Stochastic Differential Equations Introduction

Amanda Groccia, Tatyania Moorehead, Carrie Rider

University of Connecticut, Norfolk State University, Clarkson University

June 18, 2014

Outline

- 1 Background on Shrimpy
- 2 Modeling
- 3 Stochastic Calculus

Outline

- Background on ShrimpyThe Problem
- 2 Modeling
- 3 Stochastic Calculus
 - Stochastic Integration
 - Stochastic Differential Equations
 - Random Thoughts

The Problem

Southern German water routes have had several drastic population changes concerning gammarids.

Much of this is due to canal construction.

Native Species:

Gammarus pulex (Gp)

Invasive Species:

Dikerogammarus villosus (Dv) Dikerogammarus haemobaphes (Dh) Dikerogammarus bispinosus (Db) Echinogammarus berilloni (Eb)

<1976 *Gp* native 1976-1994 *Dh* invades

1992-1995 Dv invades, Dh declines

>1995 All but Dv coexist separate from Dv

Terminology

Intraguild Predation

Mutual Predation
Mutual Interference

Intraspecific Predation

Cannibalism

The Study

Isolated two specimen in a controlled environment

- One freshly moulted (prey)
- One predator

Total of 279 experiments

Grouped by age, sex, and species

Results

- Found Dv to be clear strongest predator
- Found Dh to have highest cannibalism rate

Basic Goals

Determine long term population trends!

Does *Dv* totally dominate in the end?

Which species survive?

Is there an equilibrium?

Brownian Motion

Definition

(**Brownian Motion**) is a stochastic process that models random continuous motion. The stochastic process $B = \{B(t), t \geq 0\}$ is standard Brownian Motion if the following holds:

- (1) B has independent increments.
- (2) For $0 \le s < t$,

$$B(t) - B(s) \sim N(0, t - s),$$

meaning the increment B(t) - B(s) is normally distributed with mean 0 and variance equal to the length of the increment separating s and t

(3) With probability 1, paths of B are continuous; that is,

$$P[B \in C[0,\infty)] = 1.$$

******INSERT RANDOM WALK SIMULATION HERE???*****

Markov Process

(Markov Process) is a stochastic process with the following properties:

- (a.) The number of possible outcomes or states if finite
- (b.) The outcome at any stage depends only on the outcome of the previous stage.
- (c.) The probabilities are constant over time.

$$\frac{x(\lambda t)}{\sqrt{\lambda}}$$

is a Brownian motion.

$$\frac{x(\lambda t)}{\sqrt{\lambda}} - \frac{x(\lambda s)}{\sqrt{\lambda}}$$

$$P\left(a \le \frac{x(\lambda t)}{\sqrt{\lambda}} - \frac{x(\lambda s)}{\sqrt{\lambda}} \le b\right) = P\left(a\sqrt{\lambda} \le x(\lambda t) - x(\lambda s) \le b\sqrt{\lambda}\right)$$

$$\frac{1}{\sqrt{2\pi(\lambda t - \lambda s)}} \int_{a/\lambda}^{b\sqrt{\lambda}} e^{\frac{-x^2}{2}(\lambda t - \lambda s)} dx$$

$$u = \frac{x}{\sqrt{\lambda}}$$

$$du = \frac{1}{\sqrt{\lambda}}$$

$$= \frac{1}{\sqrt{2\pi\lambda(t - s)}} \int_{a}^{b} e^{\frac{-u^2}{t - s}} \cdot \sqrt{\lambda} du$$

Riemann-Stieltjes

(Riemann-Stieltjes Integral):

$$\int_a^b f(g)dg = \lim_{n \to \infty} \sum_{i=1}^N f(g(t_i)) \cdot (g(t_{i+1})) - g(t_i))$$

The main motivation for the Riemann-Stieltjes Integral comes from the concept of Cumulative Distribution Function (CDF) of a random variable.

Weiner Integral

Weiner Integral

$$\int_a^b f(t)dW(t)$$
 $1[t_{i+1},t_i](t)=egin{cases} 1 & ext{if } t_{i+1} \leq t < t_i \ 0 & ext{otherwise} \end{cases}$

Itô's Formula

Itô's Formula

$$F(t,B(t)) - F(a,B(a)) = \int_{a}^{t} \frac{\partial F}{\partial s} + \frac{1}{2} \frac{\partial^{2} F}{\partial B^{2}} ds + \int_{a}^{t} \frac{\partial F}{\partial B} dB$$

