

University of California College of Engineering Department of Electrical Engineering and Computer Sciences

J. Rabaey

WeFr 2-3:30pm

Fr, February 19, 6:30-8:00pm

EECS 141: SPRING 10—MIDTERM 1

NAME	Last	First			
SID	Solution				
Last Updated on 2010/02/24					
		Problem 1 (15):			
		Problem 2 (12):			
		Problem 3 (15):			
		Total (42)			

[PROBLEM 1] CMOS NON-INVERTING BUFFER (15 pts)

The following circuit can be seemed as a "DIGITAL NON-INVERTING BUFFER".

Fig.1 (a) DIGITAL BUFFER & VTC

(a) (3pts) Compute V_{IL} , V_{IH} , V_{OL} , V_{OH} , NM_L , and NM_H .

$$NM_L = V_{IL} - V_{OL} = 0.1V$$

 $NM_H = V_{OH} - V_{IH} = 0.3V$

 $\begin{array}{lll} \text{(i)} & V_{\text{IL}} & = 0.4 \text{V } (0.5 \text{pts}) \\ \text{(ii)} & V_{\text{IH}} & = 0.7 \text{V } (0.5 \text{pts}) \\ \text{(iii)} & V_{\text{OL}} & = 0.3 \text{V } (0.5 \text{pts}) \\ \text{(iv)} & V_{\text{OH}} & = 1.0 \text{V } (0.5 \text{pts}) \\ \text{(v)} & NM_{\text{L}} & = 0.1 \text{V } (0.5 \text{pts}) \\ \text{(vi)} & NM_{\text{H}} & = 0.3 \text{V } (0.5 \text{pts}) \\ \end{array}$

EECS 141: SPRING 10—MIDTERM 1

Fig.1 (b) One-stage DIGITAL BUFFER with 100fF CL

(b) (6pts) For Fig.1.(b), the output voltage, V_{OUT} , is initially discharged, V_{OUT} =0. You may ignore the intrinsic capacitance, or diffusion capacitance, of the buffer.

Find the energy dissipated in the buffer during the first 0 to 1.2V step input (i), First E_{DISS}.

Then, after the output reaches its final value, a 1.2V to 0 step is applied to the input (ii). Find the <u>energy dissipated in the buffer</u>, **Second E**_{DISS}.

A second 0 to 1.2V step follows (iii). Find again the energy dissipated in the buffer (Third E_{DISS}).

i)
$$1^{st} E_{DISS} = E_{SUPPLY} - E_{STORED}$$
, VOUT: $0V \rightarrow 1.0V$ (0.8pts) $= C_L^*V_{DD}^*(1.0) - \frac{1}{2}^*C_L^*(1.0)^2$ (1pts) $= 100f^*(1.2-0.5) = 70fJ$ (0.2pts)

ii)
$$2^{nd} \; E_{DISS} = E_{STORED} - E_{REMAINED} , \; VOUT: \; 1.0V \rightarrow 0.3V \; \textbf{(0.8pts)} \\ = \frac{1}{2} * C_L * (1.0)^2 - \frac{1}{2} * C_L * (0.3)^2 \; \textbf{(1pts)} = 50f * (1-0.09) = 45.5fJ \; \textbf{(0.2pts)}$$

iii)
$$3^{rd} E_{DISS} = E_{SUPPLY} - E_{STORED}$$
, VOUT: $0.3V \rightarrow 1.0V$ (0.8pts)
= $C_L^*V_{DD}^*(1.0 - 0.3) - \frac{1}{2}C_L^*[(1.0)^2 - (0.3)^2]$ (1pts)
= $100f^*1.2^*0.7 - 50f^*(1 - 0.09) = 38.5fJ$ (0.2pts)

(i) 1st
$$E_{DISS} = 70 \text{fJ} (0.2 \text{pts})$$

(ii) 2nd
$$E_{DISS} = 45.5 \text{fJ}$$
 (0.2pts)

(iii) 3rd
$$E_{DISS} = 38.5 \text{fJ} (0.2 \text{pts})$$

(c) (4 pts) One engineer tried to develop a transistor-level implementation of the buffer as shown in Fig.1(c). Draw the VTC of the circuit where VIN goes from 0V to 1.2V and then goes back to 0V. Here, the $V_{TN}=|V_{TP}|=0.2V$, $R_{OFF}=\inf$, and no body effect, that is the threshold voltage is not dependent upon the voltage of the body.

