Naïve Bayesian Classifier (method review)

Grishin Andrey (group: M05-318a)

Department of Machine Learning and Digital Humanities

Moscow Institute of Physics and Technology

November 11, 2023

Plan

- Introduction
 - What is Bayesian Classifier?
 - Why (what for) do we need it?
- Maths of Bayesian Classifier
 - Model assumptions
 - Main maths
- Iris classification problem
 - Problem state
 - Fitting results
- 4 Summary
 - References
 - Conclusion

What is Bayesian Classifier?

Bayesian Classifier — **probabilistic** classification model:

• Foundation: Bayes's theorem.

• Authors: Thomas Bayes, Richard Price.

• **Title:** "An Essay towards Solving a Problem in the Doctrine of Chances" ¹.

• Initial use: Estimate distribution parameters.

• **Year**: 1763

¹Reference to the article [Bayes and Price, 1763].

Why (what for) do we need it?

- Classifier:
 - Segregate data observations.
 - Baseline classification models.
- Theorem:
 - Estimate distribution parameters (normal, binomial, etc.).
 - Estimate posterior probabilities of events.

Model assumptions

Let $X \in \mathbb{R}^{n \times m}$, $y \in \{C_1, C_2, \dots, C_k\}$. Then need to find $f(\cdot)$ such as:

$$\mathbb{E}(y \mid X) = f(X) \Leftrightarrow y = f(X) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$
 (1)

 $f(\cdot) = \text{Bayesian Classifier. } X_j \in \mathbb{R}^{1 \times m} : j = \overline{1, n} \text{ is r.v. } \mu \text{ and } \Sigma \text{ estimation } - \text{tough.}$

Assume:

- $X_j \sim \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^{m \times 1}, \ \Sigma \in \mathbb{R}^{m \times m}$.
- $X_j = [\xi_1, \dots, \xi_m] : \xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\mu_i, \sigma_i^2\right) \Rightarrow \Pr[X_j] = \prod_{i=1}^m \Pr[\xi_i].$

Note: classification \approx regression: probability $\in [0, 1]$.

Main maths I

Bayesian theorem is formalized like this:

$$Pr[A \mid B] = \frac{Pr[B \mid A] \times Pr[A]}{Pr[B]}$$
 (2)

Bayesian classifier, where c_t : $t = \overline{1, k}$ is the class number:

$$\Pr[y_j = c_t \mid X_j] = \frac{\Pr[X_j \mid y_j = c_t] \times \Pr[y_j = c_t]}{\Pr[X_j]}$$
(3)

The formula (3) can be respectively expressed as:

$$posterior = \frac{likelihood \times prior}{evidence}$$
 (4)

Main maths II

But evidence $\Pr[X_j]$ is the same $\forall c_t : t = \overline{1, k}$. Hence, we do not strictly need it.

$$\Pr[y_j = c_t \mid X_j] \propto \Pr[X_j \mid y_j = c_t] \times \Pr[y_j = c_t]$$
 (5)

After expansion of the (5) we almost have the final formula:

$$\Pr[y_j = c_t \mid X_j] \propto \left(\prod_{i=1}^m \Pr[X_{ji}]\right) \times \Pr[y_j = c_t]$$
 (6)

So, (6) gives us the expression for X_i 's class:

$$\hat{C}_{j} = \arg \max_{t=\overline{1,k}} \left\{ \left(\prod_{i=1}^{m} \Pr[X_{ji}] \right) \times \Pr[y_{j} = c_{t}] \right\}$$
(7)

Main maths III

Q: What exactly is $\prod_{i=1}^{m} \Pr[X_{ji}]$ and how to estimate (μ_j, σ_j^2) ?

A: To make things clear, let's reduce the number of features and classes to 1.

