

Real-time Vision Task with a High Degree of Freedom Robot Arm

Haochen Shi, Rui Pan, Chenhao Lu

{hshi74, rpan33, clu92}@wisc.edu CS 639: Computer Vision Fall 2020 Course Project

Project Overview

ActivePresenter

TASK

Taking a stable Panorama

Real-time Object Detection

Object Tracking

Robot Control Method

Manual Control with a Joystick
Fully Autonomous

X

Specifications

- All tasks are tested on the Rethink Robotics Sawyer (7-DOF) in a simulated scene in CoppeliaSim
- We used a motion planning framework called RelaxedIK (Relaxed Inverse Kinematics) to calculate the motion of the robot arm

Slide 4

1/3: Taking a Stable Panorama

Slide 6

Task 1 Result

A montage of all the frames captured

2/3: Detecting Objects in Real Time

First Attempt: Mask-RCNN + COCO Dataset

- PyTorch + Mask-RCNN
- Downloaded pre-trained model on the COCO dataset
- Latency: ~4 seconds per image

Second attempt: Detectron2 & GPU on Azure

- Detectron2 by Facebook: faster speed
- Theoretical throughput: ~60 img/s on 4 NVIDIA Tesla P100 GPUs
- State-of-the-art detection methods has a ~0.1s turnaround time with 1 GPU (GTX 1080 Ti)

Slide 11

3/3: Object Tracking

Algorithms: MeanShift and CAMShift

- MeanShift:
 - Histogram-based template tracking
 - Disadvantages: Not robust to changes in window size and rotation
- CAMShift (our final choice):
 - Continuously Adaptive Mean Shift
 - Applies MeanShift first
 - Once MeanShift converges, CAMShift updates the size and the orientation of the window

Slide 14

Conclusions

- Computer vision tasks work very well on high degree of freedom robot arms
- Different control methods works well for each vision task

Future Directions

- Task 2 (Object detection):
 - \circ Use GPUs to speed up our real-time detection
 - Test in real-world settings
- o Task 3 (Object tracking):
 - Make the camera follow the object being tracked automatically
 - o Improve the robustness to changes in scale and orientation
- o Thank you!