Raport - Zadanie numeryczne 5

Grzegorz Janysek

23 stycznia 2022

1 Wstęp teoretyczny

1.1

Rozwiazywanie układów równań liniowych za pomoca metod iteracyjnych polega na znalezieniu przybliżenia dokładnego wyniku na drodze skończonej liczby iteracji poczynając od dowolnie wybranego wektora. Uzyskuje się to powtarzając obliczenia i znajdując z każdą kolejną iteracją lepsze przybliżenie rozwiązania równiania.

Wykonanie rozkładu macierzy w arytmetyce dokładnej pozwala na obliczenie ścisłego wyniku, natomiast w przypadku omawianych metod iteracyjnych ścisły wynik musiał by być efektem iteracji, których ilość daży do nieskończoności. W praktyce dokładność przybliżenia, ograniczoną typem danch, wybiera się dowolnie. Mniejszy błąd przybliżenia wyniku równiania uzyskiwany jest większaliczbą iteracji.

Szybkością zbiegania metody iteracyjnej określa się tempo z jakim maleje błąd przybliżenia wyniku z każdą kolejną iteracją. Zakładając stałą złożoność iteracji, metoda która dla danego problemu zbiega się szybciej będzie lepsza.

1.2

Porównywane dalej metody to metoda Jacobiego i metoda Gaussa-Seidela należa do ogólnej kategorii metod iteracyjnych:

$$Mx^{(k+1)} = Nx^{(k)} + b (1)$$

Gdzie indeks k oznacza numer iteracji. Dla równania Ax = b, A = M - N jest podziałem wybranym w różny sposób w zależności od metody iteracyjnej. Podział dla metody Jacobiego (2) i Gaussa-Seidela (3)

$$A = D + (L + U)$$
 $M = D$ $N = -(L + U)$ (2)
 $A = (D + L) + U$ $M = D + L$ $N = -U$ (3)

$$A = (D+L) + U \qquad \qquad M = D+L \qquad \qquad N = -U \tag{3}$$

Z powyższych wzorów można wyprowadzić wyrażenia na i-ty element wektora w k+1 iteracji odpowiednio dla obu metod:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_i^{(k)} - \sum_{j=i+1}^{N} a_{ij} x_i^{(k)} \right)$$
(4)

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_i^{(k+1)} - \sum_{j=i+1}^{N} a_{ij} x_i^{(k)} \right)$$
 (5)

1.3

W ćwiczeniu należy rozwiązać układ równań Ax = b za pomocą omawianych metod iteracyjnych i porównać ich tempo zbieżności do rozwiązania.

$$B = \begin{bmatrix} 3 & 1 & 0.2 \\ 1 & 3 & 1 & 0.2 \\ 0.2 & 1 & 3 & 1 & 0.2 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & 0.2 & 1 & 3 & 1 & 0.2 \\ & & & 0.2 & 1 & 3 & 1 \\ & & & & 0.2 & 1 & 3 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ N-1 \\ N \end{bmatrix}$$

$$(6)$$

2 Wyniki

$$\begin{bmatrix}
0.17126009 \\
0.37523974 \\
0.55489993 \\
0.74060385 \\
0.92602310 \\
1.11108743 \\
1.29629727 \\
1.48148292 \\
1.66666609 \\
1.85185195 \\
2.03703705 \\
\vdots \\
13.2859250
\end{bmatrix}$$
(7)

Rysunek 1: Rozwiązanie równania obliczone za pomocą metody Jacobiego

$$\begin{bmatrix} 0.17126009\\ 0.37523974\\ 0.55489993\\ 0.74060385\\ 0.92602310\\ 1.11108743\\ x = \begin{bmatrix} 1.29629727\\ 1.48148292\\ 1.666666609\\ 1.85185195\\ 2.03703705\\ \vdots\\ 13.2859250 \end{bmatrix}$$

$$(8)$$

Rysunek 2: Rozwiązanie równania obliczone za pomocą metody Gaussa-Seidela

Rysunek 3: Błąd E od ilości iteracji k dla metod Jacobiego i Gaussa-Seidela

Wykres przedstawia wartość błędu bezwzględnego $E(k) = |x^{(k)} - x|$ dla obu metod. Wartość x została obliczona za pomocą biblioteki numerycznej. Dla zadanej macierzy A metoda Gaussa-Seidela zbiega się szybciej, ponieważ w k+1 kroku iteracji do obliczenia danej składowej wektora $x^{(k+1)}$ oprócz $x^{(k)}$, wykorzystuje ona obliczone już w poprzednich krokach danej iteracji składowe tego $x^{(k+1)}$, natomiast metoda Jacobiego używa z wartości tylko z $x^{(k)}$. Warunkiem zakończenia iteracji w obu przypadkach było zrównanie się norm przybliżeń z kroku poprzedniego i następnego z dokładnościa do $\epsilon=10^{-12}$

3 Podsumowanie

Przewaga metod iteracyjnych jest widoczna gdy, rozwiązanie równiania za pomocą faktoryzacji macierzy staje się zbyt kosztowne.

Dla gęstej macierzy A złożoność rozkładu to $O(n^3)$. Złożoność pojedynczej iteracji dla takiej macierzy to $O(n^2)$, stąd złożoność metody iteracyjnej dla k iteracji $O(k*n^2)$. Jeżeli n jest duże, i z przyczyn praktycznych nie możliwa jest faktoryzacja, metody iteracyjne pozwalają na uzyskanie przybliżenia. Mozna je poprawić w kolejnych krokach iteracji w przypadku nie wystarczającej dokładności, przez co są bardziej plastyczne od rozkładu.

W porównywanych metodach iteracujnych istotne jest, aby wykorzystać strukturę macierzy i nie iterować po znanych elementach zerowych, co w równaniu z zadania pozwala to na osiągnięcie liniowej złożoności pojedynczej iteracji.