This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁵ : C12N 15/12, C12P 21/02, 21/08 C12N 5/10, 1/21, A61K 37/02 // (C12N 1/21, C12R 1:19)	A1	1	i) International Publication Number: WO 92/20798 i) International Publication Date: 26 November 1992 (26.11.92)
(21) International Application Number: PCT/US (22) International Filing Date: 21 May 1992 ((74) Agents: HENSLEY, Max, D. et al.; Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080 (US).
(30) Priority data: 705,256 24 May 1991 (24.05.91) 765,212 25 September 1991 (25.09 790,801 847,743 6 March 1992 (06.03.92) 880,917 11 May 1992 (11.05.92)	9.91) l 91) l l	US US US US US	(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).
 (71) Applicant: GENENTECH, INC. [US/US]; 460 F Bruno Boulevard, South San Francisco, CA 9408 (72) Inventors: VANDLEN, Richard, L.; 1015 Hayr Hillsborough, CA 94010 (US). HOLMES, William 29 Eastlake, Pacifica, CA 94044 (US). 	80 (US) ne Roa). ad.	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
·			·
(54) Title: HEREGULINS (HRGs), BINDING PRO	TEINS	S OF	F P185erb2

HR62-alpha	ีร์⁴ผ∟งห[ั	A E KÉKT FOVN 6 6 E	EQFMVKDLSNPSRYL@K@@PGFT@AR@TEN
EGF	NSDSEC	PLSHDGYCLHDGV	VENYIEAL DKYACHCVV6YIGERICQYR
TGF-alpha	N D C	PDSHTQFCFH-GT	TORFLVOE DKPACVCHSGYVGARDEHA
Amphiregul in	KKKNPC	NAEFONFCIH-GE	ECKYIEHL EAVTCKCOOEYFGERCGEK
Schwannoma	KKKNPC	AAKFONFCIH-GE	EKRYTENL EVVTKHKHODY FIGERKIEFK
HB-EGF	KKRDPC	LRKYKDFCIH-GE	ECKYVKEL RAPSCICHPGYHGERCHGL
			·
KR62-alpha	270 V P M F V O	280 LA SEL VO V DE	290 300 310
KRG2-alpha	270 V P M K V Q	NOEKAEELYOKRV	VLTITGICIALLVVGIHCVVAYCKIKKOR.
KRG2-alpha EGF	DLKWWE	LR\$HAGHGOOO-KV	VIVVAVCVVVLVNLLLLSLWGAHYYRTOK
	DLKWWE	LR\$HAGHGOOO-KV	290 VLY 1 1 6 1 C 1 A L L V V 6 1 H C V V A Y C K T K K Q R . V 1 V V A V C V V V L V M L L L L S L W 6 A H Y Y R T Q K D A 1 T A L V V V S I V A L A V L I 1 T C V L I H C C Q V
EGF	D L K W W E	L R	VIVVAVCVVVLVNLLLLSLWGAHYYRTOK
EGF TGF-alpha	DLKWWE DLLA{VV SMKTHS	L R	V I V V A V C V V V L V N L L L L S L W G A H Y Y R T Q K D A I T A L V V V S I V A L A V L I I T C V L I H C C Q V
EGF TGF-alpha Amphiregulin	DLKWNE DLLA{VV SMKTHS TMKTOK	L R	VIVVAVCVVVLVMLLLLSLWGAH PAITALVVVSIVALAVLIITCVLIIHCCQV IALAAIAAFMSAVILTAVAVITVQLRRQY

(57) Abstract

A novel polypeptide with binding affinity for the p185HER2 receptor, designated heregulin-a, has been identified and purified from cultured human cells. DNA sequences encoding additional heregulin polypeptides, designated heregulin-a, heregulin-β1, heregulin-β2, heregulin-β2-like, and heregulin-β3, have been isolated, sequenced and expressed. Provided herein are nucleic acid sequences encoding the amino acid sequences of heregulins useful in the production of heregulins by recombinant means. Further provided are the amino acid sequences of heregulins and purification methods therefor. Heregulins and their antibodies are useful as therapeutic agents and in diagnostic methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	l-inland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
8E	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	1E	Ireland	RO	Romania
CA	Canada	ıT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korca	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	รบ	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
C?	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
OK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

WO 92/20798 PCT/US92/04295

HEREGULINS (HRGs), BINDING PROTEINS OF P1852-62

BACKGROUND OF THE INVENTION

5

Field of the Invention

This invention relates to polypeptide ligands that bind to receptors implicated in cellular growth. In particular, it relates to polypeptide ligands that bind to the p185^{HER2} receptor.

10

15

20

25

.30

35

Description of Background and Related Art

Cellular protooncogenes encode proteins that are thought to regulate normal cellular proliferation and differentiation. Alterations in their structure or amplification of their expression lead to abnormal cellular growth and have been associated with carcinogenesis (Bishop JM, *Science* 235:305-311 [1987]); (Rhims JS, *Cancer Detection and Prevention* 11:139-149 [1988]); (Nowell PC, *Cancer Res.* 46:2203-2207 [1986]); (Nicolson GL, *Cancer Res.* 47:1473-1487 [1987]). Protooncogenes were first identified by either of two approaches. First, molecular characterization of the genomes of transforming retroviruses showed that the genes responsible for the transforming ability of the virus in many cases were altered versions of genes found in the genomes of normal cells. The normal version is the protooncogene, which is altered by mutation to give rise to the oncogene. An example of such a gene pair is represented by the EGF receptor and the v-erb-B gene product. The virally encoded v-erb-B gene product has suffered truncation and other alterations that render it constitutively active and endow it with the ability to induce cellular transformation (Yarden *et al., Ann. Rev. Biochem.* 57:443-478, 1988).

The second method for detecting cellular transforming genes that behave in a dominant fashion involves transfection of cellular DNA from tumor cells of various species into nontransformed target cells of a heterologous species. Most often this was done by transfection of human, avian, or rat DNAs into the murine NIH 3T3 cell line (Bishop JM, Science 235:305-311 [1987]); (Rhims JS, Cancer Detection and Prevention 11:139-149 [1988]); (Nowell PC, Cancer. Res. 46:2203-2207 [1986]); (Nicolson GL, Cancer. Res. 47:1473-1487 [1987]); (Yarden et al., Ann. Rev. Biochem. 57:443-478 [1988]). Following several cycles of genomic DNA isolation and retransfection, the human or other species DNA was molecularly cloned from the murine background and subsequently characterized. In some cases, the same genes were isolated following transfection and cloning as those identified by the direct characterization of transforming viruses. In other cases, novel oncogenes were identified. An example of a novel oncogene identified by this transfection assay is the neu oncogene. It was discovered by Weinberg and colleagues in a transfection experiment in which the initial DNA was derived from a carcinogen-induced rat neuroblastoma (Padhy et al., Cell 28:865-871

:

10

15

20

25

30

35

[1982]); (Schechter et al., Nature 312:513-516 [1984]). Characterization of the rat neu oncogene revealed that it had the structure of a growth factor receptor tyrosine kinase, had homology to the EGF receptor, and differed from its normal counterpart, the neu protooncogene, by an activating mutation in its transmembrane domain (Bargmann et al., Cell 45:649-657 [1986]). The human counterpart to neu is the HER2 protooncogene, also designated c-erb-B2 (Coussens et al., Science 230:1137-1139 [1985]), WO89/06692).

The association of the HER2 protooncogene with cancer was established by yet a third approach, that is, its association with human breast cancer. The HER2 protooncogene was first discovered in cDNA libraries by virtue of its homology with the EGF receptor, with which it shares structural similarities throughout (Yarden et al., Ann. Rev. Biochem. 57:443-478 [1988]). When radioactive probes derived from the cDNA sequence encoding p185HER2 were used to screen DNA samples from breast cancer patients, amplification of the HER2 protooncogene was observed in about 30% of the patient samples (Slamon et al., Science 235:177-182 [1987]). Further studies have confirmed this original observation and extended it to suggest an important correlation between HER2 protooncogene amplification and/or overexpression and worsened prognosis in ovarian cancer and non-small cell lung cancer (Slamon et al., Science 244:707-712 [1989]); (Wright et al., Cancer Res 49:2087-2090, 1989); (Paik et al., J. Clin. Oncology 8:103-112 [1990]); (Berchuck et al., Cancer Res. 50:4087-4091, 1990); (Kem et al., Cancer Res. 50:5184-5191, 1990).

The association of HER2 amplification/overexpression with aggressive malignancy, as described above, implies that it may have an important role in progression of human cancer; however, many tumor-related cell surface antigens have been described in the past, few of which appear to have a direct role in the genesis or progression of disease (Schlom et al. Cancer Res. 50:820-827, 1990); (Szala et al., Proc. Natl. Acad. Sci. 98:3542-3546).

Among the protooncogenes are those that encode cellular growth factors which act through endoplasmic kinase phosphorylation of cytoplasmic protein. The HER1 gene (or erb-B1) encodes the epidermal growth factor (EGF) receptor. The β -chain of platelet-derived growth factor is encoded by the c-sis gene. The granulocyte-macrophage colony stimulating factor is encoded by the c-fms gene. The *neu* protooncogene has been identified in ethylnitrosourea-induced rat neuroblastomas. The HER2 gene encodes the 1,255 amino acid tyrosine kinase receptor-like glycoprotein p185^{HER2} that has homology to the human epidermal growth factor receptor.

The known receptor tyrosine kinases all have the same general structural motif: an extracellular domain that binds ligand, and an intracellular tyrosine kinase domain that is necessary for signal transduction and transformation. These two domains are connected by a single stretch of approximately 20 mostly hydrophobic amino acids, called the transmembrane spanning sequence. This transmembrane spanning sequence is thought to play a role in transferring the signal generated by ligand binding from the outside of the cell to the inside. Consistent with this general structure, the human p185HER2 glycoprotein, which is

10

15

20

25

30

35

located on the cell surface, may be divided into three principal portions: an extracellular domain, or ECD (also known as XCD); a transmembrane spanning sequence; and a cytoplasmic, intracellular tyrosine kinase domain. While it is presumed that the extracellular domain is a ligand receptor, the p185HER2 ligand has not yet been positively identified.

No specific ligand binding to p185HER2 has been identified, although Lupu et al., (Science 249:1552-1555, 1989) describe an inhibitory 30 kDa glycoprotein secreted from human breast cancer cells which is alleged to be a putative ligand for p185HER2. Lupu et al., Science, 249:1552-1555 (1990); Proceedings of the American Assoc. for Cancer Research, Vol 32, Abs 297, March 1991) reported the purification of a 30 kD factor from MDA-MB-231 cells and a 75 kD factor from SK-BR-3 cells that stimulates p185HER2. The 75 kD factor reportedly induced phosphorylation of p185HER2 and modulated cell proliferation and colony formation of SK-BR-3 cells overexpressing the p185HER2 receptor. The 30 kD factor competes with r uMab 4D5 for binding to p185HER2, its growth effect on SK-BR-3 cells was dependent on 30 kD concentration (stimulatory at low concentrations and inhibitory at higher concentrations). Furthermore, it stimulated the growth of MDA-MB-468 cells (EGF-R positive, p185HER2 negative), it stimulated phosphosylation of the EGF receptor and it could be obtained from SK-BR-3 cells. In the rat neu system, Yarden et al., (Biochemistry, 30:3543-3550, 1991) describe a 35 kDa glycoprotein candidate ligand for the neu encoded receptor secreted by ras transformed fibroblasts. Dobashi et al., Proc. Natl. Acad. Sci. USA, 88:8582-8586 (1991); Biochem. Biophys. Res. Commun.; 179:1536-1542 (1991) described a neu protein-specific activating factor (NAF) which is secreted by human T-cell line ATL-2 and which has a molecular weight in the range of 8-24 kD. A 25 kD ligand from activated macrophages was also described (Tarakhovsky, et al., J. Cancer Res., 2188-2196 (1991).

Methods for the *in vivo* assay of tumors using HER2 specific monoclonal antibodies and methods of treating tumor cells using HER2 specific monoclonal antibodies are described in WO89/06692.

There is a current and continuing need in the art to identify the actual ligand or ligands that activate p185^{HER2}, and to identify their biological role(s), including their roles in cell-growth and differentiation, cell-transformation and the creation of malignant neoplasms.

Accordingly, it is an object of this invention to identify and purify one or more novel p185HER2 ligand polypeptide(s) that bind and stimulate p185HER2.

It is another object to provide nucleic acid encoding novel p185^{HER2} binding ligand polypeptides and to use this nucleic acid to produce a p185^{HER2} binding ligand polypeptide in recombinant cell culture for therapeutic or diagnostic use, and for the production of therapeutic antagonists for use in certain metabolic disorders including, but not necessarily restricted to the killing, inhibition and/or diagnostic imaging of tumors and tumorigenic cells.

It is a further object to provide derivatives and modified forms of novel glycoprotein ligands, including amino acid sequence variants, fusion polypeptides combining a p185^{HER2} binding ligand and a heterologous protein and covalent derivatives of a p185^{HER2} binding ligand.

10

15

20

25

30

35

It is an additional object to prepare immunogens for raising antibodies against p185HER2 binding ligands, as well as to obtain antibodies capable of binding to such ligands, and antibodies which bind a p185HER2 binding ligand and prevent the ligand from activating p185HER2. It is a further object to prepare immunogens comprising a p185HER2 binding ligand fused with an immunogenic heterologous polypeptide.

These and other objects of the invention will be apparent to the ordinary artisan upon consideration of the specification as a whole.

SUMMARY OF THE INVENTION

In accordance with the objects of this invention, we have identified and isolated novel ligand families which bind to p185^{HER2}. These ligands are denominated the heregulin (HRG) polypeptides, and include HRG- α , HRG- β 1, HRG- β 2, HRG- β 3 and other HR $^{-2}$ polypeptides which cross-react with antibodies directed against these family members and/or which are substantially homologous as defined infra. A preferred HRG is the ligand disclosed in Fig. 4 and its fragments, further designated HRG- α . Other preferred HRGs are the ligands and their fragments disclosed in Figure 8, and designated HRG- β 1, HRG- β 2 disclosed in Figure 12, and HRG- β 3 disclosed in Figure 13.

In another aspect, the invention provides a composition comprising HRG which is isolated from its source environment, in particular HRG that is free of contaminating human polypeptides. HRG is purified by absorption to heparin sepharose, cation (e.g. polyaspartic acid) exchange resins, and reversed phase HPLC.

HRG or HRG fragments (which also may be synthesized by *in vitro* methods) are fused (by recombinant expression or an *in vitro* peptidyl bond) to an immunogenic polypeptide and this fusion polypeptide, in turn, is used to raise antibodies against an HRG epitope. Anti-HRG antibodies are recovered from the serum of immunized animals. Alternatively, monoclonal antibodies are prepared from cells *in vitro* or from *in vivo* immunized animals in conventional fashion. Preferred antibodies identified by routine screening will bind to HRG, but will not substantially cross-react with any other known ligands such as EGF, and will prevent HRG from activating p185HER2. In addition, anti-HRG antibodies are selected that are capable of binding specifically to individual family members of the HRG family, e.g. HRG- α , HRG- β 1, HRG- β 2, HRG- β 3, and thereby may act as specific antagonists thereof.

HRG also is derivatized *in vitro* to prepare immobilized HRG and labeled HRG, particularly for purposes of diagnosis of HRG or its antibodies, or for affinity purification of HRG antibodies. Immobilized anti-HRG antibodies are useful in the diagnosis (*in vitro* or *in vivo*) or purification of HRG. In one preferred embodiment, a mixture of HRG and other peptides is passed over a column to which the anti-HRG antibodies are bound.

Substitutional, deletional, or insertional variants of HRG are prepared by *in vitro* or recombinant methods and screened, for example, for immuno-crossreactivity with the native forms of HRG and for HRG antagonist or agonist activity.

10

15

20

25

30

35

In another preferred embodiment, HRG is used for stimulating the activity of p185^{HER2} in normal cells. In another preferred embodiment, a variant of HRG is used as an antagonist to inhibit stimulation of p185^{HER2}.

HRG, its derivatives, or its antibodies are formulated into physiologically acceptable vehicles, especially for therapeutic use. Such vehicles include sustained-release formulations of HRG or HRG variants. A composition is also provided comprising HRG and a pharmaceutically acceptable carrier, and an isolated polypeptide comprising HRG fused to a heterologous polypeptide.

In still other aspects, the invention provides an isolated nucleic acid encoding an HRG, which nucleic acid may be labeled or unlabeled with a detectable moiety, and a nucleic acid sequence that is complementary, or hybridizes under stringent conditions to, a nucleic acid sequence encoding an HRG.

The nucleic acid sequence is also useful in hybridization assays for HRG nucleic acid and in a method of determining the presence of an HRG, comprising hybridizing the DNA (or RNA) encoding (or complementary to) an HRG to a test sample nucleic acid and determining the presence of an HRG. The invention also provides a method of amplifying a nucleic acid test sample comprising priming a nucleic acid polymerase (chain) reaction with nucleic acid (DNA or RNA) encoding (or complementary to) a HRG.

In still further aspects, the nucleic acid is DNA and further comprises a replicable vector comprising the nucleic acid encoding an HRG operably linked to control sequences recognized by a host transformed by the vector; host cells transformed with the vector; and a method of using a nucleic acid encoding an HRG to effect the production of HRG, comprising expressing HRG nucleic acid in a culture of the transformed host cells and recovering an HRG from the host cell culture.

In further embodiments, the invention provides a method for producing HRG comprising inserting into the DNA of a cell containing the nucleic acid encoding an HRG a transcription modulatory element in sufficient proximity and orientation to an HRG nucleic acid to influence (suppress or stimulate) transcription thereof, with an optional further step comprising culturing the cell containing the transcription modulatory element and an HRG nucleic acid.

In still further embodiments, the invention provides a cell comprising the nucleic acid encoding an HRG and an exogenous transcription modulatory element in sufficient proximity and orientation to an HRG nucleic acid to influence transcription thereof; and a host cell containing the nucleic acid encoding an HRG operably linked to exogenous control sequences recognized by the host cell.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 Purification of Heregulin on PolyAspartic Acid column.

PolyAspartic acid column chromography of heregulin- α was conducted and the elution profile of proteins measured at A₂₁₄. The 0.6 M NaCl pool from the heparin Sepharose purification step was diluted to 0.2 M NaCl with water and loaded onto the polyaspartic acid column equilibrated in 17 mM Na phosphate, pH 6.8 with 30% ethanol. A linear NaCl gradient

*

5

10

15

20

25

30

. 35

from 0.3 to 0.6 M was initiated at 0 time and was complete at 30 minutes. Fractions were tested in HRG tyrosine autophosphorylation assay. The fractions corresponding to peak C were pooled for further purification on C4 reversed phase HPLC.

Figure 2 C4 Reversed Phase Purification of Heregulin-2.

Panel A: Pool C from the polyaspartic acid column was applied to a C4 HPLC column (SynChropak RP-4) equilibrated in 0.1% TFA and the proteins eluted with a linear acetonitrile gradient at 0.25%/minute. The absorbance trace for the run numbered C4-17 is shown. One milliliter fractions were collected for assay.

Panel B: Ten microliter aliquots of the fractions were tested in HRG tyrosine autophosphorylation assay. Levels of phosphotyrosine in the p185^{HER2} protein were quantitated by a specific antiphosphotyrosine antibody and displayed in arbitrary units on the abscissa.

Panel C: Ten microliter fractions were taken and subjected to SDS gel electrophoresis on 4-20% acrylamide gradient gels according to the procedure of Laemmli (*Nature*, 227:680-685, 1970). The molecular weights of the standard proteins are indicated to the left of the lane containing the standards. The major peak of tyrosine phosphorylation activity found in fraction 17 was associated with a prominent 45,000 Da band (HRG- α).

Figure 3. SDS Polyacrylamide Gel Showing Purification of Heregulin- α .

Molecular weight markers are shown in Lane 1. Aliquots from the MDA-MB-231 conditioned media (Lane 2), the 0.6M NaCl pool from the heparin Sepharose column (Lane 3), Pool C from the polyaspartic acid column (Lane 4) and Fraction 17 from the HPLC column (C4-17) (Lane 5) were electrophoresed on a 4-20% gradient gel and silver stained. Lanes 6 and 7 contained buffer only and shows the presence of gel artifacts in the 50-65 KDa molecular weight region.

Figures 4a-4d depict the deduced amino acid sequence of the cDNA contained in $\lambda gt_{10}her16$ (SEQ ID NO:12 and SEQ ID NO:13). The nucleotides are numbered at the top left of each line and the amino acids written in three letter code are numbered at the bottom left of each line. The nucleotide sequence corresponding to the probe is nucleotides 681-720. The probable transmembrane domain is amino acids 287-309. The six cysteines of the EGF motif are 226, 234, 240, 254, 256 and 265. The five potential three-amino acid N-linked glycosylation sites are 164-166, 170-172, 208-210, 437-439 and 609-611. The serine-threonine potential O-glycosylation sites are 209-221. Serine-glycine dipeptide potential glycosaminoglycan addition sites are amino acids 42-43, 64-65 and 151-152. The initiating methionine(MET) is at position #45 of figure 4 atthough the processed N-terminal residue is S46.

Figure 5 Northern blot analysis of MDA-MB-231 and SKBR3 RNAs Labeled from left to right are the following: 1) MDA-MB-231 polyA minus-RNA, (RNA remaining after polyA-containing RNA is removed); 2) MDA-MB-231 polyA plus-mRNA (RNA which contains polyA); 3) SKBR3 polyA minus-RNA; and, 4) SKBR3 polyA plus-mRNA. The probe used for this

10

15

20

25

30

35

analysis was a radioactively (^{32}P) labelled internal xho1 DNA restriction endonuclease fragment from the cDNA portion of $\lambda g110her16$.

Figure 6 Sequence Comparisons in the EGF Family of Proteins.

Sequences of several EGF-like proteins (SEQ ID NOS: 14, 15, 16, 17, 18, and 19) around the cysteine domain are aligned with the sequence of HRG- α . The location in figure 6 of the cysteines and the invariant glycine and arginine residues at positions 238 and 264 clearly show that HRG- α is a member of the EGF family. The region in figure 6 of highest amino acid identity of the family members relative to HRG- α (30-40%) is found between Cys 234 and Cys 265. The strongest identity (40%) is with the heparin-binding EGF (HB-EGF) species. HRG- α has a unique 3 amino acid insert between Cys 240 and Cys 254. Potential transmembrane domains are boxed (287-309). Bars indicate the carboxy-terminal sites for EGF and TGF-alpha where proteolytic cleavage detaches the mature growth factors from their transmembrane associated proforms. HB-EGF is heparin binding-epidermal growth factor; EGF is epidermal growth factor; TGF-alpha is transforming growth factor alpha; and schwannoma is the schwannoma-derived growth factor. The residue numbers in Fig. 6 reflect the Fig. 4 convention.

Figure 7 Stimulation of Cell Growth by HRG- α .

Three different cell lines were tested for growth responses to 1 nM HRG- α . Cell protein was quantitated by crystal violet staining and the responses normalized to control, untreated cells.

Figures 8a-8d (SEQ ID NO:7) depict the entire potential coding DNA nucleotide sequence of the heregulin- $\beta1$ and the deduced amino acid sequence of the cDNA contained in λ her 11.1dbl (SEQ ID NO:9). The nucleotides are numbered at the top left of each line and the amino acids written in three letter code are numbered at the bottom left of each line. The probable transmembrane amino acid domain is amino acids 278-300. The six cysteines of the EGF motif are 212, 220, 226, 240, 242 and 251. The five potential three-amino acid N-linked glycosylation sites are 150-152, 156-158, 196-198, 428-430 and 600-612. The serine-threonine potential O-glycosylation sites are 195-207. Serine-glycine dipeptide potential glycosaminoglycan addition sites are amino acids 28-29, 50-51 and 137-138. The initiating methionine (MET) is at position #31. HRG- $\beta1$ is processed to the N-terminal residue S32.

Figure 9 depicts a comparison of the amino acid sequences of heregulin- α and - β 1. A dash (-) indicates no amino acid at that position. (SEQ ID NO:8 and SEQ ID NO:9). This Fig. uses the numbering convention of Figs. 4 and 6.

Figure 10 shows the stimulation of HER2 autophosphorylation using recombinant HRG- α as measured by HER2 tyrosine phosphorylation.

Figure 11 depicts the nucleotide and inputed amino acid sequence of \(\lambda \) 5'her13 (SEQ ID NO:22); the amino acid residue numbering convention is unique to this figure.

10

15

20

25

30

35

Figure 12a-12e depict the nucleotide sequence of λ her76, encoding heregulin- β 2 (SEQ ID NO:23). This figure commences amino acid residue numbering with the expressed N-terminal MET; the N-terminus is S2.

Figures 13a-13c depict the nucleotide sequence of λ her78, encoding heregulin- β 3 (SEQ ID NO:24). This figure uses the amino acid numbering convention of Fig. 12; S2 is the processed N-terminus.

Figures 14a-14d depict the nucleotide sequence of λ her84, encoding a heregulin- β 2-like polypeptide (SEQ ID NO:25). This figure uses the amino acid numbering convention of Fig. 12; S2 is the processed N-terminus.

Figure 15a-15c depict the amino acid homologies between the known heregulins (α , β 1, β 2, β 2—like and β 3 in descending order) and illustrates the amino acid insertions, deletions or substitutions that distinguish the different forms (SEQ ID NOS:26-30). This figure uses the amino acid numbering convention of Figs. 12-14.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

L Definitions

In general, the following words or phrases have the indicated definition when used in the description, examples, and claims.

Heregulin ("HRG") is defined herein to be any isolated polypeptide sequence which possesses a biological activity of a polypeptide disclosed in Figs. 4, 8, 12, 13, or 15, and fragments, alleles or animal analogues thereof or their animal analogues. HRG excludes any polypeptide heretofore identified, including any known polypeptide which is otherwise anticipatory under 35 U.S.C. 102, as well as polypeptides obvious over such known polypeptides under 35 U.S.C. 103, including in particular EFG, TFG-α, amphiregulin (Plowman et al. Mol. Cell. Biol. 10:1969 (1990), HB-EGF (Higashimaya et al., Science 251:936 [1991]), schwannoma factor or polypeptides obvious thereover.

"Biological activity" for the purposes herein means an *in vivo_effector* or antigenic function that is directly or indirectly performed by an HRG polypeptide (whether in its native or denatured conformation), or by any subsequence thereof. Effector functions include receptor binding or activation, induction of differentiation, mitogenic or growth promoting activity, immune modulation, DNA regulatory functions and the like, whether presently known or inherent. Antigenic functions include possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against a naturally occurring or denatured HRG polypeptide or fragment thereof.

Biologically active HRG includes polypeptides having both an effector and antigenic function, or only one of such functions. HRG includes antagonist polypeptides to HRG, provided that such antagonists include an epitope of a native HRG. A principal known effector function of HRG is its ability to bind to p185HER2 and activate the receptor tyrosine kinase.

15

20

25

30

35

HRG includes the translated amino acid sequence of full length human HRGs (proHRG) set forth herein in the Figures; deglycosylated or unglycosylated derivatives; amino acid sequence variants; and covalent derivatives of HRG, provided that they possess biological activity. While the native proform of HRG is probably a membrane-bound polypeptide, soluble forms, such as those forms lacking a functional transmembrane domain (proHRG or its fragments), are also included within this definition.

Fragments of intact HRG are included within the definition of HRG. Two principal domains are included within the fragments. These are the growth factor domain ("GFD"), homologous to the EGF family and located at about residues S216-A227 to N268-R286 (Fig. 9, HRG- α ; the GFD domains for other HRGs (Fig. 15) are the homologous sequences.). Preferably, the GFDs for HRG- α , β_1 , β_2 , β_2 -like and β_3 are, respectively, G175-K241, G175-K246, G175-K238, G175-K238 and G175-E241 (Fig. 15).

Another fragment of interest is the N-terminal domain ("NTD"). The NTD extends from the N-terminus of processed HRG (S2) to the residue adjacent to an N-terminal residue of the GFD, i.e., about T172-C182 (Fig. 15) and preferably T174. An additional group of fragments are NTD-GFD domains, equivalent to the extracellular domains of HRG- α and β_1 - β_2 . Another fragment is the C-terminal peptide ("CTP") located about 20 residues N-terminal to the first residue of the transmembrane domain, either alone or in combination with the C-terminal remainder of the HRG.

In preferred embodiments, antigenically active HRG is a polypeptide that binds with an affinity of at least about 10⁷ l/mole to an antibody raised against a naturally occurring HRG sequence. Ordinarily the polypeptide binds with an affinity of at least about 10⁸ l/mole. Most preferably, the antigenically active HRG is a polypeptide that binds to an antibody raised against one of HRGs in its native conformation. HRG in its native conformation generally is HRG as found in nature which has not been denatured by chaotropic agents, heat or other treatment that substantially modifies the three dimensional structure of HRG as determined, for example, by migration on nonreducing, nondenaturing sizing gels. Antibody used in this determination is rabbit polyclonal antibody raised by formulating native HRG from a nonrabbit species in Freund's complete adjuvant, subcutaneously injecting the formulation into rabbits, and boosting the immune response by intraperitoneal injection of the formulation until the titer of anti-HRG antibody plateaus.

Ordinarily, biologically active HRG will have an amino acid sequence having at least 75% amino acid sequence identity with an HRG sequence, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95%. Identity or homology with respect to an HRG sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with HRG residues in Figs. 15, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions to be identical residues. None of N-terminal,

10

15

20

25

30

35

C-terminal or internal extensions, deletions, or insertions into HRG sequence shall be construed as affecting homology.

Thus, the biologically active HRG polypeptides that are the subject of this invention include each expressed or processed HRG sequence; fragments thereof having a consecutive sequence of at least 5, 10, 15, 20, 25, 30 or 40 amino acid residues; amino acid sequence variants of HRG wherein an amino acid residue has been inserted N- or C-terminal to, or within, HRG sequence or its fragment as defined above; amino acid sequence variants of HRG sequence or its fragment as defined above wherein a residue has been substituted by another residue. HRG polypeptides include those containing predetermined mutations by, e.g., sitedirected or PCR mutagenesis. HRG includes HRG from such as species as rabbit, rat, porcine, non-human primate, equine, murine, and ovine HRG and alleles or other naturally occurring variants of the foregoing; derivatives of HRG or its fragments as defined above wherein HRG or its fragments have been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example a detectable moiety such as an enzyme or radioisotope); glycosylation variants of HRG (insertion of a glycosylation site or deletion of any glycosylation site by deletion, insertion or substitution of an appropriate residue); and soluble forms of HRG, such as HRG-GFD or those that lack a functional transmembrane domain.

Of particular interest are fusion proteins that contain HRG-NTD but are free of the GFD ordinarily associated with the HRG-NTD in question. The first 23 amino acids of the NTD are dominated by charged residues and contain a sequence (GKKKER; residues 13-18, Fig. 15) that closely resembles the consensus sequence motif for nuclear targeting (Roberts, Biochim. Biophys. Acta. $\underline{1008}$:263 [1989]). Accordingly, the HRG includes fusions in which the NTD, or at least a polypeptide comprising its first about 23 residues, is fused at a terminus to a non-HRG polypeptide or to a GFD of another HRG family member. The non-HRG polypeptide in this embodiment is a regulatory protein, a growth factor such as EGF or TGF- α , or a polypeptide ligand that binds to a cell receptor, particularly a cell surface receptor found on the surface of a cell whose regulation is desired, e.g. a cancer cell.

In another embodiment, one or more of residues 13-18 independently are varied to produce a sequence incapable of nuclear targeting. For example G13 is mutated to any other naturally occurring residue including P, L, I, V, A, M, F, K, D or S; any one or more of K14-K16 are mutated to any other naturally occurring residue including R,H,D,E,N or Q; E17 to any other naturally occurring residue including D, R, K, H, N or Q; and R18 to any other naturally occurring residue including K, H, D, E, N or Q. All or any one of residues 13-18 are deleted as well, or extraneous residues are inserted adjacent to these residues; for example residues inserted adjacent to residue 13-18 which are the same as the above- suggested substitutions for the residues themselves.

In another embodiment, enzymes or a nuclear regulatory protein such as a transcriptional regulatory factor is fused to HRG-NTD, HRG-NTD-GFD, or HRG-GFD. The

10

15

20

25

30

35

enzyme or factor is fused to the N- or C- terminus, or inserted between the NTD and GFD domains, or is substituted for the region of NTD between the first about 23 residues and the GFD.

"Isolated" HRG means HRG which has been identified and is free of components of its natural environment. Contaminant components of its natural environment include materials which would interfere with diagnostic or therapeutic uses for HRG, and may include proteins, hormones, and other substances. In preferred embodiments, HRG will be purified (1) to greater than 95% by weight of protein as determined by the Lowry method or other validated protein determination method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of the best commercially available amino acid sequenator marketed on the filing date hereof, or (3) to homogeneity by SDS-PAGE using Coomassie blue or, preferably, silver stain. Isolated HRG includes HRG in situ within heterologous recombinant cells since at least one component of HRG natural environment will not be present. Isolated HRG includes HRG from one species in a recombinant cell culture of another species since HRG in such circumstances will be devoid of source polypeptides. Ordinarily, however, isolated HRG will be prepared by at least one purification step.

In accordance with this invention, HRG nucleic acid is RNA or DNA containing greater than ten bases that encodes a biologically or antigenically active HRG, is complementary to nucleic acid sequence encoding such HRG, or hybridizes to nucleic acid sequence encoding such HRG and remains stably bound to it under stringent conditions.

Preferably, HRG nucleic acid encodes a polypeptide sharing at least 75% sequence identity, more preferably at least 80%, still more preferably at least 85%, even more preferably at 90%, and most preferably 95%, with an HRG sequence. Preferably, the HRG nucleic acid that hybridizes contains at least 20, more preferably at least about 40, and most preferably at least about 90 bases. Such hybridizing or complementary nucleic acid, however, is further defined as being novel under 35 U.S.C. 102 and unobvious under 35 U.S.C. 103 over any prior art nucleic acid and excludes nucleic acid encoding EGF, TGF-α, amphiregulin, HB-EGF, schwannoma factor or fragments or variants thereof which would have been obvious as of the filing date hereof.

Isolated HRG nucleic acid includes a nucleic acid that is free from at least one contaminant nucleic acid with which it is ordinarily associated in the natural source of HRG nucleic acid. Isolated HRG nucleic acid thus is present in other than in the form or setting in which it is found in nature. However, isolated HRG encoding nucleic acid includes HRG nucleic acid in ordinarily HRG-expressing cells where the nucleic acid is in a chromosomal location different from that of natural cells or is otherwise flanked by a different DNA sequence than that found in nature. Nucleic acid encoding HRG may be used in specific hybridization assays, particularly those portions of HRG encoding sequence that do not hybridize with other known DNA sequences, for example those encoding the EGF-like molecules of figure 6.

