The Sense-Think-Act Loop

CS 3630

A Taxonomy of Robotics Topics

To develop a robot we must integrate six distinct aspects:

- 1. State: How does the robot represent its world, and itself?
- 2. Actions: What can the robot do, and how to represent this?
- 3. <u>Sensors:</u> What information about the world can be ascertained via sensing, and how do we model this process?
- 4. <u>Perception:</u> How can we combine sensor data with contextual knowledge to understand the current state?
- **5.** Planning: What actions should the robot execute to transform the state of the world into a desired goal state?
- **Learning:** How can the robot improve its knowledge over time, using information that it acquires during operation?

Museum Guide Robot example

- State: where is the robot, and where are the humans to be guided?
- Actions: move from room to room
- **Sensors:** cameras
- <u>Perception:</u> use computer vision to understand human intention, and to localize
- Planning: what path to take in order to guide humans to their desired exhibit
- Learning: which parts of the museum are crowded, and when to avoid these

When deployed in the world, most robots use the so-called **Sense-Think-Act** paradigm of operation.

This can be viewed as an overall control structure, in which state, actions, sensors, perception, planning, and learning play specific roles.

Sense, Think, Act

Suppose you are given a task: Rearrange the chairs in the room into a circle. How would you proceed?

- 1. Look around the room and evaluate the situation. Where are the chairs? How many chairs are there?
- 2. Make a plan:
 - 1. Go the first chair, pick it up, place it in the desired position
 - 2. Repeat for all N chairs.
- 3. Execute the plan.

This is the basic strategy followed by almost all robots.

Sense, Think, Act

Suppose you are given a task: Rearrange the chairs in the room into a circle. How would you proceed?

1. Look around the room and evalua Where are the chairs? How many chairs	Sense
 Make a plan: Go the first chair, pick it up, place it Repeat for all N chairs. 	in the desired position Think
3. Execute the plan.	Act

This is the basic strategy followed by almost all robots.

Sense, Think, Act at Different Time Scales

The time to complete one cycle of this loop depends on the task:

- Playing chess: minutes
- Hand-eye coordination: 30 Hz
- Force controlled robot: Order of KHz

 When cycle time is very slow, we might have scene understanding and deliberative planning.

Boston Dynamics Atlas

Boston Dynamics Spot

Ocado

hello robot[™]

Stretch™ RE1 Home Teleoperation

Hello Robot Stretch

IndoorSim-to-OutdoorReal: Learning to Navigate
Outdoors without any Outdoor Experience

Boston Dynamics Spot (visual navigation @GT/Google)

Starship

Course Overview

- Sensing and Perception
- Modeling Robot State
- Decision Making and Planning
- Actuation

We will progress through the sensethink-act loop in order, while additionally exploring the role of learning, adaptation and multi-robot environments.