CE100 Algorithms and Programming II

Week-5 (Dynamic Programming)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-5dp.md_slide.html"></iframe>

Quicksort Sort

Outline

- Convex Hull (Divide & Conquer)
- Dynamic Programming
 - Introduction
 - Divide-and-Conquer (DAC) vs Dynamic Programming (DP)

- Fibonacci Numbers
 - Recursive Solution
 - Bottom-Up Solution
- Optimization Problems
- Development of a DP Algorithms

- Matrix-Chain Multiplication
 - Matrix Multiplication and Row Columns Definitions
 - Cost of Multiplication Operations (pxqxr)
 - Counting the Number of Parenthesizations

- The Structure of Optimal Parenthesization
 - Characterize the structure of an optimal solution
 - A Recursive Solution
 - Direct Recursion Inefficiency.
 - Computing the optimal Cost of Matrix-Chain Multiplication
 - Bottom-up Computation

- Algorithm for Computing the Optimal Costs
 - MATRIX-CHAIN-ORDER
- Construction and Optimal Solution
 - MATRIX-CHAIN-MULTIPLY
- Summary

Dynamic Programming - Introduction

- An algorithm design paradigm like divide-and-conquer
- Programming: A tabular method (not writing computer code)
 - Older sense of planning or scheduling, typically by filling in a table
- Divide-and-Conquer (DAC): subproblems are independent
- Dynamic Programming (DP): subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm does redundant work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - Saves its result in a table

Problem 1: Fibonacci Numbers Recursive Solution

• Reminder:

else

CE100 Week-5

$$F(0) = 0$$
 and $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$
 $ext{REC-FIBO}(n)\{$
 $ext{if } n < 2$
 $ext{return } n$

return REC-FIBO(n-1) + REC-FIBO(n-2) }

 Overlapping subproblems in different recursive calls. Repeated work!

Problem 1: Fibonacci Numbers Recursive Solution

- Recurrence:
 - exponential runtime

$$T(n) = T(n-1) + T(n-2) + 1$$

• Recursive algorithm inefficient because it recomputes the same F(i) repeatedly in different branches of the recursion tree.

Problem 1: Fibonacci Numbers Bottom-up Computation

• Reminder:

$$F(0) = 0 \text{ and } F(1) = 1$$

 $F(n) = F(n-1) + F(n-2)$

• Runtime $\Theta(n)$

```
ITER-FIBO(n)
  F[0] = 0
  F[1] = 1
  for i = 2 to n do
    F[i] = F[i-1] + F[i-2]
  return F[n]
```


Optimization Problems

- **DP** typically applied to optimization problems
- In an optimization problem
 - There are many possible solutions (feasible solutions)
 - Each solution has a value
 - Want to find an optimal solution to the problem
 - A solution with the optimal value (min or max value)
 - Wrong to say the optimal solution to the problem
 - There may be several solutions with the same optimal value

Development of a DP Algorithm

- Step-1. Characterize the structure of an optimal solution
- Step-2. Recursively define the value of an optimal solution
- Step-3. Compute the value of an optimal solution in a bottom-up fashion
- Step-4. Construct an optimal solution from the information computed in Step 3

Problem 2: Matric Chain Multiplication

- Input: a sequence (chain) $\langle A_1, A_2, \ldots, A_n
 angle$ of n matrices
- Aim: compute the product $A_1 \cdot A_2 \cdot \ldots A_n$
- A product of matrices is fully parenthesized if
 - It is either a **single matrix**
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

$$egin{aligned} igg(A_i(A_{i+1}A_{i+2}\dots A_j)igg) \ igg((A_iA_{i+1}A_{i+2}\dots A_{j-1})A_jigg) \ igg((A_iA_{i+1}A_{i+2}\dots A_k)(A_{k+1}A_{k+2}\dots A_j)igg) ext{ for } i\leq k < j \end{aligned}$$

• All parenthesizations yield the same product; matrix product is associative

Matrix-chain Multiplication: An Example Parenthesization

• Input: $\langle A_1, A_2, A_3, A_4 \rangle$ (5 distinct ways of full parenthesization)

$$\begin{pmatrix} A_1 \left(A_2 (A_3 A_4) \right) \\ \left(A_1 \left((A_2 A_3) A_4 \right) \right) \\ \left((A_1 A_2) (A_3 A_4) \right) \\ \left(\left(A_1 (A_2 A_3) A_4 \right) \right) \\ \left(\left((A_1 A_2) A_3 \right) A_4 \right) \\ \end{pmatrix}$$

