

(11)Publication number:

2001-097776

(43) Date of publication of application: 10.04.2001

(51)Int.CI.

CO4B 35/565 B01D 39/14 B01D 39/20

(21)Application number: 11-277120 (71)Applicant: IBIDEN CO LTD

(22)Date of filing:

29.09.1999

(72)Inventor: ONO KAZUSHIGE

TSUJI MASAHIRO

(54) POROUS SILICON CARBIDE SINTERED PRODUCT, HONEYCOMB FILTER, **CERAMIC FILTER ASSEMBLY**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a honeycomb filter which has excellent mechanical strength, excellent heat resistance, and excellent heat conductivity and is used for exhausted gas-cleaning devices.

SOLUTION: This honeycomb filter 9 comprises a columnar sintered product in which silicon carbide crystal grains 16 constituting porous tissues are bound to each other through neck portions 17. The neck portions 17 are smoothly curved and have radii of curvature of ≥3 "m.

LEGAL STATUS

[Date of request for examination]

08.04.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-97776 (P2001-97776A)

(43)公開日 平成13年4月10日(2001.4.10)

(51) Int.Cl. ²		識別記号	F I -7-73-1*(多考)
C 0 4 B	35/565		B 0 1 D 39/14 B 3 G 0 9 0
B01D	39/14		39/20 D 4 D 0 1 9
	39/20		F01N 3/02 301C 4G001
F 0 1 N	3/02	301	3 2 1 A
		3 2 1	C 0 4 B 35/56 1 0 1 Z 審査請求 未請求 請求項の数4 OL (全 9 頁)
(21) 出願番与		特願平 11-277120	(71)出版人 000000158 イビデン株式会社
(22)出顧日		平成11年9月29日(1999.9.29)	岐阜県大垣市神田町2丁目1番地
			(72)発明者 大野 一茂 岐阜県揖斐郡揖斐川町北方1の1 イビデ ン 株式会社大垣北工場内
			(72)発明者 辻 昌宏 岐阜県揖斐郡揖斐川町北方1の1 イビデ ン 株式会社大垣北工場内
			(74)代理人 100068755 弁理士 恩田 博宜 (外1名)
			最終頁に続く

(54) 【発明の名称】 多孔質炭化珪素焼結体、ハニカムフィルタ、セラミックフィルタ集合体

(57)【要約】 (修正有)

【課題】 機械的強度、耐熱性、及び熱伝導性に優れた ハニカムフィルタを提供する。このハニカムフィルタは 排気ガス浄化装置に用いられる。

【解決手段】 このハニカムフィルタ9は柱状であっ て、多孔質組織を構成する炭化珪素結晶粒子16同士が ネック部17によって結合された焼結体からなる。ネッ ク部17は、なめらかな曲線状になっており、曲率半径 3μm以上である。

【特許請求の範囲】

【請求項1】多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体であって、前記ネック部がなめらかな曲線状になっていることを特徴とする多孔質炭化珪素焼結体。

【請求項2】前記ネック部の曲率半径は3 μ m以上であることを特徴とする請求項1 に記載の多孔質炭化珪素焼 結体

【請求項3】多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体からなる柱状ハ 10 ニカムフィルタであって、前記ネック部がなめらかな曲線状になっていることを特徴とするハニカムフィルタ。 【請求項4】多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体からなる複数の角柱状ハニカムフィルタを構成部材として用い、それらの外周面同士をセラミック質シール材層を介して接着することにより、前記各ハニカムフィルタを一体化してなる集合体であって、前記ネック部がなめらかな曲線状になっていることを特徴とするセラミックフィルタ集合体。 20

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セラミック焼結体からなる複数のフィルタを接着して一体化した構造のセラミックフィルタ集合体、及びそれの製造に使用可能なハニカムフィルタ、多孔質炭化珪素焼結体に関するものである。

[0002]

