

Numerical Analysis for Machine Learning

Professor: Edie Miglio

Last updated: September 29, 2024

This document is intended for educational purposes only.

Made by Roberto Benatuil Valera

Contents

1	Numerical Linear Algebra tools		
	1.1	Introd	uction: Recap of Linear Algebra
		1.1.1	Matrix-vector multiplication
		1.1.2	Column space of a matrix
		1.1.3	System of linear equations
		1.1.4	CR factorization
		1.1.5	Matrix-matrix multiplication
		1.1.6	Null space of a matrix
		1.1.7	Fundamental subspaces of a matrix
		1.1.8	Orthogonal matrices
		1.1.9	QR factorization
		1.1.10	Eigenvalues and eigenvectors
		1 1 11	Similar matrices

Chapter 1

Numerical Linear Algebra tools

1.1 Introduction: Recap of Linear Algebra

In this section we will review some basic concepts of Linear Algebra that will be useful for the rest of the course.

1.1.1 Matrix-vector multiplication

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, the matrix-vector multiplication y = Ax is defined as:

$$y_i = \sum_{j=1}^n A_{ij} x_j \tag{1.1}$$

A matrix-vector multiplication can be considered as a linear combination of the columns of the matrix A. Lets see an example:

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} x_2 \tag{1.2}$$

1.1.2 Column space of a matrix

The column space of a matrix $A \in \mathbb{R}^{m \times n}$ is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, it is the set of all possible linear combinations of the columns of A. The column space of a matrix is denoted as C(A).

If the columns of A are linearly independent, then the column space of A is the entire \mathbb{R}^m . If the columns of A are linearly dependent, then the column space of A is a subspace of \mathbb{R}^m with dimension equal to the rank of A.

The rank of a matrix A is is the size of the largest set of linearly independent columns of A. It is denoted as rank(A). Note that $rank(A) = rank(A^T)$.

1.1.3 System of linear equations

A system of linear equations is a set of m equations with n unknowns of the form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$(1.3)$$

This system can be written in matrix form as Ax = b, where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

The system Ax = b has a solution if and only if $b \in C(A)$. If $b \in C(A)$, then the system has a unique solution if and only if rank(A) = n. If rank(A) < n, then the system has infinitely many solutions.

1.1.4 CR factorization

The CR factorization of a matrix $A \in \mathbb{R}^{m \times n}$, with $m \geq n$, is a factorization of A as A = CR, where $C \in \mathbb{R}^{m \times r}$ is a matrix with the linearly independent columns of A and $R \in \mathbb{R}^{r \times n}$ is obtained by determining the coefficients of the linear combination of the columns of C that give the columns of A. In this factorization, r = rank(A).

Lets see an example:

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} = CR \tag{1.4}$$

The matrix C is also called the Row Reduced Echelon Form of A.

1.1.5 Matrix-matrix multiplication

Given two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, the matrix-matrix multiplication C = AB is defined as:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \tag{1.5}$$

A matrix-matrix multiplication can be considered as the outer product of the columns of A and the rows of B. Lets see an example:

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix}$$
 (1.6)

Note that each outer product generates a matrix of the same size as the result matrix, but always with rank 1. So the matrix-matrix multiplication can be considered as a sum of rank 1 matrices, obtained by the outer products of the columns of A and the rows of B.

1.1.6 Null space of a matrix

The null space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all vectors $x \in \mathbb{R}^n$ such that Ax = 0. The null space of a matrix is denoted as N(A). It is also called the kernel of A, denoted as ker(A).

Formally, we have that:

$$N(A) = \{x \in \mathbb{R}^n : Ax = 0\} \tag{1.7}$$

The null space of a matrix is a subspace of \mathbb{R}^n . The dimension of the null space of a matrix is called the nullity of the matrix.

