Detecting Cancer Metastases on Gigapixel Pathology Images

Zhirui (Alex) Yang

Major: Data Science

Email: zy2494@columbia.edu

2 Methods and Models

3 Results and Heatmaps

4 Conclusion and Future Work

2 Methods and Models

3 Results and Heatmaps

4 Conclusion and Future Work

• Each year, huge number of breast cancer patients hinge on whether the cancer has metastasized away from the breast.[1]

• Microscopic examination requires highly skilled pathologists and is fairly time-consuming and error-prone.[1]

• Computer assisted detection could increase the sensitivity, speed, and consistency of metastasis detection.[2]

2 Data Processing and Models

3 Results and Heatmaps

4 Conclusion and Future Work

Data Processing - Raw Data Description

Raw Data:

- Get some slides from database
- Have some function to load image of certain level

Image used in my project

```
- "101", "094", "110", "016", 
"078", "031", "064", "091", 
"075", "094", "084"
```


- Left is the original slide, and right is the mask.
- Cancer tumor cells are marked as 1 shown yellow in the image, and other area is marked as 0 shown purple in the image.

Data Processing - Train-Test Dataset Split

- Ensure model only learn the information from training set
- Better generalization ability for future use
 - If this tools will be applied in the real treatment process, model need to be able to deal with new patients.

- Training set: "101", "094", "110", "016", "078", "031", "064"
- Test set: "091", "075", "094", "084"

Data Processing - Data Augmentation

- Use the methods mentioned in the paper [1]
- Apply data augmentation randomly on the pitches

- Rotate the input patch by 4 multiples of 90°, apply a left-right flip and repeat the rotations.
- Perturb color:
 - brightness with a maximum delta of 64/255
 - saturation with a maximum delta of 0.25
 - hue with a maximum delta of 0.04
 - contrast with a maximum delta of 0.75

Models - Base Model

Layer (type)	Output Sh	hape	Param #
conv2d_1 (Conv2D)	(None, 29	97, 297, 16)	448
max_pooling2d_1 (MaxPooling 2D)	(None,	148, 148, 16)	0
flatten_1 (Flatten)	(None, 35	50464)	0
dense_2 (Dense)	(None, 32	2)	11214880
dense_3 (Dense)	(None, 1))	33

Models - Training process

Models - One-zoom (5) Model

```
inception zoom1 = InceptionV3(
    weights='imagenet',
    include top=False,
    input shape=(patch len, patch len, 3))
 freeze the inception model to increase training speed
inception zooml.trainable = False
model zoom1 = models.Sequential()
model zooml.add(inception zooml)
model zoom1.add(layers.GlobalAveragePooling2D())
input zoom1 = layers.Input(shape=(patch len, patch len, 3))
encoded zoom1 = model zoom1(input zoom1)
dense1 = layers.Dense(128, activation='relu')(encoded zoom1)
drop layer = layers.Dropout(0.5)(densel)
dense2 = layers.Dense(32, activation='relu')(drop layer)
output = layers.Dense(1, activation='sigmoid')(dense2)
model = models.Model(inputs=[input zoom1], outputs=output)
```

```
Output Shape
 Layer (type)
                                                Param #
______
 input 2 (InputLayer)
                         [(None, 299, 299, 3)]
                                                21802784
 sequential (Sequential)
                         (None, 2048)
                                                262272
 dense (Dense)
                         (None, 128)
 dropout (Dropout)
                         (None, 128)
                                                0
 dense 1 (Dense)
                         (None, 32)
                                                4128
 dense 2 (Dense)
                                                33
                         (None, 1)
Total params: 22,069,217
Trainable params: 266,433
Non-trainable params: 21,802,784
```


Models - Training process

Models Three-zooms (567) Model

```
inception_zoom1 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))

inception_zoom2 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))

inception_zoom3 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))
```

```
model_zoom1 = models.Sequential()
model_zoom1.add(inception_zoom1)
model_zoom1.add(layers.GlobalAveragePooling2D())

model_zoom2 = models.Sequential()
model_zoom2.add(inception_zoom2)
model_zoom2.add(layers.GlobalAveragePooling2D())

model_zoom3 = models.Sequential()
model_zoom3.add(inception_zoom3)
model_zoom3.add(layers.GlobalAveragePooling2D())
```


Layer (type)	Output Shape	Param #	Connected to
inputl (InputLayer)	[(None, 299, 299, 3		[]
input2 (InputLayer)	[(None, 299, 299, 3)]	0	[]
input3 (InputLayer)	[(None, 299, 299, 3)]	0	[]
sequential (Sequential)	(None, 2048)	21802784	['input1[0][0]']
sequential_1 (Sequential)	(None, 2048)	21802784	['input2[0][0]']
sequential_2 (Sequential)	(None, 2048)	21802784	['input3[0][0]']
concatenate_6 (Concatenate)	(None, 6144)	0	['sequential[0][0]',
dense (Dense)	(None, 256)	1573120	['concatenate_6[0][0]']
dropout (Dropout)	(None, 256)	0	['dense[0][0]']
dense_1 (Dense)	(None, 126)	32382	['dropout[0][0]']
dense_2 (Dense)	(None, 1)	127	['dense_1[0][0]']

