

Procedimiento

■ h(n) se obtiene a partir de los valores de $H_d(w)$, que toman en un conjunto de frecuencias equiespaciadas w_k ,

$$w_k = \frac{2 \pi}{M} (k + \alpha) \quad [ec. 1]$$

$$\begin{cases} k = 0, 1, ..., \frac{M-1}{2} & M \text{ par} \\ k = 0, 1, ..., \frac{M}{2} - 1 & M \text{ impar} \\ \alpha = 0 \text{ } 6 \text{ } 1/2 \end{cases}$$

■ Procedimiento...

- **Supuesto**: la respuesta en frecuencia especificada se caracteriza únicamente por las M muestras de frecuencia y en consecuencia, h(n) puede recuperarse de estas muestras.
- Los **lóbulos laterales** de H(w) del filtro resultante, pueden **reducirse optimizando** la **especificación** de frecuencia en la **banda de transición** del filtro.
 - Mediante técnicas de programación lineal (por ejemplo, el trabajo de Rabiner et al. 1970).
- Los cálculos durante el diseño pueden simplificarse si se explotan las propiedades básicas de simetría de $H_d(w)$.

■ Procedimiento...

■ La respuesta frecuencial deseada para el filtro es,

$$H_d(w) = \sum_{n=0}^{M-1} h(n) e^{-jwn}$$

■ Si se especifica la respuesta del filtro para M frecuencias equiespaciadas [ec. 1], se tiene,

$$H(w_k) = H_d\left(\frac{2\pi}{M}(w+\alpha)\right) = \sum_{n=0}^{M-1} h(n) e^{-j2\pi(k+\alpha)\frac{n}{M}} \qquad k = 0,1,...,M-1$$
 [ec.2]

■ Para obtener h(n) se procede a multiplicar [ec. 2] por

$$e^{j 2\pi k m/M}$$
, $m = 0, 1, ... M - 1$,

y sumar sobre k = 0, 1, ... M - 1.

■ Método de Muestreo en Frecuencia...

- Con lo anterior, el lado derecho de la ecuación [ec. 2] se reduce a $M h(m)e^{-j2\pi\alpha m/M}$.
- Finalmente se obtiene,

$$h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(w_k) e^{j2\pi(k+\alpha)\frac{n}{M}} \qquad n = 0, 1, ..., M-1 \qquad [ec.3]$$

■ La ecuación [ec.3] da los valores de h(n) a partir de las especificaciones de las M muestras en frecuencia $H(w_k)$, k = 0, 1, ..., M-1.

■ Método de Muestreo en Frecuencia...

Observaciones

- Cuando $\alpha = 0$,
 - la ecuación [ec.2] se reduce a la **transformada discreta de** Fourier de la secuencia h(n)
 - la ecuación [ec.3] se reduce a la **transformada inversa de** Fourier de H(k)

- Reducción de la complejidad de diseño del filtro por simetría.
 - Como h(n) es **real**, las muestras $H(w_k)$ satisfacen la condiciones de **simetría**.

$$H(2\pi(k+\alpha)/M) = H*(2\pi(M-k-\alpha)/M)$$
 $k = 0,1,...,M-1$

La simetría reduce las especificaciones en frecuencia de M puntos a (M+1)/2 puntos para M impar y M/2 puntos para M par.

- Reducción de la complejidad de diseño del filtro por simetría.
 - Del análisis previo de la simetría de h(n) para los filtros FIR, se tiene,

$$H(w_k) = H_r(w_k) e^{j[\beta \frac{\pi}{2} - w_k(M-1)/2]} \begin{cases} \beta = 0 & \rightarrow Simetria \ par \\ \beta = 1 & \rightarrow Simetria \ impar \end{cases}$$

Al evaluar en las frecuencias $w_k = \frac{2\pi}{M}(k + \alpha)$ se llega a,

$$H(w_k) = H_r\left(\frac{2\pi}{M}(k+\alpha)\right) e^{j[\beta\frac{\pi}{2}-\frac{\pi}{M}(k+\alpha)(M-1)]}$$

- Reducción de la complejidad de diseño del filtro por simetría.
 - Si sólo se define un conjunto de *muestras reales* $\{G(k + \alpha)\}$ para la respuesta en frecuencia del filtro, puede lograrse una mayor simplificación, puesto que,

$$G(k+\alpha) = (-1)^k H_r\left(\frac{2\pi}{M}(k+\alpha)\right)$$
 $k = 0,1,...,M-1$

Reemplazando en la ecuación anterior, se elimina $H_r(w_k)$ y se obtiene:

$$H(k+\alpha) = G(k+\alpha) e^{j\pi k} e^{j[\beta \frac{\pi}{2} - \frac{\pi}{M}(k+\alpha)(M-1)]}$$

■ Expresiones de Diseño ...

- Dependiendo de la simetría β y el valor de α se tienen los siguientes algoritmos de diseño:
 - Filtros Simétricos

•
$$\beta = 0$$
 y $\alpha = 0$

•
$$\beta = 0 \text{ y } \alpha = 1/2$$

Filtros Antisimétricos

•
$$\beta = 1 \text{ y } \alpha = 0$$

•
$$\beta = 1 \text{ y } \alpha = 1/2$$

Los algoritmos calculan directamente la primera mitad de los valores de h(n) y la segunda mitad por condiciones de simetría.

