Using Table of Φ : The standard Normal pdf ϕ is symmetric **about 0**, so $\phi(-z) = \phi(z)$. For cdf Φ , this means $\Phi(z) = 1 \Phi(-z)$. If $Z \sim N(0,1)$, $P(Z > z) = 1 - \Phi(z) = \Phi(-z)$. Lognormal Distribution: Suppose $X \sim N(\mu, \sigma^2)$, and consider the transformation $Y = e^X$. It can be shown that the random variable

Y has density $f_Y(y)=rac{1}{\sigma v\sqrt{2\pi}}\exp\left[-rac{\{\log(y)-\mu\}^2}{\sigma \sigma^2}
ight]$, y>0 . Y is said to

follow a lognormal distribution.