IN THE CLAIMS:

The text of all pending claims, (including withdrawn claims) is set forth below. Cancelled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with <u>underlining</u> and deleted text with <u>strikethrough</u>. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (withdrawn – currently amended), (new), (previously presented), or (not entered).

Please CANCEL claims 7 and 11, and AMEND claims 1-6, 8-10, 12 and 13 in accordance with the following:

- 1. (Currently Amended) A magnetic encoder which comprises ing:
- a <u>ring shaped multi-pole magnet having a plurality of opposite magnetic poles alternating</u> in a direction circumferentially thereof; and
- a core metal for supporting the multi-pole magnet to which the multi-pole magnet is fixed by crimping;

said multi-pole magnet containing a powdery magnetic material mixed in an amount within the range of 20 to 90 vol.% relative to the total volume of the multi-pole magnet.

said multi-pole magnet being a sintered element obtained by sintering a green compact of a kind in which a powdery mixture of the powdery magnetic material and a powdery non-magnetic material is press-molded, and

said green compact having a porosity within the range of 5 to 30 vol. %.

- 2. (Currently Amended) The magnetic encoder as claimed in <u>Colaim 1</u>, wherein the powdery magnetic material is mixed in an amount within the range of 30 to 80 vol.%.
- 3. (Withdrawn Currently Amended) The magnetic encoder as claimed in Cclaim 1, wherein the powdery magnetic material is a powder of ferrite.
- 4. (Withdrawn Currently Amended) The magnetic encoder as claimed in Cclaim 3, wherein the powdery magnetic material is a wet powder of anisotropic ferrite core.
- 5. (Currently Amended) The magnetic encoder as claimed in Cclaim 1, wherein the powdery magnetic material includes samarium compound.

6. (Withdrawn – Currently Amended) The magnetic encoder as claimed in <u>Cc</u>laim 1, wherein the powdery magnetic material includes neodymium compound.

7. (Cancelled)

- 8. (Withdrawn Currently Amended) The magnetic encoder as claimed in Cclaim 71, wherein the powdery non-magnetic metallic material is a powder of stainless steel.
- 9. (Withdrawn Currently Amended) The magnetic encoder as claimed in Cclaim 71, wherein the powdery non-magnetic metallic material is a powder of tin.
- 10. (Currently Amended) The magnetic encoder as claimed in Colaim 71, wherein the powdery mixture includes two or more powdery magnetic materials or two or more powdery non-magnetic metallic materials.

11. (Cancelled)

- 12. (Currently Amended) A wheel support bearing assembly provided with a magnetic encoder as defined in Colaim 1.
- 13. (Currently Amended) The wheel support bearing assembly as claimed in Colaim 12, wherein the wheel support bearing assembly is for supportsing a wheel for rotation relative to a vehicle body, said wheel support bearing assembly comprising:

an outer member having an inner peripheral surface formed with a plurality of first raceways;

an inner member having a corresponding number of second raceways defined therein in alignment with the first raceways in the outer member;

rows of rolling elements rollingly received in part within the first raceways and in part within the second raceways,

wherein said wheel bearing assembly comprises:

a sealing unit forto sealing an annular bearing space delimited between the outer member and the inner member, said sealing unit including a first sealing plate of a generally L-sectioned configuration mounted on one of the outer and inner members which serves as a rotatable member, and a second sealing plate of a generally L-sectioned configuration mounted

Serial No. 10/780,609

on the other of the outer and inner members which serves as a stationary member, and positioned in face-to-face relation with the first sealing plate, said first sealing plate defining the core metal of the magnetic encoder and having a cylindrical axial wall and a radial upright wall; and

an elastic sealing member including a side sealing lip and at least one radial sealing lip, said elastic sealing member being secured to the second sealing plate with the side sealing lip slidingly engaging the radial upright wall of the first sealing plate and with the at least one radial sealing lip slidingly engaging the cylindrical axial wall;

wherein the multi-pole magnet is mounted on the radial upright wall of the first sealing plate.