$MATH\ 1113$

Topics: one-to-one functions, inverse functions, domain and range of inverse functions

Student Learning Outcomes:

- 1. Students will be able to determine if a function is one-to-one algebraically and graphically.
- 2. Students will be able to determine the inverse of a function.
- 3. Students will be able to determine the domain and range of an inverse function.

1 Identify One-to-One Functions

Horizontal Line Test. A function is one-to-one if every horizontal line intersects the graph of f at most once. Otherwise the function is not one-to-one.

1. Determine whether the graph is the graph of a one-to-one function.

2. Determine whether the following functions are one-to-one.

(a)
$$f = \{(1,4), (2,3), (-2,3)\}$$

(b)
$$f(x) = \sqrt{5x}$$

(c)
$$f(x) = x^2$$

2 Determine Whether Two Functions are Inverses

Theorem on Inverse Functions. Let f be a one-to-one function with domain D and range R. If g is a function with domain R and range D, then g is the inverse function of f precisely when both of the following conditions hold:

- \star g(f(x)) = x for every x in D, and
- \star f(g(y)) = y for every y in R.

Notation: "f inverse" is typically written as f^{-1} . It is important to note that f^{-1} does NOT mean the same thing as $\frac{1}{f}$.

- 3. Let $f(x) = x^2 + 4$, $x \ge 0$, and let $g(x) = \sqrt{x 4}$, $x \ge 4$
 - (a) Use the theorem on inverse functions to determine whether f and g are inverses.

(b) Sketch the graphs of f and g on the same coordinate axes.

3 Find the Inverse of a Function

Guidelines for Finding Inverse Functions.

Assuming that f is a one-to-one function, and that the algebra is do-able, you can find f^{-1} using the following procedure:

- 1. Solve the equation y = f(x) for x in terms of y. You now have $x = f^{-1}(y)$.
- 2. Replace x with y and solve for y. This is your inverse function, replace y with $f^{-1}(x)$.
- 3. Check your work (if time permits): check that $f^{-1}(f(x)) = x$ whenever x is in the domain of f, and $f(f^{-1}(x)) = x$ whenever x is in the domain of f^{-1} .
- 4. Find the inverse function of f(x) = 4 + 3x.

5. Use the table for the one-to-one function f(x) to compute each expression.

X	2	3	7	6	15
f(x)	-1	5	4	2	3

- (a) $f^{-1}(5)$
- (b) $f^{-1}(-1)$
- (c) $f^{-1}(2)$

Student Learning Outcomes Check

- 1. Can you determine if a function is one-to-one algebraically and graphically?
- 2. Are you able to determine the inverse of a function?
- 3. Can you determine the domain and range of an inverse function?

If any of your answers were no, please ask about these topics in class.