수명 시험 개요

- ◆ 신뢰성 시험의 정의와 수명 시험을 이해한다.
- ◆ 수명 시험 사례를 연구한다.

- (1) 신뢰성 시험의 정의
- (2) 신뢰성 시험의 종류
- (3) 신뢰성 보증 시험
- (4) 신뢰성 수명 데이터 분석

1. 신뢰성 시험의 정의

- 신뢰성 시험
 - 1) 아이템의 신뢰성을 측정, 정량화 또는 구분하기 위하여 실시하는 시험
 - 2) 아이템의 신뢰성을 향상, 보증 또는 입증하기 위하여 실시하는 시험
- 신뢰성 시험과 환경 시험이 서로 다르지만, 신뢰성 시험에 환경 시험을 포함할 수도 있다. 출처 : IEC 60300-3-5, Application Guide Reliability test conditions and statistical test principles

일반적으로 시험(test)은 다음과 같이 구분한다.

- 1) 기능/성능시험 : 기능 및 성능 평가
- 2) 환경시험: 특정 환경조건에 대한 내환경성 평가
- 3) 신뢰성시험: 제품의 신뢰성 (정량적, 정성적) 평가
- 4) 안전시험: 안전성 평가

신뢰성시험과 환경시험은 목적과 방법이 서로 다르지만, 신뢰성시험에 환경시험을 포함할 수 도 있다고 설명하고 있다.

2. 신뢰성 시험의 종류

• 목적에 따른 신뢰성시험 분류

목 적 시험의 종류	설계 및 양산 검증	신뢰성 향상	신뢰성 보증	기술 분석	실행 단계
환경시험	0		Δ		D, M
신뢰성 성장시험	Δ	0	Δ		D
신뢰성 보증시험(수명 등)	Δ		0		D
가속 수명 시험	Δ	Δ	0	Δ	D, M
고장률 시험	\triangle		0		D, M
내구시험	\triangle	Δ	0	\triangle	D
양산 신뢰성 수락시험			0		М
HALT	\triangle	\circ		\triangle	D
Burn-In Test			0		М
ESS			0		М
HASS			0		М

1) D: 개발단계, M: 양산단계, 2) ○: 주 목적, △: 부차적 목적

3. 신뢰성 보증 시험

- ▶정의 제품이 신뢰성 목표(요구사항)를 만족시키는지를 보증하기 위해 수행되는 시험
- 신뢰성 보증의 요구 형태: (시험조건) + 신뢰 수준 + 신뢰성 척도 + 목표 시간
 - Proving Ground 주행조건에서 신뢰수준 90%로 MTTF 5,000 시간 이상
 - 정격 회전속도 및 부하조건에서 신뢰수준 95%로 B_{10} 수명 800 시간 이상
 - 필드 사용조건에서 신뢰수준 70%로 MTBF 2,000 시간 이상
 - 관련 규격에 명시된 Duty Cycle 조건에서 신뢰수준 90%로 평균수명 10,000 km 이상
 - 최대 속도 및 최대 압력 조건에서 신뢰수준 70%로 MTTF 2,500회 이상
 - 신뢰수준 90%로 MTTF 10년 이상
- 어떻게 해야 하는가?
- 통계이론에 기초한 신뢰성 샘플링시험 활용
 - 시험조건, 샘플의 크기, 시험시간, 합격판정기준

3. 신뢰성 보증 시험 (예시)

구 분	유압 릴리프 밸브	알루미늄 전해 커패시터	DC 냉각 팬 (소형 브러시리스 타입)	
신뢰수준	70%	60%	90%	
보증 목표 수명	B ₁₀ =10 ⁶ 호	MTTF (λ=10 ⁻⁵)	B ₁₀ =45,000hr (5년)	
시험조건	작동유 종류, 오염도, 기름온도, 부착자세, 입력 신호	최고 사용 온도 + 정격 전압	정격 전압의 1.25배, 85±2℃, 85±5%R.H	
Sample size	10	46	22	
시험시간	1,140,000호	2,000시간	600시간	
합격판정기준 (고장수)	r = 0	r = 0	r = 0	

4. 신뢰성 수명 데이터 분석

신뢰성 척도

◆ 신뢰성 정량적으로 표현하기 위한 지표를 선정하여 계산할 수 있다.

◆ 고장률을 이해하고, 신뢰성 척도를 정의한다.

(1) 신뢰성 척도

(5) 평균수명

(2) 수명분포

(6) B수명

(3) 신뢰도

(7) 고장률

(4) 불신뢰도

(8) 신뢰성 척도간의 관계

1. 신뢰성 척도

- 신뢰성은 다른 성능 특성과 마찬가지로 측정 가능해야 함.
- 신뢰성 척도란 수명분포의 특성을 나타내는 모수(parameter)들을 의미함.
- 신뢰성을 정량적으로 비교하기 위한 값들은 어떤 것들이 있을까?:
- 1) 평균적으로 얼마나 사용할 수 있는가? ⇒ 평균수명(MTTF 또는 MTBF)
- 2) 보증 기간 동안 몇 %가 고장날 것인가? ⇒ 불신뢰도 F(t) 또는 분포함수 f(t)
- 3) 10%가 고장나는 시점은?

