

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

Galois Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

For this question we work over the field \mathbb{Q} , and $f(x) := x^3 + 2x + 2$.

Lemma 1. f has no roots in \mathbb{Q} .

Proof. Let $a, b \in \mathbb{Z}$ with f(a/b) = 0 and gcd(a, b) = 1. Then

$$a^3 + 2ab^3 + 2b^3 = 0.$$

Hence, $2|a^2$. Since 2 is prime, we conclude that 2|a. Let a=2c, then

$$8c^3 + 4cb^3 + 2b^3 = 0.$$

Hence $4|2b^3$, so $2|b^3$. Thus, 2|b.

This contradicts gcd(a, b) = 1. Hence f has no rational roots.

Lemma 2. f is irreducible in $\mathbb{Q}[x]$.

Proof. If f = gh for $g, h \in \mathbb{Q}[x]$, then $\deg(g) + \deg(h) = 3$. So without loss of generality $\deg(g) = 1$. But this means f has a rational root, which is impossible.

Lemma 3. f has exactly one root over \mathbb{R} .

Proof. We compute $f'(x) = 3x^2 + 2 \ge 2 > 0$. Hence the function f is montonically everywhere increasing.

Since f(-1) = -1 and f(0) = 2, by the intermediate value theorem there is some $c \in (-1,0)$ such that f(c) = 0. Since f is monotonically increasing, this is the unique zero of f over \mathbb{R} .

Now let $\beta_1, \beta_2, \beta_3 \in \mathbb{C}$ be the distinct roots of f over \mathbb{C} , with $\beta_2 = \overline{\beta_3}$, and $\beta_1 \in \mathbb{R}$. Let $K = \mathbb{Q}(\beta_1, \beta_2, \beta_3)$.

Lemma 4. Let $\sigma : \mathbb{C} \to \mathbb{C}$ be the complex conjugation function, $\sigma(z) = \overline{z}$. Then $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$, $\sigma^2 = \operatorname{id}_{\mathbb{C}}$ and $\sigma(\beta_2) = \beta_3$.

Proof. It is evident that $\sigma \in \operatorname{Aut}(\mathbb{C})$, and $\sigma(z) = z$ for all $z \in \mathbb{Q}$ and $\sigma^2 = \operatorname{id}_{\mathbb{C}}$. By definition, $\sigma(\beta_2) = \beta_3$,

Let $z \in K$. Then there is some $p \in \mathbb{Q}[x, y, z]$ such that $z = p(\beta_1, \beta_2, \beta_3)$. Since σ fixes \mathbb{R} , we have $\sigma(z) = p(\beta_1, \beta_3, \beta_2) \in K$.

Hence $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$ has order 2.

Lemma 5. As a \mathbb{Q} -space, $\mathbb{Q}(\beta_1)$ has a basis $\{1, \beta_1, \beta_1^2\}$, and $[\mathbb{Q}(\beta_1) : \mathbb{Q}] = 3$.

Proof. Any $x \in \mathbb{Q}(\beta_1)$ can be expressed as a polynomial,

$$x = b_0 + b_1 \beta_1 + b_2 \beta_1^2 + b_3 \beta_1^3 + \cdots$$

with coefficients $b_j \in \mathbb{Q}$. However since $\beta_1^3 = -2 - 2\beta_1$, we can ignore terms of order greater than 2.

Hence $\{1, \beta_1, \beta_1^2\}$ spans $\mathbb{Q}(\beta_1)$.

These elements of K are linearly independent over \mathbb{Q} , since otherwise β_1 would satisfy some quadratic in $\mathbb{Q}[x]$, which this is impossible as f is irreducible.

Hence $\mathbb{Q}(\beta_1)$ is three dimensional as a \mathbb{Q} -space. Thus $[\mathbb{Q}(\beta_1) : \mathbb{Q}] = 3$.

It is clear that if $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$, and $f(\gamma) = 0$ then $f(\sigma(\gamma)) = 0$.

Theorem 1. There is an injective group homomorphism, $\operatorname{Aut}(K/\mathbb{Q}) \to S_3$.

Proof. Let $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$. Then for $j \in \{1, 2, 3\}$, $\sigma(\beta_j) = \beta_{\tau_{\sigma}j}$ for some $\tau_{\sigma} \in S_3$. Since K is generated by $\{\beta_1, \beta_2, \beta_3\}$ as a \mathbb{Q} -algebra, σ is uniquely determined by its values on $\{\beta_1, \beta_2, \beta_3\}$.

Denote that map $\psi : \operatorname{Aut}(K/\mathbb{Q}) \to S_3$ by $\psi(\sigma) = \tau_{\sigma}$.

Let $\sigma_1, \sigma_2 \in \operatorname{Aut}(K/\mathbb{Q})$.

Then $(\sigma_1 \circ \sigma_2)(\beta_j) = \beta_{(\tau_{\sigma_1} \circ \tau_{\sigma_2})(j)}$.

Hence $\psi(\sigma_1 \circ \sigma_2) = \psi(\sigma_1) \circ \psi(\sigma_2)$.

Thus ψ is a group homomorphism.

 ψ must be injective, as if $\tau_{\sigma_1} = \tau_{\sigma_2}$, then $\sigma_1(\beta_j) = \sigma_2(\beta_j)$ for all j. But elements of $\operatorname{Aut}(K/\mathbb{Q})$ are uniquely determined by their values on $\beta_1, \beta_2, \beta_3$. Hence $\sigma_1 = \sigma_2$.

