UM-SJTU Joint Institute Probabilistic Methods in Engineering (Ve401)

TERM PROJECT 2

POLICE SHOOTINGS IN THE U.S.

Date: April 29, 2019

Group 39

Du Yang	517370910195
He Yujia	517370910110
Huang Yihao	517370910026
Wang Tianyi	517370910160
Zhu Jing	517370910135

Abstract

In this project, the analysis of fatal police shooting is performed. The goodness-of-fit test is performed to find that the data follows a poisson distribution in 2015-2018. Moreover, using the chi-squared test for independence, we find that the average number of fatal police shootings depends on weekdays. Next, a confidence interval for parameter k of the poisson distribution is derived and calculated using the data from 2015 to 2018. We also use the data from Jan. 1, 2019 to Feb. 14, 2019 to investigate whether it follows a poisson distribution. Since we cannot reject the hypothesis that it follows a poisson distribution, we say that it follows distribution. Finally, a prediction interval for the number of mass shootings is obtained using the Nelson's formula and a plot for the estimated data and prediction interval is given.

Key words: Statistics \cdot Hypothesis Test \cdot fatal police shooting in the US

${\bf Contents}$

1	Source of Data	1
2	Police Homicides in the US Each Day	1
3	Goodness of Fit Test for the Poisson Distribution	2
4	Relationship Between Police Homicides & Weekday and Month	5
5	Confidence Interval for Parameter k of a Poisson Distribution	6
6	Nelson's Formula and Prediction Intervals	8
7	Conclusion	10
8	Reference	11
9	Appendix	11

1 Source of Data

The data of fatal police shooting in the United States are collected by The Washington Post since Jan.1, 2015. Julie Tate, along with her collegues, explained in an article published in 2016, "How The Washington Post is examining police shootings in the United States", that in 2015, The Post gathered various details about killing by "culling local news reports, law enforcement websites and social media" (Tate). They also utilized "independent databases such as Killed by Police and Fatal Encounters" and "conducted additional reporting in many cases" (Tate). In 2016, the Post improved their collection by adding more information, such as the officers' names, and requiring more open-records from the departments for each fatal shooting. In the article, it can be seen that The Post has been seeking assistence from the public as well. The database is recognized as a more complete database, compared with the one FBI has established.

It is also worth noticing that the term "fatal police shooting" here only refers to "those shootings in which a police officer, in the line of duty, shoots and kills a civilian" (Tate). The database excludes the situations such as deaths when being held in custody by police and "fatal shootings by off-duty officers or non-shooting deaths" (Tate).

2 Police Homicides in the US Each Day

Figure (2.1) shows the number of homicides each day between January 1^{st} 2015 and December 31^{st} 2018 in the US. There have been 3943 homicides in total during these 1461 days. There are only 108 days having no homicide at all. And surprisingly, there is one day with 10 homicides and three days with 9 homicides.

It is noteworthy that 2016 is a leap year, which means there are 29 days in February 2016. We include the extra day to make our data more complete and also pay attention when we are assigning weekdays to those three years.

Figure 2.1: Number of homicides recorded each day in US between January 1^{st} 2015 and December 31^{st} 2018

3 Goodness of Fit Test for the Poisson Distribution

In order to investigate whether the data follows a Poisson distribution over the three years, we use the goodness of fit test for the poisson distribution. For the sample, the following number of deaths are observed:

Number of deaths	Observed days
0	108
1	287
2	324
3	310
4	227
5	116
6	53
7	21
8	11
9	3
10	1

The parameter k for the Poisson distribution is estimated using the sample

$$\hat{k} = \bar{X} = \frac{1}{1461} (1 \times 287 + 2 \times 324 + 3 \times 310 + 4 \times 227 + 5 \times 116 + 6 \times 53 + 7 \times 21 + 8 \times 11 + 9 \times 3 + 10 \times 1).$$
(3.1)

