Consumer Bankruptcy: A Fresh Start

- Livshits, MacGee, and Tertilt (2007)

Discussant: Tao Wang (BoC)

Labor, Firms, and Macro Reading Group

February 10, 2024

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment

A trade-off between smoothing across states or across time

 FS: bankruptcy is good insurance for bad luck – insurance across states, at the cost of smoothing across time

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment

A trade-off between smoothing across states or across time

 FS: bankruptcy is good insurance for bad luck – insurance across states, at the cost of smoothing across time

Therefore, which one yields better welfare gain is ambiguous

Preview of the findings

- FS approach potentially increases welfare in the U.S.
- But, it depends on uncertainty levels and life-cycle earnings
- "No Fresh Start" might be preferable in cases of large temporary income shocks or the absence of expense shocks

Model

A life-cycle heterogeneous-agent model with bankruptcy choices

$$\begin{split} \sum_{j=1}^{J} \beta^{j-1} u \left(\frac{c_j}{n_j} \right) \\ y_j^i &= a_j^i \bar{e}_j \\ a_j^i &= z_j^i \eta_j^i \end{split}$$

- $\Pi(z' \mid z)$: transition probs of persistent inc shks
- $\kappa \ge 0$, i.i.d. expenditure shocks

Consumer's problem

Repaying debt

$$V_{j}(d,z,\eta,\kappa) = \max_{c,d'} \left[u\left(\frac{c}{n_{j}}\right) + \beta E \max\left\{V_{j+1}\left(d',z',\eta',\kappa'\right), \bar{V}_{j+1}\left(z',\eta'\right)\right\} \right]$$

s.t. $c + d + \kappa \leq \bar{e}_{j}z\eta + q^{b}\left(d',z,j\right)d'$

- debt price q is a function of debt amt d, income state z and age j
- It is to be determined in equilibrium by competitive lenders

With FS

File for bankruptcy...

$$\bar{V}_{j}(z,\eta) = u\left(\frac{c}{n_{j}}\right) + \beta E \max \left\{ V_{j+1}\left(\overbrace{0}^{"FS''}, z', \eta', \kappa'\right), \bar{W}_{j+1}\left(z', \eta', \kappa'\right) \right\}$$

$$c = \bar{e}_{j}z\eta - \Gamma \qquad \Gamma \qquad , \quad \Gamma = \gamma \bar{e}_{j}z\eta$$

- $I_i(d+\kappa,z,\eta)=1$ if $\bar{V}_i(z,\eta)>V_i(d,z,\eta,\kappa)$
- $d + \kappa$ charged off: dropped as a state variable
- No savings in the period of bankruptcy

Garnishment

• Cannot file bankruptcy for two periods in a row, so another value function \boldsymbol{W} is needed

With FS

Cannot file bankruptcy twice in a row, but could miss paying the expenditure bill...

$$\begin{split} & \underbrace{\bar{W}_{j}(z,\eta,\kappa)} & = u\left(\frac{c}{n_{j}}\right) + \beta E \max\left\{V_{j+1}\left(d',z',\eta',\kappa'\right),\bar{V}_{j+1}\left(z',\eta'\right)\right\} \\ & c = \bar{e}_{j}z\eta(1-\gamma), \quad d' = \left(\kappa - \gamma\bar{e}_{j}z\eta\right)(1+\bar{r}) \end{split}$$

- partial payments to the bill κ and the rest carries over to the next period
- with an interest rate \bar{r}

With NFS

$$\begin{split} V_j^{NFS}(d,z,\eta,\kappa) \\ &= \max_{c,d',I} \left[u\left(\frac{c}{n_j}\right) + \beta E V_{j+1}^{NFS}\left(d',z',\eta',\kappa'\right) \right] \\ \text{s.t. } c + d + \kappa &\leq \bar{e}_j z \eta + q^b \left(d',z,j\right) d' \quad \text{if } I = 0 \\ c &= (1-\gamma)\bar{e}_j z \eta \quad \text{if } I = 1 \\ d' &= \max \left\{ \left(d + \kappa - \gamma \bar{e}_j z \eta\right), 0 \right\} \left(1 + \bar{r}\right) \quad \text{if } I = 1 \end{split}$$

