Peergrade assignment 2

Author: Kristoffer Højelse

May 28, 2020

Exercise 1

1.1. Which of the relations holds?

- (a) $A-B=\{4\}$ false $A-B=\{4\}\to 4\in A$ but $4\notin A$ therefore the statement is false.
- (b) $A \subseteq B \cup C$ false Counterexample. $5 \in A \land 5 \notin B \rightarrow A \nsubseteq B \rightarrow A \nsubseteq B \cap C$ Therefore the statement is false.
- (c) $A-B\subseteq C$ **true** $A-B=\{5\}$. Observe definition of C. If $x=5\to 5=2k+1\iff k=2,$ which means that $x=5\to k\in\mathbb{N}$. C contains other elements different from 5. Example: 69. $k=34\to k\in\mathbb{N}\to x=2\cdot k+1\to x=69$. Therefore the statement is true.
- (d) $(A \times B) \cup (A \times C) \subset A \times \mathbb{N}$ **true** Definition of C implies that $\forall x \in C, x \in \mathbb{N}$. Therefore $C \subseteq \mathbb{N}$. Lastly $\exists x \in \mathbb{N}, x \notin C$, example: $6 \notin \mathbb{N}$ but $6 \notin C$. Therefore $C \subset \mathbb{N}$. $C \subset \mathbb{N} \to (A \times C) \subset A \times \mathbb{N} \to (A \times B) \cup (A \times C) \subset A \times \mathbb{N}$ Therefore the statement is true.

1.2. Is $f \circ g$ injective, surjective and or bijective?

 $f \circ g$:

- (a) one-to-one (injective) **true** $\forall x_1, x_2 \in X, F(x_1) = F(x_2) \rightarrow x_1 = x_2$ For every image there is a unique corresponding preimage.
- (b) onto (surjective) **false** $\forall y \in Y, \exists x \in X(F(x) = y)$ Counterexample $\neg \exists x \in A(F(a) = 7)$ There doesn't exist a pre-image for the image 7
- (c) one-to-one correspondence (bijective) **false** For $f\circ g$ to be bijective, $f\circ g$ has to be both injective and surjective, but $f\circ g$ is not surjective therefore $f\circ g$ is not bijective.

1.3. Hasse diagram

Graph a

Partial orded set?
reflexive **true**anti-symmetric **false**transitive **true**→ partial orded set (poset) **false**

 ${\bf Equivalence\ relation?}$

reflexive **true** symmetric **true** transitive **true**

 \rightarrow equivalence relation ${\bf true}$

$$[a] = \{x \in R | xRa\} = \{a,c,e\}$$

$$[b] = \{x \in R | xRb\} = \{b, d\}$$

$$[a] = [c] = [e]$$

 $[b] = [d]$

Graph b

Partial orded set?

reflexive **true**anti-symmetric **true**transitive **true**→ partial orded set (poset) **true**

Equivalence relation?
reflexive **true**symmetric **false**transitive **true** \rightarrow equivalence relation **false**

Maximum: e, f Minimum: d, a Greatest: none Least: none

Exercise 2

Provide a proof by contradiction of this statement: Let $f : \emptyset \to A$ be a function with domain the empty set and an arbitrary set A as co-domain. Then f is one-to-one (injective).

Proof.

```
Suppose that the negation of the definition of one-to-one is true, \exists x_1, x_2 \in \emptyset(F(x_1) = F(x_2) \to x_1 \neq x_2), where x_1 and x_2 is a arbitrary element.
By definition of the empty set \forall x \{x \notin \emptyset\}
Therefore x_1 \in \emptyset and x_1 \notin \emptyset, which is a contradiction.
Therefore f: \emptyset \to A is a one-to-one function.
```

Exercise 3

Provide a direct proof of this statement: Let A and B be two particular but arbitrary sets such that $B \subseteq A$, and let R be an equivalence relation on A. Consider the relation $S = \{(a, b) \in R | a, b \in B\}$ on the set B. Then S is an equivalence relation on B (that is, reflexive, symmetric and transitive).

Proof.

S is an equivalence relation on B if the set of relations describing relations between nodes in B has reflexive, symmetric and transitive properties.

Sub-proof that S is reflexive.

```
Definition of reflexive: R is reflexive \iff \forall x \in A, xRx.
```

If $a \in A \land b \in B$ such that a = b it means that $(a, a) \in R$ so per definition of S, $S = \{(a, b) \in R | a, b \in B\}$, it means that (a, a) must be in S.

Therefore $\forall x \in B, xRx$ which means that S is a reflexive relation on B.

Sub-proof that S is symmetric.

```
Definition of symmetric: R is symmetric \iff \forall x,y \in A, xRy \to yRx.
Per definition of S, S = \{(a,b) \in R | a,b \in B\}, it means that (a,b) \in R \to (b,a) \in R.
So if a,b \in B \land (a,b) \in R \to ((a,b) \in R \to (b,a) \in R) \to (a,b), (b,a) \in S.
Therefore \forall a,b \in B, aRb \to bRa which means that S is a symmetric relation on B.
```

Sub-proof that S is transitive.

```
Definition of transitive: R is transitive \iff \forall x,y,z\in A, xRy\wedge yRz\rightarrow xRz Let a,b,c\in A and a,b,c\in B.
```

Since R is transitive, then if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$ by definition of transitive $\forall x,y,z \in A, xRy \land yRz \to xRz$. So if (a,b) is in S and (b,c) is in S then (a,c) must be in S, since $a,b,c \in B$ and $a,c \in R$.

Therefore $\forall a,b,c \in B, aRb \land bRc \to aRc$ which means that S is a transitive relation on B.

Conclusion.

S both a reflexive, symmetric and transitive relation on B, therefore S is an equivalence relation on B.