adiovy onstrukter

ROČNÍK IX 1973

č. 6

Chceme-li stavět nějaký elektronický přístroj nebo zařízení, obvykle lze postupovat dvěma cestami: buď najít nějaké zapojení (vhodné k požadovanému účelu) v literatuře, a to pak upravit podle potřeby, nebo sednout za psací stůl a potřebné zapojení si navrhnout, tj. vypočítat nebo graficky určit hodnoty jednotlivých prvků zapojení.

První cesta bývá obvykle kratší, neboť i v elektronice platí většinou známé pořekadlo, že "není nic nového pod sluncem", vše se již v té či oné formě

pojení, nebo stačí-li nám prostě zapojení "ubastlit". Ze všech hledisek je ovšem nejsprávnější znát funkci jednotlivých součástek i celého zařízení tak podrobně, jak je to jen možné. V tom případě bude asi nejvýhodnější postupovat tak, že použijeme k všeobecnému poučení o zapojení nějakou literaturu a vlastní zapojení pak spočítáme (navrhneme) sami. Tehdy si totiž budeme jisti, že při uvádění zařízení do chodu neztroskotáme na nějakém problému, který nebudeme moci vyřešit.

·NAVRH· AKONSTRUKCE

objevilo na stránkách knih, časopisů výzkumných zpráv atd. Ovšem případy, kdy můžeme původní zapojení převzít bez změn, jsou poměrně řídké. A pak jsme stejně jako v druhém případě postavení před otázku, jak navrhnout nebo změnit zapojení tak, aby vyhovovalo našim požadavkům. Pak již záleží jen na "vybavení" vědomostmi, literaturou, a případně i dalšími pomůckami.

Kritériem, o něž se můžeme opírat při rozhodování, jakým způsobem při návrhu a konstrukci postupovat, je podle mého názoru především to, chceme-li znát funkci jednotlivých součástek zaPříkladem takového postupu je návrh praktických jednoduchých spínacích a přepínacích obvodů, které jsou popsány v tomto čísle RK. Vždy se vychází z výkladu činnosti zapojení a z výkladu, jak se na činnosti zapojení podílejí jednotlivé součásti, pak je uveden obecný početní návrh zapojení, v další části je tento návrh přehledně shrnut do kroků a závěrem je uveden praktický příklad výpočtu praktického obvodu nebo zapojení.

Vzhledem k rozsahu RK jsou uvedeny pouze spínací obvody s diodami a tranzistory; v tomto čísle RK však šlo spíše o kvalitu, než o kvantitu, neboť spínací obvody je velmi rozsáhlá partie elektroniky, kterou by nebylo možno postihnout ani jedním celým ročníkem Radiového konstruktéra.

Shrnuto: v tomto posledním letošním čísle RK se autor pokusil ukázat, jakým způsobem je třeba postupovat, když se navrhují obvody v elektronice. Protože jde o základní informace, vychází návrh ze statických parametrů, neuvažují se přechodové jevy atd. Domnívám se však, že to podstatné, metodika návrhu obvodů, umožní čtenáři udělat si představu, co vše je třeba, aby byl navržen a realizován již i poměrně jednoduchý obvod – a o to právě šlo.

SPÍNACÍ VPRAXIOBVODY

ing. Alek Myslík

Úvod

Problematika spínání v elektrických obvodech je velmi široká a zabývá se jí mnoho odborných i vědeckých publikací. Zahrnuje spínání kontaktní i bezkontaktní, vyšetřuje všechny jevy, které při spínání vznikají a ovlivňují jej. Její aplikace sahají hluboko do výpočetní a automatizační techniky, kde se vlastně uplatňuje již jenom její základní princip - střídání sepnutého a rozepnutého stavu. Tím vším se samozřejmě nelze zabývat na šedesáti čtyřech stránkách RK. Vybrali jsme z celé problematiky tu část, která je nejpřístupnější radioamatérům v jejích vlastních pokusech a konstrukcích, a která je přesto zatím málo prakticky rozšířena – bezkontaktní spínání polovodičovými diodami a tranzistory. I to je ovšem oblast velmi široká – kdyby měla být rozebrána detailně a dokonale. Byla proto dále omezena výběrem základních nejpouživanějších spínacích obvodů a jejich rozbor a návrh je veden pouze ze statického hlediska. Je to proto, že radioamatérské aplikace bezkontaktní spi nací techniky budou ze začátku právě pouze statické – obvody s polovodiči budou pracovat jako spínače a přepínače, a budou nahrazovat dřívější klasické mechanické spínače (které jako ovládací prvek samozřejmě nevyloučí).

V pojednání proto nenajdete vysvětlení, rozbor ani výpočet dynamických jevů, vlastností spínacích obvodů při rychlém spínání, tvaru spínacích impulsů ap.

Obsah je tedy určen především pro ty zájemce, kteří získali základní znalosti z elektroniky a láká je poznání moderní výpočetní (a automatizační) techniky, v níž tyto základní spínací obvody tvoří podstatnou a základní část všech složitých obvodů a zapojení. Má být úvodem do této problematiky, protože jen dokonalá znalost základů vede k pochopení složité výpočetní techniky.

Obsah je rozdělen zhruba do šesti částí, v nichž jsou popsány spínače s diodami, spínače s tranzistory, bistabilní, monostabilní a astabilní klopný obvod a Schmittův klopný obvod. U každé z těchto šesti částí je uveden podrobný popis funkce obvodu a všech jeho součástek, podrobný výpočet všech potřeb ných veličin a hodnot součástek, shrnutí tohoto výpočtu do několika základních kroků pro častější používání a na závěr praktický návrh nějakého obvodu, vypočítaný podle předchozího postupu. U některých navržených obvodů jsou uvedeny i obrazce plošných spojů pro jeho praktickou realizaci.

Celý výklad i praktické návrhy počítají s použitím křemíkových tranzistorů typu n-p-n. Kde a za jakých okolností lze použít germaniové tranzistory, je vždy výslovně uvedeno. Tranzistory typu p-n-p lze použít ve všech případech, stačí zaměnit polaritu napájecího zdroje, předpětí, diod a příp. elektrolytických kondenzátorů.

Výklad předpokládá základní znalosti elektrotechniky, Ohmův a Kirchhofovy zákony a práci s nimi, znalost funkce tranzistoru a jeho zapojování do obvodu, znalost funkce jednotlivých součástek a jejich zapojování a dimenzování. Z matematiky jsou používány převážně pouze základní matematické úkony, rovnice a v některých případech logaritmy.

Některé pojmy, s nimiž se pracuje bez vysvětlení, jsou abecedně seřazeny a stručně objasněny v následující části; v jejím závěru jsou uvedeny symboly, s nimiž se v pojednání průběžně pracuje.

Některé základní pojmy

Amplituda – maximální špičková okamžitá velikost napětí nebo proudu u signálů periodického průběhu.

Binární dělič – obvod, na jehož výstupu mají impulsy poloviční kmitočet oproti impulsům přiváděným na vstup.

Časová konstanta – součin RC udávající, za jak dlouho klesne napětí na kondenzátoru C vybíjeném do odporu R na 67 % původní velikosti.

Emitorový sledovač – zesilovací stupeň s tranzistorem v zapojení se společným kolektorem, vyznačující se malou výstupní impedancí a napěťovým zesílením < 1.

Exponenciální průběh – průběh vyjadřující exponenciální funkci ex popř. e-x; tento průběh má např. napětí i proud při nabíjení nebo vybíjení kondenzátoru.

Lavinovitý pochod – pochod, který se vlastním průběhem stále více urychluje (viz např. známá řetězová reakce).

Lineární vztah, prvek – vztah přímé úměrnosti; prvek, pro který platí Ohmův zákon, tj. lineární vztah mezi proudem prvkem protékajícím a napětím na jeho svorkách.

Nelineární vztah, prvek – vztah, v němž závislosti nejsou dány přímou úměrností; prvek, pro který neplatí lineární vztah mezi proudem a napětím.

Nestabilní stav – stav, ve kterém obvod nemůže setrvat libovolně dlouhou dobu.

Nf signál – signál o nízkofrekvenčním kmitočtu, tj. v rozsahu asi 16 Hz až 16 kHz.

Otevřený tranzistor – tranzistor ve vodivém stavu s minimálním napětím mezi kolektorem a emitorem, popř. kolektorem a bází.

Polarizace propustná, závěrná – takové připojení kladného a záporného pólu ovládacího napětí, při němž je polovodičový přechod ve vodivém (propustná) popř. v nevodivém (závěrná) stavu.

Polovodičový přechod – přechod mezi dvěma polovodiči rozdílného typu (p a n) vyznačující se tím, že vede elektrický proud pouze v jednom směru.

Propustný směr – směr, v němž polovodičový přechod vede elektrický proud.

Rozepnutý stav – stav, kdy je tranzistor (dioda) v nevodivém stavu.

Saturační napětí – napětí mezi dvěma elektrodami tranzistoru (diody) při průtoku proudu, omezeného pouze vnějšími součástkami.

Saturační proud – maximální proud, protékající závěrně polarizovaným přechodem při nejvyšším přípustném napětí.

Sepnutý stav – stav, kdy je tranzistor (dioda) ve vodivém stavu.

Stabilní stav – stav, v němž může obvod setrvat libovolně dlouhou dobu.

Statické charakteristiky – charakteristiky, udávající stejnosměrné závislosti proudů a napětí při jejich pomalých změnách.

Tolerance – přípustný rozptyl parametrů součástky.

Vnitřní odpor zdroje – odpor zdroje, omezující maximální velikost odebíraného proudu, tj. způsobující pokles napětí zdroje při zatížení.

Voltampérová charakteristika – závislost mezi napětím na svorkách určitého prvku a proudem jím protékajícím. U lineárních prvků je lineární (přímka).

Závěrný směr – směr, v němž polovodičový přechod nevede elektrický proud. Zavřený tranzistor - tranzistor v nevodivém stavu. Zbytkové napětí – viz saturační napětí. Zbytkový proud – proud protékající po-

lovodičovým přechodem při závěrné polarizaci (saturační proud).

Označení, používaná ve výkladech a výpočtech (kromě běžného značení

R, C, L, T, D, f \boldsymbol{B} baterie

 $C_{\mathbf{v}}$ vazební kondenzátor h_{21e}

proudový zesilovací činitel pro

malé střídavé signály

 I_1, I_{vst} vstupní proud $I_{\mathbf{B}}$ proud báze $I_{\mathbf{C}}$ proud kolektoru

 I_{CB0} zbytkový proud kolektor-báze I_{CE0}

zbytkový proud kolektor-

-emitor

 $I_{\mathbf{E}}$ proud emitoru $I_{\mathbf{s}}$ řídicí proud $I_{\mathtt{st}}$ střídavý proud $I_{\mathbf{z}}$ proud zátěží $P_{\mathbf{C}}$ kolektorová ztráta

 $R_{\mathbf{B}}$ odpor v přívodu k bázi

 $R_{\mathbf{C}}$ kolektorový odpor $R_{\mathbf{E}}$ emitorový odpor R_{z} zatěžovací odpor t_1 délka impulsu t_2 délka mezery $U_{
m BE}$

napětí báze-emitor $U_{\mathtt{BES}}$ saturační napětí báze-emitor

 U_{CB} napětí kolektor-báze $U_{{f C}\,{f E}}$ napětí kolektor-emitor U_{CES} saturační napětí kolektor-

-emitor

 U_{C} napětí na kondenzátoru $U_{\mathbf{E}}$

napětí na emitoru $U_{\mathbf{n}}$ napájecí napětí uokamžité napětí $U_{\mathbf{0}}$ počáteční napětí U_1 , U_{vst} vstupní napětí $U_{f p} \ U_{f g}$ závěrné předpětí řídicí napětí $U_{\mathtt{st}}$ střídavé napětí $U_{\mathbf{z}}$ napětí na zátěži

 $X_{\mathtt{L}}$ indukční reaktance proudový zesilovací činitel v zapojení se společnou bází

proudový zesilovací činitel

v zapojení se společným emitorem; zde používán k označení tohoto parametru na hranici nasycení časová konstanta

Spínač jako prvek elektrických obvodů

Nedílnou součástí většiny elektrických obvodů je spínač. Používá se k připojování napájecích napětí, k přepínání různých součástek a obvodů, k odpojování (při jištění) ohrožených částí zařízení, k usměrňování střídavých napětí

a proudů apod.

U každého spínače rozeznáváme dva užitečné, žádoucí stavy - stav, kdy je spínač rozepnutý, a stav, kdy je sepnutý. V rozepnutém stavu by měl ideální spínač mít nekonečný odpor, v sepnutém stavu odpor nulový. Přechod z jednoho stavu do druhého by měl nastat v nekonečně krátkém čase (obr. la). Různé spínače se těmto ideálním vlastnostem více či méně přibližují; v rozepnutém stavu není odpor nekonečný, má určitou konečnou velikost, v sepnutém stavu není nulový, je však velmi malý (obr. 1b). Na ideálním spínači nevznikají žádné ztráty, protože proud protékající spínačem (nebo napětí na svorkách spínače) je vždy roven nule a doby přechodu jsou nekonečně krátké. Na skutečném spínači vždy nějaké ztráty vznikají; záleží na jeho jakosti, jak jsou tyto ztráty veliké. Mají-li být ztráty co nejmenší, je nutné volit odpor spínané zátěže tak, aby byl mnohem menší, než je odpor spínače

Obr. 1. Charakteristiky ideálního a skutečného spínače

β

v rozepnutém stavu, avšak přitom mnohem větší, než je jeho odpor ve stavu

sepnutém.

Spínání je tedy charakterizováno náhlou změnou impedance v elektrickém obvodu, popř. v přívodu k němu. Změny se dosahuje buď změnou účinného průřezu vedení z nuly na konečnou velikost (u kontaktního spínání), nebo změnou vodivosti určité části vedení, jehož průřez se nemění (u spínání bezkontaktního).

Každý spínač je charakterizován třemi stavy a jim odpovídajícími pa-

rametry:

rozepnutý stav – odpor spínače R_{s1} , přípustné napětí U_s na svorkách spínače, proud I_s , protékající spínačem;

přechodný stav – doba trvání přechodného

stavu;

sepnutý stav – odpor spínače R_{s2} , proud I_s , který smí spínačem protékat, úbytek napětí U_s na sepnutém spínači.

Spínače dělíme do dvou základních kategorií – na spínače kontaktní a bezkontaktní. Do první kategorie patří všechny mechanické spínače a přepínače, které mohou být ovládány ručně, elektromagneticky aj., dále relé, rtuťové spínače ap. Do kategorie bezkontaktních spínačů patří spínače s elektronkami, tyratrony, magnetické prvky a polovodičové spínače – diody, tran-

zistory, tyristory a další. Srovnání vlastností jednotlivých typů spínačů je v tab. 1.

Výhody a nevýhody bezkontaktních spínačů

Výhody

 Bezkontaktní spínače nemají pohyblivé části. Spínání probíhá bezhlučně, bez nárazů a otřesů.

2. Spínání probíhá v pevné fázi hmoty, není tedy provázeno vznikem elektrického oblouku, jiskření, opálení

kontaktů ap.

3. Doby přechodů mezi sepnutým a rozepnutým stavem jsou velmi krátké ve srovnání se spínači s kontakty.

4. Bezkontaktní spínače fungují v libovolné poloze a jsou odolné proti otřesům.

5. Spínače pro velké proudy jsou podstatně menší a lehčí, než jejich mechanická obdoba.

6. Polovodičové součástky jsou spolehlivé a mají dlouhou dobu života.

Nevýhody

1. V sepnutém stavu je na spínači větší úbytek energie, než u kontaktních spínačů, mají tedy větší ztráty.

2. Polovodičové spínače jsou citlivější

na přetížení.

3. Je nutné uvažovat vliv teploty okolí na parametry a funkci spínače; zane-

Tab. 1. Srovnání jednotlivých druhů spínačů

Druh spinače	Ro	ozepnutý st	av	Přechodný stav		Sepnutý stav			
	$R_{\mathrm{s}1}$ [M Ω]	U ₈ [V]	<i>I</i> ₈ [μΑ]	při zap. [μs]	při rozp. [μs]	$R_{82}\left[\Omega ight]$	I ₈ [A]	U _s [V]	
ideální	∞	∞	0	0	0	0	∞	0	
mechanický (kontaktní)	104	10° až 10°	0	104	2.104	10 ⁻⁵ až 10 ⁻⁸	10*	0,01	
elektronkový (tyratron)	104	10 ⁸ až 10 ⁴	0	10-8	103	10 až 100	30	10 až 20	
tranzistorový (Si)	10 až 100	10² až 10³	10° až 10°	1 až 10	10 až 30	10-2	100	0,1 až 1	
tyristorový	0,01až 10	10³	10 až 10³	1 až 10	10 až 100	10-1	300	1 až 2	

dbání tohoto vlivu může vést k selhání nebo ke zničení spínače.

4. I při rozepnutém stavu není spotřebič galvanicky oddělen od zdroje.

5. Vstupní (budicí) obvod je galvanicky spojen se spínaným obvodem.

Spínací obvody s polovodičovými diodami

Polovodičová dioda je tvořena polovodičovým přechodem (obr. 2). Podle technologie výroby dělíme polovodičové

diody na diody hrotové a plošné.

Hrotové diody se vyrábějí tak, že destička polovodiče typu n je připájena k jednomu vývodu, k druhému vývodu je připájen wolframový hrot. Tento hrot je přitlačen k polovodičové destičce typu n. Při výrobě je styk hrotu s polovodičovou destičkou vystaven přechodnému proudovému přetížení, při němž se v okolí hrotu vytvoří v materiálu, který byl původně typu n, nepatrná oblast typu p.

Plošné diody se vyrábějí buď slitinovou nebo difúzní technikou. V prvním případě se na polovodičovou destičku většinou typu n přiloží kousek kovu (india nebo hliníku). Potom se destička zahřeje tak, že v určité její oblasti vznikne slitina vodivostního typu p. Difúzní technika se obvykle uplatňuje při výrobě křemíkových diod. Na destičku polovodiče typu n se nejprve nanese vrstva kysličníku křemičitého z obou stran, potom se z jedné strany vrstva odstraní a destička se umístí do prostoru nasyceného bórem. Bór do nezakryté plochy destičky difunduje a přemění tak povrchovou vrstvu destičky na polovodič typu p.

Obr. 2. Polovodičová dioda

Z fyzikální podstaty funkce přechodu p-n při vedení elektrického proudu vyplývá, že vztah mezi proudem a napětím na jeho svorkách je nelineární. Přechod p-n lze popsat rovnicí

$$I = I_{\rm s} \left({
m e}^{-\frac{U}{U_{\Theta}} - 1}
ight) \, ,$$

kde I je proud procházející přechodem při napětí U. Napětí U je kladné, je-li dioda polarizována v propustném směru. Proud I_s je tzv. nasycený (saturační) proud přechodu a závisí na technologii a materiálu, z něhož je dioda vyrobena. Napětí U_{Θ} je tzv. teplotní potenciál

$$U_{\Theta}=rac{mk\Theta}{q}$$
 ,

kde k je Boltzmanova konstanta, q je elementární náboj, Θ je absolutní teplota ve °K. Korekční činitel m=1 pro případ, že napětí na diodě je určeno pouze úbytkem, vytvořeným difúzním proudem. Ve skutečné diodě se uplatňuje i úbytek, vytvořený tokem většinových nosičů, které kompenzují náboj menšinových nosičů a činitel m se pak mění v rozmezí m=1 až 2. Je-li napětí $U_{\Theta} > U$, lze v rovnici pro U zanedbat jedničku a rovnici zjednodušit na výraz

$$I=I_{\mathrm{s}}\,\mathrm{e}^{\;rac{U}{U_{m{\Theta}}}}\;.$$

Ve spínacích obvodech se dioda používá jako sepnutý spínač při propustné polarizaci a jako rozepnutý spínač při závěrné polarizaci. Je tedy nutné vědět, jaké napětí je na svorkách diody, jestliže vede, a jaký zpětný proud jí prochází, je-li uzavřena.

Saturační proud germaniové diody je při teplotě 20 °C asi $I_s = 10 \mu A$. Napětí na svorkách diody, prochází-li jí např. proud 1 mA, vypočítáme z předchozí rovnice:

$$U = U \ln \frac{I}{I_8} = 50 \ln 10^2 = 230 \text{ mV}.$$

Křemíkové diody mají saturační proud I_s o 3 až 6 řádů menší. Počítáme-li tedy s proudem $I_s = 1$ nA, bude napětí na svorkách diody

$$U = 50 \ln 10^6 = 50.6.2,3 = 690 \text{ mV}.$$

Z výpočtu je vidět, že u křemíkových diod je napětí na svorkách diody ve vodivém stavu větší, než u diod germaniových.

Pro závěrně polarizovaný přechod platí přibližně

 $I \doteq -I_{\rm s}$.

Typická voltampérová charakteristika polovodičové diody je na obr. 3. Proud v závěrném směru je u germaniových diod asi 10 až 100 μA, u křemíkových diod řádu jednotek μA. Napětí na diodě v propustném směru bývá u germaniových diod asi 0,3 V, u křemíkových diod 0,7 až 1 V. Základní parametry československých polovodičových diod, použitelných pro dále popisované aplikace, jsou v tab. 2 (2. str. obálky). Skutečné voltampérové charakteristiky diod GA201 a KA501 (germaniová a křemíková) isou na obr. 4

ková) jsou na obr. 4.

Při přibližných výpočtech používáme obvykle tzv. linearizaci voltampérové charakteristiky pomocí několika přímkových úseků. Dva nejpoužívanější způsoby linearizace voltampérové charakteristiky polovodičové diody jsou na obr. 5 a 6. První způsob zjednodušuje průběh charakteristiky do dvou úseků; považuje diodu za nekonečně velký odpor při polarizaci v závěrném směru a v propustném směru až do napětí U_0 . Od tohoto bodu považuje diodu za odpor, jehož velikost je dána směrnicí přímky, tj. podílem napětí $U = U_d$ — $-U_0$ a proudu I_d v kterémkoli místě charakteristiky. Druhý způsob zane-dbává úbytek na diodě v propustném směru a rozděluje charakteristiku diody na dvě přímkové části - pro záporné a pro kladné napětí U_d . V obou případech je dioda uvažována jako odpor,

Obr. 3. Charakteristika polovodičové diody

Obr. 4. Charakteristiky diod GA201 a KA501

Obr. 5. Linearizace voltampérové charakteristiky polovodičové diody

Obr. 6. Linearizace voltampérové charakteristiky polovodičové diody

Obr. 7. Zapojení jednocestného a dvojcestného usměrňovače

Obr. 8. Polaritní selekce

jehož velikost je v závěrném i v propustném směru dána směrnicemi příslušných přímek, tj. podílem $\frac{U_{\rm d}}{I_{\rm d}}$.

Spínací obvody s polovodičovými diodami rozdělujeme na tři skupiny. U první skupiny dochází ke spínání v závislosti na přenášeném signálu, změnou jeho polarity nebo velikosti. U druhé skupiny je spínání ovládáno řídicím napětím, přiváděným z jiného zdroje, než je přenášený signál. Sepnutý nebo rozepnutý stav trvá jen tak dlouho,

dokud působí řídicí napětí. U spínacích obvodů třetí skupiny stačí k trvalému sepnutí nebo rozepnutí jen krátký řídicí impuls. Patří sem bistabilní klopné obvody s diodami se záporným odporem. Protože tyto polovodičové prvky jsou na našem trhu těžko dostupné a jejich používání není běžné, budeme se blíže zabývat jen prvními dvěma skupinami.

Spínače řízené přenášeným signálem

Základním představitelem tohoto druhu spínačů je usměrňovač, ventil. Podle polarity přicházejícího napětí je ventil buď ve vodivém, nebo v nevodivém stavu a na jeho výstupu je jen napětí jedné polarity. Základní zapojení jednocestného a dvojcestného usměrňovače je na obr. 7. Dioda D v jednocestném usměrňovači propouští napětí U pouze tehdy, je-li na svorce I jeho kladný pól. V opačném případě je polarizována v závěrném směru a napětí nepropustí. Při střídavém sinusovém napětí propustí tedy pouze jeho kladné půlvlny. Ve dvojcestném usměrňovači na obr. 7b vede dioda D₁, je-li na svorce I kladný pól napětí. V tom okamžiku je na svorce 3 záporný pól napětí a dioda D2 nevede. V příští půlvlně se situace obrátí, vede dioda D_2 a nevede dioda D_1 . Katody obou diod jsou spojeny a připojeny na zátěž R_z . Průběh napětí na této zátěži je uveden v obrázku.

Dalším využitím stejného principu je např. tzv. polaritní selekce. Dvě základní zapojení jsou na obr. 8. Princip činnosti je velice jednoduchý. Má-li napětí U kladnou polaritu (na svorce I), je dioda D_1 polarizována v propustném směru a zátěží R_{z1} může protékat proud. Dioda D_2 je polarizována v závěrném směru a zátěž R_{z2} je tedy od napětí U odpojena. Při změně polarity napětí U se situace obrátí. Dioda D_2 vede a připojuje zátěž R_{z2} ke zdroji, dioda D_1 nevede a zátěž R_{z1} je od zdroje odpojena.

Tohoto principu lze jednoduše využít v praxi; na obr. 9 a 10 jsou dva praktické příklady polaritní selekce.

Ovládání dvou zvonků po jednom vedení

Často žijí dvě rodiny v jednom bytě, popř. podnájemník u bytné apod. V takovém případě je výhodné, když návštěvníci neobtěžují svým zvoněním všechny obyvatele bytu, ale mohou zazvonit jen na toho, s kým si přejí mluvit. Zřízení zvláštního zvonkového okruhu bývá z mnoha hledisek většinou nesnadné. Jednoduchou úpravou lze kýženého efektu dosáhnout bez větších zásahů do zvonkové instalace a s použitím jednoho stávajícího vedení.

Na obr. 9a je základní zapojení zvonkového okruhu; někde (často na nedostupném místě) je umístěn zvonkový transformátor, v bytě za dveřmi zvonek a okruh je uzavírán tlačítkem, umístěným u domovních dveří nebo branky. Uprava je vyznačena tučnými čarami na obr. 9b. Stiskneme-li tlačítko Tl_1 , uzavře se obvod přes diodu D_1 a D_2 do zvonku \mathcal{Z}_1 . Přes diodu D_1 projdou jenom kladné půlvlny, a přes obráceně polarizovanou diodu $\bar{D_4}$ tedy nemůže do zvonku Z2 protékat žádný proud. Stiskneme-li tlačítko Tl_2 , uzavře se obdobným způsobem obvod přes diodu D_3 a D_4 do zvonku \mathbb{Z}_2 .

I konstrukčně je celá úprava velmi jednoduchá. Diody lze umístit přímo do tlačítek, popř. do krytů zvonků. Potom už stačí paralelně propojit svorky takto upravených tlačítek a stejně tak svorky zvonků ("vybavených" diodami).

Obr. 9. Zapojení dvou zvonků na jedno vedení

Obr. 10. Domácí telefon s volbou dvou stanic

Zvonek nebo bzučák odebírají při napětí 5 V proud 300 až 500 mA. Diody musí být proto dimenzovány tak, aby tento proud vydržely bez poškození. Velmi dobře vyhoví diody KY701 nebo kterýkoli podobný typ.

