Exercices suite numérique

Exercice 1

Montrer par récurrence que $\forall n \in \mathbb{N}^*, 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercice 2

Soit (u_n) une suite arithmétique dont on notera r la raison et u_0 le premier terme. S_n désignera la somme des n premiers termes.

- 1. Sachant que $u_0 = 2$ et r = -3, calculer u_{10} et u_{20} .
- 2. Sachant que $u_0 = 2$ et $u_2 = 8$, calculer le quatrième et le septième terme.
- 3. Sachant que $u_5 = 17$ et $u_{10} = 12$, calculer u_0 et u_1 .
- 4. Sachant que $u_0 = -1$ et r = 2, calculer u_8 et S_8 .

Exercice 3

Soit (u_n) une suite arithmétique de raison r=5 et de premier terme $u_0=2$. Déterminer $n \in \mathbb{N}$ tel que $\sum_{k=3}^{n} u_k = 6$ 456.

Exercice 4

Soit (u_n) la suite définie par $u_1 = \frac{1}{3}$ et $u_{n+1} = \frac{n+1}{3n}u_n$. On pose $v_n = \frac{u_n}{n}$ pour tout $n \in \mathbb{N}^*$.

- 1. Montrer que la suite (v_n) est géométrique.
- 2. En déduire l'expression de u_n en fonction de n.

Exercice 5

On considère les suites (u_n) et (v_n) définies par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{4u_n + 3}{u_n + 2} \end{cases}$ et $v_n = \frac{u_n - 3}{u_n + 1}$

- 1. Calculer u_1, v_0 et v_1
- 2. Montrer par récurrence que : $\forall n \in \mathbb{N}$ on a $u_n \geq 0$.
- 3. (a) Exprimer v_{n+1} en fonction de v_n .
 - (b) En déduire la nature de la suite (v_n) puis exprimer v_n en fonction de n.
- 4. A l'aide d'une relation liant u_n et v_n , exprimer u_n en fonction de v_n puis de n.

Exercice 6

Afin d'acquérir une boutique en centre ville, un investisseur doit contracter un prêt d'un montant de 100 000 €. Il contacte deux banques A et B, son objectif étant de trouver la solution la plus avantageuse.

Les calculs seront arrondis à l'euro près.

BANQUE A

La banque A lui propose de rembourser son prêt en 7 annuités. La première annuité sera de 15 000 € puis les annuités augmenteront de 1 800 € chaque année.

On note u_0 le premier versement puis u_n le versement à l'issue de l'année n.

- 1. Calculer le montant des deux versements suivants.
- 2. Exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) .
- 3. Quel sera le montant du dernier versement?
- 4. Quelle sera la somme totale remboursée par l'emprunteur?

BANQUE B

La banque B lui propose elle aussi de rembourser son prêt en 7 annuités. La première annuité sera de 20 000 € puis les annuités augmenteront de 2% chaque année.

On note v_0 le premier versement puis v_n le versement à l'issue de l'année n.

- 1. Calculer le montant des deux versements suivants.
- 2. Exprimer v_{n+1} en fonction de v_n . En déduire la nature de la suite (v_n) .
- 3. Quel sera le montant du dernier versement?
- 4. Quelle sera la somme totale remboursée par l'emprunteur?

Conclure

Exercice 7

Exercice 51 On considère la suite (u_n) définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n - 5 \end{cases}$

- 1. Calculer u_1, u_2 et u_3
- 2. Résoudre l'équation 2x 5 = x. (On notera ℓ la solution)
- 3. On pose $v_n = u_n \ell$, $\forall n \in \mathbb{N}$.
 - (a) Exprimer v_{n+1} en fonction de v_n .
 - (b) En déduire la nature de la suite (v_n) et ses éléments caractéristiques.
 - (c) Exprimer v_n et $S_n = v_0 + v_1 + \ldots + v_n$ en fonction de n.
- 4. On pose $T_n = u_0 + u_1 + \ldots + u_n$. Exprimer u_n et T_n en fonction de n.

Exercice 8

Étudier la monotonie des suites dont le terme général est le suivant :
1.
$$u_n = \frac{n^2}{2^n}$$
, $\forall n \geq 4$ 2. $u_n = \frac{n+1}{n-1}$, $\forall n \geq 2$

3.
$$u_n = \frac{n!}{3^n}, \forall n \ge 2$$
 4. $u_n = n^2 - n + 1, \forall n \in \mathbb{N}$

Étudier la monotonie des suites
$$(I_n)$$
 et (J_n) définies pour tout $n \in \mathbb{N}$ par : $I_n = \int_1^e x(\ln(x))^n dx$ et $J_n = \int_0^n x^2 e^{-x} dx$

Exercice 10

Soit (u_n) une suite croissante. Pour tout $n \in \mathbb{N}^*$, on pose $v_n = \frac{u_1 + ... + u_n}{n}$. Démontrer que (v_n) est croissante.

Exercice 11

Soit
$$(u_n)$$
 la suite définie par : $\forall n \in \mathbb{N}, u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$.

- 1. Montrer que (u_{2n}) et (u_{2n+1}) sont adjacentes.
- 2. On peut démontrer que la limite commune des suites (u_{2n}) et (u_{2n+1}) est $\ln(2)$.
 - (a) Calculer u_n pour $n \in \{0, ..., 5\}$
 - (b) En déduire un encadrement de ln(2) entre deux fractions puis entre deux réels.

Exercice 12

On considère la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{1}{2}u_n(u_n^2 - 3u_n + 4), \ \forall n \in \mathbb{N}$.

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}x(x^2 3x + 4)$
 - (a) Étudier les variations de f sur \mathbb{R} .
 - (b) Étudier le signe de f(x) x sur \mathbb{R} , préciser les points fixes de f.
- 2. Étudier le comportement de (u_n) dans chacun des cas suivants :
 - (a) $u_0 < 0$,
 - (b) $u_0 \in]0,1[,$
 - (c) $u_0 \in]1, 2[$,
 - (d) $u_0 > 2$.

Exercice 13

Soit (E) l'équation
$$x = 1 + e^{-x}$$
.

- 1. En étudiant la fonction $x \mapsto 1 + e^{-x} x$, démontrer que l'équation (E) admet une unique solution α sur \mathbb{R} et que $\alpha \in [1,2]$.
- 2. On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = 1 + e^{-u_n}, \forall n \in \mathbb{N}$
 - (a) Étudier la fonction $f: x \mapsto 1 + e^{-x}$ et justifier que I = [1, 2] est stable par f.
 - (b) Démontrer que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{e} |u_n \alpha|.$
- 3. (a) En déduire que (u_n) converge.
 - (b) Comment choisir n pour que u_n soit une valeur approchée de α à 10^{-3} près?