Subject Code: 17MCA4C24

JAMAL MOHAMED COLLEGE (Autonomous) TIRUCHIRAPPALLI – 620 020

Objective Type Questions

Department of Computer Science

c. Depth-first

Se	mester: IV PG: MCA				
Ti	tle of the Paper: Core XXIV : Art	ificial Intelligence and Exp	ert systems		
1.	Intelligence requires	·			
	a. Knowledge	b. Data			
	c. Information	d. Skills			
2.	The problem of understanding spol	problem.			
	a. Ignorable	b. Perceptual	_		
	c. Recoverable	d. Irrecoverable			
3.	Which of the following problem is	solved by expert task?			
	a Robot control	b. Integral calculus	S		
	c. Geometry	d. Medical diagnos	sis		
4.	provides a way of solving problem by exploiting the structure of the object				
	that are involved.				
	a. Use of knowledge	b. Search			
	c. Abstraction	d. Information			
5.	is a program that analyses organic compounds to determine their structure.				
	a. Mycin	b. Dendral			
	c. Prospector	d. Design Advisor			
6.	Who proposed a method for determining whether a machine can think?				
	a. Alan Turing	b. John McCarthy			
	c. Elaine Rich	d. Kevin Knight			
7.	A method for determining whether a machine can think is known as				
	a. System test	b. Machine test			
	c. Turing test	d. Code test			
8.	A program that can themselves produce formal description from informal ones,				
	this process is called	·			
	a. Operationlization	b. Conceptualization	on		
	c. Systematization	d. Formalization			
9.	search requires less	memory.			
	a. Breath-first	b. Linear			

d. Best-first

10.	is a technique that improves the efficiency of search process possibly sacrificing			
	claims of completeness.			
	a. Heuristic	b. Abstraction		
	c. Depth-first search	d. Breath-first search		
11.	A general purpose heuristic is useful for a variety of combinatorial problem is			
	a. Breath-first search	b. Depth-first search		
	c. Nearest neighbor heuristic	d. Bets-first search		
12.	Which of the following is a non-decom	nposable problem?		
	a. Symbolic integration	b. Blocks world		
	c. Theorem proving	d. Chess		
13.	Which of the following is a ignorable	problem?		
	a. Theorem proving	b. 8-Puzzle		
	c. Chess	d. Blocks world		
14.	is an example of uncertain-	outcome problem.		
	a. Symbolic integration	b. Blocks world		
	c. 8-Puzzle	d. Bridge		
15.	The best-path problems in general con	nputationally than any-path problems.		
	a. Harder	b. Easier		
	c. Simpler	d. Not difficult		
16.	Many design and planning problems can be attacked with strategy			
	a. Designing	b. Planning		
	c. Propose and refine	d. Wait and see		
17.	A production system is a system that both monotonic and partially commutative.			
	a. Monotonic	b. Non-monotonic		
	c. Commutative	d. Not Partially commutative		
18.	is also known as British Museum algorithm			
	a. Generate –and-test	b. Breath-first search		
	c. Best-first search	d. Hill climbing		
19.	A is a state that is better than al	l its neighbors but it is not better than some other		
	states further away.			
	a. Local maximum	b. Local minimum		
	c. Global maximum	d. Global minimum		
20.	Aalgorithm is usef	ul for searching AND-OR graphs.		
	a. A*	b. AO^*		
	c. Breath-first search	d. Depth-first search		
21.	Mini-max is a depth -l	imited search procedure.		
	a. Depth-first	b. Breath-first		
	c. Depth-last	d. Best-first		
22.	Terminating the exploration of sub-tre	e that offers little possibility for improvement over		
	other known paths is called a	.		
	a. Alpha cutoff	b. Beta cutoff		
	c. Alpha and beta cutoffs	d. Futility cutoff		

