DTIC FILE COPY .

# AD-A223 869



AFOEHL REPORT 90-064EQ00094DEF



# Source Emission Test of Gas Turbine Engine Test Facility Kelly AFB TX

RONALD W. VAUGHN, Capt, USAF, BSC PAUL T. SCOTT, Capt, USAF

**April 1990** 

SUL 13 1990 D

**Final Report** 

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC)
Human Systems Division
Brooks Air Force Base, Texas 78235-5501

#### NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: AF Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

RONALD W. VAUGHN, CAPT, USAF, BSC Consultant, Air Quality Function

ROBERT D. BINOVI, LT COL, USAF, BSC Chief, Environmental Quality Division

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

| Public reporting burden for this collection of<br>gathering and maintaining the data needed, a<br>collection of information, including suggestio<br>Davis Highway, Suite 1204, Arlington, VA 222 | information is estimated to average 1 hour per<br>ind completing and reviewing the collection of<br>ins for reducing this burden, to Washington Hea<br>02-4302, and to the Office of Management and | response, including the time for reviewii<br>information - Send comments regarding i<br>adquarters Services, Directorate for infor<br>Budget - Paperwork Reduction Project (07 | ng instructions, searching existing data sources,<br>his burden estimate or any other aspect of this<br>mation Operations and Reports, 1215 Jefferson<br>04-0188), Washington, DC 20503 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave bla                                                                                                                                                                    |                                                                                                                                                                                                     | 3. REPORT TYPE AND DA<br>Final                                                                                                                                                 |                                                                                                                                                                                         |
| 4. TITLE AND SUBTITLE<br>Source Emission Test<br>Kelly AFB TX                                                                                                                                    | of Gas Turbine Engine                                                                                                                                                                               | Test Facility, 5.                                                                                                                                                              | UNDING NUMBERS                                                                                                                                                                          |
| 6. AUTHOR(S) Ronald W. Vaughn, Capt, Paul T. Scott, Capt,                                                                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                         |
| 7. PERFORMING ORGANIZATION<br>AF Occupational and<br>Brooks AFB TX 78235                                                                                                                         | Environmental Health L                                                                                                                                                                              |                                                                                                                                                                                | PERFORMING ORGANIZATION REPORT NUMBER AFOEHL Report 90–064EQ00094DEF                                                                                                                    |
| Same as Blk 7                                                                                                                                                                                    | GENCY NAME(S) AND ADDRESS(ES                                                                                                                                                                        |                                                                                                                                                                                | SPONSORING/MONITORING<br>AGENCY REPORT NUMBER                                                                                                                                           |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                         |
| 12a. DISTRIBUTION / AVAILABILITY Statement A. Unlimi                                                                                                                                             | ted, approved for publ                                                                                                                                                                              | ic release                                                                                                                                                                     | . DISTRIBUTION CODE                                                                                                                                                                     |
| engines for particul<br>nitrogen oxide. The<br>Texas Air Control Bo<br>will be used to init                                                                                                      | rds) Ling was conducted on to ates, carbon monoxide, e present Gas Turbine E ard and Federal (40CFR Liate a permit applicat                                                                         | total hydrocarbons<br>ingine Test Facility<br>(60) Regulations. The<br>cion for a new Gas T                                                                                    | , sulfur dioxide and is grandfathered per he data in this report                                                                                                                        |
| 14. SUBJECT TERMS                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                | 15. NUMBER OF PAGES                                                                                                                                                                     |
| Emission Testing<br>Gas Turbine Engine                                                                                                                                                           | Test Cell Air Quality                                                                                                                                                                               | Kelly Vaughn<br>Scott                                                                                                                                                          | 49<br>16. PRICE CODE                                                                                                                                                                    |
| 17. SECURITY CLASSIFICATION                                                                                                                                                                      | 18. SECURITY CLASSIFICATION                                                                                                                                                                         | 19. SECURITY CLASSIFICATION                                                                                                                                                    | ON 20. LIMITATION OF ABSTRACT                                                                                                                                                           |
| OF REPORT Unclassified                                                                                                                                                                           | OF THIS PAGE Unclassified                                                                                                                                                                           | OF ABSTRACT Unclassified                                                                                                                                                       | none                                                                                                                                                                                    |

#### CONTENTS

|      |                                                         |                                                                                                                      | Page                             |
|------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|
|      | SF Form 298<br>Illustration                             | as                                                                                                                   | i<br>iv                          |
| I.   | INTRODUCTION                                            | I                                                                                                                    | 1                                |
| II.  | DISCUSSION                                              |                                                                                                                      | 1                                |
|      | A. Backgrou<br>B. Site Des<br>C. Sampling<br>D. Results |                                                                                                                      | 1<br>1<br>1<br>4                 |
| III. | CONCLUSIONS                                             |                                                                                                                      | 8                                |
| IV.  | RECOMMENDATI                                            | CONS                                                                                                                 | 8                                |
|      | References                                              |                                                                                                                      | 9                                |
|      | Appendix                                                |                                                                                                                      |                                  |
|      | A<br>B<br>C<br>D<br>E<br>F                              | Personnel Field Data for F-15 JFS Field Data for GTCP 85-180 Emissions Data Emission Rate Equations Calibration Data | 11<br>15<br>23<br>31<br>37<br>41 |
|      | Distribution                                            | n List                                                                                                               | 49                               |



### Illustrations

| Figure | Title                                 | Page |
|--------|---------------------------------------|------|
| 1      | Schematic of Test Facility            | 2    |
| 2      | View of Cell 15A Exhaust Stack        | 3    |
| 3      | View of Cell 8 Exhaust Stack          | 3    |
| 4      | EPA Method 8/5 Sampling Train         | 5    |
| 5      | EPA Method 3 Sampling Train           | 6    |
| 6      | ORSAT Gas Analyzer                    | 6    |
| Table  |                                       |      |
| 1      | Summary of Test Results               | 7    |
| 2      | Engine Emission Rates                 | 7    |
| 3      | Engine Emissions Per Fuel Consumption | 7    |

#### I. INTRODUCTION

On 15 Nov 89, source emission testing for particulates, carbon monoxide (CO), total hydrocarbons (HC), sulfur dioxide (SO<sub>2</sub>), and nitrogen oxides (NO<sub> $\chi$ </sub>) was conducted on the Gas Turbine Engine Test Facility, Bldg 340, by personnel from the Air Quality Function of the AF Occupational and Environmental Health Laboratory Environmental Quality Division (AFOEHL/EQ). This survey was requested by SA-ALC/EM to determine emission data on various gas turbine engines. The emission data will be used to initiate a permit application for a new Gas Turbine Engine Test Facility. Personnel involved with on-site testing are listed in Appendix A.

#### II. DISCUSSION

#### A. Background

SA-ALC/EM requested emission data on various gas turbine engines. This information is required to initiate a permit application for a new Gas Turbine Engine Test Facility. No emission data could be located for two of the engines. SA-ALC/EM then requested source emission testing at the existing facility to determine emission data for these gas turbine engines.

#### B. Site Description

The Gas Turbine Engine Test Facility, Bldg 340, is a one story building located on Kelly AFB. The building is divided into several test cells (Fig 1). Cells 8 and 15A were selected for emission testing. The exhaust stacks for cells 8 and 15A are shown in Figures 2 and 3, respectively. Cell 8 was used to test gas turbine engine GTCP 85-180. Cell 15A was used to test jet fuel starter F-15 JFS.

#### C. Sampling Methods and Procedures

Federal Regulations require that stack emission testing be conducted in accordance with Appendix A and B to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60). Determination of gas turbine engines emissions is to be done in accordance with Title 40, Code of Federal Regulations, Part 87. Therefore, sample train preparation, sampling and recovery, calculations and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60 and 87.

Five sampling ports were installed on one side of the rectangular stacks resulting in five traverses of the stack cross-section. The ports on Cells 8 and 15A were installed approximately 1 and 1.5 duct diameters upstream and 2.8 and 4 duct diameters downstream from any flow disturbance, respectively. Based on the inside stack diameter, port location and type of sample (particulate), 25 traverse points (5 per traverse) were used to collect a representative sample.

Prior to the emission test on each stack, cyclonic flow was determined by using the Type S pitot tube and measuring the stack gas rotational angle at each traverse point. Flow conditions were considered acceptable when the arithmetic mean of the rotational angles was 20 degrees or less. A preliminary velocity pressure traverse was also accomplished concurrently.



