Datatähti 2020 alku

	task	type	time limit	memory limit
Α	Ruudukko	standard	1.00 s	512 MB
В	Merkkijonot	standard	1.00 s	512 MB
С	Lukuvälit	standard	1.00 s	512 MB
D	Mastot	standard	1.00 s	512 MB
Ε	Ketjupeli	output only	N/A	N/A

A Ruudukko

Tehtäväsi on tulostaa $n \times n$ -kokoinen ruudukko, jonka jokaisessa ruudussa on pienin positiivinen kokonaisluku, jota ei esiinny samalla rivillä vasemmalla eikä samassa sarakkeessa ylempänä.

Syöte

Syötteen ainoalla rivillä on kokonaisluku n.

Tuloste

Tulosta haluttu ruudukko esimerkin mukaisesti.

Esimerkki

Syöte:

4

Tuloste:

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Arvostelu

Voit olettaa, että $1 \le n \le 100$. Saat tehtävästä 100 pistettä, jos koodisi toimii oikein kaikissa testeissä.

B Merkkijonot

Merkkijonot A ja B ovat harmoniset, jos ne ovat yhtä pitkät ja seuraavat ehdot pätevät kaikissa kohdissa:

- 1. Jos A:n kahdessa kohdassa on sama merkki, niin myös B:n vastaavissa kohdissa on sama merkki.
- 2. Jos A:n kahdessa kohdassa on eri merkki, niin myös B:n vastaavissa kohdissa on eri merkki.

Sinulle annetaan lista, jossa on n merkkijonoa, ja tehtäväsi on laskea harmonisten merkkijonoparien määrä.

Syöte

Syötteen ensimmäisellä rivillä on kokonaisluku n: merkkijonojen määrä.

Tämän jälkeen syötteessä on n riviä, joista jokaisella on yksi merkkijono. Jokainen merkkijono muodostuu merkeistä A-Z ja siinä on enintään 50 merkkiä.

Tuloste

Tulosta yksi kokonaisluku: harmonisten merkkijonoparien määrä.

Esimerkki

Syöte:

6

AAB

ABKA

SSG

TSGT ZZZZ

KEAK

Tuloste:

4

Selitys: Harmoniset parit ovat (AAB, SSG), (ABKA, TSGT), (ABKA, KEAK) ja (TSGT, KEAK).

Osatehtävä 1 (15 pistettä)

• 1 < n < 20

Osatehtävä 2 (31 pistettä)

• 1 < n < 5000

Osatehtävä 3 (54 pistettä)

• $1 \le n \le 10^5$

Lukuvälit C

Sinulle annetaan joukko lukuvälejä ja tehtäväsi on määrittää jokaisesta, monessako välin kokonaisluvussa jokainen numero on 0 tai 1.

Syöte

Ensimmäisellä rivillä on yksi kokonaisluku n: lukuvälien määrä.

Tämän jälkeen syötteessä on n riviä, joista kullakin on kaksi kokonaislukua a ja b: tutkittavana on lukuväli [a, b].

Tuloste

Tulosta jokaisen kyselyn vastaus omalle rivilleen.

Esimerkki

Syöte:

0 10

11 11

Tuloste:

1 0

1

Selitys: Esimerkiksi välillä [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0, 10] on kolme halutunlaista lukua: [0, 1] ja [0,

Osatehtävä 1 (12 pistettä)

- $\begin{array}{l} \bullet \ 1 \leq n \leq 1000 \\ \bullet \ 0 \leq a \leq b \leq 1000 \end{array}$

Osatehtävä 2 (24 pistettä)

- $1 \le n \le 10^5$
- $0 < a < b < 10^5$

Osatehtävä 3 (64 pistettä)

- $1 \le n \le 10^5$ $0 \le a \le b \le 10^{18}$

D Mastot

Haluat muodostaa radioyhteyden etäisyyden n päässä olevaan vastaanottimeen. Radiolähettimesi kantama ei kuitenkaan välttämättä riitä, ja voit joutua välittämään signaalin mastojen kautta.

Lähettimen ja vastaanottimen välissä on tasavälein n-1 mastoa etäisyyksillä $1,2,\ldots,n-1$ lähettimestä. Mastot lähettävät edelleen vastaanottamansa signaalit. Lähettimellä ja kullakin mastolla on kantama d_i , joka kuvaa molempiin suuntiin suurinta etäisyyttä, jolla kyseisestä paikasta lähetetyn signaalin voi vastaanottaa.

Kaikki mastot ovat kuitenkin epäkunnossa, ja maston i korjaamisen hinta on c_i .

Mikä on pienin kokonaishinta, jolla saat vastaanottimeen yhteyden?

Syöte

Ensimmäisellä rivillä on yksi kokonaisluku n: vastaanottimen etäisyys.

Toisella rivillä on n kokonaislukua d_0,d_1,\ldots,d_{n-1} : lähettimen kantama ja mastojen kantamat.

Kolmannella rivillä on n-1 kokonaislukua c_1, \ldots, c_{n-1} : mastojen korjauksien hinnat.

Tuloste

Tulosta yksi kokonaisluku: pienin mahdollinen kokonaishinta.

Esimerkki

Syöte:

6

2 2 3 1 2 4

4 1 3 4 2

Tuloste:

3

Selitys: Optimaalinen ratkaisu on korjata mastot etäisyyksillä 2 ja 5.

Kaikissa osatehtävissä pätee $1 < d_i < n$ ja $1 < c_i < 10^9$.

Osatehtävä 1 (11 pistettä)

• 2 < n < 20

Osatehtävä 2 (34 pistettä)

• 2 < n < 5000

Osatehtävä 3 (55 pistettä)

• $2 < n < 2 \cdot 10^5$

E Ketjupeli

Tarkastellaan peliä, jonka alkutilanteessa ruudukossa on palloja seuraavassa kuviossa:

Ruudukko on äärettömän kokoinen, ja jokaisella ruudulla on koordinaatit muotoa (x,y). Ruudut on numeroitu niin, että yllä olevassa kuvassa vasemman ylänurkan koordinaatit ovat (-5,-5) ja oikean alanurkan koordinaatit ovat (6,6).

Jokainen pelin siirto muodostuu seuraavasti:

- Lisäät yhden pallon ruutuun, jossa ei ole vielä palloa.
- Muodostat ketjun viidestä vierekkäin olevasta pallosta, joista yksi on tämän siirron alussa lisätty. Ketju voi olla vaaka-, pysty- tai vinosuuntainen (45° kulmassa).

Rajoituksena on, että ketjua ei voi muodostaa, jos sen osana on kaksi vierekkäistä palloa, jotka on jo ketjutettu toisiinsa.

Tehtäväsi on etsiä mahdollisimman pitkä siirtosarja.

Esimerkki

Tässä on esimerkkinä siirtosarja, jossa on kolme siirtoa:

Palautus

Tässä tehtävässä sinun tulee palauttaa tekstitiedosto, jossa on kuvaus siirroista. Tiedoston ensimmäisellä rivillä on luku k: siirtojen määrä. Tämän jälkeen tiedostossa on k riviä, jotka kuvaavat siirrot. Jokaisella rivillä on neljä lukua x_1 , y_1 , x_2 ja y_2 : muodostetun ketjun päissä olevien pallojen koordinaatit.

Esimerkiksi seuraava kuvaus vastaa äskeistä esimerkkiä:

```
3
-4 -1 0 -1
2 1 2 5
-1 -2 3 2
```

Saat tehtävästä $\min(100, \lfloor k/2 \rfloor)$ pistettä, kun lähetät kelvollisen ratkaisun, jossa $k \geq 4.$