

16287-77 Myul. I me My Ja vana

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЭЛЕКТРОДЫ СТЕКЛЯННЫЕ ПРОМЫШЛЕННЫЕ ДЛЯ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ИОНОВ ВОДОРОДА ГСП

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 16287-77

Издание официальное

Цена 5 коп.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ СССР
Москва

РАЗРАБОТАН И ВНЕСЕН Тбилисским филиалом ВНИИМ им. Д. И. Менделеева

Директор **Г. В. Бокучава** Руководитель темы **В. М. Мохов** Исполнитель **С. Б. Фельд**ман

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским институтом по нормализации в машиностроении (ВНИИН-МАШ)

Директор В. А. Грешников

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27 июня 1977 г. № 1607

ЭЛЕКТРОДЫ СТЕКЛЯННЫЕ ПРОМЫШЛЕННЫЕ ДЛЯ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ИОНОВ ВОДОРОДА ГСП

ГОСТ 16287—77

Технические условия

Glass industrial electrodes for determination hudrogan ion activition SSI. Technical specifications

Взамен ГОСТ 16287—72

Постановлением Государственного комитета стандартов Совета Министров СССР от 27 июня 1977 г. № 1607 срок действия установлен

с 01.07 1978 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на стеклянные электроды общепромышленного применения (в дальнейшем — электроды) Государственной системы промышленных приборов и средств автоматизации (ГСП), предназначенные для преобразования активности ионов водорода (значения рН) водных растворов и пульп (кроме растворов, содержащих фтористоводородную кислоту или ее соли и вещества, образующие осадки или пленки на поверхности электродов) в значения электродвижущей силы.

1. ТИПЫ. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. В зависимости от пределов линейности водородной характеристики, температуры и давления анализируемой среды, электроды следует подразделять на типы, указанные в табл. 1.

		льные зі одородно г		теристи	ки, рН			
Типы электролов	25°C		80°C		наибольшей рабочей		Температура анализируемой	Давление анализи -
	нижнее, не более	верхнее,	нижнее, не более	верхнее, не менее	нижнее, не более	верхнее, не менее	среды, °С	руемой среды, МПа (кгс/см²)
1	0	12			0	10	От 0 до 40	От минус 0,09 (≈0,9) до плюс 0,6 (≈6)
2 3 4	0 -0,5 -	14 12 —	0 0 0	11 9 11	0 0 1	10 9 8	От 25 до 100 От 15 до 80 От 70 до 150	0,6 (≈6) То же До 1,2 (≈12)

 Π р и м е ч а н и е. Верхние пределы линейного диапазона водородной характеристики электродов типов 1-3 указаны для растворов с 0,1 н концентрацией ионов натрия.

- 1.2. Длина электродов без провода должна быть не более 200 мм; масса электродов без провода не более 40 г.
- 1.3. Стандартный потенциал электродов должен быть от минус 400 до плюс 1000 мВ.
- 1.4. Термины, встречающиеся в стандарте, и их определения приведены в справочном приложении 2.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Электроды должны изготовляться в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.
- 2.2. Крутизна водородной характеристики электродов в линейной части кривой ($S_t MB/pH$) должна быть при выпуске из производства для электродов типов 1—3 не менее 0,99; для электродов типа 4— не менее 0,97 от значений, рассчитываемых по формуле

$$S_t = -(54,197 + 0,1984t),$$
 (1)

где t — температура анализируемой среды, °C.

Числовое значение отклонения крутизны водородной характеристики от расчетного значения должно быть не менее:

0,98 — для электродов типов 1 и 2 после 500 ч работы и электродов типа 3 после 1000 ч работы;

0,96 — для электродов типа 4 после 500 ч работы.

