FIG. 22K (cont'd)

5820 5460 5520 5580 5640 5700 5760 5880 5940 5280 5340 5400 0009 ggccttggca catagaaggc aagttctctg gttgggcgac ccggattgcc gtgcagatat tgacgaatcc gcttaatgac aaaccgactg aacggcacca gtcgccagca gtcacccgtt agaaaacctg gtcacgttgg atttgatcct acgttgttt agattcaccc ttattcaaca agtggttagc tgcctgaaag tatcgatgga ttgaggagta tagaaccaga atatggatca acccgcaaca tgggtgatgg ttattcccgc ctgcctgctc aaatggagat tctttgcgtg acagctcggt acgcacaact tttctcaagg gccagttcta gatatgaatg ggtgctagtt ttgtttgatc gatatcgcgc agtcaggtgt accettagt agcggacggt gtggatttgg agttatatgg gcgggttatg taaggtgaat gcggtggata cacctggatg attgtatgag gagtgtcgtc gaattaagta tttaaaactg ctatggtgat tattggtatg tgtggaagcg ccaggcccta aacccccatc ctacggcagt actggagaat cggttgcgtg cctgctacc ttccattacc gacggtgtgt ggcacagggt ttggggcaat tatcccagtc gtatttatgc atcttcaggg atttggcctg ctctttatcc atggtgttga tgactttaaa tgttatctga atcatccaca cggagactta atctctccgg cctggaatgc cgatagcgat ggcaacagtt cccaggcttt ccaagccctt gtagagcaat acgctgacac acggcctatc gagttggttg agcacacaag gaagcgtttt gggccacaag ctggaggaat aagcgttgtg caacccccc tattatttaa gtggcggtgc ggaggtgtgt ttgccgatt caacaggagt ctcttttta

SEQID 30:30	
06 1120 120 120 120 120 11020 11140 1200 120	4 W W 4 R R R R R R R R R R R R R R R R
taga cattraga daga daga daga daga daga daga daga	crystrys gcaggag tatgctc ttkgtga ggcnaat amtggga tgatcgc
tttaaag ccaaattaag aaggaagtaag ggaagtaaag ccaaattaag aaggaagtaag ccaaattaag accaaattaag	caager tggcct ggtgca tatcgt ggccgg tcgtag gggttn
acggtcaaaaggatttttttttattttatttatttattta	gatgaaatgg tgagtctttg cctgtgccsa gtcggcggca caantcaaaa gcttggwaac
gaaaanagaga ananagagaga atcatgaca atcatgaca atcatgaca accagatat gatgaca atgaagaga agkttyct gaagagaga aatgagaga aatgagaga aatgagaga	raccycycycy cctacacactg natcattgta ngctttgatg taaaacgctt gcagtggtat tscaaagaac tkagcatgkt
) + + + + + + + + + + + + + + + + + + +	agggccct cctgccag atccaacc cgttgcca cgttgcg ggtgnggn gtgattgc agtgcmca
atttat gagttat cagtgo gtgaagt tatagagt tgatgagt tgatgat tgatytt tgttat atcato coaago cotaga atctot cctgga	taaatott tgcatttg tgtctctt tcgagggg ggtggggg attcacgg cgggcacc

FIG. 22L

2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 1920 2040 2100 2160 aattgcagga acaggccaca watrrwcktw attcagctca cgattatatc acaataagcc catcgaaata tttttctta gaaatggtcc gtacatattg taggcaaaac gcagaataaa ccggaggttg atgtatarat gtataagagc ctgaacaaat gcaacaccgg ttgatcgcag agacccgttg tagaagaagc ttatcggcgc tgtgagcatc ntcgtcaaca ggcggtcact canttggctg gtggggawt adacqsaata gsaccatggt cgmtymtttc tatcaaagaa atgagtttga ttgaatacaa gtcttanatg ytwtgccaga attctgcttt atcgccaagc ttaagtggtc attgnttggg gaggatttgc tgsccakggc ggtaccacaa gaaatggcag acaggcmccg ttagacactw tgcgggttat tgtngtctng gttatcgacg tactttgtta tgggagtgaa tgaagttgtt aatattgact ggtgaaggag catgcagtga ggtaatgaat tgggamacyg tgttgtcgat tggataattc ggcatggtag aaaaccaata kkaaagntgg gaaggattat gagaacttta atgtggacgc gtgtgttgtt agcgttgttg ccacatttaa tgcccggagc ttgatgatga tgcttaacgc aatagtgagg ttgagtttct aatcaascaa cakwwtggtg rcmaaactyt atgttagccg ttggtcggtg taccaatgcc cccgagtgta acagcacgtt ctttttaca acccggvggt gggcaatccg rttatacctt tngtgatctt aatargtgtt tcaagtatta tgtggatttt gtgattgcag ttatacgcaa catggtcacc mgccmctata tttgcaccca caatgatatc ttscwarkc tcacagcatg cgttttagct aaaaagatat cagtgaatca daaacyttam gsgtcggcnc ggtaaggctc gcgaatcact ctggagtatg gtkkgattrt attttactca agcttcgtga gatttagtgg atgaagagca cagcaaggtt aartcytgag ggtgntggcg aagtttctct ataatcacsg tgaactacsc gtttggaatc tcggtgagca artsctttgt cttctgatat tattctaggc caaacaagct atggacaaaa ccatcgctac ggatgtgggc gggttatcca gamctakssg ggatgctata ttcatgtcag tagaaaatgg actatgaagt arttgaayrt htgvgchatc tggggggctt gtgaacaccg agegeetttg gtgcgccaac tcaattacgg tagtatggat nttgggtcag acngtctanc gtactgttat atatcgctta aaaattattc tagatettga gttatttggc acsqtwtatw gawttggata ttgggtatta tatatgttca gagaggccat atctttttg aagaahaatd wggctgggtd atagtgatga ttggntcgca ggatcagtgg agggtgaacc antgcagtga ttsskttkcc actccacagt ctgaccacct atgatattgt ggtgkacccc caaaatacct cotttttat tgcgacggtg gaagaagta accetgaget cttcggactt

FIG. 22L (cont'd)

4620 4020 4500 4560 4680 3840 3900 3960 4080 4140 4200 4260 4320 4380 4440 4700 3600 3660 ascawtmcgg aggtgttggg ggtattcacc gcgwtagcag grtgaaaaga tatcaraacr ttctcaaaaa tcaatttaga tatctgcagt gtctccacgc taattcacta tccaatccca taawtgatgc agaaaataga ggatcgctac agataaatcc tacacaatta actgaaaata atgtttgktt ctaacagwgt ysgaaaaygt aaggaaaagt acggattatc atcaacgtga gtttgtcaaa raaattkttc gacaatttta ntaaaaacgt tacttttcc ccctggaaat accactcmat tattaawtmc tenggtnetg tggatttaca gagaacaagg ccaaagtgat tkkaawtway cagaccasaa ttggacgctc cnttactttt aaccctacct gacttaatgt acgtaatgat aaacaatggt tagcgtcaca gtntaaagta tcttatnnta atngtccaaa cagcaagcac ttgtaaaang atcacttggn ttactcaact taggkcsktc ggggaccat wttgwttaaa tattgtcaac ctkqwmaaas tctttatcga cattgatcta ggttttgaca gtggccaatt ccaaaccact cctaatgatg tcagaaacc aaaatttact ttgaaatatg gtnttagata aagttaaagc agatggattt aacatctcga tttgaataac tcttatccaa ttgtacgnat ccttacactc gtatttgaaa gttgttagtt ggtggctcgc caaacctcgc gaaattcgtt ccggtggaat ttaatcttkg ggratccgtt attgtgcagg aggtattgtt tacattigat gattckaaat tcttgtctcg tacaaaaacy aacanggatc gaatacaaag tacccaaatc mcgggaggka aaaatcggta ggkgktttsy canagnatag acagnacagg tactgattca cattactaaa aatagtcccg aacacatgca aactagaact agtcgacgct tgtgggtttg aatgatatac atgcgaggtt cgtttacagc tnegecagae cttggggtgg ggtttattga tgcactgcag tggaanccaa tgagtcccac gatgtaagcc tcaattgaaw attcggannn taaangggat ccggtccatc attcaagtac tggkaascag ttatytcwtt aatcttawtt gtcctcgaca ccaggcanca atgtgtgcga scagaagaac aggatgtaga ttgtgatatt gtacaaccag gtcatgatat ttgaccccca wcagattcta ggtatggcgt agtttattgg tcagcccgtt

FIG. 22L (cont'd)

SEQID NO:31	
	122664666
cagtattcgg ttgcacgcta ttaattggcc tgcaagagaa gagctttggca agagcttttt gcgaggaataa ttgaggttca ccaccacaac gagttgattc tatctaaaac aatttcatga ataagtcagc tcaaccaaaa gawtattggg	tatttccc cgtkggct aggactaa gaatatca gagttatg tgacagtg ttaaaact cmataaat
cc a a a a a a a a a a a a a a a a a a a	ttttt gratc gtctt nggtt ccaas ttcac
ctagtggatc aaataaattt aggaaaatttt aggtattgaa cggagagatg ggtatccgcc tgtagataca ttacttaaaa ttacttaaaa actgggcgat tagcaaacattg accatcggtt cctgtgtcag gaaaatatngg gaaatatngg	ttcgatcc ykwttatt atttgcaa atgtggra accccata ratctaca wcacctag gttaawat
cgctctagaa attcaacggc gcaaagagcg tgagtattga agacatcaca tggtaatggt agattcctgt tttcagccga aaacccttga tttatgttca ccattcgcga ttcagataga aaggggatga aaggggatga atantcatca atantcatcc atantcatcc	gttgat cctcag cctcag ccgggn tatgat aacgac gkcggk
cggtggcggc caatcagatt ctggtcaatc gaaggaggta tccgccctgg acgcattgt ggtttcgagc atgaaaatc atgaaaata atgaaaata atgaaaata atgaaaata atgaaaatca atgaaaatca atgaaaatca atgaaaatca atgatcaaa agggagtttt gttcaaaaaa tcgttattcc nggcaagga	υσαμασευσι
genettneeg aaatgeaggt tegtaatget gtactggaatg gttgeagtac geacaageag aacctegact acaaatcec attgttggtg cetattttt tgaaaagtta agagattgaa teggatgeegt aaatgttaac tttgtgtgaa tttgtgtcaac	nggggkggt agkgrggkg attggaaga cttcattct tgtttgctt agtattgct tmcgatgtg gkcgaaact

