

Curso: Bacharelado em Ciência da Computação

Disciplina: Pré-Cálculo

Professora: Ms. Lucilene Dal Medico Baerle

ALIINO:			
ALINI			

Videira, semestre de

ÍNDICE GERAL

- I. Conjuntos Numéricos;
- II. Quatro Operações Fundamentais;
- III. Números Relativos;
- IV. Frações Ordinárias;
- V. Potências;
- VI. Radicais;
- VII. Polinômios
- VIII. Produtos notáveis
 - IX. Fatoração
 - X. Curiosidades;
 - XI. Bibliografia.

I - CONJUNTOS NUMÉRICOS

Esta figura representa a classe dos números.

1) Conjuntos: é um agrupamento de elementos.

$N \rightarrow Naturais$

"São todos os números positivos inclusive o zero"

$$N = \{0, 1, 2, 3, 4, 5, ...\}$$

"Não há números naturais negativos"

Aplicação: São os números os quais utilizamos para contar quantidades inteiras.

Exemplo: livros, pessoas, mesas, cadeiras, etc...

$Z \rightarrow$ Inteiros

"São todos os números positivos e negativos inclusive o zero"

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

"Não há números inteiros na forma de fração ou decimal".

Aplicação: São números relativos que estão ligados as trocas, ou seja, transações de coisas.

Exemplo: João emprestou uma camisa para o Pedro ir ao casamento. Em linguagem matemática, João tem credito de uma camisa (+1) em relação a Pedro; ou Pedro tem um débito de uma camisa (-1) em relação a João. (São chamados de números relativos, pois dependem do referencial).

Profa. Ms. Lucilene Dal Medico Baerle

O → Racionais

denominador diferente de zero.

 $Q = \left\{ x; x = \frac{p}{q} com : p \in Z, q \in Z, q \neq 0 \right\}.$ Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o

"São todos os decimais exatos ou periódicos".

$$Q = \{..., \frac{1}{2}, -3, \frac{1}{99}, 0, \frac{1}{10}, \frac{7}{1}, ...\}$$

I → Irracionais

"São todos os decimais não exatos e não periódicos".

$$I = \{...,\sqrt{5},-\sqrt{3},e,\pi,-\sqrt[3]{2},\frac{\sqrt{7}}{2},...\}$$

R → Reais

"É a união de todos os conjuntos numéricos, " todo número que seja N, Z, Q ou I é um número R (real)".

2) Propriedades

Sendo a,b e $c \in \Re$, tem-se:

$$(a+b)+c=a+(b+c)$$
(associativa da adição) $a+b=b+a$ (comutativa da adição) $a+0=a$ (elemento neutro da adição) $a+(-a)=0$ (simétrico ou oposto da adição) $(a.b).c=a.(b.c)$ (associativa da multiplicação) $a.b=b.a$ (comutativa da multiplicação) $a.1=a$ (elemento neutro da multiplicação) $a.(a+b)=a.b+a.c$ (distributiva da multiplicação em relação à adição) $a.\frac{1}{a}=1$ (simétrico ou inverso da multiplicação)

"Só não são reais as raízes em que o radicando seja negativo e o índice é par"

II - AS QUATRO OPERAÇÕES FUNDAMENTAIS

3) Adição

"Na adição os números são chamados de parcelas, sendo a operação aditiva, e o resultado é a soma".

Exemplos:

$$4,32 + 2,3 + 1,429 = 8,049$$

Observe que as parcelas são dispostas de modo que se tenha virgula sobre virgula.

8,049 () soma

$$\frac{1}{4} + \frac{2}{3} + \frac{1}{5} = \frac{15+40+12}{60} = \frac{67}{60}$$
 1,1166 ...

ou

$$\frac{1}{4} + \frac{2}{3} + \frac{1}{5} = \frac{2,25+6+1,8}{9} = \frac{10,05}{9}$$
 1,1166....

"Isto significa que qualquer número que for colocado no denominador seguindo o processo, chegará à mesma resposta. Com o MMC (mínimo múltiplo comum) você facilita seu trabalho".

4) Subtração

"Na subtração os números são chamados de minuendo e subtraendo, sendo a operação a subtração, e o resultado é a diferença".

Exemplos: "As regras para a subtração são as mesmas da adição, portanto podemos utilizar os mesmos exemplos apenas alterando a operação".

5) Multiplicação

"Na multiplicação os números são chamados de fatores, sendo a operação multiplicativa, e o resultado é o produto".

Exemplo:

$$7,32 \times 12,5 = 91,500$$

"Na multiplicação de frações multiplica-se dividendo com dividendo, divisor com divisor (ou simplesmente, o de cima pelo de cima e o de baixo pelo de baixo)".

6) Divisão

"Na divisão os números são chamados de dividendo (a parte que está sendo dividida) e divisor (a quantidade de vezes que esta parte está sendo dividida), a operação é a divisão, e o resultado é o quociente"

Exemplo:

Existe na divisão, o que pode-se chamar de resto. Isto é, quando uma divisão não é exata irá sempre sobrar um determinado valor, veja no exemplo a seguir:

Casos particulares da multiplicação e divisão:

Multiplicação

$$N \times 1 = N$$

$$N \times 0 = 0$$

Divisão

$$N / 1 = N$$

$$N/N=1$$

$$0 / N = 0$$

7) Exercícios:

(A). RESOLVA:

a.
$$2,31+4,08+3,2=$$

b.
$$4,03 + 200 + 51,2 =$$

c.
$$32,4-21,3=$$

d.
$$48 - 33,45 =$$

e.
$$2,1 \times 3,2 =$$

f.
$$48,2 \times 0,031 =$$

g.
$$3,21 \times 2,003 =$$

h.
$$8,4708 / 3,62 =$$

i.
$$682,29 / 0,513 =$$

k. (FUVEST)
$$\frac{0,2 \times 0,3}{3,2-2,0} =$$

n.
$$\frac{2,31 \times 4,82}{5,1}$$

o.
$$\frac{0,021 \times 4,32}{0,285} \cong$$

III - NÚMEROS RELATIVOS

Definição: É o conjunto dos números positivos, negativos e o zero, designado por Z.

8) Valor absoluto ou Módulo

"É um número desprovido de seu sinal. Suprimindo o sinal de um número relativo, obtemos um número aritmético, que se denomina valor absoluto ou módulo desse número relativo, sendo representado pelo símbolo | |."

Exemplos:

$$|-9| = 9$$

$$|-2|=2$$

$$|0| = 0$$

$$|7| = 7$$

9) Soma e subtração algébrica

Sinais iguais: Soma-se os valores absolutos e dá-se o sinal comum.

Sinais diferentes: Subtraem-se os valores absolutos e dá-se o sinal do maior.

Exemplos:

a)
$$2 + 4 =$$

b)
$$-2 - 4 =$$

c)
$$5-3=$$

d)
$$-5+3=$$

e)
$$2+3-1-2=5-3=$$

f)
$$-1-3+2-4+21-5-32=23-45=$$

10) Multiplicação e divisão algébrica

Sinais iguais → resposta positiva

Sinais diferentes \rightarrow resposta negativa

Isto é:

$$(+) \times (+) = (+)$$
 $(+) : (+) = (+)$
 $(-) \times (-) = (+)$ $(-) : (-) = (+)$
 $(+) \times (-) = (-)$ $(+) : (-) = (-)$
 $(-) \times (+) = (-)$ $(-) : (+) = (-)$

Exemplos:

- a) $12 \times 3 =$
- b) $(-12) \times (-3) =$
- c) $2 \times (-2) =$
- d) $(-2) \times 3 =$
- e) $\frac{4}{2} =$
- f) $\frac{20}{(-5)} =$
- g) $\frac{(-20)}{(-5)} =$
- h) $\frac{(-20)}{5} =$

11) Expressões numéricas

Para resolver expressões numéricas realizamos primeiro as operações de multiplicação e divisão, na ordem em que estas estiverem indicadas, e depois adições e subtrações. Em expressões que aparecem sinais de reunião: () parênteses, [] colchetes e {} chaves, efetuam-se as operações eliminando-se, na ordem: parênteses, colchetes e chaves, isto é, dos sinais interiores para os exteriores. Quando à frente do sinal da reunião eliminado estiver o sinal negativo, trocam-se todos os sinais dos termos internos.

