

Sistemas de Inteligencia Artificial

Trabajo Práctico Especial 3:

Algoritmos Genéticos

Integrantes:

•	María de los Angeles Arlanti	marlanti@itba.edu.ar	53373
•	Mauricio Minestrelli	mminestr@itba.edu.ar	52015
•	Santiago Ocamica	socamica@itba.edu.ar	53346
•	Agop Matías Hurmuz	ahurmuz@itba.edu.ar	53248

Profesores:

- Parpaglione, Maria Cristina
- Pierri, Alan

Introducción	3
Implementación	3
Generación de población inicial	3
Métodos de Selección:	3
Métodos de Cruza:	4
Mutación	4
Método de Reemplazo 2:	4
Método de Reemplazo 3:	4
Métodos de corte implementados:	5
Elección de Corte	5
Análisis de Resultados	5
Mejor Blend de Selección	5
Procedimiento	5
Conclusiones	6
Análisis de Condición de Corte	6
Mejor Cruza	6
Mejor Reemplazo	7
Mejor Fitness	7
Mejor Configuración 1:	7
Fitness obtenido: 33.533	8
Mejor Configuración 2:	8
Fitness obtenido: 33.485	8
Visualización de los datos	9
Mejores Resultados Blend Selección	11
Tablas Análisis Métodos de Selección	12
Resultados fijando un blend para el mismo método Selección y Reemplazo	12
Fijando Selección Universal en Reemplazo 2	13
Fijando selección Ruleta en Reemplazo 2	14
Fijando selección Ranking en Reemplazo 2	15
Fijando selección Torneo Probabilístico en Reemplazo 2	16
Fijando Reemplazo Torneo Determinístico en Reemplazo 2	17
Comparación Cortes	18
Fijando Reemplazo Universal	18
Tablas Análisis Métodos de Cruza	21
Caso 1	21
Caso 2	22
Manual de uso	23
Archivo de configuración	23

25
26
26
26

Introducción

El objetivo de este trabajo fue implementar un motor de algoritmo genético para poder obtener el mayor desempeño de un personaje para un videojuego. Los ítems posibles con sus stats correspondientes fueron otorgados por la cátedra y con las distintas estrategias implementadas para generar las poblaciones se pudo llegar a la mejor configuración para el personaje.

Implementación

La población es un conjunto de personajes a los cuales los llamaremos individuos y estos están compuestos por genes representados por los ítems (un vector) y la altura. Cada individuo es una configuración válida. Cada ciclo del algoritmo se denomina generación y en estas se van eligiendo individuos (padres) los cuales se **cruzan** para obtener nuevos individuos (**hijos**). Durante la cruza pueden ocurrir **mutaciones**. Luego dependiendo el método de **reemplazo** utilizado se eligen entre padre e hijos N (igual al tamaño de la población) individuos para volver a correr el algoritmo hasta el corte indicado.

Generación de población inicial

Se generan N individuos, con 5 diferentes items random (todos válidos ya que están en los posibles que nos entregó la cátedra) y una altura tambien random con distribución uniforme entre 1.3 - 2.0.

Métodos de Selección:

- Ruleta: Se tiene un vector con los acumulados de los fitnesses relativos, también un vector de k numero random el cual se compara con 2 de los acumulados para así obtener un hijo tomado el individuo de mayor acumulado entre ellos.
- Torneo Probabilístico: se toman 2 individuos random, se genera un número al azar si este es menor a 0.75 se selecciona el individuo más apto sino el menos apto.
- Torneo Determinístico: se eligen entre m individuos (que le paso por parámetro) el que tiene mayor fitness, esto se repite k veces.
- Elite: Se eligen los k individuos con mayor fitness.
- Ranking: se ordenan de menor a mayor los fitnesses(se rankean) y luego se calcula una probabilidad de la siguiente maner p = índice/sumatoria de todos los índices, y de estos se eligen k con el método de ruleta.
- Universal: este método es muy similar a ruleta con la diferencia de la generación del vector de números a comparar. Aquí se genera un solo numero random y con ese el vector a comparar con la siguiente cuenta rj = rand + j +1 / k.

