18 - Mar 15 Lecture

- Find diagonalization of A
- Checking eigenvectors for linear independence
- Non-diagonalizable matrix example
- $-A^{k} = PD^{k}P^{-1}$

- 2 final exam reviews.
- 1 recorded (asynchronous)
- 1 in-person (synchronous)

Recall: A nxn matrix B is diagonalizable iff there exists a linearly independent set of n eigenvectors of B.

Recall: For a nxn matrix B, if the columns of P are a set of n lin. ind. eigenvectors of B and D is a diagonal matrix with each diagonal entry being the eigenvalue of the corresponding column of P, then B=PDP-1.

Find diagonalization of matrix A:

- 1. Eigenvalues \longrightarrow Det $(A \lambda I)$
- 2. Eigenvectors \rightarrow Nullspace of A- λ I (want $\dot{x} \in \text{Null}(A-\lambda_1 I)$, $\dot{x} \neq \dot{0}$)
- 3. Find P and D

Ex: Find diagonalization of A.

$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$

Det $(A - \lambda I) = Det \begin{bmatrix} 1 - \lambda & 3 \\ 1 & -1 - \lambda \end{bmatrix} = (1 - \lambda)(-1 - \lambda) - (3)(1) = \lambda^2 - 4 = (\lambda + 2)(\lambda - 2)$

$$\implies \lambda_1 = -2, \quad \lambda_2 = 2$$

 $A - \lambda_1 I = \begin{bmatrix} 1+2 & 3 \\ 1 & -1+2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} R_1' = \frac{1}{3} R_1$ by $\sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} R_2' = R_2 - R_1$

find eigen \vec{v} by inspection: \vec{v} that when mult: by matrix gives \vec{o} by inspection $\vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ works

Null
$$\left(\begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix}\right) = \text{Null} \left(\begin{bmatrix} B & F \\ 1 & 1 \\ 0 & 0 \end{bmatrix}\right)$$
 RP algo does not change Null Space.

Easiest way is to set free vars to 1.

Let
$$X_2 = I$$

$$X_1 + X_2 = 0 \longrightarrow X_1 = -1$$

$$0 = 0$$

$$\overrightarrow{V}_i = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$A - \lambda_2 \mathbf{I} = \begin{bmatrix} 1-2 & 3 \\ 1 & -1-2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$

$$A - \lambda_2 \mathbf{I} = \begin{bmatrix} 1-2 & 3 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix}$$

Ex.	Find the diagonalization of A_1 given $\lambda_1, \lambda_2, \vec{v}_1, \vec{v}_2, \vec{v}_3$.
	$\begin{bmatrix} 20 & -6 & 24 \end{bmatrix} \qquad \lambda_1 = -1 \text{alg. mult. 1}$
	$ \begin{bmatrix} 20 & -6 & 24 \\ -9 & 5 & -12 \\ -18 & 6 & -22 \end{bmatrix} $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
aside: should be able	-18 6 -22
to find eigenvaluer of A	
·	
	$\vec{\mathbf{v}} = \begin{bmatrix} 1 & \vec{\mathbf{v}}_0 = 1 \\ 1 & \vec{\mathbf{v}}_0 = 1 \end{bmatrix}$
	$\vec{V}_1 = \begin{vmatrix} -2 \\ 1 \end{vmatrix} \qquad \vec{V}_2 = \begin{vmatrix} 2 \\ 2 \end{vmatrix} \qquad \vec{V}_3 = \begin{vmatrix} -1 \\ -1 \end{vmatrix}$
	associated with: $\frac{\lambda_1}{\lambda_2}$ $\frac{\lambda_2}{\lambda_2}$
	ASSUCIATED WITH: A1 42 42
	$A = \begin{bmatrix} 1 & 2 & -1 & 0 & 0 & 0 & -2 & 2 & 1 & -1 \\ 1 & 2 & -1 & 0 & 2 & 0 & 0 & 1 & 2 & -1 & & & & & & & & & & & & & & & & & $
	A = 1 2 -1 0 2 0 1 2 -1 Ediagonalization of A
Checking for Linear	When checking for linear independence (LI), we don't need to check if
Independence	$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is LI. It suffices to check that both $\{\vec{v}_1\}$ and $\{\vec{v}_2, \vec{v}_3\}$
	are LI.
Ex:	Cont. from example above, check for LI of eigenvectors.
	Is {vi} LI? <u>Yes</u> , since set only contains a single non-zero vector.
	15 {v2, v3} LI? yes, since set contains a pair of non-zero vectors that
	are not scalar multiples of each other.
What does it look like if	$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ A not diagonalizable
A is not diagonalizable?	
-	
	λι = 1 alg. mult. 2 by inspection (upper triangular)
	[1-1 17 [0 17
	$A - \lambda_1 \mathbf{I} = \begin{bmatrix} 1 - 1 & 1 \\ 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
	([17] -10 space + nothing else => not diagonalizable
	Null $(A - \lambda_1 I) = \text{span} \left\{ \begin{bmatrix} I \\ 0 \end{bmatrix} \right\} \leftarrow 1D \text{ space + nothing else} \Rightarrow \text{not diagonalizable}$
	(6-33
	Would need to pull 2 lin. dep. eigenv from a 1-dim subspace (impossible)
	·· A is not diagonalizable

