

Sayak Paul

Deep Learning Associate at PylmageSearch

Blood Cell Detection using TF Object Detection API

The project demonstrates the use of TFOD API automatically to detect all the Red Blood Cells (RBCs), White Blood Cells (WBCs), and Platelets in each image taken via microscopic image readings.

How does it look like?

How does it look like?

Goal prediction

How does it look like?

Comes in **PASCAL-VOC** format!

Sneaking into the data folders

```
BCCD_Dataset/BCCD$ ls
Annotations ImageSets JPEGImages
BCCD Dataset/BCCD$ ls Annotations | head -5
BloodImage_00000.xml
BloodImage 00001.xml
BloodImage_00002.xml
BloodImage_00003.xml
BloodImage_00004.xml
BCCD_Dataset/BCCD$ ls JPEGImages | head -5
BloodImage_00000.jpg
BloodImage_00001.jpg
BloodImage_00002.jpg
BloodImage_00003.jpg
BloodImage_00004.jpg
```

-8

A sample XML file

```
• • •
 BCCD_Dataset/BCCD$ cat Annotations/BloodImage_00000.xml
 <annotation>
    <folder>JPEGImages</folder>
    <filename>BloodImage_00000.jpg</filename>
    <path>/home/pi/detection_dataset/JPEGImages/BloodImage_00000.jpg</path>
    <source>
        <database>Unknown</database>
    </source>
    <size>
        <width>640</width>
        <height>480</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>WBC</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
```


Sneaking into the data folders

- . 205 training images
- . 87 evaluation images

Sneaking into the data folders

- . 205 training images
- 87 evaluation images

Seems like a small dataset!

Preparation

- TFOD API needs the data to be in TFRecords format
- It provides a utility script "generate_tfrecord.py"
 - Needs .csv files as inputs
 - XML annotations should be put together in .csv files (train and evaluation)
 - Another utility script "xml_to_csv.py"

Model

Which one?

Model

Which one?

• Faster R-CNN

Model

Why Faster R-CNN?

- Solves the problem of selective search
 - Region Proposal Networks
- Much faster compared to other networks of R-CNN family and SSDs
- Layers easily portable to TPUs

Results

mAP@.50IOU: 86.9%

16

Results

Results

Repo available at: http://bit.ly/BloodCell

Further undertakings

- Quantization aware training
- Conversion to .tflite
- Deployment to Raspberry Pi with a TPU USB Accelerator
- To be paired with microscopes used by pathologists

Acknowledgements

- The entire team at PylmageSearch
- . The entire GDE team
 - GCP credits
 - Qwiklabs credits
 - And many things more
- TensorFlow Research Cloud team

Thank you:)

sayak.dev