

Cátedra: MECANICA APLICADA

MECANICA Y MECANISMOS

UNIDAD 5: Correas trapezoidales

Trabajo practico A5.B:

DIMENSIONAMIENTO DE TRANSMISIONES POR CORREAS DENTADAS

Problema 1

Para la resolución se utiliza el Catalogo técnico del fabricante GATES – versión 2014

Cátedra: MECANICA APLICADA
MECANICA Y MECANISMOS

Dimensionar la transmisión utilizando correas dentadas para una transmisión primaria de una motocicleta, que parte desde un motor de combustión interna bicilindrico de 22 HP a una velocidad de 1700 rpm. La correa dentada se encarga de mover la caja de velocidades, la cual gira con una velocidad de 680 rpm. La distancia de los ejes es de 420 mm. Se impone una limitación en el diámetro de las poleas a un máximo de 8 in. Se espera un funcionamiento estacional estimado como promedio en 4 hs/dia. Selecciona la correa adecuada y las poleas. Utilizar un factor de servicio de 1,5.

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

Variables de entrada:

P: Potencia a transmitir

n₁: Velocidad del motor

n₂: Velocidad de la caja reductora

C: distancia entre centros

Tipo de servicio

Variables de salida:

- Potencia de diseño Pc
 (pagina 27- en función del motor, máquina conducida y hs de funcionamiento por día)
- 2) Paso de la correa (pagina 25- en función de la velocidad de la polea mas rápida y de potencia de diseño)
- 3) Poleas y longitud de correa (desde pág.. 28 a 61 en función de rel. de velocidad, distancia entre centros, y limitaciones de diámetros de poleas)
- 4) Verificación velocidad tangencial (máxima velocidad recomendada por el fabricante: 6500 pie/min)
- 5) Ancho de la correa (desde pág. 62 a 70 - en función de diámetro polea menor, velocidad, rel. de velocidad y longitud de correa)
- 6) Calculo del tensionado (desde pág. 106 a 108 - en función los parámetros seleccionados anteriormente)

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

Maquina conducida:

Caja engranajes

Velocidad: 680 rpm

Horas de trabajo: 4 hs/dia Diam. Max de polea: 8 in Maquina conductora:

Motor comb. interna bicilindrico 22 HP

Velocidad: 1700 rpm

Distancia entre ejes 420 mm Condición de func: normal

1. Potencia de diseño Pc

Se obtiene de afectar la potencia de la transmisión (de la erogada por el motor o la consumida por la maquina) por el factor de servicio:

$$P_c = P \cdot f_{cp}$$

$$P_c = 22HP \cdot 1,5 = 33HP$$

El factor de servicio deberá seleccionarse de tabla pag. 27

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

Tabla pag. 27

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

2. Paso de la correa

Gráfica pag. 25.

Cátedra: MECANICA APLICADA **MECANICA Y MECANISMOS**

Poleas y longitud de correa (desde pág. 28 a 61)

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$
 $i = \frac{1700rpm}{680rpm} = 2.5$

