UNIVERSITE IBN ZOHR FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE AGADIR

TRAVAUX DIRIGES D'ELECTRICITE 1 FILIERES : SMP1 ET SMIA1 Série N° 3

2022-2023

Exercice 1: Sphères conductrices

1) On considère une sphère S_1 chargée, de rayon R_1 et de centre O (Figure 1). Elle est isolée dans l'espace et porte une densité superficielle de charge σ_1 positive. On notera Q_1 la charge totale de S_1 .

Le tableau suivant rassemble les expressions du champ électrostatique et le potentiel électrostatique créés par cette sphère en tout point **M** de l'espace.

	$0 < r < R_1$	$r \geq R_1$
Le champ $\overrightarrow{\pmb{E}}(\pmb{M})$	$\vec{E}(M) = \vec{0}$	$\vec{E}(M) = rac{Q_1}{4\pi\varepsilon_0 r^2} \vec{e}_r = rac{\sigma_1 R_1^2}{\varepsilon_0 r^2} \vec{e}_r$
Le potentiel $\emph{V}(\emph{\textbf{M}})$	$V(M) = \frac{Q_1}{4\pi\varepsilon_0 R_1} = \frac{\sigma_1 R_1}{\varepsilon_0}$	$V(M) = \frac{Q_1}{4\pi\varepsilon_0 r} = \frac{\sigma_1 R_1^2}{\varepsilon_0 r}$

Déterminer l'énergie électrostatique de cette distribution de charge ainsi que sa capacité ${\pmb {\mathcal C}}$.

- 2) On entoure cette sphère par une deuxième sphère creuse S_2 initialement neutre de rayons intérieur R_2 et extérieur R_3 ($R_1 < R_2 < R_3$) –Figure 2.
 - a. Quelle est la répartition des charges sur la sphère S_2 à l'équilibre électrostatique ?
 - b. Montrer que les densités de charges qui apparaissent par influence sur la sphère S_2 vérifient la relation suivante : $\sigma_1 R_1^2 = -\sigma_2 R_2^2 = \sigma_3 R_3^2$
- 3) On relie la sphère S_2 au sol (V = 0)-Figure 3.
 - a. Calculer le champ et le potentiel en tout point de l'espace.
 - b. Calculer l'énergie électrostatique et en déduire la capacité de ce condensateur sphérique.

Exercice 2: condensateur plan.

Un condensateur plan placé dans l'air sec est constitué de deux armature métalliques de surface S et distantes de e. On admettra que les deux armatures sont en influence totale et que les effets de bords sont négligeables. On impose au condensateur à une différence de potentiel $U = V_1 - V_2$ grâce à un générateur de tension continu. Soient Q la charge du condensateur et σ sa densité de charge surfacique.

On donne l'expression du vecteur champ électrostatique en tout point de l'espace :

$$\vec{E}(M) = \begin{cases} -\frac{\vec{0}}{\sigma} & si & z < 0 \\ +\frac{\sigma}{\epsilon_0} \vec{e}_z, & si & 0 < z < e \\ \vec{0} & si & z > e \end{cases}$$

- 1) Établir l'expression de la différence de potentiel U.
- 2) En déduire l'expression de la capacité du condensateur ainsi formé.
- 3) Déterminer, en fonction de σ , e, ε_0 et S, l'expression de l'énergie électrostatique emmagasinée dans le condensateur. Justifier pourquoi cette énergie se situe dans l'espace interarmatures.

Exercice 3: la capacité équivalente.

1) Déterminer la capacité équivalente du groupement des deux circuits de la figure ci-dessous. Prendre le cas où tous les condensateurs ont la même capacité $C = 8\mu F$.

2) Trouver la charge de chaque condensateur du Circuit 1, sachant que la tension $U_{AB}=200V$.

Exercice 4 : Calcul des résistances équivalentes

Toutes les résistances sont identiques de valeur \mathbf{R} . Déterminer la résistance équivalente vue entre les bornes \mathbf{A} et \mathbf{B} pour les schémas ci-dessous.

Exercice 5: les lois de Kirchhoff.