Métodos de Cruza:

Todos los métodos reciben 2 individuos(padres) y se intercambian genes entre sí formando 2 nuevos individuos(hijos)

- Uniforme: se genera un numero random para cada gen de cada individuo, si este número es menor a 0.5 se intercambia ese gen por el del otro individuo sino no cambia nada.
- Anular: se genera un número al azar y un luego otro que representa un segmento, para así intercambiar desde una posición el segmento indicado.
- Dos Puntos: se generan 2 puntos al azar y se intercambian los genes de un individuo con el otro del rango comprendido entre los dos números.
- Un Punto: se genera un punto al azar y se intercambia desde ese índice hasta el final los genes con el otro individuo.

Mutación

Por parámetro, en configuración, se pasa el valor de probabilidad de mutar(pm). Para llevar a cabo la mutación se le pasa un individuo, para cada gen del mismo se calcula un numero random el cual se compra con el pm y si este es menor se procede a mutar. Si el gen a mutar es un item se lo cambia por cualquier otro item al azar, en cambio si el gen refiere a la altura del personaje se le asigna una nueva también al azar en el intervalo 1.3 - 2.0.

Método de Reemplazo 2:

Una vez generados los hijos hay que volver a seleccionar ahora N individuos para conformar la nueva población. En este método se seleccionan N - k individuos de la población de la generación t que pasan sin modificación a la generación t+1 y lo k hijos generados; quedándonos así con N individuos. El reemplazo 1 visto en clase es un caso particular de este ya que es cuando k =N con lo que resultaría que la población resultante que pasa a la generación t+1 son los hijos generados, teniendo toda una población nueva.

Método de Reemplazo 3:

Este es otro método de reemplazo en el cual se eligen N-k de la misma manera que el reemplazo 2, pero cambia como se eligen los k individuos faltantes. Estos son elegidos del total de N+k individuos.

Métodos de corte implementados:

- Máximo número de generaciones.
- Solución óptima: Se alcanza la solución óptima o se llega a un fitness inferior a una cota.

- Estructura: un porcentaje de la población no cambia de generación en generación.
- Contenido: el mejor fitness de la población no progresa después de un número de generaciones.

Elección de Corte

- Para realizar las pruebas utilizamos corte por estructura, contenido y la combinación de ambos. Estos son los métodos que más se adecuan al problema dado.
- Sólo tomamos máxima generación para realizar debug ya que para el análisis no aporta información relevante.
- No utilizamos corte óptimo para realizar las pruebas dado que no aplica a éste tipo de problema. Sería adecuado utilizar éste tipo de corte para problemas que por ejemplo impliquen aproximar una pieza que tenga un óptimo conocido.

Análisis de Resultados

Se tomaron pruebas para N= 300 y k=200. En una primera pasada se hicieron pruebas para N=3000 y N=2000 pero el tiempo de espera era superior a las 2hs.

Mejor Blend de Selección

Procedimiento

- Se fijó el reemplazo utilizado en 2, por ser el mejor.
- Se fijaron los métodos de selección y reemplazo 1 en Elite.
- Se fijó Método de Cruza en Uniforme.
- Se fijó porcentaje de corte de estructura en 10% (ver tablas con resultados).
- Se fijó porcentaje de corte de estructura en 80% (ver tablas con resultados).
- Se fijó método de reemplazo 2 en Universal (ver tablas con resultados)
- Se fijó método de reemplazo 2 en Ruleta (ver tablas con resultados)
- Se fijó método de reemplazo 2 en Ranking (<u>ver tablas con resultados</u>)
- Se fijó método de reemplazo 2 en Torneo Probabilístico (ver tablas con resultados)
- Se fijó método de reemplazo 2 en Torneo Determinístico (ver tablas con resultados)
- Se cruzaron todas las posibilidades para los métodos de selección 2 fijando todas las posibilidades de reemplazo 2 (ver tablas con resultados).
- Se variaron los porcentajes de Elite 1%, 5% y 10% para cada combinación de selección y reemplazo 2.

Conclusiones

Para observar el mejor Blend se comparó el máximo fitness obtenido con cada configuración.

