Lecture 4: Pixels and Filters

Dr. Juan Carlos Niebles Stanford Al Lab

Professor Fei-Fei Li Stanford Vision Lab

Fei-Fei Li Lecture 4- 1 30-Sep-15

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Fei-Fei Li Lecture 4- 2 30-Sep-15

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale" (or "intensity"): [0,255]

Fei-Fei Li Lecture 4- 3 30-Sep-15

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale"

(or "intensity"): [0,255]

- "color"
 - RGB: [R, G, B]
 - Lab: [L, a, b]
 - HSV: [H, S, V]

[213, 60, 67]

Fei-Fei Li Lecture 4- 4 30-Sep-15

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

range

$$f: [a,b] \times [c,d] \to [0,255]$$

Domain

support

Fei-Fei Li Lecture 4- 5 30-Sep-15

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$

Domain range support

• A color image: $f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$

Fei-Fei Li Lecture 4- 6 30-Sep-15

Images as discrete functions

- Images are usually digital (discrete):
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

							pixe				
	j										
1	62	79	23	119	120	05	4	0			
i	10	10	9	62	12	78	34	0			
	10	58	197	46	46	0	0	48			
↓ ↓	176	135	5	188	191	68	0	49			
	2	1	1	29	26	37	0	77			
	0	89	144	147	187	102	62	208			
	255	252	0	166	123	62	0	31			
	166	63	127	17	1	0	99	30			

Fei-Fei Li Lecture 4- 7 30-Sep-15

Images as discrete functions

Cartesian coordinates

Fei-Fei Li Lecture 4- 8 30-Sep-15

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Fei-Fei Li Lecture 4- 9 30-Sep-15

Systems and Filters

Filtering:

 Form a new image whose pixels are a combination original pixel values

Goals:

- -Extract useful information from the images
 - Features (edges, corners, blobs...)
- Modify or enhance image properties:
 - super-resolution; in-painting; de-noising

Fei-Fei Li Lecture 4- 10 30-Sep-15

De-noising

Super-resolution

In-painting

Bertamio et al

Fei-Fei Li Lecture 4- 11 30-Sep-15

2D discrete-space systems (filters)

$$f[n,m] \to \boxed{ \text{System } \mathcal{S} } \to g[n,m]$$

$$g = \mathcal{S}[f], \quad g[n, m] = \mathcal{S}\{f[n, m]\}$$

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

Fei-Fei Li Lecture 4- 12 30-Sep-15

 2D DS moving average over a 3 × 3 window of neighborhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{n} f[n-k,m-l]$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(f*h)[m,n] = \frac{1}{9} \sum_{k,l} f[k,l] h[m-k,n-l]$$

Lecture 4- 13 30-Sep-15 Fei-Fei Li

Courtesy of S. Seitz

Filter example #1: Moving Average

							_	_	
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

Fei-Fei Li Lecture 4- 14 30-Sep-15

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

30-Sep-15 Lecture 4- 15 Fei-Fei Li

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

30-Sep-15 Lecture 4- 16 Fei-Fei Li

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

30-Sep-15 Lecture 4- 17 Fei-Fei Li

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

30-Sep-15 Lecture 4- 18 Fei-Fei Li

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

Lecture 4- 19 30-Sep-15 Fei-Fei Li

In summary:

 Replaces each pixel with an average of its neighborhood.

$$h[\cdot\,,\cdot\,]$$
 $\frac{1}{9}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$

 Achieve smoothing effect (remove sharp features)

Lecture 4-30-Sep-15 Fei-Fei Li

Fei-Fei Li Lecture 4- 21 30-Sep-15

Filter example #2: Image Segmentation

 Image segmentation based on a simple threshold:

$$g[n, m] = \begin{cases} 255, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

Fei-Fei Li Lecture 4- 22 30-Sep-15

Classification of systems

- Amplitude properties
 - Linearity
 - Stability
 - Invertibility
- Spatial properties
 - Causality
 - Separability
 - Memory
 - Shift invariance
 - Rotation invariance

Fei-Fei Li Lecture 4- 23 30-Sep-15

Shift-invariance

If
$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$
 then

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

for every input image f[n,m] and shifts n₀,m₀

Fei-Fei Li Lecture 4- 24 30-Sep-15

Is the moving average system is shift invariant?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x,y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Fei-Fei Li Lecture 4- 25 30-Sep-15

Is the moving average system is shift invariant?

$$f[n,m] \xrightarrow{S} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$f[n-n_0, m-m_0]$$

$$\xrightarrow{\mathcal{S}} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n-n_0) - k, (m-m_0) - l]$$

$$= g[n - n_0, m - m_0]$$

Yes!

Lecture 4-30-Sep-15 Fei-Fei Li

Linear Systems (filters)

$$f(x,y) \to \boxed{\mathcal{S}} \to g(x,y)$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

$$\mathcal{S}[\alpha f_1 + \beta f_2] = \alpha \mathcal{S}[f_1] + \beta \mathcal{S}[f_2]$$

superposition property

Fei-Fei Li Lecture 4- 27 30-Sep-15

Linear Systems (filters)

$$f(x,y) \to \boxed{\mathcal{S}} \to g(x,y)$$

• Is the moving average a linear system?

- Is thresholding a linear system?
 - f1[n,m] + f2[n,m] > T
 - f1[n,m] < T
 - f2[n,m]<T No!

