Matematica Discreta

Compito 13

- 1.) E' la successione $\{a_n\}_{n\in\mathbb{N}}$ data una soluzione della ricorrenza $a_n=8a_{n-1}-16a_{n-2},\ n\geq 2$?
 - a.) $a_n = 0$
- c.) $a_n = n4^n$
- e.) $a_n = 1$
- g.) $a_n = n^2 4^n$

- b.) $a_n = 2^n$
- d.) $a_n = 4^n$
- f.) $a_n = (2+3n)4^n$
- 2.) Una persona sale una scala e può prendere 1, 2 o 3 gradini ad una volta.
 - a.) Trovare una ricorrenza per il numero di modi in cui può salire una scala di n gradini
 - b.) Quale sono le condizioni iniziali?
 - c.) In quanti modi la persona può salire una scala di 8 gradini.
- 3.) Consideriamo bit string di lunghezza n che contengono il string 01 come sotto string.
 - a.) Trovare una ricorrenza per il numero di bit string che contengono il string 01
 - b.) Quale sono le condizioni iniziali?
 - c.) Calcolare il numero di bit string di lunghezza 7 che contengono il string 01.
- 4.) Consideriamo bit string di lunghezza n che contengono almeno tre 0 consecutivi.
 - a.) Trovare una ricorrenza per il numero di bit sring che contengono almeno tre 0 consecutivi.
 - b.) Quale sono le condizioni iniziali?
 - c.) Calcolare il numero di bit string di lunghezza 7 che contengono almeno tre 0 consecutivi.
- 5.) Risolvere le ricorrenze con le condizioni iniziali dati e calcolare a_0, a_1, a_2, a_3 con la ricorrenza e con la soluzione.
 - a.) $a_n = a_{n-1} + 6a_{n-2}$, per $n \ge 2$, con $a_0 = 3$ e $a_1 = 6$.
 - b.) $a_n = 2a_{n-1} a_{n-2}$, per $n \ge 2$, con $a_0 = 4$ e $a_1 = 1$.
 - c.) $a_n = a_{n-2}$, per $n \ge 2$, con $a_0 = 5$ e $a_1 = -1$.
 - d.) $a_n = 6a_{n-1} 9a_{n-2}$, per $n \ge 2$, con $a_0 = 3$ e $a_1 = -3$.
 - e.) $a_{n+2} = -4a_{n+1} + 5a_n$, per $n \ge 0$, con $a_0 = 2$ e $a_1 = 8$.
 - f.) $a_n = 2na_{n-1}$, per $n \ge 1$, con $a_0 = 1$.
 - g.) $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$, per $n \ge 3$ con $a_0 = 7$ $a_1 = -4$ e $a_2 = 8$.
 - h.) $a_n = 2a_{n-2} a_{n-4}$, per $n \ge 4$ con $a_0 = 3$, $a_1 = 1$, $a_2 = 6$ e $a_3 = 7$.
- 6.) Consideriamo la ricorrenza $a_n = 2a_{n-1} a_{n-2} + 7^n$, per $n \ge 2$.
 - a.) Dimostrare che $a_n = \frac{1}{36}7^{n+2}$, $n \ge 0$, è una soluzione della ricorrenza.
 - b.) Trovare tutti le soluzioni della ricorrenza.
 - c.) Trovare la soluzione con $a_0 = 0$ e $a_1 = 1$ e calcolare a_0, a_1, a_2 e a_3 con la ricorrenza e con la soluzione.
- 7.) Consideriamo la ricorrenza $a_n = 4a_{n-1} 4a_{n-2} + (n+1)2^n$, per $n \ge 2$.
 - a.) Dimostrare che $a_n = (n^2 + \frac{n^3}{6})2^n$, $n \ge 0$, è una soluzione della ricorrenza.
 - b.) Trovare tutti le soluzioni della ricorrenza.
 - c.) Trovare la soluzione con $a_0 = 4$ e $a_1 = 10$ e calcolare a_0, a_1, a_2 e a_3 con la ricorrenza e con la soluzione.
- 8.) Consideriamo la ricorrenza $a_n = 8a_{n-1} 16a_{n-2} + 3n + 1$, per $n \ge 2$.
 - a.) Dimostrare che $a_n = \frac{1}{3}n + 1$, $n \ge 0$, è una soluzione della ricorrenza.
 - b.) Trovare tutti le soluzioni della ricorrenza.
 - c.) Trovare la soluzione con $a_0 = 2$ e $a_1 = 0$, e calcolare a_0 , a_1 , a_2 e a_3 con la ricorrenza e con la soluzione.
- 9.) Consideriamo la ricorrenza $a_n = 5a_{n-1} 8a_{n-2} + 4a_{n-3} + 2n 8$, per $n \ge 3$.
 - a.) Dimostrare che $a_n = n(n+1)$, $n \ge 0$, è una soluzione della ricorrenza e che 1 è una radice del polinomio caratteristico della riccorenza omogenea associata.
 - b.) Trovare tutti le soluzioni della ricorrenza.
 - c.) Trovare la soluzione con $a_0 = 1$, $a_1 = 10$ e $a_2 = 34$, e calcolare i primi 8 termine della ricorrenza sia con la ricorrenza che con la soluzione.