שאלה 1 (25 נקודות)

בחנות יש 25 בקבוקי משקה -10 בקבוקי מיץ, 7 בקבוקי קולה ו-8 בקבוקי מים.

15 אנשים קנו בחנות בקבוקי שתייה, מתוך המלאי הנתון.

כל אחד קנה בדיוק בקבוק אחד, שאותו בחר באופן מקרי מהמלאי הנתון.

- א. יהי X משתנה מקרי, המוגדר על-ידי מספר בקבוקי המים שנותרו בחנות.
 - P(X=4) חשב את .1 (6 נקי)
- (6 נקי) את את ההתפלגות של X. (רשום את שמה ואת ערכי הפרמטרים שלה.)
- מים! X = 4, מהי ההסתברות ש-5 הקונים הראשונים לא קנו אף בקבוק מים! X = 4
 - (7 נקי) ב. נסמן ב-R את הרווח הנקי ממכירת הבקבוקים.

שם בעל החנות מרוויח 3 שם ממכירת כל בקבוק מיץ; 4 שם ממכירת כל בקבוק קולה; ו-6 שם ממכירת כל בקבוק מים, ומפסיד 0.5 ש על כל בקבוק שלא נמכר, מהי תוחלת הרווח הנקי שלו!

שאלה 2 (25 נקודות)

(0 ו- <math>(n = 1, 2, ...) ה ווי (n = 1, 2, ...) ווי משתנה מקרי בינומי עם הפרמטרים א. יהי

$$M_X(t) = (pe^t + 1 - p)^n$$
 , t לכל :

a>1, על-ידי, שפונקה, לכל a>1 משתנה מקרי בדיד, שפונקציית ההסתברות שלו נתונה, לכל

$$P{Y = i} = \frac{c}{a^i}$$
 , $i = 0,1,...$

- . *c* חשב את .1 (5 נקי)
- . רשום עבור אלו ערכים של t היא קיימת. Y היא הפונקציה יוצרת המומנטים של t היא ערכים של t היא קיימת.
 - . *Y* של את התוחלת של 5.

שאלה 3 (25 נקודות)

0.2 יהי א משתנה מקרי גיאומטרי עם הפרמטר אוני מקרי יהי

0.5 משתנה מקרי גיאומטרי עם הפרמטר Y

נניח כי המשתנים המקריים X ו-Y בלתי-תלויים זה בזה,

. Z = X + Y על-ידי , Z , מקרי המשתנה המשתנה ונגדיר את

. $n=2,3,\ldots$ לכל , $P\{Z=n\}$ להסתברות (9 נקי) א. מצא ביטוי כללי להסתברות פשט את התוצאה עד כמה שאפשר.

- $\{X = Y\}$ ב. חשב את הסתברות המאורע (8 נקי)
- $Z^2 > 90$ -שויון מרקוב חסם עליון להסתברות ש- 8) ג. מצא בעזרת אי-שוויון מרקוב

שאלה 4 (25 נקודות)

מכונה ממלאת צנצנות דבש במשקל שמתפלג נורמלית עם תוחלת של 500 גרם. נניח כי אין תלות בין צנצנות שונות שהמכונה ממלאת.

- (7 נקי) א. אם המשקל של צנצנת שהמכונה ממלאת, גבוה מ-515 גרם בהסתברות 0.0668, מהי ה**שונות** של התפלגות המשקל!
 - (6 נקי) ב. מהו המשקל ש- 62% מהצנצנות שוקלות יותר ממנו? בצע בחישוביך אינטרפולציה לינארית.
- (6 נקי) ג. כדי לבדוק את תקינות המכונה שוקלים את הצנצנות שהיא ממלאת בזו אחר זו. מהי ההסתברות שהצנצנת הראשונה, שמשקלה נמוך מ-490 גרם, תתגלה רק לאחר השקילה העשירית!
- (6 נקי) ד. בוחרים באקראי 20 צנצנות דבש. מהי ההסתברות ש-4 מהן ישקלו פחות מ-490 גרם, 10 מהן בין 490 גרם ל-503 גרם והשאר מעל ל-503 גרם?

