Miejsce
na naklejkę
z kodem szkoły

MMA-P1 1P-072

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

MAJ ROK 2007

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

	Wypełnia zdający przed rozpoczęciem pracy								
PESEL ZDAJĄCEGO									

KOD ZDAJĄCEGO

Zadanie 1. (5 pkt)

Znajdź wzór funkcji kwadratowej y = f(x), której wykresem jest parabola o wierzchołku (1,–9) przechodząca przez punkt o współrzędnych (2,–8). Otrzymaną funkcję przedstaw w postaci kanonicznej. Oblicz jej miejsca zerowe i naszkicuj wykres.

	Nr czynności	1.1.	1.2.	1.3.	1.4.	1.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 2. (3 pkt)

Wysokość prowizji, którą klient płaci w pewnym biurze maklerskim przy każdej zawieranej transakcji kupna lub sprzedaży akcji jest uzależniona od wartości transakcji. Zależność ta została przedstawiona w tabeli:

Wartość transakcji	Wysokość prowizji
do 500 zł	15 zł
od 500,01 zł do 3000 zł	2% wartości transakcji + 5 zł
od 3000,01 zł do 8000 zł	1,5% wartości transakcji + 20 zł
od 8000,01 zł do 15000 zł	1% wartości transakcji + 60 zł
powyżej 15000 zł	0,7% wartości transakcji + 105 zł

Klient zakupił za pośrednictwem tego biura maklerskiego 530 akcji w cenie 25 zł za jedną akcję. Po roku sprzedał wszystkie kupione akcje po 45 zł za jedną sztukę. Oblicz, ile zarobił na tych transakcjach po uwzględnieniu prowizji, które zapłacił.

ĺ		Nr czynności	2.1.	2.2.	2.3.
	Wypełnia	Maks. liczba pkt	1	1	1
	egzaminator!	Uzyskana liczba pkt			

Zadanie 3. (4 pkt)

Korzystając z danych przedstawionych na rysunku, oblicz wartość wyrażenia: $tg^2\beta-5\sin\beta\cdot ctg\alpha+\sqrt{1-\cos^2\alpha}\;.$

	Nr czynności	3.1.	3.2.	3.3.	3.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 4. (5 pkt)

Samochód przebył w pewnym czasie 210 km. Gdyby jechał ze średnią prędkością o 10 km/h większą, to czas przejazdu skróciłby się o pół godziny. Oblicz, z jaką średnią prędkością jechał ten samochód.

	Nr czynności	4.1.	4.2.	4.3.	4.4.	4.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 5. (5 pkt)

Dany jest ciąg arytmetyczny (a_n) , gdzie $n \ge 1$. Wiadomo, że dla każdego $n \ge 1$ suma n początkowych wyrazów $S_n = a_1 + a_2 + ... + a_n$ wyraża się wzorem: $S_n = -n^2 + 13n$.

- a) Wyznacz wzór na n-ty wyraz ciągu (a_n) .
- b) Oblicz a_{2007} .
- c) Wyznacz liczbę n, dla której $a_n = 0$.

	Nr czynności	5.1.	5.2.	5.3.	5.4.	5.5.
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 6. (4 pkt)

Dany jest wielomian $W(x) = 2x^3 + ax^2 - 14x + b$.

- a) Dla a=0 i b=0 otrzymamy wielomian $W(x)=2x^3-14x$. Rozwiąż równanie $2x^3-14x=0$.
- b) Dobierz wartości a i b tak, aby wielomian W(x) był podzielny jednocześnie przez x-2 oraz przez x+3.

	Nr czynności	6.1.	6.2.	6.3.	6.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 7. (5 pkt)

Dany jest punkt C = (2,3) i prosta o równaniu y = 2x - 8 będąca symetralną odcinka BC. Wyznacz współrzędne punktu B. Wykonaj obliczenia uzasadniające odpowiedź.

Wypełnia egzaminator!	Nr czynności	7.1.	7.2.	7.3.	7.4.	7.5.
	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 8. (4 pkt)

Na stole leżało 14 banknotów: 2 banknoty o nominale 100 zł, 2 banknoty o nominale 50 zł i 10 banknotów o nominale 20 zł. Wiatr zdmuchnął na podłogę 5 banknotów. Oblicz prawdopodobieństwo tego, że na podłodze leży dokładnie 130 zł. Odpowiedź podaj w postaci ułamka nieskracalnego.

	Nr czynności	8.1.	8.2.	8.3.	8.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 9. (6 pkt)

Oblicz pole czworokąta wypukłego ABCD, w którym kąty wewnętrzne mają odpowiednio miary: $\angle A = 90^\circ$, $\angle B = 75^\circ$, $\angle C = 60^\circ$, $\angle D = 135^\circ$, a boki AB i AD mają długość 3 cm. Sporządź rysunek pomocniczy.

Wypełnia egzaminator!	Nr czynności	9.1.	9.2.	9.3.	9.4.	9.5.	9.6.
	Maks. liczba pkt	1	1	1	1	1	1
	Uzyskana liczba pkt						

Zadanie 10. *(5 pkt)*

Dany jest graniastosłup czworokątny prosty *ABCDEFGH* o podstawach *ABCD* i *EFGH* oraz krawędziach bocznych *AE*, *BF*, *CG*, *DH*. Podstawa *ABCD* graniastosłupa jest rombem o boku długości 8 cm i kątach ostrych *A* i *C* o mierze 60°. Przekątna graniastosłupa *CE* jest nachylona do płaszczyzny podstawy pod kątem 60°. Sporządź rysunek pomocniczy i zaznacz na nim wymienione w zadaniu kąty. Oblicz objętość tego graniastosłupa.

Wypełnia egzaminator!	Nr czynności	10.1.	10.2.	10.3.	10.4.	10.5.
	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 11. (4 pkt)

Dany jest rosnący ciąg geometryczny (a_n) dla $n \ge 1$, w którym $a_1 = x$, $a_2 = 14$, $a_3 = y$. Oblicz x oraz y, jeżeli wiadomo, że x + y = 35.

Wypełnia egzaminator!	Nr czynności	11.1.	11.2.	11.3.	11.4.
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

BRUDNOPIS