Controllability of right invariant systems on real simple Lie groups

J.P. GAUTHIER

Laboratoire d'Automatique de Grenoble, BP 46, 38402 St. Martin d'Hérès, France

I. KUPKA

Université de Grenoble I, Laboratoire de Mathématiques Associé au C.N.R.S. No. 188, BP 74, 38402 St. Martin d'Hérès, France

G. SALLET

Université de Metz, Laboratoire de Mathématiques, Ile de Saulay, 57012 Metz, France

Received 9 April 1984

We exhibit some classes of Lie groups, and a set of open assumptions on these groups, such that, under these assumptions, the 'controllability rank condition' becomes a necessary and sufficient condition for controllability of right invariant systems.

AMS Subject Classification: Primary 93B05, 17B20; Secondary 93C10, 22E46.

Keywords: Simple real Lie groups, Controllability, Invariant vector fields.

1. Introduction

We deal with controllability of families of right invariant vector fields on a Lie group G, of the form

$$\Gamma = \{ A + uB | u \in \mathbb{R} \}. \tag{1}$$

What we mean by controllability is 'strong controllability', that is to say:

• The sub-semigroup of G generated by the elements $\exp tX$, $X \in \Gamma$, $t \ge 0$, is all of G.

Our purpose is to improve on the results of [3] for some classes of simple groups, and to generalize the results obtained in [2] when G = Sl(n, R).

We say that Γ satisfies the controllability rank

condition when $\mathcal{L}(A, B)$, the Lie algebra generated by A and B, is equal to L, the Lie algebra of G

For a family of vector fields of the form (1), we say that a set of assumptions is open if the set of couples (A, B) for which they are satisfied is an open subset of $L \times L$.

We will exhibit some classes of *Lie groups*, and a set of *open assumptions* on these groups, such that the *controllability rank condition* becomes, under these assumptions, a *necessary and sufficient condition* for controllability.

In Section 2 we state a few definitions, and the main result. In Section 3 we give the proof of the result.

As suggested by the referee, in our appendix, we explain some of the Lie-theoretic concepts we are using in our paper.

2. Definitions, statement of the result

Let L be a real simple Lie algebra, which is the real *normal* form (in the sense of [5], Th. 1.1.1.9, p. 6, for example) of a complex simple Lie algebra. (Any complex simple Lie algebra has a real normal form, which is unique up to an isomorphism.)

An element B in L is said to be real, strongly regular iff:

- B is regular: B is semi-simple, and Ker(ad B) has minimal dimension.
- All the nonzero eigenvalues of ad B are real, and the corresponding eigenspaces are one-dimensional.

The set of real, strongly regular elements in a real *normal* form of a complex simple Lie algebra is *open*, *nonempty*.

Denote by Sp(B) the set of non-zero eigenvalues of ad B, and by $L(\alpha)$ the eigenspace

 $Ker(ad B - \alpha I), \quad \alpha \in Sp(B),$

L(0) = Ker(ad B).One has

$$L = L(0) \oplus \sum_{\alpha \in \operatorname{Sp}(B)} \oplus L(\alpha).$$

Denote by $A(\alpha)$ the component of $A \in L$ on $L(\alpha)$ in the preceding decomposition:

$$A = A(0) + \sum_{\alpha \in \operatorname{Sp}(B)} A(\alpha).$$

Our result is the following:

Theorem 1. Let G be a real connected Lie group, with finite center, whose Lie algebra L is the real normal form of a complex simple Lie algebra L_c , of one of the following types:

$$A_{\rm r}$$
, $D_{\rm r}$, $E_{\rm 6}$, $E_{\rm 7}$, $E_{\rm 8}$.

Let Γ be a subset of L of the form (1) such that:

- (1) B is real, strongly regular.
- (2) With $s = \sup\{a \mid a \in \operatorname{Sp}(B)\},\$

trace(ad
$$A_{(s)} \circ$$
 ad $A_{(-s)}$) < 0.

Then, the controllability rank condition is a necessary and sufficient condition for the controllability of Γ .

3. Proof of Theorem 1

Let L be a real normal form of a complex simple Lie algebra L_c , $\Gamma \subset L$, let $LS(\Gamma)$ be the *Lie-saturated* cone of Γ , as defined in [2] (Definition 6, p. 20).

