PAKET 3

PELATIHAN ONLINE

2019

SMA

po.alcindonesia.co.id

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

PEMBAHASAN PAKET 3

- 1. Asam kuat, pH = $-\log[H^+] = -\log[10^{-3}] = 3$ (B)
- 2. Untuk menentukan pH larutan, perlu diketahui reagen apa yang tersisa di akhir reaksi. Tentukan pereaksi pembatas

$$nHCI = 50 \text{ mLx}10^{-3} \text{ molL}^{-1} = 0,05 \text{ mmol}$$

nNaOH = 20 mLx2x10⁻³ molL⁻¹ = 0.04 mmol (pereaksi pembatas)

sisa
$$HCI = 0.05 \text{ mmol} - 0.04 \text{ mmol} = 0.01 \text{ mmol}$$

[HCI] =
$$\frac{0.01mmol}{(50+20)mmol}$$
=1,43 x 10⁻⁴ M

$$pH = -log[H^+] = -log(1,43 \times 10^{-4}) = 3,84 (C)$$

3. Menggunakan kesetimbangan akan didapat

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

$$m \cdot 10^{-3}$$

$$Ka = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

1,8 x 10⁻⁵ =
$$\frac{x^2}{10^{-3}-x}$$

Menyelesaikan persamaan ini untuk nilai x akan didapat

$$[H_3O^+] = x = 1,25 \times 10^{-4}$$

$$pH = -log[H^+] = -log (1,25 \times 10^{-4}) = 3,9 (B)$$

4. Pada campuran asam kuat dan asam lemah, kontribusi H₃O⁺ dari asam lemah sangat sedikit sehingga dapat diabaikan

pH = -log[H₃O⁺]= -log
$$\frac{20mLx0,01mol/L}{(20+20)mL}$$
=2,3 (D)

5. Berapa pH larutan HCl 10⁻⁸M?

Pada konsentrasi yang sangat encer, auto-protonasi oleh air harus diperhitungkan sehingga H₃O⁺ ≠ [HCI]

Menggunakan charge balance:

Muatan positif = muatan negatif

$$[H_3O^+]$$
 = $[Cl^-]+[OH^-]$

[H₃O⁺] = [10⁻⁸]+
$$\frac{Kw}{[[H_3O^+]]}$$

Penataan ulang menghasikan $[H_3O^+]^2\text{-}10^{\text{-}8}[H_3O^+]\text{-}10^{\text{-}14}=0$ Menggunakan rumus abc didapat $[H_3O^+]\text{=}1,05 \text{ x}10^{\text{-}7}$

- 6. Suhu 25°C netral, suhu 100°C netral karena baik di keduanya [H+]=[OH-] terlepas dari pH-nya yang tidak sama dengan 7 (A)
- 7. Tentukan pH dari 100 mL larutan Ba(OH)₂ 10⁻³M!

pH = -log[H₃O⁺] = -log[1,05 x10⁻⁷]=6,98 (D)

$$[OH^{-}] = 2x10^{-3} M$$
, $pOH = -log[OH^{-}] = -log(2x10^{-3}) = 2,70$
 $pH = 14-pOH = 14-2,70 = 11,30$ (E)

8. Tentukan pH dari 50 mL larutan NH₃ 10^{-3} M (K_b = 10^{-5})

Menggunakan kesetimbangan akan didapat

NH₃ + H₂O
$$\rightleftharpoons$$
 NH₄⁺ + OH⁻
m 10⁻³ - - -
r -x x x x x
s 10⁻³-x x x x
 $Kb = \frac{[OH^{-}][NH_4^{+}]}{[NH_3]}$
 $10^{-5} = \frac{x^2}{10^{-3} - x}$

Menyelesaikan persamaan ini untuk nilai x akan didapat

$$[OH^{-}] = x = 9.51 \times 10^{-5}$$

 $pOH = -log[OH^{-}] = -log (9.51 \times 10^{-5}) = 4.02$
 $pH = 14-pOH = 9.98 (D)$

