2019

Semester 1

Assignment 3: Set Partitioning

Connor McDowall cmcd398 530913386

\mathbf{L}	isti	ngs
	1	LP Relaxation and IP Implementation
C	ont	ents
1	Que 1.1	stion 1 2 Part 1 2 1.1.1 A Matrix Representation 2 1.1.2 Formulation: Matlab Implementation 3 Part 2 4
2	Que 2.1 2.2 2.3	stion Two 5 Original LP Relaxation 5 Staff-Shift Constraint Branching 6 2.2.1 Depth = 1, Y_{B3} . 6 2.2.2 Depth = 2, Y_{A2} . 7 2.2.3 Depth = 3, Y_{A1} . 8 2.2.4 Branch and Bound Tree 9 Shift-Shift Constraint Branching 10 2.3.1 Y_{13} . 10
\mathbf{L}	ist	of Figures
	1 2 3 4 5 6 7	Condensed A matrix Representation

List of Tables

1 Question 1

1.1 Part 1

1.1.1 A Matrix Representation

Figure 1: Condensed A matrix Representation

The entire min $c^T X$, $Ax \leq b$ formulation can be found in cmcd398 762 Assignment 3 Worksheet.xlxs. The time intervals index the end of the period. For example t = 1 is the end of the first interval.

1.1.2 Formulation: Matlab Implementation

The following script was used to formulate the problem and solve both the LP relaxation and IP.

Listing 1: LP Relaxation and IP Implementation

```
\% Connor McDowall, cmcd398, 530913386
   % This script conducts Question One for the problem
   % load in the problem data
4
5
   jobi = [1,2,3,4,5,6,7,8,9,10];
6
   pi = [3,5,7,2,7,7,8,2,8,4];
7
   di = [12,16,20,20,20,20,29,19,25,22];
   ri = [0,7,16,16,21,8,4,12,11,17];
8
9
10
   % Initialise the A matrix as an array for 10 jobs and 60 times
      intervals
   A = [];
11
12
   c = [];
13
   A_add = zeros(70,1);
14
   count = 1;
15
   rollcol = 0;
16
17
18
   % Use many for loops for the function
19
   for i = 1:length(jobi)
       % Populate the A matrix with all possible time intervals
20
21
       for j = 1:(60 - pi(i)-ri(i)+1)
22
            % Add a new column to the A matrix
23
            A = [A, A_add];
24
            A(length(jobi) + count + (ri(i)):length(jobi)+ count +(ri(i)) +
25
                pi(i)-1,end) = 1;
26
           % Determine the lateness, therefore the tardiness for the cost
27
            % function
28
            c = [c, max(0, count + (ri(i)) + pi(i) - 1 - di(i))];
29
            count = count + 1;
30
        end
       % Add all the ones at the top of the Matrix for this job
       A(jobi(i), rollcol +1: rollcol +(60 - pi(i)-ri(i)+1)) = 1;
       % Reset the count and increment
34
       count = 1;
       % Increment the rolling number of columns to help add new columns
36
       rollcol = rollcol + (60 - pi(i)-ri(i)+1);
37
   end
38
39
   % Create the b matrix
40
   b = ones(70,1);
41
42
   % Save A matrix
43
   % save A;
44
   % Write the A matrix and Cost matrix into an excel file to check the
45
46 | % Correct structure and show in assignment.
   xlswrite('Amatrix.xlsx',A)
48 | xlswrite('cmatrix.xlsx',c)
```

```
49
   \mbox{\ensuremath{\mbox{\%}}} Set up the bounds properly to get the correct mix of equality and
50
   % inequality constraints
51
   Aeq = A(1:10,1:end);
   beq =b(1:10,1);
53
54
   Aineq = A(11:end, 1:end);
   bineq = b(11:end,1);
56
   lb = zeros(445,1);
   ub = ones(445,1);
57
58
   intcon = ones(445,1);
59
60
   % Uses linprog to calculate the solution to the linear relaxation
61
   X = linprog(c, Aineq, bineq, Aeq, beq, lb, ub);
62
   \% Use the sumproduct to work out what the minimum cost is
   obj_LP_Relaxation = c*X;
63
64
65
   % Uses intlinprog to calculate the solution to the integer programme
   Xint = intlinprog(c,intcon, Aineq, bineq, Aeq, beq, lb, ub);
66
67
   % Calculate the integer solutions objective value
68
69
   obj_Int = c*Xint;
70
71
   % Find out the start time, end time and tardiness of each job for the
72
   % integer solution(Write to an excel file and work out manually).
   xlswrite('Xint.xlsx',transpose(Xint))
```

