

ECE 802, Electric Motor Control

Induction Machines

Symmetrical Induction Machines (Chapter 6)

voltage equations

$$v_{abcs} = r_s i_{abcs} + p \lambda_{abcs}$$

$$v_{abcr} = r_r i_{abcr} + p \lambda_{abcr}$$

typically wye connected windings

Flux Linkage Equations

$$\begin{bmatrix} \lambda_{abcs} \\ \lambda_{abcr} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_s & \mathbf{L}_{sr} \\ \mathbf{L}_{rs} & \mathbf{L}_r \end{bmatrix} \begin{bmatrix} i_{abcs} \\ i_{abcr} \end{bmatrix}$$

$$\mathbf{L}_{s} = \begin{bmatrix} L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} \end{bmatrix} \qquad L_{ls} = \frac{N_{s}^{2}}{\Re_{ls}}$$

$$L_{ms} = \frac{N_{s}^{2}}{\Re_{m}}$$

Rotor Inductances

$$\mathbf{L}_{r} = \begin{bmatrix} L_{lr} + L_{mr} & -\frac{1}{2}L_{mr} & -\frac{1}{2}L_{mr} \\ -\frac{1}{2}L_{mr} & L_{lr} + L_{mr} & -\frac{1}{2}L_{mr} \\ -\frac{1}{2}L_{mr} & -\frac{1}{2}L_{mr} & L_{lr} + L_{mr} \end{bmatrix} \qquad L_{lr} = \frac{N_{r}^{2}}{\Re_{lr}}$$

$$L_{mr} = \frac{N_{r}^{2}}{\Re_{m}}$$

Stator-to-Rotor Inductances

$$\mathbf{L}_{sr} = egin{bmatrix} L_{asar} & L_{asbr} & L_{ascr} \ L_{bsar} & L_{bsbr} & L_{bscr} \ L_{csar} & L_{csbr} & L_{cscr} \end{bmatrix}$$

 L_{asar} - component of λ_{as} due to i_{ar}

L_{asbr} - component of λ_{as} due to i_{br}

$$\mathbf{L}_{sr} = L_{sr} \begin{bmatrix} \cos(\theta_r) & \cos\left(\theta_r + \frac{2\pi}{3}\right) & \cos\left(\theta_r - \frac{2\pi}{3}\right) \\ \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos(\theta_r) & \cos\left(\theta_r + \frac{2\pi}{3}\right) \\ \cos\left(\theta_r + \frac{2\pi}{3}\right) & \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos(\theta_r) \end{bmatrix} \qquad \mathbf{L}_{sr} = \frac{N_s N_r}{\Re_m}$$

$$\mathbf{L}_{rs} = (\mathbf{L}_{sr})^{\mathrm{T}}$$

Refer Rotor Quantities to Stator

Put all magnetizing inductances in terms of L_{ms} (Steinmetz model)

$$\begin{bmatrix} \lambda_{abcs} \\ \frac{N_s}{N_r} \lambda_{abcr} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_s & \frac{N_s}{N_r} \mathbf{L}_{sr} \\ \frac{N_s}{N_r} (\mathbf{L}_{sr})^T & (\frac{N_s}{N_r})^2 \mathbf{L}_r \end{bmatrix} \begin{bmatrix} i_{abcs} \\ \frac{N_r}{N_s} i_{abcr} \end{bmatrix}$$

define
$$\lambda'_{abcr} = \frac{N_s}{N_r} \lambda_{abcr}$$
 $i'_{abcr} = \frac{N_r}{N_s} i_{abcr}$ $\mathbf{L'}_{sr} = \frac{N_s}{N_r} \mathbf{L}_{sr}$ $\mathbf{L'}_r = \left(\frac{N_s}{N_r}\right)^2 \mathbf{L}_r$

$$\begin{bmatrix} \lambda_{abcs} \\ \lambda'_{abcr} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{s} & \mathbf{L'}_{sr} \\ (\mathbf{L'}_{sr})^{\mathrm{T}} & \mathbf{L'}_{r} \end{bmatrix} \begin{bmatrix} i_{abcs} \\ i'_{abcr} \end{bmatrix}$$

$$\mathbf{L'}_{sr} = L_{ms} \begin{bmatrix} \cos(\theta_r) & \cos\left(\theta_r + \frac{2\pi}{3}\right) & \cos\left(\theta_r - \frac{2\pi}{3}\right) \\ \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos(\theta_r) & \cos\left(\theta_r + \frac{2\pi}{3}\right) \\ \cos\left(\theta_r + \frac{2\pi}{3}\right) & \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos(\theta_r) \end{bmatrix}$$

