BUSINESS CASE STUDY: TARGET

1.1 Data type of all columns in the "customers" table

SELECT column_name, data_type FROM `scaler-dsml-sql-409613.Target_SQL_Business_Case.INFORMATION_SCHEMA.COLUMNS` WHERE table_name = 'customers'; Query results ▲ SAVE RESULTS ▼ RESULTS CHART PREVIEW JSON JOB INFORMATION **EXECUTION DETAILS EXECUTION GRAPH** column_name ▼ data_type ▼ 1 STRING customer_id 2 customer_unique_id STRING customer_zip_code_prefix INT64 4 customer_city STRING customer_state STRING

Insight: The provided dataset contains crucial customer information such as unique IDs, location details, and state codes.

Action: Ensure data integrity and accuracy in customer records to facilitate personalized marketing and customer service initiatives.

1.2 Get the time range between which the orders were placed.

Insight: The dataset spans from September 2016 to October 2018, providing a comprehensive view of two years' worth of order data.

Action: Use this timeframe to analyze trends, identify patterns, and make informed business decisions.

1.3 Count the Cities & States of customers who ordered during the given period.

Insight: The dataset includes orders from 4,119 cities across 27 states in Brazil, indicating a broad geographical reach.

Action: Conduct targeted marketing campaigns and logistics optimization efforts tailored to different regions for enhanced customer engagement and operational efficiency.

2.1 Is there a growing trend in the no. of orders placed over the past years?

```
SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year, COUNT(*) AS
num_orders
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders
GROUP BY order_year
ORDER BY order_year;
```


Insight: There's a notable increase in the number of orders over the years, with significant growth from 2016 to 2017 and further expansion in 2018.

Action: Allocate resources to meet growing demand, including scaling up inventory, logistics, and customer service capabilities.

2.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Insight: Monthly order volumes exhibit seasonal fluctuations, with higher demand observed during certain months, such as May and August.

Action: Plan promotional campaigns and inventory management strategies to align with peak demand periods and maximize sales opportunities.

2.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
CASE

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN @ AND @ THEN 'Dawn'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN

'Morning'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN

'Afternoon'

ELSE 'Night'

END AS order_time_period,

COUNT(*) AS num_orders

FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders

GROUP BY order_time_period;
```


0

Night

Insight: Most orders are placed during the afternoon, suggesting that customers prefer shopping during this time of day.

Afternoon

Action: Optimize marketing efforts and promotions to coincide with peak shopping hours to drive sales and enhance customer satisfaction.

3.1 Get the month on month no. of orders placed in each state.

Mornina

SELECT

```
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month,
c.customer_state,
COUNT(*) AS num_orders
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
```

GROUP BY order_year, order_month, c.customer_state
ORDER BY order_year, order_month, c.customer_state;

Quer	y results					<u>*</u>	SAVE RESULTS ▼		\$
JOB IN	NFORMATION	RESULTS	CH	ART PREVIEW	JSON	EXECUTION DETAIL	S EXECUTION	GRAPH	
Row	order_year ▼	order_month	· /	customer_state ▼	h	num_orders ▼			le
1	2016	5	9	RR		1			
2	2016	5	9	RS		1			
3	2016	5	9	SP		2			
4	2016	5	10	AL		2			
5	2016	5	10	BA		4			
6	2016	5	10	CE		8			
7	2016	5	10	DF		6			
8	2016	5	10	ES		4			
9	2016	5	10	GO		9			
10	2016	5	10	MA		4			

Insight: The dataset provides insights into regional order trends, with orders distributed across various states each month.

Action: Analyze state-level order patterns to identify opportunities for market expansion and targeted promotional activities.

3.2 How are the customers distributed across all the states?

Insight: São Paulo (SP) has the highest number of customers, indicating a strong presence in Brazil's most populous state.

Action: Leverage insights from high-density regions to refine marketing strategies and replicate successful approaches in other states to increase market penetration.

4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

SELECT

```
ROUND(((SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value ELSE 0 END) -

SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017 THEN p.payment_value ELSE 0 END)) /

SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017 THEN p.payment_value ELSE 0 END)) * 100, 2) AS percent_increase

FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.payments p ON o.order_id = p.order_id

WHERE EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)

AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8;
```


Insight: There was a substantial increase in the cost of orders from 2017 to 2018, indicating potential changes in consumer behavior or pricing strategies.

Action: Conduct further analysis to understand the factors driving the increase and adjust pricing strategies accordingly to maintain competitiveness.

4.2 Calculate the Total & Average value of order price for each state.

SELECT

