IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

08.10.2025

Hoy...

Relaciones: pares ordenados, producto Cartesiano, relaciones, relaciones de equivalencia.

Definición

Definición

$$(1,2) =$$

Definición

$$(1,2) =$$

$$(\mathbb{Z}, \mathbb{N}) =$$

Definición

$$(1,2) =$$

$$(\mathbb{Z}, \mathbb{N}) =$$

$$(2,2) =$$

Teorema

Sean x, y, a, b cuatro conjuntos. Entonces, (x, y) = (a, b) si y sólo si x = a y y = b.

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definición

Sean A, B dos conjuntos. Su **producto Cartesiano** es el conjunto $A \times B$ de todos los pares ordenados (x, y), donde $x \in A, y \in B$.

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definición

Sean A, B dos conjuntos. Su **producto Cartesiano** es el conjunto $A \times B$ de todos los pares ordenados (x, y), donde $x \in A, y \in B$.

Teorema

Para todos los conjuntos A, B el conjunto $A \times B$ existe.

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definición

Sean A, B dos conjuntos. Su **producto Cartesiano** es el conjunto $A \times B$ de todos los pares ordenados (x, y), donde $x \in A, y \in B$.

Teorema

Para todos los conjuntos A, B el conjunto $A \times B$ existe.

$$A \times B = \{(1,3), (7,4), (7,3), (1,4)\}.$$

$$A = B =$$

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definición

Sean A, B dos conjuntos. Su **producto Cartesiano** es el conjunto $A \times B$ de todos los pares ordenados (x, y), donde $x \in A, y \in B$.

Teorema

Para todos los conjuntos A, B el conjunto $A \times B$ existe.

$$A \times B = \{(1,3), (7,4), (7,3), (1,4)\}.$$

$$A = B =$$

$$\{(1,2),(7,3),(7,2)\} = A \times B?$$

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definición

Sean A, B dos conjuntos. Su **producto Cartesiano** es el conjunto $A \times B$ de todos los pares ordenados (x, y), donde $x \in A, y \in B$.

Teorema

Para todos los conjuntos A, B el conjunto $A \times B$ existe.

$$A \times B = \{(1,3), (7,4), (7,3), (1,4)\}.$$

$$A = B =$$

$$\{(1,2),(7,3),(7,2)\} = A \times B?$$

¿es el plano un producto Cartesiano?

Definición

Sean A, B dos conjuntos. Una **relación binaria** de A en B es un subconjunto $R \subseteq A \times B$.

Definición

Sean A, B dos conjuntos. Una **relación binaria** de A en B es un subconjunto $R \subseteq A \times B$.

Notación: $(a,b) \in R \iff R(a,b) \iff aRb$;

Definición

Sean A, B dos conjuntos. Una **relación binaria** de A en B es un subconjunto $R \subseteq A \times B$.

- Notación: $(a,b) \in R \iff R(a,b) \iff aRb$;
- ightharpoonup Cuando A=B, se dice: R es una relación binaria sobre A.

Definición

Sean A, B dos conjuntos. Una relación binaria de A en B es un subconjunto $R \subseteq A \times B$.

- Notación: $(a,b) \in R \iff R(a,b) \iff aRb$;
- ▶ Cuando A = B, se dice: R es una relación binaria sobre A.
- Sea A = {1,2,3,4,5,6} y R una relación sobre A "tener el mismo resto módulo 3". Definir todos los pares ordenados en R:

$$R =$$

Relaciones como grafos dirigidos

Sea $A = \{1, 2, 3, 4, 5, 6\}$. Retratar la relación | ("divide") sobre A como un grafo dirigido:

Definición

Sea R una relación binaria sobre el conjunto A. Entonces, R se llama...

▶ refleja si aRa para todo $a \in A$.

Definición

- ▶ refleja si aRa para todo $a \in A$.
- ▶ antirefleja si $\neg aRa$ para todo $a \in A$;

Definición

- ▶ refleja si aRa para todo $a \in A$.
- ▶ antirefleja si $\neg aRa$ para todo $a \in A$;
- ▶ simétrica si aRb \rightarrow bRa para todos a, b ∈ A;

Definición

- ▶ refleja si aRa para todo $a \in A$.
- ▶ antirefleja si $\neg aRa$ para todo $a \in A$;
- ▶ simétrica si $aRb \rightarrow bRa$ para todos $a, b \in A$;
- ▶ transitiva si $(aRb \land bRc) \rightarrow aRc$ para todos $a, b, c \in A$;

Definición

- ▶ refleja si aRa para todo $a \in A$.
- ▶ antirefleja si $\neg aRa$ para todo $a \in A$;
- ▶ simétrica si a $Rb \rightarrow bRa$ para todos $a, b \in A$;
- ▶ transitiva $si(aRb \land bRc) \rightarrow aRc$ para todos $a, b, c \in A$;
- ▶ asimétrica si $aRb \rightarrow \neg bRa$ para todos $a, b \in A$;
- ▶ antisimétrica si $(aRb \land bRA) \rightarrow a = b$ para todos $a, b \in A$;

Ejemplos

Sobre \mathbb{N} :

	=	<	<u> </u>	\neq
refleja?				
antirefleja?				
simétrica?				
transitiva?				
asimétrica?				
antisimétrica				

Definición

Sea A un conjunto. Una relación binaria R sobre A se llama una relación de equivalencia si R es refleja, simétrica y transitiva.

