Signal and systems intro, classification of signals

정주안

2025년 8월 17일

개념

1 신호와 시스템

- 신호(Signal): functions or sequences containing information (funtions -> C-T signals, sequences -> D-T signals)
- 시스템(System): relationship of signals
 (producing signals(output) in response to signals)

2 C-T/D-T Signals

- 이 과목에서는 단일 독립변수(주로 시간)에 대한 신호만을 다룬다.
- Continuous time (C-T) Signals(연속 시간 신호) 독립변수가 연속인 신호이다. $t\in\mathbb{R},\quad x(t)\in\mathbb{R}$ ex) 물리적 신호 (회로의 전압, 전류)
- Discrete time (D-T) Signals (이산 시간 신호)
 독립변수가 이산(integer)

 $n \in \mathbb{Z}, \quad x[n] \in \mathbb{R}$

- ex) C-T 신호를 시간 간격 T로 샘플링 x[n] = x(nT)
- Digital Signals

the independent and dependent variables are both integer x[n]도 정수화하는 것, 컴퓨터에서의 계산을 위함(due to finite length)

often convenient to consider complex signals
 (range = set of complex numbers)

3 Power and energy

- 신호의 파워와 에너지는 다음과 같이 계산함.
- 파워와 에너지에 따라 Energy signals와 Power signals로 구분할 수 있음.

- Definitions of energy and power
 - Instantaneous power

$$|x(t)|^2$$
 $\left(|x[n]|^2\right)$

- Energy over the time interval $t_1 \le t \le t_2$ $(n_1 \le n \le n_2)$

$$\int_{t_1}^{t_2} |x(t)|^2 dt \quad \left(\sum_{n=n_1}^{n_2} |x[n]|^2 \right)$$

- Average power over the time interval $t_1 \le t \le t_2$ $(n_1 \le n \le n_2)$

$$\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt \quad \left(\frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2 \right)$$

Total energy

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
$$\left(E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2\right)$$

Total energy may not exist (i.e. $E_{\infty} = \infty$)

- Average power (average power over an infinite interval)

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \quad \left(P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 \right)$$

- Energy signals and power signals
 - Energy signals = signals with finite total energy (i.e. $E_{\infty} < \infty$)

$$\Rightarrow P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$$

- Power signals = signals with finite average power (i.e. $P_{\infty}<\infty)$

$$\Rightarrow P_{\infty} > 0 \to E_{\infty} = \infty$$

- \exists Signals for which $P_{\infty}=\infty$ and $E_{\infty}=\infty$ e.g.) x(t)=t