1. Given the data and information that follow, compute the total direct cost for each project duration. If the indirect costs for each project duration are \$90 (15 time units), \$70 (14), \$50 (13), \$40 (12), and \$30 (11), compute the total project cost for each duration. What is the optimum cost-time schedule for the project? What is this cost?

ACT.	NORMAL TIME	COST	MAXIMUM CRASH TIME	CASH COST (per week)
A	5	50	1	20
В	3	60	2	60
C	4	70	0	0
D	2	50	1	10
E	5	100	3	60
F	2	90	1	100
G	5	50	1	30
Н	2x	60	0	40
- 1	3	<u>200</u> \$730	1	200

PROJECT DURATION	15	14	13	12	11
TOT. DIRECT COST	730	740	760	950	1150
TOT. INDIRECT COST	90	70	50	40	30
TOTAL COSTS	820	810	810	990	1180

2. If the indirect costs for each duration are \$1,200 for 16 weeks, \$1,130 for 15 weeks, \$1,000 for 14 weeks, \$900 for 13 weeks, \$860 for 12 weeks, \$820 for 11 weeks and \$790 for 10 weeks, compute the total costs for each duration. Plot these costs on a graph. What is the optimum cost-time schedule?

ACT.	NORMAL TIME	NORMAL COST	MAXIMUM CRASH TIME	CRASH COST (SLOPE)
Α	4	30	1	10
В	7	60	2	70
C	1	80	0	0
D	4	40	2	20
E	5	110	3	50
F	5	90	3	200
G	2	60	1	30
н	2	70	1	40
1	2	140 \$ 6 80	. 0	0

For duration 14, B is chosen over D & E because it is the earliest task. If problems occur, you can crash D or E.

PROJECT Duration	DIRECT COSTS	INDIRECT COSTS	TOTAL COSTS
10	1290	790	2080
11	1010	820	1830
12	930	860	1790
13	860	900	1760
14	790	1000	1790
15	720	1130	1850
16	680	1200	1880

ACT.	NORMAL TIME	NORMAL COST	MAXIMUM CRASH TIME	CASH COST (per week)
Α	10	40	2	80
В	8	10	3	30
C	5	80	1	40
D	11	50	2	50
E	15	100	4	100
F	6	<u>20</u> 300	1	30

PROJECT DURATION	22	23	24	25	26	<u>27</u>
TOT. DIRECT COST TOT. INDIRECT COST	830 50	650 60	470 120	380 180	330 240	300 300
TOTAL COSTS Incentive Costs with incentive	880 -50 830	710 -40 670	590 -30 560	560 -20 540	570 -10 560	600 600

Take incentive down to 25 weeks, which is the low cost and optimum--with or without the incentive. However, you are increasing the chances of being late by creating two critical paths.

PROJECT DURATION	DIRECT COSTS	INDIRECT COSTS	TOTAL COSTS	WITH INCENTIVE
22	830	50	980	930
23	650	60	710	670
24	470	120	590	560
25	380	180	560	540
26	330	240	570	560
27	300	300	600	600

4. Use the information contained below to compress one time unit per move using the least cost method. Reduce the schedule until you reach the crash point of the network. For each move identify what activity(s) was crashed, the adjusted total cost, and explain your choice if you have to choose between activities that cost the same. Note: Crash point of the network is the point in which the duration cannot be reduced any further.

			Direct Costs				
Activity		Maximum	Normal		Cra	ash	
ID	Slope	Crash Time	Time	Cost	Time	Cost	
A	-	0	4	\$50	0	-	
В	\$40	3	5	70	2	\$190	
C	40	1	5	80	4	120	
D	40	2	4	40	2	120	
E	40	2	5	60	3	140	
F	40	1	5	50	4	90	
G	30	1	4	70	3	100	
Н	30	1	4	80	3	110	
I	-	0	3	50	0	-	

Total direct normal costs—\$550

Caution: There is an error in the text – the "crash" cost for Activity C should be 120, not 40. This should not be a problem for most students since the slope is correctly listed as \$40, but we encourage you to point this out before assigning this exercise.

Explanation: The cheapest solution for crashing both ABFGI and ACEHI critical paths.

Explanation: Choose C instead of E to avoid creating ACDGI and ACDHI critical paths. Either B or F would be the cheapest solution for the other critical path. Choose B because it occurs earlier and if things get delayed, F could still be crashed.

Explanation: See above explanation for B. E is the only alternative

for the ACEHI critical path.

Completion Time <u>17</u> Total cost \$ 890 Activities <u>E, D, B</u> Changed

Explanation: E is the only alternative for the ACEHI critical path and D is the only available option for both the ACDGI and ACDHI paths. B is chosen instead of F because if B is delayed, F could still be crashed.

Crash Point!