EE214B g_m/I_D-Based Design

Handout #6

B. Murmann Stanford University Winter 2012-13

Summary on MOSFET Modeling

- Modern MOSFETs are complicated!
- The IV-behavior in saturation can be roughly categorized according to the channel's inversion level: weak, moderate and strong inversion
- The current is due to diffusion in weak inversion and mostly due to drift in strong inversion; the transition is smooth and complicated
- The classic square law model is based on an ideal drift model, and applies only near the onset of strong inversion
 - And even then, the predictions are inaccurate unless short channel effects are taken into account
- The bottom line is that there is no modeling expression that is simple enough for hand analysis and sufficiently accurate to match real world device behavior

The Problem

 Since there is a disconnect between actual transistor behavior and the simple square law model, any square-law driven design optimization will be far off from Spice results

Unfortunate Consequence

- In absence of a simple set of equations for hand analysis, many designers tend to converge toward a "spice monkey" design methodology
 - No hand calculations, iterate in spice until the circuit "somehow" meets the specifications
 - Typically results in sub-optimal designs, uninformed design decisions, etc.
- Our goal
 - Maintain a <u>systematic</u> design methodology in absence of a set of compact MOSFET equations
- Strategy
 - Design using look-up tables or charts

[Courtesy Isaac Martinez]

The Solution

Use pre-computed spice data in hand calculations

B. Murmann EE214B Winter 2012-13 – HO6

Starting Point: Technology Characterization via DC Sweep

```
* /usr/class/ee214b/hspice/techchar.sp
.inc '/usr/class/ee214b/hspice/ee214_hspice.sp'
.inc 'techchar params.sp'
.param ds = 0.9
.param gs = 0.9
        vdn 0
                      dc 'ds'
vdsn
        van 0
                      dc 'gs'
vgsn
                      dc '-subvol'
vbsn
        vbn 0
        vdn vgn 0 vbn nmos214 L='length' W='width'
.options dccap post brief accurate nomod
.dc qs 0 'qsmax' 'qsstep' ds 0 'dsmax' 'dsstep'
.probe n_id = par('i(mn)')
.probe n_vt
            = par('vth(mn)')
.probe n gm
            = par('gmo(mn)')
.probe n_gmb = par('gmbso(mn)')
.probe n_gds = par('gdso(mn)')
.probe n_cgg = par('cggbo(mn)')
.probe n_cgs = par('-cgsbo(mn)')
.probe n cgd = par('-cgdbo(mn)')
.probe n_cgb = par('cbgbo(mn)')
.probe n_cdd = par('cddbo(mn)')
.probe n_css = par('cssbo(mn)')
```


Matlab Wrapper

```
% /usr/class/ee214b/hspice/techchar.m
% HSpice toolbox
addpath('/usr/class/ee214b/matlab/hspice_toolbox')
% Parameters for HSpice runs
VGS_step = 25e-3; VDS_step = 25e-3; VS_step = 0.1;
VGS_max = 1.8; VDS_max = 1.8; VS_max = 1;
VGS = 0:VGS_step:VGS_max; VDS = 0:VDS_step:VDS_max; VS = 0:VS_step:VS_max;
W = 5; L = [(0.18:0.02:0.5) (0.6:0.1:1.0)];
% HSpice simulation loop
for i = 1:length(L)
 for j = 1:length(VS)
   % write out circuit parameters and run hspice
   fid = fopen('techchar_params.sp', 'w');
   fprintf(fid,'*** simulation parameters **** %s\n', datestr(now));
    fprintf(fid,'.param width = %d\n', W*1e-6);
   fprintf(fid,'.param length = dn', L(i)*1e-6);
   fprintf(fid,'.param subvol = %d\n', VS(j));
   fprintf(fid,'.param gsstep = %d\n', VGS_step);
    fprintf(fid,'.param dsstep = %d\n', VDS_step);
   fprintf(fid,'.param gsmax = %d\n', VGS_max);
    fprintf(fid,'.param dsmax = %d\n', VDS_max);
   fclose(fid);
   system('/usr/class/ee/synopsys/hspice/F-2011.09-SP2/hspice/bin/hspice techchar.sp >!...
            techchar.out');
end
```