1.2 Part 2

Job i	1	2	3	4	5	6	7	8	9	10
pi	3	5	7	2	7	7	8	2	8	4
di	12	16	20	20	20	20	29	19	25	22
ri	0	7	16	16	21	8	4	12	11	17
Start time	1	12	32	19	39	25	4	17	46	21
End time	4	17	39	21	46	32	12	19	54	25
Ti	0	1	19	1	26	12	0	0	29	3

The objective value function $(\min c^T x)$ for both LP Relaxation and IP is 91 as the formulation creates naturally integer problem, therefore a naturally integer solution.

Question Two

2.1 Original LP Relaxation

The solution is z = 10.333.

													Туре	Staff -	Shift	Shift -	Shift						
		Value	1	1	1	1	1	1	1	1	1	1	Row Coverage Type		0.833333333		0.166666667						
		10.33333 Objective Value	=	п	п	X	X	X	X	X	X	X	UB:		83		13						
		10.33333	1	1	1	1	1	1	1.333333	1.5	1	1		Next	Branch								
0.333333	17	6	0	0	1	1	1	0	0	0	0	0											
0	16	9	0	0	1	0	0	1	0	0	1	1			7		0.333333	0.666667	0.166667	1	0.166667	1	
0	15	13	0	0	1	0	1	0	0	0	0	0			9		0.333333	0.666667 0.666667	0.166667	1	0.166667		
0.5	14	2	0	0	1	0	0	0	0	1	0	0			2		0.166667	0	1	0.166667			
0.166667	13	6	0	0	1	1	0	1	1	1	1	1			4		0.333333 0.166667 0.666667 0.166667 0.333333 0.333333	0.666667	0.166667				
0.166667 0.166667	12	6	0	1	0	1	0	0	1	0	1	1			3		0.166667	0					
0	11	9	0	1	0	0	1	0	1	1	0	1			2		0.333333						
0	10	13	0	1	0	0	1	0	0	0	0	0			1								
0.833333333	6	2	0	1	0	0	0	1	0	1	0	0		Shift-Shift Row	Coverage		1	2	3	4	5	9	
0	00	12	0	1	0	0	1	0	0	0	1	0											
0	7	14	0	1	0	0	0	1	0	1	0	1			7		0.666667	0.166667	0.166667				
0.666667	9	2	1	0	0	0	1	0	1	0	1	1			9		0.666667 0.666667	0.166667	0.166667				
0.333333 0.666667	5	1	1	0	0	1	0	0	1	0	0	0			2		0	0.833333 0.166667 0.833333 0.166667 0.166667	0.666667				
0	4	11	1	0	0	1	1	0	0	1	0	0			4		1	0.166667	0.166667				
0	3	12	1	0	0	0	1	1	0	1	0	1			3		0	0.833333	0.333333 0.166667 0.166667 0.666667 0.166667 0.166667				
0	2	5	1	0	0	1	1	0	0	0	0	0			2		0.666667	0	0.333333				
0	1	7	1	0	0	0	0	0	1	0	1	0			1		A 0.333333 0.666667	B 0.166667	0.5				
Variables:	Index:	Cost:	A	8	C	Shift 1	Shift 2	Shift 3	Shift 4	Shift 5	Shift 6	Shift 7		Staff- Shift Row	Coverage		A	В	С				

