APLICACIONES DE VECTORES

Ecuación vectorial de la Recta en R³

Consideremos el punto $P_0(x_0, y_0, z_0)$ y un punto genérico P(x, y, z) tracemos una recta cualquiera que tiene la dirección de un vector $\vec{A}(a,b,c)$. Para encontrar la ecuación de la recta, ubicamos los vectores:

 $\overline{OP}_0 = P_0 \ y \ \overline{OP} = P$. Observamos que $\overline{OP} = \overline{OP}_0 + \overline{P_0P}$. El vector $\overline{P_0P}$ es paralelo a $\overrightarrow{A} \Rightarrow \overline{P_0P} = \lambda \overrightarrow{A}$.

La Ecuación vectorial de la recta en R³, determinada por P_0 y la dirección del vector \vec{A} , es:

(1) $\vec{P} = \vec{P_0} + \lambda \vec{A}$, donde λ es el parámetro de la recta. Cuando el parámetro varía desde $-\infty a \infty$, el punto P describe a la recta.

Si escribimos la ecuación (1) en términos de sus componentes, obtenemos: $(x, y, z) = (x_0, y_0, z_0) + \lambda(a, b, c)$.

Igualando las componentes homólogas, se tiene:

(2)
$$\begin{cases} x = x_0 + \lambda a \\ y = y_0 + \lambda b \\ z = z_0 + \lambda c \end{cases}$$
 Que son las *ecuaciones paramétricas de la recta en R*³. Si en (2) eliminamos el parámetro λ , de cada ecuación obtenemos:

 $\frac{x-x_0}{a} = \lambda$; $\frac{y-y_0}{b} = \lambda$; $\frac{z-z_0}{c} = \lambda$. Igualando las tres expresiones, se tiene:

(3)
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
 Ecuaciones cartesianas de la recta en R^3

<u>Observación</u>: los números a, b, c, se llaman números directores de la recta. Y si llamamos $\alpha, \beta \ y \ \gamma$ los ángulos que forman el vector \vec{A} , con los ejes coordenados. Los cósenos directores de las rectan serían $\cos \alpha, \cos \beta \ y \ \cos \gamma$

$$\cos \alpha = \frac{A_x}{|A|}$$
 $\cos \beta = \frac{A_y}{|A|}$ $\cos \gamma = \frac{A_z}{|A|}$

Los cósenos directores tienen la propiedad que: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Recta determinada por 2 puntos

Consideramos 2 puntos sobre la recta $P_0(x_0, y_0, z_0)$ y $P_1(x_1, y_1, z_1)$ para encontrar la ecuación de la recta necesitamos conocer el vector dirección de la misma.

Podemos considerar como vector dirección al vector que une P_0 .con P_1 , es decir :

$$\overrightarrow{P_0} \overrightarrow{P_1} = \overrightarrow{P_1} - \overrightarrow{P_0}$$

La ecuación de la recta será:

 $\vec{P} = \vec{P_0} + \lambda (\vec{P_1} - \vec{P_0})$ Ecuación vectorial de la recta que pasa por 2 puntos.

$$(x, y, z) = (x_0, y_0, z_0) + \lambda(x_1 - x_0, y_1 - y_0, z_1 - z_0)$$

$$\begin{cases} x = x_0 + \lambda(x_1 - x_0) \\ y = y_0 + \lambda(y_1 - y_0) \\ z = z_0 + \lambda(z_1 - z_0) \end{cases}$$
 (5)

Ecuaciones paramétricas de la recta que pasa por 2 puntos en R³.

Si de las ecuaciones (5) eliminamos el parámetro λ , se obtiene $\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}$ Ec. cartesiana de la recta que pasa por 2 puntos en \mathbb{R}^3 .

Ejemplos

1. Encontrar la ecuación de la recta que tiene la dirección de $\vec{A} = (2,-1,4)$ y que pasa por el punto $(1,2,-7) \rightarrow \vec{P} = \overrightarrow{P_0} + \lambda \vec{A} \rightarrow (x,y,z) = (1,2,-7) + \lambda(2,-1,4)$

$$\begin{cases} x = 1 + 2\lambda \\ y = 2 - \lambda \end{cases}$$
 Ecuación paramétrica
$$z = -7 + 4\lambda$$

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+7}{4}$$
 Ecuación cartesiana

2. Encontrar la ecuación de la recta que pasa por los puntos (2,-1,5) y (3, 2,2).

$$\vec{P} = \vec{P_0} + \lambda (\vec{P_1} - \vec{P_0})$$

$$(x, y, z) = (2, -1, 5) + \lambda (3 - 2, 2 + 1, 2 - 5)$$

$$(x, y, z) = (2, -1, 5) + \lambda (1, 3, -3)$$

$$\begin{cases} x = 2 + \lambda \\ y = -1 + 3\lambda \\ z = 5 - 3\lambda \end{cases} \qquad \frac{x - 2}{1} = \frac{y + 1}{3} = \frac{z - 5}{-3}$$

Ecuación de la recta que pasa por 2 puntos.