Then we have

$$\hat{k} = 2.69884. (3.2)$$

Next, We calculate

$$P[X=0] = \frac{e^{-\hat{k}}\hat{k}^0}{0!} = 0.0673;$$

$$P[X=1] = \frac{e^{-\hat{k}}\hat{k}^1}{1!} = 0.1816;$$

$$P[X=2] = \frac{e^{-\hat{k}}\hat{k}^2}{2!} = 0.2450;$$

$$P[X=3] = \frac{e^{-\hat{k}}\hat{k}^3}{3!} = 0.2204;$$

$$P[X=4] = \frac{e^{-\hat{k}}\hat{k}^4}{4!} = 0.1487;$$

$$P[X=5] = \frac{e^{-\hat{k}}\hat{k}^5}{5!} = 0.0803;$$

$$P[X=6] = \frac{e^{-\hat{k}}\hat{k}^6}{6!} = 0.0361;$$

$$P[X=7] = \frac{e^{-\hat{k}}\hat{k}^7}{7!} = 0.0139;$$

$$P[X=8] = \frac{e^{-\hat{k}}\hat{k}^8}{8!} = 0.0047;$$

$$P[X=9] = \frac{e^{-\hat{k}}\hat{k}^9}{9!} = 0.0014;$$

$$P[X=10] = \frac{e^{-\hat{k}}\hat{k}^{10}}{10!} = 0.0004.$$

Thus we have

Number of deaths	Observed days	Expected days
0	108	98.3
1	287	265.3
2	324	358.0
3	310	322.0
4	227	217.3
5	116	117.3
6	53	52.8
7	21	20.3
8	11	6.9
9	3	2.1
10	1	0.7

However, we see that $E_9, E_{10} < 5$. Althought this meets the requirement of the Pearson's test: $Ei \ge 5$ for 80% of the data, but we would like to make the result more accurate. We thus combine the last two categories:

Number of deaths	Observed days	Expected days
0	108	98.3
1	287	265.3
2	324	358.0
3	310	322.0
4	227	217.3
5	116	117.3
6	53	52.8
7	21	20.3
8	11	6.9
9 or more	4	2.8

We plot the obtained data in Figure (3.1) and (3.2).

Figure 3.1: Frequency of occurrence of days in the US(observed)

Figure 3.2: Frequency of occurrence of days in the US(expected)

We test in the three years 2015-2018,

$$H_0$$
: The occurrence of police shootings in the US follows a Poisson distribution, (3.4)

which is equivalent to the test whether the number of police shootings follows a categorical distribution with parameters (98.3, 265.3, 358, 322, 217.3, 117.3, 52.8, 20.3, 6.9, 2.8). We have the following category:

Category	Number of deaths	Observed days	Expected days
1	0	108	98.3
2	1	287	265.3
3	2	324	358.0
4	3	310	322.0
5	4	227	217.3
6	5	116	117.3
7	6	53	52.8
8	7	21	20.3
9	8	11	6.9
10	9 or more	4	2.8

Since we know

$$X^{2} = \sum_{i=1}^{10} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 9.83$$
(3.5)

follows a chi-squared distribution with N-1-m=10-1-1=8 degrees of freedom. Assume $\alpha=0.05$, we have

$$\chi_{0.05,8}^2 = 15.5 \ . \tag{3.6}$$

Therefore we are unable to reject H_0 at 5% level of significance.

From the table we have

$$\chi^2_{0.25,8} = 10.2, \qquad \chi^2_{0.1,8} = 13.4.$$
 (3.7)

Thus, the P-value of is approximately 0.2. In this case, we have reason to believe that the occurrence of police shootings in the US follows a poisson distribution in year 2015-2018.

4 Relationship Between Police Homicides & Weekday and Month

Figure (4.1) and (4.2) show the distribution of homicides by weekday and month.

Figure 4.1: Number of occurrence of homicides on different weekdays in the US between January 1^{st} 2015 and December 31^{st} 2018

Figure 4.2: Number of occurrence of homicides on different months in the US between January 1^{st} 2015 and December 31^{st} 2018

It is intuitive to give a hypothesis that the occurrence of negative behaviors is related to the weekday. For example, it is seemingly reasonable to state that the cars produced on Monday will have higher

probability to have failure because workers may not be in the mood for working after a weekend. In the case of police homicides, we first give an intuitive guess and then test it using scientific way.

We are interested in whether the average numbers of police shootings depend on weekdays. So we perform an Pearson's Chi-squared Goodness-of-fit test to see whether these data conform to a discrete nearly uniform distribution on Ω =(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday).

Let $(X_1, X_2, X_3, X_4, X_5, X_6, X_7)$ denotes the number of police shootings on Monday to Sunday and $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 = 3943$. We would like to analyze the distribution of this random vector. Denote the probability of a police shooting occurring on the given day by p_i , i = 1, ..., 7 and $p_1 + ... + p_7 = 1$. Since the total number of Mondays in those three years may be different from that of Tuesdays (and analogously for other weekdays), the distribution is nearly but not uniform exactly. The total numbers of Mondays to Sundays between 2015 and 2018 are listed as follows.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Total number of days	209	208	208	209	209	209	209	1461

Therefore, we set the null hypothesis to be

 H_0 : the data follow a multinomial distribution

with parameters
$$(p_1,..,p_7) = (\frac{209}{1461}, \frac{208}{1461}, \frac{208}{1461}, \frac{209}{1461}, \frac{209}{1461}, \frac{209}{1461}, \frac{209}{1461}).$$

The observed occurrence, observed frequency, expected frequency is listed as follow.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Observed occurrence(O_i)	517	586	616	573	572	518	561
Expected occurrence(E_i)	564.1	561.4	561.4	564.1	564.1	564.1	564.1

Table 4.1: Observed and expected frequency of police homicides in 2015-2018.

We see that $E[X_i] \ge 5$ for all i = 1, ..., 7, which means that the sample size is large enough to ensure the observed test statistic

$$X_{7-1}^2 = \sum_{i=1}^7 \frac{(O_i - E_i)^2}{E_i} = \frac{(517 - 564.1)^2}{564.1} + \frac{(586 - 561.4)^2}{561.4} + \dots + \frac{(561 - 564.1)^2}{564.1} = 14.357$$

follow a chi-squared distribution with 6 degree of freedom.

Since $\chi^2_{0.05,6} = 12.59$, the P-value is less than 5%. Therefore, we can reject H_0 at the 5% level of significance. There is reason to believe that the average number of police homicides depends on weekdays.

5 Confidence Interval for Parameter k of a Poisson Distribution

Let X_1, \cdot, X_n be a random sample of size n from a Poisson distribution of parameter k, that is to say with mean $\mu = k$ and variance $\sigma^2 = k$. Since the sample size n is large enough, we assume \overline{X} is normally distributed, with mean k and variance k/n. Therefore,

$$Z = \frac{\overline{X} - k}{\sqrt{k/n}}. (5.1)$$

So the $100(1-\alpha)\%$ confidence interval for \overline{X} (which is the estimator of k, denoted by \hat{k} form now on) is given by

$$\hat{k} \pm z_{\alpha/2} \sqrt{k/n}. \tag{5.2}$$

We can see that the interval depends on an unknown parameter k here. If we simple replace k by \hat{k} , the number $z_{\alpha/2}$ is no longer accurate. However, since the sample size n is large enough to allow the central limit theorem to hold, then the difference between $z_{\alpha/2}$ and the true value is negligible. Finally we obtain our $100(1-\alpha)\%$ confidence interval for k, given by

$$\hat{k} \pm z_{\alpha/2} \sqrt{\hat{k}/n}.\tag{5.3}$$

Now we calculate the interval using the data of the years 2015 to 2018. From Equation (3.2) gives k = 2.69884 and n = 1461. So a 95% confidence interval is given by

$$2.69884 \pm 1.96\sqrt{2.69884/1461}$$
, or 2.699 ± 0.084 . (5.4)

We estimate the data from Jan 1, 2019 to Feb 14, 2019, totally 45 days to test whether it follows a Poisson distribution. For the sample, the following number of deaths are observed:

Number of deaths	Observed days
0	3
1	14
2	9
3	7
4	6
5	5
6	0
7	0
8	0
9	1

The parameter k for the Poisson distribution is estimated using the sample

$$\hat{k} = \bar{X} = \frac{1}{45} (1 \times 14 + 2 \times 9 + 3 \times 7 + 4 \times 6 + 5 \times 5 + 9 \times 1) = 2.46667$$
 (5.5)

We combine the categories with 4 or more observed shootings.

$$P[X = 0] = \frac{e^{-\hat{k}}\hat{k}^0}{0!} = 0.0849$$

$$P[X = 1] = \frac{e^{-\hat{k}}\hat{k}^1}{1!} = 0.2093$$

$$P[X = 2] = \frac{e^{-\hat{k}}\hat{k}^2}{2!} = 0.2582$$

$$P[X = 3] = \frac{e^{-\hat{k}}\hat{k}^3}{3!} = 0.2123$$

$$P[X \ge 4] = \sum_{i=5}^{\infty} \frac{e^{-\hat{k}}\hat{k}^i}{i!} = 0.2353$$
(5.6)

Therefore we have the expected values.

