

DESCRIPTION

The CM6327A is C-Media's new Audio SOC IC designed for advanced VoIP applications. It boasts a high-performance mono ADC, as well as I2C interface, that allows for communication with various microprocessors and DSPs. The CM6327A offers low-noise, high-quality speech input, important when it comes to recording or broadcasting conference calls or public speeches.

Also, the CM6327A integrates all essential analog modules, including 1-ch ADC, PLL, regulator and USB transceiver modules, along with an EEPROM that allows you to customize the product string, PID and VID. Sampling rates of 8/11.025/16/22.05/32/44.1 and 48 KHz, high-quality 16-bit resolutions and user-friendly general purpose inputs and outputs for customized functions are supported. In addition, many features can be programmed using an external EEPROM and MCU, which are easily controlled via the HID software interface.

FEATURES

- USB specification 2.0 full speed-compliant and
 USB IF-certified
- USB audio device specification 1.0- and USB HID specification 1.1-compliant
- Supports control/interrupt/isochroous data transfers
- USB suspend/resume and remote wake-up support
- Embedded USB transceiver and power-on reset circuit
- Single 12MHz crystal input with on-chip PLL
- Supports series number string for operation system detection
- Serial EEPROM programming interface supports customized VID/PID/product and manufacture strings
- EEPROM interface supports 24C02 data format

BLOCK DIAGRAM

TABLE OF CONTENTS

1	Descri	ption and	a Overview	4
2	Featu	res		4
3	Pin De	scription	ns	6
	3.1	Pin Ass	signment by Pin Number	6
	3.2	Pin-Ou	ıt Diagram	6
	3.3	Pin Sig	gnal Descriptions	7
4	Block	Diagram		9
5	Orderi	ing Inforr	mation	10
6	USB A	udio Topo	ology and Descriptions	11
	6.1	USB Au	udio Topology	11
	6.2	Device	P Descriptors	11
	6.3	Config	uration Descriptors	12
	6.4	Standa	ard HID Interface Descriptors	13
7	Functi	on Block	Descriptions:	14
	7.1	I2C Int	erface:	14
	7	7.1.1	Master Mode:	14
	7	7.1.2	Slave Mode:	15
	7	7.1.3	EEPROM Data Format	19
8	Electr	ical Char	racteristics:	21
8.1	Absolu	ıte Maxin	mum Rating	21
8.2	Opera	tion Con	ditions	21
8.3	Electr	ical Para	meters	22
9	Analog	g Perform	nance	23
	9.1	ADC Fr	requency Response	23
	9.2	ADC TH	HD + N	23
Б. С.				2.4

Release Notes

Revision	Date	Description		
		Updated the EEPROM data format		
4.9	2010/4/27	Address 0x09: Reserved		
1.8	2010/4/26	Address 0x12 (Bit2): Reserved (0: Default)		
		Address 0x13: Reserved		
1.9	2012/9/27	Revised format		
		Updated the EEPROM Data Format		
2.0	2012/10/1	Address 0x02(Bit3):Reserved		
2.0		Address 0x03(Bit7):Reserved		
		Address 0x0a:Reserved		

1 Description and Overview

This is a highly integrated single-chip USB audio solution that is built for a wide range of USB audio controller and applications. Based on our experiences designing and manufacturing PC USB Audio peripherals, as well as recommendations from vendors, C-Media has designed this single-chip solution to make it easier for vendors to integrate their products, and increase their revenues.

The CM6327A is C-Media's new Audio SOC IC designed for advanced VoIP applications. It boasts a high-performance mono ADC, as well as I2C interface, that allows for communication with various microprocessors and DSPs. The CM6327A offers low-noise, high-quality speech input, important when it comes to recording or broadcasting conference calls or public speeches.

The CM6327A integrates all essential analog modules, including 1-ch ADC, PLL, regulator and USB transceiver modules, along with an EEPROM that allows you to customize the product string, PID and VID. Sampling rates of 8/11.025/16/22.05/ 32/44.1 and 48 KHz, high-quality 16-bit resolutions and user-friendly general purpose inputs and outputs for customized functions are supported. Many features can be programmed using an external EEPROM and MCU, which are easily controlled via the HID software interface.

