问题求解(二)作业(第十周)

161180162 许致明

2018年5月13日

2.6 2.6 2 error "underflow" 3 $x = Q[Q.tail]$ 4 if $Q.head = Q.head$ 2 pror "underflow" 3 $x = Q[Q.tail]$ 4 if $Q.head = Q.length$ 5 Q.head = 1 6 else 7 Q.head = Q.head + 1 操作后,当前的时间戳 c' 满足 $c' > c$, 其中 c 为栈 中元素的时间戳,满足不变式 2; 进行 Push 操作后,加入了一个元素 a , 且当前时间 戳增大,故满足不变式 1。 HEAD-ENQUEUE(Q, x)	MA 第二章		Dequeue(Q, x)
2.6 3 $x = Q[Q.tail]$ 对于 Push 操作,操作前 $ elemes < max$,则操作后 $ elemes \le max$ 满足不变式 3; 特作后,当前的时间戳 c' 满足 $c' > c$,其中 c 为栈 $ elemex $ 表 return x 中元素的时间戳,满足不变式 2; 进行 Push 操作后,加入了一个元素 a ,且当前时间		1	if $Q.tail == Q.head$
对于 Push 操作,操作前 $ elemes < max$,则操作后 $ elemes \le max$ 满足不变式 3;		2	error "underflow"
对于 Push 操作,操作前 $ elemes < max$,则操作后 $ elemes \le max$ 满足不变式 3;	2.6	3	x = Q[Q.tail]
对于 Push 操作,操作前 $ elemes < max$,则操作后 $ elemes \le max$ 满足不变式 3;		4	if $Q.head == Q.length$
elemes ≤ max 满足不变式 3;	对于 Prist 操作, 操作前 elemes < max. 则操作后	5	Q.head = 1
7		6	else
中元素的时间戳,满足不变式 2; 10.1-5 进行 Push 操作后,加入了一个元素 <i>a</i> ,且当前时间		7	Q.head = Q.head + 1
10.1-5 进行 Push 操作后,加入了一个元素 <i>a</i> ,且当前时间		8	return x
进行 Push 操作后,加入了一个元素 a,且当前时间	中元素的时间戳,满足不变式2;	1(115
H_{EAD} -ENOUGHIE (O, r)	讲行 Push 操作后,加入了一个元素 a , 目当前时间	1(J.1-3
			Head-Enqueue (Q, x)
1 $Q.[Q.head] = x$	BY HAVE I XXX 13	1	Q.[Q.head] = x
2 if $Q.head == 1$		2	if $Q.head == 1$
Q.head = Q.length		3	Q.head = Q.length
4 else		4	else
5 Q.head = Q.head - 1		5	Q.head = Q.head - 1
TC 第十章	TC 第十章		TAIL ENGLISHE (O x)
Tail-Enqueue(Q , x) $1 Q.[Q.tail] = x$		1	· · ·
	10.1.4	_	
$ \begin{array}{ccc} \mathbf{10.1-4} & 2 & \mathbf{1f} \ Q.tail == Q.length \\ 3 & Q.tail = 1 \end{array} $	10.1-4		
4 else			~
ENQUEUE (Q, x) 5 $Q.tail = Q.tail + 1$	Enqueue (Q, x)	-	
1 if $Q.head == Q.tail + 1$, or	1 if $Q.head == Q.tail + 1$, or	J	g.iaii g.iaii 1
Q.head == 1 and Q.tail = Q.length Head-Dequeue (Q, x)	Q.head == 1 and $Q.tail = Q.length$		Head-Dequeue (Q, x)
2 error "overflow" $1 x = Q.[Q.head]$	2 error "overflow"	1	x = Q.[Q.head]
3 $Q[Q.tail] = x$ 2 if $Q.head == Q.length$	Q[Q.tail] = x	2	if $Q.head == Q.length$
4 if $Q.tail == Q.length$ 3 $Q.head = 1$	4 if $Q.tail == Q.length$	3	Q.head = 1
5 $Q.tail = 1$ 4 else	5 $Q.tail = 1$	4	else
6 else 5 $Q.head = Q.head + 1$	6 else	5	Q.head = Q.head + 1
7 $Q.tail = Q.head + 1$ 6 return x	Q.tail = Q.head + 1	6	return x

Tail-Dequeue(Q, x) 1 x = Q.[Q.tail]2 **if** Q.tail == 1Q.tail = Q.length3

else

5 O.tail = O.tail - 1

6 return x

10.1-6

将进队的操作转化为压栈(假定存入栈 A),出队 时, 先将此元素前(在栈的上面)的所有元素弹出, 放入另一个栈中(假定为栈 B),再将此元素弹出。 最后把B中的元素再按顺序全部出栈压入A中。 此种实现入队操作复杂度为O(1),出队操作复杂 度为O(n), n为队列中所有元素的个数。

10.2-1

INSERT(L, x) // O(1)

