Neural Turing Machines

KLab group meeting 11/25

Neural Turing Machines

Alex Graves

gravesa@google.com

Greg Wayne

gregwayne@google.com

Ivo Danihelka

danihelka@google.com

Goal: "Solve intelligence"

Price tag: \$400 million

Google DeepMind, London, UK

Abstract

We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that *Neural Turing Machines* can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.

Building a Learning Machine

"Learning"
Input-Output mapping ~ rule

Formal model of solving a computational problem rules + memory

Turing machine

What can be computed?

 Computability = instructions that lead to completion of task

Turing machine

Turing machine

- 1. Tape ("memory")
- 2. Read and write device ("head")
- 3. Keeps track of current state ("state register")
- 4. Instructions
 - a. "If machine in state and tape value is 0, go to state and move left 1 space"

Turing machine - copy example

Neural networks

• 1950s - Perceptron

1969 - Proof that perceptron sucks! (Minsky)

1980s - Backpropagation

• 2000s-present - Fast computers, deep

Neural networks

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left\{ y(\mathbf{x}_n, \mathbf{w}) - t \right\}^2$$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

Backpropagation

Wanted: ∇E with respect to all weights; each $\frac{\partial E}{\partial u}$

$$\frac{\partial E}{\partial w_{kj}^{(2)}} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial w_{kj}^{(2)}} = (y_k - t_k) z_j \equiv \delta_k z_j$$

For hidden layer -> output layer

$$\frac{\partial E}{\partial w_{ji}^{(1)}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}^{(1)}} \equiv \delta_j x_i \qquad \delta_j \equiv \frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j} = h'(a_j) \sum_k w_{kj} \delta_k$$

For input layer -> output layer

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

Gradient descent

- Classic
- Conjugate gradient descent
- Stochastic gradient descent

Recurrent neural networks

Recurrent neural networks

Backpropagation through time

Problem: Vanishing/Exploding gradients!

Recurrent neural networks

Long Short-Term Memory

- 1. Input
- 2. Input gate
- 3. "Remember" gate
- 4. Output gate

Neural Turing Machines

Neural Turing Machines - memory

Neural Turing Machines - memory

Read from memory ("blurry")

$$\mathbf{r}_t \longleftarrow \sum_i w_t(i) \mathbf{M}_t(i),$$

N chunks (rows) X M bits each (columns)

Write to memory ("blurry")

$$\tilde{\mathbf{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[\mathbf{1} - w_t(i) \mathbf{e}_t \right]$$

 $\mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \mathbf{a}_t$

Neural Turing Machines - memory

Addressing by content (similarity)

$$w_t^c(i) \leftarrow \frac{\exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(i)]\right)}{\sum_j \exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(j)]\right)}$$

$$K[\mathbf{u}, \mathbf{v}] = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}$$

N chunks (rows) X M bits each (columns)

Addressing by location (shift)

$$\tilde{w}_t(i) \longleftarrow \sum_{j=0}^{N-1} w_t^g(j) \, s_t(i-j) \qquad w_t(i) \longleftarrow \frac{\tilde{w}_t(i)^{\gamma_t}}{\sum_j \tilde{w}_t(j)^{\gamma_t}}$$

Neural Turing Machines - examples

- NTM can learn to do basic things
 - Copy
 - Associative recall
 - N-gram lookup
 - Sorting
- Better than LSTM alone

Neural Turing Machines - ass. recall

Neural Turing Machines - examples

Neural Turing Machines - examples

