Homework 4

Hector Santana, Zachary Safir, Mario Pena

Contents

1	DATA EXPLORATION	3
	1.1 Numeric Variable Exploratioon	3
	1.2 Analyzing Catogorical Variables	6
	1.3 Missing Values	
	1.4 Correlation Exploration	11
2	DATA PREPARATION	15
	2.1 Transforming Predictors	15
3	Model Building	21
	3.1 Building Logistic Models	21
	3.2 Building Linear Models	
4	Model Selection	36
	4.1 Binary Model Selecion	36
	4.2 Linear Model Selection	38
	4.3 Making Predictions for the Evaluation Data	46
5	Conclusion	48

In this assignment we will explore, analyze, and build a multiple linear regression and binary logistic model based on auto insurance data. The models will predict the probability that a person will crash their car and then the subsequent insurance cost for the accident.

We are provided with information on a little over 8,000 customers at an auto insurance company. Each record has two response variables. TARGET_FLAG has a response of 1 if the customer was involved in a crash, or 0 if the customer was not involved in a crash.TARGET_AMT has a response of 0 if the customer did not crash their car, or a value greater than 0 otherwise. Additionally, there are 23 predictor variables in the data that could be of use for the model.

Let us take a look at a snippet of the data set:

TARGET_FLAG	TARGET_AM	T KIDSDRIV	AGE	HOMEKIDS	YO.	I INCOME	PARENT1	HOME_VAL	MSTATUS	SEX	EDUCATION	JOB	TRAVTIME	CAR_USE	BLUEBOOK	TIF	CAR_TYPE	RED_CAR	OLDCLAIM	CLM_FREQ REVOR	ED MVR_PTS	CAR_AGE	URBANICITY
0		0 0	60	0	11	\$67,349	No	80	z_No	М	PhD	Professional	14	Private	\$14,230	11	Minivan	yes	\$4,461	2 No	3	18	Highly Urban/ Urban
0		0 0	43	0	11	\$91,449	No	\$257,252	z_No	M	z_High School	z_Blue Collar	22	Commercial	\$14,940	1	Minivan	yes	80	0 No	0	1	Highly Urban/ Urban
0		0 0	35	1	10	\$16,039	No	\$124,191	Yes	z_F	z_High School	Clerical	5	Private	\$4,010	4	z_SUV	no	\$38,690	2 No	3		Highly Urban/ Urban
0		0 0	51	0	1-	NA.	No	\$306,251	Yes	M	<high school<="" td=""><td>z_Blue Collar</td><td>32</td><td>Private</td><td>\$15,440</td><td>7</td><td>Minivan</td><td>yes</td><td>80</td><td>0 No</td><td>0</td><td>6</td><td>Highly Urban/ Urban</td></high>	z_Blue Collar	32	Private	\$15,440	7	Minivan	yes	80	0 No	0	6	Highly Urban/ Urban
0		0 0	50	0	N.	\$114,986	No	\$243,925	Yes	z_F	PhD	Doctor	36	Private	\$18,000	1	z_SUV	no	\$19,217	2 Yes	3	17	Highly Urban/ Urban
1	294	6 0	34	1	13	8125,301	Yes	80	z_No	z_F	Bachelors	z_Blue Collar	46	Commercial	\$17,430	1	Sports Car	no	80	0 No	0	7	Highly Urban/ Urban

Before we begin the data exploration process we will clean our data a bit in order to run summary statistics and plots accurately and effectively. We remove the dollar signs in the data, remove the extra z_ character found on some variables, and convert everything to the correct data format. Some variables, such as number of kids, we decided to make factors as they are not continuous variables.

1 DATA EXPLORATION

1.1 Numeric Variable Exploratioon

Below we have created a table with the summary statistics for our numeric predictor variables. We will explore the categorical variables later.

According to our summary statistics, we note that quite a few of our numeric variables appear skewed.

	vars	n	mean	sd	median	trimmed	mad	$_{ m min}$	max	range	skew	kurtosis	se
TARGET_AMT	1	8161	1.504325e+03	4.704027e+03	0	5.937121e+02	0.0000	0	107586.1	107586.1	8.7063034	112.2884386	52.0712628
AGE	2	8155	4.479031e+01	8.627589e+00	45	4.483065e+01	8.8956	16	81.0	65.0	-0.0289889	-0.0617020	0.0955383
YOJ	3	7707	1.049929e+01	4.092474e+00	11	1.107119e+01	2.9652	0	23.0	23.0	-1.2029676	1.1773410	0.0466169
INCOME	4	7716	6.189809e+04	4.757268e+04	54028	$5.684098e{+04}$	41792.2701	0	367030.0	367030.0	1.1863166	2.1290163	541.5786485
$HOME_VAL$	5	7697	$1.548673e{+05}$	$1.291238e{+05}$	161160	$1.440321\mathrm{e}{+05}$	147867.1110	0	885282.0	885282.0	0.4885950	-0.0160838	1471.7887185
TRAVTIME	6	8161	3.348572e + 01	1.590833e+01	33	$3.299541e{+01}$	16.3086	5	142.0	137.0	0.4468174	0.6643331	0.1760974
BLUEBOOK	7	8161	1.570990e+04	8.419734e+03	14440	1.503689e + 04	8450.8200	1500	69740.0	68240.0	0.7942141	0.7913559	93.2023121
TIF	8	8161	5.351305e+00	4.146635e+00	4	4.840251e+00	4.4478	1	25.0	24.0	0.8908120	0.4224940	0.0459012
OLDCLAIM	9	8161	4.037076e+03	8.777139e+03	0	1.719291e+03	0.0000	0	57037.0	57037.0	3.1190400	9.8606583	97.1586099
MVR_PTS	10	8161	$1.695503\mathrm{e}{+00}$	$2.147112\mathrm{e}{+00}$	1	$1.313831\mathrm{e}{+00}$	1.4826	0	13.0	13.0	1.3478403	1.3754900	0.0237675
CAR_AGE	11	7651	$8.328323\mathrm{e}{+00}$	5.700742e+00	8	7.963241e+00	7.4130	-3	28.0	31.0	0.2819531	-0.7489756	0.0651737

The insight gained from the statistical analysis permitted us to make note of further data of interest that needed to be analyzed in depth prior to the creation of our models. To confirm these irregularities we constructed visual representations consisting of density plots, histograms, and box plots.

We can observe from the histograms below that our second response variable "TARGET_AMT" exhibits extreme right skewness.

Page 2

We can observe above that perhaps the only distribution that seems close to normal is that of the variable "AGE", as it is also evident in the box plot against the response variable "TARGET_FLAG". The other variable that could potentially be close to normality is "YOJ", but it seems to have a bi-modal distribution

because of the large number of people with years on the job around 0 to 1.

We were also given some theoretical effects (claims) about some of the variables in the data in regards to how they influence the response variable "TARGET_FLAG" and the probability of collision.

1.2 Analyzing Catogorical Variables

So far looking at the box plots, we can see that some of the theoretical effects tend to be more true than others, however, we are unable to see the effects of our discrete variables against the response variable "TARGET_FLAG". Below we have constructed some tables to get a sense of whether the claims about these variables tend to be true or not.

PARENT1 - Single Parent. Claim: This has an unknown effect

At a glance, we can see that those customers who are single parents have a very high proportion for being in a car crash. However, it is hard to tell if there is a correlation given the majority of the data are from customers that are "Not" single parents.

```
TARGET_FLAG

PARENT1 0 1 Sum

No 5407 1677 7084

Yes 601 476 1077

Sum 6008 2153 8161

TARGET_FLAG

PARENT1 0 1

No 0.76 0.24

Yes 0.56 0.44
```

MSTATUS - Marital Status. Claim: In theory, married people drive more safely.

There seems to be a balanced split between married and not married customers in our data. We can also observe that those who were involved in a car crash are evenly split between the married and not married customers. However, the proportion of those who did not crash their car tends to be higher in the married category.

```
TARGET_FLAG

MSTATUS 0 1 Sum
    No 2167 1100 3267
    Yes 3841 1053 4894
    Sum 6008 2153 8161
    TARGET_FLAG

MSTATUS 0 1
    No 0.66 0.34
    Yes 0.78 0.22
```

SEX - Gender. Claim: Urban legend says that women have less crashes than men. Is that true?.

There seems to be a balanced split between male and female customers in our data. Below we can also observe that the data is evenly split between males and females in regards to crashing or not crashing their cars, suggesting the claim may be flawed.

```
TARGET_FLAG

SEX 0 1 Sum
F 3183 1192 4375
M 2825 961 3786
Sum 6008 2153 8161
```

```
TARGET_FLAG
SEX 0 1
F 0.73 0.27
M 0.75 0.25
```

EDUCATION - Max Education Level. Claim: Unknown effect, but in theory more educated people tend to drive more safely.

Given that most of the data come from those customers with high school, bachelors and masters education, the proportions also seem to correspond among those who crashed and didn't crash their car. However, there seems to be a pattern for higher proportions of car crashes within the categories with lower education.

	TARGE?	Γ_FLAC	3
EDUCATION	0	1	Sum
<high school<="" td=""><td>818</td><td>385</td><td>1203</td></high>	818	385	1203
Bachelors	1719	523	2242
High School	1537	793	2330
Masters	1331	327	1658
PhD	603	125	728
Sum	6008	2153	8161
•	TARGE:	Γ_FLAC	3
EDUCATION	0	1	
<high school<="" td=""><td>0.68</td><td>0.32</td><td></td></high>	0.68	0.32	
Bachelors	0.77	0.23	
High School	0.66	0.34	
Masters	0.80	0.20	
PhD	0.83	0 17	
	0.00	0.11	

JOB - Job Category. Claim: In theory, white collar jobs tend to be safer.

We can see in the table below that blue collar jobs, students and home makers have the highest proportion of customers who have crashed their cars within their category, thus the claim may have some truth to it.

	TARGET	Γ_FLAC	3
JOB	0	1	Sum
Blue Collar	1191	634	1825
Clerical	900	371	1271
Doctor	217	29	246
Home Maker	461	180	641
Lawyer	682	153	835
Manager	851	137	988
Professional	870	247	1117
Student	446	266	712
Sum	5618	2017	7635
	TARGET	r EI A	,
	I III COL		J .
JOB	0	1	,
JOB Blue Collar	0	_	ı
	0 0.65	_ 1	,
Blue Collar	0 0.65 0.71	1 0.35	ı
Blue Collar Clerical	0 0.65 0.71 0.88	1 0.35 0.29	1
Blue Collar Clerical Doctor	0 0.65 0.71 0.88 0.72	1 0.35 0.29 0.12	1
Blue Collar Clerical Doctor Home Maker	0 0.65 0.71 0.88 0.72 0.82	1 0.35 0.29 0.12 0.28	J
Blue Collar Clerical Doctor Home Maker Lawyer	0 0.65 0.71 0.88 0.72 0.82	1 0.35 0.29 0.12 0.28 0.18 0.14	<i>x</i>
Blue Collar Clerical Doctor Home Maker Lawyer Manager	0 0.65 0.71 0.88 0.72 0.82 0.86 0.78	1 0.35 0.29 0.12 0.28 0.18 0.14	3

CAR_USE - Vehicle Use. Claim: Commercial vehicles are driven more, so might increase probability of collision.

About 63% of the car usage is private, but we can see that those customers who have crashed their car has a higher percentage in the category for commercial usage, suggesting that the claim is true about the increased probability of collision for commercial vehicles.

```
TARGET FLAG
CAR_USE
                0
                      1 Sum
  Commercial 1982 1047 3029
             4026 1106 5132
  Private
  Sum
             6008 2153 8161
            TARGET FLAG
CAR_USE
                0
                      1
  Commercial 0.65 0.35
             0.78 0.22
  Private
```

CAR_TYPE - Type of Car. Claim: Unknown effect on probability of collision, but probably affect the payout if there is a crash.

We can see that even though sports cars is about 11% of the data we have, they have the highest proportion of car crashes within their category. We can also see that SUVs and Pickups are among the categories with the highest proportions of car crashes, while Minivans have the lowest proportion of car crashes in its category.

7	TARGET	Γ_FLAC	3
CAR_TYPE	0	1	Sum
Minivan	1796	349	2145
Panel Truck	498	178	676
Pickup	946	443	1389
Sports Car	603	304	907
SUV	1616	678	2294
Van	549	201	750
Sum	6008	2153	8161
7	[ARGE]	Γ_FLAC	3
CAR_TYPE	0	1	
Minivan	0.84	0.16	
Panel Truck	0.74	0.26	
Pickup	0.68	0.32	
Sports Car	0.66	0.34	
SUV	0.70	0.30	
Van	0.73	0.27	

RED_CAR - A Red Car. Claim: Urban legend says that red cars (especially red sports cars) are more risky. Is that true?.

We can observe below that roughly 25% of cars in each category were involved in a car crash, and this may disprove the claim that red cars are more risky.

```
TARGET_FLAG

RED_CAR 0 1 Sum

no 4246 1537 5783

yes 1762 616 2378

Sum 6008 2153 8161

TARGET_FLAG

RED_CAR 0 1

no 0.73 0.27
```

```
yes 0.74 0.26
```

REVOKED - License Revoked (Past 7 Years). Claim: If your license was revoked in the past 7 years, you probably are a more risky driver.

Although only 12% of drivers in the training data have a former license suspension on record, their proportion of being involved in a car crash is twice as high as those who didn't, suggesting the claim may be true.

TARGET_FLAG REVOKED 0 1 Sum No 5451 1710 7161 Yes 557 443 1000 Sum 6008 2153 8161 TARGET_FLAG REVOKED 0 1 No 0.76 0.24 Yes 0.56 0.44

URBANICITY - Home/Work Area. Claim: Unknown

can see that the category highly urban has a higher proportion of car crashes, but this may be due to the fact that we have a lot more data from this category, roughly 80% comes from it.

	7	TARGE:	Γ_FLAC	3
URBANICITY		0	1	Sum
Highly Rural/	Rural	1554	115	1669
Highly Urban/	Urban	4454	2038	6492
Sum		6008	2153	8161
	7	TARGE:	Γ_FLAC	3
URBANICITY		0	1	
Highly Rural/	Rural	0.93	0.07	
Highly Urban/	Urban	0.69	0.31	

1.3 Missing Values

Shown in our graph below, there are a few columns (variables) that have missing values. These include "AGE", "INCOME", "YOJ", "HOME_VAL", and "CAR_AGE".

1.4 Correlation Exploration

To gain an understanding of relevant correlations we construct a function that filters our variables for correlations of interest. The result of that function can be seen below. Even though our data has a lot of variables with multiple levels, it seems that there aren't many strong correlations. Setting the minimum to .4, and we only have 7 of the many possible combination of variable correlations.

We then apply a filter to analyze correlations where collisions occurred.

	Var1	Var2	Freq
461	SEX	RED_CAR	0.6678536
545	${\tt OLDCLAIM}$	REVOKED	0.5438075
233	PARENT1	MSTATUS	-0.5212605
103	KIDSDRIV	HOMEKIDS	0.4769803
180	HOMEKIDS	PARENT1	0.4673692
520	OLDCLAIM	CLM_FREQ	0.4067540

We then analyze the variance inflation factors for two saturated models, one linear and on logistic. We do not find any concerning multicollinearity issues.

Table 1: Linear Model VIF Scores

	GVIF	Df	$GVIF^{(1/(2*Df))}$
KIDSDRIV	1.831636	3	1.106131
AGE	1.701204	1	1.304302
HOMEKIDS	4.310012	5	1.157305
YOJ	1.805558	1	1.343711
INCOME	3.287841	1	1.813241
PARENT1	2.931843	1	1.712262
HOME_VAL	2.198125	1	1.482607
MSTATUS	2.657837	1	1.630287
SEX	3.791626	1	1.947210
EDUCATION	11.601746	4	1.358518
JOB	29.433973	7	1.273262
TRAVTIME	1.046735	1	1.023101
CAR_USE	2.470080	1	1.571649
BLUEBOOK	2.160366	1	1.469818
TIF	1.031218	1	1.015489
CAR_TYPE	6.609987	5	1.207870
RED_CAR	1.808810	1	1.344920
OLDCLAIM	2.301839	1	1.517181
CLM_FREQ	2.010322	5	1.072325
REVOKED	1.716373	1	1.310104
MVR_PTS	1.229429	1	1.108796
CAR_AGE	2.082372	1	1.443043
URBANICITY	1.058545	1	1.028856
	•	•	•

Table 2: Logistic Model VIF Scores

	GVIF	Df	$GVIF^(1/(2*Df))$
KIDSDRIV	1.611903	4	1.061494
AGE	1.608348	1	1.268206
HOMEKIDS	3.504831	5	1.133618
YOJ	1.512829	1	1.229971
INCOME	2.816302	1	1.678184
PARENT1	2.403493	1	1.550320
HOME_VAL	2.073012	1	1.439796
MSTATUS	2.362380	1	1.537004
SEX	3.554179	1	1.885253
EDUCATION	11.012664	4	1.349698
JOB	22.268379	7	1.248141
TRAVTIME	1.042313	1	1.020937
CAR_USE	2.351415	1	1.533432
BLUEBOOK	1.952979	1	1.397490
TIF	1.014362	1	1.007156
CAR_TYPE	5.433789	5	1.184432
RED_CAR	1.842568	1	1.357412
OLDCLAIM	1.920782	1	1.385923
CLM_FREQ	1.925563	5	1.067716
REVOKED	1.377369	1	1.173614
MVR_PTS	1.262024	1	1.123398
CAR_AGE	2.073252	1	1.439879
URBANICITY	1.151610	1	1.073131

2 DATA PREPARATION

We seem to have an error in one of the values for "CAR_AGE", which is -3. As we know this must be a mistake, we will turn it into a missing value.

Since the following variables with missing data ("INCOME", "YOJ", "HOME_VAL", and "CAR_AGE") are showing skewness in their distribution, we have decided to use the median as the replacement of the missing values. This will allow us to avoid any bias introduced to the mean due to the skewness itself.

We then constructed our training sets for modeling. The linear model will only be trained on the data where an accident has occurred. We chose this approach as we do not want a model that will predict that it is possible to have no insurance cost after an accident. The logistic model will contain all the variable, with the exception of the TARGET_AMT.

2.1 Transforming Predictors

We will next take a look at some of the variables and see what transformations may be used.

INCOME

Income is a right skewed variable with a significant number zeroes. We will apply the square root transformation suggested by the box-cox function to the original variable to reduce the overall skewness.

YOJ

Years on the job seems to have a bimodal distribution with a large number of customers with 0-1 years. We have applied the suggested transformation to the variable to bring it closer to normality.

${\bf HOME_VAL}$

Home values are also moderately right skewed with a significant number of zeroes. We have applied the suggested transformation to this variable to reduce the overall skewness but as you can see below, it does not help much because of the significant number of 0 values in our data.

CAR_AGE

The age of the cars follow a bimodal distribution because of the significant number of cars that are close to 0 or 1 year of age. We have applied the suggested transformation, but again as we can see below, it has not helped much.

BLUEBOOK

The blue book variable is moderately right skewed. We'll apply the suggested transformation by the box-cox function.

OLDCLAIM

Old claim is has an extremely right skewed distribution. We'll apply a log transformation to reduce the overall skewness.

We then construct a training data set inclusive of our desired transformations. We used the 'dplyr' libraries mutate and across functionality to quickly and efficiently create a variety of transformations.

log(OLDCLAIM + 1)

We can now compare the skewness of the various "TARGET_AMT" variables. It appears that the log and Standard Box-Cox transformation have the least skewing.

Table 3: Skewness Values for Target Amt Variable

Transformation	Skewness
Original	5.6346576
Square Root	2.7630888
Log	-0.0118216
Box Cox Standard	0.0017396
Alternate Box Cox	-0.9597139

3 Model Building

3.1 Building Logistic Models

We begin the model building process by creating a partition of our data to train our models. Doing so allows us to test the accuracy and performance of our constructed models.

For the first logistic model, we construct it using the untransformed data.

Call:

```
glm(formula = TARGET_FLAG ~ ., family = binomial, data = glm_additional_train)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-2.5456 -0.7151 -0.3849 0.6209 3.1662
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                             -2.539e+00 3.218e-01 -7.890 3.02e-15 ***
KIDSDRIV1
                              6.915e-01 1.281e-01
                                                    5.400 6.66e-08 ***
                                                     4.121 3.78e-05 ***
KIDSDRIV2
                              7.456e-01 1.810e-01
KIDSDRIV3
                              1.184e+00 3.591e-01
                                                     3.296 0.000982 ***
KIDSDRIV4
                              1.421e+01 2.294e+02
                                                     0.062 0.950591
                             -2.194e-03 4.696e-03 -0.467 0.640412
AGE
HOMEKIDS1
                              2.790e-01 1.332e-01
                                                     2.094 0.036287 *
                              1.498e-01 1.330e-01
                                                    1.127 0.259905
HOMEKIDS2
HOMEKIDS3
                              1.762e-01 1.534e-01
                                                    1.148 0.250827
                              1.944e-01 2.384e-01
                                                     0.815 0.414864
HOMEKIDS4
HOMEKIDS5
                             -5.629e-02
                                         7.607e-01 -0.074 0.941012
YOJ
                             -3.929e-03 9.633e-03 -0.408 0.683364
                             -3.657e-06 1.223e-06 -2.989 0.002797 **
INCOME
PARENT1Yes
                              2.099e-01 1.361e-01
                                                    1.542 0.122986
                             -1.174e-06 3.844e-07 -3.054 0.002260 **
HOME VAL
MSTATUSYes
                             -5.921e-01 9.731e-02 -6.085 1.16e-09 ***
SEXM
                              7.166e-02 1.248e-01
                                                   0.574 0.565802
                                        1.297e-01 -2.160 0.030772 *
EDUCATIONBachelors
                             -2.802e-01
EDUCATIONHigh School
                              6.227e-02 1.069e-01
                                                     0.582 0.560359
EDUCATIONMasters
                             -2.391e-01 2.021e-01 -1.183 0.236740
EDUCATIONPhD
                             -2.258e-01 2.474e-01 -0.913 0.361299
JOBClerical
                              4.973e-02
                                        1.202e-01
                                                     0.414 0.679195
JOBDoctor
                             -7.479e-01 3.390e-01 -2.206 0.027372 *
JOBHome Maker
                             -1.136e-01 1.717e-01 -0.662 0.508285
JOBLawyer
                             -1.618e-01 2.117e-01 -0.764 0.444682
JOBManager
                             -8.847e-01
                                        1.570e-01 -5.636 1.74e-08 ***
JOBProfessional
                             -1.616e-01 1.331e-01 -1.214 0.224736
JOBStudent
                             -1.496e-01 1.453e-01 -1.029 0.303383
                             -2.490e-01 2.099e-01 -1.186 0.235634
JOBUnknown
                              1.499e-02 2.115e-03
                                                    7.087 1.37e-12 ***
TRAVTIME
                             -7.570e-01 1.039e-01 -7.286 3.19e-13 ***
CAR USEPrivate
BLUEBOOK
                             -2.696e-05 5.939e-06 -4.539 5.65e-06 ***
TIF
                             -5.472e-02 8.309e-03 -6.586 4.52e-11 ***
CAR_TYPEPanel Truck
                              5.768e-01 1.813e-01
                                                     3.182 0.001464 **
CAR_TYPEPickup
                                                     4.527 5.98e-06 ***
                              5.113e-01 1.130e-01
CAR_TYPESports Car
                              9.765e-01 1.449e-01
                                                     6.740 1.58e-11 ***
CAR_TYPESUV
                              6.959e-01 1.238e-01
                                                     5.619 1.92e-08 ***
```

```
CAR_TYPEVan
                             5.135e-01 1.454e-01 3.531 0.000414 ***
                            -1.967e-02 9.717e-02 -0.202 0.839592
RED_CARyes
                            -1.943e-05 4.687e-06 -4.146 3.38e-05 ***
OLDCLAIM
CLM_FREQ1
                            5.715e-01 1.112e-01 5.137 2.79e-07 ***
                             5.878e-01 1.057e-01 5.561 2.67e-08 ***
CLM_FREQ2
                             5.848e-01 1.193e-01 4.901 9.56e-07 ***
CLM FREQ3
CLM FREQ4
                             7.676e-01 1.947e-01 3.942 8.07e-05 ***
                             1.063e+00 5.518e-01 1.926 0.054073 .
CLM_FREQ5
REVOKEDYes
                             1.017e+00 1.040e-01 9.779 < 2e-16 ***
MVR_PTS
                             1.014e-01 1.571e-02 6.455 1.08e-10 ***
CAR_AGE
                            -1.728e-03 8.490e-03 -0.204 0.838716
URBANICITYHighly Urban/ Urban 2.347e+00 1.264e-01 18.573 < 2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7536.3 on 6529 degrees of freedom Residual deviance: 5777.0 on 6481 degrees of freedom

AIC: 5875

Number of Fisher Scoring iterations: 11

We then use the "stepAIC" function from the MASS library to find the best model for our data.

Call:

```
glm(formula = TARGET_FLAG ~ KIDSDRIV + INCOME + PARENT1 + HOME_VAL +
    MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE + BLUEBOOK +
    TIF + CAR_TYPE + OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS +
    URBANICITY, family = binomial, data = glm_additional_train)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.5423 -0.7164 -0.3878 0.6215 3.1415

Coefficients:

	Estimate	Std. Error	${\tt z}$ value	Pr(> z)	
(Intercept)	-2.614e+00	2.235e-01	-11.694	< 2e-16	***
KIDSDRIV1	7.702e-01				
KIDSDRIV2	7.960e-01			2.07e-06	***
KIDSDRIV3	1.247e+00	3.463e-01	3.602	0.000316	***
KIDSDRIV4	1.395e+01	2.294e+02	0.061	0.951507	
INCOME	-3.610e-06	1.216e-06	-2.968	0.002997	**
PARENT1Yes	3.951e-01	1.069e-01	3.695	0.000220	***
HOME_VAL	-1.232e-06	3.832e-07	-3.216	0.001301	**
MSTATUSYes	-5.212e-01	8.950e-02	-5.823	5.77e-09	***
EDUCATIONBachelors	-2.923e-01	1.221e-01	-2.393	0.016691	*
EDUCATIONHigh School	6.305e-02	1.065e-01	0.592	0.553753	
EDUCATIONMasters	-2.683e-01	1.820e-01	-1.474	0.140422	
EDUCATIONPhD	-2.647e-01	2.309e-01	-1.146	0.251722	
JOBClerical	5.825e-02	1.199e-01	0.486	0.627194	
JOBDoctor	-7.590e-01	3.384e-01	-2.243	0.024918	*
JOBHome Maker	-1.153e-01	1.623e-01	-0.710	0.477681	
JOBLawyer	-1.742e-01	2.111e-01	-0.825	0.409286	
JOBManager	-8.995e-01	1.565e-01	-5.749	8.98e-09	***
JOBProfessional	-1.664e-01	1.328e-01	-1.254	0.209993	
JOBStudent	-1.132e-01	1.386e-01	-0.817	0.413995	
JOBUnknown	-2.441e-01	2.096e-01	-1.164	0.244275	
TRAVTIME	1.481e-02	2.112e-03	7.014	2.32e-12	***
CAR_USEPrivate	-7.514e-01	1.036e-01	-7.250	4.17e-13	***
BLUEBOOK	-2.902e-05	5.321e-06	-5.454	4.92e-08	***
TIF	-5.441e-02	8.286e-03	-6.567	5.15e-11	***
CAR_TYPEPanel Truck	6.234e-01			0.000218	***
CAR_TYPEPickup	5.099e-01	1.128e-01		6.12e-06	***
CAR_TYPESports Car	9.375e-01	1.209e-01		9.06e-15	
CAR_TYPESUV	6.619e-01			7.12e-12	***
CAR_TYPEVan	5.337e-01			0.000144	***
OLDCLAIM	-1.932e-05	4.681e-06	-4.128	3.67e-05	***
CLM_FREQ1	5.707e-01			2.75e-07	***
CLM_FREQ2	5.861e-01	1.055e-01	5.557	2.75e-08	***
CLM_FREQ3	5.803e-01	1.192e-01		1.13e-06	
CLM_FREQ4	7.539e-01			0.000104	***
CLM_FREQ5	1.076e+00			0.050979	
REVOKEDYes	1.018e+00	1.038e-01	9.805	< 2e-16	***
MVR_PTS	1.025e-01		6.544	5.99e-11	***
URBANICITYHighly Urban/ Urb	oan 2.351e+00	1.265e-01	18.593	< 2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7536.3 on 6529 degrees of freedom Residual deviance: 5783.8 on 6491 degrees of freedom

AIC: 5861.8

Number of Fisher Scoring iterations: 11

For our second model, we construct it using the transformed variables we created.

Call:

```
glm(formula = TARGET_FLAG ~ ., family = binomial(link = "logit"),
    data = glm_additional_train_tran)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.7462 -0.6985 -0.3759 0.5564 2.9832

Coefficients:

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-6.442e+04	5.713e+04		0.25947	
KIDSDRIV1	6.844e-01	1.359e-01	5.035	4.78e-07	***
KIDSDRIV2	9.799e-01	1.908e-01	5.136	2.80e-07	***
KIDSDRIV3	1.122e+00	3.439e-01	3.263	0.00110	**
KIDSDRIV4	2.820e+00	1.481e+00	1.904	0.05688	
AGE	1.575e+05	8.164e+04	1.929	0.05374	
HOMEKIDS1	2.349e-02	1.418e-01	0.166	0.86842	
HOMEKIDS2	-6.693e-02	1.396e-01	-0.480	0.63153	
HOMEKIDS3	-1.133e-01	1.634e-01	-0.693	0.48833	
HOMEKIDS4	-2.533e-01	2.572e-01	-0.985	0.32467	
HOMEKIDS5	3.938e-01	7.680e-01	0.513	0.60809	
YOJ	1.203e+00	3.375e+00	0.356	0.72147	
INCOME	-8.159e-06	2.667e-05	-0.306	0.75962	
PARENT1Yes	2.404e-01	1.392e-01	1.728	0.08400	
HOME_VAL	4.497e-04	2.295e-04	1.960	0.05003	
MSTATUSYes	-5.996e-01	1.035e-01	-5.793	6.91e-09	***
SEXM	2.703e-02	1.293e-01	0.209	0.83444	
EDUCATIONBachelors	-3.761e-01	1.398e-01	-2.691	0.00712	**
EDUCATIONHigh School	1.195e-03	1.125e-01	0.011	0.99152	
EDUCATIONMasters	-2.566e-01	2.100e-01	-1.222	0.22184	
EDUCATIONPhD	-1.919e-01	2.467e-01	-0.778	0.43673	
JOBClerical	1.031e-02	1.254e-01	0.082	0.93450	
JOBDoctor	-9.549e-01	3.390e-01	-2.817	0.00484	**
JOBHome Maker	-1.810e-01	2.054e-01	-0.881	0.37810	
JOBLawyer	-2.880e-01	2.162e-01	-1.332	0.18280	
JOBManager	-8.823e-01	1.594e-01	-5.533	3.14e-08	***
JOBProfessional	-1.455e-01	1.361e-01	-1.069	0.28510	
JOBStudent	-2.565e-01	1.928e-01	-1.331	0.18335	
JOBUnknown	-4.194e-01	2.118e-01	-1.980	0.04775	*
TRAVTIME	-8.698e+00	4.686e+01	-0.186	0.85277	
CAR_USEPrivate	-7.313e-01	1.047e-01	-6.983	2.88e-12	***
BLUEBOOK	7.037e-03	3.848e-03	1.829	0.06745	
TIF	-8.165e+00	9.622e+00	-0.849	0.39613	
CAR_TYPEPanel Truck	6.331e-01			0.00136	
CAR_TYPEPickup	6.103e-01			4.17e-07	***
CAR_TYPESports Car	9.605e-01	1.527e-01	6.291	3.16e-10	***
CAR_TYPESUV	7.892e-01	1.298e-01	6.080	1.20e-09	***
CAR_TYPEVan	7.992e-01	1.455e-01	5.495	3.91e-08	***
RED_CARyes	-2.720e-03	9.907e-02	-0.027	0.97810	
OLDCLAIM	8.876e-04	7.020e-04	1.265	0.20605	
CLM_FREQ1	-2.019e+04	1.675e+04	-1.205	0.22804	
CLM_FREQ2	-2.019e+04	1.675e+04	-1.205	0.22804	

```
CLM FREQ3
                            -2.019e+04 1.675e+04 -1.205 0.22804
                            -2.019e+04 1.675e+04 -1.205 0.22805
CLM FREQ4
CLM FREQ5
                                                          0.22806
                            -2.019e+04 1.675e+04 -1.205
REVOKEDYes
                             1.002e+00 1.088e-01
                                                   9.207
                                                          < 2e-16 ***
MVR PTS
                             5.833e+00 5.315e+00
                                                   1.097
                                                          0.27249
CAR AGE
                             5.893e+00 1.096e+01
                                                   0.538 0.59072
URBANICITYHighly Urban/ Urban 2.400e+00 1.292e-01 18.574 < 2e-16 ***
AGE lam one
                            -3.808e+04 1.971e+04 -1.932
                                                          0.05339 .
AGE_lam_two
                            -1.209e+05
                                        6.275e+04 -1.928
                                                          0.05391 .
AGE_sqrt
                             1.333e+04 7.054e+03
                                                  1.890
                                                          0.05877 .
AGE_log
                            -4.472e+03 2.459e+03 -1.818
                                                          0.06905 .
                            -2.664e-01 9.308e-01 -0.286
YOJ_lam_one
                                                          0.77468
YOJ_lam_two
                             1.160e-01 3.574e-01
                                                   0.325
                                                          0.74547
                            -4.924e+00 8.285e+00 -0.594
YOJ_sqrt
                                                          0.55231
                                                   0.375
                                                          0.70803
YOJ_log
                             4.647e+00 1.241e+01
INCOME_lam_one
                            -6.700e-01 1.302e+00 -0.515
                                                          0.60673
INCOME_lam_two
                             6.837e-01 1.101e+00
                                                   0.621
                                                          0.53467
INCOME sqrt
                             2.242e-01 4.702e-01
                                                   0.477
                                                          0.63348
                            -1.518e+00 2.101e+00 -0.722
INCOME_log
                                                          0.47007
HOME VAL lam one
                            -9.276e+01 5.322e+01 -1.743
                                                          0.08135 .
HOME_VAL_lam_two
                            -3.144e+00 1.720e+00 -1.828
                                                          0.06761 .
                            1.213e+01 6.684e+00 1.814
                                                          0.06964 .
HOME VAL sqrt
                            3.595e+01 2.116e+01 1.699
                                                          0.08936 .
HOME_VAL_log
                                                   0.130
TRAVTIME lam one
                             3.094e+02 2.372e+03
                                                          0.89622
TRAVTIME lam two
                             1.261e+03 1.320e+04
                                                   0.095
                                                          0.92393
TRAVTIME_sqrt
                            -2.840e+03 2.777e+04 -0.102
                                                          0.91854
TRAVTIME_log
                                                   0.002
                                                          0.99831
                             1.938e+00 9.147e+02
BLUEBOOK_lam_one
                             2.056e+02 1.116e+02
                                                  1.842
                                                          0.06551 .
                            -2.085e+02 1.131e+02 -1.843
BLUEBOOK_lam_two
                                                          0.06529 .
BLUEBOOK_sqrt
                            -1.139e+02 6.184e+01 -1.841
                                                          0.06559 .
BLUEBOOK_log
                             3.577e+02 1.944e+02
                                                   1.840
                                                          0.06575 .
TIF_lam_one
                            -5.032e+03 6.434e+03 -0.782
                                                          0.43414
TIF_lam_two
                            -6.982e+01 9.626e+01 -0.725
                                                          0.46824
TIF_sqrt
                             2.336e+02 2.858e+02 0.817
                                                          0.41371
TIF log
                             5.563e+02
                                       7.346e+02
                                                   0.757
                                                          0.44887
OLDCLAIM_lam_one
                            -2.887e+03 2.462e+03 -1.173
                                                          0.24097
OLDCLAIM lam two
                            7.171e+02 5.943e+02 1.207
                                                          0.22756
                            -1.131e+00 8.927e-01 -1.266 0.20534
OLDCLAIM_sqrt
                            -1.056e+03 8.790e+02 -1.201
                                                          0.22980
OLDCLAIM log
                            -9.353e+00 3.007e+01 -0.311
MVR_PTS_lam_one
                                                          0.75575
MVR PTS lam two
                             3.457e+00 4.146e+00 0.834
                                                          0.40436
MVR PTS sqrt
                            -5.716e+01 6.384e+01 -0.895
                                                          0.37060
MVR PTS log
                             3.507e+01 5.276e+01
                                                   0.665
                                                          0.50622
                             1.909e+02 3.438e+02
                                                   0.555
CAR_AGE_lam_one
                                                          0.57879
CAR_AGE_lam_two
                            -2.204e+03 4.350e+03 -0.507
                                                          0.61233
                             4.280e+03 8.512e+03
                                                   0.503
CAR_AGE_sqrt
                                                          0.61511
CAR_AGE_log
                            -4.496e+01 1.228e+02 -0.366 0.71420
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7536.3 on 6529 degrees of freedom Residual deviance: 5659.5 on 6441 degrees of freedom

AIC: 5837.5

Number of Fisher Scoring iterations: 9

We then use "stepAIC" again to find the best model, shown below.

Call:

```
glm(formula = TARGET_FLAG ~ KIDSDRIV + AGE + YOJ + INCOME + PARENT1 +
HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
BLUEBOOK + CAR_TYPE + REVOKED + URBANICITY + AGE_lam_one +
AGE_lam_two + AGE_sqrt + YOJ_lam_one + YOJ_lam_two + YOJ_sqrt +
INCOME_lam_two + INCOME_log + HOME_VAL_lam_one + HOME_VAL_lam_two +
HOME_VAL_sqrt + TRAVTIME_lam_one + TRAVTIME_sqrt + BLUEBOOK_lam_one +
BLUEBOOK_lam_two + BLUEBOOK_sqrt + BLUEBOOK_log + TIF_lam_one +
OLDCLAIM_sqrt + OLDCLAIM_log + MVR_PTS_lam_one + MVR_PTS_lam_two +
MVR_PTS_sqrt + MVR_PTS_log, family = binomial(link = "logit"),
data = glm_additional_train_tran)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.6654 -0.6982 -0.3823 0.5746 3.0286

Coefficients:

COEIIICIENUS.					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-8.752e+03			0.012174	*
KIDSDRIV1	8.551e-01	1.221e-01	7.005	2.48e-12	***
KIDSDRIV2	1.108e+00	1.690e-01	6.554	5.62e-11	***
KIDSDRIV3	1.075e+00	3.574e-01	3.008	0.002626	**
KIDSDRIV4	1.388e+00	1.204e+00	1.153	0.248985	
AGE	1.474e+04			0.021084	*
YOJ	2.506e+00	1.544e+00	1.622	0.104703	
INCOME	-9.166e-06	3.916e-06	-2.340	0.019262	*
PARENT1Yes	1.719e-01	1.163e-01	1.478	0.139283	
HOME_VAL	7.157e-05	3.966e-05	1.805	0.071130	
MSTATUSYes	-5.897e-01	9.792e-02	-6.023	1.72e-09	***
EDUCATIONBachelors	-3.320e-01	1.273e-01	-2.609	0.009089	**
EDUCATIONHigh School	3.785e-02	1.097e-01	0.345	0.730122	
EDUCATIONMasters	-3.445e-01	1.876e-01	-1.837	0.066270	
EDUCATIONPhD	-3.228e-01	2.308e-01	-1.399	0.161919	
JOBClerical	2.392e-02	1.230e-01	0.194	0.845802	
JOBDoctor	-8.747e-01	3.318e-01	-2.636	0.008387	**
JOBHome Maker	-4.731e-01	2.061e-01	-2.296	0.021692	*
JOBLawyer	-8.861e-02	2.135e-01	-0.415	0.678154	
JOBManager	-9.280e-01	1.586e-01	-5.850	4.93e-09	***
JOBProfessional	-1.834e-01	1.360e-01	-1.348	0.177552	
JOBStudent	-4.729e-01	1.867e-01	-2.532	0.011337	*
JOBUnknown	-3.156e-01	2.127e-01	-1.484	0.137798	
TRAVTIME	-2.179e-01	1.251e-01	-1.742	0.081544	•
CAR_USEPrivate	-7.065e-01	1.042e-01	-6.782	1.18e-11	***
BLUEBOOK	7.059e-03	3.945e-03	1.789	0.073562	•
CAR_TYPEPanel Truck	6.607e-01	1.791e-01	3.689	0.000225	***
CAR_TYPEPickup	6.431e-01	1.190e-01	5.405	6.46e-08	***
CAR_TYPESports Car	8.785e-01	1.249e-01	7.036	1.99e-12	***
CAR_TYPESUV	7.858e-01	9.913e-02	7.927	2.24e-15	***
CAR_TYPEVan	7.468e-01	1.375e-01	5.432	5.56e-08	***
REVOKEDYes	8.630e-01	1.062e-01	8.123	4.55e-16	***
URBANICITYHighly Urban/ Urban	2.385e+00			< 2e-16	***
AGE_lam_one	-3.671e+03	1.595e+03	-2.301	0.021400	*

```
AGE lam two
                           -1.115e+04 4.829e+03 -2.309 0.020937 *
AGE_sqrt
                            7.811e+02 3.335e+02 2.342 0.019173 *
YOJ lam one
                           -5.759e-01 3.846e-01 -1.498 0.134259
YOJ_lam_two
                           2.201e-01 1.550e-01 1.420 0.155617
YOJ sqrt
                          -2.340e+00 1.359e+00 -1.722 0.085025 .
INCOME lam two
                           2.652e-02 1.879e-02 1.412 0.158030
INCOME log
                          -1.891e-01 1.073e-01 -1.762 0.078144 .
HOME_VAL_lam_one
                          -2.439e+00 1.715e+00 -1.422 0.155136
                     -2.418e-01 1.535e-01 -1.575 0.115321
HOME_VAL_lam_two
HOME_VAL_sqrt
                           8.353e-01 5.391e-01 1.549 0.121297
TRAVTIME_lam_one
                           2.537e+00 1.403e+00 1.808 0.070593 .
                          -3.600e+00 2.047e+00 -1.758 0.078674 .
TRAVTIME_sqrt
BLUEBOOK_lam_one
                           2.112e+02 1.139e+02 1.854 0.063770 .
BLUEBOOK_lam_two
                          -2.171e+02 1.153e+02 -1.884 0.059564 .
BLUEBOOK_sqrt
                          -1.167e+02 6.312e+01 -1.849 0.064442 .
BLUEBOOK_log
                            3.768e+02 1.978e+02
                                                1.904 0.056865 .
TIF_lam_one
                           -2.273e+00 3.366e-01 -6.753 1.45e-11 ***
OLDCLAIM sqrt
                          -6.900e-03 1.476e-03 -4.674 2.95e-06 ***
OLDCLAIM_log
                           1.190e-01 1.835e-02 6.485 8.89e-11 ***
MVR_PTS_lam_one
                          -6.241e+01 1.789e+01 -3.489 0.000485 ***
MVR_PTS_lam_two
                          -1.775e+00 4.877e-01 -3.639 0.000273 ***
MVR_PTS_sqrt
                           1.974e+01 5.091e+00 3.877 0.000106 ***
                           -3.587e+01 9.697e+00 -3.699 0.000217 ***
MVR_PTS_log
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7536.3 on 6529 degrees of freedom Residual deviance: 5706.0 on 6473 degrees of freedom

AIC: 5820

Number of Fisher Scoring iterations: 5

3.2 Building Linear Models

Now that the binary logistic regression model is constructed we can proceed to our linear models. We do the same process as before, partitioning our data and then beginning with a simple linear model with no transformations.

Call:

lm(formula = TARGET_AMT ~ ., data = lm_additional_train)

Residuals:

Min 1Q Median 3Q Max -9355 -3098 -1351 531 77783

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.626e+03	1.730e+03	2.096	0.0362	*
KIDSDRIV1	1.427e+02	6.666e+02	0.214	0.8305	
KIDSDRIV2	-2.934e+02	9.104e+02	-0.322	0.7473	
KIDSDRIV3	-1.064e+03	1.528e+03	-0.696	0.4864	
KIDSDRIV4	-4.490e+03	8.293e+03	-0.541	0.5883	
AGE	1.453e+01	2.322e+01	0.626	0.5317	
HOMEKIDS1	2.351e+02	7.281e+02	0.323	0.7468	
HOMEKIDS2	1.098e+03	7.184e+02	1.528	0.1266	
HOMEKIDS3	6.399e+02		0.780	0.4353	
HOMEKIDS4	4.063e+02	1.245e+03	0.326	0.7441	
HOMEKIDS5	1.661e+03	3.749e+03	0.443	0.6578	
YOJ	4.337e+00	5.210e+01	0.083	0.9337	
INCOME	-9.518e-03	7.128e-03	-1.335	0.1820	
PARENT1Yes	1.252e+02	7.142e+02	0.175	0.8608	
HOME_VAL	1.870e-03	2.157e-03	0.867	0.3860	
MSTATUSYes	-9.174e+02	5.535e+02	-1.657	0.0977	
SEXM	1.691e+03	7.062e+02	2.394	0.0168	*
EDUCATIONBachelors	-3.534e+02	6.837e+02	-0.517	0.6053	
EDUCATIONHigh School	-6.709e+02	5.459e+02	-1.229	0.2192	
EDUCATIONMasters	7.187e+02	1.185e+03	0.607	0.5442	
EDUCATIONPhD	1.689e+03	1.395e+03	1.210	0.2263	
JOBClerical	-6.187e+02	6.241e+02	-0.991	0.3217	
JOBDoctor	-2.012e+03	1.947e+03	-1.033	0.3016	
JOBHome Maker	-5.567e+02	9.210e+02	-0.604	0.5456	
JOBLawyer	1.523e+02	1.279e+03	0.119	0.9052	
JOBManager	-7.509e+02	1.021e+03	-0.736	0.4620	
JOBProfessional	3.876e+02	7.268e+02	0.533	0.5939	
JOBStudent	-3.617e+02	7.468e+02	-0.484	0.6282	
JOBUnknown	6.725e+02	1.247e+03	0.539	0.5896	
TRAVTIME	1.841e+00	1.183e+01	0.156	0.8764	
CAR_USEPrivate	-1.868e+02	5.558e+02		0.7369	
BLUEBOOK	1.303e-01	3.215e-02	4.054	5.27e-05	***
TIF	3.778e+01			0.4010	
CAR_TYPEPanel Truck	-9.169e+02	1.019e+03	-0.900		
CAR_TYPEPickup	-5.699e+01	6.302e+02	-0.090	0.9280	
CAR_TYPESports Car	9.760e+02	7.982e+02	1.223	0.2215	
CAR_TYPESUV	9.225e+02	7.080e+02	1.303	0.1927	
CAR_TYPEVan	-1.515e+03	8.077e+02	-1.876	0.0608	
RED_CARyes	-6.250e+02	5.380e+02	-1.162	0.2455	
OLDCLAIM	2.907e-02	2.575e-02	1.129	0.2591	

```
CLM_FREQ1
                           1.142e+02 5.944e+02 0.192
                                                       0.8477
CLM_FREQ2
                           -2.010e+02 5.577e+02 -0.360 0.7186
CLM FREQ3
                           -3.393e+02 6.257e+02 -0.542 0.5877
CLM_FREQ4
                           -1.956e+02 1.031e+03 -0.190 0.8495
                           -1.714e+02 3.338e+03 -0.051
CLM_FREQ5
                                                       0.9591
REVOKEDYes
                           -1.068e+03 5.598e+02 -1.907
                                                       0.0566 .
MVR PTS
                           5.679e+01 7.523e+01 0.755
                                                       0.4504
                           -7.469e+01 4.724e+01 -1.581
                                                        0.1141
CAR_AGE
URBANICITYHighly Urban/ Urban -2.792e+02 7.829e+02 -0.357 0.7214
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7280 on 1676 degrees of freedom Multiple R-squared: 0.03388, Adjusted R-squared: 0.006208

F-statistic: 1.224 on 48 and 1676 DF, p-value: 0.1415

We then use the "stepAIC" function again to find the best model.

Call:

lm(formula = TARGET_AMT ~ PARENT1 + BLUEBOOK, data = lm_additional_train)

Residuals:

Min 1Q Median 3Q Max 434 79234 -8021 -3021 -1493

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.977e+03 3.646e+02 10.909 < 2e-16 *** PARENT1Yes 7.786e+02 4.190e+02 1.858 0.0633. BLUEBOOK 1.013e-01 2.112e-02 4.796 1.76e-06 *** ___

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7253 on 1722 degrees of freedom Multiple R-squared: 0.01473, Adjusted R-squared: 0.01359 F-statistic: 12.87 on 2 and 1722 DF, p-value: 2.818e-06

In the second model, we use the transformed "TARGET_AMT" variable "TARGET_AMT_lam_one" and the transformed predictors to see if we can find a better fitting model.

Call:

Residuals:

Min 1Q Median 3Q Max -0.0107583 -0.0009220 0.0000684 0.0009867 0.0071792

Coefficients:

COEIIICIENUS.				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.311e+02	2.691e+02	-0.859	0.3905
KIDSDRIV1	6.022e-05	1.843e-04	0.327	0.7439
KIDSDRIV2	-7.969e-05	2.471e-04	-0.323	0.7471
KIDSDRIV3	-6.919e-04	4.072e-04	-1.699	0.0894 .
KIDSDRIV4	-2.148e-03	2.177e-03	-0.986	0.3241
AGE	2.656e-01	1.299e+00	0.204	0.8381
HOMEKIDS1	9.500e-05	1.989e-04	0.478	0.6330
HOMEKIDS2	1.828e-04	1.964e-04	0.931	0.3521
HOMEKIDS3	3.094e-04	2.301e-04	1.344	0.1790
HOMEKIDS4	2.587e-04	3.414e-04	0.758	0.4486
HOMEKIDS5	9.044e-04	1.001e-03	0.903	0.3666
YOJ	-8.295e-03	8.192e-03	-1.013	0.3114
INCOME	1.010e-08	3.519e-08	0.287	0.7741
PARENT1Yes	4.316e-05	1.892e-04	0.228	0.8195
HOME_VAL	-2.814e-07	2.500e-07	-1.126	0.2604
MSTATUSYes	-2.865e-04	1.497e-04	-1.914	0.0558 .
SEXM	1.180e-04	1.895e-04	0.623	0.5335
EDUCATIONBachelors	-1.400e-04	1.912e-04	-0.732	0.4644
EDUCATIONHigh School	-3.113e-05	1.487e-04	-0.209	0.8342
EDUCATIONMasters	4.117e-04	3.257e-04	1.264	0.2064
EDUCATIONPhD	5.928e-04	3.746e-04	1.583	0.1137
JOBClerical	-3.820e-09	1.708e-04	0.000	1.0000
JOBDoctor	1.014e-04	5.194e-04	0.195	0.8453
JOBHome Maker	1.188e-04	2.925e-04	0.406	0.6846
JOBLawyer	7.033e-05	3.401e-04	0.207	0.8362
JOBManager	1.629e-04	2.706e-04	0.602	0.5472
JOBProfessional	1.860e-04	1.915e-04	0.971	0.3315
JOBStudent	4.036e-04	2.614e-04	1.544	0.1228
JOBUnknown	9.464e-05	3.314e-04	0.286	0.7752
TRAVTIME	2.203e-02	6.221e-02	0.354	0.7233
CAR_USEPrivate	-3.199e-05	1.473e-04	-0.217	0.8280
BLUEBOOK	-1.812e-06	4.016e-06	-0.451	0.6518
TIF	1.272e-02	1.155e-02	1.101	0.2709
CAR_TYPEPanel Truck	8.484e-05	2.877e-04	0.295	0.7681
CAR_TYPEPickup	-8.985e-06	1.716e-04	-0.052	0.9583
CAR_TYPESports Car	1.990e-05	2.136e-04	0.093	0.9258
CAR_TYPESUV	5.898e-05	1.903e-04	0.310	0.7566
CAR_TYPEVan	-2.122e-04	2.140e-04	-0.992	0.3215
RED_CARyes	-1.325e-05	1.423e-04	-0.093	0.9258
OLDCLAIM	-1.423e-07	3.075e-07	-0.463	0.6436
CLM_FREQ1	1.409e+02	1.237e+02	1.138	0.2552

```
CLM FREQ2
                              1.409e+02 1.237e+02
                                                    1.138
                                                            0.2552
CLM_FREQ3
                              1.409e+02 1.237e+02
                                                    1.138
                                                            0.2552
CLM FREQ4
                              1.409e+02 1.237e+02
                                                    1.138
                                                            0.2552
                              1.409e+02 1.237e+02
                                                    1.138
                                                            0.2552
CLM_FREQ5
REVOKEDYes
                             -2.083e-04 1.549e-04 -1.345
                                                            0.1788
MVR PTS
                             -7.532e-03 5.450e-03 -1.382
                                                            0.1672
CAR AGE
                              5.063e-03 1.659e-02 0.305
                                                            0.7603
URBANICITYHighly Urban/ Urban 1.086e-04 2.078e-04
                                                    0.523
                                                            0.6012
AGE lam one
                             -3.601e+00 1.821e+01 -0.198
                                                            0.8432
AGE_lam_two
                              1.362e+01 7.102e+01
                                                    0.192
                                                            0.8480
AGE_sqrt
                             -2.545e+01 1.346e+02 -0.189
                                                            0.8501
AGE_log
                              2.023e+00 1.188e+01
                                                    0.170
                                                            0.8648
                              2.809e-03 2.771e-03
                                                   1.014
                                                            0.3108
YOJ_lam_one
YOJ_lam_two
                             -5.004e-04 4.891e-04 -1.023
                                                            0.3064
                             -1.740e-02 1.912e-02 -0.910
YOJ_sqrt
                                                            0.3629
YOJ_log
                              2.755e-02
                                        2.871e-02
                                                    0.960
                                                            0.3373
INCOME_lam_one
                             -6.976e-04 3.585e-03 -0.195
                                                            0.8457
INCOME lam two
                             7.391e-04 2.853e-03
                                                    0.259
                                                            0.7956
INCOME_sqrt
                             6.021e-05 4.892e-04
                                                    0.123
                                                            0.9020
INCOME log
                             -1.481e-03 4.740e-03 -0.312
                                                            0.7547
HOME_VAL_lam_one
                             1.169e+00 8.829e-01
                                                   1.324
                                                            0.1857
                             -9.567e-03 7.577e-03 -1.263
HOME VAL lam two
                                                            0.2069
                                                   1.239
HOME_VAL_sqrt
                             4.207e-03 3.396e-03
                                                            0.2156
                             -1.512e-01 1.127e-01 -1.341
HOME VAL log
                                                            0.1800
TRAVTIME lam one
                            -3.313e-01 1.084e+00 -0.306
                                                            0.7600
TRAVTIME_lam_two
                             4.474e-01 1.607e+00
                                                   0.278
                                                            0.7807
TRAVTIME_sqrt
                             -4.723e-01 2.008e+00 -0.235
                                                            0.8141
TRAVTIME_log
                             -1.843e-02 1.235e-01 -0.149
                                                            0.8814
                            -6.909e-02 1.266e-01 -0.546
BLUEBOOK_lam_one
                                                            0.5853
BLUEBOOK_lam_two
                             5.038e-01 8.625e-01
                                                    0.584
                                                            0.5592
BLUEBOOK_sqrt
                              9.402e-03 1.784e-02
                                                    0.527
                                                            0.5983
BLUEBOOK_log
                             -6.221e-01 1.053e+00 -0.591
                                                            0.5546
TIF_lam_one
                              4.260e+01 3.822e+01
                                                   1.115
                                                            0.2652
TIF_lam_two
                              1.107e-01 9.950e-02
                                                    1.112
                                                            0.2662
TIF_sqrt
                             -3.140e-01 2.834e-01 -1.108
                                                            0.2680
TIF_log
                             2.362e+00 2.120e+00 1.114
                                                            0.2654
OLDCLAIM lam one
                             1.004e+02 8.819e+01
                                                   1.139
                                                            0.2550
OLDCLAIM_lam_two
                             -8.425e+00 7.402e+00 -1.138
                                                            0.2552
                             -4.295e-04 4.315e-04 -0.995
OLDCLAIM_sqrt
                                                            0.3197
OLDCLAIM_log
                             1.729e+00 1.523e+00
                                                   1.135
                                                            0.2564
MVR PTS lam one
                            -2.047e+01 1.345e+01 -1.522
                                                            0.1283
MVR PTS lam two
                            -1.223e-02 8.420e-03 -1.453
                                                            0.1464
MVR_PTS_sqrt
                             1.145e-01 7.881e-02
                                                   1.453
                                                            0.1463
                            -5.960e-01 3.912e-01 -1.524
MVR_PTS_log
                                                            0.1278
CAR_AGE_lam_one
                             1.571e-01 5.470e-01
                                                    0.287
                                                            0.7740
                                                    0.301
CAR_AGE_lam_two
                             6.119e-01
                                        2.033e+00
                                                            0.7635
CAR_AGE_sqrt
                             -1.254e+00 4.180e+00 -0.300
                                                            0.7641
CAR_AGE_log
                             -6.810e-02 2.308e-01 -0.295
                                                            0.7680
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001895 on 1636 degrees of freedom Multiple R-squared: 0.05451, Adjusted R-squared: 0.003658 F-statistic: 1.072 on 88 and 1636 DF, p-value: 0.3087

Performing "stepAIC" we get this for our final linear model.

Call:

```
lm(formula = TARGET_AMT_lam_one ~ MSTATUS + EDUCATION + TRAVTIME +
   REVOKED + AGE_lam_two + AGE_sqrt + HOME_VAL_lam_one + HOME_VAL_lam_two +
   HOME_VAL_sqrt + HOME_VAL_log + TRAVTIME_lam_one + TRAVTIME_lam_two +
   TRAVTIME_sqrt + BLUEBOOK_lam_one + BLUEBOOK_lam_two + OLDCLAIM_lam_one +
   OLDCLAIM_log + MVR_PTS_sqrt, data = lm_additional_train_trans_lam)
```

Residuals:

Median 3Q Max 1Q -0.0109451 -0.0009487 0.0001036 0.0009616 0.0072188

Coefficients:

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.267e+00	9.993e-01	2.268	0.0235	*
MSTATUSYes	-2.360e-04	1.125e-04	-2.097	0.0361	*
EDUCATIONBachelors	-1.191e-04	1.461e-04	-0.815	0.4150	
EDUCATIONHigh School	-1.276e-05	1.314e-04	-0.097	0.9226	
EDUCATIONMasters	2.628e-04	1.721e-04	1.527	0.1268	
EDUCATIONPhD	3.739e-04	2.360e-04	1.584	0.1133	
TRAVTIME	2.840e-02	1.958e-02	1.450	0.1471	
REVOKEDYes	-1.968e-04	1.380e-04	-1.426	0.1539	
AGE_lam_two	2.714e-03	1.628e-03	1.667	0.0957	
AGE_sqrt	-7.491e-03	4.486e-03	-1.670	0.0951	
HOME_VAL_lam_one	1.979e-01	1.217e-01	1.627	0.1040	
HOME_VAL_lam_two	-1.133e-03	7.258e-04	-1.561	0.1187	
HOME_VAL_sqrt	4.126e-04	2.695e-04	1.531	0.1259	
HOME_VAL_log	-2.773e-02	1.689e-02	-1.642	0.1008	
TRAVTIME_lam_one	-4.481e-01	3.082e-01	-1.454	0.1462	
TRAVTIME_lam_two	6.252e-01	4.296e-01	1.455	0.1458	
TRAVTIME_sqrt	-7.034e-01	4.828e-01	-1.457	0.1453	
BLUEBOOK_lam_one	-6.949e-05	4.556e-05	-1.525	0.1274	
BLUEBOOK_lam_two	6.034e-04	2.745e-04	2.198	0.0281	*
OLDCLAIM_lam_one	3.933e-03	2.371e-03	1.659	0.0974	
OLDCLAIM_log	-3.730e-04	2.250e-04	-1.658	0.0976	
MVR_PTS_sqrt	9.161e-05	4.975e-05	1.842	0.0657	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.001879 on 1703 degrees of freedom

Multiple R-squared: 0.03299, Adjusted R-squared: 0.02107 F-statistic: 2.767 on 21 and 1703 DF, p-value: 3.078e-05

4 Model Selection

4.1 Binary Model Selecion

We can predict results to discern performance metrics.

In selecting the best model, first we need to measure performance of the models prior to selection. We can do so by looking at the confusion matrix and AUC curve for our models. For the first model we have:

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
0 1102 259
```

1 99 171

Accuracy : 0.7805

95% CI: (0.7596, 0.8004)

No Information Rate : 0.7364 P-Value [Acc > NIR] : 2.138e-05

Kappa : 0.358

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9176 Specificity: 0.3977 Pos Pred Value: 0.8097 Neg Pred Value: 0.6333 Prevalence: 0.7364

Detection Rate : 0.6757 Detection Prevalence : 0.8345 Balanced Accuracy : 0.6576

'Positive' Class : 0

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 1109 234 1 92 196

Accuracy : 0.8001

95% CI: (0.7799, 0.8193)

No Information Rate : 0.7364 P-Value [Acc > NIR] : 1.089e-09

Kappa: 0.4242

Mcnemar's Test P-Value: 5.752e-15

Sensitivity : 0.9234 Specificity : 0.4558 Pos Pred Value : 0.8258 Neg Pred Value : 0.6806
Prevalence : 0.7364
Detection Rate : 0.6800
Detection Prevalence : 0.8234
Balanced Accuracy : 0.6896

'Positive' Class : 0

[1] 0.818229

4.2 Linear Model Selection

Model One diagnostics, highly skewed and horrible R-Squared value when testing on hold out data.

Fitted values
Im(TARGET_AMT ~ PARENT1 + BLUEBOOK)
Normal Q-Q

Theoretical Quantiles Im(TARGET_AMT ~ PARENT1 + BLUEBOOK)

Im(TARGET_AMT ~ PARENT1 + BLUEBOOK)

Histogram of test\$residuals

[1] 5.232757

Histogram of training\$TARGET_AMT

training\$TARGET_AMT

Median Mean 3rd Qu. Max. Min. 1st Qu. 4129 9036 4955 5505 5641 6227 3rd Qu. Min. 1st Qu. Median Max. Mean

30.28 2609.78 4104.00 5702.18 5787.00 107586.14

RMSE Rsquared MAE 9.246177e+03 1.476241e-02 3.950348e+03

We can see belkw that model two is no longer skewed, and while the R-Squared is small, is now above one percent accuracy. Far better than the first model

Fitted values

TARGET_AMT_lam_one ~ MSTATUS + EDUCATION + TRAVTIME + REVOKED + AGE

Normal Q-Q

Theoretical Quantiles
TARGET_AMT_lam_one ~ MSTATUS + EDUCATION + TRAVTIME + REVOKED + AGE.

TARGET_AMT_lam_one ~ MSTATUS + EDUCATION + TRAVTIME + REVOKED + AGE_ Residuals vs Leverage

TARGET_AMT_lam_one ~ MSTATUS + EDUCATION + TRAVTIME + REVOKED + AGE.

Histogram of test_two\$residuals

[1] -0.0882088

training\$TARGET_AMT

Mean 3rd Qu. Min. 1st Qu. Median Max. 1853 4314 7849 3584 3924 3963 Min. 1st Qu. Median 3rd Qu. Max. Mean

30.28 2609.78 4104.00 5702.18 5787.00 107586.14

RMSE Rsquared MAE 9.523520e+03 4.897731e-03 3.617693e+03

4.3 Making Predictions for the Evaluation Data

Using model two for both our binary logistic model and our our linear regression model, we update our evaluation data set with the final required predictions. We can now see how our evaluation predictions look below.

	vars	n	mean	sd	min	max	range	se
TARGET_AMT	1	2141	6.862709e+02	1.495171e + 03	0	5893.581	5893.581	32.3133892
AGE	2	2141	4.501681e+01	8.523014e+00	17	73.000	56.000	0.1841980
YOJ	3	2141	1.040635e+01	4.079380e+00	0	19.000	19.000	0.0881629
INCOME	4	2141	5.982530e+04	4.565402e+04	0	291182.000	291182.000	986.6672438
HOME_VAL	5	2141	1.535092e+05	1.260609e+05	0	669271.000	669271.000	2724.4080232
TRAVTIME	6	2141	3.315227e+01	1.572239e+01	5	105.000	100.000	0.3397898
BLUEBOOK	7	2141	1.546943e+04	8.462367e + 03	1500	49940.000	48440.000	182.8872917
TIF	8	2141	5.244745e+00	3.971026e+00	1	25.000	24.000	0.0858212
OLDCLAIM	9	2141	4.022168e+03	8.565379e + 03	0	54399.000	54399.000	185.1135707
MVR_PTS	10	2141	1.765997e+00	2.203413e+00	0	12.000	12.000	0.0476198
CAR_AGE	11	2141	8.172349e+00	5.589936e+00	0	26.000	26.000	0.1208088

5 Conclusion

The underlying nature of this data set had a few subtle complexities. In the way of modifications, there was a need to use regular expressions and re coded factors in order to make the data more interpretable to our models. In addition, there was a large focus on transforming our variables to smooth out the distributions and reduce skewness. After processing the data and transforming the necessary variables, we were able to determine that the second iteration of our models performed the best. It most accurately interpreted the data and seemed best poised to deal data abstractions.