STAT 88: Lecture 16

Contents

Section 5.5: Conditional Expectation

Section 5.6: Expectation by Conditioning

Probability and Statistics

Probability: A population distribution is known. We draw a sample X (or n many samples X_1, \ldots, X_n) from the population and calculate the likelihood of an event, i.e. $P(X \in A)$.

E.x. Pick 5 cards from a deck of state 52 with replacement.

what is chance you get 2 ace cards?

$$X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a Bercar} \}$
 $X_i = \{ (1) \text{ if ith cord is ace a$

Statistics: We draw n many samples X_1, \ldots, X_n from a population distribution which has unknown parameter θ (e.g. population mean). We then use samples to estimate/draw inference about θ .

Sampling distribution and unbiased estimator: The distribution of statistic or estimator is called sampling distribution. If an estimator is unbiased, its sampling distribution has expectation that equals to the population parameter θ .

Last time

Conditional Expectation

Let X and S be two random variables with joint distribution

	X = 1	X = 2	X = 3
S = 2	0.0625	0	0
S = 3	0.125	0.125	0
S=4	0.0625	0.25	0.0625
<i>S</i> = 5	0	0.125	0.125
<i>S</i> = 6	0	0	0.0625

The conditional distribution table:

	X = 1	X = 2	X = 3	$E(X \mid S = s)$	
Conditional distribution of X given $S=2$	1 = P(x=1,5=2)	0	0	1	
Conditional distribution of X given $S=3$	0.5	0.5	0	1.5	
Conditional distribution of X given $S=4$	0.1667	0.6667	0.1667	2	
Conditional distribution of X given $S=5$	0	0.5	0.5	2.5	
Conditional distribution of X given $S=6$	0	0	1		

We define

$$E(X|S=s) = \sum_{\text{all } x} x \cdot P(X=x|S=s).$$

Then it can be shown that

$$E(X) = \sum_{\text{all } s} E(X|S = s) P(S = s).$$
 S=s \rightarrow E(X)S) takes value E(X1S=S)

Note that E(X|S) is a random variable, i.e. a function of S. Recall from Ch5.2 that a function of random variable f(S) is also a random variable. The expectation of f(S) is given by

$$E(f(S)) = \sum_{\text{all } s} f(s)P(S=s).$$

Let f(S) = E(X|S). Then

$$E(E(X|S)) = \sum_{\text{all } s} E(X|S=s)P(S=s) = E(X).$$

This proves the law of iterated expectation:

$$E(X) = E(E(X|S)).$$

5.6. Expectation by Conditioning

To find expectation of one random variable, it sometimes helps to condition on another random variable.

Time to Reach Campus A student has two routes to campus. Each route has a random duration. The student prefers Route A because its expected duration is 15 minutes compared to 20 minutes for Route B. However, on 10% of her trips she is forced to take Route B because of road work on Route A. On the remaining 90% of the days she takes Route A.

What is the expected duration of her trip on a random day?

Example: (Exercise 5.7.13) A survey organization in a town is studying families with children. Among the families that have children, the distribution of the number of children is as follows.

Number of Children n	1	2	3	4	5
Proportion with n Children	0.2	0.4	0.2	0.15	0.05

Suppose each child has chance 0.51 of being male, independently of all other children. What is the expected number of male children in a family picked at random from those that have children?

Example: You flip a fair coin N times where N is a random variable $N \sim \text{Poisson}(5)$. What is the expected number of heads you will get?

Expectation of a Geometric Waiting Time Let X be # p-coin tosses til first heads. Then $X \sim \text{Geom}(p)$.

X takes values on $1, 2, 3, \ldots$ Recall

$$P(X > 1) = P(\text{You need more than 1 trial to get 1st head})$$

= $P(\text{First trial is failure})$
= $1 - p$.

Don't use method of indicators to find expected waiting time since you don't know how many indicators you need.

Use conditional expectation:

$$E(X) = E(X|X = 1)P(X = 1) + E(X|X > 1)P(X > 1).$$

$$E(X|X > 1) = ?$$

Sec 5.5, 5.6 Practice

- (a) A die is rolled repeatedly. Find the expected number of rolls till a total of 5 sixes appear.
- (b) A die is rolled repeatedly. Find the expected number of rolls till two different faces appear.

Example: A fair coin is tossed 3 times. Let

- X be the number of heads in the first two tosses;
- \bullet Y be the number of heads in the last two tosses.

Find
$$E(Y|X=2)$$
.

Find
$$E(Y|X=1)$$
.

Find
$$E(Y|X=0)$$
.

Find
$$E(Y)$$
.