MID-TERM EXAM

YangyangLi

li002252@umn.edu

1 Problem 1

1.1 a

Answers:

g(z) = |z| that is convex function but non-differentiable at point 0. So using subdifferential to generalize gradient of differential functions at z = 0.

$$\partial g(z_0) = \{x \in \mathbb{R} : g(z) \ge g(z_0) + x(z - z_0)\}$$

Where $z_0 = 0$ $g(z_0) = 0$. So,

$$\partial g(z_0) = \{ x \in \mathbb{R} : g(z) \ge g(z_0) + x(z - z_0) \}$$

$$= \{ x \in \mathbb{R} : g(z) \ge g(z_0) + xz \}$$

$$= \{ x \in \mathbb{R} : |z| \ge xz \}$$

$$= \{ x \in \mathbb{R} : -1 \le x \le 1 \}$$

Also, $\partial_z |z| = 1$ when z > 0. $\partial_z |z| = -1$ when z < 0. Hence,

$$\partial_z |z| = \begin{cases} 1 & z > 0 \\ -1 & z < 0 \\ [-1, 1] & z = 0 \end{cases}$$

1.2 b

Answers:

As,

$$f\left(oldsymbol{x}
ight) \doteq rac{1}{2} \left\| oldsymbol{y} - oldsymbol{A} oldsymbol{x}
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x}
ight\|_{1}^{2}$$

Let $g(x) = \|y - Ax\|_2^2$, its gradient is $A^T(Ax - y)$, which is shown in previous HWs. Concretely,

$$\begin{aligned} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} &= \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} \\ &\rightarrow \|\boldsymbol{A}\left(\boldsymbol{x} + \boldsymbol{\delta}\right) - \boldsymbol{y}\|_{2}^{2} \\ &= \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + 2\left\langle \boldsymbol{A}^{T}\left(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\right), \boldsymbol{\delta}\right\rangle + o\left(\|\boldsymbol{\delta}\|_{2}\right) \end{aligned}$$

So,
$$\partial_x g(x) = 2\mathbf{A}^T (\mathbf{A}x - \mathbf{y})$$
. As $\mathbf{A} \in \mathbb{R}^{N \times d}$, $\mathbf{y} \in \mathbb{R}^N$ and $\mathbf{x} \in \mathbb{R}^{d \times 1}$

$$\partial_{oldsymbol{x}}g\left(oldsymbol{x}
ight) = egin{bmatrix} rac{\partial g}{\partial x_{1}} \ rac{\partial g}{\partial x_{2}} \ dots \ rac{\partial g}{\partial x_{d}} \end{bmatrix}$$

Let $h(x) = ||x||_1$,

$$\partial_{oldsymbol{x}} h\left(oldsymbol{x}
ight) = egin{bmatrix} rac{\partial h}{\partial x_{1}} \\ rac{\partial h}{\partial x_{2}} \\ dots \\ rac{\partial h}{\partial x_{d}} \end{bmatrix}$$

As shown in 1.1, for every scalar x_i , $\frac{\partial h}{\partial x_i} = \text{sign}(x_i)$. So,

$$\partial_{x} h\left(x\right) = \begin{bmatrix} \operatorname{sign}\left(x_{1}\right) \\ \operatorname{sign}\left(x_{2}\right) \\ \vdots \\ \operatorname{sign}\left(x_{d}\right) \end{bmatrix}$$

Consequently,

$$\partial_{x} f(x) = \partial_{x} g(x) + \partial_{x} h(x)$$
$$= A^{T} (Ax - y) + \lambda \operatorname{sign}(x)$$

Where sign(x) means applying the sign function elementwise.

