

Benchmarking the Quantinuum Stack

Daniel Mills

TKET

- INQUANTO
- QUANTUM ORIGIN

- LAMBEQ
- QERMIT

•

H-series at-a-glance

System		Qubits	2Q gate infidelity (×10 ⁻³)	QV (log ₂)
HØ		4 → 6	8.0	4 → 6
H1		10 → 20	5.0 → 0.88	7 → 20
H2		32 → 56	1.8 → 1.28	16 → 18

Other specification data: https://github.com/CQCL/quantinuum-hardware-specifications Quantum volume data: https://github.com/CQCL/quantinuum-hardware-quantum-volume

Benchmarking tests

Component

- Single-qubit randomized benchmarking
- Two-qubit randomized benchmarking
- Two-qubit SU(4) randomized benchmarking
- Two-qubit parameterized gate randomized benchmarking
- Measurement crosstalk bright state depumping
- Reset crosstalk bright state depumping
- SPAM test
- Two-qubit cycle benchmarking

System-level

- Mirror benchmarking
- Quantum volume
- Random circuit sampling
- GHZ state fidelity

Algorithmic

- 1D transverse field Ising model simulation
- QAOA
- Repetition code
- HoloQUADS
- Logical memory
- QFT and Toffoli
- QED-C application oriented benchmarks
- Logical circuits
- Algorithmic qubits

A Race-Track Trapped-Ion Quantum Processor https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041052

Randomised Benchmarking

Component level benchmarking

 $1.8\overline{3} \times 10^{(-3)}$

Quantum Volume

System Level Benchmarking

Compilers and the QED-C applicationoriented benchmarks

Application-Level Benchmarks

https://arxiv.org/abs/2402.08985

Closing Remarks

- We run a wide selection of benchmarks across all layers of the stack.
 - RCS -> https://arxiv.org/abs/2406.02501
- Full stack (holistic) benchmarks are important.
 - Not influenced by classical unrepresentative.
 - Perfected by perfecting layer unrepresentative.
- Benchmarking error correction gadgets.
 - Holistic error correction benchmarking.
- Standard implementation and reproducibility.

Many thanks

daniel.mills@quantinuum.com

