Математическая Логика. Теория

Александр Сергеев

1 Введение

Силлогизмы

Modus Ponendo Ponens: Если A и $A \rightarrow B$, то B

Парадокс Рассела

 $X = \{x : x \notin x\}$ $(X \in X)?$

Определение

Номинализм – учение о том, что существуют лишь единичные вещи, а общие понятия – лишь имена

Реализм – учение о том, что общие понятия объективно существуют Номинализм в вопросе решения парадокса Рассела: надо придумать понятие множества

Реализм в вопросе решения парадокса Рассела: необходимо понять, что такое множество на самом деле, докопаться до сути

Программа Гильберта — мы должны формализовать математику и избавиться от произвола, который может вносить сторонний исследователь Формализация должна быть проверена, и ее непротиворечивость должна быть доказана

Программма Гильберта – реализм: мы верим, что мир устроен некоторым образом, а значит существует некоторая идеальная математика, удовлетворяющая этим свойствам. Нам нужно лишь прислушаться к миру и найти ее

2 Исчисление высказываний

Определение

Высказывание – строка, сформулированная по следующим правилам

Предметный язык – язык, который мы изучаем (язык математической логики)

Метаязык – соглачения о записи. Из метаязыка можно получить предметный язык некоторыми неформализованными действиями

 A, B, \ldots – Пропозиционная переменная

 α, β, \ldots – метапеременные (высказывания)

 $\alpha \wedge \beta$ – Конъюнкция

 $\alpha \vee \beta$ – Дизъюнкция

¬α − Отрицание

 $\alpha \to \beta$ – Импликация

X, Y, Z – метапеременные для пропозиционных переменных

Приоритет: отрицание, конъюнкция, дизъюнкция, импликация

Дизъюнкция и конъюнкция – левоассоциативные, импликация – правоассоциативная

Выражение на предметном языке – пропозиционные переменные, 4 вида cessine и полностью расставленные скобки. Все остальные формы записи – метаязык

Схема – строка, строящаяся по правилам предметного языка, где вместо пропозиционных переменных могут стоять маленькие греческие буквы (метапеременные)

Определение

Оценка высказывания $f: P \to V$, где $V = \{T, F\}, P$ – множество пропозиционных переменных

 $[[\alpha]] = T$ – оценка высказывания (значение α – истина)

 $[[\alpha]]^{X_1:=v_1,...,X_n:=v_n}$ – оценка высказывания

Определение

Если $[[\alpha]] = T$ при любой оценке переменных, то она *общезначима (тав-тология)*: $\models \alpha$

Иначе опровержима

Если $[[\alpha]]=T$ при любой оценке переменных, при которой $[[\gamma_1]]=\ldots=[[\gamma_n]]=T$, то α – следствие этих высказываний: $\gamma_1,\ldots,\gamma_n\models\alpha$

Если $[[\alpha]] = T$ при некоторой оценке, то она *выполнима*, иначе *невыполнима*

Аксиомы исчисления высказываний

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \land \beta$$

4.
$$\alpha \wedge \beta \rightarrow \alpha$$

5.
$$\alpha \wedge \beta \rightarrow \beta$$

6.
$$\alpha \to \alpha \vee \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Определение

Доказательством назовем последовательность высказываний $\delta_1, \ldots, \delta_n$, где каждое высказывание δ_i либо:

- является аксиомой (существует замена метапеременных для какойлибо схемы аксоим, позволяющая получить схему δ_i)
- получается из $\delta_1,\dots,\delta_{i-1}$ по правилу Modus Ponens: существуют такие $j,k< i:\delta_k\equiv \delta_j\to \delta_i$

Формула выводима/доказуема, если существует ее доказательство

Пример

$$A \to (A \to A)$$

$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$

$$(A \to ((A \to A) \to A)) \to (A \to A)$$

$$A \to ((A \to A) \to A)$$

$$A \to A$$

Определение

Вывод формулы α из гипотез $\gamma_1, \ldots, \gamma_k$ – такая последовательность $\sigma_1, \ldots, \sigma_n$, что σ_i является (одним из следующих):