1 x.next = L.head

2 L.head = x

Delete(L,x) // 至少为线性时间

1 p = L.head

2 **while** $p \neq x$ and $p \neq NULL$

3 p = p.next

4 **if** p == NULL

error "No such element *x*"

if $p.prev \neq NULL$

p.prev.next = p.next

8 else

9 L.head = p.next

10 **if** $p.next \neq NULL$

11 p.next.prev = p.prev

12 return p

10.2-2

PUSH(L, x)

1 x.next = L.head

2 L.head = x

Pop(L, x)

1 x = L.head

2 L.head = x.next

3 return x

10.2-3

加入哨兵: $L.head \rightarrow L.NULL$ (哨兵) $\rightarrow L.end$

DEQUEUE(L, x)

1 x = L.head

2 L.head = x.next

3 return x

ENQUEUE(L, x)

1 x.next = L.NULL.next

2 L.NULL.next = x

10.2-6

设 L_1 为包含了 S_1 中所有元素的双向链表, L_2 为 包含了 S_2 中所有元素的双向链表。

UNION(L_1, L_2)

1 L_1 .NULL. $prev.next = L_2$.NULL.next

2 L_2 .NULL. $next.prev = L_1$.NULL.prev

3 L_1 .NULL. $prev = L_2$.NULL.prev

4 L_2 .NULL. $prev.next = L_1$.NULL.prev

5

10.3-4

m 指示已经分配的元素个数。

ALLOCATE-OBJECT(A)

1 **if** m == A.length

error "out of space" 2

3 else

4 m = m + 1

x = m

6 return x

FREE-OBJECT(A, x)1 if m == 02 error "underflow" 3 elseif x == m4 m = m - 15 else 6 SWAP(x, m)7 m = m-1

10.3-5

Compactify-List(L, F)1 $p_1 = 1, p_2 = A.length$ while $p_1 < p_2$ 2 3 **while** $key[p_1] \neq NULL$ 4 $p_1 = p_1 + 1$ while $key[p_2] == NULL$ 5 6 $p_2 = p_2 - 1$ 7 **if** $p_1 < p_2$ $SWAP(key[p_1], key[p_2])$ 8 for i = 1 to A.length9 10 **if** $next[i] == p_2$ 11 $next[i] == p_1$ **if** $prev[i] == p_2$ 12 $prev[i] == p_1$ 13 if $next[i] == p_1$ and key[i] == NULL14 15 $next[i] == p_2$

使用循环不变量: p_1 前存放的都是数字, p_2 后全部为空,可以证明算法的正确性。

10.4-2

PRINT-TREE(T)

1 **if** $T \neq \text{NULL}$ 2 print T.key3 PRINT-TREE(T.left)

4 PRINT-TREE(T.right)

10.4-3

PRINT-TREE-STACK(T)

1 PUSH(S, T)

2 while $S \neq \text{NULL}$ 3 tmp = Pop(S)4 print tmp.key5 if $tmp.left \neq \text{NULL}$ 6 PUSH(S, tmp.left)

7 if $tmp.right \neq \text{NULL}$ 8 PUSH(S, tmp.right)

10.4-4

PRINT-TREE-ARBITRARY(T)

1 PUSH(S, T)

2 **while** $S \neq \text{NULL}$ 3 tmp = Pop(S)4 print tmp.key5 **if** $tmp.left-child \neq \text{NULL}$ 6 PUSH(S, tmp.left-child)

7 **if** $tmp.right-sibling \neq \text{NULL}$ 8 PUSH(S, tmp.right-sibling)

10-3

数大于 t。

(a) 若算法二在 1 - t 的循环中已经返回,则与算法一等价,此时迭代的总次数为 i; 否则,在循环结束后,必有 key[i] < key[j],且 key[j] < k。则接下来的 8、9 行运行中进行搜索,可以得到正确的结果。次数算法二的总迭代次

(b) 若在 1-t 的循环中返回,则运行时间为 O(t); 否则,在 **for** 循环结束后的过程中,期望运行时间为 $E[X_t]$ 。因此,总的期望运行时间为 $O(t+E[X_t])$ 。

(c)
$$E[X_t] = \sum_{i=0}^d iP(X_t = i) = \sum_{i=1}^d P(X_t \ge i)$$

$$\le \sum_{i=1}^n P(X_t \ge i) \le \sum_{i=1}^n \left(1 - \frac{r}{n}\right)^t$$

(d)
$$\sum_{i=0}^{n-1} r^{t} \le \int_{0}^{n} x^{t} dx = \frac{n^{t+1}}{t+1}$$

(e)
$$E[X_t] = \sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^t = \frac{1}{n^t} \sum_{i=0}^{n-1} i^t$$

$$\leq \frac{1}{n^t} \cdot \frac{n^{t+1}}{t+1} = \frac{n}{t+1}$$

(f)
$$O(t + E[X_t]) = O\left(t + \frac{n}{t+1}\right) = O\left(t + \frac{n}{t}\right)$$

(g)
$$t+\frac{n}{t}\geq 2\sqrt{t\cdot\frac{n}{t}}=2\sqrt{n}$$
 故当 $t=\sqrt{n}$ 时,期望运行时间取最小,为 $O(\sqrt{n})$ 。

(h) 当所有元素均相同,且不是所要找的元素时, 渐进运行时间无法降低。