Solved selected problems of Classical Electrodynamics - Hans Ohanian

Franco Zacco

Chapter 1 - Vector Calculus

Problems

Solution. 8. Knowing that

$$\hat{\boldsymbol{\rho}} = \hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi$$
$$\hat{\boldsymbol{\phi}} = -\hat{\boldsymbol{x}}\sin\phi + \hat{\boldsymbol{y}}\cos\phi$$
$$\hat{\boldsymbol{z}} = \hat{\boldsymbol{z}}$$

We can compute the following

$$\hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{\phi}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \end{vmatrix} = \hat{\boldsymbol{z}} \cos^2 \phi - (-\hat{\boldsymbol{z}} \sin^2 \phi) = \hat{\boldsymbol{z}}$$

$$\hat{\boldsymbol{\phi}} \times \hat{\boldsymbol{z}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \hat{\boldsymbol{x}} \cos \phi + \hat{\boldsymbol{y}} \sin \phi = \hat{\boldsymbol{\rho}}$$

$$\hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{z}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \cos \phi & \sin \phi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \hat{\boldsymbol{x}} \sin \phi - \hat{\boldsymbol{y}} \cos \phi = -\hat{\boldsymbol{\phi}}$$

Solution. 9. Knowing that

$$\hat{r} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta$$
$$\hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta$$
$$\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$$

We can compute the following

$$\hat{\boldsymbol{r}} \times \hat{\boldsymbol{\theta}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \end{vmatrix}$$

$$= -\hat{\boldsymbol{x}} \sin^2 \theta \sin \phi + \hat{\boldsymbol{y}} \cos^2 \theta \cos \phi + \hat{\boldsymbol{z}} \sin \theta \cos \phi \cos \theta \sin \phi$$

$$- \hat{\boldsymbol{z}} \cos \theta \cos \phi \sin \theta \sin \phi - \hat{\boldsymbol{x}} \cos^2 \theta \sin \phi + \hat{\boldsymbol{y}} \sin^2 \theta \cos \phi$$

$$= -\hat{\boldsymbol{x}} \sin \phi + \hat{\boldsymbol{y}} \cos \phi$$

$$= \hat{\boldsymbol{\phi}}$$

$$\hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{vmatrix}$$

$$= \hat{\boldsymbol{y}} \sin \theta \sin \phi + \hat{\boldsymbol{z}} \cos \theta \cos^2 \phi + \hat{\boldsymbol{z}} \cos \theta \sin^2 \phi + \hat{\boldsymbol{x}} \sin \theta \cos \phi$$

$$= \hat{\boldsymbol{r}}$$

$$\hat{\boldsymbol{r}} \times \hat{\boldsymbol{\phi}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ -\sin \phi & \cos \phi & 0 \end{vmatrix}$$

$$= -\hat{\boldsymbol{y}} \cos \theta \sin \phi + \hat{\boldsymbol{z}} \sin \theta \cos^2 \phi + \hat{\boldsymbol{z}} \sin \theta \sin^2 \phi - \hat{\boldsymbol{x}} \cos \theta \cos \phi$$

$$= -\hat{\boldsymbol{\theta}}$$

Solution. 10. Let A, B and C be vectors then

(a) We know that $\pmb{A} \times (\pmb{B} \times \pmb{C})$ can be written as $\varepsilon^{klm} a^l (\varepsilon^{mrs} b^r c^s)$ then

$$\begin{split} \varepsilon^{klm} a^l (\varepsilon^{mrs} b^r c^s) &= \varepsilon^{klm} \varepsilon^{mrs} a^l b^r c^s \\ &= \varepsilon^{klm} \varepsilon^{rsm} a^l b^r c^s \\ &= (\delta^{kr} \delta^{ls} - \delta^{ks} \delta^{lr}) a^l b^r c^s \\ &= \delta^{kr} \delta^{ls} a^l b^r c^s - \delta^{ks} \delta^{lr} a^l b^r c^s \\ &= b^k a^s c^s - c^k a^r b^r \end{split}$$

This implies, written in vector format that

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$

(b) We know that $A\cdot (B\times C)$ can be written as $a^k(\varepsilon^{klm}b^lc^m)$ then since $\varepsilon^{klm}=\varepsilon^{mkl}$ we have that

$$a^k(\varepsilon^{klm}b^lc^m) = (\varepsilon^{mkl}a^kb^l)c^m$$

This implies, written in vector format that

$$A \cdot (B \times C) = (A \times B) \cdot C$$

Solution. 11. Let A, B and C be three arbitrary vectors then expanding the product $A \cdot (B \times C)$ gives us

$$\begin{split} \boldsymbol{A} \cdot (\boldsymbol{B} \times \boldsymbol{C}) &= \varepsilon^{klm} A^k B^l C^m \\ &= \varepsilon^{123} A^1 B^2 C^3 + \varepsilon^{231} A^2 B^3 C^1 + \varepsilon^{312} A^3 B^1 C^2 \\ &+ \varepsilon^{213} A^2 B^1 C^3 + \varepsilon^{132} A^1 B^3 C^2 + \varepsilon^{321} A^3 B^2 C^1 \\ &= A^1 B^2 C^3 + A^2 B^3 C^1 + A^3 B^1 C^2 \\ &- A^2 B^1 C^3 - A^1 B^3 C^2 - A^3 B^2 C^1 \end{split}$$

