AOD lista 2

Mateusz Jończak

April 13, 2023

1 Zadanie 1

1.1 Treść

Pewne przedsiębiorstwo lotnicze musi podjęc decyzję o zakupie paliwa do samolotów odrzutowych, mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują. Firmy paliwowe poinformowały, ze mogą dostarczyć następujące ilości paliwa w nadchodzącym miesiącu: Firma 1 – 275 000 galonów, Firma 2 – 550 000 galonów i Firma 3 – 660 000 galonów. Niezbędne ilosci paliwa do odrzutowców na poszczególnych lotniskach są odpowiednio równe: na lotnisku 1 – 110 000 galonów, na lotnisku 2 – 220 000 galonów, na lotnisku 3 – 330 000 galonów i na lotnisku 4 – 440 000 galonów. Koszt jednego galonu paliwa (w \$) z uwzględnieniem kosztów transportu dostarczonego przez poszczególnych dostawców kształtuje się na każdym z lotnisk następująco:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Wyznacz plan zakupu i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedz na ponizsze pytania.

- 1. Jaki jest minimalny łączny koszt dostaw wymaganych ilosci paliwa na wszystkie lotniska?
- 2. Czy wszystkie firmy dostarczają paliwo?
- 3. Czy mozliwości dostaw paliwa przez firmy są wyczerpane?

Zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc).

1.2 Rozwiązanie

- Zmienne $X_{i,j}$ ilość paliwa kupiona na lotnisku i od firmy j
- Ograniczenia:
 - $\forall_i \forall_j X_{i,j} \ge 0$
 - $\forall_i \sum_j X_{i,j}$ ≤ max firmy i
 - $\forall_j \sum_i X_{i,j} \geq \min$ lotniska j
- Funcja celu $\sum_{i,j} X_{i,j} \cdot$ koszt paliwa od firmy i na lotnisku j
 minimalizacja

1.3 Wyniki

Całkowity koszt 8 525 000.0\$

	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110 000	0
Lotnisko 2	165 000	55 000	0
Lotnisko 3	0	0	330 000
Lotnisko 4	110 000	0	330 000

Table 1: Paliwo od firmy na danym lotnisku

Lotnisko	Wynik	MIN
Lotnisko 1	110000	110000
Lotnisko 2	220000	220000
Lotnisko 3	330000	330000
Lotnisko 4	440000	440000

Table 2: Paliwo na danym lotnisku

Firma	Wynik	Max
Firma 1	275000	275000
Firma 2	165000	550000
Firma 3	660000	660000

Table 3: Paliwo od danej firmy

2.1 Treść

Dana jest siec połączeń między n miastami reprezentowana za pomocą skierowanego grafu G = (N, A), gdzie N jest zbiorem miast (wierzchołków), |N| = n, A jest zbiorem połączen między miastami (łuków), |A| = m. Dla kazdego połączenia z miasta i do miasta j, $(i, j) \in A$, dane są koszt przejazdu $c_{i,j}$ oraz czas przejazdu $t_{i,j}$ (im mniejszy koszt, tym dłuzszy czas przejazdu). Dane są również dwa miasta $i, j \in N$.

Celem jest znalezienie połączenia (scieżki) między zadanymi dwoma miastami, którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu przejazdu T.

- 1. Zapisz model programowania całkowitoliczbowego w wybranym języku. Rozwiąz własny egzemplarz problemu ($n \ge 10$) za pomocą solvera GLPK (lub np. Cbc).
- 2. Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Sprawdź, jakie będą wartosci zmiennych decyzyjnych, jeśli usuniemy ograniczenie na ich całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego).
- 3. Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczen na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie jest akceptowalnym rozwiązaniem?

2.2 Rozwiązanie

- Zmienne boolowskie $X_{i,j}$ czy przechodzimy po krawędzi z i do j
- · Ograniczenia:

$$- \forall_{v \in N/\{i,j\}} \sum out(v) - \sum in(v) = 0$$

$$- \sum out(i) - \sum in(i) = 1$$

$$- \sum out(j) - \sum in(j) = -1$$

$$- \sum_{i,j} X_{i,j} \cdot t_{i,j} \leq T$$

- Funcja celu - $\sum_{i,j} X_{i,j} \cdot c_{i,j}$ - minimalizacja

Odp 2: Jest potrzebne inaczej wyniki to ułamki.