23.	An algorithm called depth-first iterative deepening combines the best aspects of depth-first and search.				
	a. Best-first	b. Breath-first			
	c. Depth-limited	d. Depth-last			
	c. Depin-minted	u. Depui-iast			
24.	DFID is the acronym of				
	a. Depth-First Iterative Deepening	b. Depth-Final Iterative Deepening			
	c. Depth-Force Iterative Deepening	d. Depth-Form Iterative Deepening			
25.	was the first heuristic search algorithm to find optimal solution paths for 15-Puzzle.				
	a. A*	b. AO^*			
	c. Depth-First Iterative Deepening				
26.	The logic symbol V is used for				
	a. And	b. Or			
	c. Not	d. Material implication			
27.	The logic symbol → is used for	1			
	a. And	b. Or			
	c. Not	d. Material implication			
28.	The logic symbol ∧ is used for				
	a. And	b. Or			
	c. Not	d. Material implication			
29.	Resolution produces proofs by				
	a. Refutation	b. Induction			
	c. Reduction	d. Analogy			
30.	Which of the following technique could be	be applied to the problem of answering questions?			
	a. Breath-first search	b. Theorem proving			
	c. Problem reduction	d. Depth-first search			
31.	logic is easy to determine tha	t two literals cannot be true at the same time.			
	a. Predicate	b. Propositional			
	c. Non-monotonic reasoning	d. Fuzzy			
32.	The object of the procedure	is to discover at one substitution that causes			
	two literals to match.				
	a. Merging	b. Unification			
	c. Matching	d. Association			
33.	has deep mathematical ro	oots and is useful in many AI programs.			
	a. Unification	b. Association			
	c. Merging	d. Matching			
34.	$a \rightarrow b$ is equivalent to				
	a. $\neg a V \neg b$	b. ¬ a V b			
	c. a $V \neg b$	d. ¬ (a V b)			
35.	\neg (a \land b) is equivalent to				
	a. $\neg a V \neg b$	b. ¬ a V b			
	c. a V ¬ b	d. $\neg a \land \neg b$			
36.	\neg (a V b) is equivalent to				
	a. ¬a V ¬ b	b. ¬ a V b			
	$a \cdot a \cdot V - b$	$\mathbf{d} = \mathbf{o} \wedge \mathbf{b}$			

31.	procedure compares two liter	ais a	ind discovers a sets of substitutions that	
	makes them identical			
	a. Resolution	b.	Refutation	
	c. Merging	d.	Matching	
38.	$\neg \exists x : P(x)$ is equivalent to		G	
	a. $\neg V x : P(x)$	b.	$\exists x: \neg P(x)$	
	c. $\neg \exists x: \neg P(x)$		$V x : \neg P(x)$	
			,	
39.	To prove a statement attempts to show that the negation of the statements to			
	produce a contradiction with the known sta	atem	ents.	
	a. Unification	b.	Natural deduction	
	c. Resolution	d.	Matching procedure	
40.	Theoretical basis of the resolution procedu		<u> </u>	
	a. Propositional		Predicate	
	c. Programming	d.	Default	
41.	A is one in which knowledge is s	peci	fied but the use to which that knowledge	
	is to be put is not given.	•	Ç	
	a. Declarative representation	b.	Procedural representation	
			Knowledge representation	
42.	A is one in which the control information that is necessary to use the knowledge			
	is considered to be embedded in the knowl		·	
		_	Procedural representation	
	c. Knowledge representation		-	
43.	programming is a programming language in which logical assertions are viewed			
	as programs.			
	a. Computer	b.	System	
	c. Application	d.	Logic	
44.	A Prolog program is described as series of logical assertions, each of which is a			
	clause.			
	a. Horn	b.	Empty	
	c. Resulting		Simple	
45.	A Horn clause is a clause that has at most		-	
	a. One positive		One negative	
	c. Two positive	d.	Two negative	
46.	There are several logic programming syste	em is	s use today, the most popular	
	of which is			
	a. Lisp	b.	Prolog	
	c. Java		C++	
47.	Which of following is a Horn clause?			
	a. p	b.	$\neg p \land \neg q$	
	c. ¬ p		$\neg q$	
48.	The object of search procedure is to discov		-	
	configuration to goal state.			
	a. Solution space	b.	State space	
	c. Problem space		Search space	

49.	A method of reasoning backward from	the final state is called		
	a. Goal-directed reasoning			
	c. Forward reasoning			
50.	rules which encode knowledge about how to respond to certain input			
	configurations			
	a. Backward	b. Forward		
	c. Encoded	d. Decoded		
51.	rules which encode knowl	edge about how to achieve particular goals.		
	a. Forward	b. Backward		
	c. Encoded	d. Decoded		
52.	is an example of backward	d-chaining system.		
	a. Java	b. C++		
	c. Ops5	d. Prolog		
53.	is the AI program that simu	lated the behavior of Rogerian therapist.		
	a. RETE	b. ELIZA		
	c. EPAM	d. SOAR		
54.	Knowledge about which paths are most	t likely to lead quickly to a goal state is often		
	called			
	a. Search control knowledge	b. Search declarative knowledge		
	c. Search procedural knowledge			
55.	Which of the following AI system repre	esents that control knowledge with rules?		
	a. SOAR	b. ELIZA		
	c. EPAM	d. STM		
56.	Search control knowledge is also called	l		
	a. Meta -knowledge	b. Explicit knowledge		
	c. Procedural knowledge	d. Tacit knowledge		
57.	is a general purpos	se problem-solving system that incorporates several		
	different learning matching.			
	a. SOAR	b. PRODIGY		
	c. EPAM	d. ELIZA		
58.	The ATMS is an alternative way of imp	plementing reasoning.		
	a. Monotonic	b. Non-monotonic		
	c. Statistical	d. Commonsense		
59.	reasoning in whi	ch the rules of inference are extended to make it		
	possible with incomplete information.			
	a. Non-monotonic	b. Statistical		
	c. Commonsense	d. Monotonic		
60.	CH(h, e) =			
	a. MB [h, e] – MD [h, e]	b. MB [e, h] – MD [e, h]		
	c. MD [h, e] – MB [h, e]	d. $MD[e, h] - MB[e, h]$		
61.	is computer application that solves complicated problem otherwise requires			
	extensive human expertise.			
	a. Open system	b. Expert system		
	c. Conceptual system	d. Closed system		
62.	system is used to pe	erform complex mathematical analysis.		
	a. DENTRAL	b. MACSYMA		
	c. HEARSAY	d. PROSPECTOR		

