Appendix A

Matrix Algebra

There are numerous books on matrix algebra that contain results useful for the discussion of linear models. See for instance books by Graybill (1961); Mardia, Kent, and Bibby (1979); Searle (1982); Rao (1973a); Rao and Mitra (1971); and Rao and Rao (1998), to mention a few. We collect in this Appendix some of the important results for ready reference. Proofs are generally omitted. References to original sources are given wherever necessary.

A.1 Overview

Definition A.1 An $m \times n$ -matrix A is a rectangular array of elements in m rows and n columns.

In the context of the material treated in the book and in this Appendix, the elements of a matrix are taken as real numbers. We indicate an $m \times n$ -matrix by writing $A: m \times n$ or $A = m \times n$.

Let a_{ij} be the element in the *i*th row and the *j*th column of A. Then A may be represented as

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \ddots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij}).$$

A matrix with n=m rows and columns is called a square matrix. A square matrix having zeros as elements below (above) the diagonal is called an upper (lower) triangular matrix.

Definition A.2 The transpose $A': n \times m$ of a matrix $A: m \times n$ is given by interchanging the rows and columns of A. Thus

$$A' = (a_{ii})$$
.

Then we have the following rules:

$$(A')' = A$$
, $(A+B)' = A' + B'$, $(AB)' = B'A'$.

Definition A.3 A square matrix is called symmetric if A' = A.

Definition A.4 $An\ m \times 1$ matrix a is said to be an m-vector and written as $a\ column$

$$a = \left(\begin{array}{c} a_1 \\ \vdots \\ a_m \end{array}\right).$$

Definition A.5 A 1 \times n-matrix a' is said to be a row vector

$$a'=(a_1,\cdots,a_n).$$

 $A: m \times n$ may be written alternatively in a partitioned form as

$$A = (a_{(1)}, \dots, a_{(n)}) = \begin{pmatrix} a'_1 \\ \vdots \\ a'_m \end{pmatrix}$$

with

354

$$a_{(j)} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}, \quad a_i = \begin{pmatrix} a_{i1} \\ \vdots \\ a_{in} \end{pmatrix}.$$

Definition A.6 The $n \times 1$ row vector $(1, \dots, 1)'$ is denoted by $1'_n$ or 1'.

Definition A.7 The matrix $A: m \times m$ with $a_{ij} = 1$ (for all i,j) is given the symbol J_m , that is,

$$J_m = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \vdots & 1 \end{pmatrix} = 1_m 1'_m.$$

Definition A.8 The n-vector

$$e_i = (0, \dots, 0, 1, 0, \dots, 0)'$$

with the ith component as 1 and all the others as 0, is called the ith unit vector.

Definition A.9 A $n \times n$ (square) matrix with elements 1 on the main diagonal and zeros off the diagonal is called the identity matrix I_n .

Definition A.10 A square matrix $A: n \times n$ with zeros in the off diagonal is called a diagonal matrix. We write

$$A = \operatorname{diag}(a_{11}, \dots, a_{nn}) = \operatorname{diag}(a_{ii}) = \begin{pmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix}.$$

Definition A.11 A matrix A is said to be partitioned if its elements are arranged in submatrices.

Examples are

$$\begin{array}{rcl}
A_{m,n} & = & (A_1, A_2) & \text{with} & r+s = n \\
m, r & m, s & & & \\
\end{array}$$

or

$$\begin{array}{ccc}
A_{m,n} & = & \begin{pmatrix}
A_{11} & A_{12} \\
r,n-s & r,s \\
A_{21} & A_{22} \\
m-r,n-s & m-r,s
\end{pmatrix}.$$

For partitioned matrices we get the transposess as

$$A'=\left(\begin{array}{c}A_1'\\A_2'\end{array}\right),\quad A'=\left(\begin{array}{cc}A_{11}'&A_{21}'\\A_{12}'&A_{22}'\end{array}\right),$$

respectively.

A.2 Trace of a Matrix

Definition A.12 Let a_{11}, \ldots, a_{nn} be the elements on the main diagonal of a square matrix $A: n \times n$. Then the trace of A is defined as the sum

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii} .$$

Theorem A.13 Let A and B be square $n \times n$ matrices, and let c be a scalar factor. Then we have the following rules:

- (i) $tr(A \pm B) = tr(A) \pm tr(B)$;
- (ii) $\operatorname{tr}(A') = \operatorname{tr}(A)$;
- (iii) $\operatorname{tr}(cA) = c \operatorname{tr}(A);$
- (iv) tr(AB) = tr(BA) (here A and B can be rectangular matrices of the form $A: m \times n$ and $B: n \times m$);
- (v) $\operatorname{tr}(AA') = \operatorname{tr}(A'A) = \sum_{i,j} a_{ij}^2$;

(vi) If $a = (a_1, ..., a_n)'$ is an n-vector, then its squared norm may be written as

$$||a||^2 = a'a = \sum_{i=1}^n a_i^2 = \operatorname{tr}(aa').$$

Note, that rules (iv) and (v) also hold for the case $A: n \times m$ and $B: m \times n$.

A.3 Determinant of a Matrix

Definition A.14 Let n > 1 be a positive integer. The determinant of a square matrix $A: n \times n$ is defined by

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |M_{ij}|$$
 (for any j, j fixed),

with $|M_{ij}|$ being the minor of the element a_{ij} . $|M_{ij}|$ is the determinant of the remaining $(n-1)\times(n-1)$ matrix when the ith row and the jth column of A are deleted. $A_{ij}=(-1)^{i+j}|M_{ij}|$ is called the cofactor of a_{ij} .

Examples:

356

For n = 2: $|A| = a_{11}a_{22} - a_{12}a_{21}$.

For n = 3 (first column (j = 1) fixed):

$$A_{11} = (-1)^{2} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = (-1)^{2} M_{11}$$

$$A_{21} = (-1)^{3} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} = (-1)^{3} M_{21}$$

$$A_{31} = (-1)^{4} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = (-1)^{4} M_{31}$$

$$\Rightarrow |A| = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}.$$

Note: As an alternative one may fix a row and develop the determinant of A according to

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |M_{ij}|$$
 (for any i, i fixed).

Definition A.15 A square matrix A is said to be regular or nonsingular if $|A| \neq 0$. Otherwise A is said to be singular.

Theorem A.16 Let A and B be $n \times n$ square matrices, and c be a scalar. Then we have

(i)
$$|A'| = |A|$$
,

(ii)
$$|cA| = c^n |A|$$
,

(iii)
$$|AB| = |A||B|$$
,

(iv)
$$|A^2| = |A|^2$$
,

(v) If A is diagonal or triangular, then

$$|A| = \prod_{i=1}^{n} a_{ii}.$$

(vi) For
$$D = \begin{pmatrix} A & C \\ n,n & n,m \\ 0 & B \\ m,n & m,m \end{pmatrix}$$
 we have
$$\begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = |A||B|,$$

and analogously

$$\left|\begin{array}{cc} A' & 0' \\ C' & B' \end{array}\right| = |A||B|.$$

(vii) If A is partitioned with $A_{11}: p \times p$ and $A_{22}: q \times q$ square and non-singular, then

$$\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}|$$
$$= |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|.$$

Proof: Define the following matrices

$$Z_1 = \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix}$$
 and $Z_2 = \begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix}$,

where $|Z_1| = |Z_2| = 1$ by (vi). Then we have

$$Z_1 A Z_2 = \left(\begin{array}{cc} A_{11} - A_{12} A_{22}^{-1} A_{21} & 0\\ 0 & A_{22} \end{array} \right)$$

and [using (iii) and (iv)]

$$|Z_1AZ_2| = |A| = |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|.$$

(viii)
$$\begin{vmatrix} A & x \\ x' & c \end{vmatrix} = |A|(c - x'A^{-1}x)$$
 where x is an n-vector.

Proof: Use (vii) with A instead of A_{11} and c instead of A_{22} .

(ix) Let $B: p \times n$ and $C: n \times p$ be any matrices and $A: p \times p$ a nonsingular matrix. Then

$$|A + BC| = |A||I_p + A^{-1}BC|$$

= $|A||I_n + CA^{-1}B|$.

358

Proof: The first relationship follows from (iii) and

$$(A + BC) = A(I_p + A^{-1}BC)$$

immediately. The second relationship is a consequence of (vii) applied to the matrix

$$\begin{vmatrix} I_p & -A^{-1}B \\ C & I_n \end{vmatrix} = |I_p||I_n + CA^{-1}B|$$
$$= |I_n||I_p + A^{-1}BC|.$$

- (x) $|A + aa'| = |A|(1 + a'A^{-1}a)$, if A is nonsingular.
- (xi) $|I_p + BC| = |I_n + CB|$, if $B: p \times n$ and $C: n \times p$.

A.4 Inverse of a Matrix

Definition A.17 A matrix $B: n \times n$ is said to be an inverse of $A: n \times n$ if AB = I. If such a B exists, it is denoted by A^{-1} . It is easily seen that A^{-1} exists if and only if A is nonsingular. It is easy to establish that if A^{-1} exists: then $AA^{-1} = A^{-1}A = I$.

Theorem A.18 If all the inverses exist, we have

- (i) $(cA)^{-1} = c^{-1}A^{-1}$.
- (ii) $(AB)^{-1} = B^{-1}A^{-1}$.
- (iii) If $A: p \times p$, $B: p \times n$, $C: n \times n$ and $D: n \times p$ then

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}.$$

(iv) If $1 + b'A^{-1}a \neq 0$, then we get from (iii)

$$(A+ab')^{-1} = A^{-1} - \frac{A^{-1}ab'A^{-1}}{1+b'A^{-1}a}.$$

(v) $|A^{-1}| = |A|^{-1}$.

Theorem A.19 (Inverse of a partitioned matrix) For partitioned regular A

$$A = \left(\begin{array}{cc} E & F \\ G & H \end{array}\right),$$

where $E:(n_1 \times n_1)$, $F:(n_1 \times n_2)$, $G:(n_2 \times n_1)$ and $H:(n_2 \times n_2)$ $(n_1 + n_2 = n)$ are such that E and $D = H - GE^{-1}F$ are regular, the partitioned inverse is given by

$$A^{-1} = \left(\begin{array}{cc} E^{-1}(I + FD^{-1}GE^{-1}) & -E^{-1}FD^{-1} \\ -D^{-1}GE^{-1} & D^{-1} \end{array} \right) = \left(\begin{array}{cc} A^{11} & A^{12} \\ A^{21} & A^{22} \end{array} \right).$$

Proof: Check that the product of A and A^{-1} reduces to the identity matrix, that is,

$$AA^{-1} = A^{-1}A = I.$$

A.5 Orthogonal Matrices

Definition A.20 A square matrix $A: n \times n$ is said to be orthogonal if AA' = I = A'A. For orthogonal matrices, we have

- (i) $A' = A^{-1}$.
- (ii) $|A| = \pm 1$.
- (iii) Let $\delta_{ij} = 1$ for i = j and 0 for $i \neq j$ denote the Kronecker symbol. Then the row vectors a_i and the column vectors $a_{(i)}$ of A satisfy the conditions

$$a_i a'_j = \delta_{ij}$$
, $a'_{(i)} a_{(j)} = \delta_{ij}$.

