Predicting Customer Churn for a Subscription Service

Project Description: This project focuses on building a machine learning model to predict customer churn for a subscription-based service. Customer churn refers to when customers stop using a service or cancel their subscription. Predicting churn is crucial for businesses as retaining existing customers is often more cost-effective than acquiring new ones. By accurately identifying customers who are likely to churn, businesses can implement targeted retention strategies to improve customer loyalty and reduce revenue loss.

Project Title: Predicting Customer Churn for a Subscription-Based Service

Project Overview:

This project is about creating a machine learning model to predict when customers will stop using a subscription service (called "churn"). It is important for companies to know if customers might leave because keeping current customers is usually cheaper than getting new ones. By knowing which customers are likely to stop their subscription, businesses can take action to keep them.

Objective:

The main goal of this project is to build a model that can predict which customers are at risk of leaving the service. This will help the company create special offers or strategies to keep these customers loyal.

Steps Involved:

- 1. **Data Collection**: I worked with customer data that included information like customer age, subscription dates, frequency of purchases, support tickets, and whether they left (churned).
- 2. **Data Cleaning and Preparation**: I cleaned and organized the data to make sure it was ready for building the machine learning model. This included handling missing data, formatting dates, and creating useful features for the model.
- 3. **Exploratory Data Analysis (EDA)**: I analyzed the data to understand customer behavior and which factors might lead to churn. I visualized things like customer age, purchase frequency, and support ticket resolution times to find patterns.
- 4. **Building the Model**: I used machine learning algorithms, such as Logistic Regression, Decision Trees, or Random Forest, to train a model that could predict whether a customer would churn or not.
- 5. **Evaluation**: I tested the model's accuracy using evaluation metrics like accuracy, precision, recall, and the F1 score to see how well it predicted churn.
- 6. **Results**: The model successfully identified customers likely to churn, helping the business to create strategies to retain them.

Importing important libraries

import seaborn as sns # For visualization

```
[147]: """Predicting Customer Churn for a Subscription Service
       Project Description :This project focuses on building a machine learning model to
       predict customer churn for a subscription-based service. Customer churn refers to
       when customers stop using a service or cancel their subscription. Predicting churn is
       crucial for businesses as retaining existing customers is often more cost-effective
       than acquiring new ones. By accurately identifying customers who are likely to churn,
       businesses can implement targeted retention strategies to improve customer loyalty and reduce revenue loss.
[147]: 'Predicting Customer Churn for a Subscription Service\nProject Description :This project focuses on building a machine learning model to \npr
       edict customer churn for a subscription-based service. Customer churn refers to \nwhen customers stop using a service or cancel their subscri
       ption. Predicting churn is \ncrucial for businesses as retaining existing customers is often more cost-effective \nthan acquiring new ones. B
       y accurately identifying customers who are likely to churn, \nbusinesses can implement targeted retention strategies to improve customer loya
       lty and reduce revenue loss. \n'
  [1]: # Import necessary libraries
       import pandas as pd # For data manipulation
       from sklearn.model_selection import train_test_split # For splitting data into train and test sets
       from sklearn.preprocessing import LabelEncoder # For encoding categorical variables
       from sklearn.ensemble import RandomForestClassifier # For building the Random Forest model
       from sklearn.metrics import classification_report, accuracy_score # For model evaluation
       import matplotlib.pyplot as plt # For plotting graphs
```

Importing data from excel sheet using pandas

[2]:	dat	a = pd.read	aset using the provid _excel(r"E:\folder\Ma first few rows to und	chine Learning\yhil				rn_data.xlsx")				
[2]:		Customer_ID	Subscription_Start_Date	Subscription_End_Date	Age	Gender	Location	Purchase_Frequency	Recency	Monetary_Value	Support_Tickets	Resolution
	0	1	2023-01-01	2023-02-01	25	Male	Delhi	10	20	500	2	
	1	2	2023-01-08	2023-02-08	34	Female	Mumbai	25	5	1200	5	
	2	3	2023-01-15	2023-02-15	28	Male	Bangalore	15	18	800	3	
	3	4	2023-01-22	2023-02-22	42	Female	Hyderabad	30	2	1500	2	
	4	5	2023-01-29	2023-03-01	40	Male	Delhi	29	17	1910	1	
	95	96	2024-10-27	2024-11-27	25	Female	Delhi	10	20	500	2	
	96	97	2024-11-03	2024-12-04	34	Male	Mumbai	25	5	1200	5	
	97	98	2024-11-10	2024-12-11	28	Female	Bangalore	15	18	800	3	
	98	99	2024-11-17	2024-12-18	42	Male	Hyderabad	30	2	1500	2	
	99	100	2024-11-24	2024-12-25	40	Female	Delhi	29	17	1910	1	
	100	rows × 12 colu	mns									
	4											•
[3]:	dat	a.head()										
[3]:		Customer_ID	Subscription_Start_Date	Subscription_End_Date	Age	Gender	Location	Purchase_Frequency	Recency	Monetary_Value	Support_Tickets	Resolution_
	0	1	2023-01-01	2023-02-01	25	Male	Delhi	10	20	500	2	
	1	2	2023-01-08	2023-02-08	34	Female	Mumbai	25	5	1200	5	
	2	3	2023-01-15	2023-02-15	28	Male	Bangalore	15	18	800	3	
	3	4	2023-01-22	2023-02-22	42	Female	Hyderabad	30	2	1500	2	
	4	5	2023-01-29	2023-03-01	40	Male	Delhi	29	17	1910	1	

