(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年12 月23 日 (23.12.2004)

PCT

(10) 国際公開番号 WO 2004/110929 A1

(51) 国際特許分類7: C01B 33/04, 33/021, H01L 21/208

(21) 国際出願番号:

PCT/JP2004/008547

(22) 国際出願日:

2004年6月11日(11.06.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-169769

2003年6月13日(13.06.2003) J

- (71) 出願人 (米国を除く全ての指定国について): JSR 株式会社 (JSR CORPORATION) [JP/JP]; 〒104-0045 東京都中央区 築地五丁目 6番 1 0号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 岩沢 晴生 (IWA-SAWA,Haruo) [JP/JP]; 〒104-0045 東京都中央区 築地五丁目6番10号 JSR株式会社内 Tokyo (JP). 王道海 (WANG,Daohai) [CN/JP]; 〒104-0045 東京都中央区 築地五丁目6番10号 JSR株式会社内 Tokyo (JP). 松木 安生 (MATSUKI,Yasuo) [JP/JP]; 〒104-0045 東京都中央区 築地五丁目6番10号 JSR株式会社内 Tokyo (JP). 加藤 仁史 (KATO,Hitoshi) [JP/JP]; 〒104-0045 東京都中央区 築地五丁目6番10号 JSR株式会社内 Tokyo (JP).

- (74) 代理人: 大島 正孝 (OHSHIMA,Masataka); 〒160-0004 東京都 新宿区 四谷四丁目 3 番地 福屋ビル 大島特許 事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), QAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: SILANE POLYMER AND METHOD FOR FORMING SILICON FILM

(54) 発明の名称: シラン重合体およびシリコン膜の形成方法

(57) Abstract: A silane polymer is disclosed which has a larger molecular weight in view of boiling point, safety, and wetting property in case when it is applied to a substrate. In particular, a composition is disclosed which enables to form a good silicon film easily. A composition for forming a silicon film is disclosed which contains a silane polymer obtained by irradiating a photopolymerizable silane compound with light in a specific wavelength range for causing photopolymerization thereof. A method for forming a silicon film is also disclosed wherein such a composition is applied to a substrate and then subjected to heat treatment and/or photo treatment.

○ (57) 要約: 基板に塗布する場合の濡れ性、沸点および安全性の観点から分子量のより大きなシラン重合体。特に、良質なシリコン膜を容易に形成することができる組成物を提供する。光重合性を有するシラン化合物に、特定波長領域の光線を照射して光重合して得たシラン重合体を含有するシリコン膜形成用組成物並びにこの組成物を、基板★ に塗布し、そして熱処理および/または光処理を行うシリコン膜の形成方法。

1

明細書

シラン重合体およびシリコン膜の形成方法

5 技術分野

本発明は、シラン重合体、その製造法およびシリコン膜の形成方法に関する。 さらに詳しくは、集積回路、薄膜トランジスタ、光電変換装置、および感光体等 の用途に応用されるシラン重合体、その製造方法およびそれから良質なシリコン 膜を容易に形成する方法に関する。

10

従来の技術

集積回路や薄膜トランジスタ等に応用されるシリコン薄膜(アモルファスシリコン膜やポリシリコン膜等)のパターン形成は、CVD(Chemical Vapor Deposition)法等の真空プロセスにより全面にシリコン膜を形成した後、フォトリソグラフィーにより不要部分を除去するといったプロセスで行われるのが一般的である。しかし、この方法では、大掛かりな装置が必要であること、原料の使用効率が悪いこと、原料が気体であるため扱いにくいこと、大量の廃棄物が発生すること等といった問題がある。

特開平1-29661号公報には、ガス状の原料を冷却した基板上に液体化して吸着させ、化学的に活性な原子状の水素と反応させてシリコン系の薄膜を形成する方法が開示されているが、原料の水素化ケイ素を気化と冷却を続けて行うため複雑な装置が必要になるのみでなく、膜厚の制御が困難であるという問題がある。

また、特開平5-144741号公報および特開平7-267621号公報に は、液体状の水素化ケイ素を基板に塗布し、加熱やUV照射によってシリコン膜 を作成する方法が開示されている。しかし、これらの方法では、低分子量の材料 を用いているため、系が不安定であり取り扱いに難点がある。また、これらの方 法で用いる溶液は基板への濡れ性が悪いため、基板への塗布がそもそも困難であ るのに加えて、低分子量であるため低沸点であり、加熱時にシリコン膜を形成するより早く蒸発してしまい目的の膜を得るのは非常に困難である。つまり、如何に分子量が大きい(濡れ性がよく、沸点が高く、安全な)高次シランを材料として用いるかが成膜上重要なポイントとなる。

- 5 その解決法として、特開平10-321536号公報には、塗布前の処理として、高次シランの溶液と触媒との混合物を熱分解または光分解して、溶液の濡れ性を向上させようとする方法が試みられているが、この方法では、ニッケル等の触媒の溶液中への混合を必要とするものであり、シリコン膜の性質を著しく劣化させるという欠点がある。
- 10 分子量の大きいシラン化合物を直接合成する方法は、合成手順および精製法が一般的に非常に困難であり、特開平11-260729号公報に記載のように、熱重合により高次シランを直接合成する方法も試みられているが、せいぜいSi, H_{20} が低収率で得られる程度であり、この程度の分子の大きさでは、濡れ性等の上記性能の発現にはまだまだ不十分である。
- 15 ところで、n型、p型のドーパントを含むシリコン膜の形成方法としては、シリコン膜を作成した後、イオン注入法でドーパントを導入するのが一般的である。これに対して、特開2000-31066号公報には、上述した高次シラン溶液からなるシリコン膜の形成プロセスの過程で、ドーパント源を材料液体に混合することによりドープされたシリコン膜を形成する方法が記載されている。しかし、20 この方法でも、加熱過程で高次シラン溶液が蒸発して減少し、それに伴ってドー
 - 20 この方法でも、加熱過程で高次シラン溶液が蒸発して減少し、それに伴ってドーパント源も蒸発してしまうといった、低分子系の材料を用いる場合の根本的な問題点があるため、ドーパントを効果的に添加することが困難である。

発明の開示

本発明の目的は、基板に塗布する場合の濡れ性、沸点および安全性の観点から 25 優れ、特に、良質なシリコン膜を容易に形成することができる特定の大きい分子 量を有するシラン重合体を提供することにある。

本発明の他の目的は、本発明の上記シラン重合体の工業的に有利な製造方法を提供することにある。

本発明のさらに他の目的は、本発明の上記シラン重合体を含有するシリコン膜形成用組成物を提供することにある。

本発明の他の目的は、本発明の上記シリコン膜形成用組成物を用いて優れたシリコン膜を形成する方法を提供することにある。

5 本発明のさらに他の目的および利点は、以下の説明から明らかになろう。

本発明によれば、本発明の上記目的および利点は、第1に、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が800~5,000であることを特徴とするシラン重合体によって達成される。

本発明によれば、本発明の上記目的および利点は、第2に、光重合性を有する 10 シラン化合物に特定波長の領域の光線を照射せしめて本発明のシラン重合体を生 成せしめることを特徴とするシラン重合体の製造方法によって達成される。

本発明によれば、本発明の上記目的および利点は、第3に、本発明のシラン重合体および有機溶媒を含有することを特徴とするシリコン膜形成用組成物によって達成される。

15 本発明によれば、本発明の上記目的および利点は、第4に、基体上に本発明の シリコン膜形成用組成物を塗布し、熱処理および光処理のうち少なくとも一つの 処理を施すことを特徴とする、シリコン膜の形成方法によって達成される。

図面の簡単な説明

図1は全波長照射のスペクトルデータである。

20 図2は365nm照射のスペクトルデータである。

図3は405nm照射のスペクトルデータである。

図4は436nm照射のスペクトルデータである。

図5は254nm照射のスペクトルデータである。

図6は実施例1で得られたサンプルNo.3のGCスペクトル図である。

25 図7は実施例1で得られたサンプルNo. 4のGCスペクトル図である。

図8は実施例1で得られたサンプルNo.5のGCスペクトル図である。

図9は実施例1で得られたサンプルNo.6のGCスペクトル図である。

図10は実施例1で得られたサンプルNo. 9のGCスペクトル図である。

 G_{rr}

4

図11は実施例1で得られたサンプルNo.3のMSスペクトル図である。

図12は実施例9で得られたシラン重合体のGPCチャートである。

発明の好ましい実施形態

(シラン重合体)

5 本発明のシラン重合体は、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量(Mw)が800~5,000、好ましくは1,000~5,000、より好ましくは1,200~5,000の範囲にある。Mwが下限より小さいと成膜性が十分ではなく、またMwが上限より大きいときには溶媒への溶解性が不足しがちになる。また、上記シラン重合体の数平均分子10 量(Mn)は600~2,000が好ましい。

従来シラン重合体のMwをゲルパーミエーションクロマトグラフィー(GPC)で測定することは困難であったが、本発明によれば、下記条件により容易に測定できることが明らかになった。

GPC装置としては、特別の装置であることは必要がなく、市販のGPC装置が使用できる。GPC装置で測定する際の測定雰囲気の酸素濃度は好ましくは100pm以下である。このような測定雰囲気は、例えばGPC装置全体をグロープボックス等の密閉環境下に置くことにより容易に調製することができる。測定時のカラム充填剤としては、例えばポリスチレン系充填剤、例えばスチレン・ジビニルベンゼン共重合体系充填剤、ポリメタクリレート系重合体充填剤、シリカゲル系充填剤、デキストラン系充填剤およびポーラスガラス系充填剤を挙げることができる。これらのうち、ポリスチレン系充填剤が好ましく、スチレン・ジビニルベンゼン共重合体系充填剤が特に好ましい。使用される溶媒としては、例えばトルエン、ローキシレン、エーキシレン、シスデカリン、トランスデカリン、ペンゼン、シクロペンタン、シクロペキサン、ローペンタン、ローヘプタン、ローオクタン、フトラヒドロフラン、ジエチルエーテルおよび塩化メチレン等を挙げることができる。これらのうち、トルエンが特に好ましい。かかる溶媒は、使用に際し脱気

処理して溶存酸素量を10ppm以下とするのが好ましく、0.5ppm以下と

するのがさらに好ましい。また乾燥して、水分含有量を、好ましくは300pp m以下、より好ましくは30ppm以下とするのが推奨される。

測定時の試料の濃度は、好ましくは $0.01\sim10$ 容量%、より好ましくは $0.1\sim5$ 容量%である。

5 GPC装置の検出器としては、例えば屈折率検出器、光散乱検出器および粘度 検出器のいずれでも使用できる。これらのうち屈折率検出器が望ましい。

GPC装置からの廃液中のシラン重合体は、例えば特開2002-66866 号公報に記載の方法により失活させることができる。

本発明のシラン重合体は、光重合性を有するシラン化合物に、特定波長領域の 10 光線を照射することにより得られる。本発明のシラン重合体は、このように、光 重合性を有するシラン化合物に特定波長領域の光線を照射して該シラン化合物が 光重合することにより形成されたものである。

本発明のシラン重合体は、前記の光重合性を有するシラン化合物の溶液に特定 波長領域の光線を照射するかあるいはシラン化合物が液体状であるときにはそれ6 自体に、特定波長領域の光線を照射することにより光重合して生成されたもので あってもよい。

シラン化合物に照射する特定波長領域の光線としては、その波長が好ましくは300nm~420nm、特に好ましくは360nm~420nmの光線が用いられる。波長が300nmより小さいときには、溶媒に対する不溶性成分が生成し易く、それを用いて製膜する際に困難を伴いがちでありまた420nmより大きいときにはシラン化合物の重合が遅くなりがちである。

また、別法として、シラン化合物に波長420nm以下の光線を照射し、その後濾過して生成することがある溶媒不溶性成分を濾別する方法であってもよい。この方法では特定波長領域から外れる波長300nmより小さい光線を照射に用いることもできるが、その場合には照射を溶媒不存在下で実施するのが好ましい。溶媒が存在すると、シリコン重合体に不純物が入り易くなる。波長300nm以上の特定波長領域の光線を照射する際には、溶媒を使用することができ、使用しても上記の如き問題は生じ難い。照射後の濾過は、例えば孔径0.1~3.0μ

mのフィルターにより行うことができあるいは遠心分離により行うことができる。 照射時間は、照度および照射条件等によって限定されるものではないが、所望 のシラン重合体を得るために、好ましくは0.1秒~600分間、特に好ましく は1~120分間である。照射方法としては、連続的にあるいは断続的に光線を

5 照射する方法だけでなく、間欠的に照射したり、照度を変化させながら照射して もよい。

また、照射に際しては、所望のシラン重合体を得るために、シラン化合物あるいはその溶液を撹拌しながらシラン化合物あるいはその溶液の全体に均一に光線の照射を行うことが好ましい。

10 本発明のシラン重合体を製造するために用いられるシラン化合物としては、例 えば

式Si_iX_{2i+2}

(ここで、Xは水素原子またはハロゲン原子でありそして、iは2~10の整数である)

15 で表される鎖状シラン化合物、

式Si₁X₂₁

(ここで、Xは水素原子または Λ ロゲン原子でありそして、jは $3\sim10$ の整数である)

で表される環状シラン化合物、

20 式Si_mX_{2m-2}

(ここで、Xは水素原子または Λ ロゲン原子でありそしTmは $4\sim10$ の整数である)

で表わされる環状シラン化合物および

式SikXk

25 (ここで、Xは水素原子またはハロゲン原子でありそして、kは6、8または10である)

で表わされるかご状シラン化合物を挙げることができる。これらのうち、式SiX $_2$ 」で表される環状のシラン化合物および式 Si_mX_{2m-2} で表される環状構造

を2個以上有するシラン化合物が好ましい。

そのようなシラン化合物としては、1個の環状構造を有するものとして、例え ばシクロトリシラン、シクロテトラシラン、シクロペンタシラン、シクロヘキサ シラン、シクロヘプタシラン等が挙げられる。2個の環状構造を有するものとし 5 て、例えば1,1'ービシクロプタシラン、1,1'ーピシクロペンタシラン、 1,1'ーピシクロヘキサシラン、1,1'ーピシクロヘプタシラン、1,1' ーシクロプタシリルシクロペンタシラン、1, 1'ーシクロプタシリルシクロへ キサシラン、1, 1'ーシクロブタシリルシクロヘプタシラン、1, 1'ーシク ロペンタシリルシクロヘキサシラン、1, 1'ーシクロペンタシリルシクロヘプ 10 タシラン、1,1'ーシクロヘキサシリルシクロヘプタシラン、スピロ[2.2] ペンタシラン、スピロ[3.3] ヘプタタシラン、スピロ[4.4] ノナシラ ン、スピロ [4.5] デカシラン、スピロ [4.6] ウンデカシラン、スピロ [5. **5] ウンデカシラン、スピロ[5. 6]ウンデカシラン、スピロ[6., 6]トリ** デカシラン等が挙げられる。またこれらの骨格の水素原子を部分的にSiH_s基 ・15 やハロゲン原子例えばフッ素原子、塩素原子、臭素原子、沃素原子等に置換した シラン化合物を挙げることができる。 これらは2種以上を混合して使用すること もできる。

これらの内、分子内に少なくとも1つの環状構造を有するシラン化合物は光に 対する反応性が極度に高く、光重合が効率よく行えるので、好ましく用いられる。

20 その中でも、分子内に1個の環状構造を有するシクロテトラシラン、シクロペンタシラン、シクロヘキサシラン、シクロヘプタシラン等の Si_nX_{2n} (式中、nおよびXの定義は上記式に同じである)で表されるシラン化合物は、以上の理由に加えて合成、精製が容易であるので特に好ましい。

なお、シラン化合物としては、前述の環状構造を有するシラン化合物が好まし 25 いが、本発明に光照射による光重合プロセスを阻害しない限りにおいては、ホウ 素原子および/またはリン原子等により変性された変性シラン化合物等を併用す ることもできる。

また、シラン化合物の光重合を溶液中で実施する場合に、シラン化合物の溶液

を調整するための溶媒としては、シラン化合物を溶解し、該化合物と反応しないものであれば特に限定されないが、好ましくは、室温での蒸気圧が 0.001~200mmHgのものが用いられる。蒸気圧が 200mmHgより高いときには、コーティングで塗膜を形成する場合に溶媒が先に蒸発してしまい良好な塗膜を形成することが困難となる。一方、蒸気圧が 0.001mmHgより低いときには、同様にコーティングで塗膜を形成する場合に乾燥が遅くなりシラン化合物のコーティング膜中に溶媒が残留し易くなり、後工程の熱および/または光処理後にも良質のシリコン膜が得られ難い。

また、上記溶媒としてはその常圧での沸点が室温以上であり、シラン重合体の分解点である250℃~300℃よりも低いものを用いることが好ましい。シラン重合体の分解点よりも低い溶媒を用いることによって、塗布後にシラン重合体を分解せずに加熱によって溶媒だけを選択的に除去できるため、シリコン膜に溶媒が残留することを防ぐことができ、より良質の膜を得ることができる。

シラン化合物の溶液に使用する溶媒の具体例としては、n-ヘキサン、n-ヘ
15 プタン、n-オクタン、n-デカン、ジシクロペンタン、ベンゼン、トルエン、
キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレ
ン、スクワランの如き炭化水素系溶媒;ジプロピルエーテル、エチレングリコー
ルジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコー
ルメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレン
20 グリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、ピス(2-メトキシエチル)エーテル、p-ジオキサンの如きエーテル系溶媒;さらにプロピレンカーボネート、アープチロラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシドの如き極性溶媒を
挙げることができる。これらの内、シラン化合物の溶解性と該溶液の安定性の点で炭化水素系溶媒、エーテル系溶媒が好ましく、炭化水素系溶媒が特に好ましい。
これらの溶媒は、単独でも、あるいは2種以上の混合物としても使用できる。

本発明のシラン重合体によれば、以上の効果により、従来の方法に比して容易

に良質なシリコン膜を形成することができる。このようにして形成されるアモルファスシリコン膜は、更なる熱処理やエキシマレーザーアニール等の方法によって結晶化させ、更なる性能の向上を図ることもできる。

本発明方法に用いられるシラン重合体は、上記の如く、光重合性を有するシラン化合物に光線を照射して光重合することにより得られるが、その際前記シラン化合物と一緒に、周期律表の第3B族元素を含む物質または第5B族元素を含む物質(ドーパント源)を存在させ、その存在下に光重合を実施することもできる。このように、シリコン膜を形成する場合において、前記シラン化合物にかかるドーパント源を混入した後に光を照射するというプロセスは、従来の方法では見られない新規なプロセスである。かかるプロセスによれば、光の照射によって、分子レベルでドーパントとシラン重合体の結合を引き起こすことができ、その溶液を基板に塗布、熱処理および/または光処理により性能のよいn型、p型にドープされたシリコン膜を形成することができる。また、かかるプロセスで形成したドープシリコン膜は、加熱等のステップにより、更なる特性向上を図ることができる。特に、この物質を含むシラン化合物の溶液から形成したシラン重合体を基板に塗布した後、後述の熱処理および/または光処理によって、かかる物質(ド

また、添加するドーパント源の濃度は、最終的に必要なシリコン膜中のドーパント濃度に応じて決めればよく、光を照射した後に溶剤で希釈して濃度を調節し 20 たり、ドーパント源を添加せずに光照射したシラン重合体と混合してもよい。

ーパント)を活性化することができる。

周期律表の第3B族元素を含む物質および第5B族元素を含む物質(ドーパント)としては、リン、ホウ素、砒素等の元素を含む物質が好ましく、具体的には、特開2000-31066号公報に挙げられているような物質が例示できる。

本発明のシリコン膜形成用組成物は、上記のシラン重合体および有機溶媒を含 25 有する。本発明のシリコン膜形成用組成物中のシラン重合体の濃度は、シリコン 膜を形成する場合において、基板に塗布した際のシラン重合体の不均一な析出を 防止し、均一な塗布膜が得られる点で、1~80重量%程度が好ましく、所望の シリコン膜厚に応じて適宜調製することができる。下限は、より好ましくは2重 量%、さらに好ましくは5重量%、特に好ましくは10重量%である。

本発明のシリコン膜形成用組成物が含有することのできる有機溶媒としては、 シラン化合物の光重合を溶液中で実施する場合に使用できる溶媒として前述した 有機溶媒を挙げることができる。

5 本発明のシリコン膜形成用組成物は、さらに、必要に応じて他の添加物を含有 することができる。

本発明のシリコン膜形成用組成物には、さらに、周期律表の第3B族元素を含む物質または第5B族元素を含む物質をドーパント源として添加することができる。このような物質を適宜選定して添加することにより、ドーパントを導入した10 所望のn型、p型のシリコン膜を形成することができる。このような物質を添加した組成物を用いてシリコン膜を形成するプロセスにおいては、シラン重合体の沸点が高いため蒸発しにくく、その結果、ドーパント源の蒸発も抑えることができ、このため従来の方法よりも効率よく膜中へドーパントを導入することができる。なお、前述したように、前記シラン重合体の溶液にかかる物質を光重合の際に添加してシラン重合体を形成した場合には、この段階(光重合終了後)において添加する必要がない。この周期律表の第3B族元素を含む物質および第5B族元素を含む物質としては、前述したUV照射前に前記シラン化合物に添加するこれらの物質として例示したものと同様である。また、このシリコン膜形成用組成物を基板に塗布した後、後述の熱処理および/または光処理によって、かかる物質(ドーパント)を活性化することができる。

また、本発明のシリコン膜形成用組成物には、その目的の機能を損なわない範囲で必要に応じて、フッ素系、シリコーン系、非イオン系などの表面張力調節剤を微量添加することができる。これらの表面張力調節剤は、溶液の塗布対象物への濡れ性を良好化し、塗布した膜のレベリング性を改良し、塗膜のぶつぶつの発生、ゆず肌の発生などの防止に役立つものである。

本発明のシラン重合体は、特に、集積回路、薄膜トランジスタ、光電変換装置、および感光体等の用途に応用されるシリコン膜の形成に有用である。

(シリコン膜の形成方法)

次に、本発明のシリコン膜の形成方法について詳述する。

本発明のシリコン膜の形成方法は、前述したシリコン膜形成用組成物を基体または基板に塗布しそして熱処理および/または光処理を行うことを特徴とする。それ以外の点については、通常の溶液を用いたシリコン膜を形成する方法と同様の手法を適用することができる。また、前記組成物として溶媒を含有する組成物を用いて基板に塗布した後、前記の熱処理および/または光処理を行う工程の前に、該溶媒のみを選択的に除去する工程を含んでもよい。

本発明のシリコン膜の形成方法は、一般に行われているCVD法のようにガスを供給するのではなく、前述した組成物を基板に塗布した後、必要により溶媒を乾燥させシラン重合体の膜を形成し、この膜を熱分解および/または光分解してシリコン膜に変換し、必要によりさらにレーザー処理により多結晶シリコン膜に変換するものである。さらに、ホウ素原子またはリン原子により変性されたシリコン膜を真空系でイオン注入することなく、p型あるいはn型のシリコン膜を形成するものである。

- 15 組成物の塗布の方法としては、例えばスピンコート法、ロールコート法、カーテンコート法、ディップコート法、スプレー法、液滴吐出法等の方法を用いることができる。塗布は一般には室温以上の温度で行われる。室温以下の温度ではシラン重合体の溶解性が低下し一部析出する場合がある。本発明におけるシラン化合物、シラン重合体、シリコン膜形成用組成物は水、酸素と反応して変性し易いので、一連の工程は水や酸素が存在しない状態であることが好ましい。そのため、
 - 一連の工程中の雰囲気は、窒素、ヘリウム、アルゴンなどの不活性ガスからなるのが好ましい。さらに必要に応じて水素などの還元性ガスを混入した雰囲気が好ましい。また、溶媒や添加物として水や酸素を取り除いたものを用いることが望ましい。
- 25 液滴吐出法とは、液滴を所望の領域に吐出することにより、被吐出物からなる 所望パターンを形成する方法であり、インクジェット法と呼ぶこともある。この 場合、吐出する液滴は、印刷物に用いられる所謂インクではなく、デバイスを構 成する材料物質を含む液状体であり、この材料物質は、例えばデバイスを構成す

る導電物質または絶縁物質として機能し得る物質を含むものである。さらに、液 滴吐出とは、吐出時に噴霧されるものに限らず、液状体の1滴1滴が連続するよ うに吐出される場合も含む。

また、スピンコート法を用いる場合のスピナーの回転数は、形成する薄膜の厚 み、塗布溶液組成により決まるが、好ましくは100~5,000rpm、より 好ましくは300~3,000rpmである。

本発明のシリコン膜の形成方法において、シリコン膜形成用組成物を塗布した後は、溶媒等の低沸点成分を除去するために加熱処理を行ってもよい。加熱する温度は使用する溶媒の種類、沸点(蒸気圧)により異なるが、例えば100℃~200℃である。雰囲気は上記塗布工程と同じ窒素、ヘリウム、アルゴンなどの不活性ガス中で行なうことが好ましい。このとき、系全体を減圧することで、溶媒の除去をより低温で行うこともできる。これにより、基板の熱による劣化を減少させることができる。

また、本発明のシリコン膜の形成方法は、溶媒が除去された基板上のシランで 合体を、熱処理および/または光処理によってシリコン膜に変換するものであり、 本発明の形成方法によって得られるシリコン膜は、アモルファス状あるいは多結 晶状である。熱処理の場合には一般に到達温度が約550℃以下の温度ではアモ ルファス状、それ以上の温度では多結晶状のシリコン膜が得られる。アモルファ ス状のシリコン膜が所望の場合は、好ましくは300℃~550℃、より好まし くは350℃~500℃が用いられる。到達温度が300℃未満の場合は、十分 な厚さのシリコン膜を形成できない場合がある。

本発明において、熱処理を行う場合の雰囲気としては、例えば窒素、ヘリウム、 アルゴンなどの不活性ガス、もしくは水素などの還元性ガスを混入したものが好ましい。多結晶状のシリコン膜を得たい場合は、上記で得られたアモルファス状シリコン膜に、レーザーを照射して多結晶シリコン膜に変換することができる。

一方、光処理を行う場合に使用する光の光源としては、低圧あるいは高圧の水 銀ランプ、重水素ランプあるいはアルゴン、クリプトン、キセノン等の希ガスの 放電光の他、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、 XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザー等が挙げられる。これらの光源としては、好ましくは10~5,000Wの出力のものが用いられるが、通常100~1,000Wで十分である。これらの光源の波長はシラン重合体が多少でも吸収するものであれば特に限定されない。

5 好ましくは170nm~600nmである。また、多結晶シリコン膜への変換効率の点で、レーザー光の使用が特に好ましい。これらの光処理時の温度は、好ましくは室温~1,500℃であり、得られるシリコン膜の半導体特性に応じて適宜選ぶことができる。

本発明のシリコン膜の形成方法において使用する基板としては、特に限定され 10 ないが、通常の石英、ホウ珪酸ガラス、ソーダガラスの他、ITOなどの透明電 極、金、銀、銅、ニッケル、チタン、アルミニウム、タングステンなどの金属基 板、さらにこれらの金属またはこれらの金属の酸化物を表面に有するガラス、プ ラスチック基板などを使用することができる。

本発明のシリコン膜の形成方法によって得られるシリコン膜は、集積回路、薄膜トランジスタ、光電変換装置、および感光体等の用途に応用することができる。

以下、実施例により本発明をさらに詳述する。

実施例・

なお、実施例において用いたバンドパスフィルターは、以下のとおりである。

365 nm用:朝日分光(株)製、型番「MX0365」

20 405 nm用:朝日分光(株) 製、型番「MX0405」

436 nm用:朝日分光(株) 製、型番「MX0436」

また、実施例において照度を測定した機器は、分光放射照度計「スペクトロラディオメータ USR-40D」(ウシオ電機(株)製)である。

合成例1

25 温度計、冷却コンデンサー、滴下ロートおよび撹拌装置を取付けた内容量が3 Lの4つロフラスコ内をアルゴンガスで置換した後、乾燥したテトラヒドロフラ' ジン1.Lとリチウム金属18.3gを仕込み、アルゴンガスでバブリングした。この懸濁液を0℃で撹拌しながらジフェニルジクロロシラン333gを滴下ロート より添加し、滴下終了後、室温下でリチウム金属が完全に消失するまでさらに1 2時間撹拌を続けた。反応混合物を5Lの氷水に注ぎ、反応生成物を沈殿させた。 この沈殿物を濾別し、水でよく洗滌した後シクロヘキサンで洗滌し、真空乾燥を 行い、さらに酢酸エチルにて再結晶化を行い、白色固体150gを得た。

5 得られた白色個体 150gと乾燥したシクロヘキサン500mLを1Lのフラスコに仕込み、塩化アルミニウム20gを加え、反応温度を30℃に保ちつつ撹拌しながら、乾燥した塩化水素ガスを10時間パブリングした。ここで別途に、水素化リチウムアルミニウム50gとジエチルエーテル150mLを1Lのフラスコに仕込み、窒素雰囲気下、0℃で撹拌しながら上記反応混合物を加え、同温にて1時間撹拌、さらに室温で12時間撹拌を続けた。反応溶液を吸引濾過し、さらに濾液より副生物を除去した後、70℃、10mmHをで減圧蒸留を行ったところ、無色の液体が10g得られた。このものはIR、「H-NMR、29 Si-NMR、GC-MSの各スペクトルより、シクロペンタシランであることが判った。

15 実施例1

室素気流中(酸素濃度3ppm以下)、シクロペンタシラン1mlを石英製サンプル管に入れ撹拌、200W水銀キセノンランプ(HOYA Candeo Optronics (株)製 EXECURE 3000)および紫外ランプ(Spectronics社製、EF-140C/J)から発せられる光線を照射した。光線の照射は、254nm照射の場合では、光源から0cm、ランプの出力100%で行い、その他の波長の照射の場合では光源から1cmの距離でランプ出力の20%で行った。光線照射量は装置付随の光強度調整装置により、各波長光の取り出しはバンドパスフィルターを使用して実験を行った。

今回使用した光線の各波長の照度は、下記表1に示すとおりで、照度は光が発25 せられるファイバーから1cmの距離で「スペクトロラデイオメーター USR -40D」(ウシオ(株)製)を用いて測定したスペクトルチャートから換算した値である。

表1

	照度(μW/cm²•nm)(波長)	スペクトルデータ
全波長照射	512(365nm), 185(405nm)	A(図1)
	284(436nm)	
365nm	646(365nm)	B(図2)
405nm	99 (405nm)	C(図3)
436nm .	409(436nm)	_② D(図4)
254nm	383(254nm)	E(図5)

- 5 上記の各波長光を用いてサンプルに対して照射時間を変えてシリコン重合体を 得、トルエンを9mL加え、10% (VンV) 溶液を作製した。10%溶液の素性と、溶液を石英基板上に1,500rpmでスピンコート塗布、400℃で3 0分間加熱処理した後の膜の外観観察結果を表2に示す。サンプル (No.5) から形成された加熱処理後の膜(図8)についてESCA分析をした結果、99.
- 10 0 e V にケイ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることがわかった。

16

表 2

	N	シリコン	重合体	光線の波長	照射時	10%溶液	塗布加熱処理膜の
1	o. [間	の外観	外観
		Mw	Mn				
	1	測定不	測定不	全波長照射	5分	白濁溶液	塗布性不良、膜中
		可	可			·	に異物が多い。
	2	測定不	測定不	365nm	5分	白濁溶液	塗布性不良、膜中
		可	可				に異物が多い。
1	3.	測定不	測定不	365nm	10分	白濁溶液	塗布性不良、膜中
1		可	可	·			に異物が多い。
ı	4	1250	910	405nm	10分	透明な溶液	塗布性良好、均一
					, , ,	**	な膜が形成できてい
ļ							る。
-	5	1720	1010	405nm	15分	透明な溶液	逾布性良好、均一
:				, ,			な膜が形成できてい
-]					<u> </u>		る。
	.6	2580	1250	405nm	20分	透明な溶液	逾布性良好、均一
-	•				,,,		な膜が形成できてい
1							る。
	7	460	410	436nm	10分	透明な溶液	基板上の膜形成不
	•				<u> </u>	-	可能
1	8 "	測定不	測定不	436nm	15分	若干、白濁	基板上の膜形成不
		可	可			した溶液	可能
.	9	測定不	測定不	436nm	20分	若干、白濁	
		可	可 '			した溶液	れるが、塗布性不良

注)「測定不可」とは不溶分があったことを示す。

5 上記結果が示すように、405 nm波長を主成分とする光線を選択的にシクロペンタシランに照射することで外観上透明均一な溶液が作製でき、塗布加熱処理によって得られるシリコン膜の質も良好であることが分った。

なおGPCの測定条件は以下の通りである。

測定装置等:

10 ゲルパーミエーションクロマトグラフ分析装置としてVISCOTEK社製、 GPCMAXおよびTDA-302をグローブボックス内に搬入し、窒素気流中、 酸素濃度10ppm以下の条件で行った。

ゲルパーミエーションクロマトグラフ分析用カラムには東ソー(株)製、TS

K-GELG3000HHR、TSK-GELG2000HHR、TSK-GE LG1000HHR(3本共にカラムの中身はスチレン・ジビニルベンゼン共重 合体、粒径5 μ m)、を直列に配置したものを使用した。

ディテクタにはTDA-302を用い、検出器としてはセル容量:12μL、 光源として660nmの発光ダイオードを有する屈折率検出器を使用した。

溶媒等:

測定用溶媒には和光純薬(株)製合成用脱水トルエン(水分濃度30ppm以下)を用いて分析を行った。溶媒の酸素脱気処理はGPCMAX付随の2チャンネルデガッサーにより行った。

10 ご サンプル

サンプルであるシラン重合体を20容量%トルエン溶液とした。この溶液を 100μ L採取し、トルエンを 1.900μ L加えシラン重合体濃度を1容量%とした。次いで 0.45μ mのポリテトラフロロエチレン製メンプランフィルターにて濾過処理しGPC測定サンプルを調製した。

15 インジェクション条件等:

サンプルは、インジェクション量 $100^{\circ}\mu$ L、カラム温度 30° C、トルエン流量は0.8mL/分の条件で測定した。

GPCの廃液の処理:

測定終了後の、シラン重合体を含むGPC廃液は酸素濃度10ppm以下グロ つずボックス中において、廃液10部に対して、2ーメチルー2ペンタノールジ メチルドデシルアミン/プロピレングリコールモノメチルエーテル混合溶液(容量比で50/50)を1部加え、2週間撹拌することによって失活させたのち、 焼却して処理した。

実施例2

上記で作製したサンプルNo.3、4、5、6、9についてGCを用いてトルエン中に溶解している成分についてGC(-MS)分析を行った。測定に用いたGCカラムはBPX-5、測定条件:インジェクション温度=200 $\mathbb C$ 、カラム昇温条件:初期温度50 $\mathbb C$ 、10 $\mathbb C$ $\mathbb C$

・キープという条件。図 $6\sim10$ のチャート中段に示すのは各ピークの5倍拡大写真である。

図6を見ると、365nm波長を10分間照射したサンプル溶液については成分が複雑に生成していることがわかる。図10を見ると、436nm波長を20分間照射したサンプル溶液については原料であるシクロペンタシラン (Si $_5$ H $_1$ 。) とトルエン以外の成分は、極僅かな成分しか生成していないことがわかる。

一方、図7、8および9を見ると、405 nmを10~20分間照射したサンプルについてはシクロペンタシラン、トルエン以外の成分として幾つかの成分(3成分)が確認でき、702 Scanの成分は $\text{Si}_{10}\text{H}_{22}$ の成分であると同定された。他の2成分についてはGC-MSによる構造は不明であるが、本発明における性能発揮成分として有効な成分であると考えられる。図11に、サンプルNo.50702 Scan成分のMSスペクトルを示した。なお、図11中、M/Z=301のピークは、 $Si_{10}\text{H}_{21}$ ⁺¹と推定される。

実施例3

25 窒素気流中(酸素濃度3ppm以下)、シクロペンタシラン1mLとデカボラン10mgを石英製サンプル管に入れ撹拌、反応液から10mmの距離から、200Wの水銀キセノンランプから発せられる405nm波長の光線(実施例1記載の光線)を20分間照射してシラン重合体(Mw=2,600、Mn=1,200)を得た。次いでトルエン9mLを添加、トルエン10%溶液とした後、溶液を石英基板上に1,500rpmでスピンコート塗布、400℃で30分間加熱処理した。本サンプルについて、さらに800℃で5分間熱処理したサンプルについてシート抵抗値を測定したところ、700kΩ/cm²を示した。さらに同400℃加熱処理サンプルについて900℃で5分間熱処理したサンプルについてシート抵抗値を測定したところ、0.5kΩ/cm²を示した。

25 実施例4

窒素気流中(酸素濃度3ppm以下)、シクロペンタシラン1mLと黄燐10mgを石英製サンプル質に入れ撹拌、反応液から10mmの距離から、200Wの水銀キセノンランプから発せられる405nm波長の光線(実施例1記載の光

線)を20分間照射してシラン重合体(Mw=2,250、Mn=1,220)を得た。次いでトルエン9mLを添加、トルエン10%溶液とした後、溶液を石英基板上に1,500rpmでスピンコート塗布、400℃で30分間加熱処理した。本サンプルについて、さらに800℃で5分間熱処理したサンプルについてシート抵抗値を測定したところ、 $50k\Omega/cm^2$ を示した。さらに同400℃加熱処理サンプルについて900℃で5分間熱処理したサンプルについてシート抵抗値を測定したところ、 $10k\Omega/cm^2$ を示した。

実施例5

実施例1の実験No. 2の重合サンプルを、0. 45μmのポリテトラフロロ エチレン製メンプランフィルターにて濾過し、不溶分を除いた。この濾過後の溶 液中に含まれるシラン重合体につき、ゲルパーミエーションクロマトグラフィー を測定したところ、Mn=1,260、Mw=2,810であった。

上記濾過後の溶液につき、実施例1と同様にして石英基板上にスピンコートじたところ、その塗布性は良好であった。得られた塗膜を400℃で30分間加熱処理した。加熱処理後の膜につきESCA分析をしたところ、99.0eVにケイ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることがわかった。

なお以下の実施例6~9で、ガスクロマトグラフィーの測定残存モノマー量の 測定は以下の方法によった。

20 サンプルは、光照射後のシラン化合物にトルエンを加えて10 vo 1%トルエン溶液を 200μ L調製し、更にこの溶液に内部標準物質としてtrans ーデカリンを 20μ L加え、シラン化合物: trans ーデカリン: トルエン=10:90 (容量比)溶液を調製した。窒素雰囲気(酸素濃度0.5pm以下)のグローブポックス中にて、この溶液 1μ Lをマイクロシリンジにて採取し、25 ガスクロマト分析を行った。

ガスクロマトグラフ分析装置としては(株)島津製作所製、GC-14Bを、 検出器としてはTCD(Thermal Conductivity Dete ctor)を、また分析用カラムにとしてS. OV-17 10% CV 60 -80 AW-DMCSをそれぞれ使用し、キャリアガスにはヘリウムを使用した。

分析条件として、インジェクション温度150 \mathbb{C} 、検出器温度200 \mathbb{C} 、カラム温度は、70 \mathbb{C} 5分間保持後、10 \mathbb{C} /分の昇温速度で100 \mathbb{C} まで昇温、10 \mathbb{C} \mathbb{C} 70 \mathbb{C} 5分間保持、更に10 \mathbb{C} /分の昇温速度で10 \mathbb{C} \mathbb{C}

この結果と、transーデカリンを標準物質として別途作成した検量線によりサンプル溶液中に含まれるシクロペンタシラン溶液を定量し、光照射後のシラン化合物に含まれる残存モノマー量を算出した。

10 実施例 6

合成例1で合成したシクロペンタシラン1mLを石英製容器に取り、Hoya Candeo Optronics(株)製、水銀キセノンランプ Excure 3000に上記365nm用バンドパスフィルタを装着し(スペクトルデータBに相当するスペクトル分布を有する光となる。)、石英容器に接ずる距離から出力20%にて2.5分間、光照射した。光照射後のシラン重合体につきゲルパーミエーションクロマトグラフィーを測定したところ、Mn=1,350、Mw=3,320であった。また、ガスクロマトグラフィーにより残存シクロペン・タシラン量を測定したところ、25.5wt%のシクロペンタシランが重合せずに残っていることがわかった。

20 この光照射後のシラン重合体を含むシラン化合物にトルエンを加え、20wt%の溶液とし、孔径0.45μmのポリテトラフロロエチレン製メンプランフィルターで濾過したのち、石英基板上に2,000rpmでスピンコートしたところ、成膜性は良好であった。

得られた塗膜を400℃で30分間加熱処理したところ、膜厚95nmの膜が 25 得られた。加熱処理後の膜につきESCA分析をしたところ、99.0eVにケ イ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることが わかった。

また、加熱処理後の膜中の炭素量及び酸素量をSIMS分析により測定したと

ころ、それぞれ 9×10^{18} 原子 $/ cm^3$ 、 5×10^{19} 原子 $/ cm^3$ であった。 実施例 7

合成例1で合成したシクロペンタシラン1mLを石英製容器に取り、光源として、Spectronic社製薄層クロマトグラフィー用紫外ランプEF-14 0 C/J (スペクトルデータEに相当するスペクトル分布を有する光を発する。)を使用し、石英容器から0.5cmの距離から出力100%にて10分間、光照射したところ、白色に懸濁した液を得た。このものを、孔径0.45μmのポーリテトラフロロエチレン製メンブランフィルターで濾過したうえでゲルパーミエーションクロマトグラフィーを測定したところ、Mn=1,200、Mw=2,460であった。また、ガスクロマトグラフィーにより残存シクロペンタシラン量を測定したところ、36.9wt%のシクロペンタシランが重合せずに残っていることがわかった。

この濾過後のシラン化合物にトルエンを加え、20wt%の溶液とし、更に孔径0.45μmのポリテトラフロロエチレン製メンプランフィルターで濾過したのち、石英基板上に2,000rpmでスピンコートしたところ、成膜性は良好であった。

得られた塗膜を400℃で30分加熱処理したところ、膜厚103nmの膜が得られた。加熱処理後の膜につきESCA分析をしたところ、99.0eVにケイ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることがわかった。

また、加熱処理後の膜中の炭素量及び酸素量をSIMS分析により測定したところ、それぞれ 1×10^{19} 原子/ cm^3 、 7×10^{19} 原子/ cm^3 であった。

実施例8

20

25 合成例1で合成したシクロペンタシラン0.2mL及びトルエン0.8mLを原料とした他は、実施例7と同様にしてシラン化合物に光照射を行ったところ、無色の均一溶液を得た。この光照射後の溶液につきゲルパーミエーションクロマトグラフィーを測定したところ、Mn=1,020、Mw=2,100であった。

また、ガスクロマトグラフィーにより残存シクロペンタシラン量を測定したところ、20.2wt%のシクロペンタシランが重合せずに残っていることがわかった。

この濾過後のシラン化合物を孔径 0. 45 μmのポリテトラフロロエチレン製 5 メンプランフィルターで濾過したのち、石英基板上に 2,000 rpmでスピン コートしたところ、成膜性は良好であった。

得られた塗膜を400℃で30分加熱処理したところ、膜厚92nmの膜が得られた。加熱処理後の膜につきESCA分析をしたところ、99.0eVにケイ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることがわかった。

また、加熱処理後の膜中の炭素量及び酸素量をSIMS分析により測定したところ、それぞれ 1×10^{21} 原子 $/cm^3$ 、 1×10^{21} 原子 $/cm^3$ であった。

実施例9

15 バンドパスフィルタとして405nm用のものを使用し、光照射時間を10分間としたほかは、実施例6と同様にして、シラン化合物に光照射を行った。なお、ここで照射した光は、スペクトルデータCに相当するスペクトル分布を有する光となる。

光照射後のシラン化合物につきゲルパーミエーションクロマトグラフィーを測定 定したところ、Mn=1,060、Mw=1,950であった。このゲルパーミエーションクロマトグラムを図12に示す。また、ガスクロマトグラフィーにより 残存シクロペンタシラン量を測定したところ、29.9wt%のシクロペンタシランが重合せずに残っていることがわかった。

この光照射後のシラン重合体を含むシラン化合物にトルエンを加え、20wt 25 %の溶液とし、孔径0.45μmのポリテトラフロロエチレン製メンプランフィルターで濾過したのち、石英基板上に2,000rpmでスピンコートしたところ、成膜性は良好であった。