But also we know that

$$\begin{vmatrix} A^1 & B^1 & C^1 \\ A^2 & B^2 & C^2 \\ A^3 & B^3 & C^3 \end{vmatrix} = A^1 B^2 C^3 + A^2 B^3 C^1 + A^3 B^1 C^2 - A^2 B^1 C^3 - A^1 B^3 C^2 - A^3 B^2 C^1$$

Hence

$$\boldsymbol{A} \cdot (\boldsymbol{B} \times \boldsymbol{C}) = \varepsilon^{klm} A^k B^l C^m = \begin{vmatrix} A^1 & B^1 & C^1 \\ A^2 & B^2 & C^2 \\ A^3 & B^3 & C^3 \end{vmatrix}$$

On the other hand, we know that the volume of a parallelepiped with edges A, B and C is the area of the parallelogram formed by the vectors B and C times the "height" given by $|A|\cos\alpha$ where α is the angle formed by A and the vertical, normal to the parallelogram area. The area of the parallelogram is given by $|B||C|\sin\beta$ where β is the angle between B and C. So joining these reasonings we get that

$$V = |\mathbf{A}|(|\mathbf{B}||\mathbf{C}|\sin\beta)\cos\alpha$$

Which is the same as saying that

$$V = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$$

Solution. 12. Let Q^{kl} be a matrix, then the determinant of Q^{kl} is given by

$$\begin{vmatrix} Q^{11} & Q^{12} & Q^{13} \\ Q^{21} & Q^{22} & Q^{23} \\ Q^{31} & Q^{32} & Q^{33} \end{vmatrix} = Q^{11}Q^{22}Q^{33} + Q^{12}Q^{23}Q^{31} + Q^{13}Q^{21}Q^{32} - Q^{31}Q^{22}Q^{13} - Q^{11}Q^{23}Q^{32} - Q^{12}Q^{21}Q^{33}$$

Now, let us compute the explicit expression of $\varepsilon^{klm}Q^{k1}Q^{l2}Q^{m3}$ as follows

$$\begin{split} \varepsilon^{klm}Q^{k1}Q^{l2}Q^{m3} &= \varepsilon^{123}Q^{11}Q^{22}Q^{33} + \varepsilon^{231}Q^{21}Q^{32}Q^{13} + \varepsilon^{312}Q^{31}Q^{12}Q^{23} \\ &+ \varepsilon^{213}Q^{21}Q^{12}Q^{33} + \varepsilon^{132}Q^{11}Q^{32}Q^{23} + \varepsilon^{321}Q^{31}Q^{22}Q^{13} \\ &= Q^{11}Q^{22}Q^{33} + Q^{21}Q^{32}Q^{13} + Q^{31}Q^{12}Q^{23} \\ &- Q^{21}Q^{12}Q^{33} - Q^{11}Q^{32}Q^{23} - Q^{31}Q^{22}Q^{13} \end{split}$$

Therefore we see that $\varepsilon^{klm}Q^{k1}Q^{l2}Q^{m3} = \det\{Q^{kl}\}.$

Solution. 15. Let T^{kl} and Q^{lm} be tensors, we want to prove that $T^{kl}Q^{lm}$ is also a tensor. Let us compute $T^{kl}Q^{lm}$ knowing that T^{kl} and Q^{lm} transform as tensors, then

$$\begin{split} T'^{kl}Q'^{lm} &= a^{kn}a^{lr}T^{nr}a^{ls}a^{md}Q^{sd} \\ &= a^{kn}a^{md}T^{nr}(a^T)^{rl}a^{ls}Q^{sd} \\ &= a^{kn}a^{md}T^{nr}\delta^{rs}Q^{sd} \\ &= a^{kn}a^{md}T^{nr}Q^{rd} \end{split}$$

So we see that $T^{kl}Q^{lm}$ transform like a tensor and therefore $T^{kl}Q^{lm}$ is a tensor.

Solution. 17.

(a) We know that

$$\hat{\boldsymbol{\rho}} = \hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi$$
$$\hat{\boldsymbol{\phi}} = -\hat{\boldsymbol{x}}\sin\phi + \hat{\boldsymbol{y}}\cos\phi$$

Then by multiplying the first equation by $\cos \phi$ and the second one by $\sin \phi$ we have that

$$\hat{\boldsymbol{\rho}}\cos\phi = \hat{\boldsymbol{x}}\cos^2\phi + \hat{\boldsymbol{y}}\sin\phi\cos\phi$$
$$\hat{\boldsymbol{\phi}}\sin\phi = -\hat{\boldsymbol{x}}\sin^2\phi + \hat{\boldsymbol{y}}\sin\phi\cos\phi$$

