PROBLEM SET 7 MATH 115 NUMBER THEORY PROFESSOR PAUL VOJTA

NOAH RUDERMAN

Problems 7.1.1, 7.1.4, 7.1.5, 7.3.3abd, 7.3.5, 7.4.1, 7.4.3, 7.4.4, 7.4.7, 7.5.1, 7.5.3, 7.5.4, 7.6.4, and 7.6.5 from *An Introduction to The Theory of Numbers*, 5th edition, by Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery

Date: August 11, 2014.

Problem (7.1.1)

Expand the rational fractions 17/3, 3/17, and 8/1 into finite simple continued fractions. Solution.

We start with $\frac{17}{3}$. Using the Euclidean algorithm, we see that

$$17 = 5 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

So we see that $a_0 = 5$, $a_1 = 1$ and $a_2 = 2$. Thus, we get

$$\frac{17}{3} = \langle 5, 1, 2 \rangle$$

$$=5+\frac{1}{1+\frac{1}{2}}.$$

Next we have $\frac{3}{17}$. Using the Euclidean algorithm, we see that

$$3 = 0 \cdot 17 + 3$$

$$17 = 5 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

So we see that $a_0 = 0$, $a_1 = 5$, $a_2 = 1$ and $a_3 = 2$. Thus, we get

$$\frac{3}{17} = \langle 0, 5, 1, 2 \rangle$$

$$=\frac{1}{5+\frac{1}{1+\frac{1}{2}}}.$$

Finally we have $\frac{8}{1}$. Using the Euclidean algorithm, we see that

$$8 = \langle 8 \rangle$$

$$= 8 \cdot 1 + 0.$$

We see that $a_0 = 8$. Thus, we get

$$8 = 8$$

Problem (7.1.4)

Given positive integers b, c, d with c > d, prove that $\langle a, c \rangle < \langle a, d \rangle$ but $\langle a, b, c \rangle > \langle a, b, d \rangle$ for any integer a.

Solution.

We see that

$$c > d$$

$$\frac{1}{d} > \frac{1}{c}$$

$$a + \frac{1}{d} > a + \frac{1}{c}$$

$$\langle a, d \rangle > \langle a, c \rangle,$$

$$d, c \in \mathbb{Z}^+$$

proving the first part.

Next we see that

$$c > d$$

$$\frac{1}{d} > \frac{1}{c}$$

$$b + \frac{1}{d} > b + \frac{1}{c}$$

$$\langle b, d \rangle > \langle b, c \rangle$$

$$\frac{1}{\langle b, c \rangle} > \frac{1}{\langle b, d \rangle}$$

$$a + \frac{1}{\langle b, c \rangle} > a + \frac{1}{\langle b, d \rangle}$$

$$\langle a, b, c \rangle > \langle a, b, d \rangle,$$

proving the second part.

Problem (7.1.5)

Let a_1, a_2, \dots, a_n and c be positive real numbers. Prove that

$$\langle a_0, a_1, \cdots, a_n \rangle > \langle a_0, a_1, \cdots, a_n + c \rangle$$

holds if n is odd, but is false if n is even.

Solution.

Let $m \in \mathbb{Z}^+$ and suppose $2 \leq m \leq n$. We use induction to show that if

$$\langle a_m, a_{m+1} \cdots, a_n \rangle > \langle a_m, a_{m+1} \cdots, a_n + c \rangle$$

then

$$\langle a_{m-2}, a_{m-1}, \cdots, a_n \rangle > \langle a_{m-2}, a_{m-1}, \cdots, a_n + c \rangle.$$

Suppose

$$\langle a_m, a_{m+1} \cdots, a_n \rangle > \langle a_m, a_{m+1} \cdots, a_n + c \rangle$$

We see that

$$\langle a_{m}, a_{m+1} \cdots, a_{n} \rangle > \langle a_{m}, a_{m+1} \cdots, a_{n} + c \rangle$$

$$\frac{1}{\langle a_{m}, a_{m+1} \cdots, a_{n} + c \rangle} > \frac{1}{\langle a_{m}, a_{m+1} \cdots, a_{n} \rangle}$$

$$a_{m-1} + \frac{1}{\langle a_{m}, a_{m+1} \cdots, a_{n} + c \rangle} > a_{m-1} + \frac{1}{\langle a_{m}, a_{m+1} \cdots, a_{n} \rangle}$$

$$\langle a_{m-1}, a_{m} \cdots, a_{n} + c \rangle > \langle a_{m-1}, a_{m} \cdots, a_{n} \rangle$$

$$\frac{1}{\langle a_{m-1}, a_{m} \cdots, a_{n} \rangle} > \frac{1}{\langle a_{m-1}, a_{m} \cdots, a_{n} + c \rangle}$$

$$a_{m-2} + \frac{1}{\langle a_{m-1}, a_{m} \cdots, a_{n} \rangle} > a_{m-2} + \frac{1}{\langle a_{m-1}, a_{m} \cdots, a_{n} + c \rangle}$$

$$\langle a_{m-2}, a_{m-1}, \cdots, a_{n} \rangle > \langle a_{m-2}, a_{m-1}, \cdots, a_{n} + c \rangle,$$

completing the induction step. It should be clear that this induction step also holds if we replace the > sign with <.

