预备知识: 为防止有人不熟悉线性代数,这里简要介绍一些基本的概念和事实,各位同学们可以不加证明地直接使用这些结果.

对于域 K, 我们称 K 上的一个 n 阶矩阵 $(n \times n$ 矩阵) 是一个 n 行 n 列的数表, 这个数表的每一项都是 K 中的元素. 比如下面的:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

就是一个 2 阶矩阵. 对于矩阵 A, 我们通常将其表示为 $A = (a_{ij})_{1 \le i,j \le n}$, 其中 a_{ij} 是 A 中位于第 i 行第 j 列的元素. 在不会引起歧义时候, 我们有时也会省略括号外的下标, 直接记为 $A = (a_{ij})$.

我们记 $M_n(K)$ 是 K 上所有 n 阶矩阵的集合. 我们在其上定义如下几种运算:

(加法) 对
$$A, B \in M_n(K)$$
, $A = (a_{ij}), B = (b_{ij})$, 我们定义 $A + B = (a_{ij} + b_{ij})$.

(乘法) 对于
$$A, B \in M_n(K)$$
, $A = (a_{ij}), B = (b_{ij})$, 我们定义 $AB = (\sum_{k=1}^n a_{ik} b_{kj})$.

(数乘) 对于
$$A \in M_n(K)$$
, $A = (a_{ij})$, 以及 $k \in K$, 我们定义 $kA = (ka_{ij})$.

特别地, 我们称所有元素均为 0 的矩阵为零矩阵, 并同样记作 0; 我们称只有对角线上的元素为 1, 而其它元素为 0 的矩阵为单位矩阵, 记作 I_n . 譬如说:

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

关于矩阵, 一个重要的构造是函数 $\det: M_n(K) \to K$. 对 $A \in M_n(K)$, 我们称 $\det(A)$ 为 A 的行列式, 它满足形式 $\det(AB) = \det(A) \det(B)$. 如果你不知道行列式的具体构造, 你可以暂时不用关心它是如何构造出来的. 你只需要知道, 对 $A \in M_n(K)$, 以下几个条件是相互等价的即可:

- (1) $\det(A) \neq 0$.
- (2) 存在 $B \in M_n(K)$, 使得 $BA = AB = I_n$.

若 A 满足以上的等价条件, 则我们称 A 是一个可逆矩阵. 此时, 使得 $BA = AB = I_n$ 的矩阵 B 是唯一的, 我们称其为 A 的逆矩阵, 记作 A^{-1} .

问题 (1): 在本系列问题中, 我们将介绍若干群的例子. 我们会给出这些群的构造, 然后由你来验证其确实构成一个群.

问题 (1.1): 对域 K, 以及 $n \in \mathbb{Z}_{>1}$,请证明: $M_n(K)$ 关于矩阵的加法构成一个交换群.

证明. 由 K 的加法结合律,则 $(A+B)+C=((a_{ij}+b_{ij})+c_{ij})=(a_{ij}+(b_{ij}+c_{ij}))=A+(B+C)$. 由 K 的加法交换律,则 $A+B=(a_{ij}+b_{ij})=(b_{ij}+a_{ij})=B+A$. 显然,A+0=0+A=A 对所有 $A\in M_n(K)$ 成立,故 0 矩阵是矩阵加法的单位元. 注意到 $A+(-1)A=(a_{ij}+(-1)a_{ij})=0=(-1)A+A$,故 (-1)A 是 A 关于矩阵加法的逆元. 综上所述,则 $M_n(K)$ 关于矩阵加法构成一个交换群.

问题 (1.2): 我们定义:

$$GL_n(K) = \{ A \in M_n(K) : A$$
是可逆矩阵 $\},$

<u>请证明</u>: $GL_n(K)$ 对于矩阵的乘法构成一个群, 且当 |K| > 2, 则 $GL_n(K)$ 是交换群当且仅 当 n = 1.