63.	system is used f	or diagnosis of blood diseases.	
	a. MYCIN	b. PROSPECTOR	
	c. R1	d. DENTRAL	
64.	system is	s used to configuring DEC computers.	
	a. MYCIN	b. R1	
	c. MACSYMA	d. HEARSAY	
65.	is a computer-based	consultation program for mineral exploration.	
	a. HEARSAY	b. MACSYMA	
	c. MYCIN	d. PROSPECTOR	
66.	The presence of kn	owledge is fundamental to the design of expert system.	
	a. New	b. Existing	
	c. Domain-specific	d. Search control	
67.	system is used to perfor	m natural language interpretation for subset language.	
	a. DENTRAL	b. MACSYMA	
	c. HEARSAY	d. MYCIN	
68.	is the person who acq	uires the knowledge from the domain expert and stores i	
	in the knowledge base.		
	a. Computer engineer	b. Domain engineer	
	c. Knowledge engineer	d. Expert engineer	
69.	The presence of contrib	utes greatly to the power and flexibility of expert system.	
	a. Facts	b. Procedural rules	
	c. Heuristics	d. Knowledge	
70.	is the user who provides	s additional knowledge to system or modifies knowledge	
	already present in the system.		
	a. Customer	b. Tester	
	c. Tutor	d. Pupil	
71.	is the user who ma	ay apply system's expertise to a specific knowledge.	
	a. Tester	b. Pupil	
	c. Tutor	d. Customer	
72.	is the user who at	tempts to verify the system's behavior.	
	a. Tester	b. Pupil	
	c. Tutor	d. Customer	
73.	is the user who n	nay develop personal expertise relative to the subject	
	domain by extracting knowledge from the system.		
	a. Tester	b. Pupil	
	c. Tutor	d. Customer	
4.	is the store house of	the knowledge primitives.	
	a. Knowledge base	b. Data base	
	c. Information base	d. Data Warehouse	
75.	is the software system that locates knowledge and infers new knowledge from		
	knowledge base.		
	a. Inference engine	b. Search technique	
	c. Heuristic	d. Explanation	
76.	is the process of acquir	ring domain specific knowledge and building it into the	
	knowledge base.		
	a. Computer engineering	b. Software engineering	
	c. Knowledge engineering	d. Domain engineering	

77.	The	facility in an expert system	m the system's reasoning to the user.	
	a. User interface	b	Inference	
	c. Search	d	Explanation	
78.	is a hypothetical expert system that diagnoses problems in automotive systems.			
	a. FIXIT	b	PRESS	
	c. CLEAR	d	XPLAIN	
79.	is an ex	ample of system that was sp	ecifically designed to support rationalization	
	of the system's rea	soning process.		
	a. FIXIT	b	PRESS	
	c. CLEAR	d	XPLAIN	
80.	is an ex	epert system that resolves so	ftware problems that occur in GCOS, an	
	operating system f	for mainframe computer.		
	a. CLEAR	b	FIXIT	
	c. PRESS	d	XPLAIN	
81.	Expert system imp	lementation is a	development process.	
	a. User	b	Software	
	c. Customer	d.	System	
82.	planning	g activity focuses on definin	g the elements required to verify the validity	
	of the system after	the system is developed.		
	a. Test	_	Product	
	c. Support	d	Implementation	
83.			necessary to produce a final product from the	
	initial implementa		, 1	
	a. Test	b	Product	
	c. Support	d	Implementation	
84.	•			
	a. Vertices		Edges	
	c. Links	d	Lines	
85.	A link in semantic	networks is re	lation.	
	a. Binary		Instance	
	c. Isa		Partof	
86.			edge with an emphasis on default knowledge.	
	a. Frame		Script	
	c. Semantic net		Window	
87.			ble of a class is an instance of that class.	
0,.	a. Link		Node	
	c. Frame		Script	
88.			re prototypes of expected sequence of events.	
00.	a. Frame		Script	
	c. Semantic net		Slot	
89.			after the events in the scripts have occurred.	
0).	a. Props		Roles	
	c. Scenes		Script results	
90.			nce of events that make up the script.	
<i>7</i> 0.	a. Scenes		Roles	
	c. Props		Script results	
	c. 110ps	a.	script results	