Se eligió siempre poner un porcentaje de blend de Elite tanto en selección como en reemplazo dado que asegura un porcentaje de los mejores fitnesses.

De todas las combinaciones relatadas en Procedimiento, se realizó un análisis de los mejores resultados (Ver resumen de mejores resultados).

Se obtuvo que:

- Los mejores resultados fueron alcanzados con un porcentaje de Elite de 1% o del 5%.
- Los mejores métodos de selección fueron Torneos Probabilísticos y Torneos Determinísticos, siendo los que obtuvieron mejores fitnesses con distintas combinaciones de reemplazo.
- El mejor fitness obtenido es aproximadamente 33.
- Combinar métodos de selección con un reemplazo de ranking da buenos resultados de fitness.

Análisis de Condición de Corte

Cómo se justifica en <u>Elección de Corte</u>, se utilizó una combinación entre corte por estructura y contenido. Se puede observar la tercera y última columna de las <u>tablas</u> <u>de resultados</u> de las cuales se deducen las siguientes observaciones:

- En un primer momento se tomaron pruebas con un porcentaje de coincidencia para estructura del 10% pero pedir que dicho porcentaje de población no cambie para la siguiente generación tiene una probabilidad muy alta de que ocurra y genera un corte prematuro.
- Es por ésto que se subió el porcentaje de coincidencia a un 80% de estructura que como se observa en las <u>tablas</u> <u>de resultados</u> da lugar a que corte antes por Contenido y se mejore el fitness obtenido con el 10% de estructura, recordando que la condición elegida es una combinación de ambas.

Mejor Cruza

Una vez realizadas las pruebas para saber cual es el mejor blend de selección , se tomó lo que mejor resultados nos dio para probar con los distintos métodos de cruza. Para ello también se comparó los fitness máximos para elegir entre las 2 configuraciones el mejor.

Esto entonces resulta que la mejor cruza es la uniforme, como se pueden ver en las tablas referidas en los casos 1 y 2.

Caso 1:

Reemplazo 2, Selección padres= elite(1%) + Torneo determinístico(99%), Selección para reemplazo = elite(1%) + universal(99%), Corte = mixto (estructura o contenido), m=2, pm=0.1 (<u>ver tabla de resultados</u>)

Caso 2:

Reemplazo 2, Selección padres= elite(5%) + Torneo probabilístico(95%), Selección para reemplazo = elite(5%) + probabilístico(95%), Corte = mixto (estructura o contenido), m=2, pm=0.1 (ver tabla de resultados)

Mejor Reemplazo

El método de reemplazo 2 (en la que siempre los hijos pasan a la nueva generación) nos dió mejores resultados. Nuestra explicación es que este método asegura que va a haber una mínima variación genética entre generaciones y ayuda a que la evolución no se estanque. Este método resultó en un 10% mejor fitness que el método 3 (con los demás parámetros constantes 30.1 vs 27 de fitness máximo promedio entre pruebas).

Mejor Fitness

Con los resultados obtenidos para método de reemplazo, cruza, blends de selección y cortes se ha llegado a que el mejor fitness se obtuvo con la configuración:

Mejor Configuración 1:

Corte: 80% Struct + 10 Content

Método de Reemplazo: 2

Cruza: Uniforme

Selección: 5% de Elite + 95% Torneo Probabilistico

Reemplazo: 5% de Elite + 95% Ranking

Fitness obtenido: 33.533

Mejor Configuración 2:

Corte: 80% Struct + 10 Content

Método de Reemplazo: 2

Cruza: Uniforme

Selección: 1% de Elite + 99% Torneo Deterministico

Reemplazo: 1% de Elite + 99% Ranking

Fitness obtenido: 33.485

Visualización de los datos

Para la visualización de los datos se elaboraron tres gráficos:

- Gráfico de stats: sirve para ver por cada ítem cuál es la distribución de los atributos 'Fuerza', 'Agilidad', 'Pericia', 'Resistencia' y 'Vida' y cuál es la distancia al ideal máximo. (Ver figura 1)
- Gráfico de evolución fitness: este gráfico muestra la evolución del fitness del individuo con fitness máximo tanto promedio como generación a generación. (Ver figura 2)
- Histograma de distribución de fitness: este gráfico muestra la distribución de los distintos valores de fitness en distintas cantidades de personas relativas al total de la población. (Ver figura 3)

