Prova Facoltativa di Comunicazioni Numeriche - Parte II - Fila ${\bf A}$

30 Maggio 2013

Es. 1 - Il consumo di inchiostro di tre stampanti inkjet e' descritto da tre variabili aleatorie indipendenti C_i (i = 1,2,3), in cui C_1 e' uniformemente distribuita in [1,10] mlt/pag, C_2 ha una d.d.p. di tipo esponenziale negativo a valor medio 5 mlt/pag e la d.d.p. di C_3 e' pari a $f_{C_3}(c) = \frac{1}{5} \left(1 - \frac{|c-6|}{5}\right) \operatorname{rect}\left(\frac{c-6}{10}\right)$. Sapendo che il contenuto della cartuccia per le tre stampanti e' pari a 500 mlt, e supponendo di scegliere a caso una delle tre stampanti, calcolare la probabilita' di stampare almeno 100 pagine identiche prima di esaurire la cartuccia.

Es. 2 - Con riferimento alla Fig. 1, siano $X(t) = \frac{A}{T} \operatorname{sinc}\left(\frac{t}{T}\right) \cos(2\pi f_0 t)$ e $Y(t) = \cos(2\pi f_0 t + \Theta)$ due processi aleatori parametrici. Siano A e Θ due V.A. indipendenti con A uniformemente distribuita in [0,1] e Θ uniformemente distribuita in $[-\pi,\pi]$. Sia inoltre $h(t) = \operatorname{sinc}\left(\frac{t}{T}\right)$ e si assuma che $f_0 \gg \frac{1}{T}$. Si calcolino il valor medio, valor quadratico medio e varianza della V.A. Z.

Es. 3 - In un sistema di comunicazione numerico il segnale ricevuto è $r(t) = s(t) \otimes c(t) + n(t)$ dove $s(t) = \sum_n x_c [n] p(t-nT) \cos(2\pi f_0 t) - \sum_n x_s [n] p(t-nT) \sin(2\pi f_0 t)$, i simboli sono indipendenti ed equiprobabili ed appartengono rispettivamente all'alfabeto $x_c [n] \in A_s^{(c)} = \{-1,2\}$ e $x_s [n] \in A_s^{(s)} = \{-1,1\}$, n(t) è un processo di rumore Gaussiano bianco in banda con DSP pari ad $\frac{N_0}{2}$ e sono note le seguenti: $P(f) = rect\left(\frac{f}{2B}\right)\sqrt{\left(1-\frac{|f|}{B}\right)}$, $c(t) = \delta(t-t_0)$ e $h_R(t) = p(t+t_0)$. Nell'ipotesi che $f_0 \gg B$ e che $T = \frac{1}{B}$, calcolare: 1) Energia media per simbolo, 2) Potenza di rumore media in uscita dal filtro $h_R(t)$, 3) Determinare il valore di ϑ che garantisce l'assenza di cross-talk, 4) Calcolare la probabilità di errore sul simbolo QAM

Es. 4 - Dire quali, tra le seguenti funzioni, può essere un'autoccorelazione media di un processio aleatorio SSL reale. In ogni caso, giustificare la risposta.

 ${f Es.}\ {f 5}$ - Dimostrare, per una modulazione PAM, che la condizione di Nyquist nel tempo garantisce l'assenza di ISI.

Fig. 3