Zusammenfassung Modellkategorien

© M Tim Baumann, http://timbaumann.info/uni-spicker

Bem. Die Topologie-Zusammenfassung bietet eine Übersicht über Grundbegriffe der Kategorientheorie. Weiterführende Begriffe werden in der Homologische-Algebra-Zusammenfassung behandelt.

Die Ordinalzahlen

Def. Eine Wohlordnung auf einer Menge S ist eine Totalordnung auf S bezüglich der jede nichtleere Teilmenge $A\subseteq S$ ein kleinstes Element besitzt. Eine wohlgeordnete Menge ist ein Tupel (S,\leqslant) bestehend aus einer Menge S und einer Wohlordnung \leqslant auf S.

Bem. Eine äquivalente Bedingung lautet: Es gibt in S keine nach rechts unendlichen absteigenden Folgen $\ldots > a_i > a_{i+1} > a_{i+2} > \ldots$ Bem. Äquivalent zum Auswahlaxiom ist:

Axiom (Wohlordnungssatz). Auf jeder Menge ex. eine Wohlord.

Def. Zwei wohlgeordnete Mengen heißen isomorph, wenn es eine monotone Bijektion zwischen ihnen gibt.

Def. Eine Ordinalzahl ist eine Isomorphieklasse von wohlgeordneten Mengen.

Bem. Die Klasse aller Ordinalzahlen wird mit \mathcal{O}_n bezeichnet und ist eine echte Klasse, keine Menge. Sie ist selbst wohlgeordnet mittels

$$[(S,\leqslant_S)]\leqslant [(T,\leqslant_T)] \ :\Longleftrightarrow \ \exists \ \text{inj. monotone Abb.} \ (S,\leqslant_S)\to (T,\leqslant_T).$$

Notation. • $0 := [\varnothing]$, • $n := [\{1, \ldots, n\}]$ für $n \in \mathbb{N}$, • $\omega := [\mathbb{N}]$ mit der jeweils kanonischen Ordnungsrelation.

Bem. Die ersten Ordinalzahlen sind

$$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega \cdot 3, \ldots, \omega^{\omega}, \ldots$$

Prinzip (Transfinite Induktion).

Sei $P: \mathcal{O}_n \to \mathbf{Prop}$ eine Aussage über Ordinalzahlen. Dann gilt:

$$(\forall \beta \in \mathcal{O}_n : (\forall \gamma < \beta : P(\gamma)) \implies P(\beta)) \implies \forall \alpha \in \mathcal{O}_n : P(\alpha)$$

Def. Arithmetik von Ordinalzahlen ist folgendermaßen definiert: Für $\alpha = [(S, \leq_S)]$ und $\beta = [(T, \leq_T)] \in \mathcal{O}_n$ ist

• $\alpha + \beta := [(S \coprod T, \leq_{S \coprod T})]$, wobei gilt:

$$\leq_{SUT} |_{S \times S} := \leq_S, \quad \leq_{SUT} |_{T \times T} := \leq_T, \quad S <_{SUT} T.$$

• $\alpha \cdot \beta \coloneqq [(S \times T, \leqslant_{S \rtimes T})]$ mit der lexikogr. Ordnung

$$(s_1, t_1) \leqslant_{S \rtimes T} (s_2, t_2) := t_1 < t_2 \lor (t_1 = t_2 \land s_1 \leqslant_S s_2)$$

• $\alpha^{\beta} := [(\{Abb. \ f : S \to T \text{ mit } f(s) = 0 \text{ für fast alle } s \in S\}, \leq)] \text{ mit } f < g : \iff \exists \ t \in T : f(t) < g(t) \land (\forall \ t_2 >_T t : f(t_2) = g(t_2))$

Bem. Es gibt drei Typen von Ordinalzahlen:

- a) Die Null $0 := [(\emptyset, \leq)] \in \mathcal{O}_n$.
- b) Die Nachfolgerzahl $\alpha + 1$ einer Zahl $\alpha \in \mathcal{O}_n$.

c) Die Limeszahl $\lim A := \sup A$ einer Teil*menge* $A \subset \mathcal{O}_n$.

