Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received.

Learning Gaussian Bayes Classifiers

Andrew W. Moore
Associate Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Maximum Likelihood learning of Gaussians for Classification

- Why we should care
- 3 seconds to teach you a new learning algorithm
- What if there are 10,000 dimensions?
- What if there are categorical inputs?
- Examples "out the wazoo"

Why we should care

- One of the original "Data Mining" algorithms
- Very simple and effective
- Demonstrates the usefulness of our earlier groundwork

Where we were at the end of the MLE lecture...

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
Classifier — Predict — category	Joint BC Naïve BC		Dec Tree
Density Prob- Estimator ability	Joint DE Naïve DE	Gauss DE	
Regressor real no.			

This lecture...

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
Predict Classifier category	Joint BC Naïve BC	Gauss BC	Dec Tree
Density Prob- Estimator ability	Joint DE Naïve DE	Gauss DE	
Regressor real no.			

Road Map

Road Map

Gaussian Bayes Classifier Assumption

- The i'th record in the database is created using the following algorithm
- 1. Generate the output (the "class") by drawing $y_i \sim Multinomial(p_1, p_2, ..., p_{Ny})$
- 2. Generate the inputs from a Gaussian PDF that depends on the value of y_i:

$$\mathbf{x}_i \sim N(\mu_i, \Sigma_i)$$
.

Test your understanding. Given N_y classes and m input attributes, how many distinct scalar parameters need to be estimated?

MLE Gaussian Baves Classifier

- 1. Generate the output (the 'class') by drawing $y_i \sim Multinomial(p_1, p_2, ..., p_{Ny})$
- 2. Generate the inputs from a Gaussian PDF that depends on the value of y_i :

$$\mathbf{x}_{i} \sim N(\mu_{i}, \Sigma_{i}).$$

Test your understanding. Given N_y classes and m input attributes, how many distinct scalar parameters need to be estimated?

MLE Gaussian Bayes Classifier

Let DB_i = Subset of the database database DB in which the output class is y = i

the database is created g algorithm

$$(\mu_i^{\text{mle}}, \Sigma_i^{\text{mle}}) = MLE Gaussian for DB_i$$

2. Generate the inputs from aussian PDF that depends on the value of y_i:

$$\mathbf{x}_i \sim N(\mu_i, \Sigma_i)$$
.

Test your understanding. Given N_y classes and m input attributes, how many distinct scalar parameters need to be estimated?

MLE Gaussian Bayes Classifier

Let DB_i = Subset of database DB in which the output class is y = ig algorithm

the database is created

$$(\mu_i^{\text{mle}}, \Sigma_i^{\text{mle}})$$
 = MLE Gaussian for DB_i

2. Generate the inputs from aussian PDF that depends on the vac of yi:

$$\mathbf{\mu}_{i}^{mle} = \frac{1}{|\mathbf{DB}_{i}|} \sum_{\mathbf{x}_{k} \in \mathbf{DB}_{i}}^{R} \mathbf{x}_{k}$$

$$\mathbf{\mu}_{i}^{mle} = \frac{1}{|\mathrm{DB}_{i}|} \sum_{\mathbf{x}_{k} \in \mathrm{DB}_{i}}^{R} \mathbf{x}_{k} \bigg|_{\mathbf{g. Gi}} \mathbf{\Sigma}_{i}^{mle} = \frac{1}{|\mathrm{DB}_{i}|} \sum_{\mathbf{x}_{k} \in \mathrm{DB}_{i}}^{R} (\mathbf{x}_{k} - \mathbf{\mu}_{i}^{mle}) \mathbf{x}_{k} - \mathbf{\mu}_{i}^{mle})^{T}$$

distinct scalar parameters need to be estimated?

Gaussian Bayes Classification

$$P(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = i)P(y = i)}{p(\mathbf{x})}$$

Gaussian Bayes Classification

$$P(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = i)P(y = i)}{p(\mathbf{x})}$$

$$P(y = i \mid \mathbf{x}) = \frac{\frac{1}{(2\pi)^{m/2} \|\boldsymbol{\Sigma}_i\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i(\mathbf{x}_k - \boldsymbol{\mu}_i)\right] p_i}{p(\mathbf{x})}$$

How do we deal with that?