2 Features

- USB spec. 2.0 full speed-compatible and USB IF-certified
- USB audio device class 1.0- and USB HID specification 1.1-compliant
- Supports control/interrupt/isochroous data transfers
- USB suspend/resume and remote wake-up support
- Embedded USB transceiver and power-on reset circuit
- Single 12MHz crystal input with on-chip PLL
- Supports series number string for operation system detection
- Serial EEPROM programming interface supports customized VID/PID/product and manufacture strings for device name changes and configurations
- EEPROM interface support 24C02 data format
- Mono ADC input:

ADC sampling rate of 8K/11.025K/16K/22.05K/32K/44.1K/48KHz, and 16-bit resolution

Dynamic range: 96db, THD+N: -89~96db

Digital linear microphone gain control function (-16db~45db)

- 1.0Vrms input swing biased at 2.25V
- Supports Microsoft HID functions
- Supports I2C (master/slave) control interface for external controller used

CM6327A

USB Single-Chip Audio Solution for Mono Microphone

- I2C MCU read/write support 16 bytes data transfer bandwidth
- I2C interface support extra interrupt pin INT
- MCU/EEPROM/GPIO control via HID/vender command interface
- USB audio topology has 1 input terminal, 1 output terminal, 1 selector unit and 1 feature unit
- Supports 2 LED indicator pins:
 - 1. On/Off/Operation
 - 2. Recording mute
- Supports 8 GPIO and 2 GPI pins
- Isochronous transfer uses adaptive mode with Internal PLL for synchronization
- Embedded power-on-reset block
- Single 5V power supply with embedded 5V to 3.3V regulator
- Industry standard LQFP-48 pin package
- Compatible with Win2000/WinXP/Vista/Win7/MAC/OSX/Linux/Wii/XBOX360/PS2/PS3
- Supports hardware SDK tool for third-party software development

3 Pin Descriptions

3.1 Pin Assignment by Pin Number

Pin	Signal Name						
1	PDSW	13	N.C.	25	AVSS	37	AVDD
2	N.C.	14	HID_EN	26	MIC_IN	38	REGV_4V5
3	TEST	15	N.C.	27	N.C.	39	N.C.
4	GPIO_1	16	N.C.	28	VREF	40	GPI_1
5	GPIO_2	17	I2C_SCLK	29	VBIAS	41	GPI_2
6	GPIO_3	18	I2C_SDAT	30	N.C.	42	GPIO_5
7	GPIO_4	19	I2C_INT	31	AVDD	43	GPIO_6
8	LED_1	20	USB_DP	32	AVDD	44	GPIO_7
9	LED_3	21	USB_DM	33	AVSS	45	GPIO_8
10	XTAL_I	22	DVSS	34	AVSS	46	MUTE_REC
11	XTAL_O	23	REGV_3V3	35	N.C.	47	RM_Wake
12	N.C.	24	DVDD5V	36	AVDD	48	DVSS

3.2 Pin-Out Diagram

3.3 Pin Signal Descriptions

No.	Symbol	Туре	Description
4	PDSW	OD EV	Power-down switch output
1	PDSW	OD, 5V	(0: Normal operation; 1: Suspend)
2	N.C.	N.C.	N.C.
3	TEST	DI, PD	Test mode select
3	1231	DI, FD	(0: Normal Mode; 1: Test Mode)
4	GPIO_1	DIO	General purpose I/O pin
5	GPIO_2	DIO	General purpose I/O pin
6	GPIO_3	DIO	General purpose I/O pin
7	GPIO_4	DIO	General purpose I/O pin
8	LED_1	DO	LED (Play or Record)
9	LED_3	DO	LED (Mute Record)
10	XTAL_I	DI	Input pin for 12MHz oscillator
11	XTAL_O	DO	Output pin for 12MHz oscillator
12	N.C.	N.C.	N.C.
13	N.C.	N.C.	N.C.
14	HID_EN	DI, PU	HID bottom function enable
	THO_EN	DI, 10	(0: Disable; 1: Enable)
15	N.C.	N.C.	N.C.
16	N.C.	N.C.	N.C.
17	I2C_SCLK	OD, DIO	I2C serial clock/EEPROM 24c02 serial clock
18	I2C_SDAT	OD, DIO	I2C serial data/EEPROM 24c02 serial data
19	I2C_INT	DO	I2C interrupt output
20	USB_DP	AIO	USB D+
21	USB_DM	AIO	USB D-
22	DVSS	Р	Digital ground
23	REGV_3V3	AO	5V->3.3V regulator output
24	DVDD5V	Р	5V power supply to internal regulator
25	AVSS	Р	Analog ground
26	MIC_IN	Al	MIC input
27	N.C.	N.C.	N.C.
28	VREF	AO	2.25V reference voltage output