Bem. Die Rechenop. können auch rekursiv definiert werden durch a) b) c) c) $\alpha+0:=\alpha \quad \alpha+(\beta+1):=(\alpha+\beta)+1 \quad \alpha+\lim A:=\lim \left\{\alpha+\gamma \mid \gamma\in A\right\}$

$$\alpha \cdot 0 := 0 \qquad \alpha \cdot (\beta + 1) := (\alpha + \beta) + 1 \qquad \alpha + \min A := \min \{\alpha + \gamma \mid \gamma \in A\}$$

$$\alpha \cdot 0 := 0 \qquad \alpha \cdot (\beta + 1) := (\alpha \cdot \beta) + \alpha \qquad \alpha \cdot \lim A := \lim \{\alpha \cdot \gamma \mid \gamma \in A\}$$

$$\alpha^0 := 1 \qquad \alpha^{\beta + 1} := \alpha^{\beta} \cdot \alpha \qquad \alpha^{\lim A} := \lim \{\alpha^{\gamma} \mid \gamma \in A\}$$

Def. Ein **Fast-Halbring** ist ein Tupel $(S, +, \cdot, 0)$, sodass (S, +, 0) ein Monoid und (S, \cdot) eine Halbgruppe ist mit

• $a \cdot (b+c) = a \cdot b + a \cdot c$, • $a \cdot 0 = 0$.

Lem (Rechenregeln in \mathcal{O}_n). \bullet $\alpha \cdot 0 = 0 = 0 \cdot \alpha$ \bullet $\alpha \cdot 1 = \alpha = 1 \cdot \alpha$

- $\alpha^0 = 1$ $0^{\alpha} = 0$ für $\alpha > 0$ $1^{\alpha} = 1$ $\alpha^1 = \alpha$
- $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$ $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$
- \mathcal{O}_n ist ein Fast-Halbring (mit einer Klasse statt Menge)
- $\bullet\,$ Das andere Distributivgesetz stimmt nicht!
- Weder Addition noch Multiplikation sind kommutativ.
- Addition und Mult. erlauben das Kürzen von Elementen nur links.
- Addition, Multiplikation und Potenzieren sind in beiden Argumenten monoton, allerdings nur im zweiten strikt monoton:

$$\forall \beta < \gamma : \alpha + \beta < \alpha + \gamma, \quad \alpha \cdot \beta < \alpha \cdot \gamma \ (\alpha > 0), \quad \alpha^{\beta} < \alpha^{\gamma} \ (\alpha > 1).$$

Lem. Jedes $\alpha \in \mathcal{O}_n$ kann geschrieben werden in Cantor-NF:

$$\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \ldots + \omega^{\beta_k} c_k$$

mit $k \in \mathbb{N}$, $c_1, \ldots, c_k \in \mathbb{N}_{>0}$ und $\beta_1 > \ldots > \beta_k \in \mathcal{O}_n$.

Kategorientheorie

Def. Eine (schwache) 2-Kategorie \mathbb{C} besteht aus

- einer Ansammlung Ob(C) von Objekten,
- für jedes Paar (C, \mathcal{D}) von Objekten einer Kategorie

$$\operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) = \left\{ \begin{array}{c} A \overset{F}{ } & \\ A \overset{G}{ } & \end{array} \right\},$$

- für jedes Tripel $(\mathcal{C}, \mathcal{D}, \mathcal{E})$ von Objekten einem Funktor $\mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) \times \mathrm{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{E}) \to \mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{E}), \ (F, G) \mapsto G \circ F,$
- für jedes Objekt $\mathcal{C} \in \mathrm{Ob}(\mathbb{C})$ einem Objekt $\mathrm{Id}_{\mathcal{C}} \in \mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{C})$,
- für alle $\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbb{C})$ einem natürlichen Isomorphismus

$$\alpha_{\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{F}}: -\circ (-\circ -) \Longrightarrow (-\circ -)\circ -,$$

wobei beide Seiten Funktoren sind vom Typ

$$\operatorname{Hom}(\mathcal{E}, \mathcal{F}) \times \operatorname{Hom}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}(\mathcal{C}, \mathcal{D}) \to \operatorname{Hom}(\mathcal{C}, \mathcal{F}),$$