$$\mathbf{L'}_{r} = \begin{bmatrix} \left(\frac{N_{s}}{N_{r}}\right)^{2} L_{lr} + L_{ms} & -\frac{1}{2} L_{ms} & -\frac{1}{2} L_{ms} \\ -\frac{1}{2} L_{ms} & \left(\frac{N_{s}}{N_{r}}\right)^{2} L_{lr} + L_{ms} & -\frac{1}{2} L_{ms} \\ -\frac{1}{2} L_{ms} & -\frac{1}{2} L_{ms} & \left(\frac{N_{s}}{N_{r}}\right)^{2} L_{lr} + L_{ms} \end{bmatrix}$$

define
$$L'_{lr} = \left(\frac{N_s}{N_r}\right)^2 L_{lr}$$

Refer Voltage Equations

Stator

$$v_{abcs} = r_s i_{abcs} + p \lambda_{abcs}$$

Rotor

$$\frac{N_s}{N_r} v_{abcr} = \frac{N_s}{N_r} r_r i_{abcr} + p \frac{N_s}{N_r} \lambda_{abcr}$$

$$\frac{N_s}{N_r} v_{abcr} = \left(\frac{N_s}{N_r}\right)^2 r_r i'_{abcr} + p \lambda'_{abcr}$$

define
$$v'_{abcr} = \frac{N_s}{N_r} v_{abcr}$$
 $r'_r = \left(\frac{N_s}{N_r}\right)^2 r_r$

$$v'_{abcr} = r'_{r}i'_{abcr} + p\lambda'_{abcr}$$

Transform to the Arbitrary Reference Frame

stator variables, use $\theta \longrightarrow K_s$ rotor variables, use $\beta \longrightarrow K_r$

Transform Voltage Equations

Stator

$$v_{qd0s} = r_s i_{qd0s} + \omega \lambda_{dqs} + p \lambda_{qd0s}$$

$$\lambda_{dqs} = \begin{bmatrix} \lambda_{ds} \\ -\lambda_{qs} \\ 0 \end{bmatrix}$$

Rotor

$$v'_{qd0r} = r'_{r}i'_{qd0r} + (\omega - \omega_{r})\lambda'_{dqr} + p\lambda'_{qd0r} \qquad \lambda_{dqr} = \begin{bmatrix} \lambda'_{dr} \\ -\lambda'_{qr} \\ 0 \end{bmatrix}$$

Transform Flux Linkages

Stator
$$\lambda_{abcs} = \mathbf{L}_s i_{abcs} + \mathbf{L'}_{sr} i'_{abcr}$$
$$\lambda_{qd0s} = K_s \mathbf{L}_s (K_s)^{-1} i_{qd0s} + K_s \mathbf{L'}_{sr} (K_r)^{-1} i'_{qd0r}$$

Rotor
$$\lambda'_{abcr} = (\mathbf{L'}_{sr})^{\mathrm{T}} i_{abcs} + \mathbf{L'}_{r} i'_{abcr}$$
$$\lambda'_{qd0r} = K_{r} (\mathbf{L'}_{sr})^{\mathrm{T}} (K_{s})^{-1} i_{qd0s} + K_{r} \mathbf{L'}_{r} (K_{r})^{-1} i'_{qd0r}$$

$$\begin{bmatrix} \lambda_{qdos} \\ \lambda'_{qdor} \end{bmatrix} = \begin{bmatrix} K_s \mathbf{L}_s (K_s)^{-1} & K_s \mathbf{L'}_{sr} (K_r)^{-1} \\ K_r (\mathbf{L'}_{sr})^{\mathrm{T}} (K_s)^{-1} & K_r \mathbf{L'}_r (K_r)^{-1} \end{bmatrix} \begin{bmatrix} i_{qdos} \\ i'_{qdor} \end{bmatrix}$$

$$K_{s}\mathbf{L}_{s}(K_{s})^{-1} = \begin{bmatrix} L_{ls} + L_{M} & 0 & 0\\ 0 & L_{ls} + L_{M} & 0\\ 0 & 0 & L_{ls} \end{bmatrix} \qquad L_{M} = \frac{3}{2}L_{ms}$$

$$K_{r}\mathbf{L}_{r}'(K_{r})^{-1} = \begin{bmatrix} L'_{lr} + L_{M} & 0 & 0 \\ 0 & L'_{lr} + L_{M} & 0 \\ 0 & 0 & L'_{lr} \end{bmatrix}$$

$$K_{s}\mathbf{L'}_{sr}(K_{r})^{-1} = K_{r}(\mathbf{L'}_{sr})^{\mathrm{T}}(K_{s})^{-1} = \begin{bmatrix} L_{M} & 0 & 0 \\ 0 & L_{M} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

