

Loop Invariants

CS242

Lecture 17

Approaches to Proving Properties of Programs

Automatic, Low complexity

Automatic, High complexity

Often undecidable

Simply Typed
Lambda Calculus

Automatic, Often undecidable

Undecidable

Dependent Types

Notation: Hoare Triples

{ Precondition } P { Postcondition}

- Precondition and Postcondition are statements in logic
 - Over program variables
- P is a program
- Read: If the precondition holds on entry to P, then the postcondition holds on exit from P

Examples

$$\{ x > 0 \} x := x + 1 \{ x > 1 \}$$
 $\{ true \} if x then y := 1 else y := 0 \{ y = 0 \lor y = 1 \}$
 $\{ x = 1 \} for i = 1, k do x := x * k \ \{ x = k^k \}$

A Simple Example

```
X = 0
I = 0
while I < 10 do
X = X + 1
I = I + 1
```

Loop Invariants

• To verify loops, it suffices to find a sufficiently strong loop invariant

- What is a loop invariant?
 - A predicate that holds on every loop iteration
 - (at the same point, usually at the loop head)
- What is "sufficiently strong"?
 - More in a minute ...

Loop Invariant (1)

```
X = 0
I = 0
while I < 10 do
       { true }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (2)

```
Z = 42
X = 0
I = 0
while I < 10 do
       {Z = 42}
      X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (3)

```
Z = 42
X = 0
I = 0
while I < 10 do
       { I < 4327 }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (4)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (5)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X = | \&\& | < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Comments

- Loop invariants aren't hard to compute
 - If you don't care about quality
 - true

- What we want is to prove the assertion at the end of the loop
 - Need an invariant strong enough to do this

Comments

But how can we prove the assertion?

- We need a proof strategy
 - A process that we can apply to reason about any loop

Inductive Invariants

```
Pre \rightarrow I
while (B)
                                                       I \wedge B
                                                       { code }
 ... code ...
                          Post
                                                       1 \land \neg B \rightarrow Post
```

Inductive Invariants

• Pre \rightarrow I

The invariant holds initially

• I \(\) B \{ code \} I

If the invariant and loop condition hold, executing the loop body re-establishes the invariant

• $I \land \neg B \rightarrow Post$

If the invariant holds and the loop terminates, then the post-condition holds

Loop Invariant (1)

```
X = 0
I = 0
while I < 10 do
       { true }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (2)

```
Z = 42
X = 0
I = 0
while I < 10 do
       {Z = 42}
      X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (3)

```
Z = 42
X = 0
I = 0
while I < 10 do
       { I < 4327 }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (4)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (5)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X = | \&\& | < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

A More Realistic Example

```
int A[10];
i = 1
// i = 1
while i < 11 {
     // \ \forall 1 \le j < i. \ A[j] = 0
     A[i] = 0;
     i += 1
// \ \forall 1 \le j \le 10. \ A[j] = 0
```

Three conditions:

$$i = 1 \rightarrow \forall 1 \le j < i. \ A[j] = 0$$

$$\forall 1 \le j < i. \ A[j] = 0$$

$$\{A[i] = 0; i = i + 1\}$$

$$\forall 1 \le j < i. \ A[j] = 0$$

$$((\forall 1 \le j < i. \ A[j] = 0) \land \ i \ge 11) \rightarrow 0$$

$$\forall 1 \le j \le 10. \ A[j] = 0$$

First Question

How do we decide whether these formulas are true?

$$Pre \rightarrow I \quad I \land B \{ code \} I \quad I \land \neg B \rightarrow Post$$

- Use SMT solvers
 - Satisfiability Modulo Theories
 - Tools that include decision procedures for a wide variety of logical theories relevant to program verification
 - Boolean satisfiability, theory or arrays, bitvectors, integers, ...
- Simply give an SMT a formula and it may
 - Report it is satisfiable (and give an assignment)
 - Report it is unsatisfiable (and give a counter example)
 - Report "I don't know"
 - Run forever

Second Question

Why focus on loop invariants?