• und für alle $\mathcal{C}, \mathcal{D} \in \mathrm{Ob}(\mathbb{C})$ natürlichen Isomorphismen

$$\lambda_{\mathcal{C},\mathcal{D}}: (\mathrm{Id}_{\mathcal{D}} \circ -) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})}, \ \rho_{\mathcal{C},\mathcal{D}}: (-\circ \mathrm{Id}_{\mathcal{C}}) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})},$$

sodass folgende Kohärenzbedingungen erfüllt sind:

• Für alle $(\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E} \xrightarrow{H} \mathcal{F} \xrightarrow{K} \mathcal{G}) \in \mathcal{C}$ kommutiert

• Für alle $(\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}) \in \mathcal{C}$ kommutiert

$$G \circ (\operatorname{Id}_{\mathcal{D}} \circ F) \xrightarrow{\alpha_{\mathcal{C}, \mathcal{D}, \mathcal{D}, \mathcal{E}}} (G \circ \operatorname{Id}_{\mathcal{D}}) \circ F$$

$$G \circ F \xrightarrow{G\lambda_{\mathcal{C}, \mathcal{D}}} G \circ F$$

Bspe. • Die Kategorie Cat der Kategorien ist eine 2-Kategorie.

- Jede Kategorie C ist natürlich eine 2-Kategorie.
- Die Kategorie der Ringe \mathbb{R} mit $\mathrm{Ob}(\mathbb{R}) := \{ \text{Ringe mit Eins} \}$ und $\mathrm{Hom}_{\mathbb{R}}(A,B) := \mathrm{Kat.}$ der $B\text{-}A\text{-}\mathrm{Bimoduln}$ mit $N \circ M := N \otimes_B M$ für $M \in \mathrm{Hom}(A,B)$ und $N \in \mathrm{Hom}(B,C)$. Dabei ist $\mathrm{Id}_A := A$.

Def. Eine monoidale Kategorie ist eine 2-Kategorie mit genau einem Objekt. In der Regel wird dann \otimes anstelle von \circ geschrieben.

Def. Sei $S: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{A}$ ein Funktor. Ein **Ende** $E \in \text{Ob}(\mathcal{A})$ von S ist eine Familie $\alpha_c: E \to S(c,c), c \in \text{Ob}(\mathcal{C})$ von Morphismen in \mathcal{A} , sodass für alle $(f: c \to c') \in \mathcal{C}$ das Diagramm

kommutiert, und E universell (terminal) mit dieser Eigenschaft ist. Sprechweise: Ein Ende ist ein terminaler S-Keil.

Notation.
$$E = \int_{c} S(c,c)$$
.

Bem. Enden sind spezielle Limiten, und umgekehrt sind Limiten spezielle Enden: $\lim F = \int_c F(c)$; der Integrand ist $\mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{C} \xrightarrow{F} \mathcal{A}$

Bem. Das duale Konzept ist das eines Anfangs Koendes (S(c,c))

Bsp. Seien $F, G: \mathcal{C} \to \mathcal{A}$ zwei Funktoren. Dann ist

$$\int_{c} \operatorname{Hom}_{\mathcal{A}}(F(c), G(c)) \cong \operatorname{Nat}(F, G).$$

Satz (Fubini). Sei $S: \mathcal{D}^{\mathrm{op}} \times \mathcal{D} \times \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{A}$ ein Funktor. Dann gilt

$$\int_{(d,c)} S(d,d,c,c) \cong \iint_{dc} S(d,d,c,c),$$

falls die rechte Seite und $\int_{c} S(d,d',c,c)$ für alle $d,d' \in \mathcal{D}$ existieren.