Percepción y Sistemas Inteligentes

■ Filtros FIR Simétricos

ſ		$\beta = 0$ Simétrica		
•	$\alpha = 0$	$H(k) = G(k)e^{j\pi k/(M+1)}$ $k = 0,1,,M$ $G(k) = (-1)^k H_r \left(\frac{2\pi k}{M+1}\right)$ $G(k) = -G(M+1-k)$		
	$\alpha = \frac{1}{2}$	$h(n) = \frac{1}{M+1} \left\{ G(0) + 2 \sum_{k=1}^{J} G(k) \cos \frac{2\pi k}{M+1} \left(n + \frac{1}{2} \right) \right\}$ $H\left(k + \frac{1}{2}\right) = G\left(k + \frac{1}{2}\right) e^{-j\pi/2} e^{j\pi(2k+1)/2(M+1)}$ $G\left(k + \frac{1}{2}\right) = (-1)^k H_r \left[\frac{2\pi}{M+1} \left(k + \frac{1}{2} \right) \right]$ $G\left(k + \frac{1}{2}\right) = G\left(M - k + \frac{1}{2}\right)$ $h(n) = \frac{2}{M+1} \sum_{k=0}^{U} G\left(k + \frac{1}{2}\right) sen \frac{2\pi}{M+1} \left(k + \frac{1}{2}\right) \left(n + \frac{1}{2}\right)$	$U = \begin{cases} \frac{M}{2} \\ \frac{(M-1)}{2} \end{cases}$	M par

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Percepción y Sistemas Inteligentes

■ Filtros FIR Antisimétricos

$\beta = 1$ Antisimétrica									
$\alpha = 0$	$H(k) = G(k)e^{j\pi/2}e^{j\pi k/(M+1)}$ $k = 0,1, \dots, M$ $G(k) = (-1)^k H_r \left(\frac{2\pi k}{M+1}\right)$ $G(k) = G(M+1-k)$ $h(n) = -\frac{2}{M+1} \sum_{k=1}^{U} G(k) sen \frac{2\pi k}{M+1} \left(n + \frac{1}{2}\right) \qquad M \ par$ $h(n) = \frac{1}{M+1} \left\{ (-1)^{n+1} G\left(\frac{M+1}{2}\right) - 2 \sum_{k=1}^{U} G(k) sen \frac{2\pi k}{M+1} \left(n + \frac{1}{2}\right) \right\}$ $M \ impar$	$U = \begin{cases} \frac{M}{2} & M \ par \\ \frac{(M-1)}{2} & M \ impar \end{cases}$							
$\alpha = \frac{1}{2}$	$H\left(k + \frac{1}{2}\right) = G\left(k + \frac{1}{2}\right)e^{j\pi(2k+1)/2(M+1)}$ $G\left(k + \frac{1}{2}\right) = (-1)^k H_r \left[\frac{2\pi}{M+1}\left(k + \frac{1}{2}\right)\right]$ $G\left(k + \frac{1}{2}\right) = -G\left(M - k + \frac{1}{2}\right); G\left(\frac{M}{2}\right) = 0 \text{ para } M \text{ impar}$ $h(n) = \frac{2}{M+1} \sum_{k=0}^{V} G\left(k + \frac{1}{2}\right) \cos\frac{2\pi}{M+1}\left(k + \frac{1}{2}\right)\left(n + \frac{1}{2}\right)$	$V = \begin{cases} \frac{M}{2} - 1 & M \ par \\ \frac{(M-1)}{2} & M \ impar \end{cases}$							

■ Ejemplo 1

■ Determine los coeficientes de un filtro FIR de fase lineal de longitud M=15 con h(n) simétrica y respuesta frecuencial que satisface las condiciones,

$$H_r\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & k = 0,1,2,3\\ 0.4 & k = 4\\ 0 & k = 5,6,7 \end{cases}$$

■ Solución

■ Se aprecia en H_r que $\alpha = 0$, y puesto que h(n) es simétrico (β =0), de las tablas anteriores,

$$G(k) = (-1)^{k} H_{r} \left(\frac{2\pi k}{15}\right) \qquad k = 0, 1, ..., 7$$

$$h(n) = \frac{1}{M} \left\{ G(0) + 2 \sum_{k=1}^{U} G(k) \cos \frac{2\pi k}{M} \left(n + \frac{1}{2}\right) \right\}$$
donde, $U = \begin{cases} \frac{M-1}{2} & M \text{ impar} \\ \frac{M}{2} - 1 & M \text{ par} \end{cases}$

PSI Percepción y Sistemas Inteligentes

■ Respuesta impulsional h(n) resultante

$$h(0) = h(14) = -0.014113$$
 $h(4) = h(10) = -0.091388$
 $h(1) = h(13) = -0.001945$ $h(5) = h(9) = -0.0180899$
 $h(2) = h(12) = 0.040000$ $h(6) = h(8) = 0.3133176$
 $h(3) = h(11) = 0.012234$ $h(7) = 0.52$