Number of deaths	Observed days	Expected days
0	3	3.82
1	14	9.42
2	9	11.62
3	7	9.55
4 or more	12	10.59

Then we have

$$X^{2} = \sum_{i=1}^{6} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 3.862$$
(5.7)

follows a chi-squared distribution with N-1-m=5-1-1=3 degrees pf freedom. Assume $\alpha=0.05$, we have $\chi^2_{0.05,3}=7.82$. Since 3.862<7.82, we are unable to reject H_0 at 5% level of significance. Then we may say that it follows a Poisson distribution.

6 Nelson's Formula and Prediction Intervals

Let X be the total count in a sample of size n from a Poisson distribution with mean λ . We note that $X \sim \text{Poisson } (n\lambda)$. Let Y denote the future total counts that can be observed in a sample size m from the same Poisson distribution so that $Y \sim \text{Poisson } (m\lambda)$. We first define the estimator of λ , $\hat{\lambda}$ as

$$\widehat{\lambda} = \frac{X}{n} \tag{6.1}$$

which can be proved to be an unbiased estimator as

$$E[\widehat{\lambda}] = \frac{n\lambda}{n} = \lambda. \tag{6.2}$$

Also, we have the estimator of Y as

$$\widehat{Y} = \frac{mX}{n} \tag{6.3}$$

which can also be proved to be an unbiased estimator as

$$Y - \mathbf{E}[\widehat{Y}] = m\lambda - \frac{m}{n} \mathbf{E}[X] = m\lambda - \frac{m}{n} \cdot n\lambda = 0.$$
 (6.4)

From the basic properties of Poisson distribution, we have

$$\mathrm{E}[X] = n\lambda \quad \& \quad \mathrm{E}(Y) = m\lambda \,,$$

 $\mathrm{Var}(X) = n\lambda \quad \& \quad \mathrm{Var}(Y) = m\lambda \,.$ (6.5)

Hence we can deduce that

$$E(m\hat{\lambda} - Y) = \frac{m}{n}n\lambda - m\lambda = 0 \tag{6.6}$$

and since X and Y are independent, i.e., Cov(X, Y) = 0, we have

$$\operatorname{Var}(m\widehat{\lambda} - Y) = \operatorname{Var}(\frac{m}{n}X - Y)$$

$$= \frac{m^2}{n^2}\operatorname{Var}(X) + \operatorname{Var}(Y)$$

$$= \frac{m^2}{n^2} \cdot n\lambda + m\lambda$$

$$= m^2\lambda(\frac{1}{n} + \frac{1}{m}),$$
(6.7)

and immediately we have $\widehat{\mathrm{Var}}(m\widehat{\lambda}) = m^2\widehat{\lambda}(1/n+1/m)$. From Central Limit Theorem, we have

$$\frac{m\widehat{\lambda} - Y}{\sqrt{\widehat{\text{Var}}(m\widehat{\lambda} - Y)}} \tag{6.8}$$

follows a standard normal distribution. Thus a $100(1-\alpha)\%$ prediction interval is given by

$$\widehat{Y} \pm z_{\alpha/2} \sqrt{m\widehat{Y}\left(\frac{1}{m} + \frac{1}{n}\right)},\tag{6.9}$$

which is valid under the assumption of large sample sizes. This prediction interval is called Nelson's prediction interval. Note that the prediction interval given above is not defined when X = 0. A commonly used adjustment to handle this extreme case is to set $\hat{Y} = 0.5m/n$ when X = 0.

Then, we can use the data from 2015 to 2018 to predict the number of police shooting in 2019. Using the method of maximum likelihood, we know that the estimator \hat{k} for a Poisson distribution is the mean \bar{x} . Therefore, given the data from 2015 to 2018, we can calculate the value of n and the estimate for k as

$$n = 365 \times 3 + 366 = 1461$$

 $\hat{k} = \frac{X}{n} = \frac{3943}{1461} = 2.69884,$ (6.10)

where k is just λ in Nelson's prediction interval. Also, we can express the estimator for Y by equation

$$\widehat{Y} = \widehat{\lambda} \, m \,. \tag{6.11}$$

We first plot the estimated data for the number of police shootings in 2019 as well as its 95% prediction interval. Note that since we are predicting a discrete random variable, the prediction interval is formed by the set of integer values and is given by

$$[\lceil L \rceil, \lfloor U \rfloor] \tag{6.12}$$

where L denotes the lower bound of Equation 6.9, U the upper bound of Equation 6.9, X is the smallest integer greater than or equal to X, Y is the largest integer less than or equal to X. Also, the estimated data is formed by the set of integer values, which are rounded to the nearest integer after being calculated by Equation 6.11. The graph is shown in Figure 6.1.

Figure 6.1: Estimated data for the number of police shootings in 2019 as well as its 95% prediction interval

The result shows that we are 95% sure that the true results will be within this interval. We can see from the graph that the estimated data, upper and lower bounds are all approximately straight lines, which is due to the fact that we have to round the number for murders of each day, since that number must be an integer. Moreover, as we have the real data from January 1st, 2019 to February 14th, 2019, we can compare them with our estimated data and the prediction interval, to see that whether our estimation

and prediction correspond to the reality. We plot the real data, our estimated data and the prediction interval together in Figure 6.2.

Figure 6.2: Real data, estimated data and the prediction interval from 1/1/2019 to 2/14/2019

The result shows that the real data roughly corresponds to our estimated data we obtain from Equation (6.11), although they have a trend to differ more greatly as time passes by. Besides, they are always within the prediction interval given by Equation (6.9). From the caluculation from Equation (5.5), we get k = 2.46667, which is smaller than the value we used here. Therefore, the estimated data is sightly larger than the real data. Hence, we can conclude that our estimation and prediction are appropriate so far. Further conclusion can be drawn if we have more real data in 2019.

7 Conclusion

Through this project, we practice the knowledge we learned in class. In the first six questions, we use the methodology learned from multiple sources to analyze the distribution of police homicides in US and we get the results that it follows a Poisson Distribution. In the last problem, we make a prediction of number of police homicides in 2019 in US and give a 95% prediction interval. During this whole project, we deepened our understanding of statistical methods in research and we made use of tools such as Mathematica to help us analyze data, which is a precious experience for us engineers.

What's more, from this project, we know that there are actually plenty of murders around the world. For example, in US, there are almost 3 people died a day just because of police homicide. This project definitely reminds us to cherish the priceless safety we have in China.

8 Reference

- [1] K. Krishnamoorthy and J. Peng. Improved closed-form prediction intervals for binomial and Poisson distributions. Journal of Statistical Planning and Inference, 141(5):1709 1718, 2011. http://www.sciencedirect.com/science/article/pii/S0378375810005215.
- [2] V. Patil and H. Kulkarni. Comparison of confidence intervals for the Poisson mean: some new aspects. REVSTAT–Statistical Journal, 10(2):211–227, 2012.
- [3] The Washington Post. Fatal force. https://www.washingtonpost.com/graphics/national/police-shootings-2016/. Web. Accessed April 29th, 2019.
- [4] D. Spiegelhalter and A. Barnett. London murders: a predictable pattern? Significance, 6(1):5–8, 2009. http://onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2009.00334.x/abstract.
- [5] Julia Tate. How The Washington Post is examing police shootings in the United States.https://www.washingtonpost.com/national/how-the-washington-post-is-examining-police-shootings-in-the-united-states/2016/07/07/d9c52238-43ad-11e6-8856-f26de2537a9d_story.html?utm_term=.936e90c1806e. Web. Accessed April 29th, 2019.

9 Appendix

Python codes for data processing

```
import qrcode
import xlrd
from PIL import Image, ImageDraw, ImageFont
data = xlrd.open_workbook('fatal-police-shootings-data.xlsx')
table = data.sheets()[1]
dates = table.col_values(0, start_rowx=0, end_rowx=None)
date_num = {}
for date in dates:
   if (date not in date_num.keys()):
        date_num.update({date: dates.count(date)})
print(date_num)
numbers = list(date_num.values())
total = 0
for i in range(15):
   total += i * numbers.count(i)
print(total)
```

Mathematica codes for plotting

Plotting Fig 2.1

Plotting Fig 4.1

Plotting Fig 4.2

```
August, September, October, November, December}, Frame -> True, FrameLabel -> {"Month", "Number of homicides 15 - 18"}]
```