证明. 由 $\det(AB) = \det(A) \det(B)$,故 $A, B \in \operatorname{GL}_n(K)$ 时 $AB \in \operatorname{GL}_n(K)$,进而 $\operatorname{GL}_n(K)$ 对矩阵乘法封闭. 注意到 $(AB)C = (\sum_{k=1}^n \sum_{l=1}^n a_{ik} b_{kl} c_{lj}) = A(BC)$,故矩阵的乘法是结合的. 考虑 $I_n = (\delta_{ij})$,其中:

$$\delta_{ij} = \begin{cases} 1 & \text{\preceden} i = j. \\ 0 & \text{\preceden} i \neq j. \end{cases}$$

注意到对 $A=(a_{ij})$,有 $\sum_{k=1}^{n}a_{ik}\delta_{kj}=a_{ij}=\sum_{k=1}^{n}\delta_{ik}a_{kj}$,故 $AI_{n}=I_{n}A=A$,进而 I_{n} 是 $GL_{n}(K)$ 的单位元. 此时,则 A^{-1} 是 A 关于矩阵乘法的逆元.

当 n=1, 对 $(a) \in M_n(K)$, 当 $a \neq 0$, 则 $(a^{-1})(a) = (a)(a^{-1}) = (1)$ 可逆. 当 a=0, 显然 (0) 不可逆. 因此, $GL_1(K) = \{(a) : a \in K^{\times}\}$, 进而 $GL_1(K)$ 同构于 K^{\times} , 故 $GL_1(K)$ 是交换群. 而当 n > 2, 不失一般性, 我们只证明 $GL_2(K)$ 不是交换的. 注意到:

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & an \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & n \\ 0 & 1 \end{pmatrix}$$

因此, 只需存在 $a \in K^{\times}$, 使得 $a \neq 1$, 则 $GL_2(K)$ 不是交换群.

问题 (1.3): 对于 $A \in M_n(K)$, $A = (a_{ij})$, 若 i > j 时恒有 $a_{ij} = 0$, 则我们称 A 是一个上三角矩阵. 我们定义:

$$B_n(K) = \{A \in GL_n(K) : A$$
是上三角矩阵 $\}$,

请证明: $B_n(K)$ 是 $GL_n(K)$ 的子群.

证明. 不难验证, 若 $A, B \in B_n(K)$, 则 $AB \in B_n(K)$. 我们只证明: 若 $A \in B_n(K)$, 则 $A^{-11} \in B_n(K)$. 我们记 $A = (a_{ij}), A^{-1} = (b_{ij})$, 则由 $A^{-1}A = I_n$, 我们知道:

$$\delta_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}$$
$$= \sum_{k=1}^{j} b_{ik} a_{kj}$$

当 i = 1, j = 1, 我们有:

$$b_{11}a_{11}=1,$$

进而 $a_{11} \neq 0$, 且 $b_{11} = a_{11}^{-1}$. 下面我们归纳地证明: 对所有 $1 \leq i \leq n$, 都有 $a_{ii} \neq 0$, $b_{ii} = a_{ii}^{-1}$, 且当 i > j 时, 有 $b_{ij} = 0$. 现设归纳假设对所有 $i < i_0$ 成立. 对 $i = i_0$, 首先考虑 j = 1, 则有:

$$b_{i_0,1}a_{1,1}=0,$$

因此 $b_{i_01} = 0$. 而对 $j < i_0$, 有:

$$\sum_{k=1}^{j-1} b_{i_0k} a_{kj} + b_{i_0j} a_{jj} = 0,$$

对 j 进行归纳, 不妨设 b_{ik} 对所有 $1 \le k \le j-1$ 成立, 进而 $b_{i_0j}a_{jj} = 0$, 故 $b_{i_0j} = 0$. 此时, 对 $j = i_0$, 则:

$$\sum_{k=1}^{i_0-1} b_{i_0k} a_{ki_0} + b_{i_0i_0} a_{i_0i_0} = 1,$$

进而 $b_{i_0i_0}a_{i_0i_0}=1$, 故而归纳成立, 进而得证,

问题 (1.4): 我们定义

$$\operatorname{SL}_n(K) = \{ A \in \operatorname{GL}_n(K) : \det(A) = 1 \},$$

请证明: $SL_n(K)$ 是 $GL_n(K)$ 的子群.