Domácí telefon

Stejným způsobem jako zvonky v předchozím zapojení lze rozlišit i dva účastníky na domácím telefonu (obr. 10). Je-li spínač S_1 v poloze I, uzavírá se elektrický obvod z baterie B přes spínač S_1 , mikrofon M, diodu D_2 a sluchátko Sl_2 . Dioda D_1 je polarizována v nepropustném směru a ve sluchátku Sl_1 není proto nic slyšet. Při přepnutí S_1 do polohy 2 se změní polarita napájecí baterie a elektrický obvod se nyní uzavírá přes diodu D_1 a sluchátko Sl_1 .

Změna intenzity osvětlení

Zapojíme-li polovodičovou diodu do přívodu k žárovce, propustí (samozřejmě při napájení střídavým proudem) pouze kladné (nebo pouze záporné) půlvlny napájecího proudu (obr. 11). Efektivní hodnota proudu se tedy zmenší na polovinu a stejně se zmenší i intenzita světla žárovky. Spínačem S₂ můžeme diodu vyřadit a žá-

Obr. 11. Jednoduchá regulace svítivosti žárovky na střídavý proud

R_K 4/3 . 9

rovka svítí naplno. S výhodou lze využít vícepolohové síťové spínače (starší otočné) nebo dvojité páčkové spínače. V jednotlivých polohách je potom žárovka zhasnuta, svítí s polovičním jasem a svítí naplno. Dioda musí být dimenzována na síťové napětí a na proud, který žárovka ze sítě odebírá. Pro žárovky do 200 W vyhoví dioda KY705.

Rekuperační obvody

Je-li v obvodu stejnosměrného proudu (obr. 12) zařazena indukčnost L (např. vinutí relé), nahromadí se v jejím magnetickém obvodu energie $W_L = 1/2LI^2$. Po rozpojení obvodu nemůže proud v cívce náhle změnit svoji velikost a proto nabíjí kondenzátor, tvořený vlastní kapacitou cívky. Původní napětí, které bylo na indukčnosti L, změní proto při rozpojení obvodu svoji polaritu a zvětšuje se tak dlouho, dokud se všechna magnetická energie nezmění v elektrickou, nahromaděnou v kapacitě C. Neuvažujeme-li ztráty, platí

$$1/2LI^2 = 1/2CU^2_{\mathbf{C}}$$
.

Z tohoto vztahu dostaneme pro velikost napětí $U_{\mathbf{C}}$

$$U_{\mathrm{C}} = I \sqrt{rac{L}{C}}.$$

Protože vlastní kapacita cívek bývá malá, může první napěťová špička po rozpojení obvodu dosáhnout mnohonásobku napájecího napětí. To způsobuje namáhání izolace, opalování kontaktů spínače, rušení a při použití polovodičového spínače (např. tranzistoru, obr. 12b) může způsobit jeho průraz.

Obr. 12. Spínání indukční zátěže

Obr. 13. Diodová ochrana při spínání indukční zátěže

Tomuto jevu lze odpomoci zapojením podle obr. 13. Pokud je spínač sepnut je dioda D polarizována v závěrném směru a její vliv se neuplatní. Po přerušení obvodu se změní polarita napětí na cívce L, toto napětí je prakticky ihned zkratováno diodou D. Protože proud v cívce zaniká s časovou konstan-

tou $\frac{L}{R}$, a protože je odpor diody D

v propustném směru malý, zpomalí se tímto zapojením např. odpad relé (je-li cívka L jeho vinutím). Zlepšení se dosáhne zapojením Zenerovy diody do série s diodou D. Zenerova dioda omezí vzniklé přepětí na velikost svého Zenerova napětí a současně zkrátí dobu zániku proudu, protože trvale vytváří konstantní "protinapětí".

Hradlové obvody

Jsou to obvody, které se používají v automatizaci a výpočetní technice tam, kde je nutné, aby signál procházel obvodem pouze při splnění určitých podmínek. Používají se např. při signalizaci poruchy nebo nebezpečí, kdy poplašné zařízení má fungovat pouze v případě, dojde-li k nějaké poruše nebo k havarijní situaci. To je jeden způsob, jak může být podmíněn průchod signálu - je-li splněna alespoň jedna z určitého počtu podmínek. Takový hradlový obvod označujeme slůvkem "nebo" (buď první podmínka, nebo druhá, nebo třetí...). Druhým základním způsobem podmínění je splnění několika podmínek zároveň. Např. určitý přístroj může být zapnut, je-li správné napětí v síti, je-li teplota nižší než 30 °C a je-li

Obr. 14. Diodové hradlové obvody

stisknuto spouštěcí tlačítko. Takový hradlový obvod nazýváme "a" (první podmínka a druhá podmínka a třetí podmínka . . .).

Základní zapojení těchto dvou typů hradlových obvodů je na obr. 14. Na obr. 14a je obvod typu "nebo". Na vstupy A_1 , A_2 (popř. další, jak je naznačeno čárkovaně) je při splnění určité podmínky přivedeno napětí U_2 , při nesplnění U_1 . Řídící napětí U_8 musí být menší, než U_1 (je-li $U_1=0$, musí být Us záporné). Je-li na obou vstupech A_1 i A_2 napětí U_1 (žádná podmínka není splněna), jsou didody D_1 i D_2 polarizovány v propustném směru (na katodě je menší napětí než na anodě, $U_{\rm s} < U_{\rm 1}$), a napětí U_1 se objeví i na výstupu B. ${
m Je}$ -li např. splněna podmínka U_1 , je na vstupu A_1 napětí U_2 a protože dioda D_1 je stále polarizována v propustném směru, projde napětí U_2 na výstup B. Dioda D_2 se tím uzavře (má katodu kladnější než anodu) a zamezí tak nežádoucímu průchodu napětí U_2 na vstup A_2 . Ke stejné situaci dojde, je-li splněna pouze podmínka U_2 . Jsou-li splněny obě podmínky, situace se nezmění.

Druhý typ hradlového obvodu je na obr. 14b. Napětí, přiváděné na vstupy A_1 a A_2 je stejné jako v předchozím případě (při splnění podmínky U_2 , při nesplnění U_1 , $U_2 > U_1$). Řídicí napětí U_8 je tentokrát větší než napětí U_2 . Jsou-li na obou vstupech napětí U_1 (nesplněné podmínky), jsou diody D_1 i D_2 polarizovány v propustném směru a připojují na výstup B vstupní napětí U_1 . Splníme-li např. podmínku A_1 a na vstupu A_1 , bude napětí U_2 , situace se nezmění, protože výstup B zůstává stále připojen na napětí U_1 přes diodu D_2 . Obdobně

při splnění pouze podmínky A_2 se situace nezmění, protože výstup B bude připojen na napětí U_1 přes diodu D_1 . Teprve tehdy, bude-li na obou vstupech napětí U_2 , přenese se napětí U_2 i na výstup B. Signální napětí na výstupu B se tedy u hradlového obvodu typu "a" objeví pouze tehdy, jsou-li splněny všechny podmínky, tj. je-li na všech jeho vstupech signální napětí.

Směrovací obvody

V mnoha případech je zapotřebí, aby signál postupoval z určitého bodu jenom požadovaným směrem, k určenému dalšímu bodu, nebo aby cesta pro signál byla průchozí např. z místa A do místa B, ale nikoli již zpět z místa B do místa A.

Příklad takového obvodu je na obr. 15. Na obrázku je schéma bistabilního klopného obvodu (o tomto obvodu se podrobně píše na str. 31). Tento obvod má dva stavy – buď protéká proud tranzistorem T_1 , na jeho kolektoru je pak velmi malé napětí a tranzistor T2 je uzavřen (protože jeho báze je napájena právě z kolektoru T_1 přes odpor R_1), nebo se situace obrátí a otevře se tranzistor T_2 , napětí na jeho kolektoru se zmenší a tranzistor T_1 se uzavře, protože jeho báze je napájena z kolektoru T2. Žměny stavu bistabilního klopného obvodu lze dosáhnout např. tím, že přivedeme kladné napětí na bázi uzavřeného tranzistoru (stačí krátký impuls). K opakovaným změnám stavu je tedy zapotřebí přivádět kladný impuls střídavě na bázi T_1 a na bázi T_2 . Aby mohl mít bistabilní klopný obvod pouze jeden

Obr. 15. Ovládání čítače diodovými hradly

vstup a aby mohly být ovládací impulsy pouze jedné polarity, zapojíme do přívodu k oběma bázím diody podle obr. 15. Obvod pracuje takto: je-li tranzistor T_1 otevřen, je na jeho kolektoru malé napětí, které je přes odpor R_1 připojeno na bázi T_2 a zároveň na katodu diody D_2 . Přijde-li nyní na vstup A malý kladný impuls (větší než je napětí na kolektoru T_1), projde diodou D_2 na bázi tranzistoru T_2 . Diodou D_1 projít nemůže, protože je připojena katodou přes odpor R_2 na velké napětí kolektoru tranzistoru T_2 . Impuls způsobí změnu stavu obvodu, takže nyní je tranzistor T_1 uzavřen a T_2 otevřen. Další kladný impuls na vstupu A projde nyní naopak přes diodu D_1 na bázi tranzistoru T_1 . Dvojice diod D_1 a D_2 tedy propouští přicházející kladné impulsy střídavě na bázi prvního a druhého tranzistoru.

Další příklad směrovacího obvodu je na obr. 16. Bateriový přijímač má být v době svého používání doma připojen k zesilovači s reproduktorovými soupravami (s odpojením vestavěného reproduktoru) a současně má být také ze zdroje tohoto zesilovače napájen. Celý úkol lze vyřešit bez použití přepínače. Na konektor, určený k propojení přijímače se zesilovačem, se kromě výstupu z detektoru přijímače (horní konec potenciometru pro řízení hlasitosti) připojí také společný vodič napájení přijímače z místa A. Napájení bývá obvykle řešeno tak, že společný vodič postupuje z kladného pólu baterie na koncový nf stupeň, potom na nf předzesilovač a

Obr. 16. Úprava přijímače pro externí napájení

potom na mf obvody, směšovač a vstupní obvody. Přerušíme-li tento napájecí vodič v místě mezi nf a mf částí (přeškrábáním plošného spoje) a znovu jej propojíme diodou D, na základní funkci přijímače se nic nezmění. Dioda D je napětím baterie polarizována v propustném směru a všechny obvody přijímače tedy dostávají napětí z baterie. Vypneme-li přijímač a přes konektor připojíme zesilovač, dostane se napájecí napětí ze zesilovače přes konektor do bodu A a odtud na všechny obvody přijímače kromě nf zesilovače, protože dioda D je nyní polarizována v závěrném směru (její katoda je kladnější než anoda). Zenerova dioda ZD a odpor R_8 upravují napájecí napětí na požadovanou velikost; je vhodné zvolit Zenerovu diodu s napětím o málo větším, než je obvyklé napětí baterií, aby jí při provozu z baterií netekl proud a nezvětšovala tak odběr přijímače.

Jinou aplikací směrovacích obvodů jsou tzv. diodové matice. Na obr. 17 je naznačen princip takové matice. V mnoha automatizačních nebo výpočetních obvodech je zapotřebí, aby určité kombinaci vstupních údajů odpovídala určitá kombinace výstupních údajů. Např. je-li signál na vstupech A, B a D, má být i na výstupech 1, 2 a 3. Je-li pouze na vstupu B, má být na výstupech 2 a 3 atd. Kdybychom nepoužili ve spojení příslušných vstupů a výstupů diody, ale spojili je přímo, došlo by např. k tomu, že v druhém případě – je-li signál na vstupu B - by byl signál nejen na výstupu 2 a 3, ale i na 1, kam by se dostal přes spoje, nahrazující diody D_2 , D_5 a

Obr. 17. Diodová matice

Obr. 18. Diodové spínače

 D_4 . Při použití diod touto cestou projít nemůže, protože dioda D_5 je polarizována v opačném směru (všude předpokládáme kladný signál, signál s kladnou polaritou).

Spínače řízené cizím napětím

Princip diodového spínače, řízeného cizím napětím, je na obr. 18. Střídavé signální napětí $U_{\rm st}$ je od stejnosměrného napájecího obvodu odděleno kondenzátory C_1 a C_2 . Má-li řídicí napětí U_8 na svorce 1 záporný pól a na svorce 2 kladný pól, je dioda D polarizována v propustném směru a propouští signální napětí k zátěži Rz. Je-li polarita řídicího napětí U_B opačná, je dioda polarizována v závěrném směru a napětí $U_{
m st}$ nepropustí. Nevýhodou tohoto zapojení je, že v rozepnutém stavu se může signální napětí dostat k zátěži přes odpor R_1 , zdroj U_8 a odpor R_2 . Odpory R_1 a R_2 musí být proto co největší.

Aby se uvedená nevýhoda odstranila, spojuje se obvykle jeden pól zdroje řídicího napětí U_8 s jedním pólem zdroje signálu $U_{\rm st}$ (v bodě X na obr. 18). Zamezí se tím pronikání signálu k zátěži v rozepnutém stavu, ale odpor R_1 (v sepnutém stavu i odpor R_2) jsou připojeny paralelně ke zdroji signálu a za-

těžují jej.
Často používané zjednodušené základní zapojení je na obr. 18b. Odpor R_1 je vypuštěn a nahrazuje jej vnitřní odpor zdroje $U_{\rm st}$, tzn., že obvod stejnosměrného řídicího napětí se uzavírá od svorky I zdroje $U_{\rm s}$ přes odpor R_2 , diodu D_1 a zdroj $U_{\rm st}$ ke svorce 2 zdroje $U_{\rm s}$. Čárkovaně naznačená dioda D_2 se někdy zapojuje do obvodu pro zlepšení funkce spínače v rozepnutém stavu; je-li na svorce I zdroje $U_{\rm s}$ kladný pól,

je dioda D_1 polarizována v závěrném směru, nevede (rozepnutý stav) a dioda D_2 je současně polarizována v propustném směru a zkratuje zátěž.

Pro výpočet diodového spínače (obr. 19) musíme znát základní parametry signálu, který chceme spínat, tj. jeho napětí, proud, kmitočet a vnitřní odpor zdroje signálu. Napětí a proud určují parametry řídicího zdroje, kmitočet kapacitu oddělovacích kondenzátorů a vnitřní odpor zdroje signálu musíme znát k vhodné volbě odporů R_1 a R_2 . Dost často nebudeme znát spínaný proud $I_{\rm st}$, ale téměř vždy známe zatěžovací odpor R_z . Spínaný proud snadno vypočítáme jako podíl

$$I_{\rm st} = \frac{U_{\rm st}}{R_{\rm z}} \ .$$

Dioda vede pouze tehdy, protéká-li jí proud v propustném směru. Spínaný střídavý proud mění svou velikost od maximální kladné velikosti přes nulu do maximální záporné velikosti a v každém okamžiku se přičítá (popřípadě odčítá) k stejnosměrnému proudu I_s , trvale protékajícímu diodou ze zdroje $U_{\rm s}$. Aby byla splněna podmínka vodivosti diody, musí diodou protékat proud v propustném směru i v nejnepříznivějším případě, tj. tehdy, má-li spínaný střídavý proud právě maximální velikost v opačném směru, než jakým protéká proud Is. Názorně je to vidět na obr. 20 na voltampérové charakteristice polovodi-čové diody. Kdyby byl stejnosměrný proud $I_d = I_s$ protékající diodou menší než I_1 , dosahovaly by záporné půlvlny střídavého proudu pod vodorovnou osu x a v určitých chvílích by diodou netekl proud, dioda by nevedla. Jak je zřejmé

Obr. 19. Základní zapojení diodového spínače

Obr. 20. Určení řídicího proudu

z obrázku, musí být tedy stejnosměrný proud $I_s = I_d$ alespoň stejný jako amplituda střídavého spínaného proudu. V teoretickém úvodu byla odvozena velikost napětí U_0 , která je na diodě, je-li polarizována v propustném směru. Jinými slovy to znamená, že na diodu musíme přivést alespoň napětí U_0 , aby byla polarizována v propustném směru. Tomuto napětí U_0 odpovídá samozřejmě určitý proud I_0 a ten musíme při přesném výpočtu rovněž vzít v úvahu. Pro stejnosměrný proud I_s protékající diodou D ze zdroje U_s musí tedy platit

$$I_s \geq 1.4I_{st} + I_0.$$

Výraz $1,4I_{\rm st}$ udává špičkovou hodnotu

střídavého proudu $I_{\rm st}$.

Jak již bylo řečeno, odpor R_1 (a v sepnutém stavu i odpor R_2) je připojen paralelně ke zdroji signálu a zdroj zatěžuje. Aby tento vliv byl co nejmenší (a spínač tak neovlivňoval vlastní činnost obvodu), volíme odpory R_1 a R_2 stejné a tak veliké, aby jejich paralelní kombinace připojená ke zdroji signálu měla odpor alespoň desetkrát větší, než je vnitřní odpor zdroje signálu.

$$\frac{R_1}{2}=\frac{R_2}{2}\geq 10R_1.$$

Protože odpory R_1 a R_2 jsou obvykle značně veliké, lze (vzhledem k nim) zanedbat vnitřní odpor řídicího zdroje U_s i odpor diody D v propustném směru a celkový odpor stejnosměrného řídicího obvodu musí tedy být

$$R=R_1+R_2\geq 40R_1.$$

Nyní známe potřebný stejnosměrný proud I_8 i celkový odpor obvodu R a

můžeme proto určit záporné stejnosměrné napětí U_s , potřebné ke spolehlivému sepnutí spínače:

$$U_{\rm s} \geq I_{\rm s} R$$
.

Může se stát, že napětí vypočítané velikosti nemáme k dispozici. Je-li použitelné záporné napětí větší, upravíme velikost odporů tak, aby obvodem tekl potřebný proud I_s :

$$R'=\frac{U_s}{I_s}=R_1+R_2.$$

Funkce spínače se ještě zlepší, neboť čím větší jsou odpory, tím méně zatě-

žují zdroj signálu.

Máme-li k dispozici menší záporné napětí než vypočítané, musíme opět zachovat potřebnou velikost I_s , tj. vypočítáme odpory podle předchozího vztahu. Aby malé odpory příliš nezatěžovaly zdroj signálu, zařadíme do série s nimi tlumivky. Jak známo, tlumivka klade stejnosměrnému proudu malý odpor, daný pouze odporem jejího vinutí, zatímco střídavému proudu klade odpor

$$X_{\rm L}=2\pi f L$$
 $(\Omega;{\rm Hz},{\rm H}),$

kde f je kmitočet střídavého proudu a L indukčnost tlumivky. Potřebnou indukčnost tlumivky určíme tak, aby její odpor pro spínaný střídavý signál doplnil vypočítanou velikost odporů R_1 a R_2 na odpor R, stanovený na začátku výpočtu $(R \ge 40R_1)$:

$$X_{L} = R - R' = 2\pi f L,$$

$$L = \frac{R - R'}{2\pi f}.$$

Vypočítanou indukčnost rozdělíme na polovinu, navineme dvě stejné tlumivky $\left(\text{každá má tedy indukčnost } \frac{L}{2}\right)$, a ty

zapojíme do série s odpory R_1 a R_2 . Nyní musíme stanovit kladné napětí, potřebné k rozpojení spínače. Dioda ne-

vede, je-li polarizována v závěrném směru, tj. je-li napětí na její katodě větší než je napětí na její anode. Protože signální střídavé napětí

Obr. 21. Určení řídicího napětí

 $U_{\rm st}$ se v každém okamžiku přičítá k napětí na anodě diody D, je nutné zajistit, aby i při maximálním kladném střídavém napětí byla anoda diody zápornější než její katoda. Názorně je to vidět opět na voltampérové charakteristice diody (obr. 21). Kdyby bylo řídicí napětí U_s menší než U_1 , zasahovaly by kladné půlvlny střídavého signálního napětí do oblasti vodivého stavu diody a spínaly by tak při svých vrcholech spínač. I zde je uvažováno napětí $U_{f 0}$, od něhož dioda začíná vést, ale jistější je s tímto napětím nepo-čítat a volit U_8 menší než U''_1 , a to tak, aby napětí na anodě diody bylo stále záporné. Jak je patrno z obrázku, musí tedy být U_8 větší, než je amplituda U_{st} :

$$U_{\rm s} > 1,4U_{\rm st}$$

(minimálně však $U_s \ge 1,4U_{st} + U_o$).

Jak je z výpočtu zřejmé, napětí potřebné k sepnutí a k rozepnutí spínače nejsou stejná. Z praktických důvodů je lze samozřejmě vždy upravit tak, aby byla stejná. Větší napětí pro sepnutí není na závadu, na závadu není ani větší záporné napětí k rozepnutí. Polarita zdroje se samozřejmě mění; pro sepnutí musí být kladný pól na svorce 1, pro rozepnutí na svorce 2.

Nyní zbývá ještě určit kapacitu oddělovacích kondenzátorů C_1 a C_2 . Jejich odpor (pro střídavý proud) musí být zanedbatelný proti zatěžovacímu odporu R_z .

$$X_{\rm C} < \frac{R_{\rm z}}{100} = > \frac{1}{2\pi fC} < \frac{R_{\rm z}}{100}$$

$$C > \frac{100}{2\pi f R_z},$$

$$C_1 = C_2.$$

Protože v radioamatérské praxi se asi nevyskytne případ, kdy je třeba spínat velká střídavá napětí nebo proudy, lze ve spínači použít prakticky libovolné křemíkové, popř. i germaniové diody.

Na závěr shrneme výpočet spínacího obvodu s diodami do základních kroků.

Výpočet diodového spínače

1. Určíme spínaný proud

$$I_{\mathrm{st}} = \frac{U_{\mathrm{st}}}{R_{\mathrm{z}}}$$
 [mA; V, k Ω]

2. Stanovíme stejnosměrný proud z řídicího zdroje

$$I_{\rm s} \geq 1.5 I_{\rm st}$$
.

3. Stanovíme celkový odpor řídicího obvodu

$$R = R_1 + R_2 \ge 40R_1, R_1 = R_2.$$

4. Vypočítáme záporné napětí řídicího zdroje (pro spínání)

$$U_{\mathbf{s}} = I_{\mathbf{s}}R$$
 [V; mA, k Ω]

Máme-li k dispozici jiné napětí, vypočítáme

$$R' = \frac{U_s}{I_s}$$
 [k\O; V, mA].

Je-li R' > R, je to v pořádku, je-li R' < R, vypočítáme indukčnost doplňujících tlumivek

$$\frac{L}{2} = \frac{R - R'}{4\pi f} \qquad [\text{mH; } \Omega, \text{kHz}].$$

5. Stanovíme kladné napětí, potřebné k rozpojení spínače

$$U_{\rm s}>1,4U_{\rm st}$$
.

6. Vypočítáme kapacitu oddělovacích kondenzátorů

$$C_1 = C_2 > \frac{100}{2\pi f R_z} \, [\mu {
m F; kHz, k}\Omega].$$

Příklad výpočtu

Chceme přepínat dva zdroje nízkofrekvenčního signálu na vstup emitorového sledovače. Zdroji signálu jsou obvody s tranzistory, zapojené jako emitorové sledovače. Jde o hudební nf signál v kmitočtovém rozsahu 30 Hz až 20 kHz, maximální střídavé napětí na emitorech tranzistorů (vstupy spínačů) je 2 V.

Ze schématu vidíme (obr. 22), že vnitřní odpor zdroje je prakticky shodný s velikostí emitorového odporu, tj. 680 Ω . Zatěžovací odpor (vzhledem k tomu, že jde o emitorový sledovač, jehož vstupní odpor je poměrně velký) odhadneme na $R_z=25~\mathrm{k}\Omega$.

1. Vypočítáme spínaný střídavý proud

$$I_{\rm st} = \frac{U_{\rm st}}{R_{\rm z}} = \frac{2}{25} = 0.08 \text{ mA}.$$

2. Stanovíme I_8

$$I_{\rm s} \ge 1.5I_{\rm st} = 1.5 \cdot 0.08 = 0.12 \text{ mA},$$

zvolíme $I_{\rm s} = 0.15 \text{ mA}.$

3. Určíme

$$R = R_1 + R_2 \ge 40R_1 = 40 .680 =$$
 $= 27 200 \Omega = 27.2 \text{ k}\Omega,$
zvolíme $R = 30 \text{ k}\Omega$ a z toho $R_1 =$
 $= R_2 = 15 \text{ k}\Omega.$

 Dále vypočítáme záporné napětí, potřebné k sepnutí

$$U_{\rm s} = I_{\rm s}R = 0.15 .30 = 4.5 {\rm V}.$$

Obr. 22. Praktický návrh diodového spínače (přepínače)

Obr. 23. Navržený diodový přepínač

5. Stanovíme potřebné kladné napětí k rozepnutí

$$U_{\rm s} \ge 1.4U_{\rm st} = 1.4.2 = 2.8 \, \rm V$$

zvolíme $U_s = 4,5$ V proto, aby obě řídicí napětí byla stejně velká a abychom mohli pouze měnit polaritu napětí jediného zdroje.

6. Stanovíme kapacitu oddělovacích kondenzátorů

$$C_1 = C_2 > \frac{100}{2\pi f R_z} =$$

$$= \frac{100}{6,28.0,03.25} = \frac{100}{4,71} \doteq 20 \,\mu\text{F},$$

s ohledem na tolerance běžných elektrolytických kondenzátorů zvolíme $C_1 = C_2 = 50 \ \mu\text{F}$.

Ke spínání použijme křemíkovou diodu KA501. Protože má být vždy připojen jenom jeden zdroj signálu, bude vždy jeden spínač sepnut a jeden rozepnut. Dosáhneme toho snadno tak, že budeme ovládat oba spínače současně, ale v jednom z nich obrátíme polaritu diody. Dalšího zjednodušení dosáhneme propojením bodů A a A' (viz obr. 23). Můžeme potom vypustit odpor R_2 a kondenzátor C'_2 . Na funkci spínačů se tím nic nezmění. Kondenzátor C_3 zabraňuje pronikání nf signálu do zdroje řídicího napětí.

Jednoduchá destička s plošnými spoji a rozmístění součástek pro tento jednoduchý přepínač je na obr. 24. Vzorek přepínače byl proměřen tak, že vstup byl napájen z nf generátoru o vnitřním

odporu $600~\Omega$, výstup byl zatížen odporem $25~k\Omega$. Naměřené údaje pro různá vstupuí napětí jsou v tab. 3.