Plotting Fig 6.1 and 6.2

In[4]:= DateListPlot[{estimated, lowerbound, upperbound}]
 DateListPlot[{rawdata, estimated, lowerbound, upperbound}]

Data for plotting Figure (6.1) and (6.2)

Date	Real	Estimated	Lowerbound	Upperbound
2019/1/1	1	3	0	5
2019/1/2	4	5	1	9
2019/1/3	9	8	3	13
2019/1/4	10	11	5	17
2019/1/5	15	13	7	20
2019/1/6	19	16	9	24
2019/1/7	21	19	11	27
2019/1/8	22	22	13	30
2019/1/9	23	24	15	33
2019/1/10	26	27	17	37
2019/1/11	30	30	19	40
2019/1/12	32	32	22	43
2019/1/13	36	35	24	46
2019/1/14	40	38	26	49
2019/1/15	44	40	28	53
2019/1/16	49	43	31	56
2019/1/17	49	46	33	59
2019/1/18	50	49	35	62
2019/1/19	53	51	38	65
2019/1/20	54	54	40	68
2019/1/21	55	57	42	71
2019/1/22	56	59	45	74
2019/1/23	61	62	47	77
2019/1/24	62	65	49	80
2019/1/25	65	67	52	83
2019/1/26	65	70	54	86
2019/1/27	66	73	56	89
2019/1/28	75	76	59	92
2019/1/29	77	78	61	95
2019/1/30	77	81	64	98
2019/1/31	78	84	66	101
2019/2/1	79	86	68	104
2019/2/2	81	89	71	107
2019/2/3	84	92	73	110
2019/2/4	86	94	76	113
2019/2/5	87	97	78	116
2019/2/6	89	100	81	119
2019/2/7	94	103	83	122
2019/2/8	96	105	85	125
2019/2/9	99	108	88	128
2019/2/10	101	111	90	131

2010/2/11	104	113	93	134
$\begin{array}{c c} 2019/2/11 \\ 2019/2/12 \end{array}$	104	116	95 95	137
2019/2/12 $2019/2/13$	109	110	98 98	140
2019/2/13	111	121	100	143
2019/2/14 $2019/2/15$	111	121	100	146
2019/2/15 2019/2/16		124 127	102	149
, ,		130	103	149 152
2019/2/17				
2019/2/18		132	110	155
2019/2/19		135	112	158
2019/2/20		138	115	161
2019/2/21		140	117	163
2019/2/22		143	120	166
2019/2/23		146	122	169
2019/2/24		148	125	172
2019/2/25		151	127	175
2019/2/26		154	130	178
2019/2/27		157	132	181
2019/2/28		159	135	184
2019/3/1		162	137	187
2019/3/2		165	139	190
2019/3/3		167	142	193
2019/3/4		170	144	196
2019/3/5		173	147	199
2019/3/6		175	149	201
2019/3/7		178	152	204
2019/3/8		181	154	207
2019/3/9		184	157	210
2019/3/10		186	159	213
2019/3/11		189	162	216
2019/3/12		192	164	219
2019/3/13		194	167	222
2019/3/14		197	169	225
2019/3/15		200	172	228
2019/3/16		202	174	231
2019/3/17		205	177	233
2019/3/18		208	179	236
2019/3/19		211	182	239
2019/3/20		213	184	242
2019/3/21		216	187	245
2019/3/22		219	189	248
2019/3/23		221	192	251
2019/3/24		224	194	254
2019/3/25		227	197	257
2019/3/26		229	199	259
2019/3/27		232	202	262
2019/3/28		235	204	265
2019/3/29		237	207	268
2019/3/30		240	209	271
2019/3/31		243	212	274
2019/4/1		246	214	277
2019/4/2		248	217	280
2019/4/3		251	219	283
2019/4/4		254	222	285

