Identifying Nonregular Languages

[Linz § 4.1]

Pigeonhole Principle (PHP)

If we put n items in m boxes (pigeonholes) and n > m, then at least 1 box has > 1 item in it.

Based on this:

Pumping Lemma for Regular Languages (PL)

Let L be an (infinite) regular language.

Then $\exists m > 0$ s.t. $\forall w \in L$ with $|w| \ge m$,

w can be decomposed as

$$w = xyz$$

with

$$y \neq \lambda$$

and

$$|xy| \leq m$$

s.t.
$$\forall i = 0, 1, 2, ...$$

$$w_i = xy^iz \in L$$

Proof: Since L is regular, \exists dfa M s.t. L = L(M).

Suppose M has p states. Take m=p+1Let w be any word of L with $|w|=q\geq m>p$. Say $w=a_1a_2a_3...a_q$ (q>p).

Take any path of w in M, from a start state q_0 to a final state q_f :

Since there are only p < q states,

by the PHP, the path must visit some state q_j more than once, producing a loop

Let x = segment of w up to the first loop

y = segment of w in the loop

z =the rest of w.

(Assume this is the **first loop** on the path of w.)

<u>Note</u>:

- $y \neq \lambda$
- $\bullet |xy| \leq m$
- $\bullet \ w_i = xy^iz \in L \qquad \forall i = 0, 1, 2, \dots$

Also, taking

$$i = 0: \quad w_0 = xz \in L$$
 (no loop)

$$i = 1: \quad w_1 = w \in L$$
 (loop once)

$$i > 1: w_i \in L$$
 (loop more than once)

Example 1: Show $L = \{a^n b^n \mid n \ge 0\}$ is not regular

Proof: (by contradiction)

Suppose L is regular.

Then L = L(M) for some **dfa** M.

Let m = (# states in M) + 1

Let
$$w = a^m b^m \in L$$
. (1)

So $|w| \ge m$

By PL:
$$\exists x, y \neq \lambda, z: w = xyz,$$
 (2)

$$|xy| \le m, \tag{3}$$

and
$$\forall i \geq 0$$
 $w_i = xy^i z \in L$ (4)

Note:

by (1), (3): $xy \leq a^m$

Let

$$\ell = |y| > 0$$

Taking i = 0: $w_0 = \underline{xz} = a^{m-\ell}b^m \notin L$ \times (4)

<u>OR</u>

Taking i=2: $w_2=xy^2z=a^{m+\ell}b^m\notin L$ \mathbb{X} (4)

Note:

We can **choose** w as in (1) (provided $|w| \ge m$)

but we cannot choose x, y, z as in (2).

Note 1:

L is generated by a simple grammar!

Note 2:

Why (intuitively) is $\{a^nb^n \mid n \ge 0\}$ not regular but $\{(ab)^n \mid n \ge 0\}$ is?

Example 2: Show $L = \{a^m b^n \mid m < n\}$ is not regular

Proof:

Suppose L is regular.

Then L = L(M) for some **dfa** M.

Let m > # states in M

Let $w = a^m b^{m+1} \in L$.

So $|w| \ge m$.

By PL: $\exists x, y \neq \lambda, z: w = xyz$,

and $|xy| \leq m$,

and $\forall i \geq 0$ $w_i = xy^iz \in L$

Note: $xy \leq a^m$

$$\ell = |y| > 0$$

Taking i=2: $w_2=xy^2z=a^{m+\ell}b^{m+1}\notin L$, \mathbb{X}

Example 3: Show $L = \{u \in \Sigma^* \mid n_a(u) = n_b(u)\}$ is not regular

Method 1 Suppose L is regular

Then L = L(M) for some **dfa** M.

Let m > # states in M

Let $w = a^m b^m \in L$

Etc., *exactly* as in Example 1.

Method 2 Let $L' = \{a^m b^n \mid m, n > 0\}$

Note:

L' is regular (WHY?)

$$\underline{L' = L(a^*b^*)}$$

Suppose L is regular.

Then $L \cap L'$ is regular (by result (5) on p. 4-4)

But $L \cap L' = \{a^n b^n \mid n \ge 0\}$, XX Ex. 1.

Example 4: Prove:

$$L=\{a^k\mid ext{k is a perfect square}\}$$
 $=\{a^{n^2}\mid n\geq 0\}$ $=\{\lambda,\ a,\ a^4,\ a^9,\ ...\}$ is not regular.

Proof: Suppose L is regular.

Then L = L(M) for some **dfa** M.

Let m > # states in M

Let $w = a^{m^2} \in L$.

Note: $|w| = m^2 > m$

By PL: $\exists x, y \neq \lambda, z$: w = xyz,

and
$$|xy| \le m$$
, (1)

and $\forall i \geq 0$, $w_i = xy^iz \in L$.

Let $\ell = |y| > 0$

Then by (1):
$$0 < \ell \le m$$
 (2)

Take i = 2: $w_2 = xy^2z \in L$

But
$$|w_2| = m^2 + \ell > m^2$$
 (3)

Also,

$$(m+1)^2 = m^2 + 2m + 1$$

> $m^2 + \ell$ (by (2))
= $|w_2|$ (4)

So by (3) and (4):
$$m^2 < |w_2| < (m+1)^2$$

So $|w_2|$ cannot be a perfect square!