Hoofdstuk 7: bepaalde integratie

Sommen

Bovensom:
$$U(N, f) = \sum_{i=1}^{n} M_i(f) \Delta x_i$$

Ondersom:
$$L(N, f) = \sum_{i=1}^{n} m_i(f) \Delta x_i$$

Riemannsom:
$$S(N, T, f) = \sum_{i=1}^{n} f(t_i) \Delta x_i$$

Middelwaarde stellingen

Middelwaaardestelling:
$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx$$

Oneigenlijke limieten

Oneigelijke integralen 1ste soort:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx$$

Oeigelijke integralen 2de soort:

$$\int_{a+}^{b-} f(x)dx = \int_{a+}^{c} f(x)dx + \int_{c}^{b-} f(x)dx = \lim_{\substack{p \to a \\ > p}} \int_{p}^{c} f(x)dx + \lim_{\substack{q \to b \\ < c}} \int_{c}^{q} f(x)dx$$

Oneigemijke integralen 3de soort:

$$\int_{a+}^{+\infty} f(x)dx = \int_{a+}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx = \lim_{\substack{p \to a \\ > p}} \int_{p}^{c} f(x)dx + \lim_{\substack{q \to +\infty \\ c}} \int_{c}^{q} f(x)dx$$

Numerieke integratie

$$\label{eq:middelpuntsbenadering:} \frac{b-a}{n} \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_{k}}{2}\right)$$

$$Fout: \frac{\|f''\|(b-a)^{3}}{24n^{2}}$$

$$Trapeziumbenadering: \frac{b-a}{2n} \left(f(x_{0}) + 2\sum_{k=1}^{n} f(x_{k}) + f(x_{n})\right)$$

$$Fout: \frac{\|f''\|(b-a)^{3}}{12n^{2}}$$

$$Simpsonbenadering: \frac{b-a}{3n} \left(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})\right)$$

$$Fout: \frac{\|f^{iv}\|(b-a)^{5}}{180n^{4}}$$

Toepassingen

rocpassingen			
	Oppervlakte	Omwentelingsvol.	Booglengte
Cartesisch	$\int_{a}^{b} y dx$	$\pi \int_{a}^{b} y^{2}(x) dx$	$\int_{a}^{b} \sqrt{1 + (y')^2} dx$
Parameter	$\int_{t1}^{t2} g(t) f'(t)dt$	$\pi \int_{t1}^{t2} (g(t))^2 f'(t) ft$	$\int_{t_1}^{t_2} \sqrt{\left(f'(t)\right)^2 + \left(g'(t)\right)^2} dt$
Pool	$\frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta$		$\int_{a}^{b} \sqrt{r^2 + (r')^2} d\theta$
	Complan	atie	
Cartesisch	$2\pi \int_a^b y \sqrt{1 + (y')^2} dx$		
Parameter	$2\pi \int_{t_1}^{t_2} g(t) \sqrt{(f'(t))^2 + (g'(t))^2} dt$		

Hoofdstuk 8: differentiaalvergelijkingen

$$P(x,y)dx + Q(x,y)dy = 0$$

Scheiden van veranderlijken

Naam	Voorwaarde	Vorm
Scheiding van veranderlijken	$y' = \frac{-P(x,y)}{Q(x,y)} = \frac{f(x)}{g(y)}$	
Homogene diff.vgl.	$F(\lambda x, \lambda y) = \lambda^n F(x, y)$	$u = \frac{y}{x} \Leftrightarrow y = ux$
Lineaire coef. 1 ^{ste} graad + 1 ^{ste} orde	$(a_1x + b_1y + c_1) + (a_2x + b_2y + c_2)y' = 0$ $Snijpunten van stelsel bepalen \Rightarrow \begin{cases} u = x - x_1 \\ v = y - y_1 \end{cases}$	
Als evenwijdig $z = a_1 x + b_1 y + c_1$		$a_1x + b_1y + c_1$

