Advanced Machine Learning

Matrices, Vectors and All That

- The language of machine learning is mathematics
- Sometimes we draw pretty pictures to explain the mathematics
- Much of the mathematics we will use involves vectors, matrices and functions
- You need to master the language of mathematics, otherwise you won't understand the algorithms
- I'm going to spend this lecture and the next revising the mathematics you need to know (but I'm going use a slightly posher language than you are probably used to)

Adam Prügel-Bennett

Vectors

- We often work with objects with many components (features)
- To help handle this we will use vector notation

- We represent vectors by bold symbols
- All our vectors are column vectors by default
- We treat them as $n \times 1$ matrix
- We write row vectors as transposes of column vectors

$$\boldsymbol{y}^{\mathsf{T}} = (y_1, y_2, \dots, y_n)$$

Vector Space

- ullet A vector space, ${\cal V}$, is a set of vectors which satisfies
- 1. if $v, w \in \mathcal{V}$ then $av \in \mathcal{V}$ and $v + w \in \mathcal{V}$
- (closure) 2. v + w = w + v(commutativity of addition)
- 3. (u + v) + w = u + (v + w)(associativity of addition)
- 4. v + 0 = v(existence of additive identity 0)
- 5. 1v = v(existence of multiplicative identity 1) 6. a(bv) = (ab)v(distributive properties)
- 7. $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$
- 8. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

(You don't need to remember these)

• Just from these properties we can deduce other properties!

Outline

- 1. Vector Spaces
- 2. Metrics (distances)
- 3 Norms

Scalars (Fields)

- These are quantities we can add together (a + b) and multiply together $(a \times b)$
- Formally they form an Abelian group under addition with an identity 0 and excluding 0 an Abeilian group under multiplication and they are distributive

$$a\times(b+c)=a\times b+a\times c$$

• Although this sounds rather daunting don't panic They behave like numbers. The field might be integers, rational numbers, reals, almost always consider reals

Basic Vector Operations

• The basic vector operations are adding

• multiplying by a scalar (a number)

https://ecs-vlc.github.io/comp6208/

 \mathbb{R}^n

- · When we first learn about vectors we think of them arrows in 3-D spacel
- If we centre them all at the origin then there is a oneto-one correspondence between vectors and points in
- We call this vector space \mathbb{R}^3
- Any set of quantities $x = (x_1, x_2, ..., x_n)^T$ which satisfy the axioms above form a vector space \mathbb{R}^n
- Of course, we can't so easily draw pictures of highdimensional vectors

- Any set of object that satisfies the axioms of a vector spacer are vectors—not just $v \in \mathbb{R}^n$
- Matrices satisfy all the conditions of a vector space
- Infinite sequences form a vector space
- Functions form a vector space
 - \star Let C(a,b) be the set of functions defined on the interval [a,b]
 - \star Note that if $f(x),g(x)\in C(a,b)$ then $af(x)\in C(a,b)$ and $f(x) + g(x) \in C(a,b)$
- Bounded vectors in \mathbb{R}^n don't form a vector space

https://ecs-vlc.github.io/comp6208/

Metrics

- Vector spaces become more interesting if we have a notion of distance
- ullet We say $d(oldsymbol{x},oldsymbol{y})$ is a proper distance or metric if

1. $d(x,y) \geq 0$

(non-negativity)

2. $d(\boldsymbol{x}, \boldsymbol{y}) = 0$ iff $\boldsymbol{x} = \boldsymbol{y}$

(identity of indiscernibles)

3. $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$

(symmetry)

4. $d(x,y) \le d(x,z) + d(z,y)$

(triangular inequality)

- There are typically many possible distances (e.g. Euclidean distance, Manhattan distance, etc.)
- Often one or more condition isn't satisfied then we have a pseudo-metric

Adam Prügel-Bennett

Lipschitz Function

• One way to characterise well behaved function, f(x) is if there exists a number $K < \infty$ such that for all x and y

$$d(f(x),f(y)) \leq Kd(x,y) \mathbf{I}$$

- This is known as a Lipschitz condition and the function is said to be K-Lipschitz or Lipschitz continuous
- Note that such functions cannot have any jumps (i.e. they are continuous)
- ullet The size of K measures the limit on the amplifying effect of the function

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

- 1. Vector Spaces
- 2. Metrics (distances)
- 3. Norms

- 1. Vector Spaces
- 2. Metrics (distances)
- 3 Norms

Adam Prügel-Bennett

https://ecs-vlc.github.io/comp6208/

Mappings and Functions

• A function defines a mapping from one vector space to another (although the spaces might be the same) e.g.

