МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт информационных технологий и технологического образования Кафедра информационных технологий и электронного обучения

КУРСОВАЯ РАБОТА

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ КОЛЕБАТЕЛЬНЫХ ПРОЦЕССОВ

Направление подготовки: «Информатика и вычислительная техника»

Руководитель:	
октор педагогических наук, профессор	доктор
« » Е. З. Власова	«
Автор работы студент	
2 группы 1 подгруппы	
« » М.Н. Степук	«

ОГЛАВЛЕНИЕ

Введение	3
Глава 1 Теоретический блок	
1.1 Колебательные процессы	4
1.2 Математический и пружинный маятники	5
1.3 Электромагнитные колебания. Колебательный контур	6
Глава 2 Практический блок	
2.1 Колебательный контур	8
2.2 Пружинный маятник	12
Заключение	15
Список литературы	16

ВВЕДЕНИЕ

Актуальность изучения данной темы заключается в том, что колебательные процессы широко распространены в нашем мире, но не стоит ограничивать это понятие только наукой, ведь даже природа не является линейным процессом, а совершает своего рода колебания.

Может казаться, что люди нашли способ применения колебательных процессов относительно недавно, но это не так. Человек уже с давних времён применяет их в своей жизни, так например, ещё в конце 16 века были изобретены первые маятниковые часы, а, как известно, маятник является простейшим примером колебательного движения.

Данное исследование важно в современном мире. Колебательные процессы используются как в повседневной жизни, в предметах, которые стали привычными для людей, так и в тех сферах, о которых далеко не каждый имеет хотя бы минимальное представление. Колебательные процессы используются людьми постоянно. В настоящее время большинство людей ежедневно пользуются различной техникой, но мало кто знает, что даже в ней используются колебательные процессы. Так, например, колебательные процессы широко применяются в бытовых приборах, а также для осуществления мобильной связи используются именно электромагнитные колебания, посредством которых и появляется возможность передачи информации от одного человека другому.

Целью исследования является изучения колебательных процессов и их компьютерное моделирование.

Под задачами исследования выделены несколько пунктов:

- Изучение специальной литературы по теме данного исследования;
- Рассмотрение содержания ключевых понятий и определений;
- Компьютерное моделирование механических колебаний и электромагнитных колебаний на примере простейшего пружинного маятника и простейшего колебательного контура соответственно.

При выполнении курсовой работы были использованы учебная и справочная литература, а также электронные ресурсы и ресурсы сети Интернет.

Глава 1 Теоретический блок

1.1 Колебательные процессы

Колебательный процесс - периодический или почти периодический процесс, который повторяется через одинаковые или почти одинаковые промежутки времени.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Основным признаком колебательного движения является его периодичность. Колеблющееся тело за одно колебание дважды проходит положение равновесия. Колебания характеризуются такими величинами как период, частота, амплитуда и фаза колебаний.

Амплитуда – это наибольшее смещение колеблющейся величины от положения равновесия.

При малых амплитудах путь пройденный телом за одно полное колебание равен примерно четырем амплитудам.

Промежуток времени, в течение которого тело совершает одно полное колебание, называют периодом колебаний.

Период – это время одного полного колебания.

Чтобы найти период колебаний нужно разделить время колебаний на число колебаний:

$$T = \frac{t}{N} \tag{1}$$

Частота колебаний – это число колебаний за единицу времени.

$$v = \frac{1}{T} \tag{2}$$

 Φ аза колебаний — это физическая величина определяющая отклонение колеблющейся величины от положения равновесия в данный момент времени.

1.2 Математический и пружинный маятники

Пружинный маятник

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k, один конец которой жёстко закреплён, а на втором находится груз массы m.

Период колебаний пружинного маятника:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{3}$$

Т – период колебаний пружинного маятника;

m – масса подвешенного груза;

k – жёсткость пружины.

Математический маятник

Математический маятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен.

Осциллятор (лат. oscillo — качаюсь) — система, совершающая колебания, то есть, показатели которой периодически повторяются во времени.

Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен:

$$T = 2\pi \sqrt{\frac{L}{g}} \tag{4}$$

T — период колебаний математического маятника;

L — длина нити маятника;

g – ускорение свободного падения.

1.3 Электромагнитные колебания. Колебательный контур

Электромагнитными колебаниями называют периодические изменения со временем заряда, силы тока и напряжения.

Электромагнитные колебания бывают двух видов - свободные и вынужденные.

Свободные колебания - колебания, возникающие в колебательной системе за счет первоначально сообщенной этой системе энергии.

Вынужденные электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения в цепи под действием переменной электродвижущей силы от внешнего источника.