Obr. 24. Rozložení součástek na destičce s plošnými spoji navrženého diodového přepínače (G55)

Tab. 3. Naměřené údaje na přepínači s diodami

Vstupní napětí	0,5 V			1 V			2 V		
Kmitočet	30 Hz	1 kHz	10 kHz	30 Hz	1 kHz	10 kHz	30 Hz	1 kHz	10 kHz
Výstupní napětí v sepnutém stavu [mV]	0,475	0,475	0,475	0,9	0,9	0,9	1,3	1,3	1,3
Útlum v sepnutém stavu [dB]	0,5	0,5	0,5	1	1	1	4	4	4
Výstupní napětí v rozepnutém stavu [mV]	⟨0,5	⟨0,5	2,5	(0,5	⟨0,5	2,5	⟨0,5	⟨0,5	2,7
Útlum v rozepnu- nutém stavu [dB]	>60	>60	47	>60	>60	47	>60	>60	46

Další zapojení diodových spínačů

Ze základního zapojení lze odvodit mnoho dalších složitějších zapojení. Některá z nich jsou na obr. 25. Na obr. 25a je spínač se třemi diodami. Je-li na svorce 2 záporný pól zdroje U_s , jsou diody D_1 i D_2 polarizovány v propustném směru a napětí $U_{\rm st}$ jimi prochází k zátěži R_z . Dioda D_3 je polarizována v závěrném směru a neuplatní se. Přivedeme-li na svorku 2 kladný pól řídicího napětí, je zátěž R_z oddělena od zdroje signálu $U_{\rm st}$ dvěma nepropustně polarizovanými diodami D_1 a D_2 ; kdyby pronikl nějaký signál do bodu A, je tam zkratován diodou D_3 , která je polarizována v propustném směru.

Na obr. 25b je dvojpólový spínač, vzniklý jednoduchým zdvojením základ-

ního zapojení.

Na obr. 25c je jiná verze diodového přepínače podle obr. 22 (příklad výpočtu); na rozdíl od přepínače na obr. 22 má jeden vstup a dva výstupy. Stejnosměrné obvody řídicího napětí se uzavírají přes vnitřní odpor zdroje R_i .

Obr. 25. Různá zapojení diodových spínačů

Na obr. 25d je zapojení můstkového spínače. Jeho výhodou je, že stejnosměrné řídicí napětí "nezasahuje" do spínaného obvodu. Nevýhodou je, že zdroj řídicího napětí $U_{\rm s}$ není ani jedním pólem spojen se zemí. Je-li na svorce 1 kladný pól U_s , jsou všechny čtyři diody polarizovány v propustném směru a vytvářejí tak dokonalé spojení mezi zdrojem $U_{\rm st}$ a zátěží $R_{\rm z}$. Ždroj $U_{\rm st}$ není přitom zatěžován žádnou přídavnou impedanci. Je-li zdroj $U_{\mathbf{s}}$ pólován obráceně, jsou naopak všechny čtyři diody polarizovány v závěrném směru a zátěž R_z je od zdroje odpojena. Na obr. 25e je podobný spínač, spínací obvod je však zařazen paralelně k zátěži. Jsou-li diody polarizovány v propustném směru, je zatěžovací odpor prakticky zkratován. Aby nebyl zkratován i zdroj střídavého napětí, je v obvodu odpor R_2 . Jsou-li diody polarizovány v závěrném směru, jejich vliv se neuplatní a napětí $U_{
m st}$ prochází přes odpor R_2 k zátěži R_z .

Spínač na obr. 25f využívá pomocného zdroje B, který udržuje diodu D_1 ve vodivém stavu, není-li na svorku 2 připojeno žádné napětí. Stejnosměrný obvod se uzavírá ze záporného pólu baterie B přes odpor R_1 , diodu D_1 a vnitřní odpor R_1 zdroje $U_{\rm st}$ zpět na kladný pól baterie B. Připojíme-li ke svorce 2 kladný pól řídicího napětí $U_{\rm s}$, je didoda D_1 polarizována v závěrném směru a proud z baterie B protéká přes odpor R_1 , diodu D_2 a zdroj U_8 .

Přepínač vlnových rozsahů s diodami

Výhodou diodových spínačů a přepínačů ve vysokofrekvenčních i v nízkofrekvenčních obvodech je to, že vlastní mechanický přepínač (spínač) může být libovolně vzdálen od přepínaných obvodů a přívody k němu nemusí být stíněné, protože přepíná (spíná) pouze řídicí stejnosměrné napětí. Přepínač stačí obvykle jednopólový, protože všechny obvody, které mají být sepnuty najednou, jsou ovládány jediným řízeným napětím po jediném vodiči od přepínače.

Praktické zapojení přepínače vstupních laděných obvodů v přijímači je na obr. 26. Obvod může být použit jako vstupní část přijímače s elektronkou

Obr. 26. Diodové přepínání vlnových rozsahů

nebo tranzistorem typu FET na vstupu (vstup s velkým odporem). Lze jím přepínat např. vstupní obvody přijímačů pro amatérská pásma nebo pro krátko-

vlnné rozhlasové rozsahy apod.

Je-li na svorce 1 kladný pól řídicího napětí U_s (obr. 26), dostane se toto napětí jednak přes odpor R_1 a cívku L'_1 na anodu diody D_1 , ta je tím polarizována v propustném směru a připojí anténní vinutí L'_1 k anténní svorce A (stejnosměrný obvod se uzavře přes tlumivku Tl_1), jednak se kladné napětí dostane přes odpor R_1 a vinutí L_1 na anodu diody D_2 , která je tím rovněž polarizována v propustném směru a připojí laděný obvod L_1C_1 na vstup přijímače (B). Stejnosměrný obvod se uzavře přes tlumivku Tl₂. Obě tlumivky mohou být nahrazeny i odpory 0.5 až $1 M\Omega$ (spínaná napětí a proudy jsou velmi malé). Je-li na svorce 1 záporný pól řídicího napětí U_8 , jsou diody D_1 a D_2 polarizovány v závěrném směru, takže odpojí anténní vinutí L'_1 od antény a ladicí obvod L_1C_1 od vstupu přijímače, a navíc jsou nyní polarizovány v propustném směru diody D₃ a D₄, které obě vinutí zkratují. K přepínání lze použít např. tlačítkový přepínač, kde každé tlačítko může mít jen jeden přepínací kontakt (v rozepnutém stavu připojuje na svorku $U_{\rm s}$ záporné napětí, v sepnutém stavu kladné napětí).

Přepínání krystalů v oscilátoru

Podobně jako v předchozím případě lze využít diodových spínačů k přepínání krystalů v oscilátoru (kalibrátoru). Jedno z možných zapojení je na obr. 27.

Oscilátor je v zapojení s kapacitním děličem a krystaly jsou připojovány přes oddělovací kondenzátor C_1 paralelně k tomuto děliči. Je-li v bodě A kladné napětí vzhledem k zemi, uzavírá se stejnosměrný obvod přes odpor R_1 a diodu D_1 , která tak připojuje k oscilátoru krystal X1. Dioda D2 je kladným napětím polarizována v závěrném směru a krystal X₂ zůstává odpojen. Je-li napětí v bodě A záporné, je situace opačná. Dioda D_2 připojí k oscilátoru krystal X_2 a dioda D_1 odpojí krystal X_1 . Polaritu řídicího napětí v bodě A lze přepínat dvojpólovým páčkovým přepínačem, řídicí napětí lze odebírat z jediného zdroje (viz obr. 27).

Tranzistor jako spínač

Stejně jako např. v zesilovacích stupních můžeme tranzistor i jako spínač zapojit třemi různými způsoby (obr. 28).

Obr. 27. Diodové přepínání krystalů v oscilátoru

Obr. 28. Základní zapojení tranzistorů

Na obr. 28a je zapojení se společnou bází. Proudové zesílení v tomto zapojení je menší než 1, vstupním obvodem musí proto protékat proud (I_1) větší, než je spínaný proud do zátěže (I_2) . Výstupní odpor tranzistoru je velký a při konstantním proudu I_1 je proud I_2 téměř nezávislý na velikosti zatěžovacího odporu R_z .

Na obr. 28b je tranzistorový spínač v zapojení se společným emitorem, které se používá nejčastěji. Proudové i napěťové zesílení je velké a k uvedení tranzistoru do vodivého stavu stačí malý vstupní proud I_1 (popř. napětí U_1). Použitelný pracovní rozsah ve statických charakteristikách je menší, než u zapojení se společnou bází.

Zapojení se společným kolektorem (obr. 28c) se používá – stejně jako v zesilovačích – zejména tam, kde potřebujeme velký vstupní a malý výstupní odpor. Napěťové zesílení je menší než jedna a k sepnutí tranzistoru je proto třeba větší vstupní napětí U_1 , než je napětí napájecího zdroje U_n .

Ve spínací technice se také často používá zapojení, kde jsou zaměněny funkce kolektoru a emitoru (inverzní zapojení); protože jeho vlastnosti jsou z hlediska spínání velmi výhodné, bude mu věnována zvláštní kapitola.

Abychom mohli zjistit, jak dalece se

vlastnosti tranzistoru blíží vlastnostem ideálního spínače, musíme se podrobněji seznámit se statickými charakteristikami tranzistoru a s jeho vlastnostmi v sepnutém a rozepnutém stavu. Budeme přitom předpokládat základní znalosti o fyzikální podstatě tranzistoru a o sestrojování jeho základních charakteristik, popř. o jejich významu. Kdo tyto znalosti nemá, může si je buď doplnit z literatury nebo může tuto kapitolu klidně vynechat a věnovat se až kapitole, věnované praktickým návrhům obvodů.

Pracovní oblasti tranzistoru

Tranzistor ve spínacím obvodu nahrazuje buď kontakt sepnutý (je ve vodivém stavu a protéká jím maximální požadovaný proud), nebo rozepnutý (kdy nevede a nemá jím protékat žádný proud). Protože se jeho pracovní bod pohybuje mezi oběma mezními stavy, nestačí znát jeho vlastnosti jen v okolí jednoho určitého pracovního bodu; pro pochopení funkce je třeba znát jeho celé charakteristiky.

Obr. 29. Tranzistor v zapojení se společnou bází jako spínač

Na obr. 29 jsou výstupní charakteristiky tranzistoru v zapojení se společnou bází. Proudové zesílení tranzistoru v tomto zapojení se blíží jedné a proud kolektoru (vynášený na svislé ose) je proto prakticky stejný, jako proud emitoru (vynášený jako parametr). Zvolený zatěžovací odpor (zde konkrétně $1,5 \text{ k}\Omega$) představuje přímka R_z , protinající charakteristiky. Po ní se pohybuje pracovní bod tranzistoru. V bodu A neprotéká vstupním obvodem žádný proud ($I_{\rm E}=$ = 0). Emitor i kolektor mají předpětí v závěrném směru. Obvodem emitoru i kolektoru protékají pouze nepatrné zbytkové proudy a tranzistor se chová jako rozepnutý spínač. Tato oblast nevodivý stav, rozepnutý spínač, uzavřený tranzistor - je ohraničena charakteristikou pro $I_{\rm E}=0$.

Od bodu A až k bodu B' prochází zatěžovací přímka tzv. aktivní oblastí. V této oblasti tranzistor zesiluje a chová se tak, jak to známe z běžných zapojení. Emitor má předpětí v propustném směru, kolektor v závěrném směru. Pracovní bod tranzistoru určíme jako průsečík zatěžovací přímky s charakteristikou propříslušný vstupní proud emitoru I_E . Např. pro proud $I_E = 2$ mA je pracovní bod v bodě B, kolektorový proud $I_C \doteq I_E = 2$ mA a napětí mezi kolektorem a bází $U_{CB} = 2$ V. Tato oblast je ohraničena bodem, v němž $U_{CB} = 0$.

Za bodem B' je tranzistor ve vodivém stavu v tzv. oblasti nasycení. Emitor i kolektor mají předpětí v propustném směru a proud kolektoru se již zvětšuje velmi nepatrně. V této oblasti je tranzistor analogií sepnutého kontaktu. Říkáme, že tranzistor je sepnut, otevřen, ve vodivém stavu.

Vlastnosti tranzistoru v zapojení se společnou bází se velmi blíží vlastnostem ideálního spínače.

Na obr. 30 jsou statické charakteristiky tranzistoru v zapojení se společným emitorem. Na první pohled je patrné, že pracovní rozsah tranzistoru jako spínače je menší, než v předchozím případě. Nevodivý stav je ohraničen charakteristikou pro $I_{\rm B}=0$. Přitom protéká kolektorem zbytkový proud $I_{\rm CE0}$. Podle předchozího rozdělení by

Obr. 30. Tranzistor v zapojení se společným emitorem jako spínač

však byla hranicí až charakteristika pro $I_{\rm B}=-I_{\rm CB0}$, protože tehdy protéká kolektorový proud $I_{\rm CB0}$. Pásmo mezi těmito dvěma charakteristikami lze považovat za přechodnou oblast mezi nevodivým stavem a aktivní oblastí.

Mezi bodem A a bodem B' se pohybuje pracovní bod po zatěžovací přímce (dané opět zatěžovacím odporem $1,5 \text{ k}\Omega$) v aktivní oblasti. Bod B je příkladem pracovního bodu v aktivní oblasti. Přechod mezi aktivní oblastí a vodivým stavem je podle předchozího rozdělení ohraničen čárkovanou čarou, odpovídající podmínce $U_{CB} = 0$. Je patrné, že hranice mezi aktivní oblastí a vodivým stavem rovněž není ostrá. Na rozdíl od zapojení se společnou bází se při zapojení se společnou bází se při zapojení se společnou bází se při zapojení se společným emitorem nikdy nedosáhne ideálního stavu, tj. napětí U_{CE} nikdy není rovno nule.

Nevodivý stav tranzistoru

Z rozboru charakteristik vyplynulo, že v zapojení se společnou bází prochází kolektorovým – tj. spínaným – obvodem v nevodivém stavu pouze

Obr. 31. Voltampérová charakteristika tranzistoru v oblasti počátku souřadnic

zbytkový proud I_{CB0} . Tento proud je u germaniových tranzistorů několik μ A, u křemíkových tranzistorů je asi o dva řády menší. Zbytkový proud se zvětšuje s teplotou, avšak i za nepříznivého stavu není obvykle tak velký, aby mohl ovlivnit činnost spínaného obvodu. Při závěrném předpětí vstupního obvodu se zbytkový proud zmenší jen velmi nepatrně, takže ho můžeme považovat za nejmenší dosažitelný proud v nevodivém stavu. Výhodou tohoto jevu je velké přípustné napětí kolektor-báze U_{CB} .

Poněkud méně příznivá je situace v zapojení se společným emitorem při vstupním proudu $I_{\rm B}=0$. Spínaným obvodem protéká v tom případě zbytkový proud kolektor-emitor $I_{\rm CE0}$. Tento proud je podstatně větší než $I_{\rm CB0}$ – je s ním vázán vztahem

$$I_{\text{CEO}} = (1 + \beta)I_{\text{CBO}}.$$

Je zřejmé, že u germaniových tranzistorů s proudovým zesilovacím činitelem $\beta \doteq 100$ může být zbytkový proud I_{CE0} až 1 mA a s teplotou se bude dále značně zvětšovat. Z toho vyplývá, že nevodivý stav, určený podmínkou $I_{\text{B}} = 0$, je pro germaniové tranzistory

v zapojení se společným emitorem prakticky nepoužitelný. Lze ho použít u křemíkových tranzistorů, jejichž zbytkové proudy jsou nejméně o dva řády menší.

Ze vstupních charakteristik zapojení se společným emitorem (obr. 31) vyplývá, že přivedeme-li na bázi malé závěrné předpětí $-U_{\rm BE}$, zmenší se emitorový proud $I_{\rm E}$ na nulu a kolektorový proud $I_{\rm C}$ na velikost $I_{\rm CB0}$. Při dalším zvětšování záporného předpětí se již $I_{\rm C}$ zmenšuje zcela nepatrně. Je patrné, že tímto způsobem lze dosáhnout v zapojení se společným emitorem stejných vlastností, jako v zapojení se společnou bází při $I_{\rm E}=0$; bází musí protékat závěrný proud o velikosti alespoň $|I_{\rm B}|=|I_{\rm CB0}|$.

Často se používá zapojení, kdy je mezi bázi a emitor připojen odpor R_B (obr. 32). Není-li odpor připojen (tj. je-li $R_B = \infty$), je mezi bází a emitorem napětí U_{BE0} a kolektorovým obvodem protéká proud I_{CE0} . Připojíme-li odpor R_B , zmenší se napětí U_{BE} a tím se zmenší i proud I_C (viz charakteristika na obr. 31). V mezním případě, tj. spojíme-li vstupní obvod nakrátko $(R_B = 0)$, bude $U_B = 0$ a proud kolektoru se zmenší na velikost jen o málo větší než je I_{CB0} . Se zmenšováním odporu R_B se zároveň zvětšuje i přípustné napětí U_{CE} .

Vlastnosti tranzistoru v aktivní oblasti

Rozborem činnosti tranzistoru v této oblasti se nebudeme příliš zabývat. Z charakteristik je zřejmé, že tranzistorem protéká určitý proud kolektoru $I_{\rm C}$ a mezi jeho emitorem a kolektorem (popř. bází a kolektorem) je jisté napětí $U_{\rm CE}$ (popř. $U_{\rm CB}$). Z hlediska ideálního spínače není tedy tranzistor ani v sep-

Obr. 32. Spínací obvod s odporem mezi bází a emitorem

nutém ani v rozepnutém stavu. Rozborem činnosti tranzistoru v aktivní oblasti a návrhem jeho pracovního bodu se zabývají pojednání o zesilovačích a jiných obvodech, využívajících této oblasti jeho činnosti.

Vodivý stav tranzistoru

Ve vodivém stavu prochází tranzistorem proud, jehož velikost je omezena prakticky pouze pracovními podmínkami, tj. součástkami ve vnějším obvodu – především kolektorovým zatěžovacím odporem R_z – a napájecím napětím U_n . V zapojení se společnou bází (obr. 29) se zmenší napětí mezi kolektorem a bází na nulu (popř. dosáhne malé velikosti opačné polarity). V zapojení se společným emitorem se napětí mezi kolektorem a emitorem zmenší na minimální, tzv. zbytkové, saturační napětí $U_{\rm CES}$. Stanovení pracovních podmínek pro tranzistor ve vodivém stavu spočívá v určení potřebného proudu báze I_B a je závislé pouze na velikosti proudového zesilovacího činitele tranzistoru. Kolektorový proud, určený ve vodivém stavu podmínkami ve vnějším obvodu, tj. poměrem $\frac{U_n}{R_C}$, je vázán se vstupním proudem báze $I_{
m B}$ vztahem

 $I_{\rm C} = \beta I_{\rm B}$, popř. $I_{\rm C} = \alpha I_{\rm R}$. Je tedy nutné zajistit, aby vstupním obvodem tranzistoru protékal proud, odpovídající této podmínce, tj.

$$I_{\mathrm{B}} = rac{I_{\mathrm{C}}}{eta}$$
 , popř. $I_{\mathrm{E}} = rac{I_{\mathrm{C}}}{lpha}$.

Při návrhu je třeba počítat s tím, že proudový zesilovací činitel tranzistoru v této části charakteristik (v okolí bodu $U_{\rm CB}=0$) bude menší než v aktivní oblasti (pro obvykle doporučovaný pracovní bod). Při výpočtu volíme obvykle jeho velikost poloviční vzhledem k údaji v katalogu.

Z charakteristik tranzistoru v zapojení se společnou bází i se společným emitorem je vidět, že lze rozlišit trojí

Obr. 33. Charakteristika inverzního zapojení tranzistoru

vodivý stav tranzistoru. Je to předně vodivý stav na hranici nasycení, tj. pro $U_{\rm CB} = 0$. I před dosažením této hranice, tj. ještě v aktivní oblasti, je již napětí $U_{\rm CB}$ (popř. $U_{\rm CE}$) velmi malé a tranzistor lze prakticky považovat za sepnutý (druhý stav). Třetí a nejpoužívanější je vodivý stav v oblasti nasycení, tj. za hranicí $U_{\rm CB} = 0$. Nejpoužívanější je proto, že zaručuje dosažení vodivého stavu i při větších tolerancích součástek, napájecích napětí, parametrů tranzistorů apod.

Tranzistor v inverzním zapojení

Ve spínací technice se často používá tranzistor v zapojení, při němž je zaměněn kolektor s emitorem. Toto zapojení se nazývá inverzní a jeho vlastnosti se velmi blíží ideálnímu spínači. Tranzistor má v inverzním zapojení mnohem menší proudový zesilovací činitel – je to patrné z obr. 33, kde jsou charakteristiky tranzistoru v běžném a v inverzním zapojení. Je to dáno tím, že plocha přechodu emitoru je podstatně menší než plocha přechodu kolektoru (obr. 34). Proud procházející tranzistorem tvoří většinoví nositelé nábojů, procházející difúzí od emitoru ke kolektoru. Cást jich zanikne rekombinací v oblasti báze, většinou však rekombinací na povrchu blízko emitoru. Je-li v inverzním zapojení kolektorem emitor

Obr. 34. Vysvětlení funkce tranzistoru v inverzním zapojení

s podstatně menší plochou, jsou podmínky pro rekombinaci na povrchu mnohem příznivější, rekombinací zanikne značná část většinových nositelů a proudový zesilovací činitel je proto podstatně menší. Zbytková napětí v inverzním zapojení jsou obvykle o řád menší, než v zapojení klasickém.

Základní tranzistorový spínací obvod a jeho výpočet

Na obr. 35 je zapojení nejjednoduššího tranzistorového spínacího obvodu. Je-li přepínač Př v poloze I, je báze tranzistoru uzemněna přes odpor R_B a tranzistor je v nevodivém stavu. Kolektorovým obvodem protéká proud $I_C < I_{CE0}$; čím menší je odpor R_B , tím menší je také proud I_C . Mezi kolektorem a emitorem (tj. mezi body A a B) je napětí

$$U_{CE} = U_{n} - R_{C}I_{C}$$

Je-li použit křemíkový tranzistor, jehož $I_{\rm CEO}$ je zanedbatelně malý, lze úbytek napětí na kolektorovém odporu $R_{\rm C}I_{\rm C}$ zanedbat a platí v nevodivém stavu

$$U_{\text{CE}} \doteq U_{\text{n}}$$

Obr. 35. Základní zapojení tranzistorového spínače

U germaniového tranzistoru lze použít toto zapojení pouze při menších odporech $R_{\rm B}$ (aby zbytkový proud byl co nejmenší), nebo při větších kolektorových proudech (aby byl malý $R_{\rm C}$ a tím i úbytek, způsobený na něm v uzavřeném stavu zbytkovým proudem $I_{\rm C}$).

Přepneme-li přepínač do polohy 2, připojí se báze přes odpor R_B ke zdroji U_n . Bází začne protékat proud I_B , jehož velikost závisí na velikosti napájecího napětí U_n a na odporu R_B . Platí

$$I_{\rm B} = \frac{U_{\rm n} - U_{\rm BE}}{R_{\rm B}} \ .$$

Ve většině případů lze napětí $U_{\rm BE}$ proti napájecímu napětí $U_{\rm n}$ zanedbat a lze psát

 $I_{\mathrm{B}} \doteq \frac{U_{\mathrm{n}}}{R_{\mathrm{B}}}$.

Je-li tento proud dostatečně velký, uvede se tranzistor do vodivého stavu a kolektorovým obvodem bude protékat proud, určený napájecím napětím a kolektorovým odporem

$$I_{\rm C} \doteq \frac{U_{\rm n}}{R_{\rm C}}$$
.

Protože kolektorový proud a proud báze jsou spolu vázány proudovým zesilovacím činitelem β , musí pro uvedení tranzistoru do vodivého stavu platit

 $I_{\mathrm{B}} \geqq \frac{U_{\mathrm{n}}}{\beta R_{\mathrm{C}}}.$

Výpočet obvodu je jednoduchý. S ohledem na tolerance součástek a napájecího napětí musíme volit vždy nejnepříznivější případ. Obvykle máme zadáno napájecí napětí U_n a kolektorový proud $I_{\mathbb{C}}$ (nebo kolektorový odpor $R_{\mathbb{C}}$). Vypočítáme tedy

$$R_{\rm C} = \frac{U_{\rm n}}{I_{\rm C}}$$
 , popř. $I_{\rm C} = \frac{U_{\rm n}}{R_{\rm C}}$,

přičemž zanedbáváme saturační napětí U_{CE} , které má ve vodivém stavu v oblasti nasycení minimální velikost.

Odpor R_B vypočítáme z podmínky pro uvedení tranzistoru do vodivého stavu

$$I_{\rm B} \ge \frac{U_{\rm n}}{\beta R_{\rm C}}$$

a ze vztahu pro proud báze

$$I_{\rm B}=rac{U_{
m n}}{R_{
m B}}.$$

Platí

$$R_{\rm B} \leq \beta R_{\rm C}$$
.

Zvolíme takový nejblíže menší vyráběný odpor, aby skutečný odpor v celém tolerančním rozsahu byl vždy menší

než je odpor vypočítaný.

Jako mechanický přepínač *Př* v obr. 35 pracuje obvykle (v praxi) opět tranzistorový spínač (obr. 36). Při použití křemíkových tranzistorů nevznikají při sdružování těchto obvodů žádné větší nesnáze. Jinak je tomu u germaniových tranzistorů. Je-li tranzistor T₁ v nevodivém stavu, je báze T2 připojena přes odpory $R_{\rm B2}$ a $R_{\rm C1}$ k napájecímu napětí U_n . Bází protéká proud I_B a tranzistor T₂ je ve vodivém stavu. Přejde-li tranzistor T_1 do vodivého stavu (např. připojením volného konce odporu R_{B1} k napájecímu napětí $U_{\rm n}$), měl by se T2 uzavřít. Jeho báze je však připojena přes odpor $R_{\rm B2}$ k saturačnímu napětí $U_{\rm CE1}$ prvního tranzistoru, takže zbytkový proud tranzistoru T2 je větší než I_{CEO} . Tento proud se s teplotou ještě výrazně zvětšuje. Nevodivý stav tranzistoru T2 tedy není dobře zajištěn.

Nevodivý stáv obvodu lze zlepšit buď tzv. přímou vazbou (obr. 37a), nebo pomocným závěrným napětím (obr. 37 b). U obvodu s přímou vazbou se zlepšení dosáhne přímým připojením báze tranzistoru ke kolektoru předcházejícího tranzistoru. Je-li T_1 ve vodivém stavu, je na bázi T_2 velmi malé napětí $U_{\rm BE2} = U_{\rm CE1}$ (dalo by se říci "vnucené" tranzistorem T_1) a kolektorový proud

Obr. 36. Řazení spínacích stupňů

Obr. 37. Použití závěrného předpětí ve spínacích stupních

 T_2 se blíží I_{CB0} . Na obr. 37b je dosaženo optimálního nevodivého stavu závěrným předpětím U_p , které je voleno tak, aby přes odpor R_p protékal do báze tranzistoru závěrný proud $I_B \ge I_{CB0}$.

tranzistoru závěrný proud $I_{\rm B} \ge I_{\rm CB0}$. Pro přehlednost shrneme výpočet základního spínacího obvodu s tranzistoru do přihodilo byvodu s tranzistoru do přihodilo byvodu s

zistory do několika kroků.

Výpočet jednoduchého tranzistorového spínače

1. Ze zadaného minimálního napájecího napětí U_n a kolektorového proudu I_c (popř. odporu R_c) vypočítáme

$$R_{\mathrm{C}} = \frac{U_{\mathrm{n}}}{I_{\mathrm{C}}}$$
, popř. $I_{\mathrm{C}} = \frac{U_{\mathrm{n}}}{R_{\mathrm{C}}}$

 $[k\Omega; V, mA], [mA; V, k\Omega].$

2. Zvolíme $\beta = 0.5h_{21e}$ a určíme potřebný budicí proud báze $I_{\rm R}$

$$I_{\rm B} = \frac{I_{\rm C}}{\beta}$$
 [mA; mA, -].