【従来の技術】自動車の台数は今世紀に入って飛躍的に 増加しており、それに比例して自動車の内燃機関から出 30 される排気ガスの量も急激な増加の一途を辿っている。 特にディーゼルエンジンの出す排気ガス中に含まれる種 々の物質は、汚染を引き起こす原因となるため、現在で は世界環境にとって深刻な影響を与えつつある。また、 最近では排気ガス中の微粒子(ディーゼルパティキュレ ート)が、ときとしてアレルギー障害や精子数の減少を 引き起こす原因となるとの研究結果も報告されている。 つまり、排気ガス中の微粒子を除去する対策を講じるこ とが、人類にとって急務の課題であると考えられている。

[0003] このような事情のもと、従来より、多様多種の排気ガス浄化装置が提案されている。一般的な排気ガス浄化装置は、エンジンの排気マニホールドに連結された排気管の途上にケーシングを設け、その中に微細な孔を有するフィルタを配置した構造を有している。フィルタの形成材料としては、金属や合金のほか、セラミックがある。セラミックからなるフィルタの代表例としては、コーディエライト製のハニカムフィルタが知られている。

[0004]

【発明が解決しようとする課題】ところが、コーディエライトの多孔質体を用いてハニカムフィルタを構成した場合、十分な機械的強度を確保することができなくなり、ハニカムフィルタが破壊しやすくなるという問題があった。

【0005】また、その原因は、板状結晶からなるコーディエライトでは、結晶粒子の結合部分の形状が鋭角的であり、結晶粒子同士の接触面積が極端に小さいことにある、と考えられていた。

[0006] 本発明は上記の課題に鑑みてなされたものであり、その目的は、強度に優れた多孔質炭化珪素焼結体、ハニカムフィルタ、セラミックフィルタ集合体を提供することにある。

[0007]

【課題を解決するための手段】上記の課題を解決するために、請求項1に記載の発明では、多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体であって、前記ネック部がなめらかな曲線状になっていることを特徴とする多孔質炭化珪素焼結体をその 要旨とする。

【0008】請求項2に記載の発明は、請求項1において、前記ネック部の曲率半径は3μm以上であるとした。請求項3に記載の発明では、多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体からなる柱状ハニカムフィルタであって、前記ネック部がなめらかな曲線状になっていることを特徴とするハニカムフィルタをその要旨とする。

【0009】請求項4に記載の発明では、多孔質組織を構成する炭化珪素結晶粒子同士がネック部によって結合された焼結体からなる複数の角柱状ハニカムフィルタを構成部材として用い、それらの外周面同士をセラミック質シール材層を介して接着することにより、前記各ハニカムフィルタを一体化してなる集合体であって、前記ネック部がなめらかな曲線状になっていることを特徴とするセラミックフィルタ集合体をその要旨とする。

【0010】以下、本発明の「作用」について説明する。請求項1~4に記載の発明によると、炭化珪素結晶粒子同士を結合するネック部がなめらかな曲線状になっていることから、結晶粒子同士の接触面積が大きくな40 る。このため、結晶粒子間の結合強度が向上し、粒界での破断が起こりにくくなる。従って、多孔質組織であったとしても、十分な機械的強度を確保することができる。

【0011】 この場合、ネック部の曲率半径は3μm以上であることがよい。曲率半径が3μmよりも小さいと、ネック部がさほどなめらかにならず、結晶粒子同士の接触面積が依然として小さくなる。よって、結晶粒子間の結合強度を十分に向上できなくなるからである。

[0012]

【発明の実施の形態】以下、本発明を具体化した一実施

形態のディーゼルエンジン用の排気ガス浄化装置 1 を、図 1 ~図 6 に基づき詳細に説明する。

[0013]図1に示されるように、この排気ガス浄化装置1は、内燃機関としてのディーゼルエンジン2から排出される排気ガスを浄化するための装置である。ディーゼルエンジン2は、図示しない複数の気筒を備えている。各気筒には、金属材料からなる排気マニホールド3の分岐部4がそれぞれ連結されている。各分岐部4は1本のマニホールド本体5にそれぞれ接続されている。従って、各気筒から排出された排気ガスは一箇所に集中す 10る。