FIG. 22M (cont'd)

<u> </u>	0	8	92	ω ∞	04		16	N	7 8	34	40	4	52	2 2 3	64	70	76	82	α	94	00	9		7 3	4	0	3360
agcgcttggt	ccgttaacca	aagtggtgag	cacatg	cgttcaatag	toggstcark	tagcaaagta	cattgaatcc	ctggaaac	ttggggccgg	agcaagagga	ctacaaraaa	ggaawtksgc	ggaacgtctg	agcaaaggnt	rcattttatc	atgaagaata	tggcggagct	taacccagaa	ccagggatcg	ttgaggcaga	aat	gtttttta	ď	U	gtatt	cgctggatta	ttaaaaccar
ataatactga	aaaggcagtg	gcacaacagc	acttatattg	ramma	tygkgtttga	ttgcagctat	cattcaaaag	gggttattgg	mwwwckkytt	ga	ttskgatcar	aaaraggtag	tcaatgar	gaaagatttt	u	ttttctgaag	actttaagnc	acc	tatccttttt	tctacagtaa	aaaatggcag	tacattaatt	attccatagc	ttcatcagat	acacattgtg	agaggatgaa	ggtttcttta
agtgggtgcc	tggtgttgtt	taatccgaat	ccatcatgtg	aattactgkt	gsccaaacma	caagccggtg	accttcttta	taa	aatkgctkky	gtacgttgcc	ggcwatagac	aaaatgaagc	tgggcgcgag	atgcttaang	tttcggatac	tttcgctatt	aaaggtaaat	taaatggtat	tgccnaacng	ncaaacattt	gttttgaaga	atgttatcaa	aatcaatatc	atgagcagta	gcttttc	tatgggctct	aaagtattga
ctggtgaagg	atcatattta	ataacgttcc	cagtaaaccc	acccgataga	taagcgctgt	tgtgagycas	gtcaaatagt	ctccctttgt	gggtrccgag	attgag	tccctttatc	tttatcraaa	cattgcaact	cnaataccaa	tgcacanatt	gtgcgttgra	ι	ttgattggaa	cgtattagtt	tttccacaa	gagctactgt	gatcaatcta	gcattacaac	gctcaggctt	acgtaccaac	ataatgtatt	tatcttttaa
ggttatatcc	cgtgacggtg	accaacggct	cgagaagccg	caattgggtg	gagcttggtt	ಹ	tgcaacacgg	tttactgtga	gaaggaaaga	gcccatgtag	aaagtaatta	tttgcttaag	ttgccgwawa	ttgt	agaaaatnga	ctagacctgg	gatat	ggtgtgacta	aaaccntcgt	nccnaagtgc	aacattgaat	ctctgttgca	gcatcaaaaa	tatcagccag	aaa	tgtcacggac	acctattgta
acagggacag	gat	gtaa	cgtg	aacaggaacc	tttgaccaat	gaagtcaaaa	ttgttacaaa	caatattgat	acttgaagtt	tggctcaaat	tttcaagga	warkggatcg	ttaattgwty	gncmttngan	ttaaatactc	ggggttcgta	~	ttgggtaaaa	as	ttattggatt	cgccaaccma	aactacatga	g	attgattt	gag	ataaaagtga	()

4320 4440 4560 4740 4920 4980 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4380 4500 4620 4680 4800 agcgcgtacg ttcmctatca ggstattgag acyykraakc gaagacaatt ttcttcaagc atttttgatg raagacmctg ggaatgagaa ataaaggaag tawattggst ttctnacctc ksyamyaaac aaaactctg atttagcaga taarccgtta aaacatytwa caactgatct agattcctat aaagtattca tttgtcttyg tctgatcttg agtggcttat tgcccaaaaa gggtacattg ttgcggtgtt atctttggat accaaaatgg gttttccaga aamscaaggg tctattggac kmykkrrass gstttaagta atagagcgty cagcagaaaa gaaagccgw tgccccctca sytgtgcagg ytcagtgtcy acaaagatgt gtagagagta rrcgaytgty ratwtkragg aagcaaatgg gtcatgaacc ggttgggcgc caggtagtcg aattggatat tcattgatca ntaaaattca tatgttactt tggctaatcg tgaatggact ttttggactt agtagcttat aggactgggt caggattatt caagcttakc gtattagccc ctggatttta gattatgcaa tctgaargaa ggaatgggat gcgggcaasg tgggtctcac cwwasrrswk gaatgtatta ctttcccgt atatcctacc ggcgttttat gcagatccat atgagtggtc aggtaaaagt dgtgcaacsg tmcagtgaca ykgkwmaat gccgcgggca tcatctggat tcatgtcaaa aaaagttcat stgsytgtgr atctgatatt ctccaattgg ctgcaanctt aacaattttt magtrawgaa gtttagcaaa tattttcgg cgsttatgga ttttatccga tataaaatta tgtcattcat agcgcaatca tacctyggta gaatgtgaaa attrctggct aagtgttgaa acccatcagc ntatagtccy cattattggt gaatttaaga ckkwaksgtt ctyaatccca taaaagccca acccamccg ttgataacag ratwcrgrmt tgaaaagaat ctttcaagca aggatcatgt ttaagtccaa nccttttatt acgtattgtc acgccrtstk agcctattgc atgtgggaga atttgttgga ttygmamrwy ttttctgaaa gggracttta ttccaagaca agswwtcgsr atatctgcga ctattcaggg gtcctgaaaa taggtgatgc agtatagaaa ggcccgcctg tattgaacac accngtatcw caagggcagg agaagacttt aacttaaaat gattcggtca gaacmcmctg acvetgteeg arcngcctct rtggaaggta tggtcgtcct ragttctwty agtattgatg gnttaaagca aatatcatcc attaraggcm tattgtggcc gcccatgcac tttttaaaa tagtaacaat aaaattact cwrgkkgggw agaaaattg tcgtagatat aatgcttaca cagattattt ataaagagaa gttcagacgg tttgaaaaa attctggata teggetetat kttwttcatt cgtgaaamca ggkaggaaaa acaagtgagt gagctgagat attacagagc ttttggtttt ttycaawawt gttgtgaggt

FIG. 22M (cont'd)

5520 5580 5640 5220 5280 5340 5400 5460 cacaggaatc gwygacsgca arakyttaat tcaccamgct cwwwyttrmw mwgawgsyat gytgwtgcar ygaanaandb aatttttcga aracratggg ttcgatccac tggakagsmw ggatgatgtt wkwgmtmwtw mtgakmysac cggcwcttat tggyygcrmt gwcscggcag gmtcaatkmr agtwytywtt mmaaat aacacccatc tattaaagaa wwwmywacrc atmmrrrymw tactacgsyw wrcgsckawk ccctcttcaa ccmgtytgsc ssawgsgrgy gcryagtgmy aaaaggggtt sgggktttcc gaatattatg gcattcctgg aaaarctgga ctgcttatgk smaggktwtt tttrgcata wracgawtgy agcaatkyga tggscwtgay csygccaaks ckarnrtcam tggtrttgaw agagaggga ttggwaaats tggcwrtwaa tackwcarca sawswtkaws acrwmtcttk anattggcat tggagygcct catmakrmta tcgtaytgma mwwyacrssk amygawakac agagcgcttt atayktkkat cacwttwawc ggscmwrssa kscsysagtt taatagtaaa mtsgaatgca aatttctcca

FIG. 22M (cont'd)

FIG.22N

at a	acttaatttg	gtcgaanagg	ccattacntc	tatgattctt	0
tt a	accngtgat	ttagtttgga	atatgaaaga	acccgtttta	
a	acttta	aatatgatcg	agaatgaact	cgaagctgtt	ω
ख oı	gttattaata	gatactgcca	tggatacgta	ttcgtgccag	
ng Ng	aaagggtttt	ttgacctttt	aat	atacctt	0
رن رن	gaattaaatg	ctaatagtgg	ccatcttcaa	gtagccttac	9
α T	tggatatcat	gtgatgataa	tgt	aacag	$^{\circ}$
ro ro		attttataga	T T	ttctctatga	ω
מ נט	gaaaggcatg	gattaaaaaa	atggatagat	caatccggag	
	cctgtattaa	ccgatttttt	ggatggtgtt	u	0
ט יט	gaaaatggtt	attttgatgc	ttaa	gkwaatagtc	099
O1	gntga		ğ	aaattattac	$^{\circ}$
ب	ctccaa	agaatra	agacgtttta	cttcacaaaa	∞
U	caacgaattt	ttattaccgc	atccattg	ctt	840
w	acggaattaa	tgtttggtaa	tgctaggagt	atttttaaaa	0
w	agccatgttg	accgaacctt	tgt	gtagtg	9
O1	gctgatatcg	aagcgttagt	cattcagtta	tttaatgata	02
w	rkrtt	crratatggg	ttgtggtgat	ggactcta	08
10	atcaaggaaa	aatctgcacg	aggaaacgtg	ttgaatcact	14
10	attgattata	atgaagccgc	tgcagga	actaacaata	20
10	agacactatg	ttttaaaagg	b	taatg	26
O,	gatttaggta	ttaaagatcc	tgagaatata	tgcatgtg	1320
0	gtaatt	ttgcacccac	agaggtgatg	aatattgaag	1380
0	cagggcgtgt	atgttgattc	agaaggtcaa	gcaatatcgc	44
υ	ctggtggaac	attttaaacg	tggtc	taaagacg	20
α,	gaagtacatt	ctcttaaccc	gaggttgt	aaccaatatt	26
g	cattttgatg	cctatcatgg	ttttc	caatatttag	$^{\circ}$
10	atatgtgctg	cagaagctgg	tttattttct	aaacctgatg	1680

FIG. 22N (cont'd)

