UFRJ – IM - DCC

Sistemas Operacionais I

Unidade III

Escalonamento de Processos

Gerenciamento de Recursos I

ORGANIZAÇÃO DA UNIDADE

- Processador Escalonamento de Processos
 - Conceituação
 - Critérios de escalonamento
 - Formas de escalonamento
 - Algoritmos de escalonamento de curto prazo
 - Escalonamento de tempo real
 - Escalonamento em sistemas multiprocessados
- Memória Primária
- Memória Virtual

Gerenciamento de Recursos I **Conceituação**

Escalonar é uma função do SO que consiste em escolher (determinar) dentre os processos candidatos aquele que:

- a) Ganhará acesso ao ambiente de processamento
- b) Será retirado do ambiente de processamento
- c) Ganhará a posse da CPU

(*) tarefa de fundamental importância na multiprogramação

UFRJ – IM – DCC

Gerenciamento de Recursos I Funções Básicas

- As estratégias de escalonamento adotadas em um SO têm por principais objetivos:
 - Manter o processador ocupado a maior parte do tempo (reduzir o idle time)
 - Balancear o uso da CPU pelos processos ativos;
 - Privilegiar a execução de aplicações críticas;
 - Maximizar o throughput do sistema;
 - Proporcionar tempos de resposta razoáveis para usuários interativos.

Gerenciamento de Recursos I Níveis de Escalonamento

- Longo prazo
 - Trata da admissão de novos processos
 - Batch: escolhe o próximo processo a ser executado
 - Usuário interativo: recusa ou não a sessão
- Médio prazo
 - Trata da admissão de processos que estão na condição de suspensos (completamente fora da memória principal).
 - Implementa o swapping
- Curto prazo
 - Trata da execução dos processos que estão na condição de prontos.
- Escalonamento de E/S
 - Trata da requisição de dispositivo de E/S pelos processos com E/S pendentes.

Gerenciamento de Recursos I **Níveis de Escalonamento**

UFRJ – IM – DCC

Gerenciamento de Recursos I **Níveis de escalonamento**

UFRJ – IM – DCC

Gerenciamento de Recursos I Conflito de Objetivos

Usuário

Tempo gasto
desde o
submissão do
requerimento até
o início da
resposta

Tempo de resposta

Sistema

Número de processos completados por unidade de tempo

Throughput

Utilização do processador

Gerenciamento de Recursos I Escalonamento de Longo Prazo

- Determina quais e quantos processos são aceitos para execução
- O escalonamento de Longo Prazo pode tentar manter uma mistura de processos tipo CPU-bounded e I/O bounded
- Controla o grau de multiprogramação

Quanto mais processos ativos melhor o uso do tempo de CPU?

Gerenciamento de Recursos I Escalonamento de Longo Prazo

■ Se mais processos são aceitos:

- → É menos provável que todos os processos estejam bloqueados em um determinado instante de tempo, aumentando assim a concorrência (melhor uso da CPU);
- → Cada processo terá uma fração menor do tempo de CPU;
- → Se o número de processos ativos for muito alto, o overhead causado pela troca de processos será tão grande que o tempo útil de utilização da CPU cairá.

Gerenciamento de Recursos I Escalonamento de médio prazo

- A decisão de swapping é baseada na necessidade do gerenciamento da multiprogramação
- Feito pelo software de gerenciamento de memória

Gerenciamento de Recursos I Escalonamento de curto prazo

- Determina qual será o próximo processo a ser executado (também chamado de escalonamento de CPU)
- Conduz a escolha de outro processo para execução:
 - → Interrupção de clock
 - → Interrupção de E/S
 - → System Calls e traps
 - → Sinais

Scheduler

Gerenciamento de Recursos I Escalonamento de Curto Prazo

Preempção:

As políticas de escalonamento podem ser classificadas segundo a possibilidade do SO interromper ou não um processo em execução e substituí-lo por outro.

Escalonamento Não-Preemptivo:

Foi o primeiro tipo de escalonamento implementado nos sistema multiprogramáveis, onde predominava o processamento batch.

Escalonamento Preemptivo:

Caracterizado pela possibilidade do SO suspender a execução de um processo e substituí-lo por outro que esteja no estado de pronto.

