Started on Wednesday, 7 May 2025, 3:09 PM

State Finished

Completed on Wednesday, 7 May 2025, 3:30 PM

Time taken 21 mins 32 secs

Grade 100.00 out of 100.00

```
Question 1
Correct
Mark 20.00 out of 20.00
```

Develop a python program to add only the even unique numbers using appendleft() from n given numbers

For example:

Input	Result
5	deque([4, 8, 2])
2	
5	
8	
2	
4	
6	deque([8, 2])
3	
5	
2	
8	
2	
5	

Answer: (penalty regime: 0 %)

```
1 | from collections import deque
    class Queue:
     def __init__(self):
 3 ▼
4
          self.queue = deque()
 5 🔻
      def add_element(self,val):
          if val%2==0 and val not in self.queue:
 6 🔻
 7
              self.queue.appendleft(val)
              return True
 8
          return False
9
   TheQueue = Queue()
10
11 n=int(input())
12 v for i in range(n):
        TheQueue.add_element(int(input()))
13
14 print(TheQueue.queue)
```

	Input	Expected	Got	
~	5	deque([4, 8, 2])	deque([4, 8, 2])	~
	2			
	5			
	8			
	2			
	4			
~	6	deque([8, 2])	deque([8, 2])	~
	3			
	5			
	2			
	8			
	2			
	5			

Passed all tests! 🗸

Correct

```
Question 2
Correct
Mark 20.00 out of 20.00
```

Develop a python program to get string values from the user and display the values using circular queue

For example:

Input	Result
4 Python Java C C++	Python Java C C++
5 Java C# C Python C++	Java C# C Python C++

Answer: (penalty regime: 0 %)

Reset answer

```
1 v class MyCircularQueue():
 2 🔻
        def __init__(self, k):
 3
            self.k = k
4
            self.queue = [None] * k
5
            self.head = self.tail = -1
 6 🔻
        def enqueue(self, data):
            if ((self.tail + 1) % self.k == self.head):
7 🔻
 8
                print("The circular queue is full\n")
 9 🔻
            elif (self.head == -1):
10
                self.head = 0
11
                self.tail = 0
                self.queue[self.tail] = data
12
13 •
            else:
                self.tail = (self.tail + 1) % self.k
14
15
                self.queue[self.tail] = data
16 •
        def printCQueue(self):
            if(self.head == -1):
17 ▼
18
                print("No element in the circular queue")
19 🔻
            elif (self.tail >= self.head):
20 🔻
                for i in range(self.head, self.tail + 1):
                    print(self.queue[i], end=" ")
21
                print()
22
```

	Input	Expected	Got	
*	4 Python Java C C++	Python Java C C++	Python Java C C++	*
~	5 Java C# C Python C++	Java C# C Python C++	Java C# C Python C++	~

Passed all tests! ✓

Correct

```
Question 3
Correct
Mark 20.00 out of 20.00
```

Write a Python program to find the square of all elements in a list using list comprehension

For example:

Result
[11, 22, 33]
[121, 484, 1089]

Answer: (penalty regime: 0 %)

nput	Expected	Got	
1	[11, 22, 33] [121, 484, 1089]	[11, 22, 33] [121, 484, 1089]	~
2			
			~
	[., ., .,,,	[., .,,,,	
5			
	L 2 3	[121, 484, 1089] 2 3 [2, 3, 6, 9, 45] [4, 9, 36, 81, 2025]	[11, 22, 33] [11, 22, 33] [121, 484, 1089] [121, 484, 108

Passed all tests! ✓

Correct

```
Question 4
Correct
Mark 20.00 out of 20.00
```

Write a python program to reverse a string using stack concept

For example:

Input	Result	
Python	nohtyP	

Answer: (penalty regime: 0 %)

```
1 def swap(s, i, j):
         temp = s[i]
s[i] = s[j]
s[j] = temp
 2
 3
 4
 5
 6 \neq def reverse(s, i=0, j=0):
 7 🔻
         if j == len(s):
              return i
 8
 9
10
         i = reverse(s, i, j + 1)
11 •
         if i <= j:</pre>
12
             swap(s, i, j)
13
              i += 1
14
15
         return i
16
17
    s = input()
18
19
20
    chars = [*s]
21 reverse(chars)
22 s = ''.join(chars)
```

	Input	Expected	Got	
~	Python	nohtyP	nohtyP	~

Passed all tests! 🗸

Correct

Question 5
Correct
Mark 20.00 out of 20.00

Write a python program to create a <u>stack</u> with a maximum size of 5 using Lifo <u>Queue</u>. Get the input from the user and check whether the <u>stack</u> is full and then display the <u>stack</u> values in reverse order

For example:

Input	Result	
4	False	
10	40	
20	30	
30	20	
40	10	
5	True	
2	3	
4	8	
6	6	
8	4	
3	2	

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
from queue import LifoQueue
stack = LifoQueue(maxsize=5)
n= int(input())
for i in range(n):
    stack.put(input())
print(stack.full())
for i in range(n):
    print(stack.get())
```

	Input	Expected	Got	
~	4	False	False	~
	10	40	40	
	20	30	30	
	30	20	20	
	40	10	10	
~	5	True	True	~
	2	3	3	
	4	8	8	
	6	6	6	
	8	4	4	
	3	2	2	

Passed all tests! 🗸

Correct