(iv) AB is orthogonal if A and B are orthogonal.

Theorem A.21 For $A: n \times n$ and $B: n \times n$ symmetric matrices, there exists an orthogonal matrix H such that H'AH and H'BH become diagonal if and only if A and B commute, that is,

$$AB = BA$$
.

A.6 Rank of a Matrix

Definition A.22 The rank of $A: m \times n$ is the maximum number of linearly independent rows (or columns) of A. We write $\operatorname{rank}(A) = p$.

Theorem A.23 (Rules for ranks)

- (i) $0 \le \operatorname{rank}(A) \le \min(m, n)$.
- (ii) rank(A) = rank(A').
- (iii) $\operatorname{rank}(A+B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$.
- (iv) $\operatorname{rank}(AB) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}.$
- (v) rank(AA') = rank(A'A) = rank(A) = rank(A').
- (vi) For nonsingular $B: m \times m$ and $C: n \times n$, we have $\operatorname{rank}(BAC) = \operatorname{rank}(A)$.
- (vii) For $A: n \times n$, rank(A) = n if and only if A is nonsingular.
- (viii) If $A = diag(a_i)$, then rank(A) equals the number of the $a_i \neq 0$.

360

A.7 Range and Null Space

Definition A.24

(i) The range $\mathcal{R}(A)$ of a matrix $A: m \times n$ is the vector space spanned by the column vectors of A, that is,

$$\mathcal{R}(A) = \left\{ z : z = Ax = \sum_{i=1}^{n} a_{(i)} x_i, \quad x \in \mathbb{R}^n \right\} \subset \mathbb{R}^m,$$

where $a_{(1)}, \ldots, a_{(n)}$ are the column vectors of A.

(ii) The null space $\mathcal{N}(A)$ is the vector space defined by

$$\mathcal{N}(A) = \{x \in \mathbb{R}^n \quad and \quad Ax = 0\} \subset \mathbb{R}^n.$$

Theorem A.25

- (i) $\operatorname{rank}(A) = \dim \mathcal{R}(A)$, where $\dim \mathcal{V}$ denotes the number of basis vectors of a vector space \mathcal{V} .
- (ii) $\dim \mathcal{R}(A) + \dim \mathcal{N}(A) = n$.
- (iii) $\mathcal{N}(A) = \{\mathcal{R}(A')\}^{\perp}$. $(\mathcal{V}^{\perp} \text{ is the orthogonal complement of a vector } space \, \mathcal{V} \text{ defined by } \mathcal{V}^{\perp} = \{x : x'y = 0 \quad \forall y \in \mathcal{V}\}.)$
- (iv) $\mathcal{R}(AA') = \mathcal{R}(A)$.
- (v) $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$ for any A and B.
- (vi) For $A \ge 0$ and any B, $\mathcal{R}(BAB') = \mathcal{R}(BA)$.

A.8 Eigenvalues and Eigenvectors

Definition A.26 If $A: p \times p$ is a square matrix, then

$$q(\lambda) = |A - \lambda I|$$

is a pth order polynomial in λ . The p roots $\lambda_1, \ldots, \lambda_p$ of the characteristic equation $q(\lambda) = |A - \lambda I| = 0$ are called eigenvalues or characteristic roots of A.

The eigenvalues possibly may be complex numbers. Since $|A - \lambda_i I| = 0$, $A - \lambda_i I$ is a singular matrix. Hence, there exists a nonzero vector $\gamma_i \neq 0$ satisfying $(A - \lambda_i I)\gamma_i = 0$, that is,

$$A\gamma_i = \lambda_i \gamma_i.$$

 γ_i is called the (right) eigenvector of A for the eigenvalue λ_i . If λ_i is complex, then γ_i may have complex components. An eigenvector γ with real components is called standardized if $\gamma'\gamma = 1$.

Theorem A.27

(i) If x and y are nonzero eigenvectors of A for λ_i , and α and β are any real numbers, then $\alpha x + \beta y$ also is an eigenvector for λ_i , that is,

$$A(\alpha x + \beta y) = \lambda_i(\alpha x + \beta y).$$

Thus the eigenvectors for any λ_i span a vector space, which is called the eigenspace of A for λ_i .

(ii) The polynomial $q(\lambda) = |A - \lambda I|$ has the normal form in terms of the roots

$$q(\lambda) = \prod_{i=1}^{p} (\lambda_i - \lambda).$$

Hence, $q(0) = \prod_{i=1}^{p} \lambda_i$ and

$$|A| = \prod_{i=1}^{p} \lambda_i.$$

(iii) Matching the coefficients of λ^{n-1} in $q(\lambda) = \prod_{i=1}^p (\lambda_i - \lambda)$ and $|A - \lambda I|$ gives

$$tr(A) = \sum_{i=1}^{p} \lambda_i.$$

(iv) Let $C: p \times p$ be a regular matrix. Then A and CAC^{-1} have the same eigenvalues λ_i . If γ_i is an eigenvector for λ_i , then $C\gamma_i$ is an eigenvector of CAC^{-1} for λ_i .

Proof: As C is nonsingular, it has an inverse C^{-1} with $CC^{-1} = I$. We have $|C^{-1}| = |C|^{-1}$ and

$$\begin{aligned} |A-\lambda I| &= |C||A-\lambda C^{-1}C||C^{-1}| \\ &= |CAC^{-1}-\lambda I|. \end{aligned}$$

Thus, A and CAC^{-1} have the same eigenvalues. Let $A\gamma_i = \lambda_i \gamma_i$, and multiply from the left by C:

$$CAC^{-1}C\gamma_i = (CAC^{-1})(C\gamma_i) = \lambda_i(C\gamma_i).$$

- (v) The matrix $A + \alpha I$ with α a real number has the eigenvalues $\tilde{\lambda}_i = \lambda_i + \alpha$, and the eigenvectors of A and $A + \alpha I$ coincide.
- (vi) Let λ_1 denote any eigenvalue of $A: p \times p$ with eigenspace H of dimension r. If k denotes the multiplicity of λ_1 in $q(\lambda)$, then

$$1 < r < k$$
.

Remarks:

362

(a) For symmetric matrices A, we have r = k.

(b) If A is not symmetric, then it is possible that r < k. Example:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A \neq A'$$
$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0.$$

The multiplicity of the eigenvalue $\lambda = 0$ is k = 2.

The eigenvectors for $\lambda=0$ are $\gamma=\alpha\left(\begin{array}{c}1\\0\end{array}\right)$ and generate an eigenspace of dimension 1.

(c) If for any particular eigenvalue λ , $\dim(H) = r = 1$, then the standardized eigenvector for λ is unique (up to the sign).

Theorem A.28 Let $A: n \times p$ and $B: p \times n$ with $n \geq p$ be any two matrices. Then from Theorem A.16 (vii),

$$\begin{vmatrix} -\lambda I_n & -A \\ B & I_p \end{vmatrix} = (-\lambda)^{n-p} |BA - \lambda I_p| = |AB - \lambda I_n|.$$

Hence the n eigenvalues of AB are equal to the p eigenvalues of BA plus the eigenvalue 0 with multiplicity n-p. Suppose that $x \neq 0$ is an eigenvector of AB for any particular $\lambda \neq 0$. Then y=Bx is an eigenvector of BA for this λ and we have $y \neq 0$, too.

Corollary: A matrix A = aa' with a as a nonnull vector has all eigenvalues 0 except one, with $\lambda = a'a$ and the corresponding eigenvector a.

Corollary: The nonzero eigenvalues of AA' are equal to the nonzero eigenvalues of A'A.

Theorem A.29 If A is symmetric, then all the eigenvalues are real.

A.9 Decomposition of Matrices

Theorem A.30 (Spectral decomposition theorem) $Any\ symmetric\ matrix\ A: (p\times p)\ can\ be\ written\ as$

$$A = \Gamma \Lambda \Gamma' = \sum \lambda_i \gamma_{(i)} \gamma'_{(i)} ,$$

where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_p)$ is the diagonal matrix of the eigenvalues of A, and $\Gamma = (\gamma_{(1)}, \ldots, \gamma_{(p)})$ is the orthogonal matrix of the standardized eigenvectors $\gamma_{(i)}$.

Theorem A.31 Suppose A is symmetric and $A = \Gamma \Lambda \Gamma'$. Then

- (i) A and Λ have the same eigenvalues (with the same multiplicity).
- (ii) From $A = \Gamma \Lambda \Gamma'$ we get $\Lambda = \Gamma' A \Gamma$.
- (iii) If $A: p \times p$ is a symmetric matrix, then for any integer n, $A^n = \Gamma \Lambda^n \Gamma'$ and $\Lambda^n = \operatorname{diag}(\lambda_i^n)$. If the eigenvalues of A are positive, then we can define the rational powers

$$A^{\frac{r}{s}} = \Gamma \Lambda^{\frac{r}{s}} \Gamma'$$
 with $\Lambda^{\frac{r}{s}} = \operatorname{diag}(\lambda_i^{\frac{r}{s}})$

for integers s > 0 and r. Important special cases are (when $\lambda_i > 0$)

$$A^{-1} = \Gamma \Lambda^{-1} \Gamma' \quad \textit{with} \quad \Lambda^{-1} = \mathrm{diag}(\lambda_i^{-1}) \, ;$$

the symmetric square root decomposition of A (when $\lambda_i \geq 0$)

$$A^{\frac{1}{2}} = \Gamma \Lambda^{\frac{1}{2}} \Gamma'$$
 with $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\lambda_i^{\frac{1}{2}})$

and if $\lambda_i > 0$

$$A^{-\frac{1}{2}} = \Gamma \Lambda^{-\frac{1}{2}} \Gamma' \quad with \quad \Lambda^{-\frac{1}{2}} = \operatorname{diag}(\lambda_i^{-\frac{1}{2}}).$$

(iv) For any square matrix A, the rank of A equals the number of nonzero eigenvalues.

