TWAS Analysis of Diversity Outbred Strain RNAseq Data

Dave Bridges

July 7, 2020

Contents

1	Purpose	1
2	Experimental Details	1
3	Raw Data	2
4	Analysis 4.1 Cholesterol Levels	6
5	TWAS with Cholesterol Levels for NCD	4
6	TWAS with Cholesterol Levels for HFD 6.1 TWAS Modification by Sex	7 1(
7	Comparason with mouse GWAS	10
8	Integrated TWAS Analysis	11
9	Pathway Analyses for HFD	26
10	Specific Associations	37
	10.1 Bile Acid Metabolism	36
	10.2 SCD1	4
	10.3 Serpina3k	
	10.4 Ugt1a5	
	10.5 Lasp1	
11	Session Information	49

1 Purpose

2 Experimental Details

The RNA expression data was downloaded from GSE72759 as a matrix file, and compared with genotypes from the Svenson-183 dataset.

3 Raw Data

```
library(readr) #loads the readr package
expression.filename <- "GSE72759_D0192_RNAseq_UpperQuartileNormalized_n21454genes_forGE0Submission.txt"
expression.data <- read_tsv(expression.filename, show_col_types = F) %>%
  dplyr::rename(ENSEMBL.ID=1)
genotype.filename <- 'Svenson-183_Svenson_DO-MegaMUGA-calls.csv'</pre>
genotype.data <- read_csv(genotype.filename,</pre>
                           col_types = cols(
  .default = col_character(),
 chr = col_factor(levels=NULL),
 pos = col_double()
))
phenotype.filename <- 'Svenson_HFD_DO_phenotype_V12.csv'</pre>
phenotype.data <- read_csv(phenotype.filename)</pre>
phenotype.data[phenotype.data=='-999999'] <- NA</pre>
mean.expression <-
  expression.data %>%
  dplyr::select(contains(phenotype.data$mouse.id))%>%
  rowMeans()
expression.data <-
   expression.data %>%
   filter(mean.expression>10)
```

4 Analysis

Only evaluated gene expression for genes with >10 TPM

4.1 Cholesterol Levels

Regressed cholesterol levels by diet and sex

Table 1: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.48	NA	225
\mathbf{F}	hf	NA	2.40	NA	198
\mathbf{M}	chow	NA	1.57	NA	224
\mathbf{M}	hf	NA	2.33	NA	193

```
library(broom)
lm(chol2~sex*diet, data=phenotype.data) %>%
   tidy %>%
   kable(caption="Global interactions between sex and diet")
```

Table 2: Global interactions between sex and diet

term	estimate	std.error	statistic	p.value
(Intercept)	78.67	1.88	41.887	0.000
sexM	17.80	2.68	6.648	0.000
diethf	34.64	2.75	12.615	0.000
sexM:diethf	-1.86	3.94	-0.474	0.636

Table 3: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.48	NA	225
F	\mathbf{hf}	NA	2.40	NA	198
M	chow	NA	1.57	NA	224
${\bf M}$	hf	NA	2.33	NA	193

```
library(broom)
lm(chol2~sex*diet, data=phenotype.data) %>%
```

```
tidy %>%
kable(caption="Global interactions between sex and diet")
```

Table 4: Global interactions between sex and diet

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	78.67	1.88	41.887	0.000
sexM	17.80	2.68	6.648	0.000
diethf	34.64	2.75	12.615	0.000
sexM:diethf	-1.86	3.94	-0.474	0.636

```
chol.lm <- lm(chol2~sex+diet, data=phenotype.data)
chol.lm.hf <- lm(chol2~sex, data=filter(phenotype.data, diet=='hf'))

cholesterol.data.hfd <-
phenotype.data %>%
    filter(!is.na(chol2)) %>%
    filter(diet=='hf') %>%
    mutate(adj.chol.hf=residuals(chol.lm.hf)+coefficients(chol.lm.hf)['(Intercept)'])
```

5 TWAS with Cholesterol Levels for NCD

```
library("org.Mm.eg.db")
library(purrr)
possible.lm <- possibly(.f = lm, otherwise=NULL) # to catch errors when we only have one sex and a cont
twas.data.ncd <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$mouse.id),
               names to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  dplyr::select(chol2,sex,mouse.id,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term=='chol2') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.all <-</pre>
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  dplyr::select(chol2,sex,mouse.id,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
```

```
group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term %in% c('chol2', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
              names_from = 'term',
              values from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol2/`estimate_(Intercept)`,
         std.error.rel = std.error chol2/`estimate (Intercept)`)
twas.data.ncd.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot longer(cols=one of(cholesterol.data.ncd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.int <-</pre>
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot longer(cols=one of(cholesterol.data.ncd$mouse.id),
               names to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2*sex, data = .x))) %>%
  filter(term=='chol2:sexM') %>%
  arrange(p.value) %>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd.int$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd.int$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd.all$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd.all$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
```

```
twas.data.ncd %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels")
```

Table 5: Top 10 liver TWAS assocations with cholesterol levels

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000089943	chol2	0.279	0.067	4.18	0.000	0.000	Ugt1a5
ENSMUSG00000006567	chol2	0.044	0.013	3.52	0.001	0.001	Atp7b
ENSMUSG00000028412	chol2	0.078	0.023	3.33	0.001	0.001	Slc44a1
ENSMUSG00000024981	chol2	0.326	0.100	3.27	0.002	0.002	Acsl5
ENSMUSG00000025809	chol2	-0.054	0.016	-3.26	0.002	0.002	Itgb1
ENSMUSG00000083863	chol2	1.847	0.572	3.23	0.002	0.002	NA
ENSMUSG00000026238	chol2	-0.078	0.024	-3.20	0.002	0.002	Ptma
ENSMUSG00000049940	chol2	0.048	0.016	3.09	0.003	0.003	Pgrmc2
ENSMUSG00000024066	chol2	0.105	0.034	3.08	0.003	0.003	Xdh
ENSMUSG00000090555	chol2	-1.371	0.446	-3.08	0.003	0.003	Gm8893

```
twas.data.ncd.int %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex")
```

