

2011-2012 第一学期概率论与数理统计答案(信二学习部整理)

设A表示甲地区的人,A表示乙地区的人,A表示丙地区的人 B表示某人感染流行病 $P(A_1) = 0.2, P(A_2) = 0.5, P(A_3) = 0.3$ $P(B|A_1) = 0.06, P(B|A_2) = 0.04, P(B|A_3) = 0.03,$ -----2 $\frac{1}{12}$ 则由全概率公式 $P(B) = P(A_1B) + P(A_2B) + P(A_3B)$ $= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3) - \dots 3 \%$ =0.2*0.06+0.5*0.04+0.3*0.03=0.041则由贝叶斯公式 $P(A_2 | B) = \frac{P(A_2 B)}{P(B)} = \frac{P(A_2 B)}{P(A_1 B) + P(A_2 B) + P(A_3 B)}$ $= \frac{P(B|A_2)P(A_2)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)}$ $= \frac{0.5*0.04}{0.2*0.06+0.5*0.04+0.3*0.03} = 0.4878 \quad -----$ 解: 当 y < 0 时, $F_y(y) = 0$, $= P\{|X| \leq y\}$ $= P\left\{-y \le X \le y\right\} \qquad \qquad \dots \qquad \qquad 4 \ \%$ $= \mathbf{\Phi}\left(\frac{\mathbf{y}}{\tau}\right) - \mathbf{\Phi}\left(-\frac{\mathbf{y}}{\tau}\right)$ $=2\Phi\left(\frac{y}{\tau}\right)-1$

故 Y = |X| 的密度函数

$$f_{Y}(y) = \begin{cases} \frac{2}{\tau} \varphi \left(\frac{y}{\tau} \right), & y \ge 0 \\ 0, & y < 0 \end{cases}$$

$$= \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{\tau} e^{-\frac{y^{2}}{2\tau^{2}}}, & y \ge 0 \\ 0, & y < 0 \end{cases}$$
......4 \(\frac{\partial}{\tau}\)

三、

解: (1)
$$P(Y > X) = \iint_{y > x} f(x, y) dx dy = \int_0^1 dx \int_x^1 2x dy = \frac{1}{3}.$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$\stackrel{\underline{}}{=} 0 < x < 1$$
 $\stackrel{\underline{}}{=} 0 = 0$, $f_X(x) = \int_0^1 2x \, dy = 2x$.

$$f_X(x) = \begin{cases} 2x, 0 < x < 1, \\ 0, 其他. \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

$$f_Y(y) = \int_0^1 2x \, dx = 1, 0 < y < 1.$$

$$f_Y(y) = \begin{cases} 1,0 < y < 1, \\ 0, 其他. \end{cases}$$

.....4分

(3) 因为
$$f(x,y) = f_X(x) f_Y(y)$$
, a.e., 所以 X 与 Y 相互独立......2分

(4)
$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$
.

当
$$0 < z < 1$$
时, $f_Z(z) = \int_0^z 2x dx = z^2$,

当
$$1 < z < 2$$
时, $f_z(z) = \int_{z-1}^{1} 2x dx = 2z - z^2$.

$$f_{Z}(z) = \begin{cases} z^{2}, & 0 < z < 1, \\ 2z - z^{2}, & 1 < z < 2, \\ 0, & \sharp \text{ th.} \end{cases}$$
4 β

四.

解: 由题设条件得到 E(X)=2, Var(X)=4;

······2 分 E(Y)=4, Var(Y)=3; E(Z)=4, Var(Z)=3. ······2 分 (1) $E(X-2Y+Z) = E(X)-2E(Y)+E(Z) = 2-2\times4+4=-2$. Var(X-2Y+Z) = Var(X) + Var(-2Y) + Var(Z) $+2 \cos(X,-2Y) + 2 \cos(X,Z) + 2 \cos(Z,-2Y)$ (2)= Var(X) + 4Var(Y) + Var(Z) $-4\operatorname{cov}(X,Y) + 2\operatorname{cov}(X,Z) - 4\operatorname{cov}(Z,Y)$ ······4 分 = Var(X) + 4Var(Y) + Var(Z)

$$= Var(X) + 4Var(Y) + Var(Z)$$

$$-4\rho_{XY}\sqrt{Var(X)\cdot Var(Y)} + 2\rho_{XZ}\sqrt{Var(X)\cdot Var(Z)} - 4\rho_{ZY}\sqrt{Var(Z)\cdot Var(Y)}$$

五. 解:设 X 为 50 台电话交换机在 1 分钟内受到的呼叫次数 Xi 每台电话交换机在 1 分钟内受到的呼叫次数,

$$X_1, \cdots X_{50}$$
相互独立且同分布, $E(X_i) = D(X_i) = 2$

$$\frac{X-100}{\sqrt{100}}$$
 近似服从 $N(0,1)$,

$$P(X \ge 120) = P(\frac{X - 100}{10} \ge 2) \approx 1 - \Phi(2) = 0.0228$$

六. 解: (1)由于 EX = Np, DX = Np(1-p)

$$\begin{cases} Np = \overline{X} \\ Np(1-p) + (Np)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \end{cases}$$
3 \(\frac{1}{2}\)

解得N和p的矩估计为

$$\hat{N} = \left[\frac{\bar{X}^2}{\bar{X} - \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \right], \quad \hat{p} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}{\bar{X}} \qquad \dots 3 \text{ f}$$

(2)总体 X 的分布律为 $P(X = x) = p^{x}(1-p)^{1-x}, x = 0,1$

似然函数为
$$L(p) = \prod_{i=1}^{n} P(X = x_i) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i} \qquad \dots 3$$
分

对数似然函数为

对p求导并令其为零,得

选取检验统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
3 分

构造拒绝域:
$$\chi^2 \ge \chi_\alpha^2(n-1)$$
 3 分

n=25, α =0.05, 查表得 $\chi^2_{\alpha}(n-1) = \chi^2_{0.05}(24) = 36.415$,

$$\overline{x} = 8$$
, $s = 1.8$, $\beta = 1.8$

故拒绝 H_0 ,可以认为成年人的每日睡眠时间的方差超过 2 h^2 .

······1 分