

Chapter 11: Data Analytics

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 11: Data Analytics

- Overview
- Data Warehousing
- Online Analytical Processing
- Data Mining

Overview

- Data analytics: the processing of data to infer patterns, correlations, or models for prediction
- Primarily used to make business decisions
 - Per individual customer
 - E.g., what product to suggest for purchase
 - Across all customers
 - E.g., what products to manufacture/stock, in what quantity
- Critical for businesses today

Overview (Cont.)

- Common steps in data analytics
 - Gather data from multiple sources into one location
 - Data warehouses also integrated data into common schema
 - Data often needs to be extracted from source formats, transformed to common schema, and loaded into the data warehouse
 - Can be done as ETL (extract-transform-load), or ELT (extract-load-transform)
 - Generate aggregates and reports summarizing data
 - Dashboards showing graphical charts/reports
 - Online analytical processing (OLAP) systems allow interactive querying
 - Statistical analysis using tools such as R/SAS/SPSS
 - Including extensions for parallel processing of big data
 - Build predictive models and use the models for decision making

Overview (Cont.)

- Predictive models are widely used today
 - E.g., use customer profile features (e.g. income, age, gender, education, employment) and past history of a customer to predict likelihood of default on loan
 - and use prediction to make loan decision
 - E.g., use past history of sales (by season) to predict future sales
 - And use it to decide what/how much to produce/stock
 - And to target customers
- Other examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?

Overview (Cont.)

- Machine learning techniques are key to finding patterns in data and making predictions
- Data mining extends techniques developed by machine-learning communities to run them on very large datasets
- The term business intelligence (BI) is synonym for data analytics
- The term decision support focuses on reporting and aggregation

DATA WAREHOUSING

Data Warehousing

- Data sources often store only current data, not historical data
- Corporate decision making requires a unified view of all organizational data, including historical data
- A data warehouse is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site
 - Greatly simplifies querying, permits study of historical trends
 - Shifts decision support query load away from transaction processing systems

Data Warehousing

Design Issues

- When and how to gather data
 - Source driven architecture: data sources transmit new information to warehouse
 - either continuously or periodically (e.g., at night)
 - **Destination driven architecture:** warehouse periodically requests new information from data sources
 - Synchronous vs asynchronous replication
 - Keeping warehouse exactly synchronized with data sources (e.g., using two-phase commit) is often too expensive
 - Usually OK to have slightly out-of-date data at warehouse
 - Data/updates are periodically downloaded form online transaction processing (OLTP) systems.
- What schema to use
 - Schema integration

More Warehouse Design Issues

- Data transformation and data cleansing
 - E.g., correct mistakes in addresses (misspellings, zip code errors)
 - Merge address lists from different sources and purge duplicates
- How to propagate updates
 - Warehouse schema may be a (materialized) view of schema from data sources
 - View maintenance
- What data to summarize
 - Raw data may be too large to store on-line
 - Aggregate values (totals/subtotals) often suffice
 - Queries on raw data can often be transformed by query optimizer to use aggregate values

Multidimensional Data and Warehouse Schemas

- Data in warehouses can usually be divided into
 - Fact tables, which are large
 - E.g, sales(item_id, store_id, customer_id, date, number, price)
 - Dimension tables, which are relatively small
 - Store extra information about stores, items, etc.
- Attributes of fact tables can be usually viewed as
 - Measure attributes
 - measure some value, and can be aggregated upon
 - e.g., the attributes number or price of the sales relation
 - Dimension attributes
 - dimensions on which measure attributes are viewed
 - e.g., attributes item_id, color, and size of the sales relation
 - Usually small ids that are foreign keys to dimension tables

Data Warehouse Schema

Multidimensional Data and Warehouse Schemas

- Resultant schema is called a star schema
 - More complicated schema structures
 - Snowflake schema: multiple levels of dimension tables
 - May have multiple fact tables
- Typically
 - fact table joined with dimension tables and then
 - group-by on dimension table attributes, and then
 - aggregation on measure attributes of fact table
- Some applications do not find it worthwhile to bring data to a common schema
 - Data lakes are repositories which allow data to be stored in multiple formats, without schema integration
 - Less upfront effort, but more effort during querying

Database Support for Data Warehouses

- Data in warehouses usually append only, not updated
 - Can avoid concurrency control overheads
- Data warehouses often use column-oriented storage
 - E.g., a sequence of *sales* tuples is stored as follows
 - Values of item_id attribute are stored as an array
 - Values of store_id attribute are stored as an array,
 - And so on
 - Arrays are compressed, reducing storage, IO and memory costs significantly
 - Queries can fetch only attributes that they care about, reducing IO and memory cost
 - More details in Section 13.6
- Data warehouses often use parallel storage and query processing infrastructure
 - Distributed file systems, Map-Reduce, Hive, ...

