Problem set 13.

Approximation algorithms.

- 1. Consider the bin packing problem with the following weights: 6 elements each with weight $1/2 + \varepsilon$, 6 elements each with weight $1/4 + 2 \cdot \varepsilon$, 6 with weight $1/4 + \varepsilon$, and 12 with weight $1/4 2 \cdot \varepsilon$. (Here ε is a very small quantity, say, $\varepsilon = 1/1000$.)
 - (a) What is the optimal solution in this case?
 - (b) How many bins does FFD (First Fit Decreasing) use?
- 2. (a) What is the decision problem version of BINPACKING?
 - (b) Show that this decision problem is NP-complete.
- 3. Let $t \ge 2$ be a whole number and assume that in the BINPACKING problem, weight of every element is smaller than $\frac{1}{t}$ (that is, $s_i < \frac{1}{t}$ for all $i \in 1, \ldots, n$). Design an approximation algorithm that runs in polynomial time and that uses at most $\frac{t}{t-1} \cdot OPT + 1$ bins.