

Universidade Federal do Triângulo Mineiro

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

PLANO DE ENSINO

1. Identificação:

ANO	SE	EMESTRE		PERÍODO	
2024]	Primeiro		4 °	
CURSO(s): Engenharias			TURNO: Integral		
COMPONENTE CURRICULAR:			CÓDIGO:		
Tópicos em Geração Distribuída			TGD		
NATUREZA: Eletiva					
DEPARTAMENTO: Engenharia Elétrica					
N° DE H∕A	N° DE H/A	TOTAL (H/A)		N° DE H∕A	
TEÓRICA:	PRÁTICA:	SEMESTRAIS/AN	UAL	SEMANAIS:	
30	30	30 60 4			
DOCENTE(s) RESPONSÁVEL(is).					

DOCENTE(s) RESPONSÁVEL(is):

Prof. Arnaldo José Pereira Rosentino Junior

Prof. Fabrício Augusto Matheus Moura

Prof. Marcus Vinicius Borges Mendonça

2. Perfil do Egresso:

Os cursos de engenharia da UFTM visam à formação de um profissional generalista e com sólido conhecimento teórico e prático, capacitado a elaborar, executar e analisar projetos técnicos e científicos em sua área de formação e acompanhar as evoluções tecnológicas da engenharia. Apto a desenvolver pesquisas, utilizando as novas tecnologias para a engenharia de sua formação. Poderá atuar administrativamente no desempenho de funções relacionadas à engenharia. Possuir um conhecimento humanístico e da realidade social do país, visando atender as expectativas da nação. Em suas atividades, considera a ética, a segurança, a legislação e os impactos ambientais.

3. Ementa:

Política Energética. Aspectos gerais do setor elétrico brasileiro. Introdução a sistemas de distribuição de energia. Recursos energéticos distribuídos. Impactos técnicos da micro e mini geração distribuída. Impactos econômicos da geração distribuída. Aplicações com em ambiente computacional (OpenDSS + Python).

4. Objetivos da Disciplina:

O curso visa apresentar os principais aspectos relacionados à Recursos Energéticos Distribuídos (REDs) considerando fatores técnicos, econômicos e regulatórios. Propõese a tratar as principais dimensões envolvidas nessa temática. Ao final da disciplina, os

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

alunos terão visão geral do setor elétrico brasileiro, conhecimento gerais sobre os sistemas de distribuição, recursos energéticos distribuídos, impactos técnicos e econômicos da micro e mini geração distribuída, e análise de impacto através de simulação computacional.

5. Conteúdo

- 1. Aspectos gerais do setor elétrico brasileiro
- 2. Sistemas de distribuição
- 3. Recursos energéticos distribuídos
- 4. Qualidade da energia elétrica
- 5. Capacidade de hospedagem
- 6. Fundamentos de Python
- 7. Modelagem e simulação de elementos básicos com OpenDSS
- 8. Modelagem e simulação de elementos REDs com OpenDSS
- 9. Estudos de caso

10. Metodologias de Ensino e Aprendizagem

Aulas expositivas com recursos de multimídia e utilização de simuladores computacionais. Os conteúdos são flexíveis e adaptáveis às necessidades das turmas.

11. Avaliação

O sistema de avaliação será realizado de forma gradual, cumulativa e quantitativa para desenvolvimento teórico da disciplina. A avaliação gradual será aplicada em função do conjunto de conceitos necessários para que o aluno tenha compreensão dos tópicos. Ela é cumulativa, pois os conceitos de um tópico serão utilizados em tópicos posteriores. E, finalmente, quantitativa, por que serão atribuídos pontos às avaliações.

