

Vorlesung "Logik"

10-201-2108-1

11. PL1 – Prädikatenlogische Resolution

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

03. Juli 2025 Leipzig

In der letzten Vorlesung

Grundresolution
Allgemeine Substitution
Unifikation
Einführung Prädikatenlogische Resolvente

Fahrplan für diese Vorlesung

Prädikatenlogische Resolvente Lifting-Lemma Resolutionssatz

Definition

Substitution $\sigma: V \to \mathcal{T}$ heißt Variablenumbenennung falls: $\sigma(x) \in \mathcal{V} \setminus V$ für alle $v \in V$, und σ ist injektiv.

Definition

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, \dots, D_m\}$. Eine Klausel R heißt (prädikatenlogische) Resolvente von D_i und D_i (bzw. von ϕ), falls:

1 es existieren Variablenumbenennungen σ_1, σ_2 , so daß:

$$frei(D_i\sigma_1) \cap frei(D_j\sigma_2) = \emptyset$$

- ② es existieren nichtleere $D_i' \subseteq D_i$ und $D_j' \subseteq D_j$ mit σ ist mgu von $\overline{D_i'}\sigma_1 \cup D_j'\sigma_2$, wobei $\overline{D_i'} = \{\overline{L} \mid L \in D_j'\}$ und

Beispiele:

• Sei
$$\phi = \forall x \underbrace{(P(x) \land \neg P(f(f(x))))}_{\varepsilon}$$

•
$$M(\xi) = \{\underbrace{\{P(x)\}}_{D_1}, \underbrace{\{\neg P(f(f(x)))\}\}}_{D_2}\}$$

• Variablenumbennung $\sigma_1 = [x/y]$ und $\sigma_2 = []$ liefert

$$D_1 \sigma_1 = \{ P(y) \} \text{ und } D_2 \sigma_2 = \{ \neg P(f(f(x))) \}$$

• für $D_1' = D_1$ und $D_2' = D_2$ ist $\sigma = [y/f(f(x))]$ mgu von

$$\overline{D_1'}\sigma_1 \cup D_2'\sigma_2 = \{\neg P(y), \neg P(f(f(x)))\}$$

• $R = ((D_i \sigma_1 \setminus D'_i \sigma_1) \cup (D_j \sigma_2 \setminus D'_i \sigma_2)) \sigma = (\emptyset \cup \emptyset) \sigma = \emptyset = \square$

Beispiele:

•
$$M(\xi) = \{\underbrace{\{P(f(x)), P(z), \neg Q(z)\}\}}_{D_1}, \underbrace{\{\neg P(x), R(g(x), a)\}\}}_{D_2}\}$$

• Variablenumbenennung: $\sigma_1 = [], \sigma_2 = [x/y]$ ergibt

$$D_1\sigma_1 = \underbrace{\left\{ P(f(x)), P(z) \right\}}_{D'_1} \cup \left\{ \neg Q(z) \right\},$$

$$D_2\sigma_2 = \underbrace{\left\{ \neg P(y) \right\}}_{D'_2} \cup \left\{ R(g(y), a) \right\}$$

• $\sigma = [z/f(x)][y/f(x)]$ ist mgu von

$$\overline{D_1'}\sigma_1 \cup D_2'\sigma_2 = \{\neg P(f(x)), \neg P(z), \neg P(y)\}$$

• Resolvente
$$R = ((D_1\sigma_1 \setminus D'_1\sigma_1) \cup (D_2\sigma_2 \setminus D'_2\sigma_2)) \sigma$$

 $= (\{\neg Q(z)\} \cup \{R(g(y), a)\}) \sigma$
 $= \{\neg Q(f(x)), R(g(f(x)), a)\}$

 wir übernehmen die Notation aus der AL und schreiben Res für den Resolutionoperator und Res* für die Resolutionshülle, d.h. für prädikatenlogische Klauselmenge M

$$\operatorname{Res}(M) = M \cup \{R \mid R \text{ ist Resolvente zweier Klauseln aus } M\}$$

