Spectral Clustering

Part 1: The Graph Laplacian

Ng Yen Kaow

Laplacian of a function

- □ Given a multivariate function $f: \mathbb{R}^n \to \mathbb{R}$
- $\neg \nabla f(x)$, the gradient at f(x), is a vector pointing at the steepest ascent of f(x)

- \square Δf , the Laplacian of f, is the divergence of ∇f , that is, $\Delta f(x) = \nabla \cdot \nabla f(x)$
 - A scalar measurement of the smoothness in $\nabla f(x)$ about point x

Incidence matrix

- Consider each vertex as a point on the grid
 - The domain of f are now the vertices
 - f(v) operates on each vertex v
 - The gradient from vertex v to v' is given by the edge $e: v \to v'$, more specifically, f(v') f(v)
 - \Box Denote the gradient of edge e as w(e)
- Define a matrix which captures all the gradients

Incidence matrix

Incidence matrix

$$M = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ A & 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Every column represents an edge in the graph

$$(M^{\mathsf{T}})_{1}f = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f(A) \\ f(B) \\ f(C) \\ f(D) \end{bmatrix} = f(A) - f(B) = w(e_{1})$$

Incidence matrix

Incidence matrix

$$M = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ A & \begin{bmatrix} 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

- Every column represents an edge in the graph
- \square $M^{\top}f$ is a $|E| \times 1$ vector where each entry gives the gradient of an edge
 - lacksquare $M^{T}f$ contains all the gradients of the graph

The graph Laplacian L

The graph Laplacian L is obtained by

$$\Delta f = \nabla \cdot \nabla f = M M^{\mathsf{T}} f$$

- $MM^{\top}f$ is a $|V| \times 1$ vector where each entry gives the divergence of a vertex
- \square MM^{\top} is a $|V| \times |V|$ matrix where

$$MM^{\mathsf{T}} \begin{bmatrix} f(\mathbf{A}) \\ f(\mathbf{B}) \\ \vdots \end{bmatrix} = \begin{bmatrix} \Delta f(\mathbf{A}) \\ \Delta f(\mathbf{B}) \\ \vdots \end{bmatrix}$$

Properties of L

- \square The graph Laplacian L is obtained as $L = MM^{\top}$
 - Since L is of the form MM^{\top} , L is symmetric and positive-semidefinite
 - This allows us to obtain an orthogonal eigenbasis, which has special meanings (next slide)
 - L = D A, where D is the degree matrix and A the adjacency matrix

Eigenvectors of L

- \square The eigenvectors of L has special meaning
 - Consider the vectors x fulfilling $Lx = \lambda x$,
 - Compared with $Lx = \begin{bmatrix} \text{divergence of A} \\ \vdots \end{bmatrix}$, we have that $\lambda x = \begin{bmatrix} \text{divergence of A} \\ \vdots \end{bmatrix}$
 - The eigenvector x corresponds to the values f(A), f(B), ..., where $\lambda f(v) \approx \Delta f(v)$
 - $\ \square$ A small λ indicates that f(v) does not vary much from f(v') of its neighbors v'
 - A connected graph has $min(\lambda) = 0$, indicating that $\Delta f(v) = 0$, (i.e. f(v) = const, a stationary state)
 - For a disconnected graph, the disconnected components has different constants for f(v) values

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

$$x^{\mathsf{T}}Lx = x^{\mathsf{T}}Dx - x^{\mathsf{T}}Ax = \sum_{i=1}^{m} d_{i}x_{i}^{2} - \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} d_{i}x_{i}^{2} - 2 \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j} + \sum_{i=1}^{m} d_{i}x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_{i} - x_{j})^{2}$$

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only the values +1 and
 -1, indicating the membership of the vertices in a set S

$$x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \bar{S} \end{cases}$$

That is, we want to use x to indicate the result of a 2-partition, S and \overline{S}

