1 Problem 5.1

- $L_1 \cup L_2$ Будуємо МТ, яка буде запускати вирішувачі мов L_1, L_2 паралельно, та повертати гејест якщо обидві вирішувачі не прийняли слово, інакше ассерт. Дана МТ вирішує об'єднання та працює за поліноміальний час.
- $L_1 \cap L_2$ Аналогічно. Запускаємо МТ, якщо обидва вирішувачі повертають 1, то також повертаємо 1, інакше 0. Працюємо за поліноміальний час та вирішуємо перетин.
 - L_1L_2 Для конкатенації наша МТ повинна розглядати всі префікси та постфікси слова, не забуваючи і про порожні. Маємо скінченну кількість таких префіксів та постфіксів, передаємо їх на вхід до вирішувачів L_1 та L_2 . Результат повертаємо за аналогією до попереднього пункту. Працює за поліноміальний час та вирішує конкатенацію.
 - L_1^R Наша МТ пише слово у зворотньому порядку, передає на вхід до вирішувача L_1 та повертає результат вирішувача. Працюємо за поліноміальний час.
 - L_1^* Аналогічно до пункту з конкатенацію, окрім того, що наша МТ повинна послідовно розділяти слово на 0, 1, 2, ... частин та перевіряти кожну на вирішувачі L_1 . Також потрібно зауважити, що будемо мати скінченну кількість таких розділів слова.

2 Problem 5.2

- а Складність алгоритму факторизації $O(n^2)$. Зчитування слова знехтовно мале. Отже $O(n^2)$, $L_{UFACTOR} \in P$.
- **b** Алгоритм Дейкстри $O(n^2) \Rightarrow L_{PATH} \in P$.
- **с** Зводимо задачу до пошуку найкоротшого шляху (алг. Дейкстри). При запуску із кожної вершини графа маємо складність $O(n^3) \Rightarrow L_{CONNECTED} \in P$.

3 Problem 5.5

 $L_1 = HALT$. $L_2 = L_1 \cup \{0, 1\}$. $L_2^* \in P$. $L_2 \notin P$.

4 Problem 5.8

Нехай є така мова $L \in NP$. Тоді $\forall L_1 \in NP : L_1 \leq_D L. \Rightarrow L_1 \in coNP \Rightarrow NP \subseteq coNP$.

$$\forall L_2 \in coNP : L_2 \leq_p L \Rightarrow L_2 \in NP \Rightarrow coNP \subseteq NP.$$

 $\Rightarrow coNP = NP.$

5 Problem 5.10

Побудуємо зведення $L_2 \leq_p L_1$. Нехай існує така недетермінована МТ M, що розв'язує мову L_2 . Якщо M(x)=1, то x без префікса 1 належить мові L_1 . Якщо M(x)=0, то x без префікса 1 не належить L_1 .

6 Problem 5.12

- а Припустимо, що $\exists L_{BigCycle} \leq_p L_{HAMPATH} \in NPC$. Домножимо граф на n вершин без ребер, а потім припустимо, що МТ, яка розпізнає $L_{BigCycle}$ поверне 1. Тоді визідний граф буде мати цикл із n вершин. $\Rightarrow \in NPC$.
- **b** $L_{SmallCycle} = coL_{BigCycle} \Rightarrow L_{SmallCycle} \in NP \Rightarrow L_{SmallCycle} \in coNP.$
- **с** Зведемо $SAT \rightarrow L_{TAUTOLOGY}$.

$$L_{TAUTOLOGY}(\overline{\varphi}) = 1 \Rightarrow SAT(\varphi) = 0$$

 $L_{TAUTOLOGY}(\overline{\varphi}) = 0 \Rightarrow SAT(\varphi) = 1$
 $L_{TAUTOLOGY} \in coNP$.

d Зводимо до SAT додаючи ще одну модель:

$$\varphi(x_1, x_2, \dots, x_n) \to \overline{\varphi}(x_1, x_2, \dots, x_n, x_{n+1}) \land (x_1 \land x_2 \land \dots \land x_{n+1})$$

- **е** Будуємо зведення до $L_{HAMPATH}$. Покладемо k=n-1. Тоді шлях існуватиме, якщо $L_{restrPATH}$ поверне 1, інакше ні.
- $\mathbf{f} \ \ \forall L_1 \in NP : L_1 \leq_p HALT.$ Будуємо ДМТ M, яка буде працювати за поліноміальний час. Модифікуємо її так, що вона буде приймати лише якесь вхідне слово. $\Rightarrow HALT \in NP$ -hard.