EDEXCEL MECHANICS M3 (6679)

SPECIMEN PAPER MARK SCHEME

Question Number	Scheme	
1.	$R(\uparrow)$ $N\cos\alpha = mg$	M1 A1
	$\frac{14^2}{100} \qquad \qquad N \sin \alpha = \frac{m.14^2}{100}$	M1 A1
	$\therefore \tan \alpha = \frac{14^2}{100 \times 9.8} = 0.2$	M1 A1 ft
	<i>α</i> ≈ 11.3°	A1 (7)
		(7 marks)
2.	$l^2 = 36^2 + 15^2$	M1
(a)	$\Rightarrow l = 39$, ext = 9 cm	A1
	$T = \frac{\lambda \times 0.09}{0.3}$	B1
	$2T \sin \theta = mg \Rightarrow \frac{2\lambda \times 0.09}{0.3} \times \frac{15}{39} = 2 \times 9.8$	M1 A1
	$ \begin{array}{c} 36 \\ 15 \\ T \end{array} $ $ \lambda \approx 84.9 $	A1 (6)
(b)	By taking P as single <u>point</u> from which to measure all distances	B1 (1)
		(7 marks)

33 Turn Over

Question Number	Scheme	Marks
3.	$0.5\ddot{x} = -\frac{2}{x^2}$	M1
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{4}{x^2}$	M1
	$\int v \mathrm{d}v = -\int \frac{4}{x^2} \mathrm{d}x$	M1
	$\left[\frac{1}{2}v^2\right]_3^{\frac{3}{2}} = \left[\frac{4}{x}\right]_1^d$	M1 A1
	(limits or 'C')	A1
	$\frac{9}{8} - \frac{9}{2} = 4\left(\frac{1}{d} - 1\right) \Rightarrow d = \frac{32}{5} = 6.4 \text{ m}$	M1 A1 (8)
		(8 marks)
4. (a)	Elastic energy gained = $\frac{\lambda x^2}{2l}$	M1
	$\therefore \frac{\lambda.6^2}{2 \times 12} = PE lost = 75 \times 9.8 \times 18$	M1 A1
	$\rightarrow \lambda = 8820 \text{ N}$	M1 A1 ft (5)
(b)	At 2 m off ground $\frac{1}{2} \times 75 \times v^2 = 75 \times 9.8 \times 17 - \frac{1}{2} \times \frac{8820 \times 5^2}{12}$	M1 A1 A1ft
	$\rightarrow v^2 = 88.2$	
	$v \approx 9.39 \text{ ms}^{-1}$	M1 A1 (5)
		(10 marks)

Question Number	Scheme			Marks	
5. (a)					
	Vol.	πr^3	$\frac{1}{3}\pi r^2 h$	$\pi r^3 + \frac{1}{3}\pi r^2 h$	M1 A1
	Dist of CM	$\frac{r}{2}$	$r + \frac{h}{4}$	\overline{x}	B1 B1
		$\frac{\pi r^4}{2} + \frac{1}{3}\pi r^2 h \left(r + \frac{h}{4}\right)$	$= \left(\pi r^3 + \frac{1}{3}\pi r^2 h\right)\overline{x}$		M1 A1 A1ft
		$\rightarrow \overline{x} = \frac{6r^2 + 4hr + h}{4(3r+h)}$	2 —		A1 (8)
(b)			$h = 2r \Rightarrow \overline{x} = \frac{18n}{20}$	$\frac{r}{r} = \frac{9r}{10}$	M1 A1
		9r	$\therefore \tan \alpha = \frac{r}{9r/10}$	$=\frac{10}{9}$	M1 A1 ft
	α		$\alpha \approx 48^{\circ}$		A1 (5)
					(13 marks)

35 Turn Over

Question Number	Scheme	Marks
6.		
(a)	$R(\mathfrak{A}) \ T + mg \cos \theta = \frac{mv^2}{a}$	M1 A1
	Energy $\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 + \cos\theta)$	M1 A1 A1
	$u^2 = 3ga \rightarrow v^2 = ga (1 - 2\cos\theta)$	
	$T = -mg\cos\theta + \frac{mv^2}{a} = mg(-3\cos\theta + 1)$	M1 A1
	$T = 0 \Rightarrow \cos \theta = \frac{1}{3}$	M1 A1 (9)
(b)	$v^2 = \frac{ga}{3}$	B1
	$T = -mg\cos\theta + \frac{mv^2}{a} = mg(-3\cos\theta + 1)$ $T = 0 \Rightarrow \cos\theta = \frac{1}{3}$ $v^2 = \frac{ga}{3}$ $\sin^2\theta = 1 - \left(-\frac{1}{3}\right)^2 = \frac{8}{9}$	M1 A1
	$Ht = \frac{v^2 \sin^2 \theta}{2g} = \frac{ga}{3} \cdot \frac{8}{9} \cdot \frac{1}{2g} = \frac{4a}{27}$	M1 M1 A1
		(6)
		(15 marks)

Question Number	Scheme	Marks
7.		
	a	
	e T	
	ightharpoonup mg	
(a)	In equilibrium $\frac{6mge}{a} = mg \Rightarrow e = \frac{a}{6}$	M1 A1 (2)
(b)	$m\ddot{x} = -\frac{6mg(e+x)}{a} + mg$	M1 A1 A1
	$\Rightarrow \ddot{x} = -\frac{6g}{a} x \Rightarrow SHM$	M1 A1
	$Period = \left(\frac{2\pi}{\omega}\right) = 2\pi \sqrt{\frac{a}{6g}}$	A1 (6)
(c)	Greatest speed = $a\omega = \frac{a}{3}\sqrt{\frac{6g}{a}} = \frac{1}{3}\sqrt{6ga}$	M1 A1 (2)
(d)	$x = \frac{a}{3}\cos\omega t$	M1
	String slack $\Rightarrow x = -e \Rightarrow -\frac{a}{6} = \frac{a}{3}\cos\omega t$	M1 A1
	$\Rightarrow \omega t = \frac{2\pi}{3}, \ t = \frac{2\pi}{3} \sqrt{\frac{a}{6g}}$	M1 A1 ft
		(5) (15 marks)