Table 6: Top 10 liver TWAS assocations with cholesterol levels that are modified by sex

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG000000)71644chol2:sexM	-0.146	0.029	-5.06	0	0	Eef1g
ENSMUSG000000	024120chol 2 :sexM	-0.179	0.040	-4.43	0	0	Lrpprc
ENSMUSG000000	021595chol 2 :sexM	-0.112	0.026	-4.29	0	0	Nsun2
ENSMUSG000000	026895chol 2 :sexM	-0.053	0.012	-4.29	0	0	Ndufa8
ENSMUSG000000	010608chol 2 :sexM	-0.069	0.017	-4.15	0	0	Rbm25
ENSMUSG000000	069874chol 2 :sexM	0.221	0.054	4.12	0	0	Irgm2
ENSMUSG000000	34422chol 2 :sexM	0.128	0.031	4.08	0	0	Parp14
ENSMUSG000000	31877chol 2 :sexM	-0.081	0.021	-3.85	0	0	Ces2g
ENSMUSG000000	050043chol 2 :sexM	-0.072	0.019	-3.80	0	0	Tmx2
ENSMUSG000000	021610chol 2 :sexM	-0.082	0.022	-3.79	0	0	Clptm1l

6 TWAS with Cholesterol Levels for HFD

```
twas.data.hf <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID, one of(cholesterol.data.hfd$mouse.id))%>%
  pivot longer(cols=one of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term=='chol2') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf.all<-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full join(cholesterol.data.hfd,by='mouse.id') %>%
  group by (ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term %in% c('chol2', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
             names from = 'term',
              values_from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol2/`estimate_(Intercept)`*100,
         std.error.rel = std.error_chol2/`estimate_(Intercept)`*100)
twas.data.hf.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.int.hf <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
```

```
group_modify(~ broom::tidy(possible.lm(expression ~ chol2*sex, data = .x))) %>%
  filter(term=='chol2:sexM') %>%
  arrange(p.value) %>%
 mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf$symbol <- mapIds(org.Mm.eg.db,</pre>
                            keys=twas.data.hf$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.int.hf$symbol <- mapIds(org.Mm.eg.db,</pre>
                            keys=twas.data.int.hf$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.hf.all$symbol <- mapIds(org.Mm.eg.db,</pre>
                            keys=twas.data.hf.all$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.hf %>%
 head(10) %>%
 kable(caption="Top 10 liver TWAS a ssocations with cholesterol levels for HFD")
```

Table 7: Top 10 liver TWAS a ssocations with cholesterol levels for HFD

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000038	3366 chol2	-0.044	0.014	-3.21	0.002	0.002	Lasp1
ENSMUSG00000054	1469 chol2	0.018	0.006	3.19	0.002	0.002	Lclat1
ENSMUSG00000037	7266 chol2	0.070	0.023	3.10	0.003	0.003	Rsrp1
ENSMUSG00000030	0662 chol2	0.014	0.004	3.07	0.003	0.003	Ipo5
ENSMUSG00000025	5003 chol2	0.309	0.103	3.01	0.003	0.003	Cyp2c39
ENSMUSG00000000	0631 chol2	0.036	0.012	2.94	0.004	0.004	Myo18a
ENSMUSG00000022	2615 chol2	-0.058	0.020	-2.92	0.004	0.004	Tymp
ENSMUSG00000031	1762 chol2	0.165	0.057	2.90	0.005	0.005	Mt2
ENSMUSG00000024	1140 chol2	0.063	0.022	2.88	0.005	0.005	Epas1
ENSMUSG00000079	0012 chol2	0.235	0.082	2.86	0.005	0.005	Serpina3m

```
twas.data.int.hf %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD
```

Table 8: Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD

ENSEMBL.ID	term	estimate	$\operatorname{std.error}$	statistic	p.value	p.adj	symbol
ENSMUSG00000087579chol2:sexM		-0.141	0.038	-3.69	0.000	0.000	Hectd2os

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG000000	60407chol2:sexM	-0.763	0.222	-3.44	0.001	0.001	Cyp2a12
ENSMUSG000000	18102chol2:sexM	-0.084	0.024	-3.44	0.001	0.001	H2bc4
ENSMUSG000000	22010chol 2 :sexM	-0.304	0.091	-3.33	0.001	0.001	Tsc22d1
ENSMUSG000000	06529chol 2 :sexM	-0.670	0.211	-3.18	0.002	0.002	Itih1
ENSMUSG000000	26405chol 2 :sexM	-0.450	0.149	-3.03	0.003	0.003	C4bp
ENSMUSG000000	37780chol2:sexM	-0.119	0.039	-3.03	0.003	0.003	Mbl1
ENSMUSG000000	35540chol 2 :sexM	-2.960	0.983	-3.01	0.003	0.003	Gc
ENSMUSG000000	38521chol 2 :sexM	-0.326	0.112	-2.91	0.005	0.005	C1s1
ENSMUSG000000	30695chol 2 :sexM	0.034	0.012	2.79	0.007	0.007	Aldoa

```
write_csv(twas.data.hf,
          file="HFD TWAS Results.csv")
write_csv(twas.data.int.hf,
          file="HFD TWAS Interaction Results.csv")
twas.data.combined.hf <-</pre>
  left_join(twas.data.hf,
            filter(twas.data.int.hf, p.value<0.05), #only append interaction values when significant
             by=c('ENSEMBL.ID','symbol'),
             suffix = c('_main','_int'))
write_csv(twas.data.combined.hf,
          file="HFD TWAS Results - Combined.csv")
sig.twas.data.hf <-</pre>
    twas.data.hf %>%
  filter(p.adj<0.05)
sig.twas.data.ncd <-</pre>
  twas.data.ncd %>%
  filter(p.adj<0.05)
sig.twas.data.ncd$symbol %in% sig.twas.data.hf$symbol %>% table
## .
## FALSE TRUE
     106
sig.twas.data.ncd$genes %in% sig.twas.data.hf$genes %>% table
## 
library(venneuler)
vd.all <- venneuler(c("NCD"=dim(sig.twas.data.ncd)[1],</pre>
                      "HFHS"=dim(sig.twas.data.hf)[1],
                      "NCD&HFHS"=intersect(sig.twas.data.hf$symbol,sig.twas.data.ncd$symbol) %>% length
plot(vd.all, main="Transcripts Associating with Cholesterol")
```

Transcripts Associating with Cholesterol

Our analysis identified 113 nominally significant associations between expression of genes and adjusted cholesterol levels on a normal chow diet. Among those, 68 were positively correlated and 68 were negatively correlated with cholesterol levels.