2520 2580 2640 2700 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 1920 2040 2100 2160 2220 2280 2340 2400 2460 2760 1980 atttaaatca ttgagcaaag tingtgtatg aaagtgagtc atgaanggat ccctaccaat macgatnata tgttagatat gagtgatgaa attattccaa gcttatttca ttaacgatcc tagccttatg aacaggcaaa aaggtatttt tttatgaaag tagaaataag ttcgttatgg gagaaaacga aagagtagaa cagagcagga atggatttag ggtgttcawa ttttttqaaa caacgcatag gcagtgattt carswswwtg trcccaaaat agctttgata tatatgaaga tagnagcttc caatataagg accettecce tttactcngg gatctatatt aaacttaata ctcaatatgc gcagagctga attegtattt centegttee аааааадааа gaatttgctc tggaaatatt aatttatttg gtctgcattg aggtgtttgg atcaatdtaw tttatattcc gctctggatg caaagccaag gatgttaaat taccctaaat tgaccttcgc taccattgtt tatytatcat gtgcttaaat tctcggtatt nggagggatg tcatattctc tgtattngaa atatctncgt tatacagtat ttgaatgaan ggcctttggt gatcagtggc accttttgaa caatattgat acgttttcct aantaaaaca ccctggtntg ttaccctgat aattaaacaa gtttatcttc aatgttatca cagttgatgt atctatttt attngaggtt tcatatttng gcactgctgc tggagtaaat ttactcgaat aaaatgattt tatgcattga thactbgttt tacgaaawta cntatactgg gataaatatn nttgttaatg tttgttagat gttaaatgtt aaaaagatca tgcttgctac aaacactttc tnttaagcgt atcgtgcctt ttttccagaa actatttaa gggtaatatg caacagagtt cacaagggtt actttgtttt datttvtaba gaaagtgagt caatagatat agtggttact tgtgttttag agagtgttag aattattaca ggtattgatg aacttacctt cacccgaatg aatcaatgtt ttaccggtgg gcaaaatggc aatgttaaag aagagtttta tnctccacga atgtctgctt tatgccatmc ctaagtatcc ttggtgcta gagtattatc attatttgag atacnggtgc gtttgcttcg gattaatggc atgacattat caactttcag ctggtggtgc agattttycc atttagantg gtgtattaat agatgttatk cagttttatg tctatccggt ttatccaagg tcaaattcgt aaaaggtcaa rtgbdwdcac tegacetaat tegttactgt cgattggata ggctttnaaa gagcaggtac acatgctaac gagaaaagtn ntgaaagnca catctaatgt attggtntga atacaggcgc taaaggctat ggctanacgc gaatggttat aaagcctta atgaataccc attcacaaaa aaaaaagaa tacaagcagg aatggggttg aatattatcg attcaaaaaa ccgwttctac ttctcaaaa aaaaatttg atgatgttga aaacatattg aaaatcaggt scmdhggaat

tcaaaqtatt	attqtctctg	agtggattaa	tgaagacctg	tctagtaatg	nttgaaaatg	3420
tggtgaaaaa	taatcanttg	tttnagaaat	acaaaatcac	tentgatnee	gattactngt	3480
ggagnaataa	aattagntta	caattnaaaa	gacaantcmc	wtcgttanca	caatagtatt	3540
ggaagaaaat	atttttataa	aattttagng	gggataaaaa	gaaaattatn	ggatttttct	3600
ccntaaacgc	ccctttgatt	ggagtttatg	ggttggattc	atattcgaac	ctacnttgga	3660
anttaaagat	cattactcgg	kragcmttyt	tcyataaaac	trgaasmtac	ttkktmtky	3720
mawkatkraa	yrmtksckkm	rsctmtytgw	kwcmtccsay	atsattcmag	wtrascytsr	3780
wattrtcgmt	arakwcccta	ttacggaaga	gataatgact	ggaggtacgt	caagggtaar	3840
aacagggcaa	tcgaatsaka	atgaacctat	tgcgattatt	ggtatgtcyt	gtttatttcc	3900
aggtgaggtt	acgacagttg	atgagttctg	ggaattatta	atacaagaaa	gacatgccrt	3960
tcaaccctta	cctaagggac	gttggcaatg	gccakaaggt	gttgatccat	cgggagcaca	4020
acttggcatt	gatcagggtg	gatttctgga	tggtattgat	acctttgatg	ccsacttctt	4080
tegtatateg	agaaaagaag	cggagttwat	ggaccctcas	caaagaaaac	tacctggaat	4140
taarttggca	ggtcatasag	catgccggat	ataaacccat	cggytttttc	tggtcaaaga	4200
natyggyatc	tatgtggggt	gctttgtcac	cggtaattta	tatgggagtt	atttaactaa	4260
aagtgaccaa	angccctaaa	aaccaaccgg	naaggcctat	ttkcatgacc	argtartana	4320
ttgttgttcg	tytttmcccc	aataanaatt	ttcctatttt	ntattaattt	tttaaargtg	4380
cccmscstcc	tctwtctgat	wccgngcttg	ttcaaryagt	tttaggttgc	ctwtttgacc	4440
caancarttt	tatgcgnatt	caattcgggg	nanggngtga	atcaggcntc	tggtgggntg	4500
gggaycaatt	waatrtccc	tccsmrtgaw	accggtttct	tnattayywa	gcaggtntgt	4560
tntcaaaatc	ngggaatgta	aacctttnga	tecacegeee	gttggttttn	tncctgggna	4620
aagggggcgc		ttnaatcntt	ttctcanccc	nattttaaaa	ngattgtttt	4680
ttnggggttt	taaagggggg	agatnaaaat	ngggggcaan	cattnnttac	ggccctaacc	4740
tnng						4744

FIG. 22N (cont'd)

SEQID NO:33	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0484004840040	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
tgtgcctgcatacccn tsgaggcn taggtatg ttacaaaaa taaaaaaa tatagaaa agttggag aagttggag aggtaaac tgagaagt	aaattttaaa caatgttgat aaganaatta tatttcaaaa tttattttat gtgccgatgg ttatraacgg ctttgcattg aattcgagat gtcaagtgga attatttaat tttactgtat ttacaaatagaa ggaacctttc aaanggaaaa
ncatatge traaaatga traaagaa taaagaa cotgaa aactcat	gtcaatattg agaacaaag gtaagatgcg aactaatnag ttattaaaaa catcatttt trtgaaagta aatatggcca ggcttgataa tcggtcaact aaaaattaag ctgttgcaact atggattta gtcgttagaga ttggatttta
gatggat aaaatcaa ggtkgaca tatggtg awataga aatgatt tttgaaa gaaaatc tttttt cttttta	ggaaatgcca ttcaattttca tggtttatca tatcgcaac tattcatgcg tcatgatact gtgatggctg acaaaaact aaagactatg aatatgctgg ctatgttgtg atggtcaaca actctgccct ccttttttaa taaanggggt
rgaaaaa raactc ragattt ccacct rctcat ggatta tttatt tgtttt ccgaa caaaaa	gatttagagt ttaacacata taatacatga ggaaaaagat ttgatatcga cagctatttt gttcsawaaa caaggagctg taaagataag agtttctgta agtttctgta acctttgcaattg acccttgcaa ttttgcatca cnggatggta
	cttattca aatcattt tggattca attatctg aaaaaatt aaagactt ttttcttt ccggaaac atcccaaa ctttaaaaa ttgagcta ataccaca ggctacca ttgatggtt
angattcct agaagataa atcwataca gacatcmat atttyttaa aaggaacga tacccaatg gtaaaagcct agtacaaaa tggagagaa attaaaaaa	ccatataat aaaagcaa aataagcaa atacgaaggt cataatggt tttacattt ntggrrwat gaaaaattat gaaaaaatta gatgcgaata aaaaatta

FIG. 220

1920 1954 1800 1860 tggnaaaatt tccantttgg gtttttaaaa aggggaaaaa ttaaaaanaa aaaaaagggg ggnggcccc cggtgggttc gccccttaaa ntccccatta tttntttaaa ttccggaatt ggnaaaatta aaaaaaggg aaaaatttaa tttn taatttcccg ; tggnaaaatt 1 tntttccaaa gnaaaaattt aaaaaaatt ttgggtttcc ttaaattttt tggaattaat nttnntgggg ccctcaanaa agggaatttt ncccannaat aaggccnaan

FIG. 220 (cont'd)

FIG. 22P

SEQID NO:34			
00000		0 8 4 0 8 0 0 0 0 0 0 0 0 0 0	
0 H H G W W	440001	L L & Q Q Q L	1 4 4 4 4 4 4 4 4 6 6
taaaaaancc tnantgggtt gcgacaggct gggcgcggcg tctgccttct cacagcaact	ttgccgt cgcttgg rmaktyg cygskrk rawawmw	CCS YCG aaa cak ant	taaggcgtt aagaaagga gtttttgtc gcggtcaaa ggtgttatt aatccggat catcaagtc attacggct gccaatcaa gcaaggach gtccttgca
gagtgcatna gnaagnaacc cttttgctgt cacgttgtcc tgtctggtga aaaccagaca	aagg gcgc agct tmaw rkcy	aamaakgtwa garrcsttgm gtchcaaagc tccgcccggc gtcgatagnt ggncgatccn	tttcogg ccctctg cccttct cgatgat agtgtgc atagctc ccaatag aatagtg ctttgtg
cntgtcctnc cgcgcccncc tttcggcggg ataaaattat ggcgcgttgc	gacatca gcaatat aatcgac agkktyw aamacck	syywgckcwg ymcmaamatt gcgtntggat cttccttatg caccagtgcc ntcctttncc	tttatgaaa tatttaaaaa ctctgtcgt gcagagctt actataggg ccaatggct agcgggctc gtttaggcg aatttaatg taggaaact taggaaact
gnngccggcc antcatgccc tcaaggaacc atcatgggtc gttttccgt	ctttacct ttttggtg tgcacaaa twttcsca	armrwsmtga cysrwrwwrr nnaatgtrvg gaactnnngg tgttatctgg tttngncggg	gttttcgcta ttaatgtttt gctttttggc tcaacaaaaa aatacgactc ggtggcaaaa gaggctttgc gcgggaagcc gctagtgcgc aaatccaata gctacaaaatg
naccnaaagg nggnnacaat agggcatcgg aaggaaataa tgtatgcgct caqccgaatt	aagaaaatca tcaatacgcg atacctctgc cctwmrarst	cttggwaw aawkttwm ncgctghn agcgatgg cccssggt tnattnat	acctcgncg tcgtcataa ctgaaagcg acaatggaa gcggccgca catcattag agcgcatgg atttaacaa tggctcggt
anccgaaaaa agtnataagn naaggcttca cacgtntaaa acgaatgttc	gaataccaga gaacacctgg gttgagattg gmcmccgkmw gswwtggwr	cmrsmycasc cgmtwwgkkc gmtgaaaaan agacaangaa ggaatgtttc tngantaant	cggggcggcg ccgttcttct acgacaggtg cgtggaatga atgagaattc aagggagtgc agcaacagcg gttatgtaga tcagcaaagc cgtgttttat gccagtatta

