









## **Electricity and Magnetism**

### **Engineering Physics 2A04**

Summary











liver cancer treatment

# **Electricity & Magnetism**

The fundamental problem the theory of Electricity and Magnetism hopes to solve is:

I hold up a bunch of electric charges *here* (and maybe shake them around); what happens to some other charges over *here*?

- Griffiths

### The Three Branches of Electricity & Magnetism

| Branch                            | Condition                                                    | Field Quantities [Units]                                                                                                                                                                       |
|-----------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrostatics                    | Stationary charges $\frac{\partial q}{\partial t} = 0$       | Electric field intensity $\overrightarrow{E}$ [V/m]<br>Electric flux density $\overrightarrow{D}$ [C/m <sup>2</sup> ]                                                                          |
| Magnetostatics                    | Steady currents $\frac{\partial I}{\partial t} = 0$          | Magnetic field intensity $\overrightarrow{\pmb{H}}$ [A/m]<br>Magnetic flux density $\overrightarrow{\pmb{B}}$ [T]                                                                              |
| Dynamics<br>(Time-varying fields) | Time-varying currents $\frac{\partial I}{\partial t} \neq 0$ | $\overrightarrow{E}$ , $\overrightarrow{D}$ , $\overrightarrow{H}$ , and $\overrightarrow{B}$ $(\overrightarrow{E}, \overrightarrow{D})$ coupled to $(\overrightarrow{H}, \overrightarrow{B})$ |

# Maxwell's Equations

### **Differential Form**

### **Integral Form**

1) 
$$\nabla \cdot \overrightarrow{\mathbf{D}} = \rho_{\mathcal{V}}(x, y, z)$$

$$\oint_{S} \overrightarrow{\mathbf{D}} \cdot d\overrightarrow{\mathbf{s}}' = Q$$

2) 
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint_{C} \vec{E} \cdot d\vec{l}' = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}'$$

3) 
$$\nabla \cdot \vec{B} = 0$$

$$\oint_{S} \vec{B} \cdot d\vec{s}' = 0$$

4) 
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{J}}{\partial t}$$

4) 
$$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$
  $\oint_C \overrightarrow{H} \cdot d\overrightarrow{l}' = \int_C \left( \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \right) \cdot d\overrightarrow{s}'$ 

Ampere's law

- An <u>electric field</u> can be produced either by charges or changing magnetic fields.
- A magnetic field can be produced either by currents or changing electric fields.

# EM Toolbox

Magnetostatics Eqn

| lectrostatics                                                                                    |             |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Eqn                                                                                              | Used        |  |  |  |
| $\vec{E}(\vec{R}) = \int \frac{\rho_{\nu}(\vec{R}')(\vec{R} - \vec{R}')}{\hat{R}} d\mathcal{V}'$ | Biot-Savart |  |  |  |

Coulomb's law law  $\int_{\mathcal{V}'} 4\pi\varepsilon |\vec{R} - \vec{R}'|^3$ 

> $\int_{S} \varepsilon \vec{E} \cdot d\vec{s} = \rho_{\mathcal{V}}(x, y, z)$  $\overrightarrow{E} = -\nabla V$ .

> > $W_e = \frac{1}{2} \int \varepsilon E^2 d\mathcal{V}$

 $\vec{D} = \varepsilon \vec{E}$ 

Used

Material

properties

Gauss's law

Scalar

potential

function

**Energy density** 

 $V(\vec{R}) = \int_{\Omega'} \frac{\rho_{\nu}(R')}{4\pi\varepsilon |\vec{R} - \vec{R'}|} d\mathcal{V}'$ 

 $\nabla \cdot \overrightarrow{\boldsymbol{D}} = \rho_{\mathcal{V}}(x, y, z),$ Ampere's law