Conclusión

- Los mejores resultados fueron alcanzados con un porcentaje de Elite de 1% o del 5%.
- Los mejores métodos de selección fueron Torneos Probabilísticos y Torneos Determinísticos, siendo los que obtuvieron mejores fitnesses con distintas combinaciones de reemplazo.
- El mejor fitness obtenido es aproximadamente 33.
- Combinar métodos de selección con un reemplazo de ranking da buenos resultados de fitness.
- Cruza Uniforme dió los mejores resultados.
- Método de Reemplazo 2 dio los mejores resultados.
- Los algoritmos genéticos son una buena herramienta para resolver problemas donde el espacio de soluciones es muy grande.

Anexo

Mejores Resultados Blend Selección

Selección	Reemplazo	Elite (%)	Corte Mix	Generaci ones	Max Fitness	CutCondit ion
probabilisti cTournam ent	probabilistic Tournament	0.01	structure = 10 content = 10	55	32.101	content
determinis ticTourna ment	universal	0.01	structure = 10 content = 10	56	33.482	structure
probabilisti cTournam ent	roulette	0.01	structure = 10 content = 10	49	30.677	content
universal	ranking	0.05	structure = 10 content = 10	59	32.518	structure
determinis ticTourna ment	ranking	0.01	structure = 10 content = 10	64	32.508	structure
probabilisti cTournam ent	ranking	0.05	structure = 10 content = 10	43	32.131	structure
probabilisti cTournam ent	probabilistic Tournament	0.05	structure = 10 content = 10	19	33.248	structure
roulette	deterministic Tournament	0.01	structure = 10 content = 10	43	31.578	structure

determinis ticTourna ment	ranking	0.01	structure = 80 content = 10	46	33.485	content
probabilisti cTournam ent	ranking	0.05	structure = 80 content = 10	45	33.533	content
probabilisti cTournam ent	universal	0.1	structure = 80 content = 10	67	32.293	content

Tablas Análisis Métodos de Selección

Resultados fijando un blend para el mismo método Selección y Reemplazo

Selección2 y Reemplazo4	Elite (%)	Tiempo (min)	Generacione s	Max Fitness	CutCondition
universal	0.01	1.1919	45	27.332	content
universal	0.05	0.95007	38	28.788	structure
universal	0.1	0.55104	24	29.096	structure
boltzmann	0.01	0.052188	3	26.323	structure
boltzmann	0.05	0.13119	6	28.898	structure
boltzmann	0.1	0.10084	5	28.986	structure
deterministic Tournament	0.01	0.22204	36	32.064	structure
deterministic Tournament	0.05	0.13215	21	30.512	structure

deterministic Tournament	0.1	0.12462	19	31.838	structure
probabilistic Tournament	0.01	0.35426	55	32.101	content
probabilistic Tournament	0.05	0.14606	23	31.261	structure
probabilistic Tournament	0.1	0.12740	21	29.721	structure
ranking	0.01	0.62667	22	21.282	content
ranking	0.05	1.7377	61	28.201	content
ranking	0.1	0.77614	29	29.570	structure
roulette	0.01	1.0808	41	27.948	content
roulette	0.05	0.44174	18	28.282	structure
roulette	0.1	0.41744	17	26.842	structure

Fijando Selección Universal en Reemplazo 2

Selección	Elite (%)	Tiempo (min)	Generacion es	Max Fitness	CutConditio n
universal	0.01	1.0048	41	30.029	content
universal	0.05	0.69214	28	30.579	structure
universal	0.1	0.56515	25	30.816	structure
boltzmann	0.01	0.082227	4	24.998	structure
boltzmann	0.05	0.047936	3	24.057	structure
boltzmann	0.1	0.048483	3	26.243	structure
deterministic	0.01	0.72595	56	33.482	structure