[0014]排気マニホールド3の下流側には、金属材料からなる第1排気管6及び第2排気管7が配設されている。第1排気管6の上流側端は、マニホールド本体5に連結されている。第1排気管6と第2排気管7との間には、同じく金属材料からなる筒状のケーシング8が配設されている。ケーシング8の上流側端は第1排気管6の下流側端に連結され、ケーシング8の下流側端は第2排気管7の上流側端に連結されている。排気管6、7の途上にケーシング8が配設されていると把握することもで20きる。そして、この結果、第1排気管6、ケーシング8及び第2排気管7の内部領域が互いに連通し、その中を排気ガスが流れるようになっている。

【0015】図1に示されるように、ケーシング8はそ の中央部が排気管6.7よりも大径となるように形成さ れている。従って、ケーシング8の内部領域は、排気管 6,7の内部領域に比べて広くなっている。このケーシ ング8内には、ハニカムフィルタ9が収容されている。 【0016】ハニカムフィルタ9の外周面とケーシング 8の内周面との間には、断熱材10が配設されている。 断熱材10はセラミックファイバを含んで形成されたマ ット状物であり、その厚さは数mm~数十mmである。 断熱材10は熱膨張性を有していることがよい。ここで いう熱膨張性とは、弾性構造を有するため熱応力を解放 する機能があることを指す。その理由は、ハニカムフィ ルタ9の最外周部から熱が逃げることを防止することに より、再生時のエネルギーロスを最小限に抑えるためで ある。また、再生時の熱によってセラミックファイバを 膨張させることにより、排気ガスの圧力や走行による振 動等のもたらすセラミックフィルタ集合体9の位置ずれ 40 を防止するためである。

【0017】本実施形態において用いられるハニカムフィルタ9は、上記のごとくディーゼルバティキュレートを除去するものであるため、一般にディーゼルバティキュレートフィルタ(DPF)と呼ばれる。図2等に示されるように、本実施形態のハニカムフィルタ9は円柱状である。

【0018】ハニカムフィルタ9は、セラミック焼結体の一種である多孔質炭化珪素焼結体製である。炭化珪素焼結体を採用した理由は、他のセラミックに比較して、

とりわけ強度、耐熱性及び熱伝導性に優れるという利点 があるからである。

【0019】図2、図3、図4に示されるように、本実 施形態のハニカムフィルタ9は、いわゆるハニカム構造 を備えている。ハニカム構造を採用した理由は、微粒子 の捕集量が増加したときでも圧力損失が小さいという利 点があるからである。ハニカムフィルタ9には、断面略 正方形状をなす複数の貫通孔12がその軸線方向に沿っ て規則的に形成されている。各貫通孔12は薄いセル壁 13によって互いに仕切られている。セル壁13の外表 面には、白金族元素(例えばPt等)やその他の金属元 素及びその酸化物等からなる酸化触媒が担持されてい る。各貫通孔12の開口部は、いずれか一方の端面9 a.9bの側において封止体14(ことでは多孔質炭化 珪素焼結体)により封止されている。従って、端面9 a, 9b全体としてみると市松模様状を呈している。そ の結果、ハニカムフィルタ9には、断面四角形状をした 多数のセルが形成されている。セルの密度は200個/ インチ前後に設定され、セル壁13の厚さは0.3mm前 後に設定され、セルビッチは1.8mm前後に設定されて いる。多数あるセルのうち、約半数のものは上流側端面 9aにおいて開口し、残りのものは下流側端面9bにお いて開口している。

[0020] ハニカムフィルタ9の平均気孔径は 1μ m $\sim 50\mu$ m、さらには 5μ m $\sim 20\mu$ mであることが好ましい。平均気孔径が 1μ m未満であると、微粒子の堆積によるハニカムフィルタ9の目詰まりが著しくなる。一方、平均気孔径が 50μ mを越えると、細かい微粒子を捕集することができなくなるため、捕集効率が低下してしまう。

【0021】ハニカムフィルタ9の気孔率は30%~70%、さらには40%~60%であることが好ましい。 気孔率が30%未満であると、ハニカムフィルタ9が緻密になりすぎてしまい、内部に排気ガスを流通させることができなくなるおそれがある。一方、気孔率が70%を越えると、ハニカムフィルタ9中に空隙が多くなりすぎてしまうため、強度的に弱くなりかつ微粒子の捕集効率が低下してしまうおそれがある。

【0022】多孔質炭化珪素焼結体を選択した場合においてハニカムフィルタ9の熱伝導率は、20W/mK~75W/mKであることがよく、さらには30W/mK~70W/mKであることが特によい。熱伝導率が小さすぎると、ハニカムフィルタ9内に温度差が生じやすくなり、クラックをもたらす原因となる大きな熱応力の発生につながってしまう。逆に、熱伝導率を高くしようとすると、製造が困難となり、安定的な材料供給が難しくなる。

【0023】図5(a)にて概略的に示されるように、 本実施形態のハニカムフィルタ9では、多孔質組織を構 50 成する炭化珪素結晶粒子16同士が、いわゆるネック部 17によって結合されている。ここでネック部17とは、炭化珪素の固相焼結によって粒界に生じる構造を指す。本実施形態のハニカムフィルタ9では、ネック部17の外表面が、なめらかな曲線状になっている。なお、参考として図6に焼結体のSEM写真を載せる。

[0024]ネック部170外表面の曲率半径は 3μ m 以上であるととがよく、さらには 3μ m $\sim 100\mu$ m、特には 5μ m $\sim 20\mu$ m であることがよい。曲率半径が 3μ m よりも小さいと、結晶粒子16同士の接触面積が大きくならず、結晶粒子16間の結合強度を十分に向上 10できなくなるからである。具体的にいうと、45 MP a以上の曲げ強度をハニカムフィルタ9に付与できなくなるからである。逆に、曲率半径が 100μ m以上になると、ハニカムフィルタ9が緻密になりすぎてしまい、内部に排気ガスを流通させることができなくなるおそれがある。

【0025】なお、焼結体における炭化珪素結晶粒子 16の平均粒径は 5μ m~15 μ m程度であることがよく、前記結晶粒子 16のうち平均粒径が 5μ m~30 μ mのものの存在率は 30%以上であることがよい。

[0026]次に、上記のハニカムフィルタ9を製造する手順を説明する。まず、押出成形工程で使用するセラミック原料スラリー、端面封止工程で使用する封止用ペーストをあらかじめ作製しておく。

【0027】セラミック原料スラリーとしては、炭化珪素粉末に有機パインダ及び水を所定分量ずつ配合し、かつ混錬したものを用いる。封止用ベーストとしては、炭化珪素粉末に有機パインダ、潤滑剤、可塑剤及び水を配合し、かつ混錬したものを用いる。

【0028】 この場合、セラミック原料スラリーは、平 30 均粒径の異なる2種の炭化珪素粉末を用いて作製されることが望ましい。具体的にいうと、平均粒径が15μm 前後の大粉と平均粒径が1μm前後の微粉とを混合して用いることが望ましい。このようにすることによりネック焼結が促進され、ネック部17の曲率半径も大きくなるからである。

【0029】次に、前記セラミック原料スラリーを押出成形機に投入し、かつ金型を介してそれを連続的に押し出す。その後、押出成形されたハニカム成形体を等しい長さに切断し、円柱状のハニカム成形体切断片を得る。さらに、切断片の各セルの片側開口部に所定量ずつ封止用ペーストを充填し、各切断片の両端面を封止する。

