

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 2006 Электронный жирнал.

Электронный журнал, per. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Динамические системы на многообразиях

МЕТОД ИССЛЕДОВАНИЯ ОКРЕСТНОСТИ НЕТРАНСВЕРСАЛЬНОЙ ГОМОКЛИНИЧЕСКОЙ ТОЧКИ ДВУМЕРНОГО ДИФФЕОМОРФИЗМА

С.Б. Тихомиров

Россия, 198504, Россия, Санкт-Петербург, Старый Петергоф, Университетский пр., дом 28, С.-Петербургский государственный университет, математико-механический факультет, e-mail: quiet@st8008.spb.edu

Аннотация

Рассматривается нетрансверсальная гомоклиническая точка гиперболической неподвижной точки двумерного диффеоморфизма, в предположении, что седловая величина меньше 1. Представлено новое доказательство существования счетного семейства периодических точек в ее малой окрестности. Для случая квадратичного касания доказана гиперболичность найденных периодических точек и наличие трансверсальной гетероклинической структуры.

 $^{^{0}}$ Статья выполнена при финансовой поддержке министерства образования РФ, 2005 год, проект 37858

1 Введение

Рассмотрим дискретную динамическую систему, порожденную диффеоморфизмом f, заданном на многообразии M. Предположим, что p – ее гиперболическая неподвижная точка. Пусть W^s и W^u — устойчивое и неустойчивые многообразия точки p. Рассмотрим ситуацию, когда они имеют точку пересечения q, отличную от p. Такую точку пересечения называют гомоклинической точкой, а траекторию, проходящую через нее, гомоклинической траекторией. Гомоклинические точки играют важную роль в теории динамических систем [1], [5]. В зависимости от характера пересечения устойчивого и неустойчивого многообразия выделяют два класса гомоклинических точек — трансверсальные и нетрансверсальные. Динамика в окрестности трансверсальных гомоклинических структур достаточно хорошо изучена (например [1], [5]), в то время как в нетрансверсальном случае остается открытым множество вопросов [3].

В данной работе предложен новый метод анализа окрестности нетрансверсальной гомоклинической точки для двумерных отображений. Основной идеей предлагаемого метода является представление отображения вдоль траектории из малой окрестности гомоклинической точки в себя в виде композиции двух отображений с более простыми свойствами. Одно из них — отображение в окрестности исходной неподвижной точки, соответствующее переменному количеству итераций отображения f и переводящее окрестность локально устойчивого многообразия неподвижной точки в окрестность локально неустойчивого. Второе — фиксированное количество итераций отображения f. В таком представлении важные объекты динамики, такие как периодические точки и инвариантные многообразия, достаточно просто описываются аналитическими уравнениями. Для полученных уравнений можно установить асимптотическое поведение их решений, которое позволяет делать выводы о поведении траектории исходной динамической системы.

В работе сформулированы достаточные условия существования счетного семейства периодических точек в окрестности нетрансверсальной гомоклинической точки. Для случая квадратичного гомоклинического касания доказана гиперболичность найденных периодических точек и доказано наличие трансверсального пересечения их устойчивых многообразий с неустойчивым многообразием неподвижной точки, порождающей нетрансверсальную гомоклинику.

Рис. 1: Окрестность точки (0,0).

2 Основные обозначения

Рассмотрим дискретную динамическую систему на плоскости

$$\Phi: \mathbf{Z} \times \mathbf{R}^2 \to \mathbf{R}^2,$$

порожденную диффеоморфизмом f класса \mathbb{C}^1 . Предположим, что (0,0) – ее гиперболическая седловая неподвижная точка. Пусть W^s и W^u – устойчивое и неустойчивое многообразия точки (0,0) соответственно. Предположим, что рассматриваемая динамическая система в некоторой окрестности нуля является линейной и ее локально устойчивое и неустойчивое многообразия направлены по осям y и x соответственно. Пусть A = Df(0,0). При сделанных предположениях выполнено равенство

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & 1/\mu \end{pmatrix}$$
, где $|\lambda|, |\mu| > 1.$ (1)

Замечание 1. Как показано в [7], широкий класс систем может быть приведен к такому виду при помощи гладкой замены координат.

Предположим, что существует точка касания u многообразий W^s и W^u , лежащая в области линейности динамической системы на оси y. Тогда существует такая точка касания v многообразий W^s и W^u , лежащая в области

Рис. 2: Система координат.

линейности динамической системы на оси x, что u и v лежат на одной траектории (рис. 1).

Рассмотрим такое N, что выполнено равенство $u=f^N(v)$. Обозначим f^{-N} через F. Пусть далее $u=(0,u_0),v=(v_0,0)$. Перед проведением дальнейших рассуждений дополнительно предположим, что $\lambda,\mu,u_0,v_0>0$.

Введем на множестве $U=(0;\eta_0]\times[u_0-\xi;u_0)$ (множество, заштрихованное на рис. 2) отображение G, действующее из U в \mathbf{R}^2 , по следующему закону. Обозначим через G(z) первую точку последовательности $z,f(z),\ldots,f^k(z),\ldots,$ у которой координата x больше или равна v_0 .

Введем в окрестности точки u новые координаты: в качестве начала координат возьмем точку u, ось ξ направим вниз в направлении 0, а ось η направим вдоль исходной оси x (рис. 2).

Введем последовательности функций J_n, K_n по следующему закону:

$$J_n(\xi, \eta) = \eta \lambda^n, \qquad K_n(\xi, \eta) = (1/\mu^n)(u_0 - \xi).$$
 (2)

Обозначим интервал $[v_0/\lambda^n; v_0/\lambda^{n-1})$ через I_n . При таком определении J_n и K_n и интервала I_n выполнено соотношение

$$G(\xi,\eta) = \{(J_n(\xi,\eta), K_n(\xi,\eta)), \text{ где } \eta \in I_n\}.$$
 (3)

Рассмотрим разбиение ${\bf R}_+$ на интервалы вида $I_m, m \in {\bf Z}$. Далее, для каждого $\eta>0$ обозначим через $n(\eta)$ единственное целое число такое, что вы-

полнено включение $\eta \in I_{n(\eta)}$. Легко видеть, что $n(\eta)$ — монотонная функция. Перепишем (3), используя это обозначение:

$$G(\xi,\eta) = \left(J_{n(\eta)}(\xi,\eta), K_{n(\eta)}(\xi,\eta)\right).$$

Следует отметить, что $n(\eta)$ и $G(\xi,\eta)$ — разрывные функции.

Перед дальнейшими рассуждениями введем ряд стандартных обозначений (например, см. [6], том I):

$$a(x) \sim_{x \to x_0} b(x) \Leftrightarrow \lim_{x \to x_0} a(x)/b(x) = 1,$$

$$a_n \sim b_n \Leftrightarrow \lim_{n \to \infty} a_n/b_n = 1.$$

Мы будем говорить, что f(x) = O(g(x)) при $x \to a_0$, если существует такая константа c > 0, что в некоторой окрестности a_0 выполнены неравенства |f(x)/g(x)| < c и будем говорить, что f(x) = o(g(x)) при $x \to a_0$, если $f(x)/g(x) \to 0$ при $x \to a_0$.

3 Основные теоремы

Пусть функции P и Q таковы, что $F(\xi,\eta)=(P(\xi,\eta),Q(\xi,\eta))$. Выясним некоторые дополнительные свойства функций P и Q. Очевидно, что существует участок многообразия W^u , лежащий в \overline{U} и касающийся оси ξ . Отображение F переводит этот участок в горизонтальный отрезок, следовательно, $Q'_{\xi}(0,0)=0$. Поскольку F — диффеоморфизм, то якобиан

$$\begin{vmatrix} P'_{\xi}(0,0), P'_{\eta}(0,0) \\ Q'_{\xi}(0,0), Q'_{\eta}(0,0) \end{vmatrix}$$

не равен 0. Так как $Q_{\xi}^{'}(0,0)=0$, то отсюда следует, что

$$P_{\xi}^{'}(0,0) \neq 0 \quad \text{if} \quad Q_{\eta}^{'}(0,0) \neq 0.$$
 (4)

Одним из результатов данной статьи является нахождение достаточных условий существования счетного семейства периодических движений системы Φ в окрестности точки u.

Теорема 1. Предположим, что

1.
$$\mu > \lambda > 0$$
.

- 2. $P'_{\xi}(0,0) > 0 \ u \ Q'_{\eta}(0,0) > 0.$
- 3. Найдется такое l>1, что $Q\in {\bf C}^l$ и при этом выполнены следующие соотношения:

$$Q_{\xi}^{(l)}(0,0) < 0 \quad u \quad Q_{\xi}^{(m)}(0,0) = 0 \quad npu \quad m < l.$$

Тогда при достаточно больших п найдутся такие $\eta_n \in [v_0/\lambda^n; v_0/\lambda^{n-1}]$ и $\xi_n > 0$, что $F(\xi_n, \eta_n) = G(\xi, \eta)$. При этом $\xi_n \to 0$.

Следствие 1. В условиях теоремы 1 в сколь угодно малой окрестности точки и найдется периодическая точка.

Замечание 2. При четных l следствие 1 верно и без предположения 2 теоремы 1.

Доказательство. Действительно, поскольку $\lambda, \mu > 0$, то якобиан отображения f в любой точке положителен. Следовательно, $P'_{\xi}(0,0)$ и $Q'_{\eta}(0,0)$ одного знака. В случае, если условие 2 не выполнено, то имеют место соотношения $P'_{\xi}(0,0) < 0$ и $Q'_{\eta}(0,0) < 0$. Рассмотрим динамическую систему, порожденную диффеоморфизмом f^2 . Для нее будут выполнены все условия теоремы 1, а периодические точки этой системы будут являться периодическими точками исходной системы.

