14.05.2015. MATEMATIČKA ANALIZA

PREDISPITNE OBAVEZE

1. GRANIČNE VREDNOSTI:

a)
$$\lim_{n \to \infty} \left(\frac{n^2 + 3}{n^2 - 4} \right)^{4n^2} =$$

b)
$$\lim_{n \to \infty} \frac{2^n + 7^{n+2}}{7^{n+1} + 2^{n+3}} =$$

- c) Kada za niz $\{a_n\}$ u metričkom prostoru $\mathbb R$ kažemo da teži $\infty,$ kada $n\to\infty?$
- d) Navesti četiri osobine konvergentnih realnih nizova:
 - 1)
 - 2)
 - 3)
 - 4)
- e) Neka su dati metrički prostori (X, d_x) i (Y, d_y) . Dati definiciju neprekidnosti funkcije $f: D \to Y, D \subset X$, u tački $a \in D$:

2. FUNKCIJE JEDNE PROMENLJIVE (6 poena):

- a) Odrediti prvi izvod y'_x funkcije $y=x^{e^x}$.
- b) Odrediti prvi izvod y_x' funkcije $y=t^2+3,\, x=\ln t+t^2.$
- c) Kada je funkcija $f:D\to\mathbb{R},\,D\subset\mathbb{R}$ monotono rastuća nad intervalom $I\subset D$ (dati definiciju)?
- d) Kada za funkciju f(x) definisanu nad intervalom (a,b) kažemo da je diferencijabilna u tački $x \in (a,b)$ (dati definiciju)? Šta je diferencijal funkcije f(x)? Napisati diferencijal funkcije $f(x) = \sin x$.
- e) Napisati Maklorenov polinom $P_4(x)$ četvrtog stepena za funkciju $f(x) = \cos x$:

3. FUNKCIJE VIŠE PROMENLJIVIH:

a) Odrediti totalni diferencijal drugog reda funkcije $f(x,y) = x^y + xy$ u tački A(2,2).

- b) Za funkciju z=z(x,y) zadatu sa $3x^3-2y^2+z^3=xe^z$ odrediti $\frac{\partial z}{\partial x}.$
- c) Ako je f(t) dva puta diferencijabilna funkcija i $z(x,y)=(x^2+y^2)f(x^2y)$, odrediti $\frac{\partial^2 z}{\partial x^2}$.
- d) Za funkciju $f(x)=\left\{ egin{array}{ll} \dfrac{x^2y}{x^2+y^2}+3x &, & (x,y)\neq (0,0)\\ 0 &, & (x,y)=(0,0) \end{array}
 ight.$ odrediti $\dfrac{\partial f}{\partial x}(0,0).$

e) Da li je tačka $A\left(\frac{1}{2},\frac{1}{2}\right)$ stacionarna tačka funkcije $z=x^2+y^2$ pod uslovom da je x+y=1? Objasniti.

ISPIT

1. GRANIČNE VREDNOSTI:

- a) Odrediti $\lim_{n\to\infty} a_n$, ako je $a_n = \frac{1}{\sqrt[4]{16n^8+1}} + \frac{1}{\sqrt[4]{16n^8+2}} + \frac{1}{\sqrt[4]{16n^8+3}} + \ldots + \frac{1}{\sqrt[4]{16n^8+4n^2}}$
- b) Ukoliko je moguće, odrediti konstante A i B tako da funkcija $f(x) = \begin{cases} 7 + \frac{1}{x}e^{\frac{1}{x}} &, & x < 0 \\ A &, & x = 0 \\ \frac{\sin 3x}{\sin Bx} &, & x > 0 \end{cases}$ bude neprekidna.

2. FUNKCIJE JEDNE PROMENLJIVE:

- a) Detaljno ispitati funkciju $f(x) = \frac{1 \ln x^2}{1 + \ln x^2}$ i nacrtati njen grafik.
- b) Da li jednačina $\frac{1}{3(e-1)} = \frac{1}{x(1+\ln x^2)^2}$ ima rešenje nad intervalom (1,e)? Objasniti.
- 3. FUNKCIJE VIŠE PROMENLJIVIH: Odrediti ekstremne vrednosti funkcije $f(x, y, z) = (x^2 + y^2 + z^2)^2$ uz uslov x + y + z = 3.