ISO Geodetic Registry

Item class Transformation

Name ITRF2000 to GDA94 [GA v2]

Item status VALID
Identifier 497

Information source Title ITRF to GDA94 coordinate transformations

Author John Dawson and Alex Woods

Publisherde GruyterPublication date2010-10-25Edition date2010-10-01

Series/Journal name Journal of Applied Geodesy

Issue identification 4.0
Page 189.0

Data source ISO Geodetic Registry

Remarks Implemented 2010. Replaces 2001 transformation by Dawson and

Steed, ITRF2000 to GDA94 [GA v1]. RMS of transformation residuals: 3mm north, 8mm east and 55mm vertical. Maximum residuals: 5mm

north, 13mm east and 84mm vertical.

Operation version GA v2

Scope Spatial referencing

Operation accuracy 0.06 m

Source CRS ITRF2000 - XYZ Target CRS GDA94 - XYZ

Operation method Time-Dependent Coordinate Frame Transformation (geocentric

Cartesian domain)

Extent

Description	Australia - onshore and offshore - mainland, Tasmania, Lord Howe Island, Norfolk Island, Macquarie Island. Christmas Island - onshore and offshore. Cocos (Keeling) Islands -	
	onshore and offshore.	
Geographic Bounding Box	West-bound longitude	93.41
	North-bound latitude	-8.47
	East-bound longitude	173.4
	South-bound latitude	-60.56

Operation parameter values

Time reference	1994.0 year
Rate of change of scale difference	0.249 parts per billion per year
Rate of change of Z-axis rotation	1.224 milliarc-second per year
Rate of change of Y-axis rotation	1.4868 milliarc-second per year
Rate of change of X-axis rotation	1.7454 milliarc-second per year
Rate of change of Z-axis translation	11.24 millimetre per year
Rate of change of Y-axis translation	3.55 millimetre per year
Rate of change of X-axis translation	-4.66 millimetre per year
Scale difference	7.07 parts per billion
Z-axis rotation	1.9356 milliarc-second

Y-axis rotation	0.4594 milliarc-second
X-axis rotation	-1.6705 milliarc-second
Z-axis translation	-20.37 millimetre
Y-axis translation	-29.85 millimetre
X-axis translation	-45.91 millimetre

ISO Geodetic Registry

Item class OperationMethod

Name Time-Dependent Coordinate Frame

Transformation (geocentric Cartesian domain)

Item status VALID
Identifier 94

Alias Time-Dependent 7-Parameter Transformation

Alias 14-Parameter Transformation

Alias Time-Dependent Coordinate Frame Transformation

Data source ISO Geodetic Registry

Remarks Note the analogy with the Time-dependent Position Vector

Transformation but beware of the differences! The Position Vector

Transformation convention is used by IAG.

Formula Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation

Y-axis translation

Z-axis translation

X-axis rotation

Y-axis rotation

Z-axis rotation

Scale difference

Rate of change of X-axis translation

Rate of change of Y-axis translation

Rate of change of Z-axis translation

Rate of change of X-axis rotation

Rate of change of Y-axis rotation

Rate of change of Z-axis rotation

Rate of change of scale difference

Time reference