

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 9/12, 5/00, 1/20, 15/00, C12P 21/06, 19/34, C07K 1/00, C07H 21/02, 21/04

(11) International Publication Number:

WO 98/01542

(43) International Publication Date:

15 January 1998 (15.01.98)

(21) International Application Number:

PCT/US97/12296

A1

(22) International Filing Date:

8 July 1997 (08.07.97)

(30) Priority Data: 08/676.974

8 July 1996 (08.07.96)

US

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive, Oakland, CA 94612-3550 (US).

(72) Inventor: COLLINS, Kathleen; University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720-3204 (US).

(74) Agent: OSMAN, Richard, Aron; Science & Technology Law Group, Suite 3200, 268 Bush Street, San Francisco, CA 94104 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: HUMAN TELOMERASE

(57) Abstract

The invention provides methods and compositions relating to a human telomerase and related nucleic acids, including four distinct human telomerase subunit proteins called p140, p105, p48 and p43 having human telomerase-specific activity. The proteins may be produced recombinantly from transformed host cells from the disclosed telomerase encoding nucleic acids or purified from human cells. Also included are human telomerase RNA components, as well as specific, functional derivatives thereof. The invention provides isolated telomerase hybridization probes and primers capable of specifically hybridizing with the disclosed telomerase gene, telomerase-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis, therapy and in the biopharmaceutical industry.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania AM Armenia AT Austria AU Australia AZ Azerbeijan BA Bounia and Herzegovina BB Barbados BE Belgium BF Burkina Faso BG Bulgaria BJ Benin BR Brazil BY Belanus CA Canada CF Central African Republic CG Congo CH Switzerland CI Côte d'Ivoire CM Cameroon CN China CU Cuba CZ Czech Republic DE Germany DK Denmark EE Estonia

Human Telomerase

INTRODUCTION

Field of the Invention

The field of this invention is an enzyme involved in cell replication.

Background

5

10

15

DNA at chromosome ends is maintained in a dynamic balance of loss and addition of telomeric simple sequence repeats. Sequence loss occurs during cell replication, in part from incomplete replication of chromosome termini by DNA-dependent DNA polymerasc. Telomeric repeat addition is catalyzed by the enzyme telomerase: a ribonucleoprotein enzyme which uses a short region within the RNA as a template for the polymerase reaction. Although cells can maintain a constant number of telomeric repeats by balancing repeat loss and addition, not all cells do so. Human germline and cancer cells maintain a constant number of telomeric repeats, while normal human somatic cells lose telomeric repeats with each cycle of cell division. Cells which do not maintain stable telomere length demonstrate a limited proliferative capacity: these cells senesce after a number of population doublings correlated with the erosion of telomeres to a critical minimum length.

Because normal somatic cells do not appear to express or require telomerase and do not maintain chromosome ends, and because all or almost all cancer cells express high levels of telomerase activity and maintain chromosome ends, molecules that inhibit or alter telomerase activity could provide effective and non-toxic anti-cancer agents. Similarly, inhibition of telomerase in parasitic or infectious agents (e.g. trypanosomes, fungi, etc.) could provide a specific approach for reducing the viability or proliferation of these agents.

1

Conversely, activation of telomerase in proliferation-restricted cells (such as normal somatic cells of the blood, vasculature, liver, skin, etc.) could provide a mechanism for promoting additional proliferative lifespan.

Relevant Literature

5

10

15

20

Purification of telomerase from the ciliate Tetrahymena and cloning of genes encoding two protein components of the enzyme is reported in Collins et al. (1995) Cell 81, 677-686 and copending US patent application No. 08/359,125, filed 19 DEC 1994. Literature relating to human telomerase include; Kim et al. (1994) Science 266, 2011-2014; and Feng et al. (1995) Science 269, 1236-1241. Literature relating to telomerase template modifications include Autexier et al. (1994) Genes and Devel 8, 563-575; Yu et al. (1991) Cell 67, 823-832; and Yu et al. (1990) Nature 344, 126-132. The Washington University-Merck EST Project contains an EST, reportedly deposited by Hillier et al. on Nov 1, 1995, which has sequence similarity with the 3' end of SEQ ID NO:3, disclosed herein. For a general review, see Blackburn et al., Eds. (1995) Telomeres, Cold Spring Harbor Laboratory Press.

SUMMARY OF THE INVENTION

The invention provides methods and compositions relating to a human telomerase and related nucleic acids. Included are four distinct human telomerase subunit proteins, called p140, p105, p48 and p43 and telomerase protein domains thereof having telomerase-specific activity. The proteins may be produced recombinantly from transformed host cells from the subject telomerase encoding nucleic acids or purified from human cells. Also included are human telomerase RNA components, as well as specific, functional derivatives thereof.

25

30

The invention provides isolated telomerase hybridization probes and primers capable of specifically hybridizing with the disclosed telomerase gene, telomerase-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g. genetic hybridization screens for telomerase transcripts), therapy (e.g. gene therapy to modulate telomerase gene expression) and in the biopharmaceutical industry (e.g. reagents for screening chemical libraries for lead pharmacological agents and nucleic acid polymerase reagents).

SEQ ID LISTING

SEQ ID NO:1: p105 protein (amino acid sequence)

SEQ ID NO:2: p105 ambiguity maximized synthetic DNA

SEQ ID NO:3: p105 natural cDNA (the coding region is bp 97-2370)

SEQ ID NO:4: p105 E. coli optimized synthetic DNA

5 SEQ ID NO:5: p105 mammalian optimized synthetic DNA

SEQ ID NO:6: telomerase RNA

15

20

25

30

SEQ ID NO:7: telomerase RNA template region modification 1

SEQ ID NO:8: telomerase RNA template region modification 2

SEQ ID NO:9: telomerase RNA template region modification 3

SEQ ID NO:10 p43 peptide (XXXEAAT[I/L]D[I/L]PQQGANK, where the three X's are indeterminant residues)

DETAILED DESCRIPTION OF THE INVENTION

The invention provides isolated human telomerase proteins including human telomerase proteins p140, p105, p48 and p43, having molecular weights of about 140kD, about 105kD, about 48kD and about 43kD, respectively, as determined by polyacrylamide gel electrophoresis under denaturing conditions (Matsudaira and Burgess (1978) Anal Biochem 87, 386-396), and telomerase protein domains thereof. The telomerase proteins comprise assay-discernable functional domains including RNA recognition motifs and subunit binding domains and may be provided as fusion products, e.g. with non-telomerase polypeptides. The human telomerase proteins of the invention, including the subject protein domains, all have telomerase-specific activity or function.

Telomerase-specific activity or function may be determined by convenient *in vitro*, cell-based, or *in vivo* assays: e.g. in vitro binding assays, cell culture assays, in animals (e.g. immune response, gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the molecular interaction of a telomerase protein with a binding target is evaluated. The binding target may be a natural intracellular binding target such as a telomerase subunit (e.g. another protein subunit or RNA subunit), a substrate, agonist, antagonist, chaperone, or other regulator that directly modulates telomerase activity or its localization; or non-natural binding target such a specific immune protein such as an antibody, or a telomerase specific agent such as those identified in assays described below.

5

10

15

20

25

30

Generally, telomerase-binding specificity is assayed by telomere polymerase activity (see. e.g. Collins et al. 1995, Cell 81, 677-686), by binding equilibrium constants (usually at least about 10° M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹), by the ability of the subject protein to function as negative mutants in telomerase-expressing cells, to elicit telomerase specific antibody in a heterologous host (e.g a rodent or rabbit), etc. In any event, the telomerase binding specificity of the subject telomerase proteins necessarily distinguishes ciliate telomerase, preferably distinguishes non-mammalian telomerases and more preferably distinguishes non-human telomerases. Exemplary telomerase proteins which are shown to have telomerase binding specificity include the telomerase RNA (e.g. SEQ ID NO:6) binding domains (e.g. RRM 1-4: SEQ ID NO:1, about residues 5-81, residues 115-192, residues 336-420, and residues 487-578, respectively). telomerase primer binding domains, nucleotide triphosphate binding domains and binding domains of regulators of telomerase such as nuclear localization proteins, etc. As used herein, a protein domain comprises at least 12, preferably at least about 20, more preferably at least about 40, most preferably at least about 80 residues of the disclosed respective SEQ ID NO.

The claimed human telomerase proteins are isolated or pure: an "isolated" protein is unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, and more preferably at least about 5% by weight of the total protein in a given sample and a pure protein constitutes at least about 90%, and preferably at least about 99% by weight of the total protein in a given sample. The telomerase proteins and protein domains may be synthesized, produced by recombinant technology, or purified from human cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g. Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel. et al., Greene Publ. Assoc., Wiley-Interscience, NY) or that are otherwise known in the art. An exemplary method for isolating each of human telomerase protein p140, p105, p48 and p43 from human cells is as follows:

Several thousand (two to twelve thousand) liters of HeLa cells are grown in spinner culture. The cells are lysed by dounce homogenization in low-salt buffer to produce crude cell lysates. The lysates are supplemented with 15% glycerol and centrifuged at $125.000~\mathrm{x}$

g for 50 minutes to obtain a first soluble fraction enriched for telomerase activity (S-100 fraction). The S-100 fraction is adjusted to 0.2 M ammonium sulfate, bound to SP Sepharosc

(Pharmacia), and developed with a gradient in sodium chloride, to obtain a second soluble fraction enriched for telomerase (SP fraction). The SP fraction is adjusted to about 0.3-0.4 M ionic strength and bound to Q Sepharose (Pharmacia), and developed with a gradient in sodium chloride, to obtain a third soluble fraction enriched for telomerase (Q fraction). The Q fraction is adjusted to about 0.3-0.4 M ionic strength, bound to phosphocellulose (Whatman), and developed with sodium chloride, to obtain a fourth soluble fraction enriched for telomerase (PC fraction). The PC fraction is adjusted to about 0.3-0.4 M ionic strength, bound to 2'Omethyl RNA oligonucleotide immobilized on streptavidin agarose (Sigma), and eluted with a electrophoresis sample medium comprising 5% β-mercaptoethanol and 2% Sodium Dodecyl Sulfate to obtain a fifth soluble fraction (2'Omethyl fraction). The 2'Omethyl fraction is separated by polyacrylamide gel electrophoresis under denaturing conditions (Matsudaira and Burgess (1978) Anal Biochem 87, 386-396) to obtain gel protein bands at a molecular weight of about 140kD, 105kD, 48kD or 43kD having telomerase activity. The gel bands are excised or blotted to obtain purified human telomerase proteins p140, p105, p48 and p43.