证明. 由 $\det(AB) = \det(A) \det(B)$,故 $A, B \in \operatorname{SL}_n(K)$ 时 $AB \in \operatorname{SL}_n(K)$. 注意到任取 $A \in \operatorname{GL}_n(K)$,有 $\det(A) = \det(AI_n) = \det(A) \det(I_n)$,故 $\det(I_n) = 1$,进而 $I_n \in \operatorname{SL}_n(K)$. 此时,由 $\det(AA^{-1}) = \det(A) \det(A^{-1}) = \det(I_n) = 1$,故 $\det(A^{-1}) = \det(A)^{-1}$,进而若 $A \in \operatorname{SL}_n(K)$,则 $A^{-1} \in \operatorname{SL}_n(K)$,故得证.

问题 (1.5): 我们定义:

$$U_n(K) = \{A \in B_n(K) : A$$
主对角线上的元都是1 $\}$,

请证明: $U_n(K)$ 是 $B_n(K)$ 的子群.

证明. 由 (1.3) 的证明可以看出, 若 $A \in U_n(K)$, 则 $A^{-1} \in U_n(K)$. 其余的事实是容易验证的.

问题 (1.6): 特别地,<u>请证明</u>: 存在群同构 $(K,+) \cong U_2(K)$, 这里 (K,+) 是 K 的加法群. 证明. 注意到:

$$\begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ & 1 \end{pmatrix},$$

因此 $K \to U_2(K), x \mapsto \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}$ 是保持加法的双射, 进而两者同构.

问题 (1.7): 特别地,请证明: 对

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(K),$$

则 A 可逆当且仅当 $ad - cb \neq 0$, 且此时:

$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

提示: 事实上, 当 n=2 时, $\det(A)=ad-cb$. 因此你可以首先证明 $A\mapsto ad-cb$ 满足 $\det(AB)=\det(A)\det(B)$.

证明. 对 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 记 $A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, 则 $AA^* = A^*A = (ad-cb)I_2$. 故当 $ad-cb \neq 0$, 则 A 可逆. 反之,我们记 $det: M_2(K) \to K$ 是映射 $A \mapsto ad-cb$,注意到对 $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$,有:

$$AB = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix},$$

因此有:

$$\det(AB) = (aa' + bc')(cb' + dd') - (ca' + dc')(ab' + bd')$$

$$= (aca'b' + ada'd' + bcb'c' + bdc'd') - (aca'b' + cda'd' + adb'c' + bdc'd')$$

$$= ada'd' + bcb'c' - cda'd' - adb'c'$$

$$= (ad - cb)(a'd' - c'b')$$

$$= \det(A) \det(B)$$

因此若 $AB = I_2$, 则 $\det(A) \det(B) = \det(I_2) = 1$, 进而 $\det(A) = ad - cb \neq 0$.

问题 (2): 本系列问题中, 我们将证明关于陪集的一些基本事实.

问题 (2.1): 对群 G, 若 H, K 是 G 的子群, 满足 $H \subset K$. <u>请证明</u> 下列条件等价:

- (1) $[G:H] < \infty$.
- (2) $[G:K], [K:H] < \infty$.

进一步地,请证明: 当上述等价条件成立, 则有 [G:H] = [G:K][K:H].

证明. 我们只需证明一个事实. 即若 $\{g_i\}_{i\in I}$ 是 G/K 的一个陪集代表元系, $\{k_j\}_{j\in J}$ 是 K/H 的一个陪集代表元系, 则 $\{g_ik_j\}_{(i,j)\in I\times J}$ 是 G/H 的一个陪集代表元系. 若上述事实成立, 则 $[G:H]=|I\times J|=|I||J|=[G:K][K:H]$.

我们首先证明 $g_i k_j H$ 是两两不同的陪集. 若 $g_i k_j H = g_{i'} k_{j'} H$, 则 $k_{j'}^{-1} g_{i'}^{-1} g_i k_j \in H$, 进 而 $g_{i'}^{-1} g_i \in k_{j'} H k_j^{-1} \subset K$, 故 i = i'. 进而 $k_{j'}^{-1} k_j \in H$, 则 j = j'. 接下来,只需证明,任 取 $g \in G$,存在 $g_i k_j$,使得 $g \in g_i k_j H$ 即可. 由 g_i 是 G/K 代表元,则存在 $i \in I$ 使得 $g_i^{-1} g \in K$,进而存在 $j \in J$ 使得 $k_j^{-1} g_i^{-1} g \in H$,故而 $g \in g_i k_j H$,进而得证.

