Санкт-Петербургский государственный университет

Кафедра системного программирования

Группа ТП.22Б07-мм

Экспериментальное исследование производительности алгоритма обхода графа в ширину

БУРАШНИКОВ Артем Максимович

Отчёт по учебной практике в форме «Эксперимент»

Научный руководитель: доцент кафедры информатики, к. ф.-м. н., С. В. Григорьев

Оглавление

В	ведение	3
1.	Постановка задачи	4
2.	Сопутствующие исследования	5
3.	Детали реализации	6
	3.1. GraphBlas	6
	3.2. Концепция алгоритма	6
	3.3. Параллелизм	7
4.	Эксперимент	9
	4.1. Характеристики оборудования	9
	4.2. Исследовательские вопросы	10
	4.3. Использованные метрики	10
	4.4. Использованные данные	11
	4.5. Постановка эксперимента	11
	4.6. Анализ результатов	11
За	аключение	12
Cı	писок литературы	13

Введение

Использование такой абстракции как *граф* для анализа и изучения различных форм реляционных данных имеет большое значение. Теоретические проблемы, существующие в областях применения, включают в себя определение и выявление значащих объектов, обнаружение аномалий, закономерностей или внезапных изменений, кластеризацию тесно связанных сущностей. Решения для этих проблем обычно используют классические алгоритмы, применяемые для графов. Для удовлетворения потребностей теоретического анализа в современных приложениях важно ускорить решение задач, лежащих в основе этих алгоритмов. Одним из способов такого ускорения выступают *параллельные вычисления*, являющееся предпочтительной стратегией, дающей выигрыш в производительности на современных многоядерных системах.

Систематическое исследование всех ребер и вершин графа называется его обходом. Нужно отметить, что размеры графов, возникающих сегодня, массивны, но такие графы одновременно могут быть сильно разреженными, то есть иметь малое число рёбер по сравнению с количеством вершин. Для эффективного хранения таких объектов в памяти компьютера используются различные вспомогательные структуры, позволяющие существенно сэкономить занимаемое место.

Распараллеливание не всегда даёт существенный прирост производительности, а в каких-то случаях может значительно замедлить работу алгоритма. Поэтому интерес исследования представляют такие параметры параллельной реализации BFS и характеристики графов, для которых она оказывается эффективнее последовательной. Также отдельное влияние на производительность оказывают накладные расходы на создание самих параллельных задач, отвечающих за отдельные асинхронные вычисления. Указанное в совокупности определяет, какая версия (последовательная или параллельная) предпочтительнее к использованию при том или ином сценарии.

1. Постановка задачи

Целью работы является провести экспериментальное исследование производительности обхода в ширину и ответить на следующие вопросы:

- 1. При каких параметрах графа выгоднее использовать параллельную версию алгоритма, а при каких последовательную?
- 2. Использование какого количества потоков даёт наибольший выигрыш в производительности и почему?

Для её выполнения были поставлены следующие задачи:

- Реализовать серию измерений производительности последовательной и параллельной версий обхода в ширину с контролируемым набором параметров графа, таких как количество вершин, степень вершин и общая плотность структуры.
- Оценить влияние конкретных характеристик графа на итоговую производительность BFS.
- Провести эксперименты с разным количеством потоков и измерить производительность алгоритма обхода в ширину при каждом сценарии, обращая внимание на накладные расходы при синхронизации и доступе к общей памяти.

2. Сопутствующие исследования

Алгоритм обхода графа в ширину ввиду своей прикладной значимости был проанализирован в различном контексте в ряде исследовательских работ.

В [2] отмечается, что производительность BFS в значительной мере зависит от топологии подаваемого на вход графа. Авторы показали, что в случае большого количества итераций алгоритма при малых количествах вершин/ребер между итерациями (то есть малом количестве вершин во фронте на каждой итерации) параллельная версия терпит существенное снижение производительности из-за накладных расходов.