 $\operatorname{Res}^{0}(M) = M, \operatorname{Res}^{i+1}(M) = \operatorname{Res}(\operatorname{Res}^{i}(M)), \operatorname{Res}^{*}(M) = \bigcup_{i \in \mathbb{N}} \operatorname{Res}^{i}(M)$

- für eine bessere Übersicht eignet sich wieder die graphische Darstellung – diesmal mit Angabe der Variablenumbennung und des Unifikators
- Ziel ist es, den Resolutionssatz für die Prädikatenlogik zu beweisen, das heißt: Klauselmenge M ist unerfüllbar genau dann, wenn □ ∈ Res*(M)

Resolvente - Graphische Darstellung

$$D_{1} = \{ \underbrace{P(f(x)), P(z), \neg Q(z)} \}$$

$$D_{2} = \{ \underbrace{\neg P(x), R(g(x), a)} \}$$

$$\sigma_{1} = []$$

$$\sigma_{2} = [x/y]$$

$$\{ \underbrace{P(f(x)), P(z), \neg Q(z)} \}$$

$$\sigma = [z/f(x)][y/f(x)]$$

$$\{ \neg Q(f(x)), R(g(f(x)), a) \}$$

Anmerkung:

• ohne Variablenumbenennung wäre $\overline{P(f(x))}$ und $\neg P(x)$ nicht unifizierbar, und somit z.B. für

$$\forall x (P(f(x)) \land \neg P(x))$$
 keine \square resolvierbar

Resolvente - Graphische Darstellung

$$D_{1} = \{ \underbrace{P(x), \ Q(x)} \} \qquad D_{2} = \{ \underbrace{\neg P(f(y))} \} \qquad D_{3} = \{ \neg Q(a) \}$$

$$| \sigma_{1} = [] \qquad | \sigma_{2} = []$$

$$\{ P(x), \ Q(x) \} \qquad \{ \neg P(f(y)) \}$$

$$\sigma = [x/f(y)]$$

Anmerkung:

• ohne Anwendung des Unifikators wäre $R = \{Q(x)\}$, und somit im nächsten Schritt mit Hilfe von Klausel D_3 die \square ableitbar, aber

$$\forall x \forall y ((P(x) \lor Q(x)) \land \neg P(f(y)) \land \neg Q(a))$$
 erfüllbar

Grundinstanzen

Definition

Ein Literal L' ist Grundinstanz eines Literals L, falls eine Substitution σ existiert mit: $L' = L\sigma$ und L' variablenfrei.

Beispiel: Gegeben Literal L = P(x, f(x), g(a, y)), dann

$$L' = P(a, f(a), g(a, b))$$
 und $L'' = P(f(c), f(f(c)), g(a, d))$

Grundinstanzen via $\sigma' = [x/a, y/b]$ und $\sigma'' = [x/f(c), y/d]$.

Definition

Eine Klausel M' ist Grundinstanz einer Klausel M, falls eine Substitution σ existiert mit: $M' = M\sigma$ und M' variablenfrei.

Beispiel: Gegeben $M = \{P(x, f(x), g(a, y)), \neg Q(y, z)\}$, dann Klausel $M' = \{P(a, f(a), g(a, b)), \neg Q(b, c)\}$, und Klausel $M'' = \{P(f(c), f(f(c)), g(a, d)), \neg Q(d, e)\}$ Grundinstanzen via $\sigma' = [x/a, y/b, z/c], \sigma'' = [x/f(c), y/d, z/e]$.

Lifting-Lemma

Proposition (Lifting-Lemma)

Seien K_1 und K_2 prädikatenlogische Klauseln und K_1' sowie K_2' entsprechende Grundinstanzen. Falls R' aussagenlogische Resolvente von $\{K_1', K_2'\}$, dann existiert prädikatenlogische Resolvente R von $\{K_1, K_2\}$ mit R' ist Grundinstanz von R.

