CHAPTER-2: ATOMS, MOLECULES AND IONS

- The atomic theory
- The structure of an atom
- The periodic table
- Molecules and ions
- Chemical formulas and naming of compounds

2.1. The Atomic Theory

Democritus created first atomic model

Democritus (400 B.C.)

Greek philosopher Democritus 400 (B.C)

• All the matter consist of very small, indivisible particles, which he named «atomos» (mean: indivisible)

2- DALTON'S ATOM THEORY

English scientist and school teacher **John Dalton** in 1808, formulated a precise definition of the indivisible building blocks of matter that called

atoms

HYPOTHESIS OF DALTON'S ATOMIC THEORY

1- Elements are composed of extremely small particles called atoms.

All the atoms of a given element are **identical**: having the same size mass and chemical properties

The atoms of one element are **different** from the atoms of all other elements

2- Compounds are composed of atoms of more than one element In any compound, the ratio of the numbers of atoms of the elements present as a simple fraction

Carbon monoxide (CO)
$$\frac{O}{C} = \frac{1}{1}$$
Carbon dioxide (CO₂)
$$\frac{O}{C} = \frac{2}{1}$$

This hypothesis was supported with **the law of of definite proportions** by **Joseph Proust** (a French chemist) in 1799.

3- A chemical reaction involves only seperation, combination or rearrangement of atoms; it **does not** result in their creation or destruction.

1 oxygen atom at 2 16 mass units each: 16 mass units

2 hydrogen atoms at1 mass unit each:2 mass units

1 water molecule at 18 mass units each: 18 mass units

This hypothesis is supperted later on with **the law of conversation of mass** which is that **matter can be neither created nor destroyed**.

NOT TRUE in DALTON'S THEORY!

Atoms aren't indivisible-

They are composed of **sub-atomic particles**!!

Late 1890's:

Theorical structure of the universe «complete»

- Atomic theory of matter
- Newtonian mechanics

DISCOVERY OF ELECTRONS (1897)

An English physicist J.J. Thomson
(University of Manchester)
Nobel prize in Physics in 1906 for
discovering electron

The Experiment:

11

DISCOVERY OF ELECTRONS (1897)

Cathode ray tube that was used by J.J. Thomson to discover electron exhibiting in Science Museum in London

The charge of the electron

R.A Millikan (American physicist) who was awarded the Nobel prize in Physics in 1923 for **determining the charge of the electron**

- **1-** Electrons are produced by the action of X-rays on the molecules of which air is composed.
- **2-** Oil pick up electrons and acquire electric charges
- **3-** The oil drops are allowed to settle between two horizontal plates, and the mass of a particular drop is determined by measuring its rate of fall
- **4-**When the plates are charged, the rate of fall of the drop is altered because the negatively charged drop is attracted to the upper, positive plate
- 5-The charge on the drop can be calculated from the mass of the drop

q=-e=e (-) = -1.6022 x 10⁻¹⁹ coulomb e is called a unit electrical charge The electron has a unit a negative charge

The mass of the electron (m electron):

$$\mathbf{m} = \frac{\mathbf{q}}{\mathbf{q/m}} = \frac{-1.6022 \times 10^{-19} \text{ C}}{-1.7588 \times 10^8 \text{ C/g}} = \mathbf{9.1096 \times 10^{-28} g}$$

The mass of the proton (m proton):

$$m = \frac{q}{q/m} = \frac{+1.6022 \times 10^{-19} \text{ C}}{+9.5791 \times 10^4 \text{ C/g}} = 1.6726 \times 10^{-24} \text{ g}$$

$$\frac{\text{m proton}}{\text{m electron}} = \frac{1.6726 \times 10^{-24} \text{ g}}{9.1096 \times 10^{-28} \text{ g}} = \boxed{1836}$$

RADIOACTIVITY

- They have both Nobel prize in Physics about radioactivity (1903, 1911)

-studying on **fluorescent properties** of substances

Accidently, he found that exposing thickly wrapped photographic plates to a certain of uranium compound caused them to darken

-Marie Curie suggested **«radioactivity»** spontaneously emission of particles and/or radiation

-These elements called **«radioactive»**

RADIOACTIVITY

DISCOVERY OF NUCLEUS (1911)

Marie Curie

(France, Paris)

α particles was unknown in 1911

Ernest Rutherford

(England)

- New Zeland chemist
- Colleauge with J.J. Thomson at Cambridge university

How many α particles coming from RaBr₂?

