Babes-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 2

1. Study the boundedness, the monotony and the convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ in each of the following instances:

a)
$$x_n = \frac{n!}{n^n};$$
 d) $x_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)};$
b) $x_n = \frac{(-1)^n}{n};$ e) $x_n = \frac{\cos \pi}{1 \cdot 2} + \frac{\cos 2\pi}{2 \cdot 3} + \dots + \frac{\cos n\pi}{n(n+1)};$
c) $x_n = (-1)^n + \frac{n+1}{n};$ f) $x_n = \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n+1}}.$

2. Compute the limit of the following sequences:

$$a_n = \frac{\alpha n^3 + \beta n^2 + \gamma n + 1}{n^2 - n + 1}, \text{ where } \alpha, \beta, \gamma \in \mathbb{R};$$

$$b_n = \frac{n^{\alpha}}{(1 + \beta)^n}, \text{ where } \alpha \in \mathbb{N}, \beta \in (0, \infty);$$

$$c_n = \frac{\pi^n - 3^n}{e^n - 2^n};$$

$$y_n = \sqrt{n + \sqrt{n + \sqrt{n} + \sqrt{n}}},$$

$$y_n = \sqrt{n + \sqrt{n} + \sqrt{n}},$$

$$y_n = \sqrt{n + \sqrt{n}},$$

$$y$$

3. Consider the sequence $(x_n)_{n\in\mathbb{N}}$ defined for all $n\in\mathbb{N}$ by

$$x_n := \left(1 + \frac{1}{n}\right)^n.$$

a) Using Bernoulli's Inequality (see Seminar 1) prove that $\frac{x_{n+1}}{x_n} > 1$ for all $n \in \mathbb{N}$.

b) Using Newton's Binomial Formula prove that $x_n < 3$ for all $n \in \mathbb{N}$. Hint: notice that $\binom{n}{k} \leq \frac{n^k}{2^{k-1}}$ for all $k \in \mathbb{N}, k \leq n$.

c) Deduce that the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent and, denoting its limit by e (the Euler's number), show that $2.71 < e \le 3$.

d) Similarly to a) prove that the sequence $(y_n)_{n\in\mathbb{N}}$, defined for all $n\in\mathbb{N}$ by

$$y_n \coloneqq \left(1 + \frac{1}{n}\right) x_n,$$

is strictly decreasing. Then, observing that $x_n < y_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n$, deduce that e < 2.72.

4. Compute the limits:

the limits:
$$a) \lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 1} \right)^{\sqrt{n^2 + 1}}; \quad d) \lim_{n \to \infty} \frac{1^p + 2^p + \ldots + n^p}{n^{p+1}}, \text{ where } p \in \mathbb{N};$$

$$b) \lim_{n \to \infty} \left(\frac{2n + 1}{2n - 1} \right)^n; \qquad e) \lim_{n \to \infty} \sqrt[n]{1 + 2 + \ldots + n};$$

$$c) \lim_{n \to \infty} \frac{(2n)^n}{(2n)!}; \qquad f) \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}.$$

Mathematical Analysis Seminar 3

- 1. Study whether the sequences defined by the following recurrence relations are convergent. If the sequence converges determine its limit.
- a) $x_1 \in (0,1)$ and $x_{n+1} = \frac{2x_n + 1}{3}$ for all $n \in \mathbb{N}$;
- b) $x_1 \in (0, +\infty)$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$, where a > 0 is a priori given.
- **2.** Consider the sequence $(\gamma_n)_{n\in\mathbb{N}}$ defined for all $n\in\mathbb{N}$ by

$$\gamma_n := 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n.$$

- a) Using the fact that $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$ (cf. Exercise 3 of Seminar 2), prove that $(\gamma_n)_{n\in\mathbb{N}}$ is strictly decreasing and bounded below by 0.
- b) Deduce that $(\gamma_n)_{n\in\mathbb{N}}$ is convergent and, denoting its limit by γ (the Euler's constant, also known as the Euler-Mascheroni constant), show that $\gamma < 0.58$.
- c) Prove that the sequence $(x_n)_{n\in\mathbb{N}}$ defined for all $n\in\mathbb{N}$ by

$$x_n := \gamma_n + \ln n - \ln(n+1)$$

is strictly increasing. Then, observing that $x_n < \gamma_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \gamma_n$, deduce that $\gamma > 0.57$.

