D	ESMET	' - Bal	lestr	a					Mat	erial Req	uest - Sum	mary (1)		PROJ: 2F	11	REV: 1	23/07/2012
PUMA5		2	23/07	/2012 11.52.4	16							-		DOC: 2F	11-65-105	•	
		P	UMA	.5							N	Material Reque	st - Summary (1)			23/07/2012 11.52.46
								•		2F11 -	SABIZ 8000 kg	g/h				•	
SubProject				Category	of Good										MR ID M	R Number	MR Rev
P05 / 2F11-65-105				0101 / CAF	RBON S	TEEL	PIPE								1010 2F	F11-65-105	1
							Len.					ACTUAL			PREVIOUS	N	EED
Mark		S1	S2		T1.	T2	mm	P.L. U.	.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
Pipe ASME B36.10	BE E.R.V	W. API	5L G	Sr.B													
530	mm	80	0	mm	3,18		0	P1	m	8,00	1,00		9,00	60,50	9,00		
				TOTAL	FOR C	OMP	ONEN	IT (Kg)	,					60,50			
				101.11	10110	01.11	01121	(8)	′	7	Total for negat	ive movement	-	To	otal for positive	movement +	
Pipe ASME B36.10	PL Seam	less AS	STM .	A 106 Gr. B													
541	mm	25	0	mm	3,38		0	P1	m	3,00			3,00	7,51	3,00		
543	mm	40	0	mm	3,68		0	P1	m	1,00			1,00	4,05	1,00		
544	mm	50	0	mm	3,91		0	P1	m	,50			,50	2,72	,50		
546	mm	80	0	mm	5,49		0	P1	m	60,00	6,00		66,00	745,29			
				TOTAL	FOR C	OMP	ONEN	T (Kg))					759,57			
								, 0,		7	Total for negat	ive movement	-	To	otal for positive	movement +	
Pipe ASME B36.10	PL E.R.V	V. API	5L G	r.B													
551	mm	80	0	mm	3,18		0	P1	m	24,00	2,00		26,00	174,77	26,00		
552	mm	100	0	mm	3,18		0	P1	m	10,00	1,00		11,00	95,85	11,00		
554	mm	150	0	mm	3,96		0	P1	m	26,50	3,00		29,50	473,43		5,50	
				TOTAL	FOR C	OMP	ONEN	T (Kg))					744,05			88,27
										7	Total for negat	ive movement	-	To	otal for positive	movement +	88,27
Pipe ASME B36.10	PL sch.4	0 Seam	less A	API 5L Gr.B													
560	mm	15	0	mm	2,77		0	P1	m	,20			,20	,25	,20		
562	mm	25	0	mm	3,38		0	P1	m	2,00			2,00	5,00			
				TOTAL	FOR C	OMP	ONEN	T (Kg))					5,26			
											Total for negat	ive movement	-	To	otal for positive	movement +	

		P	UMA5	5							N	Material Reques	t - Summary (1)			23/07/2012 11.52.46
										2F11 - S	SABIZ 8000 kg	g/h					
SubProject				Category of	f Good										MR ID M	IR Number	MR Rev
P05 / 2F11-65-105				0101 / CAR	BON S	TEEL	PIPE								1010 2	F11-65-105	1
							Len.					ACTUAL			PREVIOUS	NE	EED
Mark		S1	S2		T1.	T2	mm	P.L.	U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
Pipe SB-ATI-PT002/0) PL We	lded Fe	360	B - UNI 7070													
586	mm	200	0	mm	3,0		0	P1	m	17,30	2,00		19,30	308,55	14,60	4,70	75,14
587	mm	250	0	mm	3,0		0	P1	m	8,30	1,00		9,30	185,76	9,00	,30	5,99
588	mm	300	0	mm	3,0		0	P1	m	15,00	2,00		17,00	403,46	14,50	2,50	59,33
589	mm	350	0	mm	3,0		0	P1	m	22,30	2,00		24,30	633,87	24,00	,30	7,83
				ТОТАІ	FOR C	ОМР	ONE	NT (K	(a)					1.531,65			148,29
		TOTAL FOR COMPONENT (F								Т	otal for negati	ive movement	-	To	tal for positive	movement +	148,29
