

ÉTUDE DE SPECTRES INFRAROUGES DE GÉANTES ROUGES ÉVOLUÉES

Margaux Vandererven

Supervisé par Sophie Van Eck

Étoiles de type S & étoiles à baryum

 $T_{eff} \mbox{ \'etoiles } S \sim T_{eff} \mbox{ \'etoiles } M$ Bandes ZrO & enrichissement en éléments s

- de type S intrinsèques (Tc rich) : 13 C(α ,n) 16 O, 22 Ne(α ,n) 25 Mg
- de type S extrinsèques (Tc poor)

 T_{eff} étoiles à baryum $\sim T_{eff}$ étoiles G-K Enrichissement en éléments s

Structure interne d'une étoile AGB. Tiré de Persson 2014.

Processus s

+ de 50% éléments plus lourds que le fer

Spectre observé

Spectre infrarouge:

IGRINS (Immersion GRating INfrared Spectrometer)

Haute résolution : $R = \frac{\lambda}{\Delta \lambda} \sim 45000$

- Bande H $(1.45 1.80 \ \mu m)$
- Bande K (2.05 2.50 μm)

Correction:

Réduction, correction tellurique, première normalisation par Chris Sneden.

Seconde normalisation et correction redshift par moi-même.

Série d'étoiles

Étoile	Type spectral	T _{eff} (K)	$\log g \text{ (cm } s^{-2}\text{)}$	$\xi_{ m micro}$ (km s $^{-1}$)	[Fe/H] (dex)
HD 60197	K3.5III:Ba3.5	$3800 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	2.00 ⁽³⁾	$-0.60 \pm 0.20^{(3)}$
HD 63733	S3.5/3	3700 ⁽¹⁾	$1.00^{(1)}$	-	$-0.10\pm0.13^{(1)}$
CR Cir	S6,2	-	-	-	-
HD 123949	K1pBa	$4378 \pm 80^{(3)}$	$1.78 \pm 0.53^{(3)}$	1.37 ⁽³⁾	$-0.31 \pm 0.13^{(3)}$
BD-22°1742	S3:*3	4000 ⁽¹⁾	$1.00^{(1)}$	-	$-0.30 \pm 0.09^{(1)}$
CD-29°5912	S4,4	3600 ⁽⁴⁾	1.00(4)	-	$-0.40 \pm 0.22^{(4)}$
BD-18°2608	S	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.31 \pm 0.16^{(2)}$
HD 116869	G8III:Ba1	$4892 \pm 30^{(3)}$	$2.59 \pm 0.07^{(3)}$	$1.38 \pm 0.04^{(3)}$	$-0.44 \pm 0.09^{(3)}$
HD 120620	K0III (Ba ⁽³⁾)	$4831 \pm 13^{(3)}$	$3.03 \pm 0.30^{(3)}$	$1.11 \pm 0.05^{(3)}$	$-0.30 \pm 0.10^{(3)}$
HD 121447	$K4III^{(3)}$ (Ba $^{(3)}$)	$4000 \pm 50^{(3)}$	$1.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.90 \pm 0.13^{(3)}$
HD 100503	G/KpBa	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.72 \pm 0.13^{(3)}$
HD 119185	G8IIIpBa	-	-	-	-
HD 88562	K1III (Ba ⁽³⁾)	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.53 \pm 0.12^{(3)}$
V812 Oph	S5+/2.5	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.37 \pm 0.13^{(2)}$
19 Aql	F0III-IV	-	-	-	-
V915 Aql	S5+/2	3400 ⁽¹⁾	$0.00^{(1)}$	-	$-0.50\pm0.15^{(1)}$
HD 165774	S4,6	-	-	-	-

Références. $^{(1)}$ Shetye et al. 2018, $^{(2)}$ Shetye et al. 2021 , $^{(3)}$ Karinkuzhi et al. 2018, $^{(4)}$ Shetye et al. 2019

Spectre synthétique

MARCS

- Model Atmospheres with a Radiative and Convective Scheme
- 1D à équilibre hydrostatique
- convection implémentée par théorie de longueur de mélange
- turbulences implémentées par paramètres simples (micro et macro-turbulence)

TurboSpectrum v20

- code qui résoud l'équation de transfert radiatif avec méthode Feautrier
- apporixmation ETL et non-ETL
- géométrie plan-parallèle (log g > 3.5) et sphérique (log g < 3.5)
- élargissement : profil de Voigt, effet Stark linéaire, théorie ABO
- ightarrow Minimisation χ^2 entre spectres synthétiques et spectre observé

