Appendices: R code

Appendices for "Dryland rock detention structures increase herbaceous vegetation cover and stabilize shrub cover over 10 years but do not directly affect soil fertility" by Ossanna et al. (2023). Included are code and analysis used to make figures and full model output.

Contact: Lia Ossanna, lossanna@arizona.edu

Last updated: 2023-09-01

Appendices:

- Appendix A: Temporal vegetation trends, Figs 2 & S4
- Appendix B: Coefficient of variation, Figs 3 & S5
- Appendix C: Soil fertility, Figs S6-S8
- Appendix D: Structural equation modeling, models 1-4

Package versions:

- R version 4.3.1
- tidyverse 2.0.0
 - dplyr 1.1.2
 - stringr 1.5.0
 - ggplot 3.4.3
 - tidyr 3.2.1
- agricolae 1.3-6
- plotrix 3.8-2
- ggpubr 0.6.0
- rstatix 0.7.2
- scales 1.2.1
- car 3.1-2

Appendix A: Temporal vegetation trends

Setup

```
library(tidyverse)
library(agricolae)
library(plotrix)
library(ggpubr)
library(rstatix)
# Load data -----
notree.all <- read.csv("data/Herb-and-shrub-cover_2012-2021.csv")</pre>
herb.all <- read.csv("data/Herb-cover_2012-2021.csv")</pre>
shrub.all <- read.csv("data/Shrub-cover_2012-2021.csv")</pre>
invasive.all <- read.csv("data/Invasive-cover_2012-2021.csv")</pre>
plant.all <- read.csv("data/Species-cover_2012-2021.csv")</pre>
per.div <- read.csv("data/Perennial-plant-diversity_2012-2021.csv")</pre>
# Functions -----
# Convert columns to factor or date as needed
convert.cols <- function(x) {</pre>
  x$year.xaxis <- as.Date(x$year.xaxis)</pre>
  group.cols <- c("Sample", "Year", "Treatment")</pre>
  x[group.cols] <- lapply(x[group.cols], factor)</pre>
  return(x)
# Data wrangling -----
notree.all <- convert.cols(notree.all)</pre>
herb.all <- convert.cols(herb.all)</pre>
shrub.all <- convert.cols(shrub.all)</pre>
invasive.all <- convert.cols(invasive.all)</pre>
per.div <- convert.cols(per.div)</pre>
```