问题 (2.2): 对群 G, 若 H, K 是 G 的子群, 且满足:

- (1) $[G:H] = n < \infty$.
- (2) $[G:K] = m < \infty$.

<u>请证明</u>: 若 $[G: H \cap K] < \infty$, 则 l.c.m(n, m) 整除 $[G: H \cap K]$, 这里 l.c.m(n, m) 是 n, m 的最小公倍数.

证明. 由 (2.1), 则 $[G:H][H:H\cap K]=[G:H\cap K]$, 进而 n 整除 $[G:H\cap K]$. 同理, m 整除 $[G:H\cap K]$. 进而 l.c.m(n,m) 整除 $[G:H\cap K]$.

问题 (2.3): 在 (2.2) 的条件下,请证明 下面的映射是良定的单射:

$$H/H \cap K \to G/K$$

 $h(H \cap K) \mapsto hK$

证明. 首先证明良定性. 若 $h(H \cap K) = h'(H \cap K)$, 则 $h'^{-1}h \in H \cap K \subset K$, 故 hK = h'K. 因而 $h(H \cap K) \mapsto hK$ 是良定的. 现在我们证明其是单射: 当 hK = h'K, 则 $h'^{-1}h \in K$, 进而 $h'^{-1}h \in H \cap K$, 故 $h(H \cap K) = h'(H \cap K)$.

问题 (2.4): 在 (2.2) 的条件下,<u>请证明</u> 一定有 $[G: H \cap K] \leq mn$. 特别地, 当 mn 互素,则 $[G: H \cap K] = mn$.

证明. 由 (2.3), 则 $[H:H\cap K] \leq [G:K] = m$, 进而 $[G:H\cap K] = [G:H][H:H\cap K] \leq nm$.

问题 (3): 本系列问题给出了初等数论中 Wilson's 定理的一个群论证明, 以及由该证明 衍生出的一些问题.

问题 (3.1): 对有限交换群 G, 若 g_1, \ldots, g_n 是 G 中的全部元素, 记 $g = \prod_{i=1}^n g_i$ (由于 G 交换, 故而这里乘积的顺序是不重要的), 则 $g^2 = e$, 这里 e 是 G 的单位元.<u>请证明</u>: $g^2 = e$.

证明. 注意到
$$G \mapsto G, g \mapsto g^{-1}$$
 是双射, 因而 $g = \prod_{i=1}^n g_i^{-1}$, 故 $g^2 = \prod_{i=1}^n (g_i g_i^{-1}) = e$.

问题 (3.2):: 若方程 $X^2 = e$ 在 G 中的全部解为 $a_1, \ldots, a_m,$ 请证明: (3.1) 中的 $g = \prod_{i=1}^m a_i$.

证明. 记 S 是 G 中不满足 $g^2=e$ 的元素的集合. 注意到 $g^2=e$ 当且仅当 $g=g^{-1}$. 因此 对 $s\in S$, 一定有 $s^{-1}\neq s$, 且 $s^{-1}\in S$. 因此, 存在 $s_1,\ldots,s_l\in S$, 使得 S 中的全部元素 恰好为 $s_1,s_1^{-1},s_2,s_2^{-1},\ldots,s_l,s_l^{-1}$. 此时 $\prod_{s\in S}s=\prod_{k=1}^l s_k\prod_{k=1}^l s_k^{-1}=e$. 故而 $g=\prod_{k=1}^m a_k\prod_{s\in S}s=\prod_{k=1}^m a_k$.

问题 (3.3): 若方程 $X^2 = e$ 在 G 中恰有 X = e 和 X = a 两个解,<u>请证明</u>: (3.1) 中的 g = a.

问题 (3.4):请证明Wilson's 定理: $(p-1)! \equiv -1 \mod p$.

证明. 将 (3.3) 应用于有限交换群 $(\mathbb{Z}/p\mathbb{Z})^{\times}$. 注意到同余方程 $X^2 \equiv 1 \mod p$ 只有 $X = \pm 1 \mod p$ 两个解, 故而由 (3.3) 得到.

