LECTURE_04

- Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer.
- Sol. Let us start with taking a, where a is a positive odd integer.

We apply the division algorithm with a and b = 4.

By Euclid's Division Algorithm,

a = 4q + r where $0 \le r < 4$

Since $0 \le r < 4$,

 \therefore the possible remainders are 0023

That is, a can be 4q, or 4q + 1, or 4q + 2, or 4q + 3, where q is the quotient.

However, since a is odd, a cannot be 4q or 4q + 2(since they are both divisible by 2).

Therefore, any odd integer is of the form 4q + 1 or 4q + 3.

Show that $n^2 - 1$ is divisible by 8, if n is an odd positive integer.

- Sol. Let a be any positive integer and b = 4
 - : By Euclid's Division Algorithm,

$$a = 4q + r$$
 where $0 \le r < 4$

- .. The possible remainders are 0.1.23
- a = 4q or 4q + 1 or 4q + 2 or 4q + 3,

where q is some integer

Any odd positive integer n can be written in form of 4q + 1 or 4q + 3.

Case 1: If,
$$n = 4q + 1$$

 $n^2 - 1 = (4q + 1)^2 - 1$
 $= 16q^2 + 8q + 1 - 1$
 $= 16q^2 + 8q$
 $= (8q)(2q + 1)$

Here, the above result is multiple of 8. We know, $(a + b)^2 = (a^2 + 2ab + b^2)$ Hence, it is divisible by 8.

Show that $n^2 - 1$ is divisible by 8, if n is an odd positive integer.

- Sol. Let a be any positive integer and b = 4
 - : By Euclid's Division Algorithm,

$$a = 4q + r$$
 where $0 \le r < 4$

- \therefore The possible remainders are 0, 1, 2, 3
- a = 4q or 4q + 1 or 4q + 2 or 4q + 3

where q is some integer

Any odd positive integer n can be written in form of 4q + 1 or 4q + 3.

Case 2: If,
$$n = 4q + 3$$

 $n^2 - 1 = (4q + 3)^2 - 1$
 $= 16q^2 + 24q + 9 - 1$
 $= 16q^2 + 24q + 8$
 $= (8)(2q^2 + 3q + 1)$

Here, the above result is multiple of 8. Hence, it is divisible by 8.

We know, $(a + b)^2 = (a^2 + 2ab + b^2)$

Prove that if x and y are odd positive integers, then $x^2 + y^2$ is even but not divisible by 4.

Sol. Let
$$x = 2m + 1$$

 $y = 2n + 1$
 $x^2 + y^2 = (2m + 1)^2 + (2n + 1)^2$
[where m and n are positive integers]
 $= 4m^2 + 4m + (1) + 4n^2 + 4n + (1)$
 $= (4)m^2 + (4)n^2 + (4)n + (4)n + 2$
 $= 4(m^2 + n^2 + m + n) + 2$
 $= 4q + 2$ [where $q = m^2 + n^2 + m + n$]

Here, in the above result 4q is even, therefore 4q + 2 is also even.

And comparing with a = bq + r, here when divisor is 4, remainder is 2.

Hence it is not divisible by 4.

Therefore, $x^2 + y^2$ is even but not divisible by 4.

We know, $(a + b)^2 = (a^2 + 2ab + b^2)$

- Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any positive integer.
- Sol. Let a be any positive integer for divisor 3

By Euclid's Division Lemma,

$$a = 3q + r;$$
 where $r = 0.12;$

$$\therefore a = 3q \text{ or } 3q + 1 \text{ or } 3q + 2;$$

Case 1: When
$$n = 3q$$
,
 $n+2 = 3q + 2$
and $n+4 = 3q + 4$
 $= 3q + 3 + 1$

Comparing with 3q + r, here only n is divisible by 3.

= 3(q+1)+1

- Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any positive integer.
- Let a be any positive integer for divisor 3 By Euclid's Division Lemma,

$$a = 3q + r;$$
 where $r = 0, 1, 2;$
 $\therefore a = 3q \text{ or } 3q + 1 \text{ or } 3q + 2;$

Case 2: When
$$n = 3q + 1$$
, $n + 2 = 3q + 1 + 2$

$$= 3q + 3$$

$$=3(q+1)$$

$$= 3m$$
 where $m = (q + 1)$

and
$$n+4=3q+1+4$$

$$= 3q + \underline{5}$$

$$=3q+3+2$$

$$=3(q+1)+2$$

$$= 3m + 2$$
 where $m = (q + 1)$

Comparing with 3q + r, here only n + 2 is divisible by 3.

- Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any positive integer.
- Sol. Let a be any positive integer for divisor 3
 By Euclid's Division Lemma,

$$a = 3q + r$$
; where $r = 0, 1, 2$;

$$\therefore a = 3q \text{ or } 3q + 1 \text{ or } 3q + 2;$$

Case 3: When
$$n = 3q + 2$$
,
 $n+2 = 3q + 2 + 2$
 $= 3q + 4$
 $= 3q + 3 + 1$
 $= 3(q+1) + 1$
 $= 3m + 1$ where $m = (q+1)$
and $n+4 = 3q + 2 + 4$
 $= 3q + 6$
 $= 3(q+2)$
 $= 3m$ where $m = (q+2)$

Comparing with 3q + r, here only n + 2 is divisible by 3.