

RV COLLEGE OF ENGINEERING®

(Autonomous Institution affiliated to VTU, Belgavi)

Comparative Analysis of various Direction Of Arrival Estimation Algorithms

Minor Project Presentation

Abhilash R Namboodiri Abhishek P 1RV16EC004

1RV16EC009

Under the guidance of
Dr. Shushrutha K.S.
Associate Professor
Department of Electronics and Communication
RV College of Engineering

Presentation Outline

- 1. Introduction
- 2. Literature Survey
- 3. Problem Statement
- 4. Motivation
- 5. DOA Algorithms
- 6. Beamforming Algorithms
- 7. Details of Software Used
- 8. Results
- 9. Conclusion
- 10. References

Introduction

- Array processing deals with techniques for the analysis and processing of signals collected by a group of sensors.
- The collection of sensors makes up the array, and the manner in which the signals from the sensors are combined and handled constitutes the processing.
- The type of processing is dictated by the needs of the particular application.
- Array processing has found widespread application in a large number of areas, including radar, sonar, communications, seismology, geophysical prospecting for oil and natural gas, diagnostic ultrasound, and multichannel audio systems.

Beamforming

- Generally, an array receives spatially propagating signals and processes them to emphasize signals arriving from a certain direction; that is, it acts as a spatially discriminating filter.
- This spatial filtering operation is known as beamforming, because essentially it emulates the function of a mechanically steered antenna.
- An array processor steers a beam to a particular direction by computing a properly weighted sum of the individual sensor signals.

Principle of DOA estimation

30-11-2019

Literature Survey

Ref No.	Paper Title	Journal / Conference	Major Observations
1.	Smoothing Periodograms from Time Series with Continuous Spectra	Nature, 161:686- 87, 1948	Description of Bartlett's method for spectral estimation
2.	High-resolution frequency-wavenumber spectrum analysis	Proceedings of the IEEE, vol. 57, no. 8, pp. 1408– 1418, 1969	MVDR Beamformer for conventional beamforming and DOA estimation
3	ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques	IEEE Trans on Acoustics Speech and Signal Processing. July 1989. Vol. 37. No.7 pp 984~995.	An algorithm which exploits the rotational invariance of signal subspace induced by sensor array

Literature Survey

Ref No.	Paper Title	Journal / Conference	Major Observations
4.	Multiple Emitter Location and signal Parameter Estimation	IEEE Trans. On Antennas and Propagation, March 1986. Vol. 34. No. 3. pp 276-280.	Introduction and description of MUSIC algorithm for DOA
5.	Two decades of array signal processing research: The parametric approach	IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996.	Brief Overview of Current trends in Array Signal Processing

Problem Statement

Performance Analysis of various Direction Of Arrival algorithms :

- Bartlett's Method
- MVDR
- MUSIC
- ESPRIT

Simulation of beamforming using conventional and adaptive algorithms

Motivation

- DOA estimation is a key research area with various engineering applications, such as wireless communications, radar, tracking of various objects, earthquake, medicine etc.
- Positioning and Location-Awareness are key objectives in networks of the future
- One way to accomplish this is via array signal processing with algorithms which estimate the direction-of-arrival (DOA) of the received waves from various sources.

Objectives

- Study and analysis of various DOA algorithms using MATLAB
 (Specifically Bartlett, MVDR, MUSIC, ESPRIT for linear arrays)
- 2. Study and simulation of planar arrays and DOA using MVDR and MUSIC algorithm.
- 3. Study and simulation of beamformers using conventional and adaptive algorithms (Specifically conventional, optimal MVDR, SMI)

Methodology

- Simulation of various DOA algorithms on MATLAB
- Performance analysis of algorithms on MATLAB based on parameters like SNR, No. of Snapshots and Resolution.
- Modifying the standard MUSIC for improved resolution and source coherence issue
- Extending linear array to a planar array and implementing planar MVDR and planar MUSIC
- Simulating Adaptive Beamformers based on conventional, optimal and adaptive algorithms

DOA Algorithms

Array Signal Model

- Path Difference= $dsin\theta$
- Phase Difference= $\psi(\theta)$

$$\psi(\theta) = \frac{2\pi d sin\theta}{\lambda}$$

• For N element array, we define array steering vector A or $a(\theta)$ as

$$A = \begin{bmatrix} e^{-j} \Psi^{*0} & e^{-j} \Psi^{*1} \dots & e^{-j} \Psi^{*(N-1)} \end{bmatrix}$$

- Received signal $x(t) = a(\theta_0) * s(t) + n(t)$ X = A * S + N
- Received Correlation Matrix: $R_{\chi\chi} = X * X^H$

Bartlett's Algorithm

- It is also referred as conventional or delay sum model
- It assumes the channel to be noiseless.
- It magnifies the signal from certain direction by compensating phase shift due to array antenna
- Message signal $Y = W^H X = W^H * (A * S + N)$
- · If we do not consider noise, then

$$W^H = A for Y = S$$

- Power of signal $P = E[Y] = YY^H = AHXX^HA = AHRx_{xA}$
- · Power spectrum $P_{Bartlett}(\theta) = a(\theta)^H R_{xx} a(\theta)$

