QUANTITY & UNIT (BESARAN & SATUAN)

Physics Grade 10
Arif sutikno

What is Physics?

Kenaikan Tinggi Air Laut di Jakarta??

IRON MAN?

Fisika ...

Adalah cabang ilmu pengetahuan yang mempelajari tentang fenomena alam dalam bentuk interaksi antara materi dan energi.

BRAINSTORMING

 Deskripsikanlah ukuran dari boneka Pikachu di samping! (dilarang menggunakan alat ukur)

- Tinggi =
- Lebar =

Deskripsi Kualitatif

Deskripsi Kuantitatif

- Warna tubuh: kuning
- Lucu, imut-imut
- Ciri khas: bisa melepaskan listrik

Besaran non fisis (tak terukur)

- Tinggi: 40 cm
- Massa: 20 kg
- Lebar: 20 cm

Besaran fisis (terukur) ---> BESARAN FISIKA

Dalam Fisika, Besaran adalah...

Segala sesuatu yang dapat diukur dan dinyatakan besarnya dengan angka

Suatu besaran fisis dinyatakan dengan:

Massa (daging) = 5 anak timbangan Lebar (kayu) = 1 hasta

- Satuan yang lainnya: jengkal, kaki,
- Perbedaan alat pengukur menghasilkan perbedaan hasil ukur

Akibatnya:

- > Terlalu banyak satuan
- Satuan memiliki versi berbeda-beda
- Menimbulkan kekacauan
- > Tidak berguna

Diputuskan bahwa:

Satuan harus memiliki definisi yang sama

SATUAN

- Satuan bersifat pasti untuk semua orang
- Bermanfaat

Sesuatu yang dapat digunakan sebagai pembanding

BESARAN POKOK adalah

Besaran yang satuannya telah ditetapkan lebih dulu dan tidak ditetapkan dari besaran lain.

7 BESARAN POKOK

Besaran Pokok	Satuan	Dimensi
Panjang	Meter (m)	[L]
Massa	Kilogram (kg)	[M]
Waktu	Detik/sekon (s)	[T]
Kuat arus listrik	Ampere (A)	[۱]
Suhu/temperatur	Kelvin (K)	[θ]
Jumlah zat	Mol (mol)	[N]
Intensitas cahaya	Kandela (cd)	[1]

The Measurements Song

Siapa yang Menentukan Standar Satuan?

- Bureau International des Poids et Mesures (BIPM)
- Internasional Buerau of Weight and Measures
- Biro Berat dan Ukuran Internasional
- Sevres Perancis

Keterangan Mengenai Standar Satuan

- STANDAR mengacu pada kesamaan NAMA dan DEFINISI
- Tidak semua satuan perlu standar (karena jumlah satuan sangat banyak)
- Hanya SATUAN DASAR saja yang perlu dibuat standarnya

Besaran Waktu

- Selang waktu antara dua peristiwa
 - Contoh: Waktu Malam -> Sejak matahari terbenam sampai matahari terbit
 - Contoh: Waktu Operasional -> Sejak suatu bekerja sampai sesuatu berhenti
- Satuan Standar Waktu:
 - 1 Detik → Waktu yang diperlukan untuk mencapai 9.192.631.770 kali periode getaran dari atom Cesium.
 - Alat pengukur: Jam Atom (Atomic Clock)

Besaran Panjang

- 1960:
- 1 meter: jarak antara dua garis pada batang yang terbuat dari campuran platinum-irridium yang disimpan pada kondisi tertentu di BIPM

- 1 meter: 1.650.763,73 kali panjang cahaya orange-red yang dipancarkan dari lampu krypton-86 (86Kr)
- Sejak 1983
- 1 meter: jarak yang ditempuh cahaya dalam ruang hampa dalam waktu 1 / 299.792.458 detik.

Besaran Massa

- 1889:
- 1 kg → Massa suatu silinder yang terbuat dari campuran platinumiridium yang disimpan di kantor BIPM di kota Sevres, Perancis. (International Prototype Kilogram or Big K or Le Grand K).
- 2019:
- Big K telah kehilangan sekitar 50 microgram massanya.
- Scientist

 Menghubungkan kilogram dengan Konstanta Planck, konsep fundamental dalam quantum mechanics yang tidak akan berubah.

Besaran Turunan

• Besaran yang satuannya diturunkan dari besaran pokok.

Contoh Besaran Turunan

No.	Besaran Turunan	Penjabaran dari Besaran Pokok	Satuan Sistem MKS
1	Luas	Panjang × Lebar	m ²
2	Volume	Panjang × Lebar × Tinggi	m³
3	Massa jenis	Massa : Volume	kg/m³
4	Kecepatan	Perpindahan : Waktu	m/s
5	Percepatan	Kecepatan : Waktu	m/s ²
6	Gaya	Massa × Percepatan	newton (N) = kg.m/s ²
7	Usaha	Gaya × Perpindahan	joule (J) = $kg.m^2/s^2$
8	Daya	Usaha : Waktu	watt (W) = kg.m ² /s ³
9	Tekanan	Gaya : Luas	pascal (Pa) = N/m ²
10	Momentum	Massa x Kecepatan	kg.m/s

Konversi Satuan

- Mengapa perlu?
- Di dunia ada beberapa sistem BERBEDA yang sudah BIASA DIPAKAI.
- Contohnya: SI ←→ British

$$mil \leftarrow \rightarrow km$$

- Dimensi objek yang diukur jauh lebih besar daripada dimensi alat ukur (kurang praktis)
- Contohnya: Mengukur Panjang lapangan sepak bola dengan satuan cm
 cm ←→ km