15

20

25

30

35

"Stringent conditions" are those that (1) employ low ionic strength and high temperature for washing, for example, 0.015 M NACI/0.0015 M sodium citrate/0/1% NaDodSO₄ at 50° C; (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCI, 75 mM sodium citrate at 42° C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCI, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 g/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 0.1% SDS.

Particular HRG-α nucleic acids are nucleic acids or oligonucleotides consisting of or comprising a nucleotide sequence selected from Figs. 4a-4d and containing greater than 17 bases (when excluding nucleic acid sequences of human small polydisperse circular DNA (HUMPC125), chicken c-mos proto-oncogene homolog (CHKMOS), basement membrane heparin sulfate proteoglycan (HUMBMHSP) and human lipocortin 2 pseudogene (complete cds-like region, HUMLIP2B), ordinarily greater than 20 bases, preferably greater than 25 bases, together with the complementary sequences thereof.

Particular HRG- β_1 , - β_2 or - β_3 nucleic acids are nucleic acids or oligonucleotides consisting of or comprising a nucleotide sequence selected from Figs. 8a-8d, 12a-12e or 13a-13c and containing greater than 20 bases, but does not include the polyA sequence found at the 3' end of each gene as noted in the Figures, together with the complements to such sequences. Preferably the sequence contains contains greater than 25 bases. HRG- β sequences also may exclude the human small polydisperse circular DNA sequence (HUMP-C125).

In other embodiments, the HRG nucleotide sequence contains a 15 or more base HRG sequence and is selected from within the sequence encoding the HRG domain extending from the N-terminus of the GFD to the N-terminus of the transmembrane sequence (or the complement of that nucleic acid sequence). For example, with respect to HRG- α , the nucleotide sequence is selected from within the sequence 678-869 (Fig. 4b) and contains a sequence of 15 or more bases from this section of the HRG nucleic acid.

In other embodiments, the HRG nucleic acid sequence is greater than 14 bases and is selected from a nucleotide sequence unique to each subtype, for instance a nucleic acid sequence encoding an amino acid sequence that is unique to each of the HRG subtypes (or the complement of that nucleic acid sequence). These sequences are useful in diagnostic assays for expression of the various subtypes, as well as specific amplification of the subtype DNA. For example, the HRG- α sequence of interest would be selected from the sequence encoding the unique N-terminus or GFD-transmembrane joining sequence, e.g. about bp771-860. Similarly, a unique HRG- β_1 sequence is that which encodes the last 15 C-terminal amino acid residues; this sequence is not found in HRG- α .

10

15

20

25

30

35

In general, the length of the HRG- α or β sequence beyond greater than the above-indicated number of bases is immaterial since all of such nucleic acids are useful as probes or amplification primers. The selected HRG sequence may contain additional HRG sequence, either the normal flanking sequence or other regions of the HRG nucleic acid, as well as other nucleic acid sequences. For purposes of hybridization, only the HRG sequence is material.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. However enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, then synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice.

An "exogenous" element is defined herein to mean nucleic acid sequence that is foreign to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is ordinarily not found.

As used herein, the expressions "cell", "cell line", and "cell culture" are used interchangeably, and all such designations include progeny. Thus, the words "transformants" and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. It will be clear from the context where distinct designations are intended.

"Plasmids" are designated by a lower case "p" preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are commercially available, are publicly available on an unrestricted basis, or can be constructed from such available plasmids in accord with published procedures. In addition, other equivalent plasmids are known in the art and will be apparent to the ordinary artisan.

"Restriction Enzyme Digestion" of DNA refers to catalytic cleavage of the DNA with an enzyme that acts only at certain locations in the DNA. Such enzymes are called restriction endonucleases, and the sites for which each is specific is called a restriction site.

20

25

30

35

The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors, and other requirements as established by the enzyme suppliers are used. Restriction enzymes commonly are designated by abbreviations composed of a capital letter followed by other letters representing the microorganism from which each restriction enzyme originally was obtained, and then a number designating the particular enzyme. In general, about 1 µg of plasmid or DNA fragment is used with about 1-2 units of enzyme in about 20 µl of buffer solution. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation of about 1 hour at 37°C is ordinarily used, but may vary in accordance with the supplier's instructions. After incubation, protein or polypeptide is removed by extraction with phenol and chloroform, and the digested nucleic acid is recovered from the aqueous fraction by precipitation with ethanol. Digestion with a restriction enzyme may be followed with bacterial alkaline phosphatase hydrolysis of the terminal 5' phosphates to prevent the two restriction cleaved ends of a DNA fragment from "circularizing" or forming a closed loop that would impede insertion of another DNA fragment at the restriction site. Unless otherwise stated, digestion of plasmids is not followed by 5' terminal dephosphorylation. Procedures and reagents for dephosphorylation are conventional as described in sections 1.56-1.61 of Sambrook et al., (Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory Press, 1989).

"Ligation" refers to the process of forming phosphodiester bonds between two nucleic acid fragments. To ligate the DNA fragments together, the ends of the DNA fragments must be compatible with each other. In some cases, the ends will be directly compatible after endonuclease digestion. However, it may be necessary to first convert the staggered ends commonly produced after endonuclease digestion to blunt ends to make them compatible for ligation. To blunt the ends, the DNA is treated in a suitable buffer for at least 15 minutes at 15°C with about 10 units of the Klenow fragment of DNA polymerase I or T4 DNA polymerase in the presence of the four deoxyribonucleotide triphosphates. The DNA is then purified by phenol-chloroform extraction and ethanol precipitation. The DNA fragments that are to be ligated together are put in solution in about equimolar amounts. The solution will also contain ATP, ligase buffer, and a ligase such as T4 DNA ligase at about 10 units per 0.5 µg of DNA. If the DNA is to be ligated into a vector, the vector is first linearized by digestion with the appropriate restriction endonuclease(s). The linearized fragment is then treated with bacterial alkaline phosphatase, or calf intestinal phosphatase to prevent self-ligation during the ligation step.

The technique of "polymerase chain reaction," or "PCR," as used herein generally refers to a procedure wherein minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195, issued 28 July 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of

10

15

20

25

30

. 35

the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51: 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample, comprising the use of a known nucleic acid (DNA or RNA) as a primer, and utilizes a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid or to amplify or generate a specific piece of nucleic acid which is complementary to a particular nucleic acid.

The "HRG tyrosine autophosphorylation assay" to detect the presence of HRG ligands was used to monitor the purification of a ligand for the p185HER2 receptor. This assay is based on the assumption that a specific ligand for the p185HER2 receptor will stimulate autophosphorylation of the receptor, in analogy with EGF and its stimulation of EGF receptor autophosphorylation. MDA-MB-453 cells or MCF7 cells which contain high levels of p185HER2 receptors but negligible levels of human EGF receptors, were obtained from the American Type Culture Collection, Rockville, Md. (ATCC No HTB-131) and maintained in tissue culture with 10% fetal calf serum in DMEM/Hams F12 (1:1) media. For assay, the cells were trypsinized and plated at about 150,000 cells/well in 24 well dishes (Costar). After incubation with serum containing media overnight, the cells were placed in serum free media for 2-18 hours before assay. Test samples of 100 uL aliquots were added to each well. The cells were incubated for 5-30 minutes (typically 30 min) at 37°C and the media removed. The cells in each well were treated with 100 uL SDS gel denaturing buffer (Seprosol, Enpotech, Inc.) and the plates heated at 100°C for 5 minutes to dissolve the cells and denature the proteins. Aliquots from each well were electrophoresed on 5-20% gradient SDS gels (Novex, Encinitas, CA) according to the manufacturer's directions. After the dye front reached the bottom of the gel, the electrophoresis was terminated and a sheet of PVDF membrane (ProBlott, ABI) was placed on the gel and the proteins transferred from the gel to the membrane in a blotting chamber (BioRad) at 200 mAmps for 30-60 min. After blotting, the membranes were incubated with Tris buffered saline containing 0.1% Tween 20 detergent buffer with 5% BSA for 2-18 hrs to block nonspecific binding, and then treated with a mouse anti-phosphotyrosine antibody (Upstate Biological Inc., N.Y.). Subsequently, the membrane blots were treated with goat anti-mouse antibody conjugated to alkaline phosphatase. The gels were developed using the ProtoBlot System from Promega. After drying the membranes, the density of the bands corresponding to p185HER2 in each sample lane was quantitated with a Hewlett Packard ScanJet Plus Scanner attached to a Macintosh computer. The number of receptors per cell in the MDA-MB-453 or MCF-7cells is such that under these experimental conditions the p185HER2 receptor protein is the major protein which is labeled.

•

5

10

15

20

25

30

35

"Protein microsequencing" was accomplished based upon the following procedures. Proteins from the final HPLC step were either sequenced directly by automated Edman degradation with a model 470A Applied Biosystems gas phase sequencer equipped with a 120A PTH amino acid analyzer or sequenced after digestion with various chemicals or enzymes. PTH amino acids were integrated using the ChromPerfect data system (Justice Innovations, Palo Alto, CA). Sequence interpretation was performed on a VAX 11/785 Digital Equipment Corporation computer as described (Henzel et al., J. Chromatography 404:41-52 (1987)). In some cases, aliquots of the HPLC fractions were electrophoresed on 5-20% SDS polyacrylamide gels, electrotransferred to a PVDF membrane (ProBlott, ABI, Foster City, CA) and stained with Coomassie Brilliant Blue (Matsudaira, P., J. Biol. Chem. 262:10035-10038, 1987). The specific protein was excised from the blot for N terminal sequencing. To determine internal protein sequences, HPLC fractions were dried under vacuum (SpeedVac), resuspended in appropriate buffers, and digested with cyanogen bromide, the lysine-specific enzyme Lys-C (Wako Chemicals, Richmond, VA) or Asp-N (Boehringer Mannheim, Indianapolis, Ind.). After digestion, the resultant peptides were sequenced as a mixture or were resolved by HPLC on a C4 column developed with a propanol gradient in 0.1% TFA before sequencing as described above.

II. <u>USE AND PREPARATION OF HRG POLYPEPTIDES</u> 1. <u>PREPARATION OF HRG POLYPEPTIDES INCLUDING VARIANTS</u>

The system to be employed in preparing HRG polypeptides will depend upon the particular HRG sequence selected. If the sequence is sufficiently small HRG is prepared by <u>in vitro</u> polypeptide synthetic methods. Most commonly, however, HRG is prepared in recombinant cell culture using the host-vector systems described below.

In general, mammalian host cells will be employed, and such hosts may or may not contain post-translational systems for processing HRG prosequences in the normal fashion. If the host cells contain such systems then it will be possible to recover natural subdomain fragments such as HRG-GFD OR HRG-NTD-GFD from the cultures. If not, then the proper processing can be accomplished by transforming the hosts with the required enzyme(s) or by cleaving the precursor in vitro. However, it is not necessary to transform cells with DNA encoding the complete prosequence for a selected HRG when it is desired to only produce fragments of HRG sequences such as an HRG-GFD. For example, to prepare HRG-GFD a start codon is ligated to the 5' end of DNA encoding an HRG-GFD, this DNA is used to transform host cells and the product expressed directly as the Met N-terminal form (if desired, the extraneous Met may be removed in vitro or by endogenous N-terminal demethionylases). Alternatively, HRG-GFD is expressed as a fusion with a signal sequence recognized by the host cell, which will process and secrete the mature HRG-GFD as is further described below. Amino acid sequence variants of native HRG-GFD sequences are produced in the same way.

10

15

20

25

30

35

HRG-NTD is produced in the same fashion as the full length molecule but from expression of DNA encoding only HRG-NTD, with the stop codon after one of S172-C182 (Fig. 15).

In addition, HRG variants are expressed from DNA encoding protein in which both the GFD and NTD domains are in their proper orientation but which contain an amino acid insertion, deletion or substitution at the NTD-GFD joining site (for example located within the sequence S172-C182. In another embodiment a stop codon is positioned at the 3' end of the NTD-GFD-encoding sequence (after any residue T/Q222-T245 of Fig. 15). The result is a soluble form of HRG- α or - β_1 or - β_2 which lacks its transmembrane sequence (this sequence also may be an internal signal sequence but will be referred to as a transmembrane sequence). In further variations of this embodiment, an internal signal sequence of another polypeptide is substituted in place of the native HRG transmembrane domain, or a cytoplasmic domain of another cell membrane polypeptide, e.g. receptor kinase, is substituted for the HRG- α or HRG β_1 - β_2 cytoplasmic peptide.

In a still further embodiment, the NTD, GFD and transmembrane domains of HRG and other EGF family members are substituted for one another, e.g. the NTD equivalent region of EGF is substituted for the NTD of HRG, or the GFD of HRG is substituted for EGF in the processed, soluble proform of EGF. Alternatively, an HRG or EGF family member transmembrane domain is fused onto the C-terminal E236 of HRG- β_3 .

In a further variant, the HRG sequence spanning K241 to the C-terminus is fused at its N-terminus to the C-terminus of a non-HRG polypeptide.

Another embodiment comprises the functional or structural deletion of the proteolytic processing site in CTP, the GFD-transmembrane spanning domain. For example, the putative C-terminal lysine (K241) of processed HRG- α or β_1 - β_2 is deleted, substituted with another residue, a residue other than K or R inserted between K241 and R242, or other disabling mutation is made in the prosequence.

In another embodiment, the domain of any EGF family member extending from (a) its cysteine corresponding to (b) C221 to the C-terminal residue of the family member is substituted for the analogous domain of HRG- α or - β_1 or - β_2 (or fused to the C-terminus of HRG- β_3). Such variants will be processed free of host cells in the same fashion as the family member rather than as the parental HRG. In more refined embodiments other specific cleavage sites (e.g. protease sites) are substituted into the CTP or GFD-transmembrane spanning domain (about residues T/Q222-T245, Fig. 15). For example, amphiregulin sequence E84-K99 or TGF α sequence E44-K58 is substituted for HRG- α residues E223-K241.

In a further embodiment, a variant (termed HRG-NTDxGFD) is prepared wherein (1) the lysine residue found in the NTD-GFD joining sequence VKC (residues 180-182, Figure 15) is deleted or (preferably) substituted by another residue other than R such as H, A, T or S and (2) a stop codon is introduced in the sequence RCT or RCQ (residues 220-222, Figure 15) in place of C, or T (for HRG- α) or Q (for HRG-beta).

10

15

20

25

30

35

A preferred HRG- α ligand with binding affinity to p185^{HER2} comprises amino acids 226-265 of figure 4. This HRG- α ligand further may comprise up to an additional 1-20 amino acids preceding amino acid 226 from figure 4 and 1-20 amino acids following amino acid 265 from figure 4. A preferred HRG- β ligand with binding affinity to p185^{HER2} comprises amino acids 226-265 of figure 8. This HRG- β ligand may comprise up to an additional 1-20 amino acids preceding amino acid 226 from figure 8 and 1-20 amino acids following amino acid 265 from figure 8.

GFD sequences include those in which one or more residues corresponding to another member of the EGF family are deleted or substituted or have a residue inserted adjacent thereto. For example, F216 of HRG is substituted by Y, L202 with E, F189 with Y, or S203-P205 is deleted.

HRG also includes NTD-GFD having its C-terminus at one of the first about 1 to 3 extracellular domain residues (QKR, residues 240-243, HRE- α , Figure 15) or first about 1-2 transmembrane region residues. In addition, in some HRG-GFD variants the codons are modified at the GFD-transmember proproteolysis site by substitution, insertion or deletion. The GFD proteolysis site is the domain that contains the GFD C-terminal residue and about 5 residues N- and 5 residues C-terminal from this residue. At this time neither the natural C-terminal residue for HRG- α or HRG- β has been identified, although it is known that Met-227 terminal and Val-229 terminal HRG- α -GFD are biologically active. The native C-terminus for HRG- α -GFD is probably Met-227, Lys-228, Val-229, Gln-230, Asn-231 or Gln-232, and for HRG- β 1) K240 or (for HRG- β 2) K246. The native C-terminus is determined readily by C-terminal sequencing, although it is not critical that HRG-GFD have the native terminus so long as the GFD sequence possesses the desired activity. In some embodiments of HRG-GFD variants, the amino acid change(s) in the CTP are screened for their ability to resist proteolysis <u>in vitro</u> and inhibit the protease responsible for generation of HRG-GFD.

If it is desired to prepare the full length HRG polypeptides and the 5' or 3' ends of the given HRG are not described herein, it may be necessary to prepare nucleic acids in which the missing domains are supplied by homologous regions from more complete HRG nucleic acids. Alternatively, the missing domains can be obtained by probing libraries using the DNAs disclosed in the Figures or fragments thereof.

A. Isolation of DNA Encoding Herequlin

The DNA encoding HRG may be obtained from any cDNA library prepared from tissue believed to possess HRG mRNA and to express it at a detectable level. HRG DNA also is obtained from a genomic library.

Libraries are screened with probes or analytical tools designed to identify the gene of interest or the protein encoded by it. For cDNA expression libraries, suitable probes include monoclonal or polyclonal antibodies that recognize and specifically bind to HRG; oligonucleotides of about 20-80 bases in length that encode known or suspected portions of

10

20

25

30

35

HRG cDNA from the same or different species; and/or complementary or homologous cDNAs or fragments thereof that encode the same or a hydridizing gene. Appropriate probes for screening genomic DNA libraries include, but are not limited to, oligonucleotides; cDNAs or fragments thereof that encode the same or hybridizing DNA; and/or homologous genomic DNAs or fragments thereof. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook et al., supra.

An alternative means to isolate the gene encoding HRG is to use polymerase chain reaction (PCR) methodology as described in section 14 of Sambrook *et al.*, *supra*. This method requires the use of oligonucleotide probes that will hybridize to HRG. Strategies for selection of oligonucleotides are described below.

Another alternative method for obtaining the gene of interest is to chemically synthesize it using one of the methods described in Engels *et al.* (*Agnew. Chem. Int. Ed. Engl.*, **28**: 716-734,1989). These methods include triester, phosphite, phosphoramidite and H-Phosphonate methods, PCR and other autoprimer methods, and oligonucleotide syntheses on solid supports. These methods may be used if the entire nucleic acid sequence of the gene is known, or the sequence of the nucleic acid complementary to the coding strand is available, or alternatively, if the target amino acid sequence is known, one may infer potential nucleic acid sequences using known and preferred coding residues for each amino acid residue.

A preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various tissues, preferably human breast, colon, salivary gland, placental, fetal, brain, and carcinoma cell lines. Other biological sources of DNA encoding an heregulin-like ligand include other mammals and birds. Among the preferred mammals are members of the following orders: bovine, ovine, equine, murine, and rodentia.

The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The actual nucleotide sequence(s) is usually based on conserved or highly homologous nucleotide sequences or regions of HRG-α. The oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides may be of particular importance where a library is screened from a species in which preferential codon usage in that species is not known. The oligonucleotide must be labeled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labeling is to use ³²P-labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.

Of particular interest is HRG nucleic acid that encodes the full-length propolypeptide. In some preferred embodiments, the nucleic acid sequence includes the native HRG signal transmembrane sequence. Nucleic acid having all the protein coding sequence is obtained by

10

15

20

25

30

35

screening selected cDNA or genomic libraries, and, if necessary, using conventional primer extension procedures as described in section 7.79 of Sambrook *et al.*, *supra*, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

HRG encoding DNA is used to isolate DNA encoding the analogous ligand from other animal species via hybridization employing the methods discussed above. The preferred animals are mammals, particularly bovine, ovine, equine, feline, canine and rodentia, and more specifically rats, mice and rabbits.

B. Amino Acid Sequence Variants of Heregulin

Amino acid sequence variants of HRG are prepared by introducing appropriate nucleotide changes into HRG DNA, or by *in vitro* synthesis of the desired HRG polypeptide. Such variants include, for example, deletions from, or insertions or substitutions of, residues within the amino acid sequence shown for human HRG sequences. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of HRG- α , such as changing the number or position of glycosylation sites, altering the membrane anchoring characteristics, altering the intra-cellular location of HRG by inserting, deleting, or otherwise affecting the transmembrane sequence of native HRG, or modifying its susceptibility to proteolytic cleavage.

In designing amino acid sequence variants of HRG, the location of the mutation site and the nature of the mutation will depend on HRG characteristic(s) to be modified. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of other ligands adjacent to the located site.

A useful method for identification of HRG residues or regions for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (*Science*, 244: 1081-1085, 1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell. Those domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at or for the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation *per se* need not be predetermined. For example, to optimize the performance of a mutation at a given site, ala scanning or random mutagenesis may be conducted at the target codon or region and the expressed HRG variants are screened for the optimal combination of desired activity.

There are two principal variables in the construction of amino acid sequence variants: the location of the mutation site and the nature of the mutation. These are variants from

15

20

25

30

35

HRG sequence, and may represent naturally occurring alleles (which will not require manipulation of HRG DNA) or predetermined mutant forms made by mutating the DNA, either to arrive at an allele or a variant not found in nature. In general, the location and nature of the mutation chosen will depend upon HRG characteristic to be modified. Obviously, such variations that, for example, convert HRG into a known receptor ligand, are not included within the scope of this invention, nor are any other HRG variants or polypeptide sequences that are not novel and unobvious over the prior art.

Amino acid sequence deletions generally range from about 1 to 30 residues, more preferably about 1 to 10 residues, and typically about 1 to 5 contiguous residues. Deletions may be introduced into regions of low homology with other EGF family precursors to modify the activity of HRG. Deletions from HRG in areas of substantial homology with other EGF family sequences will be more likely to modify the biological activity of HRG more. Significantly. The number of consecutive deletions will be selected so as to preserve the tertiary structure of HRG in the affected domain, e.g., cysteine crosslinking, beta-pleated sheet or alpha helix.

Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions (i.e., insertions within HRG sequence) may range generally from about 1 to 10 residues, more preferably 1 to 5, and most preferably 1 to 3. Examples of terminal insertions include HRG with an N-terminal methionyl residue (an artifact of the direct expression of HRG in bacterial recombinant cell culture), and fusion of a heterologous N-terminal signal sequence to the N-terminus of HRG to facilitate the secretion of mature HRG from recombinant host cells. Such signal sequences generally will be obtained from, and thus be homologous to, the intended host cell species. Suitable sequences include STII or lpp for *E. coli*, alpha factor for yeast, and viral signals such as herpes qD for mammalian cells.

Other insertional variants of HRG include the fusion to the N- or C-terminus of HRG to an immunogenic polypeptide, e.g., bacterial polypeptides such as beta-lactamase or an enzyme encoded by the *E. coli trp* locus, or yeast protein, bovine serum albumin, and chemotactic polypeptides. C-terminal fusions of HRG-NTD-GFD with proteins having a long half-life such as immunoglobulin constant regions (or other immunoglobulin regions), albumin, or ferritin, as described in WO 89/02922, published 6 April 1989 are included.

Another group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the HRG molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include sites identified as the active site(s) of HRG, and sites where the amino acids found in HRG ligands from various species are substantially different in terms of side-chain bulk, charge, and/or hydrophobicity.

10

The amino terminus of the cytoplasmic region of HRG may be fused to the carboxy terminus of heterologous transmembrane domains and receptors, to form a fusion polypeptide useful for intracellular signaling of a ligand binding to the heterologous receptor.

Other sites of interest are those in which particular residues of HRG-like ligands obtained from various species are identical. These positions may be important for the biological activity of HRG. These sites, especially those falling within a sequence of at least three other identically conserved sites, are substituted in a relatively conservative manner. Such conservative substitutions are shown in Table 1 under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products scree=ed.

		TABLE 1	
	Original	Exemplary	Preferred
	Residue	Substitutions	Substitutions
15			
	Ala (A)	val; leu; ile	val
	Arg (R)	lys; gln; asn	lys
	Asn (N)	gln; his; lys; arg	gh
	Asp (D)	glu	g lu
20	Cys (C)	· ser	ser
	Gln (Q)	asn ·	asn
	Glu (E)	asp	asp
	Gly (G)	pro	pro
	His (H)	asn; gln; lys; arg	arg
25	ile (i)	leu; val; met; ala; phe;	
		norleucine	leu
	Leu (L)	norleucine; ile; val;	
		met; ala; phe	ile
	Lys (K)	arg; gln; asn	arg
30	Met (M)	leu; phe; ile	leu
	Phe (F)	leu; val; ile; ala	leu
	Pro (P)	gly	gly
	Ser (S)	thr	thr
	Thr (T)	ser	ser
35	Trp (W)	tyr	tyr
	Tyr (Y)	trp; phe; thr; ser	phe
	Val (V)	ile; leu; met; phe;	
		ala; nodeucine	leu

20

25

30

Substantial modifications in function or immunological identity of HRG are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:

- 1) hydrophobic: norleucine, met, ala, val, leu, ile;
- 2) neutral hydrophilic: cys, ser, thr;
- 3) acidic: asp, glu;
- 10 4) basic: asn, gln, his, lys, arg;
 - 5) residues that influence chain orientation: gly, pro; and
 - 6) aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another. Such substituted residues may be introduced into regions of HRG that are homologous with other receptor ligands, or, more preferably, into the non-homologous regions of the molecule.

In one embodiment of the invention, it is desirable to inactivate one or more protease cleavage sites that are present in the molecule. These sites are identified by inspection of the encoded amino acid sequence. Where potential protease cleavage sites are identified, e.g. at K241 R242, they are rendered inactive to proteolytic cleavage by substituting the targeted residue with another residue, preferably a basic residue such as glutamine or a hydrophylic residue such as serine; by deleting the residue; or by inserting a prolyl residue immediately after the residue.

In another embodiment, any methionyl residue other than the starting methionyl residue, or any residue located within about three residues N- or C-terminal to each such methionyl residue, is substituted by another residue (preferably in accord with Table 1) or deleted. We have found that oxidation of the 2 GFD M residues in the courses of *E. coli* expression appears to severely reduce GFD activity. Thus, these M residues are mutated in accord with Table 1. Alternatively, about 1-3 residues are inserted adjacent to such sites.

Any cysteine residues not involved in maintaining the proper conformation of HRG also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.

Sites particularly suited for substitutions, deletions or insertions, or use as fragments, include, numbered from the N-terminus of HRG- α of Figure 4:

- 1) potential glycosaminoglycan addition sites at the serine-glycine dipeptides at 42-43, 64-65, 151-152;
 - potential asparagine-linked glycosylation at positions 164, 170, 208 and 437, sites
 (NDS) 164-166, (NIT) 170-172, (NTS) 208-210, and NTS (609-611);
 - potential O-glycosylation in a cluster of serine and threonine at 209-218;

10

15

20

25

30

35

- 4) cysteines at 226, 234, 240, 254, 256 and 265;
- 5) transmembrane domain at 287-309;
- 6) loop 1 delineated by cysteines 226 and 240;
- 7) loop 2 delineated by cysteines 234 and 254;
- 8) koop 3 delineated by cysteines 256 and 265; and
 - 9) potential protease processing sites at 2-3, 8-9, 23-24, 33-34, 36-37, 45-46, 48-49, 62-63, 66-67, 86-87, 110-111, 123-124, 134-135, 142-143, 272-273, 278-279 and 285-286;

Analogous regions in HRG- $\beta1$ may be determined by reference to figure 9 which aligns analogous amino acids in HRG- α and HRG- $\beta1$. The analogous HRG- $\beta1$ amino acids may be mutated or modified as discussed above for HRG- α . Analogous regions in HRG- $\beta2$ may be determined by reference to figure 15 which aligns analogous amino acids in HRG- α , HRG- $\beta1$ and HRG- $\beta2$. The analogous HRG- $\beta2$ amino acids may be mutated or modified as discussed above for HRG- α or HRG- $\beta1$. Analogous regions in HRG- α , may be determined by reference to figure 15 which aligns analogous amino acids in HRG- α , HRG- $\beta1$ and HRG- $\beta2$. The analogous HRG- $\beta3$ amino acids may be mutated or modified as discussed above for HRG- α , HRG- $\beta1$, or HRG- $\beta2$.

DNA encoding amino acid sequence variants of HRG is prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of HRG. These techniques may utilize HRG nucleic acid (DNA or RNA), or nucleic acid complementary to HRG nucleic acid.

Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion, and insertion variants of HRG DNA. This technique is well known in the art as described by Adelman *et al.*, *DNA*, 2: 183 (1983).

Generally, oligonucleotides of at least 25 nucleotides in length are used. An optimal oligonucleotide will have 12 to 15 nucleotides that are completely complementary to the template on either side of the nucleotide(s) coding for the mutation. This ensures that the oligonucleotide will hybridize properly to the single-stranded DNA template molecule. The oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al. (*Proc. Natl. Acad. Sci. USA*, 75: 5765,1978).

Single-stranded DNA template may also be generated by denaturing double-stranded plasmid (or other) DNA using standard techniques.

For alteration of the native DNA sequence (to generate amino acid sequence variants, for example), the oligonucleotide is hybridized to the single-stranded template under suitable hybridization conditions. A DNA polymerizing enzyme, usually the Klenow fragment of DNA polymerase I, is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for synthesis. A heteroduplex molecule is thus formed

15

20

න

30

35

such that one strand of DNA encodes the mutated form of HRG, and the other strand (the original template) encodes the native, unaltered sequence of HRG. This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as *E. coli* JM101. After the cells are grown, they are plated onto agarose plates and screened using the oligonucleotide primer radiolabeled with ³²P-phosphate to identify the bacterial colonies that contain the mutated DNA. The mutated region is then removed and placed in an appropriate vector for protein production, generally an expression vector of the type typically employed for transformation of an appropriate host.

The method described immediately above may be modified such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s). The modifications are as follows: the single-stranded oligonucleotide is annealed to the single-stranded template as described above. A mixture of three deoxyribonucleotides, deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTTP), is combined with a modified thio-deoxyribocytosine called dCTP-(aS)

(Amersham Corporation). This mixture is added to the template-oligonucleotide complex. Upon addition of DNA polymerase to this mixture, a strand of DNA identical to the template except for the mutated bases is generated. In addition, this new strand of DNA will contain dCTP-(aS) instead of dCTP, which serves to protect it from restriction endonuclease digestion. After the template strand of the double-stranded heteroduplex is nicked with an appropriate restriction enzyme, the template strand can be digested with ExoIII nuclease or another appropriate nuclease past the region that contains the site(s) to be mutagenized. The reaction is then stopped to leave a molecule that is only partially single-stranded. A complete double-stranded DNA homoduplex is then formed using DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase. This homoduplex molecule can then be transformed into a suitable host cell such as *E. coli* JM101, as described above.

Explanary substitutions common to any HRG include S2T or D; E3D or K; R4 K or E; K5R or E; E6D or K; G7P or Y; R8K or D; G9P or Y; K10R or E; G11P or Y; K12R or E; G19P or Y; S20T or F; G21P or Y; K22 or E; K23R or E; Q38D; S107N; G108P; N120K; D121K; S122 T; N126S; I126L; T127S; A163V; N164K; T165-T174; any residue to I, L, V, M, F, D, E, R or K; G175V or P; T176S or V; S177K or T; H178K or S; L179F or I; V180L or S; K181R or E; A 183N or V; E184K or D; K185R or E; E186D or Y; K187R or D; T188S or Q; F189Y or S; V191L or D; N192Q or H; G193P or A; G194P or A; E195D or K; F197Y or I; M198V or Y; V199L or T; K200V or R; D201E or K; L202E or K; S203A or T; N204Δ; N204Q; P205Δ; P205G; S206T or R; R207K or A; Y208P or F; L209I or D; K211I or D; F216Y or I; T217 H or S; G218A or P; A/D219K or R; R220K or A; A235/240/232V or F; E236/241/233D or K; E237/242/234D or K; L238/243/235I or T; Y239/244/236F or T; Q240/245/237N or K; K241/246/238H or R; R242/247/238H or K; V243/248/239L or T; L244/249/240I or S; T245/250/241S or I; I246/251/242V or T and T247/252/243S or I. Specifically with respect to HRG-α, T222S, K or V; E223D, R or Q; N224Q, K or F; V225A, R or D; P226G, I K or F; M227V, T, R or Y;

15

20

25

30

K228R, H or D; V229L, K or D; Q230N, R or Y; N231Q, K or Y; Q232N, R or Y; E233D, K or T and K 234R, H or D (adjacent K/R mutations are paired in alternative embodiments to create new proteolysis sites). Specifically with respect to HRG- β (any member), Q222N, R or Y; N223Q, K or Y; Y224F, T or R; V225A, K or D; M226V, T or R; A227V, K, Y or D; S228T, Y or R; F229Y, I or K and Y230F, T or R are suitable variants. Specifically with respect to HRG- β 1, K231R or D, H232R or D; L233I, K, F or Y; G234P, R, A or S; I235I, K, F or Y; E236D, R or A; F237I, Y, K or A; M238V, T, R or A and E239D, R or A are suitable variants. Specifically with respect to HRG- β 1 and HRG- β 2, K231R or D are suitable variants. Alternatively, each of these residues may be deleted or the indicated substituents inserted adjacent thereto. In addition, about from 1-10 variants are combined to produce combinations. These changes are made in the proHRG, NTD, GFD, NTD-GFD or other fragments or fusions. Q213-G215, A219 and the about 11-21 residues C-terminal to C221 differ among the various HRG classes. Residues at these are interchanged among HRG classes or EGF family members, are deleted, or a residue inserted adjacent thereto.

DNA encoding HRG- α mutants with more than one amino acid to be substituted may be generated in one of several ways. If the amino acids are located close together in the polypeptide chain, they may be mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from each other (separated by more than about ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed.

PCR mutagenesis is also suitable for making amino acid variants of HRG- α . While the following discussion refers to DNA, it is understood that the technique also finds application with RNA. The PCR technique generally refers to the following procedure (see Erlich, supra, the chapter by R. Higuchi, p. 61-70). When small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template. For introduction of a mutation into a plasmid DNA, one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA. It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced. PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified by the primer, and possibly at other positions, as template copying is somewhat error-prone.

15

20

25

30

35

If the ratio of template to product material is extremely low, the vast majority of product DNA fragments incorporate the desired mutation(s). This product material is used to replace the corresponding region in the plasmid that served as PCR template using standard DNA technology. Mutations at separate positions can be introduced simultaneously by either using a mutant second primer, or performing a second PCR with different mutant primers and ligating the two resulting PCR fragments simultaneously to the vector fragment in a three (or more)-part ligation.

Another method for preparing variants, cassette mutagenesis, is based on the technique described by Wells *et al.* (*Gene*, **34**: 315,1985). The starting material is the plasmid (or other vector) comprising HRG DNA to be mutated. The codon(s) in HRG DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotide-mediated mutagenesis method to introduce them at appropriate locations in HRG DNA. After the restriction sites have been introduced into the plasmid, the plasmid is cut at these sites to linearize it. A double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures. The two strands are synthesized separately and then hybridized together using standard techniques. This double-stranded oligonucleotide is referred to as the cassette. This cassette is designed to have 3' and 5' ends that are compatible with the ends of the linearized plasmid, such that it can be directly ligated to the plasmid. This plasmid now contains the mutated HRG DNA sequence.

