ME5204 - Finite Element Analysis deal-ii project : Mukesh V - ME18B156

$$S = 5, M = 6$$

1. Geometry: Hypershell

Dimensions: (0, 0) r = 22, R = 44, n_c = 25

Boundary: 1100 L: (5x - 6y)²

2. Weak form in last page

3. Number of active cells: 1600

Number of degrees of freedom: 1800

Number of CG Iterations: 104

4. Domain and Mesh

5. Final results

FEA Project - Weak Form Mutesh.r ME18B156

 $\nabla^{2}u + l = 0$, BC = 100(S+M), $l = (S_{N} - M_{y})^{2}$ Let $S = \{u \mid u : \overline{\lambda} \to IR, u \in H', u = BC \text{ on } [g]\}$ $W = \{w \mid w : \overline{\lambda} \to IR, u \in H', u = 0 \text{ on } [g]\}$

 $\int_{\Omega} \left(\sqrt{3^2 u + 1} \right) = 0$

Green's Identity: SJ.(WJU) dr = Sw Ju dr + SJW. Ju dr

 $\int_{\mathcal{R}} \overline{J} w \cdot \nabla u \, d\Omega = \int_{\mathcal{R}} w (Sx - My)^2 d\Omega + \int_{\mathcal{R}} \overline{J}(w \overline{J}u) \, d\Omega$

Gaus divergence theseem: $IV.F = IF.\bar{n} dI$ $\bar{n} = unit$ vectors in cartesian

 $\int_{\Sigma} \nabla w \cdot \nabla u \, d\Omega = \int_{\Sigma} w (s_{N} - M_{y})^{2} \, d\Omega + \int_{\Sigma} w (\bar{n} \cdot \nabla u) \, d\Gamma$

Weak Form

Since Ph = \$ (not defined in the problem)

I Dw. Du dr = [w(sx-My) dr