Definición 0.1. Sea E un conjunto. Una función $d: \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ se llama una métrica o una distancia sobre E si cumple:

- i. d(x,y) = 0 si y solo si x = y
- ii. d(x, y) = d(y, x)
- iii. $d(x,y) \le d(x,z) + d(z,y) \quad \forall x,y,z \in \mathbb{E}$

Al par (\mathbb{E}, d) lo llamaremos espacio métrico

Observación. Usando las propiedades de distancia es directo ver que

$$d(x,x) \le d(x,y) + d(y,x) = 2d(x,y)$$
. Por lo tanto $0 \le 2d(x,y) \Rightarrow 0 \le d(x,y)$

Ejemplos de algunas distancias:

Distancia euclídea:

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}} = \|x - y\|_2$$

Distancia 1

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i| = ||x - y||_1$$

Distancia infinito:

$$d_{\infty} = \sup_{1 \le i \le n} |x_i - y_i| = ||x - y||_{\infty}$$

Distancia p:

$$d_p(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^p\right)^{\frac{1}{p}} = \|x - y\|_p$$

Observación. $d_p(x,y)$ tiende a $d_{\infty}(x,y)$ cuando p tiende a infinito

Definición 0.2. Dado un intervalo cerrado $[a,b] \subseteq \mathbb{R}$. Llamaremos $\mathcal{C}([a,b])$ al conjunto de todas las funciones $f:[a,b] \to \mathbb{R}$

Definición 0.3.

$$d_{\infty} = \sup_{a < t < b} |x(t) - y(t)|$$

es una distancia

Proof. $x, y, z \in \mathcal{C}([a, b])$ para cada $t \in [a, b]$ usando distancia 1 tenemos

$$|x(t) - y(t)| \le |x(t) - z(t)| + |z(t) - y(t)|$$

Entonces

$$\sup_{t \in [a,b]} |x(t) - y(t)| \le \sup_{t \in [a,b]} |x(t) - z(t)| + \sup_{t \in [a,b]} |z(t) - y(t)|$$

Finalmente

$$d_{\infty}(x,y) \le d_{\infty}(x,z) + d_{\infty}(z,y)$$

Las otras dos propiedades son triviales

Definición 0.4.

$$d_1(x,y) = \int_a^b |x(t) - y(t)|$$

es métrica en $\mathcal{C}([a,b])$

Esto es facil de demostrar usando lo mismo que con la métrica infinito

Observación. Si bien todas las distancias p en \mathbb{R}^n son equivalentes (lo veremos mas adelante), las dos distancias que definimos en $\mathcal{C}([a,b])$ son muy distintas

Proof. Considerando la imagen tenemos que

$$d_1(y_n, x) = 1$$
 pero por tro lado $d_{\infty}(y_n, x) \to 0$

Definición 0.5. Sea E un conjunto cualquier. Definimos la distancia discreta en E como

$$\delta(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Mostrar que esto es distancia es trivial y queda como ejercicio para el lectór

Definición 0.6. Dados $x \in \mathbb{E}$ y r > 0, la bola abierta de centro x y radio r es el conjunto

$$B(x,r) = \{ y \in \mathbb{E} : d(x,y) < r \}$$

Y la bola cerrada de centro x y radio r es el conjunto

$$\overline{B}(x,r) = \{ y \in \mathbb{E} : d(x,y) \le r \}$$

Definición 0.7. Sea $A \subseteq \mathbb{E}$ decimos que x es un punto interior de A si existe algun r > 0 tal que $B(x,r) \subseteq A$

Definición 0.8. Sea $A \subseteq \mathbb{E}$. El interiór de A es el conjunto de todos los puntos interiores de A y lo notamos A^o

Definición 0.9. Un conjunto $G \subseteq \mathbb{E}$ se dice abierto si cada punto $g \in G$ es un punto interiór de G (análogamente, si $G = G^0$)

Observación.

$$A^{o} = \bigcup_{G \subseteq A, G \text{ abierto}} G$$

Otra conclusión interensante es que el interiór de A es el mayor abierto que contenido en A El conjunto universal E , es abierto El conjunto \emptyset , es abierto

Proposición 1. Se tienen las siguientes propiedades:

- 1. $A \subseteq A^{o}$
- 2. $A_1 \subseteq A_2$, entonces $A_1^{\circ} \subseteq A_2^{\circ}$
- 3. A^{o} es un conjunto abierto
- 4. Si G es abierto, y $G \subseteq A$, entonces $G \subseteq A^{o}$

Teorema 1. Valen las siguiente afirmaciones:

- La unión de cualquier familia o colección de conjuntos abiertos es abierta
- La intersección de finitos conjuntos abiertos es abierta

Definición 0.10. Un conjunto $V \subseteq \mathbb{E}$ se llama un entorno de x si existe un conjunto abierto G tal que $x \in G \subseteq V$

Observación. El conjunto V es un entorno de x si y solo si $x \in V^{\circ}$ Un conjunto de G es abierto si y solo si es un entorno de cada $x \in G$

Definición 0.11. Decimos que x es un punto de adherencia del conjunto $A \subseteq \mathbb{E}$ si para todo r > 0 existe $a \in A$, tal que $a \in B(x, r)$, equivalentemente $\forall r > 0$, $A \cap B(x, r) \neq \emptyset$

Definición 0.12. La clausura de $A\subseteq \mathbb{E}$ es el conjut
no \overline{A} formado por todos los puntos (de E) de adherencia del conjunto A

Proposición 2. Sean $A, B \subseteq \mathbb{E}$

1. $A \subseteq \overline{A}$

La demostración es trivial y queda como ejercicio para el lectór

2. Si $A_1 \subseteq A_2$ entonces $\overline{A}_1 \subseteq \overline{A}_2$

Proof. Sea $x \in \overline{A}_1$ entonces $\forall r > 0$ tenemos $B_r(x) \cap A_1 \neq \emptyset$

Luego como $A_1 \subseteq A_2$ tenemos $B_r(x) \cap A_2 \neq \emptyset$

Y esto vale para todo radio mayor que cero entonces $x \in \overline{A}_2$

3. $\overline{\overline{A}} = \overline{A}$

Proof. \subseteq) Sea $x \in \overline{\overline{A}}$ entonces $\forall r > 0$ tenemos $B_r(x) \cap \overline{A} \neq \emptyset$

Fijemos un radio , tenemos por lo menos un elemento en la intersección, llamémoslo $a \in \overline{A} \cap B_r(x)$

Luego $a \in B_r(x)$ como esta bola es abierta existe r' tal que $B_{r'}(a) \subseteq B_r(x)$

Además $a \in \overline{A}$ entonces $\forall r > 0$ $B_r(a) \cap A \neq \emptyset$ en particular $B_{r'}(a) \cap A \neq \emptyset$

Pero por 1 sabemos $A \subseteq \overline{A}$ luego $\emptyset \neq B_{r'}(a) \cap A \subseteq B_r(x) \cap A$

Finalizando tenemos $B_r(x) \cap A \neq \emptyset$ por ende $x \in \overline{A}$

- \supseteq) Usando item 1 y 2 $A \subseteq \overline{A} \Rightarrow \overline{A} \subseteq \overline{\overline{A}}$
- 4. $\overline{A \cup B} = \overline{A} \cup \overline{B}$ Es trivial usando las definiciones y queda como ejercicio para el lector.

Observación. Decidir si es cierta la siguiente afirmación:

$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$

Teorema 2. Sea $A \subseteq \mathbb{E}$ entonces,

$$(\overline{A})^c = (A^c)^o$$

Proof.

$$x \in (\overline{A})^c \iff x \notin \overline{A} \iff \exists r > 0 / \quad B(x,r) \cap A = \emptyset \iff B(x,r) \subseteq A^c \iff x \in (A^c)^o$$

Definición 0.13. Un conjunto se llama cerrado si $F = \overline{F}$

Recordamos que para verificar que esto vale es suficiente probar $\overline{F}\subseteq F$ por que la otra inclusión está ya demostrada

Corolario 2.1. A es cerrado si y solo si A^c es abierto

 $Proof. \Rightarrow$) Sea A cerrado , entonces $A = \overline{A}$ entonces $A^c = (\overline{A})^c = (A^c)^o$ Luego $A^c = (A^c)^o$ lo que es lo mismo que tener que A^c es igual a su interiór, por ende todo punto de A^c es interiór por ende A^c es abierto