The subject telomerase proteins find a wide variety of uses including use in isolating, enriching for and concentrating telomerase RNA and telomerase proteins, as immunogens, in the methods and applications described below, as reagents in the biotechnology industries, and in therapy. Recombinant telomerases are used in many applications where nascent oligonucleotides of predetermined sequence are desired. For example, native nucleic acid molecules are labeled or extended at their 3' ends by addition of a predetermined repeat sequence (for double-stranded oligonucleotides, both ends of the molecule may be tagged). Oligonucleotides complementary to the repeat are then used to amplify, sequence, affinity purify, etc. the nucleic acid molecules. The use of a repeat sequence for 3' end tagging improves specificity and provides sequence alternatives compared with non-templated enzymes presently available for this purpose, e.g. terminal transferase. Repeats encoding restriction enzyme sites provide repeat tagging to facilitate cloning and the use of telomerase alleviates the restrictive conditions required for optimal ligation with available ligase enzymes. Telomerase also finds use in regulating cell growth

or increasing cell density tolerance; for example, cells contacted with an effective amount of exogenous telomerase to overcome the growth control limitation otherwise imposed by short telomere length. Telomerase may be introduced, expressed, or repressed in specific populations of cells by any convenient way such as microinjection, promoter-specific expression of recombinant enzyme, targeted delivery of lipid vesicles, etc. Advantageously, only a brief period of telomerase activity is required to allow many generations of continued proliferation of the contacted cell, due to the ability of telomerase to extend telomeres in one cell cycle by more sequence than is lost with each cell division.

The invention provides natural and non-natural human telomerase-specific binding agents including substrates, agonist, antagonist, etc., methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, human telomerase-specific agents are useful in a variety of diagnostic and therapeutic applications. Novel human telomerase-specific binding agents include human telomerase-specific receptors, such as somatically recombined protein receptors like specific antibodies or T-cell antigen receptors (see, e.g Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and other natural intracellular binding agents identified with assays such as one-, two- and three-hybrid screens, non-natural intracellular binding agents identified in screens of chemical libraries such as described below, etc. Agents of particular interest modulate human telomerase function, e.g. human telomerase antagonists and find use methods for modulating the binding of a human telomerase or telomerase protein to a human telomerase binding target.

For diagostic uses, the binding agents are frequently labeled, such as with fluorescent, radioactive, chemiluminescent, or other easily detectable molecules, either conjugated directly to the binding agent or conjugated to a probe specific for the binding agent. Binding agents also find use in modulating the telomerase activity present in a cell. For example, isolated cells, whole tissues, or individuals may be treated with a telomerase binding agent to activate, inhibit, or alter the specificity of telomerase assembly, localization, substrate interaction, or synthesis activity. Effectively treated cells have increased or decreased replication potential, or suffer from loss of proper telomere structure (resulting in lethality). These binding agents also find therapeutic use to control cell proliferation; for example, the uncontrolled growth of transformed cells (e.g. cancer cells) is managed by administration to the cells or patient comprising such cells of a telomerase

binding agent which reduces telomerase activity. In contrast to many current chemotherapies, the present invention provides enhanced specificity of lethality, with minimum toxicity to dividing yet normal somatic cells.

5

10

15

20

25

30

The amino acid sequences of the disclosed telomerase proteins are used to backtranslate telomerase protein-encoding nucleic acids optimized for selected expression systems (Holler et al. (1993) Gene 136, 323-328; Martin et al. (1995) Gene 154, 150-166) or used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural telomerase encoding nucleic acid sequences ("GCG" software, Genetics Computer Group, Inc, Madison WI). As examples, SEQ ID NO:2 discloses an ambiguity-maximized p105 coding sequence encompassing all possible nucleic acids encoding the full-length p105 protein. SEQ ID NO:3 discloses a natural human cDNA sequence encoding p105, SEQ ID NO:4 is a p105 coding sequence codon-optimized for E. coli, SEQ ID NO:5 is a p105 coding sequence codon optimized for mammalian cell expression. Telomerase encoding nucleic acids may be part of human telomerase-expression vectors and may be incorporated into recombinant host cells, e.g. for expression and screening, transgenic animals, e.g. for functional studies such as the efficacy of candidate drugs for disease associated with human telomerase-mediated signal transduction, etc. Expression systems are selected and/or tailored to effect human telomerase protein structural and functional variants through alternative post-translational processing.

The invention also provides nucleic acid hybridization probes and replication/amplification primers having a human telomerase cDNA specific sequence contained in SEQ ID NO:3, bases 1-2345, and sufficient to effect specific hybridization thereto (i.e. specifically hybridize with SEQ ID NO:3, bases 1-2345 in the presence of natural ciliate telomerase cDNA, preferably in the presence of non-mammalian telomerase cDNA and more preferably, in the presence of murine telomerase cDNA). Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaPO₄, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE buffer at 42°C. Human telomerase cDNA homologs can also be distinguished from other protein using alignment algorithms, such as BLASTX (Altschul et

al. (1990) Basic Local Alignment Search Tool, J Mol Biol 215, 403-410).

The invention also provides non-natural sequence, recombinant and isolated natural sequence human telomerase RNA. Natural human telomerase RNA sequences include the nucleic acid disclosed as SEQ ID NO:6, or a fragment thereof sufficient to specifically hybridize with a nucleic acid having the sequence defined by SEQ ID NO:6 in the presence of a nucleic acid having the sequence disclosed in Feng et al. 1995, Science 269, 1236-1241. Such fragments necessarily distinguish the previously described (Feng et al. 1995, Science 269, 1236-1241) human RNA species. Preferred such fragments comprise SEO ID NO:6, bases 191-210, bases 245-259, bases 341-369 or bases 381-399. Non-natural sequences include derivatives and/or mutations of SEQ ID NO:6, where such derivatives/mutations provide alteration in template, protein binding, or other regions to effect altered telomerase substrate specificity or altered reaction product (e.g. any predetermined sequence), etc.; see, e.g. Autexier et al., 1994, Genes & Develop 8, 563-575; Collins et al. (1995) EMBO J. 14, 5422-5432; Greider et al. (1995) Structure and Biochemistry of Ciliate and Mammalian Telomerases, in DNA Replication, DePamphlis, Ed., Cold Spring Harbor Laboratory Press. Additional derivatives function as dominant negative fragments which effectively compete for telomerase assembly. For examples, SEQ ID NO:7, 8 and 9 are derivatives which provide for modified substrate specificity and polymerase reaction product to interfere with cellular function (see, e.g. Hanish et al. (1994) Proc Natl Acad Sci 91, 8861-8865).

20

25

5

10

15

The subject nucleic acids are of synthetic/non-natural sequences and/or are isolated, i.e. unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Nucleic acids comprising the nucleotide sequence of SEQ ID NO:3 or fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by a sequence other than that which it is joined to on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is immediately flanked by a sequence other than that which it is joined to on a natural chromosome. While the nucleic acids are usually RNA or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to

provide modified stability, etc. The subject nucleic acids find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc.; use in detecting the presence of human telomerase genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional human telomerase homologs and structural analogs.

5

10

15

In diagnosis, human telomerase hybridization probes find use in identifying wildtype and mutant human telomerase alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for highthroughput clinical diagnoses. In therapy, therapeutic human telomerase nucleic acids are used to modulate cellular expression or intracellular concentration or availability of active telomerase. A wide variety of indications may be treated, either prophylactically or therapeutically with the subject compositions. For example, where limitation of cell growth is desired, e.g. neoproliferative disease, a reduction in telomerase expression is effected by introducing into the targeted cell type human telomerase nucleic acids which reduce the functional expression of human telomcrase gene products (e.g. nucleic acids capable of inhibiting translation of a functional telomerase transcript). Conditions for treatment include various cancers, where any of a wide variety of cell types may be involved, restenosis, where vascular smooth muscle cells are involved, inflammatory disease states, where endothelial cells, inflammatory cells and glomerular cells are involved, myocardial infarction, where heart muscle cells are involved, glomerular nephritis, where kidney cells are involved, transplant rejection where endothelial cells are involved, infectious diseases such as HIV infection where certain immune cells and other infected cells are involved, or the like.

