2. SUJETS DE L'OPTION ÉCONOMIQUE

Exercice principal E20

1. Question de cours : Le schéma binomial.

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de même loi de Bernoulli de paramètre $\frac{1}{2}$.

On pose pour tout $n \in \mathbb{N}^*$: $W_n = \sum_{k=1}^n kX_k$ et $s_n = \frac{n(n+1)}{2}$.

- 2.a) Calculer l'espérance $E(W_n)$ et la variance $V(W_n)$ de la variable aléatoire W_n .
- b) Calculer les probabilités $P(W_n = 0)$ et $P(W_n = s_n)$.
- c) Calculer selon les valeurs de n, la probabilité $P(W_n = 3)$.
- 3. Montrer que pour tout $k \in [0, s_n]$, on a : $P(W_n = k) = P(W_n = s_n k)$.
- 4.a) Déterminer pour tout $j \in [0, s_n]$, la loi de probabilité conditionnelle de W_{n+1} sachant $(W_n = j)$.
- b) En déduire les relations :

$$P(W_{n+1} = k) = \begin{cases} \frac{1}{2} \, P(W_n = k) & \text{si } k \leqslant n \\ \\ \frac{1}{2} \, P(W_n = k) + \frac{1}{2} \, P(W_n = k - n - 1) & \text{si } n + 1 \leqslant k \leqslant s_n \\ \\ \frac{1}{2} \, P(W_n = k - n - 1) & \text{si } s_n + 1 \leqslant k \leqslant s_{n+1} \end{cases}.$$

Exercice sans préparation E20

On pose pour tout $n \in \mathbb{N}^*$: $S_n = \sum_{k=1}^n k^2 \ln \left(\frac{k}{n}\right)$.

- 1. Déterminer $\lim_{n\to+\infty} \frac{S_n}{n^3}$.
- 2. En déduire la limite quand n tend vers $+\infty$ de $\frac{1}{n^3}\sum_{k=1}^n k^2\ln\Big(\frac{k+1}{n}\Big)$.

Toutes les variables aléatoires qui interviennent dans l'exercice sont définies sur un espace probabilisé (Ω, A, P) .

- 1. Question de cours : Définition de l'indépendance de deux variables aléatoires discrètes.
- 2. Soit n un entier supérieur ou égal à 1. On jette n fois de suite un dé pipé dont les 6 faces ne comportent que les nombres 1, 2 et 3, et on suppose que les résultats des lancers sont indépendants.

À chaque lancer, la probabilité d'obtenir 1 est p, celle d'obtenir 2 est q et celle d'obtenir 3 est 1-p-q, où p et q sont deux paramètres réels strictement positifs vérifiant p+q<1.

Soit X (resp. Y) la variable aléatoire égale au nombre de 1 (resp. 2) obtenus en n lancers consécutifs.

- a) Quelles sont les lois respectives de X et Y?
- b) Déterminer la loi du couple (X, Y).
- c) Les variables aléatoires X et Y sont-elles indépendantes ?
- d) Déterminer le biais et le risque quadratique de l'estimateur $T_n = \frac{X}{n+1}$ du paramètre p.
- 3. On suppose dans cette question que le nombre de lancers effectués avec ce dé est une variable aléatoire N suivant la loi de Poisson de paramètre $\lambda > 0$.

Soit X (resp. Y) la variable aléatoire égale au nombre de 1 (resp. 2) obtenus en N lancers consécutifs.

- a) Déterminer les lois de X et Y respectivement.
- b) Vérifier que X et Y sont indépendantes.
- c) $T=\frac{X}{N+1}$ est-il un estimateur sans biais du paramètre $p\,?$

Exercice sans préparation E24

Soit A une matrice carrée de $\mathcal{M}_3(\mathbb{R})$.

- Montrer que si A est diagonalisable, A³ l'est aussi.
- 2. On suppose maintenant que $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- a) Calculer A³.
- b) La matrice A est-elle diagonalisable?