Here is a dataset

age	employme	education	edun	marital		job	relation	race	gender	hour	country		wealth
39	State_gov	Bachelors	13	Never_mar		Adm_cleric	Not_in_fan	White	Male	40	United_	Sta	poor
51	Self_emp_	Bachelors	13	Married		Exec_man	Husband	White	Male	13	United_	Sta	poor
39	Private	HS_grad	9	Divorced		Handlers_c	Not_in_fan	White	Male	40	United_	Sta	poor
54	Private	11th	7	Married		Handlers_c	Husband	Black	Male	40	United_	Sta	poor
28	Private	Bachelors	13	Married		Prof_speci	Wife	Black	Female	40	Cuba		poor
38	Private	Masters	14	Married		Exec_man	Wife	White	Female	40	United_	Sta	poor
50	Private	9th	5	Married_sr		Other_serv	Not_in_fan	Black	Female	16	Jamaica	а	poor
52	Self_emp_	HS_grad	9	Married		Exec_man	Husband	White	Male	45	United_	Sta	rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_in_fan	White	Female	50	United_	Sta	rich
42	Private	Bachelors	13	Married		Exec_man	Husband	White	Male	40	United_	Sta	rich
37	Private	Some_coll	10	Married		Exec_man	Husband	Black	Male	80	United_	Sta	rich
30	State_gov	Bachelors	13	Married		Prof_speci	Husband	Asian	Male	40	India		rich
24	Private	Bachelors	13	Never_mar		Adm_cleric	Own_child	White	Female	30	United_	Sta	poor
33	Private	Assoc_acc	12	Never_mar		Sales	Not_in_fan	Black	Male	50	United_	Sta	poor
41	Private	Assoc_voc	11	Married		Craft_repai	Husband	Asian	Male	40	*Missin	gVί	rich
34	Private	7th_8th	4	Married		Transport_	Husband	Amer_India	Male	45	Mexico		poor
26	Self_emp_	HS_grad	9	Never_mar		Farming_fi	Own_child	White	Male	35	United_	Sta	poor
33	Private	HS_grad	9	Never_mar		Machine_c	Unmarried	White	Male	40	United_	Sta	poor
38	Private	11th	7	Married		Sales	Husband	White	Male	50	United_	Sta	poor
44	Self_emp_	Masters	14	Divorced		Exec_man	Unmarried	White	Female	45	United_	Sta	rich
41	Private	Doctorate	16	Married		Prof_speci	Husband	White	Male	60	United_	Sta	rich
:	:	:	:	:	:	:	:	:	:	:	:		:

48,000 records, 16 attributes [Kohavi 1995]

Predicting wealth from age

Predicting wealth from age

Wealth from hours worked

Wealth from years of education

age, edunum → wealth

age, edunum → wealth

hours, edunum → wealth

hours, edunum → wealth

Accuracy

Name	Model	Parameters	FracRight		
age+hours	bayesclass	density=joint submodel=gar gausstype=general	uss 0.760452 +/- 0.00319521		
Name	Model	Parameters	FracRight		
age+hours	bayesclass	density=joint submodel=gar gausstype=general	uss 0.760452 +/- 0.00319521		
Name	Mo	odel Parameters	FracRight		
age+hours+	-edunum ba	yesclass density=joint subn gausstype=genera	nodel=gauss 0.798513 +/- 0.00542432		
Name	Model	Parameters	FracRight		
a+h+e+capgain bayesclass density=joint submodel=gauss 0.793518 +/- 0.00319241 gausstype=general					
Name	Мо	odel Parameters	FracRight		
a+h+e+c+ta	axweight ba	yesclass density=joint subm gausstype=genera	nodel=gauss 0.793477 +/- 0.00321524		

An "MPG" example

An "MPG" example

An "MPG" example

Things to note:

- Class Boundaries can be weird shapes (hyperconic sections)
- Class regions can be non-simplyconnected
- •But it's impossible to model arbitrarily weirdly shaped regions
- •**Test your understanding:** With one input, must classes be simply connected?