 \Leftarrow) A^c abierto entonces $A^c = (A^c)^o = (\overline{A})^c$

Esto implica que $\overline{A} = A$ supongamos que no entonces, como sabemos que $A \subseteq \overline{A}$ siempre $\exists x \in \overline{A}$ tal que $x \notin A$ pero entonces $x \notin (\overline{A})^c$ y $x \in A^c$ entonces $(\overline{A})^c \neq A^c$ lo que es absurdo Entonces $\overline{A} = A$ luego por def 0.13 A es cerrado

Ejercicio 1. Consideremos el espacio métrico \mathbb{Z} con la distancia dada por el módulo de la diferencia. Entonces, todo subconjunto de \mathbb{Z} es abierto y cerrado

Observación. La clausura de A es el menór cerrado que contiene a A

- 1. \overline{A} es cerrado
- 2. $A \subseteq \overline{A}$
- 3. Si F es un cerrado y $A \subseteq F$ entonces $\overline{A} \subseteq \overline{F} \subseteq F \Rightarrow \overline{A} \subseteq F$

Teorema 3. Tenemos que vale:

- La intersección de cualquier familia o colección de conjuntos cerrados es cerrada.
- La unión de finitos conjuntos cerrada es cerrada

Proof. Queda como ejercicio para el lectór

Ejercicio 2. 1. Sea $a \in \mathbb{E}$. Entonces $\{a\}$ es cerrado

- 2. Se
a $A\subseteq\mathbb{R}$ no vacío y acotado. Entonces $\sup(A),\,\inf(A)\in\overline{A}$
- 3. Sea (\mathbb{E}, δ) donde delta es la distancia discreta. Entonces Todo $A \subseteq \mathbb{E}$ es abierto y cerrado

Definición 0.14. Decimos que $x \in \mathbb{E}$ es un punto de acumulación de A si para todo r > 0, el conjunto $A \cap B(x, r)$ es infinito

Equivalentemente $x \in \mathbb{E}$ es un punto de acumulación de A si cada entorno de x contiene un punto de A distinto de x

Proof. \Rightarrow) Sea V entorno de $xi \Rightarrow x \in V^{\text{o}}$ entonces $\exists r > 0/$ $B(x,r) \subseteq V$

Luego es infinito $B(x,r) \cap A \subseteq V \cap A$

Entonces $V \cap A$ es infinito ,por lo tanto existe algún punto diferente de x seguro

 \Leftarrow) Dado un r > 0, $B(x,r) \cap A$ cont algún punto diferente de x

Supongamos $B(x,r) \cap A \subseteq \{y_1, \dots y_n, x\}$ todos diferentes de x

Este conjunto podría o no tener a x y podria o no tener un solo elemento o finitos , todos distintos de x

Pero lo importante es ver que es infinito , para eso supongamos que es finito

Luego si tomamos $r_1 = \min\{d(y_k, x) : k = 1, 2, ..., n\}$

Tenemos $B(x,r_1) \cap A \subseteq B(x,r) \cap A \subseteq \{y_n,\ldots,y_k,x\}$ esto vale por que $r_1 < r$ esto es trivial

Pero por como definimos el r_1 sabemos que $y_k \notin B(x, r_1) \cap A$ con $k = 1, 2, \ldots, n$

Entonces $B(x,r_1)\subseteq \{x\}$ lo que es absurdo , por que no tiene nada diferente que x

Entonces el conjunto no podía ser finito.

Aclaración este mismo argumento servía si x no estaba en el conjunto por que quedaba que $B(x.r_1) \subseteq \emptyset$ que seguía siendo absurdo

Definición 0.15. El conjunto de puntos de acumulación de $A \subseteq \mathbb{E}$ se denomina conjunto derivado de A,

$$A' = \{x \in \mathbb{E} : x \text{ es punto de acumulación de } A \}$$

Ejemplo 1. Valen

$$\mathbb{Z}' = \emptyset$$

$$A = (a, b) \Rightarrow A' = [a, b]$$

Teorema 4. Sea $A \subseteq \mathbb{E}$ entonces, $\overline{A} = A \cup A'$

Proof. \subseteq) Sea $x \in \overline{A}$ entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Supongamos $x \notin A$ entonces $B(x,r) \cap A$ hay puntos diferentes de x entonces $x \in A'$ Supongamos $x \notin A'$ entonces $\exists r > 0$ tal que $B(x,r) \cap A$ es finito.

