ЛАБОРАТОРНАЯ 3 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ VPARHEHИЙ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Методы решения СЛАУ

Рассмотрим систему n линейных уравнений с n неизвестными:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

$$(1)$$

где числа a_{ij} $(i, j = \overline{1,n})$ — коэффициенты при переменных, числа b_j $(j = \overline{1,n})$ — свободные члены уравнений.

Решением СЛАУ называется такая совокупность n чисел ($x_1 = c_1, x_2 = c_2, ..., x_n = c_n$), при подстановке которых каждое уравнение системы обращается в верное равенство.

Если $\det A \neq 0$, то СЛАУ имеет единственное решение.

Решение СЛАУ методом Гаусса

Пусть дана СЛАУ, такая, что $|A| \neq 0$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{1,n+1}, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1}, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = a_{n,n+1}. \end{cases}$$
(2)

Прямой ход – приведение СЛАУ к треугольному виду

Шаг 1.

a) Пусть коэффициент $a_{11} \neq 0$ (ведущий элемент). Разделим первое уравнение на a_{11} , получим

$$\begin{cases} x_1 + C_{12}x_2 + \dots + C_{1n}x_n = C_{1,n+1}, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1}, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = a_{n,n+1}. \end{cases}$$

где
$$C_{1j} = \frac{a_{1j}}{a_{11}}, \quad j = \overline{2, n+1}.$$

б) Из каждого уравнения, начиная со второго, вычитаем первое уравнение, умноженное на коэффициент a_{i1} , $i=\overline{2,n}$. Так мы исключим переменную x_1 из всех уравнений, начиная со второго:

$$\begin{cases} x_1 + C_{12}x_2 + \dots + C_{1n}x_n = C_{1, n+1}; \\ a_{22}^{(1)}x_2 + \dots + a_{2n}^{(1)}x_n = a_{2, n+1}^{(1)}; \\ \dots \\ a_{n2}^{(1)}x_2 + \dots + a_{nn}^{(1)}x_n = a_{n, n+1}^{(1)}, \end{cases}$$

где
$$a_{ij}^{(1)} = a_{ij} - a_{i1} \cdot C_{1j}$$
 $(i = \overline{2, n}; j = \overline{2, n+1}).$

Шаг 1 закончен.

Шаг 2. Пусть $a_{22}^{(1)} \neq 0$. Повторяя пункты шага 1, исключим переменную x_2 из всех последующих уравнений, начиная с третьего. Получим систему

$$\begin{cases} x_1 + C_{12}x_2 + C_{13}x_3 + \dots + C_{1n}x_n = C_{1, n+1}; \\ x_2 + C_{23}x_3 + \dots + C_{2n}x_n = C_{2, n+1}; \\ a_{33}^{(2)}x_3 + \dots + a_{3n}^{(2)}x_n = a_{3, n+1}^{(2)}; \\ \dots \\ a_{n3}^{(2)}x_3 + \dots + a_{nn}^{(2)}x_n = a_{n, n+1}^{(2)}, \end{cases}$$

где
$$C_{2\,j}=rac{a_{2\,j}^{(1)}}{a_{22}^{(1)}}; \quad a_{ij}^{(2)}=a_{ij}^{(1)}-a_{i2}^{(1)}C_{2\,j} \qquad (i=\overline{3,\,n};\quad j=\overline{3,\,n+1}).$$

Шаг 2 закончен.

.....

Шаг (n-1). Продолжая процесс последовательного исключения переменных x_3 , x_4 , ..., x_{n-1} , к (n-1)-му шагу получим систему треугольного вида

$$\begin{cases} x_{1} + C_{12}x_{2} + C_{13}x_{3} + \dots + C_{1n}x_{n} = C_{1, n+1}; \\ x_{2} + C_{23}x_{3} + \dots + C_{2n}x_{n} = C_{2, n+1}; \\ x_{3} + \dots + C_{3n}x_{n} = C_{3, n+1}; \\ \dots \\ C_{nn}x_{n} = C_{n, n+1}, \end{cases}$$
(3)

где

$$C_{nn} = a_{nn}^{(n-1)}; \quad C_{n,n+1} = a_{n,n+1}^{(n-1)}.$$

Данная система является эквивалентной системе (1).

Обратный ход

Из системы (3) последовательно вычисляем значения корней по следующим формулам

3

$$\begin{cases} x_n = \frac{C_{n,n+1}}{C_{nn}}; \\ x_{n-1} = C_{n-1, n+1} - C_{n-1, n} x_n; \\ \dots \\ x_1 = C_{1,n+1} - C_{12} x_2 - C_{13} x_3 - \dots - C_{1n} x_n. \end{cases}$$

Таким образом, расчетные формулы обратного хода имеют вид

$$\begin{cases} x_n = \frac{C_{n,n+1}}{C_{nn}}; \\ x_i = C_{i,n+1} - \sum_{j=i+1}^n C_{ij} x_j & (i = n-1, n-2, ..., 1). \end{cases}$$

Примечание 1. Исключение переменных нельзя проводить, если элемент главной диагонали a_{kk}^{k-1} равен нулю. Если элемент a_{kk}^{k-1} мал, то велики ошибки округления при делении на этот элемент. Для уменьшения ошибок округления применяют *метод исключения Гаусса с выбором главного элемента по столбцу.* Прямой ход так же состоит из n-1 шагов. На первом шаге, чтобы исключить переменную x_1 , надо сначала переставить уравнения так, чтобы в левом верхнем углу был наибольший по модулю коэффициент a_{i1} , i=1,2,...,n. В дальнейшем, на k-м шаге, прежде чем исключить переменную x_k , уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент a_{ik} , i=k,k+1,...,n. После этой перестановки исключение переменной x_k производят, как описано ранее. В этом случае алгоритм всегда приводит к цели, и, кроме того, погрешность вычисления будет меньше.

Примечание 2.

- **а)** Если в процессе прямого хода метода Гаусса одно или несколько уравнений принимают вид $0 = \lambda$, где λ некоторое число, отличное от нуля, то система несовместна.
- б) Если в конце прямого хода метода Гаусса мы получаем систему, число уравнений в которой совпадает с числом неизвестных переменных, то система совместна и определена, то есть, имеет единственное решение, которое определяется при проведении обратного хода метода Гаусса.
- в) Если после завершения прямого хода метода Гаусса в полученной СЛАУ число уравнений меньше числа неизвестных переменных, то система совместна и имеет бесконечное множество решений, которые находятся при обратном ходе метода Гаусса.

Итерационные методы решения СЛАУ. Метод Якоби

Пусть дана СЛАУ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

Требуется найти решение СЛАУ с заданной точностью ε .

Пусть диагональные коэффициенты ненулевые. если такое случается, то надо переставлять местами уравнения, так, чтобы выполнялось условие неравенства нулю диагональных элементов.

Разрешим первое уравнение системы относительно x_1 , второе — относительно x_2 и т.д. Получим систему, эквивалентную данной:

где
$$\mathbf{\alpha}_{ij} = -rac{a_{ij}}{a_{ii}}, \quad i \neq j, \; -rac{a_{ij}}{a_{ii}}, \quad i \neq j,$$

$$\mathbf{\beta}_i = \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}, \quad j = \overline{1, n}$$

Запишем систему в матричном виде

$$X = \alpha X + \beta$$
.

Начальное приближение:

$$X^0 = \beta$$
.

Первое приближение имеет вид:

$$X^{1} = \boldsymbol{\alpha} \cdot X^{0} + \boldsymbol{\beta}.$$

Второе приближение будет таким:

$$X^2 = \boldsymbol{\alpha} \cdot X^1 + \boldsymbol{\beta}$$

и так далее.

В общем виде можно записать:

$$X^k = \boldsymbol{\alpha} \cdot X^{k-1} + \boldsymbol{\beta} .$$

Условие сходимость метода итерации: для существования единственного решения СЛАУ и сходимости метода простых итераций достаточно выполнения условия

$$\sum_{j=1 \atop j \neq i}^{n} |a_{ij}| < |a_{ii}|, \quad \dot{t} = \overline{1, n},$$

Итерации вычисления прекращают, когда выполняется условие

$$\max_{i} \left| x_i^{k} - x_i^{k-1} \right| < \varepsilon.$$

Таким образом, алгоритм метода Якоби имеет вид:

- 1. Проверить условия сходимости метода. Если условия не выполняются, то работа алгоритма завершена, иначе перейти к шагу 2.
- 2. Сформировать матрицы α и β
- 3. Сформировать начальное приближение $X^0 = \beta$.
- 4. Расчет нового приближения $X^{k} = \mathbf{\alpha} \cdot X^{k-1} + \mathbf{\beta}$.

5. Если $\max_i \left| x_i^{\ k} - x_i^{\ k-1} \right| < \varepsilon$, то решение X^k найдено, иначе перейти к шагу 4.

ЗАДАНИЯ

Задана СЛАУ. Реализовать два способа задания СЛАУ:

- А) порядок, коэффициенты и свободные члены системы задаются пользователем;
- Б) порядок задается пользователем, коэффициенты и свободные члены системы случайные числа из интервала (a; b). СЛАУ имеет нулевые коэффициенты

ЗАДАНИЕ 1 (нечетный номер варианта)

Написать программу, реализующую алгоритм нахождения решения СЛАУ методом Гаусса. Программа должна выдавать результаты вычислений (расширенную матрицу системы) на каждом шаге.

ЗАДАНИЕ 2 (четный номер варианта)

Написать программу, реализующую алгоритм нахождения решения СЛАУ методом Якоби. Программа должна выдавать результаты вычислений (приближенное решение) на каждом шаге.

БОНУСНОЕ ЗАДАНИЕ (для желающих набрать дополнительные баллы)

Сравнить алгоритмы Гаусса и Якоби по точности решения и затратам машинного времени для СЛАУ, имеющих порядок от 100 до 200 с шагом 10. Коэффициенты и свободные члены системы — случайные числа из интервала (а; b). СЛАУ имеет нулевые коэффициенты. Результаты сравнения представить в виде таблицы.