Fig 2a: Grass, forb & shrub cover

```
SE = std.error(Cover),
            .groups = "keep")
# One-way ANOVA for Control
summary(aov(Cover ~ Year, data = filter(notree.all, Treatment == "Control"))) # p = 4.3e-06
               Df Sum Sq Mean Sq F value Pr(>F)
## Year
                5
                   7815 1563.0 7.12 4.3e-06 ***
## Residuals 177 38854
                           219.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
notree.ctrl <- notree.all |>
 filter(Treatment == "Control")
anova.notree.ctrl <- aov(notree.ctrl$Cover ~ notree.ctrl$Year)</pre>
hsd.notree.ctrl <- HSD.test(anova.notree.ctrl, trt = "notree.ctrl$Year")</pre>
hsd.notree.ctrl$groups
##
       notree.ctrl$Cover groups
## 2021
                42.41935
## 2012
                31.73194
                             ab
## 2014
                31.58750
                             ab
## 2018
                            b
                27.71774
## 2013
                27.71250
## 2015
                20.89315
                              h
# One-way ANOVA for Treated
summary(aov(Cover ~ Year, data = filter(notree.all, Treatment == "Treated"))) # p = 0.00304
##
               Df Sum Sq Mean Sq F value Pr(>F)
## Year
               5 7804 1560.7 3.739 0.00304 **
## Residuals 178 74291
                          417.4
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
notree.trt <- notree.all |>
 filter(Treatment == "Treated")
anova.notree.trt <- aov(notree.trt$Cover ~ notree.trt$Year)</pre>
hsd.notree.trt <- HSD.test(anova.notree.trt, trt = "notree.trt$Year")
hsd.notree.trt$groups
       notree.trt$Cover groups
## 2018
              41.69960
                            a
               37.47581
## 2021
                            ab
## 2014
              31.40927
                           abc
## 2015
              30.33669 abc
## 2012
              26.72446
                          bc
## 2013
              21.80029
```

```
# Plot with one-way ANOVA letters
notree.ctrl.letters <- hsd.notree.ctrl$groups</pre>
notree.ctrl.letters <- notree.ctrl.letters |>
  mutate(Year = rownames(notree.ctrl.letters)) |>
  arrange(Year)
notree.trt.letters <- hsd.notree.trt$groups</pre>
notree.trt.letters <- notree.trt.letters |>
  mutate(Year = rownames(notree.trt.letters)) |>
  arrange(Year)
letters.notree <- data.frame(x = rep(notree.avg$year.xaxis[1:6], 2),</pre>
                              y = rep(49, 12),
                              label = c(notree.ctrl.letters$groups,
                                        notree.trt.letters$groups),
                              Treatment = c(rep("Control", 6),
                                            rep("Treated", 6)))
ptext.notree \leftarrow data.frame(x = rep(as.Date("2019-09-01"), 2),
                            y = c(22, 22),
                            label = c("ANOVA, p < 0.001", "ANOVA, p = 0.003"),
                            Treatment = c("Control", "Treated"))
notree.plot <- ggplot(notree.avg, aes(x = year.xaxis, y = mean,</pre>
                                       group = Treatment,
                                       color = Treatment)) +
  geom_line() +
  geom point() +
  geom_pointrange(aes(ymin = mean - SE, ymax = mean + SE)) +
  facet_wrap(~Treatment) +
  xlab(NULL) +
  ylab("Cover (%)") +
  ggtitle("Vegetation cover, 2012-2021") +
  scale_color_manual(values = c("red", "#1F78B4")) +
  theme_bw() +
  theme(legend.position = "none") +
  geom_text(data = letters.notree,
            mapping = aes(x = x, y = y, label = label),
            color = "black",
            size = 3.5) +
  geom_text(data = ptext.notree,
            aes(x = x, y = y, label = label),
            color = "gray30",
            size = 2.5) +
  theme(axis.text.x = element_text(color = "black")) +
  theme(plot.margin = margin(t = 0.1, r = 0.1, b = 0.2, l = 0.1, "in"))
notree.plot
```

