Mathematical Induction

Use induction to prove that $3^n > n^2$ for all positive integers $n \ge 3$.

Let P(n) denote the proposition that $3^n > n^2$, where n is a positive integer $n \ge 3$.

BASIS STEP: P(3) is true since 27 > 9.

INDUCTIVE STEP: Let us assume P(n), that is $3^n > n^2$ is true for an arbitrary positive integer $n \ge 3$. This is our inductive hypothesis.

We have to show that P(n+1), $3^{n+1} > (n+1)^2$ is true assuming the inductive hypothesis P(n).

Proof:

 $3^{n+1} = 3 \cdot 3^n > 3 \cdot n^2$ using the inductive hypothesis.

$$3 \cdot n^2 = n^2 + 2n^2 > n^2 + 2n + 1 = (n+1)^2$$
, when $n \ge 3$.

$$2n^2 > 2n + 1$$
, since $2n^2 - 2n = 2n(n-1) > 1$, when $n \ge 3$.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $3^n > n^2$ for all positive integers $n \ge 3$.