Figure 1. Schematic of Gas Turbine Engine Test Cell Facility



Figure 2. View of Cell 15A Exhaust Stack



Figure 3. View of Cell 8 Exhaust Stack

Particulates and sulfur oxides  $(SO_2)$  were collected and analyzed according to EPA method 8. Normally, three minimum one hour runs constitute a test; however, because jet fuel starters, as opposed to aircraft engines, can only operate for abbreviated periods, only one 62.5 minute run constituted a test.

The EPA method 8 sampling train (Figure 4) consisted of a button-hook probe nozzle, heated inconel probe, heated glass filter, impingers and a pumping and metering device. The nozzle was sized prior to each stack test so that the gas stream could be sampled isokinetically. In other words, the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas and sampling train temperatures. The stainless steel probe liner was heated to minimize moisture condensation and the heated filter was used to collect particulates. The impinger train consisted of four impingers. The first and third impingers were standard Greenburg-Smith designs and the second and fourth impingers were modified Greenburg-Smiths. The first impinger contained an 80% solution of isopropanol and the second and third impinger each contained a 3% hydrogen peroxide solution. The fourth impinger contained silica gel. This system collected the water and SO2 from the gas stream. Moisture was subsequently determined according to EPA method 4. The pumping and metering system was used to control and monitor the sample gas flow rate.

Hydrocarbons were collected using a sampling train which consisted of a metal probe, two charcoal tubes connected in series, and a pump. The pump was calibrated before and after sampling.

Carbon monoxide (CO) was continuously monitored according to EPA method 10 using Neotronics (model CO101) direct reading equipment. However, ascarite and silica gel tubes were not used in the sampling train to remove  $CO_2$  and water, since  $CO_2$  and water were considered to be too low in concentration to be a significant interference in the CO infrared absorptance band used. Carbon monoxide monitor was calibrated using known concentrations of CO (0, 24, 55, and 100 parts per million). Calibration was accomplished according to EPA method 10. (Appendix F)

Nitrogen oxides were monitored using an Anarad Continuous Emission Monitor (CEM) according to EPA method 7E. The CEM consisted of a metal probe, heated umbilical, sample conditioner and  $\mathrm{NO}_{\mathrm{X}}$  analyzer. Nitrogen oxide analyzer was calibrated using known concentrations of NO (0, 50, 155, 250, and 348 parts per million). Calibration was accomplished according to EPA method 20. (Appendix F)

Oxygen  $(O_2)$  and carbon dioxide  $(CO_2)$  were collected and analyzed according to EPA method 3. The sampling train and ORSAT analyzer are shown in Figures 5 and 6.

EPA methods calculations were made using the Environmental Protection Agency publication entitled, "Source Test Calculation and check programs for Hewlett-Packard 41 Calculators," (EPA- $\frac{340}{1-85-013}$ ) and associated software programs. Equipment calibration data is shown in Appendix F.



Figure 4. EPA Method 8/5 Sampling Train



Figure 5. EPA Method 3 Sampling Train



Figure 6. ORSAT GAS ANALYZER

#### D. Results

Table 1 provides a summary of the test results. Field data sheets are found in Appendix B and C and the resulting emissions data are presented in Appendix D. Tables 2 and 3 give engine operating parameters and emission rates. Emission rates were calculated according to 40 CFR 87 Subpart G, and these equations are shown in Appendix E.

TABLE 1. Summary of Test Results

| Engine<br>Tested | Vol, Part.<br>Sample<br>Part Vol<br>(dscf)* | Part.<br>(gdscf)+ | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | CO<br>(ppm) | SO <sub>2</sub><br>(mg/m³) | NO <sub>x</sub> | HC<br>(mg/m³) |
|------------------|---------------------------------------------|-------------------|------------------------|-----------------------|-------------|----------------------------|-----------------|---------------|
| F-15 JFS         | 72.26                                       | 1.49E-7           | 2.8                    | 14.1                  | 290.4       | <.005                      | 14.8            | <.0067        |
| GTCP85-180       | 49.06                                       | 6.45E-6           | 3.2                    | 14.4                  | 118.0       | <.005                      | 18.2            | <.0067        |

<sup>\*</sup>dry standard cubic feet

TABLE 2. Emission Rates

| Engine<br>Tested | Power<br>Setting<br>(%) | Fuel<br>Consumed<br>(lbs/hr) | Parts.<br>(1bs/hr) | CO<br>(lbs/hr) | NO <sub>x</sub><br>(1bs/hr) | HC<br>(1bs/hr) |
|------------------|-------------------------|------------------------------|--------------------|----------------|-----------------------------|----------------|
| F-15 JFS         | 100                     | 150                          | 3.83E-6            | 3.08           | 0.258                       | <.0001         |
| GTCP 85-18       | 0 100                   | 360                          | 2.48E-4            | 2.64           | 0.670                       | <.0001         |

Note: SO<sub>2</sub> was below detection limits

TABLE 3. Emissions Per Fuel Consumed

| Engine<br>Tested | Power<br>Setting<br>(%) | Parts.<br>(1bs / 100 | CO<br>OO lbs fo | NO <sub>x</sub><br>uel burn | HC<br>ed) |
|------------------|-------------------------|----------------------|-----------------|-----------------------------|-----------|
| F-15 JFS         | 100                     | 2.55E-5              | 20.53           | 1.72                        | <.001     |
| GTCP 85-180      | 100                     | 6.89E-4              | 7.35            | 1.86                        | <.001     |

<sup>+</sup>grains per dry standard cubic feet

#### III. CONCLUSIONS

Both engines ran very clean; however, it is important to note that typically particulates and hydrocarbons concentrations are inversely proportional to the engine thrust or power setting; while nitrogen oxides and carbon monoxide emissions are proportional to thrust. Therefore, this test does not give an accurate indication of the maximum particulate and hydrocarbon emissions. However, maximum hydrocarbon emissions could be estimated by comparing the data of this report with emissions of other gas turbine engines.

#### IV. RECOMMENDATIONS

The Kelly AFB Gas Turbine Engine Test Facility, Bldg 340, is meeting Texas Air Control Board standards. No further action is necessary at this time.

The data contained in this report should be used as an estimate of emissions from the F-15 JFS and GTCP 85-180 and used to initiate a permit application for a new Gas Turbine Engine Test Facility.

#### REFERENCES

- 1. Standards of Performance for New Stationary Sources, Title 40, Part 60, Code of Federal Regulations, July 1, 1988.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, April 1977.
- 3. Source Test Calculations and Check Programs for Hewlett-Packard 41 Calculators, U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, Sept 1985.
- 4. Control of Air Pollution From Aircraft and Aircraft Engines, Title 40, Part 87, Code of Federal Regulations, July 1, 1988.
- 5. Aircraft Engine Emissions, International Civil Aviation Organization, Annex 16, Vol II, June 1981.

APPENDIX A

Personnel

12

#### 1. AFOEHL TEST TEAM

Capt Paul Scott, Chief, Air Quality Function Capt Ronald Vaughn, Consultant, Air Quality Engineer Sgt Harold Casey, Environmental Quality Technician Amn Chris Feagin, Environmental Quality Technician

