର ମୌଳିକ ରାଶିମାନଙ୍କର ଉତ୍ପାଦକିକୃତ ରୂପକୁ **ଷାଣାର୍ଡ (standard)** ବା **କାନୋନିକାଲ୍** (Canonical) ରୂପ କୁହାଯାଏ ।

2.3 ପରିମେୟ ସଂଖ୍ୟା (Rational numbers) :

ଅଷ୍ଟମ ଶ୍ରେଶୀର ସରଳ ଗଣିତ (ବୀଳଗଣିତ) ପୁଞ୍ଚକର ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟରେ ପରିମେୟ ସଂଖ୍ୟା ସୟନ୍ଧରେ ଆଲୋଚନା କରାଯାଇଥିଲା । ସ୍ମରଣ କରିବା ଆବଶ୍ୟକ ଯେ, ଏକ ପରିମେୟ ସଂଖ୍ୟାର ବ୍ୟାପକ ରୂପ $\frac{p}{q}$ ଯେଉଁଠାରେ p ଓ q ପୂର୍ଣ୍ଣସଂଖ୍ୟା ଓ $q \neq 0$ । $\frac{1}{2}, \frac{-3}{7}, \frac{-1}{-4}$ ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ପରିମେୟ ସଂଖ୍ୟା । ପ୍ରତ୍ୟେକ ସ୍ୱାଭାବିକ ସଂଖ୍ୟା ଏବଂ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା n ମଧ୍ୟ ଏକ ପରିମେୟ ସଂଖ୍ୟା କାରଣ ଏହାକୁ $\frac{n}{1}$ ରୂପେ ଲେଖି ହେବ ।

ତେଣୁ ଆମେ ପାଇବା, $N \subset Z \subset Q$

ପରିମେୟ ସଂଖ୍ୟାମାନଙ୍କୁ ନେଇ ବିଭିନ୍ନ ପ୍ରକ୍ରିୟା :

ନିମ୍ନଲିଖିତ ଆଲୋଚନାରେ $x,y\in Q$ (ଅର୍ଥାତ୍ x ଓ y ପରିମେୟ ସଂଖ୍ୟା) । ସୁତରାଂ

$$x = \frac{p}{q} \ \ \emptyset \ y = \ \frac{r}{s}; \ \left(\ p, \, q, \, r, \, s \in \ Z \ \emptyset \ q \neq 0, \, s \neq 0 \right)$$

ଯୋଗ ପ୍ରକ୍ରିୟା :
$$x+y=rac{p}{q}+rac{r}{s}=rac{ps+qr}{qs}$$
 \in Q ;

ବିୟୋଗ ପ୍ରକ୍ରିୟା :
$$x - y = \frac{p}{q} - \frac{r}{s} = \frac{ps - qr}{qs} \in Q;$$

ଗୁଣନ ପ୍ରକ୍ରିୟା :
$$x x y = \frac{p}{q} x \frac{r}{s} = \frac{pr}{qs} \in Q$$
 ;

ହରଣ ପ୍ରକ୍ରିୟା : ଯଦି ପରିମେୟ ସଂଖ୍ୟା
$$y\neq 0$$
, ଅର୍ଥାତ୍ $r\neq 0$ ତେବେ $\frac{x}{y}=\frac{\frac{p}{q}}{\frac{r}{s}}=\frac{ps}{qr}\in Q$ |

ଅତଏବ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q କୁ ବିଚାର କଲେ ଚାରିଟିଯାକ ପ୍ରକ୍ରିୟା (ଯୋଗ, ବିୟୋଗ, ଗୁଣନ ଓ ହରଣ) ସଂବୃତ୍ତି ନିୟମ ପାଳନ କରନ୍ତି । କେବଳ ହରଣ କ୍ଷେତ୍ରରେ ଭାଜକ ଭାବେ ରହିଥିବା ପରିମେୟ ସଂଖ୍ୟାଟି ଅଣଶୂନ୍ୟ ହେବା ଆବଶ୍ୟକ ।

ଯୋଗ ଓ ଗୁଣନ ପ୍ରକ୍ରିୟା ଦ୍ୱୟ ପାଇଁ ନିମ୍ନଲିଖିତ ବୀଜଗାଣିତିକ ନିୟମଗୁଡ଼ିକ ସତ୍ୟ । ଏଠାରେ $x,y,z\in Q$ ଯୋଗ ପ୍ରକ୍ରିୟାର ନିୟମ :

- (i) ସଂବୃତ୍ତି ନିୟମ: $x + y \in Q$
- (ii) କ୍ରମବିନିମୟୀ ନିୟମ : x + y = y + x
- (iv) ଅଭେଦ ନିୟମ : x + 0 = x ('0' କୁ ଯୋଗାତ୍ମକ ଅଭେଦ କୁହାଯାଏ ।)
- (v) *ବିଲୋମୀ ନିୟମ* : x + (-x) = 0 (x ଓ -x ପରୟରର ଯୋଗତ୍ମକ ବିଲୋମୀ ।)

ଗୁଣନ ପ୍ରକ୍ରିୟାର ନିୟମ :

- (vi) **ସଂବୃତ୍ତି ନିୟମ** : xy ∈ Q
- (vii) କ୍ରମବିନିମୟୀ ନିୟମ : xy = yx
- (viii) *จ*ย*เ*มเอา คิมก : x (yz) = (xy) z
- (ix) ଅଭେଦ ନିୟମ : x.1 = x (1 କୁ ଗୁଣନାତ୍ମକ ଅଭେଦ କୁହାଯାଏ <math>|
- (x) *ବିଲୋମୀ ନିୟମ* : $x(x \neq 0)$ ର ବିଲୋମୀ $\frac{1}{x}$ (କିୟା x^{-1}) ଓ $x \cdot \frac{1}{x} = 1$ $(x \, \emptyset \, \frac{1}{x} \, \text{ପ୍ରତ୍ୟେକ ପରୟରର ଗୁଣନାତ୍ମକ ବିଲୋମୀ })$

ଯୋଗ ଓ ଗୁଣନ ପୁକ୍ରିୟାଦ୍ୱୟର ନିୟମ :

(xi) ବ୍ୟନ ନିୟମ : x(y+z) = xy + xz,

ଯେଉଁ ସେଟ୍ର ଉପାଦାନ ଗୁଡ଼ିକ ଉପରୋକ୍ତ ଯୋଗାତ୍ମକ, ଗୁଣନାତ୍ମକ ତଥା ବଣ୍ଟନ ନିୟମ ପାଳନ କରୁଥିବେ ସେହି ସେଟ୍କ୍ ଗୋଟିଏ ଫିଲ୍ଡ (Field) କହାଯାଏ ।

ଏ ସମୟ ସତ୍ୟ ହେତୁ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q ଏକ ଫିଲଡ଼ (field) ।

ଦ୍ରଷ୍ଟବ୍ୟ (i) : Q ସେଟ୍ରେ ଗୁଣନର ବିଲୋମୀ ନିୟମ ସତ୍ୟ; ମାତ୍ର ଏହା Z ସେଟ୍ରେ ସତ୍ୟ ହେଉ ନ ଥିଲା ।

$$(ii): a + a + a +(n ଧର) = na ଓ a x a x a x(n ଧର) = a^n$$

'an' ସଂକେତକୁ ପ୍ରଥମେ **ଫରାସୀ ଗଣିତଜ୍ଞ Rene Descartes** ବ୍ୟବହାର କରିଥିଲେ ।

ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ କ୍ରମିତ (Ordered) । ଦୁଇଗୋଟି ପରିମେୟ ସଂଖ୍ୟା x ଓ y ଦିଆଯାଇ ଥିଲେ ତୁଳନା କରି କହି ହେବ (i) x>y କିୟା (ii) x< y କିୟା x=y । ଏହାକୁ **ତ୍ରିମୁଖୀ ନିୟମ** (trichotomy law) କୁହାଯାଏ ।

ମନେକର $\mathbf{x}=\frac{\mathbf{p}}{\mathbf{q}}$ ଓ $\mathbf{y}=\frac{\mathbf{r}}{\mathbf{s}};$ $\mathbf{p},$ $\mathbf{q},$ $\mathbf{r},$ $\mathbf{s}\in Z$ ଓ $\mathbf{q}\neq 0$ ଓ $\mathbf{s}\neq 0$ । \mathbf{x} ଓ \mathbf{y} ର ବିୟୋଗଫଳ ନିରୂପଣ କରି ତ୍ରମୁଖୀ ନିୟମକୁ ପରୀକ୍ଷା କରିବା ସହଜ । ଏଠାରେ ଆମେ \mathbf{q} ଓ \mathbf{s} କୁ ଧନାତ୍ମକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ରୂପେ ନେଉଛେ ।

ଅସମାନତା ସୟନ୍ଧୀୟ ନିମୁସ୍ଥ ନିୟମଗୁଡ଼ିକୁ ଲକ୍ଷ୍ୟ କର -

$$(i) \; x < y \; \mathsf{q} \mathsf{l} \; \frac{p}{\mathsf{q}} < \frac{r}{s} \; \mathsf{A} \widehat{\mathsf{q}} \; \mathsf{g} \; \mathsf{g}$$

$$(ii) \; x > y \; \mathsf{sl} \; \frac{\mathsf{p}}{\mathsf{q}} > \frac{\mathsf{r}}{\mathsf{s}} \; \; \mathtt{G} \widehat{\mathsf{q}} \; \; \mathtt{g} \; \; \mathsf{Gasm} \; \; \mathtt{G} \widehat{\mathsf{q}} \; \; \mathsf{ps} > \mathsf{qr} \; \mathtt{ULSI} \; \; \mathsf{ps} - \mathsf{qr} > 0$$

ଭଦାହରଣ ସ୍ୱରୂପ :
$$\frac{1}{6} - \frac{3}{7} = \frac{7 - 18}{42} = -\frac{11}{42} < 0;$$
 $\therefore \frac{1}{6} < \frac{3}{7}$
$$-\frac{1}{3} - \left(-\frac{1}{2}\right) = \frac{-2 + 3}{6} = \frac{1}{6} > 0;$$
 $\therefore -\frac{1}{3} > -\frac{1}{2}$

ନିମ୍ବଲିଖିତ ଅସମୀକରଣ ଗୁଡ଼ିକ ସତ୍ୟ ଅଟନ୍ତି ଯେଉଁ ଠାରେ $x,y,z\in Q$

(a)
$$x < y$$
 ଓ $y < z$ ହେଲେ, $x < z$, ଏହା ସଂକ୍ରମୀ ନିୟମ (law of transitivity)

(b)
$$x < y$$
 ହେଲେ, $x + z < y + z$,

(c)
$$x < y$$
 ଓ $z > 0$ ହେଲେ, $xz < yz$,

(d)
$$x < y$$
 ଓ $z < 0$ ହେଲେ, $xz > yz$

$$(e) \ 0 < x < y ହେଲେ \ \frac{1}{x} > \frac{1}{y} \ 3 \ y < x < 0 \ \ \text{ହେଲେ,} \ \ \frac{1}{y} > \frac{1}{x} \quad |$$

ପରିମେୟ ସଂଖ୍ୟାର ଘନତ୍ୱ (Density)

ପରିମେୟ ସଂଖ୍ୟାର କ୍ମ ସୟନ୍ଧୀୟ ଉପରୋକ୍ତ ତଥ୍ୟ ବ୍ୟବହାର କରି ଆମେ ପ୍ରମାଣ କରିପାରିବା ଯେ,

ଯେକୌଣସି ଦୁଇଟି ପରିମେୟ ସଂଖ୍ୟା ମଧ୍ୟବର୍ତ୍ତୀ ଅସଂଖ୍ୟ ପରିମେୟ ସଂଖ୍ୟା ଥାଏ ।

ଉଦାହରଣ- 1 : a ଓ b ଦୁଇଟି ପରିମେୟ ସଂଖ୍ୟା ଓ a < b । ହେଲେ $a < \frac{a+b}{2} < b$ ।

ସମାଧାନ :
$$a < b \implies a+a < a+b$$

$$\implies 2a < a+b \implies \frac{1}{2} \times 2a < \frac{1}{2} (a+b)$$

$$\implies a < \frac{a+b}{2} \quad(1)$$

ପୁନଷ୍ଟ
$$a < b \Rightarrow a + b < b + b \Rightarrow a + b < 2b \Rightarrow \frac{1}{2}(a + b) < \frac{1}{2} \times 2b$$
 $\Rightarrow \frac{a + b}{2} < b \qquad (2)$ (ପ୍ରମାଶିତ)

ଏହି ପଦ୍ଧତିକୁ ବାରୟାର ପ୍ରୟୋଗ କଲେ, a ଓ b ମଧ୍ୟବର୍ତ୍ତୀ ଅସଂଖ୍ୟ ସଂଖ୍ୟା ମିଳିବ । ଏହି ପ୍ରଣାଳୀରେ ବର୍ତ୍ତିତ a ଓ b ମଧ୍ୟବର୍ତ୍ତୀ କେତେକ ସଂଖ୍ୟା ନିମ୍ନରେ ଦିଆଗଲା ।

ମନେକର x ଓ y ଦୁଇଗୋଟି ପରିମେୟ ସଂଖ୍ୟା ଓ x < y । x ଅପେକ୍ଷା ବୃହତ୍ତର ଓ y ଅପେକ୍ଷା କୁଦ୍ରତର ସଂଖ୍ୟାଟି $\frac{1}{2}(x+y) = z_1;$ ସେହିପରି $\frac{1}{2}(x+z_1) = z_2$ ଓ $\frac{1}{2}(z_1+y) = z_3$ ମଧ୍ୟରେ x ଅପେକ୍ଷା ବୃହତ୍ତର ଓ y ଅପେକ୍ଷା କୁଦ୍ରତର

ଆଉ ଦୁଇଟି ପରିମେୟ ସଂଖ୍ୟା । ଏହି ସଂଖ୍ୟା z_1,z_2,z_3 .. ଇତ୍ୟାଦିଙ୍କୁ x ଓ y ମଧ୍ୟସ୍ଥ ପରିମେୟ ସଂଖ୍ୟା କୁହାଯାଏ । ଏହି ପଦ୍ଧତିକୁ ବାରୟାର ପ୍ରୟୋଗ କରି ଚାଲିଲେ ଆମେ ଦେଖିବା ଯେ, x ଓ y ପରିମେୟ ସଂଖ୍ୟା ଦ୍ୱୟ ମଧ୍ୟରେ ଅସଂଖ୍ୟ ପରିମେୟ ସଂଖ୍ୟା ବିଦ୍ୟମାନ । ଏହି ଧର୍ମକୁ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ର ଘନତ୍ୱ କୁହାଯାଏ । ଏଠାରେ ଲକ୍ଷ୍ୟ କରିବାର କଥା ଯେ $x < z_1 < y, \ x < z_2 < y$ ଇତ୍ୟାଦି । ଏହା ନିମ୍ନରେ ଦର୍ଶିତ ହୋଇଛି ।

$$x < y \text{ GPQ } y - x > 0; \ z_1 - x = \frac{x+y}{2} - x = \frac{y-x}{2} > 0 \mid (\because z_1 = \frac{x+y}{2})$$

ସୁତରା $^{\circ}$ $z_{_1} > x$;

ସେହିପରି
$$y - z_1 = y - \frac{x + y}{2} = \frac{y - x}{2} > 0$$
 । ସୁଡରାଂ $y > z_1$ ଅର୍ଥାତ୍ $x < z_1 < y$;

ସେହିପରି ଦର୍ଶାଯାଇପାରେ ସେ $x < z_{_{\! 2}} \ < z_{_{\! 1}} < y$ ଓ $x < z_{_{\! 1}} < z_{_{\! 3}} < y$ ।

ଉଦାହରଣ- 2:-1 ଓ 1 ମଧ୍ୟରେ ତିନିଗୋଟି ରଣାତ୍ମକ ଓ ଦୁଇ ଗୋଟି ଧନାତ୍ମକ ପରିମେୟ ସଂଖ୍ୟା ନିରୂପଣ କର ।

ସମାଧାନ : ରଣାତ୍ମକ ସଂଖ୍ୟା ପାଇଁ x=-1 ଓ y=0 ନିଆଯାଉ । $(\cdot \cdot \cdot \cdot)$ ଏଠାରେ -1<0<1)

$$\therefore \ \ Z_1 = \frac{x+y}{2} = \frac{-1+0}{2} = -\frac{1}{2}, \quad Z_2 = \frac{x+z_1}{2} = \frac{-1+\left(-\frac{1}{2}\right)}{2} = \frac{-\frac{3}{2}}{2} = -\frac{3}{4} \ \ \Im$$

$$z_3 = \frac{z_1 + y}{2} = \frac{-\frac{1}{2} + 0}{2} = -\frac{1}{4}$$

ଧନାତ୍ମକ ସଂଖ୍ୟା ପାଇଁ $\mathbf{x}=\mathbf{0}$ ଓ $\mathbf{y}=\mathbf{1}$ ନିଆଯାଉ ।

$$\therefore \ \ Z_1 = \frac{x+y}{2} = \frac{0+1}{2} = \frac{1}{2}, \ \ Z_2 = \frac{x+z_1}{2} = \frac{0+\frac{1}{2}}{2} = \frac{1}{4}$$

ସୂତରା° -1 ଓ 1 ମଧ୍ୟରେ ରଣାତ୍ମକ ପରିମେୟ ସଂଖ୍ୟା ତ୍ରୟ $-\frac{1}{2}, -\frac{3}{4}$ ଓ $-\frac{1}{4}$ ଏବଂ ଧନାତ୍ମକ ପରିମେୟ ସଂଖ୍ୟା ଦ୍ୱୟ $\frac{1}{2}, \frac{1}{4}$ ।

ଉଦାହରଣ- 3 : $\frac{1}{3}$ ଓ $\frac{4}{9}$ ର ମଧ୍ୟବର୍ତ୍ତୀ ତିନୋଟି ପରିମେୟ ସଂଖ୍ୟା ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : $\frac{1}{3}$ ଓ $\frac{4}{9}$ ର ମଧ୍ୟବର୍ତ୍ତୀ ସଂଖ୍ୟା ତିନୋଟି ହେଲେ -

$$x_1 = \frac{1}{2} \left(\frac{1}{3} + \frac{4}{9} \right) = \frac{1}{2} \left(\frac{3+4}{9} \right) = \frac{7}{18}, \quad x_2 = \frac{1}{2} \left(\frac{1}{3} + \frac{7}{18} \right) = \frac{1}{2} \left(\frac{6+7}{18} \right) = \frac{13}{36}$$

∴ ପରିମେୟ ସଂଖ୍ୟାତ୍ରୟ ହେଲେ
$$\frac{7}{18}, \frac{13}{36}$$
 ଓ $\frac{25}{72}$

ଦ୍ରଷ୍ଟବ୍ୟ : x ଓ y ପରିମେୟ ସଂଖ୍ୟା ହେଲେ $(x\pm y)^2, (x\pm y)^3, x^2\!\!-y^2, x^3\!\pm y^3$ ସଂକ୍ରାନ୍ତୀୟ ସମୟ ସୂତ୍ର ସତ୍ୟ ଅଟନ୍ତି । ବୀଜଗାଣିତିକ ଧର୍ମଗୁଡ଼ିକର ପ୍ରୟୋଗରେ ଏହି ସୂତ୍ର ଗୁଡ଼ିକୁ ସାବ୍ୟୟ କରାଯାଇ ପାରିବ । ଉଦାହରଣ ସ୍ୱରୂପ

$$x^2 + 2xy + y^2 = x.x + xy + xy + yy$$

$$= x(x+y) + (x+y)y = x(x+y) + y(x+y) \quad (ବଞ୍ଜନ ନିୟମ)$$

$$= (x+y)(x+y) = (x+y)^2 \quad (ସଂଜ୍ଞା) \mid (ପ୍ରମାଣିତ)$$

2.4 ପରିମେୟ ସଂଖ୍ୟାର ଦଶମିକ ରୂପ :