						TO	TAT N	MD (IV	. ~)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	3.101,02			236,56
				TOTAL MR (Kg)						To	tal for negativ	e movement -		То	tal for positive	movement +	236,56

DES	MET	- Ball	estra	a			N	Material Re	quest - Sum	mary (1)		PROJ:	2F1	1	REV: 0	23/07/2012
PUMA5		2	3/07/	2012 11.53.54					_	-		DOC:	2F1	1-65-105		_
		Pl	UMA	5					N	Iaterial Reque	st - Summary (1)				23/07/2012 11.53.54
								2F11	- SABIZ 8000 kg	g/h						
SubProject				Category of Goo	d									MR ID M	R Number	MR Rev
P05 / 2F11-65-105				0102 / STAINLE	SS STEI	EL PIP	PE							1020 2F	11-65-105	0
						Len.				ACTUAL				PREVIOUS	NE	ED
Mark		S1	S2	T1	T2	mm	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (K	(g)	Qty	Quantity	Weight (Kg)
Pipe SB-ATI-PT007/0 l	PL From	n Plate	AST	CM A 240 Gr. TP30	4											
2184	mm	100	0	mm 3,0		0	P1 m	5,00			5,00	42	2,01		5,00	42,01
				TOTAL FOR	COMP	ONEN	NT (Kg)					42	2,01			42,01
				TOTALTOR	COM	OIVE	(116)		Total for negati	ve movement	-		Tot	tal for positive r	movement +	42,01
					тол	rat B	MD (V.=)					42	2,01			42,01
					101	IAL N	MR (Kg)	7	Total for negativ	e movement	-		Tot	al for positive n	novement +	42,01

Dì	ESMET	' - Bal	lestra	a		N	Iaterial Requ	ıest - Sum	mary (1)		PROJ: 2F	11	REV: 0	18/05/2012
PUMA5		1	18/05/	2012 10.50.01					-		DOC: 2F	11-65-105	•	•
		I	PUMA	5				N	Iaterial Reque	st - Summary (1)			18/05/2012 10.50.01
							2F11 - S	SABIZ 8000 kg	g/h					
SubProject				Category of Good	i							MR ID M	IR Number	MR Rev
P05 / 2F11-65-105				0201 / CARBON	STEEL FORG	ED FITTIN	NGS					1040 2	F11-65-105	0
					Len.				ACTUAL			PREVIOUS	NE	EED
Mark		S1	S2	T1.	T2 mm	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
Coupling SB-ATI-PI	R008/0 T	HRD-I	F NP	Γ 3000# Forged AST	CM A 105									
391	mm	15	0	mm	0	P1 NR	1,00			1,00	,12		1,00	,12
393	mm	25	0	mm	0	P1 NR	4,00	1,00		5,00	1,50		5,00	1,50
				TOTAL FOR	COMPONEN	T (Kg)					1,62			1,62
_						. 8/	T	otal for negati	ve movement	-	To	tal for positive	movement +	1,62
Coupling Half SB-A	TI-PR00	7/0 SW	/-F 30	00# Forged ASTM	A 105									
408	mm	8	0	mm	0	P1 NR	1,00			1,00	,06		1,00	,06
				TOTAL FOR	COMPONEN	IT (Kg)					,06			,06
						(118)	T	otal for negati	ve movement	-	To	otal for positive	movement +	,06
					TOTAL M	ID (Kg)					1,68			1,68
					TOTAL W	in (ng)	To	tal for negative	e movement -	-	То	tal for positive	movement +	1,68

DESMET	- Ba						Material R	equest - Su	mmary (1)		PROJ: 2F	711	REV: 1	23/07/2012
5		23/0	7/2012 11.55.0)2				_	-		DOC: 2F	11-65-105		•
]	PUM	A5						Material Reques	st - Summary ((1)			23/07/2012 11.55.02
							2F1	1 - SABIZ 8000	kg/h				-	
			Category o	of Good								MR ID M	R Number	MR Rev
