

Evolutionary swarm robotics

Frank Lange Phillipp Schoppmann

12. Juni 2013

Overview

Goal definition

Used techniques

Artificial neural networks Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic model

Summary

Overview

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

▶ robots cooperating to reach a certain goal

- ▶ robots cooperating to reach a certain goal
- decentralization of control

- ▶ robots cooperating to reach a certain goal
- decentralization of control
- limited communication abilities

- robots cooperating to reach a certain goal
- decentralization of control
- ▶ limited communication abilities
- use of local information

- robots cooperating to reach a certain goal
- decentralization of control
- limited communication abilities
- use of local information
- emergence of global behavior

- robots cooperating to reach a certain goal
- decentralization of control
- ▶ limited communication abilities
- use of local information
- emergence of global behavior
 - ⇒ Although each robot is autonomous, the swarm can solve problems that a single robot can't.

The Swarm Bot

In this presentation, we will focus on a so-called *Swarm Bot*, which is a swarm of *S-Bots*

The Swarm Bot

In this presentation, we will focus on a so-called *Swarm Bot*, which is a swarm of *S-Bots*

S-Bots

Mobile robots that can connect to/disconnect from each other

S-Bots

Mobile robots that can connect to/disconnect from each other

Goal definition

Overview

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

Possible task for a Swarm Bot

Possible task for a Swarm Bot

move objects

Possible task for a Swarm Bot

- move objects
- ▶ move through (tough) physical terrain

Possible task for a Swarm Bot

- move objects
- move through (tough) physical terrain

For some tasks however, acting as single S-Bots might be more efficient, like finding a goal location or determining an optimal path.

Possible task for a Swarm Bot

- move objects
- move through (tough) physical terrain

For some tasks however, acting as single S-Bots might be more efficient, like finding a goal location or determining an optimal path.

Focus of this presentation

Possible task for a Swarm Bot

- move objects
- move through (tough) physical terrain

For some tasks however, acting as single S-Bots might be more efficient, like finding a goal location or determining an optimal path.

Focus of this presentation

Aggregation

Possible task for a Swarm Bot

- move objects
- move through (tough) physical terrain

For some tasks however, acting as single S-Bots might be more efficient, like finding a goal location or determining an optimal path.

Focus of this presentation

- Aggregation
- Coordinated motion

 system changes from a disordered to an ordered state using only local interactions

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- ▶ Positive feedback:

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- Positive feedback:
 - amplification of some property that emerges from random interactions (snow ball effect)

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- Positive feedback:
 - amplification of some property that emerges from random interactions (snow ball effect)

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- ▶ Positive feedback:
 - amplification of some property that emerges from random interactions (snow ball effect)
- Negative feedback:

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- Positive feedback:
 - ▷ amplification of some property that emerges from random interactions (snow ball effect)
 - ▷ increases exponentially over time
- Negative feedback:
 - regulation that often gets triggered by positive feedback exhausting some resource

- system changes from a disordered to an ordered state using only local interactions
- uses positive/negative feedback
- ▶ Positive feedback:
 - □ amplification of some property that emerges from random interactions (snow ball effect)
- Negative feedback:
 - regulation that often gets triggered by positive feedback exhausting some resource
- Positive and negative feedback interact, keeping the system in a stable state.

Problem

▶ Given a set of individual behaviors, it is difficult to predict the behavior that is going to emerge on a system level.

Problem

- ► Given a set of individual behaviors, it is difficult to predict the behavior that is going to emerge on a system level.
- Given a global behavior, it is difficult to decompose individual behaviors.

Artificial Evolution

▶ bypasses decomposing the rules/mechanisms for the target behavior (which may not even be possible)

- bypasses decomposing the rules/mechanisms for the target behavior (which may not even be possible)
- relies on the evaluation of the system as a whole

- bypasses decomposing the rules/mechanisms for the target behavior (which may not even be possible)
- relies on the evaluation of the system as a whole
- can deal with the richness/complexity of the dynamic system, involving not only a multiple-agent scenario but also a possible physical link between the agents

- bypasses decomposing the rules/mechanisms for the target behavior (which may not even be possible)
- relies on the evaluation of the system as a whole
- can deal with the richness/complexity of the dynamic system, involving not only a multiple-agent scenario but also a possible physical link between the agents
- is easy to implement

How can we use this for our Swarm Bot?