Observación:

Si estamos en R^2 o sea que el punto P_0 y el vector A pertenecen al plano XY, la expresión 1 sigue siendo valida y la ecuación 2 se reduce a solo 2 ecuaciones:

$$\begin{cases} x = x_0 + \lambda a \\ y = y_0 + \lambda b \end{cases}$$
 Ecuación paramétrica de la recta en R²

Si eliminamos λ queda $\frac{x - x_0}{a} = \frac{y - y_0}{b}$ ecuación cartesiana

$$b(x - x_0) - a(y - y_0) = 0$$

$$bx - ay + (bx_0 + ay_0) = 0$$

Que tiene la forma A x + B y + C = 0: Ecuación general o implícita de la recta en R^2

De la ecuación (a) podemos escribir:

$$y - y_0 = \frac{b}{a}(x - x_0)$$

 $y = \frac{b}{a}x - \frac{b}{a}x_0 + y_0$

$$y = mx + h$$

Donde $m = \frac{b}{a}$: pendiente de la recta, que se define como la tangente trigonométrica del ángulo de inclinación de la recta. Es decir: $m = tg\alpha$, y α es el ángulo que forma la recta con el semieje positivo x.

h se llama ordenada al origen : $h = -\frac{b}{a}x_0 + y_0$

Si conocemos 2 puntos $P_0(x_0, y_0)$; $P_1(x_1, y_1)$ en R^2 la ecuación 4 sigue siendo valida:

$$(x, y) = (x_0, y_0) + \lambda(x_1 - x_0, y_1 - y_0)$$

$$\begin{cases} x = x_0 + \lambda(x_1 - x_0) \\ y = y_0 + \lambda(y_1 - y_0) \end{cases}$$

Eliminando
$$\lambda$$
 tenemos:

$$\frac{x_1 - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \implies y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

Ecuación cartesiana de la recta que pasa por 2 puntos

Ejemplo: Encontrar la ecuación cartesiana de la recta que pasa por $P_0(1,2)$ y es paralela al vector $\vec{A} = 2\vec{i} + \vec{j}$

$$P = P_0 + \lambda A \rightarrow (x, y) = (1,2) + \lambda(2,1)$$

$$\begin{cases} x = 1 + 2\lambda \\ y = 2 + \lambda \end{cases}$$
, e liminando el parámetro se tiene
$$\frac{x - 1}{2} = \frac{y - 2}{1} \Rightarrow 2(y - 2) = (x - 1)$$

$$y-2=\frac{1}{2}x-\frac{1}{2}$$
 \rightarrow $y=\frac{1}{2}x+\frac{3}{2}$ Ecuación explicita.

Ecuación vectorial del plano

Dado un plano, consideramos un vector normal $\vec{N} = (A, B, C)$ al mismo. Para encontrar la ecuación del plano, consideramos un punto genérico P (x, y, z) del plano.

Formamos el vector P, uniendo el origen con el punto P y hacemos el producto escalar de los vectores \vec{N} y \vec{P} .

Recordemos que, el producto escalar se puede escribir:

$$\vec{N} \cdot \vec{P} = |\vec{N}|$$
. proyection \vec{P}_N .

Si llamamos h = proyeccion \vec{P}_N h = distancia desde el origen al plano.

$$\therefore \vec{N} \cdot \vec{P} = \left| \vec{N} \right| \cdot h$$

Como modulo de \vec{N} y h son constantes independientes de \vec{P} ,

$$|\vec{N}| \cdot h = cte$$
, que llamamos $|\vec{N}| \cdot h = D$,

Se llega a la ecuación $\vec{N} \cdot \vec{P} = D$ que es la ecuación vectorial del plano, donde \vec{N} es un vector de modulo cualquiera perpendicular al plano y \vec{P} es un punto genérico.

Si D=0 $\Rightarrow h=0$ entonces el plano pasa por el origen y la ecuación es $\vec{N} \cdot \vec{P} = 0$.