By subtracting the second equation from the first one we get that

$$\hat{\boldsymbol{x}}\cos^2\phi + \hat{\boldsymbol{y}}\sin\phi\cos\phi + \hat{\boldsymbol{x}}\sin^2\phi - \hat{\boldsymbol{y}}\sin\phi\cos\phi = \hat{\boldsymbol{\rho}}\cos\phi - \hat{\boldsymbol{\phi}}\sin\phi$$
$$\hat{\boldsymbol{x}} = \hat{\boldsymbol{\rho}}\cos\phi - \hat{\boldsymbol{\phi}}\sin\phi$$

Now by multiplying the equation for $\hat{\rho}$ by $\sin \phi$ and the equation for $\hat{\phi}$ by $\cos \phi$ we get that

$$\hat{\boldsymbol{\rho}}\sin\phi = \hat{\boldsymbol{x}}\cos\phi\sin\phi + \hat{\boldsymbol{y}}\sin^2\phi$$
$$\hat{\boldsymbol{\phi}}\cos\phi = -\hat{\boldsymbol{x}}\sin\phi\cos\phi + \hat{\boldsymbol{y}}\cos^2\phi$$

So by adding both equations, we get that

$$\hat{\boldsymbol{x}}\cos\phi\sin\phi + \hat{\boldsymbol{y}}\sin^2\phi - \hat{\boldsymbol{x}}\sin\phi\cos\phi + \hat{\boldsymbol{y}}\cos^2\phi = \hat{\boldsymbol{\rho}}\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$$
$$\hat{\boldsymbol{y}} = \hat{\boldsymbol{\rho}}\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$$

(b) We know that

$$\hat{\boldsymbol{r}} = \hat{\boldsymbol{x}}\sin\theta\cos\phi + \hat{\boldsymbol{y}}\sin\theta\sin\phi + \hat{\boldsymbol{z}}\cos\theta$$
$$\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{x}}\cos\theta\cos\phi + \hat{\boldsymbol{y}}\cos\theta\sin\phi - \hat{\boldsymbol{z}}\sin\theta$$
$$\hat{\boldsymbol{\phi}} = -\hat{\boldsymbol{x}}\sin\phi + \hat{\boldsymbol{y}}\cos\phi$$

Let us multiply the equation for \hat{r} by $\sin \theta$ and the equation for $\hat{\theta}$ by $\cos \theta$ to get

$$\hat{\boldsymbol{r}}\sin\theta = \sin^2\theta(\hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi) + \hat{\boldsymbol{z}}\cos\theta\sin\theta$$
$$\hat{\boldsymbol{\theta}}\cos\theta = \cos^2\theta(\hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi) - \hat{\boldsymbol{z}}\sin\theta\cos\theta$$

Then by adding both equations, we get that

$$\hat{\boldsymbol{r}}\sin\theta + \hat{\boldsymbol{\theta}}\cos\theta = \hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi(\sin^2\theta + \cos^2\theta)$$
$$= \hat{\boldsymbol{x}}\cos\phi + \hat{\boldsymbol{y}}\sin\phi \tag{1}$$

Now let us multiply again equation (1) by $\sin \phi$ and the equation for $\hat{\phi}$ by $\cos \phi$ to get

$$\hat{\boldsymbol{r}}\sin\theta\sin\phi + \hat{\boldsymbol{\theta}}\cos\theta\sin\phi = \hat{\boldsymbol{x}}\cos\phi\sin\phi + \hat{\boldsymbol{y}}\sin^2\phi$$
$$\hat{\boldsymbol{\sigma}}\cos\phi = -\hat{\boldsymbol{x}}\sin\phi\cos\phi + \hat{\boldsymbol{y}}\cos^2\phi$$

Then by adding both equations, we get that

$$\hat{\mathbf{y}}\sin^2\phi + \hat{\mathbf{y}}\cos^2\phi = \hat{\mathbf{r}}\sin\theta\sin\phi + \hat{\boldsymbol{\theta}}\cos\theta\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$$
$$\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\theta\sin\phi + \hat{\boldsymbol{\theta}}\cos\theta\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$$

Instead, if we multiply equation (1) by $\cos \phi$ and the equation for $\hat{\phi}$ by $\sin \phi$ we get that

$$\hat{\boldsymbol{r}}\sin\theta\cos\phi + \hat{\boldsymbol{\theta}}\cos\theta\cos\phi = \hat{\boldsymbol{x}}\cos^2\phi + \hat{\boldsymbol{y}}\sin\phi\cos\phi$$
$$\hat{\boldsymbol{\phi}}\sin\phi = -\hat{\boldsymbol{x}}\sin^2\phi + \hat{\boldsymbol{y}}\cos\phi\sin\phi$$

So if we subtract them we get that

$$\hat{\boldsymbol{x}}\cos^2\phi + \hat{\boldsymbol{x}}\sin^2\phi = \hat{\boldsymbol{r}}\sin\theta\cos\phi + \hat{\boldsymbol{\theta}}\cos\theta\cos\phi + \hat{\boldsymbol{\phi}}\sin\phi$$
$$\hat{\boldsymbol{x}} = \hat{\boldsymbol{r}}\sin\theta\cos\phi + \hat{\boldsymbol{\theta}}\cos\theta\cos\phi + \hat{\boldsymbol{\phi}}\sin\phi$$

