核辐射物理及探测学 第十章作业

- 1. 用高纯锗探测器测量 1.332~MeV 的 γ 射线,试计算由于载流子数的统计涨落引起的能量 线宽是多少 keV? 假如除统计涨落外,所有其他因素对谱线宽度的贡献为 1~keV,那么 探测多大能量的粒子会形成 2.5~keV 的线宽? (设法诺因子 F=0.1)
- 2. 若高纯锗探测器的结电容为 $10 \, pF$,输出回路杂散电容忽略不计,电荷灵敏前置放大器的反馈电容 C_f =1 pF,放大器的开环增益很大,则当电子在 HPGe 中沉积 $662 \, keV$ 的能量时,电荷灵敏前放的输出电压脉冲信号幅度是多少?
- 3. 当 α 粒子经准直垂直入射硅 PN 结探测器的表面时, 241 Am 的主要 α 粒子峰的中心位于多道分析器的 463 道。然后改变几何条件使 α 粒子偏离法线 60°入射,此时看到峰漂移至440 道,已知 241 Am 源的 α 粒子能量为 E_{α} =5.486 MeV,试求死层厚度(用 α 粒子的能量损失表示)。
- 4. 计算室温时以下几种情况下金硅面垒探测器的结电容, 设其半径 $10 \, \text{mm}$, 厚度 $0.1 \, \text{mm}$, 电阻率 $1000 \, \Omega \cdot \text{cm}$, ①偏压 $10 \, \text{V}$; ②偏压 $40 \, \text{V}$; ③偏压 $100 \, \text{V}$ 。
- 5. 一同轴型高纯锗探测器,全耗尽时的结电容为 10pF, 设电荷灵敏前置放大器的零电容噪声为 0.5 keV, 噪声斜率 0.1 keV/pF, 则探测器全耗尽工作时, 电子学噪声展宽是多少 keV? 对应的等效噪声电荷 (ENC) 为多少?

核辐射物理及探测学 第十二章作业

- 1. 根据 ²⁴Na 衰变纲图,分析 Ge 半导体探测器所测 ²⁴Na 伽马能谱。
 - (1) 给出标号所示位置的名称并简述其成因, 标号下的数值为相应的能量, 单位为 keV。
 - (2) 请画出三晶谱仪的原理框图。
- (3) 请画出用三晶谱仪测量 ²⁴Na 所得的能谱,并简述原因。

2. 已知符合装置的分辨时间为1微秒,用两探测器分别测量两放射源(两路信号相对独立),并将两路信号接入符合装置,已知两路信号的计数率分别为200/s 和300/s,则1小时能测到多少个符合计数?

核辐射物理及探测学 第十三章作业

 $1. \, BF_3$ 正比计数管的尺寸为Φ $3 \, cm \times 20 \, cm$,气压为 $101325 \, Pa$ (0°C) , $^{10} B$ 的浓度为 96% (原子数百分比)。(1)请计算其热中子灵敏度。(2)请计算其对能量为 $1 \, eV$ 的单能中子的灵敏度。