Week 08 Participation Part 2 $\,$

Corey Mostero

07 April 2023

Contents

1	Part	2																		2
	1.1	1																		3
	1.2	2																		3
	1.3	3																		3
	1.4	4																		3
	1.5	5																		3
	1.6	6																		3
	1.7	7																		3
	1.8	8																		4
	1.9	9																		4
	1.10	10.																		4
	1.11	11.																		4
	1.12	12.																		4
	1.13	13.																		4
	1.14	14.																		Ę

1 Part 2

- **1.** W is the set of all vectors in \mathbb{R}^3 such that $x_3 = 0$.
- **2.** W is the set of all vectors in \mathbb{R}^3 such that $x_1 = 5x_2$.
- **3.** W is the set of all vectors in \mathbb{R}^3 such that $x_2 = 1$.
- **4.** W is the set of all vectors in \mathbb{R}^3 such that $x_1 + x_2 + x_3 = 1$.
- **5.** W is the set of all vectors in \mathbb{R}^4 such that $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$.
- **6.** W is the set of all vectors in \mathbb{R}^4 such that $x_1 = 3x_3$ and $x_2 = 4x_4$.
- **7.** W is the set of all vectors in \mathbb{R}^2 such that $||x_1|| = ||x_2||$.
- **8.** W is the set of all vectors in \mathbb{R}^2 such that $(x_1)^2 + (x_2)^2 = 0$.
- **9.** W is the set of all vectors in \mathbb{R}^2 such that $(x_1)^2 + (x_2)^2 = 1$.
- **10.** W is the set of all vectors in \mathbb{R}^2 such that $||x_1|| + ||x_2|| = 1$.
- 11. W is the set of all vectors in \mathbb{R}^4 such that $x_1 + x_2 = x_3 + x_4$.
- **12.** W is the set of all vectors in \mathbb{R}^4 such that $x_1x_2 = x_3x_4$.
- **13.** W is the set of all vectors in \mathbb{R}^4 such that $x_1x_2x_3x_4=0$.
- **14.** W is the set of all vectors in \mathbb{R}^4 whose components are all nonzero.

For the above definitions, give an example of an element that belongs to the set W and an example of elements that does not belong to the set W.

1.1 1.

- **a.** $\vec{v}_1 = <1,1,0>$
- **b.** 1. $\vec{v}_2 = <1,1,1>$
 - **2.** $\vec{v}_3 = <2, 2, 2>$

1.2 2.

- **a.** $\vec{v}_1 = <5, 1, 1>$
- **b.** 1. $\vec{v}_2 = <6, 1, 1>$
 - **2.** $\vec{v}_3 = <7,1,1>$

1.3 3.

- **a.** $\vec{v}_1 = <1, 1, 1>$
- **b.** 1. $\vec{v}_2 = <2, 2, 2>$
 - **2.** $\vec{v}_3 = <3,3,3>$

1.4 4.

- **a.** $\vec{v}_1 = <1,0,0>$
- **b.** 1. $\vec{v}_2 = <1, 1, 1>$
 - **2.** $\vec{v}_3 = <2, 2, 2>$

1.5 5.

- **a.** $\vec{v}_1 = <0,0,0,0>$
- **b.** 1. $\vec{v}_2 = <1,1,1,1>$
 - **2.** $\vec{v}_3 = <2, 2, 2, 2 >$

1.6 6.

- **a.** $\vec{v}_1 = <3, 4, 1, 1>$
- **b.** 1. $\vec{v}_2 = <1, 1, 1, 1 >$
 - **2.** $\vec{v}_3 = <2, 2, 2, 2 >$

1.7 7.

- **a.** $\vec{v}_1 = <1, 1>$
- **b.** 1. $\vec{v}_2 = <1, 2>$

- **2.** $\vec{v}_3 = <2, 1>$
- 1.8 8.
 - **a.** $\vec{v}_1 = <0, 0>$
 - **b.** 1. $\vec{v}_2 = <1, 1>$
 - **2.** $\vec{v}_3 = <2,2>$
- 1.9 9.
 - **a.** $\vec{v}_1 = <1, 0>$
 - **b.** 1. $\vec{v}_2 = <1, 1>$
 - **2.** $\vec{v}_3 = <2,2>$
- 1.10 10.
 - **a.** $\vec{v}_1 = <1, 0>$
 - **b.** 1. $\vec{v}_2 = <1, 1>$
 - **2.** $\vec{v}_3 = <2,2>$
- 1.11 11.
 - **a.** $\vec{v}_1 = <1, 1, 1, 1 >$
 - **b.** 1. $\vec{v}_2 = <1,1,2,2>$
 - **2.** $\vec{v}_3 = <2, 2, 1, 1>$
- 1.12 12.
 - **a.** $\vec{v}_1 = <1, 1, 1, 1 >$
 - **b.** 1. $\vec{v}_1 = <1, 1, 2, 2>$
 - **2.** $\vec{v}_2 = <2, 2, 1, 1>$
- 1.13 13.
 - **a.** $\vec{v}_1 = <0, 0, 0, 1>$
 - **b.** 1. $\vec{v}_2 = <1,1,1,1>$
 - **2.** $\vec{v}_3 = <2, 2, 2, 2 >$

1.14 14.

- **a.** $\vec{v}_1 = <1, 1, 1, 1 >$
- **b.** 1. $\vec{v}_2 = <1, 0, 0, 0 >$
 - **2.** $\vec{v}_3 = <0, 0, 0, 1>$