第 1 学年 数学 A 復習課題 (表)				
確認事項集合 A の個数がのとき, その要素の個数をで表す.	R4.6 2 100 人の生徒のうち,通学にバスを利用している人は 52 人, 自転車を利用している人は 63 人,どちらも利用していない 人は 11 人であった.このとき,次の人数を求めよ. (1) バスと自転車の両方を利用している人.			
一確認事項 ————————————————————————————————————				
$n(A \cup B) =$				
$n(\overline{A}) =$				
\square 全体集合 U と,その部分集合 A,B について,				
$n(U) = 100, n(A) = 10, n(B) = 24, n(A \cap B) = 4$				
であるとき,以下の個数を求めよ. (1) $n(A \cup B)$				
	(2) バスだけ利用している人.			
(2) $n(\overline{A})$				
(3) $n(\overline{A \cup B})$	(3)自転車だけ利用している人.			
(4) $n(\overline{A} \cup B)$				

1年____組___番

1 大小 2 個のサイコロを投げるとき,次の場合は何通りあるか. (1) 目の和が 6 になる場合.	3 大中小3個のサイコロを投げるとき、全ての目が3以上である場合は何通りか.
(2) 目の積が 6 になる場合.	
	$oxed{4} (a+b+c+e)(x+y)$ を展開し、整理するといくつの項がで
2 大小 3 個のサイコロを投げるとき,次の場合は何通りあるか. (1) 目の和が 7 になる場合.	きるか.
(2) 目の積が 8 になる場合.	
(2) 日の傾かるになる場口.	
	1年組番

R4. 6

5	1 個のサイコロを 2 回投げるとき,次の場合は何通りあるか. (1) 目の和が 5 または 6 になる場合.	6 A グループ 6 人,B グループ 9 人,C グループ 10 人からそれぞれ 1 人ずつ選ぶとき,選び方は何通りあるか.
	(2) 目の和が 4 の倍数になる場合.	
		7 288 の正の約数は何個あるか.
	(3) 目の和が 4 の倍数または 6 の倍数になる場合.	
		1年

	第1学年数学
/ 確認事項 —————	
$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	る r 個を並べる順列
$_{n}P_{r}=$	
異なる n 個のうち,異なる n 個を並べるのようにも表す.	順列の総数は,以下
n! =	
1 次の値を求めよ。(1) 4P2	
(1) 41 2	
(2) $_{6}P_{4}$	
(3) $_{5}P_{1}$	
(4) 4!	

(5) 6!

復習課題 (表)
R4. 6 2 以下の総数を求めよ. (1) 10 人の生徒から 4 人選んで 1 列に並べるときの並び順
(2) 1 ~ 9 の 9 個の数字のうち異なる 4 個並べて作る 4 桁の整数.

1年_____組____番

第1学年 数学 I 復習課題 (裏)

何通りあるか.

(1) 両端が子供である.

(2) 大人と子供が交互に並ぶ.

R4. 6 3 大人5人と子供4人が一列に並ぶとき,次のような並び方は 4 6 個の数字 0, 1, 2, 3, 5, 7 のうち異なる 4 個を並べて 4 桁 の整数を作るとき,次のような整数は何個作れるか. (1) 4 桁の整数 (2) 4 桁の偶数 1年_______番

確認事項 ————	R4. 6 3 3 個の文字 a,b,c を重複を許して 5 個一列に並べる.何通り
異なる n 個のものの円順列の総数は	の並べ方があるか.
n 個から r 個取る重複順列の総数は	
1 5人が輪の形に並ぶときの並び方の総数は何通りか.	
	4 3 人の人が, 赤, 青, 黄, 緑の中から好きな色をそれぞれ 1 つずつ選ぶ. 選び方は何通りあるか.
② 色の異なる7個の石を円形に並べて置く.並べ方の総数は何通りか.	
	1年組番

