## Разработка параллельных программ с использованием Cilk Plus

Выполнила: Шахманова Мария, ПМ-21м

Напишите параллельную программу вычисления следующего интеграла с использованием дополнений *Intel Cilk Plus* языка C++:

$$\int_{-1}^{1} \frac{8}{2 + 2x^2} dx$$

Код программы необходимо загрузить на *GitHub*. По результатам работы должен быть написан отчет, отражающий методику разработки параллельных программ в среде *Intel Parall Studio XE* с включенными в него скриншотами экрана.

Отчет должен содержать следующие разделы:

- 1. Описание проблемы и краткая характеристика инструментов параллелизации, используемых для решения задачи
- 2. Описание и анализ программной реализации
- Анализ работы программы с использованием *Intel Parallel Inspector XE*;
- Оценка эффективности программной реализации;
- Проверка выполнения работы программы с использованием Intel VTune Amplifier XE;
- Сведения о зависимости времени выполнения от заданных параметров алгоритма.

1. Рассмотрим интеграл 
$$\int_{-1}^{1} \frac{8}{2 + 2x^2} dx$$

Используем для решения численное интегрирование. Идея численного интегрирования предельно проста и вытекает из геометрического смысла определенного интеграла — значение определенного интеграла численно равно площади криволинейной трапеции, ограниченной графиком функции у = f(x), осью абсцисс и прямыми x=a, x=b. Отрезок [a, b] разбивается на N частичных отрезков, на каждом из которых находится значение функции в точках разбиения и вычисляется площадь криволинейной трапеции. Сумма таких площадей приближённо равна значению интеграла.

## Далее будем использовать этот метод

Так как вычисления площадей криволинейных трапеций можно проводить не зависимо друг от друга, используем параллелизм в коде программы. Воспользуемся расширением языка C++ *Intel Cilk Plus*.

В качестве инструментов параллелизации используем следующие:

- Intel Parallel Inspector XE анализатор корректности с возможностью проверки работы с памятью и потоками. Проверка памяти включает в себя проверку утечки памяти, повисшие указатели, переменные без инициализации, использование некорректных ссылок на участки памяти, и др. Проверки потоков включают в себя, например, проверки состояний гонки, взаимных блокировок, и др. Таким образом, выявляются основные ошибки, которые могут возникать при разработке параллельного кода.
- *Intel VTune Amplifier* анализатор производительности, инструмент для сбора и анализа данных о производительности кода (профилировки) последовательных и параллельных приложений (программ) с целью выявления наиболее часто используемых и уязвимых участков кода. Также для параллельных кодов показывает загрузку одновременно работающих процессоров (CPUs).

2. Точное значение интеграла: 2π=6.2832

Воспользуемся формулой трапеций (площадь = полусумма оснований \* высоту):

Запустим программу и убедимся в корректности вычисления:



Проанализируем производительность и наиболее повторяющиеся участки кода с помощью Intel VTune Amplifier:



Реализуем метод трапеций параллельно с помощью cilk for:

Запустим программу:



Получили ускорение процесса в 1.86 раз.

Проверим параллельную реализацию с помощью Intel Parallel Inspector XE:



Ошибок не обнаружено.

Далее: меняя величину шага разбиения, посмотрим на скорость выполнения:

Как видим, для меньшего числа отрезков разбиения параллельный метод работает лучше.