Bsp. Sei R ein Ring, aufgefasst als präadditive Kategorie mit einem Objekt *. Ein additiver Funktor $R^{(op)} \to \mathbf{Ab}$ ist nichts anderes als ein R-Linksmodul (bzw. R-Rechtsmodul). Dann ist

$$A \otimes_R B \cong \int^{*\in R} A \otimes_{\mathbb{Z}} B.$$

Bsp (Ninja-Yoneda-Lemma). Für jede Prägarbe $F: \mathcal{C}^{op} \to \mathbf{Set}$ gilt

$$F \cong \int_{c}^{c} F(c) \times \operatorname{Hom}_{\mathcal{C}}(-, c).$$

Def. Sei \mathbb{C} eine 2-Kategorie. Seien $\mathcal{C}, \mathcal{D} \in \mathbb{C}$. Eine **Adjunktion** von $F \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D})$ und $G \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{C})$ ist geg. durch Morphismen $\eta : \operatorname{Id}_{\mathcal{C}} \Rightarrow G \circ F$ (genannt **Eins**) und $\epsilon : F \circ G \Rightarrow \operatorname{Id}_{\mathcal{D}}$ (**Koeins**) mit $G\epsilon \circ \eta G = \operatorname{Id}_{G}$ und $\epsilon F \circ F \eta = \operatorname{Id}_{F}$. Man notiert $F \dashv G$.

Lem. R/L-Adjungierte sind eindeutig bis auf eindeutige Isomorphie.

Bem. Seien $F: \mathcal{C} \to \mathcal{D}$ und $G: \mathcal{D} \to \mathcal{C}$ Funktoren. Dann gilt $F \dashv G$ genau dann, wenn es einen nat. Iso zwischen den Hom-Mengen gibt:

$$\operatorname{Hom}(F \circ -, -) \cong \operatorname{Hom}(-, G \circ -)$$

Bsp. $\exists f \dashv f^* \dashv \forall f$

Bsp. Betrachte die 2-Kat. der Ringe. Dann gilt: Ein B-A-Modul M ist genau dann ein Linksadjungierter, wenn M als Rechts-A-Modul endlich erzeugt und projektiv ist.

Bem. Sind η und ϵ in $F \dashv G$ sogar Isomorphismen, so heißt $F \dashv G$ auch **adjungierte Äquivalenz**. Jede beliebige Äquivalenz lässt sich stets (unter Beibehaltung von F und G sowie einem der Morphismen ϵ , η) zu einer adj. Äquivalenz verfeinern.

Kan-Erweiterungen

Def. Sei $A \xleftarrow{T} M \xrightarrow{K} C$ ein Ausschnitt einer 2-Kategorie. Eine **Rechts-Kan-Erw.** (RKE) (R, ϵ) von T längs K besteht aus

- einem Morphismus $R: C \to A$
- einem 2-Morphismus $\epsilon: R \circ K \Rightarrow T$,

sodass gilt: Für alle Möchtegern-RKE ($\tilde{R}: C \to A, \epsilon: \tilde{R} \circ K \Rightarrow T$) gibt es genau ein $\sigma: \tilde{R} \Rightarrow R$ mit $\epsilon \circ \sigma K = \tilde{\epsilon}$. Notation: $R = \operatorname{Ran}_K(T)$

Bem. (R, ϵ) ist RKE von T längs $K \iff$ Hom $(\tilde{R}, R) \to$ Hom $(\tilde{R} \circ K, T)$ ist bijektiv für alle $\tilde{R} : C \to A$.

Prop. RKE sind eindeutig bis auf eindeutige Isomorphie.

Bsp. Die RKE eines bel. Morphismus $T: M \to A$ längs Id_M existiert stets und ist gegeben durch $(T, T \circ \mathrm{Id}_M \Rightarrow T)$.

Bsp. In der 2-Kategorie der Ringe existieren alle RKE:

$$\operatorname{Ran}_K(T) = (\operatorname{Hom}_M(K,T), \ ev : \operatorname{Hom}_M(K,T) \otimes_C K \Rightarrow T).$$

Bsp. Sei $K: \mathcal{M} \to \mathbf{1}$ der eindeutig best. Funktor. Sei $T: \mathcal{M} \to \mathcal{A}$ irgendein Funktor. Dann ist eine RKE von T längs K dasselbe wie ein Limes von T.