En faisant des associations de résistances et en appliquant les lois de Kirchhoff, déterminer pour le montages de la figure ci-dessous, l'intensité \boldsymbol{I} qui traverse la résistance $\boldsymbol{R_3}$ et la tension \boldsymbol{U} aux bornes de la résistance $\boldsymbol{R_2}$. Application numérique pour :

Universite ibn zohr FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE **AGADIR**

TRAVAUX DIRIGES D'ELECTRICITE 1 FILIERES: SMP1 ET SMIA1 Série Nº 3 2022-2023

Exercice 1: Sphères conductrices

1) On considère une sphère S_1 chargée, de rayon R_1 et de centre O (Figure 1). Elle est isolée dans l'espace et porte une densité superficielle de charge σ_1 positive. On notera Q_1 la charge totale de S_1 .

Déterminons l'énergie électrostatique de cette distribution de charge.

Pour un conducteur unique, l'énergie électrostatique s'écrit : $W = Q_1 V_1/2$

$$V_1 = \frac{Q_1}{4\pi\varepsilon_0 R_1} = \frac{\sigma_1 R_1}{\varepsilon_0} \quad et \quad Q_1 = 4\pi\sigma_1 R_1^2$$

$$\Rightarrow W = \frac{2\pi\sigma_1^2}{\varepsilon_0} R_1^3$$

Le calcul de la capacité s'obtient à partir de :
$$W = \frac{1}{2} C_1 V_1^2 \Rightarrow C_1 = \frac{2W}{V_1^2}$$

$$\Rightarrow C_1 = \frac{2 \varepsilon_0^2}{\sigma_1^2 R_1^2} \frac{2\pi \sigma_1^2}{\varepsilon_0} R_1^3$$

$$\Rightarrow C_1 = 4\pi \varepsilon_0 R_1$$

- 2) On entoure cette sphère par une deuxième sphère creuse S_2 initialement neutre de rayons intérieur R_2 et extérieur R_3 ($R_1 < R_2 < R_3$) -Figure 2.
 - a. La sphère S_2 entoure complètement la sphère S_1 , il y a influence totale entre les deux sphères. La $Q_2 = -Q_1$ paroi interne de S_2 (sphère de rayon R_2)porte la charge

Comme S_2 est globalement neutre, la paroi externe de S_2 portera la charge $Q_3 = Q_1$.

b. On a
$$Q_1 = -Q_2 = Q_3 \Longrightarrow \sigma_1 4\pi R_1^2 = -\sigma_2 4\pi R_2^2 = \sigma_3 4\pi R_3^2$$

Finalement : $\sigma_1 R_1^2 = -\sigma_2 R_2^2 = \sigma_3 R_3^2$

- 3) On relie la sphère S_2 au sol (V = 0-Figure 3).
 - a. Calculons le champ et le potentiel en tout point de l'espace.

La sphère S_2 est reliée au sol, son potentiel devient nul et sa charge extérieure (en $r=R_2$) s'annule car celle-ci s'est écoulée au sol. En utilisant le tableau des données et le théorème de superposition sur le système formé de deux sphères chargées en surface $(S_1, Q_1, \ \sigma_1)$ et $(S_2, -Q_1, -\sigma_1)$:

	$r < R_1$	$R_1 < r < R_2$	$r > R_2$
E(M)	E(M)=0	$E(M) = \frac{Q_1}{4\pi\varepsilon_0 r^2}$	$E(M) = \frac{Q_1}{4\pi\varepsilon_0 r^2} - \frac{Q_1}{4\pi\varepsilon_0 r^2} = 0$
V(M)	A	$V(M) = \frac{Q_1}{4\pi\varepsilon_0 r} + B$	С

$$\vec{E} = -\overrightarrow{grad} V \Rightarrow -\frac{\partial V}{\partial r} = \begin{cases} 0 & r \leq R_1 \\ \frac{Q_1}{4\pi\epsilon_0 r^2} & R_1 \leq r \leq R_2 \\ 0 & r > R_2 \end{cases}$$

$$\Rightarrow V = \begin{cases} A & r \leq R_1 \\ \frac{Q_1}{4\pi\epsilon_0 r} + B & R_1 \leq r \leq R_2 \\ \frac{C}{2} & r > R_2 \end{cases}$$

Avec A, B, C et D des constantes à déterminer en utilisant la continuité du potentiel et que le potentiel à l'infini est nul.