Toutes les variables aléatoires qui interviennent dans l'exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Sous réserve d'existence, on note E(X) et V(X) respectivement, l'espérance et la variance d'une variable aléatoire X.

1. Question de cours : Écrire sous forme d'intégrale, la probabilité qu'une variable aléatoire suivant la loi normale centrée réduite appartienne à un segment [a,b]. Dans quel théorème cette probabilité apparaît-elle comme une limite?

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) suivant la loi normale centrée réduite. On note Φ la fonction de répartition de X. On pose : Y = |X| (valeur absolue de X).

- 2.a) Montrer que Y admet une espérance et une variance et les calculer.
- b) Calculer E(XY).
- 3. On pose : Z = X + Y.
- a) Calculer P(Z = 0).
- b) Exprimer la fonction de répartition de Z à l'aide de Φ et indiquer l'allure de sa représentation graphique.
- c) La variable aléatoire Z admet-elle une densité? Est-elle discrète?
- 4. Soit $y \in \mathbb{R}$.
- a) Exprimer à l'aide de Φ , selon les valeurs de y, la probabilité $P([X \leq 1] \cap [Y \leq y])$.
- b) Pour quelles valeurs de y les événements $(X \leq 1)$ et $(Y \leq y)$ sont-ils indépendants?

Exercice sans préparation E25

Soit A une matrice carrée de $\mathcal{M}_2(\mathbb{R})$ telle que $A^3 = 0$.

- 1. Montrer que $A^2 = 0$.
- 2. Montrer que l'ensemble des matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que AM = MA est un espace vectoriel. Quelle est sa dimension?

Sous réserve d'existence, on note E(X) et V(X) respectivement, l'espérance et la variance d'une variable aléatoire définie sur un espace probabilisé (Ω, A, P) .

1. Question de cours : Définition de la convergence en loi d'une suite de variables aléatoires.

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes définies sur l'espace probabilisé (Ω, \mathcal{A}, P) , suivant toutes la loi de Bernoulli de paramètre $\frac{1}{2}$.

On définit la suite de variables aléatoires $(Z_n)_{n\in\mathbb{N}}$ par les relations :

$$Z_0 = \frac{X_0}{2} \ \text{et} \ \forall n \in \mathbb{N}^*, \ Z_n = \frac{Z_{n-1} + X_n}{2} \ .$$

- 2.a) Pour tout $n \in \mathbb{N}^*$, exprimer Z_n en fonction des variables aléatoires X_0, X_1, \dots, X_n .
- b) Les variables aléatoires Z_{n-1} et X_n sont-elles indépendantes ?
- c) Pour tout $n \in \mathbb{N}$, calculer $E(Z_n)$ et $V(Z_n)$.
- Montrer que pour tout n∈ N, la variable aléatoire 2ⁿ⁺¹Z_n suit la loi uniforme discrète sur [0, 2ⁿ⁺¹ − 1].
- 4. Montrer que la suite de variables aléatoires $(Z_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire à densité dont on précisera la loi.

Exercice sans préparation E28

- 1. Justifier, pour tout $n\in\mathbb{N}^*$, l'existence de l'intégrale $\int_0^1 \frac{x^n \ln x}{x^n-1} \,\mathrm{d}x$.
- 2. On pose pour tout $n \in \mathbb{N}^*$: $u_n = \int_0^1 \frac{x^n \ln x}{x^n 1} dx$.

Étudier la nature (convergence ou divergence) de la suite $(u_n)_{n\in\mathbb{N}^*}$.

