Los primos generan a los primos como una combinación lineal.

Las representaciones aditivas de los primos no necesariamente requieren de cuadrados, cubos u otras potencias de enteros. Los primos pueden autogenerarse hablando desde la idea de lo aditivo, y nos referimos a que un primo p_i se puede generar en términos de sumas y restas de los primos anteriores a él (se incluye al uno).

La propuesta de la autogeneración de los primos se debe a H. F. Scherk, quien en 1830^1 estableció que para cada natural $n \ge 3$, y eligiendo adecuadamente los signos + ó -, se tiene que según el orden de los primos, estos se pueden representar de la forma

$$p_{2n} = 1 \pm p_1 \pm p_2 \pm p_3 \pm \cdots \pm p_{2n-1}$$

y

$$p_{2n+1} = 1 \pm p_1 \pm p_2 \pm p_3 \pm \cdots \pm p_{2n-1} + 2p_{2n}$$

donde los subíndices establecen el orden de aparición de los primos, y lo sobresaliente es que todo primo se puede representar como una combinación lineal de todos los primos anteriores a él, y en el caso de los primos de orden p_{2n+1} el último sumando será multiplicado por dos. Por ejemplo, supongamos que $p_1 = 2$ y $p_2 = 3$, y para $n \ge 3$ se tiene que

$$p_3 = 1 - 2 + 2(3) = 5$$

 $p_4 = 1 - 2 + 3 + 5 = 7$
 $p_5 = 1 - 2 + 3 - 5 + 2(7) = 11$
 $p_6 = 1 + 2 - 3 - 5 + 7 + 11 = 13$

La prueba de este teorema fue publicada por S. S. Pillai en 1928 y la demostración que veremos a continuación se debe a Sierpinsky.² Antes de dar paso a la demostración de las fórmulas veamos un lema que será de gran utilidad para esto.

¹Véase Sierpinski [1964]

²Véase Sierpinski [1964]

Lema.

Existen $q_1, q_2, ...$ una sucesión infinita de enteros, tal que para $n \ge 3$ cada entero positivo impar menor que el elemento de la sucesión q_{2n+1} , es de la forma

$$\pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n-1} + q_{2n}$$

eligiendo adecuadamente los signos correspondientes.

Demostración.

La sucesión infinita que consideramos será la de los primos. Sea ésta

$$q_1 = 2, q_2 = 3, q_3 = 5, q_4 = 7, q_5 = 11, q_6 = 13, q_7 = 17$$

y esta sucesión tiene la particularidad de que $^3q_{n+1} < 2q_n \dots$ (1), para $n=1,2,\dots$ Con base en esta sucesión se demostrará que existe una forma aditiva para representar a los impares usando sólo a los primos. El proceso de demostración será a través de inducción.

Veamos que para n=3 en q_{2n+1} , se tiene que $q_{2(3)+1}=17$, y que es posible expresar a todos los impares menores a 17 como suma de los 2(3) primos menores a él. Antes recordemos que $q_1=2, q_2=3, q_3=5, q_4=7, q_5=11, q_6=13, q_7=17$, por lo que:

$$1 = -q_1 + q_2 + q_3 - q_4 - q_5 + q_6 = -2 + 3 + 5 - 7 - 11 + 13$$

$$3 = q_1 - q_2 - q_3 + q_4 - q_5 + q_6 = 2 - 3 - 5 + 7 - 11 + 13$$

$$5 = q_1 + q_2 + q_3 - q_4 - q_5 + q_6 = 2 + 3 + 5 - 7 - 11 + 13$$

$$7 = -q_1 - q_2 - q_3 - q_4 + q_5 + q_6 = -2 - 3 - 5 - 7 + 11 + 13$$

$$9 = q_1 + q_2 - q_3 + q_4 - q_5 + q_6 = 2 + 3 - 5 + 7 - 11 + 13$$

$$11 = q_1 - q_2 - q_3 - q_4 + q_5 + q_6 = 2 - 3 - 5 - 7 + 11 + 13$$

$$13 = q_1 - q_2 + q_3 + q_4 - q_5 + q_6 = 2 - 3 + 5 + 7 - 11 + 13$$

$$15 = -q_1 + q_2 + q_3 + q_4 - q_5 + q_6 = -2 + 3 + 5 + 7 - 11 + 13$$

$$17 = q_1 + q_2 - q_3 - q_4 + q_5 + q_6 = 2 + 3 - 5 - 7 + 11 + 13$$

Como parte del proceso de inducción supongamos ahora que el lema es verdadero para $n \ge 3$, y acto seguido consideremos a 2k - 1 un impar menor o igual que q_{2n+3} . Recordando que

 $^{^3}$ Este hecho se debe al postulado de Joseph Louis Bertrand, el cual establece que para todo natural mayor que 1, entre n y 2n existe por lo menos un primo. De esta manera entre q_n y $2q_n$ existe por lo menos un primo; si existieran más se puede elegir al más pequeño, que en este caso sería q_{n+1} . El postulado se abordará más adelante.

 $deq_{n+1} < 2q_n$ se obtiene la desigualdad $q_{2n+3} < 2q_{2n+2}$, y en consecuencia⁴ $-q_{2n+2} < 2k - 1 - q_{2n+2} < q_{2n+2}$, y eligiendo de manera adecuada los signos se puede llegar a que

$$0 \le \pm 2k \pm 1 \pm q_{2n+2} < q_{2n+2}. \tag{2}$$

Hagamos una pausa en la demostración y puntualicemos que el objetivo final es mostrar que si ya es posible escribir al impar 2k-1 con sumas y restas de los primeros 2n primos (por el paso anterior de la inducción), es decir, $\pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n}$, entonces será posible hacerlo de la misma manera pero con los primeros 2(n+1) primos.

