

Figure 1a: C. Adachi, et. al.

Figure 1b: C. Adachi, et. al.

Figure 2: C. Adachi, et.al.

Figure 3: C. Adachi, et. al.

Figure 4: C. Adachi, et.al.

figure 50

Generic Mono-Anionic, Bidentate, Carbon-Coordination Ligands-I

$X = S, O, NR$; and R_1, R_2, R_3, R_4 and R_5 are, independently, hydrogen, halogen, alkyl, aryl or arylene; and R'_1 and R'_2 may, in combination, be aryl.

Figure 5*b*

Generic Mono-Anionic, Bidentate, Carbon-Coordination Ligands-II

$X = S, O, NR$; and R_1, R_2, R_3, R_4 and R_5 are, independently, hydrogen, halogen, alkyl, aryl or arylene; and R'_1 and R'_2 may, in combination, be aryl.

Figure 5c

Generic Mono-Anionic, Bidentate, Carbon-Coordination Ligands-III

X = S, O, NR; and R₁, R₂, R₃, R₄ and R₅ are, independently, hydrogen, halogen, alkyl, aryl or arylene.

Figure 5d

Specific Mono-Anionic, Bidentate, Carbon-Coordination Ligands-I

Figure 6a

Generic Non-Mono-Anionic, Bidentate, Carbon-Coordination Ligands-I

$\text{R}, \text{R}_1, \text{R}_2, \text{R}_3, \text{R}_4, \text{R}_5$, and R_6 are, independently, hydrogen, halogen, alkyl or aryl.

Figure 6b

Generic Non-Mono-Anionic, Bidentate, Carbon-Coordination Ligands-II

R, R₁, R₂, R₃, R₄, R₅, R₆, R₇ and R₈ are, independently, hydrogen, halogen, alkyl or aryl.

Figure 6c

Specific Non-Mono-Anionic, Bidentate, Carbon-Coordination Ligands

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Figure 7e

Figure 7f

Figure 79

Figure 7h

Figure 7i

[Ir(4,6-F2ppy)2Cl]2 + 2,2'-bipy in CH2Cl2

ଫିଗୁର ୭j

Figure 7k

Figure 71

Figure 7m

Figure 7n

(4,6-F2ppy)2Ir(glycine)

Figure 7₀

Figure 7p

fac-Ir(4,6-F2ppy)3

Figure 7q

[Ir(4,6-F2ppy)2Cl]2 + pyrzCO2H in CH2Cl2

Figure 7r

Figure 8a

X=CH, N
E=O, S, Se, Te

Figure 8b

Figure 8c

Figure 8d

9(a)

(ppy)Pt(acac)

9(b)

(tpy)Pt(acac)

9(c)

(bzq)Pt(acac)

9(d)

(4,6-F₂ppy)Pt(acac)

9(e)

(btp)Pt(acac)

9(f)

(4,5-F₂ppy)Pt(acac)

9(g)

(4,5-F₂ppy)Pt(pico)

Figures 9(a) - 9(g)

Figure 10: This Emission spectrum shows the spectra of both $\text{Pt}(\text{ppy})_2$ and $\text{Pt}(\text{ppy})_2\text{Br}_2$. The former gives green emission, partly from MLCT transitions, and the latter gives blue emission, predominantly from a triplet $\pi-\pi^*$ transition. The structure observed for the $\text{Pt}(\text{ppy})_2\text{Br}_2$ spectrum is consistent with ligand centered emission. The luminescent lifetimes for the two complexes are 4 and 150 μsec .

Figure 10

Figure II: This plot shows the emission spectra of (ppy)AuCl₂ and (ppy)A' (2,2'-biphenylene). Both emit from ligand triplet π-π* transitions.

Figure II

Figure 12

(4,6-F₂PPY)Pt(acac)

Figure 13

Figure 14

Figure 15

Figure 16

FIG. 17

PRB 62

HOSTS

GUESTS

FIG. 18

PRB 62

FIG. 19

FIG. 20

FIG. 21

FIG. 22

Fig. 23

