Módulo 3. lA y grandes volúmenes de datos

#4. Árboles de decisión y modelos probabilísticos

Árboles de decisión en clasificación

- Cada nodo interno compara un atributo x_i
- Una rama por cada valor de atributo $x_i = v$
- Cada hoja asigna una clase y
- Para clasificar un x, atravesar el árbol
 de tronco a hojas y devolver el y asignado
- Modelo interpretable

¿Qué funciones se pueden representar?

- Pueden representar cualquier
 función de los atributos de entrada
- Para funciones booleanas, un camino de tronco a hoja define una fila en la tabla de verdad
- Puede requerir un número exponencial de nodos

Complejidad y aprendizaje

- Aprender el árbol de decisión más simple (más chico) es un problema
 NP-completo (Hyafil & Rivest, 1976)
- Debemos recurrir a heurísticas voraces (greedy)
 - Comenzar con un árbol vacío
 - Generar una partición usando siguiente mejor atributo
 - Paso anterior de forma recursiva

Aprendizaje de árboles de forma recursiva

Paso recursivo

Particionado: elegir un buen atributo

Preferiríamos partir usando X_1 o X_2 ?

~	V	V
X ₁	X_2	Υ
T	Т	Т
T	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Medida de incertidumbre

- Una partición es buena si estamos "más seguros" de la clasificación después de haberla realizado
 - Determinística (indicatriz) = bueno
 - Uniforme = malo
 - ¿Qué pasa con distribuciones intermedias?

P(Y=A) = 1/2 $P(Y=B) = 1/4$ $P(Y=C) = 1/8$ $P(Y=D) = 1/8$

Entropía

La entropía H(Y) de una variable aleatoria discreta Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

• A mayor incertidumbre, mayor entropía.

 Interpretación según teoría de la información:
 H(Y) es el número esperado de bits necesarios para codificar un valor aleatorio de Y

Entropía

- Entropía alta
 - Y proviene de una distribución más uniforme
 - Histograma chato
 - Muestras de Y son menos predecibles
- Entropía baja
 - Y proviene de una distribución más variada (picos y valles)
 - Histogramas más irregulares
 - Muestras de Y son más predecibles

Ejemplo

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

$$P(Y=f) = 1/6$$

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$

= 0.65

X_1	X_2	Υ
T	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Entropía condicional

Entropía condicional H(Y|X) de una v.a. Y condicionada a una v.a. X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

Example:

$$P(X_1=t) = 4/6$$
 $Y=t:4$ $Y=t:1$ $Y=f:0$ $Y=f:1$

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$
$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$$
$$= 2/6$$

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Ganancia de información

Decrecimiento de entropía (incertidumbre) luego de la partición

$$IG(X) = H(Y) - H(Y \mid X)$$

Del ejemplo:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

$$IG(X_1) > 0 \rightarrow Elegimos X_1$$

-		
X ₁	X ₂	Υ
T	Т	Т
Т	F	T
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Aprendizaje de árboles de decisión

- Comenzar con un árbol vacío
- Generar una partición usando siguiente mejor atributo
 - Usar, por ejemplo, ganancia de información:

$$\arg \max_{i} IG(X_{i}) = \arg \max_{i} H(Y) - H(Y \mid X_{i})$$

Paso anterior de forma recursiva

Sobreajuste en árboles de decisión

- El error de entrenamiento es siempre cero (si no hay errores en las etiquetas)
- Poca capacidad de generalización
- Se debe inducir algún sesgo a modelos más simples
 - Fijar un límite a la profundidad del árbol
 - Número mínimo de muestras en cada nodo hoja
 - o etc ...
- Ensamble: Random Forests (bosques!) y boosted trees

Entradas con valores reales

• Existe un número infinito de posibles particiones!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	;	:	:	:	;	:	:
:	:	:	:	:	:	:	:
:	1:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Partición mediante umbrales

- Árboles binarios
 - partir un atributo X a un valor t
 - Una rama para x<t
 - Una rama para x≥t

 Se deben permitir particiones de un mismo atributo en distintos niveles de un mismo camino

El conjunto de posibles umbrales

- Árboles binarios, atributo X
 - Una rama para x<t
 - Una rama para x≥t
- Explorar todos los valores posibles de *t* es intratable
- Solo un número finito de valores es importante
 - Ordenar X de acuerdo a los valores del atributo $\{x_1, ..., x_N\}$
 - Considerar puntos (umbrales) de la forma $x_i + (x_{i+1} x_i)/2$
 - Considerar puntos (umbrales) entre muestras de clases distintas

