TABLE DE TRANSFORMEES DE LAPLACE

F(p)	f(t) t > 0
1	Impulsion unitaire $\delta(t)$ de durée t_0 et d'amplitude $1/t_0$
I	Impulsion $\delta(t)$ de durée $t_0 \rightarrow 0,$ d'amplitude A et d'intensité $I = A.t_0$
e ^{-τp}	Impulsion unitaire retardée $\delta(t$ - $ au)$
$\frac{1}{p}$	Echelon unitaire u(t)
1	Echelon d'amplitude E.u(t)
$\frac{1}{p}e^{-\tau p}$	Echelon unitaire retardé u(t-τ)
$\frac{1}{p}(1-e^{-\tau p})$	Impulsion rectangulaire $u(t)$ - $u(t-\tau)$
1 p+a	e ^{- at} .u(t)
1 1+ τp	$\frac{e^{-t/\tau}}{\tau}u(t)$
$\frac{1}{p^2}$	Rampe unité : t.u(t)
1 pn entier positif	$\frac{t^{n-1}}{(n-1)!}u(t)$
$\frac{1}{p.(p+a)}$	$\frac{1-e^{-at}}{a} u(t)$
$\frac{1}{p.(1+\tau p)}$	$(1-e^{-t/\tau}).u(t)$
1	t.e ^{-at} .u(t)
$\frac{1}{(1+\tau p)^2}$	$\frac{t}{\tau^2}e^{-t/\tau}.u(t)$
$\frac{1}{(p+a)^2}$ $\frac{1}{(1+\tau p)^2}$ $\frac{1}{(p+a)^n}$ $\frac{1}{(p+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}.e^{-at}.u(t) \qquad n \in \aleph^*$
$\frac{1}{(1+\tau p)^n}$	$\frac{1}{\tau^{n}(n-1)!}t^{n-1}.e^{-t/\tau}.u(t) \qquad n \in \aleph^{*}$

F(p)	f(t) t > 0
1	$(t-\tau+\tau.e^{-t/\tau}).u(t)$
$\overline{p^2.(1+\tau p)}$	
1	$\begin{pmatrix} 1 & t & t \\ 1 & t & t \end{pmatrix}$
$\overline{p.(1+\tau p)^2}$	$\left(1-(1+\frac{t}{\tau})e^{-t/\tau}\right).u(t)$
1	$\left(t-2\tau+(t+2\tau)e^{-t/\tau}\right).u(t)$
$\overline{p^2.(1+\tau p)^2}$	
	sin(ωt).u(t)
$\frac{\omega}{p^2 + \omega^2}$	
p	cos(ωt).u(t)
$\frac{p}{p^2 + \omega^2}$	
$\frac{\omega}{(p+a)^2+\omega^2}$	e ^{-at} .sin(ωt).u(t)
$(p+a)^2 + \omega^2$	
<u>p+a</u>	e ^{-at} .cos(ωt).u(t)
$\frac{1}{(p+a)^2+\omega^2}$	
$\frac{p+a}{p^2+\omega^2}$	$\sqrt{\frac{a^2 + \omega^2}{\omega^2} \sin(\omega t + \varphi)} \cdot u(t) \qquad \varphi = \arctan \frac{\omega}{a}$
$p^2 + \omega^2$	$\sqrt{\frac{\omega^2}{\omega^2}}$ Sin($\omega(+\phi)$.u(t) $\phi = \arctan \frac{\omega}{a}$
1 2 2	$\frac{1-\cos\omega t}{\omega^2}$ u(t)
$\overline{p.(p^2+\omega^2)}$	ω^2
1	$\frac{1}{b-a}(e^{-at}-e^{-bt}).u(t)$
(p+a).(p+b)	1
1	$\frac{1}{\tau_1 - \tau_2} \left(e^{-t/\tau_1} - e^{-t/\tau_2} \right) . u(t)$
$(1+\tau_1 p).(1+\tau_2 p)$	
$\frac{1}{p.(1+\tau_{1}p).(1+\tau_{2}p)}$	$1 - \frac{1}{\tau_1 - \tau_2} (\tau_1 \cdot e^{-t/\tau_1} - \tau_2 \cdot e^{-t/\tau_2}) \cdot u(t)$
$p.(1+\tau_1p).(1+\tau_2p)$	4
$\frac{1}{p^2(1+\tau_1p).(1+\tau_2p)}$	$ t - (\tau_1 + \tau_2) + \frac{1}{\tau_1 - \tau_2} (\tau_1^2 \cdot e^{-t/\tau_1} - \tau_2^2 \cdot e^{-t/\tau_2}) \cdot u(t) $
1 .	$\frac{1}{\omega} e^{-m\omega_0 t} \sin(\omega t) \cdot u(t) \qquad \omega = \omega_0 \sqrt{1 - m^2}$
$\frac{1}{p^2 + 2m\omega_0 p + \omega_0^2} \qquad m < 1$	$\frac{-e}{\omega} = \sin(\omega t) \cdot u(t) \qquad \omega = \omega_0 \sqrt{1 - m}$
$\frac{1}{2}$ m > 1	$\frac{e^{r_2.t}-e^{r_1.t}}{r_2-r_1}u(t) r_{1,2}: \text{ racines de l'équation caractéristique}$
$\frac{p^2 + 2m\omega_0 p + \omega_0^2}{p^2 + 2m\omega_0 p + \omega_0^2} \qquad m > 1$	$r_2 - r_1$
$\frac{1}{p.(p^2 + 2m\omega_0 p + \omega_0^2)} m < 1$	$\frac{1}{\omega_0^2} \left(1 - \frac{\omega_0}{\omega} e^{-m\omega_0 t} \sin(\omega t + \varphi) \right) u(t) \varphi = \arccos(m)$
$\frac{1}{p.(p^2 + 2m\omega_0 p + \omega_0^2)} m > 1$	$\frac{1}{\omega_0^2} \left(1 - \frac{\omega_0^2}{r_2 - r_1} \left(\frac{e^{r_2 t}}{r_2} - \frac{e^{r_1 t}}{r_1} \right) \right) u(t)$
$p.(p + 2 \Pi \Omega_0 p + \Omega_0^-)$	
$\frac{1}{p^2(p^2 + 2m\omega_0 p + \omega_0^2)} m < 1$	$\frac{1}{\omega_0^2} \left(1 - \frac{2m}{\omega_0} + \frac{1}{\omega} e^{-m\omega_0 t} \sin(\omega t + \varphi) \right) u(t)$

F(p)	f(t) $t > 0$
$\frac{p}{(p+a).(p+b)}$	$\frac{1}{a-b} (a.e^{-at} - b.e^{-bt}).u(t)$
$\frac{p+c}{(p+a).(p+b)}$	$\frac{1}{b-a} ((c-a).e^{-at} - (c-b).e^{-bt}).u(t)$