Piotr Chrząstowski-Wachtel Uniwersytet Warszawski

Al Chwarizmi i algorytmy Euklidesa

Algorytmika

- Najważniejsza część informatyki
- Opisuje jak rozwiązywać problemy algorytmiczne, jakie struktury danych dobierać, jak analizować zachowanie się programów.
- Pozwala na osiągnięcie znacznie bardziej spektakularnych wyników, niż samo przyspieszanie działania sprzętu

Skąd się wzięło słowo "algorytm"?

Musi to być stare słowo, bo w większości języków brzmi ono podobnie.

Al Chwarizmi

- Abu Ja'far Muhammad ibn Musa Al-Chuwarizmi (ok. 780 – ok. 850)
- Hisab al-jabr w'al-muqabala
- Opisał ciekawe algorytmy, między innymi rozwiązywania równań, w tym kwadratowych!

Przykład z Al Chwarizmiego

- Rozwiązujemy równanie kwadratowe x²+10x=39
- Co nam wolno?
 - używać tylko liczb dodatnich (długości odcinków)
 - □ dodawać i odejmować odcinki
 - mnożyć (tworzyć prostokąty)
 - pierwiastkować (wyznaczać bok kwadratu o zadanym polu)

Przykład z Euklidesa

- Chcemy wyznaczyć Największy Wspólny Dzielnik dwóch liczb naturalnych NWD(m,n)
- Co nam wolno? To samo co poprzednio, a w szczególności:
 - używać tylko liczb dodatnich (długości odcinków)
 - dodawać i odejmować odcinki

NWD(m,n)

- Okazuje się, że nie ma wzoru na NWD(m,n), który działałby dla każdych m i n.
- Euklides zauważył pewien (wcale nieoczywisty) fakt: Jeśli od większej liczby odejmiemy mniejszą, ich NWD się nie zmieni.

w

NWD(m,n) dla 0≤m≤n, n>0

Pierwszy pomysł:

Euklides 1

- Jeśli m=0 to NWD(m,n)=n
- Jeśli m>0 to NWD(m,n)=NWD(n m,m)
- Powyższy algorytm można zaprogramować za pomocą następującego kodu:

```
Wczytaj(m,n);
While m>0 do
begin
if m>n then Zamien(m,n);
n:=n-m
end;
Wypisz(n)
```

м

Czy widzimy problem?

- Wykonajmy krótkie szacowanie: ile zajęłoby komputerowi wykonanie tego algorytmu dla n=10³0, m=1 na najszybszych obecnie dostępnych komputerach świata (~1THz)?
 - □Komputer ten byłby ok. 400-krotnie szybszy od mojego laptopa, więc z 10° uporałby się w 1/40 s.
 - □ Ale 10²¹/40s = ponad 790 miliardów lat! To kilkadziesiąt razy więcej, niż trwa nasz Wszechświat!
 - □W szyfrowaniu RSA stosuje się liczby rzędu 10²⁰⁰

Czy pora się poddać?

- Przyjrzyjmy się nieco dokładniej, jak działa nasz algorytm.
 - Zauważmy, że wielokrotne odejmowanie mniejszej liczby od większej kończy się wtedy, gdy ta większa stopnieje poniżej tej odejmowanej.
 - To co zostaje z większej, to nic innego, niż reszta z dzielenia n przez m.
 - W tym momencie są one zamieniane i odejmowanie zaczynamy z nową, już mniejszą wartością, bo reszta jest zawsze ostro mniejsza od dzielnika.
 - Czyli całe odejmowanie jednej wartości ma na celu jedynie wyznaczenie reszty z dzielenia!

Czy nie ma lepszej metody obliczania reszty z dzielenia?

- Pamiętamy choćby z III klasy szkoły podstawowej dzielenie w słupkach, które dałoby się jakoś pewnie zaimplementować cyfra po cyfrze.
- Zatem możemy nasz algorytm zmodyfikować:

Euklides 2

- Jeśli m=0 to NWD(m,n)=n
- Jeśli m>0 to NWD(m,n)=NWD(n mod m, m),
 - •gdzie mod oznacza resztę z dzielenia

Kod algorytmu Euklides 2

Powyższy algorytm można zaprogramować za pomocą następującego kodu:

```
Wczytaj(m,n);
While m>0 do
begin
r:= n mod m;
n:= m;
m:= r
end;
Wypisz(n)
```


Czy cokolwiek zyskaliśmy?