5			0301 / CAF	RBON S	TEEL BV	FITTING	S					1070 2F	11-65-105	1
									ACTUAL			PREVIOUS		EED
	S1	S	2	T1.	T2 m	m P.L. U	m Take Of	f Surplu	s Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
adius ASM	IE B16	5.9 B	E E.R.W. AST	M A 23	4 Gr. WP	3								
mm	80	0								1,00	-			
mm	150	0	mm	3,96		0 P1 N	R 6,0	1,00	O	7,00	,	,	2,00	
			TOTAL	FOR C	OMPON	ENT (Kg								5,70
								Total for neg	ative movement	-	To	otal for positive i	movement +	5,70
adius ASM	IE B16	5.9 B	E Wrought S A	ASTM A	234 Gr. V	VPB								
mm	80	0	mm	5,49		0 P1 N	R 2,0)		2,00	2,09	2,00		
			TOTAL	FOR C	OMPON	ENT (Kg	1				2,09)		
								Total for neg	ative movement	-	To	otal for positive i	movement +	
adius ASM	IE B16	5.9 B	E E.R.W. AST	M A 23	4 Gr. WP	3								
mm	80	0	mm	3,18		0 P1 N	R 5,0	1,00	0	6,00	7,06	6,00		
mm	100	0	mm	3,18		0 P1 N	R 3,0)		3,00				
			TOTAL	FOR C	OMPON	ENT (Kg					13,26	5		
								Total for neg	ative movement	-	To	otal for positive i	movement +	
adius ASM	IE B16	5.9 B	E Wrought S A	ASTM A	234 Gr. V	VPB								
mm	80	0	mm	5,49		0 P1 N	R 16,0	2,00	O	18,00	36,56	18,00		
			ΤΩΤΔΙ	FOR C	'OMPON	ENT (Kg					36,56	5		
			TOTAL	TORC	OMI ON	Litt (Mg		Total for neg	ative movement	-	To	otal for positive i	movement +	
ic SB-ATI-	PR005	/0 B	E Welded Fe 3	60 B - U	NI 7070									
mm	350	30	00 mm	3,0	3,0	0 P1 N	R 1,0)		1,00		1,00		
			ТОТАТ	FOR C	OMPON	ENT (Ka			,					
			IOIAL	IONC	OINII OIN	Litt (ing		Total for neg	ative movement	-	To	otal for positive i	movement +	
	adius ASM mm adius ASM mm adius ASM mm c SB-ATI-	S1 adius ASME B16 mm 80 mm 150 adius ASME B16 mm 80 mm 100 adius ASME B16 mm 80 mm 80 mm 80 c SB-ATI-PR005	S1 S2 S1 S2 adius ASME B16.9 B mm 80 0 mm 150 0 adius ASME B16.9 B mm 80 0 mm 100 0 adius ASME B16.9 B mm 80 0 mm 100 0 c SB-ATI-PR005/0 B	PUMA5 Category 6 0301 / CAE	Category of Good 0301 / CARBON S S1 S2 T1.	Category of Good 0301 / CARBON STEEL BW Le S1 S2 T1. T2 m adius ASME B16.9 BE E.R.W. ASTM A 234 Gr. WPF mm 80 0 mm 3,18 mm 150 0 mm 5,49 TOTAL FOR COMPON adius ASME B16.9 BE E.R.W. ASTM A 234 Gr. WPF mm 80 0 mm 5,49 TOTAL FOR COMPON adius ASME B16.9 BE E.R.W. ASTM A 234 Gr. WPF mm 80 0 mm 3,18 mm 100 0 mm 3,18 TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF mm 80 0 mm 3,18 TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF mm 80 0 mm 3,18 TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF TOTAL FOR COMPON adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPF adius ASME B16.9 BE Wroug	PUMA5 Category of Good 0301 / CARBON STEEL BW FITTING	PUMA5 Category of Good O301 / CARBON STEEL BW FITTINGS Len. Take Off Standard Same B16.9 BE E.R.W. ASTM A 234 Gr. WPB mm 80 0 mm 3.18 0 P1 NR 6.00 TOTAL FOR COMPONENT (Kg) adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPB mm 80 0 mm 3.18 0 P1 NR 5.00 TOTAL FOR COMPONENT (Kg) TOTAL FOR COMPONENT (Kg) adius ASME B16.9 BE E.R.W. ASTM A 234 Gr. WPB mm 80 0 mm 3.18 0 P1 NR 5.00 mm 3.18 0 P1 NR 3.00 TOTAL FOR COMPONENT (Kg) adius ASME B16.9 BE E.R.W. ASTM A 234 Gr. WPB mm 80 0 mm 3.18 0 P1 NR 3.00 TOTAL FOR COMPONENT (Kg) adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPB mm 80 0 mm 3.18 0 P1 NR 3.00 TOTAL FOR COMPONENT (Kg) adius ASME B16.9 BE Wrought S ASTM A 234 Gr. WPB mm 80 0 mm 5.49 0 P1 NR 16,00 TOTAL FOR COMPONENT (Kg) TOTAL FOR COMPONENT (Kg) C SB-ATI-PR005/0 BE Welded Fe 360 B - UNI 7070	Si Si Si Si Si Si Si Si	PUMA5	FUMAS	PUMAS	PUMAS	FUND FUND

		F	UM A	15						Aaterial Request	- Summary (1)			23/07/2012 11.55.02
								2F11 - S	ABIZ 8000 kg	g/h					
SubProject P05 / 2F11-65-105				Category o		d STEEL BW	FITTINGS						MR ID MI 1070 2F	R Number 1-65-105	MR Rev
Mark		S1	S2		T1.	Len. T2 mm	P.L. U.m	Take Off	Surplus	ACTUAL Manual	Tot Qty	Tot. W. (Kg)	PREVIOUS Qty	NI Quantity	EED Weight (Kg)
Reducer Eccentric A	SME B1	6.9 BE	Wro	ught S ASTM	A 234	Gr. WPB									
875	mm	80	40	mm	5,49	3,68 0	P1 NR	2,00			2,00	1,98	2,00		
				TOTAL	FOR	COMPONE	NT (Kg)	Те	otal for negati	ive movement -		1,98 To	otal for positive n	novement +	
90° Miter SB-ATI-F	C003/0 E	E Wel	ded I	Fe 360 B - UN	I 7070	R=1.5 D			yun ivi ilegus				war for positive in		
1199	mm	200	0	mm	3,0	0	P1 NR	6,00	1,00		7,00	52,50	8,00	-1,00	-7,50
1202	mm	350	0	mm	3,0	0	P1 NR	1,00			1,00	21,42	1,00		
				TOTAL	FOR	COMPONE	NT (Kg)					73,92			-7,50
							8/	To	otal for negati	ive movement -		7,50 To	otal for positive n	novement +	
45° Miter SB-ATI-F	C003/0 E	E Wel	ded I	Fe 360 B - UN	I 7070	R=1.5 D									
1312	mm	200	0	mm	3,0	0	P1 NR						1,00	-1,00	-4,08
1315	mm	350	0	mm	3,0	0	P1 NR	2,00			2,00	21,42		2,00	21,42
				TOTAL	FOR	COMPONE	NT (Kg)					21,42			17,34
								Te	otal for negat	ive movement -		4,08 To	otal for positive n	novement +	21,42
Elbow a=90° SB-A	ΓI-PC005	0 BW	Sean	nless API 5L C	ir.B R	=1500mm									
1537	mm	80	0	mm	3,18	0	P1 NR	8,00	1,00		9,00	8,30			
				TOTAL	FOR	COMPONE	NT (Kg)					8,30			
								To	otal for negati	ive movement -		To	tal for positive n	novement +	
						TOTAL 1	MR (Kg)					178,09			15,54
			TOTAL MR (Kg) Total for negative movement - 11,58 Total for positive movement							ovement +	27,12				

DE	ESMET	- Bal	lestra	a			Ŋ	Material Req	uest - Sun	nmary (1)		PROJ: 2F	711	REV: 0	18/05/2012
PUMA5		1	8/05/	2012 10.51.33				_	•	• • •		DOC: 2F	11-65-105	•	•
		P	UMA	5						Material Request	t - Summary ((1)		1	18/05/2012 10.51.33
							• • • • • • • • • • • • • • • • • • •	2F11 -	SABIZ 8000 l	kg/h				•	