6.1 TWAS Modification by Sex

By modeling the interactions between sex and expression on cholesterol levels, we identified **526** genes where the cholesterol/expression relationship was modified by sex in a nominally significant manner. This included 14 genes where the relationship was stronger in males, and 512 where it was stronger in females.

7 Comparason with mouse GWAS

```
chr11.genes <- c('Znrf3', 'Xbp1', 'Ccdc117', 'Ankrd36', 'Mrps24', 'Urgcp', 'Dbn1', 'Pgam2', 'Polm', 'Ae'
genes.of.interest <- c('Cyp7a1','Fasn','Ldlr','Hmgcr')
twas.data.ncd %>%
  filter(symbol %in% c(chr11.genes,genes.of.interest)) %>%
  kable(caption="Genes in the chromosome 11 interval with liver expression")
```

Table 9: Genes in the chromosome 11 interval with liver expression

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000002741	chol2	-0.014	0.008	-1.699	0.093	0.093	Ykt6
ENSMUSG00000004394	chol2	-0.008	0.006	-1.381	0.170	0.170	Tmed4
ENSMUSG00000041798	chol2	0.055	0.053	1.027	0.307	0.307	Gck
ENSMUSG00000020484	chol2	-0.064	0.079	-0.812	0.419	0.419	Xbp1
ENSMUSG00000021670	chol2	0.050	0.091	0.556	0.580	0.580	Hmgcr
ENSMUSG00000028240	chol2	-0.049	0.138	-0.355	0.724	0.724	Cyp7a1
ENSMUSG00000032193	chol2	-0.004	0.043	-0.090	0.928	0.928	Ldlr
ENSMUSG00000025153	chol2	0.050	0.636	0.078	0.938	0.938	Fasn

8 Integrated TWAS Analysis

```
combined.twas.data <-</pre>
  full_join(twas.data.ncd, twas.data.hf, by=c('ENSEMBL.ID','term','symbol'), suffix=c('_ncd','_hfd'))
combined.twas.data.all <-</pre>
  full_join(twas.data.ncd.all, twas.data.hf.all, by=c('ENSEMBL.ID','symbol'), suffix=c('_ncd','_hfd'))
library(ggplot2)
library(ggrepel)
ggplot(combined.twas.data,
       aes(y=estimate_hfd, x=estimate_ncd,
           xmin=estimate_ncd-std.error_ncd, xmax=estimate_ncd+std.error_ncd,
           ymin=estimate_hfd-std.error_hfd, ymax=estimate_hfd+std.error_hfd )) +
  geom_point() +
  #geom_errorbar() +
  #geom_errorbarh() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
  geom_label_repel(aes(label=symbol),
                    data = subset(combined.twas.data, abs(estimate_hfd) > 2|abs(estimate_ncd) > 2))
   40 =
   30 -
                                                  Alb
   20 -
estimate_hfd
                                                            Scd1
                                          Serpina1d
                                                       Serpina1e
                      Serpina1c
                                               Mup7
                              Mup10
                Serpina3k
                                              Mup9
  -10 -
                                      Mup2
                   -10
                                       0
                                                          10
                                                                             20
                                          estimate_ncd
sig.genes <- filter(combined.twas.data, p.adj_ncd<0.05&p.adj_hfd<0.05) %>% pull(symbol)
ggplot(combined.twas.data.all %>% filter(symbol %in% sig.genes),
       aes(y=estimate.rel_hfd, x=estimate.rel_ncd,
           xmin=estimate.rel_ncd-std.error.rel_ncd,
```

```
xmax=estimate.rel_ncd+std.error.rel_ncd,
    ymin=estimate.rel_hfd-std.error.rel_hfd,
    ymax=estimate.rel_hfd+std.error.rel_hfd )) +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
geom_hline(yintercept = 0, lty=2) +
geom_vline(xintercept = 0, lty=2) +
geom_text_repel(aes(label=symbol))
```



```
sig.genes <- filter(combined.twas.data, p.adj_ncd<0.05|p.adj_hfd<0.05) %>% pull(symbol)
ggplot(combined.twas.data.all %>% filter(symbol %in% sig.genes),
       aes(y=estimate.rel_hfd, x=estimate.rel_ncd,
           xmin=estimate.rel_ncd-std.error.rel_ncd,
           xmax=estimate.rel_ncd+std.error.rel_ncd,
           ymin=estimate.rel_hfd-std.error.rel_hfd,
           ymax=estimate.rel_hfd+std.error.rel_hfd )) +
  geom_point() +
  geom_errorbar() +
  geom_errorbarh() +
  geom_smooth() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
  xlim(-0.03,0.03) +
  ylim(-0.03,0.03) +
  geom_text_repel(aes(label=symbol)) +
  labs(y="On HFHS Diet (beta)",
```

```
x="On NCD Diet (beta)",
title="Associations of Liver Transcripts with Cholesterol",
subtitle="Significant for at least one diet")
```

Associations of Liver Transcripts with Cholesterol

Significant for at least one diet

Associations of Liver Transcripts with Cholesterol

Comparason with human GWAS

 $Downloaded\ human\ cholesterol\ associated\ alleles\ from\ https://t2d.hugeamp.org/phenotype.html?phenotype=CHOL$

 $library(biomaRt)\ human = useMart("ensembl",\ dataset = "hsapiens_gene_ensembl")\ mouse = useMart("ensembl",\ dataset = "mmusculus_gene_ensembl")$

mapping.data \leftarrow getLDS(attributes = c("hgnc_symbol"), filters = "hgnc_symbol", values = gwas.data\$Symbol , mart = human, attributesL = c("mgi_symbol"), martL = mouse, uniqueRows=T)