Lifting-Lemma - Beispiel

Lifting-Lemma

Beweis: Seien K_1 und K_2 prädikatenlogische Klauseln und $K_1' = K_1\sigma_1$ sowie $K_2' = K_2\sigma_2$ entsprechende Grundinstanzen. Offensichtlich existieren Variablenumbennungen u_1 und u_2 , so daß $frei(K_1u_1) \cap frei(K_2u_2) = \emptyset$. Es gilt, daß auch K_1' und K_2' Grundinstanzen von K_1u_1 bzw. K_2u_2 sind. Setze dazu $\sigma_1' = u_1^{-1}\sigma_1$ und $\sigma_2' = u_2^{-1}\sigma_2$, d.h.

$$K_1' = (K_1 u_1) \sigma_1'$$
 und $K_2' = (K_2 u_2) \sigma_2'$.

Da K_1u_1 und K_2u_2 variablendisjunkt gilt mit $\sigma' = \sigma'_1\sigma'_2$ auch:

$$K_1' = (K_1 u_1) \sigma'$$
 und $K_2' = (K_2 u_2) \sigma'$.

Nach Voraussetzung ist R' aussagenlogische Resolvente von K'_1 und K'_2 . Somit existiert Literal L mit $L \in K'_1$ und $\overline{L} \in K'_2$, so daß:

$$R' = \left(K_1' \setminus \{L\}\right) \cup \left(K_2' \setminus \{\overline{L}\}\right).$$

Nach Definition existiert mindestens ein $Lit \in K_1u_1$ mit $Lit\sigma' = L$. Sammle alle auf via $\{L_1, \ldots, L_m\} = \{Lit \in K_1u_1 \mid Lit\sigma' = L\}$ und analog für \overline{L} mittels $\{L'_1, \ldots, L'_n\} = \{Lit' \in K_2u_2 \mid Lit'\sigma' = \overline{L}\}$.

Lifting-Lemma

Folglich ist σ' Unifikator für $M = \{L_1, \ldots, L_m, \overline{L_1'}, \ldots, \overline{L_n'}\}$. Sei σ mgu von M. Dann ist

$$R = ((K_1 u_1 \setminus \{L_1, \dots, L_m\}) \cup (K_2 u_2 \setminus \{L'_1, \dots, L'_n\})) \sigma$$

prädikatenlogische Resolvente von K_1 und K_2 . Da σ mgu existiert Substitution τ mit $\sigma \tau = \sigma'$. Wir rechnen:

$$R' = (K'_1 \setminus \{L\}) \cup (K'_2 \setminus \{\overline{L}\})$$

$$= ((K_1 u_1)\sigma' \setminus \{L\}) \cup ((K_2 u_2)\sigma' \setminus \{\overline{L}\})$$

$$= ((K_1 u_1)\sigma' \setminus \{L_1\sigma', \dots, L_m\sigma'\}) \cup ((K_2 u_2)\sigma' \setminus \{L'_1\sigma', \dots, L'_n\sigma'\})$$

$$= ((K_1 u_1 \setminus \{L_1, \dots, L_m\}) \cup (K_2 u_2 \setminus \{L'_1, \dots, L'_n\}))\sigma' \qquad \text{(alle Lit!)}$$

$$= ((K_1 u_1 \setminus \{L_1, \dots, L_m\}) \cup (K_2 u_2 \setminus \{L'_1, \dots, L'_n\}))\sigma\tau$$

$$= (((K_1 u_1 \setminus \{L_1, \dots, L_m\}) \cup (K_2 u_2 \setminus \{L'_1, \dots, L'_n\}))\sigma)\tau$$

$$= R\tau$$

Theorem (Robinson, 1965)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, \ldots, D_l\}$. Es gilt:

$$\phi$$
 unerfüllbar gdw. $\square \in \operatorname{Res}^*(M(\xi))$

Beweis: (\Leftarrow) Korrektheit. Für ψ sei $\forall \psi$ der universelle Abschluß von ψ . Aufgrund der Distributivität gilt $\phi = \bigwedge_{k=1}^{l} \forall D_k$. Wir zeigen zuerst: Falls R Resolvente zweier Klauseln D_i und D_i , dann $\forall D_i \land \forall D_i \models \forall R \text{ (prädikatenlogisches Resolutionslemma)}.$

Sei
$$(\mathfrak{A},\beta)$$
 Interpretation mit $(\mathfrak{A},\beta)(\forall D_i) = (\mathfrak{A},\beta)(\forall D_j) = 1$. Sei $R = ((D_i\sigma_1 \setminus \{L_1,\ldots,L_m\}) \cup (D_i\sigma_2 \setminus \{L'_1,\ldots,L'_n\}))\sigma$

$$\supseteq ((D_{i}\sigma_{1})\sigma \setminus \{L_{1}\sigma, \ldots, L_{m}\sigma\}) \cup ((D_{i}\sigma_{2})\sigma \setminus \{L'_{1}\sigma, \ldots, L'_{n}\sigma\})$$

(nicht zwangsweise ausschöpfend)

$$= (D_{i}\sigma_{1}\sigma \setminus \{L\}) \cup (D_{j}\sigma_{2}\sigma \setminus \{\overline{L}\})$$
 mit σ_{1} , σ_{2} Variablenumb. und σ mgu für $\{L_{1}, \ldots, L_{m}, \overline{L'_{1}}, \ldots, \overline{L'_{n}}\}$ und $L = L_{1}\sigma = \ldots = L_{m}\sigma = \overline{L'_{1}}\sigma = \ldots = \overline{L'_{n}}\sigma$.

Theorem (Robinson, 1965)

Sei $\phi = \forall x_1 ... \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, ..., D_l\}$. Es gilt:

 ϕ unerfüllbar gdw. $\square \in \operatorname{Res}^*(M(\xi))$

Beweis: (\Leftarrow) Korrektheit. Zz. Falls R Resolvente von D_i und D_j , dann $\forall D_i \land \forall D_j \models \forall R$. Angenommen $(\mathfrak{A}, \beta)(\forall R) = 0$, d.h. es existieren $u_1, \ldots, u_n \in U^{\mathfrak{A}}$ mit $(\mathfrak{A}, \underbrace{\beta_{[x_1 \mapsto u_1, \ldots, x_n \mapsto u_n]}})(R) = 0$ wobei

 $\{x_1,\ldots,x_n\} = \mathit{frei}(R) \; (\mathsf{Semantik}). \; \mathsf{Somit} \; (\mathfrak{A},\beta')(D_i\sigma_1\sigma \smallsetminus \{L\}) = 0 \\ \mathsf{und} \; \mathsf{auch} \; (\mathfrak{A},\beta')(D_j\sigma_2\sigma \smallsetminus \{\overline{L}\}) = 0 \; (\mathsf{Disjunktion}). \; \mathsf{Aus} \; \mathsf{Annahme} \\ (\mathfrak{A},\beta)(\forall D_i) = (\mathfrak{A},\beta)(\forall D_j) = 1 \; \mathsf{folgt} \; (\mathfrak{A},\beta')(D_i\sigma_1\sigma) = 1 \; \mathsf{und} \\ (\mathfrak{A},\beta')(D_j\sigma_2\sigma\}) = 1. \; \mathsf{Folglich} \; \mathsf{m\"uBte} \; (\mathfrak{A},\beta')(L) = (\mathfrak{A},\beta')(\overline{L}) = 1. \\ \mathsf{Widerspruch}.$

Theorem (Robinson, 1965)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, \dots, D_l\}$. Es gilt:

$$\phi$$
 unerfüllbar gdw . $\square \in \text{Res}^*(M(\xi))$

Beweis: (\Leftarrow) Korrektheit. Es gilt: Falls R Resolvente zweier Klauseln D_i und D_j , dann $\forall D_i \land \forall D_j \models \forall R$.