Si $D \neq 0$; su signo depende del sentido del vector \vec{N} ; pues tomando $-\vec{N}$ en vez de \vec{N} ; D cambio de signo. Se adopta criterio siguiente. Consideramos \vec{N} dirigido siempre desde el origen hacia el plano, de manera que D resulte positivo.

Por componentes la ecuación 1 queda:

$$(A,B,C).(x,y,z)=D$$

Ax + By + Cz = D Ecuación cartesiana del plano.

Ecuación general de los planos que pasan por un punto

Para encontrar la ecuación de los planos que pasan por un punto, consideramos un vector normal al plano $\vec{N} = (A, B, C)$, un punto $P_0(x_0, y_0, z_0)$ y un punto genérico P(x, y, z) contenidos en el plano. Uniendo el origen con cada punto obtenemos los vectores \vec{P}_0 y \vec{P} y formamos el vector $\vec{P}_0\vec{P} = \vec{P} - \vec{P}_0$.

Por lo tanto el vector $\overrightarrow{P_0P}$ es perpendicular a \overrightarrow{N} o sea $\overrightarrow{N} \perp (\overrightarrow{P} - \overrightarrow{P_0})$ y esto significa que el producto escalar es cero. Se obtiene:

 $\overrightarrow{N} \cdot (\overrightarrow{P} - \overrightarrow{P_0}) = 0$ Ecuación general de los planos que pasan por un punto.

Por componentes tenemos: $\begin{cases} (A, B, C).(x - x_0, y - y_0, z - z_0) = 0 \\ (A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 \\ Ax - Ax_0 + By - By_0 + Cz - Cz_0 = 0 \\ Ax + By + Cz - (Ax_0 + By_0 + Cz_0) = 0 \end{cases}$

Llamamos $D = Ax_0 + By_0 + Cz_0$

La ecuación cartesiana del plano que pasa por un punto es:

$$Ax + By + Cz = D$$

Ecuación de un plano determinado por tres puntos

Si conocemos tres puntos del plano $P_1(x_1, y_1, z_1)$; $P_2(x_2, y_2, z_2)$; $P_3(x_3, y_3, z_3)$, para encontrar la ecuación del plano necesitamos determinar un vector normal al plano.

Si unimos el punto P₁ con los puntos P₂ y P₃ formamos vectores $\overrightarrow{P_1P_2}$ y $\overrightarrow{P_1P_3}$ y podemos conocer un vector normal del plano haciendo el producto vectorial de los dos vectores contenidos en el plano.

Es decir:

$$\vec{N} = (\overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3})$$

$$\vec{N} = (\vec{P}_2 - \vec{P}_1) \times (\vec{P}_3 - \vec{P}_1)$$

Entonces usando la ecuación $|\vec{N} \cdot (\vec{P} - \vec{P_0})| = 0$ tenemos:

 $\vec{N} \cdot (\vec{P} - \vec{P}_1) = 0$ y remplazando el vector normal se obtiene:

$$[\vec{P}_2 - \vec{P}_1) \times (\vec{P}_3 - \vec{P}_1)] \cdot (\vec{P} - \vec{P}_1) = 0$$
 Ecuación del plano determinado por tres puntos.

Se puede comprobar que esta expresión se puede escribir, mediante el determinante de tercer orden siguiente:

$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$$
 Ecuación cartesiana del plano que pasa por tres puntos.

Ejemplos:

1.- Encontrar la ecuación del plano, perpendicular al vector (2,-1,2) y cuya distancia al origen es 6.

La ecuación del plano es:

$$\vec{N} \cdot \vec{P} = D$$
 como $h = 6$ y $D = |\vec{N}| h$
(2,-1,2). $(x, y, z) = D$

Calculamos D

$$D = \sqrt{4 + 1 + 4}.6$$

D = 18, la ecuación del plano es:

$$2x - y + 2z = 18$$

2.- Encontrar la ecuación del plano que pasa por los puntos (1, 0, 3); (-2,-4, 5) y (2,-1,3).

