Applications linéaires, matrices

Exercice 1.

Soit $u: \mathbb{R}^3 \to \mathbb{R}^2$ définie pour tout $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ par

$$u(x) = (x_1 + x_2 + x_3, 2x_1 + x_2 - x_3)$$

- 1. Montrer que *u* est linéaire.
- 2. Déterminer ker(u).

Exercice 2.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x, y, z) = (x + y + z, -x + 2y + 2z)$$

On appelle $\beta=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $\beta'=(f_1,f_2)$ la base canonique de \mathbb{R}^2 .

- 1. Montrer que f est une application linéaire.
- 2. Donner une base et la dimension de ker(f) et une base et la dimension de Im(f).

Exercice 3.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie pour tout vecteur $u = (x, y, z) \in \mathbb{R}^3$ par :

$$f(u) = (-2x + y + z, x - 2y + z)$$

- 1. Montrer que f est une application linéaire.
- 2. Donner une base de ker(f), en déduire dim(Im(f)).
- 3. Donner une base de Im(f).

Exercice 4.

On considère l'application $h: \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$h(x,y) = (x - y, -3x + 3y)$$

- 1. Montrer que h est une application linéaire.
- 2. Montrer que *h* est ni injective ni surjective.
- 3. Donner une base de son noyau et une base de son image.

Exercice 5.

Soit f l'application linéaire $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ définie par :

$$f(x_1, x_2, x_3) = (x_1 - x_3, 2x_1 + x_2 - 3x_3, -x_2 + 2x_3)$$

Et soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

- 1. Calculer $f(e_1)$, $f(e_2)$ et $f(e_3)$.
- 2. Déterminer les coordonnées de $f(e_1)$, $f(e_2)$ et $f(e_3)$ dans la base canonique.
- 3. Calculer une base de ker(f) et une base de Im(f).

Exercice 6.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout vecteur $u = (x, y, z) \in \mathbb{R}^3$ par :

$$f(u) = (-2x + y + z, x - 2y + z, x + y - 2z)$$

1. Montrer que f est une application linéaire.

- 2. Donner une base de ker(f), en déduire dim(Im(f)).
- 3. Donner une base de Im(f).

Exercice 7.

Soit
$$\mathcal{B} = (e_1, e_2, e_3)$$

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie pour tout $u = (x, y, z) \in \mathbb{R}^3$ par :

$$f(u) = (6x - 4y - 4z, 5x - 3y - 4z, x - y)$$

- 1. Montrer qu'il existe un vecteur $a \in \mathbb{R}^3$, non nul, tel que $\ker(f) = Vect(a)$, déterminer un vecteur qui convient.
- 2. Soit $b = e_1 + e_2$ et $c = e_2 e_3$
 - a. Calculer f(b) et f(c)
 - b. En déduire que $\{b, c\}$ est une base de Im(f).

On pourra utiliser une autre méthode.

- 3. Déterminer une ou plusieurs équations caractérisant Im(f).
- 4. A-t-on $\ker(f) \oplus Im(f) = \mathbb{R}^3$?

Exercice 8.

Soit $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $\mathcal{B}' = (f_1, f_2, f_3)$ la base canonique de \mathbb{R}^3 .

Soit $u: \mathbb{R}^4 \to \mathbb{R}^3$ une application linéaire définie par

$$u(e_1) = f_1 - f_2 + 2f_3$$
; $u(e_2) = 2f_1 + f_2 - 3f_3$; $u(e_3) = 3f_1 - f_3$ et $u(e_4) = -f_1 - 2f_2 + 5f_3$

- 1. Déterminer l'image par u dans vecteurs $x = (x_1, x_2, x_3, x_4)$
- 2. Déterminer une base de ker(u) et sa dimension de ker(u).
- 3. Déterminer une base de Im(u) et sa dimension.

Exercice 9.

Soit $u: \mathbb{R}^4 \to \mathbb{R}^4$ l'application définie pour tout $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ par :

$$u(x) = (x_1 - x_2 + x_3, 0, x_1 + x_2 - x_3 + x_4, x_4)$$

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_2 - x_3 + x_4 = 0\}$$

- 1. Donner une base de ker(u) et sa dimension.
- 2. Donner une base (La plus simple possible) de Im(u) et sa dimension.
- 3. A-t-on $\ker(u) \oplus Im(u) = \mathbb{R}^4$?
- 4. Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 , en donner une base et sa dimension.
- 5. A-t-on $\ker(u) \oplus E = \mathbb{R}^4$?

Exercice 10.

On appelle $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit $u: \mathbb{R}^4 \to \mathbb{R}^4$ qui, à un vecteur $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ associe le vecteur $u(x) \in \mathbb{R}^4$ définit par :

$$u(x) = (x_1 - x_2 + 2x_3 + 2x_4, x_1 + 2x_2 - x_3 + 2x_4, -x_1 + x_2 - 2x_3 - 2x_4, -x_1 + x_2 - x_3 - x_4)$$

On admettra que *u* est une application linéaire.

- 1. Déterminer une base du noyau de u.
- 2. Déterminer une base de l'image de u.
- 3. Déterminer une ou plusieurs équations caractérisant Im(u).

Exercice 11.

