NOTE OF WEEK 10

RONGHAN YUAN

ABSTRACT. In week 11, we proved a theorem relating the periodic orbit and values of products of linear forms.

Contents

1.	The main theorem	1
2.	Theorem of Cassels and Swinnerton-Dyer	3
3.	bibliography	3
References		3

1. The main theorem

The main theorem we proved in this week is the following one

Theorem 1.1. The orbit $A\Lambda \subset SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ is compact (periodic), if and only if $N(\Lambda) > 0$ and the set $\{N(v)|v \in \Lambda\}$ is discrete.

Remark 1.2. Here $N(v) = |x_1 \cdots x_d|$, where $v = (x_1, \cdots, x_d)^t$.

For one direction, the result follows from the classification of periodic orbits we proved in last few weeks. Those period orbits gives forms of degree d with integer coefficients (or multiplying a common constant), thus the set $\{N(v)|v\in\Lambda\}$ is discrete. The result $N(\Lambda)>0$ follows from another lemma proved before, which is a variant of Mahler principle, saying that $A\Lambda$ has compact closure if and only if $N(\Lambda)>0$.

For another direction, the condition $N(\Lambda) > 0$ already implies that the orbit has compact closure, thus it remains to show that it is a close orbit.

Proof. As is explained in the remark, it suffices to show that $A\Lambda$ is closed to finish the proof. Denote $G = SL_d(\mathbb{R}), \Gamma = SL_d(\mathbb{Z})$. Since the topology on G/Γ is the quotient topology, it suffices to show the corresponding set $Ag\Gamma$ is closed in G, where $\Lambda = g\mathbb{Z}^n$. This is equivalent to showing that $Ag\Gamma$ is closed in $A\backslash G$ under quotient topology. Using the transposition of Iwasawa decomposition, we know that G can be decomposed into G = ANK, here K = SO(d), and N the lower triangular matrices. Thus $A\backslash G$ has a nice description NK.

In order to use the condition $\{N(v)|v\in\Lambda\}$ is discrete. We consider the map $A\setminus \to P_d[x_1,\cdots,x_d]$, where $P_d[x_1,\cdots,x_d]$ denote polynomials of d variables with degree d. The mapping is given by $g\mapsto \phi\circ g$, g acts on x_1,\cdots,x_d by linear transformation, and $\phi=x_1\cdots x_d$. The 'kernel' (inverse image of ϕ) of this map is not large, because the stabilizer of ϕ under G is not large.

If $\phi = \phi \circ g$, where

$$\phi \circ g = (g_{1,1}x_1 + \dots + g_{1,d}x_d)(g_{2,1}x_1 + \dots + g_{2,d}x_d) \cdots (g_{d,1}x_1 + \dots + g_{d,d}x_d)$$

Since P_d is a unique factorization domain, each factor in $\phi \circ g = \phi$ should also look like $c_i x_i$, which means that g only has one nonzero element in each column and row. (This can be also seen from the fact that zero set of $\phi \circ g$ is the union of d hyperplane $\{x_i = 0\}$, thus the zero set of each factor is one of the $\{x_i = 0\}$, also implying that $g_{i,1}x_1 + \cdots + g_{i,d}x_d = c_jx_j$ for some j).

Thus the stabilizer consists of permutation matrices, diagonal matrices and their products, and this implies that the inverse image of each point in $A \setminus G$ is a finite set of cardinal at most $2^d d!$.

The map $A \setminus G \to P_d$ is also a proper mapping. To show the map is proper, it suffices to show that any convergent sequence in the image set gives a convergent subsequence in $A \setminus G$. We know $A \setminus G$ can be described as NK, thus it suffices to show if $\phi \circ n_i k_i$ is convergent, then $n_i k_i$ has a convergent subsequence. Since K is compact, passing to a subsequence, we only need to show, for convergent $\phi \circ n_i$, n_i also converges.

If we can recover the entries of n_i from coefficients of $\phi \circ n_i$, then the result follows. This can be shown by induction on level of entries. For $n=(n_{i,j})$ lower triangular, i-j is called the level. If the level is 1, then the coefficient of $x_1\cdots x_ix_ix_{i+2}\cdots x_d$ is exactly $n_{i+1,i}$, so the result is true for level 1 entries. Similarly, consider coefficients of $x_1\cdots x_ix_{i-1}x_{i+2}\cdots x_d$, they are $n_{i+1,i-1}+n_{i,i-1}n_{i+1,i}$. Since entries of level 1 can be recovered, from this we know $n_{i+1,i-1}$ can also be recovered from coefficients of $\phi \circ n$. Continuing on induction, we can show similarly that entries of higher level can also be recovered. Thus proving the map $A \setminus G \to P_d$ is proper.

Then we want to encode the information of polynomials in P_d by its values on finitely many integer points, and the information about $\{N(v)|v\in\Lambda\}$ can be used under this setting. More precisely, we want to find a finite set $E\subset\mathbb{Z}^d$, such that $\forall f\in P_d$, it is determined by its value on E. To find such a set E, we argue as follows. Fix a basis f_1,\cdots,f_m of the vector space P_d , then choose a maximal subset E of \mathbb{Z}^d , such that $(f_1(v),\cdots,f_m(v)),v\in E$ is linearly independent.

