SOFT SENSOR OF KEY COMPONENTS IN RECIRCULATING AQUACULTURE SYSTEMS, USING FEEDFORWARD NETWORKS

Allyne M. dos Santos ¹, Espen Karlsen ¹, Sigurd Skogestad ¹, and Kari J.K. Attramadal ^{2,3}

Norwegian University of Science and Technology

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ² Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ³ Nofitech AS, Trondheim, Norway

INTRODUCTION

Brief Summary

- First-principles model of water treatment system of Recirculating Aquaculture Systems (RAS) to gather data
- Latin hypercube sampling used for designing of experiments
- Training data from steady-state model + white noise
- Test data from fish farm industry (contained in the operating region of the training data)
- Feedforward neural networks generated by the neural architecture search (NAS) named AutoKeras
- Comparison between a combination of multiple-input single-output multilayer perceptron models (MISO-MLP); hybrid model; and multiple-input multipleoutput multilayer perceptron model (MIMO-MLP)

Main objective

Develop a multilayer perceptron (MLP) model, using AutoKeras, for monitoring key components in Recirculating Aquaculture Systems (RAS) to complement laboratory analysis, which is time consuming and costly.

PROCESS DESCRIPTION

Recirculating Aquaculture System:

Makeup oxygen

NEURAL NETWORK ARCHITECTURE

Input Normalization Dense₁ ··· Dense_n Dropout Output

RESULTS

RMSE index Output MISO-MLPs Hybrid MIMO-MLP

$c_{\underline{H}_2CO_3}^T$	0.0645	0.0787	0.0694
$c_{NH_4^+}^{\overline{T}^2}$	0.1204	0.1201	0.1230
$c_{NH_3}^T$	0.1322	0.2611	0.1351
Final	0.1097	0.1720	0.1129

Number of nodes in each layer of each MISO-MLP model

Layers	$MISO ext{-}MLP_{H_2CO_3}$	$\mathbf{MISO\text{-}MLP}_{NH_4^+}$	$MISO-MLP_{NH_3}$
Input	4	3	3
Normalization	3	3	3
Dense ₁	32	64	128
$Dense_2$	32	0	0
Dropout	0	64	128
Output	1	1	1

Model Validation - MISO-MLP combination

CONCLUSIONS

- The combination of MISO-MLP models gave a better performance.
- AutoKeras did not find a good FNN, as they all gave similar prediction trajectory to all variables.
- The MLP models could not capture enough information of the process.
- Different types of models should be considered in future work.

Am I not around this poster?

Please scan the QR-code for an audio presentation.

