```
Ordinary Differential Equation (ODE): let n \in \mathbb{N} and let f: \mathbb{R}^{n+1} \to \mathbb{R} then f(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0.
```

Solution of an Ordinary Differential Equation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then a function $y \in C^n(\mathcal{U})$ such that $f(x, y(x), \dots, y^{(n)}(x)) = 0$ for all $x \in \mathcal{U}$.

Notation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then

$$sols (f(x, y(x), y'(x), \dots y^{(n)}(x)) = 0) = \{y \in C^{n}(\mathcal{U}) \mid f(x, y(x), \dots, y^{(n)}(x)) = 0\}.$$

First Order Ordinary Differential Equation: let $f: \mathbb{R}^3 \to \mathbb{R}$ then f(x, y, y') = 0.

Separable Ordinary Differential Equation: let $f, g : \mathbb{R} \to \mathbb{R}$ then y' = f(y) g(x).

Claim Separation of Variables: let $f,g:\mathbb{R}\to\mathbb{R}$ such that $f(x)\neq 0$ for all $x\in\mathbb{R}$ then

 $\operatorname{sols}(y' = f(y) g(x)) = \operatorname{sols}\left(\int \frac{1}{f(y)} dy = \int g(x) dx\right).$

Corollary: sols $(y = y') = \{Ce^x \mid C \in \mathbb{R}\}.$

Curves that foliate a domain: Let $\Omega \subseteq \mathbb{R}^2$ and let $I \subseteq \mathbb{R}$ then a set of curves $\{\gamma_\alpha\} \subseteq I \to \mathbb{R}$ such that $\biguplus \gamma_i = \Omega$.

Claim: sols (y = y') foliate the plane.

Remark: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g \in \text{sols}(f(x, y, \dots, y^{(n)}))$ such that g is piecewise continuous then each continuous branch of g is a solution of the ODE.

Initial Value Problem (IVP): let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then $\left\{ egin{array}{l} f(x,y',\dots y^{(n)})=0 \\ y(p_1)=p_2 \end{array} \right.$. Theorem Cauchy-Peano: let $I,J\subseteq \mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in \operatorname{int}\left(I\times J\right)$ then there exists $\varepsilon>0$ such that $\begin{cases} y'=f(x,y) \\ y(p_1)=p_2 \end{cases}$ has a solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Theorem of Existence and Uniqueness: let $I, J \subseteq \mathbb{R}$ be closed intervals let $f \in C^1(I \times J)$ and let $p \in \operatorname{int}(I \times J)$ then there exists $\varepsilon>0$ such that $\left\{ egin{array}{ll} y'=f(x,y) \\ y(p_1)=p_2 \end{array}
ight.$ has a unique solution on the interval $(p_1-\varepsilon,p_1+\varepsilon).$

Corollary: let $I,J\subseteq\mathbb{R}$ be closed intervals and let $f\in C^{1}\left(I\times J\right)$ then sols $(y'=f\left(x,y\right))$ foliates $I\times J$.

Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C(\Omega, \mathbb{R}^2)$.

Integral curve: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then a curve $\gamma:[a,b]\to\Omega$ such that $\frac{d\gamma}{dt}(t)=\nu(g(t))$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field such that $v(x)\neq 0$ for all $x\in\Omega$ and let $\gamma:[a,b]\to\Omega$ be a curve such that $v\left(\gamma\left(t\right)\right)\in T_{\gamma\left(t\right)}\left(\mathrm{Im}\left(\gamma\right)\right)$ for all $t\in\left[a,b\right]$ then there exists a curve $\eta:\left[\alpha,\beta\right]\to\left[a,b\right]$ such that $\gamma\circ\eta$ is an integral curve. C^n Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C^n$ (Ω, \mathbb{R}^2) .

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a C^1 vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ foliates Ω .

Theorem Peano: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ covers Ω .

Lemma: let $\Omega \subseteq \mathbb{R}^2$ be a domain and let $f \in C^1(\Omega)$ then $\binom{1}{f}$ is a vector field.

Theorem of Existence and Uniqueness: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $g \in C^1(\mathbb{R})$ then

 $(g' = f(x,g)) \iff (({x \atop g}) \text{ is an integral curve of } ({1 \atop f})).$

Autonomous Ordinary Differential Equations: let $f : \mathbb{R} \to \mathbb{R}$ then y' = f(y).

Logistic Equation: let L > 0 then $\dot{P}(t) = P(t)(L - P(t))$.

Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then a function $g \in \text{sols}(y' = f(y))$ such that f(g(x)) = 0 for all $x \in \mathbb{R}$.

