Механика 2021

Контрольная работа 1

Вариант 2.

1. Кабина лифта массы M может без трения двигаться в вертикальном направлении в лифтовой шахте. Кабина соединена с потолком шахты системой блоков (см. рис. 1). Груз m может свободно двигаться в вертикальном направлении. Все нити невесомы, нерастяжимы и всегда натянуты (не сминаются). Массой блоков и трением в осях можно пренебречь.

- а) При каких значениях масс m и M кабина лифта может находиться в состоянии покоя?
- б) Найдите величину силы реакции N, действующей на груз со стороны кабины лифта, при m=M.

Рисунок 1

2. Материальная точка движется вдоль прямой Ox в поле потенциальной силы, потенциальная энергия U(x) которой дается выражением:

$$U(x) = \begin{cases} e^{-x^2} - 1 & x \le 0\\ \frac{1}{3}x^2(x-3) & x > 0. \end{cases}$$

- а) Нарисуйте качественный фазовый портрет этой одномерной механической системы.
- б) Укажите число различных фазовых кривых, отвечающих значениям полной механической энергии $E=-1,\,E=1/2$ и E=0.
- **3.** Силовое поле \vec{F} задано в декартовых прямоугольных координатах (x,y,z) пространства \mathbb{R}^3 следующими выражениями своих компонент:

$$F_x = yz - y^2 + \alpha z$$
, $F_y = xz - 2\alpha xy$, $F_z = xy + \alpha x + z$,

где α — вещественный числовой параметр.

а) Найдите работу силы \vec{F} вдоль отрезка кривой, заданной уравнениями

$$x = y^2$$
, $z = y$

от начальной точки (0,0,0) до конечной точки (1,1,1).

- б) Определите значение параметра α , при котором сила \vec{F} потенциальна, и найдите выражение для соответствующей потенциальной энергии U(x,y,z).
- **4.** Компоненты силы \vec{F} заданы в полярных координатах (ρ,ϕ) пространства \mathbb{R}^2 следующими выражениями:

$$F_{\rho} = \rho(\rho + 1)f(\phi), \qquad F_{\phi} = g(\rho)\cos\phi\sin^3\phi,$$

где $f(\phi)$ и $g(\rho)$ некоторые дифференцируемые функции своих аргументов.

- а) Определите наиболее общий вид функций $f(\phi)$ и $g(\rho)$, при которых сила \vec{F} потенциальна и не имеет сингулярности в начале координат $\rho=0$.
- б) Найдите вид соответствующей потенциальной энергии $U(\rho,\phi).$