université Ibn tofail Faculté des Sciences kenitra

Devoir Maison MIP(S2)

Exercice 1 (3 pts)

Soient deux charges ponctuelles au repos q et -q placées respectivement en A et en B d'un axe Ox (figure 1).

- a) Donner l'expression vectorielle de la force électrostatique $\vec{F}_{q/-q}$ créée en B.
- b) Donner l'expression vectorielle du champ électrostatique \vec{E} créé en B.
- c) Donner l'expression du potentiel électrostatique V créé en B.

Soient deux charges ponctuelles au repos q et –q placées respectivement en A et en B (figure 2). On donne OA = OB = a.

- a) Donner l'expression vectorielle du champ électrostatique $\vec{E} = E_x \vec{i} + E_y \vec{j}$ créé O.
- b) Donner l'expression du potentiel électrostatique V créé en O.

Exercice 3. (5pts) Soit un conducteur plan P_1 d'épaisseur négligeable et de surface S chargé avec une densité surfacique σ_1 = + σ perpendiculaire à un axe XX de vecteur unitaire \vec{i} (Voir figure ci-dessous). Un point M de l'espace est repéré par \overrightarrow{OM} = $x\vec{i}$.

1- Déterminer la charge totale Q de ce conducteur.

2- Représenter sur le schéma le vecteur **champ électrostatique** $\overrightarrow{E_1}(M)$ crée par ce conducteur en un point M à la distance x du plan pour x> 0 et aussi pour x< 0.

- 3- En utilisant le théorème de Gauss, **déterminer le champ électrostatique** $\overrightarrow{E_1}(M)$ crée en un point M à la distance x du plan (P_1 est considéré comme infini). Donner les expressions du vecteur champ pour $\mathbf{x} > \mathbf{0}$ et pour $\mathbf{x} < \mathbf{0}$.
- 4- On place parallèlement à P_1 à une distance e (Voir figure2) un autre conducteur plan P_2 d'épaisseur négligeable et de surface S chargé avec une densité surfacique σ_2 = σ . Les deux conducteurs sont en influence totale (P_1 et P_2 sont considérés comme infinis).

Déduire le champ électrique $\vec{E}(M)$ crée dans l'espace compris entre ces deux plans

- 5- Soient V_1 et V_2 respectivement les potentiels électrostatiques de P_1 et P_2 . Déterminer la capacité de ce condensateur dans le cas où (S>>e).
- 6- En utilisant l'expression de la densité d'énergie $\frac{d\omega}{dV} = \frac{\epsilon_0}{2}$ E², **déterminer l'énergie** électrostatique emmagasinée dans ce condensateur en fonction de Q, V_1 et V_2 .