Department of Electrical Engineering, University of Hawaii

EE 342: Probability and Statistics

Fall 2016

Homework Set 10

Due date: November 16, 2016

- (1) a) Chapter 7, problem 38
 - b) Chapter 7, problem 53
 - c) Chapter 7, problem 67
 - d) Chapter 7, problem 73
 - e) Chapter 7, theoretical exercise 38
 - f) Chapter 7, theoretical exercise 39
- (2) Let X and Y be random variables. The joint PDF of X and Y is

$$f_{X,Y}(x,y) = e^{-x}$$
 if $0 \le y < x < \infty$

- a) Find the marginal PDF of X
- b) Find the marginal PDF of Y
- c) Are X and Y independent?
- d) Find the MMSE (minimum mean square estimate) of X without observing Y.
- e) Find the LMMSE (linear minimum mean square estimate) of X after observing Y
- f) Find the MMSE (minimum mean square estimate) of X after observing Y.
- (3) Repeat problem 2 if X and Y are jointly Gaussian random variables, where E[X]=1 and Var(X)=1 and E[Y]=-1 and Var(Y)=4, and Cov(X,Y)=-1.
- (4) Let X and Y be independent Gaussian random variables, both with mean zero and unit variance. Let Z = X+1 and W = X+Y.
 - a) Find E[Z] and E[W]
 - b) Find the Covariance matrix of the vector [Z W]^T
 - c) Find the joint PDF of Z and W.
 - d) Are Z and W independent?
 - e) Determine a linear transform to get X and Y back from Z and W.

7.38. The random variables *X* and *Y* have a joint density function given by

$$f(x,y) = \begin{cases} 2e^{-2x}/x & 0 \le x < \infty, 0 \le y \le x \\ 0 & \text{otherwise} \end{cases}$$

Compute Cov(X, Y).

- **7.53.** A prisoner is trapped in a cell containing 3 doors. The first door leads to a tunnel that returns him to his cell after 2 days' travel. The second leads to a tunnel that returns him to his cell after 4 days' travel. The third door leads to freedom after 1 day of travel. If it is assumed that the prisoner will always select doors 1, 2, and 3 with respective probabilities .5, .3, and .2, what is the expected number of days until the prisoner reaches freedom?
- **7.67.** Consider a gambler who, at each gamble, either wins or loses her bet with respective probabilities p and 1-p. A popular gambling system known as the Kelley strategy is to always bet the fraction 2p-1 of your current fortune when $p>\frac{1}{2}$. Compute the expected fortune after n gambles of a gambler who starts with x units and employs the Kelley strategy.
- **7.73.** In Example 6b, let *S* denote the signal sent and *R* the signal received.
 - (a) Compute E[R].
 - **(b)** Compute Var(R).
 - (c) Is *R* normally distributed?
 - (d) Compute Cov(R, S).
- **7.38.** The best linear predictor of Y with respect to X_1 and X_2 is equal to $a + bX_1 + cX_2$, where a, b, and c are chosen to minimize

$$E[(Y - (a + bX_1 + cX_2))^2]$$

Determine a, b, and c.

7.39. The best quadratic predictor of Y with respect to X is $a + bX + cX^2$, where a, b, and c are chosen to minimize $E[(Y - (a + bX + cX^2))^2]$. Determine a, b, and c.