IoTFuse 2020 Data Workshop

Transfer Learning for IoT

Goals

- Design a transfer learning experiment on Google Colab
- Deploy a computer vision service
- Design a web app to consume the web service

What we will use

- Keras with Tensorflow backend
 - Easy to use
 - API for using VGG, Inception, and ResNet
- ML deployment service
- Pretrained image-classifier model
- Web app

What we will need

- Web Browser
- Google account to kick off experimentation with Google Colab

Part I: Crash Course - Neural Networks

The neuron

- Modeled after the essential unit of the human brain
- Can have multiple inputs
- Each input has weights that indicate its significance

Neural Network

Keras layers: Dense, Softmax

- Composed of layers of neurons
- Can be used as regressors or classifiers

Activation Function

Keras layer: Conv2D

- Determines output of a neuron
- On/off: is a neuron *fired* or not?

ReLU

- Rectified Linear Unit
- Computationally efficient
- Allows faster convergence

Dropout

Keras layer: Conv2D

- We randomly remove neurons during model training
- Prevents "over-fitting"

Part II: Crash Course - Convolutional Neural Networks

Convolutional Neural Network

Keras layer: Conv2D

Each convolution layer:

- Extracts higher-level features
- Maps the input into a smaller feature space

Max Pooling

Keras layer: AveragePooling2D

- Replaces highest values in an output matrix with the local maximum
- Reduces resolution → Less computation
- Helps in optimization

An example: VGG16

- Achieves 92.7% top-5 test accuracy in ImageNet
- Trained with 14M images
- 1000 classes

Part III: What is Transfer Learning?

Transfer Learning

- A technique for taking a network that has already been trained for a domain and adapting it to your domain
- We can exploit what was previously learned to improve the model's generalization in another setting

Transfer Learning

"One of the most powerful ideas in deep learning is that you can take knowledge the neural network has learned from one task and apply that knowledge to a separate task" — Andrew Ng

Transfer Learning Applications

- Natural language translation
- Using financial anomaly detection models to find mineral gold deposits
- Very common in Computer Vision: you would rarely train from scratch anymore

Why we need it

- Deep convolutional neural network models may take days or even weeks to train on very large datasets.
- Dynamic domains with limited datasets are common in the IoT space.
- Speed of training and higher generalization capability is crucial.
- We can get closer with transfer learning.

When to use it

Our Task: Learning from COVID-19 Chest X-Rays

ML experimentation workflow

- Understanding your data
- 2. Formulating the problem is it a classification problem or a regression problem?
- 3. Data preparation Do we augment data? How do we create training and testing data?
- 4. Learning and predicting start with a pretrained convolutional neural network
- 5. Performance evaluation choosing the right metrics; accuracy, precision, recall

Part I: Understanding your data

Understanding your data

- What are you trying to predict?
- Which datasets do you use?
- How many classes exist?
- What assumptions are being made of the data?

Understanding your data

Caution!

- 1. The goal of this tutorial is **not** medical image analysis; it's only to demonstrate the potential of transfer learning
- 2. This is a very small dataset
- We have to be aware of biases
 - a. Is there patient overlap? If the COVID-positive dataset is from adults whose ages range from 30~70, whereas the healthy dataset is from children, the detector might be learning the difference between anatomies of adults and children (bone structure, medical device artifacts, identification tags).
 - b. The detector may learn subtleties in the image quality (blur, brightness)

Part II: Setting up the problem

Setting up the problem

- Do we have enough data?
- Is the problem similar to a prior learning task?

Setting up the problem

Binary classification problem: **infected** (positive) vs. **non-infected** (negative)

	PREDICTION		
ACTUAL	Negative	Positive	Patients we falsely diagnose (EXPENSIVE)
Negative	TN	FP	
Positive	FN	TP	D U T D ((T D : E N))
			Recall: TP / (TP + FN)
Patients we fail to diagnose (BAD)			Precision: TP / (TP + FP)

Part III: Data Preparation

Data Augmentation

Rotate Flip Scale Translate

- Helps increase the amount of relevant data
- Makes your model more versatile

Machine Learning Experimentation

Part 2: Model Deployment

Model deployment

- Wrapping up the model in an API
- 2. Creating a web service
- 3. Web service input: **features**
- 4. Web service output: **prediction**

Part 3: Creating visualizations

References

- https://hbr.org/2016/12/how-to-make-better-predictions-when-you-dont-have-enough-data?platform=hootsuite
- https://github.com/lindawangg/COVID-Net/
- https://healthcare-in-europe.com/en/news/imaging-the-coronavirus-disease-covid-19.html