

II. The Datasets

- + This project uses the MLB Pitch Data 2015-2018 dataset that is publicly available on
- + The first file, pitches.csv, charts various data for each pitch thrown during each of the four seasons from 2015 through
- + The second file, atbats.csv, contains various static data for each at-bat from each of the four seasons from 2015 through
- + The dataset
- + create a new binary variable to classify each of these three types of fastballs as a

Pre-Pitch Categorical Variables

- The second type of features in the dataset are pre-pitch categorical variables
- continuous variables discussed above; they are known prior to the pitch being thrown
- categorical data variables
- + The most significant influence on fastball usage is whether there is at least one runner
- + Fastball usage decreases depending upon the number of outs

% of Fastballs - # of Pitch in At-Bat 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49 1 2 3 4 5 6 >6

Pitch Sequence

- + Pitchers throw more than average amounts of fastballs by a considerable amount on the
- + first pitch of an at-bat and any pitch after the sixth pitch in a long at-bat
- + Fastballs are thrown higher than average in the early innings and the ninth inning
- + Right-handed pitchers throw fastballs more often than left-handed pitchers regardless of

Game Score

- + Pitchers throw more fastballs than usual when their team is winning, or the game is tied
- + significantly less fastballs when their team is behind
- + game circumstances and the likelihood that a pitcher will throw a fastball on the next

IV. Initial Machine Learning Models Test Run

- + At this point in the project, I decided to feed the dataset into four classifiers to see how they would perform
- + I elected to feed the classifiers approximately 5% of the data. 145,000 pitches
- + The initial models yielded the following accuracy on the test set from
- + the sample data:
- + Logistic Regression Classifier: 0.5572
- + SGDClassifier: 0.5442
- + Random Forest Classifier: 0. 5280
- + Gradient Boosting Classifier: 0. 5510

V. Additional Feature Engineering

 Previous Pitch Type - this feature provides the pitch type of the immediate previous pitch thrown to the batter using the pitch type labels (Once this data was compiled, I converted it to categorical features using dummy variables)

 Vertical/Horizontal Previous Pitch Location - these two features provide the vertical and horizontal pitch location of the immediate previous pitch to a batter in a particular at-bat. These were built off of the 'px' and 'pz' continuous variables.

VI. Second Machine Learning Models Test Run

- + Having added the previous pitch features to the dataset, I fed the updated 5% sample data into some models to see if I had improved performance significantly improved models
- + Here are the resulting test set accuracy numbers for each model:
- Logistic Regression Classifier: 0.601517
- SGDClassifier: 0.591917
- Random Forest Classifier: 0.569545
- Gradient Boosting Classifier: 0.601848

VII. Third Machine Learning Models Test Run

- + GridSearchCV is used to optimize our classifier and iterate through different parameters to find the best model. I used this on all our models to see if this would improve the models' accuracy.
- + Here are the resulting test set accuracy numbers for each model:
- + Logistic Regression Classifier: 0.656
- + SGDClassifier: 0.648
- + Random Forest Classifier: 0.62
- + Gradient Boosting Classifier: 0.604

Random Forest Classifier Feature Importance

+ The Random Forest classifier only produces positive "feature importance" values to each model feature on a normalized scale. These values will indicate to us which features are most important to the model.

	coefficient	rfc_feature_importance
inning_10	-1.055783	0.005890
pitcher_lead_4.0	-0.816536	0.006904
pitcher_lead9.0	-0.500451	0.000821
pitcher_lead6.0	-0.476489	0.002827
outs_1.0	-0.386676	0.018196
pitcher_lead_5.0	-0.375364	0.005536
inning_5	-0.330019	0.013156
pitch_num_10.0	-0.314202	0.000343
s_count_1.0	-0.313586	0.017046
pitcher_lead5.0	-0.294217	0.002742
pitch_num_8.0	-0.281542	0.001725
s_count_2.0	-0.265491	0.014646
pitcher_lead_2.0	-0.248157	0.011091
pitcher_lead1.0	-0.241768	0.011143
b_count_1.0	-0.241483	0.015446

	coefficient	rfc_feature_importance
pz	0.733878	0.170759
рх	-0.146269	0.099207
px_prev	0.018550	0.098921
pz_prev	-0.162834	0.093033
pitch_num	-0.074037	0.048708
prev_fastball	0.628919	0.021109
top_num	0.136212	0.019774
stand_num	-0.229598	0.018696
outs_1.0	-0.386676	0.018196
p_throws_num	0.014789	0.017495
s_count_1.0	-0.313586	0.017046
pitcher_lead_0.0	-0.189096	0.016724
on_1b	0.009885	0.016581
b_count_1.0	-0.241483	0.015446
outs_2.0	-0.177415	0.015426
		/