• The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product

Matrix-chain Multiplication: Reminder

```
MATRIX-MULTIPLY(A, B)
  if cols[A]!=rows[B] then
    error("incompatible dimensions")
  for i=1 to rows[A] do
    for j=1 to cols[B] do
        C[i,j]=0
        for k=1 to cols[A] do
        C[i,j]=C[i,j]+A[i,k]·B[k,j]
    return C
```


Matrix Chain Multiplication: Example

• A1:10x100, A2:100x5,

A3:5x50

 \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

of mult-add ops = 5000+2500 = 7500

Matrix Chain Multiplication: Example

- ullet A1:10 imes100, A2:100 imes5, A3:5 imes50
 - \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

of mult-add ops = 25000+5000 = 75000

Matrix Chain Multiplication: Example

- ullet A1:10 imes100, A2:100 imes5, A3:5 imes50
 - \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

In summary:

- (A1A2)A3 = # of multiply-add ops: 7500
- A1(A2A3) = # of multiple-add ops: 75000

First parenthesization yields 10x faster computation

Matrix-chain Multiplication Problem

- Input: A chain $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices,
 - \circ where A_i is a $p_{i-1} imes p_i$ matrix
- Objective: Fully parenthesize the product
 - $\circ A_1 \cdot A_2 \dots A_n$
 - such that the number of scalar mult-adds is minimized.

Counting the Number of Parenthesizations

- Brute force approach: exhaustively check all parenthesizations
- P(n): # of parenthesizations of a sequence of n matrices
- We can split sequence between k^{th} and $(k+1)^{st}$ matrices for any $k=1,2,\ldots,n-1$, then parenthesize the two resulting sequences independently, i.e.,

$$(A_1A_2A_3\dots A_k) (A_{k+1}A_{k+2}\dots A_n)$$

We obtain the recurrence

$$P(1) = 1 \text{ and } P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$$

Number of Parenthesizations:

$$ullet P(1)=1$$
 and $P(n)=\sum\limits_{k=1}^{n-1}P(k)P(n-k)$

ullet The recurrence generates the sequence of **Catalan Numbers** Solution is P(n)=C(n-1) where

$$C(n)=rac{1}{n+1}inom{2n}{n}=\Omega(4^n/n^{3/2})$$

- ullet The number of solutions is **exponential** in n
- Therefore, brute force approach is a poor strategy

The Structure of Optimal Parenthesization

- Notation: $A_{i...j}$: The matrix that results from evaluation of the product: $A_iA_{i+1}A_{i+2}\ldots A_j$
- Observation: Consider the last multiplication operation in any parenthesization: $(A_1A_2\ldots A_k)\cdot (A_{k+1}A_{k+2}\ldots A_n)$
 - \circ There is a k value $(1 \le k < n)$ such that:
 - lacktriangle First, the product $A_1 \dots k$ is computed
 - lacktriangle Then, the product $A_{k+1\ldots n}$ is computed
 - lacktriangle Finally, the matrices $A_{1\ldots k}$ and $A_{k+1\ldots n}$ are multiplied

Step 1: Characterize the Structure of an Optimal Solution

- An optimal parenthesization of product $A_1A_2\dots A_n$ will be: $(A_1A_2\dots A_k)\cdot (A_{k+1}A_{k+2}\dots A_n)$ for some k value
- The cost of this optimal parenthesization will be:
 - = Cost of computing $A_{1...k}$
 - + Cost of computing $A_{k+1\ldots n}$
 - + Cost of multiplying $A_{1\ldots k}\cdot A_{k+1\ldots n}$

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: Given optimal parenthesization

$$\circ \ (A_1A_2A_3\ldots A_k)\cdot (A_{k+1}A_{k+2}\ldots A_n)$$

- ullet Parenthesization of the subchain $A_1A_2A_3\ldots A_k$
- Parenthesization of the subchain $A_{k+1}A_{k+2}\ldots A_n$

should both be optimal

- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
 - o i.e., optimal substructure within an optimal solution exists.

- Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems
- ullet Assume we are trying to determine the min cost of computing $A_{i\ldots j}$
- ullet $m_{i,j}$: min # of scalar multiply-add opns needed to compute $A_{i\ldots j}$
 - \circ **Note**: The optimal cost of the original problem: $m_{1,n}$
- How to compute $m_{i,j}$ recursively?