Данная задача, разумеется, ранее уже исследовалась, и в [4] для описанного случая были получены необходимые и достаточные условия существования периодических точек в сколь угодно малой окрестности гомоклинической точки. Приведем этот результат в наших обозначениях:

Теорема 2. Если $F \in \mathbb{C}^1$ и $|\mu| > |\lambda|$, то при достаточно малых ε в ε -окрестности точки и найдется периодическая точка тогда и только тогда, когда прообраз горизонтального отрезка $L = (u_0 - \varepsilon; u_0 + \varepsilon) \times \{0\}$ под действием отображения F обладает следующими свойствами:

- 1. Он содержит точки, не лежащие на оси y.
- 2. Если $\lambda > 0$, то прообраз содержит точки с положительными координатами y.

Сравним результаты теорем 1 и 2. В настоящей работе мы ограничились рассмотрением случая $\lambda, \mu > 0$. Покажем, что при этих предположениях для четных l, полученный результат совпадает с результатом теоремы 2, а при нечетных l является его частным случаем. Верно следующее:

- 1. Условие 1 теоремы 1 является общим для этих двух теорем.
- 2. Согласно замечанию 2, при четных l условие 2 можно опустить.
- 3. Лемма 1 (сформулированная далее) показывает, что в условиях теоремы 1 выполнены условия теоремы 2.
- 4. Согласно замечанию 4, при четных l условие 3 теоремы 1 является необходимым для выполнения условий теоремы 2

Утверждения 1-4 в совокупности доказывают сформулированное утверждение.

Опишем основную идею доказательства теоремы 2, приведенного в [4]. Автор рассматривает отображение f^{N+n} в малой окрестности точки u. В этой окрестности автор строит прямоугольник вида $E = [\xi_1, \xi_2] \times [v_0/\lambda^n; v_0/\lambda^{(n-1)}]$. Для каждой точки x этого прямоугольника рассматривается вектор с началом в x и концом в $f^{N+n}(x)$. Нетрудно заметить, что построенное векторное поле является непрерывным. Рассматривая его поведение на границе E, автор доказывает, что в условиях теоремы оно направленно наружу. Отсюда следует, что хотя бы в одной точке внутри прямоугольника рассматриваемое векторное поле обращается в 0. Эта точка является неподвижной точкой отображения f^{N+n} , а следовательно, периодической точкой исходной системы.

Изучаемая нами задача исследовалась в [2] для случая касания первой степени, т.е. в наших обозначениях для случая l=2. Авторы не делали предположения о линейности системы в окрестности неподвижной точки. Одним из полученных результатов является доказательство наличия счетного семейства периодических точек в окрестности гомоклинической точки. Ниже мы приведем схему этого доказательства в наших предположениях и обозначениях.

Рассмотрим малую окрестность точки u и такое ее разбиение ее на множества σ_n , которые проектируются на интервалы I_n В статье приводятся условия, при которых $F^{-1}A^n(\sigma_i)\bigcap\sigma_j\neq\varnothing$. Вместе с отображением $F^{-1}A^i:\sigma_i\to\sigma_j$ рассмотрим отображение $A^j:(\xi,\eta)\to(x,y)$. Записывая отображение $F^{-1}A^n$ в переменных (ξ,y) , получим отображение \tilde{F} . Авторы доказывают, что отображение \tilde{F} является сжимающим, а, следовательно, имеет неподвижную точку, которая очевидно будет периодической точкой исходной системы.

В описанных работах доказательства опирались в основном на топологические факты, что затрудняет дальнейшее исследование окрестности най-

денных периодических точек. В этом отношении техника [2] обладает существенно большими возможностями, чем техника [4], в частности с ее помощью авторы доказывают гиперболичность найденных точек. Однако вопрос о возможности конструктивного построения периодических точек и нахождения асимптотики их координат и инвариантных многообразий остается открытым.

Рассмотрим частный случай описанных динамических систем. Мы попрежнему будем предполагать, что в некоторой окрестности точки (0,0) система описывается линейным отображением (1) и u и v – такие точки нетрансверсального пересечения ее инвариантных многообразий, что $u=f^N(v)$. Сформулируем основной результат данной статьи.

Теорема 3. Предположим, что $\mu > \lambda$ и в некоторой окрестности точки $(v_0, 0)$ отображение f^N имеет вид:

$$f^{N}(v_{0}+x,y) = (ax^{2}+by+p_{1}(x,y), u_{0}-cx+p_{2}(x,y)),$$
 (5)

 $c\partial e\ a,b,c>0\ u\ функции\ p_1\ u\ p_2\ удовлетворяют\ соотношениям$

$$p_1(x,y) = o(x^2 + |y|), \quad p_1 \in \mathbf{C}^2;$$

$$p_2(x,y) = o(|x| + |y|), \quad p_2 \in \mathbf{C}^2.$$
 (6)

Тогда:

1. Найдется такое $n_0 > 0$, что для всякого $n > n_0$ в окрестности точки $(v_0,0)$ найдется седловая (n+N)-периодическая точка. При этом ее координаты (v_0+x_n,y_n) удовлетворяют соотношениям

$$x_n \sim \sqrt{\frac{v_0}{a}} \frac{1}{\lambda^{n/2}}, \quad y_n \sim u_0 \frac{1}{\mu^n}.$$
 (7)

2. Найдется такое $n_1 > n_0$, что для любого $n > n_1$ устойчивое многообразие найденной периодической точки трансверсально пересекает неустойчивое многообразие точки (0,0).

4 Доказательство Теоремы 1

Поскольку $P'_{\xi}(0,0)>0$, то найдутся такое число $\varepsilon>0$ и такая окрестность точки (0,0), что $P'_{\xi}(\xi,\eta)>\varepsilon$ для точек этой окрестности. В дальнейшем будем рассматривать лишь эту окрестность. Опишем некоторые дополнительные свойства диффеоморфизма f.

Лемма 1. В условиях теоремы 1 существуют положительное число δ и функция $h(\eta)$, заданная на промежутке $(0,\delta)$, удовлетворяющие следующим соотношениям:

- 1. $Q(h(\eta), \eta) = 0, \quad \eta \in (0, \delta).$
- 2. $h(\eta) \to 0$ npu $\eta \to 0$.
- 3. $h(\eta) > 0$ npu $\eta \in (0, \delta)$.

Замечание 3. Точки $(h(\eta), \eta)$ принадлежат неустойчивому многообразию точки (0,0).

 \mathcal{A} оказательство. Из условия 3 теоремы 1 следует, что в окрестности точки (0,0) функция Q представима в виде

$$Q(\xi,\eta) = -c_1 \xi^l + c_2 \eta + z_1(\xi,\eta),$$
 где $c_1,c_2 > 0$ и $z_1(\xi,\eta) = o(\xi^l + \eta).$ (8)

Применяя теорему о неявной функции к уравнению $w(x,y)=-c_1x+c_2y+z_1(x^{1/l},y)=0$, легко показать, что существует такая функция $h^l(\eta)$, что

$$h^l(\eta) = \frac{c_2}{c_1} \eta + z_2(\eta)$$
 и $-c_1 h^l(\eta) + c_2 \eta + z_1(h(\eta), \eta) = 0$, где $z_2(\eta) = o(\eta)$.

Обозначим $(c_2/c_1)^{1/l}$ через c_3 . Из (9) следует равенство $h = c_3\eta^{1/l} + o(\eta^{1/l})$. Очевидно, что функция $h(\eta)$ удовлетворяет всем условиям леммы 1.

Замечание 4. При четных l условие $Q_{\xi}^{(l)}(0,0) < 0$ является необходимым для существования функции $h(\eta)$, удовлетворяющей первым двум условиям леммы.

Доказательство. Действительно если $Q_{\xi}^{(l)}(0,0) > 0$, то равенство (8) было бы выполнено, но при $c_1 < 0$. Это соотношение при $\eta > 0$ и четных l влечет за собой неравенство $Q(\xi,\eta) > 0$ при достаточно малых ξ и η . Следовательно, искомой функции $h(\eta)$ не существует.

Введем обозначение $r=(1/v_0)^{\ln \mu/\ln \lambda}$, которое будет использоваться на протяжении дальнейшего изложения.

Лемма 2. Для любого $\eta \in I_n$ и $\mu > 1$ выполняется двойное неравенство

$$\frac{1}{\mu} \cdot r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}} < \frac{1}{\mu^n} \le r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}}.$$
 (10)

Доказательство. По условию леммы выполнены неравенства

$$\frac{v_0}{\lambda^{n-1}} > \eta \ge \frac{v_0}{\lambda^n}.$$

Откуда немедленно следует, что

$$n \ge \frac{\ln(v_0/\eta)}{\ln \lambda}$$
 и $n-1 < \frac{\ln(v_0/\eta)}{\ln \lambda}.$

Перепишем эти неравенства в виде двойного неравенства относительно n:

$$\frac{\ln(v_0/\eta)}{\ln \lambda} + 1 > n \ge \frac{\ln(v_0/\eta)}{\ln \lambda}.\tag{11}$$

Из неравенства (11) следует, что

$$\frac{1}{\mu} \cdot \frac{1}{\mu^{\frac{\ln(v_0/\eta)}{\ln \lambda}}} < \frac{1}{\mu^n} \le \frac{1}{\mu^{\frac{\ln(v_0/\eta)}{\ln \lambda}}}.$$
(12)

Проведя простые арифметические преобразования, легко доказать, что

$$r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}} \cdot \mu^{\frac{\ln(v_0/\eta)}{\ln \lambda}} = 1.$$

Отсюда и из (12) следует неравенство

$$\frac{1}{\mu} \cdot r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}} < \frac{1}{\mu^n} \le r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}},$$

которое доказывает утверждение леммы.

Лемма 3. При достаточно больших n для любого $\eta \in I_n$ найдется такое $\alpha(\eta)$, $0 < \alpha(\eta) < h(\eta)$, что $Q(\alpha(\eta), \eta) = K_n(\alpha(\eta), \eta)$.