OLAP

Data Analysis and OLAP

- Online Analytical Processing (OLAP)
 - Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
- We use the following relation to illustrate OLAP concepts
 - sales (item_name, color, clothes_size, quantity)

This is a simplified version of the *sales* fact table joined with the dimension tables, and many attributes removed (and some renamed)

Example sales relation

item_name	color	clothes_size	quantity	
dress	dark	small	2	
dress	dark	medium	6	
dress	dark	large	12	
dress	pastel	small	4	
dress	pastel	medium	3	
dress	pastel	large	3	
dress	white	small	2 3	
dress	white	medium	3	
dress	white	large	0	
pants	dark	small	14	
pants	dark	medium	6	
pants	dark	large	0	
pants	pastel	small	1	
pants	pastel	medium	0	
pants	pastel	large	1	
pants	white	small	3	
pants	white	medium	0	
pants	white	large	2	
shirt	dark	small	2	
shirt	dark	medium	6	
shirt	dark	large	6	
shirt	pastel	small	4	
shirt	pastel	medium	1	
shirt	pastel	large	2	
shirt	white	small	17	
shirt	white	medium	1	
shirt	white	large	10	
skirt	dark	small	2	
skirt	dark	medium	5	
••••	•••	•••		

Database System Concepts - 7th Edition

Cross Tabulation of sales by item_name and color

color

item_name

	dark	pastel	white	total
skirt	8	35	10	53
dress	20	10	5	35
shirt	14	7	28	49
pants	20	2	5	27
total	62	54	48	164

- The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.
 - Values for one of the dimension attributes form the row headers
 - Values for another dimension attribute form the column headers
 - Other dimension attributes are listed on top
 - Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

Data Cube

- A data cube is a multidimensional generalization of a cross-tab
- Can have n dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube

item_name

Online Analytical Processing Operations

- Pivoting: changing the dimensions used in a cross-tab
 - E.g., moving colors to column names
- Slicing: creating a cross-tab for fixed values only
 - E.g., fixing color to white and size to small
 - Sometimes called dicing, particularly when values for multiple dimensions are fixed.
- Rollup: moving from finer-granularity data to a coarser granularity
 - E.g., aggregating away an attribute
 - E.g., moving from aggregates by day to aggregates by month or year
- Drill down: The opposite operation that of moving from coarsergranularity data to finer-granularity data

Hierarchies on Dimensions

- Hierarchy on dimension attributes: lets dimensions be viewed at different levels of detail
- E.g., the dimension datetime can be used to aggregate by hour of day, date, day of week, month, quarter or year

(a) time hierarchy

(b) location hierarchy

Cross Tabulation With Hierarchy

- Cross-tabs can be easily extended to deal with hierarchies
- Can drill down or roll up on a hierarchy
- E.g. hierarchy: *item_name* → *category*

clothes_size:

category	item_name		color			
		dark	pastel	white	to	tal
womenswear	skirt	8	8	10	53	
	dress	20	20	5	35	
	subtotal	28	28	15		88
menswear	pants	14	14	28	49	
	shirt	20	20	5	27	
	subtotal	34	34	33		76
total		62	62	48		164

Relational Representation of Cross-tabs

- Cross-tabs can be represented as relations
- We use the value all to represent aggregates.
- The SQL standard actually uses null values in place of all
 - Works with any data type
 - But can cause confusion with regular null values.

item_name	color	clothes_size	quantity
skirt	dark	all	8
skirt	pastel	all	35
skirt	white	all	10
skirt	all	all	53
dress	dark	all	20
dress	pastel	all	10
dress	white	all	5
dress	all	all	35
shirt	dark	all	14
shirt	pastel	all	7
shirt	white	all	28
shirt	all	all	49
pants	dark	all	20
pants	pastel	all	2
pants	white	all	5
pants	all	all	27
all	dark	all	62
all	pastel	all	54
all	white	all	48
all	all	all	164

DATA MINING

Data Mining

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns
 - Similar goals to machine learning, but on very large volumes of data
- Part of the larger area of knowledge discovery in databases (KDD)
- Some types of knowledge can be represented as rules
- More generally, knowledge is discovered by applying machine learning techniques on past instances of data, to form a model
 - Model is then used to make predictions for new instances

Types of Data Mining Tasks

- Prediction based on past history
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
 - Predict if a pattern of phone calling card usage is likely to be fraudulent
- Some examples of prediction mechanisms:
 - Classification
 - Items (with associated attributes) belong to one of several classes
 - Training instances have attribute values and classes provided
 - Given a new item whose class is unknown, predict to which class it belongs based on its attribute values
 - Regression formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value

Data Mining (Cont.)

