

EN 653/PS 611 Energy Policy Analysis

Introduction L1 (3rd January 2019)

Preamble

#1 What are your expectations from this course?

#2 Why is energy policy important?

Delhi Pollution

Good idea?

Business

Economy | Companies | Opinion | Open economy | Markets | Alex | Telegraph Connec

Business

Rectangular Soip

World Bank Group pledges to stop investing in oil and gas exploration

The world bank will cease funding of oil and gas exploration after 2019 CREDIT: DAVID MCNEW

https://economictimes.indiatimes.com/industry/auto/news/shock-and-awe-india-has-a-date-with-electric-vehicles/articleshow/62346516.cms

What? Where?

Transport Transitions

5th Avenue New York

15th April 1900

March 23, 1913

https://therationalpessimist.com/2015/03/22/charts-du-jour-21-march-2015-battery-banter/

Clicker Questions

Class Participation

Student Engagement

https://www1.iclicker.com/

http://www.et.iitb.ac.in/TeachingStrategies.html#PI

"India is likely to experience the energy surplus of 1.1 per cent in 2016-17," says the Load Generation and Balance Report (LGBR) 2016-17 of the Central Electricity Authority (CEA), which functions under the Power Ministry.

Which of the following is true?

- i) This cannot be true since India has power cuts
- ii) Power cuts are only due to sabotage and faults
- iii) Power cuts are only due to power plant tripping
- iv) CEA reports are likely to be biased or based on incorrect data
- v) This is true. Load shedding is prevalent in many areas. This paradox has other reasons

Which country emitted the most carbon dioxide in 2018?

- i) USA
- ii) India
- iii)Brazil
- iv)China
- v) Russia

What energy source has Bill Gates invested in and championed over the last few years?

i) Biomass Energyii) Nuclear Energyiii) Solar Poweriv) Wind Energyv) Tidal Energy

Course Objective

- The course will provide the tools and techniques necessary for analyzing energy policies.
- Students will be expected to carry out a project to analyse an existing policy in a specific context or design a policy intervention for a specific goal

Evaluation Scheme

End Semester 40 marks

In semester	60 mar

Mid-Semester Test 10 marks

Weekly Quizzes 10 marks

Reading Assignment 10 marks

Course Project 30 marks

Attendance

Attendance in classes, presentations, activities is compulsory.

To encourage 100% attendance, an incentive of + 5 marks in the in semester will be given for 90%+ attendance, a penalty of -3 marks for attendance between 70-80 % and a penalty of -5 marks for attendance less than 70%.

Assignment (Groups of three)

 Analyse the nationally determined contribution (NDC) of your (allotted) country.

NDC submissions are available at:

https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx

Assignment

- a) NDC, Policies, Plans-vis-à-vis existing country situation
- b) Comment/ Critique- Comparison with India/ World
- c) Discuss country's position and strategies in the global negotiations and defend its NDC

Countries

China, USA, Canada, Germany, UK, Sweden, France, Brazil, Saudi Arabia, South Africa, Argentina, Ethiopia. Kenya, South Korea, Sri Lanka, Nepal, Russia, Indonesia

Course Project (group of three)

- Analyse an existing policy in a specific context
- Design a policy intervention for a specific goal

Suggested themes (indicative)

- a)Energy Access
- b) Sustainable Mass Transit for a city
- c) Energy R&D- policies to enable future technology development
- d) Distributed Smart Energy Systems
- e)Global Carbon Management
- f)Low Carbon Industrial Processes
- g)Low Carbon Growth strategy for a campus
- h)100% Renewable Scenario
- i)Energy from Waste

Timelines

January 7

January 14

January 22

February 5

March 7, 11,12

April 11

April 12-19 presentations) : Assignment country allotment

: Finalisation of course project groups

: Assignment submissions

Jan 24, 29 (2 hours): Assignment presentations/ discussions

: Submission of course project plan / write-up

: Interim presentation on course project progress

: Final submission of course project

: Final presentation (Extra slots to be decided for

ENERGY FLOW DIAGRAM

Energy End Uses

End Use	Energy Service	Device
Cooking	Food Cooked	Chullah, stove
Lighting	Illumination	Incandescent Fluorescent, CFL
Transport	Distance travelled	Cycle, car, train, motorcycle, bus
Motive Power	Shaft work	motors
Cooling	Space Cooled	Fans,AC, refrig
Heating	Fluid heated	Boiler, Geyser

India and World (Selected Indicators for 2012)

Population	1237 million	7037 million
GDP (PPP)	5567 Billion 2005 US\$ (4500 \$/person)	82901 Billion 2005 US\$ (11780 \$/person)
Primary Energy	33 EJ	559 EJ
Energy/person	26.6 GJ/person/year	84.4 GJ/person/year
Electricity/person	760 kWh/capita/year	2972 kWh/capita/year
CO2 emissions Per person	1626 Million tonnes	31734 Million tonnes
Per GDP	1.58 tonnes /capita/year	4.51 tonnes /capita/year
	0.35 kg /US\$ ppp	0.38 kg /US\$ ppp

Source: IEA, Key World Energy Statistics 2014

Contact

My contacts: #7883 Office DESE-CESE Building (Opp KV school) 2nd floor, Room no 12

rangan@iitb.ac.in rangan.banerjee@gmail.com

Balkrishna Surve bsurve@gmail.com

References

- M. Munasinghe Energy Policy Analysis and Modelling, Cambridge University Press, 2008.
- R. Miller and P.D. Blair, Input Output Analysis, 2nd Edition, Cambridge University Press, 2009.
- P.Meier Energy Systems Analysis for Developing countries,
 Springer Verlag 1984.
- Shell Energy Scenarios till 2050, <u>https://rjohnwilliams.files.wordpress.com/2016/02/shell-energy-scenarios2050.pdf</u> last accessed 20th February 2018.
- India Energy Scenarios 2047i ess2047.gov.in/last accessed 20th February 2018.

Sources

- http://edition.cnn.com/travel/article/solar-impulse-2-planecalifornia/index.html
- https://www.theverge.com/2017/12/1/16723186/elon-musk-battery-launched-south-australia
- http://www.3ders.org/articles/20130225-whats-next-3d-printing-to-revolutionise-the-solar-energy-industry.html
- https://www.cnbc.com/2015/10/29/crash-data-for-self-driving-cars-may-not-tell-whole-story.html
- http://www.museumofthecity.org/project/masdar-city-role-model-fora-sustainable-future/