Доказательство. Рассмотрим функцию $K_n(0,\eta)$. В силу определения (2) выполнено равенство $K_n(0,\eta) = a/\mu^n$. В силу леммы 2, $\frac{1}{\mu^n} \leq r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}}$. Объединяя эти соотношения, получаем, что

$$K_n(0,\eta) \le a \cdot r \cdot \eta^{\frac{\ln \mu}{\ln \lambda}}.\tag{13}$$

Рассмотрим асимптотическое поведение в 0 функций $Q(0,\eta)$ и $K_n(0,\eta)$. Из условия $Q \in \mathbf{C}^1$ следует, что

$$Q(0,\eta) = Q_{\eta}^{'}(0,0)\eta + o(\eta),$$
 где $Q_{\eta}^{'}(0,0) > 0.$

Поскольку $\mu > \lambda$ и выполнено неравенство (13), то $K_n(0, \eta) = o(\eta)$. Объединяя эти два утверждения, получаем, что при достаточно малых η выполнено

неравенство $Q(0,\eta) > K_{n(\eta)}(0,\eta)$. Отсюда немедленно следует, что при достаточно больших n и любом $\eta \in I_n$ выполнено неравенство

$$Q(0,\eta) > K_n(0,\eta). \tag{14}$$

Зафиксируем $\eta \in I_n$. По определению $h(\eta)$ выполнено соотношение

$$Q(h(\eta), \eta) = 0. \tag{15}$$

Так как по определению $K_n(h,\eta) = 1/\mu^n(u_0 - h)$, а $h < u_0$ при достаточно малых η , то выполнено неравенство

$$K_n(h(\eta), \eta) > 0 \tag{16}$$

В силу (14), (15) и (16),

$$Q(0,\eta) > K_n(0,\eta)$$
 и $Q(h(\eta),\eta) < K_n(h(\eta),\eta)$. (17)

Поскольку Q и K_n непрерывны, то найдется такое $\alpha = \alpha(\eta) \in (0, h(\eta))$, что

$$Q(\alpha(\eta), \eta) = K_n(\alpha(\eta), \eta). \tag{18}$$

Лемма 3 доказана.

Далее докажем, что при достаточно больших n найденная функция $\alpha(\eta)$ непрерывна при $\eta \in I_n$. Для этого нам понадобится вспомогательная лемма.

Лемма 4. Рассмотрим (ξ_k, η_k) — последовательность таких точек, что $(\xi_k, \eta_k) \to (0, 0)$. Тогда в условиях теоремы 1 выполнены следующие утверждения.

- 1. Если для любого k выполнено равенство $Q(\xi_k, \eta_k) = K_{n(\eta_k)}(\xi_k, \eta_k)$, то найдется такое $c_1 > 0$, что $\xi_k \sim c_1 \cdot \eta_k^{1/l}$.
- 2. Если для некоторых $c_1, c_2 > 0$ выполнено соотношение

$$c_1 \cdot \eta_k^{1/l} < \xi_k < c_2 \cdot \eta_k^{1/l},$$

mo, начиная c некоторого k, выполнено неравенство

$$|Q'_{\xi}(\xi_k,\eta_k)| > \left| \frac{\partial K_{n(\eta_k)}}{\partial \xi}(\xi_k,\eta_k) \right|.$$

 \mathcal{A} оказательство. Поскольку выполнено условие 3 теоремы 1, то раскладывая функции $Q_{\xi}^{'}$ и Q в ряды Тейлора, получаем соотношения

$$Q'_{\xi}(\xi_k, \eta_k) = ls\xi_k^{l-1} + O(\eta_k + \xi_k^l)$$
(19)

И

$$Q(\xi_k, \eta_k) = s\xi_k^l + d\eta_k + o(\eta_k + \xi_k^l).$$
 (20)

Ввиду условий 2 и 3 теоремы 1, выполнены неравенства $d=Q_{\eta}'(0,0)>0$ и $s=\frac{1}{l!}Q_{\xi}^{(l)}(0,0)<0$. Записывая определение функции K_n в точке (ξ_k,η_k) , получаем соотношение

$$K_{n(\eta_k)}(\xi_k, \eta_k) = \frac{1}{\mu^{n(\eta_k)}}(u_0 - \xi_k).$$

Применяя к этому соотношению лемму 2 и замечая тот факт, что начиная с некоторого k выполнено неравенство $\xi_k < u_0/2$, получаем, что

$$K_{n(\eta_k)}(\xi_k, \eta_k) \in \left(\frac{u_0}{2} \frac{1}{\mu} r \eta_k^{\frac{\ln \mu}{\ln \lambda}}; u_0 r \eta_k^{\frac{\ln \mu}{\ln \lambda}}\right]. \tag{21}$$

Приступим к доказательству пункта 1 леммы 4. По условию выполнено равенство $Q(\xi_k, \eta_k) = K_{n(\eta_k)}(\xi_k, \eta_k)$. Объединяя его с соотношениями (20) и (21), получаем, что

$$s\xi_k^l + d\eta_k + o(\eta_k + \xi_k^l) \in \left(\frac{u_0}{2} \frac{1}{\mu} r \eta_k^{\frac{\ln \mu}{\ln \lambda}}; u_0 r \eta_k^{\frac{\ln \mu}{\ln \lambda}}\right].$$

Откуда немедленно следует, что $s\xi_k^l + d\eta_k + o(\eta_k + \xi_k^l) = O(\eta_k^{\frac{\ln \mu}{\ln \lambda}})$. Поскольку $\ln \mu / \ln \lambda > 1$, то для выполнения этого равенства необходимо, чтобы $s\xi_k^l \sim -d\eta_k$, поэтому $\xi_k \sim c_1\eta_k^{1/l}$, где $c_1 = \left(-\frac{d}{s}\right)^{1/l} > 0$. Пункт 1 доказан.

Докажем пункт 2. Применяя к соотношению (19) условие пункта 2 леммы 4, легко показать, что найдутся такие константы c_3 и c_4 одного знака, что

$$c_3 \eta_k^{\frac{l-1}{l}} < Q_{\xi}'(\xi_k, \eta_k) < c_4 \eta_k^{\frac{l-1}{l}}.$$
 (22)

При этом знак c_3 и c_4 совпадает со знаком s. Продифференцировав функцию K_n по ξ (см. (2)), получим, что

$$\frac{\partial K_{n(\eta_k)}}{\partial \xi}(\xi_k, \eta_k) = -\frac{1}{\mu^{n(\eta_k)}}.$$
(23)

Из (23) в силу леммы 2 легко следует, что

$$\left| \frac{\partial K_{n(\eta_k)}}{\partial \xi}(\xi_k, \eta_k) \right| < r \eta_k^{\ln \mu / \ln \lambda}. \tag{24}$$

Объединяя это соотношение с (22) и учитывая, что $\ln \mu / \ln \lambda > (l-1)/l$, мы, видим, что

$$|Q'_{\xi}(\xi_k,\eta_k)| > \left| \frac{\partial K_{n(\eta_k)}}{\partial \xi}(\xi_k,\eta_k) \right|$$

начиная с некоторого k.

Теперь докажем единственность функции $\alpha(\eta)$, найденной в лемме 3.

Лемма 5. Найдется такое n_0 , что для всякого $n > n_0$ и $\eta \in I_n$ существует единственное такое $\xi \in (0, h(\eta))$, что $Q(\xi, \eta) = K_{n(\eta)}(\xi, \eta)$.

Доказательство. Существование такого $\xi = \alpha(\eta)$, удовлетворяющего условиям леммы, было доказано в лемме 3. Докажем единственность. Предположим противное. Тогда найдутся такие последовательности η_k , ξ_{1k} и ξ_{2k} , что

$$h(\eta_k) > \xi_{1k} > \xi_{2k} > 0 \tag{25}$$

И

$$Q(\xi_{1k}, \eta_k) = K_{n(\eta_k)}(\xi_{1k}, \eta_k), \quad Q(\xi_{2k}, \eta_k) = K_{n(\eta_k)}(\xi_{2k}, \eta_k). \tag{26}$$

Из (25) очевидно следует, что $\xi_{1k}, \xi_{2k} \to 0$, так как $h(\eta) \to 0$ при $\eta \to 0$. Эти два утверждения обеспечивают выполнение условий пункта 1 леммы 4 . Отсюда следует, что

$$\xi_{1k} \sim c_1 \eta_k^{1/l}, \quad \xi_{2k} \sim c_2 \eta_k^{1/l}, \quad \text{где} \quad c_1, c_2 > 0.$$
 (27)

Применяя теорему Ролля ([6], том 1, стр. 225) к функции $Q(\cdot, \eta_k) - K_{n(\eta_k)}(\cdot, \eta_k)$ найдем такую последовательность ξ_{3k} , что выполнены следующие соотношения:

$$\xi_{1k} > \xi_{3k} > \xi_{2k}$$
 и $Q'(\xi_{3k}, \eta_k) = K'_{n(\eta_k)}(\xi_{3k}, \eta_k).$ (28)

Отсюда немедленно следует, что для достаточно больших n, выполнено неравенство $2c_1\eta_k^{1/l}>\xi_{3k}>\frac{c_2}{2}\eta_k^{1/l}$, что обеспечивает выполнение условий пункта 2 леммы 4, а следовательно, начиная с некоторого k, выполнено $|Q'_\xi(\xi_3k,\eta_k)|>|K'_{n(\eta_k)}(\xi_{3k},\eta_k)|$. Это неравенство противоречит соотношениям (28).

Докажем непрерывность и дифференцируемость функции $\alpha(\eta)$ на I_n для достаточно больших n.