We see that $\langle a_n \rangle = a_n < a_n + c = \langle a_n + c \rangle$. We have two cases

(1) n is even.

If n = 0, then $\langle a_0 \rangle = a_0 < a_0 + c = \langle a_0 + c \rangle$, and we are done. If n > 0, then we can use the above result to get $\langle a_{n-2}, a_{n-1}, a_n \rangle < \langle a_{n-2}, a_{n-1}, a_n + c \rangle$. Clearly, n - 2 and n have the same parity. We can repeat this induction step until it terminates where we get

$$\langle a_0, a_1, \cdots, a_n \rangle < \langle a_0, a_1, \cdots, a_n + c \rangle$$

(2) n is odd.

If n=1, then we use $\langle a_1 \rangle = a_1 < a_1 + c = \langle a_1 + c \rangle$ and equation 1 with m=n=1 to get $\langle a_0, a_1 + c \rangle < \langle a_0, a_1 \rangle$ and we are done. If n>1, then using equation 1 with m=n and $\langle a_n \rangle < \langle a_n + c \rangle$ to get $\langle a_{n-1}, a_n + c \rangle < \langle a_{n-1}, a_n \rangle$. Now we can use the induction step to get $\langle a_{n-3}, \ldots, a_n + c \rangle < \langle a_{n-1}, \ldots, a_n \rangle$, and so on until it terminates. Clearly, n-1 and n-3 have the same parity. When the induction terminates, we get

$$\langle a_0, a_1, \cdots, a_n + c \rangle < \langle a_0, a_1, \cdots, a_n \rangle$$

Thus,

$$\langle a_0, a_1, \cdots, a_n \rangle > \langle a_0, a_1, \cdots, a_n + c \rangle$$

is true if n is odd, but false if n is even.

Problem (7.3.3)

Evalue the infinite continued fractions:

a.
$$(2, 2, 2, 2, \dots)$$

b.
$$(1, 2, 1, 2, 1, 2 \cdots)$$

d.
$$(1, 3, 1, 2, 1, 2, 1, 2, \dots)$$

Solution.

a. Let $x = \langle 2, 2, 2, 2, \dots \rangle$. We see that

$$x = 2 + \frac{1}{x}$$
$$x^2 = 2x + 1$$

$$x^2 - 2x - 1 = 0.$$

From here we can use the general solution to quadratic equations to get

$$x = \frac{2 \pm \sqrt{4+4}}{2}$$
$$= 1 \pm \frac{\sqrt{8}}{2}$$
$$= 1 \pm \sqrt{2}$$

But x > 0, so the only valid solution is $x = 1 + \sqrt{2}$.

b. Let $x = \langle 1, 2, 1, 2, \dots \rangle$. We see that

$$x = 1 + \frac{1}{2 + \frac{1}{x}}$$

$$x = 1 + \frac{x}{2x + 1}$$

$$(2x + 1)x = (2x + 1) + x$$

$$2x^{2} + x = 2x + 1 + x$$

$$2x^{2} - 2x - 1 = 0.$$

From here we can use the general solution to quadratic equations to get

$$x = \frac{2 \pm \sqrt{4 + 8}}{4}$$
$$= \frac{1}{2} \pm \frac{\sqrt{12}}{4}$$
$$= \frac{1 \pm \sqrt{3}}{2}$$

But x > 0, so the only valid solution is $x = \frac{1+\sqrt{3}}{2}$.

