$11n_{114} (K11n_{114})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -8.11096 \times 10^{17} u^{33} + 9.35587 \times 10^{20} u^{32} + \dots + 6.89890 \times 10^{21} b + 2.59045 \times 10^{22}, \\ &\quad 2.18041 \times 10^{22} u^{33} + 5.62075 \times 10^{22} u^{32} + \dots + 7.58879 \times 10^{22} a + 3.69144 \times 10^{23}, \ u^{34} + 2u^{33} + \dots + 7u + 10^{20} u^{34} + 2u^{34} +$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -8.11 \times 10^{17} u^{33} + 9.36 \times 10^{20} u^{32} + \dots + 6.90 \times 10^{21} b + 2.59 \times 10^{22}, \ 2.18 \times 10^{22} u^{33} + 5.62 \times 10^{22} u^{32} + \dots + 7.59 \times 10^{22} a + 3.69 \times 10^{23}, \ u^{34} + 2u^{33} + \dots + 7u + 11 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0287320u^{33} - 0.740665u^{32} + \dots - 3.53964u - 4.86434 \\ 0.000117569u^{33} - 0.135614u^{32} + \dots + 0.865413u - 3.75488 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.143106u^{33} + 0.249396u^{32} + \dots - 0.223580u + 1.42586 \\ 0.104883u^{33} - 0.445287u^{32} + \dots + 3.18850u - 8.62377 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0394778u^{33} + 0.431456u^{32} + \dots + 0.666334u + 6.41410 \\ 0.165129u^{33} + 0.482550u^{32} + \dots - 3.55890u + 3.74557 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0368522u^{33} - 0.145447u^{32} + \dots + 0.442048u - 2.59348 \\ 0.0284463u^{33} - 0.271749u^{32} + \dots + 3.02149u - 6.45999 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.707206u^{33} - 0.981033u^{32} + \dots - 12.7294u + 3.24526 \\ 0.738525u^{33} + 0.935117u^{32} + \dots + 13.8701u + 0.827585 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.707206u^{33} - 0.981033u^{32} + \dots - 12.7294u + 3.24526 \\ 0.524915u^{33} + 0.603994u^{32} + \dots + 9.12444u + 5.59476 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.707206u^{33} - 0.981033u^{32} + \dots - 12.7294u + 3.24526 \\ 0.524915u^{33} + 0.603994u^{32} + \dots + 9.12444u + 5.59476 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{34} - 2u^{33} + \dots - 7u + 11$
c_2	$u^{34} + 14u^{33} + \dots + 1117u + 121$
c_3	$u^{34} + 5u^{33} + \dots + 685u + 79$
c_4, c_8, c_9	$u^{34} - u^{33} + \dots + 11u + 7$
c_6, c_{10}	$u^{34} + 17u^{32} + \dots - 235u + 25$
	$u^{34} - u^{33} + \dots + 12u + 1$
c_{11}	$u^{34} + 3u^{33} + \dots + 13u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{34} + 14y^{33} + \dots + 1117y + 121$
c_2	$y^{34} + 26y^{33} + \dots + 5145y + 14641$
c_3	$y^{34} - 39y^{33} + \dots - 92711y + 6241$
c_4, c_8, c_9	$y^{34} + 27y^{33} + \dots + 75y + 49$
c_6, c_{10}	$y^{34} + 34y^{33} + \dots - 2025y + 625$
c_7	$y^{34} + 37y^{33} + \dots + 238y + 1$
c_{11}	$y^{34} - 5y^{33} + \dots + 26y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.644176 + 0.829926I		
a = 1.09773 - 1.30377I	3.62421 - 0.66236I	0.88799 + 2.20410I
b = 1.18905 + 0.84583I		
u = -0.644176 - 0.829926I		
a = 1.09773 + 1.30377I	3.62421 + 0.66236I	0.88799 - 2.20410I
b = 1.18905 - 0.84583I		
u = -0.634571 + 0.890410I		
a = -0.522236 + 0.565118I	3.43204 - 4.32834I	0.57903 + 4.14192I
b = 0.98473 - 1.34431I		
u = -0.634571 - 0.890410I		
a = -0.522236 - 0.565118I	3.43204 + 4.32834I	0.57903 - 4.14192I
b = 0.98473 + 1.34431I		
u = -0.287047 + 0.823608I		
a = -0.04962 - 1.84400I	1.321200 + 0.457071I	-0.716277 + 1.122784I
b = -0.090832 + 1.169670I		
u = -0.287047 - 0.823608I		
a = -0.04962 + 1.84400I	1.321200 - 0.457071I	-0.716277 - 1.122784I
b = -0.090832 - 1.169670I		