2.3. Потенциал электрода в буферном растворе в милливольтах, измеренный относительно образцового электрода сравнения, не должен отклоняться более чем на ± 12 мВ при выпуске электродов из производства от расчетного значения потенциала $E_{\rm p}$ в милливольтах, определяемого по формуле

$$E_{p} = E_{u} + S_{t}(pH_{t} - pH_{u}) + \Delta' - \Delta''; \tag{2}$$

- где $E_{\mathbf{n}}$, р $\mathbf{H}_{\mathbf{n}}$ номинальные значения координат изопотенциальной точки электродной системы, состоящей из стеклянного и вспомогательного электродов, соответственно, м \mathbf{B} , р \mathbf{H} ;
 - S_t крутизна водородной характеристики при температуре $t^{\circ}C$, рассчитанная по формуле (1);
 - pH_t значение pH буферного раствора при температуре $t^{\circ}C$:
 - Δ' поправка к разности между номинальным значением потенциала вспомогательного электрода и номинальным значением потенциала образцового электрода сравнения, мВ;
 - Δ'' поправка к потенциалу образцового электрода сравнения на отклонение его температуры от 20°С, мВ.

Отклонение потенциала от расчетного значения не должно превышать ± 30 мВ после 500 ч работы для электродов типов 1, 2 и 4 и после 1000 ч работы для электродов типа 3.

- 2.4. Отклонение водородной характеристики от линейности при предельных значениях pH, указанных в табл. 1, не должно превышать ± 0.2 pH.
- 2.5. Номинальные значения координат изопотенциальной точки р $H_{\rm u}$ и $E_{\rm u}$ должны соответствовать ГОСТ 16288—70 и указываться в паспорте на электрод.

Отклонение значения координаты pH_n от номинального не должно превышать при выпуске из производства ± 0.3 pH для электродов типов 1-3 и ± 0.65 pH для электродов типа 4. После 500 ч работы для электродов типов 1 и 2 и 1000 ч работы для электродов типа 3 это отклонение не должно превышать ± 0.6 pH, а после 500 ч работы для электродов типа 4 ± 1.0 pH.

- 2.6. Электрическое сопротивление электродов должно быть не более 10^9 Ом при минимальных значениях температуры анализируемой среды, указанных в табл. 1.
- 2.7. Предельные значения электрического сопротивления электродов типов 1—3, установленные при температуре 20 или 25°С, а электродов типа 4 при температуре 70°С, должны указываться в паспорте на электрод.

- 2.8. Электрическое сопротивление изоляции электродов должно быть не менее 10^{12} Ом при температуре $20\pm5^{\circ}$ С и относительной влажности не более 80%.
- 2.9. Электроды должны быть термически устойчивыми при резких изменениях температуры анализируемой среды.
- 2.10. Электроды типа 4 должны выдерживать воздействие температуры окружающей воздушной среды 150°С.
- 2.11. Электроды типов 1—3 должны выдерживать давление анализируемой среды в диапазоне от минус $0.09 \ (\approx 0.90)$ до плюс $0.9 \ (\approx 9)$ МПа (кгс/см²), электроды типа 4 до $1.8 \ (\approx 18)$ МПа (кгс/см²).
- 2.12. Электроды в упаковке для перевозки должны выдерживать транспортную тряску и воздействие повышенной влажности по ГОСТ 12997—76, воздействие температуры для типов 1—3 от минус 25 до плюс 50°С, для электродов типа 4 от 0 до 50°С.
- 2.13. Вероятность безотказной работы не менее 0,90 за время, равное 1000 ч для электродов типов 1, 2 и 4 и 2000 ч для электродов типа 3. Вероятность безотказной работы за половину указанного времени должна быть не менее 0,95.
- 2.14. Электроды являются невосстанавливаемыми изделиями с естественно ограниченным сроком службы.

