PACH Series Packaged Air Conditioners

(Range 5 TR to 27 TR) Refrigerant - R22

Bulletin # 014/2010 Supersedes Bulletin # 014/2006

Contents

AND THE REAL PROPERTY OF THE PERSON OF THE P	
Introduction	
Legend	2
Nomenclature	2
General Features	
Component Features	3
Optional Features	
Engineering Specifications 50Hz	
Engineering Specifications 60Hz	
Capacity Ratings 50Hz	
Capacity Ratings 60Hz	
Fan Performance Data	

Selection Procedure	13
Component Air Pressure Drop	
Electric Heating	13
Field Connections	14
Field Wiring Requirement Schemat	ic14
Typical Wiring Diagram	15
Electrical Data	
Filter Section & Dimensional Data	.18~19
Space & Location Requirements	20
Protective Coatings	20
Guide Specifications Page Fo	old

Legend

The following legends are used throughout this manual:

AFR	Air Flow Rate
BPF	By-pass Factor
C.Cap	Cooling Capacity
CFM.	Cubic feet per minute
EER	Energy Efficiency Ratio
Hz	Hertz
in.wg	inches of water gauge
ΚW	Kilowatt

Kg Kilogram
Ibs Pounds weight (British units)

L/S Liters per second

MBH	BTUH x 1000
PH	Phase
Pa	Pascal
PD	Pressure Drop
-	_ '

PI Compressor Power Input in

ΚW

RPM Rotations per Minute RPS Rated Power Supply

TR Tons of refrigeration = 12 MBH

/ Volts

Nomenclature

Introduction

New SKM **PACH** Series Packaged Air Conditioners are designed and manufactured to meet the requirements of the Gulf's severe climatic conditions and are built specifically for outdoor installations, either on ground or roof level

The **PACH** Series Packaged Air Conditioners are ideal for warehouses, large halls, schools, mosques, or wherever the requirement is for a heavy duty unit with a hermetic compressor.

Available in 14 different sizes from 5.0 to 24.0 nominal TR (18 to 85 kW) in 50Hz and from 5.5 to 27.0 nominal TR (20 to 94 kW) in 60Hz, PACH units are designed to operate in a wide ambient temperature range from 50°F (10.0°C) to 125°F (52.0°C) and even lower if an optional head pressure control system is attached.

PACH units are designed and rated in accordance with ARI-340-360 and 210/240 standards.

PACH Series Packaged Air Conditioners are completely assembled, internally wired, charged with refrigerant at factory, tested before despatch and ready for installation. All that is required on site is connecting ducting and power supply. This greatly reduces installation work and costs. They are designed for ducted systems which will enable them to be installed on roof tops or on the ground.

PACH Series Packaged Air Conditioners are yet another quality product from SKM, which are

Built in the Gulf ... for the world.

General Features

The PACH Series Packaged Air Conditioners is yet another new unique series from SKM incorporating a high efficiency cooling coil, heavy duty evaporator blower and motor resulting in an extremely rugged, long-life, energy efficient, self-contained unit that will provide cooling at higher efficiency over a long and extended life. Compared to the traditional units available in the market, the PACH series Packaged Units are very low on energy consumption.

The flexibility of the PACH series is ideal for consideration on special applications including:

- 100% fresh air units or units with high incidence of outdoor fresh air.
- Units with unusual filtration requirements incorporating carbon, bag and/or other filters.
- Units with special motor requirements including explosion proof or with anti-condensate heaters.
- Units with economiser options or with air-to-air heat exchangers between fresh air and exhausted air, factory built-in.
- Special units for ducted condenser air using centrifugal type condenser air fans.
- Units constructed of aluminium or stainless steel.
- For those special off-shore or refinery or sewage treatment applications requiring specially coated heat transfer coils.

All of these flexibilities cannot be cataloged nor all the possible options listed. They are available and SKM has had over 20 years of experience in designing and building such units to meet the most stringent requirements of most applications. For your special requirements please consult SKM factory.

Component Features

The common standard features of all PACH series Packaged Units include the following.

Compressor

Compressors used in the PACH series Packaged Units are hermetically sealed reciprocating type.

Compressors conform to internationally recognized standards like NF, VDE, CSA & III

All compressors are refrigerant gas cooled and provided with built-in protection comprising an internal overload device and internal pressure relief valve for long life quiet operation.

The compressors, incorporating a built-in muffler, are mounted on springs within a heavy gauge steel housing to give a low noise level. In addition, the compressors are provided with vibration isolators to further minimize noise and vibration.

The compressors are selected for their extremely high energy efficiency and heavy duty industrial/commercial usage with economy of operation.

Condenser

Condenser coils are manufactured from seamless copper tubes mechanically bonded to aluminium fins to ensure optimum heat transfer. All coils are tested against leakage by air pressure of 450 psig (3100 KPa) under water. All standard coils are 3 or 4 rows/12 FPI, 3/8" (9.5 mm) O.D. tubes. An integral subcooling circuit is provided to increase the cooling capacity, without additional operating costs.

For different application requirements, other optional condenser fin materials are available as listed under options.

All models of the PACH series Packaged Units are restricted to a 12FPI or 144 fins per foot (2.1 mm fin spacing) condenser coil. Gulf dust storms and the general level of available maintenance in Gulf countries ensures this condenser coil design shall provide long life and maintenance-free service with the least possibility of blockage on the condenser.

Ample condenser surface and sensible air flow across the condenser ensures a low temperature differential between condensing temperature and the high Gulf ambients making the PACH series Packaged Units perform efficiently and durably.

The fin thickness of a standard SKM PACH series package unit is atleast 20% more than the competition.

The condenser coil, thus, is better able to withstand the Gulf environment

Condenser Fans

The condenser fans are propeller type, aluminium alloy blades, directly driven by electric motors.

Motors are Totally Enclosed Air Over (TEAO) six pole with class 'F'

insulation and minimum IP55 protection.

The TEAO and class 'F' insulation features ensure long life and are unique to SKM. The motors are factory wired using wires specially selected for high ambients operation, to unit control panel where the motor contactors are located to control the operation of these motors.

The condenser fans are individually statically and dynamically balanced at the factory. Complete fan assembly is provided with suitable acrylic coated fan guard.

Evaporator

Evaporator coils are manufactured from 3/8" (9.5 mm) OD seamless copper tubes mechanically bonded to aluminium fins to ensure optimum heat transfer. All evaporator coils are tested against leakage by air pressure of 250 psig (1720 kPa) under water.

The DX evaporator coils are complete with headers of seamless copper tubing. Supply headers incorporate a correctly sized distributor.

For different application requirements, other evaporator coil material and/or treatment are available on request. Evaporator coils are rated in accordance with ARI/410/91.

The PACH series dual circuit evaporator coils come complete with the correct configuration and split with individual thermostatic expansion valves and multi-circuited distributors providing capacity modulation to match the compressors.

The cross wave fin and staggered tube design uses the evaporator surface effectively by creating uniform air turbulence and optimum heat transfer over the entire finned surface.

Requirements for higher face velocities can be handed by use of moisture eliminators, thus preventing carry over.

Evaporator Fan & Drive

Standard evaporator fan is forward curved centrifugal DIDW, statically and dynamically balanced complete with shaft, self-aligning, lubricated for life ball bearings.

PACH series models 5215 & 6216 onwards have dual fans mounted on a single heavy duty shaft. The fan(s) are driven by a single electric motor, Class F insulated, IP55 protected & are totally enclosed 4 pole motor rated for continuous operation at design conditions.

The motor is fitted with an adjustable vee-belt drive, as standard. Shaft ends insert into oversized, tapered lock self-aligning, long-life bearings. Motor is factory wired to the control panel where the motor contactors are located.

Refrigerant Circuit

PACH series Packaged Units come complete, as standard, with correctly sized and piped refrigerant lines including filter drier, thermostatic expansion valve, shut-off valve and a full operating charge of R-22 in each circuit.

Piping is fabricated from ACR grade copper piping. Suction line is insulated with 1/2" (12mm) thickness closed cell pipe insulation.

Casing/Structure

The unit casing used in PACH Packaged units is made of zinc coated galvanized steel sheets conforming to JIS-G 3302 and ASTM A525 which is phosphatized before application of an electrostatic powder coat of approximately 60 microns and then oven-baked for a tough and lasting weather resistant finish. This finish and coating can pass a 1000 hour in 5 % salt spray testing at 95°F (35°C) and 95% relative humidity as per ASTM B117 - 95.

The entire casing panels are designed to be leak proof against rain and ensure rain water cannot enter the H-series packaged air conditioner interior. The evaporator section is sealed with vinyl gaskets.

The standard evaporator section is insulated from all sides with black-neoprene faced heavy density 1" thick fiber glass insulation. The insulation-cum-sound liner meets the fire requirements of NFPA90A & 90B and is secured with mechanical fasteners in addition to water resistant adhesive.

For applications requiring an inner skin in the evaporator section, option DSE provides an 0.8 mm galvanized inner skin. Suitable isolation to ensure no cold-bridges and no condensation on the exterior of the units is provided.

The condensate drain pan is heavily insulated to ensure condensation does not occur. Stainless steel condensate drain pans are available on request.

Electrical Control Panel

The unit mounted control panel is an IP 54 enclosure and incorporates all starting, operating and safety controls. This IP 54 control panel, with a dead front panel cover, screwed onto the enclosure prevents unauthorized personnel from tampering with controls. Safety and operating controls are arranged for easy accessibility. All wiring is sized as per NEC regulations; Articles 430 & 440. Wiring is fully ferruled enabling ease of proper identification. Panel can be made to IP-55 protection, as an option, if required.

LEGEND :
C Contactor
CF Control Fuse

CR Control Relay
CS Control Switch
CT Control Terminol I

CT Control Terminal Block
F Power Circuit Fuse

OL Overload Relay
PT Power Terminal Block
TDR Time Delay Relay
TFR Transformer

The standard IP54 control panel in the PACH series incorporates the following:

- Individual compressor, condenser fan motor and evaporator fan motor contactors.
- Condenser fan motor and evaporator fan motor overload relays.
- 24 volts transformer for user supplied and installed room thermostat
- Anti-recycling time delay relay
- · Control circuit disconnect switch
- Power & control circuit terminal block

Optional Features

PACH series stands for flexibility. These heavy duty packaged air conditioners are available with a multitude of optional features which makes design and selection extremely easy and capable of matching the most stringent of requirements.

Factory Installed

Microprocessor Based Control

(MCP)

The controller consists of modules with on board display and user interface terminals. The modules are available in both panel and DIN rail versions. The controller has compact dimensions and manage package unit with up to 4 steps and 2 circuits. The controller has the following features.

- Built in anti recycle timer to prevent compressor short cycling.
- Auto, lead/lag of the compressor.
- Common alarm available through the dry contact.
- Remote start/stop of the unit.
- Cooling and heating function are available.
- BMS connectivity with external converter (Protocol: MODBUS)

Following parameters can display on the controller LCD:

- Return or space air temperature.
- High pressure, low pressure and air flow alarm.
- · Capacity steps.
- Icon of different modes.

The user interface has two options; it could be Remote Terminal and Room Terminal.

Remote terminal:

It is sophisticated graphic LCD for the panel mounting, installation on the unit, or remote wall mounting, for the complete control of the unit. This terminal has an excellent feature for servicing and setting up the unit. It can interface easily through RS485 terminal and require external temperature sensor to control the unit.

Room terminal:

It has LCD with icons for remote wall-mounting in the room as a simple user interface, with built in temperature plus humidity sensor and the band management, for use in residential or smaller commercial services applications. Due to the built in temperature sensor, external sensors are not required.

Note: For customize control system, please consult SKM

Electric Heating

(HC@)

The heater batteries shown below are the standard available for this option:

Electric heater batteries are available with finned type elements. Heating elements are constructed from high quality 80/20 nickel chrome resistance wire centered in metal tubes by compressed magnesium oxide. Helical fins tightly wound round tubular heating element.

Standard components included when ordered are:

- 3 pole magnetic contactor per stage
- 1 primary over current protection provided by Auto reset high limit safety cut-out
- 1 secondary over current protection provided by Manual reset high limit safety cut-out for positive break
- Control fuse
- Control switch
- Power fuses per NEC if total load exceeds 48 amps
- Factory installed air flow switch

Following are the Standard Electrical Heating Option KW rating, options other than those specified below can be supplied on request. Consult SKM for full details.

PA	СН	Heater kW	Stages
5105	6106	7.5	
5106	6107	7.5	
5107	6108	9	1
5108	6109	7	ı
5109	6110	12	
5210	6211	12	
5111	6112		
5211	6212		
5112	6113	18	
5213	6214		2
5215	6216		2
5219	6221		
5222	6224	24	
5224	6227		

Alternative Condenser Material

Made of copper tubes and alternative fin material and/or protective coating.

- For Copper Fins specify (FC)
- For Copper Fins electrotinned specify (FCT)
- For precoated aluminum fins specify (FAP)

Alternative Evaporator Material

Made of copper tubes and alternative fin material and/or protective coats.

- For Copper Fins specify (FC)
- For Copper Fins electrotinned, specify (FCT)
- For Precoated Aluminum fins, specify (FAP)

Condenser Coil Guard (CGP)

Wire mesh guard, in painted finish for condenser coils. Recommended on ground level installations where coil needs to be protected against vandalism.

Double Skin Evaporator (DSE)

Inner skin of 0.8mm galvanized sheet in the evaporator section provided with no cold bridges. Recommended for 100% fresh air applications.

Filter Section (FFS/VFS/BFS)

Can be provided for flat filters or vee filters configuration for relatively higher or lower, respectively, face velocities on the filters. Bag filter section can be provided, additionally, if required.

Flat filter sections can accommodate 1" or 2" thick cleanable media aluminium or synthetic filters for particle/dust removal.

The Bag Filter section can house 22", 30" or 36" deep bag filters to meet specific requirements of efficiencies or contaminents in the air stream. Specify on enquiry / order write up.

High Ambient Operation Kit (HAO)

For operation, at reduced load, at ambient temperature between 125°F (52°C) and 131°F (55°C) maximum.

Hot Gas Bypass System (GBP)

With solenoid to enable operation of a large sized unit at very low loads, during low ambients due to application requirements.

IP-55 Control Panel (ICP)

IP55 enclosure for extra protection against the elements.

Isolated Condenser Fan Motor (CMS)

For elimination of extraneous noise and vibrations from condenserfan motor, the motors are individually isolated from the frame.

Low Ambient Operation Kit (LAO)

For operation down to lower than normal Gulf ambients. It is also required for special applications.

Pressure Gauges (SDG)

Suction, discharge and oil pressure indication of each refrigerant circuit. Gauges mounted **outside** the Control Panel.

Pump Down Facility (PD)

For providing means to pump down circuit refrigerant gas into condenser.

Run Hour Meter(s) (RHM)

To monitor operating hours of each compressor.

Stainless Steel Drain Pan (SSP)

Heavy gauge 316 stainless steel drain pan under the entire cooling coil and moisture eliminator. Insulation under drain pan as per SKM standard.

Voltage Monitoring Module (VMM)

To prevent Packaged Air Conditioner operation in the event of Phase burn-out, Phase reversal, and Under / Over voltage on the incoming line voltage.

Voltage Monitoring Module (DVM)

To meet DEWA Regulations.

Lead Lag Switch For double circuit units. (LLS)

Electronic Expansion Valves (EEV)

Manual Reset Type High Pressure Switch (MHP)

External Overload Protection (EOP)

For those electrical specification requires additional overload protection for the compressors.

Extra Shut Off Valve	(XFV)
----------------------	-------

Two inch insulation For evaporator section (2SG)

Anti Spark Fan Belt (SPF)

Sand Trap Louvre (ASL)

Condenser & Evaporator Fans with polyglycoat coating

Marine Paint (MP)

To provide increased corrosion resistance coastal environments and offshore locations.

Aries Coating for Aluminum Fins (FAA) & Copper Fins (FCA)

For both evaporator and condenser coils.

Galvanized Frame And Base (GFB)

Steel frame and base which are hot dip galvanized after manufacture. This is recommended for highly corrosive environments.

Mixing Box With / Without Sand Trap Louvre and Bird Screen On Fresh Air Side. (BMX)

Options for Field Installations

Anti-vibration mounts

(CAVM)

Recommended for roof mounted units or other locations in the vicinity of occupied spaces, where noise may be objectionable.

Cooling Only Thermostat (Not with Option MCP) (COTS)

Single stage or two stage wall mounted type are available from SKM When option SCK ordered, customer **must** obtain thermostat to match total available steps and type desired.

Cooling Heating Thermostat (Not with Option MCP) (CHTS)

Single stage or two stage cooling with single or two stage heating versions are available from SKM. Specify when ordering. Any other requirements to be procured by customer from any control vendor to suit.