A avaliação será realizada seguindo a seguinte distribuição de pontuação:

Item	Descrição	Percentual [%]	
1	Prova Teórica	15	
2	Lab_1: Revisão Python_Parte 1	3	
3	Lab_2: Revisão Python_Parte 2	3	
4	Lab_3: Simulação Básica OpenDSS - Snapshot	3	
5	Lab_4: Simulação Básica OpenDSS – Time Series 3		
6	Lab_5: Integração OpenDSS com Python	3	
7	Lab_6: Modelagem REDs - PVSystem 3		
8	Lab_7: Modelagem REDs – Storage System	3	
9	Lab_8: Simulação REDs OpenDSS com Python - PVSystem 3		
10	Lab_9: Simulação REDs OpenDSS com Python – Storage	3	
	System		
11	Lab_10: Estudo de Caso RED_Qualidade da Energia:	3	
	Desequiliíbrio		
12	Lab_11: Estudo de Caso RED_Qualidade da Energia:	3	
	Harmônicas		

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

Item	Descrição	Percentual [%]
13	Lab_12: Estudo de Caso RED_Hosting Capacity_Parte 1	3
14	Lab_13: Estudo de Caso RED_Hosting Capacity_Parte 2	3
15	Lab_14: Estudo de Caso RED_Hosting Capacity_Parte 3	3
16	Lab_15: Estudo de Caso RED_Hosting Capacity_Parte 4	3
17	Trabalho Prático	40

12. Novas oportunidades de aprendizagem

Serão realizados exercícios e exemplos para fixação e revisão de conteúdo. A execução de exercícios exige frequente estudo por parte de cada aluno, de modo que seu domínio da matéria esteja em sintonia com o desenvolvimento das aulas. Este recurso é essencial para uma disciplina que possui características eminentemente acumulativas de conhecimento para sua progressão. Estudos em grupo, fora de sala de aula criam unidade, cooperação e incentivo para o progresso da turma. O professor e o monitor da disciplina estarão constantemente à disposição dos alunos para cooperar com este processo. Além disso, os alunos que não atingirem 60% da nota (média 6) terão nova oportunidade com o exame final oferecido pela Instituição como forma de recuperação para alunos com médias entre 4 e 5,9.

13. Bibliografia:

Bibliografia Básica:

- 1. BOLLEN, M.; HASSAN, F. Integration of Distributed Generation in the Power System. John Wiley & Sons, 2011.
- 2. PINHO, JOÃO TAVARES; GALDINO, MARCO ANTÔNIO. **Manual de Engenharia para Sistemas Fotovoltaicos**. CEPEL/CRESESB. 2014.
- 3. TOLMASQUIM M. Recursos Energéticos Distribuídos E Suas Potencialidades. Synergia; 1ª edição, 2019.

Bibliografia Complementar:

- 1. CASTRO, N.; DANTAS, G.. Geração Distribuída: Experiências Internacionais e Análises Comparadas. GESEL, Rio de Janeiro: Publit, 2018.
- 2. DUGAN, Roger C.; MONTENEGRO, D. Reference Guide: **The Open Distribution System Simulator** (**OpenDSS**). Electric Power Research Institute (EPRI). June, 2019.
- 3. SEXAUER, J.; RADATZ, P.; ROCHA, C. **The Open Distribution System Simulator (OpenDSS) Introdução ao OpenDSS**. Electric Power Research Institute (EPRI). Julho, 2016.
- 4. FUNDAÇÃO GETÚLIO VARGAS (FGV). **Recursos energéticos distribuídos**. Cadernos FGV Energia, Rio de Janeiro, v. 3, n. 7, 2016.
- 5. EL HAGE, Fábio S.; FERRAZ, LUCAS P. C.; DELGADO, MARCO A. P. A estrutura tarifária de energia elétrica: Teoria e aplicação. Ed.2. Rio de Janeiro: Synergia: ABRADEE; Brasília: ANEEL, 2013.
- 6. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). **Atlas de Energia Elétrica do Brasil**. 3.ed. Brasília, ANEEL, 2008.