Assumed $\mathcal{N}\left(\mu, \sigma^2\right) \Rightarrow 2$ parameters to be estimated. MLE method [Wilks, 1938].

$$L = \prod_{j=1}^{n} \Pr[X_j \mid \mu, \sigma] \equiv \prod_{j=1}^{n} L(\mu, \sigma \mid X_j)$$
 (8)

No doubts to get the following optimization problem:

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} \left\{ \prod_{j=1}^{n} L(\mu, \sigma \mid X_j) \right\} : \mu \in \mathbb{R}, \ \sigma \in \mathbb{R}_{+}$$
 (9)

Main maths IV

Apply $\ln(x)$ as extrema is invariant to monotonic increasing transforms.

$$\arg\max_{\mu,\sigma} \left\{ \prod_{j=1}^{n} L(\mu,\sigma \mid X_{j}) \right\} \sim \arg\max_{\mu,\sigma} \left\{ \ln \left(\prod_{j=1}^{n} L(\mu,\sigma \mid X_{j}) \right) \right\}$$
(10)

It leads to simplification:

$$\arg \max_{\mu,\sigma} \left\{ \sum_{j=1}^{n} \ln \left(L(\mu, \sigma \mid X_{j}) \right) \right\}$$
 (11)

Finally to estimate μ and σ we have to optimize $L(\mu, \sigma) = \sum_{j=1}^{n} \ln \left(\Pr[X_j \mid \mu, \sigma] \right)$.

Main maths V

And the result is the following (unbiased variance):

$$\max_{\mu,\sigma} \left\{ \sum_{j=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(\frac{(X_j - \mu)^2}{2\sigma^2} \right) \right) \right\} \Rightarrow \begin{cases} \hat{\mu} &= \frac{\sum_{j=1}^{n} X_j}{n} \\ \hat{\sigma}^2 &= \frac{\sum_{j=1}^{n} (X_j - \bar{X})^2}{n-1} \end{cases}$$
(12)

Main maths VI

With m i.i.d. features we obtain the following estimation $(i = \overline{1, m})$:

Mean estimation

$$\hat{\mu}_i = \frac{\sum_{j=1}^n X_{ji}}{n} \tag{13}$$

Variance estimation

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{j=1}^{n} (X_{ji} - \bar{X}_{i})^{2}}{n-1}$$
 (14)

Main maths VII

With m features and k classes estimation (13) (14) turns into $(i = \overline{1, m}, t = \overline{1, k})$:

Mean estimation

$$\hat{\mu}_{i}(c_{t}) = \frac{\sum_{j=1}^{n} X_{ji} [y_{j} = c_{t}]}{\sum_{j=1}^{n} [y_{j} = c_{t}]} \quad (15)$$

Variance estimation

$$\hat{\sigma}_{i}^{2}(c_{t}) = \frac{\sum_{j=1}^{n} (X_{ji} - \hat{\mu}_{i}(c_{t}))^{2} [y_{j} = c_{t}]}{\left(\sum_{j=1}^{n} [y_{j} = c_{t}]\right) - 1}$$
(16)

Main maths VIII

For **simplicity**, Gaussian NB works if $(X_{ji}(c_t): j \text{ obs.}, i \text{ feat.}, c_t \text{ class})$:

Naïve Bayesian classifier requirement

$$\forall c_t, i: \left\{ \begin{array}{l} t = \overline{1,k} \\ i = \overline{1,m} \end{array} \right. \exists \widehat{\mu}_i\left(c_t\right) \wedge \widehat{\sigma}_i^2\left(c_t\right) \hookrightarrow X_{ji}\left(c_t\right) \sim \mathcal{N}\left(\widehat{\mu}_i\left(c_t\right), \widehat{\sigma}_i^2\left(c_t\right)\right)$$
 (17)

Main maths IX

Multiple distributions can be used:

- Normal, Binomial.
- Laplacian, Exponential.
- Rayleigh's distribution.
- etc.

Problem state I

Obtained $X \in \mathbb{R}^{150 \times 4}$, $y \in \{0, 1, 2\}$. Classification problem: iris dataset.

Code	Name		Code	Name	Measure
0	setosa		0	sepal length	cm
1	versicolor		1	sepal width	cm
		2	petal length	cm	
2	virginica		3	petal width	cm

Class	# obs.
setosa	50 (0.3)
versicolor	50 (0.3)
virginica	50 (0.3)

Table 1: Iris encoding

Table 2: Feature names

Table 3: Class balancing

Problem state II

Figure 1: Sepal length

Name	Value
mean	5.01
std	0.35
max	5.80
75 %	5.20
50 %	5.00
25 %	4.80
min	4.30

Table 4: Stats.

