(1) Veröffentlichungsnummer:

0 125 483

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84103942.3

(22) Anmeldetag: 09.04.84

(5) Int. Cl.³: C 08 L 77/00 C 08 L 9/00, C 08 J 3/20

(30) Priorität: 16.04.83 DE 3313919

(43) Veröffentlichungstag der Anmeldung: 21.11.84 Patentblatt 84/47

- (84) Benannte Vertragsstaaten: CH DE FR GB IT LI NL
- (71) Anmelder: BASF Aktiengesellschaft Cari-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)
- (72) Erfinder: Mc Kee, Graham Edmund, Dr. Kastanienweg 8 D-6940 Weinheim(DE)

(72) Erfinder: Ohlig, Hilmar Friedenstrasse 111 D-6750 Kaiserslautern(DE)

- (72) Erfinder: Reimann, Horst, Dr. Adelheidstrasse 26 D-6520 Worms 1(DE)
- (72) Erfinder: Schlemmer, Lothar Duisbergstrasse 1 a D-6701 Maxdorf(DE)
- (72) Erfinder: Theysohn, Rainer, Dr. Am Bruch 38 D-6710 Frankenthal(DE)
- 72) Erfinder: Dorst, Hans Georg, Dr. **Berliner Strasse 23** D-6705 Deidesheim(DE)
- (72) Erfinder: Zahradnik, Franz, Dr. Schwedlerstrasse 120 D-6700 Ludwigshafen(DE)

[64] Schlagzähe thermoplastische Formmassen und Verfahren zu ihrer Herstellung.

5) Neue schlagzähe thermoplastische Formmassen aus einem kristallinen, thermoplastischen Polyamid (60 bis 95 Teile) und einem durch Emulsions-polymerisation hergestellten kautschukelastischen Polymerisat ohne harte äußere Schale (5 bis 40 Teile), das in der Formmasse in einer Teilchen-größenverteilung dispergiert vorliegt, die der der Kautschukdispersion weitgehend entspricht, und die gegebenenfalls Glasfasern, verstärkende Füllstoffe und übliche Hilfsstoffe enthalten. Die Formmassen werden hergestellt durch inniges Vermischen einer Schmelze des Thermoplasts und einer wäßrigen Dispersion des Kautschuks unter gleichzeitigem Entfernen des dabei spontan verdampfenden Wassers.

BEST AVAILABLE COPY

Schlagzähe thermoplastische Formmassen und Verfahren zu ihrer Herstellung

Es ist bekannt, die Schlagzähigkeit von thermoplastischen Polyamiden dadurch zu verbessern, daß man kautschukelastische Polymerisate zumischt. 05 Letztere sollen in möglichst feiner Verteilung im Polykondensat vorliegen.

Das Dispergieren eines Kautschuks in einem Polykondensat erfordert sehr hohe Scherkräfte und führt nur dann zu einem befriedigenden Produkt, wenn 10 Polykondensat und Kautschuk in Form von Pulver eingesetzt werden können.

Kautschuk läßt sich jedoch bekanntlich nicht zu einem feinteiligen Pulver verarbeiten, da die Kautschukteilchen leicht zusammenfließen.

Es ist bekannt, kautschukelastische Polymerisate durch Emulsionspolymerisation herzustellen und in Dispersion die einzelnen Teilchen mit einer harten Pfropfhülle zu versehen. Man erhält dabei nach dem Ausfällen und Trocknen oder durch Sprühtrocknen letztlich ein pulverförmiges Polymerisat, das als Schlagzähigmodifier für Polyamide geeignet ist. Dieses Polymerisat enthält jedoch durch die harte Pfropfhülle Anteile, die als Schlagzähmodifier unwirksam sind und die mechanischen Eigenschaften ungünstig beeinflussen.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue schlagzähe 25 thermoplastische Formmassen auf Basis von thermoplastischen Polyamiden und einem kautschukelastischen Polymerisat zu entwickeln, bei denen die Nachteile, die durch die harte Pfropfhülle der Polymerisatteilchen verursacht werden, vermieden werden und gleichzeitig die Polymerisatteilchen in einer engen Größenverteilung vorliegen.

