Energy Balance and Climate

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #3: Friday January 10 2020

Looking for a Good Home

Basic Concepts

Vocabulary

- Energy, Heat:
 - Heat = energy flowing spontaneously from hot to cold
- **Power:** speed at which energy flows or transforms Power, Flux = Heat flow/Time Heat, Energy = Power × Time
- **Intensity:** Concentration of power Intensity = Power/Area Power = Intensity × Area

Temperature of a planet

• Basic principle:

Steady temperature if and only if Power_{in} = Power_{out}

- How can heat get in or out?
 - Electromagnetic radiation

Electromagnetic Waves

- Color and brightness
- Color:
 - Two ways to measure color:
 - Wavelength (λ)
 - Wavenumber (n = $1/\lambda$)
- Archer mostly uses wavenumber
 - Math is simpler that way
- Brightness:
 - Intensity (power/area, Watts/square meter)

Colors

Color	wavelengths	wavenumbers	
infrared	> 0.70 µm	< 14,000	
red	~ 0.70−0.64 µm	~ 14,000-16,000	
orange	~ 0.64-0.59 µm	~ 16,000-17,000	
yellow	~ 0.59−0.56 µm	~ 17,000-18,000	
green	~ 0.56-0.49 µm	~ 18,000-20,000	
blue	~ 0.49-0.45 µm	~20,000-22,000	
violet	~ 0.45-0.40 µm	~22,000-25,000	
ultraviolet	< 0.40 µm	> 25,000	

All you need to think about is shortwave vs. longwave radiation.

Shortwave and longwave:

- Shortwave:
 - Near-infrared, visible, ultraviolet
 - λ < 3μm
 - \blacksquare n > 3, 300cm⁻¹ (cycles per centimeter)
- Longwave:
 - Mid-infrared, far-infrared

 - -1 n < 3, 300cm⁻¹

More on this in the next class ...

4 Laws of Radiation

- 1. All objects continually radiate energy
- 2. Hotter objects are brighter
- 3. Hotter objects radiate at shorter wavelengths
- 4. Objects that are good absorbers are also good emitters
 - Black objects emit & absorb the most
 - Transparent and white objects emit & absorb the least

Blackbody Radiation

Blackbody Radiation

Emissivity (ε) measures how black something is:

- $\varepsilon = 1$ for perfectly black
- $\varepsilon = 0$ for perfectly white or transparent
- In between for gray.
- Black, white, and gray: ε is the same for all wavelengths.
- Colored objects: ε is a function of wavelength.
- For simplicity: start by assuming everything is black, white, or gray.

Remember: Good emitters are good absorbers

Fundamental rule: Temperature and emissivity determine radiation.

Heating Up: What Changes??

Heating Up: What Changes?

- Hotter temperature:
 - Brighter (greater intensity)
 - Bluer (greater wavenumber, shorter wavelength)

A curious thing:

A hot black object glows with color!

Total intensity = area under curve

Mathematical Description

Blackbody Radiation

Intensity (brightness):

Stefan-Boltzmann law I = $\epsilon \sigma T^4$ after Josef Stefan and Ludwig Boltzmann

- $\varepsilon = \text{emissivity}$
 - Different for different objects.
- σ = Stefan-Boltzmann constant.
- T = absolute (Kelvin) temperature.

Color: Peak wavenumber proportional to (Kelvin) temperature.

Helpful Hint:

Fourth power on a calculator: press the x² button twice.

Efficiency of Light Bulbs

Type of Bulb	Efficiency
Standard 40W	1.8%
Standard 60W	2.1%
Standard 100W	2.6%
Quartz Halogen	3.5%
Ideal black body @ 7000K	14.0%
Compact Fluorescent	8-12%
LED	20-44%

- 7000K is the optimal temperature for a black body to emit visible light, but it will melt every known substance.
- Standard light bulbs operate at around 2000–3300 K.

Calculating Earth's Temperature: Bare-Rock Model

Basics Steady Temperature

- Heat in must balance heat out
- Total Heat Flux (Power) = Area × Intensity
 - Total heat flux in (F_{in}):
 - Intensity depends on solar constant and albedo
 - Does not depend on earth's temperature
 - Total heat flux out (F_{out}):
 - Intensity depends on earth's temperature and emissivity
- Strategy:
 - 1. Figure out F_{in}.
 - 2. Figure out temperature T that makes $F_{out} = F_{in}$.

What is F_{in}?

- F_{in} = Area × Intensity absorbed
 - Intensity absorbed = $(1 \alpha) \times I_{in}$
 - \circ I_{in} = 1350 W/m²
 - \circ Average albedo $\alpha = 0.30$ (30% of sunlight is reflected)

What is area?