Percepción y Sistemas Inteligentes

■ Respuesta en frecuencia H(w) del filtro resultante

■ Ejemplo 2

■ Determine los coeficientes de un filtro FIR de fase lineal de longitud M=32 con h(n) simétrica y respuesta frecuencial que satisface las condiciones,

$$H_r\left(\frac{2\pi(k+\alpha)}{32}\right) = \begin{cases} 1 & k = 0,1,2,3,4,5 \\ T_1 & k = 6 \\ 0 & k = 7,8,...,15 \end{cases}$$

■ Solución

- Para disminuir los lóbulos, T₁ puede seleccionarse de tablas de valores óptimos.
 - $T_1 = 0.3789795$ para $\alpha = 0$
 - T_1 = 0.3570496 para α =1/2, (el filtro resultante alcanza un mayor ancho de banda)

		1	11
α	=	1	4
U	-		Z

		u	= U					00	The same	
	M Impar			M Par	, , , , , , , , , , , , , , , , , , , ,	Some A	BW	Minimax	T_1	
BW	Minimax	T_1	BW	Minimax	T_1			M = 16		
	M = 15			M = 16			1	-51.60668707	0.26674805	
1	-42.30932283	0.43378296	1	-39.75363827	0.42631836		2	-47.48000240	0.32149048	eligentes
2	-41.26299286	0.41793823	2	-37.61346340	0.40397949		3	-45.19746828	0.34810181	12/12/00/2012
3	-41.25333786	0.41047636	3	36.57721567	0.39454346		4	-44.32862616	0.36308594	
4	-41.94907713	0.40405884	4	-35.87249756	0.38916626		5	-45.68347692	0.36661987	
5	-44.37124538	0.39268189	5	-35.31695461	0.38840332		6	-56.63700199	0.34327393	
6	-56.01416588	0.35766525	6	-35.51951933	0.40155639			M = 32		
· ·	M = 33			M = 32			1	-52.64991188	0.26073609	
1	-43.03163004	0.42994995	1	-42.24728918	0.42856445	Ì	2	-49.39390278	0.30878296	
2	-42.42527962	0.41042481	2	-41.29370594	0.40773926		3	-47.72596645	0.32984619	
3	-42.40898275	0.40141601	3	-41.03810358	0.39662476		4	-46.68811989	0.34217529	
4	-42.45948601	0.39641724	4	-40.93496323	0.38925171		6	-45.33436489	0.35704956	
6	-42.52403450	0.39161377	5	-40.85183477	0.37897949		8	-44.30730963	0.36750488	
8	-42.44085121	0.39039917	8	-40.75032616	0.36990356		10	-43.11168003	0.37810669	
10	-42.11079407	0.39192505	10	-40.54562140	0.35928955		12	-42.97900438	0.38465576	
12	-41.92705250	0.39420166	12	-39.93450451	0.34487915		14	-56.32780266	0.35030518	
14	-44.69430351	0.38552246	14	-38.91993237	0.34407349			M=64		
15	-56.18293285	0.35360718					1	-52.90375662	0.25923462	
	M=65			M = 64			2	-49.74046421	0.30603638	
1	-43.16935968	0.42919312	1	-42.96059322	0.42882080		3	-48.38088989	0.32510986	
$\overline{2}$	-42.61945581	0.40903320	2	-42.30815172	0.40830689		4	-47.47863007	0.33595581	
3	-42.70906305	0.39920654	3	-42.32423735	0.39807129		5	-46.88655186	0.34287720	
4	-42.86997318	0.39335937	4	-42.43565893	0.39177246		6	-46.46230555	0.34774170	
5	-43.01999664	0.38950806	5	-42.55461407	0.38742065		10	-45.46141434	0.35859375	
6	-43.14578819	0.38679809	6	-42.66526604	0.38416748		14	-44.85988188	0.36470337	
10	-43.44808340	0.38129272	10	-43.01104736	0.37609863		18	-44.34302616	0.36983643	
14	-43.54684496	0.37946167	14	-43.28309965	0.37089233		22	-43.69835377	0.37586059	
18	-43.48173618	0.37955322	18	-43.56508827	0.36605225		26	-42.45641375	0.38624268	
22	-43.19538212	0.38162842	22	-43.96245098	0.35977783		30	-56.25024033	0.35200195	
26	-42.44725609	0.38746948	26	-44.60516977	0.34813232			M = 128		
30	-44.76228619	0.38417358	30	-43.81448936	0.29973144		1	-52.96778202	0.25885620	
31	-59.21673775	0.35282745					2	-49.82771969	0.30534668	
	M = 125	•		M=128	}		3	-48.51341629	0.32404785	
1	-43.20501566	0.42899170	1	-43.15302420	0.42889404		4	-47.67455149	0.33443604	
2	-42.66971111	0.40867310	2	-42.59092569	0.40847778		5	-47.11462021	0.34100952	
3	-42.77438974	0.39868774	3	-42.67634487	0.39838257		7	-46.43420267	0.34880371	
4	-42.95051050	0.39268189	4	-42.84038544	0.39226685		10	-45.88529110	0.35493774	
6	-43.25854683	0.38579101	5	-42.99805641	0.38812256		18	-45.21660566	0.36182251	88 37
8	-43.47917461	0.38195801	7	-43.25537014	0.38281250		26	-44.87959814	0.36521607	eniería
10	-43.63750410	0.37954102	10	-43.52547789	0.3782638	Escuela d	34	-44.61497784	0.36784058	
18	-43.95589399	0.37518311	18	-43.93180990	0.37251587		42	-44.32706451	0.37066040	
26	-44.05913115	0.37384033	26	-44.18097305	0.36941528	ounivalle.edu.co	50	-43.87646437	0.37500000	3