Hi-Lo and Oil Pressure Gauges (CSDG)

Without piping or isolating pet cocks.

(PGF)

Special custom built units incorporating specially required features like units for larger capacities, units with heat pipe, units with anti-condensation resistance heaters embedded in condenser motors, explosion proof units incorporating open driven compressors etc. can be manufactured on request.

For off-shore applications, special units with stainless steel panels and explosion proof units suitable for classified areas or zones (Class-I Div I, Div II / Zone-I, Zone II, etc.) can be manufactured as per customer requirement.

Contact SKM for all such applications or requirements.

ENGINEERING SPECIFICATIONS - 50 HZ

M	odel		PACH	5105	5106	5107	5108	5109	5210	5111
C	ooling Capa	acity (1)	TR	5.0	5.3	6.2	7.4	9.1	9.7	10.8
		acity (1)	kW	17.6	18.6	21.8	25.9	32.0	34.3	38.1
C	ooling Capa	acity (2)	TR	4.6	4.8	5.7	6.7	8.3	8.9	9.8
		.,	kW	16.1	17.0	19.9	23.5	29.0	31.4	34.4
5	Type Code			MH 6	MH 7	MH 8	lermetic Recipr MH 10	ocating MH 12	MH 6	MH 14
Compressor	Quantity		No.	1 1	MH /	1 NIH 8	MH 10	1 1 NH 12	2	1 14
ᇤ	Quantity	<u>'</u>	US Gal	0.5	0.5	0.5	1.1	1.1	0.5	1.1
೭	Oil Char	ge per Compressor	Liter	1.9		1.9		4.2	1.9	
		To one o	Litei	1.9	1.9		4.2		1.9	4.2
	Coil	Туре	on 6	9.7	9.7		opper Tubes A 12.2	14.7	10.4	147
	Con	Face Area	sq. ft.	0.9	0.9	12.2 1.1	12.2	14.7	19.4 1.8	14.7 1.4
		Туре	Sq. III.	0.9	0.9		rect Drive Alun		1.0	1.4
Condenser		Code / Quantity		628 / 1	628 / 1	723 / 1	729 / 1	823 / 1	628 / 2	823 / 1
nde	Fan		cfm	4530	4530	6720	7450	9140	9060	8790
2		Air Flow Rate	I/s	2138	2138	3171	3516	4313	4275	4148
		Туре						nsulation, 6 Pol		
	Motor	Size	kW	0.37	0.37	0.75	1.10	1.50	2 x 0.37	1.50
		Power Input	kW	0.55	0.55	1.00	1.40	2.10	2 x 0.55	2.10
		Туре			Dire	ct Expansion,	Cross Wave Fir	n, Staggered Tu	ibes	!
	Coil	Face Area	sq. ft.	4.7	4.7	5.5	6.6	7.7	8.6	9.6
			sq. m.	0.4	0.4	0.5	0.6	0.7	0.8	0.9
tor		Туре						Width Belt Driv		
Evaporator	Fan	Code / Quantity		N10 / 1	N10 / 1	N10 / 1	N12 / 1	N15 / 1	N15 / 1	N15 / 1
vap		Air Flow Rate	cfm	2200	2400	2750	3300	3830	4170	4800
-		Turns	I/s	1038	1133	1298	1558	1808	1968	2266
	Motor	Type Size	kW	1.1	1.1	1.1	sed, Class F In 1.5	2.2	2.2	2.2
	IVIOTOI	Power Input	kW	1.1	1.4	1.1	2.0	2.2	2.2	2.2
		Power input	lbs	11.0	12.1	13.6	14.5	16.5	22.0	22.0
R	efrigerant C	perating Charge (R22)	kg	5.0	5.5	6.2	6.6	7.5	10.0	10.0
N	umber of Re	efrigerant Circuits	No.	1	1	1	1	1	2	1
			lbs	702	704	812	925	1081	1218	1155
A	pproximate	Machine Weight	kg	318	319	368	420	490	552	524
M	odel		PACH	5211	5112	5213	5215	5219	5222	5224
		acity (1)	TR	10.6	11.7	12.3	14.6	19.3	22.3	24.2
	odel ooling Capa	acity (1)	TR kW	10.6 37.4	11.7 41.0	12.3 43.4	14.6 51.2	19.3 67.7	22.3 78.3	24.2 85.1
C			TR kW TR	10.6 37.4 9.7	11.7 41.0 10.6	12.3 43.4 11.3	14.6 51.2 13.3	19.3 67.7 17.3	22.3 78.3 20.1	24.2 85.1 21.8
C	ooling Capa		TR kW	10.6 37.4	11.7 41.0	12.3 43.4 11.3 39.8	14.6 51.2 13.3 46.6	19.3 67.7 17.3 61.0	22.3 78.3	24.2 85.1
C	ooling Capa ooling Capa Type		TR kW TR	10.6 37.4 9.7 34.2	11.7 41.0 10.6 37.2	12.3 43.4 11.3 39.8 Fully H	14.6 51.2 13.3 46.6 Jermetic Recipr	19.3 67.7 17.3 61.0 ocating	22.3 78.3 20.1 70.6	24.2 85.1 21.8 76.8
C	ooling Capa ooling Capa Type Code	acity (2)	TR kW TR kW	10.6 37.4 9.7 34.2	11.7 41.0 10.6 37.2	12.3 43.4 11.3 39.8 Fully H	14.6 51.2 13.3 46.6 Jermetic Recipr	19.3 67.7 17.3 61.0 ocating MH 12	22.3 78.3 20.1 70.6	24.2 85.1 21.8 76.8
C	ooling Capa ooling Capa Type Code Quantity	acity (2)	TR kW TR kW	10.6 37.4 9.7 34.2 MH 7	11.7 41.0 10.6 37.2 MH 16	12.3 43.4 11.3 39.8 Fully H MH 8	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2	19.3 67.7 17.3 61.0 ocating MH 12	22.3 78.3 20.1 70.6 MH 14	24.2 85.1 21.8 76.8 MH 16
C	ooling Capa ooling Capa Type Code Quantity	acity (2)	TR kW TR kW	10.6 37.4 9.7 34.2	11.7 41.0 10.6 37.2	12.3 43.4 11.3 39.8 Fully H	14.6 51.2 13.3 46.6 Jermetic Recipr	19.3 67.7 17.3 61.0 ocating MH 12	22.3 78.3 20.1 70.6	24.2 85.1 21.8 76.8
C	ooling Capa ooling Capa Type Code Quantity	acity (2)	TR kW TR kW No.	10.6 37.4 9.7 34.2 MH 7 2 0.5	11.7 41.0 10.6 37.2 MH 16 1	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1	22.3 78.3 20.1 70.6 MH 14 2	24.2 85.1 21.8 76.8 MH 16 2
C	ooling Capa ooling Capa Type Code Quantity	ge per Compressor	TR kW TR kW No.	10.6 37.4 9.7 34.2 MH 7 2 0.5	11.7 41.0 10.6 37.2 MH 16 1	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1	22.3 78.3 20.1 70.6 MH 14 2	24.2 85.1 21.8 76.8 MH 16 2
C	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area	TR kW TR kW No. US Gal Liter	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area Type	TR kW TR kW No. US Gal Liter	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes At 24.4 2.3 irect Drive Alun	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 irect Drive Alun 729 / 2	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area Type	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260
C	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air C	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F II	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F Ii	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1	14.6 51.2 13.3 46.6 termetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 trect Drive Alun 729 / 2 14900 7031 Dver, Class F It 2 x 1.1 2 x 1.4	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type	TR kW TR kW No. US Gal Liter sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1	14.6 51.2 13.3 46.6 termetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 trect Drive Alun 729 / 2 14900 7031 Dver, Class F It 2 x 1.1 2 x 1.4	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617
Compressor	ooling Capa Type Code Quantity Oil Char Coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 Direction of the control of the con	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cet Expansion, (10.9 1.0	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F Ii 2 x 1.1 2 x 1.4 Cross Wave Fii 13.6 1.3	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 bbes 18.0 1.7	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1
Condenser Compressor	ooling Capa Type Code Quantity Oil Char Coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction of the control of t	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cet Expansion, (10.9 1.0	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F Ii 2 x 1.1 2 x 1.4 Cross Wave Fii 13.6 1.3 le Inlet, Double	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 abes 18.0 1.7	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7
Condenser Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction of the control of t	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F II 2 x 1.1 2 x 1.4 Cross Wave Fir 13.6 1.3 le Inlet, Double N12 / 2	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ubes 18.0 1.7 /ee N15 / 2	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7
Condenser Compressor	ooling Capa Type Code Quantity Oil Char Coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW cfm cfm	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9	11.7 41.0 10.6 37.2 MH 16 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direc 10.0 0.9 C N15 / 1 5000	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 frect Drive Alun 729 / 2 14900 7031 Over, Class F II 2 x 1.4 Cross Wave Fir 13.6 1.3 lie Inlet, Double N12 / 2 6000	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 1, Staggered Tu 15.0 1.4 Width Belt Drix N12 / 2 7000	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ibes 18.0 1.7 /ee N15 / 2 8000	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7
Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction of the control of t	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 lrect Drive Alun 729 / 2 14900 7031 Over, Class F In 2 x 1.4 Cross Wave Fit 13.6 1.3 let Inlet, Double N12 / 2 6000 2832	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 resulation, 6 Pol 2 x 1.5 2 x 2.1 1, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ubes 18.0 1.7 /ee N15 / 2	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7
Condenser Compressor	ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity	TR kW TR kW No. US Gal Liter sq. ft. sq. m. kW kW cfm l/s cfm l/s	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction of the property	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 frect Drive Alun 729 / 2 14900 7031 Over, Class F In 2 x 1.1 2 x 1.4 Cross Wave Fin 13.6 1.3 lie Inlet, Double N12 / 2 6000 2832 sed, Class F In	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 rsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 Width Belt Driv N12 / 2 7000 3304 sulation, IP55	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ibes 18.0 1.7 /e N15 / 2 8000 3776	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248
Condenser Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm l/s kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direc 10.0 0.9 C N15 / 1 5000 2360	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 ect Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Dver, Class F In 2 x 1.4 Cross Wave Fit 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ibes 18.0 1.7 /e N15 / 2 8000 3776	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248
Evaporator Comdenser Compressor C	ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate Type Face Area Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Size Power Input	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm l/s kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 Direction 10.0 0.9 C N15 / 1 5000 2360	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclose 3.0 3.8	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F In 2 x 1.1 2 x 1.4 Cross Wave Fir 13.6 1.3 ile Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.8	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.8	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 bles 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.8	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248 4.0 5.0
Evaporator Comdenser Compressor C	ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm l/s kW kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direc 10.0 0.9 C N15 / 1 5000 2360 2.2 2.8 25.3	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 2 x 1 10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclose 3.0 3.8 27.3	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F In 2 x 1.1 2 x 1.4 Cross Wave Fir 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.8 29.0	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.8 33.0	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 ibes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.8 44.0	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248 4.0 5.0 50.6
Evaporator Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil Fan Motor	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate Type Face Area Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Size Power Input	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm l/s kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 Direction 10.0 0.9 C N15 / 1 5000 2360	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclose 3.0 3.8	14.6 51.2 13.3 46.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F In 2 x 1.1 2 x 1.4 Cross Wave Fir 13.6 1.3 ile Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.8	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.8	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 bles 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.8	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248 4.0 5.0
Condenser Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil Fan Motor coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Size Power Input Operating Charge (R22)	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2 11.0	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction one of the state of the stat	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclose 3.8 27.3 12.4	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 irect Drive Alun 729 / 2 14900 7031 Over, Class F II 2 x 1.4 Cross Wave Fir 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.8 29.0 13.2	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.8 33.0 15.0	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 1.5 2 x 2.1 lbes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.8 44.0 20.0	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248 4.0 5.0 50.6 23.0
Condenser Compressor	ooling Capa ooling Capa Type Code Quantity Oil Char Coil Fan Motor Coil Fan Motor coil Fan	ge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	TR kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft. sq. m.	10.6 37.4 9.7 34.2 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 9060 4275 2 x 0.37 2 x 0.55 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2 11.0 2	11.7 41.0 10.6 37.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 9130 4308 Totally 1.50 2.10 Direction on the second of t	12.3 43.4 11.3 39.8 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 13440 6342 Enclosed, Air (2 x 0.75 2 x 1 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclose 3.0 3.8 27.3 12.4	14.6 51.2 13.3 46.6 lermetic Recipr MH 10 2 1.1 4.2 opper Tubes Al 24.4 2.3 rect Drive Alun 729 / 2 14900 7031 Over, Class F II 2 x 1.4 Cross Wave Fir 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.8 29.0 13.2 2	19.3 67.7 17.3 61.0 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 18280 8626 nsulation, 6 Pol 2 x 1.5 2 x 2.1 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.8 33.0 15.0 2	22.3 78.3 20.1 70.6 MH 14 2 1.1 4.2 1.1 4.2 29.4 2.7 823 / 2 17580 8296 e, IP55 2 x 2.1 ibes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.8 44.0 20.0 2	24.2 85.1 21.8 76.8 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 18260 8617 2 x 1.5 2 x 2.1 18.0 1.7 N15 / 2 9000 4248 4.0 5.0 50.6 23.0 2

Notes

(1). Capacity rating in accordance with ARI standard 210/240 - 94 & 340 / 360 - 93. (2). Capacity ratings based on evaporator entering air temperatures of 80/67 $^{\circ}$ F (26.7/19.4 $^{\circ}$ C) dry bulb/wet bulb and condenser entering air temperature of 115 $^{\circ}$ F (46 $^{\circ}$ C).