Vegetation cover, 2012-2021

Fig 2b: Herbaceous (grass & forb) cover

```
# Herbaceous cover -
# Find averages by year
herb.avg <- herb.all %>%
  group_by(Treatment, Year, year.xaxis) %>%
  summarise(mean = mean(Cover),
            SD = sd(Cover),
            SE = std.error(Cover),
            .groups = "keep")
# One-way ANOVA for Control
summary(aov(Cover ~ Year, data = filter(herb.all, Treatment == "Control"))) # 0.00434
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Year
                 5
                     2821
                            564.3
                                    3.556 0.00434 **
## Residuals
               177 28083
                            158.7
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
herb.ctrl <- herb.all |>
  filter(Treatment == "Control")
anova.herb.ctrl <- aov(herb.ctrl$Cover ~ herb.ctrl$Year)</pre>
hsd.herb.ctrl <- HSD.test(anova.herb.ctrl, trt = "herb.ctrl$Year")
hsd.herb.ctrl$groups
        herb.ctrl$Cover groups
##
## 2021
               26.78629
                             a
## 2014
               22.28333
                            ab
## 2012
               20.03472
                            ab
## 2018
               19.89718
                            ab
```

```
## 2013
               17.41528
## 2015
               14.21169
# One-way ANOVA for Treated
summary(aov(Cover ~ Year, data = filter(herb.all, Treatment == "Treated"))) # p = 3.77e-10
##
                Df Sum Sq Mean Sq F value
## Year
                     6847 1369.5
                                    12.17 3.77e-10 ***
                 5
## Residuals
               178 20035
                            112.6
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
herb.trt <- herb.all |>
  filter(Treatment == "Treated")
anova.herb.trt <- aov(herb.trt$Cover ~ herb.trt$Year)</pre>
hsd.herb.trt <- HSD.test(anova.herb.trt, trt = "herb.trt$Year")
hsd.herb.trt$groups
##
        herb.trt$Cover groups
## 2018
             24.489919
## 2021
             22.201613
                           ah
## 2014
             15.139113
## 2015
            12.368952
                           cd
## 2012
             11.436828
                           cd
## 2013
             6.929598
                            А
# Plot with one-way ANOVA letters
herb.ctrl.letters <- hsd.herb.ctrl$groups
herb.ctrl.letters <- herb.ctrl.letters |>
  mutate(Year = rownames(herb.ctrl.letters)) |>
  arrange(Year)
herb.trt.letters <- hsd.herb.trt$groups
herb.trt.letters <-herb.trt.letters |>
  mutate(Year = rownames(herb.trt.letters)) |>
  arrange(Year)
letters.herb <- data.frame(x = rep(herb.avg$year.xaxis[1:6], 2),</pre>
                           y = rep(32, 12),
                           label = c(herb.ctrl.letters$groups,
                                     herb.trt.letters$groups),
                           Treatment = c(rep("Control", 6),
                                          rep("Treated", 6)))
ptext.herb \leftarrow data.frame(x = rep(as.Date("2019-09-01"), 2),
                         y = c(8, 8),
                         label = c("ANOVA, p = 0.004", "ANOVA, p < 0.001"),
                         Treatment = c("Control", "Treated"))
herb.plot <- ggplot(herb.avg, aes(x = year.xaxis, y = mean,
                                   group = Treatment,
                                   color = Treatment)) +
  geom_line() +
  geom_point() +
```

```
geom_pointrange(aes(ymin = mean - SE, ymax = mean + SE)) +
  facet_wrap(~Treatment) +
  xlab(NULL) +
  ylab("Cover (%)") +
  ggtitle("Herbaceous cover") +
  scale_color_manual(values = c("red", "#1F78B4")) +
  theme_bw() +
  theme(legend.position = "none") +
  geom_text(data = letters.herb,
            mapping = aes(x = x, y = y, label = label),
            color = "black",
            size = 3.5) +
  geom_text(data = ptext.herb,
            aes(x = x, y = y, label = label),
            color = "gray30",
            size = 2.5) +
  theme(axis.text.x = element_text(color = "black")) +
  theme(plot.margin = margin(t = 0.1, r = 0.1, b = 0.2, l = 0.1, "in"))
herb.plot
```

