Uma formalização assistida por computador da interpretação modal do sistema intuicionista

Elian Gustavo Chorny Babireski

Universidade do Estado de Santa Catarina elian.babireski@gmail.com

Orientadora: Doutora Karina Girardi Roggia

Coorientador: Mestre Paulo Henrique Torrens

29/11/2024

Babireski 29/11/2024 1 / 15

Sumário

- Introdução
- 2 Fundamentos
- 3 Linguagens
- 4 Axiomatizações
- Metateoremas
- 6 Traduções
- Propriedades
- 8 Considerações
- Referências

Babireski 29/11/2024 ______ 2 / 1

Introdução

Babireski 29/11/2024 3 / 1

Introdução

Kobayashi (1997) sugere a interpretação abaixo.

Înterpretação da possibilidade

$$\begin{array}{ccc} \alpha \to \Diamond \alpha & & \eta : \ \mathbf{1}_C \to T \\ \Diamond \Diamond \alpha \to \Diamond \alpha & & \mu : \ T^2 \to T \end{array}$$

Interpretação da necessidade

$$\Box \alpha \to \alpha \qquad \epsilon : T \to 1_C$$

$$\Box \alpha \to \Box \Box \alpha \qquad \delta : T \to T^2$$

Babireski 29/11/2024

Fundamentos

Neste trabalho, usaremos uma definição de sistema provida por Béziau (1994) e uma definição de tradução entre sistemas provida por Coniglio (2005).

Sistema

Um sistema consiste num par $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$, sendo \mathcal{L} um conjunto e $\vdash \in \wp(\mathcal{L}) \times \mathcal{L}$ uma relação sobre o produto cartesiano do conjunto das partes da linguagem e a linguagem, sem demais condições.

Tradução

Sejam $\mathfrak{L}_1=\langle \mathcal{L}_1,\vdash_1 \rangle$ e $\mathfrak{L}_2=\langle \mathcal{L}_2,\vdash_2 \rangle$ sistemas. Uma tradução primeiro sistema ao segundo consiste numa função $ullet^*: \mathcal{L}_1 o \mathcal{L}_2$ de modo que $\Gamma \vdash_1 \alpha$ se e somente se $\Gamma^* \vdash_2 \alpha^*$.

29/11/2024

Linguagens

Neste trabalho, usaremos uma definição das linguagens dos sistemas intuicionista e modais conforme provida por Troelstra e Schwichtenberg (2000).

$\mathcal{L}_{\mathfrak{I}}$

A linguagem do sistema intuicionista \mathfrak{I} , denotada $\mathcal{L}_{\mathfrak{I}}$, pode ser induzida a partir da assinatura $\Sigma_{\mathfrak{I}} = \langle \mathcal{P}, \mathcal{C}_{\mathfrak{I}} \rangle$, onde $\mathcal{P} = \{ p_i \mid i \in \mathbb{N} \}$ e $\mathcal{C}_{\mathfrak{I}} = \{ \bot^0, \wedge^2, \vee^2, \rightarrow^2 \}$.

$\mathcal{L}_{\mathfrak{M}}$

A linguagem dos sistemas modais \mathfrak{M} , denotada $\mathcal{L}_{\mathfrak{M}}$, pode ser induzida a partir da assinatura $\Sigma_{\mathfrak{M}} = \langle \mathcal{P}, \mathcal{C}_{\mathfrak{M}} \rangle$, onde $\mathcal{P} = \{ p_i \mid i \in \mathbb{N} \}$ e $\mathcal{C}_{\mathfrak{M}} = \{ \bot^0, \Box^1, \wedge^2, \vee^2, \rightarrow^2 \}$.

Babireski 29/11/2024 6 / 15

Axiomatizações

Primeiramente, consideremos a seguinte axiomatização $\mathcal{H}_{\mathfrak{M}}=\langle \mathcal{A}_{\mathfrak{M}}, \mathcal{R}_{\mathfrak{M}} \rangle$ para o sistema minimal, conforme definido por Troelstra e Schwichtenberg (2000).

$\mathcal{H}_{\mathfrak{M}}$			
	$\alpha \to \beta \to \alpha$	(A_1)	
	$(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$	(A_2)	
	$\alpha \to \beta \to \alpha \wedge \beta$	(A_3)	
	$\alpha \wedge \beta \to \alpha$	(A_4)	
	$\alpha \wedge \beta \to \beta$	(A_5)	
	$\alpha \to \alpha \vee \beta$	(A_6)	
	$\beta \to \alpha \vee \beta$	(A_7)	
	$(\alpha \to \gamma) \to (\beta \to \gamma) \to \alpha \lor \beta \to \gamma$	(A_8)	
	Se $\Gamma \vdash \alpha$ e $\Gamma \vdash \alpha \rightarrow \beta$ então, $\Gamma \vdash \beta$	(R_1)	

Babireski 29/11/2024 7 / 15

Axiomatizações

Estendo a definição anterior, chega-se às axiomatizações do sistema intuicionista e modal S4, conforme definido por Troelstra e Schwichtenberg (2000) e Hakli e Negri (2012).

$$\mathcal{H}_{\mathfrak{I}}$$

$$\perp \to \alpha \qquad \qquad (A_{\perp})$$

Babireski 29/11/2024 8 / 15

Metateoremas

Alguns dos metateoremas provados neste trabalho.