• Détermination de
$$C$$

$$V(r \to \infty) = 0 \Rightarrow C = 0$$
• Détermination de B

$$V(r = R_2^+) = V(r = R_2^-) \Rightarrow \frac{Q_1}{4\pi\epsilon_0 R_2} + B = C = 0$$

$$\Rightarrow B = -\frac{Q_1}{4\pi\epsilon_0 R_2}$$
• Détermination de A

$$V(r = R_1^+) = V(r = R_1^-) \Rightarrow \frac{Q_1}{4\pi\epsilon_0 R_1} + B = A$$

$$\Rightarrow A = \frac{Q_1}{4\pi\epsilon_0 R_1} - \frac{Q_1}{4\pi\epsilon_0 R_2}$$

$$\Rightarrow V = \begin{cases} \frac{Q_1}{4\pi\epsilon_0 R_1} - \frac{Q_1}{4\pi\epsilon_0 R_2} & r \le R_1 \\ \frac{Q_1}{4\pi\epsilon_0 R_1} - \frac{Q_1}{4\pi\epsilon_0 R_2} & r \le R_2 \\ 0 & r > R_2 \end{cases}$$

$$\Rightarrow V = \begin{cases} \frac{Q_1}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right] & r \le R_1 \\ \frac{Q_1}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right] & r \le R_2 \\ 0 & r > R_2 \end{cases}$$

$$\Rightarrow V = \begin{cases} \frac{Q_1}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right] & r \le R_2 \\ 0 & r > R_2 \end{cases}$$

b. Calculons l'énergie électrostatique :

Le potentiel de la sphère
$$S_2$$
 est nul. L'énergie électrostatique du condensateur s'écrit alors :
$$W = \frac{1}{2}Q_1V_{S_1} \Rightarrow W = \frac{1}{2}Q_1\frac{Q_1}{4\pi\varepsilon_0}\left[\frac{1}{R_1} - \frac{1}{R_2}\right]$$

$$\Rightarrow W = \frac{Q_1^2}{8\pi\varepsilon_0}\left[\frac{R_2 - R_1}{R_1R_2}\right]$$
 or $Q_1 = \sigma_1 4\pi R_1^2 \Rightarrow W = \frac{(4\pi)^2 \sigma_1^2 R_1^4}{8\pi\varepsilon_0}\left[\frac{R_2 - R_1}{R_1R_2}\right]$
$$\Rightarrow W = \frac{2\pi \sigma_1^2}{\varepsilon_0}\frac{R_1^3(R_2 - R_1)}{R_2}$$

Déduisons la capacité de ce condensateur sphérique :

$$C = \frac{Q_1}{V_{S_1}} \Longrightarrow C = \frac{Q_1}{\frac{Q_1}{4\pi\varepsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2}\right]} \Longrightarrow C = \frac{4\pi\varepsilon_0}{\left[\frac{1}{R_1} - \frac{1}{R_2}\right]} = 4\pi\varepsilon_0 \frac{R_1R_2}{R_2 - R_1}$$

Exercice 2: condensateur plan.

Un condensateur plan placé dans l'air sec est constitué de deux armature métalliques de surface S et distantes de e. On admettra que les deux armatures sont en influence totale et que les effets de bords sont négligeables. On impose au condensateur à une différence de potentiel $U = V_1 - V_2$ grâce à un générateur de tension continu. Soient Q la charge du condensateur et σ sa densité de charge surfacique.

On donne l'expression du vecteur champ électrostatique en tout point de l'espace :

$$\vec{E}(\textit{M}) = \begin{cases} -\frac{\vec{0}}{\sigma} & si & z < 0 \\ +\frac{\sigma}{\varepsilon_0} \vec{e}_z, & si & 0 < z < e \\ \vec{0} & si & z > e \end{cases}$$

1) Établir l'expression de la différence de potentiel **U**.

