Package 'stampr'

January 19, 2021

validaly 15, 2021
Type Package
Title Perform the STAMP analysis
Version 1.0
Date 2020-12-23
Author Ashton Trey Belew
Maintainer Ashton Trey Belew <abelew@gmail.com></abelew@gmail.com>
Description A reimplementation of the STAMP process.
License GPL-2 file LICENSE
Depends dplyr, tidyr
VignetteBuilder knitr
ByteCompile true
Encoding UTF-8
RoxygenNote 7.1.1
Collate '01_stampr.r' 'calculate_nb.r' 'filter_given_reference.r' 'filter_tags.r' 'plot_calibration.r' 'plot_read_density.r' 'predict_cfu.r' 'preprocess_reads.r' 'read_idx.r' 'read_qiime_otus.r'
R topics documented:
calculate_nb

2 filter_given_reference

K	9
	stampr
	read_tags
	read_qiime_otus
	preprocess_stamp
	predict_cfu
	plot_read_density
	plot_calibration
	make_frequency_df
	gather_tags_per_replicate

calculate_nb

Given the metadata and tag data, calculate Nb values.

Description

Index

This is minor cleanup of the original implementation I received from Dr. Lee's collaborators. I do have the text of the original paper, but it is difficult to interpret; so I fell back on basically retranscribing the original code.

Usage

```
calculate_nb(tags, generations = 1, metadata_column = "Nb", write = NULL)
```

Arguments

tags Input tags provided by count_tags.pl and hopefully count_otus.pl generations Set the g parameter from the published paper.

filter_given_reference

Filter samples using the tags observed in the reference samples.

Description

Take the result from read_tags() and use it to find which tags are in the non-reference samples. One caveat about this process, it splits the data by replicate because tags are not global. Thus we will need to consider what is the best way to handle the filtered data. The simplest is to just merge the pieces back together.

Usage

```
filter_given_reference(tag_list, reference_cutoff = 1, remove_nas = FALSE)
```

Arguments

reference_cutoff

Minimum number of reads in the reference samples to be considered 'real'

remove_nas Replace NA with 0? index_list Result from count_tags

filter_given_reference_list

This does the real work for filter_given_reference().

Description

Create a list of matrices containing only the tags observed in each replicates' reference sample.

Usage

```
filter_given_reference_list(index_list, reference_cutoff = 1)
```

Arguments

index_list Result from count_tags
reference_cutoff

Minimum number of reads in the reference samples to be considered 'real'

filter_tags

Try out some heuristics for filtering the tag data.

Description

Given our focus on RNAseq, it is not a stretch to guess that we would assume some of those methods would be useful. Here is a cpm implementation of some simple filtering.

Usage

```
filter_tags(tag_list, multiplier = 1)
```

Arguments

tag_list Result from one form of read_tags(). This contains the metadata and the matrix

of reads/tag.

multiplier Arbitrary multiplier to make the filter more stringent.

filter_topn_tags

Keep only the top-n most abundant tags

Description

In Dr. Lee's experiment, they explicitly know the number of input tags. So we can explicitly keep only those n most observed tags.

Usage

```
filter_topn_tags(tag_list, replicate_column = "replicate", topn = 600)
```

Arguments

tag_list Existing tag data

replicate_column

Tags should be shared across replicates.

topn How many tags to keep.

gather_tags_per_replicate

Extract the tags observed in each replicate's reference sample.

Description

This ought to be extended to multiple samples/reference.

Usage

```
gather_tags_per_replicate(meta, reads_per_tag, reference_cutoff = 1)
```

Arguments

meta Metadata matrix.

make_frequency_df 5

make_frequency_df	The f(i,s) term in the Nb estimation equation requires frequency esti-
	mates.

Description

Thus, take the sum of each column and divide every value by it.

Usage

```
make_frequency_df(mtrx)
```

Arguments

mtrx

Matrix to transform.

plot_calibration

Plot the calibration curve of the tags observed vs. CFU

Description

Currently this is just a simple ggplot scatterplot. I want to make it more configurable and fun.

Usage

```
plot_calibration(
   tags,
   x_column = "cfu",
   y_column = NULL,
   color_column = "replicate",
   transform_x = "log2",
   transform_y = "log2"
)
```

Arguments

tags	Tag data.
x_column	Metadata column for the x axis.
y_column	Metadata column for the y axis.
color_column	Metadata column for colors.
transform_x	Perform a transformation on the x axis?
transform_y	Perform a transformation on the y axis?

6 predict_cfu

plot_read_density

Make a boxplot of read density

Description

Make a boxplot of read density

Usage

```
plot_read_density(retlist)
```

Arguments

retlist from read_idx or read_qiime

predict_cfu

Try out some methods to go from tags/Nb back to CFU.

Description

This function has not been completed, mostly because I am not sure if it will ever be used, but also because I am not sure of the appropriate model. I have never had an opportunity to use modelling to estimate data, so this is mostly a place for me to play around with something that I should know but don't.

Usage

```
predict_cfu(meta, from = "Nb", to = "cfu", provided = NULL)
```

Arguments

meta Metadata.

from Factor from which to extrapolate.

to Factor to which to return.

provided Dataframe of incomplete data.

preprocess_stamp 7

preprocess_stamp

Preprocess raw reads using cutadapt and my little perl script.

Description

Preprocess raw reads using cutadapt and my little perl script.

Usage

```
preprocess_stamp(
  metadata,
  raw_column = "raw_fastq",
  trimmed_column = "trimmed_fastq",
  index_column = "index_table",
  output = NULL
)
```

Arguments

metadata Sample metadata.

column Metadata column containing the locations of the raw reads.

read_qiime_otus

Create data structures similar to read_idx using qiime otus.

Description

There are some problems with this implementation still, primarily because the version of qiime does not helpfully give the tag sequences. I have found some ways around this, but since I don't really like that implementation I haven't finished it yet.

Usage

```
read_qiime_otus(
  metadata,
  otu_column = "qiime_otus",
  xref_sequence = FALSE,
  trimmed_column = "trimmed_reads",
  output = NULL
)
```

Arguments

metadata Sample metadata.

output Write the matrix to this file, if provided.

column Metadata column containing the qiime output.

8 stampr

read_tags

Interpret the files produced by my count_idx.pl script.

Description

This uses the index_table column in the metadata, reads this files associated with it, and creates some data structures with the results. These include a modified version of the metadata, containing some summary information, a table of the reads/tag observed, and a long table for ggplot.

Usage

```
read_tags(
  metadata,
  id_column = "sampleid",
  index_column = "index_table",
  output = NULL,
  cutoff = 3
)
```

Arguments

metadata Sample metadata.

id_column Column in the metadata containing the sample names.
index_column Column in the metadata containing the tag tables.
output Write out the matrix to this file (if provided).

cutoff Initial reads/tag filter.

stampr

stampr: Some functions for analyzing sequencing data intended to

quantify RT error rates.

Index

```
calculate_nb, 2

filter_given_reference, 2
filter_given_reference_list, 3
filter_tags, 3
filter_topn_tags, 4

gather_tags_per_replicate, 4

make_frequency_df, 5

plot_calibration, 5
plot_read_density, 6
predict_cfu, 6
preprocess_stamp, 7

read_qiime_otus, 7
read_tags, 8

stampr, 8
```