- ⇒ 백분위수 B₁ո
- 4) 10년 사용했을 때, 정상적으로 사용할 수 있는 제품의 비율은? ⇒ 신뢰도 R(t)

2. 수명분포

- 수명분포: 대상 제품(모집단)의 고장시간(수명)들의 확률분포
- 수명분포 f(t)는 단위시간 당 고장비율을 나타내는 함수
 - 고장밀도함수(failure density function) 또는 수명밀도함수라고 부르기도 함.
- 예:

시 간(월)	고장수	f(t)	
[0, 10)	5	0.05	
[10, 20)	10	0.10	
[20, 30)	35	0.35	
[30, 40)	30	0.30	
[40, 50)	15	0.15	
[50, 60)	2	0.02	
[60, 70)	2	0.02	
[70, 80)	1	0.01	
합 계	100	1	

2. 수명분포

- 시간 간격을 아주 작게 하면? → 연속형 확률변수가 됨
 - 각 구간별로 모든 데이터를 알고 있을 필요 없이 함수의 형태만 알면 충분하고 효율적임

3. 신뢰도

- 신뢰도(Reliability): 특정 시간 t 까지 고장이 나지 않을 확률
- 제품의 수명을 T라 하고 t를 임의의 시간이라 하면, 신뢰도는 $R(t) = P\{T > t\}$ 로 정의됨.
- R(t)는 시간에 따라 감소하는 함수이며, R(0)=1 이고 $R(\infty)=0$.

예 : R(10)=0.95 ⇔ 10개월까지 고장나지 않을 확률이 95%

⇔ 10개월까지 전체 제품 중 5% 고장

시 간(월)	고장수	누적고장	R(t)
[0, 10)	5	5	1.00
[10, 20)	10	15	0.95
[20, 30)	35	50	0.85
[30, 40)	30	80	0.50
[40, 50)	15	95	0.20
[50, 60)	2	97	0.05
[60, 70)	2	99	0.03
[70, 80)	1	100	0.01
합 계	100		

4. 불신뢰도

- 불신뢰도(Unreliability): 특정 시간 t 까지 고장이 발생할 (누적)확률, 누적불량률
- 제품의 수명을 T라 하고 t를 임의의 시간이라 하면, 불신뢰도는 F(t) = P{ T ≤ t }로 정의됨.
- F(t) = 1- R(t); F(t)는 시간에 따라 증가하는 함수이며, F(0)=0 이고 R(∞)=1.

예 : F(10)=0.05 ⇔ 10개월까지 누적고장 확률이 5%

⇔ 판매대수가 10,000대라면 10개월 이내에 500대 서비스 요청

시 간(월)	고장수	누적고장	F(t)
[0, 10)	5	5	0.05
[10, 20)	10	15	0.15
[20, 30)	35	50	0.50
[30, 40)	30	80	0.80
[40, 50)	15	95	0.95
[50, 60)	2	97	0.97
[60, 70)	2	99	0.99
[70, 80)	1	100	1.00
합 계	100		

5. 평균수명

- 평균수명: 제품의 고장시간들의 평균값
- 1) MTTF(Mean Time To Failure): 수리가 불가능한 부품, Unit 등의 고장시간의 평균(수명)
- 2) MTBF(Mean Time Between Failure) : 수리가 가능한 제품의 (수리시간을 포함한) 고장간격의 평균(수명)

5. 평균수명

• 평균수명에 대한 잘못된 이해

MTBF

평균고장시간간격(Mean Time Between Failures)의 약자. 평가된 장비 안전성의 단위.
 MTBF가 높을수록 장비 고장 횟수가 적습니다. 예를 들면, MTBF가 10,000 시간인 경우,
 최소 10,000 시간을 사용하면 고장이 발생합니다.

- www.dell.co.kr, DELL User Guide,

• 제품의 수명분포에 따라 MTBF는 다음과 같이 서로 다른 의미를 가짐.

1) 지수분포의 경우: 63%가 고장나는 시점

2) 정규분포의 경우 : 50%가 고장나는 시점

MTBF의 가장 큰 단점은 소비자의 관심 사항과 동떨어진 척도라는 것이다. 예를 들면, 평균 수명은 수명분포가 지수분포를 따르는 경우 63%가 고장나는 시점인데 소비자들의 관심은 고장이 발생하지 않고 사용할 수 있는 기간이기 때문이다.

6. B수명 (백분위 수명)

- B_p = t 의 의미: p%의 제품이 고장 나는 시간 = t
 - B_{10} : 전체 제품 중 10%가 고장 나는 시점 (Brucheinleitzeit (initial fracture) 또는 Bearing의 첫 자를 따서 B 수명이라 함)

백분위수(percentile): 자료를 100등분하는 값

- 100pth 백분위수를 t_{100p} 라 하면 $F(t_{100p}) = p인 관계를 만족$
 - p=0.1이면, $F(t_{10}) = 0.1$
- 중앙값(median): 50% 백분위수 → 50%가 고장나는 중위수명(mean life)

6. B수명 (백분위 수명)

• B 수명과 신뢰도의 관계

- B₁₀=100
- 10%가 고장나는 시점이 100시간
- 100시간까지 고장날 확률 = 10%

• F(100) = 0.1

B₁₀=100시간을 보증 ⇔ R(100)=0.90 보증

7. 고장률

고장률 (Failure rate, Hazard rate, λ(t)): 특정 시점까지 고장나지 않은(살아있는, at risk)
 제품이 순간적으로 고장날 확률 → 조건부 확률

- 수학적 정의 h(t) = f(t)/R(t)