3. Vypočítáme odpor

$$R'_{\rm B} = \frac{U_{\rm vst}}{I_{\rm B}}$$
 [k Ω ; V, mA],

kde U_{vst} je minimální napětí, na které je připojena přes odpor $R_{\rm B}$ báze tranzistoru ve vodivém stavu.

4. Zvolíme takový odpor $R_{\rm B}$ z vyráběné řady, aby byl i při spodní krajní mezi jeho tolerančního pole (tj. např. +20%) odpor menší, než je vypočítaný odpor $R'_{\rm B}$.

Obr. 38. Praktický návrh tranzistorového spínače

Příklad výpočtu

Žárovkou 3,5 V/0,2 A máme signalizovat přítomnost napětí v bodě A odporového děliče, složeného z velkých odporů (50 k Ω , 100 k Ω , viz obr. 38a). Napájecí napětí, které je k dispozici, je $U_n = 12$ V (toto napětí se také přivádí na dělič). Signalizační obvod nesmí znatelně ovlivnit funkci děliče.

Aby nebyla funkce děliče narušena, musí být proud odebíraný z bodu A nejméně desetkrát menší, než je proud protékající děličem. Vypočítáme proto nejdříve proud, protékající děličem:

$$I_{\rm D} = \frac{U_{\rm n}}{R_1 + R_2} = \frac{12}{100 + 50} = 0.08 \,\mathrm{mA}.$$

Kdybychom použili jednoduchý obvod podle obr. 38b, mohl by být proud báze I_B nejvýše jednou desetinou proudu I_D , tj.

$$I_{\rm B}=0.1.0.08=8~\mu{\rm A}.$$

Potřebujeme spínat proud protékající žárovkou, tj. 200 mA. Ze vztahu mezi I_B a I_C vyplývá, že potřebný proudový zesilovací činitel tranzistoru musí být

$$\beta = \frac{I_{\rm C}}{I_{\rm B}} = \frac{200}{0,008} = 25\,000.$$

Je samozřejmé, že tranzistor s takovým proudovým zesilovacím činitelem neexistuje a musíme proto použít několik spínacích stupňů za sebou. Můžeme počítat s průměrným zesilovacím činitelem $\beta = 50$ u jednoho tranzistoru. Řadíme-li kaskádně zesilovací stupně s tranzistory se stejným činitelem β a je-li těchto stupňů n, je výsledný proudový zesilovací činitel β^n . Kdybychom

tedy chtěli použít dva stupně, musel by každý tranzistor mít

$$\beta = \sqrt{25\ 000} = 158.$$

I když bychom našli křemíkové tranzistory s velkým zesilovacím činitelem, uchýlíme se raději k průměru a zvolíme tři kaskádně zapojené spínací obvody (obr. 39).

Výpočet začneme od posledního stupně. Odpor použité žárovky je

$$R\check{z} = \frac{U\check{z}}{I\check{z}} = \frac{3.5}{0.2} = 17.5 \ \Omega \ .$$

Kdybychom zapojili do kolektorového obvodu tranzistoru T_3 pouze tuto žárovku, tekl by ve vodivém stavu v oblasti nasycení kolektorovým obvodem (a tedy žárovkou) proud

$$I_{\text{C3}} = \frac{U_{\text{n}}}{R z} = \frac{12}{17.5} = 0.685 \text{ A}$$

a žárovka by shořela. Musíme tedy kolektorový obvod doplnit dalším odporem tak, aby tranzistorem ve vodivém stavu protékal proud 0.2 A. Potřebný kolektorový odpor je

$$R_{\rm C3} = \frac{U_{\rm n}}{I_{\rm C3}} = \frac{12}{0.2} = 60 \ \Omega$$

a doplňující odpor R'_{C3} , zapojený do série se žárovkou, musí mít odpor

$$R'_{C3} = R_{C3} - R_{Z} = 60 - 17,5 = 42,5 \Omega$$

Zvolíme nejblíže větší odpor z vyráběné řady, tj. 47 Ω s tím, že žárovka bude nepatrně podžhavena. Kolektorový proud tranzistoru T_3 tedy bude

Obr. 39. Praktický návrh tranzistorového spínače

$$I_{C3} = \frac{U_{n}}{R\dot{z} + R'_{C3}} = \frac{12}{17,5 + 47} = \frac{186 \text{ mA}}{186 \text{ mA}}$$

Předpokládáme-li proudový zesilovací činitel $\beta = 50$, je k uvedení do vodivého stavu třeba proud báze

$$I_{\rm B3} = \frac{I_{\rm C3}}{\beta} = \frac{186}{50} \doteq 3.7 \text{ mA}.$$

Tento proud poteče bází tehdy, bude-li předchozí tranzistor T_2 v nevodivém stavu (povede-li, bude báze T_3 připojena na zem). Je-li T_2 v nevodivém stavu, je odpor mezi jeho kolektorem a emitorem velmi velký a proto pro výpočet tranzistor nemusíme uvažovat; proud báze $I_{\rm B3}$ poteče ze zdroje $U_{\rm n}$ přes odpor $R_{\rm C2}$. Z toho vyplývá výpočet odporu $R_{\rm C2}$

$$R_{\rm C2} = \frac{U_{\rm n}}{I_{\rm B3}} = \frac{12}{3.7} \doteq 3.25 \text{ k}\Omega$$
.

Abychom mohli použít běžné odpory s tolerancí \pm 20 %, zvolíme z vyráběné řady

$$R_{C2}=2.7 \text{ k}\Omega$$
.

V nejnepříznivějším případě – tj. při toleranci +20% – bude mít odpor s označením 2,7 k Ω odpor 3,24 k Ω . To vyhovuje podmínce, že i tento mezní odpor musí být menší, než je vypočítaný, aby byl zajištěn vodivý stav v nasycené oblasti.

Ve vodivém stavu tranzistoru T_2 určuje R_{C2} jeho kolektorový proud

$$I_{C2} = \frac{U_{\rm n}}{R_{C2}} = \frac{12}{2,7} \doteq 4,45 \text{ mA}.$$

Tento proud musí být zajištěn dostatečným proudem báze $I_{\rm B2}$. Předpokládáme-li opět $\beta=50$, platí

$$I_{B2} = \frac{I_{C2}}{\beta} = \frac{4,45}{50} = 0,089 \text{ mA} = 89 \mu\text{A}.$$

Tento proud musí téci při uzavřeném tranzistoru T_1 ze zdroje U_n přes odpor R_{C1} do báze T_2 . Pro velikost R_{C1} tedy vyplývá

$$R_{\rm C1} = \frac{U_{\rm n}}{I_{\rm B2}} = \frac{12}{0,089} \doteq 135 \text{ k}\Omega.$$

Opět s ohledem na toleranční pole volíme odpor

$$R_{\rm C1} = 100 \text{ k}\Omega$$

a zkontrolujeme, zda v případě tolerance +20 % vyhovuje:

$$100 \text{ k}\Omega + 20 \text{ k}\Omega = 120 \text{ k}\Omega < 135 \text{ k}\Omega.$$

Ve vodivém stavu tranzistoru T_1 určuje R_{C1} velikost jeho kolektorového proudu

$$I_{\rm C1} = \frac{U_{\rm n}}{R_{\rm C1}} = \frac{12}{100} = 0.12 \text{ mA}.$$

Proud báze, potřebný pro vodivý stav T_1 , je tedy

$$I_{\rm B1} = \frac{I_{\rm C1}}{\beta} = \frac{0.12}{50} = 2.4 \ \mu \rm A.$$

Tento proud bude odebírán z bodu A děliče. Protože příčný proud děliče $I_D = 80 \mu A$ (viz výpočet) je odebíraný proud báze více než třicetkrát menší a neovlivní proto funkci děliče.

Zbývá ještě vypočítat odpor $R_{\rm B1}$. K tomu musíme zjistit velikost napětí v bodě A:

$$U_{\mathbf{A}} = \frac{R_2}{R_1 + R_2} U_{\mathbf{n}} = \frac{50}{150} 12 \doteq 4 \text{ V}.$$

Pro velikost odporu R_{B1} potom platí

$$R_{\rm B1} = \frac{U_{\rm A}}{I_{\rm B1}} = \frac{4}{2,4 \ \mu \rm A} = 1,66 \ \rm M\Omega.$$

S ohledem na tolerance volíme zase nejblíže menší vyráběný odpor

$$R_{\rm B1}=1,2~{\rm M}\Omega.$$

Tím je návrh ukončen; schéma s hodnotami součástek je na obr. 40. Tran-

Obr. 40. Navržený tranzistorový spínač

zistory musíme volit s ohledem na předpokládaný zesilovací činitel $\beta = 50$, musí být křemíkové a tranzistor T_3 musí být dimenzován na poměrně velký kolektorový proud 200 mA. Odpory postačí miniaturní s výjimou R'_{C3} – jeho zatížení P vypočítáme ze vztahu

$$P = R'_{C3}I^{2}_{C3} = 47.0,2^{2} = 1,88 \text{ W}$$

Použijeme tedy odpor na zatížení nejméně 2 W.

Spínání indukční zátěže

Zatím jsme vždy uvažovali, že v kolektoru spínacího tranzistoru je zapojen činný odpor. Je však častým případem, že spínanou zátěží je např. relé, motorek, elèktromagnetická spojka apod., tzn. zátěž indukčního charakteru (obr. 41). Protože cívka (indu**k**čnost) je prvek, schopný hromadit elektrickou energii, poměry v obvodu se budou poněkud lišit od poměrů při čistě odporové (činné) zátěži. Nabíjení i vybíjení obvodu při přepnutí z nevodivého stavu do vodivého nebo naopak probíhá totiž podle exponenciální křivky. Při sepnutí tranzistoru lze určit kolektorový proud ze vztahu

$$i_{\mathrm{C}} = \frac{U_{\mathrm{n}}}{R_{\mathrm{L}}} \left(1 - \mathrm{e}^{-\frac{\mathrm{t}}{\tau_{\mathrm{i}}}} \right),$$

kde časová konstanta

$$au_1 = rac{L}{R_{
m L} + R_{
m T}}$$

(L je indukčnost cívky, R_L , je činný odpor cívky a R_T je vnitřní odpor tranzistoru v sepnutém stavu.)

Obr. 41. Spínání indukční zátěže

Vliv indukčnosti cívky se při přechodu do vodivého stavu projeví pomalejším zvětšováním kolektorového proudu, což obvykle není na závadu.

Při uzavření tranzistoru platí pro průběh kolektorového proudu vztah

$$i_{\mathrm{C}} = \frac{U_{\mathrm{n}}}{R_{\mathrm{L}}} \, \mathrm{e}^{\,-\frac{\mathrm{t}}{\tau_{\mathrm{2}}}},$$

kde časová konstanta τ_2 je dána stejným vztahem, jako τ_1 ; $R_{\mathbf{T}}$ je ovšem nyní odpor tranzistoru v nevodivém stavu! Protože tento odpor je poměrně velký, je časová konstanta τ2 malá a ko lektorový proud se zmenší velmi rychle k nule. Šoučasně se však indukuje rychlým zánikem kolektorového proudu v cívce napětí $U'_{\rm L}$, které je obvykle větší, než napájecí napětí Un a většinou i větší, než přípustné napětí U_{CE} tranzistoru. Aby nedošlo ke zničení tranzistoru, je nutné toto napětí omezit na bezpečnou velikost. Nejčastěji se to dělá diodou, připojenou paralelně k cívce (obr. 41b). Dioda se při vodivém stavu tranzistoru neuplatní, protože je polarizována v závěrném směru. Jakmile přestane téci kolektorový prouď a v cívce se indukuje napětí $U'_{\rm L}$, znamená dioda pro toto napětí téměř zkrat a omezí indukované napětí na velikost napájecího napětí U_n (zmenší-li se $U'_{\rm L}$ pod velikost $U_{\rm n}$, přestane být dioda polarizována v propustném směru a již se neuplatní). Zapojením diody paralelně k cívce se poněkud zpomalí zánik kolektorového proudu, protože po dobu, kdy dioda vede, se neuplatní $R_{\rm L}$ (zkratem se zmenší na minimum). Protože je R_L ve jmenovateli vztahu pro ic i pro τ2, zvětší se časová konstanta obvodu i okamžitá velikost kolektorového proudu a tím i doba, potřebná k zániku kolektorového proudu. Byl-li by tento jev na závadu, zařadí se do série s diodou D odpor R (na obr. 41b vyznačen čárkovaně).

Spínaní kapacitní zátěže

Aby byl výčet možností úplný, musíme uvážit i spínání kapacitní zátěže (obr. 42). Při přechodu tranzistoru do vodivého stavu bude jím protékat kolektorový proud

Obr. 42. Spínání kapacitní zátěže

$$i_{\mathrm{C}} = \frac{U_{\mathrm{n}}}{R_{\mathrm{C}}} = \frac{U_{\mathrm{n}}}{R_{\mathrm{T}}} \,\mathrm{e}^{-\frac{\mathrm{t}}{\tau_{\mathrm{n}}}},$$

kde časová konstanta $\tau_2 = R_T C$ (R_T je vnitřní odpor tranzistoru v sepnutém stavu). Protože vnitřní odpor tranzistoru ve vodivém stavu je velmi malý, bude malá i časová konstanta τ_1 a proudový náraz bude velmi krátký. Přesto je nutné zkontrolovat, zda jím nemůže být poškozen tranzistor a popř. jej omezit malým odporem v přívodu napájecího napětí.

Při uzavření tranzistoru kolektorový proud zanikne a kondenzátor C se začne vybíjet přes odpor $R_{\rm C}$. Napětí na kolektoru se bude tedy zvětšovat pomalu podle vztahu

$$u_{\mathbf{C}} = U_{\mathbf{n}} \left(1 - \mathbf{e} - \frac{\mathbf{t}}{\tau_{\mathbf{s}}} \right),$$

kde τ_2 je časová konstanta obvodu $(\tau_2 = R_C C)$.

Častěji používané zapojení kapacitní zátěže je na obr. 42 b. V nevodivém stavu je kondenzátor C nabit přibližně na napětí velikosti U_n . Po přechodu do sepnutého stavu se vybíjí přes vnitřní odpor sepnutého tranzistoru R_T s časovou konstantou

$$\tau_1 = R_{\rm T}C.$$

Napětí na kolektoru se proto zmenšuje podle vztahu

$$u_{\rm CE} = U_{\rm n} \, \mathrm{e} - \frac{\mathrm{t}}{r_{\rm i}}.$$

Po přechodu do nevodivého stavu se kondenzátor C nabíjí přes odpor R_C a napětí na kolektoru se zvětšuje podle vztahu

$$u_{\rm CE} = U_{\rm n} \left(1 - e^{-\frac{t}{\tau_{\rm s}}} \right),$$

kde časová konstanta $\tau_2 = R_{\rm c}C$.

Obr. 43. Urychlení přechodu z nevodivého do vodivého stavu

Zrychlení přechodu tranzistoru z nevodivého do vodivého stavu

Aby se urychlilo sepnutí tranzistoru, přemosťuje se někdy u spínacích obvodů s odporovou vazbou odpor R_B kondenzátorem Cv (obr. 43). V okamžiku sepnutí proteče kondenzátorem (a tím i bází) nabíjecí proud kondenzátoru, který je několikrát větší, než později ustálený proud báze I_B. Urychlí se tím přechod tranzistoru do vodivého stavu, protože většímu proudu báze odpovídá i větší proud kolektoru. Casová konstanta obvodu R_BC_V však nesmí být delší, než je přepínací kmitočet při periodickém spínání. Při přechodu do nevodivého stavu se kondenzátor Cv vybíjí nejen přes odpor R_B, ale i přes bázi tranzistoru. Protože vybíjecí proud protéká bází v závěrném směru, urychli se i uzavření tranzistoru, tj. přechod z vodivého do nevodivého stavu.

Požadavky na tranzistory pro spínací obvody

Požadavky na tranzistory pro spínací obvody nejsou – pokud jde o pomalé spínání – zvláštní. Lze používat prakticky libovolný tranzistor, zajistíme-li správným návrhem jeho dokonalý vodivý, popř. nevodivý stav.

Vhodnější pro spínací obvody jsou tranzistory křemíkové. Mají zbytkové proudy přibližně o dva řády menší než tranzistory germaniové a tyto proudy nejsou příliš závislé na teplotě. Nevodivý stav není obvykle nutné zajišťovat přídavným předpětím – obvody s křemíkovými tranzistory jsou proto jednodušší. Hlavní důvod, proč veškerá dřívější literatura byla věnována návrhům spí

nacích obvodů s germaniovými tranzistory, byla jejich dostupnost a podstatně nižší cena. Nyní se situace změnila, křemíkové tranzistory jsou dostupné a levné a lze je proto pro konstrukci spínacích obvodů jednoznačně doporučit.

Z parametrů tranzistoru potřebujeme znát maximální přípustná napětí mezi jednotlivými elektrodami, povolenou kolektorovou ztrátu, proudový zesilovací činitel na hranici nasycení, maximální povolený kolektorový proud, popř. velikost zbytkového proudu a jeho závislost na teplotě.

Maximální přípustná napětí mezi jednotlivými elektrodami

Aby nedošlo k průrazu jednotlivých přechodů tranzistoru, jsou výrobcem stanovena největší přípustná napětí mezi kolektorem a bází, kolektorem a emitorem a bází a emitorem.

Největší z nich je napětí mezi kolektorem a bází (U_{CB}) . Ú běžných tranzistorů se pohybuje mezi 30 až 60 V; u speciálních spínacích tranzistorů však mohou být až stovky voltů. O něco menší bývá přípustné napětí mezi kolektorem a emitorem, tj. vlastně spínané napětí. Je závislé na odporu mezi bází a emitorem - s jeho zmenšováním roste a při $R_{\rm B}=0$, tj. je-li báze připojena k emitoru, je maximální a rovná se přípustnému napětí mezi bází a kolektorem. Napětí báze-emitor nesmí být obvykle větší než několik voltů. Všechna tato napětí jsou udávána v katalogu a pro navrhovaný spínací obvod musíme vybrat takový tranzistor, aby všechna skutečná napětí v obvodu byla menší než jsou napětí, uvedená v katalogu.

Kolektorová ztráta

Kolektorová ztráta, tj. výkon, který se v tranzistoru promění v teplo, je obvykle mnohem menší, než výkon spínaný. V nevodivém stavu je mezi kolektorem a emitorem tranzistoru napětí téměř rovné napětí zdroje, tj. U_n , a protéká jím minimální proud I_{CEO} , popř. i I_{CBO} . Výkon, proměňovaný

v tranzistoru v teplo, je tedy v nevodivém stavu

$$P_{\rm C1} = U_{\rm n}I_{\rm CE0} \qquad [\rm W; \rm V, A].$$

Ve vodivém stavu protéká sice tranzistorem velký proud $I_{\rm C}$, mezi kolektorem a emitorem tranzistoru je však minimální saturační napětí $U_{\rm CES}$; ztrátový výkon je tedy rovněž malý a rovná se

$$P_{C2} = U_{CES}I_{C} \qquad [W; V, A].$$

Střední výkon, rozptýlený na kolektoru, tedy kolektorová ztráta, je tedy úměrný trvání vodivého a nevodivého stavu:

$$P_{ ext{str}} = rac{U_{ ext{n}}I_{ ext{C}\, ext{E}\,0}t_{1} + U_{ ext{C}\, ext{E}\, ext{S}}I_{ ext{C}}t_{2}}{t_{1} + t_{2}}$$
 ,

kde t₁ je doba trvání nevodivého a t₂ vodivého stavu. Při přepínání (přechodu) z jednoho stavu do druhého se ztrátový výkon zvětšuje, protože přechod po zatěžovací přímce není nekonečně rychlý. Budeme-li přechod považovat přibližně za lineární, lze odvodit (viz obr. 1), že ztrátový výkon po dobu přechodu je

$$P_{\rm C3} = \frac{U_{\rm n}}{2} \frac{I_{\rm C}}{2} = \frac{U_{\rm n} I_{\rm C}}{4}$$
.

Je-li doba přechodu z jednoho stavu do druhého t₃, platí tedy pro střední ztrátový výkon na kolektoru tranzistoru

$$P_{ ext{st ilde{r}}} = rac{U_{ ext{n}}I_{ ext{C}\, ext{E}\,0}t_1 + U_{ ext{C}\, ext{E}\, ext{S}}I_{ ext{C}}t_2 + U_{ ext{n}}I_{ ext{C}}t_3}{t_1 + t_2 + t_3} \,.$$

Proudový zesilovací činitel

Proudový zesilovací činitel není u spínacích obvodů natolik kvalitativním ukazatelem tranzistoru jako u zesilovacích stupňů. Až na výjimečné případy obvykle nezáleží na tom, musíme-li k otevření tranzistoru použít větší nebo menší proud báze. K výpočtu však velikost proudového zesilovacího činitele znát musíme, a to na hranici nasycení. Můžeme ji snadno u každého

tranzistoru změřit tak, že nejdříve vypočítáme kolektorový proud v oblasti nasycení jako podíl napájecího

napětí U_n a kolektorového odporu $R_{\rm C}$, potom připojíme napájecí napětí, měříme kolektorový proud a proud báze (bázi připojíme přes odporový trimr rovněž $k U_n$) a zvětšujeme proud báze tak dlouho, dokud kolektorový proud nedosáhne vypočítané velikosti. Potom vypočítáme proudový zesilovací činitel β jako podíl kolektorového proudu a proudu báze v tomto pracovním bodě. Navrhujeme-li spínací obvod a nemáme ještě k dispozici tranzistory, které budou v zapojení použity, vycházíme z jejich katalogových údajů. Protože proudový zesilovací činitel na hranici nasycení se v katalozích obvykle neudává, volíme ho zpravidla jako polovinu zesilovacího činitele, udávaného pro doporučený pracovní bod v aktivní oblasti.

Maximální povolený kolektorový proud

Tento údaj bývá udáván ve všech katalozích a není k němu třeba vysvětlení. V zájmu spolehlivé funkce spínače nevyužíváme pokud možno maximálních mezních údajů, udávaných v katalogu.

Zbytkový proud

U křemíkových tranzistorů je zbytkový proud velmi malý a není třeba jej uvažovat. U germaniových tranzistorů potřebujeme znát jeho velikost, abychom mohli potlačit jeho nežádoucí účinky vhodně voleným předpětím. Zbytkový proud zjistíme z katalogu nebo ho jednoduchým způsobem změříme, nejlépe přímo v daném zapojení.

Spínací obvody s tranzistory

Bistabilní klopný obvod

Bistabilní klopný obvod je základním spínacím obvodem s tranzistory (z něho jsou potom odvozeny další obvody – monostabilní a astabilní). Je to obvod, složený ze dvou tranzistorů, které mohou být v jednom ze dvou stabilních stavů (proto název bistabilní klopný obvod) – buď je sepnut první tranzistor a rozepnut druhý, nebo je rozepnut první tranzistor a sepnut druhý. Žádný

Obr. 44. Základní zapojení bistabilního klopného obvodu

jiný stav nemůže nastat. Protože je přechod z jednoho stavu do druhého velmi rychlý, je průběh napětí na kolektorech tranzistorů téměř pravoúhlý.

Základní schéma bistabilního klopného obvodu s křemíkovými tranzistory je na obr. 44. Záměrně je zdůrazněno s křemíkovými tranzistory, protože jenom při jejich použití může být schéma

obvodu takto zjednodušeno.

Při připojení napájecího napětí U_n se některý z tranzistorů vlivem náhodných okolností uvede do vodivého stavu, sepne. Předpokládejme, že je to tranzistor T_1 . Protéká jím proud I_{C1} a na kolektoru je napětí $U_{\text{CE1}} \doteq 0$. Protože báze tranzistoru T_2 je na kolektor T_1 připojena přes odpor $R_{\rm B2}$, je na ní rovněž nulové napětí, neteče proud báze $I_{\rm B2}$ a tranzistor T_2 je uzavřen. Proud I_{C2} je prakticky nulový (zanedbáme-li zbytkový proud, který právě u křemíkových tranzistorů opravdu zanedbatelný je) a na kolektoru tranzistoru T₂ je napětí $U_{ exttt{CE2}} \doteq U_{ exttt{n}}$. Na toto napětí je přes odpor $R_{\rm B1}$ připojena báze tranzistoru T_1 , protéká jí tudíž proud I_{B1} a tranzistor T₁ je trvale udržován ve vodivém (sepnutém) stavu. Stav obvodu je tedy stabilní a obvod v něm bez vnějšího zásahu setrvá libovolnou dobu.

Nyní přivedeme např. na bázi tranzistoru T_1 krátký záporný impuls. Přestane téci proud báze I_{B1} , tranzistor se uzavře, jeho kolektorové napětí U_{CE1} se zvětší na $U_{CE1} \doteq U_n$. Začne protékat proud bází tranzistoru T_2 , protože ta je připojena přes odpor R_{B2} na U_{CE1} . Tranzistor T_2 se otevře, napětí na jeho kolektoru se zmenší na nulu. Stav se nezmění ani po skončení zá-

Obr. 45. Průběh napětí v bistabilním klopném obvodu

porného impulsu, protože báze tranzistoru T_1 je nyní přes odpor $R_{\rm B1}$ připojena k nulovému napětí a tranzistor T_1 proto zůstane v nevodivém (rozepnutém) stavu. Nastal druhý stabilní stav obvodu.

Změnu stavu obvodu můžeme vyvolat nejen záporným impulsem, přivedeným na bázi tranzistoru, který vede, ale i např. kladným impulsem, přivedeným na bázi tranzistoru, který je uzavřen, nebo impulsy, přivedenými na kolektory tranzistorů – kladnými na

Obr. 46. Způsoby ovládání bistabilního klopného obvodu z jednoho vstupu

sepnutý, nebo zápornými na rozepnutý tranzistor. Střídají-li ovládací impulsy polaritu, lze je přivádět do jediného místa – např. na bázi T_1 – a obvod bude při každém příchozím impulsu měnit svůj stav.

Nejčastěji používáme bistabilní klopný obvod jako čítač. Z předchozího výkladu a z obr. 45 je zřejmé, že na kolektorech tranzistorů se při pravidelných změnách stavu vytvářejí obdélníkovité impulsy s polovičním kmitočtem, než je kmitočet ovládacích impulsů. Obvod tedy pracuje jako binární dělič. Pro toto použití obvodu však musíme zajistit, aby ovládací impulsy mohly mít stále stejnou polaritu a přesto aby stále měnily stav klopného obvodu. Je tedy nutné, aby ovládací impulsy byly přiváděny střídavě na bázi T_1 a na bázi T_2 . Dosáhneme toho diodovými spínači. Dvě možná zapojení jsou na obr. 46. Je-li T_1 sepnut, je na jeho kolektoru nulové napětí a na jeho bázi je napětí U_{вв}. Tato dvě napětí polarizují diodu D_1 v propustném směru, dioda vede. Na kolektoru T₂ je kladné napětí $U_{ exttt{CE2}} \doteq U_{ exttt{n}}$, jeho báze je přes odpor $R_{\rm B2}$ připojena na $U_{\rm CE1} \doteq 0$. Dioda D_2 je tedy polarizována v závěrném směru a nevede. Když nyní přijde na vstup záporný impuls, projde (přes oddělovací kondenzátor) diodou D_1 a uzavře tranzistor T_1 . Způsobí tím změnu stavu obvodu (viz předchozí výklad). Diodou D₂ neprojde. Změnou stavu klopného obvodu se "situace obrátí", nyní je dioda D_2 polarizována v propustném a D_1 v závěrném směru. Další záporný impuls tedy projde diodou D_2 a uzavře do té doby otevřený tranzistor T_2 . Tak pokračuje překlápění bistabilního klopného obvodu při každém dalším ovládacím záporném impulsu, který je přiveden na vstup.