**Energy density** 

Material

properties

Vector potential

function

$$\vec{B} = \nabla \times \vec{A},$$

$$\vec{A}(\vec{R}) = \int_{\mathcal{U}} \frac{\mu \vec{J}(\vec{R}')}{4\pi |\vec{R} - \vec{R}'|} d\mathcal{V}'$$

$$abla imes \overrightarrow{H} = \overrightarrow{J},$$

$$\int_{C} \overrightarrow{H} \cdot d \mathbf{l}' = I$$

$$\overrightarrow{B} = \nabla \times \overrightarrow{A},$$

$$\vec{B}(\vec{R}) = \int_{\mathcal{V}'} \frac{\mu \vec{J}(\vec{R}') \times (\vec{R} - \vec{R}')}{4\pi |\vec{R} - \vec{R}'|^3} d\mathcal{V}'$$
$$\vec{B} = \mu \vec{H}$$

$$\int_{\mathcal{V}'} 4\pi |\vec{R}|$$

$$\vec{v}' = \vec{R} = u$$

$$\overrightarrow{B} = \mu \overrightarrow{H}$$

 $W_m = \frac{1}{2} \int \mu H^2 d\mathcal{V}$ 

Magnetostatics

Eqn

 $\Phi_m [Wb]$ 

 $\overrightarrow{\boldsymbol{B}}$   $\left[T \text{ or } \frac{Wb}{m^2}\right]$ 

 $\overrightarrow{\boldsymbol{H}} \left[ \frac{A}{m} \right]$ 

L[H]

Ised

Magnetic flux

Magnetic flux density

Magnetic field strength

Magnetic permeability

Inductance

Magnetic vector potential

|                | EM T | oolbox |
|----------------|------|--------|
| Electrostatics |      |        |
| Used           | Eqn  | U      |
|                |      |        |

I[A]

 $\vec{J}\left[\frac{A}{m^2}\right]$ 

 $\vec{E}$   $\left[\frac{V}{m}\right]$ 

 $\sigma\left[\frac{m}{W}\right], \varepsilon\left[\frac{F}{m}\right]$ 

C[F]

Electric current

**Current density** 

Electric field strength

**Electrical conductivity** 

and permittivity

Capacitance

Electric scalar potential

### Constitutive Parameters of Materials

| Parameter                            | Units | Free-Space Value                                    |
|--------------------------------------|-------|-----------------------------------------------------|
| Electrical permittivity, $arepsilon$ | F/m   | $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ |
|                                      |       | $\simeq 1/36\pi \times 10^{-9} \text{ F/m}$         |
| Magnetic permeability, $\mu$         | H/m   | $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$           |
| Conductivity, $\sigma$               | S/m   | 0                                                   |

Electric and magnetic fields are connected through the speed of light:

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \text{ m/s}$$

# Polarization, P and Magnetization, M,

Electric flux

In <u>free space</u>:  $\vec{D} = \varepsilon_o \vec{E}$ 

In <u>free space</u>:

Magnetic flux  $\vec{B} = \mu_o \vec{H}$ 

In a magnetic material:  $\vec{B} = \mu_o \vec{H} + \mu_o \vec{M}$ In a <u>dielectric material</u>:  $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ 

 $\overline{P}$  = the electric flux density induced by the applied field  $\overline{E}$ 

 $\vec{P} = \varepsilon_o \chi_e \vec{E}$ 

Where  $\chi_e$  is the electric susceptibility

 $\overline{M}$  = vector sum of magnetic dipole moments in medium

 $\overrightarrow{M} = \chi_m \overrightarrow{H}$ 

Where  $\chi_m$  is the magnetic susceptibility

 $\overrightarrow{\mathbf{D}} = \varepsilon_{o} \overrightarrow{\mathbf{E}} + \varepsilon_{o} \chi_{e} \overrightarrow{\mathbf{E}}$  $=\varepsilon_o(1+\chi_e)\overline{E}$ relative permittivity

 $(\chi_{e.m}$  is unitless)

 $\vec{B} = \mu_o \vec{H} + \mu_o \chi_m \vec{H}$  $=\mu_o(1+\chi_m)\overline{H}$ 

# **General Boundary Conditions**



Figure 4-18: Interface between two dielectric media.

# Electrostatic boundary conditions

From our general boundary conditions for electrostatic case:

Conservative property of  $\overline{E}$  leads to continuous tangential component across a boundary

$$\nabla \times \vec{E} = 0 \quad \oint_{C} \vec{E} \cdot d\vec{l} = 0 \quad \longrightarrow \quad \vec{E}_{1t} = \vec{E}_{2t}$$

Divergent property of  $\overline{\textbf{\textit{D}}}$  leads to discontinuous normal component across a boundary

$$\nabla \cdot \overrightarrow{\boldsymbol{D}} = \rho_v \quad \oint_{\mathcal{S}} \overrightarrow{\boldsymbol{D}} \cdot d\overrightarrow{\boldsymbol{s}} = Q \quad \longrightarrow \quad \varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$$

