# Stochastic programming and robust optimisation

Lecture 4/4

Fabricio Oliveira

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

UFMG, Belo Horizonte, Brazil 28.08.2024

#### Outline of this lecture

Introduction

Static robust optimisation

Adjustable robust optimisation

#### Outline of this lecture

Introduction

Static robust optimisation

Adjustable robust optimisation

fabricio.oliveira@aalto.fi Introduction 1/32

# What is robust optimisation

An alternative paradigm for taking uncertainty into account:

- Permeated by the notion of worst-case;
- Control of the degree of conservatism;
- Parallels with chance constraints and risk measures.

fabricio.oliveira@aalto.fi Introduction 2/32

# What is robust optimisation

An alternative paradigm for taking uncertainty into account:

- Permeated by the notion of worst-case;
- Control of the degree of conservatism;
- Parallels with chance constraints and risk measures.

Robust optimisation exists in many variants:

- Static v. adaptable: the presence of recourse decisions;
- Can be extended to objective function performance requirements;
- Feasibility is often the key concern in the static case;
- May or may not be scenario-based;
- Exception: distributionally robust optimisation.

fabricio.oliveira@aalto.fi Introduction 2/32

Let us first consider our deterministic (static) model as

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^\top x \\ & \text{s.t.:} \ A^\top x \leq b \\ & x \in X, \end{aligned}$$

where A is an  $m \times n$  matrix, c an n-vector and b an m-vector.

fabricio.oliveira@aalto.fi Introduction 3/32

Let us first consider our deterministic (static) model as

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^{\top} x \\ & \text{s.t.:} \ A^{\top} x \leq b \\ & x \in X, \end{aligned}$$

where A is an  $m \times n$  matrix, c an n-vector and b an m-vector.

We assume that the i-th row of A is subject to uncertainty. Thus we define  $X = \left\{x \in \mathbb{R}^n : A_{i'}^\top x \leq b_{i'} \ \forall i' \in [m] \setminus \{i\}, x \geq 0\right\}$ , and rewrite it as

$$\min_{x}. \ c^{\top}x$$
 s.t.:  $A_{i}^{\top}x \leq b_{i}$   $x \in X$ .

A robust counter part is derived following these steps:

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ A_i^{\top}x \leq b_i \\ & x \in X \\ & & \Downarrow \\ & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ A_i(\eta)^{\top}x \leq b_i, \ \forall \eta \in U \subseteq \Xi \\ & x \in X \\ & & \Downarrow \\ & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ \max_{\eta \in U \subseteq \Xi} A_i(\eta)^{\top}x \leq b_i \\ & x \in X. \end{aligned}$$

#### A robust counter part is derived following these steps:

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ A_i^{\top}x \leq b_i \\ & \quad x \in X \\ & \quad & \downarrow \\ & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ A_i(\eta)^{\top}x \leq b_i, \ \forall \eta \in U \subseteq \Xi \\ & \quad x \in X \\ & \quad & \downarrow \\ & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ \max_{\eta \in U \subseteq \Xi} A_i(\eta)^{\top}x \leq b_i \\ & \quad x \in X. \end{aligned}$$

A key concept in robust optimisation is the notion of an uncertainty set U.

- The set *U* within the uncertainty support ≡ within which parameter realisations does not turn the solution infeasible;
- Tractability is closely tied to the geometry of such uncertainty sets;
- ▶ Remark: Feasibility is considered constraint-wise, i.e., individually for each row A<sub>i</sub> of A (in the static case).