Кроме того, в [1] продемонстрировано, что последовательная версия алгоритма во многих ситуациях оказывается предпочтительнее не оптимизированной параллельной ввиду большой задержки работы с памятью и высокой вычислительной стоимостью её синхронизации.

Многие авторы находят решение упомянутых проблем в тонкой настройке взаимодействия с общей памятью в используемой архитектуре или применении адаптивных алгоритмов, способных динамически контролировать количество используемых потоков во время исполнения.

Обширный список проведенных исследований позволяет с высокой точностью прогнозировать зависимости между параметрами входных данных, выбранной архитектурой и ожидаемой производительностью используемой реализации обхода в ширину. Данная работа будет посвящена выявлению таких зависимостей для алгоритма BFS, реализованного с применением методов линейной алгебры, что существенным образом влияет не только на сам алгоритм, но и на внутреннее представление графа в памяти компьютера, в связи с чем полученные результаты могут представлять особый интерес.

3. Детали реализации

3.1. GraphBlas

Обход в ширину был реализован на языке F# с использованием идей, заложенных GraphBlas.

GraphBlas - это инициатива, нацеленная на создание стандартизованного интерфейса для разработки графовых алгоритмов. Целью этой инициативы является обеспечение высокой производительности и переносимости для широкого спектра алгоритмов, работающих с различными графовыми структурами.

Пользователю предоставляется языково-независимая спецификация, определяющая набор абстрактных операций линейной алгебры: умножение матрицы на вектор, сложение векторов и умножение матрицы на матрицу. Описанная семантика и требования для интерфейса позволяют создавать собственные реализации на различных языках программирования и для различных аппаратных платформ.

3.2. Концепция алгоритма

Основной принцип состоит в том, что применение операции умножения вектора на матрицу, определенной в GraphBlas, является переходом от одних вершин графа к другим по инцидентным этим вершинам рёбрам. В свою очередь вектора представлены в виде двоичного дерева, а матрицы — в виде дерева квадрантов. Такое представление удобно не только для хранения разреженных структур в памяти, но и для внедрения параллелизма. Рассмотрим конкретные шаги алгоритма:

• Шаг 1 Создается матрица смежности, соответствующая данному графу. В нашем случае по матрице смежности, представленной как список координат, строится дерево квадрантов. Причем использование F# позволяет естественно выражать отсутствующие рёбра и отсутствующие метки через тип Option. Значения в ячейках матрицы заполняются значениями на соответствующих рёбрах графа.

• Шаг 2 Задаются два вектора:

- 1. Фронт: вектор, в котором каждый индекс соответствует вершине графа, а значения указывают на текущие просматриваемые вершины. Отсутствие вершины в текущем фронте обозначается как **Option None**.
- 2. Результирующий вектор, который при инициализации совпадает с фронтом, аккумулирует промежуточные результаты работы алгоритма (например, минимальный путь).
- Шаг 3 Выполняется умножение вектора состояний на матрицу смежности. В качестве поэлементных операций сложения и умножения используются логические ИЛИ и И. После каждого умножения на результирующий вектор применяется маска, чтобы алгоритм не обрабатывал уже посещенные вершины. Результатом итерации является новый фронт и обновленный результирующий вектор.

Шаг 3 повторяется до тех пор, пока не будут достигнуты требуемые условия остановки. Например, все вершины станут исследованы или произойдет выполнение определенного условия.

3.3. Параллелизм

Благодаря рекуррентной природе деревьев, являющихся в нашем случае внутренним представлением векторов и матриц, реализованный алгоритм естественным образом поддаётся распараллеливанию. В листинге 1 представлен псевдокод с использованием абстрактных операций линейной алгебры. Минимальными единицами такой операции являются вектор размера 1×2 и матрица размера 2×2 , что на каждой итерации позволяет использовать до четырех потоков для разделения вычислений между ними.

$$\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \times b_{11} + a_{12} \times b_{21} \\ a_{11} \times b_{12} + a_{12} \times b_{22} \end{bmatrix}$$