IM q-d Model Equations

$$\begin{aligned} v_{qs} &= r_s i_{qs} + \omega \lambda_{ds} + p \lambda_{qs} \\ v_{ds} &= r_s i_{ds} - \omega \lambda_{qs} + p \lambda_{ds} \\ v_{0s} &= r_s i_{0s} + p \lambda_{0s} \\ v'_{qr} &= r'_r i'_{qr} + (\omega - \omega_r) \lambda'_{dr} + p \lambda'_{qr} \\ v'_{dr} &= r'_r i'_{dr} - (\omega - \omega_r) \lambda'_{qr} + p \lambda'_{dr} \\ v'_{0r} &= r'_r i'_{0r} + p \lambda'_{0r} \end{aligned} \qquad \begin{aligned} \lambda_{qs} &= L_{ls} i_{qs} + L_M \left(i_{qs} + i'_{qr} \right) \\ \lambda_{0s} &= L_{ls} i_{0s} \\ \lambda'_{qr} &= L'_{lr} i'_{qr} + L_M \left(i_{qs} + i'_{qr} \right) \\ \lambda'_{dr} &= L'_{lr} i'_{dr} + L_M \left(i_{ds} + i'_{dr} \right) \\ \lambda'_{dr} &= L'_{lr} i'_{dr} + L_M \left(i_{ds} + i'_{dr} \right) \\ \lambda'_{or} &= L'_{lr} i'_{or} + p \lambda'_{0r} \end{aligned}$$

IM q-d Equivalent Circuit

Torque Expressions

with
$$\omega = 0$$

$$T_e = \frac{3}{2} \frac{P}{2} \frac{1}{\omega_r} \left(\omega_r \lambda'_{qr} i'_{dr} - \omega_r \lambda'_{dr} i'_{qr} \right) \qquad T_e = \frac{3}{2} \frac{P}{2} \left(\lambda'_{qr} i'_{dr} - \lambda'_{dr} i'_{qr} \right)$$

$$T_e = \frac{3}{2} \frac{P}{2} \left(\lambda'_{qr} i'_{dr} - \lambda'_{dr} i'_{qr} \right)$$

with
$$\omega = \omega_r$$

$$T_e = \frac{3}{2} \frac{P}{2} \frac{1}{\omega_r} \left(\omega_r \lambda_{ds} i_{qs} - \omega_r \lambda_{qs} i_{ds} \right)$$

$$T_e = \frac{3}{2} \frac{P}{2} \left(\lambda_{ds} i_{qs} - \lambda_{qs} i_{ds} \right)$$

More Torque Expressions

in terms of currents

$$\begin{split} \lambda_{qs} &= \left(L_{ls} + L_{M}\right) i_{qs} + L_{M} i'_{qr} \\ \lambda_{ds} &= \left(L_{ls} + L_{M}\right) i_{ds} + L_{M} i'_{dr} \\ T_{e} &= \frac{3}{2} \frac{P}{2} \left[\left(L_{ls} + L_{M}\right) i_{ds} i_{qs} + L_{M} i_{qs} i'_{dr} - \left(L_{ls} + L_{M}\right) i_{qs} i_{ds} - L_{M} i_{ds} i'_{qr} \right] \\ T_{e} &= \frac{3}{2} \frac{P}{2} L_{M} \left(i_{qs} i'_{dr} - i_{ds} i'_{qr}\right) \end{split}$$

in terms of flux linkages

$$T_{e} = \frac{3}{2} \frac{P}{2} \left(\frac{L_{M}}{L_{ss}L'_{rr} - L_{M}^{2}} \right) \left(\lambda_{qs} \lambda'_{dr} - \lambda_{ds} \lambda'_{qr} \right) \qquad L_{ss} = L_{ls} + L_{M}$$

$$L'_{rr} = L'_{lr} + L_{M}$$

Torque in a-b-c Variables

$$T_{e} = -\frac{P}{2}L_{ms} \begin{cases} \left[i_{as} \left(i'_{ar} - \frac{1}{2}i'_{br} - \frac{1}{2}i'_{cr} \right) + \\ i_{bs} \left(i'_{br} - \frac{1}{2}i'_{ar} - \frac{1}{2}i'_{cr} \right) + \\ i_{cs} \left(i'_{cr} - \frac{1}{2}i'_{ar} - \frac{1}{2}i'_{br} \right) + \\ \left[\frac{\sqrt{3}}{2} \left[i_{as} \left(i'_{br} - i'_{cr} \right) + i_{bs} \left(i'_{cr} - i'_{ar} \right) + i_{cs} \left(i'_{ar} - i'_{br} \right) \right] \cos(\theta_{r}) \end{cases}$$