~確認事項 -----		R4.
異なる n 個から異なる r 個を順序を考えずに取り出す組の総和は,	$_{n}C_{r}=$	
= =	$oldsymbol{2}$ 以下の値を求めよ. $oldsymbol{(1)}_5C_4$	
$oxed{1}$ 以下の値を求めよ。 $(1)~_5C_2$	(1) 504	
(2) $_4C_3$	(2) $_{6}C_{5}$	
(3) $_6C_4$	(3) $_{10}C_8$	
(4) $_3C_1$	(4) $_8C_5$	
(5) $_{7}C_{2}$		
(6) $_{4}C_{4}$	(5) $_{100}C_{98}$	
	1年番	

		ı		R4. ′
3	次のような選び方の総和を求めよ.		次のような選び方の総和を求めよ.	
	(1) 6 人から 2 人選ぶ.		(1) 10人から8人選ぶ.	
			(2) 5 種類の饅頭から 4 種類選ぶ.	
	(2) 5 人から 3 人選ぶ.			
			(3) 50 色から 48 色選ぶ.	
	(3) 10 色から 3 色選ぶ.			
			1年	
			ПА	

第1学年 数学 A 復習課題 (表) R4. 7 1 正 5 角形 ABCDE について,次の数を求めよ. 2 大人4人,子供7人の中から,以下のように選ぶとき,その (1) 3個の頂点を選んでできる三角形の個数. 選び方は何通りあるか. (1) 大人2人,子供3人の計5人の選び方. (2) 大人が1人も選ばれないように、6人選ぶ. (2) 対角線の本数. (3) 少なくとも1人は大人が含まれるように6人選ぶ. (3) 四角形の数. 1年_______番

第1学年 数学 I 復習課題 (裏)

\mathbf{R}	4	,

3 7 人を次のように分けるとき、分け方は何通りか. (1) A, B の部屋に 2 人づつ、C の部屋に 3 人.

(2) 3人, 2人, 2人の3つの組に分ける.

4 KATUKOU の 7 文字全てを使って文字列を作る時,何通りの文字列が作れるか.

5 下の図のような道のある地域で、次のような最短経路は何通りあるか。

(1) A から C を通って B までいく.

(2) A から C を通らずに B までいく.

1年_____組____番

第1学年 数学 I 復習課題 (裏)

R4.

4 A, B, C, D, E の 5 人でくじ引きをし, 横一列に並べる. 次の確率を求めよ.	16. 8 5 赤玉 5 個,白玉 5 個の入った袋から,3 個の玉を同時に取り 出す.次の確率を求めよ.
(1) A が左端,B が右端になる確率.	(1) 赤玉を 3 個取り出す確率.
(2) 左から A, B, C, D, E の順になる確率.	(2)赤玉 2 個,白玉 1 個を取り出す確率.
(3) A と B が隣り合う確率	(3)同じ色の玉を 3 個取り出す確率.
	1年組番 氏名

アカシラス	l da	TE
 THE HAS	—	- 14

余事象 \overline{A} の確率

 $P(\overline{A}) =$

- 1 0 から 9 までの 10 枚のカードから 3 枚引く.
 - (1) 偶数を1枚も引かない確率を求めよ.

(2) 3個とも異なる目が出る確率を求めよ.

2 大中小3個のサイコロを投げる.

(1) 3個とも同じ目が出る確率を求めよ.

- (2) このとき、少なくとも1枚が奇数である確率を求めよ.
- (3) 少なくとも 1 個は 3 の目が出る確率を求めよ.

1年_______番

第1字年 数字	A 復習課題 (表)
確認事項とき,これらの試行は独立であるという.	R4.9 2 赤玉 2 個, 白玉 3 個, 青玉 4 個入った袋から 1 個玉を取り出し, 色を見てから元に戻す. (1) この試行を 2 回行うとき, 1 回目は青玉, 2 回目は白玉で
独立な 2 つの試行 S と T において, S で事象 A が起こり, T で事象 B が起こる確率は,	ある確率を求めよ.
p =	
1 6 面サイコロ 1 個と 20 面サイコロ 1 個を同時に投げる. (1) どちらとも 4 の目が出る確率を求めよ.	
	(2) この試行を 3 回行うとき, 3 回とも白玉である確率を求 めよ.
(2) どちらとも奇数の目が出る確率を求めよ.	
	(3) この試行を3回行うとき,3回とも異なる色の玉である 確率を求めよ.
(3) 6 面サイコロは奇数, 20 面サイコロは 4 の倍数が出る確率を求めよ.	
	1年組番
	氏名

かんされ マナマエ		
- 催認其日		

P(A) = p とする. この試行を n 回行う反復試行で, A が ちょうど r 回起こる確率は,

で表される.