#### Outline of this lecture

Introduction

Static robust optimisation

Adjustable robust optimisation

Let  $\tilde{a}_{ij} \in J_i$  be the uncertain elements in the matrix  $A_{m \times n}$ 

- lacktriangle Random variables  $ilde{a}_{ij}$  with "central value"  $a_{ij}$  and "maximum deviation"  $\hat{a}_{ij}$ ;
- ▶ symmetric, bounded support  $\tilde{a}_{ij} \in [a_{ij} \hat{a}_{ij}, a_{ij} + \hat{a}_{ij}].$

<sup>&</sup>lt;sup>1</sup>Assuming, w.l.g.,  $a_{ij} \geq 0$ ,  $\forall i \in [m], \forall j \in [n]$ 

Let  $\tilde{a}_{ij} \in J_i$  be the uncertain elements in the matrix  $A_{m \times n}$ 

- **>** Random variables  $\tilde{a}_{ij}$  with "central value"  $a_{ij}$  and "maximum deviation"  $\hat{a}_{ij}$ ;
- ▶ symmetric, bounded support  $\tilde{a}_{ij} \in [a_{ij} \hat{a}_{ij}, a_{ij} + \hat{a}_{ij}].$

Let  $\eta_{ij} = \frac{(\tilde{a}_{ij} - a_{ij})}{\hat{a}_{ij}}$ . Thus  $\eta_{ij} \in [-1, 1]$  and follows the same distribution as  $\tilde{a}_{ij}$ , but centred in zero and scaled.

<sup>&</sup>lt;sup>1</sup>Assuming, w.l.g.,  $a_{ij} \geq 0$ ,  $\forall i \in [m], \forall j \in [n]$ 

Let  $\tilde{a}_{ij} \in J_i$  be the uncertain elements in the matrix  $A_{m \times n}$ 

- **Proof** Random variables  $\tilde{a}_{ij}$  with "central value"  $a_{ij}$  and "maximum deviation"  $\hat{a}_{ij}$ ;
- ▶ symmetric, bounded support  $\tilde{a}_{ij} \in [a_{ij} \hat{a}_{ij}, a_{ij} + \hat{a}_{ij}].$

Let  $\eta_{ij} = \frac{(\tilde{a}_{ij} - a_{ij})}{\hat{a}_{ij}}$ . Thus  $\eta_{ij} \in [-1, 1]$  and follows the same distribution as  $\tilde{a}_{ij}$ , but centred in zero and scaled.

Our robust counterpart<sup>1</sup> is the following bilevel problem:

$$\begin{aligned} & \underset{x}{\min}. \ c^{\top} x \\ & \text{s.t.:} \ a_{ij} x_j + \max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j \right\} \leq b_i, \forall i \in [m] \\ & x_j \geq 0, \ \forall j \in [n]. \end{aligned} \tag{RC}$$

fabricio.oliveira@aalto.fi Static robust optimisation

<sup>&</sup>lt;sup>1</sup>Assuming, w.l.g.,  $a_{ij} \geq 0$ ,  $\forall i \in [m], \forall j \in [n]$ 

Box uncertainty set [Soyster, 1973]

- Maximum protection level;
- All parameters end taking their worst-possible value;
- ► Simple, but highly conservative.

The uncertainty set is

$$U_i = \{ \eta_i : ||\eta_i||_1 \le |J_i| \} \equiv \{ \eta_{ij} : |\eta_{ij}| \le 1, \forall j \in J_i \}$$

Box uncertainty set [Soyster, 1973]

- Maximum protection level;
- All parameters end taking their worst-possible value;
- ► Simple, but highly conservative.

The uncertainty set is

$$U_i = \{ \eta_i : ||\eta_i||_1 \le |J_i| \} \equiv \{ \eta_{ij} : |\eta_{ij}| \le 1, \forall j \in J_i \}$$

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : |\eta_{ij}| \leq 1, \forall j \in J_i \right\} = \sum_{j \in J_i} \hat{a}_{ij} x_j.$$

Box uncertainty set [Soyster, 1973]



Box uncertainty set [Soyster, 1973]



Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]

- Softens extreme-case protection;
- Parametrically controlled;
- Leads to smooth sets;
- ▶ (MI)SOCPs which are more computationally demanding.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_2 \le \Gamma_i\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij}^2 \le \Gamma_i^2, \forall j \in J_i \right\}$$

Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]

- Softens extreme-case protection;
- Parametrically controlled;
- Leads to smooth sets;
- ▶ (MI)SOCPs which are more computationally demanding.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_2 \le \Gamma_i\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij}^2 \le \Gamma_i^2, \forall j \in J_i \right\}$$

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma_i^2, \forall j \in J_i \right\}.$$

Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]

Again, this uncertainty set has a closed-form solution. To see that, let us define the vector  $g=(a_{ij}x_j)_{j\in J_i}$ .