Torque in q-d variables

$$T_{e} = \frac{3}{2} \frac{P}{2} \left(\lambda'_{qr} i'_{dr} - \lambda'_{dr} i'_{qr} \right)$$

$$T_{e} = \frac{3}{2} \frac{P}{2} L_{M} \left(i_{qs} i'_{dr} - i_{ds} i'_{qr} \right)$$

$$T_{e} = \frac{3}{2} \frac{P}{2} \left(\lambda_{ds} i_{qs} - \lambda_{qs} i_{ds} \right)$$

$$T_{e} = \frac{3}{2} \frac{P}{2} \left(\frac{L_{M}}{L_{ss} L'_{rr} - L_{M}^{2}} \right) \left(\lambda_{qs} \lambda'_{dr} - \lambda_{ds} \lambda'_{qr} \right)$$

IM parameters

$$RPM := \frac{2 \cdot \pi \cdot rad}{60 \text{ s}}$$

$$r_s := 0.4\Omega$$

$$P := 4$$

$$r'_{r} := 0.2266\Omega$$

$$lagging := 1$$

$$L_{ls} := 5.73 \,\text{mH}$$
 $L_{M} := 64.4 \,\text{mH}$

$$L_{M} := 64.4 \, \text{mH}$$

$$L_{lr} := 4.64 \, mH$$

$$L_{ss} := L_{ls} + L_{M}$$

$$L_{SS} = 70.1 \text{mH}$$

$$L'_{rr} := L'_{lr} + L_M$$

$$L'_{rr} = 69 \text{mH}$$

operating conditions

$$f_e := 60 \,\mathrm{Hz}$$

$$\omega_e := 2 \cdot \pi \cdot f_e$$

$$\omega_e = 377 \frac{\text{rad}}{\text{s}}$$

$$\omega_{rm} := 1750 RPM$$

$$\omega_{\rm rm} = 183.3 \frac{\rm rad}{\rm s}$$

$$V_{LL} := 220 V$$

$$V_{s} := \frac{V_{LL}}{\sqrt{3}}$$

$$V_s = 127V$$

synchronous speed (no-load speed)

$$\omega_{\text{em}} := \left(\frac{2}{P}\right) \cdot \omega_{\text{e}}$$

$$\omega_{em} = 188.5 \frac{\text{rad}}{\text{s}}$$

slip

$$\omega_{em} = 1800 RPM$$

$$\omega_{\mathbf{r}} := \frac{\mathbf{P}}{2} \cdot \omega_{\mathbf{rm}}$$

$$\omega_{\rm r} = 366.5 \frac{\rm rad}{\rm s}$$

$$s := \frac{\omega_e - \omega_1}{\omega_e}$$

$$s = 0.0278$$

steady-state calculations (synchronous reference frame)

$$\begin{aligned} V_{qs_e} := \sqrt{2} \cdot V_s & V_{ds_e} := 0 \cdot V & V'_{qr_e} := 0 \cdot V & V'_{dr_e} := 0 \cdot V \\ \begin{pmatrix} I_{qs_e} \\ I_{ds_e} \\ I'_{qr_e} \\ I'_{dr_e} \end{pmatrix} := \begin{bmatrix} r_s & \omega_e \cdot L_{ss} & 0 & \omega_e \cdot L_M \\ -\omega_e \cdot L_{ss} & r_s & -\omega_e \cdot L_M & 0 \\ 0 & (\omega_e - \omega_r) \cdot L_M & r'_r & (\omega_e - \omega_r) \cdot L'_{rr} \\ -(\omega_e - \omega_r) \cdot L_M & 0 & -(\omega_e - \omega_r) \cdot L'_{rr} & r'_r \end{bmatrix}^{-1} \cdot \begin{pmatrix} V_{qs_e} \\ V_{ds_e} \\ V'_{qr_e} \\ V'_{dr_e} \end{pmatrix}$$

current and torque

$$\begin{split} &I_{s} := \frac{1}{\sqrt{2}} \cdot \sqrt{I_{qs_e}^{2} + I_{ds_e}^{2}} \\ &\lambda_{qs_e} := L_{ss} \cdot I_{qs_e} + L_{M} \cdot I'_{qr_e} \\ &\lambda_{ds_e} := L_{ss} \cdot I_{ds_e} + L_{M} \cdot I'_{dr_e} \\ &T_{e} := \frac{3}{2} \cdot \frac{P}{2} \cdot \left(\lambda_{ds_e} \cdot I_{qs_e} - \lambda_{qs_e} \cdot I_{ds_e}\right) \end{split}$$

