

GUÍA DOCENTE 2022-2023

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA:	Resistencia de Materiales			ales		
PLAN DE ESTUDIOS:		Grado en Ingeniería de Organización Industrial				
FACULTAD: Escuela Politécnica Superior						
CARÁCTER DE LA ASIGNATURA: Obligatoria						
ECTS: 6						
CURSO: Tercero						
SEMESTRE: Segundo						
IDIOMA EN QUE SE IMPARTE: Castella			Castella	ino		
PROFESORADO: Dr. Jorge		orge Cres	po Álvarez			
DIRECCIÓN DE CORREO ELECTRÓNICO:			ÓNICO:	jorge.crespo@uneatlantico.es		

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS: No aplica CONTENIDOS: Tema 1. Tensión y Deformación 1.1 Tensión 1.2 Deformación Tema 2. Elasticidad y Comportamiento de Materiales 2.1 Elasticidad y Linealidad. 2.2 Ley de Hooke y Ley de Hooke Generalizada 2.3 Relación Tensión-Deformación

- 2.4 Tensión Límite. Tensión Admisible y Coeficiente de Seguridad
- Tema 3. Conceptos y Principios Básicos
 - 3.1 Piezas, Barras y Elementos Estructurales
 - 3.2 Principios de la Resistencia de Materiales. Esfuerzos
 - 3.3 Ecuaciones de Equilibrio: Piezas rectas, Estructuras Isostáticas e Hiperestáticas
- Tema 4. Leyes de Esfuerzos
 - 4.1 Leyes de Esfuerzos en Estructuras Articuladas
 - 4.2 Leyes de Esfuerzos en Estructuras de Plano Medio
- Tema 5. Esfuerzo Axial
 - 5.1 Esfuerzo Axial en Piezas Rectas
 - 5.2 Esfuerzo Axial en Cables
 - 5.3 Esfuerzo Axial por Temperatura
- Tema 6. Esfuerzo Flector
 - 6.1 Flexión Pura
 - 6.2 Flexión Simple
 - 6.3 Flexión Compuesta
- Tema 7. Esfuerzo Cortante
 - 7.1 Teoría Elemental de Cortadura
 - 7.2 Secciones Rectangulares
 - 7.3 Secciones de Pequeño Espesor
 - 7.4 Centro de Esfuerzos Cortantes
- Tema 8. Esfuerzo de Torsión
 - 8.1 Torsión de Coulomb
 - 8.2 Torsión de Saint-Venant
- Tema 9. Aplicaciones a Construcciones Agroindustriales
 - 9.1 Perfiles Estructurales
 - 9.2 Cimentaciones

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Analizar resultados y sintetizar información en un contexto teórico y/o experimental relacionado con la ingeniería de la organización industrial
- CG2 Organizar y planificar de forma adecuada tareas en el ámbito de la ingeniería de la organización industrial
- CG3 Comunicar de manera adecuada y eficaz en lengua nativa, tanto de forma oral como escrita, ideas y resultados relacionados con la ingeniería de la organización industrial a audiencias formadas por público especializado y/o no especializado
- CG4 Analizar y buscar información en diversas fuentes sobre temas de la ingeniería de la organización industrial
- CG5 Resolver problemas relativos a la ingeniería de la organización industrial
- CG8 Ejercer la crítica y la autocrítica con fundamentos sólidos, teniendo en cuenta la diversidad y complejidad de las personas y de los procesos en el ámbito de la ingeniería de la organización industrial
- CG10 Aprender de forma autónoma conceptos relacionados en el ámbito de la ingeniería de la organización industrial
- CG12 Relacionar de forma creativa principios, conceptos y resultados en el ámbito de la ingeniería de la organización industrial

COMPETENCIAS ESPECÍFICAS:

Que los estudiantes sean capaces de:

CE37 Conocimiento y utilización de los principios de la elasticidad y resistencia de materiales en su aplicación tecnológica en el ámbito de la organización industrial

Resultados de aprendizaje:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Explicar los principios fundamentales de la elasticidad y resistencia de materiales y que condicionan el comportamiento estructural de los sólidos reales
- Calcular tensiones, direcciones principales, desplazamientos y esfuerzos en un sistema estructural básico sometido a cargas exteriores
- Interpretar los diagramas de solicitaciones y su relación con las cargas exteriores
- Resolver problemas de deformación en vigas y en condiciones hiperestáticas
- Analizar el fenómeno del pandeo

- Describir los principales tipos estructurales, su idoneidad y las claves para su diseño y cálculo.
- Comunicar información, ideas, problemas y soluciones, incluyendo los detalles técnicos necesarios, en el ámbito de la ingeniería de organización industrial, de forma adecuada a la audiencia
- Defender oralmente un trabajo sobre materiales realizado en equipo utilizando la terminología correcta.
- Conocer y manejar herramientas informáticas útiles en el campo de la Resistencia de Materiales

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- MD1 Método expositivo
- MD2 Estudio y análisis de casos
- MD3 Resolución de ejercicios
- MD4 Aprendizaje basado en problemas
- MD6 Aprendizaje cooperativo/trabajo en grupo
- MD7 Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas				
	Clases expositivas	12		
A atividada a divisida a	Clases prácticas	7,5		
Actividades dirigidas	Seminarios y talleres	7,5		
	Clases prácticas (laboratorio)	12		
Actividades supervisedes	Supervisión de actividades	7,5		
Actividades supervisadas	Tutorías (individual / en grupo)	6		
	Preparación de clases	15		
Actividades sutánomos	Estudio personal y lecturas	37,5		
Actividades autónomas	Elaboración de trabajos	22,5		
	Trabajo individual en campus virtual	15		
Actividades de evaluación	Actividades de evaluación	7,5		

El primer día de clase, el profesor/a proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación	
Evaluación	1 Seminario	10%
continua	4 Clases Prácticas de Laboratorio	20%
	2 Exámenes Parciales	20%
Evaluación final	Prueba teórico-práctica final	50%

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) **no podrá ser inferior, en ningún caso, a 4,0 puntos** (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un examen con un valor del 50% de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA OBLIGATORIA

Las siguientes referencias son de consulta obligatoria:

Cervera Ruiz, M., Blanco Díaz, E., (2015). *Resistencia de Materiales*. Ed. Centro Internacional de Métodos Numéricos en Ingeniería (CIMNE)

BIBLIOGRAFÍA RECOMENDADA

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

Vazquez, M. (2000). Resistencia de Materiales. Ed. Noela

Jiménez Montoya, P. (1971) Hormigón Armado. Ed Gustavo Gili

Navés, F. y Llorens, M. (1997). Cálculo de estructuras. Ed. UPC

Navés, F. y López, F. (s.f.) Cálculo elemental de estructuras. Ed. UPC

Simón, A., Bataller, A., Cabrera, J.A. y Pérez, A. (2005) *Ideas básicas de Estática y Resistencia de Materiales.* Ed. Anaya

WEBS DE REFERENCIA

https://www.csiespana.com https://www.codigotecnico.org

OTRAS FUENTES DE CONSULTA

No aplica