[0030]続いて、温度・時間等を所定の条件に設定して本焼成を行って、ハニカム成形体切断片及び封止体14を完全に焼結させることにより、所望のハニカムフィルタ9が完成する。

【0031】本実施形態では焼成温度を2100℃~2300℃に設定し、かつ焼成時間を0.1時間~5時間 に設定している。また、焼成時の炉内雰囲気を不活性雰囲気とし、そのときの雰囲気の圧力を常圧としている。

なお、焼成温度は前記範囲内において極力高めに設定されることが望ましい。このように温度を設定することによりネック焼結が促進され、ネック部17の曲率半径も大きくなる傾向にあるからである。

【0032】次に、上記のハニカムフィルタ9による微 粒子トラップ作用について簡単に説明する。ケーシング 8内に収容されたハニカムフィルタ9には、上流側端面 9 a の側から排気ガスが供給される。第1排気管 6 を経 て供給されてくる排気ガスは、まず、上流側端面9ak おいて開口するセル内に流入する。次いで、との排気ガ スはセル壁13を通過し、それに隣接しているセル、即 ち下流側端面9 b において開口するセルの内部に到る。 そして、排気ガスは、同セルの開口を介してハニカムフ ィルタ9の下流側端面9bから流出する。しかし、排気 ガス中に含まれる微粒子はセル壁13を通過することが できず、そこにトラップされてしまう。その結果、浄化 された排気ガスがハニカムフィルタ9の下流側端面9b から排出される。浄化された排気ガスは、さらに第2排 気管7を通過した後、最終的には大気中へと放出され 20 る。また、トラップされた微粒子は、ハニカムフィルタ 9の内部温度が所定の温度に達すると、前記触媒の作用 により着火して燃焼するようになっている。

[0033]

【実施例及び比較例】(実施例)平均粒径10μmのα型炭化珪素粉末51.5重量%と、平均粒径0.5μmのα型炭化珪素粉末22重量%とを湿式混合し、得られた混合物に有機バインダ(メチルセルロース)と水とをそれぞれ6.5重量%、20重量%ずつ加えて混練した。次に、前記混練物に可塑剤と潤滑剤とを少量加えてさらに混練したものを押出成形することにより、ハニカム状の生成形体を得た。具体的には、α型炭化珪素粉末として、平均粒径が10μmのもの(屋久島電工株式会社製、商品名:C-1000F)と、平均粒径が0.5μmのもの(屋久島電工株式会

【0034】次に、この生成形体をマイクロ波乾燥機を用いて乾燥した後、成形体の貫通孔12を多孔質炭化珪素焼結体製の封止用ペーストによって封止した。次いで、再び乾燥機を用いて封止用ペーストを乾燥させた。端面封止工程に続いて、この乾燥体を400℃で脱脂した後、さらにそれを常圧のアルゴン雰囲気下において2250℃で約3時間焼成した。その結果、多孔質炭化珪素焼結体製のハニカムフィルタ9を得た。各ハニカムフィルタ9の直径は100mmに設定し、長さは200mmに設定した。

【0035】次に、上記のようにして得られたハニカムフィルタ9の組織をSEMで観察した。この調査によると、ネック部17が、なめらかで曲線的な形状になっていることが確認された。また、SEM写真に基づいてネック部17の外表面の曲率半径を測定したところ、その

平均値は約10μmであった。よって、実施例では結晶 粒子16同士の接触面積が大きくなる結果、結晶粒子1 6間の結合強度が向上し、粒界での破断が起こりにくく なっているものと予想された。

【0036】そこで、前記ハニカムフィルタ9の曲げ強 度を従来公知の方法により測定したところ、その測定値 は約50MPaであった。従って、このハニカムフィル タ9には極めて高い機械的強度が付与されていた。ま た、ハニカムフィルタ9をケーシング8内に収容して一 定期間使用をした結果、ハニカムフィルタ9に何らクラ 10 ックは発生しなかった。