- $\boxed{ 1 } 1$ 個のサイコロを 5 回投げる.次の確率を求めよ.
 - (1) 3の目がちょうど4回出る.

(2) 3の目が4回以上出る.

(3) 4以上の目が3回以上出る.

2 数直線状を動く点 P が原点の位置にある. サイコロを投げて 2 以下の目が出たら P を正の方向へ 2 だけ進め,それ以外の目が出たら P を負の方向へ 1 だけ進める. サイコロを 6 回投げ終わったときに,点 P が原点に戻っている確率を求めよ.

R4. 9

1年______番

氏名_

/ 確認事項 ————————————————————————————————————	R4. 9
条件付き確率とは、	3 大小 2 個のサイコロを投げる.次の確率を求めよ. (1) 大のサイコロの出た目が 5 である.このとき,大小 2 このサイコロの出ための和が 8 以上である確率.
1 恐竜博物館の入館者のうち,全体の 20% が高校生で,全体の 10% が高校の修学旅行生である. 入館した高校生の中から 1 人を選び出すとき,その人が修学旅行生である確率を求めよ.	
2 1から7までの青色の番号札と、1から5までの赤色の番号札がある。この中からランダムに1枚引くとき、以下の確率を求めよ。 (1) 偶数の札を引く確率。	(2) 2 個のサイコロの出た目の和が 6 である. このとき, 小のサイコロの出た目が 4 以上である確率.
(2) 引いたカードの色が赤色だとわかっているとき, それが 奇数である確率.	
	1年組番

1 くじ 10 本のうち 4 本が当たりである.A, B, C が順に 1 本ず つくじを引く.ただし, 引いたくじは元に戻さない.以下の確	R4.9 2 黒玉が 3 個入った箱 A と, 白玉が 2 個入った箱 B がある. 以 下の試行 T について, 考える.
率を求めよ. (1)A が当たり, B, C が外れる確率.	(試行 T): 箱 A から 2 個の玉を取り出し, 箱 B に入れる. その後に箱 B から 2 個の玉を取り出し箱 A に入れる
	(1) 試行 T を 1 回行ったときに, 箱 A に黒玉が 1 球入っている確率を求めよ.
(2) A も B も C も当たる確率.	(2) 試行 T を 1 回行ったときに, 箱 A に黒玉が 2 球入っている確率を求めよ.
	(3) 試行 T を 2 回行ったときに, 箱 A に黒玉が 3 球入っている確率を求めよ.
(3) C が当たる確率.	(4) 余裕があれば, 1 回後に 3 球, 2 回後に 1 球, 2 回後に 2 球も求めてみよう.
	1年組番

7龙=刃击7古	7龙号对击 7百	
作が事児		

期待値について説明してみる

1 1000 本のくじがあり、賞金・本数が以下のようになっている. このくじの期待値を求めよ.

	賞金	本数
1 等	100000 円	1本
2 等	50000 円	2 本
3 等	10000円	10本
4 等	1000円	100本
ハズレ	0円	887 本
計		1000本

3 次のようなゲームを考える.

サイコロをふる。もし、出た目が気に入ればその目を得点とする。気に入らなければ、もう一度サイコロを振り、2回のサイコロの目の和を得点とする。ただし、7点以上になったら得点は0点とする。

(1) 常に2回サイコロを振る場合の期待値を求めよ.

(2) 1回目が 6 のときだけ 2 回目をふらないとする. 期待値 はいくらか.

2 大小 2 個のサイコロを投げる. 出る目の和の期待値を求めよ.

(3) 得点の期待値を最大にするためには、1回目のサイコロの目がどのようなときに2回目をふればよいか.

1年_______番

/ 確認事項 ——	
	 2

1

1年_____組____番

氏名

3

4

1年_____組____番

氏名