CLAIMS

What is claimed is:

1. A compound of Formula (I):

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Q is
$$-(CR^7R^{7a})_{m}-R^4$$
, $-(CR^7R^{7a})_{n}-S-R^4$, $-(CR^7R^{7a})_{n}-O-R^4$, $-(CR^7R^{7a})_{m}-N(R^{7b})-R^4$, $-(CR^7R^{7a})_{n}-S(=O)-R^4$, $-(CR^7R^{7a})_{n}-S(=O)_2-R^4$, or $-(CR^7R^{7a})_{n}-C(=O)-R^4$; provided when n is 0, then R^4 is not H;

m is 1, 2, or 3;

n is 0, 1, or 2;

 R^4 is H.

C₁-C₈ alkyl substituted with 0-3 R^{4a},

C2-C8 alkenyl substituted with 0-3 R^{4a},

C2-C8 alkynyl substituted with 0-3 R^{4a},

C3-C10 carbocycle substituted with 0-3 R4b,

C6-C10 aryl substituted with 0-3 R4b, or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};
- R^{4a} , at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, OR^{14a}, OR²², SR²², C(=O)OR²², NR²¹R²², S(=O)R²², S(=O)2R²²,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C3-C10 carbocycle substituted with 0-3 R^{4b},

C6-C10 aryl substituted with 0-3 R4b, and

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};
- R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b};

C2-C6 alkenyl substituted with 0-3 R5b;

C2-C6 alkynyl substituted with 0-3 R5b;

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c}:

C6-C₁₀ aryl substituted with 0-3 R^{5c}; and

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};
- R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =0, CN, NO₂, NR¹⁵R¹⁶.

C3-C10 carbocycle substituted with 0-3 R5c;

C6-C10 aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁶ is H;

C₁-C₆ alkyl substituted with 0-3 R^{6a};

C3-C10 carbocycle substituted with 0-3 R^{6b}; or

C6-C₁₀ aryl substituted with 0-3 R^{6b};

R^{6a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, aryl or CF₃;

 R^{6b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

R⁷, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7a}, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7b} is H or C₁-C₄ alkyl;

Ring B is a 7 membered lactam,

wherein the lactam is saturated, partially saturated or unsaturated; wherein each additional lactam carbon is substituted with 0-2 R^{11} ; and, optionally, the lactam contains a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)2-, -N=, -NH-, and -N(R^{10})-;

- additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R¹³;
- additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;
- additionally, two R¹¹ substituents on the same or adjacent carbon atoms may be combined to form a C₃-C₆ carbocycle substituted with 0-3 R¹³;
- R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, S(=O)₂R¹⁷;

C₁-C₆ alkyl optionally substituted with 0-3 R¹⁰a;

C6-C₁₀ aryl substituted with 0-4 R^{10b};

C3-C10 carbocycle substituted with 0-3 R^{10b}; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};
- R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or aryl substituted with 0-4 R^{10b}:
- R^{10b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄
- R¹¹, at each occurrence, is independently selected from

H, C_1 - C_4 alkoxy, C_1 , F, B_7 , I, =O, C_1 , C_2 , C_3 , C_4 , C_5

C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};

C6-C10 aryl substituted with 0-3 R^{11b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃; phenyl substituted with 0-3 R^{11b};

C3-C6 cycloalkyl substituted with 0-3 R^{11b}; and

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};
- R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

W is a bond or $-(CR^8R^{8a})_{p}$ -;

p is 0, 1, 2, 3, or 4;

R⁸ and R^{8a}, at each occurrence, are independently selected from H, F, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl and C₃-C₈ cycloalkyl;

X is a bond;

C6-C₁₀ aryl substituted with 0-3 R^{Xb};
C3-C₁₀ carbocycle substituted with 0-3 R^{Xb}; or
5 to 10 membered heterocycle substituted with 0-2 R^{Xb};

R^{Xb}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ halothioalkoxy;

Y is a bond or $-(CR^9R^{9a})_{t}-V-(CR^9R^{9a})_{u}$;

t is 0, 1, or 2;

u is 0, 1, or 2;

R⁹ and R^{9a}, at each occurrence, are independently selected from H, F, C₁-C₆ alkyl or C₃-C₈ cycloalkyl;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C2-C6 alkenyl substituted with 0-3 R^{12a};

C2-C6 alkynyl substituted with 0-3 R^{12a};

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C3-C10 carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)2CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, aryl, C₃-C₆ cycloalkyl, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

- R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- R¹⁶, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;
- R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, aryl substituted by 0-4 R^{17a}, or -CH₂-aryl substituted by 0-4 R^{17a};
- R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;
- R¹⁸, at each occurrence, is independently selected from

H,
$$C_1$$
- C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)- $C(=O)$ -, and $(C_1$ - C_6 alkyl)- $S(=O)$ 2-;

R¹⁹, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R^{19b}, at each occurrence, is independently is H or C₁-C₄ alkyl;

 R^{21} is H, phenyl, benzyl, or C_1 - C_4 alkyl; and

R²² is C₁-C₄ alkyl, C₂-C₄ alkenyl, or C₃-C₄ alkynyl.