(比較例1) 比較例1では、基本的には実施例と同様 に、炭化珪素粉末を用いてハニカムフィルタ9を製造す ることとした。ハニカムフィルタ9の寸法等は実施例と 等しくした。ただし、ことではα型炭化珪素粉末として 平均粒径が10μm前後のものを1種のみ用い、かつ焼 成温度をやや低めに設定することにより、ネック部17 の曲率半径が約1μmになるようにした。

【0037】SEM観察を行ったところ、ネック部17 の形状は、実施例のときほど、なめらかで曲線的な形状 20 になっていなかった。また、ハニカムフィルタ9の曲げ 強度測定値は平均値で約30MPaであり、実施例に比 べて機械的強度に劣っていた。 ハニカムフィルタ9をケ ーシング8内に収容して一定期間使用をした結果、ハニ カムフィルタ9に若干のクラックが認められた。

[0038] (比較例2) 比較例2では、コーディエラ イトの多孔質焼結体を用いて実施例と同寸法のハニカム フィルタを製造することとした。

【0039】SEM観察を行ったところ、板状の結晶粒 子16の結合部分には、多孔質炭化珪素焼結体のときの 30 ようなネック部17は存在していなかった。また、結晶で 粒子16の結合部分の形状も鋭角的であって、なめらか で曲線的な形状であるとはいい難かった(図5(b)参 照)。

【0040】また、ハニカムフィルタの曲げ強度測定値 は平均値で約5MPaであり、実施例に比べて極めて機 械的強度に劣っていた。ハニカムフィルタをケーシング 8内に収容して一定期間使用をした結果、ハニカムフィ ルタにクラックが認められた。

【0041】従って、本実施形態の実施例によれば以下 40 のような効果を得ることができる。

(1) 実施例のハニカムフィルタ9においては、ネック 部17がなめらかな曲線状になっているため、結晶粒子 16同士の接触面積が大きくなっている。このため、結 晶粒子16間の結合強度が向上し、粒界での破断が起と りにくい。従って、多孔質組織であったとしても十分な 機械的強度を確保することができ、破壊しにくいハニカ ムフィルタ9を得ることができる。そして、このような ハニカムフィルタ9を用いた排気ガス浄化装置1は、高 強度であって長期にわたり使用可能なため、実用性に優 50 て、との技術的思想 1 に記載の発明によれば、高い機械

れたものとなる。

【0042】(2)実施例ではネック部17の曲率半径 が3μm以上に設定されている。従って、結晶粒子16 間の結合強度を十分に向上することができ、45MPa 以上の十分な曲げ強度をハニカムフィルタ9に付与する ととができる。

【0043】なお、本発明の実施形態は以下のように変 更してもよい。

ハニカムフィルタ9の形状は、実施形態のような円 柱状に限定されることはなく、三角柱状、四角柱状、六 角柱状等に変更しても構わない。

【0044】・ 図7に示される別例のように、複数個 (ここでは16個) のハニカムフィルタ23を組み合わ せて1つのセラミックフィルタ集合体21を製造しても よい。集合体21を構成する角柱状ハニカムフィルタ2 3は、多孔質組織を構成する炭化珪素結晶粒子16同士 がネック部17によって結合された焼結体からなる。ハ ニカムフィルタ23の外周面は、互いにセラミック質シ ール材層22を介して接着されている。その結果、各ハ ニカムフィルタ23が束ねられた状態で一体化されてい る。このような構成にすれば、加熱による温度勾配に起 因する応力によってクラックが発生するのを防止でき、 熱衝撃にも強くなる。従って、比較的容易にフィルタの 大型化を達成することができる。

【0045】・ ハニカムフィルタ23の組み合わせ数 は、前記別例のように16個でなくてもよく、任意の数 にすることが可能である。この場合、サイズ・形状等の 異なるハニカムフィルタ23を適宜組み合わせて使用す ることも勿論可能である。