Gerenciamento de Recursos I Preempção x Não Preempção

14

Sem Preempção

 O processo fica executando até terminar ou até ser bloqueado em consequência a uma chamada ao sistema (I/O ou pedido de recurso do S.O.)

Com Preempção

- O processo em execução pode ser interrompido:
 - Quando chega um novo processo
 - Se um outro processo de maior prioridade fica pronto
 - Quando interrompido pelo clock (timeslice ou quantum)
- Evita que um processo monopolize o processador, oferecendo um melhor serviço

Gerenciamento de Recursos I Tamanho do Quantum

Tempo máximo que um processo pode deter o controle da CPU.

Gerenciamento de Recursos I Parâmetros de Avaliação

- Tempo de resposta
- Turnaround
- Prazos
- Previsibilidade
- Throughput
- Utilização do processador
- Justiça
- Prioridades
- Balanceamento de recursos

Orientado ao usuário

<u>Desempenho</u>

 $\rho = Ts/Tq$

Tq = turnaround Ts = execução $\rho = utilização da$ CPU

Orientado ao sistema

Gerenciamento de Recursos I Escalonamento de Curto Prazo

Estratégias de Escalonamento:

- Por prioridade;
- First-Come First-Served (FCFS)
- Round Robin
- Shortest Process Next (SPN)
- Shortest Remaining Time (SRT)
- Highest Response Ratio Next (HRRN)
- Feedback

Gerenciamento de Recursos I **Algoritmos de Escalonamento**

	<u>FCFS</u>	Round Robin	<u>SPN</u>	SRT	HRRN	Feedback
Função Seleção	Max[w]	Constante	Min[s]	Min[s-e]	Max[(w+s) / s]	
Modo Decisão	Sem preempção	Preempção (por quantidade de tempo)	Sem preempção	Preempção (por chegada)	Sem preempção	Preempção (por quantidade de tempo)
Throughput	Sem ênfase	Pode ser baixo se a quantidade de tempo for muito baixa	Alto	Alto	Alto	Sem ênfase
Tempo de Resposta	Pode se alto, especialmente se existir uma grande variação no tempo de execução de processo	Obtém um bom tempo de resposta em processos curtos	Obtém um bom tempo de resposta em processos curtos	Obtém um bom tempo de resposta	Obtém um bom tempo de resposta	Sem ênfase
Overhead	Mínimo	Baixo	Pode ser alto	Pode ser alto	Pode ser alto	Pode ser alto
Efeitos	Penaliza processos curtos; Penaliza processos de I/O bound	Tratamento justo	Penaliza processos longos	Penaliza processos longos	Bom balanceamento	Pode favorecer processos I/O bound
Starvation	Não	Não	Possível	Possível	Não	Possível

Gerenciamento de Recursos I Estratégias de Escalonamento

w – tempo já consumido pelo processo (espera + execução)

e – tempo já consumido em execução

s – tempo total previsto para conclusão do processo

Exemplo das Estratégias:

Processo	Instante de Ativação	Tempo de Serviço (s)		
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		

Gerenciamento de Recursos I Por Prioridade

Implementação:

- Cada processo recebe uma prioridade ao ser iniciado
- O escalonador seleciona o processo pronto de maior prioridade
- Existem várias filas "pronto", uma para cada nível de prioridade

Problema: Processos de baixa prioridade podem sofrer Starvation

Solução: Mudar dinamicamente a prioridade de acordo com a "idade"

ou o histórico de execução do processo

Gerenciamento de Recursos I FCFS – Ordem de Chegada

Sem preempção

UFRJ - IM - DCC

- Processos são executados na ordem de chegada
- Processos curtos podem esperar em demasia
- Favorece processo CPU-bound
 - processos I/O-bound esperam processo CPU-bound terminar ou ficar bloqueado
 - quando este fica bloqueado, a CPU fica ociosa

UFRJ - IM - DCC

Gerenciamento de Recursos I Round Robin ou Circular

- Usa preempção baseado num "quantum" (time slice, fatia de tempo)
- Quantum: tempo máximo que um processo pode manter o controle da CPU.
 - muito curto: maior o overhead de escalonamento
 - muito longo: degenera em FCFS
- Busca democratizar a distribuição do tempo da CPU

