Assignment 7

Name - Abhishek Agrahari

Roll Number 190123066

Question 1

Formula Used-

$$\hat{I}_M$$
 = $\hat{\mu}_{anti}$ = $\frac{2}{M}\sum_{i=1}^{M/2}\hat{Y}_i$, where $\hat{Y}_i=(e^{\sqrt{U_i}}+e^{\sqrt{1-U_i}})/2$

$$s_{anti}^2 = \frac{1}{n-1} \sum_{i=1}^n (\hat{Y}_i - \hat{\mu}_{anti})^2$$
 where n = M/2.

95% confidence interval = ($\hat{\mu}_{anti} - 1.96 \frac{s_{anti}}{\sqrt{n}}$, $\hat{\mu}_{anti} + 1.96 \frac{s_{anti}}{\sqrt{n}}$) where n = M/2 and s_{anti} as defined above.

For different values of M, I_{M} and 95% confidence interval obtained from the generated sample are as below -

i) M = 100

I_M = 1.9835514858163157 95% confidence interval = (1.9680162496788438, 1.9990867219537876)

ii) M = 1000

I_M = 1.9970388257694407 95% confidence interval = (1.993776847093539, 2.0003008044453425)

iii) M = 10000

I_M = 1.9993787032361658, 95% confidence interval = (1.998451217156572, 2.0003061893157597)

iv) M = 100000

I_M = 1.9997835287779493, 95% confidence interval = (1.9994935248575483, 2.0000735326983503)

Question 2

M	Im-hat	Im		Ratio of width of intervals
1000 10000	1.99703883 1.9993787	1.99321038 2.00643207	 [1.90262461,2.09694244] [1.97152457,2.02804248] [1.991072,2.00849506] [1.99704475,2.00252231]	8.66313318 9.3926226

Ratio of width of interval = $\frac{Width\ of\ 95\%\ CI\ using\ simple\ monte\ carlo}{Width\ of\ 95\%\ CI\ using\ antithetic\ method}$ Actual value of I = $\int_0^1 e^{\sqrt{x}}\ dx = 2$

As value of M increases, \hat{I}_M and I_M both gets closer to actual value of I. For same value of M, \hat{I}_M is closer to I than I_M for all M except for M = 100. For M = 100, it is just luck due to small sample space.

Width of confidence intervals in antithetic method are smaller as compared to simple monte carlo and this ratio increases with increase in M.