Колебательным контуром называется система, состоящая из конденсатора и катушки, присоединенной к его обкладкам, в которой могут происходить свободные электромагнитные колебания.

Чтобы в колебательном контуре возникли колебания, необходимо сообщить колебательному контуру энергию, зарядив конденсатор от источника тока.

Схема простейшего колебательного контура:

Рисунок 1.1

Циклическая частота для свободных электромагнитных колебаний:

$$\omega = \frac{1}{\sqrt{LC}} \tag{5}$$

 ω — циклическая частота;

L — индуктивность катушки;

C — ёмкость конденсатора;

Период свободных для свободных электромагнитных колебаний:

$$T = \frac{2\pi}{\omega} = 2\pi\sqrt{LC} \tag{6}$$

Период свободных электрических колебаний в колебательном контуре зависит от индуктивности катушки и емкости конденсатора.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание.

Частотой колебаний называется величина, обратная периоду колебаний:

$$v = \frac{1}{T} = \frac{1}{2\pi\sqrt{LC}} \tag{7}$$

Глава 2 Практическая часть

2.1 Колебательный контур

Для построения графиков колебательных процессов в контуре необходимо описать исследуемую задачу.

Источник с ЭДС є и нулевым внутренним сопротивлением соединены последовательно с катушкой индуктивности и конденсатором. В начальный момент времени конденсатор не заряжен.

Под действием внешней силы в нашем контуре будут происходить вынужденные электромагнитные колебания, а именно периодические изменения заряда, силы тока и напряжения в цепи.

Все элементы цепи соединены последовательно, поэтому сила тока во всех ее участках в данный момент времени одинакова, а сумма напряжений на всех элементах равна ЭДС.

Значит, т.к. по условию внутреннее сопротивление равно нулю:

$$UL + UC = \varepsilon$$
 (8)

 $U_{\rm C}$ - напряжение на конденсаторе;

U_L - напряжение на катушке индуктивности;

Напряжение на конденсаторе U_C связано с зарядом q его верхней пластины и его емкостью C соотношением:

$$U_C = \frac{q}{c}$$

Напряжение на индуктивности в любой момент времени равно по величине и противоположно по знаку ЭДС самоиндукции, поэтому:

$$U_L = L \frac{dI}{dt}$$

Ток в цепи I равен скорости изменения заряда верхней пластины конденсатора:

$$I = \frac{dq}{dt}$$

Подставляя ток в выражение для напряжения на катушке и обозначая вторую производную заряда конденсатора q по времени через q", перепишем уравнение (8) в виде:

$$L q'' + q / C = \varepsilon$$
 (9)

Получим ω_0 из уравнения (5) и запишем уравнение (9) следующим образом:

$$q'' + \omega_0^2 q = \varepsilon / L$$
 (10)

Тогда получаем из уравнения (10) уравнение (11):

$$q = Q + \varepsilon / L\omega_0^2$$
 (11)

Поскольку q = Q", то в результате такой замены правая часть в уравнении (10) пропадает, и оно принимает вид:

$$Q'' + \omega_0^2 \quad Q = 0 \tag{12}$$

Уравнение (12) - это уравнение свободных гармонических колебаний с частотой ω0. Поэтому:

$$Q(t) = Q0 \cos(\omega 0 t + \alpha)$$
 (13)

Второе слагаемое в правой части выражения (11) равно С ϵ , для заряда конденсатора q(t) с помощью (13) получаем:

$$q(t) = Q0 \cos(\omega 0 t + \alpha) + C\varepsilon$$
 (14)

Из условия задачи знаем, что:

$$q(0) = 0 I(0) = 0 (15)$$

Найдём с помощью (14) выражение для тока в цепи I:

$$I(t) = dq / dt = -Q0 \omega 0 \sin(\omega 0 t + \alpha)$$
 (16)

Учитывая начальные условия, получаем, что уравнение x(t) имеет вид:

$$q(t) = C \epsilon (1 - \cos(\omega 0 t))$$
 (17)

Такое же вид имеет уравнение зависимости напряжения на конденсаторе от времени:

$$U(t) = q/C (18)$$

В таблице 1 представлены постоянные значения (константы в рамках данной задачи), которые были использованы для моделирования колебательных процессов.

Таблица 1

Название	Обозначение	Величина	СИ
Точечный заряд	Q0	0,00025	Кл
Циклическая частота	ω0	11	рад/с
Ёмкость конденсатора	C	0,0006	Φ
ЭДС	3	4	В
Начальное отклонение	α	0	рад

Подставляя данные значения из таблицы 1 и значения, которые принимает время в формулу (17) получаем функцию зависимости заряда от времени(q(t)). Полученный график представлен на рисунке 2.1.

