Lab 6: A Family of Competitive-Species Equations

Johannes Byle and Andrew Rucin

November 4, 2018

$$\frac{dx}{dt} = kx - 3x^2 - 4xy$$
$$\frac{dy}{dt} = 42y - 3y^2 - 2xy$$

1. Equilibrium points:

$$(0,0)$$
 $(0,14)$
 $(\frac{k}{3},0)$

2. Bifurcation Values:

$$k = 0, 56, 63$$

(3k - 168, -2k + 126)

3. Classifying Equilibrium Points:

$$Jacobian = \begin{bmatrix} k - 6x - 4y & -4x \\ -2y & 42 - 6y - 2x \end{bmatrix}$$
$$(0,0) = \begin{bmatrix} k & 0 \\ 0 & 42 \end{bmatrix}$$
$$(0,14) = \begin{bmatrix} k - 56 & 0 \\ -28 & -42 \end{bmatrix}$$
$$(\frac{k}{3},0) = \begin{bmatrix} -k & -\frac{4}{3}k \\ 0 & 42 - \frac{2}{3}k \end{bmatrix}$$
$$(3k - 168, -2k + 126) = \begin{bmatrix} 504 - 9k & 672 - 12k \\ 4k - 252 & 6k - 378 \end{bmatrix}$$

Equilibrium Points	k=0	0 < k < 56	k=56	56 < k < 63	k=63	$63 < k < \infty$
(0,0)	Source*	Source	Source	Source	Source	Source
(0,14)	Sink	Sink	Sink*	Saddle	Saddle	Saddle
$(\frac{k}{3},0)$	Source*	Saddle	Saddle	Saddle	Sink*	Sink
(3k - 168, -2k + 126)	Saddle	Saddle	Sink*	Sink	Sink*	Saddle

- $a\ *\ indicates\ a\ line\ of\ source\ or\ sink\ points$
- **4.** Graphs of x(t) and y(t):

** 1937-2899

** 4-37-39

** 4-37-39

** 4-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5-37-39

** 5

Figure 1: k=0

Figure 2: k=20

Figure 3: k=56

Figure 4: k=60

Figure 5: k=63

Figure 6: k=70

5. Examining the x-population:

The x population only survives if k>56. This is because, in the first quadrant the only equilibrium points where x does not equal 0 are $(\frac{k}{3},0)$ and

(3k-168, -2k+126). And if $k \le 56$ then $(\frac{k}{3}, 0)$ is a saddle and x does not approach that point.

6. Examining the y-population:

The y population will only survive if k<63. This is because the only equilibrium points where y does not equal 0 are (0,14) and (3k-168,-2k+126). And populations that start in the first quadrant will only approach (0,14) if $k\leq 56$.

7. Mutual Coexistence:

The only equilibrium point where both x and y are greater than 0 is (3k-168, -2k+126). In this equation both x and y are only greater than 0 where 56 < k < 63.

Summary: The fastest way to analyze this system of differential equations is to examine the linearization of equilibrium points. We can ignore (0,0) for every value of k this point is a source, and no solutions will approach it. To examine the x population we can see that the only points we must examine are $(\frac{k}{3},0)$ and (3k-168,-2k+126) since these are the only solutions where x has the possibility of not being equal to 0. For the first equilibrium point we can know that the value k=0 will not be important since at k=0 this equilibrium point is a source, this solutions will never approach this value. For the other values of k however we can only be certain of values of k greater than or equal to 63, since those are sinks. For values of k between 63 and 0 we need to consult the graph of x and y since there $(\frac{k}{3},0)$ is a saddle.

Figure 7: k=0

Figure 8: k=20

Figure 9: k=56

Figure 10: k=60

From these figures we can see that values that begin in the first quadrant will

never approach $(\frac{k}{3}, 0)$ when k<63.

Examining the y population can be done in the same way. The only points we must examine are (0,14) and (3k-168,-2k+126) since these are the only solutions where y has the possibility of not being equal to 0. Looking at the table in part 3 we can see that all values of k are viable, since all values are either sinks or saddles. Thus we must look at the graphs of the values of k where (0,14) is a saddle to see whether solutions that begin in the first quadrant ever approach that equilibrium point. In both of these examples the y solution approaches 0, thus values that begin in the first quadrant will never approach (0,14) when k>63.

Figure 11: k=63

Figure 12: k=70

Since (3k-168,-2k+126) is the only equilibrium point which has the possibility of having both x and y being greater than 0 examining this equilibrium point will tell us for which values of k both x and y can coexist. Looking at the table the only times where this equilibrium point is a true sink is for values of k where k is greater than 56 and less than 63. This makes sense, because above 63 the -2k+126 is less than 0 and for values less than $56\ 3k-168$ is less than 0. Thus, simply by looking at the table we can see that k must be be greater than $56\$ and less than $63\$ for both species to be able to survive.