If 
$$ho_s=0$$
,  $arepsilon_1 E_{1n}=arepsilon_2 E_{2n}$ 

# Summary of Boundary Conditions

**Table 6-2:** Boundary conditions for the electric and magnetic fields.

| Field Components | General Form                                                                 | Medium 1<br>Dielectric       | Medium 2<br>Dielectric | Medium 1<br>Dielectric                  | Medium 2<br>Conductor |  |
|------------------|------------------------------------------------------------------------------|------------------------------|------------------------|-----------------------------------------|-----------------------|--|
| Tangential E     | $\hat{\mathbf{n}}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$                | $E_{1t} = E_{2t}$            |                        | $E_{1t} = E_{2t} = 0$                   |                       |  |
| Normal D         | $\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathbf{s}}$ | $D_{1n} - D_{2n} = \rho_{s}$ |                        | $D_{1n} = \rho_{\rm s}$                 | $D_{2n} = 0$          |  |
| Tangential H     | $\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$     | $H_{1t} = H_{2t}$            |                        | $H_{1t} = J_{s}$                        | $H_{2t} = 0$          |  |
| Normal B         | $\hat{\mathbf{n}}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$                 | $B_{1n} = B_{2n}$            |                        | $B_{1n} = B_{2n}$ $B_{1n} = B_{2n} = 0$ |                       |  |

Notes: (1)  $\rho_s$  is the surface charge density at the boundary; (2)  $J_s$  is the surface current density at the boundary; (3) normal components of all fields are along  $\hat{\bf n}_2$ , the outward unit vector of medium 2; (4)  $E_{1t} = E_{2t}$  implies that the tangential components are equal in magnitude and parallel in direction; (5) direction of  $J_s$  is orthogonal to  $(H_1 - H_2)$ .

# Electric and Magnetic Forces

### Electromagnetic (Lorentz) force

$$\vec{F} = \vec{F}_e + \vec{F}_m = q\vec{E} + q\vec{u} \times \vec{B}$$

Torque

$$\overrightarrow{T} = \overrightarrow{m} \times \overrightarrow{B}$$

Magnetic moment,  $m \mid \overrightarrow{m} = \widehat{n}NIA$ 

Generator: Mechanical to electrical energy conversion

Motor: Electrical to mechanical energy conversion







# Ohm's law in multiple forms

Phasor form

$$\widetilde{\mathbf{V}}_R = R\widetilde{\mathbf{I}}_R$$

$$\frac{\mathbf{V}_R}{\tilde{\mathbf{I}}_R} = R$$

$$\widetilde{\mathbf{V}}_{C} = \frac{1}{j\omega C} \widetilde{\mathbf{I}}_{C} \qquad \frac{\widetilde{\mathbf{V}}_{C}}{\widetilde{\mathbf{I}}_{C}} = \frac{1}{j\omega C}$$

$$\widetilde{\mathbf{V}}_{L} = j\omega L \widetilde{\mathbf{I}}_{L} \qquad \frac{\widetilde{\mathbf{V}}_{L}}{\widetilde{\mathbf{I}}_{L}} = j\omega L$$

$$\frac{\tilde{V}_C}{\tilde{I}_C} = \frac{1}{i\omega C}$$

$$\widetilde{\mathbf{V}}_{L} = j\omega L$$

$$\widetilde{V}_L = j\omega L$$

Conductivity form

$$\vec{\pmb{J}} = \sigma \vec{\pmb{E}}$$

Fields form

$$R = \frac{V}{I} = \frac{-\int_{l'} \vec{E} \cdot d\vec{l}}{\int_{S} \vec{J} \cdot d\vec{s}} = \frac{-\int_{l'} \vec{E} \cdot d\vec{l}}{\int_{S} \sigma \vec{E} \cdot d\vec{s}}$$

## EM Toolbox (math and simplifications)

## E&M vectors related concepts

- <u>Mathematical tools</u> are needed to manipulate vector quantities in different coordinate systems (Cartesian, cylindrical and spherical)
- <u>Vector Algebra</u>: addition, subtraction and multiplication(dot and cross) of vectors.

