Vectors

Contents

Vectors	1
Problem 1	1
Problem 2	
Problem 3	
Problem 4	
Assignment Submission	7

Time required: 120 minutes

Problem 1

A force acts on a fixed pin with a magnitude of 270 N at an angle of 55° from horizontal. Find the horizontal and vertical components of the force.

Background on vectors and vector components

In a two-dimensional coordinate system, any vector can be broken into an x-component and a y-component. For example, in the figure shown below, the vector \vec{v} is broken into two components, v_x and v_y . Let the angle between the vector and its x-component be θ .

In the figure, the components can be quickly read. The vector in the component form is

$$\vec{v} = \langle 4, 5 \rangle$$

But if we only know the magnitude of the vector \vec{v} , and the angle θ , then using trigonometric ratios, we can calculate the components of the vector as below.

$$v_x = v\cos\theta$$
 and $v_v = v\sin\theta$

We can write the vector \vec{v} as

$$\overrightarrow{v} = \langle v_x, v_y \rangle = \langle v \cos \theta, v \sin \theta \rangle$$

In MATLab, you can use the following function to calculate sine and cosine. Notice that the function depends on the units of the angles.

- sin(x): Calculates the sine of the angle 'x' in radians.
- sind(x): Calculates the sine of the angle 'x' in degrees.
- **cos(x)**: Calculates the cosine of the angle 'x' in **radians**.
- cosd(x): Calculates the cosine of the angle 'x' in degrees.
- **deg2rad(D)** converts angle units from degrees to radians for each element of D.
- rad2deg(R) converts angle units from radians to degrees for each element of R.

To read more about Trig function, click the link below.

https://www.mathworks.com/help/matlab/trigonometry.html?s_tid=CRUX_lftnav

Assignment:

Page 2 of 7 Revised: 2/15/2025

A force acts on a fixed pin with a magnitude of 270 N at an angle of 55° from horizontal. Find the horizontal and vertical components of the force.

We need to write the Force vector in vector components.

$$\vec{F} = \langle F_x, F_y \rangle$$

Where $F_x = F \cos \theta$ and $F_y = F \sin \theta$

Find the component of the vector \vec{F} and display the vector in vector form.

- 1. Assign the given values to variables.
- 2. Convert angle to radians.
- 3. Calculate the horizontal and vertical components.
- 4. Create the force vector.
- 5. Display the results.

Example run:

Horizontal Component: 154.87 N Vertical Component: 221.17 N Force Vector: [154.87, 221.17] N

Problem 2

Two boys are playing by pulling on ropes connected to a hook in a rafter. The bigger one pulls on the rope with a force of 270 N at an angle of 55° from horizontal. The smaller boy pulls with a force of 180 N at an angle of 110° from horizontal.

- 1. Assign the given values to variables.
- 2. Convert degrees to radians.
- 3. Calculate the x- and y- components of the first force $(F_1 = 270 \, N)$ and print F_1 as a vector using fprint.

NOTE: To access individual elements of a vector use: F_resultant(i); where i represents the position of the element in the vector.

- 4. Calculate the x- and y- components of the second force ($F_2 = 180 \, N$) and print F_2 as a vector using fprintf.
- 5. Calculate the resultant force on the hook? To find this, add the two vectors.

Page 3 of 7 Revised: 2/15/2025

- 6. What is the magnitude of the resultant force? To do this, use the function **norm(v)**, where v is the vector.
- 7. What is the direction of the resultant force? To do this, use any of the following functions.

Function	Argument(s)	Notes
atan(abs(Fx / Fy))	one argument: abs(F _x / F _y)	Returns the included angle
atan2(F _y , F _x)	two arguments: F_x and F_y	Returns the coordinate direction angle
		Angle value is always between 0 and π radians (0 and 180°)
		A negative sign on the angle indicates a result in one of the lower quadrants of the Cartesian coordinate system
cart2pol (F _x , F _y)	two arguments: $F_{\boldsymbol{x}}$ and $F_{\boldsymbol{y}}$	Returns the positive angle from the positive x-axis to the vector
		Angle value always between 0 and 2π radians (0 and 360°)
		An angle value greater than 180° (π radians) indicates a result in one of the lower quadrants of the Cartesian coordinate system

Display the resulting information using fprintf.

Example run:

F1 Vector: [154.87, 221.17] N F2 Vector: [-61.56, 169.14] N

Resultant Force Vector: [93.30, 390.32] N Magnitude of Resultant Force: 401.31 N Direction of Resultant Force: 76.56°

Problem 3

A traveler at the airport is pulling her 15-kg suitcase.

Suppose the traveler is applying a force so that the net force on the vertical direction is at a static equilibrium. That is, the vertical component of the force is equal to the gravitational force of the suitcase. A force analysis to illustrate the scenario is given below.