- аксиомой
- ullet одной из гипотез γ_t
- получена по правилу Modus Ponens из предыдущих

Формула выводима из гипотез, если существует ее вывод

Обозначение: $\gamma_1, \ldots, \gamma_k \vdash \alpha$

Определение (корректность теории)

Теория *корректна*, если любое доказуемое в ней утверждение общезначимо

То есть, $\vdash \alpha$ влечет $\models \alpha$

Определение (полнота теории)

Теория семантически полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечет $\vdash \alpha$

Теорема (корректность вычисления высказываний) Доказательство

Докажем, что любая строка доказательства является общезначимой Докажем индукцией по количеству строк

База: n=1 – аксиома. В ней нет правила Modus Ponens. Она общезначима

Переход: Пусть для любого доказательства длины n формула δ_n общезначима. Рассмотрим δ_{n+1}

- 1. Аксиома. Убедимся, что аксиома общезначима
- 2. Modus Ponens j, k убедимся, что если $\models \delta_j$ и $\models \delta_k, \delta_k = \delta_j \to \delta_{n+1},$ то $\models \delta_{n+1}$

Аксиому проверим через таблицу истинности

Докажем правило Modus Ponens

По индукционному предположению $\models \delta_i, \models \delta_k$

Зафиксируем произвольную оценку

Из общезначимости $[[\delta_i]] = T, [[\delta_k]] = T$

Тогда из таблицы истинности $[[\delta_j]] = [[\delta_k]] = T$ только при $[[\delta_{n+1}]] = T$ Отсюда $\models \delta_{n+1}$

Определение

 $Konme\kappa cm$ — совокупность всех гипотез. Обозначается большой греческой буквой

Пример записи:

$$\Gamma = \{\gamma_1, \dots, \gamma_n\}$$

$$\Delta = \{\delta_1, \dots, \delta_m\}$$

 $\Gamma, \Delta \vdash \alpha$

Теорема о дедукции

 $\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$

Доказательство \Leftarrow

Пусть $\Gamma \vdash \alpha \rightarrow \beta$

T.e. существует вывод $\delta_1, \ldots, \delta_{n-1}, \underbrace{\alpha \to \beta}_{\delta}$

Дополним вывод: добавим туда α

По правилу Modus Ponens добавим туда β

Отсюда $\Gamma, \alpha \vdash \beta$

Определение

Конечная последовательность – функция $\delta:\{1,\ldots,n\}\to\mathcal{F}$

Конечная последовательность, индексированная дробными числами – функция $\zeta: I \to \mathcal{F}, I \subset \mathbb{Q}^+, |I| \in \mathbb{N}$

Доказательство ⇒

Пусть $\Gamma, \alpha \vdash \beta$

Пусть дан некоторый вывод: $\delta_1, \ldots, \delta_{n-1}, \underbrace{\beta}_{\delta_n}$

Тогда рассмотрим последовательность: $\alpha \stackrel{\circ n}{\to} \delta_1, \dots, \alpha \to \delta_{n-1}, \alpha \to \beta$ Заметим, что выводом эта формула не является, т.к. в ней нет аксиом Докажем по индукции по длине вывода

Если $\delta_1, \ldots, \delta_n$ – вывод $\Gamma, \alpha \vdash \beta$, то найдется ζ_k для $\Gamma \vdash \alpha \to \beta$, причем $\zeta_1 = \alpha \to \delta_1, \ldots, \zeta_n = \alpha \to \delta_n$