问题 (3.5):请证明: 方程 $X^2 = e$ 在 G 中的全体解构成 G 的子群, 记作 G[2].

证明. 由 G 交换, 故 $(ab)^2 = abab = aabb = a^2b^2$, 故若 $a, b \in G[2]$, 则 $ab \in G[2]$. 另一方面, 对 $a \in G[2]$, 则 $a^{-1} = a$, 故 $a^{-1} \in G[2]$, 故 G[2] 构成子群.

在下面的问题中, 你可以不加证明地用到如下事实: G[2] 构成有限维 \mathbb{F}_2 -线性空间. 即存在 $a_1, \ldots, a_d \in G[2]$, 使得 G[2] 中的每一个元素都唯一形如 $\prod_{i=1}^d a_i^{n_i}$, 其中 $n_i \in \{0,1\}$. 问题 (3.6):请证明: 若 G[2] 非平凡, 则存在 G[2] 的子群 H, 使得 [G[2]:H]=2.

证明. 由问题前的事实, 当 G[2] 非平凡, 则存在 $d \ge 1$, 使得 G[2] 中的元素都形如 $\prod_{i=1}^d a_i^{n_i}$, 其中 $n_i \in \{0,1\}$. 此时, 考虑所有形如 $\prod_{i=1}^{d-1} a_i^{n_i}$ 的元素构成的集合 H, 不难验证 H 构成 G[2] 的子群, 且 $G = H \sqcup Ha_d$, 故 [G:H] = 2.

问题 (3.7): 若方程 $X^2 = e$ 在 G 中只有 X = e 一个解, 或该方程解的数目 > 2,<u>请证明</u>: (3.1) 中的 g = e.

证明. 当 $X^2 = e$ 只有 X = e 一个解,则由 (3.2) 得到. 当解的数目 > 2,由 (3.6),则存在 G[2] 的子群 H,使得 [G:H]=2,且此时 $|H|=2^{d-1}$.取 $y\in G[2]-H$,则 $G[2]=H\sqcup yH$. 进而 $\prod_{a\in G[2]}a=(\prod_{h\in H}h)(\prod_{h\in H}yh)=y^{2^{d-1}}(\prod_{h\in H}h)^2=e$.

问题 (4): 本系列问题旨在证明 $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ 和 $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ 构成 $SL_2(\mathbb{Z})$ 的生成元. 问题 (4.1): 我们定义:

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}) : a, b, c, d \in \mathbb{Z} \right\},$$

请证明: $SL_2(\mathbb{Z})$ 构成 $SL_2(\mathbb{R})$ 的子群.

证明. 显然 $SL_2(\mathbb{Z})$ 对矩阵乘法封闭. 由 (1.7), 当 $A \in SL_2(\mathbb{Z})$, 则 $A^{-1} \in SL_2(\mathbb{Z})$, 故而 $SL_2(\mathbb{Z})$ 构成 $SL_2(\mathbb{R})$ 的子群.

问题 (4.2): 对于群 G, 若 S 是 G 的子集, 若 H 是所有包含 S 的 G 的子群中最小的一个, 则称 S 是 H 的生成元.请证明 下列条件等价:

- (1) S 是 H 的生成元.
- (2) 任取 $h \in H$, 则 h 形如 $s_1^{\pm 1} s_2^{\pm 1} \cdots s_n^{\pm 1}$, 其中 $s_i \in S$.

进一步地, 我们记:

$$\langle S \rangle = \{ g \in G : g \mathcal{H} \text{如} s_1^{\pm 1} s_2^{\pm 1} \cdots s_n^{\pm 1} \text{其中} s_i \in S \},$$

则 $\langle S \rangle$ 是 G 的子群, 且 S 构成 $\langle S \rangle$ 的生成元. 我们称 $\langle S \rangle$ 是 S 在 G 中生成的子群.

问题 (4.3): 我们记:

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

<u>请证明</u>:S,T 构成 $SL_2(\mathbb{Z})$ 的生成元.