Sei $\square \in \text{Res}^*(M(\xi))$. Somit existiert eine endliche \square -Deduktion basierend auf den Anfangsklauseln D_1, \ldots, D_l . Folglich ergibt das obige prädikatenlogische Resolutionslemma

$$\bigwedge_{k=1}^{l} \forall D_k \vDash \forall \Box$$

Da
$$\phi = \bigwedge_{k=1}^{l} \forall D_k \text{ und } \forall \Box = \Box \text{ da } frei(\Box) = \emptyset \text{ folgt}$$

$$\phi \vDash \Box$$

und somit ϕ unerfüllbar.

Theorem (Robinson, 1965)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, \dots, D_l\}$. Es gilt:

$$\phi$$
 unerfüllbar gdw . $\square \in \operatorname{Res}^*(M(\xi))$

Beweis: (\Rightarrow) Vollständigkeit. Sei ϕ unerfüllbar. Aufgrund der Vollständigkeit des Grundresolutionsalgorithmus existiert eine Folge von Klauseln K'_1, \ldots, K'_k mit $K'_k = \square$ und für $1 \le i \le k$ gilt:

• K'_i ist Grundinstanz einer Klausel $D \in M(\xi)$, d.h.

$$K'_{i} = D[x_{1}/t_{1}] \dots [x_{n}/t_{n}] \text{ mit } t_{1}, \dots, t_{n} \in D(\phi), \text{ oder } t_{i} = t_{i}$$

K_i' ist aussagenlogische Resolvente zweier Klauseln K_a' und K_b' mit a, b < i

Wir konstruieren prädikatenlogische Klauseln K_i , so daß K'_i Grundinstanz von K_i und die korrespondierende Folge K_1, \ldots, K_k prädikatenlogische \square -Deduktion ist.

Theorem (Robinson, 1965)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF mit Matrix ξ in KNF und $M(\xi) = \{D_1, \dots, D_l\}$. Es gilt: ϕ unerfüllbar gdw. $\Box \in \text{Res}^*(M(\xi))$

Beweis: (\Rightarrow) Vollständigkeit. Seien K_1, \dots, K_{i-1} schon konstruiert. Zwei Fälle:

- Falls K'_i Grundinstanz von Klausel $D \in M(\xi)$, dann $K_i := D$
- Falls nicht, dann ist K_i' aussagenlogische Resolvente zweier Klauseln K_a' und K_b' mit a, b < i. Da K_1, \ldots, K_{i-1} schon konstruiert, existieren prädikatenlogische Klauseln K_a und K_b mit a, b < i, so daß K_a' und K_b' Grundinstanzen von K_a bzw. K_b . Nach Lifting-Lemma existiert prädikatenlogische Resolvente K_i von K_a und K_b mit K_i' ist Grundinstanz von K_i .

Resolution – Schlußbemerkungen

Praktische Probleme bei der Resolventenbildung:

- zu viele Wahlmöglichkeiten (Disjunktionsglieder, Literale)
- zu viele nutzlose Klauseln (Redundanz, Sackgassen)
- kombinatorische Explosion des Suchraums (unendlich viele Resolventen bildbar)

Strategien und Heuristiken zur Effizienzsteigerung:

- Verbot bestimmter Schritte (P/N-restriktion)
- Priorisierung bestimmter Schritte (Einheitsklauseln)
- Achtung! Vollständigkeit darf nicht verloren gehen

Vorlesung "Logik"

10-201-2108-1

11. PL1 – Prädikatenlogische Resolution

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

03. Juli 2025 Leipzig

