

CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

Expectation Maximization

1

2025 Spring

Intuition of EM

- Let's say I have 3 coins in my pocket,
 - Coin 0 has probability λ of heads
 - Coin 1 has probability p_1 of heads
 - Coin 2 has probability p_2 of heads

• For each trial:

- First, I toss Coin 0
- If coin 0 turns up **heads**, I toss coin 1 three times
- If coin 0 turns up tails, I toss coin 2 three/times
- I don't tell you the results of the coin 0 toss, or whether coin 1 or coin 2 was tossed, but I tell you how many heads/tails are seen after each trial
- You see the following sequence:

 $\langle H, H, H \rangle$, $\langle T, T, T \rangle$, $\langle H, H, H \rangle$, $\langle T, T, T \rangle$, $\langle H, H, H \rangle$

Quiz: Guess what are the estimated values of λ , p_1 , p_2 ?

MAXIMAL LIKELIHOOD ESTIMATE

- Data points $x_1, x_2, ..., x_n$ from (finite or countable) set \mathcal{X} (x_i is a triplet of three tosses)
- \circ Parameter vector θ
- \circ Parameter space Ω
- We have a distribution $P(x \mid \theta)$ for any $\theta \in \Omega$, such that

$$\sum_{x \in \mathcal{X}} P(x \mid \theta) = 1$$

$$P(x \mid \theta) \ge 0, \forall x$$

• Assume data points are drawn independently and identically distributed from a distribution $P(x \mid \theta^*)$ for some $\theta^* \in \Omega$

Log Likelihood

- Probability distribution $P(x | \theta)$ for any $\theta \in \Omega$
- Likelihood of θ :

$$Likelihood(\theta) = P(x_1, x_2, ..., x_n \mid \theta) = \prod_{i=1}^{n} P(x_i \mid \theta)$$

• Log likelihood of θ :

$$L(\theta) = \sum_{i=1}^{n} \log P(x_i | \theta)$$

EXAMPLE 1: COIN TOSSING

o $\mathcal{X} = \{H, T\}$. Our data set $x_1, x_2, ..., x_n$ is a sequence of heads and tails, e.g.,

HTHTHHHHTTT

- Parameter vector θ is a single parameter, i.e. probability of coin showing heads
- Parameter space $\Omega = [0, 1]$
- Distribution $P(x | \theta) = \begin{cases} \theta & \text{if } x = H \\ 1 \theta & \text{if } x = T \end{cases}$

EXAMPLE 2: MARKOV CHAINS

- \mathcal{X} is the set of all possible state (or tag) sequences generated by an underlying generative process. Our sample is n sequences $X_1, X_2, ..., X_n$, where $X_i \in \mathcal{X}$.
- θ_T is the vector of all transition $(s_i \to s_j)$ parameters. W.L.O.G., we assume there is a dummy start state ϕ and initial transition $\phi \to s_1$
- Let $T(\alpha) \subset T$ be all transition of the form $\alpha \to \beta$
- o Ω is the set of $\theta \in [0,1]^{|S+1||S|}$ where S is the set of all states (tags), such that:

$$\forall \alpha \in S, \sum_{t \in T(\alpha)} \theta_t = 1$$

EXAMPLE 2: MARKOV CHAINS

- Since θ_T is the vector of all transtion parameters
- We have:

$$P(X | \theta_T) = \prod_{t \in T} \theta_t^{Count(X,t)}$$

where Count(X, t) is the number of times transition t occurs in sequence X.

• This gives:

$$\log(P(X|\theta_T)) = \sum_{t \in T} Count(X, t) \log \theta_t$$

$$L(\theta_T) = \sum_{i} \log P(X_i|\theta_T) = \sum_{i} \sum_{t \in T} Count(X, t) \log \theta_t$$

MLE FOR MARKOV CHAINS

- We use θ for θ_T for simplicity
- To solve for $\theta_{MLE} = \arg \max_{\theta \in \Omega} L(\theta)$
- We solve θ in

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

with appropritate probability constraints

• Therefore:

$$\theta_{t} = \frac{\sum_{i} Count(X_{i}, t)}{\sum_{i} \sum_{t' \in T(\alpha)} Count(X_{i}, t')}$$

where t is a transition of the form $\alpha \to \beta$ for some β , $T(\alpha)$ is all the transitions originating from α .

