Discrete Fourier Analysis report

Lorenzo Baldi, Salvatore Schiavulli May 19, 2018

Contents

1	Inro	oduction	2
2	Representation of finite groups		2
3	3.1 3.2	phs in the finite upper half plane Poincaré upper half plane	2

1 Inroduction

- 2 Representation of finite groups
- 3 Graphs in the finite upper half plane
- 3.1 Poincaré upper half plane
- 3.2 The finite upper half plane

Definition 3.1. An element $\gamma \in \mathbb{F}_q$ is a *square* if $\exists x \in \mathbb{F}_q : \gamma = x^2$.

If δ is a non square element of \mathbb{F}_q , then the polynomial $x^2 - \delta$ has no solutions in \mathbb{F}_q . Its splitting field is \mathbb{F}_{q^2} and one of its roots will be denoted by $\sqrt{\delta}$ (the other is $-\sqrt{\delta}$).

 $\sqrt{\delta}$ will play the same role of the imaginary unit i. Given $z = x + y\sqrt{\delta} \in \mathbb{F}_{q^2}$ we define, using the notation from complex analysis, the *real part* of z as $\Re z = x$; the *imaginary part* of z as $\operatorname{Im} z = y$; the *conjugate* of z as $\bar{z} = x - y\sqrt{\delta}$; the *norm* of z as $\Omega z = z\bar{z}$; the *trace* of z as $\Upsilon z = z + \bar{z}$.

Remark. The norm and the trace above are the ones usually defined in theory of finite fields (in the special case of the field extension \mathbb{F}_{q^2} over \mathbb{F}_q), because $z^q = (x + y\sqrt{\delta})^q = x^q + y^q\sqrt{\delta}^q = x + y(-\sqrt{\delta}) = \bar{z}$. See for instance [LN94].

Definition 3.2. The finite upper half plane is

$$H_q = \left\{ z = x + y\sqrt{\delta} \colon x \in \mathbb{F}_q, \, y \in \mathbb{F}_q^* \right\} \tag{1}$$

We recall the definition of group action.

Definition 3.3. A *group action* of the group *G* on the set *X* is a map

$$\phi: H \times X \longrightarrow X$$
$$(g, x) \longmapsto \phi(g, x) = g \cdot x$$

such that:

- $\forall x \in X, \iota \cdot x = x$, where ι denotes the identity of the group;
- $\forall h, g \in G, \forall x \in X \text{ we have } (gh) \cdot x = g \cdot (h \cdot x).$

In our case will have $X = H_q$, while G will be the general linear group $GL(2, \mathbb{F}_q)$ or its subgroup of affine transformations Aff(q), defined below.

Definition 3.4. The *General Linear group* of dimension two over the field \mathbb{F}_q is:

$$GL(2, \mathbb{F}_q) = \left\{ g = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} : a_{i,j} \in \mathbb{F}_q, \det g \neq 0 \right\}$$

Definition 3.5. The *Affine group* of dimension two over the field \mathbb{F}_a is:

$$\operatorname{Aff}(q) = \left\{ g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}(2, \mathbb{F}_q) \right\} = \left\{ g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{F}_q, a \neq 0 \right\}$$

Now we can define define the action we are interested in, and investigate some of its properties.

Definition 3.6. The group $GL(2, \mathbb{F}_q)$ acts on H_q by fractional linear transformation:

$$\forall g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{F}_q), \ \forall z \in H_q, \quad g \cdot z = \frac{az+b}{cz+d}. \tag{2}$$

We check the well definition of the action and find some properties in the following proposition.

Proposition 3.7. Given \cdot the action by fractional linear transformation, the following holds (with the same notations of 3.6):

- 1. $\operatorname{Im}(g \cdot z) = \frac{\operatorname{Im} z \det g}{\Omega(cz+d)}$ and $\operatorname{\mathfrak{Re}}(g \cdot z) = \frac{ac\Omega z + bd + (ad+bc)\operatorname{\mathfrak{Re}} z}{\Omega(cz+d)};$
- 2. the action is well defined;
- 3. the restriction of of the action to the subgroup Aff(q) is a transitive action, that is: $\exists \bar{z} \in H_a$: $(\forall z \in H_a \exists g \in Aff(q) \text{ such that } z = g \cdot \bar{z})$.

Proof. To prove 1. we have to show first that $\Omega(cz+d) \neq 0$. By definition of norm it suffices to prove that $cz+d\neq 0$ Let $z=x+y\sqrt{\delta}$. Then

$$cz + d = 0 \iff (cx + d) + (cy)\sqrt{\delta} = 0 \iff cy = 0 \land cx + d = 0 \iff c = d = 0,$$
(3)

but this cannot happen, because $\det g = ad - bc \neq 0$. Then is enough to perform some calculations.

Now we prove the second part. We already proved that $cz + d \neq 0$ in 3. We have now to show that $g \cdot z \in H_q$, that is $\text{Im}(g \cdot z) \neq 0$. But this follows

from point 1: $\operatorname{Im}(g \cdot z) = \frac{\operatorname{Im} z \det g}{\Omega(cz+d)}$, where $\operatorname{Im} z \neq 0$ because $z \in H_q$, $\det g \neq 0$ because $g \in \operatorname{GL}(2, \mathbb{F}_q)$. (mancante: funziona bene col prodotto di matrici) For the last part, take $\bar{z} = \sqrt{\delta} \in H_q$. Then for any $z = x + y\sqrt{\delta} \in H_q$ we have that $\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot \bar{z} = z$. (note that $y \neq 0$ because $z \in H_q$, so the matrix defined belongs to $\operatorname{Aff}(q)$).

3.3 Graphs and their properties

References

[LN94] R. Lidl and H. Niederreiter. *Introduction to Finite Fields and Their Applications*. Cambridge University Press, 1994. ISBN: 9780521460941. URL: https://books.google.it/books?id=AvY3PH11e3wC.