Profa. Valeria M. Bastos

Gerenciamento de Recursos I SPN – Processo Mais Curto

- Política sem preempção
- Processo com o tempo esperado de serviço (T_s) menor é selecionado primeiro
- Favorece processos curtos em detrimento dos longos
- Utilizado em sistemas batch

Gerenciamento de Recursos I SRT – Menor Tempo Restante

- Versão com preempção (na ativação) da política do processo mais curto
- O tempo de execução deve ser estimado
- Favorece mais ainda processos curtos

Gerenciamento de Recursos I

HRRN - Razão de Resposta

Processo	Instante de Ativação	Tempo de Serviço (s)	
1	0	3	
2	2	6	
3	4	4	
4	6	5	
5	8	2	

- Escolhe o processo com o maior valor para:
 <u>tempo em espera + tempo de execução estimado</u>
 tempo de execução estimado
- Busca privilegiar o balanceamento

Gerenciamento de Recursos I **Feedback**

- Penaliza os processos executados há mais tempo
 - não é necessário saber o tempo de execução
- Utiliza múltiplas filas com prioridades dinâmicas
 - a cada ciclo de execução a prioridade diminui
 - starvation: prioridade menor implica em quantum maior ou muita espera aumenta a prioridade
 - Favorece processos curtos e I/O bounded

Gerenciamento de Recursos I

Feedback

Gerenciamento de Recursos I Comparação da Estratégias

	Processo	1	2	3	4	5	Resultado
	Tempo de chegada	0	2	4	6	8	Médio
	Tempo de serviço (Ts)	3	6	4	5	2	
	Término	3	9	13	18	20	
FCFS	Turnaround (Tq)	3	7	9	12	12	8.60
	Tq / Ts	1.00	1.17	2.25	2.40	6.00	2.56
	Término	4	18	17	20	15	
RR q=1	1 Turnaround (Tq)	4	16	13	14	7	10.80
	Tq / Ts	1.33	2.67	3.25	2.80	3.50	2.71
RR q=4	Término	3	17	11	20	19	
	4 Turnaround (Tq)	3	15	7	14	11	10.00
	Tq / Ts	1.00	2.50	1.75	2.80	5.50	2.71
SPN	Término	3	9	15	20	11	
	Turnaround (Tq)	3	7	11	14	3	7.60
	Tq / Ts	1.00	1.17	2.75	2.80	1.50	1.84
SRT	Término	3	15	8	20	10	
	Turnaround (Tq)	3	13	4	14	2	7.20
	Tq / Ts	1.00	2.17	1.00	2.80	1.00	1.59
HRRN	Término	3	9	13	20	15	
	Turnaround (Tq)	3	7	9	14	7	8.00
	Tq / Ts	1.00	1.17	2.25	2.80	3.50	2.14
FB q=1	Término	4	20	16	19	11	
	1 Turnaround (Tq)	4	18	12	13	3	10.00
	Tq / Ts	1.33	3.00	3.00	2.60	1.50	2.29
FB q=2 ⁽ⁱ⁻¹⁾	Término	4	17	18	20	14	
	(i-1) Turnaround (Tq)	4	15	14	14	6	10.60
	Tq / Ts	1.33	2.50	3.50	2.80	3.00	2.63

Gerenciamento de Recursos I Escalonamento no UNIX Tradicional

Adota Feedback com múltiplos níveis e Round Robin internamente em cada nível.

$$P_{j}(i) = Base_{j} + \frac{CPU_{j}(i-1)}{2} + nice_{j}$$

$$CPU_{j}(i) = \frac{U_{j}(i)}{2} + \frac{CPU_{j}(i-1)}{2}$$

 $P_j(i)$ — prioridade do processo j no início do intervalo i (menor valor maior prioridade) Base_i — prioridade base para o processo j

U_i(i) – utilização do processador pelo processo j no intervalo i

 $\mathsf{CPU}_{\mathsf{j}}(\mathsf{i})$ — média de utilização da CPU pelo processo j no intervalo i exponencialmente ponderada

nice_i – fator ajustável controlado pelo usuário

Gerenciamento de Recursos I

Escalonamento em Multiprocessadores

Num ambiente de múltiplos processadores, novos fatores e características devem ser levados em consideração na definição de uma estratégia de escalonamento de curto prazo.

