Let's consider joint probability tables:

1 case

hl		Diabetes		
	Υ	N		
Υ		0.53	0.47	
N		0.47	0.53	
hl		Prediction N		
	Υ			
Υ		0.88	0.12	
N		0.12	0.88	
D		Prediction		
	Υ		N	
Υ		0.3	0.7	
N		8.0	0.2	

We can see that for this example sufficiency holds but not separation

$$P(Hyperlipidemia = YES | Prediction = YES, Diabetes = YES) = P(Hyperlipidemia = YES | Prediction = YES)$$

And

$$P(Prediction = YES | Hyperlipidemia = YES, Diabetes = Yes)$$
 not = $P(Prediction = YES | Hyperlipidemia = YES)$

2 case

```
P(Hyperlipidemia = YES | Prediction = YES, Diabetes = No) not = P(Hyperlipidemia = YES | Prediction = YES)
```

And,

So, we can see that we can't enforce Sufficiency and Separation at the same time.