Es evidente entonces que si tomamos radios mas chicos seguirá siendo finito , y si tomamos el radio r_1 estratégico que tomamos en la demostación de la definición 0.14 llegamos a que $B(x, r_1) \cap A$ solo puede ser $\{x\}$ o vacío

Pero si fuera vacío entonces $\exists r > 0 \ (r = r_1)$ tal que $B(x, r) \cap A = \emptyset$ por lo tanto $x \notin \overline{A}$ lo que es absurdo, por lo tanto $B(x, r_1) \cap A = \{x\}$ entonces $x \in A$

 \supseteq) Sea $x \in A$ entonces $x \in \overline{A}$

Sea $x \in A' \Rightarrow x \in \overline{A}$

Esto último es trivial y queda como ejercicio para el lector

Corolario 4.1. A es cerrado si y solo si $A' \subseteq A$

Proof. A es cerrado
$$\iff$$
 $A = \overline{A} \iff$ $A = A \cup A' \iff$ $A' \subseteq A$

Ejemplo 2. Sea

$$\mathcal{F}(A) = \{F : F \subseteq A, F \text{ es finito}\}\$$

Demostrar

$$A' = \bigcap_{F \in \mathcal{F}(A)} \overline{A - F} = \bigcap_{F \in \mathcal{F}(A)} \overline{F^c}$$

Definición 0.16. Un conjunto se dice perfecto si A = A'

Un conjunto perfecto es cerrado , pero no vale la vuelta , un cerrado no necesariamente es cerrado $\,$

Por ejemplo \mathbb{Z} es cerrado , pero $\mathbb{Z}' = \emptyset$ por lo que $\mathbb{Z} \neq \mathbb{Z}'$ por ende no es perfecto

Definición 0.17. Dado $A \subseteq \mathbb{E}$, decimos que x es un punto de la frontera de A si para todo r > 0, se cumple

$$B(x,r) \cap A \neq \emptyset$$
, $B(x,r) \cap A^c \neq \emptyset$

El conjunto de puntos frontera se denota ∂A

Ejemplo 3. Para pensar

1. Ya vimos $\overline{\overline{A}} = \overline{A}$. Decidir si valen

$$(A')' = A' \quad \partial(\partial A) = \partial A$$

- $2. \ \partial A = \overline{A} \cap \overline{A^c}$
- 3. $\partial A = \partial A^c$
- 4. $\overline{A} = A^{o} \cup \partial A$

Proposición 3. Sea $A \subseteq \mathbb{E}$ entonces $\overline{A} = A \cup \partial A$

Proof. \supseteq) Sea $x \in A$ entonces $x \in \overline{A}$

Sea $x \in \partial A$ entonces $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ entonces $x \in \overline{A}$

 \subseteq) Sea $x \in \overline{A}$ entonces $\forall r > 0$ tenemos $B(x,r) \cap A \neq \emptyset$

Suponemos $x \notin A \Rightarrow x \in A^c$

Entonces $x \in B(x,r) \cap A^c \Rightarrow B(x,r) \cap A^c \neq \emptyset$

Finalmente $x \in \partial A$

Supongamos $x \notin \partial A$ entonces se da que $\exists r > 0 \quad B(x,r) \cap A = \emptyset$ o $B(x,r) \cap A^c = \emptyset$

Como $x \in \overline{A}$ sucede la segunda $B(x,r) \cap A^c = \emptyset$ por ende $x \in A$

Proposición 4. Sea $A \subseteq \mathbb{E}$. Entonces $\overline{A} = A \cup \partial A$

Entonces, ξ se parecen A' y ∂A ?

