AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (original) Method in a digital communication system for transmitting a modulated bit stream comprising user data and dummy data, wherein the modulated user data is represented by symbols from a symbol alphabet M, the modulated dummy data is represented by a symbol m_{\circ} , the method is characterised by the steps of:
 - (a) generating (601a) symbols q_0, \ldots, q_j randomly from a predefined symbol alphabet Q being a subset of the symbol alphabet M,
 - (b) scrambling (602a) the bit stream by performing bitwise modulo-2 addition between the modulated bit stream and the randomly generated symbols q_0, \ldots, q_j from Q, and (c) transmitting (603a) said scrambled bit stream, wherein the predefined symbol alphabet Q is defined so that the transmit power level of the dummy data is substantially lower than the transmit power level of the user data.
- 2.(original) Method in a digital communication system for

receiving a bit stream **characterised in** that the bit stream is transmitted and scrambled in accordance with claim 1, the method comprises the steps of:

- (d) generating (601b) symbols q_0, \ldots, q_j randomly from the symbol alphabet Q in synchronisation with the transmitter of the received bit stream, and
- (e) scrambling (602b) the received bit stream in order to recreate estimated message symbols from symbol alphabet M by performing bitwise modulo-2 addition between the received bit stream and the randomly generated symbols q_0, \ldots, q_j from Q.
- 3.(currently amended) Method according to any of claims 1 and 2 claim 1, wherein the bit stream is modulated with Quadrature Amplitude Modulation (QAM).
- 4. (original) Method according to claim 3, wherein the QAM is 16-QAM.
- 5. (currently amended) Method according to any of claims 1 or 4 claim 1, wherein Q comprises four message points $\{q_0, q_1, q_2, q_3\}$ representing signal vectors $\{s_0, s_1, s_2, s_3\}$, wherein the length of all of the signal vectors is equal, i.e., $\|s_0\| = \|s_1\| = \|s_2\| = \|s_3\|$ and the angle increments from s_0 to s_1 , s_1 to s_2 , s_2 to s_3 and s_3 to s_0 are 90 degrees.

- 6. (original) Method according to claim 5, wherein Q comprises the four innermost message points of the symbol alphabet M.
- 7. (currently amended) Method according to any of previous elaims claim 1, wherein the randomly generated symbols from Q is generated by applying a pseudo-random binary sequence generator to a lookup table wherein the symbol alphabet Q and m_0 are stored.
- 8.(currently amended) Method according to any of previous elaims claim 1, wherein the modulated dummy data m_0 is consistently represented by zeros or consistently represented by ones.
- 9.(currently amended) Method according to any of previous and claims 1-8 claim 1, wherein the method is applied on VDSL.
- 10.(currently amended) A computer program product directly loadable into the internal memory of a computer within a mobile station or a base station transceiver in a communication system, comprising the software code portions for performing the steps of any of claims 1-9 claim 1.
- 11. (currently amended) A computer program product stored on a computer usable medium, comprising readable program for causing a computer, within a mobile station or a base

0

station transceiver in a communication system, to control an execution of the steps of any of the claims 1-9 claim 1.

12. (original) Transmitter (400) in a digital communication system comprising means for transmitting a modulated bit stream comprising user data and dummy data, wherein the modulated user data is represented by symbols from a symbol alphabet M, the modulated dummy data is represented by a symbol m_o , characterised by means (401, 402) for generating symbols q_0, \ldots, q_j randomly from a predefined symbol alphabet Q being a subset of M, means for scrambling the bit stream by performing bitwise modulo-2 addition between the modulated bit stream and the randomly generated symbols q_0, \ldots, q_j from Q, and means for transmitting said scrambled bit stream, wherein the predefined symbol alphabet Q is defined so that the transmit power level of the dummy data is substantially lower than the transmit power level of the user data.

13. (original) Receiver (404) in a digital telecommunication system comprising means for receiving a bit stream characterised in that the bit stream is transmitted and scrambled by a transmitter in accordance with claim 10, the receiver further comprises means (405,406) for in synchronisation with the transmitter (400) of the received bit stream generating symbols q_0, \ldots, q_j randomly from the symbol alphabet Q, and means for scrambling the received bit

stream by performing bitwise modulo-2 addition between the received bit stream and the randomly generated symbols $q_0,\dots,q_j \text{ from Q in order to recreate estimated message symbols} \\$ from symbol alphabet M.

- 14. (currently amended) Transmitter (400) according to claim
 12 or receiver (404) according to claim 13, wherein the bit
 stream is modulated with Quadrature Amplitude Modulation
 (QAM).
- 15. (currently amended) Transmitter (400) or receiver (404) according to claim 14, wherein the QAM is 16-QAM.
- 16. (currently amended) Transmitter (400) or receiver (404) according to any of claims 12 15 claim 12, wherein Q comprises four message points $\{q_0, q_1, q_2, q_3\}$ representing signal vectors $\{s_0, s_1, s_2, s_3\}$, wherein the length of all of the signal vectors is equal, i.e., $||s_0|| = ||s_1|| = ||s_2|| = ||s_3||$ and the angle increments from s_0 to s_1 , s_1 to s_2 , s_2 to s_3 and s_3 to s_0 are 90 degrees.
- 17. (currently amended) Transmitter (400) or receiver (404) according to claim 16, wherein Q comprises the four innermost message points of the symbol alphabet M.

, 3

1. 200

- 18. (currently amended) Transmitter (400) or receiver (404) according to any of previous claims 12-17 claim 12, wherein the randomly generated symbols from Q is generated by applying a pseudo-random binary sequence generator (401;405) to a lookup table (402;406) wherein the symbol alphabet Q and mo are stored.
- 19. (currently amended) Transmitter (400) or receiver (404) according to any of previous claims 12-18 claim 12, wherein the modulated dummy data m_0 is consistently represented by zeros or consistently represented by ones.
- 20. (currently amended) Transmitter (400) or receiver (404) according to any of previous claims 12-19 claim 12, wherein the transmitter (400) or receiver (404) is applied on VDSL.
- 21. (currently amended) Transceiver in a digital communication system characterised in that it comprises the transmitter according to any of claims 11,13 18 and the receiver according to any of claims 12 18 claim 12.
- 22. (new) Receiver according to claim 13, wherein the bit stream is modulated with Quadrature Amplitude Modulation (QAM).

- 23. (new) Receiver according to claim 22, wherein the QAM is 16-QAM.
- 24. (new) Receiver according to claim 13, wherein Q comprises four message points $\{q_0, q_1, q_2, q_3\}$ representing signal vectors $\{s_0, s_1, s_2, s_3\}$, wherein the length of all of the signal vectors is equal, i.e., $||s_0|| = ||s_1|| = ||s_2|| = ||s_3||$ and the angle increments from s_0 to s_1 , s_1 to s_2 , s_2 to s_3 and s_3 to s_0 are 90 degrees.
- 25. (new) Receiver according to claim 24, wherein Q comprises the four innermost message points of the symbol alphabet M.
- 26.(new) Receiver according to claim 13, wherein the randomly generated symbols from Q is generated by applying a pseudorandom binary sequence generator (401;405) to a lookup table (402;406) wherein the symbol alphabet Q and m₀ are stored.
- 27. (new) Receiver according to claim 13, wherein the modulated dummy data m_0 is consistently represented by zeros or consistently represented by ones.
- 28. (new) Receiver according to claim 13, wherein the transmitter (400) or receiver (404) is applied on VDSL.

29.(new) Transceiver in a digital communication system, characterized in that it comprises a receiver according to claim 13.