Obvod na obr. 46b pracuje obdobně. Je-li tranzistor T_1 otevřen, projde záporný impuls ze vstupu diodou D_2 na kolektor T_2 a obvod překlopí. Je-li otevřen T_2 , projde další záporný impuls diodou D_1 na kolektor T_1 a obvod znovu překlopí.

Bistabilní klopné obvody ve funkci čítačů tvoří základní jednotku počítačů.

Obr. 47. Řazení čítačů a průběh impulsů na jejich výstupech

Lze je řadit do libovolně dlouhých řad a dělit kmitočet vstupních impulsů libovolnými násobky dvou (při jednoduchém řazení). Blokové schéma děliče 16 a průběh impulsů na jednotlivých klopných obvodech je na obr. 47.

Bistabilní klopný obvod s předpětím

V literatuře najdete obvykle jako základní schéma bistabilního klopného obvodu zapojení podle obr. 48 nebo 49.

Obr. 48. Bistabilní klopný obvod s předpětím

Obr. 49. Bistabilní klopný obvod s automatickým předpětím

Jde o zapojení s germaniovými tranzistory. Přestože křemíkové tranzistory "vládnou" a jsou i cenově přístupné, je funkce obvodu většinou vykládána na tomto zapojení. Zapojení na obr. 48 a 49 se liší od zapojení na obr. 46 tím, že tranzistory jsou v nevodivém stavu uzavírány záporným předpětím mezi bází a emitorem. V prvním případě se toto předpětí získává ze zvláštního zdroje $-U_{\rm p}$, v druhém případě se vytváří samočinně na emitorovém odporu R_E. Předpětí je k dokonalému uzavření tranzistoru nutné jednak proto, že germaniovým tranzistorem protéká i při nulovém napětí mezi bází a emitorem jistý, v mnoha případech nezanedbatelný zbytkový proud I_{CE0} , a jednak je napětí mezi bází a emitorem, potřebné k otevření germaniového tranzistoru menší, než u tranzistoru křemíkového (asi 0,2 až 0,3 V). Protože báze každého z tranzistorů v nevodivém stavu není propojena přímo na zem, ale na kolektor otevřeného tranzistoru, který nemá přesně nulové napětí (ve skutečnosti je saturační napětí U_{CE} 0,2 až 0,8 V), mohlo by i toto malé napětí již otevřít tranzistor.

Výpočet bistabilního klopného obvodu

Bistabilní klopný obvod se v podstatě skládá ze dvou zesilovacích stupňů v zapojení se společným emitorem, které jsou vzájemně propojeny tak, že je zavedena silná kladná zpětná vazba (obr. 50). Aby obvod mohl mít jenom dva stabilní stavy (v oblasti nasycení jednoho nebo druhého tranzistoru), musí být nestabilní, jsou-li pracovní body tranzistorů v aktivní oblasti. Podmínka nestability v aktivní

Obr. 50. Analogie BKO se zesilovačem se zpětnou vazbou

oblasti je splněna, je-li celkové zesílení obvodu $A \ge 1$. Uvažují-li se všechny dynamické veličiny a závislosti, je podrobný rozbor velmi složitý. Při značném zjednodušení platí

$$I_{\mathrm{C1}} = \beta I_{\mathrm{B1}}$$
 $I_{\mathrm{B2}} = I_{\mathrm{C1}} \frac{R_{\mathrm{C1}}}{R_{\mathrm{C1}} + R_{\mathrm{B2}}} =$ $= \beta I_{\mathrm{B1}} \frac{R_{\mathrm{C1}}}{R_{\mathrm{C1}} + R_{\mathrm{B2}}}$,

Celkové zesílení obvodu bude

$$A = \frac{I_{B2}}{I_{B1}} = \beta \frac{R_{C}}{R_{C} + R_{B}} \ge 1.$$

Lze dokázat, že tato podmínka je vždy splněna, vychází-li se při návrhu obvodu ze základních podmínek pro zajištění otevřeného a uzavřeného stavu. Přivede-li se na vstup obvodu spouštěcí impuls s dostatečnou amplitudou a délkou trvání při splněné výšeuvedené podmínce, překlopí se obvod do druhého stabilního stavu. Probíhající pochod má lavinovitý charakter a skončí, zmenší-li se zesílení jednoho z tranzistorů (jehož pracovní bod vstoupil do oblasti nasycení).

Z uvedeného vyplývá, že výpočet bistabilního klopného obvodu je velmi jednoduchý. Bistabilní obvody se obvykle navrhují jako souměrné, tzn. že $R_{C1} = R_{C2}$, $R_{B1} = R_{B2}$, $C_1 = C_2$ (popř. $R_1 = R_2$). Při výpočtu obvodu podle obr. 47 vycházíme z použitého napájecího napětí Un a ze zvoleného kolektorového odporu (zátěž) Rc = $=R_{C1}=R_{C2}$, nebo ze zvoleného kolektorového proudu $I_{\rm C} = I_{\rm C1} = I_{\rm C2}$. Dále musíme znát proudový zesilovací činitel h_{21e} použitého tranzistoru.

Vypočítáme

$$I_{
m C} = rac{U_{
m n} - U_{
m CE}}{R_{
m C}}\,,$$
popř. $R_{
m C} = rac{U_{
m n} - U_{
m CE}}{I_{
m C}}\,.$

Protože zadaný proudový zesilovací činitel h21e platí pro aktivní oblast, volíme $\beta = 0.5h_{21e}$ a vypočítáme proud báze, potřebný k uvedení tranzistoru do nasyceného stavu:

$$I_{\rm B} = \frac{I_{\rm C}}{\beta}$$
.

Velikost odporu $R_{
m B}$ vypočítáme ze vztahu

$$I_{\rm B} \stackrel{\cdot}{=} \frac{U_{\rm n}}{R_{\rm C} + R_{\rm B}}$$
.

Za předpokladu, že $R_{\rm C} \ll R_{\rm B}$ můžeme Rc zanedbat a vypočítat

$$R_{\rm B} \doteq \frac{U_{\rm n}}{I_{\rm B}}$$
.

Tím je prakticky výpočet bistabilního klopného obvodu ukončen. Můžeme použít libovolné křemíkové tranzistory, vyhovuje-li jejich povolené napětí $U_{\rm CE}$, proud Ic a zesilovací činitel h21e. Výjimečně lze použít i germaniové tranzistory, např. spínací typy GS501 až

Zbývá ještě určit kapacitu kondenzátorů C_1 a C_2 . Tyto kondenzátory nejsou pro funkci obvodu nutné, zrychlují však přechod z jednoho stabilního stavu do druhého. Při změně napětí na kolektoru jednoho tranzistoru z nuly na maximum (Un) proteče v prvním okamžiku kondenzátorem C_1 (popř. C_2) a tím i bází dosud uzavřeného tranzistoru velký nabíjecí proud kondenzátoru. Tím se tento tranzistor rychleji otevře; v pozdější fázi se kondenzátor neuplatní, protože obvodem teče konstantní stejnosměrný proud. Kapacita těchto kondenzátorů je na druhé straně omezena tím, že časová konstanta vazebního obvodu $R_{\rm B1}C_1 = R_{\rm B2}C_2 < t_{\rm min}$, kde $t_{\rm min}$ je minimální délka impulsu.

Výpočet bistabilního obvodu s předpětím

Chceme-li v zapojení bistabilního klopného obvodu použít běžné germaniové tranzistory, použijeme zapojení s předpětím (obr. 48). Vycházíme ze

stejných údajů jako v předcházím vý-počtu. Navíc volíme podle možností velikost záporného předpětí $-U_p$.

Výpočet bistabilního klopného obvodu s křemíkovými tranzistory

1. Ze zadaných údajů vypočítáme

$$I_{\mathrm{C}} = rac{U_{\mathrm{n}} - U_{\mathrm{CE}}}{R_{\mathrm{C}}} \quad [\mathrm{mA; V, k\Omega}],$$
 popř. $R_{\mathrm{C}} = rac{U_{\mathrm{n}} - U_{\mathrm{CE}}}{I_{\mathrm{C}}}$ [k Ω ; V, mA].

2. Stanovíme $\beta = 0.5h_{21e}$ a vypočítáme

$$I_{\rm B} = \frac{I_{\rm C}}{\beta}$$
 [mA; mA, -].

3. Určíme

$$R_{\rm B} \doteq \frac{U_{\rm n}}{I_{\rm B}}$$
 [k\O; V, mA].

4. V případě potřeby rychlého překlápění zvolíme C_1 a C_2 tak, aby byla splněna podmínka

$$C_1 = C_2 \le \frac{t_{\min}}{R_B}$$
 [μF ; ms, $k\Omega$].

Výpočet bistabilního klopného obvodu s předpětím

1. Ze zadaných údajů vypočítáme

$$I_{\mathrm{C}} = rac{U_{\mathrm{n}} - U_{\mathrm{CE}}}{R_{\mathrm{C}}} \quad [\mathrm{mA; V, k\Omega}],$$

$$\mathrm{popř.} \ R_{\mathrm{C}} = rac{U_{\mathrm{n}} - U_{\mathrm{CE}}}{R_{\mathrm{C}}}$$

$$[\mathrm{k\Omega; V, mA}].$$

2. Stanovíme

$$R_1 = R_2 \le \frac{U_p}{I_{CB0}}$$
 [k\O; V, mA].

3. Stanovíme $\beta = 0.5h_{21e}$ a vypočítáme

$$R_{\rm B} \leq \frac{\beta R_1 R_{\rm C} U_{\rm n}}{R_1 U_{\rm n} + \beta R_{\rm C} U_{\rm p}} - R_{\rm C}$$

$$[k\Omega; -, k\Omega, V].$$

Stejným způsobem jako v předchozím případě vypočítáme $R_{\rm C}$ a $I_{\rm C}$. Velikost odporů $R_{\rm 1}$ a $R_{\rm 2}$ určíme ze vztahu

$$R_1 = R_2 \leq \frac{U_p}{I_{CB0}},$$

kde U_p je záporné napětí pomocného zdroje předpětí a $I_{\rm CB0}$ je maximální zbytkový proud kolektor-báze použitého tranzistoru.

Odpory R_{B1} a R_{B2} určíme ze vztahu pro I_{B1} (viz obr. 48):

$$I_{\mathrm{B1}} = I_{\mathrm{2}} - I_{\mathrm{1}} \geq \frac{I_{\mathrm{C}}}{\beta} = \frac{U_{\mathrm{n}}}{\beta R_{\mathrm{C}}}$$
.

Dosadíme-li za I2 a I1, dostaneme

$$I_{\rm B1} = \frac{U_{\rm n}}{R_{\rm C2} + R_{\rm B1}} - \frac{U_{\rm p}}{R_{\rm 1}} \ge \frac{U_{\rm n}}{\beta R_{\rm C}}$$

a z toho

$$R_{\rm B1} \ (= R_{\rm B2}) \le \frac{\beta R_1 R_{\rm C} U_{\rm n}}{R_1 U_{\rm n} + \beta R_{\rm C} U_{\rm p}} - R_{\rm C}.$$

Bistabilní klopný obvod se samočinným předpětím má menší amplitudu výstupních impulsů, protože se jeho výstupní napětí nezmenšuje až k nule, ale pouze na velikost předpětí na emitorovém odporu $U_{\rm E}$. Obvod se proto nehodí tam, kde se vyžaduje, aby jedna výstupní úroveň byla nulová, tj. ve většině logických obvodů. Protože výpočet zapojení je složitější a obvod lze prakticky všude nahradit jednoduchým zapojením s křemíkovými tranzistory, nebudeme výpočet uvádět.

Výpočet ovládacích obvodů s diodami (pokud je co počítat) najdete v předchozí kapitole na str. 15.

Příklad výpočtu

Máme při použití jednoho tlačítka navrhnout obvod, který ovládá činnost žárovky tak, aby byla tlačítkem rozsvěcena a zhasínána (podle stavu, ve kterém se právě nachází), popř. aby mohla být rozsvěcena a zhasínána z několika různých míst.

Použitá žárovka bude na napětí 6 V pro proud 100 mA, tranzistory jsou křemíkové s $h_{21e} = 80$.

Použijeme základní zapojení bistabilního klopného obvodu podle obr. 47.

Obr. 51. Praktický návrh bistabilního klopného obvodu pro ovládání osvětlení z více míst

Místo jednoho kolektorového odporu použijeme žárovku. V jednom stabilním stavu bude žárovka svítit, v druhém stabilním stavu bude zhasnuta. Obvod bude ovládán z jediného vstupu podle obr. 51. Záporné ovládací impulsy budou získávány ze zvláštního zdroje záporného napětí.

V tomto případě je tedy zadán jak kolektorový odpor $R_{\rm C}$ – odpor žárovky Z, tak i kolektorový proud $I_{\rm C}$ – proud žárovky. Při zanedbání saturačního napětí $U_{\rm CE}$ je tím určeno i napájecí napětí zdroje $U_{\rm n}$ – je opět rovno jmenovitému

napětí žárovky. Platí tedy

$$R_{\mathrm{C}} = R\mathbf{\check{z}} = rac{U\mathbf{\check{z}}}{I\mathbf{\check{z}}} = 60 \ \Omega,$$
 $I_{\mathrm{C}} = I\mathbf{\check{z}} = 100 \ \mathrm{mA},$
 $U_{\mathrm{n}} = U\mathbf{\check{z}} = 6 \ \mathrm{V}.$

2. Stanovíme $\beta = 0.5h_{21e} = 40$ a vypočítáme potřebný proud báze

$$I_{\rm B} = \frac{I_{\rm C}}{\beta} = \frac{100}{40} = 2.5 \text{ mA}.$$

3. Určíme přibližně

$$R_{\rm B} \doteq \frac{U_{\rm n}}{I_{\rm B}} = \frac{6}{2.5} = 2.4 \text{ k}\Omega,$$

zaokrouhlíme na nejblíže menší vyráběný odpor 2,2 k Ω . Protože rychlost překlopení obvodu není podstatná, nepoužijeme vazební kondenzátory.

Ovláďací obvod sestavíme z křemíkových diod KA501. Odpory R_1 a R_2 , přes které se přivádí závěrné napětí z kolektoru uzavřeného tranzistoru na katodu příslušné diody, zvolíme např.

$$R_1 = R_2 = 47 \text{ k}\Omega.$$

Na jejich přesném odporu nezáleží. Je-li dioda otevřena, proteče proud, způsobený ovládacím impulsem přes kondenzátor C_1 (C_2) a diodu D_1 (D_2) do báze tranzistoru T_1 (T_2). Odporem R_1 (R_2) proteče minimální proud, protože je mnohem větší než odpor cesty přes $C_1D_1T_1$. Ohraničující podmínky pro volbu $R_1 = R_2$ jsou tedy: odpory musí být řádově větší než odpor diody a báze tranzistoru v propustném směru, a řádově menší než odpor diody v závěrném směru.

Schéma navrženého obvodu s hodnotami součástek je na obr. 51. Tlačítkem Tl se krátkodobě připojuje na vstup bistabilního klopného obvodu záporné napětí z pomocného zdroje 1,5 V (tužkový článek), čímž se vytvářejí ovládací záporné impulsy. Svítí-li žárovka, každý další lichý impuls ji zhasne a každý následující sudý impuls ji opět rozsvítí. Tlačítek může být zapojeno libovolné množství paralelně a žárovka tak může být ovládána z mnoha různých míst.

Navrhneme-li obvod tak, že místo žárovky je cívka vhodného relé, můžeme jeho kontakty spínat běžnou žárovku na 220 V a obvod pak funguje jako moderní elektronická verze schodišťového spínače – umožní zapnout nebo vypnout svítidlo z kterékohokoli místa. Celé ovládací vedení i s tlačítky je přitom galvanicky odděleno od sítě a je proto naprosto bezpečné (může být realizováno např. zvonkovým drátem a zvonkovými tlačítky).

Monostabilní klopný obvod

Monostabilní klopný obvod je odvozen z bistabilního klopného obvodu nahrazením jedné odporové vazby mezi bází jednoho a kolektorem druhého tranzistoru vazbou kapacitní. Obvod má jediný stabilní stav; do druhého stavu může být přiveden vnějším impulsem a setrvá v něm jen určitou krátkou dobu. Tato doba je určena použitými součástkami a nezávisí na délce nebo tvaru vstupního impulsu.

Obr. 52. Základní zapojení monostabilního klopného obvodu

Základní schéma monostabilního klopného obvodu s křemíkovými tranzistory je na obr. 52. Na rozdíl od bistabilního klopného obvodu (obr. 47) je báze tranzistoru T_2 spojena s kolektorem T_1 přes kondenzátor C, zatímco odpor $R_{\rm B2}$ je připojen k napájecímu napětí $U_{\rm n}$ pro zajištění vodivého stavu T_2 .

V klidovém stavu je tranzistor T_2 ve vodivém stavu v oblasti nasycení, tranzistor T_1 v nevodivém stavu. Vodivý stav tranzistoru T2 je zajištěn proudem báze $I_{\rm B2}$, závisejícím na odporu $R_{\rm B2}$ a napájecím napětí $U_{\rm n}$. Napětí $U_{\rm CE2}$ se blíží nule a napětí na bázi T_1 , která je připojena přes odpor $R_{\rm B1}$ ke kolektoru T_2 , je téměř nulové. Tranzistor T_1 je proto uzavřen. Kondenzátor C je připojen jedním koncem přes odpor R_{C1} k napájecímu napětí, druhým koncem k bázi T_2 ; protože napětí U_{BE2} je téměř nulové, je kondenzátor C připojen prakticky mezi kladný a záporný pól napájecího napětí přes odpor R_{C1} . Je proto nabit na toto napětí; k nabití dojde za dobu, určenou časovou konstantou $R_{C1}C$.

Nyní přivedeme na vstup kladný impuls. Impuls projde přes kondenzátor $C_{\rm v}$ na bázi tranzistoru T_1 a uvede tranzistor T_1 do vodivého stavu. Napětí $U_{\rm CE1}$ se zmenší téměř na nulu a kondenzátor C je pak připojen mezi bázi T_2 a zem tak, že jeho záporný pól je na bázi T_2 (obr. 53). Na bázi T_2 je tedy napětí přibližně $-U_{\rm n}$ a tranzistor T_2 se uzavře. Napětí $U_{\rm CE2}$ se tím zvětší téměř na velikost $U_{\rm n}$; protože ke kolektoru T_2 je přes odpor $R_{\rm B1}$ připojena báze T_1 , tranzistor T_1 je udržován ve

vodivém stavu i po skončení vstupního impulsu. Mezitím se kondenzátor C nabíjí přes odpor $R_{\rm B2}$ napětím $U_{\rm n}$. Bude-li napětí $U_{\rm BE2}$ kladné a tak velké, aby otevřelo tranzistor T_2 (tj. asi 0,5 až 0,7 V), tranzistor T_2 se uvede do vodivého stavu. Napětí na jeho kolektoru $U_{\rm CE2}$ se zmenší téměř na nulu, bází T_1 přestane protékat proud a T_2 se uzavře. Kondenzátor C je záporným pólem odpojen od země a připojen ke kolektoru T_1 . Napětí na kolektoru T_1 (U_{CE1}) se proto zvětšuje v souladu s nabíjením kondenzátoru C přes odpor R_{C1} až na velikost U_n . Průběh napětí na jednotlivých elektrodách je na obr. 54.

Monostabilní klopný obvod tedy převede prakticky libovolný vstupní impuls (o amplitudě dostačující k překlopení obvodu) na výstupní obdélníkový impuls s přesně definovanou délkou a amplitudou se strmými náběžnými hranami.

Při použití germaniových tranzistorů je nutné zajistit nevodivý stabilní stav tranzistoru T_1 pomocným závěrným

Obr. 53. Výpočet doby kyvu monostabilního klopného obvodu

Obr. 54. Průběh napětí v jednotlivých místech monostabilního klopného obvodu

Obr. 55. Monostabilní klopný obvod s předpětím

Obr. 56. Monostabilní klopný obvod s automatickým předpětím

Obr. 57. Monostabilní klopný obvod s emitorovou vazbou

Obr. 58. Zapojení děliče kmitočtu s monostabilním klopným obvodem

předpětím (stejně jako u bistabilního klopného obvodu). Toto zapojení je také ve většině literatury uváděno jako základní zapojení monostabilního klopného obvodu (obr. 55). Kondenzátor C_1

zapojený paralelně k odporu $R_{\rm B1}$ má stejnou funkci jako u bistabilního klopného obvodu, tj. urychluje přechod z jednoho stavu do druhého; může být samozřejmě použit i u předchozího zapojení.

Z bistabilních obvodů s automatickým předpětím je odvozeno i zapojení monostabilního klopného obvodu s automatickým předpětím (obr. 56). V klidovém stavu je otevřen tranzistor T_2 , protože jeho báze je přes odpor $R_{\rm B2}$ připojena k napájecímu napětí $U_{\rm n}$. Odporem $R_{\rm E}$, zapojeným v jeho emitoru, protéká kolektorový proud i proud báze a vytvořeným úbytkem napětí je T_1 udržován v nevodivém stavu (jeho báze je zápornější než emitor). Činnost obvodu je stejná jako u předchozích zapojení s tím rozdílem, že napětí výstupního impulsu i napětí na kondenzátoru C je menší vzhledem k $U_{\rm n}$ o úbytek $U_{\rm E}$ na odporu $R_{\rm E}$.

Na obr. 57 je monostabilní klopný obvod s emitorovou vazbou. V klidovém stavu je otevřen tranzistor T2, protože jeho bází protéká dostatečný proud ze zdroje U_n přes odpor $R_{\rm B2}$. Dělič $R_{\rm B1}/R_{\rm 1}$ v bázi tranzistoru $T_{\rm 1}$ je nastaven tak, že při napětí $U_{\rm E}$, vzniklém průchodem kolektorového proudu tranzistoru T_2 odporem R_E , je tranzistor T_1 uzavřen. Přivedením kladného impulsu přes kondenzátor C na bázi T_1 se tranzistor T₁ otevře. Na rozdíl od základního zapojení monostabilního klopného obvodu zde není doba trvání výstupního impulsu dána pouze časovou konstantou $R_{\rm B2}C$, ale je ovlivňována i dalšími součástkami, protože např. kondenzátor C není tranzistorem T₁ spínán přímo na zem, ale pouze na odpor $R_{\rm E}$. Na odporu $R_{\rm E}$ je napětí, určené proudem $I_{\rm C1}$ tranzistoru T₁ – tedy hodnotami součástek v obvodu. Dobu trvání výstupního impulsu můžeme tedy ovládat změnou těchto součástek, popř. i vnějším ovládacím napětím, přiváděným na bázi T_1 .

Monostabilní klopný obvod používáme často ve funkci tzv. regeneračního zesilovače impulsů nebo ve funkci děliče impulsů. Obě tyto funkce jsou využity v zapojení podle obr. 58. Tento obvod dělí vstupní kmitočet impulsů třemi

Obr. 59. Průběh napětí v jednotlivých místech děliče kmitočtu podle obr. 58

a zachovává stejné "rozměry" impulsů (tj. délku a amplitudu). Na obr. 59 jsou průběhy napětí v jednotlivých místech obvodu. Na vstup přivádíme sled impulsů o délce t₁ s mezerou t₂. První monostabilní klopný obvod MKO I je navržen tak, aby délka jeho výstupního impulsu byla $t = 3t_1 + 2t_2$. Při prvním vstupním impulsu se MKO I překlopí a další dva příchozí impulsy se neuplatní, protože obvod je ve stavu, do něhož by ho měly uvést (překlopit). Po uplynutí doby t se MKO I vrátí do stabilního stavu a další příchozí vstupní impuls (v pořadí čtvrtý) ho opět překlopí do nestabilního stavu. Na pátý a šestý impuls obvod nereaguje a po návratu do stabilního stavu je opět překlopen sedmým impulsem. Názorně je celý postup patrný z obr. 59a a 59b, které ukazují průběh napětí v bodech a a b na obr. 58.

Tím jsme získali třikrát nižší kmitočet impulsů, výstupní impulsy však mají jinou amplitudu i jinou délku, než impulsy vstupní. Za MKO I proto zařadíme derivační člen RC. Ten změní průběh (tvar) impulsů podle obr. 59c. Těmito krátkými "špičatými" impulsy ovládáme další monostabilní klopný obvod MKO II. Navrhneme jej tak, aby amplituda i délka jeho výstupních impulsů byla stejná jako impulsů vstupních. Srovnáním průběhů na obr. 59a a 59d zjistíme, že jsme skutečně dosáhli toho, že jsou výstupní impulsy stejné jako vstupní, impuls na výstupu se však objeví pouze při každém třetím impulsu na vstupu.

Druhý monostabilní obvod MKO II pracuje jako regenerativní zesilovač impulsů. Na jeho vstup můžeme přivádět impulsy s malou amplitudou a různě zkreslené (např. průchodem předchozími obvody, vedením ap.) a na výstupu získáme opět obdélníkovité impulsy požadované délky i amplitudy. Je to nejčastější použití monostabilního klopného obvodu.

Výpočet monostabilního klopného obvodu

Při výpočtu budeme vycházet ze základního schématu na obr. 52. Výchozími údaji jsou délka t a amplituda Uz výstupního impulsu a zatěžovací impedance R_z . Amplituda výstupního impulsu je většinou dána použitým napájecím napětím U_n .

Chceme-li, aby se amplituda výstupního impulsu blížila U_n , musí být zatěžovací odpor R_z alespoň desetkrát větší, než je kolektorový odpor R_{c2} tranzistoru T_2 :

$$R_{\rm C2} \leq \frac{R_{\rm z}}{10}.$$

Vede-li tranzistor T_2 a je-li v oblasti nasycení, vypočítáme kolektorový proud T_2

$$I_{\text{C2}} = \frac{U_{\text{n}} - U_{\text{CES}}}{R_{\text{C2}}} \doteq \frac{U_{\text{n}}}{R_{\text{C2}}}.$$

Tento proud musí být ve stabilním stavu zajištěn příslušným proudem báze I_{B2} . Volíme $\beta = 0.5h_{21e}$ a vypočítáme proud báze

$$I_{\mathrm{B2}} \geq \frac{I_{\mathrm{C2}}}{\beta}$$
.

