Machine Learning & Global Health Network Day **Tutorial: Implementing distributions in STAN**

Anna Freni Sterrantino, Zhi Ling, Oliver Ratmann

May 22nd, 2025 Imperial College London

Aims and scope

This short hands-on tutorial introduces participants to implementing custom statistical distributions in Stan, with a focus on the Yule-Simon distribution. Through guided examples, we will demonstrate three progressively technical methods: writing the distribution directly in the Stan language, using external C++ code, and finally, developing it in a deeper "dev-style" C++ integration. The session is designed for researchers and practitioners who are familiar with Stan and want to extend its capabilities with custom models.

What You Will Learn

By the end of this tutorial, you will:

- Understand the structure and syntax for defining custom distributions in Stan.
- Implement the Yule-Simon distribution in:
 - Pure Stan language using user-defined functions.
 - External C++ via the Stan Math library interface.
 - $-\,$ Developer-style C++ for deeper integration and efficiency.
- Gain insight into when and why to use each approach.
- Learn debugging tips and best practices for custom Stan functions.

Expected Prior Knowledge

- Basic understanding of Bayesian modelling and Stan
- Familiarity with R or Python scripting
- Some experience with the command line
- Optional: basic C++ familiarity

For the tutorial

To run the tutorial smoothly, make sure you have the following installed and working.

- RStudio
- ullet R packages: tidyr, rstan, loo, ggplot2, gridExtra, bayesplot, cmdstanr,posterior
- Optional: emacs

Pre-tutorial Checklist

1. Install Required Software

Option A: R + CmdStanR

- Install R (version 4.3 or higher): https://cran.r-project.org/
- Install RStudio: https://posit.co/download/rstudio-desktop/
- In R, install CmdStanR and CmdStan:

```
install.packages("cmdstanr", repos = c("https://mc-stan.org/r-packages/", getOptic
cmdstanr::install_cmdstan()
```

Option B: Python + CmdStanPy

- Install Python (version 3.8 or higher): https://www.python.org/
- Recommended: Install via Anaconda: https://www.anaconda.com/
- In terminal or Anaconda Prompt, install CmdStanPy and CmdStan:

```
pip install cmdstanpy
python -c "import_cmdstanpy;_cmdstanpy.install_cmdstan()"
```

2. Install a C++ Toolchain

- macOS: xcode-select --install
- Windows (R): Install RTools: https://cran.r-project.org/bin/windows/Rtools/
- Windows (Python): Use WSL with GCC or MSVC toolchain
- Linux: sudo apt install build-essential

3. Install a Code Editor

Have one of the following installed:

- Visual Studio Code
- RStudio
- Sublime Text
- Emacs

4. Verification Scripts

R Version

```
library(cmdstanr)
check_cmdstan_toolchain()
cmdstanr::cmdstan_version()
## set_cmdstanr_path() add your path

mod <- cmdstan_model(write_stan_file("data{
  real<lower=0>alpha;
}
parameters{
  real<lower=0>y;
}
model{
  y~exponential(alpha);
}"))
fit <- mod$sample(data = list(alpha = 1), chains = 1, iter_sampling = 100)
  print(fit$summary())</pre>
```

Python Version

```
from cmdstanpy import CmdStanModel, install_cmdstan
install_cmdstan()

stan_code = """
data {
  real < lower = 0 > alpha;
}
parameters {
  real < lower = 0 > y;
}
model {
  y ~ exponential(alpha);
}
"""
with open("simple_model.stan", "w") as f:
  f.write(stan_code)

model = CmdStanModel(stan_file="simple_model.stan")
fit = model.sample(data={"alpha": 1}, chains=1, iter_sampling=100)
print(fit.summary())
```

References

How to install https://mc-stan.org/docs/cmdstan-guide/installation.html#cpp-toolchain Yule-Simon Distribution https://www.statisticshowto.com/yule-simon-distribution/ Distributions installed in Stan https://github.com/stan-dev/math/tree/develop/stan/math/prim/prob

Cmdstanr vignette https://mc-stan.org/cmdstanr/articles/cmdstanr.html

Adding new functions to Stan https://mc-stan.org/math/md_doxygen_2contributor__help__pages_ 2getting__started.html

Adding distribution in Stan Mathhttps://mc-stan.org/math/md_doxygen_2contributor__help_ _pages_2adding__new__distributions.html

Define Custom Response Distributions with brms https://cran.r-project.org/web/packages/brms/vignettes/brms_customfamilies.html

Full stan example for lpmf, cdf etc https://jepusto.com/posts/double-poisson-in-Stan/Custom likelihoods with Stan example

https://aheblog.com/2018/05/18/method-of-the-month-custom-likelihoods-and-bayesian-models-in-Yule~Simon~distribution~https://par.nsf.gov/servlets/purl/10334078