Controle Moderno

 $Controle\ moderno$

Contributors

Controle Moderno

Lists applicable industry, regulatory, and safety standards (e.g., ISO, SAE, MIL- STD, DO-178C, EASA, and so on) $\,$

Sumário

1. Introdução	03
2. Controlador PID	4
2.1 Ganho Proporcional	4
2.2 Ganho Integral	4
2.3 Ganho Derivativo	5
2.4 Controlador PID - Implementação prática	5
3. Variantes do Controlador PID	6
4. Controlador em Cascata	7
4.1 Conceitos	7
4.2 criterios de Implementação	7
4.3 Sintonia	8
5. Represesentação em espaço de Estados	9
6. Discretização do Espaço de Estados	9
7. Solução das Equações de Estado - caso contínuo	10
8. Espaço de Estados e Função de Transferência	10

Contributors

• Marcos Antonio Tomé Oliveira Graduando em engenharia mecatrônica 1 Controlador PID Controle Moderno

1 Controlador PID

O controlador PID apresenta o seguinte formato matematico

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s = K_p \left[1 + \frac{1}{T_i s} + T_d s \right]$$

Este atuador atua sobre o erro do sistema e(t) por meio de três ações de controle distintas - cada uma delas com um objetivo muito claro

1.1 Ganho Proporcional

A ação proporcional é dada por:

$$G_c(s) = \frac{U(s)}{E(s)} = K_p \cdot e(t)$$

Efeitos Positivos

- · Atua tanto na velocidade , quanto na precisão de resposta do sistema
- Reduz o tempo de subida (rise time)
- Melhora a rejeição a distúrbios
- atua sobre o estado atual do erro

Efeitos Negativos

- Pode causar instabilidade se muito alto
- Pode gerar overshoot excessivo
- Não elimina o erro em regime permanente

1.2 Efeitos do Ganho Integral

O segundo termo é dado por:

$$G_c(s) = \frac{U(s)}{E(s)} = \frac{K_i}{s} \rightarrow u(t) = \int_0^t K_i \cdot e(t)dt$$

Visa corrigir erros , integrando no decorrer do tempo

- Elimina o erro em regime permanente
- Melhora a precisão do sistema

- Compensa distúrbios constantes
- Aumenta a robustez do sistema
- Leva em conta os erros passados, quanto maior forem os erros acumulados , maior vai ser a ação integral sobre a malha de controle

Efeitos Negativos

- Pode causar instabilidade se muito alto
- Pode gerar overshoot excessivo
- Pode causar oscilações
- Aumenta o tempo de resposta

1.3 Ganho Derivativo

$$G_c(s) = \frac{U(s)}{E(s)} = K_d \cdot s \to u(t) = \frac{de(t)}{dt}$$

Onde K_d é ganho derivativo

Efeitos Positivos

- Reduz o overshoot (ultrapassagem)
- Melhora a estabilidade do sistema
- Amortece oscilações
- Atua como um freio que reduz mudanças bruscas no sinal de controle
- Responde à taxa de variação do erro, ajudando a prever o comportamento futuro do sistema

Efeitos Negativos

- Sensível a ruídos de alta frequência no sinal de erro
- Pode causar instabilidade se mal ajustado
- Não contribui para eliminar o erro em regime permanente
- Pode introduzir atraso na resposta se usado em excesso

2 Controlador PID - implementação prática

3 Variantes do Controlador PID

3.1

$$\int \int_V \mu(u,v) \, du \, dv$$
 $\int \int \int_V \mu(u,v,w) \, du \, dv \, dw$
 $\int \int \int \int_V \mu(t,u,v,w) \, dt \, du \, dv \, dw$
 $\int \cdots \int_V \mu(u_1,\ldots,u_k) \, du_1 \ldots du_k$

4 Controle em cascata Controle Moderno

4 Controle em cascata

• O controle em cascata é implementado quando a malha de controle simples já não responde satisfatoriamente, principalmente, em processos de grande inércia e quando o processo possui uma contínua perturbação na variável regulante