91.	refer to objects th	at are involved in the script		
, 1.	a. Props	b. Roles		
	c. Script results	d. Scenes		
92.	refer to agents that perform actions in the script.			
	a. Props	b. Roles		
	c. Script results	d. Scenes		
93.	•	for knowledge representation.		
	a. Data	b. Facts		
	c. Information	d. Rules		
94.	The memory	area used to track the current systems state which consists of		
	a series of individual memory el			
	a. Local	b. Global		
	c. Main	d. Random		
95.	The action a	dds a new element to global memory.		
	a. Read	b. Call		
	c. Modify	d. Make		
96.	Which action is used to delete an element form global memory?			
	a. Drop	b. Cut		
	c. Remove	d. Delete		
97.	action is used to execute a specific user-defined procedure.			
	a. Call	b. Request		
	c. Run	d. Execute		
98.	resolution is	the process of dominant instantiation.		
	a. Negative	b. Disagreement		
	c. Conflict	d. Dispute		
99.	is an example of expert system shell.			
	a. EMYCIN	b. MYCIN		
	c. PROPECTOR	d. HEARSAY		
100.	KAS is the knowledge system of	f		
	a. HEARSAY	b. MYCIN		
	c. CASNET	d. PROSPECTOR		

Core XXIV : Artificial Intelligence and Expert systems 17MCA4C24

Answer with Expansion

- 1. a. Knowledge
- 2. b. Perceptual
- 3. d. Medical diagnosis
- 4. a. Use of knowledge
- 5. b. Dendral
- 6. a. Alan Turing
- 7. c. Turing test

- 8. a. Operationlization
- 9. c. Depth-first
- 10. a. Heuristic
- 11. c. Nearest neighbor heuristic
- 12. b. Blocks world
- 13. a. Theorem proving
- 14. d. Bridge
- 15. a. Harder
- 16. c. Propose and refine
- 17. c. Commutative
- 18. a. Generate -and-test
- 19. a. Local maximum
- 20. b. AO*
- 21. a. Depth-first
- 22. d. Futility cutoff
- 23. b. Breath-first
- 24. a. Depth-First Iterative Deepening
- 25. d. Iterative Deepening-A*
- 26. b. Or
- 27. d. Material implication
- 28. a. And
- 29. a. Refutation
- 30. b. Theorem proving
- 31. b. Propositional
- 32. b. Unification
- 33. a. Unification
- 34. b. ¬ a V b
- 35. a. $\neg a \lor \neg b$
- 36. d. $\neg a \land \neg b$
- 37. d. Matching
- 38. d. $V x : \neg P(x)$
- 39. c. Resolution
- 40. b. Predicate
- 41. a. Declarative representation
- 42. b. Procedural representation
- 43. d. Logic
- 44. a. Horn
- 45. a. One positive
- 46. b. Prolog
- 47. a. p
- 48. c. Problem space
- 49. a. Goal-directed reasoning
- 50. b. Forward
- 51. b. Backward
- 52. d. Prolog
- 53. b. ELIZA
- 54. a. Search control knowledge

- 55. a. SOAR
- 56. a. Meta-knowledge
- 57. b. PRODIGY
- 58. b. Non-monotonic
- 59. a. Non-monotonic
- 60. a. MB [h, e] MD [h, e]
- 61. b. Expert system
- 62. b. MACSYMA
- 63. a. MYCIN
- 64. b. R1
- 65. d. PROSPECTOR
- 66. c. Domain-specific
- 67. c. HEARSAY
- 68. c. Knowledge engineer
- 69. c. Heuristics
- 70. c. Tutor
- 71. d. Customer
- 72. a. Tester
- 73. b. Pupil
- 74. a. Knowledge base
- 75. a. Inference engine
- 76. c. Knowledge engineering
- 77. d. Explanation
- 78. a. FIXIT
- 79. d. XPLAIN
- 80. c. PRESS
- 81. b. Software
- 82. a. Test
- 83. b. Product
- 84. c. Links
- 85. a. Binary
- 86. a. Frame
- 87. b. Node
- 88. b. Script
- 89. d. Script results
- 90. a. Scenes
- 91. a. Props
- 92. b. Roles
- 93. d. Rules
- 94. b. Global
- 95. d. Make
- 96. c. Remove
- 97. a. Call
- 98. c. Conflict
- 99. a. EMYCIN
- 100. d. ROSPECTOR

•