Algèbre – Ensembles, Fonctions

Christophe Mouilleron

C. Mouilleron ENSIIE – 1A – Algèbre Ensembles, Fonctions

Notations

- $x \in X$ l'élément x appartient à l'ensemble X
- $x \notin X$ l'élément x n'appartient pas à l'ensemble X
- Ø ensemble vide
- $X \subset Y$ l'ensemble X est inclus dans l'ensemble Y \rightsquigarrow si $e \in X$, alors $e \in Y$
- Card(X) cardinal de l'ensemble $X \simeq$ nb. d'éléments de X
- $X \cap Y$ intersection de X et Y \rightsquigarrow si $e \in X \cap Y$, alors $e \in X$ et $e \in Y$
- $X \cup Y$ union de X et Y \rightsquigarrow si $e \in X \cup Y$, alors $e \in X$ ou $e \in Y$

non exclusif

C. Mouilleron

Cardinal d'une union disjointe

union disjointe = intersection vide

3/14

$$Card(A \sqcup B) = Card(A) + Card(B)$$

Cardinal d'une union (quelconque)

Cas d'une intersection non vide :

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

4/14

Fonction injective

Définition

On dit qu'une fonction $f: E \to F$ est injective lorsque, pour tout $y \in F$, il existe au plus une valeur $x \in E$ telle que f(x) = y.

 $y \in F$ a 0 ou 1 antécédent

si f(x) = f(x'), alors x = x'

5/14

 $Card(E) \leq Card(F)$

Fonction injective (suite)

Pour montrer que f est injective :

parfois dur

6/14

 \rightarrow on montre $f(x) = f(x') \Rightarrow x = x'$

Pour montrer que f n'est pas injective :

 \rightarrow on donne un couple (x, x') tel que $x \neq x'$ mais f(x) = f(x')

Fonction surjective

Définition

On dit qu'une fonction $f : E \to F$ est surjective lorsque, pour tout $y \in F$, il existe au moins une valeur $x \in E$ telle que f(x) = y.

f(x) = y a toujours (au moins) une solution

7/14

 $Card(E) \ge Card(F)$

Fonction surjective (suite)

Pour montrer que f est surjective :

parfois dur

8/14

 \rightarrow on montre f(x) = y a toujours une solution

Pour montrer que f n'est pas surjective :

 \rightarrow on donne un élément y tel que f(x) = y n'a pas de solution

Fonction bijective

Définition

On dit qu'une fonction $f: E \to F$ est bijective lorsqu'elle est à la fois injective et surjective.

f(x) = y possède une unique solution

Card(E) = Card(F)

9/14

Bijections et cardinal

Intérêt des fonctions bijectives =

• permet de montrer que 2 ensembles ont le même nb. d'éléments

utile en dénombrement :

cf PROB11

10/14

Si $f: E \to F$ bijective et Card(E) fini, on peut calculer Card(F) pour avoir Card(E)

$$Card(E) = Card(F)$$

Bijections et cardinal

Intérêt des fonctions bijectives =

• permet de montrer que 2 ensembles ont le même nb. d'éléments

utile en dénombrement :

cf PROB11

10/14

Si $f: E \to F$ bijective et Card(E) fini, on peut calculer Card(F) pour avoir Card(E)

$$Card(E) = Card(F)$$

• raisonnement possible aussi pour les ensembles infinis

Ensembles dénombrables

Définition

On dit qu'un ensemble E est (infini) dénombrable lorsqu'il existe une bijection $\varphi: E \to \mathbb{N}$.

On peut numéroter les éléments de E:

- $\varphi(e) = \text{numéro associé à } e$
- $\varphi^{-1}(n) = \text{élément numéro } n$

C. Mouilleron ENSIIE – 1A – Algèbre Ensembles, Fonctions

Ensembles dénombrables

Définition

On dit qu'un ensemble E est (infini) dénombrable lorsqu'il existe une bijection $\varphi: E \to \mathbb{N}$.

