(a) A.P.

(b) G.P.

(c) H.P. (d) None of these

1.	If the p^{th} , q^{th} and r^{th} term of a G.P. are a , b , c respectively, then $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$ is equal to
	(a) 0 (b) 1 (c) abc (d) pqr
	$\sum_{\alpha_{\alpha}=\alpha}^{100} a_{\alpha} = \alpha$ $\sum_{\alpha=\alpha}^{100} a_{\alpha} = \beta$
2.	Let a_n be the n^{th} term of the G.P. of positive numbers. Let $a_{n-1} = \alpha$ and $a_{2n-1} = \beta$ and $a_{2n-1} = \beta$, such that $\alpha \neq \beta$,
	then the common ratio is
	α β α β
	(a) $\frac{\alpha}{\beta}$ (b) $\frac{\beta}{\alpha}$ (c) $\sqrt{\frac{\alpha}{\beta}}$ (d) $\sqrt{\frac{\beta}{\alpha}}$
3.	The sum of first two terms of a G.P. is 1 and every term of this series is twice of its previous term, then the
	first term will be
	1 1 2 2
	(a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$
	(a) ¬ (b) ¬ (c) ¬ (d) ¬
4.	
	(a) $0 \le x \le 10$ (b) $0 < x < 10$
	(c) $-10 < x < 0$ (d) $x > 10$
5.	The value of .234 .234 is
	(a) $\frac{232}{990}$ (b) $\frac{232}{9990}$ (c) $\frac{0.232}{990}$ (d) $\frac{232}{9909}$
	(a) 990 (b) 9990 (c) 990 (d) 9909
6.	If a, b, c are in A.P. and $ a $, $ b $, $ c < 1$, and $x = 1 + a + a^2 + \dots \infty$, $y = 1 + b + b^2 + \dots \infty$, $z = 1 + c + c^2 + \dots \infty$
	Then x , y , z shall be in
	(a) A.P. (b) G.P. (c) H.P. (d) None of these
7.	The G.M. of the numbers $3, 3^2, 3^3 \dots 3^n$ is (a) $3^{\frac{2}{n}}$ (b) $3^{\frac{n+1}{2}}$ (c) $3^{\frac{n}{2}}$ (d) $3^{\frac{n-1}{2}}$
	$\frac{2}{2n}$ $\frac{n+1}{2}$ $\frac{n}{2}$ $\frac{n-1}{2}$
R	(a) 3^{-1} (b) 3^{-1} (c) 3^{-1} (d) 3^{-1} If a, b, c are in A.P. $b - a, c - b$ and a are in G.P., then $a : b : c$ is
0.	(a) $1:2:3$ (b) $1:3:5$ (c) $2:3:4$ (d) $1:2:4$
9.	Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the
	quadratic equation
	(a) $x^2 - 18x - 16 = 0$ (b) $x^2 - 18x + 16 = 0$ (c) $x^2 + 18x - 16 = 0$ (d) $x^2 + 18x + 16 = 0$
10	
	If x, $2x + 2$, $3x + 3$, are first 3 terms of a G.P. then its 4^{th} term is - (a) 27 (b) -27 (c) -27/2 (d) 27/2
	Every term of G.P. is positive and also every term is sum of two preceding terms. Then the common ratio of
	G.P. is
	(a) $\frac{1-\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}+1}{2}$ (c) $\frac{\sqrt{5}-1}{2}$ (d) None of these
	(a) $\frac{2}{3}$ (b) $\frac{2}{3}$ (c) $\frac{2}{3}$ (d) None of these
12.	$0.2 + 0.22 + 0.222 + \dots$ to n terms is equal to
	(a) $\frac{2}{9} \left[n - \frac{1}{9} (1 - 10^n) \right]$ (b) $n - \frac{1}{9} (1 - 10^{-n})$
	$\frac{2}{9} \left[n - \frac{1}{9} (1 - 10^{-n}) \right] \qquad \qquad \frac{2}{9}$
13.	If $\log 2$, $\log(2^n - 1)$ and $\log(2^n + 3)$ are in A.P., then $n =$
	(a) $5/2$ (b) $\log_2 5$ (c) $\log_3 5$ (d) $\frac{3}{2}$
14.	The numbers $(\sqrt{2}+1), 1, (\sqrt{2}-1)$ will be in

