## A GENERAL APPROACH FOR LEARNING CONSTITUTIVE RELATIONSHIPS (PHYSICAL LAWS) FROM NEURAL NETWORKS: A SEVEN STEP PROCESSING FOR SOLVING ANY PROBLEM

ANDREW TEMPLE, MATTHEW MILLER, SUNIL DHAPOLA, AARON STEBNER, PETER COLLINS, AND BRANDEN KAPPES

## 1. Methods

Fully dense neural network (NN) architectures, such as the one shown in Figure 1, perform a sequence of affine transformations,  $\mathbf{z}_i \leftarrow \boldsymbol{\theta}_i \mathbf{x}^{(i)}$ , followed by element-wise functional operations,  $\sigma(\mathbf{z}_i)$  to introduce non-linearity at each layer; that is, each layer stretches and distorts the underlying space.



FIGURE 1. Schematic view of a fully dense neural network. Each sequence of affine and non-linear transformations are captured in the function,  $f_i(\mathbf{x})$ :  $\mathbf{x}^{(i+1)} \leftarrow \sigma(\boldsymbol{\theta}_i \mathbf{x}^{(i)})$ 

The resulting network,

(1) 
$$f(x) = \sigma(\theta_n \sigma(\theta_{n-1} \sigma(\dots \theta_2 \sigma(\theta_1 \mathbf{x}))))$$

is an arbitrary function generator, but at present, the network weights  $\theta_i$  can not map back to analytic forms that capture and describe the underlying physics. There are, however, many such mappings through polynomial series expansions,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

We hypothesize that the physics of a process can be extracted by fitting the polynomial expansions of known physical relationships to the polynomial coefficients of a polynomial series expansion of Equation (1).

Although ReLU (rectified linear units) have become a more common activation function, its discontinuity at x = 0 requires an infinite series to fully capture the behavior at this transition. However, the sigmoid function,

(3) 
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

is a special case of the generating function for the Euler polynomial coefficients,

(4) 
$$\frac{2e^{xt}}{1+e^t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}$$

where, for x = 0,

(5) 
$$\sigma(x) = \frac{1}{2} \sum_{n=0}^{\infty} E_n(0) \frac{(-1)^n}{n!}.$$

The Euler polynomials at x = 0,

(6) 
$$E_n(0) = -2(n+1)^{-1} (2^{n+1} - 1) B_{n+1}$$

where  $B_n$  is the  $n^{\text{th}}$  Bernoulli number. Since Bernoulli numbers of odd index, with the exception of  $B_1$ , are zero,  $E_i(0) = 0$  for  $i = 2, 4, 6, \dots, 2n$ . Therefore, the summand and limits of Equation (5) change to

(7) 
$$\sigma(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{E_{2n-1(0)}}{(2n-1)!} \right) x^{2n-1}.$$

The series representation of  $E_{2n-1}(x)$ 

(8) 
$$E_{2n-1}(x) = \frac{(-1)^n 4(2n-1)!}{\pi^{2n+1}} \sum_{k=0}^{\infty} \frac{\cos[(2k+1)\pi x]}{(2k+1)^{2n}}$$

such that,

(9) 
$$E_{2n-1}(0) = \frac{(-1)^n 4(2n-1)!}{\pi^{2n+1}} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}}$$

A GENERAL APPROACH FOR LEARNING CONSTITUTIVE RELATIONSHIPS (PHYSICAL LAWS) FROM NEURAL NETWORKS:A

and therefore,

$$(10) \quad \sigma(x) = \frac{1}{2} - \sum_{n=1}^{\infty} 2 \frac{(-1)^n}{\pi^{2n}} \left( \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}} \right) x^{2n-1}$$

$$= \frac{1}{2} - \sum_{n=1}^{\infty} 2 \frac{(-1)^n}{\pi^{2n}} \left( 4^{-n} (4^n - 1) \zeta(2n) \right) x^{2n-1}$$

$$= \frac{1}{2} - \sum_{n=1}^{\infty} 2 \left( \frac{-1}{4\pi^2} \right)^n (4^n - 1) \zeta(2n) x^{2n-1}$$

$$= \sum_{n=0}^{\infty} a_n x^n, \ a_n = \begin{cases} 1/2 & n = 0 \\ -2 \left( \frac{-1}{4\pi^2} \right)^{(n+1)/2} \left( 4^{(n+1)/2} - 1 \right) \zeta(n+1) & n \text{ odd } \\ 0 & n \text{ even} \end{cases}$$

