識別記号

(51) Int.Cl.7

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号 特開2003-55341 (P2003-55341A)

テーマコート*(参考)

(43)公開日 平成15年2月26日(2003, 2, 26)

(OI) IIIICI.	MACO I DICE CO	r ı			7-73-1	多考)
C 0 7 C 381/00		C 0 7 C 38	1/00		2 H O	2.5
G03F 7/004	503	G03F	7/004	503	A 4H0	0.6
7/038	601		7/038	601		
7/039	6 0 1		7/039	601		
H01L 21/027		H01L 2	1/30	502	R	
		審查請求	未請求	請求項の数4	OL (全	33 頁)
(21)出願番号	特膜2001-248430(P2001-248430)	(71) 出願人	0000041	78		
			ジェイン	エスアール株式会	独	
(22) 出顧日	平成13年8月17日(2001.8.17)		東京都平	中央区築地2丁目	311番24号	
		(72)発明者	白木]	美司		
			東京都中	中央区築地二丁	311番24号	ジェイ
			エスア-	ール株式会社内		
		(72)発明者	横山 6	2 —		
			東京都中	中央区築地二丁目	311番24号	ジェイ
			エスアー	-ル株式会社内		
		(74)代理人	1000843	108		
			弁理士	岩見谷 周志		
					最終	質に続く

(54) 【発明の名称】 スルホニル構造を有する化合物、それを用いた感放射線性膜発生剤、ボジ型感放射線性樹脂組成物、及びネガ型感放射線性樹脂組成物

(57)【要約】 (修正年) 【課題】 遠紫外線等の活性放射線に感応する酸発生剤 として有用で、優れたレジストパターンを可能にするス ルホニル構造を有する化合物、それを用いた感放射線性 修発生剤並びに化学増幅型のポジ型およびネガ型の感放 射線性関節組織物を提供する。

[R[†]~R[†]は独立に水素、C1~20の置換/非置換 のアルキル吉しくはアルケール基、置換/非限換のアリ ール若しくはヘテロアリール基を示し、Yは酸素、硫 寅、N~R[†] 基、N~OR[†] 基、N~N~R^{*} 基 等(R[†] とR[†] はR[†] ~R[†] と同じ。)]のスルホニル 構造を有する化合物。一般式 I の化合物の具体例には 2 ーメトキシイミノー 1 ーインダノンオキシムー 1 ープロパンスルホネートがある。

【特許請求の範囲】 【請求項1】 下記一般式(1) 【化1】

 $\begin{array}{c}
0 \\
S \\
-R^{3} \\
0
\end{array}$ $\begin{array}{c}
0 \\
S \\
-R^{3}
\end{array}$ $\begin{array}{c}
0 \\
0 \\
R^{2}
\end{array}$ (1)

1

[式中、R' およびR' は、独立に、水素原子、炭素原 子数1~20の置換若しくは非置換のアルキル基、炭素 原子数3~20の置換若しくは非置換の部環族基、炭素 原子数1~20のアルケニル基、置換若しくは非置換の アリール基、又は置換若しくは非置換のヘテロアリール 基を示し、R'は、-R' 基、-OR' 基、-SR' 基 または-N(R') と基本元、ソは海素原子、竜筋原*

*子、=N-R'基、=N-OR'基、=N-OC $(R')_2$ 基、 $=N-N(R')_2$ 基、 $=C(R')_2$ 基、=N-OCO-R, 基、=N-OCO-OR, 基 =N-OCO-SR' 基、=N-OCO-N(R') 2 基、=N-OSO2-OR'基、=N-OSO2-S R'基または=N-OSO2-N(R')2基を示す。 (ここでR'は、水素原子、炭素原子数1~20の置換 若しくは非置換のアルキル基、炭素原子数3~20の置 換若しくは非置換の脂環族基、炭素原子数1~20のア 10 ルケニル基、置換若しくは非置換のアリール基、又は置 換若しくは非置換のヘテロアリール基を示す。ただし、 同一の窒素原子または炭素原子に結合した2つのR' は、相互に結合してヘテロ原子を含んでも良い環を形成 しても良い。) ただし、R'、R'およびR'の少なく とも2つが互いに結合して下記式(2-1)、(2-2)お よび (2-3) 【化2】

に示すように環状構造を形成していてもよく、 R^{\dagger} 、 R^{\dagger} 、または R^{\dagger} は下記式(3-1)、(3-2)または (3-3)

[Æ3]

【化4】

[(£5]

R³ - SO O S R

【請求項2】 請求項1に記載の一般式(1)で表される化合物を含有する感放射線性酸発生剤。 【請求項3】 (A)請求項1記載の一般式(1)で表

される化合物を含有する感放射線性酸発生剤、及び (B) 酸解離性基で保護されたアルカリ不溶性またはア

50 ルカリ難溶性樹脂であって、該酸解離性基が解離したと

3 きにアルカリ可溶性となる樹脂を含有してなる化学増幅 型のポジ型感放射線性樹脂組成物。

【請求項4】 (A)請求項1記載の一般式(1)で表 される化合物を含有する感放射線性酸発生剤、(C)ア ルカリ可溶性樹脂、および (D) 酸の存在下で前記アル カリ可溶性樹脂を架橋し得る化合物を含有してなる化学 増幅型のネガ型感放射線性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、KrFエキシマレ 10 ーザー、ArFエキシマレーザー、F2エキシマレーザ 一. FUV等の(超) 遠紫外線、シンクロトロン放射線 等のX線、電子線等の荷雷粒子線の如き各種の放射線に よる微細加工に適した化学増幅型レジストとして使用さ れるスルホニル構造を有する化合物、それを用いた感放 射線性酸発生剤、ポジ型感放射線性樹脂組成物、及びネ ガ型感放射線性樹脂組成物に関する。

[00002]

【従来の技術】集積回路素子の製造に代表される微細加 工の分野においては、より高い集積度を得るために、最 20 近では0.30μm以下のレベルでの微細加工が可能な リソグラフィー技術が必要とされている。しかし、従来 のリソグラフィープロセスでは、一般に放射線としてi 線等の近紫外線が用いられているが、この近紫外線で は、サブクオーターミクロンレベルでの微細加工が極め て困難であると言われている。

【0003】そこで、0.30 u m以下のレベルにおけ る微細加工を可能とするために、より波長の短い放射線 の利用が検討されている。このような短波長の放射線と しては、例えば、水銀灯の輝線スペクトルやエキシマレ 30 ある。 ーザーに代表される遺紫外線、X線、電子線等を挙げる ことができるが、これらのうち、特にKrFエキシマレ ーザー(波長248nm)、ArFエキシマレーザー (波長193nm)、F2エキシマレーザー(波長15 7 nm) 、EUV (波長13 nm等) 、電子線等が注目 されている。

【0004】前記短波長の放射線に適した感放射線性樹 脂組成物として、酸解離性官能基を有する成分と放射線 の照射(以下、「露光」という。) により酸を発生する 感放射線性酸発生剤との間の化学増幅効果を利用した組 40 成物(以下、「化学増幅型感放射線性組成物」とい う。) が数多く提案されている。化学増幅型感放射線件 組成物としては、例えば、特公平2-27660号公報 には、カルボン酸の t ープチルエステル基またはフェノ ールのt ープチルカーボナート基を有する重合体と感放 射線性酸発生剤とを含有する組成物が開示されている。 この組成物は、露光により発生した酸の作用により、重 合体中に存在するtープチルエステル基あるいはtーブ チルカーボナート基が解離して、該重合体がカルボキシ

の結果、レジスト被膜の露光領域がアルカリ現像液に易 溶性となる現象を利用したものである。

【0005】しかしながら、デバイスの設計寸法がサブ ハーフミクロン以下であり、線幅制御をより精密に行う 必要がある場合には、解像性能が優れているだけでな く、レジストパターン形成後の膜表面の平滑性に優れて いることも重要となってきている。膜表面の平滑性に劣 る化学増幅型レジストを用いると、エッチングなどの気 理により、基板にレジストパターンを転写する際に、膜 表面の凹凸形状(以下、「ナノエッジラフネス」とい う) が基板に転写されて、寸法精度が低下し、最終的に デバイスの電気特性が損なわれることになる。(I. Pho topolym. Sci. Tech. p571, 1998; Proc. SPIE Vol.333 3, p313 ; Proc. SPIE Vol.3333, p634 ; J.Vac.Sci. T echnol, B16(1), 1998, n69 参照)。

【0006】そこで、解像性能に優れ、かつナノエッジ ラフネスの小さい、より優れた化学増幅型レジストおよ び上記性能を発現する感放射線性酸発生剤の開発が強く 求められてきた。

[0007]

【発明が解決しようとする課題】本発明の課題は、活性 放射線、例えばKrFエキシマレーザー、ArFエキシ マレーザーあるいはF。エキシマレーザー、EUVに代 表される遠紫外線、あるいは電子線に感応する酸発生剤 として、優れた熱安定性ならびに保存安定性を有し、表 面ならびに側壁の平滑性に優れたレジストパターンを得 ることができるスルホニル構造を有する化合物、それを 用いた感放射線性酸発生剤、ポジ型感放射線性樹脂組成 物、及びネガ型感放射線性樹脂組成物を提供することに

[00008]

【課題を解決するための手段】本発明者等は、種々検討 した結果、後述する特定の化合物およびこれを用いた機 脂組成物が上記問題を解決することができるものである ことを見いだし、本発明に到達した。すなわち、本発明 は、第1に

【0009】下記--般式(1) [(1:6]

$$\begin{array}{c}
0 \\
0 \\
8 \\
0
\end{array}$$
(1)

【0010】「式中、R およびR は、独立に、水素 原子、炭素原子数1~20の置換若しくは非置換のアル キル基、炭素原子数3~20の置換若しくは非置換の脂 ル基やフェノール性水酸基からなる酸性基を形成し、そ 50 環族基 炭素原子数1~20のアルケニル基、置換若し

*20の慰拾売しくは非酸換の脂類燃料、炭素原子数1~ 20のアルケニル器。 西換布しくは非酸換のアリール 基、又は置換着しくは非酸換のペラロアリール基を示 す。ただし、同一の窒素原子または炭素原子に結合した 2つのR'は、相互に結合してヘアロデタを合んでした。 「側を形成しても良い。」とだし、R'、R'あよびR のかなくとも2つが互いに結合して下記式(2-1)、 (2-2)および(2-3) [0011]

【化7】

30

に示すように環状構造を形成していてもよく、 R^{\dagger} 、 R^{\dagger} 、または R^{\dagger} は下記式(3-1)、(3-2)または(3-3)

【0012】 【化8】

R³- 8-0.

[0013] [化9]

【0014】 【化10】 (式中、 $R^{''}$ 、 $R^{''}$ 、または $R^{''}$ は、別々の分子に属する2個 $R^{''}$ 、 $R^{''}$ 、または $R^{''}$ から各、個の原子をたは基が解離して残基が結合して形成された形である2価の基である。)に示すように、 $R^{''}$ 、 $R^{''}$ 、または $R^{''}$ となって、これらを介して二量体を形成していてもよい。」で表されるスルホニル構造を有する化合物を指針する。第2に、一般式(1)で表される化合物を含有する感放射線性酸発生測を提供する。第3に、

(A) 一般式(1)で表される化合物を含有する感換料 線性態発生剤、及び(B) 酸解離性基で保護されたアル カリ不溶性またはアルカリ関語性助能であって、認確解 離性基が解離したときにアルカリ可溶性となる樹脂を含 有してなる化学報報型のおど駆放動機性誘車損物を 提供する。第4に(A)一般式(1)で表される化合物を含有する感放射線性機停差別、(C)アルカリ可溶性 樹脂を架構し得る化合物を含有してなる化学増組型のネ 力型感放射線性膨胀消耗液砂を提供する。

【0015】 50 【発明の実施の形態】以下、本発明を詳細に説明する。

7 [スルホニル構造を有する化合物] 一般式(1)で表わ されるスルホニル構造を有する化合物 (第一発明) につ て説明する。

【0016】一般式(1)において、R¹ およびR は、独立に、水素原子、炭素原子数1~20の置換若 しくは非置換のアルキル基、炭素原子数3~20の置換 若しくは非置換の脂環族基。 炭素原子数 1~20のアル ケニル基、置換若しくは非置換のアリール基、又は置換 若しくは非置換のヘテロアリール基を示し、R3は、-R' 基、-OR' 基、-SR' 基または-N(R'), 基を示し、Yは酸素原子、硫黄原子、=N-R' 基、= N-OR' 基、=N-OC (R') 2 基、=N-N(R') z 基、=C(R') z 基、=N-OCO-R' 基、=N-OCO-OR' 基、=N-OCO-SR' 基、=N-OCO-N(R'),基、=N-OSO,-OR'基、=N-OSO2-SR'基または=N-OS O2 - N(R') 2 基を示す。ここでR'は、水素原 子、炭素原子数1~20の置換若しくは非置換のアルキ ル基、炭素原子数3~20の置換若しくは非置換の脂環 族基、炭素原子数1~20のアルケニル基、置換若しく 20 ル基等が挙げられる。 は非置換のアリール基、又は置換若しくは非置換のヘテ ロアリール基を示す。ただし、同一の窒素原子または炭 素原子に結合した2つのR'は、相互に結合してヘテロ 原子を含んでも良い環を形成しても良い。

【0017】炭素原子数1~20の置換若しくは非置換 のアルキル基としては直鎖状、分岐状若しくは環状のも の何れでもよく、これらのうち直鎖状および分岐状アル キル基としては、メチル基、エチル基、n-プロピル 基、n-ブチル基、n-ペンチル基、n-ヘキシル基、 デシル基、n-ウンデシル基、n-ドデシル基、n-ト リデシル基、nーテトラデシル基、nーペンタデシル 基、n-ヘキサデシル基、n-ヘプタデシル基、n-オ クタデシル基、n-ノナデシル基、n-エイコシル基、 iープロピル基、iーブチル基、secーブチル基、t プチル基、フルオロメチル基、ジフルオロメチル基、 トリフルオロメチル基、ペンタフルオロエチル基等が挙 げられる。

【0018】炭素原子数3~20の置換若しくは非置換 の脂環族基としては、シクロプロピル基、シクロブチル 40 【化11】 基、シクロペンチル基、3-フルオロシクロペンチル

基、3-トリフルオロメチルシクロペンチル基、3-メ チルシクロペンチル基、3-メトキシシクロペンチル 基、3-カルボキシシクロペンチル基、3-メチルカル ボニルシクロペンチル基、3-メトキシカルボニルシク ロペンチル基、3-ジメチルアミノシクロペンチル基、 シクロヘキシル基、4-メチルシクロヘキシル基、4-フルオロシクロヘキシル基、4-トリフルオロメチルシ クロヘキシル基、4-メトキシシクロヘキシル基、4-カルボキシシクロヘキシル基。4-メチルカルボニルシ 10 クロヘキシル基、4-メトキシカルボニルシクロヘキシ ル基、4-ジメチルアミノシクロヘキシル基、シクロヘ プチル基、シクロオクチル基、ノルボルニル基、ノルボ ルニルメチル基、カンフォロイル基、イソカンフォロイ ル基、テトラシクロドデセニル基、テトラシクロドデセ ニルメチル基、アダマンチル基、アダマンチルメチル 基、メチルアダマンチル基、トリシクロデセニル基、ト リシクロデセニルメチル基、メシチル基、ビシクロ [3. 3. 0] オクチル基等が挙げられる。炭素原子数 1~20のアルケニル基としては、ビニル基、プロペニ

【0019】置換若しくは非置換のアリール基およびへ テロアリール基としては、フェニル基、ベンジル基、 2, 4-キシリル基、2, 5-キシリル基、3, 4-キ シリル基、3,5-キシリル基、0-トルイル基、m-トルイル基、pートルイル基、2-フルオロフェニル 基、3-フルオロフェニル基、4-フルオロフェニル 基、2-トリフルオロメチルフェニル基、3-トリフル オロメチルフェニル基、4-トリフルオロメチルフェニ ル基、2-メトキシフェニル基、3-メトキシフェニル n-ヘプチル基、n-オクチル基、n-ノニル基、n- 30 基、4-メトキシフェニル基、4-カルボキシフェニル 基、4-メチルカルボニルフェニル基、4-メトキシカ ルボニルフェニル基、4-ジメチルアミノカルボニルフ

> 基、4-メトキシ-1-ナフチル基、4-カルボキシル -1-ナフチル基、2-ナフチル基、1-アントラセニ ル基、9-アントラセニル基等が挙げられる。 【0020】 ただし、R'、R' およびR' の少なくと も2つが互いに結合して下記式(2-1)。(2-2)およ TF (2-3)

> ェニル基、1-ナフチル基、4-メチル-1-ナフチル

に示すように環状構造を形成していてもよく、R'、R 、またはR d は下記式(3-1)、(3-2)または (3 -3)

[0021]

[0022] 【化13】

[0023] [(£14]

(式中、R ['] 、 R ['] 、 または R ['] は、別々の分子 に属する 2 個 R ['] 、 R ['] 、 または R ['] から各 1 個の原子 または基が解離して残基が結合して形成された形である たはR となって、これらを介して二量体を形成して いてもよい.

