Package 'RDM'

February 24, 2023

```
Type Package
Title Quantify Dependence using Rearranged Dependence Measures
Version 0.1.1
Description Estimates the rearranged dependence measure ('RDM') of two continuous random vari-
      ables for different underlying measures.
      Furthermore, it provides a method to estimate the (SI)-
      rearrangement copula using empirical checkerboard copulas.
      It is based on the theoretical results presented in Stroth-
      mann et al. (2022) <arXiv:2201.03329> and Strothmann (2021) <doi:10.17877/DE290R-22733>.
URL https://github.com/ChristopherStrothmann/RDM
BugReports https://github.com/ChristopherStrothmann/RDM/issues
License GPL-2
Language en-GB
Encoding UTF-8
Depends R (>= 3.5.0)
Imports Rfast (>= 2.0.0), Rcpp (>= 1.0.8.3)
LinkingTo Rcpp
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0), copula (>= 1.0.0), qad (>= 1.0.0)
Config/testthat/edition 3
NeedsCompilation yes
Author Holger Dette [aut] (<a href="https://orcid.org/0000-0001-7048-474X">https://orcid.org/0000-0001-7048-474X</a>),
      Karl Friedrich Siburg [aut],
      Christopher Strothmann [aut, cre]
       (<https://orcid.org/0000-0002-3537-5019>),
      qad contributors [cph] (Authors of the modified code.cpp of the
       R-package 'qad' listed in inst/qad-authors.txt (GPL-2))
Maintainer Christopher Strothmann <rdmpackage@gmail.com>
Repository CRAN
Date/Publication 2023-02-24 19:50:05 UTC
```

2 checkerboardDensity

R topics documented:

checkerboardDensity	2
checkerboardDensityIndex	3
computeBandwidth	4
computeCBMeasure	5
rdm	6
sortDSMatrix	7
	0

checkerboardDensity

Estimate the checkerboard mass density

Description

Estimate a non-square checkerboard mass density

Usage

Index

```
checkerboardDensity(X, Y, resolution1, resolution2)
```

Arguments

X First coordinate of the observations.
 Y Second coordinate of the observations.
 resolution1 A natural number specifying the resolution of the first component.
 resolution2 A natural number specifying the resolution of the second component.

Details

This implementation modifies the code of build_checkerboard_weights() published in 'qad', version 1.0.4, available at https://CRAN.R-project.org/package=qad, to allow for non-square checkerboard mass densities. For more details on the implementation see ECBC and for more information on the implemented changes, see the file 'src/code.cpp'.

Value

The estimated checkerboard mass density.

```
checkerboardDensity(runif(20), runif(20), 3, 3)
```

 ${\tt checkerboardDensityIndex}$

Estimate a single entry of the checkerboard mass density

Description

Estimate the value A_{kl} of the non-square checkerboard mass density.

Usage

```
checkerboardDensityIndex(X, Y, k, 1, resolution1, resolution2)
```

Arguments

V	First soudingte of the sharmetime
X	First coordinate of the observations.
Υ	Second coordinate of the observations.
k	Index of the first component.
1	Index of the second component.
resolution1	A natural number specifying the resolution of the first component.
resolution2	A natural number specifying the resolution of the second component.

Details

This implementation modifies the code of build_checkerboard_weights() published in 'qad', version 1.0.4, available at https://CRAN.R-project.org/package=qad, to allow for the evaluation of a single index of the non-square checkerboard mass densities. For more details on the implementation see ECBC and for more information on the implemented changes, see the file 'src/code.cpp'.

Value

The estimated checkerboard mass density A_{kl} .

```
U <- runif(20)
V <- runif(20)
checkerboardDensity(U, V, 3, 3)
checkerboardDensityIndex(U, V, 1, 2, 3, 3)</pre>
```

4 computeBandwidth

computeBa	ndwidth
Compateba	Hawiath

Compute bandwidth via cross-validation

Description

An implementation of the cross-validation principle for the bandwidth selection as presented in Strothmann, Dette and Siburg (2022) <arXiv:2201.03329>.

