Link formation mechanisms

Introduction to Network Science Carlos Castillo Topic 07

Sources

- Albert László Barabási: Network Science.
 Cambridge University Press, 2016. Ch 07
- Networks, Crowds, and Markets Ch 03 and 04
- C. Castillo: Link prediction slides 2016

Link formation is contextual

- It is affected by existing links
 - e.g., Triadic closure
 - It is also affected by content sharing
- It is affected by node affinity/similarity
 - e.g., Similar characteristics
 - e.g., Similar degree

Triadic closure

- If two nodes in a network ...
 - are not connected,
 - but have connections in common,
- ... there is a larger probability that they will form a connection in the future

Triadic closure example

Which edges are triadic closures?

Possible mechanisms for triadic closure

- Opportunity: A meets B and C often, eventually B and C will meet
- Trust: A trusts B, A trusts C, B can trust C
- Incentive: if A is friend with B and C, but B and C are not friends, there is tension/stress
 - Teenage girls with low clustering coefficient more likely to contemplate suicide

Peter Bearman and James Moody. Suicide and friendships among American adolescents. American Journal of Public Health, 94(1):89–95, 2004.

Possible mechanisms for triadic closure

- Opportunity: A meets B and C often, eventually B and C will meet
- Trust: A trusts B, A trusts C, B can trust C
- Incentive: if A is friend with B and C, but B and C are not friends, there is tension/stress
- Triadic closures can happen even if B and C don't know that they have a friend in common!

Strong/Weak Triadic Closure

- Triadic closure can be observed in weighted graphs
- If A-B and A-C have a strong connection, then strong triadic closure is violated if B-C have a weak connection or no connection at all

Triadic closure and common neighbors

- Let c_{ij} be the number of neighbors in common between nodes i and j
- Suppose we take two snapshots: E_{t_0}, E_{t_1}
- We want to study the function

$$\ell(x) = Pr[(i,j) \in E_{t_1} | (i,j) \notin E_{t_0} \land c_{ij} = x]$$

How should $\ell(x)$ be with respect to x?

Study in an e-mail dataset

Details [Kossinets & Watts]

- Dataset:
 - Anonymized e-mails between 22,000 students
 - Edge(i,j) is present if the users i and j have exchanged at least 1 e-mail in the past 60 days
 - One "snapshot" per day
- Curve shown is an average
 - Multiple pairs of snapshots separated by one day

Simple model for $\ell(x)$

- Node i is not connected to node j
- Between t_0 and t_1 node i sees all the common friends s/he has with node j
- Each time there is a small chance *p* they will introduce node i to j

Write $\ell(x)$ as a function of x and p

Evidence from other networks

Link probability and content sharing

Triadic closures are affected by content consumption, and are more likely to happen with nodes from which I have received content (posts or re-posts)

Linking probability and distance ("hitting time")

Useful scores to predict linking

• Jaccard similarity $score(i,j) = \frac{c_{ij}}{|\Gamma(i) \cup \Gamma(j)|}$

• Adar-Adamic score $score(i,j) = \sum_{z \in \Gamma(i) \cap \Gamma(j)} \frac{1}{\log(k_z)}$

The idea is to avoid this -

Understanding the Adamic-Adar score

Would you recommend (1,3) or (5,7)?

Compare using:

- Number of common neighbors
- Jaccard coefficient
- Adamic-Adar
 (+1 to denominator if needed)

Application: link prediction

Comparison

This is a hugely imbalanced problem, imagine all the friends you could but did NOT make last year!

Accuracy is very low unless you play it safe ... and then it's not very useful

Community membership

Community membership prediction

- Why do users join communities?
- We can observe users who join communities and determine the factors that are common among them
- We require a population of users, a community C, and community membership information (i.e., users who are members of C).
 - To distinguish between users who have already joined the community and those who are now joining it, we need community memberships at two different times t₁, t₂

Peer influence

Probability of joining an online community given k friends are already members

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation in large social networks: Membership, growth, and evolution. In Proc. KDD.

Idea: supervised learning

Feature Set	Feature
	Number of members ($ C $).
	Number of individuals with a friend in C (the fringe of C).
Features related	Number of edges with one end in the community and the other in the fringe.
to the community.	Number of edges with both ends in the community, $ E_C $.
C. (Edges between	The number of open triads: $ \{(u, v, w) (u, v) \in E_C \land (v, w) \in E_C \land (u, w) \notin E_C \land u \neq w\} $.
only members of	The number of closed triads: $ \{(u, v, w) (u, v) \in E_C \land (v, w) \in E_C \land (u, w) \in E_C\} $.
the community are	The ratio of closed to open triads.
$E_C \subseteq E$.)	The fraction of individuals in the fringe with at least k friends in the community for $2 \le k \le 19$.
	The number of posts and responses made by members of the community.
	The number of members of the community with at least one post or response.
	The number of responses per post.
	Number of friends in community ($ S $).
	Number of adjacent pairs in $S(\{(u,v) u,v\in S\land (u,v)\in E_C\})$.
Features related to	Number of pairs in S connected via a path in E_C .
an individual u and	Average distance between friends connected via a path in E_C .
her set S of friends	Number of community members reachable from S using edges in E_C .
in community C.	Average distance from S to reachable community members using edges in E_C .
	The number of posts and response made by individuals in S .
	The number of individuals in S with at least 1 post or response.

Example regression tree

Proportion of Friends in Community who Are Friends with Each Other

Fraction of individuals in the Fringe with ≥ 19 Friends

Number of Connected Pairs of Friends in Community

Networks and geography

Distance is not dead (The world is not "flat")

The probability of being friends decreases rapidly with distance, but ... you can still have friends far away

(follows power-law, not exponential decay)

Sorting friends from most distant (geographically) to closest one

Tie strength and geographical distance (data from Tuenti Spain)

In Tuenti's data there is a clear drop at 30km of distance

Geographical segregation

In this map of Chicago (US) in 1960, brown/black areas have majority African-American populations

Möbius, M. M., & Rosenblat, T. S. (2001). The process of ghetto formation: evidence from Chicago. Technical Report, Harvard University.

Schelling Model

- Two types of people: O, X
- Living in a lattice (8 neighbors, except borders)
- You are satisfied if you have at least t neighbors of your own kind
- Otherwise you are unsatisfied and you must move to an adjacent cell

Unsatisfied nodes (t=3)

- Two types of people: O, X
- Living in a lattice (8 neighbors, except borders)
- You are satisfied if you have at least t neighbors of your own kind
- Otherwise you are unsatisfied and you must move to an adjacent cell

Details

- The process proceeds in rounds
- Sometimes nodes cannot be satisfied
 - They can be randomly placed or left in place
- Node collisions happen, priority rules might have to be applied
- These details don't affect the overall process

Two simulations t=3, 150x150 grid 10,000 blue and 10,000 red agents

Large vs small clusters

- In theory agents could just form many small clusters, so one could have neighborhoods that are integrated, with small sub-groups inside
- However, in practice they tend to join large clusters, hence neighborhoods become segregated completely

Simulations with t=4

In general, this shows that something **fixed** (race) ...

... can determine something **mutable** (location, and hence connections in the lattice)