Soit f un endomorphisme de \mathbb{R}^3 dont l'image de la base canonique $\beta=(e_1,e_2,e_3)$ est :

$$f(e_1) = -7e_1 - 6e_2$$

$$f(e_2) = 8e_1 + 7e_2$$

$$f(e_3) = 6e_1 + 6e_2 - e_3$$

- 1. Pour tout vecteur $x = x_1e_1 + x_2e_2 + x_3e_3$ déterminer $f \circ f(x)$.
- 2. En déduire que f est inversible (c'est-à-dire bijective) et déterminer f^{-1} .

Exercice 12.

Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ définie pour tout $(x, y, z, t) \in \mathbb{R}^4$ par

$$f(x, y, z, t) = (x - 2y, x - 2y, 0, x - y - z - t)$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. A-t-on $\ker(f) \oplus Im(f) = \mathbb{R}^4$?

Exercice 13.

Soit l'application $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie pour tout $u = (x, y, z, t) \in \mathbb{R}^4$ par :

$$f(x, y, z, t) = (x + y, z + t, x + y + z + t)$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer une base de ker(f).
- 3. Déterminer une base de Im(f).

Exercice 14.

Soit $u: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par :

$$u(x_1, x_2, x_3) = (-2x_1 + 4x_2 + 4x_3, -x_1 + x_3, -2x_1 + 4x_2 + 4x_3)$$

- 1. Montrer que *u* est linéaire.
- 2. Déterminer une base de ker(u) et une base de Im(u).
- 3. A-t-on $\ker(u) \oplus Im(u) = \mathbb{R}^3$?

Exercice 15.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3

Soit u un endomorphisme de \mathbb{R}^3 défini par :

$$u(e_1) = 2e_1 + e_2 + 3e_3;$$
 $u(e_2) = e_2 - 3e_3;$ $u(e_3) = -2e_2 + 2e_3$

1. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ un vecteur.

Déterminer l'image par u du vecteur x. (Calculer u(x)).

2. Soient $E = \{x \in \mathbb{R}^3, u(x) = 2x\}$ et $F = \{x \in \mathbb{R}^3, u(x) = -x\}$

Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 .

- 3. Déterminer une base de E et une base de F.
- 4. Y a-t-il $E \oplus F = \mathbb{R}^3$?

Exercice 16.

Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire telle que :

$$f(e_1) = -\frac{1}{3}e_1 + \frac{2}{3}e_2 + \frac{2}{3}e_3 = \frac{1}{3}(-e_1 + 2e_2 + 2e_3), f(e_2) = \frac{2}{3}e_1 - \frac{1}{3}e_2 + \frac{2}{3}e_3 = \frac{1}{3}(2e_1 - e_2 + 2e_3) \text{ et}$$

$$f(e_3) = \frac{2}{3}e_1 + \frac{2}{3}e_2 - \frac{1}{3}e_3 = \frac{1}{3}(2e_1 + 2e_2 - e_3)$$

Soient $E_{-1} = \{u \in \mathbb{R}^3 \mid f(u) = -u\} \text{ et } E_1 = \{u \in \mathbb{R}^3 \mid f(u) = u\}$

- 1. Montrer que E_{-1} et E_1 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Montrer que $e_1 e_2$ et $e_1 e_3$ appartiennent à E_{-1} et que $e_1 + e_2 + e_3$ appartient à E_1 .
- 3. Que peut-on en déduire sur les dimensions de E_{-1} et de E_1 ?
- 4. Déterminer $E_{-1} \cap E_1$.
- 5. A-t-on $E_{-1} \oplus E_1 = \mathbb{R}^3$?
- 6. Calculer $f^2 = f \circ f$ et en déduire que f est bijective et déterminer f^{-1} .

Exercice 17.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3

Soient

$$a = \frac{1}{3}(2, -2, 1); b = \frac{1}{3}(2, 1, -2); c = \frac{1}{3}(1, 2, 2)$$

Soit $\beta' = (a, b, c)$

Soit u l'endomorphisme de \mathbb{R}^3 définie par :

$$u(e_1) = 3e_1 + e_2 - e_3$$

 $u(e_2) = e_1 + 7e_2$
 $u(e_3) = -e_1 - e_3$

- 1. Montrer que β' est une base de \mathbb{R}^3 .
- 2. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, calculer u(x).
- 3. Montrer que:

$$u(a) = 3a - 3c$$

$$u(b) = 3b + 3c$$

$$u(c) = -3a + 3b + 3c$$

Exercice 18.

Soit p l'application de \mathbb{R}^3 dans \mathbb{R}^3 qui a tout vecteur u=(x,y,z) associe le vecteur

$$p(u) = (2x + y + 2z, y, -x - y - z)$$

Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . On note $p^2 = p \circ p$.

- 1. Montrer que *p* est une application linéaire.
- 2. Calculer $p(e_1)$, $p(e_2)$ et $p(e_3)$, puis $p^2(e_1)$, $p^2(e_2)$ et $p^2(e_3)$, que peut-on en déduire sur $p^2(u)$ pour tout $u \in \mathbb{R}^3$?
- 3. Donner une base de Im(p) et une base de $\ker(p-Id)$, montrer que ces deux espaces vectoriels sont égaux.
- 4. Montrer que $\ker(p) \oplus Im(p) = \mathbb{R}^3$

Exercice 19.

Soit E un espace vectoriel. Soit f un endomorphisme de E tel que $f^2 = f \circ f = Id_E$.

