Decision Tree

Achmad Basuki, Iwan Syarif
Politeknik Elektronika Negeri Surabaya
PENS-ITS 2003

Proses Klasifikasi Dalam Data Mining

- Klasifikasi adalah proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model itu sendiri bisa berupa aturan "jika-maka", berupa decision tree, formula matematis atau neural network. (Iko Pramudiono, Modul Pengantar Data Mining, www.ilmukomputer.com)
- Proses klasifikasi biasanya dibagi menjadi dua fase: learning dan test. Pada fase learning, sebagian data yang telah diketahui kelas datanya diumpankan untuk membentuk model perkiraan. Kemudian pada fase test model yang sudah terbentuk diuji dengan sebagian data lainnya untuk mengetahui akurasi dari model tsb. Bila akurasinya mencukupi model ini dapat dipakai untuk prediksi kelas data yang belum diketahui.
- Klasifikasi dicirikan dengan data training mempunyai label, berdasarkan label ini proses klasifikasi memperoleh pola attribut dari suatu data.

Proses Klasifikasi Dalam Data Mining

X	Υ	Kelas
0	0	1
0	1	1
1	0	2
1	1	2

Proses Klasifikasi Dapat Menjadi Sebuah Tree

X	Υ	Kelas
0	0	1
0	1	1
1	0	2
1	1	2

Proses Klasifikasi Dapat Menjadi Sebuah Tree

X	Υ	Z	Kelas
0	0	0	2
0	0	1	2
0	1	0	1
0	1	1	1
1	0	0	2
1	0	1	2
1	1	0	2
1	1	1	2

Mengubah data menjadi pohon keputusan (*decision tree*) dan aturan-aturan keputusan (*rule*)

Gambaran Pemakaian Decision Tree

Membuat aturan (rule) yang dapat digunakan untuk menentukan apakah seseorang mempunyai potensi untuk menderita hipertensi atau tidak berdasarkan data usia, berat badan dan jenis kelamin.

#	Usia	Berat Badan	Kelamin	Hipertensi
1	muda	overweight	pria	ya
2	muda	underweight	pria	tidak
3	muda	average	wanita	tidak
4	tua	overweight	pria	tidak
5	tua	overweight	pria	ya
6	muda	underweight	pria	tidak
7	tua	overweight	wanita	ya
8	tua	average	pria	tidak

Gambaran Pemakaian Decision Tree

Konsep Data Dalam Decision Tree

- Data dinyatakan dalam bentuk tabel dengan atribut dan record.
- Atribut menyatakan suatu parameter yang dibuat sebagai kriteria dalam pembentukan tree. Misalkan untuk menentukan main tenis, kriteria yang diperhatikan adalah cuaca, angin dan temperatur. Salah satu atribut merupakan atribut yang menyatakan data solusi per-item data yang disebut dengan target atribut.
- · Atribut memiliki nilai-nilai yang dinamakan dengan instance. Misalkan atribut cuaca mempunyai instance berupa cerah, berawan dan hujan.

Konsep Data Dalam Decision Tree

Nama	Cuaca	Angin	Temperatur	Main
Ali	cerah	keras	panas	tidak
Budi	cerah	lambat	panas	ya
Heri	berawan	keras	sedang	tidak
Irma	hujan	keras	dingin	tidak
Diman	cerah	lambat	dingin	ya

Proses Dalam Decision Tree

- Mengubah bentuk data (tabel) menjadi model tree. Dalam Modul ini menggunakan algoritma ID3.
- Mengubah model tree menjadi rule
- Menyederhanakan Rule (Pruning)

Proses Data Menjadi Tree

Entropy

- · S adalah ruang (data) sample yang digunakan untuk training.
- P+ adalah jumlah yang bersolusi positif (mendukung) pada data sample untuk kriteria tertentu.
- P- adalah jumlah yang bersolusi negatif (tidak mendukung) pada data sample untuk kriteria tertentu.
- · Besarnya Entropy pada ruang sample S didefinisikan dengan:

Entropy(S) =
$$-p_+ \log_2 p_+ - p_- \log_2 p_-$$

Definisi Entropy

- Entropy(S) adalah jumlah bit yang diperkirakan dibutuhkan untuk dapat mengekstrak suatu kelas (+ atau -) dari sejumlah data acak pada ruang sample S.
- Entropy bisa dikatakan sebagai kebutuhan bit untuk menyatakan suatu kelas. Semakin kecil nilai Entropy maka semakin baik untuk digunakan dalam mengekstraksi suatu kelas.
- Panjang kode untuk menyatakan informasi secara optimal adalah $-\log_2$ p bits untuk messages yang mempunyai probabilitas p.
- Sehingga jumlah bit yang diperkirakan untuk mengekstraksi S ke dalam kelas adalah:

-p₊ log₂ p₊ - p₋ log₂ p₋

Contoh Permasalahan Penentuan Hipertensi Menggunakan Decision Tree

Data diambil dengan 8 sample, dengan pemikiran bahwa yang mempengaruhi seseorang menderita hipertensi atau tidak adalah usia, berat badan, dan jenis kelamin.