Models - Training process

Models Three-zooms (357) Model

```
inception_zoom1 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))

inception_zoom2 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))

inception_zoom3 = InceptionV3(
    weights='imagenet',
    include_top=False,
    input_shape=(patch_len, patch_len, 3))
```

```
model_zoom1 = models.Sequential()
model_zoom1.add(inception_zoom1)
model_zoom1.add(layers.GlobalAveragePooling2D())

model_zoom2 = models.Sequential()
model_zoom2.add(inception_zoom2)
model_zoom2.add(layers.GlobalAveragePooling2D())

model_zoom3 = models.Sequential()
model_zoom3.add(inception_zoom3)
model_zoom3.add(layers.GlobalAveragePooling2D())
```


Models - Three-zooms (357) Model

Layer (type)	Output Shape	Param #	Connected to
inputl (InputLayer)	[(None, 299, 299, 3	0	[]
input2 (InputLayer)	[(None, 299, 299, 3)]	0	[]
<pre>input3 (InputLayer)</pre>	[(None, 299, 299, 3)]	0	[]
sequential (Sequential)	(None, 2048)	21802784	['input1[0][0]']
sequential_1 (Sequential)	(None, 2048)	21802784	['input2[0][0]']
sequential_2 (Sequential)	(None, 2048)	21802784	['input3[0][0]']
concatenate_6 (Concatenate)	(None, 6144)	0	['sequential[0][0]',
dense (Dense)	(None, 256)	1573120	['concatenate_6[0][0]']
dropout (Dropout)	(None, 256)	0	['dense[0][0]']
dense_1 (Dense)	(None, 126)	32382	['dropout[0][0]']
dense_2 (Dense)	(None, 1)	127	['dense_1[0][0]']
Total params: 67,013,981 Trainable params: 1,605,629 Non-trainable params: 65,408,3	52		

Models - Training process

2 Methods and Models

3 Results and Heatmaps

4 Conclusion and Future Work

Results - Model Performance (classification report)

Base Model

	precision	recall	f1-score	support
normal	0.61	0.63	0.62	4000
cancer	0.62	0.60	0.61	4000
accuracy			0.62	8000
macro avg	0.62	0.62	0.62	8000
weighted avg	0.62	0.62	0.62	8000

Three-zooms (567) Model

	precision	recall	f1-score	support
normal	0.64	0.96	0.77	4000
cancer	0.92	0.45	0.61	4000
accuracy			0.71	8000
macro avg	0.78	0.71	0.69	8000
weighted avg	0.78	0.71	0.69	8000

One-zoom (5) Model

	precision	recall	f1-score	support
normal	0.58	1.00	0.73	4000
cancer	0.99	0.26	0.42	4000
accuracy			0.63	8000
macro avg	0.78	0.63	0.57	8000
weighted avg	0.78	0.63	0.57	8000

Three-zooms (357) Model

	precision	recall	f1-score	support
normal	0.57	0.98	0.72	4000
cancer	0.94	0.25	0.40	4000
accuracy			0.62	8000
macro avg	0.76	0.62	0.56	8000
weighted avg	0.76	0.62	0.56	8000

Results - Model Performance (ROC and AUC)

Model	AUC
Random Guess	0.5
Base Model	0.698
One-zoom (5) Model	0.775
Three-zooms (567) Model	0.722
Three-zooms (357) Model	0.533

Generate Heatmaps

Use sliding window to generate samples for model

- Move x steps and y steps to generate new samples and make predictions
- If model prediction is 1, then mark all 128*128 pixels as 1, otherwise, mark pixels as 0

Predicted vs. Real Tumor Heatmap of slide 084

2 Methods and Models

3 Results and Heatmaps

4 Conclusions and Future Work

Conclusions

- Build entire pipeline for cancer tumor detection.
- Package common functions to make experiments much easier.[1]
- Combination of different zoom levels are helpful to detect the cancer tumor.
- The interval of levels is significant to the model performance.
- Transfer learning greatly improve the efficiency and accuracy of image recognition.

Future Work

- Better selection of samples.

- Tumor area is much smaller than the normal area, so selecting positive samples randomly is much easier to get similar pitches than selecting negative samples

- Try more combination

- Try different number of levels and different level intervals

- Improve heatmap generation process

- For each level, I need give model the full pitch of cells, so I need to depend on the max zoom level to get pitches but model will predict on the minimum level. It will make the heatmap has some gaps.