Diseño de Filtros FIR de Fase Lineal con el Método de Muestreo en Frecuencia

■ Ejemplo 2...

- Parcepción y Sistemas Inteligentes
- Siguiendo el procedimiento del ejemplo 1, se llega a:

Respuesta en frecuencia del filtro FIR de fase lineal.. M=32, $\alpha=0$

Respuesta en frecuencia del filtro FIR de fase lineal.. M=32, $\alpha=1/2$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- **Ejemplo 3.**
 - Elaborar un programa en MatLab para diseñar filtros por el método de muestreo en frecuencia y generar las graficas de h(n) y H(w).
- **Solución**: Ver función <u>s_muestreofrec()</u>

```
[h]= s_muestreofrec(ALPHA, BETA, ORDEN, Hr )
n=[0:ORDEN];
subplot(2,1,1); %
graf_stemm(n,h,'Respuesta Impulsional','n','h(n)',4)
%Respuesta en Frecuencia
NP=1; % número de periodos a graficar
N=512*2; % número de puntos por periodo
dw=pi/(N-1);
w= 0:dw:(NP-dw)*pi; %Calcular valores de w
%Respuesta en frecuencia
num=h;den=[1]; H=freqz(num,den,w);
%Graficación |H(w)|
subplot(2,1,2); graf_plotm(w/pi, abs(H) ,...
'Espectro Magnitud','\omega/\pi','|H(w)|-dB',4,'.','.');
```


Percepción y Sistemas Inteligentes

- Solución ...
 - Filtro Simétrico

```
%Ejemplo Filtros Simetricos - Paso-alto BETA=0;
```

ORDEN=31;

Hr=[zeros(1,6) 0.3789795]

ALPHA=0;

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- Solución ...
 - Filtro Antisimétrico

%Ejemplos Filtro Antisimetricos - %pasorelando pulsional BETA=1; 0.2 ORDEN =28;Hr=[zeros(1,4) 0.4 ones(1,5)]ALPHA=0;-0.25 10 15 20 25 n Espectro Magnitud 0.8 H(w)l-dB 0.6 0.4 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.9

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

 ω/π

Diseño de Filtros *Óptimos* FIR de Fase Lineal y Rizado Constante

■ Introducción

- ► El método de diseño se formula como un problema de **Aproximación de Chevyshev.**
- ► El **criterio de optimalidad** es en el sentido de que el **error** de aproximación **ponderado** entre la respuesta en frecuencia **deseada** y **obtenida** se distribuye **equitativamente** a lo largo de la bandas de paso y de atenuación del filtro que minimiza el error máximo.

Diseño de Filtros *Óptimos* FIR de Fase Lineal y Rizado Constante

■ Introducción...

▶ Los filtros obtenidos presentan rizados en todas las bandas.

*banda de paso:

$$1 - \delta_1 \le H_r(w) \le 1 + \delta_1$$

 $|w| \le w_p$

*banda de rechazo:

$$-\delta_2 \leq H_r(w) \leq \delta_2$$

 $|w| > w_s$

▶ Para el diseño, es conveniente obtener una *estructura común* de H_r(w) para los diferentes casos de filtros FIR.

PSI Percepción y Sistemas Inteligentes

h(n)=h(M-1-n) y M impar

$$H_r(w) = h\left(\frac{M-1}{2}\right) + 2\sum_{n=0}^{(M-3)/2} h(n)\cos w\left(\frac{M-1}{2} - n\right)$$

Haciendo $\mathbf{k} = (\mathbf{M-1}) / 2 - \mathbf{n}$ y definiendo un nuevo conjunto de parámetros del filtro $\{a(k)\}$ como,

$$a(k) = \begin{cases} h\left(\frac{M-1}{2}\right), & k = 0\\ 2h\left(\frac{M-1}{2}-k\right), & k = 1, 2, ..., \frac{M-1}{2} \end{cases}$$

entonces $H_r(w)$ se reduce a:

$$\Rightarrow H_r(w) = \sum_{k=0}^{(M-1)/2} a(k) \cos w k$$

PSI Percepción y Sistemas Inteligentes

h(n)=h(M-1-n)y M par

$$H_r(w) = 2\sum_{n=0}^{(M/2)-1} h(n) \cos w \left(\frac{M-1}{2} - n\right)$$

Haciendo $\mathbf{k} = \mathbf{M} / 2 - \mathbf{n}$ y definiendo un nuevo conjunto de parámetros del filtro $\{b(\mathbf{k})\}$ como,