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

- 7. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). **Micro e Minigeração Distribuída**: Sistema de Compensação de Energia Elétrica (Cadernos Temáticos ANEEL). 2. ed. Brasília: ANEEL, 2016.
- 8. CÂMARA, LORRANE DA SILVA COSTA. O Impacto da difusão da geração distribuída sobre o equilíbrio econômico-financeiro das distribuidoras de energia elétrica nos casos da Califórnia e da Itália. Dissertação de mestrado. Programa de Pós-Graduação em Políticas Públicas, Estratégias e Desenvolvimento, UFRJ, 2017.
- 9. Deutsche Gesellschaft Für Sonnenenergie. Routledge. **Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers**. 2013.
- 10. JENKINS, N.; EKANAYAKE, J. B.; STRBAC, G. **Distributed Generation**. IET Renewable Energy Series 1, 2010.
- 11. CASSERES, E. M. et al. **Impactos da difusão do micro e da mini geração no planejamento, na operação e na manutenção do sistema de distribuição**. Texto de discussão do setor elétrico 73. GESEL, Rio de Janeiro, 2017.

Recomendada (Demais referências da disciplina).

14. Cronograma Previsto:

Aulas Teóricas:

Aula	Tipo	СН	Atividade/Conteúdo
1	Teórica	2	Setor Elétrico: Instituições, Setor Elétrico: Agentes - G e T
2	Teórica	2	Setor Elétrico: Agentes – D e Comercialização
3	Teórica	2	Sistemas de Distribuição
4	Teórica	2	Recursos Energéticos Distribuídos – Geração Distribuída Sistemas FV
5	Teórica	2	Recursos Energéticos Distribuídos – Geração Distribuída Aspectos Regulatórios
6	Teórica	2	Recursos Energéticos Distribuídos – Geração Distribuída Aspectos Econômicos
7	Teórica	2	Recursos Energéticos Distribuídos – Armazenadores
8	Teórica	2	Recursos Energéticos Distribuídos – Veículos Elétricos
9	Teórica	2	Recursos Energéticos Distribuídos – Gerenciamento pelo Lado da Demanda
10	Teórica	2	Qualidade da Energia Elétrica_Indicadores Serviço
11	Teórica	2	Qualidade da Energia Elétrica_Indicadores Produto
12	Teórica	2	Capacidade de Hospedagem – Definições, Tipos de Análise_Parte 1
13	Teórica	2	Capacidade de Hospedagem_ Tipos de Análise_Parte 2 e Métodos
14	Teórica	2	Avaliação Teórica
15	Teórica	2	Apresentação Trabalho

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

Aulas Práticas:

Aula	Tipo	СН	Atividade/Conteúdo	
1	Prática	2	Lab_1: Revisão Python_Parte 1	
2	Prática	2	Lab_2: Revisão Python_Parte 2	
3	Prática	2	Lab_3: Simulação Básica OpenDSS - Snapshot	
4	Prática	2	Lab_4: Simulação Básica OpenDSS – Time Series	
5	Prática	2	Lab_5: Integração OpenDSS com Python	
6	Prática	2	Lab_6: Modelagem REDs - PVSystem	
7	Prática	2	Lab_7: Modelagem REDs – Storage System	
8	Prática	2	Lab_8: Simulação REDs OpenDSS com Python - PVSystem	
9	Prática	2	Lab_9: Simulação REDs OpenDSS com Python – Storage System	
10	Prática	2	Lab_10: Estudo de Caso RED - Qualidade da Energia: Desequilíbrio	
11	Prática	2	Lab_11: Estudo de Caso RED - Qualidade da Energia: Harmônicas	
12	Prática	2	Lab_12: Estudo de Caso RED - Hosting Capacity_Análise 1	
13	Prática	2	Lab_13: Estudo de Caso RED - Hosting Capacity_Análise 2	
14	Prática	2	Lab_14: Estudo de Caso RED - Hosting Capacity_Análise 3	
15	Prática	2	Lab_15: Estudo de Caso RED - Hosting Capacity_Análise 4	