

ITED STATES PATENT AND TRADEMA

Dale E. Yelton and Mae Joanne Rosok Applicant:

Docket: 30436.46USU1

Title: A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY

RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO

DIAGNOSIS

CERTIFICATE UNDER 37 CFR 1.10

'Express Mail' mailing label number: EM297040805US

Date of Deposit: August 1, 1997

I hereby certify that this paper or fee is being deposited with the United States Postal Service Express Mail Post Office To Addressee' service under 37 CFR 1.10 and is addressed to the Assistant Commissioner for Patents, Washington, Adian

D.C. 20231.

Name: Sarah B. Adriano

BOX PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

We are transmitting herewith the attached:

- ☐ Transmittal sheet, in duplicate, containing Certificate under 37 CFR 1.10.
- ☐ Utility Patent Application: Spec. 77 pgs; 52 claims; Abstract 1 pgs. The fee has been calculated as shown below in the "Claims as Filed" table.
- The U.S. Patent Office is hereby authorized to charge the filing fee of \$2,854.00 to Deposit Account No. 13-2724. Please charge any additional fees or credit overpayment to Deposit Account No. 13-2724. A duplicate of this sheet is enclosed.
- Return postcard

CLAIMS AS FILED

Number of Claims Filed	In Excess of:	Number Extra	Rate	Fee
Basic Filing Fee		1-Hill Control of the Control		\$790.00
Total Claims	- James 1997	-	ASSESSMENT OF THE PROPERTY OF	
52	20	= 32	22.00	= \$704.00
Independent Claims				
20	3	= 17	80.00	= \$1360.00
MULTIPLE DEPENDENT CLA	IM FEE			\$0.00
TOTAL FILING FEE				\$2854.00

MERCHANT, GOULD, SMITH, EDELL,

WELTER & SCHMIDT Westwood Gateway II, Suite 400 11150 Santa Monica Blvd. Los Angeles, CA 90025 (310) 445-1140

B Adjian Name: Sarah B. Adriano Reg. No.: 34,470 Initials: SBA/pcv

k:\pros\30436\43usu1\appln\trans.doc

APPLICATION FOR UNITED STATES LETTERS PATENT

To whom it may concern:

Be it known that

Dale E. Yelton and Mae Joanne Rosok

have invented certain new and useful improvements in A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS

of which the following is a full, clear and exact description.

15

A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS

This application is based on United States provisional patent application Serial No. 60/023,033, filed August 2, 1996.

Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to methods for inhibiting or reducing immunoglobulin-induced toxicity resulting from therapy or in vivo diagnosis. Specifically, in lieu of using unmodified antibodies or recombinant binding proteins for in vivo use, the invention provides the use of modified antibodies or recombinant binding proteins which have been structurally altered in the constant domain so that upon administration immunoglobulin-induced toxicity is reduced or inhibited.

25 BACKGROUND OF THE INVENTION

Over the years investigators have attempted to harness the immune system for therapeutic use. Immunoglobulin (Ig) molecules which constitute an important part of the immune system are of great interest because they (1) react with a diverse family of ligands, (2) possess different effector functions and (3) are of great biological importance. Despite its potential, a persistent problem with

immunoglobulin immunotherapy has been, among other problems, the toxic effect to normal cells of using antibodies which recognize both normal and diseased cells. This problem is far-reaching because the majority of antibodies presently available recognize a target located on both normal and diseased cells (Slavin-Chiorini, et al., Int. J. Cancer 53: 97-103 (1993)).

The constant region can promote cell death through antibody dependent cell mediated cytotoxicity (ADCC) or by complement dependent cytotoxicity (CDC). Despite the deletion of portions of the constant region, particularly the CH₂ domain, the antigen binding function can be retained (D. Yelton, M. Scharf, Mutant monoclonal antibody with alterations in biological functions, J. Exp. Methods 156:1131-1148 (1982)).

Others have generated a CH₂-deleted antibody (Mueller et al., Proc. Natl. Acad. Sci. USA 87: 5702-5705 (1990)). Their findings provide that the CH₂-deleted antibody was cleared from the blood of tumor-bearing mice much faster than the corresponding intact antibody. Other in vivo findings also confirmed that a CH₂-deleted antibody, designated ch14.18DCH2, is a potentially useful reagent for radioimmunodetection of human tumors because of its reduced immunogenicity, increased target specificity, and rapid clearance from circulation (Mueller et al., Proc. Natl. Acad. Sci. USA 87: 5702-5705 (1990).

Generally, whole antibody molecules are composed of two heavy (H) and two light (L) chains which are held together by covalent bonds (disulfide) and non-covalent interactions. Each chain contains a variable region (V) and a constant region (C). The variable regions at the amino termini of the two chains form the antigen binding region. The constant region of the H chain has three components or domains. Occasionally, the first constant region domain (CH₁) interacts with the C region of the L chain through hydrophobic interactions and generally a disulfide bond,

depending on isotype. The next C region stretch is the hinge-acting disulfide bond stably introduced between two H chains. The second constant region domain (CH₂) is adjacent to the hinge region. CH₂ contains sequences important for effector functions of the antibody, such as the sequences responsible for complement fixation, and Fc receptor binding The third constant region domain (CH₃) is located at the carboxyl terminus of the H chain, and is considered to play an important role in H chain assembly as well as some C region functions.

Today many antibodies in clinical trials are directed against tumor associated antigens. Most tumor associated antigens are not tumor specific but are also generally found on the cell surface of some normal, non-tumorigenic cells. The clinical use of some antibodies directed against tumor associated antigens are limited because of the toxicity associated with their use. Therefore, there is a need for methods for inhibiting toxicity associated with immunoglobulin use in the field of disease therapy (e.g., therapy for tumors, kidney disease, and the like) and in vivo diagnosis.

We addressed this need by discovering methods for inhibiting or reducing toxicity to normal cells generally associated with immunoglobulin immunotherapy or in vivo diagnosis, wherein the immunoglobulin recognizes both diseased and normal cells. Our discovery involves generating immunoglobulin molecules or Ig fusion proteins having structurally altered constant regions which inhibit or reduce immunoglobulin-induced toxicity.

5 SUMMARY OF THE INVENTION

The present invention provides methods for inhibiting immunoglobulin-induced toxicity by using known immunoglobulin or Ig fusion protein molecules which are structurally altered in their constant regions so that the resulting structurally altered

immunoglobulin or Ig fusion protein molecules exhibit reduced or inhibited toxicity in vivo compared to their original unmodified counterparts.

Structural alteration of the constant region may be effected in a number of ways as long as it results in reducing or inhibiting immunoglobulin-induced toxicity.

In accordance with the practice of the invention, structural alteration of the constant region is effected by deletion of the entire constant region. In another embodiment, only the CH_2 domain is deleted. In another embodiment, only that portion of the CH_2 domain that binds the Fc receptor is deleted. In yet another embodiment, only that portion of the CH_2 domain that binds the complement component $\mathrm{C1q}$ is deleted. Alternatively, in another embodiment, multiple deletions in discrete Fc receptor and complement component binding domains are effected.

Alternatively, structural alteration is effected by single or multiple mutations in the CH₂ domain such as amino acid insertions and substitutions. The mutation or mutations must result in inhibiting immunoglobulin-induced toxicity. By way of example, the amino acids in multiple toxicity associated domains in the constant region can be altered so as to render the constant region unable to mediate a ADCC response or activate complement thereby inhibiting immunoglobulin induced toxicity resulting from immunotherapy. Alternatively, multiple amino acids in a single toxicity associated domain in the constant region can be altered.

Further alternatively, structural alteration can be effected by isotype switching resulting in an altered immunoglobulin molecule that either does not induce toxicity or induces some limited toxicity but does not cause a harmful effect. For example, isotype switching can result in the constant region being unable to mediate a CDC or ADCC response or some other activity which mediates toxicity.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a line graph showing plasma clearance in high Le expressing dogs using chimeric BR96 versus constant region mutant of cBR96-2.

5 Figure 2 is a schematic diagram of a plasmid designated pTWD-cJVK.L1 including the chimeric (c)BR96-light chain (SEO ID NO. 11).

Figure 3 is a schematic diagram of a plasmid designated pD16hJ1.L1 including the human (h)BR96-light chain (SEO ID NO. 13). 10

Figure 4 is a schematic diagram of a plasmid, designated pD17-hJm14-dCH2.H1, of hBR96-2A (i.e., human mutant BR96 having the H1, H2, and H3 mutations and the CH₂ deletion (PCT Application No. 95/305444, published March 6, 1996)).

15

Figure 5 is a schematic diagram of a plasmid, designated pD17-cJ-dCH2.H1, of cBR96-A (SEQ ID NO. 10) (i.e., chimeric BR96 having the CH2 deletion (PCT Application No. 95/305444, published March 6, 1996)).

20 Figure 6 is a schematic diagram of a plasmid, designated pD17-cJ.H1, of cBR96.

Figure 7 is a line graph showing the results of an ELISA assay of (1) hBR96-2A-Dox to Ley (closed diamond), (2) hBR96-2A to Ley (96:0006A2 R/A)(closed square), (3) hBR96-2A to Le^y (96:0006B R/A)(closed triangle), and BR96-Dox to $Le^{y}(X)$.

25

Figure 8 is a line graph showing the results of an ELISA assay of (1) BR96-A-Dox to Ley (closed diamond), (2) chiBR96 to Ley (closed square), (3) cBR96-A to Ley (96:0003 R/A)(closed triangle), and cBR96-Dox to Ley (X).

25

Figures 9a-c are schematic diagrams showing the steps for deleting a CH2 domain.

Figures 10a-c are schematic diagrams showing the construction of BR96 IgG1 CH₂
5 domain point mutations.

Figure 11 is a schematic diagram showing the construction of the pNg1/14 vector.

Figure 12 is a schematic diagram showing the construction of pD17-hBR96-2.

Figure 13 is a schematic diagram showing the construction of pD17-hJm14-dCH2.H1.

Figure 14 is the nucleic acid sequence of pD17-cJ-dCH2.H1, the plasmid shown in Figure 5, chimeric BR96 having the CH₂ deletion.

Figure 15 is a line graph showing the results of an ELISA assay comparing whole chiBR96 and deleted CH₂ chiBR96 on Le^y.

20 Figure 16 is a description of the seven structural alterations.

Figure 17 is a schematic diagram of a plasmid designated pD17-hG1b.

Figure 18 is the nucleic acid sequence of pD17-hJm14.H1.

Figure 19 is the nucleic acid sequence of pD17-hG1b.

Figure 20 is a line graph showing complement dependent cytotoxicity. In the legend, the closed square is hBR96-1; closed diamond is hBR96-2B; closed circle is

hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H; open circle is hBR96-2A and open triangle is 2B8, anti-*Pseudonomas aeruginosa* flagella type b mAb, negative control.

Figure 21 is a line graph showing antibody dependent cell-mediated cytotoxity. In the legend, the closed square is hBR96-1; closed diamond is hBR96-2B; closed circle is hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H; open circle is hBR96-2A and open triangle is 2B8, anti-Pseudonomas aeruginosa flagella type b monoclonal antibody (mAb), negative control.

10

15

20

Figure 22 is a line graph showing binding activity of hBR96-2 constant region mutants on LeY-HSA. In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH2 deletion); solid triangle is hBR96-2B (235, 237 mutations); open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is hBR96-2H (235, 237, 318, 320, 322, 331 mutations).

Figure 23 is a line graph showing binding activity of hBR96-2 constant region mutants on LNFPIII-BSA. LNFPIII is a lacto-N-fucopentasose, a Lewis X trisaccharide with an additional lactose spacer (V Labs, Covington, LA). In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH2 deletion); solid triangle is hBR96-2B (235, 237 mutations); open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is hBR96-2H (235, 237, 318, 320, 322, 331 mutations).

25

Figures 24A and 24B provide a strategy for introducing multiple mutations by RPCR. (A) Diagram of he 1.4 kpb IgG heavy chain region showing the hinge CH₂ and CH₃ domains as boxed regions. Site-specific mutations to be introduced into CH₂ positions L1, L2, and L3 are encoded by complementary sets of mutant PCR

primers (A1 and A2; B1 and B2; and C1 and C2). The asterisks (*) indicate the number of amino acid changes introduced at each L position. The two PCR primers, Rs (Recombination -sense) and Ra (Recombination-antisense), flank the Eco-47-III restriction sites and mediate homologous recombination with vector ends. The 3' ends of the oligonucleotides are represented by arrowheads. (B) A three-way homologous recombination event between fragments RsA2, A1Ra and the linearized vector produces the L1 mutant IgG. Two distally located sets of mutations (L1 and L2) are simultaneously introduced by increasing the number of recombining PCR produces as is shown in the four-way recombination of RsA2, A1B1, B1Ra with vector.

Figure 25 is a gel showing Eco-47-III restriction endonuclease analysis of DNAs prepared from colonies generated by multiple PCR fragment RPCR. Lane M: 1kb ladder DNA marker (GIBCO/BRL Life Science Technology). Lanes 1-12: Twelve randomly selected colonies resulting from quadruple homologous recombination events were used to prepare plasmid and digested with Eco47-III. Clones 1, 2, 6 and 9 contain the fully assembled 1.4 kpb insert.

Figure 26 provides the amino acid sequence for hBR96-2 heavy-chain variable 20 region and the human IgG1 constant region.

Figure 27 provides the amino acid sequence for hBR96-2A heavy-chain variable region and the human IgG1 constant region.

25 Figure 28 provides the amino acid sequence for chi BR96 heavy-chain variable region and the human IgG1 constant region without the CH₂ domain.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

As used herein the term "inhibiting immunoglobulin-induced toxicity" means to reduce or alleviate symptoms generally associated with toxicity caused by immunoglobulin or Ig fusion protein therapy, e.g., toxicity mediated by effector functions of the Fc receptor. For example, BR96 antibody recognizes and binds BR96 antigen which is found at some levels in the gastrointestinal tract and at elevated levels in tumors (as compared to the gastrointestinal tract of normal tissues). The binding of BR96 antibody to BR96 antigen in vivo causes symptoms associated with gastrointestinal toxicity. These symptoms include rapid onset of vomiting, often with blood, and nausea. In humans the bleeding is limited to the fundus of the stomach, causing erosion of the superficial mucosa of the stomach.

15

The pathology of the wound is limited and resolves. However, the extreme nature of the nausea and vomiting, unrelieved by anti-emetics, defines it as the dose-limiting toxicity. For highly elevated levels of other antigens found in the central nervous system (CNS), liver, and other locations, the toxicity will be characterized by symptoms other than those described above.

20 s

As used herein the term "immunoglobulin molecule" can be produced by B cells or be generated through recombinant engineering or chemical synthetic means.

Examples of immunoglobulin molecules include (1) antibodies, e.g., polyclonal and monoclonal antibodies, chimeric or humanized, and (2) recombinant Ig containing binding proteins, e.g., Ig fusion proteins. Recombinant Ig containing binding proteins include cell surface proteins, e.g., CD antigens (in one embodiment, CTLA4), to which an Ig tail is joined.

20

As used herein the terms "structurally altered" or "structural alteration" means manipulating the constant region so that the resulting molecule or protein exhibits a diminished ability to induce toxicity. Structural alteration can be by chemical modification, proteolytic alteration, or by recombinant genetic means. Recombinant genetic means may include, but is not limited to, the deletion, insertion and substitution of amino acid moieties.

As used herein the terms "multiple toxicity associated domains" means more than one discrete toxicity associated domain. As there appear to be at least two toxicity associated domains in the immunoglobulin molecule, one roughly localized to amino acids 231-238 and another roughly localized to amino acids 310-331, an example of the structural alteration of multiple toxicity associated domains comprises the insertion, substitution or deletion of amino acid residues in both of these domains. This definition excludes structural alterations targeting a single toxicity associated domain

Merely by way of example, the constant region of the immunoglobulin molecule can be structurally altered so that the molecule no longer mediates a CDC or ADCC response. However, the methods of the invention encompasses the use of structurally altered immunoglobulin molecules regardless of whether it mediates a CDC or ADCC response. The underlying requirement is that the altered molecule must inhibit immunoglobulin-induced toxicity.

Structural alteration can be effected in a number of ways. For example, structural
25 alteration can be effected by deletion of the entire constant region.

Alternatively, structural alteration can be effected by deletion of the entire CH₂ domain of the constant region. In this instance, deletion of the entire CH₂ domain may render the molecule unable to (1) bind an Fc receptor thereby eliminating the molecule's possibility of mediating antibody-dependent cellular cytotoxicity (ADCC), (2) bind C1q, or (3) activate complement.

Alternatively, structural alteration can be effected by deletion of only that portion of 5 the CH₂ domain that binds the Fc receptor or complement.

Further alternatively, a single mutation or multiple mutations such as substitutions and insertions in the CH_2 domain can be made. The underlying requirement of any mutation is that it must inhibit, diminish, or block immunoglobulin-induced toxicity.

10 For example, this can be achieved by mutating the constant region such that the altered molecule is rendered unable to mediate a CDC response or an ADCC response, or to activate complement.

Alternatively, structural alteration can be effected by isotype switching (also known as class switching) so that the altered molecule does not induce toxicity in the subject. In one embodiment, the constant region of the immunoglobulin is structurally altered so that it no longer binds the Fc receptor or a complement component, e.g., switching a molecule's original IgG isotype from IgG1 to IgG4. Isotype switching can be effected regardless of species, i.e., an isotype from a non-human being can be switched with an isotype from a human being (E.D. Finkelman et al. (1990) Annu. Rev. Immunol. 8:303-333; T. Honjo et al. (1979) Cell 18: 559-568; T. Honjo et al. In "Immunoglobulin Genes" pp. 124-149 Academic Press, London)).

25 As used herein the term "Ig fusion protein" means any recombinantly produced antigen or ligand binding domain having a constant region which can be structurally altered. As used herein "cytotoxic agent" includes antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, and chemotherapeutic agents. Specific examples within these groups include but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, supporin, gelonin, PE40, bryodin, dihydroxy anthracin dione, actinomycin D, and 1-dehydrotestosterone.

As used herein the term "BR96" refers to (1) the whole BR96 monoclonal antibody disclosed in PCT No. 95/305444, published March 6, 1996, (2) chimeric BR96 monoclonal antibody disclosed in PCT No. 95/305444, published March 6, 1996, or (3) BR96 mutant molecules disclosed in PCT No. 95/305444, published March 6, 1996.

As used herein, "treating" means to (1) provide tumor regression so that the tumor is not palpable for a period of time (standard tumor measurement procedures may be followed (A.B. Miller et al. "Reporting results of cancer treatment" Cancer 47:207-214 (1981)); (2) stabilize the disease; or (3) provide any clinically beneficial effects.

As used herein, an "effective amount" is an amount of the antibody, 20 immunoconjugate, or recombinant molecule which kills cells or inhibits the proliferation thereof.

As used herein, "administering" means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular or subcutaneous administration, or the implantation of a slow-release device such as a miniosmotic pump, to the subject.

As used herein, "pharmaceutically acceptable carrier" includes any material which when combined with the antibody retains the antibody's specificity or efficacy and is

25

non-reactive with the subject's immune system. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Other carriers may also include sterile solutions, tablets including 5 coated tablets and capsules.

Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Compositions comprising such carriers are formulated by well known conventional methods.

As used herein, "mutation" means a single amino acid or nucleic acid mutation or multiple mutations by whatever means, e.g., homologous recombination, error prone PCR, or site directed mutagenesis.

In order that the invention herein described may be more fully understood, the following description is set forth.

20 METHODS OF THE PRESENT INVENTION

The present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulin during therapy or in vivo diagnosis. For example, the methods of the invention would be useful to minimize the toxicity associated with prolonged clinical exposure to immunoglobulin use during or after tumor imaging with radiolabeled antibodies.

In accordance with the practice of this invention, the subject includes, but is not limited to, human, equine, porcine, bovine, murine, canine, feline, and avian subjects. Other warm blooded animals are also included in this invention.

This method comprises administering an immunoglobulin molecule to the subject.

The immunoglobulin can be IgG, IgM, or IgA. IgG is preferred.

5

In one embodiment of the invention, the immunoglobulin molecule recognizes and binds Le^x. In another embodiment, the immunoglobulin recognizes and binds Le^x. In a further embodiment, the immunoglobulin is a monoclonal antibody BR96 produced by the hybridoma deposited on February 22, 1989 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: HB 10036. In yet another embodiment, the immunoglobulin is a chimeric antibody ChiBR96 produced by the hybridoma deposited on May 23, 1990, with the ATCC, 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: HB 10460.

15

20

In accordance with the practice of the invention, the immunoglobulin can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC binds. Also, in accordance with the practice of the invention, the immunoglobulin can be an anti-idiotypic antibody.

As required by the invention, at least a portion of the constant region of the immunoglobulin molecule is structurally altered. Structural alteration can be effected by a number of means. In one embodiment, the entire constant region, i.e., CH₁, CH₂, and CH₃ domains, can be deleted.

In another embodiment, only the CH₂ domain is deleted from the immunoglobulin molecule (e.g., cBR96-A (Figure 5), hBR96-2A (Figure 4). In this embodiment, the CH₂ deletion may result in a molecule unable to bind the Fc receptor or a complement component.

In another embodiment, only that portion of the CH₂ domain which binds the complement component C1q is deleted. In yet another embodiment, mutations in specific portions of the CH₂ domain are made. For example, the immunoglobulin molecule may be modified by structurally altering multiple toxicity associated domains in the constant region so that immunoglobulin-induced toxicity is inhibited. A discussion of such mutations are further found hereinafter.

10

15

20

Regardless of the means, the underlying requirement for any structural alteration of the constant region is that immunoglobulin-induced toxicity is substantially reduced or inhibited. In one embodiment, immunoglobulin-induced toxicity is inhibited by structurally altering the constant region such that the molecule's ability to mediate a CDC response or ADCC response and/or activate the complement cascade is prevented or inhibited. Methods for determining whether the molecule is able to inhibit a CDC response are well known, e.g., one method involves a ⁵¹Cr-release test (H. Garrigues et al. Int. J. Cancer 29:511 (1982); I. Hellström et al. PNAS 82:1499 (1985)). Methods for determining whether the molecule is able to inhibit an ADCC response are well known (I. Hellström et al. PNAS 82:1499 (1985)). Methods for determining whether the molecule is able to activate a complement cascade are well known.

In another embodiment of the invention, the method comprises administering to the 5 subject an Ig fusion protein having a structurally altered constant region. Structural alteration of the constant region may include deletion of the entire C region or portions thereof, e.g., alteration of the CH₂ domain so that the altered molecule no longer binds the Fc receptor or a complement component.

20

The invention further provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject. The method comprises administering to the subject an antibody which has been modified so that at least a portion of the constant region has been structurally altered as discussed supra. In one embodiment, the antibody recognizes and binds Le^y. In another embodiment, the antibody recognizes and binds to Le^x.

In accordance with the practice of this invention, the antibody can be monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC. Alternatively, the antibody can be chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC. Further, the antibody can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC binds

Additionally, the present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject. The disease will vary with the antigen sought to be bound. Examples of diseases include but are not limited to immunological diseases, cancer, cardiovascular diseases, neurological diseases, dermatological diseases or kidney disease.

25 This method comprises the following steps. Step one provides selecting an antibody for a target. Generally, the target is associated with the disease and the antibody directed to the target is known. For example, the target can be the BR96 antigen and the antibody selected is BR96.

20

Step two of this method provides structurally altering the constant region of the antibody so selected so that immunoglobulin induced toxicity is inhibited. Inactivation can include any of the means discussed above. For example, inactivation can be effected by structurally altering multiple toxicity associated domains in the CH₂ domain of the constant region of the Ig protein so selected.

Step three of this method provides administering the structurally altered antibody of step two to the subject under conditions that the structurally altered antibody recognizes and binds the target and that such binding directly or indirectly alleviates symptoms associated with the disease.

In accordance with the invention, in one embodiment step one provides selecting an Ig fusion protein for a target. Further, the method provides mutating the Ig fusion protein so selected by structurally altering the CH₂ domain of the constant region of the Ig protein by the same means discussed above.

The invention further provides methods to treat human carcinoma. For example, the immunoglobulin, antibody, or Ig fusion protein discussed above can be used in combination with standard or conventional treatment methods such as chemotherapy, radiation therapy or can be conjugated or linked to a therapeutic drug, or toxin, as well as to a lymphokine or a tumor-inhibitory growth factor, for delivery of the therapeutic agent to the site of the carcinoma.

Techniques for conjugating therapeutic agents to immunoglobulins are well known (see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellström et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In

Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982)).

Alternatively, the structurally altered antibody or Ig fusion protein can be coupled to high-energy radiative agents, e.g., a radioisotope such as ¹³¹I; which, when localized at the tumor site, results in a killing of several cell diameters (see, e.g., Order, "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985)). According to yet another embodiment, the structurally altered BR96 antibody can be conjugated to a second antibody to form an antibody heteroconjugate for the treatment of tumor cells as described by Segal in United States Patent 4.676,980.

Still other therapeutic applications for the structurally altered antibody or Ig fusion protein of the invention include conjugation or linkage, e.g., by recombinant DNA techniques or protein chemical techniques, to an enzyme capable of converting a prodrug into a cytotoxic drug and the use of that antibody-enzyme conjugate in combination with the prodrug to convert the prodrug to a cytotoxic agent at the tumor site (see, e.g., Senter et al., "Anti-Tumor Effects Of Antibody-alkaline Phosphatase", Proc. Natl. Acad. Sci. USA, 85:4842–46 (1988); "Enhancement of the in vitro and in vivo Antitumor Activities of Phosphorylated Mitomycin C and Etoposide Derivatives by Monoclonal Antibody-Alkaline Phosphatase Conjugates", Cancer Research 49:5789-5792 (1989); and Senter, "Activation of Prodrugs by Antibody-Enzyme Conjugates: A New Approach to Cancer Therapy," FASEB J. 4:188-193 (1990)).

It is apparent therefore that the present invention encompasses pharmaceutical compositions including immunoglobulin molecules, antibodies, and Ig fusion proteins all having structurally altered CH₂ domains, and their use in methods for treating human carcinomas. For example, the invention includes pharmaceutical compositions for use in the treatment of human carcinomas comprising a pharmaceutically effective amount of a structurally altered BR96 and a pharmaceutically acceptable carrier.

The compositions may contain the structurally altered antibody or Ig fusion protein

or antibody fragments, either unmodified, conjugated to a therapeutic agent (e.g.,
drug, toxin, enzyme or second antibody). The compositions may additionally include
other antibodies or conjugates for treating carcinomas (e.g., an antibody cocktail).

The compositions of the invention can be administered using conventional modes of
administration including, but not limited to, intrathecal, intravenous, intraperitoneal,
oral, intralymphatic or administration directly into the tumor. Intravenous
administration is preferred.

The composition of the invention can be in a variety of dosage forms which include,

20 but are not limited to, liquid solutions or suspensions, tablets, pills, powders,
suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable
or infusible solutions. The preferred form depends upon the mode of administration
and the therapeutic application.

25 The compositions of the invention also preferably include conventional pharmaceutically acceptable carriers and adjuvants known in the art such as human serum albumin, ion exchangers, alumina, lecithin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, and salts or electrolytes such as protamine sulfate. In accordance with the practice of the invention, the pharmaceutical carrier can be a lipid carrier. The lipid carrier can be a phospholipid. Further, the lipid carrier can be a fatty acid. Also, the lipid carrier can be a detergent. As used herein, a detergent is any substance that alters the surface tension of a liquid, generally lowering it.

In one example of the invention, the detergent can be a nonionic detergent. Examples of nonionic detergents include, but are not limited to, polysorbate 80 (also known as Tween 80 or (polyoxyethylenesorbitan monooleate), Brij, and Triton (for example Triton WR-1339 and Triton A-20).

Alternatively, the detergent can be an ionic detergent. An example of an ionic detergent includes, but is not limited to, alkyltrimethylammonium bromide.

15 Additionally, in accordance with the invention, the lipid carrier can be a liposome. As used in this application, a "liposome" is any membrane bound vesicle which contains any molecules of the invention or combinations thereof.

The most effective mode of administration and dosage regimen for the compositions

20 of this invention depends upon the severity and course of the disease, the patient's

health and response to treatment and the judgment of the treating physician.

The interrelationship of dosages for animals of various sizes and species and humans based on mg/m² of surface area is described by Freireich, E.J., et al. Cancer Chemother., Rep. 50 (4): 219-244 (1966). Adjustments in the dosage regimen can be made to optimize the tumor cell growth inhibiting and killing response, e.g., doses can be divided and administered on a daily basis or the dose reduced proportionally depending upon the situation (e.g., several divided doses can be

administered daily or proportionally reduced depending on the specific therapeutic situation).

THE MOLECULES OF THE INVENTION

5

10

The present invention provides structurally altered BR96 or BR96 Ig fusion proteins. Structurally altered BR96 antibodies or Ig fusion proteins have the variable region of BR96 and a modified constant region. This modification provides structurally altered BR96 antibodies or Ig fusion proteins with the ability to inhibit immunoglobulin-induced toxicity.

Various embodiments of structurally altered BR96 or BR96 Ig fusion proteins have been made.

- 15 In one embodiment, designated cBR96-A, the entire CH₂ domain of cBR96 was deleted. CBR96-A is expressed by the plasmid having the sequence shown in SEQ. ID. NO. 10. cBR96 is expressed by a plasmid having the sequence in SEQ ID NO. 9.
- 20 In another embodiment, designated hBR96-2A, the entire CH₂ domain of hBR96 was deleted. hBR96-A is expressed by the plasmid having the sequence shown in SEQ. ID. NO. 12. hBR96 is a mutant BR96 having the H1, H2, and H3 mutations described in PCT Application No. 95/305444, published March 6, 1996.
- 25 In yet another embodiment, designated hBR96-2B, the leucine residue located at amino acid position 235 is mutated to alanine. Additionally, the glycine residue located at amino acid position 237 is mutated to alanine. The amino acid position numbering used is described in Kabat et al. Sequences of Proteins of Immunological Interest 5th Edition (1991) United States Department of Health and Human Services.

10

In a further embodiment, designated hBR96-2C, the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the lysine residue located at position 322 is mutated to serine using standard protocols (Alexander R. Duncan and Greg Winter "The binding site for Clq on IgG" Nature 332:738 (1988)).

In another embodiment, designated hBR96-2D, the proline residue at position 331 is mutated to alanine (M-H. Tao et al., "Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation" J. Exp. Med. 178:661-667 (1993); Y. Xu et al., "Residue at position 331 in the IgG1 and IgG4 domains contributes to their differential ability to bind and activate complement" J. Biol. Chem. 269:3469-3474 (1994)).

15 In an additional embodiment, designated hBR96-2E, the leucine residue at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the lysine residue located at position 322 is mutated to serine (A. Morgan et al., "The N-terminal end of the CH₂ domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc(gamma)RI and Fc(gamma)RIII binding" Immunol. 86:319-324 (1995)).

In yet a further embodiment, designated hBR96-2F, the leucine residue located at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; and the proline residue located at position 331 is mutated to alanine.

In yet another embodiment, designated hBR96-2G, the glutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is

mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.

In another embodiment, designated hBR96-2H, the leucine residue located at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.

10

20

Depending on its form, a structurally altered BR96 antibody or fusion protein can be a monofunctional antibody, such as a monoclonal antibody, or bifunctional antibody, such as a bispecific antibody or a heteroantibody. The uses of structurally altered BR96, i.e., as a therapeutic or diagnostic agent, will determine the different forms of structurally altered BR96 which is made.

Several options exists for antibody expression. Immunoexpression libraries can be combined with transfectoma technology, i.e., the genes for the Fab molecules derived from the immunoglobulin gene expression library can be connected to the desired constant-domain exons. These recombinant genes can then be transfected and expressed in a transfectoma that would secrete an antibody molecule.

Once produced, the polypeptides of the invention can be modified, i.e., by amino acid modifications within the molecule, so as to produce derivative molecules. Such derivative molecules would retain the functional property of the polypeptide, namely, the molecule having such substitutions will still permit the binding of the polypeptide to the BR96 antigen or portions thereof.

It is a well-established principle of protein chemistry that certain amino acid

substitutions, entitled "conservative amino acid substitutions," can frequently be made in a protein without altering either the conformation or the function of the protein.

5 Amino acid substitutions include, but are not necessarily limited to, amino acid substitutions known in the art as "conservative".

Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid

(E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa.

Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine and valine (V).

Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments.

25 In one embodiment of the present invention, the polypeptide is substantially pure, i.e., free of other amino acid residues which would inhibit or diminish binding of the polypeptide to its target and would inhibit or reduce gastrointestinal toxicity which are normally exhibited during or after antibody therapy.

NUCLEIC ACID MOLECULES ENCODING THE PRESENT INVENTION

The nucleotide sequences and the amino acid sequences of the variable and constant regions of BR96 are known. The sequence for the immunoglobulin constant region is known and provided in Figure 18. Specific mutations in the constant region of the BR96 antibody were made. Nucleic acid molecules encoding the seven mutants described above (hBR96-2B through hBR96-2H) are as follows.

