MATH 415 - Lecture 13

18 February 2015

• A **vector space** is a set *V* of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.

- A vector space is a set V of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- $W \le V$ is a **subspace** of V if it is a vector space itself; that is,

- A vector space is a set V of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- $W \le V$ is a **subspace** of V if it is a vector space itself; that is,
 - W contains the zero vector **0**,

- A vector space is a set V of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- $W \le V$ is a **subspace** of V if it is a vector space itself; that is,
 - W contains the zero vector **0**,
 - W is closed under addition, (i.e. if $\mathbf{u}, \mathbf{v} \in W$, then $\mathbf{u} + \mathbf{v} \in W$)

- A vector space is a set V of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- $W \le V$ is a **subspace** of V if it is a vector space itself; that is,
 - W contains the zero vector **0**,
 - W is closed under addition,
 (i.e. if u, v ∈ W, then u + v ∈ W)
 - W is closed under scaling. (i.e. if $\mathbf{u} \in W$ and $c \in \mathbb{R}$, then $c\mathbf{u} \in W$)

- A vector space is a set V of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- $W \le V$ is a **subspace** of V if it is a vector space itself; that is,
 - W contains the zero vector **0**,
 - W is closed under addition,
 (i.e. if u, v ∈ W, then u + v ∈ W)
 - W is closed under scaling. (i.e. if $\mathbf{u} \in W$ and $c \in \mathbb{R}$, then $c\mathbf{u} \in W$)
- $span \{\mathbf{v_1}, \dots, \mathbf{v_m}\}$ is always a subspace of V. $(\mathbf{v_1}, \dots, \mathbf{v_m})$ are vectors in V)

Example

Is
$$W = \left\{ \begin{bmatrix} 2a - b & 0 \\ b & 3 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a subspace of $M_{2 \times 2}$, the space of 2×2 matrices?

Example

Is
$$W = \left\{ \begin{bmatrix} 2a - b & 0 \\ b & 3 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a subspace of $M_{2 \times 2}$, the space of 2×2 matrices?

Example

Is
$$W=\left\{\begin{bmatrix}2a-b&0\\b&3\end{bmatrix}:a,b\in\mathbb{R}\right\}$$
 a subspace of $M_{2\times 2}$, the space of 2×2 matrices?

Solution. No. W does not contain the zero matrix.

Example

Is
$$W = \left\{ \begin{bmatrix} 2a-b & 0 \\ b & 3a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a subspace of $M_{2\times 2}$, the space of 2×2 matrices?

Example

Is
$$W = \left\{ \begin{bmatrix} 2a - b & 0 \\ b & 3a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a subspace of $M_{2 \times 2}$, the space of 2×2 matrices?

Example

Is
$$W=\left\{\begin{bmatrix}2a-b&0\\b&3a\end{bmatrix}:a,b\in\mathbb{R}\right\}$$
 a subspace of $M_{2\times 2}$, the space of 2×2 matrices?

Solution. Write "vectors" in W in the form

$$\begin{bmatrix} 2a - b & 0 \\ b & 3a \end{bmatrix} = a \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} + b \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$

to see that

$$W = span \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Like any span, W is a vector space.

Example

Are the following sets vector spaces?

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

No. W_1 does not contain $\mathbf{0}$.

(b)
$$W_2 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$$

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

No. W_1 does not contain $\mathbf{0}$.

(b)
$$W_2 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$$

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

No. W_1 does not contain $\mathbf{0}$.

(b)
$$W_2 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

Yes. $W_2 = span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}$.

Example

Are the following sets vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, \ 2a - c = 1 \right\}$$

No. W_1 does not contain $\mathbf{0}$.

(b)
$$W_2 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

Yes. $W_2 = span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}$.

Hence, W_2 is a subspace of the vector space $M_{2\times 2}$ of all 2×2 matrices.

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .

(d) W_4 is the set of all polynomials p(t) such that p'(2) = 1.

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .

(d) W_4 is the set of all polynomials p(t) such that p'(2) = 1.

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .

- (d) W_4 is the set of all polynomials p(t) such that p'(2)=1. No. W_4 does not contain the zero polynomial.
- (e) W_5 is the set of all polynomials p(t) such that p'(2) = 0.

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .

- (d) W_4 is the set of all polynomials p(t) such that p'(2)=1. No. W_4 does not contain the zero polynomial.
- (e) W_5 is the set of all polynomials p(t) such that p'(2) = 0.

