TÖL203M Tölvugrafík

Prófdagur og tími: 07.05.2013 13:30-16:30

Prófstaður:

VR-2 - V02-152 (fjöldi:14)

VR-2 - V02-155 (fjöldi:10)

VR-2 - V02-155 (fjöldi:19) VR-2 - V02-156 (fjöldi:10) VR-2 - V02-261 (fjöldi:11)

HÁSKÓLI ÍSLANDS

Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild

Skriflegt próf

Skráðir til prófs: 54

Kennarar:

Hjálmtýr Hafsteinsson (hh@hi.is / S: 4932 / GSM: 8958772) Umsjónarkennari Kristinn Rúnarsson (Ekkert netfang / S: 8454266 / GSM: 8454266) Aðstoðarkennari

Kennslumisseri: Vor 2013

Úrlausnir skulu merktar með nafni

Prófbók/svarblöð:

Línustrikuð prófbók

Hjálpargögn:

Vasareiknir

Tölva með textaminni

Öll skrifleg hjálpargögn eru leyfileg.

Önnur fyrirmæli:

Prófverkefnið er á ensku fyrir þá sem óska bess.

Aðgangur að prófverkefni að loknu prófi:

Kennslusvið sendir eintak í prófasafn

Einkunnir skulu skráðar í Uglu eigi síðar en 21.05.2013.

AHUGIÐ að einhverjar úrlausnir úr fjölmennum prófum geta verið í þunnum umslögum sem auðvelt er að yfirsjást. GÓÐ VINNUREGLÁ er að byrja á því að opna öll umslög, telja úrlausnir og athuga hvort fjöldi stemmir við uppgefinn fjölda sem kvittað var fyrir.

Prentaö: 03.05.13

TÖL203M Tölvugrafík

Lokapróf Kennari: Hjálmtýr Hafsteinsson 7. maí, 2013 kl. 13³⁰-16³⁰

Öll dæmin hafa sama vægi. Aðeins þarf að leysa 5 dæmi af 6. Fimm bestu dæmin gilda. Öll skrifleg hjálpargögn og reiknivél leyfileg.

- **1.** a) Gefinn er tvívíði rétthyrningurinn A, með horn (1, 1) og (2, 2). Honum er varpað yfir í rétthyrninginn B með horn (-1, -4) og (1, -1). Teiknið upp rétthyrningana og sýnið tvívíðu vörpunina sem varpar A yfir í B.
 - b) Tvívíða vörpunin með fylkið

$$M = \begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

er samsett úr tveimur grunnvörpunum (grunnvarpanir eru kvörðun, hliðrun og snúningur). Sýnið þær grunnvarpanir sem myndaM.

2. *a*) Tekin er ljósmynd af bolta í 1m fjarlægð og síðan önnur í 10m fjarlægð frá boltanum. Hvor myndin sýnir hærra hlutfall yfirborðs boltans? Útskýrið af hverju.

b) Þegar tekin er ljósmynd þar sem maður sýnist halda á annari manneskju í lófanum þá er hægt að gera það á tvo vegu:

- *i*. Taka ljósmynd af mjög lítilli mannesku standandi í lófa annars manns.
- ii. Taka mynd af tveimur manneskjum í venjulegri stærð, þar sem önnur er nálægt og hin langt í burtu og fremri manneskjan heldur út lófanum þannig að sú aftari sýnist standa í lófanum.

Í seinni útgáfunni verður skekkja vegna fjarvíddar (e. perspective). Útskýrið hana og stingið uppá þriðju leiðinni sem hefur ekki þessa skekkju (hún notar hins vegar einfalda myndvinnslu).

