HW0 Puzzle: Why different results?

Result: 69

Result: 5 l

```
file = open('iowa-liquor-sample.csv','r')
n = 0
for line in file:
   temp = line.lower()
   if 'single malt scotch' in temp:
      n += 1
print n
```

HW0 Puzzle: Why different results?

Result: 69

```
import csv
file = open('iowa-liquor-sample.csv')
file_reader = csv.reader(file)
n = 0
for row in file_reader:

for el in row:
   if "single malt scotch" in el.lower():
        n += 1

print n
```

Result: 5 I

```
file = open('iowa-liquor-sample.csv','r')
n = 0
for line in file:
   temp = line.lower()
   if 'single malt scotch' in temp:
        n += 1
print n
```

HW0: Why the different results?

Result: 69

```
import csv
file = open('iowa-liquor-sample.csv')
file_reader = csv.reader(file)
n = 0
for row in file_reader:

for el in row:
   if "single malt scotch" in el.lower():
        n += 1

print n
```

Result: 5 I

```
file = open('iowa-liquor-sample.csv','r')
n = 0
for line in file:
   temp = line.lower()
   if 'single malt scotch' in temp:
      n += 1
print n
```

Example record:

[...], SINGLE MALT SCOTCH, [...], Macallan 12 Yr Single Malt Scotch, [...]

Poll: HW0

- A) Short
- B) Medium
- C) Long

Administrative Notes

 Waiting list: 107! First come, first served (sorry); Looks like 8 should get in today?

Project I: Build a web application!

Step I: Find a partner

Step 2: Discuss it with an IA (next week; see web site)

Lecture 2 Entity-Relationship Model

Steps for a New Application

Requirements

what are you going to build?

Conceptual Database Design

high-level description

Logical Design

formal database schema

Schema Refinement

fix potential problems, normalization

Physical Database Design

use sample of queries to optimize for speed/storage

Steps for a New Application

Requirements

what are you going to build?

Conceptual Database Design

high-level description

ER Modeling

Logical Design

formal database schema

Schema Refinement:

fix potential problems, normalization

Physical Database Design

use sample of queries to optimize for speed/storage

Database Apps Are Complicated

Typical Fortune 100 Company

~10k different information (data) systems

90% relational databases (DBMSes)

Typical database has >100 tables

Typical table has 50 – 200 attributes

https://upload.wikimedia.org/wikipedia/commons/f/f7/MediaWiki_I.24.I_database_schema.svg

Inconsistencies/Constraint Violations

Huge amount of effort to avoid inconsistencies

DBLP is the site for computer science publications

Inconsistencies/Constraint Violations

Inconsistencies/Constraint Violations

Giving me eugenewu@gmail would violate constraints

App Server

Let's make a webapp \$\$\$

live exercise time

Entity-Relationship Modeling

Entities (objects) to store and their attributes Relationships between entities and attributes Integrity constraints & business rules Visually modeled, easy to turn into DB schema

NEXT SEMESTER COURSES			
Fall 2015 - Spring 2016 Co	ourses		
Course Number	Course Title		
COMSE6910_024_2015_3	FIELDWORK		
COMSW4111_001_2015_3	INTRODUCTION TO DATABASES		

Reflects Registrar changes through Mar-06-2015 2:02:13AM

Courses

Course Number

Course Title

Year

Semester

Contact Information

Email	ew2493@columbia.edu	
Home page		
Work phone		
Home phone		
Mobile phone		
Facsimile		
	Save changes Cancel	

Users Nickname Name Birthday Summary Email

. . .

Basics: Entities

```
Entity e.g., intro to databases
real-world object distinguishable from other objects
described as set of <u>attributes</u> & the values
(think one record)
```

Entity Set e.g., all courses

collection of similar entities

all entities have same attributes (except Is-A, later)

must have one or more keys

≈ table

Example: Entity

Keys (cid, uid) are underlined

Values must be unique

(think: can use as hash table key to find value)

Basics: Relationships

Relationship: association between 2 or more entities

e.g., alice is taking Introduction to DBs

Relationship Set: collection of similar relationships

N-ary relationship set R relates N entity sets $E_1 \dots E_n$

Each $r \in R$ involves entities $e_1 \dots e_n$

An E_i can be part of multiple relationship sets or multiple roles in same set

Basics: Relationships

Users takes different roles in same relationships set

Basics: Relationships

Relationships sets can have descriptive attributes

e.g., the since attribute of Instructs

Basics: Ternary Relationships

Connects three entities

N-ary relationships possible too.

Constraints

Help avoid corruption, inconsistencies

Key constraints

Participation constraints

Weak entities

Overlap and covering constraints

Key Constraints

Defines cardinality requirements on relationships

Many to many e.g., consider Takes

a user can take many courses

a course can have many users that take the course

One to Many e.g., consider Instructs

a course has at most one instructor

A course has at most one instructor

A course has at most one instructor

One-to-one:
A course has at most one instructor AND users can instruct at most one course

Participation Constraints

Does every course need an instructor?

If yes, it's a participation constraint (thick line)

e.g., participation of Courses in instructs is Total

Otherwise, partial participation constraint

Weak Entities

A weak entity can only be uniquely identified by using the primary key of its owner entity

Owner and weak entity sets must be in one to many relationship set

Weak entity set must have total participation in this identifying relationships set

At most one

At least one

Exactly one

Weak Entity

5 min exercise (aka break)

Diagram an airplane reservation with the following entities:

Passenger

Seat

What other entities might exist?

Possible solution

Seat: At most I reservation (no double booking)
Passenger: Optional: at least one reservation (thick line)

ISA (is a) Hierarchies

Inheritance rules similar to programming languages

A ISA B \rightarrow every A also considered a B

When querying for Bs, must consider As

Why use ISA?

add descriptive attributes specific to a subclass e.g., grade identify entities that participate in a relationship

ISA (is a) Hierarchies

Overlap Constraint

can eugene be an instructor and a student? (allow/disallow)

Covering Constraint

must every user be an instructor or student? (yes/no)

HOW DO WE EXPRESS THESE IN AN ER DIAGRAM???????

Aggregation

Relationships between (entities – relationships)
Lets us treat a Relationship Set like an Entity Set
so it can participate in other relationships

Aggregation vs Ternary Relationships

Why use aggregation?

Manages and Donates are distinct relationships with own attrs

Can define constraints on relationship sets

e.g., a donation can be managed by at most one instructor

Aggregation vs Ternary Relationships

Constraints apply to all connected entity sets