ମନେକର $x=\frac{p}{q}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ଓ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା q>0 । p କୁ ଲବ ଓ q କୁ ହର କୁହାଯାଏ । p କୁ q ଦ୍ୱାରା ଭାଗ କଲେ କେତେକ କ୍ଷେତ୍ରରେ ଭାଗ ପ୍ରକ୍ରିୟାଟିର ପରିସମାପ୍ତି ଘଟେ ଓ ଆଉ କେତେକ କ୍ଷେତ୍ରରେ ଭାଗ ପ୍ରକ୍ରିୟାର ପରିସମାପ୍ତି କେବେ ହେଲେ ବି ଘଟେ ନାହିଁ । ଉଦାହରଣ ସ୍ୱରୂପ,

$$(i)$$
 $\frac{1}{2} = 0.5, \ \frac{1}{4} = 0.25, \frac{1}{5} = 0.2, \frac{3}{25} = 0.12$ ଇତ୍ୟାଦି; ଯେଉଁ କ୍ଷେତ୍ରରେ ଭାଗ ପ୍ରକ୍ରିୟାର ପରିସମାପ୍ତି ଘଟିଥାଏ ।

(ii) $\frac{1}{3}=0.33333...$, $\frac{1}{7}=0.14285714285714$, $\frac{5}{6}=0.83333...$ ଇତ୍ୟାଦି; ସେଉଁ କ୍ଷେତ୍ରରେ ଭାଗ ପୁକ୍ତିୟାଟିର ପରିସମାସ୍ଟି କମା ଘଟେ ନାହିଁ ।

ପ୍ରଥମ କ୍ଷେତ୍ରରେ ଦଶମିକ ରୂପଟି ସମୀମ ବା **ସରନ୍ତି (terminating)** କିନ୍ତୁ ଦ୍ୱିତୀୟ କ୍ଷେତ୍ରରେ ଏହା ଅସୀମ ବା **ଅସରନ୍ତି (non-terminating)** ଦଶମିକ ଭଗୁସଂଖ୍ୟା ।

ଯେଉଁ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାରେ ଦଶମିକ ବିନ୍ଦୁ ପରବର୍ତ୍ତୀ ଗୋଟିଏ ଅଙ୍କ ବା ଏକାଧିକ ଅଙ୍କମାନ ବାରୟାର କ୍ରମାନ୍ୟରେ ଆବିର୍ଭାବ ହୁଏ ତାହାକୁ **ପୌନଃପୁନିକ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟା (Recurring Decimals)** କୁହାଯାଏ ।

ଯଥା : $0.3333...=0.\overline{3},\ 0.14285714285714...=0.\overline{142857},\ 0.8333....=0.8\overline{3}$ ଇତ୍ୟାଦି । ଲକ୍ଷ୍ୟ କର, ପୁନରାବୃତ୍ତି ହେଉଥିବା ଅଙ୍କଗୁଡ଼ିକୁ ଥରେ ମାତ୍ର ଲେଖି ଏହା ଉପରେ ଗୋଟିଏ ଗାର ଦେଇ ପୁନରାବୃତ୍ତିକୁ

ସୂଚାଯାଇଛି ।

ମନେରଖ : ପ୍ରତ୍ୟେକ ପରିମେୟ ସଂଖ୍ୟା ଦୁଇଟି ରୂପରେ ପ୍ରକାଶିତ ହୋଇପାରେ ଯଥା :

ସସୀମ ଦଶମିକ (terminating decimals) ରୂପ ଏବଂ

ଅସୀମ ପୌନଃପୁନିକ ଦଶମିକ (non-terminating and recurring decimals) ରୂପ ।

ଏଥିରୁ ସମ୍ପ ଜଣାପଡ଼େ ଯେ, ପ୍ରତ୍ୟେକ ସସୀମ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟା ଏବଂ ପ୍ରତ୍ୟେକ ଅସୀମ ଅଥଚ ପୌନଃପୁନିକ ଦଶମିକ ଭଗ୍ନ ସଂଖ୍ୟା ଗୋଟିଏ ଗୋଟିଏ ପରିମେୟ ସଂଖ୍ୟା ଅଟନ୍ତି ।

ଉପରୋକ୍ତ ଦୁଇ ଭଗୁ ସଂଖ୍ୟା ରୂପ ଭିନ୍ନ

(iii) 0.101001000100001....., -1.21221222122221... ଇତ୍ୟାଦି

ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାଗୁଡ଼ିକ ଅସୀମ (non-terminating) କିନ୍ତୁ ପୌନଃପୁନିକ ନୁହଁନ୍ତି । ତେଣୁ ଏଗୁଡ଼ିକ ପରିମେୟ ସଂଖ୍ୟା ନହଁନ୍ତି ।

ବି.ଦ୍ର.: ଯେକୌଣସି ସସୀମ ଦଶମିକ ସଂଖ୍ୟାକୁ ଅସୀମ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାରେ ପରିଶତ କରାଯାଇପାରେ । ଯଥା: 0.5 = 0.5000.... , 0.31 = 0.310000.... ଇତ୍ୟାଦି ।

ଦଶମିକ ରୂପରୁ ପରିମେୟ ରୂପକୁ ପରିବର୍ତ୍ତନ ସୟଦ୍ଧୀୟ ନିମ୍ନ ଉଦାହରଣଗୁଡ଼ିକୁ ଦେଖ ।

ଉଦାହରଣ - 4 : (i) 0.58 (ii) $5.\overline{7}$ (iii) $1.\overline{32}$ (iv) $0.7\overline{12}$ ର ପରିମେୟ ରୂପ ନିରୂପଣ କର ।

ସମାଧାନ : (i) 0.58 ସସୀମ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟା । $\therefore 0.58 = \frac{58}{100} = \frac{29}{50}$ (ଉଉର)

(ii), (iii) ଓ (iv) ପ୍ରଶ୍ରରେ ଥିବା ଦଶମିକ ରାଶିଗୁଡ଼ିକ ଅସୀମ ପୌନଃପୁନିକ ଦଶମିକ ଭଗୁସଂଖ୍ୟା ।

$$(ii)$$
 ମନେକର $x=5.\overline{7}=5.7777...$ $\Rightarrow 10x=57.7777...$ ପୁତରାଂ $10x-x=(57.7777....)-(5.7777....)$ $\Rightarrow 9x=52\Rightarrow x=rac{52}{9}$ । (ଉତ୍ତର)

(iii) ମନେକର x = 1.32 = 1.323232.....
 ⇒ 100x = 132.323232.....
 ∴ 100x - x = (132.323232.....) - (1.323232.....)
 ⇒ 99x = 131 ⇒ x = 131/99 | (ଉଉର)

(iv) ମନେକର $x = 0.7\overline{12} = 0.7121212...$ $\Rightarrow 10x = 7.121212...$ $\Rightarrow 1000x = 712.121212...$ $\therefore 1000x - 10x = (712.121212...) - (7.121212...)$ $\Rightarrow 990x = 705 \Rightarrow x = \frac{705}{990} = \frac{141}{198}$ । (ଉଉର)

 $(1000x-100x,\ 100x-10x$ ବା 100x-x ଦ୍ୱାରା 'x' ର ମାନ କାହିଁକି ନିରୂପଣ ନ ହୋଇପାରିବ ନିଜେ ପରୀକ୍ଷା କରି ଦେଖ)

ଦ୍ରଷ୍ଟବ୍ୟ : ଉପରୋକ୍ତ ଆଲୋଚନାରୁ ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ, ପ୍ରତ୍ୟେକ ସସୀମ ଦଶମକ ଭଗ୍ନସଂଖ୍ୟା ଏବଂ ଅସୀମ ଓ ପୌନଃପୁନିକ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାକୁ ପରିମେୟ ସଂଖ୍ୟା ରୂପରେ ପରିଣତ କରିହେବ ।

ଏହାର ବିପରୀତ ଉକ୍ତିଟି ମଧ୍ୟ ସତ୍ୟ । ପ୍ରତ୍ୟେକ ପରିମେୟ ସଂଖ୍ୟାକୁ ସସୀମ ଦଶମିକ ଭଗ୍ନ ସଂଖ୍ୟାରେ ବା ଅସୀମ ଓ ପୌନଃପୁନିକ ଦଶମକ ଭଗ୍ନ ସଂଖ୍ୟାରେ ପକାଶ କରିହେବ ।

ଉଦାହରଣ - 5 : ସରଳ କର : $(1.1\overline{9})^2 + 2 \times 1.1\overline{9} \times 1.7\overline{9} + (1.7\overline{9})^2$

ସମାଧାନ : ଦଉ ପରିପ୍ରକାଶରେ $1.1\overline{9}=1.2,\,1.7\overline{9}=1.8$ | (ନିଜେ ପରୀକ୍ଷା କରି ଦେଖ) ଦଉ ପରିପ୍ରକାଶ = $(1.2)^2+2$ x 1.2 x $1.8+(1.8)^2=(1.2+1.8)^2=3^2=9$ (ଉଉର)

ଅନୁଶୀଳନୀ - 2 (a)

1. ଭୁଲ୍ ଥିଲେ (F) ଓ ଠିକ୍ ଥିଲେ (T)	ଲେଖ		
(i)-1 ଦ୍ୱାରା -201 ବିଭାଜ୍ୟ	(ii) 1	ଦ୍ୱାରା 0 ବିଭାଜ୍ୟ	(iii) 0 ଦ୍ୱାରା 5 ବିଭାଜ୍ୟ
(iv) ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ପରିମେୟ ନୁହେଁ	(v) –:	5 < -3	(vi) 0.9 ଏକ ପରିମେୟ ସଂଖ୍ୟ
(vii) 0 ଏକ ଗଣନ ସଂଖ୍ୟା	(viii)	$-rac{1}{2}$ ଏକ ପରିମେୟ ସ	[?] લપા
(ix) a, $b \in N$ ହେଲେ $ab \in N$	(x) a	a, b ∈ N ହେଲେ a –	$b \in N$
(xii) $a, b \in N$ ହେଲେ $a - b \in Z$	(xii)	$a,b\in Z$ ହେଲେ $\frac{a}{b}\in$	Q
2. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର :			
(i) $\frac{1}{2}$ ର ଯୋଗାତ୍ମକ ବିଲୋମୀ		(ii) –7 ର ଗୁଣନାମ୍ଡ	କ ବିଲୋମୀ
(iii) ତା' ନିଜର ଯୋଗାମ୍କ ବିଳେ	ଧାମୀ	(iv) ତା' ନିଜର	। ଗୁଣନାତ୍ମକ ବିଲୋମୀ ।
(v) ପୂର୍ଷ ସଂଖ୍ୟା ସେଟ୍ରେ ଯୋଗାତ୍ମକ ହ	ଅଭେଦ	(vi) ଯୁଗ୍ମ ଓ ଅଯୁଗ୍ମ ହ	ାଂଖ୍ୟାର ଯୋଗଫଳ
(vii) ଏକମାତ୍ର ଯୁଗ୍ମ ମୌଳିକ ସଂଖ୍ୟ	। ଅଟେ ।	(viii) ସର୍ବନିମ୍ନ ଅଯୁଗ୍ନ	। ମୌଳିକ ସଂଖ୍ୟାଟି ଅଟେ ।
(ix) ଗୁଣନ ପ୍ରକ୍ରିୟା ପ୍ରକ୍ରିୟାକୁ ବ୍ୟଟ	ନ କରେ I		
(x) ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ରେ ଦୁଇଟି	ପରସ୍କର ସେ	ପାଗାତ୍ମକ ବିଲୋମୀ ଉପା	ଦାନକୁ ମିଶାଇଲେ ଫଳ ଅଟେ ।
(xi) $N \cap N^* =$		(xii) Z ସେଟ୍ରେ –	l ର ଗୁଣନାତ୍ମକ ବିଲୋମୀ
3. ନିମ୍ନଲିଖିତ ପ୍ରତ୍ୟେକ ପ୍ରଶ୍ନ ପାଇଁ ପ୍ର	ଦଉ ସୟା	ବ୍ୟ ଉଉରରୁ ଠିକ୍ ଉଉ	ରଟିକୁ ବାଛ ।
(i) $n, m \in Z$ ହେଲେ ନିମ୍ନଲିଖିତ ମଧ୍	ରୁ କେଉଁଟି	ଅସତ୍ୟ ?	
(a) $m + n \in Z$, (b) $m - n \in Z$	Z (c) 1	$m \times n \in Z$ (d) $n \cdot n$	$m \in Z$
(ii) Z ସେଟ୍ରେ କେଉଁଟି ସତ୍ୟ ?			
(a) ଯୋଗାମ୍କ ଅଭେଦ 0	(b) 69	ପାଗାତ୍ମକ ଅଭେଦ 1	
(c) ଗୁଣନାତ୍ମକ ଅଭେଦ 0	(d) 6	ଯାଗାତ୍ମକ ବିଲୋମୀ (-1)
(iii) ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ କେଉଁଟି ସତ୍ୟ ?			
(a) ସବୁଠାରୁ କ୍ଷୁଦ୍ରତମ ମୌଳିକ ସ	°ଖ୍ୟାଟି 3	(b) ଦୁଇଟି ଅଯୁଗ୍ମ ସଂ	ଖ୍ୟାର ଯୋଗଫଳ ଅଯୁଗ୍ମ
(c) ଦୁଇଟି ଅଯୁଗୁ ସଂଖ୍ୟାର ଗୁଣଫ	ଳ ଅଯୁଗୁ	(d) ଦୂଇଟି ମୌଳିକ	ସଂଖ୍ୟାର ଗୁଣଫଳ ମୌଳିକ

(iv)	ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ	କେଉଁଟି ସତ୍ୟ ?		
	(a) $x < y \otimes y$	z < z ହେଲେ $x < z$	< z	
	(b) $x < y \otimes z$	z ∈ Q ହେଲେ x	z < yz	
	$(c) x < y \otimes z$	x ∈ Q ହେଲେ x	+z <y+z td="" ନ<=""><td>ହୋଇ ପାରେ ।</td></y+z>	ହୋଇ ପାରେ ।
	(d) ଦୁଇଟି ପରି	ମୟ ସଂଖ୍ୟା ମଧ୍ୟ	ରେ ସସୀମ ସଂଖ୍ୟକ	୍ ପରିମେୟ ବିଦ୍ୟମାନ ।
(v)	ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ ୧	କେଉଁଟି ଠିକ୍ ?		
	(a) 0.9999.	< 1.0	(b)	$rac{1}{5}$ ର ଦଶମିକ ପରିପ୍ରକାଶଟି 0.19999
	$(c) \frac{1}{3}$ ର ଦଶ	ାମିକ ପରିପ୍ରକାଶ ଃ	ଅସରତ୍ତି ନୁହେଁ ।	
	(d) n ଏକ 6	ମିଳିକ ସଂଖ୍ୟା ହେ	ହଲେ $\frac{1}{n}$ ର ଦଶମିତ	କ ପରିପ୍ରକାଶ ସର୍ବଦା ପୌନଃପୁନିକ ।
(vi)	$\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}$	ୀଧ୍ୟରେ ବୃହତ୍ତମ ପ	।ରିମେୟ ସଂଖ୍ୟା ଦ	କଉଁଟି ?
	(a) $\frac{1}{2}$	(b) $\frac{2}{3}$	(c) $\frac{3}{5}$	(d) $\frac{4}{7}$
(vii)	$\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}$	ମଧ୍ୟରେ କ୍ଷୁଦ୍ରଉମ	ସଂଖ୍ୟା କେଉଁଟି ?	
	(a) $\frac{1}{2}$	(b) $\frac{2}{3}$	(c) $\frac{3}{5}$	(d) $\frac{4}{7}$
(viii) 1 ର ଯୋଗାତ୍ମ	କ ବିଲୋମୀ କେଡ	ब्रॅंडि ?	
	(a) 1	(b) 0	(c) -1	(d) ଏଥିରୁ କୌଣସିଟି ନୁହେଁ
(ix)	ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ	୍କେଉଁ ଉକ୍ତିଟି ଅଦ	ସତ୍ୟ ?	
	(a) p ଓ q ମୌ	ଳିକ ହେଲେ ସେହ	ମାନଙ୍କର ଗ.ସା.ଗୁ.	= 1
	(b) p ଓ q ଗଣ	ନ ସଂଖ୍ୟା ହେଲେ	p+q+pq < 0	କ ଗଣନ ସଂଖ୍ୟା ।
	(c) p g q 68	ମିଳିକ ସଂଖ୍ୟା ହେ	ଲେ p+q ମଧ୍ୟ ଏ	ୀକ ମୌଳିକ ସଂଖ୍ୟା ।
	(d) p ଏକ ପୂର୍ଷ	ସଂଖ୍ୟା ଓ ସ ଏକ	ଗଣନ ସଂଖ୍ୟା ହେ	ହଲେ pq ଏକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ।
4.	ପ୍ରତି ଯୁଗ୍ମ ସଂଖ୍ୟା	ଯୌଗିକ ଅଟେ କି	? କାରଣ ସହ ଉ	ଭର ଦିଅ ।
5.	କେଉଁ କେଉଁ ବୀଜ ସେଗୁଡ଼ିକ ଲେଖ		ନ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ସେଚ	୍ ${f Z}$ ରେ ସତ୍ୟ, ମାତ୍ର ଗଣନ ସଂଖ୍ୟା ସେଟ୍ରେ ସତ୍ୟ ନୁହେ

- କେଉଁ କେଉଁ ବୀଜଗାଣିତିକ ଧର୍ମଗୁଡ଼ିକ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ ${f Q}$ ରେ ସତ୍ୟ, ମାତ୍ର ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ସେଟ୍ରେ ଅସତ୍ୟ ସେଗୁଡ଼ିକ ଲେଖ ।
- x ଓ y ଅଯୁଗୁ ହେଲେ ପ୍ରମାଣ କର ଯେ, xy ଅଯୁଗୁ ମାତ୍ର x+y ଯୁଗୁ \mid
- ଅଯୁଗ୍ମ ସଂଖ୍ୟାମାନେ ଯୋଗ ଜନିତ ସଂବୃତ୍ତି ନିୟମ ପାଳନ କରନ୍ତି କି ? କାରଣ ସହ ଉତ୍ତର ଦିଅ ।
- 15 ଅପେକ୍ଷା ବୃହତ୍ତର ଓ 100 ଠାରୁ କ୍ଷୁଦ୍ରତର ଯେଉଁ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ଗୁଡ଼ିକର ସାଧାରଣ ରୂପ $3n^2+2,\,n\in Z$ ସେଗୁଡ଼ିକ ଲେଖ ।
- 10. 0.123 123 123 ସଂଖ୍ୟାଟି ପରିମେୟ ସଂଖ୍ୟା ହେବ କି ? କାରଣ ସହ ଉତ୍ତର ଦିଅ ।
- $11. \ \ 0.131$ ସଂଖ୍ୟାକୁ $rac{p}{a}$ ପରିମେୟ ରୂପରେ ପ୍ରକାଶ କର ।
- $12. \ \ \, \frac{1}{3} \$ ପରିମେୟ ସଂଖ୍ୟାଟିକୁ ଅସରନ୍ତି ପୌନଃପୁନିକ ଦଶମିକ ରୂପେ ଲେଖ ।
- $13. \ \, \frac{1}{3} \ \,$ ପରିମେୟ ସଂଖ୍ୟାଟିକୁ ଲଘିଷାକୃତ୍ତି ନ ହୋଇଥିବା $\frac{100}{q_1}, \frac{p_2}{-102}, \frac{6xp_3}{q_2}$ ରୂପରେ ପ୍ରକାଶ କର ।
- $15. \ \ \frac{1}{4} \ {}_{9} \ \frac{1}{5} \ {}_{7}$ ମଧ୍ୟରେ 4 ଗୋଟି ପରିମେୟ ସଂଖ୍ୟା ନିର୍ଣ୍ଣୟ କର ।
- $16. \frac{1}{2}$ ଓ $\frac{1}{3}$ ମଧ୍ୟରେ 3 ଗୋଟି ପରିମେୟ ସଂଖ୍ୟା ନିର୍ଣ୍ଣୟ କର ।
- $17. \ \ \, \frac{27}{7} \ \,$ ପରିମେୟ ସଂଖ୍ୟାଟିକୁ ଅସରନ୍ତି ପୌନଃପୁନିକ ଦଶମିକ ରୂପେ ପ୍ରକାଶ କର ।
- 18. ପ୍ରମାଶ କର T
 - (i) $0.\overline{9} = 1$ (ii) $1.\overline{29} = 1.3$ (iii) $2.34\overline{9} = 2.35$
- 19. ପରିମେୟ ରୃପରେ ପ୍ରକାଶ କର l
 - (i) $0.\overline{1}$ (ii) $0.\overline{11}$
- (iii) $0.\overline{89}$ (iv) $0.\overline{37}$ (v) $0.\overline{123}$
- $(vi) 0.32\bar{1}$