- ullet Base case: $m_{i,i}=0$ (single matrix, no multiplication)
- ullet Let the size of matrix A_i be $(p_{i-1} imes p_i)$
- Consider an optimal parenthesization of chain

$$\circ \ A_i \ldots A_j : (A_i \ldots A_k) \cdot (A_{k+1} \ldots A_j)$$

- ullet The optimal cost: $m_{i,j} = m_{i,k} + m_{k+1,j} + p_{i-1} imes p_k imes p_j$
- where:
 - $\circ \; m_{i,k}$: Optimal cost of computing $A_{i\ldots k}$
 - $\circ \ m_{k+1,j}$: Optimal cost of computing $A_{k+1\ldots j}$
 - $\circ~p_{i-1} imes p_k imes p_j$: Cost of multiplying $A_{i\dots k}$ and $A_{k+1\dots j}$

- ullet In an optimal parenthesization: k must be chosen to minimize m_{ij}
- The recursive formulation for m_{ij} :

$$m_{ij} = egin{cases} 0 & if \ i = j \ MIN\{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\} & if \ i < j \end{cases}$$

- ullet The m_{ij} values give the **costs of optimal solutions** to subproblems
- In order to keep track of how to construct an optimal solution
 - \circ Define s_{ij} to be the value of k which yields the optimal split of the subchain $A_{i\ldots j}$
 - lacksquare That is, $s_{ij}=k$ such that
 - $lacksquare m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j$ holds

Direct Recursion: Inefficient!

• Recursive Matrix-Chain (RMC) Order

```
RMC(p,i,j)
 if (i == j) then
    return 0
 m[i, j] = INF
  for k=i to j-1 do
    q = RMC(p, i, k) + RMC(p, k+1, j) + p_{i-1} p_k p_j
    if q < m[i, j] then</pre>
      m[i, j] = q
  endfor
        return m[i, j]
```

Direct Recursion: Inefficient!

- ullet Recursion tree for RMC(p,1,4)
- ullet Nodes are labeled with i and j values

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
 - \circ one problem for each choice of i and j satisfying $1 \leq i \leq j \leq n$
 - \circ total $n+(n-1)+\cdots+2+1=rac{1}{2}n(n+1)=\Theta(n2)$ subproblems
- We can write a **recursive** algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming

Computing the Optimal Cost (Matrix-Chain Multiplication)

- Compute the value of an optimal solution in a bottom-up fashion
 - \circ matrix A_i has dimensions $p_{i-1} imes p_i$ for $i=1,2,\ldots,n$
 - \circ the input is a sequence $\langle p_0, p_1, \dots, p_n
 angle$ where length[p] = n+1
- Procedure uses the following auxiliary tables:
 - $\circ \ m[1\ldots n,1\ldots n]$: for storing the m[i,j] costs
 - $\circ \ s[1\dots n,1\dots n]$: records which index of k achieved the optimal cost in computing m[i,j]

- How to choose the order in which we process m_{ij} values?
- Before computing m_{ij} , we have to make sure that the values for m_{ik} and $m_{k+1,j}$ have been computed for all k.

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

- $ullet m_{ij}$ must be processed after m_{ik} and $m_{j,k+1}$
- ullet Reminder: m_{ij} computed only for j>i

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

- $ullet m_{ij}$ must be processed after m_{ik} and $m_{j,k+1}$
- How to set up the iterations over i and j to compute m_{ij} ?

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

• If the entries m_{ij} are computed in the shown order, then m_{ik} and $m_{k+1,j}$ values are guaranteed to be computed before m_{ij} .

Bottom-Up Computation

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

Bottom-Up Computation

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

Algorithm for Computing the Optimal Costs

ullet Note: I $=\ell$ and p_{i-1}p_k p_j $=p_{i-1}p_k p_j$

```
MATRIX-CHAIN-ORDER(p)
  n = length[p]-1
  for i=1 to n do
    m[i, i] = 0
  endfor
  for l=2 to n do
    for i=1 to n n-l+1 do
      j=i+l-1
      m[i, j]=INF
      for k=i to j-1 do
        q=m[i,k]+m[k+1, j]+p_{i-1} p_k p_j
        if q < m[i,j] then</pre>
          m[i,j]=q
          s[i,j]=k
      endfor
    endfor
  endfor
  return m and s
```


Algorithm for Computing the Optimal Costs

- The algorithm first computes
 - $\circ \ m[i,i] \leftarrow 0$ for $i=1,2,\ldots,n$ min costs for all chains of length 1
- ullet Then, for $\ell=2,3,\ldots,n$ computes
 - $\circ \ m[i,i+\ell-1]$ for $i=1,\ldots,n-\ell+1$ min costs for all chains of length ℓ
- ullet For each value of $\ell=2,3,\ldots,n$,
 - $m[i,i+\ell-1]$ depends only on table entries $m[i,k]\&m[k+1,i+\ell-1]$ for $i\leq k < i+\ell-1$, which are already computed

