EPITA / InfoS3		November 2017
NAME:	Firstname :	Group :

Electronics Midterm

	DITA LE D'INGÉNIEURS EN INFORMATIQUE	SCO	atra documents are not allowed. The ma ale is given as a rough guide. Ily on exam sheets. If more space is ne write on the back.	_
<u>Ex</u>	ercise 1. Que points)	estions about lectur	e topics (MCQ without negative po	ints – 5
Q1.	The doping increas	es the resistivity of a	semiconductor.	
	a- TRUE		b- FALSE	
Q2.	The doping increas	es the occurrence of	thermal generation.	
	a- TRUE		b- FALSE	
Q3.		-	Silicium with 4 electrons in its valence ctrons in its valence band, which kind of	
	a- P-Doping		c- NP-Doping	
	b- N-Doping		d- No doping	
Q4.	In an intrinsic semi	conductor, the numb	per of free electrons is:	
	a- equal to the ho	le number	c- smaller than the hole num	ber
	b- larger than the	hole number	d- none of the above	
Q5.	Which model is the	e most precise for rep	presenting the diode?	
	a- The ideal mode	ıl	c- The real model	
	b- The threshold r	nodel	d- The three models are equi	valent
			V_{D}	

- The equation of the characteristic of the diode reads: $I_D = I_S(e^{\frac{r_D}{mV_T}} 1)$ where I_D denotes the current flowing through the diode and V_{D} its voltage, where both current and voltage are oriented according to receptor convention. $I_{\mathcal{S}}$ corresponds to the inverse current. Its intensity is:
 - a- Very large (by the dozen of Ampères)
- b- Very small (few nano Ampères

EPITA/InfoS3 November2017

Q7.Which characteristic corresponds to the current/voltage characteristic of the ideal model of the diode?

Q8. Which dipole can replace the switched off diode if one considers the real model?

Q9. Consider the following circuit where the diode D is assumed to be ideal:

What is the voltage at terminals of D if E=10V, $R=100\Omega$?

a- 0*V*

c- 1 *kV*

b- 10 V

d- 0,1 *V*

Consider the following circuit:

- **Q10.** Which type of logic gate does this circuit produce?
 - a- AND
- c- NOT AND
- b- OR
- d- NOT OR

Exercise 2. SUP Review (4 points)

Let us consider the following circuit where E, I and R are known. The generators are independent.

1. By using the method that you prefer, determine the voltage U_{AM} .

2. Deduce the voltage U_{BM} .

Exercise 3. Diodes (5 points)

Consider the following diagram. We will model the diode by using the threshold model with $V_0=0.7V$. For the following questions, you will prove it by contradiction.

1. If $R = 100\Omega$, $I_0 = 60mA$ and E = 5V, prove that the diode is switched off. Then determine the current intensity flowing through the resistor.

 the earrent interisity		

2. If $R = 100\Omega$, $I_0 = 30mA$ and E = 5V, prove that the diode is turned on. Then determine the current intensity flowing through the resistor.

Exercise 4. Transfer characteristic (6 points)

In the following circuit one wants to determine and draw the variation of u(t). One has the following data:

$$e(t) = E_0 \sin(\omega t),$$
 with $E_0 = 30V$ and $\omega = 2\pi \times 50 rad/s$

 $E_{\rm 1}$ and $E_{\rm 2}$ are two ideal continuous voltage sources, $E_{\rm 1}=10V$ et $E_{\rm 2}=15V$

The diodes are assumed to be ideal.

 Prove by contradiction that the diodes cannot be turned on simultaneous 	sly.
---	------

2.	Write the	expression	of $u(t)$	if D_1	is turned	on.

3. Write the expression of u(t) if D_2 is turned on.

EPITA / InfoS3 November 2017

4	Write the expression of $u(t)$ if both diodes are switched off.
5	For which value of $e(t)$ are the 2 diodes switched off?
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.
6	Draw the transfer characteristic of this circuit.

EPITA / InfoS3 November 2017

7. Draw the curve u(t).

