3.1 Bedingte Erwartungswerte

a) Erwartungswert von G₁

Wir wissen:

$$P[\ 5\ Tokens\ gewonnen\] = \frac{1}{6}$$

$$P[\ 1\ Token\ verlieren\] = \frac{5}{6}$$

$$\rightarrow G_1 = \sum_X x \cdot P_X(x) = 5 \cdot \frac{1}{6} + (-1) \cdot \frac{5}{6} = \frac{5}{6} - \frac{5}{6} = 0$$

b) Erwartungswert von G₃

Wir wissen:

$$P[\ 5\ Tokens\ gewonnen\] = \frac{1}{3}$$
 $P[\ 1\ Token\ verlieren\] = \frac{2}{3}$ $\rightarrow G_3 = 5 \cdot \frac{1}{3} + (-1) \cdot \frac{2}{3} = \frac{5}{3} - \frac{2}{3} = \frac{3}{3} = 1$

3.2 Verteilung

a) E[ein Mädchen oder k Kinder]

Anmerkung: Es handelt sich hierbei um eine geometrische Verteilung

$$P[\ ein\ M\"{a}dchen\ oder\ k\ Kinder\] = P[\ M\"{a}dchen\] + P[\ k\ Kinder\] = \frac{1}{2} + \left(\frac{1}{2}\right)^k$$

$$\rightarrow E[\ ein\ M\"{a}dchen\ oder\ k\ Kinder\] = \frac{1}{\frac{1}{2} + \left(\frac{1}{2}\right)^k}$$

b) E[mindestens ein Mädchen und einen Jungen]

Anmerkung: Da auch hier eine geometrische Verteilung vorliegt, gilt:

 $P[\ mindestens\ ein\ M\"{a}dchen\ und\ mindestens\ ein\ Junge\] = P[\ ein\ M\"{a}dchen\ und\ ein\ Junge\]$ $P[\ ein\ M\"{a}dchen\ und\ ein\ Junge\] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ $\rightarrow E[\ mindestens\ ein\ M\"{a}dchen\ und\ ein\ Junge\] = \frac{1}{\frac{1}{4}} = 4$

c) Anzahl Münzwürfe (n), sodass k-mal Kopf geworfen

Anmerkung: Hierbei handelt es sich um eine Binomial-Verteilung $\overline{\text{Wir wissen:}}$ (X = "Kopf wird geworfen")

$$P[X] = p E[X] = k$$

Gesucht: n Anzahl der Münzwürfe

$$E[X] = n \cdot p = k \to n = \frac{k}{p}$$

- 3.3 Reisen
- 3.4 Von Monte Carlo nach Las Vegas
- 3.5 Online-Algorithmus für eine zufällige Teilmenge