Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 3.2/2023

Mieczysław Cichoń - WMI UAM

Funkcje wypukłe - powtórka.

Definicja. Niech $A \subset \mathbb{R}$ będzie przedziałem. Funkcję $f: A \longrightarrow \mathbb{R}$ nazywamy **wypukłą** w A gdy dla dowolnych $x_1, x_2 \in A$ oraz dowolnych $s, t \in \mathbb{R}$, $s, t \geq 0$, s + t = 1, zachodzi nierówność

$$f(s\cdot x_1+t\cdot x_2)\leq s\cdot f(x_1)+t\cdot f(x_2).$$

W przypadku, gdy nierówność zachodzi w przeciwnym kierunku funkcję nazywamy wklęsłą w A.

Ponownie zwracamy uwagę, że ta własność także zależy od zbioru, a nierówność jest na ogół bardzo dobrym oszacowaniem dla wartości funkcji f często wykorzystywanym w różnych zastosowaniach. Nieco później podamy inną metodę badania wypukłości funkcji f. Ilustracją graficzną tej cechy jest fakt, iż odcinek łączący dowolne dwa punkty wykresu $\{(x,y):x\in A,y=f(x)\}$ "leży nad" wykresem funkcji (dokładnie to stwierdza nierówność z definicji!! - zrobić odpowiedni rysunek).

To pojęcie niezbędne do zrozumienia jednej z najważniejszych z **metod optymalizacyjnych** (np. w nauczaniu maszynowym) - optymalizacja wypukła! Np. informacje podstawowe.

Przykładami funkcji wypukłych są np. $f(x) = x^2$, $x \in \mathbb{R}$ czy $f(x) = e^x$, $x \in \mathbb{R}$, natomiast funkcja $f(x) = \sin x$ jest wypukła w $A = [\pi, 2\pi]$, ale nie jest wypukła w swojej dziedzinie. Funkcje wklęsłe to np. $f(x) = -x^2$, $x \in \mathbb{R}$ czy $f(x) = \log x$, $x \in (0, \infty)$.

Przykład. Ponieważ $2 = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 3$, a funkcja $f(x) = \sqrt{x}$, $x \in [0, \infty)$ jest wklęsła (sprawdzić !), to m.in. (!) wstawiając $x_1 = 1$ oraz $x_2 = 3$ do definicji uzyskamy

$$\sqrt{2} \geq \frac{1}{2} \cdot \sqrt{1} + \frac{1}{2} \sqrt{3},$$

czyli $2\sqrt{2}-\sqrt{3}\geq 1$, a ta nierówność nie dla wszystkich jest oczywista...

Podobnie natychmiast mamy przydatne oszacowanie pierwiastka: $\sqrt{2} \le \frac{3}{2}$ (tu: $\frac{1}{2} = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0$, gdyż $f(x) = 2^x$ - wypukła).

Punkt przegięcia - zmiana wypukłości funkcji.

Zmiana wypukłości funkcji: na rysunku z wypukłej na wklęsłą (w definicji dopuszczalna też odwrotna zmiana)...

Punkty, w których zmienia się własność funkcji z wypukłej na wklęsłą lub odwrotnie nazywamy **punktami przegięcia** - za chwilę formalna definicja.

Funkcja f ma punkty przegięcia w b, c oraz e!

Punkty przegięcia.

Definicja. Załóżmy, że $f:P\longrightarrow \mathbb{R}$ jest ciągła w **przedziale** P, oraz że x_0 jest punktem wewnętrznym tego przedziału. Mówimy, że x_0 jest punktem przegięcia funkcji f, jeżeli ten punkt jest jednocześnie końcem przedziału ścisłej wypukłości funkcji f i końcem przedziału ścisłej wklęsłości tej funkcji.

Twierdzenie. Jeżeli x_0 jest punktem przegięcia funkcji f oraz f jest klasy C^2 w otoczeniu tego punktu, to $f''(x_0) = 0$.

Zwracam uwagę, że nie jest to warunek wystarczający.

