QUANTUM COMPUTATION

A theoretical outlook to building a quantum computer

The modern computer

- Information in computers are stored as **bits** (1's and 0's)
- Bits are voltage or current pulses
- We compute on these bits by electronic <u>logic gates</u>

Bits (101...)

Black Box (Logic Gate)

Result of transformation (e.g. $101 \rightarrow 010$)

Transistors

- Logic gates are built by transistors
- First transistor: $\sim 1 \times 10^{-2}$ m
- ▶ Today's transistor: $\sim 5 \times 10^{-8}$ m
- ▶ Hydrogen atom: \sim 5 × 10⁻¹¹ m
- What is the limit?

Why quantum computers?

- Transistors have **limited sizes**, and generate a lot of heat
- If we want really awesome super iPads, quantum computers are the way to go

How do quantum computers work?

- Quantum computers compute on individual atoms
- We store information on qubits
- ▶ The computer is in a <u>superposition</u> of the states it could be in
- Not I OR 0 but both I AND 0

Small print: all results except one is destroyed upon measuring the system.

Quantum logic gates

- Can be implemented by spectroscopic techniques
- Example: Shooting laser pulses at an atom

What can we do with quantum computers?

- Shor's Factorization Algorithm
- Allows quick calculations of prime factors

Issues in constructing a quantum computer

- Quantum systems are fragile
- Systems could become <u>decoherent</u>

What are quantum computers good for?

- Artificial intelligence
- Further research validity of quantum theory
- Really, really awesome apple products

Thanks for listening!