AFOEHL/EQE Brooks AFB TX 78235-5501

Phone: AUTOVON 240-2891

Commercial (512) 536-2891

2. Kelly AFB on-site representatives

Mr C.B. Laughlin SA-ALC/EM

AV 945-6874

COM (512) 925-6874

Mr Dave Bartels SA-ALC/MATEF

AV 945-8711

COM (512) 925-8711

APPENDIX B
Field Data F-15 JFS

| 2 |                     |                                  | 9 o           | in Hg   |                 | OF                   |                   | nr<br>sq ft      |                     | Fd)                   | $\vdash$  | OUTLET<br>TEMP<br>(OF)      |         |      | 96  | 9//  | 6// | ١        | 6//     |     | 77   | 90   | 96   | 96  | 9.6   | 20 0 | 200        | 7 %      | 283  | 78   | 9.5  | 83   | 8 [  |
|---|---------------------|----------------------------------|---------------|---------|-----------------|----------------------|-------------------|------------------|---------------------|-----------------------|-----------|-----------------------------|---------|------|-----|------|-----|----------|---------|-----|------|------|------|-----|-------|------|------------|----------|------|------|------|------|------|
|   |                     | AMBIENT TEMP                     | STATION PRESS | X       | HEATER BOX TEMP | PROBE HEATER SETTING | PROBE LENGTH      | NOZZLE AREA (A)  | 25                  | DRY GAS FRACTION (Fd) | SAMPLE    | BOX<br>TEMP                 | X 240   | 240  | 246 | 255  | 456 | 2 67     | 2000    | 340 | 236  | 242  | 245  | 239 | 258   | 240  | 326        | 670      | 236  | 448  | 356  | 225  | 326  |
|   | İ                   | AMBIE                            | STATI         | 28      | HEAT            | PROBI                | PROBI             | NOZZ             | ථ                   | DRY                   | ER TEMP   |                             | Н       | 76   | 2,5 | //   | 78  | 100      | 79      | 80  | 80   | 80   | 96   | هم. | 8 9   | 833  | 200        | 200      | 83   | 83   |      | 200  | 84   |
|   |                     |                                  |               |         | d               | ه لا                 | o K               |                  | 15 - ok             |                       | GAS METER | OF) (Tm)                    | H       | 79   | 81  | 82   | 38  | 70       | 9,1     | 932 | 86   | 8 9  | 92   | h 6 | 45    | 35   | 95         | 9,6      | 16   | 93   | 95   | 96   | 97   |
|   | SHEET               |                                  | •             | 7       | ST . OO         | Pitot Check Pre-o    |                   | - that Rook -    | Lea & Check Post@18 | ļ                     | GAS       | SAMPLE<br>VOLUME<br>(cu ft) | 981.325 |      |     |      |     |          |         |     |      |      |      |     |       |      |            |          |      |      |      |      |      |
|   | SAMPLING DATA SHEET | EQUATIONS                        | OR = OF + 460 |         |                 | Pitot Ch             | Leak th           | 7.724 67.2       | Lea L Ch            |                       | ORIFICE   | PRESS.                      | 3.88    | 4.04 |     | 4.73 |     |          | 5.11    |     |      | 6.31 | 5.74 | - 4 | •     | . 1  | 7.33       | ٠ŀ       | 14.4 | 5.18 | 90.9 | 5.57 | 5.54 |
|   | 3                   | SECTION                          | 7.17          | - t     | •               |                      |                   |                  |                     |                       | VELOCITY  | HEAD<br>(Vp)                | =       | ٠ (ه | 4   | ( (  | 0/. | ۲۰:<br>ا | .13     | 1   | . 15 | .15  | ۲,   | .13 | ró    | 4    | 77         | <u>c</u> | 6    | .13  | .15  | HI:  | 14   |
|   | PAR                 | SCHEMATIC OF STACK CROSS SECTION | _             | 1       | stuc K          | Probe                | 1, m. P.          |                  | 4                   | <b>a</b> 0            | CK TEMP   | (Ts)<br>(oR)                |         |      |     | 1    |     | +        | -       |     |      |      |      |     |       | -    |            |          |      |      |      | 1    |      |
|   |                     | AATIC OF S                       |               | 1       | _               | 7                    |                   |                  | HS                  | 138                   | STACK     | (0F)                        | 595     | 437  | 2 M | 460  | 456 | 7 2 2 2  | 7 7 8 7 | 478 | 380  | 412  | 438  | 456 | 4 7 % | 474  | 2 / 6      | 7 80     | 144  | 467  | 457  | 47a  | 476  |
|   |                     | Γ                                | 66.8          | 1       |                 | <u> </u>             |                   |                  |                     |                       | STATE     | PRESSURE<br>(M H20)         |         |      |     |      |     |          |         |     |      |      |      |     |       | 4    | 0/         |          | 6    |      |      |      |      |
|   |                     | ı                                | ONE JES       | 4Nov 29 |                 | 1540                 | UMBER             | MBER #           | , ,                 |                       | SAMPLING  | TIME<br>(min)               | 2.5     | 2.5  | 2.5 | 2.5  | 2.5 | 3.7      | 2.5     | 2.5 | 2.5  | 2.5  | a,5  | 2.5 | 305   | 2.5  | 200        | 2.5      | 2.5  | 3.6  | 2.5  | 300  | 3.5  |
|   |                     | RUN NUMBER                       | 0             | 94      | PLANT 7. 0      | BASE (7/0X           | SAMPLE BOX WUMBER | METER BOX NUMBER | Qw/Qm               | ů                     | TRAVERSE  | POINT                       | -       | አ    | 6   | 4    | 5   |          |         |     | 2    | 11   | 1.1  | 3   | 7     | 51   | <b>3</b> - | .00      | J.   | 20   | 17   | 43   | 33   |

|                   |               |                     |                                  | PAR          | 3            | SAMPLING DATA | SHEET            |           |                                       | :                     |          |
|-------------------|---------------|---------------------|----------------------------------|--------------|--------------|---------------|------------------|-----------|---------------------------------------|-----------------------|----------|
| RUN NUMBER        |               | SCHEM               | SCHEMATIC OF STACK CROSS SECTION | CK CROSS S   | ECTION       | EQUATIONS     |                  |           | AMBIE                                 | AMBIENT TEMP          |          |
|                   | ONE           |                     |                                  |              |              | OR = OF + 460 | 0                |           |                                       |                       | 90<br>F  |
|                   | 8 011-10      | <del></del>         |                                  |              |              | :<br>· L      | r                |           | STATIC                                | STATION PRESS         |          |
| 1                 | `             |                     |                                  |              |              | H = 5130      | 5130·Fd·Cp·A 2   | Tm. Vp    |                                       |                       | in Hg    |
| 2                 |               |                     |                                  |              |              |               | _                |           | # # # # # # # # # # # # # # # # # # # | H BOX TEMP            | t o      |
| BASE              |               |                     |                                  |              |              |               |                  |           | PROBE                                 | PROBE HEATER SETTING  |          |
| SAMPLE BOX NUMBER | JMBER         | <del> </del>        |                                  |              |              |               |                  |           | PROBE                                 | PROBE LENGTH          |          |
| 200               |               |                     |                                  |              |              |               |                  |           |                                       |                       | in       |
| ME LEN BOX NO     | r<br>n        |                     |                                  |              |              |               |                  |           | NOZZI                                 | NOZZLE AREA (A)       | ţ        |
| Qw/Qm             |               | <u> </u>            |                                  |              |              |               |                  |           | ප්                                    |                       |          |
| ට                 |               | T                   |                                  |              |              |               |                  |           | DRY G                                 | DRY GAS FRACTION (Fd) | O        |
| TRAVERSE          | SAMPLING      | STATIC              | STACK TEMP                       | TEMP         | VELOCITY     | ORIFICE       | GAS              | GAS METER | R TEMP                                | SAMPLE                | IMPINGER |
| POINT             | TIME<br>(min) | PRESSURE<br>(M H20) | (9F)                             | (Ts)<br>(oR) | HEAD<br>(Vp) | PRESS.        | SAMPLE<br>VOLUME | IN AVG    | OUT<br>OUT                            | BOX<br>TEMP           | OUTLET   |
| 17                | 2 <           | 5,                  | 65/1                             |              | 71           |               |                  | ╀         | ╀                                     | 3//2                  | 20,      |
| 25                | 2.5           | 6                   | 480                              |              | 5            | 5.03          |                  | 9 9       | 22                                    | 353                   | 20       |
|                   |               |                     | *                                |              | )            | 1             | 1055 292         |           |                                       | 8                     |          |
|                   |               |                     | 1                                | N.           |              |               |                  |           |                                       |                       |          |
|                   |               |                     | 2                                | •            |              |               |                  | d         |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  | 90        | 2                                     |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   | Jet           | Fuel S.             | Lactic                           |              |              |               |                  |           |                                       |                       |          |
|                   | 4.th          | 1                   |                                  | Box          | connecte     | 7             |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              | 4            | 7             |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               | 4                | C         |                                       |                       |          |
|                   |               |                     |                                  |              | 11/6         | - M.          | 2/2              |           |                                       |                       |          |
|                   |               |                     |                                  |              | †            |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |
| OEHL FORM         | 18            |                     |                                  |              |              |               |                  |           |                                       |                       |          |
|                   |               |                     |                                  |              |              |               |                  |           |                                       |                       |          |

|                                                                           |                          | EY DATA SHEET NO. 2 emperature Traverse) |                         |
|---------------------------------------------------------------------------|--------------------------|------------------------------------------|-------------------------|
| BASE Kell. A                                                              | FB                       | DATE (5<br>HWOV 8)                       | 9                       |
| BOILER NUMBER FIS JOST FLO INSIDE STACK DIAMETER 25 IL 9 STATION PRESSURE | l Starter                |                                          |                         |
| INSIDE STACK DIAMETER  25 in 9                                            | complit deantes          |                                          | Inches 67.00            |
| STATION PRESSURE 2985                                                     |                          |                                          | In Hg 8% C <sub>3</sub> |
| STACK STATIC PRESSURE                                                     |                          |                                          | In H20 1/10C            |
| SAMPLING TEAM A FOR                                                       | HL                       | 5% Hz 0                                  |                         |
| TRAVERSE POINT NUMBER                                                     | VELOCITY HEAD, Vp IN H20 | Vo L                                     | STACK TEMPERATURE (OF)  |
| 15 1                                                                      | .04                      | 2                                        | 560                     |
| 25 Z                                                                      | .05                      |                                          | 563                     |
| 126 3                                                                     | .05                      |                                          | 563                     |
| 1765 4                                                                    | ,05                      |                                          | 575                     |
| 245 5                                                                     | ,05                      |                                          | 565                     |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           | FPS = 17                 |                                          |                         |
|                                                                           | T, = 565                 |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           | ⊕ <i>=.</i> 5            | 25                                       |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           |                          |                                          |                         |
|                                                                           | AVERAGE                  |                                          |                         |

|                      | PR                  | RELIMINARY SUR'  | VEY DATA SH<br>Geometry) | EET NO. 1    |                                           |
|----------------------|---------------------|------------------|--------------------------|--------------|-------------------------------------------|
| BASE Kelly At        | -13                 | PLANT /          | lest c                   | Ce11         |                                           |
| DATE 14 NOV &        | 3 9                 | SAMPLING TEAM  A | OEHL                     |              |                                           |
| SOURCE TYPE AND MAK  |                     |                  |                          |              |                                           |
| SOURCE NUMBER        |                     | Refund &         | erek 25"                 |              | Inches                                    |
| RELATED CAPACITY     |                     | 0                | TYPE FUEL                | JP-4         |                                           |
| DISTANCE FROM OUTSID | E OF NIPPLE TO I    | 13.22 2          | 0                        |              | Inches                                    |
| NUMBER OF TRAVERSE   | s                   | NUMBER OF POINTS | /TRAVERSE                |              |                                           |
|                      | LC                  | CATION OF SAMPLI | IG POINTS ALON           | IG TRAVERSE  |                                           |
| POINT                | PERCENT OF DIAMETER |                  | WALL                     | OF NIPPLE TO | E FROM OUTSIDE<br>Sampling Point<br>Shes) |
| 3/51                 |                     | 2.               | 5                        | ,            |                                           |
| \$52                 |                     | 7.               | 5                        |              |                                           |
| 1253                 |                     | 12.              | .5                       |              |                                           |
| 17.6 4               |                     |                  | .5                       |              |                                           |
| 22.59                |                     | 27               | 5                        |              |                                           |
|                      |                     |                  |                          |              |                                           |
| ·                    |                     |                  |                          |              |                                           |
| <u> </u>             |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
| <del></del>          |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
| <del></del>          |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
| · .·                 |                     |                  |                          |              |                                           |
|                      |                     |                  |                          |              |                                           |
| `                    |                     |                  |                          | <del></del>  |                                           |
|                      |                     |                  | i                        |              |                                           |

|                                | AIR POL          | LUTION PARTIC        | CULATE ANA                             | LYTICA      | L DATA       |                  |
|--------------------------------|------------------|----------------------|----------------------------------------|-------------|--------------|------------------|
| Relly F                        | HFB              | DATE                 | OU CO                                  |             | RUN NUMBER   | anc              |
| 34                             | 40               |                      | F(5                                    | JF          | 5            |                  |
| l.                             | ITEM             | FINAL                | WEIGHT                                 | INI         | TIAL WEIGHT  | WEIGHT PARTICLES |
| FILTER NUMBER                  |                  | ,28                  | 189                                    |             | 288 <b>6</b> | -0003            |
| ACETONE WASHIN<br>Hall Filter) | GS (Probe, Front |                      | 9783                                   |             | .9579        | .0004            |
| BACK HALF (II nee              | eded)            |                      |                                        |             |              |                  |
|                                |                  | Total                | Weight of Partic                       | culates Col | lected       | ,0007 am         |
| ll.                            | ITEM             | FINAL                | ATER WEIGHT                            | INIT        | TIAL WEIGHT  | WEIGHT WATER     |
| IMPINGER 1 (H20)               |                  |                      | 2.0                                    | 7           | 200          | -68.6            |
| IMPINGER 2 (H20)               |                  | 244                  | <sup>(</sup> .Ø                        | Ê           | 200          | 44.0             |
| IMPINGER 3 (Dry)               |                  | 240                  | ), 0                                   | 2           | 00           | 40.Ø             |
| IMPINGER 4 (SIIIca             | Gel)             | 243                  | ,5                                     | 2           | 00           | 43,5             |
| -                              |                  |                      | Weight of Water                        | Collected   |              | <b>g</b> an      |
| II.                            | ANALYSIS         | GAS<br>ANALYSIS<br>2 | ES (Dry)                               | LYSIS       | ANALYSIS     | AVERAGE          |
| VOL % CO <sub>2</sub>          | 2.8              | 2.8                  | 2.                                     | -8          |              | 2,8              |
| VOL % 02                       | 14.2             | 14.1                 |                                        | 1,1         |              | 14.1             |
| VOL % CO                       |                  |                      |                                        |             |              |                  |
| VOL % N2                       |                  |                      |                                        |             |              |                  |
|                                |                  | Vol % N2 = (100% -   | % CO <sub>2</sub> . % O <sub>2</sub> . | % CO)       | <u> </u>     | <del>- L</del>   |

AFOEHL/EQE

Date of report: Nov 15, 1989 11:46.04

Coverage of report: Nov 15,1989 10:10.00 to Nov 15, 1989 11:34.00

|           | Gas   |           | Avg   | Max   | Min   | n  |
|-----------|-------|-----------|-------|-------|-------|----|
| Stream    |       |           | J     |       |       |    |
| Stack     | NOX   | PPM       | 14.8  | 15.9  | 13.0  | 64 |
| Stack     | CO    | PPM       | 345.8 | 408.0 | 333.0 | 64 |
| Corrected | to Ca | libration | Plots |       |       |    |
| Stack     | NOX   | PPM       | 14.8  | 15.9  | 13.0  | 64 |
| Stack     | CO    | PPM       | 290.4 | 349.0 | 292.0 | 64 |