B. Murmann EE214B Winter 2012-13 – HO6

Simulation Data in Matlab

```
% data stored in /usr/class/ee214b/matlab
>> load 180nch.mat;
>> nch
nch =
     ID: [4-D double]
    VT: [4-D double]
    GM: [4-D double]
    GMB: [4-D double]
    GDS: [4-D double]
    CGG: [4-D double]
    CGS: [4-D double]
    CGD: [4-D double]
    CGB: [4-D double]
    CDD: [4-D double]
    CSS: [4-D double]
    VGS: [73x1 double]
    VDS: [73x1 double]
    VS: [11x1 double]
     L: [22x1 double]
     W: 5
>> size(nch.ID)
ans =
    22
          73
                73
                      11
```

Four-dimensional arrays

$$I_{D}(L, V_{GS}, V_{DS}, V_{S})$$

$$V_{t}(L, V_{GS}, V_{DS}, V_{S})$$

$$g_{m}(L, V_{GS}, V_{DS}, V_{S})$$
...

Lookup Function (For Convenience)

```
>> lookup(nch, 'ID', 'VGS', 0.5, 'VDS', 0.5)
 8.4181e-006
>> help lookup
 The function "lookup" extracts a desired subset from the 4-dimensional
 simulation data. The function interpolates when the requested points lie off
  the simulation grid.
   There are three basic usage modes:
   (1) Simple lookup of parameters at given (L, VGS, VDS, VS)
    (2) Lookup of arbitrary ratios of parameters, e.g. GM_ID, GM_CGG at given
       (L, VGS, VDS, VS)
    (3) Cross-lookup of one ratio against another, e.g. GM CGG for some GM ID
   In usage scenarios (1) and (2) the input parameters (L, VGS, VDS, VS) can be
   listed in any order and default to the following values when not specified:
   L = min(data.L); (minimum length used in simulation)
   VGS = data.VGS; (VGS vector used during simulation)
   VDS = max(data.VDS)/2; (VDD/2)
   VS = 0:
```

B. Murmann EE214B Winter 2012-13 – HO6

Key Question

- How can we use all this data for <u>systematic</u> design?
- Many options exist
 - And you can invent your own, if you like
- Method taught in EE214B
 - Look at the transistor in terms of width-independent figures of merit that are intimately linked to design specification (rather than some physical modeling parameters that do not directly relate to circuit specs)
 - Think about the design tradeoffs in terms of the MOSFET's inversion level, using g_m/I_D as a proxy

Figures of Merit for Design

Square Law

- Transconductance efficiency
 - Want large g_m, for as little current as possible

$$\frac{g_m}{I_D}$$

$$=\frac{2}{V_{OV}}$$

- Transit frequency
 - Want large g_m , without large C_{gg}

$$\frac{g_m}{C_{qq}}$$

$$\cong \frac{3}{2} \frac{\mu V_{\text{OV}}}{L^2}$$

- Intrinsic gain
 - Want large g_m, but no g_o

$$\frac{g_m}{g_o}$$

$$\cong \frac{2}{\lambda V_{ov}}$$

B. Murmann

EE214B Winter 2012-13 - HO6

11

Design Tradeoff: g_m/I_D and f_T

- Weak inversion: Large g_m/ID (>20 S/A), but small f_T
- Strong inversion: Small g_m/ID (<10 S/A), but large f_T

Product of g_m/I_D and f_T

- Interestingly, the product of g_m/I_D and f_T peaks in moderate inversion
- Operating the transistor in moderate inversion is optimal when we value speed and power efficiency equally
 - Not always the case

B. Murmann EE214B Winter 2012-13 – HO6 13

Design in a Nutshell

- Choose the inversion level according to the proper tradeoff between speed (f_T) and efficiency (g_m/I_D) for the given circuit
- The inversion level is fully determined by the gate overdrive V_{OV}
 - But, V_{OV} is not a very interesting parameter outside the square law framework; not much can be computed from V_{OV}