Proud báze $I_{\rm B2}$ je ve stabilním stavu určen velikostí napájecího napětí $U_{\rm n}$, saturačního napětí $U_{\rm BES}$ a odporem $R_{\rm B2}$. Platí tedy

$$I_{\rm B2} = \frac{U_{\rm n} - U_{\rm BES}}{R_{\rm B2}}$$

a z toho pro

$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm BES}}{I_{\rm B2}}.$$

Po překlopení obvodu do nestabilního stavu se nabíjí kondenzátor C přes odpor R_{B2} a

hodnoty těchto součástek určují dobu trvání výstupního impulsu. Průběh napětí na kondenzátoru C (při jeho nabíjení) je dán exponenciální rovnicí

$$u_{\mathbf{C}} = U_{\mathbf{p}} + (U_{\mathbf{n}} - U_{\mathbf{p}}) \left(1 - e^{-\frac{\mathbf{t}}{\tau}}\right),\,$$

kde U_n je napětí, na které je kondenzátor nabíjen,

U_p počáteční napětí na kondenzátoru a

τ časová konstanta nabíjení $(= R_{B2}C)$.

Dosadíme-li jako počáteční napětí na kondenzátoru napětí $-U_n$, dostaneme

$$u_{\rm C} = -U_{\rm n} + (U_{\rm n} + U_{\rm n}) \left(1 - e^{-\frac{t}{\tau}}\right) =$$

$$= -U_{\rm n} + 2U_{\rm n} - 2U_{\rm n} e^{-\frac{t}{\tau}} =$$

$$= U_{\rm n} \left(1 - 2e^{-\frac{t}{\tau}}\right).$$

Tranzistor T_2 se otevře v okamžiku, kdy napětí na kondenzátoru u_C dosáhne potřebné velikosti $U_{\rm BE}$, tj. asi 0,5 až 0,7 V:

$$u_{\rm C} = U_{\rm BE} = U_{\rm n} \left(1 - 2e^{-\frac{t}{\tau}}\right).$$

Z toho

$$\frac{U_{\rm BE}}{U_{\rm n}}=1-2~{\rm e}^{-\frac{1}{\tau}}$$

a

$$t = au \ln rac{2U_{
m n}}{U_{
m n} - U_{
m BE}}$$
 .

Zanedbáme-li napětí $U_{\rm BE}$ proti napájecímu napětí $U_{\rm n}$ ($U_{\rm BE} \ll U_{\rm n}$, $U_{\rm n} -U_{\rm BE} \stackrel{.}{\rightleftharpoons} U_{\rm n}$), dostaneme

$$t = \tau \ln 2 = 0.69 \tau = 0.69 R_{B2} C.$$

Z požadované délky impulsu t a již dříve vypočítaného odporu $R_{\rm B2}$ určíme kapacitu kondenzátoru C

$$C = \frac{t}{0.69R_{\mathrm{B2}}}.$$

Kolektorový odpor $R_{\rm C1}$ volíme obvykle stejný jako $R_{\rm C2}$. Není to ovšem podmínkou. Velikostí odporu $R_{\rm C1}$ je ovlivněna doba náběhu napětí $U_{\rm CE1}$ po přechodu z nestabilního do stabilního stavu. Tato doba je určena časovou konstantou

$$\tau_1 = R_{C1}C$$

a napětí na kolektoru T_1 dosáhne velikosti $0.9U_n$ za dobu

$$t_1 = 2.3\tau_1 = 2.3R_{\rm C1}C.$$

Po tuto dobu nesmí přijít další vstupní impuls, mají-li být zachovány vypočítané parametry výstupního impulsu. Je-li vzdálenost mezi jednotlivými vstupními impulsy t_2 , musí platit

$$t_1 \leq t_2$$

a tudíž

$$R_{\rm C1} \leq \frac{t_2}{2,3C}.$$

Z určeného odporu R_{C1} vypočítáme kolektorový proud tranzistoru T_1 ve vodivém stavu v oblasti nasycení

$$I_{C1} = \frac{U_{n}}{R_{C1}}$$

a po stanovení $\beta = 0.5h_{21e}$ vypočítáme potřebný proud báze I_{B1}

$$I_{\rm B1} = \frac{I_{\rm C1}}{\beta}.$$

Protože jsme předpokládali $R_{\rm z}>10R_{\rm C1}$, můžeme přibližně počítat s tím, že v nestabilním stavu $U_{\rm CE2} \doteq U_{\rm n}$. V tom případě protéká bází $T_{\rm 1}$ proud

$$I_{\rm B1} \doteq \frac{U_{\rm n}}{R_{\rm B1}}$$
.

Z tohoto vztahu vypočítáme

$$R_{\rm B1} \leq \frac{U_{\rm n}}{I_{\rm B1}}$$
.

Tím jsou vypočítány všechny pasívní součástky monostabilního klopného obvodu. Tranzistory volíme s ohledem na povolený kolektorový proud a předpokládaný proudový zesilovací činitel β .

Při použití germaniových tranzistorů použijeme zapojení podle obr. 55 a musíme tedy ještě stanovit velikost předpětí U_p a odporu R_1 . Postupujeme stejně jako u bistabilního klopného obvodu s předpětím, tj. vycházíme ze vztahu

$$R_1 \leq \frac{U_p}{I_{CB0}},$$

kde I_{CB0} je maximální zbytkový proud kolektor-báze použitého tranzistoru.

V zapojení s automatickým předpětím (obr. 56) je postup výpočtu stejný. Napětí $U_{\rm E}$ zvolíme tak, aby ve stabilním stavu byl tranzistor T_1 spolehlivě uzavřen. Velikostí předpětí můžeme také ovlivnit požadovanou amplitudu vstupních impulsů. Napětí $U_{\rm E}$ volíme obvykle několik desetin voltu až 1 V. Velikost odporu $R_{\rm E}$ vypočítáme

$$R_{\rm E} = \frac{U_{\rm E}}{I_{\rm C2}}$$
.

Proud, protékající odporem R_1 určíme tak, aby

 $I_{\rm R1} \geq 10 I_{\rm CB0}$.

Pro R₁ potom platí

$$R_1 = \frac{U_{\rm E} + U_{\rm BE}}{I_{\rm R1}} = \frac{U_{\rm E} + U_{\rm BE}}{10I_{\rm CB0}}$$
.

Odpor $R_{\rm B1}$ zajišťuje vodivý stav tranzistoru $T_{\rm 1}$ v nestabilním stavu. Protéká jím jednak proud $I_{\rm R1}$, jednak proud báze $I_{\rm B1}$. Z toho vyplývá, pro jeho velikost

$$R_{\rm B1} \leq \frac{U_{\rm n}}{I_{\rm B1} + I_{\rm R1}}$$
.

Ostatní součástky monostabilních obvodů s předpětím počítáme stejně jako u základního zapojení.

Celý výpočet opět shrneme do něko-

lika základních kroků.

Příklad výpočtu

Máme navrhnout obvod, fungující podobně jako schodišťový automat ke spínání osvětlení. Stisknutím tlačítka se má rozsvítit žárovka 3,5 V/0,3 A a má svítit 30 vteřin. Obvod má být napájen

z ploché baterie 4,5 V.

Monostabilní klopný obvod funguje tak, že v klidovém stavu je T_2 otevřen a T_1 zavřen. Můžeme tedy zapojit žárovku místo kolektorového odporu R_{C1} tranzistoru T_1 (obr. 60), aby se rozsvěcela pouze při překlopení obvodu do nestabilního stavu. Protože žárovka je na napětí 3,5 V a napájecí napětí je 4,5 V, musíme do série se žárovkou zařadit odpor R'_{C1} tak, aby kolektorový proud byl 300 mA.

Výpočet monostabilního klopného obvodu

1. Zvolíme

$$R_{\rm C2} = \frac{R_{\rm z}}{10}$$
 [k Ω ; k Ω].

2. Vypočítáme kolektorový proud T_2

$$I_{\text{C2}} = \frac{U_{\text{n}}}{R_{\text{C2}}}$$
 [mA; V, k Ω].

3. Stanovíme $\beta = 0.5h_{21e}$ a vypočítáme

$$I_{
m B2}=rac{I_{
m C2}}{eta}$$
a $R_{
m B2}=rac{U_{
m n}-U_{
m BES}}{I_{
m B2}}$

 $[mA; mA], [k\Omega; V, mA].$

4. Z požadované délky impulsu t stanovíme kapacitu

$$C=\frac{t}{0,69R_{\rm B2}}.$$

5. Zvolíme Rc1 tak, aby

$$R_{C1} \leq \frac{t_2}{2.3C}.$$

6. Určíme

$$I_{\rm C1} = \frac{U_{\rm n}}{R_{\rm C1}}.$$

7. Za předpokladu $\beta = 0.5h_{21e}$ vypočítáme

$$I_{\mathrm{B1}} = rac{I_{\mathrm{C1}}}{eta} \quad ext{ a } R_{\mathrm{B1}} \leq rac{U_{\mathrm{n}}}{I_{\mathrm{B1}}},$$

je-li ovšem $R_{\rm B1} \gg R_{\rm C2}$.

U obvodů s předpětím stanovíme R₁ ze vztahu

$$R_1 \leq \frac{U_p}{U_{CB0}}$$
.

Výpočet tedy začneme od bodu 6; ze známých veličin U_n a I_{C1} vypočítáme

$$R_{\rm C1} = \frac{U_{\rm n}}{I_{\rm C1}} = \frac{4.5}{0.3} = 15 \ \Omega.$$

R_K 4/3 • 41

Obr. 60. Praktický návrh monostabilního klopného obvodu

Protože žárovka Z má odpor

$$R\dot{z} = \frac{U\dot{z}}{I\dot{z}} = \frac{3.5}{0.3} = 11.66 \,\Omega,$$

musíme do série s ní zapojit odpor 3,33 Ω. Získáme jej zapojením tří odporů 10 Ω paralelně. Každým odporem bude protékat proud 100 mA a ztrátový výkon na každém odporu bude

$$P_z = RI^2 = 10.0, 1^2 = 0,1 \text{ W}.$$

Můžeme tedy použít miniaturní odpory.

Nyní podle bodu 7 vypočítáme za předpokladu, že $\beta = 50$

$$I_{\rm B1} = \frac{I_{\rm C1}}{\beta} = \frac{300}{50} = 6 \text{ mA}$$

a
$$R_{\rm B1} \leq \frac{U_{\rm n}}{I_{\rm B1}} = \frac{4.5}{6} = 0.75 \, {\rm k}\Omega = 750 \, \Omega.$$

Výpočet R_{B1} platí s uspokojivou přesností pouze tehdy, je-li $R_{\rm B1} \gg R_{\rm C2}$. Proud báze $I_{\rm B1}$ tranzistoru $T_{\rm 1}$ protéká přes odpory R_{C2} a R_{B1} a vypočítaný odpor R_{B1} je vlastně celkovým odporem sériové kombinace těchto odporů.

Uvážíme, že k dosažení dlouhé doby trvání výstupního impulsu při únosné kapacitě kondenzátoru C je nutné, aby byl odpor $R_{\rm B2}$ co největší (tj. $I_{\rm B2}$ co nejmenší). Při daném proudovém zesilovacím činiteli bude potřebný $I_{\rm B2}$ tím menší, čím větší bude kolektorový odpor R_{C2} .

Z této úvahy vyplývá, že v daném případě můžeme – chceme-li, aby $R_{\rm C2}$ byl co největší – zvolit $R_{\rm B1}=0$ a odpor zcela vypustit. S ohledem na vyráběné odpory zvolíme nejblíže menší normalizovaný odpor

$$R_{\rm C2}=680~\Omega$$
.

Ve výpočtu pokračujeme podle bodu 2 výpočtem $I_{\rm C2}$

$$I_{C2} = \frac{U_{n}}{R_{C2}} = \frac{4.5}{0.68} \doteq 6.6 \text{ mA}.$$

Za předpokladu $\beta = 50$ bude

$$I_{B2} = \frac{I_{C2}}{\beta} = \frac{6.6}{50} = 132 \,\mu\text{A}$$

$$a R_{B2} = \frac{U_{n} - U_{BES}}{I_{B2}} = \frac{4.5 - 0.7}{0.132} = 29 \,\text{k}\Omega.$$

Zvolíme $R_{\rm B2}=27~{\rm k}\Omega$ a vypočítáme z požadované délky impulsu t = 30 vteřin kapacitu C

$$C = \frac{t}{0,69R_{B2}} = \frac{30}{0,69 \cdot 2,7 \cdot 10^4} \doteq \frac{1600 \,\mu\text{F}.}$$

Použijeme tři kondenzátory 500 μF/6 V

spojené paralelně, tj. 1 500 μF.

Na místě T_1 musíme použít tranzistor, který snese trvale kolektorový proud 0,3 A; bude to některý z typů KF506 až 8. Je nutné, aby jeho proudový zesilovací činitel na hranici nadový zesilovací žinitel na hranici nadový zesilovací zesilovací žinitel na hranici nadový zesilovací zes sycení byl $\beta = 50$, jak jsme předpokládali. Na místě T2 můžeme použít tranzistor s menší kolektorovou ztrátou, např. typu KC507 až 9, protože jeho kolektorový proud je pouze 6,6 mA.

Obr. 61. Navržený monosttabilní klopný obvod

Obr. 62. Rozložení součástek na destičce s plošnými spoji navrženého monostabilního klopného obvodu (G56)

Kladný vstupní impuls k uvedení obvodu do nestabilního stavu získáme tlačítkem Tl z napájecího napětí U_n . Oddělovací kondenzátor C_v volíme 0,1 µF.

Konečné zapojení s hodnotami součástek je na obr. 61. Obvod lze zapojit na destičce s plošnými spoji podle obr. 62.

Astabilní klopný obvod

Astabilní klopný obvod – často nazývaný multivibrátor - je klopný obvod, který je zdrojem impulsů (signálu) obdélníkovitého tvaru. Kmitočet impulsů a jejich délku lze nastavit v širokých mezích vhodnou volbou součástek.

Základní schéma astabilního klopného obvodu je na obr. 63. Schéma je podobné např. schématu bistabilního klopného obvodu, vazební odpory mezi kolektory a bázemi tranzistorů jsou však nahrazeny kondenzátory.

Při připojení napájecího napětí U_n k obvodu na obr. 63 se jeden z tranzistorů uvede vlivem náhodných okolností do vodivého stavu. Předpokládejme, že je to tranzistor T_1 . Napětí na jeho kolektoru $U_{\mathtt{CE1}}$ se zmenší téměř k nule. Kladný pól kondenzátoru C₂ se tím připojí k zemi a na bázi T_2 se objeví záporný náboj, který je na kondenzátoru C_2 . Tranzistor T_2 se tím uzavře a napětí na jeho kolektoru $U_{\rm CB2}$ se během krátké doby, dané nabíjením kondenzátoru C_1

přes odpor R_{C2} , zvětší na velikost U_n . Nyní je tedy celý obvod v jednom ze dvou stavů - tranzistor T₁ je otevřen, na jeho kolektoru je nulové napětí, tranzistor T2 je uzavřen, na jeho kolek-

toru je maximální napětí.

Mezitím se však kondenzátor C_2 vybíjí přes odpor $R_{
m B2}$ a napětí $U_{
m BE2}$ na bázi tranzistoru T2 se postupně zmenšuje. Jakmile bude kladné, tranzistor T_2 se otevře. Napětí na jeho kolektoru U_{CE2} se zmenší k nule, kondenzátor C_1 je tím připojen mezi bázi T_1 a zem a svým nábojem, který je vzhledem k napětí báze záporný, uzavře tranzistor T_1 . Napětí na kolektoru T_1 se během krátké doby, dané nabíjením kondenzátoru C2 přes odpor R_{C1} , zvětší na velikost U_n . Obvod přešel do druhého stavu – tranzistor T_1 je uzavřen, na jeho kolektoru je maximální napětí, tranzistor T_2 je otevřen, na jeho kolektoru je nulové napětí.

Obr. 63. Základní zapojení astabilního klopného obvodu

Obr. 64. Průběh napětí v jednotlivých místech astabilního klopného obvodu

Z popisu funkce vyplývá, že doba trvání obou stavů astabilního klopného obvodu je určena dobou vybíjení kondenzátoru C_1 přes odpor $R_{\rm B1}$, popř. kondenzátoru C_2 přes odpor $R_{\rm B2}$. Kmitočet výstupních impulsů je určen součtem obou těchto časů (jeho převrácenou hodnotou).

V obr. 64 jsou průběhy napětí na kolektorech a bázích obou tranzistorů a jednotlivé časové úseky: doba t_1 , po níž je otevřen tranzistor T_1 , doba t_2 , po níž je otevřen tranzistor T_2 , čas t_3 , za který bude napětí kolektoru T_1 (po jeho uzavření) $0.9U_n$ a čas t_4 , za který bude napětí na kolektoru T_2 (po jeho uzavření) $0.9U_n$.

Výpočet astabilního klopného obvodu

Budeme opět vycházet ze schématu na obr. 63. Pro výpočet potřebujeme znát parametry požadovaných vstupních impulsů – jejich délku, kmitočet a amplitudu. Dále potřebujeme znát proudový zesilovací činitel použitých tranzistorů.

Z popisu funkce astabilního klopného obvodu vyplývá, že na výstupu, tj. na kolektoru jednoho z tranzistorů (libovolně zvoleného), jsou impulsy, jejichž maximální amplituda je stejná jako napájecí napětí U_n ; jejich minimální amplitudu jsme předpokládali rovnou nule. Ve skutečnosti je minimální napětí rovno zbytkovému (saturačnímu) napětí U_{CES} mezi kolektorem a emitorem tranzistorů v sepnutém stavu. U spínacích tranzistorů se toto napětí obvykle udává

v katalogu a bývá asi 0.5 V u germaniových a 0.1 až 1.5 V u křemíkových tranzistorů. Amplituda výstupních impulsů U_{imp} je tedy dána rozdílem

$$U_{\text{imp}} = U_{\text{n}} - U_{\text{CES}}$$
.

Z toho vyplývá vztah pro potřebné napájecí napětí U_n při požadované amplitudě výstupních impulsů U_{imp}

$$U_{\rm n} = U_{\rm imp} + U_{\rm CES}$$
.

Nyní musíme zvolit kolektorový proud tranzistorů nebo přímo kolektorový odpor. Tyto parametry volíme s ohledem na použitý typ tranzistorů a s ohledem na zátěž astabilního klopného obvodu. Zatěžovací odpor R_z by měl být alespoň desetkrát větší než odpor R_c v kolektoru tranzistoru. Kdyby byl zatěžovací odpor R_z srovnatelný s kolektorovým odporem R_{C2} , zmenšila by se děličem napětí $R_{C2}R_z$ jednak amplituda výstupních impulsů U_{imp} , a jednak by se zmenšilo napětí, na které se v čase t_2 nabije kondenzátor C_2 a zkrátila by se tedy doba t_1 . Tím by se zvýšil i kmitočet výstupních impulsů.

Zvolíme tedy velikost proudu I_{C2} a z náhradního schématu na obr. 65a vypočítáme odpor R_{C2}

$$R_{C2} = \frac{U_{n} - U_{CES}}{I_{C2}},$$

popř. při zanedbání U_{CES}

$$R_{\text{C2}} \doteq \frac{U_{\text{n}}}{I_{\text{C2}}}.$$

Zvolíme-li přímo R_{C2} , vypočítáme kolektorový proud tranzistoru T_2

$$I_{\text{C2}} = \frac{U_{\text{n}} - U_{\text{CES}}}{R_{\text{C2}}}, \text{popř. } I_{\text{C2}} \stackrel{\cdot}{=} \frac{U_{\text{n}}}{R_{\text{C2}}}.$$

Obr. 65. K výpočtu astabilního klopného obvodu

Proud tranzistorem T_1 volíme obvykle stejný. Použijeme-li jiný typ tranzistoru, můžeme zvolit jiný kolektorový proud. U R_{C1} nemusíme brát ohled na zátěž multivibrátoru, nesmíme však zapomenout, že odpor má vliv na dobu náběhu výstupního impulsu; čím bude R_{C1} větší, tím pomaleji se bude zvětšovat amplituda výstupního impulsu. Odpor R_{C1} , popř. proud I_{C1} vypočítáme analogicky s předchozím případem

$$R_{\text{C1}} = \frac{U_{\text{n}} - U_{\text{CES}}}{I_{\text{C1}}}, \text{popř. } R_{\text{C1}} \doteq \frac{U_{\text{n}}}{I_{\text{C1}}},$$

$$I_{\text{C1}} = \frac{U_{\text{u}} - U_{\text{CES}}}{R_{\text{C1}}}$$
, popř. $I_{\text{C1}} \doteq \frac{U_{\text{n}}}{R_{\text{C1}}}$.

Odpory $R_{\rm B1}$ a $R_{\rm B2}$ musí být voleny tak, aby tranzistory byly při vybití kondenzátorů C_1 , popř. C_2 dokonale otevřeny (sepnuty). Náhradní schéma příslušné části obvodu je na obr. 65b. Protéká-li tranzistorem T_1 (T_2) kolektorový proud $I_{\rm C1}$ ($I_{\rm C2}$) a má-li tranzistor minimální zesilovací činitel β_1 (β_2), je potřebný proud báze

$$I_{\rm B1} = rac{I_{
m C1}}{eta_1}$$
 a $I_{
m B2} = rac{I_{
m C2}}{eta_2}$.

Napětí báze-emitor $U_{\rm BES}$ bývá u germaniových tranzistorů 0,2 až 0,3 V, u křemíkových tranzistorů 0,5 až 0,7 V. Potom platí

$$R_{\rm B1} = \frac{U_{\rm n} - U_{\rm BES}}{I_{\rm B1}}$$
,

$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm BES}}{I_{\rm B2}}.$$

K zajištění nasyceného stavu tranzistorů (dokonalé sepnutí) volíme β_1 (β_2) asi $0.5h_{21e}$, tj. asi poloviční, než je proudový zesilovací činitel v aktivní oblasti, a vypočítaný odpor $R_{\rm B1}$ ($R_{\rm B2}$) zaokrouhlujeme vždy na nejblíže menší vyráběnou hodnotu.

Nyní zbývá určit kapacity kondenzátorů C_1 a C_2 . Vrátíme-li se k popisu funkce astabilního klopného obvodu, připomeneme si, že doba trvání impulsu t_2 je dána dobou vybíjení kondenzátoru C_2 . Náhradní schéma této části obvodu pro C_1 otevřený a C_2 zavřený je na

Obr. 66. K výpočtu astabilního klopného obvodu

obr. 66a. Kondenzátor C_2 se vybíjí přes odpory $R_{\rm B2}$ a $R_{\rm C1}$. Odpor $R_{\rm C1}$ můžeme proti $R_{\rm B1}$ zanedbat. Protože vybíjení kondenzátoru probíhá podle exponenciály, platí pro okamžité napětí na kondenzátoru C_2 (a tím i na bázi tranzistoru C_2)

$$u_{\rm C} = (U_{\rm C} + U_{\rm n}) \, e^{-\frac{\rm t}{\tau}},$$

kde $U_{\rm C}$ je počáteční napětí na kondenzátoru $C_{\rm 2}$, $U_{\rm n}$ je napájecí napětí a τ je časová konstanta vybíjeného obvodu, tj.

$$\tau = R_{\rm B2}C_2.$$

Počáteční napětí na kondenzátoru $U_{\rm C}=U_{\rm n},$ tj.

$$u_{\rm C}=2U_{\rm n}\,{\rm e}^{-\frac{{\rm t}}{\tau}}.$$

Impuls skončí (tranzistor se otevře), je-li napětí na kondenzátoru o napětí $U_{\rm BE}$ menší než $U_{\rm n}$. Při zanedbání $U_{\rm BE}$ se tranzistor otevře, když

$$u_{\mathbf{C}} = U_{\mathbf{n}}.$$

Dosadíme-li do předchozího vztahu, dostaneme:

$$U_{\rm n}=2U_{\rm n}\;{\rm e}^{-\frac{{\rm t}_2}{\tau}},$$

$$e^{-\frac{t_2}{\tau}}=2$$

a pro dobu trvání impulsu t2 dostaneme výraz

$$t_2 = \tau \ln 2 = 0.7 R_{\rm B2} C_2.$$

Analogicky odvodíme pro dobu uzavření tranzistoru T_1

$$t_1 = 0.7R_{\rm B1}C_1$$
.

Z odvozených vztahů vyplývá, že je-li zadána délka impulsu t2, vypočí-

táme potřebnou kapacitu kondenzátoru C_2 ze vztahu

$$C_2 = \frac{t_2}{0.7R_{B2}}$$
.

Je-li dále zadán kmitočet impulsů, platí

$$f = \frac{1}{t_1 + t_2}$$

a z toho

$$t_1=\frac{1}{f}-t_2.$$

Známe-li t_1 , vypočítáme kapacitu kondenzátoru C_1

$$C_1 = \frac{t_1}{0.7R_{\rm B1}}$$
.

Tím jsme vypočítali všechny potřebné údaje k návrhu astabilního klopného obvodu.

Můžeme ještě vypočítat dobu náběhu impulsu t_3 (popř. t_4). Náhradní obvod pro tento výpočet je na obr. 66b (tranzistor T_1 otevřen, T_2 uzavřen). Průběh okamžitého napětí na kondenzátoru C_1 (i napětí U_{CE} na kolektoru T_2) je opět dán exponenciální rovnicí

$$u_{\rm C} = U_{\rm n} \left(1 - {\rm e}^{-\frac{{\rm t}}{\tau}} \right),$$

kde τ je časová konstanta obvodu podle obr. 65b, tj. $\tau = R_{\rm C2}C_1$. Čas, za který napětí $u_{\rm C}$ dosáhne velikosti 0,9 $U_{\rm n}$, odvodíme po dosazení:

$$0.9U_{\rm n}=U_{\rm n}\left(1-{\rm e}^{-\frac{{\rm t_4}}{\tau}}\right)$$

$$10 = e^{-\frac{t_4}{\tau}}$$

$$t_4 = \tau \ln 10 = 2,3R_{C2}C_1.$$

Obdobně odvodíme pro t_3

$$t_3 = 2,3R_{C1}C_2.$$

Platí-li $t_1 = t_2$, nazýváme multivibrátor symetrickým. Platí pro něj $C_1 = C_2$ a $R_{\rm B1} = R_{\rm B2}$. Kmitočet impulsů je

$$f = \frac{1}{2t_1} = \frac{1}{2t_2} \, .$$

Na závěr shrneme výpočet do základních kroků. Výpočet astabilního klopného obvodu

1. Ze zadané amplitudy impulsů určíme napájecí napětí

$$U_{n} = U_{imp} + U_{CES}$$
.

2. Zvolíme I_{C2} (popř. R_{C2}) a vypočítáme odpovídající R_{C2} (popř. I_{C2})

$$R_{\mathrm{C2}} = rac{U_{\mathrm{n}} - U_{\mathrm{CES}}}{I_{\mathrm{C2}}},$$
 $I_{\mathrm{C2}} = rac{U_{\mathrm{n}} - U_{\mathrm{CES}}}{R_{\mathrm{C2}}}.$

3. Zvolíme I_{C1} (popř. R_{C1}) a vypočítáme odpovídající R_{C1} (popř. I_{C1})

$$R_{\rm C1} = \frac{U_{\rm n} - U_{\rm CES}}{I_{\rm C1}},$$

$$I_{\rm C1} = \frac{U_{\rm n} - U_{\rm CES}}{R_{\rm C1}}.$$

4. Zvolíme β_1 a β_2 a vypočítáme proudy bází, odpovídající kolektorovým proudům:

$$I_{\rm B1} = rac{I_{
m C1}}{eta_1}\,, \qquad I_{
m B2} = rac{I_{
m C2}}{eta_2}\,, \ [{
m mA; mA, --}].$$

5. Vypočítáme odpory $R_{\rm B1}$ a $R_{\rm B2}$

$$R_{\rm B1} = \frac{U_{\rm n} - U_{\rm BE}}{I_{\rm B1}} [k\Omega; V, mA];$$

$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm BE}}{I_{\rm B2}}$$
 [k Ω ; V, mA].

