

2.1 공학설계 이해하기

2.1.1 공학설계의 정의

공학설계에 대한 다양한 정의

미국 ABET의 정의

필요한 것을 만들기 위해 시스템과 구성 요소 혹은 프로세스를 고안해내는 과정

한국 ABEEK의 정의

필요한 것을 만들기 위해 시스템 요소 및 프로세스를 고안하는 과정. 즉, 원하는 목표에 부합하도록 기초 과학, 수학, 공학 등을 적용하여 다양한 자원을 가공하는 의사 결정 과정

- 좁은 의미의 공학설계는 인간의 편의와 복리를 증진하는 공학적인 결과물을 얻기 위해 실시하는 공학자의 전문적인 행위
- 주어진 제한 조건 안에서 목적에 부합하는(즉 바람직한 기능을 수행하는) 공학적 결과물을 만드는 창조적 과정

2.1.1 공학설계란?

○ 공학설계의 결과물

- 제품 외에 아래 내용 포함
- 아이디어 스케치 : 아이디어를 개략적으로 설명하는 개념 설계도
- 제품 도면 : 부품도, 조립도, 세부 사양서 등의 상세 설계도
- 공학적 해석 결과 : 응력, 기구학적 메커니즘, 화학반응 등
- 공정도 : 작업과 제조 과정을 알기 쉽게 나타낸 도면 (제작 방법, 제작 순서 등)
- 시험 평가 보고서 : 시험 내용, 시험 결과 등
- 품질보증서: 제품의 품질이 일정 수준임을 보증하는 서류 (제품 규격, 시험 규격 등)

2.1.2 공학설계의 특징

- 공학설계는 여러 분야가 연계된 매우 유기적인 과정이다.
- 공학설계에는 창의성과 분석력이 필요하다.
- 공학설계에는 상호 의존적 반복 과정을 필요하다.
- 공학설계는 비구조화된 과정이다.
- 공학설계는 개방적인 과정이다.

2.1.3 공학설계의 현실적 제한 조건

현실적 제한 조건

구분	설명
규격/표준	산업 규격 및 표준에 부합되는 설계 구성, 제작 또는 시험을 진행해야 함
경제성	결과 <mark>물</mark> 은 주어진 재료의 원가를 고려했을 때 경제성이 있어야 함
미학	제품의 미적 감각을 고려하여 설계 및 제작해야 함
신뢰성/내구성	제품이 얼마나 견고한지, 고장률은 어느 정도인지 분석해야 함
안전성	설계안에 따라 결과물을 만들 때 반드시 위험 요소, 위험성 등을 고려해야 함
윤리/환경	결과물이 직업윤리와 사회윤리에 저촉되지 않는지 점검하고, 상용화되었을 때 환경에 미치는 영향을 평가해야 함

○ 설계 심도에 따른 구분

① 개념 설계(conceptual design)

- 원하는 설계 결과를 얻기 위한 아이디어를 도출해서 설계 방향 결정하는 단계
- 결과물 : 아이디어 스케치

② 상세 설계(detailed design)

- 제품 설계(product design)라고도 칭함
- 개념 설계 단계에서 도출된 개념적 아이디어를 구체화하는 단계
- 결과물 : 도면, 모형, 제품 사양 등

○ 설계 수준에 따른 구분

- ① 적응 설계(adaptive design)
 - 기존 설계에 큰 변화를 주지 않고 변형을 약간 가하는 낮은 수준의 설계
- ② 개발 설계(development design)
 - 기존 설계로부터 출발하지만 과학적인 지식과 많은 훈련이 요구되는 발전적인 설계
- ③ 신규 설계(new design)
 - 지금까지 없던 완전히 새로운 결과물을 만드는 높은 수준의 설계
 - 상당한 수준의 과학 지식과 창의성이 요구됨

설계 대상에 따른 구분

① 시스템 설계(system design)

- 시스템의 전체 구성을 설계하는 것
- 시스템의 구성은 주로 트리(tree) 구조로 표현함

② 요소 설계(element design)

- 시스템을 구성하는 1가지 요소만 상세히 설계하는 것

설계 단계에 따른 구분

① 기초 설계(basic design)

- 아이디어 도출 즉, 개념 설계를 핵심으로 하는 설계

② 요소 설계(element design)

- 목표 설정, 합성/설계, 분석, 구현/제작, 시험/평가와 같은 설계 구성 요소 중 일부만 포함하고, 규격/표준, 경제성, 미학 등과 같은 현실적 제한 조건도 일부만 고려한 설계

③ 종합 설계(capstone design)

