Задача 1. Колко е броят на рационалните числа в числовата редица:

$$\sqrt{1}$$
, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, ..., $\sqrt{2019}$, $\sqrt{2021}$, $\sqrt{2023}$, $\sqrt{2025}$?

Задача 2. Разглеждаме числата

$$a_1, a_2, a_1 \times a_2, a_3, a_4, a_3 \times a_4, ..., a_{99}, a_{100}, a_{99} \times a_{100}.$$

Колко най-много може да са отрицателните числа сред тези числа?

Задача 3. Да се пресметне

$$(\sqrt{2} + \frac{\pi}{7} + \pi) \times (\frac{\pi}{7} + \pi + 100) - (\sqrt{2} + \frac{\pi}{7} + \pi + 100) \times (\pi + \frac{\pi}{7}).$$

Задача 4. Да се пресметне израза

$$\sqrt{6-2\sqrt{5}} \times (1+\sqrt{5}) + \sqrt{3-\sqrt{}} \times (1+\sqrt{}).$$

Задача 5. За кое естествено число x, числото, което е равно на

$$(25^4)^x \times (2^{20})^3$$
,

се записва с 58 цифри?

Задача 6. Колко са целите числа, които са решения на неравенството

$$(x-20)^{19} \times (x-19)^{20} \times (x-2019)^{2019} \le 0$$
?

Задача 7. Намерете най-малката възможна стойност на израза:

$$|x-3| + |x-\pi| + |x-4|$$
.

Задача 8. За колко цели стойности на параметъра а уравнението

$$(x^2 - a) \cdot \sqrt{3 - x} = 0$$

има три различни реални решения?

Задача 9. Да се намери най-малкото естествено число n, за което цифрата на десетите на числото $\sqrt{n^2 + 2n + 3}$, т.е. първата цифра след десетичната запетая, е 1.

Задача 10. Реципрочната стойност на 7 е представена като сбор на реципрочните стойности на две естествени числа. Колко е сборът на тези две естествени числа?

Задача 11. Точката D е от медианата CM на триъгълник ABC, такава че 2 CD = 3 DM. Ако точката E е пресечна точка на правата AD и страна BC намерете CE:CB.

Задача 12. Две от страните на триъгълник имат дължини съответно $\sqrt{2}$ *cm* и $\sqrt{3}$ *cm*. От височините, спуснати към тях, едната е с *x cm* по-дълга от другата. За една възможна стойност на x, намерете лицето на триъгълника. В листа за отговори посочете стойността на x и лицето на триъгълника.

Задача 13. Дължините на катетите на правоъгълен триъгълник са 3 *cm* и 4 *cm*. На хипотенузата, като на страна външно за триъгълника, е построен квадрат. Да се намери в *cm* разстоянието от върха на правия ъгъл до центъра на квадрата.

В евклидова геометрия теоремата на Птолемей е връзка между четирите страни и двата диагонала на четириъгълник, чийто върхове лежат върху една окръжност.

Ако четириъгълник е вписан в окръжност, тогава произведението на неговите диагонали е равно на сбора от произведенията на двойките противоположни страни.

Задача 14. Дължините на катетите AC и BC на правоъгълния ΔABC са 3 cm и 4 cm. Точката M е от хипотенузата му и е такава, че разстоянието между нейните проекции P и Q върху катетите да е най-малко ($P \in AC$, $MP \perp AC$; $Q \in BC$, $MQ \perp BC$). Колко cm е PQ?

Задача 15. Спрямо правоъгълна координатна система върховете на триъгълника ABC имат координати: A(-2;0), B(6;0), C(5;6). Да се намерят абсцисата и ординатата на медицентъра на триъгълника.

Задача 16. (*Задача на Исак Нютон*) 70 крави могат да изядат тревата от една поляна за 24 дни, а 30 крави — за 60 дни. Колко са кравите, които ще изядат всичката трева за 96 дни. Не забравяйте, че тревата на поляната расте равномерно.

Задача 17. Пресметнете x + 2y + 3z, ако x, y и z са реални числа, които удовлетворяват и двете условия:

- + y = 2;
- $\bullet \quad xy z^2 = 1.$

Задача 18. Колко най-малко цели числа от 1 до 100 трябва да изберем на случаен принцип, за да сме сигурни, че сред избраните числа ще има две, чиято разлика е 11?

Задача 19. Кои са трицифрените числа \overline{abc} , такива че 1000 да дели $(\overline{abc})^2 - \overline{abc}$?

Задача 20. Ако
$$\sqrt{a^2-6a+18}+\sqrt{b^2-8b+20}=5sin\gamma$$
,

да се намери дължината на третата страна на триъгълника със страни а и b, и ъгъл между тях у.