Proof: According to Theorem A.23 (vi) we have $\operatorname{rank}(A) = \operatorname{rank}(\Gamma \Lambda \Gamma') = \operatorname{rank}(\Lambda)$. But $\operatorname{rank}(\Lambda)$ equals the number of nonzero λ_i 's.

- (v) A symmetric matrix A is uniquely determined by its distinct eigenvalues and the corresponding eigenspaces. If the distinct eigenvalues λ_i are ordered as $\lambda_1 \geq \cdots \geq \lambda_p$, then the matrix Γ is unique (up to sign).
- (vi) $A^{\frac{1}{2}}$ and A have the same eigenvectors. Hence, $A^{\frac{1}{2}}$ is unique.
- (vii) Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$ be the nonzero eigenvalues and $\lambda_{k+1} = \cdots = \lambda_p = 0$. Then we have

$$A = (\Gamma_1 \Gamma_2) \left(\begin{array}{cc} \Lambda_1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \Gamma_1' \\ \Gamma_2' \end{array} \right) = \Gamma_1 \Lambda_1 \Gamma_1'$$

with $\Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$ and $\Gamma_1 = (\gamma_{(1)}, \dots, \gamma_{(k)})$, whereas $\Gamma'_1\Gamma_1 = I_k$ holds so that Γ_1 is column-orthogonal.

(viii) A symmetric matrix A is of rank 1 if and only if A = aa' where $a \neq 0$.

Proof: If $\operatorname{rank}(A) = \operatorname{rank}(\Lambda) = 1$, then $\Lambda = \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$, $A = \lambda \gamma \gamma' = aa'$ with $a = \sqrt{\lambda} \gamma$. If A = aa', then by Theorem A.23 (v) we have $\operatorname{rank}(A) = \operatorname{rank}(a) = 1$.

364

Theorem A.32 (Singular-value decomposition of a rectangular matrix) Let $A: n \times p$ be a rectangular matrix of rank r. Then we have

$$A = U L V'$$

with $U'U = I_r$, $V'V = I_r$, and $L = \text{diag}(l_1, \dots, l_r)$, $l_i > 0$. For a proof, see Rao (1973, p. 42).

Theorem A.33 If $A: p \times q$ has $\operatorname{rank}(A) = r$, then A contains at least one nonsingular (r,r)-submatrix X, such that A has the so-called normal presentation

$$A = \begin{pmatrix} X & Y \\ r, r & r, q - r \\ Z & W \\ p - r, r & p - r, q - r \end{pmatrix}.$$

All square submatrices of type (r+s,r+s) with $(s \ge 1)$ are singular.

Proof: As $\operatorname{rank}(A) = \operatorname{rank}(X)$ holds, the first r rows of (X,Y) are linearly independent. Then the p-r rows (Z,W) are linear combinations of (X,Y); that is, there exists a matrix F such that

$$(Z, W) = F(X, Y).$$

Analogously, there exists a matrix H satisfying

$$\left(\begin{array}{c} Y \\ W \end{array}\right) = \left(\begin{array}{c} X \\ Z \end{array}\right) H.$$

Hence we get W = FY = FXH, and

$$\begin{split} A &= \left(\begin{array}{cc} X & Y \\ Z & W \end{array} \right) &= \left(\begin{array}{cc} X & XH \\ FX & FXH \end{array} \right) \\ &= \left(\begin{array}{c} I \\ F \end{array} \right) X(I,H) \\ &= \left(\begin{array}{c} X \\ FX \end{array} \right) (I,H) = \left(\begin{array}{c} I \\ F \end{array} \right) (X,XH) \,. \end{split}$$

As X is nonsingular, the inverse X^{-1} exists. Then we obtain $F = ZX^{-1}$, $H = X^{-1}Y$, $W = ZX^{-1}Y$, and

$$\begin{split} A = \left(\begin{array}{cc} X & Y \\ Z & W \end{array} \right) &= \left(\begin{array}{c} I \\ ZX^{-1} \end{array} \right) X(I, X^{-1}Y) \\ &= \left(\begin{array}{c} X \\ Z \end{array} \right) (I, X^{-1}Y) \\ &= \left(\begin{array}{c} I \\ ZX^{-1} \end{array} \right) (X\,Y). \end{split}$$

Theorem A.34 (Full rank factorization)

(i) If $A: p \times q$ has rank(A) = r, then A may be written as

$$A = KL$$
 p,q
 p,rr,q

with K of full column rank r and L of full row rank r.

Proof: Theorem A.33.

(ii) If $A: p \times q$ has rank(A) = p, then A may be written as A = M(I, H), where $M: p \times p$ is regular.

Proof: Theorem A.34 (i).

A.10 Definite Matrices and Quadratic Forms

Definition A.35 Suppose $A: n \times n$ is symmetric and $x: n \times 1$ is any vector. Then the quadratic form in x is defined as the function

$$Q(x) = x'Ax = \sum_{i,j} a_{ij}x_ix_j.$$

Clearly, Q(0) = 0.

Definition A.36 The matrix A is called positive definite (p.d.) if Q(x) > 0 for all $x \neq 0$. We write A > 0.

Note: If A > 0, then (-A) is called negative definite.

Definition A.37 The quadratic form x'Ax (and the matrix A, also) is called positive semidefinite (p.s.d.) if $Q(x) \ge 0$ for all x and Q(x) = 0 for at least one $x \ne 0$.

Definition A.38 The quadratic form x'Ax (and A) is called nonnegative definite (n.n.d.) if it is either p.d. or p.s.d., that is, if $x'Ax \geq 0$ for all x. If A is n.n.d., we write $A \geq 0$.

Theorem A.39 Let the $n \times n$ matrix A > 0. Then

- (i) A has all eigenvalues $\lambda_i > 0$.
- (ii) x'Ax > 0 for any $x \neq 0$.
- (iii) A is nonsingular and |A| > 0.
- (iv) $A^{-1} > 0$.
- (v) tr(A) > 0.

- (vi) Let $P: n \times m$ be of rank $(P) = m \leq n$. Then P'AP > 0 and in particular P'P > 0, choosing A = I.
- (vii) Let $P: n \times m$ be of rank $(P) < m \le n$. Then $P'AP \ge 0$ and $P'P \ge 0$.

Theorem A.40 Let $A: n \times n$ and $B: n \times n$ such that A > 0 and $B: n \times n \geq 0$. Then

- (i) C = A + B > 0.
- (ii) $A^{-1} (A+B)^{-1} \ge 0$.
- (iii) $|A| \le |A + B|$.

Theorem A.41 Let $A \geq 0$. Then

(i) $\lambda_i \geq 0$.

366

- (ii) $tr(A) \geq 0$.
- (iii) $A = A^{\frac{1}{2}}A^{\frac{1}{2}}$ with $A^{\frac{1}{2}} = \Gamma \Lambda^{\frac{1}{2}}\Gamma'$.
- (iv) For any matrix $C: n \times m$ we have $C'AC \geq 0$.
- (v) For any matrix C, we have C'C > 0 and CC' > 0.

Theorem A.42 For any matrix $A \geq 0$, we have $0 \leq \lambda_i \leq 1$ if and only if $(I - A) \geq 0$.

Proof: Write the symmetric matrix A in its spectral form as $A = \Gamma \Lambda \Gamma'$. Then we have

$$(I - A) = \Gamma(I - \Lambda)\Gamma' \ge 0$$

if and only if

$$\Gamma'\Gamma(I-\Lambda)\Gamma'\Gamma=I-\Lambda\geq 0.$$

- (a) If $I \Lambda \ge 0$, then for the eigenvalues of I A we have $1 \lambda_i \ge 0$ (i.e., $0 \le \lambda_i \le 1$).
- (b) If $0 \le \lambda_i \le 1$, then for any $x \ne 0$,

$$x'(I - \Lambda)x = \sum x_i^2(1 - \lambda_i) \ge 0,$$

that is, $I - \Lambda \geq 0$.

Theorem A.43 (Theobald, 1974) Let $D: n \times n$ be symmetric. Then $D \geq 0$ if and only if $\operatorname{tr}\{CD\} \geq 0$ for all $C \geq 0$.

Proof: D is symmetric, so that

$$D = \Gamma \Lambda \Gamma' = \sum \lambda_i \gamma_i \gamma_i' \,,$$

and hence

$$\operatorname{tr}\{CD\} = \operatorname{tr}\left\{\sum \lambda_i C \gamma_i \gamma_i'\right\}$$
$$= \sum \lambda_i \gamma_i' C \gamma_i.$$

- (a) Let $D \geq 0$, and, hence, $\lambda_i \geq 0$ for all i. Then $tr(CD) \geq 0$ if $C \geq 0$.
- (b) Let $\operatorname{tr}\{CD\} \geq 0$ for all $C \geq 0$. Choose $C = \gamma_i \gamma_i'$ $(i = 1, \dots, n, i \text{ fixed})$ so that

$$0 \le \operatorname{tr}\{CD\} = \operatorname{tr}\{\gamma_i \gamma_i'(\sum_j \lambda_j \gamma_j \gamma_j')\}$$
$$= \lambda_i \qquad (i = 1, \dots, n)$$

and $D = \Gamma \Lambda \Gamma' \geq 0$.

Theorem A.44 Let $A: n \times n$ be symmetric with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Then

$$\sup_{x} \frac{x'Ax}{x'x} = \lambda_1, \quad \inf_{x} \frac{x'Ax}{x'x} = \lambda_n.$$

Proof: See Rao (1973, p. 62).

Theorem A.45 Let $A: n \times r = (A_1, A_2)$, with A_1 of order $n \times r_1$, A_2 of order $n \times r_2$, and $\operatorname{rank}(A) = r = r_1 + r_2$. Define the orthogonal projectors $M_1 = A_1(A_1'A_1)^{-1}A_1'$ and $M = A(A'A)^{-1}A'$. Then

$$M = M_1 + (I - M_1)A_2(A_2'(I - M_1)A_2)^{-1}A_2'(I - M_1).$$

Proof: M_1 and M are symmetric idempotent matrices fulfilling the conditions $M_1A_1 = 0$ and MA = 0. Using Theorem A.19 for partial inversion of A'A, that is,

$$(A'A)^{-1} = \begin{pmatrix} A'_1A_1 & A'_1A_2 \\ A'_2A_1 & A'_2A_2 \end{pmatrix}^{-1}$$

and using the special form of the matrix D defined in A.19, that is,

$$D = A_2'(I - M_1)A_2,$$

straightforward calculation concludes the proof.

