Statistical Machine Learning 2016

Exercises, week 2

8 September 2016

Exercise 1

(Exercise 1.14 from Bishop.)

1. Show that a matrix **W** with elements w_{ij} can be written as the sum of a symmetric matrix \mathbf{W}^S and an anti-symmetric matrix \mathbf{W}^A . In other words, show that

$$w_{ij} = w_{ij}^S + w_{ij}^A \tag{1}$$

with symmetric matrix elements $w_{ij}^S = (w_{ij} + w_{ji})/2$ and anti-symmetric matrix elements $w_{ij}^A = (w_{ij} - w_{ji})/2$. Verify that $w_{ij}^S = w_{ji}^S$ and $w_{ij}^A = -w_{ji}^A$.

2. Consider the 2^{nd} order terms in a 2^{nd} order polynomial in d dimensions, i.e. $\mathbf{x}=(x_1,\ldots,x_d)^T$.

$$\sum_{i=1}^{d} \sum_{j=1}^{d} w_{ij} x_i x_j$$

Show that

$$\sum_{i=1}^{d} \sum_{j=1}^{d} w_{ij} x_i x_j = \sum_{i=1}^{d} \sum_{j=1}^{d} w_{ij}^S x_i x_j$$
 (2)

i.e. there is no contribution from anti-symmetric matrix elements. This demonstrates that, without loss of generality, in problems involving (only) quadratic terms a matrix W can be taken to be symmetric, i.e. $W=W^S$.

3. Show that the previous statement can also be stated in matrix notation as

$$\mathbf{x}^{\mathrm{T}}\mathbf{W}\mathbf{x} = \mathbf{x}^{\mathrm{T}}\mathbf{W}^{S}\mathbf{x} \tag{3}$$

with $\mathbf{W}^S = \frac{1}{2} (\mathbf{W} + \mathbf{W}^T)$, the symmetric part of matrix \mathbf{W} .

Exercise 2

In exercise 8, week 1, we considered the regression problem of approximating a data set of N input/output pairs $\{x_n, t_n\}$ by a polynomial function of the form

$$y(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$
 (4)

Applying the familiar steps (define an error measure, calculate gradient, set equal to zero and solve the equations), it could be shown that the squared error loss $E(\mathbf{w})$ for an M-th order polynomial was minimal when the weight coefficients \mathbf{w} satisfied the following set of coupled equations

$$\sum_{j=0}^{M} w_j A_{ij} = T_i \tag{5}$$

with A_{ij} and T_i defined as

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j} \qquad T_i = \sum_{n=1}^{N} t_n x_n^i.$$
 (6)

1. Verify that for a single data point $\{x_1, t_1\}$ the optimal solution for a first order polynomial through the origin takes the form

$$w_1 = \frac{1}{A_{11}} T_1 \tag{7}$$

2. Show that for an arbitrary data set $\{x_n, t_n\}$ the optimal solution for an M-th order polynomial takes the form

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{T} \tag{8}$$

3. One technique that is often used to control the over-fitting phenomenon is *regularization*. Consider adding a penalty term to the squared error loss that takes the form of the sum-of-squares of all coefficients. The error function becomes:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n; \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2,$$
(9)

where $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = \sum_{j=0}^M w_j^2$. Write down the set of coupled linear equations for the modified error function, analogous to the case without regularization:

$$\sum_{i=0}^{M} w_j \tilde{A}_{ij} = \tilde{T}_i \tag{10}$$

Build on the results from exercise 8, week 1. Compare \tilde{A}_{ij} and \tilde{T}_i to A_{ij} and T_i .

Exercise 3

(see Bishop, eq.C.8 and C.9) The trace $\mathsf{Tr}(\mathbf{A})$ of a square matrix \mathbf{A} is defined as the sum of the elements on the main diagonal:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{N} A_{ii} \tag{11}$$

1. Prove by writing out in terms of indices that

$$\mathsf{Tr}\left(\mathbf{AB}\right) = \mathsf{Tr}\left(\mathbf{BA}\right) \tag{12}$$

2. Show that from this symmetry it follows that the trace is cyclic:

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$
 (13)

Exercise 4

(see Bishop, eq.C.20) The derivative of a matrix **A** with elements A_{ij} depending on x is the matrix $\partial \mathbf{A}/\partial x$ with elements $\partial A_{ij}/\partial x$. Show, by writing out in elements, that

$$\frac{\partial}{\partial x}(\mathbf{A}\mathbf{B}) = \frac{\partial \mathbf{A}}{\partial x}\mathbf{B} + \mathbf{A}\frac{\partial \mathbf{B}}{\partial x} \tag{14}$$

Exercise 5

By repeatedly applying the product rule, show that

$$p(X,Y,Z) = p(Z|Y,X)p(Y|X)p(X)$$
(15)

Exercise 6

Assume p(Y) > 0. Two equivalent criteria for independence are:

$$p(X,Y) = p(X)p(Y) (16)$$

$$p(X|Y) = p(X) (17)$$

Show that (16) implies (17) and vice versa. (When does the assumption p(Y) > 0 come into play?)