Gerenciamento de Recursos I Escalonamento em Multiprocessadores

Formas de acoplamento

- Fracamente acoplados (ou cluster):
 - Uma coleção de sistemas relativamente autônomos onde cada processador tem sua própria memória principal e canais de entrada e saída (rede de computadores).
- Fortemente acoplados:
 - Uma coleção de processadores que compartilham memória principal e estão sob controle integrado de um sistema operacional
 - Mestre / Escravo
 - SMP (Multiprocessamento Simétrico)

Gerenciamento de Recursos I Granularidade da Sincronização

Classificada em função da necessidade de sincronização entre as unidades lançadas em paralelo

- Independente
 - Processos independentes. Não é preciso sincronização.
- Muito grossa
 - Processos em diferentes nós de uma rede (fracamente acoplados) – intervalo de 2000 a 1 milhão de instruções
- Grossa
 - Processos em multiprocessamento intervalo de 200 a 2000
- Média
 - Rotinas de um mesmo processo intervalo de 20 a 200
- Fina
 - Instruções de um mesmo processo intervalo < 20

Gerenciamento de Recursos I Estratégias

33

Processo:

 Quanto mais processadores, menos importante é o escalonamento. Uso do FCFS

* Threads:

Load Sharing

Garantia de compartilhamento dos recursos e uso do processador. Fila única de processos

Gang Scheduling:

Conjunto de threads relacionadas é escalonado para trabalhar num conjunto de processadores ao mesmo tempo, numa base de um-para-um

Dedicated Processor Assignment:

Para cada programa é alocado um número de processadores igual ao número de threads, para o tempo total de execução do programa

Dynamic Scheduling

O número de threads no programa pode ser alterado durante o curso de execução

Gerenciamento de Recursos I Sistemas de Tempo Real - Conceitos

Sistema de tempo real pode ser definido como aquele em que o funcionamento correto da aplicação não depende apenas do resultado gerado mas também do tempo em que o mesmo é gerado.

Tarefa Hard Real Time

Os deadlines são imperativos. Não sendo cumprido os resultados de nada servirão.

Tarefa Soft Real Time

Os deadlines são desejáveis porém não mandatórios.

Gerenciamento de Recursos I Sistemas de Tempo Real

35

Características

- <u>Determinismo</u> tempo de execução predeterminado (duro ou dentro de um determinado intervalo).
- <u>Tempo de resposta</u> atraso de tempo (latência) necessária para o sistema iniciar o tratamento de uma interrupção
- <u>Controle pelo usuário</u> o usuário tem que ter a possibilidade de determinar o tipo de suas aplicações (soft ou hard), bem como definir a prioridade das mesmas.
- Confiabilidade é muito mais importante em sistemas de tempo real do que em todos as demais modalidades.
- Tolerância a falhas um SO de tempo real é dito estável se na impossibilidade de atender ao deadline de todas as tarefas ativas, garante o atendimento daquelas mais críticas.

Gerenciamento de Recursos I Sistemas de Tempo Real

Funcionalidades:

- Troca de contexto rápida
- Tamanho reduzido
- Resposta rápida à interrupções
- Multitarefa com funcionalidades de IPC e concorrência
- Escalonamento preemptivo com base em prioridade
- Minimização dos intervalos em que as interrupções estão desabilitadas
- Primitivas para atrasar por um tempo fixo, para suspender ou parar tarefas em execução
- Alarmes e timeouts especiais

(*) O coração de um RTS está no escalonamento de curto prazo

Gerenciamento de Recursos I

37

Sistemas de Tempo Real - Escalonamento

a) Round Robin Premptivo

b) Por Prioridade Não-Preemptivo

Gerenciamento de Recursos I

Sistemas de Tempo Real - Escalonamento

c) Por Prioridade Preemptivo em Determinados Pontos

d) Preempção Imediata