- 3. Compute the limits:
- a) $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right)$;
- b) $\lim_{n\to\infty} \left[\frac{1}{2\cdot 3} + \frac{1}{4\cdot 5} + \dots + \frac{1}{2n(2n+1)} \right]$.
- 4. Find the sum of the following series:

a)
$$\sum_{n=1}^{\infty} (-\pi/4)^n$$
;

b)
$$\sum_{n=1}^{\infty} 3^{1-2n}$$
;

c)
$$\sum_{n=1}^{\infty} \binom{n+2}{3}^{-1}$$

d)
$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$$

c)
$$\sum_{n=1}^{\infty} {n+2 \choose 3}^{-1};$$
 d) $\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2};$
e) $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n});$ f) $\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right);$

$$f) \sum_{n=2}^{\infty} \ln \left(1 - \frac{1}{n^2} \right)$$

g)
$$\sum_{n=0}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$
; h) $\sum_{n=0}^{\infty} \frac{n+1}{2^n}$.

$$h) \sum_{n=0}^{\infty} \frac{n+1}{2^n}$$

Mathematical Analysis Seminar 4

1. Consider the series

$$\sum_{n>1} \frac{2n-1}{2^n}.$$

Compute its sum and deduce whether the series converges or not.

2. Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Using the Cauchy's general criterion of convergence for series, prove that the following series are convergent:

a)
$$\sum_{n>1} \frac{\sin(\alpha_n)}{n(n+1)} ;$$

b)
$$\sum_{n>1}^{-} \frac{\alpha_n}{2^n (1+|\alpha_n|)}.$$

3. Prove that the following series are divergent:

a)
$$\sum_{n=1}^{\infty} arctgn$$

a)
$$\sum_{n\geq 1} \arctan;$$
b)
$$\sum_{n\geq 1} \cos(n\pi/6);$$

c)
$$\sum_{n>1}^{n \ge 1} \sin n.$$

4. Study if the following series are convergent or divergent:

$$\mathrm{a)} \ \sum_{n>1} \frac{e^n}{n+3^n};$$

b)
$$\sum_{n>1} \frac{1}{n^2 - \ln n + \sin n}$$
;

a)
$$\sum_{n\geq 1} \frac{e^n}{n+3^n};$$
 b) $\sum_{n\geq 1} \frac{1}{n^2 - \ln n + \sin n};$
c) $\sum_{n\geq 1} \frac{\sqrt{n+1}}{1+2+\dots+n};$ d) $\sum_{n\geq 1} \frac{2^n \cdot n!}{n^n};$

$$d) \sum_{n>1} \frac{2^n \cdot n!}{n^n};$$

e)
$$\sum_{n>1} \frac{5^{n/2}}{n2^n}$$
;

f)
$$\sum_{n>1} (\arctan n)^n$$

g)
$$\sum_{n>1}^{-} \frac{n^2}{2^{n^2}}$$

e)
$$\sum_{n\geq 1} \frac{5^{n/2}}{n2^n}$$
; f) $\sum_{n\geq 1} (\arctan n)^n$;
g) $\sum_{n\geq 1} \frac{n^2}{2^{n^2}}$; h) $\sum_{n\geq 1} \frac{(n+1)^n}{n^{n+2}}$.