First Answer

• Loop invariants are an important concept in everyday programming

Why is my loop correct?

You can break the problem into the three conditions stated above

Second Answer: Automated Verification

- Consider a loop-free program P
 - With conditionals
 - Memory references
 - Data structures
 - No function calls
- What is the computational complexity of verifying

{ Precondition } P { Postcondition}

Digression: Automated Reasoning

Consider the statement X := Y + Z

- How can we reason automatically about this statement?
 - Without knowing what specific property we might want to focus on
- Answer
 - We need to encode the entire semantics of the statement
 - In a way that we can usefully query

Boolean Circuits

- Recall that, at bottom, computers are composed of boolean circuits
- These circuits can be represented directly in propositional logic

- For example, assume X, Y, and Z are 1-bit integers
 - X := Y + Z
 - $x_0 = y_0 xor z_0$
 - $c_1 = y_0 \wedge z_0$

Boolean Circuits

Assume X, Y, and Z are 2-bit integers

•
$$X := Y + Z$$

- $x_0 = y_0 xor z_0$
- $c_1 = y_0 \wedge z_0$
- $x_1 = y_1 xor z_1 xor c_1$
- $c_2 = (y_1 \land z_1) \lor (y_1 \land c_1) \lor (z_1 \land c_1)$

And so on for any bitwidth of X, Y and Z.

What Are the Queries

• Consider X := Y + Z

We might want to ask whether this addition can overflow.

• The query then is $c_{64} = true$?

What Can Be Encoded as Boolean Formulas?

• Consider any loop-free, function-call free segment of code

- Consists only of a fixed set of operations working on a fixed set of memory locations
 - We can name every bit that is manipulated
 - And every operation can be represented as boolean operations on bits

Any such program can be encoded as a boolean formula and queried for its possible values.

Nuances ...

Sometimes these formulas might be huge.

- Consider X = Y * Z
 - Encoding multiplication results in a giant circuit
- SMT solvers use higher-level properties of the operations to avoid the worst-case encodings in most cases
 - But at bottom they use boolean representations and solvers

Loops

- Now consider the verification problem
 - Where P can have one loop
 - But still no function calls
- What is the computational complexity of verifying

{ Precondition } P { Postcondition}

Verification of Loops

- Verifying properties of loops is the hard problem
 - In any non-trivial loop, we can't name every bit that is manipulated
 - Because we don't know how many times the loop is executed
- Solve this, and everything else is much easier

Invariant Inference

• Find (infer) loop invariants automatically

An old problem

Many algorithms in the literature

We will look at a simple approach

Invariant Inference

- Two ideas:
 - 1. Separate invariant inference from the rest of the verification problem
 - 2. Guess the invariant from executions

Why Use Data From Tests?

Complementary to static reasoning

- "See through" hard analysis problems
 - functionality may be simpler than the code
- Possible to generate many, many tests

Outline

- Guess (many) invariants
 - Run the program
 - Discard candidate invariants that are falsified
 - Attempt to verify the remaining candidates

A Simple Program

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Instrument loop head

Collect the values of program variables on each iteration

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

- Hypothesize
 - s = y
 - s = 2y
- Data

```
s y 0
```

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Hypothesize

• Data

S	У
0	0
1	1

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Hypothesize

• Data

S	У	
0	0	
1	1	
2	2	
3	3	

Another Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Data

S	у	
0	0	
1	1	
2	2	
3	3	

Arbitrary Linear Invariant

as + by = 0

• Data

S	У	
0	0	
1	1	
2	2	
3	3	

Observation

as
$$+$$
 by $=$ 0

S	У	w	
0	0	a	0
1	1	b	0
2	2		
3	3		

Observation

$$as + by = 0$$

 $\{ w \mid Mw = 0 \}$

S	У	
0	0	
1	1	
2	2	
3	3	

Observation

$$as + by = 0$$

NullSpace(M)