一般式(1)で表わされるにスルホニル構造を有する化 合物は次にようにして合成される。一般式(1)で表わ されるにスルホニル構造を有する化合物は、溶媒中で塩 基の存在下、式(4)で示されるオキシム化合物と、式 (5) で示されるスルホン酸クロリドから、公知のスル ホン酸エステルの合成法 (例えば、K. Hattori, Y. Wats umura, T. Miyazaki, K. Maruoka, and H. Yamamoto, I. An. Chem. Soc. 1981, 103, 7368 に記載されてい る) で合成できる。これらの反応は、通常、非プロトン

20 性有機溶媒、例えば、トルエン、テトラヒドロフラン、 塩化メチレン、ピリジン、DMF、DMSO中で、塩基 性触媒、例えば、3級アミン(トリエチルアミン等)や ピリジン等の存在下で行う。反応温度は、通常、-35 ~50°C、好ましくは、-20~25°Cである。 [0025]

【化15】

[式中、R'、R'、R' およびYは前記のとおり。]式 (4) で示されるオキシム化合物は、公知のオキシム化 合物の合成法で合成できる。例えば式(6)で示すケト ン化合物から合成できる。

[0026] 【化16】

40

$$\begin{array}{c}
O \\
\downarrow \\
R^1 \\
C \\
\downarrow \\
R^2
\end{array}$$
(4)

「式中、R'、R' およびYは前記のとおり。] 一般式 (1) で表わされるスルホニル構造を有する化合物の好 ましい具体例として次に示すものが挙げられる。 【0027】・Yが=N-R'基、=N-OR'基、=

【0024】 [スルホニル構造を有する化合物の合成] 50 N-OC(R'), 基、=N-N(R'), 基、=N-

(7)

を形成している基であることが好ましく、Yが=N-O CO-R^{} 基または=N-OCO-OR^{*} 基。の場合 は、R^{*} はt・ブチル基であることが好ましく、Yが= N-OCO-N(R^{*})。基または=N-OSO₂-N (R^{*})。基の場合は、R^{*} は、水素原子、メチル基またはエチル基であることが好ましい。) [0028]

【0029】・Yが酸素原子である場合。

【0030】・Yが硫黄原子である場合。

(8)

なお、上記式 (3-1) および (3-2) で表される二 量体としては、上記化合物を二量化した化合物を全て挙 げることができる。また、上記式(3-2)で表される 二量体としては、下記式で表される化合物が好ましい。 [0032]

13

なお、本発明における R^3 としては、メチル基、エチル 基、nープロピル基、nープチル基、カンフォロイル 基、トルイル基、トリフルオロメチル基、および-N (R') z 基として-N (CH3) z 、基もしくは-N H-C2 Hs 基が好ましいものとして挙げられる。 【0033】 [感放射線性酸発生剤] 本発明の感放射線 性酸発生剤(第2発明)は、前記一般式(1)で表わさ れるスルホニル構造を有する化合物を含有するものであ たは2種以上を組み合わせて使用することができる。 【0034】「ポジ型感放射線性樹脂組成物」本発明の ポジ型感放射線性樹脂組成物(第3発明)は、(A) -般式(1)で表される前記スルホニル構造を有する化合 物を含有する感放射線性酸発生剤、及び後述する (B) 酸解離基で保護されたアルカリ不溶性又はアルカリ難溶 性の樹脂であって、該酸解離性基が解離したときにアル カリ可溶性となる樹脂を含有してなる。

[ネガ型感放射線性樹脂組成物] 本発明のボジ型感放射 線性樹脂組成物 (第4発明) は、(A) 前記一般式 (1) で表わされるスルホニル構造を有する化合物を含 有する感放射線性酸発生剤、後述する(C)アルカリ可 溶性樹脂、及び後述する(D)酸の存在下で前記アルカ リ 可溶性樹脂を架橋し得る化合物 (架橋剤) を含有して

【0035】[(B)酸解離性基含有樹脂]第3発明に おいて用いられる成分(B)は、酸解離性基で保護され たアルカリ不溶性またはアルカリ難溶性の樹脂であっ て、該酸解離性基が解離したときにアルカリ可溶性とな る樹脂(以下、「酸解離性基含有樹脂(B)」とい う。) である。この酸解離性基含有樹脂(B)は、フェ ノール性水酸基、カルボキシル基等の1種以上の酸性官 能基を含有する樹脂、例えば、後述する式(9-1)~ (9-4)で表される繰返し単位を有するアルカリ可溶 性樹脂中の酸性官能基の水素原子を、酸の存在下で解離 することができる1種以上の酸解離性基で置換した、そ れ自体としてはアルカリ不溶性またはアルカリ難溶性の 樹脂である。ここで言う「アルカリ不溶性またはアルカ リ難溶性 | とは、酸解離性基含有樹脂(B)を含有する

からレジストパターンを形成する際に採用されるアルカ リ現像条件下で、当該レジスト被膜の代わりに酸解離性 基含有樹脂(B)のみを用いた被膜を現像した場合に、 当該被膜の初期膜厚の50%以上が現像後に残存する件 質を意味する。

【0036】酸解離性基含有樹脂(R)における前記酸 解離性基としては、例えば、置換メチル基、1-置換工 チル基、1-分岐アルキル基、シリル基、ゲルミル基 アルコキシカルボニル基、アシル基、環式酸解離性基等 10 を挙げることができる。前記置換メチル基としては、例 えば、メトキシメチル基、メチルチオメチル基、エトキ シメチル基、エチルチオメチル基、メトキシエトキシメ チル基、ベンジルオキシメチル基、ベンジルチオメチル 基、フェナシル基、プロモフェナシル基、メトキシフェ ナシル基、メチルチオフェナシル基、αーメチルフェナ シル基、シクロプロピルメチル基、ベンジル基、ジフェ ニルメチル基、トリフェニルメチル基、ブロモベンジル 基、ニトロベンジル基、メトキシベンジル基、メチルチ オベンジル基、エトキシベンジル基。エチルチオベンジ り、このスルホニル構造を有する化合物は1種単独でま 20 ル基、ピペロニル基、メトキシカルボニルメチル基、エ トキシカルボニルメチル基、n-プロポキシカルボニル メチル基、iープロポキシカルボニルメチル基、nーブ トキシカルボニルメチル基、t-ブトキシカルボニルメ チル基等を挙げることができる。

【0037】また、前記1-置換エチル基としては、例 えば、1-メトキシエチル基、1-メチルチオエチル 基、1、1-ジメトキシエチル基、1-エトキシエチル 基、1-エチルチオエチル基、1、1-ジエトキシエチ ル基、1-エトキシプロピル基、1-プロポキシエチル

- 30 基、1-シクロヘキシルオキシエチル基、1-フェノキ シエチル基、1-フェニルチオエチル基、1、1-ジフ ェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエチル基、1-シクロプロピルエチル基、 1-フェニルエチル基、1,1-ジフェニルエチル基、 1-メトキシカルボニルエチル基、1-エトキシカルボ ニルエチル基、1-n-プロポキシカルボニルエチル 基、1-イソプロポキシカルボニルエチル基、1-n-プトキシカルボニルエチル基、1-t-プトキシカルボ ニルエチル基等を挙げることができる。
- 【0038】また、前記1-分岐アルキル基としては、 例えば、iープロピル基、secーブチル基、tーブチ ル基、1、1-ジメチルプロピル基、1-メチルブチル 基、1、1-ジメチルプチル基等を挙げることができ る。また、前記シリル基としては、例えば、トリメチル シリル基、エチルジメチルシリル基、メチルジエチルシ リル基、トリエチルシリル基、iープロピルジメチルシ リル基、メチルジーiープロピルシリル基、トリーi-プロピルシリル基、tープチルジメチルシリル基、メチ ルジーt-ブチルシリル基、トリーt-ブチルシリル 感放射線性樹脂組成物を用いて形成されるレジスト被膜 50 基、フェニルジメチルシリル基、メチルジフェニルシリ

15

ル基、トリフェニルシリル基等のトリカルビルシリル基 を挙げることができる。

【0039】また、前記ゲルミル基としては、例えば、 トリメチルゲルミル基、エチルジメチルゲルミル基、メ チルジエチルゲルミル基、トリエチルゲルミル基、イソ プロピルジメチルゲルミル基、メチルジーiープロピル ゲルミル基、トリー・一プロピルゲルミル基・ナーブチ ルジメチルゲルミル基、メチルジーt-ブチルゲルミル 基、トリーtープチルゲルミル基、フェニルジメチルゲ ルミル基、メチルジフェニルゲルミル基、トリフェニル 10 によって製造することができる。 ゲルミル基等のトリカルビルゲルミル基を挙げることが できる。また、前記アルコキシカルボニル基としては、 例えば、メトキシカルボニル基、エトキシカルボニル 基、iープロポキシカルボニル基、t-ブトキシカルボ ニル基等を挙げることができる。

【0040】また、前記アシル基としては、例えば、ア セチル基、プロピオニル基、ブチリル基、ヘプタノイル 基、ヘキサノイル基、バレリル基、ピパロイル基、イソ バレリル基、ラウロイル基、ミリストイル基、パルミト イル基、ステアロイル基、オキサリル基、マロニル基、 スクシニル基、ゲルタリル基、アジポイル基、ピペロイ ル基、スベロイル基、アゼラオイル基、セバコイル基、 アクリロイル基、プロピオロイル基、メタクリロイル 基、クロトノイル基、オレオイル基、マレオイル基、フ マロイル基、メサコノイル基、カンホロイル基、ベンゾ イル基、フタロイル基、イソフタロイル基、テレフタロ イル基、ナフトイル基、トルオイル基、ヒドロアトロポ イル基、アトロポイル基、シンナモイル基、フロイル 基、テノイル基、ニコチノイル基、イソニコチノイル 基、p-トルエンスルホニル基、メシル基等を挙げるこ 30 重合、塊状-懸濁重合等の適宜の重合方法により実施す とができる。

【0041】さらに、前記環式酸解離性基としては、例 えば、シクロプロピル基、シクロペンチル基、シクロヘ キシル基、シクロヘキセニル基、4-メトキシシクロヘ キシル基、テトラヒドロピラニル基、テトラヒドロフラ ニル基、テトラヒドロチオピラニル基、テトラヒドロチ オフラニル基、3-プロモテトラヒドロピラニル基、4 メトキシテトラヒドロピラニル基、4-メトキシテト ラヒドロチオピラニル基、3-テトラヒドロチオフェン - 1、1 - ジオキシド基等を挙げることができる。これ 40 らの酸解離性基のうち、1-プチル基、ベンジル基、1 -メトキシエチル基、1-エトキシエチル基、トリメチ ルシリル基、エープトキシカルボニル基、エープトキシ カルボニルメチル基、テトラヒドロピラニル基、テトラ ヒドロフラニル基。テトラヒドロチオピラニル基。テト ラヒドロチオフラニル基等が好ましい。

【0042】酸解維性基含有樹脂(B)における酸解離 性基の導入率(酸解離性基含有樹脂(B)中の保護され ていない動性官能基と酸解離性基との合計数に対する酸 解離性基の数の割合) は、砂解離性基や該基が導入され 50

るアルカリ可溶性樹脂の種類により一概には規定できな いが、好ましくは10~100%、さらに好ましくは1 5~100%である。酸解離性基含有樹脂は、例えば 予め製造したアルカリ可溶性樹脂に 1 種以上の酸解離性 基を導入する方法のほか、酸解離性基を有する1種以上 の重合性不飽和単量体を、場合により1種以上の他の重 合性不飽和単量体と共に、(共)重合する方法、酸解離 性基を有する!種以上の重縮合成分を、場合により1種 以上の他の重縮合成分と共に、(共)重縮合する方法等

16

【0043】前記酸解離性基を有する重合性不飽和単量 体としては、例えば、後述する式 (9-1)~ (9-3) で表される繰返し単位に対応する単量体中のフェノ 一ル性水酸基あるいはカルボキシル基の水素原子を該酸 解離性基で置換した化合物を挙げることができ、また前 記他の重合性不飽和単量体としては、例えば、後述する アルカリ可溶性樹脂について例示した他の重合性不飽和 単量体と同様の化合物を挙げることができる。さらに、 前記酸解離性基を有する1種以上の重縮合成分として 20 は、例えば、後述する式 (9-4) で表される繰返し単 位に対応する重縮合成分中のフェノール性水酸基の水素 原子を該酸解離性基で置換した化合物を挙げることがで きる.

【0044】 酸解離性基含有樹脂を製造する際の酸解離 性基を有する重合性不飽和単量体のの (共) 重合は、単 量体や反応媒質の種類等に応じて、ラジカル垂合開始 剤、アニオン重合触媒、配位アニオン重合触媒、カチオ ン重合触媒等の重合開始剤あるいは重合触媒を適宜に選 定し、塊状重合、溶液重合、沈澱重合、乳化重合、懸濁

ることができ、また酸解離性基を有する重縮合成分の (共) 縮合は、酸性触媒の存在下、水媒質中または水と 親水性溶媒との混合媒質中で(井) 重縮合することによ って製造することができる。

【0045】酸解離性基含有樹脂には、場合により、重 合性不飽和結合を2つ以上有する多官能性単量体を用い て、分岐構造を導入することもできる。このような多官 能性単量体としては、例えば、特開平8-316888 に記載されているような多官能性 (メタ) アクリレート 類や、ジビニルベンゼン、ジイソプロペニルベンゼン等 の多官能性芳香族ビニル化合物等を挙げることができ る。前記多官能性単量体は、単独でまたは2種以上を混 合して使用することができる。多官能性単量体として、 例えば、1、1-ジメチルエチレングリコールのジ(メ

タ)アクリレートを用いる場合、下記式(7)で表され

る酸解離性の分岐構造が酸解離性基含有樹脂に導入され

[0046] [K17]

$$\begin{pmatrix}
\begin{vmatrix}
\begin{vmatrix}
c \\
c \\
c
\end{vmatrix} & -c \\
c \\
c \\
c
\end{vmatrix} & -c \\
c
\end{pmatrix}$$
(7)

また、酸解離性基含有樹脂がフェノール性水酸基を有す る場合、該フェノール性水酸基と1種以上のジビニルエ ーテル化合物とを反応させることにより、アセタール性 架橋基による分岐構造を酸解離性基含有樹脂に導入する ことができる。

【0047】このような分岐構造を与えるジビニルエー テル化合物としては、例えば、エチレングリコールジビ ニルエーテル、ジエチレングリコールジビニルエーテ ル、シクロヘキサンー1、4ージメタノールジビニルエ ーテル等を挙げることができる。前記アセタール性架橋 基による分岐構造の例としては、下記式(8)で表され る酸解離性の分岐構造を挙げることができる。 [0048]

[式(8)において、Zは2価の有機基を示す。] 【0049】酸解離性基含有樹脂中における多官能性単 量体および/またはアセタール性架橋基による分岐構造 の導入率は、該分岐構造やそれが導入される酸解離性基 含有樹脂の種類により一概には規定できないが、全繰返 し単位に対して、10モル%以下であることが好まし W.

