2020-06-19 Lernkontrolle von	(10a)
zu Monotonie-Extremstellen	

bitte bis

Aufgabe 1

Untersuche die Funktion f auf Monotonie. Benutze den Monotoniesatz.

a)
$$f(x) = x^3 - 3x^2 + 1$$
 $f'(x) =$

$$f'(x) =$$

Bestimmung der Nullstellen von f': = 0

= 0 Ausklammern:

Nullstellen: $x_1 = ____; x_2 = ____$

Monotonieintervalle $I_1 = (-\infty; ___); I_2 = ___;$

 $I_3 =$ Wegen f'(-1) = gilt in

I₁ f' > und f ist

. f'(3) = ____ > ___.

f ist in I_3 _____.

Bestimmung der Nullstellen von f':

Aufgabe 2

Gib die gesuchten Stellen(x-Werte), Werte(y-Werte) und Punkte(2 Koordinaten) für den Graphen der Funktion f mit $D_f = [-1; 12]$ an. Extremstellen(6 Stück):

 $X_1 = _{_{_{_{_{_{_{_{1}}}}}}}}$

Extremwerte(6 Stück) y₁₌

Hochpunkte(3): H₁(/); globales Maximum(y-Wert): _____

Tiefpunkte(3):______ globales Minimum (y-Wert): _____

Aufgabe 3

Bestimme mögliche Extremstellen der Funktion f.

a)
$$f(x) = x^4 - 6x^2 + 3$$

Ableitung:
$$f'(x) =$$

Nullstellen von f':
$$x_1 = ___; x_2 = ___; x_3 = ____$$

b)
$$f(x) = \frac{1}{2}x^4 + \frac{4}{3}x^3 - 3x^2 + 5$$

