Física 2 (Físicos) ©DF, FCEyN, UBA

REFLEXIÓN Y TRANSMISIÓN DE ONDAS

Los ejercicios con (*) son opcionales.

- 1. Nos interesa estudiar la unión de dos cuerdas de distinta densidad lineal ρ_1 y ρ_2 , por lo que las consideraremos semi-infinitas. Mientras se las somete a una tensión T constante incide desde la primera una onda $\Psi_i(x,t)$ $A_i \cos(k_1 x - \omega t)$. Se conocen $\rho_1, \rho_2, T, \omega y A_i$.
 - a) Calcule k_1 y k_2 , es decir, los números de onda de cada lado de la unión.
 - b) Plantee la solución más general para $\Psi(x,t)$ de cada lado de la unión.
 - c) ¿Qué condiciones deben verificarse en el punto de unión de las cuerdas?
 - d) Usando b) y c), calcule la perturbación $\Psi(x,t)$ en cada una de las cuerdas.

 $\delta p_i(y,t) = A_i \cos(k_i y - \omega t)$. Hallar la onda reflejada $\delta p_r(y,t)$ y transmitida $\delta p_t(y,t)$.

2. Como nos interesa estudiar la unión de dos caños cuadrados de área transversal A_1 y A_2 los consideramos semi-infinitos. Desde el izquierdo incide una onda acústica $\delta p_i(x,t) = a_i \cos(k_i x - \omega t)$. Suponga despreciables los efectos de la viscosidad y dé por conocidos A_1 , A_2 , presión media P_0 , densidad media ρ_0 , v_s , ω , a_i . Halle amplitudes de presión y desplazamiento de moléculas a causa de las ondas reflejadas y transmitidas.

misma onda. Halle $\delta p(x,t)$ y $\Psi(x,t)$ en cada tramo.

4. Desde el aire incide en dirección perpendicular a una superficie calma de agua una onda de sonido plana

