$$U_{ij} = u_{ij} + \epsilon_{ij} \tag{1}$$

$$U_{ij} = u_{ij} + \epsilon_{ij} \tag{1}$$

where:

 \bullet u_{ij} captures **observable factors**: price, distance, cuisine type, Yelp rating

$$U_{ij} = u_{ij} + \epsilon_{ij} \tag{1}$$

- u_{ij} captures **observable factors**: price, distance, cuisine type, Yelp rating
- ullet ϵ_{ij} captures **unobservable factors**: mood, cravings, things we can't measure

$$U_{ij} = u_{ij} + \epsilon_{ij} \tag{1}$$

- u_{ij} captures **observable factors**: price, distance, cuisine type, Yelp rating
- \bullet ϵ_{ij} captures **unobservable factors**: mood, cravings, things we can't measure
- Perhaps $u_{\mathsf{Thai}} = -2 \times \mathit{price} + 3 \times \mathit{Yelp_rating} 0.5 \times \mathit{travel_time}$

$$U_{ij} = u_{ij} + \epsilon_{ij} \tag{1}$$

- u_{ij} captures **observable factors**: price, distance, cuisine type, Yelp rating
- ullet ϵ_{ij} captures **unobservable factors**: mood, cravings, things we can't measure
- Perhaps $u_{\mathsf{Thai}} = -2 \times \mathit{price} + 3 \times \mathit{Yelp_rating} 0.5 \times \mathit{travel_time}$
- ullet But ϵ_{Thai} might be positive tonight because you're craving spice

$$U_{ij} > U_{ik} \text{ for all } k \neq j$$
 (2)

(3)

$$U_{ij} > U_{ik}$$
 for all $k \neq j$ (2)
$$\updownarrow$$

$$u_{ij} + \epsilon_{ij} > u_{ik} + \epsilon_{ik}$$
 for all $k \neq j$ (3)

$$U_{ij} > U_{ik} ext{ for all } k \neq j$$
 \Leftrightarrow $u_{ij} + \epsilon_{ij} > u_{ik} + \epsilon_{ik} ext{ for all } k \neq j$ (2)

Since we (data analysts) can't observe your ϵ 's, we have to think probabilistically:

$$P_{ij} = \Pr(U_{ij} > U_{ik} \text{ for all } k \neq j)$$
 (4)

$$U_{ij} > U_{ik} \text{ for all } k \neq j$$
 (2)
$$\updownarrow u_{ik} + \epsilon_{ik} \text{ for all } k \neq j$$
 (3)

$$u_{ij} + \epsilon_{ij} > u_{ik} + \epsilon_{ik} \text{ for all } k \neq j$$
 (3)

Since we (data analysts) can't observe your ϵ 's, we have to think probabilistically:

$$P_{ij} = \Pr(U_{ij} > U_{ik} \text{ for all } k \neq j)$$
(4)

How many times out of 100 would someone choose Thai given identical observables?

Three key properties of choice sets:

- Finite: You can't choose from an infinite number of restaurants (i.e., "discrete")
- Mutually exclusive: You can eat at only one restaurant tonight
- Exhaustive: These are the complete set of realistic options