Thus we have that

$$\begin{aligned} & \max_{\eta_i \in U_i} \ \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma_i^2, \forall j \in J_i \right\} \\ & = \ \max_{\eta_i \in U_i} \ \left\{ g^\top \eta_i : \|\eta_i\|_2 \leq \Gamma_i \right\} \end{aligned}$$

Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]

Again, this uncertainty set has a closed-form solution. To see that, let us define the vector  $g=(a_{ij}x_j)_{j\in J_i}$ .

Thus we have that

$$\begin{aligned} & \max_{\eta_{i} \in U_{i}} \left\{ \sum_{j \in J_{i}} \eta_{ij} \hat{a}_{ij} x_{j} : \sum_{j \in J_{i}} \eta_{ij}^{2} \leq \Gamma_{i}^{2}, \forall j \in J_{i} \right\} \\ & = \max_{\eta_{i} \in U_{i}} \left\{ g^{\top} \eta_{i} : \| \eta_{i} \|_{2} \leq \Gamma_{i} \right\} \\ & = g^{\top} \left( \Gamma_{i} \frac{g}{\|g\|_{2}} \right) = \Gamma_{i} \frac{\|g\|_{2}^{2}}{\|g\|_{2}} = \Gamma_{i} \|g\|_{2} \end{aligned}$$

Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]

Again, this uncertainty set has a closed-form solution. To see that, let us define the vector  $g=(a_{ij}x_j)_{j\in J_i}$ .

Thus we have that

$$\begin{split} & \max_{\eta_{i} \in U_{i}} \left\{ \sum_{j \in J_{i}} \eta_{ij} \hat{a}_{ij} x_{j} : \sum_{j \in J_{i}} \eta_{ij}^{2} \leq \Gamma_{i}^{2}, \forall j \in J_{i} \right\} \\ & = \max_{\eta_{i} \in U_{i}} \left\{ g^{\top} \eta_{i} : \| \eta_{i} \|_{2} \leq \Gamma_{i} \right\} \\ & = g^{\top} \left( \Gamma_{i} \frac{g}{\|g\|_{2}} \right) = \Gamma_{i} \frac{\|g\|_{2}^{2}}{\|g\|_{2}} = \Gamma_{i} \|g\|_{2} \\ & = \Gamma_{i} \sqrt{\sum_{j \in J_{i}} \hat{a}_{ij}^{2} x_{j}^{2}}. \end{split}$$

Ellipsoidal uncertainty set [Ben-Tal and Nemirovski, 1999]



Polyhedral uncertainty set [Bertsimas and Sim, 2004]

- Allows for controlling conservatism;
- Retains problem complexity;
- Budget of uncertainty lacks interpretability.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_1 \le \Gamma_i\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij} \le \Gamma_i, \forall j \in J_i \right\}.$$

Polyhedral uncertainty set [Bertsimas and Sim, 2004]

- Allows for controlling conservatism;
- Retains problem complexity;
- Budget of uncertainty lacks interpretability.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_1 \le \Gamma_i\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij} \le \Gamma_i, \forall j \in J_i \right\}.$$

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij} \leq \Gamma_i, \ 0 \leq \eta_{ij} \leq 1, \ \forall j \in J_i \right\}.$$

Polyhedral uncertainty set [Bertsimas and Sim, 2004]

In this case, the lower-level problem does not admit a closed form. However, it is a linear program.

- Strong duality (primal-dual equivalence) is available;
- ► True for any convex² lower-level problem.

<sup>&</sup>lt;sup>2</sup>Satisfying some constraint qualification.

Polyhedral uncertainty set [Bertsimas and Sim, 2004]

In this case, the lower-level problem does not admit a closed form. However, it is a linear program.