On peut numéroter les éléments de E:

- $\varphi(e) = \text{numéro associé à } e$
- $\varphi^{-1}(n) = \text{élément numéro } n$

Exemples:

- \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} , $\{p \in \mathbb{N}^* | p \text{ premier}\}$
- si E_1 et E_2 dénombrables, alors $E_1 \times E_2$ aussi

C. Mouilleron ENSIIE – 1A – Algèbre Ensembles, Fonctions

Exemple d'ensemble non dénombrable

Notation : $\mathcal{P}(E) = \text{ensemble des sous-ensembles de } E$

 $\mathcal{P} = \text{parties de}$

12/14

Par exemple

$$\mathcal{P}(\{1,2,3\}) = \Big\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\Big\}$$

Proposition

L'ensemble $\mathcal{P}(\mathbb{N})$ des parties de \mathbb{N} n'est pas dénombrable.

Preuve par argument diagonal

Supposons $\mathcal{P}(N)$ dénombrable \rightsquigarrow numérotation $p_0, p_1, p_2 \dots$

Considérons le tableau $T_{i,j} = egin{cases} 1 & ext{si } j \in p_i \\ 0 & ext{sinon} \end{cases}$

0						
0	1	1	0	0		{1,2}
1	0	0	1	1		$\{0, 3, 4\}$
1	0	1	0	1		2ℕ
0	0	1	1	0		{p premiers}
0	0	0	0	0		Ø
:	÷	÷	÷	:	٠.	
	0 1 1 0 0	0 1 1 0 1 0 0 0 0 0	0 1 1 1 0 0 1 0 1 0 0 1 0 0 0	0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0	0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0	

C. Mouilleron ENSIIE – 1A – Algèbre En

Preuve par argument diagonal

Supposons $\mathcal{P}(N)$ dénombrable \rightsquigarrow numérotation $p_0, p_1, p_2 \dots$

Considérons le tableau
$$T_{i,j} = \begin{cases} 1 & \text{si } j \in p_i \\ 0 & \text{sinon} \end{cases}$$
 et $p = \{j \in \mathbb{N} \mid T_{j,j} = 0\}$

Τ							
p_0	0	1	1	0	0		$\{1,2\}$ $\{0,3,4\}$ $2\mathbb{N}$ $\{p \text{ premiers}\}$
p_1	1	0	0	1	1		$\{0, 3, 4\}$
p_2	1	0	1	0	1		2ℕ
p_3	0	0	1	1	0		{p premiers}
p_4	0	0	0	0	0		Ø
÷	:	:	÷	÷	÷	٠.	
n —	ίU	1			4)	

$$p = \{0, 1, 4, \ldots\}$$

C. Mouilleron

Preuve par argument diagonal

Supposons $\mathcal{P}(N)$ dénombrable \rightsquigarrow numérotation $p_0, p_1, p_2 \dots$

Considérons le tableau
$$T_{i,j} = \begin{cases} 1 & \text{si } j \in p_i \\ 0 & \text{sinon} \end{cases}$$
 et $p = \{j \in \mathbb{N} \mid T_{j,j} = 0\}$

$$p = \{0, 1, \dots, 1, \dots\}$$

 $p \in \mathcal{P}(\mathbb{N})$ + pour tout $i \in \mathbb{N}$, $p \neq p_i$ par construction ABSURDE

C. Mouilleron ENSIIE - 1A - Alaèbre Ensembles, Fonctions

Remarques sur l'argument diagonal

Argument diagonal = technique très utile

En pratique, pour prouver la non-dénombrabilité de :

```
• \{u : \mathbb{N} \to \mathbb{N}\} = ens. des suites d'entiers
```

MIN

- $\{u : \mathbb{N} \to \{0, 1\}\}\$ = ens. des suites à valeurs binaires
- {0,1}^ℕ

- **•** [0, 1[
- → R non dénombrable

En théorie:

outil pour preuves d'indécidabilité

cf MOCA24 / OPT{U,D}35

C. Mouilleron