No , por ejemplo $\mathbb{Z}'=\emptyset$ pero $\partial\mathbb{Z}=\mathbb{Z}$

Pero a veces si, $\mathbb{Q}' = \mathbb{R}$ y por otro lado $\partial \mathbb{Q} = \mathbb{R}$

Definición 0.18. Decimos que una sucesion $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{E}$ converge a $x\in\mathbb{E}$ si dado cualquier $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que $d(x,x_n)<\epsilon$ para todo $n\geq n_0$

Notacion

$$\lim_{x \to \infty} x_n = x$$

$$x \xrightarrow[n \to \infty]{} x$$

Equivalentemente $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{E}$ converge a $x\in\mathbb{E}$ dado cualquier entorno V de x, existe $n_0\in\mathbb{N}$ tal que $x_n\in V$ para todo $n\geq n_0$

Lo mismo vale si cambiamos cualquier entorno V de x por cualquier abierto V que contenga a x

Observación. Consideremos (\mathbb{E}, δ) con \mathbb{E} cualquier conjunto infinito y δ la distancia discreta Entonces las únicas sucesiones que convergen son las que se hacen constantes a partir de algún momento

La demostración es trivial y queda como ejercicio para el lector

Por otro lado sabemos que existe $Y \subseteq E$ con Y numerable entonces $Y = \{y_n\}$

Es trivial ver que y_n es acotada, pero que no tiene subsucesión convergente esto rompe con la noción que teníamos hasta ahora de que toda sucesión acotada tenia subsucesión convergente

Observación. Es interesante notar que muchas de estas últimas definiciones se podrían dar solo usando abiertos, es por esto que la métrica discreta rompe con muchas de ellas , por que la métrica discreta tiene diferentes abierto que \mathbb{R}^n

Por ejemplo si métricas tienen los mismos abiertos , entonces van a tener las mismas sucesiones convergentes, mismo compactos, para ver abiertos cerrados y clausura , mismas funciones continuas y discontinuas , mismos conjuntos densos. Atención NO necesariamente tendrán los mismos acotados

Por ende tener dos métricas con mismos abiertos, para casi todo son lo mismo.

Definición 0.19. Sean d, d' dos métricas sobre \mathbb{E} . Decimos que son topologicamente equivalentes si los conjuntos abiertos de (E, d) y de (E, d') son los mismos

Teorema 5. Sean d, d' dos métricas sobre \mathbb{E}

Las métricas son equivalentes si y solo si para todo $x \in \mathbb{E}$ y r > 0 existen r_1 y r_2 tales que

$$B_{d'}(x,r_1) \subseteq B_d(x,r)$$
 y $B_d(x,r_2) \subseteq B_{d'}(x,r)$

Proof. \Rightarrow) Sea r > 0, $x \in \mathbb{E}$.

 $B_d(x,r)$ es abierto según $d \Rightarrow B_d(x,r)$ es abierto según d'

Como $B_d(x,r)$ es abierto en (E,d') entonces $\exists r_1 > 0 / B_{d'}(x,r_1) \subseteq B_d(x,r)$

La otra inclusión sale de la misma forma.

←) Tenemos las inclusiones veamos que entonces tenemos los mismos abiertosa

Sea A abierto de (\mathbb{E}, d) . Sea $x \in A$

Sabemos que existe r > 0 tal que $B_d(x,r) \subseteq A$

Por hipótesis entonces $\exists r_1/ B_{d'}(x, r_1) \subseteq B_d(x, r) \subset A$

Y esto vale para cualquier $x \in A$ entonces A es abierto en (\mathbb{E}, d')

Definición 0.20. Dos métricas d_1 y d_2 son topológicamente equivalentes sí y solo sí x_n convergente con $d_1 \iff x_n$ converge con d_2

La demostración la vamos a hacer en unos momentos cuando definamos convergencia

Definición 0.21. Si existen c_1 y c_2 tales que

$$c_1.d'(x,y) \le d(x,y) \le c_2.d'(x,y)$$

Entonces d y d' son fuertemente equivalentes, esto es mas que simplemente topológicamente equivalentes

Definición 0.22. Dado $A \subseteq \mathbb{E}$ un punto $x \in A$ se dice *aislado* si existe r > 0 tal que $B(x,r) \cap A = \{x\}$

Observación. Un punto aislado de A por definición es un punto de A. En cambio un punto de acumulación de A no tiene por qué estar en A pero si en \overline{A} .

