Circles On A Lattice

Example

Example: Find the number of lattice points on the circumference of circles with radius $a=\sqrt{3}, b=\sqrt{46}$ and $c=\sqrt{27}$. **Solution:** The prime decomposition of $3=3^1$, since $3\equiv 3 \pmod{4}$ and the exponent 1 is odd, we can immediately conclude a circle with radius a has no lattice points.

The divisors of 90 are; 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. We can check which numbers are congruent to 1 modulo 4 and 3 modulo 4 and use the formula **??** giving : $r_2(90) = 4(4-2) = 8$. Using the python code from the supplementary material[**?**] we have the coordinates of the lattice points also which are; (3,9), (3,-9), (-3,9), (-3,-9), (9,3), (9,-3), (-9,3), (-9,-3).

For c we can write $27=3^3$ as $3\equiv 3 \pmod 4$ and the exponent 3 is odd we can conclude this circle will have 0 lattice points

AMA3020: Pair's Project