BIPARTITE SUBGRAPH DECOMPOSITION FOR CRITICALLY SAMPLED WAVELET

FILTERBANKS ON ARBITARY GRAPHS

Jin Zeng[†], Gene Cheung*, Antonio Ortega[#]

[†]The Hong Kong University of Science and Technology, Hong Kong; *National Institute of Informatics, Tokyo, Japan; [#]University of Southern California, Los Angeles, CA, USA

Introduction

Why do we care about graph wavelet filterbanks?

- Graph: widely adopted to describe data structures e.g. social, sensor networks, etc.
- Key problem: design of graph wavelet filterbanks to account for vertex correlations and achieve compact representation

Why do we need bipartite subgraph decomposition?

- Limit of recent works: GraphBior [1], applicable only to bipartite graph-signals
- Non-bipartite graph needs to be decomposed into bipartite subgraphs, as shown in Fig. 1
- Previous methods [2][3][4] lack criteria directly related to compact representation
- Proposed method: a) minimize the mid-frequency multiplicity; b) maximize the structure preservation

Graph Wavelet Filterbanks

Graph Spectrum and Spectral Filter

- Laplacian matrix L = D W, where D is degree matrix, W is adjacency matrix
- Normalized form $\mathcal{L} = D^{-1/2} LD^{-1/2}$: eigenvalues $\{\lambda_i\}$ within range [0, 2], interpreted as graph spectrum
- Spectral Filter: defined with spectral kernel $h(\lambda)$

Critically Sampled Wavelet Filterbanks — for Bipartite Graph-Signal

- Flowchart Fig. 2: decompose f into low-pass and high-pass components
- H and G: cancel frequency folding, with spectral kernels in Fig. 3
- $\lambda = 1$: minimal energy discrimination
- Bipartite subgraph decomposition is required to apply the above filterbanks

Proposed Method (MFS)

- Goal: compact representation of signals in original graph G projected to wavelet domain of bipartite subgraph G'
- Criteria: minimum mid-frequency multiplicity & maximum structure preservation

Minimum Mid-Frequency Multiplicity

affects compact representation

• Multiplicity of $\lambda = 1$ is equivalent to null(W)

- Measurement: rank(W)

Fig. 4 How mid-frequency multiplicity

Fig. 5 Eigenvalue distribution of 1st level bipartite graph for Minnesota traffic graph using Harary's [2]: high multiplicity of $\lambda=1$ is exhibited

Maximum Structure Preservation

Fig. 6 How structure preservation leads to compact representation

Measurement for Structure Preservation

- [3][4] use max-cut as the measurement
- In our work, KL Divergence is adopted

Fig. 7 KL Divergence vs Max-cut

• Original graph $\mathcal{N}(\mu, \Sigma)$, graph with e12 removed $\mathcal{N}(\mu R, \Sigma R)$, KL divergence given by:

$$D_{KL}(\mathcal{N}||\mathcal{N}_R) = \frac{1}{2} \left(\operatorname{tr}(\mathbf{\Sigma}_R^{-1}\mathbf{\Sigma}) + (\mu_R - \mu)^T \mathbf{\Sigma}_R^{-1} (\mu_R - \mu) \right) \quad \text{small, then DkL is small.}$$

$$-N + \ln \left(\frac{|\mathbf{\Sigma}_R|}{|\mathbf{\Sigma}|} \right) \quad \frac{1}{2} \left(-\frac{\delta}{1+\delta} (\sigma_1 + \sigma_2) - \ln \left(1 \right) \right)$$

When vertex degree d₁ d₂ are large, σ₁ σ₂ are

$$D_{KL}(\mathcal{N}||\mathcal{N}_R) \approx \frac{1}{2} \left(-\frac{\delta}{1+\delta} (\sigma_1 + \sigma_2) - \ln\left(1 - \frac{\delta}{1+\delta} (\sigma_1 + \sigma_2)\right) \right).$$

References: [1] S.N. and A.O. "Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs," TSP'13. [2] S.N. and A.O. "Perfect reconstruction two-channel wavelet filter banks for graph structured data," TSP'12. [3] S.N. and A.O. "Multi-dimensional separable critically sampled wavelet filterbanks on arbitrary graphs," ICASSP'12.

[4] H.N. and M.Do "Downsampling of signals on graphs via maximum spanning trees," TSP'15.

• maximizing rank(W) \neq minimizing DKL

Algorithm (MFS)

- Heuristic algorithm:

Algorithm 1 Bipartite Subgraph Decomposition Optimizing Midfrequency and Structure

Input: graph \mathcal{G} , decomposition level k

Output: edge-disjoint bipartite graphs $\mathcal{B}_1,...,\mathcal{B}_k$

- Find connected components in \mathcal{G} .
- For each component, put the starting vertex in set 1.
- Use breadth-first search to explore other vertices, and choose the proper set by jointly comparing rank($\mathbf{W}_{1,2}$) and D_{KL} .
- After all vertices are discovered, bipartite graph \mathcal{B}_i is given.
- Update \mathcal{G} by removing edges in \mathcal{B}_i .
- 7: **end for**

Experiments

- Given input graph, first do bipartite subgraph decomposition, then apply GraphBior and reconstruct the signal with n% largest wavelet coefficients
- China temperature graph: monthly average temperature from Oct.09 to May12, vertices connected to neighbors with distance < threshold T

• Table 1 Average gain of proposed MFS over competing schemes in SNR(dB) for graphs with different connections: column 2~5, threshold from T to 1.4 T; column 6~8, vertices connected to knn with k = 7, 8, 9.

	T	0.8T	1.2T	1.4T	k=7	k=8	k=9
Harary's[2]	1.65	1.43	0.82	0.82	0.76	0.64	1.34
MCWMC[3]	1.35	0.74	1.17	1.24	1.56	1.62	2.06
MST[4]	1.35	0.16	2.24	1.38	0.93	0.64	1.91