## 2. Discussion

Many non-trivial problems in materials science, and in science more broadly, are explained not through a single constitutive relationship, but through a superposition of contributing physics.

Figure ?? shows an artificial dataset constructed to replicate the impact of yield stress in a two-phase, solid-solution strengthened alloy system. Using a combination of composite theory for the contribution of flow stress, NAME solid solution [?], and Hall-Petch [?] strengthening, the expected yield stress is

(12) 
$$\sigma_y = F_v^A \sigma_f^A + F_v^B \sigma_f^B + \sum_i C_i [x_i]^{2/3} + \sum_i k_j d_j^{-1/2} + \dots$$

with free parameters

 $F_v^i$  Volume fraction of phase i

 $[x_i]$  Concentration of solute i

 $d_i$  Average grain diameter of phase j

and fixed parameters

 $\sigma_f^i$  Flow stress of phase i

 $\dot{C_i}$  Solid solution strengthening coefficient for solute species i

 $k_i$  Hall-Petch strengthening coefficient for phase j

The goal is to iteratively improve on this constitutive model one term at a time, and monitor the effect on the residuals between the predicted yield,  $\hat{\sigma}_y$  and the actual yield  $\sigma_y$ .

The analytical form, combining Equations (1) and (11), the estimated output of a two-layer NN can be written as

$$\mathbf{y}_{1} = \sum_{k=0}^{\infty} a_{k} (\boldsymbol{\theta}_{1}^{T} \mathbf{x})^{k}$$

$$\mathbf{y}_{2} = \sum_{k=0}^{\infty} b_{k} (\boldsymbol{\theta}_{2}^{T} \mathbf{y}_{1})^{k}$$

$$= b_{0} \mathbf{1} + b_{1} (\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})$$

$$+ b_{2} (\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})^{2}$$

$$\vdots$$

$$+ b_{k} (\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})^{k}$$

$$\vdots$$

$$(13)$$

where  $\tilde{a}_i = \boldsymbol{\theta}_2^T a_i$  and  $\tilde{\mathbf{x}} = \boldsymbol{\theta}_1^T \mathbf{x}$ . All  $\boldsymbol{\theta}_i$ ,  $\mathbf{x}$ , and  $\mathbf{y}$  are augmented to include the bias,  $\mathbf{b}_i$ , that is,

(14) 
$$\mathbf{x} : \mathbf{x} \leftarrow \begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix} = \begin{pmatrix} 1 \\ x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\mathbf{y} : \mathbf{y} \leftarrow \begin{pmatrix} 1 \\ \mathbf{y} \end{pmatrix}$$

(16) 
$$\boldsymbol{\theta}_i : \boldsymbol{\theta}_i \leftarrow \begin{pmatrix} \mathbf{b}_i & \boldsymbol{\theta}_i \end{pmatrix}$$

However from Equation (11),  $a_i = 0$  for i = 2, 4, 6, ..., and therefore,

$$\mathbf{y}_{1} = \sum_{k=0}^{\infty} a_{k} (\boldsymbol{\theta}_{1}^{T} \mathbf{x})^{k}$$

$$\mathbf{y}_{2} = \sum_{k=0}^{\infty} b_{k} (\boldsymbol{\theta}_{2}^{T} \mathbf{y}_{1})^{k}$$

$$= b_{0} \mathbf{1} + b_{1} (\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{3} + (\tilde{a}_{5} + (\dots)\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2})\tilde{\mathbf{x}}^{2}$$

where the  $\tilde{\mathbf{x}}^2 = \tilde{\mathbf{x}} \odot \tilde{\mathbf{x}}$ , the Hadamard product of  $\tilde{\mathbf{x}}$  with itself.