Isnull().sum() checks the null values

[4]:	data.	tail()												
[4]:	Ci	ustomer_ID	Subscription_S	tart_Date Subscripti	on_End_Date	Age (Gender	Location	Purchas	e_Frequency	Recency	Monetary_Val	ue Support_Tickets	Resolution
	95	96	20	024-10-27	2024-11-27	25	Female	Delhi		10	20	5	00 2	
	96	97	20	024-11-03	2024-12-04	34	Male	Mumbai		25	5	12	00 5	
	97	98	20	024-11-10	2024-12-11	28	Female	Bangalore		15	18	8	00 3	
	98	99	20	24-11-17	2024-12-18	42	Male I	Hyderabad		30	2	15	00 2	
	99	100	20)24-11-24	2024-12-25	40	Female	Delhi		29	17	19	10 1	
	4													-
[5]:	data.	describe())											
[5]:		Customer_	ID Age	Purchase_Frequency	Recency	Mone	tary_Value	Support	Tickets	Resolution_	Time_Days	Churn		
	count	100.0000	00 100.000000	100.000000	100.000000		100.00000		100.0000		00.000000	100.000000		
	mean	50.5000	00 33.800000	21.800000	12,400000	1	1182.00000)	2.6000		2.800000	0.500000		
	std	29.0114	92 6.618004	7.974707	7.429126		501.00509	5	1.3633		0.752101	0.502519		
	min	1.0000	00 25.000000	10.000000	2.000000		500.00000		1.0000		2.000000	0.000000		
	25%	25.7500	00 28.000000	15.000000	5.000000		800.00000)	2.0000		2.000000	0.000000		
	50%	50.5000	00 34.000000	25.000000	17.000000	1	1200.00000		2.0000		3.000000	0.500000		
	75%	75.2500	00 40.000000	29.000000	18.000000	1	1500.00000)	3.0000		3.000000	1.000000		
	max	100.0000	00 42.000000	30.000000	20.000000	1	1910.00000)	5.0000		4.000000	1.000000		
[6]:	# Check for missing values print(data.isnull().sum()) Customer_ID Subscription_Start_Date Subscription_End_Date Age Gender Location Purchase_Frequency Recency Monetary_Value Support_Tickets Resolution_Time_Days Churn dtype: int64			0 0 0 0 0 0 0 0 0 0 0										

In this data we don't have any null values so we will be continuing with the code and check the churn counts.

By - data['Churn'].values_counts()

As we can see we have 50-1 & 50-0, which is equal yes and no.

```
[7]: #here there is no null values in our data
 [8]: data['Churn'].value_counts()
 [8]: Churn
      1 50
0 50
      Name: count, dtype: int64
 [9]: # Convert the subscription start and end dates to datetime format
      data['Subscription_Start_Date'] = pd.to_datetime(data['Subscription_Start_Date'])
      data['Subscription_End_Date'] = pd.to_datetime(data['Subscription_End_Date'])
[10]: # Calculate the duration of the subscription in days
      data['Subscription_Duration'] = (data['Subscription_End_Date'] - data['Subscription_Start_Date']).dt.days
[11]: print(data['Subscription_Duration']) #shows the duration from Subscription_Start_Date and Subscription_End_Date
      2
            31
            31
      4
            31
            31
      95
      96
            31
      97
            31
      98
      Name: Subscription_Duration, Length: 100, dtype: int64
[12]: # Check data types
      data.dtypes
[12]: Customer ID
                                           int64
      Subscription_Start_Date datetime64[ns]
Subscription_End_Date datetime64[ns]
      Age
       Location
      Purchase_Frequency
                                           int64
      Recency
                                            int64
      Monetary_Value
                                           int64
      Support_Tickets
                                           int64
      Resolution_Time_Days
                                           int64
                                           int64
      Subscription Duration
                                           int64
      dtype: object
```

- Convert the data types of Subscription dates to date and time(datetime).
- Count the duration of start_date and end_date.
- Counting the duration creates the new column in the table as Subscription_Duration.