Overfitting dangers

Problem with "Joint" Bayes classifier:

#parameters exponential with #dimensions.

This means we just memorize the training data, and can overfit.

Overfitting dangers

- Problem with "Joint" Bayes classifier:
 #parameters exponential with #dimensions.
 This means we just memorize the training data, and can overfit.
- Problemette with Gaussian Bayes classifier: #parameters quadratic with #dimensions.

 With 10,000 dimensions and only 1,000

 datapoints we could overfit.

Question: Any suggested solutions?

General: O(m²) parameters

$$\Sigma = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{12} & ? & \sigma_{1m} \\ \sigma_{12} & \sigma^{2}_{2} & ? & \sigma_{2m} \\ ? & ? & ? & ? \\ \sigma_{1m} & \sigma_{2m} & ? & \sigma^{2}_{m} \end{pmatrix}$$

General: O(m²) parameters

$$\Sigma = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{12} & ? & \sigma_{1m} \\ \sigma_{12} & \sigma^{2}_{2} & ? & \sigma_{2m} \\ ? & ? & ? & ? \\ \sigma_{1m} & \sigma_{2m} & ? & \sigma^{2}_{m} \end{pmatrix}$$

Aligned: O(m) parameters

Aligned: O(m) parameters

Spherical: O(1) cov parameters

Spherical: O(1) cov parameters

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
Stand Classifier Category	Joint BC Naïve BC	Gauss BC	Dec Tree BC Here???
Density Prob- Estimator ability	Joint DE Naïve DE	Gauss DE	
Regressor real no.			

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
Classifier category	Joint BC Naïve BC	Gauss BC	Dec Tree
Standar Density Prob- Estimator ability	Joint DE Naïve DE	Gauss DE	BC Here???
Regressor real no.		Guess ho	w?

		Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
stndu Classifier —	_Predict category	Joint BC Naïve BC	Gauss BC	Dec Tree Gauss/Joint BC Gauss Naïve BC
Sta Density	Prob-	Joint DE	Gauss DE	Gauss/Joint DE
Density Estimator	Prob- ability	Joint DE Naïve DE		Gauss/Joint DE Gauss Naïve DE

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay
Signalified Predict	Joint BC	Gauss BC	Dec Tree
Classifier category	Naïve BC		Gauss/Joint BC Gauss Naïve BC
Density Prob-	Joint DE	Gauss DE	Gauss/Joint DE
Estimator ability	Naïve DE	Gauss DE	Gauss Naïve DE
Regressor real no.			

Mixed Categorical / Real Density Estimation

• Write
$$\mathbf{x} = (\mathbf{u}, \mathbf{v}) = (\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2 \dots \mathbf{v}_{m-q})$$
Real valued Categorical valued

$$P(\mathbf{x} \mid M) = P(\mathbf{u}, \mathbf{v} \mid M)$$

(where M is any Density Estimation Model)

Not sure which tasty Not sure which tasty DE to enjoy? Try our... Combo

$$P(\mathbf{u},\mathbf{v} \mid M) = P(\mathbf{u} \mid \mathbf{v}, M) P(\mathbf{v} \mid M)$$

Gaussian with parameters depending on **v**

Big "m-q"-dimensional lookup table

MLE learning of the Joint / Gauss DE Combo

$$P(\mathbf{u},\mathbf{v}\mid M) = P(\mathbf{u}\mid \mathbf{v}, M) P(\mathbf{v}\mid M)$$

```
\mu_{\mathbf{v}} = Mean of u among records matching v
```

 $\Sigma_{\mathbf{v}}$ = Cov. of **u** among records matching **v**

$$\mathbf{u} \mid \mathbf{v}, \mathbf{M} \sim \mathsf{N}(\mu_{\mathsf{v}}, \Sigma_{\mathsf{v}})$$
, $\mathsf{P}(\mathbf{v} \mid \mathsf{M}) = \mathsf{q}_{\mathsf{v}}$

