Predicting Insurance Costs: Analysis and Insights

SDS Mini-Datathon Team

National University of Singapore

October 25, 2025

Problem Framing & Objective

- **Challenge**: Predict medical insurance charges using demographic and lifestyle data
- Goal: Build accurate regression models and identify key cost drivers
- Importance: Fair pricing, risk assessment, healthcare insights
- Dataset: 1,338 records with age, sex, BMI, children, smoker, region, charges
- Equity Context: Recent studies highlight insurance pricing inequities
 - NAIC Special Committee on Race and Insurance
 - Concerns over credit scoring as proxy discriminator
 - Our analysis ensures fairness through statistical testing

Dataset and Features

Feature	Туре	Notes
age sex bmi children smoker region	integer categorical float integer categorical categorical	years male/female (encoded) body mass index number of dependents yes/no (encoded) NE/NW/SE/SW (encoded)
Engineered bmi_category age_group	categorical categorical	underweight/normal/overweight/obese young/middle/senior

Table: Dataset schema and engineered features

Exploratory Data Analysis

- Data quality: No missing values, clean dataset
- Key statistics: Charges range \$1,122-\$63,771 (mean \$13,270)
- Distribution: Right-skewed charges, normal BMI/age

Exploratory Data Analysis (Cont.)

Figure: Correlation Matrix

Preprocessing and Feature Engineering

- Label-encode: sex, smoker, region; derive bmi_category and age_group.
- Train/test split: 80/20 with fixed random seed for reproducibility.
- Standardize inputs with StandardScaler (fit on train, transform test).
- Keep target in original units (USD) to simplify interpretation of RMSE/MAE.

Regression & Modeling Approach

- Baseline Models:
 - Linear Regression: Interpretable, assumes linearity
 - Decision Tree: Handles non-linearities, prone to overfitting
 - Random Forest: Ensemble of trees (R²=0.865)
- Advanced Optimization:
 - Optuna: Bayesian hyperparameter tuning (20 trials)
 - Random Forest (Optuna): Optimized forest (R²=0.879)
 - XGBoost (Optuna): Gradient boosting (R²=0.879)
- Evaluation: R², RMSE, MAE; 5-fold cross-validation

Validation and Evaluation

- Validation: 5-fold cross-validation on the training data to assess variance.
- Metrics reported: R^2 , RMSE, MAE (on the holdout test set).

Model	Mean R^2 (5-fold)	Std
Linear Regression	0.738	0.049
Decision Tree	0.720	0.067
Random Forest	0.825	0.043

Table: Cross-validation performance (training folds)

Hyperparameter Tuning with Optuna

- Bayesian optimization (TPE) over 20 trials per model to maximize \mathbb{R}^2 on validation.
- Search spaces summarized below; priors encourage compact trees and regularization to reduce overfitting.

Model	Hyperparameter	Range
Random Forest	n_estimators	200–800
Random Forest	max_depth	4-16
Random Forest	min_samples_split	2-20
Random Forest	min_samples_leaf	1-20
XGBoost	n_estimators	200-800
XGBoost	max_depth	3–8
XGBoost	learning_rate	0.01-0.3
XGBoost	subsample	0.6 - 1.0
XGBoost	colsample_bytree	0.6 - 1.0
XGBoost	gamma	0.0 - 5.0
XGBoost	reg_alpha, reg_lambda	0.0-10.0

Table: Optuna search spaces

Best Hyperparameters Found

XGBoost

Random Forest

Param	Value
n_estimators max_depth min_samples_split min_samples_leaf	567 5 7 8

Param	Value	
n_estimators	253	
max_depth	4	
learning_rate	0.0231	
subsample	0.7301	
colsample_bytree	0.7555	
gamma	1.3567	
reg_alpha	8.2874	
reg_lambda	3.5675	

Both tuned models achieve $R^2 \approx 0.879$ on the test set, improving over the untuned Random Forest.

Key Findings & Visualizations

Model	R ²	RMSE (\$)	MAE (\$)
Linear Regression	0.787	5,747	4,097
Decision Tree	0.740	6,354	2,878
Random Forest (Baseline)	0.865	4,574	2,503
Random Forest (Optuna)	0.879	4,327	2,458
XGBoost (Optuna)	0.879	4,331	2,479

Table: Model Performance Comparison

- \bullet Best Model: Tuned tree ensembles cluster at $R^2\approx 0.879$ with <\$4.35k RMSE
- Improvement: $+1.4 R^2$ points over the untuned Random Forest
- Cross-validation confirms stability

Model Performance: Visual Comparison

Figure: R² on test set across models (higher is better)

Residual Diagnostics

Figure: Residuals vs predictions and residual distribution (tuned XGBoost)

Mean residual \approx -222; standard deviation \approx 4333. Approximate symmetry and homoscedasticity are acceptable for pricing use cases.

Permutation Importance (Random Forest)

Figure: Permutation importance on the test split

Feature Impact Analysis

Figure: SHAP Summary Plot

Figure: SHAP Feature Importance

- Top factors: Smoking (dominant), Age, BMI
- Sex and region have minimal impact

Partial Dependence Plots

Figure: Marginal Effects of Key Features

- Age: Linear increase (\$8-10k from 20 to 60)
- BMI: Gentle upward curve (accelerates above 30)
- **Smoker**: Dramatic step function (+\$20k for smokers)

Fairness Analysis

Figure: Charges by Sex

Figure: Charges by Region

- **Sex**: Welch's t-test $p=0.226 \rightarrow \checkmark$ No significant bias
- Region: ANOVA p=0.091 \rightarrow \checkmark Minimal bias
- Differences reflect genuine risk factors, not discrimination

\$11,208

southwest

Practical Recommendations

For Insurers:

- Deploy XGBoost with Optuna for premium calculation
- Highest ROI: Smoking cessation programs (\$20k impact)
- Target obesity prevention (BMI effect accelerates >30)

Policy Implications:

- Fair pricing based on verifiable risks validated via statistical tests
- Monitor regional healthcare access disparities
- Implement quarterly fairness audits (NAIC recommendations)

• Future Work:

- Collect longitudinal data, medical history
- Disparate impact analysis (Al Fairness 360, Fairlearn)
- Avoid controversial proxies (credit scores, ZIP codes)

Difficulties Faced & Solutions

• Dataset Limitations:

- Small size (1,338 records) limits generalizability
- Missing features: medical history, genetics, lifestyle details
- Static data: no temporal health changes

Technical Challenges:

- XGBoost version conflicts: Resolved via conda-forge channel
- SHAP API changes: Updated to new waterfall/summary plot syntax
- Model overfitting: Addressed with Optuna's Bayesian optimization
- PDP compatibility: Ensured fitted estimator passed correctly

Solutions:

- Feature engineering for better segmentation
- Rigorous validation and error analysis
- Innovative explainability techniques

Conclusion

- Successfully predicted 87.9% of insurance cost variance (tuned ensembles)
- Smoking is the dominant factor (+\$20k), followed by age and BMI
- Models validated as fair through statistical testing (p>0.05)
- Full interpretability via SHAP and PDPs ensures transparency
- Future: Larger datasets, disparate impact analysis, advanced AI

Thank you for your attention!