Notes on Seiberg-Witten Theory

Haolin Fan

June 2025

1 Introduction

It's a note for Vafa-Witten theory I studied in Amherst .

2 Cohomological Topology Field Theory

The basic construction and first example can refer[1]

2.1 Basic structure

Definition 2.1 (CTQFT). Cohomological Topology Field Theory is $TQFT(Atiyah \ definite)$, with the generator of algebra $\{P_{\mu}, Q, Q_{\mu}\}$, satisfy

$$Q^2 = [Q_\mu, Q_\nu] = [Q_\mu, P_\nu] = [Q, P_\nu] = 0, \quad [Q, Q_\mu] = iP_\mu.$$
 (2.1)

and observable are Q-cohomology.

Here, Q usually comes from twist of Supersymmetry charge.

Definition 2.2. $Op_{\delta,x} := all \ operators \ supported \ in \ Ball_{\delta}(x)$

Prop 2.2.1. Since the theory is topological, $Op_{\delta,x}$ is independent on δ and we denoted its cohomology class as A_x .

What's more for any operator supported on B_{δ} , we can use

 $Operator \Rightarrow State \text{ and } Operator \Leftrightarrow State \text{ (details in [3]) to regard it as a local operator on x.}$

2.2 Topological Algebra (First product)

Definition 2.3. The first product is a family of embedding defined on $C^2(M)$ given by:

$$*_{x1,x2}: A \otimes A \to Op_1$$

 $O_1, O_2 \mapsto O_1(x_1)O_2(x_2).$

The first order product in fact have the factorization structure:

Prop 2.3.1. $*_{x_1,x_2}$ is equal in the same connected component of $C_2(M)$, in \mathbb{R}^d case, since $C_2(\mathbb{R}^d)$ is trivial when $d \geq 2$, we can define $* := *_{x_1,x_2}$

$$\begin{split} Pf: O_1 *_{x1,x2+a} O_2 - O_1 *_{x1,x2} O_2 &= O_1(x^1) O_2(x^2+a) - O_1(x^1) O_2(x^2) \\ &= a \cdot O_1(x^1) \partial_\mu O_2(x^2) = a \cdot O_1(x^1) Q Q_\mu O_2(x^2) \\ &= a \cdot (-1)^{F_1} Q(a \cdot O_1(x^1) Q_\mu O_2(x^2)) = 0 \end{split}$$

Prop 2.3.2. * is associative

Prop 2.3.3. Obvious, * is graded-commutative.

2.3 Secondary Product

Definition 2.4 (Descendant). $\mathcal{O}^{(k)}(x) = \frac{1}{k!} \left(Q_{\mu_1} \cdots Q_{\mu_k} \mathcal{O} \right) (x) dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_k}$ $\mathcal{O}^* = \sum_{k=0}^{\infty} \mathcal{O}^{(k)}$

Prop 2.4.1 (Descendant Equation). $Q\left(\mathcal{O}^{(k)}(x)\right) = d\mathcal{O}^{(k-1)}(x), \quad Q\mathcal{O}^* = d\mathcal{O}^*$

$$Pf: Q\mathcal{O}^{(k)}(x) = Q(\frac{1}{k!}Q_{\mu 1}...) = \frac{1}{k!} \cdot iP_{\mu 1}(...)dx^{\mu 1} = dO^{(k-1)}$$

Definition 2.5 (Homology Operator). Denote $\mathcal{O}(\gamma) := \int_{\gamma} \mathcal{O}^*$, here $[\gamma]$ is homology class.

Prop 2.5.1. $O(\gamma)$ is operator supported on γ , and as Prop 2.2.1 $\mathcal{O}(\gamma) \in A$

Definition 2.6 (Secondary Product). The first product is a family of map defined on $C^1(M) = M$ given by:

$$\{,\}_x : A \otimes A \to A_x$$

$$O_1, O_2 \mapsto \mathcal{O}_1\left(S_x^{d-1}\right) \mathcal{O}_2(x)$$

Prop 2.6.1. The same as the proof of $*_{x_1,x_2}$ is invariant under deformation, $\{,\}_x$ is invariant under deformation, so we can define $\{,\}_x := \{,\}$ in \mathbb{R}^d so it's a product in A.