(c)
$$W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$$

No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .

- (d) W_4 is the set of all polynomials p(t) such that p'(2)=1. No. W_4 does not contain the zero polynomial.
- (e) W_5 is the set of all polynomials p(t) such that p'(2) = 0. Yes. If p'(2) = 0 and q'(2) = 0, then (p+q)'(2) = p'(2) + q'(2) = 0. Likewise for scaling. Hence, W_5 is a subspace of the vector space of all polynomials.

(f)
$$W_3 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

(f)
$$W_3 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

(f)
$$W_3 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$$

We still have

$$\label{eq:W3} \textit{W}_3 = \begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix} + \textit{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}.$$

(f)
$$W_3 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

We still have

$$\mathcal{W}_3 = \begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix} + span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}.$$

Hence, W_3 is a subspace if and only if $\begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix}$ is in the span.

(f)
$$W_3 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

We still have

$$\textit{W}_{3} = \begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix} + \textit{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}.$$

Hence, W_3 is a subspace if and only if $\begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix}$ is in the span. Equivalently, we have to check whether

$$\begin{bmatrix} a+c & -2b \\ b+3c & c+7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

has solutions a, b, c. There is no solution.

What we learned before vector spaces

Linear systems

Systems of equations are linear combinations of vectors.

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

Linear systems

Systems of equations are linear combinations of vectors.

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$x_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Systems of equations are linear combinations of vectors.

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$x_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

They can be written as $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Systems of equations are linear combinations of vectors.

$$x_1 - 2x_2 = -1$$

- $x_1 + 3x_2 = 3$

$$x_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

They can be written as $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Sometimes, we represent the system by its augmented matrix.

$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix}$$

A linear system has either

A linear system has either

• no solution (such a system is called **inconsistent**), \iff echelon form contains row $\begin{bmatrix} 0 & \cdots & 0 & | & b \end{bmatrix}$ with $b \neq 0$.

A linear system has either

- no solution (such a system is called **inconsistent**), \iff echelon form contains row $\begin{bmatrix} 0 & \cdots & 0 & | & b \end{bmatrix}$ with $b \neq 0$.
- one unique solution,
 system is consistent and has no free variables

A linear system has either

- no solution (such a system is called **inconsistent**), \iff echelon form contains row $\begin{bmatrix} 0 & \cdots & 0 & | & b \end{bmatrix}$ with $b \neq 0$.
- one unique solution,
 system is consistent and has no free variables
- infinitely many solutions.
 system is consistent and has at least one free variable

4□ > 4□ > 4□ > 4□ > 4□ > 4□

We know different techniques for solving systems $A\mathbf{x} = \mathbf{b}$.

We know different techniques for solving systems $A\mathbf{x} = \mathbf{b}$.

• Gaussian elimination on $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$

We know different techniques for solving systems $A\mathbf{x} = \mathbf{b}$.

- Gaussian elimination on $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$
- LU decomposition A = LU

We know different techniques for solving systems $A\mathbf{x} = \mathbf{b}$.

- ullet Gaussian elimination on $[A \mid b]$
- LU decomposition A = LU
- using matrix inverse, $\mathbf{x} = A^{-1}\mathbf{b}$

• A linear combination of v_1, v_2, \dots, v_n is of the form

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_n\mathbf{v_n}.$$

• A linear combination of v_1, v_2, \dots, v_n is of the form

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_n\mathbf{v_n}$$
.

• $span\{v_1, v_2, \dots, v_n\}$ is the set of all such linear combinations

• A linear combination of v_1, v_2, \dots, v_n is of the form

$$c_1\mathbf{v_1}+c_2\mathbf{v_2}+\cdots+c_n\mathbf{v_n}.$$

- $span\{v_1, v_2, \dots, v_n\}$ is the set of all such linear combinations
 - Spans are always vector spaces

• A linear combination of v_1, v_2, \dots, v_n is of the form

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_n\mathbf{v_n}$$
.

- $span \{v_1, v_2, \dots, v_n\}$ is the set of all such linear combinations
 - Spans are always vector spaces
 - For instance, a span in \mathbb{R}^3 can be $\{\mathbf{0}\}$, a line, a plane, or \mathbb{R}^3 .