APPENDIX C
Field Data GTCP 85-180

|               |                          | ब<br>ब        | 1    | an rag         | 40<br>6           |                      |                                            |                | ai      | į                  |       | (Fd)              |          | IMPINGER   | OUTLET   | (OF)    | 20     | 87   | 9.5   | 92       | 68                    | 78   | 87            | 386  | 85         | 87    | 88     | 160  | 1 6  | F - | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 8             | 77.0          | 70   | 5    | 7.8   | 5    |
|---------------|--------------------------|---------------|------|----------------|-------------------|----------------------|--------------------------------------------|----------------|---------|--------------------|-------|-------------------|----------|------------|----------|---------|--------|------|-------|----------|-----------------------|------|---------------|------|------------|-------|--------|------|------|-----|----------------------------------------|---------------|---------------|------|------|-------|------|
|               | AMBIENT TEMP             | STATION PRESS | 0    | 16             | LES - VOG V.      | PROBE HEATER SETTING |                                            | PROBE LENGTH   |         | -E AREA (A)        | 27.0  | GAS FRACTION (Fd) |          | SAMPLE     | BOX      | (P.)    | 200    | 777  | 777   | ברע      | 280                   | 275  | 462           | 255  | 275        | 272   | 273    | 270  | 4/5  | H   | 1                                      | ا<br>د<br>د   | 32            | 86   | 2 70 | 277   | 276  |
|               | AMBIE                    | STATI         | _    | 4              |                   | PROBE                |                                            | PROBE          |         | NOZZLE             | ථ     | DRYG              |          | TEMP       | OUT      | (eF)    | 1,6    | 1,6  | 7,6   | 1,       | 17                    | 78   | 79            | 23   | 22         | 129   | 80     | × 4  | p (  | 2   | 282                                    | 7             | 250           | 877  | no   | 58    |      |
|               |                          |               |      | Vp             |                   |                      | 4                                          | J              | 70 1    |                    |       |                   |          | GAS METER  | AVS<br>E | +       | 4      | +    | -     | -        | -                     |      |               |      |            | -     | -<br>- |      | +    | +   | -                                      | $\frac{1}{1}$ | $\frac{1}{1}$ | +    | -    | -     |      |
|               |                          |               |      |                |                   | 0/2                  |                                            | 5              | 7/ (    | <i>g</i>           |       |                   |          |            | Z        | (PF)    |        | 200  | 200   | 78       | 38                    | 88   | 8             | 8 9  | 0          | 4     | 93     | 74   | 5 2  | 75  | 43                                     | 7,7           | 750           | 73   | 5    | 0     |      |
| SHEET         |                          | •             | ŗ    | 5130-Fd-Cp.A . | <sub>1</sub><br>ც | . 1 7.               | יני איז איז איז איז איז איז איז איז איז אי | loak theck tie | ,       | Poslank Check & 10 |       |                   |          | GAS        | SAMPLE   | h       | 153774 |      |       |          |                       |      |               |      |            |       |        |      |      |     |                                        |               |               | -    |      |       |      |
| SAMPLING DATA | EQUATIONS                | OR = OF + 460 | L    | H = 5130       |                   | 1.10TIA              | lifet cae                                  | loak Ch        |         | Pos leak           | •     |                   |          | ORIFICE    | DIFF.    | Ξ       | 1.94   | 9.14 | 2     | 790      | 1.70                  | 1.79 | 2.42          | a.4a | a.51       | 3.07  | 7.54   | ۲6.1 | 1.80 | 4   | 2.5%                                   | -1            | 1             | 2.73 | 2.17 | 2 43  | 71.7 |
| TICULATE SAI  | SECTION                  | 0             | 8/2  | マ              | <u></u>           |                      | اد                                         | 1              |         |                    |       |                   |          | 71.00.37   | HEAD     | (da)    | -15    | -17  | 51:   | 35       | \<br>\<br>\<br>\<br>\ | 7/   | 61.           | 61.  | ૦ જ.       | h Z · | 0 E.   | .15  | 41.  | 7   | ٥.                                     | <u>. 19</u>   | 07.           | 24.  | 14.  | 0     | 0    |
| PART          |                          | /             |      | 1              | 7                 |                      | 7                                          | 3              |         | ı                  |       |                   |          | TEMP       | (Ts)     | (oR)    |        |      |       |          |                       |      |               |      |            |       |        |      |      |     |                                        |               |               |      |      |       |      |
|               | SCHEMATIC OF STACK CROSS | /             | /    | . }            |                   |                      |                                            |                |         |                    | 7     | 1 5 b             |          | STACK TEMP | (0E)     | (32)    | 445    | 464  | 9 9 K | 1        | 1 7 7                 | 465  | 478           | 470  | <b>७</b> १ | 0 L K | 87 P   | 473  | 469  | 460 | 466                                    | 473           | 777           | 4 77 | 124  | 7 7 7 |      |
|               | SCHEMA                   |               |      |                | Trobe             | 1                    | <del></del>                                |                |         | \                  |       |                   |          |            | PRESSURE | (#TH20) |        |      |       |          |                       |      |               | 7    |            |       |        | 4    |      |     |                                        |               |               |      |      |       |      |
|               |                          | R             | 200  | 18/            | 4                 | HFID                 | 0 / 3                                      | NUMBER         | ф<br>*  | BER                |       |                   |          |            | SAMPLING | (min)   | 3.5    | 2.5  | 4.5   | ر<br>برن | 7 6                   | 2.5  | in the second | 2,5  | 2.5        | 3.5   | 7.5    | 3.5  | 2.5  | 2.5 | 2.5                                    | 2.5           | 25            | 3.5  | 000  | V 7   |      |
|               | RUN NUMBER               |               | DATE | 15 1001 81     | PLANT             | " Kelly /            | BILL                                       | SAMPLE BON NUI | Aster T | METER BOX NUMBER   | Qw/Qm |                   | <b>ೆ</b> |            | TRAVERSE | NUMBER  | _      | 7    | 3     | ,<br>,   | 5                     | 1    | 9             | 8    | 0/         | 3     | 121    | 13   | 14   | 15  | 14                                     | 17            | 8)            | 19   | 3    | 166   | 4    |

|                   |          |                                  |            | PART       | ICIII ATE SA      | TICILI ATE SAMPLING DATA SHEET | SHEET             |        |                   |        |                       |              |
|-------------------|----------|----------------------------------|------------|------------|-------------------|--------------------------------|-------------------|--------|-------------------|--------|-----------------------|--------------|
| RUN NUMBER        |          | SCHEMATIC OF STACK CROSS SECTION | OF STAC    | K CROSS SI | CTION             | EQUATIONS                      |                   |        |                   | AMBIEN | AMBIENT TEMP          |              |
| ሊ                 |          |                                  |            |            |                   | 0 = 0 F + 460                  | c                 |        |                   |        |                       | 4o           |
| DATE              |          |                                  |            |            |                   |                                | ,                 |        |                   | STATIO | STATION PRESS         |              |
| 15 Nov 89         |          |                                  |            |            |                   | _                              | 5130-Fd-Cp.A 2    |        |                   |        |                       | in Hg        |
| PLANT             |          |                                  |            |            |                   |                                | •                 | Ts. vp |                   | HEATE  | HEATER BOX TEMP       |              |
| Kell, AFR         | 7        |                                  |            |            |                   | <b>.</b>                       | 1                 |        |                   | _      |                       | 4o           |
| BASE              |          |                                  |            |            |                   |                                |                   |        |                   | PROBE  | PROBE HEATER SETTING  | 70           |
| B12, 340          | >        |                                  |            |            |                   |                                |                   |        |                   |        |                       |              |
| SAMPLE BOX NOMBER |          |                                  |            |            |                   |                                |                   |        |                   | PROBE  | PROBE LENGTH          |              |
| Nateul #2         |          |                                  |            |            |                   |                                |                   |        |                   |        |                       | in           |
| 9                 |          |                                  |            |            |                   |                                |                   |        |                   | NOZZL  | NOZZLE AREA (A)       |              |
|                   |          |                                  |            |            |                   |                                |                   |        |                   |        |                       | sq ft        |
| Ow/Om             |          |                                  |            |            |                   |                                |                   |        |                   | ථ      | i                     |              |
|                   |          |                                  |            |            |                   |                                |                   |        |                   |        |                       |              |
| <b>ೆ</b>          |          |                                  |            |            |                   |                                |                   |        |                   | DRY GA | DRY GAS FRACTION (Fd) | 9            |
| TRAVERSE SAMPLING | $\vdash$ | STATIC                           | STACK TEMP | EMP        | VELOCITY          | ORIFICE                        | GAS               | GAS    | GAS METER TEMP    | dw:    | SAMPLE                | IMPINGER     |
|                   |          | L                                | -          | (Ts)       | HEAD              | DIFF.                          | SAMPLE            | Z      | AVG               | PUO    | жов                   | OUTLET       |
| NUMBER (min)      |          | (in H20)                         | (oF)       | (oR)       | (V <sub>P</sub> ) | PRESS.                         | VOLUME<br>(cu ft) | (oF)   | (T)<br>(S)<br>(S) | (o F.) | TEMP<br>(OF)          | TEMP<br>(0F) |
| 24 12.5           | -        | k                                | 87 K       |            | 41.               | 2.44                           |                   | 76     |                   | 85     | 273                   | 66           |
| 7.5               |          | -                                | 269        |            | 6/,               | 2 44                           |                   | 7/6    |                   | 70     | 272                   | 79           |