- 1. n=1 ч.с. перехода без Modus Ponens
- 2. Пусть $\delta_1, \dots \delta_{n+1}$ исходный вывод По индукционному предположению по $\delta_1, \dots, \delta_n$ построен вывод ζ_k утверждения $\Gamma \vdash \alpha \to \delta_n$ Достроим его для δ_{n+1}
 - δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$: $\zeta_{n+1/3} = \delta_{n+1} \to \alpha \to \delta_{n+1}$ $\zeta_{n+2/3} = \delta_{n+1}$ $\zeta_{n+1} = \alpha \to \delta_{n+1}$
 - $\delta_{n+1} = \alpha$: $\zeta_{n+1/5} = a \to a \to a$ $\zeta_{n+2/5} = (a \to a \to a) \to (a \to (a \to a) \to a) \to (a \to a)$ $\zeta_{n+3/5} = (a \to (a \to a) \to a) \to (a \to a)$ $\zeta_{n+4/5} = a \to (a \to a) \to a$ $\zeta_{n+1} = a \to a$

• δ_{n+1} – Modus Ponens из δ_j и $\delta_k = \delta_j \to \delta_{n+1}$: $\zeta_{n+1/5} = \alpha \to \delta_j$ $\zeta_{n+2/5} = \alpha \to \delta_j \to \delta_{n+1}$ $\zeta_{n+3/5} = (\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\zeta_{n+4/5} = (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\zeta_{n+1} = \alpha \to \delta_{n+1}$

Лемма (правило контрапозиции)

Каково бы ни были формулы α, β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Лемма (правило исключенного третьего)

Какова бы ни была формула α , справедливо, что $\vdash \alpha \lor \neg \alpha$

Лемма (правило исключенного допущения)

Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$

Тогда $\Gamma \vdash \alpha$

Теорема

Если $\models \alpha$, то $\vdash \alpha$

Определение

Зададим некоторую оценку, что $[\alpha] = x$

Тогда условным отрицанием формулы α называется формула $(|\alpha|)=$ $\begin{cases} \alpha, & x=T\\ \neg\alpha, & x=F \end{cases}$

Если $\Gamma = \gamma_1, \ldots, \gamma_n$, то $(|\Gamma|) = (|\gamma_1|), \ldots, (|\gamma_n|)$

Пример: $(|A|), (|B|) \vdash (|A \to B|)$ позволяет записать таблицу истинности в одну строку, перебрав ее для всех оценок

Доказательство теоремы

Для каждой возможной связки \star докажем формулы $(|\phi|), (|\psi|) \vdash (|\phi \star \psi)$ Теперь построим таблицу истинности для α и докажем в ней каждую строку:

 $(|\Xi|) \vdash (|\alpha|), \Xi$ – контекст(все переменные в таблице)

Если формула общезначима, то в ней все строки будут иметь вид ($|\Xi|$) $\vdash \alpha$. От гипотез можно избавиться индукционно по теореме об исплючении допущения и получить требуемое $\vdash \alpha$

Лемма (Условное отрицание формул)

Пусть пропозиционные переменные $\Xi = X_1, \dots, X_n$ – все переменные, которые используются в α

 Π усть задана некоторая оценка переменных

Тогда $(|\Xi|) \vdash (|\alpha|)$

Доказательство

Докажем по индукции по длине формулы α

- База: формула атомарная, т.е. $\alpha = X_i$ Тогда при любом Ξ выполнено $(|\Xi|)^{X_i=T} \vdash X_i$ и $(|\Xi|)^{X_i=F} \vdash \neg X_i$
- Переход:

$$\alpha = \phi \star \psi, (|\Xi|) \vdash (|\phi|)$$
 и $(|\Xi|) \vdash (|\psi|)$

Тогда построим вывод

Сначала запишем доказательство $(|\phi|)$

Потом припишем доказательство $(|\psi|)$

Потом припишем доказательство леммы о связках

3 Интуиционистская логика

Примеры:

Теорема Брауэра о неподвижной точке

Любое непрерывное отображение f шара \mathbb{R}^n на себя имеет неподвижную точку

Замечание

Заметим, что теорема (и доказательство) не говорит ничего о том, как эту точку найти

Теорема

 $\exists a, b$ – иррациональные : a^b – рациональное

Доказательство

Пусть $a=b=\sqrt{2}$

- $\sqrt{2}^{\sqrt{2}}$ рациональное
- $\sqrt{2}^{\sqrt{2}}$ иррациональное Тогда $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$ рациональное