Eliminating V_{OV}

 The inversion level is also fully defined once we pick g_m/I_D, so there is no need to know V_{OV}

B. Murmann EE214B Winter 2012-13 – HO6 15

$g_{\rm m}/I_{\rm D}\text{-centric Technology Characterization}$

- \blacksquare Tabulate the following parameters for a reasonable range of $g_{\rm m}/I_{\rm D}$ and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_o)
- Also tabulate relative estimates of extrinsic capacitances
 - $\,C_{\text{gd}}/C_{\text{gg}}$ and $C_{\text{dd}}/C_{\text{gg}}$
- Note that all of these parameters are (to first order) independent of device width
- In order to compute device widths, we need one more table that links g_m/I_D and current density I_D/W

Transit Frequency Chart

NMOS, 0.18...0.5um (step=20nm), V_{DS} =0.9V

B. Murmann EE214B Winter 2012-13 – HO6 17

Intrinsic Gain Chart

NMOS, 0.18...0.5um (step=20nm), V_{DS} =0.9V

Current Density Chart

NMOS, 0.18...0.5um (step=20nm), V_{DS} =0.9V

B. Murmann EE214B Winter 2012-13 – HO6 19

\mathbf{V}_{DS} Dependence

- V_{DS} dependence is relatively weak
- Typically OK to work with data generated for V_{DD}/2

20

Extrinsic Capacitances (1)

Again, usually OK to work with estimates taken at $V_{DD}/2$

22

B. Murmann EE214B Winter 2012-13 – HO6 21

Extrinsic Capacitances (2)

Extrinsic Capacitances (3)

B. Murmann EE214B Winter 2012-13 – HO6 23

Generic Design Flow

- 1) Determine g_m (from design objectives)
- 2) Pick L
 - Short channel → high f_T (high speed)
 - Long channel → high intrinsic gain
- 3) Pick g_m/I_D (or f_T)
 - Large $g_m/I_D \rightarrow low power$, large signal swing (low V_{DSsat})
 - Small $g_m/I_D \rightarrow high f_T (high speed)$
- 4) Determine I_D (from g_m and g_m/I_D)
- 5) Determine W (from I_D/W)

Many other possibilities exist (depending on circuit specifics, design constraints and objectives)

How about V_{Dsat}?

- V_{Dsat} tells us how much voltage we need across the transistor to operate in saturation
 - "High gain region"
- It is important to note that V_{Dsat} is not crisply defined in modern devices
 - Gradual increase of g_m/g_{ds} with V_{DS}

B. Murmann

EE214B Winter 2012-13 - HO6

25

Relationship Between V_{Dsat} and g_m/I_D

• It turns out that $2/(g_m/I_D)$ is a reasonable first-order estimate for V_{Dsat}

Square Law

$$\begin{split} I_D &= K \left(V_{GS} - V_t \right)^2 \\ g_m &= 2K \left(V_{GS} - V_t \right) \\ \\ \frac{2}{\left(g_m / I_D \right)} &= \left(V_{GS} - V_t \right) = V_{DSat} \end{split}$$

:. Consistent with the classical first-order relationship

Weak Inversion

$$I_D = I_{D0}e^{\frac{V_{GS} - V_t}{nV_T}} \left(1 - e^{\frac{V_{DS}}{V_T}}\right)$$

Need about $3V_T$ for saturation

$$g_m = \frac{I_{D0}}{nV_T} e^{\frac{V_{GS} - V_t}{nV_T}} \left(1 - e^{-\frac{V_{DS}}{V_T}}\right)$$

$$\frac{2}{\left(g_{m} / I_{D}\right)} = 2nV_{T} \cong 3V_{T}$$

∴ Corresponds well with the required minimum V_{DS}

Reality Check

B. Murmann EE214B Winter 2012-13 – HO6 27

Basic Design Example

Given specifications and objectives

- 0.18μm technology
- Low frequency gain = -4
- R_L =1k, C_L =50fF, R_s =10k Ω
- Maximize bandwidth while keeping $I_{TAIL} \leq 600 \mu A$
 - Implies $L=L_{min}=0.18\mu m$
- Determine device width
- Estimate dominant and nondominant pole