20

Telomerase inhibitory nucleic acids are typically antisense: single-stranded sequences comprising complements of the disclosed natural telomerase coding sequences. Antisense modulation of the expression of a given telomerase protein may employ telomerase antisense nucleic acids operably linked to gene regulatory sequences. Cell are transfected with a vector comprising a human telomerase sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to endogenous human telomerase protein encoding mRNA. Transcription of the antisense nucleic acid may be constitutive or inducible and the vector may provide for stable extrachromosomal maintenance or integration. Alternatively, single-stranded

30

antisense nucleic acids that bind to genomic DNA or mRNA encoding a given human telomerase protein may be administered to the target cell, in or temporarily isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted protein.

In other indications, e.g. certain hypersensitivities, atrophic diseases, etc., an increase in cell growth or proliferation is desired. In these applications, an enhancement in human telomerase expression is effected by introducing into the targeted cell type human telomerase nucleic acids which increase the functional expression of human telomerase gene products. Conditions for treatment include multiple sclerosis, where certain neuronal cells are involved, inflammatory disease states such as rheumatoid arthritis, where bystander cells are involved, transplant rejection where graft cells are involved, infectious diseases such as HIV infection where certain uninfected host cells are involved, or the like. Such nucleic acids may be human telomerase expression vectors, vectors which upregulate the functional expression of an endogenous human telomerase allele, or replacement vectors for targeted correction of human telomerase mutant alleles.

15

20

10

5

Various techniques may be employed for introducing of the nucleic acids into viable cells, e.g. transfection with a retrovirus, viral coat protein-liposome mediated transfection. The techniques vary depending upon whether one is using the subject compositions in culture or *in vivo* in a host. In some situations it is desirable to provide the nucleic acid source with an agent which targets the target cells, such as an antibody specific for a surface membrane protein on the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life.

25

The invention provides methods and compositions for enhancing the yield of many recombinantly produced proteins by increasing maximum cell densities and survival time of host production cells in culture. Specifically, cultured cells are transfected with nucleic acids which effect the up-regulation of endogenous telomerase or the expression of an exogenous telomerase. For example, nucleic acids encoding functional human telomerase operably linked to a transcriptional promoter are used to over-express the exogenous

5

10

15

20

25

30

telomerase in the host cell. Telomerase-expressing cells demonstrate enhanced survival ability at elevated cell densities and over extended culture periods.

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of a human telomerase modulatable cellular function. Generally, these screening methods involve assaying for compounds which modulate human telomerase interaction with a natural human telomerase binding target. A wide variety of assays for binding agents are provided including labeled in vitro telomere polymerase assays, protein-protein binding assays, immunoassays, cell based assays, etc. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example, the reagents may be derivatized and rescreened in *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development. Target indications may include infection, genetic disease, cell growth and regulatory disfunction, such as neoplasia, inflammation, hypersensitivity, etc. Target cells also include progenitor cells for repopulating blood or bone marrow, tissue grafts, and tissue subject to degredation/high turnover such as digestive and vascular endothelia and pulmunary and dermal epithelia.

In vitro binding assays employ a mixture of components including a human telomerase protein, which may be part of multi-subunit telomerase, a fusion product with another peptide or polypeptide, e.g. a tag for detection or anchoring, etc. The assay mixtures comprise a natural intracellular human telomerase binding target, e.g. a substrate. While native binding targets may be used, it is frequently preferred to use portions (e.g. peptides, nucleic acid fragments) thereof so long as the portion provides binding affinity and avidity to the subject human telomerase conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

The resultant mixture is incubated under conditions whereby, but for the presence of

the candidate pharmacological agent, the human telomerase specifically binds the cellular binding target, portion or analog with a reference binding affinity. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.

5

After incubation, the agent-biased binding between the human telomerase and one or more binding targets is detected by any convenient way. For cell-free binding type assays, a separation step is often used to separate bound from unbound components. Separation may be effected by precipitation (e.g. TCA precipitation, immunoprecipitation, etc.), immobilization (e.g on a solid substrate), etc., followed by washing by, for examples, membrane filtration (e.g. Whatman's P-81 ion exchange paper, Polyfiltronic's hydrophobic GFC membrane, etc.), gel chromatography (e.g. gel filtration, affinity, etc.). For telomere polymerase assays, binding is detected by a change in the polymerization by the telomerase of a nucleic acid or nucleic acid analog on the substrate.

15

10

Detection may be effected in any convenient way. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g. through optical or electron density, radiative emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, etc.

20

25

A difference in the binding affinity of the human telomerase protein to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the human telomerase protein to the human telomerase binding target. Analogously, in the cell-based transcription assay also described below, a difference in the human telomerase transcriptional induction in the presence and absence of an agent indicates the agent modulates human telomerase-induced transcription. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

30

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

1. Protocol for high-throughput human telomere polymerization assay.

A. Reagents:

5

10

15

20

- Neutralite Avidin: 20 μg/ml in PBS.
- human telomerase: 10⁻⁸ 10⁻⁵ M human telomerase in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1 mM dATP, 1 mM dTTP, 1% glycerol, 0.5% NP-40, 50 mM BME, 1 mg/ml BSA, cocktail of protease inhibitors.
- $-[\frac{32}{P}]\alpha$ -dGTP 10x stock: 2 x 10⁻⁵ M "cold" dGTP with 100 μ Ci [$\frac{32}{P}$] α -dGTP. Place in the 4°C microfridge during screening.
- telomerase substrate: 10⁻⁷ 10⁻⁴ M biotinylated telomerase substrate (5'-biotin-d(TTAGGG)₁-3'] in PBS.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml of PBS.
- B. Preparation of assay plates:
 - Coat with 120 µl of stock N Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 μl PBS.

C. Assay:

- Add 40 µl assay buffer/well.
- Add 40 µl human telomerase (1-1000 fmoles/40 ul in assay buffer)
- 25 Add 10 μl compound or extract.
 - Add 10 μ l [32P] α -dGTP 10x stock.
 - Add 40 µl biotinylated telomerase substrate (0.1-10 pmoles/40 ul in assay buffer)
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
- 30 Stop the reaction by washing 4 times with 200 μl PBS.
 - Add 150 µl scintillation cocktail.

- Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. cold dGTP at 80% inhibition.
- 5 2. Protocol for high throughput human telomerase subunit- RNA complex formation assay.
 - A. Reagents:

10

15

- Neutralite Avidin: 20 µg/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol. 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
- ¹³P human telomerase protein 10x stock: 10⁻⁸ 10⁻⁶ M "cold" human telomerase subunit (p105) supplemented with 200,000-250,000 cpm of labeled human telomerase (Beckman counter). Place in the 4°C microfridge during screening.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml of PBS.
 - telomerase RNA: 10⁻⁷ 10⁻⁴ M biotinylated RNA (SEQ ID NO:6) in PBS.
- 20 B. Preparation of assay plates:
 - Coat with 120 μl of stock N-Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
- 25 C. Assay:
 - Add 40 µl assay buffer/well.
 - Add 10 ul compound or extract.
 - Add 10 μ l ³³P-human telomerase protein (20,000-25,000 cpm/0.1-10 pmoles/well =10⁻⁹- 10⁻⁷ M final concentration).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.

- Add 40 µl biotinylated RNA (0.1-10 pmoles/40 ul in assay buffer)
- Incubate 1 hour at room temperature.
- Stop the reaction by washing 4 times with 200 µl PBS.
- Add 150 µl scintillation cocktail.
- Count in Topcount.
- 5 D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. Soluble (non-biotinylated telomerase) at 80% inhibition.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
	(I) APPLICANT: Kathleen Collins
	(ii) TITLE OF INVENTION: Human Telomerase
	(iii) NUMBER OF SEQUENCES: 10
5	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Science & Technology Law Group
	(B) STREET: 268 Bush Street, Suite 3200
	(C) CITY: San Francisco
	(D) STATE: CA
10	(E) COUNTRY: USA
	(F) ZIP: 94104
	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
15	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:
20	(C) CLASSIFICATION:
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: Osman Ph.D., Richard A
	(B) REGISTRATION NUMBER: 36,627
	(C) REFERENCE/DOCKET NUMBER: UCB96-055
25	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: (415)343-4341
	(B) TELEFAX: (415)343-4342
••	(2) INFORMATION FOR SEQ ID NO:1:
30	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 759 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS:
25	(D) TOPOLOGY: not relevant
35	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	Met	Ala	Gly	Leu	Thr	Leu	Phe	Val	Gly	Arg	Leu	Pro	Pro	Ser	Ala	Arg
	1				5					10					15	
	Ser	Glu	Gln	Leu	Glu	Glu	Leu	Phe	Ser	Gln	Val	Gly	Pro	Val	Lys	Gln
				20					25					30		
	Cys	Phe	val	Val	Thr	Glu	Lys	Gly	Ser	Lys	Ala	Cys	Arg	Gly	Phe	Gly
5			35					40					45			
	Tyr	Val	Thr	Phe	Ser	Met	Leu	Glu	Asp	Val	Gln	Arg	Ala	Leu	Lys	Glu
		50					55					60				
	Ile	Thr	Thr	Phe	Glu	Gly	Cys	Lys	Ile	Asn	Val	Thr	Val	Ala	Lys	Lys
	65					70					75					80
10	Lys	Leu	Arg	Asn	Lys	Thr	Lys	Glu	Lys	Gly	Lys	Asn	Glu	Asn	Ser	Glu
					85					90					95	
	Cys	Pro	Lys	Lys	Glu	Pro	Lys	Ala	Lys	Lys	Ala	Lys	Val	Ala	Asp	Lvs
				100					105					110		
	Lys	Ala	Arg	Leu	Ile	Ile	Arg	Asn	Leu	Ser	Phe	Lys	Cys	Ser	Glu	Asp
15			115					120					125			
	Asp	Leu	Lys	Thr	Val	Phe	Ala	Gln	Phe	Gly	Ala	Val	Leu	Glu	Val	Asn
		130					135					140				
	Ile	Pro	Arg	Lys	Pro	Asp	Gly	Lys	Met	Arg	Gly	Phe	Gly	Phe	Val	Gln
	145					150					155					160
20	Phe	Lys	Asn	Leu	Leu	Glu	Ala	Gly	Lys	Ala	Leu	Lys	Gly	Met	Asn	Met
					165					170					175	
	Lys	Glu	Ile	Lys	Gly	Arg	Thr	Val	Ala	Val	Asp	Trp	Ala	Val	Ala	Lys
				180					185					190		
	Asp	Lys	Tyr	Lys	Asp	Thr	Gln	Ser	Val	Ser	Ala	Ile	Gly	Glu	Glu	Lys
25			195					200					205			
	Ser	His	Glu	Ser	Lys	His	Gln	Glu	Ser	Val	Lys	Lys	Lys	Gly	Arg	Glu
		210					215					220				
	Glu	Glu	Asp	Met	Glu	Glu	Glu	Glu	Asn	Asp						
	225					230					235					240
30	Asp	Glu	Glu	Asp	Gly	Val	Phe	Asp	Asp	Glu	Asp	Glu	Glu	Glu	Glu	Asn
					245					250					255	
	Ile	Glu	Ser	Lys	Val	Thr	Lys	Pro	Val	Gln	Ile	Gln	Lys	Arg	Ala	Val
				260					265					270		
	Lys	Arg	Pro	Ala	Pro	Ala	Lys	Ser	Ser	Asp	His	Ser	Glu	Glu	qsA	Ser
35			275					280					285			
	Asp	Leu	Glu	Glu	Ser	Asp	Ser	Ile	Asp	Asp	Gly	Glu	Glu	Leu	Ala	Gln
		290					295					300				

