ADATSZERKEZETEK ÉS ALGORITMUSOK

Hasító táblázatok

- Potenciális $\mathcal{O}(1)$ keresési idő
 - Ha egy megfelelő $h(\text{kulcs}) \rightarrow \text{integer függvényt találunk}$
- "Hely a sebességért" kereskedelem
 - "Teljes" hasító táblázatok nem működnek
 - Az ütközések elkerülhetetlenek
 - A hash függvény csökkenti a kulcs információtartalmát
 - Különböző feloldási stratégiák
 - láncolt listák
 - túlcsordulási területek
 - Re-hash függvények
 - Lineáris próbálás h' a +1
 - Négyzetes próbálás h' a $+ci^2$
 - Bármilyen más hash függvény!
 - vagy akár függvények sorozata!

A hash függvény választása

- "Majdnem minden függvény jó lesz"
 - De bizonyos függvények egyértelműen jobbak, mint mások!
- Kulcs kritérium
 - ütközések minimális száma
 - röviden tartja a láncokat
 - karbantartja az O(1) átlagot

Hash függvény választása

- Egyszerű egyenletes hasítás
 - Ideális hash függvény
 - P(k) = annak valószínűsége, hogy a k kulcs előfordul
 - ha van m hely a hasító táblánkban,
 - egy egyenletes hash függvény, h(k), biztosítani fogja

$$\sum_{k|h(k)=0} P(k) = \sum_{k|h(k)=1} P(k) = \dots = \sum_{k|h(k)=m-1} P(k) = \frac{1}{m}$$

- Olyan k értékekre történik az összegzés, ahol a h(k)=0
- a kulcsok száma minden helyre azonos

Egyenletes hash függvény

• Ha a kulcsok a [0, r)-on egyenletesen szétszórt egészek, akkor

$$h(k) = \left| \frac{mk}{r} \right|$$

egy egyenletes hash függvény (megmutatható)

• A legtöbb hash függvény megadható oly módon, hogy a kulcsokat valamely r-re a [0,r)-ra képezze le.

Csökkentsünk a [0, m)-ra

A kulcsokat egészek egy intervallumára képeztük le:

- Most csökkentsük ezt az intervallumot [0, m)-ra, ahol m a hash tábla egy elfogadható mérete
- Stratégiák:
 - Osztás használjuk a mod függvényt
 - Szorzás
 - Univerzális hashelés

Csökkentsünk a [0, m)-ra

Osztás – használjuk a mod függvényt

$$h(k) = k \mod m$$

- m választása?
 - A 2-hatványok általában nem jók! $h(k) = k \mod 2^n$ a k utolsó n bitjét választja

k mod 28 ezeket választja
0110010111000011010

- Általában nem egyformán valószínű minden kombináció
- Jobb olyan hasító függvényt választani, ami a kulcs összes bitjétől függ
- A 2ⁿ-hez közeli prímek jó választásnak tűnnek
- Például \sim 4000 méretű tábla kellene, válasszunk m=4093-t

Csökkentsünk a [0, m)-ra

- Szorzó módszer
 - Szorozzuk meg a kulcsot egy A konstanssal, 0 < A < 1
 - Vegyük ki belőle a tört részt $(kA \lfloor kA \rfloor)$
 - Szorozzuk meg m-mel $h(k) = \lfloor m * (kA \lfloor kA \rfloor) \rfloor$
 - Most m nem kritikus, és 2 hatvány választható
 - Így ez a módszer gyors egy tipikus digitális számítógépen
 - Legyen $m = 2^p$
 - Szorozzuk meg k-t (w bit) $[A \cdot 2w]$ -val $\leftarrow 2w$ bit szorzat
 - vedd ki a p alsó felének a legszignifikánsabb bitjeit
 - $A = \frac{1}{2}(\sqrt{5} 1)$ jó választásnak tűnik (lásd Knuth)

Univerzális hashelés

- Ha egy rosszakarónk válogatja ki a hasító-táblába kerülő kulcsokat, tud adni olyan sorozatot esetleg, hogy mind az n elemre ugyanaz legyen a h(i) érték, s így a keresés átlagos ideje $\mathcal{O}(n)$ legyen.
- Univerzális hasító technika: a hash-függvényt véletlenül, az aktuálisan tárolandó kulcsoktól függetlenül választjuk meg – ez jó átlagos teljesítményhez vezet.
- Alapgondolat: a hasító függvényt egy gondosan megtervezett függvényosztályból futás közben véletlenül választjuk ki
 - Így nem lehet olyan bemenet, ami biztosan a legrosszabb viselkedést váltja ki.

Univerzális hashelés

- Legyen H hasító függvények egy véges halmaza, melyek egy adott K kulcsuniverzumot a [0,m) tartományba képeznek le.
- A H-t univerzálisnak hívjuk, ha $\forall x,y \in K, x \neq y$ kulcspárra azoknak a $h \in H$ hasító függvényeknek a száma, amelyre h(x) = h(y) pontosan $\frac{|H|}{m}$
- Ez azt is jelenti, hogy egy véletlenül választott $h \in H$ hasító függvényre $\forall x, y \in K, x \neq y$ kulcsok közötti kulcsütközés valószínűsége pontosan $\frac{1}{m}$
 - Ez ugyanaz, mint a $\{0,1,\dots,m-1\}$ halmazból véletlenül kiválasztott h(x) és h(y) egyenlőségének valószínűsége

Univerzális hashelés

- Meg tudjuk tervezni univerzális hash függvények egy halmazát?
- Elég könnyen:
 - Válasszunk egy olyan p prímszámot, amely elég nagy, hogy minden kulcs benne legyen a [0 ... p - 1]-ben (p > m)
 - Jelölés: $Z_p = \{0,1,...,p-1\}, Z_p^* = \{1,2,...,p-1\}$
 - Definiáljuk: $\forall a \in Z_p^*, \forall b \in Z_p$,
 - $h_{a,b}(k) = ((a * k + b) \operatorname{mod} p) \operatorname{mod} m$
 - Az ilyen függvények osztálya:
 - $H_{p,m} = \{ h_{a,b} : a \in Z_p^*, b \in Z_p \}$
- Tétel:
 - A hasító függvények fenti egyenlőségekkel definiált $H_{p,m}$ osztálya univerzális.

Hasító táblázatok – Általános tervezés

- Válasszuk meg a tábla méretét
 - A nagy tábla csökkenti az ütközések valószínűségét!
 - tábla méret: m
 - n elem
 - ütközések valószínűsége $\alpha = \frac{n}{m}$
- Válasszuk meg a tábla szervezését
 - növekedni fog a gyűjtemény?
 - Láncolt listák Gondoljunk a fákra is!
 - A méret relative statikus?
 - Túlcsordulási terület vagy
 - Re-hash
- Válasszunk egy hash függvényt

Hasító táblázatok – Általános tervezés

- Válasszunk egy hash függvényt
 - Egy egyszerű (és gyors) jó lenne ...
 - Olvassunk irodalmat jó ötletekért!
- Vizsgáljuk a hash függvényt az adatainkkal
 - Fix adatokkal
 - Próbáljunk különböző h, m értékeket amíg a maximális ütközési lánc elfogadható lesz
 - Ismert hatékonyság
 - Változó adatokkal
 - Válasszunk jellemző adatokat
 - Próbáljunk különböző h, m értékeket amíg a maximális ütközési lánc elfogadható lesz
 - Általában megjósolható hatékonyság

Hash táblák megvalósítása

Következő téma