<u>Аксиоматика действительных чисел.</u> <u>Элементарные свойства действительных чисел.</u> <u>Два</u> неравенства треугольника для модуля.

Определение:

Операция на множестве X есть отображение (=правило) F, которое каждой паре чисел x, $y \in X$ ставит в соответствие некоторый один $F(x, y) \in X$.

Примеры:

- **1)** $F = + \text{ Ha } \mathbb{Q}: x, y \in \mathbb{Q} \to + (x, y) \equiv x + y \in \mathbb{Q}$
- 2) $F = * Ha \mathbb{Q}: x, y \in \mathbb{Q} -> * (x, y) \equiv x*y \in \mathbb{Q}$

Определение:

Множеством вещественных чисел (\mathbb{R}) называется множество в котором выполняются следующие аксиомы.

1. Аксиомы сложения

На ${\mathbb R}$ определена операция «+» которая называется операцией сложения, такая что

- **1.1** \forall x, y, z ∈ \mathbb{R} : (x+y)+z=x+(y+z)
- **1.2** ∃ нейтральный элемент $0 \in \mathbb{R}$, такой что \forall $x \in \mathbb{R}$: x+0=0+x=x
- **1.3** \forall x ∈ \mathbb{R} \exists противоположный элемент (-x) ∈ \mathbb{R} , такой что x+(-x)=(-x)+x=0
- **1.4** \forall x, y ∈ \mathbb{R} : x+y=y+x

2. Аксиомы умножения

На $\mathbb R$ определена операция «*» которая называется операцией умножения, такая что

- **2.1** $\forall x, y, z \in \mathbb{R}: (x^*y)^*z = x^*(y^*z)$
- **2.2** ∃ нейтральный элемент $1 \in \mathbb{R} \{0\}$, такой что \forall $x \in \mathbb{R} \{0\}$: x*1=1*x=x
- **2.3** \forall x ∈ \mathbb{R} -{0} \exists обратный элемент \mathbf{x}^{-1} ∈ \mathbb{R} -{0}, такой что $\mathbf{x}^*(\mathbf{x}^{-1})$ =(\mathbf{x}^{-1})*x=1
- **2.4** $\forall x, y \in \mathbb{R}: x^*y = y^*x$

3. Аксиома связи сложения и умножения

3.1
$$\forall x, y, z \in \mathbb{R}$$
: $(x+y)*z=(x*z)+(y*z)$

4. Аксиомы порядка

В множестве $\mathbb R$ введено отношение порядка « \leqslant », такое что

- **4.1** \forall **x** ∈ \mathbb{R} : **x** \leqslant **x** (рефлексивность)
- **4.2** Если $x, y \in \mathbb{R}$: $(x \le y) \land (y \le x)$, то x = y (закон тождества)
- **4.3** Если x, y, z $\in \mathbb{R}$: (x \leq y) \wedge (y \leq z), то x \leq z (транзитивность)
- **4.4** $\forall x, y \in \mathbb{R}$: (x $\leq y$) \lor (y $\leq x$) (линейная упорядоченность)

5. Аксиомы связи отношения порядка с сложением и умножением

- **5.1** \forall x, y, z ∈ \mathbb{R} , если x \leqslant y, то x+z \leqslant y+z
- **5.2** \forall x, y ∈ \mathbb{R} , если (0 \leqslant x) \land (0 \leqslant y), то (0 \leqslant x*y)

6. Аксиома полноты и непрерывности ${\mathbb R}$

6.1
$$\forall \emptyset = X, Y \subset \mathbb{R}, X \leqslant Y, \exists c \in \mathbb{R}: X \leqslant \{c\} \leqslant Y$$
 (T.e. $\forall x \in X, \forall y \in Y: x \leqslant c \leqslant y$)

Некоторые следствия определения и дополнительные сведения:

- 1. $x, y \in \mathbb{R}$, полагаем y-x =y+(-x) и $\frac{x}{y} = y * (x^{-1})$
- **2.** $x \in \mathbb{R}, x^n = x^*x^*...^*x$ (n pas) $u x^{-n} = (x^{-1})^n$
- **3.** \forall x ∈ \mathbb{R} : 0*x=0
- **4.** $\forall x \in \mathbb{R}: (-1)^*x = (-x)$
- 5. $x, y \in \mathbb{R}$: $(x < y) \Leftrightarrow (x \le y) \land (x \ne y)$ $(x > y) \Leftrightarrow (y < x)$
- **6.** всегда \forall x, y ∈ \mathbb{R} имеет место: либо x<y, либо x=y, либо x>y (трихотомия)
- **7.** если x>0, то (-x)<0
- **8.** a) x>0 u y>0 => x*y>0
 - б) x<0 и y>0 => x*y<0
 - в) x<0 и y<0 => x*y>0
- **9.** 0<1

Неравенства треугольника для абсолютной величины числа:

- 1) $|x + y| \le |x| + |y|$
- **2)** $||x|-|y|| \le |x-y|$

Задачи для самостоятельного выполнения:

- 1) Доказать, используя аксиомы Пеано, что (a+b)+c = a+(b+c) для любых натуральных чисел a,b,c.
- 2) Доказать, что (a+b)с = ac+bc для любых натуральных чисел a,b,c.
- 3) Используя аксиомы действительных чисел, доказать, что 0*a=0 для любого действительного числа a.
- 4) Используя аксиомы действительных чисел, доказать, что 1>0.