

O que é o Cálculo Numérico?

- O Cálculo Numérico corresponde a um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada.
- Esses métodos se aplicam principalmente a problemas que não apresentam uma solução exata, portanto precisam ser resolvidos numericamente.

Princípios usados em CN

- 1. Iteração ou aproximação sucessiva
 - Partindo-se de solução aproximada, inicial, repetemse mesmas ações/processos para refinar solução inicial
 - OBS: para evitar trabalho sem fim (e de graça), deve-se determinar se a iteração converge (nem sempre é o caso...) e condições de parada

Princípios usados em CN

2. Discretização

- Na resolução de problemas contínuos (aqueles definidos matematicamente com uma passagem ao limite), inverte-se a passagem ao limite, discretizando o problema
- Ex: $\int e^{x^2} dx \sim \sum ...$

Princípios usados em CN

3. Aproximação

- Substituir uma função ou modelo por outro que ofereça comportamento (de interesse) semelhante, mais simples de manipular
 - $f(x) \implies g(x)$
- Ex: assíntotas ilustram comportamento "no limite" de uma função (complexa) de interesse

Princípios usados em CN

4. Transformação

- Dado um problema P, desmembra-se P em dois problemas mais simples de resolver, P1 e P2
 - Área de um trapézio por retângulo (P1) e triângulos (P2)

Princípios usados em CN

- 5. Divisão e Conquista
 - Resolver um problema P, por partes ou etapas
 - Exemplo anterior (área do trapézio)
 - Aulas nesta disciplina de MN

Conceitos Básicos

Representação de Números

 Calcular a área de uma circunferência de raio 100 m:

a)
$$A = 31400 \text{ m}^2$$

b)
$$A = 31416 \text{ m}^2$$

c)
$$A = 31415.92654 \text{ m}^2$$

Representação de Números

 Efetuar os somatórios seguintes em uma calculadora e em um computador:

$$S = \sum_{i=1}^{30000} x_i \quad \text{para } x_i = 0.5 \text{ e para } x_i = 0.11$$

Representação de Números

- Representação não posicional
 - romanos
 - MDCCCXLIX e MMCXXIV
 - Como seria MDCCCXLIX + MMCXXIV ?

Representação de Números

- Representação posicional
 - Base decimal (10)
 - 10 dígitos disponíveis [0,1,2, ...,9]
 - "Posição" indica potência positiva de 10
 - $5432 = 5x10^3 + 4x10^2 + 3x10^1 + 2x10^0$

Representação de Números

• Exercício: Represente os seguintes números decimais na forma polinomial:

a. 5236

b. 123,456

Sistemas de Numeração (SN)

• É uma maneira de representar graficamente informações quantitativas, ou seja, é um conjunto de regras para representação dos números;

Conceitos Básicos

Sistemas de Numeração (SN)

- OS MAIS IMPORTANTES:
 - ✓ Binário
 - 0, 1
 - ✓ Octal
 - 0, 1, 2, 3, 4, 5, 6, 7
 - ✓ Decimal
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - √ Hexadecimal
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

SN: Binário

- Representação de inteiros
 - Base binária (2)
 - 2 "bits" disponíveis [0,1]
 - "Posição" indica potência positiva de 2
 - 1011 na base $2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 8+0+2+1 = 11$ na base decimal
 - Ou, melhor $1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 1 + 2(1+2(0+2(1))) = 11$

SN: Octal

Símbolos:

0, 1, 2, 3, 4, 5, 6 e 7;

 Representação: Combinação dos oito símbolos, associado com sua posição.

SN: Hexadecimal

Símbolos:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F;

 Representação: Combinação dos dezesseis símbolos, associado com sua posição.

Sistemas de Numeração

- Representação de números fracionários
 - Base decimal (10)
 - "Posição" da parte inteira indica potência positiva de 10
 - Potência negativa de 10 para parte fracionária
 - $54,32 = 5x10^1 + 4x10^0 + 3x10^{-1} + 2x10^{-2}$

Sistemas de Numeração

- Representação de números fracionários
 - Base binária (2)
 - "Posição" da parte inteira indica potência positiva de 2
 - Potência negativa de 2 para parte fracionária
 - 10,11 na base 2 = $1x2^1 + 0x2^0 + 1x2^{-1} + 1x2^{-2} = 2+0+1/2+1/4 = 2,75$ na base decimal

Outros sistemas de numeração

- Maior interesse em decimal (10)
 - Nossa anatomia e cultura
 - e binário (2)
 - Uso nos computadores
- Outros sistemas
 - Octal (8), {0,1,2, ..., 7}
 - Hexadecimal (16), {0,1,2, ..., 9, A,B,C,D,E,F}

Alguns sistemas numéricos

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
-		-	

Conversão de sistema ou base

 Uma caixa alienígena com o número 25 gravado na tampa foi entregue a um grupo de cientistas. Ao abrirem a caixa, encontraram 17 objetos. Considerando que o alienígena tem um formato humanóide, quantos dedos ele tem nas duas mãos?