Lemma 1. Assume that $\pm B \in LS(\Gamma)$, for B real, strongly regular. For any $A \in L$ such that $\pm A \in LS(\Gamma)$, then $L(\alpha) \subset LS(\Gamma)$, $\forall \alpha \in Sp(B)$ such that $A(\alpha) \neq 0$.

Proof. Let $s = \sup\{\alpha | A(\alpha) \neq 0\}$. From [1], Prop. 5.4, p. 164, it follows that

$$X_s(v) = \pm \exp(v \text{ ad } B)(A)/e^{vs}$$

 $\in LS(\Gamma), \forall v \in R.$

Since LS(Γ) is closed ([3], Prop. 5.2, p. 164),

$$\lim_{v\to +\infty} X_s(v) \in LS(\Gamma),$$

and
$$\pm A(s) \in LS(\Gamma)$$
.

Then one considers $\hat{A} = A - A(s)$, and iterates the procedure to get any $L(\alpha)$, $\alpha > 0$, such that $A(\alpha) \neq 0$. The same applies for $\alpha < 0$, beginning with $-s = \inf\{\alpha \mid A(\alpha) \neq 0\}$. \square

Lemma 2. Assume that L_c has one of the types A_r , D_r , E_6 , E_7 , E_8 . Then, $\forall \alpha, \beta \in Sp(B)$, the α -string of β (see [4,3]) contains at most the values -1, 0, +1.

Proof. If $\alpha = a(B)$, $\beta = b(B)$, a, b roots of $L_c(0)$, the α -string of β is the set of all integers l such that b + la is a root of $L_c(0)$. An inspection of the Dynkin diagrams shows that for A_r , D_r , E_6 , E_7 , E_8 , and only for these, the primitive roots have the same length. Any root being conjugate to a primitive root, all the roots have the same length. The absolute value of l in the α -string of β is bounded by

$$\max\left(\frac{\|b\|^2}{\|a\|^2}, \frac{\|a\|^2}{\|b\|^2}\right).$$

Hence it is at most 1 in our case. (See Th. 1.1.1.1, p. 3 and $\S1.1.2$, pp. 9-10 of [5] for example.) \square

For the other simple Lie algebras (B_r, C_r, F_4, G_2) , it is easy to check that there exist strings, between primitive roots, such that l=2 or l=3.

For all the properties of the roots used above one may consult [4,5] for example (pp. 9–10 of [5], pp. 38–49 of [4]).

Let Γ be of the form (1), satisfying the assumptions of Theorem 1. Denote by $H(\alpha)$ the space $[L(\alpha), L(-\alpha)], \alpha \in \operatorname{Sp}(B)$.

Let S be the linear space generated by

- (a) the $L(\alpha)$ such that $L(\alpha) \subset LS(\Gamma)$,
- (b) the $H(\alpha)$ such that $L(\alpha)$ and $L(-\alpha) \subset LS(\Gamma)$.

From the general theory developed in [3], it is obvious that S is a Lie subalgebra of L.

Claim. S is an ideal of $\mathcal{L}(A, B)$, the Lie algebra generated by A and B.

 $\mathcal{L}(A, B)$ is generated by S,

$$S_1 = \sum_{\alpha} \bigoplus \{L(\beta) | A(\beta) \neq 0, L(\beta) \not\subset S\},$$

and $L_0 \subset L(0)$, with $L_0 = \operatorname{span}\{A(0), B\}$.

(a) As $B \in L_0$, $A \in S + S_1 + L_0$, then $\mathcal{L}(A, B)$ is included in the Lie algebra generated by S, S_1 and L_0 .

(b) From Lemma 1 (and from [3], Prop. 5.3, p. 164), the Lie algebra generated by S, S_1 and L_0 is contained in $LS(\{\pm A, \pm B\}) = \mathcal{L}(A, B)$.

Proof. Trivially, $[S, L(0)] \subset S$, so, to prove the claim, it is sufficient to prove

$$[S, S_1] \subset S. \tag{2}$$

This is implied by

$$[L(\alpha), L(\beta)] \subset S,$$

$$\forall L(\alpha) \subset S, \forall L(\beta) \not\subset S \text{ and } A(\beta) \neq 0$$
 (3)

(since the $L(\alpha) \subset S$ generate S).