We claim that E has exactly m elements (It has at most m elements). Suppose the contrary that it only has r < m elements, then by the choice of E, we know for every $w \in \mathbb{Z}^d$, $(f_1(w), \cdots, f_m(w))$ can be written as linear combination of $(f_1(v), \cdots, f_m(v)), v \in E$. With out loss of generality, we assume the matrix $(f_i(v_j)), 1 \le i \le r, v_j \in E$ is invertible. But this implies that values of $f_j, r+1 \le j \le m$ on \mathbb{Z}^d is the same as some linear combination of $f_i, 1 \le i \le r$ (the coefficient is determined by the linear dependence in the matrix $(f_i(v_j))_{1 \le i \le m, 1 \le j \le r}$), implying that $f_i, 1 \le i \le r$ gives a basis, thus we can only have r = m.

Then every polynomial f in P_d is determined by its value on E, since we can solve the coefficient of f under f_i by solving the full rank linear equation $\sum a_i f_i(v) = f(v), v \in E$, where the coefficient matrix is a $m \times m$ invertible matrix.

Now we are ready to show that $Ag\Gamma$ is closed in $A\backslash G$. It suffices to show if $Ag\gamma_i$ converges in $A\backslash G$, then the limit is still in $Ag\Gamma$. It suffices to show $\phi\circ g\gamma_i$ has limit in the image set, because the preimage of every point in P_d is discrete, this is enough to show $Ag\Gamma$ is closed. Since $f\in P_d$ is determined on its value on E, and $\{|\phi\circ g\gamma_i(v)||i\in \mathbb{Z}_{>0},v\in E\}\subset \{N(v)|v\in\Lambda\}$ lies in this discrete set, $\phi\circ g\gamma_i(v)$ eventually stabilizes after finite many terms. Since there are only finitely many

elements in E, after finitely many terms, $\phi \circ g\gamma_i$ takes the same value on E, thus $\phi \circ g\gamma_i$ eventually stabilizes. This proves that the image of $Ag\Gamma$ in P_d is closed, also proves that $Ag\Gamma$ is also closed, thus proving the theorem.

2. Theorem of Cassels and Swinnerton-Dyer

In [4], Cassels and Swinnerton-Dyer proved the following theorem.

Theorem 2.1. For $g \in SL_3(\mathbb{R})$, $Ag\Gamma$ a compact orbit in $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$, then for all $(\delta_1, \delta_2) \subset \mathbb{R}$, there exists a neighborhood U of e in $SL_3(\mathbb{R})$, such that for all $h \in Ug \setminus Ag$, $\phi \circ h(\mathbb{Z}^3 \setminus \{0\}) \cap (\delta_1, \delta_2) \neq \emptyset$.

We consider the following observation, for U_t the one parameter subgroup whose Lie algebra is $E_{i,j}$, for example, $E_{1,2}$, to be a root vector. Denote u_t to be

$$(2.2) u_t = \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Then fix Λ be a lattice given by a full module I of a totally real cubic field K, i.e. $\Lambda = \sigma(I)$, where σ is the Minkowski embedding. Now we consider the vector $x = (\sigma_1(a), \sigma_2(a), \sigma_3(a))^t$ in Λ , where $a \in I$. It gives an order \mathcal{O} isomorphic to \mathbb{Z}^3 , which will give a $\mathcal{O}^{\times} \cong \mathbb{Z}^2$ lies in the ring of integers.

Then we consider the image of $u_t \sigma(sa)$, $a \in \mathcal{O}^{\times}$ under the norm.

$$N(u_t \sigma(sa)) = |(\sigma_1(sa) + t\sigma_2(sa))\sigma_2(sa)\sigma_3(sa)|$$
$$= |(\sigma_1(a) + t\frac{\sigma_2(s)}{\sigma_1(s)}\sigma_2(a))\sigma_2(a)\sigma_3(a)|$$

The second equation is due to the fact that $|\sigma_1(s)\sigma_2(s)\sigma_3(s)|=1$ for elements in the unit group. This gives a map from $\mathcal{O}^{\times}\cong\mathbb{Z}^2$ to \mathbb{R}^+ . Roughly, this means the image in \mathbb{R}_+ is dense, since it maps \mathbb{Z}^2 into \mathbb{R}_+ . This argument shows that for any small perturbation given by a unipotent element in U_t , we get another lattice with dense image under taking norm. By the decomposition KNA, this might tells how to prove the theorem.

3. BIBLIOGRAPHY

References

- [1] J.Neukrich. Algebraic number theory. Springer-Verlag Berlin Heidelberg. 1999.
- [2] J.Milne. Algebraic number theory. https://www.jmilne.org/math/CourseNotes/ANT.pdf Version 3.08. 2020.
- 3] C.McMullen. Ergodic theory, geometry and dynamics. https://people.math.harvard.edu/ctm/papers/home/text/class/notes/erg 2020.
- [4] J. W. S. Cassels and H. P. F. Swinnerton-Dyer. On the product of three homogeneous linear forms and the indefinite ternary quadratic forms. Philos. Trans. Roy. Soc. London. Ser. A. 248 (1955), 73–96.
- [5] Anthony W.Knapp. Lie Groups Beyond an Introduction. Second Edition. Birkhauser. 2002.