Braid Groups and their Representations

Zih-Yu Hsieh Mentor: Choomno Moos

University of California, Santa Barbara College of Creative Studies

Summer 2025

Contents

1	Introduction	1
2	Topological / Algebraic Preliminaries 2.1 Homotopy	2
3	Braid Groups	2
4	Burau Representation	2
5	Gassner Representation	2
6	Conclusion	2

1 Introduction

Braid group as a mathematical structure initiated by the study of geometric braids, has hidden in multiple fields of math: From the association with braid automorphisms of a free group, the class of isotopic self-homeomorphism of punctured disks, even to its usage of formulating interactions of anyons in Quantum Mechanics - it is embedded in multiple aspects of both math and physics.

A specific direction of research involves the study of Braid Group Representation, and one longstanding question is about the faithfulness of two representations - Burau and Gassner Representations: For $n \ge 6$ Burau Representation is proven to be not faithful in [Professor D. Long's article] and refined down to the case of $n \ge 5$ in [Professor S. Bigelow's article]. In [Birman's Book] a theorem states the kernel of Gassner Representation is a subgroup of the kernel of Burau Representation, which another work proving faithfulness of Burau Representation for $n \le 3$ in [One of the articles] also implies the faithfulness of Gassner Representation for same cases. Now, the faithfulness of Burau Representation for n = 4 is unknown, and similar case for Gassner Representation in case $n \ge 4$.

In this survey we'll aim to understand the construction of Burau and Gassner Representation. In Section 2 we'll cover some fundamentals of Algebraic Topology such as Homotopy, Fundamental Group, Deformation Retract, Covering Space, and Homology.; in Section 3 we'll introduce Braid Groups, including its algebraic definition, the isomorphism to the *Mapping Class Group* of punctured disks, and its realization as braid automorphisms on free groups - which turns out to be analogous to the Mapping Class Group's action on punctured disk's fundamental group. In Section 4 and 5 we'll cover Burau and Gassner Representation - both definition wise, and their homological construction.

Hope you enjoy the text:) (Yeah please delete this line, please.)

2 Topological / Algebraic Preliminaries

2.1 Homotopy

First, we'll land on the formulation of "Continuous Deformation" - which is usefule when classifying maps between topological spaces.

Definition 1. Given X, Y as topological spaces, $f, g: X \to Y$ are continuous maps, a *Homotopy* between f and g is a continuous map $H: X \times [0,1] \to Y$ such that H(x,0) = f(x), and H(x,1) = g(x).

Also, given subset $A \subseteq X$, H is a Homotopy between f and g Relative to A, if H(a,t) = f(a) = g(a) for all $a \in A$ and $t \in [0,1]$.

If treated [0, 1] as the time interval, one can visualize H(x,t) for each $t \in [0,1]$ as a slice of the deformation from f to g, and having it relative to subset A implies such deformation is not changing A.

It is well-known tha homotopy is an equivalence relation on the collection of continuous functions between two spaces. With this in mind, if fixing a base point $x_0 \in X$, we can classify the classes of

- 3 Braid Groups
- 4 Burau Representation
- 5 Gassner Representation
- 6 Conclusion