- 1. Question de cours : Énoncer une formule de Taylor à l'ordre p avec reste intégral, applicable à une fonction définie sur [0,1], de classe C^{p+1} sur cet intervalle $(p \in \mathbb{N})$.
- 2. Soit x un réel de l'intervalle [0,1[.
- a) Justifier pour tout réel $t \in [0,x],$ l'encadrement : $0 \leqslant \frac{x-t}{1-t} \leqslant x.$
- b) Démontrer l'égalité : $\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$.
- 3. Soit X une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) telle que pour tout $n \in \mathbb{N}^*$, on a : $P(X = n) = \frac{1}{n(n+1)}$.
- a) Montrer que $P(X \in \mathbb{N}^*) = 1$.
- b) Étudier l'existence des moments de X.
- c) Montrer que pour tout réel $s \in [0,1]$, la variable aléatoire s^X admet une espérance, que l'on note $E(s^X)$, et vérifier que si $s \in]0,1[$, on a :

$$E(s^X) = \frac{s + (1-s)\ln(1-s)}{s}$$
.

- d) Pour tout $s \in [0,1]$, on pose : $\phi(s) = E(s^X)$. Montrer que la fonction ϕ est continue sur le segment [0,1]. Est-elle dérivable sur cet intervalle?
- e) Calculer, lorsqu'elles existent, l'espérance et la variance de Xs^X .

Exercice sans préparation E29

- 1. Montrer que l'application $f: x \mapsto x^3 + x^2 + x$ de $\mathbb R$ dans $\mathbb R$ est bijective.
- 2. Quelles sont les fonctions polynômes surjectives?
- 3. Quelles sont les fonctions polynômes injectives?

1. Question de cours : Formule des probabilités totales.

Soit p et q deux réels vérifiant : 0 et <math>p + 2q = 1. On note Δ la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par :

$$\Delta = \begin{pmatrix} p & q & q \\ q & p & q \\ q & q & p \end{pmatrix} \,.$$

- Justifier que Δ est une matrice diagonalisable.
- 3. Soit D la matrice diagonale de $\mathcal{M}_3(\mathbb{R})$ semblable à Δ dont les éléments diagonaux sont écrits dans l'ordre croissant. Que peut-on dire de la limite des coefficients de D^n lorsque l'entier naturel n tend vers $+\infty$.

Un village possède trois restaurants R_1 , R_2 et R_3 . Un couple se rend dans l'un de ces trois restaurants chaque dimanche. À l'instant n=1 (c'est-à-dire le premier dimanche), il choisit le restaurant R_1 , puis tous les dimanches suivants (instants n=2, n=3, etc.), il choisit le même restaurant que le dimanche précédent avec la probabilité p ou change de restaurant avec la probabilité 2q, chacun des deux autres restaurants étant choisis avec la même probabilité.

On suppose que l'expérience est modélisée par un espace probabilisé (Ω, A, P) .

- 4. Calculer la probabilité que le couple déjeune dans le restaurant R_1 , respectivement R_2 , respectivement R_3 , le n-ième dimanche $(n \ge 2)$.
- 5. Soit T la variable aléatoire égale au rang du premier dimanche où le couple retourne au restaurant R_1 , s'il y retourne, et 0 sinon.
- a) Déterminer la loi de T.
- b) Établir l'existence de l'espérance et de la variance de T et les calculer.
- 6. Écrire un programme en Pascal permettant de calculer la fréquence de visites du restaurant R_1 par le couple en 52 dimanches.

Exercice sans préparation E32

Soit $n \in \mathbb{N}^*$. On définit la fonction réelle f_n par : $\forall x \in \mathbb{R}, \ f_n(x) = x + 1 - \frac{e^x}{n}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique nombre réel négatif x_n tel que $f_n(x_n) = 0$.
- 2.a) Montrer que la suite (x_n)_{n∈N*} est décroissante et convergente.
- b) Calculer la limite ℓ de la suite $(x_n)_{n\in\mathbb{N}^*}$.
- 3. On pose : $y_n = x_n \ell$. Déterminer un équivalent de y_n lorsque n tend vers $+\infty$.

1. Question de cours : Condition suffisante de diagonalisabilité d'une matrice.

Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2 \end{pmatrix}$.

