b) Es soll jetzt
(32)
$$\Psi(t) = e^{-\frac{t^2}{2}} (e^t + e^{-t} + 2 \alpha \sqrt{e})$$

(33)

gesetzt werden, wobei a eine positive Konstante bedeutet. Bei dieser Wahl ist

(33)
$$2\int_0^\infty \Psi(t)\cos zt \, dt = 2\sqrt{2\pi e} \, e^{-\frac{z^2}{2}}(a+\cos z).$$
Num hat die Funktion (32) orginalist is a second

Nun hat die Funktion (32) ersichtlicherweise folgende

Eigenschaften:

I. Es gilt für
$$n = 0, 1, 2, 3, ...$$

$$\lim_{t\to +\infty} t^{-1} \log |\Psi^{(n)}(t)| = -\infty.$$

II. $\Psi(t)$ ist eine gerade Funktion.

III. Es ist $\Psi(t) > 0$ für reelles t.

IV. Es ist für $t \rightarrow +\infty$

(34)
$$\psi(t) \sim e^{-\frac{t^2}{2}} (e^t + e^{-t}).$$

Wird in (33) $\Psi(t)$ durch die rechte Seite von (34) ersetzt, so entsteht eine Funktion mit nur reellen Nullstellen.

Diese Eigenschaften entsprechen den unter Nr. 4 betrachteten Eigenschaften I—IV der Funktion $\mathcal{O}(t)$, die in der Integraldarstellung der ξ -Funktion auftritt. Wir sehen, dass aus diesen Eigenschaften nicht auf die Realität der Nullstellen geschlossen werden kann: (33) hat nur reelle Nullstellen, wenn $0 < a \le 1$, und nur imaginäre Nullstellen, wenn a > 1.