	Se	r Asp) Thr	Ser	Thr	Glu	ı Glu	Glr	Glu	Asp	Lys	Ala	Va:	l Glr	va!	l Ser
	309	5				310)				315					320
	Ası	ı Lys	Lys	Lys	Arg	Lys	Leu	Pro	Ser	Asp	۷al	Asn	Gli	ı Gly	/ Lys	5 Thr
					325	,				330					335	5
	Va]	Phe	lle	Arg	, Asn	Leu	Ser	Phe	Asp	Ser	Glu	Glu	Glu	Glu	ı Let	2 Gly
5				340					345					350)	
	Glu	Leu	Leu	Gln	Gln	Phe	Gly	Glu	Leu	Lys	Tyr	Val	Arg	Ile	va]	Leu
			3 5 5					360					365			
	His	Pro	Asp	Thr	Glu	His	Ser	Lys	Gly	Cys	Ala	Phe	Ala	Gln	Phe	Met
		370					375					380				
10	Thr	Gln	Glu	Ala	Ala	Gln	Lys	Cys	Leu	Leu	Ala	Ala	Ser	Pro	Glu	Asn
	385					390					395					400
	Glu	Ala	Gly	Gly	Leu	Lys	Leu	Asp	Gly	Arg	Gln	Leu	Lys	Val	Asp	
•					405					410					415	
	Ala	Val	Thr	Arg	Asp	Glu	Ala	Ala	Lys	Leu	Gln	Thr	Thr	Lys	Va1	Lvs
15				420					425					430		1
	Lys	Pro	Thr	Gly	Thr	Arg	Asn	Leu	Tyr	Leu	Ala	Arg	Glu	Gly	Leu	Ile
			435					440					445	_		
	Arg	Ala	Gly	Thr	Lys	Ala	Ala	Glu	Gly	Val	Ser	Ala	Ala	Asp	Met	Ala
		450					455					460		_		
20	Lys	Arg	Glu	Arg	Phe	Glu	Leu	Leu	Lys	His	Gln	Lys	Leu	Lys	Asp	Gln
	465					470					475				_	480
	Asn	Ile	Phe	Val	Ser	Arg	Thr	Arg	Leu	Суѕ	Leu	His	Asn	Leu	Pro	Lys
					485					490					495	-
	Ala	Val	Asp	Asp	Lys	Gln	Leu	Arg	Lys	Leu	Leu	Leu	Ser	Ala	Thr	Ser
25				500					5 05					510		
	Gly	Glu	Lys	Gly	Val	Arg	Ile	Lys	Glu	Cys	Arg	Val	Met	Arg	Asp	Leu
			515					520					525			
	Lys	Gly	Val	His	Gly	Asn	Met	Lys	Gly	Gln	Ser	Leu	Gly	Tyr	Ala	Phe
		530					535					540				
30	Ala	Glu	Phe	Gln	Glu	His	Glu	His	Ala	Leu	Lys	Ala	Leu	Arg	Leu	Ile
	5 4 5					550					5 5 5					560
	Asn	Asn	Asn	Pro	Glu	Ile	Phe	Gly	Pro	Leu	Lys	Arg	Pro	Ile	Val	Glu
					56 5					570					575	
	Phe	Ser	Leu	Glu	Asp .	Arg	Arg	Lys	Leu	Lys 1	Met .	Lys	Glu			Ile
35				580					585			-		590	ر	
	Gln	Arg	Ser	Leu	Gln .	Lys	Met .	Arg	Ser :	Lys :	Pro A	Ala '	Thr		Glu	Pro
			595					600					605	•		

	Gln	Lys	Gly	Gln	Pro	Glu	Pro	Ala	Lys	Asp	Gln	Gln	Gln	ras	Ala	Ala	
		610					615					620					
	Gln	His	His	Thr	Glu	Glu	Gln	Ser	Lys	Val	Pro	Pro	Glu	Gln	Lys	Arg	
	625					630					635					640	
	ГЛа	Ala	Gly	Ser	Thr	Ser	Trp	Thr	Gly	Phe	Gln	Thr	Lys	Ala	Glu	∵al	
5					645					650					655		
	Glu	Gln	Val	Glu	Leu	Pro	Asp	Gly	Lys	Lys	Arg	Arg	Lys	Val	Leu	∴la	
				660					665					670			
	Leu	Pro	ser	His	Arg	Gly	Pro	Lys	Ile	Arg	Leu	Arg	Asp	Lys	Gly	Lys	
			675					680					685				
10	Val	Lys	Pro	Val	His	Pro	Lys	Lys	Pro	Lys	Pro	Gln	Ile	Asn	Gln	Trp	
		690					695					700					
	Lys	Gln	Glu	Lys	Gln	Gln	Leu	Ser	ser	Glu	Gln	Val	Ser	Arg	Lys	Lys	
	705					710					715					720	
	Ala	Lys	Gly	Asn	Lys	Thr	Glu	Thr	Arg	Phe	Asn	Gln	Leu	Val	Glu	Gln	
15					725					730					735		
	Tyr	Lys	Gln	Lys	Leu	Leu	Gly	Pro	ser	Lys	Gly	Ala	Pro	Leu	Ala	Lys	
				740					745					750			
	Arg	Ser	Lys	Trp	Phe	Asp	Ser										
			755														
20																	
	(2) INFO	RMATI	ON I	FOR S	SEQ I	D NC) :2:										
	(i)	SEQU	JENCE	CH#	RACI	ERIS	STICS	3 :									
		(A)	LEN	IGTH :	227	77 ba	se p	airs	5								
		(B)	TY	E: r	ucle	eic a	cid										
25		(C)	STE	EDNAS	DNES	SS: d	loubl	e									
		(D)	TOI	POLO	Y:]	inea	ar										
	(ii)	MOLE	CULE	TYF	E: c	DNA											
	(xi)	SEQU	JENCE	DES	CRIE	OIT	: SE	EQ II	NO:	2:							
	ATGGCNGGN	IT YI	NACN?	TNT	YG1	NGGN	IMGN	YTNO	CNCC	NW S	NGCN	IMGNV	is No	BARCA	RYTN	ľ	60
30	GARGARYT	T T	WSNC	CARGI	NGC	NCCN	IGTN	AARO	CARTO	YT T	YGTN	IGTN <i>F</i>	C NO	ARAA	RGG	i	120
	WSNAARGCN	IT GY	MGNC	GNT	YGO	NTAY	GTN	ACNT	TYWS	r And	GYTN	GARC	A YC	TNCA	LRMGN		180
	GCNYTNAAF	RG AF	RATH	CNAC	TTM	YGAF	RGGN	TGYA	ARAT	THA A	YGTN	IACNO	T NO	CNAA	RAAR		240
	AARYTNMGN	A A	(AAR)	CNA	RGA	RAAF	RGGN	AARA	\AYGA	LRA A	YWSN	IGART	G YC	CNAA	RAAR		300
	GARCCNAAF	RG CN	NAAR!	ARGO	: NAA	RGTN	IGCN	GAYA	ARAP	ARG C	NMGN	YTNA	T HA	THMO	'AAN	•	360
35	YTNWSNTTY	(A AF	RTGYV	SNG	RGA	YGAY	YTN	AARA	ACNGT	ר דאי	YGCN	CART	T YO	GNGC	NGTN	•	420
	YTNGARGTN	A A	/ATH	CNMC	AAN E	RCCN	IGAY	GGNA	ARAI	GM C	NGGN	TTYC	G NT	TYGI	NCAR		480
	TTYAARAA	Y Th	1YTNC	SARGO	NGC	NAAF	RGCN	YTNA	ARGO	NA 7	GAAY	ATG	A RO	ARAI	TAAH		540

	GGNMGNACNO	TNGCNGTNGA	YTGGGCNGTN	GCNAARGAYA	ARTAYAARGA	YACNCARWSN	600
	GTNWSNGCNA	THGGNGARGA	RAARWSNCAY	GARWSNAARO	AYCARGARWS	NGTNAARAAR	660
	AARGGNMGNG	ARGARGARGA	YATGGARGAR	GARGARAAYO	AYGAYGAYGA	YGAYGAYGAY	720
	GAYGARGARG	AYGGNGTNTT	YGAYGAYGAR	GAYGARGARG	ARGARAAYAT	HGARWSNAAR	7 8 0
	GTNACNAARC	CNGTNCARAT	HCARAARMGN	GCNGTNAARM	GNCCNGCNCC	NGCNAARWSN	840
5	WSNGAYCAYW	SNGARGARGA	YWSNGAYYTN	GARGARWSNG	AYWSNATHGA	YGAYGGNGAR	900
	GARYTNGCNC	ARWSNGAYAC	NWSNACNGAR	GARCARGARG	AYAARGCNGT	NCARGTNWSN	960
	AAYAARAARA	ARMGNAARYT	NCCNWSNGAY	GTNAAYGARG	GNAARACNGT	NTTYATHMGN	1020
	AAYYTNWSNT	TYGAYWSNGA	RGARGARGAR	YTNGGNGARY	TNYTNCARCA	RTTYGGNGAR	1080
	YTNAARTAYG	TNMGNATHGT	NYTNCAYCCN	GAYACNGARC	AYWSNAARGG	NTGYGCNTTY	1140
10	GCNCARTTYA	TGACNCARGA	RGCNGCNCAR	AARTGYYTNY	TNGCNGCNWS	NCCNGARAAY	1200
	GARGCNGGNG	GNYTNAARYT	NGAYGGNMGN	CARYTNAARG	TNGAYYTNGC	NGTNACNMGN	1260
	GAYGARGCNG	CNAARYTNCA	RACNACNAAR	GTNAARAARC	CNACNGGNAC	NMGNAAYYTN	1320
	TAYYTNGCNM	GNGARGGNYT	NATHMGNGCN	GGNACNAARG	CNGCNGARGG	NGTNWSNGCN	1380
	GCNGAYATGG	CNAARMGNGA	RMGNTTYGAR	YTNYTNAARC	AYCARAARYT	NAARGAYCAR	1440
15	AAYATHTTYG	TNWSNMGNAC	NMGNYTNTGY	YTNCAYAAYY	TNCCNAARGC	NGTNGAYGAY	1500
	AARCARYTNM	GNAARYTNYT	NYTNWSNGCN	ACNWSNGGNG	ARAARGGNGT	NMGNATHAAR	1560
	GARTGYMGNG	TNATGMGNGA	YYTNAARGGN	GTNCAYGGNA	AYATGAARGG	NCARWSNYTN	1620
	GGNTAYGCNT	TYGCNGARTT	YCARGARCAY	GARCAYGCNY	TNAARGCNYT	NMGNYTNATH	1680
	AAYAAYAAYC	CNGARATHTT	YGGNCCNYTN	AARMGNCCNA	THGTNGARTT	YWSNYTNGAR	1740
20	GAYMGNMGNA	ARYTNAARAT	GAARGARYTN	MGNATHCARM	GNWSNYTNCA	RAARATGMGN	1800
	WSNAARCCNG	CNACNGGNGA	RCCNCARAAR	GGNCARCCNG	ARCCNGCNAA	RGAYCARCAR	1860
	CARAARGCNG	CNCARCAYCA	YACNGARGAR	CARWSNAARG	TNCCNCCNGA	RCARAARMGN	1920
	AARGCNGGNW	SNACNWSNTG	GACNGGNTTY	CARACNAARG	CNGARGTNGA	RCARGTNGAR	1980
	YTNCCNGAYG	GNAARAARMG	nmgnaargtn	YTNGCNYTNC	CNWSNCAYMG	NGGNCCNAAR	2040
25	ATHMGNYTNM	GNGAYAARGG	NAARGTNAA R	CCNGTNCAYC	CNAARAARCC	NAARCCNCAR	2100
	ATHAAYCART	GGAARCARGA	RAARCARCAR	YTNWSNWSNG	ARCARGTNWS	NMGNAARA AR	2160
		AYAARACNGA					2220
	YTNYTNGGNC	CNWSNAARGG	NGCNCCNYTN	GCNAARMGNW	SNAARTGGTT	YGAYWSN	2277

30 (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2733 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (i1) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	TGAGCTTGGT	TGTCCTACCA	AAGCCAGCGT	TTCGGCTCGC	GTGCGCCGGC	CTAGTTTGCT	60
	CGCGTCCTCA	CGCGCTTTGG	GTTTCCCGGT	CTCATGGCCG	GCCTGACCTT	ATTTGTGGGC	120
	CGCCTCCCGC	CCTCGGCCCG	CAGTGAGCAG	CTGGAGGAAC	TGTTCAGTCA	GGTGGGGCCG	180
	GTGAAGCAGT	GCTTCGTGGT	GACTGAAAAA	GGGAGTAAGG	CATGTCGAGG	CTTTGGCTAT	240
	GTCACTTTTT	CAATGCTGGA	AGATGTTCAG	AGGGCCCTCA	AGGAGATTAC	CACCTTTGAA	300
5	GGTTGCAAGA	TCAACGTGAC	TGTTGCCAAG	AAAAAACTGA	GGAACAAGAC	AAAGGAAAAG	360
	GGGAAAAATG	AAAACTCAGA	GTGCCCAAAG	AAGGAGCCGA	AGGCTAAAAA	AGCCAAAGTG	420
	GCAGATAAGA	AAGCCAGATT	AATTATTCGG	AACCTGAGCT	TTAAGTGTTC	AGAAGATGAC	480
	TTGAAGACAG	TATTTGCTCA	ATTTGGAGCT	GTCCTGGAAG	TAAATATCCC	TAGGAAACCA	540
	GATGGGAAGA	TGCGCGGTTT	TGGTTTTGTT	CAGTTCAAAA	ACCTCCTAGA	AGCAGGTAAA	600
10	GCTCTCAAAG	GCATGAACAT	GAAAGAGATA	AAAGGCCGGA	CAGTGGCTGT	GGATTGGGCC	660
	GTGGCAAAGG	ATAAATATAA	AGATACACAG	TCTGTTTCTG	CTATAGGTGA	GGAAAAGAGC	720
	CATGAATCTA	AACATCAGGA	ATCAGTTAAA	AAGAAGGGCA	GAGAGGAAGA	GGATATGGAA	780
	GAGGAAGAAA	ACGATGATGA	TGACGATGAT	GATGATGAAG	AAGATGGGGT	TTTTGATGAT	840
	GAAGATGAAG	AGGAAGAGAA	TATAGAATCA	AAGGTGACCA	AGCCTGTGCA	AATTCAGAAG	900
15	AGAGCAGTCA	AGAGACCAGC	CCCTGCAAAA	AGCAGTGATC	ATTCTGAGGA	GGACAGTGAC	960
	CTAGAGGAAA	GCGATAGTAT	TGATGATGGA	GAGGAACTGG	CTCAGAGTGA	TACCAGCACT	1020
	GAGGAGCAAG	AGGATAAAGC	TGTGCAAGTC	TCAAACAAAA	AGAAGAGGAA	ATTACCCTCT	1080
	GATGTGAATG	AAGGGAAAAC	TGTTTTTATC	AGAAATCTGT	CCTTTGACTC	AGAAGAAGAA	1140
	GAACTTGGGG	AGCTTCTCCA	ACAGTTTGGA	GAACTCAAAT	ATGTCCGCAT	TGTCTTGCAT	1200
20	CCAGACACAG	AGCATTCTAA	AGGTTGTGCA	TTTGCCCAGT	TCATGACTCA	AGAAGCAGCT	1260
	CAGAAATGCC	TTCTAGCTGC	TTCTCCAGAG	AATGAGGCTG	GTGGGCTTAA	ACTGGATGGC	1320
	CGGCAGCTCA	AGGTTGACTT	GGCGGTGACC	CGTGATGAGG	CTGCAAAGCT	TCAGACGACG	1380
	AAGGTGAAGA	AGCCGACTGG	CACCCGGAAT	CTCTATCTGG	CCCGAGAAGG	CTTGATTCGT	1440
	GCTGGGACGA	AGGCTGCAGA	GGGTGTGAGT	GCTGCTGATA	TGGCCAAAAG	AGAACGGTTT	1500
25	GAGCTGCTGA	AGCATCAGAA	ACTCAAGGAC	CAGAATATCT	TTGTCTCCCG	AACCAGGCTC	1560
	TGCCTGCACA	ATCTCCCAAA	GGCTGTAGAT	GACAAACAGC	TCAGAAAGCT	GCTGCTGAGT	1620
	GCTACTAGTG	GAGAGAAAGG	GGTGCGCATC	AAGGAGTGTA	GAGTGATGCG	AGACCTCAAA	1680
	GGAGTTCATG	GGAACATGAA	GGGTCAGTCC	CTGGGCTACG	CCTTTGCGGA	GTTCCAAGAG	1740
	CACGAGCATG	CCCTGAAAGC	CCTCCGCCTC	ATCAACAACA	ATCCAGAAAT	CTTTGGGCCT	1800
30	CTGAAGAGAC	CAATAGTGGA	GTTCTCTTTA	GAAGATCGAA	GAAAACTTAA	AATGAAGGAA	1860
	TTAAGGATCC	AGCGCAGCTT	GCAAAAAATG	AGATCCAAGC	CTGCAACTGG	TGAGCCTCAG	1920
	AAGGGGCAAC	CAGAGCCTGC	AAAAGACCAG	CAACAGAAGG	CAGCTCAACA	CCACACAGAG	1980
	GAACAAAGCA	AGGTGCCCCC	AGAGCAGAAG	AGAAAGGCGG	GCTCTACCTC	ATGGACCGGG	2040
	TTCCAGACCA	AGGCTGAAGT	GGAGCAGGTG	GAGCTGCCTG	ATGGAAAGAA	GAGAAGAAAG	2100
35	GTCCTGGCGC	TCCCCTCACA	CCGAGGCCCC	AAAATCAGGT	TGCGGGACAA	AGGCAAAGTG	2160
	AAGCCCGTCC	ATCCCAAAAA	GCCAAAGCCA	CAGATAAACC	AGTGGAAGCA	GGAGAAGCAG	2220
	CAATTATCGT	CCGAGCAGGT	ATCTAGGAAA	AAAGCTAAGG	GAAATAAGAC	GGAAACCCGC	2280