2. A compound, according to Claim 1, of Formula (I) or a pharmaceutically acceptable salt or prodrug thereof, wherein:

$$\begin{array}{c} \text{Q is -}(\text{CR}^{7}\text{R}^{7a})_{m}\text{-R}^{4}, \\ \text{-}(\text{CR}^{7}\text{R}^{7a})_{n}\text{-S-R}^{4}, \\ \text{-}(\text{CR}^{7}\text{R}^{7a})_{n}\text{-O-R}^{4}, \text{ or} \\ \text{-}(\text{CR}^{7}\text{R}^{7a})_{m}\text{-N}(\text{R}^{7b})\text{-R}^{4}; \end{array}$$

m is 1 or 2;

n is 0 or 1;

R⁴ is H.

C₁-C₈ alkyl substituted with 0-3 R^{4a}.

C2-C8 alkenyl substituted with 0-3 R^{4a},

C2-C8 alkynyl substituted with 0-3 R^{4a},

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C10 aryl substituted with 0-3 R4b, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

 R^{4a} , at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, OR^{14a}, C(=O)OR²², SR²², OR²², NR²¹R²², S(=O)R²², S(=O)2R²²,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C3-C10 carbocycle substituted with 0-3 R4b,

C6-C10 aryl substituted with 0-3 R4b, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b};

C2-C6 alkenyl substituted with 0-3 R5b;

C2-C6 alkynyl substituted with 0-3 R^{5b};

C3-C10 carbocycle substituted with 0-3 R5c;

C6-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =0, CN, NO₂, NR¹⁵R¹⁶;

C3-C10 carbocycle substituted with 0-3 R5c;

C6-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁶ is H, methyl, or ethyl;

R⁷, at each occurrence, is independently H or C₁-C₄ alkyl;

 R^{7a} , at each occurrence, is independently H or C_1 - C_4 alkyl;

R^{7b} is H or C₁-C₄ alkyl;

Ring B is selected from:

$$R^{13}$$
 R^{13} R^{13} R^{13} R^{13} R^{13} R^{13} R^{13} R^{13}

 R^{10} is H, C(=O) R^{17} , C(=O)O R^{17} , C(=O)N $R^{18}R^{19}$, S(=O)2N $R^{18}R^{19}$, S(=O)2 R^{17} :

C₁-C₆ alkyl optionally substituted with 0-3 R¹⁰a;

C6-C₁₀ aryl substituted with 0-4 R^{10b};

C3-C10 carbocycle substituted with 0-3 R^{10b}; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};
- R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or aryl substituted with 0-4 R^{10b};
- R^{10b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl-S-;

R¹¹, at each occurrence, is independently selected from

H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, $NR^{18}R^{19}$, C(=O) R^{17} , C(=O) $R^{18}R^{19}$, S(=O)₂ $R^{18}R^{19}$, CF₃;

C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};

C6-C₁₀ aryl substituted with 0-3 R^{11b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};
- R^{11a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃;

phenyl substituted with 0-3 R^{11b}; C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

W is a bond or -(CH₂)_p-;

p is 1 or 2;

X is a bond:

phenyl substituted with 0-2 R^{Xb} ; C3-C6 carbocycle substituted with 0-2 R^{Xb} ; or 5 to 6 membered heterocycle substituted with 0-2 R^{Xb} ;

R^{Xb}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkyl, C₁-C₃ haloalkoxy, and C₁-C₃ halothioalkoxy;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)2-, $-N(R^{19})$ -, $-C(=O)NR^{19b}$ -, $-NR^{19b}S(=O)$ 2-, $-S(=O)2NR^{19b}$ -, $-NR^{19b}S(=O)$ -, $-S(=O)NR^{19b}$ -, -C(=O)O-, or -OC(=O)-;

Z is H;

C1-C8 alkyl substituted with 0-3 R^{12a};

C2-C6 alkenyl substituted with 0-3 R^{12a};

C2-C6 alkynyl substituted with 0-3 R12a;

C6-C₁₀ aryl substituted with 0-4 R^{12b};

 C_3 - C_{10} carbocycle substituted with 0-4 R^{12b} ; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}:

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)2CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C6-C₁₀ aryl substituted with 0-4 R^{12b}:

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)2CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

- R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- R¹⁶, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;

R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, aryl substituted by 0-4 R^{17a}, or -CH₂-aryl substituted by 0-4 R^{17a};

 R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF3, OCF3, SCH3, S(O)CH3, SO2CH3, -NH2, -N(CH3)2, or C1-C4 haloalkyl;

R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;

R^{19b}, at each occurrence, is independently is H or C₁-C₄ alkyl;

 R^{21} is H, phenyl, benzyl, or C_1 - C_4 alkyl; and

R²² is C₁-C₄ alkyl, C₂-C₄ alkenyl, or C₃-C₄ alkynyl.

3. A compound, according to Claim 2, of Formula (Ib):

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

```
Q is -(CHR<sup>7</sup>)<sub>m</sub>-R<sup>4</sup>,

-(CHR<sup>7</sup>)<sub>n</sub>-S-R<sup>4</sup>,

-(CHR<sup>7</sup>)<sub>n</sub>-O-R<sup>4</sup>, or

-(CHR<sup>7</sup>)<sub>m</sub>-N(R<sup>7b</sup>)-R<sup>4</sup>;
```

m is 1 or 2;

n is 0 or 1;

 R^4 is H,

C₁-C₈ alkyl substituted with 0-3 R^{4a},

C2-C8 alkenyl substituted with 0-3 R4a,

C2-C8 alkynyl substituted with 0-3 R^{4a},

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C₁₀ aryl substituted with 0-3 R^{4b}, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R⁴b;

 $R^{4a},$ at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO2, NR15R16, CF3, OR14a, C(=O)OR22, SR22, OR22, NR21R22, S(=O)R22, S(=O)2R22,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C3-C10 carbocycle substituted with 0-3 R4b,

