import numpy as np

CIFAR-10 classifier with CNN

Task 1: Forward pass and Backward pass for Convolution

Implement a naive conv_forward function and apply the vertical and horizontal filter on example images

Implement a conv_forward using im2col and also apply the filter on example images

Implement a conv_backward using im2col and do some numerical gradient test

```
In [1]:
```

```
from sklearn.datasets import load_sample_image
```

In [4]:

```
china = load_sample_image('china.jpg')[150:220, 130:250] / 255
flower = load_sample_image("flower.jpg")[150:220, 130:250] / 255
images = np. array([china, flower])
batch_size, height, width, channels = images.shape
```

In [5]:

```
import sklearn
import matplotlib.pyplot as plt
```

In [6]:

```
# Create 2 filters
filters = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)
filters[:, 3, :, 0] = 1  # vertical line
filters[3, :, :, 1] = 1  # horizontal line
```

In [7]:

```
plt. subplot(1, 2, 1)
plt. imshow(filters[:, :, 0, 0])
plt. subplot(1, 2, 2)
plt. imshow(filters[:, :, 0, 1])
plt. show()
```


In [8]:

```
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.imshow(china)
plt.subplot(1, 2, 2)
plt.imshow(flower)
plt.tight_layout()
plt.show()
```


In [31]:

#!pip install torch torchvision -i https://pypi.douban.com/simple

In [9]:

```
# if you don't have torch and torchvision
# uncomment and run the above cell
import torch
import torch.nn.functional as F
```

In [12]:

```
filters = np. transpose(filters, (3, 2, 0, 1))

# We will want our image to be NCHW format for pytorch to process
images = np. transpose(images, (0, 3, 1, 2))
```

In [13]:

```
# Example on convolution using pytorch
images_tensor = torch. Tensor(images)
filters_tensor = torch. Tensor(filters)
outputs = F. conv2d(images_tensor, filters_tensor,)
```

In [14]:

```
china_convolved = outputs[0].numpy()
flower_convolved = outputs[1].numpy()
```

In [15]:

```
china_convolved = np. transpose(china_convolved, (1, 2, 0))
flower_convolved = np. transpose(flower_convolved, (1, 2, 0))
```

In [16]:

```
plt.figure(figsize=(20, 20))
plt.subplot(1, 2, 1)
plt.imshow(china_convolved[:, :, 0], cmap='gray')
plt.subplot(1, 2, 2)
plt.imshow(china_convolved[:, :, 1], cmap='gray')
plt.show()
```


In []:

```
def conv forward naive(x, w, b=None, pad=0, strides=1):
    A naive implementation of the forward pass for a convolutional layer.
    The input consists of N data points, each with C channels, height H and width
    W. We convolve each input with F different filters, where each filter spans
    all C channels and has height HH and width HH.
    Input:
    - x: Input data of shape (N, C, H, W)
    - w: Filter weights of shape (F, C, HH, WW)
    - b: Biases, of shape (F,)
    - stride: The number of pixels between adjacent receptive fields in the
        horizontal and vertical directions.
    - pad: The number of pixels that will be used to zero-pad the input.
    Returns a tuple of:
    - out: Output data, of shape (N, F, H', W') where H' and W' are given by
     H' = 1 + (H + 2 * pad - HH) / stride
     W' = 1 + (W + 2 * pad - WW) / stride
    - cache: (x, w, b, pad, strides)
    out = None
   N, C, H, W = x. shape
   F, C, HH, WW = w. shape
    S = strides
   P = pad
    if b is None:
       b = np. zeros((F))
       TODO: write your code here
    cache = (x, w, b, pad, strides)
    return out, cache
```

In [35]:

```
Here apply you implmentation of convolution on the sample images
and show the result
```

Out[35]:

'\n Here apply you implmentation of convolution on the sample images \n and s how the result \n'

im2col

it turns out that we can use a clever algorithm called im2col to convert a image to a matrix and the convolution (which we naively implement using for-loops) will be a single matrix multiplication

check this <u>url (http://cs231n.github.io/convolutional-networks/#conv)</u> and Yangqing's memo <u>Conv in Caffe (https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo)</u>

Optimizing Conv in Caffe

- Solution: Converting convolution to GEMM
 This is done in two (lazy) steps:
 (1) do an im2col to convert the image to a matrix
 - (2) call GEMM to do the actual computation
- Pro: simple logic, easy implementation
- Con: LOTS of memory overhead (and it does not utilize the flops/param advantage very well)
 - * More rants at Yangqing's memo: Convolution in Caffe

The Math Illustrated feature vector: CxKxK Image: CxHxW

The Math Illustrated

The Math Illustrated

In [17]:

In [18]:

In [36]:

```
Here apply you implmentation of convolution on the sample images
and show the result
```

Out[36]:

'\n Here apply you implmentation of convolution on the sample images\n and s how the result\n'

In [19]:

We can actually sees that the gradient through the convolution is the rotated kernel convolves over the error from later layer

(if you prefer solid math over this visual proof, check this
this
this
thitps://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/) and this lecture notes (https://courses.cs.tau.ac.il/Caffe_workshop/Bootcamp/pdf_lectures/Lecture%203%20CNN%20-%20backpropagation.pdf)