Exacte differentiaalvergelijkingen

$$P(x,y)dx + Q(x,y)dy = 0$$

Als diff.vgl.exact
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Rightarrow \int_{0}^{\infty} P(x,y)dx = \hat{P}(x,y) + c_{y}$$

$$\int_{0}^{\infty} Q(x,y)dx = \hat{Q}(x,y) + c_{x}$$

$$met \ \varphi(x,y) = \hat{P}(x,y) = \hat{Q}(x,y)$$

Integrerende factoren

$\mu = \mu(x)$

$$\frac{\mu'(x)}{\mu(x)} = \frac{\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)}{O} = \varphi(x)$$

$\mu=\mu(v)=\mu(x_2)$

$$\frac{\mu'(x)}{\mu(x)} = \frac{\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)}{-P} = \varphi(x_2)$$

$\mu=\mu(x+y)=\mu(x_3)$

$$\frac{\mu'(x)}{\mu(x)} = \frac{\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)}{Q - P} = \varphi(x_3)$$

$\mu = \mu(xy) = \mu(x_4)$

$$\frac{\mu'(x)}{\mu(x)} = \frac{\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)}{xQ - yP} = \varphi(x_4)$$

$$\mu(x_i) = e^{\int \varphi(x_i) dx_i}$$

Naam	Vorm	
Scalaire lin. Diff.vgl.	y' + P(x)y = Q(x)	$\mu(x) = e^{\int P(x)dx}$
Bernouille	$y' + P(x)y = Q(x)y^m$	$\mu(x) = \frac{1 - m}{y^m}$
Ricatti	$y' = f_0(x) + f_1(x)y + f_2(x)y^2$	$y = y_1 + \frac{1}{u}$

Lineaire differentiaalvergelijkingen van orde n >2

$$\begin{aligned} a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y &= 0 \\ &\stackrel{1}{\Rightarrow} \Phi(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0 = 0 \stackrel{1}{\Rightarrow} \{u_i = x^{i-1} e^{tx}\}_{i=1}^m (m = multipiviteit) \\ &e^{ibx} = \cos(bx) + i \sin(bx) \end{aligned}$$

Euler

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0 \Rightarrow x = \pm e^z \ \ voor \ x \mathop{<}^{>} 0$$

Het zoeken van 1 particuliere oplossing

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = e^{\alpha x} Q(x)$$

Onbepaalde coëfficiënten	$V(x) = \sum_{j=0}^{k+m} b_j x^j met \begin{cases} k = multipliciteit \\ m = graad \end{cases}$ $y_p = V(x)e^{lpha x}$
Variatie van parameters	$y_p = \sum_{i=0}^n u_i z_i \ met \ u_i = opls. \ van \ KV \ van \ lineaire \ homogene \ deel$ $z_1 = \int \frac{1}{W(x)} \begin{vmatrix} 0 & u_2 \\ e^{\alpha x} Q(x) & u_2' \end{vmatrix}$ $z_2 = \int \frac{1}{W(x)} \begin{vmatrix} u_1 & 0 \\ u_1' & e^{\alpha x} Q(x) \end{vmatrix}$ $met \ W(x) = Wronkisiaan$
Reductie van orde	Diff. Vgl van orde n omzetten naar orde n-1

Hoofdstuk 9: Rijen en reeksen

Rij	Recursief	Niet-recursief
Rekenkundig	$x_n = x_{n-1} + v$	$x_n = x_p + (n - p)v$
Meetkundig	$x_n = q.x_{n-1}$	$x_n = q^{n-p}.x_p$

