

Matemática Discreta Conjuntos

Prof. Sebastião Marcelo

- > Conjuntos
- > Elementos
- > Subconjuntos

Conjuntos

Um conjunto pode ser entendido como qualquer coleção, ou agrupamento, ou classe, ou sistema bem definido de objetos, conhecidos como elementos ou membros do conjunto.

Geralmente é indicado por letras maiúsculas.

- > Conjuntos
- > Elementos
- > Subconjuntos
- Um elemento de um conjunto pode ser uma letra, um número, um nome, onde os conjuntos pode ser expressos por letras minúsculas.
- A relação entre os elementos e os conjuntos é de pertinência.

- > Conjuntos
- **Elementos**
- > Subconjuntos

Há duas maneiras para se especificar um conjunto, listando os seus elementos ou enunciar a sua propriedade.

- Há vários conjuntos que podemos listar:
 - Números Naturais:

$$N = \{0, 1, 2, 3, 4, ...\}$$

Números Inteiros

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Números Reais

$$R = N \cup Z \cup Q \cup I$$

> Subconjuntos

Um conjunto A é subconjunto de um conjunto B se, e somente se, todo e elemento de A é também elemento de B.

$$a, b \in B$$
, e $a \in A$
 $B = \{a, b\}$, e $A = \{a\}$
 $A \subseteq B$, ou $B \supseteq A$

Exemplo

Considere os conjuntos:

$$A = \{1, 3, 4, 7, 8, 9\},$$

 $B = \{1, 2, 3, 4, 5\},$
 $C = \{1, 3\}.$

O que se pode dizer das relações entre esses conjuntos?

- > Conjuntos
- > Elementos
- > Subconjuntos

Todos os conjuntos são subconjuntos de um grande conjunto chamado de conjunto Universo.

Um conjunto que não possua elementos é chamado de conjunto *Vazio*.

- **Conjuntos**
- **Elementos**
- > Subconjuntos

Sejam A, B e C conjuntos

quaisquer. Então:

 $A \subseteq A$

Operações com conjuntos:

Operações básicas como:

- União,
- Intersecção,
- Complementar. A^{C}

- **✓** Complementar
- ✓ Diferença
- ✓ Diferença Simétrica

Complementar

O complementar de um conjunto A, escrito por

É o conjunto de elementos que pertencem ao conjunto Universo e que não pertencem ao conjunto A.

- **✓** Complementar
- ✓ Diferença
- ✓ Diferença Simétrica

A diferença entre dois conjuntos, escrito por $A \setminus B$.

E que se lê, "A menos B", é o conjunto dos elementos que pertencem ao conjunto *A* mas não pertencem ao conjunto *B*.

- **✓** Complementar
- ✓ Diferença
- ✓ Diferença Simétrica

A diferença simétrica entre dois conjuntos, escrito por

É o conjunto dos elementos que pertencem ao conjunto A e ao conjunto B, mas não pertencem a ambos.

Determinar:

- a) $\boldsymbol{A} \cup \boldsymbol{B} \in \boldsymbol{A} \cap \boldsymbol{B}$;
- b) $A \cup C \in A \cap C$;
- c) $\mathbf{D} \cup \mathbf{E} \in \mathbf{D} \cap \mathbf{E}$;
- d) $\boldsymbol{E} \cup \boldsymbol{E} \in \boldsymbol{E} \cap \boldsymbol{E}$;
- e) $\boldsymbol{D} \cup \boldsymbol{F} \in \boldsymbol{D} \cap \boldsymbol{F}$;
- f) A^C ; B^C ; C^C ; D^C ;
- g) $A \setminus B$; $B \setminus A$; $D \setminus E$; $F \setminus D$;
- h) $A \oplus B$; $C \oplus D$; $E \oplus F$.

Exercício 1

Considere os

conjuntos:

$$A = \{1, 2, 3, 4, 5\},\$$

$$B = \{4, 5, 6, 7\},\$$

$$C = \{5, 6, 7, 8, 9\}.$$

$$D = \{1, 3, 5, 7, 9\},\$$

$$E = \{2, 4, 6, 8\},\$$

$$F = \{1, 5, 9\},\$$

Todo elemento x em $A \cap B$, pertence a ambos, $A \in B$.

Assim, $A \cap B$, é um subconjuto de A e de B.

 $A \cap B \subseteq A \quad e \quad A \cap B \subseteq B$

Propriedades

União e Interseção Um elemento x pertence à $A \cup B$, se x pertence a A ou se x pertence a B.

Logo, todo elemento de A pertence a $A \cup B$, e todo elementode B pertence a $A \cup B$.

Conjuntos Disjuntos

Os conjuntos A e B são disjuntos, se eles não possuem elementos em comum.

$$A = \{1, 2\}, \quad B = \{4, 5, 6\},$$

e $C = \{5, 6, 7, 8\},$

Diagrama de Venn

É uma representação pictórica de conjuntos em uma área delimitada no plano.

O conjunto *Universo* (*U*) é representado pelo interior de um retângulo, e os outros conjuntos, por círculos contidos dentro desse retângulo.

Diagrama de Venn

Exemplos

Diagramas de Venn

Algumas afirmações verbais são declarações sobre conjuntos e, podem ser descritas por Diagramas de Venn.

Diagrama de Venn e Argumentos

Os Diagramas de Venn podem ser usados para determinar se um argumento é valido ou não.

Mostre que o seguinte argumento é valido:

S1: Todos os meus objetos de lata são frascos de molho.

S2: Considero todos os meus presentes muito úteis.

S3: Nenhum dos meus frascos de molho é útil.

S: Seus presentes dados a mim não são feitos de lata.

Exemplo

Argumentos
e
Diagramas
de Venn

Produtos Fundamentais Um produto fundamental dos conjuntos é um conjunto da forma desses conjuntos.

$$A_1 \cap A_2 \cap \dots A_n$$

- Existem $m = 2^n$ produtos fundamentais.
- O conjunto *Universo* é a união de todos os produtos fundamentais.
- n é o número de conjuntos.

Em um diagrama de Venn de três conjuntos A, B e C.

Produtos Fundamentais

Exemplo

Leis da álgebra de conjuntos

Leis da idempotência	$A \cup A =$	$A \cap A =$
Leis associativas	$(A \cup B) \cup C$	$(A \cap B) \cap C$
Leis comutativas	$A \cup B =$	$A \cap B =$
Leis distributivas	$A \cup (B \cap C)$	$A \cap (B \cup C)$

Leis de identidade	$A \cup \emptyset =$	$A \cap U =$
	$A \cup U =$	$A \cap \emptyset =$
Leis de involução	$\left(A^{\mathcal{C}}\right)^{\mathcal{C}} =$	
Leis de complementos	$A \cup A^C =$	$A \cap A^C =$
	$U^{C} =$	$\emptyset^{C} =$
Leis de DeMorgan	$(A \cup B)^C =$	$(A \cap B)^C =$

Leis da álgebra de conjuntos

Exemplos

Mostre as seguintes equivalências no diagrama de Venn: $a)(A \cup B)^{C}$,

Conjuntos finitos e Princípio da contagem

Um conjunto é dito finito se contém exatamente *m* elementos distintos, onde *m* denota algum inteiro não negativo.

Caso contrário, o conjunto é dito infinito.

O conjunto vazio \emptyset e o conjunto das letras do alfabeto $\{a, b, c, ..., y, w, z\}$ são exemplos de conjuntos finitos.

Conjuntos finitos e Princípio da contagem

Um conjunto A é contável se A é finito ou se os elementos de A podem ser arranjados como uma sequência.

Neste caso o conjunto A será infinito e contável.

Se A e B são conjuntos finitos e disjuntos, então $A \cup B$ é finito.

O número de elementos será definido por:

Contando elementos em conjuntos finitos

Exemplo

Em uma turma de ADS (A) há 25 estudantes e 10 deles participam de uma turma de biologia (B).

Então o número de alunos da turma \boldsymbol{A} que não está na turma \boldsymbol{B} será:

Princípio da Inclusão-Exclusão

Sejam dois conjuntos A e B finitos.

Então $(A \cup B)$ e $(A \cap B)$ são finitos.

O número de elementos de um conjunto será $n(A \cup B)$, quando os conjuntos não são disjuntos.

Princípio da Inclusão-Exclusão

Sejam A, B e C, conjuntos finitos.

Logo, $A \cup B \cup C$ é finito.

Então, temos:

Exemplo

Suponha que a lista *A* tenha 30 alunos de matemática e que a lista *B* tenha 35 alunos português, e que há 20 nomes em ambas as listas.

Encontre o número de alunos que estão:

- a) Apenas na lista A.
- b) Apenas na lista *B*.
- c) Na lista A ou B.
- d) Em exatamente uma lista.