29	VBIAS	AO	MIC bias voltage
30	N.C.	N.C.	N.C.
31	AVDD	Р	5V analog power for analog circuit
32	AVDD	Р	5V analog power for analog circuit
33	AVSS	Р	Analog ground
34	AVSS	Р	Analog ground
35	N.C.	N.C.	N.C.
36	AVDD	Р	5V Analog power for analog circuit
37	AVDD	Р	5V Analog power for analog circuit
38	REGV_4V5	AO	4.5V regulator output
39	N.C.	N.C.	N.C.
40	GPI_1	DI, PU	General purpose input pin (VU)
41	GPI_2	DI, PU	General purpose input pin (VD)
42	GPIO_5	DIO	General purpose I/O pin
43	GPIO_6	DIO	General purpose I/O pin
44	GPIO_7	DIO	General purpose I/O pin
45	GPIO_8	DIO	General purpose I/O pin
46	MUTE_REC	DI, PU	HID MIC Record Mute
47	RM_Wake	DI, PU	Remote wakeup pin to make PC resume from suspend
48	DVSS	Р	Digital ground

4 Block Diagram

5 Ordering Information

Model	l Number	Package	Operating Ambient Temperature	Supply Range
CM	6327A	48-Pin LQFP, 7mm × 7mm × 1.45mm (Plastic)	0°C to +70°C	DVdd = 5V, AVdd = 5V

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	MAX.		
Α		1.6		
A1	0.05	0 15		
A2	1.35	1.45		
c1	0.09	0.16		
D	9.00 BSC			
D1	7.00 BSC			
E	9.00 BSC			
E1	7.0	DO BSC		
0	0.5	BSC		
ь	0.17	0.27		
L	0.45 0.75			
L1	1	REF		

6 USB Audio Topology and Descriptions

6.1 USB Audio Topology

6.2 Device Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	12	Descriptor length
1	bDescriptorType	1	01	Device descriptor
2	bcdUSB	2	0110	USB 1.1-compliant
4	bDeviceClass	1	00	Device class specified by interface
5	bDeviceSubClass	1	00	Device subclass specified by interface
6	bDeviceProtocol	1	00	Device protocol specified by interface
7	bMaxPacketSize0	1	10	Endpoint zero packet size
8	idVendor	2	0d8c	Vendor ID
10	idProduct	2	0134	Product ID
12	bcdDevice	2	0100	Device release number
14	iManufacturer	1	03	Manufacturer string descriptor index
15	iProduct	1	01	Product string descriptor index
16	iSerialNumber	1	00 or 03(*)	Serial number string descriptor index
17	bNumConfigurations	1	01	Number of configurations

Note 1: When valid EEPROM is detected, Vendor ID and Product ID will be replaced by the content of the EEPROM $\frac{1}{2}$

Note 2: iSerialNumber will be valid only if the external EEPROM contains this info

6.3 Configuration Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	02	Configuration descriptor
2	wTotalLength	2	007f~00dd	Total length of data returned for this configuration
4	bNumInterfaces	1	03	Number of interfaces supported in configuration: 00: Control 02: ISO-IN 03: INT-IN (HID)
5	bConfigurationValue	1	01	Configuration value
6	iConfiguration	1	00	Index of string descriptor describing this configuration
7	bmAttributes	1	a0 or 80 or e0 or c0	Bus-powered with remote wakeup support: 8'ha0 (PWRSEL_1 = 1, HID_EN = 1) Bus-powered with no remote wakeup: 8'h80 (PWRSEL_1 = 1, HID_EN = 0) Self-powered with remote wakeup support: 8'he0 (PWRSEL_1 = 0, HID_EN = 1)) Self-powered with no remote wakeup: 8'hc0 (PWRSEL_1 = 0, HID_EN = 0))
8	bMaxPower	1	32	Maximum power consumption from bus = 100mA: 8'h32 (50x2 mA) (PWRSEL_2 = 1)

