Chương 1

Lý thuyết

1.1 Các định lý về giá trị trung bình

Định lý 1.1.1 (Fecmat). Cho hàm f xác định trên (a,b) và $c \in (a,b)$. Nếu f đạt cực trị địa phương tại c và f'(c) tồn tại thì f'(c) = 0.

Định lý 1.1.2 (Rolle). Cho hàm f liên tục trên [a,b] và khả vi trên (a,b). Nếu f(a) = f(b) thì tồn tại $c \in (a,b)$ sao cho f'(c) = 0.

Định lý 1.1.3 (Lagrange). Cho hàm f liên tục trên [a,b] và khả vi trên (a,b). Khi đó tồn tại $c \in (a,b)$ sao cho

$$f'(c) = \frac{f(a) - f(b)}{a - b}.$$

Định lý 1.1.4 (Cauchy). Cho hai hàm số f và g liên tục trên [a,b], khả vi trên (a,b). Khi đó tồn tại $c \in (a,b)$ sao cho

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Định lý 1.1.5 (Darboux). Cho hàm f khả vi trên (a,b) và $c,d \in (a,b)$. Khi đó f' nhận mọi giá trị trung gian giữa f'(c) và f'(d).

1.2 Khai triển Taylor và quy tắc L'Hospital

Định lý 1.2.1. Nếu hàm số $f:(a,b) \to \mathbb{R}$ có các đạo hàm đến cấp n-1 trên (a,b) và có đạo hàm cấp n tại điểm $x_0 \in (a,b)$ thì với h đủ nhỏ ta có

$$f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + o(h^n).$$

Phần dư $o(h^n)$ được gọi là phần dư Peano.

Định lý 1.2.2. Cho hàm f xác định trên [a,b] và x_0 là một điểm cố định trên [a,b]. Giả sử f có đạo hàm đến cấp n liên tục trên [a,b] và có đạo hàm cấp n+1 trên khoảng (a,b). Khi đó với mỗi $x \in [a,b]$, tồn tại c nằm giữa x và x_0 sao cho

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

Biểu thức

$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

được gọi là phần dư trong công thức khai triển Taylor (đến bậc n+1) của hàm f tại x_0 . Phần dư này được gọi là phần dư dạng Lagrange.

Đặt $h = x - x_0$ và gọi $\theta \in (0,1)$ là số sao cho $c = x_0 + \theta h$ ta có

$$f(x_0+h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + \frac{f^{(n+1)}(x_0+\theta h)}{(n+1)!}h^{n+1}.$$

Nếu hàm f thỏa mãn các giả thiết trong định lý trên thì tồn tại số c' nằm giữa x và x_0 sao cho

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c')}{(n+1)!}(x - x_0)(x - c')^n.$$

Biểu thức

$$R'_n = \frac{f^{(n+1)}(c')}{(n+1)!}(x-x_0)(x-c')^n$$

được gọi là phần dư dạng Cauchy. Hiển nhiên là

$$R_n = R'_n$$
.

Đặt $h = x - x_0$ và gọi $\theta' \in (0, 1)$ sao cho $x = x_0 + \theta' h$ ta có

$$f(x_0+h)=f(x_0)+\frac{f'(x_0)}{1!}h+\ldots+\frac{f^{(n)}(x_0)}{n!}h^n+\frac{f^{(n+1)}(x_0+\theta'h)}{(n+1)!}(1-\theta')^nh^{n+1}.$$

Định lý 1.2.3. Giả sử f và g là hai hàm số xác định và có đạo hàm hữu hạn $trên(a,b)\setminus\{x_0\}, x_0\in(a,b)$. Nếu

1.
$$\lim_{x \to x_0} f(x) == \lim_{x \to x_0} g(x) = 0$$

2.
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L \ (L \in \mathbb{R} \ hoặc \ L = \pm \infty),$$

thì
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L.$$

Với những giả thiết thích hợp, quy tắc này cũng đúng cho giới hạn một phía, giới hạn ở vô tận, và giới hạn có dạng vô định $\frac{\infty}{\infty}$.

1.3 Mối liên hệ giữa nguyên hàm và tích phân xác định

Giả sử f là một hàm khả tích trên [a,b]. Khi đó với mỗi $x \in [a,b]$, f khả tích trên [a,b] và ta xác định được hàm số

$$F: [a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(t)dt.$$

Nếu f là hàm số liên tục trên [a,b] thì f khả tích trên [a,b] và khi đó F là một nguyên hàm của f trên [a,b], nghĩa là với mỗi $x \in [a,b]$,

$$\left(\int_{a}^{x} f(t)dt\right)' = f(x).$$

Nếu f là hàm liên tục trên [a,b], α , β là những hàm khả vi trên [a,b] và nhận giá trị thuộc đoạn [a,b]. Khi đó với mỗi $x \in [a,b]$ ta có

$$\left(\int_{\beta(x)}^{\alpha(x)} f(t)dt\right)' = f(\alpha(x))\alpha'(x) - f(\beta(x))\beta'(x).$$

Chương 2

Bài tập

2.1 Các định lý giá trị trung bình

Bài 1: Cho $f: [-\pi/2, \pi/2] \to [-1, 1]$ là một hàm khả vi có đạo hàm liên tục và không âm. Chứng minh rằng tồn tại $x_0 \in (-\pi/2, \pi/2)$ sao cho

$$(f(x_0))^2 + (f'(x_0))^2 \le 1.$$

Giải:

Xét hàm số $g(x)=\arcsin(f(x))$. Khi đó $g:[-\pi/2,\pi/2]\to[-\pi/2,\pi/2]$ là một hàm liên tục trên $[-\pi/2,\pi/2]$ và nếu $f(x)\neq\pm 1$ thì g khả vi tại x và

$$g'(x) = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}.$$

Nếu tồn tại $x_0 \in (-\pi/2, \pi/2)$ sao cho $f(x_0) = 1$ hay $f(x_0) = -1$ thì x_0 là cực trị địa phương của hàm f nên theo định lý Fermat, $f'(x_0) = 0$. Do đó ta có

$$(f(x_0))^2 + (f'(x_0))^2 = 1.$$

Nếu $f(x) \neq \pm 1$ với mọi $x \in (-\pi/2, \pi/2)$ thì g thỏa mãn các điều kiện của định lý Lagrange trên $[-\pi/2, \pi/2]$ nên tồn tại $x_0 \in (-\pi/2, \pi/2)$ sao cho

$$g(\frac{\pi}{2}) - g(-\frac{\pi}{2}) = \frac{f'(x_0)}{\sqrt{1 - (f(x_0))^2}} (\frac{\pi}{2} - (-\frac{\pi}{2})).$$

Để ý rằng vì vế phải là không âm nên vế trái cũng không âm. Ngoài ra vế trái không vượt quá π . Vậy ta có bất đẳng thức sau đây

$$0 \le \frac{f'(x_0)}{\sqrt{1 - (f(x_0))^2}}(\pi) \le \pi.$$

Từ đó ta nhận được

$$(f(x_0))^2 + (f'(x_0))^2 \le 1.$$

Bài 2: Cho hàm f liên tục trên [a,b] (a>0), khả vi trên (a,b). Chứng minh rằng tồn tại $x_1, x_2, x_3 \in (a.b)$ sao cho

$$f'(x_1) = (a+b)\frac{f'(x_2)}{4x_2} + (a^2 + ab + b^2)\frac{f'(x_3)}{6x_3}.$$

Giải: Áp dụng định lý Lagrange cho hàm f trên [a, b] ta có $x_1 \in (a, b)$ sao cho

$$\frac{f(b) - f(a)}{b - a} = f'(x_1).$$

Áp dụng định lý Cauchy cho hàm f và hàm $x \longmapsto x^2$ ta có $x_2 \in (a,b)$ sao cho

$$\frac{f(b) - f(a)}{b^2 - a^2} = \frac{f'(x_2)}{2x_2}$$

hay

$$f'(x_1) = (a+b)\frac{f'(x_2)}{2x_2}.$$

Áp dụng định lý Cauchy cho hàm f và hàm $x \longmapsto x^3$ ta có $x_3 \in (a,b)$ sao cho

$$\frac{f(b) - f(a)}{b^3 - a^3} = \frac{f'(x_3)}{3x_3^2}$$

hay

$$f'(x_1) = (a^2 + ab + b^2) \frac{f'(x_3)}{3x_3^2}.$$

Từ các kết quả trên ta có $x_1, x_2, x_3 \in (a, b)$ sao cho

$$f'(x_1) = (a+b)\frac{f'(x_2)}{4x_2} + (a^2 + ab + b^2)\frac{f'(x_3)}{6x_3^2}.$$

Bài 3: Cho hàm $f:(-\infty,+\infty) \longrightarrow (-\infty,+\infty)$ khả vi đến cấp n+1 tại mỗi điểm của $(-\infty,+\infty)$ và $(a,b) \in \mathbb{R}^2, \ a < b,$ sao cho

$$\ln\left(\frac{f(b) + f'(b) + \dots + f^{(n)}(b)}{f(a) + f'(a) + \dots + f^{(n)}(a)}\right) = b - a.$$

Khi đó tồn tại $c \in (a, b)$ sao cho $f^{(n+1)}(c) = f(c)$.

Giải: Xét hàm

$$F(x) = (f(x) + f'(x) + \dots + f^{(n)}(x))e^{-x}, x \in [a, b].$$

Ta có F(a) = F(b) và với mỗi $x \in [a, b], F'(x) = e^{-x} (f^{n+1} - f(x))$. Theo định lý Lagrange, tồn tại $c \in (a, b)$ sao cho F'(c) = 0, tức là $f^{(n+1)}(c) - f(c) = 0$.

Bài 4: Cho hàm $f \in C^2([0, +\infty))$ (tức f khả vi liên tục đến cấp 2 trên $[0, +\infty)$). Với mỗi $(a_1, a_2, a_3) \in \mathbb{R}^3$, xét hàm số

$$F(x) = \begin{cases} f(x) & \text{n\'eu} \quad x \ge 0, \\ a_1 f(-x) + a_2 f(-2x) + a_3 f(-3x) & \text{n\'eu} \quad x < 0. \end{cases}$$

Chứng minh rằng có thể chọn các số $a_k, k = 1, 2, 3$ để $F \in C^2(\mathbb{R})$.

Hướng dẫn giải: Rỗ ràng F khả vi liên tục đến cấp 2 trên $(-\infty,0)$ và $(0,+\infty)$. Để $F \in C^2(\mathbb{R})$ thì chỉ cần F khả vi liên tục đến cấp 2 tại 0 là xong. Ta có

Γα có
$$F \text{ liên tục tại } 0 \Leftrightarrow \lim_{x \to 0^+} F(x) = \lim_{x \to 0^-} F(x) = F(0)$$

$$\Leftrightarrow \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} \left[a_1 f(-x) + a_2 f(-2x) + a_3 f(-3x) \right] = f(0)$$

$$\Leftrightarrow (a_1 + a_2 + a_3) f(0) = f(0).$$

Điều đó được thỏa mãn nếu ta chọn các số a_1, a_2, a_3 sao cho

$$a_1 + a_2 + a_3 = 1.$$

Khi đó ta có

$$F'_{+}(0) = f'_{+}(0)$$
 và $F'_{-}(0) = (-a_1 - 2a_2 - 3a_3)f'_{+}(0)$.