### Vector Calculus:

- gradients: vector pointing in the direction a scalar field is most rapidly increasing with the scalar component showing rate of change. The gradient of a scalar field  $\nabla f$  gives a vector
- divergence: calculate the flux per unit volume assuming an infinitesimally small point, The divergence of a vector field  $\nabla \cdot \vec{v}$  gives a scalar
- curl: measure that quantifies the circulation of the field, The curl of a vector field  $\nabla \times \vec{v}$  gives a vector

**Table 3-2:** Coordinate transformation relations.

| Transformation              | Coordinate Variables                                                                                | Unit Vectors                                                                                                                                                                                                                                                                                                                                                                  | Vector Components                                                                                                                                                                                                                                    |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cartesian to cylindrical    | $r = \sqrt[+]{x^2 + y^2}$<br>$\phi = \tan^{-1}(y/x)$<br>z = z                                       | $\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$                                                                                                                                                                                   | $A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$                                                                                                                                                          |
| Cylindrical to<br>Cartesian | $x = r \cos \phi$ $y = r \sin \phi$ $z = z$                                                         | $\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$                                                                                                                                                                                 | $A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$                                                                                                                                                        |
| Cartesian to spherical      | $R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}[\sqrt[+]{x^2 + y^2}/z]$ $\phi = \tan^{-1}(y/x)$ | $\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ $+ \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ $+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$             | $A_R = A_x \sin \theta \cos \phi$ $+ A_y \sin \theta \sin \phi + A_z \cos \theta$ $A_\theta = A_x \cos \theta \cos \phi$ $+ A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$                                   |
| Spherical to<br>Cartesian   | $x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$                     | $\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$ | $A_{X} = A_{R} \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_{Y} = A_{R} \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{Z} = A_{R} \cos \theta - A_{\theta} \sin \theta$ |
| Cylindrical to spherical    | $R = \sqrt[+]{r^2 + z^2}$<br>$\theta = \tan^{-1}(r/z)$<br>$\phi = \phi$                             | $\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$                                                                                                                                                            | $A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$                                                                                                                                           |
| Spherical to cylindrical    | $r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$                                               | $\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$                                                                                                                                                       | $A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_Z = A_R \cos \theta - A_\theta \sin \theta$                                                                                                                                      |

Table 3-1: Summary of vector relations.

| Table 5-1. Summary of vector relations.   |                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                       |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                           | Cartesian                                                                                                                                  | Cylindrical                                                                                                                                                 | Spherical                                                                                                                                                             |  |  |  |
|                                           | Coordinates                                                                                                                                | Coordinates                                                                                                                                                 | Coordinates                                                                                                                                                           |  |  |  |
| Coordinate variables                      | x, y, z                                                                                                                                    | $r, \phi, z$                                                                                                                                                | $R, \theta, \phi$                                                                                                                                                     |  |  |  |
| Vector representation A =                 | $\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$                                                                          | $\hat{\mathbf{r}}A_r + \hat{\boldsymbol{\phi}}A_\phi + \hat{\mathbf{z}}A_Z$                                                                                 | $\hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$                                                                                     |  |  |  |
| Magnitude of A $ A  =$                    | $\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$                                                                                                          | $\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$                                                                                                                        | $\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$                                                                                                                             |  |  |  |
| Position vector $\overrightarrow{OP_1} =$ | $\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$                                                                         | $\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$                                                                                                                | $\hat{\mathbf{R}}R_1$ ,                                                                                                                                               |  |  |  |
|                                           | for $P = (x_1, y_1, z_1)$                                                                                                                  | for $P = (r_1, \phi_1, z_1)$                                                                                                                                | for $P = (R_1, \theta_1, \phi_1)$                                                                                                                                     |  |  |  |
| Base vectors properties                   | $\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$          | $\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$             | $\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = 1$                     |  |  |  |
|                                           | $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$          | $\hat{\mathbf{r}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$                     | $\hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{R}} = 0$                     |  |  |  |
|                                           | $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$                                                                              | $\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$                                                                                            | $\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}$                                                                                                 |  |  |  |
|                                           | $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$                                                                              | $\hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$                                                                                            | $\hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}$                                                                                                 |  |  |  |
|                                           | $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$                                                                              | $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}$                                                                                            | $\hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$                                                                                                 |  |  |  |
| Dot product $A \cdot B =$                 | $A_X B_X + A_Y B_Y + A_Z B_Z$                                                                                                              | $A_r B_r + A_\phi B_\phi + A_Z B_Z$                                                                                                                         | $A_R B_R + A_\theta B_\theta + A_\phi B_\phi$                                                                                                                         |  |  |  |
| Cross product A × B =                     | $\left \begin{array}{ccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_X & A_Y & A_Z \\ B_X & B_Y & B_Z \end{array}\right $ | $\left \begin{array}{ccc} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_Z \\ B_r & B_{\phi} & B_Z \end{array}\right $ | $\left  egin{array}{ccc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \ A_R & A_{	heta} & A_{\phi} \ B_R & B_{	heta} & B_{\phi} \end{array}  ight $ |  |  |  |
| Differential length $dl =$                | $\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$                                                                          | $\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$                                                                                   | $\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin\theta d\phi$                                                                      |  |  |  |
| Differential surface areas                | $d\mathbf{s}_{x} = \hat{\mathbf{x}}  dy  dz$                                                                                               | $d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$                                                                                                            | $d\mathbf{s}_R = \hat{\mathbf{R}}R^2 \sin\theta \ d\theta \ d\phi$                                                                                                    |  |  |  |
|                                           | $d\mathbf{s}_{\mathbf{y}} = \hat{\mathbf{y}} \ dx \ dz$                                                                                    | $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} dr dz$                                                                                                            | $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}} R \sin \theta \ dR \ d\phi$                                                                                             |  |  |  |
|                                           | $d\mathbf{s}_{\mathbf{z}} = \hat{\mathbf{z}}  dx  dy$                                                                                      | $d\mathbf{s}_{\mathbf{z}} = \hat{\mathbf{z}}r \ dr \ d\phi$                                                                                                 | $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} R \ dR \ d\theta$                                                                                                           |  |  |  |
| Differential volume $dV =$                | dx dy dz                                                                                                                                   | r dr dφ dz                                                                                                                                                  | $R^2 \sin\theta \ dR \ d\theta \ d\phi$                                                                                                                               |  |  |  |