• 예: 고장수/전체 생존수/전체 고장수/# at risk

End기준

시 간(월)	# at risk	고장수	f(t)	R(t)	h(t)
[0, 1)	100	5	5/100	100/100	5/100
[1, 2)	95	10	10/100	95/100	10/95
[2, 3)	85	35	35/100	85/100	35/85
[3, 4)	50	30	30/100	50/100	30/50
[4, 5)	20	15	15/100	20/100	15/20
[5, 6)	5	2	2/100	5/100	2/5
[6, 7)	3	2	2/100	3/100	2/3
[7, 8)	1	1	1/100	1/100	1/1
합 계		100			

Start기준

7. 고장률

• 욕조곡선(bathtub curve)

- 일반적인 제품에서 나타나는 고장률 함수

DFR : Decreasing Failure Rate
CFR : Constant Failure Rate

IFR : Increasing Failure Rate

8. 신뢰성 척도간의 관계

- 확률/통계 기본이론에 근거하여 각 신뢰성 척도는 서로 변환이 됨
 - → 확률밀도함수와 분포함수의 관계, 조건부 확률, 여사상의 확률 등

신뢰성 척도	수명분포의 특성을 나타내는 모수(parameter)
--------	------------------------------

수명분포 f(t) 대상 제품의 고장시간들의 확률분포(고장밀도함수)

신뢰도 R(t) 특정 시간 t 까지 고장이 나지 않을 확률

불신뢰도 F(t) 특정 시간 t 까지 고장이 발생할 확률, 누적불량률

평균수명 θ 제품의 고장시간들의 평균값

B수명 B_{α} 수명: α %의 제품이 고장나는 시간

고장률 h(t) 특정 시점까지 고장나지 않은 제품이 순간적으로 고장날 확률

신뢰성 Data와 수명분포

◆ 신뢰성 Data의 특징을 이해하고, 각 수명분포의 특징을 설명할 수 있다.

• 신뢰성 데이터의 분류

- 정성적 데이터와 정량적 데이터는 어떻게 활용되는가?
- 시장데이터와 시험데이터의 차이는 무엇인가?

- 신뢰성 데이터의 특징
- 1) 주로 시간에 관련된 데이터
- 2) 데이터를 얻는데 시간과 비용이 많이 듬
- 3) 사용환경에 따라 고장 데이터가 다름
- 4) 관측중단(censoring)으로 인한 불완전한 정보(incomplete data)
- 5) 데이터 해석의 어려움
- Censoring(관측중단 또는 중도절단): 신뢰성 시험 중에 관측을 중단하는 것
- 관측중단의 형태
 - Type I (time) Censoring : 정시 중단
 - Type II (failure) Censoring : 정수 중단
 - Random Censoring

- Type I 과 Type II Censoring의 예는 ?
- Censoring이 되면 어떤 정보가 얻어지는가?

• 신뢰성 데이터의 종류

• Censoring, 관측방법(연속, 간헐적), 시험 대상의 특성에 따라 여러 형태의 데이터가 얻어짐.

• 신뢰성 데이터는 (시간, censoring 여부)의 쌍으로 표현됨.

2. 수명 분포의 종류

- 수명: 시작부터 고장까지 걸리는 시간
- 수명 분포 : Event가 발생하는 시간의 빈도를 Table, Graph, 함수 등의 형태로 표현한 것

- 신뢰성공학에서 제품의 수명분포로 널리 사용되는 대표적인 수명분포
- ① 지수분포 (Exponential distribution)
- ② 와이블분포 (Weibull distribution)
- ③ 정규분포 (Normal distribution)
- ④ 대수정규분포 (Lognormal distribution).

- 신뢰성공학에서 가장 널리 이용되는 확률분포
 - 전자제품의 신뢰도 예측 (MIL-HDBK-217)
 - 신뢰성 샘플링 시험 (MIL-STD-781, MIL-HDBK-690C 등)
- Overstress에 의해 발생하는 우발고장 시간의 분포에 적합.
 - 시간에 따라 고장률이 변하지 않는 부품
 - 다수의 부품으로 구성된 제품 (예: 전자제품)
 - Burn-in 또는 ESS에 의해 초기 고장이 제거된 부품/제품
- 장점: 수학적으로 다루기 편하며, 신뢰성 척도 추정이 쉽고 간단함.

- 지수분포의 신뢰성 척도
 - ① 고장밀도함수: $f(t) = \lambda \cdot e^{-\lambda t}$
- ② 신뢰도 함수 : R(t) = e^{-\lambda t}

③ 고장률 함수 : h(t) = λ

④ 평균수명(MTBF) : θ =1/ λ

- 예제 : 고정 저항의 고장률은 $\lambda = 0.04/시간이다$.
- 1) 100시간에서의 신뢰도는? $R(100) = e^{-\lambda t} = e^{-0.04 \times 100} = e^{-4} = 0.0183$
- 2) 저항의 평균 수명은?θ =1/λ = 1/0.04 = 250(시간)

- Drenick의 정리 또는 Drenick의 지수극한정리 (1957년)
 - → 개개 부품의 수명 분포가 지수 분포가 아니더라도 시스템의 수명 분포는 비교적 넓은 조건 (비교적 많은 부품으로 이루어진 시스템)하에서 근사적으로 지수 분포가 된다.

• 직렬 연결 시스템의 고장률

→ 각각의 수명이 고장률 λi 인 지수분포를 따르는 부품 n개가 직렬로 연결된 시스템의 고장률은 ∑λi 이다.

