Baryon acoustic oscillations in a non-flat universe

Santiago Sanz Wuhl

Trabajo de Fin de Grado Código FS22-17-FSC

Grado de Física Facultad de Ciencias Universidad de Córdoba

Contents

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

Resumen

En este trabajo de fin de grado se hace uso de herramientas de computación de alto rendimiento y análisis de datos para estudiar los efectos de ligeras variaciones en el **modelo cosmológico estándar** ACDM. Este modelo asume un universo **espacialmente plano**, si bien las observaciones son compatibles con una curvatura no nula.

Este trabajo se basa en las **oscilaciones acústicas de bariones**, un fenómeno que nos permite estudiar el comportamiento del universo en sus etapas más tempranas.

Después de analizar el catálogo de galaxias del cartografiado **eBOSS**, obtenemos los siguientes resultados: $D_H/r_d=18.66\pm0.72$ y $D_M/r_d=18.28\pm0.53$ para un universo plano, en concordancia con los resultados para otros valores no nulos del **parámetro de curvatura** Ω_k , y lo que es más importante, con resultados anteriores en el campo.

- Resument
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

The Baryon Acoustic Oscillations

- Early Universe: Primordial density perturbations are created due to quantum fluctuations during inflation.
- Primordial plasma: The high temperatures keep the universe ionized, tightly binding photons and baryons.
- Acoustic Oscillations: Perturbations in the equilibrium between gravitational attraction and thermal radiation pressure cause pure acoustic waves to propagate through the plasma (BAO).
- Recombination: As the universe expands and cools, the Thomson Scattering mechanism stops being effective and photons decouple from the plasma, 'turning off' the interaction and freezing the Acoustic Waves.

The Baryon Acoustic Oscillations

Figure 1: Different time evolution stages of the Baryon Acoustic Oscillations

The BAO analysis

Considering the distribution of the distances at which two galaxies are found of one another, we finde the correlation function $\xi(r)$ and its Fourier Transform, the power spectrum P(k).

Figure 2: First BAO observations by the SDSS and the 2dF collaborations **Note** the local maxima at $s = r_d$ and $k = 2\pi/r_d$.

The ACDM model

Parameter	Parameter Name	Fiducial Value
Ω_b	Baryon Density Parameter	0.0481
Ω_c	Dark Matter Density Parameter	0.2604
H_0	Hubble Constant	67.6 kms ⁻¹ Mpc ⁻¹
$ au_{reio}$	Reionization Optical Depth	0.09
A_s	Scalar Perturbation Amplitude	2.0403×10^{-9}
n _s	Scalar Spectral Index	0.97
Ω_k	Curvature Parameter	[-0.20, 0.20]
r _d	Sound Horizon at Recombination	147.784 Mpc
D_H/r_d	Hubble distance	18.7
D_{M}/r_{d}	Angular diamater distance	18.3
Ω_{Λ}	Dark Energy Density Parameter	[0.49, 0.89]
Ω_m	Matter Density Parameter	0.31

June 20, 2023

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

Objectives

- Review the theoretical background of BAO observables: physical origin, mathematical formulation, and become familiar with the software tools for data analysis and visualization.
- 2 Investigate the impact of different values of the curvature parameter Ω_k on the behavior of BAO observables.
- **3** Analyze the most recent observational data on BAO observables, obtained from the **eBOSS experiment**, and compare the results with theoretical predictions for different values of Ω_k .
- Make use of high performance computing to solve Physics problems.
- Learn to remotely control computer clusters via SSH (Secure Shell).

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

Mathematics, software and hardware

- **Mathematics** The Fast Fourier Transform algorithm
- Software
 - RUSTICO Measures the power spectrum of a given galaxy catalog¹ as the Fourier Transform of the correlation function

$$\xi(\mathbf{r}) = \langle \delta(\mathbf{x})\delta(\mathbf{x}') \rangle, \text{ with } \delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \overline{\rho}}{\overline{\rho}}$$
 (1)

- CLASS The theoretical power spectrum for a given cosmology.
- **BRASS** Returns the best-fit parameters in the line-of-sight (α_{\parallel}) and in the transverse (α_{\perp}) direction of the theoretical power spectrum to the measured one, along with their standard deviations.
- **Mardware** The clusters from the *FQM-378* research group in the Universidad de Córdoba.

¹In our case, the Luminous Red Galaxies of the extended Baryon Oscillation Spectroscopy Survey (LRG eBOSS)

Figure 3: The pipeline used to measure the desired cosmological distances

SSW (UCO) Non-Flat universe BAO June 20, 2023

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

Procedure

Using the mentioned pipeline, we followed the following procedure to obtain the desired results

- A single fixed flat cosmology template is generated using CLASS
- For Ω_k in the range [-0.20, 0.20] in steps of 0.05, nine different power spectrums are **measured** from the eBOSS galaxy catalog.
- Using BRASS, we fit the template to **each power spectrum**, obtaining α_{\parallel} , α_{\perp} . Each calculation is done three times iteratively, to assure better results.
- Having measured α_{\parallel} and α_{\perp} and calculated the fiducial values of the cosmological distances we are interested in, we obtain the **measured distances**.

$$\frac{D_H}{r_d} = \alpha_{\parallel} \left[\frac{D_H}{r_d} \right]^{\text{fiducial}}, \frac{D_M}{r_d} = \alpha_{\perp} \left[\frac{D_M}{r_d} \right]^{\text{fiducial}}$$
(2)

Where D_H and D_M are the functions $D_H(z)$ and $D_M(z)$ evaluated at the redshift of the eBOSS galaxies, z = 0.698.

Ω_k	D_H/r_d	D_M/r_d
-0.20	19.57 ± 0.85	17.85 ± 0.51
-0.15	19.25 ± 0.84	17.85 ± 0.54
-0.10	19.00 ± 0.80	17.96 ± 0.59
-0.05	18.82 ± 0.77	18.13 ± 0.59
0.00	18.66 ± 0.72	18.28 ± 0.53
0.05	18.61 ± 0.65	18.25 ± 0.47
0.10	18.57 ± 0.61	18.24 ± 0.43
0.15	18.50 ± 0.56	18.23 ± 0.41
0.20	18.36 ± 0.53	18.34 ± 0.39

Table 1: Distance measurements to eBOSS galaxies for different assumed values of the curvature parameter Ω_k .

Figure 4: Derivation of cosmological distance measurements.

- Resumen
- 2 Introduction
- Objectives
- Materials and methods
- 6 Results
- 6 Conclusiones

Conclusiones

- Hemos revisado e implementado la metodología BAO para medir distancias cosmológicas en el Universo, y la hemos aplicado a una muestra de galaxias del cartografiado eBOSS.
- Permos usado computación de alto rendimiento para calcular las posiciones de las características BAO de las galaxias de eBOSS junto con sus incertidumbres.
- Hemos obtenido unas **mediciones de distancia** a las galaxias de eBOSS normalizadas a la escala del horizonte de sonido de $D_H/r_d=18.66\pm0.72$ y $D_M/r_d=18.28\pm0.53$.
- Nuestro resultado principal es que **no hay dependencia significativa** de estas observables con respecto a cambios en el valor asumido del parámetro de curvatura Ω_k en el rango de estudio.

Baryon acoustic oscillations in a non-flat universe

Santiago Sanz Wuhl

Trabajo de Fin de Grado Código FS22-17-FSC

Grado de Física Facultad de Ciencias Universidad de Córdoba

Figure 5: Power spectrum of the LRG eBOSS galaxies.

Figure 6: The template power spectrum and its smooth and the pure BAO components.