Small-Signal Half-Circuit Model

Calculate g_m and g_m/I_D

$$|A_{v0}| \cong g_m R_L = 4$$
 \Rightarrow $g_m = \frac{4}{1k\Omega} = 4mS$

$$\boxed{\frac{g_m}{I_D} = \frac{4mS}{300\mu A} = 13.3\frac{S}{A}}$$

29

B. Murmann

EE214B Winter 2012-13 - HO6

Why can we Neglect r_o?

$$\begin{split} \left| A_{vo} \right| &= g_m \left(R_L \mid \mid r_o \right) \\ &= g_m \left(\frac{1}{R_L} + \frac{1}{r_o} \right)^{-1} \\ \frac{1}{\left| A_{vo} \right|} &= \frac{1}{g_m R_L} + \frac{1}{g_m r_o} \\ \frac{1}{4} &= \frac{1}{g_m R_L} + \frac{1}{g_m r_o} \end{split}$$

- Even at L=L_{min}= $0.18\mu m$, we have $g_m r_o > 30$
- r_o is negligible in this design problem

B. Murmann

EE214B Winter 2012-13 - HO6

Zero and Pole Expressions

$$\omega_{z} = \frac{g_{m}}{C_{gd}} >> \omega_{T}$$

$$b_{1} = R_{s} \left[C_{gs} + C_{gd} \left(1 + \left| A_{v0} \right| \right) \right] + R_{L} (C_{L} + C_{gd})$$

$$\mathbf{b_2} = \mathbf{R_s} \mathbf{R_L} (\mathbf{C_{gs}} \mathbf{C_L} + \mathbf{C_{gs}} \mathbf{C_{gd}} + \mathbf{C_L} \mathbf{C_{gd}})$$

$$\omega_{p1} \cong \frac{1}{b_1}$$

$$\omega_{p2} \cong \frac{b_1}{b_2}$$

B. Murmann

EE214B Winter 2012-13 - HO6

3

Determine C_{gg} via f_T Look-up

NMOS, 0.18...0.5um (step=20nm), V_{DS}=0.9V

B. Murmann

EE214B Winter 2012-13 - HO6

Find Capacitances and Plug in

$$C_{gg} = \frac{1}{2\pi} \frac{4mS}{16.9 GHz} = 37.8 fF$$

$$C_{gd} = \frac{C_{gd}}{C_{gg}}C_{gg} = 0.24 \cdot 37.7 fF = 9.0 fF$$

$$C_{dd} = \frac{C_{dd}}{C_{gg}}C_{gg} = 0.60 \cdot 37.7 fF = 22.6 fF$$

$$C_{db} = C_{dd} - C_{gd} = 13.6 fF$$

$$C_{gs} = C_{gg} - C_{gd} = 28.8 fF$$

$$f_{p1}\cong 200~MHz$$

$$f_{p2} \cong 5.8 \text{ GHz}$$

34

B. Murmann EE214B Winter 2012-13 – HO6 33

Device Sizing

NMOS, 0.18...0.5um (step=20nm), V_{DS} =0.9V

A Note on Current Density

- Designing with current density charts in a normalized, width-independent space works because
 - Current density and g_m/I_D are independent of W
 - I_D/W ~ W/W
 - g_m/I_D ~ W/W
 - There is a one-to-one mapping from g_m/I_D to current density

$$\begin{split} &\text{Square law:} & \qquad \frac{g_{_{D}}}{I_{_{D}}} = \frac{2}{V_{_{OV}}} & \qquad \frac{I_{_{D}}}{W} = \frac{1}{2} \mu C_{_{ox}} \frac{1}{L} V_{_{OV}}^2 = \mu C_{_{ox}} \frac{1}{L} \left(\frac{1}{2} \frac{g_{_{m}}}{I_{_{D}}} \right)^{^{-2}} \end{split}$$

$$&\text{General case:} & \qquad \frac{g_{_{m}}}{I_{_{D}}} = f \left(V_{_{OV}} \right) & \qquad \frac{I_{_{D}}}{W} = g \left(V_{_{OV}} \right) = g \left(f^{^{-1}} \left(\frac{g_{_{m}}}{I_{_{D}}} \right) \right) \end{split}$$