Now we define a new product \star defined on $C^n(M)$, and it captures the structure of Poisson structure of secondary product.

Definition 2.7 (Descendant on configuration space). $(\mathcal{O}_1 \boxtimes \mathcal{O}_2 ... \boxtimes \mathcal{O}_n)^* = \mathcal{O}_1^* \wedge \sigma^{F_1} \mathcal{O}_2^* ... \wedge \sigma^{F_1 ... + F_{n-1}} \mathcal{O}_n^*$, where σ acts as $(-1)^k$ on the degree k part.

Prop 2.7.1 (Descendant Equation). $\mathcal{Q}(\mathcal{O}_1...\boxtimes\mathcal{O}_n)^* = d(\mathcal{O}_1...\boxtimes\mathcal{O}_n)^*$.

In particular,
$$(\mathcal{O}_1 \boxtimes \mathcal{O}_2)^{(k)}(x_1, x_2) = \sum_{n=0}^k (-1)^{(k-n)F_1} \mathcal{O}_1^{(n)}(x_1) \wedge \mathcal{O}_2^{(k-n)}(x_2)$$

For $P \in H_{\bullet}(C^n(M), \mathbb{Z})$, we define

$$\star_{P}: A^{\otimes n} \to A$$

$$(O_{1}, ..., O_{n}) \mapsto (\mathcal{O}_{1} \boxtimes \mathcal{O}_{2} ... \boxtimes \mathcal{O}_{n}) (P) := \int_{P} (\mathcal{O}_{1} \boxtimes \mathcal{O}_{2} ... \boxtimes \mathcal{O}_{n})^{*}$$

Then we prove some property of secondary product: .6.2

Prop 2.8.1 (Commutative property). {,} is graded-commutative

$$Pf: \{O_1, O_2\}_x = O_1(S_x^{d-1})O_2(x) = (O_1 \boxtimes O_2)(S_x^{d-1}, \{x\}) = O_1 \star_{[S_x^{d-1} \times \{x\}]} O_2$$
in R^d case, $C^2(M) \cong S^{d-1}$,
$$[S_x^{d-1} \times \{x\}] \text{ and } [\{x\} \times S_x^{d-1}] \text{ related by antipodal map}$$

$$\therefore O_1 \star_{[S_x^{d-1} \times \{x\}]} O_2 = (-1)^d O_1 \star_{[\{x\} \times S_x^{d-1}]} O_2 = (-1)^d O_1(x) O_2(S^{d-1})$$

$$= (-1)^{F_1 F_2 + d} \{O_2, O_1\}$$

In particular, in d=3 case $\{,\}$ can be used to compute linking number. That is for Γ_1, Γ_2 two circles in R^3 , we have $[O_1 \boxtimes O_2]([\Gamma_1, \Gamma_2]) = l \cdot (O_1 \boxtimes O_2)(S_x^{d-1}, \{x\}) = l \cdot \{O_1, O_2\}$

$$S_{x_2}^2$$
 x_1 x_2 x_2 x_1 x_2 x_2 x_2 x_2 x_1 x_2

Prop 2.8.2 (Derivation property). $\{[\mathcal{O}_1], [\mathcal{O}_2] * [\mathcal{O}_3]\} = \{[\mathcal{O}_1], [\mathcal{O}_2]\} * \{[\mathcal{O}_1], [\mathcal{O}_3]\} + (-1)^{(F_1+d-1)F_2} [\mathcal{O}_2] * \{[\mathcal{O}_1], [\mathcal{O}_3]\}$

The proof is directly, $(-1)^{F_1+d-1}$ from the order (d-1) form. And notice that two parts of the equation correspond to these graphs, and $[\Gamma_1] = [\Gamma_2] + [\Gamma_3]$

Prop 2.8.3 (Jacobi identity).

$$\begin{split} \{ [\![\mathcal{O}_1]\!], \{ [\![\mathcal{O}_2]\!], [\![\mathcal{O}_3]\!] \} \} - (-1)^{(F_1 + d - 1)(F_2 + d - 1)} \{ [\![\mathcal{O}_2]\!], \{ [\![\mathcal{O}_1]\!], [\![\mathcal{O}_3]\!] \} \} \\ &= (-1)^{(d - 1)(F_1 + d - 1)} \{ \{ [\![\mathcal{O}_1]\!], [\![\mathcal{O}_2]\!] \}, [\![\mathcal{O}_3]\!] \} \end{split}$$

2.4 Example:RW-twist of 3d N=4

Now, I give an example to illustrate what the component of A looks like and what the $\{,\}$ exactly is.

2.4.1 3d N=4 Super Algebra

Before this section, I highly commend reader skip to 3.1 part to study representation of Super-Poincare algebra.

Definition 2.9. 3d N=4 Super Algebra is given by
$$\{P_{\mu}, Q_{\alpha}^{a,b}\}$$
, satisfy:
$$[Q_{\alpha}^{ab}, Q_{\beta}^{cd}] = \epsilon^{ac} \epsilon^{bd} \sigma_{\alpha\beta}^{\mu} P_{\mu}$$

the index α means Q is Majorana spinor, index a is the spinor representation of $SU(2)_H$ (Higgs rotation), index b is spinor representation of $SU(2)_C$ (Coulomb rotation)

Without proof, we claim 3d N=4 have a hyper-multiplet representation, consist of $4\phi+2\psi$, we denote them ϕ^{a1} , ϕ^{a2} , ψ^{b1}_{α} , ψ^{b2}_{α} , the index "a" in ϕ^{a1} is the same as in Q, means it's $SU(2)_H$ representation, the indexes in ψ^b is similar.

2.4.2 Twist

Now, we will play twist on this super theory to make it be a CTQFT. We define:

$$Q := \delta^{\alpha}_{b} Q^{1b}_{\alpha} = Q^{11}_{1} + Q^{12}_{2} \quad Q_{\mu} := -\frac{i}{2} (\sigma^{\mu})^{\alpha}_{b} \cdot Q^{2b}_{\alpha}$$

The new operator satisfy definition 2.1, so this is a twist CTQFT.

And now, we consider the pure hypermultiplets Lagrangian, as I have mentioned it's consist of ϕ^{aA} , ψ^{bA}_{α} $A \in [1, 2N_f]$, (N_f) is the number of hypermultiplets.

But now, what we did in twist is mix $SU(2)_C \times SU(2)_E$ diagonally to new Euclidean rotation group $SU(2)'_E$. So in twist theory, we don't have to consider ψ but the twisted one, so we define:

$$\eta_A := -\delta_b^\alpha \psi_\alpha^{bA} \quad \chi_\mu^A := \frac{i}{2} (\sigma^\mu)_b^\alpha \psi_\alpha^{bA}$$

is the $1 \otimes 3$ representation of SU(2)'.

3 Physics describe

3.1 Representation of Super-Pincare algebra

Poincare algebra is generated by $\{P_{\mu}, Q_a^A, \bar{Q}_{\dot{a}A}\}$, satisfied:

$$\left\{Q_{\alpha}^{A}, \overline{Q}_{\beta B}\right\} = 2\delta_{B}^{A} \sigma_{\alpha\beta}^{\mu} \mathbf{P}_{\mu}, \quad \left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} = \varepsilon_{\alpha\beta} Z^{AB}$$

We claim it's the unique non-trivial extension of Pincare algebra.

3.1.1 N=1 massive

In the rest frame of a particle, $p_{\mu} = (m, 0, 0, 0)$ so

$${Q_{\alpha}, \overline{Q}_{\beta}} = 2m\delta_{\alpha\beta}, {Q, Q} = {\overline{Q}, \overline{Q}} = 0$$

so we regard Q_a as creation operator and $\bar{Q}_{\dot{a}}$ as annihilation operator, begin with a state $|j\rangle$, we have $Q_1 |j\rangle$, $Q_2 |j\rangle$, $Q_1 Q_2 |j\rangle$, without gravity the superhelicity $J \leq 1$, at a result, we only have two representations called chiral multiplet and vector multiplet.

And these multiplets correspond to chiral and vector field.

$$\Phi(x,\theta,\bar{\theta}) = A(x) + \theta^{\alpha}\psi_{\alpha}(x) + \theta^{2}F(x) + i\theta\sigma^{a}\bar{\theta}\partial_{a}A(x) + \frac{i}{2}\theta^{2}\bar{\theta}\tilde{\sigma}^{a}\partial_{a}\psi(x) + \frac{1}{4}\theta^{2}\bar{\theta}^{2}\Box A(x) \quad (1)$$

$$V = \theta\sigma^{a}\bar{\theta}V_{a} + \bar{\theta}^{2}\theta^{\alpha}\lambda_{\alpha} + \theta^{2}\bar{\theta}_{\dot{\alpha}}\bar{\lambda}^{\dot{\alpha}} + \theta^{2}\bar{\theta}^{2}\mathcal{D} \quad (2)$$

3.1.2 N=1 massless

Also to the rest frame, $p_{\mu} = (E, 0, 0, E)$. Now we only have one creation operator, as the same calculation, the representation component is the same as massive.

3.1.3 N=2 massless

Have "Hypermultiplet" and "Vector multiplet"

3.2 Pure N=2 massless Vector-mutiplet Theory

Since in this case, the Vector-mutiplet can be written as $V \oplus \Phi$. We consider N=1 massless theory with both these part, it is N=1 Super-Yang-Mills model:(this part following Witten's lecture https://youtu.be/9qZSqkn8-Qo, and for details about N=1 case, reference is[2][3.5.1])

$$S = \frac{1}{e^2} \int d^4x d\theta d\bar{\theta} \ tr(\bar{\Phi}e^{2V}\Phi) + \frac{1}{e^2} \int d^4x d\theta tr(W^{\alpha}W_{\alpha}) \quad (3)$$

Since $\int dx d\theta \Phi = -\frac{1}{4} \int dx D^2\Phi|_{\theta=0,\bar{\theta}=0} \quad (4)$, what we need to do is using formulas $(1)(2)(4)$ to extends (3) to euclidean case, and the result is:

$$S = \frac{1}{c^2} \int d^4x \ kinetic \ tern \ of \ (A, \lambda, \bar{\lambda}, \phi) + \text{Tr} \left[\phi, \phi^{\dagger}\right]^2 + (Yukawa \ potential)$$

The formula (3) have the same symmetry transformation as N=2 case after adding Yukawa potential, so it's the Lagrangian we are looking for.

Now, as you seen the potential is :

 $V(\phi) = Tr[\phi, \bar{\phi}]$, which means it's diagonal , so we set $\phi = a\sigma^3$. Since vacua under SU(2) are equivalent, we use the parameter $u := \frac{1}{2}a^2 = \langle \phi^2 \rangle$ to parameterize modular space of vacua, as u is double covered by a.

3.3 Relation to QCD

When $a \neq 0$, SU(2) symmetry is broken to U(1) and generate massive boson W^{\pm} from two color indexes of A^a_{μ} . So as we consider low-energy effective theory, the two massive bosons won't make effort. The residue field is A_{μ} , ψ with U(1) symmetry, which exactly is QCD.

4 AG describe

4.1 Module Space of sheaves

Definition 4.1. For X smooth, projective, dimension d variety, with ample sheaf H. Its modular space of sheaves with fix rank r, and Chern Class c_i , denoted as $M_X^H(r, c_i)$

Theorem 4.1. The Zariski tangent space at $[E]:=T_M|_{[E]}\cong Ext_X^1(E,E)$ fi $T_{M_L}|_{[E]}\cong Ext_X^1(E,E)_0$, here $Ext_X^1(E,E)_0$ denote the kernel of trace map: $tr^i:Ext^i(E,E)\cong H^i(End(E))\to H^i(O_X)$

4.2 Hilbert scheme and generating series

 $\textbf{Definition 4.2} \text{ (Hilbert Scheme). } X^{[n]} := \{Z \subseteq X : Z \text{ is 0-dimensional with } \dim H^0\left(X, \mathcal{O}_Z\right) = n\}$

it should be regarded as n-point construction space with degree.

Now, we define generating series:

$$Z_{S,E_1,...,E_{\ell}}(q) = 1 + \sum_{n=1}^{\infty} q^n \int_{S^{[n]}} P_n$$

 P_n is polynomial in Chern class of $E_i^{[n]}, T_{S^{[n]}}, \mathcal{Z}$ is universal subscheme and $E_i^{[n]} = p_*q^*E_i$.

Definition 4.3 (Hilbert scheme of divisor). For a effective divisor class $\beta \in H_{2d-2}(M)$, we define: $\text{Hilb}_{\beta}(X) = \{D \subseteq X : D \text{ effective divisor such that } [D] = \beta\}$

We pass the proof of the set is a scheme, it's equivalent to prove the modular functor is representable.

Prop 4.3.1. When $h_1(X) = 0$ (especially K3 surface), $Hilb_{\beta}(X)$ is linear system, and we denote it as $|\beta|$

 $Pf: Consider\ H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X^*) \cong Pic(X) \xrightarrow{c_1} H^2(X, \mathbb{Z})$ $since\ h^1 = 0,\ c_1$ is injective ,the equivalent class of divisor is determined by its Chern class.

4.3 Seiberg-Witten invariants

Definition 4.4 (Virtual Dimension). For modular space $M_S^H(r, L, c_2)$ (S is projective surface), $vd(r, L, c_2) := dim_C(Ext_S^1(E, E)_0) - dim_C(Ext_S^2(E, E)_0) = 2rc_2 - (r-1)c_1(L)^2 - (r^2-1)\chi(\mathcal{O}_S)$

as $Ext_S^1(E,E)_0$ is the deformation as obstruction in $Ext_S^2(E,E)_0$

Definition 4.5 (Virtual fundamental Class). For M a \mathbb{C} – Scheme of finite type, the virtual fundamental class $[M]^{vir} \in H_{2vd}(M,\mathbb{Z})$ is well-defined ,if there exists a perfect obstruction theory over M

Prop 4.5.1. For projective surface S, fix $\beta \in H_2(S, \mathbb{Z})$, the Hilbert space $Hilb_{\beta}(S) := |\beta|$ have perfect obstruction theory. And $[|\beta|]^{vir} \neq 0$ only when $vd(|\beta|) = 0$

Definition 4.6 (Seiberg–Witten invariants). $SW(\beta) := \int_{[|\beta|]^{vir}} 1$

References

- [1] Christopher Beem, David Ben-Zvi, Mathew Bullimore, Tudor Dimofte, and Andrew Neitzke. Secondary products in supersymmetric field theory. *Annales Henri Poincaré*, 21(4):1235–1310, February 2020.
- [2] Sergio M Kuzenko. Ideas and methods of supersymmetry and supergravity or a walk through superspace, 1998.
- [3] David Simmons-Duffin. Tasi lectures on the conformal bootstrap, 2016.