Modular Meta-learning: Variants of MAML

Reference - Modular Meta-Learning with Shrinkage

In general $w = \{\theta_1 \dots \theta_M\}$ e.g., different layers of a network. Variants of MAML learn a prior for w that is adapted for each task; but do all layers need to adapt? E.g. if only one layer is adapted, perhaps it could be trained for many more steps per task without risk of over-fitting. This paper learns to differently adapt each layer: assuming each θ_m is normally distributed as $\mathcal{N}(\phi_m, \sigma_m^2)$. Layers with small or zero σ_m^2 will not adapt. To learn ϕ, σ^2 we take Bayesian view:

$$p(\mathbf{w}^{1:T}, \mathcal{D}|\phi, \sigma^2) = \prod_{t=1}^T \prod_{m=1}^M \mathcal{N}(\theta_m^t | \phi_m, \sigma_m^2) \prod_{t=1}^T p(\mathcal{D}_t |_t)$$
 using the MAML approach to update ϕ, σ^2 :

the inner loop computes:

$$\hat{\theta}^{t}(\phi, \sigma^{2}) \equiv \arg\min_{\mathbf{w}^{t}} \left[-\log p(\mathcal{D}_{t}^{Train} | \mathbf{w}^{t}) - \log p(\mathbf{w}^{t} | \phi, \sigma^{2}) \right]$$

& the outer loop minimizes $\frac{1}{T} \sum_{t=0}^{T} -\log p(\mathcal{D}_{t}^{Test}|\hat{\mathbf{w}}^{t}).$

Model-based Meta-learning

Reference - Learning to Learn using Gradient Descent

Early paper that introduces the idea of inputting a *dataset* to a recurrent network as a sequence with labels. A 'supervisory procedure' - gradient descent - is used to train such a network: basically, an LSTM is used as a meta-learner taking datasets $D_k = \{(x_1^k, y_0^k) \dots (x_n^k, y_{n-1}^k)\}$ as input with targets $\{y_1^k \dots y_n^k\}$ The network learns to predict y_{n+1} for any new unlabeled labeled input $(x_{n+1}, -)$

 $h_t, c_t = LSTM([x_t, y_{t-1}], h_{t-1}, c_{t-1})$. Predict $y_i = g(x_i, LSTM([x_i, y_k], h_k, c_k))$, k = i - 1 for $x_i \in D_{Train}$, and k = n for $x_i \in D_{Test}$ Update parameters of LSTM and g using gradient of loss over D_{Train}^*

Model-based Meta-learning (cont) 1

Reference - Contitional Neural Processes

Training examples are passed through an MLP to generate representations; class-specific representations are aggregated and passed to a second classification MLP concatenated with query examples (from both test and train). Entire network is trained end-to-end on multiple tasks. Recent paper and seems to beat many baselines.

Spring 2021

20 / 56

Model-based Meta-learning (cont) 2

Reference - Meta-Learning with Memory-Augmented Neural Networks

Datasets are presented as sequences, $\{(x_t, y_{t-1})\}$ as in the RNN-based approach. A 'memory-augmented LSTM/FF network' is the meta-learner.

Network updates rows of a memory matrix M with keys $\mathbf{k}_t = \phi(x_t)^T$: $M_t = M_{t-1} + \mathbf{w}^w \mathbf{k}_t$; $\mathbf{w}^w = \mathbf{w}$ rite weights Retrieved memory $r_t = \mathbf{w}^r M_t$ used to predict \hat{y}_t using a feedforward layer. (read weights $\mathbf{w}^r = Softmax(M_t \cdot k_t)$) usage weights: $\mathbf{w}^u_t = \gamma \mathbf{u}^u_{t-1} + \mathbf{w}^v_t + \mathbf{w}^w_t$ used to compute \mathbf{w}^w as follows:

'least used' $w^{lu}=1$ for t smallest elements of \mathbf{w}^u , 0 otherwise $\mathbf{w}^w_t=\delta w^r_{t-1}+(1-\delta)\mathbf{w}^{lu}_{t-1}$; prior to writing the least used row of M is zeroed. Read/write to 'memory' - we can view this as a 'neural Turing machine'.

Gautam Shroff Meta-learning Spring 2021 21/56