B. Murmann EE214B Winter 2012-13 – HO6 35

Matlab Design Script

```
% gm/ID design example
clear all; close all;
load 180nch.mat;
Av0 = 4; RL = 1e3; CL = 50e-15; Rs = 10e3; ITAIL = 600e-6;
% Component calculations
gm = Av0/RL;
gm id = gm/(ITAIL/2);
wT = lookup(nch, 'GM_CGG', 'GM_ID', gm_id);
cgd_cgg = lookup(nch, 'CGD_CGG', 'GM_ID', gm_id);
cdd_cgg = lookup(nch, 'CDD_CGG', 'GM_ID', gm_id);
cgg = gm/wT;
cgd = cgd cgg*cgg;
cdd = cdd_cgg*cgg;
cdb = cdd - cgd;
cgs = cgg - cgd;
% pole calculations
b1 = Rs*(cgs + cgd*(1+Av0))+RL*(CL+cgd);
b2 = Rs*RL*(cgs*CL + cgs*cgd + CL*cgd);
fp1 = 1/2/pi/b1
fp2 = 1/2/pi*b1/b2
% device sizing
id_w = lookup(nch, 'ID_W', 'GM_ID', gm_id);
w = ITAIL/2 / id_w
```

36

Circuit For Spice Verification

$$W = \frac{I_D}{\frac{I_D}{W}} = \frac{300 \mu A}{16.1 A / m} = 18.6 \mu m$$

Simulation circuit

B. Murmann EE214B Winter 2012-13 – HO6 37

Circuit Netlist

```
* gm/id design example
* ee214 device models
.include /usr/class/ee214b/hspice/ee214_hspice.sp
vdd vdd 0 1.8
vic vic 0 1
vid vid 0 ac 1
x1 vid vic vip vim balun
x2 vod voc vop vom balun
rdum vod 0 1gig
it t 0 600u
m1 vop vgp t 0 nmos214 w=18.6u 1=0.18u m2 vom vgm t 0 nmos214 w=18.6u 1=0.18u
rsp vip vgp 10k
rsm vim vgm 10k
rlp vop vdd 1k
rlm vom vdd 1k
clp vop 0 50f
clm vom 0 50f
.ac dec 100 1e6 1000e9
.pz v(vod) vid
.option post brief accurate
```

38

Ideal Balun

- Useful for separating CM and DM signal components
- Bi-directional, preserves port impedance
- Uses ideal, inductorless transformers that work down to DC
- Not available in all simulators

B. Murmann EE214B Winter 2012-13 – HO6 39

Simulated DC Operating Point

element	0:m1	0:m2
model	0:nmos214	0:nmos214
region	Saturati	Saturati
id	300.0000u	300.0000u
vgs	682.4474m	682.4474m
vds	1.1824	1.1824
vbs	-317.5526m	-317.5526m
vth	564.5037m	564.5037m
vdsat	109.0968m	109.0968m
vod	117.9437m	117.9437m
beta	37.2597m	37.2597m
gam eff	583.8490m	583.8490m
gm	4.0718m	4.0718m
gds	100.9678u	100.9678u
gmb	887.2111u	887.2111u
cdtot	20.8290f	20.8290f
cgtot	37.4805f	37.4805f
cstot	42.2382f	42.2382f
cbtot	31.5173f	31.5173f
cgs	26.7862f	26.7862f
cgd	8.9672f	8.9672f

Good agreement!

