Algorithm Analysis

Suzan Ece Ada

Code Complexity

Primitive Operations:

- Addition etc.
 - 1 operation
- Calling a method or returning from a method
 - 1 operation
- Index in an array
 - 1 operation
- Comparison
 - 1 operation

Code Complexity

Loops:

- FOR
 - (# of iterations) * (running time of statements inside the loop)
- Nested loops
 - product of loop complexities
- Consecutive Statements
 - The sum of running time of each segment
- if/Else
 - The testing time + Larger of the running time of the cases

Q1 (Big-Oh)

```
bool checkForOddOrEven(int x{
if (x%2)
    print("Odd");
else
    print("Even");
}
```

Q2 (Big-Oh)

```
int findMax(int[] x){
 int max=0;
 for (int i=0; i < x.length; i++) {
    if(x[i] > max)
        max = x[I];
return max;
```

Q3 (Big-Oh)

```
bool checkForDuplicates(int[] x){
for(int i=0;i<x.length;i++){</pre>
     for(int j=0;j<x.length;j++){</pre>
           if (i == j) continue;
           if(x[i] == x[j])
                 return true;
return false;
```

Q4 (Big-Oh)

```
int calculateStrangeSum(int[] x) {
 int h=x.length;
 int sum = 0;
 while (h>0) {
   sum += x[h];
   h = h/2; 
 return sum;
```

Q5 (Big-Oh)

```
int mixed(int[] x){
print(x.length);
for(int i=0;i<x.length;i++) {</pre>
    for (int j=0; j<x.length; j++) {
         if (i == j) continue;
         if(x[i] == x[j])
             print("Duplicate");
```

Order the following functions by growth rate:

$$N, \sqrt{N}, N^{1.5}, N^2, N \log N$$

 $N \log \log N, N \log^2 N, N \log(N^2), 2/N, 2^N, 2^{N/2}, 37, N^2 \log N, N^3.$

Indicate which functions grow at the same rate.

Suppose $T_1(N) = O(f(N))$ and $T_2(N) = O(f(N))$. Which of the following are true?

a.
$$T_1(N) + T_2(N) = O(f(N))$$

b.
$$T_1(N) - T_2(N) = o(f(N))$$

c.
$$T_1(N) / T_2(N) = O(1)$$

$$d. T_1(N) = O(T_2(N))$$

Give an analysis of the running time (Big-Oh will do).

```
(1) sum = 0;
    for( i = 0; i < n; i++ )
        sum++;
(2) sum = 0;
    for( i = 0; i < n; i++ )
            sum++;
(3) sum = 0;
    for( i = 0; i < n; i++ )
            for( j = 0; j < n * n; j++ )
                 sum++;
(4) sum = 0;
    for( i = 0; i < n; i++ )
            for( j = 0; j < i; j++ )
            sum++;</pre>
```

Implement the code in Java, and give the running time for several values of N.

```
(1) sum = 0;
    for( i = 0; i < n; i++ )
        sum++;
(2) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < n; j++ )
        sum++;
(3) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < n * n; j++ )
        sum++;
(4) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < i; j++ )
        sum++;</pre>
```

(1) sum = 0;

Compare your analysis with the actual running times.

```
for( i = 0; i < n; i++ )
        sum++;
(2) sum = 0;
    for( i = 0; i < n; i++ )
        for (j = 0; j < n; j++)
            sum++:
(3) sum = 0;
    for( i = 0; i < n; i++)
        for (j = 0; j < n * n; j++)
            sum++;
(4) sum = 0;
    for( i = 0; i < n; i++)
        for(j = 0; j < i; j++)
            sum++;
```

```
(5) sum = 0;
    for( i = 0; i < n; i++)
        for( j = 0; j < i * i; j++)
            for(k = 0; k < j; k++)
                sum++;
(6) sum = 0;
    for( i = 1; i < n; i++)
        for(j = 1; j < i * i; j++)
           if(j \% i == 0)
               for(k = 0; k < j; k++)
                   sum++;
```

Programs A and B are analyzed and found to have worst-case running times no greater than 150N log₂N and N², respectively. Answer the following questions, if possible:

a. Which program has the better guarantee on the running time

- for large values of N (N > 10,000)?
- for small values of N(N<100)?

b. Which program will run faster on average for N = 1,000?

Q12 Maximum Subsequence Sum Problem

Given (possibly negative) integers A_1 , A_2 , ..., A_N , find the maximum value of k=i A_k . (For convenience, the maximum subsequence sum is o if all the integers are negative.) [1]

Example:

For input -2, 11, -4, 13, -5, -2?

Maximum Subsequence Sum Problem

Input Size	Algorithm Time			
	$\frac{1}{O(N^3)}$	2 O(N ²)	3 O(N log N)	4 O(N)
N = 100	0.000159	0.000006	0.000005	0.000002
N = 1,000	0.095857	0.000371	0.000060	0.000022
N = 10,000	86.67	0.033322	0.000619	0.000222
N = 100,000	NA	3.33	0.006700	0.002205
N = 1,000,000	NA	NA	0.074870	0.022711

Figure 2.2 Running times of several algorithms for maximum subsequence sum (in seconds)

Maximum Subsequence Sum Problem Cubic Maximum Contiguous Subsequence Sum

```
public static int maxSubSum1( int [ ] a )
int maxSum = 0;
/**
*TODO
return maxSum;
```

Maximum Subsequence Sum Problem Quadratic Maximum Contiguous Subsequence Sum

```
public static int maxSubSum2( int [ ] a )
int maxSum = 0;
/**
*TODO
return maxSum;
```

Maximum Subsequence Sum Problem Recursive Maximum Contiguous Subsequence Sum

```
private static int maxSumRec( int [ ] a, int left, int right ) {
/**
*TODO
* /
return max3( maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum );
public static int maxSubSum3( int [ ] a ){
return maxSumRec(a, 0, a.length - 1);
```

Maximum Subsequence Sum Problem

Linear Time Maximum Contiguous Subsequence Sum

```
public static int maxSubSum4( int [ ] a )
int maxSum = 0; thisSum=0;
/**
*TODO
return maxSum;
```

References

[1]Mark Allen Weiss. 2012. Data Structures and Algorithm Analysis in Java. Mark Allen Weiss. Pearson Education.

[2]Ozlem Simsek, CMPE250 Algorithm Analysis Slides

[2]CMPE250 Algorithm Analysis Lecture Slides