Enrique R. Aznar García eaznar@ugr.es

BUSCANDO UN ELEMENTO PRIMITIVO

El número $n=27213647\,$ pasa el test Miller-Rabin y el de Solovay-Strassen para las bases $2,3,5,7,11\,$.

Queremos certificar su primalidad encontrándole un elemento primitivo.

Para eso necesitamos los factores primos de n-1=27213646=2*13606823.

El cofactor impar m=13606823 no pasa el test de primalidad de Fermat, ya que para la base a=2, se tiene

$$2^{13606822} \equiv 3602703 \pmod{13606823}$$

Asi, la potencia $2^{m-1} \not\equiv 1 \pmod{m}$, m es un número compuesto y le podemos aplicar el método ρ de Pollard.

Usando la función $f(x)=x^2+1$ para iterar x, la variable y itera con la función $f(f(y))=y^4+2y^2+2$. Calculando x,y módulo m=13606823 y el mcd(x-y,m), encontramos en 6 pasos el divisor 23

Paso	X	y	mco
0	1	1	1
1	2	5	1
2	5	677	1
3	26	4255427	1
4	677	10477249	1
5	458330	9543242	1
6	4255427	3612623	23

Y obtenemos, la factorización m = 13606823 = 23 * 591601

ANÁLISIS DEL COFACTOR

Como el cofactor $m_1=591601$ pasa de nuevo los tests de Miller-Rabin y de Solovay-Strassen para distintas bases, sospechamos que es primo. Para poder certificar su primalidad encontrándole un elemento primitivo, necesitamos de nuevo los divisores primos de m_1-1 , donde los primeros factores primos los hallamos a ojo:

$$m_1 - 1 = 591600 = 2^4 * 36975 = 2^4 * 5^2 * 1479 = 2^4 * 5^2 * 3 * 493$$

Como el último cofactor impar 493 no pasa el test de primalidad de Fermat, ya que para la base a=2, se tiene

$$2^{492} \equiv 373 \pmod{493}$$

Asi, $m_2 = 493$ es un número compuesto y le podemos aplicar el método ρ de Pollard.

Usando la función $f(x)=x^2+1$ para iterar x, la variable y itera con la función $f(f(y))=y^4+2y^2+2$. Calculando x,y módulo $m_2=493$ y el $\mathrm{mcd}(x-y,m_2)$, encontramos en 6 pasos el divisor 17

Paso x mcd y 1 1 1 0 1 2 5 2 5 184 1 3 26 458 1 184 413 1 4

5 333 65 1

6 458 152 17

Y obtenemos, la factorización, 493 = 17 * 29 y por tanto $m_1 - 1 = 591600 = 2^4 * 5^2 * 3 * 17 * 29$.

OTRO ELEMENTO PRIMITIVO

Como ya conocemos todos los factores primos, $\{2,3,5,17,29\}$, de $m_1-1=591600$, iniciamos la búsqueda de un elemento primitivo para $m_1=591601$, sucesivamente probamos $2,3,\ldots$ hasta encontrar que a=14 es un elemento primitivo para m_1 porque $14^{591600}\equiv 1\pmod{m_1}$, mientras que $14^{591600/p}\not\equiv 1\pmod{m_1}$ para $p\in\{2,3,5,17,29\}$. O sea,

```
\begin{cases} 14^{m_1-1} \equiv 1 \pmod{m_1} \\ 14^{(m_1-1)/2} \equiv 591600 \pmod{m_1} \\ 14^{(m_1-1)/3} \equiv 231901 \pmod{m_1} \\ 14^{(m_1-1)/5} \equiv 134030 \pmod{m_1} \\ 14^{(m_1-1)/17} \equiv 391816 \pmod{m_1} \\ 14^{(m_1-1)/29} \equiv 555029 \pmod{m_1} \end{cases}
```

Lo anterior demuestra que 14 es un elemento primitivo para $m_1 = 591601$ y es un certificado de su primalidad.

UN ELEMENTO PRIMITIVO PARA 27213647

Como habíamos encontrado la factorización n-1=2*13606823=2*23*591601

y hemos certificado que 591601 es primo, conocemos todos los factores primos, $\{2, 23, 591601\}$, de n-1=27213646. Ahora,podemos iniciar la búsqueda de un elemento primitivo para

n=27213647 y el primer elemento encontrado es a=5 ya que se tienen las 4 congruencias

$$\begin{cases} 5^{n-1} \equiv 1 \pmod{n} \\ 5^{(n-1)/2} \equiv 27213646 \pmod{n} \\ 5^{(n-1)/23} \equiv 8258807 \pmod{n} \\ 5^{(n-1)/591601} \equiv 9374555 \pmod{n} \end{cases}$$

Lo anterior demuestra que 5 es un elemento primitivo para $n=27213647\,\mathrm{y}$ es un certificado de su primalidad.

Enrique R. Aznar García eaznar@ugr.es