ENGINEERING SPECIFICATIONS - 60 HZ

M	odel		PACH	6106	6107	6108	6109	6110	6211	6112
C	ooling Cap	acity (1)	TR	5.5	5.8	6.8	8.1	10.0	10.7	11.9
	Cooling Capacity (1) Type Code Quantity Oil Charge per Compressor Type Code / Quantity Air Flow Rate Type Coil Face Area Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Fan Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Code / Countity Air Flow Rate Type Code / Countity Cooling Capacity (1) Cooling Capacity (2) Type Code Quantity Oil Charge per Compressor Type Coil Face Area	kW	19.5							
C	ooling Cap	acity (2)	TR	5.1						
	Type		kW	17.9	18.9				34.8	38.2
SOL				MH 6	MH 7				MH 6	MH 14
res		v	No.	1	1	1	1	1	2	1
mo:			US Gal	0.5	0.5	0.5	1.1	1.1	0.5	1.1
0	Oil Chai	rge per Compressor	Liter	1.9	1.9	1.9	4.2	4.2	1.9	4.2
		Туре				Air Cooled C	opper Tubes A	uminum Fins		
	Coil	Face Area	sq. ft.	9.7	9.7	12.2	12.2	14.7	19.4	14.7
			sq. m.	0.9	0.9		1.1	1.4	1.8	1.4
Ser					10011			1	10010	20011
Condenser	Cooling Capacity (2) Type Code Quantity Oil Charge per Compres Fan Type Code / Quantity Motor Size Power Input Type Code / Quantity Coil Face Area Type Code / Quantity Refrigerant Operating Charge Number of Refrigerant Circu Approximate Machine Weig Model Cooling Capacity (2) Cooling Capacity (3) Type Code / Quantity Oil Charge per Compres Code / Quantity Oil Charge per Compres Code / Quantity Oil Charge per Compres Code / Quantity Cooling Capacity (3) Type Code / Quantity Face Area Type Code / Quantity Face Area Type Code / Quantity Face Area Type Code / Quantity Type Code / Quantity	Code / Quantity	cfm	628 / 1 5500						
Co		Air Flow Rate	I/s	2595						
		Type	1/3	2373		Section				
	Motor		kW	0.55				r		2.20
	Type Code Quantity Oil Charge per Compressor Type Code Code / Quantity Type Code / Quantity Type Code / Quantity Type Code / Quantity Air Flow Rate Type Size Power Input refrigerant Operating Charge (R22) refrigerant Operating Charge (R22) refrigerant Operating Charge (R22) Type Code Quantity Oil Charge per Compressor Type Code Quantity Oil Charge per Compressor Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Code / Quantity Type Code / Quantity Air Flow Rate Type Code / Quantity Type Code / Quantity Air Flow Rate	kW	0.80							
	Coil Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Size Power Input Air Flow Rate Type Size Power Input Code / Countity Air Flow Rate Type Size Power Input Code / Quantity Code Gooling Capacity Type Code Quantity Oil Charge per Compressor	•			Dire	ct Expansion,	Cross Wave Fir	n, Staggered Tu	ibes	
		Face Area	sq. ft.	4.7						
			sq. m.	0.4						0.9
ntor				NIAC / A	T .					NIAE / A
Evaporator	Fan	Code / Quantity	of-m	N10 / 1						
Eva		Air Flow Rate	cfm I/s	2200 1038						
		Type	1/5	1036	1133				1700	2200
	Motor		kW	1.1	1.1	,			2.2	2.2
		Power Input	kW	1.4	1.4	1.4	1.9	2.8	2.8	2.8
D	ofrigorant (Operating Charge (B22)	lbs	11.0	12.1	13.6	14.5	16.5	22.0	22.0
			kg	5.0						
N	umber of R	efrigerant Circuits	No.	1						
A	pproximate	Machine Weight								
			кд	318	319	368	420	490	552	524
M	odel		PACH	6212	6113	6214	6216	6221	6224	6227
			_							
0	aalina Can	soitu (1)	IR	11.8	12.0	13.0	10.1	21.2	24.0	20.7
C	ooling Cap	acity (1)	kW	41.4						
			kW TR		45.1 11.7	48.0 12.6	56.5 14.7	74.7 19.3	86.1	94.0
	ooling Cap		kW	41.4	45.1 11.7	48.0 12.6 44.2	56.5 14.7 51.6	74.7 19.3 67.7	86.1 22.3	94.0 24.3
C	ooling Cap		kW TR	41.4 10.8 38.0	45.1 11.7 41.2	48.0 12.6 44.2 Fully H	56.5 14.7 51.6 ermetic Recipr	74.7 19.3 67.7 ocating	86.1 22.3 78.6	94.0 24.3 85.4
C	ooling Cap Type Code	acity (2)	kW TR kW	41.4 10.8 38.0 MH 7	45.1 11.7 41.2 MH 16	48.0 12.6 44.2 Fully H	56.5 14.7 51.6 ermetic Recipr MH 10	74.7 19.3 67.7 ocating MH 12	86.1 22.3 78.6 MH 14	94.0 24.3 85.4 MH 16
C	Type Code Quantity	acity (2)	kW TR kW	41.4 10.8 38.0 MH 7	45.1 11.7 41.2 MH 16	48.0 12.6 44.2 Fully H MH 8	56.5 14.7 51.6 ermetic Recipr MH 10 2	74.7 19.3 67.7 ocating MH 12 2	86.1 22.3 78.6 MH 14	94.0 24.3 85.4 MH 16 2
	Type Code Quantity	acity (2)	kW TR kW	41.4 10.8 38.0 MH 7	45.1 11.7 41.2 MH 16 1	48.0 12.6 44.2 Fully H MH 8 2 0.5	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1	74.7 19.3 67.7 ocating MH 12 2 1.1	86.1 22.3 78.6 MH 14 2	94.0 24.3 85.4 MH 16 2
C	Type Code Quantity	acity (2) y rge per Compressor	KW TR KW No. US Gal	41.4 10.8 38.0 MH 7 2 0.5	45.1 11.7 41.2 MH 16 1	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2	86.1 22.3 78.6 MH 14 2	94.0 24.3 85.4 MH 16 2
C	Type Code Quantity	acity (2) y rge per Compressor Type	KW TR KW No. US Gal	41.4 10.8 38.0 MH 7 2 0.5	45.1 11.7 41.2 MH 16 1 1.1 4.2	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins	86.1 22.3 78.6 MH 14 2 1.1 4.2	94.0 24.3 85.4 MH 16 2 1.1 4.2
C	Type Code Quantity	acity (2) y rge per Compressor Type Face Area	kW TR kW No. US Gal Liter	MH 7 2 0.5 1.9	45.1 11.7 41.2 MH 16 1 1.1 4.2	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7	86.1 22.3 78.6 MH 14 2 1.1 4.2	94.0 24.3 85.4 MH 16 2 1.1 4.2
er Compressor	Type Code Quantity	acity (2) rge per Compressor Type Face Area Type	kW TR kW No. US Gal Liter	41.4 10.8 38.0 MH 7 2 0.5 1.9	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2
er Compressor	ooling Cap Type Code Quantity Oil Chai	acity (2) rge per Compressor Type Face Area Type	No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity	kW TR kW No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220
Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate	No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type	kW TR kW No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size	kW TR kW No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F Ii	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input	kW TR kW No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F Ii 2 x 1.5 2 x 2	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type	kW TR kW No. US Gal Liter sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direction	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 3843 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fin 13.6	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3
er Compressor	ooling Cap Type Code Quantity Oil Chai	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Directions of the control of the c	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9 1.0	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fit 13.6 1.3	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 abes 18.0 1.7	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3
Condenser Compressor	Number of Refrigerant Circuits No. 1	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7								
Condenser Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direction on the control of the co	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ct Expansion, (1.0 entrifugal Doub	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fir 1.3 le Inlet, Double N12 / 2	74.7 19.3 67.7 ocating MH 12 1.1 4.2 luminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driv	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 abes 18.0 1.7	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7
er Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW cfm cfm	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direction of the control of the co	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F Ii 2 x 1.5 2 x 2 Cross Wave Fir 1.3 le Inlet, Double N12 / 2 6000	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 luminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Drix N12 / 2 7000	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 ibes 18.0 1.7 /e N15 / 2 8000	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000
Condenser Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW cfm cfm	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direction of the control of the co	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9 entrifugal Doub N15 / 1 5450 2572	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fir 13.6 1.3 Ie Inlet, Double N12 / 2 6000 2832	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 UMidth Belt Driv N12 / 2 7000 3304	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 ibes 18.0 1.7 /e N15 / 2 8000	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000
Condenser Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW cfm I/s	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Dire 10.0 0.9 C N15 / 1 5000 2360	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Dver, Class F II 2 x 1.5 2 x 2 Cross Wave Fir 13.6 1.3 Ie Inlet, Double N12 / 2 6000 2832 sed, Class F In	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 ibes 18.0 1.7 /e N15 / 2 8000 3776	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248
Condenser Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direc 10.0 0.9 C N15 / 1 5000 2360	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed 3.0	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Dver, Class F In 2 x 1.5 2 x 2 Cross Wave Fin 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 abes 18.0 1.7 /e N15 / 2 8000 3776	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248 4.0
Evaporator Condenser Compressor	ooling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil Fan	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm l/s kW kW sq. ft. sq. m.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direc 10.0 0.9 C N15 / 1 5000 2360	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed 3.0 3.7	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fii 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.7	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.7	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 abes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.7	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248 4.0 4.8
Evaporator Condenser Compressor	Type Code Quantity Oil Chai Coil Fan Motor Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW cfm I/s kW kW cfm I/s	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2 11.0	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Direc 10.0 0.9 C N15 / 1 5000 2360 2.2 2.8 25.3	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 7522 Enclosed, Air (2 x 1.1 2 x 1.5 ect Expansion, (1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed 3.7 27.3 12.4	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fir 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.7 29.0	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driv N12 / 2 7000 3304 sulation, IP55 3.0 3.7 33.0	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 sibes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.7 44.0	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248 4.0 4.8 50.6
Evaporator Condenser Compressor	Type Code Quantity Oil Chai Coil Fan Motor Coil Fan Motor Coil	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW kW kW kW lbs kg No.	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2 11.0 2	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Dire 10.0 0.9 C N15 / 1 5000 2360 2.2 2.8 25.3 11.5 1	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 cct Expansion, (10.9 N15 / 1 5450 2572 Totally Enclosed, 3.7 27.3 12.4 2	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fit 13.6 I.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.7 29.0 13.2 2	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 luminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 3.7 33.0 15.0 2	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 ibes 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.7 44.0 20.0 2	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248 4.0 4.8 50.6 23.0 2
Evaporator Condenser Compressor	oolling Cap Type Code Quantity Oil Chai Coil Fan Motor Coil Fan Motor defrigerant Cumber of R	rge per Compressor Type Face Area Type Code / Quantity Air Flow Rate Type Size Power Input Type Face Area Type Code / Quantity Air Flow Rate Type Face Area Type Code / Quantity Air Flow Rate Type Code / Quantity Air Flow Rate Type Size Power Input Deprating Charge (R22)	kW TR kW No. US Gal Liter sq. ft. sq. m. cfm I/s kW kW kW kW kW kW lbs kg No. lbs	41.4 10.8 38.0 MH 7 2 0.5 1.9 19.4 1.8 628 / 2 11000 5191 2 x 0.55 2 x 0.8 9.6 0.9 N15 / 1 4800 2266 2.2 2.8 24.2 11.0 2 1232	45.1 11.7 41.2 MH 16 1 1.1 4.2 17.2 1.6 823 / 1 11110 5243 Totally 2.20 3.00 Dire 10.0 0.9 C N15 / 1 5000 2360 2.2 2.8 25.3 11.5 1 1216	48.0 12.6 44.2 Fully H MH 8 2 0.5 1.9 Air Cooled C 24.4 2.3 Propeller Di 723 / 2 15940 7522 Enclosed, Air (2 x 1.1 2 x 1.5 cct Expansion, (10.9 1.0 entrifugal Doub N15 / 1 5450 2572 Totally Enclosed 3.0 3.7 27.3 12.4 2 1394	56.5 14.7 51.6 ermetic Recipr MH 10 2 1.1 4.2 opper Tubes A 24.4 2.3 rect Drive Alun 729 / 2 17680 8343 Over, Class F II 2 x 1.5 2 x 2 Cross Wave Fit 13.6 1.3 le Inlet, Double N12 / 2 6000 2832 sed, Class F In 3.0 3.7 29.0 13.2 2 1601	74.7 19.3 67.7 ocating MH 12 2 1.1 4.2 uminum Fins 29.4 2.7 ninum Blade 823 / 2 22240 10495 nsulation, 6 Pol 2 x 2.2 2 x 3 n, Staggered Tu 15.0 1.4 Width Belt Driu N12 / 2 7000 3304 sulation, IP55 3.0 3.7 33.0 15.0 2 1813	86.1 22.3 78.6 MH 14 2 1.1 4.2 29.4 2.7 823 / 2 21400 10099 e, IP55 2 x 2.2 2 x 3 ibles 18.0 1.7 /e N15 / 2 8000 3776 3.0 3.7 44.0 20.0 2 1998	94.0 24.3 85.4 MH 16 2 1.1 4.2 34.4 3.2 823 / 2 22220 10486 2 x 2.2 2 x 3 18.0 1.7 N15 / 2 9000 4248 4.0 4.8 50.6 23.0

Notes:

(1). Capacity rating in accordance with ARI standard 210/240 - 94 & 340 / 360 - 93. (2). Capacity ratings based on evaporator entering air temperatures of 80/67 $^{\circ}$ F (26.7/19.4 $^{\circ}$ C) dry bulb/wet bulb and condenser entering air temperature of 115 $^{\circ}$ F (46 $^{\circ}$ C).

Selection Procedure

PACH series packaged air-conditioners should be selected with care and using sound engineering judgement. Selections based on matching total capacity alone or air flow rate alone may not be correct. To meet requirements of a specific application, sample procedure for selection is given in examples below.

	Example 1: English Units	Example 2: SI Units
Application Requirements		-
Required total cooling capacity	186.0 MBH	54.5 kW
	126.0 MBH	
	115°F	
	80/67°F	
	6,400 cfm	
	1.00 inwg	
	380V/3PH/50Hz	

Determine cooling capacity at design conditions.

Selection Procedure:

Enter packaged unit capacity ratings (50Hz) at given condition and select unit size PACH - 5219 having total cooling capacity 204.1 MBH (59.8 kW), and sensible cooling 138.9 MBH (40.7 kW), PI = 22.8 kW. Total sensible cooling capacities & power input found by interpolation. For EDB other than 80°F (26.7°C), use following formula:

Actual sensible capacity = Rated sensible capacity + 0.0011 (1 - BPF)(EDB - 80) x cfm - IP Units Actual sensible capacity = Rated sensible capacity + 0.00123 (1 - BPF)(EDB - 26.7) x l/s - SI Units

Fan Speed & Motor Power

Refer to fan performance table on page 12 and adjust fan RPM = 1030, fan brake power 2.2 kw. Standard motor size for selected model is 3.0 kW.

SKM Computer Selections are available for quick, detailed and accurate selections.

