

Statistika Non Parametrik TSD - Ganjil 2024/2025

Minggu Ke-4:

"Chi-square Test, Bartlett Test, Levene Test"

Chi-square Test

Ketidaktergantungan / independensi

Asumsi:

- Data terdiri atas sebuah sampel acak sederhana dengan ukuran n dari suatu populasi yang diamati
- Hasil-hasil pengamatan dalam sampel dapat diklasifikasikan secara silang menjadi dua kriteria, sehingga masing-masing hasil pengamatan hanya memiliki satu kriteria saja dari masing-masing kriteria. Kriteria disini meupakan variabel-variabel yang diamati

Kkriteria	Kriteria Klasifikasi Kedua Tingkat						
Klasifikasi Pertama							
Tingkat	1	2		j		С	Jumlah
1	O11	O12		O1j		O1c	n1.
2	O21	O22		O2j		O2c	n2.
100							
•	Oi1	Oi2		Oii		Oio	ni
	Oj1	Oj2		Ojj		Ojc	nj.
r	Or1	Or2		Orj		Orj	nr.
Jumlah	n.1	n.2		n.j		n.c	n

Hipotesis

H0: Kedua kriteria klasifikasi saling bebas atau independent

H1: Kedua kriteria klasifikasi tidak saling bebas

Statistik Uji:
$$\chi^2 = \sum_{\text{cells}} \frac{(O - E)^2}{E}$$

Dengan

O: observed cell frequency

E: expected cell frequency = $\frac{row total \ x \ column \ total}{Grand \ total}$

Degree of freedom (df): (r-1)(c-1) dimana r adalah jumlah baris dan c adalah jumlah kolom tabel kontingensi

- Jika nilai statistik uji (χ^2) lebih besar dari nilai tabel (χ^2_{α}) , maka tolak H0.
- Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Hipotesis

H0: Populasi-populasi asal sampel homogen

H1: Populasi-populasi asal sampel tidak homogen

Statistik Uji:
$$\chi^2 = \sum_{\text{cells}} \frac{(O - E)^2}{E}$$

Dengan

O: observed cell frequency

E: expected cell frequency = $\frac{row total x column total}{Grand total}$

Degree of freedom (df): (r-1)(c-1) dimana r adalah jumlah baris dan c adalah jumlah kolom tabel kontingensi

- Jika nilai statistik uji (χ^2) lebih besar dari nilai tabel (χ^2_{α}) , maka tolak H0.
- Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Contoh

Pada suatu percobaan perkecambahan digunakan 250 biji. Dimana 100 biji diantaranya diberi pupuk kimia, sedangkan 150 biji lainnya tidak diberi pupuk kimia. Jumlah benih yang berkecambah dicatat pada Tabel di bawah ini. Apakah data tersebut memberikan cukup bukti untuk menyimpulkan bahwa data bersifat homogen?

Tabel Kontingensi	Berkecambah	Tidak berkecambah	Total
Diperi perlakuan	84	16	100
Tidak diberi perlakuan	132	18	150
Total	216	34	250

1. Menghitung expected cell frequency = $\frac{row\ total\ x\ column\ total}{Grand\ total}$

Expected Value	Berkecambah	Tidak berkecambah		
Diperi perlakuan	86,4	13,6		
Tidak diberi perlakuan	129,6	20,4		

2. Menghitung Chi-square $\chi^2 = \sum_{\text{cells}} \frac{(O - E)^2}{E}$

Chi-square	Berkecambah	Tidak berkecambah	
Diperi perlakuan	0,067	0,424	
Tidak diberi perlakuan	0,044	0,282	
		Chi hitung	0,817
		Chi-tabel	3,84

		•	ss than the		
ν	0.90	0.95	0.975	0.99	0.999
1	2.706	3.841	5.024	6.635	10 020
2	4.605	5.991	7.378	9.210	10.828 13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
12	18.549	21.026	23.337	26.217	32.910
13	19.812	22.362	24.736	27.688	34.528
14	21.064	23.685	26.119	29.141	36.123
15	22.307	24.996	27.488	30.578	37.697
16	23.542	26.296	28.845	32.000	39.252
17	24.769	27.587	30.191	33.409	40.790
18	25.989	28.869	31.526	34.805	42.312
19	27.204	30.144	32.852	36.191	43.820
20	28.412	31.410	34.170	37.566	45.315
21	29.615	32.671	35.479	38.932	46.797
22	30.813	33.924	36.781	40.289	48.268
23	32.007	35.172	38.076	41.638	49.728
24	33.196	36.415	39.364	42.980	51.179
25	34.382	37.652	40.646	44.314	52.620
26	35.563	38.885	41.923	45.642	54.052
27	36.741	40.113	43.195	46.963	55.476
28	37.916	41.337	44.461	48.278	56.892
29	39.087	42.557	45.722	49.588	58.301
30	40.256	43.773	46.979	50.892	59.703
31	41.422	44.985	48.232	52.191	61.098
32	42.585	46.194	49.480	53.486	62.487
33	43.745	47.400	50.725	54.776	63.870
34	44.903	48.602	51.966	56.061	65.247
35	46.059	49.802	53.203	57.342	66.619

