Artificial Intelligence

Fall 2017 CSE 440

Solving Problems by Searching (Chapter 03)

Mirza Mohammad Lutfe Elahi

Department of Electrical and Computer Engineering
North South University

Informed Search Strategies

- Uninformed Search
 - in principle find solutions to any state space problem
 - they are typically too inefficient to do so in practice.
- Informed Search
 - Uses problem specific knowledge beyond the definition.
 - More efficient than uninformed search.

Best-First Search

- Instance of general Tree-Search or Graph-Search algorithm.
- Idea: use an evaluation function f(n) for each node-
 - Cost estimate
 - Node with lowest evaluation expanded first
- Implementation is identical to Uniform-Cost Search except for the use of f instead of g to order the priority queue
- Include a component of f a heuristic function h(n)
- Special Cases:
 - Greedy Best-First Search
 - A* Search

What are heuristics?

- Heuristic: problem-specific knowledge that reduces expected search effort.
 - In blind search techniques, such knowledge can be encoded only via state space and operator representation.
- Informed search uses a heuristic evaluation function h(n) that denotes the relative desirability of expanding a node/state.
 - often include some estimate of the cost to reach the nearest goal state from the current state.

Romania with step costs in km

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
 = estimate of cost from n to goal

• e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to be closest to goal

Straight-line distan	ice
o Bucharest	
Arad	366
Bucharest	0
Craiova	160
Oobreta	242
Eforie	161
agaras	178
Giurgiu	77
Hirsova	151
asi	226
Lugoj	244
Mehadia	241
Veamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
limisoara [329
J rziceni	80
Vaslui	199
Zerind	374

8

9

Properties of greedy best-first search

Complete? No – can get stuck in loops, e.g.,
 lasi → Neamt → lasi → Neamt →

Optimal? No

• Time? $O(b^m)$, but a good heuristic can give dramatic improvement

• Space? $O(b^m)$ - keeps all nodes in memory

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal
- Best First search has f(n)=h(n)
- Uniform Cost search has f(n)=g(n)

Straight-line distant	ice
to Bucharest	
Arad	366
Bucharest	(
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: h_{SLD}(n) (never overestimates the actual road distance)

Consistent heuristics

A heuristic is consistent if for every node n, every successor n'
of n generated by any action a,

$$h(n) \le c(n, a, n') + h(n')$$

• If *h* is consistent, we have

It's the triangle inequality!

• i.e., f(n) is non-decreasing along any path.

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

 $G \bigcirc$

We want to prove: $f(n) < f(G_2)$ (then A* will prefer n over G_2)

$$- f(G_2) = g(G_2)$$
 since $h(G_2) = 0$

$$- f(G) = g(G)$$
 since $h(G) = 0$

 $-g(G_2) > g(G)$ since G_2 is suboptimal

$$- f(G_2) > f(G)$$
 from above

- $-h(n) ≤ h^*(n)$ since h is admissible (under-estimate)
- $-g(n) + h(n) \le g(n) + h^*(n)$ from above
- $f(n) \le f(G)$ since $g(n) + h(n) = f(n) & g(n) + h^*(n) = f(G)$
- $f(n) < f(G_2)$

Properties of A* search

- Complete? Yes (unless there are infinitely many nodes with $f \le f(G)$, i.e. step-cost > ϵ)
- <u>Time?</u> Exponential b^d
- Optimal? Yes cannot expand f_i +1 until f_i is finished
- Space? Keeps all nodes in memory