DIFFERENTIAL COHOMOLOGY SEMINAR 4 (DRAFT)

TALK BY ALESSANDRO NANTO

In the last talk we learned the definition of a differential cohomology theory, as a sheaf valued in spectra on the site of manifolds. This talk continues our journey through differential cohomology theories, and focuses on the following three topics:

- (1) We want to learn how to construct non-trivial examples out of sheaves valued in chain complexes.
- (2) We want to understand how we can extend classical cohomology operations to the setting of differential cohomology theories.
- (3) We want to introduce suitable analogues of fiber-wise integration.

1. ABELIAN GROUPS, SPECTRA AND THE HEART

Let us start by reviewing the relation between abelian groups, rings and spectra.

Definition 1.1. Let $n \in \mathbb{Z}$ and X be a spectrum, define $\pi_n(X) := \pi_0(\Omega^{\infty + n}X) = \pi_0(X_{-n})$. We call π_n the n-th homotopy group of X.

Remark 1.2. Note that since $X_n \simeq \Omega^2 X_{n+2}$, for any n, the set $\pi_0(X_n)$ underlies the structure of an abelian group.

The category Sp underlies the structure of a symmetric monoidal ∞ -category ([Lur17, Corollary 4.8.2.19]). Following [Lur17], we denote by \otimes the tensor product on Sp.

Definition 1.3. A commutative algebra object in Sp is called an \mathbb{E}_{∞} -ring spectrum, see [Lur17, Definition 7.1.0.1]. Given an \mathbb{E}_{∞} -ring spectrum R, denote by Mod_R the corresponding category of left R-module spectra, see [Lur17, Definition 7.1.1.2].

Remark 1.4. The sphere spectrum \mathbb{S} acts as the monoidal unit of $\mathbb{S}p$, therefore it is a \mathbb{E}_{∞} -ring spectrum. The category $\mathrm{Mod}_{\mathbb{S}}$ is canonically equivalent to $\mathbb{S}p$.

Definition 1.5. Denote by $\operatorname{Sp}_{\geq 0} \subseteq \operatorname{Sp}$ the full sub-category generated by *connective spectra*, i.e. spectra X such that $\pi_n(X) \simeq 0$, for all n < 0. Denote by $\operatorname{Sp}^{\heartsuit} \subseteq \operatorname{Sp}_{\geq 0}$ the *heart of spectra*, i.e. the full sub-category generated by spectra X such that $\pi_n(X) \simeq 0$, for all n > 0.

We have the following result relating connective spectra and the heart, which follow immediately.

Lemma 1.6. Let X be a connective spectrum. The following are equivalent:

- (1) X is in the heart.
- (2) $\pi_n(\Omega^{\infty}X) = 0$, for all n > 0.
- (3) $\operatorname{Hom}_{S_{\alpha}}(S, \Omega^{\infty}X) \simeq 0$, for all connected, pointed spaces S.
- (4) X is local with respect to the class of maps $\Sigma^{\infty}S \to 0$, for every connected pointed space S.

The category $\mathrm{Sp}_{\geq 0}$ is presentable and π_0 induces an equivalence between the heart and Ab ([Lur17, Proposition 1.4.3.6]). The heart is a sub-category of local objects of connective spectra, therefore the inclusion $\mathrm{Ab} \simeq \mathrm{Sp}^{\heartsuit} \subseteq \mathrm{Sp}_{\geq 0}$ is a right adjoint. The category $\mathrm{Sp}_{\geq 0}$ is closed under \otimes and, given X, Y connective spectra,

(1.7)
$$\pi_0(X \otimes Y) \simeq \pi_0(X) \otimes \pi_0(Y)$$

see [Dav24, Theorem 2.3.28]

Definition 1.8. Given an abelian group A, denote by HA the (unique up to equivalence) spectrum of the heart such that $\pi_0(HA) \simeq A$. We call HA the Eilenberg-Mac Lane spectrum of A.

Date: 03.06.2025 & 17.06.2025

Using Equation (1.7), one can prove H, viewed as a functor $Ab \to Sp$, is lax monoidal. In particular, if R is a commutative ring, then HR is a connective \mathbb{E}_{∞} -ring spectrum. On the other hand, if R is a connective \mathbb{E}_{∞} -ring spectrum and M a connective module, then $\pi_0(M)$ is a $\pi_0(R)$ -module.