CAPACITY RATINGS - 50 HZ

	AFR	Evaporator			0.5	OF /2F0	0)			101			Enterin	g Air T			20)		125°F (52°C)				
Model PACH	cfm	Ente	ering	To	y5 otal	°F (35° Sens			To	tal	Sens			То		Sens			То		Sens		
[EER]	l/s	W	BT		nai acity	Capa		PI		nai acity		acity	PI	Capa		Capa		PI	Capa		Capa		PI
,	[BPF]	°F	°C	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW
	1600	62	16.7	51.6	15.1	41.8	12.3	4.9	49.5	14.5	40.9	12.0	5.2	47.4	13.9	40.0	11.7	5.6	45.1	13.2	39.0	11.4	6.0
	755	67	19.4	56.6	16.6	35.3	10.3	5.1	54.3	15.9	34.5	10.1	5.5	52.0	15.2	33.6	9.8	5.9	49.5	14.5	32.6	9.6	6.3
	0.26	72	22.2	61.3	18.0	28.5	8.4	5.3	58.9	17.3	27.7	8.1	5.7	56.4	16.5	26.8	7.9	6.1	53.7	15.7	26.0	7.6	6.6
5105	2200 1038	62	16.7 19.4	54.8	16.0 17.6	48.6 40.4	14.3 11.8	5.0	52.4 57.6	15.4 16.9	47.7 39.5	14.0	5.4	50.0 55.0	14.7	46.7 38.6	13.7	5.8 6.1	47.5 52.3	13.9 15.3	45.7 37.6	13.4 11.0	6.2
[9.1]	0.31	72	22.2	65.1	19.1	31.9	9.3	5.4	62.5	18.3	31.0	9.1	5.8	59.7	17.5	30.1	8.8	6.3	56.8	16.7	29.2	8.6	6.8
	2420	62	16.7	55.6	16.3	50.9	14.9	5.1	53.2	15.6	50.0	14.7	5.4	50.8	14.9	49.0	14.4	5.8	48.2	14.1	48.0	14.1	6.2
	1142	67	19.4	61.0	17.9	42.1	12.3	5.3	58.5	17.1	41.2	12.1	5.7	55.8	16.4	40.3	11.8	6.1	53.0	15.5	39.3	11.5	6.6
	0.32	72	22.2	66.2	19.4	33.0	9.7	5.4	63.4	18.6	32.1	9.4	5.9	60.6	17.8	31.2	9.2	6.3	57.6	16.9	30.3	8.9	6.8
	1730 816	62	16.7 19.4	54.8 59.9	16.1 17.5	44.4 37.4	13.0 11.0	5.4 5.7	52.6 57.5	15.4 16.8	43.4 36.5	12.7	5.9 6.1	50.3 55.0	14.7	42.5 35.5	12.4	6.3	47.8 52.3	14.0 15.3	41.4 34.5	12.1 10.1	6.8 7.2
	0.27	72	22.2	64.6	18.9	30.1	8.8	5.9	62.1	18.2	29.2	8.6	6.4	59.3	17.4	28.3	8.3	7.0	57.9	17.0	27.8	8.2	7.2
F10/	2400	62	16.7	58.0	17.0	51.7	15.2	5.6	55.6	16.3	50.8	14.9	6.0	53.0	15.5	49.7	14.6	6.5	50.3	14.7	48.7	14.3	7.0
5106 [8.8]	1133	67	19.4	63.5	18.6	42.9	12.6	5.8	60.8	17.8	41.9	12.3	6.3	58.0	17.0	40.9	12.0	6.9	56.5	16.6	40.4	11.8	7.1
[0.0]	0.32	72	22.2	68.5	20.1	33.7	9.9	6.1	65.7	19.3	32.8	9.6	6.6	62.7	18.4	31.8	9.3	7.2	61.1	17.9	31.3	9.2	7.4
	2640	62	16.7	58.8	17.2	54.2	15.9	5.6	56.3	16.5	53.2	15.6	6.1	53.7	15.7	52.2	15.3	6.6	50.9	14.9	50.9	14.9	7.1
	1246 0.34	67 72	19.4 22.2	64.4	18.9	44.7 34.9	13.1	5.9 6.1	61.6	18.1 19.5	43.7 33.9	12.8 9.9	6.4	58.8 63.5	17.2 18.6	42.7 33.0	12.5 9.7	6.9 7.2	57.3 61.9	16.8 18.1	42.2 32.5	12.4 9.5	7.2
	2000	62	16.7	64.1	18.8	51.7	15.2	5.9	61.5	18.0	50.6	14.8	6.4	58.9	17.3	49.5	14.5	7.0	56.1	16.4	48.4	14.2	7.5
	944	67	19.4	70.1	20.5	43.6	12.8	6.2	67.3	19.7	42.6	12.5	6.7	64.5	18.9	41.5	12.2	7.3	61.4	18.0	40.4	11.8	7.9
	0.26	72	22.2	75.7	22.2	35.2	10.3	6.4	72.8	21.3	34.2	10.0	7.0	69.7	20.4	33.1	9.7	7.6	66.4	19.5	32.0	9.4	8.2
5107	2750	62	16.7	67.9	19.9	60.1	17.6	6.1	65.0	19.1	58.9	17.3	6.6	62.1	18.2	57.8	16.9	7.2	59.0	17.3	56.5	16.6	7.7
[9.0]	1298 0.31	67 72	19.4 22.2	74.3 80.4	21.8	49.9 39.3	14.6 11.5	6.4	71.3 77.1	20.9	48.8	14.3	6.9 7.2	68.1 73.7	20.0	47.6 37.2	14.0	7.5 7.8	64.7 70.0	19.0	46.4 36.0	13.6 10.6	8.1
	3025	62	16.7	68.8	20.2	62.9	18.4	6.1	66.0	19.3	61.8	18.1	6.7	63.0	18.5	60.6	17.8	7.0	59.8	17.5	59.3	17.4	7.8
	1427	67	19.4	75.4	22.1	52.0	15.2	6.4	72.3	21.2	50.9	14.9	7.0	69.0	20.2	49.7	14.6	7.6	65.6	19.2	48.5	14.2	8.2
	0.33	72	22.2	81.6	23.9	40.7	11.9	6.7	78.2	22.9	39.6	11.6	7.3	74.7	21.9	38.5	11.3	7.9	71.0	20.8	37.3	10.9	8.5
	2310	62	16.7	75.6	22.1	60.7	17.8	6.9	72.2	21.2	59.2	17.4	7.4	68.8	20.2	57.8	16.9	8.0	65.2	19.1	56.3	16.5	8.6
	1090 0.26	67 72	19.4	82.7 89.5	24.2	51.3 41.5	15.0 12.2	7.1	79.2 85.8	23.2 25.1	49.9	14.6 11.8	7.7 8.0	75.6 81.9	22.2	48.6 38.9	14.2	8.3	71.6 77.6	21.0	47.1 37.4	13.8 11.0	9.0
	3300	62	16.7	80.7	23.6	71.8	21.0	7.3	77.0	22.6	70.3	20.6	7.6	73.2	21.5	68.8	20.2	8.2	69.1	20.3	67.2	19.7	8.8
5108	1557	67	19.4	88.5	25.9	59.6	17.5	7.3	84.6	24.8	58.2	17.1	7.9	80.5	23.6	56.7	16.6	8.6	76.0	22.3	55.2	16.2	9.3
[8.8]	0.31	72	22.2	95.8	28.1	47.0	13.8	7.5	91.7	26.9	45.6	13.4	8.2	87.3	25.6	44.2	13.0	8.9	82.5	24.2	42.7	12.5	9.6
	3630	62	16.7	81.8	24.0	75.2	22.0	7.1	78.1	22.9	73.7	21.6	7.7	74.2	21.7	72.2	21.1	8.3	70.0	20.5	70.0	20.5	8.9
	1713	67	19.4	89.8	26.3	62.1	18.2	7.4	85.8	25.1	60.7	17.8	8.0	81.6	23.9	59.2	17.4	8.7 9.0	77.0	22.6	57.6	16.9	9.3
	0.33 2680	72 62	22.2 16.7	97.3 93.3	28.5	48.6 72.8	14.2 21.3	7.5 9.0	93.0	27.3	47.2 71.1	13.8	8.2 9.7	88.5 85.1	26.0	45.8 69.3	13.4	10.4	83.6 80.5	23.6	44.3 67.3	13.0 19.7	9.7
	1265	67	19.4	101.9	29.9	61.8	18.1	9.4	97.6	28.6	60.1	17.6	10.1	93.1	27.3	58.4	17.1	10.9	88.1	25.8	56.5	16.6	11.7
	0.26	72	22.2	110.1	32.3	50.3	14.7	9.8	105.5	30.9	48.7	14.3	10.5	100.4	29.4	46.9	13.8	11.3	95.0	27.8	45.1	13.2	12.2
5109	3830	62	16.7	99.9	29.3	85.8	25.2	9.3	95.3	27.9	84.0	24.6	10.0	90.6	26.6	82.1	24.1	10.7	85.5	25.0	80.0	23.5	11.5
[8.0]	1807	67	19.4	109.3	32.0	71.6	21.0	9.7	104.4	30.6	69.8	20.5	10.5	99.1	29.1	67.9	19.9	11.2	93.4	27.4	65.9	19.3	12.1
	0.31 4215	72 62	22.2 16.7	118.2 101.4	34.6 29.7	56.8 89.8	16.6 26.3	10.1 9.4	112.8 96.7	33.1 28.4	55.0 88.0	16.1 25.8	10.9	106.8 91.9	31.3	53.1 86.0	15.6 25.2	11.8	103.7 86.6	30.4 25.4	52.1 84.0	15.3 24.6	12.2 11.6
	1989	67	19.4	111.0	32.5	74.5	21.8	9.8	106.0	31.1	72.7	21.3	10.1	100.5	29.5	70.8	20.8	11.3	94.6	27.7	68.7	20.1	12.2
	0.33	72	22.2	120.0	35.2	58.7	17.2	10.2	114.4		56.9	16.7	11.0	108.2	31.7	54.9	16.1	11.9	105.0	30.8	53.9	15.8	12.3
	3000	62	16.7	100.1	29.3	79.6	23.3	9.7	96.1	28.2	77.9	22.8	10.3	92.0	27.0	76.2	22.3	11.0	87.6	25.7	74.3	21.8	11.8
	1416	67	19.4	109.6	_	67.5	19.8	10.1	105.4		65.8	19.3	10.8	101.0		64.1	18.8	11.6	96.3	28.2	62.4	18.3	12.5
	0.26 4170	72 62	22.2 16.7	118.6 106.6		54.7 93.0	16.0 27.2	10.4 9.9	114.1 102.2	33.5 29.9	53.1 91.2	15.6 26.7	11.2	109.4 97.6	32.1 28.6	51.5 89.3	15.1 26.2	12.1	104.4 92.7	30.6	49.8 87.4	14.6 25.6	13.0 12.2
5210	1968	67	19.4	116.9	_	77.4	22.7	10.3	112.2		75.7	22.2	11.1	107.2	31.4	73.9	21.7	11.9	102.0	29.9	72.1	21.1	12.9
[8.9]	0.31	72	22.2	126.6		61.3	18.0	10.7	121.6		59.7	17.5	11.5	116.3	34.1	58.0	17.0	12.4	110.7	32.5	56.2	16.5	13.4
	4730	62	16.7	108.7		98.8	29.0	10.0		30.5	97.0	28.4	10.7	99.4	29.1	95.1	27.9	11.5	94.4	27.7	93.1	27.3	12.3
	2232	67	19.4	119.3		81.8	24.0	10.4	114.4		80.0	23.5	11.2	109.3	32.0	78.2	22.9	12.1	103.9	30.5	76.3	22.4	13.0
	0.33 3350	72 62	22.2 16.7	129.3 110.7	1	64.1 88.5	18.8 25.9	10.8	124.0 105.4	1	62.5 86.2	18.3	11.6 11.0	118.5 99.8	34.7 29.3	60.7 83.8	17.8 24.6	12.5 11.8	112.8 93.9	33.1 27.5	58.9 81.4	17.3 23.8	13.5 12.7
	1581	67	19.4	121.0	1	74.8	21.9	10.3		1	72.6	21.3	11.5	109.3	32.1	70.3	20.6	12.4	103.0	30.2	68.0	19.9	13.4
	0.26	72	22.2	130.8	1	60.5	17.7	11.0		1	58.4	17.1	11.9	118.3	34.7	56.2	16.5	12.9	111.7	32.7	54.0	15.8	14.0
5111	4800	62	16.7	118.2	34.6	104.7	30.7	10.5	112.3	32.9	102.3		11.3	106.0	31.1	99.8	29.3	12.2	99.5	29.2	97.2	28.5	13.1
[8.7]	2265	67	19.4	129.4	_	86.9	25.5	11.0	123.1		84.6	24.8	11.9	116.4	34.1	82.2	24.1	12.8	109.4	32.1	79.8	23.4	13.8
	0.32	72	22.2	140.0	_	68.5	20.1	11.4	133.2		66.3	19.4	12.4	126.1	36.9	64.0	18.8	13.4	118.7	34.8	61.7	18.1	14.5
	5270 2487	62	16.7 19.4	119.9 131.3	_	109.6 90.5	32.1 26.5	10.6	113.8 124.8		107.2 88.2		11.4	107.4 117.9	31.5	104.6 85.8	30.7	12.3 12.9	100.7 110.8	29.5 32.5	100.7 83.3	29.5 24.4	13.2 13.9
	0.33	72	22.2			70.8	20.8	11.5			68.6			127.8		66.3	19.4	13.5	120.3		64.0	18.7	14.6
	0.55	12	22.2	172.0	71.0	70.0	20.0	11.3	100.1	37.0	00.0	20.1	12.0	121.0	37.4	00.5	17.4	13.3	120.3	JJ.2	07.0	10.7	17.0

Notes:

CAPACITY RATINGS - 50 H7

	AFR	Evapora	ator						Cond	enser	Enterir	ng Air T	empe	rature							
Model	cfm	Enteri		95	°F (35°C)				5°F (40	°C)		115°F (46°C)					125°F (52°C)				
PACH	I/s	WBT		Total	Sensible	PI	Tota		Sens	sible	PI	To		Sens	sible	PI	Tot		Sens	sible	PI
[EER]	[BPF]			Capacity	Capacity		Capac		Capa			Capa		Capa			Capa		Capa		
			°C	MBH kW	MBH kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW
	3350		16.7	109.5 32.1	87.9 25.8	10.8		30.8	86.0	25.2	11.7	100.5	29.5	84.1	24.7	12.7	95.6	28.0	82.0	24.0	13.7
	1581 0.26		19.4 22.2	119.6 35.1 129.1 37.8	74.2 21.8 59.9 17.6	11.3		33.7 36.3	72.4 58.1	21.2 17.0	12.3 12.8	109.8 118.6	32.2	70.5 56.3	20.7	13.3	104.5 115.7	30.6	68.5 55.3	20.1	14.3
	4800		16.7	116.7 34.2	104.1 30.5	11.0		32.8	102.2	29.9	12.0	106.6	31.3	100.1	29.3	13.1	101.1	29.6	97.9	28.7	14.1
5211	2265		19.4	127.7 37.4	86.3 25.3	11.7		35.9	84.4	24.7	12.7	116.7	34.2	82.4	24.1	13.1	113.7	33.3	81.3	23.8	14.3
[8.8]	0.32		22.2	137.9 40.4	67.8 19.9	12.2		38.7	66.0	19.3	13.3	126.0	36.9	64.0	18.8	14.4	122.8	36.0	63.0	18.5	14.9
	5270		16.7	118.3 34.7	109.0 31.9	11.2		33.2	106.9	31.3	12.2	108.0	31.6	104.9	30.7	13.2	102.3	30.0	102.3	30.0	14.2
	2487	67 1	19.4	129.5 38.0	89.9 26.3	11.8	124.0	36.3	87.9	25.8	12.8	118.2	34.6	85.9	25.2	13.9	115.1	33.7	84.8	24.9	14.4
	0.33	72 2	22.2	139.9 41.0	70.1 20.6	12.3		39.3	68.2	20.0	13.4	127.6	37.4	66.3	19.4	14.5	124.4	36.5	65.3	19.1	15.0
	3600		16.7	119.9 35.1	95.1 27.9	11.4		33.6	92.9	27.2	12.3	109.3	32.0	90.6	26.6	13.1	103.4	30.3	88.2	25.8	14.1
	1699		19.4	131.1 38.4	80.6 23.6	11.9		36.8	78.4	23.0	12.8	119.7	35.1	76.2	22.3	13.7	113.1	33.2	73.7	21.6	14.8
	0.26		22.2	141.8 41.6	65.3 19.1	12.4		39.8	63.2	18.5	13.3	129.2	37.9	60.9	17.9	14.3	122.0	35.7	58.5	17.2	15.5
5112	5000 2360		16.7	127.5 37.4 139.7 40.9	110.9 32.5 92.3 27.1	11.8		35.7 39.1	108.6 90.0	31.8	12.6	115.7	33.9	106.1	31.1 25.7	13.5 14.2	109.1 119.3	32.0 35.0	103.5 85.0	30.3	14.5 15.3
[8.7]	0.31		19.4 22.2	139.7 40.9 151.1 44.3	73.1 21.4	12.3		42.3	70.8	26.4	13.2 13.8	126.7 136.5	40.0	87.6 68.4	20.0	14.2	128.4	37.6	65.8	19.3	16.0
	5500		16.7	129.4 37.9	116.1 34.0	11.9		36.2	113.7	33.3	12.7	117.3	34.4	111.2	32.6	13.6	110.5	32.4	108.6	31.8	14.6
	2595		19.4	141.8 41.6	96.2 28.2	12.4		39.7	93.9	27.5	13.3	128.4	37.6	91.4	26.8	14.3	120.8	35.4	88.7	26.0	15.4
	0.33		22.2	153.5 45.0	75.6 22.2	12.9		42.9	73.3	21.5	13.9	138.2	40.5	70.7	20.7	14.9	130.0	38.1	68.2	20.0	16.2
	3925	62 1	16.7	127.4 37.3	102.3 30.0	11.8	122.4	35.9	100.2	29.4	12.8	117.2	34.3	98.0	28.7	13.9	111.6	32.7	95.7	28.0	15.0
	1852		19.4	139.3 40.8	86.4 25.3	12.4	133.9	39.3	84.3	24.7	13.4	128.3	37.6	82.2	24.1	14.6	122.2	35.8	79.9	23.4	15.7
	0.26		22.2	150.6 44.1	69.8 20.5	12.8		42.4	67.8	19.9	14.0	138.7	40.6	65.7	19.3	15.2	132.2	38.7	63.5	18.6	16.4
5213	5450		16.7	135.2 39.6	119.4 35.0	12.2		38.0	117.1	34.3	13.2	123.9	36.3	114.8	33.6	14.3	117.7	34.5	112.3	32.9	15.4
[8.5]	2572		19.4	148.1 43.4	99.1 29.1	12.7		41.6	96.9	28.4	13.8	135.7	39.8	94.7	27.8	15.0	129.0	37.8	92.3	27.1	16.2
	0.31		22.2	160.1 46.9	78.2 22.9	13.2		45.0	76.1	22.3	14.4	146.8	43.0	73.9	21.7	15.6	139.6	40.9	71.6	21.0	16.8
	6000 2831		16.7 19.4	137.2 40.2 150.3 44.0	125.0 36.6 103.3 30.3	12.3 12.8		38.5 42.2	122.7 101.1	36.0 29.6	13.3	125.5 137.6	36.8	120.4 98.9	35.3 29.0	14.4 15.1	119.2 130.7	34.9	117.9 96.5	34.6 28.3	15.5 16.3
	0.33		22.2	162.6 47.6	80.9 23.7	13.3		45.7	78.8	23.1	14.5	148.9	43.6	76.6	22.4	15.7	141.5	41.5	74.2	21.8	16.9
	4900		16.7	154.0 45.1	125.5 36.8	13.9		43.1	122.7	36.0	14.9	140.1	41.1	119.7	35.1	16.0	132.5	38.8	116.6	34.2	17.3
	2312		19.4	168.6 49.4	105.9 31.0	14.4		47.3	103.1	30.2	15.5	153.9	45.1	100.3	29.4	16.8	145.7	42.7	97.2	28.5	18.2
	0.26	72 2	22.2	182.5 53.5	85.3 25.0	14.8	174.8	51.2	82.6	24.2	16.1	166.8	48.9	79.9	23.4	17.5	158.0	46.3	77.0	22.6	18.9
5215	6000	62 1	16.7	159.9 46.9	138.2 40.5	14.1		44.7	135.2	39.6	15.2	145.2	42.6	132.2	38.7	16.3	137.1	40.2	128.9	37.8	17.6
[8.8]	2831		19.4	175.3 51.4	115.3 33.8	14.6		49.1	112.4	33.0	15.8	159.6	46.8	109.5	32.1	17.1	150.8	44.2	106.4	31.2	18.5
	0.29		22.2	189.9 55.7	91.5 26.8	15.0		53.3	88.8	26.0	16.3	173.1	50.7	86.1	25.2	17.8	163.7	48.0	83.0	24.3	19.2
	6600		16.7	162.5 47.6 178.2 52.2	144.7 42.4 120.1 35.2	14.2		45.4	141.6	41.5 34.4	15.3	147.4 162.1	43.2	138.6 114.3	40.6 33.5	16.5 17.2	139.1	40.8	135.3	39.6	17.7 18.6
	3115 0.31		19.4 22.2	178.2 52.2 193.1 56.6	120.1 35.2 94.7 27.7	14.7 15.0		49.9 54.1	92.0	27.0	15.9 16.4	175.8	47.5 51.5	89.1	26.1	17.2	153.1 166.1	44.9	111.1 86.0	25.2	19.3
	5400		16.7	198.9 58.3	161.4 47.3	18.6		55.7	157.5	46.1	20.0	180.6	52.9	153.4	45.0	21.4	170.4	49.9	149.0	43.7	22.9
	2548		19.4	217.7 63.8	136.6 40.0	19.4		61.0	132.7	38.9	20.9	197.6	57.9	128.6	37.7	22.4	186.3	54.6	124.3	36.4	24.2
	0.17		22.2	235.4 69.0	110.5 32.4	20.2		65.9	106.7	31.3	21.7	212.9	62.4	102.6	30.1	23.5	206.7	60.6	100.4	29.4	24.4
E210	7000	62 1	16.7	210.9 61.8	184.1 53.9	19.1	201.0	58.9	179.9	52.7	20.5	190.4	55.8	175.5	51.5	22.0	179.1	52.5	170.9	50.1	23.6
5219 [8.9]	3303	67 1	19.4	231.2 67.8	153.7 45.0	20.0	220.2	64.5	149.6	43.8	21.5	208.2	61.0	145.0	42.5	23.1	201.9	59.2	142.7	41.8	24.0
[0.7]	0.20		22.2	250.1 73.3	121.9 35.7	20.8		69.7	117.7	34.5	22.4	223.8	65.6	113.2	33.2	24.3	216.8	63.5	110.9	32.5	25.3
	7700		16.7	214.8 63.0	193.3 56.7	19.3		59.9	189.0	55.4	20.7	193.6	56.7	184.6	54.1	22.2	181.8	53.3	179.8	52.7	23.8
	3634			235.5 69.0	160.5 47.1	20.2		65.7	156.2	45.8	21.7	211.6	62.0	151.7	44.5	23.4	205.0	60.1	149.3	43.8	24.3
	6300		22.2 16.7	254.8 74.7 230.1 67.4	126.4 37.1 187.9 55.1	21.0		70.9 64.1	122.1 182.9	35.8 53.6	22.7	227.2	66.6	117.4 177.7	34.4 52.1	24.6	219.9 194.3	56.9	115.0 172.4	33.7 50.5	25.6 25.9
	2973			251.8 73.8	158.8 46.6	21.7		70.3	154.0	45.1	23.4	226.9	66.5	149.0	43.7	25.3	213.5	62.6	143.9	42.2	27.3
	0.17			272.3 79.8	128.3 37.6	22.5		76.0	123.7	36.3	24.4	245.7	72.0	119.0	34.9	26.4	231.5	67.9	114.1	33.4	28.6
E000	8000			242.8 71.2	212.2 62.2	21.3		67.5	207.0	60.7	23.0	217.4	63.7	201.6	59.1	24.7	203.7	59.7	196.0	57.4	26.6
5222	3775			266.1 78.0	177.1 51.9	22.3		74.1	172.1	50.5	24.1	238.7	70.0	166.8	48.9	26.0	224.2	65.7	161.5	47.3	28.1
[9.5]	0.20	72 2		287.9 84.4	140.5 41.2	23.1	273.7	80.2	135.7	39.8	25.1	258.8	75.8	130.8	38.3	27.2	243.4	71.4	125.8	36.9	29.4
	8800			247.4 72.5	222.9 65.3	21.5			217.6		23.2	221.1	64.8	212.1	62.2	24.9	207.1	60.7	206.4	60.5	26.8
	4153			271.2 79.5	185.1 54.3	22.5			179.9		24.3	243.0		174.6		26.2	228.0	66.8	169.2	49.6	28.3
	0.21			293.6 86.0	145.8 42.7	23.4		81.7	140.9		25.4	263.4	77.2	135.9	39.8	27.5	255.6	74.9	133.4	39.1	28.6
	7200			251.9 73.8	207.3 60.8	23.4			202.4	59.3	25.1	228.8	67.1	197.4		26.9	215.9	63.3	191.9	56.2	28.8
	3398			275.9 80.9	174.9 51.3	24.5		77.3	170.2	49.9	26.3	250.5	73.4	165.1	48.4	28.2	236.1	69.2	159.6	46.8	30.3
	9000		22.2 16.7	298.5 87.5 264.3 77.5	141.0 41.3 232.1 68.0	25.4 24.0		73.9	136.3 227.0		27.3	270.1 239.1	79.2 70.1	131.1 221.6	38.4 65.0	29.4	254.3 224.9	74.5 65.9	125.8 215.9	36.9 63.3	31.9 29.5
5224	4247			289.8 85.0	193.6 56.7	25.1		81.0	188.5	55.3	26.9	261.6	76.7	183.0		28.9	245.8	72.0	177.2	51.9	31.1
[9.1]	0.21			313.8 92.0	153.4 45.0	26.0		87.5	148.3		28.0	281.5	82.5	142.7	41.8	30.3		77.5	137.1	40.2	32.8
	9900		16.7	268.9 78.8	243.7 71.4	24.2		75.1	238.5		25.9	242.9	71.2	233.1	68.3	27.7	228.2	66.9	227.1	66.6	29.7
	4672			295.1 86.5	202.2 59.3	25.3		82.4	197.0		27.1	265.7	77.9	191.4		29.1	249.4	73.1	185.5		31.4
	0.23	72 2		319.5 93.7	159.0 46.6	26.3	303.5	88.9	153.8		28.3	285.6	83.7	148.0		30.6	268.2	78.6	142.4		33.2

