Fundamentos de Lógica

Unidade II – Operações Lógicas

Introdução

As operações que são realizadas com as proposições são denominadas **operações lógicas**, estas operações iram determinar os **valores lógicos** de **proposições compostas**, já que iremos aprender o que cada **conector lógico** ira influenciar sobre estas proposições.

Existe uma **operação lógica** que pode ser realizada em uma **proposição simples** ou em uma **proposição composta** que é a **negação**. Está operação logica será melhor detalhada a seguir.

Negação (~)

A **negação** é uma operação também conhecida como "não", pois a função desta **operação logica** é negar o que a proposição esta afirmando. Por exemplo, se V(p) = V, então a negação da proposição p será F.

A **notação** utilizada para representar a **operação logica** de negação é o **símbolo ~,** então a representação completa seria o **símbolo ~** mais **a letra proposicional** que você queria negar, por exemplo: p = V; ~p = F. Este exemplo se lê da seguinte maneira "Não p".

O valor lógico da negação é representado pela seguinte tabela verdade:

p	~p
V	F
F	V

Exemplos de Negação

Exemplos:

1. p:
$$3 + 3 = 6$$
 (V) e $\sim p$: $3 + 3 \neq 6$ (F) :: $V(\sim p) = \sim V(p) = \sim V = F$.

- 2. r: 8 < 4 (F) $e \sim r: 8 > 4$ (V) .: $V(\sim r) = \sim V(r) = \sim F = V$.
- 3. q: Paris é a capital da França (V) e ~q: Paris não é a capital da França (F) ∴ V(~q) = ~V(q) = ~V = F.

Conjunção (^)

A **Conjunção** também conhecida como "e" é uma **operação logica** realizada entre duas proposições, representadas por "p e q", cujo o **valor lógico** é **verdade(V)** quando ambas as proposições forem verdadeiras e **falsa(F)** caso contrario. A **tabela verdade** da conjunção é a seguinte:

p	q	p^q
V	V	V
V	F	F
F	V	F
F	F	F

$$V^V=V;$$

$$V^F=F$$
;

Disjunção (v)

A **Disjunção** também conhecida como "ou" é uma **operação logica** realizada entre duas proposições, representadas por "p ou q", cujo o **valor lógico** é **verdade(V)** quando houver qualquer valor verdadeiro entre as proposições simples e **falsa(F)** quando ambas as proposições forem falsas. A **tabela verdade** da disjunção é

a seguinte:

p	q	p^q
V	V	V
V	F	V
F	V	V
F	F	F

Ou Seja:

 $V_VV=V$;

VvF=V;

FvV=V

FvF=F

Disjunção Exclusiva(v)

A **Disjunção Exclusiva** como o próprio nome diz é uma variação da **Disjunção** comum. Assim como no português a palavra "ou" pode ter mais de um significado. Na **Disjunção Exclusiva** é considerada **Falsa** quando ambas **proposições** simples forem verdadeiras. As outra combinações continuam iguais a **Disjunção**

comum.

p	q	p <u>v</u> q
V	V	F
V	F	V
F	V	V
F	F	F

$$V\underline{v}V=F;$$

$$V\underline{v}F=V$$
;

$$F_{\underline{v}}V=V$$

$$F\underline{v}F=F$$

Condicional (\rightarrow)

A **Condicional** é representada por "se p então q" é uma **operação logica** realizada entre duas proposições, cujo o **valor lógico** é **falso(F)** quando o valor de p for verdadeiro e q for falso e **verdadeiro(V)** nos demais casos. A **tabela verdade** da disjunção é a seguinte:

p	q	$p{ ightarrow}q$
V	V	V
V	F	F
F	V	V
F	F	V

$$V \rightarrow V = V;$$

$$V \rightarrow F = F;$$

$$F \rightarrow V = V$$

$$F \rightarrow F = V$$

Bicondicional (\leftrightarrow)

A **Bicondicional** é representada por "p se e somente se q" é uma **operação logica** realizada entre duas proposições, cujo o **valor lógico** é **verdadeiro(V)** quando ambos os valores de p e q forem iguais e **falso(F)** nos demais casos. A **tabela verdade** da disjunção é a seguinte:

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

$$V \leftrightarrow V=V;$$

$$V \leftrightarrow F = F;$$

$$F \leftrightarrow V = V$$

$$F \leftrightarrow F = V$$

Bibliografia

ALENCAR FILHO, E. Iniciação à Lógica Matemática, 21. ed. São Paulo: Nobel 2002.

ABE, J. M. Introdução à Lógica Para Ciência da Computação. 2. ed. São Paulo: Artes e Ciência, 2002.