

Department of Electrical and Computer Engineering, NSU CSE 115L: Fundamentals of Computer Programming Week 06 (2D Arrays)

Memor	y Representa	tion			Basic Syntax		
					DataType arrayName [row][column];		
					How to dedone the 2D amount		
	Column 0	Column 1	Column 2	Column 3	How to declare the 2D arrays:-		
Row 0	a[0][0]	a[0][1]	a[0][2]	a[0][3]	int a[3][4];		
Row 1	a[1][0]	a[1][1]	a[1][2]	a[1][3]	In the declaration of the 22 and column 4		
Row 2	a[2][0]	a[2][1]	a[2][2]	a[2][3]	In the declaration above row=3 and column=4		
					OR		
	Column 0	Column 1	Column 2	Column 3	int a[3][4] = { {0, 1, 2, 3}, /* row 0 */		
Row 0	0	1	2	3	{4, 5, 6, 7}, /* row 1 */		
Row 1	4	5	6	7	{8, 9, 10, 11} /* row 2 */ };		
Row 2	8	9	10	11	"		
	ss value 1 we e a[2][3]	write a[0][1	.]; To access	s value 11	OR The above statement is same as: int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};		

Declaring and accessing the elements of a two-dimensional array:

```
int main()
{
    int A[100][100], i, j, rows, columns;
    printf("Number of rows: ");
    scanf("%d",&rows);
    printf("Number of columns: ");
    scanf("%d", &columns);
    for(i=0;i<rows;i++)</pre>
        for(j=0;j<columns;j++)</pre>
            printf("A[%d][%d]: ",i, j);
             scanf("%d",&A[i][j]);
        }
    printf("Values in array A:\n");
    for(i=0;i<rows;i++)</pre>
        for(j=0;j<columns;j++)</pre>
            printf("%10d ",A[i][j]);
        printf("\n");
    return 0;
```

Problems:

- 1. i) Declare a 2 dimensional array of row size 3 and column size 3.
 - ii) Fill the 2 dimensional array with values from the user using nested loops.
 - iii) Search for a user given value in the 2D array by using if-else and nested loops. If the value is not present then print "Value not found", print "Value found" if present.
- 2. Ask user for number of rows and number of columns. Based on input, declare two 2-dimensional arrays M and N. Now implement the following tasks:
 - i) Take input for both arrays
 - ii) Output the arrays as form of matrix
 - iii) Calculate the sum and store the sum in another 2D array of same dimension. Display the sum.

Sample run:

Row: 2	Enter first array	Enter second	First array:	Sum:
Column: 3	elements:	array elements:	2 3 1	
	2	7	10 4 6	9 5 5
	3	2		16 12 10
	1	4	Second array:	
	10	6	7 2 4	
	4	8	6 8 4	
	6	4		

3. Write a program that computes the sum of a specific column (provide by user as input) in a 2D array.

Sample Output:

Enter number of rows: **3** Enter number of columns: **4**

Enter elements: 2 3 6 7

4 **8 1 5** 9 **0 7 2**

Enter which column to find sum of: 2

Sum of column 2: 11

4. Take input of a matrix of MxN dimension, where M and N are user inputs. Now display the transpose of it. You can get the transpose matrix by interchanging row and column of the original matrix. See the following example:

Original matrix				Transpose matrix		
			4	1		
4	6	2	6	3		
1	3	8	2	8		