Notes

	AFR	Fyan	orator										Enterii	ng Air T	emper	ature							
Model	cfm	Ente			95	°F (35°				10	5°F (40				115	5°F (46°				12!	5°F (52	°C)	
PACH	I/s	W	•	To	tal	Sen	sible	PI	To	tal	Sen	sible	PI	То	tal	Sens	sible	PI	Total		Sensible		PI
[EER]	[BPF]			Cap	acity	Cap	acity	• •	Cap	acity	Cap	acity		Capa	acity	Capa	acity	- ' '	Capa	acity	Capa	acity	
	[5,1]	°F	°C	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW	MBH	kW	MBH	kW	kW
	1600	62	16.7	56.9	16.7	44.1	12.9	5.7	54.7	16.0	43.1	12.6	6.1	52.4	15.4	42.1	12.4	6.5	50.0	14.6	41.1	12.0	7.0
	755	67	19.4	62.3	18.2	37.5	11.0	6.0	59.9	17.6	36.6	10.7	6.4	57.4	16.8	35.6	10.4	6.9	54.8	16.1	34.6	10.1	7.4
	0.26	72	22.2	67.3	19.7	30.6	9.0	6.2	64.8	19.0	29.7	8.7	6.7	62.2	18.2	28.8	8.4	7.2	59.4	17.4	27.9	8.2	7.7
6106	2200	62	16.7	60.7	17.8	51.1	15.0	5.9	58.2	17.1	50.0	14.7	6.3	55.7	16.3	49.0	14.4	6.8	52.9	15.5	47.9	14.0	7.2
[8.5]	1038	67	19.4	66.4	19.5	42.8	12.5	6.2	63.8	18.7	41.8	12.2	6.6	61.1	17.9	40.8	11.9	7.1	58.1	17.0	39.7	11.6	7.5
	0.31	72	22.2	71.9	21.1	34.1	10.0	6.4	69.1	20.3	33.2	9.7	6.9	66.1	19.4	32.2	9.4	7.4	64.6	18.9	31.7	9.3	7.7
	2420	62	16.7	61.7	18.1	53.4	15.7	6.0	59.1	17.3	52.4	15.4	6.4	56.5	16.6	51.3	15.0	6.8	53.7	15.7	50.2	14.7	7.3
	1142	67	19.4 22.2	67.6	19.8	44.5 35.3	13.0	6.2	64.9 70.2	19.0	43.5 34.3	12.7	6.7	62.0	18.2	42.5	12.5 9.8	7.2 7.5	59.0	17.3	41.4	12.1	7.7
	0.32 1730	72 62	16.7	73.1	21.4 17.7	46.8	10.3	6.4	58.2	20.6 17.0	45.8	10.1	6.9	67.2 55.8	19.7 16.3	33.3 44.8	13.1	7.5	65.6 53.1	19.2 15.6	32.8 43.7	9.6 12.8	7.7 8.0
	816	67	19.4	65.9	19.3	39.7	11.6	6.6	63.5	18.6	38.8	11.4	7.2	60.8	17.8	37.7	11.1	7.4	58.0	17.0	36.7	10.7	8.4
	0.27	72	22.2	71.1	20.8	32.3	9.5	6.9	68.4	20.1	31.4	9.2	7.5	65.6	19.2	30.4	8.9	8.1	64.1	18.8	29.9	8.8	8.4
	2400	62	16.7	64.3	18.9	54.3	15.9	6.5	61.8	18.1	53.3	15.6	7.1	59.0	17.3	52.2	15.3	7.7	56.1	16.4	51.0	14.9	8.2
6107	1133	67	19.4	70.2	20.6	45.3	13.3	6.8	67.4	19.8	44.3	13.0	7.4	64.5	18.9	43.2	12.7	8.1	62.9	18.4	42.7	12.5	8.4
[8.4]	0.32	72	22.2	75.8	22.2	36.0	10.6	7.1	72.8	21.3	35.1	10.3	7.8	69.6	20.4	34.0	10.0	8.4	67.9	19.9	33.5	9.8	8.7
	2640	62	16.7	65.3	19.1	56.8	16.6	6.6	62.7	18.4	55.7	16.3	7.1	59.9	17.5	54.6	16.0	7.7	56.9	16.7	53.4	15.7	8.3
	1246	67	19.4	71.3	20.9	47.2	13.8	6.9	68.4	20.1	46.1	13.5	7.5	65.4	19.2	45.1	13.2	8.1	63.8	18.7	44.5	13.0	8.4
	0.34	72	22.2	76.9	22.5	37.2	10.9	7.2	73.8	21.6	36.2	10.6	7.8	70.5	20.7	35.2	10.3	8.5	68.8	20.2	34.6	10.2	8.8
	2000	62	16.7	70.6	20.7	54.5	16.0	6.9	67.9	19.9	53.4	15.6	7.5	65.2	19.1	52.2	15.3	8.2	62.2	18.2	50.9	14.9	8.8
	944	67	19.4	77.1	22.6	46.4	13.6	7.3	74.2	21.7	45.2	13.3	7.9	71.2	20.9	44.1	12.9	8.6	68.0	19.9	42.8	12.6	9.3
	0.26	72	22.2	83.2	24.4	37.8	11.1	7.6	80.1	23.5	36.7	10.8	8.2	76.9	22.5	35.6	10.4	8.9	73.4	21.5	34.4	10.1	9.6
6108	2750	62	16.7	75.1	22.0	63.0	18.5	7.2	72.1	21.1	61.8	18.1	7.8	69.1	20.2	60.6	17.8	8.4	65.7	19.3	59.2	17.4	9.1
[8.5]	1298	67	19.4	82.1	24.1	52.7	15.5	7.5	78.9	23.1	51.5	15.1	8.2	75.5	22.1	50.3	14.7	8.8	71.9	21.1	49.0	14.4	9.5
[0.0]	0.31	72	22.2	88.6	26.0	42.0	12.3	7.8	85.2	25.0	40.9	12.0	8.5	81.6	23.9	39.7	11.6	9.2	77.7	22.8	38.5	11.3	9.9
	3025	62	16.7	76.3	22.4	65.9	19.3	7.2	73.2	21.5	64.7	19.0	7.8	70.1	20.5	63.4	18.6	8.5	66.7	19.5	62.0	18.2	9.2
	1427	67	19.4	83.4	24.4	54.8	16.1	7.6	80.1	23.5	53.6	15.7	8.2	76.6	22.5	52.4	15.4	8.9	72.9	21.4	51.1	15.0	9.6
	0.33	72	22.2	90.1	26.4	43.4	12.7	7.9	86.5	25.4	42.3	12.4	8.6	82.8	24.3	41.1	12.0	9.3	78.8	23.1	39.8	11.7	10.0
	2310	62	16.7	82.9	24.3	63.9	18.7	8.2	79.4	23.3	62.3	18.3	8.7	75.9	22.2	60.8	17.8	9.3	71.9	21.1	59.1	17.3	10.0
	1090	67	19.4	90.7	26.6	54.4	15.9	8.5	87.0	25.5	52.9	15.5	9.1	83.1	24.4	51.4	15.1	9.8	78.8	23.1	49.8	14.6	10.6
	0.26	72	22.2	97.9	28.7	44.4	13.0	8.7	94.0	27.6	43.0	12.6	9.4	89.9	26.4	41.6	12.2	10.2	85.3	25.0	40.0	11.7	11.0
6109	3300 1557	62 67	16.7 19.4	89.0 97.4	26.1	75.2 62.9	22.0 18.4	8.4	85.1 93.3	24.9	73.6	21.6 18.0	9.0	81.0 88.9	23.8	71.9 59.7	21.1 17.5	9.7	76.6 84.1	22.4	70.1 58.0	20.6 17.0	10.4
[8.2]	0.31	72	22.2	105.3	30.9	50.1	14.7	9.0	100.9	29.6	48.6	14.3	9.7	96.3	28.2	47.1	13.8	10.1	93.7	27.5	46.3	13.6	11.0
	3630	62	16.7	90.4	26.5	78.6	23.0	8.5	86.4	25.3	77.0	22.6	9.1	82.2	24.1	75.3	22.1	9.7	77.7	22.8	73.5	21.5	10.5
	1713	67	19.4	99.0	29.0	65.4	19.2	8.8	94.7	27.8	63.9	18.7	9.5	90.2	26.4	62.3	18.3	10.2	85.3	25.0	60.5	17.7	11.0
	0.33	72	22.2	107.0	31.4	51.7	15.2	9.0	102.5	30.1	50.3	14.7	9.8	97.7	28.6	48.7	14.3	10.7	95.1	27.9	47.9	14.0	11.1
	2680	62	16.7											93.5	27.4	72.9	21.4	12.2	88.7	26.0	70.8	20.8	13.0
	1265	67	19.4	111.5	32.7	65.6	19.2	11.1	107.0	31.4	63.8	18.7	11.9	102.2	30.0	61.9	18.2	12.7	97.0	28.4	59.9	17.6	13.7
	0.26	72	22.2	120.3	35.2	53.9	15.8	11.5	115.5	33.8	52.2	15.3	12.3	110.3	32.3	50.4	14.8	13.2	107.6	31.5	49.4	14.5	13.7
6110	3830	62	16.7	110.0	32.2	90.0	26.4	11.0	105.2	30.8	88.1	25.8	11.8	100.2	29.4	86.0	25.2	12.6	94.7	27.8	83.8	24.6	13.5
[7.5]	1807	67	19.4	120.1	35.2	75.6	22.2	11.5	115.0	33.7	73.7	21.6	12.3	109.6	32.1	71.7	21.0	13.2	106.6	31.3	70.6	20.7	13.7
[7.5]	0.31	72	22.2	129.7	38.0	60.6	17.8	11.9	124.2	36.4	58.7	17.2	12.8	118.1	34.6	56.8	16.6	13.8	114.9	33.7	55.7	16.3	14.3
	4215	62	16.7	111.8	32.8	94.1	27.6	11.1	106.9	31.3	92.1	27.0	11.9	101.7	29.8	90.0	26.4	12.7	96.1	28.2	87.7	25.7	13.6
	1989	67	19.4	122.1	35.8	78.6	23.0	11.5	116.9		76.7	22.5	12.4	111.2	32.6	74.6	21.9	13.3	108.2	31.7	73.5	21.6	13.8
	0.33	72	22.2	131.9	38.6	62.6	18.3	12.0	126.1	1	60.7	17.8	12.9	119.9	35.1	58.7	17.2	13.9	116.5	34.2	57.6	16.9	14.4
	3000	62	16.7	100 1	25.0	71 7	21.0	11 ^	105.9		82.2	24.1	12.1	101.6	29.8	80.3	23.5	12.9	97.0	28.4	78.3	23.0	13.8
	1416	67	19.4	120.4	35.3	71.7	21.0	11.8	115.9	1	69.9	20.5	12.6	111.3	32.6	68.1	20.0	13.5	106.3	31.2	66.2	19.4	14.5
	0.26	72	22.2	130.1	38.1	58.7	17.2	12.2	125.4	1	57.0	16.7	13.1	120.4	35.3	55.3	16.2	14.1	115.1	33.7	53.5	15.7	15.2
6211	4170 1968	62 67	16.7 19.4	117.8 128.9	34.5 37.8	97.6 81.9	28.6	11.7 12.2	113.1	1	95.7 80.0	28.0	12.5 13.0	108.3 118.7	31.7	93.7 78.1	27.5	13.3	103.1	30.2	91.6	26.8	14.3 15.1
[8.4]	0.31	72	22.2	139.5	40.9	65.5	24.0 19.2	12.2	124.0 134.2	36.3 39.3	63.8	18.7	13.6	118.7	34.8	61.9	18.2	14.0	125.6	36.8	76.1	17.9	15.1
	4730	62	16.7	120.3	35.3	103.5	30.3	11.8	115.5	1	101.5	29.8	12.6	110.5	32.4	99.5	29.2	13.4	105.1	30.8	97.4	28.5	14.4
	2232	67	19.4	_	38.6	86.3	25.3	12.3	126.6		84.4	24.7	13.2	121.2	35.5	82.4	24.2	14.1	115.4	33.8	80.4	23.6	15.2
	0.33	72	22.2	142.6	41.8	68.4	20.1	12.7	137.1		66.6	19.5	13.7	131.2	38.5	64.8	19.0	14.7	128.2	37.6	63.8	18.7	15.3
	3350	62	16.7	2.0		55.1	20.1	,	116.3		90.9	26.6	12.9	110.4	32.4	88.3	25.9	13.8	104.0	30.5	85.6	25.1	14.8
	1581	67	19.4	133.0	39.0	79.5	23.3	12.5	127.0		77.1	22.6	13.4	120.6	35.4	74.6	21.9	14.5	113.9	33.4	72.0	21.1	15.6
	0.26	72	22.2	143.5		64.9	19.0	12.9	137.1		62.7	18.4	14.0	130.3	38.2	60.3	17.7	15.1	123.2	36.1	57.9	17.0	16.3
	4800	62	16.7	130.8		109.9	1	12.4	124.5		107.3		13.3	117.8	34.5	104.6	30.7	14.3	110.7	32.5	101.7	29.8	15.4
6112	2265	67	19.4	142.9		91.9	26.9	12.9	136.1	39.9	89.4	26.2	13.9	129.0	37.8	86.7	25.4	15.0	121.5	35.6	84.1	24.6	16.2
[8.2]	0.32	72	22.2	154.3	45.2	73.2	21.4	13.4	147.1	43.1	70.8	20.8	14.5	139.5	40.9	68.3	20.0	15.7	135.5	39.7	67.1	19.7	16.3
	5270	62	16.7	132.8	38.9	114.8	33.6	12.5	126.3		112.2	32.9	13.4	119.4	35.0	109.4	32.1	14.4	112.2	32.9	106.5	31.2	15.5
			19.4		42.5	95.5	28.0	13.0	138.2	40.5	93.0	27.2	14.0	130.8	38.3	90.4	26.5	15.1	123.1	36.1	87.6	25.7	16.3
	2487	67	17.7	1 10.1							, 0.0												