- O controle em cascata permite um controlador primário regular um secundário, melhorando a velocidade de resposta e reduzindo os distúrbios causados pela malha secundária.
- Uma malha de controle em cascata tem dois controladores com realimentação negativa, com a saída do controlador primário (mestre) estabelecendo o ponto de ajuste variável do controle secundário (escravo). A saída do controlador secundário vai para a válvula ou o elemento final de Controle
- O controle cascata é constituído de dois controladores normais e uma única válvula de controle, formando duas malhas fechadas.
- Só é útil desdobrar uma malha comum no sistema cascata quando for possível se dispor de uma variável intermediária conveniente mais rápida.

4.1 Conceitos

- O controle em cascata divide o processo em duas partes, duas malhas fechadas dentro de uma malha fechada.
- O controlador primário vê uma malha fechada como parte do processo.
- Idealmente, o processo deve ser dividido em duas metades, de modo que a malha secundaria seja fechada em torno da metade dos tempos de atraso do processo.
- Para ótimo desempenho, os elementos dinâmicos no processo devem também ser distribuídos equitativamente entre os dois controladores.
- É fundamental a escolha correta das duas variáveis do sistema de cascata, sem a qual o sistema não se estabiliza ou não funciona.
- a variável primária deve ser mais lenta que a variável secundária.
- a resposta da malha do controlador primário deve ser Controle em Cascata
- a resposta da malha do controlador primário deve ser mais lenta que a do primário.
- o período natural da malha primária deve ser maior que o da malha secundária.
- a banda proporcional do controlador primário deve ser mais larga que a do controlador secundário.
- a banda proporcional do controlador primário deve ser mais larga que o valor calculado para o seu uso isolado.

4.2 Criterios de implemetação

É recomendado quando se cumprem as seguintes condições:

- A malha simples não da uma resposta satisfatória (processo de dinâmica lenta, tempo morto grande em relação à constante de tempo, submetido a perturbações significativas, ...)
- Existe uma variável secundaria, X(s), medível a custo razoável, que satisfaz Aplicações do Controle em Cascata

4 Controle em cascata Controle Moderno

• Existe uma variável secundaria, X(s), medível a custo razoável, que satisfaz as seguintes condições:

- Deve indicar a existência de uma perturbação importante
- Deve existir uma relação causal entre a variável manipulada e a variável secundaria X (s) /M(s))
- A dinâmica da variável secundaria (X(s)/M(s)) deve ser mais rápida que a da variável primaria (Y(s)/X(s)). Desta forma, a malha interna controla a variável secundaria antes de que o efeito da perturbação se propague à variável primaria (variável controlada) de forma significativa

4.3 Sintonia

: primeiro se ajustam os parâmetros do controlador secundário. Posteriormente, com a malha secundaria ferrado, se ajustam os do controlador primário.

Etapas

SINTONÍA DA MALHA SECUNDARIA

Obter um modelo da parte do processo incluída no secundário (modelo fenomenológico ou modelo experimental)ou modelo experimental)

Sintonizar o controlador secundário por qualquer dos métodos conhecidos (normalmente se utiliza um PI já que o secundário deve ser uma malha rápida)

SINTONÍA DA MALHA PRIMARIA

Obter um modelo da variável controlada a mudanças no SP do controlador secundário (com malha secundaria fechada).

Sintonizar o controlador primário por algum dos métodos conhecidos.

Figura 1: Malha em cascata

1. Malha Interna

$$\frac{C_2}{R_2} = \frac{G_{p2}G_{v2}G_{c2}}{1 + G_{p2}G_{v2}G_{c2}G_{m2}} = G_{cl2} \tag{1}$$

2. Malha Externa

$$\frac{C_1}{R_1} = \frac{G_{p1}G_{cl2}G_{c1}}{1 + G_{p1}G_{cl2}G_{c1}G_{m1}} \tag{2}$$

5 Representação em espaço de estados

$$m\ddot{x} = F(t) - b\dot{x} - Kx(t)$$

Considerando a dinâmica acima de uma massa-mola-amortecedor, temos mcomo massa , b é a constante de amortecimento,F(t) é a força aplicada e x(t) é a posição da mola