Tournament					
deterministic Tournament	0.05	0.36510	27	32.004	structure
deterministic Tournament	0.1	0.15756	13	30.567	structure
probabilistic Tournament	0.01	0.30144	23	27.083	content
probabilistic Tournament	0.05	0.18847	15	30.242	structure
probabilistic Tournament	0.1	0.30671	24	29.889	structure
ranking	0.01	0.60427	22	22.715	content
ranking	0.05	1.6320	60	30.268	structure
ranking	0.1	0.79277	29	27.425	structure
roulette	0.01	1.2805	51	28.514	content
roulette	0.05	1.0107	39	30.840	structure
roulette	0.1	0.45160	19	26.670	structure

Fijando selección Ruleta en Reemplazo 2

Selección	Elite (%)	Tiempo (min)	Generacion es	Max Fitness	CutConditio n
universal	0.01	0.91989	45	29.293	content
universal	0.05	0.67082	34	30.632	structure
universal	0.1	0.27435	15	28.975	structure
boltzmann	0.01	0.063812	4	27.895	structure
boltzmann	0.05	0.063275	4	24.398	structure

boltzmann	0.1	0.069844	4	28.545	structure
deterministic Tournament	0.01	0.27121	26	29.114	structure
deterministic Tournament	0.05	0.12868	13	30.128	structure
deterministic Tournament	0.1	0.14145	15	28.367	structure
probabilistic Tournament	0.01	0.50712	49	30.677	content
probabilistic Tournament	0.05	0.23728	24	27.081	structure
probabilistic Tournament	0.1	0.11061	12	27.946	structure
ranking	0.01	0.47381	22	21.676	content
ranking	0.05	0.78237	36	29.423	structure
ranking	0.1	0.49984	25	25.433	structure
roulette	0.01	1.4118	65	28.785	content
roulette	0.05	0.48794	25	29.565	structure
roulette	0.1	0.42942	23	28.898	structure

Fijando selección Ranking en Reemplazo 2

Selección	Elite (%)	Tiempo (min)	Generacion es	Max Fitness	CutConditio n
universal	0.01	1.4883	69	30.526	content
universal	0.05	1.2308	59	32.518	structure
universal	0.1	0.46888	24	30.768	structure
boltzmann	0.01	0.069767	4	29.397	structure
boltzmann	0.05	0.066576	4	27.746	structure
boltzmann	0.1	0.084500	5	26.566	structure
deterministic	0.01	0.72264	64	32.508	structure

Tournament					
deterministic Tournament	0.05	0.32455	30	29.054	structure
deterministic Tournament	0.1	0.20593	20	31.419	structure
probabilistic Tournament	0.01	0.72896	63	28.697	structure
probabilistic Tournament	0.05	0.46902	43	32.131	structure
probabilistic Tournament	0.1	0.30546	29	29.808	structure
ranking	0.01	1.3256	57	25.800	structure
ranking	0.05	1.2733	56	28.825	structure
ranking	0.1	0.76708	35	27.206	structure
roulette	0.01	0.92155	43	30.706	structure
roulette	0.05	0.67821	33	30.982	structure
roulette	0.1	0.42712	22	29.820	structure

Fijando selección Torneo Probabilístico en Reemplazo 2

Selección	Elite (%)	Tiempo (min)	Generacion es	Max Fitness	CutConditio n
universal	0.01	0.87162	46	31.726	content
universal	0.05	0.51074	29	31.976	structure
universal	0.1	0.35256	21	28.571	structure
boltzmann	0.01	0.061677	4	27.574	structure
boltzmann	0.05	0.060142	4	29.027	structure
boltzmann	0.1	0.076146	5	24.802	structure
deterministic	0.01	0.21351	34	30.076	structure

Tournament					
deterministic Tournament	0.05	0.13445	20	29.262	structure
deterministic Tournament	0.1	0.093346	16	30.345	structure
probabilistic Tournament	0.01	0.30722	46	28.622	structure
probabilistic Tournament	0.05	0.11569	19	33.248	structure
probabilistic Tournament	0.1	0.10009	17	29.442	structure
ranking	0.01	0.42690	23	24.083	content
ranking	0.05	0.58504	30	27.061	structure
ranking	0.1	0.32786	18	26.548	structure
roulette	0.01	0.99118	54	32.334	content
roulette	0.05	0.30893	18	28.574	structure
roulette	0.1	0.43778	26	31.307	structure