- (vii) $-0.5\overline{4}$

- viii) $6.8\overline{9}$ (ix) $-0.\overline{12}$ (x) $0.013\overline{05}$
- 20. ମୂଲ୍ୟ ନିରୂପଣ କର (ପୂର୍ତ୍ତ ସଂଖ୍ୟା କିୟା ଭଗ୍ନ ସଂଖ୍ୟା ରୂପରେ) ।
 - (i) $0.\overline{6} + 0.\overline{3}$
- (ii) $0.\overline{6} (0.\overline{3}) \times 2$ (iii) $(0.\overline{6})^2 + (0.\overline{3})^2 + 2 \times (0.\overline{6}) \times (0.\overline{3})$
- (iv) $(0.\overline{6})^2 + (0.\overline{3})^2 2x(0.\overline{6})x(0.\overline{3}) + 0.\overline{6}$ (v) $(0.\overline{6})^2 (0.\overline{3})^2$
- (vi) $(0.\overline{6})^3 + (0.\overline{3})^3 + 3 \times (0.\overline{6}) \times (0.\overline{3})$
- (vii) $(0.\overline{6})^3 (0.\overline{3})^3 3 \times (0.\overline{3}) (0.\overline{6}) \times (0.\overline{6} 0.\overline{3})$

2.5 ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q ର ଅଭାବତ୍ୱ (Inadequacy of Rationals) ଏବଂ ଅପରିମେୟ ସଂଖ୍ୟା (Irrational numbers) :

ଏକ ଧନାତ୍ପକ ରାଶିର ବର୍ଗମୂଳ ଧନାତ୍ପକ କିୟା ରଣାତ୍ପକ ହୋଇପାରେ । ଏଠାରେ ଆମେ କେବଳ ଧନାତ୍ପକ ବର୍ଗମୂଳଟିକୁ ବିଚାର କରୁଛେ । $\sqrt{1}=1$, $\sqrt{4}=2$, $\sqrt{9}=3$ ଇତ୍ୟାଦି ଆମେ ଜାଣିଛେ । 1, 4, 9, 16,.... ଇତ୍ୟାଦି ବର୍ଗରାଶି (Square number) । ଏହି ବର୍ଗ ରଶିମାନଙ୍କ ପରିବର୍ତ୍ତେ ଆମେ ଯଦି 2, 3, 5,... ଇତ୍ୟାଦି ର ବର୍ଗମୂଳ ନେବା । ଏଗୁଡ଼ିକ ବର୍ଗରାଶି ନ ହୋଇଥିବାରୁ ଏମାନଙ୍କୁ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ରୂପେ ଲେଖିବା । ଏମାନଙ୍କୁ ମଧ୍ୟ $2^{1/2}$, $3^{1/2}$, $5^{1/2}$ ଭାବେ ଲେଖି ପ୍ରକାଶ କରାଯାଏ । ବର୍ଗମୂଳ ପ୍ରକ୍ରିୟା ସହ ଆମେ ପରିଚିତ । 2 ର ବର୍ଗମୂଳ ନିରୂପଣ କଲେ ଆମେ ଦେଖୁ : $\sqrt{2}=1.4142135623730950488$ ସେହିପରି $\sqrt{3}=1.7320508$, $\sqrt{5}=2.236068$... ଇତ୍ୟାଦି । ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟରେ ଦଶମିକ ବିନ୍ଦୁ ପରେ ଯେତେ ଅଧିକ ସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ନିର୍ଣ୍ଣୟ କଲେ ମଧ୍ୟ ଏହି ପ୍ରକ୍ରିୟାର ପରିସମାପ୍ତି ଘଟେ ନାହିଁ । ଅର୍ଥାତ୍ ଦଶମିକ ରାଶିଟି ମଧ୍ୟ କେବେ ହିଁ ପୌନଃପୁନିକ ହେବ ନାହିଁ । ସୁତରାଂ ଏ ସଂଖ୍ୟାଗୁଡ଼ିକ ପରିମେୟ ସଂଖ୍ୟା ହେବେ ନାହିଁ ।

 $\sqrt{2}\,,\,\sqrt{3}\,,\sqrt{5}\,\,,\,2\sqrt{2}\,$ ଆଦି ସଂଖ୍ୟା ବିଭିନ୍ନ କ୍ଷେତ୍ରରେ ଉପୁଜି ଥାଏ । ସେଥିରୁ କେତେଗୋଟି ନିମ୍ନରେ ସୂଚିତ ହେଲା ।

- $(ii)\ x^2-3=0$ ସମୀକରଣ ର ସମାଧାନ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ରେ ପାଇବା ନାହିଁ । କାରଣ ଏଠାରେ ଆବଶ୍ୟକ ଧନାତ୍ମକ ବର୍ଗମୂଳଟି $\sqrt{3}$ ହେବ ।

B

(ଚିତ୍ର 2.2)

ତେଣୁ ବିଭିନ୍ନ ଗାଣିତିକ ପ୍ରଶ୍ମମାନଙ୍କ ସମାଧାନ କରିବା ବେଳେ $\sqrt{2}\,,\!\sqrt{3}\,,\!\sqrt{5}\,$ ଇତ୍ୟାଦି ପରି ସଂଖ୍ୟା ଉପୁଜିବେ । ଯାହା ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q ର ଉପାଦାନ ନ ହୋଇ ପାରନ୍ତି । ଉଦାହରଣ ସ୍ୱରୂପ : $x^2-2=0, x^2-5=0$ ଇତ୍ୟାଦିର ସମାଧାନ Q ସେଟ୍ରେ ନ ଥାଏ । ତେଣୁ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q ର ସଂପ୍ରସାରଣ ଅତ୍ୟନ୍ତ ଆବଶ୍ୟକ ।

ବର୍ତ୍ତମାନ $\sqrt{2}$ ସଂଖ୍ୟାଟି ପରିମେୟ ନୁହେଁ ତାହାର ତାର୍କିକ ପ୍ରମାଶ (Logical proof) ସମ୍ବନ୍ଧରେ ଆଲୋଚନା କରିବା ।

 $\sqrt{2}$ ସଂଖ୍ୟାଟି ପରିମେୟ ନୁହେଁ ଏହାର ପ୍ରମାଣ ପାଇଁ ନିମ୍ବଲିଖିତ ଧାରଣାଗୁଡ଼ିକ ଆବଶ୍ୟକ ।

- (i) ଏକ ପରିମେୟ ସଂଖ୍ୟାର ବ୍ୟାପକ ରୂପ $\frac{p}{q}$ ଯେଉଁଠାରେ p ଓ q ର ସାଧାରଣ ଉତ୍ପାଦକଟି 1 ଓ ଏହା ବ୍ୟତୀତ ଅନ୍ୟ କିଛି ନୁହେଁ । $\frac{2}{4}$, $\frac{3}{6}$ ଇତ୍ୟାଦି ଲଘିଷ୍ଠାକୃତି ନୁହଁନ୍ତି । ଏମାନଙ୍କର ଲଘିଷ୍ଟାକୃତି ରୂପଟି $\frac{1}{2}$ ।
- (ii) ଅନେକ କ୍ଷେତ୍ରରେ ଏକ ଉପପାଦ୍ୟର ପ୍ରମାଣ **ବିରୋଧାଭାଷ ପଦ୍ଧତି (Method of contradiction)**ରେ କରାଯାଏ । ଏହି ପଦ୍ଧତିରେ ଆମକୁ ଯଦି ଗୋଟିଏ ଉକ୍ତି ସତ୍ୟ ବୋଲି ପ୍ରମାଣ କରିବାକୁ ଥାଏ, ତେବେ ଆମେ ଉକ୍ତିଟିକୁ ଅସତ୍ୟ ବୋଲି ଗ୍ରହଣ କରି ଅଗ୍ରସର ହେଲେ ଏକ ବିରୋଧାଭାଷ (ଯାହାକି ଗ୍ରହଣୀୟ ନୁହେଁ) ରେ ପହଁଞ୍ଚବାକୁ ଚେଷ୍ଟା

କରି ଥାଉ । ଏପରି ଅଗ୍ରହଣୀୟ ପରିସ୍ଥିତି ଯଦି ଉପୁଜେ ତେବେ ମୂଳରୁ ସ୍ୱୀକାର କରାଯାଇଥିବା ତଥ୍ୟ, ''ଉକ୍ତିଟି ସତ୍ୟ ନୁହେଁ'' କୁ ପରିତ୍ୟାଗ କରିବାକୁ ହେବ । ଏଠାରେ ହିଁ ପ୍ରମାଣଟି ସମ୍ପୂର୍ଣ୍ଣ ହୋଇଥାଏ । ଉଚ୍ଚତର ଶ୍ରେଣୀରେ ଏହି ପଦ୍ଧତିରେ ଅନେକ ଉପପାଦ୍ୟର ପ୍ରମାଣ କରିବ ।

ଦ୍ରଷ୍ଟବ୍ୟ : ଗୋଟିଏ ବର୍ଗ ସଂଖ୍ୟା ଯୁଗ୍ମ କିୟା ଅଯୁଗ୍ମ ହୋଇପାରେ । 1,9,25,... ବର୍ଗ ସଂଖ୍ୟାଗୁଡ଼ିକ ଅଯୁଗ୍ମ ଓ 4,16,36... ବର୍ଗ ସଂଖ୍ୟା ଗୁଡ଼ିକ ଯୁଗ୍ମ । ଏହି ସଂଖ୍ୟା ଗୁଡ଼ିକ ଦେଖି ଆମେ କହି ପାରିବା ଯେ " a^2 ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା ହେଲେ a ମଧ୍ୟ ଯୁଗ୍ମ ' ଓ " a^2 ଅଯୁଗ୍ମ ହେଲେ a ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ' । ଉକ୍ତ ଉକ୍ତିଗୁଡ଼ିକର ଯୁକ୍ତି ମୂଳକ ପ୍ରମାଣ ଉଚ୍ଚମାଧ୍ୟମିକ ଷ୍ଟରରେ କରାଯିବ ।

ଉପପାଦ୍ୟ- $1:\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ନୁହେଁ। (ସୂଚନା : ବିରୋଧାଭାଷ ପଦ୍ଧତିର ପ୍ରୟୋଗରେ ପ୍ରମାଣ କରାଯାଇଛି ।)

ପ୍ରମାଣ : ମନେକର $\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ।

$$(i)$$
 ର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗ ନେଲେ $2=rac{p^2}{q^2} \Rightarrow \ 2q^2=p^2$ (ii)

 $2q^2$ ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା ହୋଇଥିବାରୁ p^2 ମଧ୍ୟ ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା।

ସ୍ତରାଂ p ମଧ୍ୟ ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା।

ମନେକର p=2n (iii) (ଯେଉଁଠାରେ n ଏକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା)

(ii)
$$\Im$$
 (iii) \Im $2q^2 = (2n)^2 = 4n^2 \Rightarrow q^2 = 2n^2$ (iv)

ଅର୍ଥାତ୍ \mathbf{q}^2 ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା । ତେଣୁ \mathbf{q} ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା । ଅତଏବ $\mathbf{q}=2\mathbf{m}$ (\mathbf{v})

 $\sqrt{2}$ ଇତ୍ୟାଦି ପରି ରାଶିମାନଙ୍କୁ ଆମେ **ଅପରିମେୟ** (irrational) ସଂଖ୍ୟା କହିଥାଉ । ଅନୁରୂପ ଭାବେ ପ୍ରମାଣ କରାଯାଇ ପାରେ ଯେ $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, $\sqrt{11}$ ଇତ୍ୟାଦି ସଂଖ୍ୟାଗୁଡ଼ିକ ଅପରିମେୟ ।

ମନେରଖ ଯେ, \mathbf{p} ମୌଳିକ ହେଲେ $\sqrt{\mathbf{p}}$ ଅପରିମେୟ ହେବ ।

2.6 ଅସୀମ ଓ ଅଣପୌନଃପୁନିକ ଦଶମିକ ରାଶି (Non-terminating and non-recurring decimals) :

ଆମେ ଜାଣୁ ଯେ, ପ୍ରତ୍ୟେକ ପରିମେୟ ସଂଖ୍ୟାକୁ ଏକ ସସୀମ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାରେ ବା ଅସୀମ ଓ ପୌନଃପୁନିକ ଦଶମିକ ଭଗ୍ନସଂଖ୍ୟାରେ ପ୍ରକାଶ କରିହେବ । କିନ୍ତୁ ଅପରିମେୟ ସଂଖ୍ୟାଗୁଡ଼ିକର ଦଶମିକ ରୂପ (ଅନୁଚ୍ଛେଦ 2.5ରେ $\sqrt{2}$, $\sqrt{3}$ ଓ $\sqrt{5}$ ର ଦଶମିକ ରୂପକୁ ଅନୁଧାନ କର) ଅସୀମ ହେବ ଏବଂ ଅଣ-ପୌନଃପୁନିକ ହେବ ।

ଉଦାହରଣ ସ୍ୱରୂପ : 0.202002000200002000002....,

7.121122111222111122221111122222..... ଇତ୍ୟାଦି ଅପରିମେୟ

କେବଳ ବର୍ଗମୂଳ କରିଆରେ (ଯଥା : $\sqrt{2}$, $\sqrt{3}$ ଓ $\sqrt{5}$ ଇତ୍ୟାଦି) ଯେ, ଅପରିମେୟ ସଂଖ୍ୟା ଉତ୍ପନ୍ନ ହୁଏ ତାହା ନୁହେଁ । ସମୀକରଣ $x^3=2,\,x^4=2...$ ଇତ୍ୟାଦି ସମୀକରଣକୁ ସମାଧାନ କରି $\sqrt[3]{2},\sqrt[4]{2}$...ଇଦ୍ୟାଦି ଅପରିମେୟ ସଂଖ୍ୟା ପାଇପାରିବା । n-ତମ ମୂଳ ନେଇ ଉତ୍ପନ୍ନ ସଂଖ୍ୟା ବିଷୟରେ ଉଚ୍ଚତର ଶ୍ରେଣୀରେ ପଢ଼ିବ ।

ମନେରଖ : ବାୟବିକ ଯେତେ ପରିମେୟ ସଂଖ୍ୟା ଅଛି ତା'ଠାରୁ ଯଥେଷ୍ଟ ଅଧିକ ସଂଖ୍ୟାର ଅପରିମେୟ ସଂଖ୍ୟା ରହିଛି ।

ଉଦାହରଣ - 6 : ଦର୍ଶାଅ ଯେ, (i) $3 + \sqrt{2}$ (ii) $3\sqrt{2}$ ସଂଖ୍ୟା ଦୃୟ ଅପରିମେୟ ।

ସମାଧାନ : (i) ମନେକର $3+\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ।

ସୁତରାଂ
$$3+\sqrt{2}=rac{p}{q}$$
 , ଯେଉଁଠାରେ $p,\,q\in Z$ ଓ $q\neq 0$

$$\Rightarrow$$
 $\sqrt{2}=rac{p}{q}-3=rac{p-3q}{q}$ \in Z କାରଣ $p-3q\in Z$ ଏବଂ $q\in Z$ ଯେଉଁଠାରେ $q\neq 0$ ।

ସୂତରାଂ $\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ଓ ଏହା ଉପପାଦ୍ୟ -1 ର ଏକ ବିରୋଧାଭାଷ । ଅତଏବ ଆମେ ଗ୍ରହଣ କରିଥିବା ତଥ୍ୟ $3+\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା ଗ୍ରହଣୀୟ ନୁହେଁ । ଅର୍ଥାତ୍ $3+\sqrt{2}$ ଏକ ଅପରିମେୟ ସଂଖ୍ୟା ।

$$(ii)\ 3\sqrt{2}\ \ \mbox{ଏକ ପରିମେୟ ସଂଖ୍ୟା ହେଉ । ତେଣୁ $3\sqrt{2}=rac{p}{q}; \, p,\, q\in Z$ ଓ $q\neq 0$$$

$$\Rightarrow \sqrt{2} = rac{p}{3q}$$
 ଓ ଏଠାରେ $p,\,3q \in Z$ ଓ $3q \neq 0$ ହେତୁ $rac{p}{3q} \in Z$

ସୂତରାଂ $\sqrt{2}$ ଏକ ପରିମେୟ ସଂଖ୍ୟା । ମାତ୍ୱ ଏହା ଗୃହଣୀୟ ନୁହେଁ । ତେଣୁ $3\sqrt{2}$ ମଧ୍ୟ ଏକ ଅପରିମେୟ ସଂଖ୍ୟା ।

2.7 ଅପରିମେୟ ରାଶି π (Irrational number π) :

 π ସଂଖ୍ୟା ସହ ତୁମେମାନେ କ୍ୟାମିତିରେ ପରିଚିତ । π ରାଶିଟି ବୃତ୍ତ ସହ ଓଡପ୍ରୋଡ ଭାବେ ସମ୍ପର୍କିତ । ଏହାର ସଂଜ୍ଞା ହେଲା : ଯେକୌଣସି ବୃତ୍ତରେ ପରିଧି ଓ ବ୍ୟାସର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ଏକ ଧୁବକ ସଂଖ୍ୟା (Constant); ଯାହାକୁ π ଦ୍ୱାରା ସୂଚିତ କରାଯାଇଥାଏ । ଅର୍ଥାତ୍ ଯେକୌଣସି ବୃତ୍ତରେ $\frac{ ବୃତ୍ତର G G}{ e^{1/2} } = \pi \quad |$

1761 ମସିହାରେ ଗଣିତଜ୍ଞ Lambert ଯୁକ୍ତି ମୂଳକ ପ୍ରମାଣ କରି ଦର୍ଶାଇ ଥିଲେ ଯେ '' π ଏକ ଅପରିମେୟ ସଂଖ୍ୟା''। ଗ୍ରୀକ୍ ଦାର୍ଶନିକ ଆର୍କିମେଡ଼ିସ୍ (ଖ୍ରୀ.ପୂ. 287-212) ଏହାର ଆସନ୍ନମାନ $\frac{22}{7}$ ବୋଲି ନିର୍ଣ୍ଣୟ କରିଥିଲେ । ମନେରଖ ଯେ $\pi \neq \frac{22}{7}$ ମାତ୍ର $\pi \approx \frac{22}{7}$ (ଅର୍ଥାତ୍ $\frac{22}{7}$ ଦଶମିକରେ ଲେଖିଲେ ଲବ୍ଧ ମୂଲ୍ୟ π ର କେବଳ ଦଶମିକ ଦୁଇ ୟାନ ପର୍ଯ୍ୟନ୍ତ ଠିକ୍ ଓ $\frac{22}{7}$, π ର ଏକ ପାଖାପାଖି (ଆସନ୍ନ) ମୂଲ୍ୟ) । ବିଭିନ୍ନ କ୍ଷେତ୍ରରେ π ର ଆସନ୍ନ ମାନ $\frac{22}{7}$

ବ୍ୟବହୃତ ହୋଇ ଗାଣିତିକ ହିସାବ ଏବେ ମଧ୍ୟ ଆମେ କରୁଛୁ । ମାତ୍ର $\pi=rac{22}{7}$ ଲେଖିବା ତୃଟିପୂର୍ଣ୍ଣ । ବିଭିନ୍ନ ସଭ୍ୟତା ଓ ବିଭିନ୍ନ ସମୟରେ π ର ବିଭିନ୍ନ ଆସନ୍ନମାନର ତାଲିକା ନିମୁରେ ଦିଆଗଲା ।