Np. $f(x) = x^4$ nie ma w punkcie $x_0 = 0$ punktu przegięcia (ma w nim minimum lokalne), ale f''(0) = 0.

Uwaga: dla funkcji wielu zmiennych mamy też inne punkty charakterystyczne wykresu (np. punkt siodłowy) i ich lokalizacja będzie pewnym problemem w stosowaniu algorytmów gradientowych.

Badanie wypukłości funkcji.

Teraz pokażemy jeszcze jedno zastosowanie pochodnych wyższych rzędów do badania funkcji. Przypomnijmy, że definicja wypukłości funkcji była podana wcześniej.

Twierdzenie. (badanie wypukłości funkcji różniczkowalnej). Załóżmy, że funkcja f określona w przedziale P jest w nim różniczkowalna. Na to by f była wypukła w P potrzeba i wystarcza by pochodna f' była funkcją rosnącą.

W n i o s e k. Jeżeli f jest dwukrotnie różniczkowalna w P i $f'' \geq 0$ (czyli f' jest rosnąca) to f jest wypukła.

Twierdzenie. Jeżeli x_0 jest punktem przegięcia funkcji f oraz f jest klasy C^2 w otoczeniu tego punktu, to $f''(x_0) = 0$.

Zwracamy uwagę, że nie jest to warunek wystarczający.

Np. $f(x) = x^4$ nie ma w punkcie $x_0 = 0$ punktu przegięcia (ma w nim minimum lokalne), ale f''(0) = 0.

Podamy więc warunek wystarczający:

Twierdzenie. Jeżeli f jest klasy C^2 w otoczeniu punktu x_0 oraz f'' ma następujące własności:

(a)
$$f''(x_0) = 0$$

(b) f''(x) > 0 dla $x > x_0$ (lub $x < x_0$) oraz f''(x) < 0 dla $x < x_0$ ($x > x_0$ odpowiednio),

to x₀ jest punktem przegięcia funkcji f.

Przykład.

Rozpatrzmy funkcję:

$$f(x) = \frac{1}{6}x^3 - x^2 + 4$$
, $f : \mathbb{R} \longrightarrow \mathbb{R}$

Mamy
$$f'(x) = \frac{1}{2}x^2 - 2x$$
 oraz $f''(x) = x - 2$ $f''(x) > 0$ dla $x > 2$

oraz f''(x) < 0 dla x < 2 (i oczywiście f''(2) = 0). Stąd $x_0 = 2$ jest punktem przegięcia funkcji f.

Uwaga.

Zwracam uwagę, że zachodzi pewna analogia:

 $f'(x_0) = 0$ jest warunkiem koniecznym istnienia ekstremum lokalnego funkcji różniczkowalnej (ale nie wystarczającym),

 $f''(x_0) = 0$ jest warunkiem koniecznym istnienia punktu przegięcia takiej funkcji (i również nie jest wystarczającym ...).

Wypukłość a ciągłość.

A teraz - do samodzielnego przemyślenia dlaczego:

Twierdzenie. Niech $P \subset \mathbb{R}$ będzie przedziałem otwartym. Wtedy każda funkcja wypukła $f: P \to \mathbb{R}$ jest ciągła.

Nie uda się więc znaleźć funkcji zdefiniowanej na przedziale otwartym nieciągłej i wypukłej...

Bo na przedziale domkniętym oczywiście tak: $f(x) = x^2$ dla $x \in [0,1)$ i f(1) = 2 (wypukła i nieciągła).

Optymalizacja wypukła.

Pojęcie wypukłości jest niezbędne do zrozumienia jednej z najważniejszych z metod optymalizacyjnych (np. w nauczaniu maszynowym) - to optymalizacja wypukła!

Optymalizacja wypukła to dziedzina matematyki, która zajmuje się optymalizacją funkcji wypukłych.

