重回帰分析 2

「交差項」

拓殖大学

浅野正彦 Ph.D.

1

理論 「人間の容姿は遺伝する」

仮説2

「母親の身長は娘より息子の身長に より大きな影響を与えている」

2

子供の身長 = α_0 + α_1 母の身長 + α_2 父の身長 + α_3 子供の性別 + α_4 子供の靴サイズ + α_5 母の身長:子供の性別 α_5

7

I. 親の身長で子供の身長を予測する

- ここでは2021年4月に実施した世論調査(対象:早稲田大学と拓殖大学の学生 172人)を使って分析を行う
- データの内容は次のとおり

変数名	内容	望ましいデータの型
Q0	所属大学	文字型(chr)
Q1	所属学部	文字型(chr)
Q4	学生の性別(男・女)	文字型(chr)
Q2	学生の学年	文字型(chr)
Q3_1	学生の身長 (cm)	数值型(num)
Q3_2	学生の父親の身長 (cm)	数值型(num)
Q3_3	学生の母親の身長 (cm)	数值型(num)
Q5 1	学生の靴の大きさ (cm)	数值型(num)

8

Q

• 確かめたいこと:リサーチ・クエスチョン

子供の性別によって、母親の身長が子供の身長に与える影響は異なるのか?

- このリサーチ・クエスチョンにおいて、次の5つの問いにこたえる
 - Q1: この検定における帰無仮説を書きなさい
 - Q2: この検定における対立仮説を書きなさい
 - Q3: コントロール変数として入れるべき変数は何か?
 - Q4: 単回帰分析と重回帰分析の結果の違いを解釈する
 - Q5: 重回帰分析の結果を可視化する

9

9

Ⅱ. データの準備

- 学生170人のデータ
 - ・ height2021.csv をダウンロード
- 文字列をファクタに変換せずにデータを読み込み、 af という名前を付ける

- → RProject folder内の data フォルダに入れる
- ・ data フォルダ内から read csv で読み取り df というデータフレーム名をつける
 - オリジナルデータ読み込み

dim(df)

[1] 169 13

10

• 変数名を確認

names(df)

```
[1] "Q0" "Q1" "Q4" "Q2" "Q3_1" "Q3_2" "Q3_3" "Q5_1" "Q6_1" "Q6_2" [11] "Q6_3" "Q6_4" "Q6_5"
```

変数名	内容	望ましいデータの型
Q0	所属大学	文字型(chr)
Q1	所属学部	文字型(chr)
Q4	学生の性別(男・女)	文字型(chr)
Q2	学生の学年	文字型(chr)
Q3_1	学生の身長 (cm)	数值型(num)
Q3_2	学生の父親の身長 (cm)	数值型(num)
Q3_3	学生の母親の身長 (cm)	数值型(num)
Q5_1	学生の靴の大きさ (cm)	数值型(num)

11

str()関数を使って変数の「型」をチェックする

str(df)

12

Show	10 \$ entries				Search:				
	university 🖣	department +	male 🖣	year	height	dad 🖣	mom ϕ	shoe 🖣	par
1	早稲田大学	社会科学部	女性	senior	162	172	155	22	
2	早稲田大学	社会科学部	女性	junior	158	169	160	22	
3	拓殖大学	政経学部(法 律政治)	女性	sophomore	163	169	159	22	
4	早稲田大学	社会科学部	女性	senior	155	166	167	22.5	
5	早稲田大学	社会科学部	女性	senior	151	173	155	22.5	
6	拓殖大学	政経学部(法 律政治)	女性	sophomore	155	177	163	22.5	
7	早稲田大学	政治経済学部 (政治学科)	女性	junior	155	169	160	22.5	
8	早稲田大学	政治経済学部 (政治学科)	女性	junior	158	167	161	22.5	
9	早稲田大学	社会科学部	女性	freshman	154	168	167	23	
10	早稲田大学	社会科学部	女性	senior	160	172	161	23	

summary(df)

```
university
                department
                                    male
                                                    year
Length:169
               Length: 169
                               Length: 169
                                                Length:169
Class : character Class : character Class : character Class : character
Mode :character Mode :character Mode :character Mode :character
   height
                  dad
                                            shoe
                                                       parents
                               mom
Min. :151.0 Min. :140.0 Min. :142 Min. :22.0 Min. :147.5
1st Qu.:163.0 1st Qu.:168.0 1st Qu.:156 1st Qu.:24.5 1st Qu.:163.0
            Median :172.0 Median :160 Median :26.1 Median :166.0
Median :169.0
Mean :168.2
            Mean :171.8 Mean :160 Mean :25.8 Mean :165.9
3rd Qu.:175.0 3rd Qu.:176.0 3rd Qu.:164 3rd Qu.:27.0 3rd Qu.:169.0
Max. :188.0 Max. :185.0 Max. :172 Max. :30.0 Max. :176.5
                  :2
                                            :5
                                                         :2
             NA's
                                       NA's
                                                    NA's
```