Замечание

Т.о. мы доказали теорему, не предоставив пример. Наше знание о рациональных и иррациональных числах от этого не увеличилось

Определение

Доказательство чистого существования – доказательство существования объекта без приведения реального примера/рецепта создания этого

объекта

(Неконструктивное доказательство существования объекта)

Замечание

Парадокс брадобрея – результат работы с чистым существованием. Мы предполагаем существование абстрактного объекта, не приводя рецепта для его создания

Может ли быть, что, работая с чистым существованием, мы сможем получить парадоксальные объекты и в других областях математики? Давайте запретим доказательства чистого существования

Интуиционизм

- Математика не формальна (не надо ограничивать математику формальностями)
- Математика независима от окружающего мира
- Математика не зависит от логики это логика зависит от математики

(если мы сможем придумать более удобную логику для математики, мы можем ее использовать)

ВНК-интерпретация логических связок

(сокращение от: Брауэр, Гейтинг, Колмогоров)

Пусть α , β – некоторая конструкция (что угодно – физическая конструкция, логическое построение, программа, доказательство)

- $\alpha \& \beta$ построено, если построены α и β
- $\alpha \vee \beta$ построено, если построено α или β , и мы знаем, что именно
- $\alpha \to \beta$ построено, если есть способ перестроения α в β
- 1 конструкция, не имеющая построения
- $\neg \alpha$ построено, если построено $\alpha \rightarrow \perp$

Дизъюнкция

 $\alpha \lor \neg \alpha$ не может быть построено в общем виде, потому что мы не знаем, что именно было построено

Пример

Пусть α – это задача P=NP

Тогда $\alpha \vee \neg \alpha$ не может быть построено, т.к. мы не знаем, P=NP или $P \neq NP$

Импликация

Пусть: A – сегодня в СПб идет дождь

B – сегодня в СПб светит солнце

C – сегодня я получил «отлично» по матлогу

Рассмотрим $(A \to B) \lor (B \to C) \lor (C \to A)$

Заметим это выражение не может быть построено, в отличие от классической логики

Отсюда: импликацию можно понимать как «формальную» и «материальную»

Формализация

Заметим, что формализация интуиционистской логики возможна, но интуитивное понимание – основное

Аксиоматика интуиционистского исчисления высказываний в гильбертовском стиле: аксиоматика КИВ, в которой 10 схема аксиом $\neg \neg \alpha \to \alpha$ заменена на $\alpha \to \neg \alpha \to \beta$

4 Топология

Обозначение

 $\mathcal{P}(X)$ – множество всех подмножеств X

Определение

Топологическое пространство – упорядоченная пара $(X, \Omega), X$ – множество (носитель), $\Omega \subseteq \mathcal{P}(X)$ – топология, причем

- 1. $\emptyset, X \in \Omega$
- 2. если $A_1, \ldots, A_n \in \Omega$, то $A_1 \cap A_2 \cap \ldots \cap A_n \in \Omega$ (конечное пересечение)
- 3. если $\{A_{\alpha}\}$ семейство множеств из Ω , то $\bigcup_{\alpha} A_{\alpha} \in \Omega$ (произвольное объединение)

Элементы Ω – открытые множества

Определение

 \mathcal{B} – база топологического пространства $\langle X, \Omega \rangle (\mathcal{B} \subseteq \Omega)$, если всевозможные объединения элементов (в т.ч. пустые) из \mathcal{B} дают Ω

Определение

Дискретная топология – $\langle X, \mathcal{P}(X) \rangle$

Топология стрелки – $\langle \mathbb{R}, \{(x, +\infty) : x \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\} \rangle$

Примеры

 $\{(x,y):x,y\in\mathbb{R}\}$ – база евклидовой топологии на $\mathbb R$

 $\{\{x\}: x \in X\}$ – база дискретной топологии

Определение

Метрикой на X назовем множество, на котором определена функция расстрояния $d: X^2 \to \mathbb{R}^+$:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Определение

