

浙江大学爱丁堡大学联合学院 ZJU-UoE Institute

Edge detection and noise reduction methods

Nicola Romanò - nicola.romano@ed.ac.uk

Learning objectives

- Explain the use of image gradients for edge detection.
- Describe various edge detection algorithms and how they work.
- Describe different noise reduction algorithms and how they work.
- Use Scikit Image to implement these techniques.

Convolution

Reminder of what is a convolution

Outline

Edge detection

Edge detection problem

An edge is an area where the brightness of an image changes more or less gradually.

Detecting edges is useful e.g. to find objects in a scene, determine which pixels belong to which objects, and measure their properties.

Monarch butterfly - CC-BY-SA 2.0 Ted @ Flickr

How to detect an edge?

Consider the vertical edges. We can see a change in the intensity of pixels as we move from black to white and vice versa. **Can you think of a way to detect these edges?**

We can use derivatives!

Edges will correspond to minima and maxima of the derivative of the intensity!

Image derivatives

With a 2D image, we can find the x and y derivatives of the image intensity.

The vector of derivatives is called the **gradient** and is given by:

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

The gradient is a vector with:

· Direction perpendicular to the edge

$$\theta = \arctan\left(\frac{\partial I}{\partial x} / \frac{\partial I}{\partial y}\right)$$

Image derivatives

With a 2D image, we can find the \boldsymbol{x} and \boldsymbol{y} derivatives of the image intensity.

The vector of derivatives is called the **gradient** and is given by:

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

The gradient is a vector with:

· Direction perpendicular to the edge

$$\theta = \arctan\left(\frac{\partial I}{\partial x} / \frac{\partial I}{\partial y}\right)$$

Length (gradient magnitude) proportional to the intensity change

$$||\nabla I|| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Example of gradient vectors

Calculating a discrete derivative

How to calculate a discrete derivative?

Remember the definition of a derivative for a continuous function f(x):

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Calculating a discrete derivative

How to calculate a discrete derivative?

Remember the definition of a derivative for a continuous function f(x):

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Our image is not continuous, as it is made up of discrete pixels so the minimum Δx value is 1 (a single pixel).

Calculating a discrete derivative

How to calculate a discrete derivative?

Remember the definition of a derivative for a continuous function f(x):

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Our image is not continuous, as it is made up of discrete pixels so the minimum Δx value is 1 (a single pixel).

The discrete derivative is given by:

$$\frac{dI}{dx} = \frac{I(x) - I(x-1)}{1} = I(x) - I(x-1)$$

Calculating the discrete derivative - variations

We can choose to calculate the discrete derivative in three different ways

- Forward difference: I(x) I(x + 1)
- Backward difference: I(x) I(x 1)
- Central difference: I(x+1) I(x-1)

Calculating the discrete derivative - variations

We can choose to calculate the discrete derivative in three different ways

- Forward difference: I(x) I(x + 1)
- Backward difference: I(x) I(x 1)
- Central difference: I(x+1) I(x-1)

These can be easily calculated using **convolution**!

- Forward difference: $\begin{bmatrix} 1 & -1 \end{bmatrix}$
- Backward difference: $\begin{bmatrix} -1 & 1 \end{bmatrix}$
- $oldsymbol{\cdot}$ Central difference: $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$

Discrete derivative - example

Let's calculate the discrete derivative of this 1D image using central difference

10	16	22	36	40	11	17	23	37	41
----	----	----	----	----	----	----	----	----	----

Discrete derivative - example

Let's calculate the discrete derivative of this 1D image using central difference

	10	16	22	36	40	11	17	23	37	41
--	----	----	----	----	----	----	----	----	----	----

Convolving with the kernel

We obtain the following

Derivative of an image

We can apply these convolution kernels to an image as well.

$$K_{X} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 $K_{Y} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

The problem with noise...

Derivatives are very sensitive to noise. Smoothing the function beforehand helps

2D derivative kernels (Prewitt edge detectors)

Expanding the derivative kernels to 2D we can directly smooth our intensity function.

These are called **Prewitt** kernels.

$$K_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $K_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

Alternatively the **Sobel** kernels can be used:

$$K_{X} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $K_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Your turn!

Consider the following image. **What do you expect to obtain and why** after convolution with the Prewitt kernels?

Apply the convolution (you can easily do that by hand); do the results match your prediction?

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50
100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100
50	50	50	50	50	50	50	50
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Edge detection - Prewitt and Sobel

Having applied either the Prewitt or Sobel kernels to the image we can now detect edges. Simply threshold the gradient magnitude of the image to define which pixels are edges.

Edge detection in Scikit Image

```
from skimage.filters import prewitt, sobel
from skimage.io import imread

img = imread("butterfly.jpg")
im_prewitt = prewitt(img)
im_sobel = sobel(img)
```


Edge detection in Scikit Image

```
from skimage.filters import prewitt, sobel
from skimage.io import imread
img = imread("butterfly.jpg")
im_prewitt = prewitt(img)
im_sobel = sobel(img)
fig, ax = plt.subplots(2, 1, figsize=(5, 10))
ax[0].imshow(im_prewitt > 0.08, cmap="gray")
ax[0].set_title("Prewitt", fontsize=25)
ax[1].imshow(im_sobel > 0.08, cmap="gray")
ax[1].set_title("Sobel", fontsize=25)
for a in ax:
a.axis("off")
plt.show()
```


Problem with noise

Smoothing to remove noise first

Laplacian of Gaussian