Lesson

Set of
Rational
Numbers

Prelude

- You studied in the primary stage some sets of numbers as :
 - * Set of **COUNTING** numbers = $\{1, 2, 3, 4, ...\}$
 - * Set of **NATURAL** numbers $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$
 - * Set of INTEGERS $\mathbb{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$
- In this unit, you will recognize another set of numbers called

"The set of rational numbers" and it is denoted by the symbol "

"

Rational numbers

The numbers: $\frac{1}{2}$, $-\frac{5}{8}$, 3, 0, $3\frac{1}{2}$, 0.7, 2.5 and 15% are rational numbers.

Definition of the rational number

A rational number is a number that can be expressed in the form of a quotient of an integer divided by an integer other than 0

- i.e. The rational numbers are all numbers can be expressed as $\frac{a}{b}$ where a and b are integers, b $\neq 0$
 - , where a and b are called the two terms of the rational number $\frac{a}{h}$

So , we can express the set of rational numbers as the following :

The set of rational numbers $\mathbb{Q} = \{ X : X = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \}$

Based on the previous definition , we can say that :

All the decimal numbers are rational numbers.

because any decimal number or decimal fraction can be expressed in the form of $\frac{a}{b}$ where a and b are integers and $b \neq 0$

Examples:

- 2.5 is a rational number can be expressed in the form $\frac{25}{10}$ or $\frac{250}{100}$ or...
- 0.7 is a rational number can be expressed in the form $\frac{7}{10}$ or $\frac{70}{100}$ or...

All percents are rational numbers.

because any percentage can be expressed in the form of $\frac{a}{b}$ where a and b are integers and $b \neq 0$

• 15 % is a rational number can be expressed in the form $\frac{15}{100}$ or $\frac{150}{1000}$ or...

All integers are rational numbers.

because any integer can be expressed in the form of $\frac{a}{b}$ where a and b are integers and $b \neq 0$

Therefore:

The set of integers is a subset of the set of rational numbers.

i.e. $\mathbb{Z} \subset \mathbb{Q}$ and since $\mathbb{N} \subset \mathbb{Z}$, then $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

and the following figure shows that.

- 3 is a rational number can be expressed in the form $\frac{3}{1}$ or $\frac{6}{2}$ or $\frac{9}{3}$ or ...
- O is a rational number can be expressed in the form $\frac{0}{1}$ or $\frac{0}{2}$ or $\frac{0}{3}$ or ...
- - 16 is a rational number can be expressed in the form $-\frac{16}{1} \text{ or } -\frac{32}{2} \text{ or } -\frac{48}{3} \text{ or } \dots$

Remark

Each integer is a rational number, but not each rational number is an integer.

For example:

- $\frac{12}{6}$ expresses an integer because : 12 is divisible by 6 and the result is 2
- $\frac{25}{4}$ does not express an integer because : 25 is not divisible by 4

Example 1

Show why each of the following is a rational number:

- $13\frac{2}{5}$
- 3 0.006

- 4 27 %

Solution Each of the previous numbers is a rational number because each of them can be expressed as $\frac{a}{b}$ where a and b are integers and $b \neq 0$ as follows:

- 1 $3\frac{2}{5} = \frac{(3 \times 5) + 2}{5} = \frac{17}{5}$ 2 $-0.17 = -\frac{17}{100}$ 3 $0.006 = \frac{6}{1000}$ 4 $27\% = \frac{27}{100}$

Remark

If $\frac{a}{b}$ is a rational number, then $b \neq 0$

Example 2

Choose the correct answer from the given ones:

- 1 The number $\frac{5}{2 x} \in \mathbb{Q}$, if $x \neq \dots$
- (b) 2
- (c) 0
- 2 If $\frac{X-1}{X+3}$ is a rational number, then $X \neq \dots$
- (b) -1 (c) 1 (d) 3
- (a) -3The number $\frac{3 \times -12}{2 \times -4}$ is not rational; if $x = \dots$ (c) 2 (d) 4

Solution

1 (c)

The reason:
$$\frac{5}{2 \times 1} \in \mathbb{Q} \text{ if } 2 \times 1 \neq 0$$

i.e.
$$x \neq 0$$

2 (a)

The reason: since $\frac{\chi - 1}{\chi + 3}$ is a rational number

• then
$$X + 3 \neq 0$$

i.e.
$$x \neq -3$$

3 (c)

The reason:
$$\frac{3 \times -12}{2 \times -4} \notin \mathbb{Q}$$
 if $2 \times -4 = 0$

i.e.
$$2 x = 4$$

i.e.
$$x = \frac{4}{2} = 2$$

Complete the following table :

