```
In [1]:
import pandas as pd
import matplotlib.pyplot as plt
import re
import time
import warnings
import sqlite3
from sqlalchemy import create engine # database connection
import csv
import os
import datetime as dt
import numpy as np
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import normalize
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics.classification import accuracy score, log loss
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
from scipy.sparse import hstack
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
#from sklearn.cross validation import StratifiedKFold
from sklearn.model selection import StratifiedKFold
from collections import Counter, defaultdict
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import normalized_mutual_info_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import cross val score
#from sklearn.model_selection import c
from sklearn.linear model import SGDClassifier
#from mlxtend.classifier import StackingClassifier
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision recall curve, auc, roc curve
```

4. Machine Learning Models

4.1 Reading data from file and storing into sql table

```
In [2]:

#Creating db file from csv
if not os.path.isfile('train.db'):
    disk_engine = create_engine('sqlite:///train.db')
    start = dt.datetime.now()
    chunksize = 180000
    j = 0
    index_start = 1
    for df in pd.read_csv('final_features_train.csv', names=['Unnamed: 0','id','is_duplicate','cwc_min','cwc_max','csc_min','csc_max','ctc_min','ctc_max','last_word_eq','first_word_eq','abs_len_diff','mean_len','token_set_ratio','token_sort_ratio','fuzz_ratio','fuzz_partial_ratio','longest_substr_ratio','freq_qid1','freq_qid2','q1len','q2len','q1_n_words','q2_n_words','word_Common','word_Total'.'word_share'.'freq_qi+q2'.'freq_qi-
```

```
q2','0_x','1_x','2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x','13_x','14_x',
'15_x','16_x','17_x','18_x','19_x','20_x','21_x','22_x','23_x','24_x','25_x','26_x','27_x','28_x','
29_x','30_x','31_x','32_x','33_x','34_x','35_x','36_x','37_x','38_x','39_x','40_x','41_x','42_x','4
3_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53_x','54_x','55_x','56_x','57
 _x','58_x','59_x','60_x','61_x','62_x','63_x','64_x','65_x','66_x','67_x','68_x','69_x','70_x','71_
x','72_x','73_x','74_x','75_x','76_x','77_x','78_x','79_x','80_x','81_x','82_x','83_x','84_x','85_x
','86_x','87_x','88_x','89_x','90_x','91_x','92_x','93_x','94_x','95_x','96_x','97_x','98_x','99_x'
,'100_x','101_x','102_x','103_x','104_x','105_x','106_x','107_x','108_x','109_x','110_x','111_x','
112_x','113_x','114_x','115_x','116_x','117_x','118_x','119_x','120_x','121_x','122_x','123_x','12
4_x','125_x','126_x','127_x','128_x','129_x','130_x','131_x','132_x','133_x','134_x','135_x','136_
x','137_x','138_x','139_x','140_x','141_x','142_x','143_x','144_x','145_x','146_x','147_x','148_x'
,'149 x','150 x','151 x','152 x','153 x','154 x','155 x','156 x','157 x','158 x','159 x','160 x','
161 x<sup>-</sup>,'162 x<sup>-</sup>,'163 x<sup>-</sup>,'164 x<sup>-</sup>,'165 x<sup>-</sup>,'166 x<sup>-</sup>,'167 x<sup>-</sup>,'168 x<sup>-</sup>,'169 x<sup>-</sup>,'170 x<sup>-</sup>,'171 x<sup>-</sup>,'172 x<sup>-</sup>,'17
3_x','174_x','175_x','176_x','177_x','178_x','179_x','180_x','181_x','182_x','183_x','184_x','185
x','186_x','187_x','188_x','189_x','190_x','191_x','192_x','193_x','194_x','195_x','196_x','197_x'
 '198_x','199_x<sup>†</sup>,'200_x<sup>†</sup>,'201_x<sup>†</sup>,'202_x','203_x<sup>†</sup>,'204_x<sup>†</sup>,'205_x<sup>†</sup>,'206_x','207_x<sup>†</sup>,'208_x<sup>†</sup>,'209_x','
210_x','211_x','212_x','213_x','214_x','215_x','216_x','217_x','218_x','219_x','220_x','221_x','22
2 x','223 x','224 x','225 x','226 x','227 x','228 x','229 x','230 x','231 x','232 x','233 x','234
x','235_x','236_x','237_x','238_x','239_x','240_x','241_x','242_x','243_x','244_x','245_x','246_x'
,'247_x','248_x','249_x','250_x','251_x','252_x','253_x','254_x','255_x','256_x','257_x','258_x','
259_x','260_x','261_x','262_x','263_x','264_x','265_x','266_x','267_x','268_x','269_x','270_x','271_x','272_x','273_x','274_x','275_x','276_x','277_x','278_x','279_x','280_x','281_x','282_x','283_
x^{\dagger}, '284_x', '285_x', '286_x', '287_x', '288_x', '289_x', '290_x', '291_x', '292_x', '293_x', '294_x', '295_x'
,'296 x<sup>7</sup>,'297 x<sup>7</sup>,'298 x','299 x<sup>7</sup>,'300 x<sup>7</sup>,'301 x','302 x<sup>7</sup>,'303 x<sup>7</sup>,'304 x','305 x<sup>7</sup>,'306 x<sup>7</sup>,'307 x<sup>7</sup>,'
308_x<sup>-</sup>, '309_x<sup>-</sup>, '310_x<sup>-</sup>, '311_x<sup>-</sup>, '312_x<sup>-</sup>, '313_x<sup>-</sup>, '314_x<sup>-</sup>, '315_x<sup>-</sup>, '316_x<sup>-</sup>, '317_x<sup>-</sup>, '318_x<sup>-</sup>, '319_x<sup>-</sup>, '32
0 \ x^{\dagger}, '321 \ x^{\dagger}, '322 \ x^{\dagger}, '323 \ x^{\dagger}, '324 \ x^{\dagger}, '325 \ x^{\dagger}, '326 \ x^{\dagger}, '327 \ x^{\dagger}, '328 \ x^{\dagger}, '329 \ x^{\dagger}, '330 \ x^{\dagger}, '331 \ x^{\dagger}, '332 \ x^{\dagger}, '332 \ x^{\dagger}, '331 \ x^{\dagger}, '332 \ x^{\dagger}, '332 \ x^{\dagger}, '333 \ x^{\dagger}, '331 \ x^{\dagger}, '332 \ x^{\dagger}, '33
x','333_x','334_x','335_x','336_x','337_x','338_x','339_x','340_x','341_x','342_x','342_x','344_x'
,'345_x','346_x','347_x','348_x','349_x','350_x','351_x','352_x','353_x','354_x','355_x','356_x','
357 x', '358 x', '359 x', '360 x', '361 x', '362 x', '363 x', '364 x', '365 x', '366 x', '367 x', '368 x'
9_x','370_x','371_x','372_x','373_x','374_x','375_x','376_x','377_x','378_x','379_x','380_x','381_
x','382_x','383_x','0_y','1_y','2_y','3_y','4_y','5_y','6_y','7_y','8_y','9_y','10_y','11_y','12_y'
,'13_y','14_y','15_y','16_y','17_y','18_y','19_y','20_y','21_y','22_y','23_y','24_y','25_y','26_y',
'27_y','28_y','29_y','30_y','31_y','32_y','33_y','34_y','35_y','36_y','37_y','38_y','39_y','40_y','
41_y','42_y','43_y','44_y','45_y','46_y','47_y','48_y','49_y','50_y','51_y','52_y','53_y','54_y','5
5_y','56_y','57_y','58_y','59_y','60_y','61_y','62_y','63_y','64_y','65_y','66_y','67_y','68_y',
 _y','70_y','71_y','72_y','73_y','74_y','75_y','76_y','77_y','78_y','79_y','80_y','81_y','82_y','83_
y','84_y','85_y','86_y','87_y','88_y','89_y','90_y','91_y','92_y','93_y','94_y','95_y','96_y','97_y
','98_y','99_y','100_y','101_y','102_y','103_y','104_y','105_y','106_y','107_y','108_y','109_y','11
0_y','111_y','112_y','113_y','114_y','115_y','116_y','117_y','118_y','119_y','120_y','121_y','122
y','123_y','124_y','125_y','126_y','127_y','128_y','129_y','130_y','131_y','132_y','133_y','134_y','135_y','136_y','137_y','138_y','139_y','141_y','142_y','143_y','144_y','145_y','146_y','
147_y','148_y','149_y','150_y','151_y','152_y','153_y','154_y','155_y','156_y','157_y','158_y','15
9_y','160_y','161_y','162_y','163_y','164_y','165_y','166_y','167_y','168_y','169_y','170_y','171_y','172_y','173_y','174_y','175_y','176_y','177_y','178_y','179_y','180_y','181_y','182_y','183_y'
,'184_y','185_y','186_y','187_y','188_y','189_y','190_y','191_y','192_y','193_y','194_y','195_y','
196_y','197_y','198_y','199_y','200_y','201_y','202_y','203_y','204_y','205_y','206_y','207_y','20
8_y','209_y','210_y','211_y','212_y','213_y','214_y','215_y','216_y','217_y','218_y','219_y','220_
y','221_y','222_y','223_y','224_y','225_y','226_y','227_y','228_y','229_y','230_y','231_y','232_y','233_y','234_y','235_y','237_y','238_y','239_y','240_y','241_y','242_y','243_y','244_y','
245_y','246_y','247_y','248_y','249_y','250_y','251_y','252_y','253_y','254_y','255_y','256_y','25
7_y','258_y','259_y','260_y','261_y','262_y','263_y','264_y','265_y','266_y','267_y','268_y','269_y','270_y','271_y','272_y','273_y','274_y','275_y','276_y','277_y','278_y','279_y','280_y','281_y'
,'282_y','283_y','284_y','285_y','286_y','287_y','288_y','289_y','290_y','291_y','292_y','293_y','
294_y','295_y','296_y','297_y','298_y','299_y','300_y','301_y','302_y','303_y','304_y','305_y','306_y','307_y','308_y','309_y','311_y','312_y','313_y','314_y','315_y','316_y','317_y','318_
y','319_y','320_y','321_y','322_y','323_y','324_y','325_y','326_y','327_y','328_y','329_y','330_y'
,'331_y','332_y','333_y','334_y','335_y','336_y','337_y','338_y','339_y','340_y','341_y','342_y','
343_y','344_y','345_y','346_y','347_y','348_y','349_y','350_y','351_y','352_y','353_y','354_y','35
5_y','356_y<sup>†</sup>,'357_y<sup>†</sup>,'358_y<sup>†</sup>,'359_y','360_y<sup>†</sup>,'361_y<sup>†</sup>,'362_y','363_y<sup>†</sup>,'364_y<sup>†</sup>,'365_y<sup>†</sup>,'366_y','367
y','368_y','369_y','370_y','371_y','372_y','373_y','374_y','375_y','376_y','377_y','378_y','380_y','381_y','382_y','383_y'], chunksize=chunksize, iterator=True, encoding='utf-8',):
              df.index += index_start
              print('{} rows'.format(j*chunksize))
              df.to sql('data', disk engine, if exists='append')
              index start = df.index[-1] + 1
4
C:\Users\nnagari\AppData\Local\Continuum\anaconda3\lib\site-
```

