Examen 2

Juárez Torres Carlos Alberto March 22, 2023

1 Sea V un espacio vectorial sobe un campo K. Sea \mathbb{B} una base para V tal que $|\mathbb{B}| = n$ y sea \mathbb{B}' una para V tal que $|\mathbb{B}'| = m$ pruebe que n = m

Como \mathbb{B} y \mathbb{B}' son bases para V, entonces cada uno de los vectores en V se puede expresar de forma única como una combinación lineal de los vectores en \mathbb{B} y \mathbb{B}' , respectivamente. Es decir, para todo $v \in V$ existe una única tupla de escalares $\alpha_1, \ldots, \alpha_n \in K$ tal que

$$v = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n,$$

donde $\mathbf{v}_1, \dots, \mathbf{v}_n$ es la base \mathbb{B} , y también existe una única tupla de escalares $\beta_1, \dots, \beta_m \in K$ tal que

$$v = \beta_1 \mathbf{u}_1 + \dots + \beta_m \mathbf{u}_m,$$

donde $\mathbf{u}_1, \dots, \mathbf{u}_m$ es la base \mathbb{B}' .

Para demostrar que n=m, podemos utilizar el teorema de la dimensión, que establece que todas las bases de un espacio vectorial tienen la misma cardinalidad, conocida como la dimensión del espacio vectorial.

Supongamos que \mathbb{B} y \mathbb{B}' son dos bases distintas de V. Como \mathbb{B} es una base de V, cualquier vector v en V puede expresarse de manera única como combinación lineal de los vectores en \mathbb{B} :

$$v = \sum_{i=1}^{n} a_i b_i,$$

donde b_1, b_2, \ldots, b_n son los vectores en \mathbb{B} y a_1, a_2, \ldots, a_n son escalares en K.

De manera similar, cualquier vector en V puede expresarse de manera única como combinación lineal de los vectores en \mathbb{B}' :

$$v = \sum_{i=1}^{m} a_i' b_i',$$

donde b'_1, b'_2, \dots, b'_m son los vectores en \mathbb{B}' y a'_1, a'_2, \dots, a'_m son escalares en K.

Ahora, observe que v se puede expresar como una combinación lineal de los vectores en ambas bases \mathbb{B} y \mathbb{B}' . Por lo tanto, podemos igualar las dos expresiones para v y obtener:

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{m} a'_i b'_i.$$

Como b_1, b_2, \ldots, b_n son linealmente independientes, la única manera en que la primera expresión pueda ser igual a la segunda es si n=m y si $a_i=a_i'=0$ para todo i. Esto significa que los vectores en \mathbb{B} y \mathbb{B}' son los mismos, salvo posiblemente por un reordenamiento, y por lo tanto n=m.

2 Sean $\{v_1, v_2, \dots, v_n\}$ y $\{w_1, w_2, \dots w_m\}$ dos bases del K-espacio vectorial V. Demuestre que m=n

Para demostrar que m=n, primero notemos que cualquier vector $v \in V$ se puede escribir de forma única como combinación lineal de los vectores de la base $\{v_1, v_2, ..., v_n\}$, es decir, existen constantes únicas $a_1, a_2, ..., a_n$ tales que:

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

Del mismo modo, cualquier vector $w \in V$ se puede escribir de forma única como combinación lineal de los vectores de la base $\{w_1, w_2, ..., w_m\}$, es decir, existen constantes únicas $b_1, b_2, ..., b_m$ tales que:

$$w = b_1 w_1 + b_2 w_2 + \dots + b_m w_m$$

Ahora, debemos demostrar que m=n. Para ello, supongamos por contradicción que $m \neq n$. Sin pérdida de generalidad, podemos asumir que m > n. Entonces, podemos escribir w_m como una combinación lineal de los vectores de la base $\{v_1, v_2, ..., v_n\}$:

$$w_m = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

donde $c_1, c_2, ..., c_n$ son constantes. Sin embargo, esto significa que podemos escribir cualquier vector $w \in V$ de la siguiente manera:

$$w = b_1 w_1 + b_2 w_2 + \dots + b_{m-1} w_{m-1} + b_m (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)$$

lo cual significa que $\{w_1, w_2, ..., w_{m-1}, c_1v_1, c_2v_2, ..., c_nv_n\}$ es una base de V que consta de m+n-1 vectores. Sin embargo, esto es una contradicción, ya que una base de V debe constar de exactamente n vectores. Por lo tanto, se sigue que m=n.

3 Considérese V el espacio de todas las funciones de una variable t. Demostrar que el conjunto $\{e^t, t\} \subset V$ es un conjunto linealmente independiente.

Para demostrar que e^t , t es linealmente independiente, debemos demostrar que la única solución a la ecuación $c_1e^t+c_2t=0$ para $c_1,c_2\in\mathbb{R}$ es $c_1=c_2=0$.