Models with Hidden Variables

- Suppose we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(x,y \mid \theta)$
- If we have **fully-observable data**, (x_i, y_i) pairs, then

$$L(\theta) = \sum_{i} \log P(x_i, y_i \mid \theta)$$

• If we have **partially-observable data**, x_i examples only, then

$$L(\theta) = \sum_{i} \log P(x_i \mid \theta)$$
$$= \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

- This is unsupervised learning, very similar to clustering.
- We will use an interative algorithm to infer θ like k-means

EXPECTATION-MAXIMILATION

• If we have **partially-observable data**, x_i examples only, then

$$L(\theta) = \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

• The EM (Expectation Maximization) algorithm is a method for finding

$$\theta_{MLE} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

- In the three-coin example:
 - $\mathcal{Y} = \{H, T\}$ (possible outcomes of coin 0)
 - $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$
 - $\theta = \{\lambda, p_1, p_2\}$
- And $P(x, y \mid \theta) = P(y \mid \theta) P(x \mid y, \theta)$

where

$$P(y | \theta) = \begin{cases} \lambda & \text{if } y = H \\ 1 - \lambda & \text{if } y = T \end{cases}$$

h is num of heads in x t is num of tails in x

and

$$P(x | y, \theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{if } y = H \\ p_2^h (1 - p_2)^t & \text{if } y = T \end{cases}$$

Calculate various probabilities:

one H and two T from THT

$$P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = THT, y = T | \theta) = (1 - \lambda)p_2 (1 - p_2)^2$$

$$P(x = THT | \theta) = P(x = THT, y = H | \theta) + P(x = THT, y = T | \theta)$$

$$= \lambda p_1 (1 - p_1)^2 + (1 - \lambda)p_2 (1 - p_2)^2$$

$$P(x = THT, y = H | \theta)$$

$$P(y = H | x = THT, \theta) = \frac{P(x = THT, y = H | \theta)}{P(x = THT | \theta)}$$
(Bayes rule)
$$= \frac{\lambda p_1 (1 - p_1)^2}{\lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2}$$

• Suppose fully observed data looks like:

$$(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$$

• In this case, the maximum likelihood estimates of the parameters are:

$$\lambda = \frac{3}{5} \\ p_1 = \frac{9}{9} = 1 \\ p_2 = \frac{0}{6} = 0$$

• Partial observed data might look like: $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• How do you estimate the MLE parameters?

• Partial observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• If the current parameters are λ , p_1 , p_2

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$

$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$

$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$

$$= \frac{\lambda (1 - p_1)^3}{2(1 - p_1)^3 + (1 - \lambda)(1 - p_1)^3}$$

• If the current parameters are λ , p_1 , p_2

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$

$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$

$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$

$$= \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If
$$\lambda = 0.3$$
, $p_1 = 0.3$, $p_2 = 0.6$
 $P(y = H \mid x = \langle HHH \rangle) = 0.0508$
 $P(y = H \mid x = \langle TTT \rangle) = 0.6967$

• After filling in hidden variables for each example, the partially observed data looks like this:

$$\begin{array}{llll} (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, T) & P(y = \text{T} \mid \text{HHH}) = 0.9492 \end{array} \\ \text{sum to 1} \\ (\langle \text{TTT} \rangle, H) & P(y = \text{H} \mid \text{TTT}) = 0.6967 \\ (\langle \text{TTT} \rangle, T) & P(y = \text{T} \mid \text{TTT}) = 0.3033 \end{array} \\ \text{sum to 1} \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, T) & P(y = \text{T} \mid \text{HHH}) = 0.9492 \end{array} \\ \text{sum to 1} \\ (\langle \text{TTT} \rangle, H) & P(y = \text{H} \mid \text{TTT}) = 0.6967 \\ (\langle \text{TTT} \rangle, T) & P(y = \text{T} \mid \text{TTT}) = 0.3033 \end{array} \\ \text{sum to 1} \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \end{array} \\ \text{sum to 1} \\ \end{array}$$

• New estimates:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

$$\begin{array}{ll} (\langle \mathrm{HHH} \rangle, H) & P(y = \mathrm{H} \mid \mathrm{HHH}) = 0.0508 \\ (\langle \mathrm{HHH} \rangle, T) & P(y = \mathrm{T} \mid \mathrm{HHH}) = 0.9492 \\ (\langle \mathrm{TTT} \rangle, H) & P(y = \mathrm{H} \mid \mathrm{TTT}) = 0.6967 \\ (\langle \mathrm{TTT} \rangle, T) & P(y = \mathrm{T} \mid \mathrm{TTT}) = 0.3033 \end{array}$$

how many heads in X_i ?