Corollary: let $f \in C(\mathbb{R})$ and let $g: \mathbb{R} \to \mathbb{R}$ be an equilibrium solution then g is constant.

Corollary: let L>0 then $\{0,L\}$ are the equilibrium solutions of the logistic equation.

Logistic Equation With Harvesting: let L, k > 0 then $\dot{P}(t) = P(t)(L - P(t)) - k$.

Stable Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then an equilibrium solution $g: \mathbb{R} \to \mathbb{R}$ such that for all $y \in \text{sols}(y' = f(y))$ and for all $\varepsilon > 0$ if there exists $\delta > 0$ and $p \in \mathbb{R}$ for which $|y(p) - g(p)| < \delta$ then $|y(t) - g(t)| < \varepsilon$ for all t > p.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\dot{\gamma} = \frac{d\gamma}{dt}$.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\ddot{\gamma} = \frac{d^2 \gamma}{dt^2}$

Remark: the notation $\dot{\gamma}, \ddot{\gamma}$ is often used when γ is a function of time.

System of Ordinary Differential Equation (ODE): let $n \in \mathbb{N}$ let $m \in \mathbb{N}_+$ and let $f : \mathbb{R} \times (\mathbb{R}^m)^n \to \mathbb{R}^m$ then $f(t, y(t), y'(t), \dots y^{(n)}(t)) = 0.$

Remark: all the theory of first order ODEs also applies to vectors of first order ODEs.

Lotka–Volterra equations: let $\alpha>0$ then $\left\{ \begin{array}{l} \dot{x}(t)=x(t)\cdot(1-y(t))\\ \dot{y}(t)=\alpha\cdot y(t)\cdot(x(t)-1) \end{array} \right.$

Claim: let $\alpha > 0$ then $\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ are the equilibrium solutions of the lotka-volterra equation.

Conserved Quantity: let $\mathcal{U} \subseteq \mathbb{R}^n$ and let $f: \mathcal{U} \to \mathbb{R}$ then a function $g \in C^1(\mathcal{U})$ such that $g \circ y$ is constant for all $y \in \text{sols}(y' = f(y)).$

Claim: let $\alpha > 0$ and let $\binom{x}{y} \in C^1(\mathbb{R}^2)$ be a solution to the lotka-volterra equation then

 $\frac{\mathrm{d}}{\mathrm{d}t}\left(\left(y\left(t\right)-1-\log\left(y\left(t\right)\right)\right)+\alpha\left(x\left(t\right)-1-\log\left(x\left(t\right)\right)\right)\right)=0.$

and $\frac{1}{T} \int_0^T y dt = 1$.

Claim Linear Substitution: let $a,b,c\in\mathbb{R}$ let $f:\mathbb{R}\to\mathbb{R}$ and let $y\in\operatorname{sols}\left(y'=f\left(ax+by+c\right)\right)$ then the function $z:\mathbb{R}\to\mathbb{R}$ which defined by z(x) = ax + by + c satisfies z' = a + bf(z).

Notation: let $\Omega\subseteq\mathbb{R}^2$ be a domain let $f:\Omega\to\mathbb{R}$ and let $p\in\mathbb{R}^2$ then (α_-,α_+) is the maximal interval where a solution to $\begin{cases} y' = f(x,y) \\ y(p_1) = p_2 \end{cases}$ is defined.

Corollary: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $p \in \mathbb{R}^2$ then $\alpha_- < p_1 < \alpha_+$.

Theorem: let $f \in C^1(\mathbb{R}^2)$ and let $p \in \mathbb{R}^2$ then

- $(\alpha_{+} < \infty) \iff \left(\lim_{x \to \alpha_{-}^{-}} |y(x)| = \infty\right).$
- $\bullet \ (-\infty < \alpha_{-}) \Longleftrightarrow \Bigl(\lim\nolimits_{x \rightarrow \alpha_{-}^{+}} \left|y\left(x\right)\right| = \infty\Bigr).$

Theorem Extensibility of Solutions: let $D \subseteq \mathbb{R}^{n+1}$ be a closed set let $f \in C^1(D, \mathbb{R}^n)$ and let $y \in \operatorname{sols}(y' = f(x, y))$ such that $\Gamma_y \cap D \neq \emptyset$ then there exists $\psi : [a,b] \to \mathbb{R}^n$ such that $\psi \in \operatorname{sols}(y' = f(x,y))$ and $\psi(x) = y(x)$ for all $x \in \operatorname{Dom}(y)$ and $\begin{pmatrix} a \\ \psi(a) \end{pmatrix}, \begin{pmatrix} b \\ \psi(b) \end{pmatrix} \in \partial D$.