15

• 変数の型をチェック

```
str(df)
```

```
tibble [169 × 9] (S3: tbl_df/tbl/data.frame)
$ university: chr [1:169] "早稲田大学" "早稲田大学" "拓殖大学" "早稲田大学" ...
$ department: chr [1:169] "社会科学部" "社会科学部" "政経学部(法律政治)" "社会科学部"
...
$ male : chr [1:169] "女性" "女性" "女性" "女性" ...
$ year : chr [1:169] "senior" "junior" "sophomore" "senior" ...
$ height : num [1:169] 162 158 163 155 151 155 155 158 154 160 ...
$ dad : num [1:169] 172 169 169 166 173 177 169 167 168 172 ...
$ mom : num [1:169] 155 160 159 167 155 163 160 161 167 161 ...
$ shoe : num [1:169] 22 22 22 22.5 22.5 22.5 22.5 23.5 23...
$ parents : num [1:169] 164 164 164 166 164 ...
```

注意

・もし、str() 関数でチェックしたとき、本来「数値型」であるはずの height, dad, mom が「数値型 (numeric)」以外の型(例えば「文字型」など)であれば(そういうことがよくある)

→次のコマンドを使って、「数値形 (numeric)」に変換する

```
df$height <- as.numeric(df$height)
df$dad <- as.numeric(df$dad)
df$mom <- as.numeric(df$mom)
df$shoe <- as.numeric(df$shoe)
df$parents <- as.numeric(df$parents)</pre>
```

• ここでは height, dad, mom, shoe, parents が全て「数値型」なので変換する 必要はない

17

17

III. 交差項を含む・含まない重回帰分析

Q1: この検定における帰無仮説を書きなさい

• 母親の身長が子供の身長に与える影響は、子供の性別に関わらず同じ

Q2: この検定における対立仮説を書きなさい

✔ 子供の性別によって、母親の身長が子供の身長に与える影響は異なる

- → 主要な独立変数・・・母親の身長
- → 調整変数・・・子供の性別

Q3: コントロール変数として入れるべき変数は何か?

変数名	内容	望ましいデータの型	含める・含めない
Q0	所属大学	文字型(chr)	含めない
Q1	所属学部	文字型(chr)	含めない
Q4	学生の性別 (男・女)	文字型(chr)	含める
Q2	学生の学年	文字型(chr)	含めない
Q5_1	学生の靴の大きさ (cm)	数值型(num)	含める

19

• データの記述統計

```
stargazer(as.data.frame(df),

type = "html",

title = "親と子供の身長",

digits = 2)
```

親と子供の身長

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
male	169	0.72	0.45	0	0	1	1
height	169	168.22	8.17	151	163	175	188
dad	167	171.83	6.05	140.00	168.00	176.00	185.00
mom	169	159.98	5.29	142	156	164	172
shoe	164	25.80	1.67	22.00	24.50	27.00	30.00
parents	167	165.91	4.35	147.50	163.00	169.00	176.50

20

Q4: 交差項を入れないモデルと入れたモデルを比較

```
model_1 <- lm(height ~ mom + male + dad + shoe, data = df)
model_2 <- lm(height ~ mom + mom*male + male + dad + shoe, data = df)
stargazer(model_1, model_2,
         digits = 2,
         style = "ajps",
         title = "母親と子供の身長(交差項 = mom:male)",
          type = "html")
                                                                                21
```

