INSTAGRAM

Project description

The project involves the analysis of user interaction data on Instagram. Various attributes, including the number of users on the app, user posts, tags used, and likes on others' posts, have been meticulously collected. The primary objective is to derive meaningful insights from this data to inform the development of a well-targeted marketing plan and the enhancement of app features.

The methodology involves employing SQL queries on a MySQL Workbench database. Each query is carefully designed to extract specific information relevant to the management's inquiries. The focus is on crafting clean, optimized queries to ensure efficiency in data retrieval.

Approach Undertaken

In executing the project, a meticulous and systematic approach was adopted, ensuring clarity in understanding each query posed by the management. The process involved the following key steps:

- 1. Formulation of Entity Relationship Diagram
- 2. Step by step breakdown of the problem
- 3. Formulation of query step by step

Key Benefits of the Approach:

- 1. Clarity in Understanding
- 2. Precise Query Interpretation
- 3. Optimized Data Retrieval
- 4. Insightful Analysis
- 5. Alignment with Objectives

TECH STACK USED

MySQL Workbench was used to carry out the operations. It is an open-source RDBMS.

INSIGHTS

The marketing plan of awarding the most loyal users and making arrangements for involvement of inactive users will help in increasing the popularity of the app.

Engagement Levels:

Identify the level of engagement by analyzing the number of comments on photos. High comment counts may indicate active and engaged followers.

Content Popularity:

Understand which photos receive the most comments. This can help identify popular content and trends.

User Sentiment:

Conduct sentiment analysis on comments to gauge how users feel about the content. Positive or negative sentiments can provide valuable feedback.

Top Commenters:

Identify users who frequently comment on photos. This could help identify influencers or highly engaged community members.

Topic Analysis:

Analyze the content of comments to identify recurring topics or themes. This can inform content creation strategies.

Engagement by User Type:

Categorize users based on their commenting behavior (e.g., frequent commenters, occasional commenters). This segmentation can inform targeted engagement strategies.

Campaign Impact:

Analyze comments related to specific campaigns or promotions to assess their impact on user engagement.

RESULT

The project helped in clear understanding of real-life projects and the formulation of queries and the thought-process required to understand the demand of the question.

#MARKETING ANALYSIS

#LOYAL USER AWARD 5 OLDEST USERS

SELECT username, created_at FROM users ORDER BY created_at LIMIT 5;

OUTPUT

username	created_at
	2016-05-06
Darby_Herzog	00:14:21
	2016-05-06
Emilio_Bernier52	13:04:30
	2016-05-08
Elenor88	01:30:41
	2016-05-09
Nicole71	17:30:22
	2016-05-14
Jordyn.Jacobson2	07:56:26

SELECT username FROM users WHERE users.id NOT IN (SELECT user_id FROM photos);

OUTPUT

username	
Aniya_Hackett	
Kasandra_Homenick	
Jaclyn81	
Rocio33	
Maxwell.Halvorson	
Tierra.Trantow	
Pearl7	
Ollie_Ledner37	
Mckenna17	
David.Osinski47	
Morgan.Kassulke	
Linnea59	
Duane60	
Julien_Schmidt	
Mike.Auer39	
Franco_Keebler64	
Nia_Haag	
Hulda.Macejkovic	
Leslie67	
Janelle.Nikolaus81	
Darby_Herzog	
Esther.Zulauf61	
Bartholome.Bernhard	
Jessyca_West	
Esmeralda.Mraz57	
Bethany20	

#USER WITH THE MOST LIKES ON SINGLE PHOTO

OUTPUT

id	username	img_url
	52 Zack Kemmer93	https://jarret.name

SELECT u.* FROM users u, photos p

WHERE p.id = (

SELECT photo_id FROM likes

GROUP BY photo id

HAVING

COUNT(user id) = (SELECT COUNT(user id) u

FROM likes

GROUP BY photo_id ORDER BY u DESC

LIMIT 1))

AND p.user id = u.id;

OUTPUT

id		username	created_at
			2017-01-01
	52	Zack Kemmer93	05:58:22

WITH likes on photo AS(

SELECT COUNT(*) cnt, photo id

FROM likes

GROUP BY photo id)

SELECT username, user id, cnt

FROM (photos p INNER JOIN likes on photo lp

ON p.id= lp.photo id) INNER JOIN users u

ON p.user id =u.id

WHERE cnt = (SELECT MAX(cnt) FROM likes on photo);

OUTPUT

username	user_id	ent
Zack Kemmer93	52	48

#MOST POPULAR 5 HASHTAGS

SELECT COUNT(1) cnt, tag_name FROM photo_tags pt INNER JOIN tags ON pt.tag_id= tags.id GROUP BY tag_name ORDER BY cnt DESC LIMIT 5;

cnt tag_name

59	smile
42	beach
39	party
38	fun
24	concert

#AD CAMPAIGN LAUNCH

WITH Joining_day AS(
SELECT DATE_FORMAT(created_at,'%W') AS Day_of_joining
FROM users)
SELECT COUNT(Day_of_joining) cnt, Day_of_joining
FROM Joining_day
GROUP BY Day_of_joining
ORDER BY cnt DESC
LIMIT 1;

OUTPUT

cnt	Day_of_joining
16	Thursday

#INVESTOR METRICS

#AVERAGE POSTS PER USER

WITH Count_of_photos AS(
SELECT COUNT(id) cnt, user_id
FROM photos
GROUP BY user_id)
SELECT AVG(cnt)
FROM count_of_photos;

SELECT count(id)/count(distinct user_id) AS AVG FROM photos;

OUTPUT

3.4865

#USER WHO HAS LIKED EVERY SINGLE PHOTO

SELECT user_id FROM likes GROUP BY user_id HAVING COUNT(photo_id)=(SELECT COUNT(id) FROM PHOTOS);

OUTPUT

_