Loan Prediction

Binary Classification using Logistic Regression

Loan Prediction

Importing Libraries

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

Importing & Loading the dataset

df = pd.read_csv('train.csv') In [3]: df.head() Out[3]: Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_ **0** LP001002 5849 0.0 NaN Male No Graduate No **1** LP001003 1508.0 128.0 Male Graduate No 4583 Yes **2** LP001005 Male 0 Graduate Yes 3000 0.0 66.0 Not **3** LP001006 2583 2358.0 120.0 Male Yes No Graduate 141.0 4 LP001008 Male 0 Graduate No 6000 0.0 No

Dataset Info:-

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
# Column
                         Non-Null Count Dtype
                       614 non-null
601 non-null
0
    Loan_ID
                                            object
1 Gender
                                            obiect
    Married 611 non-null
Dependents 599 non-null
Education 614 non-null
 2 Married
                                            object
3
                                            object
4 Education
                                            object
5 Self_Employed 582 non-null
6 ApplicantIncome 614 non-null
                                            object
                                             int64
                                            float64
    CoapplicantIncome 614 non-null
 8
    LoanAmount
                          592 non-null
                                            float64
    Loan_Amount_Term 600 non-null
 9
                                            float64
10 Credit_History 564 non-null
11 Property_Area 614 non-null
12 Loan_Status 614 non-null
                                            float64
                                            object
                                            object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

Database shape:-

```
In [5]: df.shape
Out[5]: (614, 13)
```

Data Cleaning

Checking the Missing Values

```
In [6]: df.isnull().sum()
       Loan ID
Out[6]:
        Gender
                            13
        Married
                             3
        Dependents
                            15
        Education
        Self_Employed
                            32
        ApplicantIncome
        CoapplicantIncome
        LoanAmount
                            22
        Loan_Amount_Term
                            14
        Credit_History
                            50
        Property_Area
                             0
        Loan_Status
                              0
        dtype: int64
```

We will fill the Missing Values in "LoanAmount" & "Credit_History" by the 'Mean' & 'Median' of the respective variables.

```
In [7]: df['LoanAmount'] = df['LoanAmount'].fillna(df['LoanAmount'].mean())
In [8]: df['Credit_History'] = df['Credit_History'].fillna(df['Credit_History'].median())
```

Let's confirm if there are any missing values in 'LoanAmount' & 'Credit_History'

```
In [9]: df.isna().sum()
       Loan ID
                              0
Out[9]:
        Gender
                             13
        Married
                              3
        Dependents
                             15
        Education
        Self_Employed
        ApplicantIncome
        CoapplicantIncome
        LoanAmount
                              a
        Loan_Amount_Term
                             14
        Credit_History
        Property Area
                              0
        Loan_Status
        dtype: int64
```

Let's drop all the missing values remaining.

```
In [10]: df.dropna(inplace=True)
```

Check missing values final time!

```
In [11]: df.isnull().sum()
                               0
         Loan ID
Out[11]:
                               0
          Gender
          Married
                               0
          Dependents
                               0
          Education
          Self_Employed
                               0
          ApplicantIncome
          CoapplicantIncome
                               0
          LoanAmount
                               0
          Loan_Amount_Term
                               0
          Credit_History
                               0
          Property_Area
          Loan Status
          dtype: int64
```

Here, we have dropped all the missing values to avoid disturbance in the model. The Loan Prediction requires all the details to work efficiently thus the missing value are dropped.