How can we use this for our Swarm Bot?

 connect sensory input and motor output through an artificial neural network

How can we use this for our Swarm Bot?

- connect sensory input and motor output through an artificial neural network
- ▶ determine the details of this network using artificial evolution

Overview

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

Single Layer Perceptron

▶ based on neural connections in the nervous system

- based on neural connections in the nervous system
- neurons are arranged in layers

- based on neural connections in the nervous system
- neurons are arranged in layers
- neurons outputs of one layer are connected to all neuron inputs of the subsequent layer

- based on neural connections in the nervous system
- neurons are arranged in layers
- neurons outputs of one layer are connected to all neuron inputs of the subsequent layer
- connections are weighted

- based on neural connections in the nervous system
- neurons are arranged in layers
- neurons outputs of one layer are connected to all neuron inputs of the subsequent layer
- connections are weighted
- network functionality depends on:

- based on neural connections in the nervous system
- neurons are arranged in layers
- neurons outputs of one layer are connected to all neuron inputs of the subsequent layer
- connections are weighted
- network functionality depends on:
 - network topology

- based on neural connections in the nervous system
- neurons are arranged in layers
- neurons outputs of one layer are connected to all neuron inputs of the subsequent layer
- connections are weighted
- network functionality depends on:
 - network topology

Used activation function (sigmoid function):

Evolutionary swarm robotics

Neuron output depends on:

Neuron output depends on:

1. output of previous neurons

Neuron output depends on:

- 1. output of previous neurons
- 2. connection weights

Neuron output depends on:

- 1. output of previous neurons
- 2. connection weights
- 3. activation function

Neuron output depends on:

- 1. output of previous neurons
- 2. connection weights
- 3. activation function

In the following experiment, S-Bot controllers only differ in (2).

Overview

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

▶ also based on biology

- ▶ also based on biology
- ▶ uses *selection*, *reproduction* and *mutation*

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:
 - 1. create initial population

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:
 - 1. create initial population
 - 2. calculate the fitness of each individual in the current population

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:
 - 1. create initial population
 - 2. calculate the fitness of each individual in the current population
 - 3. select a certain amount of well-fit individuals for reproduction

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:
 - 1. create initial population
 - 2. calculate the fitness of each individual in the current population
 - 3. select a certain amount of well-fit individuals for reproduction
 - 4. breed next generation using reproduction and mutation

- also based on biology
- uses selection, reproduction and mutation
- optimizes on the basis of a given fitness function
- process:
 - 1. create initial population
 - 2. calculate the fitness of each individual in the current population
 - 3. select a certain amount of well-fit individuals for reproduction
 - 4. breed next generation using reproduction and mutation
 - 5. repeat 2-4

Initialization

Ordered by fitness

Selection

Reproduction

Mutation

Ordered by fitness again

Overview

Goal definition

Used techniques

Artificial neural networks

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

 ${\sf Experiment}$

Process

Five steps:

1. The real robot is defined, including real hardware.

- 1. The real robot is defined, including real hardware.
- 2. A simulator is developed which can model the robot at different detail levels.

- 1. The real robot is defined, including real hardware.
- 2. A simulator is developed which can model the robot at different detail levels.
- 3. A simplified model is chosen, that permits to run evolutionary experiments in a reasonable amount of time.

- 1. The real robot is defined, including real hardware.
- 2. A simulator is developed which can model the robot at different detail levels.
- 3. A simplified model is chosen, that permits to run evolutionary experiments in a reasonable amount of time.
- 4. Successful controllers from step 3 are improved using a detailed model.

- 1. The real robot is defined, including real hardware.
- A simulator is developed which can model the robot at different detail levels.
- 3. A simplified model is chosen, that permits to run evolutionary experiments in a reasonable amount of time.
- 4. Successful controllers from step 3 are improved using a detailed model.
- 5. Successful controllers from step 4 are improved on the real hardware.

Five steps:

- 1. The real robot is defined, including real hardware.
- A simulator is developed which can model the robot at different detail levels.
- 3. A simplified model is chosen, that permits to run evolutionary experiments in a reasonable amount of time.
- 4. Successful controllers from step 3 are improved using a detailed model.
- 5. Successful controllers from step 4 are improved on the real hardware.

Here: only 1-3.