【0050】第3登明における酸解離性基含有樹脂とし ては、特に、ボリ (p-ヒドロキシスチレン) 中のフェ ノール性水酸基の水素原子の一部または全部を前記酸解 50

離性基で置換した樹脂、p-ヒドロキシスチレンおよび /または p ーヒドロキシー α – メチルスチレント (メ タ) アクリル酸との共重合体中のフェノール性水酸基の 水素原子および/またはカルボキシル基の水素原子の一 部または全部を前記酸解離性基で置換した樹脂や、これ らの樹脂に前記分岐構造を導入した樹脂等が好ましい。 【0051】酸解離性基含有樹脂のゲルパーミエーショ ンクロマトグラフィーで測定したポリスチレン換算重量 分子量(以下、「Mw」という。)は、次のとおりであ 10 る。分岐構造をもたない酸解離性基含有樹脂の場合、M wは、好ましくは1,000~150,000、さらに 好ましくは3,000~100,000である。また、 分岐構造を有する酸解離性基含有樹脂の場合、Mwは、 好ましくは5,000~500,000、さらに好まし くは8,000~300,000である。 酸解離性基金 有樹脂は、単独でまたは2種以上を混合して使用するこ

【0052】[(C)アルカリ可溶性樹脂]第4発明に おいて成分(C)として使用されるアルカリ可溶性樹脂 20 (以下、「アルカリ可溶性樹脂 (C)」という) は、ア ルカリ現像液と超和性を示す宣能基。 例えば、フェノー ル性水酸基、カルボキシル基等の酸性官能基を1種以上 有する、アルカリ現像液に可溶な樹脂である。アルカリ 可溶性樹脂(C)としては、例えば、下記式(9-1) (9-3)で表される繰返し単位を1種以上有する付 加重合系樹脂、下記式(9-4)で表される繰返し単位 を1種以上有する重縮合系樹脂等を挙げることができ

[0053] 30 【(E191

とができる。

〔式(9-1)において、R"は水素原子またはメチル 基を示し、R"は-OH、-COOH、 -R"COOH、-OR"OOH または-OCOR" COOH (但し、R" は -(CHz)g-を示し、g 40 は1~4の整数である。)を示す。]

[0054]

【化201

(式(9-2)において、R"は水素原子またはメチル 基を示す。

[0055]

[ft:21]

[0056] 【化22】

〔式 (9-4) において、R "、R "、R "、R " およ びR®は独立に水素原子または炭素原子数1~4のアル キル基を示す。1

【0057】アルカリ可溶性樹脂(C)が付加重合系樹 脂の場合、前記式 (9-1)~(9-3)で表される繰 返し単位のみから構成されていてもよいが、生成した樹 脂がアルカリ現像液に可溶である限りでは、他の繰返し 単位をさらに有することもできる。このような他の繰返 し単位としては、例えば、スチレン、αーメチルスチレ 20 150,000、さらに好ましくは3,000~10 ン、無水マレイン酸、 (メタ) アクリロニトリル、クロ トンニトリル、マレインニトリル、フマロニトリル、メ サコンニトリル、シトラコンニトリル、イタコンニトリ ル、(メタ) アクリルアミド、クロトンアミド、マレイ ンアミド、フマルアミド、メサコンアミド、シトラコン アミド、イタコンアミド、ビニルアニリン、ビニルピリ ジン、ビニルーε-カプロラクタム、ビニルピロリド ン、ビニルイミダゾール等の重合性二重結合を有する単 量体の重合性二重結合部分が付加重合に参加して生成す る単位を挙げることができる。

【0058】前記付加重合系樹脂は、例えば式 (9- (9-3)で表される繰返し単位に対応する各単 量体の1種以上を、場合により前記他の繰返し単位に対 応する単量体とともに、(共) 重合することにより製造 することができる。これらの(共)重合は、単量体、反 応媒質の種類等に応じて、ラジカル重合開始剤、アニオ ン重合触媒、配位アニオン重合触媒、カチオン重合触媒 等の重合開始削あるいは重合触媒を適宜に選定し、塊状 重合、溶液重合、沈澱重合、乳化重合、懸濁重合、塊状 -懸濁重合等の適宜の従来公知である重合方法により実 40 施することができる。

【0059】また、アルカリ可溶性樹脂(C)が重縮合 系樹脂の場合、前記式 (9-4) で表される繰返し単位 のみから構成されていてもよいが、生成した樹脂がアル カリ現像液に可溶である限りでは、他の繰返し単位をさ らに有することもできる。このような重縮合系樹脂は、 式 (9-4) で表される繰返し単位に対応する 1 種以 b のフェノール類と1種以上のアルデヒド類とを、場合に より他の繰返し単位を形成し得る重縮合成分とともに、 酸性触媒の存在下、水媒質中または水と親水性溶剤との 50 【0064】

20 混合媒質中で(共)重縮合することによって製造するこ とができる。

【0060】前記フェノール類としては、例えば、o-クレゾール、m-クレゾール、p-クレゾール、2.3 ーキシレノール、2、4ーキシレノール、2、5ーキシ レノール、3、4ーキシレノール、3、5ーキシレノー ル、2、3、5ートリメチルフェノール、3、4、5-トリメチルフェノール等を挙げることができ、また前記 アルデヒド類としては、例えば、ホルムアルデヒド、ト 10 リオキサン、パラホルムアルデヒド、ベンズアルデヒ ド、アセトアルデヒド、プロピルアルデヒド、フェニル アセトアルデヒド等を挙げることができる。

【0061】アルカリ可溶性樹脂(C)中の式(9-1)~(9-4)で表される繰返し単位の含有率は、場 合により含有される前記他の繰返し単位の種類により一 概に規定できないが、好ましくは10~100モル%、 さらに好ましくは20~100モル%である。アルカリ 可溶性樹脂(C)のMwは、感放射線性樹脂組成物の所 望の特性に応じて変化するが、好ましくは1,000~ 0.000である。また、アルカリ可溶性樹脂 (C) の Mw/Mnは、通常、1~10、好ましくは1~5であ

【0062】アルカリ可溶性樹脂(C)は、式(9-1) 、式(9-4) 等で表されるような炭素--炭素不飽 和結合を含有する繰返し単位を有する場合、水素添加物 として用いることもできる。この場合の水素添加率は、 式 (9-1)、式 (9-4) 等で表される繰返し単位中 に含まれる炭素-炭素不飽和結合の、通常、70%以 30 下、好ましくは50%以下、さらに好ましくは40%以

- 下である。この場合、水素添加率が70%を超えると、 アルカリ可溶性樹脂(C)のアルカリ現像液による現像 特性が低下するおそれがある。アルカリ可溶性樹脂
- (C) としては、特に、ポリ(ヒドロキシスチレン)。 ヒドロキシスチレン/ヒドロキシーα-メチルスチレン **共重合体、ヒドロキシスチレン/スチレン共重合体等を** 主成分とする樹脂が好ましい。アルカリ可溶性樹脂 (C) は、1種単独でまたは2種以上を混合して使用す
- ることができる。 【0063】 「(D) 架橋削 第4発明において用いら
- れる成分(D)は、酸、例えば露光により生じた酸の存 在下で、アルカリ可溶性樹脂(C)を架橋し得る化合物 (以下、「架橋剤(D)」という。) である。 架橋剤
 - (D)としては、例えば、アルカリ可溶性樹脂(C)と の架橋反応性を有する 1 種以上の置換基(以下、「架橋 性置換基」という。)を有する化合物を挙げることがで きる。架橋剤(D)における前記架橋性置換基として は、例えば、下記式(10-1)~(10-5)で表さ れる基を挙げることができる。

[
$$\{E \ge 3\}$$
]
$$-Q^{1} \left(CH_{2} - CH + \frac{(CH_{2})}{(CH_{2})_{1}} Q^{2}\right) \left(1 \ 0 - 1\right)$$

〔式(10-1)において、kは1または2であり、0 は、k=1のとき、単結合、-0-、-S-、-C00-もしく は-NH-を示すか、またはk=2のとき、3価の窒素原子 を示し、0°は-0-または-S-を示し、i は0~3の整 数、j は1~3の整数で、i + j=1~4である。] [0065]

[{£24}]
$$\frac{1}{\sqrt{C(R^{24})(R^{22})}} \frac{1}{\sqrt{P^2}} \frac{Q^3 - R^{24}}{\sqrt{P^2}}$$
 (10-2)

(式(10-2)において、03は-0-、-COO-または-C 0-を示し、R²¹ およびR²² は独立に水素原子または炭素 原子数1~4のアルキル基を示し、R²¹ は炭素原子数1 ~5のアルキル基、炭素原子数6~12のアリール基ま たは炭素原子数7~14のアラルキル基を示し、v は1 以上の整数である。〕

(10 - 3)「式 (10-3) において、R** 、R²⁵ およびR²⁶ は独 立に水素原子または炭素原子数1~4のアルキル基を示 す。〕

$$-(C(R^{21})(R^{22})-)_y-N(R^{27})(R^{28})$$
 (10-4)

〔式(10-4)において、R² およびR² は式(10 -2)のR²¹ およびR²² と同義であり、R²⁷ およびR²⁸ は独立に炭素原子数1~5のアルキロイル基を示し、v は1以上の整数である。)

$$(R^{21})(R^{22})$$
 y N R^{29} $(10-5)$

- 2) のR² およびR² と同義であり R³ は酸素原 子、硫黄原子または窒素原子のいずれかのヘテロ原子を 有し、3~8員環を形成する2価の有機基を示し、y は 1 以上の整数である。)

【0069】このような架橋性置換基の具体例として は、グリシジルオキシ基、グリシジルオキシカルボニル 基、ゲリシジルアミノ基、メトキシメチル基、エトキシ メチル基、ベンジルオキシメチル基、ジメチルアミノメ チル基、ジエチルアミノメチル基、ジメチロールアミノ メチル基. ジエチロールアミノメチル基、モルホリノメ 50 の低下、パターンの蛇行や膨潤等を来たしやすくなる傾

チル基、アセトキシメチル基、ベンゾイロキシメチル 基、ホルミル基、アセチル基、ビニル基、イソプロペニ ル基等を挙げることができる。

22

【0070】架橋剤(D)としては、上記の架橋性置換 基を有する、例えば、ビスフェノールA系エポキシ化合 物、ビスフェノールF系エポキシ化合物、ビスフェノー ルS系エポキシ化合物、ノボラック樹脂系エポキシ化合 物、レゾール樹脂系エポキシ化合物、ポリ (ヒドロキシ スチレン) 系エポキシ化合物、メチロール基含有メラミ

10 ン化合物、メチロール基含有ベンゾグアナミン化合物、 メチロール基含有尿素化合物、メチロール基含有フェノ ール化合物、アルコキシアルキル基含有メラミン化合 物、アルコキシアルキル基含有ベンゾグアナミン化合 物、アルコキシアルキル基含有尿素化合物、アルコキシ アルキル基含有フェノール化合物、カルボキシメチル基 含有メラミン樹脂、カルボキシメチル基含有ベンゾグア ナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボ キシメチル基含有フェノール樹脂、カルボキシメチル基 含有メラミン化合物、カルボキシメチル基含有ベンゾゲ 20 アナミン化合物、カルボキシメチル基含有尿素化合物。 カルボキシメチル基含有フェノール化合物等を挙げるこ とができる。

【0071】 これら架橋剤(D)のうち、メチロール基 含有フェノール化合物、メトキシメチル基含有メラミン 化合物、メトキシメチル基含有フェノール化合物、メト キシメチル基含有グリコールウリル化合物、メトキシメ チル基含有ウレア化合物およびアセトキシメチル基含有 フェノール化合物が好ましく、さらに好ましくはメトキ シメチル基含有メラミン化合物(例えばヘキサメトキシ 30 メチルメラミン等)、メトキシメチル基含有グリコール ウリル化合物、メトキシメチル基含有ウレア化合物等で

ある。メトキシメチル基含有メラミン化合物は、CYM EL300, CYMEL301, CYMEL303, C YMEL305 (三井サイアナミッド (株) 製) 等の商 品名で、メトキシメチル基含有グリコールウリル化合物 は C Y M E L 1 1 7 4 (三井サイアナミッド (株) 划) 等の商品名で、またメトキシメチル基含有ウレア化合物 は、MX290 (三和ケミカル (株) 製) 等の商品名で 市販されている。

[式 (10-5) において、Rⁿ およびRⁿ は式 (10 40 【0072】架橋刹 (D) としては、さらに、アルカリ 可溶性樹脂(C)中の酸性官能基に前記架橋性置換基を 導入し、架橋刹(D)としての性質を付与した化合物も 好適に使用することができる。その場合の架橋性官能基 の導入率は、架橋性官能基や該基が導入されるアルカリ 可溶性樹脂(C)の種類により一概には規定できない が、アルカリ可溶性樹脂 (C) 中の全験性官能基に対し て、通常、5~60モル%、好ましくは10~50モル %、さらに好ましくは15~40モル%である。この場 合、架橋性官能基の導入率が5モル%未満では、残膜率 向があり、一方60モル%を超えると、現像性が悪化す る傾向がある。

【0073】第4発明における架橋削(D)としては、 特に、メトキシメチル基含有グリコールウリル化合物。 メトキシメチル基含有ウレア化合物、具体的には、テト ラメトキシメチルグリコールウリル、ジメトキシメチル ウレア等が好ましい。第4発明において、架橋剤(D) は、1種単独でまたは2種以上を混合して使用すること ができる。

【0074】第3発明のポジ型感放射線性樹脂組成物を 構成する各成分の配合割合も第4発明のネガ型感放射線 性樹脂組成物を構成する各成分の配合制合4、 レジスト の所望の特性に応じて変化するが、それらの例を示す と、次のとおりである。第3発明における酸発生剤 (A) の配合量は、酸解離性基含有樹脂(B) 100重

量部に対して、通常、0.001~70重量部、好まし くは0.01~50重量部、特に好ましくは0.1~2 0 重量部である。この場合、酸発生剤(A)の配合量が 0.001重量部未満では、感度および解像度が低下す 塗布性やパターン形状の劣化を来しやすくなる傾向があ

【0075】次に、第4発明において、酸発生剤(A) の配合量は、アルカリ可溶性樹脂(C)100重量部に 対して、通常、0.001~70重量部、好ましくは 0.01~50重量部、特に好ましくは0.1~20重 量部である。この場合、酸発生剤(A)の配合量が0. 0.01 重量部未満では、感度および解像度が低下する値 向があり、一方70重量部を超えると、レジストの徐布 性やパターン形状の劣化を来しやすくなる傾向がある。 また、架橋剤(D)の配合量は、アルカリ可溶性樹脂 (C) 100重量部に対して、通常、5~95重量部、 好ましくは15~85重量部、特に好ましくは20~7 5重量部である。この場合、架橋剤(D)の配合量が5 重量部未満では、残膜率の低下、パターンの蛇行や膨潤 等を来しやすくなる傾向があり、一方95重量部を超え ると、現像性が低下する傾向がある。

【0076】第3発明のポジ型感放射線性樹脂組成物お よび第4発明のネガ型感放射線性樹脂組成物には、必要 に応じて、酸発生剤(A)以外の感放射線性酸発生剤 (以下、「他の酸発生剤」という。)、酸拡散制御剤、 界面活性剤、増感剤等の各種の添加剤を配合することが できる。また、第3発明のポジ型感放射線性樹脂組成物 に対しては、さらにアルカリ可溶性樹脂 (C) および/ または酸解離性の保護基を有する低分子のアルカリ溶解 性制御剤を配合することができ、また第4発明のネガ型 感放射線性樹脂組成物に対しては、さらに酸解離性基含 有樹脂(B)を配合することができる。

【0077】「他の酸発生剤」前記他の酸発生剤として は、例えば、スルホンイミド化合物、オニウム塩化合

物、スルホン化合物、スルホン酸エステル化合物、ジス ルホニルジアゾメタン化合物、ジスルホニルメタン化合 物、オキシムスルホネート化合物、ヒドラジンスルホネ 一ト化合物等を挙げることができる。以下に、これらの 他の酸発生剤の例を示す。

【0078】スルホンイミド化合物:スルホンイミド化 合物としては、例えば、N-(10-カンファースルホ ニルオキシ)スクシンイミド、N-(10-カンファー スルホニルオキシ) フタルイミド、N-(10-カンフ 10 アースルホニルオキシ) ジフェニルマレイミド N-(10-カンファースルホニルオキシ) ビシクロ「2. 1] ヘプトー5ーエンー2, 3ージカルボキシイミ ド、N-(10-カンファースルホニルオキシ)-7-オキサビシクロ[2.2.1] ヘプト-5-エン-2. 3-ジカルボキシイミド、N-(10-カンファースル ホニルオキシ) ビシクロ「2、2、11 ヘブタン-5、 6-オキシー2, 3-ジカルボキシイミド、N-(10 ーカンファースルホニルオキシ)ナフチルイミド。 【0079】N-(n-オクタンスルホニルオキシ)ス

る傾向があり、一方70重量部を超えると、レジストの 20 クシンイミド、N-(n-オクタンスルホニルオキシ) フタルイミド、N- (n-オクタンスルホニルオキシ) ジフェニルマレイミド、N-(n-オクタンスルホニル オキシ) ビシクロ「2、2、1] ヘプトー5ーエンー 2. 3-ジカルボキシイミド. N- (n-オクタンスル ホニルオキシ) - 7 - オキサビシクロ「2.2.1] へ プト-5-エン-2, 3-ジカルボキシイミド、N-(n-オクタンスルホニルオキシ) ビシクロ「2, 2, 1] ヘプタン-5, 6-オキシ-2, 3-ジカルボキシ イミド、N-(n-オクタンスルホニルオキシ)ナフチ 30 ルイミド

【0080】N-(p-トルエンスルホニルオキシ)ス クシンイミド、N- (p-トルエンスルホニルオキシ) フタルイミド、N- (p-トルエンスルホニルオキシ) ジフェニルマレイミド、N-(p-トルエンスルホニル オキシ) ビシクロ [2.2.1] ヘプトー5ーエンー 2, 3-ジカルボキシイミド、N-(p-トルエンスル ホニルオキシ) - 7 - オキサビシクロ「2.2.1] へ プトー5-エンー2、3-ジカルボキシイミド、N-(p-トルエンスルホニルオキシ) ピシクロ「2.2. ヘプタン-5、6ーオキシ-2、3ージカルボキシ

イミド、N-(p-トルエンスルホニルオキシ)ナフチ ルイミド. 【0081】N-(2-トリフルオロメチルベンゼンス ルホニルオキシ) スクシンイミド、N-(2-トリフル

オロメチルベンゼンスルホニルオキシ)フタルイミド、 N-(2-トリフルオロメチルベンゼンスルホニルオキ シ) ジフェニルマレイミド、N-(2-トリフルオロメ チルベンゼンスルホニルオキシ) ビシクロ[2.2. 1] ヘプトー5-エン-2, 3-ジカルボキシイミド、

50 N- (2-トリフルオロメチルベンゼンスルホニルオキ

シ) -7-オキサビシクロ[2.2.1] ヘプト-5-エン-2, 3-ジカルボキシイミド、N-(2-トリフ ルオロメチルベンゼンスルホニルオキシ)ビシクロ [2. 2. 1] ヘプタン-5, 6-オキシ-2, 3-ジ カルボキシイミド、N-(2-トリフルオロメチルベン ゼンスルホニルオキシ) ナフチルイミド.