C. <u>Insertion of DNA into a Cloning or Expression Vehicle</u>

The cDNA or genomic DNA encoding native or variant HRG is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector will depend on 1) whether it is to be used for DNA amplification or for DNA expression, 2) the size of the DNA to be inserted into the vector, and 3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

(i) Signal Sequence Component

In general, the signal sequence may be a component of the vector, or it may be a part of HRG DNA that is inserted into the vector. The native HRG DNA is believed to encode a signal sequence at the amino terminus (5' end of the DNA encoding HRG) of the polypeptide that is cleaved during post-translational processing of the polypeptide to form the mature HRG polypeptide ligand that binds to p185HER2 receptor, although a conventional signal structure is not apparent. Native proHRG is, secreted from the cell but may remain lodged in

15

20

30

35

the membrane because it contains a transmembrane domain and a cytoplasmic region in the carboxyl terminal region of the polypeptide. Thus, in a secreted, soluble version of HRG the carboxyl terminal domain of the molecule, including the transmembrane domain, is ordinarily deleted. This truncated variant HRG polypeptide may be secreted from the cell, provided that the DNA encoding the truncated variant encodes a signal sequence recognized by the host.

HRG of this invention may be expressed not only directly, but also as a fusion with a heterologous polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-and/or C-terminis of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of HRG DNA that is inserted into the vector. Included within the scope of this invention are HRG with the native signal sequence deleted and replaced with a heterologous signal sequence. The heterologous signal sequence selected should be one that is recognized and processed, i.e., cleaved by a signal peptidase, by the host cell. For prokaryotic host cells that do not recognize and process the native HRG signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the native HRG signal sequence may be substituted by the yeast invertase, alpha factor, or acid phosphatase leaders. In mammalian cell expression the native signal sequence is satisfactory, although other mammalian signal sequences may be suitable.

(ii) Origin of Replication Component

Both expression and cloning vectors generally contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

Most expression vectors are "shuttle" vectors, i.e., they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

DNA may also be amplified by insertion into the host genome. This is readily accomplished using *Bacillus* species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in *Bacillus* genomic DNA. Transfection of *Bacillus* with this vector results in homologous recombination with the genome and insertion

of HRG DNA. However, the recovery of genomic DNA encoding HRG is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise HRG DNA. DNA can be amplified by PCR and directly transfected into the host cells without any replication component.

(iii) Selection Gene Component

5

10

15

20

25

30

35

Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding Dalanine racemase for *Bacilli*.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al., J. Molec. Appl. Genet. 1: 327,1982), mycophenolic acid (Mulligan et al., Science 209: 1422,1980) or hygromycin (Sugden et al., Mol. Cell. Biol. 5: 410-413,1985). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up HRG nucleic acid, such as dihydrofolate reductase (DHFR) or thymidine kinase. The mammalian cell transformants are placed under selection pressure which only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes HRG. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of HRG are synthesized from the amplified DNA.

For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, *Proc. Natl. Acad. Sci. USA*, 77: 4216, 1980. The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other

15

20

25

30

35

DNA comprising the expression vectors, such as the DNA encoding HRG. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060). Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding HRG, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3' phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418 (see U.S. Pat. No. 4,965,199).

A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 (Stinchcomb *et al.*, *Nature*, **282**: 39, 1979; Kingsman *et al.*, *Gene*, 7: 141, 1979; or Tschemper *et al.*, *Gene*, 10: 157, 1980). The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, *Genetics*, **85**: 12, 1977). The presence of the *trp*1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu2*-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu2* gene.

(iv) Promoter Component

Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to HRG nucleic acid. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, such as HRG to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to DNA encoding HRG by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native HRG promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of HRG DNA. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of expressed HRG as compared to the native HRG promoter.

Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615, 1978; and Goeddel et al., Nature 281: 544, 1979), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057, 1980 and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA 80: 21-25, 1983). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a

10

15

20

25

30

35

skilled worker operably to ligate them to DNA encoding HRG (Siebenlist *et al.*, *Cell* 20: 269, 1980) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also generally will contain a Shine-Dalgamo (S.D.) sequence operably linked to the DNA encoding HRG.

Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman *et al.*, *J. Biol. Chem.*, 255: 2073, 1980) or other glycolytic enzymes (Hess *et al.*, *J. Adv. Enzyme Reg* 7: 149, 1968; and Holland, *Biochemistry* 17: 4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having ⁴ e additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman *et al.*, EP 73,657A. Yeast enhancers also are advantageously used with yeast promoters.

Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT (SEQ ID NO:1) region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence (SEQ ID NO:2) that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into mammalian expression vectors.

HRG gene transcription from vectors in mammalian host cells is controlled by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504, published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with HRG sequence, provided such promoters are compatible with the host cell systems.

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication (Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209: 1422-1427 (1980); Pavlakis et al., Proc. Natl. Acad. Sci. USA, 78: 7398-7402 (1981)). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a <u>Hindlll E restriction fragment</u> (Greenaway et al., Gene, 18: 355-360 (1982)). A system for expressing DNA in mammalian

10

15

25

30

35

hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978. See also Gray *et al.*, *Nature*, 295: 503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes *et al.*, *Nature*, 297: 598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani and Berg, *Proc. Natl. Acad. Sci. USA*, 79: 5166-5170 (1982) on expression of the human interferon β1 gene in cultured mouse and rabbit cells; and Goman *et al.*, *Proc. Natl. Acad. Sci. USA*, 79: 6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

(v) Enhancer Element Component

Transcription of a DNA encoding HRG of this invention by higher euk yotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10-300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent having been found 5' (Laimins et al., Proc. Natl. Acad. Sci. USA, 78: 993, 1981) and 3' (Lusky et al., Mol. Cell Bio., 3: 1108, 1983) to the transcription unit, within an intron (Banerji et al., Cell, 33: 729, 1983) as well as within the coding sequence itself (Osborne et al., Mol. Cell Bio., 4: 1293, 1984). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers (see also Yaniv, Nature, 297: 17-18 (1982)) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to HRG DNA, but is preferably located at a site 5' from the promoter.

(vi) Transcription Termination Component

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding HRG. The 3' untranslated regions also include transcription termination sites.

Construction of suitable vectors containing one or more of the above listed components the desired coding and control sequences employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.

10

15

20

25

30

35

For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing *et al.*, *Nucleic Acids Res.* 9: 309 (1981) or by the method of Maxam *et al.*, *Methods in Enzymology* 65: 499 (1980).

Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding HRG. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs. as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying analogs and variants of HRG that have HRG-like activity. Such a transient expression system is described in EP 309,237 published 29 March 1989. Other methods, vectors, and host cells suitable for adaptation to the synthesis of HRG in recombinant vertebrate cell culture are described in Gething et al., Nature 293: 620-625, 1981; Mantei et al., Nature, 281: 40-46, 1979; Levinson et al., EP 117,060 and EP 117,058. A particularly useful expression plasmid for mammalian cell culture expression of HRG is pRK5 (EP pub. no. 307,247).

D. Selection and Transformation of Host Cells

Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for example, *E. coli*, *Bacilli* such as *B. subtilis*, *Pseudomonas* species such as *P. aeruginosa*, *Salmonella typhimurium*, or *Serratia marcescans*. One preferred *E. coli* cloning host is *E. coli* 294 (ATCC 31,446), although other strains such as *E. coli* B, *E. coli* x1776 (ATCC 31,537), and *E. coli* W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes. Alternatively, *in vitro* methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for HRG-encoding vectors. *Saccharomyces cerevisiae*, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as *Schizosaccharomyces pombe* (Beach and Nurse, *Nature*, 290: 140 (1981); EP 139,383, published May 2, 1985), *Kluyveromyces* hosts (U.S.S.N. 4,943,529) such as, e.g., *K. lactis* (Louvencourt *et al.*, *J. Bacteriol.*, 737 (1983); *K. fragilis*, *K. bulgaricus*, *K. thermotolerans*, and

15

20

25

30

35

K. marxianus, yarrowia (EP 402,226); Pichia pastoris (EP 183,070), Sreekrishna et al., J. Basic Microbiol., 28: 265-278 (1988); Candida, Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76: 5259-5263 (1979), and filamentous fungi such as, e.g, Neurospora, Penicillium, Tolypocladium (WO 91/00357, published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochern. Biophys. Res. Commun., 112: 284-289 (1983); Tilbum et al., Gene, 26: 205-221 (1983); Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 (1984) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 (1985)).

Suitable host cells for the expression of glycosylated HRG polypeptide are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori host cells have been identified (see, e.g., Luckow et al., Bio/Technology, 6: 47-55 (1988); Miller et al., in Genetic Engineering, Setlow, J.K. et al., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., Nature, 315: 592-594 (1985)). A variety of such viral strains are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, com, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens, which has been previously manipulated to contain HRG DNA. During incubation of the plant cell culture with A. tumefaciens, the DNA encoding HRG is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express HRG DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences (Depicker et al., J. Mol. Appl. Gen., 1:561 [1982]). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue (see EP 321,196, published 21 June 1989).

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (*Tissue Culture*, Academic Press, Kruse and Patterson, editors (1973)). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham *et al.*, *J. Gen Virol.*, 36: 59, 1977); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, *Proc. Natl. Acad.*

10

15

20

25

30

35

Sci. USA, 77:4216 [1980]); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 [1980]); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci., 383:44-68 [1982]); MRC 5 cells; FS4 cells; and a human hepatoma cell line (Hep G2). Preferred host cells are human embryonic kidney 293 and Chinese hamster ovary cells.

Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integration. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook *et al.*, *supra*, is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw *et al.*, <u>Gene</u>, <u>23</u>: 315 (1983) and WO 89/05859, published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method described in sections 16.30-16.37 of Sambrook *et al.*, *supra*, is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. Pat. No. 4,399,216, issued 16 August 1983. Transformations into yeast are typically carried out according to the method of Van Solingen *et al.*, *J. Bact.*, 130:946 (1977) and Hsiao *et al.*, *Proc. Natl. Acad. Sci. (USA)*, 76: 3829 (1979). However, other methods for introducing DNA into cells such as by nuclear injection, electroporation, or protoplast fusion may also be used.

E. Culturing the Host Cells

Prokaryotic cells used to produce HRG polypeptide of this invention are cultured in suitable media as described generally in Sambrook *et al.*, *supra*.

The mammalian host cells used to produce HRG of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ([MEM], Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ([DMEM], Sigma) are suitable for culturing the host cells. In addition, any of the media

15

20

25

30

35

described in Ham and Wallace, *Meth. Enz.*, **58**: 44 (1979), Barnes and Sato, *Anal. Biochem.*, **102**:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195 and U.S. Pat. Re. 30,985, may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The host cells referred to in this disclosure encompass cells in *in vitro* culture as well as cells that are within a host animal.

It is further envisioned that HRG of this invention may be produced by homologous recombination, or with recombinant production methods utilizing control elements introduced into cells already containing DNA encoding HRG currently in use in the field. For example, a powerful promoter/enhancer element, a suppressor, or an exogenous transcription modulatory element is inserted in the genome of the intended host cell in proximity and orientation sufficient to influence the transcription of DNA encoding the desired HRG. The control element does not encode HRG of this invention, but the DNA is present in the host cell genome. One next screens for cells making HRG of this invention, or increased or decreased levels of expression, as desired.

F. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA*, 77:5201-5205 [1980]), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly 32P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to

10

15

20

25

30

35

quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled where the labels are usually visually detectable such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu et al., Am. J. Clin. Path., 75: 734-738 (1980).

Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native HRG polypeptide or against a synthetic peptide based on the DNA sequences provided herein as described further in Section 4 below.

G. Purification of The Heregulin Polypeptide

HRG is recovered from a cellular membrane fraction. Alternatively, a proteolyticalLy cleaved or a truncated expressed soluble HRG fragment or subdomain are recovered from the culture medium as soluble polypeptides.

When HRG is expressed in a recombinant cell other than one of human origin, HRG is completely free of proteins or polypeptides of human origin. However, it is desirable to purify HRG from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to HRG. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The membrane and soluble protein fractions are then separated. HRG is then purified from both the soluble protein fraction (requiring the presence of a protease) and from the membrane fraction of the culture lysate, depending on whether HRG is membrane bound. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reversed phase HPLC; chromatography on silica, heparin sepharose or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; and gel filtration using, for example, Sephadex G-75.

HRG variants in which residues have been deleted, inserted or substituted are recovered in the same fashion as the native HRG, taking account of any substantial changes in properties occasioned by the variation. For example, preparation of a HRG fusion with another protein or polypeptide, e.g., a bacterial or viral antigen, facilitates purification; an immunoaffinity column containing antibody to the antigen can be used to adsorb the fusion. Immunoaffinity columns such as a rabbit polyclonal anti-HRG column can be employed to absorb HRG variant by binding it to at least one remaining immune epitope. A protease inhibitor such as phenylmethylsulfonylfluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. One skilled in the art will appreciate that purification methods suitable for native HRG may require modification to account for changes in the character of HRG variants upon expression in recombinant cell culture.

H. Covalent Modifications of HRG

5

10

15

20

25

30

35

Covalent modifications of HRG polypeptides are included within the scope of this invention. Both native HRG and amino acid sequence variants of HRG optionally are covalently modified. One type of covalent modification included within the scope of this invention is a HRG polypeptide fragment. HRG fragments, such as HRG-GDF, having up to about 40 amino acid residues are conveniently prepared by chemical synthesis, or by enzymatic or chemical cleavage of the full-length HRG polypeptide or HRG variant polypeptide. Other types of covalent modifications of HRG or fragments thereof are introduced into the molecule by reacting targeted amino acid residues of HRG or fragments thereof with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.

Cysteinyl residues most commonly are reacted with α -haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α -bromo- β -(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1M sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing α -amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK_a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using 125 or 131 to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.

10

15

20

25

30

35

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R'-N=C=N-R'), where R and R' are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Derivatization with bifunctional agents is useful for crosslinking HRG to a water-insoluble support matrix or surface for use in the method for purifying anti-HRG antibodies, and vice versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains (T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 [1983]), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

HRG optionally is fused with a polypeptide heterologous to HRG. The heterologous polypeptide optionally is an anchor sequence such as that found in the decay accelerating system (DAF); a toxin such as ricin, pseudomonas exotoxin, gelonin, or other polypeptide that will result in target cell death. These heterologous polypeptides are covalently coupled to HRG through side chains or through the terminal residues. Similarly, HRG is conjugated to other molecules toxic or inhibitory to a target mammalian cell, e.g. such as tricothecenes, or antisense DNA that blocks expression of target genes.

HRG also is covalently modified by altering its native glycosylation pattern. One or more carbohydrate substitutents are modified by adding, removing or varying the monosaccharide components at a given site, or by modifying residues in HRG such that glycosylation sites are added or deleted.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any

10

15

20

25

30

35

amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Glycosylation sites are added to HRG by altering its amino acid sequence to contain one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to HRG (for O-linked glycosylation sites). For ease, HRG is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding HRG at preselected bases such that codons are generated that will translate into the desired amino acids.

Chemical or enzymatic coupling of glycosides to HRG increases the number of carbohydrate substituents. These procedures are advantageous in that they do not require production of the polypeptide in a host cell that is capable of N- and O- linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330, published 11 September 1987, and in Aplin and Wriston (CRC Crit. Rev. Biochem., pp. 259-306 [1981]).

Carbohydrate moieties present on an HRG also are removed chemically or enzymatically. Chemical deglycosylation requires exposure of the polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al. (Arch. Biochem. Biophys., 259:52 [1987]) and by Edge et al. (Anal. Biochem., 118:131 [1981]). Carbohydrate moieties are removed from HRG by a variety of endo- and exo- glycosidases as described by Thotakura et al. (Meth. Enzymol., 138:350 [1987]).

Glycosylation added during expression in cells also is suppressed by tunicamycin as described by Duskin *et al.* (*J. Biol. Chem.*, **257**:3105 [1982]). Tunicamycin blocks the formation of protein-N-glycoside linkages.

HRG also is modified by linking HRG to various nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

One preferred way to increase the *in vivo* circulating half life of non-membrane bound HRG is to conjugate it to a polymer that confers extended half-life, such as polyethylene

10

15

20

25

30

35

glycol (PEG). (Maxfield, et al, Polymer 16,505-509 [1975]; Bailey, F. E., et al, in Nonionic Surfactants [Schick, M. J., ed.] pp.794-821 [1967]; Abuchowski, A. et al., J. Biol. Chem. 252:3582-3586 [1977]; Abuchowski, A. et al., Cancer Biochem. Biophys. 7:175-186 [1984]; Katre, N.V. et al., Proc. Natl. Acad. Sci., 84:1487-1491 [1987]; Goodson, R. et al. Bio Technology, 8:343-346:[1990]). Conjugation to PEG also has been reported to have reduced immunogenicity and toxicity (Abuchowski, A. et al., J. Biol. Chem., 252:3578-3581 [1977]).

HRG also is entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-[methylmethacylate] microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A., Ed., (1980).

HRG is also useful in generating antibodies, as standards in assays for HRG (e.g., by labeling HRG for use as a standard in a radioimmunoassay, enzyme-linked immunoassay, or radioreceptor assay), in affinity purification techniques, and in competitive-type receptor binding assays when labeled with radioiodine, enzymes, fluorophores, spin labels, and the like.

Those skilled in the art will be capable of screening variants in order to select the optimal variant for the purpose intended. For example, a change in the immunological character of HRG, such as a change in affinity for a given antigen or for the HER2 receptor, is measured by a competitive-type immunoassay using a standard or control such as a native HRG (in particular native HRG-GFD). Other potential modifications of protein or polypeptide properties such as redox or thermal stability, hydrophobicity, susceptibility to proteolytic degradation, stability in recombinant cell culture or in plasma, or the tendency to aggregate with carriers or into multimers are assayed by methods well known in the art.

1. Therepeutic use of Herequlin Liquids

While the role of the p185^{HER2} and its ligands is unknown in normal cell growth and differentiation, it is an object of the present invention to develop therapeutic uses for the p185^{HER2} ligands of the present invention in promoting normal growth and development and in inhibiting abnormal growth, specifically in malignant or neoplastic tissues.

2.. Therapeutic Compositions and Administration of HRG

Therapeutic formulations of HRG or HRG antibody are prepared for storage by mixing the HRG protein having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, supra), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides (to prevent methoxide formation); proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or

10

15

20

25

30

35

lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).

HRG or HRG antibody to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. HRG or antibody to an HRG ordinarily will be stored in lyophilized form or in solution.

Therapeutic HRG, or HRG specific antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

HRG, its antibody or HRG variant when used as an antagonist may be optionally combined with or administered in concert with other agents known for use in the treatment of malignacies. When HRG is used as an agonist to stimulate the HER2 receptor, for example in tissue cultures, it may be combined with or administered in concert with other compositions that stimulate growth such as PDGF, FGF, EGF, growth hormone or other protein growth factors.

The route of HRG or HRG antibody administration is in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, or by sustained release systems as noted below. HRG is administered continuously by infusion or by bolus injection. HRG antibody is administered in the same fashion, or by administration into the blood stream or lymph.

Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels [e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J. Biomed. Mater. Res., 15:167-277 (1981) and Langer, Chem. Tech., 12:98-105 (1982) or poly(vinylalcohol)], polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of Lglutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 [1983]), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron DepotTM (injectable micropheres composed of lactic acidglycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid (EP 133,988). While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange.

10

15

20

25

30

. 35

stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Sustained-release HRG or antibody compositions also include liposomally entrapped HRG or antibody. Liposomes containing HRG or antibody are prepared by methods known *per se*: DE 3,218,121; Epstein *et al.*, *Proc. Natl. Acad. Sci. USA*, 82:3688-3692 (1985); Hwang *et al.*, *Proc. Natl. Acad. Sci. USA*, 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. No. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal HRG therapy. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.

Another use of the present invention comprises incorporating HRG polypeptide or antibody into formed articles. Such articles can be used in modulating cellular growth and development. In addition, cell growth and division and tumor invasion may be modulated with these articles.

An effective amount of HRG or antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. A typical daily dosage might range from about 1 μ g/kg to up to 100 mg/kg or more, depending on the factors mentioned above. Typically, the clinician will administer HRG or antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.

3. Heregulin Antibody Preparation and Therapeutic Use

The antibodies of this invention are obtained by routine screening. Polyclonal antibodies to HRG generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of HRG and an adjuvant. It may be useful to conjugate HRG or an HRG fragment containing the target amino acid sequence to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, $SOCl_2$, or $R^1N = C = NR$, where R and R^1 are different alkyl groups.

The route and schedule of immunizing an animal or removing and culturing antibody-producing cells are generally in keeping with established and conventional techniques for antibody stimulation and production. While mice are frequently immunized, it is contemplated that any mammalian subject including human subjects or antibody-producing cells obtained therefrom can be immunized to generate antibody producing cells.

15

20

25

30

. 35

Subjects are typically immunized against HRG or its immunogenic conjugates or derivatives by combining 1 mg or 1 µg of HRG immunogen (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the subjects are boosted with 1/5 to 1/10 the original amount of immunogen in Freund's complete adjuvant (or other suitable adjuvant) by subcutaneous injection at multiple sites. 7 to 14 days later animals are bled and the serum is assayed for anti-HRG antibody titer. Subjects are boosted until the titer plateaus. Preferably, the subject is boosted with a conjugate of the same HRG, but conjugated to a different protein and/or through a different cross-linking agent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response.

After immunization, monoclonal antibodies are prepared by recovering immune lymphoid cells--typically spleen cells or lymphocytes from lymph node tissue--from immunized animals and immortalizing the cells in conventional fashion, e.g., by fusion with myeloma cells or by Epstein-Barr (EB)-virus transformation and screening for clones expressing the desired antibody. The hybridoma technique described originally by Kohler and Milstein, *Eur. J. Immunol.* 6:511 (1976) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens.

It is possible to fuse cells of one species with another. However, it is preferable that the source of the immunized antibody producing cells and the myeloma be from the same species.

Hybridoma cell lines producing antiHRG are identified by screening the culture supernatants for antibody which binds to HRG. This is routinely accomplished by conventional immunoassays using soluble HRG preparations or by FACS using cell-bound HRG and labelled candidate antibody.

The hybrid cell lines can be maintained in culture *in vitro* in cell culture media. The cell lines of this invention can be selected and/or maintained in a composition comprising the continuous cell line in hypoxanthine-aminopterin thymidine (HAT) medium. In fact, once the hybridoma cell line is established, it can be maintained on a variety of nutritionally adequate media. Moreover, the hybrid cell lines can be stored and preserved in any number of conventional ways, including freezing and storage under liquid nitrogen. Frozen cell lines can be revived and cultured indefinitely with resumed synthesis and secretion of monoclonal antibody. The secreted antibody is recovered from tissue culture supernatant by conventional methods such as precipitation, ion exchange chromatography, affinity chromatography, or the like. The antibodies described herein are also recovered from hybridoma cell cultures by conventional methods for purification of IgG or IgM as the case may be that heretofore have been used to purify these immunoglobulins from pooled plasma, e.g., ethanol or polyethylene glycol precipitation procedures. The purified antibodies are sterile filtered, and optionally are

10

15

20

25

30

35

conjugated to a detectable marker such as an enzyme or spin label for use in diagnostic assays of HRG in test samples.

While mouse monoclonal antibodies routinely are used, the invention is not so limited; in fact, human antibodies may be used and may prove to be preferable. Such antibodies can be obtained by using human hybridomas (Cote *et al.*, *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77 (1985)). Chimeric antibodies, Cabilly et al., (Morrison *et al.*, *Proc. Natl. Acad. Sci.*, 81:6851 (1984); Neuberger *et al.*, *Nature* 312:604 (1984); Takeda *et al.*, *Nature* 314:452 (1985)) containing a murine anti-HRG variable region and a human constant region of appropriate biological activity (such as ability to activate human complement and mediate ADCC) are within the scope of this invention, as are humanized anti-HRG antibodiesproduced by conventional CRD-grafting methods.

Techniques for creating recombinant DNA versions of the antigen-binding regions of antibody molecules (known as Fab or variable regions fragments) which bypass the generation of monoclonal antibodies are encompassed within the practice of this invention. One extracts antibody-specific messenger RNA molecules from immune system cells taken from an immunized subject, transcribes these into complementary DNA (cDNA), and clones the cDNA into a bacterial expression system and selects for the desired binding characteristic. The Scripps/Stratagene method uses a bacteriophage lambda vector system containing a leader sequence that causes the expressed Fab protein to migrate to the periplasmic space (between the bacterial cell membrane and the cell wall) or to be secreted. One can rapidly generate and screen great numbers of functional Fab fragments to identify those which bind HRG with the desired characteristics.

Antibodies specific to HRG- α , HRG- β 1, HRG- β 2 and HRG- β 3 may be produced and used in the manner described above. HRG- α , HRG- β 1, HRG- β 2 and HRG- β 3 specific antibodies of this invention preferably do not cross-react with other members of the EGF family (Fig. 6) or with each other.

Antibodies capable of specifically binding to the HRG-NTD, HRG-GFD or HRG-CTP are of particular interest. Also of interest are antibodies capable of specifically binding to the proteolytic processing sites between the GFD and transmembrane domains. These antibodies are identified by methods that are conventional per se. For example, a bank of candidate antibodies capable of binding to HRG-ECD or proHRG are obtained by the above methods using immunization with full proHRG. These can then be subdivided by their ability to bind to the various HRG domains using conventional mapping techniques. Less preferably, antibodies specific for a predetermined domain are initially raised by immunizing the subject with a polypeptide comprising substantially only the domain in question, e.g. HRG-GFD free of NTD or CTP polypeptides. These antibodies will not require mapping unless binding to a particular epitope is desired.

Antibodies that are capable of binding to proteolytic processing sites are of particular interest. They are produced either by immunizing with an HRG fragment that includes the

15

20

25

30

35

CTP processing site, with intact HRG, or with HRG-NTD-GFD and then screening for the ability to block or inhibit proteolytic processing of HRG into the NTD-GFD fragment by recombinant host cells or isolated cell lines that are otherwise capable of processing HRG to the fragment. These antibodies are useful for suppressing the release of NTD-GFD and therefore are promising for use in preventing the release of NTD-GFD and stimulation of the HER-2 receptor. They also are useful in controlling cell growth and replication. Anti-GFD antibodies are useful for the same reasons, but may not be as efficient biologically as antibodies directed against a processing site.

Antibodies are selected that are capable of binding only to one of the members of the HRG family, e.g. HRG-alpha or any one of the HRG-beta isoforms. Since each of the HRG family members has a distinct GFD-transmembrane domain cleavage site, antibodies directed specifically against these unique sequences will enable the highly specific inhibition of each of the GFDs or processing sites, and thereby refine the desired biological response. For example, breast carcinoma cells which are HER-2 dependent may in fact be activated only by a single GFD isotype or, if not, the activating GFD may originate only from a particular processing sequence, either on the HER-2 bearing cell itself or on a GFD-generating cell. The identification of the target activating GFD or processing site is a straight-forward matter of analyzing HER-2 dependent carcinomas, e.g., by analyzing the tissues for the presence of a particular GFD family member associated with the receptor, or by analyzing the tissues for expression of an HRG family member (which then would serve as the therapeutic target). These selective antibodies are produced in the same fashion as described above, either by immunization with the target sequence or domain, or by selecting from a bank of antibodies having broader specificity.

As described above, the antibodies should have high specificity and affinity for the target sequence. For example, the antibodies directed against GFD sequences should have greater affinity for the GFD than GFD has for the HER-2 receptor. Such antibodies are selected by routine screening methods.

4. Non-Therapeutic Uses of Herequlin and its Antibodies

The nucleic acid encoding HRG may be used as a diagnostic for tissue specific typing. For example, such procedures as *in situ* hybridization, and Northem and Southem blotting, and PCR analysis may be used to determine whether DNA and/or RNA encoding HRG are present in the cell type(s) being evaluated. In particular, the nucleic acid may be useful as a specific probe for certain types of tumor cells such as, for example, mammary gland, gastric and colon adenocarcinomas, salivary gland and other tissues containing the p185HER2.

Isolated HRG may be used in quantitative diagnostic assays as a standard or control against which samples containing unknown quantities of HRG may be compared.

Isolated HRG may be used as a growth factor for *invitro* cell culture, and *invivo* to promote the growth of cells containing p185^{HER2} or other analogous receptors.

10

15

20

25

30

35

HRG antibodies are useful in diagnostic assays for HRG expression in specific cells or tissues. The antibodies are labeled in the same fashion as HRG described above and/or are immobilized on an insoluble matrix.

HRG antibodies also are useful for the affinity purification of HRG from recombinant cell culture or natural sources. HRG antibodies that do not detectably cross-react with other HRG can be used to purify HRG free from other known ligands or contaminating protein.

Suitable diagnostic assays for HRG and its antibodies are well known *per se*. Such assays include competitive and sandwich assays, and steric inhibition assays. Competitive and sandwich methods employ a phase-separation step as an integral part of the method while steric inhibition assays are conducted in a single reaction mixture. Fundamentally, the same procedures are used for the assay of HRG and for substances that bind HRG, although certain methods will be favored depending upon the molecular weight of the substance being assayed. Therefore, the substance to be tested is referred to herein as an analyte, irrespective of its status otherwise as an antigen or antibody, and proteins that bind to the analyte are denominated binding partners, whether they be antibodies, cell surface receptors, or antigens.

Analytical methods for HRG or its antibodies all use one or more of the following reagents: labeled analyte analogue, immobilized analyte analogue, labeled binding partner, immobilized binding partner and steric conjugates. The labeled reagents also are known as "tracers."

The label used (and this is also useful to label HRG encoding nucleic acid for use as a probe) is any detectable functionality that does not interfere with the binding of analyte and its binding partner. Numerous labels are known for use in immunoassay, examples including moieties that may be detected directly, such as fluorochrome, chemiluminescent, and radioactive labels, as well as moieties, such as enzymes, that must be reacted or derivatized to be detected. Examples of such labels include the radioisotopes ³²P, ¹⁴C, ¹²⁵I, ³H, and ¹³¹I, fluorophores such as rare earth chelates or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luciferases, e.g., firefly luciferase and bacterial luciferase (U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, horseradish peroxidase (HRP), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases, e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase, heterocyclic oxidases such as uricase and xanthine oxidase, coupled with an enzyme that employs hydrogen peroxide to oxidize a dye precursor such as HRP, lactoperoxidase, or microperoxidase, biotin/avidin, spin labels, bacteriophage labels, stable free radicals, and the like.

Conventional methods are available to bind these labels covalently to proteins or polypeptides. For instance, coupling agents such as dialdehydes, carbodiimides, dimaleimides, bis-imidates, bis-diazotized benzidine, and the like may be used to tag the antibodies with the above-described fluorescent, chemiluminescent, and enzyme labels. See, for example, U.S.

10

15

20

25

30

35

Pat. Nos. 3,940,475 (fluorimetry) and 3,645,090 (enzymes); Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014-1021 (1974); Pain et al., J. Immunol. Methods, 40:219-230 (1981); and Nygren, J. Histochem. and Cytochem., 30:407-412 (1982). Preferred labels herein are enzymes such as horseradish peroxidase and alkaline phosphatase. The conjugation of such label, including the enzymes, to the antibody is a standard manipulative procedure for one of ordinary skill in immunoassay techniques. See, for example, O'Sullivan et al., "Methods for the Preparation of Enzyme-antibody Conjugates for Use in Enzyme Immunoassay," in Methods in Enzymology, ed. J.J. Langone and H. Van Vunakis, Vol. 73 (Academic Press, New York, New York, 1981), pp. 147-166. Such bonding methods are suitable for use with HRG or its antibodies, all of which are proteinaceous.

Immobilization of reagents is required for certain assay methods. Immobilization entails separating the binding partner from any analyte that remains free in solution. This conventionally is accomplished by either insolubilizing the binding partner or analyte analogue before the assay procedure, as by adsorption to a water-insoluble matrix or surface (Bennich et al., U.S. Pat. No. 3,720,760), by covalent coupling (for example, using glutaraldehyde crosslinking), or by insolubilizing the partner or analogue afterward, e.g., by immunoprecipitation.

Other assay methods, known as competitive or sandwich assays, are well established and widely used in the commercial diagnostics industry.

Competitive assays rely on the ability of a tracer analogue to compete with the test sample analyte for a limited number of binding sites on a common binding partner. The binding partner generally is insolubilized before or after the competition and then the tracer and analyte bound to the binding partner are separated from the unbound tracer and analyte. This separation is accomplished by decanting (where the binding partner was preinsolubilized) or by centrifuging (where the binding partner was precipitated after the competitive reaction). The amount of test sample analyte is inversely proportional to the amount of bound tracer as measured by the amount of marker substance. Dose-response curves with known amounts of analyte are prepared and compared with the test results to quantitatively determine the amount of analyte present in the test sample. These assays are called ELISA systems when enzymes are used as the detectable markers.

Another species of competitive assay, called a "homogeneous" assay, does not require a phase separation. Here, a conjugate of an enzyme with the analyte is prepared and used such that when anti-analyte binds to the analyte the presence of the anti-analyte modifies the enzyme activity. In this case, HRG or its immunologically active fragments are conjugated with a bifunctional organic bridge to an enzyme such as peroxidase. Conjugates are selected for use with anti-HRG so that binding of the anti-HRG antibody inhibits or potentiates the enzyme activity of the label. This method *per se* is widely practiced under the name of EMIT.

Steric conjugates are used in steric hindrance methods for homogeneous assay. These conjugates are synthesized by covalently linking a low-molecular-weight hapten to a

10

15

20

25

small analyte so that antibody to hapten substantially is unable to bind the conjugate at the same time as anti-analyte. Under this assay procedure the analyte present in the test sample will bind anti-analyte, thereby allowing anti-hapten to bind the conjugate, resulting in a change in the character of the conjugate hapten, e.g., a change in fluorescence when the hapten is a fluorophore.

Sandwich assays particularly are useful for the determination of HRG or HRG antibodies. In sequential sandwich assays an immobilized binding partner is used to adsorb test sample analyte, the test sample is removed as by washing, the bound analyte is used to adsorb labeled binding partner, and bound material is then separated from residual tracer. The amount of bound tracer is directly proportional to test sample analyte. In "simultaneous" sandwich assays the test sample is not separated before adding the labeled binding partner. A sequential sandwich assay using an anti-HRG monoclonal antibody as one santibody and a polyclonal anti-HRG antibody as the other is useful in testing samples for HRG activity.

The foregoing are merely exemplary diagnostic assays for HRG and antibodies. Other methods now or hereafter developed for the determination of these analytes are included within the scope hereof, including the bioassays described above.

HRG polypeptides may be used for affinity purification of receptors such as the p185 HER2 and other similar receptors that have a binding affinity for HRG, and more specifically HRG- α , HRG- β 1, HRG- β 2 and HRG- β 3. HRG- α , HRG- β 1, HRG- β 2 and HRG- β 3 may be used to form fusion polypeptides wherein HRG portion is useful for affinity binding to nucleic acids and to heparin.

