Universidade de Aveiro Departamento de Matemática

Cálculo II — Agrupamento IV

2017/2018

FICHA DE EXERCÍCIOS 1 SÉRIES DE POTÊNCIAS E FÓRMULA DE TAYLOR

1. Determine o domínio de convergência das seguintes séries de potências, indicando os pontos onde a convergência é simples ou absoluta.

(a)
$$\sum_{n=1}^{\infty} n(n+1)x^n$$
; (b) $\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$; (c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$;

(b)
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{2n+4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n ;$$

(d)
$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{2n+4}$$
; (e) $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$; (f) $\sum_{n=2}^{\infty} \frac{n!(x-2)^n}{n-1}$;

(g)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} (x+2)^n$$
; (h) $\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$; (i) $\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$;

(h)
$$\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$$

(i)
$$\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$$
; (k) $\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$; (l) $\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$.

(k)
$$\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$$

(1)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$$

2. Mostre que:

- (a) se $\sum_{n=0}^{\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, então também é absolutamente convergente no outro extremo;
- (b) se o domínio de convergência de $\sum_{n=0}^{+\infty} a_n x^n$ é] -r,r], então a série é simplesmente convergente em x = r.

3. Determine os polinómios de Taylor seguintes:

- (a) $T_0^3(x^3+2x+1)$;
- (b) $T_{\pi}^{3}(\cos x);$
- (c) $T_1^3(xe^x)$;
- (d) $T_0^5(\sin x)$;
- (e) $T_0^6(\sin x)$;
- (f) $T_1^n(\ln x) \quad (n \in \mathbb{N}).$

4. Considere $f(x) = e^x$.

- (a) Escreva a fórmula de MacLaurin de ordem n da função f.
- (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo] – 1,0[, com erro inferior a $\frac{1}{(n+1)!}$
- (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro cometido nessa aproximação.

- 5. Usando o resto de Lagrange, determine um majorante para o erro cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 em torno do ponto $a=\pi$.
- 6. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1,1], com erro inferior a $\frac{1}{2} \times 10^{-4}$.
- 7. (a) Obtenha o polinómio de Taylor de ordem $n \in \mathbb{N}$ da função $f(x) = \frac{1}{x}$ no ponto c = 1.
 - (b) Determine um valor de n para o qual se garanta que o polinómio $T_1^n\left(\frac{1}{x}\right)$, obtido na alínea anterior, aproxime $\frac{1}{x}$ no intervalo [0.9, 1.1], com erro inferior a 10^{-3} .
- 8. Determine o menor valor de n tal que o polinómio de MacLaurin de ordem n da função $f(x) = e^x$ aproxime f(1) com erro inferior a 10^{-3} .
- 9. Mostre, usando a fórmula de Taylor, que $\ln(1+x) \le x$, para todo x > -1.
- 10. Considere a representação em série de potências da função $\frac{1}{1-x}$ dada por

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad -1 < x < 1.$$

Determine uma representação em série de potências para cada uma das seguintes funções (indicando o intervalo onde tal é válida):

(a)
$$\frac{1}{1-3x}$$
; (b) $\frac{2}{2+x}$; (c) $\frac{1}{x}$.

11. Desenvolva a função $f(x) = \frac{1}{x+1}$ em série de potências de x-3, indicando o maior intervalo onde o desenvolvimento é válido.

Soluções

- 1. (a)]-1,1[, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (b) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (c)]-1,1], sendo simplesmente convergente em x=1 e absolutamente convergente nos restantes pontos.
 - (d) [1, 2[, sendo simplesmente convergente em x = 1 e absolutamente convergente nos restantes pontos.
 - (e) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (f) {2}, sendo absolutamente convergente nesse ponto.
 - (g) [-3, -1[, sendo simplesmente convergente em x = -3 e absolutamente convergente nos restantes pontos.
 - (h) $\left[-\frac{1}{3},\frac{1}{3}\right]$, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (i) [-1,1[, sendo simplesmente convergente em x=-1 e absolutamente convergente nos restantes pontos.
 - (j) $]-\frac{4}{3},\frac{8}{3}]$, sendo simplesmente convergente em $x=\frac{8}{3}$ e absolutamente convergente nos restantes pontos.
 - (k)]0,4[, sendo absolutamente convergente em todos os pontos desse intervalo.

- (l) $]-\frac{1}{2},\frac{1}{2}]$, sendo simplesmente convergente em $x=\frac{1}{2}$ e absolutamente convergente nos restantes pontos.
- 2. —
- 3. (a) $T_0^3(x^3 + 2x + 1) = x^3 + 2x + 1$
 - (b) $T_{\pi}^{3}(\cos x) = -1 + \frac{(x-\pi)^{2}}{2}$
 - (c) $T_1^3(xe^x) = e + 2e(x-1) + \frac{3}{2}e(x-1)^2 + \frac{2}{2}e(x-1)^3$
 - (d) $T_0^5(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (e) $T_0^6(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (f) $T_1^n(\ln x) = (x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + \frac{(-1)^{n-1}}{n}(x-1)^n$.
- 4. (a) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$, para algum θ entre $0 \in x$.
 - (b) —
 - (c) Por exemplo, $\frac{1}{\sqrt{e}} \simeq T_0^2 f(-\frac{1}{2}) = 1 \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$, com erro inferior a $\frac{1}{6}$.
- 5. $|R_5(3)| \leq \frac{(3-\pi)^6}{6!}$
- 6. —
- 7. (a) $T_1^n\left(\frac{1}{x}\right) = 1 (x-1) + (x-1)^2 + \dots + (-1)^n(x-1)^n$, $n \in \mathbb{N}$.
 - (b) n = 3 (ou outro superior a este).
- 8. n = 6.
- 9. —
- 10. (a) $\sum_{n=0}^{\infty} 3^n x^n$, para $-\frac{1}{3} < x < \frac{1}{3}$;
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$, para -2 < x < 2;
 - (c) $\sum_{n=0}^{\infty} (-1)^n (x-1)^n$, para 0 < x < 2.
- 11. $\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n$, $x \in]-1,7[$.