1.3 c

Answers:

Let $f(z) = ||z||_2$. It is not deifferential when z = 0. So,

$$egin{aligned} \partial_{oldsymbol{z}} f\left(oldsymbol{z}_0
ight) &= \left\{oldsymbol{x} \in \mathbb{R}^N : f\left(oldsymbol{z}
ight) \geq f\left(oldsymbol{z}_0
ight) + \left\langleoldsymbol{x}, oldsymbol{z} - oldsymbol{z}_0
ight
angle
ight\} \ &= \left\{oldsymbol{x} \in \mathbb{R}^N : \|oldsymbol{z}\| \leq 1
ight\} \end{aligned}$$

Where $z_0 = 0$. When z does not equal to 0,

$$\partial_{oldsymbol{z}}f\left(oldsymbol{z}
ight) = egin{bmatrix} rac{\partial f(oldsymbol{z})}{\partial z_{1}} \ rac{\partial f(oldsymbol{z})}{\partial z_{2}} \ dots \ rac{\partial f(oldsymbol{z})}{\partial z_{n}} \end{bmatrix}$$

Where $\frac{\partial f(z)}{\partial z_i} = \frac{z_i}{\|z\|}$. Hence,

$$\left\|oldsymbol{z} \left\|oldsymbol{z}
ight\|_2 = egin{cases} rac{oldsymbol{z}}{\left\|oldsymbol{z}
ight\|} & oldsymbol{z}
otin \mathbf{0} \ oldsymbol{x} \in \mathbb{R}^N : \left\|oldsymbol{x}
ight\| \le 1 \ oldsymbol{z} & oldsymbol{z} = \mathbf{0} \end{cases}$$

1.4 d

1.4.1 i

Answers:

I implement Lasso to estimate x on the Colab Notebook that is uploaded as well. Please feel free to check that.

1.4.2 ii

Answers:

Let $g(x) = ||y - Ax||_2$. As proved in the questions 1.3, its subgradient is shown below in terms of chain rule.

$$g\left(\boldsymbol{x}\right) = \begin{cases} \frac{\left(\mathbf{1}^{T}\left(\boldsymbol{A} \otimes \left(\boldsymbol{A} \boldsymbol{x} - \boldsymbol{y}\right)\right)\right)^{T}}{\|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}\|_{2}} & \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \neq \boldsymbol{0} \\ \{\|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}\|_{2} \leq 1\} & \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \end{cases}$$

Where $A \otimes (Ax - y)$ is broadcasting operation.

I implement Lasso to estimate x on the Colab Notebook that is uploaded as well. Please feel free to check that.

1.5 iii

Answers:

I fix the $\lambda = 1e-2$, and try $\sigma^2 = 0.7, 2, 4$. I find that both Lasso and square-root Lasso have similar recovery performance of groundtruth x_0 . Also, The higher the variance is, the worse the performance will be.

I finish this part on the Colab Notebook that is uploaded as well. Please feel free to check that.

2 Problem 2

2.1 a

Answers:

$$\min_{\boldsymbol{w} \in \mathbb{H}} \sum_{i=1}^{N} \left(\left\langle \boldsymbol{w}, \Phi\left(\boldsymbol{x}_{i}\right) \right\rangle - y_{i} \right)^{2} + \lambda \left\| \boldsymbol{w} \right\|_{\mathbb{H}}^{2} = \min_{\boldsymbol{w} \in \mathbb{H}} \left\| \Phi\left(\boldsymbol{X}\right) \boldsymbol{w} - \boldsymbol{y} \right\|^{2} + \lambda \left\| \boldsymbol{w} \right\|_{\mathbb{H}}^{2}$$

Where
$$\Phi\left(m{X}\right) = \begin{bmatrix} \Phi\left(m{x}_{1}^{T}\right) \\ \Phi\left(m{x}_{2}^{T}\right) \\ \vdots \\ \Phi\left(m{x}_{N}^{T}\right) \end{bmatrix}$$
. the gradient is,
$$\nabla_{m{w}} = 2\Phi\left(m{X}\right)^{T}\left(\Phi\left(m{X}\right)m{w} - m{y}\right) + 2\lambda m{w}$$

$$\nabla_{\boldsymbol{w}} = 2\Phi\left(\boldsymbol{X}\right)^{T} \left(\Phi\left(\boldsymbol{X}\right) \boldsymbol{w} - \boldsymbol{y}\right) + 2\lambda \boldsymbol{w}$$

the global minimizer is w_{st}

$$\left(\Phi\left(\boldsymbol{X}\right)^{T}\Phi\left(\boldsymbol{X}\right)+\lambda\boldsymbol{I}\right)\boldsymbol{w}_{*}=\Phi\left(\boldsymbol{X}\right)^{T}\boldsymbol{y}$$