• 기계 및 전자부품의 수명분포로 이용되며, 신뢰성 데이터 분석에 가장 널리 사용되는 분포

β: 형상 모수 (shape parameter)

η: 척도 모수 (scale parameter)

▶ η의 변화에 따른 고장밀도함수 (β=2)

와이블이 무슨 뜻?: 스웨덴의 물질의 인장력에 대한 연구를 했던 과학자이자 수학자인 월로디 와이블(Waloddi Weibull, 1887~1979)이 1939년 볼베어링 재료의 파열강도 분포 모형으로 제안함

• 와이블 분포의 고장률 함수

$$h(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1}$$

- 1) β < 1 이면 DFR(decreasing failure rate)
- 2) $\beta = 1$ 이면 CFR(constant failure rate)
- 3) β > 1 이면 IFR(increasing failure rate)

β : 형상 모수 (shape parameter)

η: 척도 모수 (scale parameter)

• 와이블 분포의 신뢰성 척도 함수

	2 모수 와이블분포	3 모수 와이블분포
고장 밀도함수	$f(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta} \right)^{\beta - 1} \exp \left[-\left(\frac{t}{\eta} \right)^{\beta} \right]$	$f(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta} \right)^{\beta - 1} \exp \left[-\left(\frac{t - \gamma}{\eta} \right)^{\beta} \right]$
신뢰도 함수	$R(t) = \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right]$	$R(t) = \exp\left[-\left(\frac{t-\gamma}{\eta}\right)^{\beta}\right]$
고장률 함수	$h(t) = \left(\frac{\beta}{\eta}\right) \cdot \left(\frac{t}{\eta}\right)^{\beta - 1}$	$h(t) = \left(\frac{\beta}{\eta}\right) \cdot \left(\frac{t - \gamma}{\eta}\right)^{\beta - 1}$
MTTF	$MTTF = \eta \cdot \Gamma \left(1 + \frac{1}{\beta} \right)$	$MTTF = \gamma + \eta \cdot \Gamma \left(1 + \frac{1}{\beta} \right)$

η : 척도 모수 (scale parameter), β : 형상 모수 (shape parameter)

 γ : 위치 모수 (location parameter), Γ : 감마 함수

• 감마함수 표

n	Γ(n)	n	Γ(n)	n	Γ(n)	n	Γ(n)
1.00	1.00000	1.25	.90640	1.50	.88623	1.75	.9196
1.01	.99433	1.26	.90440	1.51	.88659	1.76	.92137
1.02	.98884	1.27	.90250	1.52	.88704	1.77	.92376
1.03	.98355	1.28	.99072	1.53	.88757	1.78	.92623
1.04	.97844	1.29	.89904	1.54	.88818	1.79	.92877
1.05	.97350	1.30	.89747	1.55	.88887	1.80	.93138
1.06	.96874	1.31	.89600	1.56	.88964	1.81	.93408
1.07	.96415	1.32	.89464	1.57	.89049	1.82	.93685
1.08	.95973	1.33	.89338	1.58	.89142	1.83	.93969
1.09	.95546	1.34	.89222	1.59	.89243	1.84	.94261
1.10	.95135	1.35	1.89115	1.60	.89352	1.85	.94561
1.11	.94739	1.36	.89018	1.61	.89468	1.86	.94869
1.12	.94359	1.37	.88931	1.62	.89592	1.87	.95184
1.13	.93993	1.38	.88854	1.63	.89724	1.88	.95507
1.14	.93642	1.39	.88785	1.64	.89864	1.89	.95838
1.15	.93304	1.40	.88726	1.65	.90012	1.90	.96177
1.16	.92980	1.41	.88676	1.66	.90167	1.91	.96523
1.17	.92670	1.42	.88636	1.67	.90330	1.92	.96878
1.18	.92373	1.43	.88604	1.68	.90500	1.93	.97240
1.19	.92088	1.44	.88580	1.69	.90678	1.94	.97610
1.20	.91817	1.45	.88565	1.70	.90864	1.95	.97988
1.21	.91558	1.46	.88560	1.71	.91057	1.96	.98374
1.22	.91311	1.47	.88563	1.72	.91258	1.97	.98768
1.23	.91075	1.48	.88575	1.73	.91466	1.98	.99171
1.24	.90852	1.49	.88595	1.74	.91683	1.99	.99527
						2.00	1.00000

$$\Gamma(n) = \int\limits_0^\infty \ e^{-x} \ X^{n-1} \ dx \qquad \qquad \text{Note: } \Gamma(n+x) = (n-1+x)(n-2+x) \ldots (1+x) \ \Gamma(1+x) \\ \text{e.g., } \Gamma(3.15) = (2.15)(1.15) \ \Gamma(1.15)$$

예제1 : Flexible 멤브레인 수명은 β =2, η =300 (시간)인 와이블 분포를 따른다.

1) 200시간에서의 신뢰도는?

2) 신뢰도가 90%가 되는 시점은?

$$R(t) = e^{-\left(\frac{t}{\eta}\right)^{\beta}}$$

예제2 : 엔진블록은 β =2.0, η =60,000, γ =15,000 (단위: mile)인 와이블분포를 따른다.

1) 45,000 miles에서의 신뢰도는?