Chi-Square Test Using R

```
table1=matrix(c(84,132,16,18),ncol=2)
colnames(table1)=c("Berkecambah","Tidak Berkecambah")
rownames(table1)=c("Perlakuan","Tanpa Perlakuan")
table1

Uji=chisq.test(table1)
Uji
```


Bartlett's Test

Bartlett's Test

- Bartlett's test dikenalkan oleh Snedecor dan Cochran pada tahun 1983
- Bartlett's test digunakan untuk melakukan pengujian k sampel yang memiliki varians sama. Jika sampel memiliki varians yang sama maka dapat dikatakan sampel tersebut bersifat homogen
- Kelemahan dari Bartlett's test adalah sensitive terhadap distribusi normal, sehingga alternatif pengujian lain yang dapat digunakan adalah Levene test yang cenderung tidak terlalu sensitive terhadap normality.

Bartlett's Test

Hipotesis

H0: $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$

H1 : minimal ada satu $\sigma_i^2 \neq \sigma_i^2$

Statistik Uji

$$T = \frac{(N-k)\ln s_p^2 - \sum_{i=1}^k (N_i - 1)\ln s_i^2}{1 + (1/(3(k-1))) \left(\left(\sum_{i=1}^k 1/(N_i - 1) \right) \right) - 1/(N-k)}$$

$$s_p^2 = \sum_{i=1}^k (N_i - 1) s_i^2 / (N - k)$$

Dimana,

 s_i^2 : varians dari group ke-i

 s_p^2 : pooled variance

N: total sampel

k: jumlah group

- Jika nilai statistik uji (T) lebih besar dari nilai tabel $(\chi^2_{\alpha,k-1})$, maka tolak H0.
- Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Bartlett's Test Using R

```
#Setting Directory
setwd("D:/UNAIR/1. Perkuliahan/Statnonpar/2023-2024/M4")
#Import Data
library(readxl)
Data <- read_excel("Data.xlsx")</pre>
View(Data)
library(mvtnorm)
Uji1=bartlett.test(Diameter~Batch,data=Data)
Uji1
```


Bartlett's Test Using R

Contoh

Seorang petugas quality control ingin mengetahui homogenitas dari produk gear yang mereka hasilkan dari masing-masing batch, dimana dalam satu hari produksi terdapat 10 batch untuk proses produksi. Berdasarkan data yang telah disampel apakah sudah cukup membuktikan bahwa produk yang dihasilkan adalah homogen antar batch?

Lihat Dataset yang sudah diupload di HEBAT

Levene's Test

Levene Test

- Levene's test merupakan pengujian yang dikenalkan Levene pada tahun 1960.
- Uji ini digunakan untuk melihat kesamaan varians dari k sampel.
- Jika memiliki varians yang sama, maka dapat diartikan bahwa sampel tersebut bersifat homogen.
- Beberapa pengujian statistik mensyaratkan asumsi varians antar group atau sampel adalah sama. Oleh sebab itu levene test dapat menjadi salah satu alternatif untuk menguji asumsi tersebut.
- Levene test merupakan salah satu alternatif pengujian selain Bartlett test, khususnya untuk data yang tidak normal.
- Tetapi jika keyakinan terhadap data adalah normal, atau mendekati normal maka Bartlett test memiliki perfoma yang lebih baik.

Levene Test

Hipotesis

H0: $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$

H1 : minimal ada satu $\sigma_i^2 \neq \sigma_j^2$

Statistik Uji

$$W = \frac{(N-k)\sum_{i=1}^{k} N_i (\bar{Z}_{i.} - \bar{Z}_{..})^2}{(k-1)\sum_{i=1}^{k} \sum_{j=1}^{N_i} (Z_{ij} - \bar{Z}_{i.})^2}$$

Dimana,

 N_i : jumlah sampel dalam group ke-i

N: jumlah sampel

k : jumlah group

$$Z_{ij} = \left| Y_{ij} - \overline{Y}_{i.}
ight| \qquad \qquad Z_{ij} = \left| Y_{ij} - \widetilde{Y}_{i.}
ight|$$
 Median

- Jika nilai statistik uji (W) lebih besar dari nilai tabel $(F_{\alpha,k-1,N-k})$, maka tolak H0.
- Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Levene Test Using R

```
#Setting Directory
setwd("D:/UNAIR/1. Perkuliahan/Statnonpar/2023-2024/M4")
#Import Data
library(readxl)
Data <- read_excel("Data.xlsx")</pre>
View(Data)
library(misty)
Uji2=test.levene(Diameter~Batch,data=Data,method = "mean", conf.level = 0.95)
Uji2
```

