Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Tuesday 19 Janu	uary 2021
Morning (Time: 1 hour 20 minutes)	Paper Reference WPH16/01
Physics	
Advanced Unit 6: Practical Skills in Phy	ysics II
You must have: Scientific Calculator, Ruler	Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

1 A ball rolls along a U-shaped track. The ball oscillates in a vertical plane as shown.

(a) Describe how the time period of the oscillations should be measured to make the readings as accurate as possible.

(3)	

(b) Describe how a	single measure	of D should be a	made accurately

2

(c) A student determined the time period T for different values of the distance D. She obtained the following results.

<i>D</i> / m	0.235	0.335	0.445
T/s	0.78	0.94	1.09

She predicts that for these oscillations

$$T \propto \sqrt{D}$$

Show that her results are consistent with this prediction.

.....

(3)

(Total for Question 1 = 8 marks)

2 Two identical capacitors were connected in series and charged. They were then discharged through a resistor and ammeter.

A student investigated how the current in the resistor varied as the capacitors discharged.

(a) Draw an appropriate circuit diagram for this investigation.

(3)

(b) State **one** safety precaution the student should take.

(1)

4

Describe how the studer of the capacitors.	nt should determine an accurate value for the total capacitan	ce
•		(6)
The student repeated the	e investigation but used a data logger instead of a stopwatch	
and an ammeter.	· · · · · · · · · · · · · · · · · · ·	
Suggest why using a day	ta logger would improve this investigation.	
Suggest will using a au	108801 0 0.10 11.10 0 0.18 0 0.18 0 0.18	(2)
	(Total for Question 2 = 12 m	arks)

When high energy electrons are incident on a sample of an isotope, a diffraction pattern is produced. The diffraction pattern can be used to determine the radius of a nucleus of the isotope.

The relationship between the radius r of a nucleus and the nucleon number A is

$$r = r_0 A^n$$

where r_0 is the radius of a proton and n is a constant.

(a) Explain why a graph of $\log r$ against $\log A$ can be used to determine a value for n.

(2)

(b) The table shows the values of r for some different isotopes.

Isotope	A	<i>r</i> / fm	
H-2	2	1.54	
He-4	4	1.92	
Be-9	9	2.47	
C-12	12	2.72	
O-16	16	3.00	
Mg-24	24	3.42	

(i) Plot a graph of $\log r$ against $\log A$ on the grid. Use the additional columns in the table to record your processed data.

You should **not** convert the values of *r* to metres.

(6)

(ii) Use your graph to determine the value of n.

(2)

n =

(iii) Determine the value of r_0 and hence state the mathematical relationship between	
r and A .	(3)
(Total for Que	estion 3 = 13 marks)

A cylindrical container is made from a transparent material. Two students want to determine the density of this material.	
(a) The students need to make measurements to determine the volume of the transpare material. The external diameter of the container is approximately 10 cm.	nt
Student A suggests measuring the external diameter with a metre rule.	
Student B suggests placing a piece of string around the circumference of the container and then measuring this length of string with a metre rule.	
Explain which of these measurements would have the least percentage uncertainty.	(2)
(b) The students decide to use string to determine the circumference of the container. They measure the thickness <i>t</i> of the string using a micrometer screw gauge.	
 (b) The students decide to use string to determine the circumference of the container. They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as accurate as possible. 	S
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	s (2)
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	

(ii) The following measurements were obtained.

<i>t </i> mm				
2.15	2.06	2.13	2.08	2.10

Calculate the mean value of t in mm and its uncertainty.

(2)

mean t = mm \pm

(c) The circumference C of the container can be determined using the formula

$$C = x - \pi t$$

where x is the length of string around the container.

(i) Calculate the value of *C* in cm.

$$x = 25.8 \,\mathrm{cm} \pm 0.2 \,\mathrm{cm}$$

(2)

C = cm

(ii) Show that the uncertainty in C is approximately $0.2\,\mathrm{cm}$.

(1)

(d) The volume V of the transparent material is given by

$$V = \frac{C^2 L}{4\pi} - V_{\rm i}$$

where L is the length of the container and $V_{\rm i}$ is the internal volume of the container.

Determine the value of V in cm^3 and its uncertainty.

$$L = 19.90 \,\mathrm{cm} \pm 0.05 \,\mathrm{cm}$$

$$V_{\rm i} = 810 \, {\rm cm}^3 \pm 5 \, {\rm cm}^3$$

(4)

(e) The table shows the densities of some common materials used to manufacture this type of container. Only borosilicate is safe to heat directly with a Bunsen burner.

Material	Soda glass	Borosilicate	Perspex
ρ / g cm ⁻³	2.52	2.23	1.18

The mass of the container was measured as $463 g \pm 1 g$.

Deduce whether the container is safe to heat directly with a Bunsen burner.

