Reinforcement Learning and Optimal Control

Tutorial 1 - *k*-armed bandit problems

Nadir Farhi

October 03, 2024

Exercise 1

The objective of this exercise is to reproduce the illustrations seen in class on the 10-armed bandits problem.

- We consider the 10-armed bandit problems (k = 10).
- We simulate the learning process for 2000 steps.
- We use the ε -greedy policy with different values of ε : 0, 0.1, 0.01.
- We assume that the action values $q_*(a)$ follows Gaussian distributions N(0,1) for every a=1,2,...,10.
- We assume that the received rewards after selecting action A_t at time step t follow the Gussian distributions $N(q_*(A_t),1)$.
- The initial estimates are assumed to be zero.

Questions:

- 1. Illustrate the curve of the average reward as a function of the number of steps.
- 2. Illustrate the curve of the optimal actions as a function of the number of steps.
- 3. Check if the illustrations seen in class are reproduced.

Exercise 2

Same exercise, with:

• k = 15

- Number of steps: 3000, the actions values $q_*(a)$ follow N(0,2)
- The reward after selection of action A_t follows $N\left(q_*(A_t), \frac{1}{2}\right)$
- Initial estimates: case 1: zero, case 2: 5
- The value of ε:
 - o case 1: 0,
 - o case 2: 0.1,
 - o case 3: 0.01,
 - o case 4: $\varepsilon(t) = 1/t$,
 - o case 5: $\varepsilon(t) = 1/t^2$.

Questions:

- 1. Illustrate the curve of the average reward as a function of the number of steps.
- 2. Illustrate the curve of the optimal actions as a function of the number of steps.
- 3. Compare with the results obtained in Exercise 1.

Exercise 3

We consider the 10-armed bandit problem.

- For the estimation of the value of an action, we use the simple average method with the incremental implementation.
- For the action selection we consider the following approaches:
 - The greedy method: $A(t) = \operatorname{argmax} Q_t(a)$.
 - \circ The ε -greedy method.
 - The UCB action selection:

$$A_t = arg \max_{a} \left(Q_t(a) + c\sqrt{\frac{\log t}{N_t(a)}} \right)$$

Question:

Simulate the 10-bandit problem, with different values of ε and c, and compare the three proposed approaches.

Exercise 4 - Gradient Bandit Algorithm

We consider the gradient bandit algorithm, with:

- $H_0(a) = 0, \forall a,$
- $\pi(a) = \frac{1}{k}, \forall a,$
- At t + 1, after selecting action A_t , and receiving R_t , the action preferences H are updated as seen in the class:

$$H_{t+1}(A_t) \doteq H_t(A_t) + \alpha \left(R_t - \bar{R}_t \right) \left(1 - \pi_t(A_t) \right), \quad \text{and}$$

$$H_{t+1}(a) \doteq H_t(a) - \alpha \left(R_t - \bar{R}_t \right) \pi_t(a), \quad \text{for all } a \neq A_t,$$

• the action probabilities $\pi(a)$ are obtained according to the Softmax distribution:

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a),$$

with $\alpha = 0.1,0.2,0.5,0.7$, and $\overline{R_t}$ is obtained:

$$\overline{R_t} = \sum_{\substack{s=1\\s=1}}^{t-1} R_s / (t-1).$$

Questions: For k = 10, simulate the 10-armed bandit problem, and:

- $1. \ \, Illustrate \ the \ optimal \ action \ as \ a \ function \ of \ the \ number \ of \ steps.$
- 2. Compare to the figures seen in class.
- 3. Resimulate for other value of α , and compare.