Assignment 2 Introduction

CSIT 5410 Recognition Systems

TA: Colin TSANG sctsangab@connect.ust.hk

Assignment 2

- This assignment consists of two sections: programming section and written section.
- Your should submit a compressed file containing:
 - all M-files and input images related to the programming section.
 - a PDF file for the written section.
 - a README.txt file indicating the programming software (Octave/MATLAB) that you are using for this assignment.
- The skeleton code is prepared in MATLAB and can be obtained from CANVAS.

Programming section

Programming section:

- Q1: Hough Transform for Line Detection
- Q2: Fisher Linear Discriminant

Q1: Hough Transform for Line Detection

The goal of Q1 is to segment a A4 paper in the input image. A 4-steps framework is provided in the skeleton code.

Framework for Q1

- Step 1: Pre-processing.
 Perform denoising on the input image. Gaussian filter is suggested in the skeleton code. You can apply any other filter.
- Step 2: Edge extraction. You
 can use the edge extraction
 function that you developed
 in assignment 1, or simply use
 the built-in function edge().

Framework for Q1

- Step 3: Hough transform. Use Hough transform to find four straight lines that segment the A4 paper. You CANNOT use the built-in functions related to Hough transform.
- Step 4: Output. Plot the four sides of the A4 paper in green color.

Q2: FLD

The goal of Q2 is to develop a function for FLD.

- Input:
 - class1_ samples: Containing *N*1 data points in dimension *N*.
 - class2_ samples: Containing *N*2 data points in dimension *N*.
 - input_sample: Containing one data point in dimension *N*.
- Output:
 - w: weight vector.
 - class: the decision of FLD (either 1 or 2).

Framework for Q2

- Step 1: Obtain *N*1, *N*2, and *N* from the input.
- Step 2: Compute $w = S_w^{-1} (\mu_a \mu_i)$. In this assignment, you do not need to consider the cases where the matrix S_w is badly scaled, singular or nearly singular.
- Step 3: Compute the separation point for decision making by $\frac{1}{2}w^T(\mu_a + \mu_i)$. Then output the decision for input_sample.

Written section

There is an image \underline{I} shown as follows. The transformation is defined as $T(\vec{x}) \equiv \vec{S}\vec{x}$, where $\vec{S} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$. After the transformation using T, point A, B, C and D are transformed to point E, F, G and \underline{H} respectively. Find the transformation matrix \vec{S} .

Written section

Suppose the intensity values of point I, K, L and M are 4, 10, 18 and 30 respectively.

Hint: Bilinear Interpolation: g(x,y) = ax + by + cxy + d, where a,b,\underline{c} and d are coefficients.

Thank you!