Problem Set 3

CS 4301

Due: 11/1/2020 by 11:59pm

Note: all answers should be accompanied by explanations and code for full credit. Late homeworks will not be accepted.

Problem 1: Eigenvalues (30 pts)

A real number $t \in \mathbb{R}$ is an eigenvalue of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ if there exists a vector $x \neq 0 \in \mathbb{R}^n$ that Ax = tx. Here, x is called an eigenvector for the eigenvalue t. Consider the following optimization problem,

$$\max_{x \in \mathbb{R}^n} x^T A x$$

such that

$$||x||_2^2 = 1$$

- 1. Construct a dual of this optimization problem using the method of Lagrange multipliers.
- 2. Argue that strong duality holds regardless of whether or not the problem above is convex. What is the solution to the primal problem?
- 3. Use the method of Lagrange multipliers (for positive semidefinite constraints) to construct a dual of your dual.

Problem 2: Interior Point Methods (50 pts)

We saw in class how we can apply Newton's method with equality constraints. However, applying Newton's method with general inequality can be a bit trickier. Here, we will explore one such strategy that results in a family of optimization strategies known as interior point methods (sometimes called barrier methods). Interior point methods take optimization problems of the following form

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$Ax = b$$

$$g_k(x) \le 0$$
, for all $k \in \{1, ..., K\}$

and approximate them using some $\delta > 0$ as

$$\min_{x \in \mathbb{R}^n st. Ax = b} \left[\delta f_0(x) - \sum_{k=1}^K \log(-g_k(x)) \right].$$

As $\delta \to \infty$, this approximation becomes better and better. Given an initial $x^{(0)}, \delta^{(0)} > 0, \rho > 1$, the interior point method then iterates the following starting at t = 0.

- Find an $x^* \in \arg\min_{x \in \mathbb{R}^n st. Ax = b} \left[\delta^{(t)} f_0(x) \sum_{k=1}^K \log(-g_k(x)) \right]$ by using Newton's method starting at $x^{(t)}$.
- Set $x^{(t+1)} = x^*$.
- Update $\delta^{(t+1)} = \rho \delta^{(t)}$.

Recall the problem of computing the projection of a query point q onto the convex hull of the given $x^{(1)}, \ldots, x^{(M)} \in \mathbb{R}^n$ from Homework 2.

$$\min_{\lambda \in \mathbb{R}^M} \frac{1}{2} ||q - \sum_{m=1}^M \lambda_m x^{(m)}||_2^2$$

such that

$$\sum_{m=1}^{M} \lambda_m = 1$$

$$\lambda > 0$$

- 1. Explain why the subproblem solved by the interior point method is a convex optimization problem.
- 2. Implement the interior point method in Python for the above problem. Your function should take as input the initial guess $x^{(0)}$, $\delta^{(0)}$, ρ , the number of iterations t of the interior point method to perform, and a threshold $\epsilon > 0$ for the convergence of Newton's method. It should return the vector $x^{(t)}$. For Newton's method, you should terminate if $.5(x^*)^T H(x^{(t)})x^* \le \epsilon$, where x^* is the solution to the Newton subproblem at $x^{(t)}$, see Slide 33.
- 3. How should you assess the convergence of the interior point method? In particular, what would be a good stopping criteria?

Problem 3: Power Iteration (20 pts)

The power iteration method attempts to find the eigenvalue of maximum magnitude a matrix $A \in \mathbb{R}^{n \times n}$ by iterating the following steps:

- Pick an initial $x^{(0)} \in \mathbb{R}^n$.
- Repeat until convergence

- Set
$$x^{(t+1)} = \frac{Ax^{(t)}}{\|Ax^{(t)}\|_2}$$
.

1. In Python, implement the power iteration method to find the eigenvalue of maximum magnitude of a matrix $A \in \mathbb{R}^{n \times n}$. Your function should take in the matrix A, the initial guess $x^{(0)}$, and the number of iterations to perform.

- 2. How should you pick the initial vector? Explain.
- 3. Explain how to use the same approach to find the eigenvalue with second largest magnitude of a matrix by only changing the way in which you pick the initial vector.
- 4. Is it possible that the power iteration method is ill-defined, i.e., can the denominator in the update become zero?