Theorem A.46 Let $A: n \times m$ with $\operatorname{rank}(A) = m \leq n$ and $B: m \times m$ be any symmetric matrix. Then

$$ABA' \ge 0$$
 if and only if $B \ge 0$.

Proof:

(a) $B \ge 0 \Rightarrow ABA' \ge 0$ for all A.

368

(b) Let rank $(A) = m \le n$ and assume $ABA' \ge 0$, so that $x'ABA'x \ge 0$ for all $x \in \mathbb{R}^n$.

We have to prove that $y'By \ge 0$ for all $y \in \mathbb{R}^m$. As rank(A) = m, the inverse $(A'A)^{-1}$ exists. Setting $z = A(A'A)^{-1}y$, we have A'z = y and $y'By = z'ABA'z \ge 0$ so that $B \ge 0$.

Definition A.47 Let $A: n \times n$ and $B: n \times n$ be any matrices. Then the roots $\lambda_i = \lambda_i^B(A)$ of the equation

$$|A - \lambda B| = 0$$

are called the eigenvalues of A in the metric of B. For B = I we obtain the usual eigenvalues defined in Definition A.26 (cf. Dhrymes, 1974, p. 581).

Theorem A.48 Let B > 0 and $A \ge 0$. Then $\lambda_i^B(A) \ge 0$.

Proof: B > 0 is equivalent to $B = B^{\frac{1}{2}}B^{\frac{1}{2}}$ with $B^{\frac{1}{2}}$ nonsingular and unique (A.31 (iii)). Then we may write

$$0 = |A - \lambda B| = |B^{\frac{1}{2}}|^2 |B^{-\frac{1}{2}} A B^{-\frac{1}{2}} - \lambda I|$$

and
$$\lambda_i^B(A) = \lambda_i^I(B^{-\frac{1}{2}}AB^{-\frac{1}{2}}) \ge 0$$
, as $B^{-\frac{1}{2}}AB^{-\frac{1}{2}} \ge 0$.

Theorem A.49 (Simultaneous diagonalization) Let B>0 and $A\geq 0$, and denote by $\Lambda=\mathrm{diag}\left(\lambda_i^B(A)\right)$ the diagonal matrix of the eigenvalues of A in the metric of B. Then there exists a nonsingular matrix W such that

$$B = W'W$$
 and $A = W'\Lambda W$.

Proof: From the proof of Theorem A.48 we know that the roots $\lambda_i^B(A)$ are the usual eigenvalues of the matrix $B^{-\frac{1}{2}}AB^{-\frac{1}{2}}$. Let X be the matrix of the corresponding eigenvectors:

$$B^{-\frac{1}{2}}AB^{-\frac{1}{2}}X = X\Lambda.$$

that is,

$$A = B^{\frac{1}{2}} X \Lambda X' B^{\frac{1}{2}} = W' \Lambda W$$

with $W' = B^{\frac{1}{2}}X$ regular and

$$B = W'W = B^{\frac{1}{2}}XX'B^{\frac{1}{2}} = B^{\frac{1}{2}}B^{\frac{1}{2}}$$
.

Theorem A.50 Let A>0 (or $A\geq 0$) and B>0. Then

$$B-A>0$$
 if and only if $\lambda_i^B(A)<1$.

Proof: Using Theorem A.49, we may write

$$B - A = W'(I - \Lambda)W,$$

namely,

$$x'(B-A)x = x'W'(I-\Lambda)Wx$$

$$= y'(I - \Lambda)y$$
$$= \sum_{i} (1 - \lambda_i^B(A))y_i^2$$

with y = Wx, W regular, and hence $y \neq 0$ for $x \neq 0$. Then x'(B - A)x > 0 holds if and only if

$$\lambda_i^B(A) < 1.$$

Theorem A.51 Let A > 0 (or $A \ge 0$) and B > 0. Then

$$A - B > 0$$

if and only if

$$\lambda_i^B(A) \leq 1$$
.

Proof: Similar to Theorem A.50.

Theorem A.52 Let A > 0 and B > 0. Then

$$B - A > 0$$
 if and only if $A^{-1} - B^{-1} > 0$.

Proof: From Theorem A.49 we have

$$B = W'W, \quad A = W'\Lambda W.$$

Since W is regular, we have

$$B^{-1} = W^{-1}W'^{-1}, \quad A^{-1} = W^{-1}\Lambda^{-1}W'^{-1},$$

that is,

$$A^{-1} - B^{-1} = W^{-1}(\Lambda^{-1} - I)W'^{-1} > 0,$$

as $\lambda_i^B(A) < 1$ and, hence, $\Lambda^{-1} - I > 0$.

Theorem A.53 Let B-A>0. Then |B|>|A| and $\operatorname{tr}(B)>\operatorname{tr}(A)$. If $B-A\geq 0$, then $|B|\geq |A|$ and $\operatorname{tr}(B)\geq \operatorname{tr}(A)$.

Proof: From Theorems A.49 and A.16 (iii), (v), we get

$$|B| = |W'W| = |W|^2,$$

$$|A| = |W'\Lambda W| = |W|^2 |\Lambda| = |W|^2 \prod_i \lambda_i^B(A),$$

that is,

$$|A| = |B| \prod \lambda_i^B(A).$$

For B-A>0, we have $\lambda_i^B(A)<1$ (i.e., |A|<|B|). For $B-A\geq 0$, we have $\lambda_i^B(A)\leq 1$ (i.e., $|A|\leq |B|$). B-A>0 implies $\operatorname{tr}(B-A)>0$, and $\operatorname{tr}(B)>\operatorname{tr}(A)$. Analogously, $B-A\geq 0$ implies $\operatorname{tr}(B)\geq \operatorname{tr}(A)$.

Theorem A.54 (Cauchy-Schwarz inequality) Let x,y be real vectors of the same dimension. Then

$$(x'y)^2 \le (x'x)(y'y),$$

with equality if and only if x and y are linearly dependent.

Theorem A.55 Let x, y be real vectors and A > 0. Then we have the following results:

- (i) $(x'Ay)^2 \le (x'Ax)(y'Ay)$.
- (ii) $(x'y)^2 \le (x'Ax)(y'A^{-1}y)$.

Proof:

370

- (a) $A \ge 0$ is equivalent to A = BB with $B = A^{\frac{1}{2}}$ (Theorem A.41 (iii)). Let $Bx = \tilde{x}$ and $By = \tilde{y}$. Then (i) is a consequence of Theorem A.54.
- (b) A > 0 is equivalent to $A = A^{\frac{1}{2}}A^{\frac{1}{2}}$ and $A^{-1} = A^{-\frac{1}{2}}A^{-\frac{1}{2}}$. Let $A^{\frac{1}{2}}x = \tilde{x}$ and $A^{-\frac{1}{2}}y = \tilde{y}$; then (ii) is a consequence of Theorem A.54.

Theorem A.56 Let A > 0 and T be any square matrix. Then

- (i) $\sup_{x \neq 0} \frac{(x'y)^2}{x'Ax} = y'A^{-1}y$.
- (ii) $\sup_{x \neq 0} \frac{(y'Tx)^2}{x'Ax} = y'TA^{-1}T'y$.

Proof: Use Theorem A.55 (ii).

Theorem A.57 Let $I: n \times n$ be the identity matrix and let a be an n-vector. Then

$$I - aa' > 0$$
 if and only if $a'a < 1$.

Proof: The matrix aa' is of rank 1 and $aa' \geq 0$. The spectral decomposition is $aa' = C\Lambda C'$ with $\Lambda = \operatorname{diag}(\lambda, 0, \dots, 0)$ and $\lambda = a'a$. Hence, $I - aa' = C(I - \Lambda)C' \geq 0$ if and only if $\lambda = a'a \leq 1$ (see Theorem A.42).

Theorem A.58 Assume $MM' - NN' \ge 0$. Then there exists a matrix H such that N = MH.

Proof (Milliken and Akdeniz, 1977): Let M (n,r) of $\mathrm{rank}(M)=s$, and let x be any vector $\in \mathcal{R}(I-MM^-)$, implying x'M=0 and x'MM'x=0. As NN' and MM'-NN' (by assumption) are n.n.d., we may conclude that $x'NN'x\geq 0$ and

$$x'(MM' - NN')x = -x'NN'x \ge 0,$$

so that x'NN'x=0 and x'N=0. Hence, $N\subset \mathcal{R}(M)$ or, equivalently, N=MH for some matrix H (r,k).

Theorem A.59 Let A be an $n \times n$ -matrix and assume (-A) > 0. Let a be an n-vector. In case $n \ge 2$, the matrix A + aa' is never $n \cdot n \cdot d$.

Proof (Guilkey and Price, 1981): The matrix aa' is of rank ≤ 1 . In case $n \geq 2$, there exists a nonzero vector w such that w'aa'w = 0, implying w'(A + aa')w = w'Aw < 0.

A.11 Idempotent Matrices

Definition A.60 A square matrix A is called idempotent if it satisfies

$$A^2 = AA = A.$$

An idempotent matrix A is called an orthogonal projector if A = A'. Otherwise, A is called an oblique projector.

Theorem A.61 Let $A: n \times n$ be idempotent with $rank(A) = r \leq n$. Then we have:

- (i) The eigenvalues of A are 1 or θ .
- (ii) tr(A) = rank(A) = r.
- (iii) If A is of full rank n, then $A = I_n$.
- (iv) If A and B are idempotent and if AB = BA, then AB is also idempotent.
- (v) If A is idempotent and P is orthogonal, then PAP' is also idempotent.
- (vi) If A is idempotent, then I A is idempotent and

$$A(I - A) = (I - A)A = 0.$$

Proof:

(a) The characteristic equation

$$Ax = \lambda x$$

multiplied by A gives

$$AAx = Ax = \lambda Ax = \lambda^2 x.$$

Multiplication of both equations by x' then yields

$$x'Ax = \lambda x'x = \lambda^2 x'x,$$

that is,

$$\lambda(\lambda - 1) = 0.$$

(b) From the spectral decomposition

$$A = \Gamma \Lambda \Gamma'$$
,

we obtain

$$\operatorname{rank}(A) = \operatorname{rank}(\Lambda) = \operatorname{tr}(\Lambda) = r,$$

where r is the number of characteristic roots with value 1.

(c) Let $rank(A) = rank(\Lambda) = n$, then $\Lambda = I_n$ and

$$A = \Gamma \Lambda \Gamma' = I_n .$$

(a)–(c) follow from the definition of an idempotent matrix.