TTCAACCAGC	TGGTCGAACA	ATATAAGCAG	AAATTATTGG	GACCTTCTAA	AGGAGCACCT	2340
CTTGCAAAGA	GGAGCAAATG	GTTTGATAGT	TGATGATGGC	AGCAGGCTGG	GTAAGAAGCT	2400
GGGTTGTATA	CTTTCTGGTG	ACACTCCTGG	GCTCCTCCCC	ATCCCCCGTG	TCTCTCACTG	2460
AGGGAAAGAA	AATCCCCAAG	GGCACTGCCA	CTGTGCTCGG	AGGTGCCCTG	GACTGTGTAC	2520
ATCTGAACTT	TGGTCCATCC	TTTGATGTGT	GGTTCGTTAG	CCACAAAGAG	AAATATCTGA	2580
AAGTCAACAT	GATGCTTCTT	GCATATTATC	CAGATTATTG	TATGAAGTTG	TGTCTATAAT	2640
TATTACCAAT	TTTTATTCTT	TATTTCTCAA	ATGGAAACAC	CTGAAAAAGC	АААААААА	2700
AAAAAAAA	CTCGAGGGG	GCCCGTACCC	AAT			2733

(2) INFORMATION FOR SEQ ID NO:4:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2277 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 15 (ii) MOLECULE TYPE: cDNA

5

20

25

30

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AUGGCUGG	UC	UGACCCUGUU	CGUUGGUCGU	cnecceccen	ccccuccuuc	CGAACAGCUG	60
GAAGAACU	Gυ	UCUCCCAGGU	UGGUCCGGUU	AAACAGUGCU	UCGUUGUUAC	CGAAAAAGGU	120
UCCAAAGC	υU	GCCGUGGUUU	CGGUUACGUU	ACCUUCUCCA	UGCUGGAAGA	CGUUCAGCGU	180
GCUCUGAA	AG	AAAUCACCAC	CUUCGAAGGU	UGCAAAAUCA	ACGUUACCGU	UGCUAAAAA	240
AAACUGCG	UA.	ACAAAACCAA	AGAAAAAGGU	AAAAACGAAA	ACUCCGAAUG	CCCGAAAAA	300
GAACCGAA	AG	CUAAAAAAGC	UAAAGUUGCU	GACAAAAAAG	CUCGUCUGAU	CAUCCGUAAC	360
cuguccuu	CA .	AAUGCUCCGA	AGACGACCUG	AAAACCGUUU	UCGCUCAGUU	CGGUGCUGUU	420
CUGGAAGU	UA.	ACAUCCCGCG	UAAACCGGAC	GGUAAAAUGC	GUGGUUUCGG	UUUCGUUCAG	480
UUCAAAAA	CC 1	UGCUGGAAGC	UGGUAAAGCU	CUGAAAGGUA	UGAACAUGAA	AGAAAUCAAA	540
GGUCGUAC	CG T	UUGCUGUUGA	CUGGGCUGUU	GCUAAAGACA	AAUACAAAGA	CACCCAGUCC	600
GUUUCCGC	JA (U CGGUGAA GA	AAAAUCCCAC	GAAUCCAAAC	ACCAGGAAUC	CGUUAAAAA	660
AAAGGUCGI	JG J	AAGAAGAAGA	CAUGGAAGAA	GAAGAAAACG	ACGACGACGA	CGACGACGAC	720
GACGAAGA	AG į	ACGGUGUUUU	CGACGACGAA	GACGAAGAAG	AAGAAAACAU	CGAAUCCAAA	780
GUUACCAA	AC (CGGUUCAGAU	CCAGAAACGU	GCUGUUAAAC	GUCCGGCUCC	GGCUAAAUCC	840
UCCGACCAC	ט מב	CCGAAGAAGA	CUCCGACCUG	GAAGAAUCCG	ACUCCAUCGA	CGACGGUGAA	900
GAACUGGCU	JC A	AGUCCGACAC	CUCCACCGAA	GAACAGGAAG	ACAAAGCUGU	UCAGGUUUCC	960
AACAAAAA	A A	ACGUAAACU	GCCGUCCGAC	GUUAACGAAG	GUAAAACCGU	UUUCAUCCGU	1020
AACCUGUCO	ט נ	JCGACUCCGA	AGAAGAAGAA	CUGGGUGAAC	UGCUGCAGCA	GUUCGGUGAA	1080
CUGAAAUAC	G U	JUCGUAUCGU	UCUGCACCCG	GACACCGAAC	ACUCCAAAGG	uugcgcuuuc	1140
GCUCAGUUC	A U	IGACCCAGGA	AGCUGCUCAG	AAAUGCCUGC	UGGCUGCUUC	CCCGGAAAAC	1200
GAAGCUGGU	ig c	UCUGAAACU	GGACGGUCGU	CAGCUGAAAG	UUGACCUGGC	UGUUACCCGU	1260

	GACGAAGCUG	CUAAACUGCA	GACCACCAAA	GUUAAAAAAC	CGACCGGUAC	CCGUAACCUG	1320
	UACCUGGCUC	GUGAAGGUCU	GAUCCGUGCU	GGUACČAAAG	CUGCUGAAGG	UGUUUCCGCU	1380
	GCUGACAUGG	CUAAACGUGA	ACGUUUCGAA	CUGCUGAAAC	ACCAGAAACU	GAAAGACCAG	1440
	AACAUCUUCG	UUUCCCGUAC	CCGUCUGUGC	CUGCACAACC	UGCCGAAAGC	UGUUGACGAC	1500
	AAACAGCUGC	GUAAACUGCU	GCUGUCCGCU	ACCUCCGGUG	AAAAAGGUGU	UCGUAUCAAA	1560
	GAAUGCCGUG	UUAUGCGUGA	CCUGAAAGGU	GUUCACGGUA	ACAUGAAAGG	UCAGUCCCUG	1620
	GGUUACGCUU	UCGCUGAAUU	CCAGGAACAC	GAACACGCUC	UGAAAGCUCU	GCGUCUGAUC	1680
	AACAACAACC	CGGAAAUCUU	CGGUCCGCUG	AAACGUCCGA	UCGUUGAAUU	CUCCCUGGAA	1740
	GACCGUCGUA	AACUGAAAAU	GAAAGAACUG	CGUAUCCAGC	GUUCCCUGCA	GAAAAUGCGU	1800
	UCCAAACCGG	CUACCGGUGA	ACCGCAGAAA	GGUCAGCCGG	AACCGGCUAA	AGACCAGCAG	1860
)	CAGAAAGCUG	CUCAGCACCA	CACCGAAGAA	CAGUCCAAAG	UUCCGCCGGA	ACAGAAACGU	1920
	AAAGCUGGUU	CCACCUCCUG	GACCGGUUUC	CAGACCAAAG	CUGAAGUUGA	ACAGGUUGAA	1980
	CUGCCGGACG	GUAAAAAACG	UCGUAAAGUU	CUGGCUCUGC	CGUCCCACCG	UGGUCCGAAA	2040
	AUCCGUCUGC	GUGACAAAGG	UAAAGUUAAA	CCGGUUCACC	CGAAAAAACC	GAAACCGCAG	2100
	AUCAACCAGU	GGAAACAGGA	AAAACAGCAG	CUGUCCUCCG	AACAGGUUUC	CCGUAAAAAA	2160
;	GCUAAAGGUA	ACAAAACCGA	AACCCGUUUC	AACCAGCUGG	UUGAACAGUA	CAAACAGAAA	2220
	CUGCUGGGUC	CGUCCAAAGG	UGCUCCGCUG	GCUAAACGUU	CCAAAUGGUU	CGACUCC	2277

(2) INFORMATION FOR SEQ ID NO:5:

5

10

15

20

25

30

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2277 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: 60 ATGGCCGGCC TGACCCTGTT CGTGGGCCGC CTGCCCCCCA GCGCCCGCAG CGAGCAGCTG GAGGAGCTGT TCAGCCAGGT GGGCCCCGTG AAGCAGTGCT TCGTGGTGAC CGAGAAGGGC 120 AGCAAGGCCT GCCGCGGCTT CGGCTACGTG ACCTTCAGCA TGCTGGAGGA CGTGCAGCGC 180 GCCCTGAAGG AGATCACCAC CTTCGAGGGC TGCAAGATCA ACGTGACCGT GGCCAAGAAG 240 AAGCTGCGCA ACAAGACCAA GGAGAAGGGC AAGAACGAGA ACAGCGAGTG CCCCAAGAAG 300 GAGCCCAAGG CCAAGAAGGC CAAGGTGGCC GACAAGAAGG CCCGCCTGAT CATCCGCAAC 360 CTGAGCTTCA AGTGCAGCGA GGACGACCTG AAGACCGTGT TCGCCCAGTT CGGCGCCGTG 420 CTGGAGGTGA ACATCCCCCG CAAGCCCGAC GGCAAGATGC GCGGCTTCGG CTTCGTGCAG 480 TTCAAGAACC TGCTGGAGGC CGGCAAGGCC CTGAAGGGCA TGAACATGAA GGAGATCAAG 540 GGCCGCACCG TGGCCGTGGA CTGGGCCGTG GCCAAGGACA AGTACAAGGA CACCCAGAGC 600 GTGAGCGCCA TCGGCGAGGA GAAGAGCCAC GAGAGCAAGC ACCAGGAGAG CGTGAAGAAG 660 AAGGGCCGCG AGGAGGAGGA CATGGAGGAG GAGGAGAACG ACGACGACGA CGACGACGAC 720

	GACGAGGAGG	ACGGCGTGTT	CGACGACGAG	GACGAGGAG	AGGAGAACA	r cgagagcaag	78
	GTGACCAAGC	CCGTGCAGAT	CCAGAAGCGC	GCCGTGAAG	GCCCGCCCC	CGCCAAGAGC	84
	AGCGACCACA	GCGAGGAGGA	CAGCGACCTG	GAGGAGAGC	ACAGCATCG	CGACGCCGAG	90
	GAGCTGGCCC	: AGAGCGACAC	CAGCACCGAG	GAGCAGGAGG	ACAAGGCCGT	GCAGGTGAGC	96
	AACAAGAAGA	AGCGCAAGCT	GCCCAGCGAC	GTGAACGAGG	GCAAGACCGT	GTTCATCCGC	102
5						GTTCGGCGAG	108
	CTGAAGTACG	TGCGCATCGT	GCTGCACCCC	GACACCGAGO	ACAGCAAGGG	CTGCGCCTTC	114
	GCCCAGTTCA	TGACCCAGGA	GGCCGCCCAG	AAGTGCCTGC	TGGCCGCCAG	CCCCGAGAAC	120
	GAGGCCGGCG	GCCTGAAGCT	GGACGGCCGC	CAGCTGAAGG	TGGACCTGGC	CGTGACCCGC	126
	GACGAGGCCG	CCAAGCTGCA	GACCACCAAG	GTGAAGAAGC	CCACCGGCAC	CCGCAACCTG	132
10	TACCTGGCCC	GCGAGGGCCT	GATCCGCGCC	GGCACCAAGG	CCGCCGAGGG	CGTGAGCGCC	1380
	GCCGACATGG	CCAAGCGCGA	GCGCTTCGAG	CTGCTGAAGC	ACCAGAAGCT	GAAGGACCAG	1440
	AACATCTTCG	TGAGCCGCAC	CCGCCTGTGC	CTGCACAACC	TGCCCAAGGC	CGTGGACGAC	1500
	AAGCAGCTGC	GCAAGCTGCT	GCTGAGCGCC	ACCAGCGCCG	AGAAGGGCGT	GCGCATCAAG	1560
	GAGTGCCGCG	TGATGCGCGA	CCTGAAGGGC	GTGCACGGCA	ACATGAAGGG	CCAGAGCCTG	1620
15	GGCTACGCCT	TCGCCGAGTT	CCAGGAGCAC	GAGCACGCCC	TGAAGGCCCT	GCGCCTGATC	1680
	AACAACAACC	CCGAGATCTT	CGGCCCCCTG	AAGCGCCCCA	TCGTGGAGTT	CAGCCTGGAG	1740
	GACCGCCGCA	AGCTGAAGAT	GAAGGAGCTG	CGCATCCAGC	GCAGCCTGCA	GAAGATGCGC	1800
	AGCAAGCCCG	CCACCGGCGA	GCCCCAGAAG	GGCCAGCCCG	AGCCCGCCAA	GGACCAGCAG	1860
	CAGAAGGCCG	CCCAGCACCA	CACCGAGGAG	CAGAGCAAGG	TGCCCCCGA	GCAGAAGCGC	1920
20	AAGGCCGGCA	GCACCAGCTG	GACCGGCTTC	CAGACCAAGG	CCGAGGTGGA	GCAGGTGGAG	1980
	CTGCCCGACG	GCAAGAAGCG	CCGCAAGGTG	CTGGCCCTGC	CCAGCCACCG	CGGCCCCAAG	2040
	ATCCGCCTGC	GCGACAAGGG	CAAGGTGAAG	CCCGTGCACC	CCAAGAAGCC	CAAGCCCCAG	2100
			GAAGCAGCAG				2160
			GACCCGCTTC				2220
25	CTGCTGGGCC	CCAGCAAGGG	CGCCCCCTG	GCCAAGCGCA	GCAAGTGGTT	CGACAGC	2277

(2) INFORMATION FOR SEQ ID NO:6:

30

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 540 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGGTTGCGGA GGGTGGGCCT GGGAGGGGTG GTGGCCATTT TTTGTCTAAC CCTAACTGAG 60

AAGGGCGTAG GCGCCGTGCT TTTGCTCCCC GCGCGCTGTT TTTCTCGCTG ACTTTCAGCG 120

GGCGGAAAAG CCTCGGCCTG CCGCCTTCCA CCGTTCATTC TAGAGCAAAC AAAAAATGTC 180

	AGCTGCTGGC CCGTTCGCCC CTCCCGGGGA CCTGCGGCGG GTCGCCTGCC CAGCCCCCGA	241
	ACCCCGCCTG GAGGCCGCGG TCGGCCCGGG GCTTCTCCGG AGGCACCCAC TGCCACCGCG	300
	AAGAGTTGGG CTCTGTCAGC CGCGGGTCTC TCGGGGGGCGA GGGCGAGGTT CAGGCCTTTC	360
	AGGCCGCAGG AAGAGGAACG GAGCGAGTCC CCGCGCGCGG CGCGATTCCC TGAGCTGTGG	420
	GACGTGCACC CAGGACTCGG CTCACACATG CAGTTCGCTT TCCTGTTGGT GGGGGGAACG	480
5	CCGATCGTGC GCATCCGTCA CCCCTCGCCG GCAGTGGGGG CTTGTGAACC CCCAAACCTG	540
	(2) INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 540 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
15	GGGTTGCGGA GGGTGGCCT GGGAGGGGTG GTGGCCATTT TTTGTCCAAC CCCAACTGAG	60
	AAGGGCGTAG GCGCCGTGCT TTTGCTCCCC GCGCGCTGTT TTTCTCGCTG ACTTTCAGCG	120
	GGCGGAAAAG CCTCGGCCTG CCGCCTTCCA CCGTTCATTC TAGAGCAAAC AAAAAATGTC	180
	AGCTGCTGGC CCGTTCGCCC CTCCCGGGGA CCTGCGGCGG GTCGCCTGCC CAGCCCCCGA	240
	ACCCCGCCTG GAGGCCGCGG TCGGCCCGGG GCTTCTCCGG AGGCACCCAC TGCCACCGCG	300
20	AAGAGTTGGG CTCTGTCAGC CGCGGGTCTC TCGGGGGCGA GGGCGAGGTT CAGGCCTTTC	360
	AGGCCGCAGG AAGAGGAACG GAGCGAGTCC CCGCGCGCGG CGCGATTCCC TGAGCTGTGG	420
	GACGTGCACC CAGGACTCGG CTCACACATG CAGTTCGCTT TCCTGTTGGT GGGGGGAACG	480
	CCGATCGTGC GCATCCGTCA CCCCTCGCCG GCAGTGGGGG CTTGTGAACC CCCAAACCTG	540
25	(2) INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 540 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GGGTTGCGGA GGGTGGGCCT GGGAGGGGTG GTGGCCATTT TTTGTCTAAG CCTAAGTGAG	60
	AAGGGCGTAG GCGCCGTGCT TTTGCTCCCC GCGCGCTGTT TTTCTCGCTG ACTTTCAGCG	120
35	GGCGGAAAAG CCTCGGCCTG CCGCCTTCCA CCGTTCATTC TAGAGCAAAC AAAAAATGTC	180
	AGCTGCTGGC CCGTTCGCCC CTCCCGGGGA CCTGCGGCGG GTCGCCTGCC CAGCCCCCGA	240
	NORTH CARROLL TRACCOCCA CONTRACTOR CONTRACTO	2