- 목표 설정, 합성/설계, 분석, 구현/제작, 시험/평가와 같은 설계 구성 요소를 모두 포함하고, 규격/표준, 경제성, 미학 등과 같은 현실적 제한 조건도 모두 고려한 설계

구분	설계유형	구분	설계유형
서게시ㄷ(기이)	개념설계	설계대상	시스템 설계
설계심도(깊이)	상세설계		요소 설계
	적응 설계	설계단계	기초 설계
설계수준	개발 설계		요소 설계
	신규 설계		종합 설계

2.2 창의적 공학설계 프로세스 이해하기

2.2.1 ABEEK의 공학설계 프로세스

○ 한국공학교육인증원(ABEEK)의 5단계 공학설계 프로세스

	단계	설명
1	목표 설정	주어진 전공 주제에 대해 설계 목표를 설정하기 위한 자료를 조사하고 설계 목표로 결정함
2	합성/설계	설계 목표에 필요한 관련 기술을 조사·분석하여 제작 가능한 설계도를 작성함
3	분석	작성된 설계도를 분석하고 주요 부분에 대한 해석을 수행함
4	구현/제작	필요한 부품을 직접 구입하여 프로토타입을 개발함
5	시험/평가	시험 방법과 평가 기준을 설정하고, 필요한 계측 장비를 확보하여 시험한 결과를 평가함

2.2.2 다양한 공학설계 프로세스

- 월러스의 4단계설
 - 1926년 월러스(Wallace)가 인지과학에 기초하여 만든 것

- 이작센과 트레핑거의 CPS(Creative Problem Solving) 프로세스
 - 2004년 이작센과 트레핑거(Isaksen & Treffinger)가 제안한 것

2.2.2 다양한 공학설계 프로세스

- FPSP(Future Problem Solving Program)의 6단계 프로세스
 - 창의성의 대가인 토런스 박사가 창안한 미래 문제 해결 프로그램

- 가나자와공업대학의 5단계 프로세스
 - 공학설계 교육의 기초를 이루는 프로세스

2.2.2 다양한 공학설계 프로세스

미시간대학의 5단계 프로세스

- 화학공학과의 스콧 포글러(H. Scott Fogler) 교수가 제안

○ 스탠퍼드대학 D스쿨의 디자인 씽킹 5단계

- 새로운 시각으로 세상을 바라보고, 예전에는 몰랐던 방식으로 문제를 생각하게 만드는 사람을 중심으로 하는 마음가짐이자 문제를 해결하는 방법

○ 창의적 공학설계 프로세스란?

- 공학설계의 첫 단계인 **문제 인식 단계와 창의적 발상 도구의 활용을 강조**하는 의미에서 일반적인 공학설계 프로세스와 구분됨

○ 공학설계의 범위

- 넓은 의미에서의 공학설계는 **문제 인식 단계부터 시작**
- 좁은 의미에서의 공학설계는 아이디어 실행 단계부터 시작
 - → 아이디어 실행의 세부 단계는 공학 분야별로 큰 차이가 있음

창의적 공학설계 프로세스

창의적 공학설계 단계별 주요 결과물

단계		주요 결과 물
문제 인식		목적(why)과 목표(what)를 포함하는 최초의 인식된 문제 정의문
문제 정의	진짜 문제 정의	근본 원인 분석을 기초로 작성된 최종 문제 정의문
	문제 점검	문제 점검 테이블
개념 설계	아이디어 도출	아이디어 목록
	아이디어 평가	아이디어 평가 테이블
	최적해 선정	최적해 평가 테이블
아이디어 실행	상세 설계	세부 사양서, 제품 도면, 설계도, 제작 방법 등
	설계 심사	제약 조건 점검 테이블, 설계 타당성 점검 테이블 등
	제작 및 시험	모형 또는 시제품, 시험 방법 문서 등
아이디어 평가		도덕성 평가 테이블, 안전성 평가 테이블, 실험·해석 등에 의한 기능·성능 확인서 등

○ 창의적 공학설계 단계별로 활용 가능한 창의적 발상 도구

단계	창의적 발상 도구
문제 인식	브레인스토밍, 시스템 사고, 기술 진화의 법칙 등
문제 정의	5whys, 파레토 도표, 원인-결과 도표, 기능 분석, 모순 분석 등
문제 점검	시스템 사고, 시스템 진화 곡선 등
아이디어 도출	스캠퍼, 발명 원리, 분리 원리, 자원 분석, 마인드맵 등
아이디어 평가	이상성, 기술 시스템 진화 트렌드 등