9. Tentukan pH campuran dari 50 mL NH₃ 10⁻³ M dan 20 mL HCl 10⁻³M!

Tinjau reaksi yang terjadi

NH₃ + HCl → NH₄Cl
m 0,05 mmol 0,02 mmol -
r -0,02 mmol -0,02 mmol 0,02 mmol
s 0,03 mmol - 0,02 mmol
[NH₃] = 0,03 mmol/70 mL = 4,3 x
$$10^{-4}$$
 M
[NH₄+] = 0,02 mmol/70 mL = 2,9 x 10^{-4} M
NH₃ dan NH₄Cl akan berkesetimbangan
NH₃ + H₂O \rightleftharpoons NH₄+ OH

m 4,3 x 10⁻⁴ 2,9 x 10⁻⁴ -
r -x x x x
s 4,3 x 10⁻⁴-x 2,9 x 10⁻⁴ + x x
$$Kb = \frac{[OH^{-}][NH_4^{+}]}{[NH_3]}$$

$$10^{-5} = \frac{x(2.9 \times 10^{-4} + x)}{4.3 \times 10^{-4} - x}$$

Asumsi x sangat kecil menyederhanakan persamaan menjadi

$$10^{-5} = \frac{x(2,9 \times 10^{-4})}{4,3 \times 10^{-4}}$$

$$[OH^{-}] = x = \frac{4,3 \times 10^{-4}}{2,9 \times 10^{-4}}.10^{-5} = 1,4828 \times 10^{-5}$$

$$pOH = -log[OH^{-}] = -log(1,4828 \times 10^{-5}) = 4,82$$

$$pH = 14-pOH = 9,18 (C)$$

10. Tentukan pH campuran 50 mL NH₃ 10⁻³ M dan 50 mL HCl 10⁻³M!

Tinjau reaksi yang terjadi

NH₄⁺ akan memasuki kesetimbangan hidrolisis

Tinjau persamaan kesetimbangannya

$$\frac{Kw}{Kb} = \frac{x^2}{5x10^{-4} - x}$$
$$\frac{10^{-14}}{10^{-5}} = \frac{x^2}{5x10^{-4} - x}$$

Menyelesaikan untuk nilai x akan didapat

$$[H_3O^+] = x = 7,066 \times 10^{-7}$$

 $pH = -log[H_3O^+] = -log(7,066 \times 10^{-7}) = 6,15 (B)$

11. Tentukan pH campuran 50 mL NH₃ 10⁻³ M dan 70 mL HCl 10⁻³M!

Tinjau reaksi yang terjadi

$$NH_3 + HCI \rightarrow NH_4CI$$

m 0,05 mmol 0,07 mmol -
r -0,05 mmol -0,07 mmol 0,05 mmol
s - 0,02 mmol 0,05 mmol

$$[H_3O^+] = 0,02$$
 mmol/120 mL = 1,67 x 10^{-4}
pH = $-log[H_3O^+] = -log(1,67 \times 10^{-4}) = 3,78$ (B)

12. Tentukan pH campuran 50 mL NH₃ 10⁻³M jika ditambah 20 mL NaOH 10⁻³M!

Jika basa lemah dicampur dengan basa kuat, maka kontribusi OH- dominan dari basa kuat saja

$$[OH^{-}] = \frac{20 \text{ mL x } 10^{-3}}{(50+20)\text{mL}} = 2,857 \text{ x } 10^{-4} \text{ M}$$

 $pOH = -log[OH^{-}] = 3,54$
 $pH = 14-pH = 10,46 (C)$

13.
$$HA_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + A^-_{(aq)}$$

Pada reaksi berikut mana yang merupakan pasangan basa dan asam konjugasinya? (D)

HA bertindak sebagai asam, A⁻ basa konjugasinya. H₂O basa, H₃O⁺ asam konjugasinya

14. Diketahui reaksi berikut

$$HCCH_{(aq)} + H_2O_{(aq)} \rightleftharpoons HCC^{-}_{(aq)} + H_3O^{+}_{(aq)}$$
 memiliki nilai K = 10^{-25}

Berdasarkan data tersebut dapat dikatakan bahwa .. (A)

Nilai K yang <<< 1 menunjukkan reaksi ke kanan tidak disukai, dari pernyataan ini dapat ditarik kesimpulan di ruas kanan merupakan pasangan asam-basa yang lebih kuat dari pasangan di kiri

H₂O basa yang lebih lemah dari HCC⁻

15. Berikut yang bukan merupakan asam lewis adalah .. (C)

Asam lewis merupakan spesi yang mampu menerima elektron, NH₃ lebih condong bersifat donor elektron sehingga cenderung bersifat basa lewis

- 16. Berikut yang merupakan basa Bronsted-Lowry adalah ... (B)
 Basa Bronsted-Lowry merupakan spesi yang siap menerima H⁺, diketahui NH₂⁻
 dapat menerima H⁺ membentuk NH₃
- 17. Asam karbonat diketahui merupakan asam diprotik ($Ka_1 = 4.5 \times 10^{-7} dan Ka_2=4.7 \times 10^{-11}$)

Pada pH = 6 spesi asam karbonat apakah yang dominan? (A)

Nilai p $Ka_1 = -logKa_1 = 6,34$; p $Ka_2 = -logKa_2 = 10,33$

Karena pH mendekati nilai pKa₁ maka spesi yang dominan adalah spesi yang berkeseimbangan dengan tetapan Ka₁ yakni H₂CO₃ dan HCO₃ (A)

18. Tentukan konsentrasi CO₃²- pada pH=8 dalam 100 mL larutan H₂CO₃ 10⁻² M!

Tinjau tetapan kesetimbangan Ka1 dan Ka2 dari H2CO3

$$Ka_{1} = \frac{[H_{3}O^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}$$
$$Ka_{2} = \frac{[H_{3}O^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}$$

Persamaan dapat ditata ulang menjadi

$$[HCO_3^-] = \frac{[H_3O^+][CO_3^{2-}]}{Ka_2}$$
$$[H_2CO_3] = \frac{[H_3O^+]^2[CO_3^{2-}]}{Ka_1Ka_2}$$

Menggunakan mass balance

[H₂CO₃]_o = [H₂CO₃]+[HCO₃⁻]+[CO₃²-]
10⁻² = [CO₃²-](1 +
$$\frac{[H_3O^+]}{Ka_2}$$
 + $\frac{[H_3O^+]^2}{Ka_1Ka_2}$)

Memasukkan nilai $[H_3O^+]=10^{-8}$ beserta nilai Ka_1 dan Ka_2 yang sesuai akan menghasilkan

$$[CO_3^{2-}] = 4,5768 \times 10^{-5} (B)$$

19. Jika dalam suatu percobaan diinginkan konsentrasi [CO₃²⁻] di larutan tidak lebih dari 10⁻⁷. Tentukan pada pH berapa (menggunakan buffer) larutan H₂CO₃ 0,1 M harus disangga?

Dengan pendekatan yang serupa di nomor 18 didapat

0,1 =
$$[CO_3^2](1 + \frac{[H_3O^+]}{Ka_2} + \frac{[H_3O^+]^2}{Ka_1Ka_2})$$

Jika diinginkan tidak lebih dari 10⁻⁷ maka

$$0,1 = 10^{-7} \left(1 + \frac{[H_3 O^+]}{K a_2} + \frac{[H_3 O^+]^2}{K a_1 K a_2}\right)$$

Penyelesaian terhadap persamaan ini menghasilkan $[H_3O^+] = 4,365 \times 10^{-6} M$ pH = -log $[H_3O^+] = -log (4,365 \times 10^{-6}) = 5,36 (E)$

20. Tentukan pH $H_2SO_4 10^{-2}$ M jika diketahui $Ka_2 H_2SO_4 = 10^{-2}$!

Dalam kasus ini deprotonasi pertama H₂SO₄ berlangsung secara sempurna sedangkan yang kedua H₂SO₄ bertindak sebagai asam lemah

Tinjau kesetimbangan kedua H₂SO₄

HSO₄⁻ + H₂O
$$\rightleftharpoons$$
 SO₄²⁻ + H₃O⁺ Ka = 10⁻² m 10⁻² r -x x x x s 10⁻²-x x 10⁻² + x
$$Ka = \frac{[H_3O^+][SO_4^{2-}]}{[HSO_4^{-}]}$$
10⁻² = $\frac{(10^{-2} + x)[x]}{[10^{-2} - x]}$

Penyelesaian terhadap persamaan ini menghasilkan $[H_3O^+] = 0.0141 \text{ M}$ pH = $-\log[H_3O^+] = 1.85 \text{ (B)}$