提示: 对于 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, 则 $AS = \begin{pmatrix} -b & a \\ -d & c \end{pmatrix}$, $AT^n = \begin{pmatrix} a & b+na \\ c & d+nc \end{pmatrix}$, 因此通过反复右乘 S,T 可以对 a,b 进行辗转相除, 使得 A 化为下三角矩阵.

证明. 对 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$, 若 |a| > |b| 则用 AS 替代 A, 不妨设 $|a| \le |b|$. 此时, 存

在唯一
$$n \in \mathbb{Z}$$
, 使得 $b = na + r$, 其中 $0 \le r < |a|$. 此时 $AT^{-n} = \begin{pmatrix} a & r \\ c & d - nc \end{pmatrix}$. 我们再用

S 右乘交换 a,r 的位置,则我们可以反复进行上述过程以进行辗转相除. 最终,我们可以将 A 化为如下的形式:

$$\begin{pmatrix} a' & 0 \\ c' & d' \end{pmatrix},$$

由 $\det(A) = 1$, 则 a'd' = 1. 由 a', d' 都是整数, 则 a' = d' = 1 或 a' = d' = -1. 注意到 $S^2 = -I_2$. 若 a' = d' = 1, 则用 AS^2 替代 A, 不妨设 a' = d' = -1. 此时, 注意到:

$$SAS = \begin{pmatrix} -d' & c' \\ 0 & -a' \end{pmatrix} = \begin{pmatrix} 1 & c' \\ 0 & 1 \end{pmatrix} = T^{c'},$$

故得证. □

问题 (5): 本系列问题旨在介绍双陪集的概念, 以及双陪集相关的例子和应用.

问题 (5.1): 对集合 S, 若关系 \sim 满足如下条件:

(自反性) 对 $s \in S$, 则 $s \sim s$.

(对称性) 对 $s_1, s_2 \in S$, 若 $s_1 \sim s_2$, 则 $s_2 \sim s_1$.

(传递性) 对 $s_1, s_2, s_3 \in S$, 若 $s_1 \sim s_2, s_2 \sim s_3$, 则 $s_1 \sim s_3$.

则我们称 ~ 为 S 上的等价关系. 当 ~ 是等价关系, 对 $s \in S$, 我们记 $[s] = \{s' \in S : s \sim s\}$, 称作 s 所在的等价类.请证明:

- (1) 若 $\{[s_i]\}_{i\in I}$ 是 S 上等价关系 \sim 的所有不同的等价类,则有集合的无交并分解 $S=\bigsqcup_{i\in I}[s_i]$.
- (2) 反之, 若 $S = \coprod_{i \in I} S_i$ 是集合的无交并分解, 则存在唯一 S 上的等价关系 \sim , 使得每个 S_i 都是 \sim 的等价类.

进一步地,请证明: 上述 (1) 和 (2) 的构造是互逆的, 进而 S 上的等价关系 1-1 对应于 S 的无交并分解.

问题 (5.2): 对于群 G, 若 H, K 是 G 的子群. 我们在 G 上定义关系 \sim : 对 g, $g' \in G$, 令 $g \sim g'$ 当且仅当存在 $h \in H$, $k \in K$, 使得 g = hg'k.请证明: 这个关系构成等价关系.

证明. 由 g = ege, 故 $g \sim g$. 当 $g \sim g'$, 则 g = hg'k, 进而 $g' = h^{-1}gk^{-1}$, 故 $g' \sim g$. 当 $g \sim g'$ 且 $g' \sim g''$, 则 g = hg'k, g' = h'g''k', 故 g = (hh')g''(k'k), 进而 $g \sim g''$. 故 \sim 是一个等价关系.

问题 (5.3): 在 (5.2) 的条件下,请证明: 对 $g \in G$, 则 g 所在的等价类恰为集合:

$$HgK = \{hgk : h \in H, k \in K\}$$
.

我们称形如 HgK 的集合为 G 的一个 H-K 双陪集, 并记 G 的所有双陪集构成的集合为 $H\backslash G/K$, 称作 G 的 H-K 双陪集空间.