Funkcje wypukłe są używane w wielu dziedzinach nauki i inżynierii do opisu i rozwiązywania problemów optymalizacyjnych. Optymalizacja wypukła ma zastosowanie w wielu dziedzinach informatyki, w tym w uczeniu maszynowym, przetwarzaniu sygnałów, systemach sterowania, sieciach komputerowych, algorytmach rozproszonych, analizie danych, grafice komputerowej, kryptografii, a także w rozwiązywaniu problemów optymalizacyjnych w systemach wielkoskalowych.

- 1. W uczeniu maszynowym optymalizacja wypukła jest wykorzystywana do rozwiązywania problemów optymalizacyjnych związanych z sieciami neuronowymi, takich jak minimalizacja funkcji kosztu, które występują w wielu algorytmach uczenia się, takich jak regresja liniowa, regresja logistyczna, SVM i wiele innych. To algorytmy optymalizacji wypukłej, takie jak algorytm gradientowy, algorytm Nesterova i algorytm ADAM.
- 2. W grafice komputerowej optymalizacja wypukła jest używana do projektowania i renderowania trójwymiarowych obiektów, a także do kompresji i dekompresji obrazów.
- 3. W kryptografii optymalizacja wypukła jest stosowana do rozwiązywania problemów związanych z optymalizacją kluczy kryptograficznych oraz do analizy złożoności problemów kryptograficznych. W systemach wielkoskalowych optymalizacja wypukła jest wykorzystywana do optymalizacji procesów produkcyjnych, dystrybucji zasobów i alokacji zadań, a także do projektowania i optymalizacji systemów transportowych.

- 4. W przetwarzaniu sygnałów, optymalizacja wypukła jest stosowana do rozwiązywania problemów optymalizacyjnych, takich jak filtracja sygnałów, analiza spektralna i wiele innych. Algorytmy optymalizacji wypukłej, takie jak algorytm filtru Wienera, algorytm LASSO i wiele innych, są często używane do rozwiązywania tych problemów.
- 5. W sieciach komputerowych, optymalizacja wypukła jest stosowana do rozwiązywania problemów optymalizacyjnych, takich jak minimalizacja przepływu sieciowego, minimalizacja kosztów w sieciach telekomunikacyjnych i wiele innych. Algorytmy optymalizacji wypukłej, takie jak algorytm Max-Flow Min-Cut i wiele innych, są często używane do rozwiązywania tych problemów.
- 6. W algorytmach rozproszonych, optymalizacja wypukła jest stosowana do rozwiązywania problemów optymalizacyjnych, które pojawiają się w wielu algorytmach rozproszonych, takich jak rozproszona optymalizacja, agregacja modeli i wiele innych.

Warunek wystarczający istnienia ekstremum lokalnego,

Teraz czas na kolejne ważne twierdzenie:

Twierdzenie. (warunek wystarczający istnienia ekstremum lokalnego). *Jeżeli f* \in C^n w otoczeniu punktu x_0 $(n \ge 2)$ i jeżeli

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
,

oraz $f^{(n)}(x_0) \neq 0$, to mamy 2 możliwości:

- (1^0) gdy n jest liczbą parzystą, to f ma w punkcie x_0 ekstremum lokalne, przy czym jeśli $f^{(n)}(x_0) > 0$ jest to minimum, a jeśli $f^{(n)}(x_0) < 0$ to jest to maksimum,
- (2⁰) gdy n jest liczbą nieparzystą to f ma w x_0 punkt przegięcia (f jest monotoniczna w otoczeniu punktu x_0).

Wykresy.

Aby narysować wykres funkcji będziemy potrzebować wszystkich podanych wcześniej informacji!

Tzw. badanie przebiegu zmienności funkcji (o czym za chwilę) pozwoli narysować nawet takie przypadki jak ten poniżej (funkcja Γ Eulera):

W informatyce.

A czy potrzebujemy w ionformatyce pochodnych rzędu wyższego niż dwa (czyli czy można nimi badać coś poza wypukłością)? TAK!

