

GUÍA: INSTRUCCIONES BÁSICAS DE NUMPY

NumPy básico

NUMPY Jtiliza la siguiente convención para importar la librería: > import numpy as np NumPy Arrays

1 2 3

2D array				
1,5	2,5	3,5		
4	5	6		

CREANDO ARRAYS

> a = np.array([1,2,3]) > b = np.array([4,5,6], [7,8,9]) > c = np.array([[10,11], [12,13]], [[15,16], [16,17]], [[18,19], [20,21]]])

Tipos de datos

Entero de 64 bits	> np.int64
Punto flotante de doble precisión	
Números complejos representado por 128 flotantes	> np.complex
Booleano (almacena valores TRUE/FLASE)	> np.bool
Objeto de Python	> np.object
Entero con precisión fija	> np.string_
Unicode con precisión fija	> np.unicode_

Buscar ayuda

- > np.lookfor('binary representation')
- > np.info(np.polyval))

ARRAYS INICIALES

Array de ceros	> np.zeros((3,4))
Array de unos	> np.ones((3.4), dtvpe = np.int)
Array de unos Array de constantes	> a = np.full((3,3), 4)
Matriz identidad Matriz diagonal Array de valores uniformemente espaciado	> a = np.eye(4)
Matriz diagonal	> a = np.diag(10,20,30,40)
Array de valores uniformemente espaciado	
(valor del paso)	
Array de valores uniformemente espaciado	" (0.05.40)
(número de muestras)	> np.linspace(0,25,10)
Array con valores aleatorios	> np.random.random((4,4))

INSPECCIONAR ARRAY

Tipo de dato de los elementos del array	> a.dtype
Dimensiones del array	.> a.shape
Número de elementos del array	
Número de dimensiones del array	

SUBCONJUNTO, "SLICING", INDEXACIÓN

Acceder a elementos del array

Seleccionar el elemento en el índice 2 > a[2] Seleccionar el elemento en la fila 1 columna 2 > a[1,2]

Modificar elementos del array

Cambiar el cuarto elemento por 20 > a[4] = 20 Cambiar el elemento en la fila 0 columna 0 por 20 > a[0,0] = 20

"Slicing"

> a[1:4]	egunda y cuarta fila	de la	lementos	los e	eleccionar	Se
> a[1:]	egunda fila en adelante 📖	de la	lementos	los e	eleccionar	Se
file > 2[·4]	de la nrimera a la cuarta fi	entos	s los alam		leccionar	Se

Indexación booleana

Seleccionar los elementos en a mayores a 10......> a[a>2]

MANIPULACIÓN ARRAYS

Cambiar el tipo de datos

Convertir un array a un diferente tipo > a.astype('float64')

Cambiando la forma del array

Ordenar un array	> a.sort()
Ordenar los elementos de un eje del array	
Retorna un nuevo array con la forma (2,6) relleno de 0	> a.resize((2,6))
Retorna un nuevo array con la forma (2,6)	> np.resize(a, (2,6))
Cambiar la forma sin cambiar los datos	
Aplanar el array	::> a.ravel()

Agregar/Eliminar elementos

Elimina los ítem del array > np.delete(a, [0	,4])
Anexa lo items al array > np.append(a, 6	3)
Inserta los ítem al array > np.insert(a, 2,	[3,4])

Combinando Arrays

Concatenar array > np.concater	nate((a1,a2))
Apilar verticalmente array (en fila)> np.vstack((a	a1,a2))
Apilar horizontalmente array (en columna) > np.hstack((a	a1,a2))

Dividiendo Arrays

Dividir el array horizontalmente	> np.hsplit(a1,2)
Dividir el array verticalmente	> np.vsplit(a1,2)

Transposición

Permuta las dimensiones del array > np.transpose(a)
Permuta las dimensiones del array > a.T

Copiar array

Crear una vista del array con la misma data > a = a1.view()
Crear una copia profunda del array > a = a1.copy()

MATEMÁTICAS

Operaciones aritméticas

Suma de arrays	,> a1 + a2
Suma de arrays	
Resta de arrays	> a1 - a2
Resta de arrays	<pre>.> np.subtract(a1,a2)</pre>
Multiplicación de arrays	
Multiplicación de arrays	,> np.multiply(a1,a2)
División de arrays	
División de arrays	

Funciones matemáticas

Raíz cuadrada	> np.sqrt(a)
Raíz cuadrada Exponencial	;;> np.exp(a)
Potencia	np.power(a,2)
Imprimir los senos del array	> np.sin(a)
Coseno de los elementos	> np.cos(a)
Logaritmo natural de los elementos	> np.log(a)

Funciones estadísticas

Media	> a.mean()
Mediana	> np.median(a)
Mediana Mediana Desviación estándar Mínimo valor del array	> a.std()
Mínimo valor del array	> a.min()
Máximo valor del array	> a.max()
Máximo valor del array Coeficiente de correlación	> a.corrcoef()

ENTRADAS Y SALIDAS

Cargar datos de archivos a arrays

- > np.loadtxt("nombre_archivo.txt")
- > np.genfromtxt("nombre_archivo.csv")

Guardar arrays en archivos

> np.savetxt("nombre_archivo.txt", a)

Aprende todo sobre procesamiento y visualización de datos utilizando Python en aprendelA.com