u = -0.483483 + 1.040970I		
a = -0.808214 + 0.762258I	-0.58958 - 3.12068I	3.68668 + 4.96612I
b = -0.602539 - 0.491415I		
u = -0.483483 - 1.040970I		
a = -0.808214 - 0.762258I	-0.58958 + 3.12068I	3.68668 - 4.96612I
b = -0.602539 + 0.491415I		
u = 0.895269 + 0.721333I		
a = 0.693708 + 0.565955I	8.26845 - 0.87317I	4.37441 - 0.26243I
b = -0.88397 - 1.15926I		
u = 0.895269 - 0.721333I		
a = 0.693708 - 0.565955I	8.26845 + 0.87317I	4.37441 + 0.26243I
b = -0.88397 + 1.15926I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.053846 + 0.825704I		
a = -0.916529 + 0.670441I	-8.96690 + 0.23437I	-4.99367 + 1.27444I
b = -1.58656 - 0.18494I		
u = 0.053846 - 0.825704I		
a = -0.916529 - 0.670441I	-8.96690 - 0.23437I	-4.99367 - 1.27444I
b = -1.58656 + 0.18494I		
u = -0.150608 + 0.812616I		
a = -1.42827 - 1.83208I	1.20998 - 2.44183I	-2.48690 + 6.55623I
b = -0.098454 - 0.251948I		
u = -0.150608 - 0.812616I		
a = -1.42827 + 1.83208I	1.20998 + 2.44183I	-2.48690 - 6.55623I
b = -0.098454 + 0.251948I		
u = 0.448396 + 0.692842I		
a = 0.180015 + 1.383330I	-1.69966 + 1.41305I	-2.63563 + 1.93957I
b = 0.984901 - 0.373416I		
u = 0.448396 - 0.692842I		
a = 0.180015 - 1.383330I	-1.69966 - 1.41305I	-2.63563 - 1.93957I
b = 0.984901 + 0.373416I		
u = -0.552635 + 0.574968I		
a = -0.094309 - 0.882449I	0.93843 - 1.09598I	4.47643 + 3.47040I
b = -0.013966 + 0.597149I		
u = -0.552635 - 0.574968I		
a = -0.094309 + 0.882449I	0.93843 + 1.09598I	4.47643 - 3.47040I
b = -0.013966 - 0.597149I		
u = -1.136610 + 0.525255I		
a = -0.769329 + 0.561612I	4.73827 + 6.16193I	1.43869 - 4.43987I
b = 0.828692 - 0.973451I		
u = -1.136610 - 0.525255I		
a = -0.769329 - 0.561612I	4.73827 - 6.16193I	1.43869 + 4.43987I
b = 0.828692 + 0.973451I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.756435 + 1.023180I		
a = -0.62198 - 1.35488I	7.30863 + 6.97671I	2.63789 - 4.86212I
b = -1.18148 + 1.00394I		
u = 0.756435 - 1.023180I		
a = -0.62198 + 1.35488I	7.30863 - 6.97671I	2.63789 + 4.86212I
b = -1.18148 - 1.00394I		
u = 0.524805 + 1.159500I		
a = 0.63911 + 1.30945I	-3.52870 + 6.49607I	-2.23998 - 7.61889I
b = 0.691350 - 0.814203I		
u = 0.524805 - 1.159500I		
a = 0.63911 - 1.30945I	-3.52870 - 6.49607I	-2.23998 + 7.61889I
b = 0.691350 + 0.814203I		
u = 0.708381 + 0.143354I		
a = -0.472404 - 1.210020I	-0.67469 - 1.82017I	-0.31426 + 4.15810I
b = 0.540279 + 0.562923I		
u = 0.708381 - 0.143354I		
a = -0.472404 + 1.210020I	-0.67469 + 1.82017I	-0.31426 - 4.15810I
b = 0.540279 - 0.562923I		
u = 0.799493 + 1.050620I		
a = 0.203588 - 0.576484I	-4.09629 + 3.45751I	1.56870 - 0.90780I
b = -0.181256 + 0.478152I		
u = 0.799493 - 1.050620I		
a = 0.203588 + 0.576484I	-4.09629 - 3.45751I	1.56870 + 0.90780I
b = -0.181256 - 0.478152I		
u = -0.900199 + 1.075370I		
a = 0.277106 + 0.755087I	-2.66115 - 3.64589I	-2.52165 + 4.68608I
b = -1.037800 - 0.322971I		
u = -0.900199 - 1.075370I		
a = 0.277106 - 0.755087I	-2.66115 + 3.64589I	-2.52165 - 4.68608I
b = -1.037800 + 0.322971I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.75947 + 1.19369I		
a = 0.368405 - 1.267140I	2.59902 - 12.89140I	-0.58969 + 7.04532I
b = 1.19328 + 1.07494I		
u = -0.75947 - 1.19369I		
a = 0.368405 + 1.267140I	2.59902 + 12.89140I	-0.58969 - 7.04532I
b = 1.19328 - 1.07494I		
u = 0.36217 + 1.40594I		
a = -0.0040506 - 0.0580629I	-4.64353 + 2.61874I	-6.15176 - 1.44812I
b = 0.764588 + 0.103356I		
u = 0.36217 - 1.40594I		
a = -0.0040506 + 0.0580629I	-4.64353 - 2.61874I	-6.15176 + 1.44812I
b = 0.764588 - 0.103356I		

II.