Herbaceous cover

Fig 2c: Shrub cover

```
# One-way ANOVA for Control
summary(aov(Cover ~ Year, data = filter(shrub.all, Treatment == "Control"))) # p = 0.0112
                Df Sum Sq Mean Sq F value Pr(>F)
## Year
                5 1566
                            313.1 3.062 0.0112 *
## Residuals
             177 18100
                            102.3
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
shrub.ctrl <- shrub.all |>
  filter(Treatment == "Control")
anova.shrub.ctrl <- aov(shrub.ctrl$Cover ~ shrub.ctrl$Year)</pre>
hsd.shrub.ctrl <- HSD.test(anova.shrub.ctrl, trt = "shrub.ctrl$Year")
hsd.shrub.ctrl$groups
##
        shrub.ctrl$Cover groups
## 2021
             15.633065
## 2012
              11.697222
                             ab
              10.297222
## 2013
## 2014
               9.304167
                            ab
## 2018
               7.820565
                             b
## 2015
              6.681452
# One-way ANOVA for Treated
summary(aov(Cover ~ Year, data = filter(shrub.all, Treatment == "Treated"))) # NS, p = 0.982
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Year
                      232
                           46.4 0.141 0.982
                5
## Residuals
             178 58465
                            328.5
# Plot with one-way ANOVA letters
shrub.ctrl.letters <- hsd.shrub.ctrl$groups</pre>
shrub.ctrl.letters <- shrub.ctrl.letters |>
 mutate(Year = rownames(shrub.ctrl.letters)) |>
  arrange(Year)
letters.shrub <- data.frame(x = shrub.avg$year.xaxis[1:6],</pre>
                            y = rep(21, 6),
                            label = shrub.ctrl.letters$groups,
                            Treatment = rep("Control", 6))
ptext.shrub \leftarrow data.frame(x = rep(as.Date("2019-09-01"), 2),
                          y = c(6.5, 6.5),
                          label = c("ANOVA, p = 0.011", "ANOVA, p = 0.982"),
                          Treatment = c("Control", "Treated"))
shrub.plot <- ggplot(shrub.avg, aes(x = year.xaxis, y = mean,</pre>
                                    group = Treatment,
                                    color = Treatment)) +
  geom_line() +
  geom_point() +
  geom_pointrange(aes(ymin = mean - SE, ymax = mean + SE)) +
```

```
facet_wrap(~Treatment) +
  xlab(NULL) +
  ylab("Cover (%)") +
  ggtitle("Shrub cover") +
  scale_color_manual(values = c("red", "#1F78B4")) +
  theme_bw() +
  theme(legend.position = "none") +
  geom_text(data = letters.shrub,
            mapping = aes(x = x, y = y, label = label),
            color = "black",
            size = 3.5) +
  geom_text(data = ptext.shrub,
            aes(x = x, y = y, label = label),
            color = "gray30",
            size = 2.5) +
  theme(axis.text.x = element_text(color = "black")) +
  theme(plot.margin = margin(t = 0.1, r = 0.1, b = 0.2, l = 0.1, "in"))
shrub.plot
```

Shrub cover

Combine plots for Fig 2

Supp Fig 4a: Perennial plant species richness

```
# Perennial plant richness
# Find averages by year
rich.avg <- per.div %>%
  group_by(Treatment, Year, year.xaxis) %>%
  summarise(mean = mean(rich),
            SD = sd(rich),
           SE = std.error(rich),
            .groups = "keep")
# One-way ANOVA for Control
summary(aov(rich ~ Year, data = filter(per.div, Treatment == "Control"))) # 0.00881
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Year
                5 92.9 18.587
                                    3.189 0.00881 **
## Residuals
             177 1031.7
                           5.829
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
rich.ctrl <- per.div |>
  filter(Treatment == "Control")
anova.rich.ctrl <- aov(rich.ctrl$rich ~ rich.ctrl$Year)</pre>
hsd.rich.ctrl <- HSD.test(anova.rich.ctrl, trt = "rich.ctrl$Year")
hsd.rich.ctrl$groups
##
       rich.ctrl$rich groups
## 2012
           9.866667
## 2013
             9.133333
                           ab
## 2018
             8.645161
## 2015
             8.612903
                          ab
## 2014
              8.200000
                           ab
## 2021
             7.580645
# One-way ANOVA for Treated
summary(aov(rich ~ Year, data = filter(per.div, Treatment == "Treated"))) # p = 0.0516
##
                Df Sum Sq Mean Sq F value Pr(>F)
                     76 15.207
## Year
                                    2.247 0.0516 .
## Residuals
              178
                   1204
                           6.766
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Plot with one-way ANOVA letters
rich.ctrl.letters <- hsd.rich.ctrl$groups</pre>
rich.ctrl.letters <- rich.ctrl.letters |>
  mutate(Year = rownames(rich.ctrl.letters)) |>
  arrange(Year)
letters.rich <- data.frame(x = rich.avg$year.xaxis[1:6],</pre>
```

```
y = rep(10.4, 6),
                            label = rich.ctrl.letters$groups,
                            Treatment = rep("Control", 6))
ptext.rich \leftarrow data.frame(x = rep(as.Date("2019-09-01"), 2),
                          y = c(6.7, 10.3),
                         label = c("ANOVA, p = 0.009", "ANOVA, p = 0.052"),
                         Treatment = c("Control", "Treated"))
rich.plot <- ggplot(rich.avg, aes(x = year.xaxis, y = mean,</pre>
                                   group = Treatment,
                                   color = Treatment)) +
  geom_line() +
  geom_point() +
  geom_pointrange(aes(ymin = mean - SE, ymax = mean + SE)) +
  facet_wrap(~Treatment) +
  xlab(NULL) +
  ylab("No. of species") +
  ggtitle("Perennial plant species richness, 2012-2021") +
  scale_color_manual(values = c("red", "#1F78B4")) +
  theme_bw() +
  theme(legend.position = "none") +
  geom_text(data = letters.rich,
            mapping = aes(x = x, y = y, label = label),
            color = "black",
            size = 3.5) +
  geom_text(data = ptext.rich,
            aes(x = x, y = y, label = label),
            color = "gray30",
            size = 2.5) +
  theme(axis.text.x = element_text(color = "black")) +
  theme(plot.margin = margin(0.1, 0.1, 0.2, 0.1, "in"))
rich.plot
```