On pose $E_1 = \ker(f - Id_E)$ et $E_2 = \ker(f + Id_E)$

- 1. Soit $x_1 \in E_1$ et $x_2 \in E_2$. Calculer $f(x_1)$ et $f(x_2)$.
- 2. Pour tout $x \in E$ écrire $x = \frac{f(x) + x}{2} \frac{f(x) x}{2}$ et montrer que $E_1 \oplus E_2 = E$
- 3. On suppose que E est de dimension finie et que $f \neq \pm Id_E$. Soit $(v_1, v_2, ..., v_n)$ une base de E telle que : $E_1 = Vect(v_1, ..., v_r)$ et $E_2 = Vect(v_{r+1}, ..., v_n)$ calculer $f(v_i)$ dans la base $(v_1, v_2, ..., v_n)$.

Exercice 20.

Soit $\beta=(e_1,e_2)$ la base canonique de \mathbb{R}^2 . Soit u un endomorphisme de \mathbb{R}^2 tel que $u(e_1)=e_1+e_2$ et tel que $\dim(\ker(u))=1$

- 1. Déterminer $u(e_2)$ en fonction d'un paramètre $a \in \mathbb{R}$.
- 2. Déterminer l'image d'un vecteur $x = (x_1, x_2) \in \mathbb{R}$ en fonction de a.
- 3. Déterminer une base du noyau de ker(u).

Exercice 21.

Soit $f: \mathbb{R}^4 \to \mathbb{R}$ l'application définie pour tout $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ par

$$f(x) = x_1 + x_2 + x_3 + x_4$$

On appelle $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

- 1. Calculer les images des vecteurs de la base canonique par f. En déduire la dimension de im(f).
- 2. Déterminer la dimension de ker(f) et en donner une base.

Exercice 22.

Soit u l'application de \mathbb{R}^n dans \mathbb{R} définie pour tout $x=(x_1,x_2,...,x_n)$ par :

$$u(x) = x_1 + x_2 + \dots + x_n$$

- 1. Montrer que *u* est une application linéaire.
- 2. Déterminer les dimensions de Im(u) et de ker(u).

Exercice 23.

Soit u une application linéaire de E dans E, E étant un espace vectoriel de dimension n avec n pair. Montrer que les deux assertions suivantes sont équivalentes

(a)
$$u^2 = O_E$$
 (où O_E est l'application linéaire nulle) et $n = 2 \dim(Im(u))$

(b)
$$Im(u) = \ker(u)$$

Exercice 24.

Question de cours

Soit u une application linéaire de E vers E.

Montrer que : u est injective si et seulement si $\ker(u) = \{0_E\}$.

Exercice 25.

Soit $u: E \to E$ une application linéaire et λ un réel.

- 1. Soit $E_{\lambda} = \ker(u \lambda i d_{E})$. Calculer u(x) pour $x \in E_{\lambda}$ Montrer que est un sous-espace vectoriel de E.
- 2. Soit $F \subset E$ un sous-espace vectoriel de E, montrer que u(F) est un sous-espace vectoriel de E.
- 3. Si $\lambda \neq 0$, montrer que $u(E_{\lambda}) = E_{\lambda}$

Exercice 26.

Soient E et F deux espaces vectoriels de dimension respectives n et p

Soit $u: E \to F$ une application linéaire

- 1. Montrer que si n < p alors u n'est pas surjective.
- 2. Montrer que si n > p alors u n'est pas injective.

Exercice 27.

Soit $f: E \to F$ une application linéaire

Montrer que:

$$\ker(f) \cap \operatorname{im}(f) = f(\ker(f^2))$$

Exercice 28.

Soient f et g deux endomorphisme de \mathbb{R}^n . Montrer que

$$f(\ker(g \circ f)) = \ker(g) \cap Im(f)$$

Exercice 29.

Soit u un endomorphisme de E un espace vectoriel.

- 1. Montrer que $\ker(u) \subset \ker(u^2)$.
- 2. Montrer que $Im(u^2) \subset Im(u)$.

Exercice 30.

Soit u un endomorphisme de E, un espace vectoriel.

Montrer que les assertions suivantes sont équivalentes

- (i) $\ker(u) \cap im(u) = \{0_E\}$
- (ii) $\ker(u) = \ker(u \circ u)$

Exercice 31.

Soit $u: \mathbb{R}^p \to \mathbb{R}^q$, une application linéaire, $\underline{e} = (e_1, ..., e_p)$ la base canonique de \mathbb{R}^p et $\underline{f} = (f_1, ..., f_q)$ la base canonique de \mathbb{R}^q .

1. p = 3, q = 2

$$u(e_1) = f_1 + 2f_2, u(e_2) = 2f_1 - f_2 \text{ et } u(e_3) = -f_1 + f_2$$

- a) Déterminer l'image d'un vecteur $x = (x_1, x_2, x_3)$ par u.
- b) Déterminer la matrice de u de la base \underline{e} dans la base \underline{f} .
- c) Déterminer le noyau et l'image de u.
- 2. p = 3 et q = 3, dans cette question $\underline{e} = f$

$$u(e_1) = 3e_1 + 2e_2 + 2e_3$$
, $u(e_2) = 2e_1 + 3e_2 + 2e_3$ et $u(e_3) = 2e_1 + 2e_2 + 3e_3$

- a) Déterminer l'image d'un vecteur $x = (x_1, x_2, x_3)$ par u.
- b) Déterminer la matrice de u de la base \underline{e} dans la base \underline{e} .
- c) Déterminer le noyau et l'image de u.