Ordem:	
1º Parênteses "()"	
2° Colchetes "[]"	
3° Chaves "{ }"	
Ordem das operações:	

2º Multiplicação ou Divisão

3° Soma ou Subtração

OBS.: Caso tenha apenas operações do mesmo nível para resolver, adota-se o sentido da esquerda para a direita na ordem de resolução das operações.

Exemplo:

a)
$$2 + [2 - (3 + 2) - 1] = 2 + [2 - 5 - 1] = R. -2$$

b)
$$2 + \{3 - [1 + (2 - 5 + 4)] + 8\} = R.11$$

$$\{2 - [3 \times 4 : 2 - 2(3 - 1)]\} + 1 = R. 1$$

12) Números Primos

São os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo.

OBS.: O número 1, por definição, não é primo.

- Método para obtenção de números primos

Faremos isso através de um exemplo:

Encontre os números primos compreendidos entre 1 e 50.

1º Passo: Enumerá-los

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

2º Passo: Encontrar a raiz quadrada do maior número quadrado dentre os indicados, ou seja, encontrar o maior número que se conheça a raiz quadrada exata.

No caso,
$$\sqrt{49} = 7$$
.

Prof^a. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

3º Passo: Extrair da lista acima os números múltiplos dos números $\{2,3,4,5,6,7\}$, nesta ordem, onde o 7 provém do 2º passo.

4º Passo: Os números que sobraram são os números primos procurados: {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}

OBS.: o número 2 é o único número primo e par.

13) Decomposição de um número em um produto de fatores primos

A decomposição de um número em um produto de fatores primos é feita por meio do dispositivo prático que será mostrado nos exemplos a seguir.

Exemplos: Decompor os números 30 e 21

14) Mínimo múltiplo comum (m.m.c.)

O mínimo múltiplo comum de vários números é o menor número divisível por todos eles. Exemplo:

a) Calcular o m.m.c. entre 12, 16 e 45

O m.m.c. entre 12, 16 e 45 é 720

Atividades:

Resolva as atividades:

Prof^a. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

- a) m.m.c. (4; 3) =
- b) m.m.c. (3; 5; 8) =
- c) m.m.c. (8; 4) =
- d) m.m.c. (60; 15; 20, 12) =

15) Máximo Divisor Comum (m.d.c)

O m.d.c. de vários números é o maior número que os divide. Exemplo: Encontrar o m.d.c. entre 12, 18 e 36.

Fatorando cada um dos números em fatores primos, teremos:

- $12 = 2^2.3$
- $18 = 2.3^2$
- $36 = 2^2 \cdot 3^2$

Agora tomemos as menores potências dos fatores em comum apresentados acima:

$$m.d.c(12,18,36) = 2.3 = 6$$

Quando o m.d.c. entre dois números é igual a 1, dizemos que eles são relativamente primos.

Exemplos: 5 e 9 são relativamente primos, pois 5 = 5.1 e $9 = 3^2.1$. Sendo 1 o único fator comum a estes números.

Encontre o máximo divisor comum de:

- a) m.d.c.(9;6) =
- b) m.d.c.(36;45) =
- c) m.d.c.(12;64) =
- d) m.d.c.(20;35;45) =

16) Exercícios

(A). RESOLVA:

- a. 2+3-1=
- b. -2-5+8=
- c. -1-3-8+2-5=
- d. $2 \times (-3) =$

e.
$$(-2) \times (-5) =$$

f.
$$(-10) \times (-1) =$$

g.
$$(-1) x (-1) x (-2) =$$

h.
$$\frac{4}{-2} =$$

i.
$$\frac{-8}{2} =$$

$$j. \qquad \frac{-20}{-5} =$$

k.
$$\frac{\left(-4\right)\times\left(-1\right)}{-2} =$$

1.
$$\frac{(-1+3-5)\times(2-7)}{-1} =$$

$$m. \qquad \frac{\left(2+3\times 4-2\times 5-3\right)}{-1} =$$

n.
$$2\{2-2[2-4(3x2:3)+2]\}+1 =$$

o.
$$8 - \{-20[(-3+3):(-58)] + 2(-5)\} =$$

p.
$$0.5 \times 0.4 : 0.2 =$$

q.
$$0.6:0.03 \times 0.05 =$$

s.
$$3:81 \times 0.5 =$$

t. Calcule o m.m.c. entre:

u. Encontre o m.d.c de:

IV - FRAÇÕES ORDINÁRIAS

Prof^a. Ms. Lucilene Dal Medico Baerle

Definição: Fração é um quociente indicado onde o dividendo é o numerador e o divisor é o denominador. É dividir algo em partes iguais. Dentre essas partes, consideramos uma ou algumas, conforme nosso interesse.

"As frações que serão apresentadas a seguir, partem de um inteiro, e ao dividir formam as frações".

A fração é própria quando o numerador é menor do que o denominador: $\frac{1}{2}$, $\frac{3}{5}$, $\frac{120}{210}$, etc.

A fração é imprópria quando o numerador é maior que o denominador, sendo possível representá-la por um número misto, e vice-versa.

Exemplos:

a)
$$\frac{10}{7} = 1\frac{3}{7}$$
 pois $\frac{10}{7}$ possui resto 3

b)
$$\frac{28}{5} = 5\frac{3}{5}$$
 pois $\frac{28}{5}$ possui resto 3

c)
$$\frac{11}{3} = 3\frac{2}{3}$$

d)
$$2\frac{1}{3} = \frac{7}{3}$$

e)
$$-1\frac{1}{4} = -\frac{5}{4}$$

17) Propriedade

Multiplicando ou dividindo os termos de uma fração por um número diferente de zero obtém-se uma fração equivalente à inicial.

Exemplos:

a)
$$\frac{1}{2} = \frac{1 \times 2}{2 \times 2} = \frac{2}{4}$$

b)
$$\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}$$

c)
$$\frac{20}{30} = \frac{20:10}{30:10} = \frac{2}{3}$$

d)
$$-\frac{4}{8} = -\frac{4:4}{8:4} = -\frac{1}{2}$$

18) Soma algébrica de frações

Reduzem-se ao menor denominador comum e somam-se algebricamente os numeradores.

OBS: O menor denominador comum é o m.m.c. dos denominadores.

Exemplos:

a)
$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{3+2}{6} = \frac{5}{6}$$

b)
$$\frac{1}{2} + \frac{5}{6} - \frac{2}{3} =$$

c)
$$\frac{1}{12} - \frac{3}{4} + \frac{4}{3} - 2 =$$

d)
$$2\frac{1}{3}+1\frac{1}{4}-4=\frac{7}{3}+\frac{5}{4}-4=$$

19) Multiplicação de frações

Multiplicam-se os numeradores entre si, da mesma maneira se faz com os denominadores.

Exemplos:

$$a) \rightarrow \frac{1}{2} \times \frac{3}{5} =$$

b)
$$\rightarrow \left(-\frac{1}{4}\right) \times \frac{1}{2} =$$

c)
$$\rightarrow \left(-\frac{1}{3}\right) \times \left(-\frac{2}{5}\right) =$$

d)
$$\rightarrow$$
 $\left(-3\right) \times \left(-\frac{1}{4}\right) \times \left(-\frac{2}{7}\right) =$

e)
$$\rightarrow 2\frac{3}{4} \times 3\frac{1}{5} =$$

20) Divisão de frações

Na divisão de números fracionários, devemos multiplicar a primeira fração pelo inverso da segunda, como é mostrado nos exemplos abaixo:

Exemplos: ¶

a)
$$\rightarrow \frac{\frac{1}{2}}{\frac{1}{3}} = \frac{1}{2} \times \frac{3}{1} = \frac{3}{2} = 1\frac{1}{2}\P$$

$$b) \rightarrow \frac{\left(-\frac{2}{3}\right)}{\frac{1}{2}} =$$

$$c) \rightarrow \frac{\frac{1}{2}}{3} =$$

$$d) \rightarrow \frac{5}{\frac{2}{3}} =$$

e)
$$\rightarrow \frac{4\frac{1}{3}}{(-2\frac{1}{4})} =$$

21) Comparações de Frações

Para comparar as frações devemos reduzi-las ao mesmo denominador e comparar os numeradores, a qual tiver o numerador maior será a maior fração.