ଗଣିତଞ୍ଜ / ସଭ୍ୟତା	ସମୟ	πର ମାନ
ବେଦ	ସୟବତଃ ଖ୍ରୀ.ପୂ. 3000	$\sqrt{10}$
ବେବିଲୋନୀୟ ସଭ୍ୟତା	ସୟବତଃଖ୍ରୀ.ପୂ. 3000	$\frac{25}{8}$
ଆର୍କିମେଡ଼ିସ୍	ଖ୍ରୀ.ପୂ. 287-212	$\frac{22}{7}$
ଟଲେମି	ଖ୍ରୀଷ୍ଟାବ୍ଦ 150	3.1416
ଚୁଙ୍ଗ ଚି (ଚୀନ୍)	ଖ୍ରୀଷ୍ଟାବ୍ଦ 480	335 133
ଆର୍ଯ୍ୟଭଟ୍ଟ	ଖ୍ରୀଷ୍ଟାବ୍ଦ 530	$\frac{62832}{20000}$
ଭାୟରାଚାର୍ଯ୍ୟ	ଖ୍ରୀଷ୍ଟାବ୍ଦ 1150	$\frac{3927}{1250}$
ରାମାନୁଜନ୍	ଖ୍ରୀଷ୍ଟାବ୍ଦ 1887 - 1919	$\frac{9801}{1103 \times \sqrt{8}}$

ଭାରତ ର ସୁପ୍ରସିଦ୍ଧ ଗଣିତଜ୍ଞ ଶ୍ରୀନିବାସ ରାମାନୁଜତ୍ନଙ୍କ ପ୍ରଦତ୍ତ ଏକ ସୂତ୍ରର ବ୍ୟବହାର କରି କମ୍ପ୍ୟୁଟର ସହାୟତାରେ π ର ମୂଲ୍ୟ ଦଶମିକ ଚିହ୍ନ ପରେ ସତର ନିୟୂତ ସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ନିରୂପିତ ହୋଇଛି । ଏ ପର୍ଯ୍ୟନ୍ତ ନିରୂପିତ π ର ମୂଲ୍ୟମାନଙ୍କ ମଧ୍ୟରେ ଏହା ସର୍ବାଧିକ ସଠିକ ମାନ ଅଟେ ।

ଦ୍ରଷଟ୍ୟ : ଏଠାରେ ଉଲ୍ଲେଖ ଯୋଗ୍ୟ ଯେ π ପରି ଅନ୍ୟ ଏକ ସଂଖ୍ୟା e ଯାହାର ମୂଲ୍ୟ 2 ରୁ ଅଧିକ ଓ 3 ରୁ କମ୍ । ଉକ୍ତ ସଂଖ୍ୟାଟି $1+1+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+...$ ଏକ ସୀମାହୀନ ସମଷ୍ଟି । π ,e, ଇତ୍ୟାଦି ପରି ଅଂସଖ୍ୟ ଅପରିମେୟ ରାଶିର ଗଣିତରେ ବ୍ୟବହାର ଉଚ୍ଚତର ଶ୍ରେଣୀ କୁ ଗଲେ ଦେଖିବାକୁ ପାଇବ ।

2.8 ବାୟବ ସଂଖ୍ୟା (Real Numbers) :

ସମୟ ଅପରିମେୟ ସଂଖ୍ୟା ମାନଙ୍କ ସେଟ୍କୁ Q' ସଂକେତ ଦ୍ୱାରା ଲେଖାଯାଏ । ସମୟ ପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q ଓ ଅପରିମେୟ ସଂଖ୍ୟା ସେଟ୍ Q' ର ସଂଯୋଗରୁ ଯେଉଁ ନୂତନ ସେଟ୍ ମିଳେ ତାହାକୁ **ବାୟବ** ସଂଖ୍ୟା (Real number) ସେଟ୍ କୁହାଯାଏ ଓ ଏହି ସେଟ୍ର ସଂକେତ R । ଅତଏବ $Q \cup Q' = R$ । ଏଠାରେ Q ଏବଂ Q', R ସେଟ୍ର ଗୋଟିଏ ଗୋଟିଏ ଉପସେଟ୍ ଅଟନ୍ତି । ମନେରଖ ଯେ, $Q \cap Q' = \phi$

ଆଲୋଚନାରୁ ସ୍କଷ୍ଟ ଯେ ଯେକୌଣସି ବାୟବ ସଂଖ୍ୟା x ଏକ ପରିମେୟ କିନ୍ୟା ଏକ ଅପରିମେୟ ସଂଖ୍ୟା ହୋଇପାରେ । ସମ୍ପ୍ରସାରଣ ପ୍ରକ୍ରିୟାରୁ ଆମେ ଦେଖିଛେ ଯେ, $N \subset Z \subset Q \subset R$ ।

ଭେନ୍ ଚିତ୍ର 2.3 ମାଧ୍ୟମରେ ବିଭିନ୍ନ ସେଟ୍ଗୁଡ଼ିକ ଦର୍ଶାଯାଇଛି ।

2.8.1 ବାଞ୍ଚବ ସଂଖ୍ୟାମାନଙ୍କ ବୀଜ ଗାଣିତିକ ଧର୍ମ (Algebraic Properties in Reals) :

ପୂର୍ବ ଅନୁଚ୍ଛେଦଗୁଡ଼ିକରେ ପରିମେୟ ଓ ଅପରିମେୟ ସଂଖ୍ୟାମାନଙ୍କର ଭିନ୍ନ ଭିନ୍ନ ଧର୍ମଗୁଡ଼ିକୁ ଆଲୋଚନା କରିଛେ । ପରିମେୟ ସଂଖ୍ୟାଗୁଡ଼ିକ କେତେକ ନିୟମ ପାଳନ କରନ୍ତି ଯାହା ଅପରିମେୟ ସଂଖ୍ୟା ପାଇଁ ସତ୍ୟ ନ ହୋଇପାରେ । ଆମେ ଏଠାରେ କେତେକ ବୀଜଗାଶିତିକ ଧର୍ମର ଅବତାରଣା କରିବା, ଯାହା କି ସମୟ ବାୟବ ସଂଖ୍ୟା ସେଟ୍ (R) ପାଇଁ ସତ୍ୟ ଅଟେ । ଏଗୁଡ଼ିକର ପ୍ରମାଣ ଏ ପୁୟ୍ତକର ପରିସରଭୁକ୍ତ ନ ହୋଇଥିବାରୁ ଆମେ ସେଗୁଡ଼ିକୁ ସ୍ୱୀକାର୍ଯ୍ୟ ରୂପେ ଗ୍ରହଣ କରିବା । $x,y,z\in R$

ଯୋଗ ପ୍ରକ୍ରିୟାର ଧର୍ମ :-

- (i) ସଂକୃତି ଧର୍ମ : $x + y \in R$
- (ii) **କ୍ରମବିନିମୟୀ ଧର୍ମ** : x + y = y + x
- (iii) **ସହଯୋଗୀ ଧର୍ମ :** x + (y + z) = (x + y) + z
- (iv) ଅଭେଦ ଧର୍ମ : x + 0 = x ; 0 (ଶୁନ R ସେଟ୍ ରେ ଯୋଗାମ୍କ ଅଭେଦ ଅଟେ ।)
- (v) **ବିଲୋମୀ ଧର୍ମ :** ପ୍ରତ୍ୟେକ ବାଞ୍ଚବ ସଂଖ୍ୟା x ର ଯୋଗାତ୍ମକ ବିଲୋମୀ (-x) ଓ x+(-x)=0 (x ମଧ୍ୟ (-x) ର ଯୋଗାତ୍ମକ ବିଲୋମୀ $\mathbf I$)

ଗୁଣନ ପ୍ରକ୍ରିୟାର ଧର୍ମ :

- (vi) ସଂବୃତ୍ତି ଧର୍ମ : xy ∈ R
- (vii) କ୍ମବିନିମୟୀ ଧର୍ମ : xy = yx
- (viii) *ସହରୋଗୀ ଧର୍ମ* : x(yz) = (xy)z
- (ix) ଅଭେଦ ଧର୍ମ : $x \times 1 = x;$ (1 (ଏକ) ସଂଖ୍ୟାଟି ଗୁଣନାତ୍ମକ ଅଭେଦ ।)
- \mathbf{x} (x) **ବିଲୋମୀ ଧର୍ମ :** ପ୍ରତ୍ୟେକ $\mathbf{x} \neq 0$ ପାଇଁ ଏକ ଅନନ୍ୟ ବାୟବ ସଂଖ୍ୟା $\frac{1}{\mathbf{x}}$ ବା \mathbf{x}^{-1} ରହିଛି, ଯେପରିକି $\mathbf{x} \cdot \mathbf{x}^{-1} = 1$

 $\left(rac{1}{x} ext{ ବା } x^{-1} ext{ କୁ } x$ ର ଗୁଣନାତ୍ମକ ବିଲୋମୀ କୁହାଯାଏight) । x,x^{-1} ର ମଧ୍ୟ ଗୁଣନାତ୍ମକ ବିଲୋମୀ ଅଟେ ।

ଯୋଗ ଓ ଗୁଣନ ପ୍ରକ୍ରିୟା ଦ୍ୱୟର ଧର୍ମ :

(xi) **ବ୍ୟନ ନିୟମ :** x(y+z) = xy + xz (ଗୁଣନ ପ୍ରକ୍ରିୟାଟି ଯୋଗ ପ୍ରକ୍ରିୟା ଉପରେ ବାର୍ତ୍ତି ହେବ)

ନିମ୍ବରେ ସ୍ୱଚିତ ଉକ୍ତିଗୁଡ଼ିକ ପ୍ରଶିଧାନ ଯୋଗ୍ୟ।

- (i) ଦୁଇଟି ପରିମେୟ ସଂଖ୍ୟା x ଓ y ର ଯୋଗଫଳ ତଥା ଗୁଣନ ଫଳ ପରିମେୟ (Q ସେଟ୍ରେ ସଂବୃତ୍ତି ନିୟମ) । $x,y\in Q$ ହେଲେ, $x+y\in Q$ ଏବଂ $xy\in Q$
- (ii) ଦୁଇଟି ବାୟବ ସଂଖ୍ୟା x ଓ y ମଧ୍ୟରୁ ଗୋଟିଏ ପରିମେୟ ଓ ଅନ୍ୟଟି ଅପରିମେୟ ହେଲେ ଯୋଗଫଳ x+y ଅପରିମେୟ ଓ ପରିମେୟ ସଂଖ୍ୟାଟି ଅଣଶୂନ୍ୟ ହେଲେ ଗୁଣଫଳ ମଧ୍ୟ ଅପରିମେୟ । ମାତ୍ର ଗୁଣଫଳ =0 ହେବ ଯଦି ପରିମେୟ ରାଶିଟି ଶୂନ । ଏଠାରେ ପ୍ରମାଣ କରିବାକୁ ହେବ : $x \times 0 = 0$ ($Zero\ Law$)

ପ୍ରମାଣ :
$$0+0=0$$
 (ଅଭେଦ ନିୟମ)
$$\Rightarrow x (0+0) = x. \ 0 \ (\text{ସମାନତା ଧର୍ମ})$$

$$\Rightarrow x . \ 0+x . \ 0=x. \ 0 \ (\text{ବଣ୍ଟନ ନିୟମ})$$

$$\widehat{\text{କ}}_{\mathbf{p}} \qquad x . \ 0+x . \ 0-(x.0) = x.0-(x.0) \ (\text{ଉଭୟ ପାର୍ଶ୍ୱରେ}-(x.0) \ \text{ଯୋଗ କରି})$$

$$\Rightarrow x . \ 0+\{-(x.0)+x.0\} = \{-(x.0)+x.0\} \ (\text{ସହଯୋଗୀ ନିୟମ})$$

$$\Rightarrow x . \ 0+0=0 \ (\text{ବିଲୋମୀ ନିୟମ})$$

$$\Rightarrow x . \ 0=0 \ (\text{ଅଭେଦ ନିୟମ}) \ (\text{ପ୍ରମାଣିତ})$$

ଦ୍ରଷ୍ଟବ୍ୟ : ଯେକୌଣସି ବାୟବ ସଂଖ୍ୟା x ସହ 0 କୁ ଗଣନ କଲେ ଗୁଣଫଳ 0 ।

 $(iii) \ x$ ଓ y ବାଞ୍ଚବ ସଂଖ୍ୟା ଦ୍ୱୟ ଉଭୟେ ଅପରିମେୟ ହେଲେ ଯୋଗଫଳ x+y କିୟା ଗୁଣଫଳ xy ପରିମେୟ କିୟା ଅପରିମେୟ ହୋଇପାରନ୍ତି । ଉଦାହରଣ ସ୍ୱରୂପ

$$x=\sqrt{2}$$
 , $y=3$ ହେଲେ $x+y=\sqrt{2}+3$ ଓ ଯାହା ଅପରିମେୟ; $x=1+\sqrt{2}$, $y=1-\sqrt{2}$ ହେଲେ, $x+y=2$ ଯାହା ପରିମେୟ; $x=\sqrt{2}$, $y=\sqrt{3}$ ହେଲେ $xy=\sqrt{2}$ x $\sqrt{3}=\sqrt{6}$ ଯାହା ଅପରିମେୟ; (ନିଜେ ପ୍ରମାଣ କରି ଦେଖ)

 $x=1-\sqrt{2}$, $y=1+\sqrt{2}$ ହେଲେ $xy=(1-\sqrt{2})\,(1+\sqrt{2}\,)=1-2=-1$ ଯାହା ପରିମେୟ । ଏହି ଆଲୋଚନା ରୁ ଆମେ ଦେଖୁଛେ ଯେ \mathbf{Q}' ସେଟ୍ରେ ଯୋଗ ଓ ଗୁଣନ ପ୍ରକ୍ରିୟା ସଂବୃତ୍ତି ଧର୍ମକୁ ପାଳନ କରନ୍ତି ନାହିଁ ।

$$\sqrt{2} = 2^{\frac{1}{2}}, \sqrt{3} = 3^{\frac{1}{2}}, \sqrt{5} = 5^{\frac{1}{2}}$$
 ଇତ୍ୟାଦି ଅପରିମେୟ ।

 $\sqrt{4}=4^{\frac{1}{2}}=2$ ଓ ଏହା ପରିମେୟ । $\mathbf{a}^{\mathbf{n}}$ ରେ \mathbf{a} କୁ ଆଧାର (\mathbf{base}) ଓ \mathbf{n} କୁ ଘାତ (\mathbf{index}) କୁହାଯାଏ । ସେହିପରି ନିମ୍ବଳିଖିତ କ୍ଷେତ୍ରରେ ଆଧାର ଓ ଘାତ ନିର୍ଦ୍ଧିୟ କର :

$$2^{\frac{1}{3}},3^{\frac{1}{3}},4^{\frac{1}{3}},5^{\frac{1}{3}},6^{\frac{1}{3}},7^{\frac{1}{3}},9^{\frac{1}{3}}$$
 ଇତ୍ୟାଦି $\left(8^{\frac{1}{3}}=2,\ =27^{\frac{1}{3}}=3\$ ଇତ୍ୟାଦିକୁ ଛାଡ଼ି)
$$2^{\frac{1}{4}},3^{\frac{1}{4}},4^{\frac{1}{4}},5^{\frac{1}{4}},6^{\frac{1}{4}},7^{\frac{1}{4}},8^{\frac{1}{4}}$$
 ଇତ୍ୟାଦି $\left(16^{\frac{1}{4}}=2,\ 81^{\frac{1}{4}}=3\$ ଇତ୍ୟାଦିକୁ ଛାଡ଼ି)

ସୂତରାଂ ଅପରିମେୟ ସଂଖ୍ୟା ମାନଙ୍କ ସଂଖ୍ୟା ଅସୀମ । ଆମେ N ସେଟ୍ର Z ସେଟ୍ର, ଓ Q ସେଟ୍ର ଉପାଦାନମାନଙ୍କୁ ଗୋଟି ଗୋଟି କରି ତାଲିକା କରି ଲେଖିବା ସୟବ । ମାତ୍ର Q' ସେଟ୍ରେ ଏପରି ତାଲିକା କରି ଲେଖିବା ଅସୟବ । ଯଦି ଏପରି ତାଲିକା କରିବା ତେବେ ଦୁଇଟି ଅପରିମେୟ ସଂଖ୍ୟା ମଧ୍ୟରେ ଅସଂଖ୍ୟ ଅପରିମେୟ ସଂଖ୍ୟା ଅପସାରିତ ହୋଇ ତାଲିକା ଭୁକ୍ତ ହୋଇ ପାରିବେ ନାହିଁ । ଯେହେତୁ R ସେଟ୍ରେ Q' ସେଟ୍ ର ସମୟ ଉପାଦାନ ଅଛନ୍ତି, ତେଣୁ ଆମେ କହି ପାରିବା ଯେ R ସେଟ୍ର ସମୟ ଉପାଦାନମାନଙ୍କ ତାଲିକା କରି ହେବ ନାହିଁ ।

2.8.2 R ସେଟ୍ରେ ଯୋଗ ଓ ଗୁଣନ ସୟନ୍ଧୀୟ କିଛି ଅଧିକ ତଥ୍ୟ :

R ସେଟ୍ ରେ ଯୋଗ ଓ ଗୁଣନ ସୟନ୍ଧରେ ଥିବା ସ୍ୱୀକାର୍ଯ୍ୟମାନଙ୍କୁ ପ୍ରୟୋଗ କରି ନିମ୍ନଲିଖିତ ଅନୁସିଦ୍ଧାନ୍ତ ମାନଙ୍କ ସତ୍ୟତା ଜାଣିହୁଏ । ପ୍ରଶ୍ନମାନଙ୍କର ସମାଧାନ କଲାବେଳେ ସ୍ୱୀକାର୍ଯ୍ୟଗୁଡ଼ିକର ମଧ୍ୟ ବ୍ୟବହାର କରାଯାଇଥାଏ । ସେହି ଅନୁସିଦ୍ଧାନ୍ତଗୁଡ଼ିକ ନିମ୍ନରେ ଆଲୋଚିତ ହୋଇଛି । ଏଠାରେ x,y,z ପ୍ରତ୍ୟେକେ ଗୋଟିଏ ଗୋଟିଏ ବାୟବ ସଂଖ୍ୟା ।

ଅନୁସିଦ୍ଧାନ୍ତ -
$$\mathbf{1}$$
 : $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{z}$ ହେଲେ, $\mathbf{y} = \mathbf{z}$ ଓ $\mathbf{y} + \mathbf{x} = \mathbf{z} + \mathbf{x}$ ହେଲେ $\mathbf{y} = \mathbf{z}$

ପ୍ରମାଶ :
$$x + y = x + z \Rightarrow (-x) + (x + y) = (-x) + (x + z)$$

$$\Rightarrow$$
 $(-x + x) + y = (-x + x) + z$

$$\Rightarrow 0 + y = 0 + z \Rightarrow y = z \mid I$$

ସେହିପରି $y+x=z+x \Rightarrow y=z$ ର ପ୍ରମାଣ କରାଯାଇ ପାରିବ ।

ଏ ଦୁଇଟି କୁ ଯୋଗ ର **ବିଲୋପନ ନିୟମ (Cancellation law of addition)** କୁହାଯାଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ -
$$2: x \neq 0$$
 ଏବଂ $xy = xz$ ହେଲେ, $y = z$ ଓ $yx = zx$ ହେଲେ, $y = z$

ପ୍ରମାଣ : $\mathbf{x} \neq \mathbf{0}$ ହେଲେ ଏହାର ଗୁଣନାତ୍ପକ ବିଲୋମୀ $\mathbf{x}^{\text{-}1}$ । ଅତଏବ

$$xy = xz \Rightarrow x^{-1}(xy) = x^{-1}(xz)$$

 $\Rightarrow (x^{-1} x) y = (x^{-1} x) z$

 \Rightarrow 1.y=1.z \Rightarrow y=z; ସେହି ପରି ଅନ୍ୟଟିର ମଧ୍ୟ ପ୍ରମାଣ କରାଯାଇ ପାରେ, yx=zx ହେଲେ, y=z

