SELLING PRICE PREDICTION OF OLD VEHICLES

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: dataset=pd.read_csv("car_prediction_dataset.csv")
In [3]: dataset.shape
Out[3]: (301, 9)
In [4]: dataset.head(2)
Out[4]:
           car_name year present_price kms_driven fuel_type seller_type transmission owner
        0
                 ritz 2014
                                    5.59
                                              27000
                                                        Petrol
                                                                   Dealer
                                                                               Manual
                                                                                           0
                 sx4 2013
                                    9.54
                                              43000
                                                        Diesel
                                                                   Dealer
                                                                               Manual
                                                                                           0
In [5]: dataset.isnull().sum()
Out[5]: car_name
        year
                          0
         present_price
                          0
         kms_driven
         fuel_type
         seller_type
         transmission
         owner
                          0
         selling_price
         dtype: int64
In [6]: dataset.duplicated().sum()
Out[6]: np.int64(2)
In [7]: dataset.drop_duplicates()
```

Out[7]:		car_name	year	present_price	kms_driven	fuel_type	seller_type	transmission	own€
	0	ritz	2014	5.59	27000	Petrol	Dealer	Manual	
	1	sx4	2013	9.54	43000	Diesel	Dealer	Manual	
	2	ciaz	2017	9.85	6900	Petrol	Dealer	Manual	
	3	wagon r	2011	4.15	5200	Petrol	Dealer	Manual	
	4	swift	2014	6.87	42450	Diesel	Dealer	Manual	
	•••								
	296	city	2016	11.60	33988	Diesel	Dealer	Manual	
	297	brio	2015	5.90	60000	Petrol	Dealer	Manual	
	298	city	2009	11.00	87934	Petrol	Dealer	Manual	
	299	city	2017	12.50	9000	Diesel	Dealer	Manual	
	300	brio	2016	5.90	5464	Petrol	Dealer	Manual	

299 rows × 9 columns

In [8]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	car_name	301 non-null	object
1	year	301 non-null	int64
2	present_price	301 non-null	float64
3	kms_driven	301 non-null	int64
4	fuel_type	301 non-null	object
5	seller_type	301 non-null	object
6	transmission	301 non-null	object
7	owner	301 non-null	int64
8	selling_price	301 non-null	float64
1.0	(7 1 (4 (2)	+(1/2)	. / 4 \

dtypes: float64(2), int64(3), object(4)

memory usage: 21.3+ KB

In [9]: dataset.describe()

Out[9]:		year	present_price	kms_driven	owner	selling_price
	count	301.000000	301.000000	301.000000	301.000000	301.000000
	mean	2013.627907	7.628472	36947.205980	0.043189	4.661296
	std	2.891554	8.644115	38886.883882	0.247915	5.082812
	min	2003.000000	0.320000	500.000000	0.000000	0.100000
	25%	2012.000000	1.200000	15000.000000	0.000000	0.900000
	50%	2014.000000	6.400000	32000.000000	0.000000	3.600000
	75%	2016.000000	9.900000	48767.000000	0.000000	6.000000
	max	2018.000000	92.600000	500000.000000	3.000000	35.000000

LABEL ENCODING

```
In [10]: from sklearn.preprocessing import LabelEncoder
```

CAR NAME ENCODING

```
In [11]: car_name_le=LabelEncoder()
    dataset['car_name']=car_name_le.fit_transform(dataset['car_name'])
```

FUEL TYPE ENCODING

```
In [12]: dataset['fuel_type'].unique()
Out[12]: array(['Petrol', 'Diesel', 'CNG'], dtype=object)
In [13]: fuel_type_le=LabelEncoder()
dataset['fuel_type']=fuel_type_le.fit_transform(dataset['fuel_type'])
```

SELLER TYPE ENCODING

```
In [14]: seller_type_le=LabelEncoder()
  dataset['seller_type']=fuel_type_le.fit_transform(dataset['seller_type'])
```

TRANSMISSION ENCODING

```
In [15]: transmission_le=LabelEncoder()
  dataset['transmission']=fuel_type_le.fit_transform(dataset['transmission'])
```

VISUALISING THE DATA

