Fiche 8. Primitives

Savoir.

- ☐ Connaître la définition d'une primitive.
- ☐ Connaître les formules des primitives usuelles.

Savoir-faire.

- ☐ Savoir déterminer une primitive.
- ☐ Savoir utiliser les primitives pour calculer des intégrales.

Vidéo ■ Fiche 8. Primitives

Primitives

— **Définition.** Soit $f: I \to \mathbb{R}$ une fonction. On dit qu'une fonction F est une **primitive** de f si pour tout $x \in I$:

$$F'(x) = f(x)$$

- Exemples.
 - $F(x) = \frac{x^3}{3}$ est une primitive de $f(x) = x^2$.
 - $\ln(x)$ est une primitive de $\frac{1}{x}$ sur $]0, +\infty[$.
- Trouver une primitive est l'opération inverse du calcul de la dérivée.
- Exercice. Trouver une primitive de chacune des fonctions suivantes :
 - x
 - \bullet cos(x)
 - sin(x)

- -x
- $\bullet \ \frac{3}{x} \frac{7}{x^2} + 1$
- \bullet $\frac{1}{\cos^2(x)}$

Calculs d'intégrales à l'aide d'une primitive

Théorème. Soit f une fonction définie sur un intervalle [a, b]. Soit F une primitive de f. Alors :

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

- C'est le moyen le plus efficace pour calculer des intégrales!
- Notation par des crochets. $\left[F(x) \right]_a^b = F(b) F(a)$
- Exemple.

$$\int_{1}^{2} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{1}^{2} = \frac{2^{3}}{3} - \frac{1^{3}}{3} = \frac{7}{3}.$$

— Exemple.

$$\int_{2}^{7} \frac{1}{x} dx = \left[\ln(x) \right]_{2}^{7} = \ln(7) - \ln(2) = \ln\left(\frac{7}{2}\right).$$

Toutes les primitives

— Une primitive n'est pas unique! Soit $f(x) = x^2$, alors $F(x) = \frac{x^3}{3}$ est une primitive. Mais la fonction $G(x) = \frac{x^3}{3} + 2$ est aussi une primitive (dérivez-la pour vérifier). Il y a donc plusieurs primitives. En fait toutes les fonctions $\frac{x^3}{3} + c$, où c est une constante, sont des primitives. Nous généralisons ceci à toutes les fonctions :

Proposition. Si F(x) est une primitive de f(x), alors les autres primitives sont de la forme F(x) + c où $c \in \mathbb{R}$ est une constante.

- Exemple. Les primitives de x^4-3x+5 sont les fonctions $\frac{1}{5}x^5-\frac{3}{2}x^2+5x+c$, où $c\in\mathbb{R}$ est une constante.
- Exercice. Vérifier que les primitives de la fonction $\sqrt{x} = x^{\frac{1}{2}}$ sont les fonctions $\frac{2}{3}x\sqrt{x} + c = \frac{2}{3}x^{\frac{3}{2}} + c$.
- Pour calculer une intégrale, vous choisissez la primitive que vous voulez car $[F(x)]_a^b$ donne le même résultat quelle que soit la primitive.

Primitives usuelles

Primitives des fonctions classiques

Ici c désigne une constante réelle.

Fonction	Primitives
x^n	$\frac{x^{n+1}}{n+1} + c (n \in \mathbb{N})$
$\frac{1}{x}$	$\ln(x) + c$
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}+c \qquad (\alpha \in \mathbb{R} \setminus \{-1\})$
$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{2}{3}x\sqrt{x} + c = \frac{2}{3}x^{\frac{3}{2}} + c$ (c'est $\alpha = \frac{1}{2}$)
e ^x	$e^x + c$
$\cos(x)$	$\sin(x) + c$
sin(x)	$-\cos(x)+c$

Ces formules sont à maîtriser! Mais ce sont juste les formules des dérivées que vous connaissez déjà.

Primitives pour une composition

Ici *u* est une fonction qui dépend de *x* ; *c* désigne une constante réelle.

Fonction	Primitive
u'u ⁿ	$\frac{u^{n+1}}{n+1} + c \qquad (n \in \mathbb{N})$
$\frac{u'}{u}$	$\ln(u) + c$
$u'u^{\alpha}$	$\frac{u^{\alpha+1}}{\alpha+1}+c \qquad (\alpha \in \mathbb{R} \setminus \{-1\})$
u'e ^u	$e^{u}+c$
$u'\cos(u)$	$\sin(u) + c$
$u'\sin(u)$	$-\cos(u)+c$

— Exemple. Comment calculer $\int_1^2 x e^{x^2} dx$? Avec $u(x) = x^2$ (et donc u'(x) = 2x) on a $2xe^{x^2} = u'(x)e^{u(x)}$ dont une primitive est $e^{x^2} = e^{u(x)}$. Ainsi

$$\int_{1}^{2} x e^{x^{2}} dx = \frac{1}{2} \int_{1}^{2} 2x e^{x^{2}} dx = \frac{1}{2} \left[e^{x^{2}} \right]_{1}^{2} = \frac{1}{2} (e^{4} - e).$$

— Exemple. On sait que $\tan(x) = \frac{\sin(x)}{\cos(x)} = -\frac{\cos'(x)}{\cos(x)}$. Par le tableau précédent, les primitives de la fonction tangente sont les fonctions de la forme $F(x) = -\ln(|\cos(x)|) + c$ où c est une constante réelle.