LSI (linear shift invariant) systems

Impulse response

$$\delta_2[n-k,m-l] \rightarrow \boxed{\mathcal{S}(SI)} \rightarrow h[n-k,m-l]$$

30-Sep-15 Fei-Fei Li

LSI (linear shift invariant) systems

Example: impulse response of the 3 by 3 moving average filter:

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k,m-l]$$

$$= \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Fei-Fei Li Lecture 4- 30 30-Sep-15

LSI (linear shift invariant) systems

An LSI system is completely specified by its impulse response.

sifting property of the delta function

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$$

= f[n,m] ** h[n,m]

Discrete convolution

Fei-Fei Li Lecture 4- 31 30-Sep-15

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Fei-Fei Li Lecture 4- 32 30-Sep-15

Discrete convolution (symbol: *)

- Fold h[n,m] about origin to form h[-k,-l]
- Shift the folded results by n,m to form h[n k,m l]
- Multiply h[n k,m l] by f[k, l]
- Sum over all k,l
- Repeat for every n,m

Fei-Fei Li

Lecture 4- 33 30-Sep-15

Discrete convolution (symbol: *)

- Fold h[n,m] about origin to form h[-k,-l]
- Shift the folded results by n,m to form h[n k,m l]
- Multiply h[n k,m l] by f[k, l]
- Sum over all k,l
- Repeat for every n,m

Lecture 4- 34 30-Sep-15

Discrete convolution (symbol: *)

- Fold h[n,m] about origin to form h[-k,-l]
- Shift the folded results by n,m to form h[n k,m l]
- Multiply h[n k,m l] by f[k, l]
- Sum over all k,l
- Repeat for every n,m

Lecture 4- 35 30-Sep-15

Courtesy of D Lowe

Convolution in 2D - examples

Original

Fei-Fei Li Lecture 4- 36 30-Sep-15

Convolution in 2D - examples

Original

Filtered (no change)

Fei-Fei Li Lecture 4- 37 30-Sep-15

Convolution in 2D - examples

Original

Fei-Fei Li Lecture 4- 38 30-Sep-15

Convolution in 2D - examples

Original

Shifted right By 1 pixel

Fei-Fei Li Lecture 4- 39 30-Sep-15

Convolution in 2D - examples

Original

Fei-Fei Li Lecture 4- 40 30-Sep-15

Convolution in 2D - examples

Original

Blur (with a box filter)

Fei-Fei Li Lecture 4- 41 30-Sep-15

Convolution in 2D - examples

"details of the image"

Original

(Note that filter sums to 1)

•() +

Fei-Fei Li Lecture 4-30-Sep-15

What does blurring take away?

• Let's add it back:

Fei-Fei Li Lecture 4- 43 30-Sep-15

Convolution in 2D – Sharpening filter

Original

Sharpening filter: Accentuates differences with local average

Fei-Fei Li Lecture 4- 44 30-Sep-15

Image support and edge effect

- •A computer will only convolve **finite support signals.**
 - That is: images that are zero for n,m outside some rectangular region
- MATLAB's conv2 performs 2D DS convolution of finitesupport signals.

Fei-Fei Li Lecture 4- 45 30-Sep-15

Image support and edge effect

- •A computer will only convolve **finite support signals.**
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- MOTE (beyond the scope of this class)

-> Matlab conv2 uses zero-padding

Fei-Fei Li Lecture 4- 46 30-Sep-15

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Fei-Fei Li Lecture 4- 47 30-Sep-15

(Cross) correlation (symbol: **)

Cross correlation of two 2D signals f[n,m] and g[n,m]

$$r_{fg}[k,l] \triangleq \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n,m] g^*[n-k,m-l]$$

$$=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}f[n+k,m+l]\,g^*[n,m],\quad k,l\in\mathbb{Z},$$
 (k, l) is called the \log

Equivalent to a convolution without the flip

$$r_{fg}[n,m] = f[n,m] ** g^*[-n,-m]$$

(g* is defined as the complex conjugate of g. In this class, g(n,m) are real numbers, hence g*=g.)

Fei-Fei Li Lecture 4- 48 30-Sep-15

(Cross) correlation – example

Fei-Fei Li Lecture 4- 49 30-Sep-15

(Cross) correlation – example

Fei-Fei Li Lecture 4- 50 30-Sep-15

Convolution vs. (Cross) Correlation

Fei-Fei Li Lecture 4- 51 2010.12.18

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- <u>Correlation</u> compares the *similarity* of *two* sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

Fei-Fei Li Lecture 4- 52 2010.12.18

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Fei-Fei Li Lecture 4- 53 30-Sep-15

properties

Commutative property:

$$f ** h = h ** f$$

Associative property:

$$(f ** h_1) ** h_2 = f ** (h_1 ** h_2)$$

Distributive property:

$$f ** (h_1 + h_2) = (f ** h_1) + (f ** h_2)$$

The order doesn't matter! $h_1 ** h_2 = h_2 ** h_1$

Fei-Fei Li Lecture 4- 54 30-Sep-15

properties

• Shift property:

$$f[n,m] ** \delta_2[n-n_0,m-m_0] = f[n-n_0,m-m_0]$$

Shift-invariance:

$$g[n, m] = f[n, m] ** h[n, m]$$

$$\implies f[n - l_1, m - l_1] ** h[n - l_2, m - l_2]$$

$$= g[n - l_1 - l_2, m - l_1 - l_2]$$

Fei-Fei Li Lecture 4- 55 30-Sep-15

What we have learned today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Fei-Fei Li Lecture 4- 56 30-Sep-15