 $gwas.data <- full_join(gwas.data, mapping.data, by=c(`Symbol'=`HGNC.symbol')) \%>\% \ dplyr::filter(!(is.na(MGI.symbol))) \\$

#are gwas alleles enriched in correlation analyses

sig.twas.data <- filter(twas.data, p.value<0.05) #sig.twas.datasymbolMGI.symbol %>% table

combined.twas.data %>% filter(symbol %in% gwas.data\$MGI.symbol) %>% arrange(p.value) %>% head %>% kable(caption="Most significant TWAS association hits that are also nearby GWAS hits")

#checked if a TWAS was a GWAS hit twas.data.matched <- combined.twas.data %>% mutate(hGWAS.match=symbol %in% gwas.data\$MGI.symbol)

with(twas.data.matched, table(hGWAS.match,p.value<0.05)) %>% fisher.test() %>% tidy %>% kable(caption='Fisher test for enrichment of GWAS hits in liver TWAS genes')

glm(hGWAS.match~p.value, data=twas.data.matched, family='binomial') %>% tidy %>% kable(caption="Logistic regression of TWAS values against likilihood of a GWAS hit.")

```
```r
twas.list <- twas.data.ncd %>% arrange(-estimate) %>% pull(estimate)
names(twas.list) <- twas.data.ncd %>% arrange(-estimate) %>% pull(symbol)
twas.list <- sort(twas.list, decreasing = TRUE)</pre>
#twas.list <- twas.list[!(is.na(names(twas.list)))]</pre>
library(clusterProfiler)
go.twas.bp <- gseGO(geneList=twas.list,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.25,
 verbose=T,
 by='fgsea',
 eps=1E-25)
#enrichement
twas.data.ncd %>%
 filter(p.value<0.05) %>%
 pull(symbol) ->
 twas.sig
go.twas.bp.enrich <- enrichGO(gene=twas.sig,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.05)
go.twas.bp.enrich.simpl <- simplify(go.twas.bp.enrich,</pre>
 cutoff=0.7,
 by="p.adjust",
 select_fun=min)
library(enrichplot)
dotplot(go.twas.bp.enrich.simpl,
 showCategory=50,
 color='pvalue',
 font.size=8)
```

# Pathway Analyses for NCD



barplot(go.twas.bp.enrich.simpl,font.size=8)



cnetplot(go.twas.bp.enrich.simpl,

```
showCategory=100,
 node_label="gene",
 cex label gene=0.5)
 vitamin biosynthetic process
 vitamin metabolic process
 lysosomal transport
 protein localization to lysosome negative requision of response to endoplasmic reticulum stress cleaterol biosynthetic process
 protein targeting to lysosome primary alcoholical abolic process
 regulation of cholesterol efflux
 thyroid hormone metabolic process hormone metabolic process janic hydroxy compound biosynthetic process
negative regulation of amyloid-beta formation
 lipid homeostasis
 mitotic ONA replication
 regulation of lipid storage
 pancreas development
 negative regulation of peptidase activity
 size
pepticyl-tyrosine dephosphorylation involved in inactivation of protein kinase activity focal adhesion assembly.
 regulation of protein kinase B signaling | Certoxylic acid transmembrane transport
 regulation of local adhesion assembly
 monosaccharide biosynthetic process
 regulation of cell-substrate junction assembly
 dicarboxylic acid metabolic process
 regulation of cell-substrate junction organization organic cyclic compound catabolic process aromatic amino acid family catabolic process
 decxyr bose phosphate catabolic process
 transition metal ion transport
cnetplot(go.twas.bp.enrich.simpl,
 showCategory=100,
 node_label="category",
 cex_label_category=0.5)
```



heatplot(go.twas.bp.enrich.simpl)



library(ggupset)
upsetplot(go.twas.bp.enrich.simpl)



fatty acid metabolic process
small molecule catabolic process
sulfur compound metabolic process
carboxylic acid biosynthetic process
organic acid biosynthetic process
alcohol metabolic process
carboxylic acid catabolic process
nucleoside bisphosphate metabolic process
purine nucleoside bisphosphate metabolic process
ribonucleoside bisphosphate metabolic process







as.data.frame(go.twas.bp) %>% select("Description", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust kable(caption="NCD GO BP Analysis of TWAS Associations from GSEA")

Table 10: NCD GO BP Analysis of TWAS Associations from GSEA

Description	$\operatorname{setSize}$	${\bf enrichment Score}$	NES	pvalue	p.adjust