In hBR96-2B, alanine at amino acid positions 235 and 237 is encoded by codons 10 GCU, GCC, GCA, or GCG.

In hBR96-2C, serine at positions 318, 320, and 322 is encoded by UCU, UCC, UCA, or UGG.

15 In hBR96-2D, alanine at position 331 is encoded by codons GCU, GCC, GCA, or GCG.

In hBR96-2E, alanine at positions 235 and 237 is encoded by codons GCU, GCC, GCA, or GCG. Serine at positions 318, 320, and 322 is encoded by UCU, UCC, UCA, or UGG.

In hBR96-2F, alanine at positions 235, 237, and 331 is encoded by codons GCU, GCC, GCA, or GCG.

25 In hBR96-2G, serine at positions 318, 320, 322 is encoded by UCU, UCC, UCA, or UGG. Further, the alanine at position 331 is encoded by codons GCU, GCC, GCA, or GCG.

In hBR96-2H, alanine at positions 235, 237, and 331 is encoded by codons GCU,

GCC, GCA, or GCG. Additionally, serine at positions 318, 320, 322 is encoded by UCU, UCC, UCA, or UGG.

Any of the above can be deoxyribonucleic acid (DNA), e.g., complementary DNA (cDNA), or ribonucleic acid (RNA).

IMMUNOCONJUGATES

Immunoconjugates (having whole antibody or Ig fusion proteins) may be constructed using a wide variety of chemotherapeutic agents such as folic acid and anthracyclines (Peterson et al., "Transport And Storage Of Anthracyclines In Experimental Systems And Human Leukemia", in Anthracycline Antibiotics In Cancer Therapy, Muggia et al. (Eds.), p. 132 (Martinus Nijhoff Publishers (1982); Smyth et al., "Specific Targeting of Chlorambucil to Tumors With the Use of Monoclonal Antibodies", J. Natl. Cancer Inst., 76:503-510 (1986)), including doxorubicin (DOX) (Yang and Reisfeld "Doxorubicin Conjugated with a Monoclonal Antibody Directed to a Human Melanoma-Associated Proteoglycan Suppresses Growth of Established Tumor xenografts in Nude Mice PNAS (USA)" 85:1189-1193 (1988)), Daunomycin (Arnon and Sela "In Vitro and in vivo Efficacy 20 of Conjugates of Daunomycin With Anti-Tumor Antibodies" Immunol. Rev., 65:5-27 (1982)), and morpholinodoxorubicin (Mueller et al., "Antibody Conjugates With Morpholinodoxorubicin and Acid-Cleavable Linkers", Bioconjugate Chem., 1:325-330 (1990)).

25 BR96 has been conjugated to doxorubicin and has been shown to be effective in therapy of certain cancers or carcinomas (Trail, P.A., Willner, D., Lasch, S.J., Henderson, A.J., Casazza, A.M., Firestone, R.A., Hellström, I., and Hellström, K.E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 261:212-215, 1993).

15

In accordance with the practice of the invention, structurally altered BR96 can be used in forms including unreduced IgG, reduced structurally altered IgG, and fusion proteins (PCT Application No. 95/305444, published March 6, 1996).

Suitable therapeutic agents for use in making the immunoconjugate includes Pseudomonas exotoxin A (PE) in either the native PE or LysPE40 form. LysPE40 is a truncated form containing a genetically modified amino terminus that includes a lysine residue for conjugation purposes. Doxorubicin is also a suitable therapeutic agent.

Additional examples of therapeutic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, and anti-mitotic agents.

Antimetabolites include methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine.

Alkylating agents include mechlorethamine, thiotepa chlorambucil, melphalan,
20 carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan,
dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum
(II) (DDP) cisplatin.

Anthracyclines include daunorubicin (formerly daunomycin) and doxorubicin (also referred to herein as adriamycin). Additional examples include mitozantrone and bisantrene.

Antibiotics include dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC).

20

Antimitotic agents include vincristine and vinblastine (which are commonly referred to as vinca alkaloids).

5 Other cytotoxic agents include procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (O,P'-(DDD)), interferons.

Further examples of cytotoxic agents include, but are not limited to, ricin, bryodin, gelonin, supporin, doxorubicin, taxol, cytochalasin B, gramicidin D, ethidium

10 bromide, etoposide, tenoposide, colchicine, dihydroxy anthracin dione, 1dehydrotestosterone, and glucocorticoid.

Clearly analogs and homologs of such therapeutic and cytotoxic agents are encompassed by the present invention. For example, the chemotherapuetic agent aminopterin has a correlative improved analog namely methotrexate.

Further, the improved analog of doxorubicin is an Fe-chelate. Also, the improved analog for 1-methylnitrosourea is lomustine. Further, the improved analog of vinblastine is vincristine. Also, the improved analog of mechlorethamine is cyclophosphamide.

METHODS FOR MAKING MOLECULES OF THE INVENTION

There are multiple approaches to making site specific mutations in the CH₂ domain
of an immunoglobulin molecule. One approach entails PCR amplification of the
CH₂ domain with the mutations followed by homologous recombination of the
mutated CH₂ into the vector containing the desired immunoglobulin, e.g., hBR96-2.
For example, hBR96-2B and hBR96-2D have been made by this method.

Another approach would be to introduce mutations by site-directed mutagenesis of single-stranded DNA. For example, vector pD17-hG1b, which contains only the constant region of IgG1 and not the V domain of hBR96, has the f1 origin of replication. This gives the vector the properties of a phagemid and site-directed mutagenesis experiments can be performed according to the methods of Kunkel, et al. (Kunkel, T.A., J.D. Roberts, and R.A. Zakour, 1987 Methods Enzymol. 154:367-383) as provided in the Bio-Rad Muta-Gene® phagemid *in vitro* mutagenesis kit, version 2. For example, hBR96-2B, -C, -D, -E, -F, -G, and -H were made by this method.

10

In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the scope of this invention in any manner.

15

EXAMPLE 1

The following standard ELISA protocol was used.

- 20 Materials: Immulon2 96 well plates and Genetic Systems Specimen Diluent Concentrate (10x); antibody conjugate was Goat Anti Human Kappa-HRP Mouse Adsorbed, Southern Biotech. at 1:10,000 in Genetic Systems Conjugate Diluent (1x); Genetic Systems EIA Chromogen Reagent (TMB) (1:100); Genetic Systems EIA Buffered Substrate (1x); primary antibody or antigen were AffiniPure F(ab')2
- 25 Fragment Goat Anti Human IgG Fc Fragment specific (Jackson Immuno Research), Goat Anti Human Kappa-UNLB (Southern Biotechnology Associates), Le^y-HSA (Alberta Research Council).

Methods: Dilute primary antibody or antigen to 1.0 μg/ml in 0.05M Carb/Bicarb buffer. Add 100μl of the diluted solution per well in Immulon 2 plates. Seal plates and incubate O.N. at 4°C.

5 Block plates by flicking them and blotting on paper towels. Add 200μl/well of Genetic Systems, Specimen Diluent Concentrate (1x). Incubate at least 1 hour at room temperature and then dump the contents of the plates. Wash the plates 3x in saline/Tween. Blot to dry. Allow the plates to dry at R.T. (45 min. to 1 hour). Seal and store the plates at 4°C.

Test samples as follows. Dilute samples and standards in Specimen Diluent at 1:10. Perform serial dilutions in separate round bottom plates. Transfer 100µl/well of final dilutions to antigen coated assay plates; then incubate O.N. at 4°C. Wash plates 3x with saline/Tween.

For conjugation add 100 µl/well of antibody-HRP conjugate in Genetic Systems Conjugate Diluent (1x). Incubate plates at Room Temp. for 60 min. Wash plates 3x in saline/Tween.

20 Add 100 μl/well of Genetic Systems EIA Chromogen Reagent (TMB) 1:100 in EIA Buffered Substrate (1x). Incubate at R.T. for 15 min. and stop with 1N H₂SO₄ 100 μl/well. Read plate at 450/630nm in EIA plate reader.

EXAMPLE 2

25

10

15

Construction of CH2 deleted BR96 molecules

Strategy for Deleting CH₂ Domains: To construct CH₂ deleted BR96 molecules, the hinge, CH₂ and CH₃ domains were removed from chimeric BR96 and humanized

BR9696-2 $\lg G1$ molecules by an Eco47-III restriction digestion in non-coding regions. The hinge and CH_3 domains were amplified by polymerase chain reaction (PCR) from a human $\lg G1$ (pN $\gamma 1.14$) molecule lacking the CH_2 domain. Two oligonucleotides (Sense 49mer, Antisense 50mer) homologous to the sequences of $\lg G1$ constant region at both sides preserving E.co47-III sites were synthesized. The amplified hinge and CH_3 domain PCR fragments were added into Eco47-III sites on BR96 $\lg G1$ molecules by in vivo homologous recombination (P. Bubeck et al., Nucleic Acid Research (1993) 21:3601-3602). The new BR96 $\lg G1$ molecules were verified by restriction mapping and sequencing.

A sewing PCR strategy was used for the construction of CH_2 deleted human IgG1 (pN $\gamma1.14$) (Robert M. Horton, et al. (1990) Biotech 8 (5)P, 528).

The CH₁ domain was amplified as a 580 bp fragment with a sense oligonucleotide

(5' TGG CAC CGA AAG CTT TCT GGG GCA GGC CAG GCC TGA 3') (primer

A) and an antisense oligonucleotide (5' TCC GAG CAT GTT GGT ACC CAC

GTG GTG GTC GAC GCT GAG CCT GGC TTC GAG CAG ACA 3') (primer B)

from a linearized human IgG1 constant region vector (pNy1.7). The PCR fragment

extends from the 5' end of the Hind-III site (in bold) through the Cel-II, Sal-I, Dra
20 III, Kpn-I, 6 bp nucleotide spacer and Mro-I sites (in bold) at the 3' end of the CH₁

domain.

The CH₃ domain was then partially amplified (to the Xba-I site) with a sense primer (5' GTC GAC CAC CAC GTG GGT ACC AAC ATG TCC GGA GCC ACA TGG ACA GAG GCC GGC T 3') (primer C) and an antisense primer (5' CTG GTT CTT GTT CAT CTC CTC TCT AGA TGG 3') (primer D) from a linearized human IgG1 constant region vector (pNγ1.7). A PCR fragment (about 150 bp) with Sal-I, Dra-III, Kpn-I, 6 nucleotide spacer and Mro-I sites (in bold) on its 5' end, extends only through the Xba-1 site (in bold) within the CH₃ domain.

15

20

The CH₁ and CH₃ partial PCR fragments were combined in a PCR without any primer. The reaction was run through two full cycles of denaturation and reannealing to allow the fragments to combine at the homologous region at the 3' ends. Primers A and D (described above) were added to the reaction and the PCR cycle was completed. The polymerase extends the DNA with primer A and primer D, yielding a full-length (660 bp) PCR fragment. The newly extended PCR fragment is arranged from the 5' end to the 3' end in the following order: Hind-III - CH₁ - Cel-II - Sal-I - Dra-III - Kpn-I - 6 bp spacer - Mro-I - CH₂ partial - Xba-1.

The combined PCR fragment, with the $\mathrm{CH_{1}}$ and partial $\mathrm{CH_{3}}$ domains, was then cloned by a blunt end ligation into a Sma-I site on a pEMBL18 vector and the sequence was confirmed by dideoxy sequencing (Sanger et al. (1977) PNAS (USA) 74:5463-5466).

To transfer the CH $_1$ and partial CH $_3$ into a mammalian expression vector, both the pEMBL18 and pN γ 1.7 vectors were digested with Hind-III and Xba-I. The Hind-III and Xba-I fragment was ligated into the same sites on a linearized pN γ 1.7 vector. The new construct, with CH $_1$ and a full CH $_3$ domain, was designated the pN γ 1.10 vector.

The hinge fragment was amplified from a Hind-III digested pNγ1.7 vector with the primers designed to flank the hinge exon with a Sal-I and a Dra-III cloning site at each end. These sites also exist between the CH_I and CH₃ domains of the pNγ1.10
25 construct. The sense oligonucleotide (5' ACC ATG GTC GAC CTC AGA CCT GCC AAG AGC CAT ATC 3') with a 6 bp spacer and a Sal-I cloning site (in bold) and the antisense oligonucleotide (5' CAT GGT CAC GTG GTG TGT CCC TGG ATG CAG GCT ACT CTA G 3') with a 6 bp spacer and a Dra-III cloning site (in bold) were used for the amplication of the hinge fragment (250 bp).

The hinge region PCR fragment was cloned into a Sma-I site on pEMBL18 by blunt end ligation. Both the pEMBL18 with the hinge domain and the pN γ 1.10 with the CH₂ and CH₃ domains were digested with Sal-1 and Dra-III. The digested hinge fragment was cloned into the Sal-1 and Dra-III linearized sites on the pN γ 1.10 vector. The new construct, now carrying the CH₁, hinge and CH₃ domains, was designated pN γ 1.11.

To make the final CH₂ deleted human IgG1 construct, both the pN γ 1.11 construct and pN γ 1.11 vector were digested with BamH1 and HindIII. A fragment containing the CH₁, hinge and CH₃ domains was cloned into the linearized pN γ 1.11 vector. The new constant region IgG1 construct lacks the CH₂ domain and is designated pN γ 1.14 (Figure 11).

15 For digestion of BR96 IgG1 with Eco47-III, a restriction fragment with hinge, CH₂ and CH₃ domains was identified on the constant region sequence of BR96 IgG1 vector in both chimeric and humanized molecules. The 5' end of this fragment lies inside the intron between CH₁ and hinge and the 3' end is located inside the CH₃ intron of the BR96 IgG1 molecule. The hinge, CH₂ and CH₃ domains (1.368 kb fragment) were removed from BR96 IgG1 molecules by Eco47-III restriction digestion. The Eco47-III is a blunt end cutter. The BR96 IgG1 DNA digested with this enzyme does not require any pretreatment before cloning. Figure 12 is a diagrammatic representation of the pD17-hBR96-2 vector showing the Eco47-III sites used in cloning.

25

The CH₂ deleted BR96 IgG1 was then constructed as follows. The hinge and CH₃ domains were amplified from a CH₂ deleted L6 IgG1 ($pN\gamma1.14$) construct with a sense oligonucleotide (5°

CAGGGAGGGAGGTGTCTGCTGGAAGCCAGGCTCAGCGCTGACCTCAG

A 3') homologous to the constant region sequence of IgG1 at the 5' end of the Eco47-III site (in bold) and an antisense oligonucleotide

(5'GGAAAGAACCATCACAGTCTCGCAGGGG

CCCAGGGCAGCGCTGGGTGCTT 3') homologous to the constant region
5 sequence of IgG1 at the 3' end of the Eco47-III site (in bold). The Eco47-III site at the 3' end of the pNγ1.14 construct is modified in the cloning process. The Eco47-III site is thus introduced into an antisense primer and used in amplification of the hinge and CH₃ domains.

- 10 The pD17-BR96 IgG1 vector was digested with Eco47-III and the hinge, CH₂ and CH₃ domains were removed. The linearized pD17-BR96 IgG1 vector was mixed with equimolar amounts of hinge and CH₃ PCR fragments. Cotransformation of the PCR fragment with linearized DNA into E.coli DH5a competent cells resulted in a recombinant molecule, mediated by homologous recombination in bacteria. This construct lacks the CH₂ domain of BR96 IgG1 molecules, and is designated pD17-BR96-dCH2 (Figure 13).
 - $1.9 \text{ grams of CH}_2$ -deleted chimeric BR96 was obtained as raw material from 89L of culture supernatant.

EXAMPLE 3

20

25

Toxicity, localization and clearance of CH₂-deleted chimeric BR96 was tested in vivo as follows.

Three dogs received 400 mg/m² of cBR96-A, the CH₂ deletion mutant of chimeric BR96, and two received chimeric BR96. Both molecules had been mildly reduced and alkylated. This is required to prevent dimerization of the deletion mutant into a tetravalent form. Both control dogs experienced the typical GI toxicity and none of

the three receiving the mutant displayed any toxicity. The control dogs and two of the test dogs were sacrificed at 1 hr to obtain duodenal tissue to measure antibody localization. Both control dogs had grossly visible GI pathology, and the test dogs had normal appearing GI tissue. The third dog has continued to show no signs of toxicity.

Results: A significant amount of localization of the CH₂ deleted cBR96 (cBR96-A) occurred to the GI tract in dogs treated with 400 mg/m², although the intact chiBR96 localized slightly better. The levels of localization indicate that roughly equivalent amounts of intact and CH₂ deleted cBR96 was delivered to the GI tract in these dogs.

Table 5. Localization of cBR96 to GI tissue.

Group	Animal	Specific	mean
		Localization	
	#271	155	
cBR96			135
	#272	114	
	#273	126	
cBR96-A			89
	#274	52	

15

20

Using the mean level of specific localization, an amount of cBR96-A equivalent to at least 66% of the amount of cBR96 was delivered to the target organ of toxicity, the duodenum. Based on the dose ranging done with cBR96 in dogs (some clinical signs of toxicity seen at doses of 10 mg/m²), even if this difference is real, it could

20

not explain the difference between significant toxicity and no toxicity, evaluation to date indicated that dogs treated with cBR96-A had no toxicity, pending microscopic histopathologic examination. This evaluation was based on analysis of 2 frozen blocks per dog and 2 sections per block. Replicates were quite good. We also ran historical frozen tissues from dogs treated with native cBR96 or F(ab)2/BR96 and the levels of localization for those tissues were 110 and 0, respectively, consistent with our previous data.

Assuming that there is no toxicity at marginally higher (2X) doses of cBR96-A,
these data indicate that the CH₂ domain is associated with the induction of acute
gastroenteropathy, and that the removal of this domain prevents the induction of
gastroenteropathy mediated by BR96.

This study confirms the results showing that F(ab')2 is not toxic in the dog model

15 and that the toxicity is mediated by the constant region. The CH₂ deletion mutant is

a candidate for targeting agents clinically. Because of the very long half-life of
chimeric BR96, some decrease in the mutant's half-life should be acceptable.

Figure 1 shows the measurement of the clearance of the cBR96-A in high Le^Y

20 expressing dogs. The study used chimeric versus constant region mutant of cBR96
2.

CBR96-2 did clear faster than the chimeric BR96. The localization of cBR96-A to the gastrointestinal epithelium is not significantly affected by this more rapid clearance. More than enough of the cBR96-A localized to have caused toxicity.

Discussion: The constant region of chimeric IgG is responsible for the GI toxicity seen in clinical trials, e.g. with chiBR96-dox. The GI toxicity seen in the dog model is very similar to the clinical toxicity. Both in man and dog, administration of the

unconjugated antibody mediates an acute GI toxicity characterized by rapid onset of vomiting, often with blood.

In man the bleeding is limited to the fundus of the stomach, causing erosion of the superficial mucosa of the stomach. Although the pathology of the wound is limited and resolves, the extreme nature of the nausea and vomiting, unrelieved by antiemetics, defines it as the dose-limiting toxicity.

This toxicity is mediated in man and dog by the antibody molecule alone. At higher doses of the antibody-dox conjugate, additional toxicity is seen in the dog model, probably due to doxorubicin. Although the intact IgG of BR96 causes toxicity in dog and man, the F(ab')2 molecule (divalent and lacking only in the constant region) is not toxic in dogs. This finding has motivated our attempts at high levels, and improves the affinity and specificity of BR96 for tumor antigen.

15

The CH_2 domain is known to mediate complement and FcR binding. It was not known that structural alteration of the CH_2 domain would result in immunoglobulin-induced toxicity inhibition.

20 Toxicology study of hBR96-2B

The toxicology study of hBR96-2B in high Lewis Y expressor dogs (n=2) showed that a dose of 400 mg/m² did not cause hematemesis nor bloody stools, in contrast to BR96 which consistently causes one or both signs. A dog sacrificed at 24 hrs had normal gross appearance of the GI tract, again in marked contrast to chimeric BR96 which causes hemorrhagic lesions and mucosal erosions.

EXAMPLE 4

The polymerase chain reaction (PCR) is a widely used and versatile technique for the amplification and subsequent modification of immunoglobulin genes. The rapidity and accuracy with which antibody genes can be modified in vitro has produced an assortment of novel antibody genes can be modified in vitro has produced an assortment of novel antibodies. For example, PCR methods have been used for engineering antibodies with increased affinity to antigen, for "humanizing" antibodies, and for modulating effector function (Marks, J.D., A.D. Griffiths, M.

- Malmqvist, T. Clackson, J.M. Bye and G. Winter. 1992. Bypassing immunization: high affinity human antibodies by chain shuffling. Bio/Technology 10:779-783; Rosok, M.J., D.E. Yelton, L.J. Harris, J. Bajorath, K.-E. Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96
- Fab. J. Biol. Chem. 271:22611-22618; Morgan, A.N., D. Jones, A.M. Nesbitt, L. Chaplin, M.W. Bodmer and S. Emtage. 1995. The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for Clq, FcγRI and FcγRIII binding. Immunology. 86:319-324).
- As part of a more comprehensive study, we desired to introduce various site specific mutations in the CH₂ constant domain of human IgG₁. Six specific amino acid residues distributed throughout the CH2 domain previously identified to play a role in immune effector function were marked as targets for mutagenesis (Morgan, A.N., D. Jones, A.M. Nesbitt, L. Chaplin, M.W. Bodmer and S. Emtage. 1995. The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for Clq, FcγRI and FcγRIII binding. Immunology. 86:319-324; Duncan, A.R. and G. Winter. 1988. The binding site for Clq on IgG. Nature 332:738-740; Tao, M.-H., R.I.F. Smith and S.L. Morrison. 1993. Structural features of human immunoglobulin G that determine isotype-specific differences in complement

activation. J.Exp.Med. 178:661-667). five of the six residues were grouped into two clusters-one cluster consisting of two residues, two amino acids apart (Location 1, or L1); and a second cluster consisting of three residues spanning a sequence of five amino acids (L2). The remaining amino acid position (L3) made for the total of six residues. We were interested in constructing a panel of mutant CH₂ domain IgGs consisting of each L mutation by itself as well as in combination with other L mutants (e.g., L1; L1; and L2; L1, L2 and L3; etc.).

Various in vitro methods have been described where PCR is used to simultaneously 10 introduce distally located site-specific mutations within a gene sequence (Ho, S.N., H.D. Hunt, R.M. Horton, J.K. Pullen and L.R. Pease. 1989. Site-directed mutagenesis by overlap extension. Gene 77:51-59; Ge, L. and P. Rudolpf. 1996. Simultaneous introduction of multiple mutations using overlap extention PCR. BioTechniques 22:28-30). Alternatively, an in vivo procedure termed recombination 15 PCR (RPCR) has also successfully been used for rapidly and efficiently generating distally located site-specific mutations (Jones, D.H. and S.C. Winistorfer. 1993. Use of polymerase chain reaction for making recombinant constructs. p.241-250. In B.A. White (Ed.), Methods in Molecular Biology, Vol. 15. Humana Press Inc., Totowa, NJ, Jones, D.H. And B.H. Howard. 1991. A rapid method for 20 recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. BioTechniques 10:62-66). RPCR uses E. Coli's recombination machinery to generate intact circular recombinant plasmids from a transfected mixture of linear PCR-generated product and linearized vector. In vivo recombination is mediated through the joining of nucleotide sequences designed into 25 the 5' ends of both PCR primers that are homologous to DNA sequences encoded by the vector. In this report we describe an extension of the RPCR procedure for simultaneously introducing complex combinations of mutations into an antibody CH2 domain.

Humanized BR96 variable region heavy and light chain genes, previously cloned and co-expressed as an assembled active Fab fragment in an M13 phage expression vector, provided the starting material (Rosok, M.J., D.E. Yelton, L.J. Harris, J. Bajorath, K.-E. Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J. Biol. Chem. 271:22611-22618). The heavy and light chain V genes were amplified by PCR from a single-stranded M13 DNA template and subcloned by *in vivo* recombination (Jones, D.H. And B.H. Howard. 1991. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. BioTechniques 10:62-66) into vectors pD17-hG1a and pD16-hCκ, to form pBR96-hG1a and pBR96-hCκ respectively. pD17-hG1a and pD16-hCκ are eukaryotic immunoglobulin expression vectors derived from pcDNA3 (Invitrogen, San Diego, CA). The plasmid pBR96-hG1a was further modified by site-directed mutagenesis to introduce two Eco47-III restriction sites flanking the immunoglobulin hinge-CH₂-

CH₃ domains using standard procedures. The recipient vector was then prepared by digesting pBR96-hG1a with Eco47-III, isolating the vector backbone by agarose gel electrophoresis followed by extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth, CA).

The strategy for introducing multiple mutations within the immunoglobulin CH₂
gene, shown in Figure 24, relies on the *in vivo* homologous recombination of several
independently amplified PCR products with each other as well as with the pBR96hG1a vector DNA. For introducing mutations at two distal locations two PCR

25 products are synthesized (Figure 24B). One end of each PCR product is for
recombining with an homologous end of the linear vector, and the other end,
encoding the mutation(s) of interest, is for recombining with the neighboring PCR
product. As shown in Figure 24B, additional distally-located mutations can be
introduced into a target sequence by increasing the number of PCR products

proportionately. The recombination of neighboring PCR products always occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding these ends (e.g., A1, A2) contain complementary mutant residues. The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence flanking each side of the mutant residues for either priming the polymerization reaction or mediating recombination. Two 49-nucleotide long PCR sense and antisense primers (Rs and Ra) contain sequences for recombining with the end regions of the Eco47-III digested pBR96-hG1a vector.

Each L mutation was amplified in a separate PCR reaction. The reaction conditions 10 were 250 ng intact pBR96-hG1a DNA template, 10 ul of 1X Pfu buffer (Stratagene, Inc. San Diego, CA), 10 nmol dNTPs, 200ng each of the appropriate PCR primers, 10% dimethysulfoxide (ATCC, Rockville, MD) and 2.5 units cloned Pfu DNA polymerase in a 100ul reaction volume. Samples were first denatured at 95° C for 5 15 min, cooled to 45°C for 5 min, and extended at 72°C for 1 min followed by 25 cycles of denaturation at 94°C for 45 sec, annealing at 45°C for 45 sec, extension at 72°C for 1 min/kb, followed by a final extension at 72°C for 7 min in a Perkin-Elmer DNA Thermal Cycler (Norwalk, CT). The amplified products were purified from a 1% agarose gel, extracted with Qiagen Gel Extraction kit and the recovered DNA quantitated. 50 ng of each PCR product was mixed with 25 ng of the Eco47-20 III digested pBR96-hG1a vector, transfected into Max competent E. coli DH5 α according to the manufacturer's procedure (GIBCO BRL/Life Technologies, Gaithersburg, MD), and the entire transfection reaction plated onto selective LB agar plates containing 100 ug/ml ampicillin.

The results of several cloning experiments are summarized in the Table that follows. Typically the transformations produced from 80 to 200 bacterial colonies.

Individual colonies were selected and grown overnight in 2 ml liquid cultures for isolation of miniprep plasmid DNA (Qiagen) and analysis by Eco47-III restriction

20

25

endonuclease mapping. Among 24 independent transformants analyzed from triple homologous recombination events (two PCR products plus vector) 11 clones contained the predicted 1.4 kpb DNA insert.

5 Figure 25 shows a sample diagnostic restriction analysis of DNA prepared from clones derived from quadruple homologous recombination events (three PCR products plus vector). Additional sampling of clones resulting from quadruple recombination yielded a cloning efficiency of 29% (7 clones containing inserts/24 clones sampled). At this point, due to the small sampling sizes, we do not know whether the differences in the cloning efficiencies observed between the triple and quadruple recombination events are meaningful.

To evaluate the expression of Le^{\gamma} -binding activity of the CH₂ mutant IgGs. miniprep DNAs from 6 clones derived from the triple recombination reaction and 6 clones derived from the quadruple recombination reaction exhibiting the predicted diagnostic Eco47-III restriction patterns were isolated, mixed with pBR96- hCk DNA and used to co-transfect COS7 cells. 48 hour spent supernatants from 3 ml cultures were assayed for total IgG production and for Ley binding activity by enzyme-linked immunosorbent assay (EIA) as described (Yelton, D.E., M.J. Rosok, G.A. Cruz, W.L. Cosand, J. Bajorath, I. Hellstom, K.-E. Hellstorm, W.D. Huse and S.M. Glaser. 1995. Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J.Immunol. 155:1994-2004). All twelve cultures were found to secrete approximately 2-3 ug/ml Le7 -reactive IgG. The spectrum of Le7 binding activities were all similar to that of native humanized BR96 IgG indicating that the homologously recombined antibodies did not acquire any gross mutations that could affect antigen binding. To confirm that the desired CH2 mutations had been incorporated, and to evaluate the recombined genes for misincorporated nucleotides, four of the clones producing functional antibody were sequenced using Sequenase Version 2 DNA Sequencing Kit (United States Biochemical). One clone was found to contain a single nucleotide change within the forward PCR primer used for mediating recombination with vector DNA. We are uncertain whether this error occurred during chemical synthesis of the oligonucleotide primer or is a result of misincorporation during the PCR reaction, despite the fact that we used a thermostable polymerase with proofreading activity.

A RPCR procedure for homologously recombining up to three separate PCRgenerated mutated antibody sequence products into a eukaryotic expression vector
for the rapid construction of engineered IgG molecules is described herein. The
advantage of this approach is the ability to simultaneously introduce multiple
distally-located mutations with PCR products synthesized by a single round of PCR.
Recombinant DNAs are produced with a reasonably high cloning efficiency and
fidelity of correct nucleotide sequences. The ability to efficiently rejoin several
distinct PCR products should permit combinatorial strategies for constructing
complexly mutated protein domains as well as broadening the number and location
of desired mutations.

Analysis of transformants generated by multiple-fragment RPCR.

Mutant IgGs	PCR	HR ^a events	Colonies	Cloning
Constructed	Fragments in		Analyzed	Efficiency ^b
	reaction			
2	2	triple	24	45%
2	3	quadruple	24	33%
	l			

^aHR-homologous recombination

^bCloning efficiency (number of clones containing 1.4kbp insert/total number of colonies

EXAMPLE 5

This example provides two methods for introducing site specific mutations into the 5 CH2 domain of human IgG1 constant region containing vectors.

One method involves PCR amplification of a segment or segments of the constant region, wherein mutations are introduced using appropriately constructed oligonucleotides. The vector receiving the fragment(s) is digested with a restriction enzyme to linearize the vector. PCR amplification primers are designed so that the 5' ends of the PCR fragments can hybridize to the DNA sequence of the vectors. If more than one PCR fragment is amplified, then common sequences to the two fragments are introduced by oligonucleotides. Bacteria are transfected with the PCR fragments and with the digested vector. The fragments and vector can recombine by homologous recombination using the bacteria's recombination machinery. Bacterial colonies are selected and the DNA is analyzed by size and restriction map as a preliminary determination that the vector and fragment(s) recombined correctly. Correct insertion of fragments with the mutations is confirmed by dideoxynucleotide sequence analysis. DNA is then introduced into mammalian cells as described for 20 the CH2 deleted antibody, and the expressed antibody analyzed for binding and functional activity.

By way of example, mutations Leu to Ala at residue 235 in CH2 and Gly to Ala at residue 237 were introduced by the procedure disclosed in Example 4. The heavy chain vector used for this procedure was pD17-hG1a, similar to pD17-BR96 vector described herein except that humanized V regions (Rosok, M.J., D.E. Yelton, L.J. Harris, J. Bajorath, K-E. Hellstrom, I, Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse, and S.M. Glaser, 1996. J. Biol. Chem 271 37:22611-22618) with three affinity mutations (H1, H2, and H3 mutations) were substituted.

pBR96-hG1a contains two Eco47-III restriction sites flanking the Ig hinge-CH2-CH3 domains. The recipient vector was prepared by (1) digesting pBR96-hG1a with *Eco*47-III, (2) isolating the vector by agarose gel electrophoresis, and (3) extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth, CA). To introduce mutations at a single location, such as for positions 235 and 237, two PCR products were synthesized.

To introduce two distally located mutations, such as for mutant F (also referred to herein as hBR96-2F) with mutations at 235, 237, 331, requires 3 PCR products. The recombination of neighboring PCR products occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding these ends contain complementary mutant residues. The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence flanking each side of the mutant residues for either priming the polymerization reaction or mediating recombination. Two 49-nucleotide long PCR sense and anti-sense primers containing sequences for recombining with the end regions of the *Eco*47-III digested pBR96-hG1a vector.

