What is claimed is

1. Compound of the formula

$$R_{2} = S = N + R_{1} + R_{5} + R_{1} + R_{1} + R_{1} + R_{2} + R_{1} + R_{2} + R_{2} + R_{3} + R_{4} + R_{5} + R_{5$$

in which

 R_1 is anylor heteroaryl, in each case unsubstituted or mono- or polysubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1;

R₂ is C₁-C₆alkyl, halo-C₁-C₆alkyl, C₃-C₈cycloalkyl, halo-C₃-C₈cycloalkyl, NHR₈, aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted by R₇, where the substituents can in each case be identical or different if their number is greater than 1, or pyrrolidinyl, piperidinyl, imidazolidinyl, piperazinyl, pyrazolidinyl, morpholinyl, indolinyl or isoindolinyl, in each case bonded via N;

 R_3 is hydrogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkylheteroaryl, C_1 - C_6 alkylheteroary

 R_4 , R_5 and R_6 either independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo- C_1 - C_6 alkylthio, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, unsubstituted or substituted C_3 - C_6 cycloalkyl, where the substituents are selected from the group consisting of halogen and C_1 - C_6 alkyl, or unsubstituted or substituted phenyl, where the substituents are selected from the group consisting of halogen, C_1 - C_6 alkyl and phenyl;

or R₄ and R₅, together with the carbon atoms to which they are bonded, are a five- to sevenmembered, saturated or partially unsaturated heterocyclic ring having 1 to 2 heteroatoms from the group consisting of nitrogen, oxygen and sulphur;

 R_7 is halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo- C_1 - C_6 alkylthio, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; aryl, phenylacetylenyl or heteroaryl, in each case unsubstituted or mono- or polysubstituted, where the substituents are in each case selected from the group consisting of halogen, nitro, cyano, C_1 - C_6 alkyl, halo- C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, and can in each case be identical or different if their number is greater than 1;

 R_8 is anyl which is unsubstituted or mono- to pentasubstituted, where the substituents are selected from the group consisting of halogen, nitro, cyano, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy and halo- C_1 - C_6 alkoxy, and can be identical or different if their number is greater than 1;

X is O, S, S(O) or S(O)2; and

n is 0 or 1;

and, where appropriate, E/Z isomers, mixtures of E/Z isomers and/or tautomers thereof, in each case in free form or in salt form.

- 2. Compound of the formula (I) according to claim 1, wherein R_1 is aryl which is unsubstituted or mono- to pentasubstituted by R_7 , where the substitutents in each case can be identical or different if their number is greater than 1.
- 3. Compound of the formula (I) according to claim 1, wherein R_1 is any which is monoto trisubstituted by R_7 , where the substituents in each case can be identical or different if their number is greater than 1.
- 4. Compound of the formula (I) according to claim 1, wherein R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, aryl or heteroaryl which is in each case unsubstituted or mono- to polysubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1.
- 5. Compound of the formula (I) according to claim 1, wherein R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl or aryl which is unsubstituted or mono- to pentasubstituted by R_7 , where the substituents can be identical or different if their number is greater than 1.
- 6. Compound of the formula (I) according to claim 1, wherein R_2 is aryl which is unsubstituted or mono- to trisubstituted by R_7 , where the substituents can be identical or different if their number is greater than 1.
- Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen or C₁-C₆alkyl.
- Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen or C₁-C₄alkyl.
- 9. Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen.
- 10. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 cycloalkyl.

- 11. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl or C_3 - C_6 cycloalkyl.
- 12. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen or C_1 - C_2 alkyl.
- 13. Compound of the formula (I) according to claim 1, wherein R_7 is halogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl, C_1 - C_4 -alkoxy, halo- C_1 - C_4 alkoxy; aryl or phenylacetylenyl, in each case unsubstituted or mono- or polysubstituted, where the substituents are selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, and can in each case be identical or different if their number is greater than 1.
- 14. Compound of the formula (I) according to claim 1, wherein R_7 is halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkoxy, halo- C_1 - C_2 alkoxy.
- 15. Compound of the formula (I) according to claim 1, wherein R₇ is halogen or halo-C₁-C₂alkyl.
- 16. Compound of the formula (I) according to claim 1, wherein R_8 is unsubstituted or monoto trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl, C_1 - C_4 alkoxy and halo- C_1 - C_4 alkoxy, and can be identical or different if their number is greater than 1.
- 17. Compound of the formula (I) according to claim 1, wherein R_8 is mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkyl, and halo- C_1 - C_2 alkoxy, and can be identical or different if their number is greater than 1.
- 18. Compound of the formula (I) according to claim 1, wherein R_{θ} is mono- or disubstituted aryl, where the substituents are selected from the group consisting of halogen and halo- C_1 - C_2 alkyl, and can be identical or different if their number is greater than 1.
- 19. Compound of the formula (I) according to claim 1, wherein X is O or S.
- 20. Compound of the formula (I) according to claim 1, wherein X is O.
- 21. Compound of the formula (I) according to claim 1, wherein n is 1.
- 22. Compound of the formula (I) according to claim 1, wherein R_1 is aryl which is unsubstituted or mono- or pentasubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted by R_7 , where the