Finally, let us multiply the equation for \hat{r} by $\cos\theta$ and the equation for $\hat{\theta}$ by $\sin\theta$ to get

$$\hat{\boldsymbol{r}}\cos\theta = \hat{\boldsymbol{x}}\sin\theta\cos\phi\cos\theta + \hat{\boldsymbol{y}}\sin\theta\sin\phi\cos\theta + \hat{\boldsymbol{z}}\cos^2\theta$$
$$\hat{\boldsymbol{\theta}}\sin\theta = \hat{\boldsymbol{x}}\cos\theta\cos\phi\sin\theta + \hat{\boldsymbol{y}}\cos\theta\sin\phi\sin\theta - \hat{\boldsymbol{z}}\sin^2\theta$$

Then by subtracting both equations, we get that

$$\hat{\boldsymbol{z}} = \hat{\boldsymbol{r}}\cos\theta - \hat{\boldsymbol{\theta}}\sin\theta$$

Solution. 18. Let $\mathbf{x}: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\mathbf{x}: (x_1, x_2, x_3) \to (x_1, x_2, x_3)$ then we have that

(a) We want to show that $\nabla \cdot \mathbf{x} = 3$ hence

$$\nabla \cdot \mathbf{x} = \frac{\partial x^k}{\partial x^k}$$

$$= \frac{\partial x_1}{\partial x_1} + \frac{\partial x_2}{\partial x_2} + \frac{\partial x_3}{\partial x_3}$$

$$= 1 + 1 + 1$$

$$= 3$$

(b) In this case, we want to show that $\nabla 1/|\mathbf{x}| = -\mathbf{x}/|\mathbf{x}|^3$ where $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ so we have that

$$\begin{split} \boldsymbol{\nabla} \frac{1}{|\mathbf{x}|} &= \frac{\partial}{\partial x^k} \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}} \\ &= \left(-\frac{x_1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}}, -\frac{x_2}{(x_1^2 + x_2^2 + x_3^2)^{3/2}}, -\frac{x_3}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \right) \\ &= \left(-\frac{x_1}{|\mathbf{x}|^3}, -\frac{x_2}{|\mathbf{x}|^3}, -\frac{x_3}{|\mathbf{x}|^3} \right) \\ &= -\frac{\mathbf{x}}{|\mathbf{x}|^3} \end{split}$$

(c) Now, we want to show that $\nabla^2 1/|\mathbf{x}| = 0$ hence

$$\nabla^{2} \frac{1}{|\mathbf{x}|} = \frac{\partial}{\partial x^{k}} \left(\frac{\partial}{\partial x^{k}} \frac{1}{\sqrt{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}} \right)$$

$$= \frac{\partial}{\partial x^{k}} \left(-\frac{x^{k}}{|\mathbf{x}|^{3}} \right)$$

$$= \frac{\partial}{\partial x_{1}} \left(-\frac{x_{1}}{|\mathbf{x}|^{3}} \right) + \frac{\partial}{\partial x_{2}} \left(-\frac{x_{2}}{|\mathbf{x}|^{3}} \right) + \frac{\partial}{\partial x_{3}} \left(-\frac{x_{3}}{|\mathbf{x}|^{3}} \right)$$

$$= \frac{2x_{1}^{2} - x_{2}^{2} - x_{3}^{2}}{|\mathbf{x}|^{5}} + \frac{2x_{2}^{2} - x_{1}^{2} - x_{3}^{2}}{|\mathbf{x}|^{5}} + \frac{2x_{3}^{2} - x_{2}^{2} - x_{1}^{2}}{|\mathbf{x}|^{5}}$$

$$= \frac{1}{|\mathbf{x}|^{5}} (2x_{1}^{2} - x_{2}^{2} - x_{3}^{2} + 2x_{2}^{2} - x_{1}^{2} - x_{3}^{2} + 2x_{3}^{2} - x_{2}^{2} - x_{1}^{2})$$

$$= 0$$

(c) Finally, we want to show that $(\mathbf{B} \cdot \nabla)\mathbf{x} = \mathbf{B}$ so we see that

$$(\mathbf{B} \cdot \nabla)\mathbf{x} = B^{k} \frac{\partial}{\partial x^{k}} \mathbf{x}$$

$$= \left(B_{x_{1}} \frac{\partial}{\partial x_{1}} + B_{x_{2}} \frac{\partial}{\partial x_{2}} + B_{x_{3}} \frac{\partial}{\partial x_{3}} \right) \mathbf{x}$$

$$= \left(\left(B_{x_{1}} \frac{\partial}{\partial x_{1}} x_{1} + B_{x_{2}} \frac{\partial}{\partial x_{2}} x_{1} + B_{x_{3}} \frac{\partial}{\partial x_{3}} x_{1} \right),$$

