МАШИННЕ НАВЧАННЯ В РАДІОВИМІРЮВАНІ

Виконав:

курсант 424 навчальної групи Червоненко Демид курсант 424 навчальної групи Нікітін Андрій

У ЦІЙ ПРЕЗЕНТАЦІЇ МИ РОЗГЛЯНЕМО

- Що таке радіовимірювання та його основні завдання та параметри.
- Основи машинного навчання та його типи.
- Як ML застосовується у сфері радіовимірювань.
- Переваги, недоліки розвитку цієї технології.

МЕТА ПРЕЗЕНТАЦІЇ

Продемонструвати можливості машинного навчання в радіовимірюваннях і показати, як ці методи можуть підвищити ефективність аналізу сигналів та точність вимірювань.

ЩО ТАКЕ РАДІОВИМІРЮВАННЯ?

Радіовимірювання — це процес вимірювання різних параметрів радіосигналів, які використовуються для передачі інформації через радіохвилі.

ОСНОВНІ ПАРАМЕТРИ, ЩО ВИМІРЮЮТЬСЯ

- Частота: Визначає кількість коливань сигналу за одиницю часу (вимірюється в герцах, Гц).
- Амплітуда: Визначає силу сигналу (вимірюється у відносних одиницях або децибелах, дБ).
- Фаза: Визначає стан сигналу в певний момент часу (вимірюється у градусах або радіанах).
- **Модуляція**: Визначає спосіб кодування інформації в сигналі (наприклад, амплітудна, частотна, фазова модуляція).

ОСНОВНІ ЗАСТОСУВАННЯ РАДІОВИМІРЮВАНЬ

- Телекомунікації: Вимірювання параметрів сигналів для забезпечення якісного зв'язку.
- Радіолокація: Виявлення об'єктів за допомогою радіохвиль.
- Наукові дослідження: Вивчення властивостей радіохвиль у різних середовищах.

ОСНОВНІ ЗАДАЧІ РАДІОВИМІРЮВАНЬ

- Визначення джерела сигналу: Ідентифікація джерела радіосигналу.
- Аналіз якості сигналу: Оцінка якості передачі даних.
- **Виявлення перешкод**: Визначення джерел перешкод та їх впливу на сигнал.

ВИЗНАЧЕННЯ МАШИННОГО НАВЧАННЯ

Машинне навчання (Machine Learning, ML)

— великий підрозділ штучного інтелекту, що вивчає методи побудови алгоритмів, здатних навчатися.

ОСНОВНІ ПРИНЦИПИ МАШИННОГО НАВЧАННЯ

- Навчання на даних: Алгоритми ML використовують навчальні дані для побудови моделей, які можуть робити прогнози або приймати рішення.
- **Автоматизація**: Процес навчання відбувається автоматично, без необхідності ручного втручання.
- **Адаптація**: Моделі ML можуть адаптуватися до нових даних, покращуючи свою точність з часом.

ОСНОВНІ ТИПИ НАВЧАННЯ

Навчання з учителем

Навчання без учителя

Навчання з підкріпленням

HABYAHHЯ З УЧИТЕЛЕМ (SUPERVISED LEARNING)

Модель навчається на розмічених даних (вхідні дані та відповідні їм вихідні значення).

Наприклад:

- Класифікація (розпізнавання зображень котів і собак).
- Регресія (прогнозування цін на акції).

НАВЧАННЯ БЕЗ УЧИТЕЛЯ (UNSUPERVISED LEARNING)

Модель аналізує нерозмічені дані, знаходячи приховані структури або закономірності.

Наприклад:

- Кластеризація (групування клієнтів за поведінкою).
- Зниження розмірності (зменшення числа змінних у великому наборі даних).

НАВЧАННЯ З ПІДКРІПЛЕННЯМ (REINFORCEMENT LEARNING)

Модель взаємодіє із середовищем, отримуючи винагороду або покарання за свої дії, і на основі цього навчається приймати рішення.

Наприклад:

Навчання роботів ходити

Гра в шахи

Торгівля на фінансових ринках

ЗАСТОСУВАННЯ МЬ У РАДІОВИМІРЮВАННЯХ

- Класифікація сигналів
- Прогнозування параметрів сигналів
- Виявлення аномалій
- Оптимізація радіомереж
- Обробка сигналів у реальному часі
- Радіолокація та виявлення об'єктів

ПЕРЕВАГИ МЬ У РАДІОВИМІРЮВАННЯХ

- Підвищення точності вимірювань
- Автоматизація процесів
- Обробка великих обсягів даних
- Виявлення аномалій та перешкод
- Оптимізація ресурсів

НЕДОЛІКИ ML У РАДІОВИМІРЮВАННЯХ

- Великі обсяги даних
- Якість даних
- Обмежені обчислювальні ресурси
- Складність інтерпретації результатів
- Адаптація до нових умов
- Висока вартість впровадження

висновки

Машинне навчання (ML) відіграє ключову роль у сучасних радіовимірюваннях, пропонуючи нові підходи для аналізу, оптимізації та управління радіосигналами. Проте, його застосування має як переваги, так і недоліки, які потребують ретельного

Дякую за увагу!