0010/4/5	1 050	205	200
2019/4/5	256	225	288
2019/4/6	259	227	291
2019/4/7	262	230	294
2019/4/8	264	232	297
2019/4/9	267	235	300
2019/4/10	270	237	303
2019/4/11	273	240	306
2019/4/12	275	242	308
2019/4/13	278	245	311
2019/4/14	281	247	314
2019/4/15	283	250	317
2019/4/16	286	252	320
2019/4/17	289	255	323
2019/4/18	291	257	326
2019/4/19	294	260	329
2019/4/20	297	262	331
2019/4/21	300	265	334
2019/4/22	302	267	337
2019/4/23	305	270	340
2019/4/24	308	272	343
2019/4/25	310	275	346
2019/4/26	313	278	349
2019/4/27	316	280	351
2019/4/28	318	283	354
2019/4/29	321	285	357
2019/4/30	324	288	360
2019/5/1	327	290	363
2019/5/2	329	293	366
2019/5/3	332	295	369
2019/5/4	335	298	372
2019/5/5	337	300	374
2019/5/6	340	303	377
2019/5/7	343	305	380
2019/5/8	345	308	383
2019/5/9	348	310	386
2019/5/10	351	313	389
2019/5/11	354	316	392
2019/5/12	356	318	394
2019/5/13	359	321	394
2019/5/14	$\frac{363}{362}$	323	400
2019/5/15	364	326	403
2019/5/16	367	328	406
2019/5/17	370	331	409
2019/5/18	372	333	412
2019/5/19	375	336	414
2019/5/20	378 381	338	417
2019/5/21		341 344	420
2019/5/22	383		423
2019/5/23	386	346	426
2019/5/24	389	349	429
2019/5/25	391	351	431
2019/5/26	394	354	434
2019/5/27	397	356	437

2019/5/28	399	359	440
2019/5/29	402	361	443
2019/5/30	405	364	446
2019/5/31	408	366	449
2019/6/1	410	369	451
2019/6/2	413	372	454
2019/6/3	416	374	457
2019/6/4	418	377	460
2019/6/5	421	379	463
2019/6/6	424	382	466
2019/6/7	426	384	469
2019/6/8	429	387	471
2019/6/9	432	389	474
2019/6/10	435	392	477
2019/6/11	437	395	480
2019/6/12	440	397	483
2019/6/13	443	400	486
2019/6/14	445	402	488
2019/6/15	448	405	491
2019/6/16	451	407	494
2019/6/17	453	410	497
2019/6/18	456	412	500
2019/6/19	459	415	503
2019/6/20	462	417	506
2019/6/21	464	420	508
	467	423	511
2019/6/22			
2019/6/23	470	425	514
2019/6/24	472	428	517
2019/6/25	475	430	520
2019/6/26	478	433	523
2019/6/27	480	435	525
2019/6/28	483	438	528
2019/6/29	486	441	531
2019/6/30	488	443	534
2019/7/1	491	446	537
2019/7/2	494	448	540
2019/7/3	497	451	542
2019/7/4	499	453	545
2019/7/5	502	456	548
2019/7/6	505	458	551
2019/7/7	507	461	554
2019/7/8	510	464	557
2019/7/9	513	466	559
2019/7/10	515	469	562
2019/7/11	518	471	565
2019/7/12	521	474	568
2019/7/13	524	476	571
2019/7/14	526	479	574
2019/7/15	529	481	576
2019/7/16	532	484	579
2019/7/17	534	487	582
2019/7/18	537	489	585
2019/7/19	540	492	588
•			

2019/7/20	542	494	591
2019/7/21	545	497	593
2019/7/22	548	499	596
2019/7/23	551	502	599
2019/7/24	553	505	602
2019/7/25	556	507	605
2019/7/26	559	510	608
2019/7/27	561	510 512	610
2019/7/28	564	515	613
2019/7/29	567	517	616
2019/7/29 2019/7/30	569	520	619
	572	520 522	622
2019/7/31	575	525	625
2019/8/1			
2019/8/2	578	528 520	627
2019/8/3	580	530 533	$630 \\ 633$
2019/8/4	583	535	636
2019/8/5	586		
2019/8/6	588	538	639
2019/8/7	591	540	642
2019/8/8	594	543	644
2019/8/9	596	546	647
2019/8/10	599	548	650
2019/8/11	602	551 550	653
2019/8/12	605	553	656
2019/8/13	607	556	659
2019/8/14	610	558	661
2019/8/15	613	561	664
2019/8/16	615	564	667
2019/8/17	618	566	670
2019/8/18	621	569	673
2019/8/19	623	571	676
2019/8/20	626	574	678
2019/8/21	629	576	681
2019/8/22	632	579	684
2019/8/23	634	582	687
2019/8/24	637	584	690
2019/8/25	640	587	693
2019/8/26	642	589	695
2019/8/27	645	592	698
2019/8/28	648	594	701
2019/8/29	650	597	704
2019/8/30	653	600	707
2019/8/31	656	602	710
2019/9/1	659	605	712
2019/9/2	661	607	715
2019/9/3	664	610	718
2019/9/4	667	612	721
2019/9/5	669	615	724 726
2019/9/6	672	618	726
2019/9/7	675	620	729
2019/9/8	677	623	732
2019/9/9	680	625	735
2019/9/10	683	628	738