d. Let $x=\langle 1,3,1,2,1,2,\cdots\rangle$. Let $y=\langle 1,2,1,2,\cdots\rangle$. From our results in part b, we see that $y=\frac{1+\sqrt{3}}{2}$. We have

$$x = 1 + \frac{1}{3 + \frac{1}{y}}$$

$$x = 1 + \frac{1}{3 + \frac{1}{\frac{1}{2} + \frac{\sqrt{3}}{2}}}$$

$$x = 1 + \frac{1}{3 + \frac{2}{1 + \sqrt{3}}}$$

$$x = 1 + \frac{1 + \sqrt{3}}{3(1 + \sqrt{3}) + 2}$$

$$x = 1 + \frac{1 + \sqrt{3}}{5 + 3\sqrt{3}}$$

$$x = 1 + \frac{(1 + \sqrt{3})(5 - 3\sqrt{3})}{25 - 27}$$

$$x = 1 + \frac{(1 + \sqrt{3})(5 - 3\sqrt{3})}{-2}$$

$$x = 1 + \frac{5 - 3\sqrt{3} + 5\sqrt{3} - 9}{-2}$$

$$x = 1 + \frac{-4 + 2\sqrt{3}}{-2}$$

$$x = 1 + 2 - \sqrt{3}$$

$$x = 3 - \sqrt{3}$$
.

Problem (7.3.5)

Let u_0/u_1 be a rational number in lowest terms, and write $u_0/u_1 = \langle a_0, a_1, \dots, a_n \rangle$. Show that if $0 \le i < n$, then $|r_i - u_0/u_1| \le 1/(k_i k_{i+1})$, with equality if and and only if i = n - 1.

Solution.

First we note that

$$\left| r_i - \frac{u_0}{u_1} \right| = \left| r_i - r_n \right|$$

Suppose n = i + 1. By theorem 7.5, we have

$$|r_{i} - r_{n}| = |r_{i} - r_{i+1}|$$

$$= |r_{i+1} - r_{i}|$$

$$= \left| \frac{(-1)^{i}}{k_{i}k_{i+1}} \right|$$

$$= \frac{1}{k_{i}k_{i+1}},$$

because $k_i \in \mathbb{Z}^+$ for all $i \in \mathbb{N}$. Now suppose n-1 > i. We have four cases

(1) n is odd and i is even:

We see that

$$0 < r_n - r_i < r_{n-2} - r_i$$

$$< r_{n-4} - r_i$$

$$\vdots$$

$$< r_{i+1} - r_i$$

$$= \frac{1}{k_i k_{i+1}}.$$

From this we can deduce that

$$\frac{1}{k_i k_{i+1}} < 0 < r_n - r_i < \frac{1}{k_i k_{i+1}},$$

SO

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

(2) n is even and i is odd:

We see that

$$0 < r_{i} - r_{n} < r_{i} - r_{n-2}$$

$$< r_{i} - r_{n-4}$$

$$\vdots$$

$$< r_{i} - r_{i+1}$$

$$= -(r_{i+1} - r_{i})$$
8

$$= -\frac{(-1)^i}{k_{i+1}k_i} = \frac{1}{k_i k_{i+1}}.$$

From this we can deduce that

$$\frac{1}{k_i k_{i+1}} < 0 < r_i - r_n < \frac{1}{k_i k_{i+1}},$$

SO

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

(3) n is odd and i is odd: We see that

$$0 < r_i - r_n < r_i - r_{n-1}$$
.

Call n - 1 = n'. If n' - 1 = i, then

$$r_i - r_{n-1} = r_i - r_{n'}$$

= $r_i - r_{i+1}$
= $\frac{1}{k_i k_{i+1}}$,

in which case we see that

$$\frac{1}{k_i k_{i+1}} < 0 < r_i - r_n < \frac{1}{k_i k_{i+1}},$$

SO

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

If n'-1>i, then we can appeal to case 2 to see that $r_i-r_{n'}<\frac{1}{k_ik_{i+1}}$ so again we have

$$\frac{1}{k_i k_{i+1}} < 0 < r_i - r_n < \frac{1}{k_i k_{i+1}},$$

and thus

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

(4) n is even and i is even: We see that

$$0 < r_n - r_i < r_{n-1} - r_i.$$

Call n - 1 = n'. If n' - 1 = i, then

$$r_{n-1} - r_i = r_{n'} - r_i$$

= $r_{i+1} - r_i$
< $\frac{1}{k_i k_{i+1}}$,

in which case we see that

$$\frac{1}{k_i k_{i+1}} < 0 < r_n - r_i < \frac{1}{k_i k_{i+1}},$$

so

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

If n'-1>i, then we can appeal to case 1 to see that $r_{n'}-r_i<\frac{1}{k_ik_{i+1}}$ so again we have

$$\frac{1}{k_i k_{i+1}} < 0 < r_n - r_i < \frac{1}{k_i k_{i+1}},$$

and thus

$$|r_n - r_i| < \frac{1}{k_i k_{i+1}}.$$

Problem (7.4.1)

Expand each of the following as infinite simple continued fractions: $\sqrt{2}$, $\sqrt{2}-1$, $\sqrt{2}/2$, $\sqrt{3}$, $1/\sqrt{3}$. Solution.

