Line Integrals & Primitives

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

November 28, 2017

Contents

Exercises	1
Primitives of Power Functions	1
Question	1
Answer	
Primitive of a Rational Function	
Question	
	2
Reparametrization of Paths	3
Questions	3
Answers	3
The Logarithm: Alternate Choices	4
Question	4
Answer	4

Exercises

Primitives of Power Functions

Question

Determine the primitives of the power $z \mapsto z^n$ – defined on \mathbb{C} if n nonnegative and on \mathbb{C}^* otherwise – or prove that no such function exist.

Answer

If $n \neq -1$, the function $z \mapsto z^{n+1}/(n+1)$ is a primitive of $z \mapsto z^n$. As \mathbb{C} and \mathbb{C}^* are path-connected, the other primitives differ from this one by a constant.

If n=-1, no primitive exist: the function $\gamma:t\in[0,1]\to e^{i2\pi t}$ is a closed rectifiable path of \mathbb{C}^* and

$$\int_{\gamma} \frac{dz}{z} = \int_{0}^{1} \frac{e^{i2\pi t}i2\pi}{e^{i2\pi t}} dt = i2\pi,$$

which is nonzero.

Primitive of a Rational Function

Question

Let $\Omega = \mathbb{C} \setminus \{0,1\}$ and let $f:\Omega \to \mathbb{C}$ be defined by

$$f(z) = \frac{1}{z(z-1)}.$$

Show that f has no primitive on Ω , but that it has a primitive on $\mathbb{C} \setminus [0,1]$ and determine its expression.

Answer

We have

$$f(z) = -\frac{1}{z} + \frac{1}{z - 1}.$$

The function $z\mapsto -1/z$ has no primitive on $D(0,1)\setminus\{0\}$: indeed if $\gamma(t)=1/2\times e^{i2\pi t}$, we have

$$\int_{\gamma} \frac{dz}{z} = i2\pi \neq 0.$$

On the other hand, on the same set, $z \mapsto \log(z-1)$ is a primitive of $z \mapsto 1/(z-1)$. Hence f(z) has no primitive.

The function

$$g(z) = \log \frac{z-1}{z} = \log \left(1 - \frac{1}{z}\right)$$

is defined on $\mathbb{C} \setminus [0,1]$ and is a primitive of f. Indeed g(z) is defined as long as neither of the conditions z=0 and $1-1/z \in \mathbb{R}_-$ are met; they are equivalent to the condition $z \in [0,1]$, which is excluded. Moreover, g satisfies

$$g'(z) = \frac{1/z^2}{1 - 1/z} = \frac{1}{z(z - 1)}$$

hence it is a primitive of f.

Reparametrization of Paths

Questions

Let $\alpha:[0,1]\to\mathbb{C}$ be a continuously differentiable path. Let $\phi:[0,1]\to[0,1]$ be a continuously differentiable function such that $\phi(0)=0, \, \phi(1)=1$ and $\phi'(t)>0$ for any $t\in[0,1]$.

- 1. Show that $\beta = \alpha \circ \phi$ is a rectifiable path which has the same initial point, terminal point and image as α .
- 2. Prove that for any continuous function $f: \alpha([0,1]) \to \mathbb{C}$,

$$\int_{\alpha} f(z) dz = \int_{\beta} f(z) dz.$$

3. Prove that the paths α and β have the same length.

Answers

- 1. The statement about the initial and terminal points is obvious. The one relative to the image holds because, under the assumptions that were made, the function ϕ is a bijection from [0,1] on itself (and its inverse is also continuously differentiable).
- 2. We have

$$\int_{\beta} f(z) dz = \int_{0}^{1} (f \circ \beta)(t) \beta'(t) dt = \int_{0}^{1} (f \circ \alpha)(\phi(t)) \alpha'(\phi(t)) (\phi'(t) dt).$$

The change of variable $s = \phi(t)$ leads to

$$\int_{\beta} f(z) dz = \int_{0}^{1} (f \circ \alpha)(s) \alpha'(s) ds = \int_{\alpha} f(z) dz.$$

3. We have

$$\int_0^1 |\beta'(t)| \, dt = \int_0^1 |\alpha'(\phi(t))\phi'(t)| \, dt = \int_0^1 |\alpha'(\phi(t))| \, \phi'(t) dt$$

The change of variable $s = \phi(t)$ leads to

$$\int_0^1 |\beta'(t)| \, dt = \int_0^1 |\alpha'(s)| \, ds,$$

hence the lengths of α and β are equal.

The Logarithm: Alternate Choices

Question

Show that for any $\alpha \in \mathbb{R}$, the function $z \in \mathbb{C}_{\alpha} \mapsto 1/z$ defined on

$$\mathbb{C}_{\alpha} = \mathbb{C} \setminus \{ re^{i\alpha} \mid r \ge 0 \}.$$

has a primitive; describe the set of all its primitives.

Answer

Let γ be a closed rectifiable path of \mathbb{C}_{α} . The path $\mu:[0,1]\mapsto e^{i(\pi-\alpha)}\gamma(t)$ is closed, rectifiable and its image is included in $\mathbb{C}\setminus\mathbb{R}_{-}$. Additionally

$$\int_{\gamma} \frac{dz}{z} = \int_{\gamma} \frac{d(e^{i(\pi - \alpha)}z)}{e^{i(\pi - \alpha)}z} = \int_{\mu} \frac{dz}{z}.$$

Since the principal value of the logarithm is a primitive if $z \mapsto 1/z$ on $\mathbb{C} \setminus \mathbb{R}_-$, the integral of $z \mapsto 1/z$ on μ is equal to zero. Therefore, there are primitives of $z \mapsto 1/z$ on \mathbb{C}_{α} ; since \mathbb{C}_{α} is connected, they all differ from an arbitrary constant.

Alternatively, we can build explicitly such a primitive: the function

$$f: z \mapsto \log(ze^{i(\pi-\alpha)});$$

it is defined and holomorphic on \mathbb{C}_{α} and for any $z \in \mathbb{C}_{\alpha}$,

$$f'(z) = \frac{1}{ze^{i(\pi - \alpha)}} \times e^{i(\pi - \alpha)} = \frac{1}{z}.$$