§1. Понятие функции, непрерывной в точке. Односторонняя непрерывность. Непрерывность функции на промежутке

С понятием предела функции в точке тесно связано другое важнейшее понятие математического анализа — непрерывность функции, которое отражает свойство непрерывности многих процессов и явлений, происходящих в природе и обществе. Непрерывные функции обладают многими важными свойствами, чем и объясняется большое значение этих функций в математике и её приложениях.

Определение 1.1. Функция f(x) называется непрерывной в точке x_0 , если выполнены следующие три условия:

- 1) она определена на $U(x_0)$ некоторой окрестности точки x_0 ;
- 2) существует $\lim_{x\to x_0} f(x)$;
- 3) $\lim_{x \to x_0} f(x) = f(x_0);$

Так, функция f(x)=|x-1| непрерывна в точке $x_0=1$, ибо она определена на любой U(1) и $\lim_{x\to 1}|x-1|=f(1)=0$ (пример 1.4 главы 3).

Замечание 1.1. Поскольку $\lim_{x \to x_0} x = x_0$, то равенство из третьего условия в определении 1.1 можно переписать в виде: $\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0} x)$. Таким образом, для непрерывной функции знак функциональной зависимости f и знак предельного перехода можно переставлять местами.

Определение 1.2. Функция f(x) называется непрерывной в точке x_0 справа (слева), если она определена на некотором промежутке $[x_0, x_0 + \delta)$ $((x_0 - \delta, x_0])$, где δ – некоторое положительное число, и $f(x_0 + 0) = f(x_0)$ $(f(x_0 - 0) = f(x_0))$.

Например, функция $f(x) = \begin{cases} 0, & \text{при } x < 1, \\ 2 - x, & \text{при } x \ge 1, \end{cases}$ непрерывна в точке x = 1 справа, так как f(1+0) = f(1) = 1 (пример 1.5 главы 3).

Определение 1.3. Функция f(x) называется непрерывной на отрезке [a, b], если она непрерывна в любой точке $x_0 \in (a, b)$. а также непрерывна в точке a справа и в точке b слева.

Замечание 1.2. Из теоремы 1.2 главы 3 следует, что необходимым и достаточным условием непрерывности функции f(x) в данной точке является её непрерывность в этой точке, как справа, так и слева.

Определение 1.4. Пусть дана функция y = f(x) и два значения аргумента: $x, x_0 \in D(f)$. Разность $x - x_0$ называется приращением аргумента x в точке x_0 и обозначается Δx . Разность значений функции $f(x) - f(x_0)$

называется приращением функции в точке x_0 , соответствующим данному приращению аргумента, и обозначается $\Delta f(x_0)$, Δy .

Итак, по определению, $\Delta x = x - x_0$, $\Delta f(x_0) = f(x) - f(x_0)$. Из первого равенства выразим x и подставим во второе, получим: $x = x_0 + \Delta x$, $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$ или $\Delta y = f(x_0 + \Delta x) - f(x_0)$.

Пример 1.1. Найти $\Delta f(1)$, если $f(x) = x^3 - x$.

►
$$\Delta f(1) = f(1 + \Delta x) - f(1) = (1 + \Delta x)^3 - (1 + \Delta x) - 0 = 1 + 3\Delta x + 3(\Delta x)^2 + (\Delta x)^3 - 1 - \Delta x = 2\Delta x + 3(\Delta x)^2 + (\Delta x)^3$$
.

Теорема 1.1. Пусть функция y = f(x) определена на окрестности $U(x_0)$ точки x_0 . Для того чтобы эта функция была непрерывной в точке x_0 , необходимо и достаточно, чтобы бесконечно малому приращению аргумента соответствовало бы бесконечно малое приращение функции (т.е. было бы справедливо утверждение: $\Delta x \to 0 \Rightarrow \Delta y \to 0$).

▶Пусть функция y = f(x) непрерывна в точке x_0 и, таким образом, существует $\lim_{x \to x_0} f(x) = f(x_0)$. Имеем $\lim_{\Delta x \to 0} \Delta y = \lim_{x \to x_0} (f(x) - f(x_0)) = 0$, что означает справедливость утверждения: $\Delta x \to 0 \Rightarrow \Delta y \to 0$.

Обратно, предположим, что верно утверждение $\Delta x \to 0 \Rightarrow \Delta y \to 0$. Так как $\Delta y = f(x) - f(x_0)$, а из $\Delta x \to 0$ следует $x \to x_0$, то заключаем, что $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$ и поэтому существует $\lim_{x \to x_0} f(x) = f(x_0)$. В силу определения 1.1 приходим к выводу, что функция y = f(x) непрерывна в точке x_0 .

Пример 1.2. Показать, что функция $f(x) = x^3 - x$ непрерывна в точке x=1.

- ▶ $\Delta f(1) = 2\Delta x + 3(\Delta x)^2 + (\Delta x)^3$ (пример 1.1). Поскольку $\Delta f(1) \to 0$ при $\Delta x \to 0$, то данная функция непрерывна в точке x=1 в силу теоремы 1.1. **Пример 1.3.** Показать, что функция $y = \sin x$ непрерывна на R.
- ▶ Возьмём $\forall x_0 \in \mathbf{R}$ и рассмотрим $\Delta y = \sin(x_0 + \Delta x) \sin x_0$. По формуле разности синусов двух углов имеем: $\Delta y = 2\sin(\Delta x/2)\cos(x_0 + \Delta x/2)$ или $\Delta y = \frac{\sin(\Delta x/2)}{\Delta x/2} \cdot \Delta x \cdot \cos(x_0 + \Delta x/2)$. Так как $\lim_{\Delta x \to 0} \frac{\sin(\Delta x/2)}{\Delta x/2} = 1$ (первый замечательный предел (§3 главы 3), $\Delta x \to 0$, а $|\cos(x_0 + \Delta x/2)| \le 1$ для $\forall x_0, \Delta x \in \mathbf{R}$, то Δy бесконечно малая при $\Delta x \to 0$ как произведение бесконечно малой функции на ограниченную. В силу теоремы 1.1, заключаем, что функция $y = \sin x$ непрерывна в любой точке $x = x_0 \in \mathbf{R}$ и поэтому непрерывна на \mathbf{R} . \blacktriangleleft