

Sciences physiques

Classe: 4^{ème} Maths

Exercices (Révision Bac)
Cinétique Chimique- RC-RLC

Nom du prof: Mr: Klai Amor

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Exercice 1:

(5) **4**0 min

 $m{O}$ n étudie la cinétique de la réaction totale d'oxydation des ions I^- par les ions $S_2O_8^{2^-}$ modélisée par l'équation suivante : $2\ I^- + S_2O_8^{2^-} \rightarrow I_2 + 2SO_4^{2^-}$.

A t= 0s, on mélange un volume V d'une solution (S_1) de KI de concentration molaire C_1 avec le même volume V d'une solution (S_2) de $K_2S_2O_8$ de concentration C_2 .

Par une procédure expérimentale convenable, on suit l'évolution des quantités de matière en ion I^- et $S_2O_8^{2-}$ en fonction de l'avancement x de la réaction.

Les résultats expérimentaux ont permis de tracer les courbes (1) et (2) de la figure ci-dessous :

- 1°/a- Dresser le tableau descriptif d'évolution de cette transformation.
 - **b-** Identifier , en le justifiant la courbe qui correspond à l'évolution de la quantité de matière en I^- en fonction de l'avancement x.
- 2°/ En exploitant les courbes (1) et (2) de la figure -1-ci-dessous :
 - **a-** Préciser le réactif limitant et déterminer la valeur de l'avancement final x_f de la réaction .
 - **b-** Déduire les quantités de matière initiales des réactifs I^- et $S_2O_8^{2-}$ notées respectivement n_{01} et n_{02} .

3°/ Sachant que la concentration

en ion I^- à la fin de la réaction est $[I^-]_f$ = 1,25.10⁻²mol.L⁻¹.

- a- Déterminer la valeur du volume V.
- **b-** En déduire les valeurs de C_1 et C_2 .

Physique

- **4°**/Les résultats expérimentaux ont permis aussi de tracer la courbe de la figure-2- qui représente l'évolution de $n(I^-) = f(t)$ dans le mélange.
- **a-** Exprimer la vitesse instantanée de la réaction chimique étudiée en fonction de $n(I^-)$.

b- Déterminer graphiquement la valeur de cette vitesse à l'instant t=0s . **5°/** A l'instant t_1 = 10min on prélève un volume V_p =12cm³ du mélange et on dose I_2 formé par une solution de $Na_2S_2O_3$ de concentration C_0 = 0,02mol.L-¹. La réaction du dosage est symbolisée par : I_2 + $2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$.

- a- Comment repérer le point d'équivalence au cours de ce dosage ?
- **b-** Calculer le volume V_0 de la solution de $Na_2S_2O_3$ nécessaire pour atteindre l'équivalence.

Exercice 2:

50 min

I. On réalise le montage de la figure 1 constitué par un générateur de tension G, supposé idéal de force électromotrice E, un condensateur de capacité C, un commutateur K à deux positions (1) et (2), un conducteur ohmique de résistance $R = 40\Omega$ et une bobine (b) qui peut être soit une bobine purement inductive d'inductance L, soit une bobine d'inductance L et de résistance r non nulle.

1°/ Le condensateur est initialement déchargé. À l'instant t = O, on place le commutateur K sur la position (1). Etablir l'équation différentielle en u_c . Soit $\tau = RC$.

Physique

2°/ Un dispositif d'acquisition de données permet de suivre l'évolution temporelle de la tension u_c , de calculer $\frac{duc}{dt}$ et de tracer la courbe $\frac{duc}{dt}$ = f(uc) donnée par la figure 2.

a-En exploitant la courbe de la figure 2, déterminer la valeur de la constante de temps τ et celle de la fem E.

 ${f b}$ - Déduire la valeur de la capacité ${\cal C}$ du condensateur.

 3° / On bascule le commutateur K vers la position (2) à un instant pris comme nouvelle origine des temps.

Le dispositif d'acquisition de données enregistre alors la courbe de la figure 3 représentant l'évolution temporelle de la tension $u_c(t)$ aux bornes du condensateur.

En exploitant la courbe de la figure 3:

a- justifier que la bobine (b) n'est pas purement inductive ,

b- déterminer la valeur de l'inductance L
 de la bobine sachant que la pseudo-période T

des oscillations électriques libres mises en jeu dans le circuit est pratiquement égale à la période propre T_\circ des oscillations libres non amorties.

.c- déduire la valeur de la résistance interne r de la bobine. On admet que pour des oscillations faiblement amorties $\frac{E(T)}{E(0)} = e^{-\frac{T}{L}T} \quad \text{on a : avec } E(T) \text{ et } E(0) \text{ les}$

énergies totales du circuit respectivement aux instants t_1 = T et t_0 = 0.

II. On réalise maintenant le circuit de la figure 4, comportant en série le condensateur de capacité C initialement déchargé, le conducteur ohmique de résistance R, la bobine d'inductance L et de résistance interne que l'on considèrera égale à $r = \frac{R}{4}$, un interrupteur K' et

Figure 4

un générateur de basses fréquences (GBF) délivrant une tension sinusoïdale d'amplitude Um constante et de fréquence N réglable.

Physique

On règle la fréquence du GBF à une valeur N_1 = 266,7 Hz, on ferme l'interrupteur K' et à l'aide d'un oscilloscope bicourbe on visualise simultanément sur l'une de ses voies la tension $u_R(t)$ aux bornes du conducteur ohmique et sur l'autre la tension u(t)

aux bornes du GBF. On obtient alors les oscillogrammes de la figure 5.

- **b-** déterminer l'amplitude U_{Rm} de $u_R(t)$ et déduire l'intensité efficace I_1 du courant dans le circuit.
- c- déterminer la valeur du déphasage entre la tension u(t) et l'intensité i(t) du courant dans le circuit et dire si celui-ci est capacitif, inductif ou résistif.
- $2^{\circ}/$ On règle maintenant la fréquence du GBF à une valeur N_2 = 159,0 Hz, tout en gardant la même valeur de l'amplitude U_m que précédemment. On branche également deux voltmètres (V) et (V') respectivement aux bornes du conducteur ohmique et aux bornes de l'ensemble {bobine + condensateur}. On constate alors que la tension efficace aux bornes du conducteur ohmique est égale à quatre (4) fois celle aux bornes de l'ensemble {bobine + condensateur}.
 - a- Montrer qu'à la fréquence N2, le circuit est en état de résonance d'intensité.
 - **b-** Écrire une relation simple entre L, C et N_2 .
 - c- retrouver les valeurs de L et C.