25

【0082】N-(4-トリフルオロメチルベンゼンス ルホニルオキシ) スクシンイミド、N-(4-トリフル オロメチルベンゼンスルホニルオキシ) フタルイミド、 N-(4-トリフルオロメチルベンゼンスルホニルオキ 10 -2, 3-ジカルボキシイミド、N-(ベンゼンスルホ シ) ジフェニルマレイミド、N-(4-トリフルオロメ チルベンゼンスルホニルオキシ) ビシクロ [2.2. 1] ヘプトー5-エンー2、3-ジカルボキシイミド、 N-(4-トリフルオロメチルベンゼンスルホニルオキ シ) -7-オキサビシクロ[2.2.1] ヘプト-5-エン-2, 3-ジカルボキシイミド、N-(4-トリフ ルオロメチルベンゼンスルホニルオキシ) ピシクロ [2. 2. 1] ヘプタン-5, 6-オキシ-2, 3-ジ カルボキシイミド、N-(4-トリフルオロメチルベン ゼンスルホニルオキシ) ナフチルイミド、

【0083】N-(パーフルオロベンゼンスルホニルオ キシ) スクシンイミド、N-(パーフルオロベンゼンス ルホニルオキシ) フタルイミド、N-(パーフルオロベ ンゼンスルホニルオキシ) ジフェニルマレイミド、N-(パーフルオロベンゼンスルホニルオキシ) ビシクロ [2. 2. 1] ヘプト-5-エン-2, 3-ジカルボキ シイミド、N-(パーフルオロベンゼンスルホニルオキ シ) -7-オキサビシクロ[2.2.1] ヘプト-5-エン-2、3-ジカルボキシイミド、N-(パーフルオ ロベンゼンスルホニルオキシ) ビシクロ [2.2.1] 30 ネート、 ヘプタンー5、6ーオキシー2、3ージカルボキシイミ ド、N-(パーフルオロベンゼンスルホニルオキシ)ナ フチルイミド.

【0084】N-(ナフタレンスルホニルオキシ)スク シンイミド、N-(ナフタレンスルホニルオキシ) フタ ルイミド、N-(ナフタレンスルホニルオキシ) ジフェ ニルマレイミド、N-(ナフタレンスルホニルオキシ) ビシクロ[2.2.1] ヘプトー5ーエンー2、3ージ カルボキシイミド、N-(ナフタレンスルホニルオキ シ) -7-オキサビシクロ[2.2.1] ヘプト-5-40 ドニウムパーフルオロベンゼンスルホネート、 エン-2、3-ジカルボキシイミド、N-(ナフタレン スルホニルオキシ) ビシクロ [2.2.1] ヘプタンー 5, 6-オキシ-2, 3-ジカルボキシイミド、N-(ナフタレンスルホニルオキシ) ナフチルイミド、N-「(5-メチルー5-メトキシカルボニルビシクロ 「2. 2. 1] ヘプタンー2ーイル) スルホニルオキ シ] スクシンイミド、N- [(5-メチル-5-メトキ シカルボニルビシクロ「2.2.1] ヘプタン-2-イ ル) スルホニルオキシ] ビシクロ「2.2.1] ヘプト -5-エンー2、3-ジカルボキシイミド、

【0085】N-(ベンゼンスルホニルオキシ) スクシ ンイミド、N-(ベンゼンスルホニルオキシ) フタルイ ミド、N- (ベンゼンスルホニルオキシ) ジフェニルマ レイミド、N-(ベンゼンスルホニルオキシ) ビシゥロ [2. 2. 1] ヘプトー5ーエンー2、3ージカルボキ シイミド、N - (ベンゼンスルホニルオキシ) - 7 - オ キサビシクロ[2.2.1] ヘプト-5-エン-2.3 -ジカルボキシイミド、N- (ベンゼンスルホニルオキ シ) ビシクロ [2, 2, 1] ヘプタン-5, 6-オキシ ニルオキシ)ナフチルイミド等を挙げることができる。

26

【0086】オニウム塩化合物:オニウム塩化合物とし ては、例えば、ヨードニウム塩、スルホニウム塩、ホス ホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジ ニウム塩等を挙げることができる。

【0087】オニウム塩化合物の具体例としては、ビス (4-t-ブチルフェニル) ヨードニウムピレンスルホ ネート、ビス (4-t-ブチルフェニル) ヨードニウム n-ドデシルベンゼンスルホネート、ビス(4-t-ブ 20 チルフェニル) ヨードニウム n ートルエンスルホネー

ト、ビス(4-t-ブチルフェニル) ヨードニウムベン ゼンスルホネート、ピス (4-t-ブチルフェニル) ヨ ードニウム10-カンファースルホネート、ビス(4t-ブチルフェニル) ヨードニウムn-オクタンスルホ ネート、ビス (4-t-ブチルフェニル) ヨードニゥム 2-トリフルオロメチルベンゼンスルホネート、ビス (4-t-ブチルフェニル) ヨードニウム4-トリフル オロメチルベンゼンスルホネート、ビス (4 - t - ブチ ルフェニル) ヨードニウムパーフルオロベンゼンスルホ

【0088】 ジフェニルヨードニウムピレンスルホネー ト、ジフェニルヨードニウムn-ドデシルベンゼンスル ホネート、ジフェニルヨードニウムpートルエンスルホ ネート、ジフェニルヨードニウムベンゼンスルホネー ト、ジフェニルヨードニウム10-カンファースルホネ ート、ジフェニルヨードニウムn-オクタンスルホネー ト、ジフェニルヨードニウム2-トリフルオロメチルベ ンゼンスルホネート、ジフェニルヨードニウム4-トリ フルオロメチルベンゼンスルホネート、ジフェニルヨー

【0089】ジ (p-トルイル) ヨードニウムピレンス ルホネート、ジ (p-トルイル) ヨードニウムn-ドデ シルベンゼンスルホネート、ジ(n-トルイル) ヨード ニウム p - トルエンスルホネート、ジ(p-トルイル) ヨードニウムベンゼンスルホネート、ジ (p-トルイ ル) ヨードニウム10-カンファースルホネート、ジ (p-トルイル) ヨードニウムn-オクタンスルホネー ト、ジ (n-トルイル) ヨードニウム2-トリフルオロ メチルペンゼンスルホネート、ジ (p-トルイル) ヨー 50 ドニウム4ートリフルオロメチルベンゼンスルホネー

ト、ジ (p-トルイル) ヨードニウムパーフルオロベン ゼンスルホネート、

【0090】ジ(3,4-ジメチルフェニル)ヨードニ ウムピレンスルホネート、ジ(3,4-ジメチルフェニ ル) ヨードニウムnードデシルベンゼンスルホネート。 ジ(3,4-ジメチルフェニル)ヨードニウムロートル エンスルホネート、ジ(3,4-ジメチルフェニル) ヨ ードニウムベンゼンスルホネート、ジ(3,4-ジメチ ルフェニル) ヨードニウム10-カンファースルホネー オクタンスルホネート、ジ(3.4-ジメチルフェニ ル) ヨードニウム2-トリフルオロメチルベンゼンスル ホネート、ジ(3.4-ジメチルフェニル) ヨードニウ ム4ートリフルオロメチルベンゼンスルホネート、ジ (3, 4-ジメチルフェニル) ヨードニウムパーフルオ ロベンゼンスルホネート

【0091】4-ニトロフェニル・フェニルヨードニウ ムピレンスルホネート、4-ニトロフェニル・フェニル ヨードニウム n ードデシルベンゼンスルホネート、4-ニトロフェニル・フェニルヨードニウムp-トルエンス 20 ゼンスルホネート、 ルホネート、4-ニトロフェニル・フェニルヨードニウ ムベンゼンスルホネート、4-ニトロフェニル・フェニ ルヨードニウム10-カンファースルホネート、4-ニ トロフェニル・フェニルヨードニウムn-オクタンスル ホネート、4-ニトロフェニル・フェニルヨードニウム 2-トリフルオロメチルベンゼンスルホネート、4-二 トロフェニル・フェニルヨードニウム4-トリフルオロ メチルベンゼンスルホネート、4-ニトロフィニル・フ ェニルヨードニウムパーフルオロベンゼンスルホネー

【0092】ジ(3-ニトロフェニル) ヨードニウムピ レンスルホネート、ジ(3-ニトロフェニル) ヨードニ ウムnードデシルベンゼンスルホネート、ジ(3-二ト ロフェニル) ヨードニウム p ートルエンスルホネート. ジ (3-ニトロフェニル) ヨードニウムベンゼンスルホ ネート、ジ(3-ニトロフェニル) ヨードニウム 10-カンファースルホネート、ジ(3-ニトロフェニル)ヨ ードニウムn-オクタンスルホネート、ジ(3-ニトロ フェニル) ヨードニウム 2 ートリフルオロメチルベンゼ ンスルホネート、ジ(3-ニトロフェニル) ヨードニウ 40 ルヨードニウム n ードデシルベンゼンスルホネート、ジ ム4-トリフルオロメチルベンゼンスルホネート. ジ (3-ニトロフェニル) ヨードニウムパーフルオロベン ゼンスルホネート、

【0093】4ーメトキシフェニル・フェニルヨードニ ウムピレンスルホネート、4-メトキシフェニル・フェ ニルヨードニウムn-ドデシルベンゼンスルホネート、 4-メトキシフェニル・フェニルヨードニウム p-トル エンスルホネート、4-メトキシフェニル・フェニルヨ ードニウムベンゼンスルホネート、4-メトキシフェニ

ト、4-メトキシフェニル・フェニルヨードニウムn-オクタンスルホネート、4-メトキシフェニル・フェニ ルヨードニウム2ートリフルオロメチルベンゼンスルホ ネート、4-メトキシフェニル・フェニルヨードニウム 4-トリフルオロメチルベンゼンスルホネート、4-メ トキシフェニル・フェニルヨードニウムパーフルオロベ ンゼンスルホネート、 【0094】ジ(4-クロロフェニル) ヨードニウムピ

レンスルホネート、ジ(4-クロロフェニル) ヨードニ ト、ジ(3, 4-ジメチルフェニル) ヨードニウムn- 10 ウムn-ドデシルベンゼンスルホネート、ジ(4-クロ ロフェニル) ヨードニウム p ートルエンスルホネート。 ジ(4-クロロフェニル) ヨードニウムベンゼンスルホ ネート、ジ(4-クロロフェニル) ヨードニウム 10-カンファースルホネート、ジ(4-クロロフェニル) ヨ ードニウムn-オクタンスルホネート、ジ(4-クロロ フェニル) ヨードニウム2ートリフルオロメチルベンゼ ンスルホネート、ジ(4-クロロフェニル) ヨードニウ ム4-トリフルオロメチルベンゼンスルホネート、ジ (4-クロロフェニル) ヨードニウムパーフルオロベン

【0095】ジ(4-トリフルオロメチルフェニル) ヨ ードニウムピレンスルホネート、ジ(4-トリフルオロ メチルフェニル) ヨードニウムn-ドデシルベンゼンス ルホネート、ジ(4-トリフルオロメチルフェニル) ヨ ードニウムロートルエンスルホネート、ジ(4-トリフ ルオロメチルフェニル) ヨードニウムベンゼンスルホネ ート、ジ(4-トリフルオロメチルフェニル) ヨードニ ウム10-カンファースルホネート、ジ(4-トリフル オロメチルフェニル) ヨードニウム n ーオクタンスルホ

30 ネート、ジ(4-トリフルオロメチルフェニル) ヨード ニウム2ートリフルオロメチルベンゼンスルホネート ジ(4-トリフルオロメチルフェニル) ヨードニウム4 ートリフルオロメチルベンゼンスルホネート. ジ(4-トリフルオロメチルフェニル) ヨードニウムパーフルオ ロベンゼンスルホネート、ジナフチルヨードニウムトリ フルオロメタンスルホネート、ジナフチルヨードニウム ノナフルオローnーブタンスルホネート、ジナフチルコ ードニウムパーフルオローn-オクタンスルホネート、 ジナフチルヨードニウムピレンスルホネート、ジナフチ

ナフチルヨードニウム p - トルエンスルホネート、ジナ フチルヨードニウムベンゼンスルホネート、ジナフチル ヨードニウム10-カンファースルホネート、ジナフチ ルヨードニウムnーオクタンスルホネート、ジナフチル ヨードニウム2ートリフルオロメチルベンゼンスルホネ ート、ジナフチルヨードニウム4-トリフルオロメチル ベンゼンスルホネート、ジナフチルヨードニウムパーフ ルオロベンゼンスルホネート、

【0096】ビフェニレンヨードニウムピレンスルホネ ル・フェニルヨードニウム 10-カンファースルホネー 50 ート、ビフェニレンヨードニウム nードデシルベンゼン スルホネート、ビフェニレンヨードニウムpートルエン スルホネート、ビフェニレンヨードニウムベンゼンスル ホネート、ピフェニレンヨードニウム10-カンファー スルホネート、ピフェニレンヨードニウムnーオクタン スルホネート、ビフェニレンヨードニウム2-トリフル オロメチルベンゼンスルホネート、ビフェニレンヨード ニウム4ートリフルオロメチルベンゼンスルホネート. ピフェニレンヨードニウムパーフルオロベンゼンスルホ

ンスルホネート、2-クロロビフェニレンヨードニウム n ードデシルベンゼンスルホネート、2 ークロロビフェ ニレンヨードニウムp-トルエンスルホネート、2-ク ロロビフェニレンヨードニウムベンゼンスルホネート、 2-クロロビフェニレンヨードニウム10-カンファー スルホネート、2-クロロビフェニレンヨードニウムn ーオクタンスルホネート、2-クロロビフェニレンヨー ドニウム2-トリフルオロメチルベンゼンスルホネー ト、2-クロロビフェニレンヨードニウム4-トリフル オロメチルベンゼンスルホネート、2-クロロビフェニ 20 ル・ジフェニルスルホニウムベンゼンスルホネート、4 レンヨードニウムパーフルオロベンゼンスルホネート. 【0098】トリフェニルスルホニウムピレンスルホネ ート、トリフェニルスルホニウムn-ドデシルベンゼン スルホネート、トリフェニルスルホニウムロートルエン スルホネート、トリフェニルスルホニウムベンゼンスル ホネート、トリフェニルスルホニウム10-カンファー スルホネート、トリフェニルスルホニウムnーオクタン スルホネート、トリフェニルスルホニウム2ートリフル オロメチルベンゼンスルホネート、トリフェニルスルホ ニウム4ートリフルオロメチルベンゼンスルホネート、 トリフェニルスルホニウムヘキサフルオロアンチモネー ト、トリフェニルスルホニウムナフタレンスルホネー ト、トリフェニルスルホニウムパーフルオロベンゼンス ルホネート、

【0099】4-t-ブチルフェニル・ジフェニルスル ホニウムピレンスルホネート、4-t-ブチルフェニル ジフェニルスルホニウムnードデシルベンゼンスルホ ネート、4-t-ブチルフェニル・ジフェニルスルホニ ウムpートルエンスルホネート、4-t-ブチルフェニ ル・ジフェニルスルホニウムベンゼンスルホネート、4 40 -t-ブチルフェニル・ジフェニルスルホニウム10-カンファースルホネート、4-t-ブチルフェニル・ジ フェニルスルホニウム nーオクタンスルホネート、4-† ープチルフェニル・ジフェニルスルホニウム2 – トリ フルオロメチルベンゼンスルホネート、4-1-ブチル フェニル・ジフェニルスルホニウム4-トリフルオロメ タンベンゼンスルホネート、4-t-ブチルフェニル・ ジフェニルスルホニウムパーフルオロベンゼンスルホネ - h.

