Category Theory

Steve Awodey

April 22, 2021

Contents

1	Categories			
	1.1	Examples of categories	1	
	1.2	Free categories	1	
2	Abstract structures 2			
	2.1	Initial and terminal objects	2	
	2.2	Products	3	
	2.3	Categories with products	3	
	2.4	Hom-sets	5	
3	Duality			
	3.1	Coproducts	6	
	3.2	Equalizers	9	
	3.3	Coequalizers	11	

1 Categories

1.1 Examples of categories

Definition 1.1. A functor

$$F: \mathbf{C} \to \mathbf{C}$$

between categories \boldsymbol{C} and \boldsymbol{D} is a mapping of objects to objects and arrows to arrows, in such a way that

- 1. $F(f:A \rightarrow B) = F(f):F(A) \rightarrow F(B)$
- 2. $F(1_A) = 1_{F(A)}$
- 3. $F(g \circ f) = F(g) \circ F(f)$

1.2 Free categories

The "Kleene closure" of *A* is defined to be the set

$$A^* = \{ words over A \}$$

Also

$$i:A\to A^*$$

defined by i(a) = a and called the "intersection of generators"

A monoid M is **freely generated** by a subset A of M if the following conditions hold:

- 1. Every element $m \in M$ can be written as a product of elements of A
- 2. No "nontrivial" relations hold in M, that is, if $a_1 \dots a_j = a_1' \dots a_k'$, then this is required by the axioms for monoids

Every monoid N has an underlying set |N|, and every monoid homomorphism $f:N\to M$ has an underlying function $|f|:|N|\to |M|$. The free monoid M(A) on a set A is by definition "the" monoid with the following UMP

Universal Mapping Property of M(A)

There is a function $i:A\to |M(A)|$, and given any monoid N and any function $f:A\to |N|$, there is a **unique** monoid homomorphism $\overline{f}:M(A)\to N$ s.t. $\left|\overline{f}\right|\circ i=f$

in Mon

$$M(A) \xrightarrow{\overline{f}} N$$

in **Sets**

$$|M(A)| \xrightarrow{|\overline{f}|} |N|$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$A$$

Proposition 1.2. A^* has the UMP of the free monoid on A

Proof. Given
$$f:A\to |N|$$
, define $\overline{f}:A^*\to N$ by

$$\begin{split} \overline{f}(-) &= u_N, \quad \text{the unit of } N \\ \overline{f}(a_1 \dots a_i) &= f(a_1) \cdot_N \dots \cdot_N f(a_i) \end{split}$$

2 Abstract structures

2.1 Initial and terminal objects

Example 2.1. A **Boolean algebra** is a poset B equipped with distinguished elements 0,1, binary operations $a \lor b$ of join and $a \land b$ of meet, and a unary operation $\neg b$ of complementation. These are required to satisfy the conditions

$$0 \le a$$

$$a \le 1$$

$$a \le c \quad \text{and} \quad b \le c \quad \text{iff} \quad a \lor b \le c$$

$$c \le a \quad \text{and} \quad c \le b \quad \text{iff} \quad c \le a \land b$$

$$a \le \neg b \quad \text{iff} \quad a \land b = 0$$

 $\mathbf{2} = \{0,1\}$ is an initial elements of **BA**. **BA** has as arrows the Boolean homomorphisms that $h(0) = 0, h(a \lor b) = h(a) \lor h(b)$, etc.