OBS.: a < b, lê-se: "a é menor do que b"

a > b, lê-se: "a é maior do que b"

Exemplo: Comparar $\frac{6}{7}$ e $\frac{2}{3}$:

Para isto, calculamos o m.m.c. entre 7 e 3:

$$m.m.c.(7,3)=21$$

Então, ao transformar os denominadores em 21, devemos multiplicar os numeradores pelos fatores de transformações.

$$\frac{6\times3}{7\times3} e \xrightarrow{2\times7} \Rightarrow \frac{18}{21} e \xrightarrow{14}$$

Como 18 é maior que 14, podemos afirmar que:

$$\frac{18}{21} > \frac{14}{21}$$
.

22) Exercícios

(A). Simplifique as frações, ou coloque-as na forma irredutível:

- a) $\frac{2}{4} =$
- b) $\frac{9}{27} =$
- c) $\frac{12}{48} =$

(B). Comparar as frações:

a) $\frac{1}{2}$, $\frac{2}{3}$

Profa. Ms. Lucilene Dal Medico Baerle

- b) $\frac{2}{3}$, $\frac{5}{6}$
- c) $\frac{4}{7}$, $\frac{3}{8}$

(C). Resolva:

- a) $\frac{1}{5} + \frac{1}{10} =$
- b) $\frac{2}{3} \frac{4}{3} =$
- c) $\frac{1}{2} \frac{1}{3} + \frac{1}{6} =$
- d) $2\frac{2}{3} + 3\frac{1}{2} 5 =$
- e) $\frac{1}{3} \times \frac{2}{5} =$
- $f) \qquad \frac{3}{7} \times \frac{1}{3} \times \frac{2}{5} =$
- g) $\left(-\frac{1}{6}\right) \times \left(-\frac{2}{5}\right) =$
- $h) \qquad 2\frac{1}{5} \times \left(-1\frac{1}{3}\right) =$
- i) $\frac{\frac{1}{3}}{\frac{1}{2}} =$
- j) $\frac{2}{3}:\left(-\frac{1}{5}\right)=$
- k) $\frac{1}{2}:\frac{2}{3}\times\frac{1}{4}=$
- 1) $2\frac{2}{5}:1\frac{1}{5}=$
- m) $\left(\frac{1}{3} + \frac{2}{4}\right) : \frac{1}{2} =$
- n) $\frac{1+\frac{1}{3}}{3} =$

o)
$$\frac{1 + \frac{1 + \frac{1}{2}}{2}}{\frac{1}{2}} =$$

p)
$$\frac{3\frac{1}{8} + 1\frac{1}{4}}{2\frac{5}{8} - 1\frac{3}{4}} - \frac{1\frac{5}{7} \times 1\frac{2}{5}}{2\frac{1}{4} : 3\frac{1}{3}} =$$

(D). Simplifique:

$$a) \qquad \frac{1 + \frac{1}{1+1}}{1 + \frac{1}{1+1}} =$$

$$\frac{1+\frac{1}{1+1}}{1+\frac{1}{1+\frac{1}{1+1}}} = b) \frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{\frac{2}{3}+\frac{3}{4}}:\left(\frac{9}{17}+1\right) =$$

(F). Observe a figura:

- a) Em quantas partes iguais o retângulo foi dividido?
- b) Cada uma dessas partes representa que fração do retângulo?
- c) A parte pintada representa que fração do retângulo?

(G). Observe as figuras e diga quanto representa cada parte da figura e a parte pintada:

- (H). Um sexto de uma pizza custa R\$3,00, quanto custa:
 - a) 3/6da pizza

- b) 5/6da pizza
- c) a pizza toda

V - POTÊNCIAS

Definição: Potência de grau **n** de um número A é o produto de **n** fatores iguais a A.

Assim:

$$2^3 = 2 \times 2 \times 2 = 8$$
 \therefore $2^3 = 8$ $(-1)^4 = (-1) \times (-1) \times (-1) \times (-1) = 1$ \therefore $(-1)^4 = 1$

23) Casos Particulares

a) A potência de expoente 1 (1º grau) é igual à base:

$$A^1 = A$$
; $2^1 = 2$

b) Toda potência de 1 é igual a 1:

$$1^2 = 1$$
; $1^3 = 1$

c) Toda potência de 0 é igual a 0:

$$0^2 = 0$$
; $0^3 = 0$

d) Toda potência de expoente par é positiva:

$$(-2)^4 = 16$$
; $2^4 = 16$; $(-3)^2 = 9$; $3^2 = 9$

e) Toda potência de expoente impar tem o sinal da base:

$$3^3 = 27;$$
 $(-3)^3 = -27$

$$2^5 = 32;$$
 $(-2)^5 = -32$

24) Multiplicação de potências de mesma base

Mantém-se a base comum e soma-se os expoentes.

Profa. Ms. Lucilene Dal Medico Baerle

Realmente:
$$2^{3} \times 2^{2} = 2 \times 2 \times 3^{2} \times 2 \times 2 \times 2 = 2^{3+2} = 2^{5}$$

Realmente: $1 \times 2 = 2^{3+2} = 2^{5}$

Exemplo:

25) Divisão de potências de mesma base

Mantém-se a base comum e diminuem-se os expoentes.

Realmente:
$$\frac{5^6}{5^4} = \frac{6\ 4\ 4\ 4\ 4^6\ 7^{\text{exc}}4\ 4\ 4\ 4\ 8}{\frac{5\times5\times5\times5\times5\times5\times5}{\frac{5}{4}\ 2\!\!\!/\ 4^2\ 3^5}} = 5^{6-4} = 5^2$$

Exemplo:
$$3^7 : 3^3 = 3^4 = 3 \times 3 \times 3 \times 3 = 81$$

26) Multiplicação de potências de mesmo grau (semelhantes)

Multiplicam-se as bases e conserva-se o expoente comum.

Realmente:
$$2^2 \times 7^2 = 2 \times 2 \times 7 \times 7 = (2 \times 7)^2$$

Exemplo:
$$3^3 \times 5^3 = 3 \times 3 \times 3 \times 5 \times 5 \times 5 = (3 \times 5)^3 = 15^3 = 3375$$

27) Divisão de potências de mesmo grau (semelhantes)

Dividem-se as bases e conserva-se o expoente comum.

Realmente:
$$\frac{2^2}{7^2} = \frac{2 \times 2}{7 \times 7} = \frac{2}{7} \times \frac{2}{7} = \left(\frac{2}{7}\right)^2$$

Exemplo:
$$8^3: 2^3 = 4^3 = 64$$

28) Potenciação de potência

Eleva-se a base ao produto dos expoentes.

Realmente:
$$(2^3)^2 = 24^3 \times 2^3 = 2^{3+3} = 2^6 \text{ ou } (2^3)^2 = 2^{3\times 2} = 2^6$$

Exemplo:
$$(3^5)^2 = 3^{10} = 59049$$

29) Expoente nulo

Toda potência de base diferente de zero e expoente zero é igual a unidade.

Realmente:
$$\begin{cases} a^4 : a^4 = a^{4-4} = a^0 \\ a^4 : a^4 = 1 \end{cases} \qquad a^0 = 1$$

Exemplo:
$$(-5)^0 = 1$$

30) Expoente negativo

Qualquer número diferente de zero, elevado à expoente negativo é igual a uma fração cujo numerador é a unidade e cujo denominador é a mesma base da potência elevada ao mesmo expoente com o sinal positivo.

Realmente:
$$\begin{cases} \frac{2^{3}}{2^{7}} = \frac{2^{3}}{2^{3} \times 2^{4}} = \frac{1}{2^{4}} \\ \frac{2^{3}}{2^{7}} = 2^{3-7} = 2^{4} \end{cases}$$

$$\mathbf{a}^{-1} = \frac{1}{\mathbf{a}^{1}}$$

Exemplo:
$$5^{-2} = \frac{1}{5^2} = \frac{1}{5 \times 5} = \frac{1}{25}$$

31) Potências de 10

Uma das formas também utilizada para a conversão de uma unidade de medida maior para outra menor e vice-versa, é a utilização da potência de 10.

