CLASSIFICATION ANALYSIS ON A BANK MARKETING CAMPAIGN

Group 6

Shutong Fan

Xinyu Yang

Xueting Deng

Yingnan He

Content

- I. Visualization and Feature Selection
- II. Modeling
- 1. Logistic Regression
- 2. Naive Bayes
- 3. SVM
- 4. ANN
- III. Performance Evaluation
- IV. Discussion

Introduction

• Explore the relationships between response variable and predictors, then train the classification models

 Help the bank predict whether a client will subscribe the term deposit in a telemarketing campaign

San Zhang

2.Type of job 3.Marital status	
4.Education level	
5.Credit in default (Y/N)	
6.Housing loan (Y/N)	
7.Personal loan? (Y/n)	
8.Contact communication type (cellular/telephone) 9.Last contact month of year (march-december)	
0.Last contact day of week (monday-friday)	
1.Duration	
2.Number of contacts performed in this campaign	
3.Number of days passed by last contacted from previous campaign	
4.Number of contacts performed before this campaign	
5.Outcome of the previous marketing campaign (S/F/nonexistent)	
6.Employment variation rate	
7.Consumer price index	
8.Consumer confidence index	
9.EURIBOR 3-month rate	
0.Number of employees	
Numeric Categorical	

Original Dataset 20 Predictors, 1 Binary Response

I. Personal Information Of Bank Client

II. Customer Relationship & Contact Info

III. Social & Economic Context Attributes

Visualization and Feature Selection

Feature Selection of Categorical Variables

Chi-Square Testing

H0*	P-value
Reject	2.0e−150
Reject	1.5e−12
Reject	1.4e−22
Hold	0.83
Hold	0.08
Hold	0.38
Reject	4.90e−139
Reject	0
Reject	3.7e−5
Reject	0
	Reject Reject Hold Hold Hold Reject Reject Reject

*H0: predictor and response variable are independent.

Feature Selection of Numeric Variables

Principle Component Analysis on social and economic context attributes

Feature Selection of Numeric Variables (cont.)

1. Point Biserial Testing on other numerical variables; 2. Convert to Categorical Variables

Feature Selection of Numeric Variables (cont.)

Situation of Previous Contacts

Presentation Title

1: No previous phone calls at all0: Contacted but didn't pick up

General Review of Feature Selection Process

Modeling

Logistic Regression

Logistic Regression

Tolerance 0.0000005

Max Iteration 50000

Learning Rate 0.000001

Penalize 0.05

Timing 03:04

Training Score		
F1 Score	0.367	
Precision	0.705	
Recall	0.248	
Validation Score		
F1 Score	0.369	
Precision	0.702	
Recall	0.251	

Non-Oversampling

Classification Analysis On A Bank Marketing Campaign 2/1/20XX 12

Logistic Regression

Tolerance 0.0000005

Max Iteration 50000

Learning Rate 0.000001

Penalize 0.05

Timing 07:38

Training Score		
F1 Score	0.824	
Precision	0.833	
Recall	0.815	
Validation Score		
F1 Score	0.566	
Precision	0.431	
Recall	0.825	

Oversampling

Logistic Regression Cutoff = 0.49

Training Score		
F1 Score	0.828	
Precision	0.829	
Recall	0.827	
Validation Score		
F1 Score	0.564	
Precision	0.425	
Recall	0.838	

Modeling

Naive Bayes

Naive Bayes Binning Numerical Features

Naive Bayes Classifier

Training Score			
F1 Score	0.82		
Precision	0.93		
Recall	0.73		
Validation Score			
F1 Score	0.82		
Precision	0.92		
Recall	0.74		

No need to Oversampling

Modeling

SVM

SVM (hinge loss)

Max Iteration 1000
Learning Rate 0.0001
Penalize 0.001
Timing 03:11

Training Score		
F1 Score	0.31	
Precision	0.65	
Recall	0.20	
Validation Score		
F1 Score	0.32	
Precision	0.66	
Recall	0.21	

Non-undersampling

SVM (hinge loss)

Max Iteration 1000
Learning Rate 0.0001
Penalize 0.001
Timing 05:42

Training Score		
F1 Score	0.42	
Precision	0.28	
Recall	0.87	
Validation Score		
F1 Score	0.46	
Precision	0.28	
Recall	0.86	

Undersampling

2/1/20XX

Classification Analysis On A Bank Marketing Campaign

20

SVM (scipy.optimize)

C = 20 Timing 4:21:00

Training Score		
F1 Score	0.59	
Precision	0.52	
Recall	0.68	
Validation Score		
F1 Score	0.61	
Precision	0.56	
Recall	0.67	

Undersampling

SVM (SMO Algorithm)

C = 1

tolerance = 0.00005

Max Iteration = 100

Kernel Gamma = 5

Timing 1:19:00

Training Score		
F1 Score	0.44	
Precision	0.29	
Recall	0.94	
Validation Score		
F1 Score	0.44	
Precision	0.29	
Recall	0.87	

Undersampling

Modeling

ANN

Neural Network

1. Cost function(self-definition)

Definition:

$$Loss = -\frac{1}{\text{output size}} \sum_{i}^{\text{output size}} y_{i} log(sigmoid\widehat{y_{i}}) + (1 - y_{i}) log(sigmoid(1 - \widehat{y_{i}}))$$
[1e-10, 1]

Regularization:

$$Cost function = Loss + \frac{\lambda}{2m} * \sum ||w||^2$$

2. Cost function(sigmoid cross-entropy)

Neural Network

Solver Adam
Learning Rate 0.0001
Penalize 0.01

Timing 25:00

Training Score		
F1 Score	0.824	
Precision	0.833	
Recall	0.815	
Validation Score		
F1 Score	0.5	
Precision	0.34	
Recall	0.92	

Cost function (self-definition)

Classification Analysis On A Bank Marketing Campaign

Neural Network

Solver Adam
Learning Rate 0.0001
Penalize 0.01

Timing 20:00

Training Score			
F1 Score	0.855		
Precision	0.828		
Recall	0.883		
Validation Score			
F1 Score	0.571		
Precision	0.417		
Recall	0.899		

Cost function (sigmoid_crossentropy)

Classification Analysis On A Bank Marketing Campaign

Model Comparison

- Expense is not expensive & Don't allow lose new clients(quantity): Recall
- Expense is expensive(quality): **Precision**
- Generally: F1 score

Improvement

- Data Encode
- Predictors Selection
- Parameters Tuning
- Time and Capacity