```
c.customer_state,
```

```
SUM(p.price) AS total_order_price,
     AVG(p.price) AS avg_order_price
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.order_items p ON o.order_id =
p.order_id
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
GROUP BY c.customer_state
ORDER BY total_order_price DESC;
  Query results

▲ SAVE RESULTS ▼

                                                                                               CHART PREVIEW
  JOB INFORMATION
                      RESULTS
                                                     JSON
                                                               EXECUTION DETAILS
                                                                                   EXECUTION GRAPH
        customer_state ▼
                                 total_order_price variation avg_order_price variation
                                 5202955.050001...
        SP
                                               109.6536291597...
    1
    2 RJ
                                 1824092.669999...
                                               125.1178180945...
    3
                                 1585308.029999...
                                               120.7485741488...
    4 RS
                                 750304.0200000... 120.3374530874...
    5 PR
                                 683083.7600000...
                                              119.0041393728...
                                 520553.3400000...
                                               124.6535775862...
    6
    7 BA
                                 511349.9900000... 134.6012082126...
    8
       DF
                                 302603.9399999...
                                               125.7705486284...
                                               126.2717316759...
    9
        GO
                                 294591.9499999...
    10
                                 275037.3099999...
                                               121.9137012411...
```

4.3 Calculate the Total & Average value of order freight for each state.

SELECT

```
c.customer_state,
SUM(p.freight_value) AS total_freight_value,
AVG(p.freight_value) AS avg_freight_value
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.order_items p ON o.order_id = p.order_id

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY total_freight_value DESC;
```


Insight: There are variations in order value and freight costs across different states, reflecting regional economic dynamics and logistical challenges.

Action: Tailor pricing and shipping strategies to account for regional differences and optimize profitability in each market.

5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

```
SELECT
```

```
o.order_id,
```

 $\label{eq:delivered_customer_date} \mbox{DATE_DIFF} (o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS delivery_time,$

 $\label{local_DIFF} DATE_DIFF (o.order_delivered_customer_date, o.order_estimated_delivery_date, \ DAY) \ AS \\ diff_estimated_delivery$

FROM scaler-dsml-sql-409613. Target_SQL_Business_Case.orders o;

JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	order_id ▼	h	delivery_time ▼ //	diff_estimated_delive		
1	1950d777989f6a	a877539f5379	30	12		
2	2c45c33d2f9cb8	8ff8b1c86cc28	30	-28		
3	65d1e226dfaeb8	3cdc42f66542	35	-16		
4	635c894d068ac	37e6e03dc54e	30	-1		
5	3b97562c3aee8l	bdedcb5c2e45	32	0		
6	68f47f50f04c4cl	o6774570cfde	29	-1		
7	276e9ec344d3bf	f029ff83a161c	43	4		
8	54e1a3c2b97fb0)809da548a59	40	4		
9	fd04fa4105ee80	45f6a0139ca5	37	1		
10	302bb8109d097	a9fc6e9cefc5	33	5		

Insight: Some orders experienced delays in delivery compared to the estimated delivery date, potentially impacting customer satisfaction.

Action: Enhance logistics operations and communication with customers to minimize delivery delays and improve overall service quality.

5.2 Find out the top 5 states with the highest & lowest average freight value.

```
(
SELECT
    'Highest' AS category,
    c.customer_state,
    AVG(oi.freight_value) AS avg_freight_value
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.order_items oi ON o.order_id = oi.order_id

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY avg_freight_value DESC

LIMIT 5
)

UNION ALL

(
```

```
SELECT
     'Lowest' AS category,
    c.customer_state,
    AVG(oi.freight_value) AS avg_freight_value
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.order_items oi ON o.order_id =
oi.order_id
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
GROUP BY c.customer_state
ORDER BY avg_freight_value ASC
LIMIT 5
);
  Query results
                                                                            ▲ SAVE RESULTS ▼
                                                                                                ™ EXPLORE DATA ▼
  JOB INFORMATION
                      RESULTS
                                  CHART PREVIEW
                                                      JSON
                                                                EXECUTION DETAILS
                                                                                     EXECUTION GRAPH
 Row /
                                                         avg_freight_value
        category -
                                 customer_state ▼
    1
        Highest
                                                          42.98442307692...
    2
       Highest
                                 PB
                                                          42.72380398671...
       Highest
                                 RO
                                                          41.06971223021...
    3
       Highest
                                 AC
    4
                                                          40.07336956521...
       Highest
                                 ы
                                                          39.14797047970...
    5
                                 SP
    6
       Lowest
                                                          15.14727539041...
    7
                                 PR
                                                          20.53165156794...
       Lowest
    8
       Lowest
                                 MG
                                                          20.63016680630...
    9
                                 RJ
        Lowest
                                                          20.96092393168...
        Lowest
                                 DF
                                                          21.04135494596...
   10
```

Insight: Freight costs vary significantly among states, influencing overall order profitability and customer pricing perceptions.

Action: Explore opportunities to negotiate better freight rates and optimize shipping routes to reduce costs and improve competitiveness.

5.3 Find out the top 5 states with the highest & lowest average delivery time.