SubProject				Category of Goo	od								MR ID	MR Number	MR Rev
P05 / 2F11-65-105				0401 / CARBON	STEE	L FLAN	IGES						1090 2	2F11-65-105	0
						Len.				ACTUAL			PREVIOUS	NE	EED
Mark		S1	S2	T1.	. T2	2 mm	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
Flange Blind SB-ATI	I-PF008/0) * SB	-ATI-	PF008(125÷250AA	ARH) F	rom Pla	te Fe 360	B - UNI 7070							
89	mm	300	0	mm		0	P1 NR	1,00			1,00	12,20		1,00	12,20
				TOTAL FOR	COM	PONE	NT (Kg)					12,20			12,20
				101112101	CON	1 O1 (L)	(116)	ר	Total for nega	tive movement -		To	otal for positive	e movement +	12,20
Flange Slip-On ASM	IE B16.5	600 LI	B LM	(125÷250 AARH)	Forged	l ASTM	A 105								
136	mm	25	0	mm			P1 NR	6,00	1,00		7,00	11,20		7,00	11,20
138	mm	40	0	mm		0	P1 NR	1,00			1,00	3,10		1,00	3,10
139	mm	50	0	mm		0	P1 NR	2,00			2,00	7,40		2,00	7,40
141	mm	80	0	mm		0	P1 NR	4,00			4,00	29,20		4,00	29,20
				TOTAL FOR	COM	PONE	NT (Kg)					50,90			50,90
]	Total for nega	tive movement -	-	To	otal for positive	e movement +	50,90
Flange Slip-On SB-A	ATI-PF001	1/0 * S	B-A	ΓΙ-PF001(125÷250Α	AARH)	From I	Plate Fe 36	60 B - UNI 7070							
159	mm	80	0	mm		0	P1 NR	1,00			1,00			1,00	
165	mm	300	0	mm		0	P1 NR	1,00			1,00			1,00	
				TOTAL FOR	COM	PONE	NT (Kg)								
								7	Total for nega	tive movement -	•	To	otal for positive	e movement +	
Flange Slip-On SB-A	ATI-PF002	2/0 * S	B-A	Π-PF002(125÷250A	AARH)	Forged	Fe 360 B	- UNI 7070							
206	mm	80	0	mm		0	P1 NR	1,00			1,00	1,72		1,00	1,72
				TOTAL FOR	COM	PONE	NT (Kg)					1,72			1,72
								7	Total for nega	tive movement -		To	otal for positive	e movement +	1,72
Flange Slip-On EN 1	.092-1 Ty	pe 01	PN 2.	.5 EN1092-1 B1-Ra	a Forge	d ASTN	Л A 105								
229	mm	200	0	mm	-	0	P1 NR	2,00			2,00			2,00	
													1		

		P	UMA	.5						I	Material Reques	st - Summary (1)			18/05/2012 10.51.33
									2F11 - S	ABIZ 8000 k	g/h					
SubProject				Category of C	Good									MR ID M	IR Number	MR Rev
P05 / 2F11-65-105				0401 / CARBO	ON STE	EL I	FLANC	GES						1090 2	F11-65-105	0
							Len.				ACTUAL			PREVIOUS	NI	EED
Mark		S1	S2		T1.	Γ2	mm l	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
232	mm	350	0	mm			0	P1 NR	2,00			2,00			2,00	
				TOTAL FO	OR COM	APC	NENT	Γ (Κσ)								
								- (8/	To	otal for negat	ive movement	-	To	tal for positive	movement +	
			Ē		_								64,82			64,82
					Т	OTA	AL MI	R (Kg)	Tot	al for negativ	e movement -			tal for positive	movement +	64,82

DE	ESMET	' - Bal	llesti	a			Ŋ	Material Req	uest - Sumi	nary (1)		PROJ: 2F	11	REV: 1	18/09/2012
PUMA5			18/0	9/2012 9.58.26								DOC: 2F	11-65-105		_
		·	PUMA	A5					M	aterial Request	- Summary (1)			18/09/2012 9.58.26
								2F11 - S	SABIZ 8000 kg	/h				· · · · · · · · · · · · · · · · · · ·	