A potência de 10 é de grande utilidade quando se deseja expressar números muito grandes ou extremamente pequenos, como por exemplo:

32) Propriedades:

A velocidade da luz no vácuo é representada pela letra minúscula "c"

A carga elementar é representada pela letra minúscula "e"

P.1)
$$a^m x a^n = a^{(m+n)}$$

P.2)
$$a^m : a^n = a^m / a^n = a^{(m-n)} \quad (a \neq 0)$$

P.3)
$$(a^m)^n = a^{(m.n)}$$

P.4)
$$(a \times b)^m = a^m \times b^m$$

P.5)
$$(a:b)^m = (a/b)^m = a^m/b^m = a^m:b^m (b \neq 0)$$

Particularmente, quando a base é 10, podemos escrever:

a)
$$10^n = 10 \times 10 \times 10 \times 10 \dots \times 10$$

nº de fatores

b)
$$10^{-n} = (10^{-1})^n = 1 / 10^n$$

Desta forma, seja 10ⁿ a potência n-ésima de dez:

I. - Quando $n \ge 0$

$$10^0 =$$

$$10^1 =$$

$$10^2 =$$

$$10^3 =$$

"n" indica o número de zeros, ou melhor, quantas vezes **multiplicamos** um número pela base dez.

II. - Quando n < 0

$$10^{-1} = 1 / 10^{1} = 1 / 10 = 0.1$$

Profa. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

$$10^{-2} =$$

$$10^{-3} =$$

"n" indica o número de casas decimais, ou melhor, quantas vezes **dividimos** um número pela base dez.

REGRA 1: Para se escrever números maiores do que 1 na forma de um número pequeno vezes uma potência de 10, desloca-se a casa decimal para a esquerda, tantos algarismos quanto desejados. A seguir, multiplica-se o número obtido por 10 elevado a uma potência igual ao número de casas deslocadas. Exemplo:

Escrever o número 3.000 em potência de 10.

 1^{a} opção: $3.000 = 3 \times 10^{3}$

 2^a opção: $3.000 = 30 \times 10^2$

Na primeira opção, o número 10 foi elevado a um expoente 3, pois a vírgula foi deslocada 3 casas para a esquerda.

Na segunda opção, no entanto, em virtude da vírgula ter sido deslocada apenas 2 casas para a esquerda, a número 10 foi elevado a um expoente 2. Isto significa que, na 1ª opção o número 3 é multiplicado por 1.000, enquanto que, na 2ª opção o número 30 é multiplicado por 100.

Assim:
$$3 \times 1.000 = 3.000$$
 e $30 \times 100 = 3.000$

Vejamos outros exemplos:

a) escrever o número 9.600 em potência de 10.

$$9.600 = 96 \times 10^2$$

b) escrever o número 660.000 em potência de 10.

$$660.000 = 66 \times 10^4$$

c) escrever o número 678,56 em potência de 10.

$$678.56 = 6.7856 \times 10^2$$
 ou

$$678,56 = 67,856 \times 10$$
 e assim por diante

NOTA:

O expoente 10^1 expressa-se simplesmente por 10, pois $10^1 = 10$.

Profa. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

d) escrever a velocidade da luz em potência de 10.

$$c = 300.000.000 \text{m/s}$$
; portanto $c = 3 \times 10^8 \text{ m/s}$
ou $30 \times 10^7 \text{ m/s}$ ou ainda $300 \times 10^6 \text{ m/s}$

REGRA 2: Para se escrever números menores do que 1 como um número inteiro vezes uma potência de 10, desloca-se a casa decimal para a direita, tantos algarismos quantos forem necessários. A seguir, multiplica-se o número obtido por 10 elevado a uma potência negativa igual ao número de casas decimais deslocadas. Vejamos um exemplo:

Escrever 0,008 em potência de 10.

 1^{a} opção: $0.008 = 8 \times 10^{-3}$

 2^{a} opção: $0.008 = 0.8 \times 10^{-2}$

Na primeira opção o número 10 foi elevado ao expoente -3, pois a vírgula foi deslocada 3 casas para a direita, enquanto que, na segunda opção o número 10 foi elevado ao expoente -2 uma vez que, a vírgula foi deslocada para a direita apenas 2 casas. Isto significa que, na 1ª opção o número 8 foi dividido por 1.000 enquanto que, na 2ª opção o número 0,8 foi dividido por 100.

Assim:
$$8 / 1.000 = 0,008$$
 e $0.8 / 100 = 0,008$

Vejamos outros exemplos:

a) escrever o número 0,00098 em potência de 10.

$$0.00098 = 98 \times 10^{-5}$$

b) escrever o número 0,668 em potência de 10.

$$0.668 = 66.8 \times 10^{-2}$$

c) escrever a carga elementar em potência de 10.

e = 0,00000000000000000016C; portanto, e = 0,16 x
$$10^{-18}$$
 C ou 1.6×10^{-19} C ou ainda 16×10^{-20} C

Prof^a. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

REGRA 3: Para converter um número expresso como uma potência positiva de 10 num número decimal, desloca-se a casa decimal para a direita tantas casas ou posições quanto o valor do expoente. Exemplos:

a)
$$0.565 \times 10^3 = 565$$
 (como o expoente é 3, desloca-se a vírgula 3 casas para a direita)

- b) $0,565 \times 10^6 = 565.000$ (neste caso, como o expoente é 6, a vírgula é deslocada 6 casas para a direita)
 - c) $0.00067 \times 10^3 = 0.67$
 - d) $0.0088 \times 10^3 = 8.8$

REGRA 4: Para converter um número expresso como uma potência negativa de 10 num número decimal, desloca-se a vírgula para a esquerda tantas casas quanto o valor do expoente. Exemplos:

- a) $50 \times 10^{-3} = 0.05$ (como o expoente é -3, desloca-se a vírgula 3 casas à esquerda)
- c) $45.000 \text{ x } 10^{-5} = 0,45$ (neste caso, como o expoente é -5, a vírgula é deslocada 5 casas para a esquerda).
 - d) $0,008 \times 10^{-4} = 0,0000008$
 - e) $76.3 \times 10^{-2} = 0.763$

33) Operações Aritméticas Com Potências de Base 10:

- MULTIPLICAÇÃO

Para se multiplicar dois ou mais números expressos em potência de 10, multiplica-se os coeficientes para se obter o novo coeficiente e soma-se os expoentes para obter o novo expoente de 10. Exemplos:

- a) multiplicar: $2.10^6 \times 4.10^3$
- $(2 \times 4). 10^{6+3} = 8.10^9$
- b) multiplicar: $2 \cdot 10^{-3} \times 3 \cdot 10^{2} \times 1,2 \cdot 10^{4}$
- $(2 \times 3 \times 1,2)$. $10^{-3+2+4} = 7,2$. 10^3
- c) multiplicar: $2.2 \cdot 10^{-4} \times 3 \cdot 10^{-2} \times 0.2 \cdot 10^{-3}$
- $(2,2 \times 3 \times 0,2)$. $10^{-4+(-2)+(-3)} = 1,32 \cdot 10^{-9}$

- DIVISÃO

Para se dividir dois números expressos como potência de 10, divide-se os coeficientes para se obter o novo coeficiente e subtrai-se os expoentes para se obter o novo expoente de 10. Exemplos:

a) dividir:
$$45 \cdot 10^{-6} : 3 \cdot 10^{-3}$$

$$(45:3). 10^{-6-(-3)} = 15. 10^{-6+3} = 15. 10^{-3}$$

$$(60:12).\ 10^{-4-(-6)} = 5.\ 10^{-4+6} = 5.\ 10^2$$

c) dividir:
$$72 \cdot 10^8 : 12 \cdot 10^{12}$$

$$(72:12).\ 10^{8-12} = 6.\ 10^{-4}$$

- SOMA E SUBTRAÇÃO

Para somar ou subtrair números expressos em potência de 10, opera-se normalmente os coeficientes, desde que os expoentes sejam iguais. Exemplos:

a) somar:
$$12 \cdot 10^{-6} + 4 \cdot 10^{-5}$$

I - optando por igualar ao expoente -6, teremos: $4 \cdot 10^{-5} = 40 \cdot 10^{-6}$

II - optando por igualar ao expoente -5, teremos: $12 \cdot 10^{-6} = 1,2 \cdot 10^{-5}$

logo:

$$(12+40)$$
. $10^{-6} = 52 \cdot 10^{-6}$ ou $(1,2+4)$. $10^{-5} = 5,2 \cdot 10^{-5}$

b) subtrair:
$$25,6 \cdot 10^2 - 12 \cdot 10^{-2}$$

Igualando ao expoente 2, teremos: $12 \cdot 10^{-2} = 0,0012 \cdot 10^{2}$

logo:

$$(25.6 - 0.0012). 10^2 = 25.5988. 10^2$$

34) Notação Científica

Em notação científica, o coeficiente da potência de 10 é sempre expresso com uma casa decimal seguido da potência de 10 adequada. Alguns exemplos esclarecerão o assunto:

a) escrever em notação científica o número 224.400

$$224.400 = 2,244 \times 10^5$$

Prof^a. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

b) escrever em notação científica o número 0,000345

$$0.000345 = 3.45 \times 10^{-4}$$

c) escrever em notação científica o número 26 x 10⁶

$$26 \times 10^6 = 2.6 \times 10^7$$

d) escrever em notação científica o número 0,001 x 10⁻³

$$0.001 \times 10^{-3} = 1 \times 10^{-6}$$

e) escrever em notação científica o número 0,0015685

$$0,0015685 = 1,5685 \times 10^{-3}$$

f) escrever em notação científica o número 12.500.000.000

$$12.500.000.000 = 1,25 \times 10^{10}$$

As regras para operações aritméticas com números expressos em notação científica, são as mesmas adotadas com relação à potência de 10.

