Les identités remarquables

L'égalité (a+b)²=a²+2ab+b² est la **première identité remarquable**.

Exemple: $(7x+1)^2 = (7x)^2 + 2 \times 7x \times 1 + 1^2 = 49x^2 + 14x + 1$

L'égalité (a-b)²=a²-2ab+b² est la **deuxième identité remarquable**.

Exemple: $(3x-4)^2=(3x)^2-2\times 3x\times 4+4^2=9x^2-24x+16$

L'égalité (a+b)(a-b)=a²-b² est la **troisième identité remarquable**.

Exemple: $(2x+3)(2x-3)=(2x)^2-3^2=4x^2-9$

Exercice 1

Quelle est la forme développée de $(x+1)^2$?

Exercice 2

Quelle est la forme développée de $(x-7)^2$?

Exercice 3

Quelle est la forme développée de (3x-4)(3x+4)?

Exercice 4

Quelle est la forme développée de $(5x+2)^2$?

Exercice 5

Quelle est la forme développée de $\left(\frac{5}{2} + \frac{2}{5}x\right)\left(\frac{5}{2} - \frac{2}{5}x\right)$

Exercice 6

Développe puis réduis l'expression $(x-2)^2-(2x+2)(2x-2)$.

Exercice 7

Quelle est la forme factorisée de l'expression 100-x²?

Exercice 8

Quelle est la forme factorisée de 2-x²?

Exercice 9

Factorise l'expression $(x+7)^2-(3x-2)^2$.

Exercice 10

Développe $(n+1)^2-n^2$.

Exercice 11

Factorise l'expression $1-81x^2+1-9x+(1-9x)^2$.

Exercice 12

En utilisant une identité remarquable, écris la forme factorisée de x^2+4x+4 .

Exercice 13

Quelle est la forme factorisée de $x^2 - 4$?

Exercice 14

Ouelle est la forme factorisée de $(1+2x)(1-4x)+1-4x^2$?

Exercice 15

Quelle est la forme factorisée de $4x^2 - 9 - (4x - 9)(2x + 3)$?

Les équations du 1er degré

Méthode de résolution

- 1. On passe les termes contenant des "x" à gauche du = et les termes formés de **nombres à droite du =.** Lorsqu'on change un terme de côté, on change son signe (le signe qui est devant lui). Par exemple, 4x+5=13+2x devient 4x-2x=13-5.
- **2. On réduit** les expressions littérales obtenues. 4x-2x=13-5 devient 2x=8.
- 3. On divise les deux côtés par le nombre qui est devant "x", y compris s'il est négatif. Pour notre exemple, on obtient $x=8 \div 2$ donc x=4. Si on avait eu -7x=14, on aurait calculé $x=14\div(-7)$.

Exercice 1

-4 est-il solution de l'équation x²+x+20=0?

Exercice 2

Quelle est la solution de l'équation 3x-7=11?

Exercice 3

Quelle est la solution de l'équation -3x+36=96?

Exercice 4

Quelle est la solution de l'équation -3x+27=6x-18?

Exercice 5

Si ax+b=c alors : x=?

Exercice 6

Si -nx+t=-y alors x=?

Exercice 7

Quelle est la solution de l'équation $\frac{2}{3}x + \frac{1}{5} = \frac{3}{4}x + \frac{1}{3}$?

Exercice 8

Quelle est la solution de l'équation $\frac{1+2x}{3} = \frac{4+5x}{6}$

Exercice 9

Quelle est la solution de l'équation 6-5x(2x-4)=2x(-5x-2)+3?

Exercice 10

Quelle est la solution de l'équation (x+1)(x-4)=(x-2)(x-3)?

Exercice 11

Écrire la solution de l'équation 5(2x-4)-3(x-2)=x sous la forme d'une fraction irréductible

Exercice 12

Résoudre l'équation $7(6x-5)-4(3x-2)^2=1-(6x)^2$ puis écris le résultat sous la forme d'une fraction

irréductible
$$x = \frac{x}{b}$$
.

L'équation-produit

Si un produit est nul, alors au moins un de ses facteurs est nul.

Pour résoudre (2x+4)(3x-9)=0 on doit donc chercher les solutions des équations 2x+4=0 et 3x-9=0.

On obtient deux solutions : x=-2 et x=3.

Exemples:

- Résolution de l'équation 2x²=-3x
 - 1. $2x^2+3x=0$.
 - **2.** x(2x+3)=0.
 - 3. x=0 ou 2x+3=0, donc x=0 ou x=-1,5. On écrit $S=\{-1,5;0\}$.
- Résolution de l'équation x²=9
 - 1. $x^2-9=0$.
 - 2. $x^2-3^2=0$ donc (x+3)(x-3)=0
 - **3.** x+3=0 ou x-3=0, donc x=-3 ou x=3. On écrit $S=\{-3;3\}$.
- Résolution de l'équation (x+4)(2x-5)-(x+4)(x+1)=0
 - 1. (x+4)[(2x-5)-(x+1)]=0.
 - 2. (x+4)(x-6)=0
 - 3. x+4=0 ou x-6=0, donc x=-4 ou x=6. On écrit $S=\{-4;6\}$.