MLE learning of the Joint / Gauss DE Combo

$$P(\mathbf{u},\mathbf{v} \mid M) = P(\mathbf{u} \mid \mathbf{v}, M) P(\mathbf{v} \mid M)$$

$$\mu_{\mathbf{v}}$$
 = Mean of \mathbf{u} among = records matching \mathbf{v}

$$\Sigma_{v}$$
 = Cov. of **u** among = records matching **v**

$$\frac{1}{R_{\mathbf{v}}} \sum_{k \text{ s.t. } \mathbf{v}_k = \mathbf{v}} \mathbf{u}_k$$

$$\frac{1}{R_{\mathbf{v}}} \sum_{k \text{ s.t. } \mathbf{v}_k = \mathbf{v}} (\mathbf{u}_k - \boldsymbol{\mu}_{\mathbf{v}}) (\mathbf{u}_k - \boldsymbol{\mu}_{\mathbf{v}})^T$$

$$\frac{R_{\rm v}}{R}$$

 $R_{\mathbf{v}} = \#$ records that match \mathbf{v}

$$\mathbf{u} \mid \mathbf{v}, \mathbf{M} \sim \mathbf{N}(\mu_{v}, \Sigma_{v}), \mathbf{P}(\mathbf{v} \mid \mathbf{M}) = \mathbf{q}_{v}$$

Gender and Hours Worked*

*As with all the results from the UCI "adult census" dataset, we can't draw any real-world conclusions since it's such a non-real-world sample

What we just did — Joint / Gauss DE Combo

What we do next — Joint / Gauss BC Combo

Joint / Gauss BC Combo

$$P(Y = i \mid \mathbf{u}, \mathbf{v}) = \frac{p(\mathbf{u}, \mathbf{v} \mid M_i)P(Y = i)}{p(\mathbf{u}, \mathbf{v})}$$
$$= \frac{p(\mathbf{u}, \mid \mathbf{v}, M_i)p(\mathbf{v} \mid M_i)P(Y = i)}{p(\mathbf{u}, \mathbf{v})}$$

$$= \frac{N(\mathbf{u}; \boldsymbol{\mu}_{i,\mathbf{v}}, \boldsymbol{\Sigma}_{i,\mathbf{v}}) q_{i,\mathbf{v}} p_i}{p(\mathbf{u}, \mathbf{v})}$$

Joint / Gauss BC Combo

$$P(Y = i \mid \mathbf{u}, \mathbf{v}) = \frac{p(\mathbf{u}, \mathbf{v} \mid M_i)P(Y = i)}{p(\mathbf{u}, \mathbf{v})}$$

$$\Sigma_{i,v}$$
 = Cov. of **u** among records matching **v** and in which y=i

$$\frac{p(\mathbf{u}, |\mathbf{v}, M_i)p(\mathbf{v} | M_i)P(Y = i)}{p(\mathbf{u}, \mathbf{v})}$$

$$= \underbrace{\underbrace{N(\mathbf{u}; \boldsymbol{\mu}_{i,\mathbf{v}}, \boldsymbol{\Sigma}_{i,\mathbf{v}})}_{p(\mathbf{u},\mathbf{v})} q_{i,\mathbf{v}} p_{i}}_{p(\mathbf{u},\mathbf{v})}$$

Rather so-so-notation for "Gaussian with mean $\mu_{i,v}$ and covariance $\Sigma_{i,v}$ evaluated at \mathbf{u}''

Gender, Hours→Wealth

Gender, Hours→Wealth

Joint / Gauss DE Combo and Joint / Gauss BC Combo: The downside

(Yawn...we've done this before...)
 More than a few categorical attributes blah blah blah massive table blah blah lots of parameters blah blah just memorize training data blah blah blah blah do worse on future data blah blah need to be more conservative blah

Naïve/Gauss combo for Density Categorical Estimation

Real Categorical Listing Colline (a)
$$p(\mathbf{u}, \mathbf{v} | M) = \left(\prod_{j=1}^{q} p(u_j | M)\right) \left(\prod_{j=1}^{m-q} P(v_j | M)\right)$$

$$u_j | M \sim N(\mu_j, \sigma_j^2) \quad v_j | M \sim \text{Multinomial}[q_{j1}, q_{j2}, ..., q_{jN_j}]$$

How many parameters?