- Strong duality (primal-dual equivalence) is available;
- ► True for any convex<sup>2</sup> lower-level problem.

$$\begin{aligned} & \max_{\eta_i \in U_i} \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j & \min_{\pi_i, p_i} \Gamma_i \pi_i + \sum_{j \in J_i} p_{ij} \\ & \text{s.t.: } \sum_{j \in J_i} \eta_{ij} \leq \Gamma_i \ (\pi_i) & \Rightarrow & \text{s.t.: } \pi_i + p_{ij} \geq \hat{a}_{ij} x_j, \ \forall j \in J_i \\ & p_{ij} \geq 0, \ \forall j \in J_i \\ & 0 \leq \eta_{ij} \leq 1, \ (p_{ij}) \ \forall j \in J_i \\ & \pi_i \geq 0. \end{aligned}$$

<sup>&</sup>lt;sup>2</sup>Satisfying some constraint qualification.

Polyhedral uncertainty set [Bertsimas and Sim, 2004]



Polyhedral uncertainty set [Bertsimas and Sim, 2004]



Let us consider a knapsack problem of the form

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j \leq b \\ & 0 \leq x_j \leq 1, \ \forall j \in [n]. \end{aligned}$$

Let us consider a knapsack problem of the form

$$\max. \ c^{\top}x$$
 
$$\text{s.t.: } \sum_{j\in[n]} a_j x_j \leq b$$
 
$$0 \leq x_j \leq 1, \ \forall j \in [n].$$

The robust counterparts for the previous uncertainty sets are:

# Box Ellipsoid $\max. \ c^{\top}x \qquad \max. \ c^{\top}x$ $\text{s.t.: } \sum_{j \in [n]} (a_j + \hat{a}_j)x_j \leq b \qquad \text{s.t.: } \sum_{j \in [n]} a_jx_j + \Gamma \sqrt{\sum_{j \in [n]} (\hat{a}_jx_j)^2} \leq b$ $0 \leq x_j \leq 1, \ \forall j \in [n].$ $0 \leq x_i \leq 1, \ \forall j \in [n].$

Let us consider a knapsack problem of the form

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j \leq b \\ & 0 \leq x_j \leq 1, \ \forall j \in [n]. \end{aligned}$$

The robust counterparts for the previous uncertainty sets are:

Polyhedral

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j + \Gamma \pi + \sum_{j \in [n]} p_j \leq b \\ & \pi + p_j \geq \hat{a}_j x_j, \ \forall j \in [n] \\ & 0 \leq x_j \leq 1, p_j \geq 0, \ \forall j \in [n] \\ & \pi \geq 0. \end{aligned}$$

# On constraint violation probabilities

Arguably, Bertsimas & Sim (2004) raised attention to robust optimisation with "the price of robustness".

- The price refers to the optimality traded off for feasibility guarantees;
- Quantifying these trade-offs can be done:
  - 1. Using theoretical bounds;
  - 2. Via simulating solution performance.
- In my own experience, theoretical bounds are often loose.

# On constraint violation probabilities

Arguably, Bertsimas & Sim (2004) raised attention to robust optimisation with "the price of robustness".

- The price refers to the optimality traded off for feasibility guarantees;
- Quantifying these trade-offs can be done:
  - 1. Using theoretical bounds;
  - 2. Via simulating solution performance.
- In my own experience, theoretical bounds are often loose.