证明. 若 $g' \sim g$, 则 g' = hgk, 进而 $g' \in HgK$. 反之, 对 $g' = hgk \in HgK$, 显然 $g' \sim g$. \Box **问题 (5.4):**请证明: 在 (5.2) 的条件下, 对 $g \in G$, 则双陪集 HgK 有如下陪集分解:

- (1) 存在 K 中的元素 $\{k_i\}_{i\in I}$, 使得 $HgK = \bigsqcup_{i\in I} Hgk_i$.
- (2) 存在 H 中的元素 $\{h_j\}_{j\in I}$, 使得 $HgK = \bigsqcup_{j\in J} h_j gK$.

我们记全体 Hgk_i 的集合为 $H\backslash HgK$, 记全体 h_igK 的集合为 HgK/K.

证明. 由对称性, 我们只证明 (1). 为此, 只需证明, 若 $hgk \in HgK$, 则 $H(hgk) \subset HgK$ 即可, 而这是显然的.

问题 (5.5): 对群 G 及 $g \in G$, 若 H 是 G 的有限子群,<u>请证明</u>: 存在有限多个 $g_1, \ldots, g_n \in HgH$, 使得 $HgH = \bigsqcup_{i=1}^n Hg_i = \bigsqcup_{i=1}^n g_iH$.

证明. 由 H 是有限的,则 HgH 也是有限的. 我们记 $n = \frac{|HgH|}{|H|}$. 此时,则存在 $h_1, \ldots, h_n \in H$,使得 $HgH = \bigsqcup_{i=1}^n Hgh_i$. 同时,也存在 $h'_1, \ldots, h'_n \in H$,使得 $HgH = \bigsqcup_{i=1}^n h'_igH$. 此时,考虑 $g_i = h'_igh_i$,则 $Hg_i = H(h'_igh_i) = Hgh_i$,而 $g_iH = (h'_igh_i)H = h'_igH$,故 g_1, \ldots, g_n 即为所求.

问题 (5.6): 对群 G, 若 H 是 G 的有限子群,请证明: 一族 G 中的 $\{g_i\}_{i\in I}$,使得 $G=\bigcup_{i\in I} Hg_i=\bigcup_{i\in I} g_iH$.

证明. 由 G 分解成双陪集的无交并, 以及 (5.5) 得到.

问题 (5.7):请证明: 在 (5.2) 的条件下, 对 $g \in G$, 有如下事实成立:

- (1) $H/(H \cap gKg^{-1}) \to HgK/K, h(H \cap gKg^{-1}) \mapsto hgK$ 是良定的双射.
- (2) $(K \cap g^{-1}Hg)\backslash K \to H\backslash HgK, (K \cap g^{-1}Hg)k \mapsto Hgk$ 是良定的双射.

证明. 与 (2.3) 的证明实质相同, 故略.

问题 (5.8): 对 $G = GL_2(\mathbb{R})$, 我们记:

$$U = U_2(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) : n \in \mathbb{Z} \right\},$$

则对: $g=\begin{pmatrix} m & 0 \\ 0 & 1 \end{pmatrix}$, 其中 $0\neq m\in\mathbb{Z}$,请证明:UgU 分解为 U 的左陪集的数量和分解为右陪集的数量并不相同. 因而 (5.5) 中 H 是有限群的条件是必要的.

证明. 注意到
$$\binom{m}{0}\binom{1}{1}\binom{1}{0}\binom{1}{0}\binom{m^{-1}}{0}\binom{1}{0}=\binom{1}{0}mn$$
,故 $gUg^{-1}=U_2(m\mathbb{Z}),\,g^{-1}Ug=U_2(\frac{1}{m}\mathbb{Z})$,进而 $U/gUg^{-1}\cap U=[\mathbb{Z}:m\mathbb{Z}]=m$,而 $g^{-1}Ug\cap U=U$,故 $|g^{-1}Ug\cap U\setminus U|=1$. 进而由 (5.7) 得到.

补充说明: 这里的 (5.6) 在 $[G:H]<\infty$ 的条件下可以通过纯组合的方法证明 (Hall 定理), 此时可以放松 H 是有限群的限制 (如果你对此感兴趣, 你可以自己尝试证明). 也就是说, 只要 |H| 和 [G:H] 中的一者是有限的, 则我们便可以得到 (5.6) 的结论.