Na verdade, a única diferença que existe entre a forma de se representar um número em *potência de 10* e *notação científica* é que em notação científica o coeficiente a ser precedido da potência de 10 é expresso apenas com uma casa decimal, conforme já dito anteriormente.

35) Exercícios

- (A). RESOLVA:
 - a) $1^3 =$
 - b) $0^4 =$
 - c) $(-2)^3 =$
 - d) $(-4)^3 =$
 - e) $(-2)^4 =$
 - f) $(-4)^4 =$
 - g) $2^3 \times 2^5 =$
 - h) $3^2 \times 3 \times 3^5 =$
 - i) $3^5:3^4=$
 - i) $3^4: 3^2 \times 3^5 =$

- k) $2^4 \times 5^4 =$
- 1) $(-3^5) \times (-5^5) =$
- m) $15^3:3^3=$
- n) $(-4^6): 2^6 =$
- o) $(3^3)^2 =$
- p) $(2^3)^5 =$
- q) $3^{32} =$
- r) $[(3^3)^2]^2 =$
- s) $(2 \times 3)^3 =$
- t) $(3^2 \times 5 \times 2)^4 =$
- $u) \quad \left(\frac{5}{3}\right)^5 =$
- v) $\left(\frac{2}{3^4}\right)^3 =$
- w) $\left(\frac{2^2 \times 3^3}{5^3}\right)^2 =$
- $(2 \times 3^2)^0 =$
- y) $4^{-2} =$
- z) $2 \times 3^{-1} =$
- aa) $\frac{2}{3^{-4}} =$
- bb) $(2^{-3} \times 5^{-2})^{-4} =$
- cc) $2^{x+1} * 4^x =$
- dd) $3^{2x} * 24^x =$
- ee) 5^{4x} : 25^{2x} =

(B). Representar em potências de 10:

- a) 20 000 =
- b) 4 800 000 =
- c) 0.01 =
- d) 0,000045 =
- e) 35.535
- f) 66.666

Prof^a. Ms. Lucilene Dal Medico Baerle

IFC - VIDEIRA

- g) 45.000.000
- h) 567,9
- i) 1.500.000.000.000
- j) 680
- k) 0,0087
- 1) 0,489
- m) 0,000000987
- n) 0,0606
- o) 0,00000000000000088765
- p) 0,098
- q) 0,997

Efetuar, utilizando potência de 10:

a)
$$\frac{2\ 000\times48\ 000}{80} =$$

b)
$$\frac{28 \times 0,000032}{0,00002} =$$

(C). Converter para número decimal

- a) $3,45 \times 10^6$
- b) 0,00098 x 10⁸
- c) $0,008 \times 10^4$
- d) 824 x 10⁻²
- e) 0,07 x 10⁻²
- f) 0,415 x 10⁻¹
- g) 0,5678 x 10⁻²
- h) 1.600.000 x 10⁻⁷
- i) 0,000678876789 x 10⁹
- j) 0.876×10^3
- k) 1,234 x 10⁻¹
- 1) 2345,6789 x 10²
- m) 4558976,5674 x 10⁻⁶

VI – RADICAIS

Definição: Denomina-se raiz de índice n (ou raiz n-ésima) de A, ao número ou expressão que, elevado à potência n reproduz A.

OBS: Representa-se a raiz pelo símbolo $\sqrt{}$

$$\sqrt[n]{A} \begin{cases} n \text{ - indice da raiz} \\ A \text{ - radicando} \\ \sqrt{\text{ - radical}} \end{cases}$$

Assim:

- a) $\sqrt{16} = 4$ porque $4^2 = 16$
- b) $\sqrt[3]{8} = 2$ porque $2^3 = 8$
- c) $\sqrt[4]{81} = 3$ porque $3^4 = 81$

36) Propriedade

 \acute{E} possível retirar um fator do radical, basta que se divida o expoente do radicando pelo índice do radical.

Exemplos:

a)
$$\sqrt{12} = \sqrt{2^2 \times 3} = 2\sqrt{3}$$

b)
$$\sqrt{180} =$$

c)
$$\sqrt[4]{3^8 \times 5^4 \times 2} =$$

d)
$$\sqrt[4]{3^8} = 1$$

Reciprocamente, para introduzir um fator no radical, multiplica-se o expoente do fator pelo índice do radical. Assim:

$$3\sqrt[3]{2} = \sqrt[3]{3^3 \times 2}$$

37) Adição e subtração de radicais semelhantes

Radicais de mesmo índice e mesmo radicando são semelhantes. Na adição e subtração de radicais semelhantes, operam-se os coeficientes e conserva-se o radical.

Exemplos:

a)
$$3\sqrt{2} + 5\sqrt{2} - 10\sqrt{2} = 8\sqrt{2} - 10\sqrt{2} = -2\sqrt{2}$$

b)
$$3\sqrt[3]{2} + 6\sqrt[3]{2} - 5\sqrt[3]{2} - \sqrt[3]{2} = 9\sqrt[3]{2} - 6\sqrt[3]{2} = 3\sqrt[3]{2}$$

38) Multiplicação e divisão de radicais de mesmo índice

Multiplicam-se (ou dividem-se) os radicandos e permanece ao produto (ou quociente) o índice comum.

Exemplos:

a)
$$\sqrt{2} \times \sqrt{3} =$$

b)
$$\sqrt{3} \times \sqrt{5} \times \sqrt{2} =$$

c)
$$\frac{\sqrt[4]{5} \times \sqrt[4]{3}}{\sqrt[4]{2}} =$$

39) Potenciação de radicais

Eleva-se o radicando à potência indicada e conserva-se o índice.

Exemplo:

a)
$$\left(\sqrt[4]{3}\right)^3 = \sqrt[4]{3^3} = \sqrt[4]{27}$$

b)
$$\left(\sqrt[5]{2^2 \times 3}\right)^2 = \sqrt[5]{\left(2^2 \times 3\right)^2} = \sqrt[5]{2^4 \times 3^2}$$

40) Radiciação de radicais

Multiplicam-se os índices e conserva-se o radicando.

Exemplos:

a)
$$\sqrt{\sqrt{3}} = {}^{2} \times {}^{2}\sqrt{3} = {}^{4}\sqrt{3}$$

b)
$$\sqrt[3]{\sqrt[4]{3}} = 2\sqrt[4]{3}$$

41) Expoente fracionário

Uma potência com expoente fracionário pode ser convertida numa raiz, cujo radicando é a base, o índice é o denominador do expoente, sendo o numerador o expoente do radicando.

Exemplos:

a)
$$a^{p/q} = \sqrt[q]{a^p}$$

b)
$$a^{1/2} = \sqrt{a}$$

c)
$$2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4}$$

d)
$$\sqrt[4]{6^3} = 6^{3/4}$$

42) Racionalização de denominadores

1º Caso: O denominador é um radical do 2º grau. Neste caso multiplica-se pelo próprio radical o numerador e o denominador da fração.