C6-C10 aryl substituted with 0-3 R4b, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H:

C1-C6 alkyl substituted with 0-3 R^{5b}:

C2-C6 alkenyl substituted with 0-3 R^{5b};

C2-C6 alkynyl substituted with 0-3 R^{5b}:

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C6-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =0, CN, NO₂, R¹⁵R¹⁶;

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C6-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁷, at each occurrence, is independently H, methyl, or ethyl;

R^{7b} is H, methyl, or ethyl;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from

H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, $NR^{18}R^{19}$, C(=O) R^{17} , C(=O) $R^{18}R^{19}$, S(=O) $R^{18}R^{19}$, CF₃;

C1-C6 alkyl optionally substituted with 0-3 R11a;

C6-C₁₀ aryl substituted with 0-3 R^{11b};

C3-C10 carbocycle substituted with 0-3 R^{11b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃; phenyl substituted with 0-3 R^{11b};

C3-C6 cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

```
W is a bond;
X is a bond;
```

Y is a bond;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C2-C6 alkenyl substituted with 0-3 R^{12a};

C2-C6 alkynyl substituted with 0-3 R^{12a};

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C3-C10 carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂,
$$NR^{15}R^{16}$$
, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

 C_1 - C_4 haloalkoxy, and C_1 - C_4 haloalkyl-S-;

 R^{13} , at each occurrence, is independently selected from

H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR¹⁵R¹⁶, and CF3;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

- R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- R¹⁶, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;
- R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, aryl substituted by 0-4 R^{17a}, or -CH₂-aryl substituted by 0-4 R^{17a};
- R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;
- R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;
- R^{21} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

4. A compound according to Claim 3 of Formula (I) or a pharmaceutically acceptable salt or prodrug thereof, wherein:

```
\label{eq:Qis-quantum} \begin{array}{l} \text{Q is -(CH_2)_m-R^4,} \\ \text{-(CH_2)_n-S-R^4,} \\ \text{-(CH_2)_m-O-R^4,} \text{ or} \\ \text{-(CH_2)_m-N(H)-R^4;} \\ \\ \text{m is 1 or 2;} \\ \\ \text{n is 0 or 1;} \end{array}
```

R⁴ is C₁-C₈ alkyl substituted with 0-3 R^{4a},

C2-C8 alkenyl substituted with 0-3 R4a,

C2-C8 alkynyl substituted with 0-3 R4a,

 C_3 - C_{10} carbocycle substituted with 0-3 R^{4b} ,

C6-C₁₀ aryl substituted with 0-3 R^{4b}, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

 $R^{4a},$ at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO2, NR^{15}R^{16}, CF_3, C(=O)OR^{22}, SR^{22}, OR^{22}, OR^{14a}, NR^{21}R^{22}, S(=O)R^{22}, S(=O)_2R^{22},

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C10 aryl substituted with 0-3 R4b, and

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};
- R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)2CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b}:

C2-C6 alkenyl substituted with 0-3 R^{5b};

C2-C6 alkynyl substituted with 0-3 R^{5b};

C3-C10 carbocycle substituted with 0-3 R5c;

C6-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

 R^{5b} , at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, R¹⁵R¹⁶;

C3-C10 carbocycle substituted with 0-3 R^{5c};

C6-C10 aryl substituted with 0-3 R5c; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and

C₁-C₄ haloalkoxy;

Ring B is selected from:

$$R^{11}$$
, and R^{13}

 R^{11} , at each occurrence, is independently selected from H, =O, $NR^{18}R^{19}$, CF_3 ;

C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b};

C3-C6 carbocycle substituted with 0-3 R^{11b}; and

- 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{11a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};
- R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C2-C6 alkenyl substituted with 0-3 R^{12a}; or

C2-C6 alkynyl substituted with 0-3 R^{12a};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃,

 $S(=O)CH_3, S(=O)_2CH_3,$

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}; and wherein said 5 to 10 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl;

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR¹⁵R¹⁶, and CF3;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

- R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-;
- R¹⁶, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-; and
- alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-6 membered ring wherein said 4-6 membered ring optionally contains an additional heteroatom selected from O or NH, wherein said 4-6 membered ring is selected from imidazolidinyl, oxazolidinyl, thiazolidinyl, piperazinyl, morpholinyl, and thiomorpholinyl;
- R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;
- R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;
- R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and
- R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.
- 5. A compound according to Claim 4 wherein:

R⁴ is C₁-C₆ alkyl substituted with 0-3 R^{4a}, C₂-C₆ alkenyl substituted with 0-3 R^{4a}.

C2-C6 alkynyl substituted with 0-3 R^{4a},

C3-C6 carbocycle substituted with 0-3 R4b,

phenyl substituted with 0-3 R^{4b}, or

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};
- R^{4a} , at each occurrence, is independently selected from H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR^{14a}, OR²², NR²¹R²², S(=O)R²², S(=O)2R²²,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C10 aryl substituted with 0-3 R4b, and

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};
- R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H:

C₁-C₆ alkyl substituted with 0-3 R^{5b};

C2-C6 alkenyl substituted with 0-3 R5b; or

C2-C6 alkynyl substituted with 0-3 R5b;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF3, Cl, F, Br, I, =O;

C3-C6 carbocycle substituted with 0-3 R5c;

phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

$$R^{13}$$
 R^{13}
 R^{13}

R¹¹, at each occurrence, is independently selected from

H, =0, $NR^{18}R^{19}$, CF_3 ;

