Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Iowa State University

May 28, 2013

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical

Boxplots

Dason Kurkiewicz

Boxplots

Theoretical

i	<u>i5</u> 20	<i>i</i> th Smallest 230 Grain Data Point = $Q(\frac{i5}{20})$	<i>i</i> th Smallest 200 Grain Data Point = $Q(\frac{i5}{20})$
1	.025	27.75	58.00
2	.075	37.35	58.65
3	.125	38.35	59.10
4	.175	38.35	59.50
5	.225	38.75	59.80
6	.275	39.75	60.70
7	.325	40.50	61.30
8	.375	41.00	61.50
9	.425	41.15	62.30
10	.475	42.55	62.65
11	.525	42.90	62.95
12	.575	43.60	63.30
13	.625	43.85	63.55
14	.675	47.30	63.80
15	.725	47.90	64.05
16	.775	48.15	64.65
17	.825	49.85	65.00
18	.875	51.25	67.75
19	.925	51.60	70.40
20	.975	56.00	71.70

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile

$$Q(.25) = .5Q(.225) + .5Q(.275) = .5(38.75) + .5(39.75) = 39.25 \text{ mm}$$

 $Q(.5) = .5Q(.475) + .5Q(.525) = .5(42.55) + .5(42.90) = 42.725 \text{ mm}$
 $Q(.75) = .5Q(.725) + .5Q(.775) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$

So

$$IQR = 48.025 - 39.25 = 8.775 \text{ mm}$$

 $1.5IQR = 13.163 \text{ mm}$
 $Q(.75) + 1.5IQR = 61.188 \text{ mm}$
 $Q(.25) - 1.5IQR = 26.087 \text{ mm}$

Example: bullet data

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

Theoretical Quantile-Quantile

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

- ► This plot is used to tell if the distributional shapes of the datasets are the same or different.

Theoretical Quantile-Quantile

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset

- ► This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.

Theoretical Quantile-Quantile

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset

- ► This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - Otherwise, the shapes are different.

Theoretical Quantile-Quantile

Summaries

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset

- ► This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - Otherwise, the shapes are different.
- ▶ The datasets must be univariate, numerical, and of the same size.

i	$\frac{i5}{20}$	<i>i</i> th Smallest 230 Grain Data Point = $Q(\frac{i5}{20})$	<i>i</i> th Smallest 200 Grain Data Point = $Q(\frac{i5}{20})$
1	.025	27.75	58.00
2	.075	37.35	58.65
3	.125	38.35	59.10
4	.175	38.35	59.50
5	.225	38.75	59.80
6	.275	39.75	60.70
7	.325	40.50	61.30
8	.375	41.00	61.50
9	.425	41.15	62.30
10	.475	42.55	62.65
11	.525	42.90	62.95
12	.575	43.60	63.30
13	.625	43.85	63.55
14	.675	47.30	63.80
15	.725	47.90	64.05
16	.775	48.15	64.65
17	.825	49.85	65.00
18	.875	51.25	67.75
19	.925	51.60	70.40
20	.975	56.00	71.70

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Quantile-Quantile (QQ) Plots

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical

Summaries

230-grain depths.

▶ I can make a QQ plot of the bullet data by plotting the

▶ The points lie in approximately a straight line, so the

sorted 200-grain depths against the sorted 230-grain depths.

200-grain depths are similarly shaped in distribution to the

Theoretical Quantile-Quantile Plots

Theoretical Quantile-Quantile Plots

Parameters

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ▶ The sorted values $x_1, x_2, ... x_n$ of some real data set or the x axis.
 - $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis
 - Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- ► Example theoretical quantile functions
 - "Standard" bell-shaped data should have

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant.

Summaries

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ▶ The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

- ▶ The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.
- $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile Plots

Summaries

▶ The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.

 $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.

Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

Boxplots

Theoretical Quantile-Quantile Plots

Summaries

Theoretical Quantile-Quantile Plots

Numerical Summaries

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ▶ The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.
 - $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.
 - Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ▶ The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.
 - $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.
 - Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:
 - "Standard" bell-shaped data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

Numerical Summaries

Parameters

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ▶ The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.
 - $ightharpoonup Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \ldots, Q(\frac{n-.5}{n})$ on the y axis.
 - ▶ *Q* is some **theoretical quantile function**: the quantile function we would *expect* from a dataset if that dataset had a certain shape.
- ► Example theoretical quantile functions:
 - "Standard" bell-shaped data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant.

Boxplots

Theoretical Quantile-Quantile Plots

Summaries

- ▶ Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile function for "standard" bell-shaped (normally-distributed) data.

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Summaries

'arameters

- ▶ Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile function for "standard" bell-shaped (normally-distributed) data.
- ▶ If the points in a normal QQ plot are in a straight line, the dataset in question is bell-shaped. Otherwise, the data is not bell-shaped.

i	$\frac{i5}{10}$	$\frac{i5}{10}$ Breaking Strength Quantile	$\frac{i5}{10}$ Standard Normal Quantile
1	.05	7,583	-1.65
2	.15	8,527	-1.04
3	.25	8,572	67
4	.35	8,577	39
5	.45	9,011	13
6	.55	9,165	.13
7	.65	9,471	.39
8	.75	9,614	.67
9	.85	9,614	1.04
10	.95	10,688	1.65

Example: towel breaking strength data

► The points are roughly straight-line-shaped, so the breaking strength data is roughly bell-shaped.