Figure 2: The solution to the LP Relaxation with z=10.333

2.2 Staff-Shift Constraint Branching

2.2.1 Depth = 1, Y_{B3}

2.98E-08 -1E-07	333 0.666667 -4.5E	0 80-	1.000000066	0	0		0.333333 0.333333	33333		0.3	3333		
S	6 7	00	6	9	=	12	13	14	15 16		17		
1 2	14	12	2	13	9	6	6	2	13 6		9 10.3	3333 Obje	10.33333 Objective Value
1 1	0	0	0	0	0	0	0	0	0 0		0	1 =	1
0 0	1	1	1	1	1	1	0	0	0 0		0	1 =	1
0 0	0	0	0	0	0	0	1	1	1 1		1	1 =	1
1 0	0	0	0	0	0	1	1	0	0 0		1	1	1
0 1	0	1	0	1	1	0	0	0	1 0		1	1	= 1
0 0	_	0	1	0	0	0	1	0	0 1		0 1.333333	3333	= 1
1 1 0		0	0	0	1	1	1	0	0 0		0 1.333333	3333 >=	= 1
0 0 1		0	1	0	1	0	1	1	0 0		0 1.666667	>= 2999	= 1
0 1 0		1	0	0	0	1	1	0	0 1)	0	1 ×	= 1
0 1 1		0	0	0	1	1	1	0	0 1)	0	1	1
1 1 1		0	1	0	0	0	1	1	1 1		1		
												UB:	Row Coverage
		-,	Shift-Shift Row								Next		
5 6 7			Coverage	1	2	3	4	5	6 7		Branch	h A2	2 0.666666605
-7.2E-08 0.666667 0.666667	67		1	0.	0.333333 0.3	0.333333 0.6	0.666667 0.333333		0.333333 0.333333	333			
1 0 -4.5E-08		8	2		2.9	2.98E-08 0.666667		-7.2E-08 0.	0.666667 0.666667	299	Key	1	0
												Keep	ep Remove
0.333333 0.666667 0.333333 0.333333	8		3			0.3	0.333333 1.3	1.333333 0.	0.333333 0.333333	333	NB:	Column	mn Column
			4				0	0.333333	1 1				
			5					0.	0.333333 0.333333	333			
			9							1			
			7										

Figure 3: The solution to the LP Relaxation with a $Y_{B3} = 1$ contraint branch and z = 10.333

2.2.2 Depth = 2, Y_{A2}

		a	1	1	1	1	1	1	1	1	1	1			Row Coverage		0.500000358		0	Remove	Column				
		11 Objective Value	=	11	11	, ,	, ,	Į,	X.	X.	, X	X					A1 0.5		1	Keep R	Column				
		11 Obj	1	1	1	1	1	1.5	1	2	1	1			UB:	Next	Branch		ý	×					
3.3E-07	17	6	0	0	1	1	1	0	0	0	0	0	1	1		N	B		Key		UB:				
-9.9E-09 -3.3E-07	16	9	0	0	1	0	0	1	0	0	1	1	1	1			7	0.5	0.5		0.5	1	0.5	1	
. 0	15	13	0	0	1	0	1	0	0	0	0	0	1	1			9	0.5	0.5		0.5	1	0.5		
0.5	14	2	0	0	1	0	0	0	0	1	0	0	1	1			5	0.5	2.98E-08		1.5	0.5			
0.5	13	6	0	0	1	1	0	1	1	1	1	1	1	1			4	0.5	0.5		0.5				
0	12	6	0	1	0	1	0	0	1	0	1	1	0	0			3	0.5	2.98E-08						
0	111	9	0	1	0	0	1	0	1	1	0	1	0	0			2	0.5							
0	10	13	0	1	0	0	1	0	0	0	0	0	0	0			1								
1	6	2	0	1	0	0	0	1	0	1	0	0	1	1		Shift-Shift Row	Coverage	1	2		3	4	5	9	,
0	00	12	0	1	0	0	1	0	0	0	1	0	0	0											
0	7	14	0	1	0	0	0	1	0	1	0	1	1	1			7	0.5	0		0.5				
0.5	9	2	1	0	0	0	1	0	1	0	1	1	1	1			9	0.5	0		0.5				
0	5	1	1	0	0	1	0	0	1	0	0	0	1	0			5	2.98E-08	1		1				
0	4	11	1	0	0	1	1	0	0	1	0	0	1	1			4	0.5	0		0.5				
2.98E-08	က	12	1	0	0	0	1	1	0	1	0	1	1	1			3	2.98E-08	1		0.5				
0.5	2	2	1	0	0	1	1	0	0	0	0	0	1	1			2	1	0		-3.3E-07				
0	. 1	7	1	0	0	0	0	0	1 1	0	5 1	0	1 1	0			1	۷ 0.5	0		0.5				
Variables:	Index:	Cost:	A	В	0	Shift 1	Shift 2	Shift 3	Shift 4	Shift 5	Shift 6	Shift 7	UB: B3	UB:A2		Staff- Shift Row	Coverage	A	В		C				