Листинг 1 Псевдокод реализации параллельного алгоритма обхода в ширину

```
1 def function BFS (parallelLevel, startingVertices, adjacencyMatrix):
 2
      matrix := makeSparseMatrix from adjacencyMatrix
 3
 4
 5
      frontier := makeSparseVector from startVertices
 6
 7
      result := makeSparseVector from startVertices
 8
 9
      def recursive function inner (frontier, result, counter):
10
           if frontier. Is Empty then
11
               return result
12
           else
13
               newFrontier :=
                   call multiplyVectorByMatrix (parallelLevel, frontier, matrix)
14
15
16
               newFrontier :=
                   call applyMask (result, newFrontier)
17
18
19
               newResult :=
                   call updateResult (count, result, newFrontier)
20
21
               newCounter := counter + 1
22
23
24
               call inner (newFrontier, newResult, newCounter)
25
       call inner (frontier, result, 1)
26
```

Элементы матрицы — поддеревья, поэтому вычисление элемента $a_{is} \times b_{sj}$ является рекурсивным вызовом на соответствующем поддереве. В представленной работе операция умножения над минимальными единицами разбивается на два потока: один из потоков отвечает за вычисление значения в первой строке результирующего вектора, а другой поток — за вычисление значения во второй строке. При необходимости увеличить количество потоков на вход в BFS передаётся целый положительный параметр parallelLevel, величина которого уменьшается с каждым вызовом тела функции, в результате чего производятся дополнительные асинхронные вычисления на следующем уровне рекурсии.

4. Эксперимент

4.1. Характеристики оборудования

Оборудование, на котором были поставлены описанные далее эксперименты, обладает следующими характеристиками:

OS and Kernel

Operating System: Ubuntu 22.04.2 LTS

Kernel: Linux 5.19.0-41-generic

CPU

Architecture: x86_64

Model name: AMD Ryzen 5 4500U with Radeon Graphics

Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 1

CPU max MHz: 2375,0000 CPU min MHz: 1400,0000

L1d cache: 192 KiB (6 instances)
L1i cache: 192 KiB (6 instances)
L2 cache: 3 MiB (6 instances)

L3 cache: 8 MiB (2 instances)

GPU

Device: [AMD/ATI] Renoir (rev c3)

Memory: 256M

RAM

Memory: 7304 Swap memory: 2047 Total: 9351

4.2. Исследовательские вопросы

При анализе поставленных задач были выдвинуты следующие гипотезы:

RQ1

Ожидается, что в параллельной версии алгоритма обхода в ширину производительность будет значительно превышать последовательную версию на сильно разреженных неориентированных графах, потому что в таких графах большинство вершин имеют небольшую степень, что позволит эффективно распределить работу между потоками и уменьшить накладные расходы на синхронизацию. Таким образом, параллельная версия должна продемонстрировать ощутимое ускорение.

RQ2

Предполагается существование оптимального количества потоков в параллельной версии алгоритма, которое приведет к наибольшему выигрышу в производительности за счет эффективного использования доступных ресурсов вычислительной системы.

4.3. Использованные метрики

Для исследования RQ1 решено замерять ускорение параллельной версии алгоритма относительно последовательной со следующим набором контролируемых параметров:

- количество вершин в графе;
- плотность графа;
- количество используемых потоков.

Для поиска оптимального значения, обозначенного в RQ2, будет проанализировано среднее время работы параллельной версии алгоритма на сильно разреженных графах с использованием разного количества потоков: 2, 4, 8.

- 4.4. Использованные данные
- 4.5. Постановка эксперимента
- 4.6. Анализ результатов

Заключение

Список литературы

- [1] Scalable Graph Exploration on Multicore Processors / Virat Agarwal, Fabrizio Petrini, Davide Pasetto, David A. Bader. 2010.
- [2] Xia Yinglong, Prasanna Viktor K. Topologically adaptive parallel breadth-first search on multicore processors. 2009.