Day 3 Graphs for Discrete Maths

Lecturer: Msc. Minh Tan Le

Overview of day 2

- Proposition calculation
- Relations of sets
 - Binary relation (2 sets)
 - N-ary relation (multiple sets)
- Type of relations
 - Reflexive
 - Symmetric
 - Antisymmetric
 - Transitive
 - Equivalent
- Operators: Union, intersection, minus.

Outline

- I. Graph
- II. Digraph & Hasse diagram
- III. Boolean algebra: The essence
- IV. Graph theory: The essence

Definition

- A graph consists of a nonempty set of vertices (**nodes**) and a set of edges (**arcs**, links, lines, connections).
- Expression: G = (V, E)

Digraph

- A digraph is a graph, but with directional edges.
 - Ex: v = (NTH, HVT) represents by a line with arrow towarding HVT from NTH.

$$A = \{2, 4, 5, 6, 8\}$$

$$R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$$

- Each $a \in A$ is a node/vertex (vertices)/point.
- Each $r \in R$ is a edge/**arc**.
- The number of edges connected to/from a is the degree of a, or deg(a).

 $A = \{2, 4, 5, 6, 8\}$

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

R is partial ordering on set A, or A is partially order set (POSET)

Partially order is built on top of algebra

- If there are at least 2 **distinctive** elements, the sequence has **partially order**.
- If a, b, c ($a \neq b, ex: a < b$) are real numbers, then:
 - a = a, b = b, c = c is aways true (reflexive).
 - b < a cannot happen (antisymmetric).
 - If b < c, then a < c (transitive).
 - You can sort the sequence a, b, c.

How about equivalence?

- If all elements are equal, the order is meaningless in algebra.
- If a, b, c are equal real numbers, then:
 - a = a, b = b, c = c is aways true (reflexive).
 - a = b and b = a (symmetric).
 - a = b, b = c, a = c (transitive).
 - You cannot sort a, b, c.

A set is partially order if...

- (By definition) there is at least a pair of element that has order.
- (By proving method) all these conditions are satisfied:
 - Reflexive
 - Antisymmetric
 - Transitive

It seems the graph is quite complicated. Do you have any ideas how to

Graph of *R*

Graph of partially order R

Graph of partially order R

- ✓ Remove loops
- ✓ Remove transitive connection
- ✓ Assuming arrows are pointing upward

Graph of partially order R

- ✓ Remove loops
- ✓ Remove transitive connection
- ✓ Assuming arrows are pointing upward and remove arrows

Hasse diagram of partially order R

An example of Hasse diagram creatation p. 624, Discrete Mathematics & It's Application — Kenneth H. Rosen

Hasse diagram: A simplified diagram

- Reflexive
 - Remove loops
- Transitive
 - If $a \rightarrow b$, $b \rightarrow c$, $a \rightarrow c$, remove $a \rightarrow c$.
- Arrow direction assumption
 - Move nodes, remove arrows by assuming they are pointing upward.

Warning!

- You can only create Hasse diagram from partially ordering.
- You can restore back to the original diagram.

III. Boolean algebra: The essence

- We don't have much thing to do with these sets:
 - {A, B, C}
 - {Tam, Tan, Trang}
 - {1, 2, 3}
- But what if there are only 2 discrete values?
 - {False, True}
 - {0, 1}

Boolean <u>algebra</u>

- Operator
- Expression
- Variable
- Function

Some operators in Boolean algebra

Order	Propositional logic	Boolean algebra	Definition
1	一, 一	_	NOT/Complementation
2	^	· (Can be omitted)	AND/Boolean product
3	V	+	OR/Boolean sum

Note: Calculate by order

Some operators in Boolean algebra

Order	Propositional logic	Boolean algebra	Definition
1	¬, -	_	NOT/Complementation
2	\wedge	· (Can be omitted)	AND/Boolean product
3	V	+	OR/Boolean sum

$$1 \cdot 0 + \overline{0 + 1}$$

Expression vs. function

$$x \cdot 0 + \overline{0 + y}$$

An expression with variables

$$f(x,y) = x \cdot 0 + \overline{0 + y}$$
A function

Find all values of Boolean function

\boldsymbol{x}	y	0+y	$\overline{0+y}$	$x \cdot 0$	f(x,y)
1	1	1	0	0	0
1	0	0	1	0	1
0	1	1	0	0	0
0	0	0	1	0	1

$$f(x,y) = x \cdot 0 + \overline{0+y}$$

Part IV. Graph theory: The essence

- Degree, rank, path
- Types of graphs determined by visuals

Degree: The number of edges connected to/from a.

deg(v): Degree

 $\deg^-(v)$: Number of edges that are connection to v.

 $\deg^+(v)$: Number of edges that are connection from v.

$$\sum_{v \in V} \deg^-(v)$$

$$\sum_{v \in V} \deg^+(v)$$

Rank

- Rank of an undirected graph is similar to rank of a matrix.
 - Demonstrate a graph into matrix.
 - Count number of linearly independent columns.

Path between two nodes is a string of vertices that are sequentially connected

$$p(v, v') = (v, v_1, v_2, ..., v_k, v')$$
$$w(p) = \sum_{i=0}^{k} w(v_i, v_{i+1})$$

• Shortest path: The most efficient path between 2 nodes.

$$d_{w(v,v')} = \min w(p)$$

- There are quite many ways to find the shortest path.
- Keyword: Shortest path problem.

Some popular types

- Digraph (directed graph): Each edge has direction.
- Undirected graph: No direction for all edges.
- Simple graph: At most one edge between two nodes.
- Multigraph: Multiple edges between two nodes are allowed.

Bipartite graph

 $K_{4,3}$

Bipartite graph: The set of vertices can be separated into two that any edge connects nodes of both.

A bipartite graph that has two equal size of set is called a balanced bipartite graph.

Complete graph

- An undirected simple graph
- There is one edge between any pair of nodes

A K₇ complete graph

Complete graph properties

- Number of vertices: n
- Number of edges: $C_n^2 = \frac{n(n-1)}{2}$
- All degrees are equal: n-1
- Expression: K_n
- K_1 is also a complete graph.

Complete bipartite graph

• Given s, t as sizes of two sets, we get:

$$K_{s,t}$$

=> The expression is the same as bipartite graph, so we may need to clarify that the graph is also complete.

Exercises/homework

- 22/631 (individual)
- 1, 2, 3, 23/630, 631 (group)

Notes:

- Remember to determine the lacked property.
- Draw initial graph before finding the Hasse diagram.
- Divisibility: $\{(a,b)\}$ which b can be fully divided by a.