MATH 571, Homework 2

Colin Roberts

January 26, 2018

Solutions

Problem 1. Give an example of a connected space X, a subspace $A \subseteq X$, and a map $r: X \to A$ that is a retract but which does not come from a deformation retraction. Prove your answer is correct.

Proof. Let $X = S^1$ and let $A = \{p\} \in S^1$ be a single point. Then let $r: X \to A$ be a retraction. Note this map is continuous since $r^{-1}(p) = S^1$ and is a retraction since $r|_A = \operatorname{Id}_A$ and r(X) = A. Yet, this map is not a deformation retraction since $S^1 \not\simeq \{p\}$.

Problem 2. The Euler characteristic of a finite CW complex X is $\chi(X) = \sum_i (-1)^i c_i$, where c_i is the number of i-cells of X. Alternatively see also the definition on page 6 of our book.

- (a) If X is S^n with a CW structure of a single 0-cell e^0 and a single n-cell e^n , then what is $\chi(X)$?
- (b) If X is S^n with a CW structure of two 0-cells, two 1-cells, ..., two n-cells, then what is $\chi(X)$?
- (c) Explain why Theorem 2.44 on page 146 of our book, which we haven't covered yet, says that you should have expected to get the same answer in (a) and (b).
- (d) Any simplicial complex has a CW complex structure with one i-cell for each i-simplex. Find the Euler characteristic of the n-simplex Δ^n by counting c_i for each i, and then computing the alternating sum $\chi(\Delta^n) = \sum_i (-1)^i c_i$. How in the world do you simplify that long alternating sum?
- (e) Instead, now find the Euler characteristic of the n-simplex by remarking that Δ^n is homotopy equivalent to a simpler space (no proof needed), and then computing the Euler characteristic of that simpler space.

Proof.

- (a) $\chi(X) = \sum_{i} (-1)^{i} c_{i} = (-1)^{0} + (-1)^{n} = 1 + (-1)^{n}$. So $\chi(X) = 0$ if n is even and $\chi(X) = 2$ if n is
- (b) $\chi(X) = \sum_{i} (-1)^{i} c_{i} = 2(-1)^{0} + 2(-1)^{1} + \dots + 2(-1)^{n-1} + 2(-1)^{n}$. Then if n is even we can pair off these quantities by $2(-1)^{0} + 2(-1)^{1} = 0$, $2(-1)^{2} + 2(-1)^{3} = 0$, up to $2(-1)^{n-1} + 2(-1)^{n} = 0$ and hence $\chi(X) = 0$ if n is even. If n is odd, then we can pair off and cancel out terms up to the nth term, which will give us $\chi(X) = 2(-1)^n = 2$.
- (c) Since S^n has a given homology, we don't expect the way we construct S^n to change the rank of any homology group of S^n . Otherwise, we would not have a consistent homology theory.

- (d) Notice that we have $c_0 = n+1$ for Δ^n . Also, we have that $c_i = \binom{n+1}{i+1}$ for Δ^n as well. This gives that $\chi(X) = n+1+\sum_{i=1}^n (-1)^i \binom{n+1}{i+1}$. I think this will have the sum collapse into giving us $\chi(X) = 1$.
- (e) Since each Δ^n is contractible, we have that $\Delta^n \simeq \Delta^0$. Then the long alternating sum just becomes $c_0 = 1$.

Problem 3. Show that S^{∞} is contractible. I encourage you to consult Example 1B.3 on page 88 in our book!

Proof. First consider the homotopy $f_t \colon \mathbb{R}^\infty \to \mathbb{R}^\infty$ given by $f_t(x_1, x_2, \dots) = (1 - t)(x_1, x_2, \dots) + t(0, x_1, x_2, \dots)$ and note that for all $t \in [0, 1]$, f_t takes nonzero vectors to nonzero vectors. This means that we can let $\frac{f_t}{|f_t|} \colon S^\infty \to S^\infty$ be a homotopy. We can then define $g_t \colon \mathbb{R}^\infty \to \mathbb{R}^\infty$ by $g_t(x_1, x_2, \dots) = (1 - t)(0, x_1, x_2, \dots) + (1, 0, 0, \dots)$, which is again nonzero for all $t \in [0, 1]$. Hence, we can define a homotopy $\frac{g_t}{|g_t|} \colon S^\infty \to S^\infty$ where g_1 a constant map. Now, if we consider $h_t = \frac{g_{2t-1}}{|g_{2t-1}|} \circ \frac{f_{2t}}{|f_{2t}|}$ we have a homotopy from S^∞ to a point, showing that S^∞ is contractible.