Chapter 10

Mingjia Huo

Problem 10.4. Show a concrete attack:

For adversary \mathcal{A} , he is given trans = (s, u, w), then he can compute $t = u \oplus s$. In key-exchange experiment, if $\hat{k} = w \oplus u \oplus s$, then \mathcal{A} outputs b' = 0; otherwise, \mathcal{A} outputs b' = 1.

So if b=0, then \mathcal{A} always has b'=b; and if b=1, \mathcal{A} guesses right with probability $1-2^{-n}$.

$$\begin{split} \Pr[\mathrm{KE}^{\mathrm{eav}}_{\mathcal{A},\Pi}(n) = 1] &= \frac{1}{2} \Pr[\mathrm{KE}^{\mathrm{eav}}_{\mathcal{A},\Pi}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\mathrm{KE}^{\mathrm{eav}}_{\mathcal{A},\Pi}(n) = 1 \mid b = 1] \\ &= \frac{1}{2} + \frac{1}{2} (1 - 2^{-n}) \\ &= 1 - \mathrm{negl}(n), \end{split}$$

which is significantly larger than $\frac{1}{2}$.