Exercice 32.

Soit $u: \mathbb{R}^p \to \mathbb{R}^q$, une application linéaire, $\underline{e} = (e_1, ..., e_p)$ la base canonique de \mathbb{R}^p et $\underline{f} = (f_1, ..., f_q)$ la base canonique de \mathbb{R}^q .

1.
$$p = 2, q = 3$$

$$A = Mat_{\underline{e,f}}(u) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}$$

- a) Déterminer l'image d'un vecteur $x = (x_1, x_2)$ par u.
- b) Déterminer l'image de la base \underline{e} (c'est-à-dire $u(e_1)$ et $u(e_2)$).
- c) Déterminer le noyau et l'image de u.
- 2. p = 4, q = 4, dans cette question $\underline{e} = f$

$$A = Mat_{\underline{e,f}}(u) = \begin{pmatrix} 1 & 0 & 2 & -1 \\ -1 & 2 & 0 & -1 \\ 1 & -1 & 1 & 0 \\ 2 & 3 & 7 & -5 \end{pmatrix}$$

- a) Déterminer l'image d'un vecteur $x = (x_1, x_2, x_3, x_4)$ par u.
- b) Déterminer l'image de la base \underline{e} (c'est-à-dire $u(e_1)$, $u(e_2)$, $u(e_3)$ et $u(e_4)$).
- c) Déterminer le noyau et l'image de u.

Exercice 33.

Soit $u: \mathbb{R}^p \to \mathbb{R}^q$, une application linéaire, $\underline{e} = (e_1, \dots, e_p)$ la base canonique de \mathbb{R}^p et $\underline{f} = (f_1, \dots, f_q)$ la base canonique de \mathbb{R}^q .

1. p = 3 et q = 3 dans cette question $\underline{e} = \underline{f}$. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$

$$u(x) = (x_1 + x_2, 2x_1 - x_3, 3x_1 + x_2 - x_3)$$

(On admet que u est une application linéaire).

- a) Déterminer l'image de la base \underline{e} (c'est-à-dire $u(e_1)$, $u(e_2)$, et $u(e_3)$).
- b) Déterminer la matrice de u de la base \underline{e} dans la base \underline{e} .
- c) Déterminer le noyau et l'image de u.

2. p = 3 et q = 3 dans cette question $\underline{e} = f$. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$

$$u(x) = (x_1 + x_2, x_1 + x_2, x_1 + x_2)$$

(On admet que u est une application linéaire).

- a) Déterminer l'image de la base \underline{e} (c'est-à-dire $u(e_1), u(e_2),$ et $u(e_3)$).
- b) Déterminer la matrice de u de la base \underline{e} dans la base \underline{e} .
- c) Déterminer le noyau et l'image de u.

Exercice 34.

Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans les base canonique de \mathbb{R}^4 et \mathbb{R}^3 est

$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -11 \end{pmatrix}$$

- 1. Déterminer une base du noyau de f.
- 2. Déterminer une base de l'image de f. Quel est le rang de A?

Exercice 35.

Déterminer le rang de la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{pmatrix}$$

7

Exercice 36.

Soit la matrice *A* de définie par :
$$A = \begin{pmatrix} 13 & -8 & -12 \\ 12 & -7 & -12 \\ 6 & -4 & -5 \end{pmatrix}$$

- 1. Montrer que A est inversible et calculer son inverse A^{-1} .
- 2. En déduire A^n , pour tout n entier.

Exercice 37.

Soit *A* la matrice de définie par :
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Calculer A^2 .
- 2. Trouver un polynôme P de degré 2 tel que P(A) = 0.
- 3. En déduire A^{-1} .
- 4. Retrouver A^{-1} par une autre méthode.

Exercice 38.

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

- 1. Calculer A^2 et A^3 . Calculer $A^3 A^2 + A I$.
- 2. Exprimer A^{-1} en fonction de A^2 , A et I.
- 3. Exprimer A^4 en fonction de A^2 , A et I.

Exercice 39.

Soit A la matrice

$$A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 3 & -2 \\ -1 & 1 & 0 \end{pmatrix}$$

Calculer $(A - 2I)^3$, puis en déduire que A est inversible et déterminer A^{-1} en fonction de I, A et de A^2 .

Exercice 40.

A tout nombre réel
$$t$$
 on associe la matrice : $M(t) = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix}$

- 1. Calculer le produit des matrices $M(t_1)$ et (t_2) , où t_1 et t_2 sont deux réels quelconques.
- 2. Montrer que M(t) est inversible, et déterminer $M^{-1}(t)$.

Exercice 41.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3

Soit $u: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$

1. Montrer que $E_1 = \{x \in \mathbb{R}^3, u(x) = x\}$ est un sous-espace vectoriel de \mathbb{R}^3 dont on donnera une base a.

8

2. Soient b = (0,1,1) et c = (1,1,2) deux vecteurs de \mathbb{R}^3 . Calculer u(b) et u(c).

- 3. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 4. Déterminer la matrice de passage P de β à β' .
- 5. Calculer P^{-1} .
- 6. Déterminer la matrice D de u dans la base β' .
- 7. Donner la relation entre A, P et D.

Exercice 42.

Soit f une application de \mathbb{R}^2 dans \mathbb{R}^2 définie par : $f(x_1, x_2) = (x_1 - x_2, x_1 + x_2)$ et $\beta = (e_1, e_2)$ la base canonique de \mathbb{R}^2 .