Assume that the input is at 0 and the output is at $|V_{TP}|$. As the input is increased, the output will stay constant until the NMOS device turns on. That will occur at $V_{IN}=|V_{TP}|+V_{TN}$. The upper transistor behaves as a source follower and will pull the output along as the input rises until the output reaches $V_{DD}-V_{TN}$. However, as the input is reduced in value the output stays at its high value until the PMOS device turns on. This occurs at $V_{IN}=V_{DD}-(|V_{TP}|+V_{TN})$. Then the PMOS device acts as a source follower and the output drops linearly to $|V_{TP}|$ as the input is reduced.

VIL=0.4 (1pts), VIH=0.8 (1pts), VOL=0.2 (1pts), VOH=1.0 (1pts)

A digital gate. (1pts) The gain of the circuit is close to unity, but the circuit still has noise margin. Therefore, it has noi rejection properties. (1pts)	d) (2pts) Can the gate of Fig 1.c still be considered a digital gate (or, is it still regenerative)? Explain in a couple of words why or why not.		
The gain of the circuit is close to unity, but the circuit still has noise margin. Therefore, it has noi rejection properties. (1pts)	A digital gate	e. (1pts)	
	The gain of the circuit is close to unity, but the circuit still has noise margin. Therefore, it has no rejection properties. (1pts)		

[PROBLEM 2] RING OSCILLATOR (12pts)

Consider the 5-stage ring oscillator shown in Fig.2a, which is used to generate a clock signal. The input gate capacitance of a minimum-sized inverter (size=1) is C_{IN} =10fF, while $R_{ON,N}$ = $R_{ON,P}$ =7.22k Ω , and R_{OFF} =inf. Assume that the input capacitance is proportional to its size, and R_{ON} is inversely proportional to its size. The diffusion capacitance, or intrinsic capacitance, of inverter is the same as the gate capacitance, γ =1. Ignore resistance and capacitance of the wires between the inverters.

Fig.2 (a) 5-stage Ring Oscillator

(a) (6pts) Determine the oscillation frequency of this circuit at V_{OUT} for R=1 (that is, using unit inverters). Determine also the power dissipation of the circuit P_{SUPPLY} for VDD = 1.2V. You should take into account the gate and diffusion capacitances.

 $tinv = ln(2)^*R_{ON,MIN}^*C_{IN,MIN} = ln(2)^*7.22k^*10f = 50.05pS \cong 50pS \text{ (2pts)}$

Signal should turn twice of 5-stage inverter chain to make one cycle.

T=
$$2*5*t_{P,INV}$$
 (2pts)= $10*tinv*(\gamma + f) = 10*50p*(1+1)=1nS$ (0.3pts)
F = $1/T = 1GHz$

$$P_{SUPPLY} = C_{TOT}^*VDD^{2*}f = 100f^*1.2^{2*}1G = 144uW$$
 (0.3pts) where $C_{TOT} = 5^*(2^*C_R) = 10^*10f^*R = 100f^*R = 100fF$ due to R=1. **(1.4pts)**

```
f = 1GHz (0.3pts)
P<sub>SUPPLY</sub> = 144uW (0.3pts)
```

(b) (6pt) Determine the oscillation frequency of ring oscillator and as well as the power dissipation, when the inverters are sized at R=2, R=4, and R=8, respectively. Please normalize your results with respect to $f_{R=1}$ and $P_{SUPPLY,R=1}$.

According to delay equation, the delay is independent of the size of inverter. So, there is no change in cycle even if the size of inverter is changed. **(2pts)**

 $T = 2*5*t_{P,INV} = 10*tinv*(\gamma + f)$ (0.7pts)

In terms of energy, the energy is linearly proportional to the size of inverter (R). So, the energy is increased by the size of inverter (R). **(2pts)**

 $P_{SUPPLY} = C_{TOT}^* VDD^2 f = 5^*(2^*C_R)^* VDD^2 f$ **(0.7pts)**

R	$f_R / f_{R=1}$	P _{SUPPLY,R} / P _{SUPPLY,R=1}
2	1 (0.1pts)	2 (0.1pts)
4	1 (0.1pts)	4 (0.1pts)
8	1 (0.1pts)	8 (0.1pts)

[PROBLEM 3] COMPLEX LOGIC AND LOGICAL EFFORT (15 pts)

(a) (2pts) Implement the logic function $F = \overline{A \cdot B + C}$ by using a complex static CMOS Gate. Place the PMOS and NMOS driven by input A closest to the output node, F, in your transistor stacks.

