시각 지능 실무 과정 Day 3

복습 & 오늘 내용

시각지능 실무과정

전체 스케줃

Day 1 •	Computer Vision과 딥러닝 Image Processing TensorFlow 2.x Basic CNN Review
Day 2 •	Basic CNN Architectures Advanced CNN Architectures Detection CNN Architectures 문제 해결을 위한 전략 세우기
Day 3 •	Transfer Learning 유용한 유틸리티 최종 미션 다양한 시각지능 task 소개
Day 4 •	DAP Vision 개요 서비스 구성 서비스 실습 및 활용 Wrap Up

DAY 3

Transfer Learning Transfer Learning 개요 Transfer Learning 적용 전략 유용한 유틸리티 JupyterLab 소개 TensorBoard 실습 **Final Mission** 모델 설계 및 학습 최신 시각지능 동향 다양한 CNN Task들 최신 시각지능 동향

학습된 Layer들은 어떤 의미를 가질까? 첫 번째 Layer

AlexNet: 64 x 3 x 11 x 11

ResNet-18: 64 x 3 x 7 x 7

ResNet-101: 64 x 3 x 7 x 7

DenseNet-121: 64 x 3 x 7 x 7

학습된 Layer들은 어떤 의미를 가질까? 마지막 Layer

학습된 Layer들은 어떤 의미를 가질까? 마지막 Layer

> 주성분 분석을 통해 FC7 layer의 차 원을 4096에서 2차원으로 줄인 뒤 시각화.

t-SNE 기법

학습된 Layer들은 어떤 의미를 가질까? Maximally Activating Patches

> 네트워크 중간의 특정 채널을 골라 서 해당 채널을 최대로 활성화시키 는 이미지 패치들은 일관성 있는 모 습들을 보인다.

Transfer Learning이란 무엇일까?

어떤 Task에서 훈련된 모델은 관련된 두 번째 Task에서 다시 사용하는 기술.

- Transfer learning and domain adaptation refer to the situation where what has been learned in one setting ... is exploited to improve generalization in another setting
- Page 526, Deep Learning, 2016.
 - Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned.
 - Chapter 11: Transfer Learning, Handbook of Research on Machine Learning Applications, 2009.

Transfer Learning 개요

이전 모델에서 보존된 레이어의 가중치를 동결하고 다른 레이어를 학습한다.

Transfer Learning 개요

Step 1 : 소스 모델은 선택하라.

- 이미 학습된 수많은 모델들이 있은 뿐 아니라, 직접 학습시켜도 된다.

Step 2 : 모델은 재사용하라.

- 이미 학습된 모델은 학습의 시작점으로 삼아라. 해당 모델의 전체 또는 일부를 사용할 수 있다.

Step 3 : 모델은 튜닝하라.

- 당신의 모델은 필요한 분야에 맞게 최적화하라.

Transfer Learning은 사용한다면?

Three ways in which transfer might improve learning.

Taken from "Transfer Learning".

Transfer Learning은 적용하기 위한 전략

전략 1: 전체 모델은 학습시킨다.

기 학습된 모델의 구조를 사용하고 해당 모델의 가중치를 초기화처럼 사용한다. 처음부터 학습하기 때문에, 큰 데이터셋과 높은 컴퓨딩 파워가 필요하다.

Transfer Learning은 적용하기 위한 전략

전략 2: 일부 레이어를 학습시키고 나머지는 동결시킨다.

네트워크의 가중치를 얼마나 조절할 것인지 선택하라. 이는 도메인의 차이와 데이터 사이즈에 달려 있다.

Transfer Learning은 적용하기 위한 전략

전략 3: CNN 레이어들은 동결시켜라

CNN 레이어들은 득징 추춛기로서 동겯시키고, 분류른 위한 layer만 학습시킨다.