F sẽ có đạo hàm tại 0 nếu các số a_1, a_2, a_3 thỏa thêm điều kiện

$$-a_1 - 2a_2 - 3a_3 = 1.$$

Lúc đó hàm F' được xác định như sau

$$F'(x) = \begin{cases} f'(x) & \text{n\'eu} \quad x > 0, \\ f'_{+}(0) & \text{n\'eu} \quad x = 0, \\ -a_1 f'(-x) - 2a_2 f'(-2x) - 3a_3 f'(-3x) & \text{n\'eu} \quad x < 0. \end{cases}$$
$$F''_{+}(0) = f''_{+}(0) \quad \text{và} \quad F''_{-}(0) = (a_1 + 4a_2 + 9a_3) f''_{+}(0).$$

Do đó F sẽ có đạo hàm cấp 2 tại 0 nếu các số a_1,a_2,a_3 thỏa thêm điều kiện

$$a_1 + 4a_2 + 9a_3 = 1.$$

Khi đó

$$F''(x) = \begin{cases} f''(x) & \text{n\'eu} & x > 0, \\ f''_{+}(0) & \text{n\'eu} & x = 0, \\ a_1 f'(-x) + 4a_2 f'(-2x) + 9a_3 f'(-3x) & \text{n\'eu} & x < 0. \end{cases}$$

là một hàm liên tục.

Tóm lại F khả vi liên tục đến cấp 2 tại 0 (và do đó thuộc $C^2(\mathbb{R})$) nếu (a_1, a_2, a_3) là nghiệm của hệ phương trình

$$\begin{cases} a_1 + a_2 + a_3 = 1 \\ -a_1 - 2a_2 - 3a_3 = 1 \\ a_1 + 4a_2 + 9a_3 = 1 \end{cases}$$

Giải hệ này ta được ...

Bài 5: Cho hàm $f: \mathbb{R} \to \mathbb{R}$ khả vi 2 lần và thỏa mãn f(0) = 2, f'(0) = -2 và f(1) = 1. Chứng minh rằng tồn tại một số $c \in (0,1)$ sao cho

$$f(c)f'(c) + f''(c) = 0.$$

Giải: Xét hàm số

$$g(x) = \frac{1}{2}f^2(x) + f'(x), x \in \mathbb{R}.$$

Ta có g(0) = 0 và với mỗi x,

$$g'(x) = f(x)f'(x) + f''(x).$$

Theo định lý Rolle, ta chỉ cần chứng minh tồn tại $\eta \in (0,1)$ sao cho $g(\eta) = 0$ thì suy ra ngay sự tồn tại của c theo yêu cầu của bài ra. Ta xét hai trường hợp sau: a) $f(x) \neq 0$ với mọi $x \in [0,1]$.

Khi đó đặt

$$h(x) = \frac{x}{2} - \frac{1}{f(x)}, x \in [0, 1],$$

ta có hàm h xác định trên [0,1] và $h'=\frac{g}{f^2}$. Vì $h(0)=h(1)=-\frac{1}{2}$ nên áp dụng định lý Rolle cho hàm h, tồn tại $\eta\in(0,1)$ sao cho $h'(\eta)=0$. Do đó $g(\eta)=f^2(\eta)h'(\eta)=0$.

b) Tồn tại $x \in [0, 1]$ sao cho f(x) = 0.

Khi đó ta gọi

$$z_1 = \inf\{x \in [0,1] : f(x) = 0\}$$
 và $z_2 = \sup\{x \in [0,1] : f(x) = 0\}.$

Từ tính liên tục của hàm f và tính chất của inf và sup ta có $f(z_1) = f(z_2) = 0$. Do đó $0 < z_1 \le z_2 < 1$. Ngoài ra cũng dễ thấy f(x) > 0 với mọi $x \in [0, z_1) \cup (z_2, 1]$. Từ đó suy ra

$$g(z_1) = f'(z_1) \le 0$$
 và $g(z_2) = f'(z_2) \ge 0$,

do đó tồn tại $\eta \in [z_1, z_2] \subset (0, 1)$ sao cho $g(\eta) = 0$. Vậy ta có điều phải chứng minh.

Bài 6: Cho $f:[0,1] \to \mathbb{R}$ thỏa mãn

a. f tăng trên [0,1],

b. f khả vi trên (0,1] và f' giảm trên (0,1]. Xét dãy $(x_n)_n$ được xác định bởi

$$x_n = \frac{1}{1^2}f'(\frac{1}{1}) + \frac{1}{2^2}f'(\frac{1}{2}) + \ldots + \frac{1}{n^2}f'(\frac{1}{n}), n \in \mathbb{N}.$$

Chứng minh rằng dãy $(x_n)_n$ hội tụ.

Giải: Vì f tăng trên [0,1] nên $f'(x) \ge 0$ với mọi $x \in (0,1]$. Do đó với mỗi $n \in \mathbb{N}$, ta có

$$x_{n+1} - x_n = \frac{1}{(n+1)^2} f'(\frac{1}{n+1}) \ge 0.$$

Vậy dãy $(x_n)_n$ là một dãy tăng. Để chứng minh $(x_n)_n$ hội tụ ta chỉ cần chứng minh $(x_n)_n$ bị chặn.