- That was not expected, they were expected «0»
- Backscattering was detected

Probability of backscattering:

$$P = Count rate backscattered = $\frac{20}{1000}$ = 20 x 10⁻⁵ (0.02%)
Countrate of incident particles 132,000$$

«.. about as credible as if you had fired a 15 inch shell at a piece of tissue paper, it came back and hit you»

-Rutherford

Interpretation

- 1- The Au atoms are *mostly empty* (just passing through and did not hit anything)
- **2-** The majority of each *atom's mass is concentrated* in a very small volume compared to the volume of atom.

We now call this region «Nucleus»

3-Together, these observations it was generated a new atom model:

- In a seperate experiment, the positively charged particles in the nucleus are called «protons»
- Each proton carries the same quantity of charge as an electron and has a mass 1.67262x10⁻²⁴ -about 1840 times the mass of the electron
- Nucleus occupies 1/13 of the volume of the atom

NEUTRON

Rutherford's model of atomic structure left one major problem unsolved.

H proton:1

He proton:2

So, the ratio of the mass of a helium to hydrogen atom should be 2:1

BUT the ratio is 4:1

There must be another type of subatomic particles!!!!

NEUTRON

He named «neutrons», because they proved to be electrically neutral particles having a mass slightly greater than that of protons

TABLE 2.1 Mass and Charge of Subatomic Particles

		Charge						
Particle	Mass (g)	Coulomb	Charge Unit					
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1					
Proton	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1					
Neutron	1.67493×10^{-24}	0	0					

^{*}More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

2.3. ATOMIC NUMBER, MASS NUMBER AND ISOTOPES

Atomic number (Z): is the number of protons in the nucleus of each atom of an element

Mass number (A): is the total number of neutrons and protons present in the nucleus of an atom of an element.

X: an element

```
mass number = number of protons + number of neutrons
= atomic number + number of neutrons
```

Number of electrons=Number of protons= atomic number in a neutral element

Most elements in nature found as *isotopes*, atoms that have the same atomic number but diffrent mass number

Practice Exercise: Give the number of protons, neutrons and electrons

2.4 PERIODIC TABLE

More than half of the elements known today were discovered between 1800 and 1900.

Chemists noted that many elements show strong similarities to one another.

They need to **organize** the large volume of info about the structure and properties of elements

These things led to the development of **PERIODIC TABLE**

		Metals	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Metalloids	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Nonmetals

Chemical composition of the Earth's crust

Elemental composition of the human body

2.5. MOLECULES AND IONS

A MOLECULE: is an aggregate of at least two atoms in a definite arragement held together by chemical forces (also called chemical bonds)

A molecule is not necessarily a compound, which by definiton is made up of two or more elements

For instance, Hydrogen gas: H₂

DIATOMIC MOLECULE

1. 1A: H₂

5A: N₂

6A: O₂

7A: F₂, Cl₂, Br₂, l₂

2. or can contain different elements

for example: HCl, CO

POLYATOMIC MOLECULE

- 1. O₂
- 2. or can contain different elements

for example: H₂O, NH₃

IONS

AN ION: is an atom or a group of atoms that has a positive or negative charge

- 1. CATION (+)
- 2. ANION (-)

Charge of ion: number of protons - number of electron

1 1A																	18 8A
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
Li ⁺													C ⁴ -	N ³ -	O ²⁻	F-	
Na ⁺	Mg ²⁺	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 8B	10	11 1B	12 2B	Al ³⁺		P ³ -	S ²⁻	Cl ⁻	
K ⁺	Ca ²⁺				Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺				Se ²⁻	Br-	
Rb ⁺	Sr ²⁺									Ag ⁺	Cd ²⁺		Sn ²⁺ Sn ⁴⁺		Te ²⁻	I-	
Cs+	Ba ²⁺									Au ⁺ Au ³⁺	Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺ Pb ⁴⁺				

Figure 2.11 Common monatomic ions arranged according to their positions in the periodic table. Note that the Hg₂²⁺ ion contains two atoms.

