Problem Set 5 (Total Points: 200), Due July 24th

Normal Problems

Problem (1). (15 points) Find $\frac{dy}{dx}$ for the equation $x^2 + xy + y^2 = x + y$.

Problem (2). (15 points) Find $\frac{dy}{dx}$ for the equation $\cos(xy) = 1$.

Problem (3). (15 points) Find $\frac{dy}{dx}$ for the equation $x^2 + y^2 = y^4$.

Problem (4). (15 points) Solve the following limit with L'Hôpital's rule:

$$\lim_{x \to \infty} \frac{e^x}{e^{e^x}}$$

Problem (5). (15 points) Solve the following limit with L'Hôpital's rule:

$$\lim_{x \to \infty} x^{-1} e^{2x}$$

Problem (6). (25 points) Solve the following limit with L'Hôpital's rule:

$$\lim_{x \to 0} \frac{\tan(x) - x}{x^3}$$

Problem (7). (Bonus, 25 points) Find $(x^x)'$. Hint: The easiest way to solve this problem is probably to use $x^x = e^{\ln(x^x)}$ to solve this problem. Both $x \cdot x^{x-1}$ and $\ln(x)x^x$ are wrong answers to this problem. However, the right answer does look similar to these.

Mini Projects (100 points)

Choose one of the following projects. Submit your answer on a separate sheet of paper.

Project (A). The formula for the curvature of the graph of a function f at a point x is

$$k_f(x) = \frac{f''(x)}{(1 + f'(x)^2)^{3/2}}.$$

(a) Find the curvature for the function $f(x) = x^2$. Describe the limits

Problem Set 5, Due: July 24th

of the curvature for this function as x goes to ∞ and $-\infty$. Sketch a graph of f and interpret your results.

- (b) An inflection point is a point where the curvature of a function changes sign. Another definition of an inflection point is where the f''(x) changes sign. Show these two definitions are the same. Hint: $1 + f'(x)^2$ is always a positive number.
- (c) Find the curvature of the function $f(x) = (x^2 1)^3$. Sketch a graph of f(x) and of $k_f(x)$ (feel free to use Desmos). Find all the inflection points of f.
- (d) (Bonus) The curvature measures the inverse of the radius of a circle tangent to the point (x, f(x)). Derive the formula for the curvature, $k_f(x) = \frac{f''(x)}{(1+f'(x)^2)^{3/2}}$ using the definition in terms of the inverse radius. Feel free to use the internet for this problem but you must submit an answer in your own words.

Project (B). This project is about optimizing the area of various shapes.

(a) Suppose a rectangle coordinates in the plane being

Suppose y = 4 - x. What is the maximum area of the rectangle. Assume x and y are positive numbers.

- (b) Repeat part (a) but for the equation $y = \sqrt{8 x^2}$.
- (c) Repeat part (a) but for the equation $y = \frac{5}{x}$.
- (d) Suppose a rectangle has perimeter 20. What is the maximum area it can have?
- (e) Suppose a right triangle has perimeter $4+2\sqrt{2}$. What is the maximum area it can have?
- (f) (Bonus) Suppose an isosceles triangle has a perimeter $8\sqrt{3}$. What's the maximum area it can have?

 $\mathbf{Project}$ (C). This project is about using derivative rules in other contexts.

For the first 5 questions assume f and g are functions such that

$$f(1) = 2$$

$$f'(1) = 5$$

$$f'(2) = 11$$

$$g(1) = 3$$

$$g'(1) = 7$$

$$g'(2) = 13$$

- (a) Suppose h(x) = f(x) + 2g(x). Find h'(1).
- (b) Suppose h(x) = f(x)g(x). Find h'(1).
- (c) Suppose $h(x) = \frac{f(x)}{g(x)}$. Find h'(1).
- (d) Suppose h(x) = g(f(x)). Find h'(1).
- (e) Suppose $h(x) = f(x^2) + g(x^3)$. Find h'(2).

For these next problems we are going to find and derive some derivative

- (f) Find a formula for $\left(\frac{1}{f(x)}\right)'$ in terms of f(x) and f'(x).
- (g) Find a formula for $(f(x)^n)'$ in terms of n, f(x), and f'(x).
- (h) In this problem you will prove the quotient rule. For functions f(x) and g(x) let $h(x)=\frac{1}{f(x)}$ so that $f(x)h(x)=\frac{f(x)}{g(x)}$. Using the product rule and the part (f) show that $(f(x)h(x))'=\frac{f(x)'g(x)-f(x)g(x)'}{g(x)^2}$. Show your work.
- (i) Suppose f(x) and g(x) are inverse functions so in particular f(g(x)) = x. That the derivate of both sides of the equation and use the chain rule. Divide both sides of the equation by f'(g(x)) to get a formula for g'(x). This formula is called the inverse function rule.
- (j) (Bonus) Find a formula for $(f(x)^{g(x)})'$ As with question 7 on the normal problems you can't solve this problem just by using the power rule or the taking a logarithm. You will probably need to use $e^{\ln(x)} = x$.