Usia mempunyai instance:

muda dan tua
Berat badan mempunyai instance:

underweight, average dan overweight

Jenis kelamin mempunyai instance:

pria dan wanita

Data Sample yang Digunakan Untuk Menentukan Hipertensi

Nama	Usia	Berat	Kelamin	Hipertensi
Ali	muda	overweight	pria	ya
Edi	muda	underweight	pria	tidak
Annie	muda	average	wanita	tidak
Budiman	tua	overweight	pria	tidak
Herman	tua	overweight	pria	ya
Didi	muda	underweight	pria	tidak
Rina	tua	overweight	wanita	ya
Gatot	tua	average	pria	tidak

Langkah Mengubah Data Menjadi Tree

- Menentukan Node Terpilih
- Menyusun Tree

Menentukan Node Terpilih

- Untuk menentukan node terpilih, gunakan nilai Entropy dari setiap kriteria dengan data sample yang ditentukan.
- Node terpilih adalah kriteria dengan Entropy yang paling kecil.

Memilih Node Awal

Usia	Hipertensi	Jumlah
muda	Ya (+)	1
muda	Tidak (-)	3
tua	ya	2
tua	tidak	2

Usia = muda
$$\frac{1}{q_1} = \frac{3}{4} \log_2 \frac{3}{4} = 0.81$$

$$q_2 = -\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} = 1$$

Entropy untuk Usia:

$$E = \frac{4}{8}q_1 + \frac{4}{8}q_2 = \frac{4}{8}(0.81) + \frac{4}{8}(1) = 0.91$$

Memilih Node Awal

Usia	Hipertensi	Jumlah
muda	ya	1
muda	tidak	3
tua	ya	2
tua	tidak	2

Entropy = 0.91

Kelamin	Hipertensi	Jumlah
pria	ya	2
pria	tidak	4
wanita	ya	1
wanita	tidak	1

Entropy = 0.94

Berat	Hipertensi	Jumlah
overweight	ya	3
overweight	tidak	1
average	ya	0
average	tidak	2
underweight	ya	0
underweight	tidak	2

Entropy = 0.41

Terpilih atribut BERAT BADAN sebagai node awal karena memiliki entropy terkecil

Penyusunan Tree Awal

Leaf Node berikutnya dapat dipilih pada bagian yang mempunyai nilai + dan -, pada contoh di atas hanya berat=overweight yang mempunyai nilai + dan - maka semuanya pasti mempunya leaf node. Untuk menyusun leaf node lakukan satu-persatu.

Penentuan Leaf Node Untuk Berat=Overweight

Data Training untuk berat=overweight

Nama	Usia	Kelamin	Hipertensi
Ali	muda	pria	ya
Budiman	tua	pria	tidak
Herman	tua	pria	ya
Rina	tua	wanita	ya

Usia	Hipertensi	Jumlah
muda	ya	1
	tidak	0
tua	ya	2
	tidak	1
	Entropy =	0,69

Kelamin	Hipertensi	Jumlah	
pria	ya		2
	tidak		1
wanita	ya		1
	tidak		0
	Entropy =	0,69	

Leaf Node Usia dan Jenis Kelamin memiliki Entropy yang sama, sehingga tidak ada cara lain selain menggunakan pengetahuan pakar atau percaya saja pada hasil acak.