Exercício 2

- 65 estudam francês,
- 45 estudam alemão,
- 42 estudam russo,
- 20 estudam francês e alemão,
- 25 estudam francês e russo,
- 15 estudam alemão e russo,
- 8 estudam os três idiomas.

Considere os seguintes dados sobre 120 estudantes de matemática no que diz respeito aos idiomas francês, alemão e russo.

Sejam F, A e R os conjuntos de alunos que estudam francês, alemão e russo respectivamente.

Determinar o número de alunos que estudam pelo menos um dos três idiomas e preencher o diagrama de Venn com o número de estudantes em cada região.

- Classes de conjuntos
- > Potências
- > Partições

Dado um conjunto S, podemos falar sobre alguns de seus subconjuntos, ou seja, um conjunto de subconjuntos, e a isto chamaremos de classe de conjuntos ou coleção de conjuntos.

- Classes de conjuntos
- > Potências
- > Partições

Seja o conjunto $S = \{1, 2, 3, 4\}.$

Chamamos de classe de conjuntos de S que contêm exatamente três elementos de S.

Seja B a classe de subconjuntos de S, sendo que cada um contêm o 2 e dois outros elementos de S.

- Classes de conjuntos
- > Potências
- > Partições

Discreta

- > Classes de conjuntos
- Potências
- > Partições

Matemática Dado um conjunto S, podemos falar da classe de todos os subconjuntos de S.

> Essa classe é chamada de potência de S, escrita por P(S).

O número de elementos em P(S) é:

- Classes de conjuntos
- > Potências
- > Partições

Seja o conjunto $S = \{1, 2, 3\}.$

Determinar a potência de S.

Então:

- Classes de conjuntos
- > Potências
- > Partições

Seja um conjunto não vazio. Uma partição de *S* é uma subdivisão de *S* em conjuntos disjuntos e não vazios.

Uma partição de S é uma coleção $\{Ai\}$ de subconjuntos não vazios de S.

Os subconjuntos em uma partição são chamados de células.

- Classes de conjuntos
- > Potências
- > Partições

No diagrama de Venn a seguir temos uma partição do conjunto retangular *S* de pontos em cinco células:

- Classes de conjuntos
- > Potências
- > Partições

Considere a seguinte coleção de subconjuntos de S, e identifique qual é partição.

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Determine:

- a) $\boldsymbol{B} \cap \boldsymbol{C}$;
- b) **A** ∪ **C**;
- c) $\sim C$;
- d) $A \cap B \cap C$;
- e) $\boldsymbol{B} \boldsymbol{C}$;
- f) $\sim (A \cup B)$;
- g) $(A \cup B) \cap \sim C$.
- h) **A x B**;

Exercício 3

Suponha o conjunto
universo S = $\{p,q,r,s,t,u,v,w\}$ bem como os
seguintes
conjuntos:

$$A = \{p, q, r, s\},\$$

 $B = \{r, t, v\},\$
 $C = \{p, s, t, u\},\$

Determine:

- a) $\boldsymbol{A} \cup \boldsymbol{B}$;
- b) $A \cap B$;
- c) $A \cap C$;
- d) $\boldsymbol{B} \cup \boldsymbol{C}$;
- e) $\boldsymbol{A} \boldsymbol{B}$;
- f) $\sim A$;
- g) $A \cap \sim A$;
- h) $\sim (A \cap B);$

Exercício 4

Suponha o conjunto universo $S = \{0,1,2,3,4,5,6,7,8,9\}$ bem como os seguintes

$$A = \{2, 4, 5, 6, 8\},\$$

conjuntos:

$$B = \{1, 4, 5, 9\},\$$

$$C = \left\{ \begin{array}{l} x \mid x \in \mathbf{Z} \ e \\ 2 \le x < 5 \end{array} \right\}.$$

Determine:

- i) $\boldsymbol{C} \boldsymbol{B}$;
- $(C \cap B) \cup \sim A;$
- k) $\sim (B-A) \cap (A-B)$;
- 1) $\sim (\sim C \cup B);$
- m) **B** x **C**;
- n) $C \times (A \times B)$.

Exercício 4

Suponha o conjunto universo $S = \{0,1,2,3,4,5,6,7,8,9\}$

bem como os seguintes

conjuntos:

$$A = \{2, 4, 5, 6, 8\},\$$

$$B = \{1, 4, 5, 9\},\$$

$$C = \left\{ \begin{array}{l} x \mid x \in \mathbf{Z} \ e \\ 2 \le x < 5 \end{array} \right\}.$$