DIII-D ECH with linear Slab Profiles

Open Additional files:

Get dispersion routines by evaluating Disper.nb
Get plotting and printing routines by evaluating PlotPack.nb
Set Parameters by opening a Parameter Window

Note: Slab profile models defined in initialization cells at the bottom of this notebook.

First Do Cold Plasma

Plot Real and Imaginary parts of nx from 2nd order warm plasma dispersion relation (i.e. $E_{\parallel} \equiv 0$)

dataSet=DIII-D slab

xProfileMin=-0.68

xProfileMax=0.68

 $\texttt{nXmin} \texttt{=} \texttt{2.5} \times \texttt{10}^{\texttt{19}}$

 $n\text{Xmax} = 3.5 \times 10^{19}$

BXmin=1.9

BXmax=2.1

freq=55990

nz=0.1

etaList={1., 0., 0., 0., 0.}

xmin = -0.68

xmax=0.68

Plot Real and Imaginary parts of kx from 2nd order cold plasma dispersion relation (i.e. $E_{\parallel} \equiv 0$)

```
ln[287]:= nPerpCold[x_] := Module[{ne, b, x0}, x0 = x;
         ne = nprof[x0];
        b = bprof[x0];
         ColdDis0[freq, ne, b, nz, etaList]]
      nt = Table \left[ \{x, k0 \text{ nPerpCold}[x] \}, \left\{ x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1} \right\} \right];
      ComplexListPlot[nt, "x (m)", "kx (m^-1)"]
      paramPrint[{dataSet, xProfileMin, xProfileMax,
          nXmin, nXmax, BXmin, BXmax, freq, nz, etaList, xmin, xmax}];
                              kx (m^-1)
```



```
dataSet=DIII-D slab
xProfileMin=-0.68
xProfileMax=0.68
\texttt{nXmin=2.5} \times \texttt{10}^{\texttt{19}}
nXmax=3.5 \times 10^{19}
BXmin=1.9
BXmax=2.1
freq=56990
nz=0.1
etaList={1., 0., 0., 0., 0.}
xmin = -0.68
```

xmax=0.68

Plot Real and Imaginary parts of nx from 4nd order cold plasma dispersion relation (i.e. fast and slow)

```
ln[351]:= nPerp2FS[x_] := Module[{ne, b, x0}, x0 = x;
        ne = nprof[x0];
        b = bprof[x0];
               ColdDis2FS[freq, ne, b, nz, etaList]]
     nt2FS = Table [Flatten[{x, nPerp2FS[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
     nF = Transpose[{Transpose[nt2FS][1], Transpose[nt2FS][2]}];
     nS = Transpose[{Transpose[nt2FS][[1]], Transpose[nt2FS][[3]]}];
      g1 = ComplexListPlot[nF, "x (m)", "nx"];
      g2 = ComplexListPlot[nS, "x (m)", "nx"];
      Show[\{g1, g2\}, PlotRange \rightarrow \{-2., 2.\}]
      paramPrint[{dataSet, xProfileMin, xProfileMax,
         nXmin, nXmax, BXmin, BXmax, freq, nz, etaList, xmin, xmin}];
     dataSet=DIII-D slab
      xProfileMin=-0.68
     xProfileMax=0.68
      nXmin=2.5 \times 10^{19}
     nXmax = 3.5 \times 10^{19}
     BXmin=1.9
     BXmax=2.1
     freq=55990
     nz=0.1
     etaList={1., 0., 0., 0., 0.}
     xmin = -0.68
     xmin = -0.68
```