Notes:

CAPACITY RATINGS - 60 HZ

	AFR	Evapo	orator		0.5	or /250) (C)			40			Enteri	ng Air T	•		°C)			40	E0E /E0	۰۵۱	
Model PACH	cfm	Ente	ering	To		°F (35°			To	tal	5°F (40			To		5°F (46°			To	tal	5°F (52		
[EER]	I/s	WI	ВТ		ital acity	Sens		PI	Cap			sible	PI	To Capa		Sens		PI			Sens		PI
[EEK]	[BPF]	°F	°C	MBH	kW	MBH	kW	kW	MBH	kW	Cap:	kW	kW	MBH	kW	Capa MBH	kW	kW	MBH	acity kW	MBH	kW	kW
	3350	62	16.7	120.8	35.4	92.8	27.2	12.6	116.2	34.1	90.8	26.6	13.7	111.4	32.7	88.8	26.0	14.8	106.2	31.1	86.5	25.4	15.9
	1581	67	19.4	131.7	38.6	79.0	23.2	13.2	126.8	37.2	77.0	22.6	14.3	121.5	35.6	75.0	22.0	15.6	115.8	33.9	72.8	21.3	16.8
	0.26	72	22.2	142.1	41.6	64.4	18.9	13.8	136.7	40.1	62.6	18.3	15.0	131.0	38.4	60.6	17.8	16.3	128.0	37.5	59.5	17.4	16.9
(010	4800	62	16.7	129.5	38.0	109.3	32.0	13.1	124.3	36.4	107.2	31.4	14.2	118.8	34.8	105.0	30.8	15.4	112.9	33.1	102.6	30.1	16.5
6212 [8.4]	2265	67	19.4	141.4	41.4	91.3	26.8	13.7	135.7	39.8	89.2	26.1	14.9	129.7	38.0	87.0	25.5	16.2	126.6	37.1	85.9	25.2	16.8
[0.4]	0.32	72	22.2	152.5	44.7	72.6	21.3	14.3	146.4	42.9	70.6	20.7	15.6	139.9	41.0	68.5	20.1	16.9	136.5	40.0	67.4	19.8	17.5
	5270	62	16.7	131.4	38.5	114.2	33.5	13.2	126.1	37.0	112.1	32.8	14.3	120.4	35.3	109.8	32.2	15.5	114.3	33.5	107.4	31.5	16.6
	2487	67	19.4	143.5	42.1	94.9	27.8	13.8	137.7	40.4	92.8	27.2	15.0	131.5	38.6	90.6	26.6	16.3	128.3	37.6	89.5	26.2	16.9
	0.33 3600	72 62	22.2 16.7	154.9	45.4	75.0	22.0	14.4	148.6 126.4	43.6 37.1	72.9 98.0	21.4	15.7 14.3	141.9 120.7	41.6 35.4	70.8 95.5	20.7	17.0 15.3	138.4 114.6	40.6 33.6	69.7 92.8	20.4	17.6 16.4
	1699	67	19.4	144.0	42.2	85.6	25.1	13.9	138.1	40.5	83.3	24.4	15.0	132.1	38.7	80.9	23.7	16.0	125.3	36.7	78.3	22.9	17.2
	0.26	72	22.2	155.4	45.5	70.1	20.5	14.5	149.2	43.7	67.9	19.9	15.5	142.6	41.8	65.6	19.2	16.7	135.1	39.6	63.0	18.5	18.0
(440	5000	62	16.7	140.9	41.3	116.4	34.1	13.8	134.8	39.5	113.9	33.4	14.8	128.5	37.6	111.3	32.6	15.8	121.5	35.6	108.5	31.8	16.9
6113 [8.2]	2360	67	19.4	154.0	45.1	97.6	28.6	14.4	147.5	43.2	95.2	27.9	15.5	140.5	41.2	92.6	27.2	16.6	132.8	38.9	89.8	26.3	17.8
[0.2]	0.31	72	22.2	166.4	48.8	78.1	22.9	15.0	159.3	46.7	75.8	22.2	16.1	151.6	44.4	73.2	21.5	17.3	147.4	43.2	71.9	21.1	18.0
	5500	62	16.7	143.2	42.0	121.6	35.7	13.9	136.9	40.1	119.1	34.9	14.9	130.4	38.2	116.5	34.1	15.9	123.2	36.1	113.6	33.3	17.1
	2595	67	19.4	156.5	45.9	101.5	29.8	14.5	149.8	43.9	99.1	29.0	15.6	142.7	41.8	96.5	28.3	16.7	134.6	39.5	93.6	27.4	18.0
	0.33 3925	72 62	22.2 16.7	169.2	49.6	80.7	23.6	15.1	161.9 135.0	47.4 39.6	78.3 105.6	23.0 31.0	16.2 15.0	153.8 129.6	45.1 38.0	75.7 103.3	30.3	17.4 16.3	149.5 123.8	43.8 36.3	74.3 100.7	21.8	18.1 17.6
	1852	67	19.4	153.2	44.9	91.8	26.9	14.5	147.5	43.2	89.6	26.3	15.0	141.6	41.5	87.3	25.6	17.1	135.2	36.3	84.8	24.9	18.5
	0.26	72	22.2	165.3	48.4	74.9	22.0	15.1	159.2	46.7	72.8	21.3	16.4	152.8	44.8	70.6	20.7	17.8	146.0	42.8	68.2	20.0	19.2
(014	5450	62	16.7	149.6	43.9	125.3	36.7	14.3	143.7	42.1	122.8	36.0	15.5	137.6	40.3	120.3	35.3	16.8	131.0	38.4	117.7	34.5	18.2
6214 [8.1]	2572	67	19.4	163.5	47.9	104.8	30.7	15.0	157.2	46.1	102.4	30.0	16.3	150.5	44.1	100.0	29.3	17.7	143.3	42.0	97.4	28.5	19.0
[0.1]	0.31	72	22.2	176.6	51.8	83.5	24.5	15.6	169.8	49.8	81.3	23.8	17.0	162.6	47.6	79.0	23.1	18.4	154.9	45.4	76.5	22.4	19.8
	6000	62	16.7	152.0	44.6	131.0	38.4	14.4	145.9	42.8	128.5	37.7	15.7	139.6	40.9	126.0	36.9	17.0	132.9	38.9	123.3	36.1	18.3
	2831	67	19.4	166.1	48.7	109.0	32.0	15.1	159.6	46.8	106.7	31.3	16.4	152.7	44.8	104.2	30.5	17.8	145.4	42.6	101.6	29.8	19.2
	0.33 4900	72	22.2	179.5	52.6	86.3	25.3	15.7	172.4	50.5	84.1	24.6	17.1	165.0	48.4	81.7	23.9 36.9	18.6	157.1	46.0 42.9	79.2 122.4	23.2 35.9	20.0
	2312	62 67	16.7 19.4	169.3 185.1	49.6 54.2	132.1 112.2	38.7	16.5 17.1	162.0 177.4	47.5 52.0	129.0 109.2	37.8 32.0	17.6 18.4	154.6 169.4	45.3 49.7	125.8 106.2	31.1	18.9 19.8	146.4 160.6	47.1	102.8	30.1	20.2
	0.26	72	22.2	200.0	58.6	91.3	26.8	17.6	191.9	56.2	88.5	25.9	19.0	183.4	53.7	85.5	25.1	20.6	173.8	50.9	82.3	24.1	22.3
(04)	6000	62	16.7	176.4	51.7	145.0	42.5	16.7	168.6	49.4	141.8	41.6	17.9	160.7	47.1	138.5	40.6	19.2	151.9	44.5	134.9	39.5	20.7
6216 [8.2]	2831	67	19.4	192.9	56.5	121.9	35.7	17.3	184.7	54.1	118.8	34.8	18.7	176.2	51.6	115.6	33.9	20.2	166.7	48.9	112.1	32.9	21.8
[0.2]	0.29	72	22.2	208.6	61.1	97.7	28.6	17.9	199.9	58.6	94.8	27.8	19.4	190.8	55.9	91.8	26.9	21.1	185.8	54.5	90.2	26.4	21.9
	6600	62	16.7	179.4	52.6	151.6	44.4	16.8	171.5	50.3	148.3	43.5	18.1	163.3	47.9	145.0	42.5	19.4	154.2	45.2	141.3	41.4	20.8
	3115	67	19.4	196.3	57.5	126.7	37.1	17.5	187.9	55.1	123.6	36.2	18.8	179.1	52.5	120.4	35.3	20.4	169.3	49.6	116.9	34.3	22.0
	0.31 5400	72 62	22.2 16.7	212.3 219.1	62.2	101.0 170.5	29.6 50.0	18.0 21.9	203.4	59.6 61.4	98.0 166.1	28.7 48.7	19.5 23.5	194.0 199.6	56.9 58.5	95.0 161.7	27.8 47.4	21.2	188.9 188.8	55.4 55.3	93.3	27.4 46.0	22.1
	2548	67	19.4	239.2	70.1	145.3	42.6	22.9	229.1	67.1	141.2	41.4	24.5	218.3	64.0	136.8	40.1	26.3	212.4	62.3	134.5	39.4	27.3
	0.17	72	22.2	258.2	75.7	118.8	34.8	23.7	247.3	72.5	114.8	33.6	25.5	235.3	69.0	110.5	32.4	27.5	228.9	67.1	108.2	31.7	28.6
(004	7000	62	16.7	233.2	68.4	193.6	56.7	22.6	222.7	65.3	189.0	55.4	24.2	211.6	62.0	184.3	54.0	25.9	199.4	58.4	179.2	52.5	27.8
6221 [8.2]	3303	67	19.4	255.0	74.8	162.8	47.7	23.6	243.6	71.4	158.4	46.4	25.3	231.3	67.8	153.7	45.1	27.2	224.7	65.9	151.2	44.3	28.2
[0.2]	0.20	72	22.2	275.5	80.8	130.7	38.3	24.5	262.9	77.0	126.3	37.0	26.4	248.9	73.0	121.5	35.6	28.5	241.7	70.8	119.1	34.9	29.6
	7700	62	16.7	237.9	69.7	202.9	59.5	22.8	227.0	66.5	198.3	58.1	24.4	215.4	63.1	193.6	56.7	26.1	202.8	59.4	188.3	55.2	28.0
	3634	67	19.4	260.2	76.3	169.9	49.8	23.8	248.3	72.8	165.4	48.5	25.6	235.4	69.0	160.5	47.0	27.5	228.6	67.0	157.9	46.3	28.5
	6300	72 62	22.2 16.7	281.2 254.1	82.4 74.5	135.3 198.7	39.7 58.2	24.8	267.9 242.2	78.5 71.0	130.8 193.3		26.7	253.2 229.4	74.2 67.2	125.9 187.6	36.9 55.0	28.8	245.7 215.9	72.0 63.3	123.4 181.6	36.2 53.2	30.0
	2973	67	19.4	277.5	81.3	169.2	49.6	25.5	264.6	77.6	164.0	48.1	27.5	251.0	73.6	158.5	46.5	29.6	236.6	69.3	152.8	44.8	31.9
	0.17	72	22.2	299.5	87.8	138.1	40.5	26.4	285.9	83.8	133.1		28.6	271.3	79.5	127.9	37.5	30.9	263.8	77.3	125.3	36.7	32.1
6224	8000	62	16.7	269.3	78.9	223.5	65.5	25.2	256.1	75.0	217.8		27.0	242.0	70.9	211.8	62.1	29.0	227.2	66.6	205.7	60.3	31.2
6224 [8.8]	3775	67	19.4	294.4	86.3	188.0	55.1	26.2	280.2	82.1	182.5	53.5	28.3	265.1	77.7	176.8	51.8	30.5	249.5	73.1	170.9	50.1	32.9
[0.0]	0.20	72	22.2	318.1	93.2	150.9	44.2	27.2	302.9	88.8	145.7	42.7	29.5	286.9	84.1	140.2	41.1	31.9	278.7	81.7	137.4	40.3	33.2
	8800	62	16.7	274.8	80.5		68.7	25.4	261.1	76.5	228.6		27.3	246.5	72.3	222.5	65.2	29.3	231.3	67.8	216.2	63.4	31.5
	4153	67	19.4	300.6	88.1	196.2	57.5	26.5	285.8		190.6		28.6	270.2	79.2	184.7	54.1	30.8	262.2	76.8	181.7	53.3	32.0
	7200	72 62	22.2 16.7	324.8 278.2	95.2 81.5	156.3 219.0	45.8 64.2	27.5	309.1 266.2	90.6 78.0	151.0 213.6		29.8	292.5 253.8	85.7 74.4	145.4 208.2	42.6 61.0	32.3	284.0	83.2 70.4	142.6 202.2	41.8 59.3	33.6
	3398	67	19.4	303.9	89.1	186.2	54.6	28.6	291.2	85.3	181.0		30.7	277.7	81.4	175.7	51.5	32.9	262.6	77.0	169.7	49.7	35.4
	0.18	72	22.2	328.3	96.2	151.6	44.4	29.7	314.6	92.2	146.7		31.9	299.6	87.8	141.4	41.4	34.3	283.0	83.0	135.6	39.7	37.1
6227	9000	62	16.7	292.9	85.9		71.6	28.1	279.9	82.0	238.6		30.1	266.3	78.1	232.9	68.3	32.2	251.3	73.7	226.7	66.4	34.5
6227 [8.6]	4247	67	19.4	320.5	93.9		60.1	29.4	306.5	89.8	199.9	58.6	31.5	291.4	85.4	194.2	56.9	33.8	274.6	80.5	187.9	55.1	36.4
[0.0]	0.21	72	22.2	346.5	101.6		48.2	30.5	331.0	97.0	159.2	46.7	32.8	314.0	92.0	153.4	45.0	35.3	304.9	89.4	150.4	44.1	36.7
	9900	62	16.7	298.5	87.5		75.0	28.4	285.1	83.6	250.3		30.4	271.0	79.4	244.5	71.7	32.5	255.4	74.9	238.1	69.8	34.8
	4672	67	19.4	326.7	95.8		62.8	29.7	312.2	91.5	208.6		31.8	296.4	86.9	202.7	59.4	34.1	279.1	81.8	196.3	57.5	36.7
	0.23	72	22.2	353.3	103.6	170.3	49.9	30.8	337.1	98.8	164.9	48.3	33.2	319.2	93.6	158.9	46.6	35.7	309.8	90.8	155.9	45.7	37.1

