

Machine learning – Week 11

Wat was reinforcement learning?

- Wat is
 - State
 - Action
 - Environment
 - Agent
 - Reward
 - Return
 - Q-learning vs DQN?

Evolutionary algorithm

Wat is evolutietheorie?

Hoe doe je dit in Machine Learning

- 1. Begin met x varianten met random gewichten
- 2. Laat ze allemaal eens de gewenste taak doen
- 3. Selecteer de beste
 - Aantal afhankelijk van het aantal varianten
- 4. Maak nieuwe varianten op basis van de beste
 - Kleine variaties erop
- 5. Ga terug naar stap 2 en herhaal tot er geen verbetering meer is

Demo

■ Zie code in notebook

Genetic algorithm

Wat is een genetic algorithm

- Variant van evolutionary algorithm
 - Van de beste varianten kies je groepjes van 2 ouders
 - De kinderen zijn een mix van deze twee

Genetic algorithm vs evolutionary algorithm

- Genetic algorithm
 - Voorgesteld door binary string
 - Core set van operators
 - Crossover, selection, mutation
 - Vooral voor discrete en combinatorieke domein
 - Vooral focus op exploration

- Evolutionary algorithm
 - Flexibelere voorstelling
 - Meer operators mogelijk
 - Complexere problemen in algemenere domeinen
 - Balans tussen exploration en exploitation

Selection

- Selecteer de beste agents
 - Gebruik hiervoor de fitness van de agent (score, return)
- Belangrijk om niet enkel de beste te kiezen
 - Vooral in het begin
 - Kies dus ook met een bepaalde kans minder goede agents
 - Heel wat verschillende algoritmes mogelijk:
 - Roulette Wheel, Rank, Steady state, Tournament, ...

Crossover

PARENT CHROMOSOMES

0 0 1 1 1 1 1 0 0 1 0 0

OFFSPRING CHROMOSOMES

TWO POINT CROSSOVER

CROSSOVER POINTS

0	0	0	1	0	0
1	0	1	1	1	1

PARENT CHROMOSOMES

OFFSPRING CHROMOSOMES

UNIFORM CROSSOVER

0	0	0	1	0	0
1	0	1	1	1	1

PARENT CHROMOSOMES

OFFSPRING CHROMOSOMES

Mutation

- Doel is om meer variabiliteit in de populatie te krijgen
 - Lokale minima vermeiden
- Heel wat manieren om dit te doen
 - Flip bits in een binaire string
 - Permutaties
 - Wisselen twee waarden om

_