Let's check the final Dataset Shape

```
In [12]: df.shape
Out[12]: (542, 13)
```

Exploratory Data Analyis

Comparison between Parameters in getting the Loan:

```
plt.figure(figsize = (100, 50))
           sns.set(font_scale = 5)
           plt.subplot(331)
           sns.countplot(x ='Gender',hue=df['Loan_Status'], data=df)
           plt.subplot(332)
           sns.countplot(x ='Married', hue=df['Loan_Status'], data=df)
           plt.subplot(333)
           sns.countplot(x = 'Education', hue=df['Loan_Status'], data=df)
           plt.subplot(334)
           sns.countplot(x ='Self_Employed',hue=df['Loan_Status'], data=df)
           plt.subplot(335)
           sns.countplot(x ='Property_Area',hue=df['Loan_Status'], data=df)
Out[45]: <Axes: xlabel='Property_Area', ylabel='count'>
           300 Loan Status
                                                         250 Loan Status
                                                                                                          Loan Status
           250
                                                                                                       250
                                                         200
                                                                                                       200
           200
                                                        tunos
150
          5
150
                                                                                                      150
                                                         100
           100
                                                                                                       100
                                                          50
            50
                              Gende
                                                                            Married
                                                                                                                         Education
                                                         150 Loan_Status
           300
                                                         125
           250
           200
                                                         100
          150
150
                                                         75
           100
                                                          50
            50
                                                          25
                            Self_Employed
```

Let's replace the Variable values of Numeical form & display the Value Counts

```
df['Loan_Status'].replace('Y', 1, inplace=True)
df['Loan_Status'].replace('N', 0, inplace=True)
In [27]:
In [28]: df['Loan_Status'].value_counts()
               376
Out[28]:
          0
               166
          Name: Loan_Status, dtype: int64
          df.Married=df.Married.map({'Yes':1,'No':0})
In [17]:
          df['Married'].value_counts()
               355
Out[17]:
          0
               187
          Name: Married, dtype: int64
In [16]: df.Gender=df.Gender.map({'Male':1,'Female':0})
          df['Gender'].value_counts()
               444
          1
Out[16]:
               98
          Name: Gender, dtype: int64
          df.Dependents=df.Dependents.map({'0':0,'1':1,'2':2,'3+':3})
In [18]:
          df['Dependents'].value_counts()
               309
         0
Out[18]:
                94
          1
          2
                94
          3
                45
          Name: Dependents, dtype: int64
          df.Education=df.Education.map({'Graduate':1,'Not Graduate':0})
In [19]:
          df['Education'].value_counts()
               425
         1
Out[19]:
               117
          Name: Education, dtype: int64
          df.Self_Employed=df.Self_Employed.map({'Yes':1,'No':0})
In [20]:
          df['Self_Employed'].value_counts()
               467
          0
Out[20]:
          1
              75
          Name: Self_Employed, dtype: int64
          df.Property_Area=df.Property_Area.map({'Urban':2, 'Rural':0, 'Semiurban':1})
In [21]:
          df['Property_Area'].value_counts()
               209
Out[21]:
               174
              159
          Name: Property_Area, dtype: int64
In [23]: df['LoanAmount'].value_counts()
Out[23]: 146.412162
                        19
          120.000000
          100.000000
                        14
          110.000000
                        13
          187.000000
                        12
          280.000000
                         1
          240.000000
                         1
          214.000000
                         1
          59.000000
          253.000000
                         1
          Name: LoanAmount, Length: 195, dtype: int64
In [24]: df['Loan_Amount_Term'].value_counts()
          360.0
                   464
Out[24]:
          180.0
                    38
          480.0
                    13
          300.0
                    12
          84.0
                     4
          120.0
                     3
          240.0
                     3
          60.0
                     2
          36.0
                     2
         Name: Loan_Amount_Term, dtype: int64
In [25]: df['Credit_History'].value_counts()
```

```
Out[25]: 1.0 468
0.0 74
```

Name: Credit_History, dtype: int64

In []:

From the above figure, we can see that **Credit_History** (Independent Variable) has the maximum correlation with **Loan_Status** (Dependent Variable). Which denotes that the Loan_Status is heavily dependent on the Credit_History.

