AMENDMENTS TO THE SPECIFICATION

Please delete the present Abstract of the Disclosure.

Please add the following new Abstract of the Disclosure:

The active energy beam-curable composition for an optical material is provided that comprises (A) a di(meth)acrylate represented by the following general formula (1) and (B) a mono(meth)acrylate represented by the following general formula (2). A method for producing an optical material includes a step of applying or pouring the composition to a casting mold having a predetermined shape, and a step of irradiating an active energy beam to the composition.

$$H_{2}C = \overset{R_{1}}{C} - \overset{O}{C} - \overset{R_{3}}{C} - \overset{O}{C} - \overset{R_{5}}{C} - \overset{O}{C} - \overset{R_{2}}{C} = CH_{2}$$

$$R_{4} \qquad R_{6} \qquad (1)$$

In formula (1), R_1 and R_2 independently represent a hydrogen atom or a methyl group, R_3 and R_5 independently represent a hydrogen atom, a methyl group or an ethyl group, and R_4 to R_6 independently represent a hydrogen atom, a methyl group or a bromine atom.

$$H_{2}C = C - C + \left(O - CH - CH_{2}\right)O - \left(O - CH_{2}\right)O$$

In formula (2), R_9 and $R_{1\,0}$ independently represent a hydrogen atom or a methyl group, $R_{1\,1}$ represents a hydrogen atom, a phenyl group or a cumyl group, and n represents 0 or an integer of 1-5.