(4)

TOTAL FOR PAPER = 50 MARKS

(Total for Question 4 = 17 marks)

List of data, formulae and relationships

Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)
---------------------------	-----------------------------	----------------------------

Boltzmann constant
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Electron charge
$$e = -1.60 \times 10^{-19} \,\mathrm{C}$$

Electron mass
$$m_{\rm e} = 9.11 \times 10^{-31} \,\mathrm{kg}$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational constant
$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Permittivity of free space
$$\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$$

Coulomb's law constant
$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Planck constant
$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

Proton mass
$$m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

Stefan-Boltzmann constant
$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Unified atomic mass unit
$$u = 1.66 \times 10^{-27} \text{ kg}$$

Unit 1

Mechanics

Power

Kinematic equations of motion
$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g=\frac{F}{m}$$

$$W = mg$$

Momentum
$$p = mv$$

Moment of force
$$moment = Fx$$

Work and energy
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} \, m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

$$P=\frac{E}{t}$$

$$P = \frac{W}{t}$$

Efficiency

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

$$efficiency = \frac{-useful\ power\ output}{total\ power\ input}$$

Materials

Density $\rho = \frac{m}{V}$

Stokes' law $F = 6\pi \eta r v$

Hooke's law $\Delta F = k\Delta x$

Elastic strain energy $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$

Young modulus $E = \frac{\sigma}{\varepsilon}$ where

Stress $\sigma = \frac{F}{A}$

Strain $\varepsilon = \frac{\Delta x}{x}$

Unit 2

Waves

Wave speed
$$v = f\lambda$$

Speed of a transverse wave on a string $v = \sqrt{\frac{T}{\mu}}$

Intensity of radiation
$$I = \frac{P}{A}$$

Refractive index
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n = \frac{c}{v}$$

Critical angle
$$\sin C = \frac{1}{n}$$

Diffraction grating
$$n\lambda = d\sin\theta$$

Electricity

Potential difference
$$V = \frac{W}{Q}$$

Resistance
$$R = \frac{V}{I}$$

Electrical power, energy
$$P = VI$$

$$P = I^2 R$$
$$P = \frac{V^2}{R}$$

$$W = VIt$$

Resistivity
$$R = \frac{\rho l}{A}$$

Current
$$I = \frac{\Delta Q}{\Delta t}$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Particle nature of light

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \emptyset + \frac{1}{2} m v_{\text{max}}^2$$
 equation

de Broglie wavelength
$$\lambda = \frac{h}{p}$$

Unit 4

Mechanics

Impulse

Kinetic energy of a non-relativistic particle

motion in a circle

$$F\Delta t = \Delta p$$

$$I'\Delta i - \Delta p$$

 $E_k = \frac{p^2}{2m}$

 $v = \omega r$

$$T = \frac{2\pi}{\omega}$$

$$a = \frac{v^2}{r}$$

$$a = r\omega^2$$

Centripetal force

$$F = ma = \frac{mv^2}{r}$$

$$F = m\omega^2 r$$

Electric and magnetic fields

Electric field

$$E = \frac{F}{Q}$$

Coulomb's law

$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

Electrical Potential

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Capacitance

$$C = \frac{Q}{V}$$

Energy stored in capacitor

$$W = \frac{1}{2}QV$$

$$W = \frac{1}{2}CV^2$$

$$W = \frac{1}{2} \frac{Q^2}{C}$$

Capacitor discharge

$$Q = Q_0 e^{-t/RC}$$

Resistor capacitor discharge
$$I = I_0 e^{-t/RC}$$

$$V = V_0 \mathrm{e}^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$\ln I = \ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field
$$F = Bqv \sin \theta$$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws
$$\mathscr{E} = \frac{-d(N\phi)}{dt}$$

Nuclear and particle physics

In a magnetic field
$$r = \frac{p}{BQ}$$

Mass-energy
$$\Delta E = c^2 \Delta m$$

Unit 5

Thermodynamics

Heating
$$\Delta E = mc\Delta\theta$$

$$\Delta E = L\Delta m$$

Ideal gas equation
$$pV = NkT$$

Molecular kinetic theory
$$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$$

Nuclear decay

Mass-energy
$$\Delta E = c^2 \Delta m$$

Radio-active decay
$$A = -\lambda N$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

Oscillations

Simple harmonic motion
$$F = kx$$

$$a = -\omega^2 x$$

$$x = A \cos \omega t$$

$$v = -A\omega \sin \omega t$$

$$a = A\omega^2 \cos \omega t$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator
$$T = 2\pi \sqrt{\frac{n}{k}}$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

Astrophysics and Cosmology

Gravitational field strength
$$g = \frac{F}{m}$$

Gravitational force
$$F = \frac{Gm_1m_2}{r^2}$$

Gravitational field
$$g = \frac{Gm}{r^2}$$

Gravitational potential
$$V_{grav} = \frac{-Gm}{r}$$

Stephan-Boltzman law
$$L = \sigma T^4 A$$

Wein's law
$$\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$$

Intensity of radiation
$$I = \frac{L}{4\pi d^2}$$

Redshift of electromagnetic
$$z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$$
 radiation

Cosmological expansion
$$v = H_0 d$$

BLANK PAGE

