ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)»

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

КУРСОВАЯ РАБОТА
ПО ТЕОРИИ АВТОМАТОВ

Выполнил:

студент факультета ВМС группы ВВ-11-06

A. *. ****

Шифр: ВВ-1*-06-***

Преподаватель:

М.И. Антик.

Содержание:

1. Интерфейс разрабатываемого устройства	3
2. Форматы данных	3
3. Математическое обоснование используемых алгоритмов	4
4. Микропрограмма в содержательном виде	5
5. Управляющие слова	5
6. Функциональные схемы операционного и управляющего автоматов	6
7. Тестовые примеры	. 10

1. Интерфейс разрабатываемого устройства

Условные обозначения:

IN/OUT – шина ввода и вывода данных.

Ri – Ready input – управляющий сигнал, даёт разрешение на приём данных с **IN/OUT**шины. Действующее значение – 1.

 ${f Ro}$ — Ready output — управляющий сигнал, даёт разрешение на выдачу данных на ${f IN/OUT}$ шину. Действующее значение — 1.

КОП – код операции. Управляющий сигнал, принимает следующие значения:

- 0 автомат работает в режиме умножения двух чисел со знаком в дополнительном коле:
- 1 автомат работает в режиме сложения двух чисел в плавающем формате.

Er – шина ошибок.

- **00** ошибок нет;
- 01 входные числа не нормализованы;
- 10 переполнение счётчика.

2. Форматы данных

На IN/OUT-шину устройства должны поступать данные в следующих форматах:

При **КОП** = 0

310
Число со знаком в дополнительном коде

При **КОП** = 1

31	3024	230
Знак	Порядок в смещённом коде	Нормализованная мантисса в прямом коде

3. Математическое обоснование используемых алгоритмов

1. Умножение чисел в дополнительном коде

Умножение чисел со знаком в дополнительном коде состоит из циклического анализа каждого разряда множителя, начиная с младшего, и:

- прибавления множимого к частичной сумме и последующем сдвиге частичной суммы вправо, если очередной разряд множителя равен 1,
 - сдвига частичной суммы вправо, если очередной разряд множителя равен 0.

При этом сдвиг частичной суммы вправо на первом шаге осуществляется нулём, а на всех остальных шагах — знаковым разрядом множимого. Особенностью данного способа является то, что в случае отрицательного множителя необходимо делать корректировку полученного результата путём вычитания множимого в дополнительном коде. Стоит также отметить, что при перемножении двух 32-х разрядных чисел поучается 64-х разрядное число, передача которого на выходную шину осуществляется за 2 такта.

2. Сложение чисел в формате с плавающей запятой

Сложение чисел в формате с плавающей запятой можно разделить на 3 этапа:

- 1. Выравнивание порядков чисел в сторону большего
- 2. Сложение мантисс
- 3. Нормализация результата

Если на вход автомата приходят ненормализованные числа, то автомат выдаёт ошибку ${\rm Er}=01.$

На первом этапе происходит определение числа с максимальным порядком и циклическое увеличение порядка другого числа, одновременно со сдвигом его мантиссы вправо.

На втором этапе происходит преобразование мантисс из прямого кода в дополнительный и их подача на сумматор. При сложении мантисс одного знака возможно возникновение переполнения и соответствующей ему порчи знакового разряда суммы. Такое переполнение является устранимым путём увеличения порядка результата и сдвига мантиссы вправо. Окончательный знак определяется исходя из знаков исходных чисел.

При увеличении порядка возможно возникновение неустранимого переполнения, выражающегося в обнулении порядка. В этом случае автомат выдаёт ошибку Er = 10.

На третьем этапе происходит проверка знака мантиссы и её перевод в прямой код, а затем нормализация путём циклического сдвига мантиссы влево вместе с уменьшением итогового порядка. При этом также осуществляется контроль обнуления порядка

4. Микропрограмма в содержательном виде

- М1 ввод первого числа
- М2 ввод второго числа
- М3 обнуление счётчика
- М4 снятие данных с сумматора на регистры
- М5 сдвиг регистров числа вправо, увеличение счётчика на единицу
- М6 выдача 32 старших разрядов числа
- М7 выдача 32 младших разрядов числа
- М8 приём знака, мантиссы и порядка первого числа
- М9 приём знака, мантиссы и порядка второго числа
- М10 сдвиг первого числа вправо для выравнивания порядков
- М11 сдвиг второго числа вправо для выравнивания порядков
- М12 снятие данных с сумматора на регистры
- М13 коррекция знакового разряда
- М14 снятие данных с сумматора на регистр
- М15 нормализация полученного числа
- М16 ошибка 10
- М17 выдача результата
- М18 ошибка 10
- М19 ошибка 01

5. Управляющие слова

- Y1, Y2, Y11, Y12, Y22:
- (0) хранение, (1) запись
- (Y3, Y4); (Y5, Y6); (Y14, Y15):
- (0,0) хранение, (0,1) сдвиг вправо, (1,0) сдвиг влево, (1,1) запись
- (Y7, Y8); (Y9, Y10):
- (0, 0) хранение, (0, 1) инкремент, (1, 0) декремент, (1, 1) запись
- Y13, Y16:
- (0) 0, (1) 1
- Y17, Y18, Y19:
- (0) буфер закрыт, (1) буфер открыт
- Y20 первый бит кода ошибки
- Y21 второй бит кода ошибки

6. Функциональные схемы операционного и управляющего автоматов

Таблица управляющих сигналов:

M\Y	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Ro
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0								0	0	0	0				0
2	0	1	0	0	1	1	0	0					1			0	0	0	0				0
3	0	0	0	0	0	0	1	1								/	0	0	0				0
4														1	1	0	0	0	0				0
5					0	1								0	1	0	0	0	0				0
6	0	0	0	0	0	0					À						1	0	0	0	0	1	1
7										. <) '					0	1	0	0	0	1	1
8	1	0	1	1	0	0	1	1	0	0						1	0	0	0				0
9	0	1	0	0	1	1	0	0	1	1						1	0	0	0				0
10	0	0	0	1	0	0	0	1	0	0							0	0	0				0
11	0	0	0	0	0	1	0	0	0	1							0	0	0				0
12	0	0	0	0	0	0	0	0			1	1	0	1	1	1	0	0	0				0
13	0	0	0	0	0	0	0	0			0	0	0	0	1	1	0	0	0				0
14	0	0	0	0	0	0	0	0			0	0	1	1	1	1	0	0	0				0
15	0	0	0	0	0	0/	1	0						1	0	1	0	0	0				0
16																	0	0	1	1	0	1	1
17																	0	0	1	0	0	1	1
18																	0	0	1	1	0	1	1
19																	0	0	1	0	1	1	1
	g	þ		-	_	~		_	_	^	7.0	C .		r	ה		1	2	3	٠	7.		
	RG_Sa	RG_Sb	Č	KU_A		KG_B	Ę	C1_A	Ę		RG_S	RG_P		Ţ	אנק ע ה	КОП	BUF 1	BUF 2	BUF 3	(KG_EF		
	R	R	٦	4	٦	-)		,	Ţ	, I		٦	<u>r</u> ,		Э	B	Щ	۲	¥		

Схема управляющего автомата:

Таблица заполнения управляющей памяти:

A		Y	Н	S	р
0	0	m01	1	0	X
0	1	m02	10	1	X
1	0	M1	0	2	0
1	1	M8	0	7	0
2	0	M03	1	2	X
2	1	M2	0	3	0
3	0	M3	0	3	1
3	1	M4	0	4	0
4	0	M5	0	4	1
4	1	m04	2	5	X
5	0	M4	0	4	0
5	1	M6	0	6	0
6	0	M7	0	0	0
6	1	m06	3	8	X
7	0	m05	1	7	X
7	1	M9	0	6	1
8	0	M19	0	0	0
8	1	m07	4	9	X
9	0	m08	5	10	X
9	1	M12	6	11	X
10	0	M10	0	8	1
10	1	M11	0	8	1
11	0	m09	8	13	X
11	1	M13	_ 7	12	X
12	0	m09	8	13	X
12	1	M18	0	0	0
13	0	m010	9	14	X
13	1	M14	0	13	0
14	0	M15	0	15	0
14	1	M17	0	0	0
15	0	m011	7	16	X
15	1				
16	0	m01	1	0	X
16	1	M16	0	0	0

7. Тестовые примеры

1. Умножение чисел в дополнительном коде

а. Множитель – положительное число

0.1101	= +13			1.0011	=	-13	
* 0,1010	= +10		*	0.1010	=	+10	
0.0000				0.0000			
+ 0.0000			+	0.0000			
0.0000				0.0000			
->0.00000			_	>0.00000			
0.1101			+	1.0011			
0.11010				1.00110			
->0.011010			_	>1.100110			
+ 0.0000			+	0.0000			
0.011010				1.100110			
->0.0011010			_	>1.1100110			
+ 0.1101			+	1.0011			7
1.0000010				0.1111110			
->0.1000001	0 = +	-130	_	>1.0111111	- 10	=	-130
					- 1.		

б. Множитель – отрицательное число

$$\begin{array}{c} 0.1101 & = +13 \\ * \ 1.0110 & = -10 \\ \hline 0.0000 \\ + \ 0.0000 \\ \hline + \ 0.0000 \\ \hline 0.00000 \\ + \ 0.1101 \\ \hline 0.11010 \\ \hline ->0.011010 \\ \hline + \ 0.1101 \\ \hline 0.001110 \\ \hline ->0.100110 \\ \hline + \ 0.10011 \\ \hline 0.001110 \\ \hline ->0.100110 \\ \hline + \ 0.10010 \\ \hline ->0.100110 \\ \hline + \ 0.10010 \\ \hline ->1.0110010 \\ \hline + \ 0.0000 \\ \hline 0.100110 \\ \hline + \ 0.0000 \\ \hline 0.100110 \\ \hline + \ 1.0011 \\ \hline + \ 0.0000 \\ \hline 0.100110 \\ \hline ->1.0110010 \\ \hline ->1.0110010 \\ \hline + \ 0.1101 \\ \hline + \ 0.0000 \\ \hline 0.100110 \\ \hline ->1.0110010 \\ \hline ->1.011010010 \\ \hline ->1.0110010 \\ \hline ->1.0110$$

2. Сложение чисел в плавающем формате

Порядки исходных чисел равны.

Складываем мантиссы со знаками:

- 0.101011100000000000000000
- - 1.100001100000000000000000

Знак числа – отрицаетльный, а исходные числа были положительные, чего быть не может. Выполняем корректировку порядка и мантиссы результата:

P[C] = P[C] + 1 = 0000011

Складываем мантиссы со знаками в дополнительных кодах:

Нормализуем результат:

Складываем мантиссы со знаками в дополнительных кодах:

- - 10.110001111000000000000000

Возникла единица переноса, поэтому корректируем мантиссу и увеличиваем порядок на 1: