ASSIGNMENT I

Vision: This project teaches you to solve for the *stationary equilibrium* and *transition path* in a heterogeneous agent model and analyze the economic results.

- **Problem:** The problem consists of
 - 1. A number of questions (page 2)
 - 2. A model (page 3-4)
- **Code:** The problem is designed to be solved with the *GEModelTools* package.
- **Structure:** Your project should consist of
 - 1. A single self-contained pdf-file with all results
 - 2. A single Jupyter notebook showing how the results are produced
 - 3. Well-documented .py files
- Hand-in: Upload a single zip-file on Absalon (and nothing else)
- Deadline: 6th of October 2023
- Exam: Your Assignment I will be a part of your exam portfolio. You can incorporate feedback before handing in the final version.

HANC with multiple types of labor

- a) **Setup.** Define the stationary equilibrium, the transition path and create a DAG for the model.
- b) **Solve for the stationary equilibrium.** Discuss and illustrate which factors determines wealth inequality.
- c) Compute and inspect the Jacobians of the household block wrt. φ_0 .
- d) Solve for the transition path when φ_{1t} is 10 percent higher for 10 periods. Discuss which types of agents this benefits.
- e) Solve for the transition path when φ_{1t} is *permanently* 10 percent higher. Discuss which types of agents this benefits.

1. Model

Households. The model has a continuum of infinitely lived households indexed by $i \in [0,1]$. Households are *ex ante* heterogeneous in terms of their discount factors, β_i , and their ability, χ_i . The discount factors are drawn with equal probabilities from a three element set, $\beta_i \in \{ \check{\beta} - \sigma_{\beta}, \check{\beta}, \check{\beta} + \sigma_{\beta} \}$. The abilities are either low or high, $\chi_i \in \{0,1\}$, with probabilities $\frac{2}{3}$ and $\frac{1}{3}$.

Households choose consumption and exogenously supply two types of labor, η_i^j for $j \in \{0,1\}$ with associated productivity φ_t^j . Savings is in terms of capital, which is rented out to firms at the rental rate, r_t^K . There are no possibilities to borrow. Households are $ex\ post$ heterogeneous in terms of their stochastic labor productivity, s_{it} , and their (end-of-period) savings, a_{it-1} . The distribution of households over idiosyncratic states is denoted \underline{D}_t before shocks are realized and D_t afterwards. The real wages are w_t^j , and real-profits are Π_t .

The household problem is

$$v_{t}(s_{it}, a_{it-1}) = \max_{c_{t}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \nu \frac{\left(\sum_{j=0}^{1} \eta_{i}^{j}\right)^{1+\varepsilon}}{1+\varepsilon} + \beta_{i} \mathbb{E}_{t} \left[v_{t+1}(s_{it+1}, a_{it})\right]$$
s.t. $a_{it} + c_{it} = (1 + r_{t}^{K} - \delta)a_{it-1} + \sum_{j=0}^{1} w_{t}^{j} \varphi_{t}^{j} \eta_{i}^{j} s_{it} + \Pi_{t}$

$$\log s_{it+1} = \rho_{s} \log s_{it} + \psi_{it+1}, \quad \psi_{it+1} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \quad \mathbb{E}[s_{it}] = 1$$

$$a_{it} \geq 0.$$

$$(1)$$

The Euler-equation is

$$c_{it}^{-\sigma} = \beta_i \mathbb{E} \left[v_{a,it+1}(s_{it+1}, a_{it}) \right] \tag{2}$$

$$v_{a,it} = (1 + r_t^K - \delta)c_{it}^{-\sigma}.$$
(3)

The aggregate quantities of central interest are

$$C_t^{hh} = \int c_{it} d\mathbf{D}_t \tag{4}$$

$$L_t^{j,hh} = \int \varphi_t^i \eta_i^j s_{it} d\mathbf{D}_t \text{ for } j \in \{0,1\}$$
 (5)

$$A_t^{hh} = \int a_{it} d\mathbf{D}_t \tag{6}$$

Firms. A representative firm rents capital, K_{t-1} , and hires both types of labor, L_t^1 and L_t^2 , to produce goods, with the production function

$$Y_t = \Gamma_t K_{t-1}^{\alpha} \Pi_{j=0}^1 \left(L_t^j \right)^{\frac{1-\alpha}{2}} \tag{7}$$

where Γ_t is technology and α is the Cobb-Douglas weight parameter on capital. Capital depreciates with the rate $\delta \in (0,1)$. The real rental price of capital is r_t^K and the real wages are w_t^j . Profits are $\Pi_t = Y_t - \sum_{j=0}^1 w_t^j L_t^j - r_t^K K_{t-1}$. The households own the representative firm in equal shares.

The law-of-motion for capital is $K_t = (1 - \delta)K_{t-1} + I_t$.

Market clearing. Market clearing implies

- 1. Asset market: $K_t = A_t^{hh}$
- 2. Labor market: $L_t^j = L_t^{j,hh}$
- 3. Goods market: $Y_t = C_t^{hh} + I_t$

2. Calibration

- 1. Preferences: $\sigma=2$, $\breve{\beta}=0.975$, $\sigma_{\breve{\beta}}=0.01$, $\nu=0.5$, $\varepsilon=1.0$
- 2. Labor supply: $\eta_i^j = \begin{cases} 1 & \text{if } \chi_i = j \\ 0 & \text{else} \end{cases}$, $\varphi_{ss}^0 = 1$, $\varphi_{ss}^1 = 2$
- 3. Income process: $\rho_s = 0.95$, $\sigma_{\psi} = 0.30\sqrt{(1-\rho_s^2)}$,
- 4. **Production:** $\Gamma_{ss} = 1$, $\alpha_{ss} = 0.36$, $\delta = 0.10$