EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

SUBIECTUL I (15 puncte)

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură pentru mărimea fizică exprimată prin produsul $m \cdot \vec{a}$ este:

a. $kg \frac{m^2}{s^2}$

b. $kg\frac{m}{s}$

d. $kg \frac{m}{s^2}$ (2p)

2. Considerând că notațiile sunt cele utilizate în manualele de fizică, expresia energiei cinetice este:

a. mgh

b. $\frac{mv^2}{2}$

c. $\frac{kx^2}{2}$

(3p)

3. Un mobil aflat în mişcare rectilinie uniformă, parcurge o fracțiune f din drumul său cu viteza v_1 , iar restul drumului cu viteza v_2 . Viteza medie a mobilului este:

a. $\frac{v_1 v_2}{f v_2 + (1 - f) v_1}$ **b.** $\frac{v_1 v_2}{f v_1 + (1 - f) v_2}$ **c.** $\frac{v_1 + v_2}{2}$ **d.** $\frac{f v_1 + (1 - f) v_2}{2}$ (2p)

4. Două bare de dimensiuni identice, dar din materiale diferite, sunt acționate axial de aceeași forță. Dacă raportul deformărilor produse de forțe este $\frac{\Delta \ell_1}{\Delta \ell_2} = n$, raportul $\frac{E_1}{E_2}$ al modulelor de elasticitate pentru cele două materiale este:

a. n

c. n^2

(5p)

5. Un corp este lansat vertical în sus cu viteza inițială v, în câmp gravitațional terestru, de la nivelul la care energia potențială este nulă. În absența frecărilor, înălțimea h la care energia sa cinetică este egală cu energia potențială, va fi:

c. $\frac{v^2}{4a}$

(3p)