Definition 1.9. Given a commutative ring R, denote by $\operatorname{Ch}(R) = \operatorname{Ch}(\operatorname{Mod}_R)$ the ordinary category of unbounded chain complexes. Let $\mathcal{D}(R)$ be the ∞ -localization of $\operatorname{Ch}(R)$ at the class of quasi-isomorphisms.

Similar to the heart of spectra, given an \mathbb{E}_{∞} -ring spectrum R, denote by $\operatorname{Mod}_R^{\heartsuit} \subseteq \operatorname{Mod}_R$ the full subcategory generated by R-modules such that the underlying spectrum belongs to the heart of spectra.

Theorem 1.10 (Stable Dold-Kan Correspondence). Let R be a commutative ring.

- (1) $\operatorname{Mod}_R \simeq \operatorname{Mod}_{HR}^{\heartsuit}$ via taking Eilenberg-Mac Lane spectra.
- (2) The equivalence in (1) extends to an equivalence $H: \mathcal{D}(R) \simeq \mathrm{Mod}_{HR}$ of symmetric monoidal ∞ -categories.

Proof. (1) is [Lur17, Proposition 7.1.1.13], while (2) is [Lur17, Theorem 7.1.2.13].
$$\Box$$

An interesting consequence of Equation (1.10) is the following:

Corollary 1.11. Given $F \in \mathfrak{D}(R)$, then $\pi_n(HF) \simeq H_n(F)$, for all $n \in \mathbb{Z}$.

Proof.

$$\pi_n(HF) = \pi_0(\Omega^{\infty+n}HF)$$

$$\stackrel{\textcircled{1}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{\mathbb{S}p}}(\Sigma^n\mathbb{S}, HF))$$

$$\stackrel{\textcircled{2}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{Mod}_{HR}}(\Sigma^nHR, HF))$$

$$\stackrel{\textcircled{3}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{\mathbb{D}}(R)}(R[n], F))$$

$$\stackrel{\textcircled{4}}{\simeq} H_n(F)$$

① The functor $\Omega^{\infty+n}$ is corepresented by the shifted sphere spectrum $\Sigma^n \mathbb{S}$. ② The forgetful functor $\operatorname{Mod}_{HR} \to \operatorname{Mod}_{\mathbb{S}} \simeq \operatorname{Sp}$ is right adjoint to tensoring by HR and $HR \otimes (\Sigma^n \mathbb{S}) \simeq \Sigma^n HR$. ③ Equation (1.10) ④ π_0 of the mapping space $\operatorname{Hom}_{\mathcal{D}(R)}(R[n], F)$ is equivalent to the mapping space $R[n] \to F$ in the ordinary derived category of R, i.e. homotopy classes of maps $R[n] \to F$, which correspond exactly to classes in $H_n(F)$.

2. More ∞ -categorical baggage

Let \mathcal{C} be a presentable ∞ -category. The ∞ -categorical background given in previous talks allows to conclude the existence of a number of functors. Here we give (somewhat) explicit formulas for one.

Remark 2.1. Recall &uc, the full sub-category of Mfd generated by Euclidean manfiolds \mathbb{R}^n , for every $n \geq 0$. Denote by j the inclusion functor &uc \subseteq Mfd. Recall that the restriction along j induces an equivalence $\operatorname{Shv}(\operatorname{Mfd}, \mathfrak{C}) \simeq \operatorname{Shv}(\operatorname{Euc}, \mathfrak{C})$, see [ADH21, Corollary A.5.6].

Evaluation at $\{0\}$ induces an adjunction $(\Gamma^*, \Gamma_*) : \mathcal{C} \to \operatorname{Shv}(\operatorname{Mfd}, \mathcal{C})$, where the functor Γ_* is evaluation at $\{0\}$, while the left adjoint Γ^* maps $C \in \mathcal{C}$ to the sheafification of the constant pre-sheaf with value C.

Remark 2.2. Every presentable ∞ -category \mathcal{C} is cotensored over \mathcal{S} , i.e. a functor $-^-:\mathcal{C}\to \operatorname{Fun}^R(\mathcal{S}^{op},\mathcal{C})$ exists such that, for every $C',C\in\mathcal{C}$ and space S, there is an natural equivalence

$$\operatorname{Hom}_{\mathfrak{S}}(S, \operatorname{Hom}_{\mathfrak{C}}(C', C)) \simeq \operatorname{Hom}_{\mathfrak{C}}(C', C^S)$$

see [Lur09, Remark 5.5.2.6].