Limitations

- · Primitive method.
- Very low resolution

Where $W^H = A$

MVDR

- Also called Capon's method.
- It stands for minimum variance distortion-less response
- It maintains signal from desired direction (distortion-less $\Rightarrow W^H A = I$) and minimise signal from other directions/noise (minimum variance of noise $\Rightarrow min\{W^H R_{\chi\chi}W\}$
- Solving the constraints we get $W = \frac{R_{\chi\chi}^{-1}A^H}{AR_{\chi\chi}^{-1}A^H}$

• Power of signal
$$P = E[Y] = YY^H = W^H XX^H W$$

= $W^H R_{xx} W = \frac{1}{AR_{xx}^{-1} A^H}$

• Power spectrum $P_{MVDR}(\theta) = \frac{1}{a(\theta)R_{xx}^{-1}a(\theta)^H}$

Limitations

- Resolution is significantly enhanced compared to Bartlett but still not good enough
- Subspace approaches yield better results

MUSIC

- MUSIC stands for Multiple Signal Classification.
- MUSIC was proposed by R.O.Schmidt.
- MUSIC conducts characteristic decomposition for the covariance matrix of any array output data, resulting in both signal subspace and noise subspace.
- MUSIC detects DOA by a spectral peak search of these subspaces

- Consider Received correlation matrix
- $R_{xx} = E[XX^H] = E[ASS^HA^H] + E[NN^H]$ $= AE[SS^H]A^H + \sigma^2 I$ $= AR_{ss}A^H + \sigma^2 I$
- When R_{xx} is decomposed into eigen values. It contains N eigen vectors of which M belong to signal space and (M-N) belong to noise space.
- $E[A^HQ_N]$ is random distribution but when $\theta = \theta_0$, it drops drastically as signal space vectors dominate at Direction of Arrival θ_0 .

- Hence the plot of $P = \frac{1}{A^H Q_N Q_N^{H} A}$ gives peaks at θ_0
- Power spectrum $P_{MUSIC}(\theta) = \frac{1}{a(\theta)^H Q_N Q_N^H a(\theta)}$

Advantage

 MUSIC has high resolution, accuracy and stability to detect DOA signals.

ESPRIT

- It stands for Estimation of Signal Parameters via Rotational Invariance Techniques
- We assume by rotational invariance property of ULA that array is composed of 2 sub arrays with array manifold vectors $A_1 \& A_2$

```
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      1
      2
      3
      4
      5
      6
      7
      8
      9

      •
      •
      •
      •
      •
      •
      •
      •

      2
      3
      4
      5
      6
      7
      8
      9
      10
```


· Received signals can be written as

•
$$X_1 = A_1 S + N_1$$
 $X_2 = A_2 S + N_2$

• Let $A2 = A1\Phi$

• Where
$$\Phi = \begin{bmatrix} e^{j\psi_0} & 0 & 0 & 0 \\ 0 & e^{j\psi_1} & 0 & 0 \\ 0 & 0 & e^{j\psi_{(M-1)}} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\psi_i = \frac{2\pi d}{\lambda} \sin \theta_i$$

- Now we have 2 received correlation matrix
- $R_{xx1} A_1 R_{ss1} A_1^H + \sigma^2 I$
- $\cdot R_{xx2} A_2 R_{ss2} A_2^H + \sigma^2 I$
- ESPRIT implied that $R_{ss1}\Psi = R_{ss2}$
- Where Eigen values of Ψ (λ_i 's)=diagonal elements of Φ
- Hence $\theta_i = \sin^{-1} \left(\frac{\arg(\lambda_i)}{2\pi d/\lambda} \right)$

Beamformers

Conventional Beamformer (CBR)

- The CBR is optimal to white noise only.
- It does not take into account other signals(interference) present in some directions.
- Constraint: $w^{H}a(\theta_{s}) = 1$

• Solution:
$$w_{CBF} = \frac{a(\theta_s)}{a^H(\theta_s)a(\theta_s)}$$

Optimal MVDR

- Optimal Beamformers take into account other signals (interferes).
- It tends to place a null towards interference signals
- MVDR is one of the optimal Beamformers.
- Constraint: $min\{W^HCW\}$ subject to $W^Ha(\theta_s) = I$
- Solution: $W_{MVDR} = \frac{C^{-1}a(\theta_s)}{a^H(\theta_s)C^{-1}a(\theta_s)}$

Adaptive SMI

- Adaptive beamformer is improvisation of Optimal Beamformer.
- Optimal beamformers consider the interference and channel characteristics as fixed statistics.
- But in practice, this is not the case.
- Hence we require Adaptive Beamformers which change their weights adaptively based on interference characteristics

Details of Software /Hardware

· MATLAB

Results

- I. Conducted Simulation of:
- Bartlett
- MVDR
- MUSIC

Static Parameters:

Number of elements: 8

Snapshots: 200

SNR: 20db

Source: -40° 20° 60°

Bartlett's Algorithm

MVDR

MUSIC

Results (cont)

II. Conducted performance analysis of:

- Bartlett
- MVDR
- MUSIC

Following parameters were varied:

- SNR
- Resolution

Measurement of SNR

Static Parameters:

Number of elements: 8

Snapshots: 200

Source: -50° 0° 50°

Measurement of Resolution

Static Parameters:

Number of elements: 8

Snapshots: 200

SNR: 0db

MVDR

MUSIC

Comparison of Different Algorithm

Algorithm	SNR (Lowest distinguishable)	Resolution
Bartlett	-15dB	24°
MVDR	-15dB (Higher Accuracy than Bartlett)	18°
MUSIC	-30dB	6º

Results (cont)

- III. Conducted detailed performance analysis of:
- MUSIC

Following parameters were varied:

- SNR
- Resolution
- Number of Snapshots
- Number of Array elements
- Distance between array elements
- Coherence

MUSIC – Coherence Problem

MODIFIED MUSIC – Coherence

MUSIC – Array element spacing

MUSIC-NO OF ARRAY ELEMENTS

MUSIC – No of Array Elements

MUSIC – No of Snapshots

MUSIC – Resolution

MUSIC - SNR

Results (cont)

III. Conducted performance analysis of:

ESPRIT

Following parameters were varied:

- SNR
- Number of Snapshots

SNR	DOA angles		
0	-30	45	
-3	-30	45	
-6	-30	45	
-9	-30	46	
-12	-29	45	
-15	-28	45	
-18	-29	47	
-21	-34	41	

Snapshots	DOA angles		
1	-34	46	
2	-28	46	
3	-30	44	
4	-29	44	
5	-31	44	
6	-30	44	
7	-30	43	
8	-30	45	
9	-30	45	
10	-31	45	

Results (cont)

IV. Simulation of planar DOA estimation algorithms:

- Planar MVDR
- Planar MUSIC

Static Parameters:

Number of elements: 8*8

Snapshots: 100

SNR: 0db

Planar MVDR

Planar MUSIC

Results (cont)

V. Simulation of following beamformers:

- Conventional
- Optimal MVDR
- Adaptive SMI

Static Parameters:

Number of elements: 8

Signal Directions: -30⁰

Interfere Direction: 45⁰

Beam patterns

Conclusion

- 1. Simulated and analysed various DOA algorithms using MATLAB for linear arrays.
- 2. Detailed study of MUSIC algorithm and modification of MUSIC was made to mitigate frequency coherence issue.
- 3. Extended linear array approach to planar array DOA and observed functionality only in one half of the azimuth plane.
- 4. Simulated beamformers: conventional, optimal (MVDR) and adaptive (SMI)

References

- [1]Ralph O, Schmidt. Multiple Emitter Location and signal Parameter Estimation. IEEE Trans. On Antennas and Propagation, March 1986. Vol. 34. No. 3. pp 276-280.
- [2]Perte Stoica, Maximum Likelihood Method for Direction of Arrival Estimation. IEEE Trans on ASSP. 1990. Vol. 38(7). P1132~1143.
- [3]Richard Roy, Thonas Kailath. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans on Acoustics Speech and Signal Processing. July 1989. Vol. 37. No.7 pp 984~995.
- [4] Honghao Tang, "DOA estimation based on MUSIC algorithm," Institutionen För Fysik och Elektroteknik.
- [5] Harry L. Van Trees, Optimum Array Processing, John Wiley & Sons, Inc., NY, 2002.
- [6]Ronald D, Degrot. The Constrained MUSIC Problem. IEEE Trans on SP.1993. Vol. 41(3). P1445~1449.
- [7] Harry B. Lee etc. Resolution Threshold Beamspace MUSIC for Two Closely Spaced Emitters. IEEE Trans on ASSP. 1990. Vol. 38(9). P723~738.
- [8] Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections.

30010820099 Dept. of ECE, RVCE 64

- [9] Burg, J.P., "The Relationship Between Maximum Entropy Spectra and Maximum Likelihood Spectra," Geophysics, Vol. 37, pp. 375-376, April 1972.
- [10] H. G. Ong and R. I. Kitney, "Application of the Pisarenko harmonic decomposition method to physiological data," Journal of Biomedical Engineering, vol. 8, no. 4, pp. 313-319, Oct. 1986.
- [11] R. A. Poisel, Target acquisition in communication electronic warfare systems (Artech house information warfare library). United States: Artech House Publishers, 2004.
- [12] R. A. Fisher, "Theory of statistical estimation," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22, no. 05, p. 700, Jul. 1925.
- [13] H. Krim and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996.
- [14] Constantine A. Balanis, "Antenna theory Analysis and Design", Wiley publications, second edition, 2010, ISBN: 978-81-265-2422-8.
- [15] Constantine A. Balanis, Panayiotis I. Ioannides, "Introduction to Smart Antennas", Morgan & Claypool publishers, first edition, 2007, ISBN: 1598291769.
- [16] J. Capon, "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.