Usage

```
computeBandwidth(X, sL, sU, method = c("cvsym", "cvasym"), reduce = TRUE)
```

Arguments

X	A bivariate data.frame containing the observations. Each row contains one observation.
sL	Lower bound ${\cal N}^{sL}$ for the possible bandwidth parameters (where ${\cal N}$ is the number of observations).
sU	Upper bound ${\cal N}^{sU}$ for the possible bandwidth parameters (where ${\cal N}$ is the number of observations).
method	"cvsym" uses either a symmetric cross-validation principle ($N_1 = N_2$) and "cvasym" uses an asymmetric cross-validation principle (i.e. N_1 and N_2 may attain different values).
reduce	In case reduce is set to TRUE, the parameter is chosen from N, N+2, \dots instead of N, N+1, N+2, \dots

Details

This function computes the optimal bandwidth given the bivariate observations X of length N. Currently, there are two different algorithms implemented:

- "cvsym" Computes the optimal bandwidth choice for a square checkerboard mass density according to the cross-validation principle. The bandwidth is a natural number between $N^{sL}, \dots N^{sU}$
- "cvasym" Computes the optimal bandwidth choice (N_1,N_2) for a non-square checkerboard mass density according to the cross-validation principle. The bandwidths N_1,N_2 are natural numbers between $N^{sL},...,N^{sU}$ and may possibly attain different values.

Value

The chosen bandwidth depending on the data.frame X.

```
n <- 20
X <- cbind(runif(n), runif(n))
computeBandwidth(X, sL = 0.25, sU = 0.5, method="cvsym", reduce=TRUE)</pre>
```

computeCBMeasure 5

compi	ıteCBMeasur	^_
COIIID	reconeasui	_

Dependence measures for the checkerboard copula

Description

Computes $\mu(C^{\#}(A))$ for some underlying measure for the checkerboard copula $C^{\#}(A)$. This measure depends only on the input matrix A.

Usage

```
computeCBMeasure(A, method = c("spearman", "kendall", "bkr", "dss", "zeta1"))
```

Arguments

A (possibly non-square) checkerboard mass density.

method Determines the underlying dependence measure. Options include "spearman",

"kendall", "bkr", "dss", "chatterjee" and "zeta1".

Details

This function computes $\mu(C^\#(A))$ for one of several underlying measures for a given checker-board copula $C^\#(A)$. Most importantly, the value only depends on the (possibly non-square) matrix A and implicitly assumes the form of $C^\#(A)$ given in Strothmann, Dette and Siburg (2022) <arXiv:2201.03329>. Currently, the following underlying measures are implemented:

- "spearman" Implements the concordance measure Spearman's ρ ,
- "kendall" Implements the concordance measure Kendall's au,
- "bkr" Implements the Blum–Kiefer–Rosenblatt R, also known as the L^2 -Schweizer-Wolffmeasure <doi:10.1214/aos/1176345528>,
- "dss" Implements the Dette-Siburg-Stoimenov measure of complete dependence doi:10.1080/01621459.2020.1758115, also known as Chatterjee's ξ doi:10.1080/01621459.2020.1758115,
- "zeta1" Implements the ζ_1 -measure of complete dependence established by W. Trutschnig <doi:10.1016/j.jmaa.2011.06.013>.

Value

The value of $\mu(C^{\#}(A))$. For a sorted A, this corresponds to the rearranged dependence measure $R_{\mu}(C^{\#}(A))$.

```
n <- 10
A <- diag(n)/n
computeCBMeasure(A, method="spearman")</pre>
```

6 rdm

rdm

Rearranged dependence measure

Description

This function estimates the asymmetric dependence between X and Y using the rearranged dependence measure $R_{\mu}(X,Y)$ for different possible underlying measures μ . A value of 0 characterizes independence of X and Y, while a value of 1 characterizes a functional relationship between X and Y, i.e. Y = f(X).