C:\Users\nnagari\AppData\Local\Continuum\anaconda3\lib\sitepackages\IPython\core\interactiveshell.py:3058: DtypeWarning: Columns
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,2,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,

```
208,209,210,211,212,213,214,215,216,217,218,219,220,221,222) have mixed types. Specify dtype option on import or set low_memory=False.
```

interactivity=interactivity, compiler=compiler, result=result)

180000 rows 360000 rows

In [3]:

```
#Creating db file from csv
if not os.path.isfile('test.db'):
      disk engine = create engine('sqlite:///test.db')
      start = dt.datetime.now()
      chunksize = 180000
      j = 0
      index start = 1
      for df in pd.read_csv('final_features_test.csv', names=['Unnamed: 0','id','is_duplicate','cwc_m
in','cwc max','csc min','csc max','ctc min','ctc max','last word eq','first word eq','abs len diff'
,'mean_len','token_set_ratio','token_sort_ratio','fuzz_ratio','fuzz_partial_ratio','longest_substr_
ratio','freq_qid1','freq_qid2','q1len','q2len','q1_n_words','q2_n_words','word_Common','word_Total'
,'word share','freq q1+q2','freq q1-
q2','0_x','1_x','2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x','13_x','14_x',
'15 x','16 x','17 x','18 x','19 x','20 x','21 x','22 x','23 x','24 x','25 x','26 x','27 x','28 x','
29 x','30 x','31 x','32 x','33 x','34 x','35 x','36 x','37 x','38 x','39 x','40 x','41 x','42 x','4
3_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53_x','54_x','55_x','56_x','57
 x','58_x','59_x','60_x','61_x','62_x','63_x','64_x','65_x','66_x','67_x','68_x','69_x','70_x','71_
x','72 x','73 x','74 x','75 x','76 x','77 x','78 x','79 x','80 x','81 x','82 x','83 x','84 x','85 x
','86_x','87_x','88_x','89_x','90_x','91_x','92_x','93_x','94_x','95_x','96_x','97_x','98_x','99_x'
,'100 x','101 x','102 x','103 x','104 x','105 x','106 x','107 x','108 x','109 x','110 x','111 x','
112 x','113 x','114 x','115 x','116 x','117 x','118 x','119 x','120 x','121 x','122 x','123 x','12
4_x','125_x','126_x','127_x','128_x','129_x','130_x','131_x','132_x','133_x','134_x','135_x','136_x'
x','137_x','138_x','139_x','140_x','141_x','142_x','143_x','144_x','145_x','146_x','147_x','148_x','149_x','150_x','151_x','152_x','153_x','154_x','155_x','156_x','157_x','158_x','159_x','160_x','
161 x','162 x<sup>T</sup>,'163 x<sup>T</sup>,'164 x','165 x<sup>T</sup>,'166 x<sup>T</sup>,'167 x','168 x<sup>T</sup>,'169 x<sup>T</sup>,'170 x','171 x<sup>T</sup>,'172 x<sup>T</sup>,'17
3 x','174 x','175 x','176 x','177 x','178 x','179 x','180 x','181 x','182 x','183 x','184 x','185
x<sup>-</sup>, '186_x<sup>-</sup>, '187_x<sup>-</sup>, '188_x<sup>-</sup>, '189_x<sup>-</sup>, '190_x<sup>-</sup>, '191_x<sup>-</sup>, '192_x<sup>-</sup>, '193_x<sup>-</sup>, '194_x<sup>-</sup>, '195_x<sup>-</sup>, '195_x<sup>-</sup>, '197_x<sup>-</sup>
,'198 x<sup>'</sup>,'199 x<sup>'</sup>,'200 x','201 x<sup>'</sup>,'202 x<sup>'</sup>,'203 x','204 x<sup>'</sup>,'205 x<sup>'</sup>,'206 x','207 x<sup>'</sup>,'208 x<sup>'</sup>,'209 x<sup>'</sup>,'
210_x<sup>'</sup>,'211_x<sup>'</sup>,'212_x<sup>'</sup>,'213_x<sup>'</sup>,'214_x<sup>'</sup>,'215_x<sup>'</sup>,'216_x<sup>'</sup>,'217_x<sup>'</sup>,'218_x<sup>'</sup>,'219_x<sup>'</sup>,'220_x<sup>'</sup>,'221_x<sup>'</sup>,'22
2 x<sup>-</sup>,'223 x<sup>-</sup>,'224 x<sup>-</sup>,'225 x<sup>-</sup>,'226 x<sup>-</sup>,'227 x<sup>-</sup>,'228 x<sup>-</sup>,'229 x<sup>-</sup>,'230 x<sup>-</sup>,'231 x<sup>-</sup>,'232 x<sup>-</sup>,'233 x<sup>-</sup>,'234
x','235 x','236 x','237 x','238 x','239 x','240 x','241 x','242 x','243 x','244 x','245 x','246 x'
,'247 x','248 x','249 x','250 x','251 x','252 x','253 x','254 x','255 x','256 x','257 x','258 x','
259 x','260 x<sup>T</sup>,'261 x<sup>T</sup>,'262 x','263 x<sup>T</sup>,'264 x<sup>T</sup>,'265 x','266 x<sup>T</sup>,'267 x<sup>T</sup>,'268 x','269 x<sup>T</sup>,'270 x<sup>T</sup>,'27
1 x','272 x','273 x','274 x','275 x','276 x','277 x','278 x','279 x','280 x','281 x','282 x','283
x','284_x','285_x','286_x','287_x','288_x','289_x','290_x','291_x','292_x','293_x','294_x','295_x'
,'296 \vec{x'},'297 \vec{x'},'298 \vec{x'},'299 \vec{x'},'300 \vec{x'},'301 \vec{x'},'302 \vec{x'},'303 \vec{x'},'304 \vec{x'},'305 \vec{x'},'306 \vec{x'},'307 \vec{x'},'
308_x<sup>-</sup>, '309_x<sup>-</sup>, '310_x<sup>-</sup>, '311_x<sup>-</sup>, '312_x<sup>-</sup>, '313_x<sup>-</sup>, '314_x<sup>-</sup>, '315_x<sup>-</sup>, '316_x<sup>-</sup>, '317_x<sup>-</sup>, '318_x<sup>-</sup>, '319_x<sup>-</sup>, '32
0 \ x', '321 \ x^{\top}, '322 \ x^{\top}, '323 \ x^{\top}, '324 \ x', '325 \ x^{\top}, '326 \ x^{\top}, '327 \ x', '328 \ x^{\top}, '329 \ x^{\top}, '330 \ x^{\top}, '331 \ x', '332 \ x',
x','333_x','334_x','335_x','336_x','337_x','338_x','339_x','340_x','341_x','342_x','343_x','344_x'
 '345 x','346 x','347 x','348_x','349_x','350_x','351_x','352_x','353_x','354_x','355_x','356_x','
357 x<sup>-</sup>, '358 x<sup>-</sup>, '359 x<sup>-</sup>, '360 x<sup>-</sup>, '361 x<sup>-</sup>, '362 x<sup>-</sup>, '363 x<sup>-</sup>, '364 x<sup>-</sup>, '365 x<sup>-</sup>, '366 x<sup>-</sup>, '367 x<sup>-</sup>, '368 x<sup>-</sup>, '36
9_x','370_x','371_x','372_x','373_x','374_x','375_x','376_x','377_x','378_x','379_x','380_x','381_
x','382_x','383_x','0_y','1_y','2_y','3_y','4_y','5_y','6_y','7_y','8_y','9_y','10_y','11_y','12_y'
,'13_y','14_y','15_y','16_y','17_y','18_y','19_y','20_y','21_y','22_y','23_y','24_y','25_y','26_y',
'27_y','28_y','29_y','30_y','31_y','32_y','33_y','34_y','35_y','36_y','37_y','38_y','39_y','40_y','41_y','42_y','43_y','44_y','45_y','46_y','47_y','48_y','49_y','50_y','51_y','52_y','53_y','54_y','5
5 y', '56 y', '57 y', '58 y', '59 y', '60 y', '61 y', '62 y', '63 y', '64 y', '65 y', '66 y', '67 y', '68 y', '69
 y','70 y','71 y','72 y','73 y','74 y','75 y','76 y','77 y','78 y','79 y','80 y','81 y','82 y','83
','98_y','99_y','100_y','101_y','102_y','103_y','104_y','105_y','106_y','107_y','108_y','109_y','11
  _y','111_y','112_y','113_y','114_y','115_y','116_y','117_y','118_y','119_y','120_y','121
y','123_y','124_y','125_y','126_y','127_y','128_y','129_y','130_y','131_y','132_y','133_y','134_y
,'135_y','136_y','137_y','138_y','139_y','140_y','141_y','142_y','143_y','144_y','145_y','146_y','
147_y','148_y','149_y','150_y','151_y','152_y','153_y','154_y','155_y','156_y','157_y','158_y','15
9_y','160_y','161_y','162_y','163_y','164_y','165_y','166_y','167_y','168_y','169_y','170_y','171_
   ,'172_y','173_y','174_y','175_y','176_y','177_y','178_y','179_y','180_y','181_y','182_y','183_y'
,'184_y','185_y','186_y','187_y','188_y','189_y','190_y','191_y','192_y','193_y','194_y','195_y','
196_y','197_y<sup>†</sup>,'198_y<sup>†</sup>,'199_y','200_y<sup>†</sup>,'201_y<sup>†</sup>,'202_y','203_y<sup>†</sup>,'204_y<sup>†</sup>,'205_y','206_y<sup>†</sup>,'207_y<sup>†</sup>
8 y','209 y','210 y','211 y','212 y','213 y','214 y','215 y','216 y','217 y','218 y','219 y','220
y','221_y','222_y','223_y','224_y','225_y','226_y','227_y','228_y','229_y','230_y','231_y','232_y'
  '233 y','234 y<sup>T</sup>,'235 y<sup>T</sup>,'236 y<sup>T</sup>,'237 y<sup>T</sup>,'238 y','239 y<sup>T</sup>,'240 y<sup>T</sup>,'241 y<sup>T</sup>,'242 y<sup>T</sup>,'243 y','244 y
245_y','246_y','247_y','248_y','249_y','250_y','251_y','252_y','253_y','254_y','255_y','256_y','25
7_y','258_y','259_y','260_y','261_y','262_y','263_y','264_y','265_y','266_y','267_y','268_y','269
y','270 y','271 y','272 y','273 y','274 y','275 y','276 y','277 y','278 y','279 y','280 y','281 y'
,'282_y','283_y','284_y','285_y','286_y','287_y','288_y','289_y','290_y','291_y','292_y','293_y','
294 y','295 y','296 y','297 y','298 y','299 y','300 y','301 y','302 y','303 y','304 y','305 y','30
6 y' '307 y' '308 y' '309 y' '310 y' '311 y' '312 y' '313 y' '314 y' '315 y' '316 y' '317 y' '318
```

