

Page No.	
Dete	

8] For j=1 to V

9] It m[i,j]=1

10] If y j is in Q and weight (i,j) { dist[j]

11] Pred[j] = weight (i,j)

Q3 For a sparse graph G= (V, E), where |E| = Q(V) is the implementation of prims algorithm with a Fibhonacci, heap asymptotically faster than the binary heap implementation?

What about for a dense graph where |E| = Q(V²)! How must the sizes |E| & |V| are related for the hibonacci-heap implementation to be asymptotically faster than the binary heap implementation?

Ans Consider the running times of prime algorithm implemented with either a binary heap or a Fiberaca heap

Suppose |E| = O(V) then the running times are

Binary O(E log V)

Fibonaccii: O(E+V log V) = O(V log V)

It |E| = O(V2) then

It $|E| = O(V_2)$ then

Binary: $O(E \log V) = O(V_2 \log V)$ Fibonacci: $O(E + V_2 \log V) = O(V_2$

The Fibonacci heap heats the binary heap Implementation of grims algorithm when |E| = W(V) since $O(E+V\log V) = O(V\log V)$ but $O(E\log V) = W(V\log V)$ $W(V\log V)$ For |E| = W(V) for $|E| = W(V\log V)$

The Fibonacci version dearly has a better running time than the ordinary version

	Page No. Date
Q4	Suppose that all edge weights in agraph are integers in the range from 1 to IVI. How fast can we make Kruskalis
manglan.	algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W?
21 1	in the range from 1 to W for some constant W?
Ans	It w is a constant we can use Counting Sort
e the	
t the	Souting the edges: O(ElogE) times
	O(E) operations on a disjoint-set favest taking O(EX(V))
eite	The Sout dominates and hence the total time is O(E logE)
ol ta	range 1 (V) wields O(V+F) = O(F) time sortion
	Sarting using counting sart when the edges hall in the range $1, - \cdot \cdot \cdot V $ yields $O(V+E) = O(E)$ time sarting. The total time is then $O(E \times (V))$.
	If the edges fall in the range 1,, W for any Constant
	If the edges fall in the range 1,, W for any Constant W we still need to use a (E) time for sorting and the total running time can't be improved further.
Q5	
	range from 1 to IVI. How fast can you make Porins algorithm
	Suppose that all edge weights in a graph are integers in the range from 1 to IVI. How fast can you make Parims algorithm run? What if the edge weights are integers in the range from 1 to W far some constant W?
Ans	
	The running time of Poins algorithm is composed O(V) initidization
	O(V. time for EXTRACT-MIN) O(E'. time for DECREASE-KEY)
	TO THE 1ST NEON ENOUGH
	If the edges are is the range I, IVI the Van Emde Boas priority queue can speed up EXTRACT - MIN and
	Boos priority queue can speed up EXTRACT - MIN and

	Page No. Date	
alt in a	DECREASE - KEY to O (log log V) thus yielding	a total
23000	running time of O(V log log V + E log log V) = O(1	E. log log Y)
2005	It the edges are in the range from I to W we	can implemen
	the queue as an array [1 - W+17 where the	ith slot
	holds a doubly linked list of the edges with weigh	anA
	- The (W+1) st slot contains on EXTRACT-MIN,	ממש שנים
	in O(W) = O(1) time since we can simply scan	for the
ale un	first non empty slot and noturn the 1st element	of the
A Dr. 210	constitution of the training of the southernoon (310)	
·0(E 109	- DECREASE - KEY was in O(1) time as well 5	ince it con
in the	be implemented by moving an elements forom one	slot to
milion s	be implemented by moving an elements form one another.	
,	the total Trac is then O(EX(VII).	
in Conto	If the edges fell is the mange ! i . Who	
y and the	I we still need to use also time too scale	
	Total numing time can't be improved hutter	
alt al	Suppose that all relige wight in a graph one integer	7.0
it is calo	Surge from I to IVI . How fast on you make lained	
age Pen	such letter if the edge waght one integers in the a	
3	I to W for some content W?	
	The suppring time of Pages about him is compo	A P
15-1	Office of authorities and	d and
	O(Vetime has EXTRACT-PITCH)	
	OLE time Ro SECRETAGE - KEY)	

KIRGE FIGHTX7