$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$

out of 5 coin 0 tosses how may are heads?

$$p_1 = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$$

$$p_2 = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$$

SUMMARY OF THREE COINS EXAMPLE

• Begins with λ =0.3, p_1 = 0.3, p_2 = 0.6

• Fill in hidden variables using:

$$P(y = H | x = \langle HHH \rangle) = 0.0508$$

$$P(y = H \mid x = \langle TTT \rangle) = 0.6967$$

• Re-estimate parameters to be

$$\lambda$$
=0.3092, p_1 = 0.0987, p_2 = 0.8244

EM INTERATIONS

				$P(y-\Pi \mid A_i)$					
Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4	\tilde{p}_5	
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508	
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008	
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000	
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	

 $D(y - H \mid V)$

 \circ Coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$

- \circ λ is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-biased coin (coin 1)
- \circ θ (parameters) are like the cluster centers in k-means

EM INTERATIONS

Iteration	λ	p_1	p_2	$ ilde{p}_1$	$ ilde{P}_2$	$ ilde{p}_3$	$ ilde{P}_4$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

- Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.
- This solution of $\lambda = 0.5$, $p_1 = 0$, and $p_2 = 1$ is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal probability.
- Posterior probabilities $\overline{p_i}$ show that we are certain that coin 1 (tail-biased) generate x_2 and x_4 , whereas coin 2 generated x_1 and x_3 .

INITIALIZATION MATTERS

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

- Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.
- In this case, EM is stuck in a "saddle point", or local optimal.

INTIALIZATION MATTERS

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}.$

• Just modify p_1 a bit, EM is able to skip the saddle point and reach global optimum.

THE EM ALGORTHM

- \circ θ^t is the parameter vector at the t^{th} iteration.
- Choose θ^0 at random (or using some smart heuristics)
- Iterative procedure defined as:

$$\theta^t = \arg\max_{\theta} Q(\theta, \theta^{t-1})$$

where

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y \mid x_i, \theta^{t-1}) \log P(x_i, y \mid \theta)$$

THE EM ALGORITHM

• (E-step): Compute expected counts.

$$\overline{Count}(r) = \sum_{i=1}^{n} \sum_{y} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$$

for every paramter θ_r , e.g.,

$$\overline{Count}(DT \to NN) = \sum_{i} \sum_{y} P(S \mid O_i, \theta^{t-1}) \ Count(O_i, S, \theta_{DT \to NN})$$

o (M-step): Re-estimate parameters using expected counts to *maximize* likelihood.

e.g.,
$$\theta_{DT \to NN} = \frac{\overline{Count}(DT \to NN)}{\sum_{\beta} \overline{Count}(DT \to \beta)}$$

THE EM ALGORITHM

- Intuition: Fill in hidden variables according to $P(y \mid x_i, \theta)$
- EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
- In general, if

$$\arg\max_{\theta} \sum_{i} \log P(x_i, y_i \mid \theta)$$

has a simple analytic solution, then

$$\arg \max_{\theta} \sum_{i} \sum_{y} P(y \mid x_{i}, \theta) \log P(x_{i}, y \mid \theta)$$

also has a simple solution.

