QUESTION 1

(1 pts)

What is the main idea in a related rates problem?

- A. To find the average rate of change of a function y.
- B. To compute the rate of change of one quantity in terms of the rate of change of another quantity.
- C. To use the chain rule.
- D. To find the velocity of a particle at time t.

QUESTION 2

(1 pts)

If V is the volume of a cube with edge length a, and the cube expands over time, what is $\frac{dV}{dt}$?

A.
$$\frac{dV}{dt} = 3a^2$$

C.
$$\frac{dV}{dt} = 3a^2 \frac{da}{dt}$$

B.
$$\frac{dV}{dt} = a^3$$

D.
$$\frac{dV}{dt} = 3a$$

QUESTION 3

(1 pts)

Suppose you have the related rates problem:

Each side of a square, labeled x, is increasing at a rate of 6m/s. At what rate is the area of the square increasing when the area of the square is $16m^2$?

Identify what is given and what is unknown/the goal in the problem statement.

A. Given:
$$\frac{dx}{dt}$$
.

Goal: $\frac{dx}{dt}$ at $x = 16m^2$.

B. Given: $\frac{dx}{dt}$.

Goal: $\frac{dA}{dt}$ at $x = 16m^2$.

C. Given:
$$\frac{dA}{dt}$$
.

Goal: $\frac{dx}{dt}$ at $x = 16m^2$.

D. Given: $\frac{dx}{dt}$.

Goal: $\frac{dA}{dt}$ at $x = 4m^2$.

Question 3.

A. $192m^2/s$

C. $6m^2/s$

B. $48m^2/s$

D. $32m^2/s$

Suppose $y = \sqrt{x^2 + 2x + 1}$, where x and y are functions of t. If $\frac{dx}{dt} = 3$, find $\frac{dy}{dt}$ when x = 2.

A. $\frac{dy}{dt} = 3$

C. $\frac{dy}{dt} = 2$

B. $\frac{dy}{dt} = \frac{1}{6}$

D. $\frac{dy}{dt} = 9$

When doing the process of linearization, we approximate the values of the curve y = f(x) by the tangent line at (a, f(a)), when x is near a, if f(x) is difficult to compute. Why can we do this?

- A. Since f(a) is linearizable.
- B. The point of tangency exists.
- C. f(x) is differentiable.
- D. The curve y = f(x) lies very close to it's tangent line near the point of tangency.

(1 pts)

If $f(x) \approx f(a) + f'(a)(x - a)$, what is the linearization?

- A. $L(x) \approx f(a) + f'(a)(x a)$
- C. L(x) = f(a) + f'(a)(x a)

B. L(x) = f'(a)

D. L(x) = (x - a)'

Guestion 8 (1 pts) Find the linearization L(x) of $f(x) = x^3 - x^2 + 3$ at a = -1

A. L(x) = 5x + 6

C. $L(x) = 3x^2 - 2x$

B. L(x) = 16x + 23

D. L(x) = 5

•	JESTION 9	(1 pts)
The differentiable dy is the approximate What is dx ?	pproximate increment in the variable y given	by $dy = f'(x)dx$.
A. An independent vari	iable.	
B. The increment in the	he variable x .	
C. The differential of x	·	
D. All of the above.		
•	TESTION 10	\ <u>-</u> /
A. Δy		
B. The change in linear	rization.	
C. The change in x , Δx	x.	
D = f'(x)		