Now Warm Plasma Stuff

Plot Real and Imaginary parts of nx from 6th order warm plasma dispersion relation (expanded to 2nd order in $k_{\perp} \rho$)

```
in[359]:= nPerpWarm6[x_] := Module[{ne, te, b, x0, TL},
              x0 = x;
        ne = nprof[x0];
        b = bprof[x0];
           TL = tprof[x0] * TList;
           WarmDis6[freq, ne, b, nz, etaList, TL]]
     nxwarm = Table [Flatten[{x, nPerpWarm6[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
     roots = rootSort[nxwarm];
     rootsRe = Table[Flatten[{roots[[i]][[1]],
           Table[Re[roots[[i]][[j]]], {j, 2, Length[roots[[i]]]}]], {i, Length[roots]}];
     rootsIm = Table[Flatten[{roots[[i]][[1]],
           Table[Im[roots[[i]][[j]]], {j, 2, Length[roots[[i]]]}]}], {i, Length[roots]}];
     g6 = ComplexVectorListPlot[roots, "x (m)", "nx"];
     paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax,
         BXmin, BXmax, freq, nz, etaList, TList, modelList, xmin, xmax}];
     Show[g6, PlotRange → All]
     Show[g6, PlotRange \rightarrow \{-1.5, 1.5\}]
     ComplexVectorListPlot[rootsRe, "x", "Re[kx]", PlotRange → {-2., 2.}]
     ComplexVectorListPlot[rootsIm, "x", "Re[kx]"]
     dataSet=DIII-D slab
     xProfileMin=-0.68
     xProfileMax=0.68
     nXmin=2.5 \times 10^{19}
     nXmax=3.5 \times 10^{19}
     BXmin=1.9
     BXmax=2.1
     freq=55990
     nz=0.1
     etaList={1., 0., 0., 0., 0.}
```

TList={1., 1., 0., 0., 0., 0.} modelList={1, 1, 0, 0, 0, 0}

xmin = -0.68

xmax=0.68

Now Try with Hot Plasma Dispersion using root finder

```
In[370]:= nPerpHot[x_, nxGuess_] := Module[{ne, b, x0, TL, nx0},
              x0 = x;
       nx0 = nxGuess;
       ne = nprof[x0];
       b = bprof[x0];
       TL = tprof[x0] * TList;
     rootRule = FindRoot[DisFuncGeneral[freq, ne, b, nz, nx, etaList, TL,
           nminList, nmaxList, modelList], {nx, nx0}, MaxIterations -> 30];
       nx /. rootRule]
```

First try root finding on warm plasma dispersion rel (model = 1)

```
In[420]:= modelList = Table[1, {i, 1, 6}];
```

```
| In[421]:= nxhot[iRoot_] := Module [iRoot0, nxWarm, rootsWarm, nxH, x0, ne, b, t, TL},
          nxWarm = Table [Flatten[{x, nPerpWarm6[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
          iRoot0 = iRoot;
          rootsWarm = rootSort[nxWarm];
          nxH = Table[0., {i, 1, nPoints}];
          Do
            \left(x0 = xmin + (i-1) \frac{xmax - xmin}{nPoints - 1};\right)
            nxGuess = rootsWarm[[i]][[iRoot0 + 1]];
             (*Print["x0 = ", x0," nxGuess= ",nxGuess];*)
            nxH[[i]] = {x0, nPerpHot[x0, nxGuess]}; |, {i, 1, nPoints}];
          nxH];
      g7 = ComplexVectorListPlot[nxhot[1], "x (m)", "nx"];
      g8 = ComplexVectorListPlot[nxhot[2], "x (m)", "nx"];
      g9 = ComplexVectorListPlot[nxhot[3], "x (m)", "nx"];
      g10 = ComplexVectorListPlot[nxhot[4], "x (m)", "nx"];
      g11 = ComplexVectorListPlot[nxhot[5], "x (m)", "nx"];
      g12 = ComplexVectorListPlot[nxhot[6], "x (m)", "nx"];
      Show[\{g7, g8, g10, g11\}, PlotRange \rightarrow All]
      Show[\{g7, g8, g10, g11\}, PlotRange \rightarrow \{-.1, .1\}]
      paramPrint[{dataSet, ne0, nsep, B, freq, nz, etaList,
          TList, modelList, rmaj, rmin, rsep, sol, alphan, alphaT}];
Out[425]=
                            -0.5
```



```
dataSet=DIII-D slab
ne0=ne0
nsep=nsep
B=B
freq=55990
nz=0.1
etaList={1., 0., 0., 0., 0.}
TList={1., 1., 0., 0., 0., 0.}
modelList={1, 1, 1, 1, 1, 1}
rmaj = rmaj
rmin=rmin
rsep=rsep
sol=sol
alphan=alphan
alphaT = alphaT
```