Conceitos Básicos

Conversão de base

•
$$17_{10} = 25_{b}$$

•
$$17 = 2xb^1 + 5xb^0$$

•
$$17 = 2b + 5$$

•
$$b = (17-5)/2 = 6$$

Conversão de Inteiro

- Binário para decimal
 - Já visto
- Inteiro decimal para binário
 - Divisão inteira (do quociente) sucessiva por 2, até que resto
 seja = 0 ou 1
 - Binário = composição do último quociente (Bit Mais Significativo – BMS) com restos (primeiro resto é bit menos significativo – bms)

Conceitos Básicos

Conversão de Inteiro

- Exemplo: Converter 25 decimal para binário
- 25 / 2 = 12 (quociente) e resto 1 = bms
- 12 / 2 = 6 (quociente) e resto 0
- 6 / 2 = 3 (quociente) e resto 0
- 3 / 2 = 1 (último quociente=BMS) e resto 1
- Binário = BMS ... bms = $\frac{1}{10001}$ = $1x2^4 + 1x2^4 + 0x2^2 + 0x2^1 + 1x2^0$ = 16 + 8 + 0 + 0 + 1 = 25 decimal

Conceitos Básicos

Conversão de Inteiros entre Sistemas

- Procedimentos básicos: divisão
 - polinômio
 - agrupamento de bits

Conceitos Básicos

Conversão (Inteiros) entre sistemas

$$(125)_{10} = (1111101)_2$$

Conversão (Inteiros) entre sistemas

a)
$$(1011110010100111)_2 = (?)_{16}$$

b)
$$(A79E)_{16} = (?)_2$$

$$(A79E)_{16} = (1010011110011110)_2$$

Conceitos Básicos

Conversão (Inteiros) entre sistemas

• Exercício:

a.
$$110111_{(2)} = (x)$$

b.
$$1010111_{(2)} = (x)_8$$

c.
$$1111_{(2)} = (x)_{16}$$

d.
$$46_{(16)} = (x)_2$$

e.
$$256_{(16)} = (x)_{10}$$

f.
$$256_{(8)} = (x)_2$$

g.
$$46_{(8)} = (x)$$

Conversão (Inteiros) entre sistemas

Conversão octal → hexadecimal

- Não é realizada diretamente → não há relação de potências entre as bases oito e dezesseis.
- Semelhante à conversão entre duas bases quaisquer
 - → base intermediária (base binária)

Conversão de Fração

- Operação inversa: multiplicar parte fracionária por 2 até que parte fracionária do resultado seja 0 (zero)
- Bits da parte fracionária derivados das partes inteiras das multiplicações
- Bit imediatamente à direita da vírgula = Parte inteira da primeira multiplicação

Conceitos Básicos

Conversão de Fração

- Exemplo: converter 0,625 decimal para binário
- 0,625 x 2 = 1,25 logo a primeira casa fracionária é $\mathbf{1}$; nova fração (resto) é 0,25 (1,25-1=0,25)
- 0,25 x 2 = 0,5 segunda casa é $\mathbf{0}$; resto é 0,5
- $0.5 \times 2 = 1.0$ terceira casa é 1; resto é zero.
- Resultado: $0,625_{10} = 0,101_{2}$

Conversão partes inteira e fracionária juntas

 Para converter um número com parte inteira e parte fracionária, fazer a conversão de cada parte, separadamente.

Número =
$$a_n.b^n + a_{n-1}.b^{n-1} + a_{n-2}.b^{n-2} + ... + a_0.b^0 + a_{-1}.b^{-1} + a_{-2}.b^{-2} + ... + a_{-m}.b^{-m}$$

parte inteira parte fracionária

Conceitos Básicos

Conversão partes inteira e fracionária juntas

$$(8,375)_{10} = (?)_{2}$$

- parte inteira: $(8)_{10} = (1000)_2$
- parte fracionária:

$$\begin{array}{c|c}
0,375 \\
 \hline
 & x & 2 \\
 \hline
 & 0,750 \\
 \hline
 & 1,500 \\
 \hline
 & 0,750
 \end{array}$$

$$\begin{array}{c|c}
0,000 \rightarrow \text{Final} \\
 \hline
 & x & 2 \\
 \hline
 & 1,000 \\
 \hline
 & 1
 \end{array}$$

$$(8,375)_{10} = (1000,011)_{2}$$

Conceitos Básicos

Conversão partes inteira e fracionária juntas

• Resolva:

$$-5.8 = (x)_2$$
.

$$-11,6 = (x)_2$$