Ridge and Lasso

L. Insolia, F. Chiaromonte (special thanks to J. Di Iorio)

May 10th 2022

Contents

ntroduc	ction																			
Librar	ies	 	 		 											 				
Data		 	 		 											 				
Penalize	_																			
Ridge		 	 		 											 				
Lasso		 	 		 											 				

Introduction

Libraries

We are going to use:

- glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models
- tidyverse: Easily Install and Load the 'Tidyverse'
- caret: Classification and Regression Training
- ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics

```
library(glmnet) # ridge and lasso for GLMs
library(tidyverse) # data manipulation and visualization
library(caret) # statistical learning techniques
library(ggplot2) # plots
```

Data

We will use the **Body Fat dataset** (which is available in the **Datasets folder** of our course).

The data concerns a sample of 252 men, and contains 15 variables:

- 1. Density of the body, determined from underwater weighing
- 2. Percentage of body fat, calculated as a function of the Density according to Siri's equation: (495/Density) 450.
- 3. Indicator for Age group (binary; 0: up to 45 years, 1: over 45)
- 4. Weight (lbs)
- 5. Height (inches)
- 6. Neck circumference (cm)

- 7. Chest circumference (cm)
- 8. Abdomen circumference (cm)
- 9. Hip circumference (cm)
- 10. Thigh circumference (cm)
- 11. Knee circumference (cm)
- 12. Ankle circumference (cm)
- 13. Biceps circumference (cm)
- 14. Forearm circumference (cm)
- 15. Wrist circumference (cm)

We want to understand if we can reliably describe and predict body fat percentage on the basis of these variables, using regression. For age, we only have a binary indicator separating men below and above 45 years. The body measurements, on the other hand, are all continuous variables. Please see the data description file for more details.

```
df <- read.table('BODY_FAT.TXT', header=TRUE)</pre>
names(df)
##
    [1] "Density"
                      "SiriBF."
                                  "Over45"
                                               "Weight"
                                                            "Height"
                                                                         "NeckC"
    [7] "ChestC"
                      "AbdomenC" "HipC"
                                               "ThighC"
                                                            "KneeC"
                                                                         "AnkleC"
  [13] "BicepsC"
                     "ForearmC" "WristC"
We want to predict "SiriBF." using the other features, aside from "Density". So we drop the "Density" column.
df \leftarrow df[,-1]
```

Penalized regression

We will perform ridge/lasso penalization through the ${f glmnet}$ package. Let us identify predictors and response variable

```
# getting the predictors
x_var <- data.matrix(df[,-1])  # NOTE: glmnet requires a matrix structure
# getting the response variable
y_var <- df[,"SiriBF."]</pre>
```

Let's have a look a the glmnet function:

```
help(glmnet)
```

Note that:

- x: input matrix
- y: response variable
- α is the elastic-net mixing parameter with range [0, 1]. Namely. $\alpha = 1$ is the lasso (default) and $\alpha = 0$ is the ridge.
- standardize is a logical flag for x variable standardization, prior to fitting the model sequence. The coefficients are always returned on the original scale. Default is standardize=TRUE.

Ridge

To perform ridge regression, we run glmnet with $\alpha=0$. The λ 's sequence is internally computed by the package itself – although a user-defined sequence can be provided as a lambda argument.

```
ridge <- glmnet(x_var, y_var, alpha=0)
summary(ridge)</pre>
```

##		Length	Class	Mode
##	a0	100	-none-	${\tt numeric}$
##	beta	1300	${\tt dgCMatrix}$	S4
##	df	100	-none-	${\tt numeric}$
##	dim	2	-none-	${\tt numeric}$
##	lambda	100	-none-	${\tt numeric}$
##	${\tt dev.ratio}$	100	-none-	${\tt numeric}$
##	nulldev	1	-none-	${\tt numeric}$
##	npasses	1	-none-	${\tt numeric}$
##	jerr	1	-none-	${\tt numeric}$
##	offset	1	-none-	logical
##	call	4	-none-	call
##	nobs	1	-none-	${\tt numeric}$

The summary is quite different than the one for linear regression, since ridge regression requires the tuning of λ . The code above fits a ridge regression for each λ value, and we have access to each of these model estimates.

We can plot the panalization path as follows:

```
dim(ridge$beta)
```

```
## [1] 13 100
plot(ridge, xvar="lambda")
```


We can automate the task of finding the optimal lambda value using the **cv.glmnet** function. This performs a k-fold cross-validation for glmnet, produces a plot, and returns "optimal" λ values.

```
cv_ridge <- cv.glmnet(x_var, y_var, alpha = 0)
cv_ridge</pre>
```

```
##
## Call: cv.glmnet(x = x_var, y = y_var, alpha = 0)
##
## Measure: Mean-Squared Error
##
## Lambda Measure SE Nonzero
## min 0.6794 23.40 3.197 13
## 1se 2.0748 26.45 3.492 13
```

Two particular values of λ are highlighted: the minimum (min) and the largest value of lambda such that error is within 1 standard error of the minimum (1se).

```
cv_ridge$lambda.min
## [1] 0.6793884
cv_ridge$lambda.1se
```

[1] 2.074754

We can visualize them in this way:

```
plot(cv_ridge)
```


Let us see again how the regression coefficients change by modifying λ , highlighting the min and 1se values:

```
lbs_fun <- function(fit, offset_x=1, ...) {
    L <- length(fit$lambda)
    x <- log(fit$lambda[L])+ offset_x
    y <- fit$beta[, L]
    labs <- names(y)
    text(x, y, labels=labs, cex=0.75, ...)
}
plot(ridge, xvar = "lambda", label=T)
lbs_fun(ridge)
abline(v=log(cv_ridge$lambda.min), col = "red", lty=2)
abline(v=log(cv_ridge$lambda.lse), col="blue", lty=2)
legend(x = "bottomright",
    legend = c("lambda min", "lambda lse"),
    lty = c(2, 2),
    col = c("red", "blue"))</pre>
```


Let's re-fit the model and see the estimates associated to the minimum λ .

```
min_ridge <- glmnet(x_var, y_var, alpha=0, lambda= cv_ridge$lambda.min)
coef(min_ridge)</pre>
```

```
## 14 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) -7.71880407
## Over45
                0.95953292
## Weight
               -0.01619205
## Height
               -0.22630209
## NeckC
               -0.31617445
## ChestC
                0.14889642
## AbdomenC
                0.58565111
## HipC
               -0.03875702
## ThighC
                0.08495378
## KneeC
                0.06923480
## AnkleC
               -0.08687724
## BicepsC
                0.09165335
## ForearmC
                0.22347815
## WristC
               -1.27272327
```

We can use this model to make predictions on the training set.

```
# Make predictions on the training data
predictions <- min_ridge %>% predict(x_var) %>% as.vector()
# Model performance metrics
data.frame(
```

```
RMSE = RMSE(predictions, y_var),
Rsquare = R2(predictions, y_var)
)
```

```
## RMSE Rsquare
## 1 4.494532 0.714938
```

Be careful though! We are making predictions and assessing the goodness of fit based on training data. Is it the best choice? Do you have any other suggestions?

Lasso

Let us now perform Lasso regression using the **glmnet** package. We follow the same approach as in Ridge regression, but set $\alpha = 1$.

```
lasso <- glmnet(x_var, y_var, alpha=1)
summary(lasso)</pre>
```

##		Length	Class	Mode
##	a0	77	-none-	numeric
##	beta	1001	${\tt dgCMatrix}$	S4
##	df	77	-none-	numeric
##	dim	2	-none-	numeric
##	lambda	77	-none-	numeric
##	${\tt dev.ratio}$	77	-none-	numeric
##	nulldev	1	-none-	numeric
##	npasses	1	-none-	numeric
##	jerr	1	-none-	numeric
##	offset	1	-none-	logical
##	call	4	-none-	call
##	nobs	1	-none-	numeric

Let's have a look at the selection path:

```
plot(lasso, xvar="lambda")
```


Once again, we need to tune the sparsity parameter λ . We use k-fold cross-validation through the **cv.glmnet** function.

```
cv_lasso <- cv.glmnet(x_var, y_var, alpha = 1)</pre>
cv_lasso
##
## Call: cv.glmnet(x = x_var, y = y_var, alpha = 1)
##
## Measure: Mean-Squared Error
##
##
       Lambda Measure
                          SE Nonzero
## min 0.0447
                20.07 1.966
                                  11
## 1se 0.2873
                21.99 2.185
                                   5
plot(cv_lasso)
```


Also here, it outputs the min and the 1se λ . As expected, the number of non-zero coefficients (which is printed on top of the previous plot) is lower than the one for Ridge regression.

Let us see again how the regression coefficients change by modifying λ :

```
lbs_fun <- function(fit, offset_x=1, ...) {
    L <- length(fit$lambda)
    x <- log(fit$lambda[L])+ offset_x
    y <- fit$beta[, L]
    labs <- names(y)
    text(x, y, labels=labs, cex=0.75, ...)
}

plot(lasso, xvar = "lambda", label=T)
lbs_fun(lasso)
abline(v=log(cv_lasso$lambda.min), col = "red", lty=2)
abline(v=log(cv_lasso$lambda.1se), col="blue", lty=2)
legend(x = "bottomright",
    legend = c("lambda min", "lambda 1se"),
    lty = c(2, 2),
    col = c("red", "blue"))</pre>
```


Let us rebuilt the model and compare the estimated coefficients for min and 1se λ .

```
min_lasso <- glmnet(x_var, y_var, alpha=1, lambda= cv_lasso$lambda.min)
se_lasso <- glmnet(x_var, y_var, alpha=1, lambda= cv_lasso$lambda.1se)

lasso_mat <- cbind(coef(min_lasso), coef(se_lasso))
colnames(lasso_mat) <- c("min", "1se")
lasso_mat

## 14 x 2 sparse Matrix of class "dgCMatrix"</pre>
```

```
## 14 x 2 sparse Matrix of class "dgCMatrix"
##
                         min
## (Intercept) -14.40453587 -7.3351790
## Over45
                              0.1121805
                -0.07939885
## Weight
                -0.11654360 -0.1982956
## Height
## NeckC
                -0.39602242 -0.1176232
## ChestC
## AbdomenC
                 0.95582980
                              0.6842130
                -0.16050576
## HipC
## ThighC
                 0.06428259
## KneeC
                 0.03321073
## AnkleC
                 0.03394848
## BicepsC
                 0.14198097
## ForearmC
                 0.33930802
## WristC
                -1.18720126 -1.0155818
```

We can use this model to make predictions on the training set.

```
# Make predictions on the training data
predictions <- se_lasso %>% predict(x_var) %>% as.vector()
# Model performance metrics
data.frame(
   RMSE = RMSE(predictions, y_var),
   Rsquare = R2(predictions, y_var)
)

## RMSE Rsquare
## 1 4.508947 0.7109238
```