HRG polypeptides may be used as ligands for competitive screening of potential agonists or antagonists for binding to p185 $^{\rm HER2}$. HRG variants are useful as standards or controls in assays for HRG provided that they are recognized by the analytical system employed, e.g. an anti-HRG antibody. Antibody capable of binding to denatured HRG or a fragment thereof, is employed in assays in which HRG is denatured prior to assay, and in this assay the denatured HRG or fragment is used as a standard or control. Preferably, HRG- α , HRG- β 1, HRG- β 2 and HRG- β 3 are detectably labelled and a competition assay for bound p185 $^{\rm HER2}$ 2 is conducted using standard assay procedures.

The methods and procedures described herein with HRG- α may be applied similarly to HRG- β 1, HRG- β 2 and HRG- β 3 and to other novel HRG ligands and to their variants. The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

35

30

Example 1 Preparation of Breast Cancer Cell Supernatants

Heregulin- α was isolated from the supernatant of the human breast carcinoma MDA-MB-231. HRG was released into and isolated from the cell culture medium.

10

15

20

25

30

35

a. Cell Culture

MDA-MB-231, human breast carcinoma cells, obtainable from the American Type Culture Collection (ATCC HTB 26), were initially scaled-up from 25 cm² tissue culture flasks to 890 cm² plastic roller bottles (Coming, Coming, N Y) by serial passaging and the seed train was maintained at the roller bottle scale. To passage the cells and maintain the seed train, flasks and roller bottles were first rinsed with phosphate buffered saline (PBS) and then incubated with trypsin/EDTA (Sigma, St. Louis, Mo) for 1-3 minutes at 37°C. The detached cells were then pipetted several times in fresh culture medium containing fetal bovine serum (FBS), (Gibco, Grand Island, NY) to break up cell clumps and to inactivate the trypsin. The cells were finally split at a ratio of 1:10 into fresh medium, transferred into new flasks or bottles, incubated at 37°C, and allowed to grow until nearly confluent. The growth medium in which the cells were maintained was a combined DME/Ham's-F-12 medic formulation modified with respect to the concentrations of some amino acids, vitamins, sugars, and salts, and supplemented with 5% FBS. The same basal medium is used for the serum-free ligand production and is supplemented with 0.5% Primatone RL (Sheffield, Norwich, NY).

h Large Scale Production

Large scale MDA-MB-231 cell growth was obtained by using Percell Biolytica microcarriers (Hyclone Laboratories, Logan, UT) made of weighted cross-linked gelatin. The microcarriers were first hydrated, autoclaved, and rinsed according to the manufacturer's recommendations. Cells from 10 roller bottles were trypsinized and added into an inoculation spinner vessel which contained three liters of growth medium and 10-20 g of hydrated microcarriers. The cells were stirred gently for about one hour and transferred into a ten-liter instrumented fermenter containing seven liters of growth medium. The culture was agitated at 65-75 rpm to maintain the microcarriers in suspension. The fermenter was controlled at 37°C and the pH was maintained at 7.0-7.2 by the addition of sodium carbonate and CO2. Air and oxygen gases were sparged to maintain the culture at about 40% of air saturation. The cell population was monitored microscopically with a fluorescent vital stain (fluorescein diacetate) and compared to trypan blue staining to assess the relative cell viability and the degree of microcarrier invasion by the cells. Changes in cell-microcarrier aggregate size were monitored by microscopic photography.

Once the microcarriers appeared 90-100% confluent, the culture was washed with serum-free medium to remove the serum. This was accomplished by stopping the agitation and other controls to allow the carriers to settle to the bottom of the vessel. Approximately nine liters of the culture supernatant were pumped out of the vessel and replaced with an equal volume of serum-free medium (the same basal medium described as above supplemented either with or without Primatone RL). The microcarriers were briefly resuspended and the process was repeated until a 1000 fold removal of FBS was achieved. The cells were then incubated in the serum-free medium for 3-5 days. The glucose concentration in the culture was monitored daily and supplemented with additions of glucose as needed to maintain the

10

15

20

25

30

35

concentration in the fermenter at or above 1 g/L. At the time of harvest, the microcarriers were settled as described above and the supernatant was aseptically removed and stored at 2-8°C for purification. Fresh serum-free medium was replaced into the fermenter, the microcarriers were resuspended, and the culture was incubated and harvested as before. This procedure could be repeated four times.

Example 2

Purification of Growth Factor Activity

Conditioned media (10-20 liters) from MDA-MB-231 cells was clarified by centrifugation at 10,000 rpm in a Sorvall Centrifuge, filtered through a 0.22 micron filter and then concentrated 10-50 (approx. 25) fold with a Minitan Tangential Flow Unit (Millipore Corp.) with a 10 kDa cutoff polysulfone membrane at room temperature. Alternatively, media was concentrated with a 2.5L Amicon Stirred Cell at 4°C with a YM3 membrane. After concentration, the media was again centrifuged at 10,000 rpm and the supernatant frozen in 35-50 ml aliquots at -80°C.

Heparin Sepharose was purchased from Pharmacia (Piscataway, NJ) and was prepared according to the directions of the manufacturer. Five milliliters of the resin was packed into a column and was extensively washed (100 column volumes) and equilibrated with phosphate buffered saline (PBS). The concentrated conditioned media was thawed, filtered through a 0.22 micron filter to remove particulate material and loaded onto the heparin-Sepharose column at a flow rate of 1 ml / min. The normal load consisted of 30-50 mls of 40-fold concentrated media. After loading, the column was washed with PBS until the absorbance at 280 nm returned to baseline before elution of protein was begun. The column was eluted at 1 ml/min with successive salt steps of 0.3 M, 0.6 M, 0.9 M and (optionally) 2.0 M NaCl prepared in PBS. Each step was continued until the absorbance returned to baseline, usually 6-10 column volumes. Fractions of 1 milliliter volume were collected. All of the fractions corresponding to each wash or salt step were pooled and stored for subsequent assay in the MDA-MB-453 cell assay.

The majority of the tyrosine phosphorylation stimulatory activity was found in the 0.6M NaCl pool which was used for the next step of purification. Active fractions from the heparin-Sepharose chromatography were thawed, diluted three fold with deionized (MilliQ) water to reduce the salt concentration and loaded onto a polyaspartic acid column (PolyCAT A, 4.6 x 100 mm, PolyLC, Columbia, MD.) equilibrated in 17 mM Na phosphate, pH 6.8. All buffers for this purification step contained 30% ethanol to improve the resolution of protein on this column. After loading, the column was washed with equilibration buffer and was eluted with a linear salt gradient from 0.3 M to 0.6 M NaCl in 17 mM Na phosphate, pH 6.8, buffer. The column was loaded and developed at 1 ml/min and 1 ml fractions were collected during the gradient elution. Fractions were stored at 4°C. Multiple heparin-Sepharose and PolyCat columns were processed in order to obtain sufficient material for the next purification step. A

10

15

20

25

30

35

typical absorbance profile from a PolyCat A column is shown in Figure 1. Aliquots of 10-25 μ L were taken from each fraction for assay and SDS gel analysis.

Tyrosine phosphorylation stimulatory activity was found throughout the eluted fractions of the PolyCAT A column with a majority of the activity found in the fractions corresponding to peak C of the chromatogram (salt concentration of approximately 0.45M NaCl). These fractions were pooled and adjusted to 0.1% trifluoracetic acid (TFA) by addition of 0.1 volume of 1% TFA. Two volumes of deionized water were added to dilute the ethanol and salt from the previous step and the sample was subjected to further purification on high pressure liquid chromatography (HPLC) utilizing a C4 reversed phase column (SynChropak RP-4, 4.6 x100 mm) equilibrated in a buffer consisting of 0.1% TFA in water with 15% acetonitrile. The HPLC procedure was carried out at room temperature with a flow rate of 1 ml/min. After loading of the sample, the column was re-equilibrated in 0.1% TFA/15% acetonitrile. A gradient of acetonitrile was established such that over a 10 minute period of time the acetonitrile concentration increased from 15 to 25% (1%/min). Subsequently, the column was developed with a gradient from 25 to 40% acetonitrile over 60 min time (0.25%/min). Fractions of 1 ml were collected, capped to prevent evaporation, and stored at 4°C. Aliquots of 10 to 50 µL were taken, reduced to dryness under vacuum (SpeedVac), and reconstituted with assay buffer (PBS with 0.1% bovine serum albumin) for the tyrosine phosphorylation assay. Additionally, aliquots of 10 to 50 μL were taken and dried as above for analysis by SDS gel electrophoresis. A typical HPLC profile is shown in Figure

A major peak of activity was found in fraction 17 (Figure 2B). By SDS gel analysis, fraction 17 was found to contain a single major protein species which comigrated with the 45,000 dalton molecular weight standard (Figs. 2C, 3). In other preparations, the presence of the 45,000 dalton protein comigrated with the stimulation of tyrosine phosphorylation activity in the MDA-MB-453 cell assay. The chromatographic properties of the 45,000 dalton protein were atypical; in contrast to many other proteins in the preparation, the 45,000 dalton protein did not elute from the reversed phase column within 2 or 3 fractions. Instead, it was eluted over 5-10 fractions. This is possibly due to extensive post-translational modifications.

a. <u>Protein Sequence Determination</u>

Fractions containing the 45,000 dalton protein were dried under vacuum for amino acid sequencing. Samples were redissolved in 70% formic acid and loaded into an Applied Biosystems, Inc. Model 470A vapor phase sequencer for N-terminal sequencing. No discernable N-terminal sequence was obtained, suggesting that the N-terminal residue was blocked. Similar results were obtained when the protein was first run on an SDS gel, transblotted to ProBlott membrane and the 45,000 dalton band excised after localization by rapid staining with Coomassie Brilliant Blue.

Internal amino acid sequence was obtained by subjecting fractions containing the 45,000 dalton protein to partial digestion using either cyanogen bromide, to cleave at

10

15

20

25

30

35

methionine residues, Lysine-C to cleave at the C-terminal side of lysine residues, or Asp-N to cleave at the N-terminal side of aspartic acid residues. Samples after digestion were sequenced directly or the peptides were first resolved by HPLC chromatography on a Synchrom C4 column (4000A, 2 x 100 mm) equilibrated in 0.1% TFA and eluted with a 1-propanol gradient in 0.1% TFA. Peaks from the chromatographic run were dried under vacuum before sequencing.

Upon sequencing of the peptide in the peak designated number 15 (lysine C-15), several amino acids were found on each cycle of the run. After careful analysis, it was clear that the fraction contained the same basic peptide with several different N-termini, giving rise to the multiple amino acids in each cycle. After deconvolution, the following sequence was determined (SEQ ID NO.3):

1 5 10 15 20

(Residues in brackets were uncertain while an X represents a cycle in which it was not possible to identify the amino acid.)

The initial yield was 8.5 pmoles. This sequence comprising 24 amino acids did not correspond to any previously known protein. Residue 1 was later found from the cDNA sequence to be Cys and residue 9 was found to be correct. The unknown amino acids at positions 15 and 22 were found to be Cys and Cys, respectively.

Sequencing on samples after cyanogen bromide and Asp-N digestions, but without separation by HPLC, were performed to corroborate the cDNA sequence. The sequences obtained are given in Table I and confirm the sequence for the 45,000 protein deduced from the cDNA sequence. The N-terminal of the protein appears to be blocked with an unknown blocking group. On one occasion, direct sequencing of the 45,000 dalton band from a PVDF blot revealed this sequence with a very small initial yield (0.2 pmole)(SEQ ID NO:4):

 $X \in X K \in (G)$ (R) G K (G) K (G) K K K E X G X G (K)

(Residues which could not be determined are represented by "X", while tentative residues are in parentheses). This corresponds to a sequence starting at the serine at position 46 near the present N-terminal of HRG cDNA sequence; this suggests that the N terminus of the 45,000 protein is at or before this point in the sequence.

Example 3

Cloning and Sequencing of Human Herequlin

The cDNA cloning of the p185^{HER2} ligand was accomplished as follows. A portion of the lysine C-15 peptide amino acid sequence was decoded in order to design a probe for cDNA's encoding the 45kD HRG-α ligand. The following 39 residue long eight fold degenerate deoxyoligonucleotide corresponding to the amino acid sequence(SEQ ID NO:5) NH2-...AEKEKTFXVNGGE was chemically synthesized (SEQ ID NO:6):

3' GCTGAGAAGGAGAAGACCTTCTGT/CGTGAAT/CGGA/CGGCGAG 5'.

15

20

25

30

35

The unknown amino acid residue designated by X in the amino acid sequence was assigned as cysteine for design of the probe. This probe was radioactively phosphorylated and employed to screen by low stringency hybridization an oligo dT primed cDNA library constructed from human MDA-MB-231 cell mRNA in λ gt10 (Huyng *et al.*, 1984, In DNA Cloning, Vol 1: A Practical Approach (D. Glover, ed) pp.49-78. IRL Press, Oxford). Two positive clones designated λ gt10her16 and λ gt10her13 were identified. DNA sequence analysis revealed that these two clones were identical.

The 2010 basepair cDNA nucleotide sequence of $\lambda gt10her16$ (Fig. 4) contains a single long open reading frame of 669 amino acids beginning with alanine at nucleotide positions 3-5 and ending with glutamine at nucleotide positions 2007-2009. No stop codon was found in the translated sequence; however, later analysis of heregulin β -type clones indicates that methionine encoded at nucleotide positions 135-137 was the initiating methionine. Nucleotide sequence homology with the probe is found between and including bases 681-719. Homology between those amino acids encoded by the probe and those flanking the probe with the amino acid sequence determined for the lysine C-15 fragment verify that the isolated clone encodes at least the lysine C-15 fragment of the 45kD protein.

Hydropathy analysis shows the existence of a strongly hydrophobic amino acid region including residues 287-309 (Fig. 4) indicating that this protein contains a transmembrane or internal signal sequence domain and thus is anchored to the membrane of the cell.

The 669 amino acid sequence encoded by the 2010bp cDNA sequence contains potential sites for asparagine-linked glycosylation (Winzler,R. in Hormonal Proteins and Peptides, (Li, C.H. ed) pp 1-15 Academic Press, New York (1973)) at positions asparagine 164, 170, 208, 437 and 609. A potential O-glycosylation site (Marshall,R.D. (1974) Biochem. Soc. Symp. 40:17-26) is presented in the region including a cluster of serine and threonine residues at amino acid positions 209-218. Three sites of potential glycosaminoglycan addition (Goldstein, L.A., et al. (1989) Cell 56:1063-1072) are positioned at the serine-glycine dipeptides occurring at amino acids 42-43, 64-65 and 151-152. Glycosylation probably accounts for the discrepancy between the calculated NW of about 26KD for the NTD-GFD (extracellular) region of HRG and the observed NW of about 45 KD for purified HRG.

This amino acid sequence shares a number of features with the epidermal growth factor (EGF) family of transmembrane bound growth factors (Carpenter,G., and Cohen,S. (1979) Ann. Rev. Biochem.48: 193-216; Massenque, J.(1990) J. Biol. Chem. 265: 21393-21396) including 1) the existence of a proform of each growth factor from which the mature form is proteolytically released (Gray,A., Dull, T.J., and Ullrich, A. (1983) Nature 303, 722-725; Bell, G.I. *et al.*, (1986) Nuc. Acid Res., 14: 8427-8446; Derynck, R. *et al.* (1984) Cell: 287-297); 2) the conservation of six cysteine residues characteristically positioned over a span of approximately 40 amino acids (the EGF-like structural motif) (Savage,R.C., *et al.* (1973) J. Biol. Chem. 248: 7669-7672); HRG-α cysteines 226, 234, 240, 254, 256 and 265); and, 3) the

10

15

20

25

30

35

existence of a transmembrane domain occurring proximally on the carboxy-terminal side of the EGF homologous region (Fig. 4 and 6).

Alignment of the amino acid sequences in the region of the EGF motif and flanking transmembrane domain of several human EGF related proteins (Fig. 6) shows that between the first and sixth cysteine of the EGF motif HRG is most similar (50%) to the heparin binding EGF-like growth factor (HB-EGF) (Higashiyama, S. et al. (1991) Science 251: 936-939). In this same region HRG is ~35% homologous to amphiregulin (AR) (Plowman, G.D.et al., (1990) Mol. Cell. Biol. 10: 1969-1981), ~32% homologous to transforming growth factor α (TGF α) (8), 27% homologous with EGF (Bell, G.I. et al., (1986) Nuc. Acid Res., 14: 8427-8446); and 39% homologous to the schwanoma-derived growth factor (Kimura, H., et al., Nature, 348:257-260, 1990). Disulfide linkages between cysteine residues in the EGF motif have been determined for EGF (Savage, R.C. et al. (1973) J. Biol. Chem. 248: 7669-7672). These disulfides define the secondary structure of this region and demarcate three loops. By numbering the cysteines beginning with 1 on the amino-terminal end, loop 1 is delineated by cysteines 1 and 3; loop 2 by cysteines 2 and 4; and loop 3 by cysteines 5 and 6. Although the exact disulfide configuration in the region for the other members of the family has not been determined, the strict conservation of the six cysteines, as well as several other residues i.e., glycine 238 and 262 and arginine at position 264, indicate that they too most likely have the same arrangement. HRG- α and EGF both have 13 amino acids in loop 1. HB-EGF, amphregulin (AR) and TGF α have 12 amino acids in loop 1. Each member has 10 residues in loop 2 except HRG- α which has 13. All five members have 8 residues in the third loop.

EGF, AR, HB-EGF and TGF-α are all newly synthesized as membrane anchored proteins by virtue of their transmembrane domains. The proproteins are subsequently processed to yield mature active molecules. In the case of TGF-α there is evidence that the membrane associated proforms of the molecules are also biologically active (Brachmann, R., et al. (1989) Cell 56: 691-700), a trait that may also be the case for HRG- α . EGF is synthesized as a 1168 amino acid transmembrane bound proEGF that is cleaved on the aminoterminal end between arginine 970 and asparagine 971 and at the carboxy-terminal end between arginine 1023 and histidine 1024 (Carpenter, G., and Cohen, S. (1979) Ann. Rev. Biochem.48: 193-216) to yield the 53 amino acid mature EGF molecule containing the three loop, 3 disulfide bond signature structure. The 252 amino acid proAR is cleaved between aspartic acid 100 and serine 101 and between lysine 184 and serine 185 to yield an 84 amino acid form of mature AR and a 78 amino acid form is generated by NH2-terminal cleavage between glutamine 106 and valine 107 (Plowman, G.D. et al., (1990) Mol. Cell. Biol. 10: 1969-1981). HB-EGF is processed from its 208 amino acid primary translation product to its proposed 84 amino acid form by cleavage between arginine 73 and valine 74 and a second site approximately 84 amino acids away in the carboxy-terminal direction (Higashiyama, S., et al., and Klagsburn, M. (1991) Science 251: 936-939). The 160 amino acid proform of TGF α is processed to a mature 50 amino acid protein by cleavages between alanine 39 and valine 40

15

20

25

30

35

on one side and downstream cleavage between alanine 89 and valine 90 (Derynck et al., (1984) Cell: 38: 287-297). For each of the above described molecules COOH-terminal processing occurs in the area bounded by the sixth cysteine of the EGF motif and the beginning of the transmembrane domain.

The residues between the first and sixth cysteines of HRGs are most similar (45%) to heparin-binding EGF-like growth factor (HB-EGF). In this same region they are 35% identical to amphiregulin (AR), 32% identical to TGF- α , and 27% identical with EGF. Outside of the EGF motif there is little similarity between HRGs and other members of the EGF family. EGF, AR, HB-EGF and TGF- α are all derived from membrane anchored proproteins which are processed on both sides of the EGF structural unit, yielding 50-84 amino acid mature proteins (16-19). Like other EGF family members, the HRGs appear to be derived from a membrane-bound proform but require only a single cleavage, C-terminal to the cysteine cluster, to produce mature protein.

HRG may exert its biological function by binding to its receptor and triggering the transduction of a growth modulating signal. This it may accomplish as a soluble molecule or perhaps as its membrane anchored form such as is sometimes the case with TGF α (Brachmann, R., et al., (1989) Cell 56: 691-700). Conversely, or in addition to stimulating signal transduction, HRG may be internalized by a target cell where it may then interact with the controlling regions of other regulatory genes and thus directly deliver its message to the nucleus of the cell. The possibility that HRG mediates some of its effects by a mechanism such as this is suggested by the fact that a potential nuclear location signal (Roberts, Biochem-Biophys Acta (1989) 1008: 263-280) exists in the region around the three lysine residues at positions 58-60 (Fig. 4).

The isolation of full-length cDNA of HRG- α is accomplished by employing the DNA sequence of Fig 4 to select additional cDNA sequences from the cDNA library constructed from human MDA-MB-231. Full-length cDNA clones encoding HRG- α are obtained by identifying cDNAs encoding HRG- α longer in both the 3' and 5' directions and then splicing together a composite of the different cDNAs. Additional cDNA libraries are constructed as required for this purpose. Following are three types of cDNA libraries that may be constructed: 1) Oligo-dT primed where predominately stretches of polyadenosine residues are primed, 2) random primed using short synthetic deoxyoligonucleotides non-specific for any particular region of the mRNA, and 3) specifically primed using short synthetic deoxyoligonucleotides specific for a desired region of the mRNA. Methods for the isolation of such cDNA libraries were previously described.

Example 4

Detection of HRG- α mRNA Expression by Northern Analyses

Northern blot analysis of MDA-MB-231 and SK-BR-3 cell mRNA under high stringency conditions shows at least five hybridizing bands in MDA-MB-231 mRNA where a 6.4Kb band predominates: other weaker bands are at 9.4, 6.9, 2.8 and 1.8Kb (Fig. 5). No hybridizing band

15

20

25

30

35

is seen in SK-BR-3 mRNA (this cell line overepresses p185^{HER2}). The existence of these multiple messages in MDA-MB-231 cells indicates either alternative splicing of the gene, various processing of the genes' primary transcript or the existence of a transcript of another homologous message. One of these messages may encode a soluble non-transmembrane bound form of HRG- α . Such messages (Fig. 5) may be used to produce cDNA encoding soluble non-transmembrane bound forms of HRG- α .

Example 5

Cell Growth Stimulation by Heregulin-a

Several different breast cancer cell lines expressing the EGF receptor or the p185HER2 receptor were tested for their sensitivity to growth inhibition or stimulation by ligand preparations. The cell lines tested were: SK-BR-3 (ATCC HTB 30), a cell line which overexpresses p185HER2; MDA-MB-468 (ATCC HTB 132), a line which overexpresses the EGF receptor; and MCF-7 cells (ATCC HTB 22) which have a moderate level of p185HER2 expression. These cells were maintained in culture and passaged according to established cell culture techniques. The cells were grown in a 1:1 mixture of DMEM and F-12 media with 10% fetal bovine serum. For the assay, the stock cultures were treated with trypsin to detach the cells from the culture dish, and dispensed at a level of about 20000 cells/well in a ninety-six well microtiter plate. During the course of the growth assay they were maintained in media with 1% fetal bovine serum. The test samples were sterilized by filtration through 0.22 micron filters and they were added to quadruplicate wells and the cells incubated for 3-5 days at 37°C. At the end of the growth period, the media was aspirated from each well and the cells treated with crystal violet (Lewis, G. et al., Cancer Research, 347:5382-5385 [1987]). The amount of crystal violet absorbance which is proportional to the number of cells in each well was measured on a Flow Plate Reader. Values from replicate wells for each test sample were averaged. Untreated wells on each dish served as controls. Results were expressed as percent of growth relative to the control cells.

The purified HRG- α ligand was tested for activity in the cell growth assay and the results are presented in Figure 7. At a concentration of approximately 1 nM ligand, both of the cell lines expressing the p185HER2 receptor (SK-BR-3 and MCF-7) showed stimulation of growth relative to the controls while the cell type (MDA-MB-468) expressing only the EGF receptor did not show an appreciable response. These results were consistent to those obtained from the autophosphorylation experiments with the various cell lines. These results established that HRG- α ligand is specific for the p185HER2 receptor and does not show appreciable interaction with the EGF receptor at these concentrations.

HRG does not compete with antibodies directed against the extra-cellular domain of p185^{HER2}, but anti-p185^{HER2} Mabs 2C4 and 7F3 (which are antiproliferative in their own right) do antagonize HRG.

WO 92/20798 PCT/US92/04295

5

10

15

20

35

58

Example 6

Cloning and Sequencing of Heregulin-B1

The isolation of HRG- $\beta1$ cDNA was accomplished by employing a hybridizing fragment of the DNA sequence encoding HRG- α to select additional cDNA sequences from the cDNA library constructed from human MDA-MB-231 cells. Clone λ her11.1dbl (heregulin- $\beta1$) was identified in a λ gt₁₀ oligo-dT primed cDNA library derived from MDA MB231 polyA+ mRNA. Radioactively labelled synthetic DNA probes corresponding to the 5' and 3' ends of λ her16 (HRG- α) were employed in a hybridization reaction under high stringency conditions to isolate the λ her11.1dbl clone. The DNA nucleotide sequence of the λ her11.1dbl clone is shown in figure 8 (SEQ ID NO:9) HRG- $\beta1$ amino acid sequence is homologous to HRG- α from its amino-terminal end at position Asp 15 of HRG- α through the 3'end of HRG- α except at the positions described below. In addition, HRG- $\beta1$ encoding DNA extends 189 base pairs longer than λ her16 in the 3' direction and supplies a stop codon after Val 675. At nucleotide position 247 of λ her11.1dbl there is a G substituted for A thereby resulting in the substitution of Gln(Q) in place of Arg(R) in HRG- $\beta1$ as shown in the second line of Figure 9 (SEQ ID NO:9) and SEQ ID NO:9).

In the area of the EGF motif there are additional differences between HRG- α and HRG- β 1. These differences are illustrated below in an expanded view of the homology between HRG- α and HRG- β 1 in the region of the EGF motif or the GFD (growth factor domain). The specific sequence shown corresponds to HRG- α amino acids 221-286 shown in figure 9. Asterisks indicate identical residues in the comparison below (SEQ ID NO:10 and SEQ ID NO:11).

	HEREGULIN-α	s	H	L	v	ĸ	С	A	E	K	E	K	T	F	C	V	N	G	G	E	C
25	HEREGULIN-β1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	HEREGULIN-α	F	M	v	K	D	L	s	N	P	s	R	Y	L	С	ĸ	С	Q	P	G	F
	HEREGULIN-β1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	P	N	E	*
30	HEREGULIN-α	T	G	A	R	С	T	E	N	v	P	M	ĸ	v	Q	N	Q	E	ĸ	_	-
00	HEREGULIN-β1																				
	UEDEOU! IN		٠		•	-	177		٠			er 1	Ь	(_r	Dec 20	na	m A	mh	rai	ne'	١
	$\text{HEREGULIN-}\alpha$																				
	HEREGULIN-β1	F	M	E	*	*	*	*	*	*	. 1	k 1	ŀ	(-1	ra	ns	me	mb	rai	ıe))

Example 7

Expression of Herequiins in E. Coli

HRG- α and HRG- β 1 have been expressed in E. coli using the DNA sequences of Figures 4 and 8 encoding heregulin under the control of the alkaline phosphatase promotor and

10

15

20

25

30

35

the STII leader sequence. In the initial characterization of heregulin activity, the precise natural amino and carboxy termini of the heregulin molecule were not precisely defined. However, after comparsion of heregulin to EGF and TGF- α sequences, we expected that shortened forms of heregulin starting around Ser 221 and ending around Glu 277 of figure 4 may have biological activity. Analogous regions of all heregulins may be identified and expressed. One shortened form was constructed to have an N-terminal Asp residue followed by the residues 221 to 277 of HRG- α . Due to an accidental frame shift mutation following Glu 277, HRG- α sequence was extended by 13 amino acids on the carboxy terminal end. Thus, the carboxy-terminal end was Glu 277 of HRG- α followed by the thirteen amino acid sequence RPNARLPPGVFYC (SEQ ID NO:20).

Expression of this construct was induced by growth of the cells in phosphate depleted medium for about 20 hours. Recombinant protein was purified by harvesting & III paste and resuspending in 10 mM Tris (pH8), homogenizing, incubating at 4°C. for 40 minutes and followed by centrifuging at 15 K rpm (Sorvall). The supernatant was concentrated on a 30K ultrafiltration membrane (Amicon) and the filtrate was applied to a MonoQ column equilibrtated in 10 mM Tris pH8. The flow-through fractions from the MonoQ column were adjusted to 0.05% TFA (trifluoroacetic acid) and subjected to C4 reversed phase HPLC. Elution was with a gradient of 10-25% acetonitrile in 0.1% TFA/H₂O. The solvent was removed by lyophilization and purified protein was resuspended in 0.1% bovine serum albumin in phosphate buffered saline. Figure 10 depicts HER2 receptor autophophorylation data with MCF-7 cells in response to the purified E. coli-derived protein. This material demonstrated full biological activity with an EC₅₀ of 0.8 nM. The purified material was also tested in the cell growth assays (Example 5) and was found to be a potent stimulator of cell growth.

The recombinant expression vector for synthesis of HRG- $\beta1$ was constructed in a manner similar to HRG- α . The expression vector contained DNA encoding HRG- $\beta1$ amino acids from Ser₂₀₇ through Leu₂₇₃ (Figure 4). This DNA encoding HRG- $\beta1$ was recombinantly spliced into the expression vector downstream from the alkaline phosphatase promoter and STII leader sequence. An additional serine residue was spliced on the carboxy terminus as a result of the recombinant construction process. The expression vector encoding HRG- $\beta1$ was used to transform *E. coli* and expressed in phosphate depleted medium. Induced *E. coil* were pelleted, resuspended in 10mM Tris (pH7.5) and sonicated. Cell debris was pelleted by centrifugation and the supernatant was filtered through a sterile filter before assay. The expression of HRG- $\beta1$ was confirmed by the detection of protein having the ability to stimulate autophosphorylation of the HER2 receptor in MCF-7 cells.

A similar expression vector was constructed as described for HRG- β 1 (above) with a C terminal tyrosine residue instead of the serine residue. This vector was transformed into *E. coli* and expressed as before. Purification of this recombinant protein was achieved as described for recombinant HRG- α . Mass spectrometric analysis revealed that the purified protein consisted of forms which were shorter than expected. Amino acid sequencing showed

10

15

that the protein had the desired N-terminal residue (Ser) but it was found by mass spectrometry to be truncated at the C terminus The majority (>80%) of the protein consisted of a form 51 amino acids long with a C terminal methionine (MET 271) (SEQ ID NO:9). A small amount of a shorter form (49 residues) truncated at VAL 269 was also detected. However, both the shortened forms showed full biological activity in the HER2 receptor autophosphorylation assay.

Example 8

ISOLATION OF HEREGULIN B2 and B3 VARIANTS

Heregulin- $\beta 2$ and - $\beta 3$ variants were isolated in order to obtain cDNA clones that extend further in the 5' direction. A specifically primed cDNA library was constructed in $\lambda gt10$ by employing the chemically synthesized antisense primer 3' CCTTCCCGTTCTTCTTCCTCGCTCC (SEQ ID NO:21). This primer is located between nucleotides 167-190 in the sequence of λ her16 (figure 4). The isolation of clone λ 5'her13 (not to be confused with λ her13) was achieved by hybridizing a synthetic DNA probe corresponding to the 5' end of λ her16 under high stringency conditions with the specifically primed cDNA library. The nucleotide sequence of λ 5'her13 is shown in figure 11 (SEQ ID NO:22). The 496 base pair nucleotide sequence of λ 5'her13 is homologous to the sequence of λ her16 between nucleotides 309-496 of λ 5'her13 and 3-190 of λ her16. λ 5'her13 extends by 102 amino acids the open reading frame of λ her16.

The isolation of variant heregulin- β forms was accomplished by probing a newly prepared oligodT primed $\lambda gt10$ MDA-MB-231 mRNA-derived cDNA library with synthetic probes corresponding to the 5' end of $\lambda 5$ 'her13 and the cysteine rich EGF-like region of $\lambda ter16$. Three variants of heregulin- β were identified, isolated and sequenced. The amino acid homologies between all heregulins is shown in figure 15 (SEQ ID NOS:26-30).

HRG polypeptides λ her76 (heregulin- β 2) (SEQ ID NO:23), λ her78 (heregulin- β 3) (SEQ ID NO:24) and λ her84 (heregulin β 2-like) (SEQ ID NO:25) are considered variants of λ her11.1dbl (heregulin- β 1) because although the deduced amino acid sequence is identical between cysteine 1 and cysteine 6 of the EGF-like motif their sequences diverge before the predicted transmembrane domain which probably begins with amino acid 248 in λ her11.1dbl. The nucleotide sequences and deduced amino acid sequences of λ her76, λ her78 and λ her84 are shown in figures 12, 13 and 14.

The variants each contain a TGA stop codon 148 bases 5' of the first methionine codon in their sequences. Therefore the ATG codon at nucleotide position 135-137 of λ her16 and the corresponding ATG in the other heregulin clones may be defined as the initiating methionine (amino acid 1). Clones λ her11.1dbl, λ her76, λ her84 and λ her78 all encode glutamine at amino acid 38 (Figure 15) whereas clone her16 encodes arginine (Figure 4, position 82).

The deduced amino acid sequence of λ her76 (heregulin- β 1) reveals a full-length clone encoding 637 amino acids. It shares an identical deduced amino acid sequence as λ her11.1dbl

20

25

35

30

except that residues corresponding to amino acids 232-239 of λ her11.1dbl have been deleted. The deduced amino acid sequence of λ her84 shows that it posesses the same amino acid sequence as λ her76 from the initiating methionine (amino acid 1, Figure 15) through the EGF-like area and transmembrane domain. However, λ her84 comes to an early stop codon at arginine 421 (λ her84 numbering). Thereafter the 3' untranslated sequence diverges. The deduced amino acid sequence of λ her78 (heregulin- β 3) is homologous with heregulins- β 1 and - β 2 through amino acid 230 where the sequence diverges for eleven amino acids then terminates. Thus heregulin- β 3 has no transmembrane region. The 3' untranslated sequence is not homologous to the other clones.

10

Example 9

EXPRESSION OF HEREGULIN β FORMS

In order to express heregulin- β forms in mammalian cells, full-length cDNA nucleotide sequences from λ her76 (heregulin- β 2) or λ her84 were subcloned into the mammalian expression vector pRK5.1. This vector is a derivative of pRK5 that contains a cytomegalovirus promoter followed by a 5' intron, a cloning polylinker and an SV40 early polyadenylation signal. COS7, monkey or human kidney 293 cells were transfected and conditioned medium was assayed in the MCF-7 cell p185/her2 autophosphorylation assay. A positive response confirmed the expression of the cDNA's from λ her76 (heregulin- β 2) and λ her84 (heregulin- β 3).