We start with $\sqrt{2}$. We see that

$$\xi_0 = \sqrt{2}$$
.

We see that $1 < \sqrt{2} < 2$ so $a_0 = 1$. Next we have

$$\xi_1 = \frac{1}{\xi_0 - a_0} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1,$$

so $a_1 = 2$. Next we have

$$\xi_2 = \frac{1}{\xi_1 - a_1}$$

$$= \frac{1}{\sqrt{2} + 1 - 2}$$

$$= \frac{1}{\sqrt{2} - 1}$$

$$= \sqrt{2} + 1,$$

so $a_2 = 2$. Let $i \in \mathbb{N}$. Evidently $\xi_i = \sqrt{2} + 1$ implies $\xi_{i+1} = \xi_i$. $\xi_1 = \sqrt{2} + 1$ so $\xi_i = \xi_1$ for $i \ge 1$. It should be clear that if $a_i = a_1$ for all $i \ge 1$. From this we get

$$\sqrt{2} = \langle 1, a_1, a_1, a_1, \ldots \rangle$$
$$= \langle 1, 2, 2, 2, \ldots \rangle.$$

Now we continue with $\sqrt{2} - 1$. We see that

$$\sqrt{2} - 1 = \langle 1, 2, 2, 2, \ldots \rangle - 1$$

$$= \left(1 + \frac{1}{\langle 2, 2, 2, \ldots \rangle}\right) - 1$$

$$= 0 + \frac{1}{\langle 2, 2, 2, \ldots \rangle}$$

$$= \langle 0, 2, 2, 2, \ldots \rangle$$

Next we have $\frac{\sqrt{2}}{2}$. We see that $\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ and

$$\frac{1}{\sqrt{2}} = 0 + \frac{1}{\sqrt{2}}$$

$$= 0 + \frac{1}{\langle 1, 2, 2, 2, \cdots \rangle}$$
$$= \langle 0, 1, 2, 2, 2, \cdots \rangle$$

We continue with $\sqrt{3}$. We start with

$$\xi_0 = \sqrt{3}$$
.

We see that $1 < \sqrt{3} < 2$ so $a_0 = 1$. Next we have

$$\xi_1 = \frac{1}{\xi_0 - a_0}$$

$$= \frac{1}{\sqrt{3} - 1}$$

$$= \frac{\sqrt{3} + 1}{2},$$

so $a_1 = 1$. Next we have

$$\xi_2 = \frac{1}{\xi_1 - a_1}$$

$$= \frac{1}{\frac{\sqrt{3}+1}{2} - 1}$$

$$= \frac{1}{\frac{\sqrt{3}-1}{2}}$$

$$= \frac{2}{\sqrt{3}-1}$$

$$= \frac{2(\sqrt{3}+1)}{2}$$

$$= \sqrt{3}+1$$

so $a_2 = 2$. Next we have

$$\xi_3 = \frac{1}{\xi_2 - a_2}$$

$$= \frac{1}{\sqrt{3} + 1 - 2}$$

$$= \frac{1}{\sqrt{3} - 1}$$

$$= \frac{\sqrt{3} + 1}{2}$$

Let $1 \in \mathbb{N}$. Evidently $\xi_i = \frac{\sqrt{3}+1}{2}$ implies $\xi_{i+2} = \xi_i$. $\xi_1 = \frac{\sqrt{3}+1}{2}$ so $\xi_i = \xi_1$ for $i \equiv 1 \mod 2$. Furthermore, $\xi_i = \xi_2$ for $i \equiv 0 \mod 2$ and $i \geq 1$. Thus, $a_1 = a_3 = a_5 = \cdots$ and $a_2 = a_4 = a_6 \cdots$, so we have

$$\sqrt{3} = \langle a_0, a_1, a_2, a_1, a_2, \ldots \rangle$$

$$= \langle 1, 1, 2, 1, 2, \ldots \rangle.$$

We start with

$$\xi_0 = \frac{1}{\sqrt{3}}.$$

We finish with $\frac{1}{\sqrt{3}}$. We see that

$$\frac{1}{\sqrt{3}} = 0 + \frac{1}{\sqrt{3}}$$

$$= 0 + \frac{1}{\langle 1, 1, 2, 1, 2, \ldots \rangle}$$

$$= \langle 0, 1, 1, 2, 1, 2, \ldots \rangle$$

Problem (7.4.3)

Let α, β, γ be irrational numbers satisfying $\alpha < \beta < \gamma$. If α and γ have identical convergents $h_0/k_0, h_1/k_1, \cdots$, up to h_n/k_n , prove that β also has these same convergents up to h_n/k_n .

Solution.

