```
In [1]: import pandas as pd
        from sqlalchemy import create engine
        import mysql.connector
        from mysql.connector import Error
        # Connect to Database
        def connect to database():
            # Connect to the MySQL database
            try:
                db connection = mysql.connector.connect(
                    host="127.0.0.1",
                    user="root",
                    password="0000", # Add your password here
                    database="e-commerce-dwh"
            except mysql.connector.Error as err:
                print("Error connecting to database:", err)
                exit() # Terminate script if connection fails
            return db connection
        # Fetch data from rawdata table
        def fetch data(db connection, query):
            cursor = db_connection.cursor(dictionary=True)
            cursor.execute(query)
            result = cursor.fetchall()
            return pd.DataFrame(result)
        connection = connect_to_database()
```

Business Questions

When is the peak season of our ecommerce?

```
In [10]: query = '''
SELECT
    d.month_name AS peak_month,
```

```
d.year,
   COUNT(o.order_key) AS total_orders,
   SUM(o.price) AS total_revenue
FROM
   fact_order o

JOIN
   dim_date d ON o.order_date_id = d.date_id
GROUP BY
   d.year,d.month_name
ORDER BY
   total_orders desc, total_revenue desc
limit 5;
...
fetch_data(connection,query)
```

Out[10]:

	peak_month	year	total_orders	total_revenue
0	November	2017	8665	1010271370.00
1	March	2018	8217	983213440.00
2	January	2018	8208	950030360.00
3	April	2018	7975	996647750.00
4	May	2018	7925	996517680.00

Our Peak is November due to black friday which is highest in revenue and ordes numbers Then March and January for 2018 Year

What time users are most likely make an order or using the ecommerce app?

```
GROUP BY
    d.hour

ORDER BY
    total_orders DESC
Limit 5;
'''
fetch_data(connection, query_time)
```

Out[]: hour total_orders

Seems Like 4 in the afternoon is our Peak time also all afternoon times is the are most times to make orders

What is the preferred way to pay in the ecommerce?

```
fetch_data(connection, query_payment)
```

Out[25]:

	payment_type	total_orders	percentage
0	credit_card	85030	75.5
1	blipay	22867	20.3
2	voucher	3060	2.7
3	debit_card	1690	1.5

Seems Like People prefer credit card 75% of people prefer this payment method

How many installment is usually done when paying in the ecommerce?

```
query installments = '''
In [35]:
         with payment installments counnt as (
          SELECT
              payment installments,
             COUNT(o.order key) AS total orders
          FROM
              fact order o
         JOIN
             dim payment p ON o.payment id = p.payment id
          GROUP BY
             payment installments)
         SELECT payment installments, total orders, total orders/sum(total orders) over() as percentage
         FROM payment installments counnt
         ORDER BY total orders DESC
          LIMIT 5;
         fetch data(connection, query installments)
```

Out[35]:		payment_installments	total_orders	percentage
	0	1	54357	0.4825
	1	2	13548	0.1203
	2	3	11631	0.1033
	3	4	7896	0.0701
	4	10	6763	0.0600

Seems like most people pay all in first time for 50 of purchases and almost 1 percentage of people tend to long term installements

What is the average spending time for user for our ecommerce?

```
query avg spending time = '''
In [50]:
         SELECT
             AVG(
                 CASE
                     WHEN d2.hour > d1.hour THEN (d2.hour - d1.hour) * 60 + (d2.minute - d1.minute)
                     ELSE d2.minute - d1.minute
                 END
             ) AS avg decision time minutes
         FROM
             fact_order o
         JOIN
             dim date d1 ON o.order date id = d1.date id
         JOIN
             dim date d2 ON o.order approved date id = d2.date id;
         fetch_data(connection, query_avg_spending_time)
```

Out[50]: avg_decision_time_minutes 0 31.3784

average time only was to see the customer time between the approval date and order date

What is the frequency of purchase on each state?

```
In [ ]: query state frequency = '''
            SELECT
                customer_state,
                Round(AVG(total orders)) AS avg_orders_per_month
            FROM (
                SELECT
                    u.customer_state,
                    COUNT(o.order key) AS total orders
                FROM
                    fact order o
                JOIN
                    dim user u ON o.user id = u.user id
                JOIN
                    dim date d ON o.order date id = d.date id
                    u.customer state, d.month name
            ) AS state orders
            GROUP BY
                customer_state
            ORDER BY
                avg_orders_per_month DESC
            LIMIT 5;
        fetch data(connection, query state frequency)
```

Out[]: customer_state avg_orders_per_month

0	BANTEN	2017
1	JAWA BARAT	1200
2	DKI JAKARTA	1196
3	JAWA TENGAH	806
4	JAWA TIMUR	791

Banten state got the highest month order with 2017 order per month then jawa barat with 800 less