- 1. Montrer que f est un endomorphisme de \mathbb{R}^2 .
- 2. Déterminer la matrice A de f dans la base β .

3.

- a) Déterminer le noyau et l'image de f.
- b) En déduire que f est inversible.
- c) Déterminer f^{-1} dans la base β , en déduire A^{-1} .
- 4. Montrer que A = RH.

Où *H* est la matrice d'une homothétie dont on donnera le rapport et *R* est la matrice d'une rotation dont on donnera l'angle.

Soient $a = e_1 + e_2$ et $b = e_1 - e_2$ deux vecteurs de \mathbb{R}^2 . On pose $\beta' = (a, b)$.

- 5. Montrer que $\beta' = (a, b)$ est une base de \mathbb{R}^2 .
- 6. Calculer f(a) et f(b).
- 7. Déterminer la matrice de f dans la base β' .

Exercice 43.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix}$$

Soient $a = e_1 - e_2 + e_3$, $b = 2e_1 - e_2 + e_3$ et $c = 2e_1 - 2e_2 + e_3$ trois vecteurs de \mathbb{R}^3

9

- 1. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de passage P de β à β' . Calculer P^{-1} .
- 3. Déterminer la matrice R de u dans la base β' .

4.

- a) Calculer $P^{-1}AP$ en fonction de R
- b) Calculer R^4
- c) En déduire les valeurs de A^{4n} .

Exercice 44.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par :

$$u(e_1) = -3e_1 + 2e_2 - 4e_3$$

$$u(e_2) = e_1 - e_2 + 2e_3$$

$$u(e_3) = 4e_1 - 2e_2 + 5e_3$$

1. Déterminer la matrice de u dans la base canonique.

- 2. Montrer que $E = \{x \in \mathbb{R}^3, u(x) = x\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Montrer que la dimension de E est 1 et donner un vecteur non nul a de E.
- 3. Montrer que $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3, -2x_1 + 2x_2 + 3x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Donner une base (b, c) de F.
- 4. Montrer que $\beta' = (a, b, u(b))$ est une base de \mathbb{R}^3 .
- 5. Montrer que $E \oplus F = \mathbb{R}^3$.
- 6. Déterminer la matrice R de u dans la base β' .

Exercice 45.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u l'application linéaire qui a un vecteur $x=(x_1,x_2,x_3)\in\mathbb{R}^3$ associe le vecteur

$$u(x) = (x_2 - 2x_3, 2x_1 - x_2 + 4x_3, x_1 - x_2 + 3x_3)$$

- 1. Déterminer la matrice A de u dans la base canonique.
- 2. Déterminer une base (a, b) de ker(u Id).
- 3. Donner un vecteur c tel que ker(u) = vect(c).
- 4. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 5. Déterminer la matrice D de u dans la base β' .
- 6. Montrer que $Im(u) = \ker(u Id)$
- 7. Montrer que $\ker(u) \oplus Im(u) = \mathbb{R}^3$.

Exercice 46.

Soit u l'endomorphisme de \mathbb{R}^3 défini pour tout $x=(x_1,x_2,x_3)$ par

$$u(x) = (-10x_1 + 3x_2 + 15x_3, -2x_1 + 3x_3, -6x_1 + 2x_2 + 9x_3)$$

- 1. Déterminer la matrice A de u dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer la dimension du noyau et de l'image de u. On donnera un vecteur directeur a de $\ker(u)$.
- 3. A-t-on $\ker(u) \oplus Im(u) = \mathbb{R}^3$?
- 4. Déterminer un vecteur b tel que a = u(b).
- 5. Montrer que $E_{-1} = \{x \in \mathbb{R}^3, u(x) = -x\}$ est un sous-espace vectoriel de \mathbb{R}^3 , déterminer un vecteur directeur de E_{-1} que l'on notera c.
- 6. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 7. Déterminer la matrice A' de u dans la base β' et donner la relation reliant A et A'.

Exercice 47.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit f l'endomorphisme de \mathbb{R}^4 dont la matrice par rapport à la base β est : $A = \begin{pmatrix} -6 & -3 & 0 & 6 \\ 6 & 3 & 0 & -6 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Soit $\beta' = (a, b, c, d)$ une famille de \mathbb{R}^4 définie par :

$$a = e_1 - e_2$$
, $b = e_1 - e_2 - e_3$, $c = 2e_1 - 2e_2 + e_3 + e_4$ et $d = -e_1 + 2e_2$

- 1. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 2. Calculer f(a), f(b), f(c) et f(d) et les exprimer dans la base $\beta' = (a, b, c, d)$.
- 3. Déterminer la matrice de f dans la base β' .

Exercice 48.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -3 & -2 & 3 & 0 \\ 3 & 1 & -3 & -1 \\ 1 & 0 & -1 & -1 \\ -1 & -1 & 2 & -1 \end{pmatrix}$$

On pose:

$$a = (-1,1,0,-1), b = (1,-2,-1,1), c = (-2,3,1,-1) \text{ et } d = (2,-1,0,1)$$

- 1. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 2. Donner la matrice de passage P de β à β' . Calculer P^{-1} .
- 3. Calculer u(a), u(b), u(c) et u(d) dans la base β' .
- 4. Déterminer la matrice T de u dans la base β' .
- 5. Calculer N = T + I, puis N^4 et en déduire $(A + I)^4$.