(b) 4⁴

(a) 4^3

15. If the third term of a G.P. is 4 then the product of its first 5 terms is

(d) None of these

(c) 4^5

16. The third term of a G.P. is 4, the product of the first five terms is (a) 4^3 (b) 4^5 (c) 4^4 (d) None of these 17. If a, b, c, d and p are distinct real numbers such that $(a^2+b^2+c^2)p^2 - 2(ab+bc+cd)p + (b^2+c^2+d^2) \le 1$ 0, then a, b, c, d are in (b) G.P. (c) H. P. (d) None of these (a) A.P. 18. The first and last term of an A.P. are a and respectively. If s be the sum of all terms of the A.P., then the common difference is -**19.** If $A = 1 + r^a + r^{2a} + r^{3a} + \dots \infty$ and $B = 1 + r^b + r^{2b} + r^{3b} + \dots \infty$, then b is equal to -(a) log_B A (b) $\log_{1-B} (1 - A)$ $\log_{\frac{B-1}{B}} \left(\frac{A-1}{A} \right)$ (d) None of these 20. Suppose a, b, c are in A.P. and a^2 , b^2 , c^2 are in G.P. If a < b < c and a + b + c = 3/2, then the value of a is -21. If a, b, c are digits then the rational number represented by 0. cababab.....is -99c + 10a + b99c + ab990 99 (b) 99c + 10a + b990 (d) None of these $a + be^y$ $b + ce^y$ $c + de^y$ 22. If $\overline{a-be^y} = \overline{b-ce^y} = c-de^y$, then a, b, c, d are in -(a) A.P. (b) G.P. (c) H.P. (d) None of these **23.** $2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \dots \infty$ is equal to -(c) 3/2(a) 1 (b) 2 (d) None of these 24. If $(1+x)(1+x^2)(1+x^4)$ $(1+x^{128}) = \sum_{r=0}^{n} x^r$ (a) 225 (b) 255 then n is -(d) 127 **25.** $\lambda 2\alpha$, β are the roots of the equation $x^2 - 3x + a = 0$ and γ , δ are the roots of the equation $x^2 - 12x + b = 0$. If α , β , γ , δ form an increasing, GP, then (a, b) is equal to-(b) (12, 3) (c)(2,32)(a) (3, 12) (d) (4, 16) 26. If one geometric mean G and two arithmetic means p and q be inserted between two number, then G² is equal (a) (3p - q) (3q - p)(b) (2p - q)(2q - p)(c) (4p - q) (4q - p)(d) None of these

27. If f(x) is a function satisfying f(x+y)=f(x) f(y) for all $x, y \in \mathbb{N}$ such that f(1)=3 and $\overline{x=1}$

(d) None of these 28. If the sides of a right angled triangle are in G.P., then the cosine of the greater acute angle is -

Then the value of n is -

(b) 5

(c) 6

(a) 4

(a)
$$\frac{2}{1+\sqrt{5}}$$

(b)
$$\frac{1}{1-\sqrt{5}}$$

$$(c) \frac{1+\sqrt{5}}{2}$$

(d) None of these

29. The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite series is 24. Then the series is -

$$\frac{3}{2} + \frac{3}{4} + \frac{3}{8}$$

(a)
$$3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{8}$$
 (b) $3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$

$$\frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$$

(d) None of these

$$\frac{4}{4} + \frac{7}{3} + \frac{1}{3}$$

- **30.** Sum to infinity of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ is
 - (a) $\overline{25}$
- (c) $\frac{1}{16}$

Answers

1)b 2)a 3)b 4)b 5)a 6)c7)b 8)a9)b10)c 11)b 12)c 13)b 14)b 15)c 16)b 17)b 18)a 19)c 20)d 21)c22)b 23)b 24)b 25)c 26)b 27)a 28)a 29)c 30)c