Лемма 6. Найдется такое число n_0 , что при $n > n_0$ функция $\xi_n^*(\eta) = \alpha(\eta)|_{I_n}$ непрерывна и дифференцируема на I_n .

Доказательство. Докажем, что найдется такое n_0 , что при $n > n_0$ для любого $\eta_0 \in I_n$ к уравнению $Q(\xi,\eta) = K_n(\xi,\eta)$ в точке $(\alpha(\eta_0),\eta_0)$ применима теорема о неявной функции относительно переменной ξ . Функции Q и K_n дифференцируемы, поэтому достаточно проверить, что при $n > n_0$ и $\eta \in I_n$ выполнено соотношение $Q'_{\xi}(\alpha(\eta),\eta) \neq K'_{n(\eta)_{\xi}}(\alpha(\eta),\eta)$. Предположим противное. Тогда найдутся такие последовательности $\xi_k, \eta_k \to 0$, что

$$Q(\xi_{k}, \eta_{k}) = K_{n(\eta_{k})}(\xi_{k}, \eta_{k}) \quad \text{if} \quad Q'_{\xi}(\xi_{k}, \eta_{k}) = K'_{n(\eta_{k})\xi}(\xi_{k}, \eta_{k}). \tag{29}$$

Эти соотношения влекут выполнение условий пункта 1 леммы 4, откуда следует, что $\xi_k \sim c_1 \eta_k^{1/l}$ при некотором $c_1 > 0$. Следовательно, к последовательности (ξ_k, η_k) применим пункт 2 леммы 4. Отсюда следует, что начиная с некоторого k выполнено неравенство $|Q'_{\xi}(\xi_k, \eta_k)| > |K'_{n(\eta_k)_{\xi}}(\xi_k, \eta_k)|$. Полученное соотношение противоречит (29). Следовательно, найдется такое n_0 , что при $n > n_0$ и $\eta_0 \in I_n$ к уравнению $Q(\xi, \eta) = K_n(\xi, \eta)$ применима теорема о неявной функции в точке $(\alpha(\eta_0), \eta_0)$. Значит, найдется такая непрерывно дифференцируемая функция β , определенная на интервале $(\eta_0 - \zeta, \eta_0 + \zeta)$, что

$$Q(\beta(\eta),\eta) = K_{n(\eta)}(\beta(\eta),\eta)$$
 и $\beta(\eta_0) = \alpha(\eta_0)$.

По лемме 5 функция $\alpha(\eta)$ определена однозначно, поэтому

$$\beta|_{(\eta_0-\zeta,\eta_0+\zeta)} = \alpha|_{(\eta_0-\zeta,\eta_0+\zeta)}.$$

Функция β непрерывна и дифференцируема в точке η_0 , а значит функция α тоже непрерывна и дифференцируема в точке η_0 .

Теперь, когда доказаны существование и непрерывность функции $\alpha(\eta)$, нам достаточно доказать, что найдется такое n_0 , что для всякого $n > n_0$ найдется такое $\eta \in I_n$, что $P(\alpha(\eta), \eta) = J_n(\alpha(\eta), \eta)$. Перед доказательством этого факта сформулируем вспомогательное утверждение.

Лемма 7. Начиная с некоторого n для любого $\eta \in I_n$ выполнено неравенство $P(\alpha(\eta), \eta) > v_0$.

Доказательство. Рассмотрим уравнение $P(\xi,\eta)=v_0$. Поскольку $P(0,0)=v_0$ и $P'_{\xi}(0,0)\neq 0$, то это уравнение задает неявную функцию $\vartheta(\eta)$ такую, что $P(\vartheta(\eta),\eta)=v_0$. При этом $\vartheta'(\eta)=-\frac{P'_{\eta}(0,0)}{P'_{\xi}(0,0)}$. Отсюда немедленно следует, что $\vartheta(\eta)\sim c_1\eta$, где $c_1=-\frac{P'_{\eta}(0,0)}{P'_{\xi}(0,0)}$. Докажем, что $\alpha(\eta)>\vartheta(\eta)$. Раскладывая Q по формуле Тейлора, получаем, что

$$Q(\vartheta(\eta), \eta) = s\vartheta^{l}(\eta) + Q_{\eta}^{'}(0, 0)\eta + o(|\eta| + |\vartheta^{l}(\eta)|)$$

Поскольку $\vartheta(\eta) \sim c_1 \eta$, то $s \cdot \vartheta^l(\eta) = o(\eta)$, поэтому

$$Q(\vartheta(\eta), \eta) = Q'_{\eta}(0, 0)\eta + o(\eta). \tag{30}$$

По определению K_n выполнено равенство $K_{n(\eta)}(\vartheta(\eta),\eta) = \frac{1}{\mu^{n(\eta)}}(u_0 - \vartheta(\eta)).$ Применяя к его правой части лемму 2, получаем неравенство

$$K_{n(\eta)}(\vartheta(\eta), \eta) < r\eta^{\ln \mu / \ln \lambda}.$$
 (31)

Поскольку $\ln \mu / \ln \lambda > 1$, то из соотношений (30) и (31) следует, что

$$Q(\vartheta(\eta), \eta) > K_{n(\eta)}(\vartheta(\eta), \eta).$$

Если $\vartheta(\eta) > 0$, то проводя рассуждения, аналогичные доказательству Леммы 3, получим, что $\alpha(\eta) > \vartheta(\eta)$. Если же $\vartheta(\eta) \leq 0$, то выполнены неравенства $\alpha(\eta) > 0 \geq \vartheta(\eta)$. Далее, поскольку $P'_{\xi}(\xi, \eta) > \varepsilon$, то функция $P(\xi, \eta)$ возрастает по ξ , а значит выполнено соотношение $P(\alpha(\eta), \eta) > P(\vartheta(\eta), \eta) = v_0$.

Лемма 8. Найдется такое n_0 , что при $n > n_0$ существует такое $\eta \in I_n$, что $P(\alpha(\eta), \eta) = J_n(\alpha(\eta), \eta)$.

Доказательство. Как было доказано в лемме 3, при $\eta \to 0$ выполнены соотношения $\alpha(\eta) < h(\eta)$ и $h(\eta) \to 0$. Отсюда немедленно следует, что $\alpha(\eta) \to 0$ при $\eta \to 0$. Вспоминая определение J_n , нетрудно получить соотношения

$$J_{n(\eta)}(\alpha(\eta),\eta) \to v_0 \lambda$$
 при $\eta \to \frac{v_0}{\lambda^{n-1}} - 0$

И

$$J_{n(\eta)}(lpha(\eta),\eta) o v_0$$
 при $\eta o rac{v_0}{\lambda^n}+0$

Поэтому при достаточно больших n

$$J_{n(\eta)}(\xi(\eta), \eta) > P(\xi(\eta), \eta)$$
 при $\eta \to \frac{v_0}{\lambda^{n-1}} - 0.$ (32)

По лемме 7, $P(\alpha(\eta), \eta) > v_0$. В частности, это соотношение выполнено при $\eta = v_0/\lambda^n$, а следовательно, $P(\alpha(\eta), \eta) > v_0 = J_n(\alpha(\eta), \eta)$. Объединяя это соотношение с неравенством (32) и применяя к ним теорему о промежуточном значении, получим, что на промежутке $(v_0/\lambda^n; v_0/\lambda^{n-1})$ найдется такое η , что выполнено равенство $P(\alpha(\eta), \eta) = J_n(\alpha(\eta), \eta)$.

Существование таких $\eta_n \in I_n$ и $\xi_n > 0$, что $F(\xi_n, \eta_n) = G(\xi_n, \eta_n)$, является тривиальным следсвием лемм 1-8. Из леммы 3 следует, что ξ_n и η_n могут быть выбраны удовлетворяющими неравенству $0 < \xi_n < h(\eta_n)$. Посколько выполнены соотношения

- 1. $\eta_n \to 0$,
- 2. $h(\eta) \rightarrow 0$ при $\eta \rightarrow 0$,

то $\xi_n \to 0$, что завершает доказательство теоремы.

5 Доказательство Теоремы 3

5.1 Теорема Ченцовой

Прежде чем мы приступим к доказательству теоремы 3, напомним и обобщим теорему Ченцовой [8], используемую в дальнейшем. Данный раздел напрямую не связан с изучаемой задачей и обозначения, используемые в нем никак не связаны с введенными ранее.

Теорема 4. Пусть $P - \partial u \phi \phi e o mop \phi u s m n n o c k o c m u в себя. Предположим, что:$

- 1. z_0 гиперболическая седловая неподвижная точка диффеоморфизма P, $L = DP(z_0)$ ее дифференциал в точке z_0 ;
- 2. γ_1, γ_2 собственные числа матрицы $L, \gamma_2 \in (0,1), \gamma_1 > 1$, а матрица L имеет диагональный вид;
- 3. существует такая постоянная K, что для любых $x,y \in \mathbf{R}^2$ справедливо неравенство

$$||L_x - L_y|| \le K|x - y|, \quad \epsilon \partial e \quad L_x = DP(x).$$

Введем числа $T=\frac{\gamma_1^2(\gamma_1-1)}{4K}, \quad c^*=\frac{2K}{\gamma_1(\gamma_1-1)}.$ Тогда $npu\ |t|< T$ уравнение неустойчивой сепаратрисы точки z_0 имеет вид

$$U(t) = z_0 + tU + h(t), (33)$$

 $rde\ U-coбственный вектор\ единичной\ длины,\ coomветствующий\ coбствен$ $ному числу\ \gamma_1,\ при\ этом$

$$|h(t)| < \frac{1}{2}c^*t^2, \quad |h'(t)| < c^*|t|.$$
 (34)

Рассмотрим диффеоморфизм V плоскости в себя. Предположим, что z_0 — его неподвижная точка. Пусть $B = DV(z_0)$ — не диагональная матрица. Предположим, что собственные числа γ_1 , γ_2 матрицы B таковы, что $\gamma_1 > 1$, $\gamma_2 \in (0,1)$, а соответствующие им собственные вектора суть (v_1,v_2) и (u_1,u_2) .

