Distribution of Linear Biases in PRESENT

16. July 2015

EMSEC/SHA Seminar Horst Görtz Institute for IT-Security Ruhr University Bochum

Friedrich Wiemer

RUB

1 Introduction

2 PRESENT & Linear Cryptanalysis

3 Distributions

Introduction to Linear Cryptanalysis

- invented by Matsui 1993–1994
- broke DES
- together with Differential
 Cryptanalysis most used attack on block ciphers

Image: http://www.isce2009.ryukoku.ac.jp/eng/keynote_address.html

■ Let $F_{k_i}: \mathbb{F}_2^{64} \to \mathbb{F}_2^{64}$ be the round function that xor's the key k_i and applies the substitution and permutation layer.

- Let $F_{k_i}: \mathbb{F}_2^{64} \to \mathbb{F}_2^{64}$ be the round function that xor's the key k_i and applies the substitution and permutation layer.
- Can we approximate this function?

RUB

Linear ApproximationsDot-Product, Masks and Linear Bias

■ We want to linear approximate a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$

RUB

Linear Approximations

Dot-Product, Masks and Linear Bias

■ We want to linear approximate a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Linear Approximations

Dot-Product, Masks and Linear Bias

■ We want to linear approximate a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Mask

Let $\alpha, \beta, x \in \mathbb{F}_2^n$ and

$$\langle \alpha, x \rangle = \langle \beta, F(x) \rangle$$
 (1)

- We say α is an *input mask* and β is an *output mask*.
- Equation 1 does not hold for every input/output masks.

Linear Approximations

Dot-Product, Masks and Linear Bias

■ We want to linear approximate a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Mask

Let $\alpha, \beta, x \in \mathbb{F}_2^n$ and

$$\langle \alpha, x \rangle = \langle \beta, F(x) \rangle$$
 (1)

- We say α is an *input mask* and β is an *output mask*.
- Equation 1 does not hold for every input/output masks.
- It is *biased*, i.e., $\Pr[\langle \alpha, x \rangle = \langle \beta, F(x) \rangle] = \frac{1}{2} \varepsilon(\alpha, \beta)$.

PRESENT

■ The only difficult part of F_{k_i} is the (non-linear) substitution layer.

PRESENT

S-box and Linear Approximation Table

PRESENT

S-box and Linear Approximation Table

- Attack complexity of linear cryptanalysis is proportional to $\frac{1}{\varepsilon^2}$.
- In experiments, we observe a key dependency of the linear bias.

- Attack complexity of linear cryptanalysis is proportional to $\frac{1}{\varepsilon^2}$.
- In experiments, we observe a key dependency of the linear bias.
- The distribution of linear biases follows a normal distribution.
- Its width is defined by the variance.

Distributions

- Attack complexity of linear cryptanalysis is proportional to $\frac{1}{\varepsilon^2}$.
- In experiments, we observe a key dependency of the linear bias.
- The distribution of linear biases follows a normal distribution.
- Its width is defined by the variance.
- What happens with different key-schedules?

Distributions

Independent Round Keys

Distributions

Constant Round Keys

RUB

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr