PLL for Clock Synthesis Design Steps

- 1. Let the available crystal oscillator frequency be F_{ref}
- 2. Design a VCO that generates the desired frequency ($F_{desired}$) at a control voltage V_control = $V_{dd}/2$
- 3. Design divide by N counter such that $N = F_{desired} / F_{ref}$
- 4. Design Charge Pump PFD having charge pump current I_{CP}
- 5. Chose loop bandwidth of the loop filter $F_{loop} < F_{ref}/20$
- 6. Calculate R_s of the loop filter using the equation $F_c = \frac{Rs \times Icp \times Kvco}{2\pi N}$
- 7. Chose zero frequency of the loop filter $F_Z \le F_C/3$
- 8. Calculate C_S of the loop filter using the equation $F_Z = \frac{1}{2\pi R_S C_S}$
- 9. Chose pole frequency of the loop filter $F_P >= 3F_C$
- 10. Calculate C_P of the loop filter using equation $F_p = \frac{1}{2\pi Rs.Cp}$
- 11. Adjust the values of C_S and C_P (while satisfying $3.F_Z < F_C < F_P/3$) so that $C_S/C_P \approx 10$. This is to ensure a phase margin of greater than 50^0 and stability of the PLL

Example: Design a PLL to generate/synthesize a clock frequency of 2.5 GHz

Step-1: Let the available crystal oscillator be of F_{ref} = 62.5 MHz

Step-2(a): A 3 stage RO is designed to have a frequency 2.7789 GHz at V control = 0.9V.

Step-2(b): Kvco of the designed oscillator is measured to be 6.8988 GHz/V

Step-3: A divide by 40 counter is designed. Since 2.5GHz / 62.5 MHz = 40.

Step-4: A PFD with I_{CP} = 15 uA is designed usind D Flip-flop, NAND gate and current mirror

Step-5: Let loop band width of loop filter be $F_C = 62.5 \text{ MHz} / 25 = 2.5 \text{ MHz}$

Step-6: $R_S = (2\pi N \times 2.5 \text{ MHz})/(15 \text{ uA} \times 6.8988 \text{ GHz/V}) = 6 \text{ kOhm}$

Step-7: Let zero frequency be $F_Z = 2.5 \text{ MHz} / 3 = 0.833 \text{ MHz}$

Step-8: Capacitor $C_S = 1/(2\pi \times 6 \text{ k}\Omega \times 0.8333 \text{ MHz}) = 31.8 \text{ pF}$

Step-9: Let pole frequency $F_P = 3 \times 2.5 \text{ MHz} = 7.5 \text{ MHz}$

Step-10: Capacitor $C_P = 1/(2\pi \times 6 \text{ k}\Omega \times 7.5 \text{ MHz}) = 21 \text{ pF}$

Step-11: With the above values of C_S and C_P , the Phase Margin = 11^0 only. PLL not stable. Therefore, let $C_P = 3.3p$ pF and $C_S = 33$ pF

Transient response of the control voltage at the input (output) of VCO (PFD).

2.63 GHz frequency is obtained at the input of DFF/ divider

1.259 GHz frequency is obtained at the output of the DFF