Theorem 2. $\operatorname{Aut}(K/\mathbb{Q}) \sim S_3$.

Proof. Since complex conjugation is an element of order 2 in $\operatorname{Aut}(K/\mathbb{Q})$, we have a subgroup of order 2 so $2||\operatorname{Aut}(K/\mathbb{Q})|$.

Since $3 = [\mathbb{Q}(\beta_1) : \mathbb{Q}]$, we conclude that $3|[K : \mathbb{Q}(\beta_1)][\mathbb{Q}(\beta_1) : \mathbb{Q}] = [K : \mathbb{Q}] = |\operatorname{Aut}(K/\mathbb{Q})|$.

Thus $6||\operatorname{Aut}(K/\mathbb{Q})|$. But since there is an injective map from $\operatorname{Aut}(K/\mathbb{Q})$ to S_3 , we know that $|\operatorname{Aut}(K/\mathbb{Q})| = 6$.

Hence the map ψ in theorem 1 is bijective, hence a group isomorphism.

Question 2

We let $S_0 \subset \mathbb{R}^2$ be a finite set of points, and S_n is the set of points constructible from straightedge and compass in n steps.

The fields K_n are defined recursively. K_0 is the field extension of \mathbb{Q} given by the coordinates of points in S_0 and distances between points in S_0 , and K_n is the field extension of K_{n-1} generated by the coordinates of points in S_n and the distances between points of S_n .

Theorem 3. For $n \ge 1$, $K_n = K_{n-1}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_t})$ for some $a_1, a_2, \dots, a_t \in K_{n-1}$.

Proof. Suppose l_1 and l_2 are lines passing through distinct points of S_{n-1} , with l_1 passing through $p_1, q_1 \in S_{n-1}$ and $p_2, q_2 \in S_{n-1}$. Then l_1 and l_2 can be parametrised as

$$l_1: p_1 + \lambda(q_1 - p_1)$$

 $l_2: p_2 + \mu(q_2 - p_2)$

for parameters $\lambda \mu \in \mathbb{R}$. We can find the point of intersection by solving the system of linear equations

$$p_1 + \lambda(q_1 - p_1) = p_2 + \mu(q_2 - p_2).$$

By Cramer's rule, since the coordinates of p_1, p_2, q_1, q_2 are in K_{n-1} , the solution for λ and μ must also lie in K_{n-1} .

Now suppose C_1 and C_2 are two circles with centres $p = (p_x, p_y), q = (q_x, q_y) \in S_{n-1}$ and radii equal to the lengths of line segments joining points of S_{n-1} . Denote the radii by r_1 and r_2 respectively. The Cartesian equations for the circles are

$$C_1 : (x - p_x)^2 + (y - p_y)^2 = r_1^2$$

 $C_2 : (x - q_x)^2 + (y - q_y)^2 = r_2^2$

We must solve this pair of equations for x and y.

Now, by the quadratic formula, $x \in K_{n-1}(\sqrt{a})$ where $a \in K_{n-1}(y)$. Thus there is a polynomial $f \in K_{n-1}(y)[x]$ such that

$$(f(a) - q_x)^2 + (y - q_y)^2 = r_2^2$$
.

Hence the solutions will lie in $K_{n-1}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_t})$.

Now let l passing through distinct points $p, q \in S_{n-1}$ and C a circle with centre $c \in S_{n-1}$ and radius r equal to a distance between distinct points of S_{n-1} . Then to find points of intersection l and C we must simultaneously solve a quadratic equation and a linear equation. Hence the solutions will have roots in $K_{n-1}(\sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_t})$.

Lemma 6. There is an integer $s \ge 1$ such that $[K_N : K_0] = 2^s$.

Proof. Since $K_n = K_{n-1}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_t})$, we have

$$[K_n:K_{n-1}]=[K_{n-1}(\sqrt{a_1},\ldots,\sqrt{a_t}:K_{n-1}(\sqrt{a_2},\ldots,\sqrt{a_t})]\ldots[K_{n-1}(\sqrt{a_t}):K_{n-1}].$$

Each of the terms in the product on the left is 2, since each extension is quadratic. Hence, $[K_n:K_{n-1}]$ is a power of 2. Thus,

$$[K_N:K_0] = [K_N:K_{N-1}][K_{N-1}:K_{N-2}]\dots[K_1:K_0]$$

is a power of 2. \Box

Theorem 4. If $S_0 = \{(0,0), (1,0)\}$, then no K_n contains a root of $x^3 - 2$.

Proof. Since the coordinates and distances in S_0 are rational, we have $K_0 = \mathbb{Q}$. Since the polynomial $x^3 - 2$ is monotonically non-decreasing over \mathbb{R} , it has a unique real root. By Eisenstein's criterion, $x^3 - 2$ is irreducible, so if $\sqrt[3]{2}$ denotes the unique real root, $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$.

Now if $\sqrt[3]{2} \in K_n$ for some n, we have K_n is a field extension of $\mathbb{Q}(\sqrt[3]{2})$.

Hence, $[K_n : \mathbb{Q}(\sqrt[3]{2})]$ is well defined, and

$$[K_n:\mathbb{Q}]=[K_n:\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}].$$

Thus $3|[K_n:\mathbb{Q}]$. But this is impossible since we know $[K_n:\mathbb{Q}]=[K_n:K_0]$ is a power of 2.