$$I_2^u = \langle u^6 - u^5 + 2u^4 + 3u^2 + b - u + 1, \ 3u^7 - 3u^6 + \dots + a + 1, \ u^8 - u^7 + 3u^6 - u^5 + 5u^4 - u^3 + 4u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3u^{7} + 3u^{6} - 8u^{5} + 2u^{4} - 12u^{3} + 2u^{2} - 7u - 1 \\ -u^{6} + u^{5} - 2u^{4} - 3u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{7} + 3u^{6} - 6u^{5} + 3u^{4} - 8u^{3} + 4u^{2} - 5u \\ -u^{7} - u^{5} - u^{4} - 3u^{3} - 2u^{2} - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{6} - u^{5} + 3u^{4} - u^{3} + 5u^{2} - u + 4 \\ -u^{6} - 2u^{4} - u^{3} - 5u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{7} + 2u^{6} - 5u^{5} + u^{4} - 7u^{3} + u^{2} - 4u - 1 \\ -u^{6} + u^{5} - 2u^{4} - 3u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{6} + u^{5} - 3u^{4} + u^{3} - 5u^{2} + u - 3 \\ 2u^{7} - u^{6} + 4u^{5} + u^{4} + 7u^{3} + 2u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} + u^{5} - 3u^{4} + u^{3} - 5u^{2} + u - 3 \\ 2u^{7} - u^{6} + 4u^{5} + u^{4} + 7u^{3} + u^{2} + 3u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} + u^{5} - 3u^{4} + u^{3} - 5u^{2} + u - 3 \\ 2u^{7} - u^{6} + 4u^{5} + u^{4} + 7u^{3} + u^{2} + 3u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^7 4u^6 + 11u^5 + u^4 + 18u^3 2u^2 + 7u + 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 - u^7 + 3u^6 - u^5 + 5u^4 - u^3 + 4u^2 + 1$
c_2	$u^{8} + 5u^{7} + 17u^{6} + 35u^{5} + 49u^{4} + 45u^{3} + 26u^{2} + 8u + 1$
<i>c</i> ₃	$u^8 + 2u^6 - 5u^5 + u^4 - 3u^3 + 2u^2 + 2u + 1$
c_4	$u^8 + 5u^6 + 8u^4 - u^3 + 5u^2 - 2u + 1$
<i>C</i> ₅	$u^8 + u^7 + 3u^6 + u^5 + 5u^4 + u^3 + 4u^2 + 1$
<i>C</i> ₆	$u^8 + u^7 - u^6 - u^5 + u^4 - 2u^3 - u^2 + 2u + 1$
C ₇	$u^8 + 4u^6 - u^5 + 5u^4 - u^3 + 3u^2 - u + 1$
c_{8}, c_{9}	$u^8 + 5u^6 + 8u^4 + u^3 + 5u^2 + 2u + 1$
c_{10}	$u^8 - u^7 - u^6 + u^5 + u^4 + 2u^3 - u^2 - 2u + 1$
c_{11}	$u^8 - 2u^7 - u^6 + 2u^5 + u^4 + u^3 - u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^8 + 5y^7 + 17y^6 + 35y^5 + 49y^4 + 45y^3 + 26y^2 + 8y + 1$
c_2	$y^8 + 9y^7 + 37y^6 + 43y^5 + 57y^4 - 3y^3 + 54y^2 - 12y + 1$
c_3	$y^8 + 4y^7 + 6y^6 - 17y^5 - 19y^4 + 19y^3 + 18y^2 + 1$
c_4, c_8, c_9	$y^8 + 10y^7 + 41y^6 + 90y^5 + 116y^4 + 89y^3 + 37y^2 + 6y + 1$
c_6,c_{10}	$y^8 - 3y^7 + 5y^6 - y^5 - 3y^4 - 4y^3 + 11y^2 - 6y + 1$
c_7	$y^8 + 8y^7 + 26y^6 + 45y^5 + 49y^4 + 35y^3 + 17y^2 + 5y + 1$
c_{11}	$y^8 - 6y^7 + 11y^6 - 4y^5 - 3y^4 - y^3 + 5y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.295319 + 0.919504I		
a = 0.574823 + 0.324205I	-8.81521 + 1.23864I	-3.07891 - 5.85923I
b = 1.61514 + 0.17511I		
u = 0.295319 - 0.919504I		
a = 0.574823 - 0.324205I	-8.81521 - 1.23864I	-3.07891 + 5.85923I