1. Analiza obrazów. Trzecia pochodna może być używana do wykrywania krawędzi i konturów obiektów na obrazach cyfrowych.

Jest to przydatne w takich zadaniach, jak segmentacja obrazów i rozpoznawanie obiektów. Konkretnym zastosowaniem trzeciej pochodnej w wykrywaniu krawędzi i konturów obiektów na obrazach cyfrowych jest algorytm Canny'ego do detekcji krawędzi. Algorytm ten wykorzystuje kilka etapów przetwarzania obrazu, w tym operacje filtrowania z użyciem pochodnych pierwszego i drugiego rzędu, a także operację progowania z histerezą, która wykorzystuje wartości trzeciej pochodnej. Wartość trzeciej pochodnej sygnału pikseli na obrazie może pomóc w wykryciu punktów, w których występują gwałtowne zmiany intensywności kolorów lub jasności, co wskazuje na obecność krawędzi lub konturów obiektów na obrazie.

2. Rozpoznawanie mowy. Trzecia pochodna może być stosowana w procesie przetwarzania mowy, aby wyodrębnić charakterystyczne cechy dźwiękowe, takie jak kształt i modulacja dźwięku. Może być używana do wykrywania wyrazów i fonemów w mowie. Konkretnym przykładem zastosowania trzeciej pochodnej w procesie przetwarzania mowy jest analiza dźwięków mowy w celu wyodrębnienia charakterystycznych cech, takich jak formanty. Formanty to częstotliwości, na których występują największe wzmocnienia sygnału akustycznego w procesie artykulacji mowy. Są one wykorzystywane w procesie rozpoznawania mowy do identyfikacji poszczególnych fonemów.

Sygnał jest filtrowany za pomocą filtrów pasmowo-przepustowych, a następnie obliczana jest trzecia pochodna sygnału. Wartość trzeciej pochodnej wskazuje na zmiany przyspieszenia dźwięku, co umożliwia wyodrębnienie punktów ekstremalnych w funkcji częstotliwości. Punkty te odpowiadają częstotliwościom formantów, co pozwala na ich wyodrębnienie z sygnału dźwiękowego. Wyodrębnione formanty są następnie wykorzystywane w procesie rozpoznawania mowy do identyfikacji fonemów.

- 3. Modelowanie matematyczne. Trzecia pochodna funkcji może być używana w modelowaniu matematycznym do opisu zmian przyspieszenia. Przykładowo, w modelowaniu ruchu samochodu lub innego pojazdu, trzecia pochodna funkcji opisuje zmiany w przyspieszeniu.
- 4. Uczenie maszynowe. Pochodna może być używana w algorytmach uczenia maszynowego, takich jak sieci neuronowe, do określania wartości gradientu funkcji kosztu. Gradient jest używany do aktualizacji wag w sieci neuronowej, co pozwala na uczenie się modelu na podstawie danych treningowych.

Grafika komputerowa - krzywe w \mathbb{R}^2 .

Najważniejszą postacią zapisu krzywych w grafice wektorowej jest ich postać parametryczna

$$x = x(t), y = y(t)$$

dla $t \in [a,b]$. Najkorzystniej - ze względu na szybkość obliczeń aproksymować je za pomocą wielomianów (i to najczęściej stopnia co najwyżej trzeciego). Dla krzywych zadanych jawnie y = f(x) wygodnie jest zaczepić w wybranych punktach wektory o pierwszej składowej równej 1, a drugiej równej $f'(x_k)$.

Krzywe i ich aproksymacja.

W przypadku krzywej parametrycznej postąpimy podobnie: w wybranych punktach krzywej zaczepiamy wektory o składowych [x'(t),y'(t)]. Na ogół wystarczy zaczepić te wektory w początkowym i końcowym punkcie krzywej (mogliśmy ją podzielić na fragmenty opisane jednym wzorem), co pozwala na ich **gładkie** sklejanie.

Długość łuku krzywej.

