

Index

- Introduction
- Methodology
- Experiments
- Conclusion

Introduction

"A cat jumps into a box."

Video Captioning 비디오 입력에서 어떻게 장면을 이해하고 묘사할까?

Introduction

Video-level approaches

[Venugopalan et al. 2014, Venugopalan et al. 2015, Chen et al. 2018, Pei et al. 2019]

✓ Global context modeling

Ignore object-level information

Spatial object interaction modeling Temporal object transformation modeling

[Ma et al. 2018]

✓ Spatial attentive pooling

No temporal transformation

[Zhang et al. 2019]

√ Temporal object trajectory

No spatial interaction

Introduction

Ignore object-level information

No temporal transformation

No spatial interaction

Object detection

Temporal transformation modeling

Spatial interaction modeling

Spatio-temporal 한 object의 관계 모델링

: Two branch

Two branch 구조

: Object branch

- Object features by Faster R-CNN
- Spatial edges: spatial connectivity (IoU):

$$G_{tij}^{space} = \frac{\exp \sigma_{tij}}{\sum_{j=1}^{N_t} \exp \sigma_{tij}}$$

Temporal edges: semantic similarity (cosine distance of object features):

$$G_{tij}^{time} = \frac{\exp \cos (o_t^i, o_{t+1}^j)}{\sum_{j=1}^{N_{t+1}} \exp \cos (o_t^i, o_{t+1}^j)}$$

: Object branch

- Spatio-Temporal Graph

$$G^{st} = \begin{bmatrix} G_1^{space} & G_1^{time} & 0 & \dots & 0 \\ 0 & G_2^{space} & G_2^{time} & \dots & 0 \\ 0 & 0 & G_3^{space} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & G_T^{space} \end{bmatrix} \in \mathbb{R}^{N \times N}$$

- Update (through graph conv)

$$H^{(l+1)} = \text{ReLU}(H^{(l)} + \Lambda^{-\frac{1}{2}}G^{st}\Lambda^{-\frac{1}{2}}H^{(l)}W^{(l)}).$$

$$H^{(0)} = \operatorname{stack}(F_o)W_o \in \mathbb{R}^{N \times d_{model}}$$

: Scene branch

- Object branch 에서 누락된 global context 제공
- 2D frame features 와 3D clip features 의 concatenation

: Problem

Problem: Object branch 는 안정적이지 못함

- 비디오에 a variable number of objects 포함되어 있음
- 학습된 object는 매우 noisy
- 또한 Early feature fusion 이 성능 최적화 하기엔 부적합

: Solution (Distillation)

해결방안 : late fusion(with distillation)

Distillation:
$$q_i = rac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

Methodology

: Solution (Distillation)

- 두 branch로 부터 온 logits의 KL divergence를 최소화 하는 방안으로 Fuse함 $L_{distill} = -\sum_{x \in V} P_s(x) \log \left(\frac{P_o(x)}{P_s(x)} \right).$
- 결과 학습된 Feature는 더 강건해짐
- Test 시에는 distilled된 Scene branch 만 사용

: Final Framework

$$L = L_{o_lang} + \lambda_{sl} L_{s_lang} + \lambda_d L_{distill}.$$

Dataset

MSVD

A baseball player hits a baseball.

MSR-VTT

A cat is playing with a baby.

	No. of Videos	No. of Sentences / Video
MSVD	1970	~40
MSR-VTT	10000	20

Results

Quantitative results – comparison

Our approach achieves state-of-the-art performance on MSVD and competitive results on MSR-VTT

Experiment

Results

MSVD

Method	BLEU@4	METEOR	ROUGE-L	CIDEr
Wang et al. [39]	52.5	34.1	71.3	88.7
Hou et al. [19]	52.8	36.1	71.8	87.8
RecNet [40]	52.3	34.1	69.8	80.3
PickNet [6]	52.3	33.3	69.6	76.5
OA-BTG [49]	56.9	36.2	-	90.6
MARN [30]	48.6	35.1	71.9	92.2
Ours	52.2	36.9	73.9	93.0

MSR-VTT

Method	BLEU@4	METEOR	ROUGE-L	CIDEr
Wang et al. [39]	42.0	28.2	61.6	48.7
Hou et al. [19]	42.3	29.7	62.8	49.1
RecNet [40]	39.1	26.6	59.3	42.7
PickNet [6]	41.3	27.7	59.8	44.1
OA-BTG [49]	41.4	28.2	-	46.9
MARN [30]	40.4	28.1	60.7	47.1
Ours (Scene only)	37.2	27.3	59.1	44.6
Ours	40.5	28.3	60.9	47.1

Experiment

Results

Quantitative results – ablation study

Both sub-graphs capture important and distinct information

Results

Scene Branch Only 모델 보다 Full model 이 key regions 을 더 잘 찾아냄

논문의 모델이 GT에 더 가까 운 결과를 보임

GT: a man in a <u>black shirt</u> demonstrates how to play ping pong Ours: a man in a **black shirt** is talking about ping pong [Wang et al. 2019]: there is a man is talking about table tennis

Results

More results

GT: a group of men are running down a <u>race</u> track
Ours: a **race** is going on the track
[Wang et al. 2019]: there is a man running on the track

GT: a woman is showing how to make little baskets from <u>potatoes</u>
Ours: a woman is showing how to make a **potato** salad
[Wang et al. 2019]: a person is preparing a recipe

Conclusion

Late fusion 및 Distill 기법을 포함한 Two branch 구조의 framework 제안
-> spatio temporal object interaction 을 잘 활용
-> video의 Early fusion 의 문제점 해결

Appendix references

Paper

 https://openaccess.thecvf.com/content_CVPR_2020/papers/Pan_Spatio-Tempo ral_Graph_for_Video_Captioning_With_Knowledge_Distillation_CVPR_2020_pape r.pdf

- Etc.
- https://www.youtube.com/watch?v=QxHttaZF_Xc
- https://github.com/HYU-AILAB/ai-seminar/blob/master/season_13/07.%20A%2
 OGraph%20Convolutional%20Neural%20Network%20for%20Emotion%20Recognition%20In%20Conversation/200831_DialogueGCN_Yuri.pdf