	A nxn matrix B is diagonalizable iff the sum of the eigenspace dimensions is equal
	to n.
	Alternatively: A nxn matrix B is diagonalizable iff (both).
	1) The characteristic polynomial factors to linear terms. (in reals)
	2) The dimension of all eigenspaces is equal to the algebraic multiplicity of the
	corresponding eigenvalue.
Why diagonalize?	Suppose we have A = PDP-1.
	Then $A^2 = PDP^{-1}PDP^{-1}$
	= PD ² P ⁻¹
	$\Rightarrow A^{k} = PD^{k}P^{-1}$ (k is a positive integer)
	$ \begin{bmatrix} d_1 & \emptyset \\ D = d_2 \end{bmatrix} \implies D^k = \begin{bmatrix} d_1^k & \emptyset \\ d_2^k \end{bmatrix} $
	D =
	[Ø dn] [Ø dnk]
Ex:	Given $A = PDP^{-1}$, find $A^k = PD^kP^{-1}$.
	inverse of [31]
	$\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & -3/4 \end{bmatrix}$ $(result from earlier but with)$ $(\vec{V}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \text{ which was by inspection})$
	$\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -2 \end{bmatrix} \begin{bmatrix} 1/4 & -3/4 \end{bmatrix}$ $\begin{bmatrix} \vec{v}_2 = \begin{bmatrix} -1 \end{bmatrix}$ which was by inspection/
	$\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}^{k} \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & -3/4 \end{bmatrix}$
	[1-1][1-1][0-2][1/4-3/4]
	$= \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	[317[2k n 7[117]
	$=\frac{1}{4}\begin{bmatrix}3 & 1\\1 & -1\end{bmatrix}\begin{bmatrix}2^k & 0\\0 & (-2)^k\end{bmatrix}\begin{bmatrix}1 & 1\\1 & -3\end{bmatrix}$
	$= \frac{1}{4} \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2^{k}(1) + 9(1) & 2^{k}(1) + 0(3) \\ 0(1) + (-2)^{k}(1) & 0(1) + (-2)^{k}(-3) \end{bmatrix}$
	$= \frac{1}{4} \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2^k & 2^k \\ (-2)^k & (-3)(-2)^k \end{bmatrix}$
	4 [1 -1][(-2) ^k (-3)(-2) ^k]
	$= \frac{1}{2} \left[3(2^{k}) + 1(-2)^{k} + 3(2^{k}) + 1(-3)(-2)^{k} \right]$
	4 [(2 ^k) - (-2 ^k) (2) ^k - (-3)(-2) ^k]
	$= \frac{1}{2} \left[3(2^{k}) + (-2)^{k} 3(2^{k}) - 3(-2)^{k} \right]$
	$= \frac{1}{4} \begin{bmatrix} 3(2^{k}) + 1(-2)^{k} & 3(2^{k}) + 1(-3)(-2)^{k} \\ 1(2^{k}) - 1(-2^{k}) & 1(2)^{k} - 1(-3)(-2)^{k} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} 3(2^{k}) + (-2)^{k} & 3(2^{k}) - 3(-2)^{k} \\ 2^{k} - (-2^{k}) & 2^{k} + 3(-2)^{k} \end{bmatrix}$