$$C_{in} = \frac{C}{25,4} = \frac{420mm}{25,4} = 16,53in$$

8mm PITCH BELTS

Drive Selection Table

		ocket nations												
Dri	iveR	Dri	veN						Center D	istance, Inch	nes			
No. of Grooves	Pitch Diameter (Inches)	No. of Grooves	Pitch Diameter (Inches)	Speed Ratio	8MGT-640 P.L 25.20 80 teeth	8MGT-720 P.L 28.35 90 teeth	8MGT-800 P.L 31.50 100 teeth	8MGT-896 P.L 35.28 112 teeth	8MGT-1000 P.L 39.37 125 teeth	8MGT-1120 P.L 44.09 140 teeth	8MGT-1200 P.L 47.24 150 teeth	8MGT-1280 P.L 50.39 160 teeth	8MGT-1440 P.L 56.69 180 teeth	
30	3.008	60	6.015	2.000	5.30	6.92	8.53	10.44	12.51	14.88	146	1,05	21.21	
40	4.010	80	8.020	2.000	9 6 8 6 8 6 8 6 8	3.00	100 100 100	7.94	10.04	12.43	14.03	15.62	18.79	
45	4.511	90	9.023	2.000				C. Carlotte	8.76	11.19	12.79	14.39	17.57	
.l	L.C044	L440_	44.000	lo.do.	J	l	I	l	L	l L	h_oo_l		L4.4_0E	— — —
22	2.206	53	5.314	2.409	6.51	8.12	9.72	11.63	13.69	16.06	17.65	19.23	22.38	
45	4.511	112	11.229	2.439	***************************************	0000000000		The state of the s	10.00.000.000	9.05	10.73	12.37	15.62	
30	3.008	75	7.519	2.500	<u> </u>		7.12	0.00	11.10	13.50	15.18	16.78	19.95	
32	3.208	80	8.020	2.500			6.48	8.48	10.59	13.00	14.60	16.20	19.38	
36	3.609	90	9.023	2.500	10.			7.20	9.37	11.81	13.43	15.03	18.22	
56	5.614	140	14.036	2.50									12.18	
25	2.506	63	6.316	2.520	5.33	6.08	8.61	10.54	12.61	15.00	16.58	18.17	21.33	
71	7.118	180	18.046	2.535										
- 00	0.007	74	7440	0.500	1 10	F 00	7.05	0.00	44.00	4400	45.00	47.07	00.44	

En función de la limitación impuesta, selecciono 2 alternativas que tienen los diámetros de las poleas por debajo de 8 in

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

3. Poleas y longitud de correa (desde pág. 28 a 61)

Resumen de las alternativas:

	Alt A	Alt B
z ₁ (num dientes polea motora)	30	25
d₁ (dia primitivo polea motora	3,008 in	2,506 in
z ₂ (num dientes polea conducida)	75	63
d ₂ (dia primitivo polea conducida	7,515 in	6,316 in
C (dist centros)	16,78 in	16,58 in
Denom correa	8MGT-1280	8MGT-1200

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

4. Velocidad tangencial de la correa

Se deberá verificar que la velocidad tangencial de la correa no supere el valor:

$$Vt = \frac{\pi \cdot d \cdot N}{12} = \frac{\pi \cdot D \cdot n}{12} \le 6500 \text{ ft/min}$$

$$Vt_A = \frac{\pi \cdot 3,008in \cdot 1700rpm}{12} = 1338ft/\min$$

$$Vt_B = \frac{\pi \cdot 2,506in \cdot 1700rpm}{12} = 1115 ft / min$$

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

$$Pe = (Pb + \Delta pi) \cdot fcl$$

Pe = Potencia efectiva de la correa

Es la capacidad de transmisión de la correa en las condiciones seleccionadas: velocidad, paso, numero de dientes de las poleas y longitud de la correa

Pb = Potencia base

Es la capacidad de transmisión de la correa en las condiciones de ensayo del fabricante: paso, **relación de velocidad = 1**, **longitud de referencia**.

∆Pi = Incremento de la potencia por relación de velocidad

Incremento de la velocidad para mandos con relaciones de velocidad distinta de 1.

fcl = Factor de modificación de potencia por longitud.

Este factor considera la diferencia entre la longitud seleccionada y la longitud con la que el fabricante hace el ensayo.

$$Pe \ge Pc$$

Potencia efectiva de la correa ≥ Potencia de diseño

Cátedra: MECANICA APLICADA
MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

$$|Pb_{A} = 31,2HP|$$

$$Pb_B = 25,3HP$$

Horsepower Rating for 36mm Wide

8mm Pitch Poly Chain® GT®2 Belts

17.775	RPM OF											power fo			s)							
70.00	STER IAFT	22 2.206	25 2.506	28 2.807	30 3.008	32 3.208	34 3.409	36 3.609	38 3.810	40 4.010	42 4.211	45 4.511	48 4.812	50 5.013	53 5.314	56 5.614	60 6.015	63 6.316	67 6.717	71 7.118	75 7.519	80 8.020
	10 20	0.43	0.26 0.50	0.30 0.56	0.32 0.61	0.35 0.65	0.37 0.69	0.39 0.74	0.41 0.78	0.44 0.82	0.46 0.86	0.49 0.93	0.53 0.99	0.55 1.03	0.58 1.09	0.61 1.15	0.66 1.24	0.69 1.30	0.73 1.38	0.78 1.46	0.82 1.54	0.87 1.64
	35 44	0.71 0.88	0.82 1.01	0.93 1.15	1.01 1.24	1.08 1.33	1.15 1.42	1.22 1.50	1.29 1.59	1.36 1.68	1.43 1.76	1.54 1.89	1.64 2.02	1.71 2.11	1.82 2.23	1.92 2.36	2.05 2.53	2.16 2.65	2.29 2.82	2.42 2.98	2.56 3.14	2.72 3.35
_[_ 50	1_12	_ 1 30	1.47	1_50_	L _1.70	1_01	1.03	_2 04	2.15	2.26.	_ 2_13	2.50	2.70.	2.06_	3.03	3_2/	<u>-3.10</u>	3_61.	2 02	√ 1. □3]	1_20_
	700	9.99	11.6	13.2	14.3	15.3	16.4	17.4	18.4	19.5	20.5	22.0	23.5	24.5	25.9	27.4	29.3	30.8	32.7	34.6	36.4	38.7
	800 870	11.2 12.0	13.0 14.0	14.8 15.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.2 18.5	18.4 19.8	19.5 21.0	20.7 22.2	21.8 23.5	23.0 24.7	24.7 26.5	26.3 28.3	27.5 29.5	29.1 31.3	30.8 33.1	32.9 35.4	34.5 37.1	36.7 39.4	38.8 41.7	40.9 43.9	43.5 46.7
	900	12.4 13.5	14.4 15.8	16.4 18.0	17.7	19.0 20.8	20.3 22.3	21.6 23.7	22.9 25.1	24.2 26.5	25.4 27.8	27.3 29.9	29.2 31.9	30.4 33.3	32.2 35.3	34.0 37.2	36.4 39.9	38.2 41.8	40.6 44.4	42.9 46.9	45.2 49.4	48.1 52.6
	1160 1750	15.4	77.9	20.4	31.2	23.7	25.3 35.8	26.9 38.1	28.5 40.3	30.0 42.5	31.6 44.8	33.9 48.0	36.2 51.3	37.8 53.4	40.0 56.6	42.3 59.7	45.2 63.9	47.4 66.9	50.3 71.0	53.2 75.0	56.1 78.9	59.6 83.7
	2000	24.2	28.3	32.2	34.9	37.5	40.0	42.6	45.1	47.6	50.0	53.7	57.3	59.7	63.2	66.7	71.3	74.7	79.2	83.5	87.9	93.2 126.6
	2000 3000	24.2 33.7	28.3 39.4	32.2 45.0	T2-V-5-N-1	37.5 52.3	40.0 55.9	42.6 59.4	45.1 62.9	47.6 66.3	50.0 69.7	53.7 74.7	57.3 79.6	59.7 82.9	63.2 87.6	66.7 92.3	71.3 98.4	74.7 102.9	79.2 108.8	83.5 114.4	87. 119.	400

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

$$\Delta pi = 1,73 HP$$

	Additional Horsepower for Speed Ratio of Speed-Down Drives									
RPM OF	1.00	1.05	1.12	1.20	1.31	1.46	1.66	2.00	2.64	4.48
FASTER	to	to	to	to	to	to	to	to	to	and
SHAFT	1.04	1.11	1.19	1.30	1.45	1.65	1.99	2.63	4.47	Over
10	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
20	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
35	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04
1000	0.00	0.14	0.28	0.42	0.56	0.70	0.85	0.99	1.13	1.27
1160	0.00	0.16	0.33	0.49	0.65	0.82	0.98	7.14	1.31	1.47
1750	0.00	0.25	0.49	0.74	0.99	1.23	1.42	1.73	1.97	2.22
2000	0.00	0.28	0.56	0.85	1.13	1.41	1.69	1.97	2.25	2.54
3000	0.00	0.42	0.85	1.27	1.69	2.11	2.54	2.96	3.38	3.80
3450	0.00	0.49	0.97	1.46	1.94	2.43	2.92	3.40	3.89	4.38

