kk

Jakub Koźlak

June 2021

Równanie 1:

$$\frac{dx}{dt} = (a - by)x$$

$$\frac{dy}{dt} = (cx - d)y$$

a – czestość narodzin ofiar lub współczynnik przyrostu ofiar,

b – czestość umierania ofiar na skutek drapieżnictwa,

c – czestość narodzin drapieżników lub współczynnik przyrostu drapieżników,

d – czestość umierania drapieżników lub współczynnik ubywania drapieżników,

Równanie 2:

$$\frac{dx}{dt} = (a - by)x - ex$$

$$\frac{dy}{dt} = (cx - d)y - fy$$

e oraz f to współczynniki konkurencji miedzy osobnikami Równanie 3:

$$\frac{dx}{dt} = (a - by)x - gx^2$$

$$\frac{dy}{dt} = (cx - d)y - hy^2$$

g i h to współczynniki umieralności zwiazanej z przepełnieniem obszaru Równanie 4^{****}

$$\frac{dx}{dt} = r_1 x \left(1 - \left(\frac{x + \alpha y}{K_1} \right) \right)$$

$$\frac{dy}{dt} = r_2 y \left(1 - \left(\frac{y + \beta x}{K_2} \right) \right)$$

 r_1, r_2 to współczynniki wzrostu populacji

 K_1, K_2 to pojemnosc srodowiska α, β to wpływ gatunku
1 na gatunek 2 i odwrotnie