- 2.a) Soit $\lambda \in \mathbb{R}$. Montrer que le système $AX = \lambda X$ d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$ possède des solutions non nulles si et seulement si $(\lambda^2 1)(\lambda 2) = 0$. Donner alors les solutions de ce système.
- b) En déduire une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.
- 3. Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle définie par : pour tout $n\in\mathbb{N}, x_{n+3}=2x_{n+2}+x_{n+1}-2x_n$.

On pose pour tout $n \in \mathbb{N}$: $X_n = \begin{pmatrix} x_n \\ x_{n+1} \\ x_{n+2} \end{pmatrix}$ et $Y_n = P^{-1}X_n$.

- a) Quelle relation a-t-on entre X_{n+1} , X_n et A?
- b) En déduire l'expression de Y_n en fonction de n, D et Y_0 .
- c) Donner une condition nécessaire et suffisante sur x_0 , x_1 et x_2 pour que la suite $(x_n)_{n\in\mathbb{N}}$ soit convergente (respectivement, pour que la série $\sum_{n\in\mathbb{N}} x_n$ soit convergente).

4. On pose
$$B = \begin{pmatrix} 5 & 0 & -2 \\ 4 & 3 & -4 \\ 8 & 0 & -5 \end{pmatrix}$$
 et pour tout $(a,b) \in \mathbb{R}^2$, $M(a,b) = \begin{pmatrix} 5b & a & -2b \\ 4b & 3b & a - 4b \\ -2a + 8b & a & 2a - 5b \end{pmatrix}$.

- a) Montrer que tout vecteur propre de A est vecteur propre de B. La réciproque est-elle vraie ?
- b) En déduire que M(a, b) est diagonalisable et préciser ses valeurs propres.
- c) Déterminer les couples $(a,b) \in \mathbb{R}^2$ pour les quels la suite $(M(a,b)^n)_{n \in \mathbb{N}}$ converge vers la matrice nulle, c'est-à-dire que chac un de ses neuf coefficients est le terme général d'une suite converge ant vers 0.

Exercice sans préparation E33

Soit $p \in]0,1[$. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) indépendantes et de même loi donnée par :

$$\forall n \in \mathbb{N}^*, \, P(X_n = -1) = p, \text{ et } P(X_n = 1) = 1 - p$$

On pose pour tout $n \in \mathbb{N}^*$, $Z_n = \prod_{i=1}^n X_i$.

- 1. Calculer l'espérance $E(Z_n)$ de Z_n et $\lim_{n \to +\infty} E(Z_n)$.
- Quelle est la loi de Z_n?
- 3. Pour quelles valeurs de p, les variables aléatoires Z_1 et Z_2 sont-elles indépendantes ?

1. Question de cours : Soit f une fonction de classe C^2 définie sur une partie de \mathbb{R}^2 à valeurs réelles. Rappeler la définition d'un point critique et la condition suffisante d'extremum local en un point.

Soit X une variable aléatoire discrète finie définie sur un espace probabilisé (Ω, \mathcal{A}, P) . On pose pour tout $n \in \mathbb{N}^*$: $X(\Omega) = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}$, et on suppose que $\forall i \in [\![1, n]\!]$, $P(X = x_i) \neq 0$.

On définit l'entropie de X par : $H(X) = -\frac{1}{\ln 2} \sum_{i=1}^{n} P(X = x_i) \ln \left(P(X = x_i) \right)$.

- 2. Soit x_1, x_2, x_3 et x_4 quatre réels distincts. On considère un jeu de 32 cartes dont on tire une carte au hasard. Soit X la variable aléatoire prenant les valeurs suivantes :
- x₁ si la carte tirée est rouge (coeur ou carreau);
- x₂ si la carte tirée est un pique ;
- x₃ si la carte tirée est le valet, la dame, le roi ou l'as de trèfle;
- x₄ dans les autres cas.

