STAT540 Stat. Comp. Project Presentation

A Comparison between Likelihood-free MCMC & Likelihood-free Sequential Monte Carlo

Jiaqi Cai

Penn State

December 3rd 2019

Pseudocode of ABC MCMC

- Initialize θ_i , i = 0
- ② Propose θ^* according to a proposal distribution $q(\theta|\theta_i)$
- **3** Simulate a dataset x^* from $f(x|\theta^*)$
- If $\rho(x_0, x^*) \le \epsilon$, go to 5, otherwise set $\theta_{i+1} = \theta_i$ and go to 6
- **5** Set $\theta_{i+1} = \theta^*$ with probability

$$\alpha = \min \left\{ 1, \frac{\pi(\theta^*)q(\theta_i|\theta^*)}{\pi(\theta_i)q(\theta^*|\theta_i)} \right\}$$

and $\theta_{i+1} = \theta_i$ with probability $1 - \alpha$

o Set i = i + 1, go to 2.

Potential problem of ABC MCMC

Simulation may get stuck in low probability region and the Markov chain stops moving for a really long time. For example,

proposal and prior are both chosen to be multivariate normal

- ullet For threshold $\epsilon=2$, the chain may stops moving for 500 steps
- ullet For threshold $\epsilon=0.5$, the chain may stops moving for 10,000 steps

Pseudocode of ABC SMC

- Initialize threshold schedule $\epsilon_1 > \cdots > \epsilon_T$
- ② Set t = 1For $i = 1, 2, \dots, N$
 - Simulate $\theta_i^{(1)} \sim p(\theta)$ and $x \sim p(x|\theta_i^{(1)})$ until $\rho(x, x_{\text{obs}}) < \epsilon_1$
 - Set $w_i = 1/N$
- $For t = 2, \cdots, T$ $For i = 1, 2, \cdots, N$
 - Repeat:

Pick θ_i^* from the $\theta_j^{(t-1)}$'s with probabilities $w_j^{(t-1)}$,draw $\theta_i^{(t)} \sim \mathcal{K}_t(\theta_i^{(t)}|\theta_i^*)$ and $x \sim p(x|\theta_i^{(t)})$; until $\rho(x,x_{\mbox{obs}}) < \epsilon_t$

- Compute new weights as

$$w_i^{(t)} \propto \frac{p(\theta_i^{(t)})}{\sum_j w_j^{(t-1)} K_t(\theta_i^{(t)} | \theta_j^{(t-1)})}$$

Normalize $w_i^{(t)}$ over $i = 1, 2, \dots, N$

Pseudocode of ABC SMC with Adaptive Weights

- **1** Initialize threshold schedule $\epsilon_1 > \cdots > \epsilon_T$
- ② Set t = 1For $i = 1, 2, \dots, N$
 - Simulate $\theta_i^{(1)} \sim p(\theta)$ and $x \sim p(x|\theta_i^{(1)})$ until $\rho(x, x_{obs}) < \epsilon_1$
 - Set $w_i = 1/N$

Compute data based weights $v_i^{(t-1)} \propto w_i^{(t-1)} K_{x,t}(x_{\text{obs}}|x_i^{(t-1)})$

Normalize weights $v_i^{(t-1)}$ over $i = 1, 2, \dots, N$

For $i = 1, 2, \cdots, N$

- Repeat:

Pick θ_i^* from the $\theta_j^{(t-1)}$'s with probabilities $v_j^{(t-1)}$,draw $\theta_i^{(t)} \sim K_{\theta,t}(\theta_i^{(t)}|\theta_i^*)$ and $x \sim p(x|\theta_i^{(t)})$; until $\rho(x,x_{\text{obs}}) < \epsilon_t$

- Compute new weights as

$$w_i^{(t)} \propto rac{p(heta_i^{(t)})}{\sum_j v_j^{(t-1)} K_{ heta,t}(heta_i^{(t)} | heta_j^{(t-1)})}$$

Normalize $w_i^{(t)}$ over $i = 1, 2, \dots, N$

- ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺□◇

Different Choices of Transition Kernel

- Component-wise perturbation kernels
- Multivariate normal perturbation kernels
- local perturbation kernels
 - Multivariate normal kernel with M nearest neighbors
 - Multivariate normal kernel with optimal covariance matrix
 - Perturbation kernel based on the Fisher information for model defined by ODE/SDE

Simulation Results

Average Number of Simulation Steps per Accepted Particle:

	ϵ_1	ϵ_2	ϵ 3	$\epsilon_{ t 4}$	ϵ_{5}	Total
ABC SMC	54	103	ϵ_3 1436	738	524	2855
ABC SMC AW	52	53	123	364	542	1134
ABC SMC OLCM	1	153	1479	897	467	2997

$$N = 100, \quad \epsilon = (200, 100, 10, 2, 1)^T$$

Simulation Results

Average Number of Simulation Steps per Accepted Particle:

	ϵ_{1}	ϵ_2	ϵ_3	$\epsilon_{ extsf{4}}$	ϵ_{5}	Total
ABC SMC	265	490	9726	4112	2408	Total 17001
ABC SMC AW	262	259	818	2356	2120	5815
ABC SMC OLCM	1	728	7482	3931	2016	14158

$$N = 500, \quad \epsilon = (200, 100, 10, 2, 1)^T$$

Simulation Results

Change the parameter setting and evaluate the performance in terms of L^2 norm error:

- True parameter: $\theta = (1, -3, 5)^T$
- Threshold schedule: $\epsilon = (2, 0.5, 0.025)^T$
- Simulate n=50 independent runs with particle number N=100 and compute the average L^2 -norm errors

The L^2 differences of three algorithms are:

$$diff_{SMC} = 0.862$$
, $diff_{AW} = 0.853$, $diff_{OLCM} = 0.851$

Boxplots for Estimated Parameter Moments

