Generalized Linear Models

Andy Grogan-Kaylor

25 Oct 2020 08:12:13

Introduction

This discussion closely follows the Stata help for the generalized linear model, see help glm.

Briefly, per Stata documentation, in the *generalized linear model* framework, we consider models of the form:

$$g(E(y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

where y is distributed as F i.e. $y \sim F$.

g is called the link function; F is called the distribution. Hence¹:

		Link	Distribution	Standard Command	glm
identity logit probit	normal bernoulli bernoulli	logi	ress y x it y x oit y x	glm y x, link(lo	entity) family(gaussian) git) family(binomial) obit) family(binomial)

Though not the subject of this discussion, it is worth noting here, that *count regression* models follow a similar logic.

		Link	Distribution	Standard Command glm
\log	poisson nbinomial	-	sson y x nomial y x	<pre>glm y x, link(log) family(poisson) glm y x, link(log) family(nbinomial)</pre>

Palmer Penguins

Thes examples use the Palmer Penguins data set: https://github.com/allisonhorst/palmerpenguins.

- . clear all
- . use penguins.dta, clear

¹This table and the table below draw heavily on the Stata documentation.

Figure 1: Palmer Penguins Illustration from @allison_horst

Models

I use the Stata prefix quietly to run the models without output. I then store the results using estimates store. Finally, I present all the results together in compact form using estimates table.

What Predicts Culmen Depth?

Figure 2: Culmen Depth from @allison_horst

- . quietly: regress culmen_depth_mm body_mass_g flipper_length_mm
- . est store usual_OLS // store estimates usual OLS
- . quietly: glm culmen_depth_mm body_mass_g flipper_length_mm, link(identity) family(gaussian)
- . est store glm_OLS // store estimates glm OLS

What Predicts That A Penguin Lives on Dream Island?

Figure 3: Location of Dream Island

. tabulate island

island	Freq.	Percent	Cum.
Biscoe	168	48.84	48.84
Dream	124	36.05	84.88
Torgersen	52	15.12	100.00
Total	344	100.00	

- . generate dream = island == 2
- . label variable dream "Penguin Lives on Dream Island"
- . quietly: logit dream flipper_length_mm body_mass_g
- . est store usual_logit // store estimates usual logit
- . quietly: glm dream flipper_length_mm body_mass_g, link(logit) family(binomial)
- . est store glm_logit // store estimates glm logit
- . quietly: probit dream flipper_length_mm body_mass_g
- . est store usual_probit // store estimates usual probit
- . quietly: glm dream flipper_length_mm body_mass_g, link(probit) family(binomial)
- . est store glm_probit // store estimates glm probit

Results

. est table usual_OLS glm_OLS usual_logit glm_logit usual_probit glm_probit, star

Variable	usual_OLS	glm_OLS	usual_logit	glm_logit	usual_probit
body_mass_g flipper_le_m _cons	.00037535 1006443*** 35.794997***				
culmen_dep_m body_mass_g flipper_le_m _cons		.00037535 1006443*** 35.794997***			
dream flipper_le_m body_mass_g _cons			0160116 0013785*** 8.193819**	0160116 0013785*** 8.193819**	01114532 00082575*** 5.2018764**

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable	glm_probit	
body_mass_g flipper_le_m _cons		
culmen_dep_m body_mass_g flipper_le_m _cons		
dream flipper_le_m body_mass_g _cons	01114532 00082575*** 5.2018764**	

legend: * p<0.05; ** p<0.01; *** p<0.001