For any nonzero vector u,

$$\boldsymbol{u}^{T}\left(\Phi\left(\boldsymbol{X}\right)^{T}\Phi\left(\boldsymbol{X}\right) + \lambda \boldsymbol{I}\right)\boldsymbol{u} = \left\|\Phi\left(\boldsymbol{X}\right)\boldsymbol{u}\right\|^{2} + \lambda\left\|\boldsymbol{u}\right\|^{2} > 0$$

So $\Phi\left(\boldsymbol{X}\right)^{T}\Phi\left(\boldsymbol{X}\right)+\lambda\boldsymbol{I}$ is positive definite, which implies that it is invertible.

$$\boldsymbol{w}_{*} = \left(\Phi\left(\boldsymbol{X}\right)^{T}\Phi\left(\boldsymbol{X}\right) + \lambda\boldsymbol{I}\right)^{-1}\Phi\left(\boldsymbol{X}\right)^{T}\boldsymbol{y} = \Phi\left(\boldsymbol{X}\right)^{T}\left(\Phi\left(\boldsymbol{X}\right)\Phi\left(\boldsymbol{X}\right)^{T} + \lambda\boldsymbol{I}\right)^{-1}\boldsymbol{y}$$

Rewriting $\boldsymbol{w}_{*} = \sum_{i=1}^{N} \alpha_{i} \Phi\left(\boldsymbol{x}_{i}\right)$, $\boldsymbol{\alpha} = \left(\Phi\left(\boldsymbol{X}\right) \Phi\left(\boldsymbol{X}\right)^{T} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y} = \left(\boldsymbol{G} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y}$ where G is the Gram matrix generated from K on our training data points $\left\{x_{i}\right\}_{i=1}^{N}$

Hence, the regularized regression problem can be solved by find the optimal α . Also, α only relates to G and y

2.2 b

Answers:

The new optimization problem need to find the optimal α . As proved in question 2.1, α $\left(\Phi\left(\boldsymbol{X}\right)\Phi\left(\boldsymbol{X}\right)^{T}+\lambda\boldsymbol{I}\right)^{-1}\boldsymbol{y}=\left(\boldsymbol{G}+\lambda\boldsymbol{I}\right)^{-1}\boldsymbol{y}.$ Obviously, it is unique global minimizer.

2.3 C

Answers:

the find predictor is $\langle w_*, \Phi(x) \rangle$. The matrix form is,

$$\Phi\left(\hat{\boldsymbol{X}}\right)\boldsymbol{w}_{*} = \Phi\left(\hat{\boldsymbol{X}}\right)\Phi\left(\boldsymbol{X}\right)^{T}\left(\Phi\left(\boldsymbol{X}\right)\Phi\left(\boldsymbol{X}\right)^{T} + \lambda\boldsymbol{I}\right)^{-1}\boldsymbol{y} = \hat{\boldsymbol{G}}\left(\boldsymbol{G} + \lambda\boldsymbol{I}\right)^{-1}\boldsymbol{y}$$

Where train data
$$\Phi\left(m{X}\right) = \begin{bmatrix} \Phi\left(m{x}_{1}^{T}\right) \\ \Phi\left(m{x}_{2}^{T}\right) \\ \vdots \\ \Phi\left(m{x}_{N}^{T}\right) \end{bmatrix}$$
. test data $\Phi\left(\hat{X}\right) = \begin{bmatrix} \Phi\left(m{x}_{1}^{T}\right) \\ \Phi\left(m{x}_{2}^{T}\right) \\ \vdots \end{bmatrix}$. G is the Gram matrix

generated from K on our training data points $\{x_i\}_{i=1}^N$. \hat{G} is the Gram matrix generated from K on our testing data points and training data points.