Design values

$$g_m = 4 \text{ mS}$$

$$C_{dd}$$
 = 22.6 fF
 C_{gg} = 37.8 fF
 C_{gd} = 9.0 fF

HSpice .OP Capacitance Output Variables

HSpice (.OP)

Corresponding Small Signal Model Elements

cdtot	20.8290f
cgtot	37.4805f
cstot	42.2382f
cbtot	31.5173f
cgs	26.7862f
cgd	8.9672f

$$\begin{split} & \text{cdtot} \equiv C_{gd} + C_{db} \\ & \text{cgtot} \equiv C_{gs} + C_{gd} + C_{gb} \\ & \text{cstot} \equiv C_{gs} + C_{sb} \\ & \text{cbtot} \equiv C_{gb} + C_{sb} + C_{db} \\ & \text{cgs} \equiv C_{gs} \\ & \text{cgd} \equiv C_{gd} \end{split}$$

B. Murmann EE214B Winter 2012-13 – HO6 4

Simulated AC Response

• Calculated values: $|A_{v0}|$ =12 dB (4.0), f_{p1} = 200 MHz, f_{p2} = 5.8 GHz

B. Murmann

EE214B Winter 2012-13 - HO6

Plotting HSpice Results in Matlab

```
clear all;
close all;
addpath('/usr/class/ee214b/matlab/hspice toolbox');
h = loadsig('gm id example1.ac0');
lssig(h)
f = evalsig(h,'HERTZ');
vod = evalsig(h,'vod');
magdb = 20*log10(abs(vod));
av0 = abs(vod(1))
f3dB = interp1(magdb, f, magdb(1)-3, 'spline')
figure(1);
semilogx(f, magdb, 'linewidth', 3);
xlabel('Frequency [Hz]');
ylabel('Magnitude [dB]');
axis([1e6 1e12 -80 20]);
grid;
```

B. Murmann EE214B Winter 2012-13 – HO6 43

Using .pz Analysis

Netlist statement

.pz v(vod) vid

Output

```
*************
input = 0:vid
                  output = v(vod)
                             poles ( hertz)
    poles (rad/sec)
                        real -215.319x
real imag -1.35289g 0.
                                       imag
                                       0.
-31.6307g
           0.
                         -5.03418g
                        zeros
real
70.9407g
    zeros (rad/sec)
                            zeros ( hertz)
real imag 445.734g 0.
                                       imag
```

Observations

- The design is essentially right on target!
 - Typical discrepancies are no more than 10-20%, due to V_{DS} dependencies, finite output resistance, etc.
- We accomplished this by using pre-computed spice data in the design process
- Even if discrepancies are more significant, there's always the possibility to track down the root causes
 - Hand calculations are based on parameters that also exist in Spice, e.g. g_m/I_D , f_T , etc.
 - Different from square law calculations using μC_{ox} , V_{OV} , etc.
 - Based on artificial parameters that do not exist or have no significance in the spice model

B. Murmann EE214B Winter 2012-13 – HO6 45

Comparison

References

- F. Silveira et al. "A g_m/I_D based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA," IEEE J. Solid-State Circuits, Sep. 1996, pp. 1314-1319.
- D. Foty, M. Bucher, D. Binkley, "Re-interpreting the MOS transistor via the inversion coefficient and the continuum of g_{ms}/I_d," Proc. Int. Conf. on Electronics, Circuits and Systems, pp. 1179-1182, Sep. 2002.
- B. E. Boser, "Analog Circuit Design with Submicron Transistors," IEEE SSCS Meeting, Santa Clara Valley, May 19, 2005, http://www.ewh.ieee.org/r6/scv/ssc/May1905.htm
- P. Jespers, The g_m/I_D Methodology, a sizing tool for low-voltage analog CMOS Circuits, Springer, 2010.
- T. Konishi, K. Inazu, J.G. Lee, M. Natsu, S. Masui, and B. Murmann, "Optimization of High-Speed and Low-Power Operational Transconductance Amplifier Using g_m/I_D Lookup Table Methodology," IEICE Trans. Electronics, Vol. E94-C, No.3, Mar. 2011.