C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b};

C₃-C₆ carbocycle substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

- R^{11a}, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};
- R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₄ alkyl substituted with 0-3 R¹²a;

C2-C4 alkenyl substituted with 0-3 R^{12a}; or

C2-C4 alkynyl substituted with 0-3 R^{12a};

- R^{12a}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;
- R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

 R^{14} is H, phenyl, benzyl, C_1 - C_4 alkyl, or C_2 - C_4 alkoxyalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₄ alkyl, and benzyl;

 R^{16} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=O)-, ethyl-C(=O)-,

methyl-S(=O)2-, and ethyl-S(=O)2-;

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R¹⁹, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

6. A compound according to Claim 5 or a pharmaceutically acceptable salt or prodrug thereof wherein:

Q is -CH₂R⁴, -O-R⁴, or -CH₂-NH-R⁴;

R⁴ is C₁-C₆ alkyl substituted with 0-2 R^{4a},

C₂-C₆ alkenyl substituted with 0-2 R^{4a},

C₂-C₆ alkynyl substituted with 0-2 R^{4a}, or

C₃-C₆ cycloalkyl substituted with 0-3 R^{4b};

 R^{4a} , at each occurrence, is independently selected from is H, OH, F, Cl, Br, I, CN, $NR^{15}R^{16}$, CF3, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, OCF3; C3-C6 carbocycle substituted with 0-3 R^{4b} , or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁵ is H:

C₁-C₄ alkyl substituted with 0-1 R^{5b};

C2-C4 alkenyl substituted with 0-1 R5b; or

C2-C4 alkynyl substituted with 0-1 R5b;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF3;

C3-C6 carbocycle substituted with 0-2 R5c;

phenyl substituted with 0-3 R5c; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

$$R^{11}$$
, and R^{13}

R¹¹, at each occurrence, is independently selected from

 $H, =0, NR^{18}R^{19};$

C₁-C₄ alkyl optionally substituted with 0-1 R^{11a};

phenyl substituted with 0-3 R^{11b};

- 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{11a} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, phenoxy, F, Cl, =O, $NR^{15}R^{16}$, CF3, or phenyl substituted with 0-3 R^{11b} ;
- R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₄ alkyl substituted with 0-1 R¹²a;

C2-C4 alkenyl substituted with 0-1 R12a; or

C2-C4 alkynyl substituted with 0-1 R^{12a};

- R^{12a}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;
- R¹³, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;
- R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
- R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl; and
- R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, and phenethyl;
- R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- R¹⁹, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl.
- 7. A compound according to Claim 6 wherein:
- R^5 is -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃,
 - -CH2CH2CH2CH3, -CH2CH2CH(CH3)2,-CH2CH2CH2CH2CH2CH3,
 - -CH₂CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂NH₂,
 - -CH₂N(CH₃)₂, -CH₂N(CH₂CH₃)₂, -CH₂CH₂NH₂, -CH₂CH₂N(CH₃)₂,
 - -CH2CH2N(CH2CH3)2, -CH2-cyclopropyl, -CH2-cyclobutyl,
 - -CH2-cyclopentyl, -CH2-cyclohexyl,
 - -CH2CH2-cyclopropyl, -CH2CH2-cyclobutyl,
 - -CH2CH2-cyclopentyl, or -CH2CH2-cyclohexyl;

```
CH2CH2CH2CH2CH3, -CH2CH2CH(CH3)2, -CH2CH2CH2CH2CH2CH3CH3, -
       CH2CH2CH2CH(CH3)2, -CH2CH2CH2CH2CH2CH2CH3,
       -CH2CH2CH2CH(CH3)2, -CH2-cyclopropyl,
       -CH2-cyclobutyl, -CH2-cyclopentyl, -CH2-cyclohexyl,
       -CH2CH2-cyclopropyl, -CH2CH2-cyclobutyl,
       -CH2CH2-cyclopentyl, -CH2CH2-cyclohexyl,
       -OCH3, -OCH2CH3, -OCH2CH2CH3, -OCH(CH3)2,
       -OCH2CH2CH2CH3, -OCH2CH(CH3)2, -OCH2CH2CH(CH3)2,
       -OCH2CH2CH2CH2CH3, -OCH2CH2CH2CH2CH2CH3,
       -OCH2CH2CH2CH(CH3)2, -OCH2CH2CH2CH2CH(CH3)2,
       -OCH2-cyclopropyl, -OCH2-cyclobutyl,
       -OCH2-cyclopentyl, -OCH2-cyclohexyl,
       -OCH2CH2-cyclopropyl, -OCH2CH2-cyclobutyl,
       -OCH2CH2-cyclopentyl,-OCH2CH2-cyclohexyl,
       -CH2OCH2CH3, -CH2OCH2CH3, -CH2-OCH(CH3)2,
       -CH2OCH2CH2CH2CH3, -CH2OCH2CH(CH3)2,
       -CH2OCH2CH2CH2CH2CH3, -CH2OCH2CH2CH(CH3)2,
       -CH2OCH2CH2CH2CH(CH3)2, -CH2O-cyclopropyl,
       -CH2O-cyclobutyl, -CH2O-cyclopentyl,
       -CH2O-cyclohexyl, -CH2OCH2-cyclopropyl,
       -CH2OCH2-cyclobutyl, -CH2OCH2-cyclopentyl,
       -CH2OCH2-cyclohexyl; -CH2(NH)CH3,
       -CH<sub>2</sub>(NH)CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>(NH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-(NH)CH(CH<sub>3</sub>)<sub>2</sub>,
       -CH<sub>2</sub>(NH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>(NH)CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>,
       -CH<sub>2</sub>(NH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>(NH)CH<sub>2</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>,
       -CH2(NH)CH2CH2CH2CH(CH3)2, -CH2(NH)-cyclopropyl,
       -CH<sub>2</sub>(NH)-cyclobutyl, -CH<sub>2</sub>(NH)-cyclopentyl,
       -CH2(NH)-cyclohexyl, -CH2(NH)CH2-cyclopropyl,
       -CH2(NH)CH2-cyclobutyl, -CH2(NH)CH2-cyclopentyl,
       or -CH<sub>2</sub>(NH)CH<sub>2</sub>-cyclohexyl;
```

