CHAPTER 2: PERFORMANCE ISSUES

TRUE OR FALSE

T	F	1. Year by year the cost of computer systems continues to rise.
T	F	2. Processors are so inexpensive that we now have microprocessors we throw away.
T	F	3. Workstation systems cannot support highly sophisticated engineering and scientific applications.
T	F	4. The IAS is the prototype of all subsequent general-purpose computers.
Т	F	5. Cloud service providers use massive high-performance banks of servers to satisfy high-volume, high-transaction-rate applications for a broad spectrum of clients.
Т	F	6. The raw speed of the microprocessor will not achieve its potential unless it is fed a constant stream of work to do in the form of computer instructions.
T	F	7. Superscalar execution is the same principle as seen in an assembly line.
T	F	8. Branch prediction potentially increases the amount of work available for the processor to execute.
T	F	9. Raw speed is far more important than how a processor performs when executing a given application.
T	F	10. The cache holds recently accessed data.
Т	F	11. Operations performed by a processor, such as fetching an instruction, decoding the instruction, performing an arithmetic operation, and so on, are governed by a system clock.
Т	F	12. A common measure of performance for a processor is the rate at which instructions are executed, expressed as millions of instructions per second (MIPS).

Computer Organization and Architecture, 10^{th} Edition, by William Stallings

Т	F		 Designers wrestle with the challenge of balancing processor performance with that of main memory and other computer components. 					
Т	F		A straight comparison of clock speeds on different processors tells the whole story about performance.					
Т	F	15.	5. Measures such as MIPS and MFLOPS have proven adequate to evaluating the performance of processors.					
MULT	ΓIPLE C	HOIC	CE					
1. Multiple parallel pipelines are used in				d in				
		A. s	peculative execution	B. data flow analysis				
		C. s	uperscalar execution	D. branch prediction				
2. The desktop application(s) that require the great power microprocessor-based systems include								
		A. ii	mage processing	B. speech recognition				
		C. v	ideoconferencing	D. all of the above				
3.			otentially increases the o execute.	amount of work available for the				
		A. B	Branch prediction	B. Performance balance				
		C. P	ipelining	D. BIPS				
4.	in the	entir	e computer because it is	nd is the most crucial pathway s responsible for carrying a constant flow between memory chips and the processor				
		A. n	nain memory	B. pipeline				
		C. c	lock speed	D. control unit				

5.		ne is a relatively small fast memory interposed between a larger, ower memory and the logic that accesses the larger memory.				
	A. peripheral	B. cache				
	C. processor	D. arithmetic and logic unit				
6.	An increase in clock rate m	eans that individual operations are executed				
	A. the same	B. slower				
	C. with very little ch	nange D. more rapidly				
7.	A is a core designed	ed to perform parallel operations on graphics data.				
	A. MIC	B. ALU				
	C. GPU	D. PGD				
8.	A(n) Mean is a good performance of several sys	od candidate for comparing the execution time tems.				
	A. Composite	B. Arithmetic				
	C. Harmonic	D. Evaluation				
9.	law deals with the potential speedup of a program using multiple processors compared to a single processor.					
	A. Moore's	B. Amdahl's				
	C. Little's	D. Murphy's				
10. One increment, or pulse, of a clock is referred to as a						
	A. clock cycle	B. clock rate				
	C. clock speed	D. cycle time				

and p		on the same chip is referred to as acrease performance without increasing the
	A. multicore	B. GPU
	C. data channels	D. MPC
	respect to changes in value values in the data set.	es, the Mean gives equal weight to all
	A. Harmonic	B. Arithmetic
	C. Composite	D. Geometric
13. The measures the ability of a computer to complete a singl		
	A. clock speed	B. speed metric
	C. execute cycle	D. cycle time
	easurement of how many t unt of time is called a(n) _	asks a computer can accomplish in a certain
	A. real-time system	B. application analysis
	C. cycle speed	D. throughput
15. The	best known of the SPEC be	enchmark suites is
	A. SPEC CPU2006	B. SPECjvm2008
	C. SPECsfs2008	D. SPEC SC2013
SHORT ANS	SWER	
instr		o work simultaneously on multiple fferent phase for each of the multiple

Computer Organization and Architecture, 10th Edition, by William Stallings

2.	is the ability to issue more than one instruction in every processor clock cycle.
3.	With the processor looks ahead in the instruction code fetched from memory and predicts which branches, or groups of instructions, are likely to be processed next.
4.	enables the processor to keep its execution engines as busy as possible by executing instructions that are likely to be needed.
5.	Traditionally found on a plug-in graphics card, a is used to encode and render 2D and 3D graphics as well as process video.
6.	Law applies to a queuing system.
7.	The three common formulas used for calculating a mean are arithmetic, harmonic, and
8.	The Mean used for a time-based variable, such as program execution time, has the important property that it is directly proportional to the total time.
9.	The Mean is preferred when calculating rates.
10.	The Mean gives consistent results regardless of which system is used as a reference.
11.	metric are required for all reported results and have strict guidelines for compilation.
12.	A suite is a collection of programs, defined in a high-level language, that together attempt to provide a representative test of a computer in a particular application or system programming area.
13.	At the most fundamental level, the speed of a processor is dictated by the pulse frequency produced by the clock, measured in cycles per second, or
14.	The best-known collection of benchmark suites is defined and maintained by an industry consortium known as
15.	law deals with the potential speedup of a program using multiple processors compared to a single processor.

CHAPTER 2: PERFORMANCE ISSUES

TRUE OR FALSE

- 1. F
- 2. T
- 3. F
- T 4.
- 5. T
- T 6.
- F 7.
- T 8.
- F 9.
- T 10.
- T 11.
- 12. T
- T 13.
- 14. F
- 15. F

MULTIPLE CHOICE

- 1. C
- 2. D
- 3. A
- 4. Α
- 5. В
- D 6.
- 7. C
- В 8. 9. В
- 10. A
- 11. Α
- 12. D
- 13. В
- D 14.
- 15. Α

SHORT ANSWER

- 1. Pipelining
- 2. Superscalar execution
- 3. branch prediction
- 4. Speculative execution
- 5. GPU (graphics processing units)
- 6. Little's
- 7. geometric
- 8. Arithmetic
- 9. Harmonic
- 10. Geometric
- 11. Base
- 12. benchmark
- 13. Hertz (Hz)
- 14. System Performance Evaluation Corporation (SPEC)
- 15. Amdahl's