PCR amplification used 250 ng intact pBR96-hG1a DNA template, 10 μl of 10X Pfu buffer (Stratagene, Inc., San Diego, CA), 10 nmol dNTPs, 200 ng each of the appropriate PCR primers, 10% dimethylsulfoxide (ATCC, Rockville, MD) and 2.5 units cloned Pfu DNA polymerase (Stratagen, Inc. San Diego, CA) in 100 μl reaction. Samples were denatured at 95°C for 5 min, annealed at 45°C for 5 min, and extended at 72°C for 1 min followed by 25 cycles of denaturation at 94°C for 45 sec, annealing at 45°C for 45 sec, extension at 72°C for 1 min/kb, and a final extension at 72°C for 7 min. The amplified products were purified from a 1% agarose gel, extracted with the Qiagen Gel Extraction kit and quantitated. 50 mg of each PCR product was mixed with 25 ng of the Eco47-III digested pBR96-hG1a vector and transfected in Ecoli MAX Efficiency DH5α™ according to the

manufacturer's instructions (GIBCO BRL/Life Technologies, Gaithersburg, MD). The entire transfection reaction was plated onto LB agar plated containing $100~\mu g/ml$ ampicillin.

- 5 Bacterial colonies were selected and grown overnight at 37° C in 2 ml liquid cultures. DNA was isolated and analyzed by Eco47-III restriction endonuclease mapping. Clones with the correct size insert were sequenced (Sequenase Version 2, U.S. Biochemical Corp., Cleveland, OH).
- The second method for introducing site specific mutations into the CH₂ domain of human IgG1 involved the method of Kunkel (1987 Methods Enzymology, supra). For this procedure pD17-hG1b DNA with the F1 origin of replication was introduced into electrocompetent E. coli CJ236 dut-ung- (Bio-Rad Laboratories, Hercules, CA) by electroporation according to manufacturer's instructions. PD17-
- 15 hG1b is a vector having a constant region but no variable region. The F1 ori site allows treatment of this vector as a phagemid.
 - Bacteria containing the plasmid were selected by ampicillin resistance. Single stranded uridinylated DNA was prepared using the Muta-Gene Phagemid In Vitro
- 20 Mutagenesis Version 2 protocol (Bio-Rad). Mutations were introduced by site-directed mutagenesis with the appropriate antisense oligonucleotide. For molecules with mutations at more than one location, mutations were introduced by either of the two methods discussed above. One method would be to (1) prepare one mutant, for example, mutant 2C (also referred to herein as BR96-2C) with the mutations at
 25 residues 318, 320, 322. (2) isolate ssDNA, and (3) introduce a second mutation set
- 25 residues 318, 320, 322, (2) isolate ssDNA, and (3) introduce a second mutation set with the appropriate anti-sense oligonucleotide. The second method would be to anneal two antisense oligonucleotides with the same uridinylated ssDNA and screen for mutants with both sets of changes. Mutant 2H (hBR96-2H) was also prepared by a combination of thse methods.

The V region of humanized BR96-2 heavy chain was introduced by the homologous recombination method described above in pD17-hJm14.H1. The pD17-hJm14.H1 plasmid contains the BR96 humanized variable region with the H1/H2/H3

5 mutations and the plasmid was used to transfect mutant sequences into mammalian cells. The pD17G1b vector containing the Fc mutation(s) was digested with NheI for 3 hr at 37° C and the DNA isolated by methods described above. Insertion of the V region into the vector was determined by size and restriction enzyme mapping and confirmed by sequence analysis.

10

Transient expression of whole antibodies was performed by transfection of COS cells. For production of antibody, stable transfections of CHO cells were performed (see description of deleted CH2 mutant). All mutants were purified from CHO culture supernatants by protein A chromatography.

15

The oligonucleotide primers homologous to the vector and used to introduce the constant regions mutations were as follows:

Oligonucleotides homologous to vector sequences:

Sens(sense)CH2 E47-3-5: CAG GGA GGG AGG GTG TCT GCT GGA AGC

20 CAG GCT CAG CGC TGA CCT CAGA

D CH2 E47-3 A (antisense): GGA AAG AAC CAT CAC AGT CTC GCA GGG GCC CAG GGC AGC GCT GGG TGC TT

Oligonucleotides to mutate Leu235 to Ala and Gly237 to Ala (underlined sequences show sites of mutation):

25 show sites of mutation):

Antisense CH2 L235-G237/aa: GAA GAG GAA GAC TGA CGG TGC CCC CGC GAG TTC AGG TGC TGA GG

SensCH2 L235-G237/AA: CCT CAG CAC CTG AAC TC \underline{G} C \underline{G} G GG \underline{G} C \underline{A} C CGT CAG TCT TCC TCT TC

Oligonucleotides to mutate Glu318, Lys320, Lys322 to Ser

Antis(antisense)CH2 EKK/SSS-2: CTG GGA GGG CTT TGT TGG AGA CCG

AGC ACG ACT ACG ACT TGC CAT TCA GCC

5 Oligonucleotides to mutate Pro331 to Ala:

Antis CH2 P331/A/3: GAT GGT TTT CTC GAT GGC GGC TGG GAG GGC Sense CH2 P33/A: GCC CTC CCA GCC GCC ATC GAG AAA ACC ATC Alternative antisense oligo to introduce Ala at 331 by site-directed mutation: CH2P331A: GAT GGT TTT CTC GAT AGC GGC TGG GAG GGC TTT G

Oligonucleotides to mutate Glu318 to Ser. Lys320 t

Oligonucleotides to mutate Glu318 to Ser, Lys320 to Ser, Lys322 to Ser, and Pro331 to Ala:

Antis CH2 EKKP/SSA-6: GAT GGT TTT CTC GAT GGC GGC TGG GAG GGC TTT GTT GGA GAC CGA GCA CGA GTA CGA CTT GCC ATT CAG

15 CCA GTC CTG GTG

Sense CH2 EKKP/SSA-6: CAC CAG GAC TGG CTG AAT GGC AAG <u>TCG</u>
TAC <u>TCG</u> TGC <u>TCG</u> GTC TCC AAC AAA GCC CTC CCA <u>GCC</u> GCC ATC
GAG AAA ACC ATC

20

10

In vitro Assays of the Mutants

Results of the CDC demonstrate that mutant hBR96-2B has approximately 10 fold less activity than the control hBR96-1 (two affinity mutations, one in H2 and one in H3, refer to previous patent (Figure 20)). The mutants that have the least ability to kill cells in the presence of complement is hBR96-2C with the triple mutations at positions 318, 320, and 322 and the hBR96-2H mutant (least cytotoxic antibodies in the panel) which contains all six mutations at the three different locations. ADCC activity was most affected by the CH2 deleted hBR96-2 molecule (Figure 21).

hBR96-2B and -2H lost between 100 and 1000 fold activity to kill in the presence of effector cells. In the ADCC assay the hBR96-2B molecule also lost approximately 10 fold activity (Figure 21).

- 5 Figures 26-28 provide the amino acid sequences for the heavy chain variable region for both chimeric and humanized BR96 having the H1, H2, and H3 mutations. The amino acid sequence for the light chain variable region is known and methods for generating it are found in PCT Application No. 95/305444. Additionally provided is the amino acid sequence for the IgG1 constant region. Mutations in the constant
- 10 region are marked.

SEQUENCE LISTING

5	(i) GENERAL INFORMATION (i) APPLICANT: Bristol-Myers Squibb Co.
10	(ii) TITLE OF THE INVENTION: A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS
	(iii) NUMBER OF SEQUENCES: 13
15	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Merchant & Gould (B) STREET: 11150 Santa Monica Blvd., Suite 400 (C) CITY: Los Angeles
20	(D) STATE: CA (E) COUNTRY: USA (F) ZIP: 90025
25	(v) COMBUTER READABLE FORM: (A) MEDIUM TYPR: Diskette (B) COMPUTER: IBM Compatible (C) OPERATING SYSTEM: DOS (D) SOFTWARE: FastSEQ Version 2.0
30	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: PCT/US97/ (B) FILING DATE: 01-AUG-1997 (C) CLASSIFICATION:
35	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 60/023,033 (B) FILING DATE: 02-AUG-1996
40	(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Adriano, Sarah B (B) REGISTRATION NUMBER: 34,470 (C) REFERENCE/DOCKET NUMBER: 30436.43WOUI
45	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 310-445-1140 (B) TELEFAX: 310-445-9031 (C) TELEX:
50	(2) INFORMATION FOR SEQ ID NO:1:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
5	TGGCACCGAA AGCTTTCTGG GGCAGGCCAG GCCTGA	36
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: linear	
15	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
20	TCCGGACATG TTGGTACCCA CGTGGTGGTC GACGCTGAGC CTGGCTTCGA GCAGACA	57
	(2) INFORMATION FOR SEQ ID NO:3:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GTCGACCACC ACGTGGGTAC CAACATGTCC GGAGCCACAT GGACAGAGGC CGGCT	55
35	(2) INFORMATION FOR SEQ ID NO:4:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY! linear (ii) MOLECULE TYPE: cDNA	
45	(xi) SEQUENCE DESCRIPTION: SEO ID NO:4:	
	CTGGTTCTTG TTCATCTCCT CTCTAGATGG	30
50	(2) INFORMATION FOR SEQ ID NO:5:	3*
55	(i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
33	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	(MI) SINGER PROCEETITION. SEN ID NO.5.	

	ACCATGGTCG ACCTCAGACC TGCCAAGAGC CATATC	36
	(2) INFORMATION FOR SEO ID NO:6:	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 39 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	CATGGTCACG TGGTGTGCC CTGGATGCAG GCTACTCTA	39
	(2) INFORMATION FOR SEQ ID NO:7:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 49 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
30	CAGGGAGGGA GGGTGTCTGC TGGAAGCCAG GCTCAGCGCT GACCTCAGA	49
	(2) INFORMATION FOR SEQ ID NO:8:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
45	GGAAAGAACC ATCACAGTCT CGCAGGGGGCC CAGGGCAGCG CTGGGTGCTT	50
	(2) INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8691 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: cDNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	GACGGATCGG GAGATCTGCT AGGTGACCTG AGGCGCGCCG GCTTCGAATA GCCAGAGTAA	60

		GTCGACTCTC					180
		TTGTGTGTTG					240
	CAAGGCAAGG	CTTGACCGAC	AATTGCATGA	AGAATCTGCT	TAGGGTTAGG	CGTTTTGCGC	300
		TGTACGGGCC					360
5		TACGGGGTCA					420
		TGGCCCGCCT					480
		TCCCATAGTA					540
		AACTGCCCAC					600
		CAATGACGGT					
10							660
10		TACTTGGCAG					720
		GTACATCAAT					780
		TGACGTCAAT					840
		CAACTCCGCC					900
		CAGAGCTCTC					960
15		TCACTATAGG					1020
		TCTCTAGATA					1080
	CACCATGGAG	TTGTGGTTAA	GCTTGGTCCT	TCCTTGTCCT	TGTTTTAAAA	GGTGTCCAGT	1140
	GTGAAGTGAA	TCTGGTGGAG	TCTGGGGGAG	GCTTAGTGCA	GCCTGGAGGG	TCCCTGAAAG	1200
	TCTCCTGTGT	AACCTCTGGA	TTCACTTTCA	GTGACTATTA	CATGTATTGG	GTTCGCCAGA	1260
20		GAGGCTGGAG					1320
		TGTAAAGGGT					1380
		GAGCCGTCTG					1440
		GGCCTGGTTT					1500
		GGGCCCATCG					1560
2.5		CCTGGGCTGC					
23		CGCCCTGACC					1620
							1680
		CCTCAGCAGC					1740
		CGTGAATCAC					1800
20		GGGAGGGAGG					1860
30		ATGCAGCCCC					1920
		TGCCCGCCCC					1980
		GGCACAGGCT					2040
		GACCTGCCAA					2100
		CAAACTCTCC					2160
35		ATCTTCTCTC					2220
	CCGTGCCCAG	GTAAGCCAGC	CCAGGCCTCG	CCCTCCAGCT	CAAGGCGGGA	CAGGTGCCCT	2280
	AGAGTAGCCT	GCATCCAGGG	ACAGGCCCCA	GCCGGGTGCT	GACACGTCCA	CCTCCATCTC	2340
	TTCCTCAGCA	CCTGAACTCC	TGGGGGGACC	GTCAGTCTTC	CTCTTCCCCC	CAAAACCCAA	2400
	GGACACCCTC	ATGATCTCCC	GGACCCCTGA	GGTCACATGC	GTGGTGGTGG	ACGTGAGCCA	2460
40	CGAAGACCCT	GAGGTCAAGT	TCAACTGGTA	CGTGGACGGC	GTGGAGGTGC	ATAATGCCAA	2520
		CGGGAGGAGC					2580
	CCTGCACCAG	GACTGGCTGA	ATGGCAAGGA	GTACAAGTGC	AAGGTCTCCA	ACABAGCCCT	2640
		ATCGAGAAAA					2700
		CAGAGGCCGG					2760
45		TACAGGGCAG					2820
		CAAGAACCAG					2880
		GGAGTGGGAG					2940
		CTCCGACGGC					3000
		GGGGAACGTC					
50		GAGCCTCTCC					3060
50							3120
		CTCTCGCGGT					3180
						CGAGACTGTG	3240
		CCACGGGTCA					3300
E E		GTCCCCACAC					3360
55		AGGGGCTGCC					3420
						GACAGACACA	3480
		CTCTGTAGGA					3540
		CGGGGGCATG					3600
	CTACCCCCAC	GGCACTAACC	CCTGGCTGCC	CTGCCCAGCC	TCGCACCCGC	ATGGGGACAC	3660

						GATGCCCACA	3720
	CACACACTCA	GCCCAGACCC	GTTCAACAAA	CCCCGCACTG	AGGTTGGCCG	GCCACACGGC	3780
	CACCACACAC	ACACGTGCAC	GCCTCACACA	CGGAGCCTCA	CCCGGGCGAA	CTGCACAGCA	3840
						CCCCCACGAG	3900
5						GCTGACCTGC	
-						CACACACAGG	
						CCCTTCCCTG	
						TTGCCCCTCC	
						ATAAAATGAG	4200
10	GAAATTGCAT	CGCATTGTCT	GAGTAGGTGT	CATTCTATTC	TGGGGGGTGG	GGTGGGGCAG	4260
	GACAGCAAGG	GGGAGGATTG	GGAAGACAAT	AGCAGGCATG	CTGGGGATGC	GGTGGGCTCT	4320
	ATGGCTTCTG	AGGCGGAAAG	AACCAGCTGG	GGCTCTAGGG	GGTATCCCCA	CGCGCCCTGT	4380
						TACACTTGCC	4440
					TTCTCGCCAC		4500
15					CAGCAACCAT		4560
10						GCCCCATGGC	
							4620
						GCTATTCCAG	4680
						ACAGCTCAGG	4740
	GCTGCGATTT	CGCGCCAAAC	TTGACGGCAA	TCCTAGCGTG	AAGGCTGGTA	GGATTTTATC	4800
20	CCCGCTGCCA	TCATGGTTCG	ACCATTGAAC	TGCATCGTCG	CCGTGTCCCA	AAATATGGGG	4860
	ATTGGCAAGA	ACGGAGACCT	ACCCTGGCCT	CCGCTCAGGA	ACGAGTTCAA	GTACTTCCAA	4920
	AGAATGACCA	CAACCTCTTC	AGTGGAAGGT	AAACAGAATC	TGGTGATTAT	GGGTAGGAAA	4980
					ACAGAATTAA		5040
					TTGCCAAAAG		5100
25						TTGGATAGTC	5160
20							
						ACTCTTTGTG	5220
						TTTGGGGAAA	5280
						AAAAGGCATC	5340
					AAGATGCTTT		5400
30	GCTCCCCTCC	TAAAGCTATG	CATTTTTATA	AGACCATGGG	ACTTTTGCTG	GCTTTAGATC	5460
	TCTTTGTGAA	GGAACCTTAC	TTCTGTGGTG	TGACATAATT	GGACAAACTA	CCTACAGAGA	5520
	TTTAAAGCTC	TAAGGTAAAT	ATAAAATTTT	TAAGTGTATA	ATGTGTTAAA	CTACTGATTC	5580
	TAATTGTTTG	TGTATTTTAG	ATTCCAACCT	ATGGAACTGA	TGAATGGGAG	CAGTGGTGGA	5640
						GATGATGAGG	5700
35						GAAGACCCCA	5760
50						AATAGAACTC	5820
						AAGAAAATTA	5880
					TTATAATCAT		5940
40						CAAAAATTGT	6000
40						TATAGTGCCT	6060
						TTTAAAAAAAC	6120
	CTCCCACACC	TCCCCCTGAA	CCTGAAACAT	AAAATGAATG	CAATTGTTGT	TGTTAACTTG	6180
	TTTATTGCAG	CTTATAATGG	TTACAAATAA	AGCAATAGCA	TCACAAATTT	CACAAATAAA	6240
	GCATTTTTT	CACTGCATTC	TAGTTGTGGT	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT	6300
45	GTCTGGATCG	GCTGGATGAT	CCTCCAGCGC	GGGGATCTCA	TGCTGGAGTT	CTTCGCCCAC	6360
	CCCAACTTGT	TTATTGCAGC	TTATAATGGT	TACAAATAAA	GCAATAGCAT	CACAAATTTC	6420
						CATCAATGTA	6480
						ATGGTCATAG	6540
						AGCCGGAAGC	6600
50						TGCGTTGCGC	
50							6660
					TGCATTAATG		6720
						CACTGACTCG	6780
						GGTAATACGG	
						CCAGCAAAAG	6900
55						CCCCCTGAC	6960
						ACTATAAAGA	7020
	TACCAGGCGT	TTCCCCCTGG	AAGCTCCCTC	GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT	7080
	ACCGGATACC	TGTCCGCCTT	TCTCCCTTCG	GGAAGCGTGG	CGCTTTCTCA	ATGCTCACGC	7140
					TGGGCTGTGT		7200

	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC	CAACCCGGTA	7260
	AGACACGACT	TATCGCCACT	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	7320
	GTAGGCGGTG	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	TAGAAGGACA	7380
	GTATTTGGTA	TCTGCGCTCT	GCTGAAGCCA	GTTACCTTCG	GAAAAAGAGT	TGGTAGCTCT	7440
5	TGATCCGGCA	AACAAACCAC	CGCTGGTAGC	GGTGGTTTTT	TTGTTTGCAA	GCAGCAGATT	7500
	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT	CCTTTGATCT	TTTCTACGGG	GTCTGACGCT	7560
	CAGTGGAACG	AAAACTCACG	TTAAGGGATT	TTGGTCATGA	GATTATCAAA	AAGGATCTTC	7620
	ACCTAGATCC	TTTTAAATTA	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT	ATATGAGTAA	7680
	ACTTGGTCTG	ACAGTTACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC	GATCTGTCTA	7740
10	TTTCGTTCAT	CCATAGTTGC	CTGACTCCCC	GTCGTGTAGA	TAACTACGAT	ACGGGAGGGC	7800
	TTACCATCTG	GCCCCAGTGC	TGCAATGATA	CCGCGAGACC	CACGCTCACC	GGCTCCAGAT	7860
	TTATCAGCAA	TAAACCAGCC	AGCCGGAAGG	GCCGAGCGCA	GAAGTGGTCC	TGCAACTTTA	7920
	TCCGCCTCCA	TCCAGTCTAT	TAATTGTTGC	CGGGAAGCTA	GAGTAAGTAG	TTCGCCAGTT	7980
	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATCG	TGGTGTCACG	CTCGTCGTTT	8040
15	GGTATGGCTT	CATTCAGCTC	CGGTTCCCAA	CGATCAAGGC	GAGTTACATG	ATCCCCCATG	8100
	TTGTGCAAAA	AAGCGGTTAG	CTCCTTCGGT	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC	8160
	GCAGTGTTAT	CACTCATGGT	TATGGCAGCA	CTGCATAATT	CTCTTACTGT	CATGCCATCC	8220
	GTAAGATGCT	TTTCTGTGAC	TGGTGAGTAC	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG	8280
	CGGCGACCGA	GTTGCTCTTG	CCCGGCGTCA	ATACGGGATA	ATACCGCGCC	ACATAGCAGA	8340
20	ACTTTAAAAG	TGCTCATCAT	TGGAAAACGT	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	8400
	CCGCTGTTGA	GATCCAGTTC	GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGCATCT	8460
	TTTACTTTCA	CCAGCGTTTC	TGGGTGAGCA	AAAACAGGAA	GGCAAAATGC	CGCAAAAAAG	8520
	GGAATAAGGG	CGACACGGAA	ATGTTGAATA	CTCATACTCT	TCCTTTTTCA	ATATTATTGA	8580
	AGCATTTATC	AGGGTTATTG	TCTCATGAGC	GGATACATAT	TTGAATGTAT	TTAGAAAAAT	8640
25	AAACAAATAG	GGGTTCCGCG	CACATTTCCC	CGAAAAGTGC	CACCTGACGT	C	8691

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
 30 (A) LENGTH: 8327 base pairs
 - (A) LENGTH: 8327 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

	GACGGATCGG	GAGATCTGCT	AGGTGACCTG	AGGCGCGCCG	GCTTCGAATA	GCCAGAGTAA	60
40	CCTTTTTTTT	TAATTTTATT	TTATTTTATT	TTTGAGATGG	AGTTTGGCGC	CGATCTCCCG	120
	ATCCCCTATG	GTCGACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGTATC	180
	TGCTCCCTGC	TTGTGTGTTG	GAGGTCGCTG	AGTAGTGCGC	GAGCAAAATT	TAAGCTACAA	240
	CAAGGCAAGG	CTTGACCGAC	AATTGCATGA	AGAATCTGCT	TAGGGTTAGG	CGTTTTGCGC	300
	TGCTTCGCGA	TGTACGGGCC	AGATATACGC	GTTGACATTG	ATTATTGACT	AGTTATTAAT	360
45	AGTAATCAAT	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	GTTACATAAC	420
	TTACGGTAAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGCCCATTG	ACGTCAATAA	480
	TGACGTATGT	TCCCATAGTA	ACGCCAATAG	GGACTTTCCA	TTGACGTCAA	TGGGTGGACT	540
	ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	ATCAAGTGTA	TCATATGCCA	AGTACGCCCC	600
	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	ATGACCTTAT	660
50	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	ATGGTGATGC	720
	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	TTTCCAAGTC	780
	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	GACTTTCCAA	840
	AATGTCGTAA	CAACTCCGCC	CCATTGACGC	AAATGGGCGG	TAGGCGTGTA	CGGTGGGAGG	900
	TCTATATAAG	CAGAGCTCTC	TGGCTAACTA	GAGAACCCAC	TGCTTACTGG	CTTATCGAAA	960
55	TTAATACGAC	TCACTATAGG	GAGACCCAAG	CTTGGTACCA	ATTTAAATTG	ATATCTCCTT	1020
	AGGTCTCGAG	TCTCTAGATA	ACCGGTCAAT	CGATTGGAAT	TCTTGCGGCC	GCTTGCTAGC	1080
	CACCATGGAG	TTGTGGTTAA	GCTTGGTCCT	TCCTTGTCCT	TGTTTTAAAA	GGTGTCCAGT	1140
	GTGAAGTGAA	TCTGGTGGAG	TCTGGGGGAG	GCTTAGTGCA	GCCTGGAGGG	TCCCTGAAAG	1200
	TCTCCTGTGT	AACCTCTGGA	TTCACTTTCA	GTGACTATTA	CATGTATTGG	GTTCGCCAGA	1260

	CTCCAGAGAA	GAGGCTGGAG	TGGGTGGGAT	A CAPPA OPCA	3.CCTCCTC3T	ATAACCGACT	1320
						AACACCCTGT	
						GCAAGAGGCC	
5						GTCTCTGTAG	
5						ACCTCTGGGG	
						ACGGTGTCGT	
						CAGTCCTCAG	
						ACCCAGACCT	1740
10						GTTGGTGAGA	1800
10						TGCCTGGACG	1860
						CCTCTTCACC	1920
						TTTTCCCCAG	1980
						AGGGGCAGGT	2040
						CCTAAGCCCA	2100
15	CCCCAAAGGC	CAAACTCTCC	ACTCCCTCAG	CTCGGACACC	TTCTCTCCTC	CCAGATTCCA	2160
	GTAACTCCCA	ATCTTCTCTC	TGCAGAGCCC	AAATCTTGTG	ACAAAACTCA	CACATGCCCA	2220
	CCGTGCCCAG	GTAAGCCAGC	CCAGGCCTCG	CCCTCCAGCT	CAAGGCGGGA	CAGGTGCCCT	2280
						GCCACATGGA	2340
						CCTCTGTCCC	
20						ATGAGCTGAC	
						ACATCGCCGT	2520
						CCGTGCTGGA	2520
						GGTGGCAGCA	2640
						ACACGCAGAA	2700
25						GCTCCCCGGG	2760
						CCGGGCGCCC	2820
						ATGGTTCTTT	
						GGGTCCCACT	2880
30		TGGCCCAGGC					3000
50						AGCAGCACCT	3060
						CAGCCCCTGC	3120
						CATGCCCACT	
		CCTAGTCCAT					3240
35						AACCGACTCC	3300
33						CACACACTCA	3360
	GCCCAGACCC	GTTCAACAAA	CCCCGCACTG	AGGTTGGCCG	GCCACACGGC	CACCACACAC	
	ACACGTGCAC	GCCTCACACA	CGGAGCCTCA	CCCGGGCGAA	CTGCACAGCA	CCCAGACCAG	3480
						CCCCACGCGG	3540
40						TCAGACAAAC	3600
40						GGATCACACA	3660
		TCCCTGGCCC					3720
						CCCGTGCCTT	3780
						GAAATTGCAT	3840
						GACAGCAAGG	3900
45						ATGGCTTCTG	3960
						AGCGGCGCAT	4020
	TAAGCGCGGC	GGGTGTGGTG	GTTACGCGCA	GCGTGACCGC	TACACTTGCC	AGCGCCCTAG	4080
	CGCCCGCTCC	TTTCGCTTTC	TTCCCTTCCT	TTCTCGCCAC	GTTCGCCGGG	CCTCTCAAAA	4140
	AAGGGAAAAA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAT	AGTCCCGCCC	CTAACTCCGC	4200
50	CCATCCCGCC	CCTAACTCCG	CCCAGTTCCG	CCCATTCTCC	GCCCCATGGC	TGACTAATTT	4260
	TTTTTTTTTA	TGCAGAGGCC	GAGGCCGCCT	CGGCCTCTGA	GCTATTCCAG	AAGTAGTGAG	4320
						GCTGCGATTT	
						CCCGCTGCCA	4440
	TCATGGTTCG	ACCATTGAAC	TGCATCGTCG	CCGTGTCCCA	AAATATGGGG	ATTGGCAAGA	4500
55						AGAATGACCA	4560
						ACCTGGTTCT	
		GAAGAATCGA					4680
		ACCACGAGGA					4740
		ACCGGAATTG					4800

					ACAAGGATCA	4860
TGCAGGAATT	TGAAAGTGAC	ACGTTTTTCC	CAGAAATTGA	TTTGGGGAAA	TATAAACTTC	4920
TCCCAGAATA	CCCAGGCGTC	CTCTCTGAGG	TCCAGGAGGA	AAAAGGCATC	AAGTATAAGT	4980
TTGAAGTCTA	CGAGAAGAAA	GACTAACAGG	AAGATGCTTT	CAAGTTCTCT	GCTCCCCTCC	5040
TAAAGCTATG	CATTTTTATA	AGACCATGGG	ACTTTTGCTG	GCTTTAGATC	TCTTTGTGAA	5100
					TTTAAAGCTC	5160
					TAATTGTTTG	5220
					ATGCCTTTAA	5280
					CTACTGCTGA	5340
					AGGACTTTCC	5400
TTCAGAATTG	CTAAGTTTTT	TGAGTCATGC	TGTGTTTAGT	AATAGAACTC	TTGCTTGCTT	5460
TGCTATTTAC	ACCACAAAGG	AAAAAGCTGC	ACTGCTATAC	AAGAAAATTA	TGGAAAAATA	5520
TTCTGTAACC	TTTATAACTA	GGCATAACAG	TTATATCAT	AACATACTGT	TOGAMAMAIA	5580
TCCACACAGG	CATAGAGTGT	CTGCTATTAA	TAACTATCCT	CANANATTOT	GTACCTTTAG	5640
					TGACTAGAGA	5700
					CTCCCACACC	5760
					TTTATTGCAG	
					GCATTTTTT	5820
				ATCTTATCAT		5880
				CTTCGCCCAC		5940
						6000
					ACAAATAAAG	6060
					TCTTATCATG	6120
				ATGGTCATAG		6180
				AGCCGGAAGC		6240
				TGCGTTGCGC		6300
					CGCGCGGGGA	6360
					CTGCGCTCGG	6420
				GGTAATACGG		6480
				CCAGCAAAAG	GCCAGGAACC	6540
						6600
AAAATCGACG	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA CCTGCCGCTT	TACCAGGCGT	6660
TTCCCCCTGG	MAGGICCCTC	GTGCGCTCTC	CTGTTCCGAC	ATGCTCACGC	ACCGGATACC	6720
TCACTTCCCTT	CTACCTTCG	GGAAGCGTGG	TGGGGGTGTGTGT	GCACGAACCC	TGTAGGTATC	6780
CCGACCGCTG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCTAACTATC	CTCCTCTGTGT	CAACCCGGTA	CCCGTTCAGC	6840
TATCGCCACT	GGCAGCAGCC	ACTOCOTARCA	CCATTACCAC	AGCGAGGTAT	AGACACGACT	6900
CTACAGAGTT	CTTCAACTCC	TOGGGGTAACA	ACCCCUTACAC	TAGAAGGACA	GTAGGCGGTG	6960
TCTCCCCTCT	CCTCAACCCA	COURT	CARRACAC	TAGAAGGACA	TGATCCGGCA	7020
AACAAACCAC	CCCGCCCCA	COTTO	GAMMANGAG I	GCAGCAGATT	AGGGGGGGGA	7080
AAAAAAAAAA	TONACARCAT	CCTTTTCATCT	TIGITIGCAA	GTCTGACGCT	ACGCGCAGAA	7140
				AAGGATCTTC		7200
TTTTTAAATTA	AAAATCAACT	TTTTTAATCAA	DATIALCAMA	ATATGAGTAA	ACCIAGATCC	7260 7320
ACAGTTACCA	ATCCTTAATC	ACTGACCCAC	CTATCTCACC	GATCTGTCTA	MC11GG1C1G	7380
				ACGGGAGGGC		7440
					TTATCAGCAA	7500
				TGCAACTTTA		7560
TCCAGTCTAT	TAATTGTTGC	CCCCAACCTA	CACTAGCTAC	TTCGCCAGTT	AAMACMMMAG	7620
				CTCGTCGTTT		7680
				ATCCCCCATG		7740
				TAAGTTGGCC		7800
				CATGCCATCC		7860
				ATAGTGTATG		7920
GTTGCTCTTG	CCCGGCGTCA	ATACGGGATA	ATACCGCGCC	ACATAGCAGA	ACTTTANAC	7920
				AAGGATCTTA		8040
				TTCAGCATCT		8100
CCAGCGTTTC	TGGGTGAGCA	AAAACAGGAA	GGCAAAATGC	CGCAAAAAAG	GGAATAAGGG	8160
				ATATTATTGA		8220
					AAACAAATAG	8280
	CACATTTCCC					8327

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS: 5
 - (A) LENGTH: 8897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