2.2 Products

Definition 2.1. In any category C, a **product diagram** for the objects A and B consists of an object P and arrows

$$A \xleftarrow{p_1} P \xrightarrow{p_2} B$$

satisfying the following UMP: Given any diagram of the form

$$A \xleftarrow{x_1} X \xrightarrow{x_2} B$$

there exists a unique $u: X \to P$ making the diagram

$$A \xleftarrow{x_1} \downarrow u \qquad x_2 \\ \downarrow u \qquad X \\ \downarrow u \qquad X_2 \\ \downarrow u \qquad X_3 \\ \downarrow u \qquad X_4 \\ \downarrow u \qquad X_2 \\ \downarrow u \qquad X_3 \\ \downarrow u \qquad X_4 \\ \downarrow u \qquad X_4 \\ \downarrow u \qquad X_4 \\ \downarrow u \qquad X_5 \\ \downarrow u \qquad X_5$$

2.3 Categories with products

Let **C** be a category that has a product diagram for every pair of objects. Suppose we have objects and arrows

with indicated products. Then we write

$$f\times f':A\times A'\to B\times B$$

for $f \times f' = \langle f \circ p_1, f' \circ p_2 \rangle$

$$\begin{array}{cccc} A \xleftarrow{p_1} & A \times A' \xrightarrow{p_2} A' \\ f \downarrow & & \downarrow f \times f' & \downarrow f' \\ B \xleftarrow{q_1} & B \times B' \xrightarrow{q_2} B' \end{array}$$

In this way, if we choose a product for each pair of objects, we get a functor

$$(g\circ f)\times (g'\circ f')=(f\times f')\circ (g\times g')$$
 To prove
$$(A\times B)\times C\cong A\times (B\times C)$$

Consider

Given no objects, there is an object 1 with no maps, and give nany other object X and no maps, there is a unique arrow

$$!: X \to 1$$

Definition 2.2. A category **C** is said to **have all finite products**, if it has a terminal object and all binary products (and therewith products of any finite cardinality). The category **C** has all (small) products if every set of objects in **C** has a product

2.4 Hom-sets

In this section, we assume that all categories are locally small Given any objects A and B in category C, we write

$$\operatorname{Hom}(A,B) = \{ f \in \mathbf{C} \mid f : A \to B \}$$

and call such a set of arrows a Hom-set

Note that any arrow $g: B \to B'$ in **C** induces a function

$$\operatorname{Hom}(A,g):\operatorname{Hom}(A,B)\to\operatorname{Hom}(A,B')$$

$$(f:A\to B)\mapsto (g\circ f:A\to B\to B')$$

Let's show that this determines a functor

$$\operatorname{Hom}(A,-): \mathbf{C} \to \mathbf{Sets}$$

called the (covariant) **representable functor** of *A*. We need to show that

$$\operatorname{Hom}(A,1_X)=1_{\operatorname{Hom}(A,X)}$$

and that

$$\operatorname{Hom}(A, g \circ f) = \operatorname{Hom}(A, g) \circ \operatorname{Hom}(A, f)$$

For any object P, a pair of arrows $p_1:P\to A$ and $p_2:P\to B$ determine an element (p_1,p_2) of the set

$$\operatorname{Hom}(P, A) \times \operatorname{Hom}(P, B)$$

Now given any arrow

$$x: X \to P$$

composing with p_1 and p_2 gives a pair of arrows $x_1=p_1\circ x:X\to A$ and $x_2=p_2\circ x:X\to B$

In this way, we have a function

 $\theta_X=(\mathrm{Hom}(X,p_1),\mathrm{Hom}(X,p_2)):\mathrm{Hom}(X,P)\to\mathrm{Hom}(X,A)\times\mathrm{Hom}(X,B)$ defined by

$$\theta_X(x)=(x_1,x_2)$$

Proposition 2.3. A diagram of the form

$$A \xleftarrow{p_1} P \xrightarrow{p_2} B$$

is a product for A and B iff for every object X, the canonical function θ_X is an isomorphism

$$\theta_X : \operatorname{Hom}(X, P) \cong \operatorname{Hom}(X, A) \times \operatorname{Hom}(X, B)$$