30

Überraschenderweise wurde nun gefunden, daß man durch Emulsionspolymerisation hergestellte kautschukelastische Polymerisate ohne harte Pfropfhülle unter weitgehendem Erhalt der Teilchengröße der Dispersion in Polykondensate einarbeiten kann, wenn man, beispielsweise in einem Extruder oder einer anderen üblichen Mischvorrichtung, eine Schmelze des Polykondensats mit einer wäßrigen Dispersion des kautschukelastischen Polymerisats innig vermischt und gleichzeitig das dabei verdampfende Wasser entfernt. Überraschenderweise fließen bei diesem Verfahren die Kautschukteilchen nicht zu großen Aggregaten zusammen, wie dies bei Vermischen unter der Schmelztemperatur des Polykondensats der Fall ist. Die Schlagzähigkeit der neuen thermoplastischen Formmassen liegt überraschenderweise wesentlich höher als die vergleichbarer Produkte des Standes der Technik. Wbg/Kl

10

20

Überraschenderweise bleibt die Teilchengrößenverteilung der Dispersion weitgehend erhalten, so daß das Polymerisat mit enger Teilchengrößenverteilung in der Komponente (A) dispergiert vorliegt.

- 05 Gegenstand der vorliegenden Erfindung sind somit schlagzähe thermoplastische Formmassen, enthaltend
 - (A) 60 bis 95 Gewichtsteile mindestens eines kristallinen, thermoplastischen Polyamids,
- (B) 5 bis 40 Gewichtsteile mindestens eines durch Emulsionspolymerisation hergestellten, in einer im wesentlichen durch die Emulsionspolymerisation vorgegebenen Teilchengrößenverteilung und einer Teilchengröße unter 2μ in der Komponente A dispergierten und darin weitgehend unlöslichen kautschukelastischen Polymerisats ohne harte äußere Schale, wobei die Summe von (A) und (B) 100 Gewichtsteile beträgt,
 - (C) gegebenenfalls bis zu 100 Gewichtsteile Glasfasern oder andere verstärkend wirkende Füllstoffe, und
 - (D) gegebenenfalls übliche Hilfsstoffe in wirksamen Mengen.

Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Herstellung dieser schlagzähen thermoplastischen Formmassen, das dadurch gekennzeichnet ist, daß man eine Schmelze der Komponente (A) mit einer wäßrigen Dispersion der Komponente (B) innig vermischt und gleichzeitig das dabei verdampfende Wasser entfernt.

Als Komponente (A) der neuen schlagzähen thermoplastischen Formmassen 30 werden kristalline thermoplastische Polyamide verwendet. Diese Komponenten sollen kristallin sein, d.h. mindestens 20 % kristalline Anteile enthalten. Sie sollen thermoplastisch sein. Ihr Schmelzbereich liegt im allgemeinen oberhalb von 60°C.

Die Polyamide gemäß der Erfindung sind an sich bekannt und umfassen die Harze mit Molekulargewichten von mindestens 5000, die gewöhnlich als Nylon bezeichnet werden. Solche Polyamide sind in den US-PSen 2 071 250, 2 071 251, 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben. Das Polyamidharz kann durch Kondensation äquimole-kularer Mengen einer gesättigten Dicarbonsäure mit 4 bis 12 Kohlenstoffatomen, mit einem Diamin, welches 4 bis 14 Kohlenstoffatome aufweist, hergestellt werden. Um einen Überschuß an endständigen Amingruppen über

MUSE WITTERSESCHWIFF

15

20 det.

U.Z. 0125483

die entständigen Carboxylgruppen in dem Polyamid zu erzielen, kann man das Diamin im Überschuß anwenden.