Algorithm for Computing the Optimal Costs

$$\underbrace{\{m[1,2],m[2,3],\dots,m[n-1,n]\}}_{(n-1) \text{ values}} \left\{ \begin{array}{l} \ell=2 \\ \text{for } i=1 \text{ to } n-1 \text{ do} \\ m[i,i+1]=\infty \\ \text{for } k=i \text{ to } i \text{ do} \\ \vdots \\ \\ \ell=3 \\ \text{for } i=1 \text{ to } n-2 \text{ do} \\ m[i,i+2]=\infty \\ (n-2) \text{ values} \end{array} \right. \\ \left\{ \begin{array}{l} \ell=3 \\ \text{for } i=1 \text{ to } n-2 \text{ do} \\ m[i,i+2]=\infty \\ \text{for } k=i \text{ to } i+1 \text{ do} \\ \vdots \\ \ell=4 \\ \text{for } i=1 \text{ to } n-3 \text{ do} \\ m[i,i+3]=\infty \\ \vdots \\ \ell=4 \\ \text{for } i=1 \text{ to } n-3 \text{ do} \\ m[i,i+3]=\infty \\ m[i,i+3]=\infty \\ \text{for } k=i \text{ to } i+2 \text{ do} \\ \end{array} \right. \\ \left\{ \begin{array}{l} \ell=2 \\ \text{for } i=1 \text{ to } n-1 \text{ do} \\ m[i,i+3]=\infty \\ \text{for } i=1 \text{ to } n-2 \text{ do} \\ \text{for } i=1 \text{ to } n-2 \text{ do} \\ \text{for } i=1 \text{ to } n-3 \text{ do} \\ \text{for } i=1 \text{ to }$$

Table access pattern in computing m[i,j]s for

$$\ell = j - i + 1$$

$$ext{for } k \leftarrow i ext{ to } j-1 ext{ do} \ q \leftarrow m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

Table access pattern in computing m[i,j]s for

$$\ell = j - i + 1$$

mult.

 $((A_i) \ \vdots \ (A_{i+1}A_{i+2}\ldots A_j))$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

mult.

 $((A_iA_{i+1}) \ \vdots \ (A_{i+2}\ldots A_j))$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

$$egin{array}{c} egin{array}{c} A_i A_{i+1} A_{i+2} \end{pmatrix} & dots & (A_{i+3} \ldots A_j) \end{pmatrix}$$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

$$((A_iA_{i+1}\dots A_{j-1})\ dots\ (A_j))$$

- Compute m_{25}
- Choose the k value that leads to min cost

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$egin{aligned} A_4: (5 imes 10) & cost = m_{22} + m_{35} + p_1 p_2 p_5 \ A_5: (10 imes 20) & = 0 + 2500 + 35 imes 15 imes 20 \end{aligned}$$

4_6	•	(20)	×	25)	= 13000
-------	---	------	---	-----	---------

- Compute m_{25}
- Choose the k value that leads to min cost

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$egin{aligned} A_1: (30 imes 35) & (k=3) \ A_2: (35 imes 15) & ((A_2A_3) & \vdots & (A_4A_5)) \ A_3: (15 imes 5) & cost = m_{23} + m_{45} + p_1p_3p_5 \ A_5: (10 imes 20) & = 2625 + 1000 + 35 imes 5 imes 20 \ A_6: (20 imes 25) & = 7125 \end{aligned}$$

- Compute m_{25}
- Choose the k value that leads to min cost

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$egin{aligned} A_1: (30 imes 35) & (k=4) \ A_2: (35 imes 15) & ((A_2A_3A_4) & \vdots & (A_5)) \ A_3: (15 imes 5) & (ost = m_{24} + m_{55} + p_1p_4p_5 \ A_5: (10 imes 20) & = 4375 + 0 + 35 imes 10 imes 20 \ A_6: (20 imes 25) & = 11375 \end{aligned}$$

- Compute m_{25}
- ullet Choose the k value that leads to min cost

$$m_{ij} = \underset{i \leq k < j}{MIN} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$((A_2) \stackrel{(k=2)}{\vdots} (A_3A_4A_5)) \rightarrow m_{22} + m_{35} + p_1p_2p_5 = 13000$$
 $A_1 : (30 \times 35)$
 $A_2 : (35 \times 15)$
 $A_3 : (15 \times 5)$
 $A_4 : (5 \times 10)$
 $A_5 : (10 \times 20)$
 $A_5 : (10 \times 20)$
 $((A_2A_3A_4) \stackrel{(k=4)}{\vdots} (A_5)) \rightarrow m_{24} + m_{55} + p_1p_4p_5 = 11375$
 $A_6 : (20 \times 25)$
 $m_{25} = 7125$
 $s_{25} = 3$