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only $\{1, -1\}$, then $x^T L x$ has special significance

$$\frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2 = \sum_{i,j=1,i < j}^{m} a_{ij} (x_i - x_j)^2$$

$$= 4 \sum_{1 \le i < j \le m, x_i \ne x_j}^{m} a_{ij}$$

That is, $x^T L x$ is 4 times the number of edges between adjacent vertices of each from S and \overline{S}

Finding x that minimizes $x^T Lx$

- \Box Compute $x^{\mathsf{T}}Lx$ for all x
 - e.g. x = [1, -1, -1, -1]gives $x^T L x = 12$
- This gives us the 2-partition that results in the least number of removed edges
 - $x = 1 = [1 \ 1 \ 1 \ 1]$ or $x = -1 = [-1 \ -1 \ -1]$ which has $x^T L x = 0$ are trivial solutions
 - Best x is [1 1 1 -1], that is, A, B, C in one group and D in another

Group 1	Group 2	$x^{T}Lx$
А	BCD	12
В	ACD	8
С	ABD	8
D	ABC	4
AB	CD	12
AC	ВD	12
AD	ВС	8
ABCD	Ø	0

 \Box The optimal x can be approximately found

Finding x that minimizes x^TLx

- \square Minimize $x^{T}Lx$
 - Consider instead problem of minimizing $\frac{x}{x^{T}x}$
 - \Box x is of only +1 and -1 \Rightarrow $x^{T}x = |x| = \text{const}$

Group 1	Group 2	$x^{T}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
А	BCD	12	3
В	ACD	8	2
С	ABD	8	2
D	ABC	4	1
АВ	CD	12	3
AC	B D	12	3
A D	ВС	8	2

Finding x that minimizes $x^T Lx$

- $\Box \frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ is known as the Rayleigh quotient
 - By the min-max theorem of Rayleigh quotient,

$$\min_{x} \frac{x^{\top} L x}{x^{\top} x} = \lambda_k$$

- where λ_k is the smallest eigenvalue in the decomposition of $Lx = \lambda x$, and
- $\mu_k = \underset{x}{\operatorname{argmin}} \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$
- \square However, μ_k is the trivial ($\lambda_k = 0$) solution
 - Compromise and use the second best solution μ_{k-1} (which corresponds to the second smallest eigenvalue λ_{k-1})

Eigendecomposition example

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

More precisely, -9.51E-17

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

$$\square$$
 $\lambda_3 = 1 = \text{optimal value for } \frac{1}{2} \sum_{1 \le i,j \le m} a_{ij} (x_i - x_j)^2$

If group by the (\pm) sign, μ_3 correctly places A, B, C in one group (-) and D in another (+)

Compromise in +1/-1 restriction

- By relaxing the restriction of +1 and -1 in x to allow any real number, an x^TLx smaller than the optimal under the restriction is often achieved
 - The improvement can be guaranteed if x is orthogonal to $\mathbf{1}$ (or $-\mathbf{1}$) since by the min-max theorem, $\frac{\mu_{k-1}^{\mathsf{T}}L\mu_{k-1}}{\mu_{k-1}^{\mathsf{T}}\mu_{k-1}}$ is minimal among all $\frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ that are orthogonal to μ_k
 - □ However, in the present case, $x = [1 \ 1 \ 1 \ -1]$ and not orthogonal to $\mu_4 = [1 \ 1 \ 1 \ 1]$
 - $\square \quad \text{Still, } \frac{\mu_3^{\mathsf{T}} L \mu_3}{\mu_3^{\mathsf{T}} \mu_3} = \lambda_3 = 1 = \min_{x \in \{1, -1\}^4} \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$
 - Though no guarantee, improvements are usual

The significance of μ_{k-1} and λ_{k-1}

- The heuristic for translating μ_{k-1} back into discrete values for a grouping of the vertices is an important topic
- \square μ_{k-1} is called the Fiedler vector
- \square λ_{k-1} is called the Fiedler value
 - The multiplicity of λ_{k-1} is always 1
 - Also called the algebraic connectivity
 - □ The further λ_{k-1} is from 0, the more connected is the graph