【0100】4-t-ブトキシフェニル・ジフェニルス 50 ベンゼンスルホネート、ジ(4-メトキシフェニル)・

30 ルホニウムピレンスルホネート、4-t-ブトキシフェ ニル・ジフェニルスルホニウムn-ドデシルベンゼンス ルポネート、4-t-プトキシフェニル・ジフェニルス ルホニウムロートルエンスルホネート、4-t-プトキ シフェニル・ジフェニルスルホニウムベンゼンスルホネ ート、4-t-ブトキシフェニル・ジフェニルスルホニ ウム10-カンファースルホネート、4-t-プトキシ フェニル・ジフェニルスルホニウムnーオクタンスルホ ネート、4-t-プトキシフェニル・ジフェニルスルホ 【0097】2-クロロピフェニレンヨードニウムピレ 10 ニウム2-トリフルオロメチルベンゼンスルホネート、

4-t-ブトキシフェニル・ジフェニルスルホニウム4 ートリフルオロメチルベンゼンスルホネート、4-t-プトキシフェニル・ジフェニルスルホニウムパーフルオ ロベンゼンスルホネート、 【0101】4-ヒドロキシフェニル・ジフェニルスル

ホニウムピレンスルホネート、4-ヒドロキシフェニル ジフェニルスルホニウムnードデシルベンゼンスルホ ネート、4-ヒドロキシフェニル・ジフェニルスルホニ ウム p ー トルエンスルホネート、4 ー ヒドロキシフェニ

ヒドロキシフェニル・ジフェニルスルホニウム10-カンファースルホネート、4-ヒドロキシフェニル・ジ フェニルスルホニウム n ーオクタンスルホネート、4 ー ヒドロキシフェニル・ジフェニルスルホニウム2-トリ フルオロメチルベンゼンスルホネート、4-ヒドロキシ フェニル・ジフェニルスルホニウム4-トリフルオロメ チルベンゼンスルホネート、4-ヒドロキシフェニル・ ジフェニルスルホニウムパーフルオロベンゼンスルホネ - b.

【0102】トリ(4ーメトキシフェニル)スルホニウ ムピレンスルホネート、トリ(4-メトキシフェニル) スルホニウム n ードデシルベンゼンスルホネート. トリ (4-メトキシフェニル) スルホニウムロートルエンス ルホネート、トリ (4-メトキシフェニル) スルホニウ ムベンゼンスルホネート、トリ (4-メトキシフェニ ル) スルホニウム10-カンファースルホネート、トリ (4-メトキシフェニル)スルホニウムnーオクタンス ルホネート、トリ(4-メトキシフェニル)スルホニウ ム2-トリフルオロメチルベンゼンスルホネート、トリ (4-メトキシフェニル) スルホニウム4-トリフルオ ロメチルベンゼンスルホネート、トリ(4-メトキシフ

【0103】ジ(4-メトキシフェニル)・n-トルイ ルスルホニウムビレンスルホネート、ジ(4-メトキシ フェニル)・ロートルイルスルホニウム n ードデシルベ ンゼンスルホネート、ジ (4-メトキシフェニル) · p ートルイルスルホニウムp-トルエンスルホネート、ジ (4-メトキシフェニル) · p-トルイルスルホニウム

ェニル) スルホニウムパーフルオロベンゼンスルホネー

p-トルイルスルホニウム10-カンファースルホネー ト、ジ(4-メトキシフェニル)・p-トルイルスルホ ニウムn-オクタンスルホネート、ジ(4-メトキシフ ェニル) ・p-トルイルスルホニウム2-トリフルオロ メチルベンゼンスルホネート、ジ(4-メトキシフェニ ル)・p-トルイルスルホニウム4-トリフルオロメチ ルベンゼンスルホネート、ジ(4-メトキシフェニル) nートルイルスルホニウムパーフルオロベンゼンスル ホネート、

レンスルホネート、フェニル・テトラメチレンスルホニ ウムnードデシルベンゼンスルホネート、フェニル・テ トラメチレンスルホニウムn-トルエンスルホネート フェニル・テトラメチレンスルホニウムベンゼンスルホ ネート、フェニル・テトラメチレンスルホニウム10-カンファースルホネート、フェニル・テトラメチレンス ルホニウムnーオクタンスルホネート、フェニル・テト ラメチレンスルホニウム2-トリフルオロメチルベンゼ ンスルホネート、フェニル・テトラメチレンスルホニウ ニル・テトラメチレンスルホニウムパーフルオロベンゼ ンスルホネート

【0105】4-ヒドロキシフェニル・テトラメチレン スルホニウムピレンスルホネート、4-ヒドロキシフェ ニル・テトラメチレンスルホニウムnードデシルベンゼ ンスルホネート、4-ヒドロキシフェニル・テトラメチ レンスルホニウム p ートルエンスルホネート、4 ーヒド ロキシフェニル・テトラメチレンスルホニウムベンゼン スルホネート、4-ヒドロキシフェニル・テトラメチレ ンスルホニウム10-カンファースルホネート、4-ヒ 30 ル)スルフィドジ(4-トリフルオロメチルベンゼンス ドロキシフェニル・テトラメチレンスルホニウムn-オ クタンスルホネート、4-ヒドロキシフェニル・テトラ メチレンスルホニウム2-トリフルオロメチルベンゼン スルホネート、4-ヒドロキシフェニル・テトラメチレ ンスルホニウム4-トリフルオロメチルベンゼンスルホ ネート、4-ヒドロキシフェニル・テトラメチレンスル ホニウムパーフルオロベンゼンスルホネート、

【0106】フェニル・ビフェニレンスルホニウムピレ ンスルホネート、フェニル・ビフェニレンスルホニウム n-ドデシルベンゼンスルホネート、フェニル・ビフェ 40 ホン等を挙げることができる。 ニレンスルホニウムpートルエンスルホネート、フェニ ル・ピフェニレンスルホニウムベンゼンスルホネート、 フェニル・ピフェニレンスルホニウム 10 ーカンファー スルホネート、フェニル・ピフェニレンスルホニウムn ーオクタンスルホネート、フェニル・ビフェニレンスル ホニウム2-トリフルオロメチルベンゼンスルホネー ト、フェニル・ビフェニレンスルホニウム4-トリフル オロメチルベンゼンスルホネート、フェニル・ビフェニ レンスルホニウムパーフルオロベンゼンスルホネート、 【0107】(4-フェニルチオフェニル)・ジフェニ 50 オクタンスルホネート、α-メチロールベンゾインドデ

ルスルホニウムピレンスルホネート、(4-フェニルチ オフェニル)・ジフェニルスルホニウム n ードデシルベ ンゼンスルホネート、(4-フェニルチオフェニル)・ ジフェニルスルホニウムロートルエンスルホネート、 (4-フェニルチオフェニル)・ジフェニルスルホニウ ムベンゼンスルホネート、(4-フェニルチオフェニ ル)・ジフェニルスルホニウム10-カンファースルホ ネート、(4-フェニルチオフェニル)・ジフェニルス ルホニウム n ーオクタンスルホネート、(4 ーフェニル 【0104】フェニル・テトラメチレンスルホニウムピ 10 チオフェニル)・ジフェニルスルホニウム2-トリフル オロメチルベンゼンスルホネート、(4-フェニルチオ フェニル)・ジフェニルスルホニウム4-トリフルオロ メチルベンゼンスルホネート、(4-フェニルチオフェ

32

【0108】4、4'ービス(ジフェニルスルホニオフ ェニル)スルフィドジ(ピレンスルホネート)、4. 4'-ビス(ジフェニルスルホニオフェニル)スルフィ ドジ (n-ドデシルベンゼンスルホネート)、4,4'

スルホネート.

ニル)・ジフェニルスルホニウムパーフルオロベンゼン

- ム4ートリフルオロメチルベンゼンスルホネート、フェ 20 ービス (ジフェニルスルホニオフェニル) スルフィドジ (p-トルエンスルホネート)、4、4'-ビス(ジフ ェニルスルホニオフェニル)スルフィドジ(ベンゼンス ルホネート)、4、4'ーピス(ジフェニルスルホニオ フェニル) スルフィドジ (10-カンファースルホネー ト)、4、4'ービス(ジフェニルスルホニオフェニ ル)スルフィドジ(n-オクタンスルホネート). 4 4'-ビス(ジフェニルスルホニオフェニル)スルフィ ドジ(2-トリフルオロメチルベンゼンスルホネー ト)、4、4'ービス(ジフェニルスルホニオフェニ
 - ルホネート)、4,4'-ビス(ジフェニルスルホニオ フェニル) スルフィドジ (パーフルオロベンゼンスルホ ネート) 等を挙げることができる。

【0109】スルホン化合物:スルホン化合物として は、例えば、β-ケトスルホン、β-スルホニルスルホ ンや、これらのαージアゾ化合物等を挙げることができ る。スルホン化合物の具体例としては、フェナシルフェ ニルスルホン、メシチルフェナシルスルホン、ビス(フ ェニルスルホニル) メタン、4-トリスフェナシルスル

【0110】スルホン酸エステル化合物:スルホン酸エ ステル化合物としては、例えば、アルキルスルホン酸エ ステル、ハロアルキルスルホン酸エステル、アリールス ルホン酸エステル、イミノスルホネート等を挙げること ができる。スルホン酸エステル化合物の具体例として は、ベンゾイントシレート、ピロガロールメタンスルホ ン酸トリエステル、ニトロベンジル-9,10-ジエト キシアントラセン-2-スルホネート、α-メチロール ベンゾイントシレート、α-メチロールベンゾインn33

シルスルホネート等を挙げることができる。

【0111】ジスルホニルジアゾメタン化合物:ジスル ホニルジアゾメタン化合物としては、例えば、ビス (シ クロヘキシルスルホニル) ジアゾメタン、ビス (フェニ ルスルホニル) ジアゾメタン、ビス (p-トルエンスル ホニル) ジアゾメタン、ビス (2, 4-ジメチルベンゼ ンスルホニル) ジアゾメタン、メチルスルホニルー p --トルエンスルホニルジアゾメタン、ビス(4-t-ブチ ルフェニルスルホニル) ジアゾメタン、ビス (p-クロ スルホニルー p ー トルエンスルホニルジアゾメタン.

(シクロヘキシルスルホニル) (1, 1-ジメチルエチ ルスルホニル) ジアゾメタン、ビス(1.1-ジメチル エチルスルホニル) ジアゾメタン、ビス (1-メチルエ チルスルホニル) ジアゾメタン、ビス(3,3-ジメチ ルー1、5ージオキサスピロ「5、51ドデカン-8-スルホニル) ジアゾメタン、ビス(1,4-ジオキサス ピロ「4、5] デカン-7-スルホニル) ジアゾメタン 等を挙げることができる。

ンスルホネート化合物としては、例えば、ビス(ベンゼ ン) スルホニルヒドラジン、ビス (p-トルエン) スル ホニルヒドラジン、ビス (n-プロパン) スルホニルヒ ドラジン、ベンゼンスルホニルヒドラジン、p-トルエ ンスルホニルヒドラジン、nープロパンスルホニルヒド ラジン等を挙げることができる。

【0113】これらの他の酸発生剤は、1種単独でまた は2種以上を混合して使用することができる。他の酵発 生剤の配合割合は、各酸発生剤の種類に応じて適宜選定 0重量部に対して、好ましくは95重量部以下、さらに 好ましくは90重量部以下である。この場合、他の酸発 生剤の配合割合が95重量部を超えると、本発明におけ る所期の効果が低下する傾向がある。

【0114】 [酸拡散制御剤] 第3発明および第4発明 においては、さらに、露光により酸発生剤(A)あるい は他の酸発生剤から生じた酸のレジスト被膜中における 拡散現象を制御し、非霧光領域での好ましくない化学反 応を抑制する作用を有する酸拡散制御剤を配合すること が好ましい。このような酸拡散制御剤を使用することに 40 より、樹脂組成物の貯蔵安定性が向上し、またレジスト として解像度が向上するとともに、露光から現像処理ま での引き置き時間 (PED) の変動によるレジストパタ ーンの線幅変化を抑えることができ プロセス安定性に 極めて優れたものとなる。酸拡散制御剤としては、レジ ストパターンの形成工程中の露光や加熱処理により塩基 性が変化しない含窒素有機化合物が好ましい。 このよう な含窒素有機化合物としては、例えば、下記式(11) [0115]

〔式(11)において、Rⁿ、RⁿおよびRⁿは独立に 水素原子、置換もしくは非置換のアルキル基、置換もし くは非置換のアリール基または置換もしくは非置換のア ラルキル基を示す。〕で表される化合物 (以下、「含窒 素化合物(1)」という。)、同一分子内に窒素原子を 2個有するジアミノ化合物(以下、「含窒素化合物(1 I) 」という。)、窒素原子を3個以上有するジアミノ

ロベンゼンスルホニル) ジアゾメタン、シクロヘキシル 10 重合体(以下、「含窒素化合物(III)」という。)、ア ミド基含有化合物、ウレア化合物、含窒素複素環式化合 物等を挙げることができる。

> 【0116】含窒素化合物(1)としては、例えば、n -ヘキシルアミン、n-ヘプチルアミン、n-オクチル アミン、nーノニルアミン、nーデシルアミン等のモノ アルキルアミン類;ジーn-ブチルアミン、ジーn-ペ ンチルアミン、ジーn-ヘキシルアミン、ジーn-ヘプ チルアミン、ジーn-オクチルアミン、ジーn-ノニル アミン、ジーnーデシルアミン等のジアルキルアミン

- 【0112】ヒドラジンスルホネート化合物:ヒドラジ 20 類;トリエチルアミン、トリーnープロピルアミン、ト リーnープチルアミン、トリーnーペンチルアミン、ト リーnーヘキシルアミン、トリーnーヘプチルアミン トリー n ーオクチルアミン、トリー n ー ノニルアミン、 トリーn - デシルアミン等のトリアルキルアミン類;ア ニリン、Nーメチルアニリン、N. Nージメチルアニリ ン、2-メチルアニリン、3-メチルアニリン、4-メ チルアニリン、4ーニトロアニリン、ジフェニルアミ ン、トリフェニルアミン、1-ナフチルアミン等の芳香 族アミン類;エタノールアミン、ジエタノールアミン、
- されるが、酸発生剤(A)と他の酸発生剤との合計10 30 トリエタノールアミン等のアルカノールアミン類等を挙 げることができる。

【0117】含窒素化合物 (II) としては、例えば、エ チレンジアミン、N, N, N', N'-テトラメチルエ チレンジアミン、テトラメチレンジアミン、ヘキサメチ レンジアミン、N, N, N', N'-テトラキス (2-ヒドロキシエチル) エチレンジアミン、N, N, N', N'ーテトラキス(2-ヒドロキシプロピル)エチレン ジアミン、4, 4'ージアミノジフェニルメタン、4. 4' -ジアミノジフェニルエーテル、4.4' -ジアミ ノベンゾフェノン、4、4'ージアミノジフェニルアミ

- ン、2、2'ービス(4-アミノフェニル)プロパン、 2-(3-アミノフェニル)-2-(4-アミノフェニ ル) プロパン、2-(4-アミノフェニル)-2-(3 ーヒドロキシフェニル)プロパン、2-(4-アミノフ ェニル) -2- (4-ヒドロキシフェニル) プロパン. 1, 4-ピス[1-(4-アミノフェニル)-1-メチ ルエチル ベンゼン、1、3-ビス「1-(4-アミノ フェニル) - 1 - メチルエチル] ベンゼン等を挙げるこ とができる
- 50 【0118】含窒素化合物(III)としては、例えば、ボ

[(£28]

リエチレンイミン、ポリアリルアミン、ジメチルアミノ エチルアクリルアミドの重合体等を挙げることができ る。前記アミド基含有化合物としては、例えば、ホルム アミド、Nーメチルホルムアミド、N, Nージメチルホ ルムアミド、アセトアミド、Nーメチルアセトアミド、 N, N-ジメチルアセトアミド、プロピオンアミド、ベ ンズアミド、ピロリドン、N-メチルピロリドン等を挙 げることができる.