Play around! Interactive

Module 3.1

### Vector calculus: differential variables

#### Differential length vector

$$d\vec{l} = \hat{x}dx + \hat{y}dy + \hat{z}dz$$

Differential area vectors

$$ds_x = \widehat{\mathbf{x}} dx dy$$

#### Differential volume vectors

$$dV = dxdydz$$



#### **Table 3-1:** Summary of vector relations.

| Differential length $dl =$ | $\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$                                                                | $\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$                                                                              | $\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin\theta d\phi$                                                                                                        |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Differential surface areas | $d\mathbf{s}_{x} = \hat{\mathbf{x}} dy dz$ $d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$ | $d\mathbf{s}_r = \hat{\mathbf{r}} r \ d\phi \ dz$ $d\mathbf{s}_\phi = \hat{\mathbf{\phi}} \ dr \ dz$ $d\mathbf{s}_z = \hat{\mathbf{z}} r \ dr \ d\phi$ | $d\mathbf{s}_{R} = \hat{\mathbf{R}}R^{2}\sin\theta \ d\theta \ d\phi$ $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}}R\sin\theta \ dR \ d\phi$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}}R \ dR \ d\theta$ |  |
| Differential volume $dV =$ | dx dy dz                                                                                                                         | r dr dφ dz                                                                                                                                             | $R^2 \sin\theta \ dR \ d\theta \ d\phi$                                                                                                                                                                 |  |

## Summary

#### Cartesian

(x, y, z): Scalar function F; Vector field  $\mathbf{f} = f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}$ 

Gradient, divergence, curl -- Math @ Libretexts

- gradient :  $\nabla F = \frac{\partial F}{\partial x}\mathbf{i} + \frac{\partial F}{\partial y}\mathbf{j} + \frac{\partial F}{\partial z}\mathbf{k}$
- divergence :  $\nabla \cdot \mathbf{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$
- curl :  $\nabla \times \mathbf{f} = \left(\frac{\partial f_3}{\partial y} \frac{\partial f_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial f_1}{\partial z} \frac{\partial f_3}{\partial x}\right)\mathbf{j} + \left(\frac{\partial f_2}{\partial x} \frac{\partial f_1}{\partial y}\right)\mathbf{k}$
- Laplacian :  $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2}$

#### Cylindrical

 $(r, \theta, z)$ : Scalar function F; Vector field  $\mathbf{f} = f_r \mathbf{e}_r + f_\theta \mathbf{e}_\theta + f_z \mathbf{e}_z$ 

