# Zhiwei Chang

### Data/Research Scientist

Curious and persistent researcher with over 10 years of experience in theoretical and numerical (bio)physics ready to transfer to new role as Data Scientist. I love to enter new territories, acquire new knowledge and skills to solve the most challenging problems ahead. Being sceptic and imaginative both — with a can-do-it-all, grit and teamwork mentality — I am equipped to make unique contributions to the team.

### **SKILLS**

Programming & Software

Python, Numpy, Pandas, Matplotlib, Seaborn, Jupyter Notebook, Scikitlearn, SQL, MATLAB/Octave, Mathematica, Git, Linux shell, Office, LaTeX

**Technical** 

**Regression** (Linear, Multiple-Linear, Logistic, Polynomial, SVR, Random Forest), **Classification** (K-NN, SVM, Random Forest, Native Bayes), **Clustering** (K-means, Hierarchical), **Deep learning**, Project Management, Data Cleaning & Interpretation, Scientific writing & documentation

#### **EXPERIENCE**

2021.7 - CURRENT

To deep my understanding in machine learning and also benefit others, I began to rewrite Andrew Ng's course exercises Matlab code in Python. Moreover, I implement corresponding algorithms in Scikit-learn as a comparison and some problems are solved using different methods. I also explore and analyze the data sets in Kaggle. In addition, I solve algorithms and data structure problems in AlgoExpert. These projects can be found in my Github.

2018.5 - 2021.6

## Massachusetts Institute of Technology

Postdoc Fellow/Independent Researcher

This position is mainly focused on measuring protein structures using solid-state nuclear magnetic resonance (NMR). During the COVID when MIT was closed, I developed a new physical theory to analyze/design the electromagnetic pulses used to manipulate protein nuclear spins. This independent work resulted two manuscripts which are now ready for submission. I also took the famous machine learning course by Andrew Ng on Coursera during this period.

2011.9 - 2017.7

## Lund University

Ph. D Researcher

I switched to a more interdisciplinary area - biophysics, to do my PhD. Using protein and water proton as a probe, working closely with my supervisor, I derived quantum mechanical theories related to NMR and wrote corresponding simulation packages to study protein dynamics. This work resulted in 5 first-authorship papers in a well-known peer-reviewed journal.

2008.9 - 2011.7

## Northwest Normal University

Master Student

As my thesis project, I was tasked with calculating the atomic structure of the "superheavy" element 117 and its lighter homologue Astatine. With very little supervision, I published 5 theoretical and simulation papers and some of my predictions have been cited and confirmed by CERN.



in

Dag Hammarskjölds väg 5H, 22464, Lund, SE

(+46) 765943720

zwchang@mit.edu
https://github.com/zwchang

www.linkedin.com/in/zhiwei-chang-015b2355

#### **EDUCATION**

2018.5 – 2021.7 **Postdoctoral Researcher** 

Biophysical Chemistry

Massachusetts Institute of Technology, USA

**2011.9** – **2017.7 Doctor of Philosophy** 

Biophysical Chemistry Lund University, Sweden

2008.9 - 2011.7 **Master of Science** 

Theoretical Physics

Northwest Normal University, China

**2003.9 – 2007.7 Bachelor of Science** 

Theoretical Physics

Beijing Normal University, China

### SCHOLARSHIPS & AWARDS

2018 3-year International Postdoc Grant (3.15 million SEK, Approval Rate: 15%)

Swedish Research Council (Vetenskapsrådet)

2013 Hakon Hanssons Travel Grant (15000 SEK)

Lund University

2011 Full Ph.D. Scholarship

Lund University

2010 "Outstanding Paper" Award

Northwest Normal University

### **LANGUAGES**

MOTHER TONGUE Chinese

FLUENT English
ELEMENTARY Swedish

#### **TEACHING**

Two semesters as a teaching assistant tutoring Thermodynamics and Electromagnetism; three semesters as a lab instructor tutoring several Thermodynamics experiments.

### **PUBLICATIONS**

Twelve manuscripts: two submitted, ten published (peer-reviewed), ten first-author, including *J. Chem. Phys.*, *J. Phys. Chem. A*, etc. Some key publications can be found in my Google scholar (zwchang@mit.edu).