3 Problem 3

3.1 a

Answers:

The problem is convex because $\frac{1}{2} \| \boldsymbol{w} \|_2^2$, $-v\rho$ and $\sum_{i=1}^N \xi_i$ are all convex. Their Hessian matrix $\nabla^2 \geq 0$. The positive combination $\frac{1}{2} \| \boldsymbol{w} \|_2^2 - v\rho + \sum_{i=1}^N \epsilon_i$ is convex. Also, the constraints is linear. So, the problem is convex.

3.2 b

Answers:

For the soft-margin SVM, there exist w_0 , b_0 and ξ_i satisfying,

$$y_i(\langle \boldsymbol{w}_0, \boldsymbol{x}_i \rangle + b_0) \ge 1 - \xi_i \quad \forall i$$

So we can find $\lambda > 0$ so that,

$$y_i(\langle \lambda \boldsymbol{w}_0, \boldsymbol{x}_i \rangle + \lambda b_0) > \rho - \xi_i \quad \forall i$$

Where $\xi_i > 0$, $\rho > 0$.

So strict feasibility can be verified and we can invoke the KKT optimality condition. The Lagrangian is,

$$\mathcal{L}\left(\boldsymbol{w},b,\rho,\boldsymbol{\xi},\boldsymbol{\lambda},\boldsymbol{u},\pi\right) = \frac{1}{2} \left\|\boldsymbol{w}\right\|_{2}^{2} - v\rho + \sum_{i=1}^{N} \xi_{i} + \sum_{i=1}^{N} \lambda_{i} \left(\rho - \xi_{i} - y_{i} \left(\left\langle \boldsymbol{w},\boldsymbol{x}_{i}\right\rangle + b\right)\right) - \sum_{i=1}^{N} u_{i}\xi_{i} - \pi\rho$$

The KKT condition is,

stationarity:

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$
 $\sum_{i=1}^{N} \lambda_i y_i = 0$ $\mathbf{1} = \boldsymbol{\lambda} + \boldsymbol{u}$ $\sum_{i=1}^{N} \lambda_i = \pi + v$

feasibility:

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \ge \rho - \xi_i, \ \xi_i \ge 0, \ \lambda_i \ge 0. \ u_i \ge 0 \ \forall i \quad \rho \ge 0, \ \pi \ge 0$$

complementary slackness:

$$\lambda_i (\rho - \xi_i - y_i (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle) + b) = 0, \quad u_i \xi_i = 0 \ \forall i \quad \pi \rho = 0$$

3.3 c

Answers:

the support vectors satisfy $y_i\left(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b\right) = \rho - \xi_i$. So, $\lambda_i \neq 0$ for the support vectors. As $\rho > 0$, $\pi = 0 \Rightarrow \sum_{i=1}^N \lambda_i = v$ in terms of the KKT conditions.

For the outliers, $\xi_i \ge 0 \Rightarrow u_i = 0 \Rightarrow \lambda_i = 1$. $\lambda_i = 1$ for all the outliers. Let N_o denote the number of outliers. $N_o \le N$

$$N_o = \sum_{i=1}^{N_o} 1 \le \sum_{i=1}^{N} \lambda_i = v$$

Where λ_i denote value of λ of all data points.

The support vectors contain points on the hyperplanes and outliers. For the points on the hyerplanes, $\xi_i = 0 \Rightarrow u_i > 0 \Rightarrow \lambda_i < 1$ in terms of KKT conditions.

Hence, $\lambda_i \leq 1$ for the support vectors. $\lambda_i = 0$ for other points. Let N_s denote the number of support vectors.

$$N_s = \sum_{i=1}^{N_s} 1 \ge \sum_{i=1}^{N} \lambda_i = v$$

Where λ_i denote value of λ of all data points.

3.4 d

Answers:

As the training set $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^N$ is linearly separable, there exists \boldsymbol{w}_0 and b_0 so that

$$y_i (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \ge 0 \quad \forall i$$

So $\rho \neq 0$ in that $\rho - \xi_i \leq 0$ if $\rho = 0$. The constraint will be loose so that we cannot get right and optimal hyperplane.

So $\rho > 0$. Also, v is an upper bound on the number of outliers bounded as proved above 3.3. If $v = \frac{1}{2}$, there exists no outliers. Hence, $\xi_i = 0$ for all data points.