Supongamos que existe una solución no trivial a la ecuación dada, es decir, $c_1e^t+c_2t=0$ con $c_1\neq 0$ o $c_2\neq 0$. Entonces, podemos despejar t en términos de e^t como $t=-\frac{c_1}{c_2}e^{-t}$. Sustituyendo esto en la ecuación original, obtenemos $c_1e^t-c_2\frac{c_1}{c_2}e^{-t}=0$, lo cual se reduce a $c_1e^{2t}=0$. Como $c_1\neq 0$, esto implica que $e^{2t}=0$, lo cual es una contradicción. Por lo tanto, la única solución a la ecuación dada es $c_1=c_2=0$.

Como la única solución a la ecuación $c_1e^t + c_2t = 0$ es $c_1 = c_2 = 0$, podemos concluir que el conjunto e^t , t es linealmente independiente en V.

4 Sea $V=\mathbb{R}^3$ y U el espacio vectorial generado por el conjunto $\{(1,0,1),(0,1,1)\}$. Dé u subespacio de W de V tal que $V=U\oplus W$.

Un subespacio W de V tal que $V = U \oplus W$ existe si y solo si podemos encontrar un vector $w \in V$ tal que cualquier vector $v \in V$ se puede escribir de manera única como una suma v = u + w donde $u \in U$ y $w \in W$.

Para encontrar tal vector w, podemos encontrar una base para U y extenderla a una base para V. Una base para U está dada por (1,0,1),(0,1,1). Podemos extender esta base a una base para V al agregar otro vector linealmente independiente. Por ejemplo, podemos tomar (1,1,1) como el tercer vector. Entonces, una base para V es (1,0,1),(0,1,1),(1,1,1).

Consideremos ahora el subespacio W generado por el vector (1,1,-1). Para demostrar que $V=U\oplus W$, debemos demostrar que cualquier vector en V puede escribirse de manera única como una suma de un vector en U y un vector en W.

Para demostrar la unicidad, supongamos que $v = u_1 + w_1 = u_2 + w_2$, donde $u_1, u_2 \in U$ y $w_1, w_2 \in W$. Entonces, $u_1 - u_2 = w_2 - w_1$. Como $u_1 - u_2 \in U$ y $w_2 - w_1 \in W$, esto implica que $u_1 - u_2$ y $w_2 - w_1$ son ortogonales. Pero $u_1 - u_2$ y $w_2 - w_1$ también están en el plano generado por los vectores (1,0,1) y (0,1,1), que es un plano de dos dimensiones. Por lo tanto, la única forma en que pueden ser ortogonales es si uno de ellos es cero. Si $u_1 - u_2 = 0$, entonces $u_1 = u_2$ y $w_1 = w_2$, lo que demuestra la unicidad.

Para demostrar la existencia, sea v un vector arbitrario en V. Queremos escribir v como una suma de un vector en U y un vector en W. Primero, podemos encontrar las coordenadas de v con respecto a la base de V: v = a(1,0,1) + b(0,1,1) + c(1,1,1), para algunos escalares a, b y c.

Para encontrar el componente de v en W, debemos encontrar un vector w en W tal que v-w esté en U. Podemos despejar c de la ecuación de v y escribir $c=\frac{1}{3}(v_1+v_2-v_3)$. Entonces, podemos tomar $w=\frac{1}{3}(v_1+v_2,v_1+v_2,-v_1-v_2)$. Es fácil verificar que w está en W

Ahora, veamos que v-w está en U. Tenemos que

$$v - w = a(1,0,1) + b(0,1,1) + c(1,1,1) - \frac{1}{3}(v_1 + v_2, v_1 + v_2, -v_1 - v_2)$$

Simplificando, obtenemos:

$$v - w = \left(a - \frac{1}{3}(v_1 + v_2)\right)(1, 0, 1) + \left(b - \frac{1}{3}(v_1 + v_2)\right)(0, 1, 1)$$

Por lo tanto, v-w está en U si y solo si $a-\frac{1}{3}(v_1+v_2)=b-\frac{1}{3}(v_1+v_2)$. Pero esto es cierto, ya que $c=\frac{1}{3}(v_1+v_2-v_3)$. Entonces, tenemos que v=u+w, donde u=a(1,0,1)+b(0,1,1) está en U y $w=\frac{1}{3}(v_1+v_2,v_1+v_2,-v_1-v_2)$ está en W.

De esta forma cualquier vector en V se puede escribir de manera única como una suma de un vector en U y un vector en W, lo que implica que $V = U \oplus W$.

En forma resumida el subespacio W es el conjunto de vectores de la forma $w = \frac{1}{3}(v_1 + v_2, v_1 + v_2, -v_1 - v_2)$, es decir:

$$W = \left\{ \frac{1}{3}(v_1 + v_2, v_1 + v_2, -v_1 - v_2) : v_1, v_2 \in \mathbb{R} \right\}$$

Cualquier vector en W es de la forma $\frac{1}{3}(v_1+v_2,v_1+v_2,-v_1-v_2)$ para algunos $v_1,v_2\in\mathbb{R}$.