Metateorema da dedução

Se $\Gamma \cup \{\alpha\} \vdash \beta$, então $\Gamma \vdash \alpha \rightarrow \beta$.

Metateorema da generalização da necessitação

Se $\Box \Gamma \vdash \alpha$, então $\Box \Gamma \vdash \Box \alpha$.

Metateorema da dedução estrita

Se $\Box \Gamma \cup \{\alpha\} \vdash \beta$, então $\Box \Gamma \vdash \Box (\alpha \rightarrow \beta)$.

Metateorema do modus ponens estrito

Se $\Gamma \vdash \alpha$ e $\Gamma \vdash \Box(\alpha \rightarrow \beta)$, então $\Gamma \vdash \beta$.

Babireski 29/11/2024 9 /

Traduções

Neste trabalho, consideremos duas traduções equivalentes providas por Troelstra e Schwichtenberg (2000).

Traduções

$$\mathbf{a}^{\circ} := \mathbf{a} \qquad \qquad \mathbf{a}^{\square} := \square \mathbf{a}$$

$$\bot^{\circ} := \bot \qquad \qquad \bot^{\square} := \bot$$

$$(\alpha \wedge \beta)^{\circ} := \alpha^{\circ} \wedge \beta^{\circ} \qquad (\alpha \wedge \beta)^{\square} := \alpha^{\square} \wedge \beta^{\square}$$

$$(\alpha \vee \beta)^{\circ} := \square \alpha^{\circ} \vee \square \beta^{\circ} \qquad (\alpha \vee \beta)^{\square} := \alpha^{\square} \vee \beta^{\square}$$

$$(\alpha \to \beta)^{\circ} := \square \alpha^{\circ} \to \beta^{\circ} \qquad (\alpha \to \beta)^{\square} := \square(\alpha^{\square} \to \beta^{\square})$$

Teorema do isomorfismo entre traduções

$$\vdash \Box \alpha^{\circ} \leftrightarrow \alpha^{\Box}$$
.

Babireski 29/11/2024 10 / 15

Propriedades

Lema

 $\vdash \alpha^{\Box} \rightarrow \Box \alpha^{\Box}$.

Correção

Se $\Gamma \vdash_{\mathfrak{I}} \alpha$, então $\Gamma^{\square} \vdash_{S4} \alpha^{\square}$.

Teorema

 $\vdash \alpha \rightarrow \Diamond \alpha$.

Teorema

 $\vdash \Diamond \Diamond \alpha \rightarrow \Diamond \alpha.$

Babireski 29/11/2024 11 / 15

Considerações

- Devido ao uso da axiomatização, as provas de Troelstra e Schwichtenberg (2000) precisaram ser reescritas;
- Não foi apresentada a prova manual da completude das traduções;
- O que foi desenvolvido manualmente fornece uma boa base para o desenvolvimento das demonstrações em assistentes de provas.

Babireski 29/11/2024 12 / 15

Planejamento

- Provar manualmente a completude das traduções;
- 2 Definir, na biblioteca modal, as traduções apresentadas;
- 3 Provar, na biblioteca modal, os metateoremas apresentados;
- 4 Provar, na biblioteca modal, que as traduções equivalem;
- 6 Provar, na biblioteca modal, a correção das traduções;
- 6 Provar, na biblioteca modal, a completude das traduções.

Babireski 29/11/2024 13 / 15

${\sf Planejamento}$

Item	2024	2025					
	Dez	Jan	Fev	Mar	Abr	Maio	Jun
1							
2							
3							
4							
5							
6							

Babireski 29/11/2024 14 / 15

Referências

BéZIAU, J.-Y. Universal logic. Logica, 1994.

CONIGLIO, M. E. Towards a stronger notion of translation between logics. *Manuscrito*, 2005.

HAKLI, R.; NEGRI, S. Does the deduction theorem fail for modal logic? *Synthese*, 2012.

KOBAYASHI, S. Monad as modality. *Theoretical Computer Science*, 1997.

TROELSTRA, A. S.; SCHWICHTENBERG, H. *Basic proof theory.* Cambridge: Cambridge University Press, 2000. ISBN 9781139168717.

Babireski 29/11/2024 15 / 15