SubProject				Category of Go	ood								MR ID MI	R Number	MR Rev
P05 / 2F11-65-105				0601 / BOLTS									1130 2F	11-65-105	1
					L	en.				ACTUAL			PREVIOUS	NI	EED
Mark		S1	S2	T	1. T2 n	nm 1	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
Stud Bolt + 2 Nuts Sl	B-ATI-P	V008E	3/0 A	SME B18.2.1 UNO	C/2.2 Tab.9	ASTN	M A 193	B7 / A 194 Gr.2H							
1992	mm	5/8	0	mm		80	P1 NR	8,00	2,00		10,00	2,10	10,00		
1995	mm	20	0	mm	1	00	P1 NR	4,00	1,00		5,00	4,20	5,00		
1997	mm	20	0	mm	1	30	P1 NR	32,00	5,00		37,00	35,52	37,00		
2010	mm	M16	0	mm		65	P1 NR	200,00	10,00		210,00	39,90	210,00		
				TOTAL FO	R COMPON	JENT	Γ (Κσ)					81,72			
				TOTALTO	K COMI OI	112111	I (IXg)	Т	otal for negativ	ve movement -		To	tal for positive n	novement +	
Machine Bolt + 1 Nu	ıt SB-AT	TI-PV0	08A/	0 - UNI 5727 + UN	NI 5592 4.6 U	JNI 3	740 + 4	A UNI 3740							
2026	mm	M8	0	mm		30	P1 NR	4,00	1,00		5,00	,10	5,00		
2031	mm	M10	0	mm		30	P1 NR	8,00	2,00		10,00	,40	10,00		
2032	mm	M10	0	mm		35	P1 NR	4,00	1,00		5,00	,20	5,00		
2039	mm	M12	0	mm		35	P1 NR	48,00	10,00		58,00	4,06	48,00	10,00	,70
2044	mm	M16	0	mm			P1 NR	32,00	6,00		38,00	6,08	38,00		
2045	mm	M16		mm			P1 NR	16,00	3,00		19,00	3,23	19,00		
2046	mm	M16		mm			P1 NR	-4,00			-4,00	-,72		-4,00	-,72
2050	mm	M16		mm			P1 NR	4,00	1,00		5,00	1,25	5,00		
2056	mm	M20	0	mm		70	P1 NR	24,00	5,00		29,00	10,44	29,00		
				TOTAL FO	R COMPON	NENT	Γ (Kg)					25,04			-,02
							. 0,	Т	otal for negativ	ve movement -		,72 To	tal for positive n	novement +	,70
Screws for valves AS	SME B 1	8.2.1/U	JNC	ASTM A 193 B7											
2065	mm	5/8	0	mm		50	P1 NR	16,00	3,00		19,00	3,04	19,00		
2066	mm	5/8	0	mm		55	P1 NR	16,00	3,00		19,00	3,23	19,00		
				TOTAL FO	R COMPON	JENT	Γ (Κσ)					6,27			
				TOTAL FOR COMPONENT (Kg				Т	otal for negativ	ve movement -		То	tal for positive n	novement +	

	I	PUMA	5			M	aterial Request	- Summary	(1)			18/09/2012 9.58.26
					2F11 - S	ABIZ 8000 kg/	h					
SubProject			Category of Good							MR ID M	IR Number	MR Rev
P05 / 2F11-65-105			0601 / BOLTS							1130 2	F11-65-105	1
			Len.				ACTUAL			PREVIOUS	NI	EED
Mark	S1	S2	T1. T2 mm	P.L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg)	Qty	Quantity	Weight (Kg)
			TOTAL N	MR (Kg)					113,03			-,02
			TOTAL	iii (iig)	Tot	al for negative	movement -		, <mark>72</mark> To	tal for positive	movement +	,70

DE	DESMET - Ballestra PUMA5 18/09/2012 9.59.00						N	Iaterial Requ	est - Summ	ary (1)		PROJ:	2F11	REV: 1	18/09/2012
PUMA5			18/09	/2012 9.59.00				_		-		DOC:	2F11-65-105		•
		I	PUMA:	5					Ma	terial Request	- Summary (1)			18/09/2012 9.59.00
							•	2F11 - S	ABIZ 8000 kg/h	1				•	
SubProject				Category of Good									MR ID MI	R Number	MR Rev
