Write your name below and indicate your role,	
Project Manager (PM), Recorder (R)	
Name	Role
Name	Role

Binary Numbers

You	r Tasks (Mark these off as you go)
	Brainstorm: How many three place patterns can you make with a circle and square
	Watch the Circle-Triangle-Square to Binary video
	Construct a Flippy-Do
	Use your Flippy-Do to determine all the 4 place binary numbers
	Determine the base 10 value of all the 8-bit binary numbers with exactly one 1
	Practice with conversions
	Complete the reflection questions
	Receive credit for the group portion of this lab

□ Brainstorm: How many three place patterns can you make with a circle and square

In the previous lesson you created 27 different 3-place patterns out of circles, triangles and squares, and tried to define a system of rules to generate all of the patterns.

What if you only had a circle and square? With only a circle and square, how many 3-place patterns are there? A few are started below. How many are there total?

□ Watch the Circle-Triangle-Square to Binary Video

To help with the transition from circle-triangle-square to binary check out the following video, https://www.youtube.com/watch?v=91HLBUjCHbs

Make a Flippy-Do

Using the template provided by Ms. Pluska construct your Flippy-Do. Use the image below as a guide.

□ Have Ms. Pluska check off your Flippy-Do

Before you continue have Ms. Pluska check off your Flippy-Do

Do not continue until you have Ms. Pluska's (or her designated TA's) signature _____

 □ Use your Flippy-Do to determine all the 4 place binary numbers

If you have a	binary nu	mbers syst	tem (0 an	d 1's only)	how ma	any 4 plac	e combination	ns are
there?								

□ Determine the	hase 10 valu	ue of all the 8-bit b	inary
numbers with			illal y
	•	that has exactly one $\it 1$ in it. W	rite down the
decimal equivalent next to	each one. Do you r	notice a pattern?	
Binary: 8-bit number (with exactly one 1)	Decimal	Binary: 8-bit number (with exactly one 1)	Decimal
	_		
0000 0001	1	0001 0000	
0000 0001 0000 0010	2	0001 0000	
	_		
0000 0010	_	0010 0000	
0000 0010 0000 0100 0000 1000	2	0010 0000 0100 0000 1000 0000	before vou
0000 0010 0000 0100 0000 1000	2	0010 0000 0100 0000	before you
0000 0010 0000 0100 0000 1000	2	0010 0000 0100 0000 1000 0000	before you
0000 0010 0000 0100 0000 1000	2	0010 0000 0100 0000 1000 0000	before you
0000 0010 0000 1000 0000 1000 Have Ms. Plusicontinue STOP	2 ka check off to	0010 0000 0100 0000 1000 0000	u contineu

Use your Flippy-Do to determine the binary value of each base 10 equivalent.

Practice with conversions

Using your own binary skills (aided by the flippy do) fill in the decimal and binary equivalents below.

What's the Decimal Number?

Binary	Decimal
100	
101	
1101	
0001 1111	
0010 0000	
1010 1010	
1111 1111	

NOTE: a short binary number like **101** is assumed to have leading 0s for all the other bits, like: **00000101**. Typically large binary numbers are grouped in 4-bit chunks to improve readability, for example: **0110 0101 1010**

What's the Binary Number?

Binary	Decimal
	5
	17
	63
	64
	127
	256*
	513*

*NOTE: 256 and 513 exceed the capacity of the flippy-do but you can work it logically following what you know about patterns with binary numbers.

Complete the reflection questions

this pattern occur?	25
How many bits would you need if you wanted to have the ability to count up to 1000?	
How high could you count in binary if you used all 10 of your fingers as bits? (finger up means 1, finger down means 0)	

□ Receive Credit for the group portion of this lab

- Indicate the names of all group members.
- Have Ms. Pluska check your Number Systems lab.
- Submit your lab to the needs to be graded folder to receive credit for the group portion of this lab.

Do not submit your lab until you have Ms. Pluska's (or her designated TA's) signature	
---	--