-162-of-184-

W is a bond; X is a bond;

```
Y is a bond;
Z is methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, s-butyl, t-butyl, or allyl;
R<sup>11</sup>, at each occurrence, is independently selected from
    H, =O, methyl, ethyl, phenyl, benzyl, phenethyl,
    4-F-phenyl, (4-F-phenyl)CH2-, (4-F-phenyl)CH2CH2-,
    3-F-phenyl, (3-F-phenyl)CH2-, (3-F-phenyl)CH2CH2-,
    2-F-phenyl, (2-F-phenyl)CH2-, (2-F-phenyl)CH2CH2-,
    4-Cl-phenyl, (4-Cl-phenyl)CH2-, (4-Cl-phenyl)CH2CH2-,
    3-Cl-phenyl, (3-Cl-phenyl)CH2-, (3-Cl-phenyl)CH2CH2-,
    4-CH<sub>3</sub>-phenyl, (4-CH<sub>3</sub>-phenyl)CH<sub>2</sub>-, (4-CH<sub>3</sub>-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
    3-CH<sub>3</sub>-phenyl, (3-CH<sub>3</sub>-phenyl)CH<sub>2</sub>-, (3-CH<sub>3</sub>-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
    4-CF3-phenyl, (4-CF3-phenyl)CH2-, (4-CF3-phenyl)CH2CH2-,
    pyrid-2-yl, 4-F-pyrid-2-yl, 4-Cl-pyrid-2-yl,
    4-CH3-pyrid-2-yl, 4-CF3-pyrid-2-yl, pyrid-3-yl,
    4-F-pyrid-3-yl, 4-Cl-pyrid-3-yl, 4-CH3-pyrid-3-yl,
    4-CF3-pyrid-3-yl, or pyrid-4-yl; and
R<sup>13</sup>, at each occurrence, is independently selected from
    H, F, Cl, OH, -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -OCH<sub>3</sub>, or -CF<sub>3</sub>.
8. A compound according to Claim 2 of Formula (I) or a pharmaceutically acceptable
salt or prodrug thereof
wherein:
Q is -(CH_2)_m-R^4,
        -(CH_2)_n-S-R^4,
        -(CH<sub>2</sub>)<sub>n</sub>-O-R<sup>4</sup>, or
        -(CH_2)_m-N(H)-R^4;
```

m is 1 or 2;

n is 0 or 1;

R⁴ is C₁-C₈ alkyl substituted with 0-3 R^{4a},

C2-C8 alkenyl substituted with 0-3 R^{4a},

C2-C8 alkynyl substituted with 0-3 R^{4a},

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C₁₀ aryl substituted with 0-3 R^{4b}, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

 $\rm R^{4a}$, at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR²², OR^{14a}, NR²¹R²², S(=O)R²², S(=O)2R²²,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C6-C₁₀ aryl substituted with 0-3 R^{4b}, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)2CH₃,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, and C1-C4 haloalkyl-S-;

R⁵ is H;

C1-C6 alkyl substituted with 0-3 R^{5b};

 C_2 - C_6 alkenyl substituted with 0-3 R^{5b} ;

C2-C6 alkynyl substituted with 0-3 R5b;

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C6-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =0, CN, NO₂, NR¹⁵R¹⁶;

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C6-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂,

 $NR^{15}R^{16}$, CF3, acetyl, SCH3, S(=O)CH3, S(=O)2CH3,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and

C₁-C₄ haloalkoxy;

Ring B is selected from:

$$R^{11}$$
, and R^{13}

 R^{11} , at each occurrence, is independently selected from H, =0, $NR^{18}R^{19}$, CF_3 ;

C₁-C₄ alkyl optionally substituted with 0-3 R^{11a}; phenyl substituted with 0-3 R^{11b}; C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; and wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{11a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, Cl, F, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};
- R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₄ haloalkoxy;

W is a bond, -CH2-, -CH2CH2-:

X is a bond;

phenyl substituted with 0-2 R^{Xb}; C3-C6 cycloalkyl substituted with 0-2 R^{Xb}; or 5 to 6 membered heterocycle substituted with 0-2 R^{Xb};

RXb, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

or -OC(=O)-;

Z is C₁-C₃ alkyl substituted with 1-2 R^{12a};

C6-C₁₀ aryl substituted with 0-4 R^{12b}:

C₃-C₁₀ carbocycle substituted with 0-3 R^{12b}; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};
- R^{12a} , at each occurrence, is independently selected from

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; and

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};
- R^{12b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl, and C₁-C₄ haloalkyl-S-;
- R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃:

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

- R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-;
- R¹⁶, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, benzyl, phenethyl,