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$

2) 평균수명은 얼마인가?

$$MTTF = \gamma + \eta \cdot \Gamma \left(1 + \frac{1}{\beta} \right)$$

4. 와이블 분포

최약 연결 원칙 (Weakest Link Principle)

→ 여러 개의 부품이 직렬 연결된 제품의 고장은 부품 중 가장 취약한 부분에서 발생한다. 즉, 가장 짧은 부품의 수명에 의해서 제품의 수명이 결정된다. 각각의 부품의 수명이 서로 독립이고 동일한 와이블 분포를 따르는 경우 뿐만 아니라 와이블 분포가 아닌 경우에도 n이 크면 T₍₁₎=min{T1, ..., Tn}은 와이블 분포에 가까워 진다.

• 지수분포는 와이블 분포의 특수한 경우이다.

→ 고장데이터의 분포를 알 수 없는 경우 일반적으로 와이블 분포를 가정하여 분석한다.
 그리고 β = 1 인지를 가설검정하거나, 분석결과 β 의 신뢰구간이 1을 포함하고 있으면 지수분포로 가정하여 이후 신뢰성 분석 또는 보증시험을 설계한다.

5. 정규분포

- 통계학의 추정/검정, 품질관리 및 6 Sigma에서 중요한 확률분포.
- 조명기기의 수명, 균일하게 열화되는 특성을 갖는 의류의 수명분포
- 부하(stress)와 강도(strength)의 분포로 사용
- 정규분포는 $N(\mu, \sigma^2)$ 으로 표현하며, 여기서 μ 는 평균을 σ^2 은 분산을 나타냄.
 - a 종형 분포
 - **ⓑ** 평균에 대하여 좌우 대칭
 - ⓒ -∞ ~ +∞의 범위 존재

$$R(t) = 1 - \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

6. 대수 정규분포

- 대수 수명 Log(T)가 정규분포를 따를 때, T의 분포를 대수정규분포라고 함.
 - 데이터 t₁, t₂,..., t_n에 Log(base 10 또는 e)를 취한 log(t₁), log(t₂), ...,log(t_n)이 정규분포.
- 대수정규분포는 LN(μ , σ^2)으로 표현하며, μ 는 위치모수(location parameter), σ 는 척도모수 (scale parameter)라고 함.
- Soldering 부위의 피로수명, 절연재의 절연파괴 수명 등에 적용.
- μ와 σ의 값에 따라 다양한 분포에 적합. 와이블 분포와 함께 신뢰성 데이터 분석에 널리 활용.
- 데이터에 Log(base 10 또는 e)를 취하면 정규분포로 바뀌므로 정규분포의 성질과 추정과 검정 등을 쉽게 적용할 수 있음.

신뢰성(수명) 보증 시험 설계

◆ 신뢰성(수명, 고장률 등) 보증 시험을 설계하고 결과를 분석할 수 있다.

• 본 단원에서는 제품의 수명이 지수분포를 따를 때, 평균수명(θ)을 추정하는 것과 관련된 다음과 같은 문제들을 다룬다.

- (1) 총 시험 시간
- (2) 평균수명의 점추정
- (3) 평균수명의 구간추정(교체, 무고장)
- (4) 평균수명의 구간추정(비교체)
- (5) 시료 수와 시험 시간 결정

(1) 총 시험 시간

- 교체 시험과 비교체 시험
- 1) 교체 시험: 시험 중 발생한 고장 시료를 교체(또는 수리)하면서 하는 시험
- 2) 비 교체 시험: 고장 시료를 시험에서 제외하고 고장나지 않은 샘플들은 종료 시점까지 시험

- 총 시험 시간 (Total Test Time: TTT): 신뢰성 시험에서 샘플이 시험된 전체 시간.
- 총 시험 시간은 지수 분포의 평균 수명에 대한 모든 정보를 갖고 있는 통계량임.

예제: 아래의 교체 시험과 비 교체 시험에서 TTT를 계산하시오

- (1) 교체 시험의 경우: TTT = 6×60 = 360
- (2) 비 교체 시험의 경우: TTT = 10+20+30+40+60×2 = 220

(2) 평균수명의 점추정

• 관측 중단과 교체 / 비 교체 시험과 상관 없이 총 시험 시간(TTT)을 고장개수(r)로 나눈 값

$$\hat{\theta} = rac{TTT}{r}$$
 여기서 TTT : Total Test Time, r : 고장개수, n : 시료수

	Type I	Type II				
교체	$\hat{\theta} = rac{ ext{nt}_0}{ ext{r}}$ $ ext{t}_0$: 정시중단 시점	$\hat{\theta} = rac{ ext{nt}_r}{ ext{r}}$ t_r : 정수중단 시점				
비교체	$\hat{\theta} = \frac{\sum t_i + (n-r)t_0}{r}$	$\hat{\theta} = \frac{\sum_{i} t_{i} + (n-r)t_{r}}{r}$				

• 고장개수 r=0 이면 평균수명을 추정할 수 있는가?

(3) 평균수명의 구간추정 (교체, 무고장)

• 평균수명의 $100(1-\alpha)$ % 신뢰구간은 Censoring 방법에 따라서 단측과 양측 신뢰구간을 다음과 같이 구할 수 있음.

