Assignment 1 (20%)

Let X denote a continuous stochastic variable with the following cumulative probability function

$$F(x) = \begin{cases} 0 & for \ x \le -1 \\ \frac{1}{2}(x+1) & for -1 < x < 1 \\ 1 & for \ x \ge 1 \end{cases}$$

a) Compute
$$P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right)$$
 and $P(X > 0.75)$
 $P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right) = F\left(\frac{1}{2}\right) - F\left(-\frac{1}{2}\right) = 0.75 - 0.25$

= 0.5

$$(X > 0.75) = 1 - P(X \le 0.75) = 1 - \frac{1}{2}(0.75 + 1)$$

= $\frac{1}{8}$

b) Show that the density function f(x) for X is

$$f(x) = \begin{cases} \frac{1}{2} & for - 1 < x < 1 \\ 0 & Otherwise \end{cases}$$

Differentiate

c) Find the expected value and variance of X

$$E(X) = \int_{-1}^{1} \frac{1}{2} x \, dx = \frac{1}{4} x^{2} \Big|_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0$$

$$Var(X) = \int_{-1}^{1} \frac{1}{2} x^{2} \, dx = \frac{1}{6} x^{3} \Big|_{-1}^{1} = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Assignment 2 (20%)

A batch of 1000 hard drives from three suppliers were tested. 2% of the hard drives from Toshiba and 2% of the hard drives from Seagate were defective, and in the entire batch there were 3% defectives in total. In the batch, 50% were Western Digital hard drives and 30% were Toshibas.

a) Based on this information, create a 3 x 2 contingency table

	Non- defective	Defective	Sum R
Toshiba		6	300
Seagate	196	4	200

WD	480	20	500
Sum C	970	30	1000

b) What is the probability that a defective product came from Seagate?

$$P(Seagate|Defective) = \frac{0,004}{0,03}$$

$$= 0.13$$

c) What is the probability of randomly selecting a Western Digital hard drive from the entire batch?

$$P(WD) = \frac{500}{100}$$

$$= 0.5$$

Assignment 3 (10%)

Different screens and their hue bias were tested and the result is displayed in the following table:

	Blueish	Reddish	Greenish
Display 1	46	82	72
Display 2	42	38	20
Display 3	52	40	8

Is there sufficient evidence to conclude that screens and hue bias depend significantly? Design an appropriate test to answer this question.

H0: Screens and hue bias are independent

H1: Screens and hue bias are dependent

From template we obtain p-value = 0,0000. <u>From this we reject the null hypothesis and conclude that screens and hue bias are dependent.</u>

Assignment 4 (20%)

Two different machines, A and B, which are used to measure blood pressure, are tested on 12 different patients such that each patient has his/her blood pressure measured by both machines. The results for the systolic blood pressure are displayed in the table below:

Patient	1	2	3	4	5	6	7	8	9	10	11	12
Machine A	119	130	141	123	149	156	134	108	123	138	119	156

Machine	112	126	145	112	120	156	120	112	112	119	112	150
В	112	120	143	112	130	130	130	112	112	119	112	132

a) Determine the mean, standard deviation and interquartile range for both sets of data

	Machine A	Machine B
	119	112
	130	126
	141	145
	123	112
	149	138
	156	156
	134	130
	108	112
	123	112
	138	119
	119	112
	156	152
Mean	133	127,16667
St. Dev.	15,462565	16,813595
IQR	21	27,75

b) Is it possible to conclude with statistical significance that the two machines give different measurement? Design an appropriate test to answer this question.

We will test this by testing difference in means

H0: Mean machine A is equal to mean of machine B

H1: Mean machine A is not equal to mean of machine B

We use a t-test since the samples are small. Also, the F-test shows that we are unable to reject different variances and thus assume equal variance. We obtain a p-value = 0.0117. From this we reject the null hypothesis and conclude that the machines are significantly different.

c) Explain what the P-value obtained in b) actually means.