```
In [16]: dataset.head(3)
```

Out[16]:	car_name	year	present_	price	kms_dr	iven	fuel_typ	e sell	er_type	transm	nission	owner
	0 90	2014		5.59	2	7000		2	0		1	0
	1 93	2013		9.54	4.	3000		1	0		1	0
	2 68	2017		9.85	(6900		2	0		1	0
	4											•
In [17]:	<pre>sns.heatmap(c plt.show()</pre>	lata=da	taset.c	orr(),	annot=	True)						
	car_name	- 1	0.017	0.48	0.064	-0.37	-0.83	-0.06	-0.081	0.5		1.00
	year	0.017	1	-0.048	-0.52	-0.054	-0.040	0.0003	90.18	0.24	-	0.75
	present_price	0.48	-0.048	1	0.2	-0.44	-0.51	-0.35	0.0081	0.88	-	0.50
	kms_driven	0.064	-0.52	0.2	1	-0.17	-0.1	-0.16	0.089	0.029	-	0.25
	fuel_type	-0.37	-0.054	-0.44	-0.17	1	0.35	0.08	0.056	-0.51	_	0.00
	seller_type	0.83	-0.04	-0.51	-0.1	0.35	1	0.063	0.12	-0.55		
	transmission	-0.06	0.00039	9-0.35	-0.16	0.08	0.063	1	-0.05	-0.37		-0.25
	owner	-0.081	-0.18	0.0081	10.089	0.056	0.12	-0.05	1	-0.088	-	-0.50
	selling_price	0.5	0.24	0.88	0.029	-0.51	-0.55	-0.37	-0.088	1	-	-0.75
		car_name -	year -	present_price -	kms_driven -	fuel_type -	seller_type -	transmission -	owner -	selling_price -		
In [18]:	<pre>input_data=dataset.iloc[:,:-1] output_data=dataset['selling_price']</pre>											

SCALING DATA TO REMOVE ANAMOLY

```
In [19]: from sklearn.preprocessing import StandardScaler
In [20]: ss=StandardScaler()
   input_data=pd.DataFrame(ss.fit_transform(input_data),columns=input_data.columns)
In [21]: dataset.head(3)
```

Out[21]:	car_name year		present_price	kms_driven fuel_type		seller_type	transmission	owner	
	0	90	2014	5.59	27000	2	0	1	0
	1	93	2013	9.54	43000	1	0	1	0
	2	68	2017	9.85	6900	2	0	1	0
	4								•

SPLITTING DATA

```
In [22]: from sklearn.model_selection import train_test_split
```

In [23]: x_train,x_test,y_train,y_test=train_test_split(input_data,output_data,test_size=0.2

MODEL SELECTION

```
In [24]: from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.svm import SVR
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.ensemble import RandomForestRegressor
```

```
In [25]: from sklearn.metrics import mean_squared_error,mean_absolute_error
```

Out[26]: (88.40630578239454, 84.65539666857805)

```
In [27]: mean_squared_error(y_test,lr.predict(x_test)),mean_absolute_error(y_test,lr.predict
```

Out[27]: (3.5347190697129753, 1.2142339415047014)

```
In [28]: lr1=Lasso(alpha=0.5)
    lr1.fit(x_train,y_train)
    lr1.score(x_train,y_train)*100, lr1.score(x_test,y_test)*100
```

Out[28]: (85.0124395411389, 78.63348352385346)

```
In [29]: mean_squared_error(y_test,lr1.predict(x_test)),mean_absolute_error(y_test,lr1.predi
```

Out[29]: (4.921901961904479, 1.4658722139390727)

```
In [30]: lr2=Ridge(alpha=10)
    lr2.fit(x_train,y_train)
    lr2.score(x_train,y_train)*100, lr2.score(x_test,y_test)*100
```

Out[30]: (88.28628537091497, 84.16213595432284)