20

15

Supernatants from a large scale transient expression experiment were concentrated on a YM10 membrane (Amicon) and applied to a heparin Sepharose column as described in Example 1. Activity (tyrosine phosphorylation assay) was detected in the 0.6M NaCl elution pool and was further purified on a polyaspartic acid column, as previously described By SDS gel analysis and activity assays, the active fractions of this column were highly purified and contained a single band of protein with an apparent molecular weight of 45,000 daltons. Thus, the expressed protein has chromatographic and structural properties which are very similar to those of the native form of heregulin originally isolated from the MDA 231 cells. Small scale transient expression experiments with constructs made from λ her84 cDNA also revealed comparable levels of activity in the cell supernatants from this variant form. The expression of the transmembrane-minus variant, heregulin- β 3, is currently under investigation.

30

35

25

Example 10

proHRG- α and proHRG- β_1 cDNAs were spliced into Epstein Barr virus derived expression vectors containing a cytomegalovirus promoter. rHRGs were purified (essentially as described in Example 2) from the serum free conditioned medium of stably transfected CEN4 cells [human kidney 293 cells (ATCC No. 1573) expressing the Epstein Barr virus EBNA-1 transactivator. In other experiments full length proHRG- α , - β_1 and - β_2 transient expression constructs provided p185^{HER2} phosphorylation activity in the conditioned medium of transfected COS7 monkey kidney cells. However, similar constructs of full length proHRG- β_3 failed to yield activity suggesting that the hydrophobic domain missing in proHRG- β_3 but

present in the other proHRGs is necessary for secretion of mature protein. Truncated versions of proHRG- α (63 amino acids, serin 177 to tyrosine 239) and proHRG- β_1 (68 amino acids, serine 177 to tyrosine 241) each encoding the GFD structural unit and immediate flanking regions were also expressed in *E. coli*, homologous truncated versions of HRG- β_3 are expected to be expressed as active molecules. These truncated proteins were purified from the periplasmic space and culture broth of *E. coli*. transformed with expression vectors designed to secrete recombinant proteins (C.N. Change, M. Rey, B. Bochenr, H. Heyneker, G. Gray, *Gene*, 55:189 [1987]). These proteins also stimulated tyrosine phosphorylation of p185HER2 but not p107HER1 , indicating that the biological activity of HRG resides in the EGF-like domain of the protein and that carbohydrate moleties are not essential for activity in this assay. The NTD does not inhibit or suppress this activity.

Example 11

10

15

20

Various human tissues were examined for the presence of HRG mRNA. Transcripts were found in breast, ovary, testis, prostate, heart, skeletal muscle, lung, liver, kidney, salivary gland, small intestine, and spleen but not in stomach, pancreas, uterus or placenta. While most of these tissues display the same three classes of transcripts as the MDA-MB-231 cells (6.6 kb, 2.5 kb and 1.8 kb), only the 6.6 kb message was observed for in heart and skeletal muscle. In brain a single transcript of 2.2 kb is observed and in testis the 6.6 kb transcript appears along with others of 2.2 kb, 1.9 kb and 1.5 kb. The tissue specific expression pattern observed for HRG differs from that of p185HER2; for example, adult liver, spleen, and brain contain HRG but not p185HER2 transcripts whereas stomach, pancreas, uterus and placenta contain p185HER2 transcripts but lack HRG mRNA.

SEQUENCE LISTING

	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: Genentech, Inc.	
	(ii) TITLE OF INVENTION: Structure, Production and Use of Heregul	in
10	(iii) NUMBER OF SEQUENCES: 30	
15	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Genentech, Inc. (B) STREET: 460 Point San Bruno Blvd (C) CITY: South San Francisco (D) STATE: California (E) COUNTRY: USA 	
	(F) ZIP: 94080	
20	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: 5.25 inch, 360 Kb floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: patin (Genentech) 	
25	(vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER:(B) FILING DATE: 21-May-1992(C) CLASSIFICATION:	
30	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 11-May-1992	
35	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 07/847743 (B) FILING DATE: 06-Mar-1992	
40	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 07/705256 (B) FILING DATE: 24-May-1991</pre>	
45	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 07/765212 (B) FILING DATE: 25-Sep-1991</pre>	
	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 07/790801 (B) FILING DATE: 08-Nov-1991	
50	<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Hensley, Max D. (B) REGISTRATION NUMBER: 27,043 (C) REFERENCE/DOCKET NUMBER: 712P4</pre>	
55	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 415/266-1994 (B) TELEFAX: 415/952-9881 (C) TELEX: 910/371-7168	

```
(2) INFORMATION FOR SEQ ID NO:1:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 bases
            (B) TYPE: nucleic acid
 5
            (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
10
            CNCAAT 6
15
     (2) INFORMATION FOR SEQ ID NO:2:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 bases
20
            (B) TYPE: nucleic acid
            (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
25
            аатааа 6
30
     (2) INFORMATION FOR SEQ ID NO:3:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 24 amino acids
35
            (B) TYPE: amino acid
            (D) TOPOLOGY: linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
     Ala Ala Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Xaa
40
      Phe Met Val Lys Asp Leu Xaa Asn Pro
                       20
45
     (2) INFORMATION FOR SEQ ID NO:4:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 21 amino acids
            (B) TYPE: amino acid
50
            (D) TOPOLOGY: linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
     Xaa Glu Xaa Lys Glu Gly Arg Gly Lys Gly Lys Lys Lys
55
       1
     Glu Xaa Gly Xaa Gly Lys
60
```

•	(2) INFORMATION FOR SEQ ID NO:5:													
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:													
10	Ala Glu Lys Glu Lys Thr Phe Xaa Val Asn Gly Gly Glu 1 5 10 13													
	(2) INFORMATION FOR SEQ ID NO:6:													
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single													
20	(D) TOPOLOGY: linear													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:													
25	GCTGAGAAGG AGAAGACCTT CTGTCGTGAA TCGGACGGCG AG 42													
	(2) INFORMATION FOR SEQ ID NO:7:													
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2199 bases													
35	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:													
40	GG GAC AAA CTT TTC CCA AAC CCG ATC CGA GCC CTT GGA 38 Asp Lys Leu Phe Pro Asn Pro Ile Arg Ala Leu Gly 1 5 10													
45	CCA AAC TCG CCT GCG CCG AGA GCC GTC CGC GTA GAG CGC 77 Pro Asn Ser Pro Ala Pro Arg Ala Val Arg Val Glu Arg 15 20 25													
FO	TCC GTC TCC GGC GAG ATG TCC GAG CGC AAA GAA GGC AGA 116 Ser Val Ser Gly Glu Met Ser Glu Arg Lys Glu Gly Arg 30 35													
50	GGC AAA GGG AAG GGC AAG AAG GAG CGA GGC TCC GGC 155 Gly Lys Gly Lys Lys Lys Lys Glu Arg Gly Ser Gly 40 45 50													
55	AAG AAG CCG GAG TCC GCG GCG GGC AGC CAG AGC CCA GCC 194 Lys Lys Pro Glu Ser Ala Ala Gly Ser Gln Ser Pro Ala 55 60													
60	TTG CCT CCC CAA TTG AAA GAG ATG AAA AGC CAG GAA TCG 233 Leu Pro Pro Gln Leu Lys Glu Met Lys Ser Gln Glu Ser 65 70 75													

	GCT GC	A GGT I	CC AAA	CTA Leu	GTC Val	CTT Leu	CGG Arg	TGT Cvs	GAA Glu	ACC Thr	AGT Ser	272	
		80				85					90		
5	TCT GA Ser Gl	A TAC T 1 Tyr S	CC TCT er Ser 95	CTC Leu	AGA Arg	TTC Phe	AAG Lys	TGG Trp 100	TTC	AAG Lys	Asn	311	
10	GGG AA Gly As 10	r GAA T n Glu L 5	TG AAT eu Asn	CGA Arg	AAA Lys 110	AAC Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 115	ATC Ile	350	
15	AAG AT Lys Il	A CAA A e Gln L 1	AA AAG ys Lys 20	CCA Pro	GGG Gly	AAG Lys	TCA Ser 125	GAA Glu	CTT Leu	CGC Arg	ATT Ile	389	
	AAC AA Asn Ly 130	A GCA T s Ala S	CA CTG er Leu	GCT Ala 135	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 140	ATG Met	TGC Cys	428	
20	AAA GT Lys Va	G ATC A l Ile S 145	GC AAA er Lys	TTA Leu	GGA Gly	AAT Asn 150	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 155	467	
25	AAT AT Asn Il	C ACC A	TC GTG le Val 160	GAA Glu	TCA Ser	AAC Asn	GAG Glu	ATC Ile 165	ATC Ile	ACT Thr	GGT Gly	506	
30	ATG CC Met Pro	Ala S	CA ACT er Thr	GAA Glu	GGA Gly 175	GCA Ala	TAT Tyr	GTG Val	TCT Ser	TCA Ser 180	GAG Glu	545	
35	TCT CC	ATT A Ile A 1	GA ATA rg Ile 85	TCA Ser	GTA Val	TCC Ser	ACA Thr 190	GAA Glu	GGA Gly	GCA Ala	AAT Asn	584	
	ACT TC Thr Set 195	TCA T Ser S	CT ACA er Thr	TCT Ser 200	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 205	ACA Thr	AGC Ser	623	
40	CAT CT	GTA A Val L 210	AA TGT ys Cys	GCG Ala	GAG Glu	AAG Lys 215	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 220	662	
45	GTG AA'	GGA G	GG GAG ly Glu 225	TGC Cys	TTC Phe	ATG Met	GTG Val	AAA Lys 230	GAC Asp	CTT Leu	TCA Ser	701	
50	AAC CCC Asn Pro	Ser A	GA TAC rg Tyr	TTG Leu	TGC Cys 240	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 245	TTT Phe	740	
55	ACT GGT	Asp A	GC TGC rg Cys 50	CAA Gln	AAC Asn	TAC Tyr	GTA Val 255	ATG Met	GCC Ala	AGC Ser	TTC Phe	779	
	TAC AAC Tyr Lys 260	CAT C	TT GGG eu Gly	ATT Ile 265	GAA Glu	TTT Phe	ATG Met	GAG Glu	GCG Ala 270	GAG Glu	GAG Glu	818	
60	Leu Tyr	TG TAC Gln Ly 275	CAG AA ys Arg	G AG Val	A GI Leu	G CI Thr 280	G AC Ile	C AT	A AC Gly	C GG Ile	Cys 285	C TGC	857

	GCC Ala							896
5	TGC Cys 300							935
10	CTT Leu							974
15	AAC Asn							1013
m.	GAG Glu							1052
20	 GTC Val	 	 		Val			1091
25	ACA Thr 365							1130
30	CAC His							1169
35	AGC Ser							1208
40	TCT Ser							1247
40	AGC Ser							1286
45	ACA Thr 430							1325
50	GCC Ala							1364
55	AGT Ser							1403
•	 ATG Met							1442
60	TCG Ser							1481

								w								
	1	ATG Met	ACG Thr 495	GTG Val	TCC Ser	ATG Met	CCT Pro	TCC Ser 500	ATG Met	GCG Ala	GTC Val	AGC Ser	CCC Pro 505	TTC Phe	152	0
5	1	ATG Met	GAA Glu	GAA Glu	GAG Glu 510	AGA Arg	CCT Pro	CTA Leu	CTT Leu	CTC Leu 515	GTG Val	ACA Thr	CCA Pro	CCA Pro	155	Ð
10		AGG Arg 520	CTG Leu	CGG Arg	GAG Glu	AAG Lys	AAG Lys 525	TTT Phe	GAC Asp	CAT His	CAC His	CCT Pro 530	CAG Gln	CAG Gln	159	3
15		TTC Phe	AGC Ser	TCC Ser 535	TTC Phe	CAC His	CAC His	AAC Asn	CCC Pro 540	GCG Ala	CAT His	GAC Asp	AGT Ser	AAC Asn 545	163	7
•	į	AGC Ser	CTC Leu	CCT Pro	GCT Ala	AGC Ser 550	CCC Pro	TTG Leu	AGG Arg	ATA Ile	GTG Val 555	GAG Glu	GAT Asp	GAG Glu	167	5
20		GAG Glu	TAT Tyr 560	GAA Glu	ACG Thr	ACC Thr	CAA Gln	GAG Glu 565	TAC Tyr	GAG Glu	CCA Pro	GCC Ala	CAA Gln 570	GAG Glu	171	5
25		CCT Pro	GTT Val	AAG Lys	AAA Lys 575	CTC Leu	GCC Ala	AAT Asn	AGC Ser	CGG Arg 580	CGG Arg	GCC Ala	AAA Lys	AGA Arg	175	1
30	4	ACC Thr 585	AAG Lys	CCC Pro	AAT Asn	GGC Gly	CAC His 590	ATT Ile	GCT Ala	AAC Asn	AGA Arg	TTG Leu 595	GAA Glu	GTG Val	1793	3
35		GAC Asp	AGC Ser	AAC Asn 600	ACA Thr	AGC Ser	TCC Ser	CAG Gln	AGC Ser 605	AGT Ser	AAC Asn	TCA Ser	GAG Glu	AGT Ser 610	1832	
		GAA Glu	ACA Thr	GAA Glu	GAT Asp	GAA Glu 615	AGA Arg	GTA Val	GGT Gly	GAA Glu	GAT Asp 620	ACG Thr	CCT Pro	TTC Phe	187	L
40	:	CTG Leu	GGC Gly 625	ATA Ile	CAG Gln	AAC Asn	CCC Pro	CTG Leu 630	GCA Ala	GCC Ala	AGT Ser	CTT Leu	GAG Glu 635	GCA Ala	191)
45	;	ACA Thr	CCT Pro	GCC Ala	TTC Phe 640	CGC Arg	CTG Leu	GCT Ala	GAC Asp	AGC Ser 645	AGG Arg	ACT Thr	AAC Asn	CCA Pro	1949	9
50		GCA Ala 650	GGC Gly	CGC Arg	TTC Phe	TCG Ser	ACA Thr 655	CAG Gln	GAA Glu	GAA Glu	ATC Ile	CAG Gln 660	GCC Ala	AGG Arg	1988	3
<i>5</i> 5	· (CTG Leu	TCT Ser	AGT Ser 665	GTA Val	ATT Ile	GCT Ala	AAC Asn	CAA Gln 670	GAC Asp	CCT Pro	ATT Ile	GCT Ala	GTA Val 675	TA 2	2029
	;	A AA	CCTA	\AAT?	AAC	CACAT	TAGA	TTC!	CCTC	STA A	AAACI	TTAT	T 20	70		
60		TTAT	'ATAI	ATA A	AAGT?	ATTCO	CA CO	TAT	ATT	AA A	CAATT	TAT	TTT	ATTTT	rag 2	2120
		CAGI	TCTC	CA 7	\ATAC	AAA?	AC AC	GAA	LAAA?	CT	TTAT	AAA	TTAZ	CATA	TAT :	217ê

СТАТСТАААА АТСААААААА ААААААААА 2199

5	(2)	INFO	RMAT	пол	FOR	SEQ	ID N	io:8:							
10	((EQUE A) L B) T D) T	ENGT YPE:	H: 6 ami	69 a no a	mino		ds						
	(x	i) S	EQUE	NCE	DESC	RIPT	: NOI	SEQ	ID	NO:8	:				
15	Ala 1	_	Ala	Pro	Gln 5	Arg	Gly	Arg	Ser	Leu 10	Ser	Pro	Ser	Arg	Asp 15
20	Lys	Leu	Phe	Pro	Asn 20		Ile	Arg	Ala	Leu 25	Gly	Pro	Asn	Ser	Pro 30
	Ala	Pro	Arg	Ala	Val 35	_	Val	Glu	Arg	Ser 40	Val	Ser	Gly	Glu	Met 45
25	Ser	Glu	Arg	Lys	Glu 50	Gly	Arg	Gly	Lys	Gly 55	Lys	Gly	Lys	Lys	Lys 60
	Glu	Arg	Gly	Ser	Gly 65	Lys	Lys	Pro	Glu	Ser 70	Ala	Ala	Gly	Ser	Gln 75
30	Ser	Pro	Ala	Leu	Pro 80		Arg	Leu	Lys	Glu 85	Met	Lys	Ser	Gln	Glu 90
35	Ser	Ala	Ala	Gly	Ser 95	Lys	Leu	Val	Leu	Arg 100	Cys	Glu	Thr	Ser	Ser 105
	Glu	Tyr	Ser	Ser	Leu 110	Arg	Phe	Lys	Trp	Phe 115	Lys	Asn	Gly	Asn	Glu 120
40	Leu	Asn -	Arg	Lys	Asn 125	Lys	Pro	Gln	Asn	Ile 130	Lys	Ile	Gln	Lys	Lys 135
	Pro	Gly	Lys	Ser	Glu 140	Leu	Arg	Ile	Asn	Lys 145	Ala	Ser	Leu	Ala	Asp 150
15	Ser	Gly	Glu	Tyr	Met 155	Cys	Lys	Val	Ile	Ser 160	Lys	Leu	Gly	Asn	Asp 165
50	Ser	Ala	Ser	Ala	Asn 170	Ile	Thr	Ile	Val	Glu 175	Ser	Asn	Glu	Ile	Ile 180
	Thr	Gly	Met	Pro	Ala 185	Sėr	Thr	Glu	Gly	Ala 190	Tyr	Val	Ser	Ser	Glu 195
55	Ser	Pro	Ile	Arg	11e 200	Ser	Val	Ser	Thr	Glu 205	Gly	Ala	Asn	Thr	Ser 210
	Ser	Ser	Thr	Ser	Thr 215	Ser	Thr	Thr	Gly	Thr 220	Ser	His	Leu	Val	Lys 225
30	Cys	Ala	Glu	Lys	Glu 230	Lys	Thr	Phe	Cys	Val 235	Asn	Gly	Gly	G1u	Cys 240
	Phe	Met	Val	Lys	Asp	Leu	Ser	Asn	Pro	Ser	Arg	Tyr	Leu	Cys	Lys

	Cys	Gln	Pro	Gly	Pne 260		Gly	Ala	Arg	265	Thr	Glu	Asn	Val	27
. 5	Met	Lys	Val	Gln	Asn 275		Glu	Lys	Ala	Glu 280	Glu	Leu	Tyr	Gln	Ly 28
40	Arg	Val	Leu	Thr	Ile 290		Gly	Ile	Cys	Ile 295		Leu	Leu	Val	Va 30
10	Gly	Ile	Met	Сув	Val 305	Val	Ala	Tyr	Cys	Lys 310	Thr	Lys	Lys	Gln	Ar 31
15	Lys	Lys	Leu	His	Asp 320	Arg	Leu	Arg	Gln	Ser 325	Leu	Arg	Ser	Glu	Ar:
	Asn	Asn	Met	Met	Asn 335	Ile	Ala	Asn	Gly	Pro 340	His	His	Pro	Asn	Pro 34
20	Pro	Pro	Glu	Asn	⊽a1 350	Gln	Leu	Val	Asn	Gln 355	Tyr	Val	Ser	Lys	Ası 360
25	Val	Ile	Ser	Ser	Glu 3€5	His	Ile	Val	Glu	Arg 370	Glu	Ala	Glu	Thr	Ser 375
۵	Phe	Ser	Thr	Ser	His 380	Tyr	Thr	Ser	Thr	Ala 385	His	His	Ser	Thr	Th:
30	Val	Thr	Gln	Thr	Pro 395	Ser	His	Ser	Trp	Ser 400	Asn	Gly	His	Thr	Glu 405
	Ser	Ile	Leu	Ser	Glu 410	Ser	His	Ser	Val	Ile 415	Val	Met	Ser	Ser	Va]
35	Glu	Asn	Ser	Arg	His 425	Ser	Ser	Pro	Thr	Gly 430	Gly	Pro	Arg	Gly	Arg 435
40	Leu	Asn	Gly	Thr	Gly 440	Gly	Pro	Arg	Glu	Cys 445	Asn	Ser	Phe	Leu	Arc 450
40	His	Ala	Arg	Glu	T::r 455	Pro	Asp	Ser	Tyr	Arg 460	Asp	Ser	Pro	His	Ser 465
45	Glu	Arg	Tyr	Val	Ser 470	Ala	Met	Thr	Thr	Pro 475	Ala	Arg	Met	Ser	Pro 480
	Val	Asp	Phe	His	Thr 485	Pro	Ser	Ser	Pro	Lys 490	Ser	Pro	Pro	Ser	Glu 495
50	Met	Ser	Pro	Pro	Val 500	Ser	Ser	Met	Thr	Val 505	Ser	Met	Pro	Ser	Met 510
55	Ala	Val	Ser	Pro	Phe 515	Met	Glu	Glu	Glu	Arg 520	Pro	Leu	Leu	Leu	Val 525
w	Thr	Pro	Pro	Arg	Leu 530	Arg	Glu	Lys	Lys	Phe 535	Asp	His	His	Pro	Glr. 540
60	Gln	Phe	Ser	Ser	Phe 545	His	His	Asn	Pro	Ala 550	His	Asp	Ser	Asn	Ser 555
	Leu	Pro	Ala	Ser	Pro 560	Leu	Arg	Ile	Val	Glu 565	Asp	Glu	Glu	Tyr	Glu 570

	Thr	Thr	Gln	Glu	Tyr 575		Pro	Ala	Gln	Glu 580		Va]	Lys	Lys	Leu 585
5	Ala	Asn	Ser	Arg	Arg 590		Lys	Arg	Thr	Lys 595		Asr	Gly	His	Ile 600
	Ala	Asn	Arg	Leu	Glu 605		Asp	Ser	Asn	Thr 610		Ser	Gln	Ser	Ser 615
10	Asn	Ser	Glu	Ser	Glu 620		Glu	Asp	Glu	Arg 625		Gly	Glu	Asp	Thr 630
15	Pro	Phe	Leu	Gly	Ile 635		Asn	Pro	Leu	Ala 640		Ser	Leu	Glu	Ala 645
.0	Thr	Pro	Ala	Phe	Arg 650		Ala	Asp	Ser	Arg 655		Asn	Pro	Ala	Gly 660
20	Arg	Phe	Ser	Thr	Gln 665		Glu	Ile	Gln 669						
	(2)					-									
25	(:	() ()	A) L B) T	NCE ENGT: YPE: OPOL	H: 7	32 a no a	mino cid		ds						
30	(xi	i) S	EQUE	NCE 1	DESC	RIPT	ion:	SEQ	ID	NO:9	:				
	Asp 1	Lys	Leu	Phe	Pro 5	Asn	Pro	Ile	Arg	Ala 10	Leu	Gly	Pro	Asn	Ser 15
35	Pro	Ala	Pro	Arg	Ala 20	Val	Arg	Val	Glu	Arg 25	Ser	Val	Ser	Gly	Glu 30
	Met	Ser	Glu	Arg	Lys 35	Glu	Gly	Arg	Gly	Lys 40	Gly	Lys	Gly	Lys	Lys 45
40	Lys	Glu	Arg	Gly	Ser 50	Gly	Lys	Lys	Pro	Glu 55	Ser	Ala	Ala	Gly	Ser 60
1 5	Gln	Ser	Pro	Ala	Leu 65	Pro	Pro	Gln	Leu	Lys 70	Glu	Met	Lys	Ser	Gln 75
	Glu	Ser	Ala	Ala	Gly 80	Ser	Lys	Leu	Val	Leu 85	Arg	Cys	Glu	Thr	Ser 90
50	Ser	Glu	Tyr	Ser	Ser 95	Leu	Arg	Phe	Lys	Trp 100	Phe	Lys	Asn	Gly	Asn 105
	Glu	Leu	Asn	Arg	Lys 110	Asn	Lys	Pro	Gln	Asn 115	Ile	Lys	Ile	Gln	Lys 120
55	Lys	Pro	Gly	Lys	Ser 125	Glu	Leu	Arg	Ile	Asn 130	Lys	Ala	Ser	Leu	Ala 135
3 0	Asp	Ser	Gly	Glu	Tyr 140	Met	Cys	Lys	Val	Ile 145	Ser	Lys	Leu	Gly	Asn 150
~	Asp	Ser	Ala	Ser	Ala 155	Asn	Ile	Thr	Ile	Val 160	Glu	Ser	Asn	Glu	Ile 165
	Ile '	Thr	Glv	Met	Pro	Ala	Ser	Thr	Glu	Gly	Ala	Tyr	Val	Ser	Ser

								•	_						
					170					175					180
5	Glu	Ser	Pro	Ile	Arg 185	Ile	Ser	Val	Ser	Thr 190	Glu	Gly	Ala	Asn	Thr 195
5	Ser	Ser	Ser	Thr	Ser 200	Thr	Ser	Thr	Thr	Gly 205	Thr	Ser	His	Leu	Val 210
10	Lys	Cys	Ala	Glu	Lys 215	Glu	Lys	Thr	Phe	Cys 220		Asn	Gly	Gly	Glu 225
	Cys	Phe	Met	Val	Lys 230	Asp	Leu	Ser	Asn	Pro 235	Ser	Arg	Tyr	Leu	Cys 240
15	Lys	Cys	Pro	Asn	Glu 245	Phe	Thr	Gly	Asp	Arg 250	Cys	Gln	Asn	Tyr	Val 255
20	Met	Ala	Ser	Phe	Туг 260	Lys	His	Leu	Gly	Ile 265	Glu	Phe	Met	Glu	Ala 270
ريم	Glu	Glu	Leu	Tyr	Gln 275	Lys	Arg	Val	Leu	Thr 280	Ile	Thr	Gly	Ile	Cys 285
25	Ile	Ala	Leu	Leu	Val 290	Val	Gly	Ile	Met	Cys 295	Val	Val	Ala	Tyr	Cys 300
	Lys	Thr	Lys	Lys	Gln 305	Arg	Lys	Lys	Leu	His 310	Asp	Arg	Leu	Arg	Gln 315
30	Ser	Leu	Arg	Ser	Glu 320		Asn	Asn	Met	Met 325	Asn	Ile	Ala	Asn	Gly 330
35	Pro	His	His	Pro	Asn 335	Pro	Pro	Pro	Glu	Asn 340	Val	Gln	Leu	Val	Asn 345
00	Gln	Tyr	Val	Ser	Lys 350	Asn	Val	Ile	Ser	Ser 355	Glu	His	Ile	Val	Glu 360
40	Arg	Glu	Ala	Glu	Thr 365	Ser	Phe	Ser	Thr	Ser 370	His	Tyr	Thr	Ser	Thr 375
	Ala	His	His	Ser	Thr 380	Thr	Va1	Thr	Gln	Thr 385	Pro	Ser	His	Ser	Trp 390
45	Ser	Asn	Gly	His	Thr 395	Glu	Ser	Ile	Leu	Ser 400	Glu	Ser	His	Ser	Val 405
50	Ile	Val	Met	Ser	Ser 410	Val	Glu	Asn	Ser	Arg 415	His	Ser	Ser	Pro	Thr 420
w	Gly	Gly	Pro	Arg	Gly 425	Arg	Leu	Asn	Gly ·	Thr 430	Gly	Gly	Pro	Arg	Glu 435
55	Cys	Asn	Ser	Phe	Leu 440	Arg	His	Ala	Arg	Glu 445	Thr	Pro	Asp	Ser	Tyr 450
	Arg	Asp	Ser	Pro	His 455	Ser	Glu	Arg	Tyr	Val 460	Ser	Ala	Met	Thr	Thr 465
60	Pro	Ala	Arg	Met	Ser 470	Pro	Val	Asp	Phe	His 475	Thr	Pro	Ser	Ser	Pro 480
	Lys	Ser	Pro	Pro	Ser 485	Glu	Met	Ser	Pro	Pro 496	Val	Ser	Ser	Met	Thr 495

	Va1	Ser	Met	Pro	Ser 500	Met	Ala	Val	Ser	Pro 505		Met	Glu	Glu	Glu 510
5	Arg	Pro	Leu	Leu	Leu 515	Val	Thr	Pro	Pro	Arg 520	Leu	Arg	Glu	Lys	Lys 525
10	Phe	Asp	His	His	Pro 530	Gln	Gln	Phe	Ser	Ser 535		His	His	Asn	Pro 540
10	Ala	His	Asp	Ser	Asn 545	Ser	Leu	Pro	Ala	Ser 550	Pro	Leu	Arg	Ile	Va1 555
15	Glu	Asp	Glu	Glu	Tyr 560	Glu	Thr	Thr	Gln	Glu 565	Tyr	Glu	Pro	Ala	Gln 570
	Glu	Pro	Val	Lys	Lys 575	Leu	Ala	Asn	Ser	Arg 580	Arg	Ala	Lys	Arg	Thr 585
20	Lys	Pro	Asn	Gly	His 590	Ile	Ala	Asn	Arg	Leu 595	Glu	Val	Asp	Ser	Asn 600
25	Thr	Ser	Ser	Gln	Ser 605	Ser	Asn	Ser	Glu	Ser 610	Glu	Thr	Glu	Asp	Glu 615
ω	Arg	Val	Gly	Glu	Asp 620	Thr	Pro	Phe	Leu	Gly 625	Ile	Gln	Asn	Pro	Leu 630
30	Ala	Ala	Ser	Leu	Glu 635	Ala	Thr	Pro	Ala	Phe 640	Arg	Leu	Ala	Asp	Ser 645
	Arg	Thr	Asn	Pro	Ala 650	Gly	Arg	Phe	Ser	Thr 655	Gln	Glu	Glu	Ile	Gln 660
35	Ala	Arg	Leu	Ser	Ser 665	Val	Ile	Ala	Asn	Gln 670	Asp	Pro	Ile	Ala	Val 675
40	Xaa	Asn	Leu	Asn	Lys 680	His	Ile	Asp	Ser	Pro 685	Val	Lys	Leu	Tyr	Phe 690
	Ile	Xaa	Xaa	Ser	Ile 695	Pro	Pro	Xaa	Ile	Lys 700	Gln	Phe	Ile	Leu	Phe 705
45	Xaa	Gln	Phe	Cys	Lys 710	Xaa	Lys	Thr	Gly	Lys 715	Lys	Leu	Leu	Xaa	Ile 720
	Lys	Tyr	Met	Tyr	Val 725	Lys	Met	Lys	Lys	Lys 730	Lys	Lys 732			
50	(2) I	NFOR	ITAM	ON F	OR S	EQ I	D NO	:10:	!						
	(i	(A	LE	ICE C NGTH PE:	: 66	ami	no a		;						
55				POLO											
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	10:10):				
60	Ser 1	His	Leu	Val	Lys 5	Cys	Ala	Glu	Lys	Glu 10	Lys	Thr	Phe	Cys	Val 15
	Asn	Gly	Gly	Glu	Cys 20	Phe	Met	Val	Lys	Asp 25	Leu	Ser	Asn	Pro	Ser 30

	Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys 35 40 45
5	Thr Glu Asn Val Pro Met Lys Val Gln Asn Gln Glu Lys Ala Glu 50 55 60
	Glu Leu Tyr Gln Lys Arg 65 66
10	(2) INFORMATION FOR SEQ ID NO:11:
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 71 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
20	Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val 1 5 10
	Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser 20 25 30
25	Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys 35 40 45
30	Gln Asn Tyr Val Met Ala Ser Phe Tyr Lys His Leu Gly Ile Glu 50 55 60
30	Phe Met Glu Ala Glu Glu Leu Tyr Gln Lys Arg 65 70 71
35	(2) INFORMATION FOR SEQ ID NO:12:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2010 bases(B) TYPE: nucleic acid(C) STRANDEDNESS: single
10	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
15	GGGCGCGAGC GCCTCAGCGC GGCCGCTCGC TCTCCCCCTC GAGGGACAAA 50
~^	CTTTTCCCAA ACCCGATCCG AGCCCTTGGA CCAAACTCGC CTGCGCCGAG 109
50	AGCCGTCCGC GTAGAGCGCT CCGTCTCCGG CGAGATGTCC GAGCGCAAAG 150
₹5	AAGGCAGAGG CAAAGGGAAG GGCAAGAAGA AGGAGCGAGG CTCCGGCAAG 200
	AAGCCGGAGT CCGCGGCGG CAGCCAGAGC CCAGCCTTGC CTCCCCGATT 250
00	GAAAGAGATG AAAAGCCAGG AATCGGCTGC AGGTTCCAAA CTAGTCCTTC 300
	GGTGTGAAAC CAGTTCTGAA TACTCCTCTC TCAGATTCAA GTGGTTCAAG 350

AAIGGGAAIG	ANTIGANICO	AAAAAACAAA	CCACAAAAIA	ICAMGAIACA	400
AAAAAAGCCA	GGGAAGTCAG	AACTTCGCAT	TAACAAAGCA	TCACTGGCTG	450
ATTCTGGAGA	GTATATGTGC	AAAGTGATCA	GCAAATTAGG	AAATGACAGT	500
GCCTCTGCCA	ATATCACCAT	' CGTGGAATCA	AACGAGATCA	TCACTGGTAT	550
GCCAGCCTCA	ACTGAAGGAG	CATATGTGTC	TTCAGAGTCT	CCCATTAGAA	600
TATCAGTATC	CACAGAAGGA	GCAAATACTT	CTTCATCTAC	ATCTACATCC	650
ACCACTGGGA	CAAGCCATCT	TGTAAAATGT	GCGGAGAAGG	AGAAAACTTT	700
CTGTGTGAAT	GGAGGGGAGT	GCTTCATGGT	GAAAGACCTT	TCAAACCCCT	750
CGAGATACTT	GTGCAAGTGC	CAACCTGGAT	TCACTGGAGC	AAGATGTACT	800
GAGAATGTGC	CCATGAAAGT	ССААААССАА	GAAAAGGCGG	AGGAGCTGTA	850
CCAGAAGAGA	GTGCTGACCA	TAACCGGCAT	CTGCATCGCC	CTCCTTGTGG	900
TCGGCATCAT	GTGTGTGGTG	GCCTACTGCA	AAACCAAGAA	ACAGCGGAAA	950
AAGCTGCATG	ACCGTCTTCG	GCAGAGCCTT	CGGTCTGAAC	GAAACAATAT	1000
GATGAACATT	GCCAATGGGC	CTCACCATCC	TAACCCACCC	CCCGAGAATG	1050
TCCAGCTGGT	GAATCAATAC	GTATCTAAAA	ACGTCATCTC	CAGTGAGCAT	1100
ATTGTTGAGA	GAGAAGCAGA	GACATCCTTT	TCCACCAGTC	ACTATACTTC	1150
CACAGCCCAT	CACTCCACTA	CTGTCACCCA	GACTCCTAGC	CACAGCTGGA	1200
GCAACGGACA	CACTGAAAGC	ATCCTTTCCG	AAAGCCACTC	TGTAATCGTG	1250
ATGTCATCCG	TAGAAAACAG	TAGGCACAGC	AGCCCAACTG	GGGCCCAAG	1300
AGGACGTCTT	AATGGCACAG	GAGGCCCTCG	TGAATGTAAC	AGCTTCCTCA	1350
GGCATGCCAG	AGAAACCCCT	GATTCCTACC	GAGACTCTCC	TCATAGTGAA	1400