Jak się okaże - ale w pełni dopiero jak wprowadzimy całki - te wektory oparte o pochodne będą potrzebne również do obliczeń (i oszacowań!!) długości łuku krzywej i jej krzywizny:

Aby rozpatrywane krzywe, które parametryzujemy kawałkami wyglądały naturalnie, należy zapewnić odpowiednio gładkie przejście z jednej krzywej w drugą - co zapewniają właśnie te wektory oparte o pochodne. Widać różnice? Który z punktów wygląda najbardziej "dopasowany"?

cdn.

Więcej - na grafice komputerowej, fukcje Hermite'a czy Beziera (wielomiany Bernsteina - w matematyce) i b-spline itd...

Uwaga! Proszę zauważyć, że przywołałem przykład krzywych - ich parametryzacje są funkcjami jednej zmiennej. Podobnie będzie się badać płaty powierzchniowe, ale to wymaga funkcji wielu zmiennych, co wykracza poza ten wykład - ale można (i trzeba) to uzupełnić na kolejnych przedmiotach uzupełniąjcych wiedzę matematyczną dla informatyków - zachęcam!!

Zastosowania...

To nie miejsce na szczegółowe przedstawienie roli pochodnych w zastosowaniach informatycznych - z jednej strony wprowadzamy dopiero podstawowe pojęcia matematyczne, a z drugiej potrzebujemy najpierw poznać pewne działy informatyki, aby zobaczyć potrzebę stosowania matematyki.

Dla chętnych: proszę np. poczytać o zastosowaniach (UJ) w grafice komputerowej - strony od 155 - pochodne, styczne, ciągłość, funkcje gładkie i klas $C^{(k)}$, krzywe Hermite'a i Beziera, funkcje spline itd. (teraz wiadomo, dlaczego na ilustracji wcześniej podanej nie były styczne, tylko inne krzywe...). Szczegóły - oczywiście na innym przedmiocie, ale bez matematyki nie da się tego zrozumieć...

Grafika komputerowa ma **3 podstawowe działy**: podstawy matematyczne (transformacje, krzywe i powierzchnie, oświetlenie - algebra, geometria i analiza), później stosowanie istniejących bibliotek graficznych (np. Direct3D, WebGL) i na koniec aplikacje graficzne. Proszę pamiętać: bez pierwszej części nie poznamy możliwości i ograniczeń pozostałych dwóch działów.

Proszę też poczytać materiał dla początkujących grafików komputerowych por. strona 3 mini-kursu: okaże się po co nam pochodne...

Funkcje wielu zmiennych (a więc i powierzchnie 3D) będą przedstawiane w ramach kolejnego kursu analizy dla informatyków - dla chętnych...

Metoda Newtona obliczania miejsc zerowych funkcji (różniczkowalnych).

Wybieramy początkowy punkt c_1 aproksymacji miejsca zerowego c_0 . W punkcie $(c_1, f(c_1))$ prowadzimy styczną do wykresu funkcji f, która przetnie się z osią OX w punkcie $(c_2, 0)$. Teraz prowadzimy styczną do wykresu funkcji w punkcie $(c_2, f(c_2))$, a jej punkt wspólny z osią OX oznaczamy przez $(c_3, 0)$. Postępując tak dalej możemy oczekiwać, że c_n dąży do wartości c_0 (co stanowi jej przybliżenie). Teraz konkretnie:

$$y - f(c_1) = f'(c_1) \cdot (x - c_1)$$

jest równaniem stycznej do wykresu funkcji f w $(c_1, f(c_1))$. Stąd:

$$0 - f(c_1) = f'(c_1) \cdot (c_2 - c_1)$$
$$c_2 = c_1 - \frac{f(c_1)}{f'(c_1)}.$$

Metoda Newtona II.

Prowadząc dalej analogiczne rozumowanie otrzymamy:

$$c_{n+1}=c_n-\frac{f(c_n)}{f'(c_n)}.$$

Taki sposób postępowania nazywamy metodą Newtona.

Zbieżność metody Newtona.

