

Decision Tree Basics

Dr. Goutam Chakraborty

Predict new cases.

Select useful inputs.

Optimize complexity.

Prediction rules

Split search

Predict new cases.

Select useful inputs.

Optimize complexity.

Prediction rules

Split search

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Prediction rules

Select useful inputs.

Split search

Optimize complexity.

Select useful inputs.

Optimize complexity.

Prediction rules

Split search

Prediction rules

Select useful inputs.

Split search

Optimize complexity.

Calculate the *logworth* of every partition on input x_1 .

Create a partition rule from the best partition across all inputs.

Repeat the process in each subset.

Create a second partition rule.

Predict new cases.

Prediction rules

Select useful inputs.

Split search

Optimize complexity.

Predict new cases.

Prediction rules

Select useful inputs.

Split search

Optimize complexity.

Predictive Model Sequence

Training Data

inputs target

Validation Data

Create a sequence of models with increasing complexity.

Maximal Tree

Training Data

Validation Data

Model Complexity

Create a sequence of models with increasing complexity.

A maximal tree is the most complex model in the sequence.

Maximal Tree

Training Data

inputs target

Validation Data

A maximal tree is the most complex model in the sequence.

Pruning One Split

Training Data

inputs target

Validation Data

in	puts	target

The next model in the sequence is formed by *pruning* one split from the maximal tree.

Pruning One Split

Training Data

inputs target

Validation Data

in	puts	target

Each subtree's predictive performance is rated on validation data.

Pruning One Split

Training Data

in puts target

Validation Data

The subtree with the highest validation assessment is selected.

Pruning Two Splits

Training Data

inputs target

Validation Data

Similarly, this is done for subsequent models.

Pruning Two Splits

Complexity

Pruning Two Splits

Validation Data Training Data target ...rate each subtree using validation assessment, and...

Complexity

target

Pruning Two Splits

Training Data

inputs target

Validation Data

...select the subtree with the best assessment rating.

Subsequent Pruning

Training Data

inputs target

Validation Data

Continue pruning until all subtrees are considered.

Selecting the Best Tree

Validation Assessment

Assessment

Complexity

Validation Assessment

in	puts	target

Validation Data

What are appropriate validation assessment ratings?

Assessment Statistics

Validation Data

Ratings depend on...

target measurement (binary, continuous, and so on)

prediction type (decisions, rankings, estimates)

Binary Targets

primary outcome secondary outcome

Binary Target Predictions

Decision Optimization

decisions

Decision Optimization: Accuracy

true positive

true negative

Maximize *accuracy*: agreement between outcome and prediction

Decision Optimization: Misclassification

false negative

false positive

Minimize *misclassification*: disagreement between outcome and prediction

Ranking Optimization

decisions

rankings

estimates

Ranking Optimization: Concordance

target=0→low score target=1→high score

Maximize concordance: proper ordering of primary and secondary outcomes

Ranking Optimization: Discordance

target=0→high score target=1→low score

Minimize discordance: improper ordering of primary and secondary outcomes

Estimate Optimization

decisions

rankings

estimates

Estimate Optimization: Squared Error

(target – estimate)²

Minimize squared error: squared difference between target and prediction

Complexity Optimization: Summary

decisions
accuracy / misclassification
rankings
concordance / discordance
estimates
squared error