Elegimos un punto como punto de paso. P_1 (1, 0, 3) y formamos los vectores $\overrightarrow{P_1P_2}$ y $\overrightarrow{P_1P_3}$. Para encontrar la ecuación cartesiana, calculamos el determinante:

$$\begin{vmatrix} x-1 & y-0 & z-3 \\ -2-1 & -4-0 & 5-3 \\ 2-1 & -1-0 & 3-3 \end{vmatrix} = \begin{vmatrix} x-1 & y & z-3 \\ -3 & -4 & 2 \\ 1 & -1 & 0 \end{vmatrix} = 0$$

Resolviendo el determinante, desarrollando por los elementos de la primera fila, se llega a la ecuación:

$$2(x-1)+2y+7(z-3)=0$$
 con $\vec{N}=(2,2,7)$,

$$2x + 2y + 7z = 23$$

3.- Determinar la ecuación del plano que pasa por (-1,0,4) y es \perp al vector (5,3,-2)

$$5(x+1) + 3y-0 - 2(z-4) = 0$$

La ecuación queda: 5x + 3y - 2z + 13 = 0

Ecuaciones de los planos coordenados

Sea el plano de ecuación A x + B y + C z = D (1) veamos los siguientes casos:

1. Si
$$C=0$$
 ; $A=0$; $B \neq 0$ y $D \neq 0$, la ecuación (1) queda

$$BY = D \implies Y = \frac{D}{B} = cte = h$$
. La ecuación Y = h, es la ecuación de un plano // al

plano XZ. Si h=0 \acute{o} $D=0 \Rightarrow Y=0$ Ecuación del plano XZ.

2. Si
$$C \neq 0$$
, $D \neq 0$; $A = 0$ y $B = 0$ la ecuación (1) queda

$$CZ = D$$
; $Z = \frac{D}{C} = k$ (cte); La ecuación $Z = k$, es la ecuación de un plano // al plano

XY; y Z = 0 Ecuación del plano XY.

3. Si
$$A \neq 0$$
, $B = C = 0$; $D \neq 0$. La ecuación (1) queda $X = \frac{D}{A} = cte = t$; entonces

X = t Ecuación de un plano paralelo al plano YZ.

Por lo tanto X = 0: *Ecuación del plano YZ*

Distancia de un punto a una recta

Dada la recta $\vec{P} = \vec{P}_0 + \lambda \vec{A}$ y un punto P_1 la distancia d del punto P_1 a la recta se obtiene de la siguiente manera:

Formamos el triangulo de la figura y vemos que:

$$d = |\overrightarrow{P_0P_1}|$$
.sen α

Como para obtener α , necesitamos conocer el ángulo α , podemos transformar la ecuación multiplicando y dividiendo por $|\vec{A}|$.

$$\therefore \quad \boxed{d = \frac{\left| \overrightarrow{(P_1} - \overrightarrow{P_0}) \times \overrightarrow{A} \right|}{\left| \overrightarrow{A} \right|}}$$

Donde \vec{A} , $\vec{P_0}$ y $\vec{P_1}$, es todo conocido.

Ejemplo

Hallar la distancia del punto $P_1 = (-3, 2, 1)$ a la recta $\frac{x+1}{-2} = \frac{y-3}{4} = \frac{z-1}{-1}$

$$P_0 = (-1, 3, 1); \quad \vec{A} = (-2, 4, 1);$$

$$\vec{P}_1 - \vec{P}_0 = (-3 + 1, 2 - 3, 1 - 1)$$

$$\vec{P}_1 - \vec{P}_0 = (-2, -1, 0)$$

$$(\vec{P}_1 - \vec{P}_0) \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 0 \\ -2 & 4 & -1 \end{vmatrix} = \vec{i} - 2\vec{j} - 10\vec{k}$$
$$= (1, -2, -10)$$

$$|(\vec{P}_1 - \vec{P}_0) \times \vec{A}| = \sqrt{1 + 4 + 100} = \sqrt{105}$$

$$|\vec{A}| = \sqrt{4 + 16 + 1} = \sqrt{21}$$
, luego $d = \sqrt{\frac{105}{21}} = \sqrt{5}$; $d = \sqrt{5}$

Mínima distancia entre dos rectas alabeadas

Sean las rectas $\vec{P} = \vec{P}_0 + \lambda \vec{A}$ y $\vec{P} = \vec{P}_1 + \lambda \vec{B}$

La mínima distancia entre las dos rectas es el segmento d, de la perpendicular común a las dos rectas.

Es por lo tanto la proyección del vector $\overrightarrow{P_0P_1}$, sobre la dirección perpendicular a las dos rectas, que está dada por el vector $\overrightarrow{A} \times \overrightarrow{B}$.