Открытым ε -шаром с центром в $x \in X$ назовем $\{t \in X : d(x,y) < \varepsilon\}$

Определение

Если X – некоторое множество и d – метрика на X, то будем говорить, что топологическое пространство, задаваемое базой $\mathcal{B} = \{O_{\varepsilon}(x) : \varepsilon \in \mathbb{R}^+, x \in X\}$ порождено метрикой d

Определение

Функция $f:X\to Y$ непрерывна, если прообраз любого открытого множества открыт

Определение

Будем говорить, что множество компактно, если из любого его открытого покрытия можно выбрать конечное подпокрытие

Определение

Пространство $\langle X_1, \Omega_1 \rangle$ – подпространство пространства $\langle X, \Omega \rangle$, если $X_1 \subseteq X$ и $\Omega_1 = \{A \cap X_1, A \in \Omega\}$

Определение

Пространство $\langle X,\Omega \rangle$ связно, если нет $A,B\in \Omega$, что $A\cup B=X,A\cap B=\emptyset$ и $A,B\neq\varnothing$

Определение (топология на деревьях)

Пусть некоторый лес задан конечным множеством вершин V и отношением \prec : $a \prec b \Leftrightarrow a$ — предок b

Тогда подмножество вершин $X\subseteq V$ назовем открытым, если из $a\in$ $X, a \leq b$ следует, что $b \in X$ (множество вершин и всех их потомков)

Теорема

Лес связен (как граф) тогда и только тогда, когда соответствующее ему топологическое пространство связно

\square оказательство \Rightarrow

Пусть лес связен, но топологически не связен. Тогда найдутся непустые A, B, что $A \cup B = V, A \cap B = \emptyset$

Пусть $v \in V$ – корень дерева V и $v \in A$

Тогда
$$A = \{x : v \leq x\} = V, B = \emptyset$$

Доказательство ←

Пусть лес топологически связен, но есть несколько корней v_1, \ldots, v_k Возьмем $A_i = \{x : v_i \leq x\}$. Тогда все A_i открыты, непусты и дизъюнктны $V = \bigcup A_i$

Определение

Линейная связность – любые точки соединены путем

Определение

Множество нижних границ $(lwb_{\Omega}) - ...$

Множество верхних границ $(uwb_{\Omega}) - ...$

Минимальный элемент $(m \in X)$ – Нет элементов, что $x \prec m$

Максимальный элемент $(m \in X) - \dots$

Наименьший элемент $(m \in X)$ – При всех $y \in X$ выполнено $m \leq y$

Наибольший элемент $(m \in X)$ – ...

Инфинут – наибольшая нижняя граница

Супремум – наименьшая верхняя граница

Определение

Рассмотрим $\langle X,\Omega\rangle$ и возьмем \subseteq как отношение частичного порядка на

Тогда $A^{\circ} := \inf_{\Omega}(\{A\})$ – внутренность множества

Теорема

 A° определена для любого A

Доказательство

Пусть
$$V = \text{lwb}_{\Omega}\{A\} = \{Q \in \Omega : Q \subseteq A\}$$

Гогда
$$\inf_{\Omega}\{A\}=\bigcup_{v\in V}A_v$$

Тогда $\inf_{\Omega}\{A\}=\bigcup_{v\in V}v$ Напомним, что $\inf_{\mathcal{U}}T=$ наиб $(\mathrm{lwb}_{\mathcal{U}}T)$

- 1. Покажем принадлежность: $\bigcup_{v \in V} v \subseteq A, \in \Omega$
- 2. Покажем, что все из V меньше или равны: пусть $X \in V$. Тогда $X \subseteq \bigcup_{v \in V} v$

Определение

Решеткой называется упорядоченная пара $\langle X, (\preceq) \rangle$, где X – некоторое множество, (\preceq) – частичный порядок на X, такой, что для любых $a,b \in X$ определены $a+b=\sup\{a,b\}, a\cdot b=\inf\{a,b\}$