$$\left(B_{x_{1}} \frac{\partial}{\partial x_{1}} x_{2} + B_{x_{2}} \frac{\partial}{\partial x_{2}} x_{2} + B_{x_{3}} \frac{\partial}{\partial x_{3}} x_{2} \right),$$

$$\left(B_{x_{1}} \frac{\partial}{\partial x_{1}} x_{3} + B_{x_{2}} \frac{\partial}{\partial x_{2}} x_{3} + B_{x_{3}} \frac{\partial}{\partial x_{3}} x_{3} \right) \right)$$

$$= (B_{x_{1}}, B_{x_{2}}, B_{x_{3}})$$

$$= \mathbf{B}$$

Where we used that $\frac{\partial}{\partial x_i}x_i = 1$.

Solution. 19. Let ϕ and ψ be scalar fields. We prove below a few identities.

(a)

$$\begin{split} \boldsymbol{\nabla}(\phi\psi) &= \hat{\boldsymbol{x}}\frac{\partial(\phi\psi)}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial(\phi\psi)}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial(\phi\psi)}{\partial z} \\ &= \hat{\boldsymbol{x}}\left(\psi\frac{\partial\phi}{\partial x} + \phi\frac{\partial\psi}{\partial x}\right) + \hat{\boldsymbol{y}}\left(\psi\frac{\partial\phi}{\partial y} + \phi\frac{\partial\psi}{\partial y}\right) + \hat{\boldsymbol{z}}\left(\psi\frac{\partial\phi}{\partial z} + \phi\frac{\partial\psi}{\partial z}\right) \\ &= \psi\left(\hat{\boldsymbol{x}}\frac{\partial\phi}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial\phi}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial\phi}{\partial z}\right) + \phi\left(\hat{\boldsymbol{x}}\frac{\partial\psi}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial\psi}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial\psi}{\partial z}\right) \\ &= \psi\boldsymbol{\nabla}\phi + \phi\boldsymbol{\nabla}\psi \end{split}$$

(b)

$$\begin{split} \boldsymbol{\nabla} \cdot (\boldsymbol{\phi} \boldsymbol{A}) &= \frac{\partial (\boldsymbol{\phi} A^k)}{\partial x^k} \\ &= \boldsymbol{\phi} \frac{\partial A^k}{\partial x^k} + A^k \frac{\partial \boldsymbol{\phi}}{\partial x^k} \\ &= \boldsymbol{\phi} \boldsymbol{\nabla} \cdot \boldsymbol{A} + \boldsymbol{A} \cdot \boldsymbol{\nabla} \boldsymbol{\phi} \end{split}$$

(c)

$$\begin{split} \boldsymbol{\nabla} \times (\boldsymbol{\phi} \boldsymbol{A}) &= \varepsilon^{klm} \frac{\partial}{\partial x^l} \boldsymbol{\phi} A^m \\ &= \varepsilon^{klm} (\boldsymbol{\phi} \frac{\partial}{\partial x^l} A^m + A^m \frac{\partial \boldsymbol{\phi}}{\partial x^l}) \\ &= \boldsymbol{\phi} \varepsilon^{klm} \frac{\partial}{\partial x^l} A^m - \varepsilon^{kml} A^m \frac{\partial \boldsymbol{\phi}}{\partial x^l} \\ &= \boldsymbol{\phi} \boldsymbol{\nabla} \times \boldsymbol{A} - \boldsymbol{A} \times \boldsymbol{\nabla} \boldsymbol{\phi} \end{split}$$

Solution. 20. Let A and B be vectors. We will prove a few identities.

(a)

$$\begin{split} \boldsymbol{\nabla} \cdot (\boldsymbol{A} \times \boldsymbol{B}) &= \frac{\partial}{\partial x^k} \varepsilon^{klm} A^l B^m \\ &= \varepsilon^{klm} \frac{\partial}{\partial x^k} A^l B^m \\ &= \varepsilon^{klm} \left(A^l \frac{\partial}{\partial x^k} B^m + B^m \frac{\partial}{\partial x^k} A^l \right) \\ &= -A^l \varepsilon^{lkm} \frac{\partial}{\partial x^k} B^m + B^m \varepsilon^{mkl} \frac{\partial}{\partial x^k} A^l \\ &= \boldsymbol{B} \cdot (\boldsymbol{\nabla} \times \boldsymbol{A}) - \boldsymbol{A} \cdot (\boldsymbol{\nabla} \times \boldsymbol{B}) \end{split}$$