Fijando Reemplazo Torneo Determinístico en Reemplazo 2

Selección	Elite (%)	Tiempo (min)	Generacion es	Max Fitness	CutConditio n
universal	0.01	0.45116	29	29.263	structure
universal	0.05	0.33939	23	28.944	structure
universal	0.1	0.22617	16	29.019	structure
boltzmann	0.01	0.053782	4	27.259	structure
boltzmann	0.05	0.050236	4	28.256	structure
boltzmann	0.1	0.048890	4	23.713	structure
deterministic	0.01	0.12985	24	30.486	structure

Tournament					
deterministic Tournament	0.05	0.15810	20	31.061	structure
deterministic Tournament	0.1	0.064960	12	30.463	structure
probabilistic Tournament	0.01	0.14379	26	27.837	structure
probabilistic Tournament	0.05	0.11955	23	28.640	structure
probabilistic Tournament	0.1	0.059407	12	27.801	structure
ranking	0.01	0.40787	24	21.489	content
ranking	0.05	0.54747	33	28.235	content
ranking	0.1	0.37840	24	29.804	structure
roulette	0.01	0.68189	43	31.578	structure
roulette	0.05	0.44843	30	30.415	structure
roulette	0.1	0.26935	19	29.480	structure

Comparación Cortes

Fijando Reemplazo Universal

Selección	Elite (%)	Corte Mix	Tiempo (min)	Generaci ones	Max Fitness	CutCondit ion
universal	0.01	structure = 10 content = 10	1.0048	41	30.029	content
universa l	0.01	structure = 80 content = 10	1.8140	86	29.738	content

universal	0.05	structure = 10 content = 10	0.69214	28	30.579	structur e
universal	0.05	structure = 80 content = 10	1.4565	72	32.046	content
universal	0.1	structure = 10 content = 10	0.56515	25	30.816	structur e
universal	0.1	structure = 80 content = 10	2.6316	134	32.046	content
determinis ticTourna ment	0.01	structure = 10 content = 10	0.72595	56	33.482	structur e
determinis ticTourna ment	0.01	structure = 80 content = 10	0.61837	59	31.502	content
determinis ticTourna ment	0.05	structure = 10 content = 10	0.36510	27	32.004	structur e
determinis ticTourna ment	0.05	structure = 80 content = 10	0.52119	51	31.108	content
determinis ticTourna ment	0.1	structure = 10 content = 10	0.15756	13	30.567	structur e
determinis ticTourna ment	0.1	structure = 80 content = 10	0.31283	32	31.886	content
probabilisti cTournam	0.01	structure = 10	0.30144	23	27.083	content

ent		content = 10				
probabilisti cTournam ent	0.01	structure = 80 content = 10	0.69664	65	31.991	content
probabilisti cTournam ent	0.05	structure = 10 content = 10	0.18847	15	30.242	structur e
probabilisti cTournam ent	0.05	structure = 80 content = 10	1.0249	94	31.910	content
probabilisti cTournam ent	0.1	structure = 10 content = 10	0.30671	24	29.889	structur e
probabilisti cTournam ent	0.1	structure = 80 content = 10	0.67386	67	32.293	content
ranking	0.01	structure = 10 content = 10	0.60427	22	22.715	content
ranking	0.01	structure = 80 content = 10	0.85987	38	24.226	content
ranking	0.05	structure = 10 content = 10	1.6320	60	30.268	structur e
ranking	0.05	structure = 80 content = 10	0.98328	45	27.214	content
ranking	0.1	structure = 10 content = 10	0.79277	29	27.425	structur e

ranking	0.1	structure = 80 content = 10	0.70158	34	29.664	content
roulette	0.01	structure = 10 content = 10	1.2805	51	28.514	content
roulette	0.01	structure = 80 content = 10	0.93509	45	30.559	content
roulette	0.05	structure = 10 content = 10	1.0107	39	30.840	structur e
roulette	0.05	structure = 80 content = 10	1.6897	83	31.744	content
roulette	0.1	structure = 10 content = 10	0.45160	19	26.670	structur e
roulette	0.1	structure = 80 content = 10	1.0179	53	30.988	content