Elegir el mejor umbral

- Supongamos una variable X y umbral t
- IG(Y|X:t) denota la ganancia de información para Y cuando particionamos
 X de acuerdo a t
- Definimos:

$$H(Y|X:t) = p(X < t) H(Y|X < t) + p(X >= t) H(Y|X >= t)$$
 $IG(Y|X:t) = H(Y) - H(Y|X:t)$
 $IG^*(Y|X) = max_t IG(Y|X:t)$

Usamos IG*(Y|X) con variables continuas

Árboles de decisión. Resumen

- Uno de los modelos más utilizados en la práctica
 - Fáciles de comprender, implementar y utilizar
 - Computacionalmente eficientes
- Muchas variantes para selección de atributos basados en ganancia de información (ID3, C4.5, ...)
- Se pueden utilizar en regresión y para la estimación de densidades
- Sobreajuste por definición!
 - Heurísticas para definir árboles más simples (pruning, fixed depth, early stopping, etc)
 - ensemble de distintos árboles (eg. random forests)

Modelos probabilísticos: naïve Bayes

Regla de Bayes

Dos formas de factorizar una distribución en dos variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Operando:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- ¿Porqué es útil?
 - Nos permite "revertir" el condicional
 - A veces una dirección es difícil de calcular, pero la otra no
 - Es la base de muchos modelos

El clasificador de Bayes

• Distribución conjunta sobre X_1, \ldots, X_n e Y

• Podemos definir una función de predicción de la forma:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

 por ejemplo: ¿cuál es la probabilidad de que una imagen represente un "5" dado el valor de sus píxeles?

• Problema: ¿cómo computamos $P(Y|X_1, ..., X_n)$? ...

El clasificador de Bayes

... ¡Usando regla de Bayes!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

 Ahora podemos pensar en modelar cómo los píxeles de la imágen son "generados" dado el número "5".

Naïve Bayes

Hipótesis: los X_i son independientes dado Y

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

• O en forma más general:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

• Si los X_i consisten en n valores binarios, ¿cuántos parámetros necesito especificar para $P(X_i | Y)$?

El clasificador naïve Bayes

- Dado:
 - Distribución a priori P(*Y*)
 - \circ n features X_i condicionalmente independientes dada la clase Y

• Para cada X_i , especificar $P(X_i | Y)$

 X_1 X_2 \cdots X_n

Función de decisión:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$
$$= \arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$$

Estimación de parámetros por MV

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

Ejemplo: reconocimiento de dígitos

· Input: pixel grids

Output: a digit 0-9

Pregunta: ¿cuán realista es la hipótesis del clasificador naïve Bayes en este ejemplo?

Otro ejemplo: reconocimiento de dígitos

Modelos probabilísticos: regresión logística

Clasificación basada en probabilidades

• Objetivo: dar una estimación de probabilidad de que una instancia x sea de una clase y, es decir, p(y|x)

Recordar:

$$0 \le p(evento) \le 1$$

 $p(evento) + p(\neg evento) = 1$

Regresión logística

- Aproximación probabilística al problema de clasificación
- La función de predicción $h_w(x)$ debe dar una aproximación de p(y=1|x,w)

$$\bullet \quad 0 \le h_w(x) \le 1$$

$$h_w(x) = g(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

Regresión logística

- Dados $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ donde $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$
- Modelo: $h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
 ight)$ $g(z) = \frac{1}{1+e^{-z}}$

Regresión logística. Función de costo

- Conjunto de entrenamiento $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}, \mathbf{x} \in \mathbb{R}^M, y \in \{0, 1\}$
- y: observaciones discretas → muestras de una distribución Bernoulli

$$P(y = 1|\mathbf{x}, \mathbf{w}) = f(\mathbf{x}, \mathbf{w})$$

$$P(y = 0|\mathbf{x}, \mathbf{w}) = 1 - f(\mathbf{x}, \mathbf{w})$$

$$P(y|\mathbf{x}) = (f(\mathbf{x}, \mathbf{w}))^y (1 - f(\mathbf{x}, \mathbf{w}))^{1-y}$$

 Encontrar el w que maximice la verosimilitud de las etiquetas en el conjunto de entrenamiento

$$-L(\mathbf{w}) = C(\mathbf{w}) = \log P(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_{i=1} \log P(y^i|\mathbf{x}^i, \mathbf{w})$$
$$= \sum_{i} y^i \log f(\mathbf{x}^i, \mathbf{w}) + (1 - y^i) \log(1 - f(\mathbf{x}^i, \mathbf{w}))$$

Regresión lineal vs. regresión logística