	GGTACCAATT	TAAATTGATA	TCTCCTTAGG	TCTCGAGCAC	CATGAAGTTG	CCTGTTAGGC	60
15	TGTTGGTGCT	GATGTTCTGG	ATTCCTGCTT	CCAGCAGTGA	TGTTTTGATG	ACCCAAATTC	120
	CAGTCTCCCT	GCCTGTCAGT	CTTGGAGATC	AAGCGTCCAT	CTCTTGCAGA	TCTAGTCAGA	180
	TCATTGTACA	TAATAATGGC	AACACCTATT	TAGAATGGTA	CCTGCAGAAA	CCAGGCCAGT	240
	CTCCACAGCT	CCTGATCTAC	AAAGTTTCCA	ACCGATTTTC	TGGGGTCCCA	GACAGGTTCA	300
	GCGGCAGTGG	ATCAGGGACA	GATTTCACAC	TCAAGATCAG	CAGAGTGGAG	GCTGAGGATC	360
20	TGGGAGTTTA	TTACTGCTTT	CAAGGTTCAC	ATGTTCCATT	CACGTTCGGC	TCGGGGACAA	420
	AGTTGGAAAT	AAAACGTAAG	TCTCGAGTCT	CTAGATAACC	GGTCAATCGA	TTGGAATTCT	480
	AAACTCTGAG	GGGGTCGGAT	GACGTGGCCA	TTCTTTGCCT	AAAGCATTGA	GTTTACTGCA	540
	AGGTCAGAAA	AGCATGCAAA	GCCCTCAGAA	TGGCTGCAAA	GAGCTCCAAC	AAAACAATTT	600
	AGAACTTTAT	TAAGGAATAG	GGGGAAGCTA	GGAAGAAACT	CAAAACATCA	AGATTTTAAA	660
25	TACGCTTCTT	GGTCTCCTTG	CTATAATTAT	CTGGGATAAG	CATGCTGTTT	TCTGTCTGTC	720
	CCTAACATGC	CCTTATCCGC	AAACAACACA	CCCAAGGGCA	GAACTTTGTT	ACTTAAACAC	780
	CATCCTGTTT	GCTTCTTTCC	TCAGGAACTG	TGGCTGCACC	ATCTGTCTTC	ATCTTCCCGC	840
	CATCTGATGA	GCAGTTGAAA	TCTGGAACTG	CCTCTGTTGT	GTGCCTGCTG	AATAACTTCT	900
	ATCCCAGAGA	GGCCAAAGTA	CAGTGGAAGG	TGGATAACGC	CCTCCAATCG	GGTAACTCCC	960
30	AGGAGAGTGT	CACAGAGCAG	GAGAGCAAGG	ACAGCACCTA	CAGCCTCAGC	AGCACCCTGA	1020
	CGCTGAGCAA	AGCAGACTAC	GAGAAACACA	AAGTCTACGC	CTGCGAAGTC	ACCCATCAGG	1080
	GCCTGAGCTC	GCCCGTCACA	AAGAGCTTCA	ACAGGGGAGA	GTGTTAGAGG	GAGAAGTGCC	1140
	CCCACCTGCT	CCTCAGTTCC	AGCCTGACCC	CCTCCCATCC	TTTGGCCTCT	GACCCTTTTT	1200
	CCACAGGGGA	CCTACCCCTA	TTGCGGTCCT	CCAGCTCATC	TTTCACCTCA	CCCCCCTCCT	1260
35	CCTCCTTGGC	TTTAATTATG	CTAATGTTGG	AGGAGAATGA	ATAAATAAAG	TGAATCTTTG	1320
	CACCTGTGGT	TTCTCTCTTT	CCTCATTTAA	TAATTATTAT	CTGTTGTTTT	ACCAACTACT	1380
		TATAAGGGAC					1440
		CATTCTATTT					1500
		TGTCCTCACA					1560
40		AGCAAGCCCT					1620
		CAATTCCCTG					1680
		ATCATTCATT					1740
		AATAGGGAAA					1800
45		TACATTTTTA					1860
45		CACAACCTAA					1920
		AAGGTTCTAT					1980
		GACTGAGTGT					2040
		AAAAGCCAAA					2100
50		GTATGTTTAT					2160
30		CACACAGATG					2220
		TTCTGTATGT					2280
		GATGGAAATT					2340
		GCTTCTGGGG					2400
55		CACTGTTCTG					2460
55		AGTTAATAGA					2520
		GCCTGGGATC TTCCAGGGCT					2580
		CTGTTTGGCT					2640
		GGGACAGAGG					2700 2760
	CIICMGCAAG	GGGACAGAGG	MCMGMATTAA	CC11GCCCAG	MCMC 1GGAAA	CCCMIGIAIG	2/60

			GGGGGAAGGG				2820
			CCCTCTCAGC				2880
			TGAAGGGGTT				2940
	CAAATGACTG	ACAATCCCTT	TGTCCTGCTT	TGTTTTTCTT	TCCAGTCAGT	ACTGGGAAAG	3000
5			GAAACTACAT				3060
	GAATGTTGAT	GAGTATCAAA	TCTTTCAAAC	TTTGGAGGTT	TGAGTAGGGG	TGAGACTCAG	3120
	TAATGTCCCT	TCCAATGACA	TGAACTTGCT	CACTCATCCC	TGGGGGCCAA	ATTGAACAAT	3180
	CAAAGGCAGG	CATAATCCAG	TTATGAATTC	TTGCGGCCGC	TTGCTAGCTT	CACGTGTTGG	3240
	ATCCAACCGC	GGAAGGGCCC	TATTCTATAG	TGTCACCTAA	ATGCTAGAGC	TCGCTGATCA	3300
10	GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCTCCCC	CGTGCCTTCC	3360
	TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	3420
	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA	CAGCAAGGGG	3480
	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGCTTCTGAG	3540
	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG	TATCCCCACG	CGCCCTGTAG	CGGCGCATTA	3600
15			TACGCGCAGC				3660
						TCTCAAAAAA	3720
			CAATTAGTCA				3780
			CAGTTCCGCC				3840
			GGCCGCCTCG				3900
20			CTTTTGCAAA				3960
20			CTAGCGTGAA				4020
			CATCGTCGCC				4080
			GCTCAGGAAC				4140
			ACAGAATCTG				4200
25			TTTAAAGGAC				4260
20			TCATTTTCTT				4320
			AAGTAAAGTA				4380
			TCAACCAGGC				4440
			GTTTTTCCCA				4500
30			CTCTGAGGTC				4560
50			CTAACAGGAA				4620
			ACCATGGGAC				4680
			ACATAATTGG				4740
			AGTGTATAAT				4800
35			GGAACTGATG				4860
			GAAGAAATGC				4920
			AAAAAGAAGA				4980
			AGTCATGCTG				5040
			AAAGCTGCAC				5100
40			CATAACAGTT				5160
			GCTATTAATA				5220
			AATAAGGAAT				5280
			TGTAGAGGTT				5340
			AATGAATGCA				5400
45			CAATAGCATC				5460
			GTCCAAACTC				5520
			GGATCTCATG				5580
			CAAATAAAGC				5640
			TTGTGGTTTG				5700
50			CTAGAGCTTG				5760
	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT	AAAGTGTAAA	5820
			GAGCTAACTC				5880
			GTGCCAGCTG				5940
			CTCTTCCGCT				6000
55						ATCCACAGAA	6060
			GAACATGTGA				6120
			GTTTTTCCAT				6180
			GTGGCGAAAC				6240
			GCGCTCTCCT				6300

50

55

	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC	6360
	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	6420
	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	6480
	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	6540
5	ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	6600
	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	6660
	CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	6720
	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	6780
	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	6840
10	TTAAATTAAA	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	6900
	AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	6960
	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	7020
	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	7080
	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	7140
15	CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	7200
	AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	7260
	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAAA	7320
	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	7380
	CTCATGGTTA	TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	7440
20	TCTGTGACTG	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	7500
	TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	7560
	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	7620
	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	TACTTTCACC	7680
	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	7740
25	ACACGGAAAT	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	7800
		TCATGAGCGG					7860
		CATTTCCCCG					7920
		CCTGAGGCGC					7980
20		TATTTTTGAG					8040
30		ATCTGCTCTG					8100
		GCTGAGTAGT					8160
		ATGAAGAATC					8220
		ACGCGTTGAC					8280
35		CATAGCCCAT					8340
33		CCGCCCAACG					8400
		ATAGGGACTT					8460
						ACGTCAATGA	8520
						TTCCTACTTG	8580
40		TACGTATTAG					8640
+0		GGATAGCGGT					8700
		TTGTTTTGGC					8760
		ACGCAAATGG					8820
	TAGGGAGACC	ACTAGAGAAC	CCACTGCTTA	CIGGCTTATC	GAAATTAATA	CGACTCACTA	8880
15	TAGGGAGACC	CAAGCTT					8897

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8321 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGTACCAATT TAAATTGATA TCTCCTTAGG TCTCGAGTCT CTAGATAACC GGTCAATCGA 60 TTGGAATTCT TGCGGCCGCT TGCTAGCCAC CATGGAGTTG TGGTAAGCT TGGTCTTCCT 120

	TGTCCTTGTT	TTAAAAGGTG	TCCAGTGTGA	AGTGCAACTG	GTGGAGTCTG	GGGGAGGCTT	180
		GGAGGGTCCC					240
		TATTGGGTTC					300
		GGTGATATAA					360
5		GCAAAGAACA					420
,		TACTGTGCAA					480
		GTCACGGTCT					540
		AAGAGCACCT					600
10		CCGGTGACGG					660
10		GTCCTACAGT					720
		TTGGGCACCC					780
		AAGAAAGTTG					840
		CGCTCCTGCC					900
		CGTCTGCCTC					960
15		CTGGCTTTTT					1020
	CAGGCCCTGC	ACACAAAGGG	GCAGGTGCTG	GGCTCAGACC	TGCCAAGAGC	CATATCCGGG	1080
	AGGACCCTGC	CCCTGACCTA	AGCCCACCCC	AAAGGCCAAA	CTCTCCACTC	CCTCAGCTCG	1140
	GACACCTTCT	CTCCTCCCAG	ATTCCAGTAA	CTCCCAATCT	TCTCTCTGCA	GAGCCCAAAT	1200
	CTTGTGACAA	AACTCACACA	TGCCCACCGT	GCCCAGGTAA	GCCAGCCCAG	GCCTCGCCCT	1260
20	CCAGCTCAAG	GCGGGACAGG	TGCCCTAGAG	TAGCCTGCAT	CCAGGGACAC	ACCACGTGGG	1320
	TACCAACATG	TCCGGAGCCA	CATGGACAGA	GGCCGGCTCG	GCCCACCCTC	TGCCCTGAGA	1380
	GTGACCGCTG	TACCAACCTC	TGTCCCTACA	GGGCAGCCCC	GAGAACCACA	GGTGTACACC	1440
		CCCGGGATGA					1500
		CCAGCGACAT					1560
25		CGCCTCCCGT					1620
20		AGAGCAGGTG					1680
		ACCACTACAC					1740
		GCCCCCGCTC					1800
		TACTTCCCGG					1860
30							1920
30		ACTGTGATGG					1980
		CAGAGCGGGT					2040
						GGATTTGCCA	
		CCCTCCAGCA					2100
35		GACACACAGC					2160
33		GACCTCCATG					2220
		ACCCATCTAC					2280
		GGACACAACC					2340
		CCCACACACA					2400
40		CACGGCCACC					2460
40						ACTCCTCGGA	2520
		CACGAGCCCC					2580
		ACCTGCTCAG					2640
						CCACTTCCCA	2700
		TCCCTGCAGG					2760
45		CCCTCCCCCG					2820
						CTATTCTGGG	2880
		GGGCAGGACA					2940
						CTAGGGGGTA	3000
	TCCCCACGCG	CCCTGTAGCG	GCGCATTAAG	CGCGGCGGGT	GTGGTGGTTA	CGCGCAGCGT	3060
50	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCTTTC	GCTTTCTTCC	CTTCCTTTCT	3120
	CGCCACGTTC	GCCGGGCCTC	TCAAAAAAGG	GAAAAAAAGC	ATGCATCTCA	ATTAGTCAGC	3180
	AACCATAGTC	CCGCCCCTAA	CTCCGCCCAT	CCCGCCCCTA	ACTCCGCCCA	GTTCCGCCCA	3240
	TTCTCCGCCC	CATGGCTGAC	TAATTTTTT	TATTTATGCA	GAGGCCGAGG	CCGCCTCGGC	3300
	CTCTGAGCTA	TTCCAGAAGT	AGTGAGGAGG	CTTTTTTGGA	GGCCTAGGCT	TTTGCAAAAA	3360
55						AGCGTGAAGG	3420
						TCGTCGCCGT	3480
						TCAGGAACGA	3540
						AGAATCTGGT	3600
						TAAAGGACAG	3660

	220022002	ammamas ams	CACAA CIMCAA	AGAACCACCA	aanaan aama	3 mmmmammaa	3720
				TGAACAACCG			3780
	CATGGTTTGG	ATAGTCGGAG	GCAGTTCTGT	TTACCAGGAA	GCCATGAATC	AACCAGGCCA	3840
	CCTTAGACTC	TTTGTGACAA	GGATCATGCA	GGAATTTGAA	AGTGACACGT	TTTTCCCAGA	3900
5	AATTGATTTG	GGGAAATATA	AACTTCTCCC	AGAATACCCA	GGCGTCCTCT	CTGAGGTCCA	3960
						AACAGGAAGA	4020
						CATGGGACTT	4080
						ATAATTGGAC	4140
1.0				GTAAATATAA			4200
10						AACTGATGAA	4260
				GAAAACCTGT			4320
	TCTAGTGATG	ATGAGGCTAC	TGCTGACTCT	CAACATTCTA	CTCCTCCAAA	AAAGAAGAGA	4380
	AAGGTAGAAG	ACCCCAAGGA	CTTTCCTTCA	GAATTGCTAA	GTTTTTTGAG	TCATGCTGTG	4440
	TTTAGTAATA	GAACTCTTGC	TTGCTTTGCT	ATTTACACCA	CAAAGGAAAA	AGCTGCACTG	4500
15				GTAACCTTTA			4560
10				CACAGGCATA			4620
						TAAGGAATAT	4680
							4740
				AATCAGCCAT			
						TGAATGCAAT	4800
20						ATAGCATCAC	4860
						CCAAACTCAT	4920
	CAATGTATCT	TATCATGTCT	GGATCGGCTG	GATGATCCTC	CAGCGCGGGG	ATCTCATGCT	4980
	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	AATAAAGCAA	5040
	TAGCATCACA	AATTTCACAA	ATABAGCATT	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	5100
25						AGAGCTTGGC	5160
20						TTCCACACAA	5220
						GCTAACTCAC	5280
						GCCAGCTGCA	5340
20						CTTCCGCTTC	5400
30				TCGGCTGCGG			5460
						ACATGTGAGC	5520
						TTTTCCATAG	5580
						GGCGAAACCC	5640
						GCTCTCCTGT	5700
35	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	GCGTGGCGCT	5760
						CCAAGCTGGG	5820
	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	5880
						GTAACAGGAT	5940
						CTAACTACGG	6000
40						CCTTCGGAAA	6060
70						GTTTTTTTGT	6120
							6180
						TGATCTTTTC	
						TCATGAGATT	6240
						AATCAATCTA	6300
45						AGGCACCTAT	6360
						TGTAGATAAC	6420
	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	CAGTGCTGCA	ATGATACCGC	GAGACCCACG	6480
	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA	CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	6540
						AAGCTAGAGT	6600
50	AAGTAGTTCG	CCAGTTAATA	GTTTGCGCAA	CGTTGTTGCC	ATTGCTACAG	GCATCGTGGT	6660
50						CAAGGCGAGT	6720
						CGATCGTTGT	6780
						ATAATTCTCT	6840
							6900
						CCAAGTCATT	
55							. 6960
						CGGGGCGAAA	7020
						GTGCACCCAA	7080
						CAGGAAGGCA	7140
	AAATGCCGCA	AAAAAGGGAA	TAAGGGCGAC	ACGGAAATGT	TGAATACTCA	TACTCTTCCT	7200

35

40

45

50

	TTTTCAATAT	TATTGAAGCA	TTTATCAGGG	TTATTGTCTC	ATGAGCGGAT	ACATATTTGA	7260
	ATGTATTTAG	AAAAATAAAC	AAATAGGGGT	TCCGCGCACA	TTTCCCCGAA	AAGTGCCACC	7320
	TGACGTCGAC	GGATCGGGAG	ATCTGCTAGG	TGACCTGAGG	CGCGCCGGCT	TCGAATAGCC	7380
	AGAGTAACCT	TTTTTTTTAA	TTTTATTTTA	TTTTATTTT	GAGATGGAGT	TTGGCGCCGA	7440
5	TCTCCCGATC	CCCTATGGTC	GACTCTCAGT	ACAATCTGCT	CTGATGCCGC	ATAGTTAAGC	7500
	CAGTATCTGC	TCCCTGCTTG	TGTGTTGGAG	GTCGCTGAGT	AGTGCGCGAG	CAAAATTTAA	7560
	GCTACAACAA	GGCAAGGCTT	GACCGACAAT	TGCATGAAGA	ATCTGCTTAG	GGTTAGGCGT	7620
	TTTGCGCTGC	TTCGCGATGT	ACGGGCCAGA	TATACGCGTT	GACATTGATT	ATTGACTAGT	7680
	TATTAATAGT	AATCAATTAC	GGGGTCATTA	GTTCATAGCC	CATATATGGA	GTTCCGCGTT	7740
10	ACATAACTTA	CGGTAAATGG	CCCGCCTGGC	TGACCGCCCA	ACGACCCCCG	CCCATTGACG	7800
	TCAATAATGA	CGTATGTTCC	CATAGTAACG	CCAATAGGGA	CTTTCCATTG	ACGTCAATGG	7860
	GTGGACTATT	TACGGTAAAC	TGCCCACTTG	GCAGTACATC	AAGTGTATCA	TATGCCAAGT	7920
	ACGCCCCCTA	TTGACGTCAA	TGACGGTAAA	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	7980
	ACCTTATGGG	ACTTTCCTAC	TTGGCAGTAC	ATCTACGTAT	TAGTCATCGC	TATTACCATG	8040
15	GTGATGCGGT	TTTGGCAGTA	CATCAATGGG	CGTGGATAGC	GGTTTGACTC	ACGGGGATTT	8100
	CCAAGTCTCC	ACCCCATTGA	CGTCAATGGG	AGTTTGTTTT	GGCACCAAAA	TCAACGGGAC	8160
	TTTCCAAAAT	GTCGTAACAA	CTCCGCCCCA	TTGACGCAAA	TGGGCGGTAG	GCGTGTACGG	8220
	TGGGAGGTCT	ATATAAGCAG	AGCTCTCTGG	CTAACTAGAG	AACCCACTGC	TTACTGGCTT	8280
	ATCGAAATTA	ATACGACTCA	CTATAGGGAG	ACCCAAGCTT	G		8321
20							
	/-	A THEODIANE	TON DOD ODG	TD NO.12.			

- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 8897 base pairs 25 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GACGGATCGG	GAGATCTGCT	AGCCCGGGTG	ACCTGAGGCG	CGCCGGCTTC	GAATAGCCAG	60
AGTAACCTTT	TTTTTTAATT	TTATTTTATT	TTATTTTTGA	GATGGAGTTT	GGCGCCGATC	120
TCCCGATCCC	CTATGGTCGA	CTCTCAGTAC	AATCTGCTCT	GATGCCGCAT	AGTTAAGCCA	180
GTATCTGCTC	CCTGCTTGTG	TGTTGGAGGT	CGCTGAGTAG	TGCGCGAGCA	AAATTTAAGC	240
TACAACAAGG	CAAGGCTTGA	CCGACAATTG	CATGAAGAAT	CTGCTTAGGG	TTAGGCGTTT	300
TGCGCTGCTT	CGCGATGTAC	GGGCCAGATA	TACGCGTTGA	CATTGATTAT	TGACTAGTTA	360
TTAATAGTAA	TCAATTACGG	GGTCATTAGT	TCATAGCCCA	TATATGGAGT	TCCGCGTTAC	420
ATAACTTACG	GTAAATGGCC	CGCCTGGCTG	ACCGCCCAAC	GACCCCCGCC	CATTGACGTC	480
AATAATGACG	TATGTTCCCA	TAGTAACGCC	AATAGGGACT	TTCCATTGAC	GTCAATGGGT	540
GGACTATTTA	CGGTAAACTG	CCCACTTGGC	AGTACATCAA	GTGTATCATA	TGCCAAGTAC	600
GCCCCCTATT	GACGTCAATG	ACGGTAAATG	GCCCGCCTGG	CATTATGCCC	AGTACATGAC	660
CTTATGGGAC	TTTCCTACTT	GGCAGTACAT	CTACGTATTA	GTCATCGCTA	TTACCATGGT	720
GATGCGGTTT	TGGCAGTACA	TCAATGGGCG	TGGATAGCGG	TTTGACTCAC	GGGGATTTCC	780
AAGTCTCCAC	CCCATTGACG	TCAATGGGAG	TTTGTTTTGG	CACCAAAATC	AACGGGACTT	840
TCCAAAATGT	CGTAACAACT	CCGCCCCATT	GACGCAAATG	GGCGGTAGGC	GTGTACGGTG	900
GGAGGTCTAT	ATAAGCAGAG	CTCTCTGGCT	AACTAGAGAA	CCCACTGCTT	ACTGGCTTAT	960
CGAAATTAAT	ACGACTCACT	ATAGGGAGAC	CCAAGCTTGG	TACCAATTTA	AATTGATATC	1020
TCCTTAGGTC	TCGAGCACCA	TGAAGTTGCC	TGTTAGGCTG	TTGGTGCTGA	TGTTCTGGAT	1080
TCCTGCTTCC	AGCAGTGATG	TTGTCATGAC	CCAAACCCCA	CTGTCCAGTC	CTGTCACGCT	1140
			TAGTCAGATC			1200
			AGGGCAGTCT			1260
			CAGGTTCAGC			1320
			TGAGGATGTG			1380
GGGTTCACAT	GTTCCATTCA	CGTTCGGCCA	AGGGACAAAG	TTGGAAATCA	AACGTAAGTC	1440
			GGAATTCTAA			1500
			TTACTGCAAG			1560
CCTCAGAATG	GCTGCAAAGA	GCTCCAACAA	AACAATTTAG	AACTTTATTA	AGGAATAGGG	1620

	0022000200	AAGAAACTCA	****	3.0000003.3.3.03	aaammammaa	mamaammaam	1680
		GGGATAAGCA					
							1740
		CAAGGGCAGA					1800
_		GCTGCACCAT					1860
5		TCTGTTGTGT					1920
		GATAACGCCC					1980
	GAGCAAGGAC	AGCACCTACA	GCCTCAGCAG	CACCCTGACG	CTGAGCAAAG	CAGACTACGA	2040
	GAAACACAAA	GTCTACGCCT	GCGAAGTCAC	CCATCAGGGC	CTGAGCTCGC	CCGTCACAAA	2100
	GAGCTTCAAC	AGGGGAGAGT	GTTAGAGGGA	GAAGTGCCCC	CACCTGCTCC	TCAGTTCCAG	2160
10		TCCCATCCTT					2220
		AGCTCATCTT					2280
		GAGAATGAAT					2340
		ATTATTATCT					2400
		CATCCTAAGG					2460
15		CTCTGCAAGA					2520
15		ATGGTAGGAG					2580
		TAAGGGTGAC					2640
		AGCAAATTTT					2700
20		AAAATAACAA					2760
20		TCATGGTACT					2820
		$\tt GGGACTCCTG$					2880
		TATACTGTGA					2940
		CAAATATATT					3000
		AAAAACTATG					3060
25		CCCGATTGTC					3120
	ATTAGAATAC	CCAATGAGGA	GAATTAACAA	GCTACAACTA	TACCTACTCA	CACAGATGAA	3180
	TCTCATAAAA	ATAATGTTAC	ATAAGAGAAA	CTCAATGCAA	AAGATATGTT	CTGTATGTTT	3240
	TCATCCATAT	AAAGTTCAAA	ACCAGGTAAA	AATAAAGTTA	GAAATTTGGA	TGGAAATTAC	3300
	TCTTAGCTGG	GGGTGGGCGA	GTTAGTGCCT	GGGAGAAGAC	AAGAAGGGGC	TTCTGGGGTC	3360
30		TCTGTTCCTC					3420
-		GCTTCAAAAT					3480
						CTGGGATCAA	3540
						CCAGGGCTCA	3600
		CAAAACAACA					3660
35						GACAGAGGAC	3720
55						TTTGGGAAGG	3780
						GGCCCTGCCC	3840
						CTACACTCTG	3900
		GGAGTAACTA					3960
40						GTCATGGAGA	4020
70						GTATCAAATC	4080
		TGGAGGTTTG					4140
		CTCATCCCTG					4200
						AAGGGCCCTA	4260
45							4320
45		TCACCTAAAT					
		TGTTGTTTGC					4380
		TTCCTAATAA					4440
						GACAATAGCA	4500
=0		GGATGCGGTG					4560
50						GTGGTGGTTA	4620
	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCTTTC	GCTTTCTTCC	4680
						ATGCATCTCA	4740
						ACTCCGCCCA	4800
						GAGGCCGAGG	4860
55						GGCCTAGGCT	4920
						CGGCAATCCT	4980
						TTGAACTGCA	5040
						TGGCCTCCGC	5100
	TCAGGAACGA	GTTCAAGTAC	TTCCAAAGAA	TGACCACAAC	CTCTTCAGTG	GAAGGTAAAC	5160

	AGAATCTGGT	GATTATGGGT	AGGAAAACCT	GGTTCTCCAT	TCCTGAGAAG	AATCGACCTT	5220
	TAAAGGACAG	AATTAATATA	GTTCTCAGTA	GAGAACTCAA	AGAACCACCA	CGAGGAGCTC	5280
	ATTTTCTTGC	CAAAAGTTTG	GATGATGCCT	TAAGACTTAT	TGAACAACCG	GAATTGGCAA	5340
	GTAAAGTAGA	CATGGTTTGG	ATAGTCGGAG	GCAGTTCTGT	TTACCAGGAA	GCCATGAATC	5400
5	AACCACCCCA	CCTTAGACTC	ጥጥጥርጥርልሮልል	GGATCATGCA	GGAATTTGAA	AGTGACACGT	5460
5	MMCCAGGCCA	AATTCATTC	CCCANATATA	AACTTCTCCC	AGAATACCCA	GGCGTCCTCT	5520
	TTTTCCCAGA	AMIIGATIIG	COCAMONA	AMAZONNOCA	AGTCTACGAG	AAGAAAGACT	5580
	CTGAGGTCCA	GGAGGAAAAA	GGCATCAAGI	AIAAGIIIGA	AGTCTACGAG	MMCAMMONC I	5640
	AACAGGAAGA	TGCTTTCAAG	TTCTCTGCTC	CCCTCCTAAA	GCTATGCATT	TTTATAMGAC	5700
	CATGGGACTT	TTGCTGGCTT	TAGATCTCTT	TGTGAAGGAA	CCTTACTTCT	GTGGTGTGAC	
10	ATAATTGGAC	AAACTACCTA	CAGAGATTTA	AAGCTCTAAG	GTAAATATAA	AATTTTTAAG	5760
	TGTATAATGT	GTTAAACTAC	TGATTCTAAT	TGTTTGTGTA	TTTTAGATTC	CAACCTATGG	5820
	AACTGATGAA	TGGGAGCAGT	GGTGGAATGC	CTTTAATGAG	GAAAACCTGT	TTTGCTCAGA	5880
	AGAAATGCCA	TCTAGTGATG	ATGAGGCTAC	TGCTGACTCT	CAACATTCTA	CTCCTCCAAA	5940
	AAAGAAGAGA	AAGGTAGAAG	ACCCCAAGGA	CTTTCCTTCA	GAATTGCTAA	GTTTTTTGAG	6000
15	TCATGCTGTG	TTTAGTAATA	GAACTCTTGC	TTGCTTTGCT	ATTTACACCA	CAAAGGAAAA	6060
10	ACCTCCACTC	CTATACAAGA	AAATTATGGA	AAAATATTCT	GTAACCTTTA	TAAGTAGGCA	6120
	MACCOCACTO	AATCATAACA	TACTCTTTTT	TCTTACTCCA	CACAGGCATA	GAGTGTCTGC	6180
	TAMCAGITAT	MATCATAACA	AAMMOMOMAC	CONTRACCORT	TTAATTTGTA	A ACCCCCTTA A	6240
	TATTAATAAC	TATGUTCAAA	AMITGIGIAC	CITIAGCITI	AATCAGCCAT	ACCACATTEC	6300
••	TAAGGAATAT	TTGATGTATA	GIGCCITGAC	TAGAGATCAT	AMI CAGCCAI	ACCACATITO	6360
20	TAGAGGTTTT	ACTTGCTTTA	AAAAACCTCC	CACACCTCCC	CCTGAACCTG	AMACAIMMAN	6420
	TGAATGCAAT	TGTTGTTGTT	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	
	ATAGCATCAC	AAATTTCACA	AATAAAGCAT	TTTTTTCACT	GCATTCTAGT	TGTGGTTTGT	6480
	CCAAACTCAT	CAATGTATCT	TATCATGTCT	GGATCGGCTG	GATGATCCTC	CAGCGCGGGG	6540
	ATCTCATGCT	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	6600
25	AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	6660
	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG	TATACCGTCG	ACCTCTAGCT	6720
	AGAGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	6780
	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	6840
	CCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	6900
30	GCCAGCTGCA	TTANTCANTC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	6960
50	CTTCCCCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	7020
	CITCUGCITC	AAACCCCCTA	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	7080
	* CAGCICACIC	AAAAGGCGGIA	CANARGGCCA	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	7140
	ACATGIGAGC	AMAMOGCCAG	CAMANGGCCA	ATCACAAAAA	TOGROGOTOR	AGTCAGAGGT	7200
35	TITICCATAG	GC1CCGCCCC	CCIGACGAGC	A CO COMPETO	CCCTCCAACC	TCCCTCGTGC	7260
33	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGITICC	CCCIGGAAGC	CCTTCGGGAA	7320
	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCIGIC	. CGCCIIICIC	CTTCGGGAA	7380
	GCGTGGCGCT	TTCTCAATGC	TCACGCTGTA	GGTATCTCAG	TTCGGTGTAG	mma madaaama	7440
	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCIGCGCC	TTATCCGGTA	7500
	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	GCCACTGGCA	GCAGCCACTG	
40	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	AGAGTTCTTG	AAGTGGTGGC	7560
	CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	CGCTCTGCTG	AAGCCAGTTA	7620
	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	AACCACCGCT	GGTAGCGGTG	7680
	GTTTTTTTGT	TTGCAAGCAG	CAGATTACGC	GCAGAAAAA	AGGATCTCAA	GAAGATCCTT	7740
	TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	GGGATTTTGG	7800
45	TCATGAGATT	ATCAAAAAGG	ATCTTCACCI	AGATCCTTT	AAATTAAAA '	TGAAGTTTTA	7860
	AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG	TTACCAATGO	TTAATCAGTG	7920
	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	AGTTGCCTGA	CTCCCCGTCG	7980
	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	CAGTGCTGCA	ATGATACCGC	8040
	CACACCCACC	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA	CCAGCCAGCC	GGAAGGGCCG	8100
50	BGGGGTTGTTG	TCCTCCTCCT	A CTTTATCCC	CCTCCATCCZ	GTCTATTAAT	TGTTGCCGGG	8160
50	AGCGCAGAAG	1 TOGICCIGCA	COLUMN	CTTTCCCCA	COTTOTTCC	ATTGCTACAG	8220
	AAGCTAGAGT	AAGTAGTICG	maammaam7	magammaxmi	CACCTCCCC	TCCCAACGAT	8280
	GCATCGTGGT	GTCACGCTCG	TCGTTTGGTA	LIGGUIUMII	CAGCICCOGI	mmccamcama	8340
	CAAGGCGAGT	TACATGATCO	CCCATGTTGT	GCAMAAAAGC	. GGIIAGCICC	TTCGGTCCTC	8400
	CGATCGTTGT	CAGAAGTAAG	TIGGCCGCAC	TGTTATCACT	CATGGTTATG	GCAGCACTGC	8460
55	ATAATTCTCT	TACTGTCATO	CCATCCGTA	A GATGCTTTTC	: TGTGACTGGT	GAGTACTCAA	
	CCAAGTCATT	CTGAGAATA	TGTATGCGG	C GACCGAGTTO	G CTCTTGCCCG	GCGTCAATAC	8520
	GGGATAATA	CGCGCCACAT	AGCAGAACT	TAAAAGTGC	r catcattgg#	AAACGTTCTT	8580
	CGGGGCGAAA	ACTCTCAAGG	ATCTTACCG	C TGTTGAGAT	CAGTTCGATC	TAACCCACTC	8640
	GTGCACCCA	CTGATCTTCA	GCATCTTTT	A CTTTCACCAC	G CGTTTCTGGC	TGAGCAAAAA	8700

CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	TAAGGGCGAC	ACGGAAATGT	TGAATACTCA	8760
TACTCTTCCT	TTTTCAATAT	TATTGAAGCA	TTTATCAGGG	TTATTGTCTC	ATGAGCGGAT	8820
ACATATTTGA	ATGTATTTAG	AAAAATAAAC	AAATAGGGGT	TCCGCGCACA	TTTCCCCGAA	8880
AAGTGCCACC	TGACGTC					8897

What is claimed is:

- A method for inhibiting immunoglobulin-induced toxicity resulting from
 immunoglobulin immunotherapy in a subject comprising administering an
 immunoglobulin molecule to the subject, the immunoglobulin molecule
 having a variable region and a constant region, the immunoglobulin molecule
 being modified prior to administration by structurally altering multiple
 toxicity associated domains in the constant region so that immunoglobulininduced toxicity is inhibited.
 - 2. A method for inhibiting immunoglobulin-induced toxicity resulting from immunoglobulin immunotherapy in a subject comprising administering a structurally altered antibody to the subject, the structurally altered antibody comprising a variable region and a constant region, multiple toxicity associated domains in the constant region being modified so as to render the constant region unable to mediate an ADCC response or activate complement thereby inhibiting immunoglobulin-induced toxicity resulting from immunotherapy.

20

15

 A method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an Ig fusion protein to the subject, the Ig fusion protein having multiple structurally altered toxicity associated domains in the constant region.

25

 A method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an Ig fusion protein to the subject, the Ig fusion protein comprising a modified constant region, the modification being a structural alteration in multiple toxicity associated regions within the CH₂ domain.