|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   | 1            |
|---------------|----------|---|---------|------|---|---|---|---|---|---|---|---|---|----------|---|---|--------------|
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| $\frac{1}{1}$ | -        |   | -       |      | - | - |   | - | - | - |   | - |   | <u> </u> | _ | - |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| $\downarrow$  |          | Ц |         | _    | _ | _ |   | _ | L | _ | _ | _ |   | _        |   | L |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| 00            | 9        |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   | }       |      | ! |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   | 5704 CI |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| و             |          |   | . (1    | .0.  |   |   |   |   |   |   |   |   |   |          |   |   |              |
| 2,26          |          |   | •       |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| 144           |          |   |         | 1513 |   |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   |         | 11   | 1 |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| 167           |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| 4 =           | $\vdash$ |   |         |      |   |   | _ |   |   |   |   |   |   |          | _ | - |              |
| +             |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
| -             |          |   |         |      |   |   | _ |   |   |   |   |   |   |          | _ |   |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   |              |
|               |          |   |         |      |   |   |   |   |   |   |   |   | _ | _        | 4 |   | 18           |
|               |          |   |         |      |   |   |   |   |   |   |   | į |   |          |   |   | DEHL FORM 18 |
|               |          |   |         |      |   |   |   |   |   |   |   |   |   |          |   |   | OEH          |

|                                                      |                          | EY DATA SHEET NO. 2 emperature Traverse) |                        |
|------------------------------------------------------|--------------------------|------------------------------------------|------------------------|
| BASE Kelly                                           |                          | 15 Nov 8                                 | g                      |
| BOILER NUMBER                                        |                          | , , , , , , ,                            |                        |
| INCIDE STACK DIAMETER                                | <del></del>              |                                          | Inches                 |
| INCIDE STACK DIAMETER  28.7  STATION PRESSURE  79.85 |                          |                                          | -a 11                  |
| STACK STATIC PRESSURE                                |                          |                                          |                        |
| -, 05                                                |                          | <del></del>                              | In H20                 |
| TRAVERSE POINT NUMBER                                | VELOCITY HEAD, Vp IN H20 | √ Vp                                     | STACK TEMPERATURE (OF) |
| 1                                                    | .13                      | 0                                        | 394                    |
| 2                                                    | .13                      | 1                                        | 397                    |
| 3                                                    | ,!4                      | 3                                        | 415                    |
| 4                                                    | .16                      | 2                                        | 420                    |
| 5                                                    | , 20                     | 4                                        | 420<br>426             |
|                                                      |                          |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      | Ps = 28                  |                                          |                        |
| · · · · · · · · · · · · · · · · · · ·                | T=410                    |                                          |                        |
|                                                      | 3                        |                                          |                        |
|                                                      | Q.,                      | 877                                      |                        |
|                                                      | <u> </u>                 |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      |                          |                                          |                        |
| • • • • • • • • • • • • • • • • • • • •              |                          |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      | ·                        |                                          |                        |
|                                                      |                          |                                          |                        |
|                                                      | AVERAGE                  |                                          |                        |

|                            | PRE                    | ELIMINARY SURVE<br>(Stack G        | Y DATA SH<br>eometry) | IEET NO. 1                                                             |
|----------------------------|------------------------|------------------------------------|-----------------------|------------------------------------------------------------------------|
| BASE                       |                        | PLANT                              |                       |                                                                        |
| Kelly<br>DATE<br>15 Nov 89 | 9                      | SAMPLING TEAM                      | <del></del>           |                                                                        |
| SOURCE TYPE AND MAK        |                        |                                    |                       |                                                                        |
| SOURCE NUMBER              |                        | equal 29                           | er<br>8-7             | Inches                                                                 |
| RELATED CAPACITY           |                        | Zipurt L                           | TYPE FUEL             | Muite                                                                  |
| DISTANCE FROM OUTSID       | E OF NIPPLE TO INS     | SIDE DIAMETER                      | <u> </u>              | Inches                                                                 |
| NUMBER OF TRAVERSES        | 5                      | NUMBER OF POINTS/TI                | RAVERSE               | (25 total Pouts                                                        |
|                            | Loc                    | CATION OF SAMPLING                 | POINTS ALON           |                                                                        |
| POINT                      | PERCENT OF<br>DIAMETER | DISTANCE F<br>INSIDE WA<br>(Inches | LL                    | TOTAL DISTANCE FROM OUTSIDE<br>OF NIPPLE TO SAMPLING POINT<br>(Inches) |
|                            |                        | 3.6                                |                       |                                                                        |
| 2                          |                        | 10.8                               |                       |                                                                        |
| 3                          |                        | 18.0                               |                       |                                                                        |
| 4                          |                        | 25.2                               |                       |                                                                        |
| 5                          |                        | 32.4                               |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
| ,                          |                        |                                    |                       |                                                                        |
| 7,                         |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |
|                            |                        |                                    |                       |                                                                        |

|                                | AIR POL          | LUTI  | ON PARTICUL                  | ATE ANA        | LYTICAL       | DATA          |    |                   |  |
|--------------------------------|------------------|-------|------------------------------|----------------|---------------|---------------|----|-------------------|--|
| BASE Ke                        | lly AFB          | DATE  | 15 Nor                       | , 39           |               | NI A          |    |                   |  |
| BUILDING NUMBER                | lly AFB<br>GTE   |       |                              | SOURCE NI      | GTE           |               |    |                   |  |
| 1.                             |                  |       | PARTICU                      |                |               | IAL WEIGHT    |    |                   |  |
|                                | ITEM             |       | (gm)                         |                | (NII)         | (gm)          |    | (en)              |  |
| FILTER NUMBER                  |                  |       | . 29.5                       | 7              | . 29          | 43            |    | ,0014             |  |
| ACETONE WASHIN<br>Hell Filter) | GS (Probe, Front | ·     | 98,75                        | 549            | 98,           | 7358          |    | - 0191            |  |
| BACK HALF (II nee              | oded)            |       |                              |                |               |               |    | •                 |  |
|                                |                  |       | Total We                     | ight of Partic | culates Colle | ected         |    | ,0205 "           |  |
| И                              |                  |       | WATE                         |                | r             |               |    |                   |  |
|                                | ITEM             |       | FINAL WE                     |                | INIT          | AL WEIGHT     |    | WEIGHT WATER (gm) |  |
| IMPINGER 1 (H20)               |                  |       | 72                           |                | 20            | 00            |    | -128              |  |
| IMPINGER 2 (H20)               |                  |       | 230                          |                | 7.0           | SO            |    | -128<br>30        |  |
| IMPINGER 3 (Dry)               |                  |       | 241                          |                | 200           |               |    | 41                |  |
| IMPINGER 4 (Silica             | Gel)             |       | 233                          |                | 2             | ٥٢)           | 33 |                   |  |
| _                              |                  |       | Total Wei                    | ight of Water  | Collected     |               |    | <b>e</b> m        |  |
| 111.                           | 1                | T     | GASES                        |                |               |               |    |                   |  |
| ITEM                           | ANALYSIS<br>1    |       | ANALYSIS<br>2                | ANAL           | YSIS<br>3     | ANALYSIS<br>4 |    | AVERAGE           |  |
| VOL % CO2                      | 3.1              |       | 3.2                          | 3              | .2            |               |    | 3.2               |  |
| VOL % 0 <sub>2</sub>           | 14.3             |       | 14.4                         | 14             | 1.4           |               |    | 3.Z<br>14,4       |  |
| VOL % CO                       |                  |       |                              |                |               |               |    |                   |  |
| VOL % N <sub>2</sub>           |                  |       |                              |                |               |               |    |                   |  |
|                                |                  | Vol % | N <sub>2</sub> = (100% - % C |                | % CO)         |               |    |                   |  |

AFOEHL/EQE

Date of report: Nov 15, 1989 15:52.45

Coverage of report: Nov 15,1989 13:50.00 to Nov 15, 1989 14:54.00

|           | Gas   |          | Avg     | Max   | Min   | n  |
|-----------|-------|----------|---------|-------|-------|----|
| Stream    |       |          | _       |       |       |    |
| Stack     | NOX   | PPM      | 18.2    | 21.1  | 13.5  | 64 |
| Stack     | CO    | PPM      | 134.4   | 139.0 | 115.0 | 64 |
|           |       |          |         |       |       |    |
| Corrected | to Ca | libratio | n Plots |       |       |    |
| Stack     | NOX   | PPM      | 18.2    | 21.1  | 13.5  | 64 |
| Stack     | CO    | PPM      | 118.0   | 123.0 | 96.0  | 64 |