 The transpose A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

• The **transpose** A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

$$(A+B)^T = A^T + B^T$$

• The transpose A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

- $(A+B)^T = A^T + B^T$ $(AB)^T = B^T A^T$

 The transpose A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

- $(A + B)^T = A^T + B^T$
- $\bullet (AB)^T = B^T A^T$
- An $m \times n$ matrix A has m rows and n columns.

 The transpose A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

- $(A + B)^T = A^T + B^T$
- $\bullet (AB)^T = B^T A^T$
- An $m \times n$ matrix A has m rows and n columns.
- The product Ax of a matrix times a vector is

$$\begin{bmatrix} | & | & & | \\ \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \\ | & | & & | \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \cdots + x_n \mathbf{a_n}$$

• Different interpretations of the product of a matrix times a matrix:

- Different interpretations of the product of a matrix times a matrix:
 - column interpretation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a+3c & b & c \\ d+3f & e & f \\ g+3i & h & i \end{bmatrix}$$

- Different interpretations of the product of a matrix times a matrix:
 - column interpretation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a+3c & b & c \\ d+3f & e & f \\ g+3i & h & i \end{bmatrix}$$

• row interpretation

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 3a + g & 3b + h & 3c + i \end{bmatrix}$$

- Different interpretations of the product of a matrix times a matrix:
 - column interpretation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a+3c & b & c \\ d+3f & e & f \\ g+3i & h & i \end{bmatrix}$$

row interpretation

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 3a+g & 3b+h & 3c+i \end{bmatrix}$$

• row-column rule

$$(AB)_{i,j} = (row \ i \ of \ A) \cdot (col \ j \ of \ B)$$

• The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).

• The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).

- The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).
 - $\bullet \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 - ullet Can compute A^{-1} using Gauss-Jordan method

$$\begin{bmatrix} A \mid I \end{bmatrix} \underset{RREF}{\longrightarrow} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

• The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).

$$\bullet \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

ullet Can compute A^{-1} using Gauss-Jordan method

$$\begin{bmatrix} A \mid I \end{bmatrix} \underset{RREF}{\longrightarrow} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

•
$$(A^T)^{-1} = (A^{-1})^T$$

- The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).
 - $\bullet \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 - ullet Can compute A^{-1} using Gauss-Jordan method

$$\begin{bmatrix} A \mid I \end{bmatrix} \underset{RREF}{\longrightarrow} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

- $(A^T)^{-1} = (A^{-1})^T$
- $(AB)^{-1} = B^{-1}A^{-1}$

- The **inverse** A^{-1} of a matrix A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).
 - $\bullet \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 - ullet Can compute A^{-1} using Gauss-Jordan method

$$\begin{bmatrix} A \mid I \end{bmatrix} \underset{RREF}{\longrightarrow} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

- $(A^T)^{-1} = (A^{-1})^T$
- $(AB)^{-1} = B^{-1}A^{-1}$
- An $n \times n$ matrix A is invertible
 - \iff A has n pivots
 - \iff $A\mathbf{x} = \mathbf{b}$ has a unique solution (if true for one \mathbf{b} , then true for all \mathbf{b})

 Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations:

- Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations :
 - Replacement : Add one row to a multiple of another row

- Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations :
 - Replacement : Add one row to a multiple of another row
 - Interchange : Interchange two rows

- Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations :
 - Replacement : Add one row to a multiple of another row
 - Interchange : Interchange two rows
 - Scaling: Multiply all entries in a row by a non-zero constant

- Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations:
 - Replacement : Add one row to a multiple of another row
 - Interchange : Interchange two rows
 - Scaling: Multiply all entries in a row by a non-zero constant
- Each elementary row operation can be encoded as multiplication with an elementary matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e - a & f - b & g - c & h - d \\ i & j & k & l \end{bmatrix}$$

- Gaussian elimination can bring any matrix into an echelon form. It proceeds by elementary row operations:
 - Replacement : Add one row to a multiple of another row
 - Interchange : Interchange two rows
 - Scaling: Multiply all entries in a row by a non-zero constant
- Each elementary row operation can be encoded as multiplication with an elementary matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e - a & f - b & g - c & h - d \\ i & j & k & l \end{bmatrix}$$

• We can continue row reduction to obtain the (unique) RREF.