Overview

Goal definition

Used techniques

Artificial neural networks
Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

▶ simplified simulation model used, no turret, no grippers

- simplified simulation model used, no turret, no grippers
- basically just a set of wheels with a speaker

- simplified simulation model used, no turret, no grippers
- basically just a set of wheels with a speaker
- ▶ the speaker always emits a sound, which can be sensed by other S-Bots using three sound sensors up to a distance of 75 cm

- simplified simulation model used, no turret, no grippers
- basically just a set of wheels with a speaker
- ▶ the speaker always emits a sound, which can be sensed by other S-Bots using three sound sensors up to a distance of 75 cm
- detection of neighbors or objects is done using 8 proximity sensors

- simplified simulation model used, no turret, no grippers
- basically just a set of wheels with a speaker
- ▶ the speaker always emits a sound, which can be sensed by other S-Bots using three sound sensors up to a distance of 75 cm
- detection of neighbors or objects is done using 8 proximity sensors
- \blacktriangleright noise is simulated by a uniformly distributed random signal within $\pm 5\%$ of the sensors saturation value

- simplified simulation model used, no turret, no grippers
- basically just a set of wheels with a speaker
- ▶ the speaker always emits a sound, which can be sensed by other S-Bots using three sound sensors up to a distance of 75 cm
- detection of neighbors or objects is done using 8 proximity sensors
- \blacktriangleright noise is simulated by a uniformly distributed random signal within $\pm 5\%$ of the sensors saturation value
- \blacktriangleright global area is 3 imes 3 meters, bigger than the perceptual range of the S-Bots

Network structure

 \blacktriangleright weights range in [-10, +10] and are represented by 8 bits

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- ▶ each genotype consists of $(12x2) \times 8 = 192$ bits.

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- ▶ each genotype consists of $(12x2) \times 8 = 192$ bits.
- ▶ start with 100 random genotypes. Each is tested over 8 epochs

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- each genotype consists of $(12x2) \times 8 = 192$ bits.
- ▶ start with 100 random genotypes. Each is tested over 8 epochs
- ▶ one epoch means: random number, positions and orientation of sbots

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- each genotype consists of $(12x2) \times 8 = 192$ bits.
- ▶ start with 100 random genotypes. Each is tested over 8 epochs
- ▶ one epoch means: random number, positions and orientation of sbots
- ▶ the top 20 genotypes produce 5 offsprings (flipping bits)

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- ▶ each genotype consists of $(12x2) \times 8 = 192$ bits.
- ▶ start with 100 random genotypes. Each is tested over 8 epochs
- ▶ one epoch means: random number, positions and orientation of sbots
- ▶ the top 20 genotypes produce 5 offsprings (flipping bits)
- each evolutionary run lasts 100 generations

- \blacktriangleright weights range in [-10, +10] and are represented by 8 bits
- ▶ each genotype consists of $(12x2) \times 8 = 192$ bits.
- ▶ start with 100 random genotypes. Each is tested over 8 epochs
- ▶ one epoch means: random number, positions and orientation of sbots
- ▶ the top 20 genotypes produce 5 offsprings (flipping bits)
- each evolutionary run lasts 100 generations
- tested for 20 evolutionary runs

▶ fitness function accounts for number of S-Bots used

- ▶ fitness function accounts for number of S-Bots used
- ▶ fitness of a genotype is the average fitness of all epochs

- ▶ fitness function accounts for number of S-Bots used
- ▶ fitness of a genotype is the average fitness of all epochs
- genotype is evaluated for its aggregation and motion quality:

- ▶ fitness function accounts for number of S-Bots used
- ▶ fitness of a genotype is the average fitness of all epochs
- genotype is evaluated for its aggregation and motion quality:
 - does the genotype minimize the distance between sbot and the center of the group?

- fitness function accounts for number of S-Bots used
- ▶ fitness of a genotype is the average fitness of all epochs
- genotype is evaluated for its aggregation and motion quality:
 - does the genotype minimize the distance between sbot and the center of the group?
 - ▷ do the wheels of the sbot turn in the same direction?

▶ Aggregation perfomance averaged over 20 evolutionary runs

Observations

▶ Aggregation behavior. Following behavior of small groups emerges, if the group size gets larger, chaos increases.

Scalability

▶ Best genotype of each run tested against increasing group sizes.