- 5. A method for preventing immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject comprising:
 - (a) selecting an immunoglobulin which recognizes and binds a target, the target being associated with the disease;
- (b) mutating the immunoglobulin so selected by structurally altering multiple toxicity associated domains in the constant region of the immunoglobulin thereby creating a structurally altered immunoglobulin;
- 15 (c) administering the structurally altered immunoglobulin of step (b) to the subject under conditions so that the structurally altered immunoglobulin recognizes and binds the target thereby alleviating symptoms associated with the disease, the structural alteration of the constant region thereby preventing immunoglobulin-induced toxicity 20 in the subject.
 - A method for preventing immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject comprising:
- 25 (a) selecting an Ig fusion protein which recognizes and binds a target, the target being associated with the disease;
 - structurally altering multiple toxicity associated domains in the CH₂ domain of the constant region of the Ig protein so selected;

15

- (c) administering the structurally altered Ig fusion protein of step (b) to the subject under conditions so that the structurally altered Ig fusion protein recognizes and binds the target thereby alleviating symptoms associated with the disease, the structural alteration of the CH₂ domain thereby preventing immunoglobulin-induced toxicity in the subject.
- The method of claim 1, 2, 3, 4, 5, or 6, wherein the portion of the constant
 region is the CH₂ domain.
 - 8. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgG.
 - 9. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgM.
 - 10. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgA.
 - 11. The method of claim 2, wherein the antibody recognizes and binds Ley.
- 20 12. The method of claim 2, wherein the antibody recognizes and binds to Le^x.
 - The method of claim 2, wherein the antibody is a monoclonal antibody BR96
 produced by the hybridoma having the identifying characteristics of HB
 10036 as deposited with the ATCC.
 - 14. The method of claim 2, wherein the antibody is a chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.

- The method of claim 1 or 5, wherein the immunoglobulin recognizes and binds Le^y.
- The method of claim 1 or 5, wherein the immunoglobulin recognizes and
 binds to Le^x.
 - 17. The method of claim 1 or 5, wherein the immunoglobulin is a monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC.
 - 18. The method of claim 1 or 5, wherein the immunoglobulin is a chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.
- 15 19. The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds Le^y.
 - The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds to Le^x.
 - The method of claim 3, 4, or 6, wherein the Ig fusion protein is a derivative of monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC.
- 25 22. The method of claim 3, 4, or 6, wherein the Ig fusion protein is a derivative of chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.
 - 23. A pharmaceutical composition comprising a pharmaceutically effective

amount of a structurally altered immunoglobulin, and an acceptable carrier, the structurally altered immunoglobulin (1) recognizes and binds a target, the target is associated with cancer and (2) has an inactivated CH₂ domain.

- 5 24. A pharmaceutical composition comprising a pharmaceutically effective amount of structurally altered Ig fusion protein, and an acceptable carrier, the structurally altered Ig fusion protein (1) recognizes and binds a target, the target is associated with cancer and (2) has an inactivated CH₂ domain.
- 10 25. A method of treating carcinomas in vivo comprising administering to a subject a pharmaceutically effective amount of the composition of claim 23 or 24.
- 26. The method of claim 30, wherein the structurally altered immunoglobulin in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
- 27. The method of claim 24, wherein the Ig fusion protein in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
- The method of claim 2 or 5, wherein the antibody is conjugated to a
 cytotoxic agent.
 - The method of claim 1, wherein the immunoglobulin is conjugated to a cytotoxic agent.

5

20

- The method of claim 3, 4 or 6, wherein the Ig fusion protein is conjugated to a cytotoxic agent.
- The method of claim 28, 29, or 31, wherein the cytotoxic agent is selected from the group consisting of antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, and chemotherapeutic agents.
- 32. A method for treating a subject suffering from a cancer, the cancer being characterized as a group of cells having a tumor associated antigen on the cell surface, which method comprises administering to the subject a cancer killing amount of the composition of claim 23 or 24 joined to a cytotoxic agent under conditions which permit the molecule so joined to bind the tumor associated antigen on the cell surface so as to kill the cells so bound thereby curing the subject.
 - A pharmaceutical composition comprising a pharmaceutically effective amount of a structurally altered BR96 antibody, the structurally altered antibody having an inactivated CH₂ domain.
 - 34. A method for treating a subject suffering from a proliferative type disease characterized by cells having a BR96 antigen on the cell surface which comprises administering to the subject an effective amount of the composition of claim 33 joined to doxorubicin such that the immunoconjugate binds the BR96 antigen and kills said cells thereby treating the subject.
 - A method for inhibiting BR96 (ATCC: HB10036) induced toxicity resulting from immunoglobulin immunotherapy in a subject comprising administering

BR96 to the subject, the BR96 molecule being modified prior to administration, the modification comprising the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 310-331 and the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 231-238 so that complement and Fc receptor mediated toxicity is inhibited.

 A method for preventing BR96 (ATCC: HB10036) induced toxicity resulting from immunotherapy for cancer in a subject comprising:

10

5

(a) mutating the BR96 polypeptide by the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 310-331 and the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 231-238 so that complement and Fc receptor mediated immunoglobulin-induced toxicity is inhibited in the altered BR96 polypeptide; and

15

(b) administering the structurally altered BR96 polypeptide of step (a) to the subject under conditions so that the peptide recognizes and binds cancer associated Le^y antigens, thereby alleviating symptoms associated with the cancer, the structural alteration of the toxicity associated domains thereby preventing BR96 toxicity in the subject.

20

25 37. A chimeric BR96 antibody having a structurally altered constant region having the CH1 and CH3 domains but not the CH2 domain, the antibody being designated cBR96-A. 15

- The chimeric BR96 antibody of claim 37 which is expressed by the plasmid having the sequence shown in SEQ ID NO. 10.
- 39. A BR96 antibody having humanized variable and constant regions, wherein the constant region has been structurally altered so that the CH1 and CH3 domains are present but the CH2 domain is not, the antibody being designated hBR96-2A.
- The BR96 antibody of claim 39 which is expressed by the plasmid having
 the sequence shown in SEQ ID NO. 12.
 - 41. A BR96 antibody designated hBR96-2B having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine and glycine at amino acid position 237 is mutated to alanine.
 - 42. A BR96 antibody designated hBR96-2C having a structurally altered constant region wherein glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine.
 - A BR96 antibody designated hBR96-2D having a structurally altered constant region wherein proline at amino acid position 331 is mutated to alanine.
- 25 44. A BR96 antibody designated hBR96-2E having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid

position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine.

- 45. A BR96 antibody designated hBR96-2F having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; and proline at amino acid position 331 is mutated to alanine.
- 46. A BR96 antibody designated hBR96-2G having a structurally altered constant region wherein glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine; and proline at amino acid position 331 is mutated to alanine.
- 15 47. A BR96 antibody designated hBR96-2H having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; lysine at amino acid position 322 is mutated to serine; and proline at amino acid position 331 is mutated to alanine.
 - A nucleic acid molecule which encodes the BR96 antibody of claim 37, 39, and 41-47.
 - 49. A cDNA of claim 48.

25

50. A plasmid which comprises the nucleic acid molecule of claim 48.

- 51. A host vector system comprising a plasmid of claim 50 in a suitable host cell.
- 52. A method for producing a protein comprising growing the host vector system of claim 51 so as to produce the protein in the host and recovering the protein so produced.

A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS

5 ABSTRACT OF THE DISCLOSURE

The present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an immunoglobulin or Ig fusion protein molecule to the subject, the immunoglobulin molecule having a variable region and a constant region, the immunoglobulin molecule being modified prior to administration by inactivation of at least a portion of the constant region.

15

k:\pros\30436\43usu1\appln\patapp1.doc

Figure 1. Plasma clearance in high LeY expressing dogs chimeric versus constant region mutant of cBR96-2.

Figure One

いるとのなり、これのいいののはつ

ANTONO MOUNDAND

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

8. 2 - Hinge + CH3 domains amplified by PCR from L6 IgG1 construct lacking the CH2 domain .

Figure 9

3 - Hinge +CH3 PCR fragment cloned by homologous recombination into E.co47-III site of BR96 IgG1 molecule.

Figure 9 (CONTINUED)

- Introduction of mutations by site-directed mutagenesis on double-stranded plasmid DNA.
- A- Mutations introduced into synthetic oligonucleotides used for the PCR amplification of CH2 domain.

B- Plasmid DNA linearized inside CH2 domain and cotransformed with PCR fragment into competent DH5a.

C- Cloning mediated by homologous recombination yields transformants harbouring recombinant plasmids.

Figure 10

Figure 11

Figure 12

Figure 13

AGCCAGTATC TCATGTTAGA CGAGACTACG GCGTATCAAT TCGGTCATAG AGTTATTAAT TTATTTATT AATTGCATGA TTAACGTACT TGGGTGGACT 630 AAATGGCCCG ATGGTGATGC ATAATCAGTA GCGATAATGG TACCACTACG TCAATAATTA GGCTGACCGC CCGACTGGCG CCTGAAAGGT AACTGCAGTT ACCCACCTGA GGGAGTTTGT CCCTCAAACA CGGTGGGAGG CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT GCCACCTCC TTTACCGGGC CCTTTTTTT TAATTTTATT CGCATAGTTA CAAGGCAAGG CTTGACCGAC GTTCCGTTCC GAACTGGCTG TGGCCCGCCT CAATGUATTG AATGCCATTT ACCGGGCGGA CAATGACGGT GATAACTGCA GTTACTGCCA CGCTATTACC AGGTGGGGTA ACTGCAGTTA 260 TTGACGTCAA 620 TCCACCCCAT TGACGTCAAT CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA 440 GCTCTGATGC TTACGGTAAA GGACTTTCCA CTATTGACGT TATTAGTCAT 430 610 GCCAGAGTAA AGTACAATCT 120 240 GAGGTCGCTG AGTAGTGCGC GAGCAAATT TAAGCTACAA TCATCACGCG CTCGTTTTAA ATTCGATGTT GTTACATAAC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGCGGGTAAC TGCAGTTATT ACTGCATACA AGGGTATCAT TGCGGTTATC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTACGCCCC TAAATGCCAT TTGACGGGTG AACCGTCATG TAGTTCACAT AGTATACGGT TCATGCGGGG 420 510 TACTTGGCAG TACATCTACG ATGAACCGTC ATGTAGATGC TTTCCAAGTC GAGTGCCCCT AAAGGTTCAG 9 69 AGTTTGGCGC CGATCTCCCG ATCCCCTATG GTCGACTCTC TCAAACCGCG GCTAGAGGC TAGGGGATAC CAGCTGAGAG AGGCGCCCG GCTTCGAATA TCCGCGCGGC CGAAGCTTAT GGAGTTCCGC 230 AATCAAGTAT CGGGTATATA CCTCAAGGCG 290 CTCACGGGGA 410 680 860 220 **4** GCCCATATAT 280 490 "GCCCAGTAC ATGACCTTAT GGGACTTTCC GGACCGTAAT ACGGGTCATG TACTGGAATA CCCTGAAAGG GTACATCAAT GGGCGTGGAT AGCGGTTTGA CATGTAGTTA CCCGCACCTA TCGCCAAACT AAATCAACGG GACTTTCCAA AATGTCGTAA 670 AGGTGACCTG CTGCCTAGCC CTCTAGACGA TCCACTGGAC 210 CTCCAGCGAC 120 TTAGTTCATA 390 480 570 99 840 GACGGATCGG GAGATCTGCT 110 TGCTCCCTGC TTGTGTGTTG ACGAGGGACG AACACAACA 290 290 AGAANCIGCT TAGGGTTAGG TCTTAGACGA ATCCCAATCC 380 TACGGGGTCA TCATTAGTTA ATGCCCCAGT ATTTACGGTA AACTGCCCAC AAACCGTGGT TTTAGTTGCC CCAACGACCC GGTTGCTCGGG (TTTGAGATGG AAACTCTACC AGTAATCAAT CCTGGCATTA GGTTTTGGCA TTTGGCACCA CCAAAACCGT

Figure 14

- 45 51										
910 980 980 TTAATACAC TCACTAAGG CAGACCCAAGAATTATGCTG AGTGATATCC CTCTGGGGTTC	1080 GCTTGCTAGC CGAACGATCG	1170 TCTGGGGGAG AGACCCCCTC	1260 GTTCGCCAGA CAAGCGGTCT	1350 CGATTCACCA GCTAAGTGGT	1440 GCAAGAGGCC CGTTCTCCGG	1530 GTCTTCCCCC CAGAAGGGGG	1620 ACGGTGTCGT TGCCACAGCA	1710 GTGGTCACCG CACCAGTGGC	1800 GTTGGTGAGA CAACCACTCT	
980 TCACTATAGG AGTGATATCC	1070 TCTTGCGGCC AGAACGCCGG	1150 GTSAAGTSAA TCTSGTSGAG CACTTCACTT AGACCACCTC	1250 CATGTATTGG GTACATAACC	1340 TGTAAAGGGT ACATTTCCCA	1430 GTATTACTGT CATAATGACA	1520 GGGCCCATCG CCCGGGTAGC	1610 1620 CGAACCGGTG ACGGTGTCGT GCTTTGGCCAC TGCCACGCA			
970 TTAATACGAC AATTATGCTG	1060 CGATTGGAAT GCTAACCTTA	1150 GTGAAGTGAA CACTTCACTT	1240 GTGACTATTA CACTGATAAT	1330 ATCCAGACAC TAGGTCTGTG	1420 ACACAGCCAT TGTGTCGGTA	1510 1520 CTAGCACCAA GGGCCCATCG GATCGTGGTT CCCGGGTAGC	1600 ACTACTTCCC TGATGAAGGG	1690 GACTCTACTC CTGAGATGAG	1780 ACACCAAGGT IGTGGTTCCA	
910 920 930 930 940 950 950 960 950 970 950 970 950 970 970 970 970 970 970 970 970 970 97	1000 1010 1060 1050 1050 1040 1050 1050 1050 1050 105	1090 1100 1110 1120 1130 1140 1150 1150 1160 1160 1150 1160 1150 1160 116	1180 1190 1250 1250 CCTTGAAGG TCCCTGTGT AACCTCTGGA TTCACTTCA GTGACTATATA CATGTATTG GTTCGCCAGA CGAATCACGT CGGACCTCCC AGGGACTTTC AGAGGACACA TTGGAGACCT AAGTGAAAGT CACTGATAAT GTACATAACC CAAGCGGTCT	1270 1230 1330 1340 1340 1340 1340 1340 1350 1350 1350 1350 1350 1350 1350 135	1350 1400 1410 1420 1420 1520 1520 1520 1400 1410 1410 1420 1520 1520 1520 1520 1520 1520 1520 15	1500 GTCTCTGTAG CAGAGACATC	1590 1600 CTGGTCAAGG ACTACTTCCC GACCAGTTCC TGATGAAGGG	1630 1660 1650 1700 1700 1700 1700 1700 1700 1700 17	1720 1730 1780 1780 1790 1790 1790 1790 1790 1790 1790 179	
940 GAGAACCCAC TGCTTACTGG CTCTTGGGTG ACGAATGACC	1040 TCTCTAGATA AGAGATCTAT	1130 TGTTTTAAAA ACAAAATTTT	1220 AACCTCTGGA TTGGAGACCT	1310 AGGTGGTGAT TCCACCACTA	1400 GAGCCGTCTG CTCGGCAGAC		1580 CCTGGGCTGC GGACCCGACG	1670 3GCTGTCCTA CCGACAGGAT	1760 GTGAATCAC 1 SCACTTAGTG 5	
940 GAGAACCCAC CTCTTGGGTG	1030 AGGTCTCGAG TCCAGAGCTC	1110 1120 GCTTGGTCCT TCTTTTAAAA CGAACCAGGA AGGAACAGGA AGAAATTTT	1210 TCTCCTGTGT AGAGGACACA	1300 ACATTAGTCA TGTAATCAGT	1390 ACCTGCAAAT TGGACGTTTA	1480 GCCAAGGGAC CGGTTCCCTG	1570 GCACAGCGGC CGTGTCGCCG	1660 1670 ACACCTTCCC GGCTGTCCTA TGTGGAAGGG CCGACAGGAT	1750 ACATCTGCAA IGTAGACGTT	
930 TGGCTAACTA ACCGATTGAT	1020 ATATCTCCTT TATAGAGGAA	1110 GCTTGGTCCT CGAACCAGGA	1200 TCCCTGAAAG AGGGACTTTC	1290 TGGGTCGCAT ACCCAGCGTA	1380 AACACCCTGT TTGTGGGACA	1470 GCTTACTGGG CGAATGACCC	1560 1570 ACCTCTGGGG GCACAGCGGC TGGAGACCCC CGTGTCGCCG	AGCGGCGTGC TCGCCGCACG	1740 ACCCAGACCT IGGGTCTGGA	
920 CAGAGCTCTC GTCTCGAGAG	1010 CTTGGTACCA ATTTAAATTG GAACCATGGT TAAATTTAAC	1000 CACCATGGAG TTGTGGTTAA STGGTACCTC AACACCAATT	1180 1190 GCTTAGTGCA GCCTGGAGGG CGAATCACGT CGGACCTCCC	1280 GAGGCTGGAG CTCCGACCTC	1360 1370 1380 1390 1390 TCTCCAGAGA CAATGCCAAG AACACCCTGT ACCTGCAAATAAAAAAAACAGGTTC TTGTGGGACA TGGACGTTTA	1450 1460 1460 1470 1480 1490 1490 1490 1480 1480 1480 1480 1480 1480 1480 148	1540 1550 1560 1570 1660 1570 1660 1670 1660 1670 1660 1670 1670 16	1640 1650 CGCCCTGACC AGOGGCGTGC GCGGGACTGG TCGCCGCACG	1730 CAGCTTGGGC 2 STCGAACCCG 7	
910 TCTATATAAG AGATATATTC	1000 CTTGGTACCA GAACCATGGT	1090 CACCATGGAG GIGGTACCTC	1180 GCTTAGTGCA CGAATCACGT	1270 CTCCAGAGAA GAGGTCTCTT	1360 TCTCCAGAGA AGAGGTCTCT	1450 TGGACGACGG ACCTGCTGCC	1540 TGGCACCCTC	1630 GGAACTCAGG CCTTGAGTCC	1720 TGCCCTCCAG C ACGGGAGGTC	
				Figur	0 14					

Figure 14 (continued)

1890	1980	2070	2160	2250	2340	2430	2520	2610	2700	
AGTCCAGGGC	TTTTCCCCAG	GAGCCATATC	CCAGATTCCA	CCAGGCCTCG	GCCACATGGA	CACAGGTGTA	ACATCGCCGT	TCTACAGCAA	ACACGCAGAA	
TCAGGTCCCG	AAAAGGGGTC	CTCGGTATAG	GGTCTAAGGT	GGTCCGGAGC	CGGTGTACCT	GTGTCCACAT	TGTAGCGGCA	AGATGTCGTT	TGTGCGTCTT	
1890 TGCCTGGACG CATCCCGGCT ATGCAGCCCC AGTCCAGGGG ACGGACCTGC GTAGGGCCGA TACGTCGGGG TCAGGTCCCC	1970 TCTTCTGGCT AGAAGACCGA	2060 GACCTGCCAA CTGGACGGTT	2140 2150 CTCGGACACC TTCTCCTC GAGCCTGTGG AAGAGAGGAG	2240 GTRAGCCAGC CATTCGGTCG	2340 CATGTCCGGA GCCACATGGA GFACAGGCCT CGGTGTACCT	2420 CCCCGAGAAC GGGGCTCTTG	2520 2540 2550 CAAAGGCTTC TATCCCAGGG ACATCGCCGT GTTTCCGAAG ATAGGGTCGC TGTAGCGGCA	2600 TCCTTCTTCC AGGAAGAAGG	2690 2700 CACAACCACT ACACGCAGAA GTGTTGGTGA TGTGCGTCTT	
1870	1960	2050	2140	2220 2230	2320	2410	2500 2510	2590	2680	
CATCCCGGCT	AGGGAGAGGG	GCTGGGCTCA	CTCGGACACC	CACATGCCCA CCGTGCCCAG	TGGGTACCAA	TACAGGGCAG	CAAAGGCTTC TATCCCAGCG	CTCCGACGGC	TGAGGCTCTG	
GTAGGGCCGA	TCCCTCTCCC	CGACCCGAGT	GAGCCTGTGG	GTGTACGGGT GGCACGGGTC	ACCCATGGTT	ATGTCCCGTC	GTTTCCGAAG ATAGGGTCGC	GAGGCTGCCG	ACTCCGAGAC	
	1990 1930 1930 1930 1930 1930 1940 1950 1960 1960 1950 1960 1950 1960 1950 1960 1950 1950 1950 1950 1950 1950 1950 195	1990 2000 2010 2020 2020 2030 2040 2050 2060 GCTCTGGGCC GGGCCAA GGGCACAGGT GCTGGGCCCAA AGCCCAGGA GCTGGGCCCAA TGGGGCCCAA TGGGGCCGAG GACCTGGCGTT CCCCGTCCA CGACCCGAGT CTGGACGGTT	2080 2080 2090 2100 2100 2110 2120 2130 2130 2130 213		2270 2280 2280 2290 2390 CANTCAGGA ALCACAGA TROGRACCAA OTTOCOCCAA ACACAGAA TUTANTOGAA CANACAGAA ALCACAAA TUTANTOGAA CANACAGAA CANAGATAA	2350 2400 2410 2410 2420 CONTRIGORY BARBARANG GOTOTRACOA CONTOTRACOA PARCOGONO GARBARANG GOTOTRACOA GARBARANG GOTOTRACOA GARBARANG GARBA	2480 2490 GTCAGCCTGA CCTGCCTGGT CAGTCGGACT GGACGACCA	2550 2550 2550 2550 2550 2550 2550 2550	2690 2680 CCGTGATGCA TGAGGCTCTG CACAACCACT GGCACTACGT ACTCCGAGAC GTGTTGGTGA	
1850	1940	2030	2120	2200 2210	2300	2390	2480	2570	2660	
TCAGCGCTCC	TGCCCGCCCC	CTGCACACAA	CAAACTCTCC	AAATCTTGTG ACAAAACTCA	GCATCCAGGG	GCTGTACCAA	GTCAGCCTGA	ACCACGCCTC	TTCTCATGCT	
AGTCGCGAGG	ACGGGCGGGG	GACGTGTGTT	GTTTGAGAGG	TTTTAGAACAC TGTTTTTGAGT	CGTAGGTCCC	CGACATGGTT	CAGTCGGACT	TGGTGCGGAG	AAGAGTACGA	
1850 1850 1850 CGCCAGCACA GGAAGGAAGG GTGTCTGCTG GAAGCCAGGC TCAGCGCTCCCCCGGGTGGTGC CAGAGGACGAC CTTCGGTCGG AGTCGCGAGG	1930 CGGAGGCCTC GCCTCCGGAG	1990 2000 2010 CTCTGGGCA GGCACAGGCT AGGTGCCCCT AACCCAGGCC CGAGACCCGT CCGTGTCCGA TCCACGGGGA TTGGGTCCGG	2110 CCCCAAAGGC GGGGTTTCCG	2170 2200 2200 GRACTCCCCA ATCTTCTCT GCCAGAGCCC AAATCTTGTG ACAAAACTCACAATGAGGGT TAGAAGAGAG ACGTCTCGGG TTTAGAACAC TGTTTTGAGT	2270 2280 2280 CAAGGCGGA CAGGTAGCCT AGAGTAGCCT GTTCCGCCT GTCCACGGGA TCTCATCGGA	2380 GAGAGTGACC CTCTCACTGG	2470 CAAGAACCAG GITICITIGGIC	2560 CAACTACAAG GITGAIGITC	2620 2630 2640 2650 2660 2670 CCCCCGGG GCCCCGGGGGGGGGGGGGGGGGGGGGGG	
1830	1920	2010	2100	2190	2280	2370	2440 2450	2550	2640	
GTGTCTGCTG	CCTCTTCACC	AGGTGCCCCT	CCTAAGCCCA	TGCAGAGCCC	CAGGIGCCCT	CCTCTGCCCT	CACCCTGCCC CCATCCCGG ATGAGCTGAC	AGCOGGAGAA	GGTGGCAGCA	
CACAGACGAC	GGAGAAGTGG	TCCACGGGGA	GGATTCGGGT	ACGTCTCGGG	GTCCACGGGA	GGAGACGGGA	GTGGGACGG GGTAGGCCCC TACTCGACTG	TCGGCCTCTT	CCACCGTCGT	
1810 1820	1910	2000	2090	2170 2180	2270	2350 .2360	2450	2540	2630	
GGCCAGCACA GGGAGGGAGG	GCCCCGTCTG	GGCACAGGCT	CTGCCCCTGA	GTAACTCCCA ATCTTCTCC	CAAGGCGGGA	CAGAGGCCGG CTCGGCCCAC	CCATCCCGGG	AGCAATGGGC	GACAAGAGCA (
CCGGTCGTGT CCCTCCCTCC	CGGGGCAGAC	CCGTGTCCGA	GACGGGGACT	CATTGAGGGT TAGAAGAGAG	GTTCCGCCCT	STCTCCGGCC GAGCCGGGTG	GGTAGGGCCC	TCGTTACCCG	CIGITCICGI	
1810	1900	1990	2080	2170	2260	2350	2440	2530	2620	
GGCCAGCACA	AGCAAGGCAG	GCTCTGGGCA	CGGGAGGACC	GTAACTCCCA	CCCTCCAGCT	CAGAGGCCGG	CACCCTGCCC	GGAGTGGGAG	GCTCACCGTG	
CCGGTCGTGT	TCGTTCCGTC	CGAGACCCGT	GCCCTCCTGG	CATTGAGGGT	GGGAGGTCGA	GTCTCCGGCC	GTGGGACGGG	CCTCACCCTC	CGAGTGGCAC	
							,			

pD17-cJ-dCH2.H1

2790 TGCTTGGCAC ACGAACCGTG	2880 ATGGTTCTTT TACCAAGAAA	2970 TGTGCAGGTG ACACGTCCAC	3060 AGCAGCACCT TCGTCGTGGA	3150 TTCTGTGAGC AAGACACTCG	3240 CTACCCCCAC GATGGGGGTG	3330 CCTGTGGAGG GGACACCTCC	3420 CACCACACAC GTGGTGTGTG	3510 GAACACTCCT CTTGTGAGGA	3600 TCAGACAAAC AGTCTGTTTG	
2730 2770 2780 2750 2760 2770 2780 2790 2790 2790 2790 2790 2790 2790 279	2870 CGAGACTGTG GCTCTGACAC	2890 2940 2950 2950 2950 CCACGGGGTCA GGCCCAACT GTCCCCAACA GGCCCAACT GTCCCCAACA GGCCCAACT GTCCCCAACA GGCCCAACT GTCCCCAACA GGCCCAACT GTCCCCAACA GGCGGGTCCCAACT GTCCCGAACT GTCCCGAACT GTCCGGAACT GTCCGAACT GTCCGGAACT GTCCGGAACT GTCCGGAACT GTCCGAACT GTCCCAACT GTCCGAACT GTCCAACT GTCCCAACT GTCCAACT GTCAACT GTCCAACT GTCAACT GTCCAACT GTCCAACT GTCCAACT GTCAACT GTCAACT GTCCAACT GTCAACT GTCAACT GTCCAACT	3010 3050 3050 3050 3050 3050 3050 3050	3070 3000 3000 3000 3100 3100 3110 3120 312	3160 3170 1320 3320 3320 3320 3320 3320 3320 332	3320 ACTCTCGGGC TGAGAGCCCG	3410 GCCACACGGC CGGTGTGCCG			
2760 2770 GCTCCCCGGG CTCTCGCGGT CGAGGGGCCC GAGGGCCCA	2860 TGGGCCCCTG ACCCGGGGAC	2950 GTCCCCACAC CAGGGGTGTG	3040 GCCAGCGTGG CGGTCGCACC	3130 CTCTGTAGGA GAGACATCCT	3220 ACAGGCCCTC TGTCCGGGAG	3310 GGGGACATGC CCCCTGTACG	3400 AGGTTGGCCG TCCAACCGGC	3490 AGCAAGGTCC TCGTTCCAGG	3580 TTCTCCACAT AAGAGGTGTA	
2760 GCTCCCCGGG CGAGGGGCCC	2800 2840 2850 2850 2850 2850 2850 2850 2850 285	2930 2940 GAGGCAGAGC GGGTCCCACT CTCCGTCTCG CCCAGGGTGA	3030 TGGGGGATTT ACCCCCTAAA	3120 CAGCCCCTGC GTCGGGGACG	3210 GTGCGTAGGG CACGCATCCC	3250 3300 3310 3320 3320 3330 3330 3330 333	3350 3350 3410 GATGCCCACA CACACACTCA GCCCAGACCC GTTCAACAAA CCCCGCACTG AGGTTGGCCG GCCACACGCC CTACGGGTGT GTGTGTGAGT CGGGTCTGGG CAAGTTGTTT GGGCGTGAC TCCAACCGGC GGGTGCCC	3480 3480 3480 3500 CCCGGGGGGAA CCCGAGACGA CCCAGAGAGA GGAAGGACGAGGA CGAGAGAGA	3520 3530 3580 3580 3580 3580 3580 3580 358	
2750 GCAAGCCCCC CGTTCGGGGG	2840 TAAAGCACCC ATTTCGTGGG	2930 GAGGCAGAGC CTCCGTCTCG	3020 CTCGGCAGGG GAGCCGTCCC	3110 GACAGACACA CTGTCTGTGT	3200 CCTAGICCAT GGAICAGGIA	3290 ATGGGGACAC TACCCCTGTG	3380 GTTCAACAAA CAAGTTGTTT	3470 CTGCACAGCA GACGTGTCGT	3560 CCACGAGGC 3GGTGCTCGG	
2740 GCGACGGCCG CGCTGCCGGC	2830 AGCATGGAAA TCGTACCTTT	2920 TGGCATGAGG ACCGTACTCC		3100 AGCCCCTGGG TCGGGGACCC	3190 CGGGGGCATG GCCCCCGTAC	3280 TCGCACCOGC AGCGTGGGCG	3370 GCCCAGACCC CGGGTCTGGG	3460 CCGGGCGAA GGCCCGCTT	3550 CACCTCAAGG STGGAGTTCC	
	2820 CCGGGCGCCC GGCCCGCGGG	2900 2910 GGCCGAGTCT GAGGCCTGAG CCGGCTCAGA CTCCGGACTC	3000 GGGCTCAGCC CCCGAGTCGG	3090 AAGCCCTAGG TTCGGGATCC	3180 CATGCCCACT GTACGGGTGA	3270 CTGCCCAGCC GACGGGTCGG	3360 CACACACTCA GTGTGTGAGT	3450 CGGAGCCTCA GCCTCGGAGT	3540 CCCACGCGG GGGTGCGCC	
2710 2720 GAGCCTCTCC CTGTCTCCGG CTCGGAGAGG GACAGAGGCC	2800 2810 GTACCCCCTG TACATACTTC CATGGGGGAC ATGTATGAAG	2900 GGCCGAGTCT CCGGCTCAGA	2980 2990 TOCCTGGGCC CCCTAGGGTG ACGGACCCGG GGGATCCCAC	3070 3080 3090 GCCCTGGGCT GGGCCACGG AAGCCCTAGG CGGGACCCGA CCCGGTGCC TYCGGGATCC	3160 3170 GCCCCTGTCC TCCCGACCTC CGGGGACAGG AGGGCTGGAG	3250 3260 GGCACTAACC CCTGGCTGCC CCGTGATTGG GGACCGACGG	3340 3350 3360 3360 3370 GACTGOTIGCA GATGCCCACA CACACACTCA GCCCAGACCC CTGACCACGT CTACGGGTGT GTGTGTGAGT CGGGTCTGGG	3440 GCCTCACACA CGGAGTGTGT	3520 3540 CCGCACAGAG CCCCAAGGGGGGGGGGGCGGGCGGCGCGCGGGGGGGG	
2710 GAGCCTCTCC CTCGGAGAGG	2800 GTACCCCCTG CATGGGGGAC	2890 CCACGGGTCA GGTGCCCAGT	2980 TGCCTGGGCC ACGGACCCGG	3070 GCCCTGGGCT CGGGACCCGA	3160 GCCCCTGTCC CGGGACAGG	3250 GGCACTAACC CCGTGATTGG	3340 GACTGGTGCA CTGACCACGT	3430 ACACGTGCAC TGTGCACGTG	3520 CGGACACAGG GCCTGTGTCC	

