GATE-2015-PH

EE24BTECH11017-D.KARTHIK

- 40) The band gap of an intrinsic semiconductor is $E_g = 0.72eV$ and $m_h^* = 6m_e^*$. At 300K, the Fermi level with respect to the valence band (in eV) is at _____ (upto three decimal places) $k_B = 1.38 \times 10^{-23} J K^{-1}$
- 41) The number of permitted transitions from ${}^2P_{3/2} \rightarrow {}^2S_{1/2}$ in the presence of a weak magnetic field is _____
- 42) Which one of the following represents the electron occupancy for a superconductor in its normal and superconducting states? **diagrams**

43) A charge -q is distributed uniformly over a sphere, with a positive charge q at its center in (i). Also in (ii), a charge -q is distributed uniformly over an ellipsoid with a positive charge q at its center. With respect to the origin of the coordinate system, which one of the following statements is correct?

- a) The dipole moment is zero in both (i) and (ii)
- b) The dipole moment is non-zero in (i) but zero in (ii)
- c) The dipole moment is zero in (i) but non-zero in (ii)
- d) The dipole moment is non-zero in both (i) and (ii)
- 44) Consider the circuit shown in the figure, where RC = 1. For an input signal V_1 shown below, choose the correct V_o from the options:

ť

45) A long solenoid is embedded in a conducting medium and is insulated from the medium. If the current through the solenoid is increased at a constant rate, the induced current in the medium as a function of the radial distance r from the axis of the solenoid is proportional to

d)

a) r^2 inside the solenoid and $\frac{1}{r}$ outside c) r^2 inside the solenoid and $\frac{1}{r^2}$ outside b) r inside the solenoid and $\frac{1}{r^2}$ outside d) r inside the solenoid and $\frac{1}{r}$ outside

2

3

2

3

1

- 46) In the simple current source in the figure, Q_1 and Q_2 are identical transistors with current gain $\beta = 100$ and $V_{BE} = 0.7V$
- 47) Match the phrases in Group I and Group II and identify the correct option.
 - a) (P-i), (Q-ii), (R-iii), (S-iv)

1

b)

- c) (P-iii), (Q-iv), (R-i), (S-ii)
- b) (P-ii), (Q-i), (R-iv), (S-iii)
- d) (P-iii), (Q-i), (R-iv), (S-ii)

_ (upto two decimal places) The cuurent I_0 (in mA) is _____

Group I

- (P) Electron spin resonance (ESR)
- (Q) Nuclear magnetic resonance (NMR)
- (R) Transition between vibrational states of a molecule
- (S) Electronic transition

Group II

- (i) radio frequency
- (ii) visible range frequency
- (iii) microwave frequency
- (iv) far-infrared range A
- 48) Consider the motion of the Sun with respect to the rotation of the Earth about its axis. If \overrightarrow{F}_c and \overrightarrow{F}_{Co} denote the centrifugal and the Coriolis forces, respectively, acting on the Sun, then

 - a) $\overrightarrow{F_c}$ is radially outward and $\overrightarrow{F_{Co}} = \overrightarrow{F_c}$ b) $\overrightarrow{F_c}$ is radially inward and $\overrightarrow{F_{Co}} = -2\overrightarrow{F_c}$ c) $\overrightarrow{F_c}$ is radially outward and $\overrightarrow{F_{Co}} = -2\overrightarrow{F_c}$

 - d) \overrightarrow{F}_c is radially outward and $\overrightarrow{F}_{Co} = 2\overrightarrow{F}_c$
- 49) In a rigid-rotator of mass M, if the energy of the first excited state is 1meV, then the fourth excited state energy (in meV) is _____
- 50) A plane wave $(\hat{x} + i\hat{y}) \mathbf{E}_0 \exp[i(kz \omega t)]$ after passing through an optical element emerges a ωt)], where k and ω are the wavevector and the angular frequency, respectively. The optical
 - a) quarter wave plate

c) polarizer

b) half wave plate

- d) Faraday rotator
- 51) The Lagrangian for a particle of mass m at a position \overrightarrow{r} moving with a velocity \overrightarrow{v} is given by $L = \frac{m}{2} \overrightarrow{v}^2 + C \overrightarrow{r} \cdot \overrightarrow{v} - \mathbf{V}(\mathbf{r})$, where V(r) is a potential and C is a constant. If \vec{p}_c is the canonical momentum, then its Hamiltonian is given by

a)
$$\frac{1}{2m} \left(\overrightarrow{p}_{c} + C \overrightarrow{r} \right)^{2} + V(r)$$

c)
$$\frac{p_c^2}{2m} + V(r)$$

d) $\frac{1}{2m}p_c^2 + C^2r^2 + V(r)$

b)
$$\frac{1}{2m} \left(\overrightarrow{p}_{c} - C \overrightarrow{r} \right)^{2} + V(r)$$

52) The Hamiltonian for a system of two particles of masses m_1 and m_2 at \overrightarrow{r}_1 and \overrightarrow{r}_2 having velocities \overrightarrow{v}_1 and \overrightarrow{v}_2 is given by $H = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{C}{(\overrightarrow{r}_1 - \overrightarrow{r}_2)^2}\hat{z}$. $(\overrightarrow{r}_1 \times \overrightarrow{r}_2)$, where

C is a constant. Which one of the following statements is correct?

- a) The total energy and total momentum are conserved
- b) Only the total energy is conserved
- c) Only the total energy and the *z*-component of the total angular momentum are conserved
- d) The total energy and total angular momentum are conserved