# Terceiro Relatório de Lab de Eletrônica 2

# Bruno França Henrique da Silva

# 3 de março de 2024

# Sumário

| 1 | Intr | rodução                                                            |
|---|------|--------------------------------------------------------------------|
| 2 | Aná  | álise preliminar                                                   |
|   | 2.1  | $A_f$                                                              |
|   | 2.2  | $\beta$                                                            |
|   | 2.3  | $A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |
|   |      | 2.3.1 Tensão nos transistores                                      |
|   |      | 2.3.2 Corrente nos transistores                                    |
|   | 2.4  | Análise de pequenos sinais                                         |
|   |      | 2.4.1 Calculando parâmetros                                        |
|   |      | 2.4.2 Impedâncias e ganhos                                         |
|   |      |                                                                    |
| 3 |      | dições em laboratório                                              |
|   | 3.1  | Tabela de componentes                                              |
|   | 3.2  | Medidas sob diferentes condições                                   |
| 4 | Aná  | álise dos resultados                                               |
|   | 4.1  | Frequências de corte                                               |
|   |      | 4.1.1 Circuito original                                            |
|   |      | 4.1.2 Circuito com $C_1$ 10 vezes menor                            |
|   |      | 4.1.3 Circuito com $C_1$ 10 vezes maior                            |
|   |      | 4.1.4 Circuito com $C_2$ 10 vezes menor                            |
|   |      | 4.1.5 Circuito com $C_2$ 10 vezes maior                            |
|   |      | 4.1.6 Circuito com $C_3$ 10 vezes menor                            |
|   |      | 4.1.7 Circuito com $C_3$ 10 vezes maior                            |
|   | 4.2  | Capacitor dominante                                                |
|   | 1.4  |                                                                    |

## 5 Conclusões

# 1 Introdução

Este relatório explora o comportamento de um circuito com um transistor TBJ NPN e realimentação. O objetivo do circuito é manter o ganho relativamente fixo para grandes mudanças nos resistores do mesmo, tornando-o resistente a degradações de componentes enquanto mantém sua função intacta.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe\_ee/tree/main/7thSemester/Eletronica2/

# 2 Análise preliminar

Na análise preliminar, utiliza-se LTSPICE em adição à análise de circuitos e parâmetros h para encontrar analiticamente os valores de A,  $A_f$ ,  $\beta$ ,  $R_i$ ,  $R_{if}$ ,  $R_o$  e  $R_{of}$ .



Figura 1: Circuito em análise.

## **2.1** $A_f$

Monta-se o circuito no LTSpice e faz-se que  $A_f = \frac{V_o}{V_i}$ . O que nos dá  $A_f = 4$ .



Figura 2: Circuito no LTSpice.



Figura 3: Ganho do circuito no LTSpice.

## 2.2 $\beta$

Faz-se cálculo do parâmetro  $h_{12}$  para encontrar o  $\beta$  da seguinte maneira:

$$\beta = h_{12} = \frac{V_1}{V_2} | I_1 = 0$$

$$\beta = \frac{R_1 i_2}{(R_1 + R_2) i_2} = \frac{10}{110} = 0.091$$
(1)



Figura 4: Circuito de realimentação.

## **2.3** *A*

Tem-se a seguinte relação entre Ae o  $A_f$ e  $\beta$  previamente calculados:

$$A_f = \frac{A}{1 + A\beta}$$

$$A = \frac{A_f}{1 - A_f \beta} = 6.28$$
(2)

### 2.3.1 Tensão nos transistores

| Tensão   | Medida |
|----------|--------|
| $V_{C1}$ | 6.80V  |
| $V_{B1}$ | 3.84V  |
| $V_{E1}$ | 3.16V  |
| $V_{C2}$ | 6.80V  |
| $V_{B2}$ | 3.16V  |
| $V_{E2}$ | 2.36V  |

#### 2.3.2 Corrente nos transistores

| Corrente | Medida       |
|----------|--------------|
| $I_{C1}$ | $23.2\mu A$  |
| $I_{B1}$ | $0.232\mu A$ |
| $I_{E1}$ | $23.2\mu A$  |
| $I_{C2}$ | 2.36mA       |
| $I_{B2}$ | $23.4\mu A$  |
| $I_{E2}$ | 2.36mA       |

### 2.4 Análise de pequenos sinais

Com os valores da análise de grandes sinais calculados, podemos realizar a análise de pequenos sinais.