Definición

Sea A un conjunto. Una relación binaria R sobre A se llama una relación de equivalencia si R es refleja, simétrica y transitiva.

Ejemplos:

Definición

Sea A un conjunto. Una relación binaria R sobre A se llama una relación de equivalencia si R es refleja, simétrica y transitiva.

Ejemplos:

```
> =
```

Definición

Sea A un conjunto. Una relación binaria R sobre A se llama una relación de equivalencia si R es refleja, simétrica y transitiva.

Ejemplos:

- **>** =
- equivalencias de las fórmulas proposicionales

Ejercicio

Ejercicio

Verificar que las siguentes relaciones son equivalencias:

- a) \equiv_k sobre \mathbb{Z} , donde $x \equiv_k y$ si y sólo si k divide x y.
- b) \sim sobre $\mathbb{N}_{>0} \times \mathbb{N}_{>0}$, donde $(a,b) \sim (c,d)$ si y sólo si ad = bc.
- c) \sim sobre $\mathcal{P}(\mathbb{N})$, donde $A \sim B$ si y sólo si $A \triangle B = (A \setminus B) \cup (B \setminus A)$ es finito.

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. La clase de equivalencia de $a \in A$ con respeto de \sim es el conjunto

$$[a]_{\sim} = \{b \in A \mid a \sim b\}.$$

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. La clase de equivalencia de $a \in A$ con respeto de \sim es el conjunto

$$[a]_{\sim} = \{b \in A \mid a \sim b\}.$$

Definir [13]_{\equiv_3} (sobre $\{1, 2, 3, ..., 20\}$):

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. La clase de equivalencia de $a \in A$ con respeto de \sim es el conjunto

$$[a]_{\sim} = \{b \in A \mid a \sim b\}.$$

Definir [13]_{\equiv_3} (sobre $\{1, 2, 3, ..., 20\}$):

Teorema

Sea \sim una relación de equivalencia sobre el conjunto A. Para todos a, $b \in A$, tenemos $[a]_{\sim} = [b]_{\sim}$ o $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. La clase de equivalencia de $a \in A$ con respeto de \sim es el conjunto

$$[a]_{\sim} = \{b \in A \mid a \sim b\}.$$

Definir $[13]_{\equiv_3}$ (sobre $\{1, 2, 3, \dots, 20\}$):

Teorema

Sea \sim una relación de equivalencia sobre el conjunto A. Para todos $a,b\in A$, tenemos $[a]_{\sim}=[b]_{\sim}$ o $[a]_{\sim}\cap[b]_{\sim}=\varnothing$.

Corolario: clases de equivalencia definen una partición del conjunto $\cal A$

Teorema

Sea \sim una relación de equivalencia sobre el conjunto A. Para todos $a,b\in A$, tenemos $[a]_{\sim}=[b]_{\sim}$ o $[a]_{\sim}\cap [b]_{\sim}=\varnothing$.

Conjunto cociente

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. El conjunto cociente de \sim es el conjunto $(A/\sim)=\{[a]_{\sim}\mid a\in A\}$

Conjunto cociente

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. El conjunto cociente de \sim es el conjunto $(A/\sim)=\{[a]_{\sim}\mid a\in A\}$

▶ Definir $\{1, 2, ..., 8\} / \equiv_3$:

Conjunto cociente

Definición

Sea \sim una relación de equivalencia sobre el conjunto A. El **conjunto cociente** de \sim es el conjunto $(A/\sim) = \{[a]_{\sim} \mid a \in A\}$

- ▶ Definir $\{1, 2, ..., 8\} / \equiv_3$:
- ▶ Sea \sim una relación sobre $\mathbb{N}_{>0} \times \mathbb{N}_{>0}$, donde $(a,b) \sim (c,d)$ si y sólo si ad = bc. Definir el conjunto cociente correspondiente.

Operaciones y equivalencia

Definición

Sea A un conjunto y* una "operación binaria" sobre A (dados $a,b\in A$, la operación devuelve $a*b\in A$). Decimos que * respete una relación de equivalencia \sim sobre A si $a_1\sim a_2, b_1\sim b_2\implies a_1*b_1\sim a_2*b_2$ para todos $a_1,a_2,b_1,b_2\in A$.

Operaciones y equivalencia

Definición

Sea A un conjunto y* una "operación binaria" sobre A (dados $a,b\in A$, la operación devuelve $a*b\in A$). Decimos que * respete una relación de equivalencia \sim sobre A si $a_1\sim a_2, b_1\sim b_2\implies a_1*b_1\sim a_2*b_2$ para todos $a_1,a_2,b_1,b_2\in A$.

Cuando * respete \sim , se puede ver * como una operación sobre el conjunto cociente A/\sim .

Ejercicios

Ejercicio

Verificar que

- a) la suma y el producto respete \equiv_k sobre \mathbb{Z} ;
- b) la operación (a, b) + (c, d) = (ad + bc, bd) respete la relación de equivalencia \sim :

$$(a,b) \sim (c,d) \iff ad = bc$$

sobre $\mathbb{N}_{>0} \times \mathbb{N}_{>0}$.

iGracias!