CS229: Additional Notes on Backpropagation

1 Forward propagation

Recall that given input x, we define $a^{[0]} = x$. Then for layer $\ell = 1, 2, ..., N$, where N is the number of layers of the network, we have

1.
$$z^{[\ell]} = W^{[\ell]}a^{[\ell-1]} + b^{[\ell]}$$

2.
$$a^{[\ell]} = g^{[\ell]}(z^{[\ell]})$$

In these notes we assume the nonlinearities $g^{[\ell]}$ are the same for all layers besides layer N. This is because in the output layer we may be doing regression [hence we might use g(x) = x] or binary classification $[g(x) = \operatorname{sigmoid}(x)]$ or multiclass classification $[g(x) = \operatorname{softmax}(x)]$. Hence we distinguish $g^{[N]}$ from g, and assume g is used for all layers besides layer N.

Finally, given the output of the network $a^{[N]}$, which we will more simply denote as \hat{y} , we measure the loss $J(W, b) = \mathcal{L}(a^{[N]}, y) = \mathcal{L}(\hat{y}, y)$. For example, for real-valued regression we might use the squared loss

real-valued regression
$$\mathcal{L}(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2$$

and for binary classification using logistic regression we use

binary classification
$$\mathcal{L}(\hat{y},y) = -(y\log\hat{y} + (1-y)\log(1-\hat{y}))$$
 not loss: $-\underbrace{\mathbb{Z}}_{\hat{y}\in \mathbb{Q}}$

or negative log-likelihood. Finally, for softmax regression over k classes, we use the cross entropy loss

$$\mathcal{L}(\hat{y}, y) = -\sum_{j=1}^{k} \mathbf{1}\{y = j\} \log \hat{y}_j$$

which is simply negative log-likelihood extended to the multiclass setting. Note that \hat{y} is a k-dimensional vector in this case. If we use y to instead denote the k-dimensional vector of zeros with a single 1 at the lth position, where the true label is l, we can also express the cross entropy loss as

$$\mathcal{L}(\hat{y}, y) = -\sum_{j=1}^{k} y_j \log \hat{y}_j$$
 $\hat{g} \in \mathbb{R}^k$

2 Backpropagation

Let's define one more piece of notation that'll be useful for backpropagation.¹ We will define

$$\delta^{[\ell]} = \nabla_{z^{[\ell]}} \mathcal{L}(\hat{y}, y)$$

We can then define a three-step "recipe" for computing the gradients with respect to every $W^{[\ell]}, b^{[\ell]}$ as follows:

1. For output layer N, we have

$$\delta^{[N]} = \nabla_{z^{[N]}} \mathcal{L}(\hat{y}, y)$$

Sometimes we may want to compute $\nabla_{z^{[N]}} \mathcal{L}(\hat{y}, y)$ directly (e.g. if $g^{[N]}$ is the softmax function), whereas other times (e.g. when $g^{[N]}$ is the sigmoid function σ) we can apply the chain rule:

$$\nabla_{z^{[N]}} \mathcal{L}(\hat{y}, y) = \nabla_{\hat{y}} \mathcal{L}(\hat{y}, y) \circ (g^{[N]})'(z^{[N]})$$

Note $(g^{[N]} \mathcal{V}[z^{[N]})$ denotes the elementwise derivative w.r.t. $z^{[N]}$

2. For $\ell = N - 1, N - 2, ..., 1$, we have

$$\delta^{[\ell]} = (W^{[\ell+1]\top} \delta^{[\ell+1]}) \circ g'(z^{[\ell]})$$

3. Finally, we can compute the gradients for layer ℓ as

$$\begin{split} \nabla_{W^{[\ell]}} J(W,b) &= \delta^{[\ell]} a^{[\ell-1]\top} \\ \nabla_{b^{[\ell]}} J(W,b) &= \delta^{[\ell]} \end{split}$$

where we use \circ to indicate the elementwise product. Note the above procedure is for a single training example.

You can try applying the above algorithm to logistic regression $(N=1, g^{[1]})$ is the sigmoid function σ to sanity check steps (1) and (3). Recall that $\sigma'(z) = \sigma(z) \circ (1 - \sigma(z))$ and $\sigma(z^{[1]})$ is simply $a^{[1]}$. Note that for logistic regression, if x is a column vector in $\mathbb{R}^{n \times 1}$, then $W^{[1]} \in \mathbb{R}^{1 \times n}$, and hence $\nabla_{W^{[1]}} J(W, b) \in \mathbb{R}^{1 \times n}$. Example code for two layers is also given at:

http://cs229.stanford.edu/notes/backprop.py

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/Scribe: Ziang Xie

¹These notes are closely adapted from: