Divide and Conquer Part 2

We have divided the divide-and-conquer topic into two lectures and now we'll conquer them!

Another example of divide and conquer:

Integer Multiplication

Conquer:
$$x \cdot y = (x_L \cdot 10^{n/2} + x_R)(y_L \cdot 10^{n/2} + y_R)$$

= $x_L y_L \cdot 10^n + (x_L y_R + x_R y_L) \cdot 10^{n/2} + x_R y_R$

Recurrence:

Solving Recurrences

The Master Theorem

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^a)$, when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

k, b, and d are constants

$$T(1) = O(1)$$

(Earlier, Gauss used the same trick in a different context)

Karatsuba's idea!

 $O(n^2)$

Around 1956, the famous Soviet mathematician Andrey Kolmogorov conjectured that this is the best possible way to multiply two numbers together.

Just a few years later, Kolmogorov's conjecture was shown to be spectacularly wrong.

In 1960, Anatoly Karatsuba, a 23-year-old mathematics student in Russia, discovered a sneaky algebraic trick that reduces the number of multiplications needed.

We only need 3 recursive calls rather than 4!

Karatsuba's idea!

 y_R

Divide: $x = \begin{bmatrix} x_L \\ x_R \end{bmatrix}$

 y_{l}

y =

sigh When I was in elementary school....

I could have saved a lot of time

Question: It is possible to do even better than Karatsuba multiplication?

Answer: Yes - the best known result is O(n log n) [Harvey, van der Hoeven, 2019]

Open problem: Can this be improved to O(n)?

Conjecture: No (but we don't know)

Another example of divide and conquer:

Closest Pair of Points

Closest Pair Data Structures: Applications

The following algorithms and applications can be implemented efficiently using our new closest pair data structures, or involve closest pair computation as important subroutines.

- Dynamic minimum spanning trees
- Two-optimization heuristics in combinatorial optimization
- Straight skeletons and roof design
- Ray-intersection diagram
- Other collision detection applications
- Hierarchical clustering
- Traveling salesman heuristics
- · Greedy matching
- Constructive induction
- Gröbner bases

David Eppstein, Information & Computer Science, UC Irvine, .

Warm-up: Closest Pair of Points in 1-D

* **Problem:** Given n real numbers $x_1, x_2, ..., x_n$, find $i \neq j$ with the smallest $|x_i - x_j|$.

* Solution:

- Sort the points.
- * Go over the list and compute the distances between the adjacent points.
- * Return the pair of adjacent points with the min distance.

* Runtime:

Closest Pair of Points in 2-D

We have n very simple planes flying at the same altitude... I guess they are n plain planes in the plane!

Finding the Closest Pair of Points

Input: A list of n points in R²: $[(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)]$

Output: The closest pair of points

Goal: O(n log n) algorithm

T(n) = 2T(n/2) + O(n)

Working backwards: We want a "mergesort" recurrence relation!

Build two copies of the input list: One sorted by x-coordinate and one sorted by y-coordinate

No need to use divide-and-conquer! Just run my new algorithm! Iterate through the list X and compute the distance between adjacent points. Then do the same with the list Y. Then take the minimum distance we found!

Divide-and-Conquer!

$$d = min(d_{left'}, d_{right})$$

Claim: There can't be too many points in this red d-by-2d rectangle? Why? How many points could there be?

Total running time

- Sort once by x-coordinate: O(n log n)
- Sort once by y-coordinate: O(n log n)
- Recursive algorithm: T(n) = 2T(n/2) + O(n)

T(2) = O(1)

Discovered in 1976 by Jon Louis Bentley and Michael Ian Shamos