magnetizing and rotor flux linkages

$$\lambda_{qM_e} := L_M \cdot \left(I_{qs_e} + \ I'_{qr_e} \right)$$

$$\lambda_{dM} e := L_M \cdot (I_{ds} e + I'_{dr} e)$$

$$\Lambda_M := \frac{1}{\sqrt{2}} \cdot \sqrt{\lambda_{qM_e}^2 + \lambda_{dM_e}^2}$$

$$\lambda'_{qr_e}\!:=\!L'_{rr}\!\cdot\!I'_{qr_e}+L_M\cdot\!I_{qs_e}$$

$$\lambda'_{dr} e := L'_{rr} \cdot I'_{dr} e + L_{M} \cdot I_{ds} e$$

$$\lambda'_{r} := \frac{1}{\sqrt{2}} \cdot \sqrt{\lambda'_{qr}_{e}^{2} + \lambda'_{dr}_{e}^{2}}$$

Induction Machine q-d Model

Rotor referred to stator

Formulated in the arbitrary reference frame (could later be set to synchronous, stationary, rotor)

Steady-state variables are constant in the synchronous reference frame

Torque can be expressed in terms of stator quantities, rotor quantities, currents, or flux linkages

Induction Machine Simulation

Predefined IM Models

Matlab Simulink SimPowerSystems

PSCAD

- Notation and model mostly matches the book
- Constant speed and free rotor modes
- Per unit parameters (SI or pu in Simulink)

SimPowerSystems IM Model

Electrical System

$$\begin{split} V_{qs} &= R_s i_{qs} + \frac{d}{dt} \phi_{qs} + \omega \phi_{ds} \\ V_{ds} &= R_s i_{ds} + \frac{d}{dt} \phi_{ds} - \omega \phi_{qs} \\ V'_{qr} &= R'_r i'_{qr} + \frac{d}{dt} \phi'_{qr} + (\omega - \omega_r) \phi'_{dr} \\ V'_{dr} &= R'_r i'_{dr} + \frac{d}{dt} \phi'_{dr} - (\omega - \omega_r) \phi'_{qr} \\ V'_{dr} &= R'_r i'_{dr} + \frac{d}{dt} \phi'_{dr} - (\omega - \omega_r) \phi'_{qr} \\ T_e &= 1.5 \, p(\phi_{ds} i_{qs} - \phi_{qs} i_{ds}) \end{split} \qquad \begin{array}{l} \phi_{qs} &= L_s i_{qs} + L_m i'_{qr} \\ \phi_{ds} &= L_s i_{ds} + L_m i'_{dr} \\ \phi'_{qr} &= L'_r i'_{qr} + L_m i_{qs} \\ \phi'_{dr} &= L'_r i'_{dr} + L_m i_{ds} \\ L_s &= L_{ls} + L_m \\ L'_r &= L'_{lr} + L_m \end{split}$$

PSCAD IM Model

A, B, C, N - stator electrical terminals

a b c - rotor electrical terminals

S = 1 - constant speed mode

S = 0 - mechanical equations

W - speed when S = 1 initial speed when S = 0 expressed in per unit as ω_r/ω_e

TL - load torque when S = 0

IM Per-Unit Example

Induction machine ratings/parameters

$$\omega_{\mathbf{b}} := 2 \cdot \pi \cdot 60 \,\mathrm{Hz}$$

$$P_{R} := 10 \, hp$$

$$V_B := \frac{220\,V}{\sqrt{3}}$$

$$P := 6$$

$$r_{s_pu} := 0.0453$$

$$X_{ls_pu} := 0.0775$$

$$X_{M_pu} := 2.042$$

$$r'_{r_pu} := 0.0222$$

$$X'_{lr_pu} := 0.0322$$

$$H := 0.5 s$$

per unit quantities

$$I_B := \frac{P_B}{3 \cdot V_B}$$

$$Z_B := \frac{V_B}{I_B}$$

$$T_{\mathbf{B}} := \frac{P_{\mathbf{B}}}{\left(\frac{2}{P}\right) \cdot \omega_{\mathbf{b}}}$$