Beispiele für Polyamide sind Polyhexamethylenadipinsäureamid (Nylon 66),
Polyhexamethylenazelainsäureamid (Nylon 69), Polyhexamethylensebacinsäureamid (Nylon 610), Polyhexamethylendodecandisäureamid (Nylon 612), die durch Ringöffnung von Lactamen erhaltenen Polyamide, wie Polycaprolactam,
Polylaurinsäurelactam, ferner Poly-Il-aminoundecansäure und Bis-(p-amino-cyclohexyl)-methandodecandisäureamid. Es ist auch möglich, gemäß der

10 Erfindung Polyamide zu verwenden, die durch Copolymerisation zweier der oben genannten Polymeren oder durch Terpolymerisation der oben genannten Polymeren oder ihrer Komponenten hergestellt worden sind, z.B. das Copolymere aus Adipinsäure, Isophthalsäure und Hexamethylendiamin. Vorzugsweise sind die Polyamide linear und haben Schmelzpunkte von mehr als 200°C.

Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid und Polycaprolactam. Die Polyamide weisen im allgemeinen eine relative Viskosität von 2 bis 5 auf, bestimmt an einer 1% igen Lösung in H₂SO₄ bei 23°C. Polyamide mit einer relativen Viskosität von 2,5 bis 4,0 werden bevorzugt verwen-

Als Komponente B werden kautschukelastische Polymerisate verwendet, die durch Emulsionspolymerisation hergestellt werden und die keine harte äußere Schale aufweisen. Die Polymerisate sind weitgehend unlöslich in der Komponente (A). Geeignete Polymerisate besitzen eine Glas-Übergangstemperatur unterhalb von -20°C.

Sie sind zumindest teilweise vernetzt, d.h. sie besitzen mehr als 30 % bei 23°C unlösliche Anteile. Vorzugsweise werden Polymerisate verwendet, die zumindest an der Oberfläche der Teilchen Molekülgruppen aufweisen, die eine gewisse Haftung an den Molekülen der Komponente (A) bewirken.

Derartige kautschukartige Polymerisate sind an sich bekannt. Sie werden hergestellt durch Polymerisation einer Emulsion von geeigneten Monomeren, wie Butadien, Isopren, höheren Alkylester der Acrylsäure oder Methacrylsäure, gegebenenfalls unter Mitverwendung von bis zu 30 Gew. Zan Monomeren, die bei der Homopolymerisation harte Polymerisate liefern, wie Styrol, Acrylnitril, Methylacrylat, Methylmethacrylat, Vinylmethylether.

40 Diese Polymerisation wird in bekannter Weise unter Verwendung üblicher Emulgatoren und Katalysatoren durchgeführt.

Die Technik der Emulsionspolymerisation ist ausführlich beschrieben in Houben-Weyl, Methoden der organischen Chemie Band XII. 1 (1961), Seite 133 bis 406.

O5 Die Polymerisatdispersionen, wie sie gemäß der Erfindung eingesetzt werden enthalten üblicherweise etwa 30 bis 90 Gew. %, vorzugsweise 40 bis 65 Gew. % Wasser. Die Polymerisatteilchen besitzen eine enge Teilchengrößenverteilung; die Teilchengröße selbst liegt im allgemeinen zwischen 0,05 und 2μ, vorzugsweise zwischen 0,08 und 0,7μ. Es ist vorteilhaft, die Polymerisatteilchen selbst inhomogen aufzubauen, indem man beispielsweise Monomere, die eine Haftung mit der Komponente (A) bewirken, erst gegen Ende der Polymerisation zusetzt. Dadurch wird bewirkt, daß zumindest die Oberfläche der Polymerisatteilchen Molekülgruppen aufweist, die eine Haftung an den Molekülen der Komponente (A) bewirken.