- gradient :  $\nabla F = \frac{\partial F}{\partial x} \mathbf{e}_r + \frac{1}{x} \frac{\partial F}{\partial \Omega} \mathbf{e}_{\theta} + \frac{\partial F}{\partial z} \mathbf{e}_z$
- divergence :  $\nabla \cdot \mathbf{f} = \frac{1}{r} \frac{\partial}{\partial r} (rf_r) + \frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta} + \frac{\partial f_z}{\partial \tau}$
- curl :  $\nabla \times \mathbf{f} = \left(\frac{1}{r} \frac{\partial f_z}{\partial \theta} \frac{\partial f_{\theta}}{\partial z}\right) \mathbf{e}_r + \left(\frac{\partial f_r}{\partial z} \frac{\partial f_z}{\partial r}\right) \mathbf{e}_{\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} (rf_{\theta}) \frac{\partial f_r}{\partial \theta}\right) \mathbf{e}_z$
- Laplacian :  $\Delta F = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial F}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 F}{\partial \Omega^2} + \frac{\partial^2 F}{\partial \tau^2}$

#### Spherical

 $(\rho, \theta, \phi)$ : Scalar function F; Vector field  $\mathbf{f} = f_{\rho}\mathbf{e}_{\rho} + f_{\theta}\mathbf{e}_{\theta} + f_{\phi}\mathbf{e}_{\phi}$ 

- gradient :  $\nabla F = \frac{\partial F}{\partial \rho} \mathbf{e}_{\rho} + \frac{1}{\rho \sin \omega} \frac{\partial F}{\partial \theta} \mathbf{e}_{\theta} + \frac{1}{\rho} \frac{\partial F}{\partial \omega} \mathbf{e}_{\phi}$
- divergence :  $\nabla \cdot \mathbf{f} = \frac{1}{\alpha^2} \frac{\partial}{\partial \alpha} (\rho^2 f_\rho) + \frac{1}{\alpha} \sin \phi \frac{\partial f_\theta}{\partial \theta} + \frac{1}{\alpha \sin \phi} \frac{\partial}{\partial \omega} (\sin \phi f_\theta)$
- $\bullet \ \, \mathrm{curl} : \nabla \times \mathbf{f} = \frac{1}{\rho \sin \phi} \left( \frac{\partial}{\partial \phi} (\sin \phi f_\theta) \frac{\partial f_\phi}{\partial \theta} \right) \mathbf{e}_\rho + \frac{1}{\rho} \left( \frac{\partial}{\partial \rho} (\rho f_\phi) \frac{\partial f_\rho}{\partial \phi} \right) \mathbf{e}_\theta + \left( \frac{1}{\rho \sin \phi} \frac{\partial f_\rho}{\partial \theta} \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho f_\theta) \right) \mathbf{e}_\phi$
- $\bullet \ \, \text{Laplacian} : \Delta F = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left( \rho^2 \frac{\partial F}{\partial \rho} \right) + \frac{1}{\rho^2 \sin^2 \phi} \frac{\partial^2 F}{\partial \theta^2} + \frac{1}{\rho^2 \sin \phi} \frac{\partial}{\partial \phi} \left( \sin \phi \frac{\partial F}{\partial \phi} \right)$

### E&M vector transformation related concepts

Divergence Theorem

$$\int_{V} \nabla \cdot \overrightarrow{E} dV = \oint_{S} \overrightarrow{E} \cdot d\overrightarrow{s}$$

Stoke's Theorem



**Figure 3-23:** The direction of the unit vector  $\hat{\mathbf{n}}$  is along the thumb when the other four fingers of the right hand follow  $d\mathbf{l}$ .

$$\int_{S} \nabla \times \overrightarrow{B} \cdot ds = \oint_{C} \overrightarrow{B} \cdot d\overrightarrow{l}$$

# **Relations for Complex Numbers**

Euler's identity:

Rectangular and polar form:

Complex algebra:

Useful relations:

| <b>Euler's Identity:</b> $e^{j\theta} = \cos \theta + j \sin \theta$ |                                                                         |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| $\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$                | $\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$                     |  |
| $\mathbf{z} = x + jy =  \mathbf{z} e^{j\theta}$                      | $\mathbf{z}^* = x - jy =  \mathbf{z} e^{-j\theta}$                      |  |
| $x = \Re e(\mathbf{z}) =  \mathbf{z}  \cos \theta$                   | $ \mathbf{z}  = \sqrt[+]{\mathbf{z}\mathbf{z}^*} = \sqrt[+]{x^2 + y^2}$ |  |
| $y = \mathfrak{Im}(\mathbf{z}) =  \mathbf{z}  \sin \theta$           | $\theta = \tan^{-1}(y/x)$                                               |  |
| $\mathbf{z}^n =  \mathbf{z} ^n e^{jn\theta}$                         | $\mathbf{z}^{1/2} = \pm  \mathbf{z} ^{1/2} e^{j\theta/2}$               |  |
| $\mathbf{z}_1 = x_1 + jy_1$                                          | $\mathbf{z}_2 = x_2 + jy_2$                                             |  |

 $\mathbf{z}_{1}\mathbf{z}_{2} = |\mathbf{z}_{1}||\mathbf{z}_{2}|e^{j(\theta_{1}+\theta_{2})} \qquad \frac{\mathbf{z}_{1}}{\mathbf{z}_{2}} = \frac{|\mathbf{z}_{1}|}{|\mathbf{z}_{2}|} e^{j(\theta_{1}-\theta_{2})}$   $-1 = e^{j\pi} = e^{-j\pi} = 1 \angle \pm 180^{\circ}$   $j = e^{j\pi/2} = 1 \angle 90^{\circ} \qquad -j = e^{-j\pi/2} = 1 \angle -90^{\circ}$   $\sqrt{j} = \pm e^{j\pi/4} = \pm \frac{(1+j)}{\sqrt{2}} \qquad \sqrt{-j} = \pm e^{-j\pi/4} = \pm \frac{(1-j)}{\sqrt{2}}$ 

 $\mathbf{z}_1 = \mathbf{z}_2 \text{ iff } x_1 = x_2 \text{ and } y_1 = y_2 \quad \mathbf{z}_1 + \mathbf{z}_2 = (x_1 + x_2) + j(y_1 + y_2)$ 

Learn how to perform these with your <u>McMaster</u> <u>Casio fx-991MS</u> calculator

### Time and Phasor Domain

| x(t)                                   |                   | X                              |
|----------------------------------------|-------------------|--------------------------------|
| $A\cos\omega t$                        | $\leftrightarrow$ | A                              |
| $A\cos(\omega t + \phi)$               | $\leftrightarrow$ | $Ae^{j\phi}$                   |
| $-A\cos(\omega t + \phi)$              | $\leftrightarrow$ | $Ae^{j(\phi\pm\pi)}$           |
| $A \sin \omega t$                      | $\leftrightarrow$ | $Ae^{-j\pi/2} = -jA$           |
| $A\sin(\omega t + \phi)$               | $\leftrightarrow$ | $Ae^{j(\phi-\pi/2)}$           |
| $-A\sin(\omega t + \phi)$              | $\leftrightarrow$ | $Ae^{j(\phi+\pi/2)}$           |
| $\frac{d}{dt}(x(t))$                   | $\leftrightarrow$ | $j\omega\mathbf{X}$            |
| $\frac{d}{dt}[A\cos(\omega t + \phi)]$ | $\leftrightarrow$ | $j\omega Ae^{j\phi}$           |
| $\int x(t) dt$                         | $\leftrightarrow$ | $\frac{1}{j\omega}\mathbf{X}$  |
| $\int A\cos(\omega t + \phi) dt$       | $\leftrightarrow$ | $rac{1}{j\omega} A e^{j\phi}$ |

It is much easier to deal with exponentials in the phasor domain than sinusoidal relations in the time domain

We just need to track magnitude & phase, knowing that everything is at frequency  $\omega$ 

### Transmission Line Model



- R': The combined *resistance* of both conductors per unit length, in  $\Omega/m$ ,
- L': The combined *inductance* of both conductors per unit length, in H/m,
- C': The *capacitance* of the two conductors per unit length, in F/m.
- G': The *conductance* of the insulation medium between the two conductors per unit length, in S/m, and

characteristic impedance,  $Z_0$ 

$$Z_0 = \frac{R' + j\omega L'}{\gamma} = \frac{\sqrt{\left(R' + j\omega L'\right)}}{\sqrt{\left(G' + j\omega C'\right)}}$$

