Einführung in die Datenanalyse Introduction to Data Science

Max Heimel, MSc

Prof. Dr. Volker Markl

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

Last Week.

- How to classify Data:
 - □ Structure (Structured vs. Unstructured).
 - □ Dimensionality (Univariate vs. Bivariate vs. Multivariate).
 - Variable Types (Qualitative vs. Quantitative).
- Exploratory Data Analysis:
 - First Step of the Data Analysis Process:
 - "Listen to the data": Inspect data using tools from statistics and data visualization.
 - Used to identify interesting data aspects & important attributes.
 - Descriptive Statistics:
 - Central Tendency: Mean, Mode, Median.
 - Variability: Range, Interquartile Distance, Variance.
 - Correlation.
 - Visualization Methods:
 - Visualize Distributions: Histograms, Boxplots.
 - Visualize Correlation: Scatterplots, Scatter Matrices.

The Data Analysis Process.

Course Overview

- 1. What is Machine Learning?
- 2. Supervised Learning
- 3. Unsupervised Learning

Today: Modelling Data.

What is a model?

- A mathematical representation of "interesting" data aspects.
 - \Box Typically some (mathematical) formula, configured by a parameter vector $\vec{\theta}$.
 - ☐ The actual shape of the formula / parameter vector depends on the model.

- Note: Our focus is on statistical models, not data models (ER, MD)!
 - However, there are also analysis methods to induce data models ☺
- Modelling ("Fitting"): Find the model parameters that best describe the data.

What is Machine Learning?

- Wikipedia: "Machine Learning explores the construction and study of algorithms that can learn from and make predictions on data."
 - $\quad \Box \quad$ For us: Methods to find the optimal model configuration(parameter vector) $\hat{ heta}$.
 - \Box Data points are (typically) assumed to be numeric vectors, i.e. from \mathbb{R}^d .
 - "Applied (statistical) optimization theory"

Supervised vs. Unsupervised Learning

Supervised Learning:

- \square Data is labeled: $D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)\}.$
- Goal: Predict the labels of unseen data points.
- Examples:
 - Spam Classification (Label: Is this Email message Spam?).
 - Credit Score Prediction (Label: Credit Score of the applicant).
 - Voice Recognition (Label: Word that is currently being spoken).
 - Face Detection (Label: Does this pixel belong to a face or not?)

Unsupervised Learning:

- ☐ **Goal:** Describe and model the intrinsic structure of the data.
- Examples:
 - Identify groups of similar customers.
 - Which products were frequently bought together?
 - (Lossy) compression of data / models.

Machine Learning Problems

	Supervised Learning	Unsupervised Learning
Quantitative Data	Regression	Clustering Dimensionality Reduction
Qualitative Data	Classification Recommendation	Association Analysis Sequence Mining

Course Overview

- 1. What is Machine Learning?
- 2. Supervised Learning
- 3. Unsupervised Learning

Regression

- Assume that labels are (continuous) numeric quantities: $\forall i: y_i \in \mathbb{R}$.
 - Note: Labels could also be vectors, but we'll assume scalars for simplicity.
- The goal of regression analysis is to fit a *predictor function* $\hat{y} \colon \mathbb{R}^d \to \mathbb{R}$ to the data, minimizing the estimation error.
 - Also called "Line Fitting".
 - \square Methods primarily differ in their choice for the shape of f.

Examples:

- Science: Gauss and Legendre used Regression Analysis to identify orbital parameters of comets from measurements of their positions.
- □ Finance: Prediction of Housing / Share Prices.
- Business Analysis: Resource & Demand Prediction.

Linear Regression

- One of the simplest regression models, assumes linear dependence.

 - \Box Goal: Pick w_0 , ..., w_d that best describe the dataset.

Training Linear Regression Models

- Training a model means to find the parameter vector $\vec{\theta}$ that minimizes some error metric $\mathcal{L}: \mathbb{R}^2 \to \mathbb{R}$ ("loss function") over the predictions.
 - □ Typically: Quadratic error $\mathcal{L}(\hat{y}, y) = (\hat{y} y)^2$.

Estimation error for the i-th data point.

$$\left[egin{array}{c} \hat{w}_0 \ \hat{w}_1 \end{array}
ight] = \mathrm{argmin}_{w_0,w_1} rac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 \cdot x_1^{(i)} - y^{(i)}
ight)^2
ight]$$

Average estimation error across the dataset.

- How to solve this equation?
 - \square Closed-Form Solution: $egin{bmatrix} \hat{w}_0 & \hat{w}_1 \end{bmatrix}^T = ig(X^T Xig)^{-1} X^T ec{y}$
 - ☐ Gradient-Based Numerical Solvers: Gradient Descent, Conjugate Gradient, L-BFGS,
 - \square Rule-of-Thumb: High-dimensional \rightarrow Numerical, Low-dimensional \rightarrow Closed-Form.