P05 / 2F11-65-105				0701 / GASKETS									1140 2F	11-65-105	1
						Len.				ACTUAL			PREVIOUS		EED
Mark		S1	S2	T1.	T2	mm P	L. U.m	Take Off	Surplus	Manual	Tot Qty	Tot. W. (Kg	g) Qty	Quantity	Weight (Kg)
Gasket SB-ATI-PV00	9/5 600	LB _ 1	B4C												
236	mm	25	0	mm		0 I	P1 NR	6,00	4,00		10,00		10,00		
238	mm	40	0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		
239	mm	50	0	mm		0 I	P1 NR	2,00	2,00		4,00		4,00		
241	mm	80	0	mm		0 I	P1 NR	4,00	4,00		8,00		8,00		
				TOTAL FOR C	OMPO	ONENT	(Kg)	Т	otal for negative				Total for positive n	novement I	
								10	otal for negative	movement -			Total for positive in	novement +	
Gasket SB-ATI-PV00	9/5 * SI	B-ATI-	-PF001	1(125÷250AARH) _ A	A9D FI	LAT-RI	NG _								
263	mm	1500	0 0	mm		0 I	P1 NR	5,00	5,00		10,00		10,00		
				TOTAL FOR C	OMPO	NENT	(Kg)								
								To	otal for negative	movement -			Total for positive n	novement +	
Gasket SB-ATI-PV00	9/5 * SI	B-ATI-	-PF001	1(125÷250AARH) _ A	A9C FI	AT-RI	NG								
267	mm	80	0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		
273	mm	300	0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		
280	mm	700	0	mm		0 I	P1 NR						2,00	-2,00	
282	mm	800	0	mm		0 I	P1 NR	1,00	1,00		2,00			2,00	
284	mm	900	0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		
289	mm	1200	0 0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		
				TOTAL FOR C	OMPO	ONENT	(Kg)								
								To	otal for negative	movement -			Total for positive n	novement +	
Gasket SB-ATI-PV00	9/5 * SI	B-ATI-	-PF002	2(125÷250AARH) _ B	318C										
295	mm	80	0	mm		0 I	P1 NR	1,00	1,00		2,00		2,00		

		PUM	15				M	aterial Request	- Summary ((1)			18/09/2012 9.59.0
						2F11 -	SABIZ 8000 kg	/h					
SubProject	<i>-</i>		Category of Good									IR Number F11-65-105	MR Rev
P05 / 2F11-65-103	3		0/01 / GASKE1S		T	1		A COPPLAY					I TED
Mark	S1	S2	Т1.	T2	Len. mm P.L. U.	n Take Off	Surplus	ACTUAL Manual	Tot Qty	Tot. W. (Kg)	PREVIOUS Qty	Quantity	EED Weight (Kg)
			TOTAL FOR C	OMPO	ONENT (Kg)								
							Fotal for negativ	e movement -		To	otal for positive	movement +	
Gasket SB-ATI-P	V009/5 PN 6 EN	1092-	l B1-Ra _ B2C FLAT										
321	mm 80	0	mm		0 P1 N	-1,00			-1,00			-1,00	
			TOTAL FOR C	OMPO	NENT (Kø)								
			TOTALLOW	01/11 (JIVEIVE (IIG)		Fotal for negativ	e movement -		To	otal for positive	movement +	
Gasket SB-ATI-P	V009/5 PN 2.5 E	N109	2-1 B1-Ra _ B2C FLAT	Γ									
330	mm 200	0	mm		0 P1 N	R 2,00	2,00		4,00		4,00		
333	mm 350	0	mm		0 P1 N	R 2,00	2,00		4,00		4,00		
			TOTAL FOR CO	OMPO	ONENT (Kg)								
					(8)	7	Fotal for negativ	e movement -		To	otal for positive	movement +	
				тот	AL MR (Kg)								
					ill lilk (Kg)		otal for negative	movement -		To	tal for positive	movement +	