(b)

$$\nabla \times (\boldsymbol{A} \times \boldsymbol{B}) = \varepsilon^{klm} \frac{\partial}{\partial x^{l}} \left(\varepsilon^{mrs} A^{r} B^{s} \right)$$

$$= \varepsilon^{klm} \varepsilon^{rsm} \left(B^{s} \frac{\partial}{\partial x^{l}} A^{r} + A^{r} \frac{\partial}{\partial x^{l}} B^{s} \right)$$

$$= \left(\delta^{kr} \delta^{ls} - \delta^{ks} \delta^{lr} \right) \left(B^{s} \frac{\partial}{\partial x^{l}} A^{r} + A^{r} \frac{\partial}{\partial x^{l}} B^{s} \right)$$

$$= \delta^{kr} \delta^{ls} B^{s} \frac{\partial}{\partial x^{l}} A^{r} + \delta^{kr} \delta^{ls} A^{r} \frac{\partial}{\partial x^{l}} B^{s}$$

$$- \delta^{ks} \delta^{lr} B^{s} \frac{\partial}{\partial x^{l}} A^{r} - \delta^{ks} \delta^{lr} A^{r} \frac{\partial}{\partial x^{l}} B^{s}$$

$$= B^{l} \frac{\partial}{\partial x^{l}} A^{k} + A^{k} \frac{\partial}{\partial x^{s}} B^{s} - B^{k} \frac{\partial}{\partial x^{r}} A^{r} - A^{l} \frac{\partial}{\partial x^{l}} B^{k}$$

$$= (\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{A} + \boldsymbol{A} (\boldsymbol{\nabla} \cdot \boldsymbol{B}) - \boldsymbol{B} (\boldsymbol{\nabla} \cdot \boldsymbol{A}) - (\boldsymbol{A} \cdot \boldsymbol{\nabla}) \boldsymbol{B}$$

(c)

$$\nabla \times (\nabla \times \mathbf{A}) = \varepsilon^{klm} \frac{\partial}{\partial x^l} \left(\varepsilon^{mrs} \frac{\partial}{\partial x^r} A^s \right)$$

$$= \varepsilon^{klm} \varepsilon^{mrs} \frac{\partial}{\partial x^l} \left(\frac{\partial}{\partial x^r} A^s \right)$$

$$= (\delta^{kr} \delta^{ls} - \delta^{ks} \delta^{lr}) \frac{\partial}{\partial x^l} \frac{\partial}{\partial x^r} A^s$$

$$= \frac{\partial}{\partial x^l} \frac{\partial}{\partial x^k} A^l - \frac{\partial}{\partial x^l} \frac{\partial}{\partial x^l} A^k$$

$$= \frac{\partial}{\partial x^k} \frac{\partial}{\partial x^l} A^l - \frac{\partial}{\partial x^l} \frac{\partial}{\partial x^l} A^k$$

$$= \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

Solution. 23.

- (a) Let $\mathbf{A}(\mathbf{x}) = 4xy\hat{\mathbf{x}} + 2x^2\hat{\mathbf{y}} + 3z^2\hat{\mathbf{z}}$ then if we define $\mathbf{\Phi}(\mathbf{x}) = 2x^2y + z^3 + C$ which we can get by integration we see that $\mathbf{A} = \nabla \mathbf{\Phi}$ where C is a constant.
- (b) Let $\mathbf{A}(\mathbf{x}) = 4xy\hat{\mathbf{x}} + 3x^2\hat{\mathbf{y}} + 3z^2\hat{\mathbf{z}}$ then if $\mathbf{\Phi}$ exists such that $\mathbf{A} = \nabla\mathbf{\Phi}$ then the double derivatives of $\mathbf{\Phi}$ commutes, but we see that

$$\frac{\partial}{\partial y}\frac{\partial \mathbf{\Phi}}{\partial x} = \frac{\partial (\mathbf{A}(\mathbf{x}))_x}{\partial y} = 4x \neq 6x = \frac{\partial (\mathbf{A}(\mathbf{x}))_y}{\partial x} = \frac{\partial}{\partial x}\frac{\partial \mathbf{\Phi}}{\partial y}$$

Therefore there is no scalar field Φ such that $A = \nabla \Phi$.

Solution. 26. Let S be a closed surface and let C be an arbitrary closed path on S. So we can say that we have "separated" the surface S onto two open surfaces (separated by the area enclosed by C), let us call them S_1 and S_2 , we can see this as follows

Then we can apply Stokes Theorem for both surfaces as

$$\int_{S_1} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S} = -\int_C \mathbf{A} \cdot d\mathbf{l}$$
$$\int_{S_2} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S} = \int_C \mathbf{A} \cdot d\mathbf{l}$$

Where we added a minus sign to the first equation because the normal unit vector \hat{n}_1 has the opposite direction to \hat{n}_2 . Therefore we see that

$$\int_{S} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S} = \int_{S_{1}} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S} + \int_{S_{2}} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S}$$
$$= -\int_{C} \mathbf{A} \cdot d\mathbf{l} + \int_{C} \mathbf{A} \cdot d\mathbf{l}$$
$$= 0$$

Solution. 27. Let S be a closed surface and V the volume contained in it. Also, let Φ be any scalar field and let C be a constant vector, then we see because of Problem 19 (b) that

$$egin{aligned} oldsymbol{
abla} \cdot (\Phi C) &= \Phi oldsymbol{
abla} \cdot C + C \cdot
abla \Phi \ &= C \cdot
abla \Phi \end{aligned}$$