$$\mathbf{y}_{2} = \sum_{N=0}^{\infty} \sum_{k=0}^{N} \sum_{l=0}^{k} \sum_{m=0}^{l} \dots b_{N} \binom{N}{k, l, m, \dots} \tilde{a}_{0}^{k} \tilde{a}_{1}^{l} \tilde{a}_{3}^{m} \dots \tilde{\mathbf{x}}^{N-k \dots} (\tilde{\mathbf{x}}^{2})^{N-k-l \dots} (\tilde{\mathbf{x}}^{2})^{N-k-l-m \dots}$$

$$(18) = \sum_{N=0}^{\infty} \sum_{k=0}^{N} \sum_{l=0}^{k} \sum_{m=0}^{l} \dots b_{N} {N \choose k, l, m, \dots} \tilde{a}_{0}^{k} \tilde{a}_{1}^{l} \tilde{a}_{3}^{m} \dots \tilde{\mathbf{x}}^{l+m+n+\dots} (\tilde{\mathbf{x}}^{2})^{m+n+\dots} (\tilde{\mathbf{x}}^{2})^{n+\dots}$$

where  $k + l + m + n + \ldots = N$ . Collecting coefficients and terms of power k,

$$\mathbf{y}_2 = \sum_{k=0}^{\infty} c_k \tilde{\mathbf{x}}^k$$

that, having the same form as Equation (11) creates a sequential process for determining the coefficients of the power series expansion of each layer in an ANN. Importantly, the output layer in a ANN regression is a single node with a linear activation, so the final layer,  $y_f$ , working from the last hidden layer,  $y_n$ , is simply,

$$(19) y_f = \boldsymbol{\theta}_n^T \mathbf{y}_n$$

Together, this leads to a seven-step process for systematically and incrementally extracting physics information from an ANN:

- (1) Collect data—features and targets—for which relationships are expected to exist.
- (2) Design and train a fully dense multi-layer perceptron network (ANN).
- (3) Build a power series expansion from the architecture of this ANN, using Equations (11) and (18) to populate the coefficients using the trained weights from the neural network.
- (4) Hypothesize a constitutive relationship between the feature space and the target space.
- (5) Recast the terms in the hypothesis function from #4 as power series expansions, creating power series coefficient generating functions that are functions of the constitutive model fitting parameters. An example of this process is provided below, and a table of select power series expansions relevant to materials research are provided in Table (??).
- (6) Perform an optimization, e.g. least squares, fit to find the fitting parameters from #5
- (7) Calculate the residuals of the ANN power series expansion coefficient vector, and from this residual vector, the error in the model. If the accuracy is sufficient for the application, stop; otherwise, expand the constitutive relationship from step #4 and repeat.

## ANDREW TEMPLE, MATTHEW MILLER, SUNIL DHAPOLA, AARON STEBNER, PETER COLLINS, AND BRANDEN KAPPES

Table 1. Examples of coefficient generating functions for functional forms commonly found in materials physics.

| k | $Ca^x$                                 | $Cx^n$                                                                   | $Ce^{-\beta x}$               | $Cx^{-1/2}$                              |
|---|----------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------------------------|
| 0 | 1                                      | _                                                                        | C                             | C                                        |
| 1 | $C \ln a$                              | _                                                                        | $-\beta C$                    | $-\frac{1}{2}C$                          |
| 2 | $\frac{C \ln a}{\frac{(\ln a)^2}{2}C}$ | _                                                                        | $rac{eta^2}{2}C$             | $\frac{3}{8}C$                           |
| ÷ |                                        |                                                                          | :                             |                                          |
| n | $\frac{(\ln a)^n}{n!}C$                | $\begin{cases} C & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$ | $(-1)^n \frac{\beta^n}{n!} C$ | $C\prod_{i=1}^{n}(-1)^{\frac{2i-1}{2i}}$ |