Achieving Nothing

Sam Davis

supervised by

David Page Carl Henrik Ek University of Bristol

Value

Overview

Increasing the efficiency of speech-to-text neural networks by sparsifying the large parameter matrices.

Motivation

- ▶ Tens of millions of voice controlled devices have been sold. [1]
- ▶ Neural networks convert the speech data to text.
- ▶ Efficiency improvements will save companies millions of dollars.

Sparsity

► A neural network consists of the chained application of many nonlinear functions:

$$h^i = g(W^i h^{i-1} + b^i)$$

- ▶ The total FLOPs is dominated by large matrix-vector products.
- ▶ Inducing sparsity fixing parameters to zero in the matrices causes many operations to become NOPs.
- ▶ The FLOP requirement is reduced given hardware support.

 W^1 Non-Zero Parameter Heatmap

Model

Deep Speech Architecture [2]

Task	Speech-to-text
Network Input	Mel Frequency Cepstral Coefficients (MFCC)
Network Output	Character Sequence
Network Loss	Connectionist Temporal Classification (CTC)
Accuracy Metric	Word Error Rate (WER)
BLSTM Parameters	100 M
Total Parameters	122 M
Sequence Length	$500 \; \mathrm{steps}/10 \; \mathrm{s} \; \mathrm{audio}$
Training Set	960 hours
Validation Set	5.4 hours
Test Set	5.4 hours
Training Setup	4 * NVIDIA Tesla V100

Hours/Training Epoch 2

Baseline Approach Original Parameter Prune Fine-tune Distribution Density P -0.150.15 - 0.150.15 - 0.150.00 0.00 Value

W^{fb} Iterative Prune Example

Baseline Results

Model Human [3]	-	Word Error Rate (WER) 5.83	
Deep Speech Deep Speech	0.00 90.54	5.12 5.39	
Training Set - Iterative Prune Validation Set - Original Validation Set - Original Validation Set - Original Validation Set - Original Total Sparsity (%) Iterative Pruning Training and Validation Loss			
% 60 50 V 40 40 30 V 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Tulling Hailing	and validation Loss	

90.54% Total Sparsity, Non-Zero Parameter % Per-Layer

Future Work

- Reach sparsity limit with baseline method.
- Investigate sparsity patterns within the network.
- Experiment with alternative methods including those that induce sparsity during the initial training process.

Acknowledgements

With thanks to Myrtle for supporting the project by providing expert supervision, an infrastructure for experiments, and an FPGA platform for deployment.

Citations

- [1] "Amazon.com announces fourth quarter sales up 38% to \$60.5 billion," Amazon Press Room Press Release, Feb 2018.
- [2] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., "Deep speech: Scaling up end-to-end speech recognition," arXiv preprint arXiv:1412.5567, 2014.
- [3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., "Deep speech 2: End-to-end speech recognition in english and mandarin," in International Conference on Machine Learning, pp. 173–182, 2016.