Hardware implementation of neural network algorithms, based on machine learning and neuroscience models, using spintronics

Debanjan Bhowmik
Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Delhi

Hardware implementation of neural network algorithms, based on machine learning and neuroscience models, using spintronics



# Memory-Computing hierarchy of modern computers and role of Spintronics



# Spin orbit torque driven nanomagnetic logic (experiment)







Three 500 by 500 nm magnetic dots with a microns sized input dot separated by 30 nm each. Dipole coupling determines the final state- chain of inverters.

Current needed for clocking is 2mA, While that in Oersted field clocking is ~700 mA.

Bhowmik, D. et al. Nature Nanotechnology 9 (2014)

Magnetic switching is too slow for logic.



# Spin orbit torque driven magnetic switching for memory (simulation)



We engineer a tilt in the structure of the ferromagnet to cause deterministic switching in it by current.

| Direction of magnetization M driven by spin orbit torque | Direction<br>of final<br>Magnetization<br>M |
|----------------------------------------------------------|---------------------------------------------|
| +X                                                       | +Z                                          |
| -x                                                       | -Z                                          |

L. You, O.J. Lee, D. Bhowmik *et al.* Proceedings of National Academy of Sciences 112(33) 2015

Spin Transfer Torque Magnetic Random Access Memory already being commercially made

**Doctoral research** 

#### Spin orbit torque driven domain wall motion (simulation and experiment)





D. Bhowmik et al. Scientific Reports 5, 11823 (2015)

Multiple electrically controlled magnetic states can be obtained with different conductances- functional memristive behaviour.

Can this device be used for new kind of computing that combines memory and logic? -Theme of my ongoing research

# Neural Network Algorithms have memory- computing intertwined



Wx calculation: computing

f(Wx) calculation: computing

Storing W: memory

MODEL h(X)= f(Wx)

Parameters/
Weight matrix
W



Algorithm/ Learning Rule

computing

#### Fully Connected Neural Network (FCNN)





28 by 28 pixel images from MNIST dataset

#### Forward computation:

$$y_n = f(z_n) = \frac{2}{1 + e^{-\lambda z_n}} - 1;$$

$$z_n = w_{n,1}x_1 + w_{n,2}x_2 + \dots w_{n,784}x_{784} + w_{n,0}$$

$$= (\sum_{m=1}^{m=784} w_{n,m}x_m) + w_{n,0}$$

#### Stochastic Gradient Descent (SGD) learning rule:

$$\epsilon_n = \frac{1}{2}(Y_n - y_n)^2$$

$$w_{n,m}^{i+1} = w_{n,m}^{i} - \Delta w_{n,m}$$
$$= w_{n,m}^{i} - \eta \frac{\partial \epsilon_{n}}{\partial w_{n,m}}$$

applied over every training example, multiple times.



## Solving FCNN on different computer architectures

Traditional computer architecture: von-Neumann



Memory and computing are completely separate



Inside each core



Memory and computing are separate inside each core, but more intertwined overall.

Digital Hardware Neural Network: IBM True North chip

## Solving FCNN on different computer architectures



Memory and computing are completely separate



Analog Hardware Neural Network: Spintronic Synapse

Memory and computing are completely intertwined.

#### Simulation of spintronic hardware based Fully Connected Neural Network (FCNN)



#### **Spintronic synapses in cross-bar:**

$$z_n = w_{n,1}x_1 + w_{n,2}x_2 + \dots w_{n,784}x_{784} + w_{n,0}$$
$$= (\sum_{m=1}^{m=784} w_{n,m}x_m) + w_{n,0}$$

w is adjusted at every iteration by write current

#### **Transistor based neuron:**

$$y_n = f(z_n) = \frac{2}{1 + e^{-\lambda z_n}} - 1$$

#### **Transistor based SGD circuit:**

$$w_{n,m}^{i+1} = w_{n,m}^{i} - \Delta w_{n,m}$$
$$= w_{n,m}^{i} - \eta \frac{\partial \epsilon_n}{\partial w_{n,m}}$$

### Micromagnetic simulation of domain wall synapse





Multiple current controlled conductance states which are non-volatile: Essential for synapse

simulated domain wall synapse device, proposed by Sengupta *et al.* (2016) on micromagnetic simulation package mumax

### Micromagnetic simulation of skyrmion synapse





Multiple current controlled conductance states which are non-volatile: Essential for synapse

proposed and simulated skyrmionic synapse on micromagnetic simulation package mumax.

showed that it consumes lower energy than domain wall synapse if operated with low current.

U. Saxena et al. IEEE Transactions on Magnetics, vol. 44, no. 11 (2018).

### Transistor based Neuron circuit



op-amp and differential amplifier based analog circuit for neuron



#### tan sigmoid activation function:

$$y_n = f(z_n) = \frac{2}{1 + e^{-\lambda z_n}} - 1$$

### On chip learning of spintronic FCNN on MNIST dataset



SGD calculation and write current generation circuit



#### On chip learning of spintronic FCNN on MNIST dataset



1000 train samples, 100 test samples. 10,000 epochs

Train accuracy: 97 % Test accuracy: ~ 65%

A. Dankar et al., under preparation

- To improve test accuracy hidden layers will be needed, but then implementing SGD calculation circuit (backpropagation) in hardware is hard because weights of synapses are needed in the calculation.
- We turn towards hardware neural network that already exists in nature: the brain.

# Brain Inspired Spiking Neural Network (SNN)



Neuron connected to another neruon by synapse



10<sup>11</sup> neurons interconnected through 10<sup>15</sup> synapses

# Brain Inspired Spiking Neural Network (SNN)

Model for neuron: Leaky Integrate and Fire (LIF) Model for synapse: Spike Time Dependent Plasticity (STDP)



Whenever V(t) reaches a threshold, it spikes and goes back to rest potential E<sub>L</sub>



Data obtained from rat's hippocampus (*Bi, Poo, J. Neuroscience 1998*)
Increase in weight of synapse decreases exponentially with time gap between pre- neuron and post neuron spike

## Design of spintronic- transistor circuit to emulate STDP



Since write current (Iwrite) decays
exponentially with (t<sub>post</sub> - t<sub>pre</sub>) conductance
decays exponentially too and so does
weight of the synapse (STDP).



## Design of spintronic- transistor circuit based STDP enabled SNN



#### Performance on popular machine learning datasets:

| Dataset       | Number of epochs | Training Accuracy(%) | Test accuracy(%) | Total Energy (nJ) | Average Energy per weight update (fJ) |
|---------------|------------------|----------------------|------------------|-------------------|---------------------------------------|
| Fisher's Iris | 10               | 87                   | 93               | 0.59              | 8.83                                  |
| WBC           | 10               | 91                   | 91               | 0.56              | 0.745                                 |

# Training STDP enabled SNN on MNIST dataset



100 train samples, 100 test samples.50 epochs

Train accuracy: 91 % Test accuracy: 55%

In collaboration with Prof. Udayan Ganguly, IIT Bombay

Direct visualization of weights of the synapses



## Summary of Results and Future Work

- Simulated spintronic synapse devices through micromagnetics and benchmarked them against experiments.
- Implemented in simulations on-chip learning of different types of neural networks using spintronics.
- Future goal: Fabricate and characterize such spintronic neural networks.
- Future goal: Explore more learning paradigms closer to actual functioning of the brain.

# Natural and Artificial Intelligence Through Spintronics (NAITS) Group



Thanks to Indian Academy of Sciences for the Associateship and organising the seminar

Thank you for you attention!