	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

CS/B.Tech/BT(O)/SEM-5/BT-502/2012-13 2012

BIOREACTOR DESIGN AND ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Which of the following influences the rate of a chemical reaction performed in solution?
 - a) Temperature
 - b) Activation energy
 - c) Concentrations of reactants
 - d) All of the above influence the rate.
 - ii) A student determined the value of the rate constant, k, for a chemical reaction at several different temperatures. Which of the following graphs of the student's data would give a straight line?
 - a) k versus T
- b) ln k versus (1/T)
- c) ln k versus T
- d) ln k versus E_a .

5113(O) [Turn over

- a) 1 and 1
- b) 1 and 2

- c) 2 and 1
- d) 2 and 2.
- iv) The rate law for certain reaction has a specific rate constant k, with unit of s⁻¹. What is the order of the reactions?
 - a) 0

b) 1

c) 2

- d) cannot be determined.
- v) The unit of 2nd order reaction constant when partial pressure will be used in place of concentration is
 - a) atm-2

- b) time-1 atm-2
- c) time-1 atm-1
- d) atm-1.
- vi) Batch reactor is a
 - a) ideal reactor
- b) non-ideal reactor

c) steady

d) both (a) and (b).

- vii) A CSTR can be used for animal cell culture if the reactor is modified as
 - a) without stirers
 - b) removing buffels
 - c) agitating with low rpm
 - d) using micro-carriers.
- viii) The $k_L a$ value is related to
 - a) O_2 transfer rate
 - b) Mass transfer unit
 - c) Enzyme immobilization constant rate
 - d) Rate of diffusion.
- ix) Antibiotics formation is described by the kinetics of the type
 - a) Growth associated
 - b) Non-growth associated
 - c) Growth and Non-growth associated
 - d) Mass transfer controlling.

CS/B.Tech/BT(O)/SEM-5/BT-502/2012-13

- x) A packed bed reactor with immobilized cells is modelled as a
 - a) Plug flow reactor
 - b) Stirred tank reactor
 - c) Dispersion model
 - d) Plug flow with axial dispersion.
- xi) Perfusion reactor is used for
 - a) Vaccine formation
 - b) Animal cell culture
 - c) Alcohol production
 - d) Biomass production.
- xii) Microbial fermentation is best carried out for high yield of cell mass by
 - a) Plug flow reactor
 - b) Fed batch reactor
 - c) Back-mixed reactor
 - d) Fluidized bed reactor.

Answer any three of the following.

 $3 \times 5 = 15$

2. Experimental studies of a specific decomposition of A in a batch reactor using pressure units show exactly the same rate at two different temperatures:

at 400 K,
$$-r_A=2\cdot 3$$
 P_A^2
$$Where \begin{cases} -r_A=[\bmod/m^3.\sec]\\ P_A=[atm] \end{cases}$$
 At 500 K, $-r_a=2\cdot 3P_A^2$

Transform the rate expressions into concentration units and then evaluate the activation energy.

The pressure is not excessive, so the ideal gas law can be used.

- 3. For the decomposition $A \longrightarrow R$, $C_{A0} = 1$ mol/litre, in a batch reactor conversion is 75% after 1 hour, and is just completed after 2 hours. Find a rate equation to represent these kinetics.
- 4. An aqueous feed of A and B (400 litre/min, 100 mmol A/litre, 200 mmol B/litre) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by $A + B \longrightarrow R$, $-r_A = 200 \ C_A C_B$ mol/lit.min. Find the volume of reactor needed for 99·9% conversion of A to product.
- 5. What are the different thump rules for scale up of reactors? What are their limitations and failures?
- 6. Write a short note on trickle bed and membrane reactor.

GROUP - C

(Long Answer Type Questions

Answer any three of the following.

 $3 \times 15 = 45$

7. a) In a number of separate runs different concentrations of substrate and enzyme are introduced into a batch reactor and allowed to react. After a certain time the reaction is quenched and the vessel contents analyzed. From the results found below find a rate equation to represent the action of enzyme on substrate:

Run	$C_{E0} (\text{mol}/\text{m}^3)$	$C_{A0} (\text{mol}/\text{m}^3)$	$C_A(\text{mol}/\text{m}^3)$	t (hr)
1	3	400	10	1
2	2	200	5	1
3	1	20	1	1

- b) Liquid A decomposes by first-order kinetics, and in a batch reactor 50% of A is converted in a 5-minute run. How much longer would it take to reach 75% conversion?
- 8. a) The specific growth rate for inhibited growth in a chemostat is given by the following equation:

$$\mu_g = \mu_m S / (K_s + S + IK_s / K_I)$$

Where

$$S_0 = 10g/l \quad K_s = 1 g/l \quad I = 0.5 g/l$$

$$Y_{X/S}^{M} = 0.1 \text{ g cells /g subs}$$

$$X_0 = 0$$
 $K_I = 0.01 \text{ g/l}$ $\mu_m = 0.5 \text{ h}^{-1}$ $k_d = 0$

- (i) Determine X and S as a function of D when I = 0
- (ii) With inhibitor added to a chemostat, determine the effluent substrate concentration and X as a function of D.
- (iii) Determine the cell productivity. *DX* as a function of dilution rate.

- b) One litre per minute of liquid containing A and B (C_{A0} =0·1 mol/litre, C_{B0} = 0·01 mol/litre) flow into a mixed reactor of volume V = 1 litre. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B and C (C_{Af} = 0·02 mol/litre, C_{Bf} = 0·03 mol/litre, C_{Cf} = 0·04mol/litre). Find the rate of reaction of A, B and C for the conditions within the reactor .
- 9. A reactor with a number of dividing baffles is to be used to run the reaction $A \longrightarrow R$ with $-r_A = 0 \cdot 05 \ C_A \, \text{mol/litre.}$ min

A pulse tracer test gives the following output curve.

Time (min)	0	10	20	30	40	50	60	70
Concentration reading	35	38	40	40	39	37	36	35

a) Calculate X_A from the dispersion model assuming small deviation from plug flow

8 + 7

- b) Calculate X_A directly from the data.
- 10. a) What all points should be considered to design a bioreactor for animal cell culture. Describe the operation of hollow fiber reactor for the production of monoclonal antibody from hybridoma cells and indicate the design.
 - b) What is the importance of plant cell culture? What are the differences between plant cells and microbes and implication for bioreactor design? 9+6

11. Attempt any three of the following:

- a) What is space time and holding time for flow reactor?

 What is the relation between space time and holding time for constant density and changing density system?

 Explain with example.
- b) What are the advantages and disadvantages of bubble column reactor for aerobic microbial fermentation?
- c) Describe the method of determining $k_L a$ by the steady state method where the oxygen uptake rate (OUR) is $q_{o2} X \, .$
- d) Write a short note on bioreactor consideration in immobilized cell system.