。得られた塗膜を400℃で30分加熱処理したところ、膜厚91nmの膜が得

られた。加熱処理後の膜につきESCA分析をしたところ、99.0 e Vにケイ素由来の化学シフトが観察されたことから、この膜はシリコン膜であることがわかった。

また、加熱処理後の膜中の炭素量及び酸素量をSIMS分析により測定したと 5 ころ、それぞれ 1×10^{19} 原子 $/cm^3$ 、 5×10^{19} 原子 $/cm^3$ であった。

表3

_			3			
-	0	残存Si ₅ H ₁₀ 量	Mn	Mw	C量	O量
. ,		(wt%)		# ·	(atom/cm ³)	(atom/cm³)
	実施例6	25.5	1 3 5 0	3 3 2 0	9×10 ¹⁸	5×10 ¹⁹
•	実施例7	36.9	1200	.2 4 6 0	1×10 ¹⁹	7×10 ¹⁹
	実施例8	20.2	1020	2100	1×10 ²¹	1×10 ²¹
. •	実施例9	29.9	1060	1950	1×10 ¹⁹	5×10 ¹⁹

24

請求の範囲

- 1. ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が800~5,000であることを特徴とするシラン重合体。
- 2. 光重合性を有するシラン化合物に特定波長の領域の光線を照射せしめて請求 項1に記載のシラン重合体を生成せしめることを特徴とするシラン重合体の製造 を方法。
- 10 3. 光重合性を有するシラン化合物が液状であるかあるいは溶液の状態にある請求項2に記載の方法。
 - 4. 光重合性を有するシラン化合物が、

式Si₁X₂₁₊₂

15 (ここで、Xは水素原子または Λ ロゲン原子でありそして、iは $2 \sim 10$ の整数である)

で表される鎖状シラン化合物、

式SiJX2J

(ここで、Xは水素原子またはハロゲン原子でありそして、jは3~10の整数

20 である)

で表される環状シラン化合物、

式SimX_{2m-2}

(ここで、Xは水素原子または Λ ロゲン原子でありそして $\min 4 \sim 10$ の整数である)

25 で表わされる環状シラン化合物および

式SikXk

(ここで、Xは水素原子またはハロゲン原子でありそして、kは6、8または1 0である) で表されるかご状シラン化合物よりなる群から選ばれる少なくとも1種である、請求項2または3に記載の方法。

- 5. 特定波長の領域の光線が、波長範囲300~420nmにある光を含有する 5 請求項2に記載の方法。
 - 6. 光線の照射時間が0. 1秒~600分の間である請求項2に記載の方法。
- 7. 請求項1に記載のシラン重合体および有機溶媒を含有することを特徴とする
 10 シリコン膜形成用組成物。
 - 8. 周期律表の第3B族元素を含む物質または第5B族元素を含む物質をさらに 含有する請求項7に記載のシリコン膜組成物。
- 15 9. 基体上に請求項7または8に記載の組成物を塗布し、熱処理および光処理の うちの少なくとも一つの処理を施すことを特徴とする、シリコン膜の形成方法。
- 10. 上記塗布を行ったのち、熱処理および光処理のいずれの処理も行う前に、 上記組成物が含有する有機溶媒を選択的に除去する請求項9に記載のシリコン膜 20 の形成方法。

1/12

. . 1: I t是(nm)

2/12

909 ((mn·smo) / Mu) 趜朗

3/12

<u>図</u>

4/12

5/12

6/12

12/12

図12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/008547

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C01B33/04, C01B33/021, H01L21	/208			
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by cla Int.Cl ⁷ C01B33/00-33/193	ssification symbols)			
Kokai Jitsuyo Shinan Koho 1971-2004 Ji	roku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994-2004 1996-2004		
Electronic data base consulted during the international search (name of d	lata base and, where practicable, search te	rms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
.Category* Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X JP 2003-124486 A (JSR Corp.) 25 April, 2003 (25.04.03), Claims 1, 3, 4; Par. Nos. [00] [0015], [0032], [0033]; example EP 1284306 A2 Claims 5, 7, 14; Par. Nos. [0] [0048], [0050], [0082]; example US 2003/45632 A1	010], [0012], Nies 0027], [0028],	1-10.		
P,X JP 2003-313299 A (Seiko Epso 06 November, 2003 (06.11.03), Claims 1, 2, 6, 7, 9 to 15; E EP 1357154 Al Claims 1, 2, 6, 7, 9 to 15; E & US 2003/229190 Al	ear. No. [0043]	1-10		
Further documents are listed in the continuation of Box C.	See patent family annex.	L		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" carlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 08 September, 2004 (08.09.04)	Date of mailing of the international sea 21 September, 2004	rch report (21.09.04)		
Name and mailing address of the ISA/ Japanesé Patent Office	Authorized officer			
Form PCT/ISA/210 (second sheet) (January 2004)	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/008547

		PCT/JP2	004/008547	
C (Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages JP 2004-186320 A (JSR Corp. et al.), 02 July, 2004 (02.07.04), Claims 1, 6, 7; Par. Nos. [0019] to [0022], [0042], [0050]; examples (Family: none)		Relevant to claim No.	
E,X				
		Č		
×				
			a.	
			•	
			,	
:				

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' C01B33/04, C01B33/021, H01L21/208 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C01B33/00-33/193 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 1971-2004年 日本国公開実用新案公報 1994-2004年 日本国登録実用新案公報 日本国実用新案登録公報 1996-2004年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の・ 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP 2003-124486 A (ジェイエスアール株式会社) X. ., $\cdot 1 - 10$ 2003.04.25, 請求項1, 請求項3, 請求項4, [0010], [0012], [0015], [0032]; 【10033】, 実施例 &EP 1284306 A2, 請求項5, 請求項7, 請求項14,[0027], (0028], [0048], [0050], [0082], Examples &US 2003/45632 A1 × C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 21, 9, 2004 08.09.2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4G | 3129 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区段が関三丁目4番3号 電話番号 03-3581-1101 内線 3416

C (続き).	関連すると認められる文献	180± 2- 3
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PX	JP 2003-313299 A(セイコーエプソン株式会社,外1名)2003.11.06,請求項1,請求項2,請求項6,請求項7,請求項9-15,【0043】 &EP 1357154 A1,請求項1,請求項2,請求項6, 請求項7,請求項9-15,[0044] &US 2003/229190 A1	1-10
EX	JP 2004-186320 A(JSR株式会社,外2名) 2004.07.02,請求項1,請求項6,請求項7, 【0019】-【0022】,【0042】,【0050】, 実施例(ファミリーなし)	1-10
	•	
• • •		
		*
		·
		-
		· · · · · · · · · · · · · · · · · · ·
, .	*	