180000 rows

In [14]:

```
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection (db file):
    """ create a database connection to the SQLite database
       specified by db_file
    :param db file: database file
    :return: Connection object or None
       conn = sqlite3.connect(db_file)
       return conn
    except Error as e:
       print(e)
    return None
def checkTableExists(dbcon):
   cursr = dbcon.cursor()
    str = "select name from sqlite master where type='table'"
   table names = cursr.execute(str)
   print("Tables in the databse:")
    tables =table names.fetchall()
    print(tables[0][0])
    return(len(tables))
```

In [15]:

```
read_db = 'train.db'
conn_r = create_connection(read_db)
checkTableExists(conn_r)
conn_r.close()
```

Tables in the databse: data

In [16]:

```
# try to sample data according to the computing power you have
if os.path.isfile(read_db):
    conn_r = create_connection(read_db)
    if conn_r is not None:
        # for selecting first 1M rows
        # data = pd.read_sql_query("""SELECT * FROM data LIMIT 100001;""", conn_r)

# for selecting random points
        data = pd.read_sql_query("SELECT * From data ORDER BY RANDOM() LIMIT 100001;", conn_r)
        conn_r.commit()
        conn_r.close()
```

In [17]:

```
read_db = 'test.db'
conn_r = create_connection(read_db)
checkTableExists(conn_r)
conn_r.close()
```

```
Tables in the databse: data
```

In [18]:

```
# try to sample data according to the computing power you have
if os.path.isfile(read_db):
    conn_r = create_connection(read_db)
    if conn_r is not None:
        # for selecting first 1M rows
        # data = pd.read_sql_query("""SELECT * FROM data LIMIT 100001;""", conn_r)

# for selecting random points
        data_test = pd.read_sql_query("SELECT * From data ORDER BY RANDOM() LIMIT 50001;", conn_r)
        conn_r.commit()
        conn_r.close()
```

In [19]:

```
# remove the first row
data.drop(data.index[0], inplace=True)
y_true = data['is_duplicate']
data.drop(['Unnamed: 0', 'id', 'index', 'is_duplicate'], axis=1, inplace=True)
```

In [20]:

data.head()

Out[20]:

	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	I
1	1	0.599988000239995	0.599988000239995	0.66664444518516	0.66664444518516	0.624992187597655	0.62499
2	0	0.0	0.0	0.199996000079998	0.124998437519531	0.0714280612281341	0.05882
3	1	0.499987500312492	0.499987500312492	0.999966667777741	0.749981250468738	0.714275510349852	0.62499
4	0	0.222219753113854	0.105262603881032	0.818174380232907	0.52940865053735	0.43999824000704	0.23404
5	0	0.66664444518516	0.499987500312492	0.499987500312492	0.499987500312492	0.571420408279882	0.49999

5 rows × 794 columns

In [22]:

```
# remove the first row
data_test.drop(data_test.index[0], inplace=True)
y_test_true = data_test['is_duplicate']
data_test.drop(['Unnamed: 0', 'id','index','is_duplicate'], axis=1, inplace=True)
```

In [23]:

```
data_test.head()
```

Out[23]:

	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	las
1	1	0.833319444675922	0.416663194473379	0.499987500312492	0.249996875039062	0.699993000069999	0.304346
2	0	0.999950002499875	0.399992000159997	0.499987500312492	0.399992000159997	0.666655555740738	0.399996
3	1	0.333329629670781	0.29999700003	0.285710204139941	0.285710204139941	0.294115916965194	0.294115
4	0	0.749981250468738	0.499991666805553	0.499987500312492	0.333327777870369	0.454541322351615	0.454541
5	1	0.66664444518516	0.66664444518516	0.249993750156246	0.249993750156246	0.428565306209911	0.374995

.

4.2 Converting strings to numerics

```
In [25]:
```

```
# https://stackoverflow.com/questions/7368789/convert-all-strings-in-a-list-to-int
y_true = map(int, y_true.values)
```

In [26]:

```
# https://stackoverflow.com/questions/7368789/convert-all-strings-in-a-list-to-int
y_test_true = map(int, y_test_true.values)
```

In [27]:

```
# after we read from sql table each entry was read it as a string
# we convert all the features into numaric before we apply any model
cols = list(data.columns)
for i in cols:
    data[i] = data[i].apply(pd.to_numeric,errors='coerce')
    print(i)
```

```
cwc min
cwc max
csc min
csc_max
ctc_min
ctc max
last word eq
first word eq
abs len diff
mean_len
token set ratio
token_sort_ratio
fuzz ratio
fuzz partial ratio
longest_substr_ratio
freq qid1
freq_qid2
q11en
q2len
q1_n_words
q2_n_words
word Common
word Total
word share
freq_q1+q2
freq_q1-q2
0 x
1_x
2_x
3 x
4_x
5_x
6 x
7 x
8 x
9 x
10_x
11_x
12 x
13 x
14 x
15_x
16_x
17 x
18_x
19_x
20 x
21_x
```

22_x 23_x

24_x 25_x 26_x 27_x 28_x 29_x 30_x 31_x 32_x 33_x 34_x 35_x 36_x 37_x 38_x 39_x 40_x 41_x 42_x 43_x 44_x 45_x 46_x 47_x 48_x 49_x 50_x 51_x 52_x 53_x 54_x 55_x 56_x 57_x 58_x 59_x 60_x 61_x 62_x 63_x 64_x 65_x 66_x 67_x 68_x 69_x 70_x 71_x 72_x 73_x 74_x 75_x 76_x 77_x 78_x 79_x 80_x 81_x 82_x 83_x 84_x 85_x 86_x 87_x 88_x 89_x 90_x 91_x 92_x 93_x 94_x 95_x 96_x 97_x 98_x 99_x 100_x

101_x 102_x 103_x 104_x 105_x 106_x 107_x 108_x 109_x 110_x 111_x 112_x 113_x 114_x 115_x 116_x 117_x 118_x 119_x 120_x 121_x 122_x 123_x 124_x 125_x 126_x 127_x 128_x 129_x 130_x 131_x 132_x 133_x 134_x 135_x 136_x 137 x 138_x 139_x 140_x 141_x 142_x 143_x 144_x 145_x 146_x 147 x 148_x 149_x 150_x 151_x 152_x 153_x 154_x 155_x 156_x 157_x 158_x 159_x 160_x 161_x 162_x 163_x 164_x 165_x 166_x 167_x 168_x 169_x 170_x 171_x 172_x 173_x 174_x 175_x 176_x 177_x

178_x 179_x 180_x 181_x 182_x 183_x 184_x 185_x 186_x 187_x 188_x 189_x 190_x 191_x 192_x 193_x 194_x 195_x 196_x 197 x 198 x 199_x 200_x 201 x 202_x 203_x 204_x 205_x 206_x 207_x 208_x 209_x 210_x 211_x 212_x 213_x 214 x 215_x 216_x 217_x 218_x 219_x 220_x 221_x 222_x 223_x 224_x 225_x 226_x 227_x 228_x 229_x 230_x 231 x 232_x 233_x 234_x 235_x 236_x 237_x 238_x 239_x 240_x 241_x 242_x 243_x 244_x 245_x 246_x 247_x 248_x 249_x 250_x 251_x 252_x 253_x 254_x

255_x 256_x 257_x 258_x 259_x 260_x 261_x 262_x 263_x 264_x 265_x 266_x 267_x 268_x 269_x 270_x 271_x 272_x 273_x 274_x 275_x 276_x 277_x 278_x 279_x 280_x 281_x 282_x 283_x 284_x 285_x 286_x 287_x 288_x 289_x 290_x 291_x 292 x 293_x 294_x 295_x 296_x 297_x 298_x 299_x 300_x 301_x 302_x 303_x 304_x 305_x 306_x 307_x 308_x 309_x 310_x 311_x 312_x 313_x 314_x 315_x 316_x 317_x 318_x 319_x 320_x 321_x 322_x 323_x 324_x 325_x 326_x 327_x 328_x 329_x 330_x 331 x

332_x 333_x 334_x 335_x 336_x 337_x 338_x 339_x 340_x 341_x 342_x 343_x 344_x 345_x 346_x 347_x 348_x 349_x 350_x 351_x 352_x 353_x 354_x 355_x 356 x 357_x 358_x 359_x 360_x 361_x 362_x 363_x 364_x 365_x 366_x 367_x 368_x 369 x 370_x 371_x 372_x 373_x 374_x 375_x 376_x 377_x 378_x 379_x 380_x 381_x 382_x 383_x 0_y 1_y 2_y 3_y 4_y 5_y 6_y 7_y 8_y 9_у 10_y 11_y 12_y 13_y 14_y 15_y 16_y 17_y 18_y 19_y 20_y 21_y 22_y 23_y 24 y

25_y 26_y 27_y 28_y 29_y 30_y 31_y 32_y 33_y 34_y 35_y 36_y 37_y 38_y 39_y 40_y 41_y 42_y 43_y 44_y 45_y 46_y 47_y 48_y 49_y 50_y 51_y 52_y 53_y 54_y 55_y 56_y 57_y 58_y 59_y 60_y 61_y 62_y 63_y 64_y 65_y 66_y 67_y 68_y 69_y 70_y 71_y 72_y 73_y 74_y 75_y 76_y 77_y 78_y 79_y 80_y 81_y 82_y 83_y 84_y 85_y 86_y 87_y 88_y 89_y 90_y 91_y 92_y 93_y 94_y 95_y 96_y 97_y 98_y 99_y 100_y 101 v

102_y 103_y 104_y 105_y 106_y 107_y 108_y 109_y 110_y 111_y 112_y 113 y 114_y 115_y 116_y 117_y 118_y 119_y 120_y 121_y 122_y 123_y 124_y 125_y 126_y 127_y 128_y 129_y 130_y 131_y 132_y 133_y 134_y 135_y 136_у 137_y 138_y 139_y 140_y 141_y 142_y 143_y 144_y 145_y 146_y 147_y 148_y 149_y 150_y 151_y 152_y 153_y 154_y 155_y 156_y 157_y 158_y 159_y 160_y 161_y 162_y 163_y 164_y 165_y 166_y 167_y 168_y 169_y 170_y 171_y 172_y 173_y 174_y 175_y 176_y 177_y 178_v 179_y 180_y 181_y 182_y 183_y 184_y 185_y 186_y 187_y 188_y 189_y 190_y 191_y 192_y 193_y 194_y 195_y 196_y 197_y 198_y 199_y 200_y 201_y 202_y 203_y 204_y 205_y 206_y 207_y 208_y 209_y 210_y 211_y 212_y 213_y 214_y 215_y 216_y 217_y 218_y 219_y 220_y 221_y 222_y 223_y 224_y 225_y 226_y 227_y 228_y 229_y 230_y 231_y 232_y 233_y 234_y 235_y 236_y 237_y 238_y 239<u>y</u> 240_y 241_y 242_y 243_y 244_y 245_y 246_y 247_y 248_y 249_y 250_y 251_y 252_y 253_y 254_y