For example, [Bertsimas and Sim, 2004] show the probability of violation of constraint  $i \in [m]$  to be

$$P^{\mathsf{vio}} = P\left(a_{ij}x_j + \max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j \right\} > b_i \right) \le e^{\frac{-\Gamma^2}{2|J_i|}}.$$

**Tutorial** 

Static robust optimisation

#### Outline of this lecture

Introduction

Static robust optimisation

Adjustable robust optimisation

# Multi-stage robust optimisation

We focus on 2-stage adjustable robust optimisation (ARO) problems:

$$\min c^{\top} x + \max_{\xi \in U \subseteq \Xi} \min_{y} q(\xi)^{\top} y(\xi)$$
s.t.:  $Ax = b, \ x \ge 0$ 

$$T(\xi)x + Wy(\xi) = h(\xi), \ \forall \xi \in U \subseteq \Xi$$

$$y(\xi) > 0, \ \forall \xi \in \Xi.$$
(ARO)

# Multi-stage robust optimisation

We focus on 2-stage adjustable robust optimisation (ARO) problems:

$$\min c^{\top} x + \max_{\xi \in U \subseteq \Xi} \min_{y} q(\xi)^{\top} y(\xi)$$
s.t.:  $Ax = b, \ x \ge 0$ 

$$T(\xi)x + Wy(\xi) = h(\xi), \ \forall \xi \in U \subseteq \Xi$$

$$y(\xi) \ge 0, \ \forall \xi \in \Xi.$$
(ARO)

- ▶ Only RHS uncertainty:  $T(\xi) = T$ ,  $W(\xi) = W$ , and  $q(\xi) = q$ ,  $\forall \xi \in \Xi$ ;
- Assumption often necessary to eliminate quadratic dependence between  $\xi$  and decision variables;
- Not necessary if the uncertainty set is discrete and finite (scenarios)

# A side note: min-max, minimum regret and related

If the uncertainty set is a finite and discrete set of scenarios, we have that

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^\top x + \underset{s \in U}{\text{max.}} \ \underset{y}{\text{min.}} \ q(\xi)_s^\top y_s \\ & \text{s.t.:} \ Ax = b, \ x \geq 0 \\ & T_s x + W_s y_s \leq h_s, \ \forall s \in U. \end{aligned}$$

is a tractable ARO [Mulvey et al., 1995].

# A side note: min-max, minimum regret and related

If the uncertainty set is a finite and discrete set of scenarios, we have that

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^{\top}x + \underset{s \in U}{\text{max.}} \ \underset{y}{\text{min.}} \ q(\xi)_{s}^{\top}y_{s} \\ & \text{s.t.:} \ Ax = b, \ x \geq 0 \\ & T_{s}x + W_{s}y_{s} \leq h_{s}, \ \forall s \in U. \end{aligned}$$

is a tractable ARO [Mulvey et al., 1995]. Variants include:

#### Min-max

$$\begin{aligned} & \underset{x,y,\theta}{\min}. \ c^\top x + \theta \\ & \text{s.t.:} \ \theta \geq q_s^\top y_s, \ \forall s \in U \\ & Ax = b, \ x \geq 0 \\ & T_s x + W_s y_s \leq h_s, \ \forall s \in U. \end{aligned}$$

#### Min-regret

$$\begin{aligned} & \underset{x,y,\theta}{\min}. \ c^\top x + \theta \\ & \text{s.t.:} \ \theta \geq q_s^\top y_s - q_s^\top y_s^\star, \ \forall s \in U \\ & Ax = b, \ x \geq 0 \\ & T_s x + W_s y_s \leq h_s, \ \forall s \in U. \end{aligned}$$

where  $y_s^{\star}$  is optimal for  $s \in U$ .

# Affinely adjustable robust optimisation [Ben-Tal et al., 2004]

One approach for modelling adjustability is using affine policies:

- ▶ Replace  $y(\xi)$  with  $\alpha + \beta \xi$ ;
- ▶  $h(\xi)$  is assumed affinely dependent on  $\xi$ , e.g.:  $h(\xi) = h \hat{h}\xi$ .

# Affinely adjustable robust optimisation [Ben-Tal et al., 2004]

One approach for modelling adjustability is using affine policies:

- ▶ Replace  $y(\xi)$  with  $\alpha + \beta \xi$ ;
- $lackbox{ }h(\xi)$  is assumed affinely dependent on  $\xi$ , e.g.:  $h(\xi)=h-\hat{h}\xi$ .