APPENDIX D

Emission Data

## EPA Method 5

|                              | RUN #1  | RUN #2     |
|------------------------------|---------|------------|
| Meter Box Y                  | .9990   | •9990      |
| Delta H (in $H_{20}$         | 5.12    | 2.26       |
| Bar Press (in Hg)            | 29.85   | 29.85      |
| Meter Vol (FT <sup>3</sup> ) | 73.9670 | 50.6250    |
| MTR TEMP F                   | 86      | 86         |
| Static HOH IN                | 04      | <b></b> 05 |
| ml Wate                      | 59.5    | 76         |
| % нон                        | 3.7     | 6.8        |
| % CO <sub>2</sub>            | 2.8     | 3.2        |
| % Oxygen                     | 11      | 14.4       |
| MWd                          | 29.20   | 29.09      |
| MW Wet                       | 28.78   | 28.33      |
| SQRT PSTS                    | 10.8739 | 12.7063    |
| Time Min                     | 62.5    | 62.5       |
| Nozzle Dia                   | .500    | •377       |
| STK Dia IN                   | 25.0    | 28.7       |
| VOL MTR STD                  | 72.261  | 49.064     |
| Stack DSCFM                  | 2,990   | 4,479      |
| % Isokinetics                | 96.72   | 101.64     |

## EPA Mass Flow

|              | RUN 1 F-15JFS | RUN 2 GTCP 85-180 |
|--------------|---------------|-------------------|
| VOL MTR STD  | 72.261        | 49.064            |
| Stack DSCFM  | 2,990         | 4,479             |
| Front 1/2 mg | .0007         | .0205             |
| GR/DSCF      | 1.49E -7      | 6.45E -6          |
| mg/MMM       | 3.42E -4      | 0.01              |
| lb/HR        | 3.83E -6      | 2.48E -4          |
| KG/HR        | 1.74E -6      | 1.12E -4          |

| LABORATOR                           | Y ANALYSIS REPORT | AND RECOR          | O (General)           | DATE 0 5          | DEC 1989            |
|-------------------------------------|-------------------|--------------------|-----------------------|-------------------|---------------------|
| TO:                                 |                   | FROM               |                       |                   |                     |
| SAMPLE IDENTITY                     |                   |                    | <del></del>           | 20                | NOV 89              |
| SAMPLE FROM                         |                   |                    |                       | i                 | NTROL NR            |
| BLDG 340                            |                   | <del></del>        |                       | 1 65 33           | 74 - 388            |
| PD- 680                             |                   |                    |                       |                   |                     |
|                                     |                   |                    |                       | CESULTS           |                     |
| OEHLF                               | Bnst #            | Volume<br>Sumptoul | ning FRANT<br>SECTION | my BACIC<br>SLAIN | דפדזוג<br>יוין/מיני |
| 65384                               | S x 8 900 8 3     | 7.38L              | N O                   | NO                | CM                  |
| 65385                               | 5 X8 900 8'4      | 7.38L              | NO                    | No                | NO                  |
| 6538 w                              | SX8400 85         | 1.50L              | MO                    | Wo                | NO                  |
| 65387                               | 5X8900 86         | 7.50L              | NO                    | Mo                | NO                  |
| 65388                               | BK840087          |                    | NO                    | Mo                |                     |
| ND=NONE DE                          | EFECTED           |                    | LIMIT OF              | DETECTION _ C     | 0.005 mg            |
| ANDREW RICHAF<br>Chief, IH Analysis | EDSON III CC 14   |                    |                       |                   |                     |
|                                     |                   |                    |                       |                   |                     |
| REQUESTING AGENCY (Mailing A        | ddreso)           |                    |                       |                   |                     |
| OEHL /EGE                           |                   |                    |                       |                   |                     |
| ATT CAPT VAUGIL                     | Ni l              |                    |                       |                   |                     |

AF3C FORM 3511, DEC 85 REPLACES AMD FORM 641, SEP 82, WHICH IS OBSOLETE

APPENDIX E
Emission Equations

#### CALCULATION OF MASS EMISSION RATES

1. Mass emission rates for gas turbine and piston engines were calculated using the formulas specified by EPA.

For gas turbine engines, these formulas are:

HC emission rate = 
$$\frac{M_{HC} \frac{(HC)}{10^4} F}{(M_C + \alpha M_H) \left[\frac{(CO)}{10^4} + (CO_2) + \frac{(HC)}{10^4}\right]}$$

CO emission rate = 
$$\frac{M_{CO} \frac{(CO)}{10^4} F}{(M_C + \alpha M_H) \left[ \frac{(CO)}{10^4} + (CO_2) + \frac{(HC)}{10^4} \right]}$$

$$NO_{x} \text{ emission rate} = \frac{\frac{M_{NO_{2}} \frac{(NO_{x})}{10^{4}} F}{(M_{C} + \alpha M_{H}) \left[ \frac{(CO)}{10^{4}} + (CO_{2}) + \frac{(HC)}{10^{4}} \right]}$$

# \* Defined - next proje

2. Emission rates for hydrocarbons, carbon monoxide, oxides of nitrogen, and particulates also are expressed as pounds per 1000 pounds of fuel. These values are obtained by dividing the emission rate, expressed as pounds per hour, by the fuel flow (pounds per hour) and multiplying by 1000.

#### where:

CO emission rate = Pounds per hour of exhaust carbon monoxide emitted in an operational mode

 ${
m NO}_{\mathbf{X}}$  emission rate = Pounds per hour of exhaust oxides of nitrogen emitted in an operational mode

 $M_{HC}$  = Molecular weight of methane,  $M_{HC}$  = 16.04

 $M_{CO}$  = Molecular weight of carbon monoxide

 $M_{NO_2}$  = Molecular weight of nitrogen dioxide

 $M_C$  = Atomic weight of carbon

 $M_{\rm H}$  = Atomic weight of hydrogen,  $M_{\rm H}$  = 1.008

- α = Atomic hydrogen carbon ratio of fuel (equal to 2 in approximation equations)
- (HC) = Concentration of hydrocarbons in the exhaust sample in parts per million carbon equivalent, i.e., equivalent propane × 3.
- (CO) = Concentration of carbon monoxide in the exhaust sample in parts per million by volume.
- (CO<sub>2</sub>) = Concentration of carbon dioxide in the exhaust sample in volume percent
- $(NO_X)$  = Concentration of oxides of nitrogen in the exhaust sample in parts per million by volume,  $NO + NO_X$ .
  - F = Mass rate of fuel flow in pounds per hour.

APPENDIX F
Calibration Data

Calibrated 13 Nov 89 by S\$gt Schillings Neotronics - Model # CO101 150 175 200 225 250 275 300 CO Calibration Gas Value (ppm) 75-450-350-Instrument Reading (ppm)



POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units) Sec # / Vary hy

Plant Pre Kelly Fl. Pod Kack GTE.
Pretest Y 6,999 MO: 1.89 Date 12 Dec 39 Meter box number Nutech 2 Dry gas meter number 1/4 Barometric pressure,  $P_b = 29.350$  in. Hg

| Y          | ۲             | $V_{\mathbf{q}} P_{\mathbf{b}} (t_{\mathbf{d}} + 460)$ | $V_d \left(P_b + \frac{\Delta H}{13.6}\right) \left(t_w + 460\right)$ | (10X29.35X531.25)<br>(10,174X3354.0368(525) | 3,             | (10)<br>(24)    | $\mathbf{v} = (0.992)$ |  |
|------------|---------------|--------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|----------------|-----------------|------------------------|--|
|            |               | <b>&gt;</b>                                            |                                                                       | 0.93                                        | 0.92           | 2669            | Υ =                    |  |
|            |               | Vacuum                                                 | setting,<br>in. Hg                                                    | 4.0                                         | 4.0            | 4.0             |                        |  |
|            |               |                                                        | (0),<br>min                                                           | 25,51                                       | 25.52          | 15.57           |                        |  |
|            | Dry gas meter | ry gas meter                                           | Inlet Outlet Average (t.). (t.).                                      | 4°                                          | 57.12          | 0.47            | 78.0                   |  |
| ure        |               |                                                        | : Outlet<br>). (t. ).                                                 | , do<br>Ч                                   | 0.01 611 00.01 | 61166           | 80 805 75 755          |  |
| emperature |               | Inlet (t.).                                            | , d                                                                   | 211 <b>26</b>                               | 2015 2013      | 300 80.5<br>X 1 |                        |  |
| Ţ          | Wet test      | meter<br>(t ).                                         | ,<br>A G                                                              | 50 69                                       | 5.40 PO        | 67 67           |                        |  |
| Gas volume | Dry gas       | meter<br>(V.)                                          | ft <sub>3</sub>                                                       | HL1: 01                                     | 10.225         | 10.277          |                        |  |
|            | Wet test      | meter<br>(V),                                          | ft <sub>3</sub>                                                       | 10                                          | 10             | 9               |                        |  |
| Orifice    | manometer     | setting,<br>(△H).                                      | in. H <sub>2</sub> 0                                                  | .5.                                         | 5,             | ,5              |                        |  |

If there is only one thermometer on the dry gas meter, record the temperature under  $\mathsf{t}_{\mathbf{d}}$ 

 $V_{\rm w}$  = Gas volume passing through the wet test meter, ft<sup>3</sup>.

