
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2010; month=7; day=20; hr=9; min=9; sec=38; ms=742;]

Reviewer Comments:

<210> 42

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide binding to dendritic cells

<220>

<221> MISC_FEATURE

<222> (2)..(4)

<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 = A sn or Gln, Xaa at position 3 = any amino acid residue

<400> 42

Gln Xaa Xaa Xaa Gln

1

The above <223> response contains an error: "Xaa at position 3" is shown twice; the third "Xaa" is at positioin 4.

Minor errors below:

<210> 10

<211> 6

<212> PRT

<213> Artificial Sequence

```
<220>
<223>
       Synthetic peptide binding to dendritic cells
<220>
<221>
      MISC_FEATURE
<222> (2)..(4)
\langle 223 \rangle Xaa at position 2 = any amino acid residue, Xaa at position 3 =
       an y amino acid residue, Xaa at position 4 = any amino acid
       residue
<220>
<221>
      MISC_FEATURE
<222> (6)..(6)
\langle 223 \rangle Xaa at position 6 = any amino acid resdue
<400> 10
Pro Xaa Xaa Xaa Thr Xaa
1
                 5
The above <223> response explaining Xaa contains a misspelling: please
replace "resdue" with "residue".
<210>
       40
<211>
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
       Synthetic peptide binding to dendritic cells
<220>
<221>
      MISC_FEATURE
<222> (2)..(2)
\langle 223 \rangle Xaa at position 2 = any amino acid residue
<220>
<221>
      MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position = Thr or Ser
```

<400> 40

Pro Xaa Asn Xaa Thr 1 5

In the last $\langle 223 \rangle$ response (explaining the "Xaa" at location 4: please correct it to read "Xaa at position 4 = Thr or Ser"

Validated By CRFValidator v 1.0.3

Application No: 10559758 Version No: 3.0

Input Set:

Output Set:

Started: 2010-07-19 17:39:10.333
Finished: 2010-07-19 17:39:13.068

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 735 ms

Total Warnings: 62

Total Errors: 0

No. of SeqIDs Defined: 62

Actual SeqID Count: 62

Error code		Error Description									
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2010-07-19 17:39:10.333

Finished: 2010-07-19 17:39:13.068

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 735 ms

Total Warnings: 62

Total Errors: 0

No. of SeqIDs Defined: 62

Actual SeqID Count: 62

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> Hart, Stephen Lewis
      Writer, Michele
<120> PEPTIDE LIGANDS
<130> ABL-012.1P US
<140> 10559758
<141> 2010-07-19
<150> GB 03 13132.3
<151> 2003-06-06
<150> PCT/GB2004/002421
<151> 2004-06-07
<160> 62
<170> PatentIn version 3.5
<210> 1
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(4)
<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 = a
      ny amino acid residue, Xaa at position 4 = any amino acid residue
<400> 1
Pro Xaa Xaa Xaa Thr
1
<210> 2
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
      Synthetic peptide binding to dendritic cells
<223>
<220>
<221> MISC_FEATURE
<222> (3)..(3)
```

<223> Xaa at position 3 = any amino acid residue

```
<400> 2
Pro Ser Xaa Ser
<210> 3
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222>
     (2)..(4)
     Xaa at position 2 = any amino acid, Xaa at position 3 = any amino
<223>
      acid having an amide side chain, Xaa at position 4 = any amino a
      cid
<400> 3
Gln Xaa Xaa Gln
                5
1
<210> 4
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue having an aliphatic si
      de chain
<400> 4
Ser Xaa Ser
1
<210> 5
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
```

```
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<400> 5
Pro Xaa Leu Xaa Thr
1
<210> 6
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 6
Pro Ala Leu Lys Thr
1
<210> 7
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<400> 7
Pro Xaa Asn Xaa Thr
1
```

```
<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 8
Pro Ser Asn Ser Thr
1
<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 9
Pro Pro Asn Thr Thr
1
<210> 10
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(4)
<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 =
      an y amino acid residue, Xaa at position 4 = any amino acid
      residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa at position 6 = any amino acid resdue
<400> 10
Pro Xaa Xaa Xaa Thr Xaa
                5
1
<210> 11
<211> 6
```

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa at position 6 = any amino acid residue
<400> 11
Pro Xaa Leu Xaa Thr Xaa
1
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa at position 6 = any amino acid residue
<400> 12
Pro Xaa Asn Xaa Thr Xaa
1
```

```
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(5)
<223> Xaa at position 3 = any amino acid residue, Xaa at position 4 = a
       ny amino acid residue, Xaa at position 5 = any amino acid residue
<400> 13
Xaa Pro Xaa Xaa Xaa Thr
1
<210> 14
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
      Synthetic peptide binding to dendritic cells
<223>
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(5)
      Xaa at position 3 = any amino acid residue, Xaa at position <math>4 = a
<223>
       ny amino acid residue, Xaa at position 5 = any amino acid residue
<220>
<221> MISC_FEATURE
      (7)..(7)
<222>
<223> Xaa at position 7 = any amino acid residue
<400> 14
Xaa Pro Xaa Xaa Xaa Thr Xaa
1
```