6.4 Standard HID Interface Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	04	Interface descriptor
2	bInterfaceNumber	1	02	Interface number: 02
3	bAlternateSetting	1	00	Alternate interface
4	bNumEndpoints	1	01	Number of endpoints used by this interface
5	bInterfaceClass	1	03	HID interface class
6	bInterfaceSubClass	1	00	Subclass code
7	bInterfaceProtocol	1	00	Protocol code
8	ilnterface	1	00	Interface string descriptor index

Class-specific HID Interface Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	21	HID descriptor type
2	bcdHID	2	0100	HID class version
4	bCountryCode	1	00	No country code
5	bNumDescriptors	1	01	One HID class descriptor
6	bDescriptorType	1	22	Report Descriptor
7	wDescriptorLength	2	0032 / 001a	HID class descriptor length in byte: 50 / 26 bytes
				(Enable / Disable HID Button)

Standard HID Interrupt In Endpoint Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	07	Descriptor length
1	bDescriptorType	1	05	Endpoint descriptor
2	bEndpointAddress	1	87	IN endpoint, endpoint number: 7
3	bmAttributes	1	03	Interrupt endpoint
4	wMaxPacketSize	2	0010	Maximum packet size: 16 bytes
6	bInterval	1	01	1ms

7 Function Block Descriptions

7.1 I2C Interface

7.1.1 Master Mode

7.1.2 Slave Mode

"7-bit slave address = 7'b0111000"

On the MCU serial interface, the CM6327 serves as a slave device with bit rate up to 400Kbps (fast mode). The MCU can write data to the CM6327A or read data from the CM6327A (no size limitations when using the I2C Interface). Since the host side and MCU both have access to all the internal registers, access contention when both host and MCU try to access the same register should be avoided upon application. The CM6327A's 7-bit slave address is assigned as 7'b0111000.

When data is written by the MCU, the CM6327A will NOT transfer any interrupts to the PC until the INT bit of the I2C control register has been set by the MCU. The USB host will keep polling the upward HID report every 1ms. When any button is pressed or released, or there is incoming MCU data, the CM6327A will transfer 16 bytes of HID report to the USB host.

In I2C Slave Mode, the CM6327A has one open-drain input pin (SCLK) from where it receives the serial clock from the MCU, and one open-drain I/O pin (SDAT) from where it sends or receives serial signals to/from the MCU. As shown below, SDAT should be stable when SCLK is high, and can transition only when SCLK is low.

Bit Transfer on the MCU Interface

START and STOP conditions shown below are the exception. Every transaction begins from a START, and ends with a STOP, or another START (repeated START).

START and STOP Conditions

The figure below demonstrates a typical transaction. After every 8 bits sent by the transmitter, the receiver should send one bit low for positive acknowledgement or one bit high for negative acknowledgement. After the negative acknowledgement, a STOP or repeated START should follow. The next figure shows more details about the acknowledgement bit. Note that SCLK is always driven by the master.

Data Transfer on the MCU Interface

The figure below shows a complete data transfer. After a START, the MCU should send a 7-bit slave address (7'b0111000) first, with the 8th bit denoting a read transfer when it's high, or a write transfer when it's low. The first acknowledgement always comes from the CM6327A.

During the write transfer, the MCU continues acting as the master, and the transfer direction is not changed. The following figure gives an example of one byte write transfer.

	MCU write:															
	S	0x70	0	addr	0	Byte 0	0	Byte 1	0		0	Byte N	0	Р		
•	From CM6327A to MCU								From MCU to CM6327A							
	S START condition								P STOP condition							
	0 Positive acknowledge							1 Negative acknowledge								
Byte N							(One byte	data							

The CM6327A's slave address is 0x70, which will also tell the CM6327A when it's receiving a write command. CM6327A regards the first coming data byte as the register address. The second data byte is the data content that the MCU writes at the register address. The CM6327A will auto-increment the register address to the next register address for the following data writes.