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Электроды следует подвергать государственным, приемосдаточным, периодическим, типовым испытаниям и испытаниям на безотказность.
- 3.2. При приемо-сдаточных испытаниях каждый электрод следует проверять на соответствие требованиям п. 2.1, а также проводить первичную поверку по ГОСТ 8.151—75.
- 3.3. При периодических испытаниях, проводимых раз в год, проверяют по 10 электродов каждого типа на соответствие всем требованиям настоящего стандарта, кроме п. 2.13.
- 3.4. Типовые испытания проводят в тех случаях, когда вносят изменения в материалы, конструкцию или технологию изготовления, влияющие на метрологические характеристики и работоспособность электродов.

При типовых испытаниях проверяют по 10 электродов каждого типа по программе предприятия-изготовителя.

3.5. В случае, если при периодических и типовых испытаниях будет обнаружено несоответствие хотя бы по одному показателю более чем у одного электрода, проводят повторную проверку удвоенного числа электродов. Если при повторных испытаниях обнаружено несоответствие хотя бы по одному показателю более чем у двух электродов, то результаты поверки считают неудовлетворительными.

3.6. Испытания на безотказность проводят по ГОСТ 13216—74 при:

исследовательских испытаниях — с доверительной вероятностью $P^* = 0.8$;

контрольных испытаниях—с риском изготовителя $\alpha=0,1$ и риском потребителя $\beta=0,2$. Приемочный уровень $P_{\alpha}=0,9$, браковочный уровень P_{β} устанавливается по согласованию с заказчиком. Контрольные испытания проводят раз в три года.

Планирование контрольных испытаний на безотказность — по ГОСТ 20699—75 одноступенчатым методом с ограниченной продолжительностью испытаний. Продолжительность испытаний — 1000 ч для электродов типа 3.

Отказом считается несоответствие электродов требованиям пп. 2.2—2.5, 2.7 и 2.11 (с учетом наработки). Оценка результатов контрольных испытаний на безотказность — в соответствии с ГОСТ 20699—75. Электроды, прошедшие испытания на безотказность, использованию не подлежат.

3.7. Государственные испытания — по ГОСТ 8.001—71.

4. МЕТОДЫ ИСПЫТАНИЙ

4.1. Соответствие электродов требованиям пп. 1.2, 2.1, 5.1 и 5.2 проверяют внешним осмотром и контролем при помощи измерительного инструмента, обеспечивающего требуемую чертежами точность. Массу электрода проверяют на весах, обеспечивающих взвешивание с погрешностью не более 0,1 г.

4.2. Крутизну водородной характеристики электрода (п. 2.2) определяют расчетом по данным измерений потенциалов в раст-

ворах;

0,1 н. соляной кислоты по ГОСТ 3118—67 и 0,1 н. натрия тетраборнокислого (буры) по ГОСТ 8429—69 при температурах 25 и 40°С — для электродов типа 1, при 25 и 80°С — для электродов

типа 2 и при 80°С — для электродов типа 4;

1,09 н. соляной кислоты по ГОСТ 3118—67 и 0,1 н. натрия тетраборнокислого по ГОСТ 8429—69 при температуре 25°С и в 0,1 н. соляной кислоты по ГОСТ 3118—67 и образцовом буферном растворе, приготовленном из фиксанала типа 4 по ГОСТ 8.135—74 при 80°С — для электродов типа 3.

Указанные значения температур поддерживают с погрешностью

 $\pm 0,2$ °C.

Крутизну водородной характеристики электрода при температуре t° С (S_t мВ/рН) определяют по формуле

$$S_t = \frac{E_2 - E_1}{pH_2 - pH_1},\tag{3}$$

где E_1 — потенциал в растворе соляной кислоты, мВ;

E₂ — потенциал в растворе натрия тетраборнокислого для электродов типов 1, 2 и 4 или в растворе из фиксанала типа 4 по ГОСТ 8.135—74 для электродов типа 3, мВ;

рН1 — значение рН растворов соляной кислоты;

рН₂ — значение рН 0,1 н. раствора натрия тетраборнокислого для электродов типов 1,2 и 4 или раствора из фиксанала типа 4 по ГОСТ 8.135—74 для электродов типа 3.