Definition 2.3. Denote by Sing the functor $\mathcal{M}fd \to \mathcal{S}$ mapping a manifold to its underlying space. Given a presentable ∞ -category \mathcal{C} , denote by \flat the composition $\mathcal{C} \to \operatorname{Fun}(\mathcal{S}^{op}, \mathcal{C}) \to \operatorname{Fun}(\mathcal{M}fd^{op}, \mathcal{C})$, the first functor coming from Equation (2.2), the second being pre-composition with Sing^{op}.

Explicitly, given an object $C \in \mathcal{C}$, the associated pre-sheaf $\flat C$ maps a manifold M to $C^{\mathrm{Sing}(M)}$.

Lemma 2.4 ([BG21, Corollary 6.46]). \flat factors through Shv(Mfd, \mathfrak{C}) \subseteq Fun(Mfd^{op}, \mathfrak{C}).

Equation (2.4) is the direct consequence of a weaker version of a generalized version of Seifert-van Kampen theorem, namely [Lur17, Proposition A.3.2], stating that, given a topological space X and an open cover \mathcal{O} closed under finite intersections, $\operatorname{Sing}(X)$ is the colimit over $U \in \mathcal{O}$ of $\operatorname{Sing}(U)$.

Theorem 2.5. $\Gamma^* \simeq \flat$ as functors $\mathcal{C} \to \operatorname{Shv}(\mathcal{M}fd, \mathcal{C})$.

Proof. The composition $\mathbb{C} \xrightarrow{\flat} \operatorname{Shv}(\operatorname{Mfd},\mathbb{C}) \xrightarrow{j_*} \operatorname{Shv}(\operatorname{\mathcal{E}uc},\mathbb{C})$ maps an object C to the sheaf $\flat C$ restricted to Euclidean spaces. Since \mathbb{R}^n is contractible, $(\flat C)(\mathbb{R}^n) = C^{\operatorname{Sing}(\mathbb{R}^n)} \simeq C$ and so \flat restricted to $\operatorname{\mathcal{E}uc}$ is equivalent to the functor taking C to the sheaf with constant value C, which is the left adjoint to Γ_* restricted to $\operatorname{\mathcal{E}uc}$.

3. Sheaves of complexes and spectra

The stable Dold-Kan correspondence allows us to move freely between sheaves of $H\mathbb{Z}$ -module spectras and sheaves valued in $\mathcal{D}(\mathbb{Z})$.

Remark 3.1. We identify the category of cochain complexes with Ch(R) by reversing grading. Namely, given a cochain V^* , we are implicitly identifying it with the chain complex $V_n = V^{-n}$.

Definition 3.2 ([BNV16, Definition 7.14]). Given $n \in \mathbb{Z}$, denote by $\sigma^{\geq n}$, resp. $\sigma^{\leq n}$, the naive truncation functors, mapping a cochain complex V^* to

$$\cdots \to 0 \to V^n \to V^{n+1} \to \cdots$$

resp.

$$\cdots \to V^{n-1} \to V^n \to 0 \to \cdots$$

Given $F: \mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z})$ and $\sharp \in \{\geq n, \leq n\}$, denote by F^{\sharp} the composite $\mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z}) \xrightarrow{\sigma^{\sharp}} \mathrm{Ch}(\mathbb{Z})$. Notice that if F is a sheaf, then F^{\sharp} is also a sheaf.

Lemma 3.3 ([BNV16, Lemma 7.12]). Let $F : \mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z})$ a sheaf of chain complexes of C^{∞} -modules, then $\mathcal{M}fd^{op} \xrightarrow{F} \mathrm{Ch}(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$ is a sheaf.

Definition 3.4. Denote by Ω^* the sheaf $Mfd^{op} \to Ch(\mathbb{Z})$ mapping a manifold to its de Rham complex.

Equation (3.3) ensures that the sheaf in Equation (3.4) and the corresponding naive truncations remain sheaves after post-composition with the localization functor $Ch(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$.

Definition 3.5. Given a sheaf $F: \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$, denote by HF the Eilenberg-Mac Lane sheaf of $H\mathbb{Z}$ -module spectra obtained by applying point-wise the equivalence of Equation (1.10).