Exercice 49.

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique, $\beta=(e_1,e_2,e_3,e_4)$, est

$$A = \begin{pmatrix} -7 & 6 & 6 & 6 \\ 0 & 2 & 0 & 0 \\ -3 & 3 & 2 & 3 \\ -6 & 3 & 6 & 5 \end{pmatrix}$$

Soient a, b, c et d quatre vecteurs

$$a = -2e_1 - e_2 - e_3 - e_4$$
; $b = e_2 - e_4$; $c = 2e_1 + e_3 + e_4$; $d = 3e_1 + e_3 + 2e_4$

- 1. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 2. Calculer u(a), u(b), u(c) et u(d) dans la base $\beta' = (a, b, c, d)$
- 3. En déduire la matrice D de u dans la base β' .
- 4. Déterminer la matrice P de passage de β à β' .
- 5. Calculer P^{-1} .
- 6. Calculer $P^{-1}AP$.

Exercice 50.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

On pose $a = e_1 + e_2 + e_3$, $b = e_1$, c = u(b) et $d = u^2(b)$.

- 1. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 2. Donner la matrice de passage P de β à β' . Calculer P^{-1} .
- 3. Calculer u(a), u(b), u(c) et u(d) dans la base β' .
- 4. Déterminer la matrice N de u dans la base β' .
- 5. Calculer N^4 et en déduire A^4 .
- 6. Donner une base de ker(u)
- 7. Donner une base de Im(u).

Exercice 51.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit u l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

- 1. Déterminer un vecteur a non nul tel que ker(u) = vect(a)
- 2. Déterminer un vecteur b tel que a = u(b)
- 3. Déterminer un vecteur c tel que u(c) = -c
- 4. Soit d = (-1,0,0,-1), montrer que $\beta' = (a,b,c,d)$ est une base de \mathbb{R}^4
- 5. Calculer u(d) dans la base β' .
- 6. Déterminer la matrice T de u dans β' .
- 7. Quel est le rang de *A*.
- 8. Soit $f = 2e_1 e_2 e_3 + e_4 = (2, -1, -1, 1)$ Calculer $u(f), u^2(f), u^3(f)$ et on admettra que $\beta'' = (f, u(f), u^2(f), u^3(f))$ est une base de \mathbb{R}^4
- 9. Calculer $u^4(f)$ et montrer que $u^4(f) = -2u^3(f) u^2(f)$ En déduire la matrice C de u dans la base β'' .
- 10. Montrer que C et T sont deux matrices semblables (c'est-à-dire qu'il existe une matrice R, inversible, telle que $T = R^{-1}CR$

Exercice 52.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit *u* l'application linéaire dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 3 & -1 & 1 & -3 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

- 1. Donner une base (a, b) de ker(u).
- 2. Donner un vecteur c qui engendre $E_1 = \{x \in \mathbb{R}^4, u(x) = x\}$
- 3. Déterminer un vecteur $d \in \ker((u-id)^2)$ et $d \notin \ker(u-id)$, on pourra calculer $(A-I)^2$, en déduire que d vérifie $u(d) = \lambda c + d$, où λ est un réel qui dépendra du vecteur d que vous avez choisit.
- 4. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 5. Déterminer la matrice T de u dans la base β' . (en fonction de λ)

Exercice 53.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base β est :

$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -3 & 1 & 0 & -2 \end{pmatrix}$$

- 1. Déterminer un vecteur a qui engendre le noyau de u.
- 2. Soit $\lambda \in \mathbb{R}$. Montrer que $E_{\lambda} = \{x \in \mathbb{R}^4, u(x) = \lambda x\}$ est un sous-espace vectoriel de \mathbb{R}^4 .
- 3. Trouver un vecteur directeur b de E_{-1} . Déterminer une base (c,d) de E_1 .
- 4. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 5. Déterminer la matrice de u dans la base β' .

Exercice 54.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit u un endomorphisme de \mathbb{R}^4 dont la matrices dans la base canonique est :

$$A = Mat_{\beta}(u) = \begin{pmatrix} -1 & 2 & -2 & -2 \\ -2 & 3 & -2 & -2 \\ -2 & 2 & -1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On pose $a_1 = e_1 + 2e_2 + 3e_3 - 2e_4$, $a_2 = e_2 + e_3$, $a_3 = e_1 + 3e_2 + 5e_3 - 3e_4$ et $c = -e_1 - e_2 - e_3$ On pose $F = Vect(a_1, a_2, a_3)$.

- 1. Montrer que $\beta' = (a_1, a_2, a_3, c)$ est une base de \mathbb{R}^4 et donner la matrice P de passage de β à β' .
- 2. Déterminer la matrice D de u dans la base β' .
- 3. Montrer que pour tout $x \in F$, $u(x) \in F$ en déduire que $v: F \to F$ définie par v(x) = u(x) est un endomorphisme de F, déterminer la matrice de v dans la base $\beta_a = (a_1, a_2, a_3)$.
- 4. Montrer que $\mathbb{R}^4 = F \oplus Vect(c)$.
- 5. Montrer que pour tout $x \in \mathbb{R}^4$ il existe un unique couple de vecteurs $(f, g) \in F \times Vect(c)$ tels que : x = f + g, calculer u(x).