A.12 Generalized Inverse

Definition A.62 Let A be an $m \times n$ -matrix. Then a matrix $A^-: n \times m$ is said to be a generalized inverse of A if

$$AA^{-}A = A$$

holds (see Rao (1973), p. 24).

Theorem A.63 A generalized inverse always exists although it is not unique in general.

Proof: Assume rank(A) = r. According to the singular-value decomposition (Theorem A.32), we have

$$\underset{m,n}{A} = \underset{m,rr,rr,n}{U} LV'$$

with $U'U = I_r$ and $V'V = I_r$ and

$$L = \operatorname{diag}(l_1, \dots, l_r), \quad l_i > 0.$$

Then

372

$$A^- = V \left(\begin{array}{cc} L^{-1} & X \\ Y & Z \end{array} \right) U'$$

(X, Y and Z are arbitrary matrices of suitable dimensions) is a g-inverse of A. Using Theorem A.33, namely,

$$A = \left(\begin{array}{cc} X & Y \\ Z & W \end{array}\right)$$

with X nonsingular, we have

$$A^- = \left(\begin{array}{cc} X^{-1} & 0\\ 0 & 0 \end{array}\right)$$

as a special g-inverse.

Definition A.64 (Moore-Penrose inverse) A matrix A^+ satisfying the following conditions is called the Moore-Penrose inverse of A:

- (i) $AA^{+}A = A$,
- (ii) $A^+AA^+ = A^+$,

(iii)
$$(A^+A)' = A^+A$$
,

(iv)
$$(AA^+)' = AA^+$$
.

 A^+ is unique.

Theorem A.65 For any matrix $A: m \times n$ and any g-inverse $A^-: m \times n$, we have

- (i) A^-A and AA^- are idempotent.
- (ii) $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A)$.
- (iii) $rank(A) \leq rank(A^{-})$.

Proof:

(a) Using the definition of g-inverse,

$$(A^{-}A)(A^{-}A) = A^{-}(AA^{-}A) = A^{-}A.$$

(b) According to Theorem A.23 (iv), we get

$$\operatorname{rank}(A) = \operatorname{rank}(AA^{-}A) \le \operatorname{rank}(A^{-}A) \le \operatorname{rank}(A),$$

that is, $\operatorname{rank}(A^-A) = \operatorname{rank}(A)$. Analogously, we see that $\operatorname{rank}(A) = \operatorname{rank}(AA^-)$.

(c) $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}A) \le \operatorname{rank}(AA^{-}) \le \operatorname{rank}(A^{-}).$

Theorem A.66 Let A be an $m \times n$ -matrix. Then

- (i) $A regular \Rightarrow A^+ = A^{-1}$.
- (ii) $(A^+)^+ = A$.
- (iii) $(A^+)' = (A')^+$.
- (iv) $\operatorname{rank}(A) = \operatorname{rank}(A^+) = \operatorname{rank}(A^+A) = \operatorname{rank}(AA^+).$
- (v) A an orthogonal projector $\Rightarrow A^+ = A$.
- (vi) $\operatorname{rank}(A): m \times n = m \Rightarrow A^+ = A'(AA')^{-1} \text{ and } AA^+ = I_m.$
- (vii) $\operatorname{rank}(A): m \times n = n \Rightarrow A^+ = (A'A)^{-1}A'$ and $A^+A = I_n$.
- (viii) If $P: m \times m$ and $Q: n \times n$ are orthogonal \Rightarrow $(PAQ)^+ = Q^{-1}A^+P^{-1}$.
 - (ix) $(A'A)^+ = A^+(A')^+$ and $(AA')^+ = (A')^+A^+$.
 - (x) $A^+ = (A'A)^+A' = A'(AA')^+$.

For further details see Rao and Mitra (1971).

374

Theorem A.67 (Baksalary, Kala, and Klaczynski (1983)) Let $M: n \times n \geq 0$ and $N: m \times n$ be any matrices. Then

$$M - N'(NM^+N')^+N \ge 0$$

if and only if

$$\mathcal{R}(N'NM) \subset \mathcal{R}(M)$$
.

Theorem A.68 Let A be any square $n \times n$ -matrix and a be an n-vector with $a \notin \mathcal{R}(A)$. Then a g-inverse of A + aa' is given by

$$\begin{split} (A + aa')^- &= A^- - \frac{A^- aa' U' U}{a' U' U a} \\ &- \frac{V V' aa' A^-}{a' V V' a} + \phi \frac{V V' aa' U' U}{(a' U' U a)(a' V V' a)}, \end{split}$$

with A^- any g-inverse of A and

$$\phi = 1 + a'A^{-}a$$
, $U = I - AA^{-}$, $V = I - A^{-}A$.

Proof: Straightforward by checking $AA^{-}A = A$.

Theorem A.69 Let A be a square $n \times n$ -matrix. Then we have the following results:

- (i) Assume a, b are vectors with $a, b \in \mathcal{R}(A)$, and let A be symmetric. Then the bilinear form $a'A^-b$ is invariant to the choice of A^- .
- (ii) $A(A'A)^-A'$ is invariant to the choice of $(A'A)^-$.

Proof:

(a) $a, b \in \mathcal{R}(A) \Rightarrow a = Ac$ and b = Ad. Using the symmetry of A gives

$$a'A^-b = c'A'A^-Ad$$
$$= c'Ad.$$

(b) Using the rowwise representation of A as $A=\left(\begin{array}{c}a_1'\\ \vdots\\ a_n'\end{array}\right)$ gives

$$A(A'A)^-A' = (a_i'(A'A)^-a_j).$$

Since A'A is symmetric, we may conclude then (i) that all bilinear forms $a'_i(A'A)a_j$ are invariant to the choice of $(A'A)^-$, and hence (ii) is proved.

Theorem A.70 Let $A: n \times n$ be symmetric, $a \in \mathcal{R}(A), b \in \mathcal{R}(A),$ and assume $1 + b'A^+a \neq 0$. Then

$$(A+ab')^{+} = A^{+} - \frac{A^{+}ab'A^{+}}{1+b'A^{+}a}.$$

Proof: Straightforward, using Theorems A.68 and A.69.

Theorem A.71 Let $A: n \times n$ be symmetric, a be an n-vector, and $\alpha > 0$ be any scalar. Then the following statements are equivalent:

- (i) $\alpha A aa' \ge 0$.
- (ii) $A \ge 0$, $a \in \mathcal{R}(A)$, and $a'A^-a \le \alpha$, with A^- being any g-inverse of A.

Proof:

(i) \Rightarrow (ii): $\alpha A - aa' \ge 0 \Rightarrow \alpha A = (\alpha A - aa') + aa' \ge 0 \Rightarrow A \ge 0$. Using Theorem A.31 for $\alpha A - aa' \ge 0$, we have $\alpha A - aa' = BB$, and, hence,

$$\alpha A = BB + aa' = (B, a)(B, a)'.$$

$$\Rightarrow \qquad \mathcal{R}(\alpha A) = \mathcal{R}(A) = \mathcal{R}(B, a)$$

$$\Rightarrow \qquad a \in \mathcal{R}(A)$$

$$\Rightarrow \qquad a = Ac \quad \text{with} \quad c \in \mathbb{R}^n$$

$$\Rightarrow \qquad a'A^-a = c'Ac.$$

As $\alpha A - aa' \ge 0 \implies$

$$x'(\alpha A - aa')x \ge 0$$

for any vector x, choosing x = c, we have

$$\alpha c' A c - c' a a' c = \alpha c' A c - (c' A c)^2 \ge 0,$$

 $\Rightarrow c' A c \le \alpha.$

(ii) \Rightarrow (i): Let $x \in \mathbb{R}^n$ be any vector. Then, using Theorem A.54,

$$x'(\alpha A - aa')x = \alpha x'Ax - (x'a)^{2}$$
$$= \alpha x'Ax - (x'Ac)^{2}$$
$$\geq \alpha x'Ax - (x'Ax)(c'Ac)$$

$$\Rightarrow x'(\alpha A - aa')x \ge (x'Ax)(\alpha - c'Ac).$$

In (ii) we have assumed $A \geq 0$ and $c'Ac = a'A^-a \leq \alpha$. Hence, $\alpha A - aa' \geq 0$.

Note: This theorem is due to Baksalary and Kala (1983). The version given here and the proof are formulated by G. Trenkler.

Theorem A.72 For any matrix A we have

$$A'A = 0$$
 if and only if $A = 0$.

Proof:

(a)
$$A = 0 \Rightarrow A'A = 0$$
.

376

(b) Let A'A=0, and let $A=(a_{(1)},\cdots,a_{(n)})$ be the columnwise presentation. Then

$$A'A = (a'_{(i)}a_{(j)}) = 0,$$

so that all the elements on the diagonal are zero: $a'_{(i)}a_{(i)}=0 \Rightarrow a_{(i)}=0$ and A=0.

Theorem A.73 Let $X \neq 0$ be an $m \times n$ -matrix and A an $n \times n$ -matrix. Then

$$X'XAX'X = X'X \Rightarrow XAX'X = X \text{ and } X'XAX' = X'.$$

Proof: As $X \neq 0$ and $X'X \neq 0$, we have

$$X'XAX'X - X'X = (X'XA - I)X'X = 0$$

$$\Rightarrow (X'XA - I) = 0$$

$$\Rightarrow 0 = (X'XA - I)(X'XAX'X - X'X)$$
$$= (X'XAX' - X')(XAX'X - X) = Y'Y,$$

so that (by Theorem A.72) Y = 0, and, hence XAX'X = X.

Corollary: Let $X \neq 0$ be an $m \times n$ -matrix and A and b $n \times n$ -matrices. Then

$$AX'X = BX'X \quad \Leftrightarrow \quad AX' = BX'.$$

Theorem A.74 (Albert's theorem)

Let
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 be symmetric. Then

- (i) $A \ge 0$ if and only if
 - (a) $A_{22} \ge 0$,
 - (b) $A_{21} = A_{22}A_{22}^-A_{21}$,
 - (c) $A_{11} \ge A_{12}A_{22}^-A_{21}$,
 - ((b) and (c) are invariant of the choice of A_{22}^-).
- (ii) A > 0 if and only if
 - (a) $A_{22} > 0$,
 - (b) $A_{11} > A_{12}A_{22}^{-1}A_{21}$.