$$b(k) = 2h\left(\frac{M}{2} - k\right), \qquad k = 1, 2, ..., M/2$$

entonces $H_r(w)$ se convierte en:

$$H_r(w) = \sum_{k=1}^{M/2} b(k) \cos w \left(k - \frac{1}{2} \right)$$

Para lograr la optimización, es conveniente expresar H_r(w) como,

$$\Rightarrow H_r(w) = \cos \frac{w}{2} \sum_{k=0}^{(M/2)-1} \widetilde{b}(k) \cos wk$$

donde los nuevos coeficientes están dados por,

$$\tilde{b}(0) = \frac{1}{2}b(1), \quad \tilde{b}(k) = 2b(k) - \tilde{b}(k-1) \quad k = 1, 2, ..., \frac{M}{2} - 2, \quad \tilde{b}(\frac{M}{2} - 1) = 2b(\frac{M}{2})$$

Respuesta impulsional antisimétrica h(n)=-h(M-1-n) y M impar

$$H_r(w) = 2\sum_{n=0}^{(M-3)/2} h(n) senw\left(\frac{M-1}{2} - n\right)$$

Haciendo $\mathbf{k} = (\mathbf{M-1}) / 2 - \mathbf{n}$ y definiendo un nuevo conjunto de parámetros del filtro $\{c(k)\}$ como,

$$c(k) = 2h\left(\frac{M-1}{2}-k\right), \qquad k = 1, 2, ..., (M-1)/2$$

entonces $H_r(w)$ se convierte en:

$$H_r(w) = \sum_{k=1}^{(M-1)/2} c(k) \operatorname{sen} w k$$

Para lograr la optimización, es conveniente expresar H_r(w) como,

$$\Rightarrow H_r(w) = \operatorname{sen} w \sum_{k=0}^{(M-3)/2} \widetilde{c}(k) \cos w k$$

donde los nuevos coeficientes están dados por,

$$\mathcal{C}\left(\frac{M-3}{2}\right) = c\left(\frac{M-1}{2}\right), \quad \mathcal{C}\left(\frac{M-5}{2}\right) = 2c\left(\frac{M-3}{2}\right), \dots,$$

$$\mathcal{C}(k-1) - \mathcal{C}(k+1) = 2c(k) \quad 2 \le k \le \frac{M-5}{2}, \quad \mathcal{C}(0) + \frac{1}{2}\mathcal{C}(2) = c(1)$$

Respuesta impulsional antisimétrica

h(n)=-h(M-1-n) y M par

$$H_r(w) = 2 \sum_{n=0}^{(M/2)-1} h(n) senw \left(\frac{M-1}{2} - n\right)$$

Haciendo $\mathbf{k} = \mathbf{M} / 2 - \mathbf{n}$ y definiendo un nuevo conjunto de parámetros del filtro $\{d(\mathbf{k})\}$ como,

$$d(k) = 2h\left(\frac{M}{2} - k\right), \quad k = 1, 2, ..., M/2$$

entonces $H_r(w)$ se convierte en:

$$H_r(w) = \sum_{k=1}^{M/2} d(k) \operatorname{senw}\left(k - \frac{1}{2}\right)$$

■ Respuesta impulsional **antisimétrica** h(n)=-h(M-1-n) y M **par...**

Para lograr la optimización, es conveniente expresar H_r(w) como,

$$\Rightarrow H_r(w) = \operatorname{sen} \frac{w}{2} \sum_{k=0}^{(M/2)-1} \widetilde{d}(k) \cos wk$$

donde los nuevos coeficientes están dados por,

$$\widetilde{d}\left(\frac{M}{2}-1\right)=2d\left(\frac{M}{2}\right), \qquad \widetilde{d}(k-1)-\widetilde{d}(k)=2d(k) \qquad 2 \leq k \leq \frac{M}{2}-1, \qquad \widetilde{d}(0)-\frac{1}{2}\widetilde{d}(1)=d(1)$$

Percepción y Sistemas Inteligentes

H_r(w) presenta la misma forma en los *cuatro casos*,

donde,

$$H_r(w) = Q(w) P(w)$$

$$\underline{Q(w)} = \begin{cases} 1 & caso 1 \\ \cos \frac{w}{2} & caso 2 \\ sen w & caso 3 \\ sen \frac{w}{2} & caso 4 \end{cases} \qquad \underline{P(w)} = \sum_{k=0}^{L} \alpha(k) \cos wk \qquad \text{donde } L = \begin{cases} (M-1)/2 & M/2-1 \\ M/2-1 & M/2-1 \end{cases}$$

$$\underline{P(w)} = \sum_{k=0}^{L} \alpha(k) \cos wk \qquad \text{dond}$$

donde
$$L = \begin{cases} (M-1)/2 & caso 1 \\ M/2-1 & caso 2 \\ (M-3)/2 & caso 3 \\ M/2-1 & caso 4 \end{cases}$$

- Respuesta en frecuencia real deseada $H_{dr}(w)$ y función de ponderación W(w)
 - $\mathbf{H}_{dr}(\mathbf{w})$ se define como igual a uno en la banda de paso y cero en la banda de rechazo.
 - W(w) función que permite elegir el tamaño relativo del los errores en las diferentes bandas de frecuencia (normalizada en la banda de paso).