The figure below shows an example of a read transfer. The MCU read command cannot set the register address, so the MCU must use a write command to set the register address first, and then start the read command. Because the CM6327A auto-increments the register address, the second data byte will be the register data on the next address.

MCU read:

S	0x70	0	addr	0									
S	0x71	0	Byte 0	0	Byte 1	0		0	Byte N	1	Р		
		From	ı CM632	7A to M			Fr	om MCU t	to CM6	327A			
	S	STAR	T condit		P STOP condition								
0 Positive acknowledge								1 Negative acknowledge					
Byte n One byte of data													

CM6327A

The figure below gives a complete picture of a typical transaction between the MCU and CM6327A. After a START, the MCU should send a 7-bit slave address (7'b0111000) first, with the 8th bit denoting a read transfer when it's high, or a write transfer when it's low.

1	MCU w	rite:												
	S	0x70	0	addr	0	Byte 0	0	Byte 1	0		0	Byte N	0	Р
I	MCU r	ead:												
	S	0x70	0	addr	0									
	S	0x71	0	Byte 0	0	Byte 1	0		0	Byte N	1	Р		
From CM6327A to MCU						CU			Fre	om MCU 1	to CM6	327A		
S START condition									P ST	OP condi	tion			
0 Positive acknowledge						e			1 Ne	egative ac	cknowl	edge		
Byte N One byte of data														

During a write transfer, the MCU acts as the transmitter. The CM6327A will regard the first byte of data received as the start register address. The following DATA bytes are the contents of the registers that the MCU has requested. In a read transfer, two transactions are necessary. The MCU resets the start register address by the first transaction, then direction changes for the MCU to receive data in the second transaction.

7.1.3 **EEPROM Data Format**

Address	Description
0x00	Magic word ("C", 8'h43)
0x01	Magic word ("M", 8'h4D)
	EEPROM Content Setting (EEPROM_OPTION_1)
	bit0: Manufacture String Valid? (0: No, 1: Yes)
	bit1: Product String Valid? (0: No, 1: Yes)
	bit2: Serial Number Valid? (0: No, 1: Yes)
0x02	bit3: Reserved
	bit4: Recording (ADC) initial control Valid? (0: No, 1: Yes)
	bit5: ADC gain range Control Valid? (0: No, 1: Yes)
	bit6: Disable Selector unit? (0: No, 1: Yes)
	bit7: Enable Remote Wakeup? (0: Disable, 1: Enable)
	Recording (ADC) initial-L (EEPROM_OPTION_2)
	bit[5:0]: ADC(unit Fa) initial Volume L-byte
0x03	(6'h2E ~ 6'h00, 30~ -16dB, -1dB/step)
	bit6: Mute_fa (ADC) initial Value (0: Un-Mute, 1: Mute)
	bit7: Reserved
	Recording (ADC) initial-H (EEPROM_OPTION_3)
	(1)bit[3:0]: ADC (Unit Fa) initial volume H-byte
0x04	(4'hf ~ 4'h0, 15 ~ 0dB, -1dB/step)
0x04	Bit[4]: control ADC HP filter by EEPROM (0 : No, 1 : Yes)
	Bit[5]: ADC HP filter enable (0 : Disable, 1 : Enable)
	Bit[7:6]: Reserved
0x05	Recording (ADC) max range Control_L (EEPROM_OPTION_4)
0x05	bit[7:0]: ADC (Unit fa) max. Volume[7:0]
0x06	Recording (ADC) max. range Control_H (EEPROM_OPTION_5)
UXU6	bit[7:0]: ADC (Unit fa) max. Volume[15:8]
0x07	Recording (ADC) min range Control_L (EEPROM_OPTION_6)
UXU7	bit[7:0]: ADC (Unit fa) min. Volume[7:0]
	Recording (ADC) min. range Control_H (EEPROM_OPTION_7)
0~00	
0x08	bit[7:0]: ADC (Unit fa) min. Volume[15:8]

