

Par convention, l'intensité sort de la borne + du générateur et va vers la borne -. Elle correspond au déplacement de charges positives. Les électrons se déplacent dans l'autre sens dans le circuit. Lorsque le courant arrive à un nœud, la somme des intensités rentrantes est égale à la somme des intensités sortantes :

$$I_1 + I_2 = I_3 + I_4$$

C'est la loi des noeuds dans un circuit.

Loi des mailles dans un circuit (voir IV.

Dans une maille de circuit, la somme algébrique des tensions est nulle.

 \underline{Ex} : On choisit une maille dans le circuit, on l'oriente dans un sens

Maille bleue : $U_{CG} - U_{BA} = 0$

Maille verte : $U_{EF} + U_{DE} - U_{BA} = 0$

V. Loi d'Ohm

La relation liant la tension aux bornes d'un résistor

(conducteur ohmique) et l'intensité le traversant est :

$$U_{CF} = R \times I$$
 (Re

 $(Ren \Omega; Ien A; U_{CF}en V)$

C'est une relation de proportionnalité entre la tension et l'intensité du dipôle.

Si on trace U_{CF} en fonction de $I:U_{CF}=f(I)$. On obtient une droite passant par 0 de coefficient directeur R. C'est une fonction linéaire.

Calcul de R à partir de la caractéristique : R =
$$\frac{\Delta U}{\Delta I}$$

Caractéristique tension-courant d'une résistance