Обозначим матрицу $\begin{pmatrix} v_1 & u_1 \\ v_2 & u_2 \end{pmatrix}$ через S, а ее определитель через E, тогда как известно

$$S^{-1}BS = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 и $S^{-1} = \frac{1}{E} \begin{pmatrix} u_2 & -u_1 \\ -v_2 & v_1 \end{pmatrix}$.

Перейдем в новую систему координат при помощи линейной замены с матрицей перехода S. При этом отображение V перейдет в отображение $W=S^{-1}V(Sx)$.

Обозначим $L_x=DW(x)$ и $l_x=DV(x)$. Тогда $L_x=S^{-1}l_xS$. Пусть число K таково что

$$||L_x - L_y|| = ||S^{-1}(l_x - l_y)S|| \le K|x - y|.$$
(35)

Тогда, согласно теореме 4 неустойчивое многообразие диффеоморфизма W в точке z_0 представимо в виде

$$U(t) = z_0 + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + h(t), \tag{36}$$

где |t| < T и h(t) удовлетворяет неравенству (34).

Таким образом в исходной системе координат неустойчивое многообразие диффеоморфизма V представимо в виде

$$U(t) = z_0 + t \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + Sh(t), \tag{37}$$

где

$$|h(t)| < \frac{1}{2}c^*t^2, \quad |h'(t)| < c^*t, \quad t \in [0, T].$$
 (38)

Замечание 5. Варьируя вектор (u_1, u_2) (домножая его на константу), мы можем изменять матрицу S и величину K, тем самым изменяя оценки на T и c^* . Таким образом, можно регулировать соотношение между длиной промежутка аппроксимации неустойчивого многообразия и ее точностью.

5.2 Дополнительные обозначения

Для дальнейших рассуждений нам потребуются некоторые свойства отображения, обратного к f^N . Исходя из соотношений (5) и (6), в некоторой окрестности точки u отображение f^{-N} может быть представлено в следующем виде:

$$f^{-N}(\tilde{x}, \tilde{y}) = (v_0 + \tilde{a}(u_0 - \tilde{y}) + \tilde{p}_1(\tilde{x}, u_0 - \tilde{y}); \ \tilde{b}(\tilde{x} - \tilde{c}(u_0 - \tilde{y})^2) + \tilde{p}_2(\tilde{x}, u_0 - \tilde{y})), \ (39)$$

где \tilde{x} и \tilde{y} обозначают координаты в окрестности точки u по осям x и y соответственно,

$$\tilde{a} = 1/c, \quad \tilde{b} = 1/b, \quad \tilde{c} = a/c^2,$$

$$\tag{40}$$

и функции \tilde{p}_1 и \tilde{p}_2 удовлетворяют соотношениям:

$$\tilde{p}_{1}(\tilde{x}, \tilde{y}) = o(|\tilde{x}| + |\tilde{y}|), \quad \tilde{p}_{1} \in \mathbf{C}^{2};$$

$$\frac{\partial \tilde{p}_{1}}{\partial x}(\tilde{x}, \tilde{y}) = o(1), \quad \frac{\partial \tilde{p}_{1}}{\partial y}(\tilde{x}, \tilde{y}) = o(1)$$

$$\tilde{p}_{2}(\tilde{x}, \tilde{y}) = o(|\tilde{x}| + \tilde{y}^{2}), \quad \tilde{p}_{2} \in \mathbf{C}^{2}$$

$$\frac{\partial \tilde{p}_{2}}{\partial x}(\tilde{x}, \tilde{y}) = o(1), \quad \frac{\partial \tilde{p}_{2}}{\partial y}(\tilde{x}, \tilde{y}) = o(|x| + |y|).$$
(41)

При этом будут выполнены следующие соотношения:

$$a = \tilde{c}/\tilde{a}^2, \quad b = 1/\tilde{b}, \quad c = 1/\tilde{a}.$$
 (42)

5.3 Гиперболичность периодических точек

Докажем первый пункт теоремы 3. Нетрудно убедиться, что в условиях теоремы динамическая система удовлетворяет условиям теоремы 1. Следовательно в сколь угодно малой окрестности точки v для достаточно больших n найдется (n+N)-периодическая точка. Докажем, что найдется такое n_0 , что для любого $n > n_0$ эта точка является седловой гиперболической.

Доказательство. Пусть $(v_0 + x_n, y_n)$ — периодическая точка отображения f периода n + N. Тогда выполнено соотношение

$$A^n f^N(v_0 + x_n, y_n) = (v_0 + x_n, y_n).$$

Перепишем это уравнение, подставив определения отображений A и f^N ((1) и (5) соответственно):

$$\begin{cases} v_0 + x_n = \lambda^n (ax_n^2 + by_n + p_1(x_n, y_n)), \\ y_n = \frac{1}{\mu^n} (u_0 - cx_n + p_2(x_n, y_n)). \end{cases}$$
(43)

Исходя из этих уравнений, выясним асимптотику x_n с ростом n. Подставляя y_n из второго уравнения системы (43) в первое, получаем соотношение

$$v_0 + x_n = \lambda^n (ax_n^2 + b\frac{1}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n))) + p_1(x_n, \frac{1}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n))).$$
(44)

Из теоремы 1 следует, что $x_n \to 0$ и $y_n \to 0$. Отсюда и из неравенства $\mu > \lambda$ следует, что выполняются соотношения

$$\frac{1}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n)) = o(1),$$

$$\frac{\lambda^n}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n)) = o(1).$$

По свойству (6) функции p_1 выполнено соотношение

$$p_1(x_n, \frac{1}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n))) = o(x_n^2 + |\frac{1}{\mu^n}(u_0 - cx_n + p_2(x_n, y_n))|).$$

Из равенства (44) и полученных соотношений следует эквивалентность

$$x_n \sim \pm \sqrt{\frac{v_0}{a\lambda^n}} = \pm \sqrt{\frac{v_0\tilde{a}^2}{\tilde{c}\lambda^n}}.$$
 (45)

Для дальнейших рассуждений нам понадобятся два соотношения, следующие из (43):

$$y_n = \frac{1}{\mu^n} (u_0 - \frac{1}{\tilde{a}} x_n + p_2(x_n, y_n)),$$

$$u_0 - \mu^n y_n = \frac{1}{\tilde{a}} x_n + p_2(x_n, y_n).$$
(46)

Точка $(v_0 + x_n, y_n)$ периодична с периодом n + N. Для доказательства того, что периодическая точка является седловой гиперболической, достаточно показать, что дифференциал отображения $A^n f^N$ имеет два собственных числа, одно из которых по модулю меньше единицы, а второе больше. Найдем дифференциал отображения $A^n f^N$ в точке $(v_0 + x_n, y_n)$:

$$DA^{n}f^{N}(v_{0}+x_{n},y_{n}) = \begin{pmatrix} \lambda^{n}(2ax_{n} + \frac{\partial p_{1}}{\partial x}(x_{n},y_{n})) & \lambda^{n}(b + \frac{\partial p_{1}}{\partial y}(x_{n},y_{n})) \\ \frac{1}{\mu^{n}}(-c + \frac{\partial p_{2}}{\partial x}(x_{n},y_{n})) & \frac{1}{\mu^{n}}\frac{\partial p_{2}}{\partial y}(x_{n},y_{n}) \end{pmatrix}. \quad (47)$$

Собственные числа полученной матрицы являются корнями уравнения

$$\left(\lambda^n(2ax_n + \frac{\partial p_1}{\partial x}) - s\right) \left(\frac{1}{\mu^n} \frac{\partial p_2}{\partial y} - s\right) - \frac{\lambda^n}{\mu^n} \left(b + \frac{\partial p_1}{\partial y}\right) \left(-c + \frac{\partial p_2}{\partial x}\right) = 0.$$
 (48)

Обозначим левую часть этого равенства через P(s). Для того, чтобы уравнение (48) имело два корня, один из которых по модулю больше 1, а второй меньше, необходимо и достаточно, чтобы P(-1)P(1) < 0. Несложные преобразования показывают, что это неравенство равносильно

$$\left(1 + \frac{\lambda^n}{\mu^n} (2ax_n + \frac{\partial p_1}{\partial x}) \frac{\partial p_2}{\partial y} - \frac{\lambda^n}{\mu^n} (b + \frac{\partial p_1}{\partial y}) (-c + \frac{\partial p_2}{\partial x})\right)^2 < \left(\lambda^n (2ax_n + \frac{\partial p_1}{\partial x}) + \frac{1}{\mu^n} \frac{\partial p_2}{\partial y}\right)^2. \tag{49}$$

Докажем, что неравенство (49) выполнено начиная с некоторого n. Действительно, поскольку $\mu > \lambda$, то левая часть неравенства стремится к 1. Правая же часть эквивалентна своему главному члену $(2a\lambda^n x_n)^2$. Из формулы (45) легко получить, что

$$(2a\lambda^n x_n)^2 \sim 4av_0\lambda^n \to \infty. \tag{50}$$

Из этих утверждений следует что неравенство (49) выполено для достаточно больших n. Тогда дифференциал отображения $A^n f^N$ имеет два собственных числа, одно из которых по модулю больше 1, а второе меньше. Отсюда немедленно следует, что $(v_0 + x_n, y_n)$ – седловая гиперболическая точка. Вместе с соотношениями (45) и (46) это доказывает первую часть Теоремы 3.