ଏହି ଦୁଇଗୋଟିକୁ **ଗୁଣନ ର ବିଲୋପନ ନିୟମ (**Cancellation law of multiplication) କୁହାଯାଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ -
$$3$$
: (i) $x \times 0 = 0$ (ii) $-(-x) = x$ (iii) $x \neq 0$ ହେଲେ $(x^{-1})^{-1} = x$

ପ୍ରମାଶ : (i) 0 = 0 + 0 (ଅଭେଦ ନିୟମ)

$$\Rightarrow$$
 x x $0 = x(0+0) \Rightarrow$ x x $0 = x$ x $0 + x$ x 0 (ବଣ୍ଟନ ନିୟମ)

$$\Rightarrow 0 = x \times 0$$

(ଯୋଗର ବିଲୋପନ ନିୟମର ପ୍ରୟୋଗ)

$$\Rightarrow$$
 x x 0 = 0

(ପ୍ରମାଣିତ)

$$(ii)$$
 $x \in R$ ହେଲେ $-x \in R$ ଓ $-x$ ର ଯୋଗାତ୍ମକ ବିଲୋମୀ $-(-x) \Rightarrow -(-x) + (-x) = 0$ $\Rightarrow -(-x) + (-x) = x + (-x)$ $[\because x + (-x) = 0]$ $\Rightarrow -(-x) = x$ (ଯୋଗର ବିଲୋପନ ନିୟମ) (ପ୍ରମାଣିତ)

(iii)
$$\mathbf{x}(\mathbf{x} \neq 0)$$
 ର ଗୁଣନାତ୍ପକ ବିଲୋମୀ \mathbf{x}^{-1} , \mathbf{x}^{-1} ର ଗୁଣନାତ୍ପକ ବିଲୋମୀ $(\mathbf{x}^{-1})^{-1}$ । କୌଣସି ଏକ ବାୟବ ସଂଖ୍ୟା a ପାଇଁ a \mathbf{x} a⁻¹ = 1 ଯେଉଁଠାରେ a $\neq 0$ । a ୟାନରେ \mathbf{x}^{-1} ୟାପନ କଲେ ପାଇବା $(\mathbf{x}^{-1}) \cdot (\mathbf{x}^{-1})^{-1} = 1$ କିନ୍ତୁ $\mathbf{x} \cdot \mathbf{x}^{-1} = 1$ $\therefore (\mathbf{x}^{-1}) \cdot (\mathbf{x}^{-1})^{-1} = \mathbf{x} \cdot \mathbf{x}^{-1}$ $\Rightarrow (\mathbf{x}^{-1})^{-1} = \mathbf{x}$ (ଗୁଣନର ବିଲୋପନ ନିୟମ) (ପ୍ରମାଣିତ) ଅନୁସିଦ୍ଧାନ୍ତ - $\mathbf{4}$: (i) $\mathbf{x}(-\mathbf{y}) = (-\mathbf{x})\mathbf{y} = -(\mathbf{x}\mathbf{y})$ (ii) $(-\mathbf{x})(-\mathbf{y}) = \mathbf{x}\mathbf{y}$ ପ୍ରମାଣ : (i) $\mathbf{x}\mathbf{y} + \mathbf{x}(-\mathbf{y}) = \mathbf{x}\{\mathbf{y} + (-\mathbf{y})\} = \mathbf{x} \times 0 = 0$; ପୁନଣ୍ଟ $\mathbf{x}\mathbf{y} + \{-(\mathbf{x}\mathbf{y})\} = 0$ । $\therefore \mathbf{x}\mathbf{y} + \mathbf{x}(-\mathbf{y}) = \mathbf{x}\mathbf{y} + \{-(\mathbf{x}\mathbf{y})\} \Rightarrow \mathbf{x}(-\mathbf{y}) = -\mathbf{x}\mathbf{y}$ (ଯୋଗର ବିଲୋପନ ନିୟମ) ସେହିପରି ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ, $(-\mathbf{x})\mathbf{y} = -(\mathbf{x}\mathbf{y})$ (ପ୍ରମାଣିତ) (ii) $\mathbf{x}(-\mathbf{y}) = -(\mathbf{x}\mathbf{y})$ (i) ରେ ପ୍ରମାଣିତ \mathbf{x} ପରିବର୍ତ୍ତେ $-\mathbf{x}$ ଲେଖିଲେ ପାଇବା : $\Rightarrow (-\mathbf{x})(-\mathbf{y}) = -\{(-\mathbf{x}) \cdot \mathbf{y}\}$ $\Rightarrow (-\mathbf{x})(-\mathbf{y}) = -\{(-\mathbf{x}\mathbf{y})\}$ [: $(-\mathbf{x}) \cdot \mathbf{y} = -(\mathbf{x}\mathbf{y})$] (i) ରୁ ପ୍ରମାଣିତ $\Rightarrow (-\mathbf{x})(-\mathbf{y}) = \mathbf{x}\mathbf{y}$ [: $(-(-\mathbf{x}) - \mathbf{y}) = -(\mathbf{x}\mathbf{y})$] (i) ରୁ ପ୍ରମାଣିତ

ପ୍ରତ୍ୟେକ ବୀଜଗାଣିତିକ ଅଭେଦରେ ବ୍ୟବହୃତ ରାଶିଗୁଡ଼ିକ ବାୟବ ସଂଖ୍ୟା ହେଲେ, ବାୟବ ସଂଖ୍ୟାର ସ୍ୱୀକାର୍ଯ୍ୟଗୁଡ଼ିକୁ ବ୍ୟବହାର କରି ଅଭେଦ ଗୁଡ଼ିକୁ ପ୍ରମାଣ କରାଯାଇ ପାରିବ । ଦଉ ଉଦାହରଣକୁ ଲକ୍ଷ୍ୟ କର ।

ପ୍ରମାଣ କର :
$$(a+b)^2=a^2+2ab+b^2$$
 $(a,b\in R)$
ବାମପାର୍ଶ୍ୱ $=(a+b)^2=(a+b)$ $(a+b)=a(a+b)+b$ $(a+b)$ (ବ୍ୟନ ନିୟମ)
 $=a \cdot a+a \cdot b+b \cdot a+b \cdot b=a^2+ab+ba+b^2=a^2+ab+ab+b^2$ $(a+b)$ $(a+b)$

2.9 ସଂଖ୍ୟାରେଖା (Number Line) :

ପୂର୍ବ ଅନୁଛେଦ 2.8 ରେ ଆଲୋଚନା କରାଯାଇଛି ଯେ, ପରିମେୟ ଓ ଅପରିମେୟ ସଂଖ୍ୟା ଗୁଡ଼ିକର ସେଟ୍ ଦୁଇଟିର ସଂଯୋଗ (Union) ବାୟତ୍ରସଂଖ୍ୟା ସେଟ୍ ଅଟେ । ଏହି ବାୟତ୍ର ସଂଖ୍ୟା ଗୁଡ଼ିକର ଜ୍ୟାମିଡିକ ପରିପ୍ରକାଶ କିପରି କରାଯାଏ, ତାହା ଏଠାରେ ଆଲୋଚନା କରିବା । ଇଉକ୍ଲିଡୀୟ ଜ୍ୟାମିଡିର କ୍ରମ ବିକାଶ ଘଟିଛି । ବର୍ତ୍ତମାନ ଜ୍ୟାମିଡି କେବଳ ବିନ୍ଦୁ, ରେଖା, କ୍ଷେତ୍ର ବା ଆୟତନର ବିଷୟବୟୁ ହୋଇ ରହିନାହିଁ । ବୀଜଗାଣିଡିକ ରାଶି ଓ ଜ୍ୟାମିଡ ସହସଂପର୍କକୁ ନେଇ ବିଶ୍ଲେଷଣାତ୍ମକ ଜ୍ୟାମିଡି (analytical geometry)ର ଉଦ୍ଭବ । ଯେ କୌଣସି ବାୟତ୍ର ସଂଖ୍ୟାକୁ ଏକ ସରଳରେଖାର ଏକ ବିନ୍ଦୁଦ୍ୱାରା ସୂଚିତ କରାଯାଇପାରିବ । ପ୍ରତ୍ୟେକ ବାୟତ୍ର ସଂଖ୍ୟାକୁ ଗୋଟିଏ ଗୋଟିଏ ବିନ୍ଦୁ ଦ୍ୱାରା ସୂଚିତ କରି ସେ ଗୁଡ଼ିକୁ ଛନ୍ଦି ଦେଲେ ଗୋଟିଏ ନିରବ୍ଚିତ୍ରନ୍ଦ ସରଳରେଖା ସୃଷ୍ଟି ହେବ । ଏହା ବିଖ୍ୟାତ

ଗାଣିତିକ ଡେଡେକିଣ୍ଡ (Dedekind) ଓ କାଣ୍ଟର (Cantor)ର ଙ୍କ ଅବଦାନ ଓ ଏହା ବିଶ୍ଲେଷଣାତ୍ମକ କ୍ୟାମିତିର ଅୟମାରୟ। ଅଥାତ୍ ଯେ କୌଣସି କ୍ୟାମିତିକ ବିଷୟବସ୍ତୁକୁ ଆମେ ବୀଜଗଣିତ ସାହାଯ୍ୟରେ ସମାଧାନ କରିପାରିବା । ସେ ସବୁ ତୁମେ ପରବର୍ତ୍ତୀ ଅଧ୍ୟାୟରେ ଅଧ୍ୟୟନ କରିବ । 2.9.1 ସଂଖ୍ୟାରେଖାରେ ବାୟବ ସଂଖ୍ୟାମାନଙ୍କର ସ୍ଥାପନ (Representation of real numbers on the number line):

ବାୟର ସଂଖ୍ୟାଗୁଡ଼ିକର ଜ୍ୟାମିତିକ ପରିପ୍ରକାଶ କରିବାକୁ ହେଲେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବିନ୍ଦୁକୁ O ନିଆଯାଉ । ଏହି ବିନ୍ଦୁ ଦେଇ \overrightarrow{XOX} ସରଳରେଖା ଅଙ୍କନ କର । O ବିନ୍ଦୁକୁ ମୂଳବିନ୍ଦୁ (Origin) ଓ \overrightarrow{XX} ରେଖାକୁ ସଂଖ୍ୟାରେଖା (Number Line) ବା ବାୟବ ଅକ୍ଷ (Real axis) କୁହାଯାଏ । O ର ଏକ ପାର୍ଶ୍ୱ \overrightarrow{OX} କୁ ଧନାତ୍ମକ ଦିଗ (positive side) ଓ ଏହାର ବିପରୀତ ପାର୍ଶ୍ୱ $\overrightarrow{ox'}$ କୁ ରଣାତ୍ସକ ଦିଗ (Negative side) କୁହାଯାଏ ।

କୌଣସି ଏକ ରେଖାଖଣ୍ଡ ନେଇ ତାହାର ଦୈର୍ଘ୍ୟକୁ ଏକ ଏକକ ବୋଲି ନିଆଯାଉ । ${
m O}$ ବିନ୍ଦୁର ସୂଚକ ସଂଖ୍ୟା (0) ଶୂନ ହେଉ । ଦଉ ଏକକ ସହ ସମାନ କରି 0 ବିନ୍ଦୁରୁ $\overrightarrow{\mathrm{ox}}$ ଦିଗରେ OA ଛେଦ କରାଯାଉ । ଅର୍ଥାତ୍ OA ଏକ ଏକକ ପ୍ରାପ୍ତ $\mathbf A$ ବିନ୍ଦୁର ସୂଚକ ସଂଖ୍ୟା 1 ହେଲା । ସେହିପରି ବିପରୀତ ଦିଗ $\overrightarrow{\mathrm{ox}}'$ ରୁ ଏକ ଏକକ ସହ ସମାନ କରି OA' ଛେଦ କଲେ, A' ବିନ୍ଦର ସୂଚକ ସଂଖ୍ୟା -1 ହେବ ।

ସେହିପରି \overrightarrow{ox} ରେଖା ଉପରେ A ଠାରୁ ଏକକ ଦରରେ B ବିନ୍ଦ୍ର, B ଠାରୁ ଏକକ ଦରରେ C ବିନ୍ଦ୍ର, Cଠାରୁ ଏକକ ଦୂରରେ D ବିନ୍ଦୁ - ଏହିପରି ପ୍ରତି ଏକକ ଦୂରରେ ବିନ୍ଦୁମାନ ସ୍ଥାପନ କରାଯାଏ । ଏହି ବିନ୍ଦୁ ମାନଙ୍କର ସୂଚକ ସଂଖ୍ୟା ଯଥାକ୍ରମେ $2,\ 3,\ 4$ ଇତ୍ୟାଦି ହେବ । ସେହିପରି $\overrightarrow{ox'}$ ଦିଗରେ $B',\ C',\ D'$ ଇତ୍ୟାଦି ବିନ୍ଦୁ ନେଲେ, ଏହି ବିନ୍ଦୁ ମାନଙ୍କର ସୂଚକ ସଂଖ୍ୟା ଯଥାକ୍ରମେ $-2, -3,\!-4$ ଇତ୍ୟାଦି ହେବ । ଏହିପରି ଭାବରେ $\stackrel{\longleftrightarrow}{XX}$ ରେଖା ଉପରେ ସମୟ ପୂର୍ଣ୍ଣସଂଖ୍ୟାମାନଙ୍କୁ ସ୍ଥାପନ କରିପାରିବା । $\stackrel{\longleftrightarrow}{X'X}$ ରେଖା ଉପରେ ଯଥାକ୍ରମେ O, A, A', B, B', C, C' ଇତ୍ୟାଦି ବିନ୍ଦୁମାନଙ୍କ ସ୍ଥାନାଙ୍କ (co-ordinate) ଚିତ୍ର 2.4ରେ ଦେଖାଇ ଦିଆଯାଇଛି ।

(b) ପରିମେୟ ସଂଖ୍ୟାର ସ୍ଥାପନ :

ସଂଖ୍ୟାରେଖା $\overset{\longleftrightarrow}{X^{'}X^{'}}$ ରେ ପୂର୍ଣ୍ଣସଂଖ୍ୟାଗୁଡ଼ିକ ଉପସ୍ଥାପନ ହେବାପରେ ସରଳରେଖା ଉପରେ ଆହୁରି ଅସଂଖ୍ୟ ବିନ୍ଦୁ ରହିଯାଉଛି । ଯେଉଁଗୁଡ଼ିକ ପୂର୍ଣ୍ଣସଂଖ୍ୟା ଦ୍ୱାରା ସ୍ୱଚିତ ହେବେ ନାହିଁ । ବର୍ତ୍ତମାନ ଭଗ୍ନସଂଖ୍ୟାମାନଙ୍କୁ $\stackrel{\longleftrightarrow}{\chi'_X}$ ଉପରେ ସଚିତ କରିବା ।

ମନେକର b>1 ଏକ ଧନାତ୍ମକ ପୂର୍ଣ୍ଣସଂଖ୍ୟା । ତେଣୁ $\frac{1}{b}$ ଏକ ପ୍ରକୃତ ଭଗ୍ନାଂଶ (proper fraction) ହୋଇଥିବାରୁ, ଏହି ସଂଖ୍ୟାଟି 0 ଠାରୁ ବଡ଼ ଓ 1 ଠାରୁ ଛୋଟ ଅଟେ । ତେଣୁ ଏହି ସଂଖ୍ୟାଟି $\mathbf O$ ବିନ୍ଦୁର ଧନ ଦିଗରେ O ଓ A ବିନ୍ଦୁଦ୍ୱୟ ମଧ୍ୟରେ କୌଣସି ଏକ ବିନ୍ଦୁର ସ୍ଥାନାଙ୍କ ହେବ ।

 \overline{OA} (ଅର୍ଥାତ୍ ଏକ ଏକକ) ରେଖାଖଣ୍ଡକୁ b ସମାନ ଭାଗରେ ବିଭକ୍ତ କଲେ, ପ୍ରତି ସମାନ ଭାଗର ଦୈର୍ଘ୍ୟ $\frac{1}{b}$ ହେବ । ଛେଦ ବିନ୍ଦୁଗୁଡ଼ିକ ଯଥାକ୍ରମେ Q_1 , Q_2 , Q_3 ହେଲେ, ଏହି ଛେଦ ବିନ୍ଦୁମାନଙ୍କର ସ୍ଥାନାଙ୍କ ଯଥାକ୍ରମେ $\frac{1}{b}$, $\frac{2}{b}$, $\frac{3}{b}$...ହେବ । ସେହିପରି ରଣାତ୍ମକ ପରିମେୟ ରାଶି $-\frac{1}{b}$, $-\frac{2}{b}$, $-\frac{3}{b}$... ଦ୍ୱାରା ସୂଚିତ ବିନ୍ଦୁ ଗୁଡ଼ିକ ରେଖାର ରଣ ଦିଗ $\overrightarrow{ox'}$ ଉପରେ ଅବସ୍ଥାପିତ ହେବ । ଏହିପରି ଭାବରେ ସମୟ ପରିମେୟ ସଂଖ୍ୟାଗୁଡ଼ିକ ସଂଖ୍ୟାରେଖା ଉପରେ ସ୍ଥାପନ କରାଯାଇପାରିବ ।

(c) ଅପରିମେୟ ସଂଖ୍ୟାମାନଙ୍କର ସ୍ଥାପନ ।

ପୂର୍ଣ୍ଣସଂଖ୍ୟା ଏବଂ ପରିମେୟ ସଂଖ୍ୟା ସମୂହକୁ ସଂଖ୍ୟାରେଖା ଉପରେ ସ୍ଥାପନ କଲା ପରେ ଆହୁରି ଅସଂଖ୍ୟ ବାୟବ ସଂଖ୍ୟା ରହିଯାଉଛନ୍ତି, ଯେଉଁ ଗୁଡ଼ିକୁ ଆମେ ସଂଖ୍ୟାରେଖା ଉପରେ ଉପସ୍ଥାପନ କରିନାହୁଁ । ଉଦାହରଣ ସ୍ୱରୂପ ଏକ ଏକକ ବାହୁ ବିଶିଷ୍ଟ ଏକ ସମକୋଣୀ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୂଜର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ $\sqrt{1^2+1^2}$ ଅର୍ଥାତ୍ $\sqrt{2}$ ଗୋଟିଏ ବାୟବ ସଂଖ୍ୟା । କିନ୍ତୁ ଏହାକୁ ଏ ପର୍ଯ୍ୟନ୍ତ ସଂଖ୍ୟାରେଖା ଉପରେ ଉପସ୍ଥାପନ କରିନାହୁଁ ।

 $\sqrt{2}$ କୁ ଉପସ୍ଥାପନ କରିବାକୁ ହେଲେ, ମୂଳବିନ୍ଦୁ O ରୁ \overrightarrow{OX} ଉପରିସ୍ଥ A ବିନ୍ଦୁ ନିଆଯାଉ, ଯେପରି OA=1 ଏକକ । A ବିନ୍ଦୁରେ \overrightarrow{OX} ପ୍ରତି \overrightarrow{AB} ଲକ୍ଷ ଅଙ୍କନ କର ଯେପରିକି AB=OA । \overrightarrow{OB} ଅଙ୍କନ କରାଯାଉ ।

ପିଥାଗୋରାସ୍ଙ୍କ ଉପପାଦ୍ୟ ଅନୁସାରେ $OB = \sqrt{OA^2 + AB^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$ ବର୍ତ୍ତମାନ O କୁ କେନ୍ଦ୍ରକରି ଓ OB କୁ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଚାପ ଅଙ୍କନ କର, ଯାହା \overrightarrow{OX} କୁ P ବିନ୍ଦୁରେ ଛେଦ କରିବ । ଯେହେତୁ $OP = \sqrt{2}$, ତେଣୁ P ବିନ୍ଦୁରେ ସଂଖ୍ୟା ଦ୍ୱାରା ସୂଚିତ ହେଲା । ଅର୍ଥାତ୍ $\sqrt{2}$, P ବିନ୍ଦୁରେ ସ୍ଥାନାଙ୍କ ହେଲା । (ଚିତ୍ର ୨.୬ ଦେଖ) ।