15

Ublicherweise werden als kautschukelastische Polymerisate verwendet Polybutadien, Butadien-Styrol-Copolymere mit einem Styrolgehalt von weniger als 30 Gew. 7, Butadien-(Meth)acrylester-Copolymere sowie (Meth)acrylester-homopolymere, mit gegebenenfalls geringen Mengen an vernetzend wirkenden Monomeren. Besonders bevorzugt sind kautschukelastische Poly(meth)acrylate, wie Poly-n-butylacrylat, Polyhexylacrylat, Poly-2-ethylhexylacrylat, die gegebenenfalls geringe Menge, etwa 0,1 bis 6 Gew. 7 eines Monomeren mit Carbonsäuregruppen, Carbonsäure liefernden Gruppen oder Carbonsäureamid-Gruppen einpolymerisiert enthalten, wie (Meth)acrylsäure, t-Butylacrylat, Fumarsäure, Acrylamid oder Methacrylamid. Ein Anteil von 1 bis 10 Gewichtsprozent dieser Monomeren zumindest in der Oberflächenhülle der Polymerisatteilchen bewirkt eine verbesserte Haftung an der Polyamid-Matrix.

30 Als Vernetzer wirkende Monomere sind beispielsweise Divinylbenzol, Dialkylphthalat, Tricyclodecenylacrylat, Trialkylcyanurat und Triallylisocyanurat geeignet.

Als im Sinne der vorliegenden Erfindung vorteilhaft geeignete Polymerisat-35 dispersionen für die Komponente B können gelten:

Polymerisate, die aufgebaut sind aus Estern der (Meth)acrylsäure mit bis zu 15 C-Atomen, gegebenenfalls bis zu 5 Gew.Z radikalisch vernetzbaren Comonomeren mit 2 oder mehr Doppelbindungen pro Molekül, und bis zu 5 Gew.Z einer radikalisch copolymerisierbaren Säure oder eines Säureanhydrids. Der Ester ist vorzugsweise n-Butylacrylat oder Ethylhexylacrylat, die Säure ist vorzugsweise Acryl- oder Methacrylsäure.

Anstelle der freien Säure und des Anhydrids kann auch vorteilhaft t-Butylacrylat eingesetzt werden.

Anstelle der freien Säure kann auch ein Säureamid einer ungesättigten 05 Carbonsäure verwendet werden. Vorteilhaft ist Acrylamid.

Der Ester der (Meth)acrylsäure mit bis zu 15 C-Atomen kann teilweise durch Butadien oder Isopren ersetzt werden. Wenn mit t-Butylacrylat als haftungsfördernden Monomeren modifiziert wird, wird vorzugsweise nur ein 10 Teil des Esters durch Butadien oder Isopren ersetzt. Bei Verwendung von freien Säuren, Säureamiden oder Säureanhydriden als haftungsfördernden Comonomeren kann der Ester der (Meth)acrylsäure mit bis zu 15 C-Atomen auch ganz oder überwiegend durch Butadien oder Isopren ersetzt werden.

15 Die Polymerisatteilchen in der Dispersion sind zumindest teilweise vernetzt. So kann z.B. der Kern des Polymerisatteilchens stark vernetzt sein, während die äußere Schale, die vorzugsweise die haftungsfördernden Comonomeren einpolymerisiert enthält, gegebenenfalls auch unvernetzt sein kann.

20

Weiter ist es vorteilhaft, Polymerisatteilchen zu verwenden mit einem Kern aus einpolymerisierten Butadien- oder Isoprenpolymeren und einer nicht harten Schale aus einem (Meth)acrylatpolymeren. Der Vorteil eines solchen Systems ist, daß die Polyacrylatschale den Polybutadienkern vor oxidativem Abbau schützen kann.

Wenn nötig kann der Teilchenaufbau auch aus mehreren nicht harten Schalen bestehen. Kern und Schale der Polymerisatteilchen bzw. die verschiedenen Schalen können miteinander chemisch verbunden werden (Pfropfung) oder nur 30 durch Inter-Penetrating-Netzwerke miteinander gekoppelt sein.

Die Formmassen können als Komponente (C) gegebenenfalls bis zu 100 Gew. % im allgemeinen 25 bis 100 Gew. %, insbesondere 30 bis 80 Gew. % Glasfasern oder andere verstärkend wirkende Füllstoffe wie Asbest, Wollastonit, 35 Glimmer, Talkum, Kreide und Glaskugeln enthalten.

