Logica — 28-1-2020

Tutte le risposte devono essere adeguatamente giustificate

1. Sia consideri la formula

$$P: A \rightarrow B \vee \neg C$$

- -Elencare tutte le sottoformule di ${\cal P}$
- La formula P è soddisfacibile? È valida?
- 2. Trovare, se esistono, tre formule proposizionali P, Q, R tali che

$$P \models Q \lor R, \quad P \not\models Q, \quad P \not\models R$$

- **3.** Sia $\mathcal{L} = \{A, p, m, g\}$ un linguaggio del prim'ordine, dove A è simbolo relazionale binario, p, m, g sono simboli di costante. Si consideri la seguente interpretazione di \mathcal{L} :
 - -A(x,y): x è amico di y;
 - -p: Pino;
 - -m: Mino;
 - -g: Gino.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. Se ogni amico di Pino è amico di Mino e Gino non è amico di Mino, allora Gino non è amico di Pino.
- 2. Gli amici degli amici di Pino sono amici di Gino.
- 3. Gino e Mino non hanno amici comuni.
- 4. Si consideri l'enunciato

$$\varphi : \forall x \exists y R(x,y) \land \neg \forall x P(x)$$

 φ è soddisfacibile?

 φ è valido?

Svolgimento

1. – Le sottoformule di P sono

$$A, B, C, \neg C, B \lor \neg C, P$$

- La formula P è soddisfacibile: infatti, se i_0 è un'interpretazione tale che $i_0(A) = 0$ e i_0^* è la valutazione di verità indotta da i_0 , si ha $i_0^*(P) = 1$.
- La formula P non è valida: infatti, se i_1 è un'interpretazione tale che $i_1(A) = 1, i_1(B) = 0, i_1(C) = 1$, e i_1^* è la valutazione di verità indotta da i_1 , si ha:

$$i_1^*(\neg C) = 0$$
$$i_1^*(B \lor \neg C) = 0$$
$$i_1^*(P) = 0$$

2. Tre formule come richiesto sono:

$$P:A\vee B$$

- 3. 1. $\forall x (A(x,p) \to A(x,m)) \land \neg A(g,m) \to \neg A(g,p)$
 - 2. $\forall x (\exists y (A(x,y) \land A(y,p)) \rightarrow A(x,g))$
 - 3. $\neg \exists x (A(x,g) \land A(x,m))$
- 4. Una struttura $\mathcal{A} = (A, P^{\mathcal{A}}, R^{\mathcal{A}})$ soddisfa φ se e solo se

$$\mathcal{A} \models \forall x \exists y R(x, y) \quad e \quad \mathcal{A} \models \neg \forall x P(x)$$

cioè se e solo se

$$\mathcal{A} \models \forall x \exists y R(x, y) \quad e \quad \mathcal{A} \not\models \forall x P(x)$$

A tal fine è quindi necessario e sufficiente che:

- per ogni $u \in A$ esista $v \in A$ tale che $(u, v) \in R^{\mathcal{A}}$; e
- esista $w \in A$ tale che $w \notin P^{\mathcal{A}}$, cioè $P^{\mathcal{A}} \neq A$.

Una tale struttura si ottiene con:

$$A = \{0\}, \quad P^{\mathcal{A}} = \emptyset, \quad R^{\mathcal{A}} = \{(0,0)\}$$

Poiché esiste una struttura che lo soddisfa, l'enunciato φ è soddisfacibile.

Affinché una struttura $\mathcal{B} = (B, P^{\mathcal{B}}, R^{\mathcal{B}})$ non soddisfi φ , è sufficiente che $\mathcal{B} \not\models \neg \forall x P(x)$, cioè che $\mathcal{B} \models \forall x P(x)$, cioè che $P^{\mathcal{B}} = B$. Una tale struttura si ottiene con:

$$B = \{0\}, \quad P^{\mathcal{B}} = \{0\}, \quad R^{\mathcal{B}} = \emptyset$$

Poiché esiste una struttura che non lo soddisfa, l'enunciato φ non è valido.