Estatística II, 2015/16 Exame, época de recurso 27/6/2016

Resolução (de uma das versão do exame – as resoluções das diferentes versões são semelhantes, com alteração dos dados em cada questão).

- **1** O tempo de vida, em anos, de certo artigo electrónico é uma variável aleatória (X), com função densidade $f_X(x) = (18x 3x^2)/80$, 0 < x < 4.
- *a*) Determine a expressão da distribuição de *X*.

Resolução

$$F_X(x) = \int_{-\infty}^x f_X(u) du = \begin{cases} 0, & x < 0 \\ (9x^2 - x^3)/80, & 0 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

b) A marca oferece a seguinte garantia: se o artigo se avaria durante o primeiro ano, é substituído por um novo. Qual a probabilidade de um artigo ser substituído em garantia?
Res.

$$F_X(1) = (9 \times 1^2 - 1^3)/80 = 1/10$$

- c) O custo de reparação por avaria, Y, relaciona-se com X através de $Y = \begin{cases} 0, & X \le 1 \\ 10X, & X > 1 \end{cases}$.
 - i. Calcule a probabilidade de o custo da reparação de um artigo ser inferior a 20 u.m..
 Res.

Dada a relação entre
$$Y$$
 e X , a condição $Y < 20$ equivale a $Y = 0 \lor 10 < Y < 20$. Donde, $\Pr(Y < 20) = \Pr(Y = 0) + \Pr(10 < Y < 20) = \Pr(X \le 1) + \Pr(10 < 10X < 20) = \Pr(X \le 1) + \Pr(1 < X < 2) = F_X(1) + F_X(2) - F_X(1) = (9 \times 2^2 - 2^3)/80 = 7/20$.

ii. Calcule a probabilidade de o custo da reparação ser inferior a 20 u.m., dado que o artigo já não está em garantia.

Res.

$$Pr(Y < 20|X > 1) = Pr(10 < 10X < 20)/Pr(X > 1) = Pr(1 < X < 2)/Pr(X > 1) = [F_X(2) - F_X(1)]/[1 - F_X(1)] = (7/20 - 1/10)/(1 - 1/10) = 5/18.$$

2 A função geradora de momentos da v.a. X é dada por $M(s) = (2e^s + e^{2s} + 2e^{3s})/5$. Calcule a média e variância de X.

Res.

$$E(X) = M'(0) = (2e^{0} + e^{2\times0} \times 2 + 2e^{3\times0} \times 3)/5 = 7/5,$$

$$V(X) = E(X^{2}) - E(X)^{2} = M''(0) - [M'(0)]^{2} =$$

$$(2e^{0} + e^{2\times0} \times 4 + 2e^{3\times0} \times 9)/5 - 49/25 = 71/25.$$

3 As vendas diárias de areia (em centenas de quilogramas) de um armazém de materiais de construção é uma v.a. normal com média 20 e desvio-padrão 2.

a) Sabendo que numa manhã já se vendeu uma tonelada de areia, qual a probabilidade de que, nesse dia, se venda mais de 2,5 toneladas?

Res.

$$X \sim \mathcal{N}(20; 4) \Leftrightarrow Z = (X - 20)/2 \sim \mathcal{N}(0; 1)$$

 $\Pr(X > 25 | X > 10) = \Pr(X > 25)/\Pr(X > 10) =$
 $\Pr[Z > (25 - 20)/2]/\Pr[Z > (10 - 20)/2] = [1 - \Phi(2,5)]/[1 - \Phi(-5)] \approx$
 $(1 - 0.9938)/1 = 0.0062.$

b) Qual a probabilidade de que em certo mês (20 dias úteis) as vendas ultrapassem 37 toneladas?

Res.

Seja o volume de vendas mensal,

$$Y = \sum_{i=1}^{20} X_i \sim \mathcal{N}(400; 80),$$

em que $X_i \sim \mathcal{N}(20; 4)$ denota o volume de vendas no dia i; seja $Z = (Y - 400)/\sqrt{80}$.

$$Pr(Y > 370) = Pr(Z > -30/\sqrt{80}) \approx 1 - \Phi(-3,35) \approx 0,9996.$$

(Nota: deve ter atenção às unidades de medida da variável.)

- **4** Considere uma amostra casual de dimensão n, de uma população $\mathcal{N}(0,\theta)$ (θ : variância).
- a) Determine o estimador de máxima verosimilhança (EMV) de θ .