WO 92/20798 PCT/US92/04295

	AGGTATGTGT CAGCCATGAC CACCCCGGCT CGTATGTCAC CTGTAGATTT 145	0
5	CCACACGCCA AGCTCCCCCA AATCGCCCCC TTCGGAAATG TCTCCACCCG 150	0
•	TGTCCAGCAT GACGGTGTCC ATGCCTTCCA TGGCGGTCAG CCCCTTCATG 155	0
10	GAAGAAGAGA GACCTCTACT TCTCGTGACA CCACCAAGGC TGCGGGAGAA 160	0
	GAAGTTTGAC CATCACCCTC AGCAGTTCAG CTCCTTCCAC CACAACCCCG 165	0
15	CGCATGACAG TAACAGCCTC CCTGCTAGCC CCTTGAGGAT AGTGGAGGAT 170	0
20	GAGGAGTATG AAACGACCCA AGAGTACGAG CCAGCCCAAG AGCCTGTTAA 175	0
	GAAACTCGCC AATAGCCGGC GGGCCAAAAG AACCAAGCCC AATGGCCACA 180	0
25	TTGCTAACAG ATTGGAAGTG GACAGCAACA CAAGCTCCCA GAGCAGTAAC 185	0
	TCAGAGAGTG AAACAGAAGA TGAAAGAGTA GGTGAAGATA CGCCTTTCCT 190	0
30	GGGCATACAG AACECCCTGG CAGCCAGTCT TGAGGCAACA CCTGCCTTCC 1950	0
35	GCCTGGCTGA CAGCAGGACT AACCCAGCAG GCCGCTTCTC GACACAGGAA 2000	0
	GAAATCCAGG 2010	
40	(2) INFORMATION FOR SEQ ID NO:13:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 669 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
50	Ala Arg Ala Pro Gln Arg Gly Arg Ser Leu Ser Pro Ser Arg Asp 1 5 10 15	
55	Lys Leu Phe Pro Asn Pro Ile Arg Ala Leu Gly Pro Asn Ser Pro 20 25 30	
w	Ala Pro Arg Ala Val Arg Val Glu Arg Ser Val Ser Gly Glu Met 35 40 45	
60	Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Gly Lys Lys 50 60	
	Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser Gln 65 70 75	

								•	•						
٠	Ser	Pro	Ala	Leu	Pro 80		Arg	Leu	Lys	Glu 85	Met	Lys	Ser	Gln	Glu 90
5	Ser	Ala	Ala	Gly	Ser 95	Lys	Leu	Val	Leu	Arg 100	Cys	Glu	Thr	Ser	Ser 105
	Glu	Туг	Ser	Ser	Leu 110	Arg	Phe	Lys	Trp	Phe 115	Lys	Asn	Gly	Asn	Glu 120
10	Leu	Asn	Arg	Lys	Asn 125	Lys	Pro	Gln	Asn	Ile 130	Lys	Ile	Gln	Lys	Lys 135
15	Pro	Gly	Lys	Ser	Glu 140	Leu	Arg	Ile	Asn	Lys 145	Ala	Ser	Leu	Ala	Asp 150
15	Ser	Gly	Glu	Tyr	Met 155	Cys	Lys	Val	Ile	Ser 160	Lys	Leu	Gly	Asn	Asp 165
20	Ser	Ala	Ser	Ala	Asn 170	Ile	Thr	Ile	Val	Glu 175	Ser	Asn	Glu	Ile	I ^ℓ e 130
	Thr	Gly	Met	Pro	Ala 185	Ser	Thr	Glu	Gly	Ala 190	Tyr	Val	Ser	Ser	Glu 195
25	Ser	Pro	Ile	Arg	Ile 200	Ser	Val	Ser	Thr	Glu 205	Gly	Ala	Asn	Thr	Ser 210
30	Ser	Ser	Thr	Ser	Thr 215	Ser	Thr	Thr	Gly	Thr 220	Ser	His	Leu	Val	Lys 225
	Суѕ	Ala	Glu	Lys	Glu 230	Lys	Thr	Phe	Cys	Val 235	Asn	Gly	Gly	Glu	Cys 240
35	Phe	Met	Val	Lys	Asp 245	Leu	Ser	Asn	Pro	Ser 250	Arg	Tyr	Leu	Cys	Lys 255
	Cys	Gln	Pro	Gly	Phe 260	Thr	Gly	Ala	Arg	Cys 265	Thr	Glu	Asn	Val	Pro 270
40	Met	Lys	Val	Gln	Asn 275	Gln	Glu	Lys	Ala	Glu 280	Glu	Leu	Tyr	Gln	Lys 285
45	Arg	Val	Leu	Thr	11e 290	Thr	Gly	Ile	Cys	Ile 295	Ala	Leu	Leu	Val	Val 300
10	Gly	Ile	Met	Cys	Val 305	Val	Ala	Tyr	Cys	Lys 310	Thr	Lys	Lys	Gln	Arg 315
50	Lys	Lys	Leu	His	Asp 320	Arg	Leu	Arg	Gln	Ser 325	Leu	Arg	Ser	Glu	Arg 330
	Asn	Asn	Met	Met	Asn 335	Ile	Ala	Asn	Gly	Pro 340	His	His	Pro	Asn	Pro 345
55	Pro	Pro	Glu	Asn	Val 350	Gln	Leu	Val	Asn	Gln 355	Tyr	Val	Ser	Lys	Asn 360
60	Val	Ile	Ser	Ser	Glu 365	His	Ile	Val	Glu	Arg 370	Glu	Ala	Glu	Thr	Ser 375
~	Phe	Ser	Thr	Ser	His 380	Tyr	Thr	Ser	Thr	Ala 385	His	His	Ser	Thr	Thr 390
	Val	Thr	Gln	Thr	Pro	Ser	His	Ser	Trp	Ser	Asn	Gly	His	Thr	Glu

PCT/US92/04295

78

					395					400					405
_	Ser	Ile	Leu	Ser	Glu 410	Ser	His	Ser	Val	Ile 415	Val	Met	Ser	Ser	Val 420
5	Glu	Asn	Ser	Arg	His 425	Ser	Ser	Pro	Thr	Gly 430	Gly	Pro	Arg	Gly	Arg 435
10	Leu	Asn	Gly	Thr	Gly 440	Gly	Pro	Arg	Glu	Cys 445	Asn	Ser	Phe	Leu	Arg 450
	His	Ala	Arg	Glu	Thr 455	Pro	Asp	Ser	Tyr	Arg 460	Asp	Ser	Pro	His	Ser 465
15	Glu	Arg	Tyr	Val	Ser 470	Ala	Met	Thr	Thr	Pro 475	Ala	Arg	Met	Ser	Pro 480
~	Val	Asp	Phe	His	Thr 485	Pro	Ser	Ser	Pro	Lys 490	Ser	Pro	Pro	Ser	01u 415
20	Met	Ser	Pro	Pro	Val 500	Ser	Ser	Met	Thr	Val 505	Ser	Met	Pro	Ser	Met 510
25	Ala	Val	Ser	Pro	Phe 515	Met	Glu	Glu	Glu	Arg 520	Pro	Leu	Leu	Leu	Val 525
	Thr	Pro	Pro	Arg	Leu 530	Arg	Glu	Lys	Lys	Phe 535	Asp	His	His	Pro	Gln 540
30	Gln	Phe	Ser	Ser	Phe 545		His	Asn	Pro	Ala 550	His	Asp	Ser	Asn	Ser 555
35	Leu	Pro	Ala	Ser	Pro 560	Leu	Arg	Ile	Val	Glu 565	Asp	Glu	Glu	Tyr	Glu 570
00	Thr	Thr	Gln	Glu	Tyr 575	Glu	Pro	Ala	Gln	Glu 580	Pro	Va1	Lys	Lys	Leu 585
40	Ala	Asn	Ser	Arg	Arg 590	Ala	Lys	Arg	Thr	Lys 595	Pro	Asn	Gly	His	Ile 600
	Ala	Asn	Arg	Leu	Glu 605	Val	Asp	Ser	Asn	Thr 610	Ser	Ser	Gln	Ser	Ser 615
45	Asn	Ser	Glu	Ser	Glu 620	Thr	Glu	Asp	Glu	Arg 625	Val	Gly	Glu	Asp	Thr 630
5 0	Pro	Phe	Leu	Gly	Ile 635	Gln	Asn	Pro	Leu	Ala 640	Ala	Ser	Leu	Glu	Ala 645
50	Thr	Pro	Ala	Phe	Arg 650	Leu	Ala	Asp	Ser	Arg 655	Thr	Asn	Pro	Ala	Gly 660
55	Arg	Phe	Ser	Thr	Gln 665	Glu	Glu	Ile	Gln 669						
	(2)]	NFOE	ITAMS	ON F	FOR S	SEQ I	D NO	:14:	:						