2019/9/11	686	630	741
2019/9/12	688	633	743
2019/9/13	691	636	746
2019/9/14	694	638	749
2019/9/15	696	641	752
2019/9/16	699	643	755
2019/9/17			
	702 704	646 648	758 760
2019/9/18	704		
2019/9/19		651	763
2019/9/20	710	654	766 760
2019/9/21	712	656	769
2019/9/22	715	659	772
2019/9/23	718	661	774
2019/9/24	721	664	777
2019/9/25	723	666	780
2019/9/26	726	669	783
2019/9/27	729	672	786
2019/9/28	731	674	789
2019/9/29	734	677	791
2019/9/30	737	679	794
2019/10/1	739	682	797
2019/10/2	742	684	800
2019/10/3	745	687	803
2019/10/4	748	690	806
2019/10/5	750	692	808
2019/10/6	753	695	811
2019/10/7	756	697	814
2019/10/8	758	700	817
2019/10/9	761	703	820
2019/10/10	764	705	822
2019/10/11	766	708	825
2019/10/12	769	710	828
2019/10/13	772	713	831
2019/10/14	775	715	834
2019/10/15	777	718	837
2019/10/16	780	721	839
2019/10/17	783	723	842
2019/10/18	785	726	845
2019/10/19	788	728	848
2019/10/20	791	731	851
2019/10/21	793	733	853
2019/10/22	796	736	856
2019/10/23	799	739	859
2019/10/24	802	741	862
2019/10/25	804	744	865
2019/10/26	807	746	868
2019/10/27	810	749	870
2019/10/28	812	752	873
2019/10/29	815	754	876
2019/10/29	818	757	879
2019/10/31	820	759	882
2019/10/31 2019/11/1	823	762	884
2019/11/1	826	764	887
2010/11/2	020	104	001

2019/11/3	829	767	890
2019/11/4	831	770	893
2019/11/5	834	772	896
2019/11/6	837	775	899
2019/11/7	839	777	901
2019/11/8	842	780	904
2019/11/9	845	782	907
2019/11/10	847	785	910
2019/11/11	850	788	913
2019/11/11	853	790	915
2019/11/13	856	793	918
2019/11/14	858	795	921
2019/11/15	861	798	924
2019/11/16	864	801	927
2019/11/17	866	803	930
2019/11/18	869	806	932
2019/11/19	872	808	935
2019/11/19	874	811	938
2019/11/20	877	813	941
2019/11/21	880	816	944
2019/11/23	883	819	946
2019/11/23	885	821	949
2019/11/24 2019/11/25	888	824	952
2019/11/26	891	824 826	955 955
2019/11/20	893	829	958
2019/11/28	896	832	961
2019/11/28 2019/11/29	899	834	963
2019/11/29 2019/11/30	901	837	966
' '	901	839	969
2019/12/1	904	842	909 972
2019/12/2 2019/12/3	910	844	972 975
2019/12/3	910	847	973 977
2019/12/4 2019/12/5	912	850	980
2019/12/5	918	852	983
2019/12/0	920	855	986 986
2019/12/7	923	857	989
2019/12/8 2019/12/9	926	860	991
2019/12/9	928	863	994
2019/12/10	931	865	997
2019/12/11	934	868	1000
2019/12/13	936	870	1003
2019/12/14	939	873	1006
2019/12/14	942	875	1008
2019/12/16	945	878	1011
2019/12/17	947	881	1014
2019/12/17	950	883	1014
2019/12/19	953	886	1020
2019/12/19 2019/12/20	955	888	1020
2019/12/20	958	891	1025
2019/12/21	961	894	1028
2019/12/23	963	896	1031
2019/12/24	966	899	1034
2019/12/24	969	901	1034
2010/12/20	505	501	1000

2019/12/26	972	904	1039
2019/12/27	974	906	1042
2019/12/28	977	909	1045
2019/12/29	980	912	1048
2019/12/30	982	914	1051
2019/12/31	985	917	1053