PREDICTING NEW PARTICLE FORMATION EVENTS WITH MACHINE LEARNING

Julia Sanders Mikko Saukkoriipi Bernardo Williams

University of Helsinki Introduction to Machine Learning

December 11, 2020

Contents

Overview of the Models

2 Conclusion and Observations

Section 1

Overview of the Models

Introduction

Observation: Importance of stratified sampling

The data was split 60:20:20 into the training, validation and test sets. **Stratified Sampling over Class4**

Train, validation test split				
	Train	Validation	Test	
nonEvent	49.3%	50.0%	50.0%	
la	7.1%	7.7%	7.7%	
lb	21.4%	21.2%	21.2%	
II	22.1%	21.2%	21.2%	

Table: Proportion of classes on each dataset

Introduction, feature selection

Best K feature selection

Chi-squared based feature selection technique to determine the strength of the each variable's relationship to the target variable.

PCA

Unsupervised machine learning dimensionality-reduction method.

Fig.: Bayes acc by BestK features

Fig.: Bayes acc by PCA components

Binary Classifiers

Notes:

- i. Validation might refer to validation or cross validation.
- ii. Hyperparameter tuning done by random grid search
- iii. We tried min-max normalization and standard normalization.

Summary of binary models accuracies				
	Training	Validation	Test	
Naive Bayes	84%	87%	93%	
Logistic				
Regression	87%	87%	89%	
Random Forest	100%	87%	88%	
Decision Tree	88%	84%	88%	
XGB	100%	90%	87%	
SVM	98%	90%	83%	
KNN	85%	78%	80%	

Table: Summary of tested binary models

Binary Blended Model

The final blend of models chosen was XGB, Naive **Bayes and Logistic** Regression.

Accuracy		
Training	96.12 %	
Validation	96.51 %	
Test	91.86 %	

Table: Binary Blended Model Accuracy

Fig.: Upper matrix is our test set, lower is the final prediction

Multi-class Classifiers

Notes:

- i. Validation might refer to validation set or cross validation.
- ii. Hyperparameter tuning done by random grid search and PCA and kBest tuning with loops
- iii. Models tested with min-max normalization and standard normalization.

Summary of multiclass models accuracies				
	Training	Validation	Test	
Random Forest	100%	66%	72%	
XGB	100%	70%	70%	
SVM	83%	69%	68%	
Decision Tree	66%	64%	67%	
Naive Bayes	69%	62%	65%	
Log Reg	72%	54%	65%	
KNN	66%	58%	58%	

Table: Summary of multiclass models accuracies

Multi-class Blended Model

The final blend of models chosen was **SVM**, **XGB** and **Naive Bayes**.

Accuracy		
Training	94.96 %	
Validation	97.67 %	
Test	69.77 %	

Table: Multi-class Blended Model Accuracy

Fig.: Upper matrix is our test set, lower is the final prediction

Section 2

Conclusion and Observations

Conclusions

- Why the model scored so highly on perplexity?
- Hierarchical model Idea:

Fig.: Binary Acc. npf_test: 87.0% Mutli Acc. npf_test: 67.9%

Fig.: Binary Acc. npf_test: 88.1% Mutli Acc. npf_test: Pending

References

James, Gareth and Witten, Daniela and Hastie, Trevor and Tibshira (2017) An Introduction to Statistical Learning

Projects GitHub repository:

https://github.com/williwilliams3/TermProjectIML

Towards Data Science: Feature Selection Techniques in Machine Learning with Python.

https://towards datascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7 da3f36e

scikit-learn, Select Best K

https://scikit-

 $learn.org/stable/modules/generated/sklearn.feature_selection. SelectKBest.html \\$