Université de Picardie Jules Verne. Année 2024-2025.

L3: Analyse Matricielle

Correction devoir N.1

Exercice 1

A. 1. Pour les propriétés du conditionnement, voir le Cours de Monsieur Chehab. On rappelle ici qu'une matrice est bien conditionnée si son conditionnement est proche de 1 (il est toujours supérieur à 1).

On trouve par des calculs élémentaires que

$$A^{-1} = \left(\begin{array}{cc} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{array}\right)$$

D'après le cours (voir également les TDs), on obtient $||A||_1 = \max_j \sum_{i=1}^2 |a_{i,j}| = 6$ et $||A^{-1}||_1 = \frac{7}{2}$, donc le conditionnement vaut 21. La matrice est donc mal conditionnée pour cette norme. Pour l'autre norme, il a été établi dans le cours que

$$\operatorname{cond}_2(A) = \frac{\mu_n(A)}{\mu_1(A)}.$$

où $\mu_n(A)$ et $\mu_1(A)$ désignent respectivement la racine carré de la plus grande et la plus petite valeur singulière de la matrice A (autrement dit la racine carrée de la plus petite et la plus grande valeur propre de ${}^tA.A$).

Calculons les valeurs propres de la matrice tAA . Le polynôme caractéristique de cette matrice est donné par $x^2 - 30x + 4 = 0$. Les valeurs propres sont données par $\lambda_1 = 15 - \sqrt{221}$ et $\lambda_2 = 15 + \sqrt{221}$. On obtient donc

$$\operatorname{cond}_2(A) = \frac{\sqrt{15 + \sqrt{221}}}{\sqrt{15 - \sqrt{221}}}.$$

2. On a compte tenu de $||A.B|| \le ||A||.||B||$ pour $A, B \in M_n(\mathbb{R})$,

$$\operatorname{cond}(AB) = \|AB\|.\|B^{-1}.A^{-1}\| \le \|A\|.\|B\|.\|B^{-1}\|.\|A^{-1}\| = \operatorname{cond}(A).\operatorname{cond}(B).$$

- 3. De $B A^{-1} = (BA \mathrm{id}) A^{-1}$, on déduit immédiatement l'inégalité demandée. On majore le numérateur par $||A|| ||B A^{-1}||$ et combinant les deux inégalités, on obtient le résultat demandé.
- B. 1. On a l'identité évidente mais utile

$$B^{-1} - A^{-1} = A^{-1}.(A - B).B^{-1}$$

Il en résulte aussitôt que

$$||B^{-1} - A^{-1}|| \le ||A^{-1}|| \cdot ||A - B|| \cdot ||B^{-1}|| \cdot ||A - B|| \cdot ||A - B|| \cdot ||B^{-1}|| \cdot ||A - B|| \cdot ||A$$

Soient A une matrice inversible et δA une matrice telles que $\|\delta A\| \leq \frac{1}{\|A^{-1}\|}$.

2. On a l'égalité $A + \delta A = A(Id + A^{-1}\delta)$. Il a été établi en cours que si ||A|| < 1 pour ||.|| norme matricielle sous-multiplicative quelconque, alors Id - A et Id + A sont inversibles, et $(Id - A)^{-1} = \sum_{n=0}^{+\infty} A^n$ (on montre au cours de la preuve que $\sum_{n=0}^{+\infty} A^n$ converge).

La condition $\|A\| < 1$ se traduit ici par $\|A^{-1}\delta\| < 1$, ce qui est le cas puisque par hypothèse

$$||A^{-1}\delta|| \le ||A^{-1}|| ||\delta|| < 1.$$

3. D'après ce qui précède, on obtient : $\|(A + \delta A)^{-1} - A^{-1}\| \le \|(A + \delta A)^{-1}\| \|A^{-1}\| \|\delta A\|$, d'où

$$\frac{\|(A+\delta A)^{-1}-A^{-1}\|}{\|(A+\delta A)^{-1}\|} \le \|A^{-1}\| \|\delta A\| \frac{\|A\|}{\|A\|},$$

ce qui est le résultat recherché.