La différence de potentiel est donnée par :

The transmitted pair is
$$U = V_1 - V_2 = \int_0^e \vec{E}(M) \cdot d\vec{\ell} = \int_0^e \frac{\sigma}{\varepsilon_0} \vec{e}_z \cdot dz \vec{e}_z = \frac{\sigma}{\varepsilon_0} \int_0^e dz$$

$$U = V_1 - V_2 = \frac{\sigma e}{\varepsilon_0}$$

Et compte tenu de $\sigma = Q/S$, l'expression de U devient :

$$U = V_1 - V_2 = \frac{Qe}{\varepsilon_0 S}$$

2) En déduire l'expression de la capacité du condensateur ainsi formé.

La capacité d'un condensateur s'exprime par : $\pmb{C} = \pmb{Q}/\pmb{U}$ Ainsi, on aura : $\pmb{C} = \pmb{\varepsilon}_0 \pmb{S}/\pmb{e}$

- 3) Déterminer, en fonction de σ , e, ε_0 et S, l'expression de l'énergie électrostatique emmagasinée dans le condensateur. Justifier pourquoi cette énergie se situe dans l'espace interarmatures.
 - Méthode (1):

$$W_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C U^2 = \frac{1}{2} \frac{\sigma^2 S^2 e}{\varepsilon_0 S} = \frac{1}{2} \frac{\sigma^2 S e}{\varepsilon_0}$$

• Méthode (2):

L'énergie emmagasinée dans le condensateur est aussi l'énergie électrostatique dans l'espace inter armature. On écrit :

$$W_e = \iiint_{Esp\ Inter} \frac{\varepsilon_0 E^2(r)}{2} d\mathcal{V} = \frac{\varepsilon_0}{2} \int_0^e \left(\frac{Q}{\varepsilon_0 S}\right)^2 S dz = \frac{1}{2} \frac{\sigma^2 S^2 e}{\varepsilon_0 S} = \frac{1}{2} \frac{\sigma^2 S e}{\varepsilon_0}$$

Exercice 3: la capacité équivalente.

1) Déterminons la capacité équivalente du groupement des deux circuits de la igure ci-dessous. Prendre. Le cas où tous les condensateurs ont la même capacité $C = 6\mu F$.

Circuit 1
$$C_2//C_3//C_4 \Rightarrow C_{234} = C_2 + C_3 + C_4 = 3C$$
 $C_5//C_6 \Rightarrow C_{56} = C_5 + C_6 = 2C$

$$C_5//C_6 \Rightarrow C_{56} = C_5 + C_6 = 2C$$

 C_1 et C_{234} en série

$$\Rightarrow \frac{1}{C_{1234}} = \frac{1}{C_1} + \frac{1}{C_{234}} = \frac{1}{C} + \frac{1}{3C} = \frac{4}{3C}$$
$$\Rightarrow C_{1234} = \frac{3C}{4}$$

$$C_{56}$$
 et C_7 en série

$$\Rightarrow \frac{1}{C_{567}} = \frac{1}{C_{56}} + \frac{1}{C_7} = \frac{1}{2C} + \frac{1}{C} = \frac{3}{2C}$$

$$\Rightarrow C_{567} = \frac{2C}{2}$$

$$C_{567} - \frac{3}{3}$$

$$C_{1234} / / C_{567} \Rightarrow C_{\acute{e}q} = C_{1234} + C_{567}$$

$$\Rightarrow C_{\acute{e}q} = \frac{3C}{4} + \frac{2C}{3}$$

$$\Rightarrow C_{\acute{e}q} = \frac{17C}{12} = 8,5 \mu F$$

$$\Rightarrow C_{eq} = \frac{17C}{12} = 8.5 \mu$$

Circuit 2

$$Q = Q_{1} + Q_{2} = Q_{4} + Q_{5}$$

$$C_{1} = C_{2} = C_{3} = C_{4} = C_{5} = C$$

$$\Rightarrow Q_{1} = Q_{2} = \frac{Q}{2} \text{ et } Q_{4} = Q_{5} = \frac{Q}{2}$$