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
      Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val
 5
      Asn Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser
                        20
                                            25
      Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys
 10
      Thr Glu Asn Val Pro Met Lys Val Gln Asn Gln Glu Lys Ala Glu
15
      Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr Gly Ile Cys Ile
      Ala Leu Leu Val Val Gly Ile Met Cys Val Val Ala Tyr Cys Lys
20
      Thr Lys Lys Gln Arg
                       95
     (2) INFORMATION FOR SEQ ID NO:15:
25
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 91 amino acids
            (B) TYPE: amino acid
            (D) TOPOLOGY: linear
30
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
      Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu
                                           10
35
      His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala
      Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg
40
      Asp Leu Lys Trp Trp Glu Leu Arg His Ala Gly His Gly Gln Gln
                       50
45
      Gln Lys Val Ile Val Val Ala Val Cys Val Val Leu Val Met
      Leu Leu Leu Ser Leu Trp Gly Ala His Tyr Tyr Arg Thr Gln
50
     Lys
      91
     (2) INFORMATION FOR SEQ ID NO:16:
55
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 82 amino acids
            (B) TYPE: amino acid
            (D) TOPOLOGY: linear
60
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
     Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys Phe His Gly Thr
```

	Cys	Arg	Phe	Leu	Val 20	Gln	Glu	Asp	Lys	Pro 25	Ala	Cys	Val	Cys	His 30
5	Ser	Gly	Tyr	Val	Gly 35	Ala	Arg	Cys	Glu	His 40	Ala	Asp	Leu	Leu	Ala 45
	Val	Val	Ala	Ala	Ser 50	Gln	Lys	Lys	Gln	Ala 55	Ile	Thr	Ala	Leu	Val 60
10	Val	Val	Ser	Ile	Val 65	Ala	Leu	Ala	Val	Leu 70	Ile	Ile	Thr	Cys	Val 75
15	Leu	Ile	His	Cys	Cys 80	Gln	Val 82								
	(2)	INFO	RMAT:	ION :	FOR :	SEQ :	ID N	0:17	:						
20	((EQUE A) L B) T D) T	ENGT YPE:	H: 8'	7 am:	ino a cid	ICS:	5						
25	(x	i) S	EQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID I	NO:1	7:				
۵	Lys 1		Lys	Asn	Pro 5	Cys	Asn	Ala	Glu	Phe 10	Gln	Asn	Phe	Cys	Ile 15
30	His	Gly	Glu	Cys	Lys 20	Tyr	Ile	Glu	His	Leu 25	Glu	Ala	Val	Thr	Cys 30
	Lys	Cys	Gln	Gln	Glu 35	Tyr	Phe	Gly	Glu	Arg 40	Cys	Gly	Glu	Lys	Ser 45
35	Met	Lys	Thr	His	Ser 50	Met	Ile	Asp	Ser	Ser 55	Leu	Ser	Lys	Ile	Ala 60
40	Leu	Ala	Ala	Ile	Ala 65	Ala	Phe	Met	Ser	Ala 70	Val	Ile	Leu	Thr	Ala 75
40	Val	Ala	Val	Ile	Thr 80	Val	Gln	Leu	Arg	Arg 85	Gln	Tyr 87			
45	(2)	INFO	RMATI	ON I	FOR S	SEQ I	D NO	:18:	:						
45	(:	(2	EQUEN A) LE B) TY	ENGT	I: 87	ami	no a		:						
50) TC												
			EQUEN												
55	Lys 1	Lvs	Lys	Asn	Pro 5	Cys	Ala	Ala	Lys	Phe 10	Gln	Asn	Phe	Cys	Ile 15
.00	His	Gly	Glu	Cys	Arg 20	Tyr	Ile	Glu	Asn	Leu 25	Glu	Val	Val	Thr	Cys 30
60	His	Cys	His	Gln	Asp 35	Tyr	Phe	Gly	Glu	Arg 40	Cys	Gly	Glu	Lys	Thr 45
	Met	Lys	Thr	Gln	Lys 56	Lys	Asp	Asp	Ser	Asp 55	Leu	Ser	Lys	Ile	Ala 60

Leu Ala Ala Ile Ile Val Phe Val Ser Ala Val Ser Val Ala Ala Ile Gly Ile Ile Thr Ala Val Leu Leu Arg Lys Arg 5 85 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 86 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: 15 Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser Cys 20 Ile Cys His Pro Gly Tyr His Gly Glu Arg Cys His Gly Leu Ser 25 Leu Pro Val Glu Asn Arg Leu Tyr Thr Tyr Asp His Thr Thr Ile Leu Ala Val Val Ala Val Leu Ser Ser Val Cys Leu Leu Val 30 Ile Val Gly Leu Leu Met Phe Arg Tyr His Arg (2) INFORMATION FOR SEQ ID NO:20: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Arg Pro Asn Ala Arg Leu Pro Pro Gly Val Phe Tyr Cys 5 10 45 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases 50 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 55

CCTCGCTCCT TCTTCTTGCC CTTCC 25

PCT/US92/04295

	(2) IN	IFORM	ATIO	N FO	R SE	Q ID	NO:	22:									
5	(i)	(B)	UENC LEN TYP STR TOP	GTH: E: n ANDE	496 ucle DNES	bas ic a S: s	es cid ingl										
10	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:22:							1
4E		AA		Ala							ACT Thr						ė
15		TCC Ser	GGG Gly	CTC Leu 15	Ala	CGG Arg	AGG Arg	CCA Pro	GGA Gly 20	GCT Ala	GAG Glu	CGG Arg	CGG Arg	CGG Arg 25	77		
20		CTG Leu	CCG Pro	GAC Asp	GAT Asp	GGG Gly 30	AGC Ser	GTG Val	AGC Ser	AGG Arg	ACG Thr 35	GTG Val	ATA Ile	ACC Thr	116		
25		TCT Ser	CCC Pro 40	CGA Arg	TCG Ser	GGT Gly	TGC Cys	GAG Glu 45	GGC Gly	GCC Ala	GGG Gly	CAG Gln	AGG Arg 50	CCA Pro	155		
30		GGA Gly	CGC Arg	GAG Glu	CCG Pro 55	CCA Pro	GCG Ala	GTG Val	GGA Gly	CCC Pro 60	ATC Ile	GAC Asp	GAC Asp	TTC Phe	194		
or.		CCG Pro 65	GGG Gly	CGA Arg	CAG Gln	GAG Glu	CAG Gln 70	CCC Pro	CGA Arg	GAG Glu	CCA Pro	GGG Gly 75	CGA Arg	GCG Ala	233		
35		CCC Pro	GTT Val	CCA Pro 80	GGT Gly	GGC Gly	CGG Arg	ACC Thr	GCC Ala 85	CGC Arg	CGC Arg	GTC Val	CGC Arg	GCC Ala 90	272		
40		GCG Ala	CTC Leu	CCT Pro	GCA Ala	GGC Gly 95	AAC Asn	GGG Gly	AGA Arg	CGC Arg	CCC Pro 100	CGC Arg	GCA Ala	GCG Ala	311		
45		CGA Arg	GCG Ala 105	CCT Pro	CAG Gln	CGC Arg	GGC Gly	CGC Arg 110	TCG Ser	CTC Leu	TCC Ser	CCC Pro	TCG Ser 115	AGG Arg	350		
50		GAC Asp	AAA Lys	CTT Leu	TTC Phe 120	CCA Pro	AAC Asn	CCG Pro	ATC Ile	CGA Arg 125	GCC Ala	CTT Leu	GGA Gly	CCA Pro	389		
		AAC Asn 130	TCG Ser	CCT Pro	GCG Ala	CCG Pro	AGA Arg 135	GCC Ala	GTC Val	CGC Arg	GTA Val	GAG Glu 140	CGC Arg	TCC Ser	428		1
55		GTC. Val	TCC Ser	GGC Gly 145	GAG Glu	ATG Met	TCC Ser	GAG Glu	CGC Arg 150	AAA Lys	GAA Glu	GGC Gly	AGA Arg	GGC Gly 155	467		•
60		AAA Lys									GG 4	96					

(2) INFORMATION FOR SEQ ID NO:23:

5	(i)	SEQU (A) (B) (C) (D)	LENG TYP: STR	GTH: E: n ANDE	249 ucle DNES	0 ba ic a S: s	ses cid ingl									
10	(xi)	SEQU	ENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	:23:						
		GTGG	CTG	CGG	GGCA	PTTA	AA A	AAGA	.GCCG	G CG	AGGA	GTTC	ccc	GAAA	CTT	50
15		GTTG	GAA	CTC	CGGG	CTCG	CG C	GGAG	GCCA	G GA	GCTG	AGCG	GCG	GCGG	CTG	10
20		CCGG	ACG/	ATG	GGAG	CGTG	AG C	AGGA	.CGGT	G AT	AACC	TCTC	ccc	GATC	GGG	15
ω		TTGC	GAG	GGC	GCCG	GGCA	GA G	GCCA	GGAC	G CG	AGCC	GCCA	GCG	GCGG	GAC	20
25		CCAT	CGA	CGA	CTTC	CCGG	GG C	GACA	GGAG	C AG	cccc	GAGA	GCC	AGGG	CGA	25
		GCGC	CCGI	rtc	CAGG	TGGC	CG G	ACCG	CCCG	c cg	CGTC	CGCG	CCG	CGCT	ccc	30
30		TGCAG	GGC#	AAC (GGGA	GACG	cc c	CCGC	GCAG	C GC	GAGC	GCCT	CAG	CGCG	GCC	35
05		GCTC	GCTC	CTC (CCCA'	TCGA(GG G.	ACAA.	ACTT	T TC	CCAA	ACCC	GAT	CCGA	GCC	40
35		CTTG	GACC	CAA .	ACTC	GCCT	GC G	CCGA	GAGC	C GT	CCGC	GTAG	ĀGC	GCTC	CGT	45
40		CTCC	GGCG	EAG		Ser			AAA Lys 5						490	
45		GGG A													529	
		CCG G Pro G													568	
50.		CCC C Pro G													607	
55		GGT I Gly .S 50													646	
20		TAC T Tyr S													685	

PCT/US92/04295

							04							
	GAA Glu	TTG Leu	AAT Asn	CGA Arg	AAA Lys 80	Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 85	Ile	: AAG : Lys	ATA Ile	724
5	CAA Gln	AAA Lys 90	Lys	CCA Pro	GGG	AAG Lys	TCA Ser 95	Glu	CTT Leu	CGC Arg	ATT	AAC Asn 100	AAA Lys	763
10	GCA Ala	TCA Ser	CTG Leu	GCT Ala 105	Asp	TCT	GGA Gly	GAG Glu	TAT Tyr 110	Met	TGC Cys	AAA Lys	GTG Val	802
15	ATC Ile 115	Ser	AAA Lys	TTA Leu	GGA Gly	AAT Asn 120	Asp	AGT Ser	GCC Ala	Ser	GCC Ala 125	AAT Asn	ATC Ile	841
m	ACC Thr	ATC Ile	GTG Val 130	GAA Glu	TCA Ser	AAC Asn	GAG Glu	ATC Ile 135	Ile	ACT Thr	GGT Gly	ATG Met	CCA Pro 140	880
20												TCT Ser		919
25	ATT Ile	AGA Arg 155	ATA Ile	TCA Ser	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	958
30	TCA Ser	TCT Ser	ACA Thr	TCT Ser 170	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT Leu	997
35	GTA Val 180	AAA Lys	TGT Cys	GCG Ala	GAG Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	GTG Val	AAT Asn	1036
40	GGA Gly	GGG Gly	GAG Glu 195	TGC Cys	TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	1075
40	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	TGC Cys 210	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	1114
45	GAT Asp	CGC Arg 220	TGC Cys	CAA Gln	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AAG Lys	1153
50	GCG Ala	GAG Glu	GAG Glu	CTG Leu 235	TAC Tyr	CAG Gln	AAG Lys	AGA Arg	GTG Val 240	CTG Leu	ACC Thr	ATA Ile	ACC Thr	1192
55												ATG Met		1231
m		Val										AAA Lys		1270
60	CTG Leu	CAT His	GAC Asp	Arg	CTT Leu 275	CGG Arg	CAG Gln	AGC Ser	CTT Leu	CGG Arg 280	TCT Ser	GAA Glu	CGA Arg	1309

			Met					a Asr					Pro	1348
5					Glu					Val			TAC Tyr	1387
10		Ser					Ser					Val	GAG Glu	1426
15	AGA Arg	GAA Glu	GCA Ala 325	Glu	ACA Thr	TCC Ser	TTT Phe	Ser 330	Thr	AGT Ser	CAC	TAT Tyr	Thr 335	1465
20													CCT Pro	1504
	AGC Ser													1543
25					Ser								GAA Glu	1582
30		Ser			AGC Ser									1621
35					ACA Thr									1660
40					GCC Ala 405									1699
					AGT Ser									1738
45					ATG Met									1777
50					TCG Ser									1816
55	GTG Val	TCC Ser	AGC Ser 455	ATG Met	ACG Thr	GTG Val	TCC Ser	AAG Lys 460	CCT Pro	TCC Ser	ATG Met	GCG Ala	GTC Val 465	1855
60					GAA Glu 470								GTG Val	1894
					CTG Leu	Arg					Asp		CAC His	1933

	CCT Pro	CAG Gln	CAG Gln	TTC Phe 495	AGC Ser	TCC Ser	TTC Phe	CAC His	CAC His 500	AAC Asn	CCC Pro	GCG Ala	CAT His	1972
5	GAC Asp 505	Ser	AAC Asn	AGC Ser	CTC Leu	CCT Pro 510	GCT Ala	AGC Ser	CCC Pro	TTG Leu	AGG Arg 515	ATA Ile	GTG Val	2011
10	GAG Glu	GAT Asp	GAG Glu 520	GAG Glu	TAT Tyr	GAA Glu	ACG Thr	ACC Thr 525	CAA Gln	GAG Glu	TAC Tyr	GAG Glu	CCA Pro 530	2050
15	GCC Ala	CAA Gln	GAG Glu	CCT Pro	GTT Val 535	AAG Lys	AAA Lys	CTC Leu	GCC Ala	AAT Asn 540	AGC Ser	CGG Arg	CGG Arg	2089
•	GCC Ala	AAA Lys 545	AGA Arg	ACC Thr	AAG Lys	CCC Pro	AAT Asn 550	GGC Gly	CAC His	ATT Ile	GCT Ala	AAC Asn 555	AGA Arg	2128
20	TTG Leu	GAA Glu	GTG Val	GAC Asp 560	AGC Ser	AAC Asn	ACA Thr	AGC Ser	TCC Ser 565	CAG Gln	AGC Ser	AGT Ser	AAC Asn	2167
25	TCA Ser 570	GAG Glu	AGT Ser	GAA Glu	ACA Thr	GAA Glu 575	GAT Asp	GAA Glu	AGA Arg	GTA Val	GGT Gly 580	GAA Glu	GAT Asp	2206
30	ACG Thr	CCT Pro	TTC Phe 585	CTG Leu	GGC Gly	ATA Ile	CAG Gln	AAC Asn 590	CCC Pro	CTG Leu	GCA Ala	GCC Ala	AGT Ser 595	2245
35	CTT Leu	GAG Glu	GCA Ala	ACA Thr	CCT Pro 600	GCC Ala	TTC Phe	CGC Arg	CTG Leu	GCT Ala 605	GAC Asp	AGC Ser	AGG Arg	2284 -
	ACT Thr	AAC Asn 610	CCA Pro	GCA Ala	GGC Gly	CGC Arg	TTC Phe 615	TCG Ser	ACA Thr	CAG Gln	GAA Glu	GAA Glu 620	ATC Ile	2323
40	CAG Gln	GCC Ala	AGG Arg	CTG Leu 625	TCT Ser	AGT Ser	GTA Val	ATT Ile	GCT Ala 630	AAC Asn	CAA Gln	GAC Asp	CCT Pro	2362
45		Ala		TAAA	LACCI	'A A	TAAA	ACACA	TAG	ATTO	CACC	TGTA	DAAA	TT 2410
50											TAA	TTAT	TTTA	TT 2460
	TTAG	CAGI	TC I	GCAA	ATAA	A AA	AAAA	AAAA	249	0				

55 (2) INFORMATION FOR SEQ ID NO:24:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1715 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

5 [.]		GCG	CCTG	ССТ	CCAA	CCTG	SCG C	GCGG	GAGG	T GO	GTGG	CTGC	GGG	GCAA	TTG	50
		AAA	AAGA	GCC	GGCG	AGGA	GT 1	cccc	GAAA	C TI	GTTC	GAAC	TCC	:GGGC	TCG	100
10		CGC	GGAG	GCC	AGGA	GCTG	AG C	GGCG	GCGG	C TC	CCGG	ACGA	TGG	GAGC	GTG	150
45		AGC	AGGA	CGG	TGAT	AACC	TC T	cccc	GATC	G GG	TTGC	GAGG	GCG	CCGG	GCA	200
15		GAG	GCCA	GGA	CGCG	AGCC	GC C	AGCG	GCGG	G ÀC	CCAT	CGAC	GAC	TTCC	CGG	250
20		GGC	GACA	GGA ·	GCAG	cccc	GA G	AGCC	AGGG	C GA	.GCGC	CCGT	TCC	AGGT	GC	300
		CGG?	ACCG	ccc ·	GCCG	CGTC	cg c	GCCG	CGCT	c cc	TGCA	GGCA	ACG	GGAG.	ACG	350
25		ccc	CCGC	GCA (GCGC	GAGC	GC C	TCAG	CGCG	G CC	GCTC	GCTC	TCC	CCAT	CGA	400
30		GGG <i>I</i>	ACAA	ACT '	TTTC	CCAA	AC C	CGAT	CCGA	G CC	CTTG	GACC	AAA	CTCG	CCT	450
00	•	GCGC	CCGA	GAG (CCGT	CCGC	GT A	GAGC	GCTC	C GT	CTCC	GGCG	AG	ATG Met 1	495	
35												AAG Lys		AAG Lys	534	
40												GAG Glu 25		GCG Ala	573	
45												CAA Gln		AAA Lys 40	612	
F 0												TCC Ser		CTA Leu	651	
50												TCC Ser		CTC Leu	690	
55						-						TTG Leu		CGA Arg	729	
60												AAA Lys 90		CCA Pro	768	

	GGG AAG TCA GAA CTT CGC ATT AAC AAA GCA TCA CTG GCT 807 Gly Lys Ser Glu Leu Arg Ile Asn Lys Ala Ser Leu Ala 95 100 105
5	GAT TCT GGA GAG TAT ATG TGC AAA GTG ATC AGC AAA TTA 846 Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu 110 115
10	GGA AAT GAC AGT GCC TCT GCC AAT ATC ACC ATC GTG GAA 885 Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr Ile Val Glu 120 125 130
15	TCA AAC GAG ATC ATC ACT GGT ATG CCA GCC TCA ACT GAA 924 Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu 135
	GGA GCA TAT GTG TCT TCA GAG TCT CCC ATT AGA ATA TCA 963 Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ses 145
20	GTA TCC ACA GAA GGA GCA AAT ACT TCT TCA TCT ACA TCT 1002 Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser 160 165 170
25	ACA TCC ACC ACT GGG ACA AGC CAT CTT GTA AAA TGT GCG 1041 Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala 175 180
30	GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC 1080 Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys 185 190 195
35	TTC ATG GTG AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG 1119 Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu 200 205
	TGC AAG TGC CCA AAT GAG TTT ACT GGT GAT CGC TGC CAA 1158 Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln 210 215 220
40	AAC TAC GTA ATG GCC AGC TTC TAC AGT ACG TCC ACT CCC 1197 Asn Tyr Val Met Ala Ser Phe Tyr Ser Thr Ser Thr Pro 225 230 235
45	TTT CTG TCT CTG CCT GAA TAGGA GCATGCTCAG TTGGTGCTGC 1240 Phe Leu Ser Leu Pro Glu 240 241
50	TTTCTTGTTG CTGCATCTCC CCTCAGATTC CACCTAGAGC TAGATGTGTC 1290
	TTACCAGATC TAATATTGAC TGCCTCTGCC TGTCGCATGA GAACATTAAC 1340
55	AAAAGCAATT GTATTACTTC CTCTGTTCGC GACTAGTTGG CTCTGAGATA 1390
	CTAATAGGTG TGTGAGGCTC CGGATGTTTC TGGAATTGAT ATTGAATGAT 1440
60	GTGATACAAA TTGATAGTCA ATATCAAGCA GTGAAATATG ATAATAAAGG 1490
	CATTTCAAAG TCTCACTTTT ATTGATAAAA TAAAAATCAT TCTACTGAAC 1545

	AGTCCATCTT CTTTATACAA TGACCACATC CTGAAAAGGG TGTTGCTAAG 1590
5	CTGTAACCGA TATGCACTTG AAATGATGGT AAGTTAATTT TGATTCAGAA 1640
10	TGTGTTATTT GTCACAAATA AACATAATAA AAGGAGTTCA GATGTTTTTC 1690
	ТТСАТТААСС ААААААААА ААААА 1715
15	(2) INFORMATION FOR SEQ ID NO:25:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2431 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: N.A. (D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
	GAGGCGCCTG CCTCCAACCT GCGGGCGGA GGTGGGTGGC TGCGGGGCAA 50
30	TTGAAAAAGA GCCGGCGAGG AGTTCCCCGA AACTTGTTGG AACTCCGGGC 100
35	TCGCGCGGAG GCCAGGAGCT GAGCGGCGGC GGCTGCCGGA CGATGGGAGC 150
	GTGAGCAGGA CGGTGATAAC CTCTCCCCGA TCGGGTTGCG AGGGCGCCGG 200
40	GCAGAGGCCA GGACGCGAGC CGCCAGCGGC GGGACCCATC GACGACTTCC 250
	CGGGCGACA GGAGCAGCCC CGAGAGCCAG GGCGAGCGCC CGTTCCAGGT 300
45	GGCCGGACCG CCCGCCGCGT CCGCGCCGCG CTCCCTGCAG GCAACGGGAG 350
50	ACGCCCCGC GCAGCGCGAG CGCCTCAGCG CGGCCGCTCG CTCTCCCCAT 400
	CGAGGGACAA ACTTTTCCCA AACCCGATCC GAGCCCTTGG ACCAAACTCG 450
55	CCTGCGCCGA GAGCCGTCCG CGTAGAGCGC TCCGTCTCCG GCGAG AT 497 Met 1
60	G TCC GAG CGC AAA GAA GGC AGA GGC AAA GGG AAG GGC AAG 537 Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys 5
	AAG AAG GAG CGA GGC TCC GGC AAG AAG CCG GAG TCC GCG 576 Lys Lys Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala 15 20 25

5	GCG Ala	GGC	AGC Ser 30	CAG Gln	AGC Ser	CCA Pro	GCC Ala	TTG Leu 35	CCT Pro	CCC Pro	CAA Gln	TTG Leu	AAA Lys 40	615
3	GAG Glu	ATG Met	AAA Lys	AGC Ser	CAG Gln 45	Glu	TCG Ser	GCT Ala	GCA Ala	GGT Gly 50	TCC Ser	AAA Lys	CTA Leu	654
10	GTC Val	CTT Leu 55	Arg	TGT Cys	GAA Glu	ACC Thr	AGT Ser 60	TCT Ser	GAA Glu	TAC Tyr	TCC Ser	TCT Ser 65	CTC Leu	693
15	AGA Arg	TTC Phe	AAG Lys	TGG Trp 70	TTC Phe	AAG Lys	AAT Asn	GGG Gly	AAT Asn 75	GAA Glu	TTG Leu	AAT Asn	CGA Arg	732
20	AAA Lys 80	AAC Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 85	ATC Ile	AAG Lys	ATA Ile	CAA Gln	AAA Lys 90	AAG Lys	CCA Pro	771
25	GGG Gly	AAG Lys	TCA Ser 95	GAA Glu	CTT	CGC Arg	ATT Ile	AAC Asn 100	AAA Lys	GCA Ala	TCA Ser	CTG Leu	GCT Ala 105	810
۵	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 110	ATG Met	TGC Cys	AAA Lys	GTG Val	ATC Ile 115	AGC Ser	AAA Lys	TTA Leu	849
30	GGA Gly	AAT Asn 120	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 125	AAT Asn	ATC Ile	ACC Thr	ATC Ile	GTG Val 130	GAA Glu	888
35	TCA Ser	AAC Asn	GAG Glu	ATC Ile 135	ATC Ile	ACT Thr	GGT Gly	ATG Met	CCA Pro 140	GCC Ala	TCA Ser	ACT Thr	GAA Glu	927
40	GGA Gly 145	GCA Ala	TAT Tyr	GTG Val	TCT Ser	TCA Ser 150	GAG Glu	TCT Ser	CCC Pro	ATT Ile	AGA Arg 155	ATA Ile	TCA Ser	966
4E	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	TCA Ser	TCT Ser	ACA Thr	TCT Ser 170	1005
45	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT Leu	GTA Val 180	AAA Lys	TGT Cys	GCG Ala	1044
50	Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	Val	AAT Asn	GGA Gly	GGG Gly	GAG Glu 195	TGC Cys	1083
55	TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	1122
60	TGC Cys 210	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	GAT Asp	CGC Arg 220	TGC Cys	CAA Gln	1161
	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AAG Lys	GCG Ala	GAG Glu	GAG Glu	CTG Leu 235	1200

5 [.]			CAG Gln				Leu								1239
ŭ			CTC Leu 250	Leu					Met						1278
10			AAA Lys			Lys									1317
15			Arg												1356
20			ATT												1395
25			AAT Asn												1434
			ATC Ile 315												1473
30			TCC Ser												1512
35			TCC Ser												1551
40			AAC Asn												1590
45			GTA Val												1629
			AGC Ser 380												1668
50			GGA Gly								Phe				1707
55	•		Arg												1746
60		-	GAA Glu		TAAA	A CC	GAAG	GCAA	AGC	TACI	GCA	GAGG	AGAA	AC 1	790
		mc x c	ma 2 a	20 2	3000	OMOR	~ 30	~ ~ ~ ~	mara		mc3.c	CEC	3003	3 3 mc	ma 10

TCAGTCAGAG AATCCCTGTG AGCACCTGCG GTCTCACCTC AGGAAATCTA 1840

PCT/US92/04295

	CTCTAATCAG AATAAGGGGC GGCAGTTACC TGTTCTAGGA GTGCTCCTAG 1890
5	TIGATGAAGT CATCTCTITG TTTGACGGAA CTTATTTCTT CTGAGCTTCT 1940
	CTCGTCGTCC CAGTGACTGA CAGGCAACAG ACTCTTAAAG AGCTGGGATG 1990
10	CTTTGATGCG GAAGGTGCAG CACATGGAGT TTCCAGCTCT GGCCATGGGC 2040
	TCAGACCCAC TCGGGGTCTC AGTGTCCTCA GTTGTAACAT TAGAGAGATG 2090
15	GCATCAATGC TTGATAAGGA CCCTTCTATA ATTCCAATTG CCAGTTATCC 2140
20	AAACTCTGAT TCGGTGGTCG AGCTGGCCTC GTGTTCTTAT CTGCTAACCC 2190
	TGTCTTACCT TCCAGCCTCA GTTAAGTCAA ATCAAGGGCT ATGTCATTGC 2240
25	TGAATGTCAT GGGGGGCAAC TGCTTGCCCT CCACCCTATA GTATCTATTT 2290
30	TATGAAATTC CAAGAAGGGA TGAATAAATA AATCTCTTGG ATGCTGCGTC 2340
30	TGGCAGTCTT CACGGGTGGT TTTCAAAGCA GAAAAAAAAA AAAAAAAAAA
35	алалалала алалалала алалалала алалалала
	(2) INFORMATION FOR SEQ ID NO:26:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 625 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
	Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Gly Lys Lys 1 5 10 15
50	Lys Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser 20 25 30
55	Gln Ser Pro Ala Leu Pro Pro Arg Leu Lys Glu Met Lys Ser Gln 35 40 45
	Glu Ser Ala Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser 50 55 60
60	Ser Glu Tyr Ser Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn 65 70 75
	Glu Leu Asn Arg Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys 80 85 90

	гу	PIC) GT?	/ Lys	95		ı bec	AIC	, 116	100		Ala	. Ser	Lec	105
5	· Asp	Ser	Gly	/ Glu	110		: Cys	Lys	Va]	11e		Lys	Leu	Gly	Asn 120
	Asp	Ser	Ala	a Ser	125		lle	Thr	: Ile	Val 130		Ser	Asn	Glu	11e 135
10	Ile	Thr	Gly	Met	Pro 140		Ser	Thr	Glu	Gly 145		Tyr	Val	Ser	Ser 150
15	Glu	Ser	Pro	Ile	Arg 155		Ser	Val	Ser	Thr 160		Gly	Ala	Asn	Thr 165
15	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175		Ser	His	Leu	Val 180
20	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
25	Lys	Cys	Gln	Pro	Gly 215		Thr	Gly	Ala	Arg 220	Cys	Thr	Glu	Asn	Val 225
30	Pro	Met	Lys	Val	Gln 230	Asn	Gln	Glu	Lys	Ala 235	Glu	Glu	Leu	Tyr	Gln 240
	Lys	Arg	Val	Leu	Thr 245	Ile	Thr	Gly	Ile	Cys 250	Ile	Ala	Leu	Leu	Val 255
35	Val	Gly	Ile	Met	Cys 260	Val	Val	Ala	Tyr	Cys 265	Lys	Thr	Lys	Lys	Gln 270
	Arg	Lys	Lys	Leu	His 275	Asp	Arg	Leu	Arg	Gln 280	Ser	Leu	Arg	Ser	Glu 285
40	Arg	Asn	Asn	Met	Met 290	Asn	Ile	Ala	Asn	Gly 295	Pro	His	His	Pro	Asn 300
45	Pro	Pro	Pro	Glu	Asn 305	Val	Gln	Leu	Val	Asn 310	Gln	Tyr	Val	Ser	Lys 315
	Asn	Val	Ile	Ser	Ser 320	Glu	His	Ile	Val	Glu 325	Arg	Glu	Ala	Glu	Thr 330
50	Ser	Phe	Ser	Thr	Ser 335	His	Tyr	Thr	Ser	Thr 340	Ala	His	His	Ser	Thr 345
	Thr	Val	Thr	Gln	Thr 350	Pro	Ser	His	Ser	Trp 355	Ser	Asn	Gly	His	Thr 360
55	Glu	Ser	Ile	Leu	Ser 365	Glu	Ser	His	Ser	Val 370	Ile	Val	Met	Ser	Ser 375
30	Val	Glu	Asn	Ser	Arg 380	His	Ser	Ser	Pro	Thr 385	Gly	Gly	Pro	Arg	Gly 390
~	Arg	Leu	Asn	Gly	Thr 395	Gly	Gly	Pro	Arg	Glu 400	Cys	Asn	Ser	Phe	Leu 405

	Arg	His	Ala	Arg	Glu 410	Thr	Pro	Asp	Ser	Tyr 415	Arg	Asp	Ser	Pro	42
5	Ser	Glu	Arg	Tyr	Val 425	Ser	Ala	Met	Thr	Thr 430	Pro	Ala	Arg	Met	Se:
	Pro	Val	Asp	Phe	His 440	Thr	Pro	Ser	Ser	Pro 445	Lys	Ser	Pro	Pro	Se:
10	Glu	Met	Ser	Pro	Pro 455	Val	Şer	Ser	Met	Thr 460	Val	Ser	Met	Pro	Se:
45	Met	Ala	Val	Ser	Pro 470	Phe	Met	Glu	Glu	Glu 475	Arg	Pro	Leu	Leu	Let 48
15	Val	Thr	Pro	Pro	Arg 485	Leu	Arg	Glu	Lys	Lys 490	Phe	Asp	His	His	Pro 49
20	Gln	Gln	Phe	Ser	Ser 500	Phe	His	His	Asn	Pro 505	Ala	His	Asp	Ser	Ası 510
	Ser	Leu	Pro	Ala	Ser 515	Pro	Leu	Arg	Ile	Val 520	Glu	Asp	Glu	Glu	Ту: 52!
25	Glu	Thr	Thr	Gln	Glu 530	Tyr	G1u	Pro	Ala	Gln 535	Glu	Pro	Val	Lys	Lys 540
00	Leu	Ala	Asn	Ser	Arg 545	Arg	Ala	Lys	Arg	Thr 550	Lys	Pro	Asn	Gly	His 555
30	Ile	Ala	Asn	Arg	Leu 560	Glu	Va1	Asp	Ser	Asn 565	Thr	Ser	Ser	Gln	Ser 570
35	Ser	Asn	Ser	Glu	Ser 575	Glu	Thr	Glu	Asp	Glu 580	Arg	Val	Gly	Glu	Asp 585
	Thr	Pro	Phe	Leu	Gly 590	Ile	Gln	Asn	Pro	Leu 595	Ala	Ala	Ser	Leu	Glu 600
40	Ala	Thr	Pro	Ala	Phe 605	Arg	Leu	Ala	Asp	Ser 610	Arg	Thr	Asn	Pro	Ala 615
45	Gly	Arg	Phe	Ser	Thr 620	Gln	Glu	Glu	Ile	Gln 625					
45	(2)								•						
50	i)	(I	1) LE 3) T'S	NCE C ENGTH (PE: OPOLC	1: 64 amir	15 an 10 ac	nino :id	ics: acid	ls						
	(xi	i) SE	QUE	CE I	DESCR	RIPTI	ON:	SEQ	ID N	10:27	' :				
55	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
~	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
60	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Glr 49

	Glu	Ser	Ala	Ala	Gly 50		Lys	Leu	Val	Leu 55	Arg	Cys	: Glu	Thr	Ser 60
5	Ser	Glu	Tyr	Ser	Ser 65		Arg	Phe	Lys	Trp 70	Phe	Lys	: Asn	Gly	Asr 75
	Glu	Leu	Asn	Arg	Lys 80		Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys
10	Lys	Pro	Gly	Lys	Ser 95		Leu	Arg	Ile	Asn 100		Ala	Ser	Leu	Ala 105
15	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asr 120
15	Asp	Ser	Ala	Ser	Ala 125		Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
20	IÌe	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
25	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
30	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
	Суѕ	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
35	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
	Met	Ala	Ser	Phe	Tyr 230	Lys	His	Leu	Gly	Ile 235	Glu	Phe	Met	Glu	Ala 240
40	Glu	Glu	Leu	Tyr	Gln 245	Lys	Arg	Val	Leu	Thr 250	Ile	Thr	Gly	Ile	Cys 255
45	Ile	Ala	Leu	Leu	Val 260	Val	Gly	Ile	Met	Cys 265	Val	Val	Ala	Tyr	Cys 270
	Lys	Thr	Lys	Lys	Gln 275	Arg	Lys	Lys	Leu	His 280	Asp	Arg	Leu	Arg	Gln 285
50	Ser	Leu	Arg	Ser	Glu 290	Arg	Asn	Asn	Met	Met 295	Asn	Ile	Ala	Asn	Gly 300
	Pro	His	His	Pro	Asn 305	Pro	Pro	Pro	Glu	Asn 310	Val	Gln	Leu	Val	Asn 315
55	Gln	Tyr	Val	Ser	Lys 320	Asn	Val	Ile	Ser	Ser 325		His	Ile	Val	Glu 330
60	Arg	Glu	Ala	Glu	Thr 335	Ser	Phe	Ser _.	Thr	Ser 340	His	Tyr	Thr	Ser	Thr 345
	Ala	His	His	Ser	Thr 350	Thr	Val	Thr	Gln	Thr 355	Pro	Ser	His	Ser	Trp 360

•	Ser	Asn	Gly	His	Thr 365		Ser	Ile	Leu	Ser 370	Glu	Ser	His	Ser	Va. 375
5	Ile	Val	Met	Ser	Ser 380		Glu	Asn	Ser	Arg 385	His	Ser	Ser	Pro	Th:
	Gly	Gly	Pro	Arg	Gly 395		Leu	Asn	Gly	Thr 400	Gly	Gly	Pro	Arg	Glu 405
10	Cys	Asn	Ser	Phe	Leu 410		His	Ala	Arg	Glu 415		Pro	Asp	Ser	Ty: 420
15	Arg	Asp	Ser	Pro	His 425		Glu	Arg	Tyr	Val 430	Ser	Ala	Met	Thr	Th:
	Pro	Ala	Arg	Met	Ser 440	Pro	Val	Asp	Phe	His 445	Thr	Pro	Ser	Ser	Pro 450
20	Lys	Ser	Pro	Pro	Ser 455	Glu	Met	Ser	Pro	Pro 460	Val	Ser	Ser	Met	Thr 465
	Val	Ser	Met	Pro	Ser 470	Met	Ala	Val	Ser	Pro 475	Phe	Met	Glu	Glu	Glu 480
25 .	Arg	Pro	Leu	Leu	Leu 485	Val	Thr	Pro	Pro	Arg 490	Leu	Arg	Glu	Lys	Lys 495
30	Phe	Asp	His	His	Pro 500	Gln	Gln	Phe	Ser	Ser 505	Phe	His	His	Asn	Pro 510
00	Ala	His	Asp	Ser	Asn 515	Ser	Leu	Pro	Ala	Ser 520	Pro	Leu	Arg	Ile	Val 525
35	Glu	Asp	Glu	Glu	Tyr 530	Glu	Thr	Thr	Gln	Glu 535	Tyr	Glu	Pro	Ala	Gln 540
	Glu	Pro	Val	Lys	Lys 545	Leu	Ala	Asn	Ser	Arg 550	Arg	Ala	Lys	Arg	Thr 555
40	Lys	Pro	Asn	Gly	His 560	Ile	Ala	Asn	Arg	Leu 565	Glu	Val	Asp	Ser	Asn 570
45	Thr	Ser	Ser	Gln	Ser 575	Ser	Asn	Ser	Glu	Ser 580	Glu	Thr	Glu	Asp	G1u 585
10	Arg	Val	Gly	Glu	Asp 590	Thr	Pro	Phe	Leu	Gly 595	Ile	Gln	Asn	Pro	Leu 600
50	Ala	Ala	Ser	Leu	Glu 605	Ala	Thr	Pro	Ala	Phe 610	Arg	Leu	Ala	Asp	Ser 615
	Arg	Thr	Asn	Pro	Ala 620	Gly	Arg	Phe	Ser	Thr 625	Gln	Glu	Glu	Ile	Gln 630
55	Ala	Arg	Leu	Ser	Ser 635	va1	Ile	Ala	Asn	Gln 640	Asp	Pro	Ile	Ala	Val 645

(2) INFORMATION FOR SEQ ID NO:28:

60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 637 amino acids
- (B) TYPE: amino acid
 (D) TOPOLOGY: linear

1	CHOURNE	DESCRIPTION:	CEO	TD	MO . 20 .
(YI)	SECHENCE	DESCRIPTION:	SEO	11	NO:28:

5	Met 1		Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10		Lys	Gly	Lys	Lys 15
	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
10	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45
15	Glu	Ser	Ala	Ņlа	Gly 50	Ser	Lys	Leu	Va1	Leu 55	Arg	Cys	Glu	Thr	Ser 60
10	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
20	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90
	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
25	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
30	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
00	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
35	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
40	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
45	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
45	Lys	Cys	Pro	Asn	Glu 215		Thr	Gly	Asp	Arg 220		Gln	Asn	Tyr	Val 225
50	Met	Ala	Ser	Phe	Tyr 230	Lys	Ala	Glu	Glu	Leu 235	Tyr _.	Gln	Lys	Arg	Val 240
	Leu	Thr	Ile	Thr	Gly 245	Ile	Суѕ	Ile	Ala	Leu 250	Leu	Val	Val	Gly	Ile 255
55	Met	Cys	Val	Val	Ala 260	Tyr	Cys	Lys	Thr	Lys 265	Lys	Gln	Arg	Lys	Lys 270
60	Leu	His	Asp	Arg	Leu 275	Arg	Gln	Ser	Leu	Arg 280	Ser	Glu	Arg	Asn	Asn 285
w	Met	Met	Asn	Ile	Ala 290	Asn	Gly	Pro	His	His 295	Pro	Asn	Pro	Pro	Pro 300

	Glu	Asn	Val	Gln	Leu 305	Val	Asn	GIN	ıyr	310		гуз	ASII	vai	315
5	Ser	Ser	Glu	His	Ile 320	Val	Glu	Arg	Glu	Ala 325	Glu	Thr	Ser	Phe	Ser 330
	Thr	Ser	His	Tyr	Thr 335	Ser	Thr	Ala	His	His 340	Ser	Thr	Thr	Val	Thr 345
10	Gln	Thr	Pro	Ser	His 350	Ser	Trp	Ser	Asn	Gly 355	His	Thr	Glu	Ser	Ile 360
15	Leu	Ser	Glu	Ser	His 365	Ser	Val	Ile	Val	Met 370	Ser	Ser	Val	Glu	Asn 375
10	Ser	Arg	His	Ser	Ser 380	Pro	Thr	Gly	Gly	Pro 385	Arg	Gly	Arg	Leu	Asn 390
20	Gly	Thr	Gly	Gly	Pro 395	Arg	Glu	Cys	Asn	Ser 400	Phe	Leu	Arg	His	Ala 405
	Arg	Glu	Thr	Pro	Asp 410	Ser	Tyr	Arg	Asp	Ser 415	Pro	His	Ser	Glu	Arg 420
25	Tyr	Val	Ser	Ala	Met 425	Thr	Thr	Pro	Ala	Arg 430	Met	Ser	Pro	Val	Asp 435
30	Phe	His	Thr	Pro	Ser 440	Ser	Pro	Lys	Ser	Pro 445	Pro	Ser	Glu	Met	Ser 450
00	Pro	Pro	Val	Ser	Ser 455	Met	Thr	Val	Ser	Lys 460	Pro	Ser	Met	Ala	Val 465
35	Ser	Pro	Phe	Met	Glu 470	Glu	Glu	Arg	Pro	Leu 475	Leu	Leu	Val	Thr	Pro 480
	Pro	Arg	Leu	Arg	Glu 485	Lys	Lys	Phe	Asp	His 490	His	Pro	Gln	Gln	Phe 495
40		Ser			500					505					510
45		Ser			515					520					525
		Glu			530		•			535					540
50		Arg			545					550					555
	Arg	Leu	Glu	Val	Asp 560	Ser	Asn	Thr	Ser	Ser 565	Gln	Ser	Ser	Asn	Ser 570
55	Glu	Ser	Glu	Thr	Glu 575	Asp	Glu	Arg	Val	Gly 580	Glu	Asp	Thr	Pro	Phe 585
60	Leu	Gly	Ile	Gln	Asn 590	Pro	Leu	Ala	Ala	Ser 595	Leu	Glu	Ala	Thr	Pro 600
~	Ala	Phe	Arg	Leu	Ala 605	Asp	Ser	Arg	Thr	Asn 610	Pro	Àla	Cly	Arg	Phe 615

•	Ser	Thr	Gln	Glu	Glu 620		Gln	Ala	Arg	Leu 625	Ser	Ser	Val	Ile	Ala 630
5	Asn	Gln	Asp	Pro	Ile 635		Val 637								
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:29	:						
10	((EQUE A) L B) T D) T	ENGT YPE:	H: 4 ami	20 a no a	mino cid		ds						
45	(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO:2	9:				
15	Met 1		Glu	Arg	Lys 5		Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
20	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	. Lys 40	Glu	Met	Lys	Ser	Gln 45
25	Glu	Ser	Ala	Ala	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Cys	Glu	Thr	Ser 60
30	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90
35	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
40	Asp	Ser	Ala	Ser	Ala 125	Asn	.Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
45	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
50	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Va1	Asn	Gly	Gly	Glu 195
55	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser		Pro -205	Ser	Arg	Tyr	Leu	Cys 210
60	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
••	Met	Ala	Ser	Phe	Tyr 230	Lys	Ala	Glu	Glu	Leu 235	Tyr	Gln	Lys	Arg	Val 240

WO 92/20798 PCT/US92/04295

	Leu	Thr	Ile	Thr	Gly 245	Ile	Cys	Ile	Ala	Leu 250	Leu	Val	Val	Gly	11e 255
5	Met	Cys	Val	Val	Ala 260		Cys	Lys	Thr	Lys 265	Lys	Gln	Arg	Lys	Lys 270
	Leu	His	Asp	Arg	Leu 275	Arg	Gln	Ser	Leu	Arg 280	Ser	Glu	Arg	Asn	Asn 285
10	Met	Met	Asn	Ile	Ala 290	Asn	Gly	Pro	His	His 295	Pro	Asn	Pro	Pro	Pro 300
15	Glu	Asn	Val	Gln	Leu 305	Va1	Asn	Gln	Tyr	Val 310	Ser	Lys	Asn	Val	Ile 315
15	Ser	Ser	Glu	His	Ile 320	Val	Glu	Arg	Glu	Ala 325	Glu	Thr	Ser	Phe	Ser 330
20	Thr	Ser	His	Tyr	Thr 335	Ser	Thr	Ala	His	His 340	Ser	Thr	Thr	Val	Thr 345
	Gln	Thr	Pro	Ser	His 350	Ser	Trp	Ser	Asn	Gly 355	His	Thr	Glu	Ser	Ile 360
2 5	Leu	Ser	Glu	Ser	His 365	Ser	Val	Ile	Val	Met 370	Ser	Ser	Val	Glu	Asn 375
30	Ser	Arg	His	Ser	Ser 380	Pro	Thr	Gly	Gly	Pro 385	Arg	Gly	Arg	Leu	Asn 390
30	Gly	Thr	Gly	Gly	Pro 395	Arg	Glu	Cys	Asn	Ser 400	Phe	Leu	Arg	His	Ala 405
35	Arg	Glu	Thr	Pro	Asp 410	Ser	Tyr	Arg	Asp	Ser 415	Pro	His	Ser	Glu	Arg 420
	(2)]	INFO	RMAT]	ION I	FOR S	SEQ :	ID NO):30:	:						
40	i)	(I	EQUENA) LI B) T'S	engti Pe :	i: 24 amir	ll ar	nino cid	CS: acid	is .						
45	(xi	.) SI	EQUE1	NCE I	ESCF	RIPT	ON:	SEQ	ID N	10:30):				
	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
50	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	G1u 25	Ser	Ala	Ala	Gly	Ser 30
	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45
55	Glu	Ser	Ala	Ala	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Cys	Glu	Thr	Ser 60
3 0	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90

•	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
5	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
10	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
45	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
15	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
20	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
25	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
00	Met	Ala	Ser	Phe	Tyr 230	Ser	Thr	Ser	Thr	Pro 235	Phe	Leu	Ser	Leu	Pro 240
30	Glu 241														

WE CLAIM:

- 1. A composition comprising isolated heregulin polypeptide.
- 5 2 The composition of claim 1 wherein the heregulin is antigenically active.
 - 3. The composition of claim 1 wherein the heregulin is biologically active.
 - 4. The composition of claim 3 wherein the heregulin is HRG-GFD.

10
5. The composition of claim 1 wherein the heregulin is heregulin $-\alpha$, $-\beta$ 1, $-\beta$ 2, or $-\beta$ 3.

- 6. The composition of claim 3 wherein the heregulin is human heregulin- α -GFD.
- 7. The composition of claim 3 wherein the heregulin is human heregulin- β 1–GFD, heregulin- β 2–GFD or heregulin- β 3–GFD .
- 8. The composition of claim 1 further comprising pharmaceutically acceptable carrier.
- 209. The composition of claim 8 wherein the heregulin is a heregulin GFD.
 - 10. The composition of claim 9 further comprising an immune adjuvant.
- 25 11. The composition of claim 10 wherein the heregulin GFD comprises an immunogenic, non-heregulin polypeptide.
 - The composition of claim 1 wherein the heregulin is NTD-GFD.