Exercice 55.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u un endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} -10 & -3 & -12 \\ 5 & 0 & 7 \\ 6 & 2 & 7 \end{pmatrix}$$

- 1. Déterminer $\lambda \in \mathbb{R}$ tel que $A \lambda I$ ne soit pas inversible. Déterminer alors $\ker(A \lambda I)$.
- 2. Soit a = (-3,1,2), calculer u(a).
- 3. Déterminer $b \in \mathbb{R}^3$ tel que u(b) = a b, puis $c \in \mathbb{R}^3$ tel que u(c) = b c.
- 4. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 5. Déterminer $T = mat_{\beta'}(u)$.
- 6. Montrer que $(T+I)^3 = 0$ (la matrice nulle). En déduire $(A+I)^3$.
- 7. Déterminer A^{-1} en fonction de A^2 , A et I.

Exercice 56.

Soit $\beta=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . On considère l'application linéaire f définie par $f(e_1)=2e_2+3e_3; f(e_2)=2e_1-5e_2-8e_3; f(e_3)=-e_1+4e_2+6e_3$ On note $f^2=f\circ f$.

- 1. Déterminer la matrice de f dans β .
- 2. Montrer que $E_1 = \ker(f id_{\mathbb{R}^3})$ et que $N_{-1} = \ker(f^2 + id_{\mathbb{R}^3})$ sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 3. Déterminer a, b deux vecteurs tels que $E_1 = Vect(a)$ et $N_{-1} = Vect(b, f(b))$. A-t-on $E_1 \oplus N_{-1} = \mathbb{R}^3$?
- 4. Montrer que $\beta' = (a, b, f(b))$ est une base de \mathbb{R}^3 .
- 5. On appelle $\beta' = (a, b, f(b))$, quelle est la matrice de f dans β' .
- 6. Quelle est la matrice de f^2 dans β'

Exercice 57.

Soit u l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & -2 & 1 & -2 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & -2 & 2 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Partie I

Soit $e_2 = (0,1,0,0) \in \mathbb{R}^4$

- 1. Calculer $u(e_2)$, $u^2(e_2)$ et $u^3(e_2)$ et montrer que $\beta' = (e_2, u(e_2), u^2(e_2), u^3(e_2))$ est une base de \mathbb{R}^4 .
- 2. Calculer $u^4(e_2)$ dans la base en fonction de $u^2(e_2)$ et e_2 . Déterminer la matrice $\mathcal C$ de u dans la base β' Partie II
 - 3. Déterminer un vecteur $a \in \mathbb{R}^4$ tel que u(a) = a dont la première composante est 1.
 - 4. Soit b = (1, -1, 0, 1) et $c = e_1 e_3 + e_4$, montrer que u(b) = a + b et que u(c) = -c.
 - 5. Déterminer un vecteur $d \in \mathbb{R}^4$ tel que u(d) = c d.
 - 6. Montrer que $\beta'' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
 - 7. Déterminer la matrice T de u dans la base β'' .

Partie III

8. Montrer que les matrices T et C sont semblables.

Exercice 58.

Soit $\mathbb{R}_2[X] = \{a_0 + a_1X + a_2X^2, a_i \in \mathbb{R}\}$ l'espace des polynômes réels de degré au plus 2 et soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$? On considère l'application

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto (X+1)P'$

- 1. Montrer que f est linéaire.
- 2. Montrer que la matrice A de f par rapport aux bases \mathcal{B} et \mathcal{B} est :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

- 3. Montrer que $\mathcal{B}' = (1, X + 1, (X + 1)^2)$ est une base de $\mathbb{R}_2[X]$.
- 4. Trouver la matrice B de f par rapport aux bases \mathcal{B}' et \mathcal{B}' .
- 5. Calculer A^2 , A^3 et B^k pour tout $k \in \mathbb{N}$.
- 6. Déterminer le rang de f.
- 7. Trouver une base de l'image de f.
- 8. Trouver une base de noyau de f.

Exercice 59.

Soit $u: \mathbb{R}_2[X] \to \mathbb{R}[X]$ défini par u(P) = P + (1 - X)P'

Soit $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice de u dans β .
- 3. Déterminer le noyau et l'image de u.

Exercice 60.

Soit $u: \mathbb{R}_2[X] \to \mathbb{R}[X]$, l'application définie pour tout polynôme de $\mathbb{R}_2[X]$ par :

$$u(P) = 2P - (X - 1)P'$$

Soit $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.

1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.

- 2. Déterminer la matrice A de u dans β .
- 3. Déterminer le noyau de u. On notera P_2 un vecteur directeur du noyau.
- 4. Donner une base de l'image de u.
- 5. Déterminer un polynôme P_1 tel que $u(P_1) = P_1$
- 6. Montrer que $\beta' = (1, P_1, P_2)$ est une base de $\mathbb{R}_2[X]$.
- 7. Déterminer la matrice D de u dans la base β' .

Exercice 61.

Soit $f: \mathbb{R}_2[X] \to \mathbb{R}[X]$ définie par f(P) = P - (X - 2)P'

- 1. Montrer que f est une application linéaire
- 2. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer le noyau et l'image de f.
- 4. Déterminer la matrice de f dans la base $(1, X, X^2)$.
- 5. Montrer que $\beta' = (1, X 2, (X 2)^2)$ est une base de $\mathbb{R}_2[X]$.
- 6. Déterminer la matrice de passage P de β à β' . Calculer P^{-1} .
- 7. Quelle est la matrice de f dans la base β' .

