$$R_{2} = 30k$$

$$R_{1} = 30k$$

$$R_{1} = 10k$$

$$R_{1} = 10k$$

$$R_{2} = 10k$$

$$R_{3} = 10k$$

$$R_{4} = 10k$$

$$R_{5} = 10k$$

$$R_{6} = 10k$$

$$R_{1} = 10k$$

$$R_{1} = 10k$$

$$R_{1} = 10k$$

$$R_{1} = 10k$$

$$R_{2} = 10k$$

$$R_{1} = 10k$$

$$R_{2} = 10k$$

$$R_{3} = 10k$$

$$R_{4} = 10k$$

$$R_{5} = 10k$$

$$GF = 1/4$$

$$PF = 10,6 MH2$$

$$(-12dB)$$

$$20leg = -12dB$$

$$A = quelle fréquence $|A| = \frac{1}{GF}$? ou $|A| = 12dB$$$

Ao-12dB = 68dB =) rayport
$$\approx \times 2510$$

donc $|A| = 12dB$ a $f = p_1 \times 2510 \approx 5Mm$

autre façon: $12dB \Rightarrow pa rapport = \times 4$ $donc |A| = 12dB \Rightarrow f = \frac{GRW}{4} = 5MH2$

|A|=12dB à une fréquence fix à pF => on n'a donc PAS le triangle classique

$$\mathcal{L}_{A} = -\operatorname{anchy} \frac{fi}{Pi} - \operatorname{anchy} \frac{fi}{Pi}$$

$$= -90^{\circ} - 7^{\circ} \approx -97^{\circ}$$

$$\Psi_F = - andy \frac{fi}{P_F} \approx -25^\circ$$

 $\Psi_{T} = \Psi_{A} + \Psi_{F} = -122^\circ$

b) PM= M80°-19H= 58°

on ent quariment à la valour édésle de la marge de phose (60°) => Strible et optimal

2/ BRUIT

a) voir tableaux

b) entre V_4 et V_5 = passibas des premier ordre, $\int_{C_1}^{C_2} \frac{1}{2nR_3C_1} = 994,7 Hz = \frac{1}{2nR_3C_1}$

en V1 => Snvi = 74 10-15 V2/m)

Phroit= Snvn = Je = 116 10-12 V2

c) fréquence signal 2< ce fc => pas d'attenualion

Signal: $Vs = 10mVpk \times 4 = 40mVpk (casle + clefavnasle)$ Psignal = $(40 \cdot 10^{-3})^2 = 800 \cdot 10^{-6} V^2$

=10 log (FNR) dB SNR = Prignal = 6,9 106 => 68,4 dB.

SNR convertisieur => 6×8+1,2 = 49,8 dB => pas suffisant il faudrait plus que 8 bits (environ 12 bits) pour profiter du SNR de l'ampli

 $e_{n^2} = 900 \cdot 10^{-18} \cdot V^2/m$ $e_{n^2} = 64 \cdot 10^{-24} \cdot A^2/m$

Nom:

Bruit en V1		(V2/HL)
Source de bruit	Expression littérale	Application numérique
R1	UKTR1 (R2)2	184 10-15
R ₂	$\frac{4kT}{R_2}\left(R_2\right)^2 = 4kTR_2$	0,48 10-15
en 2	$e_{n}^{2}\left(1+\frac{R_{2}}{R_{1}}\right)^{2}$	14,4 10-15
In2®	0 (mask car Ve=0)	0
in20	in ² R ₂ ²	57,6 10-15
	TOTAL 2	74 10-15