The objective function will be,

$$\min_{\boldsymbol{w},b,\rho} \frac{1}{2} \|\boldsymbol{w}\|_2^2 - v\rho \text{ s. t. } y_i \left(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b \right) \ge \rho$$

Rewriting that,

$$\min_{\boldsymbol{w},b,\rho} \frac{1}{2} \left\| \frac{\boldsymbol{w}}{\rho} \right\|_{2}^{2} - \frac{v}{\rho} \text{ s. t. } y_{i} \left(\left\langle \frac{\boldsymbol{w}}{\rho}, \boldsymbol{x}_{i} \right\rangle + \frac{b}{\rho} \right) \geq 1$$

Let $\mathbf{w}' = \frac{\mathbf{w}}{\rho}$, $v' = \frac{v}{\rho}$, $b' = \frac{b}{\rho}$.

$$\min_{\boldsymbol{w}',b'} \frac{1}{2} \|\boldsymbol{w}'\|_2^2 - v' \text{ s. t. } y_i \left(\langle \boldsymbol{w}', \boldsymbol{x}_i \rangle + b' \right) \ge 1$$

We can remove v', which does not influence minimization,

$$\min_{\boldsymbol{w}',b'} \frac{1}{2} \|\boldsymbol{w}'\|_2^2 \text{ s. t. } y_i \left(\langle \boldsymbol{w}', \boldsymbol{x}_i \rangle + b' \right) \ge 1 \quad \forall i$$

Now the objective function is consistent with hard-margin SVM. Consequently,

If $\rho > 0$, this problem yields the same binary classifier as that of hard-margin SVM.

3.5 e

Answers:

Assume $(\boldsymbol{w}_*, b_*, \xi_*, \rho_*)$ is a global minimizer of problem,

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi},\rho} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - \nu \rho + \sum_{i=1}^{N} \xi_{i} \quad \text{s.t. } y_{i} \left(\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b \right) \geq \rho - \xi_{i}, \ \xi_{i} \geq 0 \ \forall \ i \quad \rho \geq 0$$

$$y_i\left(\langle \boldsymbol{w}_*, x_i \rangle + b_*\right) \ge \rho_* - \xi_i^* \quad \forall i$$

So,

$$y_i\left(\left\langle \frac{\boldsymbol{w}}{\rho}, x_i \right\rangle + \frac{b}{\rho}\right) \ge 1 - \frac{\xi_i}{\rho} \quad \forall i$$

Let $\mathbf{w}' = \frac{\mathbf{w}}{\rho}$, $b' = \frac{b}{\rho}$, $\xi' = \frac{\xi_i}{\rho}$

$$y_i\left(\langle \boldsymbol{w}', x_i \rangle + b'\right) \ge 1 - \xi' \quad \forall i$$

As $\rho_* > 0$, The objective function is,

$$\min_{\boldsymbol{w}, b, \xi, \rho} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - v\rho + \sum_{i=1}^{N} \xi_{i} = \min_{\boldsymbol{w}, b, \xi, \rho} \frac{1}{2} \left\| \frac{\boldsymbol{w}}{\rho} \right\|_{2}^{2} + \rho^{-1} \sum_{i=1}^{N} \frac{\xi_{i}}{\rho} - \frac{v}{\rho}$$

Let $v' = v/\rho$, the objective function is,

$$min_{\boldsymbol{w},b,\xi,\rho} \frac{1}{2} \|\boldsymbol{w}'\|_{2}^{2} + \rho^{-1} \sum_{i=1}^{N} \xi' - v'$$

Assume ρ is constant. Removing v', which does not influence minimization,

$$min_{\boldsymbol{w},b,\xi}, \frac{1}{2} \|\boldsymbol{w}'\|_{2}^{2} + \rho^{-1} \sum_{i=1}^{N} \xi' \quad y_{i} (\langle \boldsymbol{w}', x_{i} \rangle + b') \ge 1 - \xi' \quad \forall i$$

This is soft-margin SVM with $C=\rho^{-1}$. As $(\boldsymbol{w}_*,b_*,\xi_*,\rho_*)$ is a global minimizer of original problem, the global minimizer $\{\boldsymbol{w},b,\boldsymbol{\xi}\}$ of soft-margin SVM with $C=\rho_*^{-1}$ are $\frac{\boldsymbol{w}_*}{\rho_*},\frac{b_*}{\rho_*}$ and $\frac{\boldsymbol{\xi}_*}{\rho_*}$ respectively.