Naïve/Gauss combo for Density Categorical Estimation

Real Categorical LSCITTACION
$$p(\mathbf{u}, \mathbf{v} | M) = \left(\prod_{j=1}^{q} p(u_j | M)\right) \left(\prod_{j=1}^{m-q} P(v_j | M)\right)$$

$$u_j | M \sim N(\mu_j, \sigma_j^2) \quad v_j | M \sim \text{Multinomial}[q_{j1}, q_{j2}, ..., q_{jN_j}]$$

$$\mu_j = \frac{1}{R} \sum_k u_{kj}$$

$$\sigma_j^2 = \frac{1}{R} \sum_k (u_{kj} - \mu_j)^2$$

$$q_{jh} = \frac{\text{\# of records in which } v_j = h}{R}$$

Naïve/Gauss DE Example

Naïve/Gauss DE Example

Naïve / Gauss BC
$$P(Y = i | \mathbf{u}, \mathbf{v}) = \frac{p(\mathbf{u}, \mathbf{v} | Y = i)P(Y = i)}{p(\mathbf{u}, \mathbf{v})}$$

$$= \frac{1}{p(\mathbf{u}, \mathbf{v})} \prod_{j=1}^{q} p(u_j \mid \mu_{ij}, \sigma_{ij}^2) \quad \prod_{j=1}^{m-q} P(v_j \mid \mathbf{q}_{ij}) \quad P(Y = i)$$

$$= \frac{1}{p(\mathbf{u}, \mathbf{v})} \prod_{j=1}^{q} N(u_j; \mu_{ij}, \sigma_{ij}^2) \quad \prod_{j=1}^{m-q} q_{ij}[v_j] \quad p_i$$

$$\begin{array}{ll} \mu_{ij} &= \text{Mean of } u_j \text{ among records in which } y{=}i \\ \\ \sigma^2_{ij} &= \text{Var. of } u_j \text{ among records in which } y{=}i \\ \\ q_{ij}[h] &= \text{Fraction of "y=i" records in which } v_j = h \\ \\ p_i &= \text{Fraction of records that match "y=i"} \end{array}$$

Gauss / Naïve BC Example

Gauss / Naïve BC Example

Learn Wealth from 15 attributes

Name	Model	Parameters	FracRight		
Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.718009	+/-	0.00570714
Model2	bayesclass	density=naive submodel=gauss gausstype=general	0.832234	+/-	0.00288377
Model3	dtree	max_children=4 ne_splits=y max_pchance=0.05 adjust_chi=y max_nodes=50	0.850702	+/-	0.00364538

Learn Wealth from 15 attributes

	Name	Model	Parameters	FracRight			
	Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.718009	+/-	0.00570714	pd-
	Model2	bayesclass	density=naive submodel=gauss gausstype=general	0.832234	+/-	0.00288377	*
	Model3	dtree	max_children=4 ne_splits=y max_pchance=0.05 adjust_chi=y max_nodes=50	0.850702	+/-	0.00364538	•
<u>س</u>	zed	Model	Daramotore	EracDiaht			
	Ν	Model	Parameters	FracRight			
	etiz	Model payesclass	Parameters density=joint submodel=gauss gausstype=general	Ū	+/-	0.00321903	++.
Same data, except a	ilues discretiz o 3 levels		density=joint submodel=gauss	Ū		0.00321903 0.00240386	• • •

Learn Race from 15 attributes

Name	Model	Parameters	FracRight		
Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.391303	+/-	0.00586792
Model2	bayesclass	density=naive submodel=gauss gausstype=general	0.788686	+/-	0.00560675
Model3	dtree	max_children=4 ne_splits=y max_pchance=0.05 adjust_chi=y max_nodes=50	0.860919	+/-	0.00272011

What you should know

- A lot of this should have just been a corollary of what you already knew
- Turning Gaussian DEs into Gaussian BCs
- Mixing Categorical and Real-Valued

Questions to Ponder

- Suppose you wanted to create an example dataset where a BC involving Gaussians crushed decision trees like a bug. What would you do?
- Could you combine Decision Trees and Bayes Classifiers? How? (maybe there is more than one possible way)