The number	$\frac{5}{x-3}$	$\frac{3}{4-x}$	$\frac{7}{8x}$	$\frac{6x}{x}$
Expresses a rational number if X≠	***********	January.	21000000	10000000

Remark

If the rational number $\frac{a}{b} = 0$, then a = 0

Example 3 If the rational number $\frac{x-3}{x+3} = 0$, find the value of x

Since
$$\frac{x-3}{x+3} = 0$$

• therefore
$$x - 3 = 0$$

i.e.
$$x = 3$$

Complete the following table:

The rational number	$\frac{x-2}{x-1}$	$\frac{6-x}{x-4}$	$\frac{2 x}{x+5}$	$\frac{2 X - 4}{X + 3}$
Equals zero if $X =$			******	p

Positive and negative rational number

The rational number $\frac{a}{b}$ is

positive

if the product of its terms is positive

i.e. $a \times b > 0$

and a, b have the same sign.

Examples for positive

rational numbers:

$$\frac{3}{5}$$

$$\frac{-2}{-3}$$

equal to zero

if its numerator is zero

i.e. a = 0

notice that zero is not positive nor negative.

Examples for rational numbers equal to zero:

$$\frac{0}{-2}$$

negative

if the product of its terms is negative

i.e. $a \times b < 0$

and a , b have different signs.

Examples for negative

rational numbers:

$$-\frac{3}{4}$$

•
$$-\frac{4}{5}$$

i.e. The set of rational numbers $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$

Where \mathbb{Q}_+ is the set of positive rational numbers \mathbb{Q}_- is the set of negative rational numbers.

Note that :
$$\mathbb{Q}_+ \cap \mathbb{Q}_- = \emptyset$$

Show which of the following numbers is positive, which is negative and which is zero:

$$\frac{3}{4}$$
, $\frac{-2}{-9}$, $\frac{\text{zero}}{-5}$, $\left|-\frac{1}{2}\right|$, $\frac{-7}{11}$, $(-5)^2$

Different forms of a rational number

The rational number $\frac{a}{b}$ can be written in the form of another rational number $\frac{c}{d}$ equal to it by applying the following property:

_Property

The value of the rational number $\frac{a}{h}$ does not change if its two terms are multiplied or divided by an integer # zero.

For example:

$$\frac{3}{7} = \frac{3 \times 2}{7 \times 2} = \frac{6}{14}$$

•
$$\frac{3}{7} = \frac{3 \times 2}{7 \times 2} = \frac{6}{14}$$
 , $\frac{3}{7} = \frac{3 \times 3}{7 \times 3} = \frac{9}{21}$

$$\frac{3}{7} = \frac{6}{14} = \frac{9}{21}$$

i.e. $\frac{3}{7}$, $\frac{6}{14}$, $\frac{9}{21}$ are different forms which represent the same number.

$$\frac{24}{36} = \frac{24 \div 2}{36 \div 2} = \frac{12}{18}$$
 , $\frac{24}{36} = \frac{24 \div 4}{36 \div 4} = \frac{6}{9}$

$$\frac{24}{36} = \frac{24 \div 4}{36 \div 4} = \frac{6}{9}$$

$$\frac{24}{36} = \frac{12}{18} = \frac{6}{9}$$

i.e. $\frac{24}{36}$, $\frac{12}{18}$, $\frac{6}{9}$ are different forms which represent the same number.

Write in three other forms each of the following rational numbers :

$$\frac{2}{3}$$

$$\frac{16}{64}$$

Writing a rational number $\frac{a}{b}$ in its simplest form

For any rational number expressed as $\frac{a}{h}$, we say that this rational number is in its simplest form if each of its terms has the smallest possible value.

For example:

- The simplest form of the rational number $\frac{16}{32}$ is $\frac{1}{2}$ and note that: $\frac{16}{32}$ and $\frac{1}{2}$ represent the same rational number.
- The rational number $\frac{3}{14}$ is in its simplest form and can not be simplified to more simple form.

$$\frac{16}{32} = \frac{1}{2}$$

So, they represent the same rational number.

To put a rational number $\frac{a}{b}$ in its simplest form, divide each of its terms by the highest common factor (H.C.F.) between them.