	양측(two-sided)	단측(one-sided)			
정수중단	$\left[\frac{2TTT}{\chi^2_{\alpha/2}(2r)}, \frac{2TTT}{\chi^2_{1-\alpha/2}(2r)}\right]$	$\left[\frac{2\mathrm{TTT}}{\chi_{\alpha}^{2}(2\mathrm{r})},\infty\right)$			
정시중단	$\left[\frac{2TTT}{\chi^2_{\alpha/2}(2r+2)}, \frac{2TTT}{\chi^2_{1-\alpha/2}(2r)}\right]$	$\left[\frac{2TTT}{\chi_{\alpha}^{2}(2r+2)},\infty\right)$			

• 무고장 (r=0)일 경우 평균수명의 단측 하한치를 구할 수 있다. (베이즈 분석)

$$\left[\frac{2\text{TTT}}{\chi_{\alpha}^{2}(2)} = -\frac{n \cdot t_{0}}{\ln \alpha}, \infty \right) \quad \text{여기서 } t_{0} : \text{정시중단 시점, } n : \text{시료수}$$

(4) 평균수명의 구간추정 (비교체)

• 평균수명의 $100(1-\alpha)$ % 신뢰구간은 Censoring 방법에 따라서 단측과 양측 신뢰구간을 다음과 같이 구할 수 있음.

	양측(two-sided)	단측(one-sided)			
정수중단	$\left[\frac{2TTT}{\chi^2_{\alpha/2}(2r)}, \frac{2TTT}{\chi^2_{1-\alpha/2}(2r)}\right]$	$\left[\frac{2\mathrm{TTT}}{\chi_{\alpha}^{2}(2\mathrm{r})},\infty\right)$			
정시중단 (Cox의 방법 - 근사식)	$\left[\frac{2TTT}{\chi^2_{\alpha/2}(2r+1)}, \frac{2TTT}{\chi^2_{1-\alpha/2}(2r+1)}\right]$	$\left[\frac{2TTT}{\chi_{\alpha}^{2}(2r+1)},\infty\right)$			

- 이론적인 지수분포의 신뢰구간과 Minitab에서 나오는 신뢰구간이 다른 이유
 - → 지수분포에서 θ의 정확한 신뢰구간은 χ2 분포에 의하여 구하나, Minitab에서는 정규분포로 근사시켜 신뢰구간을 구하기 때문에 그 값에 차이가 발생한다. Minitab에서는 분포에 상관없이 적용할 수 있는 방법을 선택하였다.

- χ² 분포
- 1) 0 보다 큰 구간에서 정의되는 비대칭 분포
- 2) 자유도(degree of freedom) r 에 의해 분포 모양이 결정.
- 3) 지수분포의 평균수명에 대한 구간추정에 이용

• 자유도가 r인 χ^2 분포에서 분포함수의 값이 $(1-\alpha)$ 인 점을 $100(1-\alpha)$ % 백분위수라 부르며 χ^2_a (r) 로 표시함.

χ² 분포표

$$\chi_{0.10}^2(8) = 13.362$$

		Probability (=a)												
DF	0.99	0.975	0.95	0.90	0.80	0.75	0.50	0.25	020	0.10	0.05	0.025	0.01	0.001
1	0.00016	0.00098	0.00393	0.0158	0.0642	0.10153	0.455	1323	1.642	2706	3841	5.024	6.635	10,827
2	0.0201	0.0506	0.103	0.211	0.446	0.5753	1.386	2772	3.219	4605	5991	7.377	9.210	13,815
3	0.1 15	0.2.16	0.352	0.584	1.005	1.2125	2.366	4.108	4.642	6251	7815	9.348	11.341	16,268
4	0.2 97	0.4.84	0.711	1.064	1.649	1.9225	3.357	5385	5.989	7779	9448	11.143	13.277	18,465
5	0.554	0.8.31	1.145	1.610	2.343	2.674	4.351	6.625	7.289	9236	11070	12.832	15.086	20,517
6	0.872	1237	1.635	2.204	3.070	3.454	5348	7.840	8 5 58	10645	12592	14449	16812	22457
7	1.239	1689	2.167	2.833	3.822	4.254	6346	9.037	9 8 03	12017	14067	16013	18475	24322
8	1.646	2.179	2.733	3.490	4.594	5.070	7344	10.218	11 0 30	13362	15507	17534	20.090	26.125
9	2.088	2700	3325	4.168	5.320	5.898	8343	11.388	12242	14.684	16919	19.023	21.666	27 <i>8</i> 77
10	2.558	3247	3940	4.865	6.179	6.737	9342	12.548	13442	15.987	18 3 07	20.483	23209	29588
11	3.053	3.816	4 575	5.578	6.989	7 584	10341	13701	14631	17275	19675	21920	24725	31264
12	3.571	4.404	5 226	6.304	7.807	8 438	11340	14845	15812	18549	21026	23336	26217	32909
13	4.107	5.008	5 892	7.042	8.634	9 299	12340	15984	16985	19812	22362	24735	27688	34528
14	4.660	5.628	6 571	7.790	9.467	10.165	13339	17.117	18151	21064	23685	26119	29141	36123
15	5.229	6.262	7 261	8.547	10.307	11.036	14339	18245	19311	22307	24996	27488	30578	37697
16	5.812	6907	7 962	9 3 12	11.152	11912	15338	19.368	20465	23542	26296	28845	32,000	39252
17	6.408	7564	8 672	10.085	12.002	12791	16338	20.488	21615	24769	27587	30.191	334,09	40790
18	7.015	8231	9 390	10.865	12.857	13675	17338	21.605	22760	25989	28869	31526	34,805	42312
19	7.633	8906	10.1.17	11.651	13.716	14562	18338	22.717	23900	27204	30144	32852	36,191	43820
20	8.260	9591	10.851	12.443	14.578	15452	19337	23.827	25038	28412	31410	34.169	37,566	45315
21	8 897	10283	11591	13240	15445	16344	20337	24935	26.171	29615	32671	35479	38932	46797
22	9 542	10982	12338	14041	16314	17239	21337	26039	27.301	30813	33924	36780	40289	48268
23	10.196	11688	13091	14848	17187	18137	22337	27141	28.429	32007	35172	38075	41638	49728
24	10.856	12400	13848	15659	18062	19037	23337	28241	29.553	33196	36415	39364	42980	51179
25	11.524	13119	14611	16473	18940	19939	24337	29339	30.675	34382	37652	40646	44314	52620
26	12.198	13844	15379	17292	19820	20843	25336	30434	31795	35563	38885	41923	45.642	54.052
27	12.879	14573	16151	18114	20703	21749	26336	31528	32912	36741	40113	43194	46.963	55.476
28	13.565	15308	16928	18933	21588	22657	27336	32620	34027	37916	41337	44460	48.278	56.893
29	14.256	16047	17708	19768	22475	23566	28336	33711	35139	39087	42557	45722	49.588	58.302
30	14.953	16791	18493	20599	23364	24476	29336	34799	36250	40256	43773	4698	50.892	59.703