Tablas Análisis Métodos de Cruza

Caso 1

Cruza	Tiempo (min)	Generaciones	Max Fitness
uniforme	0.66502	37	32.662
dos puntos	0.55418	33	31.110

un punto 0.55233 31 32.528	
----------------------------	--

Caso 2

Cruza	Tiempo (min)	Generaciones	Max Fitness
uniforme	0.24228	28	32.084
dos puntos	0.25141	29	30.616
un punto	0.10677	13	28.562

Manual de uso

El proyecto fue implementado utilizando GNU Octave 4.2.1 y Geometry 3.0.0. Para utilizar el proyecto, se requiere un interprete de Octave, y el paquete Geometry, para poder crear los gráficos de datos.

Para instalar octave en Ubuntu, utilizar el siguiente comando:

```
$ sudo apt-get install octave
```

Para instalar el paquete geometry en la consola de octave ejecutar:

```
$ octave> pkg install -forge geometry
```

Una vez instalado ejecutar la función Main en /src. Antes de la ejecución se deberá parametrizar el archivo de configuración, el cual permitirá elegir el modo de corrida, métodos de selección, de cruza y de reemplazo, así como también criterios de corte, todos ellos detallados en el informe (/docs/informe.pdf).

Archivo de configuración

El archivo de configuración *configuration.txt* sigue el formato nombreDeCampo=valor siendo los campos y los valores esperados los detallados a continuación:

Parámetro	Valor/es	Uso
debug	t-f	Modo debug activado
test	t-f	Modo test activado
hybridWithPartitions	t-f	Utilización de particiones activado en la elección de población para el blending
N	[int 0-]	Tamaño de la población
k	[int 0-N]	Número de individuos tomados al azar para la selecciñon
pm	[double 0-1]	Probabilidad de mutación
рс	[double 0-1]	Probabilidad de cruza

m	[int 0-N]	Individuos a tomar al azar en la población para selección por torneos determístoca
cutCondition	maxGenerations-mixed-struct ure-content-bestSolution	Condición de corte del algoritmo
contentPreviousIndex ToCompare	[int 0-]	Cantidad de generaciones previas con cuya población se comparará con la actual para ver el cambio en el fitness del máximo individo
structureMaxMatchPe rcentage	[double 0-1]	Máximo porcentaje de match entre dos poblaciones para considerar que no hubo cambio estructural
bestSolutionFitness	[int 0-]	Fitness de la mejor solución
maxGenerations	[int 0-]	Máxima cantidad de generaciones hasta la que el algoritmo debe procesar
crossoverMethod	uniform-anular-twoPoints-one Point	Método de cruza
replacementMethod	r2-r3	Método de reemplazo
selectionBlend	[double 0-1]	Porcentaje de mezcla entre el método de selección 1 y 2
selectionMethod1	ranking-roulette-elite-universal -boltzmann-deterministicTourn ament-probabilisticTournamen t	
selectionMethod2	ranking-roulette-elite-universal -boltzmann-deterministicTourn ament-probabilisticTournamen t	
selectionBlend2	[double 0-1]	Porcentaje de mezcla entre el método de selección 3 y 4
selectionMethod3	ranking-roulette-elite-universal -boltzmann-deterministicTourn ament-probabilisticTournamen t	

selectionMethod4	ranking-roulette-elite-universal -boltzmann-deterministicTourn ament-probabilisticTournamen t	
temperature		Temperatura para el cálculo de Boltzmann
className	assasin1-assasin2-assasin3-d efensor1-defensor2-warrior1- warrior2-warrior3-archer1-arc her2-archer3	
fitnessConst1	[double 0-1]	Constante de ataque del personaje
fitnessConst2	[double 0-1]	Constante de defensa del personaje

Ejecución

La forma de correr el algoritmo dado un conjunto de configuraciones es:

\$ octave> main

Adicionalmente esta función se puede correr indicando un path a un archivo de configuración y un nombre de archivo de salida como parámetros:

\$ octave> main(./configuration.txt,output)

Visualización de la información

Figura 1

Figura 2

Figura 3

