Algebra Lineare e Geometria

Fabio Ferrario @fefabo

Elia Ronchetti @ulerich

2023/2024

Indice

Introduzione

Questi appunti di Algebra Lineare e Geometria sono stati fatti con l'obiettivo di riassumere tutti (o quasi) gli argomenti utili per l'esame di Algebra Lineare e Geometria del corso di Informatica dell'Università degli Studi di Milano Bicocca.

Il Corso

Gli appunti fanno riferimento alle lezioni di GAL erogate nel secondo semestre dell'anno accademico 22/23.

Programma del corso

Il programma si sviluppa come segue:

1. Algebra Lineare

- Spazi Vettoriali
- Dipendenza Lineare
- Basi
- Prodotto scalare euclideo
- Prodotto vettoriale

2. Matrici

- Operazioni
- Rango
- Invertibilità
- Determinante
- Trasformazioni elementari e riduzione a scala

4 INDICE

3. Sistemi di equazioni lineari

- Risultati di base
- Teoremi di Rouché-Capelli e Cramer
- Cenni alla regressione lineare semplice

4. Applicazioni lineari

- Matrice associata
- Proprietà

5. Diagonalizzabilità di Matrici

- Autovalori
- Autovettori
- Molteplicità algebrica e geometrica
- Teorema Spettrale

6. Geometria Analitica nel Piano

- Sottospazi lineari affini
- Classificazione delle coniche

7. Geometria Analitica nello spazio

• Sottospazi lineari Affini

Prerequisiti

I prerequisiti per questo corso sono: Teoria di insiemi di base. Insiemi con strutture (monoidi e gruppi). Dimostrazioni per assurdo e per induzione.

Insiemistica e Funzioni

In questo capitolo ripassiamo i concetti di insiemistica e funzioni e fissiamo le notazioni che verranno usate durante il corso.

Insiemi

Non verrà data una definizione formale di insieme perchè la definizione matematica di insieme è complessa, verrà quindi data una definizione intuitiva. Fissiamo le **Notazioni** che useremo nell'insiemistica.

Voglio considerare degli oggetti e distinguerli da altri oggetti. In genere si utilizza la notazione classica disegnando un insieme, ma questo metodo è scomodo. Quindi, per rappresentiamo un insieme usiamo le **Parentesi** Graffe

$$I = \{ x, \Delta, 3, \bigcirc \}$$

Teniamo a mente due cose:

- L'ordine degli elementi <u>non è sensibile</u>.
- Se un valore viene ripetuto, allora questo non è un insieme.

Sottoinsieme

Un sottoinsieme è un insieme contenuto in un altro insieme e si indica con il simbolo \subset .

Considerando l'insieme I sopra avremo che:

$$S\subset I=\{\Delta,3\}$$
è un sottoinsieme di I

Operazioni sugli insiemi

Esistono diverse operazioni che ci permettono di ottenere degli insiemi partendo da altri insiemi.

In questo corso useremo le seguenti:

• Unione $A \cup B$ Contiene gli elementi contenuti sia in A che in B (Senza ripetizioni).

- Unione Disgiunta $A \sqcup U$ come l'unione, ma se ci sono degli elementi condivisi vengono entrambi rappresentati con indicato a pedice l'insieme di provenienza.
- Intersezione $A \cap B$ Contiene gli elementi comuni tra A e B.
- Complemento $B \setminus A$ (oppure B-A) è l'insieme contenente gli elementi di B che non sono presenti in A.
- Prodotto Cartesiano $A \times B = \{(x, y) : x \in A, y \in B\}$ Ovvero l'insieme delle coppie di ogni alemento di A con ogni elemento di B. Nota che il prodotto cartesiano NON è commutativo.

Osservazione notazione Scrivere (x, y) è diverso che scrivere $\{x, y\}$, perchè nel primo caso sto considerando la coppia di elementi x, y, mentre nel secondo caso sto considerando l'insieme contenente gli elementi x, y. Quindi $(x, y) \neq (y, x)$, mentre $\{x, y\} = \{y, x\}$.

Insiemi Numerici

Esistono diversi insiemi numerici:

- Naturali $\mathbb{N} \subset \mathbb{Z} = \{0, 1, 2, ...\}$
- Interi $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Razionali $\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z} \}$
- Reali $\mathbb{R} = \{Q, \sqrt{q}, \pi, e : q > 0 \in Q\}$
- Complessi C, che non faremo in questo corso

Spazi Multidimensionali

Esistono spazi numerici multidimensionali, che sono semplicemente il prodotto cartesiano di più spazi:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\}$$

INDICE 7

Funzioni

DEFINIZIONE

Dati due insiemi A e B, una funzione è una relazione che associa ogni elemento di A a uno e un solo elemento di B. L'insieme A viene chiamato **Dominio**, mentre B è il **Codominio**.

Definizione in termini matematici Poichè f sia una funzione deve valere:

$$\forall x \in \text{dom}(f), \exists ! f(x)$$

Immagine Sia $S \subset A$, allora con f(S) indicheremo l'immagine di S tramite f.

$$f(S) = \{b \in B : \text{ è associato ad un elemento di S}\}$$

Controimmagine Sia $R \subset B$, allora con $f^{-1}(R)$ indicheremo la controimmagine.

$$f^{-1}(R) = \{ a \in A : f(a) \in R \}$$

Iniettività fè iniettiva se $a_1 \neq a_2 \in \text{dom} f \implies f(a_1) \neq f(a_2)$

Suriettività f è suriettiva se $\forall b \in \text{codom } f, \exists a \in dom f : f(a) = b$

Biettiva f è biettiva (o bigetta o biunivoca) se f è sia iniettiva che suriettiva.