#### Then ARO becomes:

$$\begin{aligned} & \underset{x,\alpha,\beta}{\min} & c^\top x + \theta \\ & \text{s.t.: } \theta \geq q^\top (\alpha + \beta \xi), \ \forall \xi \in U \\ & Ax = b, \ x \geq 0 \\ & Tx + W(\alpha + \beta \xi) \leq h(\xi), \ \forall \xi \in U \\ & y(\xi) \geq 0, \ \forall \xi \in U. \end{aligned}$$

# Affinely adjustable robust optimisation [Ben-Tal et al., 2004]

One approach for modelling adjustability is using affine policies:

- ▶ Replace  $y(\xi)$  with  $\alpha + \beta \xi$ ;
- $lackbox{ }h(\xi)$  is assumed affinely dependent on  $\xi$ , e.g.:  $h(\xi)=h-\hat{h}\xi$ .

#### Then ARO becomes:

$$\begin{aligned} & \underset{x,\alpha,\beta}{\min} & c^\top x + \theta \\ & \text{s.t.: } \theta \geq q^\top (\alpha + \beta \xi), \ \forall \xi \in U \\ & Ax = b, \ x \geq 0 \\ & Tx + W(\alpha + \beta \xi) \leq h(\xi), \ \forall \xi \in U \\ & y(\xi) \geq 0, \ \forall \xi \in U. \end{aligned}$$

Similar to the static case, computational tractability can be achieved:

- Requires that U is a box or ellipsoidal set;
- For a practical example, see [Ben-Tal et al., 2005]

An alternative approach: looking closer at the inner problem as a bilevel optimisation problem.

Let us restate our ARO in a simplified notation. For that, let

- $X = \{x \in \mathbb{R}^{n_1} : Ax = b, x \ge 0\};$
- $Y = \{y \in \mathbb{R}^{n_2} : y \ge 0\};$
- ▶ Uncertainty in RHS only, with  $h(\xi) = h \hat{h}\xi$ , and  $\xi \in [\xi, \overline{\xi}]$

An alternative approach: looking closer at the inner problem as a bilevel optimisation problem.

Let us restate our ARO in a simplified notation. For that, let

- $X = \{x \in \mathbb{R}^{n_1} : Ax = b, x \ge 0\};$
- $Y = \{ y \in \mathbb{R}^{n_2} : y \ge 0 \};$
- ▶ Uncertainty in RHS only, with  $h(\xi) = h \hat{h}\xi$ , and  $\xi \in \left[\xi, \overline{\xi}\right]$

Then we have that ARO is equivalent to

$$\min_{x \in X} c^{\top} x + \mathcal{Q}(x), \tag{ARO}$$

where

$$\mathcal{Q}(x) = \left\{ \max_{\xi \in U} \ \min_{y \in Y} \ q^\top y : Tx = (h - \hat{h}\xi) - Wy \right\}.$$

Let us assume that an oracle is available such that, for a given  $\overline{x} \in X$  it evaluates  $\mathcal{Q}(x)$  and returns associated  $(\overline{\xi}, \overline{y})$ , if they exist.

Let us assume that an oracle is available such that, for a given  $\overline{x} \in X$  it evaluates  $\mathcal{Q}(x)$  and returns associated  $(\overline{\xi}, \overline{y})$ , if they exist.

In addition, let us assume that the uncertainty set is finitely representable:

- Scenarios, but an intractable amount of them (e.g., samples, or data)
- Polyhedral set (finite extreme points and rays)

Let us assume that an oracle is available such that, for a given  $\overline{x} \in X$  it evaluates  $\mathcal{Q}(x)$  and returns associated  $(\overline{\xi}, \overline{y})$ , if they exist.