Значение потенциала при измерениях следует отсчитывать до десятых долей милливольта.

Состав и значения рН растворов определяют по табл. 2.

4.3. Стандартный потенциал электрода E_0 в милливольтах (п. 1.3) определяют по формуле

$$E_0 = E_u - S_{20^\circ} \cdot pH_u + E_{BCR}, \tag{4}$$

где E_{n} , р H_{n} — номинальные значения координат изопотенциальной точки электродной системы, соответственно, мB, рH;

 $E_{\rm всп}$ — номинальное значение потенциала вспомогательного электрода относительно нормального водородного электрода при 20°C, мВ. Для насыщенного хлорсеребряного электрода $E_{\rm всп}$ = 201 мВ при 20°C;

S_{20°} — значение крутизны водородной характеристики при 20°C, равное минус 58,165 мВ/рН.

- 4.4. Потенциал электрода (п. 2.3) следует определять по ГОСТ 8.151—75.
- 4.5. Отклонение водородной характеристики электрода от линейности (п. 2.4) следует проверять измерением его потенциалов при температурах и в растворах 1-4, указанных в табл. 2. Температуру поддерживают с погрешностью $\pm 0.5^{\circ}$ С при $25-80^{\circ}$ С и $\pm 1^{\circ}$ С при 150° С.

Отклонение водородной характеристики от линейности в кислой Δ_{κ} , рH и щелочной $\Delta_{\mathfrak{m}}$, рH средах, рассчитывают по формулам:

$$\Delta_{\kappa} = pH_2 - pH_1 - \frac{E_2 - E_1}{S_t},$$
 (5)

$$\Delta_{\mathbf{m}} = pH_4 - pH_3 - \frac{E_4 - E_3}{S_t}, \tag{6}$$

где pH_1 , pH_2 , pH_3 , pH_4 — значения pH буферных растворов соответственно растворам 1—4 (табл. 2);

 E_1 , E_2 , E_3 , E_4 — измеренные значения потенциалов в буферных растворах 1-4 соответственно, мВ;

 S_t — крутизна водородной характеристики, мВ/рН, определенная по формуле (3).

Растворы для проверки характеристики стеклянных электропов

			Hd	12,00	10,00	14,00	11,00	12,00	8,86	11,00	8,68
эдов	Шелочные растворы, номеров	4	Состав	100 мл 0,1п Na ₂ B ₄ O ₇ + +140 мл 0,1 н NaOH	100 мл 0,1н Na ₂ B ₄ O ₇ + +85 мл 0,1 н NaOH	2н КОН+0,1н NaCl	100 мл 0,1н Nа ₂ B ₄ O ₇ + +294 мл 0,1н NаОН	100 мл 0,1н Na ₂ B ₄ O ₇ + +140 мл 0,1 н NaOH	0,1н Na ₂ B ₄ O ₇	100 мл 0,1н Na ₂ B ₄ O ₇ + +294 мл 0,1н NaOH	0,01н Na ₂ B ₄ O ₇
9JEKT	елочные		Hď	9,20	9,07	9,20	8,86	9,20	98,9	98.86	7,14
т истворы для проверки характеристики стеклянных электродов	Ħ	3	CocraB	0,1H Na ₂ B ₄ O ₇	0,1H Na ₂ B ₄ O ₇	0,1H Na ₂ B ₄ O ₇	0,1H Na ₂ B ₄ O ₇	0,1н Na ₂ B ₄ O ₇	0,025m KH ₂ PO ₄ +0,025m Na ₂ HPO ₄	0,1H Na ₂ B ₄ O ₇	0,025m KH ₂ PO ₄ +0,025m Na ₂ HPO ₄
аракте		2	Нď	1,10	1,10	1,10	1,11	1,10	1,11	1,11	2,06
тын проверки ха	Кислые растворы, номеров		Состав	0,1H HCI	0,1н НСІ	0,1н НСІ	0,1H HCI	0,1H HCi	0,1н НС1	0,1н НСІ	0,01н НСІ
ringha	ие раство	1	Нď	0	0	0	0	-0,50	0	0	1,14
B	Кисль		Состав	1,09н НСІ	1,11н НСІ	1,09н НСІ	1,35н НС1	3m H ₂ SO ₄	1,35# HCl	1,35н НСІ	0,111 HCI
	, pq.	, Температура, С			40	25	80	25	80	80	150
	Тип электро-		-		6			က		4	

Значение потенциала при измерениях следует отсчитывать до десятых долей милливольта.

Для электродов типа 3 значение, полученное при температуре 80°С по формуле (6), умножают на 1,15. Для электродов типа 4 значение, полученное при температуре 150°С по формуле (5), умножают на 1,15, а по формуле (6) — на 0,5.

Пример расчета отклонения водородной характеристики элек-

трода от линейности указан в обязательном приложении 1.

4.6. Определение координаты изопотенциальной точки $pH_{\mathbf{n}}$ (п. 2.5) следует проводить измерением потенциалов электрода при двух температурах в растворе по ГОСТ 8.135—74 со значением pH, близким к нормальному значению проверяемой характеристики или в 0,1 н растворе соляной кислоты.

Электроды типа 1 измеряют при $t_1 = 25^{\circ}$ С и $t_2 = 40^{\circ}$ С, электроды типов 2 и 3 при $t_1 = 25^{\circ}$ С и $t_2 = 80^{\circ}$ С, электроды типа 4 при $t_1 = 80^{\circ}$ С и $t_2 = 150^{\circ}$ С. Температуру поддерживают с погрешностью не более $\pm 0.2^{\circ}$ С —при $25-40^{\circ}$ С; $\pm 0.5^{\circ}$ С — при 80° С; $\pm 1^{\circ}$ С —при 150° С.

Расчет координаты изопотенциальной точки р $H_{\tt u}$ следует проводить по формуле:

$$pH_{H} = \frac{E_{1} - E_{2} + S_{t_{3}} pH_{t_{3}} - S_{t_{1}} pH_{t_{1}}}{S_{t_{2}} - S_{t_{1}}},$$
 (7)

тде E_1 и E_2 — потенциал при температуре, соответственно, t_1 и t_2 в буферном растворе со значением рН, равным, соответственно, рН $_{t_1}$ и рН $_{t_2}$, мВ;

 S_{t_1} , S_{t_2} — значения крутизны водородной характеристики, мВ/рН, рассчитанные по формуле (3).

Значение потенциала при измерениях следует отсчитывать до десятых долей милливольта.

Примечание. Перед измерением электрод следует выдержать в течение 3,5-4 ч при температуре t_2 в растворе, в котором производится определение координаты pH_m .

4.7. Проверка электрического сопротивления электродов (п. 2.7) — по ГОСТ 8.151—75.

При периодических и типовых испытаниях следует дополнительно проводить измерения при температуре: $0\pm0.5^{\circ}$ C для электродов типа 1 и при $15\pm0.5^{\circ}$ C для электродов типа 3.

- 4.8. Проверка электрического сопротивления изоляции электродов (п. 2.8) по ГОСТ 8.151—75.
- 4.9. Термическую устойчивость электродов (п. 2.9) проверяют многократным (не менее 10 раз для типов 1—3 и не менее 5 раз для типа 4) погружением электродов типов 1—3 попеременно в

кипящую воду и в воду с температурой от 5 до 25° С, электродов типа 4 попеременно в масло при температуре $145\pm5^{\circ}$ С и в масло при температуре $22\pm5^{\circ}$ С. Электроды погружают примерно на половину длины. Время выдержки при каждом погружении не менее 2 мин. Выдержавшими испытания считают электроды, электрическое сопротивление которых удовлетворяет требованию п. 2.7.

4.10. Устойчивость электродов типа 4 при воздействии температур до 150° C (п. 2.10) проверяют многократным (5 циклов) медленным охлаждением нагретых до $145\pm5^{\circ}$ C электродов в воздуш-

ной среде до комнатной температуры $(20\pm5^{\circ}C)$.

Испытания проводят в воздушном термостате, в котором в течение не менее $^{1}/_{2}$ ч производят охлаждение. Выдержавшими испытание считают электроды, электрическое сопротивление изоляции которых удовлетворяет требованию п. 2.8.

4.11. Механическую прочность электродов (п. 2.11) следует проверять при комнатной температуре в устройстве, изготовленном по технической документации, утвержденной в установленном порядке.

Испытание при пониженном давлении производят в том же устройстве при присоединении к нему вакуумного насоса, при помощи которого создают разрежение с давлением 0,085÷0,090 МПа (≈0,85÷0,90 кгс/см²) и выдерживают не менее 10 мин.

При испытании на избыточное давление автоклав заполняют водой, подсоединяют к гидравлическому насосу, создающему необходимое давление. Стеклянный электрод устанавливают в корпус автоклава. Давление в системе постепенно увеличивают до 0,9 МПа (≈9,0 кгс/см²) для электродов типов 1—3 и до 1,8 МПа (≈18 кгс/см²) для электродов типа 4 с выдержкой при максимальном давлении не менее 10 мин.

Выдержавшими испытание считают электроды, у которых отсутствуют механические повреждения, а электрическое сопротивление удовлетворяет требованию п. 2.7.

4.12. Устойчивость электродов к транспортной тряске (п. 2.12) следует проверять по ГОСТ 12997—76. Выдержавшими испытания считают электроды, электрическое сопротивление которых удовлетворяет требованию п. 2.7.

Устойчивость электродов к повышенной влажности (п. 2.12) следует проверять по ГОСТ 12997—76. После пребывания в нормальных условиях в течение 4 ч электроды должны удовлетворять требованиям п. 2.8.

Устойчивость электродов к воздействию температуры (п. 2.12) следует проверять выдерживанием их в термокамере. Электроды в упаковке помещают в камеру тепла (холода), повышают (понижают) температуру для электродов типов 1—3 до плюс 50 (минус 25) °С, для электродов типа 4 до плюс 2°С и поддерживают с погрешностью ±2°С в течение 2 ч. Затем температуру в камере

понижают (повышают) до температуры окружающего воздуха. После пребывания в нормальных условиях в течение 4 ч электро-

ды должны удовлетворять требованиям п. 2.7.

4.13. Для испытания на безотказность (п. 2.13) электроды отбирают в количестве, рассчитанном по методике ГОСТ 13216—74 с учетом исходных данных, приведенных в п. 3.6. Половину электродов типов 1—3 испытывают в кислом, а другую половину — в щелочном растворе. Электроды типа 4 испытывают только в кислом растворе.

Состав растворов и температуру при испытаниях выбирают в зависимости от типа электрода в соответствии с указанными в

табл. 3.

Значение pH растворов в процессе испытаний поддерживают в пределах ± 0.5 pH от заданного. Допускается корректировать значение pH растворов или заменять растворы вновь приготовленными.

Параметр, характеризующий отказ, проверяется в начале испытаний через каждые 250 ч и в конце испытаний. Функционирование электродов проверяют ежедневно измерением потенциала врастворе, в котором проводят испытание.

Таблица 3

eĸ-		Кислый раствор		Щелочной раствор		
Тип элек- трода	Температура, С	Состав	pН	Состав	рН	
I	25±5	1,09 н НС1	0	100 мл 0,1 н Na ₂ B ₄ O ₇ + +75 мл 0,1 н NaOH	10	
2	65±5	1,30 н НС1	0	100 мл 0,1 н Na ₂ B ₄ O ₇ + +100 мл 0,1 н NaOH	10	
3	70±5	1,30 н НС1	0	0,1 н Na ₂ B ₄ O ₇	9	
4	80±5	0,01 н НС1	2			

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

- 5.1. На каждом электроде должно быть нанесено его обозначение.
- 5.2. Электроды должны быть упакованы в коробки из полистирола или другого материала, обеспечивающего сохранность электродов при транспортировании и хранении. На этикетке коробок должны быть указаны:

наименование или товарный знак предприятия-изготовителя; обозначение электрода;

тип электрода;

обозначение настоящего стандарта;

год и месяц выпуска;

число электродов.