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-6 membered ring wherein said 4-6 membered ring optionally contains an additional heteroatom selected from O or NH, wherein said 4-6 membered ring is selected from imidazolidinyl, oxazolidinyl, thiazolidinyl, piperazinyl, morpholinyl, and thiomorpholinyl;

R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

9. A compound according to Claim 8 wherein:

 R^4 is C_1 - C_6 alkyl substituted with 0-3 R^{4a} ;

C2-C6 alkenyl substituted with 0-3 R4a;

C2-C6 alkynyl substituted with 0-3 R^{4a};

C3-C6 carbocycle substituted with 0-3 R4b;

phenyl substituted with 0-3 R4b, or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};

 R^{4a} , at each occurrence, is independently selected from H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR^{14a}, OR²², NR²¹R²², S(=O)R²², S(=O)2R²²,

C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl,

C1-C4 haloalkoxy, C1-C4 haloalkyl-S-,

C3-C10 carbocycle substituted with 0-3 R4b.

C6-C10 aryl substituted with 0-3 R4b, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b};

C2-C6 alkenyl substituted with 0-3 R5b; or

C2-C6 alkynyl substituted with 0-3 R5b;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF3, Cl, F, Br, I, =0;

C3-C6 carbocycle substituted with 0-3 R5c;

phenyl substituted with 0-3 R^{5c}; or

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};
- R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

$$R^{11}$$
, and R^{13}

R¹¹, at each occurrence, is independently selected from

H, =0, $NR^{18}R^{19}$, CF_3 ;

 $C_1\text{-}C_4$ alkyl optionally substituted with 0-3 $R^{11}a$;

phenyl substituted with 0-3 R^{11b};

C3-C6 carbocycle substituted with 0-3 R^{11b}; or

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; and wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{11a}, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, Cl, F, =0, $NR^{15}R^{16}$, CF3, or phenyl substituted with 0-3 $R^{11}b$;

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and

C₁-C₄ haloalkoxy;

W is a bond, -CH2-, -CH2CH2-;

X is a bond;

phenyl substituted with 0-1 R^{Xb}; C3-C6 cycloalkyl substituted with 0-1 R^{Xb}; or 5 to 6 membered heterocycle substituted with 0-1 R^{Xb}:

 R^{Xb} is selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF3, acetyl, SCH3, S(=O)CH3, S(=O)2CH3, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, and -OCF3;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)₂-, -NH-, -N(CH₃)-, or -N(CH₂CH₃)-;

Z is C1-C2 alkyl substituted with 1-2 R^{12a};

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C3-C10 carbocycle substituted with 0-3 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

C6-C10 aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}:

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and

C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₄ alkyl, or C₂-C₄ alkoxyalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₄ alkyl, and benzyl;

 R^{16} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=O)-, ethyl-C(=O)-, methyl-S(=O)2-, and ethyl-S(=O)2-;

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R¹⁹, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl; and

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

10. A compound according to Claim 9 or a pharmaceutically acceptable salt or prodrug thereof wherein:

Q is $-CH_2R^4$, $-O-R^4$, or $-CH_2-NH-R^4$;

R⁴ is C₁-C₆ alkyl substituted with 0-2 R^{4a},

C₂-C₆ alkenyl substituted with 0-2 R^{4a},

C₂-C₆ alkynyl substituted with 0-2 R^{4a}, or

C₃-C₆ cycloalkyl substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, OH, F, Cl, Br, I, CN, NR¹⁵NR¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, OCF₃;

C3-C6 carbocycle substituted with 0-3 R^{4b}, phenyl substituted with 0-3 R^{4b}, or

- 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;

C₁-C₄ alkyl substituted with 0-1 R^{5b}; C₂-C₄ alkenyl substituted with 0-1 R^{5b}; or C₂-C₄ alkynyl substituted with 0-1 R^{5b};

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF3;

C₃-C₆ carbocycle substituted with 0-2 R^{5c};

phenyl substituted with 0-3 R^{5c} ; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

$$R^{11}$$
, and R^{13}

R¹¹, at each occurrence, is independently selected from

 $H_{1} = 0$, $NR^{18}R^{19}$;

C₁-C₄ alkyl optionally substituted with 0-3 R^{11a}:

phenyl substituted with 0-3 R^{11b};

C3-C6 carbocycle substituted with 0-3 R^{11b}; or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; and wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, Cl, F, =0, $NR^{15}R^{16}$, CF3, or phenyl substituted with 0-3 $R^{11}b$;

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond or -CH2-;

X is a bond;

phenyl substituted with 0-1 R^{Xb}; C3-C6 cycloalkyl substituted with 0-1 R^{Xb}; or 5 to 6 membered heterocycle substituted with 0-1 R^{Xb}:

RXb is selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, methyl, ethyl, methoxy, ethoxy, and -OCF₃;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)2-, -NH-, -N(CH₃)-, or -N(CH₂CH₃)-;

Z is C₁-C₂ alkyl substituted with 1-2 R^{12a};

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

C6-C₁₀ aryl substituted with 0-4 R^{12b};

C3-C10 carbocycle substituted with 0-4 R12b; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}; and wherein said 5 to 10 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl,

benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl;