Proof. Note that we are talking about isomorphism on the set \Box

Definition 2.4. Let C, D be categories with binary products. A functor $F : C \to D$ is said to **preserve binary products** if it takes every product diagram

$$A \xleftarrow{p_1} A \times B \xrightarrow{p_2} B$$

to a product diagram

$$FA \leftarrow_{Fp_1} F(A \times B) \xrightarrow{Fp_2} FB$$

F preserves products just if

$$F(A \times B) \cong FA \times FB$$

Corollary 2.5. For any object X in a category C with products, the (covariant) representable functor

$$\operatorname{Hom}_{\mathcal{C}}(X,-): \mathcal{C} \to \operatorname{Sets}$$

preserves products

3 Duality

3.1 Coproducts

Definition 3.1. A diagram $A \xrightarrow{q_1} Q \xleftarrow{q_2} B$ is a coproduct of A,B if for any Z and $A \xrightarrow{z_1} Z \xleftarrow{z_2} B$ there is a unique $u:Q \to Z$ with $u \circ q_i = z_i$

written as A + B

In **Sets**, every finite set A is a coproduct

$$A \cong 1 + 1 + \dots + 1$$
 (*n*-times)

Example 3.1. If M(A) and M(B) are free monoids on sets A and B, then in **Mon** we can construct their coproduct as

$$M(A) + M(B) \cong M(A+B)$$

Here we are working in two different categories. Half below is in **Sets**, the other is **Mon**

Product of two powerset Boolean algebras $\mathcal{P}(A)$ and $\mathcal{P}(B)$ is also a powerset

$$\mathcal{P}(A) \times \mathcal{P}(B) \cong \mathcal{P}(A+B)$$

Example 3.2. Two monoids M(|A| + |B|) is strings over the disjoint union |A| + |B| of the underlying sets. That is, the elements of A and B and the

equivalence relation $v \sim w$ is the least one containing all instances of the following equations

$$\begin{split} (\dots xu_Ay \dots) &= (\dots xy \dots) \\ (\dots xu_By \dots) &= (\dots xy \dots) \\ (\dots aa' \dots) &= (\dots a \cdot_A a' \dots) \\ (\dots bb' \dots) &= (\dots b \cdot_B b' \dots) \end{split}$$

The unit is the equivalence class [-] of the empty word. Multiplication is

$$[x \dots y] \cdot [x' \dots y'] = [x \dots yx' \dots y']$$

The coproduct injections $i_A:A\to A+B$ and $i_B:B\to A+B$ are

$$i_A(a) = [a], \quad i_B(b) = [b]$$

Given any homomorphisms $f:A\to M$ and $g:B\to M$ into a monoid, the unique homomorphism

$$[f,g]:A+B\to M$$

is defined by first extending the function $[|f|,|g|]:|A|+|B|\to |M|$ to one [f,g]' on the free monoid M(|A|+|B|)

$$|A| + |B| \xrightarrow{[|f|+|g|]} |M|$$

$$M(|A| + |B|) \xrightarrow{[f,g]'} M$$

$$\downarrow \qquad \qquad [f,g]$$

$$M(|A| + |B|)/\sim$$

If $v \sim w$ in $M(|A|+|B|)/\sim$ then [f,g]'(v)=[f,g]'(w). Thus [f,g]' extends to the quotient to yield the desired map $[f,g]:M(|A|+|B|)/\sim\to M$

This construction also works to give coproducts in **Groups**, where it is called the **free product** of A and B and written as $A \oplus B$.

Proposition 3.2. *In the category* **Ab** *of abelian groups, there is a canonical isomorphism between the binary coproduct and product*

$$A + B \cong A \times B$$

Proof. Take $1_A:A\to A$ and $O_B:A\to B$. we get

$$\theta = [\langle 1_A, 0_B \rangle, \langle 0_A, 1_B \rangle] : A + B \to A \times B$$

Then given any $(a, b) \in A + B$, we have

$$\begin{split} \theta(a,b) &= [\langle 1_A, 0_B \rangle, \langle 0_A, 1_B \rangle](a,b) \\ &= \langle 1_A, 0_B \rangle(a) + \langle 0_A, 1_B \rangle(b) \\ &= (1_A(a), 0_B(A)) + (0_A(b), 1_B(b)) \\ &= (a, 0_B) + (0_A, b) \\ &= (a + 0_A, 0_B + b) \\ &= (a, b) \end{split}$$