DEGOSEOS, DEDIGZ

pD17-cJ-dCH2.H1

3690 TGGCCCACTT ACCGGGTGAA	3780 CCCGTGCCTT GGGCACGGAA	3870 CATTCTATTC GTAAGATAAG	3960 ATGGCTTCTG TACCGAAGAC	4050 GTTACGCGCA CAATGCGCGT	4140 CCTCTCAAAA GGAGAGTTTT	4230 CCCAGTTCCG GGGTCAAGGC	4320 AAGTAGTGAG TTCATCACTC	4410 TCCTAGCGTG AGGATCGCAC	4500 ATTGGCAAGA TAACCGTTCT	
3610 3620 3630 3630 3640 3640 3650 3650 3650 3650 3650 3650 3650 365	3700 CCCAGTOCOG CCTTROCAG GAGAGGGAG CAGGGGGGGGGGGGGGGGGGGGGGG	3790 3800 3810 3850 3850 3870 3830 3830 3840 3850 3850 3850 CCTTGACCCT GGAAGGTGCC ACTCCCACTG TCCTTTCTATTCCGACCCT GGAAGGTGCC ACTCCACGG TAGAGATTACCATTCCACTG CTTACACGG TGAGGGTGACACAGG TGAGGATAGG TAATTTATACCTTAACGTA GGGTAACAGA CTCATCCACA GTAAGATAAG	3910 3920 3930 3930 3940 3950 GGGAGGATTG CTGGGGATTG CTGGGATTG CTGGGATTG CTGGAGTTA TCGTCGGTTAC GACCCCTACG CCACCCGAGA	4040 GGGTGTGGTG CCCACACCAC	4130 GTTCGCCGGG CAAGCGGCCC	4220 CCTAACTCCG GGATTGAGGC	4240 4250 4260 4270 4270 4280 4290 4390 4390 4390 4300 CCCATTOCIC GCCCCATGGC TAGACTAATTT TITTIATTIA TGCAGAGGCC GAGGCCGCCT CGGCCTCTGA GCTATTCCAG AAGTAATAAGAGGGGGGAAACC CGGCCGGAGACT CGATAAGGATTAAA TAGAATAAATAAAT ACGTCTCCGG CTCCGGCGGA GCCGGAGACT CGATAAGGTC TTCATCACTC		4480 4480 4500 ACCATTGAAC TGCATCGTGG CCGTGTCCCA AAATATGGGG ATTGGCAAGA TGGTAACTTG ACGTAGCGT GGCACAGGGT TTTATACCCC TAACCGTTCT	
3670 CCACGTCACG GGTGCAGTGC	3760 CATCTGTTGT GTAGACAACA	3850 CGCATTGTCT GCGTAACAGA	3940 CTGGGGATGC GACCCCTACG	4030 TAAGCGCGGC ATTCGCGCCG	4120 TTCTCGCCAC AAGAGCGGTG	4210 CCATCCCGCC GGTAGGGCGG	4300 CGGCCTCTGA GCCGGAGACT	4380 4390 GCTGCGATTT CGCGCCAAAC TTGACGGGAA CGACGCTAAA GCGCGGTTTG AACTGCCGTT	4480 CCGTGTCCCA GGCACAGGGT	
3660 GGATCACACA CCTAGTGTGT	3750 AGTTGCCAGC TCAACGGTCG	3840 GAAATTGCAT CTTTAACGTA	3910 3820 6GGAGGATTG GGAAGACAAT AGCAGGCATG	4020 AGCGGCGCAT TCGCCGCGTA	4050 CONTRACTIVE ACCORDANCE CONTRACTOR TRACETORY PROTECTIVE CONTRACTOR CONTRACTOR PROTECTIVE CONTRACTOR CONTRACTOR ANACTARACY PROTECTIVE CONTRACTOR CONTRA	4200 CTAACTCCGC GATTGAGGCG	4290 GAGGCCGCCT CTCCGGCGGA	4380 4390 GCTGCGATTT CGCGCCAAAC TTGACGGCAA CGACGCTAAA GCGCGGTTTG AACTGCCGTT	4470 TGCATCGTCG ACGTAGCAGC	
3650 CACACACAGG GTGTGTGTCC	3740 TGTGCCTTCT ACACGGAAGA	3830 ATAAAATGAG TATTTACTC	3920 GGAAGACAAT CCTTCTGTTA	4010 CGCGCCCTGT GCGCGGGACA	4100 TTTCGCTTTC AAAGCGAAAG	4180 4190 CAGCAACCAT AGTCCCGCCC GTCGTTGGTA TCAGGGCGGG	4280 TGCAGAGGCC ACGTCTCCGG	4370 ACAGCTCAGG TGTCGAGTCC	4460 4470 ACCATTGAAC TGCATCGTCG TGGTAACTTG ACGTAGCAGC	
3640 AGCCGCCACA TCGGCGGTGT	3730 CAGCCTCGAC GTCGGAGCTG	3810 3820 3830 ACTCCCACTG TCCTTTCCTA ATAAAATGAG TGAGGGTGAC AGGAAAGGAT TAITITTACTC	3910 GGGAGGATTG CCCTCCTAAC	4000 GGTATCCCCA CCATAGGGGT	4090 CGCCCGCTCC GCGGCGAGG	4180 CAGCAACCAT GTCGTTGGTA	4270 TTTTTTTA AAAAATAAAT	4330 4340 4350 4350 4350 4370 GAGGCTTTTT TGGAGGCCTA GGCTTTTGGA ACAGCTCAGG CTCCGAAAAA ACTCCGGAA CCGAAAAAGT TTTTCGAAAC TGTCGAAGTCC	4450 TCATGGTTCG	
3630 GTGCCCCTGC CACGGGGACG	3720 CAGGACGGAT GTCCTGCCTA	3810 ACTCCCACTG TGAGGGTGAC	3880 3890 3900 1960GGGGGAG GACAGCAAGG ACCCCCCACC CCACCCCGTC CTGTCGTTCC	3980 3990 AACCAGCTGG GGCTCTAGGG TTGGTCGACC CCGAGATCCC	4050 4070 4080 GCGTGACCGC TACACTTGCC AGCGCCCTAG CGCACTGGCG ATGTGAACGG TCGCGGGATC	4170 CTCAATTAGT GAGTTAATCA	4260 TGACTAATTT ACTGATTAAA	4350 GGCTTTTGCA CCGAAAACGT	4420 AAGGCTGGTA GGAFTTTATC CCCGCTGCCA TCATGGTTCG TTCCGACCAT CCTAAAATAG GGGCGACGGT AGTACCAAGC	
3610 3620 CCAGCCCTCC TCTCACAAGG GGTCGGGAGG AGAGTGTTCC	3700 3710 CCCAGTGCCG CCCTTCCCTG GGGTCACGGC GGGAAGGGAC	3800 GGAAGGTGCC CCTTCCACGG	3890 GGTGGGGCAG CCACCCCGTC	3980 AACCAGCTGG TTGGTCGACC	4070 TACACTTGCC ATGTGAACGG	4150 4160 AAGGGAAAAA AAGCATGCAT ITCCCTTTTT TTCGTACGTA	4250 GCCCCATGGC CGGGGTACCG	4330 4340 4350 GAGGCTTTTT TGGAGGCCTA GGCTTTTGCA CTCCGAAAAA ACCTCCGGAT CCGAAAACGT	4430 GGATTTTATC CCTAAAATAG	
3610 CCAGCCCTCC GGTCGGGAGG	3700 CCCAGTGCCG GGGTCACGGC	3790 CCTTGACCCT GGAACTGGGA	3880 TGGGGGGTGG ACCCCCACC	3970 AGGCGGAAAG TCCGCCTTTC	4060 GCGTGACCGC CGCACTGGCG	4150 AAGGGAAAAA TTCCCTTTTTT	4240 CCCATTCTCC GGGTAAGAGG	4330 GAGGCTTTTT CTCCGAAAAA	4420 AAGGCTGGTA TTCCGACCAT	

ZOTOBO, ESTATOSCO

pD17-cJ-dCH2.H1

853	ខ្លួង	៩៦៦	851	ខ្លួន	ទីពីធិ	254	889	១៩៩	ခွ ပု ဖွ
4590	4680	4770	4860	4950	5040	5130	5220	5310	5400
AAACAGAATC	AGTAGAGAAC	GCAAGTAAAG	ACAAGGATCA	CTCTCTGAGG	GCTCCCCTCC	TGACATAATT	TAATTGITTG	CAGAAGAAAT	AGGACTTTCC
TTTGTCTTAG	TCATCTCTTG	CGTTCATTTC	TGTTCCTAGT	GAGAGACTCC	CGAGGGGAGG	ACTGTATTAA	ATTAACAAAC	GTCTTCTTTA	TCCTGAAAGG
4510 4520 4530 4510 4510 4510 4510 4510 4510 4510 451	4600 4610 4650 4650 4670 4670 4670 4670 4670 4670 4670 467	4690 4700 4710 4720 4730 4730 4740 4750 4750 4760 4760 4760 4760 4760 4760 4760 476	4850 ACTCTTTGTG TGAGAAACAC	4940 CCCAGGCGTC GGGTCCGCAG	4950 5020 6030 6040 6050 6050 6050 6050 6050 6050 605	5050 5050 5070 5070 5080 5100 5100 5110 5120 5120 5120 5120 512	5150 5160 5170 5180 5180 5220 5220 5220 5220 5220 5220 5220 52	5230 5240 5250. 5250 5200 5270 5280 5280 5280 5280 5280 5280 5280 528	5340 5350 5360 5370 5380 5390 5390 5390 5390 5390 5390 5390 539
4570	4660	4750	4830 4840	4930	5020	5110	5200	5290	5380
CAACCTCTTC	ACAGAATTAA	TTATTGAACA	AATCAACCAG GCCACCTTAG	TATAAACTTC TCCCAGAATA	AAGATGCTTT	GGAACCTTAC	ATGTGTTAAA	TGAGGAAAAC	GAGAAAGGTA
GTTGGAGAAG	TGTCTTAATT	AATAACTTGT	TTAGTTGGTC CGGTGGAATC	ATATTTGAAG AGGGTCTTAT	TTCTACGAAA	CCTTGGAATG	TACACAATTT	ACTCCTTTTG	CTCTTTCCAT
4520 4530 4550 4560 ACCURGECT COGNICAGEA ACARAGACCA REGRACIA GEORGICCT RECICARATI CATGARAGHT TUTTACHGET	4650 CCTTTAAAGG GGAAATTTCC	4740 GCCTTAAGAC CGGAATTCTG		4870 4880 4890 4890 4890 4890 4890 4890 489	5010 GACTAACAGG CTGATTGTCC	5100 TCTTTGTGAA AGAAACACTT	5190 TAAGTGTATA ATTCACATAT	\$250. \$280 \$270 \$280 \$300 \$300 \$300 \$300 \$300 \$300 \$300 \$3	5370 5380 CAAAAAGAA GAGAAAGGIA GITITITICIT CICITICCAT
4550	4640	4730	4820	4910	5000	5090	5180	5270	5350 5350 CTCTCCACACAT TCTACTCCTC GAGAGTTCTA AGAIGAGGAG
GTACTTCCAA	GAAGAATCGA	TTTGGATGAT	GGAAGCCATG	TTTGGGGAAA	CGAGAAGAAA	GCTTTAGATC	ATAAAATTTT	CAGTGGTGGA	
CATGAAGGTT	CTTCTTAGCT	AAACCTACTA	CCTTCGGTAC	AAACCCCTTT	GCTCTTCTTT	CGAAATCTAG	TATTTAAAA	GTCACCACCT	
4540	4630	4720	4810	4900	4990	5080	5170	5260	5350
ACGAGTTCAA	CCATTCCTGA	TYGCCAAAAG	CTGTTTACCA	CAGAAATIGA	TTGAAGTCTA	ACTTTTGCTG	TAAGGTAAAT	TGAATGGGAG	CTCTCAACAT
TGCTCAAGTT	GGTAAGGACT	AACGGTTTTC	GACAAATGGT	GTCITITAACT	AACTTCAGAT	TGAAAACGAC	ATTCCATTTA	ACTTACCCTC	GAGAGTTGTA
4530 CCGCTCAGGA GGCGAGTCCT	4620 TGGTGATTAT GGGTAGGAAA ACCTGGTTCT ACCACTAATA CCCATCTTT TGGACCAAGA	4710 GCTCATTTTC CGAGTAAAAG	4780 4800 4800 TAGGATAGTC GGAGGCAGTT CTGTTTACCA ATCTGTACCA ACCTGTCAA GACAATGGT	4870 4880 4890 TGCAGGAATT TGAAAGTGAC ACGTTTTTCC ACGTCCTTAA ACTTTCACTG TGCAAAAAGG	4950 4970 4980 5000 TCCAGGAGGA AAAAGGCAYC AAGTATAAGT TTGAAGTCTA CGAGAAGAAA AGGTCCTCCT TTTTCCGTAG TTCATATTCA AACTYCAGAT GCTCTTCTTT	5070 AGACCATGGG TCTGGTACCC	5160 TTTAAAGCTC AAATTTCGAG	5250. ATGGAACTGA TACCTTGACT	5340 CTACTGCTGA GATGACGACT
4520	4610	4690 4700	4780 4790	4880	4970	5060	5140 5150	5240	5320 5330
ACCCTGGCCT	GGGTAGGAAA	TCAAAGAACC ACCACGAGGA	TAGACATGGT TTGGATAGTC	TGAAAGTGAC	AAAAGGCATC	CATTTTTATA	GGACAAACTA CCTACAGAGA	ATTCCAACCT	GCCATCTAGT GATGATGAGG
TGGGACCGGA	CCCATCCTTT	AGTTTCTTGG TGGTGCTCCT	ATCTGTACCA AACCTATCAG	ACTTTCACTG	TTTTCCGTAG	GTAAAAATAT	CCTGTTTGAT GGATGTCTCT	TAAGGTTGGA	CGGTAGATCA CTACTACTCC
4510	4600	4690	4780	4870	4960	5050	5140	5230	5320
ACGGAGACCT	TGGTGATTAT	TCAAAGAACC	TAGACATGGT	TGCAGGAATT	TCCAGGAGGA	TAAAGCTATG	GGACAAACTA	TGTATTTTAG	GCCATCTAGT
TGCCTCTGGA	ACCACTAATA	AGTTTCTTGG	ATCTGTACCA	ACGTCCTTAA	AGGTCCTCCT	ATTTCGATAC	CCTGTTTGAT	ACATAAAATC	CGGTAGATCA

/eroso, E6250680

5490 AAAAAGCTGC TTTTTCGACG 5580	TTTTTTTAC	5670 TTAATAAGGA AATTATTCCT	5760 CTCCCACACC GAGGGTGTGG	5850 IGCAATAGCA ICGTTATCGT	5940 GTCTGGATCG CAGACCTAGC	6030 TACAAATAAA ATGTTTATTT	6120 TCTTATCATG AGAATAGTAC	6210 ACAATTCCAC TGTTAAGGTG	6300 TCACTGCCCG AGTGACGGGC
				5830 CTTATATGG TTACAAATAA AGCAATAGCA GAATATTACC AATGTTTATT TCGTTATCGT	5930 ATCTTATCAT TAGAATAGTA	5990 6000 6010 6020 6030 CTTCGCCCAC CCCAACTTGT TYATAGCAGC TYATAATGGT TACAAATAAA GAAGCGGGTG GGGTTGAACA AATAACGTCG AATATTACCA ATGTTTATTT		6130 6140 6150 6150 6150 6160 6170 6180 6190 6200 6200 CONTROCTIC TOTOGRAPATIC TRAFFOCICT ACAPTICCAC AGARTICCAC GACARIGADA TO TRAFFOCIC AGARTICCAC AGACATIRAS AGCIRARAGA ACCOCATIRAS ACCACATIRAS AATROGGIG TOTARAGGIG	6220 6230 6240 6250 6250 6250 6250 6270 6280 6290 6290 ACARONDROC AGCOGARAC ATRANSTORA AGCOTOGGG TCACTGATCA GTGAGGTBAC TCACTGACCG TCACTGGCCC TGATTANTE TCGGTTCCGG TCACTGGCCC AGGATTACT CACTCGGCG AGTGTBATTA AGGAAGGG AGTGACGGG
S410 5420 5430 5440 5440 TICAGANIYO CINAGITIYI TGAGTCANGC ATGIGITING PARIAGACIC TIGCTRICTRA ACCACAAAGG AAGITIYA GAATCAGTAC ACCACAANCA TIVATCITGA AACCAACAAAACA ACGATAAAAGA ACGATAAAAGA ACGATAAAAGA ACGATAAAAGA ACGATAAAAAAAAAA	TTATAAT AATATTA	5600 5610 5620 5630 5640 5650 5650 5650 5650 5650 5650 565	550 STORY NOT STORY STOR	5830 CTTATAATGG GAATATTACC	5830 5930 5930 5930 5930 5930 6920 6920 6930 6930 6930 69300	5980 6000 6010 TGCTGGAGGTT CTTCGCCCAC CCCAACTTGT TTATTGCAGG ACGACCTCAA GAAGCGGGTG GGGTTGAACA AATAACGTCG	6070 6080 6100 6110 CATTYTYTC ACTGCATTCT AGTTGTGGTT TGTCCAAACT CATCAATGTA GTAAAAAAAG TGACGTAAGA TCAACACGAA ACAGGTTTGA GTAGTTACAT	6200 TGTGAAATTG TTATCCGCTC ACACTTTAAC AATAGGCGAG	6280 6290 TCACATTAAT TGCGTTGCGC AGTGTAATTA ACGCAACGCG
5460 TTGCTTGCTT AACGAACGAA	GGCATAACAG	5630 5640 CAAAAATTGT GTACCTTTAG GTTTTTAACA CATGGAAATC	5730 TTTGTAGAGG AAACATCTCC	5820 CAATTGTTGT TGTTAACTTG TTTAKTGCAG GTTAACAACA ACAATTGAAC AAATAACGTC	5910 TTGTCCAAAC AACAGGTTTG	6000 CCCAACTIGI GGGTIGAACA	6090 AGTTGTGGTT TCAACACCAA	6180 CTGTTTCCTG GACAAAGGAC	6270 GTGAGCTAAC CACTCGATTG
5450 AATAGAACTC TTATCTTGAG 5540	TTTATAAGTA AAATATTCAT	5630 CAAAAATTGT GTTTTTAACA	5720 CCATACCACA GGTATGGTGT	5810 CAATTGTTGT TGTTAACTTG GTTAACAACA ACAATTGAAC	5900 TAGTTGTGGT ATCAACACCA		6080 ACTGCATTCT TGACGTAAGA	6170 ATGGTCATAG TACCAGTATC	6260 TGCCTAATGA ACGGATTACT
5440 TGTGTTTAGT ACACAAATCA 5530	TTCTGTAACC	5620 TAACTATGCT ATTGATACGA	5710 TCATAATCAG AGTATTAGTC			5970 5980 GGGGATCTCA TGCTGGAGTT CCCCTAGAGT ACGACCTCAA	6070 6080 CATTTTTTC ACTGCATTCT GTAAAAAAG TGACGTAAGA	6130 6140 6150 6150 7CTGTATACC GTCGACCTCT AGCTAGAGCT TGGCGTAATC ATGGTCATAG AGACATATG CACCTGGAGA TCGATCTCGA ACCCATTAG TACCAGTATC	6240 6250 6260 ATRANGICIA AGCCIGGGG TOCCIRATGA TATITCACAL TICGGACCCC ACGGATTACT
5430 TGAGTCATGC ACTCAGTACG 5520	ACTGCTATAC AAGAAAATTA TGGAAAAATA TGACGATATG TTCTTTTAAT ACCTTTTTAT	5610 CTGCTATTAA GACGATAATT	5680 5680 5690 STATTIGATE TATAGAGA TATAACTAC ATATCACGGA ACTGATCTCT	5770 5780 5790 ICCCCCIGAA CCIGAAACAT AAAATGAATG AGGGGGACIT GGACTTIGIA ITITACITIAC	5860 5870 5880 ICACAAATTI CACAAATAAA GCATITITITI AGIGITITAAA GIGITITATITI CGTAAAAAAA	5970 GGGGATCTCA CCCCTAGAGT	6040 6050 6060 GCAATAGCAT CACAAATTTC ACAAATAAAG CGTTATCGTA GTGTTTAAAG TGTTTAATTTC	6150 AGCTAGAGCT TCGATCTCGA	6240 ATAAAGIGIA TATTTCACAT
5420 CTAAGTTYTT GATTCAAAAA 5510	AAGAAAATTA	5600 CATAGAGTGT GTATICTCACA	5690 TATAGTGCCT ATATCACGGA	5770 S780 TCCCCCTGAA CCTGAAACAT AGGGGGACTT GGACTTTGTA	5870 CACAAATAAA GTGTTTATTT	5950 5960 GCTGGATGAT CCTCCAGGGC CGACCTACTA GGAGGTCGCG		6140 GTCGACCTCT CAGCTGGAGA	6230 AGCCGGAAGC TCGGCCTTCG
5410 TTCAGAATTG AAGTCTTAAC 5500	ACTGCTATAC TGACGATATG	5590 TCCACACAGO AGGTGTGTCC	5680 ATATTTGATG TATAAACTAC	5770 TCCCCCTGAA AGGGGGACTT	5860 TCACAAATTT AGTGTTTAAA	5950 GCTGGATGAT CGACCTACTA	6040 GCAATAGCAT CGTTATCGTA	6130 TCTGTATACC AGACATATGG	6220 ACAACATACG TGTTGTATGC
				lgure l	4 ed)				

pD17-cJ-dCH2.H1

6390 CGCTCTTCCG GCGAGAAGGC	6480 TTATCCACAG AATAGGTGTC	6570 GCGTTTTTCC CGCAAAAAGG	6660 TACCAGGCGT ATGGTCCGCA	6750 GGAAGCGTGG CCTTCGCACC	6840 CCCGTTCAGC GGGCAAGTCG	6930 ACTGGTAACA TGACCATTGT	7020 GTATTTGGTA CATAAACCAT	7110 GGTGGTTTTT CCACCAAAAA	7200 CAGTGGAACG GTCACCTTGC	
6380 GCGTATTGGG CGCATAACCC	6470 6470 6480 GCTAATACGG TTATCCACAG CCATTATGCC AATAGGTGTC	6550 6560 GTAAAAAGGC CGCGTTGCTG CAITITITCCG GCGCAACGAC	6650 ACTATAAAGA TGATATITCT	6740 TCTCCCTTCG AGAGGGAAGC	6830 GCACGAACCC CGTGCTTGGG	6920 GGCAGCAGCC CCGTCGTCGG	7010 TAGAAGGACA ATCTTCCTGT	7100 CGCTGGTAGC GCGACCATCG	7190 GTCTGACGCT CAGTGGAACG CAGACTGCGA GTCACCTTGC	
6310 6320 6330 6340 6350 6340 6350 6360 6370 6380 6390 6390 6370 6380 6370 6380 6380 6380 6380 6380 6380 6380 638	6460 ACTCAAAGGC TGAGTTTCCG		6580 6680 6680 6680 6680 6680 6680 6680	6710 6710 6710 6720 6730 6730 6740 6740 6740 6740 6740 6740 6740 674	6890 6890 6890 6890 6890 6890 6890 6890	6890 6890 6890 6890 6890 6890 6890 6890	. 6970 7010 7020 CTACAGAGTICG TGGCCTAACT ACGCCTACAC TAGAAGGACA GIATTITGGTA GATGTICAGA GAACTICACC ACGGATIGA TGCCGATIGTG ATGCCATIGTG ATGCCATIGTG ACCGACAT	7040 7050 7060 7070 7090 7090 7090 7090 6CCTGGTAGCCC GCTGGTAGCCC GCTGGTAGC CGACCATCG CGACCATCG CGACCATCGAGA ACTAGGCCGT TTGTTTTGTCA ACCATCGAGA ACTAGGCCGT TTGTTTTGGTG GCGACCATCG	7130 7140 7150 7150 7150 7160 7170 7170 7180 7190 7200 GCAGCAGATT ACGCGGAGATT ACGCGGAGATT TTTTTACTACGGG GTCTGACGCT CAGTGGAAGG CGTGGTCTAA TGGGGGGTCTT TTTTTCCTAG AGTTCTTGTA GGAAACTAGA AAAGATGCCC CAGAATGGGG GTCACCTTGG	
6360 CGCGCGGGGA GCGCGCCCT	6450 GTATCAGCTC CATAGTCGAG	6540 GCCAGGAACC CGGTCCTTGG	6630 AGGTGGCGAA TCCACCGCTT	6720 ACCGGATACC TGGCCTATGG	6810 CGCTCCAAGC GCGAGGTTCG	6900 AGACACGACT TCTGTGCTGA	6990 TGGCCTAACT ACCGGATTGA	7080 TGATCCGGCA ACTAGGCCGT	7170 CCTTTGATCT GGAAACTAGA	
6350 AATCGGCCAA TTAGCCGGTT	6440 GCGGCGAGCG CGCCGCTCGC	6530 CCAGCAAAAG GGTCGTTTTC	6620 CTCAAGTCAG GAGTTCAGTC	6710 CCTGCCGCTT GGACGCCGAA	6800 GTAGGTCGTT CATCCAGCAA	6890 CAACCCGGTA GTTGGGCCAT	6980 CTTGAAGTGG GAACTTCACC	7070 TGGTAGCTCT ACCATCGAGA	7150 7160 AAAAAGGATC TCAAGAAGAT TTTTTCCTAG AGTTCTTCTA	
6340 TGCATTAATG ACGTAATTAC	6430 TCGTTCGGCT AGCAAGCCGA	6520 GAGCAAAAGG CTCGTTTTCC	6610 AAAATCGACG TYYYAGCYGC		6790 TCAGTTCGGT AGTCAAGCCA	6880 GTCTTGAGTC CAGAACTCAG	.6970 CTACAGAGTT GATGTCTCAA	7060 GAAAAAGAGT CTTTTTCTCA	7150 AAAAAGGATC TTTTTCCTAG	
6320 GGGAAACCTG TCGTGCCAGC CCCTTTGGAC AGCACGGTCG	6410 6420 6430 6440 6450 CACTGACTGG CTGCGCTCGG TCGTTCCGGCT GCGCGCTCGG GTATCAGCTC GTGACTGAGC GACGCGCTCGC CATAGTCGAG	6500 6500 AATCAGGGGA TAACGCAGGA AAGAACATGT TTAGTGCCCT ATTGCGTCCT TTCTTGTACA	6600 GAGCATCACA CTCGTAGTGT	6680 6690 AAGCTCCCTC GTGCGCTCTC TTCGAGGGAG CACGCGAGAG	6750 6770 6780 CGCTITICICA AIGCICACGC TGTAGGIAIC GCGAAAGAGI TACGAGIGG ACATCCATAG	6870 GGTAACTATC CCATTGATAG	6940 6950 6950 GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CCTAATCGTC TCGCTCCATA CATCCGCCAC	7050 GTTACCTTCG CAATGGAAGC	7120 TICTITIGCAA GCAGCAGAT ACGCGCAGAA AACAAACGII CGICGICIAA IGGGGGICII	
6320 GGGAAACCTG CCCTTTGGAC	6410 CACTGACTCG GTGACTGAGC	6500 TAACGCAGGA ATTGCGTCCT	6590 CCCCCCTGAC GGGGGACTG		6770 ATGCTCACGC TACGAGTGCG		6950 AGCGAGGTAT TCGCTCCATA	7040 GCTGAAGCCA CGACTTCGGT	7130 GCAGCAGATT CGTCGTCTAA	
6310 CTTTCCAGTC GAAAGGTCAG	6400 CTTCCTCGCT GAAGGAGCGA	6490 AATCAGGGGA TTAGTCCCCT	6580 ATAGGCTCCG TATCCGAGGC	6670 TTCCCCCTGG	6760 CGCTTTCTCA GCGAAAGAGT	6850 CCGACCGCTG GGCTGGCGAC	6940 GGATTAGCAG CCTAATCGTC	7030 TCTGCGCTCT AGACGCGAGA	7120 TIGITITGCAA AACAAACGIT	

pD17-cJ-dCH2.H1

7290 TITRAAICAA AAAITIAGIT 7380 TITCGITCAI	7470 CCGCGAGACC GGCGCTCTGG 7560 TCCGCCTCCA AGGCGGAGGT	7650 ACAGGCATCG TGTCCGTAGC	TTGTGCAAAA AACACGTTTT	7830 CTGCATAATT GACGTATTAA	7920 CGGCGACCGA GCCGCTGGCT	8010 TCTTCGGGGC AGAAGCCCCG	8100 TTTACTTTCA AAATGAAAGT
7220 7220 7220 7220 7220 7220 7220 7220		7600 7610 7620 7630 7630 7630 7640 7650 7650 7650 7650 7650 7650 7650 765	7720 GAGTTACATG ATCCCCCATG TTGTGCAAAA CTCAATGTAC TAGGGGGTAC AACACGTTTT	7810 7820 CACTCATGGT TATGGCAGCA CTGCATAATT GTGAGTACCA ATACCGTCGT GACGTATTAA		7930 7940 8000 8010 6FIEGCYCTTG CCGGCGTCA ATACCGGCGCC ACATAGCAGA ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGG CAACGAGAAC GGGCCGCAGT TATGGCCCTAT TATGGCGCGG TGTATCGTCT TGAAATTTTC ACGAGTAGTA ACCTTTTGCA AGAAGCCCCG	8060 8070 8080 8080 8080 CCAACTONIC TTCACCATC TTTACTTTCA CTACATTCG GOTTCACTAG AAGTCATAGA AAATCAAAAGT
ACCTAGATIC TITTAAATTA TGGATCTAGG AAAATTTAAT 7350 AGTGAGCCAC CHATCCAGG TCACTCGGG GATAGAGGTCG	7450 7450 7450 7450 7450 7450 7450 7450	7630 GCAACGTTGT CGTTGCAACA		7160 71810 71810 7180 7180 7180 7180 7180 7	7840 7850 7850 7860 7860 7860 7860 7860 7860 7860 786	7990 TGCTCATCAT ACGAGTAGTA	8080 CCAACTGATC GGTTGACTAG
7260 ACCTAGATCC TGGATCTAGG 7350 AGTGAGGCAC TCACTCCGTG	ACGGAGGG TTACCATCTG TGCCCTCCCG AATGGTAGAC 7520 7520 7520 7520 7520 7520 7520 7530 7530 7530 7530	7610 7620 TTCGCCAGTF AATAGTFTGC AAGCGGTCAA TTATCAAACG	7100 CTCGTCGTTT GGTATGCCTT CATTCAGCTC CGGTTCCCAA CGATCAAGG GACCAGCAA CCATACCGAA GTAAGTCGAG GCCAAGGGTT GCTAGTTCCG	7800 GCAGTGTTAT CGTCACAATA	7890 TCAACCAAGT AGTTGGTTCA	7980 ACTTTAAAAG TGAAATTTTC	8070 ACTCGTGCAC TGAGCACGTG
7210 7220 7230 7230 7240 7250 7250 7240 7250 7250 7250 7250 7250 7250 7250 725	7410 7720 CTGACTCCCC GTCGTGTGTAA GACTGAGGGTAACTACGAA GACTGAGGGGA GACTGAGGGGA 7500 7500 7500 7500 7500 7500 7500 750	7610 TTCGCCAGTT AAGCGGTCAA	7700 CGGTTCCCAA GCCAAGGGTT	7760 7770 7780 7780 7790 CTCCTTCGGT CCTCCGATCG TYGTCAGAAG TAAGTTGGCC GAGGGTAGC AACAGTCTTC ATTCAACCG	7880 TGGTGAGTAC ACCACTCATG	7970 ACATAGCAGA TGTATCGTCT	8060 GATGTAACCC CTACATTGGG
7210 7220 7220 7230 7230 7240 AAACTCAAC STRANGGRATT TUGGTCATGA GATTATGAATTTTTGAGTGC AATTACCTAA AACCAGTACT CTAATAGTTT 7330 7330 7330 7330 7330 7330 7330 7	GTCGTGTAGA TAACTACGAT CAGCACATCT ATTGATGCTA 7500 TTATCAGCAA TAAACCAGCC AATAGTCGGT ATTAGCTGG	7600 GAGTAAGTAG CTCATTCATC	7690 CATTCAGCTC GTAAGTCGAG	7780 TTGTCAGAAG AACAGTCTTC	7870 TYTCTGTGAC AAAGACACTG	7960 ATACCGCGCC TATGGCGCGG	8050 GATCCAGTTC CTAGGTCAAG
7220 7220 AAACTOAGE TTAAGGGATT TTGGTCATGA TTTTGAGTGC AATTGCTAA AACCAGTACT 7330 TTGAGTATA AACAGTACT 7330 TCTAAAGTAA AATTGCTCATA RANTGCATA RANTGCTCATT TGAACCAGAC	7410 GTCGTGTAGA CAGCACATCT 7500 TTATCAGCAA AATAGTCGTT	CGGGAA	7680 GGTATGGCTT CCATACCGAA	CCTCCGATCG GGAGGCTAGC	7860 GTAAGATGCT CATTCTACGA	7930 7940 7950 GTTGCTCTTG CCCGGCGTCA ATACGGGATA CAACGAGAAC GGGCCGCAGT TATGCCCTAT	8020 8030 8040 SAAAACTCTC AAGGATCTTA CCGCTGTTGA CTTTTGAGAG TTCCTAGAAT GGCGACAACT
7220 TTAAGGGATT AATTCCCTAA 7310 ATATGAGTAA TAIACTCAFF	7400 CTGACTCCCC GACTGAGGGG 7490 GGCTCCAGAT CCGAGGTCTA	7580 TCCAGTCTAT TAATTGTTGC AGGTCAGATA ATTAACAACG			7840 7850 CTCTTACTGT CATGCCATCC SAGAATGACA GTACGGTAGG	7940 CCCGGCGTCA GGGCCGCAGT	8030 AAGGATCTTA TTCCTAGAAT
7210 AAAACTCACG TTTTGAGTGC 7300 TCTAAAGTAT AGATTTCATA	7390 CCATAGTTGC GGTATCAACG 7480 CACGCTCACC GTGCGAGTGG	7570 TCCAGTCTAT AGGTCAGATA	7660 TGGTGTCACG ACCACAGTGC	7750 AAGCGGTTAG TTCGCCAATC	7840 CTCTTACTGT GAGAATGACA	7930 GTTGCTCTTG CAACGAGAAC	8020 GAAAACTCTC CTTTTGAGAG