6. Je-li zadána doba trvání impulsu t2, vypočítáme

$$C_2 = \frac{t_2}{0.7R_{\rm B2}}$$
 [GF; s, k Ω].

a ze zadaného kmitočtu f vypočítáme dobu t_1 jako rozdíl mezi délkou periody T =

$$=\frac{1}{f}$$
 a dobou t_2

$$t_1 = \frac{1}{f} - t_2$$
 [s; Hz, s];

pro t_1 je potom

$$C_1 = \frac{t_1}{0.7R_{\rm B1}} \qquad [GF; s, k\Omega].$$

$$t_4 = 2.3R_{\text{C2}}C_1$$
 [s; k Ω , GF]

7. Zkontrolujeme doby
$$t_4 = 2.3R_{C2}C_1 \qquad [s; k\Omega, GF],$$

$$t_3 = 2.3R_{C1}C_2 \qquad [s; k\Omega, GF].$$

Je-li některá z dob t3, t4 delší než délka celého příslušného intervalu t_1 , popř. t_2 , musíme ji zkrátit – zvolíme menší kolektorový odpor R_{C1} , popř. R_{C2} . Musíme potom samozřejmě znovu přepočítat velikosti ostatních parametrů, tj. $I_{\rm C1}$ $(I_{C2}), I_{B1} (I_{B2}), R_{B1} (R_{B2}),$ a C_1 (C_2) .

Příklad výpočtu astabilního klopného obvodu

Máme navrhnout tranzistorový blikač, osazený křemíkovými tranzistory, se žárovkou 3,5 V/300 mA, která by se rozsvěcela jednou za vteřinu (kmitočet $f=1~\mathrm{Hz}$) a svítila by vždy po dobu

Vyjdeme ze schématu na obr. 63, místo odporu R_{C2} bude zapojena žárovka \tilde{Z} . Protože žárovka bude svítit, bude-li otevřen tranzistor T_2 , bude svítit po dobu t₁ podle předcházejícího výkladu. Musí proto platit $t_1 = 0.3$ s.

1. Vypočítáme napájecí napětí U_n . Svítí-li žárovka, musí na ní být napětí 3,5 V. Platí proto

$$U_{\rm n} = U_{\rm imp} + U_{\rm CES} = 3.5 + 1 = 4.5 \text{ V}.$$

Saturační napětí mezi kolektorem a emitorem sepnutého tranzistoru jsme odhadli na $U_{CES} = 1 \text{ V}$.

2. Odpor R_{C2} je odporem použité žárovky. Žárovkou je určen i proud I_{C2}

$$R_{C2} = \frac{UZ}{IZ} = \frac{3.5}{0.3} \pm 12 \Omega,$$
 $I_{C2} = 0.3 \text{ A}.$

Jako T_2 musíme vybrat tranzistor s odpovídajícím proudem kolektoru. Zvolíme tranzistor KF507 a předpokládáme (změříme) jeho zesilovací činitel, $h_{21e} = 50$.

3. Tranzistor T_1 nemusí spínat tak velký proud; můžeme volit např. KC507. Jeho zesilovací činitel odhadneme (změříme), $h_{21e} = 150$. Zvolíme

$$I_{\rm C1} = 10 \, \rm mA$$

a vypočítáme

$$R_{\text{C1}} = \frac{U_{\text{n}} - U_{\text{CES}}}{I_{\text{C1}}} = \frac{4.5 - 1}{0.01} =$$

= 350 Ω ,

zaokrouhlíme na nejblíže menší vyráběný odpor

$$R_{\rm C1}=330~\Omega.$$

4. Zvolíme $\beta_1 = 75$, $\beta_2 = 25$ a vypočítáme proudy bází obou tranzistorů:

$$I_{\text{B2}} = \frac{I_{\text{C2}}}{\beta_2} = \frac{0.3}{25} = 0.012 \text{ A} = 12 \text{ mA},$$

$$I_{\text{B1}} = \frac{I_{\text{C1}}}{\beta_1} = \frac{0.01}{75} = 0.000 \text{ 133} = 133 \text{ } \mu\text{A}.$$

5. Vypočítáme odpory v bázích obou tranzistorů. Napětí UBE u obou tranzistorů odhadneme na $U_{\rm BE} = 0.5 \, \rm V.$

$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm BE}}{I_{\rm B2}} = \frac{4,5 - 0,5}{0,012} \doteq \pm 333 \,\Omega,$$

$$R_{\rm B1} = \frac{U_{\rm n} - U_{\rm BE}}{I_{\rm B1}} = \frac{4,5 - 0,5}{0,000 \ 133} \doteq \frac{1}{2}$$

Zvolíme nejblíže menší vyráběné odpory:

$$R_{\rm B2} = 330 \,\Omega, \quad R_{\rm B1} = 27 \,\mathrm{k}\Omega.$$

6. Ze zadané doby $t_1 = 0.3$ s vypočítáme

$$C_1 = \frac{t_1}{0.7R_{B1}} = \frac{0.3}{0.7 \cdot 27000} \doteq \frac{16 \ \mu F}{0.7}$$

Zvolíme nejblíže větší vyráběný kondenzátor $C_1 = 20 \,\mu\text{F}$ a zpětně vypočítáme

$$R_{B1} = \frac{t_1}{0.7C_1} = \frac{0.3}{0.7 \cdot 0.00002} \doteq$$
$$= 21.5 \text{ k}\Omega = 22 \text{ k}\Omega.$$

Dále určíme

$$t_2 = \frac{1}{f} - t_1 = \frac{1}{1} - 0.3 = 0.7 \text{ s}$$

a

$$C_2 = \frac{t_2}{0.7R_{B2}} = \frac{0.7}{0.7 \cdot 330} \doteq \frac{3000 \ \mu F.}$$

Kapacitu 3 GF složíme z kondenzátorů 1 GF a 2 GF, které spojíme paralelně.

7. Zkontrolujeme náběhové doby t4 a t3:

$$t_4 = 2.3R_{C2}C_1 = 2.3 \cdot 12 \cdot 0.00002 \stackrel{.}{=} 0.55 \text{ ms},$$

$$t_3 = 2.3R_{C1}C_2 = 2.3 .330 .0.003 \stackrel{.}{=} 2.27 \text{ s.}$$

Vidíme, že čas t_3 je delší, než doba trvání intervalu t_1 (0,3 s) a kondenzátor C_2 by se proto nestačil za dobu t_1 nabít na napětí U_n . Zkrátila by se tím potom doba t_2 a zvětšil by se kmitočet impulsů. Protože velikost časové konstanty (tvořené kapacitou C_2 a odporem $R_{\rm B2}$) musíme zachovat, nezbývá než zmenšit kolektorový odpor $R_{\rm C1}$ a zkrátit tak čas t_3 . Aby se kondenzátor C_2 mohl během doby t_1 nabít na U_n , musí platit

$$t_3 \leq t_1$$
.

Po dosazení do předchozího výrazu pro t_3 dostaneme pro odpor R_{C1}

$$R_{C1} \leq \frac{t_1}{2,3C_2} = \frac{0.3}{2.3 \cdot 0.003} \stackrel{.}{=} 43.5 \Omega.$$

Zvolíme nejblíže menší vyráběný odpor

$$R_{\rm C1}=39~\Omega.$$

Nyní přepočítáme ostatní odvozené výsledky:

$$I_{C1} = \frac{U_{n} - U_{CES}}{R_{C1}} = \frac{4,5 - 1}{39} \doteq \frac{90 \text{ mA};}$$

protože se tento proud blíží maximálnímu kolektorovému proudu tranzistoru KC507 (100 mA, viz katalog), použijeme raději tranzistor KF507. Odhadneme (změříme) jeho zesilovací činitel ($h_{21e} = 50$) a zvolíme proto $\beta_1 = 25$. Pak je

$$I_{\rm B1} = \frac{I_{\rm C1}}{\beta_1} = \frac{90}{25} = 3,6 \text{ mA},$$

$$R_{\rm B1} = \frac{U_{\rm n} - U_{\rm BE}}{I_{\rm B1}} = \frac{4,5 - 0,5}{0,003 \ 6} \doteq \frac{1110 \ \Omega, \text{ zvolíme } 1 \text{ k}\Omega,}{c_1 = \frac{t_1}{0,7R_{\rm B1}}} = \frac{0,3}{0,7 \cdot 1000} \doteq \frac{429 \ \mu\text{F}, \text{ zvolíme } 500 \ \mu\text{F};}$$

znovu přepočítáme

$$R_{\rm B1} = \frac{t_1}{0.7C_1} = \frac{0.3}{0.7 \cdot 0.0005} \doteq$$

 $\doteq 855 \,\Omega$, zvolíme 820 Ω .

Obr. 67. Navržený astabilní klopný obvod

Obr. 68. Průběh napětí v jednotlivých místech navrženého astabilního klopného obvodu

Tab. 4. Srovnání vypočítaných a naměřených hodnot astabilního multivibrátoru

	I_{B1}	$I_{\mathrm{C}1}$	$I_{ m B2}$	IC2	f	
Vypočítáno	3,6 mA	90 mA	12 mA	300 mA	1 Hz	
Naměřeno	3,5 mA	94 mA	13 mA	306 mA	1,2 Hz	

Znovu zkontrolujem: t_4 (= 13,8 ms) a t_3 (= 0,27 s).

Konečné schéma zapojení blikače s vypočítanými součástkami je na obr. 67. Vypočítané průběhy napětí jsou na obr. 68. Vychází se z předpokladu, že odpor žárovky je konstantní a nemění se s nažhavením. V tab. 4 je srovnání vypočítaných parametrů blikače s parametry skutečně naměřenými na zkušebním vzorku. Obrazec plošných spojů a rozmístění součástek blikače je na obr. 69.

Obr. 69. Rozložení součástek na destičce s plošnými spoji navrženého astabilního klopného obvodu (G57)

R_K 4/3 • 49

Úpravy zapojení astabilních klopných obvodů

Úpravami základního zapojení astabilního klopného obvodu lze zlepšit ně-

které z parametrů.

Jak bylo vidět z výpočtu a posléze z praktického návrhu, nelze volit poměr t_1/t_2 libovolně velký vzhledem k potřebným součástkám a k náběhovým dobám impulsů. Rozborem výpočtu by se dalo odvodit, že pro symetrický multivibrátor (stejné odpory) platí

$$\frac{t_1}{t_2} = \frac{C_2}{C_1} \le 0.2\,\beta.$$

Pro nesymetrické zapojení lze stejným způsobem odvodit, že

$$\frac{t_1}{t_2} = \left(\frac{C_2}{C_1}\right)^2 = \left(\frac{R_{B2}}{R_{B1}}\right)^2 = \left(\frac{R_{C2}}{R_{C1}}\right)^2 =$$

$$= (0.2 \beta)^2.$$

Je patrné, že největší dosažitelný poměr t_1/t_2 je závislý na zesilovacím činiteli tranzistorů. Lze proto použít v jedné (i v obou) větvi obvodu kaskádní spojení tranzistorů – obr. 70. Dosažitelný poměr t_1/t_2 se tím mnohonásobně zvětší.

Mnoha různými způsoby lze základní obvod upravit tak, aby se zlepšil tvar výstupních impulsů, tj. aby se zkrátily náběhové doby t_3 a t_4 . Odebíráme-li impulsy pouze z jednoho výstupu (většinou), je z hlediska tvaru impulsů výhodnější nesymetrické zapojení obvodu. Jeden ze způsobů, jak zlepšit tvar výstupních impulsů, je na obr. 71. Rozdělením kolektorových obvodů se zmenší původní časové konstanty, určující časy t_3 a t_4 , z $R_{C1}C_2$ ($R_{C1} = R'_{C1} + R''_{C1}$) na $R''_{C1}C_2$, popř. z $R_{C2}C_1$ na $R''_{C2}C_1$.

Zapojení na obr. 72 umožňuje synchronizovat kmitočet multivibrátoru vnějšími synchronizačními impulsy, přiváděnými na vstup A. Diody D_1 , D_2 spolu s odpory R_1 , R_2 zajišťují, že kladný synchronizační impuls projde vždy na bázi zavřeného tranzistoru. Je-li např. zavřen tranzistor T_2 , na jeho kolektoru je kladné napětí (= U_n), které přes odpor R_2 polarizuje diodu D_2 v propustném směru. Vstupní kladný impuls tedy touto diodou projde. Na kolektoru T_1

Obr. 70. Zapojení astabilního klopného obvodu s velkým poměrem t₂/t₁

je nulové napětí, dioda D_1 je anodou (přes odpor R_1 a tranzistor T_1) připojena k zemi. Její anoda je tedy zápornější než katoda a dioda je polarizována v závěrném směru – žádný impuls nepropustí.

Na obr. 73 je multivibrátor, jehož kmitočet je řízen a stabilizován krystalem X.

Na obr. 74 je astabilní klopný obvod s emitorovou vazbou. Výstupní impulsy

Obr. 71. Astabilní klopný obvod se strmými hranami impulsů

Obr. 72. Synchronizace kmitočtu astabilního klopného obvodu

Tab. 5. Závislost kmitočtu multivibrátoru i kHz na napájecím napětí

Obr. 73. Řízení kmitočtu astabilního klopného obvodu krystalem

Napětí	3 V	4,5 V	6 V	9 V	12 V	
Kmitočet	1 200 Hz	1 kHz	865 Hz	800 Hz	750 Hz	

mají velmi dobrý obdélníkový tvar. Poměr t_1/t_2 se může měnit ve velkém rozsahu změnou odporu $R_{\rm B1}$, kmitočet změnou kapacity C_1 při konstantním poměru t_1/t_2 . Výhodou zapojení je i možnost dosáhnout symetrických i nesymetrických impulsů s velmi nízkým kmitočtem $-t_1$ i t_2 řádu desítek vteřin; pro součástky na obr. 74 je kmitočet impulsů l kHz.

Podrobnější rozbor uvedených obvodů a větší počet různých úprav nalezne zájemce v literatuře.

Nízkofrekvenční bzučák

Astabilní multivibrátor má mnoho různých použití, např. i jako zdroj impulsů a signálů různých kmitočtů. Jed-

Obr. 74. Astabilní klopný obvod s velkým poměrem t₂/t₁

ním z nich je i jednoduchý bzučák, který může sloužit k nácviku telegrafních značek, ke zkoušení nf částí přijímačů, k signalizaci apod.

Pro kmitočet 1 kHz, $R_{C2} = 4\,000\,\Omega$ (sluchátka), napájecí napětí 4,5 V a libovolné germaniové tranzistory, jejichž $h_{21e} \ge 40$, byly vypočítány hodnoty součástek, vepsané ve schématu bzučáku na obr. 75.

Obrazec plošných spojů a rozmístění součástek je na obr. 76, závislost elektrických parametrů bzučáku na napájecím napětí je v tab. 5.

Obr. 75. Astabilní multivibrátor 1 kHz

Obr. 76. Rozložení součástek na destičce s plošnými spoji astabilního multivibrátoru 1 kHz (G58)

Schmittův klopný obvod

Tento obvod je odvozen z monostabilního klopného obvodu. Má rovněž jeden stabilní stav; do druhého – nestabilního – stavu přechází pouze po dobu trvání vstupního impulsu, přesněji řečeno po dobu, kdy je vstupní signál větší, než určitá stanovená mez. Průběh vstupního napětí v závislosti na vstupním signálu je na obr. 77.

Základní zapojení Schmittova obvodu je na obr. 78. V klidovém stavu je tranzistor T_1 uzavřen. Na odporu R_1 děliče $R_{C1}R_{B2}R_1$ vznikne takové napětí, které zabezpečí, že tranzistor T_2 bude ve vodivém stavu v oblasti nasycení. Kolektorový proud I_{C2} i proud báze I_{B2} protékají společným emitorovým odporem R_E a vytvářejí na něm úbytek U_E . Tím je kladné napětí i na emitoru T_1 (protibázi) a tranzistor T_1 je lépe uzavřen. Nyní přivedeme na bázi T_1 signál

Obr. 77. Závislost výstupního napětí na vstupním Schmittova klopného obvodu

Obr. 78. Základní zapojení Schmittova klopného obvodu

(kladné napětí) U_{vst} a pomalu ho zvětšujeme; dokud vstupní signál nedosáhne velikosti rovnající se součtu napětí $U_{
m E}$ a $U_{\rm BE}$, stav obvodu se nemění. Jakmile této hranice dosáhne (na obr. 78 je označena U_{vst1}), uvede se tranzistor T_1 do vodivého stavu, zmenší se napětí na jeho kolektoru a tím i na odporu R_1 , zmenší se i proud $I_{\rm B2}$ a tím i proud $I_{\rm C2}$. Tím se zmenší i $U_{\rm E}$ a to má za následek větší kladné předpětí T₁ a další zvětšení jeho kolektorového proudu. Tranzistor T_1 se tedy velmi rychle lavinovitým pochodem dostane do nasyceného stavu. Báze T_2 je připojena přes odpor R_{B2} a tranzistor T_1 na napětí $U_{\rm E}$ – protože na emitoru T₂ je stejné napětí, tranzistor T₂ je uzavřen. Tento stav trvá tak dlouho, dokud je vstupní signál dostatečně velký. Budeme-li vstupní signál zmenšovat, nebude se měnit stav obvodu dotud, dokud bude větší, než součet nynějšího úbytku na $R_{\rm E}$ a $U_{\rm BE}$. Úbytek na R_E je určen součtem kolektorového proudu a proudu báze T_1 . Protože proud I_{C1} může být obecně jiný než I_{C2} , může být jiný i úbytek a budou se proto lišit hranice překlopení obvodu při zvětšování a zmenšování signálu $U_{\rm vst}$. Rozdíl mezi maximem a minimem vstupního signálu $(U_{vst1} - U_{vst2})$ nazýváme hysterezí obvodu. Hystereze je závislá na součástkách obvodu a na zvoleném kolektorovém proudu I_{C1} ; nemůže být nikdy nulová, napětí U_{vst2} bude vždy menší než U_{vst1} .

Zmenší-li se napětí U_{vst} vstupního signálu pod mezní velikost U_{vst2} , tranzistor T_1 se uzavře, napětí na jeho kolektoru se zvětší, napětí na bázi T_2 otevře tranzistor T_2 a jeho kolektorový proud I_{C2} úbytkem na R_E dokonale uzavře T_1 . Celý pochod proběhne opět lavinovitě, a tedy velmi rychle.

Z funkce obvodu a ze závislosti výstupního napětí na vstupním vyplývají dvě nejčastější použití Schmittova obvodu: tvarovač při přeměně různých

průběhů impulsů na obdélníkovité a indikátor úrovně (signalizuje dosažení nebo zmenšení určitého napětí apod.).

Výpočet Schmittova obvodu

Při výpočtu vycházíme z daného napájecího napětí, popř. požadovaného výstupního napětí, z údajů napětí U_{vst1} a U_{vst2} , při nichž má obvod přecházet z jednoho stavu do druhého a z velikosti zbytkového napětí báze-emitor použitých tranzistorů. Při výpočtu vycházíme ze základního schématu na obr. 78.

Zvolíme kolektorový odpor R_{C2} (stejně jako u monostabilního obvodu) alespoň desetkrát menší, než je předpokládaný zatěžovací odpor R_z

$$R_{\rm C2} \leq \frac{R_{\rm z}}{10} .$$

Vypočítáme potřebný úbytek na emitorovém odporu $R_{\rm E}$ jako rozdíl

$$U_{\rm E}=U_{\rm vst1}-U_{\rm BE}$$
 .

Dále stanovíme z náhradního schématu na obr. 79a kolektorový proud I_{C2} tranzistoru I_{2}

$$I_{\mathrm{C2}} \doteq \frac{U_{\mathrm{n}} - U_{\mathrm{E}}}{R_{\mathrm{C2}}}$$
,

a z vypočítaných údajů určíme

$$R_{
m E}=rac{U_{
m E}}{I_{
m C2}+I_{
m B2}}\;;\;\;{
m p}$$
ři $I_{
m B2}\ll I_{
m C2}$ je $R_{
m E}\doteqrac{U_{
m E}}{I_{
m C2}}\;.$

Proud báze je vázán s kolektorovým proudem již známým vztahem

$$I_{
m B} = rac{I_{
m C}}{eta}\,,\;{
m tak}{
m \check{z}e}\;\;I_{
m B2} = rac{I_{
m C2}}{eta}\;.$$

Obr. 79. K výpočtu Schmittova klopného obvodu

Proud odporovým děličem $R_{C1}R_{B2}R_1$ zvolíme pět až desetkrát větší, než je vypočítaný proud báze I_{B2}

$$I_{\rm D} = (5 \text{ až } 10)I_{\rm B2}$$
.

Nyní určíme potřebný úbytek na odporu $R_{\rm E}$ v nestabilním stavu, tj. při T_1 ve vodivém stavu. Vycházíme ze zadané dolní hranice vstupního napětí $U_{\rm vst2}$; toto napětí se rovná součtu napětí $U_{\rm BE}$ a napětí na emitorovém odporu $U'_{\rm E}$. Z toho

$$U'_{\mathbf{E}} = U_{\mathbf{vst2}} - U_{\mathbf{BE}}$$
.

Protože úbytek $U'_{\rm E}$ vzniká na odporu $R_{\rm E}$ průtokem proudů $I_{\rm C1}$ a $I_{\rm B1}$, platí, že

$$I_{\text{C1}} = \frac{U'_{\text{E}}}{R_{\text{E}}} - I_{\text{B1}}; \text{ pro } I_{\text{B1}} \ll I_{\text{C1}}$$
 je $I_{\text{C1}} \doteq \frac{U'_{\text{E}}}{R_{\text{E}}}$.

Kolektorovým odporem R_{C1} prochází kromě kolektorového proudu I_{C1} také proud děliče I_D . Úbytek na tomto odporu (jak je patrné z obr. 79b) je $U_n - U_E$, a pro R_{C1} tedy platí

$$R_{\rm C1} = \frac{U_{\rm n} - U_{\rm E}}{I_{\rm C1} + I_{\rm D}}$$
.

Jak vyplývá ze schématu (obr. 78), je v klidovém stavu při uzavřeném T_1 na odporech R_{C1} a R_{B2} napětí

$$U_{\mathtt{R}} = U_{\mathtt{n}} - U_{\mathtt{E}} - U_{\mathtt{BE}},$$

toto napětí je dáno průtokem proudu I_D odpory R_{C1} a R_{B2}

$$U_{\rm R} = (R_{\rm C1} + R_{\rm B2})I_{\rm D}$$
.

Sloučením obou rovnic dostaneme

$$U_{\rm n}-U_{\rm E}-U_{\rm BE}=(R_{\rm C1}+R_{\rm B2})I_{\rm D}$$

a úpravou

$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm E} - U_{\rm BE}}{I_{\rm D}} - R_{\rm C1} \ .$$

Odporem R_1 bude protékat rozdíl proudů I_D a I_{B2} . Ze schématu je patrné, že na odporu R_1 musí být napětí $U_E + U_{BE}$. Pro odpor R_1 tedy platí

$$R_1 = \frac{U_{\rm E} + U_{\rm BE}}{I_{\rm D} - I_{\rm B2}}.$$

R_K ÷ 53

Tím jsme určili všechny součástky zapojení. Nyní ještě musíme uvážit vliv vnitřního odporu zdroje vstupního napětí U_{vst} . Uvažujeme-li ideální zdroj napětí, je jeho vnitřní odpor nulový a na bázi T_1 bude napětí zdroje. Připustíme-li vnitřní odpor R_1 , vznikne na něm průtokem proudu báze úbytek napětí a napětí U_{vst} na bázi tranzistoru T_1 bude o tento úbytek menší, než je napětí zdroje U_{g} . Pro praktický výpočet proto musíme zjistit proud báze I_{B1} tranzistoru T_1

$$I_{\mathrm{B1}} = rac{I_{\mathrm{C1}}}{eta}$$
 .

Potřebné napětí zdroje naprázdno potom musí být

$$U_{\rm g} = U_{\rm vst} + R_{\rm i} I_{\rm BI}$$
.

Celý výpočet nyní opět shrneme do základních kroků.

Výpočet Schmittova klopného obvodu

1. Stanovíme

$$R_{C2} \leq \frac{R_{\mathbf{z}}}{10}$$
.

2. Vypočítáme $U_{\rm E} = U_{\rm vst1} - U_{\rm BE}$

a
$$I_{C2} = \frac{U_n - U_E}{R_{C2}}$$
.

3. Za předpokladu, že $I_{\rm B2} \ll I_{\rm C2}$, určíme

$$R_{\mathbf{E}} \doteq \frac{U_{\mathbf{E}}}{I_{\mathbf{C2}}}.$$

4. Zvolíme proud děličem

$$I_{\rm D} = (5\,{\rm a\check{z}}\,10)\,I_{\rm B2} = (5\,{\rm a\check{z}}\,10)\,rac{I_{\rm C2}}{\beta}$$
.

5. Za předpokladu, že $I_{\rm B1} \ll I_{\rm C1}$, vypočítáme

$$I_{\rm C1} = \frac{U_{\rm vst2} - U_{\rm BE}}{R_{\rm E}} \,. \label{eq:IC1}$$

6. Vypočítáme

$$R_{\mathrm{C1}} = \frac{U_{\mathrm{n}} - U_{\mathrm{E}}}{I_{\mathrm{C1}} + I_{\mathrm{D}}}$$

7. Vypočítáme zbývající dva odpory děliče

$$R_{
m B2} = rac{U_{
m n} - U_{
m E} - U_{
m BE}}{I_{
m D}} - R_{
m C1}$$
 a $R_{
m 1} = rac{U_{
m E} + U_{
m BE}}{I_{
m D} - I_{
m B2}}$.

8. Určíme potřebné napětí naprázdno zdroje vstupního signálu

$$U_{
m g} = U_{
m vst} + R_{
m i} I_{
m B1},$$
kde $I_{
m B1} = rac{I_{
m C1}}{eta}$.

Příklad výpočtu

Máme navrhnout obvod, který bude zajišťovat trvalé dobíjení akumulátoru 12 V. Při zmenšení napětí akumulátoru pod 11 V připojí akumulátor k nabíječi a odpojí ho po nabití na 13 V. Ovládací obvod má být galvanicky oddělen od nabíjecího obvodu a bude napájen napětím 6 V. Budou použity křemíkové tranzistory.

Z podmínky galvanického oddělení ovládacího a nabíjecího obvodu vyplývá nutnost použít k připojování akumulátoru k nabíječi elektromagnetické relé. Použijeme relé, které spíná při proudu 35 mA a má odpor vinutí 100 Ω.