Example 4

Put each of the following numbers in its simplest form:

$$1 \frac{8}{12}$$

$$\frac{2}{36}$$

Solution

- 1 The (H.C.F.) of 8 and 12 is 4 Dividing the two terms of $\frac{8}{12}$ by 4, we get: $\frac{8}{12} = \frac{2}{3}$
 - 2 The (H.C.F.) of 12 and 36 is 12 Dividing the two terms of $-\frac{12}{36}$ by 12, we get: $-\frac{12}{36} = -\frac{1}{3}$

Complete the following table :

The number	<u>5</u> 25	$-\frac{6}{9}$	27 45	$-\frac{12}{30}$
Its simplest form				

Writing the rational number in the form of percentage

To write the rational number in the form of percentage we express it as $\frac{a}{100}$ which means a %

Example 5

Write each of the following numbers in the form of percentage:

$$\frac{9}{20}$$

$$\frac{2}{16}$$

$$\frac{3}{1000}$$

4
$$5\frac{12}{125}$$

Solution

$$\frac{9}{20} = \frac{9 \times 5}{20 \times 5} = \frac{45}{100} = 45 \%$$

Another solution :
$$\frac{9}{20} = \frac{\frac{9}{20} \times 100}{100} = \frac{45}{100} = 45 \%$$

$$\frac{5}{16} = \frac{\frac{5}{16} \times 100}{100} = \frac{31.25}{100} = 31.25 \%$$

3
$$\frac{17}{1000} = \frac{\frac{17}{1000} \times 100}{100} = \frac{1.7}{100} = 1.7 \%$$

4
$$5\frac{12}{125} = \frac{637}{125} = \frac{\frac{637}{125} \times 100}{100} = \frac{509.6}{100} = 509.6 \%$$

5
$$3.2 = \frac{32}{10} = \frac{32 \times 10}{10 \times 10} = \frac{320}{100} = 320 \%$$

Write each of the following numbers in the form of percentage :

$$\frac{1}{5}$$

$$\frac{3}{1000}$$

Changing a rational number from the form $\frac{a}{b}$ to a decimal form

Some rational numbers could be changed from the form $\frac{a}{h}$ into a terminating decimal.

For example: • The rational number $\frac{3}{5}$ can be changed into 0.6

• The rational number $\frac{3}{2}$ can be changed into 1.5

To write a rational number in the form of a terminating decimal , make its denominator equal to 10 , 100 , 1000 or ...

$$\frac{3 \times 2}{5 \times 2} = \frac{6}{10} = 0.6$$
$$\frac{3 \times 5}{2 \times 5} = \frac{15}{10} = 1.5$$

Example 6

Write each of the following numbers in the form of a terminating decimal:

$$1 \frac{2}{5}$$

$$2 |-\frac{3}{8}|$$

$$3 - 2\frac{7}{25}$$

Solution
$$\frac{2}{5} = \frac{2 \times 2}{5 \times 2} = \frac{4}{10} = 0.4$$

$$2 \left| -\frac{3}{8} \right| = \frac{3}{8} = \frac{3 \times 125}{8 \times 125} = \frac{375}{1000} = 0.375$$

$$3 - 2\frac{7}{25} = -2\frac{7 \times 4}{25 \times 4} = -2\frac{28}{100} = -2.28$$

Write each of the following rational numbers in the form of a terminating decimal:

$$\frac{3}{4}$$

$$\frac{11}{20}$$

Remark

Some rational numbers could not be changed into terminating decimal as the rational number $\frac{1}{3}$, then using calculator, you find that: $\frac{1}{3} = 0.333333 \dots$

We express that as (0.3) and read it as the infinite repeating decimal 0.3 (the recurring decimal 0.3) where the dot above the digit 3 means the digit is repeating (recurring).

Example 7

Using a calculator, write each of the following rational numbers in the form of a recurring decimal:

$$1 \frac{2}{3}$$

$$\frac{2}{11}$$

$$\frac{2}{11}$$
 $\frac{2}{333}$

Solution

1 Using the calculator, we get that:

$$\frac{2}{3}$$
 = 0.6666666667

i.e.
$$\frac{2}{3} = 0.6$$

2 Using the calculator, we get that:

$$\frac{2}{11} = 0.1818181818$$
 i.e. $\frac{2}{11} = 0.\dot{1}\dot{8}$

i.e.
$$\frac{2}{11} = 0.\dot{1}\dot{8}$$

3 Using the calculator, we get that:

$$\frac{71}{333} = 0.2132132132$$
 i.e. $5\frac{71}{333} = 5.213$

i.e.
$$5\frac{71}{333} = 5.213$$

Notice that: -

Putting dots above the first and last digits means repeating all digits (first, last and between them)

5.213

Write each of the following rational numbers in the form of a recurring decimal:

$$\frac{3}{11}$$

$$\frac{2}{333}$$

Remark

It is possible to write the recurring decimal in the form of $\frac{a}{b}$ by using scientific calculators of type CASIO fx-95ES plus or a different type.

Notice that some scientific calculators can not be able to solve this problem.

