0.0.1 Inference

Testing models Consider the linear model

$$\mathbb{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad \cdots \quad \text{full model}$$

where
$$\gamma(X) = \gamma \leq p$$
, $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 I$

Consider the linear model

$$y = \mathbb{W}\gamma + \varepsilon$$
 ··· redued model

where
$$C(\mathbb{W}) \subset C(\mathbb{X})$$
, $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 I$

note:

- 1. the estimation space of R.M. is smaller than in the F.M.
- 2. The goal is to test whether or not the reduced model is also correct.
 - If R.M. is correct, there is no reason not to use it.
 - Smaller models are easier to interpret.
- 3. Let $P_{\mathbb{X}}$ and $P_{\mathbb{W}}$ denote the ppm onto $C(\mathbb{X})$ and $C(\mathbb{W})$. Because $C(\mathbb{W}) \subset C(\mathbb{X})$, we know that $P_{\mathbb{X}} P_{\mathbb{W}}$ is the ppm onto $C(P_{\mathbb{X}} P_{\mathbb{W}}) = C(\mathbb{W})^{\perp} C(\mathbb{X})$

Lemma 1 Assume $P_{\mathbb{X}}$ and $P_{\mathbb{W}}$ are projection matries and $P_2 - P_1$ is P.D., then

- 1. $P_1P_2 = P_2P_1 = P_2$
- 2. $P_1 P_2$ is a p.m.

note:

- 1. P_1 is a p.m onto C(X)
- 2. P_2 is a p.m onto $C(\mathbb{W}) \subset C(\mathbb{X})$
- 3. $P_1 P_2$ is a p.m onto the orthogonal complement of W with in X

figure