Notes:

FAN PERFORMANCE

	Air I	Flow	Interna	I Static									Exte	rnal St	atic Pr	essure	in wg.	(Pa)								
PACH	Ra	ate	Pres	sure	0.00	(0)	0.25	(62)	0.50	(125)	0.75	(187)	1.00	(250)	1.25	(312)	1.50	(374)	1.75	(436)	2.00	(500)	2.25	(500)	2.50	(624)
	cfm	I/s	in.wg	Pa	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
E10E	1600	755	0.34	84	614	0.15	743	0.22	865	0.29	982	0.37	1092	0.45	1197	0.54	1296	0.63	1391	0.72	1481	0.80	1566	0.89	1649	0.98
5105 6106	2200	1038	0.52	129	797	0.36	893	0.44	987	0.53	1078	0.63	1166	0.73	1253	0.83	1337	0.94	1418	1.06	1498	1.17	1575	1.29	1650	1.41
0100	2420	1142	0.6	149	865	0.47	954	0.56	1040	0.65	1124	0.75	1206	0.86	1286	0.97	1365	1.09	1441	1.21	1517	1.33	1590	1.46	1662	1.59
5106	1730	816	0.37	93	652	0.19	772	0.26	887	0.33	997	0.41	1102	0.50	1203	0.59	1299	0.69	1391	0.78	1479	0.88	1564	0.97	1645	1.07
6107	2400	1133	0.59	147	859	0.46	948	0.55	1035	0.64	1119	0.74	1202	0.85	1283	0.96	1362	1.07	1439	1.19	1515	1.32	1588	1.44	1660	1.57
	2640	1246	0.68	169	933	0.60	1015	0.70	1094	0.80	1172	0.90	1248	1.01	1323	1.13	1397	1.25	1469	1.38	1540	1.51	1609	1.64	1678	1.78
5107	2000	944	0.36	90	695	0.25	803	0.33	905	0.41	1005	0.49	1101	0.59	1195	0.69	1285	0.79	1372	0.89	1457	1.00	1538	1.11	1617	1.22
6108	2750	1298	0.57	141	917	0.62	998	0.71	1075	0.81	1151	0.92	1226	1.03	1299	1.14	1371	1.26	1442	1.39	1511	1.52	1580	1.65	1647	1.79
	3025	1427	0.65	162	998	0.81	1072	0.91	1144	1.02	1214	1.13	1282	1.25	1350	1.37	1417	1.50	1482	1.63	1547	1.76	1611	1.91	1674	2.05
5108	2310 3300	1090 1557	0.35 0.57	86	498 662	0.23	622 750	0.32	736	0.41	920 920	0.51	936	0.61 1.10	1025	0.72 1.24	1107 1152	0.83	1185 1222	0.95 1.52	1257 1290	1.08	1327 1355	1.22 1.81	1392 1418	1.36 1.97
6109	3630	1713	0.57	162	717	0.01	797	0.72	877	1.05	954	1.19	1001	1.33	1078 1103	1.47	1173	1.62	1241	1.77	1306	1.92	1369	2.08	1430	2.24
	2680	1265	0.35	86	396	0.77	511	0.72	613	0.47	705	0.61	789	0.76	867	0.92	939	1.02	1008	1.24	1072	1.40	1134	1.57	1430	2.27
5109	3830	1807	0.57	141	516	0.54	602	0.69	683	0.86	759	1.04	831	1.23	899	1.43	964	1.63	1026	1.84	1085	2.06	1142	2.28	1197	2.50
6110	4215	1989	0.65	162	557	0.70	636	0.86	711	1.04	783	1.23	851	1.43	916	1.64	978	1.86	1037	2.08	1095	2.31	1150	2.55		
F010	3000	1416	0.35	86	404	0.26	511	0.38	609	0.52	698	0.67	780	0.84	856	1.00	928	1.18	995	1.35	1059	1.53	1120	1.72	1179	1.90
5210 6211	4170	1968	0.54	135	519	0.62	601	0.77	678	0.94	752	1.13	821	1.33	888	1.53	952	1.75	1012	1.97	1071	2.19	1127	2.42	1181	2.66
0211	4730	2232	0.65	162	575	0.87	648	1.04	718	1.23	786	1.43	850	1.64	912	1.86	972	2.09	1029	2.33	1085	2.57	1139	2.82	1191	3.08
5111	3350	1581	0.35	86	416	0.32	516	0.45	609	0.59	694	0.75	773	0.93	848	1.10	918	1.29	984	1.48	1047	1.67	1108	1.87	1165	2.07
6112	4800	2265	0.57	141	553	0.84	627	1.01	697	1.19	764	1.39	829	1.60	892	1.82	952	2.05	1010	2.28	1066	2.53	1120	2.78	1172	3.03
	5270	2487	0.65	162	598	1.09	666	1.27	731	1.47	793	1.67	854	1.89	913	2.13	970	2.37	1025	2.62	1079	2.87	1130	3.14	1181	3.41
5211	3350	1581	0.35	86	416	0.32	516	0.45	609	0.59	694	0.75	773	0.93	848	1.10	918	1.29	984	1.48	1047	1.67	1108	1.87	1165	2.07
6212	4800	2265	0.57	141	553	0.84	627	1.01	697	1.19	764	1.39	829	1.60	892	1.82	952	2.05	1010	2.28	1066	2.53	1120	2.78	1172	3.03
	5270	2487	0.65	162	598	1.09	666	1.27	731	1.47	793	1.67	854	1.89	913	2.13	970	2.37	1025	2.62	1079	2.87	1130	3.14	1181	3.41
5112	3600 5000	1699 2359	0.36 0.57	89 141	430 562	0.37 0.92	526 633	0.51 1.09	701	0.66	696 767	0.83	774	1.00	846	1.19	915 951	1.38 2.14	980 1008	1.58 2.38	1043 1063	1.78 2.63	1102 1116	1.99 2.89	1159 1168	2.203.15
6113	5500	2595	0.57	162	609	1.20	674	1.38	737	1.58	798	1.47 1.79	831 858	1.69 2.02	915	1.91 2.25	971	2.14	1006	2.75	1003	3.01	1128	3.28	1178	3.55
	3925	1852	0.36	89	445	0.45	534	0.59	618	0.74	697	0.92	771	1.10	842	1.30	909	1.50	973	1.71	1077	1.92	1093	2.14	1149	2.36
5213	5450	2572	0.57	141	584	1.12	650	1.30	714	1.49	777	1.69	837	1.91	895	2.14	952	2.38	1007	2.63	1060	2.89	1112	3.16	1162	3.43
6214	6000	2831	0.65	162	634	1.47	695	1.66	754	1.86	812	2.08	867	2.31	922	2.55	975	2.81	1027	3.07	1077	3.34	1127	3.62	1175	3.91
F04F	4900	2312	0.36	89	539	0.57	662	0.76	778	0.97	885	1.18	984	1.41	1076	1.65	1162	1.90	1243	2.17	1319	2.45	1391	2.74	1460	3.04
5215 6216	6000	2831	0.47	117	633	0.98	734	1.21	833	1.45	928	1.70	1018	1.96	1104	2.23	1184	2.51	1261	2.80	1335	3.10	1405	3.41	1472	3.73
6216	6600	3115	0.54	135	685	1.28	778	1.53	869	1.79	958	2.06	1042	2.34	1124	2.63	1202	2.92	1276	3.23	1347	3.54	1416	3.87	1482	4.20
5219	5400	2548	0.4	100	579	0.73	692	0.94	800	1.16	901	1.40	997	1.64	1086	1.89	1170	2.15	1249	2.43	1324	2.72	1396	3.01	1464	3.32
6221	7000		0.58	145	717	1.50	805	1.76	891	2.04	976	2.32	1057	2.61	1136	2.91	1212	3.22	1284	3.53	1354	3.86	1422	4.19	1487	4.53
	7700		0.67	167	779	1.96	858	2.25	937	2.54	1015	2.85	1091	3.16	1165		1237	3.82	1307	4.15	1374			4.85		
5222	6300		0.39	97	448	0.65	556	0.93	655	1.24	746	1.58	830	1.94	908	2.31	982	2.70	1052	3.09	1118		1181	3.90		
6224		3775	0.54	134	538	1.22	626	1.55	710	1.91	789	2.31	863	2.72	934	3.16	1002	3.61	1066		1128		1188	5.02		
	8800		0.62	155	582	1.58	663	1.94	740	2.32	814	2.74	885	3.18	952	3.64	1017	4.12	1079		1139		1196	5.63		
5224	7200		0.46	115	495	0.92	591	1.22	682	1.56	766	1.93	845	2.32	919	2.73	990	3.15	1057	3.58	1121	4.02	1183	4.47		
6227	9000		0.64	160	593	1.69	672	2.04	748	2.44	821	2.86	890	3.31	957	3.77	1021	4.25	1082	4.75	1142		1199	5.78		
	9900	4672	0.74	185	641	2.19	714	2.58	785	2.99	852	3.44	917	3.91	980	4.41	1041	4.92	1100	5.44	1157	5.99				

Notes:

- 1. Areas shaded in grey indicate the operating range of a standard fan motor; out of this range shift to next larger motor size.
- 2. Internal static pressure is based on pressure drops through evaporator coil, fan casing and 2" washable flat filters.
- 3. For external static pressure more than 2.5 in.wg. (625 Pa), consult SKM.

Field Connections

PACH series self-contained heavy duty air cooled packaged units are designed for minimum field interaction.

Power hook-ups and control wiring of thermostat as per Electrical hook-up diagram is all that is required to electrically connect any model of PACH series .

Every PACH series package air conditioning unit requires, at most, field installed fused disconnect switches or circuit breakers, and a 24 volt control thermostat.

Refer to typical wiring diagram on page 15 for a schematic representation of required field electrical hook-ups for a standard PACH series packaged air conditioning unit.

All field wiring must be done in accordance with applicable local and national codes.

For maximum recommended fuse sizes and minimum circuit amps for cable sizing, see Page 16 of this bulletin.

Duct work should be connected with flexible connections to the PACH series. One or two drains suitably trapped, are required to be connected to the drain outlet of all models of PACH series.

The PACH series series is then ready to provide cooling, on demand. See Installation, Operation and Maintenance Bulletin for full details on field connections and requirements.

Field Wiring Requirement Schematic

TYPICAL ROOM THERMOSTAT

1STAGE AND/OR 2STAGE COOLING/HEATING

Typical Wiring Diagram

PACH Model 5105 ~ 5109, 5111, 5112 & 6106 ~ 6110, 6112, 6113

PACH Model 5210, 5211, 5213 ~ 5224 & 6211, 6212, 6214 ~ 6227

^{**} Provide overcurrent, short circuit, earth fault protection & disconnect means as required by local & national electric code. (3). Standard Panel Enclosure: IP 54 rated.

Legend

C = Contactor

CCH = Crank Case Heater (Self Regulating) CFM = Condenser Fan Motor CM = Compressor Motor
CS = Control Switch
EFM = Evaporator Fan Motor
HPS = High Pressure Switch

LPS = Low Pressure Switch
OL = Overload Relay
TDR = Time Delay Relay
TFR = Transformer

TH = Thermostat
----- = Field Wiring &
Field Supplied Devices

Electrical Data

380 415 V/3 PH/50 HZ (Tolerance: 342 440 V)

MODEL	Unit Char	acteristic			Compresso	r	С	ondenser Fa	n Motor	Evaporator	Fan Motor
PACH	MFA	MCA	QTY	MCC each	RLA each	LRA each	QTY	FLA each	LRA each	FLA	LRA
5105	32	19	1	15	10.7	67	1	1.4	4.7	2.6	11.6
5106	32	20	1	15.5	11.1	80	1	1.4	4.7	2.6	11.6
5107	40	23	1	18	12.9	80	1	2.2	8.7	2.6	11.6
5108	50	29	1	22	15.7	90	1	3.4	14.4	3.7	17.1
5109	63	36	1	27	19.3	105	1	4.2	18.7	5.2	25.6
5210	50	34	2	15	10.7	67	2	1.4	4.7	5.2	25.6
5111	63	38	1	30	21.4	115	1	4.2	18.7	5.2	25.6
5211	50	35	2	15.5	11.1	80	2	1.4	4.7	5.2	25.6
5112	63	44	1	36	25.7	140	1	4.2	18.7	5.2	25.6
5213	63	43	2	18	12.9	80	2	2.2	8.7	7.1	35.1
5215	80	51	2	22	15.7	90	2	3.4	14.4	7.1	35.1
5219	100	61	2	27	19.3	105	2	4.2	18.7	7.1	35.1
5222	100	66	2	30	21.4	115	2	4.2	18.7	7.1	35.1
5224	125	77	2	36	25.7	140	2	4.2	18.7	9.2	49.4

380 V / 3 PH / 60 HZ (Tolerance: 342 418 V)

MODEL	Unit Char	racteristic			Compressor		С	ondenser Fa	n Motor	Evaporator	Fan Motor
PACH	MFA	MCA	QTY	MCC each	RLA each	LRA each	QTY	FLA each	LRA each	FLA	LRA
6106	32	22	1	17.5	12.5	72	1	1.7	5.6	2.6	10.3
6107	40	23	1	18.5	13.2	100	1	1.7	5.6	2.6	10.3
6108	40	28	1	22.5	16.1	102	1	3.2	12.2	2.6	10.3
6109	50	32	1	26	18.6	110	1	3.8	16	3.4	15.3
6110	63	39	1	30	21.4	150	1	5.4	27.5	4.9	22.8
6211	63	38	2	17.5	12.5	72	2	1.7	5.6	4.9	22.8
6112	80	48	1	40	28.6	165	1	5.4	27.5	4.9	22.8
6212	63	40	2	18.5	13.2	100	2	1.7	5.6	4.9	22.8
6113	80	53	1	46	32.9	165	1	5.4	27.5	4.9	22.8
6214	80	51	2	22.5	16.1	102	2	3.2	12.2	6.7	31.3
6216	100	58	2	26	18.6	110	2	3.8	16	6.7	31.3
6221	100	68	2	30	21.4	150	2	5.4	27.5	6.7	31.3
6224	125	84	2	40	28.6	165	2	5.4	27.5	6.7	31.3
6227	160	95	2	46	32.9	165	2	5.4	27.5	8.4	44

460 V / 3 PH / 60 HZ (Tolerance: 414 506 V)

MODEL	Unit Char	racteristic		С	ompressor		С	ondenser Fa	an Motor	Evaporator	Fan Motor
PACH	MFA	MCA	QTY	MCC each	RLA each	LRA each	QTY	FLA each	LRA each	FLA	LRA
6106	32	19	1	15	10.7	67	1	1.6	6.6	2.3	12
6107	32	20	1	15.5	11.1	80	1	1.7	6.6	2.3	12
6108	40	23	1	18	12.9	80	1	2.9	14.4	2.3	12
6109	50	29	1	22	15.7	90	1	3.7	17.3	3.4	18
6110	63	36	1	27	19.3	105	1	5	31.6	4.5	26.4
6211	50	34	2	15	10.7	67	2	1.7	6.6	4.5	26.4
6112	63	38	1	30	21.4	115	1	5	31.6	4.5	26.4
6212	50	35	2	15.5	11.1	80	2	1.6	6.6	4.5	26.4
6113	63	44	1	36	25.7	140	1	5	31.6	4.5	26.4
6214	63	43	2	18	12.9	80	2	2.9	14.4	6.2	36.5
6216	80	51	2	22	15.7	90	2	3.7	17.3	6.2	36.5
6221	100	62	2	27	19.3	105	2	5	31.6	6.2	36.5
6224	100	66	2	30	21.4	115	2	5	31.6	6.2	36.5
6227	125	78	2	36	25.7	140	2	5	31.6	7.8	51

NOTE:

For power supply 460 V 3 Ph 60 Hz, models 6107 & 6211 have Condenser motor of 0.75 KW instead of 0.55 KW