### 2.4.1 Calculando parâmetros

Para obter os ganhos globais e as impedâncias do circuito precisamos obter os parâmetros  $g_m$ ,  $r_{\pi}$ , e  $\beta$  de cada transistor. Para isso, utilizamos as seguintes equações:

$$g_{m} = \frac{I_{C}}{V_{T}}$$

$$r_{\pi} = \frac{\beta}{g_{m}}$$

$$\beta = \frac{I_{C}}{I_{B}}$$
(3)

E obtemos os seguintes valores:

| Parâmetro   | Valor            |
|-------------|------------------|
| $g_{m1}$    | $9.27 * 10^{-4}$ |
| $g_{m2}$    | $9.36 * 10^{-2}$ |
| $eta_1$     | 100              |
| $eta_2$     | 100              |
| $r_{\pi 1}$ | $108k\Omega$     |
| $r_{\pi 2}$ | $1.07k\Omega$    |

#### 2.4.2 Impedâncias e ganhos

Com os parâmetros calculados, podemos obter as impedâncias e ganhos do circuito. Para isso, utilizamos as seguintes equações:

$$R_{inB_{1}} = r_{\pi 1} + (\beta + 1)r_{pi2}$$

$$R_{in} = R_{1}//R_{2}//R_{inB_{1}}$$

$$R_{out} = R_{C}//R_{L}$$

$$A_{v} = \frac{-gmR_{out}}{2}$$
(4)

E obtemos os seguintes valores:

| Parâmetro   | Valor         |
|-------------|---------------|
| $R_{inB_1}$ | $216k\Omega$  |
| $R_{in}$    | $3.15k\Omega$ |
| $R_{out}$   | $1.1k\Omega$  |
| $A_v$       | -51.47        |

# 3 Medições em laboratório

No laboratório, montamos o circuito para realizar medições e analisar suas respostas a diversas frequências e amplitudes de sinal de entrada. Essa abordagem abrangente fornece informações práticas sobre o comportamento, estabilidade e desempenho do circuito em diferentes cenários operacionais, permitindo uma comparação posterior com as previsões teóricas.



Figura 5: Circuito Darlington montado em laboratório.

## 3.1 Tabela de componentes

| Resistores  |         |         |         |
|-------------|---------|---------|---------|
|             |         |         |         |
| R1          | 9785    |         |         |
| R2          | 4668    |         |         |
| RC          | 2055    |         |         |
| RE          | 935     |         |         |
| RL          | 2130    |         |         |
|             |         |         |         |
| Capacitores |         |         |         |
|             |         |         |         |
| C1          | 1.03uF  | 100.8nF | 11.3uF  |
| C2          | 10.43uF | 1086nF  | 105.3uF |
| C3          | 0.973uF | 100.8nF | 11.3uF  |

Figura 6: Valores dos componentes medidos em laboratório.

# 3.2 Medidas sob diferentes condições



Figura 7: Circuito com componentes e condições iniciais.



Figura 8: Circuito em início de saturação após tensão ser aumentada.



Figura 9: Circuito em saturação após tensão ser aumentada.



Figura 10: Circuito na frequência de corte.



Figura 11: Circuito na frequência de corte com  $\mathcal{C}_1$  10 vezes menor.



Figura 12: Circuito na frequência de corte com  $\mathcal{C}_1$  10 vezes maior.



Figura 13: Circuito na frequência de corte com  $\mathcal{C}_2$  10 vezes menor.



Figura 14: Circuito na frequência de corte com  $\mathbb{C}_2$  10 vezes maior.



Figura 15: Circuito na frequência de corte com  ${\cal C}_3$  10 vezes menor.



Figura 16: Circuito na frequência de corte com  $C_3$  10 vezes maior.

## 4 Análise dos resultados

Na análise, foca-se nas frequências de corte para compreender a importância de cada capacitor em sua determinação. Isso permite não apenas quantificar a influência de cada componente, mas também compreender a complexa interação entre eles.

### 4.1 Frequências de corte

Para o circuito com seus componentes inciais temos a seguinte frequência de corte:

### 4.1.1 Circuito original

$$F_L = 880Hz \tag{5}$$

#### 4.1.2 Circuito com $C_1$ 10 vezes menor

$$F_L = 1.1kHz (6)$$

### 4.1.3 Circuito com $C_1$ 10 vezes maior

$$F_L = 880Hz \tag{7}$$

### 4.1.4 Circuito com $C_2$ 10 vezes menor

$$F_L = 8.3kHz \tag{8}$$

## 4.1.5 Circuito com $C_2$ 10 vezes maior

$$F_L = 480Hz \tag{9}$$

### 4.1.6 Circuito com $C_3$ 10 vezes menor

$$F_L = 999Hz \tag{10}$$

$$F_L = 870Hz \tag{11}$$

## 4.2 Capacitor dominante

Ao dispor dessas frequências, torna-se evidente que o capacitor  $C_2$  desempenha um papel proeminente e determinante nas características de corte do circuito. Sua influência preponderante sugere que as propriedades específicas desse componente exercem um impacto significativo na resposta do circuito em diferentes faixas de frequência.

## 5 Conclusões

Chegamos à conclusão de que o experimento foi conduzido com êxito, apresentando resultados que se aproximaram das expectativas inicialmente estabelecidas. A análise do circuito Darlington proporcionou uma compreensão mais aprofundada do comportamento dos transistores, bem como das análises necessárias para sua polarização e controle.

Foi possível realizar a montagem do projeto e empreender uma análise específica do componente preponderante no circuito, o capacitor  $C_2$ . Essa análise revelou a influência significativa de  $C_2$  na frequência de corte do circuito, proporcionando uma visão mais apurada de sua contribuição para o desempenho global do sistema.