16.3. The fundamental theorem for line integrals

Recall: If fix) is continuous on [a,b] with antiderivative Fix), then $\int_{a}^{b} f(x) dx = F(b) - F(a)$.

Def A vector field 7 is conservative if it is the gradient of some scalar function f, called a potential function.

Thm (The fundamental theorem for line integrals) Let C be a curve parametrized by Tct) on a et & b.

If F is a conservative vector field with a potential

function f, then

$$\int_{C} \vec{F} \cdot d\vec{r} = \frac{f(\vec{r}(b)) - f(\vec{r}(a))}{\text{terminal value initial value}}$$

ma)

Traj=rcb)

(work done by = difference in potential)

In particular, if C is a loop then $\int_{c} \vec{F} \cdot d\vec{r} = 0$. (no work done along a loop =) energy conserved)

Note (1) A loop is also called a closed curve

* This notion is completely unrelated to the notion of closed domain

(2) Not all vector fields are conservative.

Q. How do we know if a vector field is conservative? Remark If F = (P, Q) is conservative with a potential function f, then P=fx and Q=fy $\Rightarrow \frac{\partial Q}{\partial P} = f_{xy} = f_{yx} = \frac{\partial Q}{\partial x}$

> This turns out to be the only condition to check in good situations.

Def A domain D in IR2 is simply connected if it is connected without any holes.

simply connected not simply connected

Thm Let D be an open and simply connected domain in IR2. A vector field $\vec{F} = (P,Q)$ is conservative on D if and only if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

Thm A vector field $\vec{F} = (P, Q, R)$ is conservative on IR^3 if and only if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial Q} = \frac{\partial R}{\partial y}$, $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$. în 16.5.

Ex Consider the force field F(x,y) = (2x-y, 4y-x).

(1) Is \overrightarrow{F} conservative on \mathbb{R}^2 ?

Sol IR2 is open and simply connected.

$$P = 2x - y$$
, $Q = 4y - X \Rightarrow \frac{\partial P}{\partial y} = -1$, $\frac{\partial Q}{\partial x} = -1$

=) F is conservative on 122

(2) Find a potential function f of F.

Sol We want
$$P = \frac{\partial f}{\partial x}$$
 and $Q = \frac{\partial f}{\partial y}$

$$\int Pdx = \int 2x - y dx = x^2 - xy$$

$$\int Qdy = \int 4y - x \, dy = (2y^2) - (xy)$$

Idea Collect all terms without duplicates

$$\Rightarrow$$
 f(x,y) = $x^2 - xy + 2y^2$.

(3) Find the work done by \overrightarrow{F} along a curve C_1 from (1,0) to (2,1)

$$\frac{Sol}{Sol}\int_{C_1} \vec{F} \cdot d\vec{F} = f(2,1) - f(1,0) = 4 - 1 = 3$$

(4) Find a curve C_2 with $\int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r} = 2$.

Sol Let A and B be the start and end of Cz.

$$\int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r} = f(B) - f(A) = 2$$

Take $A = (0,0), B = (0,1) \Rightarrow f(A) = 0, f(B) = 2$.

 \Rightarrow C_2 is a curve from (0,0) to (0,1)

Note There are infinitely many possible answers for C2.

Ex Consider the vortex field $\overrightarrow{V}(x,y) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$.

(1) Is V conservative on the domain 470?

The domain is open and simply connected.

$$P = -\frac{y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(-\frac{y}{x^2 + y^2} \right) = -\frac{1 \cdot (x^2 + y^2)^{-y \cdot 2y}}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) = \frac{1 \cdot (x^2 + y^2) - x \cdot 2x}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\Rightarrow \frac{\partial A}{\partial b} = \frac{\partial x}{\partial x}$$

⇒ V is conservative on the domain 470

Note In fact, \vec{V} has a potential function given by $V(x,y) = \arctan(-\frac{x}{y})$

(2) Find $\int_C \vec{V} \cdot d\vec{r}$ where C is given by $x^2 + (y-2)^2 = 1$.

C is the circle of radius 1 and center co.2)

= C lies in the domain 470.

$$\Rightarrow \int_{C} \vec{\nabla} \cdot d\vec{r} = 0$$

Fund. Thm.

(3) Is \vec{V} conservative on the domain $(X,Y) \neq (0,0)$?

The domain is not simply connected.

(A hole at the origin)

Take C to be a circle centered at 10,10) with counterdockwise onentation.

If \vec{V} is conservative, then $\int_{C} \vec{V} \cdot d\vec{r} = 0$

However, we know $\int_{C} \vec{V} \cdot d\vec{r} = 2\pi$ Lecture 31

 \Rightarrow \overrightarrow{U} is not conservative on the domain $(x,y) \neq (0,0)$

- Note (1) The potential function $V(x,y) = \arctan(-\frac{x}{y})$ for the domain y > 0 does not work here because it is undefined on the x-axis.
 - (2) Intuitively, \vec{V} is not conservative because of its circular (or spiral) flow.

V and C move in the same direction

→ Work done by V along C
is positive

$$\uparrow \Rightarrow \int_{C} \vec{V} \cdot d\vec{r} > 0$$

 \Rightarrow \overrightarrow{V} is not conservative.