21

```
summary(model_1)
Call:
lm(formula = height ~ mom + male + dad + shoe, data = df)
Residuals:
             1Q Median
                             30
-8.3350 -2.9898 -0.3559 2.6273 11.6229
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.36560 12.97926 -0.259 0.796
           0.42174 0.06277 6.719 3.19e-10 ***
6.92812 1.05175 6.587 6.41e-10 ***
0.24454 0.05452 4.486 1.40e-05 ***
mom
dad
            2.20870 0.29016 7.612 2.35e-12 ***
shoe
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.125 on 157 degrees of freedom
 (7 observations deleted due to missingness)
Multiple R-squared: 0.7545, Adjusted R-squared: 0.7482
F-statistic: 120.6 on 4 and 157 DF, p-value: < 2.2e-16
                                                                                                 22
```

```
summary(model_2)
lm(formula = height \sim mom + mom * male + male + dad + shoe, data = df)
Residuals:
             10 Median
                               3Q
-7.5390 -2.7167 0.0239 2.6769 11.4339
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.66407 20.95319 1.893 0.0602 .
mom 0.17426 0.11379 1.531 0.1277
             -48.78812 21.55463 -2.263 0.0250 *
male
             0.23323 0.05373 4.341 2.54e-05 ***
2.15104 0.28590 7.524 3.96e-12 ***
0.34855 0.13469 2.588 0.0106 *
dad
mom:male
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.052 on 156 degrees of freedom
 (7 observations deleted due to missingness)
Multiple R-squared: 0.7646, Adjusted R-squared: 0.757
F-statistic: 101.3 on 5 and 156 DF, \, p-value: < 2.2e-16
                                                                                                        23
```

height		
	Model 1	Model 2
mom	0.42***	0.17
	(0.06)	(0.11)
male	6.93***	-48.79**
	(1.05)	(21.55)
dad	0.24***	0.23***
	(0.05)	(0.05)
shoe	2.21***	2.15
	(0.29)	(0.29)
mom:male		0.35
		(0.13)
Constant	-3.37	39.66
	(12.98)	(20.95)
N	162	162
R-squared	0.75	0.76
Adj. R-squared	0.75	0.76
Residual Std. Error	4.12 (df = 157)	4.05 (df = 156)
F Statistic	120.61*** (df = 4; 157)	101.33*** (df = 5; 156)


```
sj_1 <- sjPlot::plot_model(model_1,</pre>
                     show.values = T, #推定値の係数を表示する
                                        #統計的有意性を*で表示する
                     show.p = T,
                     vline.color = "blue", #推定値=0の縦線の色を黒に指定
                     title = "母親と子供の身長",
                     digits = 2) # 推定値の表示を小数点3桁に指定
sj_1
sj_2 <- sjPlot::plot_model(model_2,
                                        #推定値の係数を表示する
                     show.values = T,
                     show.p = T,
                                        #統計的有意性を*で表示する
                     vline.color = "blue", #推定値=0の縦線の色を黒に指定
                     title = "母親と子供の身長",
                     digits = 2) # 推定値の表示を小数点3桁に指定
sj_2
```


交差項を入れないモデルの回帰式(Model_1)

height = -3.37 + 0.42mom + 0.24dad + 6.93male + 2.21shoe

	Model 1
mom	0.42***
	(0.06)
male	6.93***
	(1.05)
dad	0.24***
	(0.05)
shoe	2.21***
	(0.29)
mom:male	
Constant	-3.37
	(12.98)

29

散布図を描く

文字化けしないためのコマンド(マックユーザのみ)

```
theme_set(theme_bw(base_size = 14,base_family = "HiraKakuPro-W3"))
```


-

女子学生 (male = 0) の時の回帰式

male = 0 を上の式に代入

 $height = 39.66 + \underline{0.17}mom + 0.23dad + 2.15shoe$

mom の限界効果(=傾き)

男子学生 (male = 1) の時の回帰式

• male = 1 を上の式に代入

height = -9.13 + 0.52mom + 0.23dad + 2.15shoe

33

33

• 手計算で求めた2つの回帰式をグラフで色分けして描いてみる

```
ggplot(df, aes(x = mom, y = height, color = as.factor(male))) +
 geom_point() +
 labs(x = "母親の身長", y = "子供の身長",
        title = "母親と子供の身長:性別ごと") +
 stat smooth(method = lm) +
 annotate("label",
          label = "height = -9.13 + 0.52mom + 0.23dad + 2.15shoe",
          x = 151, y = 181,
          size = 4,
          colour = "blue") +
 annotate("label",
          label = "height = 39.66 + 0.17mom + 0.23dad + 2.15shoe",
          x = 162, y = 148,
          size = 4,
          colour = "tomato") +
  theme(legend.position = "none")
```


Q5: 母親の身長は娘より息子により大きい影響を与えているのか?