255 v

256_y 257_y 258_y 259_y 260_y 261_y 262_y 263_y 264_y 265_y 266_y 267_y 268 y 269_y 270_y 271_y 272_y 273_y 274_y 275_y 276_y 277_y 278_y 279_y 280_y 281_y 282_y 283_y 284_y 285_y 286<u>y</u> 287_y 288_y 289<u>y</u> 290_y 291_y 292<u>y</u> 293_y 294_y 295_y 296<u>y</u> 297_y 298_y 299 у 300_y 301_y 302_y 303<u>y</u> 304_y 305_y 306_y 307_y 308_y 309_y 310_y 311_y 312 y 313_y 314_y 315_y 316_y 317_y 318_y 319_y 320_y 321_y 322_y 323_y 324_y 325_y 326_y 327_y 328_y 329_y 330_y 331_y 332 w

```
JJ2_Y
333_y
334_y
335_y
336_у
337_y
338_y
339_y
340 y
341_y
342_y
343 y
344_y
345_y
346 y
347_y
348_y
349_y
350_y
351_y
352_y
353_y
354_y
355_y
356_y
357 у
358_y
359_у
360 у
361_y
362 у
363_y
364_y
365_y
366_y
367_y
368 у
369_у
370_y
371_y
372_y
373 у
374_y
375_y
376 y
377_y
378_y
379_y
380<u>y</u>
381_y
382_y
383_y
In [28]:
# after we read from sql table each entry was read it as a string
# we convert all the features into numaric before we apply any model
cols = list(data_test.columns)
for i in cols:
   data_test[i] = data_test[i].apply(pd.to_numeric,errors='coerce')
   print(i)
cwc min
cwc_max
csc_min
csc max
ctc min
ctc max
last_word_eq
first_word_eq
abs_len_diff
mean_len
token_set_ratio
token_sort_ratio
fuzz_ratio
fuzz_partial_ratio
```

longest_substr_ratio $freq_qid1$ freq_qid2 qllen q2len q1_n_words q2_n_words word_Common word Total word_share freq_q1+q2 freq_q1-q2 0_x 1_x 2_x 3_x 4_x 5_x 6_x 7 x 8 x 9_x 10_x 11 x 12_x 13_x 14_x 15_x 16_x 17_x 18_x 19_x 20_x 21_x 22_x 23_x 24 x 25_x 26_x 27_x 28_x 29_x 30_x 31_x 32_x 33_x 34_x 35_x 36_x 37_x 38_x 39_x 40_x 41 x 42_x 43_x 44_x 45_x 46_x 47_x 48_x 49_x 50_x 51_x 52_x 53_x 54_x 55_x 56_x 57_x 58_x 59_x 60_x 61_x 62_x

63_x 64_x

65_x 66_x 67_x 68_x 69_x 70_x 71_x 72_x 73_x 74_x 75_x 76_x 77_x 78_x 79_x 80_x 81_x 82_x 83_x 84_x 85_x 86_x 87_x 88_x 89_x 90_x 91_x 92_x 93_x 94_x 95_x 96_x 97_x 98_x 99_x 100_x 101_x 102_x 103_x 104_x 105_x 106_x 107_x 108_x 109_x 110_x 111_x 112_x 113_x 114_x 115_x 116_x 117_x 118 x 119_x 120_x 121_x 122_x 123_x 124_x 125_x 126_x 127_x 128_x 129_x 130_x 131_x 132_x 133_x 134_x 135_x 136_x 137_x 138_x 139_x 140_x 141 x

142_x 143_x 144_x 145_x 146_x 147_x 148_x 149_x 150_x 151_x 152_x 153_x 154_x 155_x 156_x 157_x 158_x 159_x 160_x 161_x 162_x 163_x 164_x 165_x 166 x 167_x 168_x 169_x 170_x 171_x 172_x 173_x 174_x 175_x 176_x 177_x 178_x 179 x 180_x 181_x 182_x 183_x 184_x 185_x 186_x 187_x 188_x 189_x 190_x 191_x 192_x 193_x 194_x 195_x 196_x 197_x 198_x 199_x 200_x 201_x 202_x 203_x 204_x 205_x 206_x 207_x 208_x 209_x 210_x 211_x 212_x 213_x 214_x 215_x 216_x 217_x 218 x

219_x 220_x 221_x 222_x 223_x 224_x 225_x 226_x 227_x 228_x 229 x 230_x 231_x 232_x 233_x 234_x 235_x 236_x 237_x 238_x 239_x 240_x 241_x 242_x 243_x 244_x 245_x 246_x 247_x 248_x 249_x 250_x 251_x 252_x 253_x 254_x 255_x 256_x 257_x 258_x 259_x 260_x 261_x 262_x 263_x 264_x 265_x 266_x 267_x 268_x 269_x 270_x 271_x 272_x 273_x 274_x 275_x 276_x 277_x 278_x 279_x 280_x 281_x 282_x 283_x 284_x 285_x 286_x 287_x 288_x 289 x 290_x 291_x 292_x 293_x 294_x

295 x

296_x 297_x 298_x 299_x 300_x 301_x 302_x 303_x 304_x 305_x 306_x 307 x 308_x 309_x 310_x 311_x 312_x 313_x 314_x 315_x 316_x 317_x 318_x 319_x 320_x 321_x 322_x 323_x 324_x 325_x 326_x 327_x 328_x 329_x 330_x 331_x 332_x 333_x 334 x 335 x 336_x 337_x 338_x 339_x 340_x 341_x 342_x 343_x 344_x 345_x 346_x 347_x 348_x 349_x 350 x 351_x 352_x 353_x 354_x 355_x 356_x 357_x 358_x 359_x 360_x 361_x 362_x 363_x 364_x 365 x 366_x 367 x 368_x 369_x 370_x 371_x 372 x

373_x 374_x 375_x 376_x 377_x 378_x 379_x 380_x 381_x 382_x 383_x 0_y 1_y 2_y 3_y 4_y 5_y 6_у 7_у 8_Y 9_y 10_y 11_y 12_y 13_y 13_y 14_y 15_y 16_y 17_y 18_y 19_y 20_y 21_y 22_y 23_y 24_y 25_y 26_y 27_y 28_y 29_y 30_y 31_y 32_y 33_y 34_y 35_y 36_y 37_y 38_y 39_y 40_y 41_y 42_y 43_y 44_y 45_y 45_y 46_y 47_y 48_y 49_y 50_y 51_y 52_y 53_y 54_y 55_y 56_y 57_y 58_y 59_y 60_y 61_y 62_y 63_y 64_y

69_y 70_y 71_y 72_y 73_y 74_y 75_y 76_y 77_y 78_y 79_y 80_y 81_y 82_y 83_y 84_y 85_y 86_y 87_y 88_y 89_y 90_y 91_y 92_y 93_y 94_y 95_y 96_y 97_y 98_y 99_y 100_y 101_y 102_y 103_y 104_y 105_y 106_y 107_y 108_y 109_y 110_y 111_y 112_y 113_y 114_y 115_y 116<u>y</u> 117_y 118_y 119_y 120_y 121_y 122_y 123_y 124_y 125_y 126_y 127_y 128_y 129_y 130_y 131_y 132_y 133_y 134_y 135_у 136_y 137_y 138_y 139_y 140_y 141_y 142 v

66_y 67_y 68_y

143_y 144_y 145_y 146_y 147_y 148_y 149_y 150_y 151_y 152_y 153_y 154_y 155_y 156_y 157_y 158_y 159_y 160_y 161_y 162_y 163_y 164_y 165_y 166_y 167_y 168_y 169_y 170_y 171_y 172_y 173_y 174_y 175_y 176_y 177_y 178_y 179_y 180_y 181_y 182_y 183_y 184_y 185_y 186_y 187_y 188_y 189_y 190_y 191_y 192_y 193_y 194_y 195_y 196_у 197_y 198_y 199_y 200<u>y</u> 201_y 202_y 203_y 204_y 205_y 206_y 207_y 208_y 209_y 210_y 211_y 212_y 213_y 214_y 215_y 216 y 217_y 218_y

<u>د ب ی پ</u> 220_y 221_y 222_y 223_y 224_y 225_y 226_y 227_y 228_y 229_y 230_y 231_y 232_y 233<u>y</u> 234_y 235_y 236_y 237_y 238_y 239_y 240_y 241_y 242_y 243_y 244_y 245_y 246_y 247_y 248_y 249_y 250_y 251_y 252_y 253_y 254_y 255_y 256_у 257_y 258_y 259_y 260_y 261_y 262_y 263_y 264 y 265_y 266_y 267_y 268_y 269_y 270_y 271_y 272_y 273_y 274_y 275_y 276_y 277_y 278_y 279<u>y</u> 280_y 281_y 282_y 283_y 284_y 285_y 286_y 287_y 288_y 289_y 290_y 291_y 292_y 293_y 294_y 295_y 290_y 297_y 298_y 299_y 300_y 301_y 302_y 303_y 304_y 305_y 306_y 307_y 308_y 309_y 310_y 311_y 312_y 313_y 314_y 315_y 316_y 317_y 318_y 319_y 320_y 321_y 322_y 323_y 324_y 325_y 326_y 327_y 328_y 329_y 330_y 331_y 332_y 333_y 334_y 335_y 336_y 337_y 338_y 339_y 340_y 341_y 342_y 343_y 344_y 345_y 346_y 347_y 348_y 349_y 350_y 351_y 352_y 353_y 354_y 355_y 356_y 357_y 358_y 359<u>y</u> 360_y 361_y 362_y 363_y 364_y 365_y 366_y 367_y 368_y 369_y 370_y 371 y 372_y 272

```
3/3 y
374_y
375 y
376 у
377 y
378_y
379_y
380 y
381 y
382_y
383 у
4.3 Random train test split(70:30)
In [2]:
data train=pd.read csv('final features train.csv')
data test=pd.read csv('final features test.csv')
data train.drop(data train.index[0], inplace=True)
y true = data train['is duplicate'].values
data train.drop(['Unnamed: 0 x','Unnamed: 0', 'id','is duplicate'], axis=1, inplace=True)
data test.drop(data test.index[0], inplace=True)
y test true = data test['is duplicate'].values
data_test.drop(['Unnamed: 0_x','Unnamed: 0', 'id','is_duplicate'], axis=1, inplace=True)
In [3]:
#training data got from final features test
X train=data train[:70000].values
X test=data test[:30000].values
y_train=y_true[:70000]
y_test=y_test_true[:30000]
Tn [4]:
print("Shpae of train data", X_train.shape, y_train.shape)
print("Shape of test data", X test.shape, y test.shape)
Shpae of train data (70000, 219) (70000,)
Shape of test data (30000, 219) (30000,)
In [5]:
print("-"*10, "Distribution of output variable in train data", "-"*10)
train_distr = Counter(y_train)
train_len = len(y train)
print("Class 0: ",int(train_distr[0])/train_len,"Class 1: ", int(train_distr[1])/train_len)
print("-"*10, "Distribution of output variable in train data", "-"*10)
test distr = Counter(y test)
test_len = len(y_test)
print("Class 0: ",int(test_distr[1])/test_len, "Class 1: ",int(test_distr[1])/test_len)
----- Distribution of output variable in train data ------
Class 0: 0.6335571428571428 Class 1: 0.3664428571428571
----- Distribution of output variable in train data -----
Class 0: 0.3698666666666667 Class 1: 0.369866666666667
In [25]:
# This function plots the confusion matrices given y_i, y_i_hat.
def plot confusion_matrix(test_y, predict_y):
    C = confusion_matrix(test_y, predict_y)
    \# C = 9,9 matrix, each cell (i,j) represents number of points of class i are predicted class j
    A = (((C.T)/(C.sum(axis=1))).T)
    #divid each element of the confusion matrix with the sum of elements in that column
    \# C = [[1, 2],
```

