Intro. to Deep Learning

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

Why Deep Learning?

Features Classifier

Why Deep Learning?

 Hand-engineered features are designed characteristics that help in distinguishing different faces.

- Geometric Features
 - landmark points & distances and angles
- Texture Features
- Appearance Features
- Color and Illumination Features

Hand-Engineered Features

very hard to make

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features Mid Level Features High Level Features Lines & Edges High Level Features Facial Structure

Why Now?

Stochastic Gradient 1952 Descent Perceptron 1958 Learnable Weights : 1986 Backpropagation Multi-Layer Perceptron 1995 Deep Convolutional NN Digit Recognition

Neural Networks date back decades, so why the dominance?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

The Perceptron

The Brick of Deep Learning

The Perceptron - Output Computation (i.e., Forward Pass)

The Perceptron - Output Computation (i.e., Forward Pass)

The Perceptron - Output Computation (i.e., Forward Pass)

Beyond Sigmoid - Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a neural network to distinguish green vs red points?

Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(w_0 + \mathbf{X}^T \mathbf{W} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$
This is just a line in 2D!

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g (1 + (3*-1) - (2*2))$$

= $g (-6) \approx 0.002$

From Perceptron to Neural Network

The Perceptron in Matrix Form

The Perceptron: Compact Notation

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Beyond One Output – Multivariate Case

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j w_{j,\underline{i}}$$

Now, Neural Network

Called a single layer neural network because there is only one layer of hidden neurons.

Now, Neural Network

Beyond Single Layer - Deep Neural Network

Example Problem

Example Problem

Example Problem

Computing Errors

Computing Loss (i.e., Error)

The loss of our network measures the cost incurred from incorrect predictions

Empirical Loss

The **empirical loss** measures the total loss over our entire dataset

$$\mathbf{X} = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} \mathbf{x_1} \\ \mathbf{x_2} \\ \end{array} \qquad \begin{array}{c} \mathbf{f(x)} \\ \mathbf{y} \\ \end{array} \qquad \begin{array}{c} \mathbf{f(x)} \\ \begin{bmatrix} 0, 1 \\ 0.8 \\ 0.6 \\ \vdots \end{bmatrix} \\ \mathbf{x} \\ \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \end{bmatrix} \end{array}$$

Also known as:

- Objective function
- Cost function
- Empirical Risk

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\mathbf{x}^{(i)}; \mathbf{W}), \mathbf{y}^{(i)})$$

Predicted

Actual

Binary Classification Case – Recall Logistic Regression

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Regression Case – Recall Linear Regression

Mean squared error loss can be used with regression models that output continuous real numbers

The **loss** of our network measures the cost incurred from incorrect predictions

How to match network outputs (\hat{y}) to actual values (y)?

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

We want to find the network weights that achieve the lowest loss

Loss Surface

If we try all possible of parameters (W), here is the loss surface.

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$
- 5. Return weights

Computing Gradients

How does a small change in one weight (ex. w_2) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for every weight in the network using gradients from later layers

Model Training Techniques

Mini-Batch Training

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

GD Variants

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

Reference

Kiefer & Wolfowitz. "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Dealing with Model Overfitting

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Dropout

• During training, randomly set some activations to 0

Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Early Stopping

Stop training before we have a chance to overfit

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

