M520 Non-Relativistic Quantum Mechanics

Ninnat Dangniam

Homework Assignment 5

DUE: Wednesday 20 September 2023

30 points

1. Quantum nonlocality without probabilities (10 points).

Consider the following state of three spin-1/2 systems:

$$|\psi\rangle = \frac{|+++\rangle - |---\rangle}{\sqrt{2}}.$$

This is, up to a sign flip, the Greenberger-Horne-Zeilinger (GHZ) state.

- (a) Show that $|\psi\rangle$ is a +1 eigenstate of $X \otimes Y \otimes Y$, $Y \otimes X \otimes Y$, and $Y \otimes Y \otimes X$.
- **(b)** Use the results of part **(a)** to argue that each spin-1/2 has well-defined values of X and Y. For spin j, denote these values by x_j and y_j . We say that these values are *elements of reality*. What does local realism, i.e., the assumption of realistic values that are undisturbed by measurements on other spins, predict for the product of the outcomes of measurements of X on each spin?
- **(c)** What does quantum mechanics predict for the product of the outcomes of *X* measurements on each spin?
- **2.** (10 points). C-T F_{VI} 2.
- **3.** (10 points). C-T F_{VI} 3.

The results of Problem 3 show, in particular, that the three components of the position operator $\hat{\mathbf{r}}$ and those of the momentum operator $\hat{\mathbf{p}}$ are *vector operators*, whereas $\hat{\mathbf{r}}^2$, $\hat{\mathbf{p}}^2$, and $\hat{\mathbf{r}} \cdot \hat{\mathbf{p}}$ are *scalar operators* with respect to rotations.