CS243: Introduction to Algorithmic Game Theory

Week 8.2 Mechanism Design in Social Networks (Dengji ZHAO)

SIST, ShanghaiTech University, China

Recap: Sponsored Search Auction Model

- A set of advertisers/bidders (n), each specify a list of pairs of keywords and bids as well as a total budget (daily/weekly/monthly).
- A search engine with m < n number of ad slots. The search engine estimates a click through rate α_{ij} , the probability that a user will click on the ith slot when it is occupied by bidder j. Assume that $\alpha_{ij} \ge \alpha_{i+1j}$ for i = 1, ..., m-1.
- The search engine also assigns a weight w_j to each advertiser j. The weight can be thought of as a relevance or quality metric.

Recap: Generalized Second Price (GSP) Auctions

For each search of a keyword, GSP does the following to allocate ads:

- Rank advertisers by their score b_iw_i.
- The highest score gets the first slot, the second highest score gets the second slot and so on.
- A bider pays per click the lowest bid necessary to retain his position.

Two different variants:

- Rank by bid (used by Overture): assume that $w_i = 1$
- ② Rank by revenue (used by Google): assume that $w_i = \alpha_{1i}$

Design Goal

How can a house-seller sell her house with the "highest" profit?

Design Goal

How can a house-seller sell her house with the "highest" profit?

 Challenge: the seller doesn't know how much the buyers are willing to pay (their valuations).

Design Goal

How can a house-seller sell her house with the "highest" profit?

Solution: Second Price Auction (Vickrey Auction/VCG)

- Input: each buyer reports a price/bid to the seller
- Output: the seller decides
 - allocation: the agent with the highest price wins.
 - payment: the winner pays the second highest price.

Design Goal

How can a house-seller sell her house with the "highest" profit?

Solution: Second Price Auction (Vickrey Auction/VCG)

Properties:

- Efficient: maximising social welfare
- Truthful: buyers will report their highest willing payments

Is this the best the seller can do?

Question

What can the seller do to further increase her profit?

Is this the best the seller can do?

Question

What can the seller do to further increase her profit?

- estimate a good reserve price [Myerson 1981]
- promotions: let more people know/participate in the auction [ads]

Is this the best the seller can do?

Question

What can the seller do to further increase her profit?

- estimate a good reserve price [Myerson 1981]
- promotions: let more people know/participate in the auction [ads]

Promote a Sale in Social Networks

- The seller (blue node) sells one item and has only three connections in the network (A,B,C).
- Each node is a potential buyer and the value is her highest willing payment to buy the item (valuation).
- Profit of applying second price auction without promotion is 2.
- but the highest willing payment of the network is 13.

Traditional Sale Promotions

Traditional sale promotions:

- Promotions in shopping centres
- Keywords based ads via search engines such as Google
- Ads via social media such as Facebook, Twitter

Traditional Sale Promotions

Traditional sale promotions:

- Promotions in shopping centres
- Keywords based ads via search engines such as Google
- Ads via social media such as Facebook, Twitter

Challenge

- The return of these promotions are unpredictable.
- The seller may lose from the promotions.

To Tackle the Challenge

Build promotion inside the market mechanism such that

- the promotion will never bring negative utility/revenue to the seller.
- all buyers who are aware of the sale are incentivized to diffuse the sale information to all her neighbours.

To Tackle the Challenge

Build promotion inside the market mechanism such that

- the promotion will never bring negative utility/revenue to the seller.
- all buyers who are aware of the sale are incentivized to diffuse the sale information to all her neighbours.

"Diffusion Mechanism Design"

The Challenge

Why a buyer would bring more buyers to compete with her?

The Challenge

Why a buyer would bring more buyers to compete with her?

Only if their efforts are rewarded!

Will (extended) VCG solve the challenge?

- The allocation: allocate the item to the highest bidder
- The payment: every bidder pays the social welfare loss of the others caused by the bidder's participation

Problem: negative revenue to the seller

The revenue of the seller is -(I-1).

Our Solution

Information Diffusion Mechanism [Li et al. 2017, AAAI]

Information Diffusion Paths

One information diffusion path from the seller to node L:

 $s \rightarrow C \rightarrow I \rightarrow L$

Information Diffusion Paths

One information diffusion path from the seller to node L: $s \rightarrow C \rightarrow I \rightarrow L$

Diffusion Critical Nodes

Definition

i is *j*'s diffusion critical node if all the information diffusion paths started from the seller *s* to *j* have to pass *i*.

 nodes C and I are L's only diffusion critical nodes.

The payment definition:

- If a buyer or one of her "diffusion critical children" gets the item, then the buyer pays the highest bid of the others (without the buyer's participation);
- otherwise, her payment is zero.

The **payment** definition:

- If a buyer or one of her "diffusion critical children" gets the item, then the buyer pays the highest bid of the others (without the buyer's participation);
- otherwise, her payment is zero.

If the item is allocated to L, the payments of C, I and L are 10, 11, 12 respectively

The **allocation** definition:

- Identify the node i with the highest bid and the node's diffusion critical node path $P_{c_i} = (c_i^1, c_i^2, ..., i)$.
- Give the item to the first node of P_{c_i} , the node pays to the seller and then decides to whether keep the item or pass it to the next node in P_{c_i} :
 - If pass the item to the next node in P_{ci} and the payment of the next node is greater than the bid of the current node, then pass it to the next node and the next node makes another decision:
 - otherwise, keep the item.

The outcome of the Information Diffusion Mechanism:

- the item is allocated to node I.
- node I pays 11 to C, C pays 10 to the seller.
- the utilities of I, C, the seller are 1, 1, 10.

Why Buyers are Happy to Diffuse?

- buyers receive the information earlier choose earlier than those receive the information later.
- diffuse the information to more buyers will potentially increase their reward.

Properties of the Information Diffusion Mechanism

- Truthful: report true valuation and diffuse the sale information to all her neighbours is a dominate strategy.
- Individually Rational: no buyer will receive a negative utility to join the mechanism.
- Weakly Budget Balanced: the seller's revenue is non-negative and is ≥ that of the VCG with/without diffusion.

What Next?

- Diffusion mechanisms for combinatorial exchanges
- Diffusion with costs and delays
- Network structure based revenue analysis
- Applications/implementations in the existing social networks
- Other mechanisms to further improve the revenue and/or the efficiency

Challenge

How to generalise the mechanism to combinatorial settings?

Consider the following simple setting:

- A seller sells multiple units of the same goods, e.g. MacBook computers.
- Each buyer has a diminishing marginal utility in the consumption of the goods.

Consider the following simple setting:

- A seller sells multiple units of the same goods, e.g. MacBook computers.
- Each buyer has a diminishing marginal utility in the consumption of the goods.

We can simply apply our information diffusion mechanism:

Challenge

There is a very complex Decision Making at each node!!!

Advanced Reading

- AGT Chapter 28. Sponsored Search Auctions
- Bin Li, Dong Hao, Dengji Zhao, Tao Zhou: Mechanism Design in Social Networks. AAAI 2017.