Die erfindungsgemäßen Mischungen können als weitere Komponente (D) alle Zusatz- und/oder Hilfsstoffe enthalten, wie sie für Polyamide üblich und gebräuchlich sind. Als solche Zusatz- und/oder Hilfsstoffe seien bei- spielsweise genannt: weitere verträgliche Kunststoffe, Farbstoffe oder Pigmente, Antistatika, Antioxidantien, Flammschutzmittel und Schmiermittel. Die Zusatz- und Hilfsstoffe werden in üblichen und wirksamen Mengen,

vorzugsweise in Mengen von 0,1 bis zu insgesamt etwa 30 Gew. %, bezogen auf die Summe der Komponente (A) und (B), eingesetzt.

Die Herstellung der Formmassen gemäß der Erfindung erfolgt durch Ver
05 mischen der Komponenten in einer an sich bekannten Mischvorrichtung.

Dabei wird zunächst das Polyamid plastifiziert. Die Schmelze wird dann mit der Kautschukdispersion innig vermischt. Dabei verdampft spontan das Wasser und die Kautschukteilchen verteilen sich gleichmäßig in der Schmelze. Dieser Vorgang läuft so schnell ab, daß die Kautschukteilchen keine Gelegenheit haben zusammenzufließen.

Die Ausgangsstoffe werden zweckmäßig in selbstreinigenden zweiwelligen Schneckenmaschinen mit im gleichen Sinne rotierenden Schneckenwellen vermischt. Sie werden an getrennten Stellen dem Extruder zugeführt, wobei 15 üblicherweise der Thermoplast am Einzug der Schneckenmaschine zugeführt und in einer ersten Schneckenzone mit tief eingeschnittenen Gewindeprofilen plastifiziert und über eine Knetzone in eine zweite Schneckenzone gefördert wird. Die Kautschukdispersion wird mittels einer Dosierpumpe, die einen für die Förderung des Kautschuks erforderlichen Flüssigkeits-20 vordruck bewirkt, in die zweite Schneckenzone zudosiert. Kautschuk und Thermoplast werden in mehreren folgenden Abschnitten mit unterschiedlicher Gangzahl und Gewindesteigung miteinander innig vermischt. Das dabei spontan verdampfende Wasser wird als Dampf durch Entgasungsstutzen entfernt, die zweckmäßig jeweils im Anschluß an eine Knetzone angebracht 25 sind. Die Wasserentfernung kann gegebenenfalls auch über ein Druckkontrollventil erfolgen. Die Masse wird anschließend ausgepreßt, gekühlt und zerkleinert.

Die Verarbeitungstemperatur liegt im üblichen Verarbeitungsbereich der 30 betreffenden Polyamide im allgemeinen zwischen 220 und 300°C. Vielfach ist es vorteilhaft, möglichst niedrige Temperaturen zu wählen, um eine thermische Schädigung der Komponenten zu verhindern.

Die erhaltenen Produkte besitzen wertvolle mechanische Eigenschaften und 35 zeichnen sich durch besonders hohe Schlagzähigkeit aus. Sie sind daher geeignet für die Herstellung von technischen Formteilen aller Art.

Die Ermittlung der Glasübergangstemperatur des Kautschuks erfolgte nach der DSC-Methode (K.M. Illers, Makromol. Chemie 127 (1969) S. 1 ff).

Beispiele

In den Beispielen wurden die folgenden Emulsionspolymerisate verwendet:

05 E 1

Kautschukelastisches Polymerisat aus

- 98,39 Gewichtsteilen n-Butylacrylat
- 1,22 Gewichtsteilen Tricyclodecenylacrylat
- 0,39 Gewichtsteile Methacrylsäure,

10

hergestellt durch Emulsionspolymerisation in 66 Gewichtsteilen Wasser unter Verwendung von 1,0 Gewichtsteilen Natriumsalz einer C₁₂-C₁₈-Paraffinsulfonsäure als Emulgator und 0,35 Gewichtsteilen Kaliumpersulfat als Katalysator bei 65°C. Tricyclodecenylacrylat wurde mit einem Teil des n-Butylacrylat gemischt und in den ersten 60 % des n-Butylacrylatzulaufs

kontinuierlich zudosiert. Die Methacrylsäure wurde in den letzten 40 % des n-Butylacrylatzulaufs kontinuierlich zudosiert.

