

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ—	Информатика и системы управления	
	Системы обработки информации и	
ICA ADIDA	системы обработки информации и	
КАФЕДРА	<u> </u>	

Отчет по рубежному контролю №2

По дисциплине: «Технологии машинного обучения»

Выполнил:		
Студент группы ИУ5		Перлин Л.В.
	(Подпись, дата)	(Фамилия И.О.)
Проверил:		
		Гапанюк Ю. Е.
	(Полпись, дата)	(Фамилия И.О.)

Москва, 2021

Задание

Задание. Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д

Вариант № 17

Данные: https://www.kaggle.com/mathan/fifa-2018-match-statistics

ИУ5-63Б Дерево решений Случайный лес

Рубежный контроль №2 Перлин Леонид ИУ5-63Б Импорт библиотек

```
In [4]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix
import warnings
warnings.filterwarnings('ignore')
sns.set(style="ticks")
%matplotlib inline
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder
                                                                         In [6]:
data = pd.read csv('FIFA 2018 Statistics.csv')
                                                                         In [7]:
data.head()
                                                                         Out[7]:
5 rows × 27 columns
                                                                         In [8]:
```

41	
Date	object
Team	object object
	object
Opponent Goal Scored	int64
Ball Possession %	int64
Attempts	int64
On-Target	int64
Off-Target	int64
Blocked	int64
Corners	int64
Offsides	int64
Free Kicks	int64
Saves	int64
Pass Accuracy %	int64
Passes	int64
Distance Covered (Kms)	int64
Fouls Committed	int64
Yellow Card	int64
Yellow & Red	int64
Red	int64
Man of the Match	object
1st Goal	float64
Round	object
PSO	object
Goals in PSO	int64
Own goals	float64
Own goal Time	float64
dtype: object	
<pre>data.isnull().sum()</pre>	
# проверим есть ли пропу	лиенные знач:
" Thoreway com min infolia	
Date	0
Team	0
Opponent	0
Goal Scored	0
Ball Possession %	0
Attempts	0
On-Target	0
Off-Target	0
Blocked	0
Corners	0
Offsides	0
Free Kicks	0
Saves	0
Pass Accuracy %	0
Passes	0
	-

Distance Covered (Kms)	0
Fouls Committed	0
Yellow Card	0
Yellow & Red	0
Red	0
Man of the Match	0
1st Goal	34
Round	0
PSO	0
Goals in PSO	0
Own goals	116
Own goal Time	116

dtype: int64

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 128 entries, 0 to 127

Data columns (total 27 columns):

#	Column	Non-Null Count	
0	Date	128 non-null	-
1	Team	128 non-null	object
2	Opponent	128 non-null	object
3	Goal Scored	128 non-null	int64
4	Ball Possession %	128 non-null	int64
5	Attempts	128 non-null	int64
6	On-Target	128 non-null	int64
7	Off-Target	128 non-null	int64
8	Blocked	128 non-null	int64
9	Corners	128 non-null	int64
10	Offsides	128 non-null	int64
11	Free Kicks	128 non-null	int64
12	Saves	128 non-null	int64
13	Pass Accuracy %	128 non-null	int64
14	Passes	128 non-null	int64
15	Distance Covered (Kms)	128 non-null	int64
16	Fouls Committed	128 non-null	int64
17	Yellow Card	128 non-null	int64
18	Yellow & Red	128 non-null	int64
19	Red	128 non-null	int64
20	Man of the Match	128 non-null	object
21	1st Goal	94 non-null	float64
22	Round	128 non-null	object
23	PSO	128 non-null	object
24	Goals in PSO	128 non-null	int64
25	Own goals	12 non-null	float64
26	Own goal Time	12 non-null	float64

dtypes: float64(3), int64(18), object(6)

memory usage: 27.1+ KB

In [10]:

```
In [11]:
data.head()
                                                                      Out[11]:
5 rows × 27 columns
                                                                      In [12]:
#Построим корреляционную матрицу
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
                                                                      Out[12]:
<AxesSubplot:>
                                                                      In [13]:
X = data[["On-Target", "Off-Target", "Blocked"]]
Y = data.Attempts
print('Входные данные:\n\n', X.head(), '\nВыходные данные:\n', Y.head())
Входные данные:
    On-Target Off-Target Blocked
0
1
          0
                       3
                                3
2
                       3
                                2
          3
3
                       6
           4
           3
                       6
4
Выходные данные:
 0
     13
1
      6
2
3
    14
    1.3
Name: Attempts, dtype: int64
                                                                      In [14]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state =
0, test_size = 0.1)
print('Входные параметры обучающей выборки:\n\n', X train.head(), \
      '\n\nВходные параметры тестовой выборки:\n\n', X test.head(), \
      '\n\nВыходные параметры обучающей выборки:\n\n', Y train.head(), \
      '\n\nВыходные параметры тестовой выборки:\n\n', Y test.head())
Входные параметры обучающей выборки:
     On-Target Off-Target Blocked
94
            1
                        7
                                 5
30
                        5
            4
                                 1
33
            1
                        8
                                 4
            3
                        3
                                 2
2
59
            2
                       5
```

```
Входные параметры тестовой выборки:
```

	On-Target	Off-Target	Blocked
40	5	5	0
24	6	7	2
86	3	5	4
51	5	8	7
8	5	4	3

Выходные параметры обучающей выборки:

редсказанные данные')

plt.xlabel ('Blocked')
plt.ylabel ('Attempts')

plt.show()

plt.legend (loc = 'lower right')

```
94
      13
30
      10
33
      13
2
       8
       8
59
Name: Attempts, dtype: int64
Выходные параметры тестовой выборки:
40
      10
24
      15
86
      12
51
      20
      12
Name: Attempts, dtype: int64
                                                                      In [23]:
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_
absolute error, r2 score
                                                                      In [24]:
dtc = DecisionTreeRegressor(random state=1).fit(X train, Y train)
data_test_predicted_dtc = dtc.predict(X_test)
                                                                      In [25]:
plt.scatter(X test.Blocked, Y test, marker = 's', label = 'Тестовая выборк
plt.scatter(X test.Blocked, data test predicted dtc, marker = '.', label = '∏
```



```
In [19]:
from sklearn.ensemble import RandomForestRegressor
                                                                      In [20]:
forest 1 = RandomForestRegressor(n estimators=5, oob score=True, random state
forest 1.fit(X, Y)
                                                                      Out[20]:
RandomForestRegressor(n estimators=5, oob score=True, random state=10)
                                                                      In [21]:
Y predict = forest 1.predict(X test)
print('Средняя абсолютная ошибка:', mean absolute error(Y test, Y predict))
print('Средняя квадратичная ошибка:', mean squared error(Y test, Y predict))
print('Median absolute error:',
                                     median_absolute_error(Y_test, Y_predict
) )
print('Коэффициент детерминации:',
                                     r2 score(Y test, Y predict))
Средняя абсолютная ошибка: 0.24615384615384597
Средняя квадратичная ошибка: 0.08615384615384608
Median absolute error: 0.19999999999993
Коэффициент детерминации: 0.9962454873646209
                                                                      In [22]:
plt.scatter(X_test.Blocked, Y_test, marker = 'o', label = 'Тестовая выборк
a')
plt.scatter(X test.Blocked, Y predict, marker = '.', label = 'Предсказанные д
анные')
plt.legend(loc = 'lower right')
plt.xlabel('Blocked')
plt.ylabel('Attempts')
plt.show()
```