Constructing an Optimal Solution

- MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds
 - needed to compute a matrix-chain product
 - o it does not directly show how to multiply the matrices
- That is,
 - it determines the cost of the optimal solution(s)
 - o it does not show how to obtain an optimal solution
- ullet Each entry s[i,j] records the value of k such that optimal parenthesization of $A_i \ldots A_j$ splits the product between $A_k \otimes A_{k+1}$
- ullet We know that the final matrix multiplication in computing $A_{1\dots n}$ optimally is $A_{1\dots s[1,n]} imes A_{s[1,n]+1,n}$

- Reminder: s_{ij} is the optimal top-level split of $A_i \ldots A_j$
- What is the optimal top-level split for:

$$\circ A_1 A_2 A_3 A_4 A_5 A_6$$

$$\circ \ s_{16} = 3$$

• Reminder: s_{ij} is the optimal top-level split of $A_i \ldots A_j$

$$(k=4)$$

- $(A_1A_2A_3)$: $(A_4A_5A_6)$
 - \circ What is the optimal split for $A_1 \dots A_3$? ($s_{13} = 1$)
 - \circ What is the optimal split for $A_4 \dots A_6$? ($s_{46} = 5$)

ullet Reminder: s_{ij} is the optimal top-level split of $A_i \dots A_j$

$$(k=1) \qquad (k=5)$$

- $((A_1) : (A_2A_3))((A_4A_5) : (A_6))$
 - \circ What is the optimal split for $A_1 \dots A_3$? ($s_{13} = 1$)
 - \circ What is the optimal split for $A_4 \dots A_6$? ($s_{46} = 5$)

- Reminder: s_{ij} is the optimal top-level split of $A_i \dots A_j$
- $((A_1)(A_2A_3))((A_4A_5)(A_6))$
 - \circ What is the optimal split for A_2A_3 ? ($s_{23}=2$)
 - \circ What is the optimal split for A_4A_5 ? ($s_{45}=4$)

ullet Reminder: s_{ij} is the optimal top-level split of $A_i \dots A_j$

- \circ What is the optimal split for A_2A_3 ? ($s_{23}=2$)
- \circ What is the optimal split for A_4A_5 ? ($s_{45}=4$)

Constructing an Optimal Solution

- Earlier optimal matrix multiplications can be computed recursively
- Given:
 - \circ the chain of matrices $A=\langle A_1,A_2,\ldots A_n
 angle$ the s table computed by MATRIX-CHAIN-ORDER
 - \circ The following recursive procedure computes the matrix-chain product $A_{i\ldots j}$

```
\operatorname{MATRIX-CHAIN-MULTIPLY}(A,s,i,j) if j>i then X \longleftarrow \operatorname{MATRIX-CHAIN-MULTIPLY}(A,s,i,s[i,j]) Y \longleftarrow \operatorname{MATRIX-CHAIN-MULTIPLY}(A,s,s[i,j]+1,j) return \operatorname{MATRIX-MULTIPLY}(X,Y) else \operatorname{return} A_i
```

• Invocation: MATRIX-CHAIN-MULTIPLY (A, s, 1, n)

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Table reference pattern for m[i,j]

$$(1 \le i \le j \le n)$$

- m[i,j] is referenced for the computation of
 - $m[i,r] ext{ for } j < 0$ $r \leq n \ (n-j)$ times
 - $egin{aligned} \circ & m[r,j] ext{ for } 1 \leq \ & r < i \ (i-1) \ & ext{times} \end{aligned}$

Table reference pattern for m[i,j] $(1 \leq i \leq j \leq n)$

• R(i,j) = # of times that m[i,j] is referenced in computing other entries

$$R(i,j) = (n-j) + (i-1)$$

= $(n-1) - (j-i)$

• The total # of references for the entire table is: $\sum_{i=1}^n \sum_{j=i}^n R(i,j) = \frac{n^3-n}{3}$

Summary

- Identification of the optimal substructure property
- Recursive formulation to compute the cost of the optimal solution
- Bottom-up computation of the table entries
- Constructing the optimal solution by backtracing the table entries

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)

$$-End-Of-Week-5-Course-Module-$$