5.4 Образ неустойчивого многообразия

Рассмотрим участок W^u , касающийся W^s в точке u. В достаточно малой окрестности точки u он является образом отрезка $(v_0 + \tau, 0)$, где $\tau \in (-\varepsilon, \varepsilon)$, под действием отображения f^N , т.е. имеет вид

$$(a\tau^2 + p_1(\tau, 0), u_0 - c\tau + p_2(\tau, 0)) = (\frac{\tilde{c}}{\tilde{a}^2}\tau^2 + p_1(\tau, 0), u_0 - \frac{1}{\tilde{a}}\tau + p_2(\tau, 0)).$$

Обозначим эту кривую через ψ . Для достаточного малого δ зададим неявно функцию $\tau(y)$ на промежутке $(u_0 - \delta, u_0 + \delta)$, таким образом, чтобы выполнялось следующее соотношение:

$$u_0 - \frac{1}{\tilde{a}}\tau(y) + p_2(\tau(y), 0) = y.$$
 (51)

Из этого соотношения немедленно следует, что

$$\tau(y) = \tilde{a}(u_0 - y) + o(u_0 - y). \tag{52}$$

Точка (x,y), лежащая в малой окрестности точки u принадлежит кривой ψ тогда и только тогда, когда выполнено равенство

$$x = \frac{\tilde{c}}{\tilde{a}^2} \tau^2(y) + p_1(\tau(y), 0).$$

Из соотношения (51) несложно следует, что полученное равенство равносильно равенству

$$x = \tilde{c}((u_0 - y) + p_2(\tau(y), 0))^2 + p_1(\tau(y), 0).$$

Введем функцию

$$\chi(x,y) = x - \tilde{c}((u_0 - y) + p_2(\tau(y), 0))^2 + p_1(\tau(y), 0).$$
 (53)

Тогда уравнение $\chi(x,y)=0$ описывает кривую ψ в окрестности точки u. Из соотношений (52) и условий (6) следует, что функция $\chi(x,y)$ может быть представлена в виде

$$\chi(x,y) = x - \tilde{c}(u_0 - y)^2 + p_{\chi}(u_0 - y),$$
 где
$$p_{\chi}(u_0 - y) = o((u_0 - y)^2) \quad \text{и} \quad p_{\chi} \in \mathbf{C}^2. \tag{54}$$

Найдем касательные вектора полученной кривой. Хорошо известно, что касательная перпендикулярна градиенту кривой. В нашем случае это означает, что касательный вектор параллелен вектору

$$v_u = \left(-\frac{\partial \chi(x, y)}{\partial y}; \frac{\partial \chi(x, y)}{\partial x}\right). \tag{55}$$

Пусть $v_u = (v_{u_1}, v_{u_2})$. Дифференцируя $\chi(x, y)$, получаем, что выполнены соотношения:

$$v_{u_1} = -2\tilde{c}(u_0 - y) + \frac{\partial p_{\chi}}{\partial y}(u_0 - y) \sim -2\tilde{c}(u_0 - y)$$
$$v_{u_2} = 1$$

Из соотношения (53) следует, что для точек, лежащих на участке неустойчивого многообразия, описываемого уравнением $\chi(x,y)=0$, выполнены соотношения $u_0-y\sim\pm\sqrt{\frac{x}{\tilde{c}}}$. Таким образом, касательный вектор параллелен (v_{u_1},v_{u_2}) , где

$$v_{u_1} \sim \pm 2\sqrt{\tilde{c}x} \quad \text{и} \quad v_{u_2} = 1. \tag{56}$$

5.5 Свойства обратного отображения.

Из утверждений раздела 5.3 следует, что точка $(v_0 + x_n, y_n)$ является неподвижной точкой отображения $A^n f^N$. Для дальнейших рассуждений нам понадобится асимптотическое поведение собственных чисел и собственных векторов отображения $H = f^{-N} A^{-n}$, обратного к $A^n f^N$. Исходя из соотношений (2) и (43), выпишем явный вид отображения H:

$$H(v_0 + x, y) = \left(\tilde{a}(u_0 - \mu^n y + \tilde{p}_1(\frac{1}{\lambda^n}(v_0 + x), u_0 - \mu^n y)), \\ \tilde{b}(\frac{1}{\lambda^n}(v_0 + x) - \tilde{c}(u_0 - \mu^n y)^2 + \tilde{p}_1(\frac{1}{\lambda^n}(v_0 + x), u_0 - \mu^n y))\right).$$
(57)

Найдем собственные числа и собственные вектора матрицы DH в точке $(v_0 + x_n, y_n)$. Дифференцируя соотношение (57), получаем

$$DH = \begin{pmatrix} d_1 & d_2 \\ d_3 & d_4 \end{pmatrix},$$
 где

$$d_{1} = \frac{1}{\lambda^{n}} \frac{\partial \tilde{p}_{1}}{\partial x} (\frac{1}{\lambda^{n}} (v_{0} + x_{n}), u_{0} - \mu^{n} y_{n})),$$

$$d_{2} = -\tilde{a} \mu^{n} - \mu^{n} \frac{\partial \tilde{p}_{1}}{\partial y} (\frac{1}{\lambda^{n}} (v_{0} + x_{n}), u_{0} - \mu^{n} y_{n})),$$

$$d_{3} = \frac{\tilde{b}}{\lambda^{n}} + \frac{1}{\lambda^{n}} \frac{\partial \tilde{p}_{2}}{\partial x} (\frac{1}{\lambda^{n}} (v_{0} + x_{n}), u_{0} - \mu^{n} y_{n})),$$

$$d_{4} = 2\tilde{b}\tilde{c}\mu^{n} (u_{0} - \mu^{n} y_{n}) + \mu^{n} \frac{\partial \tilde{p}_{2}}{\partial y} (\frac{1}{\lambda^{n}} (v_{0} + x_{n}), u_{0} - \mu^{n} y_{n})),$$

Из (41), (45), (46) нетрудно получить следующие соотношения:

$$d_{1} = o(1/\lambda^{n}), \ d_{2} \sim -\tilde{a}\mu^{n}, \ d_{3} \sim \tilde{b}/\lambda^{n}, \ d_{4} \sim 2\tilde{b}\tilde{c}\mu^{n}(u_{0} - \mu^{n}y_{n}) \sim 2\tilde{b}\sqrt{\tilde{c}v_{0}}\frac{\mu^{n}}{\lambda^{n/2}},$$

$$(58)$$

$$d_{1} = o(d_{4}), \quad d_{2}d_{3} = o(d_{4}^{2}) \quad \text{if} \quad d_{1}d_{4} = o(d_{2}d_{3})$$

$$(59)$$

Несложные алгебраические выкладки показывают, что собственные числа матрицы DH равны

$$\eta_1 = \frac{1}{2}(d_1 + d_4 + \sqrt{(d_1 + d_4)^2 - 4(d_1d_4 - d_2d_3)}),\tag{60}$$

$$\eta_2 = \frac{1}{2}(d_1 + d_4 - \sqrt{(d_1 + d_4)^2 - 4(d_1d_4 - d_2d_3)}),\tag{61}$$

а собственные вектора соответственно равны

$$(1; \frac{d_4 - d_1 + \sqrt{(d_4 - d_1)^2 + 4d_2d_3}}{2d_2}) = (1; v_2), \tag{62}$$

$$(1; \frac{d_4 - d_1 - \sqrt{(d_4 - d_1)^2 + 4d_2d_3}}{2d_2}) = (1; u_2).$$
(63)

Ввиду соотношений (58) и (59) асимптотическое поведение собственных чисел и собственных векторов является следующим:

$$\eta_1 \sim d_4 \sim 2\tilde{b}\tilde{c}\mu^n \frac{1}{\tilde{a}} x_n \sim c_{\eta_1} \frac{\mu^n}{\lambda^{n/2}},$$
(64)

$$\eta_2 \sim \frac{d_2 d_3 - d_1 d_4}{d_1 + d_4} \sim \frac{\tilde{a}^2}{2\lambda^n x_n} \sim c_{\eta_2} \frac{1}{\lambda^{n/2}},$$
(65)

$$v_2 \sim -\frac{d_4}{d_2} \sim -c_{v_2} \frac{1}{\lambda^{n/2}},$$
 (66)

$$u_2 \sim -\frac{d_3}{d_4} \sim -c_{u_2} \frac{1}{\mu^n \lambda^{n/2}}.$$
 (67)

5.6 Устойчивое многообразие периодической точки

Устойчивое многообразие периодической точки исходной системы совпадает с неустойчивым многообразием той же точки под действием отображения H. Применим к отображению H обобщение теоремы Ченцовой. В качестве собственных векторов возьмем $(1, v_2)$ и $(1, u_2)$, определенные в (62) и (63). При таком выборе собственных векторов выполнены соотношения:

$$S = \begin{pmatrix} 1 & 1 \\ v_2 & u_2 \end{pmatrix}$$
 и $S^{-1} = \frac{1}{(u_2 - v_2)} \begin{pmatrix} u_2 & -1 \\ -v_2 & 1 \end{pmatrix}$.