FIG. 22P (cont'd)

SEQID NO:35 1620 1380 1440 1500 1560 1680 1320 1020 1080 1140 1200 1260 540 720 780 840 900 960 240 360 480 009 099 300 gtgatgttgc ctaaactasg cccgctgctg acmargwttc aaaccaatgg atcaaaaatt aaaaaacakg gccaggtttg ttgttcatcn caagtcaact ttgacgatgg aactgaacga gcatcaaact catgccatta acggaacggt aaccaaagga cgaataaag cccaagccaa ccagawarwa wmyawwtraa gactcmcyym tgttggatat gacagctcta aaacaatggc atcagggtgt tegteatagt tacttcttcg cgatctttt cwcancatty attactttga gggagactac gatancnggc ttgatcagtt caacgtgcaa caacaagcga caaratggaa acggatgttt ggaactggga aaatatacty atacnttttt taaaaaatgc tagaaaatat ttatggatcc tggttatgat cttagaaatt ttaatcccc aaataatcaa ttataggtat tatgcctcct cntgggaaat tggrrsssrg tcaaymttgg caacaactaa cccatgaaaa gggnccgnat gawaasmcyy aatattggac ttgtccattt agcttttcas ganangatgc aaaaccctta gggaatgaat tcakttggaa tsmagcccat tttnccccnt attttnctgc aatattgcca tgggaaaatt gatattgata ggagcatttt gaagcagagc cctgtgcaaa ccactgactc agttcacgtt tagcctcatt teccageett tgccttsdat tggggggnan cawwaatsss rgrtgttwta tgssrkwtyy taagsgggcc gtgattattt ttttdccca acgcatgtga tcaactcaac gccgatgtta cattamcaga ttraaaarwa aagggttttg tagggcctgc cgattattt ttaagggttg agtcacaaat ttackatggt cgtatcatga gggcggaaat aaaaacccaa naanttgaan waraacrkkc wwmscamatc grrtcaatka attatakktr gcctcaataa atgagtccct tactgaatcg taatgaattt ccggtcttgg tgttaaacaa ttctccggtg gaaagcgatt ggggtattg gatgttaatm cctagtgtta cctgaacata gaggytcagg ctagngttct ggtggaaata tcaaaagatg tacggattaa gcaattgctt gaggtascat aaymtcgccc gaaaaccmyw atagatctca tttttaatat cnattccctt ggccccttaa aaaaaaggg mwrawcyagy wyktkttkss ataaaaaaa aaaagcaata caaaaaatgt ttccctataa cacaggaata aggaatcctg aacgntntgg ggataaaact gaatttgnnt graktckcta tatgatwaat agatcccatt gtmttgtgca cattgcagga tggtttgttg tgatcaggtc **Emttactgct** ttttaatta ntaagtggaa ttcacaagca gtctttggca attaggggag aarymytcca attttaatag gatccgctgt cttatttatt nnnanntttc accttttcn aaaaaggccc ttkwtkrrwa temmmwwttt ggttaamccg caataaacat tttccggatg gttaaagaaa caaacacatg aacctttccc

FIG. 220

1800 1860 1920 1980 2040 2100 2132 cycatwwttw wyysskgtm attwwnyycc nctttwttrw tttttacccc cccgngttta tnaawwaccc aaaaataanc centeecena cncccngggg aaaatttttt mmsyccttt akagaatctm mttwttcaww attcctatyg kggsgyccc tngnnaangn aaaggcccct ktgtttcrwc tttytttrgr ggggggntt acctttttta ပ္ပ maarstatna ttttcgtkk acmmmtwrcc cnnttttggg tgggaattaa tacttaagaa tggttccggg twwtaattyw anmrnnttaa antgggtccc gagrrasgtt nnanaaaagg natttgggan ktaaaamcag cccctttt ywattttkkw aaaanttggg atttaattc yytycrtart ytygcmmma gaanccccca tttcatgccc wmcccmmytt

FIG. 22Q(cont'd)

SEQID NO:36																												
0	2	α		0	360	420	480	540	009	9	$^{\circ}$	780	840	0	096	0		┰┦	$^{\circ}$		1320	1380	1440		1560	62	89	1740
ggggttgaaa	aggaacncgc	attttttaac	tgcgarrggk	ttwtatcawt	arwcmgtkgk	anaaatrkkw	tcwccattta	gtaaaaagaa	ggaagcaatt	ccaaagagcg	rcaagag	ttggacaatc	gaggtatcat	caaaatcaga	atccccttat	ctggtagaga	taacatacct	cagcgcaatn	ಹ	tttttatgct	aaccggg	tttcactaca	ttgaaaagag	attttcagaa	catcaagagt	ttcttatgcc	£	gggktttggg
tttggggccc	aaaatgggta	ggcntttgga	ttncaaaaaa	ktgrggggwn	graawawaaw	rwrttatwat	argaaaccca	ttatggrtgc	acmcttgrtt	tatccttttg	tytcaaccct	tgaatccttg	aatggaagag	cta	actatccttc	tcaacttttt	ttatctcctg	gagaaatttt	agagtcgata	tgaggagaaa	gatattgttc	1)	agtgattttt	ಹ	tacatataac	atcctgtagc	CCC	ctcaaatggt
gaaaggggtt	nnagnaanta	aaaataaaaa	acccccccnt	tawytmccwa	ggragcttta	ц	ggataaatga	gttgttaaat	aaaggattaa	tttgccawgc	acggtagtta	aaaagcttta	ctattaagtt	agtttttgaa	gagcaatact	aaaattcagt	aaaaagtgta	aatggctggt	ttgttcatga	tggatacaag	aaacanangc	attaagtcca	taaagaggat	aa	cgtatcagga	tggctttaca	ttcgggggag	ന
aagncatttt.	ασασασασα	tccccnaaaa	cntttaaana	awgramgsgk	tttawre	rraactggrw	аааа	aatgatagaa	yctttgggtt	gtat	aagttagtcg	ttt	atga	tgaaa	gattgaaggc	ttttgaa	ctaaccttaa	caacaaaggc	tatccagcta	aatacctggt	aataatcaag	aaaatagtga	ttctagaccc	attatcagag	cgtttgatca	atactggagt	atctgagttt	gtctcggctg
taagaaaaac	gtttttg		ggggntgggc	ytyy	ggktytawkw	rattkwwaar	tagagggaaa	sgaccaaaga	_	gaacmtccag	ggatactgat	agatagtgat	aactatgacm	attaaattga	٠, ١	\circ	cggatagatg	tatgctgcag c	tgagtggcaa	taaagatcca	cacaatttca	tatgatcata	tgaata	aatgagccct	aaaatt	acatccagat	agatactgga	aaatnc
nnaccaattt	aaaaaangg	ccccccactt	naaaatnncg	gggyctccwr	aaaggnssgg	ktttaaraga	aakggwwrta	tttccaaga	ש	atatggtaaa	ų		tttttccaa	_	agcettgteg	acatgaaaac	tttttct	tgaaatggtt	ttaaaaaaat	ttcgtttttt	atcaaattta	tgtaatagat	agce	aaa	gaa	ttggtt	ന	t

FIG. 22R

1980 2040 2100 2160 1920 aaaaattnnc ttytcaaaac gnnaaaaagg aacccccnn cnnagaaang ttaatnggaa tatttggccy aaacccccn scnaaattng gnnccccaan atagscrcan wagggttggg gnaaattggg aaccgtttaa tagggnttaw aaaaaaatn wccwgstamw tssmmmgcc ttttnccc taattagggc aaaaggaagg catggaaggg atkcskgggg tnntntttt caattaaatt ttttttngga aaaagggga rrkwwtttt ttaccggctt aacarsyttc aatrawrgtw nttgggnggt nttnggtttt skgtttyttg cccnngaaat nggttttggg cawawraamm ggggggncca ccccccaaa tkggtgrtgg aacctttncg ngngtaaanc cccaaant

FIG. 22R (cont'd)

SEQID NO:37			
00000		00001840	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 4 4 9 8	440000	. 1	
tcaggcgttg gatagacgcg ggggttaacg gggtgttgaa gtgccgagaa tccgcaagcg	tegtgaaatt agegattgeg ttttgaecet gegtttgttt ettgettege	ggtttaaa tkvsccvw tcaacntc ttttttgg acggcaat ggtggagt	gagnagggg atactatatatatatactcangngt ctcangngt agttgggtg tgatgttgg ctgccgctg gtggcaagc gttgttcag
ttcaggtgaa aatatcaaac gggtgtggac cctcatcagc aagacatcaa gtggacatta	a d d d t t t	tnttacko gkgggtkt ncaatcgg tgtgtctt ctcatctt ggctattg	tttgtaccgg caggatcagg accaatggtt tggantaaag canggtacag aagatactga atcntggaag tgaaaaaata aactcctttt
ttgattgtga ctgttatttg caggcatgta atctcctcta cctatacaga attggtctga	cagg atga taga cgat gtta tacc	tnatactt aabthhgo tggraana nnctnaat ccatgtgc gatgtgaa	tggtaatggg tagaagccatt tggtggaagctt ccncatggta ccttntcaac natattggtc agatgaagta attttgaaca
catcgattca gcctaaaaca gcagcaccgc agagggtgtc agagggtcat tataqccatt	ggaaaact agacggtt atggggcg gcgagagg tgtggagg	sbtytnyc tsgggttt matttttt tagctcag tnctattg gcatcgcc	ttggttatgg cccttgnntc gtgttaatca gatcttantt tatatagaag ttaacgcaag gttaaatcta gttattctgc gccaatataa
attat atgot togtt ctcaa gacag		gogatosagogatosagogatosagogagogagogagogagogagogagogagogogagoga	tgcaaaag gttgttge agaaggag tctcanag atnggtca ggtaagag ntggngtt ctgagcar aagactge
gcaccgttgg gcggctattt gtcgtggctt gcaacgggtc cctgtgacac	atagtttgg ccgatgacc aagggaaaa tctttttta tacagagtg	grundada aatacaato gccwmgwtc nagcancsg tntccgctt ttacaaggc tagaagcct	agagggcctg ttggcgctgt tgccattatt taatccacat aantgcccgt ccncaataga ttttgtgtat tatcgctggg tacatgcaga