4. Deligne Cohomology

Definition 4.1. Given $n \in \mathbb{N}$, define $\widehat{\mathbb{Z}}(n) : \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$ by the pullback

$$\widehat{\mathbb{Z}}(n) \longrightarrow \Omega^{\geq n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longrightarrow \Omega^*$$

We call the corresponding sheaf of $H\mathbb{Z}$ -modules spectra $H\widehat{\mathbb{Z}}(n)$ the n-th Deligne sheaf.

5. Unfolding the fracture square of Deligne Cohomology

Now that we have a rigorous definition of Deligne cohomology, we can start to think about operations on it. First of all, we need a suitable monoidal structure.

Definition 5.1. Let F, G be two differential cohomology theories. The monoidal product $F \otimes G$ is defined as the sheafification of the presheaf $F \wedge G$, which is the point-wise wedge product of spectra.

It is expected that sheafification is necessary, but example is missing. Now, recall there is a Hom of differential forms

$$\Omega^{\leq k} \otimes \Omega^{\leq m} \to \Omega^{\leq k+m}$$
.

which induces a Hom of differential cohomology theories

$$\mathcal{E}(k) \otimes \mathcal{E}(m) \to \mathcal{E}(k+m)$$

Ideally, we would like to describe such an operation in a very explicit manner, however, in the realm of spectra this can be very challenging. This suggests an alternative perspective.

Definition 5.2. Let $\mathcal{L}(k)$ be the sheaf of chain complexes defined as the pullback in $Shv(\mathcal{M}fd, D(\mathbb{Z}))$ of the following diagram

$$\mathcal{L}(k) \longrightarrow \Omega^{\leq k}
\downarrow \qquad \qquad \downarrow_{dR},
\mathbb{Z} \longrightarrow \mathbb{R}$$

where \mathbb{Z} is the functor $M \mapsto C^{\bullet}(M, \mathbb{Z})$ and \mathbb{R} is the functor $M \mapsto C^{\bullet}(M, \mathbb{R})$

Remark 5.3. We can explicitly describe the chain complex $\mathcal{L}(k)$ as follows.

$$\mathcal{L}(k)^{n} = \{(c, \omega, h) \in C^{n}(-\mathbb{Z}) \oplus \Omega^{n}(-) \oplus C^{n-1}(-\mathbb{R}) | \omega = 0 \text{ if } n > k \text{ and } c - dR(\omega) = dh \}$$

Remark 5.4. We expect that $H\mathcal{L}(k)$ in fact recovers $\mathcal{E}(k)$, meaning operations on $\mathcal{L}(k)$ help us understand operations on Deligne cohomology.

Using the explicit description from Equation (5.3), we can define an operation on $\mathcal{L}(k)$ as follows:

$$(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2) = (c_1 \cup c_2, \omega_1 \wedge \omega_2, (-1)^{|c_1|} c_1 \cup h_2 + h_1 \cup \omega_2 + B(\omega_1, \omega_2)),$$

where

$$dR(\omega_1) \cup dR(\omega_2) = -dR(\omega_1 \wedge \omega_2) = dB(\omega_1, \omega_2)$$

Remark 5.5. Intuitively $B(\omega_1, \omega_2)$ measures the failure of dR taking \wedge to \cup .

Remark 5.6. Ideally we would expect this formula to be well-defined, meaning $(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2)$ should satisfy the conditions in Equation (5.3). In general, this is only true if c_1, ω_2 satisfy $dc_1 = d\omega_2 = 0$. In particular, it is well-defined at the level of cohomology classes, as any element is closed therein.

REFERENCES

- [ADH21] Araminta Amabel, Arun Debray, and Peter J. Haine. Differential cohomology: Categories, characteristic classes, and connections. arXiv preprint, 2021. arXiv:2109.12250.
- [BG21] Ulrich Bunke and David Gepner. Differential function spectra, the differential becker-gottlieb transfer, and applications to differential algebraic k-theory. arXiv preprint, 2021. arXiv:1306.0247.
- [BNV16] Ulrich Bunke, Thomas Nikolaus, and Michael Völkl. Differential cohomology theories as sheaves of spectra. J. Homotopy Relat. Struct., 11(1):1–66, 2016.
- [Dav24] Jack Davies. V4d2 Algebraic Topology II So24 (stable and chromatic homotopy theory). Lecture notes, 2024. Unpublished.
- [Lur09] Jacob Lurie. *Higher topos theory*, volume 170 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2009.
- [Lur17] Jacob Lurie. Higher algebra. Available online, September 2017.

This needs to be checked.

reasonable way to pick

 $B(\omega_1,\omega_2)$?