On the Synthesis of Discrete Controllers for Timed Systems [2]

On the Synthesis of Discrete Controllers for Timed Systems [2]

An Extended Abstract

E. Cominato 137396¹

¹Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli studi di Udine

Introduction[']

This paper presents algorithms for the automatic synthesis of the real time controllers by finding a winning strategy for certain games defined by the timed automata of Alur and Dill.

Automatic Verification
Introduction
Abstract

This paper presents algorithms for the automatic synthesis of the real time controllers by finding a winning strategy for certain games defined by the timed automata of Alur and Dill.

Introduction

Consider a dynamical system P, whose presentation describes all its possible behaviours. A subset of the plant's behaviours, satisfying some criterion is defined as good or acceptable.

A controller C is another system which can interact with P in a certain manner by observing the state of P and by issuing control actions that influence the behaviour of P.

Automatic Verification
Introduction
The problem

Consider a dynamical system P, whose presentation describes all its possible behaviours. A subset of the plant's behaviours, satisfying some criterion is defined as good or acceptable.

A controller C is another system which can interact with P in a certain manner by observing the state of P and by issuing control actions that influence the behaviour of P.

Introduction

The synthesis problem is then, to find out whether, for a given P, there exists a realizable controller C such that their interaction will produce only good behaviours.

Automatic Verification
Introduction
The problem

The synthesis problem is then, to find out whether, for a given P, there exists a realizable controller C such that their interaction will produce only good behaviours.

Definition 1 (Plant)

A plant automaton is a tuple $\mathcal{P} = (Q, \Sigma_c, \delta, q_0)$ where Q is a finite set of states, Σ_c is a set of controller commands, δ : $Q \times \Sigma_c \longmapsto 2^Q$ is the transition function and $g_0 \in Q$ is an initial state.

Definition 2 (Controllers)

A controller for a plant specified by $\mathcal{P} = (Q, \Sigma_c, \delta, q_0)$ is a function $C: Q^+ \longmapsto \Sigma_c$. A simple controller is a controller that can be written as a function $C: Q \longrightarrow \Sigma_c$.

For each controller command $\sigma \in \Sigma_c$ at some state $g \in Q$ there are several possible consequences denoted by $\delta(q, \sigma)$.

Automatic Verification

-Initial Definitions

Discrete Case

Unlike other formulation of 2-person games, where there is an explicit description of the transition function of both players, here we represent the response of the environment as a nondeterministic choice among the transitions labeled by the same σ .

We are interested in the simpler cases of controllers that base their decisions on a finite memory.

Automatic Verification

-Initial Definitions

Discrete Case

Definition 3 (Trajectories)

Let \mathcal{P} be a plant and let $C: Q^+ \longmapsto \Sigma_c$ be a controller. An infinite sequence of states $\alpha: q[0], q[1], \ldots$ such that $q[0] = q_0$ is called a trajectory of \mathcal{P} if

$$q[i+1] \in \bigcup_{\sigma \in \Sigma_c} \delta(q[i], \sigma)$$

and a C-trajectory if $q[i+1] \in \delta(q[i], C[\alpha[0..i]])$ for every $i \ge 0$. The corresponding sets of trajectories are denoted by $L(\mathcal{P})$ and $L_{\mathcal{C}}(\mathcal{P})$.

4□ > 4♠ > 4 ≅ > 4 ≅ > ≅

For every infinite trajectory $\alpha \in L(\mathcal{P})$:

- $ightharpoonup Vis(\alpha)$ denote the set of all states appearing in α
- Inf(α) denote the set of all states appearing in α infinitely many times

Automatic Verification

Discrete Case

Initial Definitions

For every infinite trajectory $\alpha \in L(P)$:

Vis(α) denote the set of all states appearing in α
 Inf(α) denote the set of all states appearing in α

Definition 4 (Acceptance Condition)

Let $\mathcal{P} = (Q, \Sigma_c, \delta, q_0)$ be a plant. An acceptance condition for \mathcal{P} is

$$\Omega \in \{(F, \square), (F, \lozenge), (F, \lozenge \square), (F, \square \lozenge), (\mathcal{F}, \mathcal{R}_n)\}$$

where $\mathcal{F} = \{(F_i, G_i)\}_{i=1}^n$ and F, F_i and G_i are certain subsets of Q referred as the good states. The set of sequences of \mathcal{P} that are accepted according to Ω is defined as follows:

$$\begin{array}{ll} L(\mathcal{P}, F, \square) & \{\alpha \in L(\mathcal{P}) : \textit{Vis}(\alpha) \subseteq F\} \\ L(\mathcal{P}, F, \lozenge) & \{\alpha \in L(\mathcal{P}) : \textit{Vis}(\alpha) \cap F \neq \emptyset\} \\ L(\mathcal{P}, F, \lozenge \square) & \{\alpha \in L(\mathcal{P}) : \textit{Inf}(\alpha) \subseteq F\} \\ L(\mathcal{P}, F, \square \lozenge) & \{\alpha \in L(\mathcal{P}) : \textit{Inf}(\alpha) \cap F \neq \emptyset\} \\ & \{\alpha \in L(\mathcal{P}) : \exists i\alpha \in L(\mathcal{P}, F, \mathcal{R}_n) & L(\mathcal{P}, F_i, \square \lozenge) \cap L(\mathcal{P}, G_i, \lozenge \square)\} \end{array}$$

Automatic Verification
Discrete Case
Initial Definitions

nition 4 (Acceptance Condition)

P is $\Omega \in \{(F, \square), (F, \lozenge), (F, \lozenge\square), (F, \square\lozenge), (F, \square_0), (F, \square_0)\}$ where $F = \{(F, \square)\}_{i=1}^n$ and F, F_i and G_i are certain
of Q referred as the good states. The set of sequence
that are accepted accordig to Ω is defined as follows:

 $L(P, F, \Box)$ $\{\alpha \in L(P) : Vsi(\alpha) \subseteq L(P, F, \Diamond)\}$ $\{\alpha \in L(P) : Vsi(\alpha) \cap L(P, F, \Diamond \Box)\}$ $\{\alpha \in L(P) : Inf(\alpha) \subseteq L(P, F, \Box \Diamond)\}$ $\{\alpha \in L(P) : Inf(\alpha) \cap \{\alpha \in L(P) : \exists i\alpha\}\}$

- 1. α always remains in F
- 2. α eventually visits F
- 3. α eventually remains in F
- 4. α visits F infinitely often
- 5. α visits F_i infinitely often and eventually stays in G_i

Definition 5 (Controller Synthesis Problem)

For a plant \mathcal{P} and an acceptance condition Ω , the problem $\textbf{Synth}(\mathcal{P}, \Omega)$ is: Find a controller C such that $L_C(\mathcal{P}) \subseteq L(\mathcal{P}, \Omega)$ or otherwise show that such a controller does not exists.

Automatic Verification

Discrete Case

Initial Definitions

Definition 5 (Controller Synthesis Problem

For a plant P and an acceptance condition Ω , the probi Synth(P, Ω) is: Find a controller C such that $L_C(P) \subseteq L(P)$ or otherwise show that such a controller does not exists

Definition 6 (Controllable Predecessors)

Let $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ be a plant and a set of states $P \subseteq Q$. The controllable predecessors of P is the set of states from which the controller can "force" the plant into P in one step:

$$\{q: \exists \sigma \in \Sigma_c \ \delta(q,\sigma) \subseteq P\}$$

We define a function $\pi: 2^Q \longrightarrow 2^Q$, mapping a set of states $P \subseteq Q$ into the set of its Controllable predecessors:

$$\pi(P) = \{q : \exists \sigma \in \Sigma_c \ \delta(q, \sigma) \subseteq P\}$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Automatic Verification Discrete Case

Controllable Predecessors

 $\{a: \exists \sigma \in \Sigma, \delta(a, \sigma) \subseteq P\}$

We define a function $\pi: 2^Q \longrightarrow 2^Q$, mapping a set of stat

 $\pi(P) = I \alpha : \exists \alpha \in \Sigma : \delta(\alpha, \alpha) \subseteq P$

Automatic Verification

Discrete Case

Controllable Predecessors

Theorem 1

For every $\Omega \in \{(F, \square), (F, \lozenge), (F, \lozenge \square), (F, \square \lozenge), (\mathcal{F}, \mathcal{R}_n)\}$, the problem **Synth**(\mathcal{P}, Ω) is solvable. Moreover, if (\mathcal{P}, Ω) is controllable then it is controllable by a simple controller.

Sketch of Proof

For a plant $\mathcal{P} = (Q, \Sigma_c, \delta, q_0)$ and an acceptance condition Ω , we denote $W \subseteq Q$ as the set of winning states, namely, the set of states from which a controller can enforce good behaviors according to Ω .

4□ > 4□ > 4□ > 4□ > 4□ > 9

Automatic Verification

Discrete Case

-Theorem

We can characterize this states by the following fixed-point expressions:

$$\square \ \nu W(F \cap \pi(W))$$

$$\Diamond \mu W(F \cup \pi(W))$$

$$\Diamond \Box \ \mu W \nu H \Big(\pi(H) \cap (F \cup \pi(W)) \Big)$$

$$\Box \Diamond \ \nu W \mu H \Big(\pi(H) \cup (F \cap \pi(W)) \Big)$$

$$\mathcal{R}_1 \ \mu W \bigg\{ \pi(W) \cap \nu Y \mu H.W \cup G \cap \big(\pi(H) \cup (F \cap \pi(Y))\big) \bigg\}$$

Then the plant is controllable iff $q_0 \in W$

```
Automatic Verification
LDiscrete Case
Theorem
```

```
We can characterize this states by the following fixed-point expressions:

\Box \nu W(F \cap \pi(W))
0 \ \mu W(F \cup \pi(W))
0 \ \mu W(F \cup \pi(W))
\Box \nu \nu W_{\mu}H(\pi(W) \cap F \cup \pi(W))
\Box \nu \nu W_{\mu}H(\pi(W) \cup F \cap \pi(W))
R_{+} \mu W_{+}(\pi(W) \cap \nu Y_{\mu}H, W \cup G \cap (\pi(H) \cup (F \cap \pi(Y)))
```

Then the plant is controllable iff $\phi_0 \in W$

```
u greatest 
\mu least
```

Let see in more details how this works. Consider the case ◊:

$$egin{aligned} &W_0 := \emptyset \ & W_0 := \emptyset \ & \text{for } i := 0, 1, \dots \ & ext{repeat} \end{aligned} \qquad egin{aligned} &W_1 := F \cup \pi(W_0) = F \cup \pi(\emptyset) = F \ & W_{i+1} := F \cup \pi(W_i) \end{aligned} \qquad egin{aligned} &W_2 := F \cup \pi(W_1) = F \cup \pi(F) \ & \text{until } W_{i+1} = W_i \end{aligned} \qquad \dots$$

finally: $W_n := F \cup \pi(W_{n-1}) = F \cup \pi(F \cup \pi(...(F \cup \pi(F))))$

Automatic Verification Discrete Case -Theorem

finally: $W_n := F \cup \pi(W_{n-1}) = F \cup \pi(F \cup \pi(\dots (F \cup \pi(F))))$

In the process of calculating W_{i+1} , whenever we add a state q to W_i , there must be at least one action $\sigma \in \Sigma_c$ such that $\delta(q, \sigma) \subseteq W_i$.

So we define the controller at q as $C(q) = \sigma$.

When the process terminates, the controller is synthesized for all the winning states.

It can be seen that if the process fails, that is $q_0 \notin W$, then for every controller command there is a possibly bad consequence that will put the system outside F, and no controller, even an infinite state one, can prevent this.

4 D > 4 A > 4 B > 4 B > B = 900

Automatic Verification

Discrete Case
Conclusions

In the process of calculating W_{i+1} , whenever we add a state q to W_i , there must be at least one action $\sigma \in \Sigma_c$ such that $\delta(q, \sigma) \subseteq W_i$. So we define the controller at σ as $C(\sigma) = \sigma$.

When the process terminates, the controller is synthesize

for all the winning states. It can be seen that if the process fails, that is $q_0 \notin W$, then for every controller command there is a possibly bad consequence that will put the system outside F, and no controller, even an infinite state one, can prevent this.

Timed automata are automata equipped with clocks whose values grow continuously.

Let T denote \mathbb{R}^+ and let $X = T^d$ (the clock space).

The elements of X are $x = (x_1, ..., x_d)$ and the d-dimensional unit vector is $\mathbf{1} = (1, ..., 1)$

Definition 7 (Reset functions)

Let F(X) denote the class of functions $f: X \mapsto X$ that can be written in the form $f(x_1, ..., x_d) = (f_1, ..., f_d)$ where each f_i is either x_i or 0.

Automatic Verification
Real Time Case
Initial Definitions

Timed automata are automata equipped with clocks whose values grow continuously. Let T denote S and let $X = T^t$ (the clock space). The elements of X are $x = (a, \dots, a)$ and the d-dimensional unit vector is $1 = (1, \dots, 1)$. Definition T (Recent functions). Let T(X) denote the class of functions $t: X \to X$ that can be written in the form $(n_1, \dots, a_t) = (a, \dots, a_t)$ where each t is

The clocks interact with the transitions by participating in preconditions (guards) for certain transitions and they are possibly reset when some transitions are taken

Definition 8 (*k polyhedral sets*)

Let k be a positive integer constant. We associate with k three subsets of 2^{X} :

- \triangleright \mathcal{H}_k : the set of half-spaces consisting of all sets having one of the following forms

 - $\{x \in X : x_i \# c\}$

for some $\# \in \{<, \le, >, \ge\}$ and $c \in \{0, ..., k\}$

- \triangleright \mathcal{H}_{k}^{\cap} : the set of convex sets consisting of intersections of elements of Hk
- $\triangleright \mathcal{H}_{k}^{*}$: the set of k-polyhedral sets containing all sets obtained from \mathcal{H}_{k} via union intersection and complementation

◆□▶◆□▶◆■▶ ● 夕久○

Automatic Verification

Real Time Case -Initial Definitions

H_i: the set of half-spaces consisting of all sets having

- {x ∈ X : x,#c} • {x ∈ X : x_i − x_i#e}

◆□▶◆□▶◆■▶ ● 夕久○

- Q a finite set of discrete states
- ightharpoonup X a clock domain $X = (\mathbb{R}^+)^d$ for some d > 0
- ► $\Sigma = \Sigma_c \cup \{e\}$ an input alphabet (including a single environment action e)
- $ightharpoonup I: Q \mapsto \mathcal{H}_k^{\cap}$ as the state invariant function
- ► $R \subseteq Q \times \Sigma \times \mathcal{H}_k^{\cap} \times F(X) \times Q$ is a set of transition relations each of the form $\langle q, \sigma, g, f, g' \rangle$ where:
 - ightharpoonup q, q'inQ are states
 - $ightharpoonup \sigma \in \Sigma$ is a command
 - $ightharpoonup g \in \mathcal{H}_k^{\cap}$ is a guard condition
 - $ightharpoonup f \in F(X)$ is a reset function

Automatic Verification

Real Time Case
Initial Definitions

Definition 9 (Timed Automata)

A timed automaton is a tuple $T = (Q, X, \Sigma, I, R, q_0)$ consisting of:

- Q a finite set of discrete states
- X a clock domain X = (R+)^d for some d > 0
 Σ = Σ, ∪ (e) an input alphabet (including a
- environment action a)

 $I: Q \mapsto \mathcal{H}_{k}^{\circ}$ as the state invariant function
- R ⊆ Q × Σ × H^{*}_k × F(X) × Q is a set of transit relations each of the form (q, σ, g, f, q') when
 b σ disQ are states
- q, q'inQ are states
 σ ∈ Σ is a command
 σ ∈ Ω is a ground condition
- g ∈ H[□]_n is a guard condition
 f ∈ F(X) is a reset function

A *configuration* of \mathcal{T} is a pair $(q, x) \in Q \times X$ denoting a discrete state and the values of the clocks.

Without loss of generality, we assume that:

$$\forall q \in Q, \forall x \in X \ \exists t \in T : x + \mathbf{1}t \notin I_q$$

A configuration of T is a pair $(q, x) \in Q \times X$ denoting a crete state and the values of the clocks. Without loss of generality, we assume that: $\forall q \in Q, \forall x \in X \exists t \in T: x + 1t \neq I_n$

That is, the automaton cannot stay in any of its discrete states forever.

$$x + \mathbf{1}t = (x_1, \dots, x_n) + (1, \dots, 1)t = (x_1 + t, \dots, x_n + t)$$
 The time has the same pace in all clocks

A step of \mathcal{T} is a pair of configurations ((q, x), (q', x')) such that either:

- ▶ q = q' and for some $t \in T, x' = x + 1t, x \in I_q$ and $x' \in I_q$. In this case we say that (q', x') is a t-successor of (q, x) and that ((q, x), (q', x')) is a t-step.
- ► There is some $r = \langle q, \sigma, g, f, q' \rangle \in R$ such that $x \in g$ and x' = f(x). In this case we say that (q', x') is a σ -successor of (q, x) and that ((q, x), (q', x')) is a σ -step

A trajectory of \mathcal{T} is a sequence $\beta = (q[0], x[0]), (q[1], x[1]), \ldots$ of configurations such that for every i, ((q[i], x[i]), (q[i+1], x[i+1])) is a step.

4 D > 4 D > 4 E > 4 E > 990

Automatic Verification

Real Time Case
Initial Definitions

ition 10 (Steps and Trajectories)

- A step of T is a pair of configurations ((q, x), (q', x') either:
- In this case we say that (q', x') is a t-successor of (q, x)and that ((q, x), (q', x')) is a t-step. There is some $r = (q, \sigma, g, f, q') \in R$ such that $x \in g$ and
- x' = f(x). In this case we say that (q', x') is a σ-successo of (q, x) and that ((q, x), (q', x')) is a σ-successo of (q, x) and that ((q, x), (q', x')) is a σ-step of x trainctory of T is a sequence β = (a|0| x|0|). (a|1) x|1)

A trajectory of T is a sequence $\beta = (q[0], x[0]), (q[1], x[1]), ...$ of configurations such that for every i, ((q[i], x[i]), (q[i+1], x[i+1])) is a step.

Definition 11 (Real time Controller)

A simple real time controller is a function $C: Q \times X \mapsto \Sigma_c \cup \bot$

We denote by $\Sigma_c^{\perp} = \Sigma_c \cup \bot$ the range of controller commands. We also require that the controller is k-polyhedral, i.e., for every $\sigma \in \Sigma_c^{\perp}$, $C^{-1}(\sigma)$ is a k-polyhedral set.

Definition 11 (Real time Controller) A simple real time controller is a function $C : Q \times X \mapsto \Sigma_c \cup \Sigma$ We denote by $\Sigma_c^{\perp} = \Sigma_c \cup \Sigma$ the range of controller com-

According to this function the controller chooses at any configuration (q, x) whether to issue some enabled transition σ or to do nothing and let time go by.

Automatic Verification

-Real Time Controllers

Real Time Case

Definition 12 (Controlled Trajectories)

Given a simple controller C, a pair ((q,x),(q',x')) of config*urations is a C-step if it is either:*

- ► an e step
- ightharpoonup a σ step such that $C(q,x) = \sigma \in \Sigma_c$
- ightharpoonup a t- step for some $t\in T$ such that for every t', $t' \in [0, t), C(q, x + 1t') = \perp$

A C-trajectory is a trajectory consisting of C-steps. We denote the set of *C*-trajectories of \mathcal{T} by $L_{\mathcal{C}}(\mathcal{T})$.

Definition 13 (Real time Controller Synthesis)

Given a timed automaton \mathcal{T} an a acceptance condition Ω , the problem RT-Synth (\mathcal{T}, Ω) is: Construct a real-time controller C such that $L_C(\mathcal{T}) \subseteq L(\mathcal{T}, \Omega)$

Automatic Verification
Real Time Case
Real Time Controllers

efinition 13 (Real time Controller Synthesis) wen a timed automaton T an a acceptance condition coblem RT-Synth(T, Ω) is: Construct a real-time congraph that $T_{ij}(T) = T_{ij}(T)$

Definition 14 ((t, σ) – successor)

For $t \in T$ and $\sigma \in \Sigma$, the configuration (q', x') is defined to be a (t, σ) – successor of the configuration (q, x) if there exists an intermediate configuration (\hat{q}, \hat{x}) such that (\hat{q}, \hat{x}) is a t – successor of (q, x) and (q', x') is a σ – successor of (\hat{q}, \hat{x}) .

Then we define a function $\delta: (Q \times X) \times (T \times \Sigma_c^{\perp}) \mapsto 2^{Q \times X}$ where $\delta((q, x), (t, \sigma))$ stands for all the possible consequences of the controller attempting to issue the command $\sigma \in \Sigma_c^{\perp}$ after waiting t time units starting at configuration (q, x)

Automatic Verification

Real Time Case
Control Synthesis for Timed Systems

For $t \in T$ and $\sigma \in \Sigma$, the configuration (q', x') is defin to be a (t, σ) – successor of the configuration (q, x) if the

Then we define a function $\delta: (Q \times X) \times (T \times \Sigma_c^\perp) \mapsto 2^{Q \times X}$ where $\delta((q, x), (t, e^*))$ stands for all the possible consequence of the controller attempting to issue the command $\sigma \in \Sigma_c^\perp$ after waiting t time units starting at configuration (q, x)

In order to tackle the real time controller synthesis problem we introduce the following definitions:

Note that this covers the case of (q', x') being simply a σ – successor of (q, x) by viewing it as a $(0, \sigma)$ – successor of (q, x).

Definition 15 (Extended Transition Function)

For every $t \in T$ and $\sigma in \Sigma_c$, the set $\delta((q, x), (t, \sigma))$ consists of all the configurations (q', x') such that:

- \triangleright (q', x') is a (t, σ) successor of (q, x)
- (q',x') is a (t,e) successor of (q,x) for some $t' \in [0,t]$

Automatic Verification

-Real Time Case

└─Control Synthesis for Timed Systems

Definition 15 (Extended Transition Function) For every $t \in T$ and σ in Σ_c , the set $\delta((q, x), (t, \sigma))$ consist all the configurations (q', x') such that: • (q', x') is a (t, σ) – successor of (q, x)

This definition covers successor configurations that are obtained in one of two possible ways:

some configurations result from the plant waiting patiently at state q for t time units, and then taking a σ -labeled transition according to the controller recommendation,

the second possibility is of configurations obtained by taking an environment transition at any time $t' \le t$

This is in fact the crucial new feature of real-time games - there are no turns and the adversary need not wait for the player's next move.

Definition 16 (Controllable Predecessors)

The controllable predecessors function $\pi: 2^Q \times 2^X \mapsto 2^Q \times 2^X$ is defined for every $K \subseteq Q \times X$ by

$$\pi(K) = \{(q, x) : \exists t \in T \exists \sigma \in \Sigma_c \ \delta((q, x), (t, \sigma)) \subseteq K\}$$

Automatic Verification
Real Time Case
Control Synthesis for Timed Systems

Definition 16 (Controllable Predecessors)

The controllable predecessors function $\pi : 2^Q \times 2^X \mapsto 2^Q :$ is defined for every $K \subseteq Q \times X$ by $\pi(K) = \{(q, x) : \exists t \in T \exists \sigma \in \Sigma_c \ \delta((q, x), (t, \sigma)) \subseteq K\}$

As in the discrete case, we define a predecessor function that indicates the configurations from which the controller can force the automaton into a given set of configurations

Assume that $Q = \{q_0, \dots, q_m\}$. Clearly, any set of configurations ca be written as $K = \{q_0\} \times P_0 \cup \ldots \cup \{q_m\} \times P_m$ where P_0, \ldots, P_m are subsets of X.

Thus the set K can be uniquely represented by a set tuple $\mathcal{H} = \langle P_0, \dots, P_m \rangle$ and we can view π as a transformation on set tuples.

2025-09-22 A_

Automatic Verification Real Time Case

Control Synthesis for Timed Systems

Assume that $Q = \{q_0, ..., q_m\}$. Clearly, any set of confitions cable written as $K = \{q_0\} \times P_0 \cup ... \cup \{q_m\} \times P_m$ to

Thus the set K can be uniquely represented by a set tuple $\mathcal{H} = \langle P_0, \dots, P_m \rangle$ and we can view π as a transformation on set tuples.

Theorem 2 (Closure of \mathcal{H}_k^* under π)

if
$$\mathcal{H} = \langle P_0, \dots, P_m \rangle$$
 is k-polyhedral so is $\pi(\mathcal{H}) = \langle P_0, \dots, P_m \rangle$

Automatic Verification

Real Time Case
Control Synthesis for Timed Systems

Theorem 2 (Closure of \mathcal{H}_k^* under π) $| \overline{if} \mathcal{H} = \langle P_0, \dots, P_m \rangle \text{ is k-polyhedral so is } \pi(\mathcal{H}) = \langle P_0, \dots, P_m \rangle$

Sketch of Proof

A set tuple \mathcal{H} il calle d k-polyhedral if each component P_0, \ldots, P_m belongs to \mathcal{H}_{ν}^{*} .

Wlog, we assume that for every $q \in Q$, $\sigma in \Sigma_c$ there is at most one $r = \langle q, \sigma, g, f, q' \rangle \in R$. Let $\langle P'_0, \dots, P'_m \rangle = \pi(\langle P_0, \dots, P_m \rangle)$. Then, for each i = 0, ..., m then set P'_i can be expressed as:

$$P_i' = \bigcup_{\langle q_i, \sigma, g, f, q_j \rangle \in R} \{x : \exists t \in T \left(\begin{matrix} x \in I_{q_i} \land \\ x + \mathbf{1}t \in I_{q_i} \land \\ x + \mathbf{1}t \in g \land \\ f(x + \mathbf{1}t) \in P_j \land \ \ (\forall t' \leq t) \\ \bigwedge_{\langle q_i, \sigma, g, f, q_j \rangle \in R} (x + \mathbf{1}t' \in g') \to f(x + \mathbf{1}t') \in P_k \end{matrix} \right) \}$$

◆□▶◆□▶◆■▶ ● 夕久○

Automatic Verification

Real Time Case -Control Synthesis for Timed Systems

one $r = \langle q, \sigma, g, f, q' \rangle \in R$. Let $\langle P_0^r, \dots, P_m^r \rangle = \pi(\langle P_0, \dots, P_m \rangle)$.

$$P_i' = \bigcup_{(q, r, g, \ell, q) \in \mathbb{R}} \{x : \exists t \in T \begin{cases} x \in I_{g, \wedge} \\ x + 1 : \in I_{g, \wedge} \\ x + 1 : \in g, \wedge \\ f(x + 1) \in P_i \wedge (\forall t' \leq t) \\ \bigwedge (x + 1 t' \in g') \rightarrow f(x + 1) \end{cases}$$

It can be verified that every P'_i can be written as a boolean combinations of sets of the form:

$$I_{q_i} \cap \{x : \exists t \in T \ x + \mathbf{1}t \in I_{q_i} \cap g \cap f^{-1}(P_j) \ \forall t' \le t \ x + \mathbf{1}t' \in \overline{g'} \cup f'^{-1}(P_k)\}$$

for some guards g, g' and reset functions f, f', where we use $f^{-1}(P) = \{x : f(x) \in P\}$.

Since timed reachability is distributive over union, i.e.,

$$\{x: \exists t \ x+\mathbf{1}t \in S_1 \cup S_2\} = \{x: \exists t \ x+\mathbf{1}t \in S_1\} \cup \{x: \exists t \ x+\mathbf{1}t \in S_2\}$$

it is sufficient to prove the claim assuming *k*-convex polyhedral sets.

Automatic Verification
—Real Time Case

Control Synthesis for Timed Systems

It can be verified that every P_i^c can be written as a boolean combinations of sets of the form:

 $l_{x} \cap \{x : \exists x \in T x - 11 \in l_{x} \cap x \cap r^{-1}(P_{x})\} \text{ if } x \leq tx + 1t \in \overline{x} \cap r^{-1}(x_{x})\}$ for some guards, g, g' and reset functions f, f', where we use $f^{-1}(F) = \{x : \{x \in F\}\}$. Since timed reachability is distributive over union, i.e., $\{x : \exists x \times 11 \in S_{x} \cup S_{x}\} = \{x : \exists x \times 11 \in S_{x} \cup S_{x}\} \cup \{x : \exists x \times 11 \in S_{x$

The domani of $f^{-1}(P) = \{x : f(x) \in P\}$ is \mathbb{R}^{+d}

So, what remains to show is that for any two k-convex sets S_1 and S_2 , the set $\pi_{t',t}(S_1, S_2)$, denoting all the points in S_1 from which we can reach S_2 without leaving S_1 , and defined as

$$\pi_{t',t}(S_1, S_2) = \{x : \exists t \ x + \mathbf{1}t \in S_2 \land \forall t' \leq t \ x + \mathbf{1}t' \in S_1\}$$

is also convex.

Automatic Verification

Real Time Case -Control Synthesis for Timed Systems which we can reach So without leaving So, and defined as

Theorem 3 (Control Synthesis for Timed systems)

Given a timed automaton T and an acceptance condition

$$\{(F,\Box),(F,\Diamond),(F,\Diamond\Box),(F,\Box\Diamond),(\mathcal{F},\mathcal{R}_n)\}$$

the problem **RT-Synth**(\mathcal{T}, Ω) is solvable

Automatic Verification

Real Time Case
Control Synthesis for Timed Systems

Theorem 3 (Control Synthesis for Timed sy

 $\{(F,\Box),(F,\Diamond),(F,\Diamond\Box),(F,\Box\Diamond),(F,$ the problem RT-Synth (T,Ω) is solvable

Sketch of Proof

We have just shown that $2^Q \times \mathcal{H}_k^*$ is closed under π .

Any of the iterative processes for the fixed point equations (1) - (5) starts with an element of $2^Q \times \mathcal{H}_k^*$.

For example, the iteration for \Diamond starts with $W_0 = Q \times F$.

Each iteration consists of applying Boolean set-theoretic operations and the predecessor operation, which implies that every W_i is also an element of $2^Q \times \mathcal{H}_k^*$ - a finite set.

Thus, by monotonicity, a fixed point is eventually reached.

Automatic Verification Real Time Case Control Synthesis for Timed Systems

Sketch of Proof

We have just shown that $2^0 \times R_1^2$ is closed under s. Any of the iterative processes for the fixed point equations (1)—(5) starts with an element of $2^0 \times R_1^2$. For example, the iteration for c starts with $W_0 - Q \circ F$. Each iteration consists of applying Boolean set theoretic operations and the predecessor egeration, which implies that every W_0 is also an element of $2^0 \times R_1^2 \circ 8$ intin sec.

The strategy is extracted in a similar manner as in the discrete case. When ever a configuration (q,x) is added to W, it is due to one or more pairs of the form $([t_1,t_2],\sigma)$ indicating that within any $t,t_1 < t < t_2$ issuing σ after waiting t will lead to a winning position. Hence by letting $C(q,x) = \bot$ when $t_1 > 0$ and $C(q,x) = \sigma$ when $t_1 = 0$ we obtain a k-polyhedral controller.

Automatic Verification

-Citations

Rajeev Alur.

Timed automata.

In *International Conference on Computer Aided Verification*, pages 8–22. Springer, 1999.

Oded Maler, Amir Pnueli, and Joseph Sifakis.
On the synthesis of discrete controllers for timed systems.

In Ernst W. Mayr and Claude Puech, editors, *STACS 95*, pages 229–242, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.