Với mỗi $k \in \mathbb{N}$, áp dụng định lý Lagrange cho hàm f trên $\left[\frac{1}{k+1}, \frac{1}{k}\right]$ ta có

$$f(\frac{1}{k}) - f(\frac{1}{k+1}) = f'(\theta_k) \frac{1}{k(k+1)},$$

với $\theta_k \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$. Vì f' không âm và giảm trên (0,1] nên từ đây suy ra

$$f(\frac{1}{k}) - f(\frac{1}{k+1}) \ge f'(\frac{1}{k}) \frac{1}{k(k+1)}.$$

Do đó

$$\frac{1}{k^2}f'(\frac{1}{k}) = \frac{k+1}{k}f'(\frac{1}{k})\frac{1}{k(k+1)} \le 2\big[f(\frac{1}{k}) - f(\frac{1}{k+1})\big].$$

Lần lượt thay k bởi 1,2,...,n rồi cộng vế theo vế n bất đẳng thức đó ta được

$$x_n \le 2\left[f(1) - f(\frac{1}{n+1})\right].$$

Vì f tăng trên [0,1] nên $f(\frac{1}{n+1}) \ge f(0)$. Do đó

$$x_n \le 2[f(1) - f(0)].$$

Ngoài ra để ý rằng $x_n \ge 0$ với mỗi $n \in \mathbb{N}$. Vậy $(x_n)_n$ là một dãy tăng và bị chặn nên hội tụ.

Chú ý:

- 1. Nếu thay giả thiết f' tăng bằng giả thiết f' giảm thì kết luận ở trên có còn đúng không?
- 2. Hàm số $f(x) = x, x \in [0, 1]$ là một hàm thỏa mãn bài toán trên.

Bài 7: Cho hàm f liên tục trên [0,1], khả vi trên (0,1) có thể trừ ra các điểm thuộc tập $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. Chứng minh rằng tồn tại các dãy giảm ngặt $(\alpha_n)_n$, $(c_n)_n$ chứa trong khoảng (0,1) sao cho

$$\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k f'(c_k) = f(1) - f(0).$$

Giải: Với mỗi $k \in \mathbb{N}$, áp dụng định lý Lagrange cho hàm f trên đoạn $\left[\frac{1}{k+1}, \frac{1}{k}\right]$, tồn tại $c_k \in \left(\frac{1}{k+1}, \frac{1}{k}\right)$ sao cho

$$f(\frac{1}{k}) - f(\frac{1}{k+1}) = f'(c_k) \frac{1}{k(k+1)}.$$

Đặt $\alpha_k = \frac{1}{k(k+1)}$, ta được

$$f(\frac{1}{k}) - f(\frac{1}{k+1}) = f'(c_k)\alpha_k.$$

Từ đó ta nhận được

$$\sum_{k=1}^{n} \alpha_k f'(c_k) = f(1) - f(\frac{1}{n+1}).$$

Vì f liên tục tại 0 nên khi qua giới hạn hai vế của đẳng thức trên ta nhận được

$$\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k f'(c_k) = f(1) - f(0).$$

Ngoài ra dễ thấy các dãy số $(\alpha_n)_n$, $(c_n)_n$ chứa trong khoảng (0,1) và giảm ngặt. Vậy ta có điều phải chứng minh.

Chú ý:

- 1. Vì $\sum_{k=1}^{n} \alpha_k = 1 \frac{1}{n+1}$ nên $\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k = 1$.
- 2. Hàm f thỏa mãn các tính chất nêu trong bài toán trên một cách không tầm thường có thể được xác định như sau:

Lấy g là một hàm liên tục trên [0,1]. Vì $[0,1] = \{0\} \bigcup_{n=1}^{\infty} (\frac{1}{n+1}, \frac{1}{n}]$ nên ta xác định được hàm f bằng cách đặt

$$f(x) = \begin{cases} f(\frac{1}{n}) & \text{n\'eu} \quad x = \frac{1}{n}, \\ a_n x + b_n & \text{n\'eu} \quad x \in \left(\frac{1}{n+1}, \frac{1}{n}\right), \\ f(0) & \text{n\'eu} \quad x = 0. \end{cases}$$

trong đó a_n, b_n được chọn sao cho

$$\begin{cases} \frac{a_n}{n} + b_n = f(\frac{1}{n}), \\ \frac{a_n}{n+1} + b_n = f(\frac{1}{n+1}). \end{cases}$$

Bài 8: Cho g là một hàm khả vi liên tục trên đoạn [a,b], f là một hàm khả vi trên đoạn [a,b] và f(a)=0. Giả sử có số $\lambda>0$ sao cho

$$|g'(x)f(x) + f'(x)| \le \lambda |f(x)|,$$

với mọi $x \in [a, b]$. Chứng minh rằng f = 0 trên đoạn [a, b].

Giải: Giả sử rằng có $c \in (a, b]$ sao cho $f(c) \neq 0$. Không mất tính tổng quát ta giả sử f(c) > 0. Vì f liên tục trên đoạn [a, b] nên tồn tại $d \in (a, c)$ sao cho f(d) = 0 và f(x) > 0 với mọi $x \in (d, c]$. Với $x \in (d, c]$ ta có

$$g'(x) + \frac{f'(x)}{f(x)} - \lambda \le 0,$$

nên hàm số $F(x) = g(x) + \ln f(x) - \lambda x$ không tăng trên (d,c]. Do đó với mỗi $x \in (d,c],$

$$g(x) + \ln f(x) - \lambda x \ge g(c) + \ln f(c) - \lambda c$$

hay là

$$f(x) \ge e^{\lambda x - \lambda c + g(c) - g(x)} f(c).$$

Vì f và g' liên tục tại d nên ta nhận được

$$0 = f(d) = \lim_{x \to d^+} f(x) \ge e^{\lambda d - \lambda c + g(c) - g(d)} f(c) > 0.$$

Mâu thuẫn trên chứng tỏ f=0 trên đoạn [a,b].

