Corollary 5.4.5

For each divisor $\ell \mid p-1$, we have either $\Phi_{\ell}(p) = \emptyset$ or $|\Phi_{\ell}(p)| = \varphi(\ell)$.

Corollary 5.4.5

For each divisor $\ell \mid p-1$, we have either $\Phi_{\ell}(p) = \emptyset$ or $|\Phi_{\ell}(p)| = \varphi(\ell)$.

Proof. Recall that

$$\Phi_{\ell}(p) := \{ a \in \Phi(p) \mid \ell(a) = \ell \}.$$

Hence, any element $a \in \Phi_{\ell}(p)$ defines a root \overline{a} of the polynomial $T^{\ell} - 1$ in \mathbb{F}_p . By theorem 5.4.3, there are at most ℓ roots in \mathbb{F}_p .

Suppose $\Phi_{\ell}(p)$ is nonempty. For $a \in \Phi_{\ell}(p)$, we know $\overline{a}^0, \dots, \overline{a}^{\ell-1}$ are distinct congruence classes. In this way, we get ℓ distinct roots of $T^{\ell} - 1$ in \mathbb{F}_p . Hence, they are all the roots in \mathbb{F}_p .

Suppose $\Phi_{\ell}(p)$ is nonempty. For $a \in \Phi_{\ell}(p)$, we know $\overline{a}^0, \dots, \overline{a}^{\ell-1}$ are distinct congruence classes. In this way, we get ℓ distinct roots of $T^{\ell} - 1$ in \mathbb{F}_p . Hence, they are all the roots in \mathbb{F}_p .

We thus have

$$\Phi_{\ell}(p) \subseteq \{a^{\ell} \pmod{p} \mid \ell = 0, \dots, \ell - 1\} := \langle a \rangle.$$

We can further identify $(\langle a \rangle, \cdot, 1)$ with the structure $(\mathbb{Z}/\ell, +, 0)$ through the modular exponential $[e]_{\ell} \mapsto a^e \pmod{p}$.

Then we see that

$$\ell(a^e \pmod{p}) = \ell$$

 \iff the multiplicative dynamic of $a^e \pmod{p}$ on $\langle a \rangle$ consists of only one circle

Then we see that

```
\ell(a^e \pmod{p}) = \ell
```

- \iff the multiplicative dynamic of $a^e \pmod{p}$ on $\langle a \rangle$ consists of only one circle
- \iff the additive dynamic of $[e]_{\ell}$ on \mathbb{Z}/ℓ consists of only one circle

Then we see that

```
\ell(a^e \pmod p) = \ell

\iff the multiplicative dynamic of a^e \pmod p on \langle a \rangle consists of only one circle

\iff the additive dynamic of [e]_\ell on \mathbb{Z}/\ell consists of only one circle
```

 $\iff \gcd(e, \ell) = 1$ (by theorem 4.3.4)

Then we see that

$$\ell(a^e \pmod{p}) = \ell$$

 \iff the multiplicative dynamic of $a^e \pmod{p}$ on $\langle a \rangle$ consists of only one circle

 \iff the additive dynamic of $[e]_{\ell}$ on \mathbb{Z}/ℓ consists of only one circle

$$\iff$$
 $\gcd(e, \ell) = 1$ (by theorem 4.3.4)

Namely, through above identification, $\Phi_{\ell}(p)$ is identified with the unit group $(\mathbb{Z}/\ell)^{\times}$ of \mathbb{Z}/ℓ , or equivalently, the set $\Phi(\ell)$. Consequently, $|\Phi_{\ell}(p)| = \varphi(\ell)$.

П

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

For instance,

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials
- positive integers ←→ monic polynomials

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials
- positive integers ←→ monic polynomials
- prime numbers ←→ irreducible polynomials ←→ irreducible polynomials

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials
- positive integers ←→ monic polynomials
- prime numbers ←→ irreducible polynomials
- rational numbers ←→ rational functions (:e. fructions of puly)

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials
- positive integers ←→ monic polynomials
- prime numbers
 irreducible polynomials

The analogy between \mathbb{Z} and $\mathbb{F}_p[T]$ is outstanding. Try to transplant results about arithmetic of integers to polynomials.

- ±1 (the units) ↔ nonzero constant polynomials
- positive integers ←→ monic polynomials
- prime numbers
 irreducible polynomials
- rational numbers ←→ rational functions
- etc.