Twierdzenie. Jeżeli $f:[a,b] \longrightarrow \mathbb{R}$ jest ciągła w [a,b] oraz:

- (a) istnieje miejsce zerowe funkcji f w przedziale (a, b),
- (b) f jest ściśle monotoniczna w [a, b],
- (c) f nie ma punktów przegięcia w [a, b],
- $\left(d\right) \quad \left|\frac{f(c)}{f'(c)}\right| \leq b a \ dla \ punktu \ c \in [a,b], \ w \ którym \mid f' \mid mawartość najmniejszą,$

wtedy ciąg aproksymacji metodą Newtona jest zbieżny dla dowolnego wyboru $c_1 \in [a, b]$.

Sprawdzajmy założenia...

Wzór to nie twierdzenie (ani algorytm), ma swoje założenia. Na rysunkach przypadki, w których metoda Newtona nie daje ciągu zbieżnego do rozwiązania (nie działa).

Proszę sprawdzić dlaczego?

Metoda Newtona III.

A teraz błąd oszacowania metody Newtona w n-tym kroku:

Twierdzenie. Jeżeli istnieje miejsce zerowe funkcji f w przedziale [a,b] oraz $|f''(x)| \le M$, $|f'(x)| \ge m > 0$ dla $x \in [a,b]$ i pewnych stałych $m, M \in \mathbb{R}$, to błąd oszacowania B_n w n-tym kroku metody Newtona ma następujące oszacowanie:

$$B_{n+1} \leq B_n^2 \cdot \frac{M}{2m}$$
.

Jak widać nie wyliczamy tu błędu, lecz podajemy zależność rekurencyjną błędów z kolejnych kroków.

Proszę zwrócić uwagę na wykorzystanie **wielu** pojęć wprowadzonych na tym wykładzie...

Uwaga.

Główny problem metody Newtona - konieczność znajomości pochodnej i jej obliczanie. Można zmodyfikować algorytm (metoda Steffensena) eliminując tę konieczność (tak naprawdę stosuje się iloraz różnicowy w miejsce pochodnej, czyli korzystamy z definicji pochodnej), ale nie ma "lepszych" metod - jest ona czasochłonna.

Dobry, polecany przez mnie: przegląd metod. Uwaga na założenia matematyczne!

Badanie przebiegu zmienności funkcji.

Korzystając z wprowadzonych wcześniej twierdzeń możemy określić własności funkcji na tyle dokładnie, że pozwala to na narysowanie (w miarę precyzyjnie) wykresu tej funkcji. Najpierw na przykładzie pokażemy niezbędne w tym celu czynności, a na zakończenie podsumujemy algorytm postępowania.

Niezbędne przy tym będą wszystkie wprowadzone wcześniej pojęcia i twierdzenia ...

Tu strona w Geogebrze, gdzie można prześledzić badanie przebiegu zmienności funkcji.

Algorytm postępowania.

W celu ułatwienia zadania naszkicowania wykresu funkcji stosujemy następujące kroki, zwane schematem badania funkcji. Należy:

- 1. wyznaczyć dziedzinę funkcji,
- 2. zbadać parzystość, nieparzystość i okresowość (tylko wtedy, gdy podejrzewamy, że taka własność zachodzi),
- wyznaczyć miejsca zerowe funkcji oraz punkty przecięcia z osią OY,
- wyznaczyć granice lub wartości na końcach przedziałów określoności funkcji,
- 5. wyznaczyć asymptoty pionowe i ukośne,
- 6. wyznaczyć przedziały monotoniczności i ekstrema lokalne,
- 7. wyznaczyć przedziały wypukłości i punkty przegięcia,
- 8. zebrać informacje w tabeli,
- 9. narysować wykres funkcji.

Uwaga: pewne kroki możemy opuścić - o ile nie wpływa to zasadniczo na zdolność wykonania wykresu, a są skomplikowane obliczeniowo (np. czcionką pochyloną powyżej lub przy skomplikowanych obliczeniach drugiej pochodnej).

Przykład.