In addition, let us assume that the uncertainty set is finitely representable:

- Scenarios, but an intractable amount of them (e.g., samples, or data)
- Polyhedral set (finite extreme points and rays)

In that case, we can employ column-and-constraint generation (CCG) [Zeng and Zhao, 2013] to solve ARO:

```
\begin{aligned} & \text{Main problem } M^k \colon \, \overline{x}^{k+1} \\ & \underset{x,y,\theta}{\min} \, c^\top x + \theta \\ & \theta \geq q^\top y_l, \, \, l \in [k] \\ & x \in X \\ & Tx = h - \hat{h} \overline{\xi}_l - W y_l, \, \, l \in [k] \\ & y_l \in Y, \, \, l \in [k]. \end{aligned}
```

Oracle 
$$\mathcal{Q}(\overline{x}^{k+1})$$
:  $\overline{\xi}^{k+1}$ 

max. min.  $q^{\top}y$ 

s.t.:  $T\overline{x}^{k+1} = (h - \hat{h}\xi) - Wy$ .

In summary, the CCG method can be stated as

1. Initialisation.  $LB = -\infty$ ,  $UB = \infty$ , k = 0.

In summary, the CCG method can be stated as

- 1. Initialisation.  $LB = -\infty$ ,  $UB = \infty$ , k = 0.
- 2. Solve the main problem  $M^k$ . Let  $\underline{z}^k = c^\top x^k + \theta^k$ , where  $\operatorname{argmin} M^k = (x^k, \theta^k, \left\{y_l^k\right\}_{l=1}^k)$ . Make  $LB = \underline{z}^k$ .

In summary, the CCG method can be stated as

- 1. Initialisation.  $LB = -\infty$ ,  $UB = \infty$ , k = 0.
- 2. Solve the main problem  $M^k$ . Let  $\underline{z}^k = c^{\top} x^k + \theta^k$ , where  $\operatorname{argmin} M^k = (x^k, \theta^k, \left\{y_l^k\right\}_{l=1}^k)$ . Make  $LB = \underline{z}^k$ .
- 3. Solve  $\mathcal{Q}(x^k)$ . Let  $\operatorname{argmax} \mathcal{Q}(x^k) = (\overline{\xi}^{k+1}, \overline{y}^{k+1})$ , if it exists. Let  $\overline{z}^k = c^\top x^k + \mathcal{Q}(x^k)$ . Make  $UB = \min \{UB, \overline{z}^k\}$ . If  $UB = LB < \epsilon$ , return  $x^k$ .

In summary, the CCG method can be stated as

- 1. Initialisation.  $LB = -\infty$ ,  $UB = \infty$ , k = 0.
- 2. Solve the main problem  $M^k$ . Let  $\underline{z}^k = c^\top x^k + \theta^k$ , where  $\operatorname{argmin} M^k = (x^k, \theta^k, \left\{y_l^k\right\}_{l=1}^k)$ . Make  $LB = \underline{z}^k$ .
- 3. Solve  $\mathcal{Q}(x^k)$ . Let  $\operatorname{argmax} \mathcal{Q}(x^k) = (\overline{\xi}^{k+1}, \overline{y}^{k+1})$ , if it exists. Let  $\overline{z}^k = c^\top x^k + \mathcal{Q}(x^k)$ . Make  $UB = \min \{UB, \overline{z}^k\}$ . If  $UB = LB < \epsilon$ , return  $x^k$ .
- 4. Add column and constraints to  $M^k$ . If  $\mathcal{Q}(x^k)$  is feasible, create columns  $y_{k+1}$  and, together with the constraints

$$\theta \ge q^{\top} y_{k+1} \tag{1}$$

$$Tx = h - \hat{h}\overline{\xi}_{k+1} - Wy_{k+1}, \ y_{k+1} \in Y,$$
 (2)

add them to  $M^k$ , forming  $M^{k+1}$ . Make k=k+1 and return to Step 2. If  $\mathcal{Q}(x^k)$  is not feasible, then only (2) is created.

Practical remarks

Essentially, CCG for ARO is a delayed-generation approach of the min-max formulation

- Can thus be useful when too many scenarios are available;
- Convergence relies on a finiteness argument on the uncertainty set.

Practical remarks

Essentially, CCG for ARO is a delayed-generation approach of the min-max formulation

- Can thus be useful when too many scenarios are available;
- Convergence relies on a finiteness argument on the uncertainty set.