Exercise 7

Suppose we have a box containing 8 apples and 4 grapefruit, and another box that contains 15 apples and 3 grapefruit. One of the boxes is selected at random ('50-50'), and then a piece of fruit is picked from the chosen box, again with equal probability for each item in the box.

- 1. Calculate the probability of selecting an apple.
- 2. The piece of fruit turns out to be an apple indeed. Use Bayes' (or Bayes's) rule to calculate the probability that it came from the first box.
- 3. The apple is replaced, and from the *same* box another piece of fruit is selected at random. What is the probability that this second pick is also an apple? (Note: same box, but *not* necessarily the first.)

Exercise 8 – MatLab basics

Before making this assignment, it is strongly suggested to work through some MatLab tutorials, for example http://www.math.utah.edu/lab/ms/matlab/matlab.html and http://www.cyclismo.org/tutorial/matlab/ to learn or recap the basic MatLab syntax.

In MatLab or in GNU Octave, assign the following variables:

$$c = 5$$

$$x = (1, 2, 3)^{T}$$
 (a column vector)
$$y = (3, 4, 5, 6)$$
 (a row vector)
$$z = (4, 5, 6)^{T}$$
 (a column vector)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 4 & 6 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

and let MatLab calculate:

- 1. $\sum_{i=1}^{3} x_i$ (once using a for loop, and once using the sum command)
- 2. $\sum_{j=1}^{3} x_j$ (once using a for loop, and once using the sum command)
- 3. $\prod_{i=1}^{3} x_i$ (once using a for loop, and once using the prod command)
- 4. $\prod_{i=1}^{3} x_i$ (using the sum, exp and log commands)
- 5. $\sum_{j=1}^{3} (5x_j)$
- 6. $\sum_{j=1}^{3} (cx_j)$
- 7. $c \sum_{i=1}^{3} x_i$
- 8. $\sum_{i=1}^{3} (x_i + z_i)$
- 9. $\sum_{i=1}^{3} x_i + \sum_{i=1}^{3} z_i$
- 10. $||x|| = \sqrt{\sum_{i=1}^{3} x_i^2}$
- 11. Ax
- 12. $\sum_{j=1}^{3} A_{ij} x_j$ for $i = 1, \dots, 4$ (using nested for loops)
- 13. yA
- 14. yAx
- 15. $x^T A^T y^T$
- 16. *AB*
- 17. $B^T A^T$
- 18. $(AB)^T$
- 19. $\sum_{i=1}^{3} A_{ij}B_{jk}$ for $i=1,\ldots,4$ and k=1,2 (using nested for loops)
- 20. $\sum_{i=1}^{4} \sum_{j=1}^{3} A_{ij}$ (once using nested for loops, once using the sum command)
- 21. $\sum_{j=1}^{3} \sum_{i=1}^{4} A_{ij}$ (once using nested for loops, once using the sum command)
- 22. Write a recursive MatLab function to calculate n! (remember that $n! = 1 \cdot 2 \cdot \cdots n$).
- 23. Write a single MatLab expression to calculate n! (hint: you can use prod).
- 24. Write a lambda expression for the function $x \mapsto \sin(cx^2)$ and use it to calculate $\sum_{i=1}^4 \sin(cy_i^2)$.

Exercise 9

Consider a probability density $p_x(x)$ defined over a continuous variable x, and suppose that we make a nonlinear change of variable using x = g(y), so that the density transforms according to

$$p_y(y) = p_x(x) \left| \frac{dx}{dy} \right| = p_x(g(y)) |g'(y)|.$$
(18)

Assume that this nonlinear change of variables is monotonically increasing, i.e., g'(y) > 0 for all y. By differentiating this relationship, show that the location \hat{y} of the maximum of the density in y is not in general related to the location \hat{x} of the maximum of the density over x by the simple functional relation $\hat{x} = g(\hat{y})$ as a consequence of the Jacobian factor. This shows that the maximum of a probability density (in contrast to the simple function) is dependent on the choice of variable. Verify that, in the case of a linear transformation, the location of the maximum transforms the same way as the variable itself.