```
as.data.frame(go.twas.bp) %>%
write_csv(file="NCD TWAS GO-BP GSEA.csv")
as.data.frame(go.twas.bp.enrich.simpl) %>% select("Description", "GeneRatio", "Count", "pvalue", "p.adjust", kable(caption="NCD GO BP Analysis of TWAS Associations from Enrichment")
```

Table 11: NCD GO BP Analysis of TWAS Associations from Enrichment

•	Description	GeneRatio	Count	pvalue	p.adjust
GO:	sulfur compound metabolic process	13/109	13	0.000	0.000
0006790					
GO:	small molecule catabolic process	13/109	13	0.000	0.000
0044282					
GO:	carboxylic acid biosynthetic process	12/109	12	0.000	0.000
0046394					
GO:	organic acid biosynthetic process	12/109	12	0.000	0.000
0016053					

	Description	GeneRatioCo	ount	pvalue	p.adjust
GO: 0006631	fatty acid metabolic process	14/109	14	0.000	0.000
GO: 0033865	nucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0033875	ribonucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0034032	purine nucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0006066	alcohol metabolic process	11/109	11	0.000	0.000
GO: 0046395	carboxylic acid catabolic process	9/109	9	0.000	0.000
GO: 0019693	ribose phosphate metabolic process	11/109	11	0.000	0.000
GO: 0008202	steroid metabolic process	10/109	10	0.000	0.000
GO: 0043648	dicarboxylic acid metabolic process	6/109	6	0.000	0.000
GO: 0006622	protein targeting to lysosome	4/109	4	0.000	0.000
GO: 0062012	regulation of small molecule metabolic process	10/109	10	0.000	0.000
GO: 0019216	regulation of lipid metabolic process	10/109	10	0.000	0.000
GO: 0071616	acyl-CoA biosynthetic process	4/109	4	0.000	0.000
GO: 0042180	cellular ketone metabolic process	8/109	8	0.000	0.000
GO: 0010876	lipid localization	10/109	10	0.000	0.000
GO: 0009120	deoxyribonucleoside metabolic process	3/109	3	0.000	0.001
GO: 0061462	protein localization to lysosome	4/109	4	0.000	0.001
GO: 0010565	regulation of cellular ketone metabolic process	6/109	6	0.000	0.001
GO: 1901617	organic hydroxy compound biosynthetic process	7/109	7	0.000	0.001
GO: 0009410	response to xenobiotic stimulus	8/109	8	0.000	0.001
GO: 0120254	olefinic compound metabolic process	6/109	6	0.000	0.001
GO: 1905952	regulation of lipid localization	6/109	6	0.000	0.002
GO: 0006695	cholesterol biosynthetic process	4/109	4	0.000	0.002
GO: 0009164	nucleoside catabolic process	3/109	3	0.000	0.003
GO: 1901361	organic cyclic compound catabolic process	9/109	9	0.000	0.003
GO: 0006869	lipid transport	8/109	8	0.000	0.004

	Description	GeneRaticCou	nt	pvalue	p.adjust
GO:	cellular modified amino acid metabolic process	6/109	3	0.000	0.004
0006575 GO: 0044262	cellular carbohydrate metabolic process	7/109	7	0.000	0.004
GO: 0010038	response to metal ion	7/109	7	0.000	0.004
GO: 0009264	deoxyribonucleotide catabolic process	3/109	3	0.000	0.004
GO: 0030258	lipid modification	6/109	3	0.000	0.005
GO: 1901658	glycosyl compound catabolic process	3/109	3	0.000	0.005
GO: 0042445	hormone metabolic process	6/109	$\mathbf{j}$	0.000	0.005
GO: 0009072	aromatic amino acid family metabolic process	3/109	3	0.000	0.006
GO: 0042403	thyroid hormone metabolic process	3/109	3	0.000	0.008
GO: 0019439	aromatic compound catabolic process	8/109	3	0.000	0.008
GO: 0010675	regulation of cellular carbohydrate metabolic process	5/109	ó	0.000	0.010
GO: 1903573	negative regulation of response to endoplasmic reticulum stress	3/109	}	0.000	0.011
GO: 0055088	lipid homeostasis	5/109	5	0.001	0.013
GO: 0010874	regulation of cholesterol efflux	3/109	3	0.001	0.013
GO: 2001243	negative regulation of intrinsic apoptotic signaling pathway	4/109	1	0.001	0.013
GO: 0005996	monosaccharide metabolic process	6/109	6	0.001	0.013
GO: 0019217	regulation of fatty acid metabolic process	4/109	1	0.001	0.013
GO: 0036473	cell death in response to oxidative stress	4/109	1	0.001	0.013
GO: 0071466	cellular response to xenobiotic stimulus	5/109	5	0.001	0.013
GO: 1990264	peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activity	2/109	2	0.001	0.013
GO: 0008631	intrinsic apoptotic signaling pathway in response to oxidative stress	3/109	3	0.001	0.014
GO: 0000041	transition metal ion transport	4/109	1	0.001	0.016
GO: 0034310	primary alcohol catabolic process	2/109	2	0.001	0.017
GO: 0007041	lysosomal transport	4/109	1	0.001	0.019
GO: 0010883	regulation of lipid storage	3/109	3	0.001	0.020
GO: 0044270	cellular nitrogen compound catabolic process	7/109	7	0.001	0.021

	Description	GeneRatio	count	pvalue	p.adjust
GO: 0046700	heterocycle catabolic process	7/109	7	0.001	0.021
GO: 1902969	mitotic DNA replication	2/109	2	0.001	0.021
GO: 0016042	lipid catabolic process	6/109	6	0.002	0.025
GO: 0008654	phospholipid biosynthetic process	5/109	5	0.002	0.025
GO: 0009074	aromatic amino acid family catabolic process	2/109	2	0.002	0.025
GO: 0051893	regulation of focal adhesion assembly	3/109	3	0.002	0.027
GO: 0090109	regulation of cell-substrate junction assembly	3/109	3	0.002	0.027
GO: 0071243	cellular response to arsenic-containing substance	2/109	2	0.002	0.027
GO: 1905039	carboxylic acid transmembrane transport	4/109	4	0.002	0.028
GO: 0016052	carbohydrate catabolic process	4/109	4	0.002	0.028
GO: 0071241	cellular response to inorganic substance	5/109	5	0.002	0.030
GO: 0007584	response to nutrient	3/109	3	0.002	0.030
GO: 0015711	organic anion transport	6/109	6	0.002	0.031
GO: 0150116	regulation of cell-substrate junction organization	3/109	3	0.002	0.031
GO: 0009110	vitamin biosynthetic process	2/109	2	0.003	0.033
GO: 1902430	negative regulation of amyloid-beta formation	2/109	2	0.003	0.033
GO: 0071404	cellular response to low-density lipoprotein particle stimulus	2/109	2	0.003	0.038
GO: 1901657	glycosyl compound metabolic process	3/109	3	0.003	0.038
GO: 0010466	negative regulation of peptidase activity	5/109	5	0.003	0.039
GO: 0031998	regulation of fatty acid beta-oxidation	2/109	2	0.003	0.040
GO: 0090201	negative regulation of release of cytochrome c from mitochondria	2/109	2	0.003	0.040
GO: 0009060	aerobic respiration	4/109	4	0.004	0.041
GO: 0006766	vitamin metabolic process	3/109	3	0.004	0.044
GO: 0050860	negative regulation of T cell receptor signaling pathway	2/109	2	0.004	0.044
GO: 0042326	negative regulation of phosphorylation	6/109	6	0.004	0.045
GO: 0048041	focal adhesion assembly	3/109	3	0.004	0.045

	Description	GeneRaticCo	unt	pvalue	p.adjust
GO:	deoxyribose phosphate catabolic process	2/109	2	0.004	0.045
0046386					
GO:	response to arsenic-containing substance	2/109	2	0.004	0.045
0046685					
GO:	regulation of protein kinase B signaling	4/109	4	0.005	0.047
0051896		0.44.00	_		
GO:	response to oxidative stress	6/109	6	0.005	0.047
0006979		0./4.00	0		0.040
GO:	pancreas development	3/109	3	0.005	0.049
0031016		0./4.00	0		0.040
GO:	monosaccharide biosynthetic process	3/109	3	0.005	0.049
0046364		0.14.00	_		0.040
GO:	negative regulation of epidermal growth factor receptor	2/109	2	0.005	0.049
0042059	signaling pathway				

```
as.data.frame(go.twas.bp.enrich.simpl) %>%
 write_csv(file="NCD TWAS GO-BP Enrichment.csv")

steroid.enrichment <- as.data.frame(go.twas.bp) %>% filter(ID=='GO:0016126')
```

## 9 Pathway Analyses for HFD

```
twas.list <- twas.data.hf %>% arrange(-estimate) %>% pull(estimate)
names(twas.list) <- twas.data.hf %>% arrange(-estimate) %% pull(symbol)
twas.list <- sort(twas.list, decreasing = TRUE)</pre>
\#twas.list \leftarrow twas.list[!(is.na(names(twas.list)))]
library(clusterProfiler)
go.twas.bp <- gseGO(geneList=twas.list,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.25,
 verbose=T,
 by='fgsea',
 eps=1E-25)
#enrichement
twas.data.hf %>%
 filter(p.value<0.05) %>%
 pull(symbol) ->
 twas.sig
go.twas.bp.enrich <- enrichGO(gene=twas.sig,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.05)
```



barplot(go.twas.bp.enrich.simpl,font.size=8)









heatplot(go.twas.bp.enrich.simpl)



library(ggupset)
upsetplot(go.twas.bp.enrich.simpl)











as.data.frame(go.twas.bp) %>% dplyr::select("Description", "setSize", "enrichmentScore", "NES", "pvalue", "p kable(caption="HFD GO BP Analysis of TWAS Associations from GSEA")

Table 12: HFD GO BP Analysis of TWAS Associations from GSEA

	Description	$\operatorname{setSize}$	${\bf enrichment Score}$	NES	pvalue	p.adjust
GO:0051640	organelle localization	113	0.959	1.82	0	0

```
as.data.frame(go.twas.bp) %>%
write_csv(file="HFD TWAS GO-BP GSEA.csv")
as.data.frame(go.twas.bp.enrich.simpl) %>% dplyr::select("Description", "GeneRatio", "Count", "pvalue", "p.akable(caption="HFD GO BP Analysis of TWAS Associations from Enrichment")
```

Table 13: HFD GO BP Analysis of TWAS Associations from Enrichment

	Description	GeneRatio(	Count	pvalue	p.adjust
GO:	xenobiotic metabolic process	7/116	7	0.000	0.001
0006805					
GO:	sulfur compound metabolic process	10/116	10	0.000	0.001
0006790	11 1	1/110		0.000	0.000
GO:	cellular zinc ion homeostasis	4/116	4	0.000	0.002
0006882	callular biomenia amina matabalia process	G /11G	c	0.000	0.002
GO: 0006576	cellular biogenic amine metabolic process	6/116	6	0.000	0.002
00000070					

	Description	GeneRatioCoun	pvalue	p.adjust
GO: 0006584	catecholamine metabolic process	5/116 5	0.000	0.002
GO: 0009712	catechol-containing compound metabolic process	5/116 5	0.000	0.002
GO: 0055069	zinc ion homeostasis	4/116 4	0.000	0.002
GO: 0009410	response to xenobiotic stimulus	9/116 9	0.000	0.002
GO: 0097501	stress response to metal ion	3/116 3	0.000	0.002
GO: 0009308	amine metabolic process	6/116 6	0.000	0.002
GO: 0019373	epoxygenase P450 pathway	4/116 4	0.000	0.002
GO: 0006631	fatty acid metabolic process	10/116 10	0.000	0.002
GO: 0005996	monosaccharide metabolic process	8/116 8	0.000	0.002
GO: 0051346	negative regulation of hydrolase activity	9/116 9	0.000	0.002
GO: 0006690	icosanoid metabolic process	6/116 6	0.000	0.002
GO: 0042445	hormone metabolic process	7/116 7	0.000	0.003
GO: 0051402	neuron apoptotic process	8/116 8	0.000	0.004
GO: 0120254	olefinic compound metabolic process	6/116 6	0.000	0.004
GO: 0006457	protein folding	6/116 6	0.000	0.005
GO: 0070997	neuron death	9/116 9	0.000	0.005
GO: 0010466	negative regulation of peptidase activity	7/116 7	0.000	0.007
GO: 0071577	zinc ion transmembrane transport	3/116 3	0.000	0.007
GO: 0043524	negative regulation of neuron apoptotic process	6/116 6	0.000	0.007
GO: 0009636	response to toxic substance	5/116 5	0.000	0.008
GO: 1901214	regulation of neuron death	8/116 8	0.000	0.010
GO: 0006829	zinc ion transport	3/116 3	0.000	0.012
GO: 0045454	cell redox homeostasis	3/116 3	0.000	0.012
GO: 0000096	sulfur amino acid metabolic process	3/116 3	0.000	0.013
GO: 1901617	organic hydroxy compound biosynthetic process	6/116 6	0.000	0.017
GO: 0044282	small molecule catabolic process	7/116 7	0.000	0.018

	Description	GeneRatio	Count	pvalue	p.adjust
GO: 0051881	regulation of mitochondrial membrane potential	4/116	4	0.000	0.018
GO: 0052547	regulation of peptidase activity	8/116	8	0.000	0.018
GO: 0008202	steroid metabolic process	7/116	7	0.000	0.018
GO: 1902686	mitochondrial outer membrane permeabilization involved in	3/116	3	0.000	0.019
GO:	programmed cell death alcohol metabolic process	7/116	7	0.001	0.020
0006066 GO:	cellular response to metal ion	5/116	5	0.001	0.023
0071248 GO:	response to peptide hormone	7/116	7	0.001	0.023
0043434 GO:	cellular amino acid metabolic process	6/116	6	0.001	0.023
0006520 GO:	amine biosynthetic process	3/116	3	0.001	0.023
0009309 GO:	cellular biogenic amine biosynthetic process	3/116	3	0.001	0.023
0042401 GO:	ethanol catabolic process	2/116	2	0.001	0.027
0006068 GO:	retina vasculature morphogenesis in camera-type eye	2/116	2	0.001	0.027
0061299 GO:	aspartate family amino acid catabolic process	2/116	2	0.001	0.031
0009068 GO:	Golgi ribbon formation	2/116	2	0.001	0.031
0090161 GO:	regulation of membrane depolarization	3/116	3	0.001	0.031
0003254 GO:	glucose homeostasis	6/116	6	0.001	0.034
0042593 GO:	apoptotic mitochondrial changes	4/116	4	0.001	0.037
0008637 GO:	negative regulation of mitochondrion organization	3/116	3	0.001	0.037
0010823 GO:	negative regulation of reactive oxygen species metabolic	3/116	3	0.001	0.037
2000378 GO:	process autophagic cell death	2/116	2	0.002	0.041
0048102 GO:	negative regulation of chemotaxis	3/116	3	0.002	0.044
0050922 GO:	dopamine biosynthetic process	2/116	2	0.002	0.044
0042416 GO:	negative regulation of collagen metabolic process	2/116	2	0.002	0.048
0010713 GO:	negative regulation of collagen biosynthetic process	2/116	2	0.002	0.048
0032966					

as.data.frame(go.twas.bp.enrich.simpl) %>%
 write\_csv(file="HFD TWAS GO-BP Enrichment.csv")