0x0a	Reserved
001	Manufacture string 1 length: this number doesn't include the first 2 bytes of the
0x0b	string descriptor, and its unit is one Unicode word (EEPROM_OPTION_A)
00	Product string 2 length: this number doesn't include the first 2 bytes of the
0х0с	string descriptor, and its unit is one Unicode word (EEPROM_OPTION_B)
0x0d	Serial number string 3 length: this number doesn't include the first 2 bytes of
Oxod	the string descriptor and its unit is one Unicode word (EEPROM_OPTION_C)
0x0e	VID (low byte) (EEPROM_OPTION_D)
0x0f	VID (high byte) (EEPROM_OPTION_E)
0x10	PID (low byte) (EEPROM_OPTION_F)
0x11	PID (high byte) (EEPROM_OPTION_10)
	misce reg (EEPROM_OPTION_11)
0x12	Bit0: Boot gain (volume boot gain 18dB; using digmic boost gain =18dB)
0x12	Bit1: Enable PLL adjustment (0: No, 1: Yes)
	Bit2: Reserved (0 : default)
0x13	Reserved
0x14 ~ 0x4f	Reserved (60 bytes)
0F0 0/F0 . V 4)	Manufacture string (X bytes): only fill one byte of Unicode in this content, HW
0x50 ~0x(50+X-1)	will add the other byte 0x00
0x(50+X)~	Product string (Y bytes): only fill one byte of Unicode in this content, HW will
0x(50+X+Y-1)	add the other byte 0x00
0x(50+X+Y)~	Serial number string (Z bytes): only fill one byte of Unicode in this content, HW
0x(50+X+Y+Z-1)	will add the other byte 0x00
Others	Reserved

8 Electrical Characteristics

8.1 Absolute Maximum Rating

Symbol	Parameter	Value	Unit
Dvmin	Min. digital supply voltage	- 0.3	٧
Dvmax	Max. digital supply voltage	+ 6	٧
Avmin	Min. analog supply voltage	- 0.3	٧
Avmax	Max. analog supply voltage	+ 6	٧
Dvinout	Voltage on any digital input or output pin	-0.3 to +5.5	٧
Avinout	Voltage on any analog input or output pin	-0.3 to +5.5	٧
T _{stg}	Storage temperature range	-40 to +125	0C
Tj	Junction operating temperature (commercial)	0~+115	0C
ESD (HBM)	ESD human body mode	4000	٧
ESD (MM)	ESD machine mode	400	٧
Latch Up	Class-3	200	mA

8.2 Operation Conditions

Operation conditions									
	Min	Тур	Max	Unit					
Analog supply voltage	4.35	5.0	5.5	٧					
Digital supply voltage	4.35	5.0	5.5	٧					
Operation power consumption	-	33	-	mA					
Standby power consumption	-	28	-	mA					
Suspend mode power consumption	-	410	-	uA					
Operating ambient temperature	0	-	70	°C					

^{*}Notes: Test environment under 25°C, 5.0V, 48K sample rate;

Max. output is playing 1K full-scale sine wave, typical output is playing music

8.3 Electrical Parameters

	Min	Тур	Max	Unit
THD + N (20 ~ 20KHz)	-89	-	-96	dB
Dynamic range	-	96	-	dB
Frequency response 48KHz	20	-	20K	Hz
Frequency response 44.1KHz	20	-	20K	Hz
Input voltage (rms)	-	1.2	-	Vrms

9 Analog Performance

9.1 ADC Frequency Response

Audio Precision A-D FREQUENCY RESPONSE 05/15/08 12:27:17 dx=-19.980 kHz dy=-0.003 dB +0 -0.5 0.5 В -1.5 -2 2 -2.5 -2.5 20 2 20k 50 100 200 500 5k 10k Sweep Line Style Тга се Color Thick Data Axis Comment Solid DSP Antr.Level A Yellow Le ft DSP Anir.Level B Green Cyan Solid Right 2 DSP AnIr.Level B 3 Solid Left

Msta-AD Frequency Response.at2c

9.2 ADC THD + N

CM6327A

REFERENCE

- USB specification 2.0-compliant
- USB audio device class specification 1.0-compliant

- End of Datasheet -

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL: +886-2-8773-1100 FAX: +886-2-8773-2211

E-MAIL: sales@cmedia.com.tw

Disclaimer:

Information furnished by C-Media Electronics Inc. is believed to be accurate and reliable. However, no responsibility is assumed by C-Media Electronics Inc. for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of C-Media. Trademark and registered trademark are the property of their respective owners.