EXAMPLE: EM FOR HMM

- We observe only word sequences $X_1, X_2, ..., X_n$ (no tags)
- \circ θ is the vector of all transition parameters (include initial state distribution as a special case, $\phi \rightarrow s$
- \circ ϕ is the vector of all emission parameters
- Initialize parameters θ^0 and ϕ^0

EXAMPLE: EM FOR HMM

- \circ Initialize parameters θ^0 and ϕ^0
- o E-step:

$$\overline{Count}(\theta_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(X_i, Y, \theta_k)$$

$$= \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(Y, \theta_k)$$

$$\overline{Count}(\phi_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(X_i, Y, \phi_k)$$

 θ_k has nothing

to do with X_i

EXAMPLE: EM FOR HMM

o M-step:

$$\theta_k^t = \frac{\overline{Count}(\theta_k)}{\sum_{\theta' \in M(\theta_k)} \overline{Count}(\theta')}$$

where $M(\theta_k)$ is the set of all transitions $(a \to b)$, for all b) that share the same previous state as the k^{th} transition $(a \to c)$, for some c)

$$\phi_k^t = \frac{\overline{Count}(\phi_k)}{\sum_{\phi' \in M'(\phi_k)} \overline{Count}(\phi')}$$

where $M'(\phi_k)$ is the set of all emissions $(a \to x)$, for all x) that share the same previous state as the k^{th} emission $(a \to x')$, for some x'.

EFFICIENT EM?

o E-step:

$$\overline{Count}(\theta_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(Y, \theta_k)$$

$$\overline{Count}(\phi_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(X_i, Y, \phi_k)$$

• Can't enumerate all possible Y's!

Quiz: How many possible Y's are there? Assume your own parameters before computing the answer.

EFFICIENT EM?

• E-step:

$$\overline{Count}(\theta_{NN \to VBD}) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_{i}, \theta^{t-1}, \phi^{t-1}) \ Count(Y, \theta_{k})$$

$$= \sum_{i} \sum_{j=1}^{m} P(y_{j} = NN, y_{j+1} = VBD | X_{i}, \theta^{t-1}, \phi^{t-1})$$

where m is the length of sequence X_i .

Similary,
$$\overline{Count}(\phi_{NN \to cat}) = \sum_{i} \sum_{j: X_{ij} = cat} P(y_j = NN | X_i, \theta^{t-1}, \phi^{t-1})$$

FORWARD-BACKWARD ALGORITHM

• Define:

$$\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s \mid \theta, \phi)$$
 (forward probability)

$$\beta_s(j) = P(x_j, ..., x_m | y_j = s, \theta, \phi)$$
 (backward probability)

• Observation likelihood:

$$Z = P(x_1, \dots, x_m | \theta, \phi) = \sum_{s} \alpha_s(j) \beta_s(j) \ \forall j \in 1, \dots, m$$

o Thus,

$$P(y_j = s \mid X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z}$$

$$P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j) \ \theta_{s \to s'} \ \phi_{s \to x_j} \ \beta_{s'} \ (j+1)}{Z}$$

α AND β

Now we can estimate:

$$\overline{Count}(\theta_{s \to s'}) = \sum_{i} \sum_{j=1}^{m} P(y_j = s, y_{j+1} = s' | X_i, \theta, \phi)$$

$$\overline{Count}(\phi_{s \to o}) = \sum_{i} \sum_{j:X_{ii} = o} P(y_j = s | X_i, \theta, \phi)$$

Dynamic Programming

$$\alpha_{s}(j) = P(y_{j} = s, x_{1}, \dots, x_{j-1})$$

$$= \sum_{s'} P(y_{j-1} = s', x_{1}, \dots, x_{j-2}) P(x_{j-1} | y_{j-1} = s') P(y_{j} = s | y_{j-1} = s')$$

$$= \sum_{s'} \alpha_{s'} (j-1) \phi_{s' \to x_{j-1}} \theta_{s' \to s}$$

Dynamic Programming

$$\alpha_{s}(j) = P(y_{j} = s, x_{1}, \dots, x_{j-1})$$

$$= \sum_{s'} P(y_{j-1} = s', x_{1}, \dots, x_{j-2}) P(x_{j-1} | y_{j-1} = s') P(y_{j} = s | y_{j-1} = s')$$

$$= \sum_{s'} \alpha_{s'} (j-1) \phi_{s' \to x_{j-1}} \theta_{s' \to s}$$

Similarly,

$$\beta_s(j) = \phi_{s \to x_j} \sum_{s'} \beta_{s'} (j+1) \ \theta_{s \to s'}$$

Time complexity: $O(|S|^2 \cdot m)$