Teilchengröße 0,4µm monodispers

Feststoffgehalt 60 %

20 Glasübergangstemperatur \(\lambda - 40°C\)

E 2

Kautschukelastisches Polymerisat aus

- 97,61 Gewichtsteilen n-Butylacrylat
- 25 1,22 Gewichtsteilen Tricyclodecenylacrylat
 - 1,17 Gewichtsteilen t-Butylacrylat,

hergestellt wie E 1 mit t-Butylacrylat statt Methacrylsäure.

Feststoffgehalt 60 %

Teilchengröße 0,4µm monodispers

30 Glasübergangstemperatur -40°C

E 3

Kautschukelastisches Polymerisat aus

97,6 Gewichtsteilen n-Butylacrylat

- 35 1,2 Gewichtsteilen Tricyclodecenylacrylat
 - 1,2 Gewichtsteilen Acrylamid

hergestellt wie E l mit Acrylamid anstelle von Methacrylsäure.

Feststoffgehalt 45 %

Teilchengröße 0,4µm monodispers

40 Glasübergangstemperatur -40°C.

E 4

Kautschukelastisches Polymerisat aus

- 67,6 Gewichtsteilen n-Butylacrylat
 - 0,4 Gewichtsteile Methacrylsäure
- 05 32,0 Gewichtsteilen Butadien

hergestellt durch Emulsionspolymerisation, wobei als erste Stufe 80 Gewichtsteile einer Mischung aus Butylacrylat und Butadien (60: 40 Gewichtsverhältnis) plus 0,45 Teile t-Dodecylmerkaptan als Regler copolymerisiert wurden und als zweite Stufe (äußere Schale) 20 Gewichtsteile

10 einer Mischung aus n-Butylacrylat und Methacrylsäure (98 : 2 Gewichtsverhältnis) aufpolymerisiert wurden.

Feststoffgehalt 51 %

Teilchengröße 0,13µm monodispers

15 Glasübergangstemperatur der äußeren Schale 1-40°C Glasübergangstemperatur des inneren Kerns 1-60°C.

E 5

Kautschukelastisches Polymerisat aus

- 20 67 Gewichtsteile n-Butylacrylat
 - 1 Gewichtsteil t-Butylacrylat
 - 32 Gewichtsteile Butadien

hergestellt durch Emulsionspolymerisation, wobei als erste Stufe 80 Gewichtsteile einer Mischung aus n-Butylacrylat und Butadien plus 0,45 Tei-

25 len t-Dodecylmerkaptan als Regler copolymerisiert wurde und als zweite Stufe 20 Gewichtsteile einer Mischung aus n-Butylacrylat und t-Butylacrylat (95:5) aufpolymerisiert wurden.

Feststoffgehalt 53 %

30 Teilchengröße 0,15μm monodispers Glasübergangstemperatur der äußeren Schale ν-40°C Glasübergangstemperatur der inneren Schale 1-60°C.

E 6

- 35 Kautschukelastisches Polymerisat aus
 - 9,4 Gewichtsprozent n-Butylacrylat
 - 0,2 Gewichtsprozent Methacrylsäure
 - 3,8 Gewichtsprozent Ethylacrylat
 - 0,2 Gewichtsprozent Methacrylamid
- 40 86,4 Gewichtsprozent Butadien

hergestellt durch Emulsionspolymerisation, wobei als erste Stufe 90 Teile Butadien in Gegenwart von 0,9 Teile t-Dodecylmerkaptan als Regeler polymerisiert wurden (innerer Kern) und als zweite Stufe (äußere Schale) 10 Gewichtsteile einer Mischung aus n-Butylacrylat und Methacrylsäure (98: 2 Gewichtsverhältnis) aufpolymerisiert wurden. Zwischen der ersten und zweiten Stufe erfolgte eine gezielte Agglomeration der ca. 0,1μm großen Teilchen durch Zugabe von 4 Gew. 7 (fest bezogen auf fest) einer 05 Ethylacrylat-Methacrylamid-Copolymerdispersion.

