Закон сохранения заряда. Закон Кулона

- 1. Отрицательный заряд имеет:
- **A)** электрон; **Б)** нейтрон; **В)** протон; Γ) атом.
- 2. Электрического заряда не имеет:
- **A)** электрон; **Б)** нейтрон; **В)** протон; Γ) ион
- **3.** К положительно заряженному шару поднесли подвешенные на нитях заряженные шарики (см. рис.). Какого знака заряды шариков? Ответы поясните.

- **4.** Изменится ли масса шара заряженного положительным зарядом , если к шару прикоснуться пальцем? Почему?
- **5.** Опишите и объясните поведение подвешенного на неокрашенной шелковой нити металлического шарика при взаимодействии с наэлектризованной палочкой.
- **6.** Два точечных заряда находятся на расстоянии r = 80 см друг от друга и притягиваются с силой $F = 9 \cdot 10^{-5}$ H. Чему равен заряд q_2 , если заряд $q_1 = 3,2$ мкКл?
- 7. Два одинаковых металлических шарика имеют заряды $q_1 = 5$ мкКл и $q_2 = -30 \cdot 10^{-7}$ Кл. Шарики приводят в соприкосновение и разводят на расстояние r = 20 см. Какой заряд q_1 ' будет теперь у первого шарика?
- **8.** На каком расстоянии r друг от друга заряды q_1 = 1 мкКл и q_2 = 10 нКл взаимодействуют c силой F = 9 мН?
- **9.** Три одинаковых металлических шарика имеют заряды $q_1 = -10$ мкКл и $q_2 = -700 \cdot 10^{-7}$ Кл, $q_3 = 2 \cdot 10^{-5}$ Кл. Шарики приводят в соприкосновение и разводят на расстояние r = 40 дм. Какой заряд q_1' будет теперь у первого шарика?
- **10.** Определите, сколько электронов N приобрела станиолевая гильза, если ее заряд до электризации $q_1 = 3.2$ пКл, а после электризации стал $q_2 = 2.4$ пКл.
- **11.** Стеклянную палочку наэлектризовали, и ее заряд стал равным $q = 9,6 \cdot 10^{-11}$ Кл. Насколько изменилась масса Δm палочки.
- **12.** Определите, сколько электронов N потерял металлический стержень, если его заряд до электризации $q_1 = -6,4\,$ пКл, а после электризации стал равен $q_2 = 0,8\,$ пКл.
- **13.** Незаряженный металлический шарик привели в соприкосновение с таким же шариком, имеющим заряд $q_2=6,4$ нКл. Определите изменение массы первого шарика Δm ?

- **14.** Два одинаковых проводящих шарика расположены на расстоянии r=4 см. Их заряды равны $q_1=6\cdot 10^{-7}$ Кл и $q_2=0,4\cdot 10^{-7}$ Кл. Шарики приводят в соприкосновение, а затем удаляют на прежнее расстояние. Определите силу F их взаимодействия после соприкосновения.
- **15.** Три точечных заряда $q_1 = 1,5$ нКл, $q_2 = -2,0$ нКл и $q_3 = 8$ нКл расположены в вакууме на одной прямой. Определите модуль и направление результирующей электростатических сил, действующих на точечный заряд q_1 , если r = 30 см.

16. Три точечных заряда $q_1 = 2$ нКл, $q_2 = 2,5$ нКл и $q_3 = 4$ нКл расположены в вакууме на одной прямой. Определите модуль и направление результирующей электростатических сил, действующих на точечный заряд q_1 , если r = 20 см.

17. В трех вершинах квадрата со стороной, a=40 см находятся заряды $q_1=33,3$ нКл, $q_2=3,2$ нКл, $q_3=44,5$ нКл. Найдите модуль равнодействующей электростатических сил, действующих на заряд q_2 . Сделайте рисунок.

- **18.** На нити подвешен шарик массой m=0,2 г, на котором находится заряд $q_1=2$ мкКл. На расстоянии r=60 см от него снизу помещают второй шарик с зарядом $q_2=6$ нКл. Определите силу натяжения нити $F_{\rm H}$.
- **19.** Шарик с зарядом $q_1 = \sqrt{3}$ мкКл подвешен на нити. При приближении к нему заряда $q_2 = -50$ нКл нить отклонилась на угол $\alpha = 30^\circ$ от вертикали. Найдите массу шарика, если расстояние между зарядами R = 30 см.

Ответы

6. $q_2 = -2 \text{ HK}\pi$; **7.** $q_1' = 1 \text{ MKK}\pi$; **8.** r = 0.1 M; **9.** $q_1' = -20 \text{ MKK}\pi$; **10.** $N = 5 \cdot 10^6$; **11.** $\Delta m = -5,46 \cdot 10^{-22} \text{ kr}$; **12.** $N = 4,5 \cdot 10^7$; **13.** $\Delta m = -1,82 \cdot 10^{-20} \text{ kr}$; **14.** F = 0,576 H; **15.** F = 1,5 MKH; **16.** F = 6,3 MKH; **17.** $F_p = 10 \text{ MKH}$;

18. $F_H = 1.7 \text{ MH};$ **19.** $m = 1.5 \text{ }\Gamma.$