예제 : 신뢰성 시험을 총 300시간 실시하였으며, 시험 중에 고장이 3건 발생하였다. 지수분포를 가정하고 다음 물음에 답하라.

1) 신뢰수준 90%로 평균수명에 대한 신뢰하한을 구하라.

$$\left[\frac{2\mathrm{TTT}}{\chi_{\alpha}^{2}(2\mathrm{r}+2)},\infty\right)$$

2) 만일 시험 중 고장이 하나도 나지 않았다면 평균수명의 추정은?

$$\left[rac{2 ext{TTT}}{\chi_{lpha}^2(2)},\infty
ight)$$

$$\left[\frac{\mathrm{TTT}}{-\ln \alpha}, \infty\right)$$

• 평균수명 θ 의 $100(1-\alpha)$ % 단측 신뢰하한이 θ_0 이상이면, 신뢰수준 $100(1-\alpha)$ %로 θ_0 를 보증한다고 할 수 있음.

$$\frac{2TTT}{\chi_{\alpha}^{2}(2r+2)} \ge \theta_{0} \qquad \qquad \Box \qquad TTT \ge \frac{\theta_{0}\chi_{\alpha}^{2}(2r+2)}{2}$$

• 시료의 수를 n이라 하고, t_0 를 정시중단 시간이라 하자. 만일 t_0 까지 고장이 발생하지 않는다면 총 시험시간 TTT = $n \times t_0$ 로 표현됨.

$$TTT = nt_0 \ge \frac{\theta_0 \chi_\alpha^2 (2r+2)}{2} \qquad \qquad t_0 \ge \frac{\theta_0 \chi_\alpha^2 (2r+2)}{2 \times n} \qquad n \ge \frac{\theta_0 \chi_\alpha^2 (2r+2)}{2 \times t_0}$$

참고 : 와이블 분포 (t : 보증시간, R : 신뢰도, β : 형상모수)

$$t_0 \ge t \times \left\lceil \frac{\chi_{\alpha}^2(2r+2)}{2 \times n \times -\ln(R)} \right\rceil^{\frac{1}{\beta}} \qquad \qquad n \ge \left(\frac{t}{t_0}\right)^{\beta} \times \frac{\chi_{\alpha}^2(2r+2)}{2 \times -\ln(R)}$$

시료 수와 시험 시간 결정

• 주어진 신뢰수준에서 신뢰성 목표를 보증하기 위한 시료의 수와 시험시간을 결정하는 방법

예제 : Al 전해 Capacitor의 신뢰성 수준은 고장률 λ(%/1000h)로 나타낸다. 정격 조건에서 2,000 시간 동안 시험하여 고장률 M수준(=1%/1000h)을 보증하기 위해 필요한 시료 수는? 단, 신뢰수준 60%, 무고장 시험으로 설계한다.

(1) 신뢰성 목표 :
$$\lambda_0 = 10^{-5}/h \rightarrow \theta_0 = 10^5 h$$

(2) 신뢰수준 60%이면,
$$\alpha$$
=0.4 $\rightarrow \chi^2_{0.4}(2) = 1.8326$

(3)
$$TTT \ge \frac{\theta_0 \chi_\alpha^2 (2r+2)}{2} = \frac{10^5 \times 1.8326}{2} = 0.092 \times 10^6$$

< MIL-STD-690C 고장률 보증 시험 Table (신뢰수준=60%, 단위: 106 시간) >

고장	개수	0	1	2	3	4	5	6	7	8
문자	고장률	1.8326	4.0446	6.2108	8.3505	10.4732	12.5838	14.6853	16.7795	18.8679
М	1	0.092	0.202	0.311	0.418	0.524	0.629	0.734	0.839	0.943
Р	0.1	0.916	2.022	3.105	4.175	5.237	6.292	7.343	8.390	9.434
R	0.01	9.163	20.223	31.054	41.753	52.366	62.919	73.426	83.898	94.340
S	0.001	91.629	202.231	310.538	417.526	523.662	629.192	734.265	838.977	943.395

- 시료 수와 시험시간 결정의 문제점?
- 지수분포는 총 시험시간(T)이 같으면 신뢰성 보증의 정도가 동일함.