Figure 2: Distribution

Problem state III

Figure 3: Sepal width

Name	Value
mean	3.43
std	0.38
max	4.40
75 %	3.68
50 %	3.40
25 %	3.20
min	2.30

Table 5: Stats.

Figure 4: Distribution

Problem state IV

Figure 5: Petal length

Table 6: Stats.

Figure 6: **Distribution**

Problem state V

Figure 7: Petal width

Name	Value
mean	0.25
std	0.11
max	0.60
75 %	0.30
50 %	0.20
25 %	0.20
min	0.10

Table 7: Stats.

Figure 8: Distribution

Problem state VI

Figure 9: Sepal length

Value
5.94
0.52
7.00
6.30
5.90
5.60
4.90

Table 8: Stats.

Figure 10: Distribution

Problem state VII

Figure 11: Sepal width

Name	Value
mean	2.77
std	0.31
max	3.40
75 %	3.00
50 %	2.80
25 %	2.53
min	2.00

Table 9: Stats.

Figure 12: Distribution

Problem state VIII

Figure 13: Petal length

Name	Value
mean	4.26
std	0.47
max	5.10
75 %	4.60
50 %	4.35
25 %	4.00
min	3.00

Table 10: Stats.

Figure 14: Distribution

Problem state IX

Figure 15: Petal width

Name	Value
mean	1.33
std	0.20
max	1.80
75 %	1.50
50 %	1.30
25 %	1.20
min	1.00

Table 11: Stats.

Figure 16: Distribution

Problem state X

Figure 17: Sepal length

Value
6.59
0.64
7.90
6.90
6.50
6.23
4.90

Table 12: Stats.

Figure 18: Distribution

Problem state XI

Figure 19: Sepal width

Name	Value
mean	2.97
std	0.32
max	3.80
75 %	3.18
50 %	3.00
25 %	2.80
min	2.20

Table 13: Stats.

Figure 20: Distribution

Problem state XII

Figure 21: Petal length

Name	Value
mean	5.55
std	0.55
max	6.90
75 %	5.88
50 %	5.55
25 %	5.10
min	4.50

Table 14: Stats.

Figure 22: Distribution

Problem state XIII

Figure 23: Petal width

Name	Value	
mean	2.03	
std	0.27	
max	2.50	
75 %	2.30	
50 %	2.00	
25 %	1.80	
min	1.40	

Table 15: Stats.

Figure 24: Distribution

Scatter plot (left) and PCA (right) on iris dataset

Shapiro – Wilk's normality test ([Razali et al., 2011])

		•	• -
ν	roror	11116	ITOC'
•	rerec	uis	iccs.

H0 normal.

H1 not normal.

 α 10%.

	Setosa	Versicolor	Virginica
Sepal len.	0.459	0.465	0.258
Sepal wid.	0.272	0.338	0.181
Petal len.	0.055	0.158	0.110
Petal wid.	0.000	0.027	0.087

Table 16: P-val for SW test statistics

Conclusion: under other things being equal data is normal.

Fitting results

Summary: topics covered

- Purposes and applications of Bayesian Classifier.
- Maths behind the algorithm.
- Limitations.
- Example on iris dataset.
- **Sest** score (**0.965** accuracy) reached at **0.225** train ratio.

References

[Bayes and Price, 1763] Bayes, T. and Price, R. (1763).

An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions (1683-1775), 53:370–418.

[Razali et al., 2011] Razali, N. M., Wah, Y. B., et al. (2011).

Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests.

Journal of statistical modeling and analytics, 2(1):21–33.

[Wilks, 1938] Wilks, S. S. (1938).

The large-sample distribution of the likelihood ratio for testing composite hypotheses.

The annals of mathematical statistics, 9(1):60-62.

Conclusions

Thank you for attention!

Questions are welcome.