Sensitivity analysis and model exploration

Perez Raphaël - adapted from R. Faivre ¹ December 3, 2020

1. Faivre, R., Iooss, B., Mahévas, S., Makowski, D., & Monod, H. (2016). *Analyse de sensibilité et exploration de modèles: application aux sciences de la nature et de l'environnement*. Editions Quae.

Definition of uncertainty and sensitivity analyses

Uncertainty in a model ϕ may come from various sources:

Principle of uncertainty and sensitivity analyses

Uncertainty analysis

Sensitivity analysis

What are the main sources of uncertainty in x₁,...x_k influencing $\varphi(x)$?

Variance of $\varphi(x)$ = effect of x_1 + effect of x_2 +...

Interests and uses of uncertainty and sensitivity analyses

Uncertainty analysis

- ➤ Give information about uncertainty in model prediction
- Optimize decisive variables to reduce uncertainty

Sensitivity analysis

- ➤ Identify inputs (variables or parameters) that highly influence model predictions
 - → Which parameters need to be accurately estimate?
- ➤ Analyze model behavior

Uncertainty analysis

Q: What is the uncertainty in $\varphi(x)$ resulting from the uncertainty in x_1 and x_2 ?

Example

$$\varphi(x) = x_1 + 2 x_2^2$$

 $X_1^{\sim} N(20,16)$ and $X_2^{\sim} N(60,64)$

 \rightarrow Analytic expression: $\varphi(x) \sim N(140,272)$

But usually $\phi(x)$ cannot be define analitycally

Procedure in 4 steps

 \triangleright Define distributions of the inputs $x_1,...,x_k$

➤ Generate samples from the defined distributions

 \triangleright Calculate $\varphi(x)$ for each serie $x_1,...,x_k$

 \triangleright Estimate the distribution of $\varphi(x)$

Uncertainty analysis

 \rightarrow Accuracy of φ uncertainty depends on N, not k

Sensitivity analysis

Q: What are the main sources of uncertainty in $x_1,...x_k$ influencing $\varphi(x)$?

Local sensitivity analysis Variations of $\varphi(x)$ around x_0 Global sensitivity analysis
Variations of $\varphi(x)$ over range of x

> Estimation based on derivate

> Estimation based on indices

Global sensitivity analysis

Procedure in 4 steps

- \triangleright Define distributions of the inputs $x_1,...,x_k$
- Generate samples from the defined distributions
- \triangleright Calculate $\varphi(x)$ for each serie $x_1,...,x_k$
- Estimate sensitivity indices

Global sensitivity analysis

Defining indices based on analysis of variances

$$Var[\phi(x)] = Var_{x1} + Var_{x2} + Var_{x3} + ... + Var_{x1.x2} + Var_{x1.x3} + ...$$

Total variance of the output variable

Principal effects of inputs

Interaction terms

First order index of
$$x_i$$
: $SI_i = \frac{Var_{xi}}{Var[\phi(x)]}$

Total sensitivity index of
$$x_i$$
: $TSI_i = (Var_{xi} + Var_{xi,xi} + Var_{xi,xk} + ...) / Var[\phi(x)]$

Global sensitivity analysis

Visualisation of the indices

 $: Var[Esp(\mathcal{G}(\mathbf{x})|x_i)]$

 $Esp(Var(\mathcal{G}|x_i)])$

Repeated measurements of Y on 5 values of x₁

Theorem of total variance

$$Var[G(x)] = Var[Esp(G|x_i)] + Esp(Var(G|x_i)])$$

→ Accuracy depends on N and k

$$SI_{i} = \frac{Var[Esp(\mathcal{G}(x)|x_{i})]}{Var[\mathcal{G}(x)]}$$
$$TSI_{i} = \frac{Esp(Var[\mathcal{G}|x^{(-i)}])}{Var[\mathcal{G}(x)]}$$

Experimental designs

Factorial designs:

- > Each factor is discretized in levels
- Complete factorial design: all combinations of factors levels are tested

Example:

20 parameters with 3 levels → 3²⁰ = 3 486 784 401 runs 1 run = 0.01 s → 581 160,4 hours of calculations = 24 days → 11,6 K€!!