Usage

```
rdm(
   X,
   method = c("spearman", "kendall", "dss", "zeta1", "bkr", "all"),
   bandwidth_method = c("fixed", "cv", "cvsym"),
   bandwidth_parameter = 0.5,
   permutation = FALSE,
   npermutation = 1000,
   checkInput = FALSE
)
```

Arguments

Χ

O

A bivariate data frame containing the observations. Each row contains one bi-

variate observation.

method

Options include "spearman", "kendall", "bkr", "dss", "chatterjee" and "zeta1". The option "all" returns the value for all aforementioned methods.

bandwidth_method

A character string indicating the use of either a cross-validation principle (square or non-square) or a fixed bandwidth (oftentimes called resolution).

bandwidth_parameter

A numerical vector which contains the necessary optional parameters for the exponent of the chosen bandwidth method. In case of N observations, the bandwidth_parameter (s_1, s_2) determines a lower bound N^{s_1} and upper bound N^{s_2} for the cross-validation methods or a single number s for the fixed bandwidth method resulting in N^s . The parameters have to lie in (0, 1/2) and fulfil $s_1 < s_2$.

permutation

Whether or not to perform a permutation test

npermutation

Number of repetitions of the permutation test

checkInput

Whether or not to perform validity checks of the input

sortDSMatrix 7

Details

This function estimates $R_{\mu}(X,Y)$ using the empirical checkerboard mass density A. To arrive at $R_{\mu}(X,Y)$, A is appropriately sorted and then evaluated for the underlying measure. The estimated R_{μ} always takes values between 0 and 1 with

- $R_{\mu}(X,Y) = 0$ if and only if X and Y are independent.
- $R_{\mu}(X,Y) = 1$ if and only if Y = f(X) for some measurable function f.

Currently, the following underlying measures are implemented:

- "spearman" Implements the concordance measure Spearman's ρ (which is identical to the L_1 -Schweizer-Wolff-measure),
- "kendall" Implements the concordance measure Kendall's τ ,
- "bkr" Implements the Blum–Kiefer–Rosenblatt R, also known as the L^2 -Schweizer-Wolffmeasure <doi:10.1214/aos/1176345528>,
- "dss" Implements the Dette-Siburg-Stoimenov measure of complete dependence doi:10.1080/01621459.2020.1758115, also known as Chatterjee's ξ doi:10.1080/01621459.2020.1758115,
- "zeta1" Implements the ζ_1 -measure of complete dependence established by W. Trutschnig <doi:10.1016/j.jmaa.2011.06.013>.

The estimation of the checkerboard mass density A depends on the choice of the bandwidth for the checkerboard copula. For a detailed discussion of "cv" and "cvsym", see computeBandwidth.

Value

The estimated value of the rearranged dependence measure

Examples

```
n <- 50
X <- cbind(runif(n), runif(n))
rdm(X, method="spearman", bandwidth_method="fixed", bandwidth_parameter=.3)
n <- 20
U <- runif(n)
rdm(cbind(U, U), method="spearman", bandwidth_method="cv", bandwidth_parameter=c(0.25, 0.5))</pre>
```

sortDSMatrix

Sort a (possibly non-square) doubly stochastic matrix

Description

Sorts an arbitrary doubly stochastic $N_1 \times N_2$ matrix A into the matrix A^{\uparrow} such that the induced checkerboard copula $C(A^{\uparrow})$ is stochastically increasing.

Usage

```
sortDSMatrix(A)
```

8 sortDSMatrix

Arguments

Α

A (possibly non-square) doubly stochastic matrix or (possibly non-square) checker-board mass density.

Details

The algorithm to sort a doubly stochastic matrix A is given in Strothmann, Dette and Siburg (2022) <arXiv:2201.03329>. Since this implementation does not depend on the appropriate scaling of the matrix A, both doubly stochastic matrices and checkerboard mass densities are admissible inputs.

Value

The sorted version A^{\uparrow} of the matrix A.

```
n <- 4
A <- diag(n)[n:1, ]
print(A)
sortDSMatrix(A)</pre>
```

Index

```
checkerboardDensity, 2
checkerboardDensityIndex, 3
computeBandwidth, 4, 7
computeCBMeasure, 5

ECBC, 2, 3
rdm, 6
sortDSMatrix, 7
```