Perennial plant species richness, 2012–2021

Supp Fig 4b: Perennial plant diversity

```
# Perennial plant diversity (Shannon) -----
# Find averages by year
shan.avg <- per.div %>%
  group_by(Treatment, Year, year.xaxis) %>%
  summarise(mean = mean(shan),
            SD = sd(shan),
            SE = std.error(shan),
            .groups = "keep")
# One-way ANOVA for Control
summary(aov(shan ~ Year, data = filter(per.div, Treatment == "Control"))) # p = 0.934
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Year
                 5 0.185 0.03702
                                     0.26 0.934
## Residuals
              177 25.197 0.14235
# One-way ANOVA for Treated
summary(aov(shan ~ Year, data = filter(per.div, Treatment == "Treated"))) # p = 0.725
                Df Sum Sq Mean Sq F value Pr(>F)
##
## Year
                 5
                     0.59 0.1189
                                   0.568 0.725
## Residuals
               178 37.27 0.2094
# Plot with one-way ANOVA
ptext.shan \leftarrow data.frame(x = rep(as.Date("2019-09-01"), 2),
                         y = c(1.33, 1.33),
                         label = c("ANOVA, p = 0.934", "ANOVA, p = 0.725"),
                         Treatment = c("Control", "Treated"))
shan.plot <- ggplot(shan.avg, aes(x = year.xaxis, y = mean,</pre>
                                  group = Treatment,
                                  color = Treatment)) +
  geom line() +
  geom_point() +
  geom_pointrange(aes(ymin = mean - SE, ymax = mean + SE)) +
  facet_wrap(~Treatment) +
  xlab(NULL) +
  ylab("Shannon diversity index") +
  ggtitle("Perennial plant diversity") +
  scale_color_manual(values = c("red", "#1F78B4")) +
  theme_bw() +
  theme(legend.position = "none") +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(data = ptext.shan,
            aes(x = x, y = y, label = label),
            color = "gray30",
            size = 2.5) +
  theme(plot.margin = margin(0.1, 0.1, 0.2, 0.1, "in"))
shan.plot
```