【0119】前記ウレア化合物としては、例えば、尿 ジメチルウレア、1, 1, 3, 3-テトラメチルウレ ア、1、3-ジフェニルウレア、トリプチルチオウレア 等を挙げることができる。

【0120】前記含窒素複素環式化合物としては、例え ば、イミダゾール、ベンズイミダゾール、2-フェニル ベンズイミダゾール、2-メチルイミダゾール、4-メ チルイミダゾール、2-フェニルイミダゾール、4-フ ェニルイミダゾール、4-メチル-2-フェニルイミダ ゾール等のイミダゾール類;ピリジン、2-メチルピリ エチルピリジン、2-フェニルピリジン、4-フェニル ピリジン、N-メチル-4-フェニルピリジン、ニコチ ン、ニコチン酸、ニコチン酸アミド、キノリン、8-オ キシキノリン、アクリジン等のピリジン類のほか、ピラ ジン、ピラゾール、ピリダジン、キノザリン、プリン、 ピロリジン、ピペリジン、1-ピペリジンエタノール、 2-ピペリジンエタノール、モルホリン、4-メチルモ ルホリン、ピペラジン、1.4-ジメチルピペラジン。 1, 4-ジアザビシクロ[2, 2, 2] オクタン等を挙 げることができる。

合物(I)、含窒素複素環式化合物等が好ましい。ま た、含窒素化合物(1)の中では、トリアルキルアミン 類が特に好ましく、含窒素複素環式化合物の中では、イ ミダゾール類が特に好ましい。前記酸拡散制御剤は、1 種単独でまたは2種以上を混合して使用することができ る。酸拡散制御剤の配合量は、酸解離性基含有樹脂 (B) またはアルカリ可溶性樹脂(C) 100重量部に 対して、好ましくは15重量部以下、さらに好ましくは 5重量部である。この場合、酸拡散制御剤の配合量が1 5重量部を超えると、レジストとしての感度や露光部の 現像性が低下する傾向がある。なお、酸拡散制御剤の配 合量が0.001重量部未満では、プロセス条件によっ ては、レジストとしてのパターン形状や寸法忠実度が低

【0121】これら含窒素有機化合物のうち、含窒素化

【0122】 [界面活性剤] 前記界面活性剤は、感放射 線性樹脂組成物の塗布性、ストリエーション、現像性等 を改良する作用を示す、このような界面活性剤として は、アニオン系、カチオン系、ノニオン系あるいは両性 50 【0127】

下する恐れがある。

のいずれでも使用することができるが、好ましい界面活 性剤は、ノニオン系界面活性剤である。

【0123】前記ノニオン系界面活性剤の例としては、 ポリオキシエチレン高級アルキルエーテル類、ポリオキ シエチレン高級アルキルフェニルエーテル類、ポリエチ レングリコールの高級脂肪酸ジエステル類等のほか、以 下商品名で、KP(信越化学工業製)、ポリフロー(共 栄社油脂化学工業製)、エフトップ (トーケムプロダク ツ製)、メガファック(大日本インキ化学工業製)、フ 素、メチルウレア、1,1-ジメチルウレア、1,3-10 ロラード(住友スリーエム製)、アサヒガード、サーフ ロン(旭硝子製)等の各シリーズを挙げることができ る。これらの界面活性剤は、1種単独でまたは2種以上 を混合して使用することができる。界面活性剤の配合量 は、感放射線性樹脂組成物中の全樹脂成分100重量部 に対して、界面活性剤の有効成分として、通常、2重量 部以下である。

【0124】 [増感剤] 前記増感剤は、放射線のエネル ギーを吸収して、そのエネルギーを酸発生剤(A)ある いは他の酸発生剤に伝達し、それにより酸の生成量を増 ジン、4-メチルピリジン、2-エチルピリジン、4- 20 加する作用を示すもので、感放射線性樹脂組成物のみか けの感度を向上させる効果を有する。好ましい地感剤 は、アセトフェノン類、ベンゾフェノン類、ナフタレン 類、ビアセチル、エオシン、ローズベンガル、ピレン 類、アントラセン類、フェノチアジン類等である。これ らの増感剤は、1種単独でまたは2種以上を混合して使 用することができる。増感剤の配合量は、感放射線性様 脂組成物中の全樹脂成分100重量部に対して、通常、 50重量部以下、好ましくは30重量部以下である。 【0125】また、染料あるいは顔料を配合することに

> 30 より、露光部の潜像を可視化させて、露光時のハレーシ ョンの影響を緩和でき、接着助剤を配合することによ り、基板との接着性を改善することができる。さらに、 他の添加剤としては、ハレーション防止剤、保存安定 剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ - 4 ' - メチルカルコン等を挙げることができる。 【0126】 [溶解性制御剤] 溶解性制御剤としては、 例えば、フェノール性水酸基、カルボキシル基等の酸性

官能基を有する化合物、該化合物中の酸性官能基の水素

原子を務の存在下で解離しうる 1 種以上の置換基(以) 0.001~10重量部、特に好ましくは0.005~ 40 下、「酸解離性置換基」という。) で置換した化合物等 を挙げることができる。前記酸解離性置換基としては、 例えば、前記酸解離性基含有樹脂について例示した置換 メチル基、1-置換エチル基、1-置換-n-プロピル 基、1-分岐アルキル基、シリル基、ゲルミル基、アル コキシカルボニル基、アシル基、環式酸解離性基等の酸 解離性基と同様の基を挙げることができる。溶解性制御 剤は、低分子化合物でも高分子化合物でもよいが、低分 子化合物の具体例としては、下記式(12)~(16)

で表される化合物等を挙げることができる。

(ft 2 9] (ft 2 9) (ft 2 9)

【式 (10) において、 R^D は水素原子または酸解離性 関換基を示し、複数存在する R^B は相互に同一で、異なってもよく、 R^B は炭素原子数 $1 \sim 4$ の直鎖状もしくは 分岐状のアルキル基、フェニル基または $1 - + 77 \mp 7 + 4$ を示し、複数存在する R^B は相互に同一でも異なっても よく、身は $1 \cup 1 + 2 \rightarrow 4$ の $1 \cup 1 \rightarrow 4$ の 1

【0128】 【化30】

$$\begin{pmatrix}
\mathbf{r}^{\mathbf{N}} \\
\mathbf{r}^{\mathbf{N}}
\end{pmatrix}_{\mathbf{q}} = \begin{pmatrix}
\mathbf{r}^{\mathbf{N}} \\
\mathbf{r}^{\mathbf{M}}
\end{pmatrix}_{\mathbf{s}}$$
(13)

【式(11) において、R²³ およびR²⁸ は式(10) と同義であり、Aは単結合、-O・、-S・、-CO (R²³) ー (R²³) ー (相し、R²³ およびR²³ は相互に独立にか素原子、炭素原子数1~6の直鎖状、分枝状もしくは環状のアルキル基、炭素原子数2~11のアシル基、フェル基もしくは1・ナフチル基を示す。)または下記式で表されるほ

[0129]

【化31】

(但し、 R^* は前記に同じであり、xは0~4の整数である。)を示し、p、q、rおよびsはそれぞれ0以上の整数で、 $p+q \le 5$ 、 $r+s \le 5$ 、 $p+r \ge 1$ を満たす。〕

[0130] [化32]

$$\begin{array}{c}
21 \\
(\vec{r}^{20})_{0} \\
(\vec{r}^{30})_{q}
\end{array}$$

$$\begin{array}{c}
(\vec{r}^{30})_{1} \\
(\vec{r}^{30})_{u}
\end{array}$$

$$\begin{array}{c}
(14) \\
(\vec{r}^{30})_{u}
\end{array}$$

[式(14)において、Rⁿ およびRⁿ は式(12)と 度のフィルターで 同義でありRⁿ は水素原子、炭素原子数1~4の直鎖状 50 して調製される

もしくは分岐状のアルキル基またはフェニル基を示し、 p、 q、 r、 s、 t およびuはそれぞれ0以上の整数 で、 $p+q \le 5$ 、 $r+s \le 5$ 、 $t+u \le 5$ 、 $p+r+t \ge 1$ を満たす。]

【0131】 【化33】

【0132】 【化34】

30

$$(n^{20})_{0}$$
 $(n^{20})_{0}$
 $(n^{20})_{0}$

(式 (16) において、 R^n および R^n は式 (12) と 両義であり、 R^n は式 (14) と同義であり、複数存在 する R^n は相互に同一でも異なってもよく、p、q、q40 r、s、t、u、v およびかはそれぞれの以上の整数 で、 $p+q \le 5$ 、 $r+s \le 5$ 、 $t+u \le 5$ 、 $v+w \le 4$ 、 $p+r+t+v \ge 1$ を満たす。)

これらの溶解制御剤は、単独でまたは2種以上を混合して使用することができる。

[0 | 33] 「溶剤」第3発期のボジ型感效射線性樹脂 組成物および第4 発明のネガ型感放射線性樹脂組織物 は、使用時に、固形分濃板が例えば5~50 毎単戦%とな るように溶剤に溶解したのち、例えば孔径0.2 μm程 度のフィルターでろ過することによって、組成物溶液と 1 エ関盟とおり、エ

【0134】前記溶剤としては、例えば、エーテル類、 エステル類、エーテルエステル類、ケトン類、ケトンエ ステル類、アミド類、アミドエステル類、ラクタム類、 ラクトン類、(ハロゲン化) 炭化水素類等を挙げること ができ、より具体的には、エチレングリコールモノアル キルエーテル類、ジエチレングリコールジアルキルエー テル類、プロピレングリコールモノアルキルエーテル 類、プロピレングリコールジアルキルエーテル類、エチ レングリコールモノアルキルエーテルアセテート類、プ ロピレングリコールモノアルキルエーテルアセテート 類、酢酸エステル類、ヒドロキシ酢酸エステル類、乳酸 エステル類、アルコキシ酢酸エステル類、(非)環式ケ トン類、アセト酢酸エステル類、ピルビン酸エステル 類、プロピオン酸エステル類、N,N-ジアルキルホル ムアミド類、N. Nージアルキルアセトアミド類、N-アルキルピロリドン類、y-ラクトン類、(ハロゲン 化) 脂肪族炭化水素類、(ハロゲン化) 芳香族炭化水素 類等を挙げることができる。

【0135】このような溶剤の具体例としては、エチレ モノエチルエーテル、エチレングリコールモノーnープ ロピルエーテル、エチレングリコールモノーnープチル エーテル、ジエチレングリコールジメチルエーテル、ジ エチレングリコールジエチルエーテル、ジエチレングリ コールジーn - プロピルエーテル、ジエチレングリコー ルジ-n-ブチルエーテル、エチレングリコールモノメ チルエーテルアセテート、エチレングリコールモノエチ ルエーテルアセテート、プロピレングリコールモノメチ ルエーテルアセテート、プロピレングリコールモノエチ ルエーテルアセテート、プロピレングリコールモノーn 30 子線が好ましく、特に、KrFエキシマレーザー(波長 プロピルエーテルアセテート、イソプロペニルアセテ ート、イソプロペニルプロピオネート、トルエン、キシ レン、メチルエチルケトン、シクロヘキサノン、2-ヘ プタノン、3-ヘプタノン、4-ヘプタノン、2-ヒド ロキシプロピオン酸エチル、2-ヒドロキシ-2-メチ ルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキ シ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチ ル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸 iープロピル、3ーメトキシブチルアセテート、3ーメ ーメトキシブチルプロピオネート、3ーメチルー3ーメ トキシブチルブチレート、酢酸エチル、酢酸n-プロピ ル、酢酸n-ブチル、アセト酢酸メチル、アセト酢酸エ チル、3-メトキシプロピオン酸メチル、3-メトキシ プロピオン酸エチル、3-エトキシプロピオン酸メチ ル、3-エトキシプロピオン酸エチル、N-メチルビロ リドン、N. Nージメチルホルムアミド、N. Nージメ チルアセトアミド等を挙げることができる。 【0136】これらの溶剤のうち、プロピレングリコー

ン、乳酸エステル類、2-ヒドロキシプロピオン酸エス テル類、3-アルコキシプロピオン酸エステル類等が好 ましい。前記溶剤は、1種単独でまたは2種以上を混合 して使用することができる。さらに前記溶剤には、必要 に応じて、ベンジルエチルエーテル、ジー n ーヘキシル エーテル、ジエチレングリコールモノメチルエーテル、 ジエチレングリコールモノエチルエーテル、アセトニル アセトン、イソホロン、カプロン酸、カブリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、 10 酢酸ペンジル、安息香酸エチル、シュウ酸ジエチル、マ

40

レイン酸ジエチル、v-ブチロラクトン、炭酸エチレ ン、炭酸プロピレン、エチレングリコールモノフェニル エーテルアセテート等の高沸点溶剤を1種以上添加する こともできる。 【0137】 [レジストパターンの形成] 第3発明のポ

ジ型感放射線性樹脂組成物および第4発明のネガ型感放

射線性樹脂組成物からレジストパターンを形成する際に は、前述のようにして調製された組成物溶液を、回転塗 布、流延塗布、ロール塗布等の手段によって、例えば、 ングリコールモノメチルエーテル、エチレングリコール 20 シリコンウエハー、アルミニウムで被覆されたウエハー 等の基板上に塗布することにより、レジスト被膜を形成 したのち、加熱処理(以下、この加熱処理を「PB」と いう。)を行い、次いで所定のマスクパターンを介して 該レジスト被膜に露光する。その際に使用することがで きる放射線としては、水銀灯の輝線スペクトル (波長2 54nm)、KrFエキシマレーザー(波長248n m)、ArFエキシマレーザー(波長193nm)等の 遠紫外線や、シンクロトロン放射線等のX線、雷子線等 の荷電粒子線等が挙げられるが、遠紫外線および荷雷粉

248 nm)、ArFエキシマレーザー(波長193 n m) および電子線が好ましい。また、放射線量等の露光 条件は、感放射線性樹脂組成物の配合組成、添加剤の種 類等に応じて、適宜選定される。

【0138】露光後は、レジストの見掛けの感度を向上 させるために、加熱処理(以下、この加熱処理を「PE B」という。) を行うことが好ましい。この場合の加熱 条件は、感放射線性樹脂組成物の配合組成、添加剤の種 類等により変化するが、通常、30~200℃、好まし チルー3ーメトキシブチルアセテート、3ーメチルー3 40 くは50~150℃である。その後、アルカリ現像液で 現像することにより、所定のレジストパターンを形成す

【0139】アルカリ現像液としては、例えば、アルカ リ金属水酸化物、アンモニア水、アルキルアミン類、ア ルカノールアミン類、複素環式アミン類、テトラアルキ ルアンモニウムヒドロキシド類、コリン、1、8-ジア ザビシクロ [5. 4. 0] - 7 - ウンデセン、1, 5 -ジアザビシクロ「4.3.0]-5-ノネン等のアルカ リ性化合物の1種以上を、通常、1~10重量%、好ま ルモノアルキルエーテルアセテート類、2-ヘブタノ 50 しくは2~5 重量%の濃度となるように溶解したアルカ 41

リ性水溶液が使用される。特に好ましいアルカリ現像液 は、テトラアルキルアンモニウムヒドロキシド類の水溶 液である。また、前記アルカリ性水溶液からなる現像液 には、例えば、メタノール、エタノール等の水溶性有機 溶剤や界面活性剤等を適量添加することもできる。な お、このようにアルカリ性水溶液からなる現像液を使用 する場合には、一般に、現像後、水洗する。

[0140]