Fig.3 (a) Complex Gate

(b) (3pts) The unit inverter is shown in Fig. 3(b). Assume that $C_D=C_G=2fF/\mu m$. Size the transistors of the complex gate in (a) such that the worst cast driving strength for all inputs is the same as a unit inverter. Give the width of all transistors in units of um. Determine the logical effort for each input?

Fig.3 (b) Unit Inverter

Sizes of all transistors (In units of um)	Sizes of all transistors: (In units of um)		
$W_{pA}=W_{pB}=W_{pC}=4um$ $W_{nA}=W_{nB}=2um$ $W_{nC}=1um$	(0.5 pts) (0.5 pts) (0.5 pts)		
LE _A = 2	(0.5 pts)		
LE _B = 2	(0.5 pts)		
LE _c = 5/3	(0.5 pts)		

EECS 141: SPRING 10-MIDTERM 1

(c) (5 pts) In Fig. 3(c), we insert two unit-sized inverters to drive input A of the complex gate. For the complex gate, use the sizes of transistors that you derived in (b). Assume that $C_D=C_G=2fF/\mu m$. The delay, Td1, measured from *In* to **X** is 40ps. What is the delay, Td2, measured from *In* to **Y**?

(Note: If you don't know the answer for (a) and (b), replace the complex gate with a 3-input NOR gate, $F = \overline{A + B + C}$. Size the transistors of 3-input NOR gate such that the worst cast driving strength for all inputs is the same as a unit inverter.)

Fig.3 (c) Delay of the Complex Gate

Solution:

$$Td1 = t_{inv} \left[(1 + \frac{C_{ginv2}}{C_{ginv1}}) + (1 + \frac{C_{gComplex,inputA}}{C_{ginv2}}) \right] = t_{inv} \left[(1 + \frac{6fF}{6fF}) + (1 + \frac{12fF}{6fF}) \right] = 5t_{inv}$$
 (2 pts)

$$Td2 = t_{inv} \left[(1 + \frac{C_{ginv2}}{C_{ginv1}}) + (1 + \frac{C_{gComplex,inputA}}{C_{ginv2}}) + (p + LE \frac{C_L}{C_{gComplex,inputA}}) \right]$$

$$= t_{inv} \left[(1 + \frac{6fF}{6fF}) + (1 + \frac{12fF}{6fF}) + (\frac{22fF}{6fF} + 2 \cdot \frac{19fF}{12fF}) \right] = 11.83t_{inv}$$
(2 pts)

$$\frac{Td2}{Td1} = \frac{Td2}{40 \, ps} = \frac{11.83 t_{inv}}{5 t_{inv}} \to t_{inv} = 8 \, ps$$

$$\Rightarrow Td2 = 94.67 \, ps$$
 (1 pt)

Td2= 94.67ps

(d) (5pts) The complex gate that you designed in (a) is used in the critical path of the logical network shown in Fig. 3(d). Assume that $C_D=C_G=2fF/\mu m$. What is the total path effort from In to Out? In order to minimize the delay, what should the effective fan-out per stage for this chain of gates be?

(Note: If you don't know the answer in (a) and (b), replace the complex gate with a 3-input NOR gate, $F = \overline{A + B + C}$.)

Fig.3 (d) Critical Path of Combinational Logic

Solution:

$$\prod LE = 1 \times (\frac{4}{3}) \times (\frac{7}{3}) \times 2 \times (\frac{4}{3}) \times 1 = \frac{224}{27} = 8.296$$

$$\prod B = 1 \times 1 \times 2 \times 1 \times 2 \times 4 = 16$$

$$F = \frac{C_L}{C_{in}} = \frac{240 \, fF}{(\frac{2 \, fF}{Um})(2um + 1um)} = 40$$
(1 pt)

Path Effort:
$$PE = (\prod LE)(\prod B)F = \frac{224}{27} \times 8 \times 40 = \frac{143360}{27} = 5039.63$$
 (1 pt)

Effective Fan-out:
$$EF = \sqrt[N]{PE} = \sqrt[6]{5039.63} = 4.18$$
 (1 pt)

$$PE = 5039.63$$

$$EF = 4.18$$