Feststoffgehalt 50 %
Teilchengröße 0,1 bis 0,7μm
Glasübergangstemperatur der äußeren Schale ν-40°C

10 Glasübergangstemperatur des inneren Kerns ν-80°C.

E 7

Dieses kautschukelastische Polymerisat wurde hergestellt wie E 6 aber statt Methacrylsäure wurde t-Butylacrylat verwendet und zwischen den bei-15 den Stufen wurde nicht agglomeriert.

- 9,8 Gewichtsteile n-Butylacrylat
- 0,2 Gewichtsteile t-Butylacrylat
- 90,0 Gewichtsteile Butadien.

20 Feststoffgehalt = 52 %

Teilchengröße = 0,15 μ m monodispers Glasübergangstemperatur der äußeren Schale ~ -40 °C Glasübergangstemperatur der inneren Schale ~ -80 °C.

25 E 8

E 8 wurde hergestellt wie E 1 aber statt n-Butylacrylat wurde Ethylhexylacrylat verwendet.

Feststoffgehalt 50 %

30 Teilchengröße 0,3µm monodispers
Glasübergangstemperatur 1-50°C.

Dosierpumpe bewirkt wird.

Beispiele 1 bis 9

35 Die Herstellung der thermoplastischen Formmassen erfolgte in einem Extruder (Type ZSK 53 der Fa. Werner und Pfleiderer). Der Thermoplast wurde am Einzug der Schneckenmaschine zugeführt und in einer ersten Schneckenzone mit tief eingeschnittenen Gewindeprofilen plastifiziert und über eine Knetzone in eine zweite Schneckenzone gefördert, in der die wäßrige
40 Suspension des kautschukelastischen Polymerisats dosiert zugeführt wurde, wobei die Förderung der Dispersion durch den Flüssigkeitsvordruck einer

Thermoplast und Kautschuk werden in den nachfolgenden Abschmitten umterschiedlicher Gangzahl und Gewindesteigung miteinander innig vermischt, wobei im Anschluß an die Knetzone das spontan verdampfte Wasser als Dampf durch zwei Entgasungsstutzen entfernt wird und anschließend die Formmasse os als Strang ausgepreßt, abgekühlt und zerkleinert wird. Die Vermischung erfolgt bei einer Drehzahl von 150 Upm und bei einem praktisch gleichbleibenden Temperaturprofil zwischen Einzug und Austrag von etwa 250°C. Bei Mischungen von 85 Gew.% Polyamid 6 (relative Viskosität 3,3, gemessen 1 % in konz. Schwefelsäure) mit 15 Gew.% der Polymeren E 1 bis E 8 wur10 den folgende Eigenschaftswerte gemessen (Tabelle I).

Als Vergleich wurden die Kautschuke aus Dispersionen E 1, E 2 und E 3 ausgefällt, getrocknet und als Festprodukt mit dem Polyamid abgemischt. Die mechanischen Eigenschaften waren deutlich schlechter. Bei dem Kautschuk aus Dispersion E 8 gelang das trockene Vermischen nicht, da der Kautschuk die Dosier- und Mischvorrichtungen verstopfte.

Polyamid-6-/Kautschuk-Mischungen (85: 15 Gewichtsteile)

Tabelle I

Beispiel	80	Kerbsc	hlagzähf Žl	Kerbschlagzähigkeit ¹⁾	Teilchengröße	Tellchengrößen-
	(als Dispersion zugegeben)	23 C		D.0≯-		Sin Tranja,
1	keine	3,5	2,0	1,3		1
7	R 1	46	6	9	0,4µm	monodispers
က	E 2	54	12	2	m1,40	monodispers
4	E 3 (20 Gew.%)	99	10	7	0,4µm	monodispers
5	E 4	69	13	Ŋ	0,13µm	monodispers
. 9	E 5	99	11	7	0,15µm	monodispers
	9 9	56	14	12	0,1 bis 0,7µm	im wesentlichen wie in der Dispersion
œ	E 7	46	12	10	0,15µm	monodispers
6	88	35	9	ю	0,3µm	monodispers
10 Vergleich	Dispersion E 1 trocken eingemischt	30	9	7	l bís 5µm	uneinheitlich