Chú ý

1. Lấy g(x)=1 với mọi $x\in [a,b]$ thì ta được một trường hợp riêng của bài toán trên: Cho f là một hàm khả vi trên đoạn [a,b] và f(a)=0. Giả sử có số $\lambda>0$ sao cho

$$|f'(x)| \le \lambda |f(x)|,$$

với mọi $x \in [a, b]$. Chứng minh rằng f = 0 trên đoạn [a, b].

Một cách chứng minh khác như sau: Giả sử có $c \in (a,b]$ sao cho $f(c) \neq 0$. Không mất tính tổng quát ta giả sử f(c) > 0. Vì f liên tục trên đoạn [a,b] nên tồn tại $d \in (a,c)$ sao cho f(d) = 0 và f(x) > 0 với mọi $x \in (d,c]$. Với $x \in (d,c)$ ta có

$$|\ln f(c) - \ln f(x)| = \left| \frac{f'(\theta_x)}{f(\theta_x)} \right| (c - x) \le \lambda (c - x),$$

với $\theta_x \in (c,x)$. Qua giới hạn hai vế khi $x \to d^+$ ta nhận được mâu thuẫn. Mâu thuẫn đó chứng tỏ f = 0 trên đoạn [a,b].

2. Một bài toán tương tự với giả thiết nhẹ hơn được phát biểu như sau:

Cho g là một hàm bị chặn trên đoạn $[a,b],\ f$ là một hàm khả vi trên đoạn [a,b] và f(a)=0. Giả sử có số $\lambda>0$ sao cho

$$|g(x)f(x) + f'(x)| \le \lambda |f(x)|,$$

với mọi $x \in [a, b]$. Chứng minh rằng f = 0 trên đoạn [a, b].

Bài 9: Cho f là một hàm khả vi trên [0,1] sao cho

$$f(0) = f'(0) = f'(1) = 0.$$

Chứng minh rằng tồn tại $c \in (0,1)$ sao cho $f'(c) = \frac{f(c)}{c}$.

Hướng dẫn giải: Đặt

$$F(x) = \begin{cases} \frac{f(x)}{x} & \text{n\'eu} \quad x \in (0, 1], \\ 0 & \text{n\'eu} \quad x = 0. \end{cases}$$

Khi đó F là một hàm liên tục trên [0,1], khả vi trên (0,1]. Nếu có $x \in (0,1]$ sao cho f(x) = 0 thì F(x) = 0 và từ định lý Rolle ta có ngay điều phải chứng minh. Do đó sau đây ta coi $f(x) \neq 0$ với mọi $x \in (0,1]$. Hơn nữa do f liên tục nên ko mất tính tổng quát ta giả sử f(x) > 0 với mọi $x \in (0,1]$. Khi đó

$$F'(1) = -f(1) = \lim_{x \to 1^{-}} \frac{F(x) - F(1)}{x - 1} < 0$$

nên tồn tại $\delta \in (0,1)$ sao cho F(x) > F(1) với mọi $x \in (\delta,1)$. Ngoài ra F(1) > F(0) = 0, ta suy ra F đạt giá trị nhỏ nhất tại $c \in (0,1)$. Vậy F'(c) = 0 và ta nhận được điều phải chứng minh.

Chú ý: Bài toán tổng quát của bài trên là: Cho $(a,b) \in \mathbb{R}^2$ sao cho a < b, $f:[a,b] \to \mathbb{R}$ khả vi sao cho f'(a) = f'(b). Chứng minh rằng tồn tại $c \in (a,b)$ sao cho f(c) - f(a) = f'(c)(c - a).

Bài 10: Cho f là một hàm khả vi đến cấp 2 trên \mathbb{R} và $f''(x) \geq f(x)$ với mọi $x \in \mathbb{R}$. Giả sử a < b và f(a) = f(b) = 0. Chứng minh rằng $f(x) \leq 0$ với mọi $x \in [a,b]$.

Hướng dẫn giải: Giả sử tồn tại $x \in (a, b)$ sao cho f(x) > 0. Khi đó hàm f đạt giá trị lớn nhất tại $x_0 \in (a, b)$ và

$$f(x_0) > 0, f'(x_0) = 0, f''(x_0) > 0.$$

Vì

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0} > 0$$

nên có $\alpha \in (a, x_0)$ sao cho f'(x) < 0 với mọi $x \in (\alpha, x_0)$. Từ đó suy ra

$$f(\alpha) > f(x_0) = \max_{x \in [a,b]} f(x).$$

Mâu thuẫn này chứng tỏ f''(x) < 0 với mọi $x \in [a, b]$.

Bài 11: Cho hàm f liên tục trên $[a, +\infty)$, khả vi trên $(a, +\infty)$ sao cho f(a) < 0, f'(x) > k > 0 với mọi x > a (k là hằng số dương). Chứng ming rằng tồn tại $c \in (a, a - \frac{f(a)}{k})$ sao cho f(c) = 0.

Gợi ý: Sử dụng định lý Lagrange với chú ý f tăng ngặt.

Bài 12: Giả sử $f: \mathbb{R} \to \mathbb{R}$ là một hàm số tăng và f(0) = 0, f''(x) < 0 với mọi $x \in \mathbb{R}$. Chứng minh rằng nếu a, b, c là độ dài 3 cạnh của một tam giác thì f(a), f(b), f(c) cũng là độ dài của 3 cạnh của một tam giác nào đó.

