Formula I

Application No.: 10/518325 Docket No.: BA9307USPCT

Page 3

Amendments to Claims

(Original) A method for preparing a 3-halo-4,5-dihydro-1H-pyrazole compound of

RECEIVED
CENTRAL FAX CENTER
MAR n a 2007

wherein L is an optionally substituted carbon moiety;

each R is independently selected from optionally substituted carbon moieties;

k is an integer from 0 to 4;

and X1 is halogen; comprising:

contacting a 4,5-dihydro-1H-pyrazole compound of Formula II

IJ

wherein X² is OS(O)_mR¹, OP(O)_p(OR²)₂ or a halogen other than X¹;

m is 1 or 2;

p is 0 or 1;

R¹ is selected from alkyl and haloalkyl; and phenyl optionally substituted with from 1 to 3 substituents selected from alkyl and halogen; and

each R² is independently selected from alkyl and haloalkyl; and phenyl optionally substituted with from 1 to 3 substituents selected from alkyl and halogen; with a compound of the formula HX¹ in the presence of a suitable solvent.

- 2. (Original) The method of Claim 1 wherein m is 2 and p is 1.
- 3. (Original) The method of Claim 2 wherein X² is halogen or OS(O)_mR¹.
- 4. (Original) The method of Claim 3 wherein X^2 is Cl or $OS(O)_mR^1$ and R^1 is C_1-C_2 alkyl, phenyl or 4-methylphenyl.
 - 5. (Original) The method of Claim 1 wherein X1 is Cl or Br.

Page 4

6. (Original) The method of Claim 1 wherein the compound of Formula I is of Formula Ia

Ta

and the compound of Formula II is of Formula IIa

IJa

wherein

each R³ is independently C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, (C₁-C₄ alkyl)(C₃-C₆ cycloalkyl)amino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;

R⁴ is H or an optionally substituted carbon moiety;

Z is N or CR5;

R5 is H or R3; and

n is an integer from 0 to 3.

- 7. (Original) The method of Claim 6 wherein R^4 is C_1-C_4 alkyl.
- 8. (Original) The method of Claim 7 wherein Z is N, n is 1, and R^3 is Cl or Br and is at the 3-position.
- 9. (Original) The method of Claim 7 wherein X^1 is Br, X^2 is C1 or $OS(O)_mR^1$, m is 2, and R^1 is phenyl or 4-methylphenyl.

Page 5

(Currently Amended) A method of preparing a compound of Formula III 10.

$$R^{6}$$
 NH
 Z
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}

Ш

wherein

X1 is halogen;

each ${\rm R}^3$ is independently ${\rm C}_1{\rm -C}_4$ alkyl, ${\rm C}_2{\rm -C}_4$ alkenyl, ${\rm C}_2{\rm -C}_4$ alkynyl, ${\rm C}_3{\rm -C}_6$ cycloalkyl, C_1 – C_4 haloalkyl, C_2 – C_4 haloalkenyl, C_2 – C_4 haloalkynyl, C_3 – C_6 halocycloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 – C_4 alkylsulfinyl, C_1 – C_4 alkylsulfonyl, C_1 – C_4 alkylamino, C_2 – C_8 dialkylamino, C3-C6 cycloalkylamino, (C1-C4 alkyl)(C3-C6 cycloalkyl)amino, C_2 - C_4 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;

Z is N or CR5;

 \mathbb{R}^5 is H or \mathbb{R}^3 ;

R6 is CH3, F, Cl or Br;

R7 is F, Cl, Br, I or CF3;

R8a is C1-C4 alkyl;

R8b is H or CH3; and

n is an integer from 0 to 3

wherein using a compound of Formula Ia

wherein R4 is H or an optionally substituted carbon moiety, is used as an intermediate during said preparation; characterized by:

preparing said compound of Formula Ia by the method of Claim 6.

Page 6

- (Original) The method of Claim 10 wherein R4 is C1-C4 alkyl. 11.
- (Original) The method of Claim 11 wherein Z is N, n is 1, and \mathbb{R}^3 is Cl or Br and 12. is at the 3-position.
- (Original) The method of Claim 11 wherein X1 is Br, X2 is Cl or OS(O)_mR1, m is 13. 2, and R1 is phenyl or 4-methylphenyl.
 - (New) A method of preparing a compound of Formula III 14.

$$R^{6}$$
 NH
 Z
 $(R^{3})_{n}$
 $(R^{3})_{n}$

Ш

wherein

X1 is halogen;

each ${
m R}^3$ is independently ${
m C}_1$ – ${
m C}_4$ alkyl, ${
m C}_2$ – ${
m C}_4$ alkenyl, ${
m C}_2$ – ${
m C}_4$ alkynyl, ${
m C}_3$ – ${
m C}_6$ cycloalkyl, C_1 – C_4 haloalkyl, C_2 – C_4 haloalkenyl, C_2 – C_4 haloalkynyl, C_3 – C_6 halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C_1 – C_4 alkylsulfinyl, C_1 – C_4 alkylsulfonyl, C_1 – C_4 alkylamino, C_2 – C_8 dialkylamino, C_3 - C_6 cycloalkylamino, $(C_1$ - C_4 alkyl) $(C_3$ - C_6 cycloalkyl)amino, C_2 - C_4 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl or C3-C6 trialkylsilyl;

Z is N or CR5;

 R^5 is H or R^3 ;

R6 is CH3, F, Cl or Br;

R7 is F, Cl, Br, I or CF3;

 \mathbb{R}^{8a} is \mathbb{C}_1 — \mathbb{C}_4 alkyl;

R8b is H or CH3; and

n is an integer from 0 to 3

using a compound of Formula Ia

MAR. 9. 2007

Page 7

wherein R4 is H or an optionally substituted carbon moiety, by for example,

(1) providing a compound of Formula 6 wherein R⁴ is H by (a) oxidizing a compound of Formula Ia to form a compound of Formula 6;

$$(R^3)_n$$
 Z
 N
 X^1
 CO_2R^4

- (b) if R⁴ for the compound of Formula 6 formed in (a) is an optionally substituted carbon moiety, hydrolyzing said compound of Formula 6 formed in (a);
- (2) providing a compound of Formula 8 either by (c) coupling said compound of Formula 6 wherein R⁴ is H provided in (1) with a compound of Formula 7; or by

$$\mathbb{R}^{7}$$
 \mathbb{N}^{1}
 \mathbb{N}^{1}

- (d1) chlorinating said compound of Formula 6 wherein R⁴ is H provided in (1) to form a compound of Formula 10; and
 - (d2) coupling said compound of Formula 10 with a compound of Formula 9; and

·MAR. 9. 2007 3:07PM

Application No.: 10/518325 Docket No.: BA9307USPCT

Page 8

$$\mathbb{R}^{7}$$
 \mathbb{R}^{6}
 \mathbb{H}
 \mathbb{R}^{7}
 \mathbb{R}^{6}
 \mathbb{H}
 \mathbb{R}^{7}
 \mathbb{R}^{6}
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}

(3) reacting said compound of Formula 8 provided in (2) with a compound of Formula 11.

11

characterized by:

preparing said compound of Formula Ia by the method of Claim 6.

- 15. (New) The method of Claim 14 wherein \mathbb{R}^4 in the compound of Formula Ia is C_1 - C_4 alkyl.
- 16. (New) The method of Claim 15 wherein Z is N, n is 1, and R³ is Cl or Br and is at the 3-position.
- 17. (New) The method of Claim 15 wherein X^1 is Br, X^2 is Cl or $OS(O)_mR^1$, m is 2, and R^1 is phenyl or 4-methylphenyl.