MICRO- AND MACROSTATES IN THERMAL PHYSICS

FYS2160

SEBASTIAN G. WINTHER-LARSEN

Contents

1. Introduction	1
2. The Einstein Crystal	1
2.1. Theoretical background	1
2.2. Simple microstates	2
2.3. Two subsystems in thermal contact	2
2.4. Thermodynamic properties	5
3. The Spin System	5

1. Introduction

This is a brief study of micro- and macrostates in thermal phyics and statistical mechanics¹. In statistical mechanics, a microstate is a specific microscopic configuration of a thermodynamic system that the system may occupy with a certain probability in the course of its thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, volume and density. Two models are introduced in this study; the Einstein crystal, which could respresent a silicone crystal, and the spin system, which could represent a system of magnetic dipoles

2. The Einstein Crystal

2.1. **Theoretical background.** In a real crystal, individual atoms oscillate around an equilibrium posistion while interacting mostly with its nearest neighbors. A simplified model for such a system can be represented by a harmonic oscillator potential in three dimensions

(1)
$$U_i(\mathbf{r}_i) = \frac{1}{2}k_x(x_i - x_{i,eq})^2 + \frac{1}{2}k_y(y_i - y_{i,eq})^2 + \frac{1}{2}k_z(z_i - z_{i,eq})^2$$

From quantum mechanics, we know that the energy of a harmonic oscillator is

(2)
$$\epsilon_i = n_i \Delta \epsilon$$

where n_i is an integer describing the state of oscillator i. The entire system of N such (non-interacting) oscillators will have total energy

(3)
$$U = \sum_{i=1}^{N} \epsilon n_i$$

Date: September 16, 2016.

¹I have come to realise that these two terms are somewhat interchangeable

For simplicity the energy is measured in units of ϵ .

$$q = \frac{U}{\epsilon} = \sum_{i=1} n_i$$

This is equivalent to equation 3, but implies that a specific system will have constant total energy, yet the energy distribution may change.

A microstate of the Einstein crystal is described by the numbers n_i for each oscillator

$$\{n_1, n_2, \dots, n_N\}$$

For example, for a system with N=4 and q=4, a possible microstate is $\{1,0,2,1\}$.

2.2. Simple microstates. In a system with N=3 and q=3 there are ten possible microstates

$${0,0,3}, {3,0,0}, {3,0,0}, {0,1,2}, {1,0,2}, {1,2,0}, {2,1,0}, {2,0,1}, {2,1,0}, {1,1,1}$$

For an easy case like this it is relatively easy to write out all the different microstates. When the system is bigger, with higher N, a human may not be up for the task.

The general formula for computing the number of microstates for N oscillators with q units of energy is

(6)
$$\Omega(N,q) = \binom{q+N-1}{q} = \frac{(q+N-1)!}{q!(N-1)!}$$

Plugging in for N=3 and q=3 indeed yields the expected result

$$\Omega(3,3) = \binom{3+3-1}{3} = \binom{5}{3} = \frac{5!}{3!2!} = \frac{5 \cdot 4}{2} = 10$$

2.3. Two subsystems in thermal contact. Consider two initially isolated subsystems, system A with $N_A = 2$ oscillators and energy $q_A = 5$; and system B with $N_B = 2$ oscillators and energy $q_B = 1$. Subsystem A has the following six possible microstates

$$\{0,5\},\{1,4\},\{2,3\},\{3,2\},\{4,1\},\{5,0\}$$

and subsystem B will have the following two microstates

$$\{0,1\},\{1,0\}$$

All the microstates from one of the subsystems can be combined with any from the other system giving a total number of $6 \cdot 2 = 12$ possible microstates.

Now, let the two subsystems be put in thermal contact. This means that they can exchange energy, but that the number of particles and volume of each subsystem does not change. The total energy $(q = q_A + q_B = 6)$ can be distributed between the two subsystems. The possible values of $q_k = q - q_{k^c}$ where $k \in \{A, B\}$. k^c is the complement of k, whatever k is not. It follows that the possible energy values must be $q_k \in [0, q] = [0, 6]$.

We call a state with a given q_A for a *macrostate* of the combined system. This means that there are a total of seven macrostates in the system, listed in table 1

These values have been calculated using the binomial coefficient in equation 6. The full number of microstates for a given macrostate q_A are given in the last column as the total multiplicity $\Omega_{tot} = \Omega_A \Omega_B$.

The following source code listing provides a way to compute the same numbers with a class in Python.

Table 1. Macrostates and mulitpicities of a system with two Einstein crystals

$\overline{q_A}$	Ω_A	q_B	Ω_B	Ω_{tot}
0	1	6	7	7
1	2	5	6	12
2	3	4	5	15
3	4	3	4	16
4	5	2	3	15
5	6	1	2	12
6	7	0	1	7
			Sum:	84

```
class Einstein Crystal:
 def __init__(self, q, N_A, N_B):
   # Arguments
    self.q = q
    self.N_A = N_A
    self.N_B = N_B
   \# Initializing data structures
    self.q_A = np.asarray(range(0, q+1))
    self.omega_A = np.zeros(q+1)
    self.q_B = np.zeros(q+1)
    self.omega_B = np.zeros(q+1)
    self.omega\_tot = np.zeros(q+1)
   # Computation loop
    for i in range (0, self.q+1):
      self.omega_A[i] = \
      scipy.misc.comb(self.q_A[i] + self.N_A-1, self.q_A[i])
      self.q_B[i] = self.q - self.q_A[i]
      self.omega_B[i] = \
      scipy.misc.comb(self.q_B[i] + self.N_B-1, self.q_B[i])
```

An object of this class defines a system consisting of two subsystems, A and B. To get information about the states and multiplicity of the system I have written the following method². This method displays information about smaller systems quite well.

```
def table(self):
    # Printing header
    print("{:>5} {:>7} {:>5} {:>7} {:>10}"
    .format("q_A", "omega_A", "q_B", "omega_B", "omega_tot"))
```

²I am uncertain what names to use: object or class instance; and method or function. My sincere apologies to the reader if some other words than than the ones I have chosen are the norm for Python.

```
# Printing data
for i in range(0, self.q+1):
    print("{:>5.0f} {:>7.0f} {:>5.0f} {:>7.0f}"\
        .format(self.q-A[i], self.omega_A[i],\
        self.q-B[i], self.omega_B[i], self.omega_tot[i]))
# Total multiplicity
```

To compute probability of every state and to plot det probability density function I have writting this next method method which computes the probabilities for the macrostates q_A . The probability are computed by dividing all possible microstates for a given macrostate by every possible microstate.

(9)
$$p(q_A) = \frac{\Omega_{i,tot}}{\sum \Omega_{i,tot}}$$

The method prints to terminal the probabilities that are given in table 2.

Table 2. Probabilities of the macrostates for two Einsten crystals where q=6 and $N_A=N_B=2$

q_A	$P(q_A)$
0	0.0833
1	0.1429
2	0.1786
3	0.1905
4	0.1786
5	0.1429
6	0.0833
Sum:	1.0

The maximium number of microstates before the two crystals came in thermal contact was only $\sum \Omega_{i,tot} = 12$. For the interconnected system, the number of allows microstates have risen dramatically to $\sum \Omega_{i,tot} = 84$. Another aspect to draw attention to is that the highest number of possible microstates for a givin macrostate is highest when the energy in the crystals, q_A and q_b are similar. This is clear from looking at table 1. It would be intersting to see if the same holds true

for an even larger system. Figure 1 shows the an approximation of a probability density function for the two crystals when the parameters are increased to q=100 and $N_A=N_B=50$. The tendency is very clear, as we see the graph forms a characteristic bell curve with a peak at $q_A=50$, where the energy of the two crystals are most similar. The probability for this exact macrostate is $p(q_A=50)\approx 5.6\%$.

FIGURE 1. Probability density function for two interconnected Einstein crystals with q=100 and $N_A=N_B=50$

2.4. **Thermodynamic properties.** Equation 6 gives us the multiplicity of a system as a binomial coefficient

$$\Omega(N,q) = \binom{q+N-1}{q} = \frac{(q+N-1)!}{q!(N-1)!}$$

Using Stirlings's approximation, $\ln x! = x \ln x - x$, this expression can be simplified.

3. The Spin System