

Topic # 07: Data Analytics

Course Review

Instructor: Prof. Arnab Bisi, Ph.D.

Johns Hopkins Carey Business School

Multiple Methods

- Supervised learning: predict output
 - Classification: predict discrete output
 - Regression: predict continuous output
- Unsupervised learning: no output
 - Clustering: study similarity
 - Trees: splitting
 - Evaluate "homogeneity" within each branch/group
 - Fitting multiple trees often works better (forests)

Linear Regression

- Linear regression is a tool for predicting a quantitative response
- Parameters can be found by the *least squares* approach
- Given estimates we make predictions using a formula

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_p x_p.$$

■ Key elements: p-values, t-tests, R^2, confidence intervals, coefficients

Model Selection

- Subset selection
 - Best subset selection
 - Forward stepwise selection
 - Backward stepwise selection

Key elements: AIC, BIC, over-fitting

Logistic "Regression"

Tool for predicting a quantitative (categorical) response

$$q = \Pr(y = 1 | \mathbf{X}) = \frac{\exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}{1 + \exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}.$$

- Parameters estimated by method of maximum likelihood
- Key elements: Deviance, confusion tables, error rates

Clustering

- K-means clustering: partitioning observations into a pre-specified number of groups
 - Multiple starts due to randomness of initial assignment
- Hierarchical clustering: "bottom up" approach that creates a tree-like representation of a data set
- Key elements: Euclidian distance, sum of squares

Decision Trees

- Can be used for regression (means) or classifications (modes)
 - Iteratively split variables into groups
 - Split where maximally predictive
 - Evaluate "homogeneity" within each branch
 - Fitting multiple trees often works best
- Key elements: splitting rules, how to follow logic of tree

Odds and Ends

- Validation
 - Training vs. Testing data
 - Cross Validation
- KNN use similarity of "neighbors" to make predictions or assign to groups
- Cases: applications of ideas to real data

Dimension Reduction

- Principal Component Analysis is used for dimension reduction
 - A large set of correlated X variables
 - Principal Component summarizes this set with small number of representative variables
 - Principal Component Regression uses principal components as predictors in the regression model
 - Fitting multiple trees often works best
- Key elements: proportion of variance explained

Learn More About Data Analytics

- Get more info
 - OpenIntro: http://www.openintro.org/
 - Coursera: https://www.coursera.org/
 - edX: https://www.edx.org/
 - Big data university
 http://bigdatauniversity.com/
- More about R:
 - http://www.r-tutor.com/
 - http://www.revolutionanalytics.com/

Zoom Presentations

- Each group has about 12 minutes for video
- 3-4 present in each group

Questions, Comments?

Let's move to the presentations.