[3, 4]] # C.T = [[1, 3],

```
\# C.sum(axis = 1)
                      axis=0 corresonds to columns and axis=1 corresponds to rows in two
diamensional array
   \# C.sum(axix = 1) = [[3, 7]]
    \# ((C.T)/(C.sum(axis=1))) = [[1/3, 3/7]
                                 [2/3, 4/7]]
    # ((C.T)/(C.sum(axis=1))).T = [[1/3, 2/3]
                                [3/7, 4/7]]
    # sum of row elements = 1
    B = (C/C.sum(axis=0))
    #divid each element of the confusion matrix with the sum of elements in that row
    \# C = [[1, 2],
   # C.sum(axis = 0) axis=0 corresonds to columns and axis=1 corresponds to rows in two
diamensional array
    \# C.sum(axix = 0) = [[4, 6]]
    \# (C/C.sum(axis=0)) = [[1/4, 2/6],
                            [3/4, 4/6]]
   plt.figure(figsize=(20,4))
   labels = [1,2]
    # representing A in heatmap format
    cmap=sns.light_palette("blue")
    plt.subplot(1, 3, 1)
    sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Confusion matrix")
    print("Confusion matrix")
    df cm = pd.DataFrame(C, range(2), range(2))
    df cm.columns = ['Predicted NO', 'Predicted YES']
    df cm = df cm.rename({0: 'Actual NO', 1: 'Actual YES'})
    print(df cm)
    plt.subplot(1, 3, 2)
    sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Precision matrix")
    print("Precision matrix")
    df cm = pd.DataFrame(B, range(2), range(2))
    df cm.columns = ['Predicted NO', 'Predicted YES']
    df_cm = df_cm.rename({0: 'Actual NO', 1: 'Actual YES'})
    print(df cm)
    plt.subplot(1, 3, 3)
    sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Recall matrix")
    print("Recall matrix")
    df cm = pd.DataFrame(B, range(2), range(2))
    df cm.columns = ['Predicted NO', 'Predicted YES']
    df cm = df cm.rename({0: 'Actual NO', 1: 'Actual YES'})
    print(df cm)
    plt.show()
```

4.4 Building a random model (Finding worst-case log-loss)

In [124]:

```
# we need to generate 9 numbers and the sum of numbers should be 1
# one solution is to genarate 9 numbers and divide each of the numbers by their sum
# ref: https://stackoverflow.com/a/18662466/4084039
# we create a output array that has exactly same size as the CV data
predicted_y = np.zeros((test_len,2))
for i in range(test_len):
    rand_probs = np.random.rand(1,2)
    predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0])
print("Log loss on Test Data using Random Model",log_loss(y_test, predicted_y, eps=le-15))
```

```
predicted y =np.argmax(predicted y, axis=1)
plot_confusion_matrix(y_test, predicted_y)
Log loss on Test Data using Random Model 0.8879982259662449
Confusion matrix
            Predicted NO Predicted YES
Actual NO
                   9486
                                   9418
Actual YES
                    5449
                                   5647
Precision matrix
            Predicted NO Predicted YES
Actual NO
                0.635152
                               0.625158
Actual YES
                0.364848
                               0.374842
Recall matrix
            Predicted NO Predicted YES
Actual NO
                0.635152
                               0.625158
Actual YES
                0.364848
                               0.374842
```


4.4 Logistic Regression with hyperparameter tuning

In [138]:

```
%%time
#warnings.simplefilter("ignore", 'FutureWarning')
alpha = [10 ** x for x in range(-7, 7)] # hyperparam for SGD classifier.
# read more about SGDClassifier() at http://scikit-
{\tt learn.org/stable/modules/generated/sklearn.linear\_model.SGDClassifier.html}
# default parameters
# SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, 11 ratio=0.15, fit intercept=True, max i
ter=None, tol=None,
# shuffle=True, verbose=0, epsilon=0.1, n jobs=1, random state=None, learning rate='optimal', eta0
=0.0, power t=0.5,
# class weight=None, warm start=False, average=False, n iter=None)
# some of methods
# fit(X, y[, coef init, intercept init, ...]) Fit linear model with Stochastic Gradient Descent.
# predict(X) Predict class labels for samples in X.
#-----
# video link:
log error array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='12', loss='log',class weight='balanced',n jobs=-
1,learning rate ='adaptive',eta0 =5)
   clf.fit(X_train, y_train)
    sig clf = CalibratedClassifierCV(clf, method="isotonic", cv=2)
    sig_clf.fit(X_train, y_train)
    predict y = sig clf.predict proba(X test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:", log loss(y test, predict y,
labels=clf.classes_, eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,2)):
   ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
```

```
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='12',
loss='log',class_weight='balanced',n_jobs=-1,learning_rate='adaptive',eta0 =5)
clf.fit(X train, y train)
sig clf = CalibratedClassifierCV(clf, method="isotonic", cv=2)
sig clf.fit(X train, y train)
predict_y = sig_clf.predict_proba(X_train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train,
predict_y, labels=clf.classes_, eps=1e-15))
predict y = sig clf.predict proba(X test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, p
redict_y, labels=clf.classes_, eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
print("Total number of data points :", len(predicted y))
plot_confusion_matrix(y_test, predicted_y)
```

```
For values of alpha = 1e-07 The log loss is: 0.5927904576378324

For values of alpha = 1e-06 The log loss is: 0.5909443528510991

For values of alpha = 1e-05 The log loss is: 0.5884413243175798

For values of alpha = 0.0001 The log loss is: 0.5879319408614725

For values of alpha = 0.001 The log loss is: 0.5891032254351823

For values of alpha = 0.01 The log loss is: 0.5901007570784752

For values of alpha = 0.1 The log loss is: 0.628373793051189
```


For values of best alpha = 0.0001 The train log loss is: 0.5808928707970528
For values of best alpha = 0.0001 The test log loss is: 0.5908179212138209
Total number of data points : 30000
Confusion matrix

Predicted NO Predicted YES Actual NO 15019 Actual YES 6049 5047 Precision matrix Predicted NO Predicted YES 0.712882 0.434953 Actual NO 0.287118 0.565047 Actual YES Recall matrix Predicted NO Predicted YES Actual NO 0.712882 0.434953 Actual YES 0.287118 0.565047

Predicted Class Predicted Class Predicted Class Predicted Class

Wall time: 4min 59s

4.5 Linear SVM with hyperparameter tuning

```
In [142]:
```

```
alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.
# read more about SGDClassifier() at http://scikit-
learn.org/stable/modules/generated/sklearn.linear\ model.SGDC lassifier.html
# default parameters
# SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, 11 ratio=0.15, fit intercept=True, max i
ter=None, tol=None,
# shuffle=True, verbose=0, epsilon=0.1, n jobs=1, random state=None, learning rate='optimal', eta0
=0.0, power_t=0.5,
# class weight=None, warm start=False, average=False, n iter=None)
# some of methods
# fit(X, y[, coef init, intercept init, ...]) Fit linear model with Stochastic Gradient Descent.
# predict(X) Predict class labels for samples in X.
# video link:
#alpha=i, penalty='12', loss='log',class weight='balanced',n jobs=-1,learning rate
='adaptive',eta0 =5
log_error_array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='12', loss='hinge',class weight='balanced',n jobs=-1,learn
ing rate ='adaptive',eta0 =5)
    clf.fit(X train, y train)
    sig clf = CalibratedClassifierCV(clf, method="isotonic",cv=2)
    sig_clf.fit(X_train, y_train)
    predict y = sig clf.predict proba(X test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:",log_loss(y_test, predict_y, labels=clf.cl
asses_, eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log error array,c='g')
for i, txt in enumerate(np.round(log error array,3)):
   ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log error array[i]))
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(log_error_array)
clf = SGDClassifier(alpha=alpha[best alpha], penalty='12',
loss='hinge',class weight='balanced',n jobs=-1,learning rate ='adaptive',eta0 =5)
clf.fit(X train, y train)
sig clf = CalibratedClassifierCV(clf, method="isotonic",cv=2)
sig_clf.fit(X_train, y_train)
predict y = sig clf.predict proba(X train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train,
predict y, labels=clf.classes , eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, p
redict y, labels=clf.classes , eps=1e-15))
predicted_y =np.argmax(predict_y,axis=1)
print("Total number of data points :", len(predicted y))
plot_confusion_matrix(y_test, predicted_y)
```

For values of alpha = 1e-05 The log loss is: 0.5894821727136259 For values of alpha = 0.0001 The log loss is: 0.5891677952937698 For values of alpha = 0.001 The log loss is: 0.5911466047808938

```
For values of alpha = 0.01 The log loss is: 0.5976186549930591
For values of alpha = 0.1 The log loss is: 0.6248539574278599
For values of alpha = 1 The log loss is: 0.6478512912941948
For values of alpha = 10 The log loss is: 0.6485579315566874
```



```
For values of best alpha = 0.0001 The train log loss is: 0.5832719717267644
For values of best alpha = 0.0001 The test log loss is: 0.5931414884160295
Total number of data points : 30000
Confusion matrix
            Predicted NO Predicted YES
Actual NO
                   15304
Actual YES
                    6345
                                    4751
Precision matrix
            Predicted NO
                          Predicted YES
Actual NO
                0.706915
                               0.431086
Actual YES
                0.293085
                               0.568914
Recall matrix
            Predicted NO
                          Predicted YES
                0.706915
                               0.431086
Actual NO
Actual YES
                0.293085
                               0.568914
```