Proposition 3.3. Coproducts are unique up to isomorphism

3.2 Equalizers

Definition 3.4. In any category **C**, given parallel arrows

$$A \xrightarrow{f \atop g} B$$

an **equalizer** of f and g consists of an object E and an arrow $e:E\to A$, universal s.t.

$$f \circ e = g \circ e$$

That is, given any $z:Z\to A$ with $f\circ z=g\circ z$, there is a **unique** $u:Z\to E$ with $e\circ u=z$, all as in the diagram

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$u \stackrel{}{\underset{}{\stackrel{}{\underset{}}{\bigcup}}} Z$$

Example 3.3. Suppose we have the functions $f, g : \mathbb{R}^2 \Rightarrow \mathbb{R}$, where

$$f(x,y) = x^2 + y^2$$
$$g(x,y) = 1$$

and we take the equalizer, say in **Top**. This is the subspace

$$S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \hookrightarrow \mathbb{R}^2$$

For, given any "generalized element" $z:Z\to\mathbb{R}^2$ we get a pair of such "elements" $z_1,z_2:Z\to\mathbb{R}$ just by composing with the two projections, $z=\langle z_1,z_2\rangle$ and for these we then have

$$f(z)=g(z) \quad \text{ iff } \quad z_1^2+z_2^2=1$$

$$\text{ iff } \quad \langle z_1,z_2\rangle=z\in S$$

where the last line really means that there is a factorization $z = \overline{z} \circ i$ of z through the inclusion $i: S \hookrightarrow \mathbb{R}^2$, as indicated in the following diagram

$$S \xrightarrow{i} \mathbb{R}^2 \xrightarrow{x^2 + y^2} \mathbb{R}$$

$$Z$$

Since the inclusion i is monic, such a factorization, if it exists, is necessarily unique, and thus $S \hookrightarrow \mathbb{R}^2$ is indeed the equalizer of f and g

Example 3.4. In **Sets**, given any functions $f, g : A \Rightarrow B$, their equalizer is the inclusion into A of the equationally defined subset

$$\{x \in A \mid f(x) = g(x)\} \hookrightarrow A$$

Let

$$2 = \{\top, \bot\}$$

Then consider the characteristic function

$$\chi_U:A\to 2$$

defined for $x \in A$ by

$$\chi_U(x) = \begin{cases} \top & x \in U \\ \bot & x \notin U \end{cases}$$

So the following is an equalizer

$$U \longrightarrow A \xrightarrow{\top !} 2$$

where $\top ! = \top \circ ! : U \xrightarrow{!} 1 \xrightarrow{\top} 2$ Moreover, for every function,

$$\varphi:A\to 2$$

we can form the variety

$$V_{\varphi} = \{ x \in A \mid \varphi(x) = \top \}$$

as an equalizer.

It is easy to see that these operations χ_U and V_{φ} are mutually inverse

$$\begin{split} V_{\chi_U} &= \{x \in A \mid \chi_U(x) = \top\} \\ &= \{x \in A \mid x \in U\} \\ &- U \end{split}$$

for any $U\subseteq A$, and given any $\varphi:A\to 2$

$$\chi_{V_{\varphi}}(x) = \begin{cases} \top & x \in V_{\varphi} \\ \bot & x \notin V_{\varphi} \end{cases}$$
$$= \begin{cases} \top & \varphi(x) = \top \\ \bot & \varphi(x) = \bot \end{cases}$$
$$= \varphi(x)$$

Thus we have the familiar isomorphism

$$\operatorname{Hom}(A,2) \cong P(A)$$

mediated by taking equalizers

Proposition 3.5. In any category, if $e: E \to A$ is an equalizer of some pair of arrows, then e is monic