Experiment - Coordinated motion -

Overview

Goal definition

Used techniques

Artificial neural networks

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

Summary

Coordinated motion

problem: S-Bot start with different orientations

Coordinated motion

- ▶ problem: S-Bot start with different orientations
- ▶ try to solve this problem and to evolve coordinated movement using only local information

Simulation

▶ no sound, S-Bots already connected via rigid links representing the grippers

Simulation

- ▶ no sound, S-Bots already connected via rigid links representing the grippers
- each S-Bot now has:

- no sound, S-Bots already connected via rigid links representing the grippers
- each S-Bot now has:
 - ▷ a turret that can rotate with respect to its chassis

- no sound, S-Bots already connected via rigid links representing the grippers
- each S-Bot now has:
 - > a turret that can rotate with respect to its chassis
 - ▷ a traction sensor indicating the angle between its turret and the chassis and the force of the traction

► traction sensor provides an average direction towards which the group is trying to move as a whole

- ► traction sensor provides an average direction towards which the group is trying to move as a whole
- ▶ measure the mismatch between the group's direction and the S-Bot's chassis direction

Network structure

sensor inputs is the cosine of the angle diff' between each sensor's prefered direction and the group traction

- sensor inputs is the cosine of the angle diff' between each sensor's prefered direction and the group traction
- evolution basically the same as used with aggregation

- sensor inputs is the cosine of the angle diff' between each sensor's prefered direction and the group traction
- evolution basically the same as used with aggregation
- ▶ measure the fitness for each epoche as the Euclidean distance between start and endpoint of the group

▶ Coordinated movement performance for 20 runs à 100 generations.

▶ each S-Bot makes a move in "its" direction

- each S-Bot makes a move in "its" direction
- ▶ thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group

- each S-Bot makes a move in "its" direction
- ► thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group
- evolved controller pattern:

- each S-Bot makes a move in "its" direction
- ► thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group
- evolved controller pattern:
 - if orientation is almost identical, traction is near 0, everyone just continues full speed

- each S-Bot makes a move in "its" direction
- ► thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group
- evolved controller pattern:

 - ▷ if traction is low, each bot tweaks a bit in the average direction

- each S-Bot makes a move in "its" direction
- ► thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group
- evolved controller pattern:
 - if orientation is almost identical, traction is near 0, everyone just continues full speed
 - ▷ if traction is low, each bot tweaks a bit in the average direction
 - ▶ if traction is high and orientation is highly misaligned then the S-Bots with higher difference change their orientation more rapidly than the ones who receive a higher traction

- each S-Bot makes a move in "its" direction
- ► thereby each S-Bot receives a traction direction in correspondence to the majority of orientations among the group
- evolved controller pattern:
 - → if orientation is almost identical, traction is near 0, everyone just continues full speed
 - ▷ if traction is low, each bot tweaks a bit in the average direction
 - ▷ if traction is high and orientation is highly misaligned then the S-Bots with higher difference change their orientation more rapidly than the ones who receive a higher traction
- side effects: object avoidance and object pulling

Scalability

▶ Coordinated movement performance for increasing group sizes.

Validation using the realistic model

Overview

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Validation using the realistic model

Detailed Model

▶ Aggregation performance for increasing group sizes (detailed model)

Overviev

Goal definition

Used techniques

Artificial neural networks

Artificial evolution

Experiment

Aggregation

Coordinated motion

Validation using the realistic mode

▶ multi-stage evolution possible, using the simplified model first to find a suitable solution then continue from there with a detailed model

- ▶ multi-stage evolution possible, using the simplified model first to find a suitable solution then continue from there with a detailed model
- Drawbacks:

- ▶ multi-stage evolution possible, using the simplified model first to find a suitable solution then continue from there with a detailed model
- Drawbacks:
 - b the evaluation functions used in this simulation used global information
 (position of each S-Bot etc.)

- multi-stage evolution possible, using the simplified model first to find a suitable solution then continue from there with a detailed model
- Drawbacks:
 - ▶ the evaluation functions used in this simulation used global information (position of each S-Bot etc.)
 - ▶ to evolve these controllers on real hardware evaluation needs to be performed using only local available information

- ▶ multi-stage evolution possible, using the simplified model first to find a suitable solution then continue from there with a detailed model
- Drawbacks:
 - b the evaluation functions used in this simulation used global information
 (position of each S-Bot etc.)
 - b to evolve these controllers on real hardware evaluation needs to be performed using only local available information
 - ▷ could be bypassed by using a camera in a real setup to obtain positions