No debt is charged off, simply rolled over with wage garnishment

Debt price

$$\begin{split} q^b\left(d',z,j\right) &= \left(1 - \overbrace{\theta\left(d',z,j\right)}^{\text{prob of file bankruptcy}}\right) \bar{q}^b \\ &+ \theta\left(d',z,j\right) E\left(\frac{\Gamma}{d'+\kappa'} \middle| I = 1\right) \underbrace{\bar{q}^b}_{\text{price of safe debt}=(1+r^s+\tau)} \\ q^{NFS}\left(d',z,j\right) \\ &= \left(1 - \theta\left(d',z,j\right)\right) \bar{q}^b + \theta\left(d',z,j\right) \\ &\times E\left(\frac{\Gamma + q\left(d'',z',j+1\right)d''}{d'+\kappa'}\middle| I = 1\right) \bar{q}^b \\ \underbrace{d''}_{\text{colled over debt}} &= \max\left\{d' + \kappa' - \Gamma, 0\right\} (1 + \bar{r}) \end{split}$$

Equilibrium

Given risk-free rate q^s, \bar{q}^b , consists of value funcs V, \bar{V}, W , policies c,d',I, default probs θ and price funcs \bar{q}^b such that

- ullet value funcs satisfy as defined and policies are optimal given $ar{q}^b$
- bond price func $\bar{q}^b()$ is determined by zero profit condition
- default probs are correct: $\theta\left(d',z,j\right)=E\left(I_{j+1}\left(d'+\kappa',z',\eta'\right)\right)$

Solution

- Policies: threshold $I(d, z, \eta, \kappa) = 1$ if $d + \kappa > \bar{d}$
 - because V (V func of repaying) decreases with d and \bar{V} (V func of bankruptcy) is independent of d
- Backward value func iteration from period J

Calibration

- Standard life cycle parameters
- Bankruptcy
 - \bar{r} = 20%: penalty rate on rolled over debt
 - $\gamma = 35\%$: garnish ratio of income indirectly calibrated to match debt to income ratio
 - κ: out-of-pocket medical bills, and also "divorce shocks" (1.2% per year) and "child shocks" (0.5% per year)

Shock	Magnitude (\$)	Fraction of	Probability	
		avg. income	Trobability	
κ_1	\$32,918	0.264	$7.104\% (\pi_1)$	
κ_2	\$102,462	0.8218	$0.46\%(\pi_2)$	

Model versus Data

Results	Rule	Debt Earnings	Defaults	$\operatorname{Avg} r^b$
Benchmark	FS	8.4%	0.71%	11.6%
US data, Avg. 1995-1999	FS	8.4%	0.84%	11.2 - 12.8

Life cycle profile

Defaults by reason

	Expense shock			
	Low	High	None	Total
No decrease in income	63.7%	9.9%	1.6%	75.2%
Fall in persistent income only*	8.1%	1.5%	5.3%	14.9%
Negative transitory shock only**	7.0%	1.1%	0.1%	8.3%
Fall in persistent income and	0.9%	0.2%	0.6%	1.7%
negative transitory shock				
Total	79.7%	12.7%	7.6%	100.0%

Endogeneous borrowing constraints

Welfare comparison

		Debt to		Better	
Results	Rule	Earnings	Defaults	rule	ECV
Benchmark	FS	8.4%	0.71%		
	NFS	14.8%	0.53%	FS	0.06%

Expenditure shocks matter

Different life-cycle shapes: FS versus NFS

Smoothing across states versus across time

Under benchmark: FS is welfare improving

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more
- FS benefits high-income people and hurts low-income people with a bigger variance of the persistent income shocks

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more
- FS benefits high-income people and hurts low-income people with a bigger variance of the persistent income shocks
- A flatter life-cycle income profile makes smoothing over time less important, hence favors FS

References I

Livshits, Igor, James MacGee, and Michele Tertilt (2007). "Consumer bankruptcy: A fresh start". American Economic Review 97.1, pp. 402–418.