1) nach DIN 53453 gemessen an bei 280°C gespritzten Normkleinstäben

Beispiele 11 bis 13

Entsprechend den Beispielen 1 bis 9 wurden Formmassen aus Polyamid-6 (relat. Viskosität 3,3 in konz. Schwefelsäure) und dem Kautschuk E 2 unter Mitverwendung von Füllstoffen hergestellt. Die Produkte und entsprechende Vergleichsprodukte sind in Tabelle II zusammengestellt.

Tabelle II

10	Beispiel	Polyamid-6 Gew.Z	E 2 Gew.%	Zusatzstoff Gew.%	Bruchenergie an 2 mm Rundscheiben bei -20°C [Nm]*
	11	65	15	20 Wollastonit	40
15	Vergleich	80	0	10 Wollastonit	24
	12	65	15	20 calcinierter Kaolin	32
	Vergleich	80	0	20 calcinierter Kaolin	8
	13	55	15	30 Glasfasern	13
20	Vergleich	70	0	30 Glasfasern	2

^{*} nach DIN 53 443, Blatt 1 Kalottendurchmesser 20 mm Kalottenradius 25 mm

Patentansprüche

05

10

20

25

30

35

40

- 1. Schlagzähe thermoplastische Formmassen, enthaltend
 - (A) 60 bis 95 Gewichtsteile mindestens eines kristallinen, thermoplastischen Polyamids,
 - (B) 5 bis 40 Gewichtsteile mindestens eines durch Emulsionspolymerisation hergestellten, in einer im wesentlichen durch die Emulsionspolymerisation vorgegebenen Teilchengrößenverteilung mit einer Teilchengröße unter 2μm in der Komponente A dispergierten und darin weitgehend unlöslichen kautschukelastischen Polymerisats ohne harte äußere Schale, wobei die Summe von (A) und (B) 100 Gewichtsteile beträgt.
 - (C) gegebenenfalls bis zu 100 Gewichtsteile Glasfasern oder andere verstärkend wirkende Füllstoffe, und
- 15 (D) gegebenenfalls übliche Hilfsstoffe in wirksamen Mengen.
 - 2. Schlagzähe thermoplastische Formmassen nach Anspruch 1, <u>dadurch</u>
 gekennzeichnet, daß die Komponente (B) zumindest teilweise vernetzt
 ist und eine Glas-Übergangstemperatur unterhalb von -20°C besitzt.
 - 3. Schlagzähe thermoplastische Formmassen nach Anspruch 1 oder 2,

 dadurch gekennzeichnet, daß die Komponente (B) an der Oberfläche der

 Teilchen Molekülgruppen aufweist, die eine Haftung an den Molekülen
 der Komponente (A) bewirken.
 - 4. Schlagzähe thermoplastische Formmassen nach einem der Ansprüche 1 bis 3, enthaltend als Komponente (B) ein Polymerisat, das zumindest an der Oberfläche der Teilchen Carbonsäure-, Carbonsäureester- oder Carbonsäureamid-Gruppen enthalten.
 - 5. Schlagzähe thermoplastische Formmassen nach einem der Ansprüche 1 bis 4, <u>dadurch gekennzeichnet</u>, daß sie durch inniges Vermischen einer Schmelze der Komponente (A) mit einer wäßrigen Dispersion der Komponente (B) unter gleichzeitigem Entfernen des dabei verdampfenden Wassers hergestellt worden sind.
 - 6. Verfahren zur Herstellung der thermoplastischen Formmassen gemäß
 Anspruch 1, dadurch gekennzeichnet, daß man eine Schmelze der Komponente (A) mit einer wäßrigen Dispersion der Komponente (B) innig vermischt und gleichzeitig das dabei verdampfende Wasser entfernt.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.