Непосредственное дифференцирование функции H показывает, что для любых двух точек (x_1, y_1) и (x_2, y_2) , лежащих в окрестности точки v, выполнено соотношение:

$$DH\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - DH\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \Delta d_1 & \Delta d_2 \\ \Delta d_3 & \Delta d_4 \end{pmatrix},$$
 где (68)

$$\Delta d_1 = \frac{1}{\lambda^n} (\frac{\partial \tilde{p}_1}{\partial x} (\frac{1}{\lambda^n} (v_0 + x_1); u_0 - \mu^n y_1) - \frac{\partial \tilde{p}_1}{\partial x} (\frac{1}{\lambda^n} (v_0 + x_2); u_0 - \mu^n y_2)), \quad (69)$$

$$\Delta d_2 = -\mu^n \left(\frac{\partial \tilde{p}_1}{\partial y} \left(\frac{1}{\lambda^n} (v_0 + x_1); u_0 - \mu^n y_1\right) - \frac{\partial \tilde{p}_1}{\partial y} \left(\frac{1}{\lambda^n} (v_0 + x_2); u_0 - \mu^n y_2\right)\right), (70)$$

$$\Delta d_3 = \frac{1}{\lambda^n} (\frac{\partial \tilde{p}_2}{\partial x} (\frac{1}{\lambda^n} (v_0 + x_1); u_0 - \mu^n y_1) - \frac{\partial \tilde{p}_2}{\partial x} (\frac{1}{\lambda^n} (v_0 + x_2); u_0 - \mu^n y_2)), \quad (71)$$

$$\Delta d_4 = 2bc\mu^{2n}(y_1 - y_2) + \mu^n(\frac{\partial \tilde{p}_2}{\partial y}(\frac{1}{\lambda^n}(v_0 + x_1); u_0 - \mu^n y_1) - \frac{\partial \tilde{p}_2}{\partial y}(\frac{1}{\lambda^n}(v_0 + x_2); u_0 - \mu^n y_2)).$$
 (72)

Найдем оценку для константы K из условий теоремы Ченцовой. Для этого нам необходимо оценить $S^{-1}(DH(x_1,y_1)-DH(x_2,y_2))S$. Несложные алгебраические выкладки показывают, что

$$S^{-1}\left(DH\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - DH\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}\right) S = \frac{1}{(u_2 - v_2)} \begin{pmatrix} u_2 & -1 \\ -v_2 & 1 \end{pmatrix} \begin{pmatrix} \Delta d_1 & \Delta d_2 \\ \Delta d_3 & \Delta d_4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ v_2 & u_2 \end{pmatrix} = \frac{1}{(u_2 - v_2)} \left(\Delta d_1 \begin{pmatrix} u_2 & u_2 \\ -v_2 & -v_2 \end{pmatrix} + \Delta d_2 \begin{pmatrix} u_2 v_2 & u_2^2 \\ -v_2^2 & -v_2 u_2 \end{pmatrix} + \Delta d_3 \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} + \Delta d_4 \begin{pmatrix} 1 & 1 \\ v_2 & u_2 \end{pmatrix} \right).$$

Из соотношений (62) и (63) нетрудно получить, что $u_2/v_2 \to 0$ при $n \to \infty$. Отсюда следует, что при достаточно больших n выполнена цепочка неравенств

$$\left| S^{-1} \left(DH \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - DH \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right) S \right| \leq \frac{2}{v_2} (|\Delta d_1 v_2| + |\Delta d_2 v_2^2| + |\Delta d_3| + |\Delta d_4 v_2|) \leq 2(|\Delta d_1| + |\Delta d_2 v_2| + |\Delta d_3/v_2| + |\Delta d_4|). \quad (73)$$

Из соотношений (41) следуют неравенства

$$|\Delta d_1| < c_{d_1} \left(\frac{1}{\lambda^{2n}} |x_1 - x_2| + \frac{\mu^n}{\lambda^n} |y_1 - y_2| \right),$$

$$|\Delta d_2| < c_{d_2} \mu^n \left(\frac{1}{\lambda^n} |x_1 - x_2| + \mu^n |y_1 - y_2| \right),$$

$$|\Delta d_3| < c_{d_3} \frac{1}{\lambda^n} \left(\frac{1}{\lambda^n} |x_1 - x_2| + \mu^n |y_1 - y_2| \right),$$

$$|\Delta d_4| < 2bc\mu^{2n}|y_1 - y_2| + c_{d_4}\mu^n \left(\frac{1}{\lambda^n}|x_1 - x_2| + \mu^n|y_1 - y_2|\right),$$

где константы $c_{d_1}, c_{d_2}, c_{d_3}, c_{d_4} > 0$ не зависят от n. Из этих неравенств и соотношения (62) следует, что

$$\left| S^{-1} \left(DH \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - DH \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right) S \right| < c_K \mu^{2n} \left| \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right|. \tag{74}$$

Из этого неравенства следует, что для отображения H в соотношении (35) можно взять $K = c_K \mu^{2n}$.

В силу соотношений (37) и (38) локально неустойчивое многообразие точки (v_0+x_n,y_n) задается равенством

$$u(t) = \begin{pmatrix} v_0 + x_n \\ y_n \end{pmatrix} + t \begin{pmatrix} 1 \\ v_2 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ v_2 & u_2 \end{pmatrix} \begin{pmatrix} h_1(t) \\ h_2(t) \end{pmatrix} \quad \text{при} \quad |t| < T, \tag{75}$$

где

$$|h_1(t)|, |h_2(t)| < 1/2c^*t^2, \quad |h_1'(t)|, |h_2'(t)| < c^*t,$$
 (76)

$$T = \frac{\eta_1^2(\eta_1 - 1)}{4K} \quad \text{и} \quad c^* = \frac{2K}{\eta_1(\eta_1 - 1)}. \tag{77}$$

Нетрудные вычисления показывают асимптотическое поведение T и c^* при $n \to \infty$:

$$T = \frac{\eta_1^2(\eta_1 - 1)}{4K} \sim \frac{\eta_1^3}{16abc\mu^{2n}} \sim c_T \frac{\mu^n}{\lambda^{3/2n}} \quad , \tag{78}$$

$$c^* = \frac{2K}{\eta_1(\eta_1 - 1)} \sim \frac{8abc\mu^{2n}}{\eta_1^2} \sim c_c \lambda^n$$
 (79)

для некоторых c_T и c_c .

Равенство (75) при |t| < T можно записать в виде

$$u(t) = \begin{pmatrix} v_0 + x_n \\ y_n \end{pmatrix} + t \begin{pmatrix} 1 \\ v_2 \end{pmatrix} + \begin{pmatrix} h_1(t) + h_2(t) \\ v_2 h_1(t) + u_2 h_2(t) \end{pmatrix}.$$
 (80)

Введем функции $\tilde{h_1}(t)=h_1(t)+h_2(t)$ и $\tilde{h_2}(t)=h_1(t)+\frac{u_2}{v_2}h_2(t)$, тогда при |t|< T будет выполнено соотношение

$$u(t) = \begin{pmatrix} v_0 + x_n \\ y_n \end{pmatrix} + t \begin{pmatrix} 1 \\ v_2 \end{pmatrix} + \begin{pmatrix} \tilde{h_1}(t) \\ v_2 \tilde{h_2}(t) \end{pmatrix}$$
(81)

и неравенства

$$|\tilde{h_1}(t)|, |\tilde{h_2}(t)| < c^* t^2 \quad \text{и} \quad |\tilde{h_1}'(t)|, |\tilde{h_2}'(t)| < 2c^* t.$$
 (82)

5.7 Пересечение многообразий

Докажем вторую часть Теоремы 3.

Доказательство. Рассмотрим $A^{-n}u(t)$ — образ устойчивого многообразия точки $(v_0 + x_n, y_n)$ под действием отображения A^{-n} . Для доказательства наличия пересечения устойчивого многообразия точки $(v_0 + x_n, y_n)$ и неустойчивого многообразия точки (0,0) достаточно найти такие значения $t_1, t_2 \in (-T,T)$, что $\chi(A^{-n}u(t_1))$ и $\chi(A^{-n}u(t_2))$ имеют различные знаки.

Найдем $\chi(x+\Delta x,y+\Delta y)-\chi(x,y)$. Несложные алгебраические выкладки показывают, что

$$\chi(x + \Delta x, y + \Delta y) - \chi(x, y) = (x + \Delta x) - \tilde{c}(u_0 - (y + \Delta y))^2 - (x - \tilde{c}(u_0 - y)^2) + p_{\chi}(u_0 - (y + \Delta y)) - p_{\chi}(u_0 - y) = \Delta x - \tilde{c}((u_0 - (y + \Delta y))^2 - (u_0 - y)^2) + p_{\chi}(u_0 - (y + \Delta y)) - p_{\chi}(u_0 - y) = \Delta x + \tilde{c}\Delta y(2(u_0 - y) - \Delta y) + p_{\chi}(u_0 - (y + \Delta y)) - p_{\chi}(u_0 - y).$$

Выпишем итоговое равенство:

$$\chi(x + \Delta x, y + \Delta y) - \chi(x, y) = \Delta x + \tilde{c}\Delta y(2(u_0 - y) - \Delta y) + p_{\chi}(u_0 - (y + \Delta y)) - p_{\chi}(u_0 - y).$$
(83)

Из условий (54) на p_{χ} следует, что при $(u_0-y), \Delta y \to 0$ выполнено соотношение

$$p_{\chi}(u_0 - (y + \Delta y)) - p_{\chi}(u_0 - y) = o(|\Delta y|(|(u_0 - y)| + |\Delta y|)).$$
 (84)

Рассмотрим $t_2=0$. Заметим, что $u(0)=(v_0+x_n,y_n)$. Поскольку $(v_0+x_n,y_n)-(n+N)$ -периодическая точка, то выполнены соотношения

$$A^{-n}(v_0 + x_n, y_n) = f^N(v_0 + x_n, y_n) = (\frac{\tilde{c}}{\tilde{a}^2} x_n^2 + \frac{1}{\tilde{b}} y_n + p_1(x_n, y_n), u_0 - \frac{1}{\tilde{a}} x_n + p_2(x_n, y_n)).$$

Подставим в равенство (83) следующие значения $x, y, \Delta x, \Delta y$:

$$(x,y) = f^{N}(v_0 + x_n, 0) = (\frac{\tilde{c}}{\tilde{a}^2}x_n^2 + p_1(x_n, 0), u_0 - \frac{1}{\tilde{a}}x_n + p_2(x_n, 0)),$$

$$(\Delta x, \Delta y) = f^{N}(x_{n}, y_{n}) - f^{N}(x_{n}, 0) = (\frac{1}{\tilde{b}}y_{n} + p_{1}(x_{n}, y_{n}) - p_{1}(x_{n}, 0), p_{2}(x_{n}, y_{n}) - p_{2}(x_{n}, 0)).$$