- В каждую коробку должен быть вложен паспорт по ГОСТ 2.601—68.
- 5.3. Коробки с электродами должны быть уложены в деревянные ящики по ГОСТ 2991—76 или в фанерные ящики по ГОСТ 5959—71. Свободные промежутки в ящике должны быть заполнены упаковочным материалом.

5.4. Масса брутто — не более 50 кг.

5.5. На крышке ящика должны быть нанесены предупредительные знаки по ГОСТ 14192—71, соответствующие надписям: «Осторожно, хрупкое», «Верх, не кантовать», «Не бросать», а также надписи: «Транспортировать при температуре не ниже минус 25°С» (для электродов типов 1—3) и «Транспортировать при температуре не ниже 0°С» (для электрода типа 4).

5.6. Транспортировать электроды разрешается любым транспортом закрытого вида при температуре не ниже минус 25° С для электродов типов 1-3 и не ниже 0° С для электродов типа 4.

5.7. Условия хранения электродов — по группе Л ГОСТ 15150—69. В воздухе помещения не должно быть агрессивных примесей, вызывающих коррозию электродов.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель должен гарантировать соответствие электродов требованиям настоящего стандарта при соблюдении условий эксплуатации и хранения, установленных стандартом.
- 6.2. Гарантийный срок хранения электродов 24 месяца со дня их изготовления.

ПРИМЕР РАСЧЕТА ОТКЛОНЕНИЯ ОТ ЛИНЕЙНОСТИ ВОДОРОДНОЙ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДА

Предел линейности водородной характеристики стеклянного электрода типа 1 в щелочной среде при температуре 25°С должен быть не менее 12 рН. Потенциалы электрода в растворах 3 и 4 (см. табл. 2 настоящего стандарта); соответственно равны: $E_3 = -120,0$ мВ, $E_4 = -282,7$ мВ.

$$S_{25} = -59,2 \text{ MB/pH};$$

$$\Delta_{\text{txt}} = 12,00-9,20-\frac{-282,7-(-120,0)}{-59,2} = 2,80-2,75=0,05 \text{ pH}$$

ПРИЛОЖЕНИЕ 2 Справочное

ТЕРМИНЫ, ВСТРЕЧАЮЩИЕСЯ В СТАНДАРТЕ, И ИХ ОПРЕДЕЛЕНИЯ

1. Водородная характеристи-	Изотерма зависимости потенциала от з	наче
ка стеклянного электрода	ния рН раствора	
9 Правод приобилости воло-	Businesses of partitions the votobout of	TT TO

2. Предел линейности водородной характеристики стеклянного электрода

Термин

- 3. Нормальный водородный электрод
- 4. Стандартный потенциал стеклянного электрода
- 5. Координаты изопотенциальной точки электродной си-
- 6. Координата изопотенциальной точки

Определение

Значение рН раствора, при котором отклонение от линейности достигает нормированной величины

Водородный электрод, приэлектродный раствор которого имеет активность ионов водорода, равную единице, а давление водорода равно нормальному атмосферному давлению

Потенциал электрода относительно нормального водородного электрода в растворе со значением рН, равным нулю при температуре 20°C

Координаты точки пересечения изотерм водородной характеристики стеклянного элек-

Обозначение по оси рН-рНи, по оси потенциалов $E_{\mathbf{w}}$

Редактор В. П. Огурцов Технический редактор О. Н. Никитина Корректор В. Ф. Малютина