Contributions moléculaires

	Molécules	Bande H (%)	Bande K (%)
Cat. I	¹² C ¹⁴ N	55.14	44.35
(> 10%)	¹³ C ¹⁴ N	32.00	14.51
	¹² C ¹⁶ O	75.33	72.01
	HF	17.79	57.16
	¹² C ¹² C	32.97	30.73
	¹² C ¹³ C	14.12	12.26
	¹² CH	4.68	10.68
	¹⁶ OH	59.68	31.59
Cat. II	¹³ C ¹³ C	7.84	3.51
(1-10%)	¹³ C ¹⁷ O	0.04	1.96
	⁵⁶ FeH	3.12	0.08
	¹⁴ NH	1.57	1.23
	H ₂ O	1.75	6.80

Cat. III (<1%): 13 CH, 14 NH, 48 TiO, C_2 H $_2$, HCl, 20 CaH, 28 SiH, 28 SiO, VO, YO, 48 TiO, 24 MgH, AlH, 52 CrH, H 12 CN, H 13 CN, $^{90-94}$ ZrO et 96 ZrO

Abondances C, N, O

Itération sur les abondances de C, N, O jusqu'à convergence

$\logarepsilon_{ m O}$	$\logarepsilon_{ m C}$	$\logarepsilon_{ m N}$	¹² C/ ¹³ C	Raie
8.59 ± 0.01	8.44	7.38	40	¹⁶ OH
8.59	7.82 ± 0.03	7.38	40	$^{12}C^{16}O$
8.59	7.82	7.38	20	¹³ C ¹⁷ O
8.30 ± 0.02	7.82	7.38	20	¹⁶ OH
8.30	7.89 ± 0.02	7.38	20	$^{12}C^{16}O$
8.33 ± 0.02	7.89	7.38	20	¹⁶ OH
8.33	7.86 ± 0.03	7.38	20	$^{12}C^{16}O$
8.33	7.86	7.84 ± 0.02	20	$^{12}C^{14}N$
8.33	7.86	7.84	12	¹³ C ¹⁴ N
8.31 ± 0.01	7.86	7.84	12	¹⁶ OH
8.31	7.88 ± 0.03	7.84	12	$^{12}C^{16}O$
8.31	7.88	7.84 ± 0.02	12	$^{12}C^{14}N$

Paramètres stellaires

Paramètre	Détermination	Ce travail	Littérature
[Fe/H]	abondance de fer	-0.25 dex	-0.30 dex
$T_{ ext{eff}}$	respect de l'équation de Boltzmann → abondance d'un élément ne varie pas en fonction du potentiel d'excitation	4000 ± ? K	4000 K
log g	respect de l'équation de Saha \rightarrow abondance identique pour l'élément neutre et ses différents états d'ionisation	to do Ti lines	$1.00 \; {\rm km \; s^{-1}}$

Paramètres stellaires suite

Pai	ramètre	Détermination	Ce travail	Littérature
ı	log g	isochrones (estimer âge)	1.04	1.00
		tracés évolutifs (estimer masse)	to do	1.00
		ailes raies fortes	0.31	1.00
ξ	Śmicro	abondance ne varie pas en fonc- tion de la largeur équivalente réduite	to do	-

Raies atomiques

	Élement	Nb. raies
Élements pic du fer	Sc I	115
	Ti I	63
	Ti II	7
	VΙ	76
	Cr I	20
	Mn I	55
	Fe I	81
	Co I	69
	Ni I	58
Élements- $lpha$	Mg I	12
	Si I	13
	Ca I	5

Raies atomiques suite

	Élement	Nb. raies
Éléments Z impaire	Na I	19
	Al I	7
	ΚI	5
Éléments s	Cu I	5
	ΥI	17
	Zr I	2
	Ba I	2
	Ce II	9
	Ce III	2
	Nd II	7
	Yb II	2

La suite?

- finir détermination paramètres stellaires
- comparaison avec abondances déterminées dans le visible à partir de spectre HERMES
- détermination d'abondances d'éléments lourds ETL et non-ETL
 - besoin de listes non-ETL
 - besoin d'interpoler modèles et coefficients d'écarts non-ETL
- comparaison profil d'abondances avec modèles de nucléosynthèse