Where we used that $\nabla \cdot C = 0$ since C is a constant vector. Then applying Gauss Theorem to our vector field ΦC we see that

$$\int_{V} \nabla \cdot (\Phi C) dV = \int_{S} (\Phi C) \cdot dS$$

$$\int_{V} C \cdot \nabla \Phi dV = \int_{S} (\Phi C) \cdot dS$$

$$C \cdot \int_{V} \nabla \Phi dV = C \cdot \int_{S} \Phi dS$$

$$C \cdot \left(\int_{V} \nabla \Phi dV - \int_{S} \Phi dS \right) = 0$$

Finally, since this must hold for any constant vector C then it could happen that the vector C is not perpendicular to $\int_V \nabla \Phi dV - \int_S \Phi dS$ so it must happen that

 $\int_{V} \mathbf{\nabla} \mathbf{\Phi} d\mathbf{V} = \int_{S} \mathbf{\Phi} d\mathbf{S}$

Solution. 28. Let S be an open surface and C its boundary. Also, let Φ be any scalar field and let C be a constant vector, then we see because of Problem 19 (c) that

$$\nabla \times (\Phi C) = \Phi \nabla \times C - C \times \nabla \Phi$$
$$= -C \times \nabla \Phi$$

Where we used that $\nabla \times C = 0$ since C is a constant vector. Then applying Stoke's Theorem to our vector field ΦC we see that

$$\int_{S} (\mathbf{\nabla} \times (\mathbf{\Phi} \mathbf{C})) \cdot d\mathbf{S} = \int_{C} (\mathbf{\Phi} \mathbf{C}) \cdot d\mathbf{l}$$

$$\int_{S} (-\mathbf{C} \times \mathbf{\nabla} \mathbf{\Phi}) \cdot d\mathbf{S} = \mathbf{C} \cdot \int_{C} \mathbf{\Phi} d\mathbf{l}$$

$$\int_{S} -\mathbf{C} \cdot (\mathbf{\nabla} \mathbf{\Phi} \times d\mathbf{S}) = \mathbf{C} \cdot \int_{C} \mathbf{\Phi} d\mathbf{l}$$

$$\mathbf{C} \cdot \int_{S} -(\mathbf{\nabla} \mathbf{\Phi} \times d\mathbf{S}) = \mathbf{C} \cdot \int_{C} \mathbf{\Phi} d\mathbf{l}$$

$$\mathbf{C} \cdot \left(-\int_{S} \mathbf{\nabla} \mathbf{\Phi} \times d\mathbf{S} - \int_{C} \mathbf{\Phi} d\mathbf{l} \right) = 0$$

Where we used the triple product property that $(a \times b) \cdot c = a \cdot (b \times c)$.

Finally, since this must hold for any constant vector C then it could happen that the vector C is not perpendicular to $-\int_S \nabla \Phi \times dS - \int_C \Phi dl$ so it must happen that

$$-\int_{S} \mathbf{\nabla} \mathbf{\Phi} \times d\mathbf{S} = \int_{C} \mathbf{\Phi} d\mathbf{l}$$

Solution. 29. We know that $\nabla^2 = \nabla \cdot \nabla$ so we can write the left-hand side of the equation as

$$\int_{V} \nabla^{2} \frac{1}{|\boldsymbol{x}|} d\boldsymbol{V} = \int_{V} \boldsymbol{\nabla} \cdot \left(\boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}|} \right) d\boldsymbol{V}$$

By applying Gauss' Theorem we get that

$$\int_{V} \nabla^{2} \frac{1}{|\boldsymbol{x}|} d\boldsymbol{V} = \int_{V} \boldsymbol{\nabla} \cdot \left(\boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}|} \right) d\boldsymbol{V} = \int_{S} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}|} d\boldsymbol{S}$$

Now considering a sphere centered on the origin and working with spherical coordinates, we can write the above equation as

$$\int_V
abla^2 rac{1}{|oldsymbol{x}|} doldsymbol{V} = \int_S -rac{1}{r^2} doldsymbol{S}$$

Here we used that the distance from the origin to a point in the sphere surface in spherical coordinates is given by $|\mathbf{x}| = r$ and hence $\nabla 1/r = -1/r^2$.

On the other hand, the surface element in spherical coordinates is given by $d\mathbf{S} = r^2 \sin\theta d\theta d\phi$ so integrating along the entire sphere surface we get that

$$\int_{V} \nabla^{2} \frac{1}{|\boldsymbol{x}|} d\boldsymbol{V} = -\int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{1}{r^{2}}\right) r^{2} \sin \theta \ d\theta d\phi$$

$$= -\int_{0}^{2\pi} \int_{0}^{\pi} \sin \theta \ d\theta d\phi$$

$$= -\int_{0}^{2\pi} \left[-\cos \theta\right]_{0}^{\pi} d\phi$$

$$= -\int_{0}^{2\pi} 2 \ d\phi$$

$$= -4\pi$$

Solution. 30. Let S be a closed surface and V the volume contained in it. Also, let A be any vector field and let B be a constant vector, then we see because of Problem 20 (a) that