5. Assignments

1. Try out models (Logistic regression, Linear-SVM) with simple TF-IDF vectors instead of TD_IDF weighted word2Vec.

```
In [6]:
```

```
#Reading the
data_train=pd.read_csv('final_features_train.csv')
data_test=pd.read_csv('final_features_test.csv')
data_train.drop(data_train.index[0], inplace=True)
y_train_tfidf = data_train['is_duplicate']
data_train.drop(['Unnamed: 0_x','Unnamed: 0','is_duplicate'], axis=1, inplace=True)
data_test.drop(data_test.index[0], inplace=True)
y_test_tfidf = data_test['is_duplicate']
data_test.drop(['Unnamed: 0_x','Unnamed: 0','is_duplicate'], axis=1, inplace=True)
data_test.drop(['Unnamed: 0_x','Unnamed: 0','is_duplicate'], axis=1, inplace=True)
```

```
#removing the column which not useful from train data set.
data_train.drop(['0_x','1_x','2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x',
13_x','14_x','15_x','16_x','17_x','18_x','19_x','20_x','21_x','22_x','23_x','24_x','25_x','26_x','2
7_x','28_x','29_x','30_x','31_x','32_x','33_x','34_x','35_x','36_x','37_x','38_x','39_x','40_x','41
_x','42_x','43_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53_x','54_x','55_x','56_x','57_x','58_x','59_x','60_x','61_x','62_x','63_x','64_x','65_x','66_x','67_x','68_x','69_x','70_x','71_x','72_x','73_x','74_x','75_x','76_x','77_x','78_x','79_x','80_x','81_x','82_x','83_x'
,'84_x','85_x','86_x','87_x','88_x','89_x','90_x','91_x','92_x','93_x','94_x','95_x','0_y','1_y','2
_y','3_y','4_y','5_y','6_y','7_y','8_y','9_y','10_y','11_y','12_y','13_y','14_y','15_y','16_y','17_
__y', 
'60_y','61_y','62_y','63_y','64_y','65_y','66_y','67_y','68_y','69_y','70_y','71_y','72_y','73_y','
74_y','75_y','76_y','77_y','78_y','79_y','80_y','81_y','82_y','83_y','84_y','85_y','86_y','87_y','8
8_y','89_y','90_y','91_y','92_y','93_y','94_y','95_y'], axis=1, inplace=True)
#removing the column which not useful from train data set.
data_test.drop(['0_x','1_x','2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x','1
3_x','14_x','15_x','16_x','17_x','18_x','19_x','20_x','21_x','22_x','23_x','24_x','25_x','26_x','27
_x','28_x','29_x','30_x','31_x','32_x','33_x','34_x','35_x','36_x','37_x','38_x','39_x','40_x','41_x','42_x','43_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53_x','54_x','55_x
 ','56_x','57_x','58_x','59_x','60_x','61_x','62_x','63_x','64_x','65_x','66_x','67_x','68_x','69_x'
,'70_x','71_x','72_x','73_x','74_x','75_x','76_x','77_x','78_x','79_x','80_x','81_x','82_x','83_x',
'84_x','85_x','86_x','87_x','88_x','89_x','90_x','91_x','92_x','93_x','94_x','95_x','0_y','1_y','2_
y','3_y','4_y','5_y','6_y','7_y','8_y','9_y','10_y','11_y','12_y','13_y','14_y','15_y','16_y','17_y
  ','18_y','19_y','20_y',<sup>'</sup>21_y','22_y<sup>'</sup>,'23_y','24_y','25_y','26_y','27_y','28_y','29_y','30_y','31_y'
 ,'32_y','33_y','34_y','35_y','36_y','37_y','38_y','39_y','40_y','41_y','42_y','43_y','44_y','45_y',
'46_y','47_y','48_y','49_y','50_y','51_y','52_y','53_y','54_y','55_y','56_y','57_y','58_y','59_y','
60_y','61_y','62_y','63_y','64_y','65_y','66_y','67_y','68_y','69_y','70_y','71_y','72_y','73_y','7
4_y','75_y','76_y','77_y','78_y','79_y','80_y','81_y','82_y','83_y','84_y','85_y','86_y','87_y','88
 _y','89_y','90_y','91_y','92_y','93_y','94_y','95_y'], axis=1, inplace=True)
```

In [8]:

data_train[:2]

Out[8]:

	id	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	last_word_eq	first_word_eq	abs_len_diff	:	freq_
1	93043	0.499988	0.499988	0.249994	0.249994	0.374995	0.374995	1.0	1.0	0.0		2
2	261901	0.833319	0.714276	0.749981	0.749981	0.799992	0.727266	1.0	1.0	1.0		6

2 rows × 28 columns

In [9]:

data_test[:2]

Out[9]:

	id	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	last_word_eq	first_word_eq	abs_len_diff	 freq_
1	344312	0.749981	0.599988	0.666644	0.499988	0.624992	0.624992	0.0	0.0	0.0	 1
2	290852	0.999900	0.499975	0.999950	0.999950	0.999967	0.749981	1.0	1.0	1.0	 1

2 rows × 28 columns

In [10]:

#distribution of data set.
y_train_tfidf.value_counts()

Out[10]:

0 178654 1 104348

Name: is duplicate, dtype: int64

```
In [11]:
y test tfidf.value counts()
Out[11]:
   76371
44915
0
Name: is duplicate, dtype: int64
Imbalance dataset.
In [12]:
#Reading nlp features train and removing some columns which is already there.
df=pd.read csv('nlp features train.csv',encoding='latin-1')
df.drop(['is_duplicate','cwc_min','cwc_max','csc_min','csc_max','ctc_min','ctc_max','last_word_eq'
,'first word eq','abs len diff','mean len','token set ratio','token sort ratio','fuzz ratio','fuzz
partial ratio','longest substr ratio'],axis=1,inplace=True)
data_train=df.merge(data_train,on='id', how='right')
#data looks like
#'Unnamed:0',id', 'qid1', 'qid2', 'question1', 'question2', 'index', 'cwc min',
#'cwc_max', 'csc_min', 'csc_max', 'ctc_min', 'ctc_max', 'last_word_eq',
#'first word eq', 'abs len diff', 'mean len', 'token set ratio',
# 'token_sort_ratio', 'fuzz_ratio', 'fuzz_partial_ratio',
# 'longest_substr_ratio', 'freq_qid1', 'freq_qid2', 'q1len', 'q2len',
# 'q1_n_words', 'q2_n_words', 'word_Common', 'word_Total', 'word_share',
# 'freq_q1+q2', 'freq_q1-q2'
4
In [13]:
data train.columns
Out[13]:
Index(['Unnamed: 0', 'id', 'qid1', 'qid2', 'question1', 'question2', 'cwc min',
       'cwc_max', 'csc_min', 'csc_max', 'ctc_min', 'ctc_max', 'last_word_eq',
       'first word eq', 'abs len diff', 'mean len', 'token set ratio',
       'token sort ratio', 'fuzz_ratio', 'fuzz_partial_ratio',
       'longest_substr_ratio', 'Unnamed: 0_y', 'freq_qid1', 'freq_qid2',
       'qllen', 'q2len', 'q1 n words', 'q2 n words', 'word Common',
       'word Total', 'word_share', 'freq_q1+q2', 'freq_q1-q2'],
      dtype='object')
In [14]:
#Reading nlp features train and removing some columns which is already there.
df test=pd.read csv('nlp features test.csv',encoding='latin-1')
df test.drop(['is duplicate','cwc min','cwc max','csc min','csc max','ctc min','ctc max','last wor
d eq','first word eq','abs len diff','mean len','token set ratio','token sort ratio','fuzz ratio',
'fuzz partial ratio','longest substr ratio'],axis=1,inplace=True)
data test=df test.merge(data test,on='id', how='right')
#data looks like
#'Unnamed:0',id', 'qid1', 'qid2', 'question1', 'question2', 'index', 'cwc_min',
#'cwc_max', 'csc_min', 'csc_max', 'ctc_min', 'ctc_max', 'last_word_eq',
#'first word eq', 'abs len diff', 'mean len', 'token set ratio',
# 'token sort ratio', 'fuzz ratio', 'fuzz partial ratio',
# 'longest_substr_ratio', 'freq_qid1', 'freq_qid2', 'q1len', 'q2len',
# 'q1_n_words', 'q2_n_words', 'word_Common', 'word Total', 'word share',
# 'freq_q1+q2', 'freq_q1-q2'
In [15]:
data test.columns
Out[15]:
```

-<u>-</u>----

```
'cwc_max', 'csc_min', 'csc_max', 'ctc_min', 'ctc_max', 'last_word_eq',
       'first_word_eq', 'abs_len_diff', 'mean_len', 'token_set_ratio',
       'token sort ratio', 'fuzz ratio', 'fuzz_partial_ratio',
       'longest substr ratio', 'Unnamed: 0_y', 'freq_qid1', 'freq_qid2',
       'q1len', 'q2len', 'q1_n_words', 'q2_n_words', 'word_Common',
       'word Total', 'word share', 'freq q1+q2', 'freq q1-q2'],
      dtype='object')
In [16]:
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf vectorizer q1 = TfidfVectorizer(min df=30,max features=1000)
#Fitting train data and transforming train ,cv and test vector shape should be same.
tr q1 tfidf=tfidf vectorizer q1.fit transform(data train['question1'].values.astype('U'))
te q1 tfidf=tfidf vectorizer q1.transform(data test['question1'].values.astype('U'))
print("Shape of matrix TFIDF Vectorizer on question1 \nTrain data-{},\nTest
data-{}".format(tr q1 tfidf.shape,te q1 tfidf.shape))
Shape of matrix TFIDF Vectorizer on question1
Train data-(283002, 1000),
Test data-(121286, 1000)
In [17]:
tfidf vectorizer q2 = TfidfVectorizer(min df=30, max features=1000)
#Fitting train data and transforming train ,cv and test vector shape should be same.
tr q2 tfidf=tfidf vectorizer q2.fit transform(data train['question2'].values.astype('U'))
te q2 tfidf=tfidf vectorizer q2.transform(data test['question2'].values.astype('U'))
print("Shape of matrix TFIDF Vectorizer on question2 \nTrain data-{},\nTest
data-{}".format(tr_q2_tfidf.shape,te_q2_tfidf.shape))
Shape of matrix TFIDF Vectorizer on question2
Train data-(283002, 1000),
Test data-(121286, 1000)
In [18]:
#Removing the the id, gid1, gid2, question1, question2, index once we get TfidfVectorizeration for gues
tion1 and question2.
data train.drop(['Unnamed: 0','id','qid1','qid2','question1','question2'],axis=1,inplace=True)
data test.drop(['Unnamed: 0','id','qid1','qid2','question1','question2'],axis=1,inplace=True)
In [19]:
#combining all the feature and tfidf features
tr_X_TFIDF=hstack((data_train,tr_q1_tfidf,tr_q2_tfidf))
tr_X_TFIDF=tr_X_TFIDF.toarray()
te_X_TFIDF= hstack((data_test,te_q1_tfidf,te_q2_tfidf))
te X TFIDF=te X TFIDF.toarray()
print(tr_X_TFIDF.shape)
print(te X TFIDF.shape)
(283002, 2027)
(121286, 2027)
```