【0046】・ ハニカムフィルタ9,23は前記実施 形態や別例にて示したようなハニカム状構造を有するも ののみに限られず、例えば三次元網目構造、フォーム状 構造、ヌードル状構造、ファイバ状構造等であってもよ

【0047】・ 実施形態においては、本発明のハニカ ムフィルタ(またはセラミックフィルタ集合体)を、デ ィーゼルエンジン2に取り付けられる排気ガス浄化装置 用フィルタとして具体化していた。勿論、本発明のハニ カムフィルタ(またはセラミックフィルタ集合体)は、 排気ガス浄化装置用フィルタ以外のものとして具体化さ れることができる。その例としては、熱交換器用部材、 高温流体や高温蒸気のための濾過フィルタ等が挙げられ る。さらに、本発明の多孔質炭化珪素焼結体は、フィル タ以外の用途にも適用可能である。

【0048】次に、特許請求の範囲に記載された技術的 思想のほかに、前述した実施形態によって把握される技 術的思想を以下に列挙する。

(1) 請求項1乃至4のいずれか1つにおいて、前記 焼結体の曲げ強度は45MPa以上であること。従っ

的強度が付与される。

[0049](2) 請求項1乃至4、技術的思想1の いずれか1つにおいて、前記焼結体における炭化珪素結 晶粒子の平均粒径は5μm~15μmであり、前記結晶 粒子16のうち平均粒径が5μm~30μmのものの存 在率は30%以上であること。

【0050】(3) 内燃機関の排気管の途上に設けら れたケーシング内に、請求項3に記載のハニカムフィル タまたは請求項4に記載のセラミックフィルタ集合体を 収容するとともに、前記フィルタまたは前記集合体の外 10 周面と前記ケーシングの内周面とがなす隙間に、断熱材 を充填した排気ガス浄化装置。従って、との技術的思想 3 に記載の発明によれば、高強度であって長期にわたり 使用可能なため、実用性に優れた装置を提供することが

[0051]

【発明の効果】以上詳述したように、請求項1,2に記 載の発明によれば、強度に優れた多孔質炭化珪素焼結体 を提供することができる。

れたハニカムフィルタを提供することができる。請求項※

* 4 に記載の発明によれば、強度に優れたセラミックフィ ルタ集合体を提供することができる。

【図面の簡単な説明】

【図1】本発明を具体化した一実施形態の排気ガス浄化 装置の全体概略図。

【図2】実施形態のハニカムフィルタの斜視図。

【図3】実施形態のハニカムフィルタのA-A線におけ る断面図。

【図4】前記排気ガス浄化装置の要部拡大断面図。

【図5】(a)は多孔質炭化珪素からなる実施例のハニ カムフィルタの焼結体組織の拡大概略断面図、(b)は 多孔質コーディエライトからなる比較例2の焼結体組織 の拡大概略断面図。

【図6】(a), (b)は実施例のハニカムフィルタのSE M写真。

【図7】複数個のハニカムフィルタを用いて構成される 別例のセラミックフィルタ集合体の斜視図。

【符号の説明】

9, 23…ハニカムフィルタ、16…結晶粒子、17… 【0052】請求項3に記載の発明によれば、強度に優 20 ネック部、21…セラミックフィルタ集合体、22…セ ラミック質シール材層。

【図1】

[図3]

【図4】

【図5】

[図6]

(a)

C-1000F GC - 15 屋久島 屋久島

【図7】

フロントページの続き

Fターム(参考) 3G090 AA03

4D019 AA01 BA05 BB06 BC07 BC12

BC20 BD01 CA01 CB03 CB04

CB06

4G001 BA22 BB22 BC01 BC12 BC13

BC17 BC26 BC41 BC52 BC56

BD01 BD14 BD36 BE02 BE31

BE39