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

Dason Kurkiewicz

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Theoretical Quantile-Quantile Plots

Summaries

- ▶ Since the points in the normal QQ plot are not quite arranged in a straight line, the 200-grain penetration depths are not quite bell-shaped. However, the departure from normality is not severe.

Theoretical Quantile-Quantile Plots

Summaries

- Since the points in the normal QQ plot are not guite arranged in a straight line, the 200-grain penetration depths are not quite bell-shaped. However, the departure from normality is not severe.
- ▶ The QQ plot of the bullet data from before revealed that the 200-grain depths had the same distributional shape as the 200-grain bullet depths. Thus, the 230-grain bullet data is not quite bell-shaped either.

Numerical Summaries

Numerical Summaries

Theoretical Quantile-Quantile

Numerical Summaries

Numerical summary (statistic) A number or list of numbers calculated using the data

- (and only the data).

Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile

Numerical Summaries

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile

Numerical Summaries

Parameters

Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Theoretical Quantile-Quantile

Numerical Summaries

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median

Descriptive Statistics: Part 2/2 (Ch 3) Dason Kurkiewicz

Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode

Boxplots

Theoretical Quantile-Quantile

Numerical Summaries

Quantile-Quantile

Plots Numerical

Summaries

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance

Numerical Summaries

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range

Descriptive Statistics: Part 2/2 (Ch 3) Dason Kurkiewicz

Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - IQR

Boxplots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Quantile-Quantile

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - IQR
 - Measures of shape:
 - All the quantiles together

Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- ► Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - ► Sample variance
 - ► Sample standard deviation
 - Range
 - ► IQR
 - Measures of shape:
 - ► All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Dason Kurkiewicz

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

- Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - IQR
 - Measures of shape:
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Theoretical Quantile-Quantile

Theoretical Quantile-Quantile

Summaries

Arithmetic mean:

$$\overline{\mathbf{y}} = \frac{1}{2} \sum_{i=1}^{n} \mathbf{y}_{i}^{i}$$

Here,
$$\overline{x} = \frac{1}{6}(0+1+1+2+3+5) = 1$$

- Arithmetic mean:
 - $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - ► Here, $\overline{x} = \frac{1}{6}(0+1+1+2+3+5) = 2$
- ► Median: Q(0.5
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is ever
 - ► Here, Q(0.5) = (1+2)/2 = 1.5
- ► Mode (of a discrete or categorical dataset
 - ▶ the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$

Theoretical

Numerical Summaries

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:

Numerical

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.

Numerical

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - Here, Q(0.5) = (1+2)/2 = 1.5

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)

- Arithmetic mean:

 - ► $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- Median: Q(0.5).
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

Quantile-Quantile

- Sample variance
 - $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$
 - Here, $s^2 = \frac{1}{6 \cdot 1} [(0-2)^2 + (1-2)^2 + (1-2)^2 + (2-1)^2]$ $(2)^{2} + (3-2)^{2} + (5-2)^{2} = 3.2$
- Sample standard deviation
 - $s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2}$
 - Here. $s = \sqrt{3.2} = 1.7889$
- Range
 - Range = Maximum Minimum
 - ▶ Here, Range = 5 0 = 5
- Interquartile range
 - Arr IQR = Q(0.75) Q(0.25)
 - ▶ Here, IQR = 3 1 = 2

Compare:

	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> 5	<i>x</i> ₆
Xi	0	1	1	2	3	5
$\frac{i5}{n}$.083	0.25	0.417	2 0.583	0.75	0.917

to:

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆
Xi	0	1	1	2	3	817263489
$\frac{i5}{n}$.083	0.25	0.417	0.583	0.75	817263489 0.917

which measures of center and spread differ drastically between the x_i 's and the y_i 's? Which ones are about the same?

Numerical Summaries

Data	Xi	Уi
Mean	2	1.3621×10^{8}
Median	1.5	1.5
Mode	1	1
Sample Variance	3.2	1.1132×10^{17}
Sample Std. Dev.	1.7889	3.3365×10^{8}
Range	5	8.1726×10^{8}
IQR	2	2

Summaries

- Numerical summaries sensitive to outliers and skewness:
 - Mean
 - Sample variance
 - Sample standard deviation
 - Range
- Less sensitive numerical summaries:
 - Median
 - Mode
 - IQR

Parameters.

Summaries

- **Statistic**: numerical summary of data on the *sample*

Summaries

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.

Statistic: numerical summary of data on the sample

- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.

Summaries

Parameters 4 8 1

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):

•
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 if N the *finite* population size • $s^2 \approx \sigma^2$.

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.
 - ightharpoonup $\overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size.

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.
 - ightharpoonup $\overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size. $s^2 \approx \sigma^2$.

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.
 - ightharpoonup $\overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size. $s^2 \approx \sigma^2$.
 - Population standard deviation ("true" standard deviation):

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.
 - ightharpoonup $\overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size. $s^2 \approx \sigma^2$.
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size.

- Statistic: numerical summary of data on the sample
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the finite population size.
 - ightharpoonup $\overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size. $s^2 \approx \sigma^2$.
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size.
 - \triangleright $s \approx \sigma$