Let

$$r_i^{\alpha} = \langle a_0, a_1, \cdots, a_i \rangle$$

$$r_i^{\beta} = \langle b_0, b_1, \cdots, b_i \rangle$$

$$r_i^{\gamma} = \langle c_0, c_1, \cdots, c_i \rangle$$

We are given $r_i^{\alpha} = r_i^{\gamma}$ for $0 \le i \le n$. By theorem 7.1, $a_i = c_i$ for $0 \le i \le n$. We use induction to show that $a_i = b_i = c_i$ for all $0 \le i \le n$.

Consider the usual algorithm for calculating the n^{th} convergent to an irrational number, ξ . For each term x_i in the $\langle x_0, x_1, x_2, \cdots, x_n \rangle$, we have $x_i = [\xi_i]$, $\xi_{i+1} = \frac{1}{\xi_i - x_i}$ and $\xi_0 = \xi$. Suppose $\xi_i^{\alpha} < \xi_i^{\beta} < \xi_i^{\gamma}$ and that $a_i = b_i = c_i$. We see that

$$\xi_i^{\beta} < \xi_i^{\gamma}$$

$$\xi_i^{\beta} - b_i < \xi_i^{\gamma} - c_i$$

$$\frac{1}{\xi_i^{\gamma} - c_i} < \frac{1}{\xi_i^{\beta} - b_i}$$

$$\xi_{i+1}^{\gamma} < \xi_{i+1}^{\beta}.$$

Likewise, we see that

$$\begin{split} \xi_i^\alpha &< \xi_i^\beta \\ \xi_i^\alpha - a_i &< \xi_i^\beta - b_i \\ \frac{1}{\xi_i^\beta - b_i} &< \frac{1}{\xi_i^\alpha - a_i} \\ \xi_{i+1}^\beta &< \xi_{i+1}^\alpha. \end{split}$$

Thus we have

$$\xi_{i+1}^{\gamma} < \xi_{i+1}^{\beta} < \xi_{i+1}^{\alpha}.$$

Furthermore, we see that

$$\xi_{i+1}^{\gamma} < \xi_{i+1}^{\beta} < \xi_{i+1}^{\alpha}$$
$$\left[\xi_{i+1}^{\gamma}\right] \le \left[\xi_{i+1}^{\beta}\right] \le \left[\xi_{i+1}^{\alpha}\right]$$
$$c_{i+1} \le b_{i+1} \le a_{i+1}.$$

But $a_{i+1} = c_{i+1}$ for $0 \le i + 1 \le n$, so

$$a_{i+1} = b_{i+1} = c_{i+1}.$$

We have proved $\xi_i^{\alpha} < \xi_i^{\beta} < \xi_i^{\gamma}$ and $a_i = b_i = c_i$ implies $\xi_{i+1}^{\gamma} < \xi_{i+1}^{\beta} < \xi_{i+1}^{\alpha}$ and $a_{i+1} = b_{i+1} = c_{i+1}$. A similar argument shows $\xi_i^{\gamma} < \xi_i^{\beta} < \xi_i^{\alpha}$ and $a_i = b_i = c_i$ implies $\xi_{i+1}^{\alpha} < \xi_{i+1}^{\beta} < \xi_{i+1}^{\gamma}$ and $a_{i+1} = b_{i+1} = c_{i+1}$ for $0 \le i < n$.

As our base case, we see that

$$\alpha < \beta < \gamma$$

$$\xi_0^{\alpha} < \xi_0^{\beta} < \xi_0^{\gamma}$$

$$[\xi_0^{\alpha}] \le [\xi_0^{\beta}] \le [\xi_0^{\gamma}]$$

$$a_0 \le b_0 \le c_0.$$

Since $a_0 = c_0$, we see that $a_0 = b_0 = c_0$.

By the induction hypothesis, we see that $a_i = b_i = c_i$ for all $0 \le i \le n$. From this we see that

$$\langle a_0, a_1, \cdots, a_i \rangle = \langle b_0, b_1, \cdots, b_i \rangle = \langle c_0, c_1, \cdots, c_i \rangle,$$

SO

$$r_i^{\alpha} = r_i^{\beta} = r_i^{\gamma},$$

and the convergents are equal for $0 \le i \le n$.

Problem (7.4.4)

Let ξ be an irrational number with continued fraction expansion $\langle a_0, a_1, a_2, a_3, \cdots \rangle$. Let b_1, b_2, b_3, \cdots be any finite or infinite sequence of positive integers. Prove that

$$\lim_{n\to\infty} \langle a_0, a_1, a_2, \cdots, a_n, b_1, b_2, b_3, \cdots \rangle = \xi.$$

Solution.