ctaggaccgc g aqqaqtatat t	ggg	tcttttggtg agtcagacac	cgggagggac qacaatcaqa	gaatgcacat qqtcaqqaat	ataataatac aaaccaqctc	
acccggtggc	attctgct	ctgcgcat	tacgata	ttactgaa	tggccgag	9
cacttttact	tttat	accatagtga	ataatatgga	ctcatcctat	ggg	98
atgagatgac	cacttg	υ	atacattaca	ggttggacgt	tg	04
aggaacgcct	ggggtttgtt	gtgaattccc	gt	tgaagtgaaa	ctacaaaaat	10
ttattgataa	-	attgaagact	ttat	aaat	actaaaaaag	9
aaatctcagc	tctatttaat	tcggatgaag	atttgcagga	agtgattaaa	caatggatgc	22
gacaaaaaa	actatccagg	ttg	tttgggttaa	gag	tgtgattgga	∞
acttcttgta	tcaacatatg	cgaaccaaac		acatttacca	acgtacccat	34
ttgcttataa	tcgatattgg	attgatgata	ataataaaaa	tcaatcgact	gtagttgaaa	40
aaaccaacac	tattattaaa	gagagaaaag	agcaagttag	attagagccg	cttgatttta	46
tggaaaggaa	aaaacttaat	gtccatgaaa	aaaagccatt	tcattgttct	ttatcaactc	$^{\circ}$
m	ctggtccggg	gcgaacactc	agacatccag	tggtaaacaa	agacgatctt	58
tgta	gcttaaacaa	gacgatatat	D	taaatcagcg	gc	64
ctgttgaagg		acattaaatc	gaactggtgt	catgacagaa	agcttaagct	70
cctactcaga		aactatgctg	tatgtgtg	tggagaagta	ttggacttgg	9
ggtgtgccta	Ú	ದ್ದ	gttggag	gggct	gtattagccg	82
tagatatgga		ctggaaatat	acc	ttcg		88
cgcgtttatc	gacacaagta	ggcaagttgc	tggatcttca	IJ	gaacgttttg	94
ctgcgatcca	tgcgagccga	gtgctacact	ttttaaaccc	agg	cagcaagcat	00
tacaaaaaat	gtatggctgg	ttaaaacccg	gaggaaaatt	atttattgtg	acggataccc	9
cttatatggg	ttattgggcg	agcaaagcag	gg	aactcgtaaa	gcagcagggg	12
atttatggcc	aggctacata	gataatgttg	gttctcactt	taatactaaa	gagatagaag	
d a	τC	ccgatggacc	cggaaatact	gcatcgtgaa	tgcaaaaat	4
ttggttttca	tgtagaagag	actgttttt	ttgcaggaga	agcctttgca	ctaaataata	0
gtttagaaaa	atcaggtaga	gagcatgttg	gtataatagc	attgaagccg	gaattggaag	9
ttaag	gcttgagaaa	ctattg	cagtacggaa	aactgaaacg		3420
aaattagcct	actgcaaata	cagacaatgc	ttagggagag	tcttgaattt	gaattggata	3480

4920 5160 4320 4560 4620 4740 4860 4980 5100 4380 4500 4680 3660 3780 3840 3900 3960 4020 4080 4140 4200 4260 4440 4800 5040 gcgcatttcg catttttctc tatgtacagc ctaatttatc ataatttata aacctccgga cgatcaacat tttcccttg caatggataa wtagactgta cactgaggct attgggacca actgcgacga gggaaagcga aatttagctc ctcaactatg gattcgcttg taagcggtta tactgcaytg tgttatacac atttatcaat tcattggatg caattaattg gtaaaccaat ccaattaaag gagcaagaac gaaatcactg gactcgataa caaattattt cagcggaatc caqaaaatc ttagtgacca tatcccaata tttagggttg attatctatg tttaagaaaa agaagccgac ttatggtgaa cacgcatgag acaaattgca tgagttgaat gcgagcaaga cggaagatct tatggtctcg gtggtcacta cctctgtgtt tcaatgtgct tyttttaact aactcacgat tctgattttt gcttgctttg gaaataatat wtcttgcctc atttcccact gttgttataa ggctgaaag aacaattagt cgatgattgg tttcccagc atttagactc cacaaaagat cttttgctta gtcactatgg tgataagtgc atttgatgca caacggataa ttcgctatcg kgggcsrwtt tgcctgattg tgaagctggt atattgatat tagccattta aaatgacgag cttttacaga tggcagagtt tatcaacaat tagggattga aactccatga aaaccatttt atttgacttg gaaaaatgga aagcagttag gaaaagcttt atgetteact ttatctggct atatgaagcg attgtatatt ccgataatac mccamccmcc acaattwtcm atccctaata taagcataac ttgtttattc acgttttttg taggtgaaaa gtgtgcaaac ttgtcagaca gagttaaaac aaaatcaata tttgtagaac cagaatagtg ggatacaaac actcaaagaa tegetttatt acaagggaaa aagcttcgat caaccatcta atggatggta cgtccgagtg gcttcgtcg ggaaaactgg aaactttcat attattgagt gaaggtactt ctagatatgg ataagtaggt actctgtaag tacwtagagg tgkaatcttt ctggatacga gactgatata taacdccata tgttataagg agtccagtcc gaaaakgraa gctaactgtg taaaaggcgt aatctaatta gtaataattc acaaccgtat ttacccaaat aaagcagcat agctttgctg attccttac agccagtgag ttatattttt tcagggcaag ctgagccgct tatgttggat aaaatacaa tgattaccat tgtcacaccg tttgaaagt gccatacctg tatgcaaact gtacgcatac ttagatgtcc tgattttca ttatttaaa taagtgctca tattcttaaa tagagcccgg atggagtcac cgaatgatga aattattgaa atgaactacc aaatcggcgc cttgtacggc ttagagacaa taacgcgcag gtgcttgaag cacaaggcgt ttaggtaaac caaaaagacc ttagttgcca tggttacgct tgtggtagcc atgttttata tttattcctg attccttyt tcatwmaggt aagtatatga ggtatttttg aggaaagcct

FIG. 22S (cont'd)

FIG. 22S (cont'd)

6120 6480 6540 0099 0999 6720 6780 0069 5700 5760 5820 5880 5940 0009 0909 6180 6240 6300 6360 6420 6840 5400 5460 5520 5580 5640 agttgctggc aaggaaactc taacatcatc taatagtmmw ctcaatattt gaggtttgcg tgcgtgcgag ttcttggtgg tcacmttttt ggtttatcaa attattgatc aagtcctata gataaatgtg crractgaag gaggaaccag ccatcattaa aatgattaaa magasaaaa tttttttgc contgatttt atcggaggtt cctgattttt tctttcatt agtgkkttwt aatagactat ggctttacgt agcaagtatg aacaaatacg ccatamagtt gttttggtaa tcaakaawam tyttacamaa gaancttggt atcactcccc tggctttggc gggaacctgc tgamtaaagc gtatttataa qttctatggg agggtcatcg tcttaatggc cggggcgacc aacgtattt ttnctaacga tccgttgygg aattggtaag aactcattga tegtegacat tccacatttt ttatataacc aatgtactgt tctggtggtg gaggatctct aacatggatt taggcattgt tcgaacatct tattcagtat aggattgcac ggtttgataa agaaatttat aatttctgca gcaggagaca cagtatagtc cgatgagatg cataaacctc aaattggatt ggccttaaaa atcggtgaca agtgaaaaca cttgcttttg cgttaaacaa gscaawaaag cgtgggcttg taccttctgg ctgtagactt gctcgaccca tatgagtatg ttgtygcttc ccataataat tggtgccggt cgcggtagct aaagcttttg gttggacaat aaatcgagcg tattaatggg tttactgctg atattatcag wgccgctgaa tggggttatc tttgaaataa agagcaagat accatatttg tacaggtaac ttgcyggtgg atcattaatg acctcctccc gtgtaccaaa gcaggttttg aaracaaag gagtcgatat gacagacagt gggagagaac gcgcagatcg atagttttta tcagcatatc ttgcttcaat cgtcatttcc gggtaccaat gttctgatag tgtttgtgat gcgctaaagt gttctattca aaatcattgg tttgaggaat acgettgett ataacggagt tgatattcca wtatymarra gtttgtaatt gattatgatt agcagttggg tactgctcaa aaggtgcgat caaaaccttc aaattgcgcg attetttgcg gagtggattt ctgaatcatt gcaggccttg aatgttggtt traascagcc acgtgacaat aaaagtgcgg aaaagcgtgg gtacawagct cgaaagttaa ggagttgttg gcttcagata ttaccgtttt acgacttctt tytagggcct catactgcgt tcactkaaag tcacaatcat acactgcctt ctgccattcc ckwttqtccm aaaaagtgc ttgcatcaat ggtgtagtta ctgcacatca tacgctgatc tttagctttg tttatctatc ttagccattg attgaacgaa gatagattca gtatgatgca aatgtcttac tcgtattgca tacttgtgtt ytgaagagtt ggccamcatt aacctcttag ctcatacgat ttaacgtcgc tacaqtaact ctttcaaag tgtctccaat catatggcta cacatcaccg ccnaggtcc gcacagacat gtttgtctt