```
(
SELECT
   'Highest' AS category,
   c.customer_state,
```

```
AVG(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS
avg_delivery_time
FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
GROUP BY c.customer_state
ORDER BY avg_delivery_time DESC
LIMIT 5
)
UNION ALL
(
SELECT
    'Lowest' AS category,
    c.customer_state,
    AVG(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS
avg_delivery_time
FROM scaler-dsml-sql-409613. Target_SQL_Business_Case.orders o
JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
GROUP BY c.customer_state
ORDER BY avg_delivery_time ASC
LIMIT 5
);
```


JOB IN	NFORMATION RESULTS	CHART PREVIEW JSC	N EXECUTION DETAILS EXECUTION GRAPH
Row	category ▼	customer_state ▼	avg_delivery_time
1	Lowest	SP	8.298061489072
2	Lowest	PR	11.52671135486
3	Lowest	MG	11.54381329810
4	Lowest	DF	12.50913461538
5	Lowest	SC	14.47956019171
6	Highest	RR	28.97560975609
7	Highest	AP	26.73134328358
8	Highest	AM	25.98620689655
9	Highest	AL	24.04030226700
10	Highest	PA	23.31606765327

Insight: Delivery times vary across states, with some regions experiencing faster or slower order fulfillment processes.

Action: Invest in infrastructure and logistics capabilities to improve delivery speed and reliability, particularly in regions with longer average delivery times.

5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
WITH state_delivery_speed AS (
    SELECT
        c.customer_state,
        AVG(DATE_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date,
DAY)) AS avg_delivery_speed,
        RANK() OVER (ORDER BY AVG(DATE_DIFF(o.order_delivered_customer_date,
o.order_estimated_delivery_date, DAY)) DESC) AS delivery_speed_rank
    FROM
        scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o
    JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.customers c ON o.customer_id =
c.customer_id
    GROUP BY
        c.customer_state
)
SELECT
    customer_state,
```

```
avg_delivery_speed
FROM
     state_delivery_speed
WHERE
     delivery_speed_rank <= 5;</pre>
  Query results

▲ SAVE RESULTS ▼

                                                                                                       EXPLORE DATA ▼
  JOB INFORMATION
                       RESULTS
                                     CHART PREVIEW
                                                         JSON
                                                                    EXECUTION DETAILS
                                                                                          EXECUTION GRAPH
Row /
                                   avg_delivery_speed ▼
       customer_state ~
                                                -8.76847977684797
    1 MA
    2 BA
                                                -9.93488943488941
    3 AL
                                               -7.9471032745591943
    4 SE
                                               -9.1731343283582127
                                               -9.6185463659147885
    5 ES
```

Insight: Certain states demonstrate efficient delivery operations, exceeding customer expectations by delivering orders ahead of the estimated delivery date.

Action: Identify and replicate best practices from top-performing states to enhance delivery performance and customer satisfaction nationwide.

6.1 Find the month on month no. of orders placed using different payment types.

```
SELECT
```

```
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,
    EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month,
    p.payment_type,
    COUNT(*) AS num_orders

FROM scaler-dsml-sql-409613.Target_SQL_Business_Case.orders o

JOIN scaler-dsml-sql-409613.Target_SQL_Business_Case.payments p ON o.order_id = p.order_id

GROUP BY order_year, order_month, p.payment_type

ORDER BY order_year, order_month, p.payment_type;
```


Insight: Payment method preferences vary across months, reflecting changing consumer behaviors and market trends.

Action: Analyze payment data to understand shifting consumer preferences and tailor payment options and promotions accordingly.

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

Insight: Installment payment plans are popular among customers, providing flexibility and affordability in purchasing.

Action: Develop targeted marketing campaigns and promotional offers to promote installment payment options and attract customers with varying budget constraints.