- Respuesta en frecuencia real deseada $H_{dr}(w)$ y función de ponderación W(w)...
 - Dadas las especificaciones de $H_{dr}(w)$ y W(w), puede definirse el **Error de Aproximación Ponderado E(w)** como,

$$E(w) = W(w)[H_{dr}(w) - H_{r}(w)] = W(w)[H_{dr}(w) - Q(w)P(w)]$$
$$E(w) = W(w)Q(w)\left[\frac{H_{dr}(w)}{Q(w)} - P(w)\right]$$

por conveniencia matemática, se definen las *funciones modificadas* como:

$$\widehat{W}(w) = W(w)Q(w) \qquad \widehat{H}_{dr} = \frac{H_{dr}(w)}{Q(w)}$$

■ Respuesta en frecuencia real deseada $H_{dr}(w)$ y función de ponderación W(w)...

Por lo que el error de aproximación ponderado se puede expresar, para los cuatro filtros FIR de fase lineal, como:

$$E(w) = \widehat{W}(w) [\widehat{H}_{dr}(w) - P(w)]$$

Filtros FIR de Fase Lineal

- Respuesta en frecuencia real deseada $H_{dr}(w)$ y función de ponderación W(w)...
 - La aproximación de Chebyshev consiste en determinar los parámetros {α (k)} que minimizan el valor máximo de |E(w)| sobre las bandas de frecuencia en las que se realiza la aproximación:

$$\min_{sobre\{\alpha(k)\}} \left[\max_{w \in S} |E(w)| \right] = \min_{sobre\{\alpha(k)\}} \left[\max_{w \in S} |\widehat{W}(w)| \left[\widehat{H}_{dr}(w) - \sum_{k=0}^{L} \alpha(k) \cos wk \right] \right]$$

donde, S: conjunto de bandas de frecuencia para la optimización.

■ La **solución a este problema** [Park y McClellan 1972] se efectua utilizando el *teorema de alternancia*.

Definición

Percepción y Sistemas Inteligentes

- Sea S un subconjunto compacto del intervalo $[0,\pi)$.
- Una condición necesaria y suficiente para que,

$$P(w) = \sum_{k=0}^{L} \alpha(k) \cos w k$$

sea la **mejor y única aproximación ponderada de Chebyshev** $\widehat{H}_{dr}(w)$ en **S** es que el error E(w) presente **al menos** L+2 frecuencias *extremas* $\{w_i\}$ en S, tal que:

$$w_1 < w_2 < < w_{L+2}$$

 $E(w_i) = -E(w_{i+1})$
 $|E(w_i)| = \max_{w \in S} |E(w)|$ $i = 1, 2,, L + 2$

■ Definición ...

- La función de error E(w) *alterna su signo* entre dos frecuencias extremas sucesivas; de ahí su nombre.
- Las frecuencias $\{w_i\}$ correspondientes a los picos de E(w) también corresponden a los picos para los que $H_r(w)$ verifica la tolerancia del error.
- El teorema de alternancia garantiza una *solución única* para el problema de *optimización de Chebyshev*.

Solución

■ En las frecuencias extremas deseadas {w_n}, se tiene el conjunto de ecuaciones,

$$\widehat{W}(w_n) \left[\widehat{H}_{dr}(w_n) - P(w_n) \right] = (-1)^n \delta \qquad n = 0, 1, ..., L+1$$
 [1]

donde δ representa el valor máxino de la función de error E(w). Para la función de W(w) escogida, se desprende que $\delta = \delta_2$.

■ Solución...

▶ El conjunto de ecuaciones de [1], se puede representar como,

$$P(w_n) + \frac{(-1)^n \delta}{\widehat{W}(w_n)} = \widehat{H}_{dr}(w_n)$$
 $n = 0, 1, ..., L+1$ [2]

o de la forma,

$$\sum_{k=0}^{L} \alpha(k) \cos w_n k + \frac{(-1)^n \delta}{\widehat{W}(w_n)} = \widehat{H}_{dr}(w_n) \qquad n = 0, 1, ..., L+1$$
 [3]

■ Solución...

■ Si $\{\alpha(k)\}$ y δ son los parámetros que se deben determinar a partir de una estimación de $\{w_n\}$, la ecuación [3] puede expresarse matricialmente:

$$\begin{bmatrix} 1 & \cos w_{0} & \cos 2w_{0} & \dots & \cos Lw_{0} & \frac{1}{\widehat{W}(w_{0})} \\ 1 & \cos w_{1} & \cos 2w_{1} & \dots & \cos Lw_{1} & \frac{-1}{\widehat{W}(w_{1})} \\ \vdots & & & & \\ 1 & \cos w_{L+1} & \cos 2w_{L+1} & \dots & \cos Lw_{L+1} & \frac{(-1)^{L+1}}{\widehat{W}(w_{L+1})} \end{bmatrix} \begin{bmatrix} \alpha(0) \\ \alpha(1) \\ \vdots \\ \alpha(L) \\ \delta \end{bmatrix} = \begin{bmatrix} \widehat{H}_{dr}(w_{0}) \\ \widehat{H}_{dr}(w_{1}) \\ \vdots \\ \widehat{H}_{dr}(w_{L+1}) \end{bmatrix}$$
[4]

Cuales son los parámetros desconocidos??

