Universidade Federal de Juiz de Fora - UFJF

• Seja o problema: Encontrar $u(x, y, t) \in \Omega \times \Theta$ satisfazendo a seguinte equação:

$$\begin{cases} \frac{\partial u}{\partial t} - \varepsilon \Delta u + \mathbf{b} \cdot \nabla u = f(x, y, t) & \text{em} \quad \Omega \times \Theta \\ u(x, y, t) = \overline{u} & \text{sobre} \quad \partial \Omega \times \Theta \\ u(x, y, 0) = \varphi(x, y) & \text{em} \quad \Omega \end{cases}$$
(1)

- 1. Supondo $\mathbf{b} = \mathbf{0}$, discretize o problema (1) pelo método de direções alternadas (ADI) e implemente um código computacional para simular este problema.
 - a) Considerando o domínio espacial $\Omega = [0, 1] \times [0, 1]$ e temporal $\Theta = [0, 0.5]$ e adotando $\varepsilon = 1$, valide sua implementação utilizando a seguinte solução exata:

$$u(x, y, t) = e^{-2\pi^2 t} \sin(\pi x) \sin(\pi y)$$

Plote a solução aproximada para diferentes malhas e a solução exata para comparação.

- b) Determine a ordem de convergência do método ADI na norma do máximo utilizando as seguintes malhas $4 \times 4, 8 \times 8, 16 \times 16, 32 \times 32, 64 \times 64, \Delta t = h \text{ e } \Delta t = h^2$, calculada no tempo final T = 0.5.
- 2. Inclua no código do item anterior o termo convectivo, ou seja, suponha $\mathbf{b} \neq \mathbf{0}$ em (1). Discretize o termo convectivo utilizando um esquema upwind generalizado (que seja capaz de identificar o sinal de **b** e escolher corretamente a discretização) utilizando a metodologia ADI.
 - a) Valide seu código através da solução exata:

$$u(x, y, t) = \frac{2\gamma^2}{2\gamma^2 + 4\varepsilon t} \exp\left(-\frac{(\overline{x} - x_c)^2 + (\overline{y} - y_c)^2}{2\gamma^2 + 4\varepsilon t}\right)$$

- * $\overline{x} = x\cos(4t) + y\sin(4t)$ e $\overline{y} = -x\sin(4t) + y\cos(4t)$
- * $x_c = 0.2, y_c = 0, \gamma = 0.1 \text{ e } \varepsilon = 0.01$
- * $\mathbf{b} = (-4y, 4x) e f(x, y, t) = 0$
- * $\Omega = [0, 1] \times [0, 1] \in \Theta = [0, 3]$

Plote a solução aproximada para diferentes malhas e a solução exata para comparação.

b) Determine a ordem de convergência do método na norma do máximo utilizando as seguintes malhas $8 \times 8, 16 \times 16, 32 \times 32, 64 \times 64, 128 \times 128$ e $\Delta t = h$, calculada no tempo final T = 3.

Resolução:

Questão 1:

 $\mathbf{a})$

Comparação Aproximada e Exata

Figura 1: Comparação para 8,16,32,64 elementos

Comparação Aproximada e Exata

Figura 2: Comparação para 8,16,32,64 elementos

Taxa de Convergência para $\Delta t = h$

Figura 3: Taxa de Convergência para 8,16,32,64 elementos

Taxa de Convergência para $\Delta t = h^2$

Figura 4: Taxa de Convergência para 8,16,32,64 elementos

Questão 2:

a)

Comparação Aproximada e Exata

Figura 5: Comparação para 8,16,32,64 elementos

b)

Taxa de Convergência para $\Delta t = h$

Figura 6: Taxa de Convergência para 8,16,32,64,128 elementos