- Tym razem na pewno złośliwymi danymi nie będą największa liczba z badanego zakresu oraz jedynka. Dla takich danych algorytm wykona jedno dzielenie i wyjdzie reszta zero, która zakończy całą zabawę.
- Żeby zorientować się, co nas może w najgorszym razie czekać, spróbujmy wygenerować dane, dla których algorytm *Euklides 2* będzie działać najdłużej
- Jakie zatem dane są najbardziej złośliwe dla liczbpowiedzmy – 30-cyfrowych?

Złożoność pesymistyczna

- ... to liczba operacji, które algorytm wykona dla najbardziej złośliwych danych, czyli takich, które będą powodem możliwie długiej pracy algorytmu.
- Oczywiście musimy określić zakres, w jakim szukamy takich danych.
- Może spuśćmy nieco z tonu. Postarajmy się wygenerować najgorsze dane w zakresie 1..99. Dla jakiej pary liczb nasza pętla wykona się najwięcej razy?

Złożoność algorytmu Euklides 2

- Odwróćmy kota ogonem. Zamiast pytać się, dla jakich danych w określonym zakresie program będzie działał najdłużej, zadajmy pytanie, jaki musi być co najmniej zakres, żeby wymusić konkretną liczbę obrotów pętli.
- Zacznijmy od małych wartości. Jakie najmniejsze dane spowodują 1 obrót pętli? Oczywiście (1,1).
- Dla dwóch obrotów pętli potrzebujemy co najmniej liczb (2,3), bo dzielnik musi być większy od 1, a dzielna od dzielnika.

M

..Złożoność algorytmu Euklides 2

- Kolejne wartości:
 - □3 obroty pętli: (3,5), bo żeby dostać "najtańsze" 2 obroty, czyli parę (2,3), dzielnikiem musi być 3, a możliwie mała dzielna dająca przy tym dzielniku resztę 2 i od niego większa, to 5.
 - □4 obroty pętli: (5,8); dzielnik 5 i dzielna 5+3=8
 - □5 obrotów pętli: (8,13); bo 13=8+5
 - □...itd
- Zawsze chodzi o to, żeby wynik dzielenia był równy 1

w

..Złożoność algorytmu Euklides 2

Podsumujmy rekordową parę (55,89) – 9 obrotów:

- \Box (55,89)
- \Box (34,55)
- \Box (21,34)
- \Box (13,21)
- □ (8,13)
- \Box (5, 8)
- \Box (3, 5)
- \Box (2, 3)
- □ (1, 2)
- \Box (0, 1)

Przyglądając sie drugiej kolumnie widzimy, że:

- nie da się 2 obrotów wykonać za pomocą liczb mniejszych od 3,
- •nie da się 3 obrotów wykonać za pomocą liczb mniejszych od 5

. . .

 nie da się 9 obrotów wykonać za pomocą liczb mniejszych od 89

itd...

Widzimy więc, że najzłośliwsze pary, to takie liczby (licząc od dołu), że mniejsza z nich jest większą z liczb poprzedniej pary, a większa jest ich sumą.

 \Box (34,55)

□ (21,34)

□ (13,21)

 \Box (5, 8)

□ (3, 5)

□ (2, 3)

□ (1, 2)

 \Box (0, 1)

Liczby w jednej kolumnie tworzą ciag Fibonacciego

$$F_0 = 0$$
, $F_1 = 1$,
 $F_n = F_{n-1} + F_{n-2}$ dla n>1

Leonardo Fibonacci

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 ...

Oto liczby obrotów pętli uzyskane dla możliwie złośliwych argumentów:

- \Box (F₁₀,F₁₁) 9 obrotów
- \Box (F₉,F₁₀) 8 obrotów
- \Box (F₈,F₉) 7 obrotów
- \Box (F₇,F₈) 6 obrotów
- \Box (F₆,F₇) 5 obrotów
- \Box (F₅,F₆) 4 obroty
- \Box (F₄,F₅) 3 obroty
- \Box (F₃,F₄) 2 obroty
- \Box (F₂,F₃) 1 obrót
- \Box (F₀,F₁) 0 obrotów

Z pary (F_{n-1},F_n) dla n>2 uzyskujemy n-2 obroty pętli.