- 先ほど手計算で求めた女性と男性それぞれの回帰式を R で求めてみる
- model_2 の分析結果における係数 (coefficient)を確認する

model_2\$coef

(Intercept) mom male dad shoe mom:male 39.6640695 0.1742571 -48.7881200 0.2332288 2.1510384 0.3485525

height = 39.66 + 0.17mom + 0.23dad - 48.79male + 2.15shoe + 0.35mom: male

- 交差項(ここでは mom:male) は「主要な独立変数」(mom)と「調整変数」(male)から構成される
- 調整変数 (male) の 最小値 (0) と最大値 (1) それぞれの値における限界効果 (す傾き) を計算し、slopes と名前をつけて表示

male = 0 or 1 を代入

36

```
(Intercept) mom male dad shoe mom:male 39.6640695 0.1742571 -48.7881200 0.2332288 2.1510384 0.3485525
```

- 限界効果を計算するために必要な係数は次の2つ:
- 1.2番目の mom の係数
- 2.6番目の mom:male 係数

```
at.male <- c(0, 1) # mini (0) - max (1) まで 1 間隔で区切る
slopes <- model_2$coef[2] + model_2$coef[6]*at.male
# mom の傾きの限界効果 (slopes) を計算する
# [2] は2 つ目の係数、[6] は六つ目の係数という意味
slopes # 結果を表示する
```

```
[1] 0.1742571 0.5228096
```

• これら2つの彼は先ほど手計算した、女性の回帰式と男性の回帰式における mom の係数のこと

女子学生 (male = 0) 数時の回帰式

• male = 0 を上の式に代入

height = 39.66 + 0.17mom + 0.23dad + 2.15shoe

男子学生 (male = 1) の時の回帰式

• male = 1 を上の式に代入

height = -9.13 + 0.52mom + 0.23dad + 2.15shoe

38

統計的有意性の確認

- delta method を使ってこれらの2つの限界効果 (= slopes)と標準誤差 (standard error)を推定
- delta method コマンドを使うために msm パッケージをロードする

library(msm)

- 母親の身長が子供(息子・娘)に与える2つの限界効果(slopes)とその標準誤差を計算し、可視化する
- 95% 信頼区間 (upper, lower)を表示

```
estmean <- coef(model_2)
var <- vcov(model_2)

SES <- rep(NA, length(at.male))

for (i in 1:length(at.male)){
    j <- at.male[i]
    SES[i] <- deltamethod (~ (x2) + (x4)*j, estmean, var) # slopes の標準誤差
}

upper <- slopes + 1.96*SEs
lower <- slopes - 1.96*SEs
cbind(at.male, slopes, upper, lower)
```

39

```
at.male slopes upper lower
[1,] 0 0.1742571 0.3972777 -0.04876348
[2,] 1 0.5228096 0.7696011 0.27601818
```

- at.male は女性が 0, 男性が 1 を表す
- slopes は女性と男性がそれぞれの場合において、 mom が height に及ぼす限界効果の大きさ (=傾き)
- [1,] と slopes に囲まれた値 0.1742571
 - → 女性の場合、説明変数 (mom) が応答変数 (height) に与える限界効果(回帰線の傾き)
- [2,] と slopes に囲まれた値 0.5228096
 - → 男性の場合、説明変数 (mom) 応答変数 (height) に与える限界効果 (回帰線の傾き)
- upper と lower は 95% 信頼区間

40

```
    グラフを描くために上の行列をデータフレームに変換し msm_1 という名前を付ける
    msm_1 <- cbind(at.male, slopes, upper, lower) %>%
        as.data.frame()
        msm_1
    at.male slopes upper lower
        1 0 0.1742571 0.3972777 -0.04876348
        2 1 0.5228096 0.7696011 0.27601818
```

• 性別を x軸 、 mom が height に与える影響力(slopes)を y軸 にグラフを描く

```
msm_1 <- msm_1 %>%
  ggplot(aes(at.male, slopes, ymin = lower, ymax = upper)) +
  geom_hline(yintercept = 0, linetype = 2, col = "red") +
  geom pointrange(size = 1) +
  geom_errorbar(aes(x = at.male, ymin = lower, ymax = upper),
               width = 0.1) +
  labs(x = "子供の性別", y = "母の身長が子供の身長に与える影響(限界効果 ME)") +
  scale_x_continuous(breaks = c(0,1),
                    labels = c("女性", "男性")) +
  ggtitle("model 2の限界効果") +
  theme(axis.text.x = element text(size = 14),
       axis.text.y = element_text(size = 14),
       axis.title.y = element_text(size = 14),
       plot.title = element_text(size = 18)) +
  theme_bw(base_family = "HiraKakuProN-W3")
msm 1
```

42