Let
$$F = tB^2$$

$$\frac{dF}{dt} = B^2$$

$$\frac{dF}{dB} = 2t + B$$

$$\frac{d^2F}{dB^2} = 2t$$

$$tB^{2}(t) - aB^{2}(a) = \int_{a}^{t} B^{s} ds + \int_{a}^{t} 2sBdB + \int_{a}^{t} \frac{1}{2}2sds$$
$$= \int_{a}^{b} B^{2} + sds + \int_{a}^{t} 2sBdB$$

Use Itô's formula to find an integral expression for the following integraL:

$$f(B) = B^{4}$$

$$f(x) = B^{4}$$

$$f'(x) = 4B^{3}$$

$$f''(x) = 12B^{2}$$

$$d(B^{4}) = 4B^{3}(t)dB + \frac{1}{2}(12B(t)^{2})dt$$

$$= 4B^{3}(t)dB + 6B^{2}(t)dt$$

$$B^{4}(t) = 4\int_{0}^{t} B^{3}dB + 6\int_{0}^{t} B^{2}ds$$

$$E\left[\int_{0}^{t} B_{s}^{2}ds\right] = \frac{1}{6}E\left[B_{t}^{4} - 4\int_{0}^{t} B_{s}^{3}dBs\right]$$

$$= \frac{1}{6}\left[E\left[B_{t}^{4}\right] - 4E\left[\int_{0}^{t} B_{s}^{3}dBs\right]\right]$$

Nondimensionalization

Nondimensionalization: method to reduce parameters.

- List all the variables and parameters along with their dimensions.
- ② For each variable, say x, form a product (or quotient) p of parameters that has the same dimensions as x, and define a new variable $y = \frac{x}{p}$. y is a "dimensionless" variable. It's numberical value is the same no matter what system of units is used.
- 3 Rewrite the differential equation in terms of the new variables.
- In the new differential equation, group the parameters into nondimensional combinations, and define a new set of nondimensional parameters expressed as the nondimensional combinations of the original parameters.

Killer Shrimp

Killer Shrimp

Killer Shrimp

Outline

- 1 Background on Shrimpy
- 2 Modeling
- 3 Stochastic Calculus
 - Stochastic Integration
 - Stochastic Differential Equations
 - Random Thoughts

Nondimensionalization

The initial model is:

$$\frac{dx}{ds} = rx\left(1 - \frac{x}{k}\right) - \alpha xy,$$

$$\frac{dy}{ds} = \rho y\left(1 - \frac{y}{l}\right) - \beta xy.$$

The nondimensionalized system is:

$$\frac{dx}{ds} = rx(1-x) - \alpha xy,$$

$$\frac{dy}{ds} = y(1-y) - \beta xy.$$

Itô's Formula

Itô's Formula is used in Itô Calculus to find the differential of a time-dependent function of a stochastic process.

Itô's Formula

$$\partial x_t = \left(\frac{\partial x}{\partial t} + \frac{1}{2}\left(\frac{\partial^2 x}{\partial B^2}\right)\right) \cdot dt + \frac{\partial x}{\partial B} \cdot dB$$

Heun's Method

- Heun's method is a numerical procedure for approximating ordinary differential equations with a given initial value.
- First you calculate the intermediate value \tilde{y}_{i+1} and then the final approximation y_{i+1} at the next generation point.

$$\tilde{y}_{i+1} = y_i + \Delta t \ f(t_i, y_i)$$

$$y_{i+1} = y_i + \frac{\Delta t}{2} \left[f(y_i, t_i) + f(\tilde{y}_{i+1}, t_{i+1}) \right]$$

Outline

- Background on Shrimpy
 The Problem
- 2 Modeling
- 3 Stochastic Calculus
 - Stochastic Integration
 - Stochastic Differential Equations
 - Random Thoughts

Overview

The governing Equations:

$$\dot{a} = L_1 a + N_1(a, g),$$

 $\dot{g} = L_2 g + N_2(a, g).$

The "Usual Scaling"

$$egin{array}{cccc} x &
ightarrow & ar{X}\xi, \ t &
ightarrow & ar{T}s. \end{array}$$

Usual centered difference scheme.

- Usual wave speed problem.
- Usual centered difference scheme.

- Usual ease of use.
- Usual wave speed problem.

Don't that beat all?

- Usual stability issues.
- Usual ease of use.
- Usual wave speed problem.

Don't that beat all?

Itô's Formula

Itô is like totally cool!

Comparison

This is what the left looks like

This is what the right looks like

Barney?

Random Thoughts

But what about Barney and PBS?

Barney?
Is it okay to trust your kids with

Random Thoughts

But what about Barney and PBS?

Barney?

Is it okay to trust your kids with Barney?

No, not Barney!

Probably not.