$$\omega_b = 377 \frac{\text{rad}}{\text{s}}$$

$$P_{\mathbf{B}} = 7.457 \mathrm{kW}$$

$$V_B = 127V$$

$$2 \cdot H = 1 s$$

$$I_B = 19.57A$$

$$Z_B = 6.491\Omega$$

$$T_B = 59.3 \text{N} \cdot \text{m}$$

Induction Machine SI Quantities

machine parameters

$$r_s := r_{s_pu} \cdot Z_B$$

$$L_{ls} := \frac{X_{ls_pu} \cdot Z_B}{\omega_b}$$

$$\mathsf{L}_M := \frac{\mathsf{X}_{M_pu} \!\cdot\! \mathsf{Z}_B}{\omega_b}$$

$$r'_r := r'_{r_pu} \cdot Z_B$$

$$L'_{lr} := \frac{X'_{lr_pu} \cdot Z_B}{\omega_b}$$

$$J := 2 \cdot H \cdot \frac{T_B}{\left(\frac{2}{P}\right) \cdot \omega_b}$$

$$r_S = 0.294\Omega$$

$$L_{ls} = 1.33 \text{mH}$$

$$L_{M} = 35.16 \text{mH}$$

$$r'_{r} = 0.144\Omega$$

$$L'_{lr} = 0.55 \text{mH}$$

$$J = 0.472 kg m^2$$

SimPowerSystems Inputs

PSCAD Model Inputs

Stationary Reference Frame (Book Figure 6.11-2)

Synchronous Reference Frame (Book Figure 6.11-4)

Rotor Reference Frame (Book Figure 6.11-3)

Simulink

PSCAD

35

Induction Machine Simulation

Transient and steady-state performance prediction

Flux linkages or currents can be state variables

Simulink and PSCAD models are based on the standard *q-d* machine model with some additional features such as saturation

Simulink: parameters in SI units (or per-unit) using the same *q-d* model as in the book.

PSCAD: parameters entered in per-unit. Internal output variables in per-unit.

IM Steady-State Calculations

Could use *q-d* equations or *a-b-c* equations

Instantaneous voltages

$$v_{as} = \sqrt{2}V_s \cos(\theta_e)$$

$$v_{bs} = \sqrt{2}V_s \cos\left(\theta_e - \frac{2\pi}{3}\right)$$

$$v_{cs} = \sqrt{2}V_s \cos\left(\theta_e + \frac{2\pi}{3}\right)$$

$$\theta_e = \omega_e t$$
 $\omega_e = 2\pi f$

voltage phasors

$$\widetilde{V}_{as} = V_s \angle 0$$

$$\widetilde{V}_{bs} = V_s \angle -120^\circ$$

$$\widetilde{V}_{cs} = V_s \angle 120^o$$

constant
$$\omega_{rm}$$
 $\omega_r = \frac{P}{2} \omega_{rm}$

$$\omega_r = \frac{P}{2}\omega_{rm}$$

define slip
$$s = \frac{\omega_e - \omega_r}{\omega_e}$$

Per-Phase Steady-State Circuit

squirrel cage
$$\tilde{V}'_{ar} = 0$$

Steady-State (Average) Torque

$$P_{out} = 3r'_r \left(\frac{1-s}{s}\right) \left| \tilde{I}'_{ar} \right|^2$$

$$P_{out} = T_e \omega_{rm}$$

$$\omega_{rm} = \frac{2}{P} \omega_r = \frac{2}{P} (1-s) \omega_e$$

$$T_e = \frac{P}{2} \frac{1}{(1-s)\omega_e} P_{out}$$

$$T_e = 3 \frac{P}{2} \frac{r'_r}{s\omega} \left| \tilde{I}'_{ar} \right|^2$$

Torque in Terms of Voltage

input impedance
$$Z_{in} = Z_s + (Z_m || Z'_r)$$

$$Z_s = r_s + j\omega_e L_{ls}$$
 $Z'_r = \frac{r'_r}{s} + j\omega_e L'_{lr}$ $Z_m = j\omega_e L_M$

currents

$$\widetilde{I}_{as} = \frac{\widetilde{V}_{as}}{Z_{in}}$$
 $\widetilde{I}'_{ar} = -\left(\frac{Z_m}{Z_m + Z'_r}\right)\widetilde{I}_{as} = -\left(\frac{Z_m}{Z_m + Z'_r}\right)\frac{\widetilde{V}_{as}}{Z_{in}}$

torque

$$T_{e} = \frac{3\frac{P}{2}\omega_{e}L_{M}^{2}r'_{r}s|\tilde{V}_{as}|^{2}}{\left[r_{s}r'_{r} + s\omega_{e}^{2}\left(L_{M}^{2} - L_{ss}L'_{rr}\right)\right]^{2} + \omega_{e}^{2}\left(r'_{r}L_{ss} + sr_{s}L'_{rr}\right)^{2}} \qquad L_{ss} = L_{ls} + L_{M}$$