- Note que para sabermos o valor da aceleraçãoem qualquer instante, precisamos apenas dos valores de posição e velocidade
- Assim a posição e velocidadesão variaveis de estado do sistema, pois definem complemente a evolução temporal do sistema.
- A condição de posição e velocidade em um dado tempo t é chamado de estado do sistema naquele tempo t

Chamamos de espaço de estdos a evolução temporal das variaveis de estado de um sistema físico A escolha das váriaveis é arbitrária , mas o número de variaveis é sempre igual a ordem da respectiva equação diferencial

Para um sistema contínuo com r entradas, p saídas e n variáveis de estado, podemos construir os vetores:

$$\vec{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_r(t) \end{bmatrix}, \quad \vec{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_p(t) \end{bmatrix}, \quad \vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

onde $\vec{u}(t)$ é o vetor de entradas, $\vec{y}(t)$ é o vetor de saídas e $\vec{x}(t)$ é o vetor de variáveis de estado.

A evolução dos estados expressa por sua derivada e a evolução da saída são duas funções vetoriais das variáveis de estado e entradas atuais:

$$\begin{cases} \dot{\vec{x}}(t) = \vec{f}(\vec{x}(t), \vec{u}(t)) \\ \vec{y}(t) = \vec{g}(\vec{x}(t), \vec{u}(t)) \end{cases}$$

$$(3)$$

Se as funções \vec{f} e \vec{g} são lineares e invariantes no tempo, então podemos escrever as equações anteriores na forma:

$$\begin{cases} \dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) \\ \vec{y}(t) = C\vec{x}(t) + D\vec{u}(t) \end{cases}$$
(4)

onde $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{p \times n}$ e $D \in \mathbb{R}^{p \times r}$ são matrizes constantes.

6 Discretização do espaço de estados

Tomemos as equações de estado contínuas:

$$\begin{cases} \dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) \\ \vec{y}(t) = C\vec{x}(t) + D\vec{u}(t) \end{cases}$$
(14)

e considere que desejamos discretizar este sistema com um tempo de amostragem T_s ;

• Note que as variáveis serão então amostradas, levando a uma sequência de amostras no tempo $k \in \mathbb{N}$ (contador inteiro do tempo de amostragem). Isso levará a:

$$\vec{x}(k \cdot T_s) = \vec{x}[k], \quad \vec{u}(k \cdot T_s) = \vec{u}[k], \quad \vec{y}(k \cdot T_s) = \vec{y}[k];$$

• Para a derivada, podemos adotar uma aproximação discreta:

$$\dot{\vec{x}}(t) \approx \frac{\vec{x}[k+1] - \vec{x}[k]}{T_s}$$

Levando esses resultados na primeira equação de estado, vemos que:

$$\vec{x}[k+1] - \vec{x}[k] = T_s A \vec{x}[k] + T_s B \vec{u}[k]$$
(16)

$$\vec{x}[k+1] = T_s A \vec{x}[k] + T_s B \vec{u}[k] + \vec{x}[k] \tag{17}$$

$$\vec{x}[k+1] = (T_s A + I)\vec{x}[k] + T_s B\vec{u}[k] \tag{18}$$

$$\vec{x}[k+1] = A_d \vec{x}[k] + B_d \vec{u}[k] \tag{19}$$

Já a segunda equação fica:

$$\vec{y}[k] = C\vec{x}[k] + D\vec{u}[k] \tag{20}$$

$$\vec{y}[k] = C_d \vec{x}[k] + D_d \vec{u}[k] \tag{21}$$

Então, as equações de estado do sistema discreto ficam:

$$\begin{cases} \vec{x}[k+1] = A_d \vec{x}[k] + B_d \vec{u}[k] \\ \vec{y}[k] = C_d \vec{x}[k] + D_d \vec{u}[k] \end{cases}$$

