Hands-on PVS for mathematicians!

Case of Study:

The infinitude of primes by Fürstenberg's topological argument

PVS for Mathematicians - Tutorial CICM+LSFA 2025

Thaynara Arielly de Lima (IME)

Mauricio Ayala-Rincón (IE)

Funded by the Brazilian agencies CAPES, CNPq, and FAPDF

Brasília D.F., Oct 6, 2025

Plan

- 1 Fürstenberg's Topological Argument
- 2 Hands-on!

Infinitude of Primes:

Fürstenberg's Topological Argument [2], [1]

Goal: formalize the Infinitude of Primes following Fürstenberg's topological argumentation.

Let's see the pen-and-paper proof.

Infinitude of Primes:

Fürstenberg's Topological Argument

Topology

A topology over a set X is a collection τ of subsets of X satisfying the following properties:

- i) \emptyset and X belong to τ ;
- ii) The union of elements of any sub-collection of τ belongs to τ ;
- iii) The intersection of elements of a finite sub-collection of au belongs to au.
 - A set X equipped with a topology τ is called a **topological space**.
 - A subset U of a topological space X, that belongs to the collection τ , is called an **open set of** X.

Example

Consider the sets $X=\mathbb{Z}$ and $N_{a,b}=\{a+n\cdot b; n\in\mathbb{Z}\}$, $a,b\in\mathbb{Z}$, where b>0. A set $O\subseteq\mathbb{Z}$ is called open if and only if $O=\emptyset$ or for every $a\in O$, there is an integer b>0 such that $N_{a,b}\subseteq O$.

The collection τ , induced by the open sets of type O, is a topology over \mathbb{Z} :

- i) \emptyset and \mathbb{Z} belong to τ ;
- ii) By the definition of elements of τ , the arbitrary union of subsets of τ belongs to τ ;
- iii) If O_1 and O_2 belong to τ then $O_1 \cap O_2$ belongs to τ .
 - In fact, consider $a \in O_1 \cap O_2$. There are b_1 and b_2 such that $N_{a,b_1} \subseteq O_1$ e $N_{a,b_2} \subseteq O_2$. Logo, $N_{a,b_1 \cdot b_2} \subseteq O_1 \cap O_2$.

- **Statement 1:** Any nonempty open set is infinite.
 - ▶ Proof: if $O \neq \text{then } N_{a,b} \subset O$, for some $a \in O$ and b > 0.
- Statement 2: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is an open set.

- **Statement 1:** Any nonempty open set is infinite.
 - Proof: if $O \neq \text{then } N_{a,b} \subset O$, for some $a \in O$ and b > 0.
- Statement 2: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is an open set.

Closed sets

A subset A of a topological space X is called a closed set if and only if its complement A^c is an open set in X.

• Statement 3: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is closed.

$$N_{a,b}=\mathbb{Z}\setminus\bigcup_{i=1}^{b-1}N_{a+i,b}$$
 and
$$\bigcup_{i=1}^{a}N_{a+i,b}$$
 is an open set.

Some properties of closed sets

If X is a topological space then:

- P1. \emptyset and X are closed sets:
- P2. The finite union of closed sets is a closed set;
 - ▶ Consider A_i , $1 \le i \le n$ closed sets. Thus,

$$X \setminus \bigcup_{i=1}^n A_i = \bigcap_{i=1}^n (X \setminus A_i)$$
 is an open set

- P3. The arbitrary intersection of closed sets is a closed set.
 - ▶ Consider A_{α} , a family of closed sets. Thus,

$$X \setminus \bigcap A_{\alpha} = \bigcup (X \setminus A_{\alpha})$$
 is an open set

• Statement 4: Consider k an integer number such that $k \neq 1$ and $k \neq -1$. Therefore, k has a prime divisor p and, consequently, $k \in N_{0,p}$. Also,

$$\mathbb{Z}\setminus\{-1,1\}=\bigcup_{p\in\mathbb{P}}N_{0,p}$$
, where \mathbb{P} denotes the set of prime numbers.

If \mathbb{P} is finite then:

- $\bigcup_{p\in\mathbb{P}} N_{0,p}$ is a closed set (**Statement 3 + P2**);
- Thus, $\{-1,1\}$ is an open set (By the definition of a closed set).
- ullet Consequently $\{-1,1\}$ is an infinite set. (**Statement 1**)

Therefore, the set \mathbb{P} of the prime numbers is infinite.

References

Aigner, Martin and Ziegler, Günter M. Proofs from THE BOOK. 6th.Springer (2018)

Hillel Fürstenberg. On the Infinitude of Primes. Amer. Math, Monthly. 62(5) (1955)

Hands-on!

Upload the exercise files.