Proof. Consider

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$x \uparrow \uparrow y \downarrow_{z}$$

$$Z$$

Suppose ex=ey, we want to show x=y. Put z=ex=ey. Then fz=fex=gex=gz, so there is a unique $u:Z\to E$ s.t. eu=z. So x=u=y

Example 3.5. In abelian groups, one has an alternate description of the equalizer, using the fact that

$$f(x) = g(x)$$
 iff $(f-g)(x) = 0$

3.3 Coequalizers

Definition 3.6. For any parallel arrows $f,g:A\to B$ in a category ${\bf C}$, a **coequalizer** consists of Q and $q:B\to Q$, universal with the property qf=qg as in

$$A \xrightarrow{f} B \xrightarrow{q} Q$$

$$\downarrow z \qquad \downarrow u$$

$$Z$$

That is, given any Z and $z:B\to Z$ if zf=zg, then there exists a unique $u:Q\to Z$ s.t. uq=z

Proposition 3.7. If $q: B \to Q$ is a coequalizer of some pair of arrows, then q is epic

We can therefore think of a coequalizer $q:B \twoheadrightarrow Q$ as a "collapse" of B by "identifying" all pairs f(a)=g(a)

Example 3.6. Let $R \subseteq X \times X$ be an equivalence relation on a set X, and consider the diagram

$$R \xrightarrow{r_1} X$$

where the r's are the two projections of the inclusion $R \subseteq X \times X$

$$X \stackrel{r_1}{\longleftarrow} X \times X \stackrel{r_2}{\longrightarrow} X$$

The quotient projection

$$\pi: X \to X/R$$

defined by $x\mapsto [x]$ is then a coequalizer of r_1 and r_2 . For given an $f:X\to Y$ as in

$$R \xrightarrow{r_1} X \xrightarrow{\pi} X/R$$

$$f \xrightarrow{\downarrow} V$$

there exists a function \overline{f} s.t.

$$\overline{f}\pi(x) = f(x)$$

whenever f respects R in the sense that $(x,x') \in R$ implies f(x) = f(x'). But this condition just says that $f \circ r_1 = f \circ r_2$ since $f \circ r_1(x,x') = f(x')$ and $\underline{f} \circ r_2(x,x') = f(x')$ for all $(x,x') \in R$. Moreover, if it exists, such a function \underline{f} is then necessarily unique, since π is an epimorphism

The coequalizer in **Sets** of an arbitrary parallel pair of function $f,g:A \twoheadrightarrow B$ can be constructed by quotienting B by the equivalence relation generated by the equations f(x)=g(x) for all $x\in A$

Consider

$$A \xrightarrow{f \atop g} B \longrightarrow Q = B/(f = g)$$

where the equivalence relation R on b is generated by the pairs (f(x),g(x)) for all $x\in A$. That is, R is the intersection of all equivalence relations on B containing all such pairs

Example 3.7. Taken in posets

$$1 \xrightarrow[0_Q]{0_P} P + Q \longrightarrow P + Q/(0_P = 0_Q)$$

 $(0_P=0_Q)$ is the equivalent closure of $(0_P(1),0_Q(1))$.

Example 3.8 (Presentations of algebras). Suppose we are given

Generators: x, y, z

Relations: $xy = z, y^2 = 1$

To build an algebra on these generators and satisfying these relations, start with the free algebra

$$F(3) = F(x, y, z)$$

and then "force" the relation xy=z to hold by taking a coequalizer of the maps

$$F(1) \xrightarrow{xy} F(3) \xrightarrow{q} Q$$

We use the fact that maps $F(1) \to A$ correspond to elements $a \in A$ by $v \mapsto a$, where v is the single generator of F(1). Now similarly for the equation $y^2 = 1$, taking the coequalizer

$$F(1) \xrightarrow[q(1)]{q(y^2)} Q \longrightarrow Q'$$

These two steps can actually be done simultaneously. Let

$$F(2) = F(1) + F(1)$$
$$F(2) \xrightarrow{f}_{g} F(3)$$

where $f = [xy, y^2]$ and g = [z, 1]