Regression On Dummy Variables

Peter von Rohr

2023-03-27

Why

- Discrete valued predictor variables like Breed
- Assignment of numeric codes to different breeds creates dependencies between expected values of different breeds

$$E(\mathsf{BW} \; \mathsf{Angus}) = b_0 + b_1 \ E(\mathsf{BW} \; \mathsf{Limousin}) = b_0 + 2b_1 \ E(\mathsf{BW} \; \mathsf{Simmental}) = b_0 + 3b_1$$

- lacksquare Only estimates are b_0 and b_1
- Usually unreasonable, with one exception

Linear Regression in Genomic Analysis

- Regression on the number of positive alleles
- \triangleright Estimate for slope b_1 corresponds to estimate of marker effect
- Review single-locus model from Quantitative Genetics

Single Locus Model

- Assuming $d=0 \rightarrow$ genotypic value of G_1G_2 between homozygotes
- ▶ Shifting origin to genotypic value of G_2G_2

Modified Single Locus Model

- ▶ Transformation of regression on genotypes to regression on number of "positive" alleles (G_1)
- Relationships imposed by regression are meaningful

Relationships

Expected value for observation for a given genotype

$$E(G_2G_2) = b_0 + 0 * a_G$$

 $E(G_1G_2) = b_0 + 1 * a_G$
 $E(G_1G_1) = b_0 + 2 * a_G$

Differences

$$E(G_1G_2) - E(G_2G_2) = E(G_1G_1) - E(G_1G_2) = a_G$$

 $E(G_1G_1) - E(G_2G_2) = 2a_G$

Example Dataset

Exercise 3, Problem 1

Regression On Dummy Variables

- Cases that are not like genomic data
- Example with breeds
- ▶ Discrete independent variables are called Factors (e.g. Breed)
- ▶ Different values that a factor can take are called **Levels**
- ► Levels for our example factor Breed are: Angus, Limousin and Simmental

Levels To Independent Variables

Use "separate" x-variable for each level, hence each of the breeds

Breed	Independent Variable
Angus	<i>x</i> ₁
Limousin	<i>x</i> ₂
Simmental	<i>x</i> ₃
	-

Model

lackbox Observation y_{ij} stands for birth weight for animal j in breed i

$$y_{11} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{11}$$

 $y_{12} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{12}$
 $\cdots = \cdots$
 $y_{33} = b_0 + b_1 * 0 + b_2 * 0 + b_3 * 1 + e_{33}$

► Sort animals according to breeds

Matrix - Vector Notation

$$y = Xb + e$$

Models Not Of Full Rank

► Model

$$y = Xb + e$$

Least squares normal equations

$$\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{b}}^{(0)}=\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{y}}$$

Solutions

- matrix X not of full rank, use Matrix::rankMatrix() to check
- ► X^TX cannot be inverted
- solution

$$\mathbf{b}^{(0)} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{y}$$

where $(\mathbf{X}^T\mathbf{X})^-$ stands for a **generalized inverse**

Generalized Inverse

matrix **G** is a generalized inverse of matrix **A**, if

$$\mathbf{AGA} = \mathbf{A}$$

$$(\mathsf{AGA})^T = \mathsf{A}^T$$

► Use MASS::ginv() in R

Systems of Equations

► For a consistent system of equations

$$Ax = y$$

Solution

$$x = Gy$$

if G is a generalized inverse of A.

$$x = Gy$$
$$Ax = AGy$$
$$Ax = AGAx$$

Non Uniqueness

ightharpoonup Solution x = Gy is not unique

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{y} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$$

yields a different solution for an arbitrary vector ${\bf z}$

$$\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A}\mathbf{G}\mathbf{y} + (\mathbf{A}\mathbf{G}\mathbf{A} - \mathbf{A})\mathbf{z}$$

Least Squares Normal Equations

▶ Instead of Ax = y, we have

$$\mathbf{X}^T \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^T \mathbf{y}$$

▶ With generalized inverse G of X^TX

$$\mathbf{b}^{(0)} = \mathbf{G} \mathbf{X}^T \mathbf{y}$$

is a solution to the least squares normal equations

Parameter Estimator

But $\mathbf{b}^{(0)}$ is not an estimator for the parameter \mathbf{b} , because

- ▶ it is not unique
- ightharpoonup Expectation $E(\mathbf{b}^{(0)}) = E(\mathbf{G}\mathbf{X}^T\mathbf{y}) = \mathbf{G}\mathbf{X}^T\mathbf{X}\mathbf{b} \neq \mathbf{b}$

Estimable Functions

Animal	Breed	Observation		
1	Angus	16		
2	Angus	10		
3	Angus	19		
4	Limousin	27		
5	Simmental	11		
6	Simmental	13		
	<u> </u>	<u> </u>		

Model

$$y = Xb + e$$

$$\mathbf{y} = \begin{bmatrix} 16 \\ 10 \\ 19 \\ 27 \\ 11 \\ 13 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

Normal Equations

$$X^T X b^{(0)} = X^T y$$

$$\begin{bmatrix} 6 & 3 & 1 & 2 \\ 3 & 3 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \mu^0 \\ \alpha_1^0 \\ \alpha_2^0 \\ \alpha_3^0 \end{bmatrix} = \begin{bmatrix} 96 \\ 45 \\ 27 \\ 24 \end{bmatrix}$$

A solution

$$b^{(0)} = \begin{bmatrix} 13.5\\ 1.5\\ 13.5\\ -1.5 \end{bmatrix}$$

Solutions to Normal Equations

Elements of Solution	b_1^0	b_{2}^{0}	b_{3}^{0}	b_{4}^{0}
μ^0	16	14	27	-2982
α_1^0	-1	1	-12	2997
α_2^0 α_3^0	-4	-2	-15	2994
$\alpha_3^{\bar{0}}$	11	13	0	3009

Functions of Solutions

Linear Function	b_1^0	b_{2}^{0}	b_3^0	b_4^0
$\alpha_1^0 - \alpha_2^0$	3.0	3.0	3.0	3.0
$\mu^{\bar{0}} + \alpha_1^{\bar{0}}$	15.0	15.0	15.0	15.0
$\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$	19.5	19.5	19.5	19.5

- $\blacktriangleright \ \alpha_1^0 \alpha_2^0 :$ estimate of the difference between breed effects for Angus and Simmental
- ho $\mu^0+\alpha_1^0$: estimate of the general mean plus the breed effect of Angus
- $\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$: estimate of the general mean plus mean effect of breeds Simmental and Limousin

Definition of Estimable Functions

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$

- \triangleright Why is $\mathbf{q}^T \mathbf{b}$ estimable?
- **B** Based on the defintion of **b** and E(y)

$$\mathbf{q}^T\mathbf{b} = \mathbf{t}^T\mathbf{X}\mathbf{G}\mathbf{X}^T\mathbf{y}$$

where \mathbf{XGX}^{T} is the same for all choices of \mathbf{G}

Examples

$$E(y_{1j})=\mu+\alpha_1$$
 with $\mathbf{t}^T=\left[\begin{array}{cccc}1&1&1&0&0\end{array}\right]$ and $\mathbf{q}^T=\left[\begin{array}{cccc}1&1&0&0\end{array}\right]$
$$E(y_{2j})=\mu+\alpha_2$$

$$E(y_{3j})=\mu+\alpha_3$$

Property

Based on the definition, the following property can be derived

$$\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$$

with the definition of an estimable function $\mathbf{q}^T \mathbf{b}$, we get

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$

 $\mathbf{q}^T \mathbf{G} \mathbf{X}^T \mathbf{y} = \mathbf{t}^T \mathbf{X} \mathbf{G} \mathbf{X}^T \mathbf{y}$

hence for any \mathbf{G} , $\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$ which is helpful to find \mathbf{q} for a given \mathbf{t}

Test

When we want to test whether a certain vector ${\bf q}$ can establish an estimable function, we can test wheter

$$\mathbf{q}^T \mathbf{H} = \mathbf{q}^T$$

with
$$\mathbf{H} = \mathbf{G} \mathbf{X}^T \mathbf{X}$$

Setting $\mathbf{q}^T = \mathbf{t}^T \mathbf{X}$, we get

$$\mathbf{q}^T\mathbf{H} = \mathbf{t}^T\mathbf{X}\mathbf{H} = \mathbf{t}^T\mathbf{X} = \mathbf{q}^T$$