Masil Tree

Pada usia=tua ternyata ada 1 data menyatakan ya dan 1 data menyatakan tidak, keadaan ini perlu dicermati. Pilihan hanya dapat ditentukan dengan campur

Mengubah Tree Menjadi Rules

If atribut#1=subset2 ^ atribut#2=subset21
then answer=answer1
If atribut#1=subset2 ^ atribut#2=subset22
then answer=answer2

Conjunction & Disjunction

Mengubah Tree Menjadi Rule

Hasil Prediksi Pada Data Training

Nama	Usia	Berat	Kelamin	Hipertensi	Prediksi
Ali	muda	overweight	pria	ya	ya
Edi	muda	underweight	pria	tidak	tidak
Annie	muda	average	wanita	tidak	tidak
Budiman	tua	overweight	pria	tidak	tidak
Herman	tua	overweight	pria	ya	tidak
Didi	muda	underweight	pria	tidak	tidak
Rina	tua	overweight	wanita	ya	ya
Gatot	tua	average	pria	tidak	tidak

Kesalahan (e) = 12.5 % (1 dari 8 data)

Data Uji Coba Decision Tree

WAKTU	PAKET	FREKWEKSI	PRIORITAS	GANGGUAN
PENDEK	BESAR	SEDANG	RENDAH	GANGGUAN
PENDEK	KECIL	TINGGI	RENDAH	NORMAL
PENDEK	KECIL	SEDANG	TINGGI	GANGGUAN
PENDEK	KECIL	TINGGI	RENDAH	NORMAL
PENDEK	KECIL	SEDANG	TINGGI	NORMAL
PANJANG	BESAR	SEDANG	RENDAH	NORMAL
PANJANG	KECIL	TINGGI	TINGGI	GANGGUAN
PENDEK	BESAR	SEDANG	RENDAH	NORMAL
PANJANG	KECIL	RENDAH	TINGGI	NORMAL
PENDEK	KECIL	TINGGI	TINGGI	NORMAL
PANJANG	BESAR	TINGGI	TINGGI	NORMAL
PANJANG	KECIL	RENDAH	TINGGI	NORMAL

- 1. Buatlah tree dan rule untuk mendeteksi adanya gangguan pada jaringan komputer menggunakan data di atas
- 2. Lakukan penyederhaan (Pruning)
- 3. Berapa persen besarnya error yang terjadi tanpa penyederhanaan (pruning) dan dengan penyederhanaan

Data Uji Coba Decision Tree

USIA	KELAMIN	MEROKOK	OLAHRAGA	JANTUNG
MUDA	WANITA	TIDAK	YA	YA
MUDA	PRIA	TIDAK	TIDAK	TIDAK
MUDA	PRIA	YA	YA	TIDAK
MUDA	PRIA	TIDAK	YA	YA
MUDA	WANITA	YA	TIDAK	YA
TUA	PRIA	YA	YA	YA
MUDA	PRIA	YA	TIDAK	YA
MUDA	PRIA	TIDAK	YA	YA
TUA	PRIA	TIDAK	YA	TIDAK
TUA	PRIA	TIDAK	TIDAK	TIDAK
TUA	PRIA	YA	TIDAK	TIDAK
TUA	WANITA	YA	TIDAK	TIDAK
TUA	PRIA	YA	YA	YA
TUA	WANITA	YA	TIDAK	TIDAK
MUDA	PRIA	YA	YA	TIDAK

- 1. Buatlah tree dan rule untuk mendeteksi penyakit jantung menggunakan data di atas
- 2. Lakukan Penyederhaan (Pruning)
- 3. Berapa persen besarnya error yang terjadi tanpa penyederhanaan (pruning) dan dengan penyederhanaan

Data Uji Coba Decision Tree

RED	GREEN	BLUE	CONTENT
TINGGI	RENDAH	TINGGI	BACKGROUND
TUA	RENDAH	RENDAH	BACKGROUND
RENDAH	TINGGI	RENDAH	BACKGROUND
TINGGI	TUA	TINGGI	OBYEK
RENDAH	TUA	TINGGI	BACKGROUND
RENDAH	TINGGI	TUA	BACKGROUND
TINGGI	TUA	RENDAH	OBYEK
RENDAH	TUA	RENDAH	BACKGROUND
TINGGI	TINGGI	TINGGI	OBYEK
TUA	TINGGI	RENDAH	BACKGROUND
TUA	RENDAH	TUA	OBYEK
RENDAH	RENDAH	TINGGI	BACKGROUND
TUA	RENDAH	RENDAH	BACKGROUND
RENDAH	TUA	RENDAH	OBYEK
RENDAH	RENDAH	TINGGI	OBYEK

- 1. Buatlah tree dan rule untuk mendeteksi apak suatu warna itu obyek atau background
- 2. Lakukan penyederhaan (Pruning)
- 3. Berapa persen besarnya error yang terjadi tanpa penyederhanaan (pruning) dan dengan penyederhanaan