Proof (Bekker and Neudecker, 1989):

- (i) Assume $A \geq 0$.
 - (a) $A \ge 0 \Rightarrow x'Ax \ge 0$ for any x. Choosing $x' = (0', x_2')$ $\Rightarrow x'Ax = x_2'A_{22}x_2 \ge 0$ for any $x_2 \Rightarrow A_{22} \ge 0$.
 - (b) Let $B' = (0, I A_{22}A_{22}^{-}) \Rightarrow$

$$B'A = ((I - A_{22}A_{22}^{-})A_{21}, A_{22} - A_{22}A_{22}^{-}A_{22})$$

= $((I - A_{22}A_{22}^{-})A_{21}, 0)$

and $B'AB = B'A^{\frac{1}{2}}A^{\frac{1}{2}}B = 0$. Hence, by Theorem A.72 we get $B'A^{\frac{1}{2}} = 0$.

$$\Rightarrow B'A^{\frac{1}{2}}A^{\frac{1}{2}} = B'A = 0.$$

\Rightarrow (I - A₂₂A₂₂)A₂₁ = 0.

This proves (b).

(c) Let
$$C' = (I, -(A_{22}^- A_{21})')$$
. $A \ge 0 \Rightarrow$

$$0 \le C' A C = A_{11} - A_{12} (A_{22}^-)' A_{21} - A_{12} A_{22}^- A_{21} + A_{12} (A_{22}^-)' A_{22} A_{22}^- A_{21} = A_{11} - A_{12} A_{22}^- A_{21}.$$

(Since A_{22} is symmetric, we have $(A_{22}^-)' = A_{22}$.)

Now assume (a), (b), and (c). Then

$$D = \begin{pmatrix} A_{11} - A_{12}A_{22}^{-}A_{21} & 0\\ 0 & A_{22} \end{pmatrix} \ge 0,$$

as the submatrices are n.n.d. by (a) and (b). Hence,

$$A = \left(\begin{array}{cc} I & A_{12}(A_{22}^-) \\ 0 & I \end{array}\right) D \left(\begin{array}{cc} I & 0 \\ A_{22}^-A_{21} & I \end{array}\right) \geq 0.$$

(ii) Proof as in (i) if A_{22}^- is replaced by A_{22}^{-1} .

Theorem A.75 If $A: n \times n$ and $B: n \times n$ are symmetric, then

- (i) $0 \le B \le A$ if and only if
 - (a) $A \ge 0$,
 - (b) $B = AA^-B$,
 - (c) $B \ge BA^-B$.
- (ii) 0 < B < A if and only if $0 < A^{-1} < B^{-1}$.

Proof: Apply Theorem A.74 to the matrix $\begin{pmatrix} B & B \\ B & A \end{pmatrix}$.

Theorem A.76 Let A be symmetric and $c \in \mathcal{R}(A)$. Then the following statements are equivalent:

- (i) rank(A + cc') = rank(A).
- (ii) $\mathcal{R}(A + cc') = \mathcal{R}(A)$.
- (iii) $1 + c'A^-c \neq 0$.

Corollary 1: Assume (i) or (ii) or (iii) holds; then

$$(A + cc')^{-} = A^{-} - \frac{A^{-}cc'A^{-}}{1 + c'A^{-}c}$$

for any choice of A^- .

378

Corollary 2: Assume (i) or (ii) or (iii) holds; then

$$c'(A+cc')^{-}c = c'A^{-}c - \frac{(c'A^{-}c)^{2}}{1+c'A^{-}c}$$
$$= 1 - \frac{1}{1+c'A^{-}c}.$$

Moreover, as $c \in \mathcal{R}(A+cc')$, the results are invariant for any special choices of the g-inverses involved.

Proof: $c \in \mathcal{R}(A) \Leftrightarrow AA^-c = c \Rightarrow$

$$\mathcal{R}(A+cc')=\mathcal{R}(AA^{-}(A+cc'))\subset\mathcal{R}(A).$$

Hence, (i) and (ii) become equivalent. Proof of (iii): Consider the following product of matrices:

$$\left(\begin{array}{cc} 1 & 0 \\ c & A+cc' \end{array} \right) \left(\begin{array}{cc} 1 & -c \\ 0 & I \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ -A^-c & I \end{array} \right) = \left(\begin{array}{cc} 1+c'A^-c & -c \\ 0 & A \end{array} \right).$$

The left-hand side has the rank

$$1 + \operatorname{rank}(A + cc') = 1 + \operatorname{rank}(A)$$

(see (i) or (ii)). The right-hand side has the rank 1 + rank(A) if and only if $1 + c'A^-c \neq 0$.

Theorem A.77 Let $A: n \times n$ be a symmetric and nonsingular matrix and $c \notin \mathcal{R}(A)$. Then we have

- (i) $c \in \mathcal{R}(A + cc')$.
- (ii) $\mathcal{R}(A) \subset \mathcal{R}(A + cc')$.
- (iii) $c'(A + cc')^-c = 1$.
- (iv) $A(A + cc')^- A = A$.
- (v) $A(A + cc')^-c = 0$.

Proof: As A is assumed to be nonsingular, the equation Al = 0 has a nontrivial solution $l \neq 0$, which may be standardized as $(c'l)^{-1}l$ such that c'l = 1. Then we have $c = (A + cc')l \in \mathcal{R}(A + cc')$, and hence (i) is proved. Relation (ii) holds as $c \notin \mathcal{R}(A)$. Relation (i) is seen to be equivalent to

$$(A + cc')(A + cc')^{-}c = c.$$

Then (iii) follows:

$$c'(A + cc')^-c = l'(A + cc')(A + cc')^-c$$

= $l'c = 1$,

which proves (iii). From

$$c = (A + cc')(A + cc')^{-}c$$

= $A(A + cc')^{-}c + cc'(A + cc')^{-}c$
= $A(A + cc')^{-}c + c$,

we have (v).

(iv) is a consequence of the general definition of a g-inverse and of (iii) and (iv):

$$A + cc' = (A + cc')(A + cc')^{-}(A + cc')$$

$$= A(A + cc')^{-}A$$

$$+ cc'(A + cc')^{-}cc' \quad [= cc' \text{ using (iii)}]$$

$$+ A(A + cc')^{-}cc' \quad [= 0 \text{ using (v)}]$$

$$+ cc'(A + cc')^{-}A \quad [= 0 \text{ using (v)}].$$

Theorem A.78 We have $A \ge 0$ if and only if

- (i) $A + cc' \ge 0$.
- (ii) $(A + cc')(A + cc')^-c = c$.
- (iii) $c'(A + cc')^{-}c \le 1$.

Assume $A \geq 0$; then

- (a) $c = 0 \Leftrightarrow c'(A + cc')^{-}c = 0$.
- (b) $c \in \mathcal{R}(A) \Leftrightarrow c'(A + cc')^- c < 1$.
- (c) $c \notin \mathcal{R}(A) \Leftrightarrow c'(A + cc')^- c = 1$.

Proof: $A \geq 0$ is equivalent to

$$0 \le cc' \le A + cc'$$
.

Straightforward application of Theorem A.75 gives (i)–(iii).

Proof of (a): $A \ge 0 \Rightarrow A + cc' \ge 0$. Assume

$$c'(A+cc')^-c=0\,,$$

and replace c by (ii) \Rightarrow

$$c'(A + cc')^{-}(A + cc')(A + cc')^{-}c = 0 \Rightarrow$$

 $(A + cc')(A + cc')^{-}c = 0$

as $(A + cc') \ge 0$. Assuming $c = 0 \Rightarrow c'(A + cc')c = 0$.

Proof of (b): Assume $A \geq 0$ and $c \in \mathcal{R}(A)$, and use Theorem A.76 (Corollary 2) \Rightarrow

$$c'(A+cc')^-c = 1 - \frac{1}{1+c'A^-c} < 1.$$

The opposite direction of (b) is a consequence of (c).

Proof of (c): Assume $A \ge 0$ and $c \notin \mathcal{R}(A)$, and use Theorem A.77 (iii) \Rightarrow

$$c'(A + cc')^-c = 1.$$

The opposite direction of (c) is a consequence of (b).

Note: The proofs of Theorems A.74–A.78 are given in Bekker and Neudecker (1989).

Theorem A.79 The linear equation Ax = a has a solution if and only if

$$a \in \mathcal{R}(A)$$
 or $AA^{-}a = a$

for any g-inverse A.

380

If this condition holds, then all solutions are given by

$$x = A^{-}a + (I - A^{-}A)w$$
,

where w is an arbitrary m-vector. Further, q'x has a unique value for all solutions of Ax = a if and only if $q'A^-A = q'$, or $q \in \mathcal{R}(A')$.

For a proof, see Rao (1973, p. 25).

A.13 Projectors

Consider the range space $\mathcal{R}(A)$ of the matrix $A: m \times n$ with rank r. Then there exists $\mathcal{R}(A)^{\perp}$, which is the orthogonal complement of $\mathcal{R}(A)$ with dimension m-r. Any vector $x \in \mathbb{R}^m$ has the unique decomposition

$$x = x_1 + x_2$$
, $x_1 \in \mathcal{R}(A)$, and $x_2 \in \mathcal{R}(A)^{\perp}$,

of which the component x_1 is called the orthogonal projection of x on $\mathcal{R}(A)$. The component x_1 can be computed as Px, where

$$P = A(A'A)^{-}A',$$

which is called the projection operator on $\mathcal{R}(A)$. Note that P is unique for any choice of the g-inverse $(A'A)^-$.

Theorem A.80 For any $P: n \times n$, the following statements are equivalent:

- (i) P is an orthogonal projection operator.
- (ii) P is symmetric and idempotent.

For proofs and other details, the reader is referred to Rao (1973) and Rao and Mitra (1971).

Theorem A.81 Let X be a matrix of order $T \times K$ with rank r < K, and $U: (K-r) \times K$ be such that $\mathcal{R}(X') \cap \mathcal{R}(U') = \{0\}$. Then

(i)
$$X(X'X + U'U)^{-1}U' = 0$$
.

- (ii) $X'X(X'X+U'U)^{-1}X'X=X'X$; that is, $(X'X+U'U)^{-1}$ is a ginverse of X'X.
- (iii) $U'U(X'X+U'U)^{-1}U'U=U'U$; that is, $(X'X+U'U)^{-1}$ is also a g-inverse of U'U.
- (iv) $U(X'X + U'U)^{-1}U'u = u$ if $u \in \mathcal{R}(U)$.

Proof: Since X'X + U'U is of full rank, there exists a matrix A such that

$$(X'X + U'U)A = U'$$

 $\Rightarrow X'XA = U' - U'UA \Rightarrow XA = 0 \text{ and } U' = U'UA$

since $\mathcal{R}(X')$ and $\mathcal{R}(U')$ are disjoint.

