

planetmath.org

Math for the people, by the people.

characteristic polynomial of a orthogonal matrix is a reciprocal polynomial

Canonical name CharacteristicPolynomialOfAOrthogonalMatrixIsAReciprocalPolynomial

Date of creation 2013-03-22 15:33:13 Last modified on 2013-03-22 15:33:13

Owner matte (1858) Last modified by matte (1858)

Numerical id 5

Author matte (1858) Entry type Theorem Classification msc 15-00

 $Related\ topic \\ Characteristic Polynomial Of A Symplectic Matrix Is A Reciprocal Polynomial \\ In the property of the proper$

Theorem 1. The characteristic polynomial of a orthogonal matrix is a reciprocal polynomial

Proof. Let A be the orthogonal matrix, and let $p(\lambda) = \det(A - \lambda I)$ be its characteristic polynomial. We wish to prove that

$$p(\lambda) = \pm \lambda^n p(1/\lambda).$$

Since $A^{-1} = A^T$, we have $A - \lambda I = -\lambda A(A^T - I/\lambda)$. Taking the determinant of both sides, and using det $A = \det A^T$ and det $cA = c^n \det A$ ($c \in \mathbb{C}$), yields

$$\det(A - \lambda I) = \pm \lambda^n \det(A - \frac{1}{\lambda}I).$$

References

[1] H. Eves, Elementary Matrix Theory, Dover publications, 1980.