שאלה 5 (25 נקודות)

C ו- B , A- והמומנות ב-A, מורכב משלוש שאלות המסומנות ב-A

;0.02 נתון כי - ליוסף אין אף תשובה נכונה במבחן בהסתברות

כל התשובות שלו במבחן נכונות בהסתברות 0.4;

;0.93 הוא עונה נכון לפחות על אחת מהשאלות Bו-

אם הוא עונה נכון לפחות על אחת מהשאלות A ו-A אז הוא עונה נכון לפחות על שתיהן גם יחד ; $\frac{20}{21}$

 $\frac{5}{6}$ בהסתברות בהסתב A שאלה עונה נכון עונה עונה אז הוא עונה לא שאלה אלה שאלה אם הוא עונה אונה א

;0.3 הוא עונה נכון על שאלה A וגם עונה לא נכון על שאלה בהסתברות הוא עונה נכון הח

C אלה נכון על שאלה A גדולה פי מההסתברות שיענה נכון על שאלה אוההסתברות A

- נקי) א. יהי X מספר התשובות הנכונות של יוסף במבחן. מצא את פונקציית ההתפלגות המצטברת של X. רשום את ערכיה לכל מספר ממשי.
- כל נקי) ב. תשובה נכונה לכל אחת מהשאלות B , A ו- C מזכה את הנבחן ב-33 נקודות, אך אם כל תשובותיו נכונות הוא מקבל נקודה אחת נוספת (כך שציונו יהיה 100). מהי תוחלת הציון של יוסף במבחן!
 - (4 נקי) ג. מהי ההסתברות שיוסף יענה נכון על כל השאלות, אם ידוע שענה נכון לפחות על שתיים מהן?
 - A נקי) ד. אם יוסף ענה לא נכון לפחות על שאלה אחת, מהי ההסתברות שענה נכון על שאלה A

בהצלחה!

 $\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6015	0.6050	0.6005	0.7010	0.7054	0.7000	0.7122	0.7157	0.7100	0.7224
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.0029	0.0040	0.0041	0.0042	0.0045	0.0046	0.9948	0.9949	0.9951	0.0052
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946				0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

20425 / 85 - ⊐2010

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^{i} \cdot (1-p)^{n-i} , i=0,1,,n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/p	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \left(pe^t / (1 - (1-p)e^t) \right)^r $ $ t < -\ln(1-p) $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \begin{pmatrix} m \\ i \end{pmatrix} \begin{pmatrix} N-m \\ n-i \end{pmatrix} / \begin{pmatrix} N \\ n \end{pmatrix} , i = 0,1,,m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\left\{\mu t + \sigma^2 t^2 / 2\right\}$	σ^2	μ	$\left (1/\sqrt{2\pi}\sigma) \cdot e^{-(x-\mu)^2/(2\sigma^2)} \right , -\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/2	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוסחת הכפל
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 נוסחת ההסתברות השלמה
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת בייט
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת שנוחלת של פונקציה של מ"מ
$$P(B_i \mid A) = \frac{P(B_i \mid A)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} = E[X^2] - (E[X])^2$$
 שונות
$$E[AX + b] = aE[X] + b$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+tig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

5

 $Var(aX + b) = a^2 Var(X)$

$$\begin{array}{lll} \mbox{Var}(X\,|\,Y=y) = E[X^2\,|\,Y=y] - (E[X\,|\,Y=y])^2 & \mbox{with admitting all and the mainting an$$

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] . המאורע A יתרחש לפני המאורע
- ullet סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם אותו (בינומיים פואסוניים Y ו-Y מיימ פואסוניים (בינומיים עם אותו אותו X+Y=n ביית היא בינומית (היפרגיאומטרית).

6