REPLACED BY

substituents can in each case be identical or different if their number is greater than 1; R₃ is hydrogen or C₁-C₀alkyl; R₄, R₅ and R₆ independently of one another are hydrogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, C₂-C₆alkenyl, C₂-C₆alkynyl, C₃-C₆cycloalkyl; R₇ is halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, C₁-C₄alkoxy, halo-C₁-C₄alkoxy, aryl or phenylacetylenyl, in each case unsubstituted or mono- or polysubstituted, where the substituents are selected from the group consisting of halogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, and in each case can be identical or different if their number is greater than 1; R₈ is unsubstituted or mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C1-C4alkyl, halo-C1-C4alkyl, C1-C4alkoxy and halo-C1-C4alkoxy, and can be identical or different if their number is greater than 1; X is O or S; and n is 1.

- 23. Compound of the formula (I) according to claim 1, wherein R1 is aryl which is mono- or trisubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R2 is C1-C6alkyl, halo-C1-C6alkyl or aryl which is unsubstituted or mono- to pentasubstituted by R₇, where the substituents can be identical or different if their number is greater than 1; R₃ is hydrogen or C₁-C₄alkyl; R₄, R₅ and R₆ independently of one another are hydrogen, C₁-C₄alkyl, halo-C₁-C₄alkyl or C₃-C₆cycloalkyl; R₇ is halogen, C₁-C₂alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy or halo-C₁-C₂alkoxy; R₈ is mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C1-C2alkyl, halo-C₁-C₂alkyl, and halo-C₁-C₂alkoxy, and can be identical or different if their number is greater than 1; X is O; and n is 1.
- 24. Compound of the formula (I) according to claim 1, wherein R_1 is any which is mono- to trisubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R2 is anyl which is unsubstituted or mono- to trisubstituted by R7, where the substituents can in each case be identical or different if their number is greater than 1; R₃ is hydrogen; R₄, R₅ and R₆ independently of one another are hydrogen or C₁-C2alkyl; R7 is halogen or halo-C1-C2alkyl; R8 is mono- or disubstituted aryl, where the substituents are selected from the group consisting of halogen and halo-C1-C2alkyl, and can be identical or different if their number is greater than 1; X is O; and n is 1.
- 25. Compound of the formula (I) according to claim 1, named N-(1-cyano-1-[2,3dichlorophenoxymethyl]ethyl)-C-phenylmethanesulphonamide.

26. Process for the preparation of compounds of the formula (I), in each case in free form or in salt form, according to Claim 1, characterized in that a compound of the formula

which is known or can be prepared in analogy to corresponding known compounds and in which R_1 , R_3 , R_4 , R_5 , R_6 , X and n are as defined for the formula (I), is reacted with a compound of the formula

$$R_z \longrightarrow \stackrel{O}{\underset{||}{\mathbb{N}}} Q$$
 (III),

which is known or can be prepared in analogy to corresponding known compounds and in which R₂ are as defined for the formula (I) and Q is a leaving group, if appropriate in the presence of a basic catalyst, and in each case, if desired, a compound of the formula (1), in each case in free form or in salt form, obtainable according to the process or in another manner, is converted into another compound of the formula (1), a mixture of isomers obtainable according to the process is separated and the desired isomer is isolated and/or a free compound of the formula (I) obtainable according to the process is converted into a salt or a salt of a compound of the formula (I) obtainable according to the process is converted into the free compound of the formula (I) or into another salt.

- 27. Composition for the control of parasites, which, in addition to carriers and/or dispersants, contains as active compound at least one compound of the formula (I) according to Claim 1.
- 28. Use of compounds of the formula (I) according to Claim 1 for the control of parasites.
- 29. Process for the control of parasites, characterized in that an efficacious amount of at least one compound of the formula (I) according to Claim 1 is employed against the parasites.
- 30. Use of a compound of the formula (I) according to Claim 1 in a process for the control of parasites in warm-blooded animals.
- 31. Use of a compound of the formula (I) according to Claim 1 for the production of a pharmaceutical composition against parasites in warm-blooded animals.

AMENDED CLAIMS

[received by the International Bureau on 12 November 2003 (12.11.03); original claims 1-31 replaced by amended claims 1-31 (5 pages)]

1. Compound of the formula

$$R_{2} = \begin{array}{c|cccc} O & R_{3} & R_{4} & R_{5} \\ \hline S & N & & (C - X)_{n} - R_{1} \\ \hline O & CN & R_{6} \end{array}$$
 (I),

in which

R₁ is aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted by R₇, where the substituents can in each case be identical or different if their number is greater than 1;

 R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, halo- C_3 - C_8 cycloalkyl, NHR₈, aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1, or pyrrolidinyl, piperidinyl, imidazolidinyl, piperazinyl, pyrazolidinyl, morpholinyl, indolinyl or isoindolinyl, in each case bonded via N;

 R_3 is hydrogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkylheteroaryl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylcarbonyl;

 R_4 , R_5 and R_6 either independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo- C_1 - C_6 alkylthio, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, unsubstituted or substituted C_3 - C_8 cycloalkyl, where the substituents are selected from the group consisting of halogen and C_1 - C_6 alkyl, or unsubstituted or substituted phenyl, where the substituents are selected from the group consisting of halogen, C_1 - C_6 alkyl and phenyl;

or R₄ and R₅, together with the carbon atoms to which they are bonded, are a five- to sevenmembered, saturated or partially unsaturated heterocyclic ring having 1 to 2 heteroatoms from the group consisting of nitrogen, oxygen and sulphur;

 R_7 is halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo- C_1 - C_6 alkylthio, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; aryl, phenylacetylenyl or heteroaryl, in each case unsubstituted or mono- or polysubstituted, where the substituents are in each case selected from the group consisting of halogen, nitro, cyano, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, and can in each case be identical or different if their number is greater than 1;

R₈ is aryl which is unsubstituted or mono- to pentasubstituted, where the substituents are selected from the group consisting of halogen, nitro, cyano, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₁-C₆alkoxy and halo-C₁-C₆alkoxy, and can be identical or different if their number is greater than 1;

X is O, S, S(O) or S(O)2; and

n is 1;

and, where appropriate, E/Z isomers, mixtures of E/Z isomers and/or tautomers thereof, in each case in free form or in salt form.

- 2. Compound of the formula (I) according to claim 1, wherein R_1 is anyl which is unsubstituted or mono- to pentasubstituted by R_7 , where the substitutents in each case can be identical or different if their number is greater than 1.
- 3. Compound of the formula (I) according to claim 1, wherein R_1 is anyl which is monoto trisubstituted by R_7 , where the substituents in each case can be identical or different if their number is greater than 1.
- 4. Compound of the formula (I) according to claim 1, wherein R₂ is C₁-C₀alkyl, halo-C₁-C₀alkyl, aryl or heteroaryl which is in each case unsubstituted or mono- to polysubstituted by R₂, where the substituents can in each case be identical or different if their number is greater than 1.
- 5. Compound of the formula (I) according to claim 1, wherein R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl or aryl which is unsubstituted or mono- to pentasubstituted by R_7 , where the substituents can be identical or different if their number is greater than 1.
- 6. Compound of the formula (I) according to claim 1, wherein R_2 is aryl which is unsubstituted or mono- to trisubstituted by R_7 , where the substituents can be identical or different if their number is greater than 1.
- 7. Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen or C₁-C₆alkyl.
- 8. Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen or C₁-C₄alkyl.
- 9. Compound of the formula (I) according to claim 1, wherein R₃ is hydrogen.
- 10. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 cycloalkyl.

- 11. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl or C_3 - C_6 cycloalkyl.
- 12. Compound of the formula (I) according to claim 1, wherein R_4 , R_5 and R_6 independently of one another are hydrogen or C_1 - C_2 alkyl.
- 13. Compound of the formula (I) according to claim 1, wherein R_7 is halogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl, C_1 - C_4 -alkoxy, halo- C_1 - C_4 alkoxy; aryl or phenylacetylenyl, in each case unsubstituted or mono- or polysubstituted, where the substituents are selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, and can in each case be identical or different if their number is greater than 1.
- 14. Compound of the formula (I) according to claim 1, wherein R_7 is halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkyl, C_1 - C_2 alkoxy, halo- C_1 - C_2 alkoxy.
- 15. Compound of the formula (I) according to claim 1, wherein R_7 is halogen or halo- C_1 - C_2 alkyl.
- 16. Compound of the formula (I) according to claim 1, wherein R_8 is unsubstituted or monoto trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl, C_1 - C_4 alkoxy and halo- C_1 - C_4 alkoxy, and can be identical or different if their number is greater than 1.
- 17. Compound of the formula (I) according to claim 1, wherein R_8 is mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkyl, and halo- C_1 - C_2 alkoxy, and can be identical or different if their number is greater than 1.
- 18. Compound of the formula (I) according to claim 1, wherein R_8 is mono- or disubstituted aryl, where the substituents are selected from the group consisting of halogen and halo- C_1 - C_2 alkyl, and can be identical or different if their number is greater than 1.
- 19. Compound of the formula (I) according to claim 1, wherein X is O or S.
- 20. Compound of the formula (I) according to claim 1, wherein X is O.
- 22. Compound of the formula (I) according to claim 1, wherein R_1 is aryl which is unsubstituted or mono- or pentasubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_3 is