Someren van rijen

Rekenkundig:
$$s_n = \frac{x_1 + x_n}{2}$$
. n

$$Meetkundig: s_n = \frac{1 - q^n}{1 - q}.n$$

Eerste n natuurelijke getallen :
$$S_1(n) = \frac{n(n+1)}{2}$$

Eerste kwadraten van n natuurelijke getallen : $S_2(n) = \frac{n(n+1)(2n+1)}{6}$

$$x_n = an^2 + bn + c \Rightarrow s_n = aS_2(n) + bS_1(n) + cn$$

$$S_3(n) = \frac{n^2(n+1)^2}{2} = (S_1(n))^2$$

Limieten van rijen

Reeksen

Criteria	Voorwaarde		
Negatief criterium	Algemeen $\sum x_n$	Convergent: $\lim_{n \to +\infty} x_n = 0$	
Begrensde partieelsommen	Positieve reeks $\sum x_n$	Verzameling part.sommen begrensd → convergent	
Verdichtingscriterium	Positieve reeks $\sum x_n + (x_n)_n$	$\sum x_n \sim \sum 2^n x_{2^n}$	
	naar 0 dalend	$\sum_{x_n} \sum_{x_n} \sum_{x_n} \sum_{x_n} x_n$	
Convergente	Positieve reeks $\sum x_n$	Zie titel criterium	
majoranten en divergente minoranten			
Verhoudingscriterium	Twee positieve reeksen	x_n	
3	$\sum x_n \ en \ \sum y_n$	$Als \lim_{n \to \infty} \frac{x_n}{y_n} = 0$	
		beide zelf de convergentie gedrag	
D'Alembert	Algemeen $\sum x_n$	$\lim_{n \to +\infty} \left \frac{x_{n+1}}{x_n} \right < 1 \to convergent$	
		$\lim_{n \to +\infty} \left \frac{x_n}{x_n} \right > 1 \to divergent$	
		$\begin{vmatrix} n & 1 & 1 \\ n & - & + & \infty \end{vmatrix} x_n \begin{vmatrix} x_n \end{vmatrix} > 1$	
Klein criterium van	Positieve reeks $\sum x_n$	$\lim_{n \to +\infty} \sqrt[n]{x_n} < 1 \to convergent$	
Cauchy	·	$\lim_{n \to +\infty} \sqrt[n]{x_n} > 1 \to divergent$	
		$n \rightarrow +\infty$ $\downarrow \sim h$	
Integraalcriterium	$f: [0, \infty[\to [0, \infty[$	+∞	
	met f dalend naar 0	$\int f(x)dx \ bestaat \to convergent$	
Dirichelet	$\sum x_n$ waarvoor part.sommen begrensd + $(a_n)_n$ dalende rij zodat		
		$\rightarrow \sum a_n x_n convergent$	
	$n \rightarrow +\infty$		
Abel	$\sum x_n$ convergent + ($(a_n)_n$ monotoon begrensde rij	
	$\rightarrow \sum_{n} a_n x_n convergent$		
Leibnitz	$\sum x_n$ is alternerend met ($ x_n $		
	$\lim_{n \to +\infty} x_n = 0$	$0 \to \sum x_n$ convergent	
	<i>n</i> −→ +∞	-	

Tylor- en Maclaurinreeksen

Tyloor polynoom:
$$T_n(f, a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$

$$1.T_n(\lambda f + \mu g) = \lambda T_n(f) + \mu T_n(g)$$

$$2.\left(T_n(f)\right)' = T_{n-1}(f')$$

$$3.g(x) = \int_a^x f(t)dt \Rightarrow T_{n+1}(g)(x) = \int_a^x T_n(f)(t)dt$$

$$4.f(x) = P_n(x) + x^n g(x)$$

Formule van Tylor: $R_n(x) = f(x) - T_n(f)(x)$

Restterm van Tylor:
$$R_n(x) = \frac{1}{n!} \int_a^x (x-t)^2 f^{(n+1)}(t) dt$$

Restterm van Lagrange:
$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

Puntsgewijze en uniforme convergentie

$$Puntsgewijze: f = \lim_{n \to \infty} f_n(x)$$

$$Uniforme: \lim_{n\to\infty} \sup |f_n(x)-f(x)|=0$$

Fourierreeksen

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Kwadratische convergentie : $\lim_{n\to\infty}\int\limits_a^b|f_n(x)-f(x)|^2dx$