Exercice 1

Factoriser l'expression 2(x+1) - x(x+1) puis résoudre l'équation 2(x+1) - x(x+1) = 0.

Exercice 2

Factoriser l'expression $(x+1)^2 - 9$ puis résoudre l'équation $(x+1)^2 - 9 = 0$.

Exercice 3

Factoriser l'expression $(2x+4)^2 - (x+1)^2$ puis résoudre l'équation $(2x+4)^2 - (x+1)^2 = 0$.

Exercice 4

Quelles sont les solutions de l'équation x²=64?

Exercice 5

Quelles sont les solutions de l'équation $9x^2=64$?

Écrire les résultats sous la forme de fractions.

Exercice 6

Quelles sont les solutions de l'équation $x^2=-5x$?

Exercice 7

Quelles sont les solutions de l'équation $x^2+x+1=1$?

Exercice 8

Quelles sont les solutions de l'équation $(x+5)^2=10x+29$?

Exercice 9

Quelles sont les solutions de l'équation $(x+9)^2=(3x+3)(x+9)$?

Exercice 10

Quelles sont les solutions de l'équation $(x+1)^2=4(3x+3)$?

Exercice 11

Quelles sont les solutions de l'équation $(4x+5)^2=(6x+8)^2$?

Écrire les solutions sous la forme de fractions.

Les inéquations du 1er degré

Par exemple, 2x-8<10 est une inéquation : il faut trouver **tous les nombres** x pour lesquels 2x-8 est plus petit que 10. 1 et 7 sont des exemples de solutions, mais il y en a beaucoup d'autres.

Méthode

Une inéquation se résout comme une équation, mais à la dernière étape, **si le nombre devant x est négatif** (et que l'on doit donc diviser par un nombre négatif) **il faut changer le sens de l'inégalité** : < devient >, et > devient <. En effet, on a par exemple 20 qui est plus petit que 30, donc 20<30, mais si on divise 20 et 30 par le nombre négatif -10, on obtient -2 et -3, et -2>-3. On observe un changement dans le sens de l'inégalité.

Exemple

Résolution de l'inéquation $3x - 6 \le 6x - 12$.

 $3x - 6 \le 6x - 12$

1. $3x-6x \le -12+6$ On passe les "x" à gauche et les nombres à droite.

2. $-3x \le -6 \Rightarrow$ On réduit les expressions obtenues

3. $x \ge (-6) \div (-3)$ On divise par le nombre qui est devant "x"

4. $x \ge 2$ On obtient les solutions.

On écrit l'ensemble des solutions : $S = [2; +\infty]$

Exercice 1

Comment peut-on écrire l'ensemble des nombres x tels que x≤2?

Exercice 2

Quelles sont les solutions de l'inéquation 5x+15<25?

Exercice 3

Quelles sont les solutions de l'inéquation 2x+6<4x-2?

Exercice 4

Quelles sont les solutions de l'inéquation $\frac{1}{4}x - \frac{1}{3} > \frac{1}{2}x - 1$?

Exercice 5

Quelles sont les solutions de l'inéquation 2(6-3x)>-1-x?

Exercice 6

Quelles sont les solutions de l'inéquation (x-2)(x+5)<(x-3)(x-2)?

Exercice 7

Quelles sont les solutions de l'inéquation $(x+5)^2-(x-2)(x+2)>1$?

Exercice 8

Résous l'inéquation $(5-5x)^2 > (1+5x)^2$ puis écris les solutions sous la forme $\frac{\alpha}{b}$, avec $\frac{\alpha}{b}$ une fraction irréductible. Combien trouves-tu pour a et b ?

Inéquations et tableaux de signes

Résolution de l'inéquation (2x-2)(4x+16)>0.

Méthode

• **1. On étudie le signe** de 2x-2 en fonction de x et celui de 4x+16 en fonction de x. Pour cela, on cherche les valeurs de x pour lesquelles ces expressions sont positives.

$$2x-2>0$$
 $4x+16>0$ $2x>2$ $4x>-16$ $x>-4$

Donc 2x-2>0 lorsque x>1 et 4x+16>0 lorsque x>-4.

• **2. On dessine** un tableau comme ci-dessous en faisant apparaître les valeurs pour lesquelles les expressions 2x-2 et 4x+16 sont égales à zéro (-4 et 1).

valeurs de x	 4 1	+∞
signe de 2 x - 2		-
signe de 4 x + 16		
signe de (2x-2)(4x+16)		

• **3. On complète les premières lignes** en inscrivant des "-" si l'expression est négative pour les valeurs de x qui figurent au-dessus, des "+" le cas échéant, et un zéro sur la barre verticale correspondant à la valeur qui annule l'expression.