- Area = silhouette or shadow
- Circle: πr^2

What is F_{in}?

•
$$F_{in} = \pi r_{2Earth} \times (1 - \alpha)I_{in}$$

$$\pi r^2 = 1.3 \times 10^{14} \text{m}^2$$

$$\alpha = 0.30 \Rightarrow (1 - \alpha) = 0.70$$

$$I_{in} = 1350 \, \text{W/m}^2$$

•
$$F_{in} = 1.2 \times 10^{17} \text{ Watt}$$

■ 11,000 times total human energy production.

What is Fout?

- F_{out} = Area × I_{out}
 - $I_{out} = \varepsilon \sigma T^4$
 - \circ ϵ = 1 (blackbody)
 - $\sigma = 5.67 \times 10^{-8} \, \text{W/m}^2/\text{K}^4$
 - What is area?
 - \circ Sphere: $4\pi r^2$
- $F_{out} = 4\pi r_{2earth} \times \epsilon \sigma T^4$

Putting it all together

$$F_{out} = F_{in}$$

$$4\pi r^2 \times \epsilon \sigma T^4 = \pi r^2 (1 - \alpha) I_{in}$$

$$4\pi r^2 \times \epsilon \sigma T^4 = \pi r^2 (1 - \alpha) I_{in}$$

$$4εσT4 = (1 - α)Iin$$

$$T^4 = (1 - \alpha)I_{in}4\epsilon\sigma$$

$$T = \sqrt{(1 - \alpha)I_{in} 4\epsilon\sigma}$$

Temperature of Earth

- Steady Temperature:
 - Heat flux in must balance heat flux out $(F_{out} = F_{in})$.
 - Fin:
 - Does not depend on earth's temperature.
 - Depends on solar constant an
 - Fout:
 - Depends on earth's temperat

Helpful hint:

To take the fourth root on a calcula press the square-root key () twice

■ Tadjusts until heat out = heat in. $T = \sqrt[4]{(1 - α)I_{in}} 4εσ$

Temperature of Earth

$$T = \sqrt{(1 - \alpha)I_{in}4\epsilon\sigma}$$

Earth:

(Note: My numbers are slightly different from Archer's textbook)

- $I_{in} = 1350 \text{ W/m}^2$
- $\alpha = 0.30$
- $\varepsilon = 1$
- $\sigma = 5.67 \times 10^{-8} \, \text{W} / (\text{m}^2 \text{K}^4)$
- Calculate T:
- $T = 254 K = -19^{\circ} C = -2^{\circ} F$.

If the sun got 5% brighter, how much warmer would the earth become?

$$T = \sqrt{(1 - \alpha)I_{in}4\epsilon\sigma}$$

- Normal: $I_{in} = 1350 \text{ W/m}^2$:
 - T = 254 K
- 5% Brighter: $I_{in} = 1.05 \times 1350 \text{ W/m}^2 = 1418 \text{ W/m}^2$:
 - T = 257 K
- $\Delta T = 3 K = 6 \, ^{\circ} F$

Temperature of Earth

$$T = \sqrt{(1 - \alpha)I_{in} 4\epsilon\sigma}$$

Earth:

(Note: My numbers are slightly different from Archer's textbook)

- $I_{in} = 1350 \text{ W/m}^2$
- $\alpha = 0.30$
- E = 1
- $\sigma = 5.67 \times 10^{-8} \, \text{W} / (\text{m}^2 \text{K}^4)$
- $T = 254 K = -19^{\circ} C = -2^{\circ} F$.

How does this compare to Earth's actual temperature?

Radiative Temperature

- Satellites orbiting in space can measure longwave radiation from earth
- To the satellites, the earth looks very much like a blackbody at the bare-rock temperature (254 K).
- Thus, scientists generally call the bare-rock temperature the **radiative temperature** because it describes the radiation coming off the earth.
- However, the surface temperature of the earth is around 295 K = 71°F, which is significantly different from the radiative, or bare-rock, temperature.

The Terrestrial Planets

Earth 295 K

700 K

Terrestrial Planets

	Earth	Mars	Venus
Distance from sun	1 AU	1.5 AU	0.72 AU
1/Distance ²	1.00	0.44	1.9
Solar constant	1350 W/m ²	600 W/m ²	2604 W/m ²
Albedo	0.30	0.17	0.71
T _{bare rock}	254 K (– 2°F)	216 K (– 70°F)	240 K (– 27°F)
T _{surface}	295 K (71°F)	240 K (– 28°F)	700 K (800°F)
ΔΤ	41 K (74°F)	24 K (42°F)	460 K (828°F)