SUMMER-2015

Q.1 a) Solve:
$$(D^2 + 3D + 2)y = e^{e^x}$$
 (6)

b) Solve by method of variation of parameters:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = \tan 2x. \tag{7}$$

Q.2 a) Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x)$$
. **(6)**

b) Solve:
$$\frac{d^2y}{dx^2} + 4y = \sin 3x + e^x + x^2$$
. (7)

Q.3 a) Find the Laplace Transform of:

$$e^{at}[2\cos bt - 3\sin bt]$$
 (4)

Using Convolution Theorem find inverse Laplace Transform of: $\frac{1}{s^2(s^2+1)}$ (5)

c) Find Laplace Transform of:

$$f(t) = \frac{t}{a}$$
, $0 < t < a$
 $= \frac{1}{a}(2a - t)$, $a < t < 2a$ (5)
Q.4 a) Evaluate: $\int_{0}^{\infty} t^{3}e^{-t} \sin t dt$ (4)

Q.4 a) Evaluate:
$$\int_{0}^{\infty} t^{3} e^{-t} \sin t dt$$
 (4)

b) Solve the differential equation using Laplace Transform:

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}, \ y(0) = y'(0) = 1.$$
 (5)

c) Show that:
$$L^{-1}\left(\frac{1}{s}\cos\left(\frac{1}{s}\right)\right) = 1 - \frac{t^2}{(2!)^2} + \frac{t^4}{(4!)^2}$$
..... (5)

UNIT 3

Q.5 a) Solve the difference equation: (8)

i.
$$y_{n+2} - 5y_{n+1} - 6y_n = 4^n$$
, $y_0 = 0$, $y_1 = 1$.

ii.
$$y_{n+2} - 2y_{n+1} - 4y_n = 0$$
.

b) Solve $y_{n+2} - 4y_n = 0$

using z-transform, given
$$y_0 = 0$$
, $y_1 = 2$. (5)

Q.6 a) Solve the difference equation:

i.
$$y_{n+2} - 7y_{n+1} + 10y_n = 12e^{3n} + 4^n$$

ii.
$$y_{n+2} + 3y_{n+1} + 2y_n = \sin\left(\frac{n\pi}{2}\right)$$

(5)

b) Find inverse z-transform of: $\frac{1}{z-2}$.

Using direct division method.

UNIT 4

(5)

Q.7 a) Solve the following partial differential equation: (8)

i.
$$xp + yq = nz$$

ii.
$$x(y^2 - z^2) p + y(z^2 - x^2) q + z(y^2 - x^2) = 0$$
.

b) Find Fourier sine transform of:

$$f(x) = x,$$
 $0 < x < 1$
= 2 - x, $1 < x < 2$
= 0, $x > 2$ (6)

Q.8 a) Solve the following partial differential equation:

i.
$$\left(\frac{\partial \mathbf{z}}{\partial \mathbf{y}}\right)^2 + \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^2 = \frac{3a^2}{\mathbf{z}^2}$$
, ii. $pq = x^m y^n z^{2l}$. (8)

b) Find Fourier Transform of

$$f(x) = 1 - x^2, |x| \le 1$$

= 0, |x| > 1

Hence evaluate
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \frac{x}{2} dx$$
 (6)

UNIT 5

- **Q.9 a)** Show that the function $u = e^{-2xy} \sin (x^2 y^2)$ is harmonic and determine the analytic function f(z) = u + ivas an analytic function of z. **(7)**
- b) Find the bilinear transformation which maps the point z = -1, 0, 1 from z-plane into w = 0, i, 3i in w-plane. (6)
- **Q.10 a)** If f(z) is an analytic function of z, prove that:

$$\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) |\mathbf{f}(\mathbf{z})|^2 = 4|\mathbf{f}'(\mathbf{z})|^2$$
 (7)

b) Expand:
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 for $1 < |z| < 2$. (6)

- **Q.11 a)** Find the directional derivative at (1, 2, 3) of V = xy+ yz + zx in the direction of the vector 3i + 4j + 5k. (6)
- **b)** Find the divergence and curl of the vector:

$$\overline{V} = xyzi + 3x^2yj + (xz^2 - y^2z)k.$$
 (7)

Q.12 a) Determine the constant a so that the vector:

$$\overline{V} = (x+3y)i + (y-2z)j + (x+az)k$$
 is solenoidal. (3)

- **b)** If $u\overline{F} = \nabla v$ where u, v are scalar fields show that \overline{F} .curl $\overline{F} = 0$. (4)
- c) If $\overline{F} = (2x^2 3z)i 2xyj 4xk$, then evaluate:

 $\iiint \nabla .\overline{F} dV \text{ where V is bounded by the planes } x = 0,$

$$y = 0$$
, $z = 0$ and $2x + 2y + z = 4$. (6)