- R^{12b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and -OCF₃;
- R¹³, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;
- R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
- R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl; and
- R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, and phenethyl;
- R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- R¹⁹, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl.
- 11. A compound, according to Claim 10, wherein:
- R⁵ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₃,
 -CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₂CH₂CH₃,
 -CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂NH₂,
 -CH₂N(CH₃)₂, -CH₂N(CH₂CH₃)₂, -CH₂CH₂NH₂, -CH₂CH₂N(CH₃)₂,
 -CH₂CH₂CH(CH₃)₂, -CH₂-cyclopropyl, -CH₂-cyclobutyl,
 -CH₂-cyclopentyl, -CH₂-cyclohexyl,

- -CH₂CH₂-cyclopropyl, -CH₂CH₂-cyclobutyl, -CH₂CH₂-cyclopentyl, or -CH₂CH₂-cyclohexyl;
- - -CH2CH2CH2CH(CH3)2, -CH2-cyclopropyl,
 - -CH2-cyclobutyl, -CH2-cyclopentyl, -CH2-cyclohexyl,
 - -CH2CH2-cyclopropyl, -CH2CH2-cyclobutyl,
 - -CH2CH2-cyclopentyl, -CH2CH2-cyclohexyl,
 - -OCH3, -OCH2CH3, -OCH2CH2CH3, -OCH(CH3)2.
 - -OCH2CH2CH3, -OCH2CH(CH3)2, -OCH2CH2CH(CH3)2,
 - -OCH2CH2CH2CH2CH3, -OCH2CH2CH2CH2CH2CH3.
 - -OCH2CH2CH2CH(CH3)2, -OCH2CH2CH2CH2CH(CH3)2,
 - -OCH2-cyclopropyl, -OCH2-cyclobutyl,
 - -OCH2-cyclopentyl, -OCH2-cyclohexyl,
 - -OCH2CH2-cyclopropyl, -OCH2CH2-cyclobutyl,
 - -OCH2CH2-cyclopentyl,-OCH2CH2-cyclohexyl,
 - -CH2OCH2CH3, -CH2OCH2CH3, -CH2-OCH(CH3)2,
 - -CH2OCH2CH2CH2CH3, -CH2OCH2CH(CH3)2,
 - -CH2OCH2CH2CH2CH3, -CH2OCH2CH2CH(CH3)2,
 - -CH2OCH2CH2CH2CH(CH3)2, -CH2O-cyclopropyl,
 - -CH2O-cyclobutyl, -CH2O-cyclopentyl,
 - -CH2O-cyclohexyl, -CH2OCH2-cyclopropyl,
 - -CH2OCH2-cyclobutyl, -CH2OCH2-cyclopentyl,
 - -CH2OCH2-cyclohexyl; -CH2(NH)CH3,
 - -CH₂(NH)CH₂CH₃, -CH₂(NH)CH₂CH₂CH₃, -CH₂-(NH)CH(CH₃)₂,
 - -CH2(NH)CH2CH2CH2CH3, -CH2(NH)CH2CH(CH3)2.
 - -CH₂(NH)CH₂CH₂CH₂CH₂CH₃, -CH₂(NH)CH₂CH₂CH(CH₃)₂,
 - -CH₂(NH)CH₂CH₂CH₂CH(CH₃)₂, -CH₂(NH)-cyclopropyl,
 - -CH2(NH)-cyclobutyl, -CH2(NH)-cyclopentyl,
 - -CH₂(NH)-cyclohexyl, -CH₂(NH)CH₂-cyclopropyl,
 - -CH₂(NH)CH₂-cyclobutyl, -CH₂(NH)CH₂-cyclopentyl,
 - or -CH₂(NH)CH₂-cyclohexyl;

W is a bond or -CH2-;

X is a bond;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)2-, -NH-, or -N(CH3)-,

