PDEs and numerical methods - Some introductory exercises

The goal of these exercises is to get used to some usual vocabulary, notions and tools frequently encountered when dealing with PDEs.

Reminder: A differential equation is a relationship involving a function u and its derivatives. It is an ordinary differential equation (ODE) if u depends on only one variable, or a partial differential equation (PDE) if u depends on several variables.

Exercise 1 Solve the PDE: $\frac{\partial^2 u}{\partial u^2}(x,y) = 1$

Exercise 2 Some tools for solving PDEs: change of variables

- **2.1** Look for solutions of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$ as $u(x,y) = f(x^2 + y^2)$.
- **2.2** Same question for the PDE $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \lambda u$, where λ is a real constant.
- **2.3** Let $u: \mathbb{R}^n \to \mathbb{R}$ and $\lambda \in \mathbb{R}$. Solve the PDE $\sum_{i=1}^n x_i \frac{\partial u}{\partial x_i} = \lambda u$

Exercise 3 Some tools for solving PDEs: change of variables

Look for solutions for the PDE $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ under the form $u(x, y) = f\left(\frac{x}{y}\right)$.

Exercise 4 Some tools for solving PDEs: change of variables

Look for solutions of $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$ using the change of variables (X, Y) = (x + y, x - y).

Exercise 5 Some tools for solving PDEs: Fourier transform

Let consider the PDE $\frac{\partial u}{\partial t}(x,t) - \nu \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \ (x \in \mathbb{R}, t > 0, \nu > 0)$ with the initial condition $u(x,0) = u_0(x)$. Solve this equation using a Fourier transform.

Reminder: the Fourier transform of f is $\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2i\pi x\xi} dx$, and $\widehat{e^{-x^2/a^2}} = \sqrt{\pi} a e^{-\pi^2 a^2 \xi^2}$.

Exercise 6 Partial differential operators

- **6.1** Let $\varphi : \mathbb{R}^3 \to \mathbb{R}$. Compute $\operatorname{curl}(\nabla \varphi)$.
- **6.2** Let $\varphi : \mathbb{R}^n \to \mathbb{R}$. Compute $\operatorname{div}(\nabla \varphi)$.
- **6.3** Let $\psi: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$, $(u,v) = (\partial \psi/\partial y, -\partial \psi/\partial x)$ is the velocity field derived from the streamfunction ψ . Prove that the velocity field is everywhere tangent to the isolines of ψ . Compute the divergence of the velocity field.

Exercise 7 Proof of the basic Green formula in the 2D case

The aim of this exercise is to prove the basic Green formula

$$\int_{\Omega} \frac{\partial u}{\partial x_k} v \, dx = -\int_{\Omega} u \, \frac{\partial v}{\partial x_k} \, dx + \int_{\partial \Omega} u \, v \, (e_k \cdot n) \, ds$$

where e_k is the unit vector in direction x_k , in the 2D-case $(\Omega \subset \mathbb{R}^2)$.

- **7.1** Prove this formula for Ω being the reference triangle (i.e. with nodes (0,0), (1,0) and (0,1)).
- 7.2 Discuss the extension of this result to any domain Ω with sufficiently smooth boundary

Exercise 8 Green formulas

Perform an integration by parts for the following expressions:

8.1
$$\int_{\Omega} \operatorname{div}(\mathbf{E}(\mathbf{x})) d\mathbf{x}$$
 with $\mathbf{E} : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$

8.2
$$\int_{\Omega} \operatorname{div}(k(\mathbf{x}) \nabla u(\mathbf{x})) d\mathbf{x}$$
 with $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$

8.3
$$\int_{\Omega} \sum_{i=1}^{n} \alpha_{i} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}$$
 with $u, v : \Omega \subset \mathbb{R}^{n} \to \mathbb{R}$ and $\alpha_{1}, \ldots, \alpha_{n}$ given real numbers.

Exercise 9 Boundary conditions and well-posedness

- **9.1** Let the ODE u''(x) = 0 in]a, b[. Find its solution(s), considering the following different boundary conditions:
 - **9.1.a** Dirichlet conditions: $u(a) = \alpha, u(b) = \beta$
 - **9.1.b** Neumann conditions: $u'(a) = \alpha, u'(b) = \beta$
 - **9.1.c** Robin conditions: $u'(a) + \lambda u(a) = \alpha, u'(b) + \lambda u(b) = \beta \ (\lambda \neq 0)$
 - **9.1.d** Mixed conditions: $u'(a) = \alpha, u(b) = \beta$
- **9.2** Let consider the Poisson equation $\Delta u = f$ on $\Omega \subset \mathbb{R}^n$. Study the unicity of its solution(s), considering the following different boundary conditions:
 - **9.2.a** Dirichlet conditions: u = g on $\partial \Omega$
 - **9.2.b** Neumann conditions: $\frac{\partial u}{\partial n} = h$ on $\partial \Omega$
 - **9.2.c** Mixed conditions: u = g on Γ_0 , $\frac{\partial u}{\partial n} = h$ on Γ_1 , where $\Gamma_0 \cup \Gamma_1 = \partial \Omega$ and $\Gamma_0 \cap \Gamma_1 = \emptyset$

Exercise 10 Characterization of a PDE

For each of the following PDEs, give as many indications as possible on its nature: order, linear or not, with or without right hand side, stationary or not, elliptic/parabolic/hyperbolic...

10.a
$$\frac{\partial u}{\partial t}(x,t) + u^2(x,t) \frac{\partial u}{\partial x}(x,t) = 0 \quad (x \in \mathbb{R}, t > 0)$$

10.b
$$\sum_{i=1}^{n} \alpha_i^2 \frac{\partial^2 u}{\partial x_i^2}(\mathbf{x}) = f(\mathbf{x}) \quad (\mathbf{x} \in \mathbb{R}^n)$$

10.c
$$\frac{\partial^2 u}{\partial t^2}(\mathbf{x}, t) - c^2 \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}(\mathbf{x}, t) = f(\mathbf{x}, t) \quad (\mathbf{x} \in \mathbb{R}^n, t > 0, c \neq 0 \text{ given})$$

10.d
$$\frac{\partial u}{\partial t}(\mathbf{x},t) - \nu \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}(\mathbf{x},t) = f(\mathbf{x},t) \quad (\mathbf{x} \in \mathbb{R}^{n}, t > 0, \nu > 0 \text{ given})$$

10.e
$$\frac{\partial^2 u}{\partial y^2}(x,y) + y \frac{\partial^2 u}{\partial x^2}(x,y) = 0$$

10.f
$$x^2 \frac{\partial^2 u}{\partial x^2}(x,y) + 2xy \frac{\partial^2 u}{\partial x \partial y}(x,y) + y^2 \frac{\partial^2 u}{\partial y^2}(x,y) = f(x,y)$$