- 21. Asam fumarat merupakan asam diprotik yang memiliki nilai pKa₁=3,03 dan pKa₂=4,44. Tentukan pH dari 100 mL larutan asam fumarat 10⁻² M!
 - (i) Tinjau charge balance:

 $[H^+]$ = $[fumarate^-]+2[fumarate^2-]$

Menggunakan kesetimbangan, persamaan dapat diubah menjadi

[H⁺] = [fumarate²⁻](
$$\frac{[H^+]}{Ka_2}$$
 + 2)

[fumarat²⁻] =
$$\frac{Ka_2[H^+]}{[H^+ + 2Ka_2]}$$
 (persamaan 1)

(ii) Tinjau mass balance

 $[fumarat]_0 = [fumarat] + [fumarat^-] + [fumarat^2]$

Menggunakan kesetimbangan, persamaan dapat diubah menjadi

[fumarat]_o = [fumarat²⁻]
$$(1 + \frac{[H^+]}{Ka_2} + \frac{[H^+]^2}{Ka_1Ka_2})$$

Substitusi [fumarat²-] dengan persamaan 1 menghasilkan

[fumarat]₀ =
$$\frac{Ka_2[H^+]}{[H^+ + 2Ka_2]} (1 + \frac{[H^+]}{Ka_2} + \frac{[H^+]^2}{Ka_1Ka_2})$$

[fumarat]₀[H⁺] + 2[fumarat]₀Ka₂ =
$$(Ka_2[H^+] + [H^+]^2 + \frac{[H^+]^3}{Ka_1})$$

$$0 = (-2[fumarat]oKa2 + (Ka_2 - [fumarat]o)[H^+] + [H^+]^2 + \frac{[H^+]^3}{Ka_1})$$

Penyelesaian terhadap persamaan ini menghasilkan

$$[H^+] = 2,6593 \times 10^{-3}$$
; pH = 2,58 (B)

22. Asam fosfat merupakan asam triprotik yang memiliki nilai pKa₁, pKa₂, pKa₃ berturut-turut 2,16;7,21; dan 12,3

Berapa pH 100 mL larutan asam fosfat 0,1 M?

Karena pKa₁>>> pKa₂ maka hanya perlu diperhatikan disosiasi pertama saja

Menggunakan teknik penghitungan asam lemah biasa (lihat no.3) didapat $[H^+]$ = 0,023; pH = 1,64 (C)

23.50 mL larutan CH₃COOH 0,5 M dicampur dengan 25 mL larutan CH₃COONa 0,5 M. Jika diketahui nilai $K_{aCH3COOH} = 1,8 \times 10^{-5}$ maka tentukan pH larutan ! Jika kedua larutan dicampur maka akan terbentuk sistem buffer

pH = pKa +
$$\log \frac{\text{CH3COONa}}{\text{CH3COOH}}$$

= $-\log(1.8 \times 10^{-5}) + \log \frac{25\text{mLx0,5M}}{50\text{mLx0,5M}}$
= 4,44 (B)

24. Ke dalam campuran 50 mL CH₃COOH 0,5 M dan 25 mL CH₃COONa 0,5 M ditambahkan larutan NaOH 0,5 M sebanyak 10 mL. Tentukan pH larutan!

Tinjau kesetimbangan buffer

pH = pKa +
$$\log \frac{\text{CH3COONa}}{\text{CH3COOH}}$$

= - $\log(1.8 \times 10^{-5}) + \log \frac{25\text{mLx0,5M} + 10\text{mLx0,5M}}{50\text{mLx0,5M} - 10\text{mLx0,5M}}$
= 4,69 (D)

25. Diketahui pKa₁ dan pKa₂ dari H₂CO₃ berturut-turut 6,35 dan 10,33. Tentukan berapa gram Na₂CO₃ (Mr = 106 gmol⁻¹) yang perlu dilarutkan ke dalam 100 mL air untuk mendapatkan larutan dengan pH 10!