Let $x_n = \langle a_0, a_1, a_2, \dots, a_n, b_1, b_2, b_3, \dots \rangle$. Let r_n be the n^{th} convergent of x_n . We know that even convergents form a monotonically increasing sequence whose limit is x_n . Likewise, the odd convergents form a monotonically decreasing sequence whose limit is x_n . Thus, if n is odd, then

$$r_{n-1} < x_n < r_n$$

and if n is even, then

$$r_n < x_n < r_{n-1}.$$

But $r_n = \langle a_0, a_1, a_2, \cdots, a_n \rangle$, which is also the n^{th} convergent of ξ . Thus, we see that

$$\lim_{\substack{n \to \infty \\ n \text{ even}}} r_n \le \lim_{n \to \infty} x_n \le \lim_{\substack{n \to \infty \\ n \text{ odd}}} r_n$$
$$\xi \le \lim_{n \to \infty} x_n \le \xi$$
$$\lim_{n \to \infty} x_n = \xi,$$

completing the proof.

Problem (7.4.7)

Prove that

$$k_n |k_{n-1}\xi - h_{n-1}| + k_{n-1} |k_n\xi - h_n| = 1.$$

Solution.

Suppose the above equality is true, then

$$\begin{aligned} k_n|k_{n-1}\xi - h_{n-1}| + k_{n-1}|k_n\xi - h_n| &= 1\\ \left|\xi - \frac{h_{n-1}}{k_{n-1}}\right| + \left|\xi - \frac{h_n}{k_n}\right| &= \frac{1}{k_nk_{n-1}}\\ |\xi - r_{n-1}| + |\xi - r_n| &= \frac{1}{k_nk_{n-1}}. \end{aligned}$$

Thus, it is sufficient to prove that

$$|\xi - r_{n-1}| + |\xi - r_n| = \frac{1}{k_n k_{n-1}}.$$

We know that odd convergents are larger than their limit and that even convergents are smaller than their limit. We have two cases:

(1) n is even:

Thus,
$$r_n < \xi$$
 and $r_{n-1} > \xi$. We have
$$|\xi - r_{n-1}| + |\xi - r_n| = -(\xi - r_{n-1}) + (\xi - r_n)$$

$$= r_{n-1} - r_n$$

$$= r_n - r_{n-1}$$

$$= -\frac{(-1)^{n-1}}{k_n k_{n-1}}$$
 by theorem $7.5, n \ge 1$

$$= \frac{(-1)^n}{k_n k_{n-1}}$$

$$= \frac{1}{k_n k_{n-1}}.$$

(2) n is odd:

Thus, $r_n > \xi$ and $r_{n-1} < \xi$. We have

$$|\xi - r_{n-1}| + |\xi - r_n| = (\xi - r_{n-1}) - (\xi - r_n)$$

$$= r_n - r_{n-1}$$

$$= \frac{(-1)^{n-1}}{k_n k_{n-1}}$$
 by theorem 7.5, $n \ge 1$

$$= \frac{1}{k_n k_{n-1}}.$$

In each case, we have proved a necessary condition to imply the inequality.

However, we have used theorem 7.5 which only holds for $n \ge 1$. It remains to show that the equality holds for n = 0, -1. We note that $h_{-2} = k_{-1} = 0$ and $h_{-1} = k_{-2} = k_0 = 1$. Suppose n = 0. Then we have

$$k_n|k_{n-1}\xi - h_{n-1}| + k_{n-1}|k_n\xi - h_n| = k_0|k_{-1}\xi - h_{-1}| + k_{-1}|k_0\xi - h_0|$$

= $1 \cdot |0 \cdot \xi - 1| + 0 \cdot |k_0\xi - h_0|$
= 1.

Suppose n = -1. Then we have

$$k_{n}|k_{n-1}\xi - h_{n-1}| + k_{n-1}|k_{n}\xi - h_{n}| = k_{-1}|k_{-2}\xi - h_{-2}| + k_{-2}|k_{-1}\xi - h_{-1}|$$

$$= 0 \cdot |k_{-2}\xi - h_{-2}| + 1 \cdot |0 \cdot \xi - 1|$$

$$= 1.$$

Now we have showed the equality holds for all $n \ge -1$.

Problem (7.5.1)

Prove that the first assertio nin theorem 7.13 holds in case n = 0 if $k_1 > 1$.

Solution.