Proof of (i):

$$X(X'X + U'U)^{-1}U' = X(X'X + U'U)^{-1}(X'X + U'U)A = XA = 0.$$

Proof of (ii):

$$X'X(X'X + U'U)^{-1}(X'X + U'U - U'U)$$
= $X'X - X'X(X'X + U'U)^{-1}U'U = X'X$.

Result (iii) follows on the same lines as result (ii).

Proof of (iv):

$$U(X'X+U'U)^{-1}U'u=U(X'X+U'U)^{-1}U'Ua=Ua=u$$
 since $u\in\mathcal{R}(U)$.

A.14 Functions of Normally Distributed Variables

Let $x' = (x_1, \dots, x_p)$ be a *p*-dimensional random vector. Then x is said to have a *p*-dimensional normal distribution with expectation vector μ and covariance matrix $\Sigma > 0$ if the joint density is

$$f(x; \mu, \Sigma) = \{(2\pi)^p |\Sigma|\}^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right\}.$$

In such a case we write $x \sim N_p(\mu, \Sigma)$.

Theorem A.82 Assume $x \sim N_p(\mu, \Sigma)$, and $A: p \times p$ and $b: p \times 1$ nonstochastic. Then

$$y = Ax + b \sim N_q(A\mu + b, A\Sigma A')$$
 with $q = \operatorname{rank}(A)$.

Theorem A.83 If $x \sim N_p(0, I)$, then

$$x'x \sim \chi_p^2$$

(central χ^2 -distribution with p degrees of freedom).

Theorem A.84 If $x \sim N_p(\mu, I)$, then

$$x'x \sim \chi_p^2(\lambda)$$

has a noncentral χ^2 -distribution with noncentrality parameter

$$\lambda = \mu' \mu = \sum_{i=1}^p \mu_i^2.$$

Theorem A.85 If $x \sim N_p(\mu, \Sigma)$, then

- (i) $x'\Sigma^{-1}x \sim \chi_p^2(\mu'\Sigma^{-1}\mu)$.
- (ii) $(x \mu)' \Sigma^{-1} (x \mu) \sim \chi_n^2$.

Proof: $\Sigma > 0 \Rightarrow \Sigma = \Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}$ with $\Sigma^{\frac{1}{2}}$ regular and symmetric. Hence, $\Sigma^{-\frac{1}{2}}x = y \sim N_p(\Sigma^{-\frac{1}{2}}\mu, I) \Rightarrow$

$$x'\Sigma^{-1}x = y'y \sim \chi_p^2(\mu'\Sigma^{-1}\mu)$$

and

382

$$(x-\mu)'\Sigma^{-1}(x-\mu) = (y-\Sigma^{-\frac{1}{2}}\mu)'(y-\Sigma^{-\frac{1}{2}}\mu) \sim \chi_p^2$$

Theorem A.86 If $Q_1 \sim \chi_m^2(\lambda)$ and $Q_2 \sim \chi_n^2$, and Q_1 and Q_2 are independent, then

(i) The ratio

$$F = \frac{Q_1/m}{Q_2/n}$$

has a noncentral $F_{m,n}(\lambda)$ -distribution.

- (ii) If $\lambda = 0$, then $F \sim F_{m,n}$ (the central F-distribution).
- (iii) If m = 1, then \sqrt{F} has a noncentral $t_n(\sqrt{\lambda})$ -distribution or a central t_n -distribution if $\lambda = 0$.

Theorem A.87 If $x \sim N_p(\mu, I)$ and $A: p \times p$ is a symmetric, idempotent matrix with $\operatorname{rank}(A) = r$, then

$$x'Ax \sim \chi_r^2(\mu'A\mu).$$

Proof: We have $A=P\Lambda P'$ (Theorem A.30) and without loss of generality (Theorem A.61 (i)) we may write $\Lambda=\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, that is, $P'AP=\Lambda$ with P orthogonal. Let $P=\begin{pmatrix} P_1 & P_2 \\ p,r & p,(p-r) \end{pmatrix}$ and

$$P'x = y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} P'_1x \\ P'_2x \end{pmatrix}.$$

Therefore

$$\begin{array}{cccc} y & \sim & N_p(P'\mu,I_p) & (\text{Theorem A.82}) \\ y_1 & \sim & N_r(P'_1\mu,I_r) \\ \text{and } y'_1y_1 & \sim & \chi^2_r(\mu'P_1P'_1\mu) & (\text{Theorem A.84}). \end{array}$$

As P is orthogonal, we have

$$\begin{array}{rcl} A & = & (PP')A(PP') = P(P'AP)P \\ \\ & = & (P_1 \ P_2) \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} P_1' \\ P_2' \end{array} \right) = P_1 P_1' \, , \end{array}$$

and therefore

$$x'Ax = x'P_1P_1'x = y_1'y_1 \sim \chi_r^2(\mu'A\mu).$$

Theorem A.88 Let $x \sim N_p(\mu, I)$, $A: p \times p$ be idempotent of rank r, and $B: n \times p$ be any matrix. Then the linear form Bx is independent of the quadratic form x'Ax if and only if BA = 0.

Proof: Let P be the matrix as in Theorem A.87. Then BPP'AP = BAP = 0, as BA = 0 was assumed. Let $BP = D = (D_1, D_2) = (BP_1, BP_2)$, then

$$BPP'AP = (D_1, D_2) \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = (D_1, 0) = (0, 0),$$

so that $D_1 = 0$. This gives

$$Bx = BPP'x = Dy = (0, D_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = D_2y_2,$$

where $y_2 = P_2'x$. Since P is orthogonal and hence regular, we may conclude that all the components of y = P'x are independent $\Rightarrow Bx = D_2y_2$ and $x'Ax = y_1'y_1$ are independent.

Theorem A.89 Let $x \sim N_p(0, I)$ and A and B be idempotent $p \times p$ -matrices with $\operatorname{rank}(A) = r$ and $\operatorname{rank}(B) = s$. Then the quadratic forms x'Ax and x'Bx are independently distributed if and only if BA = 0.

Proof: If we use P from Theorem A.87 and set C = P'BP (C symmetric), we get with the assumption BA = 0,

$$CP'AP = P'BPP'AP$$

= $P'BAP = 0$.

Using

$$\begin{array}{lll} C & = & \left(\begin{array}{c} P_1 \\ P_2 \end{array} \right) B(P_1' \, P_2') \\ \\ & = & \left(\begin{array}{cc} C_1 & C_2 \\ C_2' & C_3 \end{array} \right) = \left(\begin{array}{cc} P_1 B P_1' & P_1 B P_2' \\ P_2 B P_1' & P_2 B P_2' \end{array} \right) \, , \end{array}$$

this relation may be written as

$$CP'AP = \left(\begin{array}{cc} C_1 & C_2 \\ C_2' & C_3 \end{array} \right) \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} C_1 & 0 \\ C_2' & 0 \end{array} \right) = 0.$$

Therefore, $C_1 = 0$ and $C_2 = 0$,

$$x'Bx = x'(PP')B(PP')x$$

$$= x'P(P'BP)P'x$$

$$= x'PCP'x$$

$$= (y'_1, y'_2) \begin{pmatrix} 0 & 0 \\ 0 & C_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = y'_2C_3y_2.$$

As shown in Theorem A.87, we have $x'Ax = y'_1y_1$, and therefore the quadratic forms x'Ax and x'Bx are independent.

A.15 Differentiation of Scalar Functions of Matrices

Definition A.90 If f(X) is a real function of an $m \times n$ -matrix $X = (x_{ij})$, then the partial differential of f with respect to X is defined as the $m \times n$ -matrix of partial differentials $\partial f/\partial x_{ij}$:

$$\frac{\partial f(X)}{\partial X} = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{pmatrix}.$$

Theorem A.91 Let x be an n-vector and A be a symmetric $n \times n$ -matrix. Then

$$\frac{\partial}{\partial x}x'Ax = 2Ax.$$

Proof:

$$x'Ax = \sum_{\substack{r,s=1 \ \partial x}}^{n} a_{rs}x_{r}x_{s},$$

$$\frac{\partial f}{\partial x_{i}}x'Ax = \sum_{\substack{s=1 \ (s\neq i)}}^{n} a_{is}x_{s} + \sum_{\substack{r=1 \ (r\neq i)}}^{n} a_{ri}x_{r} + 2a_{ii}x_{i}$$

$$= 2\sum_{s=1}^{n} a_{is}x_{s} \quad (\text{as } a_{ij} = a_{ji})$$

$$= 2a'_{i}x \quad (a'_{i}: \text{ ith row vector of } A).$$

According to Definition A.90, we get

$$\frac{\partial x'Ax}{\partial x} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} (x'Ax) = 2 \begin{pmatrix} a'_1 \\ \vdots \\ a'_n \end{pmatrix} x = 2Ax.$$

Theorem A.92 If x is an n-vector, y is an m-vector, and C an $n \times m$ -matrix, then

$$\frac{\partial}{\partial C}x'Cy = xy'.$$

Proof:

$$x'Cy = \sum_{r=1}^{m} \sum_{s=1}^{n} x_s c_{sr} y_r,$$

$$\frac{\partial}{\partial c_{k\lambda}} x'Cy = x_k y_{\lambda} \quad \text{(the } (k, \lambda) \text{th element of } xy'),$$

$$\frac{\partial}{\partial C} x'Cy = (x_k y_{\lambda}) = xy'.$$

Theorem A.93 Let x be a K-vector, A a symmetric $T \times T$ -matrix, and C a $T \times K$ -matrix. Then

$$\frac{\partial x'C'}{\partial C}x'C'ACx = 2ACxx'.$$

Proof: We have

$$\begin{split} x'C' &= \left(\sum_{i=1}^K x_i c_{1i}, \cdots, \sum_{i=1}^K x_i c_{Ti}\right), \\ \frac{\partial}{\partial c_{k\lambda}} &= (0, \cdots, 0, x_\lambda, 0, \cdots, 0) \quad (x_\lambda \text{ is an element of the kth column)}. \end{split}$$

Using the product rule yields

$$\frac{\partial}{\partial c_{k\lambda}}x'C'ACx = \left(\frac{\partial}{\partial c_{k\lambda}}x'C'\right)ACx + x'C'A\left(\frac{\partial}{\partial c_{k\lambda}}Cx\right).$$

Since

$$x'C'A = \left(\sum_{t=1}^{T} \sum_{i=1}^{K} x_i c_{ti} a_{t1}, \dots, \sum_{t=1}^{T} \sum_{i=1}^{K} x_i c_{ti} a_{Tt}\right),$$

we get

$$x'C'A\left(\frac{\partial}{\partial c_{k\lambda}}Cx\right) = \sum_{t,i} x_i x_{\lambda} c_{ti} a_{kt}$$
$$= \sum_{t,i} x_i x_{\lambda} c_{ti} a_{tk} \qquad \text{(as } A \text{ is symmetric)}$$

$$= \left(\frac{\partial}{\partial c_{k\lambda}} x'C'\right) ACx.$$

But $\sum_{t,i} x_i x_{\lambda} c_{ti} a_{tk}$ is just the (k,λ) -th element of the matrix ACxx'.