Complex propagation constant

$$\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')}$$

### Transmission Line Parameters

**Table 2-1:** Transmission-line parameters R', L', G', and C' for three types of lines.

| Table                      | Table 2 1. Transmission-line parameters K, E, G, and C for three types of lines. |                                                                     |                        |      |                                       |  |  |  |
|----------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|------|---------------------------------------|--|--|--|
| Parameter                  | Coaxial                                                                          | Two-Wire                                                            | Parallel-Plate         | Unit | Expressions                           |  |  |  |
| R'                         | $\frac{R_{\rm s}}{2\pi} \left( \frac{1}{a} + \frac{1}{b} \right)$                | $\frac{2R_{\rm S}}{\pi d}$                                          | $\frac{2R_{\rm S}}{w}$ | Ω/m  | will be<br>derived in                 |  |  |  |
| L'                         | $\frac{\mu}{2\pi}\ln(b/a)$                                                       | $\frac{\mu}{\pi} \ln \left[ (D/d) + \sqrt{(D/d)^2 - 1} \right]$     | $rac{\mu h}{w}$       | H/m  | later<br>chapters                     |  |  |  |
| G'                         | $\frac{2\pi\sigma}{\ln(b/a)}$                                                    | $\frac{\pi\sigma}{\ln\left[(D/d) + \sqrt{(D/d)^2 - 1}\right]}$      | $\frac{\sigma w}{h}$   | S/m  | Critical to keep in                   |  |  |  |
| <i>C'</i>                  | $\frac{2\pi\varepsilon}{\ln(b/a)}$                                               | $\frac{\pi\varepsilon}{\ln\left[(D/d) + \sqrt{(D/d)^2 - 1}\right]}$ | $rac{arepsilon w}{h}$ | F/m  | mind: $R_s$ is the surface resistance |  |  |  |
| Play around<br>Interactive | <u>!</u>                                                                         | $R_{a} = \sqrt{\pi f \mu_{C/a}}$                                    |                        | ıb   | of the conductors                     |  |  |  |



### Telegraphers and Maxwell's Equations

 Maxwell's equations in free space form a set of coupled, first order, partial differential equations

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

 Similar to the telegrapher's equations that we saw for transmission lines (L9-L12)

$$-\frac{d\tilde{V}(z)}{dz} = (R' + j\omega L')\tilde{I}(z)$$
$$-\frac{dI(z)}{dz} = (G' + j\omega C')\tilde{V}(z)$$

### Wave Equations: separation of variables

Derive the wave equations by separating variables, using the second derivative

For the telegrapher's equations, one dimensional (L9)

$$\frac{d^2\tilde{V}}{2} - \gamma^2 \tilde{V}(z) = 0$$

$$\frac{d^2 \tilde{V}}{dz^2} - \gamma^2 \tilde{V}(z) = 0$$
$$\frac{d^2 \tilde{I}}{dz^2} - \gamma^2 \tilde{I}(z) = 0$$

For the Maxwell's equations, use the curl of a curl and the Laplacian

$$\nabla^2 \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\nabla^2 \vec{\boldsymbol{B}} = \varepsilon_0 \mu_0 \frac{\partial^2 \overline{\boldsymbol{B}}}{\partial t^2}$$

# ac Phasor Analysis: General Procedu



#### Step 1

Adopt Cosine Reference (Time Domain)



#### Step 2

Transfer to Phasor Domain

$$i \longrightarrow \mathbf{I}$$

$$v \longrightarrow V$$

$$R \longrightarrow \mathbf{Z}_{R} = R$$
 $L \longrightarrow \mathbf{Z}_{L} = j\omega L$ 

$$C \longrightarrow \mathbf{Z}_{\mathbf{C}} = 1/j\omega C$$



#### Step 3

Cast Equations in Phasor Form

$$\mathbf{I}\left(R + \frac{1}{j\omega C}\right) = \mathbf{V}_{s}$$

(apply Ohm's and Kirchoff's laws)

#### Step 4

Solve for Unknown Variable (Phasor Domain)

$$\mathbf{I} = \frac{\mathbf{V}_{S}}{R + \frac{1}{j\omega C}}$$

#### Step 5

Transform Solution
Back to Time Domain

$$i(t) = \Re \mathbf{e} [\mathbf{I}e^{j\omega t}]$$
$$= I_0 \cos(\omega t - \phi_i) (\mathbf{A})$$