```
In [31]: mean_squared_error(y_test,lr2.predict(x_test)),mean_absolute_error(y_test,lr2.predi
Out[31]: (3.6483445584506238, 1.233161689725921)
In [32]: lr3=ElasticNet(alpha=0.5)
         lr3.fit(x_train,y_train)
         lr3.score(x_train,y_train)*100, lr3.score(x_test,y_test)*100
Out[32]: (84.00059239671332, 78.3177718663528)
In [33]: | mean_squared_error(y_test,lr3.predict(x_test)),mean_absolute_error(y_test,lr3.predi
Out[33]: (4.99462798760845, 1.4094819518715052)
In [34]: dt=DecisionTreeRegressor(max_depth=15)
         dt.fit(x_train,y_train)
         dt.score(x_train,y_train)*100, dt.score(x_test,y_test)*100
Out[34]: (100.0, 94.52366873121181)
In [35]: | mean_squared_error(y_test,dt.predict(x_test)),mean_absolute_error(y_test,dt.predict
Out[35]: (1.2615049180327873, 0.6940983606557376)
In [36]: rf=RandomForestRegressor(n_estimators=100)
         rf.fit(x_train,y_train)
         rf.score(x_train,y_train)*100, rf.score(x_test,y_test)*100
Out[36]: (98.33237614607282, 96.59775818440349)
In [37]: | mean_squared_error(y_test,rf.predict(x_test)),mean_absolute_error(y_test,rf.predict
Out[37]: (0.7837262890163934, 0.5828016393442627)
In [38]: sv=SVR()
         sv.fit(x_train,y_train)
         sv.score(x_train,y_train)*100, sv.score(x_test,y_test)*100
Out[38]: (66.00840380338376, 78.48466914602926)
In [39]: | mean_squared_error(y_test,sv.predict(x_test)),mean_absolute_error(y_test,sv.predict
Out[39]: (4.956182223686514, 0.9945642205689335)
In [40]: knn=KNeighborsRegressor(n_neighbors=10)
         knn.fit(x_train,y_train)
         knn.score(x_train,y_train)*100, knn.score(x_test,y_test)*100
Out[40]: (86.59124637342433, 90.59004346126326)
In [41]: | mean_squared_error(y_test,knn.predict(x_test)),mean_absolute_error(y_test,knn.predi
```

Out[41]: (2.1676384918032783, 0.9017704918032786)

In [42]: ## now its clear that random forest is the best suitable model with good accuracy a

In [43]: x_test #taking a test data to predict

Out[43]:		car_name	year	present_price	kms_driven	fuel_type	seller_type	transmission
	177	-1.275759	0.821718	-0.817924	-0.333500	0.500183	1.356327	-2.554408
	289	0.251795	0.821718	0.691970	-0.668875	0.500183	-0.737285	0.391480
	228	1.230996	-0.563924	0.205282	0.593804	-1.852241	-0.737285	0.391480
	198	-2.059120	-0.910335	-0.817924	-0.050157	0.500183	1.356327	0.391480
	60	0.330131	-0.217514	1.272521	0.078661	0.500183	-0.737285	0.391480
	•••							
	234	0.760979	0.475308	-0.223468	-0.835995	0.500183	-0.737285	0.391480
	296	0.251795	0.821718	0.460214	-0.076225	-1.852241	-0.737285	0.391480

-0.003299

0.100991

-0.816765

61 rows × 8 columns

0.956819

182 -1.158255 -0.217514

0.251795 -2.642389

0.821718

In [44]: rf.predict([[-1.275759,0.821718,-0.817924,-0.333500,0.500183,1.356327,-2.554408,-0.

C:\Users\Aryansh Pathak\anaconda3\Lib\site-packages\sklearn\utils\validation.py:273
9: UserWarning: X does not have valid feature names, but RandomForestRegressor was f
itted with feature names
 warnings.warn(

0.347965

-0.563806

-0.178949

0.500183

0.500183

0.500183

-0.737285

-0.737285

1.356327

0.391480

-2.554408

0.391480

Out[44]: array([0.4365])

281

285

In [45]: y_test #comparing the predicted data and test data

Out[45]: 177 0.35 289 10.11 4.95 228 198 0.15 60 6.95 . . . 234 5.50 296 9.50 2.10 281 285 7.40 0.30 182

Name: selling_price, Length: 61, dtype: float64

```
In [46]: # Let's do a prediction for this dataset the original output is 3.35
                                          present_price kms_driven
                  car_name
                                  year
                                                                           fuel_type
                                                                                            sel
                                                                             Petrol
         new data=pd.DataFrame([['ritz',2014,5.59,27000,'Petrol','Dealer','Manual',0]],colum
In [47]:
In [48]:
         new_data
Out[48]:
             car_name year present_price kms_driven fuel_type seller_type transmission owner
          0
                  ritz 2014
                                     5.59
                                               27000
                                                          Petrol
                                                                    Dealer
                                                                                 Manual
                                                                                             0
In [49]:
         new_data['car_name']=car_name_le.fit_transform(new_data['car_name'])
In [50]:
         new_data['fuel_type']=fuel_type_le.fit_transform(new_data['fuel_type'])
         new_data['seller_type']=seller_type_le.fit_transform(new_data['seller_type'])
In [51]:
         new_data['transmission']=transmission_le.fit_transform(new_data['transmission'])
In [52]:
         new_data=pd.DataFrame(ss.transform(new_data),columns=new_data.columns)
In [53]:
In [54]:
         new data
Out[54]:
                          year present_price kms_driven fuel_type seller_type transmission
             car_name
               -2.4508 0.128897
                                    -0.236215
                                                -0.256224
                                                          -4.204665
                                                                     -0.737285
                                                                                  -2.554408
                                                                                            -0.1
In [55]:
         rf.predict(new_data)
Out[55]: array([3.3675])
         # our predicted value is 3.3675
```

Thank you!