No caso discreto, a solução é obtida recursivamente. Então, tendo as equações:

$$\begin{cases} \vec{x}[k+1] = A_d \vec{x}[k] + B_d \vec{u}[k] \\ \vec{y}[k] = C_d \vec{x}[k] + D_d \vec{u}[k] \end{cases}$$
(23)

É fácil ver que:

$$\vec{x}[1] = A_d \vec{x}[0] + B_d \vec{u}[0]$$

$$\vec{x}[2] = A_d \vec{x}[1] + B_d \vec{u}[1] = A_d^2 \vec{x}[0] + A_d B_d \vec{u}[0] + B_d \vec{u}[1]$$
(24)

Então, a forma geral da solução das equações de estado fica:

$$\vec{x}[k] = A_d^k \vec{x}[0] + \sum_{m=0}^{k-1} A_d^{k-1-m} B_d \vec{u}[m]$$
(25)

$$\vec{y}[k] = C_d A_d^k \vec{x}[0] + \sum_{m=0}^{k-1} C_d A_d^{k-1-m} B_d \vec{u}[m] + D_d \vec{u}[k]$$

7 Solução das Equações de Estado – Caso Contínuo

Dadas as equações de estado:

$$\begin{cases} \dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) \\ \vec{y}(t) = C\vec{x}(t) + D\vec{u}(t) \end{cases}$$
(9)

As entradas $(\vec{u}(t))$ e as condições iniciais $(\vec{x}(0))$, desejamos obter a evolução temporal das variáveis de estado (o que se reduz à solução da própria equação diferencial original do sistema).

Para isso, multiplicando-se ambos os lados da primeira equação por e^{-At} , temos:

$$e^{-At}\dot{\vec{x}}(t) - e^{-At}A\vec{x}(t) = \frac{d}{dt}\left(e^{-At}\vec{x}(t)\right) = e^{-At}B\vec{u}(t)$$
(10)

Integrando-se de 0 a t, temos:

$$e^{-At}\vec{x}(t) - \vec{x}(0) = \int_0^t e^{-A\tau} B\vec{u}(\tau) d\tau$$

Logo, a solução da equação de estado é dada por:

$$\vec{x}(t) = e^{At}\vec{x}(0) + \int_0^t e^{A(t-\tau)}B\vec{u}(\tau) d\tau$$

Multiplicando-se ambos os lados da primeira equação por e^{-At} , temos:

$$e^{-At}\dot{\vec{x}}(t) - e^{-At}A\vec{x}(t) = \frac{d}{dt}\left(e^{-At}\vec{x}(t)\right) = e^{-At}B\vec{u}(t)$$
 (10)

Integrando-se de 0 a t, temos:

$$e^{-At}\vec{x}(t) - \vec{x}(0) = \int_0^t e^{-A\tau}B\vec{u}(\tau) d\tau$$

Multiplicando ambos os lados por e^{At} :

$$\vec{x}(t) = e^{At}\vec{x}(0) + e^{At} \int_0^t e^{-A\tau} B\vec{u}(\tau) d\tau$$

Pela propriedade:

$$e^{At}e^{-A\tau} = e^{A(t-\tau)}$$

Podemos reescrever a solução como:

$$\vec{x}(t) = e^{At}\vec{x}(0) + \int_0^t e^{A(t-\tau)}B\vec{u}(\tau) d\tau$$

8 Espaço de Estados e Função de Transferência

Tomemos um sistema SISO (uma entrada, uma saída) contínuo, com sua representação no espaço de estados:

$$\begin{cases} \dot{\vec{x}}(t) = \mathbf{A}\vec{x}(t) + \mathbf{B}u(t) \\ y(t) = \mathbf{C}\vec{x}(t) + \mathbf{D}u(t) \end{cases}$$
 (27)

Se aplicarmos a Transformada de Laplace na primeira equação, assumindo condições iniciais nulas, temos:

$$s\vec{X}(s) = \mathbf{A}\vec{X}(s) + \mathbf{B}U(s) \Rightarrow \vec{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s)$$
(28)