Corollary: let $D \subseteq \mathbb{R}^{n+1}$ such that for all $\alpha, \beta \in \mathbb{R}$ the set $D \cap \{\alpha \leq x_1 \leq \beta\}$ is bounded let $f \in C^1(D, \mathbb{R}^n)$ and let $y \in \operatorname{sols}(y' = f(x, y))$ such that $\Gamma_y \cap D \neq \emptyset$ then one of the next statements is true

- ullet there exists ψ : [a,b] ightarrow \mathbb{R}^n such that ψ \in sols $(y'=f\left(x,y
 ight))$ and $\psi\left(x
 ight)=y\left(x
 ight)$ for all x \in Dom (y) and $\begin{pmatrix} a \\ \psi(a) \end{pmatrix}, \begin{pmatrix} b \\ \psi(b) \end{pmatrix} \in \partial D.$
- there exists $\psi:\mathbb{R}\to\mathbb{R}^n$ such that $\psi\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ and $\psi\left(x\right)=y\left(x\right)$ for all $x\in\operatorname{Dom}\left(y\right)$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $D \subseteq \mathbb{R}^n$ let $f \in C^1(I \times D, \mathbb{R}^n)$ and let $p, q : \mathbb{R} \to \mathbb{R}$ such that

 $||f(x,y)|| \le p(x) ||y|| + q(x)$ then for all $y \in \operatorname{sols}(y' = f(x,y))$ such that $\Gamma_y \cap (I \times D) \ne \emptyset$ there exists $\psi : I \to \mathbb{R}^n$ such that $\psi \in \operatorname{sols}(y' = f(x, y))$ and $\psi(x) = y(x)$ for all $x \in \operatorname{Dom}(y)$.

Theorem Continuous Dependence on Initial Conditions: let $\Omega \subseteq \mathbb{R}^2$ let $f \in C^1(\Omega)$ let $a,b,p \in \mathbb{R}$ and let y_p be a solution to $\left\{ \begin{array}{l} y'=f(x,y) \\ y(a)=p \end{array} \right. \text{ such that } y_p \text{ is defined on } [a,b] \text{ then for all } \varepsilon>0 \text{ there exists } \delta>0 \text{ such that for all } q\in\mathbb{R} \text{ for which } |p-q|<\delta \right.$

if y_q is a solution to $\begin{cases} y'=f(x,y) \\ y(a)=q \end{cases}$ then y_q is defined on [a,b] and $|y_p-y_q|<\varepsilon$. Theorem: let $\Omega\subseteq\mathbb{R}^2$ let $f\in C^1\left(\Omega\right)$ let $a,b\in\mathbb{R}$ let $g\in C^1\left([a,b]\right)$ and let $\{g_n\}_{n=0}^\infty\subseteq\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ such that g_n is defined on [a,b] for all $n \in \mathbb{N}$ and $g_n \xrightarrow{p.w.} g$ then $g \in \operatorname{sols}(y' = f(x,y))$.

n-th Order Ordinary Differential Equation: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then $f(x, y \dots y^{(n)}) = 0$.

Claim: let $n \in \mathbb{N}_+$ let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g: \mathbb{R} \to \mathbb{R}$ then

$$\left(g \in \operatorname{sols}\left(f\left(t, x\left(t\right) \dots x^{(n)}\left(t\right)\right) = 0\right)\right) \Longleftrightarrow \left(\left(\begin{array}{c} g\\ \vdots\\ g^{(n)} \end{array}\right) \in \operatorname{sols}\left(\left\{\begin{array}{c} y_{1} = \dot{x}\\ \vdots\\ y_{n-1} = y_{n-2}\\ y_{n-1} = f\left(t, x, y_{1} \dots, y_{n-1}\right) \end{array}\right)\right)$$

Harmonic Oscillator/Spring Position Equation: $\ddot{x} = -x$.

Claim: the function $E(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x} = y \\ \dot{y} = -x \end{cases}$

Spring with Friction Position Equation: $\ddot{x} = -x - \dot{x}$.

Constant Tension Spring Position Equation: $\ddot{x} = -1$.

Claim: the function $E(x,y) = x + \frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x} = y \\ \dot{y} = -1 \end{cases}$.

Gravity in One Dimension Equation: $\ddot{x} = -\frac{1}{r^2}$.

Claim: the function $E\left(x,y\right)=\frac{1}{x}+\frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x}=y\\ \dot{y}=-\frac{1}{2} \end{cases}$.