Transfer Learning은 적용하기 위한 전략 선택

네 가지 서로 다든 학습 시나리오

Transfer Learning은 적용하기 위한 전략 선택

전략 선택 1 : 데이터셋 ↑ & 유사도 ↓

Q1. 많은 데이터셋을 가지고 있고, 모델은 처음부터 학습시킬 수 있고 무엇이든 할 수 있는 상황이다.

데이터셋이 유사하지 않아도 사전 훈련된 모델의 아키텍처와 가중치를 사용하여 모델 전체를 훈련시키는 것이 유용하다.

Train the entire model

전략 선택 2 : 데이터셋 ↑ & 유사도 ↑

Q2. 많은 데이터셋을 가지고 있기에 오버피딩은 이슈가 아니며 어떠한 방식으로 얼마든지 훈련시켜도 상관없다. 다만, 데이터셋이 유사하므로 이전의 지식은 환용하여 거대한 학습에포트를 아낄 수 있다.

그러므로 classifer와 CNN의 top layer들만 훈련시켜도 충분하다.

Train some layers and leave others frozen

전략 선택 3 : 데이터셋 ↓ & 유사도 ↓

Q2. 모든 상황이 좋지 않다. 학습시키고 동결시킬 레이어의 비윧은 정하기가 매우 어려운 상황이다. 더 많은 레이어를 훈련시킨다면 과적합될 수 있고, 더 적은 레이어를 훈련시킨다면 제대로 학습이 이루어지지 않은 것이다. Data Augmentation은 고려해본 필요가 있다.

Train some layers and leave others frozen

전략 선택 4 : 데이터셋 ↓ & 유사도 ↑

Q4. 사전 학습된 모델의 마지막 FC레이어들은 제외하고 남은 layer들은 고정된 득징 추춛기로만 사용하여, 새로운 분류기를 학습시키는데 사용할 수 있다.

Freeze the convolutional base

생각해볻 부분들

지금까지 설명한 내용은 단지 개요일뿐.

- 다양한 상황에 달려있다.
- 컴퓨딩 리소스, 목표하는 정확도, 데이터의 크기, 도메인 간 유사도 등

더 나은 전댝이 있을 수 있다.

- 한 가지 예른 들자면 layer마다 서로 다든 학습 속도로 학습시킬 수 있다.

다른 task에서도 transfer learning은 환용할 수 있다.

- 득징 추출기로 사전 훈련된 CNN은 사용하여 다양한 작업이 가능하다.
- Object Detection, Segmentation, Pose Estimation etc..

Transfer Learning 요약

1. Train on ImageNet

2. Small Dataset(with C Classes)

3. Bigger Dataset

Quiz

	매우 비슷한 데이터셋	매우 다른 데이터셋
매우 적은 데이터		
상당히 많은 데이터		

Answer

	매우 비슷한 데이터셋	매우 다른 데이터셋
매우 적은 데이터	Top Layer의 Linear Classifier 시도	제일 어려운 상황. Data Augmentation 등 다양한 방법은 강구
상당히 많은 데이터	적은 layer들은 finetune	전체 또는 많은 layer들은 finetune

JupyterLab 소개

https://jupyter.org/index.html

https://tec.lgcns.com/tec/display/PYTDEV/Jupyter+Lab

TensorBoard 사용법

https://www.tensorflow.org/tensorboard/get_started

TensorBoard 사용법

https://www.tensorflow.org/tensorboard/get_started

TensorBoard 사용법

https://www.tensorflow.org/tensorboard/get_started

Final Mission

Deep Learning으로 HOT한 시각지능 Task는 무엇이 있을까?

Similarity Learning

Video

Video

GAN

GAN

Day 3 Summary

Review

1. Transfer Learning	Transfer Learning 전략은 세우기 위해 고민해야 할 두 가지! 학습 데이터의 양 / 도메인 연관성
2. Useful Utilities	JupyterLab TensorBoard
3. Final Mission	배운 내용들은 도대로 진행해보는 최종 미션
4. 시각지능 동향	Video / GAN 경댱 모델딩 / 모델 경댱화 AutoMLs