- 30 13. The composition of claim 1 wherein the heregulin is NTD-GFD-transmembrane polypeptide.
 - 14. The composition of claim 1 wherein the heregulin is HRG-GFD.
- The composition of claim 1 wherein the heregulin comprises a cytoplasmic domain.
 - 16. The composition of claim 1 wherein the heregulin is NTD-GFD and it has an amino acid sequence which is at least 85% homologous with the native heregulin- α , $-\beta$ 1, $-\beta$ 2, $-\beta$ 3 NTD-GFD sequence.

- 17. The composition of claim 1 wherein the heregulin polypeptide comprises an enzyme.
- 18. The composition of claim 16 wherein the heregulin is HRG- α .

- 19. The composition of claim 18 wherein the heregulin- α has an amino acid substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108,121-123, 128-130 and 163-247 (Fig. 15).
- 10 20. The composition of claim 16 wherein the heregulin is HRG- β_1 .
 - 21. The composition of claim 20 wherein the heregulin β_1 has an amino acid substituted, deleted or inserted adjacent to residues 1-23, 107-108, 121-123, 128-130 and 163-252 (Fig. 15).

15

- 22. The composition of claim 16 wherein the heregulin is HRG- β_2 .
- 23. The composition of claim 22 wherein the heregulin β_2 has an amino acid substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108, 121-123, 128-130 and 163-244 (Fig. 15).
- 24. The composition of claim 16 wherein the heregulin is HRG-β₃.
- 25. The composition of claim 24 wherein the heregulin β₃ has an amino acid
 25 substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108, 121-123, 128-130 and 163-241 (Fig. 15).
 - 26. An isolated antibody that is capable of binding a heregulin polypeptide.
- The isolated antibody of claim 26 that is capable of binding specifically to a heregulin-α, heregulin-β1, heregulin-β2, or heregulin-β3.
 - 28. Isolated heregulin encoding nucleic acid.
- 35 29. The nucleic acid of claim 28 which encodes heregulin- α , heregulin- β 1, heregulin- β 2, or heregulin- β 3 polypeptide.
 - 30. The nucleic acid of claim 28 that encodes a heregulin-GFD.

- 31. An expression vector comprising the nucleic acid of claim 28.
- 32. The expression vector of claim 31 wherein the nucleic acid encodes a heregulin-GFD.
- 5 33. A host cell transformed with a vector of claim 31.
 - 34. A method comprising culturing the host cell of claim 33 to express the heregulin and recovering the heregulin from the host cell.
- 10 35. The method of claim 34 wherein the heregulin is heregulin- α , heregulin- β 1, heregulin β 2, or heregulin- β 3.
 - 36. The method of claim 34 wherein the heregulin is heregulin-NTD-GFD.
- 15 37. The method of claim 34 wherein the heregulin is heregulin-GFD.
 - 38. A method of determining the presence of a heregulin nucleic acid, comprising contacting the nucleic acid of claim 28 with a test sample nucleic acid and determining whether hybridization has occurred.
- A method of amplifying a nucleic acid test sample comprising priming a nucleic acid polymerase chain reaction with the nucleic acid of claim 28.
- 40. A method for purifying a heregulin comprising adsorbing heregulin from a contaminated solution thereof onto heparin Sepharose or a cation exchange resin.

FIG. I

WO 92/20798

						4/3	32						
. G G					o Gli				C TCC g Sei		ı Sei		
			p Ly					n Pro	ATC Ile				l
GGA Gly	A CCA	A AA() Ası	C TCO	G CCI r Pro 30) Ala	G CCC	G AGA	A GCC y Ala	C GTC Val 35	Arg	GTA Val	GAG Glu	116
CGC	TCC Ser 40	· Val	TC(Se)	C GGC C Gly	GAG Glu	ATO Met 45	Ser	GAG Glu	G CGC L Arg	AAA Lys	GAA Glu 50	#Gly	155
AGA Arg	GGC Gly	AAZ Lys	A GGC S Gly 55	/ Lys	GGC Gly	AAG Lys	AAG Lys	AAG Lys 60	Glu	CGA Arg	GGC Gly	TCC Ser	194
GGC Gly 65	Lys	AAC Lys	CCG Pro	GAG Glu	TCC Ser 70	Ala	GCG Ala	GGC Gly	AGC Ser	CAG Gln 75	AGC Ser	CCA Pro	233
GCC Ala	TTG Leu	CCT Pro 80	Pro	CGA Arg	TTG Leu	AAA Lys	GAG Glu 85	ATG Met	AAA Lys	AGC Ser	CAG Gln	GAA Glu 90	272
TCG Ser	GCT Ala	GCA Ala	GGT Gly	TCC Ser 95	AAA Lys	CTA Leu	GTC Val	CTT Leu	CGG Arg 100	TGT Cys	GAA Glu	ACC Thr	311
AGT Ser	TCT Ser 105	GAA Glu	TAC Tyr	TCC Ser	TCT Ser	CTC Leu 110	AGA Arg	TTC Phe	AAG Lys	TGG Trp	TTC Phe 115	AAG Lys	350
									AAA Lys				389
									TCA Ser				428
									GGA Gly				467
Cys		Val	Ile						GAC Asp 165				506

					(5/32)						
GC0 Ala	C AA' a Asi 17(n Il	C ACC e Thi	C ATO	C GTG Val	GAA	TC? Ser	A AAC Asn	C GAC	G ATO	Ile 180	Thr	545
GG1 Gly	T ATO	G CC	A GCC o Ala 185	a Ser	ACT Thr	GAA Glu	GGA Gly	GCA Ala 190	Tyr	GTG Val	TCT Ser	TCA Ser	. 584
	ı Ser				ATA Ile 200						Gly		
AAT Asn	ACT Thr	Ser 210	Ser	TCT Ser	ACA Thr	TCT Ser	ACA Thr 215	TCC	ACC Thr	ACT Thr	GGG Gly	ACA Thr 220	662
AGC Ser	CAT His	CTI Leu	GTA Val	AAA Lys 225	TGT Cys	GCG Ala	GAG Glu	AAG Lys	GAG Glu 230	Lys	ACT Thr	TTC Phe	701
TGT Cys	GTG Val 235	Asr	GGA Gly	GGG Gly	GAG Glu	TGC Cys 240	TTC Phe	ATG Met	GTG Val	AAA Lys	GAC Asp 245	CTT Leu	740
					TAC Tyr								779
TTC Phe 260	ACT Thr	GGA Gly	GCA Ala	AGA Arg	TGT Cys 265	ACT Thr	GAG Glu	AAT Asn	GTG Val	CCC Pro 270	ATG Met	AAA Lys	818
GTC Val	CAA Gln	AAC Asn 275	Gln	GAA Glu	AAG Lys	GCG Ala	GAG Glu 280	GAG Glu	CTG Leu	TAC Tyr	CAG Gln	AAG Lys 285	857
					ACC Thr								896
GTG Val	GTC Val 300	GGC Gly	ATC Ile	ATG Met	TGT Cys	GTG Val 305	GTG Val	GCC Ala	TAC Tyr	TGC Cys	AAA Lys 310	ACC Thr	935
					AAG Lys		His						974
					CGA . Arg . 330				Met		Ile	Ala	

WO 92/20798

6	1	2	2	
O	/	.5	_	

					6/3	32						
		His			AAC	CCA	Pro	CCC Pro				
				Tyr				AAC Asn 360	Val			1091
	His							GAG Glu				1130
			Tyr					His				1169
								TGG Trp				1208
							Ser	CAC His				1247
								CAC His 425				1286
								GGC Gly				1325
								CAT				1364
					Asp			CAT His				1403
								CGT Arg				1442
								AAA Lys 490				1481
				Pro				ATG Met		Val	Ser	1520 . 4 C

7/32 ATG CCT TCC ATG GCG GTC AGC CCC TTC ATG GAA GAA GAG 1559 Met Pro Ser Met Ala Val Ser Pro Phe Met Glu Glu Glu 510 515 AGA CCT CTA CTT CTC GTG ACA CCA CCA AGG CTG CGG GAG 1598 Arg Pro Leu Leu Val Thr Pro Pro Arg Leu Arg Glu 525 AAG AAG TTT GAC CAT CAC CCT CAG CAG TTC AGC TCC TTC 1637 Lys Lys Phe Asp His His Pro Gln Gln Phe Ser Ser Phe 535 540 545 CAC CAC AAC CCC GCG CAT GAC AGT AAC AGC CTC CCT GCT 1676 His His Asn Pro Ala His Asp Ser Asn Ser Leu Pro Ala 550 AGC CCC TTG AGG ATA GTG GAG GAT GAG GAG TAT GAA ACG 1715 Ser Pro Leu Arg Ile Val Glu Asp Glu Glu Tyr Glu Thr 560 565 ACC CAA GAG TAC GAG CCA GCC CAA GAG CCT GTT AAG AAA 1754 Thr Gln Glu Tyr Glu Pro Ala Gln Glu Pro Val Lys Lys 575 580 CTC GCC AAT AGC CGG CGG GCC AAA AGA ACC AAG CCC AAT 1793 Leu Ala Asn Ser Arg Arg Ala Lys Arg Thr Lys Pro Asn 585 590 595 GGC CAC ATT GCT AAC AGA TTG GAA GTG GAC AGC AAC ACA 1832 Gly His Ile Ala Asn Arg Leu Glu Val Asp Ser Asn Thr 600 605 610 AGC TCC CAG AGC AGT AAC TCA GAG AGT GAA ACA GAA GAT 1871 Ser Ser Gln Ser Ser Asn Ser Glu Ser Glu Thr Glu Asp 615 GAA AGA GTA GGT GAA GAT ACG CCT TTC CTG GGC ATA CAG 1910 Glu Arg Val Gly Glu Asp Thr Pro Phe Leu Gly Ile Gln 625 630 635 AAC CCC CTG GCA GCC AGT CTT GAG GCA ACA CCT GCC TTC 1949 Asn Pro Leu Ala Ala Ser Leu Glu Ala Thr Pro Ala Phe 640 CGC CTG GCT GAC AGC AGG ACT AAC CCA GCA GGC CGC TTC 1988 Arg Leu Ala Asp Ser Arg Thr Asn Pro Ala Gly Arg Phe 650 655 · 660 TCG ACA CAG GAA GAA ATC CAG G 2010

SUBSTITUTE SHEET

669

FIG. 4D

Ser Thr Gln Glu Glu Ile Gln

665

8/32

FIG. 5

C V N G G E C F M V K D L S N P S R Y L C K C Q P G F T G A R C T E N C L H D G V C M Y I E A L D K Y A C N C V V G Y I G E R C Q Y R C F H - G T C R F I V Q F D K P A C V C H S G V G A B C F H A	1 H - G E C K Y I E H L E A Y T C K C Q Q E Y F G E R C G E F G E F G E R C G E F G E F G E R C G E F G E	LYOKR <mark>VLTITGICIALLVVGIMCVVAYC</mark> KTKK	QQQ-KVIVVAVCVVVLVMLLLLSLWGAHYYRTOK KQAITALVVSIVALAVLIITCVLIHCCQV KIAIAAFMSAVIITAVAVITVOIPPOV	I A L A A I I V F V S A V S V A A I G I I T A V L L R K T T I L A V V A V V L S S V C L L V I V G L L M F R Y H	TRANSMEMBRANE REGION
2 H H	H H H	: 0	Ø 1 1	1 1 1 1	F1G. 6
HRG2-alpha EGF TGF-alpha	Amphiregulin Schwannoma HR-FGF	HRG2-alpha	EGF TGF-alpha Amphiregulin	Schwannoma HB-EGF	

SUBSTITUTE SHEET

WO 92/20798

GG.	Lys			CCA Pro 5	Asr				Lev		
		Pro		CCG Pro			Val			•	
				Met				Glu		116	•
	Gly			AAG Lys		Lys					
			Ser	GCG Ala						194	
				AAA Lys 70						233	
				CTA Leu						272	
				CTC Leu						311	
	Glu		Asn	CGA Arg						350	
				CCA Pro						389	
				GCT Ala 135						428	
				TTA Leu						467 ⁻	
				GAA Glu						506	

FIG. 8A

						_	_						
ATG Met	CCA Pro 170) Ala	TCA Ser	ACI Thr	GAA Glu	12/ GGA Gly 175	Ala	A TAT A Tyr	GTG Val	TCT Ser	TCA Ser 180	A GAG Glu	545
				Ile					Glu			AAT ASN	
	Ser										Thr	AGC Ser	623
			Lys					Glu				TGT Cys 220	662
					Cys			GTG Val				TCA Ser	701
								TGC Cys				TTT Phe	740
								GTA Val 255				TTC Phe	779
								ATG Met				GAG Glu	818
Leu		Gln	Lys			Leu		Ile				TGC Cys 285	857
								ATG Met				GCC Ala	896
								AAA Lys				GAC Asp	935
								GAA Glu 320				ATG Met	974
							His	CAT His				CCC Pro	1013

FIG. 8B SUBSTITUTE SHEET

	CCC	GAC Glu	ı Asr	ı Val	C CAG	CTG Leu	13/ GTC Val	32 3 AAT . Asn 345	Gln	TAC Tyr	GTA Val	TCI Ser	. Lys	
•				· TCC		Glu		' ATT	GTI		Arg		350 GCA Ala	1091
			Ser					His					Ala	1130
					Thr					Pro			AGC Ser	1169
		Ser	AAC Asn											1208
			GTA Val 405											1247
			AGC Ser											1286
			GGA Gly											1325
	His	Ala	AGA Arg	Glu	Thr	Pro	Asp	Ser	Tyr	Arg				1364
]			GAA Glu											1403
			TCA Ser 470											1442
			CCC Pro						Pro					1481
			GTG Val										TTC Phe	1520

SUBSTITUTE SHEET FIG. 8C

		Arg			Val	ACA Thr			559
Leu						CCT Pro 530			98
						GAC Asp			37
						GAG Glu			76
						GCC Ala		17	15
						GCC Ala		17	54
					Arg	TTG Leu 595		17	93
						TCA Ser		18	32
						ACG Thr		18	71
						CTT Leu		19:	10
						ACT Thr		19	49
						CAG Gln 660		198	88
						ATT Ile		TA	2029

SUBSTITUTE SHEET FIG. 8D

15/32

шш	@ @			NO.		ممار		ا ا		<u> </u>		4 E] >		
マス		MA	œœ	امم	၂ပပ	zz	:	. ww	SO	SON		- ww	ے ا		
22	>>			ZZ		امم	. 00			လလ	œœ		S	1	
шш		ဟလ	امم	SO	၂၀၀	TI	:			╽┖┖	\	100			
S		AA	SON			エエ	: >>	ြတတ	SON	ලල	<	4	-	\mathbf{z}	•
ΣΣ	vv	スス	ww					ලග	~~		œœ	4	=	¥	:
mm	ပြာပ	ZZ	S	~~		၂၀၀			امم	امم	~ ~	ــا -	×	\succeq	:
ပ်ပ	MA	— —	vv	>>		ZZ	11	11	S		SOC		2	\succeq	:
S	MA	2	>>	ΣΣ	>>	MA	11	1 1	NN	1 1	ZZ	ZZ		\succeq	
>>	SS		>->	╽╙╙	œœ		==	11			AA		Z	Σ,	
SS	ШШ	шш	AA	انن	~ ~	ZZ	11	1 1					0	\simeq	
E R R R	SS	SS	၂ ပ	шш	100	ΣΣ		99	二二	スス			>	>	
>>	**	99 88	l mm	99	~>	ΣΣ	INN	20	ш.	\	スス	11 .	A	<u>></u>	
88	ΣΣ	مم	ST	22		ZZ	 - -	ပြင		RR EE	>>	11 .	-	Σ	
>>	шш	XX	AA	>>		22	I EE	99	امما				<u>م</u>	>	
AA	**	**	P	00	AA	шш	SS		SS		00		0	~	
22		00	ΣΣ	LL IL	XIII	SS		امما	ΣΣ	P	AA	11	z	0	
امما	×0		ပ်ပ	-	MΣ	22	SO	SSS	22	مما	۵۵	00	A	_	
AA	00	72		2	111		шц	SSS	AA	 	шш			_	
امما	امما			سس	ıш	SOS	SS	ᆂᆂ	امما	>>	>>	2	>	~	
SS		ZZ		2	1	00	 	~~		اسا	шш	اسسا	S	\mathbf{x}	
ZZ	AA	00	աա	யய	1 9	22	աա	SS		اسدا	00		S	9	
امما	امما	امما	ZZ	AA	· —		AA	ZZ	ΣΣ		HH	யய	_	-	
တြတ	လလ	- '	လလ	ပပ	OΞ	2	பெய	யய	AA	امما			œ	\checkmark	
	00	ZZ	யய	~~	ZY	00	2	>>	လလ	22	шш	mm	A	0	•
MA	SS	XX	>>	>>	⊘ ≻	工工		လလ	>>	шш	 >>	SS	00	×	တ
2	ပ်ပ	<u>~~</u>			>4		>>	SS	>>	uu	шш			Ů	ပ
	AA	ZZ		王王	×0	XX		EE	~~	шш	ساسا	လလ	mm	4	正
	AA			SS	ΣŒ	スス	三王	>>	шш	ZZ		ZZ	шш	0	
22	NN SS	22	ZZ	9		22	mm mm		SS	шш	шш	SS	00	0	
LLL	مما	00	SA	H-H	<u>>></u>	77 00	SS	\ \ \ \ \	五五	مما	>>	SS		ш.	
	~~	ZZ	AA			**		工工	SS	>> \ \ \ \ \	88	SS	SS	<u>ا</u>	
72	 	ネ ス	SSS	SSS	<u>-0</u>		>>	SS		AA		SS	22	ш	
	ပြာပ	шш			اتاتا	2	ZZ	шш	~~	ΣΣ		 	ဟဟ	0	
æ 1	SS	33	zz	SSS	~~	اںںا	노노	SSS	>>	SS	SS	ZZ	VV	~	
SI	ပာပ	자시	ပ်ပ		A	->-	လလ		SOS	امما	AA	SS	امما	-	
۱ ۵	∞∝	பட		SSS	ပ်	DD	>>			ΣΣ	امما		ZZ	0	
SI	шш	22	\times	SOS		>>		SSS		SOS		>>		Ъ	
ا ب	スス		SS	SS	шш	>>	00	шш		>>	SS	mm	~~	٩	
SI	スス	လလ		 -	ОШ	ပပ	ZZ		шш		ZZ		SS	_	
≃ 1	XX	SS	>>	ZZ	٥z	ΣΣ	>>	ー	2	ΣΣ	SS	22		S	
9 1	ပ်ပ	>>	スス	AA	۵			ပ်ပ	AA	SS		ZZ	AA	0	
∝ !	 	ШШ	00	99	00	99	00	ZZ	王王	SS	王王	AA		0	
O :	99	SS	ΣΣ	шш	スス	>>	>>	SS	22	>>	AA		2	_	
۱ ۵	スス	SS	>>		ပပ	>>	ZZ	33		مما				11-	
αı αı	20		00 HIII	SS				TT SS	1010		ZZ	99	AA	>_	
4 :	lli		SS	\ \ \ \ \ \	~~ ~~	AL	99	SS	SS	SS		ZZ			
	الكسا	ပပ	2,01	2,0,	لننت			2,0,	ZZ	ΣΣ	三三	مم		×	
	51	01 87	51	$\begin{array}{c} 01 \\ 87 \end{array}$	51	96	46	96	46	96	46	96	46	87	
		~	\rightarrow	1	22	77	mm	mm	77	44	സസ	RUR	99	89	
HRGa HRGb	HRGa IRGD	HRGa HRGb	IRG5	HRGa HRGD	HRGa HRGb	Ga	(Ga	RGa RGb	69 69	Ga	69 65	Ga	ga Gb	HRGb	
ΞΞ	生生	坐坐	壬	生 至	生生	ΞΞ	HRG	壬壬	HRG	HRG	뚶뚶	¥≅	HRG	¥	

STIMULATION OF HER2 AUTOPHOSPHORYLATION

AA							AAC Asn	38
							CGG Arg 25	77
		GGG Gly 30					ACC Thr	116
		GGT Gly					CCA Pro	155
		CCA Pro					TTC Phe	194
		GAG Glu					GCG Ala	233
		GGC Gly	-				GCC Ala 90	272
		GGC Gly 95					GCG Ala	311
		CGC Arg					AGG Arg	350
		CCA Pro					CCA Pro	389
		CCG Pro					TCC Ser	428
		ATG Met					GGC Gly 155	467
		AAG Lys			GG 4	196		

SUBSTITUTE SHEET FIG. 11

GTG	GCTG(CGG	GGCA	ATTG	AA AA	18 aaga	/ 32 cccc	G CG	AGGA(GTTC	CCC	GAAA(CTT	50
GTT	GGAA(CTC	CGGG	CTCG	CG CO	GGAG	GCCA	G GA	GCTG2	AGCG	GCG	GCGG	CTG	10
CCG	GACG	ATG	GGAG	CGTG	AG C	AGGA	CGGT	G AT	AACC!	TCTC	CCC	GATC	GGG	15
TTG	CGAG	GGC	GCCG	GCA(GA GO	GCCA	GGAC	G CG	AGCC	GCCA	GCG	GCGG(GAC	20
CCA:	rcga(CGA	CTTC	CCGG	GG C	GACA	GGAG	C AG	ccc	GAGA	GCC	AGGG	CGA	25
GCG	CCCG:	TTC	CAGG	rggc	CG G	ACCG	CCCG	C CG	CGTC	CGCG	CCG	CGCT	CÚC	30
TGC	AGGC	AAC	GGGA	GACG	CC CC	CCGC	GCAG	C GC	GAGC	GCCT	CAG	CGCG	GCC	35
GCT	CGCT	CTC	CCCA!	rcga(GG GZ	ACAA	ACTT	T TC	CAA	ACCC	GAT	CCGA	GCC	40
CTT	GGAC	CAA	ACTC	CCT	SC GO	CCGA	GAGC	C GT	CCGC	GTAG	AGC	GCTÇ	CGT	45
CTC	CGGC	GAG	ATG Met 1				AAA Lys 5						490	ı
GGG Gly	AAG Lys	GGC Gly	AAG Lys	AAG Lys 15	AAG Lys	GAG Glu	CGA Arg	GGC Gly	TCC Ser 20	GGC Gly	AAG Lys	AAG Lys	529	l
CCG Pro	GAG Glu 25	TCC	GCG Ala	GCG Ala	GGC Gly	AGC Ser 30	CAG Gln	AGC Ser	CCA Pro	GCC Ala	TTG Leu 35	Pro	568	
CCC Pro	CAA Gln	TTG Leu	AAA Lys 40	GAG Glu	ATG Met	AAA Lys	AGC Ser	CAG Gln 45	GAA Glu	TCG Ser	GCT Ala	GCA Ala	607	
GGT Gly 50	TCC Ser	AAA Lys	CTA Leu	GTC Val	CTT Leu 55	CGG Arg	TGT Cys	GAA Glu	ACC Thr	AGT Ser 60	TCT Ser	GAA Glu	646	
TAC Tyr	TCC Ser	TCT Ser 65	CTC Leu	AGA Arg	TTC Phe	AAG Lys	TGG Trp 70	TTC Phe	AAG Lys	AAT Asn	GGG Gly	AAT Asn 75	685	,
Glu	TTG Leu	Asn	CGA Arg	AAA Lys 80	AAC Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 85	ATC Ile	AAG Lys	ATA Ile	724	

CAA AAA AAG CCA GGG AAG TCA GAA CTT CGC ATT AAC AAA 763 Gln Lys Lys Pro Gly Lys Ser Glu Leu Arg Ile Asn Lys 90 95 GCA TCA CTG GCT GAT TCT GGA GAG TAT ATG TGC AAA GTG 802 Ala Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys Lys Val 105 110 ATC AGC AAA TTA GGA AAT GAC AGT GCC TCT GCC AAT ATC 841 Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile 115 ACC ATC GTG GAA TCA AAC GAG ATC ATC ACT GGT ATG CCA 880 Thr Ile Val Glu Ser Asn Glu Ile Ile Thr Gly Met Pro 130 135 GCC TCA ACT GAA GGA GCA TAT GTG TCT TCA GAG TCT CCC 919 Ala Ser Thr Glu Gly Ala Tyr Val Ser Ser Glu Ser Pro 145 150 ATT AGA ATA TCA GTA TCC ACA GAA GGA GCA AAT ACT TCT 958 Ile Arg Ile Ser Val Ser Thr Glu Gly Ala Asn Thr Ser 155 160 TCA TCT ACA TCT ACA TCC ACC ACT GGG ACA AGC CAT CTT 997 Ser Ser Thr Ser Thr Ser Thr Thr Gly Thr Ser His Leu 170 175 GTA AAA TGT GCG GAG AAG GAG AAA ACT TTC TGT GTG AAT 1036 Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn 185 GGA GGG GAG TGC TTC ATG GTG AAA GAC CTT TCA AAC CCC 1075 Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro 195 200 205 TCG AGA TAC TTG TGC AAG TGC CCA AAT GAG TTT ACT GGT 1114 Ser Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly 210 215 GAT CGC TGC CAA AAC TAC GTA ATG GCC AGC TTC TAC AAG 1153 Asp Arg Cys Gln Asn Tyr Val Met Ala Ser Phe Tyr Lys 220 225 GCG GAG GAG CTG TAC CAG AAG AGA GTG CTG ACC ATA ACC 1192 Ala Glu Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr 240 · 235 GGC ATC TGC ATC GCC CTC CTT GTG GTC GGC ATC ATG TGT 1231 Gly Ile Cys Ile Ala Leu Leu Val Val Gly Ile Met Cys 245 250 GTG GTG GCC TAC TGC AAA ACC AAG AAA CAG CGG AAA AAG 1270 Val Val Ala Tyr Cys Lys Thr Lys Lys Gln Arg Lys Lys FIG. 12B 260 265

CTG CAT GAC CGT CTT CGG CAG AGC CTT CGG TCT GAA CGA 1309 Leu His Asp Arg Leu Arg Gln Ser Leu Arg Ser Glu Arg 275 AAC AAT ATG ATG AAC ATT GCC AAT GGG CCT CAC CAT CCT 1348 Asn Asn Met Met Asn Ile Ala Asn Gly Pro His His Pro 285 290 AAC CCA CCC CCC GAG AAT GTC CAG CTG GTG AAT CAA TAC 1387 Asn Pro Pro Pro Glu Asn Val Gln Leu Val Asn Gln Tyr 300 305 GTA TCT AAA AAC GTC ATC TCC AGT GAG CAT ATT GTT GAG 1426 Val Ser Lys Asn Val Ile Ser Ser Glu His Ile Val Glu 310 315 AGA GAA GCA GAG ACA TCC TTT TCC ACC AGT CAC TAT ACT 1465 Arg Glu Ala Glu Thr Ser Phe Ser Thr Ser His Tyr Thr 325 330 TCC ACA GCC CAT CAC TCC ACT ACT GTC ACC CAG ACT CCT 1504 Ser Thr Ala His His Ser Thr Thr Val Thr Gln Thr Pro 340 AGC CAC AGC TGG AGC AAC GGA CAC ACT GAA AGC ATC CTT 1543 Ser His Ser Trp Ser Asn Gly His Thr Glu Ser Ile Leu 350 355 360 TCC GAA AGC CAC TCT GTA ATC GTG ATG TCA TCC GTA GAA 1582 Ser Glu Ser His Ser Val Ile Val Met Ser Ser Val Glu 365 AAC AGT AGG CAC AGC AGC CCA ACT GGG GGC CCA AGA GGA 1621 Asn Ser Arg His Ser Ser Pro Thr Gly Gly Pro Arg Gly 375 380 CGT CTT AAT GGC ACA GGA GGC CCT CGT GAA TGT AAC AGC 1660 Arg Leu Asn Gly Thr Gly Gly Pro Arg Glu Cys Asn Ser 390 400 TTC CTC AGG CAT GCC AGA GAA ACC CCT GAT TCC TAC CGA 1699 Phe Leu Arg His Ala Arg Glu Thr Pro Asp Ser Tyr Arg 405 GAC TCT CCT CAT AGT GAA AGG TAT GTG TCA GCC ATG ACC 1738 Asp Ser Pro His Ser Glu Arg Tyr Val Ser Ala Met Thr 415 420 425 ACC CCG GCT CGT ATG TCA CCT GTA GAT TTC CAC ACG CCA 1777 Thr Pro Ala Arg Met Ser Pro Val Asp Phe His Thr Pro 430 AGC TCC CCC AAA TCG CCC CCT TCG GAA ATG TCT CCA CCC 1816 Ser Ser Pro Lys Ser Pro Pro Ser Glu Met Ser Pro Pro 445 450

						21	/ 2 2						
				ACG Thr									1855
				GAA Glu 470									1894
				CTG Leu									1933
				AGC Ser									1972
	Ser			CTC Leu									2011
				TAT Tyr									2050
				GTT Val 535									2089
				AAG Lys									2128
				AGC Ser									2167
				ACA Thr									2206
				GGC Gly									2245
				CCT Pro 600									2284
ACT Thr	AAC Asn 610	CCA Pro	GCA Ala	GGC Gly	CGC Arg	TTC Phe 615	TCG Ser	ACA Thr	CAG Gln	GAA Glu	GAA Glu 620	ATC Ile	2323
Gln		Arg		TCT Ser									2362

22/32

ATT GCT GTA TAAAACCTA AATAAACACA TAGATTCACC TGTAAAACTT 2410 Ile Ala Val 635 637

TTAGCAGTTC TGCAAATAAA AAAAAAAAAA 2490

FIG. 12E

GCG	CCTG	CCT	CCAA	CCTG	CG G	GCGG	GAGG	T GG	GTGG	CTGC	GGG	GCAA	TTG	50
AAA	AAGA	GCC	GGCG	AGGA	GT T	cccc	GAAA	C TT	GTTG	GAAC	TCC	GGGC	TCG	10
CGC	GGAG	GCC	AGGA	GCTG.	AG C	GGCG	GCGG	C TG	CCGG	ACGA	TGG	GAGC	GTG	15
AGC.	AGGA	CGG	TGAT.	AACC'	TC T	cccc	GATC	G GG	TTGC	GAGG	GCG	CCGG	GCA	20
GAG	GCCA	GGA	CGCG	AGCC	GC C	AGCG	GCGG	G AC	CCAT	CGAC	GAC	TTCC	CGG	250
GGC	GACA	GGA	GCAG	CCCC	GA G	AGCC.	AGGG	C · GA	GCGC	CCGT	TCC.	AGGT(GGC	300
CGG	ACCG	ccc	GCCG	CGTC	CG C	GCCG	CGCT	C CC	TGCA	GGCA	ACG	GGAG	ACG	350
CCC	CCGC	GCA	GCGC	GAGC	GC C	TCAG	CGCG	G CC	GCTC	GCTC	TCC	CCAT	CGA	400
GGG	ACAA	ACT	TTTC	CCAA	AC C	CGAT(CCGA	G CC	CTTG	GACC	AAA	CTCG	CCŢ	450
GCG(CCGA(GAG	CCGT(CCGC	GT A	GAGC	GCTC	C GT	CTCC	GGCG	AG	ATG Met 1	495	
			AAA Lys 5										534	
			CGA Arg										573	
			CAG Gln										612	
			AGC Ser										651	
			TGT Cys										690	
AGA Arg	TTC Phe	AAG Lys	TGG Trp	TTC Phe	AAG Lys	AAT Asn	GGG Gly	AAT Asn 75	GAA Glu	TTG Leu	AAT Asn	CGA Arg	729	

FIG. 13A

AAA AAC AAA CCA CAA AAT ATC AAG ATA CAA AAA AAG CCA 768 Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys Pro GGG AAG TCA GAA CTT CGC ATT AAC AAA GCA TCA CTG GCT 807 Gly Lys Ser Glu Leu Arg Ile Asn Lys Ala Ser Leu Ala 100 95 GAT TCT GGA GAG TAT ATG TGC AAA GTG ATC AGC AAA TTA 846 Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu 110 GGA AAT GAC AGT GCC TCT GCC AAT ATC ACC ATC GTG GAA 885 Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr Ile Val Glu 120 125 TCA AAC GAG ATC ATC ACT GGT ATG CCA GCC TCA ACT GAA 924 Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu 135 140 GGA GCA TAT GTG TCT TCA GAG TCT CCC ATT AGA ATA TCA 963 Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser 145 150 155 GTA TCC ACA GAA GGA GCA AAT ACT TCT TCA TCT ACA TCT 1002 Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser 160 165 ACA TCC ACC ACT GGG ACA AGC CAT CTT GTA AAA TGT GCG 1041 Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala 175 180 GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC 1080 Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys 185 190 TTC ATG GTG AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG 1119 Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu 200 205 TGC AAG TGC CCA AAT GAG TTT ACT GGT GAT CGC TGC CAA 1158 Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln 215 210 AAC TAC GTA ATG GCC AGC TTC TAC AGT ACG TCC ACT CCC 1197 Asn Tyr Val Met Ala Ser Phe Tyr Ser Thr Ser Thr Pro 225 230 235 TTT CTG TCT CTG CCT GAA TAGGA GCATGCTCAG TTGGTGCTGC 1240 Phe Leu Ser Leu Pro Glu 240 241

TTTCTTGTTG CTGCATCTCC CCTCAGATTC CACCTAGAGC TAGATGTGTC 1290

TTACCAGATC TAATATTGAC TGCCTCTGCC TGTCGCATGA GAACATTAAC 1340

AAAAGCAATT GTATTACTTC CTCTGTTCGC GACTAGTTGG CTCTGAGATA 1390

CTAATAGGTG TGTGAGGCTC CGGATGTTTC TGGAATTGAT ATTGAATGAT 1440

GTGATACAAA TTGATAGTCA ATATCAAGCA GTGAAATATG ATAATAAAGG 1490

CATTTCAAAAG TCTCACTTTT ATTGATAAAA TAAAAAATCAT TCTACTGAAC 1540

AGTCCATCTT CTTTATACAA TGACCACATC CTGAAAAAGGG TGTTGCTAAG 1590

CTGTAACCGA TATGCACTTG AAATGATGGT AAGTTAATTT TGATTCAGAA 1640

TGTGTTATTT GTCACAAATA AACATAATAA AAGGAGTTCA GATGTTTTTC 1690

TTCATTAACC AAAAAAAAAA AAAAA 1715

FIG. 13C

		FIG. 14	1 A	SUBST	FITUTE :	SHEET
AGA TTC AAG Arg Phe Lys	Trp Phe	Lys Asn	Gly Asr	Glu Leu		732
Val Leu Arg		60			65	
STC CTT CGG	TGT GAA			A TAC TCC		693
GAG ATG AAA Glu Met Lys						654
GCG GGC AGC Ala Gly Ser 30	Gln Ser	Pro Ala	Leu Pro	o Pro Gln	Leu Lys	
Lys Lys Glu 15	Arg Gly	Ser Gly 20	Lys Ly	s Pro Glu 25	Ser Ala	
G TCC GAG C Ser Glu A AAG AAG GAG	org Lys G	lu Gly A	rg Gly	Lys Gly Ly 10	ys Gly Ly	ys
		•				Met 1
CCTGCGCCGA		•				
CGAGGGACAA						
ACGCCCCCGC		•				
GGCCGGACCG						
CGGGGCGACA						
GCAGAGGCCA						•
GTGAGCAGGA	CGGTGAT	AAC CTCT	CCCCGA :	rcgggttgcg	AGGGCGC	CCGG 200
TCGCGCGGAG	GCCAGGA	GCT GAGC	GGCGGC (GGCTGCCGG#	A CGATGGO	SAGC 150
TTGAAAAAGA	GCCGGCG	AGG AGTT	CCCCGA .	AACTTGTTG(AACTCC	GGC 100
GAGGCGCCTG	CCTCCAA	CCT GCGG	GCGGGA	GGTGGGTGG	C TGCGGG	GCAA 50

27/32
AAA AAC AAA CCA CAA AAT ATC AAG ATA CAA AAA AAG CCA 771 Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys Pro 80 85 GGG AAG TCA GAA CTT CGC ATT AAC AAA GCA TCA CTG GCT 810 Gly Lys Ser Glu Leu Arg Ile Asn Lys Ala Ser Leu Ala 100 GAT TCT GGA GAG TAT ATG TGC AAA GTG ATC AGC AAA TTA 849 Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu 110 GGA AAT GAC AGT GCC TCT GCC AAT ATC ACC ATC GTG GAA 888 Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr Ile Val Glu 120 125 TCA AAC GAG ATC ATC ACT GGT ATG CCA GCC TCA ACT GAA 927 Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu 135 GGA GCA TAT GTG TCT TCA GAG TCT CCC ATT AGA ATA TCA 966 Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser 145 150 GTA TCC ACA GAA GGA GCA AAT ACT TCT TCA TCT ACA TCT 1005 Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser 160 165 170 ACA TCC ACC ACT GGG ACA AGC CAT CTT GTA AAA TGT GCG 1044 Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala 175 GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC 1083 Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys 185 190 TTC ATG GTG AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG 1122 Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu 200 TGC AAG TGC CCA AAT GAG TTT ACT GGT GAT CGC TGC CAA 1161 Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln 210 215 AAC TAC GTA ATG GCC AGC TTC TAC AAG GCG GAG GAG CTG 1200 Asn Tyr Val Met Ala Ser Phe Tyr Lys Ala Glu Glu Leu 225 230 235 TAC CAG AAG AGA GTG CTG ACC ATA ACC GGC ATC TGC ATC 1239 Tyr Gln Lys Arg Val Leu Thr Ile Thr Gly Ile Cys Ile 240 245 GCC CTC CTT GTG GTC GGC ATC ATG TGT GTG GTG GCC TAC 1278 Ala Leu Leu Val Val Gly Ile Met Cys Val Val Ala Tyr 255 FIG. 14B

28 / 32 TGC AAA ACC AAG AAA CAG CGG AAA AAG CTG CAT GAC CGT 1317 Cys Lys Thr Lys Lys Gln Arg Lys Leu His Asp Arg 265 270 CTT CGG CAG AGC CTT CGG TCT GAA CGA AAC AAT ATG ATG 1356 Leu Arg Gln Ser Leu Arg Ser Glu Arg Asn Asn Met Met 275 280 AAC ATT GCC AAT GGG CCT CAC CAT CCT AAC CCA CCC CCC 1395 Asn Ile Ala Asn Gly Pro His His Pro Asn Pro Pro 290 295 GAG AAT GTC CAG CTG GTG AAT CAA TAC GTA TCT AAA AAC 1434 Glu Asn Val Gln Leu Val Asn Gln Tyr Val Ser Lys Asn 305 GTC ATC TCC AGT GAG CAT ATT GTT GAG AGA GAA GCA GAG 1473 Val Ile Ser Ser Glu His Ile Val Glu Arg Glu Ala Glu 315 320 ACA TCC TTT TCC ACC AGT CAC TAT ACT TCC ACA GCC CAT 1512 Thr Ser Phe Ser Thr Ser His Tyr Thr Ser Thr Ala His CAC TCC ACT ACT GTC ACC CAG ACT CCT AGC CAC AGC TGG 1551 His Ser Thr Thr Val Thr Gln Thr Pro Ser His Ser Trp 340 345 350 AGC AAC GGA CAC ACT GAA AGC ATC CTT TCC GAA AGC CAC 1590 Ser Asn Gly His Thr Glu Ser Ile Leu Ser Glu Ser His 355 360 365 TCT GTA ATC GTG ATG TCA TCC GTA GAA AAC AGT AGG CAC 1629 Ser Val Ile Val Met Ser Ser Val Glu Asn Ser Arg His 370 AGC AGC CCA ACT GGG GGC CCA AGA GGA CGT CTT AAT GGC 1668 Ser Ser Pro Thr Gly Gly Pro Arg Gly Arg Leu Asn Gly 380 385 ACA GGA GGC CCT CGT GAA TGT AAC AGC TTC CTC AGG CAT 1707 Thr Gly Gly Pro Arg Glu Cys Asn Ser Phe Leu Arg His 395 400 GCC AGA GAA ACC CCT GAT TCC TAC CGA GAC TCT CCT CAT 1746

AGT GAA AGG TAAAA CCGAAGGCAA AGCTACTGCA GAGGAGAAAC 1790 Ser Glu Arg 420

Ala Arg Glu Thr Pro Asp Ser Tyr Arg Asp Ser Pro His

410

FIG. 14C

TCAGTCAGAG AATCCCTGTG AGCACCTGCG GTCTCACCTC AGGAAATCTA 1840 CTCTAATCAG AATAAGGGGC GGCAGTTACC TGTTCTAGGA GTGCTCCTAG 1890 TTGATGAAGT CATCTCTTG TTTGACGGAA CTTATTTCTT CTGAGCTTCT 1940 CTCGTCGTCC CAGTGACTGA CAGGCAACAG ACTCTTAAAG AGCTGGGATG 1990 CTTTGATGCG GAAGGTGCAG CACATGGAGT TTCCAGCTCT GGCCATGGGC 2040 TCAGACCCAC TCGGGGTCTC AGTGTCCTCA GTTGTAACAT TAGAGAGATG 2090 GCATCAATGC TTGATAAGGA CCCTTCTATA ATTCCAATTG CCAGTTATCC 2140 AAACTCTGAT TCGGTGGTCG AGCTGGCCTC GTGTTCTTAT CTGCTAACCC 2190 TGTCTTACCT TCCAGCCTCA GTTAAGTCAA ATCAAGGGCT ATGTCATTGC 2240 TGAATGTCAT GGGGGGCAAC TGCTTGCCCT CCACCCTATA GTATCTATTT 2290 TATGAAATTC CAAGAAGGGA TGAATAAATA AATCTCTTGG ATGCTGCGTC 2340 TGGCAGTCTT CACGGGTGGT TTTCAAAGCA GAAAAAAAA AAAAAAAAA 2390

FIG. 14D

	/ 32
16 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPRLKEMKSGESAAG 17 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPRLKEMKSGESAAG 18 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSGESAAG 18 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSGESAAG 18 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSGESAAG 19 1 MSERKEGRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSGESAAG 10 1 SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN 10 51 SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN 11 51 SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN 12 SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN 13 SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN 14 ST SKLVLRCETSSEYSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN	16 101 KASLADSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSS 2

FIG. 15A

	31 /	32	
F F F F	0 0 0 0	\vdash \vdash \vdash \vdash	\vdash \vdash \vdash
> > > > \	2222	SSSS	0 0 0 0 2 2 2 2
		王王王王	
$x \times x \times x$	ZZZZ	4 4 4 4	8 8 8 8
0000	$ \Sigma \Sigma \Sigma \Sigma $	+++	0 0 0 0
	ZZZZ	S S S S	 x x x x
шшшш	Z Z Z Z Z Z Z Z		0000
шшшшш	8 8 8 8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 0 0 0
4440	шшшш	SSSS	H H H
S 3 E	တ တ တ တ	⊢⊢⊢⊢	
т т Ω ш Σ ⊗	a a a a	S S S S	တ တ တ တ
. ш ц	S L S L	мммм	SSSS
a	0000	F F F F	
. ७		шшшш	SSS
~ _		4 4 4 4	ZZZZ
S X X X S	2000		m m m m
0 > > > >	H H H H	и и и и и и и и	> > > > > > > > > > > > > > > > > > >
> 4 4 4 4		>>>>	8 8 8 8
X N N N N	X X X X		ΣΣΣΣ
P M M M M M M M M M M M M M M M M M M M	\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}		>>>
NVP MK YVMAS YVMAS YVMAS YVMAS	0000	оооо шшшшш	>>>>
	スススス	8 8 8 8	8 1 8 1 8 1 8 1 8 1 8 1
H Z Z Z Z	x x x x		TTTT!
- - - - - - - - - - - - - - - - - - -	X X X X	> > > > z z z z	8 8 8 8
R R R R R	0000	Z Z Z Z Z Y Y Y	
$A \cup O \cup O$	> > >	တတတ	
00000	AAAA	>>>>	'
	>>>>	> > > > > > > > > > > > > > > > > > >	SSSS
2 11 11 11	0000	ZZZZ	
DZZZZ	ΣΣΣΣ	>>>>	HHHH
			0 0 0 0
X X X X O O O O	0 0 0 0	0000	Z Z Z Z
00000	>>>>	> > > > Z Z Z Z	8 8 8 8 8 8 8 8
		1 1	8 8 8
> > > >			I I I I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 4 4 4	1 1	တတ္တတ္
	0000		
2222		f 1	0000
0 0 0 0 0 0 D	0 0 0 0	TTTT	
000			> > > >
		_	<u> </u>
201 201 201 201 201	246 251 243 243	296 301 293 293 293	346 351 343 343
(0 0 0 0	0 0 0 0 0	,
16 11 76 84 78	16 11 76 84	16 11 14 84	16 11 76 84
-	w	· • • • • •	w

E E

ţ

		32/32		
16 396 GGPRECNSFLRHARETPDSYRDSPHSERYVSAMTTPARMSPVDFHTPSSP 11 401 GGPRECNSFLRHARETPDSYRDSPHSERYVSAMTTPARMSPVDFHTPSSP 76 393 GGPRECNSFLRHARETPDSYRDSPHSERYVSAMTTPARMSPVDFHTPSSP 84 393 GGPRECNSFLRHARETPDSYRDSPHSER	16 446 KSPPSEMSPPVSSMTVSMPSMAVSPFMEEERPLLLVTPPRLREKKFDHHP 11 451 KSPPSEMSPPVSSMTVSMPSMAVSPFMEEERPLLLVTPPRLREKKFDHHP 76 443 KSPPSEMSPPVSSMTVSKPSMAVSPFMEEERPLLLVTPPRLREKKFDHHP	496 QQFSSFHHNPAHDSNSLPASPLRIVEDEEYETTQEYEPAQEPVKKLANSR 501 QQFSSFHHNPAHDSNSLPASPLRIVEDEEYETTQEYEPAQEPVKKLANSR 493 QQFSSFHHNPAHDSNSLPASPLRIVEDEEYETTQEYEPAQEPVKKLANSR	16 546 RAKRTKPNGHIANRLEVDSNTSSQSSNSESETEDERVGEDTPFLGIQNPL 11 551 RAKRTKPNGHIANRLEVDSNTSSQSSNSESETEDERVGEDTPFLGIQNPL 76 543 RAKRTKPNGHIANRLEVDSNTSSQSSNSESETEDERVGEDTPFLGIQNPL	16 596 AASLEATPAFRLADSRTNPAGRFSTQEEIQ——————————————————————————————————

International Application No

	UECT MATTER (if several classification							
	nt Classification (IPC) or to both Nation: 12; C12P21/02; 1; A61K37/02;		12N5/10 9)					
IL FIELDS SEARCHED								
	Minimum Doc	umentation Searched						
Classification System		Classification Symbols						
Int.C1. 5 C12N; C07K; A61K								
		her than Minimum Documentation ats are Included in the Fields Searched ⁴						
	•							
III. DOCUMENTS CONSIDE	RED TO BE RELEVANT ⁹							
Category Citation of	Document, 11 with indication, where appro	opriate, of the relevant passages 12	Relevant to Claim No.13					
pages Holmes WJ;Lee H;Lewi heregu p185er	56, 22 May 1992, LANCA 1205 - 1210 WE;Sliwkowski MX;Akit J;Park JW;Yansura D;A s GD;et al 'Identifica lin, a specific activa	a RW;Henzel badi N;Raab tion of	1-40					
Considered to be of part E earlier document but put filling date 'L' document which may the which is cited to establis citation or other special 'O' document referring to a other means 'P' document published prio- later than the priority da IV. CERTIFICATION Date of the Actual Completion of	eneral state of the art which is not cular relevance blished on or after the international ow doubts on priority claim(s) or in the publication date of another reason (as specified) a oral disclosure, use, exhibition or reto the international filling date but the claimed the international Search BER 1992	"T" later document published after the internator priority date and not in conflict with the cited to understand the principle or theory invention "X" document of particular relevance, the claim cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step "Y" document of particular relevance; the claim cannot be considered to involve an inventive document is combined with one or more of ments, such combination being obvious to in the art. "&" document member of the same patent family document in the art. Date of Mailing of this International Searce 2 1. 10. 92	e application but underlying the ned invention onsidered to ned invention we step when the her such docu- a person skilled ly					
	AN PATENT OFFICE	NAUCHE S.A.						
		1 Y W	RY-					