Bài 13: Cho hàm f khả vi trên (a, b) (kể cả trường hợp a thay bởi $-\infty$, b thay bởi $+\infty$) sao cho

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to b^{-}} f(x).$$

Chứng minh rằng tồn tại $c \in (a, b)$ sao cho f'(c) = 0.

Bài 14: Cho hàm f khả vi trên [a, b] sao cho

- (i) f(a) = f(b) = 0,
- (ii) $f'(a) = f'_{+}(a) > 0, f'(b) = f'_{-}(b) > 0.$

Chứng minh rằng tồn tại $c \in (a, b)$ sao cho f(c) = 0 và $f'(c) \leq 0$.

2.2 Khai triển Taylor và quy tắc L'Hospital

Bài 1: Cho $f:[-1,1] \longrightarrow \mathbb{R}$ là một hàm khả vi đến cấp 3 và thỏa mãn điều kiện f(-1) = f(0) = 0, f(1) = 1 và f'(0) = 0. Chứng minh rằng tồn tại $c \in (-1,1)$ sao cho $f'''(c) \ge 3$.

Tìm một hàm f thỏa các điều kiện nêu trên sao cho f'''(x)=3 với mọi $x\in [-1,1].$

Giải: Với mỗi $x \in [-1,1]$, theo công thức khai triển Taylor (Maclaurin) tồn tại c(x) nằm giữa 0 và x sao cho

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(c(x))}{6}x^3.$$

Từ đó suy ra có $c_1 \in (-1,0), c_2 \in (0,1)$ sao cho

$$0 = f(-1) = \frac{1}{2}f''(0) - \frac{f'''(c_1)}{6} \quad \text{và} \quad 1 = f(1) = \frac{1}{2}f''(0) + \frac{f'''(c_2)}{6}.$$

Ta nhận được $f'''(c_1) + f'''(c_2) = 6$, do đó $f'''(c_1) \ge 3$ hoặc $f'''(c_2) \ge 0$. Vậy luôn tồn tại $c \in (-1,1)$ sao cho $f'''(c) \ge 3$.

Nếu f'''(x)=3 với mọi $x\in [-1,1]$ thì ta phải có

$$f(x) = \frac{f''(0)}{2} + \frac{3}{6}x^3.$$

Kết hợp với các điều kiện khác của f ta được hàm

$$f(x) = \frac{1}{2}(x^3 + x^2), x \in [-1, 1]$$

là hàm thỏa mãn điều kiện bài ra.

Bài 2: Cho hàm f khả vi đến cấp n trong lân cận của 0 và $f^{(n+1)}(0)$ tồn tại và khác không. Với mỗi h (đủ bé để f xác định tại h) gọi $\theta(h) \in (0,1)$ là số được xác định bởi khai triển

$$f(h) = f(0) + hf'(0) + \ldots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + \frac{h^n}{n!}f^{(n)}(\theta(h)h).$$

Chứng minh rằng $\lim_{h\to 0} \theta(h) = \frac{1}{n+1}$.

Giải: Áp dụng khai triển Taylor với phần dư Peano tại x=0 ta có

$$f(h) = f(0) + hf'(0) + \ldots + \frac{h^n}{n!}f^{(n)}(0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(0) + o(h^{n+1}).$$

Trừ vế theo vế của đẳng thức đã cho và đẳng thức trên ta có

$$\frac{f^{(n)}(\theta(h)h) - f^{(n)}(0)}{h} = \frac{f^{(n+1)}(0)}{n+1} + \frac{o(h)}{h}.$$

Do đó

$$\theta(h) = \frac{\frac{f^{(n+1)}(0)}{n+1} + \frac{o(h)}{h}}{\frac{f^{(n)}(\theta(h)h) - f^{(n)}(0)}{\theta(h)h}}.$$

Qua giới hạn khi $h \to 0$ với lưu ý rằng $f^{(n+1)}(0)$ tồn tại và khác không ta được

$$\lim_{h \to 0} \theta(h) = \frac{1}{n+1}.$$

Chú ý: Kết luận của bài toán vẫn còn đúng khi thay 0 bởi một số thực x bất kỳ với các giả thiết f khả vi đến cấp n trong lân cận của x và $f^{(n+1)}(x)$ tồn tại và khác không.

Bài 3: Cho f là một hàm số khả vi vô hạn lần trên $\left(-\frac{1}{2},\frac{5}{4}\right)$ sao cho phương trình f(x)=0 có vô số nghiệm trên $\left[\frac{1}{4},\frac{1}{2}\right]$ và $\sup_{x\in(0,1)}|f^{(n)}(x)|=O(n!)$ khi $n\to\infty$. Chứng minh rằng f(x)=0 với mọi $x\in(-\frac{1}{2},\frac{5}{4})$.