Perennial plant diversity

Combine plots for Supp Fig 4

Invasive cover and most common species

```
# Average cover by year
invasive.all %>%
 select(-year.xaxis) |>
 group_by(Treatment, Year) %>%
 summarise(mean = mean(Cover),
           SE = std.error(Cover),
           .groups = "keep") |>
 mutate_if(is.numeric, round, digits = 2)
## 'mutate_if()' ignored the following grouping variables:
## * Columns 'Treatment', 'Year'
## # A tibble: 12 x 4
## # Groups: Treatment, Year [12]
##
     Treatment Year mean
##
     <fct>
              <fct> <dbl> <dbl>
## 1 Control 2012 3.34 0.6
```

```
## 2 Control
               2013 2.58 0.66
## 3 Control 2014 2.46 0.98
## 4 Control 2015 2.96 0.69
## 5 Control 2018 5.1
                           1.17
## 6 Control 2021 7.38 1.23
## 7 Treated 2012 3.29 0.84
## 8 Treated 2013 2.18 0.51
## 9 Treated 2014 3.58 0.8
## 10 Treated 2015 5.1 1.08
## 11 Treated 2018
                     5.17 1.23
## 12 Treated 2021
                     4.79 0.85
# Most common species in Control
plant.all |>
  filter(Native == "Invasive",
        Treatment == "Control") |>
  group_by(Common) |>
  summarise(mean = mean(Cover)) |>
  arrange(desc(mean))
## # A tibble: 4 x 2
##
    Common
                       mean
##
    <chr>
                       <dbl>
## 1 Lehmann lovegrass 4.49
## 2 Stinkgrass
                       0.833
## 3 Spreading fantails 0.769
## 4 African lovegrass 0.125
# Most common species in Treated
plant.all |>
  filter(Native == "Invasive",
        Treatment == "Treated") |>
  group_by(Common) |>
  summarise(mean = mean(Cover)) |>
  arrange(desc(mean))
## # A tibble: 8 x 2
   Common
                       mean
    <chr>
##
                       <dbl>
## 1 Lehmann lovegrass 4.75
## 2 Buffelgrass
                       3.41
## 3 Boer lovegrass
                       0.625
## 4 African lovegrass 0.531
## 5 Spreading fantails 0.367
## 6 Barnyard
                       0.225
## 7 Rose Natal grass
                       0.125
## 8 Stinkgrass
                       0.125
```

Appendix B: Coefficient of variation

Setup

```
library(tidyverse)
library(car)
library(scales)
library(ggpubr)

# Load data -----

notree.all <- read_csv("data/Herb-and-shrub-cover_2012-2021.csv")
herb.all <- read_csv("data/Herb-cover_2012-2021.csv")
shrub.all <- read_csv("data/Shrub-cover_2012-2021.csv")
per.div <- read_csv("data/Perennial-plant-diversity_2012-2021.csv")</pre>
```

Fig 3a: CV of shrub cover

[1] 10 12

qqPlot(filter(shrub.sample, Treatment == "Treated")\$CV) # not normal

[1] 7 4

shrub.plot.cv <- shrub.sample |>

geom_boxplot(alpha = 0.3,

ggplot(aes(x = Treatment, y = CV)) +

```
outlier.shape = NA,
              aes(fill = Treatment)) +
  geom jitter(size = 1,
              alpha = 0.8,
              aes(color = Treatment)) +
  scale_color_manual(values = c("red", "#1F78B4")) +
  scale_fill_manual(values = c("red", "#1F78B4")) +
 labs(title = "Shrub cover",
      x = NULL,
      y = "Coefficient of variation") +
  theme_bw() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = percent) +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(aes(x = 0.95, y = 2.75, label = "Mann-Whitney, \np = 0.014"),
            color = "gray30",
           size = 2.5) +
  geom_text(data = letters.shrub,
           aes(x = x, y = y, label = label),
           color = "black") +
 theme(plot.margin = margin(0.1, 0, 0.1, 0.1, "in")) +
  stat_summary(fun = mean, geom = "errorbar", aes(ymax = after_stat(y), ymin = after_stat(y)),
              width = 0.75, linetype = "dashed") +
 theme(plot.title = element_text(size = 12))
shrub.plot.cv
```