Siguiendo con la demostración, (1) se usa nuevamente de manera semejante para mostrar que $q_{2n+2} < 2q_{2n+1}$ y retomando (2) se le resta q_{2n+1} para obtener

$$-q_{2n+1} \le \pm 2k \pm 1 \pm q_{2n+2} - q_{2n+1} < q_{2n+2} - q_{2n+1}, \tag{3}$$

y de la desigualdad anterior $q_{2n+2} < 2q_{2n+1}$ se tiene que

$$q_{2n+2} - q_{2n+1} < 2q_{2n+1} - q_{2n+1} = q_{2n+1}.$$

De estas dos relaciones de desigualdades se concluye que

$$-q_{2n+1} \le \pm 2k \pm 1 \pm q_{2n+2} - q_{2n+1} < q_{2n+1}$$

y nuevamente eligiendo adecuadamente los signos tenemos

$$0 \le \pm 2k \pm 1 \pm q_{2n+2} \pm q_{2n+1} < q_{2n+1}.$$

Nótese que como cada uno de los primos es impar, entonces la suma

$$\pm 2k \pm 1 \pm q_{2n+2} \pm q_{2n+1}$$

es impar y menor que q_{2n+1} . Por hipótesis de inducción ya sabemos que todos los impares menores que q_{2n+1} se pueden escribir en términos de sumas y restas de los primeros 2n primos, es decir, $\pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n}$. Con esto tenemos que en particular $\pm 2k \pm 1 \pm q_{2n+2} \pm q_{2n+1}$ se puede escribir de esta forma, y así damos lugar a que con una elección adecuada de los signos se tiene que

$$\pm 2k \pm 1 \pm q_{2n+2} \pm q_{2n+1} = \pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n-1} + q_{2n}.$$

Por lo tanto, eligiendo el signo adecuado podemos concluir que

$$2k - 1 = \pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n} + q_{2n+1} + q_{2(n+1)}$$
.

De esta manera todo impar se puede escribir como suma de primos, y con excepción del 2, como los primos son impares, entonces se tiene una forma de representarlos utilizando los

⁴ Por el postulado de Bertrand tenemos que $q_{2(n+1)+1} < 2q_{2(n+1)}$, luego por hipótesis suponemos que2k-1es un impar menor o igual que $q_{2(n+1)+1}$, y por lo tanto $0 < 2k-1 < 2q_{2(n+1)}$, y además

 $⁻q_{2(n+1)} < 2k - 1 - q_{2(n+1)} < q_{2(n+1)}.$

primos anteriores a ellos. Sin embargo, esta clasificación es muy general, por lo cual el teorema de H. F. Scherk brinda la oportunidad de establecer una diferencia entre unos primos y otros, de acuerdo con su orden de aparición, es decir, si aparecen en orden par o impar.

Demostración del teorema de Scherk.

Para $n \ge 3$ el número $q_{2n+1} - q_{2n} - 1$ es un impar menor que q_{2n+1} , por lo tanto, aplicando el lema anterior y eligiendo el signo adecuado se concluye que

$$q_{2n+1} - q_{2n} - 1 = \pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n-1} + q_{2n}$$

de donde

$$q_{2n+1} = 1 \pm q_1 \pm q_2 \pm q_3 \pm \dots \pm q_{2n} + q_{2n+1} + 2q_{2n}$$

Para n=1 y n=2 podemos realizar la operación y ver que $q_3=1-q_1+2q_2\,$ y $q_5=1-q_1+q_2-q_3+2q_4,$ con lo cual la fórmula queda demostrada para estos números.

Por otro lado, como $q_{2n+2} < 2q_{2n+1}$ y además $q_{2n+2} - q_{2n+1} < q_{2n+1}$, entonces se tiene que $q_{2n+2} - q_{2n+1} - 1$ es un impar menor que q_{2n+1} . De esta manera, usando el lema anterior para $n \geq 3$, y eligiendo correctamente los signos se tiene

$$q_{2n+2} - q_{2n+1} - 1 = \pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n-2} + q_{2n-1} + q_{2n}$$

de donde

$$q_{2n+2} = 1 \pm q_1 \pm q_2 \pm q_3 \pm \cdots \pm q_{2n-2} + q_{2n-1} + q_{2n} + q_{2n+1}.$$

Por lo tanto todos los números primos se pueden escribir de las formas

$$p_{2n} = 1 \pm p_1 \pm p_2 \pm p_3 \pm \dots \pm p_{2n-1}$$
 y
$$p_{2n+1} = 1 \pm p_1 \pm p_2 \pm p_3 \pm \dots \pm p_{2n-1} + 2p_{2n}$$

respectivamente.

En conclusión, encontramos algunas maneras de diferenciar entre los primos de las formas 4k - 1 y 4k + 1, y de representarlos de manera aditiva a partir de ellos mismos. Sin embargo, aún tenemos la incógnita acerca de cómo y dónde localizamos de manera más precisa a los primos. Para aclarar algunas cuestiones sobre estos puntos en la siguiente sección analizaremos algunos intervalos y se establecerán propiedades para poder determinar si es que hay primos en ciertos intervalos.

Referencia

Sierpinski, W. 1964. Elementary theory of numbers. Polonia. Elsevier Science Publishers B.V.