4 of 7 Revised: 2/15/2025

If the traveler is applying a force F at a 60° angle from the floor, use projection of the force F to find the amount of force the traveler is using to pull the suitcase. Use g=9.8m/s².

The vertical component of the force is equal to the gravitational force of the suitcase,

$$F_{v} = mg$$

We can also write the vertical component of the vector F as

$$F_{v} = F \sin(\theta)$$

Combining these two equations, we get,

$$F\sin(\theta) = mg$$

Solve this equation to find the magnitude of the force (F) applied on the suitcase.

- 1. Assign the given values to variables.
- 2. Convert degrees to radians.
- 3. Write the force F in vector form.
- 4. As the suitcase moves along a straight line for 50 meters on the ground, find the work done to move the suitcase forward.

The suitcase is moving along the ground, which is same as x-axis. We can write the distance in the vector form as d = [50,0].

Work done is calculated as W = Fd

When the force and distance is in vector form, we use the dot product to calculate the work done. $W = \vec{F} \cdot \vec{d}$

The dot product (or scalar product) can be calculated in two ways:

In trigonometric terms, the equation for a dot product is written as

$$A \bullet B = AB\cos(\theta)$$

where θ is the angle between arbitrary vectors A and B.

In matrix form, the equation is written

$$A \bullet B = A_x B_x + A_y B_y + A_z B_z$$

MATLAB provides a dot product function, **dot(A,B)** to automatically perform the calculations required by the matrix form of the dot product.

Page 5 of 7 Revised: 2/15/2025

5. The traveler had to lift the suitcase to the conveyor belt for a security check. Assume the initial position of the suitcase is at the origin, and the ending position is at <3, 1>. Use a dot product to find the work done.

If the origin is defined as $d_1 = [0,0]$ and ending as $d_2 = [3,1]$, the distance travelled will be,

$$d = d_2 - d_1$$

Use the dot product of the force vector and the distance travelled to find the work done.

Example run:

Force Vector: [84.87, 147.00] N

Work Done: 401.61 J

Problem 4

Consider a wrench being used to tighten a bolt. If the length of the wrench is represented by the position vector $\vec{r} = [2, -1,3]$ and the force applied by the hand is $\vec{F} = [3,4,2]$, find the torque $\vec{\tau}$.

Background

Torque (\vec{t}) is a measure of the rotational force on an object. It is calculated using the **cross product** of the position vector \vec{r} and the force vector \vec{F} .

The **cross product** (or vector product) can be calculated in two ways:

In trigonometric terms, the equation for a dot product is written as

$$\vec{C} = \vec{A} \times \vec{B} = AB \sin(\theta) \vec{u}_c$$

where θ is the angle between arbitrary vectors \vec{A} and \vec{B} , and \vec{u}_c is a unit vector in the direction of \vec{C} (perpendicular to \vec{A} and \vec{B} , using right-hand rule).

In matrix form, the equation is written in using components of vectors \vec{A} and \vec{B} , or as a determinant. Symbols \vec{i} , \vec{j} , and \vec{k} represent unit vectors in the coordinate directions.

$$\vec{i} = [1, 0, 0], \qquad \vec{j} = [0, 1, 0], \qquad \vec{k} = [0, 01]$$

$$\begin{vmatrix} \mathbf{A} \times \mathbf{B} = (\mathbf{A}_{y} \mathbf{B}_{z} - \mathbf{A}_{z} \mathbf{B}_{y}) \mathbf{i} - (\mathbf{A}_{x} \mathbf{B}_{z} - \mathbf{A}_{z} \mathbf{B}_{x}) \mathbf{j} + (\mathbf{A}_{x} \mathbf{B}_{y} - \mathbf{A}_{y} \mathbf{B}_{x}) \mathbf{k} \\ = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{A}_{x} & \mathbf{A}_{y} & \mathbf{A}_{z} \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \end{vmatrix}$$

Page 6 of 7 Revised: 2/15/2025

MATLAB provides a cross product function, **cross(A,B)**, to automatically perform the calculations required by the matrix form of the cross product.

Assignment

Consider a wrench being used to tighten a bolt. If the length of the wrench is represented by the position vector $\vec{r} = [2, -1,3]$ and the force applied by the hand is $\vec{F} = [3,4,2]$, find the torque $\vec{\tau}$.

Example run:

Torque Vector: [-14.00, 5.00, 11.00] N $^{\circ}m$

Assignment Submission

- 1. Submit properly named and commented script file.
- 2. Attach a screenshot of the Command Window showing the successful execution of each script.
- 3. Attach all to the assignment in Blackboard.

Page 7 of 7 Revised: 2/15/2025