Now try with hot plasma (model = 2) for all species. Can I find the warm plasma roots with the full dispersion relation?

```
In[397]:= xPoint = 0.;
                                                             guesses = nPerpWarm6[xPoint] (* Warm plasma roots at x=0 *)
Out[398]= \{0.472427 + 0.0323801 \, \dot{\text{1}}, \, 1.10079 + 0.00415331 \, \dot{\text{1}}, \, 22.5351 + 0.667857 \, \dot{\text{1}}, \, 32.5351 + 0.6
                                                                       -0.472427 - 0.0323801 i, -1.10079 - 0.00415331 i, -22.5351 - 0.667857 i
                                                              ■ Change model to 2
       In[428]:= modelList = Table[2, {i, 1, 6}];
```

```
In[429]:= {nPerpHot[xPoint, guesses[[1]]],
                           nPerpHot[xPoint, guesses[[2]]],
                           nPerpHot[xPoint, guesses[[3]]],
                           nPerpHot[xPoint, guesses[[4]]],
                           nPerpHot[xPoint, guesses[[5]]],
                           nPerpHot[xPoint, guesses[[6]]]}
                       paramPrint[{dataSet, ne0, nsep, B, freq, nz,
                                    etaList, TList, modelList, rmaj, rmin, rsep, sol, alphan, alphaT}];
Out[429]= \{0.590246 + 1.7869 \times 10^{-27} \text{ i}, 1.18681 + 3.41307 \times 10^{-28} \text{ i}, 1.18681 + 7.67968 \times 10^{-26} \text{ i}, 1.18681 + 7.67968
                           -0.590246 - 1.7869 \times 10^{-27} i, -1.18681 - 3.41307 \times 10^{-28} i, -1.18681 - 7.67968 \times 10^{-26} i
                      dataSet=DIII-D slab
                       ne0=ne0
                       nsep=nsep
                       B=B
                       freq=55990
                       nz=0.1
                       etaList={1., 0., 0., 0., 0.}
                      TList={1., 1., 0., 0., 0., 0.}
                      modelList={2, 2, 2, 2, 2, 2}
                       rmaj = rmaj
                       rmin=rmin
                       rsep=rsep
                       sol=sol
                       alphan=alphan
                       alphaT=alphaT
                        ■ Hot plasma root finder gets all roots. What about at xmin?
  In[403]:= xPoint = xmin;
                       guesses = nPerpWarm6[xPoint] (* Warm plasma roots at x=0 *)
Out[404]= {0.590188, 1.18597, 19.3865, -0.590188, -1.18597, -19.3865}
```

```
In[405]:= {nPerpHot[xPoint, guesses[[1]]],
                                nPerpHot[xPoint, guesses[[2]]],
                                nPerpHot[xPoint, guesses[[3]]],
                                nPerpHot[xPoint, guesses[[4]]],
                                nPerpHot[xPoint, guesses[[5]]],
                                nPerpHot[xPoint, guesses[[6]]]}
                            paramPrint[{dataSet, ne0, nsep, B, freq, nz,
                                           etaList, TList, modelList, rmaj, rmin, rsep, sol, alphan, alphaT}];
Out[405]= \{0.590246 + 1.7869 \times 10^{-27} \text{ i}, 1.18681 + 3.41307 \times 10^{-28} \text{ i}, 1.18681 + 7.67968 \times 10^{-26} \text{ i}, 1.18681 + 7.67968
                                -0.590246 - 1.7869 \times 10^{-27} i, -1.18681 - 3.41307 \times 10^{-28} i, -1.18681 - 7.67968 \times 10^{-26} i
                          dataSet=DIII-D slab
                           ne0=ne0
                          nsep=nsep
                          B=B
                          freq=55990
                          nz=0.1
                           etaList={1., 0., 0., 0., 0.}
                          TList={1., 1., 0., 0., 0., 0.}
                          modelList={2, 2, 0, 0, 0, 0}
                          rmaj=rmaj
                           rmin=rmin
                           rsep=rsep
                          sol=sol
                           alphan=alphan
                           alphaT=alphaT
                            ■ Hot plasma root finder gets 2 of the roots
```