For example:

- To write the number 0. $2\overline{1}$ in the form of $\frac{a}{b}$, insert the following numbers by the calculator till fill the screen: 0.21212121212121
 - , then press you will get the rational number $\frac{7}{33}$
- To write the number $0.1\dot{3}\dot{6}$ in the form of $\frac{a}{b}$; insert the following numbers by the calculator till fill the screen: 0.1363636363636
 - , then press = you will get the rational number $\frac{3}{22}$

Use the calculator to write each of the following in the form $\frac{a}{b}$:

1 0.15

2 0.145

Set of Rational **Numbers**

1 Complete the following:

- 1 If $\frac{5}{a}$ is a rational number, then $a \neq \dots$
- The necessary condition to be $\frac{3}{\chi 2}$ is a rational number is $\chi \neq \cdots$
- $\boxed{3}$ The number $\frac{2}{3x} \in \mathbb{Q}$ if $x \neq \cdots$
- 4 The number $\frac{x-3}{3x+6}$ is a rational number if $x \neq \cdots$
- The number $\frac{a-6}{a-4}$ is not rational if $a = \cdots$
- The rational number $\frac{x-5}{x} = 0$ if $x = \dots$
- 7 The rational number $\frac{4-x}{x-3} = 0$ if $x = \dots$
- B The rational number $\frac{5 \times 15}{\times 5} = 0$ if $\times = \dots$
- 9 If $\frac{x+4}{x-3}$ is not rational, then $x-2 = \cdots$ 10 $\frac{3}{4} = \frac{9}{\cdots}$
- $11 \frac{16}{20} = \frac{\dots}{10}$
- $\frac{7}{20} = \dots \%$
- $\frac{21}{1000} = \dots \%$
- $|14| 0.4| = \cdots \%$

Choose the correct answer from the given ones:

1 All the following numbers are rational except

(a) 0

(b) $\frac{2}{5}$

(c) $\frac{3-3}{7}$

(d) $\frac{4}{5-5}$

Which of the following numbers is an integer?

(a) $-\frac{24}{5}$

(b) $\frac{4}{9}$

(c) $\frac{15}{5}$

(d) $3\frac{1}{4}$

Which of the following rational numbers is negative?

(b) $-\left|-\frac{1}{2}\right|$

(c) $\frac{-3}{4}$

 $(d) (-7)^2$

Which of the following rational numbers is positive?

 $(c) (-5)^3$

 $(d) \frac{-2}{-9}$

 $\frac{1}{5}$ Which of the following equals $\frac{4}{5}$?

(b) 54 %

(c) 120 %

(d) 80 %

(a) 25

(b) - 25

(c) 5

(d) 100

The rational number $\frac{a}{b}$ is positive if

(a) a b > 0

(b) a b < 0

(c) a + b = 0

(d) a > b

The rational number $\frac{-7}{a}$ is positive if azero

(b) ≥

(d) =

The rational number $\frac{x}{-5}$ is negative if xzero

(a) >

(b) <

(c) ≤

(d) =

If a = 2, b = 6, then which of the following is not a rational number?

 $(a) \frac{b}{a}$

(b) $-\frac{2}{3}$

(c) $\frac{0}{a+b}$

(d) $\frac{2 \text{ b}}{a-2}$

• 11 0.57 =

(a) $\frac{57}{100}$

(b) $\frac{75}{99}$

(c) $\frac{575}{1000}$

(d) $\frac{19}{33}$

o 12 | -8 | = ·······

(a) $-\frac{8}{25}$

(b) - 0.32

(c) 0.32

(d) 32%

o 13 12% = ······

(a) 0.3

(b) 1.2

(c) $\frac{3}{25}$

(d) 0.012

3 Put each of the following numbers in the simplest form:

 $2 - \frac{24}{56}$ $3 + \frac{45}{20}$

 $[4] - \frac{132}{99}$

4 Which of the following rational numbers can be written as a terminating decimal?

5 Write each of the following two numbers in the form of a recurring decimal:

 $\frac{1}{11}$

 $2 - 3\frac{1}{15}$

6 Write each rational number in the form $\frac{a}{h}$:

Write each of the following rational numbers as a decimal and a percentage :

 $12\frac{1}{2}$

 $2 - \frac{3}{20}$

 $\frac{3}{16}$

1 Why does the definition of a rational number $\frac{a}{b}$ state that $b \neq 0$?

For excellent pupils

- Choose the correct answer from the given ones:
 - 1 If $\frac{a}{b}$ is a rational number and $ab = zero_3$ then

(a) $a = 0, b \neq 0$

(b) $a \neq 0$, $b \neq 0$

(c) a = 0, b = 0 (d) $a \ne 0$, b = 0

The number $\frac{5 \times x}{|x|-2} \notin \mathbb{Q}$ if $x = \dots$

(a) zero

- Write the rational number $\frac{a}{b}$ that equals $\frac{3}{5}$ and the sum of its two terms is 24
- If $X \in \mathbb{N}$, find the values of X which make each of the following an integer:

 $\frac{15}{x+1}$