4. On a $(A + \delta A)^{-1} = (I + A^{-1}\delta A)^{-1}A^{-1}$. On a vu en cours que si ||B|| < 1, alors id + B est inversible et

$$||(id+B)^{-1}|| \le \frac{1}{1-||B||}.$$

Comme $||A^{-1}\delta A|| \le ||A^{-1}|| ||\delta A||$, on déduit de l'hypothèse que $||A^{-1}\delta A|| < 1$. On déduit de ce résultat que

$$||(I + A^{-1}\delta A)^{-1}|| \le \frac{1}{1 - ||A^{-1}\delta A||} \le \frac{1}{1 - ||A^{-1}|| ||\delta A||}.$$

On en déduit l'inégalité

$$\|(A + \delta A)^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|}.$$

5. Compte tenu des résultats obtenus aux questions 3 et 4, on déduit que

$$\frac{\|(A+\delta A)^{-1}-A^{-1}\|}{\|A^{-1}\|} \le \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|} \frac{1}{1-\|A^{-1}\| \|\delta A\|}$$

Or

$$\frac{1}{1 - \|A^{-1}\| \|\delta A\|} = 1 + \mathcal{O}(\delta A).$$

Conclusion:

$$\frac{\|(A+\delta A)^{-1}-A^{-1}\|}{\|A^{-1}\|} \leq \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|} \left(1+\mathcal{O}(\|\delta A\|)\right).$$

L'erreur relative sur le résultat est majorée par le conditionnement de A multiplié par l'erreur relative sur la donnée A.

Exercice 2

1. Remarquons que compte tenu des hypothèses, on a $||P||_1 = 1$. Comme $\alpha \in]0,1[$, on en déduit que $||\alpha P||_1 < 1$. On a vu en TD que si $A \in M_n(I\!\!R)$ satisfait ||A|| < 1 ||.|| norme matricielle

quelconque, alors Id - A est inversible, d'inverse $\sum_{n=0}^{+\infty} A^k$. On déduit donc que $Id - \alpha P$ est inversible, d'inverse $\sum_{k=0}^{+\infty} (\alpha P)^k$.

- 2. Comme $\alpha P \geq 0$ ($\alpha > 0$ et d'après l'hypothèse 1, $P \geq 0$), on déduit de l'expression $\sum_{k=0}^{+\infty} (\alpha P)^k$ que $(Id \alpha P)^{-1} \geq 0$.
- 3. L'hypothèse 2 entra A ne immédiatement que ${}^teP={}^te$, où $e={}^t(1,\cdots,1)$. Par conséquent, la matrice tP admet la valeur propre 1. Or les matrices P et tP possèdent le m \tilde{A}^a me polynôme caractéristique puisque $\det(A)=\det{}^tA$ et donc $\det(A-\lambda I)=\det({}^t(A-\lambda I))=\det({}^tA-\lambda I)$. Donc 1 est également valeur propre de P.
- 4. Soit u un vecteur propre associé à la valeur propre 1 (Pu = u). On a $(I \alpha P)u = (1 \alpha)u$. Par conséquent, $(Id \alpha P)^{-1})u = \frac{1}{1-\alpha}u$. On en déduit que

$$\|(Id - \alpha P)^{-1}\|_{1} \ge \frac{\|(Id - \alpha P)^{-1}(u)\|_{1}}{\|u\|_{1}} = \frac{1}{1 - \alpha}.$$
 (1)

5. Pour établir l'inégalité demandée, il faut inverser l'inégalité dans (1). D'après la question 1, on a

$$\|(Id - \alpha P)^{-1}\|_1 = \|\sum_{k=0}^{+\infty} (\alpha P)^k\|_1 \le \sum_{k=0}^{+\infty} \alpha^k \|P\|_1^k = \frac{1}{1-\alpha},$$

d'où le résultat demandé.