- Wśród liczb 30-cyfrowych zatem najgorsze będą te, które są możliwie dużymi liczbami Fibonacciego mieszczącymi się w tym zakresie.
- Numer większej z nich pomniejszony o 2 będzie szukaną liczbą obrotów pętli
- Kluczowe jest zatem pytanie, jak szybko rosną liczby Fibonacciego?
- Jeśli szybko, to dobrze! Bo numer liczby będzie nieduży.

- Sam Fibonacci nie umiał wyznaczyć wzoru na "swoją" n-tą liczbę.
- Dokonał tego w XVIII wieku wielki Leonard Euler, a ponownie odkrył ten wzór Jacques Binet w XIX w.

Wzór Eulera-Bineta

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Leonard Euler

v

Wnioski ze wzoru Eulera-Bineta

Wprowadźmy oznaczenia

$$\varphi = \frac{1+\sqrt{5}}{2}, \hat{\varphi} = \frac{1-\sqrt{5}}{2}$$

 Zatem liczby te są równe odpowiednio ok. 1.618... oraz -0.618..., a wzór Eulera-Bineta przyjmuje postać

$$F_n = \frac{1}{\sqrt{5}} (\varphi^n - \hat{\varphi}^n)$$

Teraz pomíjając drugi składnik różnicy, dążący szybko do zera otrzymujemy prostszy wzór określający liczby Fibonacciego:

$$F_n = \left[\frac{1}{\sqrt{5}}\varphi^n\right]$$

v

Liczby Fibonacciego rosną wykładniczo szybko!

- Zatem od pewnego momentu każda kolejna liczba Fibonacciego jest od poprzedniej większa o ponad 60%
- Ponieważ chcemy znaleźć największą liczbę Fibonacciego nieprzekraczającą 10³⁰, więc chcemy rozwiązać nierówność
- $\phi^{n}/\sqrt{5}$ < 10³⁰, co po zlogarytmowaniu przy podstawie φ daje n-2 < 30log_ω10 = 148,33...
- Ostatecznie n≤150.

Wygraliśmy!

- Okazuje się, że nawet dla tak ogromnych danych, jak liczby 30-cyfrowe, liczba obrotów pętli nie przekroczy 150 (a nawet 148).
- Jest jednak łyżka dziegciu: operację mod się trudniej programuje, niż odejmowanie (i nieco dłużej wykonuje), tym niemniej naprawdę warto!

Czy nie ma zatem metody szybkiej, ale też łatwwej do zaprogramowania?

Spróbujmy zastanowić się, jak na NWD wpływa parzystość argumentów Dla m≤n NWD(m,n) wynosi

Euklides 3: NWD(m,n)=

n Jeśli m=0

2*NWD(m/2,n/2) jeśli $m,n \in P$

NWD(m,n/2) jeśli m∉P n∈P

NWD(m/2,n) jeśli $m \in P$ $n \notin P$

NWD(n-m,m), jeśli m,n∉P

Analiza złożoności algorytmu Euklides 3

- W każdym obrocie pętli wykonujemy dzielenie parzystych argumentów przez 2 lub odejmowanie nieparzystych
- Odjęcie jednej liczby nieparzystej od drugiej daje wynik parzysty.
- Zatem przynajmniej raz na dwa kroki przynajmniej jeden z argumentów podzielimy przez 2.

Analiza złożoności algorytmu Euklides 3 -cd.

- Zatem co najmniej raz na dwa obroty pętli wykonamy dzielenie przynajmniej jednego z argumentów przez 2.
- Zatem łączna liczba kroków algorytmu nie przekroczy 2(log m + log n).

Implementacja Euklides 3

Algorytm ten wykorzystuje łatwe do zaimplementowania operacje porównania liczb, odejmowania oraz dzielenia przez 2 i mnożenia przez 2. Każda z nich ma złożonośc liniową ze względu na długość zapisu pozycyjnego liczby, więc łączna złożoność jest rzędu (logn)²; mamy bowiem logarytmicznie dużo obrotów pętli, każda z nich wykonuje logarytmicznie dużo działań na cyfrach.