dataset:Two-moons

X, y = make_moons(n_samples=400, noise=.05, random_state=0)

n_samples=400,n_feature=2
Using Kernel PCA with rbf kernel, we got X_kpca.
When gamma=10,the shape of X_kpca is (400,298).

Clustering accuracy(GMM) on X kpca is 1

When gamma=1,the shape of X_k pca is (400,89). Clustering accuracy(GMM) on X_k pca is 0.7975

When gamma=3, the shape of X_kpca is (400,159). Clustering accuracy(GMM) on X_kpca is 0.9025

Kernel gmm gamma=3 rbf kernel d_phi=24 0.9025 error 3.2283283605536166e-21

gamma=5 d phi=40 0.985

error 8.03450975847036e-22

gamma=10 d phi=69 1.0

error 3.2010122689731882e-21

很难选择初始值,需要一个好的初始值。

Dataset: two circles

kernel k-means clustering algorithm

https://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf https://sites.google.com/site/dataclusteringalgorithms/kernel-k-means-clustering-algorithm

Kernel PCA +GMM也可以

Kernel gmm

也可以

但是依赖于初始值

Accuracy 0.853

p_t-p_(t+1) 897.8204557263256

Accuracy 1.0

p_t-p_(t+1) 293.99999984790566

Accuracy 1.0

p_t-p_(t+1) 6.278221811759174e-18

```
USPS 385 dayaset
Methods Accuracy
```

DEC 0.7408 https://arxiv.org/pdf/1511.06335.pdf
DBC 0.743 https://arxiv.org/pdf/1703.07980.pdf
(DEPICT) 0.964 https://arxiv.org/pdf/1704.06327.pdf

Kernel PCA+GMM

```
gamma=0.00015          rbf kernel
The shape of X_kpca=(7291, 5906)
gmm = GMM(n_components=10,n_init=10).fit(X_kpca[:,:100])
ACC=0.7317
```