- Z is phenyl, 2-F-phenyl, 3-F-phenyl, 4-F-phenyl, 2-Cl-phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2,3-diF-phenyl,
 - 2,4-diF-phenyl, 2,5-diF-phenyl, 2,6-diF-phenyl,
 - 3,4-diF-phenyl, 3,5-diF-phenyl, 2,3-diCl-phenyl,
 - 2,4-diCl-phenyl, 2,5-diCl-phenyl, 2,6-diCl-phenyl,
 - 3,4-diCl-phenyl, 3,5-diCl-phenyl, 3-F-4-Cl-phenyl,
 - 3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl,
 - 3-MeO-phenyl, 4-MeO-phenyl, 2-Me-phenyl, 3-Me-phenyl,
 - 4-Me-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl, 2-CF₃O-phenyl, 3-
 - CF₃O-phenyl, 4-CF₃O-phenyl, furanyl, thienyl, pyridyl, 2-Me-pyridyl, 3-Me-pyridyl,
 - 4-Me-pyridyl, 1-imidazolyl, oxazolyl, isoxazolyl,
 - 1-benzimidazolyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, morpholino, N-piperinyl,
 - phenyl-CH₂-, (2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-,
 - (4-F-phenyl)CH2-, (2-Cl-phenyl)CH2-, (3-Cl-phenyl)CH2, (4-Cl-phenyl)CH2-,
 - (2,3-diF-phenyl)CH2-,
 - (2,4-diF-phenyl)CH₂-, (2,5-diF-phenyl)CH₂-,
 - (2,6-diF-phenyl)CH₂-, (3,4-diF-phenyl)CH₂-,
 - (3,5-diF-phenyl)CH2-, (2,3-diCl-phenyl)CH2-,
 - (2,4-diCl-phenyl)CH2-, (2,5-diCl-phenyl)CH2-,

```
(2,6-diCl-phenyl)CH2-, (3,4-diCl-phenyl)CH2-,
        (3,5-diCl-phenyl)CH2-, (3-F-4-Cl-phenyl)CH2-,
        (3-F-5-Cl-phenyl)CH<sub>2</sub>-, (3-Cl-4-F-phenyl)CH<sub>2</sub>-,
        (2-MeO-phenyl)CH2-, (3-MeO-phenyl)CH2-,
        (4-MeO-phenyl)CH2-, (2-Me-phenyl)CH2-,
        (3-Me-phenyl)CH2-, (4-Me-phenyl)CH2-,
        (2-MeS-phenyl)CH<sub>2</sub>-, (3-MeS-phenyl)CH<sub>2</sub>-,
        4-MeS-phenyl)CH2-, (2-CF3O-phenyl)CH2-,
        (3-CF3O-phenyl)CH2-, (4-CF3O-phenyl)CH2-,
        (furanyl)CH2-,(thienyl)CH2-, (pyridyl)CH2-,
        (2-Me-pyridyl)CH2-, (3-Me-pyridyl)CH2-,
        (4-Me-pyridyl)CH2-, (1-imidazolyl)CH2-,
        (oxazolyl)CH2-, (isoxazolyl)CH2-,
        (1-benzimidazolyl)CH2-,
                                             (cyclopropyl)CH2-,
                                                                            (cyclobutyl)CH2-,
        (cyclopentyl)CH2-,
        (cyclohexyl)CH2-, (morpholino)CH2-,
        (N-pipridinyl)CH<sub>2</sub>-, or (phenyl)<sub>2</sub>CH-;
R<sup>11</sup>, at each occurrence, is independently selected from
    H, =O, methyl, ethyl, phenyl, benzyl, phenethyl.
    4-F-phenyl, (4-F-phenyl)CH2-, (4-F-phenyl)CH2CH2-,
    3-F-phenyl, (3-F-phenyl)CH2-, (3-F-phenyl)CH2CH2-,
    2-F-phenyl, (2-F-phenyl)CH2-, (2-F-phenyl)CH2CH2-,
    4-Cl-phenyl, (4-Cl-phenyl)CH2-, (4-Cl-phenyl)CH2CH2-,
    3-Cl-phenyl, (3-Cl-phenyl)CH<sub>2</sub>-, (3-Cl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
    4-CH<sub>3</sub>-phenyl, (4-CH<sub>3</sub>-phenyl)CH<sub>2</sub>-, (4-CH<sub>3</sub>-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
    3-CH<sub>3</sub>-phenyl, (3-CH<sub>3</sub>-phenyl)CH<sub>2</sub>-, (3-CH<sub>3</sub>-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
    4-CF3-phenyl, (4-CF3-phenyl)CH2-, (4-CF3-phenyl)CH2CH2-,
    pyrid-2-yl, 4-F-pyrid-2-yl, 4-Cl-pyrid-2-yl,
    4-CH3-pyrid-2-yl, 4-CF3-pyrid-2-yl, pyrid-3-yl,
    4-F-pyrid-3-yl, 4-Cl-pyrid-3-yl, 4-CH3-pyrid-3-yl,
    4-CF<sub>3</sub>-pyrid-3-yl, or pyrid-4-yl; and
R<sup>13</sup>, at each occurrence, is independently selected from
```

H, F, Cl, OH, -CH3, -CH2CH3, -OCH3, or -CF3.

12. A compound according to one of Claims 4-11 of Formula (Ic):

(Ic)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

13. A compound according to one of Claims 4-11 of Formula (Id):

(Id)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

14. A compound according to one of Claims 4-11 of Formula (Ie):

(Ie)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

15. A compound according to one of Claims 4-11 of Formula (If):

$$Q \xrightarrow{R^5} H \xrightarrow{Q} W - X - Y - Z$$

(If)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

16. A compound according to Claim 1, or a pharmaceutically acceptable salt or prodrug thereof, selected from:

(3S)-3-[(1-oxo-(2S)-2-cyclopropylmethyl-heptyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propyloctyl)]amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propylnonanyl)]amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-butyloctyl)]amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-(1-oxo-2-methyloctyl)amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-pentylheptanyl)]amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propylpentyl)]amino-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-methylpentyl)amino]-1-methyl- 5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

- 3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-(pyridin-2-yl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one;
- 3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-[4-methyl(pyridin-2-yl)]-2,3-dihydro-1H-1,4-benzodiazepin-2-one;
- 3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-[4-trifluoromethyl(pyridin-2-yl)]-2,3-dihydro-1H-1,4-benzodiazepin-2-one;
- 3-[1-oxo-2-(S)-aminomethyl-heptyl]amino-1-methyl-(5-trifluoromethyl-phenyl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one;
- 3-[1-oxo-2-(S)-(dimethylamino)methyl-heptyl]amino-1-methyl-5-(trifluoromethyl-phenyl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one; and
- 3-(3-isopentyloxy-2-(R)-methyl-1-oxo-propyl)amino-1-methyl-5-(trifluoromethyl)phneyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one.
- 17. A compound according to Claim 1, or a pharmaceutically acceptable salt or prodrug thereof comprising:
- (7S)-[(2S)-1-oxo-2-pentyloxy-4-methylpentyl]amino-5-methyl-5H,7H-dibenzo[b,d]azepin-6-one.
- 18. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 19. A method for the treatment of neurological disorders associated with $\tilde{\beta}$ -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.
- 20. A method for inhibiting γ -secretase activity comprising administering to a host in need of such inhibition a therapeutically effective amount of a compound of Claim 1 that inhibits γ -secretase activity.