8190	8280
CTCATACTCT	AAACAAATAG
GAGTATGAGA	TTTGTTTATC
8170 CGACACGGAA ATGTTGAATA CTCATACTC: GCTGTGCCTT TACAACTTAT GAGTATGAGA	8220 8220 8220 8220 8220 8220 8220 8220
8170	8260
CGACACGGAA	TTGAATGTAT
GCTGTGCCTT	AACTTACATA
8160	8250
GGAATAAGGG	GGATACATAT
CCTTATTCCC	CCTATGTATA
8140	8240
GGCAAAATGC CGCAAAAAG G	TCTCATGAGC
CCGTTTTACG GCGTTTTTTC C	AGAGTACTCG
8140	8230
GGCAAAATGC	AGGGTTATTG
CCGTTTTACG	TCCCAATAAC
8120 8130	8220
GGGTGAGCA AAAACAGGAA (AGCATTTATC
CCCACTCGT TTTTGTCCTT	TCGTAAATAG
	8210 ATATTATTGA FATAATAACT
8110	8200
CCAGCGTTTC GGTCGCAAAG	TCCTTTTTCA AGGAAAAGT

8290 8310 8320 6GGTTCCGCG CACCTGACGT C CCCAAGGGGG GTGATATACGC CCCAAGGGGG GTGATATAGGG GCTTTTCACG GTGGAAGGC G

8330

Comparison of whole chiBR96 and deleted CH2 chiBR96 on Ley/K ELISA

Figure 15

hBR96-2B: L235 to A235 and G237 to A237

hBR96-2C: E318 to S318, K320 to S320, and K322 to S322

hBR96-2D: P331 to A331

hBR96-2E: L235 to A235, G237 to A237, E318 to S318, K320 to S320, and K322 to S322

hBR96-2F: L235 to A235, G237 to A237, and P331 to A331

hBR96-2G: E318 to S318, K320 to S320, K322 to S322, and P331 to A331

hBR96-2H: L235 to A235, G237 to A237, E318 to S318, K320 to S320, K322 to S322, and P331 to A331

FIGURE 18A

1	GGTACCAATT	TAAATTGATA	TCTCCTTAGG	TCTCGAGTCT	CTAGATAACC
51	GGTCAATCGA	TTGGAATTCT	TGCGGCCGCT	TGCTAGCCAC	CATGGAGTTG
101	TGGTTAAGCT	TGGTCTTCCT	TGTCCTTGTT	TTAAAAGGTG	TCCAGTGTGA
151	AGTGCAACTG	GTGGAGTCTG	GGGGAGGCTT	AGTGCAGCCT	GGAGGGTCCC
201	TGCGACTTTC	CTGTGCTGCA	TCTGGATTCC	CGTTCAGTGA	CTATTACATG
251	TATTGGGTTC	GCCAGGCTCC	AGGCAAGGGA	CTGGAGTGGG	TCTCATACAT
301	TAGTCAAGAT	GGTGATATAA	CCGACTATGC	AGACTCCGTA	AAGGGTCGAT
351	TCACCATCTC	CAGAGACAAT	GCAAAGAACA	GCCTGTACCT	GCAAATGAAC
401	AGCCTGAGGG	ACGAGGACAC	AGCCGTGTAT	TACTGTGCAA	GAGGCCTGGC
451	GGACGGGGCC	TGGTTTGCTT	ACTGGGGCCA	AGGGACTCTG	GTCACGGTCT
501	CTTCCGCTAG	CACCAAGGGC	CCATCGGTCT	TCCCCCTGGC	ACCCTCCTCC
551	AAGAGCACCT	CTGGGGGCAC	AGCGGCCCTG	GGCTGCCTGG	TCAAGGACTA
601	CTTCCCCGAA	CCGGTGACGG	TGTCGTGGAA	CTCAGGCGCC	CTGACCAGCG
651	GCGTGCACAC	CTTCCCGGCT	GTCCTACAGT	CCTCAGGACT	CTACTCCCTC
701	AGCAGCGTGG	TCACCGTGCC	CTCCAGCAGC	TTGGGCACCC	AGACCTACAT
751	CTGCAACGTG	AATCACAAGC	CCAGCAACAC	CAAGGTGGAC	AAGAAAGTTG
801	GTGAGAGGCC	AGCACAGGGA	GGGAGGGTGT	CTGCTGGAAG	CCAGGCTCAG
851	CGCTCCTGCC	TGGACGCATC	CCGGCTATGC	AGCCCCAGTC	CAGGGCAGCA
901	AGGCAGGCCC	CGTCTGCCTC	TTCACCCGGA	GGCCTCTGCC	CGCCCCACTC
951	ATGCTCAGGG	AGAGGGTCTT	CTGGCTTTTT	CCCCAGGCTC	TGGGCAGGCA
1001	CAGGCTAGGT	GCCCCTAACC	CAGGCCCTGC	ACACAAAGGG	GCAGGTGCTG
1051	GGCTCAGACC	TGCCAAGAGC	CATATCCGGG	AGGACCCTGC	CCCTGACCTA
1101	AGCCCACCCC	AAAGGCCAAA	CTCTCCACTC	CCTCAGCTCG	GACACCTTCT
1151	CTCCTCCCAG	ATTCCAGTAA	CTCCCAATCT	TCTCTCTGCA	GAGCCCAAAT
1201	CTTGTGACAA	AACTCACACA	TGCCCACCGT	GCCCAGGTAA	GCCAGCCCAG
1251	GCCTCGCCCT	CCAGCTCAAG	GCGGGACAGG	TGCCCTAGAG	TAGCCTGCAT
1301	CCAGGGACAG	GCCCCAGCCG	GGTGCTGACA	CGTCCACCTC	CATCTCTTCC

TCAGCACCTG AACTCCTGGG GGGACCGTCA GTCTTCCTCT TCCCCCCAAA 1351 ACCCAAGGAC ACCCTCATGA TCTCCCGGAC CCCTGAGGTC ACATGCGTGG TGGTGGACGT GAGCCACGAA GACCCTGAGG TCAAGTTCAA CTGGTACGTG 1451 1501 GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT 1551 GGCTGAATGG CAACÇAĞTAC MAGTGCMAGG TCTCCAACAA AGCCCTCCCA GCCCCATCG AGAAAACCAT CTCCAAAGCC AAAGGTGGGA CCCGTGGGGT 1651 GCGAGGGCCA CATGGACAGA GGCCGGCTCG GCCCACCCTC TGCCCTGAGA 1701 GTGACCGCTG TACCAACCTC TGTCCCTACA GGGCAGCCCC GAGAACCACA 1751 GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAAG AACCAGGTCA 1801 GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG 1851 TGGGAGAGCA ATGGGCAGCC GGAGAACAAC TACAAGACCA CGCCTCCCGT 1901 GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA 1951 AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG 2001 GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA ATGAGTGCGA CGGCCGGCAA GCCCCCGCTC CCCGGGCTCT CGCGGTCGCA 2101 CGAGGATGCT TGGCACGTAC CCCCTGTACA TACTTCCCGG GCGCCCAGCA 2151 TGGAAATAAA GCACCCAGCG CTGCCCTGGG CCCCTGCGAG ACTGTGATGG 2201 TTCTTTCCAC GGGTCAGGCC GAGTCTGAGG CCTGAGTGGC ATGAGGGAGG 2251 CAGAGCGGGT CCCACTGTCC CCACACTGGC CCAGGCTGTG CAGGTGTGCC 2301 TGGGCCCCCT AGGGTGGGGC TCAGCCAGGG GCTGCCCTCG GCAGGGTGGG 2351 2401 CACGGGAAGC CCTAGGAGCC CCTGGGGACA GACACACAGC CCCTGCCTCT 2451 GTAGGAGACT GTCCTGTTCT GTGAGCGCCC CTGTCCTCCC GACCTCCATG 2501 CCCACTCGGG GGCATGCCTA GTCCATGTGC GTAGGGACAG GCCCTCCCTC ACCCATCTAC CCCCACGGCA CTAACCCCTG GCTGCCCTGC CCAGCCTCGC 2601 ACCCGCATGG GGACACAACC GACTCCGGGG ACATGCACTC TCGGGCCCTG 2651 TGGAGGGACT GGTGCAGATG CCCACACACA CACTCAGCCC AGACCCGTTC AACAAACCCC GCACTGAGGT TGGCCGGCCA CACGGCCACC ACACACACAC 2751 2801 GTGCACGCCT CACACACGGA GCCTCACCCG GGCGAACTGC ACAGCACCCA

GACCAGAGCA AGGTCCTCGC ACACGTGAAC ACTCCTCGGA CACAGGCCCC 2851 CACGAGCCCC ACGCGGCACC TCAAGGCCCA CGAGCCTCTC GGCAGCTTCT 2901 CCACATGCTG ACCTGCTCAG ACAAACCCAG CCCTCCTCTC ACAAGGGTGC 2951 CCCTGCAGCC GCCACACAC CACAGGGGAT CACACACCAC GTCACGTCCC 3001 TGGCCCTGGC CCACTTCCCA GTGCCGCCCT TCCCTGCAGG ACGGATCAGC 3051 CTCGACTGTG CCTTCTAGTT GCCAGCCATC TGTTGTTTGC CCCTCCCCCG 3101 TGCCTTCCTT GACCCTGGAA GGTGCCACTC CCACTGTCCT TTCCTAATAA 3151 AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT CTATTCTGGG 3201 GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA GACAATAGCA 3251 GGCATGCTGG GGATGCGGTG GGCTCTATGG CTTCTGAGGC GGAAAGAACC 3301 AGCTGGGGCT CTAGGGGGTA TCCCCACGCG CCCTGTAGCG GCGCATTAAG 3351 CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG 3401 CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC CTTCCTTTCT CGCCACGTTC 3451 GCCGGGCCTC TCRAAAAAGG GAAAAAAAGC ATGCATCTCA ATTAGTCAGC 3501 AACCATAGTC CCGCCCCTAA CTCCGCCCAT CCCGCCCCTA ACTCCGCCCA 3551 3601 GTTCCGCCCA TTCTCCGCCC CATGGCTGAC TAATTTTTTT TATTTATGCA GAGGCCGAGG CCGCCTCGGC CTCTGAGCTA TTCCAGAAGT AGTGAGGAGG 3651 CTTTTTTGGA GGCCTAGGCT TTTGCAAAAA GCTTGGACAG CTCAGGGCTG 3701 CGATTTCGCG CCAAACTTGA CGGCAATCCT AGCGTGAAGG CTGGTAGGAT 3751 TTTATCCCCG CTGCCATCAT GGTTCGACCA TTGAACTGCA TCGTCGCCGT 3801 GTCCCAAAAT ATGGGGATTG GCAAGAACGG AGACCTACCC TGGCCTCCGC 3851 TCAGGAACGA GTTCAAGTAC TTCCAAAGAA TGACCACAAC CTCTTCAGTG 3901 GAAGGTAAAC AGAATCTGGT GATTATGGGT AGGAAAACCT GGTTCTCCAT 3951 TCCTGAGAAG AATCGACCTT TAAAGGACAG AATTAATATA GTTCTCAGTA 4001 GAGAACTCAA AGAACCACCA CGAGGAGCTC ATTTTCTTGC CAAAAGTTTG 4051 GATGATGCCT TAAGACTTAT TGAACAACCG GAATTGGCAA GTAAAGTAGA 4101 CATGGTTTGG ATAGTCGGAG GCAGTTCTGT TTACCAGGAA GCCATGAATC 4151 AACCAGGCCA CCTTAGACTC TTTGTGACAA GGATCATGCA GGAATTTGAA 4201 AGTGACACGT TTTTCCCAGA AATTGATTTG GGGAAATATA AACTTCTCCC 4251 AGAATACCCA GGCGTCCTCT CTGAGGTCCA GGAGGAAAAA GGCATCAAGT

4351 ATAAGTTTGA AGTCTACGAG AAGAAGACT AACAGGAAGA TGCTTTCAAG 4401 TTCTCTGCTC CCCTCCTAAA GCTATGCATT TTTATAAGAC CATGGGACTT 4451 TTGCTGGCTT TAGATCTCTT TGTGAAGGAA CCTTACTTCT GTGGTGTGAC 4501 ATAATTGGAC AAACTACCTA CAGAGATTTA AAGCTCTAAG GTAAATATAA 4551 AATTTTAAG TGTATAATGT GTTAAACTAC TGATTCTAAT TGTTTGTGTA 4601 TTTTAGATTC CAACCTATGG AACTGATGAA TGGGAGCAGT GGTGGAATGC CTTTAATGAG GAAAACCTGT TTTGCTCAGA AGAAATGCCA TCTAGTGATG 4651 ATGAGGCTAC TGCTGACTCT CAACATTCTA CTCCTCCAAA AAAGAAGAGA 4701 4751 AAGGTAGAAG ACCCCAAGGA CTTTCCTTCA GAATTGCTAA GTTTTTTGAG 4801 4851 CAAAGGAAAA AGCTGCACTG CTATACAAGA AAATTATGGA AAAATATTCT 4901 GTAACCTTTA TAAGTAGGCA TAACAGTTAT AATCATAACA TACTGTTTTT TCTTACTCCA CACAGGCATA GAGTGTCTGC TATTAATAAC TATGCTCAAA 4951 5001 AATTGTGTAC CTTTAGCTTT TTAATTTGTA AAGGGGTTAA TAAGGAATAT TTGATGTATA GTGCCTTGAC TAGAGATCAT AATCAGCCAT ACCACATTTG 5051 5101 TAGAGGTTTT ACTTGCTTTA AAAAACCTCC CACACCTCCC CCTGAACCTG 5151 AAACATAAAA TGAATGCAAT TGTTGTTGTT AACTTGTTTA TTGCAGCTTA 5201 TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT 5251 5301 TATCATGTCT GGATCGCCTG GATGATCCTC CAGCGCGGGG ATCTCATGCT 5351 GGAGTTCTTC GCCCACCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA 5401 AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG 5451 5501 TATACCGTCG ACCTCTAGCT AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA CATACGAGCC 5551 GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA GCTAACTCAC 5601 ATTAATTGCG TTGCGCTCAC TGCCGGCTTT CCAGTCGGGA AACCTGTCGT GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT 5701 ATTGGGCGCT CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT 5751 TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT 5801

5851 CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG 5901 CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT 5951 GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC 6001 TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC 6051 CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC TCACGCTGTA 6101 GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC 6151 GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT 6201 TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG 6251 GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG 6351 CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT 6401 CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG 6451 CAGATTACGC GCAGAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC 6501 TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG 6551 TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA 6601 TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG 6651 TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC 6701 GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG 6751 GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 6801 CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG 6851 AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 6901 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA 6951 CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA 7001 TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC 7051 CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 7101 CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC 7151 ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 7201 7251 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT 7301

TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG 7351 7401 ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 7451 CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 7501 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG 7551 TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC 7601 7651 AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC 7701 GGATCGGGAG ATCTGCTAGG TGACCTGAGG CGCGCCGGCT TCGAATAGCC 7751 AGAGTAACCT TTTTTTTTAA TTTTATTTTA TTTTATTTTT GAGATGGAGT 7801 TTGGCGCCGA TCTCCCGATC CCCTATGGTC GACTCTCAGT ACAATCTGCT 7851 CTGATGCCGC ATAGTTAAGC CAGTATCTGC TCCCTGCTTG TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG CAAAATTTAA GCTACAACAA GGCAAGGCTT 7951 GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT TTTGCGCTGC 8001 TTCGCGATGT ACGGGCCAGA TATACGCGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA 8051 8101 GTTCCGCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCC CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGACTATT TACGGTAAAC 8201 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA 8251 TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG 8301 ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC 8351 TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC 8401 GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG 8451 AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA 8501 CTCCGCCCCA TTGACGCAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT 8551 ATATAAGCAG AGCTCTCTGG CTAACTAGAG AACCCACTGC TTACTGGCTT 8601 ATCGAAATTA ATACGACTCA CTATAGGGAG ACCCAAGCTT 8651

FIGURE 19 A

pD17-hG1b

60	120	180	240	300	360	420	480	540	600
GGTCAATCGA	CCTGGCACCC	GGACTACTTC	GCACACCTTC	CGTGCCCTCC	CAACACCAAG	TGGAAGCCAG	GCAGCAAGGC	TCAGGGAGAG	CTAACCCAGG
CCAGTTAGCT	GGACCGTGGG	CCTGATGAAG	CGTGTGGAAG	GCACGGGAGG	GTTGTGGTTC	ACCTTCGGTC	CGTCGTTCCG	AGTCCCTCTC	GATTGGGTCC
50	110	170	230	290	350	410	470	530	590
CTAGATAACC	CGGTCTTCCC	GCCTGGTCAA	CCAGCGGCGT	GCGTGGTCAC	ACAAGCCCAG	GGGTGTCTGC	CCAGTCCAGG	CCACTCATGC	CTAGGTGCCC
GATCTATTGG	GCCAGAAGGG	CGGACCAGTT	GGTCGCCGCA	CGCACCAGTG	TGTTCGGGTC	CCCACAGACG	GGTCAGGTCC	GGTGAGTACG	GATCCACGGG
40 TCTCGAGTCT AGAGCTCAGA	AAGGGCCCAT TTCCCGGGTA	160 GCCCTGGGCT CGGGACCCGA	220 GGCGCCCTGA CCGCGGGACT	280 TCCCTCAGCA AGGGAGTCGT	340 AACGTGAATC TTGCACTTAG	400 CAGGGAGGGA GTCCCTCCCT	460 CTATGCAGCC GATACGTCGG	520 TCTGCCCGCC AGACGGGCGG	580 CAGGCACAGG GTCCGTGTCC
30	90	150	210	270	330	390	450	510	570
TCTCCTTAGG	TGCTAGCACC	GGGCACAGCG	GTGGAACTCA	AGGACTCTAC	CTACATCTGC	GAGGCCAGCA	CGCATCCCGG	CCCGGAGGCC	AGGCTCTGGG
AGAGGAATCC	ACGATCGTGG	CCCGTGTCGC	CACCTTGAGT	TCCTGAGATG	GATGTAGACG	CTCCGGTCGT	GCGTAGGGCC	GGGCCTCCGG	TCCGAGACCC
20	80	140	200	260	320	380	440	500	560
TAAATTGATA	TGCGGCCGCT	GCACCTCTGG	TGACGGTGTC	TACAGTCCTC	GCACCCAGAC	AAGTTGGTGA	CCTGCCTGGA	TGCCTCTTCA	CTTTTTCCCC
ATTTAACTAT	ACGCCGGCGA	CGTGGAGACC	ACTGCCACAG	ATGTCAGGAG	CGTGGGTCTG	TTCAACCACT	GGACGGACCT	ACGGAGAAGT	GAAAAAGGGG
10	70	130	190	250	310	370	430	490	550
GGTACCAATT	TTGGAATTCT	TCCTCCAAGA	CCCGAACCGG	CCGGCTGTCC	AGCAGCTTGG	GTGGACAAGA	GCTCAGCGCT	AGGCCCCGTC	GGTCTTCTGG
CCATGGTTAA	AACCTTAAGA	AGGAGGTTCT	GGGCTTGGCC	GGCCGACAGG	TCGTCGAACC	CACCTGTTCT	CGAGTCGCGA	TCCGGGGCAG	CCAGAAGACC

720 AGCTCGGACA TCGAGCCTGT	780 CCAAATCTTG GGTTTAGAAC	840 CGCCCTCCAG GCGGGAGGTC	900 CAGCCGGGTG GTCGGCCCAC	235 950237 960 dcTdseqGGA ccgrcagrcr qcacccccr gccagrcaga	1010 1020 CCGGACCCCT GAGGTCACAT GGCCTGGGGA CTCCAGTGTA	1080 TACGTGGACG ATGCACCTGC	AGCACG1 TCGTGCZ	318 GAGTACRAGT CTCATGTTCA
710 CCACTCCCTC GGTGAGGGAG	770 TCTGCAGAGC AGACGTCTCG	830 GCCCAGGCCT CGGGTCCGGA	890 GGACAGGCCC CCTGTCCGGG			1070 GTTCAACTGG CAAGTTGACC	1130 GCAGTACAAC CGTCATGTTG	1190 GAATGGCAAG . CTTACCGTTC
700	760	820	880	940	1000	1060	1120	1180
GCCAAACTCT	CAATCTTCTC	AGGTAAGCCA	CTGCATCCAG	CACCTGAACT	TCATGATCTC	CTGAGGTCAA	CGCGGGAGGA	AGGACTGGCT
CGGTTTGAGA	GTTAGAAGAG	TCCATTCGGT	GACGTAGGTC	GTGGACTTGA	AGTACTAGAG	GACTCCAGTT	GCGCCCTCCT	TCCTGACCGA
690 700	750	810	870	930	990	1050	1110	1170
CACCCCAAAG GCCAAACTCT	CAGTAACTCC	CACCGTGCCC	CTAGAGTAGC	TCTTCCTCAG	AAGGACACCC	CACGAAGACC	AAGACAAAGC	GTCCTGCACC
GTGGGGTTFTC CGGTFTTGAGA	GTCATTGAGG	GTGGCACGGG	GATCTCATCG	AGAAGGAGTC	TTCCTGTGGG	GTGCTTCTGG	TTCTGTTTTCG	CAGGACGTGG
680	740	800	860	920	980	1040	1100	1160
GACCTAAGCC	TCCCAGATTC	CACACATGCC	GACAGGTGCC	CACCTCCATC	CCCAAAACCC	GGACGTGAGC	GCATAATGCC	CGTCCTCACC
CTGGATTCGG	AGGGTCTAAG	GTGTGTACGG	CTGTCCACGG	GTGGAGGTAG	GGGTTTTGGG	CCTGCACTCG	CGTATTACGG	GCAGGAGTGG
670	730	790	850	910	970	1030	1090	1150
CCCTGCCCCT	CCTTCTCTCC	TGACAAAACT	CTCAAGGCGG	CTGACACGTC	TCCTCTTCCC	GCGTGGTGGT	GCGTGGAGGT	GTGTGGTCAG
GGGACGGGGA	GGAAGAGAGG	ACTGTTTTGA	GAGTTCCGCC	GACTGTGCAG	AGGAGAAGGG	CGCACCACCA	CGCACCTCCA	CACACCAGTC

610 620 630 640 650 650 650 cccrdcraca Aagagggara TCCGGGAGGA GGGACGTG CAGACCTGCC AAGAGGCCATA TCCGGGAGGA GGGACGCG GTCTGGACGG TTCTCGGTAT AGGCCCTCCT

FIGURE 19B

08905293.080197

1260	1320	1380	1440	1500	1560	1620	1680	1740	1800
AAAGCCAAAG	ACCCTCTGCC	ACCACAGGTG	GACCTGCCTG	GCAGCCGGAG	CCTCTACAGC	CTCCGTGATG	GGGTAAATGA	GATGCTTGGC	CCAGCGCTGC
TTTCGGTTTTC	TGGGAGACGG	TGGTGTCCAC	CTGGACGGAC	CGTCGGCCTC	GGAGATGTCG	GAGGCACTAC	CCCATTTACT	CTACGAACCG	GGTCGCGACG
1250	1310	1370	1430	1490	1550	1610	1670	1730	1790
AACCATCTCC	GGCTCGGCCC	AGCCCCGAGA	AGGTCAGCCT	AGAGCAATGG	GCTCCTTCTT	TCTTCTCATG	CCCTGTCTCC	GTCGCACGAG	AATAAAGCAC
TTGGTAGAGG	CCGAGCCGGG	TCGGGGCTCT	TCCAGTCGGA	TCTCGTTACC	CGAGGAAGAA	AGAAGAGTAC	GGGACAGAGG	CAGCGTGCTC	TTATTTCGTG
1230 33/ 1240	1300	1360	1420	1480	1540	1600	1660	1720	1780
CTCCCAGCGC CCATCGAGAA	GACAGAGGCC	CCTACAGGGC	ACCAAGAACC	GTGGAGTGGG	GACTCCGACG	CAGGGGAACG	AAGAGCCTCT	GGCTCTCGCG	CCAGCATGGA
GAGGGTCGCG GGFAGCTCTT	CTGTCTCCGG	GGATGTCCCG	TGGTTCTTGG	CACCTCACCC	CTGAGGCTGC	GTCCCCTTGC	TTCTCGGAGA	CCGAGAGCGC	GGTCGTACCT
1230334	1290	1350	1410	1470	1530	1590	1650	1710	1770
CTCCCAGCOC	GGGCCACATG	AACCTCTGTC	GGATGAGCTG	CGACATCGCC	TCCCGTGCTG	CAGGTGGCAG	CTACACGCAG	CCGCTCCCCG	TCCCGGGCGC
CAGGGTCGGG	CCCGGTGTAC	TTGGAGACAG	CCTACTCGAC	GCTGTAGCGG	AGGGCACGAC	GTCCACCGTC	GATGTGCGTC	GGCGAGGGGC	AGGGCCCGCG
1220	1280	1340	1400	1460	1520	1580	1640	1700	1760
CAACAAAGCC	TGGGGTGCGA	CCGCTGTACC	CCCCATCCCG	TCTATCCCAG	AGACCACGCC	TGGACAAGAG	TGCACAACCA	CGGCAAGCCC	TGTACATACT
GTTGTTTCGG	ACCCCACGCT	GGCGACATGG	GGGGTAGGGC	AGATAGGGTC	TCTGGTGCGG	ACCTGTTCTC	ACGTGTTGGT	GCCGTTCGGG	ACATGTATGA
312 1210	1270	1330	1390	1450	1510	1570	1630	1690	1750
GCAAGGTCTC	GTGGGACCCG	CTGAGAGTGA	TACACCCTGC	GTCAAAGGCT	AACAACTACA	AAGCTCACCG	CATGAGGCTC	GTGCGACGGC	ACGTACCCCC
CGTTCCAGAG	CACCCTGGGC	GACTCTCACT	ATGTGGGACG	CAGTTTCCGA	TTGTTGATGT	TTCGAGTGGC	GTACTCCGAG	CACGCTGCCG	TGCATGGGGG

1860	1920	1980	2040	2100	2160	2220	2280	2340	2400
CTGAGGCCTG	GCTGTGCAGG	GGTGGGGGAT	GGAAGCCCTA	TGTTCTGTGA	GCGGTGGGCT	CACGCGCCCT	GCTACACTTG	ACGTTCGCCG	AGTGCTTTAC
GACTCCGGAC	CGACACGTCC	CCACCCCTA	CCTTCGGGAT	ACAAGACACT	CGCCACCCGA	GTGCGCGGGA	CGATGTGAAC	TGCAAGCGGC	TCACGAAATG
1850	1910	1970	2030	2090	2150	2210	2270	2330	2390
CAGGCCGAGT	ACTGGCCCAG	CCCTCGGCAG	CTGGGCCACG	GAGACTGTCC	TGCTGGGGAT	GGGGTATCCC	CAGCGTGACC	CTTTCTCGCC	GTTCCGATTT
GTCCGGCTCA	TGACCGGGTC	GGGAGCCGTC	GACCCGGTGC	CTCTGACAGG	ACGACCCCTA	CCCCATAGGG	GTCGCACTGG	GAAAGAGCGG	CAAGGCTAAA
1840	1900	1960	2020	2080	2140	2200	2260	2320	2380
TTCCACGGGT	CTGTCCCCAC	CCAGGGGCTG	CTGCCCTGGG	GCCTCTGTAG	CTCGGGGGCA	GGGGCTCTAG	TGGTTACGCG	TCTTCCCTTC	TCCCTTTAGG
AAGGTGCCCA	GACAGGGGTG	GGTCCCCGAC	GACGGGACCC	CGGAGACATC	GAGCCCCCGT	CCCCGAGATC	ACCAATGCGC	AGAAGGGAAG	AGGGAAATCC
1830	1890	1950	2010	2070	2130	2190	2250	2310	2370
TGATGGTTCT	GCGGGTCCCA	TGGGGCTCAG	CCAGCAGCAC	CACAGCCCCT	TCCATGCCCA	AGAACCAGCT	GCGGGTGTGG	CCTTTCGCTT	AATCGGGGCA
ACTACCAAGA	CGCCCAGGGT	ACCCCGAGTC	GGTCGTCGTG	GTGTCGGGGA	AGGTACGGGT	TCTTGGTCGA	CGCCCACACC	GGAAAGCGAA	TTAGCCCCGT
1820	1880	1940	2000	2060	2120	2180	2240	2300	2360
TGCGAGACTG	GGGAGGCAGA	CCCCCTAGGG	GGCCCTCCCT	GGGACAGACA	CCTCCCGACC	TGAGGCGGAA	ATTAAGCGCG	AGCGCCCGCT	TCAAGCTCTA
ACGCTCTGAC	CCCTCCGTCT	GGGGGATCCC	CCGGGAGGGA	CCCTGTCTGT	GGAGGGCTGG	ACTCCGCCTT	TAATTCGCGC	TCGCGGGCGA	AGTTCGAGAT
1810	1870	1930	1990	2050	2110	2170	2230	2290	2350
CCTGGGCCCC	AGTGGCATGA	TGTGCCTGGG	TTGCCAGCGT	GGAGCCCCTG	GCGCCCCTGT	CTATGGCTTC	GTAGCGGCGC	CCAGCGCCCT	GCTTTCCCCG
GGACCCGGGG	TCACCGTACT	ACACGGACCC	AACGGTCGCA	CCTCGGGGAC	CGCGGGGACA	GATACCGAAG	CATCGCCGCG	GGTCGCGGGA	CGAAAGGGGC

2460 CCATCGCCCT GGTAGCGGGA	2520 GGACTCTTGT CCTGAGAACA	2580 TAAGGGATTT ATTCCCTAAA	2640 AACGCGAATT TTGCGCTTAA	2700 CAGGCAGGCA GTCCGTCCGT	2760 CTAACTCCGC GATTGAGGCG	2820 TGACTAATTT ACTGATTAAA	2880 AAGTAGTGAG TTCATCACTC	2940 GCTGCGATTT CGACGCTAAA	3000 CCCGCTGCCA GGGCGACGGT	
2450 ACGTAGTGGG TGCATCACCC	2510 CTTTAATAGT GAAATTATCA	2570 TTTTGATTTA AAAACTAAAT	2630 ACAAAAATTT TGTTTTTAAA	2690 CCAGGCTCCC GGTCCGAGGG	2750 AGTCCCGCCC TCAGGGCGGG	2810 GCCCCATGGC CGGGGTACCG	2870 GCTATTCCAG CGATAAGGTC	2930 ACAGCTCAGG TGTCGAGTCC	2990 GGATTTTATC CCTAAAATAG	
2440 GTGATGGTTC CACTACCAAG	2500 AGTCCACGTT TCAGGTGCAA	2560 CGGTCTATTC GCCAGATAAG	2620 AGCTGATTTA TCGACTAAAT	2680 TGGAAAGTCC ACCTTTCAGG	2740 CAGCAACCAT GTCGTTGGTA	2800 CCCATTCTCC GGGTAAGAGG	2860 CGGCCTCTGA GCCGGAGACT	2920 AAAAGCTTGG TTTTCGAACC	2980 AAGGCTGGTA TTCCGACCAT	
2430 CTTGATTAGG GAACTAATCC	2490 TTGACGTTGG AACTGCAACC	2550 AACCCTATCT TTGGGATAGA	2610 TTAAAAAATG AATTTTTTAC	2670 AGTTAGGGTG TCAATCCCAC	2730 CTCAATTAGT GAGTTAATCA	2790 CCCAGTTCCG GGGTCAAGGC	2850 GAGGCCGCCT CTCCGGCGGA	2910 GGCTTTTGCA CCGAAAACGT	2970 TCCTAGCGTG AGGATCGCAC	
2420 CCCCAAAAA GGGGTTTTTT	2480 TTTTCGCCCT AAAAGCGGGA	2540 AACAACACTC TTGTTGTGAG	2600 GGCCTATTGG CCGGATAACC	2660 AATGTGTGTC TTACACACAG	2720 AAGCATGCAT TTCGTACGTA	2780 CCTAACTCCG GGATTGAGGC	2840 TGCAGAGGCC ACGTCTCCGG	2900 TGGAGGCCTA ACCTCCGGAT	2960 TTGACGGCAA AACTGCCGTT	
2410 GGCACCTCGA CCGTGGAGCT	2470 GATAGACGGT CTATCTGCCA	2530 TCCAAACTGG AGGTTTGACC	2590 TGGGGATTTC ACCCCTAAAG	2650 AATTCTGTGG TTAAGACACC	2710 GAAGTATGCA CTTCATACGT	2770 CCATCCCGCC GGTAGGGCGG	2830 TTTTTATTTA AAAATAAAT	2890 GAGGCTTTTT CTCCGAAAAA	2950 CGCGCCAAAC GCGCGGTTTG	

