Natural Language Processing

Яковенко Ольга

• Распознавание речи

- Распознавание речи
- Синтез речи

- Распознавание речи
- Синтез речи
- Верификация/идентификация диктора

- Распознавание речи
- Синтез речи
- Верификация/идентификация диктора
- Поиск похожих композиций

- Распознавание речи
- Синтез речи
- Верификация/идентификация диктора
- Поиск похожих композиций
- Шумоподавление

- Распознавание речи
- Синтез речи
- Верификация/идентификация диктора
- Поиск похожих композиций
- Шумоподавление

Распознавание речи

hello

Распознавание речи

Автоматическое обнаружение в аудио произносимого человеком текста

hello

Распознавание речи

Компонентный подход End-to-End подход

Компонентный подход

Входной аудио поток

WAV фаил

Извлечение признаков

Мел-частотные кепстральные коэффициенты (MFCC)

-vectors

Кепстральная нормализация (CMVN

Акустический блок

Оконное распознавание звуков

Определение наиболее вероятной цепочки звуков

Лингвистический блок

Языковая модель

Выходной текст

Строка

Входной поток аудио

- WAV формат:
- Частота дискретизации (8 кГц, 16 кГц, 44 кГц)
- Количество каналов
- Битовая глубина

-bash-4.2\$ soxi audio.wav Input File : 'audio.wav' Channels : 1 Sample Rate : 8000 Precision : 16-bit Duration : 01:31:33.97 = 43951752 samples ~ 412048 CDDA sectors File Size : 87.9M Bit Rate : 128k Sample Encoding: 16-bit Signed Integer PCM

Time Domain Waveform

Извлечение признаков

MFCC Spectrogram

1.5 2.0 Time (s)

Извлечение признаков

- Мел-частотные кепстральные коэффициенты
- Mel-frequency cepstral coefficients
- MFCC

Извлечение признаков

- Identity vectors
- I-vectors

Оконное распознавание звуков

- Гауссовы смеси (Gaussian mixture models, GMM)
- Глубокие нейронные сети (Deep neural networks, DNN)

Определение наиболее вероятной цепочки <u>звуков</u>

Аудио признаки + вероятности появления звуков

Цепочка звуков

Лингвистический блок

Лингвистический блок

Языковая модель

- N-граммная языковая модель
- Реккурентная нейронная сеть в качестве языковой модели (Reccurent neural network language model/RNNLM)

Лингвистический блок

Языковая модель

- N-граммная языковая модель
- Реккурентная нейронная сеть в качестве языковой модели (Reccurent neural network language model/RNNLM)

Компонентный • CMUSphinx подход

- HTK
- Kaldi

End-to-End подход

Входной аудио поток

WAV файл

Извлечение признаков

Мел-частотные кепстральные коэффициенты (MFCC)

-vectors

Кепстральная нормализация (CMVN

Акустический блок

Глубокие нейронные сети (DNN) Лингвистический блок

> статистическая языковая модель (n gram LM)

Выходной текст

Строка

Определение наиболее вероятной цепочки <u>букв</u>

Определение наиболее вероятной цепочки <u>букв</u>

Аудио признаки

Буквы

End-to-End подход

- Kaldi
- DeepSpeech
- Wav2letter

Практика

https://github.com/DinoTheDinosaur/ FocusStart_NLP/blob/master/noteboo ks/Speech_recognition_and_sentimen t.ipynb