

Cairo University Faculty of Computers and Artificial Intelligence --*-Mid-Term Fxam

العامر	'-IVIIQ-TETTI EXATTI
Department: Information Technolog	y
Course Name: Pattern Recognition	Date: April 2022
Course Code: IT	Duration: 1 hour
Instructor(s): Dr. Mona Soliman	Total Marks: 15 Marks

Name :......SID:.....

15	

Question-1

a. Complete the following: (4 marks)

- 2- DFT can be used to describe information of the object. The resulting feature vector is consisting of
- 3- The DBSCAN algorithm uses two main parameters:...., and
- 4. The main problem with the first-order statistical texture is
- b. For the following two shapes a, and b with starting point indicated as **S**, get the following: (3 marks)

3 2 1 4 0 0 5 6 7	S' (a)	(b)
(i) Stander Chain Code		
(ii) minimum circular shift chain code		

iii. Is the minimum circular shift chain code for shapes (a) and (b) the same?? Why??

Question-2 (3 marks) For the following image

Mean	$\sum_{i} x_{i} p(x_{i})$
Uniformity	$\sum_{i=0}^{n-1} (p(x_i))^2$

2	3	4	4	6
1	2	4	5	6
1	1	5	6	6
0	1	3	3	4
0	1	2	3	4

(i) Compute image histogram

(ii) Design a feature vector of 2D using mean and uniformity features

(iii) What is the class of this image using the following training samples

Sample	M	U	Class
1	4	0.12	1
2	6	0.23	2
3	2.5	0.17	3

Question-3 (5 marks)

(i) Complete the following table using the first iteration of the k-means algorithm (k=3) starting with the initial points highlighted in the table (Hint: use absolute distance as a distance measure)

Iteration-1

Point		Mean-1: (2,10)	Mean-2: (5,8)	Mean-3: (1,2)	
		Dist mean-1	Dist mean-2	Dist mean-3	Cluster # (Hint: What is the cluster of each point?)
A1	(2,10)				
A2	(2,5)				
A3	(8,4)				
A4	(5,8)				
A5	(7,5)				
A6	(1,2)				

(ii) The output means of Iteration-1

Cluster #	Cluster-1	Cluster-2	Cluster-3
New mean			

(iii) plot the samples points with updated centers on x-y plane