 $V_d = Gas$  volume passing through the dry gas meter, ft<sup>3</sup>.

 $t_{\rm w}$  = Temperature of the gas in the wet test meter, oF.

= Temperature of the inlet gas of the dry gas meter, OF.

= Temperature of the outlet gas of the dry gas meter, oF.

 $t_d^{\prime}$  = Average temperature of the gas in the dry gas meter, obtained by the average of  $t_{d_1^{\prime}}$  and  $t_{d_2^{\prime}}$ , °F.

 $\Delta H = Pressure differential across orifice, in. <math>H_2^{0}$ .

 $Y_1$  = Ratio of accuracy of wet test meter to dry gas meter for each run. Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y ±0.05Y. 999±,049%  $\Rightarrow B_194$   $\leftarrow U_1 \Rightarrow U_104$ 401/ LaRy 176:01

 $P_b$  = Barometric pressure, in. Hg.

 $\theta$  = Time of calibration run, min.

Quality Assurance Handbook M4-2.4A

Exercit

#### METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 28 Supt 89 Meter box number Nulech 2

Barometric pressure, Pb = 29.83 in. Hg Calibrated by Sectl & Vaugha

|     |                               | Gas v              | olume           | Temperature        |                     | [emperature            |                    |      |         |                            |
|-----|-------------------------------|--------------------|-----------------|--------------------|---------------------|------------------------|--------------------|------|---------|----------------------------|
|     | Orifice                       | Wet test           | Dry gas         | Wet test           |                     | gas met                |                    |      |         |                            |
|     | manometer                     | meter              | meter           | meter              | Inlet               | Outlet                 | Avg                | Time |         |                            |
|     | setting                       | (V <sub>w</sub> ), | $(v_{d}),$      | (t <sub>w</sub> ), | (t <sub>d.</sub> ), | (t <sub>d</sub> ),     | (t <sub>d</sub> ), | (Θ), | <u></u> | ••••                       |
| IAC | (ΔΗ),<br>in. Η <sub>2</sub> Ο | ft <sup>3</sup>    | ft <sup>3</sup> | °7′ R              | "FR                 | 97 K                   | SFR.               | min  | Yi      | $\Delta H_0$ in. $H_2^i$ 0 |
| J   | 0.5                           | 5                  | 5.06¢           | 78 538             | 79<br>84 54 1,5     | 77<br>79 <b>53</b> 8   | 537.8              | 12.9 | 0.990   | 1.897                      |
| Ll  | 1.0                           | 5                  | 5.06\$          | 79 539             | 87<br>9,549         | 80<br>81 540.5         | <i>5 44.</i> B     | 9.\$ | 0.996   | 1.837<br>1.840             |
| L   | 1.5                           | 10                 | 10.150          | 96<br>19 539.5     | 96<br>98 557        | 86<br>875465           |                    |      | 1.004   | 1,943                      |
| ᠘   | 2.0                           | 10                 | 10.195          | l 7ú               | 418                 | 07                     | 553,5              |      | 1.00 £  | 1,744                      |
| L   | 3.0                           | 10                 | 10.155          | 79<br>80 539,5     | 101 547.5           | 90<br>9/ <b>550</b> .5 | 556.5              | 10,7 | 1.008   | 1,710                      |
| 7   | 4.0                           | 10                 | 10, 623         |                    | 80<br>89544,5       | 74<br>77535.5          | 540                | 10.0 | 0,791   | a, 383                     |
|     |                               |                    |                 |                    |                     |                        |                    | Avg  | 0,799   | 1.969                      |

| ΔH,<br>in.<br>H <sub>2</sub> O | <u>ΔΗ</u><br>13.6 | Y <sub>i</sub> = | $\frac{V_{w} P_{b}(t_{d} + 460)}{(P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$ | $\Delta H_{i}^{0} = \frac{0.0317 \Delta H}{P_{b} (t_{d} + 460)} \left[ \frac{(t_{w} + 460) \Theta}{v_{w}} \right]^{2}$ |
|--------------------------------|-------------------|------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0.5                            | 0.0368            |                  | 5) (39.83)(539.8)<br>5.06) (39.83+0°)(3.6)(538)                                  | Hay = (0.0317)(.5) [(538) (12.9)]                                                                                      |
| 1.0                            | 0.0737            | <u> </u>         | 5) (29.82) (544.8)<br>(06) (29.82) 13.6) (539)                                   | Ha= (.03,7) (1) (5.39.6) (9.0) ]2                                                                                      |
| 1.5                            | 0.110             | Ц                | (s) (29.82) (551.8)<br>(3.15) (29.82+ 1.5/3.6)(539.5)                            | Ha, = (-03:7)(1.5) [(539.5)(15.2)]2                                                                                    |
| 2.0                            | 0.147             | (4               | 10) (29.82) (553.5)<br>10.195) (29.82 + 3.86)(539)                               | Hey= (29.82) (553.5) (53.2) 10                                                                                         |
| 3.0                            | 0.221             | <u> </u>         | (10) (29.8.2) (556.5)<br>(0.155) (29.82+7,36)(539.5)                             | Has= (29.82) (556.5 (10.7) 72                                                                                          |
| 4.0                            | 0.294             | 6                | 10.072) (34.87) (240)<br>10.072) (34.87 + 1/37)(2382                             | (.0317) (40) (15345) (10.0) 72                                                                                         |

 $<sup>^{\</sup>mathbf{a}}$  If there is only one thermometer on the dry gas meter, record the temperature under  $\mathbf{t}_{\mathbf{d}}$  .

Quality Assurance Handbook M4-2.3A (front side)

## CALIBRATION DATA FOR PUMPS A and B

|        | <u>BEFORE</u> | AFTER      |
|--------|---------------|------------|
| PUMP A | 123 cc/min    | 124 cc/min |
| PUMP B | 123 cc/min    | 127 cc/min |

Pump A used in determining total hydrocarbons on F-15 JFS.

Pump B used in determining total hydrocarbons on GTE.

cc/min = cubic centimeter per minute

### Distribution List

|                                                                                   | Copies |
|-----------------------------------------------------------------------------------|--------|
| HQ AFLC/SGBE<br>Wright-Patterson AFB OH 45433-5001                                | 1      |
| HQ USAF/SGPA Bolling AFB DC 20332-6188                                            | 1      |
| HQ AFSC/SGP<br>Andrews AFB DC 20334-5000                                          | 1      |
| 7100 CSW Med Cen/SGB<br>APO New York 09220-5300                                   | 1      |
| OL AD, AFOEHL<br>APO San Francisco 96274-5000                                     | 1      |
| USAFSAM/TSK/ED/EDH/EDZ<br>Brooks AFB TX 78235-5301                                | 1 ea   |
| Defense Technical Information Center (1) Cameron Station Alexandria VA 22304-6145 | 2      |
| HQ HSD/XA<br>Brooks AFB TX 78235-5000                                             | 1      |
| HQ USAF/LEEV Bolling AFB DC 20330-5000                                            | 1      |
| HQ AFESC/RDV<br>Tyndall AFB FL 32403-6001                                         | 1      |
| SA-ALC/EM Kelly AFB TX 78241-5000                                                 | 5      |