De hecho en \overline{A} estan todos los puntos de acumulación y también están todos los puntos aislados

Más adelante veremos que $A = A' \cup B$ donde B es el conjunto de puntos aislados

Definición 0.23. Decimos que una sucesión x_n de \mathbb{E} converge a $x \in \mathbb{E}$ si dado cualquier $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d(x, x_n) \leq \epsilon$ para todo $n \geq n_0$

Ejemplo 4. Sea (\mathbb{E}, d) un espacio métrico $A \subseteq \mathbb{E}$ y $x \in \mathbb{E}$. Entonces:

- 1. $a \in \overline{A}$ si y solo sí existe $(a_n)_n \subseteq A$ tal que $\lim_{n \to \infty} a_n = a$
- 2. $a \in A'$ si y solo si existe una sucesión $(a_n)_n \subseteq A$ de elementos distintos tal que $\lim_{n\to\infty} a_n = a$

Ejemplo 5. Sean d, d' métricas sobre \mathbb{E} . Decidir si hay implicaciones entre las siguientes afirmaciones.

- Las métricas son equivalentes
- Las sucesiones convergentes en (\mathbb{E}, d) coinciden con las sucesiones convergentes en (\mathbb{E}, d')

Proof. Si la hay y es un si y solo si

 \Rightarrow) Supongamos que x_n converge en d'

Por equivalencia topológica dado $\epsilon > 0$ tenemos que $B^d(x,\epsilon) \supseteq B^{d'}(x,\epsilon')$ y dado ϵ' por convergencia en d' tenemos que existe n_0 tal que $d(x_n,x) \le \epsilon' \quad \forall n \ge n_0$ lo que significa $x_n \in B^{d'}(x,\epsilon') \subseteq B^d(x,\epsilon) \quad \forall n \ge n_0$

Entonces dado un ϵ tenemos un ϵ' que nos da un n_0 tal que $x_n \in B^d(x, \epsilon) \quad \forall n \geq n_0$

O lo que es lo mismo dado un $\epsilon > 0$ existe n_0 tal que $d(x_n, x) \le \epsilon \quad \forall n \ge n_0$

Entonces x_n converge a x con distancia d

Podríamos haber hecho lo mismo intercambiando las distancias, queda entonces demostrada esta implicación

 \Leftarrow) Tenemos que con d_1 y d_2 tenemos las mismas sucesiones convergentes, supongamos que no se cumple la inclusión de bolas , entonces existe r tal que $\forall r' > 0$ $B_{d_1}(x,r) \not\supseteq B_{d_2}(x,r')$ entonces para cada r' existe un $x \in X$ tal que $x \notin B_{d_1}(x,r)$ y $x \in B_{d_2}(x,r')$ esto sucede para cualquier r

Lueg para cada $n \in \mathbb{N}$ tomo x_n tal que $x_n \notin B_{d_1}(x,r)$ pero $x_n \in B_{d_2}(x,\frac{1}{n})$

Pero entonces x_n converge a x con d_2 y por otro lado $d(x_n, x) \ge r \quad \forall n \in \mathbb{N}$

Entonces x_n no converge a x en d_1 . Ahora afirmo que entonces x_n directamente no converge con d_1 . Probemoslo

Lema 6. Sea $x_n \in X \quad \forall n \in \mathbb{N}$ tal que x_n converge a x con d_1 Y también x_n converge a y con d_2 . Entonces y = x

Proof. Sea x_n convergente a x en d_1 podemos escribir la sucesión $z_{2n}=x_n$ y $z_{2n-1}=x$ Ahora esta sucesión es evidentemente convergente a x

Luego como z_n converge en d_1 sabemos que converge en d_2 supongamos que converge a un $y \neq x$

Llegaríamos a un absurdo , por que z_{2n-1} es una subsucesión que es constantemente \boldsymbol{x} luego converge a \boldsymbol{x}

Pero entonces z_n no puede converge a otra cosa que no sea x, por lo tanto x = y y z_n converge a x,

Pero entonces la subsucesión de los pares, si converge, tiene que converger también a x y sabemos que converge por hipótesis, por que es igual que x_n entonces x_n converge a x con d_2

Definición 0.24. Decimos que un conjunto $A \subseteq \mathbb{E}$ es acotado si existen $x \in \mathbb{E}$, r > 0 tal que $A \subseteq B(x,r)$

Definición 0.25. Una sucesión $(x_n)_n \subseteq \mathbb{E}$ se dice de Cauchy si para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ (que depende de ϵ) tal que si $n, m \ge n_0$ entonces $d(x_n, x_m) \le \epsilon$