(Non-)Linear Regression

- Despite the name, linear regression can also be used to train non-linear models:
 - Project data points into a higher-dimensional space by adding non-linear dimensions ("features") during pre-processing.

$$\left[egin{array}{c} x_1 \ x_2 \end{array}
ight]$$

Expanded Data Point (6D)

Original Data Point (2D)

$$\hat{y} = w_1 \cdot x_1 + w_2 \cdot x_2$$

$$\hat{y} = w_0 + w_1 \cdot x_1 + w_2 \cdot x_1^2 + w_3 \cdot x_2 + w_4 \cdot x_2^2 + w_5 \cdot x_1 x_2$$

- □ Typical model: Polynomials (weighted sum of exponentials of the original variables).
 - → Allows to approximate arbitrary functions at high degrees (Taylor Expansion).

- We generated labelled training data for: $y = x^3 + 2x^2 x 4$:
 - 1. Pick a random value for x from [-3:2].
 - 2. Use the polynomial to compute the label.
 - 3. Add some random (normal) noise to the label to simulate uncertain data.

- Let's train a naïve linear regression model on the data!
 - ☐ Train directly on the X-values, don't perform any feature expansion.

$$\Box \hat{y} = w_0 \cdot x$$

Training Error: **5.707**

- → No good match.
- → Model underfits" data.

- Alright, let's make our model more complex!
 - □ Train on X-Values and their squares (2nd degree polynomials).

Training Error: **2.351**

→ Better, but let's keep going!

- Let's match the data's inherent complexity.
 - □ Train on X-Values, their squares and their cubes (3rd degree polynomials).

$$\hat{y} = w_0 + w_1 \cdot x + w_2 \cdot x^2 + w_3 \cdot x^3$$

Training Error: **0.314**

Trained Model:

$$\hat{y} = 1.09 \cdot x^3 + 2.14 \cdot x^2 -1.29 \cdot x - 4.0$$

→ Very good match ©

What if we keep increasing complexity?

- Increasing model complexity gives the training algorithm more "freedom" (free parameters) to fit to the data.
 - □ → Increasing model complexity generally decreases the training error.

Well ...

Let's take a look at the trained model for a polynomial of degree 16:

$$\hat{y} = w_0 + w_1 \cdot x + w_2 \cdot x^2 + \dots + w_{15} \cdot x^{15} + w_{16} \cdot x^{16}$$

Training Error: **0.122**

- Complex models indeed fit training data very well (low training error).
- However: They typically do not generalize! They overfit the data.

How to detect Overfitting.

Never evaluate your model quality based on the training data!

- Instead:
 - Split your data into two disjoint sets: Training Set & Test Set.
 - □ Train your model on the Training Set.
 - Then evaluate the model quality based on the Test Set (= Test Error).

Prevent Overfitting.

- There are two principle strategies:
 - 1. Pick the optimal model based on the test error.
 - 2. Use model regularization:
 - Idea: Penalize "overly complex" models during model optimization.
 - For instance, LR with L2-Regularization ("Ridge Regression"):

$$\hat{ heta} = \mathop{\mathrm{argmin}}_{w_0, w_1} \left(rac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 \cdot x_1^{(i)} - y^{(i)}
ight)^2 + rac{\lambda \cdot \left| \left| ec{ heta}
ight|_2^2
ight)}{2}
ight)$$

Linear Regression

Regularization term

- Penalizes models with extreme parameters ("long" parameter vectors $\vec{\theta}$).
- In practice: Combine both strategies!

A Typical Supervised Machine Learning Pipeline

Classification

- Assume that labels are qualitative.
 - Labels indicate that points belong to a certain class.
- The goal of classification is to find a predictor function ("classifier") that can predict the class (label) for unseen data points.
 - Binary classifier: Separates two classes (Usual case).
 - Multi-class classifier: Separates between multiple classes.

Examples:

- □ Optical Character Recognition: Identify which character a given image represents.
- □ Medicine: Automatic analysis of medical samples to diagnose illnesses.
- □ Video Analysis: Categorize videos according to their genre.
- Security: Predict whether a given entity has malicious intent.

Classification Application: Handwritten Digits

$$4 \rightarrow 4 \ 2 \rightarrow 2 \ 3 \rightarrow 3$$

 $4 \rightarrow 4 \ 9 \rightarrow 9 \ 0 \rightarrow 0$
 $5 \rightarrow 5 \ 7 \rightarrow 7 \ 1 \rightarrow 1$
 $9 \rightarrow 9 \ 0 \rightarrow 0 \ 3 \rightarrow 3$
 $6 \rightarrow 6 \ 7 \rightarrow 7 \ 4 \rightarrow 4$

Hyperplane Classifiers.

- Wide class of binary classification methods:
 - \Box Typical assumption: Binary labels from $\{0,1\}$ ("positive" & "negative" class).
 - □ Idea: Find a separating Hyperplane ("decision boundary") between the two classes:
 - Hyperplane: Linear structure that separates a d-dimensional space into two half-spaces.
 (1D Data → Point, 2D Data → Line, 3D Data → Plane).
 - Data point lies left of the Hyperplane: Assign label 0.
 Data point lies right of the Hyperplane: Assign label 1.
 - In a d-dimensional space, a hyperplane is the set of points fulfilling the following equation:

$$- w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_d \cdot x_d - w_0 = 0$$

- Parameter vector: $\vec{\theta} = [w_0, w_1, ..., w_d]^T$ ("Normal vector").
- Since $\vec{\theta}$ is a normal vector of the hyperplane, the sign of $\vec{\theta}^T \vec{x}$ tells us on which side of the hyperplane a point lies: Negative left, positive right.

Non-Linear Hyperplanes

- As with linear regression, hyperplane classifiers are not limited to learning simple, planar decision boundaries.
 - □ Same idea as before: Add non-linear features to increase model complexity.
- Example: Enclosed data.
 - Decision boundary is a circle.
 - → Cannot be represented as a 2D-hyperplane.
 - ☐ However, if we project our data as follows ...

- ... our model can express "circular" hyperplanes!
 - Circle equation: $(x_1 a)^2 + (x_2 b)^2 = r^2$

Logistic Regression

- Widely used hyperplane classifier:
 - □ Assigns \vec{x} : To class 0 if: $h(\vec{\theta}^T \vec{x}) < 0.5$. To class 1 if: $h(\vec{\theta}^T \vec{x}) > 0.5$.
 - □ Where $h(x) = \frac{1}{1+e^{-x}}$ is the so-called sigmoid (or logistic) function.
 - Interpretation: $h(\vec{\theta}^T\vec{x})$ is the probability that \vec{x} belongs to class 1.
 - Allows to assign a confidence to the classification.

lacksquare Training: Pick the hyperplane $\widehat{ heta}$ that maximizes classification confidence.

... for training points with y=1.

... for training points with y=0.

$$\hat{ heta} = \operatorname{argmin}_{\vec{ heta}} - rac{1}{n} \sum_{i=1}^n \left[y^{(i)} \cdot \log \left(\operatorname{h} \left(\vec{ heta}^T \vec{x}^{(i)}
ight)
ight) + \left(1 - y^{(i)}
ight) \cdot \log \left(1 - \operatorname{h} \left(\vec{ heta}^T \vec{x}^{(i)}
ight)
ight)
ight]$$

fully correct classification (confidence = 1.0) $\rightarrow -\infty$ unclear classification (confidence = 0.5) $\rightarrow \sim$ 0.3 fully incorrect classification (confidence = 0.0) \rightarrow 0

No closed-form solution, but can be solved by (gradient-based) numeric solvers.

What about multi-class classification?

- Most classification methods only support binary classification.
 - Luckily, we can easily turn any binary classifier into a multi-class one.
- One-vs-all Classification:
 - □ For a dataset with k classes, train k classifiers.
 - Each classifier trains one class against all other classes.

□ To classify a data point, simply run all k classifier and assign the class of the one that gives the most confident positive assignment.

Classifier Evaluation - Accuracy.

- Straightforward evaluation metric: Classifier Accuracy.
 - Fraction of correct classifications in the test set:

$$Accuracy = \frac{\# Correctly \ predicted \ points}{\# Points \ in \ test \ set}$$

- Problematic metric if the label distribution is skewed!
 - Example: Classifier to identify whether a patient has cancer.
 - Luckily, cancer is rare (Skewed distribution).
 - → Test set contains 996 cancer-free patients and 4 cancer patients.
 - □ **Stupid Classifier:** Always returns "No Cancer":
 - Will classify all 1,000 patients in the test set as "No Cancer" → Correct for 996 patients.
 - → Accuracy is 99,6% ... even though the classifier is completely useless (and dangerous)!
- You should (typically) avoid reporting classification accuracy!

Classifier Evaluation - Precision & Recall.

