```
In [1]: #pandas is a library and it contains the functions related to the database
import pandas as pd

In [20]: # copy .csv file data intot 'data' variable
dataset=pd.read_csv("Salary_Data.csv")

In [3]: dataset #see the content of dataset, i.e., Salary Data
```

0

ut[3]:		YearsExperience	Salary
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0
	5	2.9	56642.0
	6	3.0	60150.0
	7	3.2	54445.0
	8	3.2	64445.0
	9	3.7	57189.0
	10	3.9	63218.0
	11	4.0	55794.0
	12	4.0	56957.0
	13	4.1	57081.0
	14	4.5	61111.0
	15	4.9	67938.0
	16	5.1	66029.0
	17	5.3	83088.0
	18	5.9	81363.0
	19	6.0	93940.0
	20	6.8	91738.0
	21	7.1	98273.0
	22	7.9	101302.0
	23	8.2	113812.0
	24	8.7	109431.0
	25	9.0	105582.0
	26	9.5	116969.0
	27	9.6	112635.0
	28	10.3	122391.0
	29	10.5	121872.0

In [4]: #copy all input column data into independent variable
 independent=dataset[["YearsExperience"]]
 independent

Out[4]:		YearsExperience
,	0	1.1
	1	1.3
	2	1.5
	3	2.0
	4	2.2
	5	2.9
	6	3.0
	7	3.2
	8	3.2
	9	3.7
	10	3.9
	11	4.0
	12	4.0
	13	4.1
	14	4.5
	15	4.9
	16	5.1
	17	5.3
	18	5.9
	19	6.0
	20	6.8
	21	7.1
	22	7.9
	23	8.2
	24	8.7
	25	9.0
	26	9.5
	27	9.6
	28	10.3
	29	10.5

```
In [6]: # copy all output column data into dependant variable
    dependent=dataset[["Salary"]]
    dependent
```

Out[6]:		Salary
	0	39343.0
	1	46205.0
	2	37731.0
	3	43525.0
	4	39891.0
	5	56642.0
	6	60150.0
	7	54445.0
	8	64445.0
	9	57189.0
	10	63218.0
	11	55794.0
	12	56957.0
	13	57081.0
	14	61111.0
	15	67938.0
	16	66029.0
	17	83088.0
	18	81363.0
	19	93940.0
	20	91738.0
	21	98273.0
	22	101302.0
	23	113812.0
	24	109431.0
	25	105582.0
	26	116969.0
	27	112635.0
	28	122391.0
	29	121872.0

```
In [7]: #import train_test_split model fucntion from sklearn.model_selection to splite trai
         from sklearn.model selection import train test split
         # train adn test data split done for both X and Y axis
         X train, X test, y train, y test=train test split(independent, dependent, test size=0.
 In [8]: # import library of LinearRegression from linear_model
         from sklearn.linear model import LinearRegression
         #assign all function of LinearRegression to regressor.
         regressor=LinearRegression()
         # to create the model using train dataset
         regressor.fit(X train,y train)
 Out[8]:
             LinearRegression •
         LinearRegression()
 In [9]: #assign the weight of the linear regression into weight variable
         weight=regressor.coef
         weight
 Out[9]: array([[9360.26128619]])
In [10]: | # assign the calcuated bias value from the created model into variable bias
         bais=regressor.intercept_
         bais
Out[10]: array([26777.3913412])
In [11]: #predict the value for all splited test data
         y_pred=regressor.predict(X_test)
In [12]: # import the r2_score library to check r2 score by passing actual data & predicted
         from sklearn.metrics import r2 score
         r_score=r2_score(y_test,y_pred)
In [13]: # read the score value & if it is around 1, then it is a good model.
         r score
Out[13]: 0.9740993407213511
In [14]: # import pickle library to copy the created model
         import pickle
         # create the file name to take copy
         filename="finalized_model_linear.sav"
In [15]: #save the model into to the 'finalized_model_linear.sav' file.
         pickle.dump(regressor,open(filename,'wb'))
In [18]: #load the saved model into variable
         loaded model=pickle.load(open("finalized model linear.sav",'rb'))
```

```
# predit/run the model with user input 18
result=loaded_model.predict([[18]])
```

C:\Users\HopeAI\anaconda\Lib\site-packages\sklearn\base.py:493: UserWarning: X does
not have valid feature names, but LinearRegression was fitted with feature names
warnings.warn(

```
In [19]: # print the predicted value
  result
Out[19]: array([[195262.09449268]])
```