Figure 4: The solution to the LP Relaxation with a $Y_{A2}=1$ contraint branch and z = 11

2.2.3 Depth = 3, Y_{A1}

0 1 0 0 0 0 -7.3E-07 0 1 2 3 4 5 6 7 8	5 12 11 1 2 14	A 1 1 1 1 1 1 0 0	B 0 0 0 0 0 1 1 1		Shift 1 0 1 1 0 0 0 0	Shift 2 0 1 1 1 0 1 0 1	Shift 3 0 0 1 0 0 0 1 0	Shift 4 1 0 0 0 1 1 1 0 0 0	Shift 5 0 0 1 1 0 0 1 0	Shift 6 1 0 0 0 0 1 0 1	Shift 7 0 0 1 0 0 1 1 0	UB: B3 1 1 1 1 1 1 1 0	UB:A2 0 1 1 1 0 1 1 0 0	UB:A1 0 1 0 1 1 0 1 0 0		Staff- Shift Row	Coverage 1 2 3 4 5 6 7	A 1 1 0 0 0 0 0	B 0 0 1 0 1 0 -7.3E-07		C 1 -7.4E-07 1.000002 1 0.999999 1.000002 1.000002		
1.000000732 C		0	1 1	0	0	0	1 (0	1 (0	0	1 (1 (1 (Shift-Shift Row	Coverage	1	2		3	4	u
0 0 10 11		0 0	1 1	0 0	0 0	1 1	0 0	0 1	0 1	0 0	0 1	0 0	0 0	0 0			1 2	1					
0 12		0	. 1	0	1	0	0	. 1	0	1	. 1	0	0	0			3	1	0				
13		0	0	1	1	0	1	1	1	1	1	1	1	1			4	1	0		1		
-5E-07	2	0	0	1	0	0	0	0	1	0	0	1	1	1			5	1	0		2	1	
-7.4E-07	13	0	0	1	0	1	0	0	0	0	0	1	1	1			9	1	0		1.000002 1.000001	1	
1.58E-06 16	9	0	0	1	0	0	1	0	0	1	1	1	1	1			7	1	0		1.000001	1	0000000
17		0	0	1	1	1 (0	0	0	0	0	1	1	1		Z	ā		ž		D		
	0 66666.51	1	1	1	2	0.999999	2.000002	1	1.999999	1.000002	1.000001				n	Next	Branch		Key		UB:		
	15.99999 Objective Value	=	п	ш	,	Д	Д	Ų.	Ų.	Ų.	Ų.				UB: Rov	M			1	Keep	Column		
	ē	1	1	1	1	1	1	1	1	1	1				Row Coverage	Max Depth	Reached		0	Remove	Column		

Figure 5: The solution to the LP Relaxation with a $Y_{A1}=1$ contraint branch and z = 16

2.2.4 Branch and Bound Tree

Figure 6: The constraint branch and bound tree with max depth of 3

2.3 Shift-Shift Constraint Branching

The row coverage table suggests you create contraints branches on the Y_{13} variable as per the conditions in the handout. This is the closest to integer branch with the smallest first row and smallest second row index.