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

$$|fcl_A = 1.05|$$

$$|fcl_B = 1.03|$$

			Poly Chain® GT2® Belt Length Correction Factor Table						
Pitch/Length Designation	Number of Teeth	Correction Factor	Pitch/Length Designation	Number of Teeth	Correction Factor				
8MGT-640	80	0.79	8MGT-1280	160	1.05				
8MGT-720	90	0.83	8MGT-1440	180	1.10				
8MGT-800	100	0.87	8MGT-1600	200	1.14				
8MGT-896	112	0.91	8MGT-1760	220	1.17				
8MGT-960	120	0.94	8MGT-1792	224	1.18				
8MGT-1000	125	0.96	8MGT-2000	250	1.22				
8MGT-1040	130	0.97	8MGT-2200	275	1.26				
8MGT-1120	140	1.00	8MGT-2240	280	1.26				
8MGT-1200	150	1.03	8MGT-2400	300	1.29				
8MGT-1224	153	1.03	8MGT-2520	315	1.31				

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

Recordando de diapositivas anteriores que:

$$|Pe \ge Pc|$$

Potencia efectiva de la correa ≥ Potencia de diseño

Concluimos que la única opción que verifica es la alternativa A:

$$Pe_B \leq Pc$$

$$Pe_A \ge Pc$$

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

5. Ancho de la correa (desde pag. 62 a 70)

Resumen de la selección:

	Alt A
z ₁ (num dientes polea motora)	30
d ₁ (dia primitivo polea motora	3,008 in
z ₂ (num dientes polea conducida)	75
d ₂ (dia primitivo polea conducida	7,515 in
C (dist centros)	16,78 in
Denom correa	8MGT-1280
Longitud	1280 mm (50,39in)
Ancho	36 mm

Acciones correctivas para disminuir el ANCHO de la correa:

- A) Aumentar el diámetro de las poleas (efecto reductor medio)
- B) Aumentar el paso de la correa (efecto reductor mayor)

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

6. <u>Tensionado de la correa</u>

a) Calculo de la Tensión requerida

$$Tst = \left[\frac{17,4 \cdot Pc}{S}\right] + \left[m \cdot (S)^{2}\right]$$

$$S = \frac{d \cdot N}{3820} = \frac{3,008in \cdot 1700rpm}{3823} = 1,34$$

Table 10

Pitch	Belt Width	m	Y
	12mm	0.33	43.83
8mm	21mm 36mm	0.57	76.70 131.49
	62mm	1.68	226.45
	20mm 37mm	0.92 1.69	134.57 248.95
14mm	68mm	3.11	457.52
	90mm 125mm	4.12 5.72	605.55 841.04

Tst: tensión estática (lb)

Pc: Potencia de calculo: 33 HP

m: 0,97 (tabla 10 pag 107)

S: según formula

$$Tst = \left[\frac{17,4 \cdot 33HP}{1,34}\right] + \left[0,97 \cdot (1,34)^{2}\right] = 430lb$$

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

b) Calculo de la deflexión de referencia

$$t = \sqrt{\left(I^2 - \left(\frac{D-d}{2}\right)^2\right)}$$

$$def = \left(\frac{1}{64}\right)\frac{in}{in} \cdot t$$

$$Ls = \sqrt{\left(16,78in\right)^2 - \left(\frac{7,515in - 3,008in}{2}\right)^2} = 16,63in$$

$$def = \left(\frac{1}{64}\right)\frac{in}{in} \cdot 16,63in = 0,26in$$

Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS

c) Calculo de la fuerza de deflexión

Fuerza de deflexión mínima Formula 13 – pag. 107

$$F_{\text{max}} = \frac{1.5 \cdot Tst + \frac{t}{L} \cdot Y}{16}$$

Fuerza de deflexión máxima Formula 14 – pag. 107

$$F_{\text{max}} = \frac{1,5 \cdot 430lb + \frac{16,63in}{50,39in} \cdot 131,49}{16} = 43,02lb$$

F: fuerza de deflexión (lb)

Tst: tensión estática (lb): 430 lb

t: vano recto: 16,63 in

Y: 131,49 (tabla 10 – pag. 107)

L: long de la correa: 50,39 in

Cátedra: MECANICA APLICADA
MECANICA Y MECANISMOS

