05 Übungen zu: 'Fehler in der Datenübertragung':Sie lösen die folgenden 4 Aufgaben 5.1 bis 5.4 und mindestens die Zusatzaufgaben und melden alle Ihre Probleme bzw. Unklarheiten spätestens bei der Besprechung!

Aufgabe 5.1: Codes mit erhöhter Redundanz

Neben dem bereits bekannten 1 aus 10 Code gibt es auch den 2 aus 5 Code um die Übertragungsqualität zu erhöhen. Dabei werden pro Dezimalziffer jeweils 5 Bits verwendet, wovon zwei den Wert 1 haben und die restlichen drei auf 0 gesetzt sind. Geben Sie für beide Codes die folgenden Werte an:

a) Hamming-Abstand

- b) Anzahl möglicher Kombinationen
- c) Anzahl gültiger und ungültiger Kombinationen
- d) Redundanz Aufgabe

Aufgabe 5.2: Paritätsbit

Folgende Datenblöcke mit der jeweiligen Datenlänge von 1 Byte wurden mit angehängtem Paritätsbit, d.h. dem Even Parity-Bit übertragen. Welche folgende, binäre Datenblöcke sind fehlerfrei angekommen?

a) 1'1001'1001₂

b) 1'1100'1111₂ **e)** 1'1000'0101₂

c) 0'0000'0111₂

d) 0'0000'0000₂

f) 0'0101'0110 $\bar{0}$

Aufgabe 5.3: Paritätsbit pro Zeile und pro Spalte
Wir erweitern die Idee des Paritätsbits ein wenig, indem wir nach
8 Bytes (Sie folgende 8 Zeilen) jeweils ein Paritätsbit pro Spalte
berechnen und dies dem Empfänger auch zusenden.

Paritätsbit
Zeile

									Zelle
Byte 1	1	1	0	0	0	1	1	1	1
Byte 2	0	0	0	1	1	1	0	1	0
Byte 3	1	1	1	1	1	1	1	0	1
Byte 4	0	0	0	0	0	1	1	1	1
Byte 5	0	1	1	0	0	1	1	0	0
Byte 6	1	0	0	1	0	0	1	0	1
Byte 7	1	0	1	0	1	0	0	0	0
Byte 8	0	1	0	1	0	1	1	0	0
Paritätsbit Spalte	0	0	1	0	1	0	1	1	

a) Es wurde ein Bit falsch übertragen. Finden und korrigieren Sie es.
b) Berechnen Sie die Redundanz, welche die Paritätsbits verursachen.

Zu Unterrichtsblock 05!

Aufgabe 5.4: Hamming Code
Ein mit Hamming-Code gesichertes binäre Datenbyte wurde wie fehlerhaft von einem Empfänger entgegengenommen. Der Empfänger erhielt dabei folgende, binären Werte: 1001 0110 0101
a) An welcher Stelle ist der Fehler aufgetreten?
b) Wie lautete das übertragene Byte im Original?
c) Wie gross ist die durch den Hamming-Code verursachte Redundanz?

Zusatzaufgabe für Interessierte: CRC-Prüfung Lesen Sie das Dokument "Funktionsweise CRC-Prüfung" im Anhang zu diesem Arbeitsblatt und spielen Sie das Beispiel mit eigenen m = 1010101₂ und g = 1001₂ durch.