Shrub cover

Fig 3b: CV of herbaceous cover

[1] 17 18

qqPlot(filter(herb.sample, Treatment == "Control")\$CV) # not quite normal?


```
## [1] 29 10
```

alpha = 0.8,

aes(color = Treatment)) +

```
# Compare means
wilcox.test(filter(herb.sample, Treatment == "Treated")$CV,
            filter(herb.sample, Treatment == "Control")$CV) # NS, p = 0.148
##
##
   Wilcoxon rank sum exact test
## data: filter(herb.sample, Treatment == "Treated")$CV and filter(herb.sample, Treatment == "Control"
## W = 584, p-value = 0.1479
\#\# alternative hypothesis: true location shift is not equal to 0
# Plot
herb.plot.cv <- herb.sample |>
  ggplot(aes(x = Treatment, y = CV)) +
  geom_boxplot(alpha = 0.3,
               outlier.shape = NA,
               aes(fill = Treatment)) +
  geom_jitter(size = 1,
```

```
scale_color_manual(values = c("red", "#1F78B4")) +
  scale_fill_manual(values = c("red", "#1F78B4")) +
  labs(title = "Herbaceous cover",
       x = NULL,
       y = NULL) +
  theme_bw() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = percent) +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(aes(x = 0.95, y = 1.18, label = "Mann-Whitney, \np = 0.122"),
            color = "gray30",
            size = 2.5) +
  theme(plot.margin = margin(0.1, 0.1, 0.1, 0.2, "in")) +
  stat_summary(fun = mean, geom = "errorbar", aes(ymax = after_stat(y), ymin = after_stat(y)),
               width = 0.75, linetype = "dashed") +
  theme(plot.title = element_text(size = 12))
herb.plot.cv
```

Herbaceous cover

Fig 3c: CV of overall veg cover


```
## [1] 7 4
```

```
qqPlot(filter(notree.sample, Treatment == "Control")$CV) # normal
```


[1] 12 10

```
# Compare means
t.test(filter(notree.sample, Treatment == "Treated")$CV,
       filter(notree.sample, Treatment == "Control") CV) # NS, p = 0.882
##
   Welch Two Sample t-test
##
##
## data: filter(notree.sample, Treatment == "Treated")$CV and filter(notree.sample, Treatment == "Cont
## t = -0.14868, df = 59.846, p-value = 0.8823
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.11574119 0.09972676
## sample estimates:
## mean of x mean of y
## 0.4430859 0.4510931
# Plot
notree.plot.cv <- notree.sample |>
  ggplot(aes(x = Treatment, y = CV)) +
  geom_boxplot(alpha = 0.3,
```

```
outlier.shape = NA,
               aes(fill = Treatment)) +
  geom jitter(size = 1,
              alpha = 0.8,
              aes(color = Treatment)) +
  scale_color_manual(values = c("red", "#1F78B4")) +
  scale_fill_manual(values = c("red", "#1F78B4")) +
  labs(title = "Vegetation cover",
       x = NULL,
       y = NULL) +
  theme_bw() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = percent) +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(aes(x = 0.9, y = 0.95, label = "t-test, p = 0.882"),
            color = "gray30",
            size = 2.5) +
  theme(plot.margin = margin(0.1, 0.1, 0.1, 0.2, "in")) +
  stat_summary(fun = mean, geom = "errorbar", aes(ymax = after_stat(y), ymin = after_stat(y)),
               width = 0.75, linetype = "dashed") +
  theme(plot.title = element_text(size = 12))
notree.plot.cv
```