Thm. Seien $K:\mathcal{M}\to\mathcal{C}$ und $T:\mathcal{M}\to\mathcal{A}$ Funktoren. Existiere für alle Objekte $c\in\mathcal{C}$ der Limes

$$R(c) := \lim_{f:c \to Km} T(m).$$

Dann lässt sich diese Setzung zu einem Funktor $\mathcal{C} \to \mathcal{A}$ ausdehnen und zwar zu einer RKE von T längs K.

Bem. Ist \mathcal{M} klein und \mathcal{C} lokal klein und ist \mathcal{A} vollständig, so sind die Voraussetzungen des Theorems für jeden Funktor $K: \mathcal{M} \to \mathcal{C}$, $T: \mathcal{M} \to \mathcal{A}$ erfüllt. Insbesondere ist dann jede solche RKE von der Form im Theorem. Solche RKE heißen auch **punktweise RKE**.

Lem. Eine RKE ist genau dann punktweise, wenn sie für alle $a \in A$ unter dem Funktor $\operatorname{Hom}_{\mathcal{A}}(a, -)$ erhalten bleibt.

Thm. Sei $K: M \to C$ ein Funktor. Betrachte $K^*: [C, A] \to [M, A]$.

- Wenn ein Funktor $\operatorname{Ran}_K: [M,A] \to [C,A]$ mit $K^* \dashv \operatorname{Ran}_K$ existiert, so ist für alle $T:M \to A$ $\operatorname{Ran}_K(T)$ eine RKE von T längs K.
- Existiere für alle $T:M\to A$ eine RKE $\mathrm{Ran}_K(T)$. Dann kann man die Zuordnung $T\mapsto \mathrm{Ran}_K(T)$ zu einem Rechtsadjungierten von K^* ausdehnen.

Thm. Sei $G:A\to X$ in einer 2-Kategorie. Dann sind äquivalent:

- G besitzt einen Linksadjungierten.
- $\operatorname{Ran}_G(\operatorname{Id}_A)$ existiert und bleibt von G erhalten, d. h. $G \circ \operatorname{Ran}_G(\operatorname{Id}_A) = \operatorname{Ran}_G(G \circ \operatorname{Id}_A)$.

In diesem Fall gilt $\operatorname{Ran}_G(\operatorname{Id}_A)\dashv G$ und $\operatorname{Ran}_G(\operatorname{Id}_A)$ wird sogar von allen Morphismen $H:A\to Y$ bewahrt.

Thm. Rechtsadjungierte bewahren RKE.

Kor. Rechtsadjungierte bewahren Limiten (RAPL)

Algebraische Strukturen in Kategorien

Def. Eine Retrakt ist ein Morphismus $r: Y \to X$, sodass ein Morphismus $i: X \to Y$ mit $r \circ i = \mathrm{id}_X$ existiert. Sprechweise: X ist ein Retrakt von Y (vermöge i).

Bsp. Ein Modul U ist genau dann Retrakt von einem Modul M, wenn U ein direkter Summand von M ist.

Prop. "- ist Retrakt von -" ist eine reflexive und trans. Relation.

Def. Ein Retrakt eines Morphismus $(A \xrightarrow{f} B) \in \mathcal{C}$ ist ein Morph. $g: X \to Y$, sodass es ein komm. Diagramm folgender Form gibt:

$$A \xrightarrow{i} X \xrightarrow{r} A$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow f$$

$$B \xrightarrow{j} Y \xrightarrow{s} B$$

Bem. Ein Retrakt von $f \in \text{Mor}(\mathcal{C})$ ist ein Retrakt von $f \in \text{Ob}(\mathcal{C}^{\rightarrow})$.

Prop. • Retrakte von Isomorphismen sind Isomorphismen.

• Sei $f \circ g = \text{id}$. Dann ist f ein Retrakt von $g \circ f$.