Electrical Data

220 V/3 PH/60 HZ (Tolerance: 208 253 V)

MODEL	Unit Char	acteristic		Co	mpressor		Co	ndenser Fai	n Motor	Evaporator	Fan Motor
PACH	MFA	MCA	QTY	MCC each	RLA each	LRA each	QTY	FLA each	LRA each	FLA	LRA
6106	50	35	1	29	20.7	137	1	3	9.7	4.5	17.8
6107	63	37	1	31	22.1	135	1	3	9.7	4.5	17.8
6108	63	44	1	36	25.7	140	1	5.5	21.2	4.5	17.8
6109	80	53	1	43	30.7	157	1	6.7	27.7	5.9	26.5
6110	100	68	1	54	38.6	210	1	9.4	47.6	8.3	39.5
6211	100	63	2	29	20.7	137	2	3	9.7	8.3	39.5
6112	125	77	1	64	45.7	259	1	9.4	47.6	8.3	39.5
6212	100	66	2	31	22.1	137	2	3	9.7	8.3	39.5
6113	125	82	1	70	50	259	1	9.4	47.6	8.3	39.5
6214	125	82	2	36	25.7	140	2	5.5	21.2	11.5	54.3
6216	160	96	2	43	30.7	157	2	6.7	27.7	11.5	54.3
6221	200	119	2	54	38.6	210	2	9.4	47.6	11.5	54.3
6224	200	135	2	64	45.7	259	2	9.4	47.6	11.5	54.3
6227	250	148	2	70	50	259	2	9.4	47.6	14.7	76.2

440 V / 3 PH / 50 HZ (Tolerance: 400 462 V)

MODEL	Unit Char	acteristic		Co	mpressor		Со	ndenser Fa	n Motor	Evaporator	Fan Motor
PACH	MFA	MCA	QTY	MCC each	RLA each	LRA each	QTY	FLA each	LRA each	FLA	LRA
5105	32	19	1	15	10.7	67	1	1.1	4.3	2.3	11.2
5106	32	19	1	15.5	11.1	80	1	1.1	4.3	2.3	11.2
5107	32	22	1	18	12.9	80	1	1.9	7.9	2.3	11.2
5108	40	28	1	22	15.7	90	1	2.7	13.1	3.2	16
5109	50	34	1	27	19.3	105	1	3.6	16	4.7	25
5210	50	33	2	15	10.7	67	2	1.1	4.3	4.7	25
5111	63	37	1	30	21.4	115	1	3.6	16	4.7	25
5211	50	34	2	15.5	11.1	80	2	1.1	4.3	4.7	25
5112	63	42	1	36	25.7	140	1	3.6	16	4.7	25
5213	63	41	2	18	12.9	80	2	1.9	7.9	6.5	33.5
5215	80	49	2	22	15.7	90	2	2.7	13.1	6.5	33.5
5219	100	59	2	27	19.3	105	2	3.6	16	6.5	33.5
5222	100	64	2	30	21.4	115	2	3.6	16	6.5	33.5
5224	125	75	2	36	25.7	140	2	3.6	16	8	43

LEGEND

MCC - Maximum Continuous Current corresponding to the cutout amps of internal motor protection

RLA - Rated Load Amps FLA - Full Load Amps LRA - Locked Rotor Amps

MCA - Minimum Circuit Amps for wire sizingMFA - Maximum Fuse Amps for unit fuse sizing

Filter Dimensions & Sizes

MODEL PACH-	С	D	G	FLAT FILTER SIZE H x L	QTY.	VEE FILTER SIZE H x L	QTY.
5105 6106	20 [508]	33.6 [853]	20 [508]	20x16[508x406]	2	16x16[406x406]	4
5106 6107	20 [508]	33.6 [853]	20 [508]	20x16[508x406]	2	16x16[406x406]	4
5107 6108	20 [508]	39.6 [1006]	20 [508]	20x20[508x508]	2	16x20[406x508]	4
5108 6109	24 [610]	39.6 [1006]	22 [559]	25x20[635x508]	2	20x20[508x508]	4
5109 6110	24 [610]	46 [1168]	22 [559]	25x25[635x635] 25x20[635x508]	1 1	20x25[508x635] 20x20[508x508]	2 2
5210 6211	24 [610]	51.6 [1311]	22 [559]	25x20[635x508] 25x16[635x406]	1 2	20x20[508x508] 20x16[508x406]	2 4
5111 6112	30 [762]	46 [1168]	26 [660]	16x25[406x635] 16x20[406x508]	2 2	25x25[635x635] 25x20[635x508]	2 2

MODEL PACH-	С	D	G	FLAT FILTER SIZE H x L	QTY.	VEE FILTER SIZE H x L	QTY.
5211	24	57.5	22	25x20[635x508]	2	20x20[508x508]	4
6212	[610]	[1460]	[559]	25x16[635x406]	1	20x16[508x406]	2
5112 6113	30 [762]	48 [1219]	25 [635]	16x25[406x635]	4	25x25[635x635]	4
5213	24	65.4	22	25x25[635x635]	2	20x25[508x635]	4
6214	[610]	[1661]	[559]	25x16[635x406]		20x16[508x406]	2
5215	30	65.4	25	16x25[406x635]	4	25x25[635x635]	4
6216	[762]	[1661]	[635]	16x16[406x406]	2	25x16[635x406]	2
5219	30	72	26	16x20[406x508]	4	25x20[635x508]	4
6221	[762]	[1829]	[660]	16x16[406x406]	4	25x16[635x406]	4
5222 6224	36	72	22	20x20[508x508] 20x16[508x406]	2 2	20x20[508x508]	6
5224 6227	[914]	[1829]	[559]	16x20[406x508] 16x16[406x406]	2 2	20x16[508x406]	6

COMPONENT AIR PRESSURE DROP

				(Coil Face	Velocit	у		
	Component	fpm	300	350	400	450	500	550	600
		m/s	1.5	1.8	2	2.3	2.5	2.8	3
	1" cleanable	in.wg.	0.02	0.03	0.05	0.06	0.07	0.09	0.12
	aluminium flat filter	pa	5	8	13	15	18	23	31
ε	2" cleanable	in.wg.	0.05	0.07	0.1	0.12	0.18	0.22	0.26
<u>i</u>	aluminium flat filter	pa	13	18	25	31	46	56	66
Flat filters	1"activated carbon	in.wg.	0.13	0.16	0.2	0.26	N.R.	N.R.	N.R.
ш	filter (disposable)	Pa	33	40	51	66	N.R.	N.R.	N.R.
	2"activated carbon	in.wg.	0.1	0.12	0.16	0.2	0.25	N.R.	N.R.
	filter (disposable)	Pa	25	31	41	51	64	N.R.	N.R.
	1" cleanable	in.wg.	0.01	0.015	0.025	0.03	0.035	0.045	0.06
	aluminium flat filter	Pa	3	4	6	8	19	11	15
Ş	2" cleanable	in.wg.	0.025	0.035	0.05	0.06	0.09	0.11	0.13
ilter	aluminium flat filter	Pa	6	9	13	15	23	28	33
Vee filters	1"activated carbon	in.wg.	0.065	0.08	0.1	0.13	0.16	0.21	0.26
>	filter (disposable)	Pa	17	20	25	33	41	53	66
	2"activated carbon	in.wg.	0.05	0.06	0.08	0.1	0.125	0.16	0.21
	filter (disposable)	Pa	13	15	20	25	32	41	53
	22" depth	in.wg.	0.22	0.3	0.38	0.49	0.6	0.73	0.86
*v	ZZ ucpul	Pa	56	76	97	124	152	185	218
ite	30" depth	in.wg.	0.2	0.27	0.35	0.45	0.55	0.67	0.79
Bag filters*	oo ucpui	Pa	51	69	89	114	140	170	201
ä	36" depth	in.wg.	0.18	0.25	0.32	0.41	0.5	0.61	0.72
	oo ucpui	Pa	46	64	81	104	127	155	183

*	Initial pressure	drop	based	on	95%	bag	filter	dust	spot
	efficiency.								

N.R. = Not Recommended

All models are 4 row / 10 fpi

				(Coil Face	Velocit	у		
	Component	fpm	300	350	400	450	500	550	600
		m/s	1.5	1.8	2	2.3	2.5	2.8	3
F	lectric Heater	in.wg.	0.01	0.02	0.024	0.028	0.035	0.04	0.045
	10001101100001	Pa	3	5	6	7	9	10	11
Casing	All units	in.wg.	0.15	0.15	0.15	0.15	0.15	0.15	0.15
		Pa	38	38	38	38	38	38	38
io	BPF		0.24	0.26	0.28	0.3	0.32	0.33	0.35
or C FPI	DD dry	in.wg	0.07	0.1	0.12	0.15	0.18	0.21	0.25
porator 3R-10FP	PD dry	Pa	18	25	31	38	46	53	64
Evaporator Coil 3R-10FPI	,	in.wg	0.09	0.13	0.16	0.2	0.23	0.27	0.33
	r D wet	Pa	23	33	41	51	58	69	84
oil	BPF		0.15	0.17	0.19	0.2	0.22	0.23	0.24
or C FPI	PD dry	in.wg	0.1	0.13	0.16	0.2	0.24	0.28	0.33
porator 4R-10FP	r D ui y	Pa	25	33	41	51	61	71	84
Evaporator Coil 4R-10FPI	PD wet	in.wg	0.13	0.17	0.21	0.26	0.31	0.36	0.43
Εv	PD wet		33	43	53	66	79	91	109
Mois	Moisture Eliminator		0.03	0.04	0.06	0.08	0.1	0.11	0.12
WIOR	sture Emiliator	Pa	8	10	15	20	25	28	30

Standard number of rows & fin spacing for models are:

PACH Models	No. of Rows	Fin Spacing (fpi)				
5105 to 5215	3					
6106 to 6216	3	10				
5219 to 5224	1	10				
6221 to 6227	7					

Dimensional Data

PACH Models: 5105, 5106, 5107, 5108, 5109, 5111, 5112 PACH Models: 6106, 6107, 6108, 6109, 6110, 6112, 6113

Dimensional Data

PACH Models: 5215, 5219, 5222, 5224 PACH Models: 6216, 6221, 6224, 6227

ALL DIMENSIONS ARE IN INCHES[MM]

A1-A4 ARE LOADING POINTS Ø0.79[20]

MODEL	ı	W	Н	H1	Α	В	С	D	E	LOAD AT EACH POINT Lbs (Kg)				TOTAL
PACH-	L	VV	П	пт	Α	В				A1	A2	А3	A4	WEIGHT
5210 6211	85	68 [1727]	52.06 [1322]	50.98 [1295]	15.91 [404]	5.5 [140]	24 [610]	51.6 [1311]		245 (111)	245 (111)	376 (171)	352 (160)	1218 (552)
5211 6212	[2159]							57.5 [1460]		249 (113)	249 (113)	379 (172)	355 (161)	1232 (559)
5213 6214	96 [2438]	76 [1930]						65.4		299 (136)	299 (136)	411 (186)	385 (175)	1394 (632)
5215 6216	92		55.58		13.43		30 [762]	[1661]	36 [914]	358 (162)	330 (150)	474 (215)	439 (199)	1601 (726)
5219 6221	[2337]		[1412]		[341]					404 (183)	383 (174)	528 (240)	498 (226)	1813 (823)
5222 6224	96 [2438]	84 [2134]		58.98 [1498]	15.91 [404]	5 [127]	36 [914]	72 [1829]	40 [1016]	447 (203)	424 (192)	585 (265)	542 (246)	1998 (906)
5224 6227	102 [2591]									475 (215)	448 (203)	602 (273)	557 (253)	2082 (944)

Space & Location Requirements

PACH series Packaged Air-Conditioners should be located on a flat base either on the ground or on a roof top strong enough to hold the operating weight of the selected model.

The unit should be located with free and unhindered provision for supply of ambient air to the condenser coil and removal of heated air from it. The unit should not be located in the vicinity of steam, hot air or fume exhausts.

Site units away from noise sensitive places or consider suitable anti-vibration mounts with other treatment to minimize noise and vibration transmission. Do not duct or obstruct condenser fan discharge in any way.

Consider option CGP/CGG if located on ground level where protection against vandalism is desired.

For parallel location of multiple units a minimum clearance between the units must be 50% more than the recommended clearance for single unit installation.

Model	PACH	Α	В		
5105	6106		30 (762)		
5106	6107	40 (1016)			
5107	6108	40 (1010)			
5108	6109		36 (914)		
5109	6110	48 (1219)	30 (714)		
5210	6211	40 (1016)	30 (762)		
5111	6112	48 (1219)	36 (914)		
5211	6212	40 (1016)	30 (762)		
5112	6113	48 (1219)	36 (914)		
5213	6214	40 (1016)	30 (762)		
5215	6216	1 0 (1010)	36 (914)		
5219	6221				
5222	6224	48 (1219)			
5224	6227				

5105-5109, 5111, 5112 6106-6110, 6112, 6113

SPACING FOR AIR FLOW

GUIDE SPECIFICATIONS

GENERAL FEATURES

Packaged air conditioners shall be composed of compressor(s), condenser & evaporator coils with fans, refrigerant piping, electrical components & enclosing cabinet in one piece.

These units shall be factory assembled, internally wired, fully refrigerant charged with R22, tested under strict quality standards & are suitable for outdoor installation on rooftop or ground level with ducted system.

Units should be capable to operate from 50°F (10°C) to 125°F (52°C) ambient temperature, and shall be selected in accordance with project requirements and installed as per Installation, Operation & Maintenance Manual.

COMPRESSOR(S)

Compressor(s) shall be hermetic reciprocating; refrigerant gas cooled, furnished with internal overload protection device, internal pressure relief valve, crankcase heater & shall be mounted on spring vibration isolators.

These compressors conform to internationally recognized standards like NF, VDE, CSA & UL.

CONDENSER COIL(S)

Condenser coils shall be air cooled with integral sub cooler, constructed of seamless copper tubes 3/8" OD mechanically expanded into wavy plate type aluminum fins with maximum 12 fpi (2.1mm) spacing.

These coils shall be tested against leakage by air pressure of 450 psig (3100 kPa) under water, cleaned & dehydrated at the factory. Coil shall conform to ARI-410.

CONDENSER FAN(S) & MOTOR(S)

Unit shall be furnished with a direct driven propeller type, discharging air upward, these fans to be equipped with Aluminum blades, permanently lubricated bearings, and inherent corrosion resistance shaft. Each condenser fan shall be balanced statically and dynamically at the factory. Complete fan assembly is provided with suitable acrylic coated fan guard.

Motor shall be Totally Enclosed Air Over (TEAO), 6 poles, with class F insulation, minimum IP55 protection and factory wired to unit control panel.

EVAPORATOR COIL

Evaporator coil shall be constructed of seamless copper tubes 3/8" OD mechanically bonded to aluminum (copper) cross-wave fins with maximum 12fpi (2.1mm) spacing.

Coil consists of headers of seamless copper tubing, thermostatic expansion valve(s) & multi-circuited distributor(s).

These coils shall be tested against leakage by air pressure of 250 psig (1720 kPa) under water, cleaned & dehydrated at the factory. Coil shall conform to ARI-410.

EVAPORATOR FAN(S) & MOTOR

Fans of evaporators shall be forward curved, double inlet double width (DIDW), centrifugal type, statically & dynamically balanced, mounted on a single heavy duty shaft with permanently lubricated bearings & driven by V belt with an adjustable variable pitch motor pulley.

Motor shall be Totally Enclosed Fan Cooled (TEFC), 4 poles, class-F insulated, minimum IP55 protection & wired to unit control panel.

REFRIGERANT PIPING

Refrigerant circuit piping shall be fabricated from ACR grade copper including shut-off valve, filter drier & thermostatic expansion valve.

Suction line shall be insulated with $\frac{1}{2}$ " (12 mm) wall thickness enclosed cell pipe insulation with maximum k factor 0.28 Btu.in/ft² h°f.

CASING

Casing shall be made of hot dip galvanized, phosphatized steel sheets which are then electrostatically polyester powder coated to provide an extremely tough, scratch resistance & excellent anti-corrosive protection. Casing shall pass 1000 hours in 5% salt spray testing at 95°F (35°C) & 95% relative humidity as per ASTM B117.

Evaporator section shall be sealed with vinyl gaskets & completely insulated faced with black glass tissue (BGT) heavy density, fire retardant, permanent odorless fiberglass insulation of minimum 1" (25 mm) thickness & 32 kg/m³ density having maximum k factor 0.23 Btu.in/ft² h°f. (0.033 W / m °k).

Unit casing shall be provided with access panels for easy service & maintenance of all unit parts.

FILTER SECTION

Packaged air conditioner shall be provided with easily accessible cleanable media, minimum 1" (25 mm) thick filter having average arrestance efficiency of 75% as per ASHRAE standard 52 - 76 or equivalent.

CONTROL PANEL

The panel shall be factory wired in accordance with NEC 430 & 440, and conforms to IP54 requirements.

Control Panel shall contain individual electrical components' contactors, overload relays, transformer, anti-recycling time delay relay, control circuit disconnect switch, power & control circuit terminal blocks and High / low pressure switch.

(Please refer to page 4 for detailed information of Control Panel).