In [20]:

```
def eval numerical gradient array(f, x, df, h=1e-5):
    Evaluate a numeric gradient for a function that accepts a numpy
    array and returns a numpy array.
    grad = np. zeros_like(x)
    it = np. nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it. finished:
        ix = it.multi index
        oldval = x[ix]
        x[ix] = oldval + h
        pos = f(x).copy()
        x[ix] = oldval - h
        neg = f(x).copy()
        x[ix] = oldval
        grad[ix] = np. sum((pos - neg) * df) / (2 * h)
        it.iternext()
    return grad
```

You relative error from the below cell output should be around 1e-9

In []:

```
x = np. random. randn(4, 3, 5, 5)
w = np. random. randn(2, 3, 3, 3)
b = np. random. randn(2,)
dout = np. random. randn(4, 2, 5, 5)
stride, pad = 1, 1
dx_num = eval_numerical_gradient_array(lambda x: conv_forward_im2col(x, w, b, pad, stride)[0],
x, dout)
dw_num = eval_numerical_gradient_array(lambda w: conv_forward_im2col(x, w, b, pad, stride)[0],
db num = eval numerical gradient array(lambda b: conv forward im2col(x, w, b, pad, stride)[0],
b, dout)
out, cache = conv forward im2col(x, w, b, pad, stride)
dx, dw, db = conv backward im2col(dout, cache)
def rel error(x, y):
     """ returns relative error """
    return np. max (np. abs (x - y) / (np. maximum (1e-8, np. abs (x) + np. abs (y))))
print("dx error: ", rel_error(dx, dx_num))
print("dw error: ", rel_error(dw, dw_num))
print("db error: ", rel_error(db, db_num))
```

Task 2: Forward pass and backward pass of other layers

you can choose either pool method and implement

```
In [22]:
```

In [23]:

In [24]:

In [26]:

Task3: Combine all this together and train a CNN on CIFAR-10!

You can use an arch samiliar to LeNet

- 1. overfit a small data(achieve 100% accuracy on a small data)
- 2. train on the whole training data, validation on validation data, finally test on test data

#!pip install torch torchvision -i https://pypi.douban.com/simple

In [29]:

```
import torchvision
# I'm using torchvision to load the CIFAR10 dataset
# if you don't have torch and torchvision
# uncomment and run the above cell
def load cifar(path='./data'):
    cifar train = torchvision. datasets. cifar. CIFAR10 (path, download=True)
    cifar_test = torchvision.datasets.cifar.CIFAR10(path, download=True, train=False)
    cifar_train_img_list, cifar_train_label_list = [], []
    for train_example in cifar_train:
        img = np. array(train example[0])[np. newaxis, :]
        label = train_example[1]
        cifar_train_img_list.append(img)
        cifar_train_label_list.append(label)
    cifar_train_img = np.concatenate(cifar_train_img_list, axis=0).astype(np.float) / 255
    cifar train label = np. array (cifar train label list). astype (np. int)
    cifar_test_img_list, cifar_test_label_list = [], []
    for test_example in cifar_test:
        img = np. array(test_example[0])[np. newaxis, :]
        label = test_example[1]
        cifar test img list.append(img)
        cifar_test_label_list.append(label)
    cifar test img = np.concatenate(cifar test img list, axis=0).astype(np.float) / 255
    cifar_test_label = np. array(cifar_test_label_list). astype(np. int)
    return cifar_train_img[:49000], cifar_train_label[:49000], \
          cifar train img[49000:], cifar train label[49000:], \
          cifar_test_img, cifar_test_label
```

In [32]:

```
X, y, X_val, y_val, X_test, y_test = load_cifar()
X = np. transpose(X, (0, 3, 1, 2))
X_val = np. transpose(X_val, (0, 3, 1, 2))
X_test = np. transpose(X_test, (0, 3, 1, 2))
batch_size = 64
X_mini_batches = [X[k:k+batch_size] for k in range(0, len(X), batch_size)]
y_mini_batches = [y[k:k+batch_size] for k in range(0, len(y), batch_size)]
X_dummy = X[:100]
y_dummy = y[:100]
```

Files already downloaded and verified Files already downloaded and verified

```
In [33]:
X. shape, y. shape, X_val. shape, y_val. shape, X_test. shape, y_test. shape
Out[33]:
((49000, 3, 32, 32),
 (49000,),
 (1000, 3, 32, 32),
 (1000,),
 (10000, 3, 32, 32),
 (10000,)
Check if you have any bug by overfitting a small dat
In [34]:
X_dummy.shape, y_dummy.shape
Out[34]:
((100, 3, 32, 32), (100,))
In [ ]:
for epoch in range (200):
    alpha = 0.1
    reg = 0.01
    # forward pass through network using X_dummy
        TODO
    #from ipdb import set_trace; set_trace()
    # Calculate the loss
        TODO
    acc = np. mean(np. argmax(pred, axis=1) == y_dummy)
    if epoch % 20 == 0:
         #print('dloss: ', dloss)
        print('epoch:', epoch, 'loss:', loss)
print('epoch:', epoch, 'reg_loss:', reg_loss)
print('epoch:', epoch, 'acc:', acc)
    # backward pass through network
     TODO
```

update parameter

TODO

Train on the whole dataset

```
for epoch in range(num_epoch):
    for X_batch, y_batch in zip(X_batches, y_batches)
        forward(X_batch)
        loss(pred, y_batch)
        backward()
        update()
    if epoch % interval == 0:
        validate(X_val, y_val)

test(X_test, y_test)
In [ ]:
```