$$L'_{rr} = L'_{lr} + L_{M}$$

IM parameters

$$RPM := \frac{2 \cdot \pi \cdot rad}{60 \, s}$$

$$r_s := 0.4\Omega$$

$$P := 4$$

$$r'_{r} := 0.2266\Omega$$

$$lagging := 1$$

$$L_{ls} := 5.73 \,\mathrm{mH}$$

$$L_{M} := 64.4 \,\mathrm{mH}$$

$$L_{lr} := 4.64 \, mH$$

$$L_{ss} := L_{ls} + L_{M}$$

$$L_{SS} = 70.1 \text{mH}$$

$$L'_{rr} := L'_{1r} + L_{\mathbf{M}}$$

$$L'_{rr} = 69 \text{mH}$$

operating conditions

$$f_e := 60 \, \text{Hz}$$

$$\omega_e := 2 \cdot \pi \cdot f_e$$

$$\omega_e = 377 \frac{\text{rad}}{\text{s}}$$

$$\omega_{rm} := 1750 RPM$$

$$\omega_{\rm rm} = 183.3 \frac{\rm rad}{\rm s}$$

$$V_{LL} := 220 \text{ V}$$

$$V_{s} := \frac{V_{LL}}{\sqrt{3}}$$

$$V_s = 127V$$

synchronous speed (no-load speed)

$$\omega_{\text{em}} := \left(\frac{2}{P}\right) \cdot \omega_{\text{e}}$$

$$\omega_{em} = 188.5 \frac{\text{rad}}{\text{s}}$$

slip

$$\omega_{em} = 1800 \text{RPM}$$

$$\omega_{\mathbf{r}} := \frac{\mathbf{P}}{2} \cdot \omega_{\mathbf{rm}}$$

$$\omega_{\rm r} = 366.5 \frac{\rm rad}{\rm s}$$

$$s := \frac{\omega_e - \omega_g}{\omega_e}$$

$$s = 0.0278$$

impedances

$$Z_s := r_s + j \cdot \omega_e \cdot L_{ls}$$

$$Z_m := j \cdot \omega_e \cdot L_M$$

$$Z'_r := \frac{r'_r}{s} + j \cdot \omega_e \cdot L'_{lr}$$

$$Z_{\mathbf{f}} := \frac{1}{\frac{1}{Z_{\mathbf{m}}} + \frac{1}{Z'_{\mathbf{r}}}}$$

$$Z_{in} := Z_s + Z_f$$

currents

$$\mathrm{V}_{as} := \mathrm{V}_s {\cdot} \mathrm{e}^{\mathrm{j} \cdot \mathrm{0}}$$

$$I_{as} := \frac{V_{as}}{Z_{in}}$$

$$I'_{ar} := -I_{as} \cdot \frac{Z_m}{Z_m + Z'_r}$$

torque and power

rotor flux linkage

$$\Lambda'_r := \frac{-I'_{ar} \cdot \frac{r'_r}{s}}{j \cdot \omega_e}$$

IM Steady-State Model

Straightforward and quick calculation of steady-state operation

Model provides insight into motor operation

Can be used to predict peak torque, stall torque, and starting current

Simplified IM Steady-State Model

$$T_e = 3\frac{P}{2} \frac{r'_r}{s\omega_e} \left| \tilde{I}'_{ar} \right|^2$$

$$\left| \tilde{I}'_{ar} \right|^2 = \frac{\left| \tilde{V}_{as} \right|^2 s^2}{r_r^2}$$

$$T_e = 3\frac{P}{2} \frac{s \left| \tilde{V}_{as} \right|^2}{r'_r \omega_e} = 3\frac{P}{2} \left(\frac{\left| \tilde{V}_{as} \right|}{\omega_e} \right)^2 \frac{\omega_e - \omega_r}{r'_r}$$

Note: model suggest

- Torque proportional to slip
- Torque inversely proportional to rotor resistance
- Torque proportional to stator voltage squared

Calculations Using the Simplified Model

Table 4.10-1 Induction Machine Parameters

Machi	ne Ratir	ıg	$T_B \ (ext{N} \cdot ext{m})$	$I_{B(abc)}$ (amps)	r _s (ohms)	X _{ls} (ohms)	X _M (ohms)	X'_{lr} (ohms)	r_r^J (ohms)	J (kg · m ²)
hp	Volts	rpm								
3	220	1710	11.9	5.8	0.435	0.754	26.13	0.754	0.816	0.089
50	460	1705	198	46.8	0.087	0.302	13.08	0.302	0.228	1.662
500	2300	1773	1.98×10^{3}	93.6	0.262	1.206	54.02	1.206	0.187	11.06
2250	2300	1786	8.9×10^{3}	421.2	0.029	0.226	13.04	0.226	0.022	63.87

Note

- Inertia is proportional to power rating
- Rotor resistance is small for large machines

