DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Outline

- Decision trees
 - Information gain / entropy measures
 - Training algorithm
 - Example
- Ensemble models
 - Bagging
 - Boosting

Decision Tree

A possible decision tree for the data:

- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key Idea: Use Recursion Greedily

Splitting

Would we prefer to split on X_1 or X_2 ?

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Splitting

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X_1	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Use entropy-based measure (Information Gain)

Entropy

Suppose X can have one of m values... V_{1} , V_{2} , ... V_{m}

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

H(X) = The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

High/Low Entropy

Which distribution has high entropy?

Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities

Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
History	No	
Math	Yes	

Let's assume this reflects the true probabilities

E.G. From this data we estimate

•
$$P(LikeG = Yes) = 0.5$$

•
$$P(Major = Math) = 0.5$$

Note:

•
$$H(X) = 1.5$$

$$\bullet H(Y) = 1$$

X = College Major

Y = Likes "Gladiator"

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

- H(Y|X=Math) =
- H(Y|X=History) =
- H(Y/X=CS) =

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- $\bullet \ H(Y|X=CS)=0$

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \Sigma_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_j) H(Y \mid X=v_j)$$

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math		
History		
CS		

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{i} Prob(X=v_i) H(Y \mid X=v_i)$$

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

Information Gain

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

- H(Y) =
- H(Y|X) =
- Thus IG(Y|X) =

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

- H(Y) = 1
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

Relevance for decision trees

- Multiple features $X_1, ..., X_d$
- Label Y: Initial entropy H(Y)
- How much each feature X_i helps explain uncertainty in Y
 - Compute Information gain

$$IG(Y|X_i) = H(Y) - H(Y|X_i)$$

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Impurity Metrics

Split a node according to max reduction of impurity

1. Entropy

2. Gini Index

– For binary case with prob p_0 , p_1 :

$$I(p_0, p_1) = 2p_0p_1 = 2p_0(1 - p_0)$$

– For multi-class with prob $p_1, ..., p_K$:

$$I(p_1, ... p_K) = \sum_{i=1}^{K} p_i (1 - p_i)$$

- Properties
 - Impurity metrics have value 0 for pure nodes
 - Impurity metrics are maximized for uniform distribution (nodes with most uncertainty)

Overfitting

Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning
 - Remove branches of the tree that increase error using cross-validation

Real-valued Features

- Change to binary splits by choosing a threshold
- One method:
 - Sort instances by value, identify adjacencies with different classes

Choose among splits by InfoGain()

Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label

Decision Trees vs Linear Models

Regression Trees

Summary Decision Trees

- Greedy method for training
 - Not based on optimization or probabilities
- Uses impurity metric (e.g., information gain or Gini index) for splitting
- Advantages
 - Interpretability of decisions
- Limitations
 - Decision trees are prone to overfitting
 - Can be addressed by pruning or using ensembles of decision trees

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?