Problem 1

Use Holder's inequality to show

$$\int_0^1 \sqrt{x} (1-x)^{-1/3} dx \le \frac{2}{5^{1/3}}.$$

Solution

Using Holder's inequality, let p = 3, and let p' = 3/2. Then, we have

$$\begin{split} \int_0^1 \sqrt{x} (1-x)^{-1/3} dx & \leq \left(\int_0^1 \sqrt{x}^3 dx \right)^{1/3} \left(\int_0^1 ((1-x)^{-1/3})^{3/2} dx \right)^{2/3} \\ & = \left(\int_0^1 x^{3/2} dx \right)^{1/3} \left(\int_0^1 u^{-1/2} du \right)^{2/3} \\ & = \left(\frac{2}{5} \right)^{1/3} 2^{2/3} \\ & = \frac{2}{5^{1/3}}, \end{split}$$

as desired.

Problem 2

Let $E \subseteq \mathbb{R}^n$ be measurable with |E| = 1. Let $h \ge 0$ be measurable on E. Let $A = \int_E h dx$. Show that

$$\sqrt{1+A^2} \le \int_E \sqrt{1+h^2} dx \le 1+A.$$

Solution

Show the first inequality here!!!!

Now, we have

$$\begin{split} \int_E \sqrt{1+h^2} dx &\leq \int_E \sqrt{1+h^2+2h} dx \\ &= \int_E \sqrt{(1+h)^2} dx \\ &= \int_E 1+h dx \\ &= 1+A. \end{split}$$

Problem 3

Find all nonnegative functions $g \in L^3(0,1)$ such that

$$\left(\int_0^1 x g(x) dx\right)^3 = \frac{4}{25} \int_0^1 g^3(x) dx$$

April 9, 2023

Solution

Using Holders inequality, we can see that if $p = \frac{3}{2}$, and p' = 3, then

$$\int_0^1 x g(x) dx \le \left(\int_0^1 x^{3/2} dx \right)^{2/3} \left(\int_0^1 g^3(x) dx \right)^{1/3}$$

$$= \left(\frac{2}{5} \right)^{2/3} \left(\int_0^1 g^3(x) dx \right)^{1/3}$$

$$= \left(\frac{4}{25} \int_0^1 g^3(x) dx \right)^{1/3}$$

$$\left(\int_0^1 x g(x) dx \right)^3 = \frac{4}{25} \int_0^1 g^3(x) dx.$$

Now, as we proved in class, the equality holds if and only if $\alpha x^{3/2} = g^3(x)$ almost everywhere for some real α . Thus, we have

$$g(x) = \alpha x^{\frac{1}{2}}$$

for some nonnegative real number α and for almost every x.

Problem 4

Let $f \in L^{\infty}(0,1)$ and $||f||_{\infty} \leq 1$. Show that

$$\int_{0}^{1} \sqrt{1 - f^{2}(x)} dx \le \sqrt{1 - \left(\int_{0}^{1} f(x) dx\right)^{2}},$$

and describe the class of functions f for which equality takes place.

Solution

We have

$$\int_0^1 \sqrt{1 - f^2(x)} dx = \int_0^1 \sqrt{(1 - f)(1 + f)} dx$$

$$= \int_0^1 \sqrt{1 - f} \sqrt{1 + f} dx$$

$$\leq \sqrt{\int_0^1 (1 - f) dx} \sqrt{\int_0^1 (1 + f) dx}$$
Cauchy-Schwarz's inequality
$$= \sqrt{1 - \int_0^1 f dx} \sqrt{1 + \int_0^1 f dx}$$

$$= \sqrt{1 - \left(\int_0^1 f(x) dx\right)^2}.$$

From the proof of Holder's Inequality, we know that the equality holds iff there exists some $\alpha \in \mathbb{R}$ such that $1 - f = \alpha(1 + f)$. Thus,

$$1 - f = \alpha(1 + f) \implies 1 - f = \alpha + \alpha f$$

$$\implies 1 - \alpha = (1 + \alpha)f$$

$$\implies f = \frac{1 - \alpha}{1 + \alpha}.$$

April 9, 2023 2

Problem 5

Theorem 1. Prove that

$$\int_{0}^{\infty} e^{-x} \sqrt{x^4 + 3x^2 + 2} dx \le \sqrt{12},$$

and that the equality does not hold.

Solution

Proof. We have

$$\int_0^\infty e^{-x} \sqrt{x^4 + 3x^2 + 2} dx = \int_0^\infty \sqrt{e^{-2x}(x^4 + 3x^2 + 2)} dx$$

$$= \int_0^\infty \sqrt{e^{-x}(x^2 + 2)e^{-x}(x^2 + 1)} dx$$

$$= \int_0^\infty \sqrt{e^{-x}(x^2 + 2)} \sqrt{e^{-x}(x^2 + 1)} dx$$

$$\leq \sqrt{\int_0^\infty e^{-x}(x^2 + 2) dx} \sqrt{\int_0^\infty e^{-x}(x^2 + 1) dx} dx \quad \text{Cauchy-Schwarz's inequality}$$

$$= \sqrt{2 + 2} \sqrt{2 + 1} \qquad \text{Apply integration by parts twice}$$

$$= \sqrt{12}.$$

Assume that the equality holds. Then, there exists some $\alpha \in \mathbb{R}$ such that for almost every $x \in [0, \infty)$, we have

$$e^{-x}(x^2+2) = \alpha e^{-x}(x^2+1).$$

With this, we see

$$x^{2} + 2 = \alpha x^{2} + \alpha \implies x^{2}(1 - \alpha) = 2 + \alpha$$

$$\implies x^{2} = \frac{1 - \alpha}{2 + \alpha}.$$

Thus, for any given α , this can only be true for at most two points in $[0, \infty)$, which contradicts our assumption that this is true almost everywhere. Therefore, we can conclude that the equality does not hold, as desired. \square

Problem 6

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous and bounded. Show that

$$||f||_{\infty} = \sup\{|f(x)| : x \in \mathbb{R}^n\}.$$

Solution

Let $M = \sup\{|f(x)| : x \in \mathbb{R}^n\}$, and let $\alpha < M$. Then, by definition of supremum, there exists an $x \in \mathbb{R}^n$ such that

$$\alpha < |f(x)| \le M$$
.

April 9, 2023 3