→ Importance of selecting the appropriated numerical design

The Morris' Method

An ingenious exploration of the space

- Space discretization
- One At a Time method (OAT): sequential change of inputs with one factor at a time
- Random starting point for each trajectory
- ➤ A trajectory is a K displacements (K+1 points)
- ➤ OAT design is repeated R times (total: n= R*(k+1) experiments)

The Morris' Method

Sensitivity indices

- Estimation of elementary effect d_{Xi}
- R trajectories gives sensitivity measures of Xi:

Mean effect as a measure of importance: $\mu i^* = E(|d_{Xi}|)$

Standard deviation as a measure of interaction / non linearity: $\sigma i = \sigma(d_{xi})$

The Morris' Method

Example of interpretation

Plot σ_i against μ_i^*

Distinction between 3 groups

→ Screening method with qualitative information

Definition and principle

- ➤ Mathematical function (polynomial, neural network, kriging, ...) representative of the computer model with negligible cpu cost
- > Approximation from a design of experiments

Example on FSPM

- ➤ MappleT (Coste et al, 2008)
- > 4 architectural parameters
 - Leaf area
 - Internode length
 - Top shoot diameter
 - Branching angle
- Output = light interception
- Computational time: 1h per run

Example on FSPM: experimental design

- ➤ Each parameter discretize in 10 levels
- Latin hypercube sample (lhs)
 Each parameter level sampled at least once
 N=300

Example of Polynomial linear model

$$Y = \sum_{a=1}^{A} \beta_a \left(\prod_{k=1}^{K} X_k^{d_{a,k}} \right) + \eta$$

- K is the number of input parameters;
- $A = C_{K+D}^D$ is the number of cross product terms $(0 \le \sum_k d_{a,k} \le D)$;
- D the maximal degree of the polynomial;
- η is a centred random term independent of the X_k variables.

Decomposition of the sources for X_1 (% of explained variance, R^2)

- Main effect : $X_1 + X_1^2 + X_1^3$
- Total: $X_1 + X_1^2 + X_1^3 + X_1 X_2 + X_1 X_2^2 + X_1^2 X_2 + X_1 X_3 + X_1 X_3^2 + X_1^2 X_3 + X_1 X_2 X_3 + \dots$

Example on FSPM: metamodel

- Multiple polynomial metamodel of degree 3
- ➤ 97.6% of variance in light interception explained
- ➤ High contributions of internode length and leaf area

Classification of methods

Choosing the method depends on:

- Requested information (qualitative/quantitative)
- Number of inputs
- > Regularity of the model
- > Computational cost
- ➤ Number of outputs

To keep in mind

Aim know the influence of model parameter on predictions for better harness model behavior

Selection of the method

- Number of parameter
- Computational cost
- Screening method (Morris) or quantitative method (metamodel)

Procedure

- 1. Define the experimental design
- 2. Run simulations
- 3. Calculate sensitivity indices
- 4. Interpret results

References

Reseau MEXICO (reseau-mexico.fr) et GdR Mascot-Num (www.gdr-mascotnum.fr)

Faivre, R., Iooss, B., Mahévas, S., Makowski, D., & Monod, H. (2016). *Analyse de sensibilité et exploration de modèles: application aux sciences de la nature et de l'environnement*. Editions Quae.

Costes E, Smith C, Renton M, Guedon Y, Prusinkiewicz P, Godin C. 2008. MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. Functional Plant Biology 35: 936{950.

Da Silva D., Han L., Faivre R., Costes E., 2014. Inuence of the variation of geometrical and topological traits on light interception eciency of apple trees: sensitivity analysis and metamodelling for ideotype denition. Annals of Botany 114: 739{752, 2014.

Morris M. D., 1991, Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161{174.

Iooss, B., & Saltelli, A. (2017). Introduction to sensitivity analysis. *Handbook of uncertainty quantification*, 1103-1122.