Exemplo:

a)
$$\frac{1}{\sqrt{2}} =$$

b)
$$\frac{1}{2\sqrt{3}} =$$

c)
$$\frac{\sqrt{2}}{\sqrt{3}} =$$

d)
$$\frac{2\sqrt{2}}{5\sqrt{6}} =$$

2º Caso: O denominador é uma soma ou diferença de dois termos em que um deles, ou ambos, são radicais do 2º grau. Neste caso multiplica-se o numerador e o denominador pela expressão conjugada do denominador.

OBS: A expressão conjugada de $\mathbf{a} + \mathbf{b}$ é $\mathbf{a} - \mathbf{b}$.

Na racionalização aparecerá no denominador um produto do tipo:

$$(a + b) x (a - b) = a^2 - b^2$$

Assim:

$$(5+3) \times (5-3) = 5^2 - 3^2 = 25 - 9 = 16$$

Exemplos:

a)
$$\frac{1}{\sqrt{5} + \sqrt{2}} =$$

b)
$$\frac{5}{2+\sqrt{3}} =$$

43) Exercícios

(A). Efetuar:

a)
$$\sqrt{5} - 2\sqrt{5} + 10\sqrt{5} =$$

b)
$$\sqrt{32} + 3\sqrt{2} - \sqrt{8} =$$

c)
$$3\sqrt{3} + \sqrt{3} - \sqrt[4]{729} =$$

d)
$$\sqrt{3} \times \sqrt{6} =$$

e)
$$\left(-\sqrt[3]{2}\right) \times \left(-\sqrt[3]{4}\right) =$$

Profa. Ms. Lucilene Dal Medico Baerle

f)
$$\frac{\sqrt[4]{8}}{\sqrt[4]{2}} =$$

g)
$$(\sqrt[3]{2})^6 =$$

h)
$$(\sqrt[3]{2 \times 3^2})^2 =$$

i)
$$\sqrt[3]{\sqrt[3]{3}} =$$

j)
$$\sqrt[3]{2} =$$

k)
$$\sqrt[3]{2\sqrt{2}} =$$

1)
$$\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}} =$$

(B). Dar a resposta sob forma de radical, das expressões seguintes:

a)
$$2^{3/4} =$$

b)
$$2^{-1/2} =$$

c)
$$\left(2^{\frac{1}{2}}\right)^{\frac{1}{2}} =$$

d)
$$(\sqrt{2} \times \sqrt{3})^{\frac{1}{6}} =$$

(C). Racionalizar o denominador das frações seguintes:

a)
$$\frac{1}{\sqrt{5}} =$$

b)
$$\frac{3}{\sqrt{7}} =$$

$$c) \quad \frac{\sqrt{3}}{2\sqrt{2}} =$$

d)
$$\frac{2}{\sqrt{5}-2} =$$

e)
$$\frac{5}{4-\sqrt{11}} =$$

(D). Simplifique:

a)
$$\frac{\sqrt{50} - \sqrt{8}}{\sqrt{2}} =$$

b)
$$\sqrt{2352} =$$

c)
$$\frac{1}{1-\sqrt{2}} - \frac{1}{\sqrt{2}+1} =$$

(E). Resolva as expressões numéricas:

$$a)\sqrt{196}.\left(\frac{2}{7}\right)^2 - \left[\left(\frac{2}{3} + 7\right):11\right]$$

$$b)\left(\frac{1}{2}\right)^{-5} \div \frac{1}{4} \cdot \left(4^{-2}\right)^2 + \left(\frac{1}{6}\right)^{-1}$$

$$c)\sqrt[5]{16.\sqrt[4]{18-\sqrt[3]{5+\sqrt{9}}}}$$

$$d)\frac{\sqrt[3]{24} - \sqrt[3]{81}}{\sqrt[3]{\sqrt{9}} + \sqrt[3]{3}}$$

$$e)(2)^{-2} + \left\{ -\left[\frac{6}{10} + \frac{3}{2}\left(\frac{5}{2} \div \frac{10}{12}\right)\right]\right\} \div \left(\frac{1}{2}\right)^{2}$$

VII – POLINÔMIOS

44) Expressões algébricas

São indicações de operações envolvendo letras ou letras e números.

Exemplos:

- a) 5ax 4b
- b) $ax^2 + bx + c$
- c) 7a2b

OBS: No exemplo c, onde não aparece indicação de soma ou de diferença, temos um monômio em que 7 é o coeficiente numérico e **a**²**b** é a parte literal.

45) Operações com expressões algébricas: polinômios

O que são polinômios

Quantos termos têm estas expressões algébricas?

3x -----> Esta expressão é um monômio. Tem um termo.

3x + 7; 0.5a + 2b - 3c - 3/5 ----> Essas expressões são somas

algébricas de monômio. Uma tem dois termos, a outra tem quatro termos.

Todas essas expressões são denominadas polinômios.

Adição

Somente é possível somar ou subtrair termos semelhantes (monômios que possuem a mesma parte literal). Para somar ou subtrair termos semelhantes (reduzir termos semelhantes) repete-se a parte literal e opera-se com os coeficientes.

Exemplo:

$$3x^2y - 4xy^2 + 7xy^2 + 5x^2y = 8x^2y + 3xy^2$$

Quando um polinômio apresenta termos semelhantes, eles podem ser adicionados, ficando reduzidos a um só termo.

Exemplos:

Dados os polinômios
$$P = 7y^2 + 15 y - 12$$
, $Q = 5y^2 - 1 e R = -y^2 + 6y$, vamos somá-los:

$$7y^2 + 15y - 12$$

$$5y^2 - 1$$

$$\frac{-y^2 + 6y}{11y^2 + 21y - 13}$$

Polinômios opostos

Considere o polinômio $A = 7x^2 - 4x + 8$.

Qual é o polinômio cuja soma com A resulta no polinômio nulo?

O polinômio procurado é o polinômio oposto de A, indicado por - A.

$$A = 7x^2 - 4x + 8$$

$$-A = -7x^2 + 4x - 8$$

$$A + A = 0x^2 + 0x + 0$$

Para escrever o polinômio oposto de um polinômio dado, basta trocar os sinais de todos os termos. Assim, o oposto de $B = 7x^4 - 4x + 5$ é: $-B = -7x^4 + 4x - 5$.

Subtração de polinômios

Para subtrair um polinômio B de um polinômio A, adicionamos o polinômio A ao polinômio oposto de B ou seja, A - B = A + (-B).

Exemplo:

Considere os polinômios $A = 2x^2 + 4x - 1$ e $B = 5x^2 - 6x + 8$.

Observe a subtração A - B

A - B = A + B)
=
$$(2x^2 + 4x - 1) + (-5x^2 + 6x - 8)$$

= $2x^2 + 4x - 1 - 5x^2 + 6x - 8$
= $2x^2 - 5x^2 + 4x + 6x - 1 - 8$

 $=-3x^2+10x-9$ (Não é possível continuar, pois somente podemos somar ou subtrair termos semelhantes).

Adição algébrica de polinômios

Uma expressão que tem apenas adições e subtrações de polinômios é chamada adição algébrica de polinômios.

Exemplo:

Sendo
$$A = 3y^4 + 2y^2$$
, $B = -y^4 + 2y^3$ e $C = 2y^3 + 4y^2$, vamos calcular: A+B-C
A+B-C = $(3y^4 + 2y^2) + (-y^4 + 2y^3) - (2y^3 + 4y^2)$
= $3y^4 + 2y^2 - y^4 + 2y^3 - 2y^3 - 4y^2$
= $2y^4 - 8y^2$

Multiplicação de polinômios

Multiplica-se cada termo do primeiro fator por todos os termos do segundo fator e reproduzem-se os termos semelhantes.

Exemplo:

$$(3a^2y) * (2ay) = 6a^3y^2$$

Observe como fazemos: multiplicamos cada termos de um polinômio por todos os termos do outro polinômio.

Exemplo:

Dados, A=
$$(2x - 3)$$

B= $(3x^2 + 4x - 5)$
Calcule: A X B
 $(2x - 3)(3x^2 + 4x - 5) = 6x^3 + 8x^2 - 10x - 9x^2 - 12x + 15$
Reduzindo os termos semelhantes, temos: $6x^3 - x^2 - 22x + 15$.

Divisão de polinômios

Divisão de polinômio por monômio

Para dividir um polinômio por um monômio não-nulo, dividimos cada termo do polinômio pelo monômio e adicionamos os novos termos.

