Exercice 1 (5 pts)

Soit l'alphabet $A = \{a, b, c\}$ et le langage L1 sur A représenté par l'expression régulière $E = (ab + bc)^*aa^*b$.

- 1. Pour chacun des mots suivants, dire s'il appartient à L1 : a, ab, abcab, bcbcabaaaab.
- 2. Construire un automate déterministe reconnaissant L1.
- 3. Donner une grammaire, régulière et sans ϵ , engendrant les mots de L1.

Exercice 2 (5 pts)

Soit la grammaire G=(A,V,S,R) avec $A=\{a,b,c\},\,V=\{S,B\}$ et $R=\{S\rightarrow Scc\mid aB;B\rightarrow b\mid bB\}.$

- Cette grammaire est-elle régulière? Justifier la réponse.
- 2. Définir le langage L2 engendré par G.
- Donner une grammaire régulière pour L2.

Exercice 3 (4 pts)

Soit la grammaire $G = \langle \{p, q, \bigoplus, \bigotimes\}, \{S\}, S, R \rangle$ avec $R = \{S \to S \bigoplus S \mid S \boxtimes S \mid p \mid q\}$.

- 1. Montrer que cette grammaire est ambiguë en utilisant la dérivation gauche.
- Donner une grammaire équivalente non ambiguë.

Exercice 4 (6 pts)

- Donner les conditions pour qu'un automate à pile soit déterministe.
- 2. Soit le langage $L_3 = \{u \in \{a, b\}^* | u = a^n b^{n+1} ; n \ge 0\}.$
 - Donner une grammaire pour L₃ et son type (pas de démonstration).
 - Donner un automate à pile déterministe avec arrêt sur état final et pile vide, qui reconnaît L₃.
- 3. Soit le langage $L_4 = \{a^n b^m c^n \mid n, m \ge 0\}$.
 - Donner une grammaire pour L_4 et son type (pas de démonstration).
 - Donner un automate à pile avec arrêt sur état final et pile vide, qui reconnaît L_4 .