PCT/US97/12296 AAGAGTTGGG CTCTGTCAGC CGCGGGTCTC TCGGGGGGCGA GGGCGAGGTT CAGGCCTTTC 360 AGGCCGCAGG AAGAGGAACG GAGCGAGTCC CCGCGCGCGG CGCGATTCCC TGAGCTGTGG 420 GACGTGCACC CAGGACTCGG CTCACACATG CAGTTCGCTT TCCTGTTGGT GGGGGGAACG 4 B O CCGATCGTGC GCATCCGTCA CCCCTCGCCG GCAGTGGGGG CTTGTGAACC CCCAAACCTG 540 5 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 538 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 10 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: GGGTTGCGGA GGGTGGGCCT GGGAGGGGTG GTGGCCATTT TTTGTCTACC CTACTGAGAA 60 GGGCGTAGGC GCCGTGCTTT TGCTCCCCGC GCGCTGTTTT TCTCGCTGAC TTTCAGCGGG 120 15 CGGAAAAGCC TCGGCCTGCC GCCTTCCACC GTTCATTCTA GAGCAAACAA AAAATGTCAG 180 CTGCTGGCCC GTTCGCCCCT CCCGGGGACC TGCGGCGGGT CGCCTGCCCA GCCCCCGAAC 240 CCCGCCTGGA GGCCGCGGTC GGCCCGGGGC TTCTCCGGAG GCACCCACTG CCACCGCGAA 300 GAGTTGGGCT CTGTCAGCCG CGGGTCTCTC GGGGGCGAGG GCGAGGTTCA GGCCTTTCAG 360 GCCGCAGGAA GAGGAACGGA GCGAGTCCCC GCGCGCGCG CGATTCCCTG AGCTGTGGGA 420 20 CGTGCACCCA GGACTCGGCT CACACATGCA GTTCGCTTTC CTGTTGGTGG GGGGAACGCC 480 GATCGTGCGC ATCCGTCACC CCTCGCCGGC AGTGGGGGCT TGTGAACCCC CAAACCTG 538 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 30 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 5..13 (D) OTHER INFORMATION: /note= "Xaa represents isoleucine or leucine" 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

WO 98/01542

Glu Ala Ala Thr Xaa Asp Xaa Pro Gln Gln Gly Ala Asn Lys

WHAT IS CLAIMED IS:

5

10

15

20

25

30

1. An isolated protein comprising a telomerase protein selected from the group consisting of human telomerase protein p140, p105, p48 and p43, having molecular weights of about 140kD, about 105kD, about 48kD and about 43kD, respectively, as determined by polyacrylamide gel electrophoresis under denaturing conditions, or a human telomerase protein domain thereof having telomerase-specific activity.

- 2. An isolated protein according to claim 1, wherein said protein specifically binds at least one of the telomerase RNA of SEQ ID NO:6, a telomerase primer, or a nucleotide triphosphate.
- 3. An isolated protein according to claim 1, said protein isolated by:
 lysing HeLa cells by dounce homogenization in low-salt buffer to produce cell
 lysates and
 centrifuging said lysates supplemented with 15% glycerol at 125,000 x g for 50 minutes to
 obtain a first soluble fraction enriched for telomerase (S-100 fraction);

binding said S-100 fraction adjusted to 0.2 M ammonium sulfate to SP Sepharose (Pharmacia), and developing with a gradient in sodium chloride, to obtain a second soluble fraction enriched for telomerase (SP fraction);

binding said SP fraction adjusted to about 0.3-0.4 M ionic strength to Q Sepharose (Pharmacia) adjusting said SP fraction, and developing with a gradient in sodium chloride, to obtain a third soluble fraction enriched for telomerase (Q fraction); binding said Q fraction adjusted to about 0.3-0.4 M ionic strength to phosphocellulose (Whatman), and developing in sodium chloride, to obtain a fourth soluble fraction enriched for telomerase (PC fraction);

- binding said PC fraction adjusted to about 0.3-0.4 M ionic strength to 2'Omethyl RNA oligonucleotide immobilized on streptavidin agarose (Sigma) and eluting with a electrophoresis sample medium comprising 5% β -mercaptoethanol and 2% Sodium Dodecyl Sulfate to obtain a fifth soluble fraction (2'Omethyl fraction);
- separating said 2'Omethyl fraction by polyacrylamide gel electrophoresis under denaturing conditions to obtain a gel band at a molecular weight of about 140kD, 105kD,

48kD or 43kD having telomerase activity;

excising or eluting said gel band to obtain a human telomerase protein of a molecular weight of about 140kD, 105kD, 48kD or 43kD, respectively, as determined by polyacrylamide gel electrophoresis under denaturing conditions.

- An isolated protein comprising a portion of the amino acid sequence of SEQ ID
 NO:1 sufficient for telomerase-specific activity.
 - 5. An isolated protein according to claim 4, wherein said protein comprises a human telomerase protein domain selected from the group consisting of an RNA binding domain, a telomerase subunit binding domain, and a substrate, agonist, antagonist, chaperone or cytoskeletal binding domain.
 - 6. A recombinant nucleic acid encoding a protein according to claim 1 or 4.
- A cell comprising a nucleic acid according to claim 6.

10

- 8. A method of making an isolated telomerase protein, comprising steps: introducing a nucleic acid according to claim 6 into a host cell or cellular extract, incubating said host cell or extract under conditions whereby said nucleic acid is expressed as a transcript and said transcript is expressed as a translation product comprising said protein, and isolating said translation product.
- An isolated human telomerase protein made by the method of claim 8.
- 25 10. An isolated human telomerase nucleic acid comprising SEQ ID NO:6, or a fragment thereof sufficient to specifically hybridize with, or amplify from a nucleic acid having the sequence defined by SEQ ID NO:6.
- 11. An isolated telomerase nucleic acid according to claim 10 comprising at least one of SEQ ID NO:6, bases 191-210, bases 245-259, bases 341-369 and bases 381-399.

12. A method of screening for an agent which modulates the binding of a human telomerase protein to a binding target, said method comprising the steps of: incubating a mixture comprising:

an isolated protein according to claim 1,

a binding target of said protein, and

a candidate agent;

5

10

15

20

under conditions whereby, but for the presence of said agent, said protein specifically binds said binding target at a reference affinity;

detecting the binding affinity of said protein to said binding target to determine an agent-biased affinity,

wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said protein to said binding target.

- 13. A method according to claim 12, wherein said binding target is a substrate of said protein and said reference and agent-biased binding affinity are each detected as the polymerization by said protein of a nucleic acid on said substrate.
- 14. An isolated somatically recombined protein receptor which specifically binds a protein according to claim 1, wherein said receptor is an antibody or a T-cell antigen receptor.
- 15. A method of modulating the binding of a human telomerase or telomerase protein to a human telomerase binding target, said method comprising contacting said telomerase or telomerase protein with a receptor according to claim 14.
- 25 16. A method according to claim 15, wherein said binding target is a substrate of said telomerase and said receptor inhibits the polymerization by said telomerase of a nucleic acid on said substrate.
- 17. A method of polymerizing a nucleic acid on a substrate, comprising contacting said substrate with a telomerase comprising a protein according to claim 1, wherein said telomerase comprises a nucleic acid template having a preselected nucleotide sequence.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/12296

A. CLASSIFICATION OF SUBJECT MATTER									
IPC(6) :Please See Extra Sheet. US CL :Please See Extra Sheet.									
According	to International Patent Classification (IPC) or to both	national classification and IPC							
B. FIELDS SEARCHED									
Minimum d	documentation searched (classification system followe	d by classification symbols)							
U.S. : 435/194, 240.1, 252.3, 320.1, 69.1, 91.3, 172.3, 7.1; 530/350; 536/23.1, 23.2, 24.31, 24.33									
Documenta	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched						
Electronic	iata base consulted during the international search (na	ame of data base and, where practicable	, search terms used)						
Please Se	e Extra Sheet.								
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap-	propriate, of the relevant passages	Relevant to claim No.						
Y,P	US 5,583,016 A (VILLEPONTEAU	1-17							
	entire patent, especially the abstract an	d column 20, lines 10-80.							
Y	WO 96/19580 A2 (COLD SPRING HA	ARBOR LABORATORY) 27	1-17						
	June 1996. See abstract and examples	7-10.							
Y	COUNTER et al. Telomerase Ac	ctivity in Human Ovarian	1-17						
•	Carcinoma. Proc. Natl. Acad. Sci. USA								
	2900-2904, see entire article.								
	_								
Furth	ner documents are listed in the continuation of Box C	. See patent family annex.							
	ocial categories of cited documents:	"T" later document published after the inte	emational filing date or priority lication but cited to understand						
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the							
_	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone							
cit	scument which may throw doubts on prsority claim(s) or which is seed to establish the publication data of another estation or other		e claimed invention cannot be						
special regace (as specified) *O* document referring to an oral disclosure, use, exhibition or other		considered to involve an inventive step when the document is combined with one or more other such documents, such combination							
means *P* document published prior to the international filling date but later than		'A' document member of the same paten							
	a priority data claimed actual completion of the international search	Date of mailing of the international ser	arch report						
Date of the actual completion of the international search 04 SEPTEMBER 1997 Date of mailing of the international search report 280 C 1 1997									
Name and mailing address of the ISA/US Authorized officer									
	oner of Patenta and Trademarks	TEKCHAND SAIDHA							
Washington, D.C. 20231									
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12296

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 9/12, 5/00, 1/20, 15/00; C12P 21/06, 19/34; C07K 1/00; C07H 21/02, 21/04

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/194, 240.1, 252.3, 320.1, 69.1, 91.3, 172.3, 7.1; 530/350; 536/23.1, 23.2, 24.31, 24.33

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN Files: Medline, Caplus, Biosis, Wpids, Biotechds, Scisearch & Biotechds. Search terms: Telomerase and (DNA or RNA or protein), and human, telomerase, etc. Protein and Nucleic Acid data base search for the amino acid and DNA sequences.

Form PCT/ISA/210 (extra sheet)(July 1992)*