Fighting West Nile Virus in Chicago

Christopher, Elizabeth, Gareth

Table of Contents

- 1) Problem Statement
- 2) Data Cleaning and EDA
- 3) Preprocessing
- 4) Modelling
- 5) Limitations & Recommendations
- 6) Cost-Benefit Analysis
- 7) Conclusion & Recommendations

The West Nile Virus

• Leading cause of mosquito-borne disease

Potentially fatal

No vaccine

Problem Statement

Problem Statement

Project Aim

 To find the most cost-effective way of eliminating West Nile Virus (WNV) in Chicago

Who are we?

 Part of team at Disease and Treatment Agency

Stakeholders

- Primary- Disease and Treatment Agency
- Secondary- Chicago residents

Data Cleaning and EDA

Data Cleaning

Train Test Incorrect dtype

Drop (Redundant)

Drop (Duplicates)

• Drop (Not in Test)

Data Cleaning

Incorrect dtype

Drop (Redundant)

Drop (Duplicates)

Data Cleaning

Weather

Incorrect dtype

Drop (Redundant)

Drop (Duplicates)

• Impute ("M", "T")

Count by Mosquito Species

Latitude/Longitude and WNV Frequency

Temperature and WNV Frequency

Preprocessing

Preprocessing

Feature Engineered

- Dummy variables for species created in both train and test set.
- Parsed dates into year, month and week of year.
- Merged weather dataset to train and test set on Date.
- Dropped features with collinearity.
- Spray set is omitted due to lack of information over the years.

- Scaled the features
- Used smote to deal with imbalanced classes

Models Used

- Logistic Regression
- Gradient Boosting
- AdaBoost
- K Nearest Neighbours
- Random Forest
- Decision Tree

- Based on the models, get the best params
- Used the best params on model training
- Choose the model with the best AUC ROC score

Top 3 Models

	Models	Local validation score	Kaggle score
1	Gradient Boosting	0.854	0.635
2	Random Forest	0.851	0.653
3	Adaboost	0.843	0.651

Top Features

- Month, Week of Year, Year
- Longitude, Latitude
- Daylight Hours
- ResultSpeed
- Average Temperature
- Culex Restuans
- Culex Pipiens

Pesticide Spraying - Cost Benefit Analysis

Costs

- Economic Costs
- Non Economic Cost

Benefits

- Efficacy of Spray
- Effectively reduce West Nile Virus

Sacramento, 2005

- Emergency aerial spray conducted in Sacramento County
- 2 main areas: 477km2 across 6 nights
- Size of Chicago: 606km2
- Costs amounted to \$701,790
- Price of a single helicopter starts at \$100,000, operating costs of \$80,000 per year

Results of Aerial Spray

After 12hrs

- Greatest mortality (100%) for cages in open fields dead after 30 mins
- Mortality among mosquitoes placed in exposed or partially exposed sites 77.1%
- Mortality among mosquitoes placed in protected places 24.9%

Overall(Study in 2008)

- Reduced mosquito abundance and the number of infective bites
- Resulted in an approximately six-fold decrease in the relative risk of infection in humans
- No new human WNV cases in either of the treated areas
- 18 new cases reported in adjacent untreated area

To spray or not to spray?

- Total cost of the 2005 Sacramento County WNV epidemic was around \$2,979,037.
- Costs for treating patients alone exceeded costs of emergency vector control by 3:1 ratio
- Benefits outweigh costs
- Spray event would need to prevent only 15 WNV cases to breakeven

But...

Long-term adverse health effects that it may have on public health

- Pregnant women and children have a greater risk of getting sick from pesticides
- In NYC in 2000 more people were reported to have gotten sick from pesticide exposure from spraying than from WNV
- Other adverse outcomes include acute asthma attacks, other respiratory problems, and/or dermatological problems

Conclusion and Recommendation

- Proceed with the vector control measure
- Focus on key areas
 - Areas in Chicago our model predicted WNV is likely to occur
 - Areas where mosquito species like Culex Restuans are commonly found
 - Certain time of the year where temperature is higher and windier: Summer
- Cheaper alternative: Truck Mounted Sprayer \$85,000
- Long term adverse effects: use vector control as last resort
- Prevention of WNV through public education
 - Remove all potential breeding areas
 - Monitor ponds and sources of water regularly for signs of mosquito larvae