A- Molecular formulas

B- Emprical formulas

H₂O

NH₃,

CH₄

 $H_2O_2:HO$

 $N_2H_4:NH_2$

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	${\rm H_2O}$	NH ₃	$\mathrm{CH_4}$
Structural formula	н—н	Н—О—Н	H—N—H 	H—C—H
Ball-and-stick model	0-0			
Space-filling model				

ure 2.12 Molecular and structural formulas and molecular models of four common molecules.

FORMULA OF IONIC COMPOUNDS

NaCl

Grey: chlorine Green: sodium

GETTING DISSOLVED CAN BE TRAUMATIZING.

Bentrice the Biologist

The subscript of the cation is numerically equal to the charge on the anion, and the subscript of the anion is numerically equal to the charge of the cation

KBr

Znl₂

 Al_2O_3

NAMING COMPOUND

ORGANIC COMPOUNDS

INORGANIC COMPOUNDS

- 1. Ionic compounds
- 2. Molecular compounds
- 3. Acids and bases
- 4. Hydrates

1. IONIC COMPOUNDS

Some metal cations

]	Element		Name of Cation
Na	sodium	Na ⁺	sodium ion (or sodium cation)
K	potassium	K^+	potassium ion (or potassium cation)
Mg	magnesium	Mg^{2+}	magnesium ion (or magnesium cation)
Al	aluminum	Al^{3+}	aluminum ion (or aluminum cation)

1A												8A
	2A						3А	4A	5A	6A	7A	
Li									N	0	\mathbf{F}	
Na	Mg						Al			8	Cl	
\mathbf{K}	Ca										Br	
Rb	Sr										I	
Cs	Ba											

The most reactive metals (green) and the most reactive nonmetals (blue) combine to form ionic compounds. Many ionic compounds are binary compounds; or compounds formed from just two elements

NOMENCLATURE OF IONIC COMPOUNDS

A) For binary ionic compounds

When given the formula, the metal will always be first followed by the nonmetal.

TABLE 2.2

The "-ide" Nomenclature of Some Common Monatomic Anions According to Their Positions in the Periodic Table

Group 4A	Group 5A	Group 6A	Group 7A
C carbide (C ⁴⁻)* Si silicide (Si ⁴⁻)	N nitride (N ³⁻) P phosphide (P ³⁻)	O oxide (O ²⁻) S sulfide (S ²⁻) Se selenide (Se ²⁻) Te telluride (Te ²⁻)	F fluoride (F ⁻) Cl chloride (Cl ⁻) Br bromide (Br ⁻) I iodide (I ⁻)

46

Cation	Anion
aluminum (Al ³⁺)	bromide (Br ⁻)
ammonium (NH ₄ ⁺)	carbonate (CO ₃ ²⁻)
barium (Ba ²⁺)	chlorate (ClO ₃ ⁻)
cadmium (Cd ²⁺)	chloride (Cl ⁻)
calcium (Ca ²⁺)	chromate (CrO ₄ ²⁻)
cesium (Cs ⁺)	cyanide (CN ⁻)
chromium(III) or chromic (Cr3+)	dichromate (Cr ₂ O ₇ ²⁻)
cobalt(II) or cobaltous (Co2+)	dihydrogen phosphate (H ₂ PO ₄ ⁻)
copper(I) or cuprous (Cu ⁺)	fluoride (F ⁻)
copper(II) or cupric (Cu ²⁺)	hydride (H ⁻)
hydrogen (H ⁺)	hydrogen carbonate or bicarbonate (HCO ₃ ⁻)
iron(II) or ferrous (Fe ²⁺)	hydrogen phosphate (HPO ₄ ²⁻)
iron(III) or ferric (Fe ³⁺)	hydrogen sulfate or bisulfate (HSO ₄ ⁻)
lead(II) or plumbous (Pb ²⁺)	hydroxide (OH ⁻)
lithium (Li ⁺)	iodide (I ⁻)

