Λύσεις

Θέμα Α

- 1. Απόδειξη από βιβλίο.
- 2. Ορισμός βιβλίου.
- 3. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό ή Λάθος
 - α) Σ Κάθε οριζόντια ευθεία τέμενει τη γραφική παράσταση μιας 1-1 συνάρτησης το πολύ σε ένα σημείο.
 - β) Λ Αν οι συναρτήσεις f, g είναι συνεχείς στο σημείο x_0 , τότε και η σύνθεσή τους $g\circ f$ είναι συνεχής στο ίδιο σημείο.
 - γ) Σ Το σύνολο τιμών ενός κλειστού διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης είναι πάντοτε κλειστό διάστημα.
 - δ) $\Sigma \lim_{x\to 0^+} \ln x = -\infty$
 - ε) Λ Αν υπάρχει το $\lim_{x\to x_0} (f(x)+g(x))$, τότε υποχρεωτικά υπάρχουν και τα όρια $\lim_{x\to x_0} f(x)+\lim_{x\to x_0} g(x)$.

Θέμα Β

1. Θα δείξουμε ότι $\frac{4x}{x^2+4} \le f(2)$.

$$4x \le x^2 + 4 \iff x^2 - 4x + 4 \ge 0 \iff (x - 2)^2 \ge 0$$

2. Από τα δεδομένα έχουμε $\lim_{y\to -\infty} f(y) = 4$ και θέτοντας

$$h(x) = \frac{xf(x)}{3x-1} \iff f(x) = h(x)(3-\frac{1}{x}) \Rightarrow \lim_{x \to \infty} f(x) = 6$$

Το σύνολο τιμών είναι το

$$\left[f(2), \lim_{x \to -\infty} f(x)\right) \cup \left[f(2), \lim_{x \to \infty} f(x)\right) = [1,4) \cup [1,6)$$

- 3. Από το σύνολο τιμών για 1 < a < 4 έχουμε δύο ρίζες, για $4 \le a < 6$ έχουμε μία ρίζα όπως και για a = 1 και παντού αλλού καμία.
- 4. Εφόσον $f(x) \geq 1$ και $g(x) \leq 1$ όπως και f(2) = g(2) = 1 τότε το x = 2 είναι μοναδική λύση

Θέμα Γ

- 1. Η αντίστροφη μίας συνάρτησης είναι συμμετρική ως προς την y=x και αφού $f(x)\leq x$ θα ισχύει $f^{-1}(x)\geq x.$
- 2. Αφού $f^{-1}(x) \leq e^x 1$ για κάθε $x \in \mathbb{R}$, για x = f(y), y > -1 θα ισχύει

$$y \leq e^{f(y)} - 1 \iff \ln(y+1) \leq f(x)$$

- 3. Από την προηγούμενη σχέση με όρια $\lim_{x\to 0}\ln(x+1)\leq \lim_{x\to 0}f(x)\leq \lim_{x\to 0}x$. Αφού $0\leq f^{-1}(x)\leq e^x-1$ και πάλι με κριτήριο παρεμβολής.
- 4. Έστω $h(x)=(x-1)f^{-1}(x)+(2-x)f(x)-x^2+2x-2$. Η h συνεχής με $h(1)=f(1)-1\leq 0$, και $h(2)=f^{-1}(2)-2\geq 0$. Έτσι αν h(1)h(2)=0 τότε $x_0=1$ ή $x_0=2$, διαφορετικά Bolzano.

Θέμα Δ

- 1. Κατασκευή ή λόγια.
- 2. Για $x < x_0$ έχουμε $f(x) < f(x_0)$ και άρα με όρια $\lim_{x \to x_0^-} f(x) \le f(x_0)$. Όμοια από δεξιά. Άρα $\lim_{x \to x_0} f(x) = f(x_0)$
- 3. α) Η f διατηρεί πρόσημο και αφού f(0)=1 θα είναι πάντα $f(x)>0 \Rightarrow f(f(x))>f(0)=1$. Συνεπώς g(x)>1.

$$\beta) \qquad \qquad b(x) = x^3 x (2x^4) + 1$$

$$h(x)=x^{3}g\left(2x^{4}\right)+x^{4}g\left(x^{2}\right)+x^{2}f\left(x^{2}-1\right)-1$$

Η h είναι συνεχής με h(1)=g(2)+g(1)+f(0)-1>2 και h(-1)=-g(2)+g(1)+f(0)-1. Αλλά $g(2)>g(1)\iff -g(2)+g(1)<0$... Bolzano