CLUSTER FING: ARQUITECTURA Y APLICACIONES

SERGIO NESMACHNOW

Centro de Cálculo, Instituto de Computación

FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY

CONTENIDO

- Introducción
- Clusters
- Cluster FING
- Estructura

INTRODUCCIÓN

• Cluster FING

CLUSTERS

- Agregación de varios computadores independientes para utilizarlos como una única unidad integrada de cómputo.
- En general, se integran con componentes de bajo costo y se conectan por redes de área local.
- La agregación permite alcanzar poder de cómputo muy superior a las de los supercomputadores específicos.
- Prestaciones de un cluster:
 - Alto rendimiento
 - Alta disponibilidad
 - Escalabilidad incremental
 - Balance de carga

CLUSTERS

- Sistema de procesamiento paralelo-distribuido (memoria distribuida)
- Los componentes de un cluster incluyen:
 - Nodos
 - Procesadores.
 - Software de base
 - Sistemas operativos.
 - Comunicaciones:
 - Redes de alta velocidad.
 - Interfaces y software para comunicaciones.
 - Middleware (entre SO y aplicaciones)
 - Gestores de ejecución, monitores de recursos, etc.
 - Entornos de programación
 - Bibliotecas y herramientas de desarrollo

CLUSTERS

- Insfraestructura promisoria para contemplar necesidades importantes de cómputo en un entorno de recursos económicos limitados.
- Principales ventajas:
 - Relación costo/performance.
 - Escalabilidad incremental.
 - Sistema "multipropósito" (no dedicado).
- Más detalles en

http://www.fing.edu.uy/inco/cursos/hpc/material/clases/Clusters.pdf

CLUSTER FING

- Proyecto CSIC "Fortalecimiento de Equipamientos para la Investigación" (2008).
- Objetivo:
 - Disponer de una plataforma computacional capaz de abordar eficientemente problemas complejos.
- Proyecto de Facultad de Ingeniería.
- Página web http://www.fing.edu.uy/cluster

CLUSTER FING: ESTRUCTURA

CLUSTER FING: ESTRUCTURA

- 9 servidores de cómputo
 - Quad core Xeon E5430, 2x6 MB caché, 2.66GHz, 1.333 MHz FSB.
 - 8 GB de memoria por nodo.
 - Adaptador de red dual (2 puertos Gigabit Ethernet).
 - Arquitectura de 64 bits.
 - Servidor de archivos: 2 discos de 1 TB, capacidad ampliable a 10 TB.
 - Nodos de cómputo: discos de 80 GB.
- Switch de comunicaciones
 - Dell Power Connect, 24 puertos Gigabit Ethernet.
- Switch KVM (16 puertos) y consola.
- UPS APC Smart RT 8000VA.

PROCESADOR

- Arquitectura multi-core (multi-núcleo)
- Combina dos o más núcleos de procesamiento independientes en un solo circuito integrado.
- Varios microprocesadores independientes que permiten ejecución en paralelo a nivel de threads (hilos).

Ejemplo de arquitectura dual core (doble núcleo)

QUAD CORE

- Intel Core 2 Kentsfield o Core 2 Quad
 - Lanzado al mercado el 2 de noviembre de 2006.
- 4 núcleos de procesamiento.
- Especializado para multithreading (paralelismo con hilos, memoria compartida).

CLUSTER FING: ESTRUCTURA

- Combina arquitectura de cluster (memoria distribuida) y multi-core (memoria compartida).
- Permite aprovechar características de ambos modelos de paralelismo: paralelismo de dos niveles.

CLUSTER FING: APLICACIONES

- Programación paralela
 - Varios procesos trabajan cooperativamente en la resolución de un problema (complejo).
 - Objetivos:
 - Mejorar el desempeño.
 - Escalabilidad incremental: capacidad de resolver instancias más complejas del problema utilizando recursos computacionales adicionales.
- Paradigmas de programación paralela:
 - Paralelismo de memoria compartida
 - Comunicaciones y sincronizaciones mediante recurso común (memoria).
 - Paralelismo de memoria distribuida
 - Comunicaciones y sincronizaciones mediante pasaje de mensajes explícitos.

CLUSTER FING: APLICACIONES

- Paralelismo de memoria compartida
 - Comunicaciones y sincronizaciones mediante recurso común (memoria).
 - Es necesario sincronizar el acceso y garantizar exclusión mutua a secciones compartidas.
 - Paralelismo multithreading:
 - Bibliotecas estándares (e.g., en lenguaje C).
 - Bibliotecas específicas.
- Paralelismo de memoria distribuida
 - No existe recurso común: comunicaciones y sincronizaciones mediante pasaje de mensajes explícitos.
 - Mecanismos de comunicación entre procesos:
 - Estándares en lenguajes de programación.
 - Bibliotecas de programación paralela.

CLUSTER FING: APLICACIONES

- ¿Cómo aprovechar las características del cluster FING?
- Paralelismo de memoria compartida
 - Multithreading:
 - Bibliotecas estándares (e.g., en lenguaje C).
 - Bibliotecas específicas: OpenMP (para C, C++, FORTRAN).
- Paralelismo de memoria distribuida
 - Primitivas IPC (en C, C++).
 - Bibliotecas de programación paralela:
 - MPI, MPI-2, PVM (para C, C++, FORTRAN).
- Uso óptimo: paralelismo de dos niveles
 - Procesos en diferentes nodos (memoria distribuida).
 - Hilos en multicore (memoria compartida).

CLUSTER FING: ACCESO

- Punto de acceso: cluster.fing.edu.uy
- Habilitación de usuarios: solicitud mediante correo electrónico a gusera@fing.edu.uy y sergion@fing.edu.uy.
- Autenticación: mediante par de claves pública/privada.
 - Se genera con comandos de ssh (ssh-keygen) y utilitarios (ej. putty-keygen).
 - Clave RSA de 1024 bits.
 - La clave pública se debe enviar por correo electrónico, y la clave privada se almacena en un archivo accesible al(a los) equipo(s) desde los cuales se establecerá la conexión.
 - El procedimiento de generación de claves puede consultarse en
 http://www.fing.edu.uy/inco/cursos/hpc/material/clases/hpc2008
 -ambiente_pvm.pdf y obviamente en sitios de Internet.