Which logistic route that have heavy traffic in our ecommerce?

```
In [79]: query_rush hour = '''
         WITH RankedOrders AS (
              SELECT
                  s.seller_city AS pickup_city,
                  s.seller state AS pickup state,
                  u.customer city AS delivery city,
                  u.customer state AS delivery state,
                  d.hour,
                  COUNT(o.order key) AS order count,
                  ROW NUMBER() OVER (
                      PARTITION BY
                          s.seller city, s.seller state, u.customer city, u.customer state
                      ORDER BY
                          COUNT(o.order key) DESC
                  ) AS rank
              FROM
                 fact order o
              JOIN
                  dim seller s ON o.seller id = s.seller id
              JOIN
                  dim user u ON o.user id = u.user id
              JOIN
                  dim date d ON o.delivered date id = d.date id
              GROUP BY
                  s.seller city, s.seller state, u.customer city, u.customer state, d.hour
          SELECT
             pickup_city,
             pickup_state,
             delivery_city,
             delivery_state,
             hour AS max_order_hour,
             order_count
          FROM
              RankedOrders
          WHERE
             rank_{-} = 1
```

```
ORDER BY

order_count DESC

LIMIT 10;

iii

fetch_data(connection, query_rush_hour)
```

Out[79]:

:	pickup_city	pickup_state	delivery_city	delivery_state	max_order_hour	order_count
0	KOTA TANGERANG	BANTEN	KOTA TANGERANG	BANTEN	18	184
1	KABUPATEN BERAU	KALIMANTAN TIMUR	KOTA TANGERANG	BANTEN	18	57
2	KOTA TANGERANG	BANTEN	KOTA JAKARTA BARAT	DKI JAKARTA	17	52
3	Kota Jakarta Selatan	DKI JAKARTA	KOTA TANGERANG	BANTEN	18	48
4	KOTA JAKARTA TIMUR	DKI JAKARTA	KOTA TANGERANG	BANTEN	20	47
5	KOTA TANGERANG	BANTEN	KOTA JAKARTA TIMUR	DKI JAKARTA	16	44
6	KOTA TANGERANG	BANTEN	KABUPATEN PURBALINGGA	JAWA TENGAH	16	40
7	KOTA TANGERANG	BANTEN	KOTA PROBOLINGGO	JAWA TIMUR	17	39
8	KOTA TANGERANG	BANTEN	KOTA BONTANG	KALIMANTAN TIMUR	16	33
9	KOTA JAKARTA BARAT	DKI JAKARTA	KOTA TANGERANG	BANTEN	18	33

This query shows the hour where most orders are sent which will be more traffic

How many late delivered order in our ecommerce? Are late order affecting the customer satisfaction?

```
FROM
        fact_order o
    JOIN
        dim_date d2 ON o.delivered_date_id = d2.date_id
SELECT
    is late,
    COUNT(o.order_key) AS total_orders,
   AVG(f.feedback score) AS avg satisfaction
FROM
    late orders lo
JOIN
   fact order o ON lo.order key = o.order key
JOIN
    dim feedback f ON o.feedback id = f.feedback key
GROUP BY
    is late;
fetch_data(connection, query_late_orders)
```

Out[]: is_late total_orders avg_satisfaction

0	0	102931	4.1948
1	1	7265	2.2434

Late arrival got a big infelunce in the satisfication rate for customers

How long are the delay for delivery / shipping process in each state?

```
JOIN
        dim_date d2 ON o.delivered_date_id = d2.date_id
    JOIN
        dim_date d1 ON o.pickup_date_id = d1.date_id
    WHERE
        DATEDIFF(d2.full timestamp, o.estimated time delivery) > 0
SELECT
    customer state,
   AVG(delay days) AS avg delay days
FROM
    delay
GROUP BY
    customer state
ORDER BY
    avg delay days
   limit 5;
fetch data(connection, query delay per state)
```

Out[]:

	customer_state	avg_delay_days
0	BANTEN	18.5260
1	KALIMANTAN TIMUR	26.0625
2	JAWA TENGAH	26.1481
3	DI YOGYAKARTA	26.6345
4	SULAWESI TENGAH	26.7945

The states with lowest delay days between pick up and delivery are higher in number of orders count

How long are the difference between estimated delivery time and actual delivery time in each state?

```
u.customer_state,
        DATEDIFF(o.estimated_time_delivery,d2.full_timestamp) AS delivery_time_diff
    FROM
        fact_order o
    JOIN
        dim user u ON o.user id = u.user id
    JOIN
        dim_date d2 ON o.delivered_date_id = d2.date_id
SELECT
   customer state,
   AVG(delivery_time_diff) AS avg_delivery_time_diff_from_estimation
FROM
   delivery diff
GROUP BY
   customer state
ORDER BY
   avg delivery time diff from estimation DESC
LIMIT 5;
1.1.1
fetch data(connection, query delivery time diff)
```

Out[]: customer_state avg_delivery_time_diff_from_estimation

0	MALUKU	14.1241
1	ACEH	13.8581
2	BENGKULU	13.8255
3	NUSA TENGGARA TIMUR	13.3982
4	PAPUA BARAT	13.3108