ckgraagmsk	wwmckaaaws	srwwgctgtc	gtagggggtg	gctatattgc	tgttgagttt	7020
gcaggtattt	ttcaagggtt	gggtagtgac	attcatttat	tgtatcgagg	tgatttattt	7080
ctaaqqqqat	ttgatcgaga	tgttcgtgaa	tttactgcca	gtgagatgat	aaagaaagga	7140
gtaaatttac	attttaatcg	cagtgtttct	gctattgaaa	agcaagtgga	tggtagccta	7200
ttagtgggat	taactgatgg	ctcaaccttg	gaagtggata	attat	tgccacaggt	7260
yqaaaaccar	rmmyygaggs	wyytggktyt	ksawwrkrsc	gctgtmaaas	krrckyaaaw	7320
gggaagcett	tycaagtnta	actgakaayt	tttcaaanca	agcagaagcc	wbtytawttt	7380
aygcaagtwa	ggggawtgtt	aatagaccgg	tatgncaatk	aacvccaagt	tgstctsggc	7440
tgaarggtat	ggmcttaagc	mcagctttta	tattagtgac	tmcagtggat	taataanggt	7500
agattatggg	ttttsgttgc	cmagaaccgg	tttttnttgc	caamcccaan	tatgggcacc	7560
gtaggttata	gtgaagagcg	ggccaagrgm	wragtttgat	acggtgbctg	tttadaaatr	7620
gatttttaaa	൯	ncatacgctg	agtgncttct	tngatngagc	ggactttttg	7680
tgaagtnwat	tagtagancc	aaaacnmcag	ataragtcat	aggttgtcat	atggtaggcg	7740
ctcracgcgg	gagaaatctt	gntattgcca	taaaggcagg	agccaccaaa	gcagactttg	0
atagcaccat	מ	cctacggttg	ccgaagagtt	tgtgactatg	agagagcctg	7860
cgtatatatt	atagcaatag	gccaagggca	gctacttgtt	ttagtaaggc	tatttttaca	7920
aatagtacca	tcagataata	taktgcggta	gtttacgttc	yamtgaatca	kcagtkgtma	7980
wakkagtcat	atagcaygms	gwrtkatasg	kgkattcata	yyrtrcawaa	syaaykckgt	8040
cgtcgaggga	yataatkctc	akrataatat	wcrttcgasw	cctgtysakk	cccwaccacr	8100
satacywssc	aaagarttgy	agtratcrag	ckwtgsakws	tgamcgntgs	matnakgttc	8160
aacgcatgkc	ccagcctkat	agcatcygac	caytsagggc	caawrkgmgt	taaycccagt	8220
gtwcngttns	atrnrsgacs	mgktaatggt	mggtgwttst	wrkawgccsg	mtcttmmaaa	8280
mcmsanngmr	acgtacaagm	rtgwcaccmg	krkgcytrya	snmattmgct	atcamrcnca	8340
yssrrgggkk	ggycttmawa	arargggcaa	aaaaaaaan			8380

FIG. 22S (cont'd)

SEQID NO:11	
Arg	
Phe	12
Ser	
Glu	
Ala	
Leu	
Thr	10
Glu	
Val	
Glu	
Ile	
Pro	ហ
Asp	I
Leu Gly	
LVS	. ⊢

Ser	
Val Lys	
Val	30
Ser	
Gly	
Leu	
Ala	
Cys	25
$\mathrm{T}\mathrm{yr}$	
His	
Arg	
Lys	
Asp	20
Thr	
Tyr	
Val	

FIG. 22T

SEQID NO:12	
Phe Arg	
Phe	12
Ser	
Glu	
Ala	
Leu	
\mathtt{Thr}	10
31u	
Val (
Glu	
Ile	
Pro	Ŋ
Asp	
G1y	
Leu	
Lys	Н

FIG. 227

FIG. 22V (cont'd)

Ser 160	Pro	Met	Glu	Asn	Asp 240	
Lys	Ala 175	Ala	Met	Ser	Phe	
Leu	\mathtt{Thr}	Glu 190	Leu	Ala	Pro	
Phe	Asp	Arg	Glu 205	Lys	Ser	
Phe	Ser	Ser	H H G	11e 220	Ser	
Leu 155	Leu	Val	\mathtt{Thr}	Thr	Thr 235	
Leu	Ser 170	Gln	Thr	Asn	Lys	
Arg	$ ext{T} ext{V} ext{r}$	Leu 185	$\dot{\text{Lys}}$	Gln	Thr	
Val Glu Arg	LYs	\mathtt{Thr}	Val Val 3	Glu Lys 215	Ser	
Val	Lys	T V r	Val	Glu 215	Ser	
Cys 150	$\mathtt{T}\mathtt{Y}\mathtt{r}$	Ala	Phe	Ile	Tyr 230	
Ala	Thr 165	Leu	Ala	Phe	$\mathtt{T} \mathtt{yr}$	Asp 245
Asn	Asp Thr '	Asp 180	Val	Ala	Cys	Thr
Leu	Ser	Leu	Arg 195	Asn	\mathtt{Gl}_{Y}	Ser
Cy s	Gln	Leu	Ĺγs	Leu 210	Lys	Glu
Glu 145	Arg	H H H	\mathtt{Thr}	Lys	11e 225	Asn

SEQID NO:14	
Phe Glu	
Phe	15
Ala	
Lys	
Ser	
Leu Ser Lys	
Ala	10
Ala Ala	
Glu Leu	
Glu	
ПРе	
Pro	വ
Asp Pro	1
G14	
Len	
Ara)

Ser
Lys
Val 30
Ser
Gly Ser
H H H
\mathtt{Gl}_Y
Cys 25
Phe
Gln
Lys
Arg
Gln 20
Thr
$\mathtt{Gl} \mathtt{Y}$
Glu

Lys	
H H H	
H 5	
Leu	
31Y 45	
Val (
Val	
Gly Val	
Ala	
A1a 40	
Val A	
Asp	
Leu	
His S	
Gly His	
H H H	
Asn	

$$\mathtt{Gly}$$
 val Ser Ser Phe \mathtt{Gly} Ile \mathtt{Gly}

FIG. 221

SEQID NO:16	
Arg	
Tyr	15
Val Tyr	
Asp	
Ala	
Leu	
Ala	10
Gln	
Leu	
Glu Leu	
Ile	
Pro	Ŋ
Asp	
G1y	I
Leu	
Gln	Н

Val Asp Asn Trp Arg Lys Asn Thr Cys Ala Leu Gly Ser Val Lys Ser 25

Asn Ile Gly His Thr Ser Ala Ala Ser Gly Val Ala Gly Ile His Lys 35 45

Val Leu Leu Ser Leu Lys His Arg Gln Leu Val Ala Ser Leu His 50 60

Asn Ser Ala Asn His His Phe Asp Phe Gln Gln Ser Pro Phe Tyr Val 65 75 80

Asn Thr Gln Leu Arg Pro Trp Asp Gln Ala Glu Gly Leu Glu Glu Ser 85

Arg Arg Ala Ala Val Ser Ser Phe Gly Val Ser 100 FIG. 22W

SEQID NO:18	
$\text{Gl}\gamma$	
Val Phe	15
Val	
Ala	
Ala Ala	
Ala	
Ala Ala	10
Thr	
Leu	
Glu	
Met	
Pro	Ŋ
Asp	4
G1<	•
TVT	4
Glu	Н

Arg Gly Arg Asn Gln Lys Asn Arg Leu Leu Val Gly Ser Val Lys Ala 20

LysAsn Ile Ser His Leu Glu Ala Ala Gly Gly Ile Ser Gly Leu Ile 35 45 Ala Val Leu Ala Met Gln His Gly Val Ile Pro Gln Gln Leu His Cys 50 60

Lys Glu Pro Ser Pro His Ile Pro Trp Lys Arg Leu Pro Leu Asp Leu 65 75 80

Val Glu Glu Thr Val Trp Pro Glu Ser Glu Glu Arg Ile Ala Ala 85

Ser Asp 100 Val Thr Ala

SEQID NO:20	
${\tt Gly}$	
Val Tyr	12
Val	
Lys	
Ser	
Leu	
Ala	10
Val Arg	
Glu	
Ile	
Glu	Ŋ
Asp	
ı Gly	i
Leu	
Gln	Н

Asp Ser Gln Ser Thr Thr Tyr Leu Gly Ala Val Lys Ser Asn Ile Gly 25

His Ala Asn Ala Gly Ala Gly Ile Ala Gly Phe Ile Lys Thr Val 35 45

Ser Leu Tyr His Gly Lys Ile Ala Pro Asn Ala Gly Asn Thr Glu Pro 50 60

Asn Ala Ala Leu Asp Ala Phe His Phe Ala Leu Pro Lys Thr 65 75 80

Leu Leu Thr Trp Pro Glu Cys Asp Val Arg Arg Ala Ala Ile Ser Ser 90

Leu Gly Phe Gly 100

FIG. 22Y

SEQID NO:22	
G1y	
Tyr (12
Val	
Ala	
Lys	
Ile	
Ala	10
Phe Gly Ala	
Phe	
Glu	
Ile	
Pro	Ŋ
Asp	ı
G1y	ı
Leu	
Ala	\vdash

Pro Gly Arg Ser Ser Pro Leu Val Leu Gly Ala Leu Lys Ser Asn 25

Val Gly His Leu Glu Ala Thr Ala Gly Val Ala Ala Leu Ile Lys Ala 35 45

Leu Val Leu Gln His Gly Val Ala Pro Ala Asn Leu His Cys His Lys 50 60

Ser Glu Thr Pro Leu His Ser Ser Leu Gln Leu Leu Gly Gly Tyr Gln 85 Leu Asn Pro Leu Leu Asp Ile Asp Gly Phe Asn Val Val Phe Pro Gln 65

Phe Val Arg Val Trp 100 FIG. 22Z

SEQID NO:24	
Asp	
Phe	12
[] S	
Asn	
Gln	
Leu	
y Leu Leu Gln Asn H	10
$\mathtt{Gl}\mathtt{y}$	
Trp	
Arg	
Leu	
Leu Leu Arg	വ
Ser	
Xaa	
Trp	l
Thr	, - 1

Pro Tyr Thr Glu Lys Lys Asn Tyr Cys Ala Ser Gly Ser Val Lys Ser 20

Asn Ile Gly His Leu Thr Ala Ala Gly Val Ser Gly Val Val Lys Val 35

Leu Leu Ala Leu Lys His Lys Gln Leu Pro Pro Ser Cys His Leu Val 50

Lys Ile Asn Glu His Ile Asn Leu Glu Asp Ser Pro Phe Tyr Ile Asn 65 75 80

Thr Ala Leu Lys Lys Trp Glu Val Ser Glu Gly Glu Ala Arg Arg Ala 85

Ser Phe Gly Ser 100 Ala Val Ser

SEQID NO:24	
$\mathtt{Gl}\mathtt{Y}$	
α	15
Ala	
Gln	
Lys	
Leu	
Ala Leu Lys	10
Ala	
Glu Met Ala	
Glu	
Ile	
Pro	Ŋ
Asp	ı
Gly	•
Len	
Pro	,

Thr Gln Lys Lys Tyr Cys Ala Ile Gly Ser Val Lys Ser Asn Ile 20

Val Gly His Ala Asp Thr Ala Ala Gly Val Ala Gly Leu Ile Lys Thr 35 Met Ala Leu Lys Ala Arg Gln Ile Pro Pro Ser Leu His Phe Glu Thr 50 60