Convert the GENDER and Location to numerical values

{categorical data to numerical data}

```
[13]: # Initialize LabelEncoder to convert categorical data into numerical form
      le = LabelEncoder()
      # Encode Gender (e.g., Male -> 1, Female -> 0)
      data['Gender'] = le.fit_transform(data['Gender'])
      # Encode Location (e.g., different locations -> different integers)
      data['Location'] = le.fit_transform(data['Location'])
[14]: # Check data types
      data.dtypes #the datatype for gender and location changes from object to int
[14]: Customer_ID
      Subscription_Start_Date datetime64[ns]
      Subscription_End_Date datetime64[ns]
      Age
                                          int64
      Location
                                           int32
      Purchase_Frequency
                                           int64
      Recency
                                           int64
      Monetary_Value
                                           int64
      Support_Tickets
                                           int64
      Resolution_Time_Days
                                          int64
                                          int64
      Subscription_Duration
                                           int64
      dtype: object
[15]: data.head(6)
         Customer_ID Subscription_Start_Date Subscription_End_Date Age Gender Location Purchase_Frequency Recency Monetary_Value Support_Tickets Resolution_Tickets
      0
                               2023-01-01
                                                    2023-02-01
                                                                                                  10
                                                                                                           20
                                                                                                                         500
                                                                                                  25
                               2023-01-08
                                                    2023-02-08 34
                                                                                 3
                                                                                                                        1200
                                2023-01-15
                                                    2023-02-15
                                                                                                  15
      2
                                                                                 0
                                                                                                           18
                                2023-01-22
                                                    2023-02-22 42
                                                                                                  30
                                                                                                                        1500
                                2023-01-29
                                                    2023-03-01
                                                                                                  29
                                                                                                           17
                                                                                                                        1910
                                2023-02-05
                                                    2023-03-08 25
                                                                                                  10
                                                                                                           20
```

Drop the unnecessary Columns:

[Customer_ID, Subscription_Start_Date, Subscription_End_Date]

		Drop Customer_ID and the original date columns since they are no longer needed ta.drop(['Customer_ID', 'Subscription_Start_Date', 'Subscription_End_Date'], axis=1, inplace=True)										
]: (data.h	.head(6)										
]: _	Age	Gender	Location	Purchase_Frequency	Recency	Monetary_Value	Support_Tickets	Resolution_Time_Days	Churn	Subscription_Duration		
	25	1	1	10	20	500	2	3	1	31		
1	34	0	3	25	5	1200	5	2	0	31		
2	28	1	0	15	18	800	3	4	1	31		
3	42	0	2	30	2	1500	2	2	0	31		
-	40	1	1	29	17	1910	1	3	1	31		
	25	0	1	10	20	500	2	3	0	31		

Work on the model for prediction

```
[58]: # Define the feature variables (X) and target variable (y)
      X = data.drop('Churn', axis=1) # Features are all columns except 'Churn'
      y = data['Churn'] # Target is the 'Churn' column
      # Split the dataset into 70% training and 30% testing
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
[59]: # Initialize the Random Forest classifier with 100 trees
      rf = RandomForestClassifier(n_estimators=100, random_state=42)
      # Train the model on the training data
      rf.fit(X_train, y_train)
      # Predict churn on the test data
     y_pred = rf.predict(X_test)
[60]: # Calculate and print the accuracy of the model
      accuracy = accuracy_score(y_test, y_pred)
      print(f'Accuracy: {accuracy * 100:.2f}%')
      # Print the classification report for detailed performance metrics (precision, recall, F1-score)
      print('Classification Report:')
      print(classification_report(y_test, y_pred))
      Accuracy: 93.33%
      Classification Report:
                  precision recall f1-score support
                       0.92 0.92 0.92 12
0.94 0.94 0.94 18
                0
                1
      accuracy 0.93 30
macro avg 0.93 0.93 0.93 30
weighted avg 0.93 0.93 0.93 30
                                                       30
```

Conclusion: By using machine learning to predict customer churn, the company can concentrate on keeping valuable customers instead of spending more money to get new ones. This project shows how predictive models can give useful insights, helping businesses act quickly and effectively to lower churn rates and keep their customers loyal. With an accuracy of **93.33%**, the model is very good at identifying customers who might leave. This project can be used to improve customer relationships, boost satisfaction, and increase profits.