S	У	w	
0	0	a	0
1	1	b	0
2	2		
3	3		

Linear Invariants

Construct matrix M of observations of all program variables

Compute NullSpace(M)

All invariants are in the null space

Spurious "Invariants"

- All invariants are in the null space
 - But not all vectors in the null space are invariants
- Consider the matrix

S	у	
0	0	

- Need a check phase
 - Verify the candidate is in fact an invariant

An Algorithm

- Check candidate invariant
 - If an invariant, done
 - If not an invariant, get a *counterexample*
 - Counterexample can be guaranteed to satisfy all invariants
- Add new row to matrix
 - And repeat

Termination

How many times can the solve & verify loop repeat?

 Each counterexample is linearly independent of previous entries in the matrix

- So at most N iterations
 - Where N is the number of columns
 - Upper bound on steps to reach a full rank matrix

Summary

 Superset of all linear invariants can be obtained by a standard matrix calculation

- Counter-example driven improvements to eliminate all but the true invariants
 - Guaranteed to terminate

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

Idea

Collect data as before

- But add more columns to the matrix
 - For derived quantities
 - For example, y² and s²
- How to limit the number of columns?
 - All monomials up to a chosen degree d

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

1	S	У	s ²	V ²	sy
1	0	0	0	0	0
1	1	1	1	1	1
1	3	2	9	4	6
1	6	3	36	9	18
1	10	4	100	16	40

Solve for the Null Space

$$a + bs + cy + ds^2 + ey^2 + fsy = 0$$

1	S	y	s ²	y ²	sy	w	
1	0	0	0	0	0	а	0
1	1	1	1	1	1	b	0
1	3	2	9	4	6	С	0
_						d	0
1	6	3	36	9	18	е	0
1	10	4	100	16	40	f	0
						•	

Candidate invariant:
$$-2s + y + y^2 = 0$$

Comments

- Same issues as before
 - Must check candidate is implied by precondition, is inductive, and implies the postcondition on termination
 - Termination of invariant inference guaranteed if the verifier can generate counterexamples
- Solvers do well as checkers!

Experiments

Name	#vars	deg	Data	#and	Guess time (sec)	Check time (sec)	Total time (sec)
Mul2	4	2	75	1	0.0007	0.010	0.0107
LCM/GCD	6	2	329	1	0.004	0.012	0.016
Div	6	2	343	3	0.454	0.134	0.588
Bezout	8	2	362	5	0.765	0.149	0.914
Factor	5	3	100	1	0.002	0.010	0.012
Prod	5	2	84	1	0.0007	0.011	0.0117
Petter	2	6	10	1	0.0003	0.012	0.0123
Dijkstra	6	2	362	1	0.003	0.015	0.018
Cubes	4	3	31	10	0.014	0.062	0.076
geoReihe1	3	2	25	1	0.0003	0.010	0.0103
geoReihe2	3	2	25	1	0.0004	0.017	0.0174
geoReihe3	4	3	125	1	0.001	0.010	0.011
potSumm1	2	1	5	1	0.0002	0.011	0.0112
potSumm2	2	2	5	1	0.0002	0.009	0.0092
potSumm3	2	3	5	1	0.0002	0.012	0.0122
potSumm4	2	4	10	1	0.0002	0.010	0.0102

Invariant Inference

- We saw an algorithm for algebraic invariants
 - Up to a given degree
- Guess and Check
 - Hard part is inference done by matrix solve
 - Check part done by standard SMT solver
 - Simple and fast
- In general we have to be concerned with more general invariants
 - Over data structures, disjunctions

Summary

- Loop invariants are an important concept in programming
 - Good to think about invariants for your code!
 - Even without a tool to check or infer invariants
- Automating loop invariant inference is challenging
 - Long-standing research problem
 - Use in practice is still limited