TEE-101

B. Tech. (First Semester) Mid Semester EXAMINATION, 2017

(All Branche)

BASIC ELECTRICAL ENGINEERING

Time: 1:30 Hours | Maximum Marks: 50

Note: (i) This question paper contains two Sections.

(ii) Both Sections are compulsory.

Section-A

- 1. Fill in the blanks/True-False: (1×5=5 Marks)
 - (a) The value of resistance in open circuit condition any two-terminal circuit is
 - (b) KCL is valid only for D.C. circuit.

(True/False)

- (c) Average power of a purely inductive a. c. circuit is equal to
- (d) Internal resistance of ideal voltage source is infinite. (True/False)
- (e) 3 resistances of R Ω each are connected in delta. Its equivalent star will comprise resistances of value

P. T. O.

2. Attempt any five parts: (3×5=15 Marks)

(Define/Short Numerical/Short Programming/Draw)

- (a) Define bilateral and unilateral elements.
- (b) Draw phasor diagram for series RL a. c. circuit and waveform for voltage and current.
- (c) Define active, reactive and apparent power for a. c. circuits.
- (d) Define Thevenin's theorem.
- (e) Define ideal and practical current sources.
- (f) Define the following terms:
 - (i) frequency
 - (ii) time period
 - (iii) cycle, for a sinusoidal waveform

Section-B

- 3. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) State Maximum Power Transfer theorem for D.C. circuits. Derive the relationship for maximum power transfer condition and efficiency.
- (b) Use Mesh analysis to find current in the 10Ω resistance and voltage across 5 Ω resistance of the network shown below.

(c) Define RMS value for an a. c circuit.

Calculate the average value, r. m. s. value and form factor of output voltage wave of a half-wave rectifier, shown below.

- 4. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) How star to delta transformation takes place for any two-terminal network. Derive the expression.
 - (b) Use Thevenin's theorem to find the current through 5 Ω resistor in the circuit shown below.

(c) Give'the statement of KCL. Find the currents in all branches of the network shown below:

- 5. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Explain a purely capacitive a. c. circuit with proper diagram and waveforms. Also derive the expression for average power of purely capacitive a. c. circuit.
 - (b) In the circuit shown below, a voltage v = 100 sin 3 t is applied. Determine:
 - (i) Branch currents I₁ and I₂ with their phase angles.
 - (ii) Total current supplied by the source and its phase angle.

- (c) A resistance of 15 Ω , an inductance of 200 mH and a capacitance of 100 μF are connected in series A 200 V, 50 Hz, a. c. supply is connected across this series circuit. Calculate:
 - (i) the impedence
 - (ii) the current
 - (iii) the power factor
 - (iv) voltage across R, L and C

TEE-101

400