hydrogen or C₁-C₆alkyl; R₄, R₅ and R₆ independently of one another are hydrogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, C₂-C₆alkenyl, C₂-C₆alkynyl, C₃-C₆cycloalkyl; R₇ is halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, C₁-C₄alkoxy, halo-C₁-C₄alkoxy, aryl or phenylacetylenyl, in each case unsubstituted or mono- or polysubstituted, where the substituents are selected from the group consisting of halogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, and in each case can be identical or different if their number is greater than 1; R₈ is unsubstituted or mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, C₁-C₄alkoxy and halo-C₁-C₄alkoxy, and can be identical or different if their number is greater than 1; and X is O or S.

- 23. Compound of the formula (I) according to claim 1, wherein R_1 is aryl which is mono- or trisubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_2 is C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl or aryl which is unsubstituted or mono- to pentasubstituted by R_7 , where the substituents can be identical or different if their number is greater than 1; R_3 is hydrogen or C_1 - C_4 alkyl; R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_4 alkyl, halo- C_1 - C_4 alkyl or C_3 - C_6 cycloalkyl; R_7 is halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkoxy or halo- C_1 - C_2 alkoxy; R_8 is mono- to trisubstituted aryl, where the substituents are selected from the group consisting of halogen, C_1 - C_2 alkyl, halo- C_1 - C_2 alkoxy, and can be identical or different if their number is greater than 1; and X is O.
- 24. Compound of the formula (I) according to claim 1, wherein R_1 is aryl which is mono- to trisubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_2 is aryl which is unsubstituted or mono- to trisubstituted by R_7 , where the substituents can in each case be identical or different if their number is greater than 1; R_3 is hydrogen; R_4 , R_5 and R_6 independently of one another are hydrogen or C_1 - C_2 alkyl; R_7 is halogen or halo- C_1 - C_2 alkyl; R_8 is mono- or disubstituted aryl, where the substituents are selected from the group consisting of halogen and halo- C_1 - C_2 alkyl, and can be identical or different if their number is greater than 1; and X is O.
- 25. Compound of the formula (I) according to claim 1, named N-(1-cyano-1-[2,3-dichlorophenoxymethyl]ethyl)-C-phenylmethanesulphonamide.

26. Process for the preparation of compounds of the formula (I), in each case in free form or in salt form, according to Claim 1, characterized in that a compound of the formula

which is known or can be prepared in analogy to corresponding known compounds and in which R_1 , R_3 , R_4 , R_5 , R_6 , X and n are as defined for the formula (I), is reacted with a compound of the formula

which is known or can be prepared in analogy to corresponding known compounds and in which R₂ are as defined for the formula (I) and Q is a leaving group, if appropriate in the presence of a basic catalyst, and in each case, if desired, a compound of the formula (1), in each case in free form or in salt form, obtainable according to the process or in another manner, is converted into another compound of the formula (1), a mixture of isomers obtainable according to the process is separated and the desired isomer is isolated and/or a free compound of the formula (I) obtainable according to the process is converted into a salt or a salt of a compound of the formula (I) obtainable according to the process is converted into the free compound of the formula (I) or into another salt.

- 27. Composition for the control of parasites, which, in addition to carriers and/or dispersants, contains as active compound at least one compound of the formula (I) according to Claim 1.
- 28. Use of compounds of the formula (I) according to Claim 1 for the control of parasites.
- 29. Process for the control of parasites, characterized in that an efficacious amount of at least one compound of the formula (I) according to Claim 1 is employed against the parasites.
- 30. Use of a compound of the formula (I) according to Claim 1 in a process for the control of parasites in warm-blooded animals.
- 31. Use of a compound of the formula (I) according to Claim 1 for the production of a pharmaceutical composition against parasites in warm-blooded animals.