We proceed in the same way that is outlined in NZM. Suppose the first part of theorem 7.13 if false. Then

$$\left| \xi - \frac{a}{b} \right| < \left| \xi - \frac{h_n}{k_n} \right|$$

$$\left| \xi b - a \right| < \left| \xi k_n - h_n \right|.$$

Using the second part of theorem 7.13, we see that this implies $b \ge k_{n+1}$. If n = 0, then $b \ge k_1$ and $b \le k_0$. But $k_0 = 1$. So if $k_1 > 1$, then b > 1 and $b \le 1$, which is a contradiction. Thus, the assumption must have been false. Thus, $b > k_n$ for n = 0 when $k_1 > 1$.

Problem (7.5.3)

... Prove that every convergent to ξ is a good approximation.

Solution.

We use theorem 7.13 to see that

$$|\xi b - a| < |\xi k_n - h_n|$$

For $n \ge 1$ implies $b \ge k_{n+1} > k_n$, so $b > k_n$. Thus,

$$|\xi k_n - h_n| = \min_{\substack{\text{all } x \\ 0 < y \le k_n}} |\xi y - x|,$$

so $\frac{h_n}{k_n} = r_n$ is a "good approximation" to ξ . We proved in problem 7.5.1 that theorem 7.13 holds for n = 0 when $k_1 > 1$. From the recursive definition of k_i , it is easy to see that $k_1 = a_1$. But $a_1 \in \mathbb{Z}^+$, so $a_1 \ge 1$. If $a_1 > 1$, then $k_1 > 1$ and we are done so we assume that $k_1 = a_1 = 1$. Thus,

$$\min_{\substack{\text{all } x \\ 0 < y \le k_1}} |\xi y - x| = \min_{\substack{\text{all } x \\ 0 < y \le 1}} |\xi y - x|$$
$$= \min_{\substack{\text{all } x \\ \text{all } x}} |\xi - x|.$$

Furthermore, $h_0 = a_0 = [\xi]$, so $|\xi k_0 - h_0| = |\xi - [\xi]|$.

It actually turns out that the 0th convergent is not necessarily a "good approximation". By theorem 4.1(1), we know that $0 \le \xi - [\xi] < 1$ so $|\xi - [\xi]| = \xi - [\xi]$, and $|\xi - [\xi] - 1| = -\xi + [\xi] + 1$. We see that if $\xi - [\xi] > \frac{1}{2}$, then

$$\xi - [\xi] > \frac{1}{2}$$

$$2\xi - 2[\xi] > 1$$

$$\xi - [\xi] > -\xi + [\xi] + 1$$

$$|\xi - [\xi]| > |\xi - ([\xi] + 1)|$$

$$|\xi k_0 - h_0| > \min_{\substack{\text{all } x \\ 0 < y < k_0}} |\xi y - x|.$$

Thus, every convergent r_n is a "good approximation" to ξ except for r_0 when $k_1 = 1$.

Problem (7.5.4)

Prove that every "good approximation" to ξ is convergent.

Solution.

Let $\frac{a}{b} \in \mathbb{Q}$ with gcd(a, b) = 1. Suppose $\frac{a}{b}$ is a "good approximation" to ξ but isn't a convergent. First we will show by contradiction that $b = k_i$ for some $i \in \mathbb{N}$ and then that $a = h_i$.

If $b = k_i$, we are done, so we suppose that $k_j < b < k_{j+1}$ for $j \ge 1$ or $j \ge 0$ if $k_1 > 1$. Thus,

$$|\xi b - a| < \min_{\substack{\text{all } x \\ 0 < y \le b}} |\xi y - x|$$
$$|\xi b - a| < |\xi k_j - h_j|,$$

so $b \ge k_{j+1}$ by theorem 7.13. This contradicts our assumption that $b < k_{j+1}$. So if $\frac{a}{b}$ is a "good approximation" to ξ , then $b = k_i$ for $i \in \mathbb{N}$.

Let $\frac{a}{b} = \frac{a}{k_i}$ be our good approximation to ξ . Using our work in problem 7.5.3, we see that the i^{th} convergent is a good approximation to ξ , so

$$\min_{\substack{\text{all } x \\ 0 < y \le b}} |\xi y - x| = \min_{\substack{\text{all } x \\ 0 < y \le k_i}} |\xi y - x|$$
$$= |\xi k_i - h_i|.$$

Thus, if $\frac{a}{k_i}$ is also a good approximation to ξ , then

$$|\xi k_i - a| = |\xi k_i - h_i|.$$

We have two cases:

(1) $\xi k_i - a = \xi k_i - h_i$: We see that

$$|\xi k_i - a| = |\xi k_i - h_i|$$

$$\pm (\xi k_i - a) = \pm (\xi k_i - h_i)$$

$$\pm \xi k_i \mp a = \pm \xi k_i \mp h_i$$

$$\mp a = \mp h_i$$

$$a = h_i$$

(2) $(\xi k_i - a) = -(\xi k_i - h_i)$: We see that

$$|\xi k_i - a| = |\xi k_i - h_i|$$

$$\mp (\xi k_i - a) = \pm (\xi k_i - h_i)$$

$$\mp \xi k_i \pm a = \pm \xi k_i \mp h_i$$

$$\pm a = \pm 2\xi k_i \mp h_i$$

$$a = 2\xi k_i - h_i,$$

which is impossible since $a \in \mathbb{Z}$. Thus, $a = h_i$. In conclusion, if $\frac{a}{b}$ is a good approximation to ξ , then $a = h_i$ and $b = k_i$ for some $i \in \mathbb{N}$

Problem (7.6.4)

Given any constant c, prove that there exists an irrational number ξ and infinitely many rational numbers h/k such that

$$\left|\xi - \frac{h}{k}\right| < \frac{1}{k^c}.$$

Solution.

By theorem 7.11, we see that

$$\left|\xi - \frac{h_n}{k_n}\right| < \frac{1}{k_n k_{n+1}}.$$

Let c be an arbitrary real number. We see that proving $k_{n+1} \ge k_n^{c-1}$ is a sufficient condition to complete the proof because

$$\frac{1}{k_{n+1}} \le \frac{1}{k_n^{c-1}}$$

$$\frac{1}{k_n k_{n+1}} \le \frac{1}{k_n^c}$$

By definition, $k_{n+1} = a_{n+1}k_n + k_{n-1}$. Thus, $a_{n+1} \ge k_n^{c-2}$ is also a sufficient condition because

$$k_{n+1} = a_{n+1}k_n + k_{n-1}$$

$$\geq k_n^{c-1} + k_{n-1}$$

$$\geq k_n^{c-1}.$$

Appealing to the recursive definition of k_n , we see that k_n is a function of a_0, a_1, \dots, a_n . Since a_{n+1} is a function of k_n , we see that it is also a function of a_0, a_1, \dots, a_n . Thus, we can construct an infinite continued fraction $\langle a_0, a_1, a_2, \dots \rangle$ such that $a_n \geq k_n^{c-2}$ for all $n \in \mathbb{N}$. By theorem 7.7, the value of any infinite simple continued fraction is irrational, so such a number $\xi = \langle a_0, a_1, a_2, \dots \rangle$ is guaranteed to exist. The rational numbers which satisfy equation 3 are the convergents of ξ , of which there are infinitely many.

Problem (7.6.5)

Prove that of every two consecutive convergents h_n/k_n to ξ with $n \geq 0$, at least one satisfies

$$\left|\xi - \frac{h}{k}\right| < \frac{1}{2k^2}.$$

Solution.

We proceed by contradiction. Suppose there are two consecutive convergents $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ for which

$$\left|\xi - \frac{h}{k}\right| > \frac{1}{2k^2}.$$

Then we see that

(5)
$$\left| \xi - \frac{h_n}{k_n} \right| + \left| \xi - \frac{h_{n+1}}{k_{n+1}} \right| > \frac{1}{2k_n^2} + \frac{1}{2k_{n+1}^2}.$$

But $r_n < \xi < r_{n+1}$ or $r_{n+1} < \xi < r_n$ because odd convergents are greater than their limit and even convergents are less than their limit. We suppose that $r_{n+1} > r_n$, but note that the same results follow when $r_{n+1} < r_n$. We see that

$$|r_{n+1} - r_n| = |r_{n+1} - \xi + \xi - r_n|$$

$$= |r_{n+1} - \xi| + |\xi - r_n|$$

$$= \left|\xi - \frac{h_{n+1}}{k_{n+1}}\right| + \left|\xi - \frac{h_n}{k_n}\right|.$$

Furthermore, by theorem 7.5 we see that

$$|r_{n+1} - r_n| = \frac{1}{k_{n+1}k_n}.$$

Now we can plug this into equation 5 to get

$$\frac{1}{k_{n+1}k_n} > \frac{1}{2k_n^2} + \frac{1}{2k_{n+1}^2}$$
$$2 > \frac{k_{n+1}}{k_n} + \frac{k_n}{k_{n+1}}.$$

Call $x = \frac{k_{n+1}}{k_n}$. Clearly, x > 0. We wish to find solutions to the equation

$$2 > x + x^{-1}$$
.

We see that

$$2 > x + x^{-1}$$

$$2x > x^2 + 1$$
 no sign change as $x > 0$
$$0 > x^2 - 2x + 1$$

$$0 > (x - 1)^2,$$

but $(x-1)^2 > 0$ for all $x \in \mathbb{Q}^+$, so we have arrived at a contradiction. Thus, one of the convergents $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ must satisfy equation 4.