cations

anions

```
magnesium (Mg<sup>2+</sup>)
                                                                     nitrate (NO<sub>3</sub>)
                                                                     nitride (N<sup>3-</sup>)
manganese(II) or manganous (Mn<sup>2+</sup>)
mercury(I) or mercurous (Hg_2^{2+})^*
                                                                     nitrite (NO_2^-)
                                                                     oxide (O^{2-})
mercury(II) or mercuric (Hg<sup>2+</sup>)
potassium (K<sup>+</sup>)
                                                                     permanganate (MnO<sub>4</sub>)
rubidium (Rb<sup>+</sup>)
                                                                     peroxide (O_2^{2-})
                                                                     phosphate (PO_4^{3-})
silver (Ag<sup>+</sup>)
                                                                     sulfate (SO<sub>4</sub><sup>2-</sup>)
sodium (Na<sup>+</sup>)
strontium (Sr<sup>2+</sup>)
                                                                     sulfide (S^{2-})
tin(II) or stannous (Sn<sup>2+</sup>)
                                                                     sulfite (SO<sub>3</sub><sup>2-</sup>)
zinc (Zn<sup>2+</sup>)
                                                                     thiocyanate (SCN<sup>-</sup>)
```

Examples: KBr, Znl₂, Al₂O₃

B) Ternary compounds: consisting of three elements

-»ide» ending is also used for anion groups
containing different elements :
OH ⁻
CN ⁻
LiOH
KCN

IONIC COMPOUNDS

If it is a **transition metal**: designate the cations with Roman numbers! It is called STOCK system

MnO Mn_2O_3 MnO_2

FeCl₂ FeCl₃

The transition metals are the elements in Groups 1B and 3B-8B (see Figure 2.10).

2. MOLECULAR COMPOUNDS

2.a- Nonmetalic-Nonmetalic

-ide

HCI

HBr

SiC

2.b- It is quite common for one pair of elements to form several different compounds.

In these cases, use GREEK prefixes CO SO_2 SO_3 NO_2

Greek Prefixes Used in Naming Molecular Compounds

Prefix	Meaning
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

3. ACIDS AND BASES

Acid: can be desciribed as a substance that yields hydrogen ions (H⁺) when dissolved in water

When dissolved in water, the HCl molecule is converted to the H⁺ and Cl⁻ ions. The H⁺ ion is associated with one or more water molecules, and is usually represented as H₃O⁺.

HCl: hidrogen chloride (named as molecular compounds)

TABLE 2.5 Some Simple Acids

Anion	Corresponding Acid
F (fluoride)	HF (hydrofluoric acid)
Cl (chloride)	HCl (hydrochloric acid)
Br (bromide)	HBr (hydrobromic acid)
I (iodide)	HI (hydroiodic acid)
CN ⁻ (cyanide)	HCN (hydrocyanic acid)
S ²⁻ (sulfide)	H ₂ S (hydrosulfuric acid)

Oxoacids: are acids that contain hydrogen, oxygen and another element

(the central element)

HNO₃

 H_2CO_3

 H_2SO_4

HCIO₃

Naming of oxoacids

a) Addition of one O atom to theic acid: The acid called **(per-ic acid)**

HClO₃: chloric acid HClO₄: perchloric acid

b) Removal of one O atom from the ...-ic acid: The acid called **«ous.....acid»**

HNO₃: nitric acid HNO₂: nitrous acid

c) Removal of two O atoms fromic acid: The acid is called **«hypo.....ous acid»**

HBrO₃: bromic acid HBrO: hypobromous acid

NAMING OF OXOANIONS

1. When all the H ions are removed fromic acid
The anion name ends with «ate»

$$H_2CO_3$$

$$CO_3^{2-}$$

2. When all the H ions are removed from **«ous» acid**, the anions name ends with **–ite**

HClO₃

HClO₂

ClO₂

Naming bases

Base: A substancce that yields hydroxide ions (OH-) when dissolved in water.

NaOH

KOH

 $Ba(OH)_2$

4. HYDRATES

Figure 2.16 CuSO₄·5H₂O (left) is blue; CuSO₄ (right) is white.