$$f: \mathbb{R} \to \mathbb{R}$$

(f maps the reals onto reals, i.e. f(x) takes a real x and gives you a new real number y = f(x)

- We are often interested in functions that behave nicely
- E.g. They are continuous

https://ecs-vlc.github.io/comp6208/

Contractive Mappings

- ullet An interesting class of function are those for which K<1
- These are said to be contractive mappings
- A famous theorem that applies to contractive mappings is the Banach fixed-point theorem which says there exists a unique fixed point such that f(x) = x
- This is used for example in showing that various algorithms will converge

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Norms

- Vector spaces are even more interesting with a notion of length
- Norms provide some measure of the size of a vector
- ullet To formalise this we define the **norm** of an object v as $\|v\|$ satisfying

1. $\|v\| > 0$ if $v \neq 0$

(non-negativity)

2. ||av|| = a||v||3. $\|u + v\| \le \|u\| + \|v\|$

(linearity) (triangular inequality)

- When some criteria aren't satisfied we have a pseudo-norms
- Norms provide a metric $d(x,y) = \|x y\|$ (they are metric spaces)

Vector Norms

• The familiar vector norm is the (Euclidean) two norm

$$\|v\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \blacksquare$$

ullet Other norms exist, such as the p-norm $(p \ge 1)$

$$\|oldsymbol{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

• Special cases include the 1-norm and the infinite norm

$$\|oldsymbol{v}\|_1 = \sum_{i=1}^n |v_i|^{\blacksquare}$$
 $\|oldsymbol{v}\|_{\infty} = \max_i |v_i|$

• The 0-norm is a pseudo-norm as it does not satisfy condition 2

 $\|oldsymbol{v}\|_0=$ number of non-zero components

Adam Prügel-Bennett

COMP6208 Advanced Machine Learn

https://ecs-vlc.github.io/comp6208/

Compatible Norms

• A vector and matrix norm are said to be compatible if

$$\|\mathbf{M}\mathbf{v}\|_b \leq \|\mathbf{M}\|_a \times \|\mathbf{v}\|_b$$

(Spectral and Euclidean norms are compatible)

- Norms provide quick ways to bound the maximum growth of a vector under a mapping induced by the matrix
- We will see that a measure of the sensitivity of a mapping is in terms of the ratio of its maximum effect to its minimum effect on a vector!
- ullet This is known as the **conditioning**, given by $\|\mathbf{M}\| \times \|\mathbf{M}^{-1}\|$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learn

https://ecs-vlc.github.io/comp6208/

Function Norms

 \bullet Functions can also have norms, for example, if f(x) is defined in some interval ${\mathcal I}$

$$||f||_{L_2} = \sqrt{\int_{x \in \mathcal{I}} f^2(x) \, \mathrm{d}x}$$

- ullet The L_2 vector space is the set of function where $\|f\|_{L_2} < \infty$
- The L_1 -norm is given by $||f||_{L_1} = \int_{x \in \mathcal{I}} |f(x)| dx$
- \bullet The infinite-norm is given by $\|f\|_{\infty} = \max_{x \in \mathcal{I}} |f(x)|$

Matrix Norms

- We can define norms for other objects
- The norm of a matrix encodes how large the mapping is
- The Frobenius norm is defined by

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2}$$

- Many other norms exist including 1-norm, max-norm, etc.
- For square matrices, some, but not all, norms satisfy the inequality

$$\|AB\| \le \|A\| \times \|B\|$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

https://ecs-vlc.github.io/comp6208/

Why Should You Care?

- Deep learning involves multiply the input (which we can think of as a vector x) by many layers
- In CNNs we have convolutional layers and dense layers
- ullet The effect of applying these layers can be represented by a matrix multiplication $x_n = \mathbf{L}_n x_{n-1} \mathbf{I}$
- We also do other things like applying ReLU's or pooling that changes the magnitude, xn, of our representation
- If you are developing new architectures you want $\|x_n\|$ neither to blow up or vanish
- ullet This can be controlled by carefully choosing $\|\mathbf{L}_n\|_{ullet}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learni

https://ecs-vlc.github.io/comp6208/

 Vector spaces with a distance (metric spaces) and vector spaces with a norm (normed vector spaces) are interesting objects.

Summary

- They allow you to define a topology (open/closed sets, etc.)
- You can build up ideas about connectedness, continuity, contractive maps, fixed-point theorems, . . . I
- For the most part we are going to consider an even more powerful vector space that has an inner-product defined