Divisão de polinômio por polinômio

Exemplos:

Seja
$$(10x^2 - 23x + 12) : (5x-4)$$
:

dividendo

$$10x^{2} - 23x + 12$$

 $-10x^{2} + 8x$
 $-15x + 12$
 0
resto
divisor
 $|5x - 4|$
 $2x - 3$
quociente

- a) Dividimos $10x^2$ por 5x, obtendo 2x.
- b) Multiplicamos 2x por 5x 4 e adicionamos o produto $10x^2$ 8x, com sinal trocado, ao dividendo.
- c) Dividimos -15x por 5x, obtendo -3.
- d) Multiplicamos -3 por 5x -4 e adicionamos o produto -15x + 12, com sinal trocado, a 15x + 12.

Então: Q(x) = 2x - 3 e R(x) = 0

Observação: O grau do resto é menor que o grau do divisor ou o resto é identicamente nulo.

Divisão de polinômios por x - a

Teorema do resto

Considere a divisão de um polinômio P(x) por (x-a), onde obtemos quociente Q(x) e resto R(x):

$$P(x) | \underline{x-a}$$

 $R(x) Q(x)$

Evidentemente temos: P(x) = (x-a). Q(x) + R(x)

Observe, que fazendo x=a, temos:

P(a) = (a - a). Q(a) + R(a) = 0. Q(a) + R(a) = P(a) = R(a) = "O resto da divisão de um polinômio P(x) pelo binômio x - a é igual a P(a)."

Exemplo:

- 1. Dividindo $P(x) = x^2 4x 5$ por x 3, o resto será: $R(3) = P(3) = 3^2 - 4 \cdot 3 - 5 = -8$
- 2. O resto da divisão de $P(x) = x^2 + 3x 1$ por x + 1 será:

$$R(-1) = P(-1) = (-1)^2 + 3 \cdot (-1) - 1 = -3$$

Observe que quando o binômio divisor é x + a, devemos substituir no polinômio P(x) o x por -a, pois x + a = x - (-a).

Teorema de D'Alembert

"Um polinômio P(x) é divisível por x -a se e somente se P(a) = 0."

Este teorema é uma consequência do teorema do resto: R(a) = P(a), pois se P(x) é divisível por x-a, então R(a) = 0, o que é equivalente a P(a) = 0.

Exemplos:

1. O polinômio $P(x) = x^2 - 4x - 5$ é divisível por x - 5, pois: $P(5) = 5^2 - 4$. 5 - 5 = 0 Contra-exemplo:

O polinômio $P(x) = x^2 - 4x - 5$ não é divísivel por x - 3, pois:

 $P(3) = 3^2 - 4 \cdot 3 - 5 = -8$, ou seja, P(3) = -8 diferente de zero.

VIII – PRODUTOS NOTÁVEIS

46) Exemplos

Há certos produtos de polinômios, que, por sua importância, devem ser conhecidos desde logo. Vejamos alguns deles:

I. Quadrado da soma de dois termos:

Observe: $(a + b)^2 = (a + b) \cdot (a + b)$

$$= a^2 + ab + ab + b^2$$

$$= a^2 + 2ab + b^2$$

Conclusão:

 $(primeiro termo)^2 + 2.(primeiro termo)$. (segundo termo) + (segundo termo)², ou seja:

"O quadrado da soma de dois termos é igual ao quadrado do primeiro mais duas vezes o produto do primeiro pelo segundo mais o quadrado do segundo."

Exemplos:

a)
$$(2+x)^2 = 2^2 + 2 \cdot 2x + x^2 = 4 + 4x + x^2$$

b)
$$(5+x)^2 = 5^2 + 2.5 \cdot x + x^2 = 25 + 10x + x^2$$

c)
$$(2x + 3y)^2 = (2x)^2 + 2 \cdot (2x) \cdot (3y) + (3y)^2 = 4x^2 + 12xy + 9y^2$$

II. Quadrado da diferença de dois termos:

Observe:
$$(a - b)^2 = (a - b) \cdot (a - b)$$

$$= a^2 - ab - ab + b^2$$

$$= a^2 - 2ab + b^2$$

Conclusão:

(primeiro termo)² - 2.(primeiro termo) . (segundo termo) + (segundo termo)²

$$(a - b)^2 = a^2 - 2ab + b^2$$

"O quadrado da diferença de dois termos é igual ao quadrado do primeiro menos duas vezes o produto do primeiro pelo segundo mais o quadrado do segundo."

Exemplos:

a)
$$(x-3) = x^2 + 2 \cdot x \cdot (-3) + (-3)^2 = x^2 - 6x + 9$$

b)
$$(3-x)^2 = 3^2 + 2 \cdot 3 \cdot x + x^2 = 9 - 6x + x^2$$

c)
$$(2x-3y)^2 = (2x)^2 - 2 \cdot (2x) \cdot (3y) + (3y)^2 = 4x^2 - 12xy + 9y^2$$

III. Produto da soma de dois termos por sua diferença:

$$(a + b) * (a - b) = a^2 - b^2$$

"O produto da soma de dois termos por sua diferença é igual ao quadrado do primeiro menos o quadrado do segundo."

Isto é:: (primeiro termo)² - (segundo termo)²

Exemplos:

a)
$$(1 - \sqrt[3]{}) \cdot (1 + \sqrt[3]{}) = 1^2 - (\sqrt[3]{})^2 = 1 - 3 = -2$$

b)
$$(x+5) \cdot (x-5) = x^2 - 5^2 = x^2 - 25$$

c)
$$(3x + 7y) \cdot (3x - 7y) = (3x)^2 - (7y)^2 = 9x^2 - 49y^2$$

Resolva os exercícios sobre produtos notáveis:

- 1) Calcule
- a) $(3 + x)^2 =$
- b) $(x + 5)^2 =$
- c) $(x + y)^2 =$
- d) $(x + 2)^2 =$
- e) $(3x + 2)^2 =$
- f) $(2x + 1)^2 =$
- g) $(5+3x)^2 =$
- h) $(2x + y)^2 =$
- i) $(r + 4s)^2 =$
- $i) (10x + y)^2 =$
- k) $(x/2 + y/2)^2 =$
- 1) $(3y + 3x)^2 =$
- $m) (-5 + n)^2 =$
- n) $(-3x + 5)^2 =$
- o) $(a + ab)^2 =$
- p) $(2x + xy)^2 =$
- q) $(a^2 + 1)^2 =$
- $(y^3 + 3)^2 =$
- s) $(a^2 + b^2)^2 =$
- t) $(x + 2y^3)^2 =$

- u) $(x + \frac{1}{2})^2 =$
- v) $(2x + \frac{1}{2})^2 =$

2) Calcule os produtos notáveis:

- a) $(5-x)^2 =$
- b) $(y-3)^2 =$
- c) $(x y)^2 =$
- d) $(x-7)^2 =$
- e) $(2x-5)^2 =$
- f) $(6y 4)^2 =$
- g) $(3x 2y)^2 =$
- h) $(2x b)^2 =$
- i) $(5x^2 1)^2 =$
- $j) (x^2 1)^2 =$
- k) $(3x + 5)^2 =$
- 1) $(9x^2 1)^2 =$
- m) $(x^3 2)^2 =$
- n) $(x-5y^3)^2 =$
- o) $(1 mx)^2 =$

3) Calcule o produto da soma pela diferença de dois termos:

- a) $(x + y) \cdot (x y) =$
- b) (y-7). (y+7) =
- c) $(x + 3) \cdot (x 3) =$
- d) $(2x + 5) \cdot (2x 5) =$
- e) (3x-2). (3x+2) =
- f) $(5x + 4) \cdot (5x 4) =$
- g) (3x + y) (3x y) =
- h) $(1-5x) \cdot (1+5x) =$

i)
$$(2x + 3y) \cdot (2x - 3y) =$$

$$j) (7-6x) \cdot (7+6x) =$$

k)(
$$x/4 + 2/3$$
).($x/4 - 2/3$) =

1)
$$(1 + 7x^2)$$
. $(1 - 7x^2) =$

m)
$$(3x^2 - 4) (3x^2 + 4) =$$

n)
$$(3x^2 - y^2)$$
. $(3x^2 + y^2) =$

o)
$$(x + 1/2)$$
 . $(x - 1/2) =$

$$p)(x-2/3) \cdot (x+2/3) =$$

4) Desenvolva os seguintes produtos notáveis abaixo:

a)
$$(2a+3)^2 =$$

b)
$$(2 + 9x)^2 =$$

c)
$$(6x - y)^2 =$$

d)
$$(a - 2b)^2 =$$

e)
$$(7a + 1) (7a - 1) =$$

f)
$$(10a - bc) (10a + bc) =$$

g)
$$(x^2 + 2a)^2 =$$

h)
$$(x - 5) (x + 5) =$$

i)
$$(9y + 4) (9y - 4) =$$

$$j) (m - n)^2 =$$

5) Sabendo que $x^2 + y^2 = 153$ e que xy = 36, calcule o valor de $(x+y)^2$.