Entonces: $d = proyec_{\vec{A} \times \vec{B}}(\vec{P}_1 - \vec{P}_0)$ y recordando que $proyec_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}$, se llega a :

$$d = \frac{(\vec{A} \times \vec{B}) \bullet (\vec{P}_1 - \vec{P}_0)}{|\vec{A} \times \vec{B}|}$$
 Mínima distancia entre las dos rectas

Distancia de un punto al plano

Dado un punto $P_0(x_0,y_0,z_0)$ y un plano de ecuación $\vec{N}\cdot\vec{X}-D=0$. La distancia de un punto P_0 ; a un plano $\vec{N}\cdot\vec{P}-D=0$ es igual al valor que toma la ecuación del plano particularizada para el punto P_0 , dividido por el modulo del vector normal. Es decir

$$d = \frac{\vec{N} \cdot \vec{P}_0 - D}{|\vec{N}|}$$
 (1)

Para hallar la distancia di distancia del punto P_0 al plano, proyectamos el vector \overrightarrow{P}_0 , sobre el vector \overrightarrow{N} .

La distancia di buscada es la diferencia entre \overrightarrow{OP}_0 y \overrightarrow{OH}_0 hallar

Vimos que
$$|\vec{N}| \cdot h = D \Rightarrow h = \frac{D}{|\vec{N}|} = OH$$
 y que $proy_{\vec{N}} \vec{P}_0 = \frac{\vec{N} \cdot \vec{P}_0}{|\vec{N}|}$.

Como además $Proy_{\vec{N}} \vec{P}_0 = h + d \Rightarrow d = proy_{\vec{N}} \vec{P}_0 - h$. Remplazando se tiene:

$$d = \frac{\overrightarrow{N} \cdot \overrightarrow{P_0}}{|\overrightarrow{N}|} - \frac{D}{|\overrightarrow{N}|} = \frac{\overrightarrow{N} \cdot \overrightarrow{P_0} - D}{|\overrightarrow{N}|}, \text{ que es la expresión (1)}$$

Para fijar un signo a esta distancia siempre se mide desde el plano al punto, en el dibujo desde H a P_1 , y se considera signo positivo, cuando este sentido coincida con el del vector \vec{N} y negativo en caso contrario.

Paralelismo, perpendicularidad y ángulo

Consideremos las rectas R₁) $\vec{P} = \vec{P}_0 + \lambda \vec{A}_1$ y R₂) $\vec{P} = \vec{P}_1 + \lambda \vec{A}_2$ y los planos π_1)

$$\vec{N}_{\scriptscriptstyle 1} \cdot \vec{P} = D_{\scriptscriptstyle 1} \; \mathrm{y} \; \; \pi_{\scriptscriptstyle 2}) \; \vec{N}_{\scriptscriptstyle 2} \; . \; \vec{P} = D_{\scriptscriptstyle 2}$$

De acuerdo a lo que vimos en la condición de paralelismo y perpendicularidad entre vectores, se tiene que:

El ángulo entre las rectas es el ángulo entre los vectores dirección de las rectas:

- $R_1 //R_2 \Leftrightarrow \vec{A}_1 // \vec{A}_2$
- $R_1 \perp R_2 \iff \vec{A}_1 \perp \vec{A}_2$

El ángulo entre los planos es el ángulo entre los vectores normales a ambos planos:

- $\pi_1 // \pi_2 \Leftrightarrow \vec{N}_1 // \vec{N}_2$
- $\pi_1 \perp \pi_2 \Leftrightarrow \vec{N}_1 \perp \vec{N}_2$

El ángulo entre la recta R_1 y el plano π_1 es el ángulo complementario del que forman el vector dirección de la recta y el vector normal al plano.

Dado que \propto = < ($\vec{N}_{\rm l}$, $\vec{A}_{\rm l}$), entonces el ángulo que forma la recta con el plano es $90^{\rm 0}$ - α .

Como cos
$$\propto = \frac{\overrightarrow{N_1} \cdot \overrightarrow{A_1}}{|\overrightarrow{N_1}||\overrightarrow{A_1}|} = \text{sen} (90^{\circ} - \propto)$$
.

Entonces:
$$R_1 //\pi_1 \Leftrightarrow \vec{A}_1 \perp \vec{N}_1$$
 $R_1 \perp \pi_1 \Leftrightarrow \vec{A}_1 // \vec{N}_1$

Ejemplos:

1. Hallar la distancia del punto (6,3,-2) al plano 2x-4y+z=2 $\vec{N} = (2,-4,1)$ $\frac{x}{2} + \frac{y}{3} - \frac{z}{4} = 1$

$$d = \frac{\vec{N} \cdot \vec{P_0} - D}{|\vec{N}|} \quad ; \quad |\vec{N}| = \sqrt{4 + 16 + 1}$$
$$d = \frac{2.6 - 4.3 - 2 - 2}{\sqrt{21}} \rightarrow d = \frac{-4}{\sqrt{21}}$$