Vegetation cover

Combine plots for Fig 3

Supp Fig 5a: CV of perennial richness

[1] 3 11

qqPlot(filter(rich.sample, Treatment == "Control")\$CV) # normal

[1] 8 11

```
# Compare means
wilcox.test(filter(rich.sample, Treatment == "Treated")$CV,
            filter(rich.sample, Treatment == "Control")$CV) # NS, p = 0.093
## Warning in wilcox.test.default(filter(rich.sample, Treatment == "Treated")$CV,
## : cannot compute exact p-value with ties
##
   Wilcoxon rank sum test with continuity correction
##
## data: filter(rich.sample, Treatment == "Treated")$CV and filter(rich.sample, Treatment == "Control"
## W = 586.5, p-value = 0.1375
\#\# alternative hypothesis: true location shift is not equal to 0
# Plot
rich.plot.cv <- rich.sample |>
  ggplot(aes(x = Treatment, y = CV)) +
  geom_boxplot(alpha = 0.3,
               outlier.shape = NA,
```

```
aes(fill = Treatment)) +
  geom_jitter(size = 1,
              alpha = 0.8,
              aes(color = Treatment)) +
  scale_color_manual(values = c("red", "#1F78B4")) +
 scale_fill_manual(values = c("red", "#1F78B4")) +
  labs(title = "Perennial plant species \nrichness",
      x = NULL,
      y = "Coefficient of variation") +
  theme bw() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = percent) +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(aes(x = 0.95, y = 0.65, label = "Mann-Whitney, \np = 0.062"),
            color = "gray30",
           size = 2.5) +
  theme(plot.margin = margin(0.1, 0.1, 0.1, 0.1, "in")) +
  stat_summary(fun = mean, geom = "errorbar", aes(ymax = after_stat(y), ymin = after_stat(y)),
              width = 0.75, linetype = "dashed") +
  theme(plot.title = element_text(size = 12))
rich.plot.cv
```

Perennial plant species richness

Supp Fig 5b: CV of perennial diversity


```
## [1] 8 17
```

```
qqPlot(filter(shan.sample, Treatment == "Control")$CV) # almost normal
```


[1] 10 12

```
# Compare
t.test(filter(shan.sample, Treatment == "Treated")$CV,
       filter(shan.sample, Treatment == "Control")$CV) # NS, p = 0.075
##
   Welch Two Sample t-test
##
##
## data: filter(shan.sample, Treatment == "Treated")$CV and filter(shan.sample, Treatment == "Control"
## t = 2.0794, df = 52.755, p-value = 0.04246
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.00303293 0.16871186
## sample estimates:
## mean of x mean of y
## 0.3315000 0.2456276
# Plot
shan.plot.cv <- shan.sample |>
  ggplot(aes(x = Treatment, y = CV)) +
  geom_boxplot(alpha = 0.3,
```

```
outlier.shape = NA,
               aes(fill = Treatment)) +
  geom jitter(size = 1,
              alpha = 0.8,
              aes(color = Treatment)) +
  scale_color_manual(values = c("red", "#1F78B4")) +
  scale_fill_manual(values = c("red", "#1F78B4")) +
  labs(title = "Perennial plant diversity",
      x = NULL,
      y = NULL) +
  theme_bw() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = percent) +
  theme(axis.text.x = element_text(color = "black")) +
  geom_text(aes(x = 0.95, y = 0.83, label = "t-test, p = 0.075"),
            color = "gray30",
           size = 2.5) +
  theme(plot.margin = margin(0.1, 0.1, 0.1, 0.15, "in")) +
  stat_summary(fun = mean, geom = "errorbar", aes(ymax = after_stat(y), ymin = after_stat(y)),
              width = 0.75, linetype = "dashed") +
  theme(plot.title = element_text(size = 12))
shan.plot.cv
```

Perennial plant diversity

Combine plots for Supp Fig 5

Appendix C: Soil fertility

Setup

Supp Fig 6a: Total soil nitrogen

Supp Fig 6b: Total soil carbon

Supp Fig 6c: Soil organic matter

Supp Fig 7a: Bacterial & archaeal richness

Supp Fig 7b: Fungal richness

Supp Fig 8a: Chemoheterotrophic bacteria & archaea

Supp Fig 8b: Nitrogen-cycling bacteria & archaea

Supp Fig 8c: Saprotrophic fungi

Appendix D: Structural equation modeling

Setup

Latent variables

Model 1

Model 2

Model 3

Model 4