Aplicando a Transformada de Laplace na segunda equação:

$$Y(s) = \mathbf{C}\vec{X}(s) + \mathbf{D}U(s) \tag{5}$$

Autovalores de A e Polos

Tomemos a função de transferência na representação em espaço de estados:

$$\frac{Y(\nu)}{U(\nu)} = \mathbf{C}(\nu \mathbf{I} - \mathbf{A})^{-1} \mathbf{B},\tag{33}$$

supondo $\mathbf{D} = 0$ (não há caminho direto entre a entrada e a saída), e $\nu = s$ (caso contínuo) ou $\nu = z$ (caso discreto);

A inversa pode ser calculada como:

$$(\nu \mathbf{I} - \mathbf{A})^{-1} = \frac{\operatorname{Adj}(\nu \mathbf{I} - \mathbf{A})}{\det(\nu \mathbf{I} - \mathbf{A})};$$
(34)

Agora, pensemos em um sistema de ordem n, com uma entrada e uma saída (o que é necessário para chegarmos a uma função de transferência). Neste caso, as dimensões das matrizes serão:

$$\mathbf{A} \in \mathbb{C}^{n \times n}, \quad \mathbf{B} \in \mathbb{C}^{n \times 1}, \quad \mathbf{C} \in \mathbb{C}^{1 \times n}.$$

Ora, a adjunta de uma matriz tem a mesma dimensão desta matriz. E $\det(\nu \mathbf{I} - \mathbf{A})$ é o polinômio característico da matriz \mathbf{A} ;

Além disso, \mathbf{C} Adj $(\nu \mathbf{I} - \mathbf{A})$ \mathbf{B} tem dimensão de um escalar. Ou seja, esta expressão forma um polinômio na variável ν .

Espaço de estados e função de transferência

Então,

$$Y(s) = \left(\mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}\right)U(s); \tag{30}$$

Logo, a função de transferência em função das matrizes da representação em espaço de estados é:

$$\frac{Y(s)}{U(s)} = \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D};$$
(31)

Expressão absolutamente idêntica pode ser obtida para um sistema discreto, com aplicação da transformada Z:

$$\frac{Y(z)}{U(z)} = \mathbf{C}[z\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}; \tag{6}$$

- Isso implica que $C\mathrm{Adj}(sI-A)B$ forma o polinômio numerador da função de transferência. As raízes deste polinômio dão os zeros da função de transferência;
- E implica também que $\det(sI-A)$ é o polinômio denominador da função de transferência. As raízes deste polinômio dão os polos da função de transferência;
- Mas as raízes do polinômio anterior equivalem aos <u>autovalores</u> da matriz A;
- Assim: os autovalores da matriz A equivalem aos polos da função de transferência!

8.1 BIBO-estabilidade

• Uma entrada u(t) é dita ser limitada se

$$|u(t)| \le u_m < \infty, \quad \forall t \ge 0.$$
 (35)

- Um SLIT (sistema linear invariante no tempo) é dito ser BIBO-estável (bounded-input, bounded-output) se toda entrada limitada produz uma saída limitada;
- Um SLIT é BIBO-estável se e somente se sua resposta ao impulso é absolutamente integrável (somável) em $[0, \infty)$, ou,

$$\int_0^\infty |g(t)| dt \le M < \infty, \quad \text{ou} \quad \sum_{k=0}^\infty |g[k]| \le M < \infty. \quad (36)$$

para algum M, onde g(t) e g[k] é a resposta do sistema ao impulso, respectivamente para o caso contínuo e discreto.

BIBO-estabilidade

- Um SLIT é BIBO-estável se e somente se todos os seus polos (autovalores):
 - ① caso contínuo: têm parte real negativa;
 - 2 caso discreto: têm módulo menor que 1;
- Isso implica, no caso contínuo, que todos os polos (autovalores) do sistema estejam alocados no semiplano esquerdo do plano s;
- Isso implica, no caso discreto, que todos os polos (autovalores) do sistema estejam alocados no disco unitário, centrado na origem do plano z;
- A BIBO-estabilidade considera a resposta do sistema com condições iniciais nulas e uma entrada qualquer.