Prop. Sei $F: \mathcal{C} \to \mathcal{D}$ ein Funktor. Dann ist die Klasse $\{f \in \mathcal{C}^{\to} \mid F(f) \text{ ist ein Iso}\}$ abgeschlossen unter Retrakten.

Def. Sei $i:A\to X$ und $p:E\to B$. Dann werden als äq. definiert:

- p ist i-injektiv i ist p-projektiv $i \boxtimes p$
- \bullet i hat die Linkshochhebungseigenschaft (LHHE) bzgl. p
- Für alle f, g wie unten, sodass das Quadrat kommutiert, gibt es ein diagonales λ , sodass die Dreiecke kommutieren:

$$\begin{array}{c}
A \xrightarrow{g} E \\
\downarrow_{i} \exists \lambda & \downarrow_{p} \\
X \xrightarrow{f} B
\end{array}$$

Bsp. Wegeliftung aus der Topologie: $i:\{0\} \to [0,1]$ erfüllt die LHHE bezüglich allen Überlagerungen $\pi:E\to B$.

Bsp. Sei P ein Objekt einer abelschen Kategorie \mathcal{A} . Dann ist P genau dann **projektiv**, wenn $(0 \to P)$ die LHHE bzgl. aller Epimorphismen in \mathcal{A} hat. Dual ist I injektiv, wenn alle Monos in \mathcal{A} die LHHE bzgl. $(I \to 0)$ besitzen.

Bsp. In der Kategorie der Mengen gilt: Alle Injektionen haben die LHHE bzgl. aller Surjektionen.

Lem (Retrakt-Argument). Sei $f = q \circ j$. Ist f q-projektiv ($f \boxtimes q$), so ist f ein Retrakt von i.

Zellenkomplexe

Def. Sei λ eine Ordinalzahl. Eine λ -Sequenz in einer Kategorie $\mathcal C$ ist ein kolimesbewahrender Funktor $X:\lambda\to\mathcal C$ (wobei man λ als Präordnungskategorie aller $\beta<\lambda$ auffasst). Ihre transfinite Komposition ist der induzierte Morphismus $X_0\to\operatorname{colim}_{\beta<\lambda}X_\beta$.

Bem. Kolimesbewahrung bedeutet: $\operatorname{colim}_{\alpha < \beta} X_{\alpha} = X_{\beta}$ für alle $\beta < \lambda$.

Def. Sei \mathcal{C} eine kovollständige Kategorie, $I \subset \text{Mor}(\mathcal{C})$ eine Menge.

• Ein relativer *I*-Zellenkomplex ist eine transf. Komp. einer λ -Sequenz Z, sodass $\forall \alpha \in \mathcal{O}_n$ mit $\alpha + 1 < \lambda$ ein Pushoutdiagramm

mit $f \in I$ existiert. Sprechweise: " $Z_{\alpha+1}$ entsteht aus Z_{α} , indem wir B längs C ankleben"

• Ein Objekt $A \in \text{Ob}(\mathcal{C})$ heißt *I-Zellenkomplex*, wenn der Morph. $0 \to A$ aus dem initialen Obj. ein relativer *I-Zellenkomplex* ist.

Bsp. CW-Komplexe aus der algebraischen Topologie sind *I*-Zellenkomplexe mit $I := \{S^{n-1} \hookrightarrow B^n \mid n \ge 0\}$ (und $C = \mathbf{Top}$). **Bspe.** • Identitäten $A \to A$ sind relative *I*-Zellenkomplexe.

• Das initiale Objekt ist ein absoluter I-Zellenkomplex.

Lem. Sei $Z: \lambda \to \mathcal{C}$ eine λ -Sequenz. Sei jeder Morphismus $Z_{\beta} \to Z_{\beta+1}$ $(\beta+1<\lambda)$ ein Pushout eines Morphismus aus I. Dann ist die transfinite Komposition von Z ein I-Zellenkomplex.

Thm. Die Klasse der relativen *I-*Zellenkomplex ist abgeschl. unter:

• transfinite Kompositionen • Isomorphismen • Koprodukt