Transmissão de uma imagem gerada na FPGA

Edição 1.0

11 de Julho de 2017

Data	Autor	Edição	Alterações
10 julho 2017	Marisa Oliveira	1.0	Lançamento Inicial

1 Introdução

Este manual apresenta os aspetos relevantes sobre a arquitetura implementada em FPGA que permite a transmissão de uma barra de cores para um dispositivo final HDMI.

2 Objetivo

Esta arquitetura tem como principal objetivo a transmissão direta entre a FPGA e o dispositivo final HDMI, tal como mencionado em (1). É gerada uma barra de cores em *FULL HD* com uma taxa de atualização vertical de 60 Hz no módulo "colorBar_generator.v" e os dados referentes à imagem são transmitidos para a placa HDMI TX, tal como se visualiza na Fig. 1.

3 Material Utilizado

Para a implementação desta arquitetura são utilizados vários equipamentos, entre os quais os seguintes:

3.1 FPGA VC7203

É uma FPGA (Field-programmable gate array) que se caracteriza pelo seu elevado número de recursos e também pelas entradas em saídas de alta velocidade que possui, tal como indica (2). É utilizada para implementação do código desenvolvido em Verilog para esta arquitetura e ainda para conexão à placa HDMI pelos conectores FMC (FPGA Mezzanine Card).

3.2 TB-FMCH-HDMI2-TX

Esta placa HDMI caracteriza-se pela capacidade de transmissão de dados HDMI através da receção dos dados referentes à imagem em paralelo. Esses dados são recebidos através dos conectores FMC de interface entre a placa e a FPGA VC7203. Para esta implementação, a placa deve estar configurada por omissão cujos detalhes se encontram em (3).

4 Arquitetura

O diagrama de blocos na Fig. 1 representa a arquitetura desenvolvida. É implementado um módulo que gera uma barra de cores em FULL HD com uma taxa de atualização vertical de 60 Hz. Os dados são transmitidos para a placa HDMI transmissora através dos conectores FMC.

Figura 1: Diagrama de blocos da arquitetura

Disponível para o utilizador:

- Botão reset: permite ao utilizador repor os dados originais do sistema;
- Interruptor **start**: permite ao utilizador definir o início da transmissão:
 - ON: Transmissão ativa;
 - OFF: Transmissão inativa;

Figura 2: Setup de teste

Tabela 1: Recursos utilizados pelas diferentes arquiteturas implementadas na FPGA

Recurso	Arquitetura A		
rtecurso	Utilização	%	
FF	31	0,01	
\mathbf{LUT}	59	0,02	
I/O	38	$5,\!43$	
\mathbf{GT}	0	0	

5 Configuração do setup

6 Conclusões

Referências

- [1] M. Oliveira, "Implementação em FPGA de um conversor HDMI para transmissão em série de alta velocidade," Master's thesis, Faculdade de Engenharia da Universidade do Porto, 2017.
- [2] Xilinx and Inc, VC7203 Virtex-7 FPGA GTX Transceiver Characterization Board User Guide, 1.3 ed., outubro 2014.
- [3] Inrevium, Manual do Utilizador de TB-FMCH-HDMI2 Hardware, 1.04 ed., agosto 2014.