Logistic regression on TFIDF

In [27]:

```
ж истапти Баташелега
# SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, 11_ratio=0.15, fit_intercept=True, max_i
ter=None, tol=None,
# shuffle=True, verbose=0, epsilon=0.1, n jobs=1, random state=None, learning rate='optimal', eta0
=0.0, power_t=0.5,
# class weight=None, warm start=False, average=False, n iter=None)
# some of methods
# fit(X, y[, coef init, intercept init, ...]) Fit linear model with Stochastic Gradient Descent.
# predict(X) Predict class labels for samples in X.
# video link:
log error array=[]
for i in alpha:
   clf = SGDClassifier(alpha=i, penalty='12', loss='log',
random state=2,class weight='balanced',n jobs=-1)
    clf.fit(tr_X_TFIDF, y_train_tfidf)
    sig clf = CalibratedClassifierCV(clf, method='isotonic',cv=3)
    sig clf.fit(tr_X_TFIDF, y_train_tfidf)
    predict_y = sig_clf.predict_proba(tr_X_TFIDF)
    log_error_array.append(log_loss(y_train_tfidf, predict_y, labels=clf.classes_, eps=1e-15))
   print('For values of alpha = ', i, "The log loss is:", log loss(y train tfidf, predict y,
labels=clf.classes_, eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log error array, c='g')
for i, txt in enumerate(np.round(log error array, 3)):
   ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=i, penalty='12', loss='log',
random state=2,class weight='balanced',n jobs=-1)
#clf=XGBClassifier( n estimators=20,objective= 'binary:logistic',seed=27)
clf.fit(tr_X_TFIDF, y_train_tfidf)
sig clf = CalibratedClassifierCV(clf, method='isotonic',cv=3)
sig_clf.fit(tr_X_TFIDF, y_train_tfidf)
predict_y = sig_clf.predict_proba(tr_X_TFIDF)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss
is:",log_loss(y_train_tfidf, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(te_X_TFIDF)
print('For values of best alpha = ', alpha[best alpha], "The test log loss
is:",log loss(y test tfidf, predict y, labels=clf.classes , eps=1e-15))
predicted_y =np.argmax(predict_y,axis=1)
print("Total number of data points :", len(predicted y))
plot confusion matrix(y test tfidf, predicted y)
For values of alpha = 0.01 The log loss is: 0.6125677429101645
```



```
10
```

```
For values of best alpha = 10 The train log loss is: 0.6192971909398267
For values of best alpha = 10 The test log loss is: 0.6224645448213041
Total number of data points : 121286
Confusion matrix
            Predicted NO Predicted YES
Actual NO
                   75994
                                    377
Actual YES
                   44439
Precision matrix
            Predicted NO
                          Predicted YES
Actual NO
               0.631006
                                0.44197
                0.368994
                                0.55803
Actual YES
Recall matrix
            Predicted NO Predicted YES
Actual NO
                0.631006
                                0.44197
Actual YES
                0.368994
                                0.55803
```


Wall time: 4h 52min 3s

Linear-SVM on TFIDF

In [28]:

```
alpha = [10 ** x for x in range(-3, 2)] # hyperparam for SGD classifier.
# read more about SGDClassifier() at http://scikit-
learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html
# default parameters
# SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1 ratio=0.15, fit intercept=True, max i
ter=None, tol=None,
# shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate='optimal', eta0
=0.0, power t=0.5,
# class_weight=None, warm_start=False, average=False, n_iter=None)
# some of methods
# fit(X, y[, coef init, intercept init, ...]) Fit linear model with Stochastic Gradient Descent.
# predict(X) Predict class labels for samples in X.
# video link:
#-----
log_error_array=[]
for i in alpha:
   clf = SGDClassifier(class weight='balanced',alpha=i, penalty='l1', loss='hinge',
random state=42,n jobs=-1)
   clf.fit(tr X TFIDF, y train tfidf)
   sig clf = CalibratedClassifierCV(clf, method="sigmoid")
   sig_clf.fit(tr_X_TFIDF, y_train_tfidf)
   predict y = sig clf.predict proba(tr X TFIDF)
   \label{log_error_array.append} \\ \mbox{(log_loss(y_train_tfidf, predict_y, labels=clf.classes\_, eps=1e-15))} \\
   print('For values of alpha = ', i, "The log loss is:", log_loss(y_train_tfidf, predict_y,
labels=clf.classes , eps=1e-15))
fix ay - ml+ aybmlota()
```

```
ax.plot(alpha, log error array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
      ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=alpha[best alpha], penalty='12', loss='log', random state=42,n jobs=-1)
clf.fit(tr X TFIDF, y train tfidf)
sig clf = CalibratedClassifierCV(clf, method="sigmoid")
sig clf.fit(tr X TFIDF, y train tfidf)
predict_y = sig_clf.predict_proba(tr_X_TFIDF)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss
is:",log_loss(y_train_tfidf, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(te_X_TFIDF)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss
is:",log_loss(y_test_tfidf, predict_y, labels=clf.classes_, eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
print("Total number of data points :", len(predicted y))
plot_confusion_matrix(y_test_tfidf, predicted_y)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:1978: FutureWarning:
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
   warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
  TEP_minus_T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
  TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
For values of alpha = 0.001 The log loss is: 0.6582699819717955
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:1978: FutureWarning:
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
  warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
\verb|C:\Pr| programData\Anaconda3\lib\site-packages\sklearn\calibration.py: 455: RuntimeWarning: invalid | ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py: 455: RuntimeWarning: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 1000: 10
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
```

119, ax = pit.suppiots()

```
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
   warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
For values of alpha = 0.1 The log loss is: 0.6582699819717955
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:1978: FutureWarning:
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
   warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP minus T1P = P * (T * E - T1)
\verb|C:\Pr| programData\Anaconda3\lib\site-packages\sklearn\calibration.py: 453: RuntimeWarning: overflow en | programData\Anaconda3\lib\sklearn\calibration.py: 453: RuntimeWarning: 0 | programData\Anaconda3\
countered in exp
  E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP_minus_T1P = P * (T * E - T1)
For values of alpha = 1 The log loss is: 0.5947455281018672
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\stochastic gradient.py:561:
ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing ma
x iter to improve the fit.
   ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:1978: FutureWarning:
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
   warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\stochastic gradient.py:561:
ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing ma
x_iter to improve the fit.
   ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
  TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\stochastic gradient.py:561:
ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing ma
x_iter to improve the fit.
   ConvergenceWarning)
```

C.\ DrogramData\ Anagonda 3\ lih\ gita-nackages\ eklearn\ galibration nv. 453. PuntimeWarning. overflow an

 $\verb|C:\Pr| programData\Anaconda3\lib\site-packages\sklearn\model_selection\sl_split.py:1978: Future \verb|Warning:ProgramData| programData\Anaconda3\lib\sklearn\model_selection\sl_split.py:1978: Future ProgramData\Anaconda3\lib\sklearn\model_selection\sl_split.py:1978: Future ProgramData\Anaconda3\lib\sklearn\model_selection\sl_split.py:1978: Future ProgramData\Anaconda3\lib\sklearn\model_selection\sl_split.py:1978: Future ProgramData\Anaconda3\lib\sklearn\model_sel$

```
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP_minus_T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:561:
ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing ma
x_iter to improve the fit.
   ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
   E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
   TEP_minus_T1P = P * (T * E - T1)
```

For values of alpha = 10 The log loss is: 0.6420525099642131


```
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:1978: FutureWarning:
The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence
this warning.
       warnings.warn(CV WARNING, FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
         E = np.exp(AB[0] * F + AB[1])
\verb|C:\Pr| programData\Anaconda3\lib\site-packages\sklearn\calibration.py: 455: RuntimeWarning: invalid | ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py: 455: RuntimeWarning: 455: RuntimeWa
value encountered in multiply
       TEP minus T1P = P * (T * E - T1)
\verb|C:\Pr| program Data\Anaconda 3 \lib\site-packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: overflow en the packages \\ | sklearn\calibration.py: 453: Runtime Warning: 0 to the packages \\ | sklearn\calibration.py: 453: Runtime Warning: 0
countered in exp
        E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
        TEP minus T1P = P * (T * E - T1)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:453: RuntimeWarning: overflow en
countered in exp
        E = np.exp(AB[0] * F + AB[1])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\calibration.py:455: RuntimeWarning: invalid
value encountered in multiply
        TEP minus T1P = P * (T * E - T1)
```

```
For values of best alpha = 1 The train log loss is: 0.6122552309000592
For values of best alpha = 1 The test log loss is: 0.6160174504016971
Total number of data points : 121286
Confusion matrix
            Predicted NO Predicted YES
Actual NO
                   75833
                                    538
Actual YES
                   43946
                                    969
Precision matrix
            Predicted NO Predicted YES
Actual NO
                0.633108
                               0.357001
Actual YES
                0.366892
                               0.642999
Recall matrix
            Predicted NO Predicted YES
Actual NO
                0.633108
                               0.357001
                0.366892
                               0.642999
Actual YES
```


Wall time: 10h 13min 52s

2. Hyperparameter tune XgBoost using RandomSearch to reduce the log-loss on TFIDF Weighted W2V.

4.6 XGBoost Hyp

In [70]:

```
%%time
import xgboost.sklearn import XGBClassifier
params={"learning_rate" : [0.05, 0.10, 0.15, 0.20, 0.02],
    "max_depth" : [4, 10, 12, 15,30],
    "min_child_weight" : [1, 3, 5, 7],
    "gamma" : [0.0, 0.1, 0.2, 0.3, 0.4],
    "colsample_bytree" : [0.5, 0.7]}
model = XGBClassifier( n_estimators=20,objective= 'binary:logistic',seed=27,n_jobs=-1)
gs=GridSearchCV(estimator=model,cv=3,n_jobs=-1,scoring
    ='neg_log_loss',verbose=True,param_grid=params,return_train_score=True)
gs.fit(X_train[:20000],y_train[:20000])
```

Fitting 3 folds for each of 1000 candidates, totalling 3000 fits

```
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n jobs=-1)]: Done 42 tasks
                                        | elapsed: 2.0min
[Parallel(n_jobs=-1)]: Done 192 tasks
                                          | elapsed: 9.4min
[Parallel(n_jobs=-1)]: Done 442 tasks
                                          | elapsed: 22.0min
[Parallel(n_jobs=-1)]: Done 792 tasks
                                          | elapsed: 39.7min
[Parallel(n jobs=-1)]: Done 1242 tasks
                                           | elapsed: 62.4min
[Parallel(n jobs=-1)]: Done 1792 tasks
                                           | elapsed: 94.8min
[Parallel(n_jobs=-1)]: Done 2442 tasks
                                           | elapsed: 137.4min
[Parallel(n_jobs=-1)]: Done 3000 out of 3000 | elapsed: 174.4min finished
```