The p-value indicates the probability of obtaining the samples given that the null hypothesis is true, i.e. under the assumption that the two machines yield similar measurements, the probability of obtaining the results from assignment a) is 0,0117.

Assignment 5 (30%)

Data collected in 1960 from the National Cancer Institute provides the per capita numbers of cigarettes sold along with death rates for various forms of cancer (see the Excel file Smoking and Cancer. Note: The column about "state" is irrelevant).

a) Use the coefficient of correlation to determine if a significant relationship exists between the number of cigarettes sold and each form of cancer

Summary of data from template: Cigs sold vs. bladder cancer

ANOVA Table						
Source	SS	df	MS	F	F _{critical}	p-value
Regn.	19,8214	1	19,8214	41,1821	4,07265	0,0000
Error	20,2151	42	0,48131			
Total	40,0364	43				

Summary of data from template: Cigs sold vs. lung cancer

r ²	0,4864	Coefficient of Determination
r	0,6974	Coefficient of Correlation

ANOVA Table

Source	SS	df	MS	F	Fcritical	p-value
Regn.	373,878	1	373,878	39,771	4,07265	0,0000
Error	394,833	42	9,40079			
Total	768 712	43				

Summary of data from template: Cigs sold vs. kidney cancer

r ²	0,2375	Coefficient of Determination
r	0,4874	Coefficient of Correlation

ANOVA Table

Source	SS	df	MS	F	F _{critical}	p-value
Regn.	2,75226	1	2,75226	13,0855	4,07265	0,0008
Error	8,83383	42	0,21033			
Total	11.5861	43				

Summary of data from template: Cigs sold vs. leukemia

r ²	0,0047	Coefficient of Determination
r	-0.0685	Coefficient of Correlation

ANOVA Table

						p-
Source	SS	df	MS	F	Fcritical	value
	0,0821		0,0821	0,1978	4,0726	
Regn.	5	1	5	9	5	0,6587
	17,434		0,4151			
Error	9	42	2			
	17,517			•		
Total	1	43				

Scatter Plot, Regression Line and Regression Equation

I will define "significant" as a correlation greater than 0,6. That means that the highest correlation exists between bladder cancer and cigs sold followed by lung cancer. There seems only to be a small correlation between kidney cancer and cigs sold and almost no correlation between cigs sold and leukemia. Thus, only bladder cancer and lung cancer can be said to correlate significantly with cigs sold

b) In each of the cases in a) determine the correlation of determ99ination and comment on its meaning.

r-squared bladder: 0,4951 r-squared lung: 0,4864 r-squared kidney: 0,2375 r-squared leukemia: 0,0047

The correlation of determination states the amount of variability that the model is able to explain. Thus, the model for bladder cancer is the "best" model and the one for leukemia is not a good model. We might also state that cigs sold may be used as a predictor for bladder (and lung) cancer and cannot at all be used as a predictor for leukemia.

c) Which types of cancer seems to have the highest and lowest, respectively, statistical relationship with number of cigarettes sold? (Hint: Look at the correlation of coefficients)

Bladder cancer has the highest and leukemia has the lowest.

d) For the type of cancer that has the highest relationship with number of cigarettes sold, determine what the maximum number of cigarettes sold per capita must be if we want to keep death rates below 2, 3, 4 and 5 per 100K respectively.

```
y = -0.0078x + 7.0252
```

```
2 > 0.1218x + 1.0861 \Rightarrow 2 - 1.0861 > 0.1218x \Rightarrow x < 7.50

3 > 0.1218x + 1.0861 \Rightarrow 3 - 1.0861 > 0.1218x \Rightarrow x < 15.71

4 > 0.1218x + 1.0861 \Rightarrow 4 - 1.0861 > 0.1218x \Rightarrow x < 23.92

5 > 0.1218x + 1.0861 \Rightarrow 5 - 1.0861 > 0.1218x \Rightarrow x < 32.13
```