ЛЕКЦИЯ №4

10. Дисперсия света

Свет — это электромагнитная волна, которая в вакууме имеет $\boldsymbol{v} = \boldsymbol{c} = 3.10^8$ м/с, а в любой другой прозрачной среде $\boldsymbol{v} < \boldsymbol{c}$.

$$\upsilon = \frac{c}{\sqrt{\varepsilon\mu}} \qquad \qquad n = \frac{c}{\upsilon} = \sqrt{\varepsilon\mu}$$

Для слабомагнитных прозрачных сред $\mu \sim 1$ $n = \sqrt{\varepsilon}$. Но под действием электромагнитного поля непроводящее вещество (диэлектрик) поляризуется.

Поляризованность диэлектрика — векторная физическая величина, равная суммарному дипольному моменту единицы объема диэлектрика:

$$P = \frac{\sum p_e}{V} = \frac{\sum q \cdot x_m}{V} = \frac{q_e \cdot N \cdot x_m}{V} = q_e n_e x_m$$

 x_m — плечо диполя, а так как электроны в переменном электрическом поле будут совершать вынужденные колебания, тогда x_m = амплитуда вынужденных колебаний электрона в поле электромагнитной волны.

Поляризованность связана с напряженностью электрического поля через электрическую восприимчивость диэлектрика

$$P = \chi_e \varepsilon_0 E$$
, $\varepsilon = 1 + \chi_e$,

тогда

$$q_e n_e x_m = (\varepsilon - 1) \varepsilon_0 E,$$

откуда

$$n^2 = \varepsilon = \frac{q_e n_e x_m}{\varepsilon_0 E} + 1$$

Из формулы, позволяющей вычислить амплитуду вынужденных колебаний (см. семестр 2 лекцию №13 формула (13-9)), найдем плечо диполя:

$$x_{m} = \frac{F_{m}/m}{\sqrt{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + 4\beta^{2}\omega^{2}}} > \frac{q_{e}E}{m\left(\omega_{0}^{2} - \omega^{2}\right)}$$

$$n^{2} = 1 + \frac{q_{e}^{2}n_{e}}{m\varepsilon_{0}\left(\omega_{0}^{2} - \omega^{2}\right)}$$
(4-1)

Из этой формулы видно, что показатель преломления вещества зависит от частоты внешней электромагнитной волны. Графически эта зависимость выглядит следующим образом:

Зависимость показателя преломления вещества от частоты (длины волны) света или зависимость скорости световых волн от его частоты (длины волны) называется дисперсией света.

при ω^{\uparrow} и n^{\uparrow} – область нормальной дисперсии при ω^{\uparrow} и n^{\downarrow} – область аномальной дисперсии

т. к.
$$\lambda = \boldsymbol{\upsilon} \cdot \boldsymbol{T} = \frac{\boldsymbol{\upsilon} \cdot 2\pi}{\boldsymbol{\omega}}$$
, тогда

при λ ↑ и n↓ – нормальная дисперсия

Следствием дисперсии света является разложение пучка белого света в спектр при прохождении света через стеклянную призму.

видимый свет
$$\lambda \sim 400 \div 700$$
 нм.

$$\sin \beta = \frac{n_1 \cdot \sin \alpha}{n_2}$$

Призматический спектр

Различия в призматическом и дифракционных спектрах!

При освещении белым светом на экране будут наблюдаться дифракционные спектры:

Решетка и белый свет