Hướng dẫn giải: Theo định lý Bolzano - Weierstrass tồn tại dãy $(x_n)_n$ các nghiệm phân biệt của phương trình f(x) = 0 hội tụ về $x_0 \in \left[\frac{1}{4}, \frac{1}{2}\right]$. Vì f liên tục nên $f(x_0) = 0$. Theo định lý Rolle, giữa hai nghiệm của f có ít nhất 1 nghiệm của f'. Do f' liên tục nên $f'(x_0) = 0$. Bằng quy nạp ta được $f^{(k)}(x_0) = 0$ với mọi $k \in \mathbb{N}$. Theo công thức Taylor, với mỗi $n \in \mathbb{N}$ và $x \in \left(-\frac{1}{2}, \frac{5}{4}\right)$, tồn tại $\theta = \theta(n, x) \in (0, 1)$ để

$$f(x) = \frac{f^{(n)}(x_0 + \theta(x - x_0))}{n!} (x - x_0)^n.$$

Bây giờ vì $\sup_{x\in(0,1)}|f^{(n)}(x)|=O(n!)$ khi $n\to\infty$ nên tồn tại M>0 sao cho

$$|f(x)| \le M|x - x_0|^n.$$

Vì $x_0 \in \left[\frac{1}{4}, \frac{1}{2}\right]$ nên với mọi $x \in \left(-\frac{1}{2}, \frac{5}{4}\right)$ ta có $|x - x_0| < 1$, từ đó ta được f(x) = 0.

Chú ý: Bài toán tổng quát: Cho f là một hàm số khả vi vô hạn lần trên (a, b) sao cho phương trình f(x) = 0 có vô số nghiệm trên $[c, d] \subset (c, d)$ và $\sup_{x \in (a, b)} |f^{(n)}(x)| = O(n!)$ khi $n \to \infty$. Chứng minh rằng f = 0 trên một khoảng con mở của (a, b).

Bài 4: Cho số thực a>0 và số nguyên m>0. Chứng minh bất đẳng thức sau đúng với bất kỳ $x\geq 0$:

$$\sqrt[m]{a^m + x} \ge a + \frac{x}{ma^{m-1}} + \frac{(1-m)x^2}{2m^2a^{2m-1}}.$$

Hướng dẫn giải: Khai triển Taylor hàm số $f(x) = \sqrt[m]{a^m + x}$, $x \in [0, +\infty)$ tại 0 đến cấp 2.

Bài 5: Cho hàm f thỏa mãn

- (i) f khả vi vô hạn trên \mathbb{R} ,
- (ii) Tồn tại L>0 sao cho $|f^{(n)}(x)|\leq L$ với mọi $x\in\mathbb{R}$ và mọi $n\in\mathbb{N},$
- (iii) $f(\frac{1}{n}) = 0$ với mọi $n \in \mathbb{N}$.

Chứng minh rằng f = 0 trên \mathbb{R} .

Gợi ý: Chứng minh $f^{(k)}(0) = 0$ với mọi $k \in \mathbb{N}$ rồi sau đó sử dụng khai triển Taylor của hàm f tại 0.

Bài 6: Cho f là một hàm khả vi trên \mathbb{R} sao cho với mỗi k = 0, 1, 2,

$$M_k = \sup\{|f^{(k)}(x) : x \in \mathbb{R}\} < \infty.$$

Chứng minh rằng $M_1 \leq \sqrt{2M_0M_2}$.

Hướng dẫn giải: Với h > 0 và $x \in \mathbb{R}$, có $\theta_1, \theta_2 \in (0, 1)$ sao cho

$$f(x+h) = f(x) + f'(x)h + f''(x+\theta_1 h)\frac{h^2}{2}$$

và

$$f(x - h) = f(x) - f'(x)h + f''(x - \theta_2 h)\frac{h^2}{2}.$$

Từ đó ta nhận được

$$f'(x) = \frac{1}{2h} (f(x+h) - f(x-h)) - \frac{h}{4} (f''(x+\theta_1 h) - f''(x-\theta_2 h)).$$

Do đó

$$|f'(x)| < \frac{M_0}{h} + \frac{h}{2}M_2$$

với h>0. Dùng bất đẳng thức Cauchy ta có điều phải chứng minh. Đẳng thức nhận được khi $h=\sqrt{2\frac{M_0}{M_2}}$.

Bài 7: Cho f là hàm khả vi đến cấp 2 trên $(0, +\infty)$ và f'' bị chặn. Chứng minh rằng nếu $\lim_{x\to +\infty} f(x)=0$ thì $\lim_{x\to +\infty} f'(x)=0$.

Hướng dẫn giải: Vì f'' bị chặn nên tồn tại M>0 để $|f''(x)|\leq M$ với mọi $x\in(0,+\infty)$. Với $x,h\in(0,+\infty)$ ta có $\theta\in(0,1)$ sao cho

$$f(x+h) = f(x) + f'(x)h + f''(x+\theta h)\frac{h^2}{2}.$$

Từ đó suy ra

$$|f'(x)| \le \frac{|f(x+h) - f(x)|}{h} + \frac{Mh}{2}.$$

Vì $\lim_{x\to +\infty} f(x)=0$ nên với $\varepsilon>0$ cho trước tồn tại $x_0>0$ sao cho với mỗi $x\geq x_0$ va h > 0,

$$|f'(x)| \le \frac{2\varepsilon^2}{Mh} + \frac{Mh}{2}.$$

Lấy h= ta được $|f'(x)| \le \varepsilon$ với mọi $x \ge x_0$. Do đó $\lim_{x \to +\infty} f'(x) = 0$.

Bài 8: Cho f là hàm khả vi liên tục đến cấp 2 trên $(0, +\infty)$ sao cho

$$\lim_{x \to +\infty} x f(x) = 0 \quad \text{và} \quad \lim_{x \to +\infty} x f''(x) = 0.$$

Chứng minh rằng $\lim_{x \to +\infty} x f'(x) = 0$.

Gợi ý: Khai triển Taylor f(x+1) tại x.