On tire une carte notée C et un enfant décide de déterminer la valeur X(C) en posant dans l'ordre les questions suivantes auxquelles il lui est répondu par "oui" ou par "non". La carte C est-elle rouge? La carte C est-elle un pique? La carte C est-elle le valet, la dame, le roi ou l'as de trèfle?

Soit N la variable aléatoire égale au nombre de questions posées (l'enfant cesse de poser des questions dès qu'il a obtenu une réponse "oui").

- a) Calculer l'entropie H(X) de X.
- b) Déterminer la loi et l'espérance E(N) de N. Comparer E(N) et H(X).
- 3. Soit f la fonction définie sur \mathbb{R}^2 à valeurs réelles telle que : $f(x,y) = x \ln x + y \ln y + (1-x-y) \ln (1-x-y)$.
- a) Préciser le domaine de définition de f. Dessiner ce domaine dans le plan rapporté à un repère orthonormé.
- b) Montrer que f ne possède qu'un seul point critique et qu'en ce point, f admet un extremum local.
- c) Soit X une variable aléatoire réelle prenant les valeurs x_1, x_2 et x_3 avec les probabilités non nulles p_1, p_2 et p_3 respectivement.

Calculer H(X) et montrer que H(X) est maximale lorsque $p_1 = p_2 = p_3 = \frac{1}{3}$.

Exercice sans préparation E34

On rappelle l'identité remarquable : $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$. Soit $n \in \mathbb{N}^*$ et A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 = 0$, AB = BA et B inversible. Montrer que A + B est inversible.

- Question de cours : Critères de convergence d'une intégrale sur un intervalle de type [a, +∞[(a ∈ R).
- 2. Soit $x \in \mathbb{R}_+^*$.
- a) Établir la convergence de l'intégrale $\int_0^{+\infty} \frac{e^{-t}}{x+t} dt$. On pose alors : $f(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.
- b) Montrer que f est monotone sur \mathbb{R}_+^*
- 3. Soit g et h les fonctions définies sur \mathbb{R}_+^* à valeurs réelles telles que :

$$g(x) = \int_0^1 \frac{\mathrm{e}^{-t} - 1}{x + t} \, \mathrm{d}t \qquad \text{et} \qquad h(x) = \int_1^{+\infty} \frac{\mathrm{e}^{-t}}{x + t} \, \mathrm{d}t \,.$$

a) Soit φ la fonction définie sur [0,1] par : $\varphi(t)=\left\{\begin{array}{ll} \frac{\mathrm{e}^{-t}-1}{t} & \mathrm{si}\ t\in]0,1]\\ -1 & \mathrm{si}\ t=0 \end{array}\right.$

Montrer que φ est continue sur le segment [0,1].

- b) En déduire que la fonction g est bornée sur \mathbb{R}_+^* .
- c) Montrer de même que la fonction h est bornée sur R₊*.
- d) Montrer que pour tout x>0, on a : $f(x)=\ln(x+1)-\ln x+g(x)+h(x)$. En déduire un équivalent de f(x) lorsque x tend vers 0.
- 4. À l'aide de l'encadrement $0 \le \frac{1}{x} \frac{1}{x+t} \le \frac{t}{x^2}$ valable pour tout x > 0 et pour tout $t \ge 0$, montrer que f(x) est équivalent à $\frac{1}{x}$ lorsque x tend vers $+\infty$.

Exercice sans préparation E40

Les variables aléatoires sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit X une variable aléatoire qui suit la loi de Poisson de paramètre $\lambda > 0$ et soit Y une variable aléatoire indépendante de X telle que : $Y(\Omega) = \{1,2\}, P(Y=1) = P(Y=2) = \frac{1}{2}$. On pose : Z = XY.

- 1. Déterminer la loi de \mathbb{Z} .
- 2. On admet que : $\sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!} = \frac{e^{\lambda} + e^{-\lambda}}{2}$. Quelle est la probabilité que Z prenne des valeurs paires ?