ପୁନଣ୍ଟ $\overline{\mathrm{OB}}$ ରେଖାଖଣ ପ୍ରତି B ବିନ୍ଦୁରେ $\overline{\mathrm{BC}}$ ଲୟ ଅଙ୍କନ କର, ଯେପରିକି $\mathrm{BC} = \mathrm{OA}$ ।

$$\therefore \text{ OC} = \sqrt{\text{OB}^2 + \text{BC}^2} = \sqrt{2+1} = \sqrt{3}$$

O କୁ କେନ୍ଦ୍ରକରି ଓ OC କୁ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଚାପ ଅଙ୍କନ କଲେ, ତାହା \overrightarrow{OX} କୁ Q ବିନ୍ଦୁରେ ଛେଦ କରିବ । $OQ = \sqrt{3}$ ହେତୁ Q ବିନ୍ଦୁଟି $\sqrt{3}$ ସଂଖ୍ୟାଦ୍ୱାରା ସୂଚିତ ହେଲା ।

ଏହିପରି ଆମେ $OD=\sqrt{4}$, $OE=\sqrt{5}$, $OF=\sqrt{6}$ ଇତ୍ୟାଦି ପାଇବା । ପୂର୍ବପରି O କୁ କେନ୍ଦ୍ର ଓ ଯଥାକ୍ରମେ OD, OE, OF କୁ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଚାପ ଅଙ୍କନ କଲେ ଚାପ ଗୁଡ଼ିକ \overrightarrow{ox} କୁ ଯଥାକ୍ରମେ R, S, T ବିନ୍ଦୁରେ ଛେଦ କରିବ । ବର୍ତ୍ତମାନ R, S, T ବିନ୍ଦୁମାନ ଯଥାକ୍ରମେ $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$ ଦ୍ୱାରା ସୂଚିତ ହେବ । ସେହି ଦୈର୍ଘ୍ୟ ମାନଙ୍କୁ ନେଇ ଆମେ ପୂର୍ବଭଳି \overrightarrow{ox} ରେଖା ଉପରେ $-\sqrt{2}$, $-\sqrt{3}$, $-\sqrt{4}$, $-\sqrt{5}$, $-\sqrt{6}$ ସଂଖ୍ୟାମାନ ସ୍ଥାପନ କରିପାରିବା;

ଯାହା ଯଥାକ୍ରମେ P', Q', R', S' ଏବଂ T' ର ସ୍ଥାନାଙ୍କ ହେବ । ଏଗୁଡ଼ିକୁ ସୂଚାଇବା ପାଇଁ ଆମକୁ ୟେଲ୍ ଓ କମ୍ପାସ୍ ବ୍ୟବହାର କରିବାକ୍ ପଡ଼ିବ ।

ଏହି ସବୁ ଅପରିମେୟ ସଂଖ୍ୟା ଗୁଡ଼ିକୁ $\overleftarrow{X}X$ ସରଳରେଖା ଉପରେ ସ୍ଥାପନ କରିସାରିବା ପରେ ମଧ୍ୟ ଅନ୍ୟ ବିନ୍ଦୁ ରହିବ ଯେଉଁମାନଙ୍କର ସୂଚକ ସଂଖ୍ୟା ଗୁଡ଼ିକ ଅପରିମେୟ । π , $\sqrt{\pi}$, $\pi+\sqrt{2}$, $\pi+e$, $\pi^{\sqrt{2}}$ ଇତ୍ୟାଦି ଆହୁରି ଜଟିଳ ଅପରିମେୟ ସଂଖ୍ୟା ଅଛନ୍ତି, ଯେଉଁ ମାନଙ୍କୁ $\overleftarrow{X}X$ ରେଖା ଉପରେ ସୂଚିତ କରିବା କଷ୍ଟକର । ବର୍ତ୍ତମାନ ପ୍ରଶ୍ନ ଉଠେ, ପ୍ରତ୍ୟେକ ଅପରିମେୟ ସଂଖ୍ୟା ସରଳରେଖାସ୍ଥ ($\overleftarrow{X}X$) ଗୋଟିଏ ଗୋଟିଏ ବିନ୍ଦୁକୁ ସ୍ୱଚାଇବ କି ?

ଏ ପ୍ରଶ୍ନର ଉତ୍ତର ଏ ପୁଷକର ପରିସରଭୁକ୍ତ ନୁହେଁ। ତେଣୁ ନିମ୍ନ ସ୍ୱୀକାର୍ଯ୍ୟ ଟିକୁ ଗ୍ରହଣ କରିବା। ସ୍ୱୀକାର୍ଯ୍ୟ - ବାୟତ ସଂଖ୍ୟା ସେଟ୍ ଓ ଏକ ସରଳରେଖାର ବିନ୍ଦୁମାନଙ୍କର ସେଟ୍ଦ୍ୱୟ ସଦୃଶ; ଅଥୀତ୍ ଦୁଇ ସେଟ୍ ମଧ୍ୟରେ ଏକୈକ (ଏକ - ଏକ) ସଂପର୍କ ରହିଛି।

2.9.2 ବାୟବ ସଂଖ୍ୟାମାନଙ୍କର କ୍ରମ (Order in R) :

ଦୁଇଟି ବାୟବ ସଂଖ୍ୟା a ଓ b ମଧ୍ୟରେ ଗୋଟିଏ ଅନ୍ୟଠାରୁ ବଡ଼, କିୟା ସାନ ହୋଇପାରେ । ରାଶିଦ୍ୱୟ ମଧ୍ୟରେ ଏହି ତୁଳନାତ୍ମକ ସଂପର୍କ ସେମାନଙ୍କର କ୍ରମ ନିର୍ଦ୍ଧାରଣ କରିଥାଏ । ଏହାକୁ a>b ବା a< b ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ । ଯଦି a>b ହୁଏ, ତାହାହେଲେ a ଦ୍ୱାରା ସୂଚିତ ବିନ୍ଦୁଟି x ସଂଖ୍ୟାରେଖାର bର ସୂଚକ ବିନ୍ଦୁର ଦକ୍ଷିଣ ପାର୍ଶ୍ୱରେ ରହିବ । ଏହିପରି ବିଭିନ୍ନ ସଂଖ୍ୟାମାନଙ୍କୁ ତୁଳନା କରି, ସମୟ ବାୟବ ସଂଖ୍ୟାକୁ ଆମେ କ୍ରମରେ ସଜାଇ ପାରିବା ।

ସ୍ୱୀକାର୍ଯ୍ୟ : ବାୟବ ସଂଖ୍ୟାମାନଙ୍କ କ୍ରମ ନିର୍ଦ୍ଧାରଣ କରିବା ପାଇଁ କେତୋଟି ସ୍ୱୀକାର୍ଯ୍ୟ (Axioms) ଦିଆଗଲା । a, b, c ତିନୋଟି ବାୟବ ସଂଖ୍ୟା ।

- a, b ଦୁଇଟି ବାୟବ ସଂଖ୍ୟା ହେଲେ, ହୁଏତ a > b ବା a < b ବା a = b ହୋଇପାରେ ।
 ଏହାକୁ ତ୍ୱିମୁଖୀ ନିୟମ (Law of Trichotomy) କୁହାଯାଏ ।
- 2. a, b, c ଡିନୋଟି ବାୟବ ସଂଖ୍ୟା ମଧ୍ୟରେ, a < b ଏବଂ b < c ହେଲେ a < c ହେବ । ଏହାକୁ ସଂକ୍ରମୀ ନିୟମ (Law of Transitivity) କୁହାଯାଏ ।

- 3. a < b ଏବଂ c > 0 ହେଲେ, ac < bc ହେବ ।
- 4. ଯଦି a < b ହୁଏ, ତେବେ ସମୟ ବାୟବ ସଂଖ୍ୟା c ପାଇଁ a + c < b + c ହେବ ।
- 5. a > 0 ଓ b > 0 ହେଲେ, ab > 0 ା

ଏହି ସ୍ୱୀକାର୍ଯ୍ୟ ଗୁଡ଼ିକର ପ୍ରୟୋଗ କରି କେତୋଟି ପ୍ରମେୟର ପ୍ରମାଣ ଦେଖିବା ।

- (1) a > b ଏବଂ c > d ହେଲେ, a +c > b + d
- (2) a < b ଏବଂ c < 0 ହେଲେ, ac > bc

ପୁନଷ୍ଟ c > d (ଦଉ)

$$\therefore$$
 a + c > b + d (ପ୍ରମାଶିତ)

(ପ୍ରମାଣିତ)

$$(2)$$
 c < 0 (ଦଉ) \Rightarrow - c > 0

ପୁନଣ୍ଟ
$$a < b$$
 (ଦଉ) $\Rightarrow b - a > 0$

$$b - a > 0, -c > 0$$

ଦ୍ରଷଟ୍ୟ: 1. a ଏକ ବାୟବ ଧନାତ୍ପକ ସଂଖ୍ୟା ଅର୍ଥାତ୍ a>0 ହୁଏ ତେବେ a, ସଂଖ୍ୟାରେଖାରେ 0 (ଶୂନ)ର ଡାହାଣକୁ ରହେ । ଯଦି a ଏକ ରଣାତ୍ପକ ବାୟବ ସଂଖ୍ୟା ଅର୍ଥାତ୍ a<0 ହୁଏ, ତେବେ a, 0 (ଶୂନ)ର ବାମ ପାର୍ଶ୍ୱରେ ରହେ ।

2. ଶ୍ୱନ ଏକମାତ୍ର ବାୟବ ସଂଖ୍ୟା ଯାହା ଧନାତ୍ମକ ବା ରଣାତ୍ମକ ନୁହେଁ।

2.9.3 ସଂଖ୍ୟାରେଖାର ଦୁଇବିନ୍ଦୁ ମଧ୍ୟରେ ଦୂରତା

ଦୂରତା ଏକ ଦୈର୍ଘ୍ୟର ମାପ । ଏହି ମାପ କେବେ ହେଲେ ରଣାତ୍ପକ ହୋଇପାରିବ ନାହିଁ । କୌଣସି ସରଳରେଖା ଉପରେ P ଓ Q ଦୁଇଟି ବିନ୍ଦୁ ହେଲେ, ସେମାନଙ୍କ ମଧ୍ୟରେ ଦୂରତାକୁ PQ ଲେଖାଯାଏ । ଅନ୍ୟପ୍ରକାରରେ ପ୍ରକାଶ କଲେ, \overline{PO} ର ଦୈର୍ଘ୍ୟ PQ ହେବ ।

ବାଞ୍ଚବ ସଂଖ୍ୟାଗୁଡ଼ିକୁ ସଂଖ୍ୟାରେଖା ଉପରେ କିପରି ସ୍ଥାପନ କରାଯାଇପାରିବ, ତାହା ଆମେ ପୂର୍ବ ଅନୁଚ୍ଛେଦରେ ଆଲୋଚନା କରିସାରିଛେ । ବଞ୍ଚୁତଃ ଏହା ଏକ ସ୍ଥାନାଙ୍କ ପ୍ରଣାଳୀ (Co-ordinate System) । ଏହି ସ୍ଥାନାଙ୍କ ଜ୍ୟାମିତିକୁ ରୈଖିକ ଜ୍ୟାମିତି (Geometry of line) କୁହାଯାଏ ।

ଯଦି ସଂଖ୍ୟାରେଖା ଉପରେ P ଓ Q ଦୁଇଟି ବିନ୍ଦୁର ସ୍ଥାନାଙ୍କ 4 ଓ 6 ହୁଏ, ତେବେ P ଓ Q ମଧ୍ୟରେ ଦୂରତା 4-6 ବା 6-4 ହେବ । ଅର୍ଥାତ୍ -2 ବା 2 ହେବ । କିନ୍ତୁ -2 ଓ 2 ଉଭୟଙ୍କର ସାଂଖିକ ମୂଲ୍ୟ 2 ଅଟେ । -2 ଓ 2 ର ସାଂଖିକ ମାନ ଅଣରଣାତ୍ମକ ଓ ଏହି ସାଂଖିକ ମୂଲ୍ୟକୁ I-2I ଓ I2I ଲେଖାଯାଏ ।

ଅର୍ଥାତ୍ ଧନାତ୍ମକ ହେଉ ବା ଋଣାତ୍ମକ ହେଉ, ଯେ କୌଣସି ବାଞ୍ଚବ ସଂଖ୍ୟା x ର ସାଂଖିକ ମାନକୁ ଆମେ lxl ଭାବରେ ପ୍ରକାଶ କର । ଏହି lxl ସର୍ବଦା ଏକ ଧନାତ୍ପକ ବାୟବ ରାଶି ଓ ଏହାକ xର ପରମ ମାନ (Absolute Value) କୁହାଯାଏ । ଏହି ସାଂକେତିକ ଚିହ୍ନକୁ ବ୍ୟବହାରର କରି ଆମେ ଉପରୋକ୍ତ ଦୂରତାକୁ ନିମ୍ନ ପକାରରେ ଲେଖିପାରିବା ।

$$PQ = 16 - 4191PQ = 14 - 61$$

$$\therefore PO = 2$$

ଅର୍ଥାତ୍ PQ = | I P ଓ Q ର ସ୍ଥାନାଙ୍କଦ୍ୱୟର ଅନ୍ତର I

ତେଣ୍ର ସଂଖ୍ୟାରେଖାସ୍ଥିତ P ଓ Q ବିନ୍ଦୁଦ୍ୱୟର ସାଂଖିକ ମାନ ବା ସ୍ଥାନାଙ୍କ ଯଥାକୁମେ a ଓ b ହେଲେ, ଦୂରତା PQ = Ia − bI

ତେଣୁ x ଧନାତ୍ମକ ବା ରଣାତ୍ମକ ବାୟବ ସଂଖ୍ୟା ହେଲେ,

$$|x|=$$
 $\left\{ egin{array}{ll} x, & \mathrm{CLCOG} & \mathrm{CCC} & \mathrm{CCC} \\ -x, & \mathrm{CLCOG} & \mathrm{CCC} & \mathrm{CCC} \end{array}
ight.$

ଉଦାହରଣ ସ୍ୱରୂପ x = 5 ହେଲେ, |x| = |5| = 5 = x;

$$x = 0$$
 ହେଲେ, $|x| = |0| = 0 = x$;

$$x = -7$$
 ହେଲେ, $|x| = |-7| = 7 = -x$;

ଦୃଷ୍ଟବ୍ୟ : x ଯେ କୌଣସି ଏକ ବାୟବ ସଂଖ୍ୟା ହେଲେ,

(i)
$$|x| = |-x| \ge 0$$
 (ii) $|x| \ge x$

(ii)
$$|x| \ge x$$

(iii)
$$|x| \ge -x$$

$$(iii)$$
 $|x| \ge -x$ (iv) $|x| \le a$ ହେଲେ, $-a \le x \le a$ ହେବ $|x|$

(iv) ର ପ୍ରମାଣ :

ପଥମ ପରିସ୍ଥିତି : $x \ge 0$ ହେଲେ, |x| = x

$$\therefore |x| \le a \Rightarrow x \le a$$
(i)

ଦ୍ୱିତୀୟ ପରିସ୍ଥିତି :
$$x < 0$$
 ହେଲେ, $|x| = -x$

$$\therefore$$
 $|x| \le a \Rightarrow -x \le a \Rightarrow x \ge -a \dots(ii)$

ଉଦାହରଣ - 6

ଏକ ସଂଖ୍ୟାରେଖାରେ A ଓ B ର ସ୍ଥାନାଙ୍କ ଦୃୟ 3 ଏବଂ -7 ହେଲେ, AB କେତେ ?

ସମାଧାନ :
$$AB = \overline{AB}$$
 ର ଦୈର୍ଘ୍ୟ

$$= 13 - (-7)1 = 13 + 71 = 1101 = 10$$

ଅଥବା
$$AB = | -7 - 3 | = | -10 | = 10$$
 ଏକକ (ଉତ୍ତର)

ଉଦାହରଣ -7 : 13x - 21 = 4 ସମାଧାନ କର ।

ସମାଧାନ : ଯଦି $3x-2 \ge 0$ ହୁଏ, ତେବେ 13x-21 = 3x-2 ହେବ,

$$\therefore 3x - 2 = 4 \Rightarrow 3x = 4 + 2$$

$$\Rightarrow$$
 3x = 6 \Rightarrow x = 2

ଯଦି 3x-2 < 0 ହୁଏ, ତେବେ | 3x-2 | = -(3x-2) ହେବ,

$$\therefore$$
 $-(3x-2) = 4 \Rightarrow -3x +2 = 4$

$$\Rightarrow 3x = -2 \Rightarrow x = \frac{-2}{3}$$

$$\therefore$$
 ନିର୍ଷେୟ ସମାଧାନ = $\{\frac{-2}{3}, 2\}$ (ଉତ୍ତର)

ଉଦାହରଣ - 8 : $\mid x \mid < 5$ ହେଲେ x ର ମାନ ନିର୍ଣ୍ଣୟ କର \mid

ସମାଧାନ : ସଂଜ୍ଞାନୁସାରେ |x|=x, ଯଦି $x\geq 0$ ଏବଂ

$$-x$$
, ଯହି $x < 0$

ଯଦି x ଧନାତ୍ମକ ହୁଏ ତାହେଲେ x < 5.....(i)

ଯଦି x ରଣାତ୍ପକ ହୁଏ ତାହେଲେ -x < 5 କିୟା x > -5...... (ii)

ତେଣୁ (i) ଓ (ii) ରୁ ପାଇବା
$$-5 < x < 5$$
 (ଉତ୍ତର)

ବିଶ୍ୱେଷଣ :ଯଦି x ର ମାନ 5 ଠାରୁ ବଡ଼ ଅର୍ଥାତ୍ 6 ହୁଏ,

ତେବେ $|\mathbf{x}| = |\mathbf{6}| = \mathbf{6}$, ଯାହାକି $|\mathbf{x}| < \mathbf{5}$ ସର୍ତ୍ତକୁ ବିରୋଧ କରିବ ।

ଯଦି x ର ମାନ -5 ଠାରୁ କମ୍ ଅର୍ଥାତ୍ -6 ହୁଏ,

ତେବେ $|\mathbf{x}| = |\mathbf{I} - \mathbf{6}| = 6$, ଯାହାକି ପୂର୍ବଭଳି $|\mathbf{x}| < 5$ ସର୍ତ୍ତକୁ ବିରୋଧ କରିବ ।

କିନ୍ତୁ -5 ଠାରୁ ଆରୟ କରି 5 ରେ ଶେଷ କଲେ, ଯେଉଁ ସମୟ ବାୟବ ସଂଖ୍ୟା ରହିଲା, ତାହା $\|\mathbf{x}\| \le 5$ ସର୍ତ୍ତକୁ ସିଦ୍ଧ କରିବ । ତେଣୁ $\|\mathbf{x}\| \le 5$ \Rightarrow - 5 \le \mathbf{x} \le 5

ଭଦାହରଣ - 9 : $13x - 21 \le 5$ ହେଲେ, xର ସମୟ ମାନ ନିର୍ପଣ କର ।

ସମାଧାନ : ଦ୍ରଷ୍ଟବ୍ୟ - (iv) ରେ ଦିଆଯାଇଥିବା ସୂତ୍ର ଅନୁସାରେ $13x-21 \le 5$ ହେଲେ,

$$-5 \leq 3x - 2 \leq 5$$

$$\Rightarrow$$
 $-5+2$ $\leq (3x-2)+2$ $\leq 5+2$ \Rightarrow -3 $\leq 3x$ ≤ 7 \Rightarrow 3 ଦ୍ୱାରା ଭାଗ କଲେ, -1 $\leq x$ $\leq \frac{7}{3}$ (ଉଉର)

ଉଦାହରଣ - 10 : |3x-2| > 5 ଅସମୀକରଣଟି ସମାଧାନ କର ।

ସମାଧାନ :- ଜଦାହରଣ -9 ରେ $|3x-2| \le 5$ ଅସମୀକରଣଟିର ସମାଧାନ କରାଯାଇଛି ।

 $|3x-2| \le 5$ ର ଠିକ୍ ବିପରିତ ଉକ୍ତିଟି |3x-2| > 5। ସୁତରାଂ ଉଦାହରଣ -9 ରେ ମିଳିଥିବା ଉତ୍ତରର ବିପରିତ ଦଉ ଅସମୀକରଣଟିର ସମାଧାନ ହେବ ।

