Guest Lecture

Representation Learning for Grounded Special Reasoning – Michael Jenner

Lecture 2 – Topic Models

Topic for today: Language Models (LM)

- 1. Applications of LM
 - a. Noisy-channel models
- 2. Definition of N-gram models (particular type of LM)
 - a. Decompositionality
- 3. Evaluation: Perplexity
- 4. Smoothing

Activity: Guess the Author (refer to slides)

- Someone guesses machine correctly
- Output was from model trained with Shakespearean text

Definition of LM

- Assume we are given a finite vocabulary $w_L \in V$
- Ask $p(w_1, w_2, ..., w_M) = ?$
- Statistical Machine Translation (Stat. MT):

[xe) >[e] > [e] > f observed e = [decode] = f O Mathematical Description: $argmax_e P(e|f) = argmax_e \frac{P(f|e)P(e)}{P(f)} = argmax_e P(f|e)P(e)$

Definition of N-gram models (particular type of LM)

- Given $w_L \in V$
- Want to find $p(w_1, w_2, \dots, w_M)$
 - Chain Rule: $p(w_1, w_2, ..., w_M) = \prod p(w_i | w_1, ..., w_{i-1})$
 - O Markov Assumption: $\prod p(w_i|w_1,...,w_{i-1}) \sim \prod p(w_L|w_{L-1},...,w_{L-k})$
 - (current word depends on only last *k* words, not all past words)
- Example: p(I love Arya)
 - o Unigram Model: p(I)p(love)p(Arya)
 - Bigram Model: p(love|I)p(arya|love)
- Usually have START and END tokens
- Parameterization (θ)
 - O Bigram Model: $p(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})} \rightarrow |V|^2$ parameters
- Steps for Training
 - Collect training set X
 - \circ Estimate parameters θ
 - \circ Test on unseen X'
- N-gram model; large or small *N*?
 - \circ Small N may not be enough information
 - \circ Large N hard to train, data is sparse
 - o Turns out that for many applications 3 or 4 is good enough
 - Guess the Author was 3-gram model
 - Will see methods in the future for increasing *N* without cons
- How much entropy/ambiguity in English/languages?

Evaluation

- Test set $X' = x_1, \dots, x_n$
- Look at $p(X'|\theta) = \prod_i p(x_i|\theta)$
- In machine learning, often look at average log likelihood: $l = \frac{1}{|x|} \sum \log p(x_i | \theta)$
- But in NLP, we look at perplexity 2^{-l} which satisfies $2^{-l} \in [1, \infty)$
 - O Suppose $\forall w, p(w) = \frac{1}{|V|}$. Then perplexity must be |V|
 - Lower perplexity does not necessarily mean better performance in Z application!

Smoothing

- Bi-gram model results in sparse data how to deal with this? Smoothing.
- Zipf's Law observation about frequency of words (refer to slides)
- Pseudoscience on Indus Script many things satisfy Zipf's law, not just languages

- Smooth sparse data distribution by 'redistributing the wealth'
 - \circ Add α (Laplacian)
 - Assigns a non-zero prior to all words

■
$$p(w) = \frac{count(w) + \alpha}{\sum_{i}(count(w_i) + \alpha)}, p(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + p(w_i)}{\sum_{i}(count(w_{i-1}, w) + p(w_i))}$$

■ How to determine hyperparameter α ?

- o Linear Interpolation
 - Combines information from unigrams, bigrams, ..., and *N*-grams
 - $p(w_i|w_{i-2},w_{i-1}) = \lambda_1 p(w_i|w_{i-2},w_{i-1}) + \lambda_2 p(w_i|w_{i-1}) + \lambda_3 p(w_i)$