Odp 3: Po usunięciu ograniczenia na czasy i ograniczenia na całkowitoliczbowość otrzymane rozwiązania będą akceptowalne

3.1 Treść

Zapisz model dla zadania 3. z Listy 2 na cwiczenia w wybranym języku i rozwiąż go dla podanych tam danych za pomocą solvera GLPK (lub np. Cbc). W opisie rozwiązania przedstaw optymalny przydział radiowozów dla kazdej zmiany i dzielnicy oraz podaj całkowitą liczbę wykorzystywanych radiowozów.

3.2 Rozwiązanie

- Zmienne $X_{i,j}$ ilość radiowozów na zmianie i w dzielnicy j
- Ograniczenia:
 - $\forall_{i,j} maximum_{i,j} \ge X_{i,j} \ge minimum(i,j)$
 - $\forall_i \sum_j x[i][j] > minimum_per_shift(i)$
 - $\forall_j \sum_i x[i][j] > minimum_per_district(j)$
- Funcja celu $\sum_{i,j} X_{i,j}$ minimalizacja

3.3 Wyniki

Całkowita liczba radiowozów 48

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	3	4	3
Dzielnica 2	5	7	8
Dzielnica 3	5	7	6

4.1 Treść

Pewna firma przeładunkowa posiada teren, na którym składuje kontenery z cennym ładunkiem. Teren podzielony jest na m × n kwadratów. Kontenery składowane są w wybranych kwadratach. Zakłada się, ze kwadrat moęe być zajmowany przez co najwyżej jeden kontener. Firma musi rozmieścić kamery, zeby monitorowac kontenery. Każda kamera może obserwować k kwadratów na lewo, k kwadratów na prawo, k kwadratów w górę i k kwadratów w dół. Kamera nie moze być umieszczona w kwadracie zajmowanym przez kontener. Zaplanuj rozmieszczenie kamer w kwadratach tak, aby kazdy kontener był monitorowany przez co najmniej jedną kamerę oraz liczba użytych kamer była jak najmniejsza.

4.2 Rozwiązanie

- Zmienne:
 - boolowskie *camera*_{i,j} czy mamy kamerę na polu i, j
 - całkowite $seen_{i,j}$ ile kamer widzi pole i, j
- Ograniczenia:
 - $\forall_{i,j} seen_{i,j} = \sum_{x=-k}^{k} camera_{i+x,j} + camera_{i,j+x}$
 - ∀pola (i, j) na których jest kontener $seen_{i,j} >= 1$
 - \forall pola (i, j) na których jest kontener *camera*_{i,j} = 0
- Funcja celu $\sum_{i,j} camera_{i,j}$ minimalizacja

5.1 Treść

Zakład moze produkować cztery różne wyroby P_i , $i \in 1, 2, 3, 4$, w róznych kombinacjach. Każdy z wyrobów wymaga pewnego czasu obróbki na kazdej z trzech maszyn. Czasy te są podane w poniższej tabeli (w minutach na kilogram wyrobu). Kazda z maszyn jest dostępna przez 60 godzin w tygodniu. Produkty P_1 , P_2 , P_3iP_4 mog a byc sprzedane po cenie, odpowiednio, 9, 7, 6 i 5 \$ za kilogram. Koszty zmienne (koszty pracy maszyn) wynoszą, odpowiednio, 2 \$ za godzinę dla maszyn M_1iM_2 oraz 3 \$ za godzinę dla maszyny M_3 . Koszty materiałowe wynoszą 4 \$ na kazdy kilogram wyrobu P_1 i 1 \$ na każdy kilogram wyrobu P_2 , P_3iP_4 . W tabeli podany jest takze maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach).

Produkt	M_1	M_2	M_3 MAX	
P_1	5	10	6	400
P_2	3	6	4	100
P_3	4	5	3	150
P_4	4	3	1	500

Wyznacz optymalny tygodniowy plan produkcji poszczególnych wyrobów i oblicz zysk z ich sprzedaży.

5.2 Rozwiązanie

- Zmienne P_i ilość produktu i, M_i czas na maszynie i
- · Ograniczenia:
 - $\forall_i P_i \leq MAX_i$
 - $\forall_i M_i \leq 60h$
 - $\forall_i \sum_j P_j \cdot (czasproduktujnamaszyniei) = M_i$
- Funcja celu $\sum_i (P_i \cdot (\text{cena produktu i koszt produkcji kilograma produktu i})) \sum_i (M_i \cdot \text{koszt produkcji na maszynie i})$ maksymalizacja

5.3 Wyniki

- Zysk 3975\$
- Produkt 1 125kg
- Produkt 2 100kg
- Produkt 3 150kg
- Produkt 4 500kg