Relé má sepnout, je-li vstupní napětí menší než 11 V, tj. v klidovém stavu ovládacího obvodu. Protože u Schmittova obvodu je v klidovém stavu sepnut tranzistor T_2 , zapojíme relé místo kolektorového odporu R_{C2} .

Vzhledem k tomu, že napájecí napětí je pouze 6 V, nemůžeme pracovat přímo se vstupními napětími 11 a 13 V. Musíme je zmenšit odporovým děličem. Zvolíme dělicí poměr 4:1; napětí 13 V bude potom odpovídat $U_{vst1}=3,25$ V, napětí 11 V $U_{vst2}=2,75$ V.

Výpočet začneme stanovením odporu R_{C2} . Je dán odporem vinutí relé.

1. $R_{C2} = 100 \Omega$.

2.
$$U_{\rm E} = U_{\rm vst1} - U_{\rm BE} = 3.25 - 0.7 = 2.55 \text{ V}.$$

 $U_{\rm BE}$ jsme zvolili 0,7 V, což je obvyklé u většiny křemíkových tranzistorů.

$$I_{C2} = \frac{U_{\rm n} - U_{\rm E}}{R_{\rm C2}} = \frac{6 - 2.55}{100} =$$

= 34.5 mA.

3.
$$R_{\rm E} = \frac{U_{\rm E}}{I_{\rm C2}} = \frac{2,55}{34,5} \doteq 74 \,\Omega$$
.

Odpor získáme zapojením dvou odporů 150 Ω paralelně.

4.
$$I_{\rm D} = (5 \, {\rm až} \, 10) \, \frac{I_{\rm C2}}{\beta} = (5 \, {\rm až} \, 10) \, \frac{34,5}{50}$$
, zvolíme $I_{\rm D} = 4 \, {\rm mA}$.

Předpokládáme proudový zesilovací činitel obou tranzistorů $\beta = 50$.

5.
$$I_{C1} = \frac{U_{Vst2} - U_{BE}}{R_E} = \frac{2,75 - 0,7}{75} \stackrel{.}{=} \frac{27.3 \text{ mA}}{}$$
.

6.
$$R_{C1} = \frac{U_{n} - U_{E}}{I_{C1} + I} = \frac{3,45}{27,3+4} = 1,1 \text{ k}\Omega.$$

Odpor získáme zapojením dvou odporů 2,2 kΩ paralelně.

7.
$$R_{\rm B2} = \frac{U_{\rm n} - U_{\rm E} - U_{\rm BE}}{I_{\rm D}} = \frac{6 - 2,55 - 0,7}{4} \doteq 680 \,\Omega$$

Obr. 80. K praktickému příkladu návrhu Schmittova obvodu

$$I_{\rm B2} = \frac{I_{\rm C2}}{\beta} = \frac{34.5}{50} = 0.69 \text{ mA},$$

$$R_1 = \frac{U_{\rm E} + U_{\rm BE}}{I_{\rm D} - I_{\rm B2}} = \frac{3,25}{4 - 0,69} \doteq 1 \,\mathrm{k}\Omega.$$

Zbývá návrh děliče vstupního napětí v poměru 1 : 4 (obr. 80). Proud děličem zvolíme

$$I_{\rm Dvst} \geq 10I_{\rm BI}$$
.

Vypočítáme

$$I_{\rm B1} = \frac{I_{\rm C1}}{\beta} = \frac{27.3}{50} \doteq 0.55 \,\mathrm{mA}$$
 ,

z toho

$$I_{\text{Dvst}} = \geq 5.5 \text{ mA}$$
.

Protože napětí na děliči je 11 až 13 V, budeme počítat s nejmenším napětím, tj. 11 V. Odpor děliče R_D potom bude

$$R_{\rm D} \leq \frac{11}{5,5} = 2 \,\mathrm{k}\Omega \,.$$

Při zmenšování vstupního napětí, tj. při odpojení akumulátoru od nabíječe, teče bází T_1 proud I_{B1} a při výpočtu děliče musíme vzít v úvahu zdánlivý stejnosměrný odpor tranzistoru R_{T1} , který je připojen paralelně k odporu R_{D2} děliče. Pro napětí, při němž má dojít k překlopení, tj. při U_{vst2} je tento odpor

$$R_{\text{T1}} = \frac{U_{\text{vst2}}}{I_{\text{B1}}} = \frac{2,75}{0,55} = 5 \text{ k}\Omega$$
.

Se zřetelem k dělicímu poměru 4 : l a k podmínce $R_{\mathbf{D}} \leq 2 \text{ k}\Omega$ zvolíme

$$R_{\rm D2}=470~\Omega$$
.

Výsledný odpor paralelního spojení $R_{\rm D2}$ a $R_{\rm T1}$ bude

$$R'_{D2} = \frac{R_{D2} R_{T1}}{R_{D2} + R_{T1}} = 430 \,\Omega.$$

Má-li být na bázi přesně čtvrtina napětí akumulátoru, musí pro R_{D1} platit

$$R_{\rm D1} = 3R'_{\rm D2} = 3.430 = 1290 \,\Omega$$
.

Použijeme odporový trimr 1,5 k Ω a požadovaný odpor přesně nastavíme při zkoušení funkce celého obvodu. V zapojení můžeme použít libovolné křemíkové tranzistory, jejichž proudový zesilovací činitel na hranici nasycení je alespoň $\beta=50$. Celkové schéma zapojení navrženého obvodu s hodnotami součástek je na obr. 81.

Obr. 81. Navržený Schmittův klopný obvod

Příklad řešení tranzistorového spínače s miniaturním relé

Základní literatura o polovodičových spínacích obvodech

Budínský, J.: Technika tranzistorových spínacích obvodů. SNTL: Praha 1963.

Čermák, J.; Navrátil, J.: Tranzistorová technika. SNTL: Praha 1967.

Heřman, J.: Bezkontaktní spínání. SNTL – ALFA: Praha 1971.

Uhlíř, J.; Slípka, J.: Polovodičové impulsové a spínací obvody.

SNTL: Praha 1972.

Šurina, T.: Impulsové zesilovače a obvody. SNTL: Praha 1972. Lukeš, J.: Obvody s polovodičovými diodami. SNTL: Praha 1965.

56 • 4 R

TYRISTOROVÉ ZAPALOVÁNÍ PRO TRABANT

Tranzistor pracuje jako blokovací oscilátor spouštěný kontaktem přerušovače (obr. 1). Při sepnutí kontaktu přerušovače se nabíjí kondenzátor C. Při rozepnutí přerušovače se kondenzátor C vybíjí přes tyristor do zapalovací cívky. Proto spotřeba proudu odpovídá rychlosti otáčení motoru a při volnoběhu je malá. Přesto, že úspora není příliš velká vzhledem ke kapacitě akumulátoru, za jízdy se světly při volnoběhu se projevuje. Maximální rychlost dosahovaná při třetím rychlostním stupni je 80 km/hod. Při běžném zapalování je 70 km/hod. Průměrná spotřeba při běžném zapalování byla zjištěna dlouhodobým měřením 7 l/100 km. Při použití tyristorového zapalování byla 6,5 l/100 km.

Činnost

V okamžiku sepnutí kontaktu přerušovače projde záporný impuls přes diodu D_2 na bázi tranzistoru. Impuls v bázi vyvolá změnu proudu v kolektoru. Změna proudu v kolektorovém vinutí L_2 vyvolá ve vinutí báze napětí, jež podporuje zvětšení kolektorového proudu. Vlivem indukčnosti se proud kolektoru téměř lineárně zvětšuje do maxima. Indukované impulsy ve vinutí L_3 nabíjejí kondenzátor C. Doba nabíjecího impulsu je dostatečně krátká k tomu, aby se kondenzátor C stačil nabít na maximální napětí i při nejvyšších rychlostech otáčení.

Dioda D₁ chrání přechod báze-emitor

tranzistoru.

Obr. 1. Schéma zapojení zapalování. L_1 má 17 z drátu o \varnothing 0,28 mm, L_2 20 z drátu o \varnothing 0,75 mm a L_3 665 z drátu o \varnothing 0,28 mm

Při spojení kontaktu přerušovače se nabíjí i kondenzátor C_2 přes odpor R_5 . Při rozpojení kontaktu přerušovače se C_2 vybíjí přes diodu D_3 do řídicí elektrody tyristoru. Tyristor sepne a připojí nabitý kondenzátor C k zapalovací cívce. Po jednu půlvlnu proudu, který nyní začne probíhat v kmitavém obvodu vytvořeném indukčností primárního vinutí zapalovací cívky a kondenzátorem C, vede vždy tyristor, během druhé půlvlny vede dioda D₅. Po dobu otevření tyristoru přeskočí jiskra několikrát. Celé zapojení pro oba válce se dá udělat s jediným tranzistorem a transformátorem, ale s rizikem, že při větším napětí se mohou oba obvody ovlivňovat. K vzájemnému ovlivňování docházelo již při 250 V. Přesto se toto řešení nedá zcela vyloučit.

Konstrukce

Všechny součástky jsou spolu s destičkou plošných spojů upevněny na základní desce z pozinkovaného ocelového plechu tloušťky 2 mm. Svorky jsou vyvedeny na destičce s plošnými spoji (obr. 2), která je přímo připájena k destičce se součástkami. Použité transformátory jsou z televizního přijímače Rubín, mají jádro z plechu o průřezu středního sloupku 1,6×3 cm. Do základní desky je v místě mezi transformátory vyříznut otvor, jímž jsou prostrčeny krabicové kondenzátory 0,5 µF/400 V.

Celý přístroj je svrchu kryt krabičkou B6 (obr. 3). V automobilu se umístí nad zapalovací cívky (obr. 4). Připojení je jednoduché, u zapalovacích cívek přívod kladného napětí zůstává, pouze se od cívek odpojí přerušovače a připojí

Obr. 2. Deska s plošnými spoji (G59)

na vstupy P. Odpovídající výstupy V se spojí s volnými vývody cívek. Při poruše je tedy možno velmi jednoduchým způsobem přepojit zapalování do původního stavu.

Uvedení do chodu

Zapojení odzkoušíme při napájení z ploché baterie. Připojíme zapalovací cívku a na jejím sekundárním vývodu

Obr. 3. Uspořádání součástek

58 • 6 R

můžeme udělat přeskokovou vzdálenost pro jiskru asi 1 mm. Při spojení vývodu P se záporným pólem baterie by se měl kondenzátor Č nabít asi na 80 V; při rozpojení se kondenzátor C vybije do zapalovací cívky. Správnou polaritu vinutí L₁ vzhledem k L₂ zjistíme tak, že šroubovákem spojíme diodu D1 nakrátko a kontrolujeme, kmitá-li tranzistor. Nekmitá-li, přehodíme vývody např. L_1 . Pak zkusíme, nabíjí-li se při spojení vývodu P se záporným pólem kondenzátor C. Nenabíjí-li se, přehodíme vývody vinutí L₃. Napájíme-li zapalování po této zkoušce z akumulátoru, měl by se kondenzátor C nabíjet na 300 až 350 V. Napětí upravíme změnou počtu závitů vinutí v bázi. Odpor R₂ nastavíme tak, aby bylo možno tranzistor sepnout ještě při napětí 3,5 V.

Ing. Lubomír Spurný

Obr. 4. Umístění v autě

DODATEK K RK 5/73 (OBVOD AUTOMATICKÉHO LADĚNÍ)

Na obr. 78 je zapojení napájecí části. Vzhledem k malému odběru proudu vystačíme z jednocestným usměrněním. Střídavé napětí ze sekundárního vinutí síťového transformátoru (21 až 22 V) je usměrněno jednak diodou D_{51} , a jednak diodou D₅₂. V prvním případě získáme usměrněné napětí kladné polarity, ve druhém záporné polarity. Kladné napětí je použito k napájení obvodu automatického ladění a k napájení stereo-fonního dekodéru. Záporné napětí je rozvětveno do dvou částí. Část, která je elektronicky stabilizována (tranzistory T₅₂ a T₅₃), slouží pouze k napájení obvodu automatického ladění. Druhá část, stabilizovaná Zenerovou diodou D_{54} , je použita k napájení vstupních jednotek. Potřebné napětí získáme volbou srážecího odporu R_{59} . Ze společného bodu odporů R₅₄ a R₅₅ můžeme přes vhodný srážecí odpor napájet i mezifrekvenční zesilovač tuneru. Uvedený zdroj byl také skutečně použit k napájení celého tuneru VKV včetně obvodu automatického ladění.

Součástky obvodu automatického ladění a napájecí části jsou na jedné desce s plošnými spoji (obr. 79). Zemní vodiče automatiky a napájecí části na desce nejsou a je nutné je propojit buď drátem na desce s plošnými spoji, nebo po případě v některém jiném vhodném místě. V popisovaném vzorku bylo propojení uskutečněno drátovým můstkem přímo na desce s plošnými spoji. Napěťový limiter a odpor R_1 jsou připájeny na mf zesilovači, podobně jako určovací obvod.

Deska s obvodem automatiky a napájecího zdroje je připevněna do jednotkového rámečku Aritma. Celý tuner, v němž jsou umístěny popisované obvody, byl po mechanické stránce řešen právě pomocí uvedených rámečků.

Veškeré použité elektrické součástky jsou obvyklého druhu, který je k dostání v maloobchodní síti. Obvod automatického ladění byl postaven jednak se zahraničními tranzistory, jednak s tranzistory TESLA. Oba vzorky pracovaly naprosto shodně. U tranzistorů typu

KF517 je vhodné vybrat kusy s co největším zesilovacím činitelem.

Popisovaný vzorek byl určen k ladění vstupní jednotky, která má záporné ladicí napětí. To je také důvod, proč je v zapojení tolik tranzistorů p-n-p. Pokud bude obvod pracovat ve spojení se vstupní jednotkou, která má kladné ladicí napětí, budou mít všechny tranzistory opačnou polaritu (n-p-n). Jak je patrno, bude v této druhé verzi tranzistorů p-n-p méně.

Při oživení a nastavení je nejlépe postupovat následujícím způsobem:

Nejprve ověříme funkci napájecího zdroje. Přeměříme příslušná napájecí napětí a trimrem R_{65} nastavíme výstupní napětí stabilizovaného zdroje —16 V.

Dále přemístíme běžec trimru R_{16} k uzemněnému konci odporové dráhy a přepínač v bázi T_{12} přepneme do polohy, v níž je báze napájena ze záporné větve přes odpor R_{31} (je vyřazen obvod rychlého přelaďování).

Dokonale nastavíme obvod ve spojení s tunerem, u něhož při nastavování odpojíme anténu.

Překontrolujeme napětí na odporu R₉ (proti zemi) – má být přibližně —12 V.

Nyní tlačítkem Tl_1 vybijeme kondenzátor C_2 a voltmetrem zapojeným mezi zem a emitor T_7 budeme sledovat průběh nabíjení kondenzátoru C_2 . Vhodným nastavením trimru R_{10} musíme dosáhnout dostatečně pomalého nabíjení kondenzátoru – vhodná doba je 10 až 15 vteřin.

Připojíme-li anténu k tuneru, musí se automatické ladění zastavit na nějaké stanici a po krátkodobém stisknutí tlačítka Tl_2 se přijímač automaticky přeladí na nejbližší další stanici, která vysílá na nejblíže vyšším kmitočtu. Nakonec nastavíme trimr R_{16} tak, aby se ladění po dosažení horního konce přijímaného pásma (stupnice) rychle vrátilo zpět k dolnímu konci stupnice.

Obr. 79. Deska s plošnými spoji zapojené z obr. 74 a 78 (G54)

Desky s plošnými spoji:

Desky s plošnými spoji v minulém čísle (RK 5/73) a v tomto čísle mají tato objednací čísla:

RK 5/73, obr. 43 – deska G52, obr. 44 – deska G53; RK 6/73, obr. 79 – deska G54.

U ostatních desek s plošnými spoji jsou objednací čísla uvedena. Desky lze zakoupit nebo objednat pouze v prodejně Svazarmu, Budečská 7, Praha 2, telef. 250-733.

OBSAH

Návrh a konstrukce	1
Spínací obvody v praxi	2
Spínač jako prvek elektrických obvodů	4 5
Spínací obvody s polovodičovými diodami	6
Spínače řízené přenášeným signálem	8
Ovládání dvou zvonků po jednom vedení Domácí telefon Změna intenzity osvětlení	9 9
Rekuperační obvody	10 10
Směrovací obvody	11 13
Výpočet jednoduchého diodového spínače	15 15 18
Přepínač vlnových rozsahů s diodami	18 19
Tranzistor jako spínač	19
Spínání indukční zátěže	24 28 28 29
Spínací obvody s tranzistory	31
Bistabilní klopný obvod	31
Praktický příklad výpočtu	3 5
	36
Praktický příklad výpočtu	41
Astabilní klopný obvod	F 3
Praktický příklad výpočtu	47 50
Schmittův klopný obvod	52
Praktický příklad výpočtu	5 4
Tyristorové zapalování pro Trabant	57 59

RADIOVÝ KONSTRUKTÉR – vydává vydavatelství MAGNET, Praha 1, Vladislavova 26, telefon 260651-9 ● Šéfredaktor ing. František Smolík ● Redakce Praha 2, Lublaňská 57, tel. 296930 PSČ 120 00 ● Redakční rada: K. Bartoš, V. Brzák, ing. J. Čermák, CSc., J. Dlouhý, K. Donát, I. Harminc, L. Hlinský, ing. L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T. Hyan, ing. J. Jaroš, ing. F. Králík, ing. J. Navrátil, K. Novák, ing. O. Petráček, A. Pospíšil, ing. J. Vackář, CSc., laureát st. ceny KG, J. Ženíšek ● Ročně vyjde 6 čísel. Cena výtisku 4,50 Kčs, pololetní předplatné 13,50 Kčs, roční předplatné 27, — Kčs ● Rozšiřuje PNS, v jednotkách ozbrojených sil MAGNET – administrace, Praha 1, Vladislavova 26, PSČ 113 66. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS – vývoz tisku, Jindřišská 14, Praha 1 ● Dohlédací pošta 07 ● Tiskne Polygrafia, závod 01, Svobodova 1, 128 17 Praha – Vyšehrad ● Za původnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou ● Toto číslo vyšlo 22. listopadu 1973.

© Vydavatelství Magnet Praha

VYUŽIJTE VÝHOD

které pro vaše pohodlí nabízí

ZÁSILKOVÁ SLUŽBA
TESLA
UHERSKÝ BROD
PSČ 688 01 Moravská 92

DODÁVÁME NA DOBÍRKU:

- AUTOANTÉNA výsuvná typ l. 75 Kčs.
- AUTOANTÉNA přísavná 80 Kčs.
- POKOJOVÁ ANTÉNA PA III vhodná pro místa dobrých příjmových podmínek – pro příjem buď na VKV nebo TV signálu. 180 Kčs.
- POKOJÓVÁ TV ANTÉNA GZ 0107-0111 pro příjem vysílačů na 6. až 11. kanálu. 52 Kčs.
- TV ANTÉNY pro II. PROGRAM šestiprvkové, desetiprvkové nebo dvacetiprvkové, vhodné pro zhoršené podmínky příjmu. Od 93 do 275 Kčs.
- TV ANTÉNA MOTÝLEK pokojová, vhodná v oblastech dobrého signálu.
 II. TV programu. 40 Kčs.
- ŠIROKOPÁSMOVÁ TV ANTÉNA pro II. program, 21. až 60. kanál. Výrobce Kovopodnik Plzeň, 330 Kčs.
- KONVERTORY umožňující příjem II. TV programu
 pevný 4956 A 3, 165 Kčs.
- ANTÉNNÍ PŘEDZESILOVAČ pro II. program určený pro montáž přímo do individuálních TV antén pro I. až IV. pásmo v oblastech se slabým signálem. 445 Kčs.
- SÍŤOVÝ NAPÁJEČ pro předzesilovač. 135 Kčs.
- UNIVERZÁLNÍ NAPÁJEČ síťový UZ 1 výstupní napětí 3-6-9 V. 135 Kčs.
- VÝMĚNNÝ KŘÍŽOVÝ ŠROUBOVÁK. 15,50 Kčs.
- CUPREXTITOVÉ DESKY pro vlastní výrobu plošných spojů. 145 Kčs. (1 kg).
- CHEMICKÁ SOUPRAVA pro leptání vzorců spojů. 39 Kčs.
- SIGNÁL zvukové zařízení upozorňující řidiče na chod blikače. 48 Kčs.
- TRAFOPÁJEČKA. 89 Kčs.
- MIKROPÁJEČKA ZT 12 včetně zdroje; pro pájení polovodičů. 200 Kčs.
- RADIOPŘIJÍMAČ RENA střední vlny a dlouhovlnná stanice Hvězda.

Tab. 2. Čs. diody, vhodné pro spinaci obvody

Typ Druh		UAK při IAK		I _{KA} při U _{KA}		$I_{ m AK}$	$U_{ m KA}$	Poznámka	
Тур	Drun	[V]	[mA]	[µA]	[V]	MAX [mA]	MAX [V]	Poznamka	
GA200	Ge hrotová	1	2,5	1600	50	15	50	hnědý proužek	
GA201	Ge hrotová	1	5	200	15	25	15	bílý proužek	
GA202	Ge hrotová	1	5	200	30	25	3 0	žlutý proužek	
GA203	Ge hrotová	1	5	200	50	25	60	modrý proužek	
GA204	Ge hrotová	1	5	200	100	20	120	zelený proužek	
GA205	Ge hrotová	1	5	200	15	15	15	červený proužek	
GA206	Ge hrotová	1	5	200	30	2,5	3 0	fialový proužek	
GA207	Ge hrotová	1	1,5	0,1 <i>I</i> AK	1		20	khaki proužek	
OA5	Ge se zlatým hrotem	0,55	10	6	10	115	100		
OA9	Ge se zlatým hrotem	0,42	10	7	10	100	25		
GAZ51	Ge se zlatým hrotem	0,5	10	3	10	140	25		
KA501	Si plošná	1	9	1	10	50	50		
KA502	Si plošná	1	9	0,01	10	50	115	žluté značení	
KA503	Si plošná	1	9	0,01	10	5)	215	modré značení	
KA504	Si plošná	1	9	0,01	10	50	115	zelené značení	
KA200	Si pomalá spínací	0,65	3	0,1	10	100	10		
KA227	Si pomalá spínací	0,7	3	0,1	10	500	10		
KA206	Si rychlá spínací	1	10	5	50	75	50		
KA207	Si rychlá spínací	1	10	5	100	75	100		
KA221	spínací	1	150	0,2	3 0	400	35		
KA222	spinaci	1	3))	0,2	3)	400	35		
KA223	spínací	1	100	0,2	20	400	25		
KA224	spínací	1	200	0,2	20	400	25		
KA225	spínací	1	150	0,2	3)	400	50		
KA236	Si spínací UKV	1	100	0,1	30	10	50		
KA243	Si spínací UKV	1	100	0,1	15	10	20		
KA244	Si spínací UKV	1	100	0,1	15	10	20		

Čs. tranzistory, vhodné pro spinací obvody

Тур	Druh	I _{CB0} pr [μΑ]	ři <i>U</i> CB [V]	h _{21e}	f _T [MHz]	U_{CES} [V]	U _{CB} MAX [V]	I _{C-MAX} [A]	$egin{array}{c} P_{ ext{CMAX}} \\ [ext{W}] \end{array}$
GS501	Ge spínací n-p-n	.3	6	35—130	1	0,4	20	0,4	0,15
GS502	Ge spinaci n-p-n symetrický	3	6	35—13)	1	0,4	20	0,4	0,15
G S 504	Ge spinací n-p-n	3	6	35—130	1	0,5	20	0,4	0,15
GS506	Ge spinací n-p-n	10	15	40—300	10	0,5	15	0,01	0,085
GS507	Ge spínací n-p-n	10	15	49-330	10		15	0,03	0,085
GS508	Ge spinací n-p-n	10	15	40-300	15		15	0,03	0,085
KC147	Si n-p-n	0,015	45	125—500	150		45	0,1	0,2
KC148	Si n-p-n	0,015	20	125—930	150		20	0,1	0,2
KC149	Si n-p-n	0,015	20	240-900	150		20	0,1	0,2
KC507	Si n-p-n	0,015	45	125—500	150		45	0,1	0,3
KC508	Si n-p-n	0,015	20	125-950	15 0		20	0,1	0,3
KC509	Si n-p-n	0,015	20	245—950	150		20	0,1	0,3
KF124	Si vf a spinaci n-p-n	0,8 nA	10	67—220	370		30	0,03	0,22
KF125	Si vf a spinaci n-p-n	0,8 nA	10	37—125	230		3.)	0,03	0,22
KF167	Si vf a spinaci n-p-n	0,3	3 0	>26	250		40	0,025	0,13
KF173	Si vf a spinaci n-p-n	0,3	3 0	>3 8	400		4 0	0,025	0,2
KF503	Si vf a spinaci n-p-n	0,5	50	100	150		100	0,05	0,7
KF504	Si vf spinaci n-p-n	0,1	140	100	150		160	0,05	0,7
KF506	Si vf a spínací n-p-n	0,01	60	35—125	60		75	0,5	0,8
KF507	Si vf a spinací n-p-n	0,5	3)	/35	50		4 0	0,5	0,8
KF508	Si ví a spínací	0,01	63	95—350	7ა		75	0,5	0,8
KF524	Si ví a spínací	0,8 nA	10	67—220	350		3)	0,03	0,145
KF525	Si vf a spinaci n-p-n	0,8 nA	10	37—125	300		3 0	0,03	0,145
KS500	Sí ví a spinací n-p-n	0,5	15	>20	200		25	0,2	1
KF517	Si p-n-p	0,5	30	>35	30		40	0,6	0,8
KU601	Si výk. n-p-n	50	30	>20	10	1,4	6 0	2	10
KU602	Si výk. n-p-n	50	30	>20	10	1,4	120	2	10
KU605	Si výk. n-p-n	1 mA	50	>10	1	1,7	200	10	50
KU606	Si výk. n-p-n	1 mA	50	> 5	1	2,45	120	8	50
KU607	Si výk. n-p-n	1 mA	150	>10	3	1,7	210	10	70
KU608	Si výk. n-p-n	1 mA	150	> 3	3	1,7	250	10	70
KU611	Si výk. n-p-n	50	3)	>20	10	1	60	3	10
KU612	Si výk. n-p-n	50	30	>2ડ	10	1	120	3	10

Nomogram k rychlému návrhu astabilního klopného obvodu

Použité značení veličin je stejné jako ve výkladu. Na první stupnici zleva zvolíme napájecí napětí, na první stupnici zprava kolektorový proud tranzistorů. Spojnice těchto dvou bodů protne stupnici RC v místě udávajícím velikost kolektorových odporů $R_{\rm C}$. Tento bod spojíme s bodem odpovídajícím proudovému zesilovacímu činiteli použitých tranzistorů (na druhé stupnici zleva). Spojnice těchto dvou bodů protíná stupnici $R_{\rm B}$ v bodu, určujícím odpory $R_{\rm B}$ v bázích tranzistorů. Tento průsečík spojíme s bodem, odpovídajícím požadované délce impulsu (na druhé stupnici zprava); tato spojnice protne stupnici C v bodě, který určí potřebnou kapacitu vazebních kondenzátorů.