# Exam Practic 2

Nick Thompson 10/13/2016

#### Pull in Data

```
setwd("~/Documents/GitHubRepo/729_Reed_MLE_git/Exam/CCES")
#data <- read.csv(file = "https://raw.githubusercontent.com/Neilblund/729A/master/data/voterid.csv", he
#or
# data <- read.dta(file = "CCES.RData")
#or
# data <- read.dta13(file = "CCES.RData")
# save(data, file = "data.RData")
load("CCES.RData")
data <- x
#View(data)</pre>
```

## Introduction:

```
#descriptive statistics for all variables
#starqazer(voterid, type = 'text')
# run probit, show results
data <- na.omit(data)</pre>
#View(data) - here we put the point prediction that we're looking for.
# If you're using mean, then keep mean.
# If you're using a SD up and down from the mean, then use that.
# If you're using a different range, then use that.
data$var1 = data$age
data$var2 = data$income
data$var3 = as.factor(data$race)
data$var4 = data$divergence
data$var5 = data$educ
data$var6 = data$female
data$var7 = data$competitive
data$var8 = as.factor(data$st_id)
data$var9 <- data$voted
data$mean_var1 <- mean(data$var1, na.rm=T)</pre>
data$sd_var1 <- 0.5*sd(data$var1)</pre>
data$med_var1 = median(data$var1)
```

#### Descriptive statistics

Plot a histogram to see what the data looks like. Identify skewness for determining if using mean, median, or tail.

```
g <- ggplot(data,aes(x=var1))
# adjust the binwidth to the desired width so the histogram tells you something.
# the geom_vlines give you lines to mark the mean and median.</pre>
```

```
# Consider using the median if the skewness > 0.5 or skewness < -0.5, but use your # own discretion. If the -0.5 < skewness < 0.5 then use the mean. skewness (data$var1)
```

### ## [1] -0.04902077

```
# kurtosis(data$var1) # if you care about kurtosis
# anova(model_1p) # if for some reason you want ANOVA
g + geom_histogram(aes(y=..density..),binwidth = .15) +
geom_density() +
geom_vline(xintercept = data$mean_var1,linetype='longdash') +
geom_vline(xintercept = data$med_var1)
```



```
data$var1_obs_low <- data$mean_var1 - data$sd_var1
data$var1_obs_high <- data$mean_var1 + data$sd_var1
```

Calculate the average effect of variable name using observed values.

The logit model.

A table of the logit model.

```
#summary(model_11)
stargazer(model_11,header=F) # if you want to see a print out in your console,
```

```
# then after model_1l typt this
# ,type='text',
```

The logit predicted probabilities.

Calculate the average effects with a logit model.

A way to do this with probit.

A table printout of the probit model.

Calculate the predicted probabilities in the probit model.

A summary of the probit test.

Calculate the average effects and difference for a probit model.

Summary: Interpreting the Coefficients, include the AIC

Log Likelihood

Deviances

Bayes

AIC

Simulations:

Violin Plots of the Simulation

Table 1:

| Dependent variable:         |                         |
|-----------------------------|-------------------------|
| _                           | voted                   |
| 200                         | 0.258***                |
| age                         | (0.046)                 |
|                             | (0.040)                 |
| income                      | 0.070***                |
|                             | (0.022)                 |
|                             |                         |
| as.factor(race)2            | -0.368                  |
|                             | (0.224)                 |
| ${\rm as.factor(race)} 3$   | $-0.577^*$              |
|                             | (0.296)                 |
|                             | ,                       |
| as.factor(race)4 divergence | -0.199                  |
|                             | (0.334)                 |
|                             | 0.775**                 |
|                             | $-0.775^{**}$ $(0.325)$ |
|                             | (0.323)                 |
| educ                        | 0.084                   |
|                             | (0.058)                 |
|                             | ,                       |
| female                      | $-0.231^*$              |
|                             | (0.135)                 |
| aomnatitivo                 | 0.096**                 |
| competitive                 | (0.048)                 |
|                             | (0.040)                 |
| $as.factor(st\_id)2$        | -0.695                  |
|                             | (0.844)                 |
| 6 ( 1 1) (                  | <b>-</b> 400%**         |
| $as.factor(st\_id)4$        | -7.123***               |
|                             | (1.147)                 |
| $as.factor(st\_id)5$        | -0.398                  |
|                             | (0.588)                 |
|                             | ,                       |
| $as.factor(st\_id)11$       | -1.312                  |
|                             | (0.821)                 |
| as.factor(st_id)14          | -1.204*                 |
| as.lactor(st_ld)14          | -1.204 $(0.625)$        |
|                             | (0.020)                 |
| $as.factor(st\_id)15$       | -0.635                  |
|                             | (0.583)                 |
|                             |                         |
| $as.factor(st\_id)16$       | -0.834                  |
|                             | (0.647)                 |
| as.factor(st_id)21          | -2.479***               |
|                             | (0.611)                 |
|                             | ,                       |
| $as.factor(st\_id)22$       | $4 -5.059^{***}$        |
|                             | (0.686)                 |
| 6 ( ) ( ) ( ) ( ) ( )       | 0.00=                   |
| $as.factor(st\_id)23$       | -0.627                  |