```
steroid.enrichment <- as.data.frame(go.twas.bp) %>% filter(ID=='GO:0016126')
```

# 10 Specific Associations

Fbp1 was one of the most highly associated results on NCD.

```
gene <- 'Fbp1'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
library(ggplot2)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```





```
glance
A tibble: 1 x 12
 r.squ~1 adj.r~2 sigma stati~3 p.value
 df logLik
 AIC
 BIC devia~4 df.re~5
 <dbl>
 <dbl> <dbl>
 <dbl>
 <dbl> <dbl> <dbl> <dbl> <dbl> <
 <dbl>
 0.176
 0.159 20.6
 10.2 9.96e-5
 2 -434. 876. 886. 40231.
... with 1 more variable: nobs <int>, and abbreviated variable names
 1: r.squared, 2: adj.r.squared, 3: statistic, 4: deviance, 5: df.residual
expression.data %>%
 filter(ENSEMBL.ID == gene) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) -> fbp.hf.data
```

#### 10.1 Bile Acid Metabolism

CYP7A1 is the rate limiting step for de novo bile acid biosynthesis

```
gene <- 'Cyp7a1'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```



Table 14: Summary associations of Cyp7a1 and cholesterol on chow

term	estimate	std.error	statistic	p.value
(Intercept)	76.191	4.881	15.611	0.000
expression	-0.027	0.076	-0.355	0.724
sexM	15.954	4.518	3.531	0.001

Table 15: Summary associations of Cyp7a1 and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	100.060	6.108	16.381	0.000
expression	-0.026	0.103	-0.255	0.799
sexM	13.262	5.565	2.383	0.018

#### 10.2 SCD1

SCD1 is the gene with the biggest effect size on NCD

```
gene <- 'Scd1'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```



Table 16: Summary associations of Scd1 and cholesterol on chow

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	68.093	3.775	18.04	0.000
expression	0.007	0.003	2.74	0.007
sexM	17.118	4.105	4.17	0.000

```
library(MASS)
rlm(data=gene.chow.data, chol2 ~ expression + sex) %>%
 tidy %>%
 kable(caption="Summary associations of Scd1 and cholesterol on chow, using robust linear models")
```

Table 17: Summary associations of Scd1 and cholesterol on chow, using robust linear models

term	estimate	std.error	statistic
(Intercept)	65.735	3.908	16.82
expression	0.009	0.003	3.30
sexM	16.623	4.250	3.91

Table 18: Summary associations of Scd1 and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	80.778	4.398	18.37	0
expression	0.008	0.001	6.40	0
sexM	18.589	4.874	3.81	0

#### 10.3 Serpina3k

Serpina3k is the gene with the biggest inverse effect size on NCD

```
gene <- 'Serpina3k'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```



Table 19: Summary associations of Serpina3k and cholesterol on chow

term	estimate	std.error	statistic	p.value
(Intercept)	82.390	4.331	19.02	0.000
expression	-0.007	0.003	-2.35	0.021
sexM	30.226	7.160	4.22	0.000

```
library(MASS)
rlm(data=gene.chow.data, chol2 ~ expression + sex) %>%
 tidy %>%
 kable(caption="Summary associations of Serpina3k and cholesterol on chow, using robust linear models"
```

Table 20: Summary associations of Serpina3k and cholesterol on chow, using robust linear models

term	estimate	std.error	statistic
(Intercept)	81.991	4.226	19.40
expression	-0.008	0.003	-2.74
sexM	32.690	6.985	4.68

Table 21: Summary associations of Serpina3k and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	111.314	4.516	24.65	0
expression	-0.014	0.003	-4.46	0
sexM	38.748	7.554	5.13	0

### 10.4 Ugt1a5

Ugt1a5 is the gene with the most significant effect on ncd





Table 22: Summary associations of Ugt1a5 and cholesterol on chow

term	estimate	std.error	statistic	p.value
(Intercept)	55.979	5.277	10.61	0 0
expression	0.556	0.133	4.18	
sexM	30.772	5.197	5.92	