ଅତଏବ ।
$$3x-2$$
 । >5 ର ସମାଧାନ $x>\frac{7}{3}$ କିୟା $x<-1$ ।

2.10 ଘାତଙ୍କ ରାଶି (Exponential numbers) :

a ଏକ ବାୟବ ସଂଖ୍ୟା ଓ n ଏକ ଗଣନ ସଂଖ୍ୟା ହେଲେ a^n ର ଅର୍ଥ a x a x a x a x (n ଥର) ଅଟେ । a^n ଏକ ବାୟବ ସଂଖ୍ୟା ଓ ଏହାର କାରଣ ହେଲା ବାୟବ ସଂଖ୍ୟା ସେଟ୍ରେ ଗୁଣନ ପ୍ରକ୍ରିୟାଟି ସଂବୃତ୍ତି ନିୟମାଧୀନ । a^n ରୂପକୁ ଘାତାଙ୍କ ରୂପ (exponential form) କୁହାଯାଏ । ଯେଉଁଠାରେ a ଆଧାର (base) ଓ n ଘାତାଙ୍କ । ଏଠାରେ n=0 ହେଲେ $a^0=1$ ଓ ଏଠାରେ $a\neq 0$ । ଏହା ଏକ ସଂଜ୍ଞା ।

ଆମେ ଜାଶିଛେ ଯେ,
$$a \neq 0$$
 ହେଲେ, $a^{-1} = \frac{1}{a} \ \, \mbox{ଏବ°} \ a^{-m} = \frac{1}{a^m} \ (a \neq 0, \, m \in N)$

 a^n ଘାତାଙ୍କ ରୂପରେ a ଅଶଶୂନ୍ୟ ବାୟବ ସଂଖ୍ୟା ଓ ଘାତାଙ୍କ n ଏକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା $(n \in Z)$ ହେଲେ ଅଷ୍ଟମ ଶ୍ରେଣୀରେ ନିମ୍ନଲିଖିତ ଘାତାଙ୍କ ନିୟମ ଗୁଡ଼ିକ ଅଧ୍ୟୟନ କରିଛ ।

 $x^n=a\ (x\in R,\,n\in N)$ ହେଲେ ଆମେ x କୁ a ର n-ତମ ମୂଳ (n-th root) ବୋଲି କହୁ । କୌଣସି ଧନାତ୍ମକ ବାୟବ ସଂଖ୍ୟା a ର n ତମ ମୂଳ ରୂପେ ଆମେ ନିଷ୍ଟୟ ଗୋଟିଏ ଧନାତ୍ମକ ମୂଳ ପାଇବା ଓ ଏହି n-ତମ ମୂଳକୁ $\sqrt[n]{a}$ ସଂକେତ ଦ୍ୱାରା ପ୍ରକାଶ କରିପାରିବା । ସେହି ଦୃଷ୍ଟିରୁ a ର ବର୍ଗମୂଳ ଏବଂ a ର ଘନମୂଳକୁ ଯଥାକ୍ରମେ $\sqrt[n]{a}$ ଓ $\sqrt[n]{a}$ ମାଧ୍ୟମରେ ପ୍ରକାଶ କରାଯାଏ । ' $\sqrt{}$ ' ଚିହ୍ନକୁ କରଣୀ (radical) ଚିହ୍ନ କୁହାଯାଏ ।

 \sqrt{a} ଓ $\sqrt[3]{a}$ କୁ ମଧ୍ୟ ଯଥାକ୍ରମେ $a^{\frac{1}{2}}$ ଏବଂ $a^{\frac{1}{3}}$ ରୂପେ ଲେଖାଯାଇପାରିବ । ବ୍ୟାପକ ଭାବେ q ଏକ ଗଣନ ସଂଖ୍ୟା ହେଲେ $a^{\frac{1}{q}}$ ଏକ ଧନାତ୍ମକ ବାୟବ ସଂଖ୍ୟା ଓ ଏହାକୁ a ର qତମ ମୂଳ $(qth\ root)$ କୁହାଯାଏ ।

$$a^{\frac{1}{q}}$$
 ରାଶିକୁ p ଥର ଗୁଣନ କଲେ ପାଇବା : $a^{\frac{1}{q}}xa^{\frac{1}{q}}x....$ $(p$ ଥର $)=a^{\frac{p}{q}}$

ଏହି ଦୃଷ୍ଟିରୁ ଘାତାଙ୍କ ରାଶିରେ ଘାତାଙ୍କକୁ ପରିମେୟ ସଂଖ୍ୟା ଏବଂ ଆଧାରକୁ ଏକ ବାୟବ ସଂଖ୍ୟା ଭାବେ ଚିନ୍ତାକଲେ ଆମେ ଦେଖି ପାରିବା ଯେ, ପରିମେୟ ଘାତାଙ୍କ ପାଇଁ (1) ରେ ପ୍ରଦତ୍ତ ନିୟମ ଗୁଡ଼ିକ ${\bf n}$ ଓ ${\bf m}$ ପରିମେୟ ରାଶି ହେଲେ ମଧ୍ୟ ସତ୍ୟ ହେବେ ।

ବର୍ତ୍ତମାନ ଆମେ ଲେଖିପାରିବା :
$$a^{\frac{p}{q}}=(a^p)^{\frac{1}{q}}=\sqrt[q]{a^p}$$
 ଏବଂ $a^{\frac{p}{q}}=\left(a^{\frac{1}{q}}\right)^p=\left(\sqrt[q]{a}\right)^p$

ଯଦି ଘାତାଙ୍କ $\mathbf n$ ବାୟବ ସଂଖ୍ୟା, ତେବେ ମଧ୍ୟ ଘାତାଙ୍କ ନିୟମ (1) ସତ୍ୟ। ମାତ୍ର ଏହାକୁ ବିଶଦ ଭାବେ ଆଲୋଚନା କରିବା ଏହି ପୁୟକର ପରିସରର ବର୍ହିଭୂକ୍ତ । ତେଣୁ ବାୟବ ଘାତାଙ୍କ ପାଇଁ (1) ରେ ପ୍ରଦତ୍ତ ନିୟମ ଗୁଡ଼ିକୁ ସ୍ୱୀକାର୍ଯ୍ୟ ରୂପେ ଗ୍ରହଣ କରାଯାଉଛି ।

ଉଦାହରଣ - 11 : ନିମ୍ନଲିଖିତ ଘାତାଙ୍କ ରାଶିର ମାନ ନିରୂପଣ କର ।

(i)
$$4^{-\frac{5}{2}}$$
 (ii) $343^{\frac{1}{3}}$ (iii) $\left(8^{\frac{-3}{4}}\right)^{\frac{4}{9}}$ (iv) $(0.125)^{\frac{1}{3}}$ (v) $(1024)^{1.2}$

ସମାଧାନ :- (i)
$$4^{-\frac{5}{2}} = (\sqrt{4})^{-5} = 2^{-5} = \frac{1}{2^5} = \frac{1}{32}$$

(ii)
$$343^{\frac{1}{3}} = \sqrt[3]{343} = \sqrt[3]{7^3} = 7$$

(iii)
$$\left(8^{\frac{-3}{4}}\right)^{\frac{4}{9}} = 8^{\frac{-3}{4}} \times \frac{4}{9} = 8^{-\frac{1}{3}} = \sqrt[3]{8^{-1}} = \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$$

(iv)
$$(0.125)^{\frac{1}{3}} = \sqrt[3]{\frac{125}{1000}} = \sqrt[3]{\left(\frac{5}{10}\right)^3} = \frac{5}{10} = 0.5$$

(v)
$$(1024)^{1.2} = (1024)^{\frac{12}{10}} = (10\sqrt[3]{1024})^{12} = (10\sqrt[3]{2^{10}})^{12} = 2^{12} = 4096$$

ଦ୍ରଷ୍ଟବ୍ୟ :
$$a^{\frac{p}{q}}=\left(a^{\frac{1}{q}}\right)^p=\left(\sqrt[q]{a}\right)^p$$
 ହେତୁ ଏଠାରେ ଲେଖିପାରିବା : $a^{\frac{p}{q}}=\sqrt[q]{a^p}=\left(\sqrt[q]{a}\right)^p$

ଉଦାହରଣ - 12 : $\frac{2\sqrt{3}+3}{5\sqrt{3}+1}=x+y\sqrt{3}$, ଓ x ଓ y ପରିମେୟ ହେଲେ x ଓ y ର ମୂଲ୍ୟ ନିରୂପଣ କର ।

ସମାଧାନ :
$$x + \sqrt{3}.y = \frac{2\sqrt{3}+3}{5\sqrt{3}+1} = \frac{(2\sqrt{3}+3)(5\sqrt{3}-1)}{(5\sqrt{3}+1)(5\sqrt{3}-1)}$$

(ଲବ ଓ ହରକୁ $(5\sqrt{3}-1)$ ଦ୍ୱାରା ଗୁଣନ କଲେ ହରରେ ଥିବା ଅପରିମେୟ ସଂଖ୍ୟା ଅପସାରିତ ହୁଏ । ଏହି ପ୍ରକ୍ରିୟାକୁ ହରର ପରିମେୟ କରଣ (rationalization) କୁହାଯାଏ ।)

$$\Rightarrow x + \sqrt{3} \cdot y = \frac{30 - 2\sqrt{3} + 15\sqrt{3} - 3}{75 - 1} = \frac{27 + 13\sqrt{3}}{74} = \frac{27}{74} + \frac{13}{74}x\sqrt{3}$$

ଉଭୟ ପାର୍ଶ୍ୱକୁ ତୁଳନା କଲେ
$$x=\frac{27}{74}$$
 ଓ $y=\frac{13}{74}$ । (ଉତ୍ତର)

ଉଦାହରଣ - 13 : ସରଳ କର:-

(i)
$$\left(\frac{1}{27}\right)^{0.\overline{3}} \mathbf{x} \left(3\frac{3}{8}\right)^{-\frac{2}{3}}$$
 (ii) $\left(\frac{4}{9}\right)^{\frac{1}{2}} \mathbf{x} \, 64^{\frac{2}{3}} \mathbf{x} \left(1\frac{1}{3}\right)^{-1}$

ସମାଧାନ : (i) ଏଠାରେ
$$\frac{1}{27} = \left(\frac{1}{3}\right)^3$$
, $0.\overline{3} = \frac{1}{3}$ ଏବଂ $3\frac{3}{8} = \frac{27}{8} = \left(\frac{3}{2}\right)^3$

∴ ଦତ୍ତ ରାଖି =
$$\left\{\left(\frac{1}{3}\right)^3\right\}^{\frac{1}{3}} x \left\{\left(\frac{3}{2}\right)^3\right\}^{-\frac{2}{3}} = \frac{1}{3} x \left(\frac{3}{2}\right)^{-2} = \frac{1}{3} x \frac{4}{9} = \frac{4}{27}$$
 (ଉତ୍ତର) (ii) ଦତ ପରିପ୍ରକାଶ = $\left(\frac{4}{9}\right)^{\frac{1}{2}} x 6 4^{\frac{2}{3}} x \left(1\frac{1}{3}\right)^{-1} = \sqrt{\frac{4}{9}} x \left(4^3\right)^{\frac{2}{3}} x \left(\frac{4}{3}\right)^{-1}$ = $\frac{2}{3} x \left(\sqrt[3]{4^3}\right)^2 x \frac{3}{4} = \frac{2}{3} x 4^2 x \frac{3}{4} = 8$ (ଉତ୍ତର) ଭଦାହରଣ - 14 : $\left\{\frac{\sqrt[3]{24} x \sqrt{24} x \sqrt{32}}{\sqrt[3]{12} x \sqrt{18}}\right\} x = \frac{2^{\frac{5}{6}}}{\sqrt{3}}$ ହେଲେ x ର ମୂଲ୍ୟ ଉଚ୍ଚଳର ! ବହାଇଥି : x ର ସହର = $\frac{2\sqrt[3]{3} x 2 \sqrt{6} x 4 \sqrt{2}}{\sqrt[3]{12} x 3 \sqrt{2}} = \frac{2(3)^{\frac{1}{3}} x 2 x (2)^{\frac{1}{2}} (3)^{\frac{1}{2}} x 4(2)^{\frac{1}{2}}}{2^{\frac{1}{2}} x 2^{\frac{1}{6}}} = \frac{16}{3^{\frac{1}{2}} x 2^{\frac{1}{6}}}$ ⇒ $x = \frac{2^{\frac{5}{6}} x 2^{\frac{5}{6}}}{16} = \frac{1}{8}$ (ଉତ୍ତର) କଦାହରଣ - 15 : ସରଳ କର : (i) $\left|\frac{\sqrt{31} - \sqrt{11}}{\sqrt{31} + \sqrt{11}}\right| - \frac{\sqrt{31} + \sqrt{11}}{\sqrt{31} - \sqrt{11}}$ (ii) $\left|\frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} + \sqrt{7}}\right|$ ସମାଧାନ : (i) $x = \frac{\sqrt{31} - \sqrt{11}}{\sqrt{31} + \sqrt{11}} - \frac{\sqrt{31} + \sqrt{11}}{\sqrt{31} - \sqrt{11}} = \frac{-4\sqrt{341}}{20} = -\frac{\sqrt{341}}{5}$ ∴ $1 x 1 = \frac{\sqrt{341}}{5}$! (ଉତ୍ତର) (ii) $\left|\frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} + \sqrt{7}}\right| = \left|\frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} + \sqrt{7}}\right|$ (ଉତ୍ତର) (ii) $\left|\frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} + \sqrt{7}}\right| = \left|\frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} + \sqrt{6}}\right|$ ($\because \sqrt{6} + \sqrt{7} > 0$) $= \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} + \sqrt{6}}\left(\sqrt{7} - \sqrt{6}\right)\left(\sqrt{7} - \sqrt{6}\right)}{\left(\sqrt{7} + \sqrt{6}\right)\left(\sqrt{7} - \sqrt{6}\right)} = \frac{7 + 6 - 2\sqrt{42}}{7 - 6} = 13 - 2\sqrt{42}$ (ଉତ୍ତର)

ଅନୁଶୀଳନୀ - 2(b)

			~	
1. ନିମ୍ନ	ଲିଖ୍ତ ପ୍ରଶ୍ନମାନଙ୍କ	ରେ ସୟାବ୍ୟ ଉତ୍ତର	ର ମଧ୍ୟରୁ ଠିକ୍ ଉଭ	ରଟି ବାଛ।
(i) ନିମ୍	ଲିଖିତ ମଧ୍ୟରୁ କେ	ଉଁଟି ଠିକ୍ ?		
	(a) √4 ଏକ ଅପ	ାରିମେୟ ସଂଖ୍ୟା।	(b) $\sqrt{2}$	$rac{1}{2}$ ଓ $\sqrt{3}$ ମଧ୍ୟରେ ଅପରିମେୟ ସଂଖ୍ୟା ନାହିଁ।
	(c) $\sqrt{8}$ ଏକ ଅପ $^{\circ}$	ରିମେୟ ସଂଖ୍ୟା।	(d) π	$z \in Q$
(ii) ନିହ	ମୁଲିଖ୍ତ ମଧ୍ୟରୁ କେ	ଉଁଟି ଠିକ୍ ନୁହେଁ ?		
	(a) p ଓ q ସଂଖ୍ୟା	ଦ୍ୱୟ ଯଥାକ୍ରମେ ପ	ıରିମେୟ ଓ ଅପର <u>ି</u>	ର୍ରମୟ ହେଲେ p+q ଅପରିମେୟ ।
	(b) p ଓ q ସଂଖ୍ୟା	ଦ୍ୱୟ ଅପରିମେୟ	ହେଲେ p+q ଅପ	ୀରିମେୟ
	(c) p ଓ q ସଂଖ୍ୟା	ଦ୍ୱୟ ପରିମେୟ ସେ	ହଲେ p+q ପରିଟ	ମୟ
	(d) p ଓ q ସଂଖ୍ୟା	ଦ୍ୱୟ ପରିମେୟ ଟ	ହଲେ p-q ପରିଟେ	ମୟ
(iii)	ନିମ୍ମଲିଖିତ ମଧ୍ୟରୁ	କେଉଁଟି ଠିକ୍ ?		
	(a) p ଓ q ପରିଟେ	ୀୟ ହେଲେ pq ପ	ରିମେୟ	
	(b) p ଓ q ଅପରି	ମେୟ ହେଲେ pq	ଅପରିମେୟ	
	(c) p ପରିମେୟ ଓ	ଃ q ଅପରିମେୟ ବ	ହଲେ pq ପରିଟେ	าผูเ
	(d) p ଓ q ଅପରି	ମେୟ ହେଲେ $rac{p}{q}$	ଅପରିମେୟ ।	
(iv)	ରାଜିକାର (କର	ଶୀ) ରିନ ର୍ୟରନା	ର କରେ $2^{rac{1}{2}}$ ରାଣି	i ଟି କାହା ସହ ସମାନ ?
	(a) $\sqrt{2}$ (b) $\sqrt[3]{2}$			। ७ पारा यर यहाता :
(v)	ରାଡ଼ିକାଲ ଚିହ୍ନ ଅ	ାପସାରଣ କଲେ ⁻	$rac{1}{2^5\!\!\sqrt{x^{-3}}}$ ରାଶିର ସ	ାରଳୀକୃତ ମାନ କେଉଁଟି ?
	(a) $\frac{x^{\frac{3}{5}}}{2}$	(b) $\frac{1}{2x^{-15}}$	(c) $\frac{x^{15}}{2}$	(d) ଏଥିରୁ କେଉଁଟି ନୁହେଁ
(vi)	$9^{-lrac{1}{2}}$ ରାଶିଟି କେ	ଉଁ ରାଶି ସହ ସମ	ାନ ?	
	(a) $\frac{1}{3}$	(b) $3\frac{1}{3}$	(c) $\frac{1}{9}$	(d) $\frac{1}{27}$
(vii)	$\left(\sqrt{2}^{\sqrt{2}} ight)^{\!\sqrt{2}}$ ର ହ	<u>ୁ</u> ଲ୍ୟ କାହା ସହ ସ	ାମାନ ?	
	(a) $\sqrt{2}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{2}}$	(d) 2
(viii)	କେଉଁଟି ଠିକ୍ ?			
	(a) $\sqrt[4]{4} > \sqrt[3]{3}$	(b) $\sqrt[3]{4} > \sqrt[4]{3}$	(c) $\sqrt[3]{4} = \sqrt[4]{3}$	(d) $\sqrt[4]{4} = \sqrt[3]{3}$
(ix)	Q ସମୟ ପରିଟେ	ମୟ ସଂଖ୍ୟା Q′ ସ	ମୟ ଅପରିମେୟ	ସଂଖ୍ୟା ହେଲେ $\mathrm{Q} \cup \mathrm{Q}' = ?$
	(a) N	(b) Z	(c) R	(d) ଏଥ୍ରୁ କେଉଁଟି ନୁହେଁ।