Descriptive Patterns

- Associations
 - Find books that are often bought by "similar" customers. If a new such customer buys one such book, suggest the others too.
 - Associations may be used as a first step in detecting causation
 - E.g., association between exposure to chemical X and cancer,

Clusters

- E.g., typhoid cases were clustered in an area surrounding a contaminated well
- Detection of clusters remains important in detecting epidemics

Decision Tree Classifiers

Decision Trees

- Each internal node of the tree partitions the data into groups based on a partitioning attribute, and a partitioning condition for the node
- Leaf node:
 - all (or most) of the items at the node belong to the same class, or
 - all attributes have been considered, and no further partitioning is possible.
- Traverse tree from top to make a prediction
- Number of techniques for constructing decision tree classifiers
 - We omit details

Bayesian Classifiers

Bayesian classifiers use Bayes theorem, which says

$$p(c_j | d) = p(d | c_j) p(c_j)$$

$$\frac{p(d)}{p(d)}$$

where

 $p(c_j | d)$ = probability of instance d being in class c_j , $p(d | c_j)$ = probability of generating instance d given class c_j , $p(c_j)$ = probability of occurrence of class c_j , and p(d) = probability of instance d occurring

Support Vector Machine Classifiers

- Simple 2-dimensional example:
 - Points are in two classes
 - Find a line (maximum margin line) s.t. line divides two classes, and distance from nearest point in either class is maximum

Support Vector Machine

- In n-dimensions points are divided by a plane, instead of a line
- SVMs can be used separators that are curve, not necessarily linear, by transforming points before classification
 - Transformation functions may be non-linear and are called kernel functions
 - Separator is a plane in the transformed space, but maps to curve in original space
- There may not be an exact planar separator for a given set of points
 - Choose plane that best separates points
- N-ary classification can be done by N binary classifications
 - In class i vs. not in class i.

Neural Network Classifiers

- Neural network has multiple layers
 - Each layer acts as input to next later
- First layer has input nodes, which are assigned values from input attributes
- Each node combines values of its inputs using some weight function to compute its value
 - Weights are associated with edges
- For classification, each output value indicates likelihood of the input instance belonging to that class
 - Pick class with maximum likelihood
- Weights of edges are key to classification
- Edge weights are learnt during training phase

Neural Networks (Cont.)

- Deep neural networks have a large number of layers with large number of nodes in each layer
- Deep learning refers to training of deep neural network on very large numbers of training instances
- Each layer may be connected to previous layers in different ways
 - Convolutional networks used for image processing
 - More complex architectures used for text processing, and machine translation, speech recognition, etc.
- Neural networks are a large area in themselves
 - Further details beyond scope of this chapter

Regression

- Regression deals with the prediction of a value, rather than a class.
 - Given values for a set of variables, X_1 , X_2 , ..., X_n , we wish to predict the value of a variable Y.
- One way is to infer coefficients a_0 , a_1 , a_1 , ..., a_n such that $Y = a_0 + a_1 * X_1 + a_2 * X_2 + ... + a_n * X_n$
- Finding such a linear polynomial is called linear regression.
 - In general, the process of finding a curve that fits the data is also called curve fitting.
- The fit may only be approximate
 - because of noise in the data, or
 - because the relationship is not exactly a polynomial
- Regression aims to find coefficients that give the best possible fit.

Clustering

- Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster
- Can be formalized using distance metrics in several ways
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster
- Hierarchical clustering: example from biological classification
 - (the word classification here does not mean a prediction mechanism)

Other Types of Mining

- Text mining: application of data mining to textual documents
- Sentiment analysis
 - E.g., learn to predict if a user review is positive or negative about a product
- Information extraction
 - Create structured information from unstructured textual description or semi-structured data such as tabular displays
- Entity recognition and disambiguation
 - E.g., given text with name "Michael Jordan" does the name refer to the famous basketball player or the famous ML expert
- Knowledge graph (see Section 8.4)
 - Can be constructed by information extraction from different sources, such as Wikipedia