Bài 9: Cho f là một hàm khả vi trên $(0, +\infty)$. Chứng minh rằng

(i) Nếu
$$\lim_{x \to +\infty} (f(x) + f'(x)) = L \text{ thì } \lim_{x \to +\infty} f(x) = L.$$

(i) Nếu
$$\lim_{x \to +\infty} (f(x) + f'(x)) = L$$
 thì $\lim_{x \to +\infty} f(x) = L$.
(ii) Nếu $\lim_{x \to +\infty} (f(x) + 2\sqrt{x}f'(x)) = L$ thì $\lim_{x \to +\infty} f(x) = L$.

Gợi ý:

(i)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x \left(f(x) + f'(x)\right)}{e^x} = L.$$

Bài 10: Chúng minh rằng nếu f'''(x) tồn tại thì

$$\lim_{h \to 0} \frac{f(x+3h-3f(x+2h)+3f(x+h)-f(x))}{h^3} = f'''(x).$$

Đao hàm và tích phân 2.3

Bài 1: Cho f liên tục trên [a,b] và thỏa mãn điều kiện $\int_a^b f(x)dx = 0$. Chứng minh rằng

- a) Nếu $a \ge 0$ thì tồn tại $c \in (a, b)$ sao cho $\int_{c}^{c} f(x) dx = \frac{f(c)}{c}$.
- b) Nếu a > 0 thì tồn tại $c \in (a, b)$ sao cho $2007 \int_{a}^{c} f(x) dx = cf(c)$.
- c) Với mỗi $\alpha \neq 0$ cho trước, tồn tại $c \in (a,b)$ sao cho $\int_a^c f(x)dx = \alpha f(c)$.

Giải:

a) Xét hàm số $F(x) = e^{\frac{-x^2}{2}} \int_{a}^{x} f(t)dt$, $x \in [a, b]$. Rõ ràng f liên tục trên [a, b], khả vi trên (a,b) và với mỗi $x \in [a,b]$,

$$F'(x) = -xe^{\frac{-x^2}{2}} \int_{a}^{x} f(t)dt + e^{\frac{-x^2}{2}} f(x).$$

Mặt khác, theo giả thiết F(a) = F(b) = 0 nên theo định lý Rolle, tồn tại $c \in (a, b)$ sao cho F'(c) = 0, tức là

$$-ce^{\frac{-c^2}{2}} \int_{a}^{c} f(t)dt + e^{\frac{-c^2}{2}} f(c) = 0.$$

Vì $c>a\geq 0$ và $e^{\displaystyle\frac{-c^2}{2}}>0$ nên từ đó ta có

$$\int_{a}^{c} f(x)dx = \frac{f(c)}{c}.$$

b) Lập luận tương tự a) bằng cách xét hàm số

$$F(x) = \frac{\int_{a}^{x} f(t)dt}{x^{2007}}, \ x \in [a, b].$$

c) Lập luận tương tự a) bằng cách xét hàm

$$F(x) = e^{\frac{-x}{\alpha}} \int_{a}^{x} f(x)dx, \ x \in [a, b].$$

Bài 2: Cho f và g là các hàm số liên tục và dương trên [a,b]. Chứng minh rằng với mọi số thực α tồn tại $c \in (a,b)$ sao cho

$$\frac{f(c)}{\int\limits_{a}^{c} f(x)dx} - \frac{g(x)}{\int\limits_{c}^{b} g(x)dx} = \alpha.$$

Hướng dẫn giải:

Cách 1: Xét hàm số

$$F(x) = \frac{f(x)}{\int\limits_{a}^{x} f(t)dt} - \frac{g(x)}{\int\limits_{x}^{b} f(t)dt}, \ x \in (a,b).$$

Dễ thấy rằng f liên tục trên (a,b), $\lim_{x\to a^+} F(x) = +\infty$, $\lim_{x\to b^-} F(x) = -\infty$. Sử dụng tính chất nhận giá trị trung gian của hàm liên tục ta có điều phải chứng minh.

Cách 2: Xét hàm số

$$H(x) = e^{-\alpha x} \int_{a}^{x} f(x)dx \int_{x}^{b} g(x)dx, \ x \in [a, b]$$

và sử dụng định lý Rolle.

Bài 3: Cho hàm số f liên tục trên [a,b]. Chứng minh rằng tồn tại $x_0 \in (a,b)$ sao cho

$$\int_{c}^{b} f(x)dx = x_0 f(x_0).$$

Hướng dẫn giải: Xét hàm số $F(x) = x \int_{x}^{b} f(t)dt$, $x \in [a, b]$, và sử dụng định lý Rolle.

Bài 4: Cho hàm số f liên tục trên [a,b]. Chứng minh rằng với mọi $\alpha \in [0,1]$, tồn tại $c \in [a,b]$ sao cho

$$\int_{a}^{c} f(x)dx = \alpha \int_{a}^{b} f(x)dx.$$

Giải: Đặt $I = \int_a^b f(x) dx$ và xét hàm số $F(x) = \int_a^x f(x) dx$, $x \in [a, b]$. Ta thấy F liên tục trên [a, b] và F(a) = 0, F(b) = I. Do αI là một giá trị trung gian giữa 0 và I nên tồn tại $c \in [a, b]$ sao cho $F(c) = \alpha I$, tức là

$$\int_{a}^{c} f(x)dx = \alpha \int_{a}^{b} f(x)dx.$$

Mục lục

1	Lý thuyết		1
	1.1	Các định lý về giá trị trung bình	1
	1.2	Khai triển Taylor và quy tắc L'Hospital	1
	1.3	Mối liên hệ giữa nguyên hàm và tích phân xác định	و
2	Bài	tập	4
	2.1	Các định lý giá trị trung bình	4
	2.2	Khai triển Taylor và quy tắc L'Hospital	12
	2.3	Đao hàm và tích phân	16