	222		° ○ ()		.
(x)	_	~				ରିମେୟ ସଂଖ୍ୟା ହେବ ?
		(b) $\sqrt{5} - \sqrt{2}$	· · · · ·	· · · · · · · · · · · · · · · · · · ·		
(xi)		କ ପରିମେୟ ସଂଖ			~	ର ମୂଲ୍ୟଟି ବାଛ।
	(a) $1-\sqrt{2}$	(b) $\sqrt{2} - 1$	(c) $-1-$	$\sqrt{2}$ (d) 2	$\sqrt{2}$	
(xii)	$\frac{\sqrt{2}}{\sqrt{3}}$ ସଂଖ୍ୟାଟି ନି	ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ 6	କଉଁଟି ସହ ସ	ସମାନ ନୁହେଁ ?		
	(a) $\frac{4}{\sqrt{6}}$	(b) $\frac{\sqrt{6}}{3}$	$\frac{\overline{5}}{}$ (c)	$) \frac{2}{\sqrt{6}}$	(d) $\frac{\sqrt{1}}{\sqrt{1}}$	$\frac{\overline{2}}{\overline{8}}$
(xiii)	$3\sqrt{2}$ ଓ $7\sqrt{8}$ ଚ	। ଯୋଗଫଳ କେ	ତ ?			
	(a) $12\sqrt{2}$	(b) ₁₀	$\sqrt{2}$ (c)	$10\sqrt{8}$	(d) ଏଥ	ା୍ରୁ କେଉଁଟି ନୁହେଁ।
2. ନିମ୍ନ	ଲିଖ୍ତ ଉକ୍ତି ମଧ୍ୟରୁ	ଯେଉଁଗୁଡ଼ିକ ସତ [୍]	। ସେଗୁଡ଼ିକୁ ଚି	ଚିହ୍ନଟ କର ।		
(i)	$0 \in R$	(ii) $\sqrt{16} \in Q$	(iii	i) $\sqrt{5} \in \mathbb{R}$		(iv) - 0 = 0
(v)	$-\pi\in Q$	(vi) $2\pi \in Q'$	(vi	ii) $2 + \sqrt{2} e^{-\frac{\pi}{2}}$	≡ Q	(viii) $Q \subset R$
(ix)	$\pi \in Q'$	$(x) Q \cup Q' =$	R (xi	i) $Q \subset Q'$		(xii) $R - Q = Q^{\prime}$
(xiii)	$\sqrt{2}$ ଓ $\sqrt{3}$ ମଧ୍ୟ	ରେ ଅସୀମ ସଂଖ୍ୟ	ାକ ଅପରିମେନ୍	ୟ ସଂଖ୍ୟା ବିପ	୍ୟମାନ ।	
(xiv)	0.010010001	100001 ଏକ	ପରିମେୟ ସଂ	°ଖ୍ୟା ।		
(xv)	$x \in R$ ହେଲେ,	$x \cdot \frac{1}{x} = 1$				
(xvi)	vi) ଦୁଇଗୋଟି ପରିମେୟ ସଂଖ୍ୟାର ଯୋଗଫଳ ପରିମେୟ ।					
(xvii)	xvii) ଦୁଇଟି ପରିମେୟ ସଂଖ୍ୟାର ଯୋଗଫଳ ଅପରିମେୟ ।					
(xviii)	xviii) ଦୁଇଟି ଅପରିମେୟ ସଂଖ୍ୟାର ଯୋଗଫଳ ପରିମେୟ ।					
(xix)	🔾 ଦୁଇଟି ଅପରିମେୟ ସଂଖ୍ୟାର ଗୁଣଫଳ ଅପରିମେୟ ।					
(xx)	π ସହ ଯେ କୌ	ଣସି ବାୟବ ସଂଖ୍ୟ	।। ଯୋଗ କଟେ	ଲ ଯୋଗଫଳ	ଅପରିଟେ	ମୟ ।
3. ନିମ୍ନ	ଳିଖିତ ରାଶିମାନଙ୍କ	r ମଧ୍ୟରୁ କେଉଁ ସଂ	ଖ୍ୟାଗୁଡ଼ିକ ପର୍	ରିମେୟ ଓ କେ	ନଉଁଗୁଡ଼ିକ	ଅପରିମେୟ ଲେଖ ।
		(ii) $\frac{1}{2}$				
	(vi) π	(vii) $\frac{\sqrt{3}}{2}$	(viii) $\frac{1}{\sqrt{2}}$	(ix) 0.	.7	(x) 0.7
	(xi) $\sqrt{0.7}$	(xii) 0.07007	700070000)7		
4. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର :						
	(i) 2 ର ଗୁଣନା	ମ୍କ ବିଲୋମୀ	. 1			ରଗୁଣନାମ୍କ ବିଲୋମୀ ।
	(iii) $\sqrt{2}$ ର ଯୋଗାତ୍ୟକ ବିଲୋମୀ । (iv) π ର $\frac{22}{7}$ ଏକ ମାନ ଅଟେ ।				ର $\frac{22}{7}$ ଏକ ମାନ ଅଟେ ।	
	$(\mathrm{v})~4-\sqrt{3}$ ର ଯୋଗାତ୍ମକ ବିଲୋମୀ					

(vi)ର ଗୁଣନାତ୍ମକ ବିଲୋମୀ ଓ ଯୋଗାତ୍ମକ ବିଲୋମୀର ସମଷ୍ଟି ଶୁନ ଅଟେ । (vii) px = py ହେଲେ x = y ହେବ କେବଳ ଯଦି (viii) $Q \cup Q' = \dots$ $(ix) - \pi$ ର ପରମ ମାନ । (x) x=0 ହେଲେ |x| ର ମାନ 5. 'କ' ୟୟରେ ଥିବା ସଂଖ୍ୟାମାନଙ୍କ 'ଖ' ୟୟରେ ଥିବା ପଦ ସହ (ଅର୍ଥ ଭିଭିକ) ମିଳାଇ ରଖ । (କ) (i) ଗ୍ରଣନାତ୍ପକ ବିଲୋମୀ (i) 0 (ii) ମୌଳିକ ସଂଖ୍ୟା (ii) 1 (iii) ଅପରିମେୟ ସଂଖ୍ୟା (iii) $\sqrt{2}$ (iv) 5 (iv) ଯୁଗୁ ସଂଖ୍ୟା (v) 6 (vi) ଆସନ୍ନମାନ $\frac{22}{7}$ $(vi)_{0.7}$ (vi) ଯୋଗାମ୍ୟକ ବିଲୋମୀ (vii) x ଓ - x (vii) ଯୋଗାତ୍ୟକ ଅଭେଦ (viii) 2 ଓ $\frac{1}{2}$ (viii) ଭଗ୍ନସଂଖ୍ୟା $\frac{p}{q}$ (ix) ଗୁଣନାତ୍ପକ ଅଭେଦ (ix) π ନିମୁଲିଖିତ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ଗୋଟିଏ ଲେଖାଏଁ ଉଦାହରଣ ଦିଅ । (i) $x \, ^{\circ} y$ ଅପରିମେୟ ମାତ୍ର x + y ପରିମେୟ । (ii) $x \, ^{\circ} y$ ଅପରିମେୟ ଓ x + y ଅପରିମେୟ (iii) x ଓ y ଅପରିମେୟ ମାତ୍ର x– y ପରିମେୟ (iv) x ଓ y ଅପରିମେୟ ମାତ୍ର xy ପରିମେୟ (v) x ଓ y ଅପରିମେୟ ଓ xy ଅପରିମେୟ (vi) x ଓ y ଅପରିମେୟ ମାତ୍ର $\frac{x}{v}$ ପରିମେୟ (vii) x ଓ y ଅପରିମେୟ ଓ $\frac{x}{v}$ ଅପରିମେୟ ନିମୁଲିଖିତ ପ୍ରଶୁମାନଙ୍କ ଉତ୍ତର ଦିଅ । କେଉଁ ବାୟବ ସଂଖ୍ୟା ତା' ନିଜର ଯୋଗାତ୍ମକ ବିଲୋମୀ ଅଟେ ? (i) କେଉଁ ବାୟବସଂଖ୍ୟା ତା' ନିଜର ଗ୍ରଣନାତ୍ପକ ବିଲୋମୀ ଅଟେ ? (ii) $\mathbf{a} \times \mathbf{0} = \mathbf{b} \times \mathbf{0}$ ହେଲେ ସର୍ବଦା $\mathbf{a} = \mathbf{b}$ ହେବ କି ? କାରଣ ସହ ଉତ୍ତର ଦିଅ । (iii) ଦୁଇଗୋଟି ଅପରିମେୟ ସଂଖ୍ୟା ଲେଖ ଯେପରି ସେମାନଙ୍କ ଗୁଣଫଳ ପରିମେୟ ମାତ୍ର ଯୋଗଫଳ (iv) ଅପରିମେୟ ହେବ । ଦୁଇଗୋଟି ଅପରିମେୟ ସଂଖ୍ୟା ଲେଖ ଯେପରି ସେମାନଙ୍କ ଯୋଗଫଳ ପରିମେୟ ମାତ୍ର ଗୁଣନଫଳ (v) ଅପରିମେୟ ହେବ ।

6.

7.

(vi)

କ'ଣ ଥାଏ ?

ଏକ ପରିମେୟ ଭଗୁ ସଂଖ୍ୟା ଦଶମିକ ଓ ଏକ ଅପରିମେୟ ସଂଖ୍ୟାର ଦଶମିକ ରୂପରେ ପାର୍ଥକ୍ୟ

8.	ନିମ୍ନଲିଖିତ ସଂଖ୍ୟାମାନଙ୍କ ଯୋଗଫଳ ସ୍ଥିର କର :
	(i) $\sqrt{18} \ \Im \sqrt{72}$ (ii) $3\sqrt{2} \ \Im \sqrt{2}$ (iii) $\sqrt{5} \ \Im -\sqrt{5}$ (iv) $\sqrt{75}$, $\sqrt{108} \ \Im \sqrt{147}$
9.	ନିମ୍ନଲିଖିତ ସଂଖ୍ୟାମାନଙ୍କ ଗୁଣଫଳ ସ୍ଥିର କର :
	(i) $\sqrt{5}$ $\Im \sqrt{2}$ (ii) $\sqrt{20}$ $\Im \sqrt{5}$ (iii) $3 + \sqrt{2}$ $\Im 3 - \sqrt{2}$ (iv) $\sqrt{12}$, $\sqrt{45}$ $\Im \sqrt{15}$
10.	ନିମ୍ନଲିଖିତ ରାଶିମାନଙ୍କୁ x ସହ ଗୁଣନ କଲେ ଯଦି ଗୁଣଫଳ 1 (ଏକ) ତେବେ x ର ମୂଲ୍ୟ ନିର୍ଣ୍ଣୟ କର
	ଯେପରିକି x ର ହର ଏକ ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ହେବ ।
	(i) $\sqrt{3}$ (ii) $3\sqrt{2}$ (iii) $2+\sqrt{3}$ (iv) $\sqrt{5}-1$ (v) $\sqrt{3}+\sqrt{2}$
11.	0.30300300030003 ଦଶମିକ ରାଶିଟି ପରିମେୟ କି ଅପରିମେୟ କାରଣ ସହ ଲେଖ ।
12.	P ଓ Q ବିନ୍ଦୁଦ୍ୱୟ ସଂଖ୍ୟାରେଖାରେ ନିମ୍ନଲିଖିତ ସଂଖ୍ୟା ଯୋଡ଼ି ଦ୍ୱାରା ସୂଚିତ ହେଲେ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ର ପାଇଁ PQ
	ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।
	(i) 8 \Im 15 (ii) -4 \Im 3.2 (iii) -3.7 \Im -6.1 (iv) π \Im -3π
13.	ନିମ୍ନଲିଖିତ ରାଶିମାନଙ୍କୁ ପରିମେୟ ହର ବିଶିଷ୍ଟ ରାଶିରେ ପ୍ରକାଶ କର ।
	(i) $\frac{2}{3(\sqrt{3}+2)}$ (ii) $\frac{2}{1+\sqrt{2}}$ (iii) $\frac{2}{\sqrt{2}+3}$ (iv) $\frac{1}{1+\sqrt{2}}$ (v) $\frac{5}{3-\sqrt{2}}$
	(vi) $\frac{1+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ (vii) $\frac{\sqrt{2}-1}{\sqrt{5}-\sqrt{2}}$ (viii) $\frac{1}{1+\sqrt{2}+\sqrt{3}}$ (ix) $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$
14.	ସରଳ କର :
	(i) $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ (ii) $\frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} + \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$
15.	a ଓ $ b$ ପରିମେୟ ସଂଖ୍ୟା ହେଲେ ନିମ୍ନଲିଖିତ କ୍ଷେତ୍ରରେ ସେମାନଙ୍କ ମାନ ନିର୍ତ୍ତୟ କର ।
	(i) $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$ (ii) $\frac{4+\sqrt{5}}{4-\sqrt{5}} = a + b\sqrt{5}$ (iii) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{8}} = a + b\sqrt{6}$
16.	ସଂଖ୍ୟାରେଖ। ଅଙ୍କନ କରି କମ୍ପାସ୍ ଓ ୟେଲ୍ର ବ୍ୟବହାର ଦ୍ୱାର। ନିମ୍ନଲିଖିତ ସଂଖ୍ୟାମାନଙ୍କୁ ସଂଖ୍ୟା ରେଖାରେ
	ଚିହ୍ନଟ କର ।
	(i) $\frac{3}{5}$ (ii) $1\frac{1}{3}$ (iii) $\sqrt{2}-1$ (iv) $\sqrt{2}+1$ (v) $2+\sqrt{3}$ (vi) $\sqrt{5}$ (vii) $\sqrt{3}-1$
17.	ସଂଖ୍ୟାରେଖାରେ ନିମ୍ନ ସଂଖ୍ୟାମାନଙ୍କୁ

(i)
$$-\sqrt{3} \ \Im \ -\sqrt{2}$$
 (ii) $\frac{3}{4} \ \Im \ \frac{2}{3}$ (iii) $\sqrt{2} \ \Im \ 1\frac{1}{2}$ (iv) 1.7 $\Im \sqrt{3}$

19. ଉଦାହରଣ ନେଇ ସତ୍ୟତା ପରୀକ୍ଷା କର (ଯେଉଁଠାରେ x ଓ y ବାୟବ ସଂଖ୍ୟା) ।

$$(i) \mid x + y \mid \leq \mid x \mid + \mid y \mid \qquad \qquad (ii) \mid x - y \mid \geq \mid \mid |x| - |y| \mid \mid$$

20. ସରଳ କର

$$(i) \left(\left(\sqrt[n]{a} \right)^{\sqrt{n}} \right)^{\sqrt{n}} \; ; \; a \geq 0 \; \; \Im \; \; n \in N \qquad \qquad \\ (ii) \left(\sqrt[3]{3} \sqrt[3]{3} \right)^{\sqrt[3]{3}} \qquad \\ (iii) \; 27^{\frac{1}{3}} x \sqrt{\frac{1}{9}} \div 81^{-\frac{1}{4}} x \sqrt{\frac{1}{9}} \right)^{\frac{1}{3}} \left(\frac{1}{9} + \frac{1}{9} + \frac{1}{9} \right)^{\frac{1}{3}} \left(\frac{1}{9} + \frac{1}{9$$

21. ଗୁଣଫଳ ନିର୍ଣ୍ଣୟ କର

(ii)
$$\left(1-a^{\frac{1}{4}}\right)\left(1+a^{\frac{1}{4}}\right)\left(1+a^{\frac{1}{2}}\right)$$
 $(a>0)$

$$(iii)\left(1+a^{\frac{1}{2}}\right)\left(1+a^{\frac{1}{4}}\right)\left(1+a^{\frac{1}{8}}\right)\left(1+a^{\frac{1}{16}}\right)\left(1+a^{\frac{1}{32}}\right)\left(1-a^{\frac{1}{32}}\right)\left(a>0\right)$$

(iv)
$$(\sqrt[3]{x} + \sqrt[3]{y})(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2})$$
 $(x > 0, y > 0)$

 $(98 \text{ Pm} : (a+b)(a^2-ab+b^2) = a^3+b^3$ ର ସଡ଼ ପ୍ରୟୋଗ କର ।)

$$(v) \left(x^{-1} + x^{\frac{-1}{2}}.y^{\frac{-1}{2}} + y^{-1} \right) \left(x^{-1} - x^{\frac{-1}{2}}.y^{\frac{-1}{2}} + y^{-1} \right) (x > 0, y > 0)$$

(ସ୍ୱଚନା : $(a^2+ab+b^2)(a^2-ab+b^2) = a^4+a^2b^2+b^4$ ର ସୂତ୍ର ପ୍ରୟୋଗ କର ।)

22. ସରଳ କର ।

(i)
$$\sqrt[3]{x^{\frac{1}{2}}y^{\frac{2}{3}}z^{\frac{1}{3}}} \div (xyz)^{\frac{1}{3}}$$
 (ii) $\sqrt[3]{x^{2}y^{4}z^{-1}} \div \sqrt{x^{-\frac{2}{3}}y^{2}z^{-\frac{1}{3}}}$ $(x > 0, y > 0, z > 0)$

23. $\{x,y,z,a,b,c\}\subset R$ ଓ x>0,y>0,z>0 ହେଲେ ପ୍ରମାଣ କର ଯେ,

(i)
$$\sqrt{x^{-1}y} x \sqrt{y^{-1}z} x \sqrt{z^{-1}x} = 1$$

$$(ii) \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} x \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} x \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} = 1 \ (a \neq 0, b \neq 0, c \neq 0)$$

$$(iii) \left(x^{\frac{1}{a-b}} \right)^{\frac{1}{b-c}} \mathbf{x} \left(x^{\frac{1}{b-c}} \right)^{\frac{1}{c-a}} \mathbf{x} \left(x^{\frac{1}{c-a}} \right)^{\frac{1}{a-b}} = 1 \quad (a,b \ \mathbf{G} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c}) \ \mathbf{a} \ \mathbf{c} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{c}$$

24. (i)
$$a = 2^{\frac{1}{3}} - 2^{-\frac{1}{3}}$$
 ହେଲେ ପ୍ରମାଶ କର ଯେ, $2a^3 + 6a = 3$

$$(ii) \ a = x^{\frac{1}{3}} - x^{-\frac{1}{3}}, \ x > 0$$
 ହେଲେ, ପ୍ରମାଶ କର ଯେ, $a^3 + 3a = x - \frac{1}{x}$

25. x ର ମୂଲ୍ୟ ନିରୂପଣ କର ।

(i)
$$3^{x+1} = 9$$
 (ii) $2^{2x+1} = 8$ (iii) $(\sqrt{2})^{2x-1} = 1$

- ବାଞ୍ଚବ ସଂଖ୍ୟାର ସ୍ୱୀକାର୍ଯ୍ୟ ଓ ଆଲୋଚିତ ଅନ୍ୟ ଧର୍ମ ଗୁଡ଼ିକୁ ନେଇ ନିମ୍ନଲିଖିତ ଅଭେଦ ଗୁଡ଼ିକ ପ୍ରତିପାଦନ 26. କର।
 - (i) $a (a-b) = a^2 ab$
 - (ii) $(a \pm b)^2 = a^2 \pm 2ab + b^2$
 - (iii) $(a + b) (a b) = a^2 b^2$
 - (iv) $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$
 - (v) $(a + b) (a^2 ab + b^2) = a^3 + b^3$
 - (vi) $(a b) (a^2 + ab + b^2) = a^3 b^3$
- $x \in R, x \neq 0, a,b,c \in R$ ହେଲେ, ପ୍ରମାଣ କର ଯେ, 27.

$$\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{c-b}+x^{a-b}} + \frac{1}{1+x^{a-c}+x^{b-c}} = 1$$

- ନିମ୍ନଲିଖିତ କ୍ଷେତ୍ରରେ ${\bf x}$ ର ମାନ ନିରୂପଣ କର : 28.
 - (i) | x-3 | = 7
- (ii) | x + 1 | = 11
- (iii) | 2x 1 | = 3
- (iv) | 3x + 4 | = 5
- ନିମ୍ନରେ ପ୍ରଦତ୍ତ ରାଶିମାନଙ୍କୁ ପରିମେୟ ଓ ଅପରିମେୟ ସଂଖ୍ୟା ର ସମଷ୍ଟି ରୂପେ ପ୍ରକାଶ କର । 29.
- (i) $\frac{3}{3+\sqrt{5}}$ (ii) $\frac{\sqrt{2}}{1+\sqrt{8}}$ (iii) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
- ନିମ୍ନଲିଖିତ ଅସମୀକରଣମାନଙ୍କୁ ସମାଧାନ କର। 30.
 - (i) $|x| < \frac{1}{2}$
- (ii) | x | > 1
- (iii) $| 3x | \le 5$ (iv) $| 2x | \ge 3$
- (v) $| 3x-1 | \le 7$ (vi) $| 7x + 3 | \ge 5$