Рисунок 2.1

Из приведённого на рисунке 2.1 графика видно, что величина заряда q совершает гармонические колебания с течением времени.

Теперь подставляем необходимые значения из таблицы 1 и значения, которые принимает время в формулу (16) получаем функцию зависимости тока от времени(I(t)). Полученный график представлен на рисунке 2.2.

Зависимость тока на конденсаторе от времени I(t)

Из приведённого на рисунке 2.2 графика видно, что величина тока І совершает гармонические колебания с течением времени.

Аналогично подставляя необходимые значения из таблицы 1 и значения, которые принимает время в формулу (18) получаем функцию зависимости тока от времени(U(t)). Полученный график представлен на рисунке 2.3.

Зависимость напряжения от времени U(t)

Рисунок 2.3

Из приведённого на рисунке 2.3 графика видно, что величина тока U совершает гармонические колебания с течением времени.

2.2 Пружинный маятник

Колебательному контуру, содержащему индуктивность и емкость, можно сопоставить пружинный маятник. При этом заряд конденсатора аналогичен смещению груза, а ток в контуре - скорости движения груза. Упругая пружина является аналогом конденсатора, а движущаяся масса - аналогом катушки индуктивности.

Рисунок 2.4

Важно, что в начальный момент времени пружина не растянута и вся система покоится.

Для построения графика колебательного процесса необходимо разработать математическую модель движения такого маятника.

Ось OX направлена вертикально вниз. И с помощью неё мы будем отсчитывать смещение груза x от положения покоя.

Проекция силы, действующей на груз со стороны пружины, равна - kx. А сила тяжести, действующая на груз, равна mg.

Из второго закона Ньютона:

$$ma = mg - kx \tag{19}$$

Введем обозначение $\omega_{02} = k / m$ и перепишем уравнение (19) в виде:

$$x'' + \omega_0^2 x = g$$
 (20)

где х" – вторая производная смещения по времени.

Процессы в механической и электрической системах описываются одинаковыми уравнениями. Тогда отсутствие заряда конденсатора и тока в начальный момент времени соответствуют равенствам нулю в начальный момент времени смещения и скорости:

$$x(0) = 0$$
 $v(0)=0$ (21)

Таким образом, данная механическая система является аналогом электрической системы. А значит смещение груза x(t) описывается формулой (17). Из формул (3) и (13) выясняем, что следует заменить: -Е/L на g

-CE =
$$E/L\omega_0^2$$
 на g/ω_0^2 = mg/k

Тогда получаем формулу смещения груза x(t):

$$x(t) = \frac{mg}{k(1 - \cos(\omega 0t))}$$
(22)

В таблице 2 представлены постоянные значения (константы в рамках данной задачи), которые были использованы для моделирования колебательного процесса.

Таблица 2

Название	Обозначение	Величина	СИ
Масса груза	m	10	КГ
Ускорение свободного падения	g	9,8	м/c^2
Жёсткость пружины	k	100	Н/м
Циклическая частота	ω0	11	рад/с

Подставляя данные значения из таблицы 2 и значения, которые принимает временя в формулу (22) получаем функцию зависимости смещения от времени (x(t)). Полученный график представлен на рисунке 2.5.

Зависимость смещения от времени x(t)

Рисунок 2.5

Из приведённого на рисунке 2.5 графика видно, что величина смещения х совершает гармонические колебания с течением времени.

ЗАКЛЮЧЕНИЕ

При написании курсовой работы по представленной теме была изучена специальная литература, включавшая справочные материалы по механике и электромагнитным колебаниям, а также материалы, взятые из сети Интернет на тему колебательный контур и пружинный маятник.

В теоретической части раскрыты базовые понятия и некоторые термины, связанные с колебательными процессами, как в механических, так и электромагнитных системах. На основе полученных материалов были созданы компьютерные модели, которые демонстрируют колебательные процессы, возникающие в различных системах, а также проведена аналогия между двумя конкретными системами, такими как пружинный маятник и колебательный контур.

Таким образом, было проведено исследование по теме курсовой работы, изучен материал по заданной теме, а также разобраны отдельные варианты колебательных систем, на основе которых и были построены компьютерные модели данных процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Молотков Н.Я. Колебательные процессы: Учебный эксперимент-М.: ИД Интеллект, 2013-288стр.
- 2. Мякишев Г.Я. Физика. 11 класс. Базовый и профильный уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин М.: Просвещение, 2006 413стр.