Compute the "Confusion Matrix" for the test set (count for each field):

		0 <u>Actual Label</u> 1	
Predicted Label 1	0	True Negative (TN)	False Negative (FN)
	1	False Positive (FP)	True Positive (TP)

- Based on this, we can compute more meaningful quality metrics:
 - \Box Precision: $\frac{TP}{TP+FP}$ "How often was a predicted 1-label actually correct?"
 - \square Recall: $\frac{TP}{TP+FN}$ "What fraction of test data points with a 1-label was discovered?"
- Good classifiers have to offer both high precision & high recall.
 - $\ \square$ A good evaluation metric is the F1-Score: $2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$

Course Overview

- 1. What is Machine Learning?
- 2. Supervised Learning
- 3. Unsupervised Learning

Clustering

- Problem Definition:
 - Given a set of points, with a notion of distance between points, partition the points into some number of clusters, so that:
 - Members of a cluster are close/similar to each other.
 - Members of different clusters are dissimilar.
- lacksquare Data is typically assumed to be numeric vectors, i.e. from \mathbb{R}^d .
 - If not: Feature extraction or custom distance metric.
- Applications:
 - □ Visualize / Discover the internal structure of the data.
 - □ Preprocessing step for other methods (e.g. select good features for a classifier).
 - Actual Data Analysis Task (e.g.: Detect Market Segments, Compute Ideal Antenna Placements, Identify Similar Documents or Articles, ...).

Clustering

Clustering Application: Image Segmentation.

K-Means Clustering

- Iterative algorithm to partition a set of (numeric) data points $D = \{\vec{x}_1, ..., \vec{x}_n\}$ into a pre-defined number (k) of clusters $\{S_1, ..., S_k\}$.
 - \Box Each Cluster S_i is defined as a subset of the points from D.
 - Clusters are disjoint, i.e. each point is assigned to exactly one cluster.
 - \square Each Cluster S_i has a centroid $\vec{\mu}_1$, which is the "average" of the points in the cluster.
 - \Box The parameter vector $\vec{\theta}$ of a K-Means model are the cluster assignments.
- Goal is to find cluster assignments that minimize the total distance of the data points to their nearest cluster centroid:
 - $\Box \quad \vec{\theta} = argmin_{S_1, \dots, S_k} \sum_{i=1}^k \sum_{\vec{x} \in S_i} ||\vec{x} \mu_i||^2$
- K-Means does not have a unique solution, there are local minima!
 - □ Different initialization strategies lead to different clustering results.

Step 2:

Assign all data points to the cluster of their nearest centroid.

$$S_i = \{\vec{x}_p : \forall j \| \vec{x}_p - \vec{\mu}_i \| \le \| \vec{x}_p - \vec{\mu}_j \| \}$$

Assign all data points to the cluster of their nearest centroid.

$$S_i = \{\vec{x}_p : \forall j \ \|\vec{x}_p - \vec{\mu}_i\| \le \|\vec{x}_p - \vec{\mu}_j\|\}$$

Recompute centroids by moving them to the center of their assigned points.

$$\forall i : \vec{\mu}_i = \frac{1}{|S_i|} \sum_{\vec{x} \in S_i} \vec{x}$$

Step 3:

Recompute centroids by moving them to the center of their assigned points.

$$\forall i : \vec{\mu}_i = \frac{1}{|S_i|} \sum_{\vec{x} \in S_i} \vec{x}$$

How to choose k? (I)

- K-Means requires the user to provide the number of clusters.
 - Picking k has a huge impact on the clustering quality
 - Number too low: Underfitting. Number too high: Overfitting.

- Problem: Unsupervised learning, we can't use the test error.
 - □ → No straight-forward way to pick k algorithmically.

How to choose k? (II)

1. If you have prior knowledge, use it!

 Sometimes, we know the inherent structure of the data (e.g.: Clustering two groups of persons in a social experiment), allowing us to plug in the actual value of k.

2. Use the "elbow"-method:

- Run K-Means for multiple values of k,
 plotting the achieved cost for each clustering.
- Then pick the "elbow", i.e. the value of k at which the decrease in cost slows down.

3. Use the test error of dependent learning steps:

- Clustering is often used as pre-processing for other supervised learning methods (e.g. to find discriminating features).
- □ In this case, pick k based on how well it performs for the latter method.

This was just a very, very brief overview ...

... so, if you want to learn more:

- Take one (or multiple) of the following Bachelor courses ...
 - "Kognitive Algorithmen" (Prof. Müller).
 - "Künstliche Intelligenz: Grundlagen & Anwendungen" (Prof. Opper).
 - "Data Warehousing & Business Intelligence" (Prof. Markl).
- ... wait until you start your Master ...
 - "Machine Learning" (Prof. Müller).
 - "Machine Intelligence" (Prof. Obermayer).
 - □ "Advanced Information Modelling 3" (Prof. Markl).
- ... or take the (excellent) Online Course by Prof. Andrew Ng (Stanford):
 - □ https://www.coursera.org/learn/machine-learning/home/info

Outlook & Overview

Today we discussed:

- □ What is a Model?
- What is Machine Learning?
- What is the difference between Supervised & Unsupervised Learning?
- What are Regression, Classification, Clustering & Association Rule Mining?
- How do Linear & Logistic Regression work?
- What to keep in mind when evaluating models?
- □ How does K-Means Clustering work?

Next week:

- Feature Extraction Analyzing qualitative data (text, images, videos).
- Important tools for Data Scientists.