b = 1.61514 - 0.17511I		
u = -0.573510 + 0.975502I		
a = -0.242048 + 0.778127I	-1.48925 - 2.46434I	-0.94679 + 2.55997I
b = -0.938003 - 0.196254I		
u = -0.573510 - 0.975502I		
a = -0.242048 - 0.778127I	-1.48925 + 2.46434I	-0.94679 - 2.55997I
b = -0.938003 + 0.196254I		
u = -0.091673 + 0.598709I		
a = -1.73117 - 2.40896I	1.80364 - 1.73790I	2.56359 + 1.62971I
b = -0.288395 + 0.872454I		
u = -0.091673 - 0.598709I		
a = -1.73117 + 2.40896I	1.80364 + 1.73790I	2.56359 - 1.62971I
b = -0.288395 - 0.872454I		
u = 0.86986 + 1.23517I		
a = -0.101607 + 0.618527I	-4.65866 + 3.95256I	-7.53788 - 7.88846I
b = 0.611256 - 0.339089I		
u = 0.86986 - 1.23517I		
a = -0.101607 - 0.618527I	-4.65866 - 3.95256I	-7.53788 + 7.88846I
b = 0.611256 + 0.339089I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u8 - u7 + \dots + 4u2 + 1)(u34 - 2u33 + \dots - 7u + 11) $
c_2	$(u^{8} + 5u^{7} + 17u^{6} + 35u^{5} + 49u^{4} + 45u^{3} + 26u^{2} + 8u + 1)$ $\cdot (u^{34} + 14u^{33} + \dots + 1117u + 121)$
c_3	$(u^8 + 2u^6 - 5u^5 + u^4 - 3u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{34} + 5u^{33} + \dots + 685u + 79)$
c_4	$(u^8 + 5u^6 + 8u^4 - u^3 + 5u^2 - 2u + 1)(u^{34} - u^{33} + \dots + 11u + 7)$
c_5	$(u^8 + u^7 + \dots + 4u^2 + 1)(u^{34} - 2u^{33} + \dots - 7u + 11)$
c_6	$(u^8 + u^7 - u^6 - u^5 + u^4 - 2u^3 - u^2 + 2u + 1)$ $\cdot (u^{34} + 17u^{32} + \dots - 235u + 25)$
c_7	$(u^8 + 4u^6 + \dots - u + 1)(u^{34} - u^{33} + \dots + 12u + 1)$
c_8, c_9	$(u^8 + 5u^6 + 8u^4 + u^3 + 5u^2 + 2u + 1)(u^{34} - u^{33} + \dots + 11u + 7)$
c_{10}	$(u^8 - u^7 - u^6 + u^5 + u^4 + 2u^3 - u^2 - 2u + 1)$ $\cdot (u^{34} + 17u^{32} + \dots - 235u + 25)$
c_{11}	$(u^8 - 2u^7 + \dots - u + 1)(u^{34} + 3u^{33} + \dots + 13u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^8 + 5y^7 + 17y^6 + 35y^5 + 49y^4 + 45y^3 + 26y^2 + 8y + 1)$ $\cdot (y^{34} + 14y^{33} + \dots + 1117y + 121)$
c_2	$(y^8 + 9y^7 + 37y^6 + 43y^5 + 57y^4 - 3y^3 + 54y^2 - 12y + 1)$ $\cdot (y^{34} + 26y^{33} + \dots + 5145y + 14641)$
c_3	$(y^8 + 4y^7 + 6y^6 - 17y^5 - 19y^4 + 19y^3 + 18y^2 + 1)$ $\cdot (y^{34} - 39y^{33} + \dots - 92711y + 6241)$
c_4, c_8, c_9	$(y^8 + 10y^7 + 41y^6 + 90y^5 + 116y^4 + 89y^3 + 37y^2 + 6y + 1)$ $\cdot (y^{34} + 27y^{33} + \dots + 75y + 49)$
c_6, c_{10}	$(y^8 - 3y^7 + 5y^6 - y^5 - 3y^4 - 4y^3 + 11y^2 - 6y + 1)$ $\cdot (y^{34} + 34y^{33} + \dots - 2025y + 625)$
c_7	$(y^8 + 8y^7 + 26y^6 + 45y^5 + 49y^4 + 35y^3 + 17y^2 + 5y + 1)$ $\cdot (y^{34} + 37y^{33} + \dots + 238y + 1)$
c_{11}	$(y^8 - 6y^7 + 11y^6 - 4y^5 - 3y^4 - y^3 + 5y^2 - 3y + 1)$ $\cdot (y^{34} - 5y^{33} + \dots + 26y + 1)$