Assignment #12

Due Friday, April 22, 2022

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Suppose T is a positive operator on V. Prove that T is invertible if and only if $\langle Tv,v\rangle>0$ for every $v\in V$ with $v\neq 0$.
- 2. Suppose $T \in \mathcal{L}(V)$, for an inner product space V. For $u, v \in V$, define the function of two variables $\langle u, v \rangle_T$ by

$$\langle u, v \rangle_T = \langle Tu, v \rangle.$$

Prove that $\langle \cdot, \cdot \rangle_T$ is an inner product on V if and only if T is an invertible positive operator (with respect to the original inner product $\langle \cdot, \cdot \rangle$).

- 3. Suppose $S \in \mathcal{L}(V)$. Prove that the following are equivalent:
 - (a) S is an isometry;
 - (b) $\langle S^*u, S^*v \rangle = \langle u, v \rangle$ for all $u, v \in V$;
 - (c) $S^*e_1, \ldots S^*e_m$ is an orthonormal list for every orthonormal list of vectors e_1, \ldots, e_m in V;
 - (d) $S^*e_1, \ldots S^*e_n$ is an orthonormal basis for some orthonormal basis e_1, \ldots, e_n of V.
- 4. Suppose T_1, T_2 are normal operators on \mathbf{F}^3 and both operators have 2, 5, 7 as eigenvalues. Prove that there exists an isometry $S \in \mathcal{L}(\mathbf{F}^3)$ such that $T_1 = S^*T_2S$.
- 5. Fix $u, x \in V$ with $u \neq 0$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$. Prove that

$$\sqrt{T^*T}v = \frac{\|x\|}{\|u\|} \langle v, u \rangle u$$

for every $v \in V$.

- 6. Give an example of $T \in \mathcal{L}(\mathbb{C}^2)$ such that 0 is the only eigenvalue of T and the singular values of T are 5, 0.
- 7. Suppose $T \in \mathcal{L}(V)$ and s is a singular value of T. Prove that there exists a vector $v \in V$ such that ||v|| = 1 and ||Tv|| = s.
- 8. Suppose $T \in \mathcal{L}(\mathbf{C}^2)$ is defined by T(x,y) = (-4y,x). Find the singular values of T.