FIGURE 19E

	3550 3560 3670 3680 3690 3690 7FGAACTTCTCF GCTCCCTCC AACTTCAGAAGAAA GACTTCTCT GCTCCCTCC AACTTCAAGAAA GACTTCTTCT C TTCTAGAAAA GTTCAAGAAA GAAGGAAGAAA GTTCAAGAAA GTTCAAGAAA GTTCAAGAAAA GAAGGAAGAAAACTTCAAGAAAA GTTCAAGAAAA GTTCAAGAAAAAAAAAA
	3590 CAAGTTCTCT GTTCAAGAGA
	3580 AAGATGCTTT TTCTACGAAA
OPENDENCT CO	3570 GACTAACAGG CTGATTGTCC
GGGTCCGCAG	3560 CGAGAAGAAA GCTCTTCTTT
AGGGICITAT GGGICCGCAG GAGAGACTCC MOCACC	3550 TTGAAGTCTA AACTTCAGAT

GCCTTAA	3290 TTTGGATGAT	3280 TTGCCAAAAG	3270 GCTCATTTTC	3260 ACCACGAGGA	3280 3280 3260 3260 3270 3280 3280 3290 TCAAAAGAACC ACCACGAGGA GCTTTAA
TCATCTC	ATATCAAGAG	TGTCTTAATT	GGAAATTTCC	CTTCTTAGCT	GGTAAGGACT CTTCTTAGCT GGAAATTTCC TGTCTTAATT ATATCAAGAG TCATCTC

3240	AGTAGAGAAC	TCATCTCTTG
3230	TATAGTTCTC	ATATCAAGAG
3220	ACAGAATTAA	TGTCTTAATT
3210	CCTTTAAAGG	GGAAATTTCC
3200	GAAGAATOGA	CTTCTTTAGCT
3190	CCAMMICTOR GAAGAATICGA CCTTTAAAGG ACAGAATTAA TATAGTTCTC AGTAGAAAC	CONTRACTOR OF TOTAL STATE OF THE STATE AND THE STATE OF T

3180	ACCTGGTTCT	TGGACCAAGA
3170	GGGTAGGAAA	CCCATCCTTT
3160	TGGTGATTAT	ACCACTAATA
3150	AAACAGAATC	TTTGTCTTAG
3140	AGTGGAAGGT	TCACCTTCCA
3130	CAACCHCTTC AGTGGAAGGT AAACAGAATC TGGTGATTAT GGGTAGGAAA ACCTGGTTCT	GTTGGAGAAG TCACCTTCCA TTTGTCTTAG ACCACTAATA CCCATCCTTT TGGACCAAGA

3180	3170	3160	3150	3140	3130
AGAATGACCA TCTTACTGGT	GTACTTCCAA	ACGAGTTCAA TGCTCAAGTT	CCGCTCAGGA	ACCCTGGCCT TGGGACCGGA	ACGGAGACCT ACCCTGGCCT CCGCTCAGGA ACGAGTTCAA GTACTTCCAA AGAATGACA TGCCTCTGGA TGGGACCGGA GGCGAGTCCT TGCTCAAGIT CATGAAGGIT TCTTACTGGT
3120	3110	3100	3090	3080	3070

3010 3020 3040 3050 3060 3060 3060 3060 3060 3060 306		
3010 3020 3030 3040 3050 3040 3050 3050 3050 305	3060 ATTGGCAAGA TAACCGTTCT	3120 AGAATGACCA
3010 3020 3030 3040 3040 3040 3040 3040 304	3050 AAATATGGGG TYYATACCCC	3110 GTACTTCCAA
3010 3020 3030 GARGATICA ACCUPAGE TIGGATICATICA ACCUPAGE TIGGTAACTICA ACCUPAGE SORO 3090 3080 ACCUPAGE ACCUPAGE TO ACCUPACE TO	3040 CCGTGTCCCA GGCACAGGGT	3100 ACGAGTTCAA
3010 3020 ATGGTTCG ACCATTGAAC FACCAAGC TGGTAACTTG 3070 3080 3040 ACCCTGGCCT	3030 TGCATCGTCG ACGTAGCAGC	3090 CCGCTCAGGA
3010 ATGGTTCG FACCAAGC 3070 3GAGACCT	3020 ACCATTGAAC TGGTAACTTG	3080 ACCCTGGCCT
TC2 AG3	3010 TCATGGTTCG AGTACCAAGC	3070 ACGGAGACCT

3060

3050

FIGURE 19F

CTACTGCTGA	3960 AGGACTTTCC TCCTGAAAGG	4020 TTGCTTGCTT AACGAACGAA	4080 TGGAAAAATA ACCTTTTTAT	4140 TTTTTCTTAC AAAAAGAATG	4200 GTACCTTTAG CATGGAAATC	
TGAGGAAAAC CTGTTTTGCT CAGAAGAAT GCCATCTAGT GATGATGAGG CTACTGCTGA ACTCCTTTTG GACAAAAGGA GTCTTCTTTA CGGTAGATCA CTACTACTCC GATGACGACT	3910 3950 3950 CTCTCAACAT TCTACTCCTC CAAAAAGAA GAGAAAGGTA GAAGACCCCA AGGACTTTCC GAGAGTTGTA AGATGAGGAG GTTTTTTCTT CTCTTTCCAT CTTCTGGGGT TCCTGAAAGG	3970 3980 3990 TTCAGAAFTG CTAAGTTTTT TGAGTCATGC TGTGTTTAGT AATAGAACTC TTGCTTGCTTAAGT AAGTCTTAAC GATTCAAAAA ACTCAGTACG ACACAAATCA TTATCTTGAG AACGAACGAA	4030 4040 4050 TGCTATTTAC ACCACAAAAG AAAAAGCTGC ACTGCTATAC AAGAAAATTA TGGAAAAATA ACGATAAAAT TGGAAGATA ACGATAAAAT TGTTTTAAT ACCATTAAAA ACCTTTTTAAT	4090 4100 4110 4120 4120 4130 TTCTGTPAACC TTTPTTCTTAC AAGACATTGG AAATATTCCT CCGTATTGGC AATATTAGTA TTGTATGACA AAAAAGAATG	4150 4160 4170 4200 TCCACACAGG CATAGGGTGT CTGCTATTAA TAACTATGCT CAAAAATTGT GTACCTTTAG AGGTGTGTCC GTATCTCACA GACGATAATT ATTGATACGA GTTTTTTAACA CATGGAAATC	
GCCATCTAGT	3940 GAGAAAGGTA CTCTTTCCAT	4000 TGTGTTTAGT ACACAAATCA	4060 ACTGCTATAC TGACGATATG	4120 TTATAATCAT AATATTAGTA	4180 TAACTATGCT ATTGATACGA	
CAGAAGAAAT GTCTTCTTTA	3930 CAAAAAGAA GTTTTTTCTT	3990 TGAGTCATGC ACTCAGTACG	4050 AAAAAGCTGC TTTTTCGACG	4110 GGCATAACAG CCGTATTGTC	4170 CTGCTATTAA GACGATAATT	
CTGTTTTGCT	3920 TCTACTCCTC AGATGAGGAG	3980 CTAAGTTTTT GATTCAAAAA	4040 ACCACAAAGG TGGTGTTTCC	4100 TTTATAAGTA AAATATTCAT	4160 CATAGAGTGT GTATCTCACA	
TGAGGAAAAC	3910 CTCTCAACAT GAGAGTTGTA	3970 TTCAGAATTG AAGTCTTAAC	4030 TGCTATTTAC ACGATAAATG	4090 TTCTGTAACC AAGACATTGG	4150 TCCACACAGG AGGTGTGTCC	

TAAAGCTATG CATTTTTATA AGACCATGGG ACTTTTGCTG GCTTTAGATC TCTTTTGTGAA ATTTCGATAC GTAAAAATAT TCTGGTACCC TGAAAACGAC GGAAATCTAG AGAAAACACTT

TTTAAAGCTC

CTACTGATTC TAATTGTTTG

ATTCCATTTA TATTTTAAAA ATTCACATAT TACACAATTT GATGACTAAG ATTAACAAAC

TAAGGTAAAT ATAAAATTTT TAAGTGTATA ATGTGTTAAA

TGTATTTTAG ATTCCAACCT ATGGAACTGA TGAATGGGAG CAGTGGTGGA ATGCCTTTAA

TAAGGTTGGA TACCTTGACT ACTTACCCTC GTCACCACCT TACGGAAATT

ACATAAAATC

CCTTGGAATG AAGACACCAC ACTGTATTAA CCTGTTTGAT GGATGTCTCT AAATTTTCGAG

GGAACCTTAC TTCTGTGGTG TGACATAATT GGACAAACTA CCTACAGAGA

TGACTAGAGA ACTGATCTCT	4320 CTCCCACACC GAGGGTGTGG	4380 TTTATTGCAG AAATAACGTC	4440 GCATTTTTT CGTAAAAAA	4500 GTCTGGATCG CAGACCTAGC	4560 CCCAACTTGT GGGTTGAACA	4620 ACAAATAAAG TGTTTATTTC	4680 TCTTATCATG AGAATAGTAC	4740 CTGTTTCCTG GACAAAGGAC	4800 ATAAAGTGTA TATTTCACAT	
TATAGTGCCT ATATCACGGA	4310 TTTAAAAAAC AAATTTTTTG	4370 TGTTAACTTG ACAATTGAAC	4430 CACAAATAAA GTGTTTATTT	4490 ATCTTATCAT TAGAATAGTA	4550 CTTCGCCCAC GAAGCGGGTG	4610 CACAAATTTC GTGTTTAAAG	4670 CATCAATGTA GTAGTTACAT	4730 ATGGTCATAG TACCAGTATC	4790 AGCCGGAAGC TCGGCCTTCG	
ATATTTGATG TATAAACTAC	4300 TTTTACTTGC AAAATGAACG	4360 CAATTGTTGT GTTAACAACA	4420 TCACAAATTT AGTGTTTAAA	4480 TCATCAATGT AGTAGTTACA	4540 TGCTGGAGTT ACGACCTCAA	4600 GCAATAGCAT CGTTATCGTA	4650 4650 AGTTGTGGTT TGTCCAAACT TCAACACCAA ACAGGTTTGA	4710 4720 AGCTAGAGCT TGGCGTAATC TCGATCTCGA ACCGCATTAG	4780 ACAACATACG TGTTGTATGC	
TTAATAAGGA	4290 TTTGTAGAGG AAACATCTCC	4350 AAAATGAATG TTTTACTTAC	4410 AGCAATAGCA TCGTTATCGT	4470 TTGTCCAAAC AACAGGTTTG	4530 GGGGATCTCA CCCCTAGAGT	4590 TACAAATAAA ATGTTTATTT	4650 AGTTGTGGTT TCAACACCAA		4770 ACAATTCCAC TGTTAAGGTG	
TGTAAAGGGG	4280 CCATACCACA GGTATGGTGT	4340 CCTGAAACAT GGACTTTGTA	4400 TTACAAATAA AATGTTTATT	4460 TAGTTGTGGT ATCAACACCA	4520 CCTCCAGCGC GGAGGTCGCG	4580 TTATAATGGT AATATTACCA	4640 ACTGCATTCT TGACGTAAGA	4700 GTCGACCTCT CAGCTGGAGA	4760 TTATCCGCTC AATAGGCGAG	
CTTTTTAATT GAAAAATTAA	4270 TCATAATCAG AGTATTAGTC	4330 TCCCCCTGAA AGGGGGACTT	4390 CTTATAATGG GAATATTACC	4450 CACTGCATTC GTGACGTAAG	4510 GCTGGATGAT CGACCTACTA	4570 TTATTGCAGC AATAACGTCG	4630 CATTTTTTC GTAAAAAAG	4690 TCTGTATACC AGACATATGG	4750 TGTGAAATTG ACACTTTAAC	

FIGURE 19H

4860 TCACTGCCCG AGTGACGGGC 4920 CGCGCGGGGA	4980 CTGCGCTCGG GACGCGAGCC 5040	TTATCCACAG AATAGGTGTC 5100 GCCAGGAACC CGGTCCTTGG	5160 GAGCATCACA CTCGTAGTGT	5220 TACCAGGCGT ATGGTCCGCA	5280 ACCGGATACC TGGCCTATGG	5340 TGTAGGTATC ACATCCATAG	5400 CCCGTTCAGC GGGCAAGTCG
4850 TGCGTTGCGC ACGCAACGCG 4910 AATCGGCCAA	4970 CACTGACTCG GTGACTGAGC 5030	GGTAATACGG CCATTATGCC 5090 CCAGCAAAAG GGTCGTTTTC	5150 CCCCCCTGAC GGGGGGACTG	5210 ACTATAAAGA TGATATTTCT	5270 CCTGCCGCTT GGACGGCGAA	5330 ATGCTCACGC TACGAGTGCG	5390 GCACGAACCC CGTGCTTGGG
4840 TCACATTAAT AGTGTAATTA 4900 TGCATTAATG	4960 CTTCCTCGCT GAAGGAGCGA 5020	ACTCAAAGGC TGAGTTTCCG 5080 GAGCAAAAGG CTCGTTTTCC	5140 ATAGGCTCCG TATCCGAGGC	5200 ACCCGACAGG TGGGCTGTCC	5260 CTGTTCCGAC GACAAGGCTG	5320 CGCTTTCTCA GCGAAAGAGT	5380 TGGGCTGTGT ACCCGACACA
4830 GTGAGCTAAC CACTCGATTG 4890 TCGTGCCAGC	4950 CGCTCTTCCG GCGAGAAGGC 5010	GTATCAGCTC CATAGTCGAG 5070 AAGAACATGT TTCTTGTACA	5130 GCGTTTTTCC CGCAAAAGG	5190 AGGTGGCGAA TCCACCGCTT	5250 GTGCGCTCTC CACGCGAGAG	5310 GGAAGCGTGG CCTTCGCACC	5370 CGCTCCAAGC GCGAGGTTCG
4820 TGCCTAATGA ACGGATTACT 4880 GGGAAACCTG	4940 GCGTATTGGG CGCATAACCC 5000	GCGGCGAGCG CGCCGCTCGC 5060 TAACGCAGGA ATTGCGTCCT	5120 CGCGTTGCTG GCGCAACGAC	5180 CTCAAGTCAG GAGTTCAGTC	5240 AAGCTCCCTC TTCGAGGGAG	5300 TCTCCCTTCG AGAGGGAAGC	5360 GTAGGTCGTT CATCCAGCAA
4810 AAGCCTGGGG TTCGGACCCC 4870 CTTTCCAGTC	4930 GAGGCGGTTT CTCCGCCAAA	TCGTTCGGCT AGCAAGCCGA 5050 AATCAGGGGA TTAGTCCCCT	5110 GTAAAAAGGC CATT'TTCCG	5170 AAAATCGACG TYTTAGCTGC	5230 TTCCCCCTGG AAGGGGGACC	5290 TGTCCGCCTT ACAGGCGGAA	5350 TCAGTTCGGT AGTCAAGCCA

5460	5520	5580	5640	5700	5760	5820	5880	5940	6000	
AGACACGACT	GTAGGCGGTG	GTATTTGGTA	TGATCCGGCA	ACGCGCAGAA	CAGTGGAACG	ACCTAGATCC	ACTTGGTCTG	TTTCGTTCAT	TTACCATCTG	
TCTGTGCTGA	CATCCGCCAC	CATAAACCAT	ACTAGGCCGT	TGCGCGTCTT	GTCACCTTGC	TGGATCTAGG	TGAACCAGAC	AAAGCAAGTA	AATGGTAGAC	
5450	5510	5570	5630	5690	5750	5810	5870	5930	5990	
CAACCCGGTA	AGCGAGGTAT	TAGAAGGACA	TGGTAGCTCT	GCAGCAGATT	GTCTGACGCT	AAGGATCTTC	ATATGAGTAA	GATCTGTCTA	ACGGGAGGGC	
GTTGGGCCAT	TCGCTCCATA	ATCTTCCTGT	ACCATCGAGA	CGTCGTCTAA	CAGACTGCGA	TTCCTAGAAG	TATACTCATT	CTAGACAGAT	TGCCCTCCCG	
5440	5500	5560	5620	5680	5740	5800	5860	5920	5980	
GTCTTGAGTC	GGATTAGCAG	ACGGCTACAC	GAAAAAGAGT	TTGTTTGCAA	TYYCTACGGG	GATTATCAAA	TCTAAAGTAT	CTATCTCAGC	TAACTACGAT	
CAGAACTCAG	CCTAATCGTC	TGCCGATGTG	CTTTTTCTCA	AACAAACGTT	AAAGATGCCC	CTAATAGTTT	AGATTTCATA	GATAGAGTCG	ATTGATGCTA	
5430	5490	5550	5610	5670	5730	5790	5850	5910	5970	
GGTAACTATC	ACTGGTAACA	TGGCCTAACT	GTTACCTTCG	GGTGGTTTTT	CCTTTTGATCT	TTGGTCATGA	TTTAAATCAA	AGTGAGGCAC	GTCGTGTAGA	
CCATTGATAG	TGACCATTGT	ACCGGATTGA	CAATGGAAGC	CCACCAAAAA	GGAAACTAGA	AACCAGTACT	AAATTTAGTT	TCACTCCGTG	CAGCACATCT	
5420	5480	5540	5600	5660	5720	5780	5840	5900	5960	
CGCCTTATCC	GGCAGCAGCC	CTTGAAGTGG	GCTGAAGCCA	CGCTGGTAGC	TCAAGAAGAT	TTAAGGGATT	AAAATGAAGT	ATGCTTAATC	CTGACTCCCC	
GCGGAATAGG	CCGTCGTCGG	GAACTTCACC	CGACTTCGGT	GCGACCATCG	AGTTCTTCTA	AATTCCCTAA	TYYYACYYCA	TACGAATTAG	GACTGAGGGG	
5410	5470	5530	5590	5650	5710	5770	5830	5890	5950	
CCGACCGCTG	TATCGCCACT	CTACAGAGTT	TCTGCGCTCT	AACAAACCAC	AAAAAGGATC	AAAACTCACG	TTTTAAATTA	ACAGTTACCA	CCATAGTTGC	
GGCTGGCGAC	ATAGCGGTGA	GATGTCTCAA	AGACGCGAGA	TTGTTTGGTG	TTTTTCCTAG	TTTTGAGTGC	AAAATTTAAT	TGTCAATGGT	GGTATCAACG	

FIGURE 19J

6360	6420	6480	6540	6600
GCAGTGTTAT	GTAAGATGCT	CGGCGACCGA	ACTTTAAAAG	CCGCTGTTGA
CGTCACAATA	CATTCTACGA	GCCGCTGGCT	TGAAATTTTC	GGCGACAACT
6350	6410	6470	6530	6590
TAAGTTGGCC	CATGCCATCC	ATAGTGTATG	ACATAGCAGA	AAGGATCTTA
ATTCAACCGG	GTACGGTAGG	TATCACATAC	TGTATCGTCT	TTCCTAGAAT
6310 6320 6330 6340 6350 6350 AAGCGGTTAG CTCCTTCGGATCG TTGTCAGAAG TAAGTTGGCC GCAGTGTTAT TTCGCCAATC GAGGAAGCCA GAAGGCTAGC AACAGTCTTC ATTCAACCGG CGTCACAATA	6370 6380 6390 6410 6420 CACTARATIGE CATGCCATCC GTAAGATGCT GTGAGGTGCT ATACCTGCTACCT GTGAGGATGCT GTGAGGTACCA ATACCGTCGT GACGTATTAA GAGAATGACA GTACGGTAGG CATTCTACGA	6480 6410 6410 6450 FTTCTGAGA ATAGTGTATG CGGCGACCGA AAAGACACTG ACCACTCATG AGTTGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGGTTCA GTTAGACTCT TATCACATAC GCCGCTGGCT	6490 6500 6500 6510 6540 6740 GITIGCITCITIG CCCGGCGTCA ATACGGGGATA ATACGGCGCC ACATAGCAGA ACTITIAAAAG CAACGAGAAC GGGCCGCAGT TATGCCCTAT TATGGCGCGG TGTATCGTCT TGAAATTITIC	6550 6560 6560 FORTICGEGGG GARAACTCTC AAGGATCTTA CCGCTGTTGA ACCACTAGTA ACCACTTTGCA AGAAGCCCCG CTTTTGAGAG TTCCTAGAAT GCGACAACT
6330	6390	6450	6510	6570
CCTCCGATCG	CTGCATAATT	TCAACCAAGT	ATACGGGATA	TCTTCGGGGC
GGAGGCTAGC	GACGTATTAA	AGTTGGTTCA	TATGCCCTAT	AGAAGCCCCG
6320	6380	6440	6500	6560
CTCCTTCGGT	TATGGCAGCA	TGGTGAGTAC	CCCGGCGTCA	TGGAAAACGT
GAGGAAGCCA	ATACCGTCGT	ACCACTCATG	GGGCCGCAGT	ACCTTTTGCA
6310	6370	6430	6490	6550
AAGCGGTTAG	CACTCATGGT	TTTCTGTGAC	GTTGCTCTTG	TGCTCATCAT
TYCGCCAATC	GTGAGTACCA	AAAGACACTG	CAACGAGAAC	ACGAGTAGTA

6050

6040

GCCCCAGTGC TGCAATGATA CCGCGAGACC CACGCTCACC GGCTCCAGAT TTATCAGCAA CGGGGTCACG ACGTTACTAT GGCGCTCTGG GTGCGAGTGG CCGAGGTCTA AATAGTCGTT

6030

6020

6180

AATAGTTTGC TTATCAAACG

TTCGCCAGTT

6170

6160

AGGICAGATA ATTAACAACG GCCCTTCGAT CTCATTCATC AAGCGGTCAA GCAACGTTGT TGCCATTGCT ACAGGCATCG TGGTGTCACG CTCGTCGTTT

6130 6140 6150 6160 TCCAGTCTAT TAATTGTTGC CGGGAAGCTA GAGTAAGTAG

GGTATGGCTT

6230

6220

6210

6200

6190

6280

GTAAGTUGAG GUCAAGGGTT GUTAGTTUUG UTUAATGTAU TAGGGGGTAC AACAUGTTTT

CGTTGCAACA ACGGTAACGA TGTCCGTAGC ACCACAGTGC GAGCAGCAAA CCATACCGAA

CGGCTCGCGT CTTCACCAGG ACGTTGAAAT AGGCGGAGGT

TABACCAGCC AGCCGGAAGG GCCGAGCGCA GAAGTGGTCC TGCAACTTTA

ATTYGGTCGG TCGGCCTTCC

TCCGCCTCCA

6110

6100

0609

6080

pD17-hG1b

FIGURE 19K

CCTCCAGCGA CTCATCACGC GCTCGTTTTA AATTCGATGT TGTTCGTTC CGAACIGGT	7150 7160 7100 7100 7100 7100 7100 7100 710
TGTTCCGTTC	7190 CTGCTTCGCG GACGAAGCGC
AATTCGATGT	7180 GCGTTTTGCG CGCAAAACGC
GCTCGTTTTA	7170 TTAGGGTTAG AATCCCAATC
CTCATCACGC	7160 AAGAATCTGC TYCTTAGACG
CCTCCAGCGA	7150 CAATTGCATG GTTAACGTAC

6840

PATC ATAG ACAAATAG

	ΑA	TT
6830	COCCEMBATION OF THE PROPERTY AND AND SACRAMENT TO THE SACRAMENT AND SACR	CCCAATAAC AGAGTACTCG CCTATGTATA AACTTACATA AATCTTTTTA TT
6820	TTGAATGTAT	AACTTACATA
6810	GGATACATAT	CCTATGTATA
6800	JED WEDWOOD	AGAGTACTCG
0623	OCTO	CCCAATAAC

	AGCATTT	K K K E C C E	ICGINES.	
0/10	ATATTATTGA	80 4 48 4 48 48	TATABLA	
0919		100111101	AGGAAAAAGT	
6750		CICAIACICI	GAGTATGAGA	
6740		ATGTTGAATA	TACTACATAT	
0.5730	000	CGACACGGAA ATGTTGAATA CICATACICI ICCIIIIICA MINISTERIO MACHANANA	COMPONDED THE BACTATE GAGTATGAGA AGGAAAAGT TALAATAACT ICGIAAA	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

6720 SAATAAGGG STTATTCCC	6780
6670 6680 6690 6700 6710 6720 6720 6720 6720 6720 6720 6720 672	0229
6GCAAAATGC CCGTTTTACG	0929
6690 AAAACAGGAA TTTTGTCCTT	0360
6680 TGGGTGAGCA ACCCACTCGT	9
6670 6680 6690 6700 6710 6710 6720 CCAGCGTTTC TGGGTGAGCA AAAACAGGAA GOCAAAATGC CCCAAAAAAG GGAATAAGGG GGGTTTTC TGGCTGAGGA TTTTTGTCCTT CCGTTTTACG GCGTTTTTC CCTTATTCCC	

6610 6620 6630 6630 6640 6650 6660 GATICAGCATIC TITIACITITICA CTACGTICA ADTICACTITICA CTACGTICA GATICACTICA GATICACTICA GATICA CTACATITICA GATICACTICA GATICACTICA CTACATITICA GATICACTICA ADATICADAGAT	6670 6680 6690 6700 6710 6720 6720 6720 6720 6720 6720 6720 672
6650 TTCAGCATCT AAGTCGTAGA	6710 CGCAAAAAAG GCGTTTTTTC
6640 CCAACTGATC GGTTGACTAG	6700 GGCAAAATGC
6630 ACTCGTGCAC TGAGCACGTG	6690 AAAACAGGAA
6620 GATGTAACCC CTACATTGGG	6680 TGGGTGAGCA
6610 GATCCAGTTC CTAGGTCAAG	6670 CCAGCGTTTC

TTACGGGGTC AATGCCCCAG	7320 ATGGCCCGCC TACCGGGCGG	7380 TTCCCATAGT AAGGGTATCA	7440 AAACTGCCCA TTTGACGGGT	7500 TCAATGACGG AGTTACTGCC	7560 CTACTTGGCA GATGAACCGT	7620 AGTACATCAA TCATGTAGTT	7680 TTGACGTCAA AACTGCAGTT	7740 ACAACTCCGC TGTTGAGGCG	7800 GCAGAGCTCT CGTCTCGAGA	
TAGTAATCAA A1CATTAGTT	7310 7320 CTTACGGTAA ATGGCCCGCC GAATGCCATT TACCGGGCGG	7370 ATGACGTATG TACTGCATAC	7430 TATTTACGGT ATAAATGCCA	7490 CCTATTGACG GGATAACTGC	7550 TGGGACTTTC ACCCTGAAAG	7610 CGGTTTTGGC GCCAAAACCG	7670 CTCCACCCCA GAGGTGGGGT	7730 AAATGTCGTA TTTACAGCAT	7790 GTCTATATAA CAGATATATT	
TAGTTATTAA ATCAATAATT	7290 7300 TGGAGTTCCG CGTTACATAA ACCTCAAGGC GCAATGTATT	7360 GACGTCAATA CTGCAGTTAT	7410 7420 ATTGACGTCA ATGGGTGGAC TAACTGCAGT TACCCACCTG	7480 AAGTACGCCC TTCATGCGGG	7540 CATGACCTTA GTACTGGAAT	7600 CATGGTGATG GTACCACTAC	7660 ATTTCCAAGT TAAAGGTTCA	7720 GGACTTTCCA CCTGAAAGGT	7770 7780 GTAGGCGTGT ACGGTGGGAG CATCCGCACA TGCCACCCTC	
GATTATTGAC	7290 TGGAGTTCCG ACCTCAAGGC	7350 7350 CCCGCCCATT GACGTCAATA GGGCGGGTAA CTGCAGTTAT	7410 ATTGACGTCA TAACTGCAGT	7470 ATCATATGCC TAGTATACGG	7530 ATGCCCAGTA TACGGGTCAT	7590 TCGCTATTAC AGCGATAATG	7650 ACTCACGGGG TGAGTGCCCC	7710 AAAATCAACG TTTTAGTTGC	7770 GTAGGCGTGT CATCCGCACA	
CGTTGACATT	7280 AGCCCATATA TCGGGTATAT	7340 CCCAACGACC GGGTTGCTGG	7400 GGGACTTTCC CCCTGAAAGG	7460 CATCAAGTGT GTAGTTCACA	7520 GCCTGGCATT CGGACCGTAA	7580 GTATTAGTCA CATAATCAGT	7640 TAGCGGTTTG ATCGCCAAAC	7700 TTTTGGCACC AAAACCGTGG	7760 CAAATGGGCG GTTPACCCGC	
CAGATATACG	7270 ATTAGTTCAT TAATCAAGTA	7330 TGGCTGACCG ACCGACTGGC	7390 AACGCCAATA TTGCGGTTAT	7450 CTTGGCAGTA GAACCGTCAT	7510 TAAATGGCCC ATTTACCGGG	7570 GTACATCTAC CATGTAGATG	7630 TGGGCGTGGA ACCCGCACCT	7690 TGGGAGTTTG ACCCTCAAAC	7750 CCCATTGACG GGGTAACTGC	

FIGURE 19M

Adresse mennesse

pD17-hG1b

7810 7850 7850 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GACCGATTGA TCTCATTGGGT GACGAATGAC CGAATAGCTT TAATTATGCT GAGTGATATC

7880 GGAGACCCAA GCTT CCTCTGGGTT CGAA 7870

FIGURE 19N

FIGURE 20

Concentration IgG (µg/ml)

Antibody Dependent Cell-Mediated Cytotoxicity

Binding activity of hBR96-2 constant region mutants on LeY-HSA

Binding activity of hBR96-2 constant region mutants on LNFPIII-BSA

ろもとしなる。 ぎもいいしきもの

Figure 26

hBR96-2 Heavy Chain Variable Region (VH)

1 21 31 41
EVQLVESGGG LVQPGGSLRL SCAASGFPFS DYYMYWVRQA PGKGLEWVSY
51 61 71 81 91
ISQDGDITDY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARGL
101 101 111
ADGAWFAYWG QGTLYTVSS

human IqGI constant

TYPPEPVIVSW NSGALTSGVH TFPAVLQSSG LYSLSSVVTV PSSSLCTQTY
ICNVNHKPSN TXVDKKVEPK SCDKTHTCPP CHAPELOGE SVFLFPPKPK
DTLMISRTPE VTCVVVDVSH EDPEVKPNV VDCVEVHNAK TKPREEQYNS
318 320 341
TYRVVSVLTV LHQDWLNGKE YGCEVSNKAL PAPIEKTISK AKGOPREPQV
YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
DSDGSFFLYS KLTVDKSRWO QGNVFSCSVM HEALHNHYTQ KSLSLSPGK

Figure 27

hBR96-2A: Heavy Chain Variable Region (VH)

1 EVQLVESGGG LVQPGGSLRL 21 SCAASGFPFS DYYMYWVRQA PGKGLEWVSY
51 61 71 SRDNAKNSLY LQMNSLRDED TAVYYCARGL
101 111
TADGAWFAYWG QGTLVTVSS

hBR96-2A: Human Heavy Chain IgG1 Constant Region ACH2

A STKGPSVFPL APSSKSTSGC TAALGCLVKD YFPEPVTVSW NSGALTSGVH

TFPAVLQSSG LYSLSSVVTV PSSSLGTQTY ICNVNHKPSN TKVDKKVEPK

SCDKTHTCPP CP GQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA

VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM

HEALHNHYTG KSLSLSPGK

Figure 28

This sequence is the chi BR96 IgG1 with CH2 deleted.

301 KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSFGK

1	VH EVNLVESGGG	LVQPGGSLKV	SCVTSGFTFS	DYYMYWVRQT	PEKRLEWVAY
51	ISQGGDITDY	PDTVKGRFTI	SRDNAKNTLY	LQMSRLKSED	TAMYYCARGI
	DDGAWFAYWG				
51	YFPEPVTVSW	NEGALTSGVH	TFPAVLQSSG	LYSLSSVVTV	PSSSLCTQTY
01	ICNVNHKPSN	TKVDKKVEPK	SCDKTHTCPP	CHGOPREPQV	YTLPPSRDEI
51	TKNQVSLTCL	VKGFYPSDIA	VEWESNGQPE	NNYKTTPPVL	DSDGSFFLYS