Proof of (3). Assume that $[L(\alpha), L(\beta)] \neq 0$. Consider

$$\Phi(v, X) = \exp(v \text{ ad } X)(A)$$

for $X \in L(\alpha)$, $\forall v \in \mathbb{R}$. One has $\Phi(v, X) \in LS(\Gamma)$, but

$$\Phi(v, X) = \sum_{i} v^{i} \frac{\operatorname{ad}^{i} X}{i!} A$$

$$= A + \lambda X + \sum_{\substack{i \ge 1 \\ \gamma \in \operatorname{Sp}(B)}} \frac{v^{i}}{i!} \operatorname{ad}^{i} X[A(\gamma)]$$

for real λ. From Lemma 2,

 $\operatorname{ad}^{i}X[A(\gamma)] = 0 \text{ or } \lambda X \text{ for } i \geq 2.$

Then

$$\pm \sum_{\gamma \in \operatorname{Sp}(B)} [X, A(\gamma)] \in \operatorname{LS}(\Gamma).$$

With Lemma 1, this proves (3), and (2). The claim is proved. \Box

Necessity of Theorem 1 is obvious. For the sufficiency, suppose that $\mathcal{L}(A, B) = L$. Since L is simple, it follows that S = L or $\{0\}$ from the claim above; from assumption (2) in the statement of the theorem, S cannot be $\{0\}$: It contains at least L(s), $s = \sup\{a \mid a \in \operatorname{Sp}(B)\}$ (this has been proved in [3], Lemma 8, p. 177). So, S = L, and $LS(\Gamma) = L$, Γ is controllable.

4. Appendix

Let L be a semi-simple real Lie algebra. The killing form $B: L \times L \to \mathbb{R}$ is the symmetric bilin-

ear form

$$B(X, Y) = \text{trace}(\text{ad } X \circ \text{ad } Y).$$

B is non-degenerate.

Example. In the case of sl(n), B(X, Y) = trace(XY), the trace of the product matrix XY.

4.1. Cartan decomposition. Let us denote by K (resp. P) the set of all $Z \in L$ such that ad Z is skew symmetric (resp. symmetric) with respect to R.

$$B(\text{ad } Z(X), Y) + B(X, \text{ad } Z(Y)) = 0,$$

 $B(\text{ad } Z(X), Y) - B(X, \text{ad } Z(Y)) = 0.$

It is clear that $K \cap P = 0$, and it can be shown that $L = K \oplus P$.

It is easy to see that K is a *subalgebra* of L and $[K, P] \subset P, [P, P] \subset K$.

Example. sl(n): ad $X \in K$ (resp. P) if the matrix X is skew symmetric (resp. symmetric).

4.2. A Cartan space $a \in P$ is a maximal commutative subalgebra of L contained in P.

The elements of a are simultaneously diagonalisable.

All Cartan spaces are conjugated under the action of the subgroup of Int(L) generated by K.

4.3. L is called a *normal* real form, or a *split* real form if the normalizer of a in L is a itself.

An equivalent definition is: in the complexification $L_c = L \otimes_{\mathbf{R}} \mathbb{C}$, $a \otimes_{\mathbf{R}} \mathbb{C}$ is a Cartan subalgebra.

- **4.4.** Given a normal real form L and a Cartan space a of L, there exists a finite set R of nonzero real linear forms on L such that:
 - (a) -R = R,
- (b) $L = a \oplus \Sigma_{\phi \in R}^{\oplus} L(\phi)$ (Σ^{\oplus} denotes direct sum), where $\dim_{\mathbf{R}} L(\phi) = 1$ and $\forall X \in a$

ad
$$X | L(\phi) = \phi(X) \cdot Identity$$
.

References

- N. Bourbaki, Groupes et Algèbres de Lie, Fasc. XXXVIII, Chs. 7, 8 (Hermann, Paris, 1975).
- [2] J.P. Gauthier and G. Bornard, Controllabilité des systèmes

- bilinéaires, SIAM Journal Control Optim. (March 1982).
- [3] V. Jurdjevic and I. Kupka, Control systems on semi-simple Lie groups and their homogeneous spaces, *Annales de l'In*stitut Fourier 31 (4) (1981).
- [4] H. Samelson, Notes on Lie Algebras (Van Nostrand Reinhold, New York, 1969).
- [5] G. Warner, Harmonic Analysis on Semi-simple Lie Groups (Springer, Berlin-New York, 1972).