<210> 13

```
<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 15
Ala Pro Ser Asn Ser Thr Ala
1
<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 16
Ser Pro Ala Leu Lys Thr Val
1
<210> 17
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 17
Ser Thr Pro Pro Asn Thr Thr
1
<210> 18
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 18
Pro Ser Asn Ser
1
```

```
<210> 19
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 19
Pro Ser Leu Ser
1
<210> 20
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 = Ala or Lys
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<400> 20
Xaa Pro Ser Xaa Ser
<210> 21
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 21
Ala Pro Ser Asn Ser
1
<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence
```

```
<223> Synthetic peptide binding to dendritic cells
<400> 22
Leu Pro Ser Leu Ser
1
<210> 23
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 23
Met Leu Pro Ser Leu Ser
1
<210> 24
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 24
Pro Met Leu Pro Ser Leu Ser
1
<210> 25
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 25
Ser Gln Lys Asn Pro Gln Met
1
<210> 26
<211> 7
<212> PRT
<213> Artificial Sequence
```

<220>

```
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 26
Phe Gln Ser Gln Tyr Gln Lys
<210> 27
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 27
Met Ala Ser Ile Ser Met Lys
1
<210> 28
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 28
Asp Trp Trp His Thr Ser Ala
               5
<210> 29
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 29
Ser His Val Lys Leu Asn Ser
1
<210> 30
<211> 7
<212> PRT
<213> Artificial Sequence
```

<220>

```
<223> Synthetic peptide binding to dendritic cells
<400> 30
Gln Leu Leu Thr Gly Ala Ser
1
<210> 31
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 31
Thr Ala Arg Asp Tyr Arg Leu
1
<210> 32
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 32
Phe Pro Arg Ala Pro His His
1
<210> 33
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 33
Ser Glu Trp Leu Ser Ala Leu
1
<210> 34
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
```

```
<400> 34
Ile Gly Gly Ile Arg Arg His
1
<210> 35
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<400> 35
Tyr Thr Met Glu Phe Asn Arg
1
<210> 36
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Synthetic peptide binding to dendritic cells
<400> 36
Pro Ala Ala Tyr Lys Ala His
<210> 37
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(4)
<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 = a
      ny amino acid residue, Xaa at position 4 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa at position 6 = Ala or Val
```

<400> 37

```
<210> 38
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue,
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue,
<400> 38
Pro Xaa Asn Xaa Thr
1
<210> 39
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(4)
<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 = A
      sn or Leu, Xaa at position 4 = any amino acid residue
<400> 39
Pro Xaa Xaa Xaa Thr
1
<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
```

Pro Xaa Xaa Thr Xaa

```
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = any amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position = Thr or Ser
<400> 40
Pro Xaa Asn Xaa Thr
1
<210> 41
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 = Ala or Leu
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 = any amino acid residue
<400> 41
Xaa Pro Ser Xaa Ser
<210> 42
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(4)
<223> Xaa at position 2 = any amino acid residue, Xaa at position 3 = A
       sn or Gln, Xaa at position 3 = any amino acid residue
```

```
Gln Xaa Xaa Gln
<210> 43
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic peptide binding to dendritic cells
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 = Leu or Ile
<400> 43
Ser Xaa Ser
1
<210> 44
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 44
10
                                           15
1
Gly Ala Cys Ser His Val Lys Leu Asn Ser Cys Gly
         20
                         25
<210> 45
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 45
```

15

<400> 42

```
Gly Ala Cys Ala Pro Ser Asn Ser Thr Ala Cys Gly
         20
                         25
<210> 46
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 46
10
                                            15
1
Gly Ala Cys Met Ala Ser Ile Ser Met Lys Cys Gly
         20
                         25
<210> 47
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 47
1
                            10
                                            15
Gly Ala Cys Phe Pro Arg Ala Pro His His Cys Gly
         20
                         25
<210>
     48
<211>
     28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 48
```

10

15

<210> 49 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Peptide derivative of the invention <400> 49 10 1 Gly Ala Cys Arg Glu Thr Ala Trp Ala Cys Gly 25 20 <210> 50 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Peptide derivative of the invention <400> 50 Gly Ala Cys Ala Thr Arg Trp Ala Arg Glu Cys Gly 20 25 <210> 51 <211> 27

15

<212> PRT

<213> Artificial Sequence

<220>

<223> Peptide derivative of the invention

<400> 51

1 5 10 15

Gly Ala Cys Arg Glu Glu Trp Ala Cys Gly 20 25

```
<210> 52
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide derivative of the invention
<400> 52
1
                            10
                                            15
            5
Gly Ala Cys Met Ala Ser Ile Ser Met Lys Cys Gln
         20
                         25
<210> 53
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> integrin-binding peptide
<400> 53
Arg Arg Glu Thr Glu Trp Ala
1
<210> 54
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic nucleic acid binding domain
<400> 54
10
                                            15
1
<210> 55
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> hydrophobic spacer sequence
<220>
```

<221> MISC_FEATURE

```
<222> (1)..(1)
<223> x = epsilon-amino hexanoic acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> x = epsilon-amino hexanoic acid residue
<400> 55
Xaa Ser Xaa Gly Ala
1
<210> 56
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 56
                                                                      17
ccctcattag cgtaacg
<210> 57
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> control peptide
<400> 57
Ala Thr Arg Trp Ala Arg Glu
1
<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide encoding peptide ligand
<400> 58
                                                                      24
ccggaagcca cgtcaagctg aacg
<210> 59
<211> 27
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> complementary oligonucleotide encoding SEQ ID NO:29

<400> 59
ccggcgctgt tcagcttcac gtggctt

<210> 60
<211> 7
<212> PRT
<213> Artificial Sequence
```

<400> 60

<220>

Ala Pro Thr

<223> Peptide ligand