Clase 1: Conversores DC/DC

Gestión de Energía en Circuitos Integrados Gabriel Gabian

Universidad de Buenos Aires - Facultad de Ingeniería 1er Cuatrimestre 2025

25

Conversor Buck

Fundamentals of Power Electronics

Chapter 2: Principles of steady-state converter analysis

Objetivos

- Desarrollar las técnicas necesarias para obtener la tension de salida de cualquier conversor
- Obtener los principios de balance Volt-seg en inductores y de balance de carga en capacitors
- Introducir el concepto de aproximación de pequeño ripple
- Desarrollar metodos simples para la elección de elementos de filtro
- Demostrar con ejemplos

Fundamentals of Power Electronics

Chapter 2: Principles of steady-state converter analysis

Aproximación de pequeño ripple

En un conversor bien diseñado, el riple en la tension de salida es pequeño. Entonces, podemos aproximar las formas de onda ignorando el ripple

$$||v_{ripple}|| << V$$

$$v(t) \approx V$$

Fundamentals of Power Electronics

Chapter 2: Principles of steady-state converter analysis

Formas de onda de corriente $v_{\varepsilon} = \frac{i_{t}(t)}{v_{\varepsilon}} + \frac{i_{t}(t)}{v_{\varepsilon}(t)} + \frac{i_{t}(t)}{v_{\varepsilon}(t$

Balance Volt-Segundo $v_L(t) \qquad V_g - V \qquad total \ area \ \lambda \\ - V$ Fundamentals of Power Electronics $Chapter \ 2: Principles \ of \ steady-state \ converter \ analysis$ $UBA fluba \ \textcircled{S}$

Derivación de balance volt-segundo

Relación tensión-corriente en inductor

$$v_L(t) = L \frac{di_L(t)}{dt}$$

Integrar en un período

$$i_L(T_s) - i_L(0) = \frac{1}{L} \int_0^{T_s} v_L(t) dt$$

En estado estacionario, el cambio neto de corriente en un inductor es cero

$$0 = \int_0^{T_s} v_L(t) \ dt$$

Entonces, el area total (o volt-seg) debajo de la forma de onda de tensión es cero cuando el conversor opera en estado estacionario. Es decir,

$$0 = \frac{1}{T_s} \int_0^{T_s} v_L(t) \ dt = \left\langle v_L \right\rangle$$

La tensión promedio en estado estacionario en el inductor es cero

37

Balance V-s: Aplicación directa

switch en posición 1

Definición de "ripple": Δi_L $i_L(t) \qquad \qquad i_L(DT_s) \qquad \qquad \Delta i_L$ $0 \qquad DT_s \qquad T_s \qquad t$ Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis JUBA filuba

39

Solución en estado estacionario