$$U_{AB} = U_{AD} + U_{DE} + U_{EB} \Rightarrow U_{AB} = \frac{Q_{1}}{C_{1}} + \frac{Q_{3}}{C_{3}} + \frac{Q_{5}}{C_{5}}$$

$$\Rightarrow U_{AB} = \frac{Q_{1} + Q_{3} + Q_{5}}{C}$$

$$U_{AB} = U_{AE} + U_{ED} + U_{DB} \Rightarrow U_{AB} = \frac{Q_{2}}{C_{2}} - \frac{Q_{3}}{C_{3}} + \frac{Q_{4}}{C_{4}}$$

$$\Rightarrow U_{AB} = \frac{Q_{2} - Q_{3} + Q_{4}}{C}$$

$$\Rightarrow Q_{2} - Q_{3} + Q_{4} = Q_{1} + Q_{3} + Q_{5}$$

$$\Rightarrow Q_{3} = 0$$

$$\Rightarrow U_{AB} = \frac{Q_{2} - Q_{3} + Q_{4}}{C} = \frac{Q_{2} + Q_{4}}{C}$$

$$\Rightarrow C_{\acute{e}q} = \frac{Q}{U_{AB}} = C$$

Trouver la charge de chaque condensateur du Circuit 1, sachant que la tension $U_{AB} = 200V$.

$$Q_1 = \frac{3CU}{4}$$
; $Q_2 = Q_3 = Q_4 = \frac{Q_1}{3} = \frac{CU}{4}$; $Q_7 = \frac{2CU}{3}$ et $Q_5 = Q_6 = \frac{Q_7}{2} = \frac{CU}{3}$;

Exercice 4 : Calcul des résistances équivalentes

Toutes les résistances sont identiques de valeur R. Déterminer la résistance équivalente vue entre les bornes A et **B** pour les schémas ci-dessous.

En faisant des associations de résistances et en appliquant les lois de Kirchhoff, déterminer pour le montages de la figure ci-dessous, l'intensité I qui traverse la résistance R_3 et la tension U aux bornes de la résistance R_2 . Application numérique pour :

Montage 1

Montage 2

$$R_{234} = \frac{R_{34} \cdot R_2}{R_{34} + R_2} = \frac{(R_3 + R_4) \cdot R_2}{R_2 + R_3 + R_4}$$

$$E = (R_{234} + R_1)I_0 \Rightarrow I_0 = \frac{E}{R_{234} + R_1}$$

$$U = R_{234}I_0 \Rightarrow U = \frac{E R_{234}}{R_{234} + R_1}$$

$$\Rightarrow U = \frac{E \frac{(R_3 + R_4) \cdot R_2}{R_2 + R_3 + R_4}}{\frac{(R_3 + R_4) \cdot R_2}{R_2 + R_3 + R_4} + R_1}$$

$$\Rightarrow U = \frac{E(R_3 + R_4).R_2}{(R_3 + R_4).R_2 + R_1(R_2 + R_3 + R_4)} = \frac{E}{4} = 1,5V$$

$$U = (R_3 + R_4)I \Rightarrow I = \frac{U}{(R_3 + R_4)} = 1, 5.10^{-2}A$$

$$U = R_{234}I_0 \Rightarrow U = \frac{E R_{234}}{R_{234} + R_1}$$

$$\Rightarrow U = \frac{E \frac{R_2 R_3 R_4}{R_2 R_3 + R_2 R_4 + R_3 R_4}}{\frac{R_2 R_3 R_4}{R_2 R_3 + R_2 R_4 + R_3 R_4} + R_1}$$

$$R_{2}R_{3} + R_{2}R_{4} + R_{3}R_{4}$$

$$\Rightarrow U = \frac{ER_{2}R_{3}R_{4}}{R_{1}R_{2}R_{3} + R_{1}R_{2}R_{4} + R_{1}R_{3}R_{4} + R_{2}R_{3}R_{4}}$$

$$\Rightarrow U = \frac{E}{7} = 0,86V$$

$$U = R_{3}I \Rightarrow I = \frac{U}{R_{3}} = 1,7.10^{-2}A$$