El signo de d es positivo cuando al medirla desde el plano al punto, este sentido coincida con el del vector normal

2. Hallar la mínima distancia entre las rectas.

$$r_{1}) \vec{P} = (1, 2, -3) + \lambda(2, 1, -1)$$

$$r_{2}) \frac{x - 2}{3} = \frac{y - 2}{3} = \frac{z + 1}{4}$$

$$\vec{P} = (2, 2, -1) + \lambda(3, 3, 4)$$

$$d = \frac{(\vec{A} \times \vec{B}) \cdot (\vec{P}_{1} - \vec{P}_{0})}{|\vec{A} \times \vec{B}|}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 3 & 3 & 4 \end{vmatrix} = 7\vec{i} - 11\vec{j} + 3\vec{k}$$

$$\overrightarrow{P_1} - \overrightarrow{P_0} = (2,2,-1) - (1,2,-3) = (1,0,2)$$

$$(\overrightarrow{A} \times \overrightarrow{B}) \cdot (\overrightarrow{P_1} - \overrightarrow{P_0}) = (7,-11,3) \cdot (1,0,2)$$

$$= 7 + 6 = 13$$

$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{7^2 + 11^2 + 9}$$

$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{49 + 121 + 9} = \sqrt{179}$$

$$d = \frac{13}{\sqrt{179}}$$

3. Encontrar la ecuación del plano \perp al vector (2,-1,2) y cuya distancia al origen es 6

$$2x - y + 2z = D$$

$$D = |\vec{N}|.6$$

$$D = \sqrt{4 + 1 + 4.6}$$

$$D = 18$$

4. Encontrar la ecuación del plano que pasa por (1,0,3); (-2,-4,5) y (2,-1,3)

Remplazamos en la ecuación cartesiana del plano $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$

$$\begin{vmatrix} x-1 & y-0 & z+2 \\ -2-1 & -4-0 & 5-3 \\ 2-1 & -1-0 & 3-3 \end{vmatrix} = \begin{vmatrix} x-1 & y & z-3 \\ -3 & -4 & 2 \\ 1 & -1 & 0 \end{vmatrix} = 2y+3z-9+4z+11+2x-2=0$$

La ecuación es: 2x + 2y + 7z - 23 = 0

5. Determinar la ecuación del plano que pasa por (-1,0,4) y es \perp al vector (5,3,-2)

$$5(x+1) + 3(y-0) + 4(z-4) = 0$$
$$5x + 3y + 4z = 11$$

6. Encontrar la ecuación de la recta intersección de los planos π_1) 2x + y - z = 3 y π_2) 3x + 2y + 2z = 0.

Para encontrar la ecuación formamos el sistema con las dos ecuaciones de los planos

(1)
$$F_2 - F_1(-2)$$
, (2) $F_2(-1)$, (3) $F_1 - F_2(-2)$

Escribimos el sistema equivalente:
$$\begin{cases} y + 7 z = -9 \\ x - 4 z = 6 \end{cases} \Rightarrow \begin{cases} y = -9 - 7 z \\ x = 6 + 4 z \end{cases}$$

Llamamos $z = \lambda$ y obtenemos:

$$\begin{cases} x = 6 + 4 \lambda \\ y = 9 - 7 \lambda \end{cases}$$
 Ecuaciones paramétricas de la recta, con $z = \lambda$

$$\vec{P}_0 = (6, 9, 0)$$
 $y \vec{A} = (4, -7, 1)$

7. Encontrar el punto de intersección de la recta
$$\frac{x-2}{4} = \frac{y+1}{-2} = \frac{z}{3}$$
, con el plano

$$2 x - 3 y + 5 z = 2$$
.

Para encontrar el punto despejamos x e y de la recta en unción de z y remplazamos en la ecuación del plano:

$$\frac{x-2}{4} = \frac{z}{3} \implies x-2 = \frac{4}{3}z \implies x = \frac{4}{3}z + 2$$

$$\frac{y+1}{-2} = \frac{z}{3} \Rightarrow y = \frac{-2}{3}z - 1$$

$$2(\frac{4}{3}z+2)-3(\frac{-2}{3}z-1)+5$$
 z = 2, de donde se obtiene:

z = 6 / 29, remplazando en x e y, se tiene:

x = 8 / 29, y = -41 / 29. El punto de intersección es (8/29, -41/29, 6/29)