1.1.7 Fundamental subspaces of a matrix

Given a matrix $A \in \mathbb{R}^{m \times n}$, we can define four fundamental subspaces:

- The column space of A, denoted as C(A)
- The row space of A, denoted as $C(A^T)$
- The null space of A, denoted as N(A)
- The left null space of A, denoted as $N(A^T)$

These subspaces are related by the following properties:

$$C(A) \perp N(A^T)$$

$$C(A^T) \perp N(A)$$
(1.8)

They also satisfy the following dimensions properties:

$$dim(C(A)) + dim(N(A)) = n$$

$$dim(C(A^T)) + dim(N(A^T)) = m$$
(1.9)

This is known as the Rank-Nullity Theorem.

1.1.8 Orthogonal matrices

An orthogonal matrix is a square matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^TQ = I$, where I is the identity matrix. This implies that $Q^T = Q^{-1}$.

Now, consider that Q is an orthogonal matrix, and set $w = Q^T x$. Then we have that:

$$||w||^2 = w^T w = x^T Q Q^T x$$

= $x^T x = ||x||^2$ (1.10)

This means that the norm of a vector is preserved under an orthogonal transformation. This is called an isometry. It is a useful property for numerical algorithms, as it helps to avoid numerical instability.

There are two main types of orthogonal transformations that we are interested:

Rotation matrices

A rotation matrix is an orthogonal matrix that represents a rotation in \mathbb{R}^2 or \mathbb{R}^3 . In \mathbb{R}^2 , a rotation matrix is of the form:

$$Q(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
 (1.11)

Reflection matrices

A reflection matrix is an orthogonal matrix that represents a reflection with respect to a hyperplane. If n denotes the unit normal vector to the hyperplane, then the reflection matrix is of the form:

$$Q = I - 2nn^T \tag{1.12}$$

Note that the inverse of this matrix is itself, as $Q^T = Q^{-1}$ and in this case, Q is symmetric $(Q = Q^T)$.

1.1.9 QR factorization

The QR factorization of a matrix $A \in \mathbb{R}^{m \times n}$, with $m \geq n$, is a factorization of A as A = QR, where $Q \in \mathbb{R}^{m \times n}$ is an orthogonal matrix and $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix.

Gram-Schmidt process

The Gram-Schmidt process is a method to compute the QR factorization of a matrix. Given a matrix $A \in \mathbb{R}^{m \times n}$, the Gram-Schmidt process computes an orthonormal basis for the column space of A, as follows:

$$q_{1} = \frac{a_{1}}{\|a_{1}\|}$$

$$q_{i} = a_{i} - \sum_{j=1}^{i-1} (q_{j}^{T} a_{i}) q_{j} \quad \forall i = 2, \dots, n$$

$$(1.13)$$

where a_i denotes the *i*-th column of A. The matrix Q is obtained by stacking the vectors q_i as columns. The matrix R is obtained by computing the coefficients of the linear combination of the columns of Q that give the columns of A.

1.1.10 Eigenvalues and eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, a scalar λ is called an eigenvalue of A if there exists a vector $v \in \mathbb{R}^n$ such that:

$$Av = \lambda v \tag{1.14}$$

The vector v is called an eigenvector of A associated with the eigenvalue λ .

Let P be the matrix whose columns are the eigenvectors of A, and Λ be the diagonal matrix whose diagonal elements are the eigenvalues of A. Then we have that:

$$A = P\Lambda P^{-1} \tag{1.15}$$

This is called the eigendecomposition of A.

The eigenvalues of a matrix are the roots of the characteristic polynomial of A, which is defined as:

$$det(A - \lambda I) = 0 (1.16)$$

1.1.11 Similar matrices

Two square matrices A and B are called similar if there exists a non-singular matrix M such that:

$$B = M^{-1}AM \tag{1.17}$$

Similar matrices have the same eigenvalues, but not necessarily the same eigenvectors. Let (λ, y) be an eigenpair of B, then we have:

$$By = \lambda y \Rightarrow M^{-1}AMy = \lambda y \Rightarrow A(My) = \lambda(My)$$
(1.18)

This means that My is an eigenvector of A associated with the eigenvalue λ . So, to obtain the eigenvectors of A from the eigenvectors of B, we need to multiply the eigenvectors of B by M.