6) Qual o valor numérico da expressão $(a - 2b)^2$, sabendo-se que $a^2 + 4b^2 = 30$ e ab = 5.

7) Simplifique as expressões:

a)
$$(x+y)^2 - x^2 - y^2$$

b)
$$(x+2)(x-7) + (x-5)(x+3)$$

c)
$$(2x-y)^2 - 4x(x-y)$$

8) A expressão $(a + b + c)^2$ é igual a

a)
$$a^2 + 2ab + b^2 + c^2$$

b)
$$a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

c)
$$a^2 + b^2 + c^2 + 2abc$$

d)
$$a^2 + b^2 + c^2 + 4abc$$

e)
$$a^2 + 2ab + b^2 + 2bc + c^2$$

9) Se x - y = 7 e xy = 60, então o valor da expressão $x^2 + y^2$ é:

- a) 53
- b) 109
- c) 169
- d) 420

10) A expressão $(x - y)^2 - (x + y)^2$ é equivalente a:

- a) 0
- b) 2y²
- c) $-2y^{3}$
- d) -4xy

11) (TRT-2011) Indagado sobre o número de processos que havia arquivado certo dia, um Técnico Judiciário, que gostava muito de Matemática, respondeu:

- O número de processos que arquivei é igual a (12,25)^2-(10,25)^2

Chamando X o total de processos que ele arquivou, então é correto afirmar que:

- a) 38 < X < 42.
- b) X > 42.
- c) X < 20.
- d) 20 < X < 30.
- e) 30 < X < 38

Respostas:

- 5) R: 235
- 6) R: 10
- 7) R: a) 2xy b) $2x^2-7x-29$ c) y^2
- 8) B
- 9) C
- 10) D
- 11) B

IX – FATORAÇÃO

47) Conceito: Fatorar um polinômio é escrevê-lo sob a forma de um produto indicado.

Fator comum dos termos de um polinômio é o monômio cujo coeficiente numérico é o máximo divisor comum dos coeficientes dos termos do polinômio e cuja parte literal é formada pelas letras comuns com os menores expoentes.

Apresentando um fator comum, o polinômio pode ser escrito como o produto de dois fatores: o 1º é o fator comum e o 2º é obtido dividindo-se o polinômio original pelo fator comum.

Fatorar as expressões:

- a) 3a 3b =
- b) $6x^3 9x^2y^2 =$
- c) Fatorando o polinômio $4ax^2 + 8a^2x^3 + 2a^3x$ tem-se:

$$4ax^{2} + 8a^{2}x^{3} + 2a^{3}x = 2ax\left(\frac{4ax^{2}}{2ax} + \frac{8a^{2}x^{3}}{2ax} + \frac{2a^{3}x}{2ax}\right) = 2ax(2x + 4ax^{2} + a^{2})$$

d) Fatorar: $5x^2y + x^4y^3 + 2x^2$. O fator comum é x^2 .

Assim:
$$5x^2y + x^4y^3 + 2x^2 = x^2(5y + x^2y^3 + 2)$$

Fatoração por agrupamento:

Exemplos 1:

- a) ax + ay + bx + by =
- b) ax bx + 2a 2b =
- c) xy + 2x 3y 6 =

Exemplo 2:

Sabendo que $3^a - b = 10$ e a + c + 3, calcular o valor da expressão $3a^2 + 3ac - ab - bc$.

48) Exercícios

(A). Efetuar:

a)
$$3a^2 - 7ab + 4b^2 - 5a^2 + 3ab - 4b^2 =$$

b)
$$(3xy^2 - 7x^2y + 3y^3) - (2y^3 - 8x^2y + 3xy^2) =$$

c)
$$(7xy^2)*(-8x^2y)*(xy) =$$

d)
$$(a+b+c)*(a-b) =$$

e)
$$(x^3 - 3x^2y + x)*(x^2 - y) =$$

f)
$$(6x^2 - 4x^5 + 2x^4 - 2x^2): 2x =$$

g)
$$(2a^2bc + 3a^3b^3c^2 - abc)$$
: abc =

h)
$$(x+2)^2 + (3x-3)^2 =$$

i)
$$(3xy + 8a^2)^2 =$$

$$(5ab + 3c)*(5ab - 3c) =$$

(B). Fatorar:

a)
$$15a^2 - 10ab =$$

b)
$$3a^2x - 6b^2x + 12x =$$

X - CURIOSIDADE

O ALFABETO GREGO

- $\alpha \rightarrow alfa$
- $\beta \rightarrow beta$
- $\gamma \rightarrow gama$
- $\delta \rightarrow delta$
- ϵ \rightarrow epsilon
- $\zeta \rightarrow zeta$
- $\eta \rightarrow eta$
- $\theta \rightarrow teta$
- $\iota \rightarrow iota$
- $K \rightarrow \text{kapa}$
- $\lambda \rightarrow lambda$
- $\mu \rightarrow mi$
- v → ni
- $\xi \rightarrow csi$
- o → ômicron
- $\pi \rightarrow pi$
- $\rho \rightarrow ro$
- $\sigma \rightarrow sigma$
- $^{\tau}$ \rightarrow tau
- υ \rightarrow ipsilon
- $\phi \rightarrow fi$
- $\chi \rightarrow qui$
- $\Psi \rightarrow psi$
- ω \rightarrow omega

SIMBOLOGIA MATEMÁTICA MAIS USUAL

- a) = (igual à)
- b) \neq (differente de)
- c) ϕ ou $\{\}$ (conjunto vazio)
- d) ∈ (pertence à)
- e) ∉ (não pertence à)
- f) ⊂ (está contido)
- g) ⊄ (não está contido)
- h) ⊃ (contém)
- i) ⊅ (não contém)
- \exists (existe pelo menos um)
- k) ∄ (não existe)
- 1) ∃ (existe e é único)
- m) | (tal que / tais que)
- n) v (ou)
- o) \((e)
- p) $A \cap B$ (interseção dos conjuntos $A \in B$)
- r) ∀ (para todo e qualquer, qualquer que seja)
- $s) \Rightarrow (impliea)$
- t) \Leftrightarrow (implica e a recíproca é equivalente)
- u) : (donde se conclui)

XI - BIBLIOGRAFIA

BONJORNO, Jose Roberto; BONJORNO, Regina F.S. Azenha; OLIVARES, Airton. **Matemática: Fazendo a Diferença** – 7º série. 1ª ed. São Paulo: FTD. 304 p. 2006.

BONJORNO, Jose Roberto; BONJORNO, Regina F.S. Azenha; OLIVARES, Airton. **Matemática: Fazendo a Diferença** – 8º série. 1ª ed. São Paulo: FTD. 320 p. 2006.

DANTE, Luis Roberto. **Matemática: Contexto e Aplicações**. 3ª ed. Vol. Único. São Paulo: Ática. **736 p. 2009.**

FACCHINI, Walter. **Matemática Para a Escola de Hoje - Ensino Médio**. 1ª ed. Vol. Único. São Paulo: FTD. 736 p. 2006.

GIOVANNI, José Ruy & BONJORNO, José Roberto. **Matemática uma nova abordagem** – **Ensino Médio**. 2º ed. São Paulo: FTD, 2010.

MEDEIROS, Valeria Z. (coord.); CALDEIRA, André M; SILVA, Luiza M. O.;MACHADO, M. A. S. (colaboradores). Pré-Cálculo. São Paulo: Thomson Leraning, 2006.

MELLO, José Luiz Pastore. **Matemática: Construção e Significado**. 1ª ed. Vol. Único. São Paulo: Moderna. 791p. 2005.

PAIVA, Manoel Rodrigues. Matemática. 1ª ed. Vol. 1. São Paulo: Moderna. 488 p. 2009.