

Regression and Variants

Minh-Hung An - TA Minh-Loi Nguyen - STA

Objectives

Input data Descriptive Statistics Correlation Analysis Hypothesis Testing A/B Testing Train model Evaluation

- ✓ Understand the concept of Regression
- ✓ Understand the variants of Linear Regression
- ✓ Linear Regression & Prompt Engineering

Nguyên lý hoạt động của A/B testing với vai trò feature như sau:

Mỗi dòng dữ liệu được gán ngẫu nhiên vào một trong hai nhóm, nhóm A hoặc nhóm B. Việc ngẫu nhiên hóa này giúp đảm bảo rằng không có sự thiên vị hoặc thành kiến nào trong việc phân nhóm, làm cho kết quả thử nghiệm đáng tin cậy và có thể tổng quát hóa.

Outline

Regression

Linear Regression

Regularization

Other

Outline

- Regression
- Linear Regression
- Regularization
- 4 Other

Regression Formula

$$Y = a + bX + \in$$

Regression là gì?

Regression là gì?

Supervised Learning

Predict continous output

Úng dụng

Common Regression Metrics

Outline

- Regression
- Linear Regression
- Regularization
- 4 Other

Linear Regression là gì?

Là việc khớp một đường thẳng hoặc mặt phẳng (siêu) với một tập hợp các điểm.

Linear Regression

$$\hat{y} = w_0 + w_1 x + \varepsilon$$

- ε: thành phần ngẫu nhiên hoặc thành phần lỗi
- x : feature của biến dữ liệu
- \hat{y} : giá trị mong muốn dự đoán
- w₁: Hệ số góc của đường thẳng
- w₀: Hệ số tự do của đường thẳng

Linear Regression

Siải bài toán Regression

$$\arg\min_{w_0, w_1} \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2$$

Cost Function

Cost Function

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

Calculus

$$\frac{\partial \epsilon^2}{\partial w_0} = \sum_{i=0}^{n} -2(y_i - w_0 - w_1 x_i) = 0$$

$$\frac{\partial \epsilon^2}{\partial w_1} = \sum_{i=0}^{n} -2x_i(y_i - w_0 - w_1 x_i) = 0$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

$$w_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i x_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i}$$

Gradient Descent

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Dánh giá mô hình Linear Regression

♦ Đánh giá mô hình Linear Regression

$$MSE = \frac{1}{n} \sum \left(y - \hat{y} \right)^{2}$$
The square of the difference between actual and predicted

Dánh giá mô hình Linear Regression

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

♦ Đánh giá mô hình Linear Regression

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$

Linear Regression

Linear Regression

Outline

- Regression

 Linear Regression
- Regularization
- 4 Other

Overfitting

Không khớp trên bộ dữ liệu khác

Linear Regression

- Problem: Overfitting xảy ra vì chỉ giảm thiểu loss được xác định trên training dataset
- Weights $\mathbf{w} = [w_1, w_2, ..., w_D]$ trở nên quá lớn để fit trên training dataset
 - Weights sẽ hoạt động không tốt trên test dataset

R(w): Regularizer

- Solution: Minimize a regularized objective $L(w) + \lambda R(w)$
 - Ngăn chặn Weights w trở nên quá lớn
 - Giải thích : Minimize trên cả training error + magnitude of vector

 $\lambda \geq 0$

Linear Regression

Ridge Regression

$$L_{reg}(\mathbf{w}) = L(\mathbf{w}) + \lambda R(\mathbf{w})$$

$$R(\mathbf{w}) = ||\mathbf{w}||_2^2 = \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$w_{ridge} = \arg\min_{w} L(w) + \lambda R(w)$$

$$= \arg\min_{w} \sum_{n=1}^{N} (y_n - w^{\mathsf{T}} x_n)^2 + \lambda w^{\mathsf{T}} w$$

$$w_{rid,ge} = (\sum_{n=1}^{N} x_n x_n^{T} + \lambda I_D)^{-1} (\sum_{n=1}^{N} y_n x_n)$$
 (the optimal w)

Lasso Regression

$$L_{reg}(w) = L(w) + \lambda R(w)$$

$$R(w) = ||w||_1 = \sum_{d=1}^{D} |w_d|$$

$$w_{lasso} = \arg\min_{\mathbf{w}} L(\mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \arg\min_{\mathbf{w}} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)^2 + \lambda ||\mathbf{w}||_1$$

Elastic-Net Regression

$$L_{reg}(\mathbf{w}) = L(\mathbf{w}) + \lambda_1 R_1(\mathbf{w}) + \lambda_2 R_2(\mathbf{w})$$

$$R_1(\mathbf{w}) = ||\mathbf{w}||_1 = \sum_{d=1}^{D} |w_d| \qquad \qquad R_2(\mathbf{w}) = ||\mathbf{w}||_2^2 = \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Linear Regression

Outline

Regression **Linear Regression** Regulariation Other

Types of Regression

Linear Regression

Lasso Regression

Ridge Regression

Support Vector Regression

Decision Tree Regression

Random Forest Regression

Logistic Regression

♦ Support Vector Regression

Decision Tree Regression

Random Forest Regression

♦ Logistic Regression