Х	- 00	- 4		1	+∞
signe de 2 x - 2				Φ	+
signe de 4 x + 16		Φ	+		+
signe de (2x-2)(4x+16)					

• **4. On remplit la dernière ligne** en effectuant sur chaque colonne le produit des signes des deux expressions en respectant les règles des signes pour un produit.

х	- 00	- 4		1	+∞
signe de 2 x - 2	_			Φ	+
signe de 4 x + 16	_	Φ	+		+
signe de (2x-2)(4x+16)	+	Φ	_	Φ	+

• **5. On lit les solutions** en regardant la première et la dernière ligne du tableau.

On cherchait les solutions de (2x-2)(4x+16)>0.

(2x-2)(4x+16)>0 (+) lorsque x est strictement plus petit que -4 et lorsque x est strictement plus grand que 1.

Les solutions sont donc : $S=]-\infty;-4[\,\cup\,]1;+\infty[$

Le cas des quotient

On utilise la même méthode que pour les produits, mais à l'étape 4, on place une double barre sur la dernière ligne pour les valeurs de x pour lesquelles il y a une division par zéro. Comme une division par zéro est impossible, il faudra retirer ces valeurs de l'ensemble des solutions.

Exemple:

$$\frac{3x-9}{x+5} \le 0$$

$$S = -5;3$$

Et avec encore plus de lignes!

Dernier exemple avec la résolution de l'inéquation $\frac{(-2x-2)(2x-10)}{-9x-81} \ge 0$ On utilise toujours la même méthode.

$$\begin{array}{lll}
-2x-2>0 & 2x-10>0 & -9x-81>0 \\
-2x>2 & 2x>10 & -9x>81 \\
\frac{-2x}{-2} < \frac{2}{-2} & \frac{2x}{2} > \frac{10}{2} & \frac{-9x}{-9} < \frac{81}{-9} \\
x<-1 & x>5 & x<-9
\end{array}$$

Х	-00 -	9 -	1 5	- +∞
- 2 x - 2	+	+ (> —	_
2 x - 10		_	- (> +
- 9 x - 81	+ () —		_
(-2x-2)(2x-10) -9x-81	_	+ () — () +

$$S = \left[-9;-1 \right] \cup \left[5;+\infty \right[$$

Exercice 1

Quelles sont les solutions de l'inéquation $(x-2)(x+4) \ge 0$?

Exercice 2

Quelles sont les solutions de l'inéquation $(x+4)(5-x)(-x+6) \ge 0$?

Exercice 3

Quelles sont les solutions de l'inéquation $\frac{1}{x} > 2$? **Exercice 4**

Quelles sont les solutions de l'inéquation $\frac{(x-1)(x-5)}{16-8x} \ge 0$?

Exercice 5

Quelles sont les solutions de l'inéquation $\frac{x^2-7}{x} \ge 0$? **Exercice 6**

Quelles sont les solutions de l'inéquation $(x-7)(x+1)+(x-7)(x-1) \ge 0$?

Exercice 7

Quelles sont les solutions de l'inéquation $(x+2)^2 - (x+2)(2x+9) \ge 0$?

Exercice 8

Quelles sont les solutions de l'inéquation $\frac{1}{x^2 + x} \ge 0$?

Exercice 9

Quelles sont les solutions de l'inéquation $(3x-2)^2 + 2(3x-2) \le x^2$?

Exercice 10

Quelles sont les solutions de l'inéquation $\frac{x^2 + 4x + 4}{x^2 - 9} \le 0$?

Équations du deuxième degré

Méthode de résolution

Pour résoudre une équation de la forme ax²+bx+c=0 on utilisera la méthode suivante :

- **1.** On calcule le nombre delta : $\Delta = b^2 4ac$.
- 2. On regarde le signe de delta.
- Si Δ <0, l'équation n'a pas de solution.
- Si Δ =0, l'équation possède une solution que l'on calcule avec la formule
- Si Δ >0, l'équation possède deux solutions que l'on calcule avec les formules

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} et$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Exemple:

Pour l'équation $-2x^2+3x+4=0$:

- **1.** On calcule delta. $\Delta = 3^2 4 \times (-2) \times 4 = 9 + 32 = 41$.
- 2. Delta est positif.
- **3.** Il y a deux solutions : $x_1 = \frac{-3 \sqrt{41}}{-4} \approx 2.35$ et $x_2 = \frac{-3 + \sqrt{41}}{-4} \approx -0.85$.

Exercice 1

Pour connaître le nombre de solutions d'une équation du deuxième degré on doit calculer delta. Quelle est la formule de delta?

Exercice 2

On souhaite calculer delta pour connaître le nombre de solutions de l'équation $2x^2-x-5=0$. Quels sont les nombres a, b et c que l'on doit utiliser?

Exercice 3

Résoudre les équations suivantes :

- $2x^2-x-5=0$
- $-x^2-x+1=0$
- $x^2+4x+4=0$
- $x^2=x+1$
- $x^2-7x+2=0$