【実施例】以下、実施例を挙げて、本発明をさらに具体 制約されるものではない。

【O 1 4 1】 [スルホニル構造を有する化合物の合成] 合成例1

反応フラスコ内で、2-インダノン26gをテトラヒド ロフラン200mlに溶解し、亜硝酸イソペンチル23 gを加えて攪拌しながら、4M塩化水素ジオキサン溶液 100mlをゆっくり滴下した。滴下後30分攪拌した のち蒸留水1 Lを加え、ロータリーエバポレーターでテ トラヒドロフランを留去し、反応生成物を沈殿させた。 得られた固体を分離し、これをジクロロメタン 1 0 0 m 20 1 に溶解し、溶解しなかった固形分はろ過して除去し た。その後反応生成物のジクロロメタン溶液に、n-へ キサン500mlを加えて反応生成物を再結晶させた。 反応生成物を分離し、真空乾燥して、2-オキソー1-インダノンオキシム9、6gを得た。

【0142】合成例2

反応フラスコ内で、o-メチルヒドロキシアンモニウム 3. 3gをエタノール100mlに溶解し、酢酸ナトリ ウム5.6gを加えて攪拌したのち、式(1)の化合物 3. 2gを加えて5時間室温で攪拌した。その後蒸留水 30 500mlを加えて、反応生成物を再結晶させた。反応 生成物を分離し、真空乾燥して、2-メトキシイミノ-1-インダノンオキシム3.3gを得た。

【0143】実施例1

反応フラスコ内で、式 (ii) の化合物 1、9gをテトラ フドロフラン50mlに溶解し、1-プロパンスルホニ ルクロライド2、9gを加えて攪拌したのち、トリエチ ルアミン3、0gを滴下して15分室温で攪拌した。そ の後蒸留水200mlを加えて、反応生成物を再結晶さ せた。反応生成物を分離し、真空乾燥して、2-メトキ 40 シイミノー1ーインダノンオキシムー1ープロパンスル ホネート2、7gを得た。この化合物を(A-1)とす

【0144】実施例2

窒素置換した乾燥フラスコ内で、式(11)の化合物1. 9gをテトラフドロフラン50mlに溶解し、10-カ ンファースルホニルクロライド5、0gを加えて攪拌し たのち、トリエチルアミン3、0gを滴下して15分室 温で攪拌した。その後蒸留水200mlを加えて、反応

して、2-メトキシイミノー1-インダノンオキシム-10-カンファースルホネート1.3gを得た。この化 合物を (A-2) とする。

【0145】合成例3

反応フラスコ内で、oーメチルヒドロキシアンモニウム 2. 34gをメタノール120mlに溶解し、その溶液 に酢酸ナトリウム5、90gを加えて攪拌した。その 後、2-ヒドロキシイミノヘキサノン12.3gを加え て、反応混合物を室温で1時間攪拌した後、濾過により

的に説明する。但し、本発明は、これらの実施例に何ら 10 不溶物を取り除き、酢酸エチルとn-ヘキサンを1:2 の比で混合した溶媒を展開溶媒として、シリカゲルカラ ムを用いて精製して、2-メトキシイミノ-1-シクロ ヘキサノンオキシムの白色結晶3.10gを得た。

【0146】実施例3

窒素置換した乾燥フラスコ内で、式 (iji) の化合物 1.00gをテトラヒドロフラン50mlに溶解した。 この溶液に1-プロパンスルホニルクロライド1、82 gを加えて撒拌したのち、トリエチルアミン1.94g -を適下し、反応混合物を室温で10分間攪拌した。その 後、反応液に蒸留水を注ぎ、反応を停止した。ついでジ クロロメタンで抽出を行い、有機層を、飽和炭酸水素ナ トリウム水溶液、5重量%シュウ酸水溶液及び蒸留水で 洗浄した。続いて、無水硫酸マグネシウムで乾燥し、ロ ータリーエパポレーターを用いて濃縮し、酢酸エチルと n-ヘキサンを1:3の比で混合した溶媒を展開溶媒と して、シリカゲルカラムを用いて精製後、真空乾燥し、 2-メトキシイミノー1-シクロヘキサノンオキシム-1-プロパンスルホネート1.02gを得た。この化合 物を (A-3) とする。

【0147】 宇施例4

窒素置換した乾燥フラスコ内で、ニオキシム5.69g を乾燥ピリジン50mlに溶解してこれを0℃に冷却 し、1-プロパンスルホニルクロライド6. 13σ km え、同温度で3.5時間攪拌した。ついで、ピバロイル クロライド6.03gを加え、反応温度を徐々に25℃ まで上昇させながら更に2時間攪拌を続けた。その後、 反応混合物をよく冷却した蒸留水700g中に投入し て、得られた固体を分離し蒸留水でよく洗浄した。ここ で得られた粗生成物をテトラヒドロフラン200mlに 溶解後、2000mlの蒸留水に滴下して生成物を凝固

させることを3度繰り返し、得られた固体を真空乾燥し て、2-t-ブチルカルボニルオキシイミノ-1-シク ロヘキサノンオキシムー1ープロパンスルホネート1 1、6gを得た。この化合物を(A-4)とする。 【0148】実施例5

窒素置換した乾燥フラスコ内で、ニオキシム5.69g を乾燥ピリジン50mlに溶解してこれを0℃に冷却 し、1-ブタンスルホニルクロライド6.74gを加

え、同温度で3. 0時間攪拌した。その後、反応混合物 生成物を再結晶させた。反応生成物を分離し、直空乾燥 50 をよく冷却した基留水700ml中に投入して、ジクロ

43

ロメタン200mlで3回抽出した。有機層を合わせ、 5重量%シュウ酸水溶液150ml、飽和炭酸水素ナト リウム水溶液100ml、飽和食塩水200mlの順で 洗浄した。有機層を無水硫酸マグネシウム15gで乾燥 し、ロータリーエバボレータで減圧濃縮後真空乾燥して 10.6gのオイル状の粗生成物を得た。この粗生成物 1. 31gと2, 3-ジヒドロピラン0. 504gをジ クロロメタン30mlに溶解し、25℃でpートルエン スルホン酸一水和物 0. 42 g を加え同温度で12時間 で希釈し、飽和炭酸水素ナトリウム水溶液50ml、飽 和食塩水70mlの順で洗浄した。有機層を無水硫酸マ グネシウム5gで乾燥し、ロータリーエパポレーターで 減圧濃縮後、得られた粗生成物をシリカゲルカラムを用 いて精製後、真空乾燥して、2-(2'-テトラヒドロ ピラニル) オキシイミノー1-シクロヘキサノンオキシ ムー1-プタンスルホネートの白色固体1.02gを得*

装置

*た。この化合物を (A-5) とする。

【0149】実施例6

窒素置換した乾燥フラスコ内で、ジメチルグリオキシム 64gを乾燥ピリジン50mlに溶解してこれを0 ℃に冷却し、1ープロパンスルホニルクロライド6.1 3 gを加え、同温度で5 2時間攪拌した。ついで、ピバ ロイルクロライド7.32gを加え、同温度で更に60 時間攪拌を続けた。その後、反応混合物をよく冷却した 蒸留水700ml中に投入し、得られた固体を分離して 機拌を続けた。反応混合物をジクロロメタン150ml 10 蒸留水でよく洗浄した。ここで得られた粗生成物をシリ カゲルカラムを用いて精製後、真空乾燥して、3-t-プチルカルボニルオキシイミノー2-ブタノンオキシム 1 - プロパンスルホネートの白色固体 2.85g を得 た。この化合物を (A-6) とする。

【0150】得られた化合物 (A-1)~(A-6)の 質量分析を、下記の条件で行った。得られたスペクトル

を図1~6に示す。

:日本電子株式会社製JMS-AX505W型質量分析計

エミッター電流: 5 m A (使用ガス: X e)

加速電圧 : 3. 0 k V

10N MULTI : 1. 3

イオン化法 :高速原子衝撃法 (FAB)

検出イオン : カチオン(+)

測定質量範囲 : 20~1500m/z

スキャン :30sec 分解能 :1500

マトリックス : 3-ニトロベンジルアルコール ※ルを図7~12に示す。

【0151】酸発生剤 (A-1) ~ (A-6) の H-

NMR分析を、下記の条件で行った。得られたスペクト※

装置 :日本電子株式会社製JNM-EX270

測定溶媒 : CDCL

【0152】実施例7~25、比較例1~3 表1、表2(但し、部は重量に基づく)に示す各成分を 混合して均一溶液としたのち、孔径0.2μmのメンブ ランフィルターでろ過して、組成物溶液を調製した。次 いで、各組成物溶液を、シリコンウエハー上に回転塗布 したのち、表3、表4に示す温度と時間にてPBを行っ T、膜厚0、 5μ mのレジスト被膜または膜厚0、 1μ m(但し、Fi エキシマレーザーで露光する場合)のレ ジスト被膜を形成した。このレジスト被膜に、KFFエ 40 度のみを示した。 キシマレーザー照射装置(商品名NSR-2005 E X8A、(株) ニコン製) を用い、KrFエキシマレー ザー(波長248 nm)をマスクパターンを介し雲光量 を変えて露光した。また一部の実施例では、KrFエキ シマレーザーに替えて、簡易型の電子線直描装置 (50 KeV) (商品名HL700D-M(電流密度4.5 A)、(株)日立製作所製)を用い、電子線をマスクパ ターンを介し露光量を変えて露光するか、あるいは簡易 型のF、エキシマレーザー照射装置(Exitech社

介し露光量を変えて露光した。露光後、表3、表4に示 す温度と時間にてPEBを行った。次いで、2、38重 量%テトラメチルアンモニウムヒドロキシド水溶液を現 像液として用い、23℃で60秒間現像したのち、水で 30秒間洗浄し、乾燥して、レジストパターンを形成し た。各実施例および比較例の評価結果を、表5、表6に 示す。但し、Fzエキシマレーザーで露光した場合は、 レジスト皮膜の膜厚が極めて薄いため、感度および解像

【0153】ここで、各レジストの評価は、下記の要領 で実施した。

感度:シリコンウエハートに形成したレジスト被照に霰 光量を変えて露光したのち、直ちに露光後ベークを行 い、次いでアルカリ現像したのち、水洗し、乾燥して、 レジストパターンを形成したとき、線幅0.25μmの ライン・アンド・スペースパターン (1 L 1 S) を1対 1の線幅に形成する露光量を最適露光量とし、この最適 露光量を感度とした。

製)を用い、F,エキシマレーザーをマスクパターンを 50 <u>解像度</u>:最適露光量で露光したときに解像されるレジス

トパターンの最小寸法 (μm) を解像度とした。

【0154】パターン形状:シリコンウエハートに形成 した線幅0、25μmのライン・アンド・スペースパタ 一ン(1 L 1 S)の方形状断面の下辺の寸法 La と F辺 の寸法 Lb とを、走査型電子顕微鏡を用いて測定して、 0. 85 ≤ Lb / La ≤ 1

を満足するものを、パターン形状が「良」であるとし、 この条件を満たさないものを、パターン形状が「不可」 であるとした。

エハー上に形成した線幅0.25μmのライン・アンド スペースパターン(1L1S)のパターン形状が

「良」となる組成物について、窒化シリコン基板を用い て同様にしてレジストパターンを形成し、得られた線幅 25μmのライン・アンド・スペースパターン(1) L1S) の方形状断面を走査型電子顕微鏡を用いて観察 した。図13にこのような観察で見られる典型的な断面 形状を示す。各例で実際に観察された断面形状において 図13に示すLcとLdを測定し、

Lc/Ld<0.05 を満足するものを、裾引きが「良」とし、この条件を満 たさないものを、裾引きが「不可」であると評価した。 【0156】ナノエッジラフネス:設計線幅0.25 µ mのライン・アンド・スペースパターン(11.15)の ラインパターンを走査型電子顕微鏡にて観察した。図1 4に観察される典型的な形状の一例を示す。図14にお いて(イ)はレジストパターンの平面図、(ロ)はレジ ストパターンの側面図であり、凹凸は実際より綺潔され ている。各例において観察された形状について、該ライ 所における線幅と設計線幅 $0.25 \mu m$ との差 ΔCD を

測定して、下記基準で評価した。 ΔCDが0、01 μm未満: 良好

ΔCDが0.01μm以上:不良

【0157】各実施例および比較例で用いた各成分は、 下記の通りである。

[1] ポジ型感放射線性樹脂組成物 他の酸発生剤(a)

a-1:トリフェニルスルホニウムノナフルオローn-ブ タンスルホネート a-2: ビス(4-t ープチルフェニル) ヨードニウム1

0-カンファースルホネート

a-3:ビス(4-t ープチルフェニル) ヨードニウムノ ナフルオロー n ープタンスルホネート

a-4: ビス(シクロヘキシルスルフォニル) ジアゾメタ

a-5; ビス(1.4 -ジオキサスピロ[4.5] デカン -7-スルホニル) ジアゾメタン

a-6:ビス(t ブチルスルホニル)ジアゾメタン

a-7:N-(トリフルオロメタンスルホニルオキシ)ビ 50 E-1:ジフェノール酸

シクロ[2、2、1]ヘプト-5-エン-2、3-ジカル ボキシイミド

【0158】樹脂(B)

B-1:ポリ (p-ヒドロキシスチレン) 中のフェノール 性水酸基の水素原子の34モル%が1-エトキシエチル 基で置換された樹脂 (Mw=9,000、Mw/Mn= 1.9)

B-2:ポリ(p-ヒドロキシスチレン)中のフェノー ル性水酸基の水素原子の25モル%が1-エトキシエチ 【0155】<u>裾引き:</u>最適露光量で露光してシリコンウ 10 ル基で置換され、8モル%がtープトキシカルボニル基 で置換された樹脂 (Mw=10,000、Mw/Mn=

> 【0159】B-3:ポリ(p-ヒドロキシスチレン) 中のフェノール性水酸基の水素原子の23モル%が1-エトキシエチル基で置換され、10モル%がtープチル 基で置換された樹脂 (Mw=12,000、Mw/Mn = 1.2)

B-4:ポリ(p-ヒドロキシスチレン)中のフェノー ル性水酸基の水素原子の30モル%が1-シクロヘキシ 20 ルオキシエチル基で置換された樹脂(Mw=18.00

 $0 \cdot Mw / Mn = 1.9$ B-5: p-EFD=2AFUV/AFUV/D-t-プトキシスチレン共重合体(共重合モル比=72:5:

23, Mw = 16, 000, Mw/Mn = 1, 7) 【0160】B-6:ポリ(p-ヒドロキシスチレン) 中のフェノール性水酸基の水素原子の26モル%がt-プトキシカルボニル基で置換された樹脂(Mw=9.0) $0.0 \, \text{Mw/Mn} = 1.9$

B-7:ポリ (p-ヒドロキシスチレン) 中のフェノー ンパターンの横側面に沿って生じた凹凸の最も著しい箇 30 ル性水酸基の水素原子の25モル%が tープトキシカル ボニルメチル基で置換された樹脂(Mw=25.00 0. Mw/Mn = 1.2

> B-8:ポリ(p-ヒドロキシスチレン)中のフェノール 性水酸基の水素原子の32モル%がナーブチル基で置換 された樹脂 (Mw=15,000、Mw/Mn=1. 7)

【0 1 6 1】 B-9: p-ヒドロキシスチレン/スチレン /アクリル酸 t ープチル共重合体(共重合モル比=6 0:20:20, Mw=12, 500, Mw/Mn=40 1.8)

B-10: p-ヒドロキシスチレン/p-t-ブトキシス チレン/2,5-ジメチル-2,5-ヘキサンジオール ジアクリレート共重合体(共重合モル比=72:25: 3, Mw = 30, 000, Mw/Mn = 4. 3)

B-11: p-ヒドロキシスチレン/p-t-プトキシス チレン/アクリル酸 t ープチル共重合体(共重合モル比 = 7.0 : 1.5 : 1.5, Mw = 1.6, 0.00, Mw/Mn= 1 9)

【0162】溶解制御剤

E-2:2-ヒドロキシベンゾフェノン 酸拡散制御剤

F-1:n-ドデシルジメチルアミン

F-2: トリーn ーヘキシルアミン F-3: 2ーベンジルピリジン

F-4:2-フェニルベンズイミダゾール F-5:トリエタノールアミン

F-6: トリーnーオクチルアミン

溶剤 S-1:乳酸エチル

5-1・孔酸エナル

S-2:エトキシプロピオン酸エチル S-3:プロピレングリコールモノメチルエーテルアセテ

ート S-4:2-ヘプタノン

【0163】(III) ネガ型感放射線性樹脂組成物他の酸発生剤(a)

[1] ポジ型感放射線性樹脂組成物に用いた化合物と同様のものを用いた。

48

* <u>アルカリ可溶樹脂 (C)</u> C-1:ポリ (p-ヒドロキシスチレン) (Mw=7, 5 00)

C-2: p-ヒドロキシスチレン/スチレン共重合体(共 重合モル比=80:20、Mw=4,000) 架橋剤(D)

