Kinematics, Dynamics, & Linearization

Dynamics & Modeling

Major sources: Kaare Brandt Petersen

Michael Syskind Pedersen

Major references: The Matrix Cookbook - Petersen, Pedersen

Winter 2022 - Dan Calderone

Kinematics 2D

useful for most homework problems

... for mechanical systems, higher order motion can be quite complicated

Rotation Matrix Derivation:

Note: rotation "axis"
$$\hat{\omega} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 - out of the page

$$R(\theta) = e^{\hat{\omega}\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\dot{R}(\theta) = \dot{\theta}\hat{\omega}e^{\hat{\omega}\theta} = \dot{\theta}\hat{\omega}R(\theta)$$

$$\ddot{R}(\theta) = \ddot{\theta}\hat{\omega}e^{\hat{\omega}\theta} + \dot{\theta}^2\hat{\omega}^2e^{\hat{\omega}\theta}$$
$$= \ddot{\theta}\hat{\omega}R(\theta) + \dot{\theta}^2\hat{\omega}^2R(\theta)$$

Velocity Terms:

$$\dot{x} = \dot{z} + \dot{\theta} \hat{\omega} R(\theta) z' + R(\theta) \dot{z'} \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$
 Body Angular Relative velocity velocity

Position:
$$x = z + R(\theta)z'$$

Velocity:
$$\dot{x}=\dot{z}+\dot{R}(\theta)z'+R(\theta)\dot{z'}$$

$$=\dot{z}+\dot{\theta}\hat{\omega}R(\theta)z'+R(\theta)\dot{z'}$$

Acceleration: $\ddot{x} = \ddot{z} + \ddot{R}(\theta)z' + 2\dot{R}(\theta)\dot{z'} + R(\theta)\ddot{z'}$

$$= \ddot{z} + \ddot{\theta}\hat{\omega}R(\theta)z' + \dot{\theta}^2\hat{\omega}^2R(\theta)z' + 2\dot{\theta}\hat{\omega}R(\theta)\dot{z'} + R(\theta)\ddot{z'}$$

Acceleration Terms:

$$\ddot{x} = \ddot{z} + \ddot{\theta}\hat{\omega}R(\theta)z' + \dot{\theta}^2\hat{\omega}^2R(\theta)z' + 2\dot{\theta}\hat{\omega}R(\theta)\dot{z'} + R(\theta)\ddot{z'}$$
Body Angular acceleration

Centripetal acceleration

Centripetal acceleration

Kinematics 3D

generalization

... for mechanical systems, higher order motion can be quite complicated

Rotation Matrix Derivation:

$$egin{align} \omega &= egin{bmatrix} \omega_1 \ \omega_2 \ \omega_3 \end{bmatrix} & \hat{\omega} &= egin{bmatrix} 0 & -\omega_3 & \omega_2 \ \omega_3 & 0 & -\omega_1 \ -\omega_2 & \omega_1 & 0 \end{bmatrix} \ R(\omega) &= e^{\hat{\omega}} \ \dot{R}(\omega) &= \dot{\hat{\omega}}e^{\hat{\omega}} \ \ddot{R}(\omega) &= \dot{\hat{\omega}}e^{\hat{\omega}} \ \ddot{R}(\omega) &= \dot{\hat{\omega}}e^{\hat{\omega}} \ \end{pmatrix}$$

 $\dot{x} = \dot{z} + \dot{\hat{\omega}} R(\omega) z' + R(\omega) \dot{z'}$ $\downarrow \qquad \qquad \downarrow$ Body Angular Relative velocity velocity

...for fixed axis rotations with axis ξ : $\omega = \theta \xi, \; \dot{\omega} = \dot{\theta} \xi, \; \ddot{\omega} = \ddot{\theta} \xi$

Position: $x = z + R(\omega)z'$

Velocity: $\dot{x}=\dot{z}+\dot{R}(\omega)z'+R(\omega)\dot{z'}$ $=\dot{z}+\dot{\hat{\omega}}R(\omega)z'+R(\omega)\dot{z'}$

Acceleration Terms:

Acceleration: $\ddot{x} = \ddot{z} + \ddot{R}(\omega)z' + 2\dot{R}(\omega)\dot{z'} + R(\omega)\ddot{z'}$

 $= \ddot{z} + \dot{\hat{\omega}}R(\omega)z' + \dot{\hat{\omega}}^2R(\omega)z' + 2\dot{\hat{\omega}}R(\omega)\dot{z'} + R(\omega)\ddot{z'}$