Plot hot plasma vs x

```
In[407]:= g7 = ComplexVectorListPlot[nxhot[1], "x (m)", "nx"];
     g8 = ComplexVectorListPlot[nxhot[2], "x (m)", "nx"];
     g9 = ComplexVectorListPlot[nxhot[3], "x (m)", "nx"];
     g10 = ComplexVectorListPlot[nxhot[4], "x (m)", "nx"];
     g11 = ComplexVectorListPlot[nxhot[5], "x (m)", "nx"];
     g12 = ComplexVectorListPlot[nxhot[6], "x (m)", "nx"];
     Show[\{g7, g8, g9, g10, g11, g12\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{0., 0.\}]
     Show[{g7, g8, g9, g10, g11, g12}, PlotRange \rightarrow {-2., 2.}, AxesOrigin \rightarrow {0., 0.}]
     paramPrint[{dataSet, ne0, nsep, B, freq, nz, etaList,
         TList, modelList, rmaj, rmin, rsep, sol, alphan, alphaT}];
```


dataSet=DIII-D slab

ne0=ne0

nsep=nsep

B=B

freq=55990

nz=0.1

etaList={1., 0., 0., 0., 0.}

TList={1., 1., 0., 0., 0., 0.}

modelList={2, 2, 0, 0, 0, 0}

rmaj=rmaj

 $\texttt{rmin} \!=\! \texttt{rmin}$

rsep=rsep

sol=sol

alphan = alphan

alphaT=alphaT

ln[431]:= Show[{g7, g10}, PlotRange \rightarrow All, AxesOrigin \rightarrow {0., 0.}] Show[$\{g8, g11\}$, PlotRange \rightarrow All, AxesOrigin $\rightarrow \{0., 0.\}$] Show[{g9, g12}, PlotRange \rightarrow All, AxesOrigin \rightarrow {0., 0.}]

Focus on the damping

```
In[434]:= nxhotIm[iRoot_] := Module[{iRoot0, nxWarm, rootsWarm, nxH, x0, ne, b, t, TL},
         nxWarm = Table [Flatten[{x, nPerpWarm6[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
          iRoot0 = iRoot;
          rootsWarm = rootSort[nxWarm];
          nxH = Table[0., {i, 1, nPoints}];
          Do
           \left(x0 = xmin + (i - 1) \frac{xmax - xmin}{nPoints - 1};\right)
            nxGuess = rootsWarm[[i]][[iRoot0 + 1]];
             (*Print["x0 = ", x0," nxGuess= ",nxGuess];*)
            nxH[[i]] = {x0, Im[nPerpHot[x0, nxGuess]]}; |, {i, 1, nPoints}];
         nxH];
```

X - mode

In[435]:= ListPlot[nxhotIm[1], PlotRange → All]

O - mode

Plot Profiles

In[340]:= Plot[nprof[x], {x, xmin, xmax}]

Initialization

Magnetic field, Density and Temperature Profiles

```
bprof[x_] := If[Abs[(BXmax - BXmin) / BXmax] > 10^{-6},
In[188]:=
            BXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (BXmax - BXmin), BXmin];
        nprof[x_] := If[Abs[(nXmax - nXmin) / nXmax] > 10^{-6},
In[189]:=
            nXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (nXmax - nXmin), nXmin];
        tprof[x_] := If[Abs[(TXmax - TXmin) / TXmax] > 10^{-6},
In[190]:=
           TXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (TXmax - TXmin), TXmin];
```