 $2.3.1 ext{ } Y_{13}$

				1	1	1	1	1	1	1	1	1	1			Row Coverage		0.166666667		0	Remove	Column				
			10.333333 Objective Value	=		11	Į.	, ,	Į.	, ,	Į.	Į.	Į.			Row		13 0.16		1	Keep Re	Column				
			33 Obje	1	1	1	1 >	1 >	1		1.5	1	1			UB:	_	1			Ke					
			10.3333							1.3333333	1						Proposed	Branch		Key		(X) Branch				
	0.333333	17	6	0	0	1	1	1	0	0	0	0	0	1	0											
	0	16	9	0	0	1	0	0	1	0	0	1	1	1	0			7	0.333333	0.666667		0.166667 0.166667	1	0.166667	1	
laxation)	0	15	13	0	0	1	0	1	0	0	0	0	0	1	1			9	0.333333	0.666667		0.166667	1	0.166667		
the LP Re	9.0	14	2	0	0	1	0	0	0	0	1	0	0	1	1			5	0.166667	0		1	0.166667			
10.333 (it's	0.166667	13	6	0	0	1	1	0	1	1	1	1	1	0	1			4	0.333333 0.166667 0.666667 0.166667 0.333333 0.333333	0.666667		0.166667				
hence z =	0.166667 0.166667	12	6	0	1	0	1	0	0	1	0	1	1	1	0			3	0.166667	0						
problem,	0	11	9	0	1	0	0	1	0	1	1	0	1	1	1			2	0.333333							
esolve the	0	10	13	0	1	0	0	1	0	0	0	0	0	1	1			1								
idn't ask for a new solution or to resolve the problem, hence z = 10.333 (it's the LP Relaxation)	0.83333333	6	2	0	1	0	0	0	1	0	1	0	0	1	0		Shift-Shift Row	Coverage	1	2		3	4	5	9	7
for a new	0 0	8	12	0	1	0	0	1	0	0	0	1	0	1	1		S									
didn't ask	0	7	14	0	1	0	0	0	1	0	1	0	1	1	0			7	29999	29999		29999				
question	29999	9	2	1	0	0	0	1	0	1	0	1	1	1	1			9	0.666667 0.666667	66667 0.166		66667 0.1				
ion) as the	0.333333 0.666667	5	1	1	0	0	1	0	0	1	0	0	0	1	0			5	0.6	0.833333 0.166667		66667 0.1				
ctive func	0 0.3	4	11	1	0	0	1	1	0	0	1	0	0	1	0			4	1	0.166667 0.8		9.0 29999				
lved (obje	0	3	12	1	0	0	0	1	1	0	1	0	1	1	0			3	0	0.833333 0.1		0.333333 0.166667 0.166667 0.666667 0.166667 0.166667				
vasn't reso	0	2	5	1	0	0	1	1	0	0	0	0	0	1	0			2	29999	0.83		33333 0.10				
The problem wasn't resolved (objective function) as the question di	0	1	7	1	0	0	0	0	0	1	0	1	0	1	1			1	0.333333 0.666667	29999		0.5 0.33				
The		Index:	Cost:	Α	B	С	Shift 1	Shift 2	Shift 3	Shift 4	Shift 5	Shift 6		nch	nch		wo		A 0.33	B 0.166667		0				
	Variables:	pul	3				Shi	Shi	Shi	Shi	Shi	Shi	Shift 7	13 (0) Branch	13 (1) Branch		Staff- Shift Row	Coverage								

Figure 7: The solution to the LP Relaxation with a Y_{13} contraint branches (0 and 1) and the original LP relaxation.