- Solución...
 - ► Se desconocen:
 - ► Las frecuencias extremas {w_n}
 - El conjunto de parámetros {α (k) }
 - δ, el valor máximo del error E(w)
 - ► El sistema de ecuaciones [4] se resuelve utilizando el *Algoritmo de Intercambio de Remez* (Rabiner et al. 1975)

■ Introducción

- Algoritmo iterativo en el que se propone un conjunto inicial de frecuencias extremas $\{w_n\}$ para calcular P(w) y δ , y posteriormente se determina la función de error E(w).
- ► A partir de E(w) se obtiene otro conjunto de L+2 frecuencias extremas.
- ► El proceso anterior se repite iterativamente hasta que converga al conjunto óptimo de frecuencias extremas.

■ Introducción...

Puesto que la inversión de matrices es un procedimiento costoso en tiempo, se prefiere utilizar un procedimiento más eficiente para calcular δ analíticamente:

$$\delta = \frac{\gamma_0 \hat{H}_{dr}(w_0) + \gamma_1 \hat{H}_{dr}(w_1) + \dots + \gamma_{L+1} \hat{H}_{dr}(w_{L+1})}{\frac{\gamma_0}{\widehat{W}(w_0)} - \frac{\gamma_1}{\widehat{W}(w_1)} + \dots + \frac{(-1)^{L+1} \gamma_{L+1}}{\widehat{W}(w_{L+1})}}$$
[1]

donde,

$$\gamma_{k} = \prod_{\substack{n=0\\n\neq k}}^{L+1} \frac{1}{\cos w_{k} - \cos w_{n}}$$
 [2]

Así, δ se calcula al seleccionar las L+2 frecuencias extremas iniciales.

► Como P(w) es un polinomio trigonométrico de la forma,

$$P(w) = \sum_{k=0}^{L} \alpha(k) x^{k} \qquad x = \cos w$$
 [3]

y se sabe que en los puntos $x_n = \cos w_n$, n=0, 1, ..., L+1, el polinomio tiene los valores,

$$P(w_n) = \hat{H}_{dr}(w_n) - \frac{(-1)^n \delta}{\hat{W}(w_n)} \qquad n = 0, 1, ..., L+1$$
 [4]

se puede usar la formula de interpolación de Lagrange para P(w).

Así, P(w) se puede expresar como [Hamming, 1962]:

$$P(w) = \frac{\sum_{k=0}^{L} P(w_k) [\beta_k / (x - x_k)]}{\sum_{k=0}^{L} [\beta_k / (x - x_k)]} \quad \text{donde} \quad x_k = \cos w_k \quad \text{y} \quad \beta_k = \prod_{\substack{n=0 \ n \neq k}}^{L+1} \frac{1}{x_k - x_n}$$
 [5]

Luego de obtener la solución para P(w), se calcula la función de error E(w) a partir de,

$$E(w) = \widehat{W}(w) \left[\widehat{H}_{dr}(w) - P(w) \right]$$

en un conjunto denso de puntos de frecuencia (normalmente 16 M, donde M es la longitud del filtro).

- ► Si |E(w)|≥δ para alguna frecuencia en el conjunto denso, entonces se **selecciona** un nuevo conjunto de frecuencias correspondientes a los L+2 picos más grandes de E(w) y se **repite** el proceso empezando con la ecuación [1].
- ► Como el nuevo conjunto de L+2 frecuencias se selecciona para coincidir con los picos de la función de error |E(w)|, el algoritmo obliga a que δ se incremente en cada iteración hasta que converge al límite superior $|E(w)| < \delta$.

- Al obtener la solución óptima de Chebyshev para P(w), se conocen los parámetros $\alpha(k)$.
- Los valores de h(n) se obtienen de las relaciones entre $\alpha(k)$ y h(k).
- Si se requiere, Q(w) se determina según el tipo de filtro: $H_r(w) = Q(w) P(w)$

Diagrama de Flujo del Algoritmo de Remez

Escuela de Ingeniería Eléctrica y Electrónica

■ Ejemplo

Obtenga un filtro FIR paso-banda de longitud M = 20, mediante la técnica de rizado constante (Parks-McClellan algorithm) si se conoce que el filtro deseado tiene las siguientes especificaciones:

$$f = \begin{bmatrix} 0 & 0.3 & 0.4 & 0.6 & 0.7 & 1 \end{bmatrix}$$

 $a = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

- f corresponde a la frecuencia normalizada entre 0 y 1; siendo 1 la frecuencia de Nyquist.
- a es la amplitud de la respuesta deseada normalizada entre 0 y 1

■ Solución

■ Utilización de la función firpm(n,f,a) de Matlab.

```
clc; clear all; close all;
f = [0 \ 0.3 \ 0.4 \ 0.6 \ 0.7 \ 1]; a = [0 \ 0 \ 1 \ 1 \ 0 \ 0]; M=20;
% Calculo del filtro
b = firpm(M-1, f, a);
% Graficación coeficientes del filtro
stem([0:M-1],b); xlabel('n'); ylabel('h(n)'); grid on;
% Respuesta en Frecuencia
figure; [h,w] = freqz(b,1,512);
% Graficación respuesta en frecuencia
plot(f,a,w/pi,abs(h)); xlabel('f=w/pi'); ylabel('H(f)');
grid on; legend('Filtro deseado', 'Filtro obtenido');
```


PSI Percepción y Sistemas Inteligentes

■ Solución ...

