Презентация по Лабораторной работе №1

Операционные системы

Петрова Алевтина А. НКАбд-05-23 01.03.2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Выполнение лабораторной работы

VirtualBox и Fedora я устанавливала и настраивала при выполнении лабораторных работ в курсе "Архитектура компьютера".

Запускаю виртуальную машину, вхожу в свою учетную запись

Открываю терминал и переключаюсь на роль пользователя с правами root

Обновляю все пакеты

Перемещаюсь в директорию /etc/selinux, открываю mc, ищу нужный файл

Изменяю содержимое файла: SELINUX=enforcing меняю на SELINUX=permissive

На следующим этапе выполнения лабораторной работы необходимо произвести установку необходимых драйверов для виртуальной машины. Так как виртуальная машина установлена на основную ОС Windows, этот пункт я пропустила, так как он необходим лишь в случае, если виртуальная машина установлена на ОС Linux.

Далее было необходимо настроить раскладку клавиатуры. Она была настроена мной при первоначальном запуске дистрибутива через графический интерфейс. Для демонстрации этого я открыла файл /etc/X11/xorg.conf.d/00-keyboard.conf.

```
[rootEndors astimus] ext./Hcfnll/worg.com/s/Mohaphoand.com/

[rootEndors astimus] ext. and the state of the system closels and more are

probably size on to could this root by system closels and more are

# instruct system-located to update it.

## instruct system-located it.

## instruct
```

После этого необходимо было задать имя пользователя и хоста.

Вывод команды dmesg | less

Установка программного обеспечения для создания документации

Все необходимые утилиты, такие как Pandoc, Pandoc-crossref и TexLive, были установлены еще в предыдущем семестре.

Дожидаюсь загрузки графического окружения и открываю терминал. Далее в терминале анализирую по последовательность загрузки системы, выполнив команду dmesg.

Далее получаю следующую информацию о версии ядра

```
[root@fedora petrovkina1002]# dmesg | grep -i "Linux version"

[ 0.0000000] Linux version 6.7.5-100.fc38.x86_64 (mockbuild@0d7ece7a3c194d1a89 f416a440d9b970) (gcc (GCC) 13.2.1 20231011 (Red Hat 13.2.1-4), GNU ld version 2.39-16.fc38) #1 SMP PREEMPT_DYNAMIC Sat Feb 17 17:21:49 UTC 2024 [root@fedora petrovkina1002]#
```

Частота процессора

```
[root@fedora petrovkina1002]# dmesg | grep -i "processor"
[    0.000010] tsc: Detected 2096.062 MHz processor
[    0.195422] smpboot: Total of 5 processors activated (20960.62 BogoMIPS)
[    0.205548] ACPI: Added _OSI(Processor Device)
[    0.205551] ACPI: Added _OSI(Processor Aggregator Device)
[root@fedora petrovkina1002]#
```

Модель процессора

```
[root@fedora petrovkina1002]# dmesg | grep -i "CPU0"

[ 0.184369] smpboot: CPU0: AMD Ryzen 5 5500U with Radeon Graphics (family: 0x 17, model: 0x68, stepping: 0x1)

[root@fedora petrovkina1002]#
```

Объём доступной памяти

```
[root@fedora petrovkina1002]# dmesg | grep -i "Memory"
    0.001366] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
    0.001368] ACPI: Reserving DSDT table memory at [mem 0xdfff0630-0xdfff2982]
    0.001368] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
    0.001369] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
    0.001370] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff02b3]
    0.001370] ACPI: Reserving SSDT table memory at [mem 0xdfff02c0-0xdfff062b]
    0.0016991 Early memory node ranges
    0.016533] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
    0.016535] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009ffff]]
    0.016536] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000effff]
    0.016537] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000fffff]
    0.016538] PM: hibernation: Registered nosave memory: [mem 0xdffff0000-0xdffffffff]
    0.016538] PM: hibernation: Registered nosave memory: [mem 0xe0000000-0xfebfffff]
    0.016539] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
    0.016540] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfedfffff]
    0.016540] PM: hibernation: Registered nosave memory: [mem 0xfee00000-0xfee00fff]
    0.016541] PM: hibernation: Registered nosave memory: [mem 0xfee01000-0xfffbffff]
    0.016541] PM: hibernation: Registered nosave memory: [mem 0xfffc0000-0xffffffff]
    0.072460] Memory: 3962932K/4193848K available (20480K kernel code, 3276K rwdata, 14748K rodata, 4588K init,
4892K bss. 230656K reserved. 0K cma-reserved)
    0.0952821 Freeing SMP alternatives memory: 48K
```

Тип обнаруженного гипервизора

```
[root@fedora petrovkina1002]# dmesg | grep -i "Hypervisor"

[ 0.000000] Hypervisor detected: KVM

[ 3.229361] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.

[root@fedora petrovkina1002]#
```

Данные о типе файловой системы корневого потока

```
[root@fedora petrovkina1002]# df -Th | grep "^/dev"
 ev/sda4
                btrfs
                                        6,2G
                                                              9% /
                            78G
  v/sda3
                                        315M 592M
                ext4
                           974M
                                                             35% /boot
  ev/sda4
                btrfs
                            78G
                                        6,2G
                                                              9% /home
root@fedora petrovkina1002]#
```

Последовательность монтирования файловых систем

```
[root@fedora petrovkina1002]# dmesg | grep -i "mounted"
[    6.907270] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[    6.907819] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
[    6.908207] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[    6.908527] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
[    7.935868] EXT4-fs (sda3): mounted filesystem 8ebf2d68-40f8-4454-a6e4-53ed11765e42 r/w with ordered data meterical endors.
[ root@fedora petrovkina1002]#
```

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide : Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.
- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.