Solutions à base de d'hyperviseurs

M1 RÉSEAUX & TÉLÉCOMS - RT0702 OLIVIER FLAUZAC

Hyperviseurs

Rôle de l'hyperviseur

Définition

 Plate-forme de virtualisation permettant à plusieurs systèmes d'exploitation de s'exécuter en même temps

Classification

- Hyperviseurs de type 1
- Hyperviseur de type 2

Principe

- Assurer la protection du matériel
- Garantir l'accès au matériel.
- Emuler si nécessaire des composants
- Agir comme un super *scheduler*
- Garantir l'indépendance des invités

Hyperviseur de type 1

Natif ou bare metal

S'exécute directement sur le matériel

Noyau optimisé et allégé

Exemple d'hyperviseurs de type 1:

- XEN
- KVM
- VMWare

Exploitation possible de capacités processeur (Intel VT ou AMD-V)

Eléments de virtualisation matériel

Principe

- Partition du processeur afin d'exécuter en parallèle plusieurs systèmes
- Mise en place d'un super bios afin de gérer le lien avec le matériel
- Décliné différemment selon les constructeurs :

• Intel: VT-x

AMD: AMD-V

Permet aux invités d'accéder directement aux matériel installé sur l'hôte

Test sur les flags de /proc/cpuinfo

Activation / désactivation possible dans le noyau

Hyperviseur de type 2

Logiciel s'exécutant sur un système d'exploitation

Invité vu comme une application

Mise en place d'émulation pour les composants

Problématique de performances!

Exemple d'hyperviseurs de type 2:

- QEMU
- Oracle VirtualBox
- VMWare Workstation / Fusion

Qemu

QEMU?

Logiciel libre

Exploité dans VirtualBox

Emulation d'un processeur

Emulation d'un système complet

Possède des modules d'accélération : KQEMU, qvm86 et KVM

Permet la virtualisation sans émulation si l'invité est le même que l'hôte

Capacité

S'exécute sur

- x86, x64, ARM, PowerPC, SPARC, MIPS,
- Linux, xxxBSD, Mac OS X, Unix, Windows

Capable d'émuler

- x86, x64, ARM, PowerPC, SPARC, MIPS ...
- Linux, xxxBSD, Mac OS X, Unix, Windows ...

Isolation totale des instances

Emulation des périphériques

totale ou en lien avec les ressources existantes

Installation

Installation du méta paquet QEMU

Gestion automatique des dépendances

Possibilité d'installer des interfaces graphiques de gestion

Modes réseau similaires aux conteneurs

Formats de disques

raw format binaire brut, très portable, ne nécessite que la taille des données contenues

cow, qcow copy-on-write gardés pour des raisons historiques

qcow2 format actuel de QEMU, snapshot possibles, cryptage, taille réduite, rebase ...

Vmdk VMWare

vdi VirtualBox

Vhdx Hyper-V, Virtual PC

cloop format compressé compatible avec les live CD

Gestion des disques

qemu-img

```
    create : création d'un disque , création d'une image relative
```

```
    convert : conversion de format
```

- info : récupération des informations
- resize : redimensionnement d'une image

```
qemu-img create -f qcow2 mydeb.img 10G

qemu-img convert -f qcow2 mydeb.img -0 raw mydeb.img2

qemu-img info -f qcow2 mydeb.img

qemu-img resize mydeb.img +5G

Qemu-img create -f qcow2 -b mydeb.img img1.qcow2
```

Gestion de la machine virtuelle

Utilisation de la commande en fonction de l'architecture de l'invité

```
qemu-system-x86_64
```

- k: définition du clavier k fr
- m : quantité de RAM -m 512
- drive: image disque utilisée et ses propriétés
 - file
 - format
- boot: gestion du démarrage c, d, n, -boot d
- o cdrom: image iso ou cdrom utilisé -cdrom xxx.iso

Gestion de la machine virtuelle

Carte graphique

- cirrus : driver intégré à tout système
- std: résolution 1280x1024x16, driver intégré à tout système
- vmware: VMWare SVGA-II
- qxl: carte graphique la plus puissante
- o none : aucune

Installation d'une distribution

Création du disque

Lancement de l'hyperviseur avec sa configuration

Ouverture d'une fenêtre

- Comment installer en mode texte ?
- Comment installer sans fenêtre ?

```
qemu-img create -f qcow2 mydeb.img 5G

qemu-system-x86_64 -k fr -m 512 -drive file=./mydeb.img,format=qcow2
-boot d -cdrom debian-8.2.iso
```

Modes réseau

Fonctionnement par émulation de carte réseau

Emulation de divers matériels

Quatre modes connus

- user mode
- redirection
- tap
- VDE

Options liés au réseau

Commandes

- net / netdev
- user mode utilisateur
- nic création d'une interface réseau
- tap lien vers une interface tap
- ifname nom de l'interface
- script script à exécuter
- id identifiant du réseau

Le mode user

SLIRP

Mode par défaut

Ne nécessite pas de configuration

Emulation par défaut d'une carte Intel e1000 PCI

Placé en NAT sur l'hôte

- Autorise l'accès sortant
- Interdit l'accès entrant

Ne supporte que TCP et UDP mais pas ICMP

Propriétés par défaut :

- serveur DHCP en 10.0.2.2
- adresses distribuées à partir de 10.0.2.15
- DNS virtuel en 10.0.2.3
- serveur samba virtuel en 10.0.2.4 (accès à l'hôte)

Droits administrateur

Le mode user

Le mode réseau redirection

Extension du mode user

Redirection d'un port de l'hôte sur l'invité

Utilisé pour le partage de ressources ou accès SSH

Pas de règles iptables à spécifier

- redir directive de redirection
- hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

```
qemu-system-x86_64 -k fr -m 512 -drive file=./tiny.img,format=raw -net nic -net user,hostfwd=tcp::10022-:22
```

Accès à la machine

Console ouverte au lancement

Accès à distance sans console ouverte au lancement

Accès

- VNC
- NoVNC
- Spice

```
qemu-system-i386 -drive file=./tiny.img,format=raw
-net nic -net user,hostfwd=tcp::10022-:22
-display vnc=:0
```

KVM

KVM?

Solution complète de virtualisation

Hyperviseur de type 1

Nécessite des options processeur

Module noyau kvm.ko

- kvm-intel.ko
- kvm-amd.ko

Extension qemu intégration entre les projets

Utilisation de KVM

Vérification des flags noyau

Installation de qemu-kvm

Utilisation dans Qemu de : --enable-kvm

egrep '(vmx|svm)' /proc/cpuinfo