4 Problem 4

4.1 a

The ℓ_2 norm case is,

$$\mathcal{H} \doteq \{ \boldsymbol{x} \to \langle \boldsymbol{w}, \boldsymbol{x} \rangle : \| \boldsymbol{w} \|_2 \le 1 \}$$

$$\begin{split} N*G\left(\boldsymbol{X}\right) &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\|\boldsymbol{w}\|_{2} \leq 1} \left\langle \boldsymbol{X} \boldsymbol{w}, \boldsymbol{g} \right\rangle \\ &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\|\boldsymbol{w}\|_{2} \leq 1} \sum_{i=1}^{N} g_{i} \left\langle \boldsymbol{w}, \boldsymbol{x}_{i} \right\rangle \\ &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\|\boldsymbol{w}\|_{2} \leq 1} \left\langle \boldsymbol{w}, \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\rangle \\ &\leq \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{2} \end{split}$$

using Jensen's inequality,

$$\mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{2} = \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left(\left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} \right)^{1/2}$$

$$\leq \left(\mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} \right)^{1/2}$$

 g_1,g_2,\ldots,g_n are sampled from normal Gaussian distribution and independent.

$$\begin{split} \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sum_{i,j} g_{i} g_{j} \left\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \right\rangle \\ &= \sum_{i \neq j} \left\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \right\rangle \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} g_{i} g_{j} + \sum_{i=1}^{N} \left\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \right\rangle \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} g_{i}^{2} \\ &= \sum_{i=1}^{N} \left\| \boldsymbol{x}_{i} \right\|_{2}^{2} \leq N \max_{i} \left\| \boldsymbol{x}_{i} \right\|_{2}^{2} \end{split}$$

Hence,

$$G\left(\boldsymbol{X}\right) \leq \frac{\max_{i} \left\|\boldsymbol{x}_{i}\right\|_{2}}{\sqrt{N}}$$

4.2 b

The ℓ_{∞} norm case is,

$$\mathcal{H} \doteq \{ \boldsymbol{x} \to \langle \boldsymbol{w}, \boldsymbol{x} \rangle : \| \boldsymbol{w} \|_{\infty} \leq 1 \}$$

using Holder's inequality,

$$\begin{split} N*G\left(\boldsymbol{X}\right) &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\left\|\boldsymbol{w}\right\|_{\infty} \leq 1} \left\langle \boldsymbol{X} \boldsymbol{w}, \boldsymbol{g} \right\rangle \\ &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\left\|\boldsymbol{w}\right\|_{\infty} \leq 1} \sum_{i=1}^{N} g_{i} \left\langle \boldsymbol{w}, \boldsymbol{x}_{i} \right\rangle \\ &= \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \sup_{\left\|\boldsymbol{w}\right\|_{2} \leq 1} \left\langle \boldsymbol{w}, \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\rangle \\ &\leq \mathbb{E}_{\boldsymbol{g} \sim_{iid} \mathsf{N}(0,1)} \left\| \sum_{i=1}^{N} g_{i} \boldsymbol{x}_{i} \right\|_{1} \end{split}$$

For each $j \in [d]$, let $v_j = (x_1, j \dots x_N, j) \in \mathbb{R}^N$. Note that $\|\boldsymbol{v}_j\|_2 \leq \sqrt{N} \max_i \|\boldsymbol{x}_i\|_1$. Let $V = \{\boldsymbol{v}_1, \dots, -\boldsymbol{v}_1, \dots -\boldsymbol{v}_n\}$. The right-hand side is N G(V). Using Massart lemma,

$$G(V) \leq \max_{i} \|\boldsymbol{x}_{i}\|_{1} \sqrt{2\log\left(2d\right)/N}$$