Es05B: Circuiti lineari con Amplificatori Operazionali

Gruppo 1G.BT Francesco Sacco, Lorenzo Cavuoti

8 Novembre 2018

Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentati tra +15 V e -15 V.

1 Amplificatore invertente

Si vuole realizzare un amplificatore invertente con un' impedenza di ingresso superiore a 1 k Ω e con un amplificazione a centro banda di 10.

1.a Scelta dei componenti

Si monta il circuito secondo lo schema mostrato in figura 1, utilizzando la barra di distribuzione verde per la tensione negativa, quella rosso per la tensione positiva, e quella nera per la massa.

[Indicare i criteri di scelta delle resistenze ed i valori desiderati]

Figura 1: Schema di un amplificatore invertente

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell'amplificatore.

$$R_1 = (1.19 \pm 0.01) \,\mathrm{k}\Omega, \quad R_2 = (12.2 \pm 0.1) \,\mathrm{k}\Omega, \quad A_{exp} = (10.2 \pm 0.1)$$

1.b Montaggio circuito

1.c Linearità e misura del guadagno

Si fissa la frequenza del segnale ad $f_{in} = (5.59 \pm 0.06)$ kHz e si invia all' ingresso dell' amplificatore. L'uscita dell' amplificatore è mostrata qualitativativamente in Fig. 2 per due differenti ampiezze di V_{in} (circa 424mV Vpp e 4.32V Vpp). Nel primo caso l' OpAmp si comporta in modo lineare mentre nel secondo caso si osserva clipping.

Variando l'ampiezza di V_{in} si misura V_{out} ed il relativo guadagno $A_V = V_{out}/V_{in}$ riportando i dati ottenuti in tabella 1 e mostrandone un grafico in Fig. 3.

[Indicare in che modo si fa il fit, se sulla retta V_{out} vs. V_{in} oppure sui valori di A_V]

Screenshot oscillografo con V_{out} lineare Screenshot oscillografo con clipping di V_{out}

Figura 2: Ingresso (in alto) ed uscita (in basso) di un amplificatore invertente con OpAmp, in zona lineare (a sinistra) e non (a destra)

Tabella 1: V_{out} in funzione di V_{in} e relativo rapporto.

V_{in} (V)	V_{out} (V)	A_V
$66 \pm 3 \mathrm{m}$	$680 \pm 30 {\rm m}$	10.2 ± 0.6
$290 \pm 10 m$	2.9 ± 0.1	10.1 ± 0.6
$730 \pm 30 \text{m}$	7.4 ± 0.3	10.1 ± 0.6
1.26 ± 0.05	12.7 ± 0.5	10.1 ± 0.6
2.7 ± 0.1	27 ± 1	10 ± 0.6

Si determina il guadagno mediante fit dei dati ottenuti:

$$A_{best} = 10.07 \pm 0.03$$
 $\chi^2 = 0.02$

[Fino a quale tensione il circuito si comporta linearmente? Provare (facoltativamente) a ridurre la tensione di alimentazione dell' integrato ed a verificarne la correlazione con la tensione di clipping dell' uscita. Commentare quanto osservato]

2 Risposta in frequenza e slew rate

2.a Risposta in frequenza del circuito

Si misura la risposta in frequenza del circuito, riportando i dati in Tab. 2 e in un grafico di Bode in Fig. 4, stimando la frequenza di taglio inferiore e superiore [indicare in che modo].

$$V_{in} = (1.14 \pm 0.05) \, {\rm V}$$

$$f_L = (7.5 \pm 0.3) \, {\rm Hz} ~~ f_H = (210 \pm 4 \,) \, {\rm kHz}$$

2.b Misura dello slew-rate

Si misura direttamente lo slew-rate dell'op-amp inviando in ingresso un' onda quadra di frequenza di ~ 2.11 kHz e di ampiezza ~ 2.70 V. Si ottiene:

$$SR_{\text{misurato}} = (7.7 \pm 0.3) \text{ V/}\mu\text{s}$$
 valore tipico () V/ μ s

[Commentare accordo o disaccordo. Eventualmente inserire screenshot dell'oscilloscopio]

Figura 3: Linearità dell' amplificatore invertente

Tabella 2: Guadagno dell' amplificatore invertente in funzione della frequenza.

f_{in} (kHz)	V_{out} (V)	A (dB)
2.58 ± 0.3	3.8 ± 0.2	3.3 ± 0.2
172.0 ± 2	11.6 ± 0.5	10.2 ± 0.6
$5.56 \pm 0.06k$	11.5 ± 0.5	10.1 ± 0.6
$67.7 \pm 0.7k$	11.0 ± 0.5	9.6 ± 0.6
$952 \pm 10k$	2.5 ± 0.1	2.2 ± 0.1

3 Circuito integratore

Si monta il circuito integratore con i seguenti valori dei componenti indicati:

$$R_1 = (0.990 \pm 0.008) \,\mathrm{k}\Omega, \qquad R_2 = (9.83 \pm 0.08) \,\mathrm{k}\Omega, \qquad C = (49 \pm 2) \,\mathrm{nF}$$

3.a Risposta in frequenza

Si invia un' onda sinusoidale e si misura la risposta in frequenza dell' amplificazione e della fase riportandoli nella tabella 3 e in un diagramma di Bode in Fig. 5.

$$V_{in} = (1.03 \pm 0.04) \,\mathrm{V}$$

[La fase puó essere indicata in gradi, radianti, oppure come frazione $\phi/2\pi$]

Si ricava una stima delle caratteristiche principali dell'andamento (guadagno a bassa frequenza, frequenza di taglio, e pendenza ad alta frequenza) e si confrontano con quanto atteso. Non si effettua la stima degli errori, trattandosi di misure qualitative.

[Indicare brevemente come sono stati ottenuti i valori attesi]

Inserire plot di Bode dell' invertente.

Figura 4: Plot di Bode in ampiezza per l'amplificatore invertente.

Tabella 3: Guadagno e fase dell' integratore invertente in funzione della frequenza.

f_{in} (kHz)	V_{out} (V)	A (dB)	$\Delta t(\mu s)$	ϕ
土	土	±	土	土
±	土	±	土	±
士	土	±	土	土
±	土	±	土	±
±	土	±	土	土
士	土	±	土	土
±	土	土	土	土

 $A_M = (9.5) \, \mathrm{dB}$ atteso : () dB $f_H = (355) \, \mathrm{Hz}$ atteso : () Hz $\mathrm{d}A_V/\mathrm{d}f = (18.6) \, \mathrm{dB/decade}$ atteso : () dB/decade

Risposta ad un' onda quadra

Si invia all' ingresso un' onda quadra di frequenza $\sim 6.47\,kHz$ e ampiezza $\sim 1.09\,V$. Si riporta in Fig. 6 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita.

[Commentare se che il circuito si comporta come un integratore.]

Si misura l'ampiezza dell'onda in uscita e si confronta il valore atteso.

[Indicare brevemente come sono stati ottenuti i valori attesi]

$$V_{out} = (0.86) V$$
 atteso: () V

[Inserire commento sulla dipendenza dell' uscita dalla frequenza.]

3.b Discussione

[Inserire commenti su quanto osservato ed eventuali deviazioni. In particolare: attenuazione ad alte frequenze, dipendenza della fase dalla frequenza, funzione di R_2 .]

Figura 5: Plot di Bode in ampiezza (a sinistra) e fase (a destra) per il circuito integratore.

Figura 6: Ingresso (in alto) ed uscita (in basso) del circuito integratore per un' onda quadra.