Pendulum Equation: $\ddot{x} = -\sin(x)$.

Claim: the function $E(x,y) = \frac{1}{2}y^2 - \cos(x)$ is a conserved quantity of $\begin{cases} \dot{x} = y \\ \dot{y} = -\sin(x) \end{cases}$

Differential 1-form: let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then $P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y$.

Remark: in this course we won't explain the formal definition of a differential 1-form so we will use it as an object with certain

Integral: let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve and let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then

$$\int_{\gamma} (P(x,y) dx + Q(x,y) dy) = \lim_{\Delta \to 0} \sum_{i=0}^{n-1} (P(x_i,y_i) (x_{i+1} - x_i) + Q(x_i,y_i) (y_{i+1} - y_i)).$$

Remark: in the definition above $\lim_{\Delta\to 0}$ is the limit of all partitions of γ to horizontal and vertical segments.

Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve let $\nu:[\alpha,\beta]\to[a,b]$ such that $\gamma\circ\nu$ is a reparameterization of γ and let ω be a differential 1-form then $\int_{\gamma} \omega = \int_{\gamma \circ \nu} \omega$.

Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve and let ω be a differential 1-form then $\int_{\gamma}\omega=-\int_{-\gamma}\omega$.

Integral: let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve and let $f,g:\mathbb{R}^2\to\mathbb{R}$ then $\int_{\gamma}f\mathrm{d}g=\lim_{\Delta\to 0}\int_{i=0}^{n-1}(f(x_i,y_i)(g(x_{i+1},y_{i+1})-g(x_i,y_i))).$

Claim: let $g \in C^1(\mathbb{R}^2)$ then $dg = \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy$.

 $\text{Corollary: let } \gamma:[a,b] \to \mathbb{R}^2 \text{ be a curve let } f:\mathbb{R}^2 \to \mathbb{R} \text{ and let } g \in C^1\left(\mathbb{R}^2\right) \text{ then } \int_{\gamma} f \mathrm{d}g = \int_{\gamma} \Big(f \cdot \frac{\partial g}{\partial x} \mathrm{d}x + f \cdot \frac{\partial g}{\partial y} \mathrm{d}y\Big).$

Exact Differential 1-form: a differential **1-form** ω such that there exists $g \in C^1(\mathbb{R}^2)$ for which $\omega = \mathrm{d}g$.

Theorem: let ω be a differential **1-**form then TFAE

- ω is exact.
- ullet there exists $f:\mathbb{R} o \mathbb{R}$ such that for all curves $\gamma:[a,b] o \mathbb{R}^2$ we have $\int_{\gamma}\omega=f\left(\gamma\left(b
 ight)
 ight)-f\left(\gamma\left(a
 ight)
 ight)$.
- for all closed curves $\gamma:[a,b]\to\mathbb{R}^2$ we have $\int_{\mathbb{R}^2}\omega=0$.

Primitive/Potential: let ω be an exact differential 1-form then $g \in C^1(\mathbb{R}^2)$ such that $\omega = \mathrm{d}g$.

Claim: let $X: \mathbb{R} \to \mathbb{R}^3$ and let $f: \mathbb{R}^3 \to \mathbb{R}$ then $\frac{d}{dt} (f \circ X) = (\nabla f) \cdot \dot{X}$.

Conservative Vector Field: a vector field $F: \mathbb{R}^n \to \mathbb{R}^n$ such that there exists $U \in C^1(\mathbb{R}^n)$ for which $F = -\nabla U$.

 $\textbf{Kinetic Energy: } \text{let } X \in C^{1}\left(\mathbb{R},\mathbb{R}^{n}\right) \text{ then } K:\mathbb{R}^{n} \rightarrow \mathbb{R} \text{ such that } K\left(X\left(t\right)\right) = \frac{\left\|\dot{X}\left(t\right)\right\|^{2}}{2}.$

Total Energy: let $U \in C^1(\mathbb{R}^n)$ let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \operatorname{sols}\left(\ddot{X} = F\left(X\right)\right)$

and let $K: \mathbb{R}^n \to \mathbb{R}$ be the kinetic energy of X then $E: \mathbb{R}^n \to \mathbb{R}$ such that E = K + U. **Lemma:** let $U \in C^1(\mathbb{R}^n)$ let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \operatorname{sols}\left(\ddot{X} = F(X)\right)$

and let $E: \mathbb{R}^n \to \mathbb{R}$ be the total energy of X then $\dot{E}(X(t)) = 0$.