3 horsepower machine

$$f_e := 60 \,\mathrm{Hz}$$

$$V_{as} := \frac{220 \text{ V}}{\sqrt{3}}$$

$$V_{as} = 127V$$

$$\omega_e := 2 \cdot \pi \cdot f_e$$

$$\omega_{\rm e} = 377 \frac{\rm rad}{\rm s}$$

$$P := 4$$

$$r_s := 0.435\Omega$$

$$L_{ls} := \frac{0.754\Omega}{\omega_e}$$

$$L_{ls} = 2 \, mH$$

$$L_{\mathbf{M}} := \frac{26.13\Omega}{\omega_{\mathbf{e}}}$$

$$L_{\mathbf{M}} = 69.3 \text{mH}$$

$$L_{lr}' := \frac{0.754\Omega}{\omega_e}$$

$$L'_{lr} = 2 mH$$

$$r'_{r} := 0.816\Omega$$

$$\mathsf{L}_{ss} := \mathsf{L}_{ls} + \mathsf{L}_{M}$$

$$L_{ss} = 71.3 \text{mH}$$

$$L'_{rr} := L'_{lr} + L_M$$

$$L'_{rr} = 71.3 \text{mH}$$

$$\omega_{\text{rm}} := 1710 \text{RPM}$$

$$\omega_{\rm rm} = 179 \frac{\rm rad}{\rm s}$$

$$\omega_{\mathbf{r}} := \frac{\mathbf{P}}{2} \cdot \omega_{\mathbf{rm}}$$

$$\omega_{\rm r} = 358 \frac{\rm rad}{\rm s}$$

$$s_{rated} := \frac{\omega_e - \omega_r}{\omega_e}$$

$$s_{rated} = 0.05$$

torque equations and plots

2250 horsepower machine

$$f_e := 60 \, \text{Hz}$$

$$V_{as} := \frac{2250 \,\mathrm{V}}{\sqrt{3}}$$

$$V_{as} = 1299V$$

$$\omega_e := 2{\cdot}\pi{\cdot}f_e$$

$$\omega_e = 377 \frac{\text{rad}}{\text{s}}$$

$$P := 4$$

$$r_s := 0.029\Omega$$

$$L_{ls} := \frac{0.226\Omega}{\omega_e}$$

$$L_{ls} = 0.599 \text{mH}$$

$$L_{\mathbf{M}} := \frac{13.04\Omega}{\omega_{\mathbf{e}}}$$

$$L_{\mathbf{M}} = 34.6 \mathrm{mH}$$

$$L_{lr}' := \frac{0.226\Omega}{\omega_e}$$

$$L'_{lr} = 0.599 \text{mH}$$

$$r'_{r} := 0.022\Omega$$

$$L_{ss} := L_{ls} + L_{M}$$

$$L_{ss} = 35.2 \text{mH}$$

$$L'_{rr} := L'_{lr} + L_M$$

$$L'_{rr} = 35.2 \text{mH}$$

$$\omega_{\text{rm}} := 1786 \text{RPM}$$

$$\omega_{\rm rm} = 187 \frac{\rm rad}{\rm s}$$

$$\omega_{\mathbf{r}} := \frac{\mathbf{P}}{2} \cdot \omega_{\mathbf{rm}}$$

$$\omega_{\mathbf{r}} = 374 \frac{\text{rad}}{\text{s}}$$

$$s_{rated} := \frac{\omega_e - \omega_r}{\omega_e}$$

$$s_{rated} = 0.0078$$

torque equations and plots

$$T_{e}(s) := \frac{3 \cdot \frac{P}{2} \cdot \omega_{e} \cdot L_{M}^{2} \cdot r_{r}' \cdot s \cdot \left(\left|V_{as}\right|\right)^{2}}{\left[r_{s} \cdot r_{r}' + s \cdot \omega_{e}^{2} \cdot \left(L_{M}^{2} - L_{ss} \cdot L_{rr}'\right)\right]^{2} + \omega_{e}^{2} \cdot \left(r_{r}' L_{ss} + s \cdot r_{s} \cdot L_{rr}'\right)^{2}}$$

$$T_{e_approx}(s) := 3 \cdot \frac{P}{2} \cdot \frac{s \cdot \left(\left|V_{as}\right|\right)^{2}}{r_{r}' \cdot \omega_{e}}$$

$$s := 0.00010.001..1$$

$$T_{e}(s)$$

$$T_{e_approx}(s)$$

$$0$$

$$1$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0$$

$$0.04$$

$$0.035$$

$$0.03$$

$$0.025$$

$$0.02$$

$$0.015$$

$$0.01$$

$$0.005$$

Induction Machine Simplified Model

Simple determination of steady-state operation

Accurate in normal operation close to no-load speed