D-1:ジメトキシメチルウレア (商品名MX290、三和ケミカル (株) 製)

D-2:テトラメトキシメチルグリコールウリル (商品名 10 CYMEL1174、三井サイアナミッド (株) 製) 酸拡散制御剤

[1] ポジ型感放射線性樹脂組成物に用いた化合物と同様のものを用いた。 溶剤

[1] ポジ型感放射線性樹脂組成物に用いた化合物と同様のものを用いた。

[0164]

	酸発生	44 744	樹脂(B)	【表1】	酸核酚制细胞	****
	<u>販売生</u> A成分	a成分	(部)	(部)	既弘取制御荊 (部)	溶料 (部
宝道例	OHEZ	874675	(Bp)	(80)	(np)	(30)
7	A-4(5)	_	B-1(65)	_	F-2(0.85)	S-3(650
•	A 4(0)		B-6(35)		r-2(0.60)	3-3(000
8	A-1(5)	_	B-1(70)	_	F-1(0.75)	S-1(195
٠	A 1007		B-8(30)	-	F-1(0.70)	S-3(455)
9	A-4(3)	a-2(2)	B-9(100)		F-2(0.45)	S-1(455)
-	H-4(3)	a-2(2)	G-3(100)	-	F-4(0.15)	S-2(195
10	A-2(4)	8-3(2)	B-6(80)			
10	A-6(2)	-	B-7(20)	-	F-3(0.45)	8-1(195
11						S-3(455
11	A-6(5)	-	B-6(100)	-	F-4(0.20)	S-1(455
					F-5(0.20)	S-2(195
12	A-1(3)	-	B-2(100)	E-1(6)	F-5(0.70)	S-1(195
	A-2(2)					S-3(455
13	A-3(6)	-	B-3(100)	-	F-5(0.30)	S-1(195
					F-8(0.40)	S-3(455
14	A-4(5.5)	-	B-4(70)	-	F-1(0.90)	S-1(195
			B-6(30)			S-3(455
15	A-1(3)	a-7(6)	B-5(100)	-	F-4(0.50)	S-1(455
						8-3(195
16	A-6(3)	a 2(3)	B-11(100)	_	F-3(0.20)	S-1(455
		a-7(3)			F-4(0.40)	S-2(195
17	A-4(3)	a-2(1)	B-1(50)	E-2(5)	F-4(0.20)	S-4(650
			3 -6(50)	,_,	F-6(0.30)	- 11700
18	A-4(2)	a-1(1)	B-10(100)	_	F-4(0.50)	S-1(455
		a=7(6)	D 10(100)		1 1(0.00)	S-3(195
19	A-3(2)	s-6(2)	B-2(100)	-	F-3(0.45)	S-3(650
	A-4(2)		D 241000		1 0(0.70)	U 0(000
20	A-1(4)	a-1(0.5)	B-3(100)	-	F-1(0.80)	S-1(195
		a-4(2)	D 0,100)		F-1(0.00)	S-3(455
21	A-1(3.5)	a-2(1)	B-2(60)	-	F-4(0.25)	S-1(195
•	A-2(2.5)	a-5(2)	B-3(40)		F-5(0.10)	\$ 3(458
22	A-1(4)	a-1(2)	B-5(100)	_	F-1(0.50)	S~1(45S
22	A 1(4)	9-1(2)	D-3(100)		F-5(0.15)	S 3(195
23	A-4(4)	a-1(2)	B-1(80)		F-6(0.85)	S 1(195
23	H-4(4)	9-1(2)	B-8(20)		F=0(0.85)	S-3(455
			5-6(20)			5-3(455
比較例		*/*)			E 4/4 453	0 4/4-0
1	-	a-4(6)	B 1(65)	-	F-6(0.35)	S-3(650
			B-6(35)			
2	-	a-2(2)	B-9(100)	-	F-2(0.35)	S-1(455
		a-3(2)				S-2(198

【0165】 【表2】

19				(26	5)					特開2	003	-
接触性 アルケリ 対象を対し、対象を対象を対し、対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対	49											
大学 10 10 10 10 10 10 10 1	_	酸発生素	(部)	アルカリ	可溶							
24 A-1(3) - C-1(60) D-1(7) F-1(0.95) S-1(4(20) S-1(4(2	東省部	AREST	a原分	樹間(C)	(部)	(86)		(部)	(部)			
25 A-2(3) 0-2(50) D-2(7) F-2(0.85) 5-1(420) D-2(1.85) F-2(1.85) F-2(1.			-	C-1(5)	0)	D-1(7)	F-1(0.5	90)	S-1(420)			
上級別	er.	A-2(3)							5-2(180)			
上級例	25	A-4(6)	-			D-2(7)	F-2(0.8	15)				
* * 【後3】 * * 【後3】 *** * * 【後3】 *** * * 【									3-2(180)			
** 【 後 3 】 FEB 100	3		a-1(3)			D-1(7)	F-6(0.5	(0)				
下記									S-2(180)			
接続性 接続t 接続												
下		20 RF / 1		756	露光	光源			***			
7 90 90 KF 100 90 8 100 60 エキンマレーザー 110 60 MF 130 90 110 100 90 エキンマレーザー 130 90 111 90 90 エキンマレーザー 100 90 エキンマレーザー 100 90 エキンマレーザー 100 90 エキンマレーザー 100 90 エキンマレーザー 130 90 90 90 90 90 90 90 90 90 90 90 90 90	实施例	ALLOCA	G/ #4/18				M(C/ a	TIME	19)			
8 100 50 KF 110 50 9 130 90							100	90)			
9 130 90 KF 130 90 10 100 97 I	8	100	•	50	K	rF	110	60	1			
10 100 90 Kボデ 110 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 1 1 1 90 90 90 90 90 90 90 90 90 90 90 90 90	9	130	9	90	K	nF .	130	90	1			
11 90 90 KFF 100 90 12 100 90 エキャブレーザー 100 90 13 80 90 14 100 90 エキャブレーザー 100 90 15 130 90 エキャブレーザー 100 90 16 130 90 エキャブレーザー 130 90 17 100 90 エキャブレーザー 100 90 18 130 90 エキャブレーザー 100 90 18 130 90 エキャブレーザー 100 90 20 90 91 エキャブレーザー 100 90 21 100 90 エキャブレーザー 100 90 22 130 90 91 エキャブレーザー 100 90 22 130 90 91 エキャブレーザー 100 90 23 100 90 下2 エキャブレーザー 100 90 14 1 90 14 110 90 14 110 90 15 14 110 90 15 14 110 90 16 110 90 16 16 17 100 90 17 100 90 17 100 90 18 110 90 17 100 90 18 110 90 17 100 90 18 110 90 17 100 90 18 110 90 100 90	10	100		90	K	aF .	110	90	1			
12 100 90 Kボ 100 90 13 80 90 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	90	9	90	K	rF	100	90	ı			
13 80 90 KFF 90 90 1 14 100 90 エキシマレーザー 100 90 1 15 130 80 エキシマレーザー 120 90 1 16 130 80 エキシマレーザー 120 90 1 17 100 90 エキシマレーザー 110 90 1 18 130 90 エキシマレーザー 100 90 1 21 100 90 90 エキシマレーザー 100 90 1 21 100 90 第 エキシマレーザー 100 90 1 22 130 90 第 第7章 110 90 1 23 100 90 第7章 110 90 1 24 170 90 1		100		30 	K	rF .	100	90	1			
14 100 90 KFF 100 90 1	13	80	9				90	90)			
エキシマレーザー 120 90 エキシマレザー 110 90 エキシマレザー 110 90 エキシマレザー 130 90 エキシマレザー 130 90 エキシマレザー 130 90 エキシマレザー 100 90 エキシマレザー 110 90 124 110	14	100) 9	30	K	rF	100	90	ı			
エキシマレーザー 110 90 エキシマレザー 130 90 エキシマレザー 130 90 エキシマレザー 130 90 ロス・システィー 110 90 ロス・システィーザー 110 90 ロス・システィー 110 90 ロス・シス・シス・シス・シス・シス・シス・シス・シス・シス・シス・シス・シス・シス				エキ			130	90	'			
18 130 90 エキシマレーザー 130 90 エキシマレーザー 90 90 20 90 91 91 100 90 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 90 90 90 90 90 90 90 90 90 90 90 9				エキ			120	90	1			
19 80 60 エキンマレーザー 90 90 20 90 90 40 100 90 21 100 90 40 40 40 40 40 40 40 40 40 40 40 40 40				エキ	シマ	レーザー						
20 90 90 1				エキ	シマ	レーザー						
エキシマレーザー 8				エキ	シマ	レーザー						
エキシマレーザー 22 130 90 単子線 110 90 23 100 90 F2 110 90 上映像 1 90 95 KF 100 90 2 130 90 KF 110 90				エキ	シマ	レーザー						
23 100 90 F2 110 90 上秋例 1 90 90 KF 100 90 2 130 90 エキシマレーザー 100 90				エキ	シマ	レーザー						
エキシマレーザー 上数例 1 90 90 K/F 100 90 エキシマレーザー 2 130 90 K/F 110 90	22	130	, ;	, o		T-998	110	90	'			
比較例 90 90 KrF 100 90 エキシマレーザー 2 130 90 KrF 110 90	23	100) 5				110	90				
エキシマレーザー 2 130 90 KF 110 90												
2 130 90 K/F 110 90	1	90	1				100	90	•			
	2	130) 9	90	K	rF .	110	90				
			DD.	*								
		温度(*		(#E)	跳光	元解	pre (°C) ≇		3 (0)			
PB 露光光源 PEB		H										
PB 露光光源 □EB 湿度(℃) 時間(秒) 実施例	24	90	9				100	90	1			
PB 露北光源 温度(*C) 時間(秒) 温度(*C) 時間(秒) 実施例 24 90 90 KrF 100 90	25	90	9	90	K	rF	90	90				
PR 万米夫弟 PEB 重度(で) 時間(砂) 重度(で) 時間(砂) 支援第 100 90 24 90 90 エキシマレーザー 25 90 90 80												
PR 養光素章 PEB 事業(等) 事業(等) 事業(等) 24 90 90 エキシマレーザー 25 90 90 エキシマレーザー 6 ボド 90 90 上秋秋 エキシマレーザー 90	3	90	5				90	90				
PB												

【表5】

[0168]

[0167]

[0166]

51					
	感度	解像度 (µm)	パターン形状	掘引き	ラフネス
美施例					
7	32mJ/cm2	0.21 µ m	良	良	良好
8	33mJ/cm²	0.21 μ m	良	良	良好
9	35mJ/gm2	0.22μ m	良	良	良好
10	32mJ/cm2	0.22 μ m	良	良	良好
11	31mJ/cm2	0.22 μ m	ß.	良	良好
12	35mJ/am2	0.21 μ m	良	良	良好
13	30mJ/amz	0.22 μ m	良	良	良好
14	32mJ/amz	0.22 μ m	良	良	良好
15	32mJ/cm2	0.21 µ m	跷	良	良好
16	33mJ/cm2	0.21 μ m	良	良	良好
17	34mJ/cm2	0.21 μ m	良	良	良好
18	35mJ/cm2	0.22 µ m	£	良	良好
19	34mJ/amz	0.22 μ m	良	良	良好
20	31mJ/cm²	0.21 μ m	良	良	良好
21	32mJ/cmz	0.21 µ m	良	良	良好
22	4 μ C/cm2	0.21 μ m	良	良	良好
23	20mJ/cm2	0.21 μ m	良	良	-
土較例					
1	36mJ/cmg	0.22 μ m	良	良	不良
2	34mJ/cmg	0.23 μ m	良	不可	不良

[0169]

[320]				
	態度	解像度 (um)	パターン形状	ラフネス
実施例 24	43mJ/cm²	0.22 μ m	Ą	良好
25	40mJ/am2	0.22 µ m	良	良好
比較例	45mJ/cm2	0.22 μ m	良	不可

[0170]

【発明の効果】本発明のスルホニル構造を有する化合物 は、活性放射線、例えばKrFエキシマレーザー、Ar 40 の質量分析の測定結果を示す図である。 FエキシマレーザーあるいはF, エキシマレーザー、E UVに代表される遠紫外線、あるいは電子線等に感応す る酸発生剤として、優れた熱安定性を有している。ま た、これを感放射線性酸発生剤として用いた、ポジ型感 放射線性樹脂組成物、及びネガ型感放射線性樹脂組成物 からは、高感度であり、かつ表面ならびに側壁の平滑性 に優れたレジストパターンが得られる。 したがって、 本発明の感放射線性樹脂組成物は、今後ますます微細化 が進行すると予想される半導体デバイス製造用の化学増 幅型レジストとして極めて有用である。

[0171]

- 【図面の簡単な説明】 【図1】実施例1で得たスルホニル構造を有する化合物
- の質量分析の測定結果を示す図である。 【図2】実施例2で得たスルホニル構造を有する化合物
- の質量分析の測定結果を示す図である。 【図3】実施例3で得たスルホニル構造を有する化合物
- の質量分析の測定結果を示す図である。 【図4】実施例4で得たスルホニル構造を有する化合物
- の質量分析の測定結果を示す図である。
- 【図5】実施例5で得たスルホニル構造を有する化合物
- 【図6】実施例6で得たスルホニル構造を有する化合物 の質量分析の測定結果を示す図である。
- 【図7】実施例1で得たスルホニル構造を有する化合物 の H-NMR分析の測定結果を示す図である。
- 【図8】実施例2で得たスルホニル構造を有する化合物 の「H-NMR分析の測定結果を示す図である。
- 【図9】 実施例3で得たスルホニル機造を有する化合物 の H-NMR分析の測定結果を示す図である。
- 【図10】実施例4で得たスルホニル構造を有する化合
- 50 物の H-NMR分析の測定結果を示す図である。

53 【図11】実施例5で得たスルホニル構造を有する化合 物の「H-NMR分析の測定結果を示す図である。 【図12】実施例6で得たスルホニル構造を有する化合

物の「H-NMR分析の測定結果を示す図である。

*【図13】裾引きの評価要領を説明する図である。 【図14】ナノエッジラフネスの評価要領を説明する図

である。

[図2]

[図3]

【図5】

[図6]

[図7]

[図8]

【図9】

[図10]

【図11】

【図12】

フロントページの続き

(72)発明者 江幡 敏

東京都中央区築地二丁目11番24号 ジェイ エスアール株式会社内

(72)発明者 王 勇

東京都中央区築地二丁目11番24号 ジェイ エスアール株式会社内 (72)発明者 下川 努

東京都中央区築地二丁目11番24号 ジェイ エスアール株式会社内

F ターム(参考) 2H025 AB16 AC03 AC08 AD01 AD03

BEOO BE10 BG00 CB42 CC17 FA17

4H006 AA01 AA03 AB99

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2003-055341

(43)Date of publication of application: 26 02 2003

(51)Int.Cl.

C07C381/00 G03F 7/004 G03F 7/038 G03F 7/039 H01L 21/027

(22)Date of filing:

(21)Application number: 2001-248430 17.08.2001

(71)Applicant:

(72)Inventor:

JSR CORP SHIRAKI SHINJI YOKOYAMA KENICHI

EHATA SATOSHI O ISAMU SHIMOKAWA TSUTOMU

(54) COMPOUND HAVING SULFONYL STRUCTURE, RADIATION-SENSITIVE ACID GENERATING AGENT PRODUCED BY USING THE SAME, POSITIVE-TYPE RADIATION-SENSITIVE RESIN COMPOSITION AND NEGATIVE-TYPE RADIATION-SENSITIVE RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a compound having a sulfonyl structure, giving excellent resist pattern and useful as an acid generating agent sensitive to active radiation such as far ultraviolet radiation, a radiation-sensitive acid generating agent produced by using the compound and a positive-type or negative-type chemicalamplification radiation-sensitive resin composition.

SOLUTION: The compound having a sulfonyl structure is expressed by general formula I [R1 to R3 are each H, a 1-20C substituted/unsubstituted alkyl or alkenyl or a substituted/unsubstituted aryl or heteroaryl; and Y is O, S, =N-R4, =N-OR4, =N-N-R5 or the like (R4 and R5 are each same as R1 to R3)]. Concrete example of the compound of general formula I is 2- methoxyimino-2-indanonoxime-1-propanesulfonate.

$$\begin{array}{c}
O = \stackrel{\circ}{\mathbb{S}} - \mathbb{R}^{2} \\
\stackrel{\circ}{\mathbb{N}} & O \\
\downarrow & O \\
\downarrow$$