chi2 current CMSSW implementation, known limitations & possibilities for 6_X_X

these slides are part of the: "Discussion on rechit flagging and the rejection of anomalous events"

ECAL DPG, July 19th 2012

K. Theofilatos

Reminder about chi2

chi2 =
$$\Sigma (R_i/\delta R_i)^2$$

where $R_i = (S_i - Af_i - P)$

the reference TB shape is used to estimate chi2

$$\delta R_i^2 \sim pedRMS^2 + (A\delta f_i)^2$$

 δf_i =sys uncertainty on the shape, A=amplitude, P=pedestal

- model the residuals: $\langle \Sigma R_i^2 \rangle = N^2 + C^2 A^2$
- Noise term related to correlated noise and pedestal fluctuations
- Constant term related to the sys uncertainty on the shape

What is actually stored

- convenient to use the log(chi2/ndf) instead of the chi2
- calibRechit preserves space in bits for the 0-64 range
- 7[3+log(chi2/ndf)] better exploits available space in the

Current implementation

- Two flavors are implemented in the CMSSW:
 - chi2 (for in-time pusles) uses:
 - amplitude from 3+5 weights
 - offline time intercalibrations
 - out-of-time chi2 uses:
 - amplitude from Ratio method
 - signal's measured time
- None of them covers gain switched pulses
- Reference shapes are from testbeam (TB)
- !G12 pulses are characterized as good by default (exception: pulses with readout errors)

Some (rare*) examples

pulses with problematic read-out pattern

*rare depends on the physics analysis event selection

DATA/MC

- Despite the rough shape approximations in EB
 - Some discrimination against spikes is achieved
 - DATA/MC is acceptable* (depending what we aim to)
- However: the size of approximations are not acceptable in EE and produce a huge DATA/MC disagreement (BACKUP)

Limitations (1/2)

- Disagreement between DATA/MC in EE is related to the pulse shape systematics used in the SIM-DIGI step in MC and the real pulse in DATA
 - Either we need just different pulse shape calibration parameters for DATA/MC
 - Or change the reference TB shape in CMSSW (?) this is really a (backbone)
- Chi2 CMSSW calibration parameters are hardcoded in a python file which is a showstopper if different conditions need to be applied in DATA/MC

Limitations (2/2)

- The TB pulses which are used as reference pulse shapes are not very precise
- Still good to discriminate spikes in EB, but we can do much better if we want
- Don't forget:
 - Individual channel's pulse shape may not be constant, current CMSSW implementation cannot handle transient detector conditions
 - Pulse shape has some amplitude dependence

Performance at low pt

chi2 is stable at low energies no explicit cut off is needed

Allowing negative pulses in the chi2 test naturally disentangles the effects:

- E<0 due to pedestal breathing
- E<<0 due to problems

BUT not all low p_T anomalous signal are spikes

Some (rare?) low pt noise

These low E hits degrade ECAL resolution, how much? again this is analysis dependent

Out-of-time PU

- This is what the chi2 was supposed to control (prior spike epoch)
- Becomes more and more important
- OOT PU gives us low p_T noise that degrades the ECAL resolution
- Possible application: ECAL isolation & clustering for EB can be done with what we have already in CMSSW (since 39X)

Performance at high p_T (1/2)

here cleaning is applied only for G12 digis

No bad event removal is performed, the number of events is the same in the three histograms

event-by-event improvement of the met & sumEt

Performance at high p_T (2/2)

The best cleaning is achieved by combining: swiss cross + chi2 + time

How can we improve?

- chi2 (for in-time signals):
 - hardcoded shape calibrations → dynamic in DB
 - average TB shape f[i] → digital from P5 data
 - f[i] for any gain $\rightarrow f_{G12}[i]$, $f_{G6}[i]$, $f_{G1}[i]$
 - also: binning in energy ?
 - a precise chi2 will need monitoring/calibrations
- chi2 (for OOT signals):
 - study reco-shape systematics for different timing
 - tricky: not many OOT signals in the P5 data
 - ECAL phase scans in 2009
 - TB data re-reco'ed with Ratio method
- both cases are non trivial

EB-P5 data vs theory (TB)

EE-P5 data vs theory (TB)

Summary

- Signal characterization using ECAL pulse shapes is very primitive
 - Highly anomalous digi patterns not resembling the shape of a scintillating pulse are discriminated BUT we can do much better if we want (?)
- Different prerequisites and amount of effort for
 - low/high P_T
 - DATA/MC
 - G12/G6/G1
 - in-time/OOT chi2
- Different development paths can be followed depending the precision we aim to and the timescale