ProImpacto Semana 3 Brecha Salarial

Edinson Tolentino
MSc Economics
email: edinson.tolentino@upn.pe

Twitter: @edutoleraymondi

Contenido

Introducción

Estretegia Empirica

Data

Metodología Método de Oaxaca-Blinder

Introducción

Ronald Oaxaca

Alan Blinder

(1943 – present) University of Arizona (1945 – present)

Princeton University

Introducción

Ronald Oaxaca (1943 - present)

Alan Blinder (1945 - present)

University of Arizona **Princeton University** Los autores desarrollaron un número índice de descomposición usado para determinar el total de la diferencia respecto al promedio del logaritmo de salarios entre dos grupos (por ejemplo: raza, genero, grupos minoritarios etc)

Ronald Oaxaca Alan Blinder

(1943 - present) University of Arizona

(1945 - present) **Princeton University**

- Los autores desarrollaron un número índice de descomposición usado para determinar el total de la diferencia respecto al promedio del logaritmo de salarios entre dos grupos (por ejemplo: raza, genero, grupos minoritarios etc)
- ► El indice puede ser divido en dos componentes, explicado y no explicado

Introducción

Ronald Oaxaca (1943 – present) University of Arizona

 Los autores desarrollaron un número índice de descomposición usado para determinar el total de la diferencia respecto al promedio del logaritmo de salarios entre dos grupos (por ejemplo: raza, genero, grupos minoritarios etc)

- El indice puede ser divido en dos componentes, explicado y no explicado
- El componente no explicado es generalmente interpretado como la discriminación de salario en el mercado laboral

Ronald Oaxaca (1943 – present) University of Arizona

 Los autores desarrollaron un número índice de descomposición usado para determinar el total de la diferencia respecto al promedio del logaritmo de salarios entre dos grupos (por ejemplo: raza, genero, grupos minoritarios etc)

- El indice puede ser divido en dos componentes, explicado y no explicado
- El componente no explicado es generalmente interpretado como la discriminación de salario en el mercado laboral
- La metodología llego a ser conocido como la descomposión Oaxaca-Blinder(OB)

Data

- La fuente de datos proviene de la ENAHO, se trabaja con los modulos 300 y 500. Ademas se toma en cuenta los siguientes puntos:
 - Solo se toma en cuenta a los jefes de hogares
 - PEA Ocupada
 - Observaciones superiores al 5 % de distribución de los ingresos.
 - No missing values en la variable años educación
- La presente sección busca poder realizar el análisis de descomposición de ingresos laborales (r6) según el genero (rmujer) .

Data

La descripción de las variables son las siguientes, las cuales fueron procedas en el codigo ${\bf L1\text{-}1.do}$ (codigo de STATA)

Variables	December 1160
variables	Descripción
Inr6	Logaritmo ingreso mensual (Soles)
r6	Ingreso mensual (Soles)
reduca	Años de educación
rmujer	==1, mujer
rexper	Años de experiencia
rexpersq	Años de experiencia cuadrado
rpareja	==1, casado
rsoltero	==1, soltero

Estadisticas

Cuadro: Estadisticas descriptivas

	Trabajadores	Promedio	Mediana	Min.	Max.	Std
Inr6	26737	6.78	6.85	4.40	10.86	1
rmujer	26737	0.29	0.00	0.00	1.00	0
reduca	26737	8.87	11.00	0.00	18.00	5
rexper	26737	33.47	33.00	2.00	84.00	15
rexpersq	26737	1,337.00	1,089.00	4.00	7,056.00	1,078
rpareja	26737	0.64	1.00	0.00	1.00	0

Fuente: INEI - 2021. Elaboracion: Autor

Figura 1: Distribución Acumulada de salarios según tipo de trabajo

Elaboracion: Autor

Figura 2: Distribución de salarios según tipo de trabajo

Proimpacto

Estadisticas: test de media

Cuadro: Diferencias estadisticas t-test

	Informal	Formal	Differencial
Inr6	6.50	6.90	0.40***
	(1.01)	(0.93)	
reduca	8.42	9.06	0.64***
	(5.34)	(4.56)	
rexper	33.51	33.45	-0.06
	(15.23)	(14.51)	
rexpersq	1354.96	1329.70	-25.25
	(1128.30)	(1057.28)	
rpareja	0.19	0.81	0.62***
	(0.40)	(0.39)	
Observations	7727	19010	26737

Standard deviations in parentheses.

Source: INEI - 2021.

Elaboration: Autor

Note: The standard deviations for the outcomes variables are reported in parentheses in the first two columns; the standard error of the average differential is reported in parenthesis in the final column

Estrategía de estimación

▶ Se procede a estimar la siguiente ecuación lineal de ingresos dado el método de OLS (MCO) separadamente entre hombres y mujeres

Estrategía de estimación

método de OLS (MCO) separadamente entre hombres y mujeres

Se procede a estimar la siguiente ecuación lineal de ingresos dado el

$$In(r6_i) = \alpha_0 + \alpha_1.rmujer_i + \alpha_2reduca_i + \alpha_3rexper_i + \alpha_4.rexpersq_i + \alpha_5.rpareja_i + \varepsilon$$

Donde:

- Inr6_i: logaritmo de ingresos laborales
- rmujer_i: variable dummy si la persona es mujer
- rexper: experiencia en años de la persona
- rexpsq: experiencia en años de la persona al cuadrado
- rparejai: variable dummy si la persona es casada
- reduca;: años de educacion
- \triangleright ε_i : termino de error

Regresión separada

Cuadro: Log (Salarios) OLS por tipo

	Mujer (β̂_m)	Hombre $(\hat{\beta}_{-}h)$
reduca	0.08***	0.09***
	(0.00)	(0.00)
rexper	0.03***	0.02***
	(0.00)	(0.00)
rexpersq	-0.00***	-0.00***
	(0.00)	(0.00)
rpareja	0.01	0.11***
	(0.03)	(0.02)
Observaciones	7727	19010
Adj. R ²	0.271	0.258
Controles		
Region FE		
Sector FE		

Fuente: INEI - 2021.

Elaboracion: Autor

Nota: Estimaciones robustas (MVC)

► La estimación de **OB** requiere las estimaciones por sepaado de los trabajadores independientes **hombres** (h) y los **mujeres** (m)

- La estimación de **OB** requiere las estimaciones por sepaado de los trabajadores independientes **hombres** (h) y los **mujeres** (m)
- ► Hombres:

$$w_h = X_h \beta_h + \varepsilon_h$$

- La estimación de **OB** requiere las estimaciones por sepaado de los trabajadores independientes **hombres** (h) y los **mujeres** (m)
- ► Hombres:

$$w_h = X_h \beta_h + \varepsilon_h$$

Mujeres:

$$w_m = X_m \beta_m + \varepsilon_m$$

- La estimación de **OB** requiere las estimaciones por sepaado de los trabajadores independientes **hombres** (h) y los **mujeres** (m)
- Hombres:

$$w_h = X_h \beta_h + \varepsilon_h$$

Mujeres:

$$w_m = X_m \beta_m + \varepsilon_m$$

▶ Donde se asume que $E(\varepsilon_h, X_h) = E(\varepsilon_m, X_m) = 0$

 Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- Entonces, usando dicha propiedad, se tiene

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_{h} = \bar{X}'_{h}\hat{\beta}_{h}$$

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- ▶ Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_h = \bar{X}_h' \hat{\beta}_h$$

$$\bar{\mathbf{w}}_{\mathbf{m}} = \bar{X}_{\mathbf{m}}^{'} \hat{\beta}_{\mathbf{m}}$$

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- ▶ Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_{h} = \bar{X}_{h}' \hat{\beta}_{h}$$

$$\bar{\mathbf{w}}_{m} = \bar{X}'_{m}\hat{\beta}_{m}$$

▶ Los valores de color rojo, estan denotados por escalares (1 x 1)

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_{h} = \bar{X}_{h}' \hat{\beta}_{h}$$

$$\bar{\mathbf{w}}_{m} = \bar{X}'_{m}\hat{\beta}_{m}$$

- ▶ Los valores de color rojo, estan denotados por escalares (1 x 1)
 - En la aplicación se tiene un vector \bar{X}_h de dimensión 4×1 para las caracteristicas (controles) del trabajador hombre

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_{h} = \bar{X}_{h}' \hat{\beta}_{h}$$

$$\bar{\mathbf{w}}_{\mathbf{m}} = \bar{X}_{\mathbf{m}}' \hat{\beta}_{\mathbf{m}}$$

- ▶ Los valores de color rojo, estan denotados por escalares (1 x 1)
 - ▶ En la aplicación se tiene un vector \bar{X}_h de dimensión 4×1 para las características (controles) del trabajador hombre
 - Por otro lado, un vector $\hat{\beta}_h$ de dimensión 4 x 1 para las coeficientes (estimadores) segun el MCO.

- Como conocemos las propiedades de estimación de MCO, la cual regresiona o estima a través del promedio de las variables explicativas y explicada
- Entonces, usando dicha propiedad, se tiene

$$\bar{\mathbf{w}}_h = \bar{X}_h' \hat{\beta}_h$$

$$\bar{\mathbf{w}}_{m} = \bar{X}'_{m}\hat{\beta}_{m}$$

- ▶ Los valores de color rojo, estan denotados por escalares (1 x 1)
 - ightharpoonup En la aplicación se tiene un vector $ar{X}_h$ de dimensión 4×1 para las caracteristicas (controles) del trabajador hombre
 - Por otro lado, un vector $\hat{\beta}_h$ de dimensión 4 x 1 para las coeficientes (estimadores) segun el MCO.
 - Entonces, \bar{X}_m y $\hat{\beta}_m$ poseen las misma dimensión 5×1 para los trabajadores mujeres.

La diferencia de genero en el promedio de logaritmo de ingresos esta dado por:

$$\Delta_0 = \bar{w}_h - \bar{w}_m$$

$$\Delta_0 = \bar{X}_h^T \hat{\beta}_h - \bar{X}_m^T \hat{\beta}_m$$

- Si se suma y restra la expresión $\bar{X}_h^T \hat{\beta}_m$
- Esto crea un contrafacutal que se relaciona con el problema de perdida de información, por tanto la ecuación quedará:

$$\Delta_0 = (\bar{X}_h - \bar{X}_m)^T \hat{\beta}_h + \bar{X}_m^T (\hat{\beta}_h - \hat{\beta}_m)$$

 Esto supone que prevalece una estructura salarial trabajador hombre en ausencia de un trato desigual.

- $\Delta_E = (\bar{X}_h \bar{X}_m)^T \hat{\beta}_h$, denota efecto de dotación
- lacksquare $\Delta_T = ar{X}_m^T \left(\hat{eta}_h \hat{eta_m}
 ight)$, denota efecto tratamiento
- $ightharpoonup \Delta_T$ se interpreta como el efecto de tratamiento promedio (ATT) sobre los tratados
- En la literatura empírica usando dicha metodologia , este ultimo termino es conocido como el efecto discriminación

La diferencia de genero en el promedio de logaritmo de ingresos esta dado por:

$$\Delta_0 = \bar{w}_h - \bar{w}_m$$

$$\Delta_0 = \bar{X}_h^T \hat{\beta}_h - \bar{X}_m^T \hat{\beta}_m$$

• Si se suma y restra la expresión $\bar{X}_m^T \hat{\beta}_h$

La diferencia de genero en el promedio de logaritmo de ingresos esta dado por:

$$\Delta_0 = \bar{w}_h - \bar{w}_m$$

$$\Delta_0 = \bar{X}_h^T \hat{\beta}_h - \bar{X}_m^T \hat{\beta}_m$$

- ightharpoonup Si se suma y restra la expresión $ar{X}_m^T \hat{eta}_h$
- Esto crea un contrafacutal que se relaciona con el problema de perdida de información, por tanto la ecuación quedará:

$$\Delta_0 = (\bar{X}_h - \bar{X}_m)^T \hat{\beta}_m + \bar{X}_h^T (\hat{\beta}_h - \hat{\beta}_m)$$

 Esto supone que prevalece una estructura salarial trabajador mujer en ausencia de un trato desigual.

•
$$\Delta_{\it E}=(ar{X}_{\it h}-ar{X}_{\it m})^T\hat{eta}_{\it m}$$
, denota efecto de dotación

- $\Delta_E = (\bar{X}_h \bar{X}_m)^T \hat{\beta}_m$, denota efecto de dotación
- lacksquare $\Delta_T = ar{X}_h^T \left(\hat{eta}_h \hat{eta_m}
 ight)$, denota efecto tratamiento

- ullet $\Delta_E = (\bar{X}_h \bar{X}_m)^T \hat{eta}_m$, denota efecto de dotación
- lacksquare $\Delta_T = ar{X}_h^T \left(\hat{eta}_h \hat{eta_m} \right)$, denota efecto tratamiento
- $ightharpoonup \Delta_T$ se interpreta como el efecto de tratamiento promedio (ATT) sobre los tratados

- $ightharpoonup \Delta_E = (\bar{X}_h \bar{X}_m)^T \hat{\beta}_m$, denota efecto de dotación
- $ightharpoonup \Delta_T = ar{X}_h^T (\hat{eta}_h \hat{eta_m})$, denota efecto tratamiento
- $ightharpoonup \Delta_T$ se interpreta como el efecto de tratamiento promedio (ATT) sobre los tratados
- En la literatura empírica usando dicha metodologia , este ultimo termino es conocido como el efecto discriminación

. oaxaca8 informal formal, weight(1)
(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=1 explained unexplained	.1342371 .2645039	.0119679 .0148376	11.22 17.83	0.000 0.000	.1107805 .2354228	.1576937 .293585

 Dado la estructura de salarios de los hombres

. oaxaca8 informal formal, weight(1)
(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=1 explained unexplained	.1342371 .2645039	.0119679 .0148376	11.22 17.83	0.000	.1107805 .2354228	.1576937 .293585

 Dado la estructura de salarios de los hombres

 $\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398741$

. oaxaca8 informal formal, weight(1)
(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=1 explained unexplained	.1342371	.0119679 .0148376	11.22 17.83	0.000 0.000	.1107805 .2354228	.1576937

. oaxaca8 informal formal, weight(1)
(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Linear decomposition

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=1 explained	.1342371	.0119679	11.22	0.000	.1107805	.1576937
unexplained	.2645039	.0148376	17.83	0.000	.2354228	.293585

 Dado la estructura de salarios de los hombres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398741$$

Dotacion (endowment)

$$\Delta_{E} = (\bar{X}_{h} - \bar{X}_{m})^{T} \hat{\beta}_{h}$$

$$\Delta_{\textit{E}} = 0.1342371$$

. oaxaca8 informal formal, weight(1)
(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Linear decomposition

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=1 explained unexplained	.1342371	.0119679 .0148376	11.22 17.83	0.000	.1107805	.1576937

 Dado la estructura de salarios de los hombres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398741$$

Dotacion (endowment)

$$\Delta_E = (\bar{X}_h - \bar{X}_m)^T \hat{\beta}_h$$

$$\Delta_E = 0.1342371$$

Tratamiento (Discriminacion)

$$\Delta_T = \bar{X}_m^T \left(\hat{\beta}_h - \hat{\beta_m} \right)$$

$$\Delta_{\tau} = 0.2645039$$

 Dado la estructura de salarios de los hombres

 Dado la estructura de salarios de los hombres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398$$

 Dado la estructura de salarios de los hombres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398$$

Dotacion (endowment)

$$\Delta_{E} = (\bar{X}_{h} - \bar{X}_{m})^{T} \hat{\beta}_{h}$$

$$\Delta_{\textit{E}} = 0.1342$$

 Dado la estructura de salarios de los hombres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.398$$

Dotacion (endowment)

$$\Delta_{E} = (\bar{X}_{h} - \bar{X}_{m})^{T} \hat{\beta}_{h}$$

$$\Delta_E = 0.1342$$

Tratamiento (Discriminacion)

$$\Delta_T = \bar{X}_m^T \left(\hat{\beta}_h - \hat{\beta_m} \right)$$

$$\Delta \tau = 0.2645$$

. oaxaca8 informal formal, weight(0)

(high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Total	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
explained explained	.0699317 .3288093	.0174642 .0201423	4.00 16.32	0.000 0.000	.0357025	.1041608 .3682874

 Dado la estructura de salarios de las mujeres

. oaxaca8 informal formal, weight(0) (high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
#=0 explained unexplained	.0699317	.0174642 .0201423	4.00 16.32	0.000 0.000	.0357025 .2893313	.1041608

. oaxaca8 informal formal, weight(0) (high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Linear decomposition

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=0 explained unexplained	.0699317 .3288093	.0174642 .0201423	4.00 16.32	0.000 0.000	.0357025 .2893313	.1041608 .3682874

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

. oaxaca8 informal formal, weight(0) (high estimates: formal; low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
difference	.398741	.0132909	30.00	0.000	.3726914	.4247906

Linear decomposition

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=0 explained unexplained	.0699317 .3288093	.0174642 .0201423	4.00 16.32	0.000 0.000	.0357025 .2893313	.1041608 .3682874

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

Dotacion (endowment)

$$\Delta_{E} = (\bar{X}_{h} - \bar{X}_{m})^{T} \hat{\beta}_{h}$$

$$\Delta_E = 0.0699$$

. oaxaca8 informal formal, weight(0)
(high estimates: formal: low estimates: informal)

Mean prediction 1 = 6.899569 Mean prediction 2 = 6.500828

-		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
differe	nce	.398741	.0132909	30.00	0.000	.3726914	.4247906

Linear decomposition

Total	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
W=0 explained unexplained	.0699317 .3288093	.0174642 .0201423	4.00 16.32	0.000 0.000	.0357025 .2893313	.1041608

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

Dotacion (endowment)

$$\Delta_{E} = (\bar{X}_{h} - \bar{X}_{m})^{T} \hat{\beta}_{h}$$

$$\Delta_E = 0.0699$$

Tratamiento (Discriminacion)

$$\Delta_T = \bar{X}_m^T \left(\hat{\beta}_h - \hat{\beta}_m \right)$$

$$\Delta_{\tau} = 0.3288$$

 Dado la estructura de salarios de las mujeres

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

Dotacion (endowment)

$$\Delta_{\mathsf{E}} = (\bar{X}_{\mathsf{h}} - \bar{X}_{\mathsf{m}})^{\mathsf{T}} \hat{\beta}_{\mathsf{h}}$$

$$\Delta_{\textit{E}} = 0.0699$$

 Dado la estructura de salarios de las mujeres

$$\Delta_0 = \bar{w}_h - \bar{w}_m = 0.3987$$

Dotacion (endowment)

$$\Delta_{\mathsf{E}} = (\bar{X}_{\mathsf{h}} - \bar{X}_{\mathsf{m}})^{\mathsf{T}} \hat{\beta}_{\mathsf{h}}$$

$$\Delta_{E} = 0.0699$$

Tratamiento (Discriminacion)

$$\Delta_T = \bar{X}_m^T \left(\hat{\beta}_h - \hat{\beta_m} \right)$$

$$\Delta \tau = 0.3288$$

Cuadro: Descomposicion Oaxaca-Blinder

	Descomposicion
Brecha	0.399***
	(0.013)
Explicada	0.112***
	(0.011)
No-explicada	0.287***
	(0.014)
Observaciones	26737
Year FE	
Sectores FE	
Controles	

Recurso: INEI - 2021. Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Descomposicion Oaxaca-Blinder

	Descomposicion
Brecha	0.399***
	(0.013)
Explicada	0.112***
	(0.011)
No-explicada	0.287***
	(0.014)
Observaciones	26737
Year FE	
Sectores FE	
Controles	

Recurso: INEI - 2021. Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Descomposicion Oaxaca-Blinder

	Descomposicion
Brecha	0.399***
	(0.013)
Explicada	0.112***
	(0.011)
No-explicada	0.287***
	(0.014)
Observaciones	26737
Year FE	
Sectores FE	
Controles	

Recurso: INEI - 2021. Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero. Se procede a calcular la brecha salarial según genero a través de la estructura de la ecuación de predominancia de hombres

Cuadro: Descomposicion Oaxaca-Blinder

Descomposicion
0.399***
(0.013)
0.112***
(0.011)
0.287***
(0.014)
26737

Recurso: INEI - 2021. Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Se procede a calcular la brecha salarial según genero a través de la estructura de la ecuación de predominancia de hombres
- ▶ Se observa que el **efecto de discriminación (brecha no explicada)** entre los salarios de trabajadores hombres e mujeres es de $\Delta_T = 0.398741$, la cual representa un 40 %.