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Diseño de Filtros FIR

■ Estimación de la Longitud del Filtro

- En el proceso de diseño del filtro digital es necesario estimar el orden para cumplir con las especificaciones deseadas.
- El orden debe ser el entero más pequeño posible para reducir la complejidad computacional.
- Se recurre a propuestas heurísticas de varios autores que parten de los valores de w_p y w_s , δ_1 y δ_2 esperados del filtro.

Estimación de la Longitud del Filtro

Percepción y Sistemas Inteligentes

Propuesta de Kaiser

$\widetilde{M} = \frac{-20\log_{10}\left(\sqrt{\delta_1 \delta_2}\right) - 13}{14.6\Delta f} + 1$

Propuesta de Herrmann

$$\widetilde{M} = \frac{D_{\infty}(\delta_1, \delta_2) - f(\delta_1, \delta_2)(\Delta f)^2}{\Delta f} + 1$$

Propuesta de Bellanger

$$\widetilde{M} = \frac{-20\log_{10}(10\,\delta_1\,\delta_2)}{3\Delta f - 1} + 1$$

Donde,
$$\Delta f = (\omega_s - \omega_p)/2\pi$$

$$D_{\infty}(\delta_1, \delta_2) = (\log_{10} \delta_2) \left[0.005 (\log_{10} \delta_1)^2 + 0.071 (\log_{10} \delta_1) - 0.476 \right] - \left[0.003 (\log_{10} \delta_1)^2 + 0.594 (\log_{10} \delta_1) + 0.428 \right]$$

$$f(\delta_1, \delta_2) = 11.012 + 0.5124 (\log_{10} \delta_1 - \log_{10} \delta_2)$$

Comparación de las Fórmulas

■ Bandas de transición

- Si $(w_s w_p)$ es angosta se generan mayores valores de M.
- *M* se calcula inversamente proporcional a $(w_s w_p)$

■ Errores en las bandas

- Para valores **pequeños** de δ_1 y δ_2 :
 - Todas las fórmulas proporcionan resultados cercanos y precisos.
- Para valores **grandes** de δ_1 y δ_2
 - F. Hermann produce una mejor aproximación.

Comparación de las Fórmulas

ComparaciónCálculo de M

- Comparación de tres
 Filtros FIR paso-bajo
 con sus características
 conocidas.
- Estimaciones de la longitud del filtro:

Filtro FIR	wp	W _s	δ ₁	δ_2
1	0.10625 π	0.14375 π	0.0224	0.112 10-3
2	0.20750 π	0.28750 π	0.0170	34.0 10-3
3	0.3450 π	0.57500 π	0.0411	13.7 10-3

Filtro FIR	Orden Real	F. Kaiser	F. Bellanger	F. Hermann
1	159	159	164	152
2	38	35	38	38
3	14	13	14	13

Comparación de Métodos de Diseño de Filtros FIR

Método Directo Método por Enventanado Método Muestreo en Frecuencia Método Rizado Constante

Método Directo

Método simple que consiste en obtener y resolver un sistema de ecuaciones lineales.

El resultado sólo garantiza el cumplimiento de las especificaciones de diseño utilizadas en la formulación de las ecuaciones.

Método de Enventanado

Primer método propuesto para el diseño de filtros FIR de fase lineal.

Carece de control preciso de las frecuencias críticas, tales como w_p y w_s en el diseño del filtro.

Los valores de w_p , w_s y δ dependen del tipo de ventana y de la longitud M del filtro

Método Muestreo en frecuencia

Proporciona más control sobre las frecuencias críticas que el método de ventanas,

Debido a que $H_r(w)$ se especifica en las frecuencias $w_k = 2 \pi k / M$ o $w_k = \pi (2k+1) / M$ y la banda de transición es un múltiplo de $2 \pi / M$.

Puede implementarse con estructuras eficientes (menos operaciones) cuando la mayoría de las muestras en frecuencias son cero.

La ubicación de polos y ceros es sensible a los efectos de cuantificación.

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Método Rizado Constante

Proporciona control total de las especificaciones del filtro y se prefiere habitualmente sobre los otros métodos.

Especificaciones de diseño en función de $w_p, w_s, \delta_1, \delta_2$ y M.

Distribuye el error de aproximación en las bandas de paso y de rechazo y se obtiene un filtro óptimo que minimiza el nivel de los lóbulos laterales (optimizar δ_2).

Algoritmo iterativo computacional que converge a una solución óptima.

