Generating Audio from Sheet Music

John Icke & Megan Shapiro

CS/EE 507: Intro to Computer Vision

Fall 2020

- Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/8, 1/4, 1/2, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

- Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/4, 1/4, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

- Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/8, 1/4, 1/2, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

- Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/8, 1/4, 1/2, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

5

- 1. Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/4, 1/4, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

6

- Locate staff lines
- Detect clef (treble or bass)
- Detect key (number of flats or sharps)
- Find note locations in image
- Find note lengths (1/4, 1/4, 1/4, whole)
- Find note pitch based on position w.r.t. staff 6.
- Find accidentals and adjust pitch
- 8. Play song

- Locate staff lines
- 2. Detect clef (treble or bass)
- 3. Detect key (number of flats or sharps)
- 4. Find note locations in image
- 5. Find note lengths (1/8, 1/4, 1/2, whole)
- 6. Find note pitch based on position w.r.t. staff
- 7. Find accidentals and adjust pitch
- 8. Play song

Previous Work

- Optical Music Recognition
 - Heavier focus on handwriting interpretation
 - Digitization, storage, duplication, preservation
 - Wide Range of techniques
 - Template Matching
 - Machine Learning
 - Typically done in three steps
 - Preprocessing
 - Symbol recognition
 - Reconstruction (Sounding the note)

Technical Approach

- Preprocessing
 - Thresholded using an inverse binary threshold
 - Staff lines detected and removed using HoughLinesP() function
- Symbol Detection
 - Clef detected using template matching (which match was stronger, treble or bass)
 - Key template matching (which was stronger, flat or sharp, and how many of them are present)
 - Note locations using connected components
 - Note type using blobs (is the note head circle filled?) and then templates (% vs ¼ have filled circles, ½ vs whole have empty circles)
 - Accidentals using same templates as key signature

Technical Approach

- Reconstruction
 - Note position compared with staff line heights to determine note location
 - Note location converted to pitch using predefined arrays according to key signature
 - Pitches played using musicalbeeps library

Results

Live Demo

Going Further

- Tempo
- Time Signatures
- Measure Markers
- Rests
- Dynamics
- Articulation
- Multiple different Instruments