TTT	t _o	n		
92,000	100	920		
92,000	500	184		
92,000	1,000	92		
92,000	2,000	46		
92,000	4,000	23		
92,000	9,200	10		

- 시험 중 고장이 하나도 나지 않으면 고장률
 10⁻⁵/h 을 동일하게 보증.
- 920개의 시료로 100시간 시험하는 것과 시료 10개를 9,200시간 시험하는 것이 동일하다고 할 수 있는가?
- 가장 바람직하다고 생각되는 시험방법은?
- 왜 그런가?

- 아래의 상황의 차이점은 무엇인가?
- 1) 1명이 5일 해야 할 일을 5명이 하면 1일에 완료
- 2) 5일 동안 항해해야 도착할 목적지를 배 5척이 동시에 출발하면 1일에 도착?

- 문) 지금까지 10개의 샘플을 1,000시간동안 시험하던 부품의 고장이 우발고장인 것을 알고 있다. 시험시간 단축을 위해, 샘플 100개로 100시간 시험하고 싶은데 문제는 없는가?
- 답) 시험시간은 짧게 하지 않는 것이 좋다. (2Life ~ 3Life 권장)
- 기존 제품은 1,000시간까지 마모고장이 발생하지 않았으므로 고장시간은 지수 분포를 따른다고 할 수 있음
- 이론적으로 샘플 100개로 100시간동안 시험해도 평균수명을 동일하게 보증
- 예상치 못한 마모고장 또는 내용수명을 확인하기 위해서는 시험기간을 단축하는 것은 바람직하지 않음

[참고] 신뢰수준의 결정에 대하여

- 신뢰수준(1-β): 신뢰성보증시험에서 불합격되어야 할 제품이 불합격될 확률을 의미.
 여기서 β는 불합격되어야 할 제품이 합격될 확률로서 소비자 위험을 의미함.
- 신뢰수준을 결정하는 표준화된 절차와 방법은 없음. 일반적으로 소비자위험을 작게 해야 하는 중요 제품에 대해서는 신뢰수준을 높게 설정하고, 소비자위험이 어느 정도 커도 문제가 되지 않는 제품은 신뢰수준을 낮게 설정함.
- 신뢰수준의 값이 크면 클수록 소비자위험은 줄지만 시험에 필요한 샘플 크기 또는 시험기간이 증가하게 됨.
- MIL-STD-690C에서는 신뢰수준 60%와 90%를 제시하고 있으며, 자동차 부품의 경우 신뢰수준 50%를 요구하는 사례도 있음.

- 본 절에서는 MINITAB을 이용하여 신뢰성보증시험을 설계하는 방법을 소개함.
- Menu → Stat → Reliability/Survival → Demonstration Test Plans

- 상황 1: 제품의 수명은 지수분포를 따르고, 가용한 시험시간은 t = 2,000 시간
- 신뢰수준 60%로 평균수명 10,000을 보증할 수 있는 신뢰성보증시험?
- 샘플의 크기 n? (단, c=0. 즉, 시험 중 고장발생을 허용하지 않음.)

• Options Click → Confidence level에 60 입력

• Output:

- 제품의 수명은 지수분포
- 5개의 샘플로 2,000시간 시험하여 고장이 0개이면 신뢰수준 60%로 MTTF 10,000시 간을 보증할 수 있음.

- 상황 2: 제품의 수명은 지수분포를 따르고 가용한 샘플의 크기는 10개
- 신뢰수준 90%로 평균수명 10,000을 보증할 수 있는 신뢰성보증시험?
- 시험시간 t? (단, c=0. 즉, 시험 중 고장발생을 허용하지 않음.)

• Options Click → Confidence level에 90 입력

• Output:

- 제품의 수명은 지수분포
- 10개의 샘플로 2,303시간 시험하여 고장 이 0개이면 신뢰수준 90%로 MTTF 10,000시간을 보증할 수 있음.

- 상황 3 : 제품의 수명은 와이블 분포를 따르고, 형상모수 β=3, 시험시간은 t = 8,000 시간
- 신뢰수준 90%로 B_1 수명이 2,000시간 이상임을 보증할 수 있는 신뢰성보증시험?
- 샘플의 크기 n? (단, 시험 중 고장이 1개 발생하는 것은 허용)

• Options Click → Confidence level에 90 입력

Output:

- 제품의 수명은 와이블 분포
- 형상모수 β = 3
- 7개의 샘플로 8,000시간 시험하여 고장이 1개 이하로 발생하면 신뢰수준 90%로 B₁ 수명 2,000시간을 보증할 수 있음.

실습 문제

- 세탁기용 모터의 무상보증기간은 3년이고, 3년 동안 세탁기의 총 사용시간은 약 900시간으로 가정하자. [1시간/회×1회/일×300일/년×3년=900시간]
- 세탁기 모터 무상보증비율이 1%미만이 되도록 제품을 개선하고자 한다. 이는 R(900)=0.99 이상(B_1 수명이 900시간 이상)이 되도록 신뢰성목표를 설정한 것을 의미한다.
- 제품개발 중 가용한 시험시간은 600시간(=20시간/일×30일)이다.
- 세탁기 모터의 신뢰성목표를 신뢰수준 90%로 보증하려면 몇 개를 시험해야 하는가? 단, 모터의 수명분포는 β =1.5인 와이블 분포를 따르고, 허용고장개수는 C=0이다.