Perseval:
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

Hoofdstuk 10: Functies van meerdere veranderlijken

Metrieken

$$d_{E}(x, y) = \|x - y\|_{E} = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$$

$$d_{S}(x, y) = \|x - y\|_{S} = \sum_{i=1}^{n} |x_{i} - y_{i}|$$

$$d_{M}(x, y) = \|x - y\|_{M} = \max_{i=1}^{n} |x_{i} - y_{i}|$$

Afleidbaarheid en differentieerbaarheid

Richtingsaf geliede:
$$Df((a,b), \mathbf{h}) = \lim_{\lambda \to 0} \frac{f(a + \lambda h_1, b + \lambda h_2) - f(a,b)}{\lambda} \Rightarrow Afleidbaar$$

$$Raakvlak: z = \frac{\partial f}{\partial x}(\mathbf{a})(x - a) + \frac{\partial f}{\partial y}(\mathbf{b})(y - b) + f(\mathbf{a})$$

$$\lim_{\lambda \to 0} \frac{f(\mathbf{x}) - f(\mathbf{a}) - \frac{\partial f}{\partial x}(\mathbf{a})(x - a) - \frac{\partial f}{\partial y}(\mathbf{b})(y - b)}{\|\mathbf{x} - \mathbf{a}\|} = o \Rightarrow differentieerbaar$$

$$\boxed{Df(\mathbf{a}, \mathbf{h}) = Df(\mathbf{a}) \cdot \mathbf{h}}$$

$$Kettingregel: Dh(\mathbf{a}) = Dg(\mathbf{b}) \cdot Df(\mathbf{a})$$

de normaal van een opp.:
$$\eta(u, v) = \frac{\partial \varphi}{\partial u} x \frac{\partial \varphi}{\partial v}$$

Inverse: $Df^{-1}(b) = (Df(a))^{-1}$ met b = f(a)

De impliciete functie

Voor
$$F(x,y) = 0$$
: $y'(x) = \frac{dy}{dx}(x) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}$

$$Voor F(x, y; z) = 0: \left(\frac{\partial f}{\partial x}(x, y) \quad \frac{\partial f}{\partial y}(x, y)\right) = \left(-\frac{\frac{\partial F}{\partial x}(x, y, z)}{\frac{\partial F}{\partial z}(x, y, z)} \quad -\frac{\frac{\partial F}{\partial y}(x, y, z)}{\frac{\partial F}{\partial z}(x, y, z)}\right)$$

$$Zij \ F(x,y,z)en \ G(x,y,z)met \ F,G: \Omega \subseteq \mathbb{R}^{3} \to \mathbb{R}: \begin{pmatrix} \frac{df}{dz}(z) \\ \frac{dg}{dz}(z) \end{pmatrix} = \begin{pmatrix} -\frac{\left|\frac{\partial(F,G)}{\partial(z,y)}(x_{0})\right|}{\left|\frac{\partial(F,G)}{\partial(x,y)}(x_{0})\right|} \\ -\frac{\left|\frac{\partial(F,G)}{\partial(z,y)}(x_{0})\right|}{\left|\frac{\partial(F,G)}{\partial(x,y)}(x_{0})\right|} \end{pmatrix}$$

Functie onderzoek

Hessiaanse matrix :
$$H(x,y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial y \partial x}(x,y) \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{pmatrix}$$

$$\Delta = H(a)$$

$$A = \frac{\partial^2 f}{\partial x^2}(\boldsymbol{a})$$

Multiplicatoren van Lagrange

$$F(x_1,x_2,\ldots,x_{n-1},x_n,\lambda)=f\left(x_1,x_2,\ldots,x_{n-1},x_n\right)+\lambda\varphi(x_1,x_2,\ldots,x_{n-1},x_n)$$

$$met\ \varphi(x)=nevenvoorwaarde$$