CCG can be seen as a primal equivalent to Benders decomposition

- One can use the same column generation approach in the context of the L-shaped method [Van Slyke and Wets, 1969];
- ► This can help as a way to transmit "recourse information" to the main problem.

On solving Q(x)

Recall that Q(x) is of the form

$$\begin{aligned} \mathcal{Q}(x) &= \max_{u} q^{\top} y \\ \text{s.t.: } \xi \in U \\ y &\in \operatorname*{argmin}_{y} q^{\top} y \\ \text{s.t.: } Tx &= h - \hat{h} \xi - Wy \\ y &\in Y. \end{aligned}$$

Recall that Q(x) is of the form

$$\begin{aligned} \mathcal{Q}(x) &= \max_{u} q^{\top} y \\ \text{s.t.: } \xi \in U \\ y &\in \underset{y}{\operatorname{argmin}} \ q^{\top} y \\ \text{s.t.: } Tx &= h - \hat{h} \xi - Wy \\ y &\in Y. \end{aligned}$$

This is a bilevel model and can be solved using dedicated methods.

- Most techniques rely on posing optimality conditions of the lower-level problem to yield an equivalent single-level (tractable) problem;
- ► Thus, lower-level convexity (plus constraint qualification) is often a requirement.

On solving Q(x)

On solving Q(x)

Example: assume that  $Y=\mathbb{R}^{n_2}_+$ . We can use strong duality to reformulate the lower-level problem, obtaining

$$Q(x) = \max_{\xi, \pi} (h - \hat{h}\xi - Tx)^{\top} \pi$$
  
s.t.:  $\pi^{\top} W \le q^{\top}$   
 $\xi \in U$ .

On solving Q(x)

Example: assume that  $Y = \mathbb{R}^{n_2}_+$ . We can use strong duality to reformulate the lower-level problem, obtaining

$$Q(x) = \max_{\xi, \pi} (h - \hat{h}\xi - Tx)^{\top} \pi$$
  
s.t.:  $\pi^{\top} W \le q^{\top}$   
 $\xi \in U$ .

Q(x) is solvable, if:

- 1.  $\xi$  is integer or has a discrete domain, since  $\xi^{\top}\pi$  can be reformulated exactly (e.g., [Rintamäki et al., 2023]);
- 2. if  $-(\hat{h}\xi)^{\top}\pi + (h-Tx)^{\top}\pi$  is a concave bilinear function in  $\pi$  and  $\xi$ ;
- 3. if applying a global solver (e.g., Gurobi's spatial branch-and-bound method) is feasible from a computational standpoint.

#### **Tutorial**

# Adjustable robust optimisation

#### References I

- Ben-Tal, A., Golany, B., Nemirovski, A., and Vial, J.-P. (2005).
  Retailer-supplier flexible commitments contracts: A robust optimization approach.

  Manufacturing & Service Operations Management, 7(3):248–271.
- Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs. *Mathematical programming*, 99(2):351–376.
- Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs. *Operations research letters*, 25(1):1–13.
- Bertsimas, D. and Sim, M. (2004). The price of robustness.

  Operations research, 52(1):35–53.

#### References II



Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. (1995).

Robust optimization of large-scale systems.

Operations research, 43(2):264–281.



Rintamäki, T., Oliveira, F., Siddiqui, A. S., and Salo, A. (2023).

Achieving emission-reduction goals: Multi-period power-system expansion under short-term operational uncertainty.

IEEE Transactions on Power Systems.



Soyster, A. L. (1973).

Convex programming with set-inclusive constraints and applications to inexact linear programming.

*Operations research*, 21(5):1154–1157.



Van Slyke, R. M. and Wets, R. (1969).

L-shaped linear programs with applications to optimal control and stochastic programming.

SIAM journal on applied mathematics, 17(4):638–663.

#### References III



**Zeng**, B. and Zhao, L. (2013).

Solving two-stage robust optimization problems using a column-and-constraint generation method.

Operations Research Letters, 41(5):457–461.