# **Experiment 2 - Recentering**

#### **Before**

#### **Hypothesis**

Recentering is better, even if strictly speaking the inequalities are not always true (just most of the time). We do not expect a significant difference between exact and nonexact inequalities.

### Setup

- The dimensions: D = {50, 52, ..., 140}
- The number of signatures used: N = {500, 600, ..., 7000, 8000, 9000, 10000}
- The data source: data = {real, sim}
- The recentering used: rec = {exact, inexact, none, bad}
- each run 5 times, random sampling  $n \in N$  signatures, constructing lattice from  $d \in D$  shortest signatures, then doing geometric bounds from 2 bits on. Doing SVP with progressive BKZ (betas: 15, 20, 30, 40, 45, 48, 51, 53, 55).
- In this experiment, we use  $l_i+1$  instead of  $l_i$  in the matrix if we are in the **exact** or **inexact** recentering cases. In the **none** case, we do only  $l_i$ , in the **bad** case we do  $l_i+1$  but no recentering. Furthermore, the values  $2^{l_i+1}u_i$  are replaced with  $2^{l_i+1}u_i+2^{256}$  if the **exact** recentering is used and with  $2^{l_i+1}u_i+n$  if the **inexact** recentering is used.

```
2 * 4 * 68 * 45 = 24 480 tasks
```

each task does 5 runs of attack: 122 400 runs of attack.

Schedule tasks:

```
for rec in {exact, inexact, none, bad}
for data in {real, sim}
  for d in D
      for n in N
          schedule one geom task with (rec, data, n, d)
```

That makes 24 480 tasks.

## **Outputs**

Each task outputs {real,sim}\_{exact, inexact, none, bad}\_{n}\_{d}.csv with 5 lines for the 5 runs:

seed, success, duration, last\_reduction\_step, info, #liars, real\_info, bad\_info, good\_info, result\_row, result\_norm

#### **Visualizations**

For both real and sim data: For both exact and inexact:

- 3D plot, x:N, y:D, z: number of successes.
- 3D plot, x:N, y:D, z: last reduction step.
- 3D plot, x:N, y:D, z: avg. duration of successful run.
- 3D plot, x:N, y:D, z: avg. result row.
- 3D plot, x:N, y:D, z: avg. result norm.
- 2D lineplot, x:N, y:sum over d in D (number of successed).

## Why?

• Compares both centering possibilities to the baseline.

## **During**

### Run 01.10.2019

- All went well after a first dry run (had a typo in)
- Then extended the N space to {200, 300, ..., 7000, 8000, 9000, 10000}.
- No significant reruns necessary.

### TODO: Real data!!!!!

# **After**

## **Figures**





















140

0.50 140







Number of signatures (N)

Number of signatures (N)