Département de Mathématiques et Sciences Physiques

UE PHY224: TRAVAUX DIRIGES DE THERMODYNAMIQUE - Fiche n°1

Exercice 1: Différentiation des coordonnées thermodynamiques d'un gaz parfait

L'équation d'état d'un gaz parfait peut être mis sous la forme : f(P,V,T) = PV-nRT = 0.

1°) – Calculer les dérivées partielles suivantes :

a) -
$$\left(\frac{\partial P}{\partial T}\right)_{t}$$

b) -
$$\left(\frac{\partial T}{\partial P}\right)$$

c) -
$$\left(\frac{\partial P}{\partial V}\right)$$

d) -
$$\left(\frac{\partial V}{\partial P}\right)$$

e)
$$\left(\frac{\partial V}{\partial T}\right)$$

f) -
$$\left(\frac{\partial T}{\partial V}\right)$$

a) $-\left(\frac{\partial P}{\partial T}\right)_{V}$ b) $-\left(\frac{\partial T}{\partial P}\right)_{V}$ c) $-\left(\frac{\partial P}{\partial V}\right)_{T}$ d) $-\left(\frac{\partial V}{\partial P}\right)_{T}$ e) $\left(\frac{\partial V}{\partial T}\right)_{P}$ f) $-\left(\frac{\partial T}{\partial V}\right)_{P}$ 2°) – Comparer les expressions du type $\left(\frac{\partial X}{\partial Y}\right)_Z$ avec celles $\cdot \frac{1}{\left(\frac{\partial Y}{\partial X}\right)}$. Calculer le produit : $\left(\frac{\partial P}{\partial T}\right)_V \times \left(\frac{\partial T}{\partial V}\right)_P \times \left(\frac{\partial V}{\partial P}\right)_T$

4°) – Comparer:

a)
$$-\left(\frac{\partial P}{\partial T}\right)_{V}$$
 et $\left(\frac{\partial P}{\partial V}\right)_{T} \times \left(\frac{\partial V}{\partial T}\right)_{P}$ b) $-\left(\frac{\partial V}{\partial T}\right)_{P}$ et $\left(\frac{\partial V}{\partial P}\right)_{T} \times \left(\frac{\partial P}{\partial T}\right)_{V}$ c) $-\left(\frac{\partial T}{\partial P}\right)_{V}$ et $\left(\frac{\partial T}{\partial V}\right)_{P} \times \left(\frac{\partial V}{\partial P}\right)_{T}$

b) -
$$\left(\frac{\partial V}{\partial T}\right)_P$$
 et $\left(\frac{\partial V}{\partial P}\right)_T \times \left(\frac{\partial P}{\partial T}\right)_V$

c) -
$$\left(\frac{\partial T}{\partial P}\right)_V$$
 et $\left(\frac{\partial T}{\partial V}\right)_P \times \left(\frac{\partial V}{\partial P}\right)_T$

Exercice 2: Généralisation des différentiations

Considérant un système dont les variables d'état x, y et z sont liées par une équation (l'équation d'état) de la forme f(x,y,z) = 0.

1°) – Ecrire la différentielle de chacune des variables en fonction de celles des deux autres

 2°) – Par substitution, déterminer α et β tels que α .dx + β .dz = 0. En déduire les égalités :

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z} \quad \text{et} \quad \left(\frac{\partial x}{\partial y}\right)_z = -\left(\frac{\partial x}{\partial z}\right)_y \times \left(\frac{\partial z}{\partial y}\right)_x$$

3°) – Montrer enfin que :
$$\left(\frac{\partial x}{\partial y}\right)_x \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

Exercice 3: Gaz de Diétérici et coefficients thermo élastiques

Un gaz a pour équation d'état: $P(V-b) = RT \exp \frac{-a}{RTV}$ (pour une mole), où a et b sont des constantes, P, V et T étant les coordonnées thermodynamiques du gaz.

 1°) - Déterminer les coefficients thermo élastiques α et β de ce gaz.

2°) - Dans le domaine des faibles pressions, on peut utiliser pour ce gaz une équation d'état du type: $PV = RT(1 + \frac{A}{V})$ où A est une constante donnée.

Que deviennent alors α et β dont on rappelle ici la définition : $\alpha = \frac{1}{V} \frac{\partial V}{\partial T}$ $\beta = \frac{1}{R} \frac{\partial P}{\partial T}$

Exercice 4: Coefficients thermo élastiques et gaz de Van der Waals

 $1^{\circ})$ - Montrer que pour toute substance matérielle, les coefficients β et χ vérifient les égalités suivantes :

$$\left(\frac{\partial \alpha}{\partial P}\right)_{T} = -\frac{\partial \chi}{\partial T}\right)_{P} \frac{\alpha}{\chi} = \frac{\partial P}{\partial T}\right)_{V}$$

2°) - Calculer les coefficients thermo élastiquesα, β et, χ pour un gaz obéissant à la loi de Van Der Waals,

savoir pour une mole:
$$(P + \frac{a}{V^2})(V - b) = RT$$
 Rappel:

$$\chi = -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_{T}$$

A.N: O_2 (a = 0,14 S.I. et b = 3,22.10⁻⁵ S.I) occupant V=1 litre à T=27°C

Exercice 5 : Equation d'état. Coefficients thermo élastiques

L'étude expérimentale d'un gaz réel a permis de déterminer ses coefficients thermo élastiques :

$$\alpha = \frac{R}{PV} + \frac{a}{VT^2}$$
 et $\chi = \frac{RT}{VP^2}$ où a = constante

Etablir l'équation d'état du gaz

Exercice 6: Equation d'état. Coefficients thermo élastiques

L'étude expérimentale d'une substance a permis de déterminer son coefficient de dilatation à pression constante α et son coefficient de compressibilité isotherme χ :

$$\alpha = \frac{3aT^3}{V}$$
 et $\chi = \frac{b}{V}$ où a et b sont des constantes

Trouver l'équation d'état f(P,V,T)=0 de cette substance

Exercice 7: Equation d'état d'un fil élastique

Considérons un fil élastique de longueur au repos L_0 à la température T_0 ; Lorsqu'on exerce sur ce fil une traction F, la longueur L et la température T varient.

1° Justifier l'écriture :

$$dL = \frac{\partial L}{\partial T} \bigg|_{F} dT + \frac{\partial L}{\partial F} \bigg|_{T} dF$$

2° On définit le coefficient de dilatation linéaire à force constante $\lambda = \frac{1}{L} \frac{\partial L}{\partial T} \Big|_F$ et le module de Young

$$E = \frac{L}{S} \frac{\partial F}{\partial L} \Big|_T$$
 où S est la section du fil. Calculer $\frac{\partial F}{\partial T} \Big|_L$ et dF

3° Pour la substance parfaitement élastique constituant le fil, l'équation d'état s'écrit : $F = AT \left(\frac{L}{L_0} - \frac{L_0^2}{L^2} \right)$

Où A est une constante. Calculer, E, $E_0=E$ (F=0), λ , $\lambda_0=\lambda$ (F=0)

Exercice 8:

Soi la forme différentielle suivante exprimée en fonction des deux variables x et y.

$$\delta z = (4xy + 3y^5 - x)dx + (x^2 + 2xy)dy$$

Montrer que δz n'est pas une différentielle totale.

Exercice 9:

1° Montrer que la forme différentielle suivante est une différentielle totale exacte :

$$\delta z = 2xydx + (x^2 + cosy)dy$$

 2° Quelle est la fonction z(x, y) correspondante?