Lecture 3: Sensitivity Analysis

1. Given the following Solver output what range of values can the objective function coefficient for variable X1 assume without changing the optimal solution?

Changing Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$4	Number to make: X1	9.49	0	5	1.54	1
\$C\$4	Number to make: X2	1.74	0	6	1.5	1.47

Constraints

Cell		Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$D\$8	Used		42	0	48	1E+30	6
\$D\$9	Used		132	0.24	132	12	12
\$D\$10	Used		24	1.24	24	1.33	2

2. What is the optimal objective function value if X1 is at its lower limit in the following Solver output?

	Target	
Cell	Name	Value
\$E\$5	Unit profit: OBJ. FN. VALUE	58

	Adjustable		Lower	Target	Upper	Target
Cell	Name	Value	Limit	Result	Limit	Result
\$B\$4	Number to make: X1	6	0	16	6	58
\$C\$4	Number to make: X2	4	0	42	4	58

3. Which of the constraints are binding at the optimal solution for the following problem and Solver output?

MAX: $7 X_1 + 4 X_2$

Subject to: $2 X_1 + X_2 \le 16$

 $X_1 + X_2 \le 10$ $2 X_1 + 5 X_2 \le 40$

 $X_1,\,X_2\geq 0$

Changing Cells

Cell	Name		Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$4	Number to make: X1	6	0	7	1	3
\$C\$4	Number to make: X2	4	0	4	3	0.5

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$D\$8	Used	16	3	16	4	2.67
\$D\$9	Used	10	1	10	1	2
\$D\$10	Used	32	0	40	1E+30	8

4. Consider the following linear programming model and Solver output. What is the optimal objective function value if the RHS of the first constraint increases to 18?

MAX:

 $7\; X_1 + 4\; X_2$

Subject to:

 $2 X_1 + X_2 \le 16$

 $X_1 + X_2 \le 10$

 $2 X_1 + 5 X_2 \le 40$

 $X_1, X_2 \ge 0$

Changing Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$4	Number to make: X1	6	0	7	1	3
\$C\$4	Number to make: X2	4	0	4	3	0.5

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$8	Used	16	3	16	4	2.67
\$D\$9	Used	10	1	10	1	2
\$D\$10	Used	32	0	40	1E+30	8

5. A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. The following table summarizes the data for the problem.

	Profit per	Yield per	Maximum	Irrigation	Fertilizer
Crop	Acre (\$)	Acre (lb)	Demand (lb)	(acre ft)	(pounds/acre)
Corn	2,100	21,000	200,000	2	500
Pumpkin	900	10,000	180,000	3	400
Beans	1,050	3,500	80,000	1	300

Suppose the farmer can purchase more fertilizer for \$2.50 per pound, should he purchase it and how much can he buy and still be sure of the value of the additional fertilizer? Base your response on the following Solver output.

Changing Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease

\$B\$4	Acres of Corn	9.52	0	2100	1E+30	350
\$C\$4	Acres of Pumpkin	0	-500.01	899.99	500.01	1E+30
\$D\$4	Acres of Beans	10.79	0	1050	210	375.00

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$8	Corn demand Used	200000	0.017	200000	136000	152000
\$E\$9	Pumpkin demand Used	0	0	180000	1E+30	180000
\$E\$10	Bean demand Used	37777.78	0	80000	1E+30	42222.22
\$E\$11	Water Used	29.84	0	50	1E+30	20.15
\$E\$12	Fertilizer Used	8000	3.5	8000	3619.04	3238.09

6. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited so at most 8 will be produced.

Suppose the company can purchase more varnishing time for \$3.00, should it be purchased and how much can be bought before the value of the additional time is uncertain? Base your response on the following Solver output.

Let $X_1 = Number of Beds to produce$

 X_2 = Number of Desks to produce

The LP model for the problem is

MAX: $30 X_1 + 40 X_2$

Subject to: $6 X_1 + 4 X_2 \le 36$ (carpentry)

 $4~X_1 + 8~X_2 \leq 40~(varnishing)$

 $X_2 \le 8$ (demand for X_2)

 $X_1, X_2 \ge 0$

Changing Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$4	Number to make: Beds	4	0	30	30	10
\$C\$4	Number to make: Desks	3	0	40	20	20

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$D\$8	Carpentry Used	36	2.5	36	24	16
\$D\$9	Varnishing Used	40	3.75	40	26.67	16
\$D\$10	Desk demand Used	3	0	8	1E+30	5

7. Solve this problem graphically. What is the optimal solution and what constraints are binding at the optimal solution?

MAX: $8 X_1 + 4 X_2$

Subject to: $5 X_1 + 5 X_2 \le 20$

 $6 X_1 + 2 X_2 \le 18$

 $X_1, X_2 \ge 0$