Using Gaussian elimination

Gaussian elimination and row reductions allow us to:

solve systems of linear equations

$$\begin{bmatrix} 0 & 3 & -6 & 4 & | & -5 \\ 3 & -7 & 8 & 8 & | & 9 \\ 3 & -9 & 12 & 6 & | & 15 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 0 & | & -24 \\ 0 & 1 & -2 & 0 & | & -7 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix}$$

$$x_1 = -24 + 2x_3$$
, $x_2 = -7 + 2x_3$, x_3 free, $x_4 = 4$

Gaussian elimination and row reductions allow us to:

solve systems of linear equations

$$\begin{bmatrix} 0 & 3 & -6 & 4 & -5 \\ 3 & -7 & 8 & 8 & 9 \\ 3 & -9 & 12 & 6 & 15 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 0 & -24 \\ 0 & 1 & -2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

$$x_1 = -24 + 2x_3$$
, $x_2 = -7 + 2x_3$, x_3 free, $x_4 = 4$

• compute the LU decomposition A = LU

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ & -8 & -2 \\ & & 1 \end{bmatrix}$$

• compute the inverse of a matrix

to find
$$\begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$$
, we use Gauss–Jordan:

$$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

 determine whether a vector is a linear combination of other vectors

 determine whether a vector is a linear combination of other vectors

determine whether a vector is a linear combination of other vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ is a linear combination of } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \text{ if and only if the}$$
 system corresponding to
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \text{ is consistent.}$$

determine whether a vector is a linear combination of other vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ is a linear combination of } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \text{ if and only if the}$$
 system corresponding to
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \text{ is consistent.}$$

(Each solution $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ gives a linear combination

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
.

For any $m \times n$ matrix $A = [\mathbf{a}_1 \ldots \mathbf{a}_n]$,

For any $m \times n$ matrix $A = [\mathbf{a_1} \dots \mathbf{a_n}]$,

• The **null space** Nul(A) is the set of vectors **x** such that A**x** = 0. It is a subspace of \mathbb{R}^n .

For any $m \times n$ matrix $A = [\mathbf{a_1} \dots \mathbf{a_n}]$,

- The **null space** Nul(A) is the set of vectors **x** such that A**x** = 0. It is a subspace of \mathbb{R}^n .
- The **column space** Col(A) is the span of the columns a_1, \ldots, a_n . It is a subspace of \mathbb{R}^m .

When solving $A\mathbf{x} = \mathbf{b}$:

For any $m \times n$ matrix $A = [\mathbf{a_1} \ldots \mathbf{a_n}]$,

- The **null space** Nul(A) is the set of vectors **x** such that A**x** = 0. It is a subspace of \mathbb{R}^n .
- The **column space** Col(A) is the span of the columns a_1, \ldots, a_n . It is a subspace of \mathbb{R}^m .

When solving $A\mathbf{x} = \mathbf{b}$:

• A solution *exists* if and only if **b** is in Col(A).

For any $m \times n$ matrix $A = [\mathbf{a_1} \ldots \mathbf{a_n}]$,

- The **null space** Nul(A) is the set of vectors **x** such that A**x** = 0. It is a subspace of \mathbb{R}^n .
- The **column space** Col(A) is the span of the columns a_1, \ldots, a_n . It is a subspace of \mathbb{R}^m .

When solving $A\mathbf{x} = \mathbf{b}$:

- A solution exists if and only if **b** is in Col(A).
- Once a particular solution $\mathbf{x_p}$ exists, the set of all solutions is $\mathbf{x_p} + \textit{Nul}(A)$.

For any $m \times n$ matrix $A = [\mathbf{a}_1 \ldots \mathbf{a}_n]$,

- The **null space** Nul(A) is the set of vectors **x** such that A**x** = 0. It is a subspace of \mathbb{R}^n .
- The **column space** Col(A) is the span of the columns a_1, \ldots, a_n . It is a subspace of \mathbb{R}^m .

When solving $A\mathbf{x} = \mathbf{b}$:

- A solution exists if and only if **b** is in Col(A).
- Once a particular solution $\mathbf{x_p}$ exists, the set of all solutions is $\mathbf{x_p} + Nul(A)$.
- So the solution is *unique* if and only if Nul(A) = 0.

Midterm

7:00PM-8:15PM, Thursday, February 19th

Students last name A-G: 114 David Kinley Hall

Students last name H-Ra: 100 Noyes Lab Students last name Re-Zu: 112 Greg Hall

Bring university ID. No books, notes, or electronic devices.

Good luck!