

Numerical Computing (NC-2008)

Course Instructor
USAMA ANTULEY

usama.antuley@nu.edu.pk

Lecture # 01

Orientation

About Course, Marking Division (Proposed), Class Protocols

Let's Begin

Course Details

Textbook(s)	Title	Numerical Analysis, 9th Edition	
	Author	Burden and Faires	
	Publisher	BOOKS/COLE (Cengage Learning)	
Ref. Book(s)	Title	Numerical Methods in Engineering with Python 3	
	Author	Jaan Kiusalaas	
	Title	Applied Numerical Methods with Matlab for Engineers and Scientist, 3 rd Edition	
	Author	Steven C,Chapra	

MARKING DIVISION

Particulars	% Marks
Sessional I (Theory + Lab)	15
Sessional II (Theory + Lab)	15
Assignment (Theory + Lab + Project)	14
Quiz/Lab Task	06
Final (Theory + Lab)	50
Total	100
	200

Protocols

- o Be in Classroom on time
- o Student who arrive more than 5 minutes late will be marked LATE & after 15 minutes as ABSENT
- o Keep remember to turn off your Cell phone before entering the class
- Avoid conversation during lecture
- Submit your Assignment on time. No submission after the deadline
- o Always bring your Work Book/Note Book and Calculator with you in the class

Academic Calendar for Spring 2024 Semester

BS/BBA Program

S. No.	Week	Description	Date
1.	0	New Faculty Training	Jan 08 – 12 (Mon – Fri)
2.	0	The registration process of the course (s) start and its last date	Jan 17 – 19 (Wed - Fri)
3.	1	Commencement of the Classes	Jan 22 (Mon)
4.	2	Add & Drop of Courses	Feb 03 (Sat)
5.	2	Last Date for Applying Semester's freeze	Feb 03 (Sat)
6.	6	Sessional-I Examinations	Feb 26 – 29 (Mon - Thu)
7.		Procom Days	Mar 08 – Mar 09 (Fri – Sat)
8.	12	Sessional-II Examinations	Apr 08 – 11 (Mon - Thu)
9.	14	Developers Day	April 25 (Thu)
10.	16	Last Day of Classes	May 10 (Fri)
11.	17	Last Date of Withdrawal of Courses	May 17 (Fri)
12.	18-19	Final Examinations	May 20 – 31 (Mon - Fri)
13.	21	Final Result Announcement	June 08 (Sat)

Note:

Campus may decide to open on Saturday due to Procom Day, Developers Day, and Public holidays.

Why Numerical Methods??

To accurately *approximate* the solutions of problems that cannot be solved exactly (by analytical method).

Application of Numerical Computing in your domain??

Some of the Applications:

- ✓ Image Processing
- **✓** Computer Vision
- ✓ Computer Graphics (rendering, animation),
- ✓ Climate Modeling,
- ✓ Weather Predictions,
- ✓ "Virtual" crash-testing of cars etc.
- ✓ medical imaging (CT = Computed Tomography),
- ✓ CAD (Computer-Aided Design)
- ✓ And many more

Some Challenges/Issues in NC:

- √ Accuracy
- **✓** Precision
- ✓ Errors (True & Approximate)
- ✓ Significant Figures etc.

Accuracy:

Accuracy:

"How closely a computed value agrees with the true value"

Bias/Inaccuracy :

"A systematic deviation from the truth"

Accurate

Biased/Inaccurate

VS.

Precision:

• Precision:

"How closely individual computed values agree with each other"

• Uncertainty/Imprecision:

"magnitude of scatter"

Measurement of Errors:

- When the current solution is compared with the *true/exact solution*, the error involved is called **true error**
- When the current solution is compared with the solution obtained in the *previous iteration*, the error involved is called **approximate error**

True Errors:

"It is used to measure the lack of accuracy of an estimate"

• True (absolute) error = $\mathbf{E_t}$ = True value – Approximation

• True Relative error =
$$\frac{E_t}{True \ value}$$

• True Percent Relative Error =
$$\frac{True \, value - approximation}{True \, value} \times 100\%$$

Approximate Errors:

"Used to measure the lack of precision of an estimate"

- Approximate (Absolute) Error
 - $\mathbf{E_a}$ = Current approximation Previous approximation
- Approximate Relative Error = E_a / Current approx.
- Approx. Percent Relative Error = $\frac{\text{Current approx.} \text{Previous approx}}{\text{Current approx}} \times 100\%$

Practice Problem:

The following sequence of estimates was obtained when a numerical method was applied to solve the equation:

$$x^4 - 5x - 7 = 0$$

1.8254 1.9633 2.0121 2.0283 2.0335 2.0351 2.0356

2.0358

Calculate the **four errors (True & Relative errors, Approximate & Relative errors)** for these estimates, given that one of the roots of the equation is 2.0359.