Dengan hidrolisis dapat ditentukan [CO₃²⁻]:

$$[OH^{-}] = \sqrt{\frac{Kw}{Ka2}} [Na2CO3]$$

$$pH = 10, pOH = 4$$

$$10^{-4} = \sqrt{\frac{Kw}{Ka2}} [Na2CO3]$$

$$10^{-8} = \frac{Kw}{Ka2} [Na2CO3]$$

$$[Na_{2}CO_{3}] = 10^{-8}.10^{-10,33}/10^{-14} = 4,6774 \times 10^{-5} \text{ mol/L}$$

$$nNa_{2}CO_{3} \text{ dibutuhkan} = 4,6774 \times 10^{-5} \text{ mol/L} \times 100 \text{ mL} = 4,6774 \times 10^{-3} \text{ mmol}$$

$$mNa_{2}CO_{3} = 4,6774 \times 10^{-3} \text{ mmol} \times (2x23+12+3x16)g/\text{mol} = 0,4958 \text{ mg} = 4,958 \times 10^{-4} \text{ g (C)}$$

26. Jika dalam reaksi

$$CH_3COOH_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$
 $K_a = \frac{[CH_3COO^{-}][H^{+}]}{[CH_3COOH]} = 1.8 \times 10^{-5}$

Tentukan nilai pKa untuk reaksi berikut dalam air murni ($\rho = 1 \text{ g/mL}$)!

$$H_3O^+_{(aq)} + H_2O_{(l)} \rightleftharpoons H_2O_{(l)} + H_3O^+_{(aq)}$$
 $Ka = \frac{[H_3O^+][H_2O]}{[H_3O^+]} = [H_2O]$
Dalam air dengan $\rho = 1$ g/mL, maka 1L air mengandung 1 kg H_2O
 $[H_2O] = \frac{1000g}{18g/mol} = 55,55$ M
 $Ka = 55,55$; $pKa = -log(55,55) = -1,74$ (B)

27. Diketahui data pKa beberapa asam sebagai berikut

Asam	pKa₁	pKa ₂	pKa₃
C ₆ H ₅ CO ₂ H	4,20		
HCIO ₂	1,94		
H ₃ AsO ₄	2,26	6,76	11,29
H ₂ S	7,05	19	

Urutan kebasaan yang tepat adalah

HS⁻>HAsO₄²⁻>C₆H₅CO₂⁻>CIO₂⁻ (B), semakin besar nilai pKa maka basa konjugasi dari spesi bersangkutan semakin basa

28. pKa₁, pKa₂, pKa₃ dari H₃PO₄ berturut-turut adalah 2,16;7,21; dan 12,32 untuk menghasilkan buffer dengan pH=7, berapa jumlah NaOH (Mr=40 gmol⁻¹) yang perlu dilarutkan ke dalam 100 mL H₃PO₄ 10⁻³M? pada pH=7 spesi yang dominan adalah H₂PO₄⁻ dan HPO₄²⁻. Menggunakan persamaan buffer dapat ditentukan rasio kedua spesi ini

pH = pKa₂ + log
$$\frac{\text{HPO}_4^{2^-}}{\text{H}_2\text{PO}_4^{-}}$$

7 = 7,21 + log $\frac{\text{HPO}_4^{2^-}}{\text{H}_2\text{PO}_4^{-}}$
 $\frac{\text{HPO}_4^{2^-}}{\text{H}_2\text{PO}_4^{-}}$ = 10^{-0,21} = 0,6166 (persamaan 1)
Dalam 100 mL H₃PO₄ 10⁻³ M
nH₃PO₄ = 0,1 mmol
nHPO₄²⁻ + nH₂PO₄⁻ = 0,1 mmol
masukkan persamaan 1
1,6166 nH₂PO₄⁻ = 0,1 mmol
nH₂PO₄⁻ = 0,0619 mmol
nNaOH = 0,1 mmol (mengonversi semua H₃PO₄ ke H₂PO₄⁻) + (0,1-0,0619)
mmol (mengonversi ke HPO₄²⁻ = 0,1381 mmol

mNaOH = 0.1381 mmol x (23+16+1)g/mol = 5.524 mg (B)

29. Urutan keasaman yang benar dari senyawa berikut adalah HF<HCI<HBr<HI (A)

Dapat dijelaskan dari lebih stabilnya basa konjugasi I⁻>Br⁻>Cl⁻>F⁻ akibat densitas muatan yang lebih kecil

30. Urutan keasaman yang benar dari senyawa berikut adalah

HCIO<HCIO₂<HCIO₃<HCIO₄ (D)

Dapat dijelaskan dengan bertambahnya kestabilan basa konjugasi akibat bertambahnya kemungkinan resonansi