Theorem A.94 Assume A = A(x) to be an $n \times n$ -matrix, where its elements $a_{ij}(x)$ are real functions of a scalar x. Let B be an $n \times n$ -matrix, such that its elements are independent of x. Then

$$\frac{\partial}{\partial x}\operatorname{tr}(AB) = \operatorname{tr}\left(\frac{\partial A}{\partial x}B\right).$$

Proof:

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji},$$

$$\frac{\partial}{\partial x} \operatorname{tr}(AB) = \sum_{i} \sum_{j} \frac{\partial a_{ij}}{\partial x} b_{ji}$$

$$= \operatorname{tr}\left(\frac{\partial A}{\partial x}B\right),$$

where $\partial A/\partial x = (\partial a_{ij}/\partial x)$.

Theorem A.95 For the differentials of the trace we have the following rules:

	y	$\partial y/\partial X$
(i)	$\operatorname{tr}(AX)$	A'
(ii)	$\operatorname{tr}(X'AX)$	(A+A')X
(iii)	$\operatorname{tr}(XAX)$	X'A + A'X'
(iv)	$\operatorname{tr}(XAX')$	X(A+A')
(v)	$\operatorname{tr}(X'AX')$	AX' + X'A
(vi)	$\operatorname{tr}(X'AXB)$	AXB + A'XB'

Differentiation of Inverse Matrices

Theorem A.96 Let T=T(x) be a regular matrix, such that its elements depend on a scalar x. Then

$$\frac{\partial T^{-1}}{\partial x} = -T^{-1} \frac{\partial T}{\partial x} T^{-1}.$$

Proof: We have $T^{-1}T = I$, $\partial I/\partial x = 0$, and

$$\frac{\partial (T^{-1}T)}{\partial x} = \frac{\partial T^{-1}}{\partial x}T + T^{-1}\frac{\partial T}{\partial x} = 0.$$

Theorem A.97 For nonsingular X, we have

$$\frac{\partial \operatorname{tr}(AX^{-1})}{\partial X} = -(X^{-1}AX^{-1})',$$

$$\frac{\partial \operatorname{tr}(X^{-1}AX^{-1}B)}{\partial X} \ = \ -(X^{-1}AX^{-1}BX^{-1} + X^{-1}BX^{-1}AX^{-1})' \, .$$

Proof: Use Theorems A95 and A96 and the product rule.

Differentiation of a Determinant

Theorem A.98 For a nonsingular matrix Z, we have

- (i) $\frac{\partial}{\partial Z}|Z| = |Z|(Z')^{-1}$.
- (ii) $\frac{\partial}{\partial Z}log|Z| = (Z')^{-1}$.

A.16 Miscellaneous Results, Stochastic Convergence

Theorem A.99 (Kronecker product) Let $A: m \times n = (a_{ij})$ and $B: p \times q = (b_{rs})$ be any matrices. Then the Kronecker product of A and B is defined as

$$C_{mp,nq} = A_{m,n} \otimes B_{p,q} = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & & \ddots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix},$$

and the following rules hold:

- (i) $c(A \otimes B) = (cA) \otimes B = A \otimes (cB)$ (c a scalar),
- (ii) $A \otimes (B \otimes C) = (A \otimes B) \otimes C$,
- (iii) $A \otimes (B+C) = (A \otimes B) + (A \otimes C),$
- (iv) $(A \otimes B)' = A' \otimes B'$.

Theorem A.100 (Chebyschev's inequality) For any n-dimensional random vector X and a given scalar $\epsilon > 0$, we have

$$P\{|X| \ge \epsilon\} \le \frac{\mathrm{E}\left|X\right|^2}{\epsilon^2} \,.$$

Proof: Let F(x) be the joint distribution function of $X=(x_1,\ldots,x_n)$. Then

$$\begin{aligned} \mathbf{E} |x|^2 &= \int |x|^2 dF(x) \\ &= \int_{\{x:|x| \ge \epsilon\}} |x|^2 dF(x) + \int_{\{x:|x| < \epsilon\}} |x|^2 dF(x) \\ &\ge \epsilon^2 \int_{\{x:|x| \ge \epsilon\}} dF(x) = \epsilon^2 P\{|x| \ge \epsilon\} \,. \end{aligned}$$

Definition A.101 Let $\{x(t)\}$, $t = 1, 2, \ldots$ be a multivariate stochastic process.

(i) Weak convergence: If

388

$$\lim_{t \to \infty} P\{|x(t) - \tilde{x}| \ge \delta\} = 0,$$

where $\delta > 0$ is any given scalar and \tilde{x} is a finite vector, then \tilde{x} is called the probability limit of $\{x(t)\}$, and we write

$$p \lim x = \tilde{x}$$
.

(ii) Strong convergence: Assume that $\{x(t)\}$ is defined on a probability space (Ω, Σ, P) . Then $\{x(t)\}$ is said to be strongly convergent to \tilde{x} , that is,

$$\{x(t)\} \rightarrow \tilde{x}$$
 almost surely (a.s.)

if there exists a set $T \in \Sigma$, P(T) = 0, and $x_{\omega}(t) \to \tilde{x}_{\omega}$, as $T \to \infty$, for each $\omega \in \Omega - T$

Theorem A.102 (Slutsky's theorem) Using Definition A.101, we have

- (i) if $p \lim x = \tilde{x}$, then $\lim_{t \to \infty} \mathbb{E}\{x(t)\} = \bar{\mathbb{E}}(x) = \tilde{x}$,
- (ii) if c is a vector of constants, then $p \lim c = c$,
- (iii) (Slutsky's theorem) if $p \lim x = \tilde{x}$ and y = f(x) is any continuous vector function of x, then $p \lim y = f(\tilde{x})$,
- (iv) if A and B are random matrices, then the following limits exist:

$$p \lim(AB) = (p \lim A)(p \lim B)$$

and

$$p \lim(A^{-1}) = (p \lim A)^{-1}$$

(v) if $p \lim_{t \to \infty} \left[\sqrt{T}(x(t) - Ex(t)) \right]' \left[\sqrt{T}(x(t) - Ex(t)) \right] = V$, then the asymptotic covariance matrix is

$$\bar{\mathbf{V}}(x,x) = \bar{\mathbf{E}} \left[x - \bar{\mathbf{E}}(x) \right]' \left[x - \bar{\mathbf{E}}(x) \right] = T^{-1}V.$$

Definition A.103 If $\{x(t)\}, t = 1, 2, ...$ is a multivariate stochastic process satisfying

$$\lim_{t \to \infty} \mathbf{E} |x(t) - \tilde{x}|^2 = 0,$$

then $\{x(t)\}\$ is called convergent in the quadratic mean, and we write

l.i.m.
$$x = \tilde{x}$$
.

Theorem A.104 If l.i.m. $x = \tilde{x}$, then $p \lim x = \tilde{x}$.

Proof: Using Theorem A.100 we get

$$0 \le \lim_{t \to \infty} P(|x(t) - \tilde{x}| \ge \epsilon) \le \lim_{t \to \infty} \frac{E |x(t) - \tilde{x}|^2}{\epsilon^2} = 0.$$

Theorem A.105 If l.i.m. $(x(t) - \operatorname{E} x(t)) = 0$ and $\lim_{t \to \infty} \operatorname{E} x(t) = c$, then $p \lim x(t) = c$.

Proof:

$$\lim_{t \to \infty} P(|x(t) - c| \ge \epsilon)$$

$$\leq \epsilon^{-2} \lim_{t \to \infty} \mathbf{E} |x(t) - c|^{2}$$

$$= \epsilon^{-2} \lim_{t \to \infty} \mathbf{E} |x(t) - \mathbf{E} x(t) + \mathbf{E} x(t) - c|^{2}$$

$$= \epsilon^{-2} \lim_{t \to \infty} \mathbf{E} |x(t) - \mathbf{E} x(t)|^{2} + \epsilon^{-2} \lim_{t \to \infty} |\mathbf{E} x(t) - c|^{2}$$

$$+ 2\epsilon^{-2} \lim_{t \to \infty} \left\{ \left(\mathbf{E} x(t) - c \right)'(x(t) - \mathbf{E} x(t)) \right\}$$

$$= 0.$$

Theorem A.106 l.i.m. x = c if and only if

l.i.m.
$$(x(t) - \operatorname{E} x(t)) = 0$$
 and $\lim_{t \to \infty} \operatorname{E} x(t) = c$.

Proof: As in Theorem A.105, we may write

$$\lim_{t \to \infty} \mathbf{E} \left| x(t) - c \right|^2 = \lim_{t \to \infty} \mathbf{E} \left| x(t) - \mathbf{E} x(t) \right|^2 + \lim_{t \to \infty} \left| \mathbf{E} x(t) - c \right|^2 + 2 \lim_{t \to \infty} \mathbf{E} \left(\mathbf{E} x(t) - c \right)' \left(x(t) - \mathbf{E} x(t) \right) = 0.$$

Theorem A.107 Let x(t) be an estimator of a parameter vector θ . Then we have the result

$$\lim_{t \to \infty} \mathbf{E} x(t) = \theta \quad \text{if l.i.m.} (x(t) - \theta) = 0.$$

That is, x(t) is an asymptotically unbiased estimator for θ if x(t) converges to θ in the quadratic mean.

Proof: Use Theorem A.106.

Theorem A.108 Let $V: p \times p$ and n.n.d. and $X: p \times m$ matrices. Then one choice of the g-inverse of

$$\begin{pmatrix} V & X \\ X' & 0 \end{pmatrix}$$

is

$$\left(\begin{array}{cc} C_1 & C_2 \\ C_2' & -C_4 \end{array}\right)$$

where, with
$$T = V + XX'$$
,
$$C_1 = T - T^-X(X'T^-X)^-X'T^-$$

$$C_2' = (X'T^-X)^-X'T^-$$

$$-C_4 = (X'T^-X)^-(X'T^-X - I)$$

For details, see Rao (1989).