Przykład 1.

$$f(x) = \frac{x^3 + 4}{x^2}$$

Najpierw musimy określić dziedzinę funkcji. Tu oczywiście $x^2 \neq 0$, a więc $D = \mathbb{R} \setminus \{0\}$. Granice funkcji na końcach przedziału określoności pozwolą w miarę dokładnie szkicować wykres:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3 + 4}{x^2} = -\infty ,$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = +\infty ,$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3 + 4}{x^2} = +\infty .$$

Następnie warto znaleźć punkty przecięcia wykresu z osiami współrzędnych. Tu, ponieważ $x \neq 0$, szukamy tylko wartości argumentu dla którego f(x) = 0.

Oczywiście
$$f(x) = 0 \iff x^3 + 4 = 0 \iff x = -\sqrt[3]{4}$$
.

Teraz znajdziemy asymptoty tej funkcji.

Pionową jest oczywiście x = 0, szukamy asymptot ukośnych. Niech y = mx + n, wówczas

$$m_1 = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3 + 4}{x^3} = 1$$

$$m_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = 1$$

funkcja ta ma więc co najwyżej jedną asymptotę.

$$n = \lim_{x \to \pm \infty} [f(x) - mx] = \lim_{x \to \pm \infty} \left[\frac{x^3 + 4}{x^2} - x \right] = \lim_{x \to \pm \infty} \frac{4}{x^2} = 0$$

Asymptotą ukośną jest więc prosta y = x.

Czas na badanie pochodnych funkcji f.

Obliczamy:

$$f'(x) = \left(\frac{x^3 + 4}{x^2}\right)' = \frac{3x^2 \cdot x^2 - 2x(x^3 + 4)}{x^4} = \frac{3x^4 - 2x^4 - 8x}{x^4} = \frac{x^3 - 8}{x^3}$$

dla $x \neq 0$.

Zbadamy dokładniej tę pochodną.

$$f'(x) = 0 \iff \frac{x^3 - 8}{x^3} = 0 \iff x^3 = 8 \iff x = 2$$

$$f'(x) > 0 \iff \frac{x^3 - 8}{x^3} > 0 \iff \frac{(x - 2)(x^2 + 2x + 4)}{x^3} > 0 \iff x \in (-\infty, 0) \cup (2, \infty)$$
oraz $f'(x) < 0 \iff x \in (0, 2)$

Funkcja jest więc rosnąca w przedziale $(-\infty,0)$ oraz w przedziale $(2,\infty)$, a malejąca w przedziale (0,2). Z definicji ekstremum wynika więc, że dla x=2 funkcja ma minimum lokalne oraz f(2)=3.

Zbadamy teraz drugą pochodną f''(x):

$$f''(x) = \left(\frac{x^3 - 8}{x^3}\right)' = \frac{3x^2 \cdot x^3 - 3x^2 \cdot (x^3 - 8)}{x^6} = \frac{24x^2}{x^6} = \frac{24}{x^4} ,$$

 $x \neq 0$. Stad oczywiście f''(x) > 0 dla $x \in (-\infty, 0) \cup (0, \infty)$.

Funkcja jest wypukła w przedziale $(-\infty,0)$ oraz w przedziale $(0,\infty)$.

Wyniki zbierzemy w postaci tabeli.

X	(-∞;0)	0	(0;2)	2	(2;∞)
f'(x)	+	X	_	0	+
f''(x)	+	X	+	+	+
f(x)	<i>→</i>	X	<i>\</i>	3_{min}	<i>></i>

Niezbędny jest komentarz: w pierwszym wierszu umieszczamy wszystkie punkty, które mogą ułatwić przygotowanie wykresu oraz przedziały pomiędzy nimi; w wierszach "f'(x)" oraz "f''(x)" podajemy jaki znak posiadają te pochodne w danym punkcie lub przedziale. Wreszcie ostatni wiersz to podsumowanie - strzałki mają sygnalizować wzrost (i wypukłość) funkcji, a w odpowiednich miejscach umieszczamy też wyliczone wcześniej granice. Warto tu zauważyć, że jest to także pewna forma kontroli - nie może być sprzeczności pomiędzy wzrostem funkcji, a jej granicami.

I na koniec - wykres...