- 3. a) Í lýsingarlíkani Phong eru í raun þrjár formúlur, ein fyrir hvern af grunnlitunum rauður, grænn og blár (RGB). Það er þó yfirleitt notað sama veldið α í depilendurskininu í öllum formúlunum. Útskýrið hvers vegna. Hvernig myndi depilendurskinið líta út ef notað væri mismunandi α í formúlunum þremur?
 - b) Útskýrið hvaða áhrif það hefur í lýsingarlíkani Phong að hafa ljósgjafa í óendanlegri fjarlægð miðað við að ljósgjafi sé í tilteknum punkti. Nefnið tvö atriði.
 - c) Ef við slepptum alveg umhverfisendurskininu (e. ambient) í lýsingarlíkani Phong hvernig myndi það koma fram í líkani? Lýsið líkani þar sem greinilega er hægt að sjá mun á því hvort umhverfisendurskin er til staðar eða ekki.
- 4. Í þessu námskeiði höfum við oftast notað **GL_TRIANGLES** í *glDrawArrays* fallinu til að teikna þríhyrninga út frá hnútafylki. Þá mynda hverjir þrír hnútar í fylkinu þríhyrningana sem á að teikna. Önnur aðferð til að teikna þríhyrninga út frá hnútafylki er að nota **GL_TRIANGLE_STRIP**. Þá er gert ráð fyrir að þríhyrningarnir séu hliðstæðir og eigi tvo hnúta sameiginlega. Á myndinni hér til hliðar eru 6 hnútar. Út frá þeim yrðu teiknaðir 4 þríhyrningar: (0, 1, 2), (1, 3, 2), (2, 3, 4) og (3, 5, 4).
 - a) Útskýrið kosti þess að nota GL_TRIANGLE_STRIP frekar en GL_TRIANGLES til að teikna margflötunga. Undir hvaða kringumstæðum á hvor aðferðin betur við?
 - b) Hvers vegna er röð hnútanna í þríhyrningunum mismunandi? Af hverju er annar þríhyrningurinn ekki (1, 2, 3)?
 - c) Hér til hliðar er mynd af þrívíðum margflötungi með 6 hnútum og 8 þríhyrningum. Sýnið hvernig margflötungurinn væri teiknaður með báðum aðferðunum, þ.e. gefið upp hnútafylkið sem yrði notað í hvorri aðferðinni fyrir sig.

- 5. Við getum nálgað gosdós (sívalning) með 10 hnútum, þar sem 5 hnútar mynda efri enda dósarinnar og 5 hnútar mynda neðri endann.
 - a) Rissið upp þennan margflötung og útskýrið hvernig hann er samsettur úr þríhyrningum.
 - b) Varpa á mynstri á hlið dósarinnar. Útskýrið hvernig þið mynduð gera það, þ.e. útskýrið hvernig mynsturhnitin varpast á einstaka hnúta. Skiptir máli hvort dósin hefur top og botn?
 - c) Ef mynstrið ætti aðeins að vera á hluta dósarinnar, eins og lítill merkimiði sem er límdur á dósina, hvernig væri hægt að ná því fram? Það er fleiri en ein möguleg leið, svar ykkar verður metið út frá því hversu vel þið útskýrið ykkar aðferð.

6. Gerið ráð fyrir að þið hafið OpenGL forrit sem notar litara (e. shaders) til að setja mynstur á hlut. Breyta á forritinu og liturunum þannig að þegar notandinn heldur niðri lyklinum **a** á lyklaborðinu og hreyfir músina, þá eru hnit músarinnar send til litaranna og notuð þar til þess að breyta litum hlutarins. Áhrif músahnitanna eru þau að y-hnitið breytir birtu allra skjápunkta í hlutnum (hærra y-gildi þýðir að litur skjápunktsins verður bjartari) og x-hnitið rúllar með litina í hring, þannig að hver litur á skjápunkti hlutarins verður að öðrum lit. Þegar lyklinum **a** er sleppt þá eru allir skjápunktar hlutarins sýndir með upphaflegum litagildum.

Sýnið hvaða breytingar þarf að gera á OpenGL forritinu og á liturunum til þess að ná þessari virkni fram og útskýrið virknina.