Res.

$$X \sim \mathcal{N}(0; \theta) \Leftrightarrow f_X(x) = \frac{1}{\sqrt{2\pi\theta}} \exp\left(-\frac{x^2}{2\theta}\right) \Leftrightarrow \log f_X(x) = -\frac{1}{2} \log(2\pi) - \frac{1}{2} \log\theta - \frac{1}{2\theta}x^2$$

Função log-verosimilhança

$$l(\mu) = \sum_{i=1}^{n} \log f_X(x_i) = \sum_{i=1}^{n} \left[-\frac{1}{2} \log(2\pi) - \frac{1}{2} \log\theta - \frac{1}{2\theta} x_i^2 \right] = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log\theta - \frac{1}{2\theta} \sum_{i=1}^{n} x_i^2$$

Condição de primeira ordem para obter o EMV

$$l'(\mu) = 0 \Leftrightarrow -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^n x_i^2 = 0 \Leftrightarrow \frac{1}{\theta} \sum_{i=1}^n x_i^2 = n \Leftrightarrow \theta = \sum_{i=1}^n x_i^2 / n.$$

EMV de θ :

$$\hat{\theta}_{MV} = \sum_{i=1}^{n} X_i^2 / n.$$

b) Seja Q o quantil de ordem 0,95 da população. Escreva a expressão de Q como função de θ . Obtenha a expressão do EMV de Q.

Res.

$$Q: \Pr(X < Q) = 0.95 \Leftrightarrow \Pr[X/\sqrt{\theta} < Q/\sqrt{\theta}] = 0.95 \Leftrightarrow \Phi(Q/\sqrt{\theta}) = 0.95 \Leftrightarrow Q/\sqrt{\theta} = 1.645 \Leftrightarrow Q = 1.645\sqrt{\theta};$$

Estimador MV de *Q* (dada a propriedade de invariância do estimador MV):

$$\widehat{Q}_{MV}=1{,}645\sqrt{\widehat{\theta}_{MV}},$$

em que $\hat{\theta}_{MV}$ é dado na alínea anterior.

5 Admite-se que o número de sinistros por apólice de determinada carteira do ramo automóvel segue um processo de Poisson com média λ. Recolhida uma amostra casual de dimensão 100, observa-se $\bar{x} = 0,07$. Construa um intervalo de confiança (IC) a 95% para a média do número de acidentes por apólice. O IC é exacto? Porquê?

(Sugestão: recorde que a média e variância da distribuição Poisson são iguais.)

Res.

Variável número de sinistros: $X \sim \text{Po}(\lambda)$; variável fulcral: $Z = (\bar{X} - \lambda)/\sqrt{\bar{X}/n} \sim \mathcal{N}(0,1)$. Donde, o IC para λ ,

$$\bar{x} - z_{\alpha/2}\sqrt{\bar{x}/n}$$
 ; $\bar{x} + z_{\alpha/2}\sqrt{\bar{x}/n}$ [;

dado que 1 $-\alpha = 0.95$, $z_{\alpha/2} = 1.96$, logo, o intervalo é]0,018; 0,122[.

O IC não é exacto, porque a distribuição da variável fulcral é apenas assintótica (não é a distribuição exacta).

Recolhida uma amostra casual de 30 observações de uma população $\mathcal{N}(\mu, \sigma^2)$, obteve-se $\bar{x} = 1$ e $\sum_{i=1}^{30} x_i^2 = 320$. Teste, ao nível de 5%, a hipótese H_0 : $\sigma^2 = 12$ contra a alternativa H_1 : $\sigma^2 > 12$.

Res.

 H_0 : $\sigma^2 = 12$; H_1 : $\sigma^2 > 12$. Teste unilateral direito $\alpha = 5\%$

Inferência a respeito de σ^2 ; estatística de teste: $(30-1)S'^2/12 \sim \chi^2_{(30-1)}$, sob H_0 : $\sigma^2=12$.

Rejeita-se H_0 ao nível de 5%, se

 $29s'^2/12 > 42,56 \leftarrow$ percentil 0,95 da distribuição $\chi^2(29)$ ou, de modo equivalente,

$$s'^2 > 12 \times 42,56/29 = 17,611.$$

Obteve-se ${s'}^2 = (320 - 30 \times 1^2)/29 = 10$, logo, aceita-se H_0 . Note-se que

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2\bar{x}x_i + \bar{x}^2) =$$

$$\sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - 2n\bar{x}^2 + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2.$$