Pro Asn Pro Gln Ile Asp Phe Ala Asp Ser Pro Phe Tyr Val Asn Thr 65 75 80

Thr Leu Lys Asp Trp Asn Thr Asn Gly Val Pro Arg Arg Ala Gly Val 85

Ser Ser Phe Gly Ile Gly 100 FIG. 228B

SEQID NO:28	
Gln	
$\mathtt{T}\mathtt{y}\mathtt{x}$	12
Ala	
Lys	
Thr	
Leu	
Gly I	10
Val	
Val	
Glu	
Ile	
Pro	Ŋ
Asp	I
Gly	ı
Val	
Val	Н

\mathtt{Thr}	
Lys	
Val	30
Ser	
G1y	
Leu	
Gly	
Cys	25
TYr	
Gln	
Arg	
Glu	
Gln	20
Thr	
His	
Ala	

Lys	
Leu	
Leu	
Gly Leu	45
Ala	
Gly Ile	
G1y	
Ala	
Ala	40
Ser	
Asp	
\mathtt{Thr}	
His	
Gly	35
Ile	
Asn	

Ile	80
Phe	
Phe	
Pro	
Ser	
Asn S	75
_	
S Asp Leu Asp Leu Glu	
Asp	
Len	
Asp	70
Pr	
Asn	
Pro	
Thr	
Glu	6.53

Leu Ser Ser Phe Gly Leu Gly 100 FIG. 22CC

Met Val Val Val Glu Glu Phe Phe Val Ser Tyr Arg Asp Ile Leu Lys $\mathcal{SEQIDNO}:38$ 1

Ala Leu Gln Asp Glu Lys Ile Ser Phe Glu Glu Ala Lys Tyr Lys Leu 25

Arg Ile Lys Arg Lys Asp Lys Lys Ser Lys Gln Arg Leu Asn His Asp 35 40

Glu Leu Asn Arg Ser Met Asn Ile Thr Pro Lys Ile Val Asn Asn Tyr 50 60

Gly Leu Val Leu Leu Gly Gly His Leu Phe Glu Glu Leu Arg Leu Ser 65 75 80

Glu Trp Lys Ala Ala Asn Pro Asn Pro Asn Glu Val Ser Ile Gln Val 85

Thr Leu Cys Val Gln Gly Leu Phe Thr Asp Ile Ser Lys Ala Ser Ala

Tyr Pro Phe Val Pro Gly Phe Glu Val Ser Gly Val 120 Tyr Pro Ser His 115 ile Arg Gln Val Gly Glu His Ile Thr Asp Leu His Val Gly Asp Glu 130

FIG. 2200

			•	70	. .	ď	1	G
Val 160	Phe	Ser	Thr	LYS	Leu 240	Asn	Val	Ser
${\tt T}{\tt Y}{\tt r}$	Ser 175	H; s	Gln	Leu	Ala	Cys 255	Asp	Asn
Ala	Leu	TYr190	H H G	Arg	Leu	Thr	Val 270	Leu
Ala	Asp	Val	Leu 205	Ala	Lys	Lys	$\mathtt{G1}\mathtt{y}$	$_{285}^{\rm Gly}$
H; s	$ extstyle{L} imes extstyle{S}$	$\mathtt{Th} x$	п П	Leu 220	Asp	$\mathtt{T}\mathtt{V}\mathtt{r}$	Arg	Gln
G1 <i>Y</i> 155	Pro	Ala	His S	Gln	Glu 235	Asn	His	Gln
$\mathtt{Gl}\mathtt{Y}$	Lys	Phe	Asp	Leu	Arg	Phe 250	${ t G1} Y$	I e
Met	Arg	Ala 185	Asn	Ala	S P	Val	Ser 265	His
Ser	Val	Leu	His 200	Met	Ser	$\mathtt{T}\mathtt{y}\mathtt{r}$	Val	Glu 280
Ser	Val	Pro	Ser	Leu 215	Thr	Pro	Arg	\mathtt{Gl}_{Y}
G1Y 150	$\mathtt{T}\mathtt{yr}$	Phe	Leu	$\mathtt{Gl}\mathtt{y}$	$\texttt{Gl}\underline{Y}$	Leu	Gln	Pro
\mathtt{Thr}	Asp 165	Ser	$ ext{L} ext{ys}$	Cys	$\mathtt{T}\mathtt{yr}$	Ala 245	H H e	Leu
Phe	Gln	Cys180	$\mathtt{G1}\mathtt{y}$	\mathtt{Gly}	$C_{Y}s$	Trp	Glu 260	Met
Ala	Pro	Ala	Arg 195	$\mathtt{Gl}\mathtt{y}$	Val	Gln	Glu	Asn 275
П 1	Val	Asp	Ala	\mathtt{Thr}	$Cy\mathtt{s}$	Lys	Asp	Leu
Val 145	\mathtt{Thr}	G1u	Phe	Ala	Gln 225	Leu	H H e	Val

ren	Val 320	Phe	Asp	Glu	Val	Asp 400	$\mathtt{Gl} Y$
GIУ Leu Leu	Ser	G17 335	$\mathtt{G}1\mathtt{y}$	${\tt Gly}$	Val	Ile Ile	G1 <i>Y</i> 415
GIY	Gln	Asp	Ser 350	H H	Val	Cys	Thr
Hi.s	Asn	Asp	Glu	Gln 365	Lys	Arg	Ala
Met 300	Phe	$\mathtt{G1}\mathtt{Y}$	H H O	Asp	G1 <i>y</i> 380	Gln	Thr
Ser	Arg 315	Lys	Trp	Leu	H H	Arg 395	Leu
Leu	Leu	Asn 330	Ser	Pro	H13	Cys	Ala 410
Glu	Ser	Leu	Val 345	$\mathtt{T}\mathtt{V}\mathtt{r}$	G1u	Met Asp	Ala
Leu	Ser	Leu	Met	11e 360	\mathtt{Gl}_{Y}		Met
TYr 295	Leu	Gly	Gln	Arg	Glu 375	Pro	Gln
Arg	Ser 310	ren	Ala	Ser	Ser	Glu 390	$\mathtt{G1Y}$
${ t Gl} Y$	Val	Leu 325	Leu	Val	Val	Thr	Gln 405
$\mathtt{G1Y}$	Pro	Asn	Val 340	\mathtt{Thr}	$\mathtt{T}\mathtt{yr}$	Ala	$ extsf{L} extsf{y} extsf{s}$
Lys	Glu	H H	Ser	Ser 355	Arg	Thr	Leu
Ala 290	Asn	\mathtt{Thr}	\mathtt{Gly}	Val	Leu 370	His	Val
Leu	Thr 305	Gln	H	Leu	Ala	Ser 385	Asn

FIG. 22DD (cont'd)

Lys Ser Arg Val Trp Gly Gly Thr Gly Val Asn Asp Lys Pro Ser Pro 420 420

ĞΤΫ	
Ile	
/al	
la 1	445
Ile Glu Glu Arg Leu Leu Glu Gly Ile Ala Val Ile Gly	Δı,
\mathtt{Gly}	
Glu	
Len	
Leu	440
Arg	
Glu	
Glu	
I]e	
G1y	435
Val	435
Ala	

Gln	
Trp	
Phe	
Gln	
Glu	460
Leu	
\mathtt{Thr}	
Lys	
Ser	
Н	455
Pro	
TYr	
Gln	
Gly Gln	ı
Ser	450
Leu	

Ser	H H G	Asn	Leu 640	Met	Gly	Ser	Trp	Ser 720
Leu	Ala	Cys	Val	Glu 655	Asn	Met	\mathtt{Gl}_{Y}	Ser
11e 590	Leu	Ser	${ t Gly}$	\mathtt{Gl}_{Y}	Ala 670	Arg	Arg	Pro
Ser	Cys 605	Glu	$\mathtt{Gl}\mathtt{y}$	H1.8	Arg	Lys 685	H H G	Ala
Ser	Pro	Ala 620	Ala	Ser	Gln	Leu	Val 700	\mathtt{Thr}
Asn	$\mathtt{Gl}\mathtt{y}$	H H H H	Leu 635	Leu	Asp	Leu	Ala	11e 715
Asn	Lγs	Ala	Ala	G1Y 650	Phe	Val	Arg	$\mathtt{G1Y}$
\mathtt{Gl}_Y 585	Leu	Val	Leu	ө Н	Thr 665	Val	H H	Asn
Leu	Asn 600	Leu	Asp	His S	Phe	G1 <u>y</u> 680	Pro	Ser
Glu	Leu	Ser 615	Ser	Leu	Cys	Val	Asp 695	Arg
Lys	Phe	Ser	Thr 630	Ser	Arg	$\mathtt{Gl}\mathtt{y}$	$\mathtt{G1}\mathrm{y}$	G1y 710
Met	$\mathtt{T}\mathtt{y}\mathtt{r}$	Ser	$\mathtt{Gl}\mathtt{y}$	Pro 645	${ t Gly}$	Glu	Asp	Asp
Leu 580	Ser	Cys	Leu	\mathtt{Gl}_Y	Asp 660	$\mathtt{Gl}_{\mathbf{Y}}$	Arg	Gln
Glu	Ile 595	Ala	Val	Pro	Val	Pro 675	Val	Asn
Leu	Arg	\mathtt{Thr}	Leu	Met	Ser	Val	Ala 690	Val
Ser	Ala	Asp	Ser 625	Leu	Leu	Phe	Asp	G1Y 705

. Phe Asn Ile	7.35
Val Tyr Gln Arg	
Gln	
$\mathrm{T}\mathrm{yr}$	
Val	730
Glu	
Gln	
Leu	
Ala Leu Glu	725
Ser	
Gln	
s Ala Gln	
Lys	1

