

Mesures: Picker 3.5MHz miroir

Caractéristiques du transducteur de laboratoire Picker 3.5MHz tirant sur un miroir à 45°

Objet:	Résultat du transducteur de laboratoire Picker 3.5MHz avec miroir à 45°.			
Réf/Fichier	2017-12-03 MEAS picker_3_5mhz_transducer_pcb_mirror v1 fr			
Révision :	V1	2017-12-03	BVi	Création
Révision :	En cours			

Le passage de ce transducteur Picker 3.5MHz tirant sur un miroir cuivre de PCB en sur le banc a permis de mesurer une zone focale à -6db de 74mm s'étendant de x=29mm à x=103mm avec un point focal situé à x=51mm. La largeur de la zone focale au point focale est de 2.2mm.

Sachant que la présence du miroir rallonge le chemin acoustique de 45 µs soit 33 mm.

Données constructeur

Les références constructeur lisibles sur le transducteur sont :

- PICKER, 565523A, 3.5MHz, 19MM, LONG FOS, 5790IR, SERIES L
- Miroir, cuivre de PCB simple face.

Mesure du champ

Par déplacement d'un fil nylon de 0.15mm sur une surface de 250mm x 15mm et après réglage du banc pour obtenir un echo mesuré maximum au point focal.

Les mesures sont effectuées par défaut avec une **tension de 75V et 17dB d'amplification**.

Champ d'amplitude

Hz + mirror 45°, Amplitude, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 44µs, 75V, 3.

Champ d'atténuation

Iz + mirror 45°, Attenuation, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 44μs, 75V, 3

Champ de focalisation

lz + mirror 45°, Attenuation, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 44μs, 75V, 3

Surface d'atténuation

lz + mirror 45°, Attenuation, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 44μs, 75V, 3

Signal d'écho

Signal de l'écho en différents points caractéristiques.

Evolution selon axe X

Evolution selon axe Y

Autour du point focal.

Signaux à fort gain

Miroirs de mauvaise qualité

Fibre de verre (arrière de PCB)

r PLA, Attenuation, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 43µs, 100V, 3.5MHz, 1

PLA (impression 3D, couches 0.2mm)

r PLA, Attenuation, 250mm x 15mm, Step: 1mm x 0.2mm, Speed: 10000mm/min, Scan: 1, 44µs, 100V, 3.5MHz, 2