В результате данной подстановки получим равенство

$$\chi(f^{N}(x_{n}, y_{n})) - \chi(f^{N}(x_{n}, 0)) = \frac{1}{\tilde{b}}y_{n} + p_{1}(x_{n}, y_{n}) - p_{1}(x_{n}, 0) + (p_{2}(x_{n}, y_{n}) - p_{2}(x_{n}, 0))(2\frac{1}{\tilde{a}}x_{n} - 2p_{2}(x_{n}, y_{n}) + p_{2}(x_{n}, 0)) + p_{\chi}(u_{0} - (y + \Delta y)) - p_{\chi}(u_{0} - y).$$
(85)

Из этого равенства и свойств (54) и (6) функций p_1, p_2, p_χ следует соотношение

$$\chi(f^{N}(v_{0} + x_{n}, y_{n})) - \chi(f^{N}(x_{n}, 0)) = \frac{1}{\tilde{b}}y_{n} + o(y_{n}).$$
 (86)

Несложно убедиться, что $\chi(f^N(x_n,0))=0$. Поскольку $\tilde{b},y_n>0$, то из соотношения (86) следует, что для достаточно больших n выполнена цепочка соотношений

$$\chi(A^{-n}u(0)) = \chi(f^N(v_0 + x_n, y_n)) = \frac{1}{\tilde{b}}y_n + o(y_n) > 0.$$
 (87)

Рассмотрим $t_1 = -e/\mu^n$, где $e > \frac{2}{c_{v_2}} \sqrt{\frac{v_0}{a}}$. Поскольку в условиях теоремы $1/\mu < \mu/\lambda^{3/2}$, то в силу соотношений (78) для достаточно больших n выполнено неравенство $|t_1| < |T|$. Докажем, что для выбранного значения t_1 выполнено неравенство $\chi(A^{-n}u(t_1)) < 0$. Из соотношения (81) следует равенство

$$A^{-n}u(t_1) = \begin{pmatrix} \frac{1}{\lambda^n}(v_0 + x_n) \\ \mu^n y_n \end{pmatrix} + \begin{pmatrix} \frac{1}{\lambda^n}t_1 \\ \mu^n t_1 v_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{\lambda^n}\tilde{h_1}(t_1) \\ \mu^n v_2\tilde{h_2}(t_1) \end{pmatrix}.$$

Применим соотношения (83) и (84) к нижеследующим $x, y, \Delta x, \Delta y$:

$$(x,y) = (\frac{1}{\lambda^n}(v_0 + x_n), \mu^n y_n) = f^N(x_n, y_n) = A^{-n}u(0),$$
$$(\Delta x, \Delta y) = \begin{pmatrix} \frac{1}{\lambda^n} t_1 \\ \mu^n t_1 v_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{\lambda^n} \tilde{h}_1(t_1) \\ \mu^n v_2 \tilde{h}_2(t_1) \end{pmatrix}.$$

В результате данной подстановки получим равенство:

$$\chi(x + \Delta x, y + \Delta y) = \chi(A^{-n}u(0)) + \frac{1}{\lambda^n}(t_1 + \tilde{h_1}(t_1)) + \tilde{c}\mu^n v_2(t_1 + \tilde{h_2}(t_1))(2(u_0 - \mu^n y_n) - \mu^n v_2(t_1 + \tilde{h_2}(t_1))) + o(|\mu^n v_2(t_1 + \tilde{h_2}(t_1))|(2|u_0 - \mu^n y_n| + |\mu^n v_2(t_1 + \tilde{h_2}(t_1))|)),$$

где $\tilde{h_1}$ и $\tilde{h_2}$ удовлетворяют неравенству (75).

Из условия теоремы следует, что $\frac{1}{\mu} > \lambda \frac{1}{\mu^2}$. Отсюда и из соотношения (79) немедленно получаем, что

$$\frac{\tilde{h}_1(t_1)}{t_1} \to 0$$
 и $\frac{\tilde{h}_2(t_1)}{t_1} \to 0$ при $n \to \infty$. (88)

Из этих соотношений и из (66), (45), (46) несложно получить следующие соотношения:

$$\mu^n v_2(t_1 + \tilde{h_2}(t_1)) \sim ec_{v_2} \frac{1}{\lambda^{n/2}},$$

$$u_0 - \mu^n y_n \sim \sqrt{v_0/\tilde{c}} \frac{1}{\lambda^{n/2}}.$$
(89)

Из выбора е следует соотношение

$$2(u_0 - \mu^n y_n) - \mu^n v_2(t_1 + \tilde{h}_2(t_1)) \sim -c_e \frac{1}{\lambda^{n/2}}$$
(90)

для некоторого $c_e > 0$. Объединяя полученное соотношение с (66) и (89), получаем эквивалентность

$$\tilde{c}\mu^n v_2(t_1 + \tilde{h_2}(t_1))(2(u_0 - \mu^n y_n) - \mu^n v_2(t_1 + \tilde{h_2}(t_1))) \sim$$

$$-ec_{v_2} \frac{1}{\lambda^{n/2}} c_e \frac{1}{\lambda^{n/2}} \sim \frac{C}{\lambda^n}, \quad \text{где} \quad C < 0. \quad (91)$$

Из соотношений (87), (91) и выбора t_1 несложно следует, что главным асимптотическим членом выражения (85) является третий член, эквивалентный C/λ^n . Это доказывает неравенство $\chi(u(t_1)) < 0$. Из этого соотношения и неравенства (86) следует, что на промежутке $(t_1,0)$ найдется такое t, что $\chi(u(t)) = 0$.

Теперь, когда доказано наличие пересечения устойчивого многообразия точки $A^{-n}(v_0+x_n,y_n)$ и неустойчивого многообразия точки (0,0), мы докажем, что это пересечение трансверсально. Для этого достаточно показать, что в точке пересечения касательные вектора данных кривых не параллельны.

Касательный вектор к неустойчивому многообразию точки (0,0) был найден ранее — см. формулу (58). Найдем касательный вектор к устойчивому многообразию точки $A^{-n}(v_0+x_n,y_n)$. Дифференцируя соотношение (81), получим равенство

$$A^{-n}u'(t) = \begin{pmatrix} \frac{1}{\lambda^n} (1 + \tilde{h_1}'(t)) \\ \mu^n(v_2(1 + \tilde{h_2}'(t))) \end{pmatrix}.$$
(92)

Таким образом, нам достаточно доказать, что выполнено соотношение

$$\frac{1 + \tilde{h_1}'(t)}{\lambda^n \mu^n v_2 (1 + \tilde{h_2}'(t))} \neq \frac{v_{u_1}}{v_{u_2}}.$$
(93)

Докажем, что при достаточно больших n и при $t_1 < t < 0$ выполнено неравенство

$$\frac{1 + \tilde{h_1}'(t)}{1 + \tilde{h_2}'(t)} < \left| v_2 \frac{v_{u_1}}{v_{u_2}} \mu^n \lambda^n \right|. \tag{94}$$

Действительно, из соотношения (82) следует, что $|\tilde{h_1}'| = o(1)$ и $|\tilde{h_2}'| = o(1)$. Таким образом,

$$\frac{1 + \tilde{h_1}'(t)}{1 + \tilde{h_2}'(t)} = 1 + o(1). \tag{95}$$

Найдем оценку на координату x точки пересечения многообразий. Из (81) следует, что

$$x = \frac{1}{\lambda^n}(v_0 + x_n + t + \tilde{h_1}(t)).$$

Из этого соотношения и оценок (82) следует, что

$$x = v_0/\lambda^n + o(1/\lambda^n).$$

Исходя из (66) и (63) запишем асимптотическое поведение правой части соотношения (94):

$$\left| v_2 \frac{v_{u_1}}{v_{u_2}} \lambda^n \mu^n \right| \sim \left| v_2 2 \sqrt{\tilde{c}x} \lambda^n \mu^n \right| \sim \left| c_{v_2} \frac{1}{\lambda^{n/2}} 2 \sqrt{\tilde{c} \frac{v_0}{\lambda^n}} \lambda^n \mu^n \right| \sim c_u \mu^n \tag{96}$$

при некотором c_u .

Из соотношений (95) и (96) следует неравенство (94), что доказывает трансверсальность пересечения многообразий. Теорема доказана.

Список литературы

[1] Х.В. Брур, Ф.Дюмортье, С. ван Стрин, Ф. Такенс. Структуры в динамике. Конечномерные детерминированные системы. Москва-Ижевск: Институт компьютерных исследований, 2003.

- [2] Н.К. Гаврилов, Л.П. Шильников. О трехмерных динамических системах, близких к системам с негрубой гомоклинической кривой. Мат. Сб., 1972, т. 88, с. 475-492.
- [3] С.В. Гонченко, Д.В. Тураев, Л.П. Шильников Об областях Ньюхауса двумерных диффеоморфизмов, близких к диффеоморфизму с негрубым гетероклиническим контуром. Труды Математического института РАН имени В.А. Стеклова, 1997, т.216, с. 76-125.
- [4] Б.Ф. Иванов. *К вопросу о существовании замкнутых траекторий в окрестности гомоклинической кривой*. Дифф. уравнения, N3 1979, том XV, с. 548-550.
- [5] Ю.С. Ильяшенко, Вейгу Ли. *Нелокальные бифуркации*. МЦНМО-ЧеРо, М., 1999.
- [6] Г.М. Фихтенгольц. *Курс интегрального и дифференциального исчисления*. С-Пб, Лань, 1997.
- [7] Ф. Хартман. Обыкновенные дифференциальные уравнения. М., Мир, 1970., 720 стр.
- [8] Ченцова Н.Н. Проверка трансверсального пересечения сепаратрис с помощью ЭВМ. Препринт N8. М., Институт прикладной математики, 1979.