In [34]:	df.	head()									
Out[34]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_
	0	LP001002	1	0	0	1	0	5849	0.0	146.412162	
	1	LP001003	1	1	1	1	0	4583	1508.0	128.000000	
	2	LP001005	1	1	0	1	1	3000	0.0	66.000000	
	3	LP001006	1	1	0	0	0	2583	2358.0	120.000000	
	4	LP001008	1	0	0	1	0	6000	0.0	141.000000	
											+
In [35]:	df										
Out[35]:		Loan_ID	Gende	Married	l Dependent	s Education	n Self_Employe	d ApplicantIncom	e CoapplicantIncome	LoanAmoun	t Loan_Amoui
	0	LP001002	2 1	() ()	1	0 584	9.0	146.412162	2

	Loan_ID	Gender	Married	Dependents	Education	Seit_Employed	Applicantincome	CoapplicantIncome	LoanAmount	Loan_Amou
0	LP001002	1	0	0	1	0	5849	0.0	146.412162	
1	LP001003	1	1	1	1	0	4583	1508.0	128.000000	
2	LP001005	1	1	0	1	1	3000	0.0	66.000000	
3	LP001006	1	1	0	0	0	2583	2358.0	120.000000	
4	LP001008	1	0	0	1	0	6000	0.0	141.000000	
609	LP002978	0	0	0	1	0	2900	0.0	71.000000	
610	LP002979	1	1	3	1	0	4106	0.0	40.000000	
611	LP002983	1	1	1	1	0	8072	240.0	253.000000	
612	LP002984	1	1	2	1	0	7583	0.0	187.000000	
613	LP002990	0	0	0	1	1	4583	0.0	133.000000	

542 rows × 13 columns

Importing Packages for Classification algorithms

```
In [32]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn import metrics
```

splitting the data into Train and Test set

```
In [38]: X = df.iloc[1:542,1:12].values
         y = df.iloc[1:542,12].values
In [37]: df.iloc[1:542,1:12].values
                        1.,
                                                      0.],
         array([[ 1.,
                              1., ..., 360.,
Out[37]:
                               0., ..., 360.,
                                                      2.],
                   1.,
                        1.,
                                               1.,
                [ 1.,
                       1., 0., ..., 360.,
                                               1.,
                                                      2.],
                [ 1.,
                                                     2.],
                        1., 1., ..., 360.,
                [ 1., 1., 2., ..., 360., [ 0., 0., ..., 360.,
                                              1.,
                                                     2.],
                                               0.,
In [40]: df.iloc[1:542,12].values
```

```
Out[40]: array([0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,
                1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0,
                0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
                                                1, 1,
                                                      1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
                1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
                1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1,
                0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
                                                            0, 1, 1, 1,
                0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1,
                0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,
                0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,
                0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
                1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0,
                1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
                1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
                1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0], dtype=int64)
In [41]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=0)
```

Logistic Regression (LR)

Logistic regression is a supervised learning classification algorithm used to predict the probability of a target variable.

Mathematically, a logistic regression model predicts P(Y=1) as a function of X. It is one of the simplest ML algorithms that can be used for various classification problems such as spam detection, Diabetes prediction, cancer detection etc.

Sigmoid Function


```
model = LogisticRegression()
In [43]:
                              model.fit(X_train,y_train)
                              lr prediction = model.predict(X test)
                              print('Logistic Regression accuracy = ', metrics.accuracy_score(lr_prediction, y_test))
                              Logistic Regression accuracy = 0.7852760736196319
In [44]:
                              print('y_predicted', lr_prediction)
                               print('y_test',y_test)
                              10101111111110
                              y_test [0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0
                                  1\; 1\; 1\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1\; 1\; 1\; 0\; 1\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 0
                                 100001010111110
```

CONCLUSION:

- 1. The Loan Status is heavily dependent on the Credit History for Predictions.
- 2. The Logistic Regression algorithm gives us the maximum Accuracy (79% approx) compared to the other 3 Machine Learning Classification Algorithms.

 $\textbf{Complete Project on Github}: \\ \textbf{https://github.com/Vyas-Rishabh/Python_Loan_Prediction_using_Logistic_Regression} \\$