Where we used that $\nabla \times \mathbf{B} = 0$ since \mathbf{B} is a constant vector. Then applying Gauss's Theorem to our vector field $\mathbf{B} \times \mathbf{A}$ we see that

$$\int_{V} \nabla \cdot (\boldsymbol{B} \times \boldsymbol{A}) \ d\boldsymbol{V} = \int_{S} (\boldsymbol{B} \times \boldsymbol{A}) \cdot d\boldsymbol{S}$$

$$\int_{V} (-\boldsymbol{B} \cdot (\boldsymbol{\nabla} \times \boldsymbol{A})) \ d\boldsymbol{V} = \int_{S} \boldsymbol{B} \cdot (\boldsymbol{A} \times d\boldsymbol{S})$$

$$\boldsymbol{B} \cdot \int_{V} -(\boldsymbol{\nabla} \times \boldsymbol{A}) \ d\boldsymbol{V} = \boldsymbol{B} \cdot \int_{S} \boldsymbol{A} \times d\boldsymbol{S}$$

$$\boldsymbol{B} \cdot \left(-\int_{V} \boldsymbol{\nabla} \times \boldsymbol{A} \ d\boldsymbol{V} - \int_{S} \boldsymbol{A} \times d\boldsymbol{S} \right) = 0$$

Finally, since this must hold for any constant vector \boldsymbol{B} then it could happen that the vector \boldsymbol{B} is not perpendicular to $-\int_V \nabla \times \boldsymbol{A} \ d\boldsymbol{V} - \int_S \boldsymbol{A} \times d\boldsymbol{S}$ so it must happen that

$$\int_{V} \mathbf{\nabla} \times \mathbf{A} \ d\mathbf{V} = -\int_{S} \mathbf{A} \times d\mathbf{S}$$

Solution. 32. Let $j = C(xr\hat{x} + yr\hat{y})$ or in cartesian coordinates

$$\mathbf{j} = C(x\sqrt{x^2 + y^2 + z^2} \ \hat{\mathbf{x}} + y\sqrt{x^2 + y^2 + z^2} \ \hat{\mathbf{y}})$$

So $\nabla \cdot \mathbf{j}$ is given by

$$\nabla \cdot \mathbf{j} = \frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y}$$

$$= C \frac{2x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}} + C \frac{x^2 + 2y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}}$$

$$= \frac{C(3(x^2 + y^2) + 2z^2)}{\sqrt{x^2 + y^2 + z^2}}$$

Or in spherical coordinates

$$\nabla \cdot \mathbf{j} = \frac{C(3(r^2 - z^2) + 2z^2)}{r}$$

$$= \frac{C(3r^2 - z^2)}{r}$$

$$= \frac{C(3r^2 - r^2 \cos^2 \theta)}{r}$$

$$= Cr(3 - \cos^2 \theta)$$

On the other hand, from the charge conservation proof we see that

$$\int \boldsymbol{\nabla \cdot j} \ d\boldsymbol{V} = (\text{rate of outflow of charge from V})$$

So we compute the rate of change of the electric charge in the spherical region bounded by r=R as follows

$$\int \nabla \cdot \mathbf{j} \ d\mathbf{V} = \int_0^{2\pi} \int_0^{\pi} \int_0^R (Cr(3 - \cos^2 \theta)) r^2 \sin \theta \ dr d\theta d\phi$$

$$= C \int_0^{2\pi} \int_0^{\pi} \int_0^R r^3 (3 - \cos^2 \theta) \sin \theta \ dr d\theta d\phi$$

$$= C \int_0^{2\pi} \int_0^{\pi} \left[\frac{r^4}{4} \right]_0^R (3 - \cos^2 \theta) \sin \theta \ d\theta d\phi$$

$$= \frac{CR^4}{4} \int_0^{2\pi} \int_0^{\pi} (2 + \sin^2 \theta) \sin \theta \ d\theta d\phi$$

$$= \frac{CR^4}{4} \int_0^{2\pi} \int_0^{\pi} 2 \sin \theta + \sin^3 \theta \ d\theta d\phi$$

Where we used that $3 - \cos^2 \theta = 2 + \sin^2 \theta$ hence

$$\int \nabla \cdot \mathbf{j} \ d\mathbf{V} = \frac{CR^4}{4} \int_0^{2\pi} \int_0^{\pi} 2\sin\theta + \sin^3\theta \ d\theta d\phi$$

$$= \frac{CR^4}{4} \int_0^{2\pi} \left[\frac{1}{12} (\cos(3\theta) - 33\cos\theta) \right]_0^{\pi} d\phi$$

$$= \frac{CR^4}{4} \int_0^{2\pi} \frac{1}{12} [(-1+33) - (1-33)] \ d\phi$$

$$= \frac{CR^4}{4} \int_0^{2\pi} \frac{16}{3} \ d\phi$$

$$= \frac{4CR^4}{3} \int_0^{2\pi} \ d\phi$$

$$= \frac{8\pi}{3} CR^4$$