To есть a+b – наименьший элемент c, что $a,b \leq c$

Определение

Псевдодополнение $a \to b$ – наибольший из $\{x : a \cdot x \leq b\}$

Определение

Дистрибутивной решеткой называется такая, что $\forall a,b,c \ a\cdot (b+c)=a\cdot b+a\cdot c$

Импликативная решетка — такая, что для любых элементов есть псевдодополнение

Лемма

Любая импликативная решетка – дистрибутивна

Определение

0 – наименьший элемент решетки, 1 – наибольший элемент решетки

Лемма

В любой импликативной решетке $\langle X, (\preceq) \rangle$ есть 1

Доказательство

Рассмотрим $a \to a$, тогда $a \to a = \text{наиб}\{c : ac \leq a\} = \text{наиб}\ X = 1$

Определение

Импликативная решетка с 0 – псевдобулева алгебра (алгебра Гейтинга)

В такой решетке определено $\sim a := a \to 0$

Определение

Булева алгебра – псевдобулева алгебра, в которой $a+\sim a\equiv 1$

Замечание

Известная нам булева «алгебра» – булева алгебра

Лемма

$$\langle \mathcal{P}(X), (\subseteq) \rangle$$
 – булева алгебра

Лемма

 $\langle \Omega, (\subseteq) \rangle$ – псевдобулева алгебра

Определение

Пусть некоторое вычисление высказываний оценивается значениями из некоторой решетки

Назовем оценку согласованной с исчислением, если

$$\begin{split} &[[\alpha\&\beta]] = [[\alpha]] \cdot [[\beta]] \\ &[[\alpha\vee\beta]] = [[\alpha]] + [[\beta]] \\ &[[\alpha\to\beta]] = [[\alpha]] \to [[\beta]] \\ &[[\neg\alpha]] = \sim [[\alpha]] \\ &[[A\&\neg A]] = 0 \\ &[[A\to A]] = 1 \end{split}$$

Теорема

Любая псевдобулева алгебра, являющаяся согласованной оценкой интуиционистского исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[[\alpha]] = 1$

Теорема

Любая булева алгебра, являющаяся согласованной оценкой классического исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[[\alpha]] = 1$

5 Интуиционистское исчисление высказываний (+ алгебра Гейтинга)

Определение

Язык *разрешим*, если существует программа, позволяющая определить, относится ли слово к языку или нет

Язык исчислений разрешим, если для каждой формулы мы можем проверить, истинна она или ложна

Язык И.И.В. корректен (задание в д.з.) и непротиворечив (т.к. является упрощением К.И.В., которая непротиворечива)

Определение

Определим предпорядок на высказываниях $\alpha \preceq \beta := \alpha \vdash \beta$ – в интуиционистском исчислении высказываний

Также $\alpha \approx \beta$, если $\alpha \leq \beta$ и $\beta \leq \alpha$

Определение

Пусть L – множество всех высказываний

Тогда алгебра Линденбаума $\mathcal{L} = L/\approx$

Теорема

 \mathcal{L} – псевдобулева алгебра

Схема доказательства

 $[\alpha]_{\mathcal{L}}$ – класс эквивалентности в алгебре Линденбаума Надо показать, что \preceq – отношение порядка на $\mathcal{L}, [\alpha \vee \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} + [\beta]_{\mathcal{L}}, [\alpha \& \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} \cdot [\beta]_{\mathcal{L}}$, что импликация есть псевдодополнение, $[A \& \neg A]_{\mathcal{L}} = 0, [\alpha]_{\mathcal{L}} \to 0 = [\neg \alpha]_{\mathcal{L}}$

Теорема

Пусть $[[\alpha]] = [\alpha]_{\mathcal{L}}$. Такая оценка высказываний интуиционистского исчисления высказываний алгеброй Линденбаума является согласованной **Теорема**

Интуиционистское исчисление высказываний полно в псевдобулевых алгебрах: если $\models \alpha$ во всех псевдобулевых алгебрах, то $\vdash \alpha$ //todo продолжить (16:22)