```
library(MASS)
rlm(data=gene.chow.data, chol2 ~ expression + sex) %>%
```

```
tidy %>% kable(caption="Summary associations of Ugt1a5 and cholesterol on chow, using robust linear models")
```

Table 23: Summary associations of Ugt1a5 and cholesterol on chow, using robust linear models

term	estimate	std.error	statistic
(Intercept)	54.556	5.512	9.90
expression	0.586	0.139	4.22
sexM	30.864	5.428	5.69

Table 24: Summary associations of Ugt1a5 and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	80.915	6.12	13.22	0
expression	0.436	0.12	3.62	0
sexM	28.021	6.49	4.32	0

## 10.5 Lasp1

Lasp1 is the gene with the most significant effect on HFD



Table 25: Summary associations of Lasp1 and cholesterol on chow

term	estimate	std.error	statistic	p.value
(Intercept)	75.387	10.515	7.170	0.000
expression	-0.022	0.394	-0.056	0.955
sexM	16.663	5.225	3.189	0.002

```
library(MASS)
rlm(data=gene.chow.data, chol2 ~ expression + sex) %>%
 tidy %>%
 kable(caption="Summary associations of Lasp1 and cholesterol on chow, using robust linear models")
```

Table 26: Summary associations of Lasp1 and cholesterol on chow, using robust linear models

term	estimate	std.error	statistic
(Intercept)	77.547	11.157	6.951
expression	-0.167	0.418	-0.399
sexM	18.260	5.544	3.294

Table 27: Summary associations of Lasp1 and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	156.11	11.333	13.78	0
expression	-2.42	0.455	-5.31	0
sexM	31.96	6.032	5.30	0

#### 11 Session Information

```
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
##
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/c/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
```

```
[1] stats4
 stats
 graphics grDevices utils
 datasets methods
[8] base
##
other attached packages:
##
 [1] MASS_7.3-58.1
 ggupset_0.3.0
 enrichplot_1.16.2
 [4] clusterProfiler 4.4.4 ggrepel 0.9.2
##
 ggplot2 3.4.0
 [7] venneuler 1.1-3
 rJava 1.0-6
 purrr_1.0.1
[10] org.Mm.eg.db_3.15.0
 AnnotationDbi_1.58.0
 IRanges_2.30.1
[13] S4Vectors_0.34.0
 Biobase_2.56.0
 BiocGenerics_0.42.0
[16] broom_1.0.2
 readr_2.1.3
 dplyr_1.0.10
[19] tidyr_1.2.1
 knitr_1.41
loaded via a namespace (and not attached):
 [1] fgsea_1.22.0
 ggtree_3.4.4
##
 colorspace_2.0-3
##
 [4] ellipsis_0.3.2
 qvalue_2.28.0
 XVector_0.36.0
##
 [7] aplot_0.1.9
 rstudioapi_0.14
 farver_2.1.1
##
 [10] graphlayouts_0.8.4
 bit64_4.0.5
 scatterpie_0.1.8
 [13] fansi 1.0.3
 codetools 0.2-18
 splines 4.2.2
 GOSemSim_2.22.0
 polyclip_1.10-4
##
 [16] cachem_1.0.6
##
 [19] jsonlite 1.8.4
 GO.db 3.15.0
 png_0.1-8
##
 [22] ggforce_0.4.1
 compiler_4.2.2
 httr_1.4.4
 [25] backports_1.4.1
 lazyeval_0.2.2
 assertthat_0.2.1
##
 cli_3.6.0
##
 [28] Matrix_1.5-3
 fastmap 1.1.0
 htmltools 0.5.4
##
 [31] tweenr 2.0.2
 tools 4.2.2
[34] igraph_1.3.5
 gtable_0.3.1
 glue_1.6.2
 [37] GenomeInfoDbData_1.2.8 reshape2_1.4.4
 DO.db_2.9
##
 [40] fastmatch_1.1-3
 Rcpp_1.0.9
 vctrs_0.5.1
##
 [43] Biostrings_2.64.1
 ape_5.6-2
 nlme_3.1-161
##
 [46] ggraph_2.1.0
 xfun_0.36
 stringr_1.5.0
 [49] lifecycle_1.0.3
 DOSE_3.22.1
 zlibbioc_1.42.0
##
 [52] scales_1.2.1
 tidygraph_1.2.2
 vroom_1.6.0
##
 [55] hms_1.1.2
 parallel_4.2.2
 RColorBrewer_1.1-3
##
 [58] yaml_2.3.6
 memoise_2.0.1
 gridExtra_2.3
 [61] downloader_0.4
 ggfun_0.0.9
 yulab.utils_0.0.6
##
 [64] stringi 1.7.12
 RSQLite_2.2.20
 highr 0.10
##
 [67] tidytree_0.4.2
 BiocParallel_1.30.4
 GenomeInfoDb_1.32.4
 [70] rlang 1.0.6
 pkgconfig 2.0.3
 bitops 1.0-7
##
 [73] evaluate_0.19
 lattice_0.20-45
 treeio_1.20.2
 labeling_0.4.2
##
 [76] patchwork_1.1.2
 shadowtext_0.1.2
 tidyselect_1.2.0
##
 [79] bit_4.0.5
 plyr_1.8.8
 [82] magrittr 2.0.3
 R6 2.5.1
 magick 2.7.3
 [85] generics 0.1.3
 DBI_1.1.3
 pillar_1.8.1
##
##
 [88] withr_2.5.0
 mgcv_1.8-41
 KEGGREST_1.36.3
##
 [91] RCurl_1.98-1.9
 tibble_3.1.8
 crayon_1.5.2
 [94] utf8_1.2.2
 tzdb_0.3.0
 rmarkdown_2.19
[97] viridis_0.6.2
 data.table_1.14.6
 grid_4.2.2
[100] blob_1.2.3
 digest_0.6.31
 gridGraphics_0.5-1
[103] munsell_0.5.0
 viridisLite_0.4.1
 ggplotify_0.1.0
```