Wall time: 2h 54min 45s

In [118]:

```
results=pd.DataFrame(gs.cv_results_).sort_values(by='rank_test_score').head(56) results
```

Out[118]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_colsample_bytree	param_gamma	param_learn
966	13.915628	0.111048	0.078003	3.617543e-06	0.7	0.4	0.2
566	14.204998	0.069078	0.097879	3.131560e-03	0.7	0	0.2
	44.000404	0.175701	0.070005	4.400.444 000		0.4	2.2

666	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_colsample_bytree	param_gamma	param_lear
766	13.754334	0.074637	0.093603	2.206180e-02	0.7	0.2	0.2
866	13.915625	0.038212	0.083204	7.353333e-03	0.7	0.3	0.2
765	14.445953	0.066188	0.083201	7.353782e-03	0.7	0.2	0.2
667	13.744025	0.287096	0.083202	7.354850e-03	0.7	0.1	0.2
767	13.468327	0.106820	0.078000	1.949921e-06	0.7	0.2	0.2
267	10.358018	0.028967	0.083679	4.741240e-04	0.5	0.2	0.2
565	14.365220	0.181419	0.081538	2.716102e-03	0.7	0	0.2
266	10.555716	0.103093	0.083347	2.056499e-03	0.5	0.2	0.2
167	10.546839	0.121370	0.084013	8.190666e-04	0.5	0.1	0.2
967	13.520418	0.109819	0.083203	7.350467e-03	0.7	0.4	0.2
366	10.690335	0.122424	0.082681	4.701360e-04	0.5	0.3	0.2
367	10.405973	0.138627	0.084681	9.442586e-04	0.5	0.3	0.2
867	13.780426	0.187786	0.083200	7.351984e-03	0.7	0.3	0.2
864	15.214035	0.344709	0.088403	7.353389e-03	0.7	0.3	0.2
464	11.811035	0.244820	0.087679	4.733966e-04	0.5	0.4	0.2
66	10.598064	0.060019	0.084009	1.946680e-07	0.5	0	0.2
271	11.587333	0.022488	0.084347	9.434167e-04	0.5	0.2	0.2
65	11.009235	0.113846	0.084344	4.711457e-04	0.5	0	0.2

865	14.758811 mean_fit_time	0.435611 std_fit_time	0.093600 mean_score_time	1,273576e-02 std_score_time	0.7 param_colsample_bytree	0.3 param_gamma	0.2 param_leari
771	15.205172	0.070155	0.083203	7.354232e-03	0.7	0.2	0.2
64	11.737157	0.157437	0.086008	2.449507e-03	0.5	0	0.2
467	10.443355	0.098621	0.088680	1.246853e-03	0.5	0.4	0.2
567	13.912636	0.294046	0.093268	4.705836e-04	0.7	0	0.2
265	10.924898	0.071748	0.083678	4.724943e-04	0.5	0.2	0.2
665	14.539649	0.183708	0.088403	7.353614e-03	0.7	0.1	0.2
364	11.986251	0.315543	0.084680	9.443145e-04	0.5	0.3	0.2
965	14.117344	0.017645	0.081802	5.373779e-03	0.7	0.4	0.2
571	15.350354	0.027894	0.083748	5.465437e-03	0.7	0	0.2
770	15.719983	0.062834	0.088403	7.354344e-03	0.7	0.2	0.2
264	11.423771	0.052011	0.087013	2.943546e-03	0.5	0.2	0.2
564	15.016865	0.156883	0.084275	3.199846e-03	0.7	0	0.2
371	11.623468	0.096896	0.085679	2.055804e-03	0.5	0.3	0.2
365	11.291876	0.163076	0.084681	1.248573e-03	0.5	0.3	0.2
570	15.985007	0.240899	0.093407	6.775351e-03	0.7	0	0.2
166	10.719058	0.235413	0.085014	1.415347e-03	0.5	0.1	0.2
67	10.552896	0.051683	0.084675	4.713150e-04	0.5	0	0.2
670	15.907290	0.155657	0.078000	9.602742e-07	0.7	0.1	0.2

164	mean_fit_time	Sta57ft2fime	mean_score_time	\$t0691778-1fme	param_colsample_bytree	param_gamma	param_learn
971	15.314472	0.279747	0.093604	2.922181e-06	0.7	0.4	0.2
964	14.973096	0.121324	0.083204	7.352209e-03	0.7	0.4	0.2
466	10.789619	0.078898	0.086146	2.612890e-03	0.5	0.4	0.2
471	12.119001	0.050819	0.086682	2.057842e-03	0.5	0.4	0.2
375	12.827378	0.060354	0.088348	4.713710e-04	0.5	0.3	0.2
664	14.981657	0.181187	0.083201	7.357154e-03	0.7	0.1	0.2
871	15.614089	0.314983	0.088602	7.500877e-03	0.7	0.3	0.2
465	10.991251	0.126774	0.085012	8.167310e-04	0.5	0.4	0.2
547	13.551620	0.191632	0.093603	5.285991e-06	0.7	0	0.15
569	16.909619	0.100443	0.098483	4.376062e-03	0.7	0	0.2
945	14.399237	0.099483	0.083204	7.353164e-03	0.7	0.4	0.15
764	14.877561	0.171998	0.083200	7.354681e-03	0.7	0.2	0.2
647	13.707623	0.246446	0.083202	7.351029e-03	0.7	0.1	0.15
544	14.992062	0.166565	0.083199	7.354625e-03	0.7	0	0.15
747	13.695946	0.137778	0.083203	7.354794e-03	0.7	0.2	0.15

56 rows × 21 columns

4

In [123]:

```
x=[x for x in range(1,57)]
y_train_loss=results.mean_train_score.tolist()
y_test_loss=results.mean_test_score.tolist()
#function to plot lines
#plt.xscale('log')
```

plt.plot(x,y_train_loss,label="Train curve")
plt.plot(x,y_train_loss,label="Validation curv")

plt.plot(x,y_test_loss,label="Validation curve")
plt.scatter(y y train_loss_label="Train_points")

```
plt.scatter(x, y_test_loss, label='validation points')
plt.xlabel("Ranks")
plt.ylabel("Loss")
plt.title("Ranks VS loss")
plt.legend()
plt.show()
```


Observation

- 1. Model is overfitting once I choose the best parameters {'colsample_bytree': 0.7, 'gamma': 0.2, 'learning_rate': 0.2, 'max_depth': 10, 'min_child_weight': 5} train-logloss:0.002412 valid-logloss:0.374075 lot of difference between train and validation log loss
- 2. From the above graph we can observe that at 56th ranked point there is no difference between train and validation loss hence i have selected the paramaters of the 56th ranked datapoint in results dataframe.{'colsample_bytree': 0.7, 'gamma': 0.2, 'learning_rate': 0.15, 'max_depth': 10, 'min_child_weight': 7}.
- 3. Index of 56th ranked datapoint is 747.

```
In [120]:
```

```
results.params[747]

Out[120]:
{'colsample_bytree': 0.7,
    'gamma': 0.2,
    'learning_rate': 0.15,
    'max_depth': 10,
    'min_child_weight': 7}
```

4.6 XGBoost

In [112]:

```
xgamati = xgb.DMatrix(x train, y train)
predict y1 = bst1.predict(d test)
print("The test log loss is:",log loss(y test, predict y, labels=clf.classes , eps=1e-15))
[0] train-logloss:0.684462 valid-logloss:0.685346
Multiple eval metrics have been passed: 'valid-logloss' will be used for early stopping.
Will train until valid-logloss hasn't improved in 20 rounds.
[10] train-logloss:0.599485 valid-logloss:0.613071
[20] train-logloss:0.537971 valid-logloss:0.561511
[30] train-logloss:0.491859 valid-logloss:0.523821
[40] train-logloss:0.454961 valid-logloss:0.494755
[50] train-logloss:0.426053 valid-logloss:0.472528
[60] train-logloss:0.402424 valid-logloss:0.455005
[70] train-logloss:0.383142 valid-logloss:0.441331
[80] train-logloss:0.367218 valid-logloss:0.430515
[90] train-logloss:0.353932 valid-logloss:0.421765
[100] train-logloss:0.342581 valid-logloss:0.414467
[110] train-logloss:0.332798 valid-logloss:0.408675
[120] train-logloss:0.324172 valid-logloss:0.403869
[130] train-logloss:0.316635 valid-logloss:0.399844
[140] train-logloss:0.309682 valid-logloss:0.396455
[150] train-logloss:0.303194 valid-logloss:0.393674
[160] train-logloss:0.297271 valid-logloss:0.391282
[170] train-logloss:0.292126 valid-logloss:0.389246
[180] train-logloss:0.287445 valid-logloss:0.387482
[190] train-logloss:0.282747 valid-logloss:0.386043
[200] train-logloss:0.278738 valid-logloss:0.384653
[210] train-logloss:0.27469 valid-logloss:0.383406
[220] train-logloss:0.271455 valid-logloss:0.382389
[230] train-logloss:0.268307 valid-logloss:0.381438
[240] train-logloss:0.265483 valid-logloss:0.380701
[249] train-logloss:0.262691 valid-logloss:0.379996
The test log loss is: 0.3797524013703534
```

In [113]:

Wall time: 19min 13s

```
predicted_y1 =np.array(predict_y1>0.5,dtype=int)
print("Total number of data points :", len(predicted_y1))
plot_confusion_matrix(y_test, predicted_y1)
```

Total number of data points : 30000 Confusion matrix

Predicted NO Predicted YES Actual NO 17152 1752 Actual YES 4116 6980 Precision matrix Predicted NO Predicted YES 0.80647 0.200641 Actual NO Actual YES 0.19353 0.799359 Recall matrix Predicted NO Predicted YES Actual NO 0.80647 0.200641 Actual YES 0.19353 0.799359

In [146]:

```
from prettytable import PrettyTable
table = PrettyTable()
```

```
table.field_names = ["Vectorizer", "Test loss"]

table.add_row(["Random model","0.89" ])
table.add_row(["logistic regression ","0.59"])
table.add_row(["linear svm","0.59" ])
table.add_row(["logistic regression on TFIDF","0.62"])
table.add_row(["linear svm on TFIDF","0.61" ])
table.add_row(["XG bosst on TFIDF W2V", "0.37" ])
```

+	+
Vectorizer	Test loss
Random model	0.89
logistic regression	0.59
linear svm	0.59
logistic regression on TFIDF	0.62
linear svm on TFIDF	0.61
XG bosst on TFIDF W2V	0.37
+	++