Ala 880	Asn	Ser	Arg	Asp	Lys 960	His	Asp	$\mathtt{T}\mathtt{yr}$
Ala	His 895	Arg	Cys	Met	Glu	TYF975	Leu	Gln
Phe .	Ser	Lys 910	Glu	Ala	Val	Cys	Arg 990	Ser
Ser	Lys	Leu	Met 925	Glu	Leu	Asp	Phe	Gln 1005
Glu	Ala	Phe	His	Arg 940	Ala	\mathtt{Thr}	H H G	Ser
11e 875	Ser	H H	Asp	\mathtt{Gl}_{Y}	Gln 955	ПЪ	Glu	Ile
\mathtt{Thr}	Leu 890	Leu	e H	Val	$ ext{L} ext{Y} ext{S}$	Thr 970	Thr	\mathtt{Trp}
${ t G1Y}$	Pro	Leu 905	Thr	Gln	\mathtt{Thr}	Lys	Ser 985	Ser
Thr	e H	$\mathtt{Th}_{\mathcal{I}}$	11e 920	Leu	Asn	Glu	Pro	Asn 1000
Ser	H H G	Gln	Lys	Thr 935	Val	Lys	Lys	H H H H
His 870	Val	Ala	Lys	$\mathtt{T}\mathtt{Y}\mathtt{r}$	11e 950	Glu	Asp	Leu
Pro	Thr 885	${\tt T} {\tt Y} {\tt r}$	Ala	Ala	Phe	Leu 965	Ser	Val
Leu	Ser	Thr 900	Asp	Leu	Ser	Phe	Asp 980	L_{Y}^{S}
$\mathtt{T}\mathtt{y}\mathfrak{x}$	Ala	$\mathtt{T}\mathtt{yr}$	Thr 915	Asp	H H H	Ala	Phe	Asp 995
Glu	Hi.s	Leu	Val	Leu 930	Arg	Asn	Leu	Asp
Glu 865	Asn	Ser	Gln	Leu	Lys 945	Leu	$\mathtt{T}\mathtt{Y}\mathtt{r}$	Glu

								_
Thr	, Thr 1040	$\mathtt{T}\mathtt{yr}$	Asn	H H O	Leu	Phe 1120	$\mathrm{T}\mathrm{yr}$	$\mathtt{T}\mathtt{yr}$
Trp	Pro 1	Arg 055	Gln	Glu	Lγs	Val	Lys 135	$\mathtt{Gl}\mathtt{Y}$
Asp 1	Leu 1	Pro Arg 1055	. Thr (Ala	Leu	Arg	Asp Lys 1135	Asp Ala 1150
Ile A	Ser I	Lys E	Thr]		Leu]	His	Val.	Asp 1
3p I	H H S	Glu L	Thr T	Val Val 1085	1100 I	iln F	Ile 1	Gln A
eu Asp 1020	7.0 5.0 5.0 1.1	Pro G	Gln T	Asp V	Gln Trp 1100	Leu Phe Gln 1115	Gly 1	Leu (
Į.	1035				ტ ფ	u P 11		H H
${ t G1}{ t y}$	Arg Arg 1035	Leu 1050	His	His	Glu	Leı	Ala 1130	Val
Gln Gly Leu Asp 1020	Pro	Trp Leu 1050		Asp	Leu	Gly	Ser	Leu Ser 1145
Ser (Thr	Tyr	Ser Asn 1065	Thr 080	Glu	Met	Gln	Leu
	Ser	Arg	Val	Asp 1	Gln 1095	His His	Arg	Glu Cys
11a :		Asp	Pro	Ile Asp Thr Asp 1080	Gln Gln Glu Leu 1095		Leu	
Glu Ala Trp 1015	His Ser 1030	Arg 7	His		His	Leu 1	. Ala 1125	H E
Ala (Thr 1	Ala Arg 1045		Phe Ala	\mathtt{Thr}	Gln	Thr Ala 1125	, Trp 1140
ren 7	Tyr	phe.	Ala Asn 1060		Lys	Val	Ala	Trp Trp His 1140
Lys]	Leu	Pro	Ala	Ser Arg 1075	Met Gln 1090	Phe	Thr	Asp Arg
His Lys 1010	Leu Leu 1025	$_{ m L}$ $_{ m L}$	Asn	His	Met 1	Leu 1105	Glu	Asp

	**	0.0	()	(ı	ч	מ	0) 0	ω
Ser	H1.8	Asp. 200	${\rm Th} r$	${ m Tyr}$	Leu	Arg	Ile 1280	Cys
Glu	Lys	Asn Asp 1200	[16 215	Leu	ASD D	Ala	Ala	TYr 1295
Leu G	Tyr 1	Ile A	Leu Ile 1215	Glu Gly Leu 1230	Gly Asp	Asn	Thr	Thr Tyr 1295
				1 12	Б			
A1a 165	Glu	Leu	Gln		Va. 124!	Ala	Thr	Asp
Gln 1		H H e	Glu	Met	Cys J	Asp 1260	$\mathtt{G1}\mathtt{y}$	Ile
Ala	Asn Thr 1180		Gly	Liys	Gln	Ser Arg Asp 1260	G1y .275	H.s
Ala Ala Gln Ala 1165	Trp	Leu Ala 1195	Ser 1210	Glu Lys	Asn Gln Cys Val 1245	Ser	Thr Gly 1275	Asp 1290
Ala	Arg	\mathtt{Thr}	Leu	Met 1225	S S	Leu	$\mathtt{G1}\mathtt{Y}$	Gln Asp 1290
Val	Ser	Lys	Val	Gly Ser Met . 1225	Asp Tyr (1240	Arg	Ala	$\mathtt{T} \mathtt{Y} \mathtt{r}$
Ser Val		$ ext{Lys}$	$\mathtt{Gl}\mathtt{y}$	Gly	Asp 1	Glu Ala 1255	Gly	Ala
	Trp Trp 1175		Pro	Pro Asn	Ala		Glu Ile 1270	Gln
Asp Asp	Ala	Pro Glu 1190	Ala Leu 1205		Ile	Ile	Glu	Leu 1285
Lys	Glu	Asp	Ala 1	ile Phe 1220	Arg	Phe	H H H	Met
	Gln	Asn	Gln	H 10 H 17	Asn 1235	Gln	H H	Pro
Glu	Glu Ser 1170	gln	Cys Leu	H H	Asn	Leu Val 1250	Arg 5	Val Leu Pro Met Leu 1285
Leu	Glu 1	Tyr (1185	Cys	Asp	Lys	Leu	11e	Val

ΙΫ́Υ	
His Gly Gln Glu His Tyr	
Glu	. 3 L O
Gln ,	7
$\mathtt{G1Y}$	
His	
Met	
Leu Met	1305
Phe	•
Ala	
Lys	
Ser	
Val Ser Lys	1300
Asp	
Thr Asp	
Tyr .	ı

Gly Glu Gln Tyr Pro Tyr Leu Ser Tyr Cys Leu Cys Asn Ile Glu Gln 1315

Asp Leu Val Ala Gln Gly Ile Ser Val Gly Asp Tyr Asp Ile Ala Ile 1330

His Val Arg Gln Ala Leu Ala Ala Asn Gly Leu Leu Ile Leu Asn Glu 1365 Ala Ala Asn Val Leu His Ala Thr Arg Asn Ile His Glu Thr Val Ser 1345

Phe Ser Gln Lys Ser Val Phe Ser Ser Val Ile Phe Gly Leu Ile Asp 1380

Gly Trp Ala Leu Ser Glu Asp Thr Gly Leu Arg Ile Pro Gly Ser Pro 1395

Gly Leu Tyr Pro Lys Gln Trp Gln Ala Val Leu Glu Ala Ser Gly Phe 1410

Gly Asp Val Glu Phe Pro Leu His Asp Ala Arg Glu Leu Gly Gln Gln 1425

Ile Ile Leu Ala Thr Asn Ala His Ala Asn Val Ala Ser Asp Leu Ala

Thr Ser Val Ile Asp His Ala Pro Lys Arg Leu Pro Ser Ala Glu

Ser Met Asp Glu Arg Val Ser His Asp Ala Met Met Lys Ala Ser Val 1475

Lys Gln Leu Leu Val Glu Gln Leu Ser Gln Ser Leu Lys Leu Asp Met

1500 1495

Asn Glu Ile His Pro Asp Glu Ser Phe Ala Asp Tyr Gly Val Asp Ser 1505 1520

Ile Thr Gly Ala Ser Phe Ile Gln Gln Leu Asn Asp Thr Leu Thr Leu 1525 1535

Thr Leu Lys Thr Val Cys Leu Phe Asp His Ser Ser Val Asn Arg Leu 1540

Thr Ala Tyr Leu Leu Ser Asp Tyr Gly Asp Asp Ile Ala Gln Trp Leu 1555

Ala Thr Ala Pro Ala Leu Val Asp His Pro Gln Ser Val Val Ser Gln 1570 1575

Thr Gln Ala Lys Pro Leu Pro 1595	Val Gln Gln Glu Ser 1615
Lys	Glı
Ala	Val
. Gln 1595	Pro
Thr_1	. ser 1610
r Pro Ala Ser I J	Met Glu Ser 1610
Ala	Met
Pro	Ser
Ser 1590	Leu
Arg 1	Ser 1605
Glu	Pro 1
Pro	Pro
Leu	Val
Val Leu Pro Glu Arg Ser 1585	Ser Val Pro Pro Ser Leu Ser M 1605

Ile Ala Ile Ile Gly Met Ser Gly Arg Phe Ala Ala Ser Glu Asn Leu 1620

Glu Ala Phe Trp Gln Gln Leu Ala Gln Gly Val Asp Leu Val Glu Pro 1635

Ala Ser Arg Trp Gly Pro Gln Ala Glu Thr Tyr Tyr Gly Ser Phe Leu 1650

Lys Asp Met Asp Gln Phe Asp Pro Leu Phe Phe Asn Leu Ser Gly Val 1665

Glu Ala Ser Tyr Met Asp Pro Gln Gln Arg Cys Phe Leu Glu Glu Ser 1695

Trp Asn Ala Leu Glu Asn Ala Gly Tyr Val Gly Asp Gly Ile Glu Gly 1700 1700

Lys Arg Cys Gly Ile Tyr Ala Gly Cys Val Ser Gly Asp Tyr Ala Gln 1725

Leu Leu Gly Asp Gln Pro Pro Pro Gln Ala Phe Trp Gly Asn Ala Ser 1730

Ser Ile Ile Pro Ala Arg Ile Ala Tyr Tyr Leu Asn Leu Gln Gly Pro 1755 1760

Ala Thr Ala Val Asp Thr Ala Cys Ser Ser Leu Val Ala Val His 1775

Leu Ala Cys Gln Ala Leu His Leu Asp Glu Met Glu Met Ala Leu Ala 1780

Gly Gly Val Ser Leu Tyr Pro Thr Pro Ile Ile Val Glx Val Phe Ala 1795

Trp Cys Arg Tyr 1810