Exercice 62.

Soit $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$

Soit u l'application qui a un polynôme de $\mathbb{R}_2[X]$ associe le polynôme de $\mathbb{R}[X]$ définie par :

$$u(P) = 2XP - X^2P'$$

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice A de u dans la base canonique.
- 3. Déterminer la dimension de ker(u).
- 4. Déterminer une base et la dimension de Im(u)

Exercice 63.

Soit $u : \mathbb{R}_2[X] \to \mathbb{R}[X]$ une application définie pour tout $P \in \mathbb{R}_2[X]$ par

$$u(P) = P + (1 - X)P' + 2P''$$

On appelle $P_1 = 1 - X$, $P_2 = 1$ et $P_3 = 1 + 2X - X^2$

On appelle $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $\beta' = (P_1, P_2, P_3)$

- 1. Montrer que *u* est une application linéaire.
- 2. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer la matrice A de u dans la base canonique.
- 4. Montrer que β' est une base de $\mathbb{R}_2[X]$.
- 5. Déterminer la matrice D de u dans la base β' .

Exercice 64.

Soit $u: \mathbb{R}_2[X] \to \mathbb{R}[X]$ définie par

$$u(P) = \frac{1}{2}(1 - X^2)P'' + XP' - P$$

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$
- 2. Déterminer une base (P_1, P_2) de ker(u).
- 3. Déterminer P_3 tel que $Im(u) = Vect(P_3)$.
- 4. Montrer que (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.

5. Déterminer la matrice de u dans la base (P_1, P_2, P_3) .

Exercice 65.

Soit $\mathbb{R}_2[X] = \{a_0 + a_1X + a_2X^2, a_i \in \mathbb{R}\}$ l'espace des polynômes réels de degré au plus 2 et soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$? On considère l'application

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$
$$P \mapsto f(P)$$

Où
$$f(P)(X) = P(X+1) - P(X) = a_0 + a_1(X+1) + a_2(X+1)^2 - (a_0 + a_1X + a_2X^2)$$

- 1. Montrer que f est linéaire.
- 2. Montrer que la matrice A de f par rapport aux bases \mathcal{B} et \mathcal{B} est :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- 3. Montrer que $\mathcal{B}' = (1, X 1, (X 1)(X 2))$ est une base de $\mathbb{R}_2[X]$.
- 4. Trouver la matrice B de f par rapport aux bases \mathcal{B}' et \mathcal{B}' .

Exercice 66.

Partie I

Soit g une application de $\mathbb{R}_3[X]$ dans \mathbb{R}^2 définie par :

$$g(P) = (P(-1), P(1))$$

- 1. Montrer que g est une application linéaire.
- 2. Déterminer une base du noyau et déterminer l'image de g.

Partie II

Soit h une application linéaire de $\mathbb{R}_1[X]$ dans \mathbb{R}^2 définie par :

$$h(P) = (P(-1), P(1))$$

3. Montrer que *h* est bijective.

Exercice 67.

Soit $\mathcal{C}(\mathbb{R})$ l'espace vectoriel des fonctions continues de \mathbb{R} vers \mathbb{R} .

Soient a et b les fonctions définies par :

$$a(x) = \frac{e^x + e^{-x}}{2}$$
 et $b(x) = \frac{e^x - e^{-x}}{2}$

On pose H = Vect(a, b) et $F = \{ f \in H, f(\ln(2)) = 0 \}$

- 1. Déterminer la dimension de *H*
- 2. Montrer que *F* est un sous-espace vectoriel de *H*.
- 3. Ouelle est la dimension de *F* ?
- 4. Soit $\varphi: H \to \mathbb{R}^2$ définie pour $f \in H$ par

$$\varphi(f) = (f(-\ln(2), f(\ln(2)))$$

- a) Montrer que φ est une application linéaire
- b) Montrer que φ est un isomorphisme.

Exercice 68.

Soit $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices à coefficient dans \mathbb{R} à n lignes et n colonnes.

Soit $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$. C'est-à-dire les matrices qui vérifient ${}^tA = -A$.

Soit $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$. C'est-à-dire les matrices qui vérifient ${}^tA=A$.

- 1. Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.
- 2. Pour toutes matrices $A \in \mathcal{M}_n(\mathbb{R})$, montrer que $\frac{A^{t_A}}{2} \in \mathcal{S}_n(\mathbb{R})$ et que $\frac{A^{t_A}}{2} \in \mathcal{A}_n(\mathbb{R})$.
- 3. En déduire que $\mathcal{A}_n(\mathbb{R}) + \mathcal{S}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$.
- 4. A-t-on $\mathcal{A}_n(\mathbb{R}) \oplus \mathcal{S}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$?
- 5. Soit $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, décomposer A en une somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 69.

Soit $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices à deux lignes et deux colonnes.

Soit ϕ l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ définie pour toute matrice A de $\mathcal{M}_2(\mathbb{R})$ par

$$\phi(A) = A - {}^t A$$

- 1. Rappeler la dimension de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer le noyau de ϕ , quel est sa dimension ?
- 3. Déterminer l'image de ϕ . En déduire que pour toute matrice $A \in \mathcal{M}_2(\mathbb{R})$ il existe $\lambda \in \mathbb{R}$ et une matrice J, à déterminer tel que $\phi(A) = \lambda J$.