5. Let $\sum_{n\geq 1} x_n$ be a convergent series with nonnegative terms. Study which of the following series are convergent:

a)
$$\sum_{n\geq 1} \frac{x_n}{1+x_n}$$
, b) $\sum_{n\geq 1} x_n^2$, c) $\sum_{n\geq 1} \sqrt{x_n}$, d) $\sum_{n\geq 1} \frac{\sqrt{x_n}}{n}$.

b)
$$\sum_{n\geq 1} x_n^2$$

c)
$$\sum_{n>1} \sqrt{x_n}$$

$$d) \sum_{n \ge 1} \frac{\sqrt{x_n}}{n}$$

Mathematical Analysis Seminar 5

1. Study if the following series are convergent or divergent for $\alpha \in (0, +\infty)$:

a)
$$\sum_{n>1} \frac{(\alpha n)^n}{n!}$$
 b) $\sum_{n>1} \alpha^{\ln n}$ c) $\sum_{n>1} \left[\frac{(2n-1)!!}{\sqrt{(2n)!}} \right]^{2\alpha}$.

2. Study whether the following series are absolutely convergent, semi-convergent or divergent:

a)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{\sqrt{n(n^2+1)}}$$
 b) $\sum_{n\geq 1} \frac{\sqrt[3]{n}}{n+1} \cos(n\pi)$.

Prove that for any $x \in \mathbb{R}$ and $\alpha > 0$ the series $\sum_{n \ge 1} \frac{\sin(nx)}{n^{\alpha}}$ is convergent.

- **3.** Find the set $A' := \{x_0 \in \overline{\mathbb{R}} \mid \forall V \in \mathcal{V}(x_0), \ V \cap A \setminus \{x_0\} \neq \emptyset\}$ of accumulation (i.e., cluster) points for the following sets: a) $A = [0, 1) \cup \{2\}$, b) $A = \mathbb{Z}$, c) $A = \mathbb{Q}$ and d) $A = [0, \sqrt{2}] \cap \mathbb{Q}$.
- **4.** Study the existence of the limit of Dirichlet's function $f: \mathbb{R} \to \mathbb{R}$

$$f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

at every accumulation point of its domain $(x_0 \in \overline{\mathbb{R}})$.

5. Compute the limits

a)
$$\lim_{x \to -\infty} \frac{-3x^2 + x - 1}{(x - 1)(x - 2)}$$
, b) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^3 - x}$, c) $\lim_{x \to \infty} \sqrt{x}(\sqrt{x + 1} - \sqrt{x})$, d) $\lim_{x \to 0} \frac{\sqrt[3]{1 + x} - 1}{x}$,

e)
$$\lim_{\substack{x \to 1 \\ x > 1}} \frac{x}{\sqrt[3]{x^2 - 4x + 3}}$$
, f) $\lim_{x \to -\infty} \left(\frac{x^2 + 1}{x^2 - 1}\right)^{\sqrt{-x}}$, g) $\lim_{\substack{x \to 0 \\ x < 0}} \lfloor x \rfloor$, h) $\lim_{x \to \infty} \lfloor x \rfloor$, i) $\lim_{x \to \infty} \frac{x - \lfloor x \rfloor}{x}$.

6. Study the continuity of the following functions and determine the type of their discontinuities:

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := \lim_{n \to \infty} \frac{e^{nx}}{1 + e^{nx}}$ b) $g: \mathbb{R} \to \mathbb{R}$, $g(x) := \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$

- 7. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is discontinuous at every point in \mathbb{R} and |f| is continuous on \mathbb{R}
- 8. Let $f, g : [0,1] \to \mathbb{R}$ be two continuous functions, such that $f(x) = g(x), \forall x \in [0,1] \cap \mathbb{Q}$. Prove that $f(x) = g(x), \forall x \in [0,1]$.
- **9.** Let $a, b \in \mathbb{R}$ with a < b and let $f : [a, b] \to [a, b]$ be a continuous function. Prove that f has at least one fixed point $x_0 \in [a, b]$, that is, $f(x_0) = x_0$.