Teorema 7. Sea (\mathbb{E}, d) un e.m y $(x_n)_n \subseteq \mathbb{E}$

1. Si $(x_n)_n$ es de Cauchy, entonces el conjunto $\{x_n : n \in \mathbb{N}\}$ es acotado

Proof. Como x_n es de Cauchy dado un epsilon existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x_m) \leq \epsilon$

En particular tomando $\epsilon = 1$ tenemos $d(x_n, x_{n_0}) \leq 1$

Ahora si tomamos $d = \max \{d(x_{n_0}, x_n) : 1 \le n \le n_0 - 1\}$ sabemos que existe por que es un conjunto finito

Ahora si tomamos $r > \max\{d, 1\}$ tenemos $x_n \in B(x_{n_0}, r)$ por lo tanto x_n es acotada

2. Si $(x_n)_n$ es de Cauchy y contiene alguna subsucesión convergente entonces $(x_n)_n$ es convergente Esta demostración quedará para cuando veamos Completitud

3. Si $(x_n)_n$ es convergente entonces es de Cauchy

Proof. Tomemos un $\epsilon > 0$. Sea $x = \lim x_n$

Entonces
$$\exists n_0 / \forall n \geq n_0 \quad d(x_n, x) \leq \frac{\epsilon}{2}$$

Ahora usando desigualdad triangular.

Si
$$n, m \ge n_0, d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Luego x_n es de Cauchy

Observación. Algo importante

- Si $\mathbb{E} = \mathbb{R}$ sucede $(x_n)_n \subseteq \mathbb{R}$ es de Cauchy $\iff (x_n)_n$ converge
- \bullet Sea (\mathbb{E},δ) métrica discreta tambien sucede, ejericio para el lector , verificarlo
- Ahora si tomamos una sucesión de Q que tiende a un irracional ahi tenemos una sucesión que es de Cauchy pero no converge por que tiende a un irracional que no está en Q Entonces algunos en espacios métricos sucede que converger es lo mismo que ser de Cauchy.

Pero hay espacios métricos en donde esto NO sucede

Definición 0.26. Dados $x \in \mathbb{E}$, $A \subseteq \mathbb{E}$ no vacío, la distancia del punto x al conjunto A se define como

$$d(x, A) = \inf \left\{ d(x, a) : a \in A \right\}$$

Teorema 8. Dado $A \subseteq \mathbb{E}$, parar todo $x, y \in \mathbb{E}$ se tiene

$$|d(x,A) - d(y,A)| \le d(x,y)$$

Proof. Sea $a \in A$ tenemos $d(x, a) \le d(x, y) + d(y, a)$

Entonces $\inf_{a \in A} d(x, a) \le \inf\{d(x, y) + d(y, a)\} = d(x, y) + \inf_{a \in A} d(y, a)$

Luego
$$d(x, A) \le d(x, y) + d(y, A) \Rightarrow d(x, A) - d(y, A) \le d(x, y)$$

Por otro lado, usando la misma idea

$$d(y,A) \leq d(x,y) + d(x,A) \Rightarrow -d(x,y) \leq d(x,A) - d(y,A)$$

Finalmente $|d(x, A) - d(y, A)| \le d(x, y)$

Teorema 9. Se tiene d(x, A) = 0 si y solo si $x \in \overline{A}$

Proof.
$$d(x, A) = 0 \iff \inf \{d(x, a) : a \in A\} = 0$$

 $\iff \forall r > 0 \ \exists a_r \in A / \ 0 \le d(x, a_r) < 0 + r$
 $\iff \forall r > 0 \ \exists a_r \in A \cap B(x, r) \iff \forall r > 0 \ A \cap B(x, r) \ne \emptyset \iff x \in \overline{A}$

Definición 0.27. Dados $A, B \subseteq \mathbb{E}$, no vacíos, definimos la distancia entre ambos conjuntos como

$$d(A,B) = \inf \left\{ d(x,y) : x \in A, y \in B \right\}$$

Observación. Valen las siguientes ideas

- La distancia entre dos conjuntos no vacíos es siempre finita
- La distancia entre dos conjuntos puede ser cero aunque no se intersequen
- La distancia entre dos conjuntos puede ser cero aunque no se intersequen y ambos sean cerrados (acá el detalle es la acotación)