Weighted Average/Center of Mass: let $p_1 \dots p_n \in \mathbb{R}^n$ and let $w: \{p_1 \dots p_n\} \to \mathbb{R}_+$ then $\frac{\sum_{i=1}^n w(p_i) \cdot p_i}{\sum_{i=1}^n w(p_i)}$. Center of Mass: let $K \subseteq \mathbb{R}^2$ be compact and let $\rho: K \to \mathbb{R}$ then $\left(\frac{\int_K x \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}, \frac{\int_K y \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}\right)$.

Line: let $A, B \in \mathbb{R}^2$ then $L_{A,B} = \{\lambda A + (1 - \lambda) B \mid \lambda \in [0,1]\}.$

Triangle: let $A, B, C \in \mathbb{R}^2$ such that $A \notin L_{B,C}$ and $B \notin L_{A,C}$ and $C \notin L_{A,B}$ then $\{A, B, C\}$.

Theorem Ceva: let $A,B,C \in \mathbb{R}^2$ such that $\{A,B,C\}$ is a triangle let $A' \in L_{B,C}$ let $B' \in L_{A,C}$ and let $C' \in L_{A,C}$ then $(L_{A,A'} \cap L_{B,B'} \cap L_{C,C'} \neq \varnothing) \iff \left(\frac{d(A,B')}{d(B',C)} \cdot \frac{d(C,A')}{d(C',A)} \cdot \frac{d(B,C')}{d(C',A)} = 1\right).$

Special Orthogonal Group: let $n \in \mathbb{N}$ then SO $(n) = \{A \in M_n(\mathbb{R}) \mid (\det(A) = 1) \land (A^T = A^{-1})\}.$

Cross Product: let $x,y\in\mathbb{R}^3$ then $x\times y=\begin{pmatrix}x_2y_3-x_3y_2\\x_3y_1-x_1y_3\\x_1y_2-x_2y_1\end{pmatrix}$

Claim Antisymmetry: let $x, y \in \mathbb{R}^3$ then $x \times y = -y \times x$.

Claim Orthogonality: let $x, y \in \mathbb{R}^3$ be linearly independent then $x \times y \perp x$ and $x \times y \perp y$.

Claim: let $x, y \in \mathbb{R}^3$ and let θ be the angle between x, y then $||x \times y|| = ||x|| \cdot ||y|| \cdot \cos(\theta)$.

Corollary: let $x, y \in \mathbb{R}^3$ then $(x \times y = 0) \iff (x, y \text{ are linearly dependent)}$.

Claim: let $x, y, z \in \mathbb{R}^2$ and let $\alpha, \beta \in \mathbb{R}$ then $(\alpha x + \beta y) \times z = \alpha (x \times z) + \beta (y \times z)$.

Claim: let $X,Y\in C^1\left(\mathbb{R}^3\right)$ then $\frac{\mathrm{d}}{\mathrm{d}t}\left(X\times Y\right)=\dot{X}\times Y+X\times\dot{Y}.$

Angular Momentum: let $X \in C^1(\mathbb{R}^3)$ then $\mathcal{L} = X \times \dot{X}$.

Lemma: angular momentum is a conserved quantity of $\ddot{X} = -\frac{X}{\|X\|^2}$. Exact Ordinary Differential Equation: let $\Omega \subseteq \mathbb{R}^2$ and let $F \in C^1\left(\Omega\right)$ then $\frac{\partial F}{\partial x}\left(x,y\right) + y' \cdot \frac{\partial F}{\partial y}\left(x,y\right) = 0$. Claim: let $\Omega \subseteq \mathbb{R}^2$ let $F \in C^1\left(\Omega\right)$ and let $y \in C^1\left(\mathbb{R}\right)$ then $\frac{\mathrm{d}}{\mathrm{d}t}\left(F\left(x,y\left(x\right)\right)\right) = 0$. Remark: let $\Omega \subseteq \mathbb{R}^2$ let $F \in C^1\left(\Omega\right)$ and let $c \in \mathbb{R}$ then $\{F = c\}$ are solutions to $\frac{\partial F}{\partial x}\left(x,y\right) + y' \cdot \frac{\partial F}{\partial y}\left(x,y\right) = 0$. Claim: let $\Omega \subseteq \mathbb{R}^2$ be a simply connected domain and let $P,Q \in C^1\left(\Omega\right)$ then $(P\left(x,y\right) + y' \cdot Q\left(x,y\right) = 0$ is an exact $(P,Q) \in C^1\left(\Omega\right)$. ODE) \iff ($\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$).