بسمرالله الرحمن الرحيم

گرازش تمرین 5

درس مبانی سیستم نهفته و بیدرنگ

جواب سوال اول)

ADC مبتنى بر فلش:

پیچیدگی زمانی:

- مبدل فلش از n-1^مقایسه کننده استفاده می کند تا به طور همزمان ولتاژ ورودی را مقایسه کند.
 - چون تبدیل تنها در یک مرحله انجام می شود، پیچیدگی زمانی برابر با (1)O است.

پیچیدگی فضایی:

- تعداد مقایسه کننده های مورد نیاز n-1 کست که به صورت نمایی با nرشد می کند.
 - بنابر این، پیچیدگی فضایی بر ابر با (O(2^n)است.

ADC تقريبي متوالى (SAR):

پیچیدگی زمانی:

- مبدل SAR با کاهش تدریجی بازه ولتاژ در nمرحله عمل میکند برای رزولوشن n بیت، SAR ADCبرای انجام جستجوی باینری (یک مرحله برای هر بیت) نیاز به n بار اجرادارد.
 - بنابر این، پیچیدگی زمانی برابر با (o(n)است.

پیچیدگی فضایی:

- مبدل SAR از یک مقایسه کننده و یک مبدل دیجیتال به آنالوگ (DAC) استفاده می کند. نیاز به حافظه به صورت خطی با nرشد می کند
 - بنابر این، پیچیدگی فضایی برابر با (O(n)است.

	Flash-based converter	Successive approximation converter
Time complexity	O(1)	O(n)
Space complexity	$O(2^n)$	O(n)

جواب سوال دوم قسمت الف) بخش اول)

استخراج اطلاعات از دیتاشیتTMP36:

- 500mV:0°C خروجی ولتاژ در دمای
 - $10mV/{^{\circ}C}$ نرخ تغییر ولتاژ:
 - 5.5V تا 2.7V ولتاژ تغذیه: 9.5V تا
- ولتاژ خروجی سنسور به دما خطی وابسته است.
 - فرمول تبدیل ولتاژ به دما به صورت زیر است:

$$\frac{V_{\text{out}}(mV) - 500}{10} = T(°C)$$

- :40 $^{\circ}C$ تا $20\,^{\circ}C$ محدوده ولتاژ خروجی برای بازه دمایی
 - $:20^{\circ}C$ دما •

$$700mV = (10mV \cdot 20) + 500mV = _{out}V$$

• دما °C:

$$900mV = (10mV \cdot 40) + 500mV = outV$$

رنج ولتاژ خروجی: 700mV تا 900mV.

بخش دوم) شبه سازی مدار:

چون در سایت tinkercad.com باتری 5 ولت نداریم با استفاده از قانون اهم ورودی 9ولت را به 5ولت تبدیل میکنیم، همان طوریکه در شیماتیک شبه سازی می ببینید ورودی اصلی ما 9 ولت است بعد اینکه در مدار از مقاومت و قانون اهم استفاده کردیم منبع ما از 9 ولت به 5.50 ولت تغییر کرده است

حالا با استفاده از چند نمونه ورودی در بازه 20 تا 40 درجه سانتی گرد مدار را تست کرده و خروجی این نمونه ها را ثبت میکنیم

دمای مرجع	ولتاژ خروجي
20°C	709mV
25°C	754mV
30°C	799mV
40°C	899mV

نمودار شبه سازی: اگر به نمودار دقت شود می ببینیم که رفتار تابع خطی است.

پس برای یافتن مدل همگر این تابع می تونیم از تابع خطی استفاده کرد

$$V_{out}(T) = a * T + b$$

$$a o شيب نمودار $a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{899 - 709}{40 - 20} = \frac{190}{20} = 9.5$
 $b o base = \gg b = 509$
 $V_{out}(t) = 9.5 * t + 509$$$

محدوده ولتاژ خروجی باری بازه 20 تا 40 درجه سانتی گرد با استفاده از فرومول شبه سازی:

$$V_{out}(20C) = 9.5 * 20 + 509 = 699mV$$

 $V_{out}(40C) = 9.5 * 40 + 509 = 899mV$

اگر خروجی که بر اساس دیتاشیت بدست آمده را با خروجی شبه سازی مقایسه کنیم می ببینیم که خطا ما حدوداً بین 1mV تا 9mV است.

(رنج) Range (1

Range در هر سیستم یا سیگنال، به بازهای از مقادیر اشاره دارد که سیستم میتواند اندازه گیری، تولید یا پردازش کند. این بازه به صورت تفاوت بین حداکثر و حداقل مقدار قابلاندازه گیری یا تولید تعریف می شود.

فرمول:

Range =
$$MaxValue - MinValue$$

Range($TMP36$) = 125 °C - (-40 °C) = 165 °C
if $maxValue = 40$ °C and $MinValue 20$ °C $\rightarrow Range = 40 - 20 = 20$ °C

2) بازه دینامیکی (Dynamic Range) به بازهای اشاره دارد که یک سیستم یا حسگر قادر است مقادیر را به طور دقیق و بدون خطا از حداقل مقدار تا حداکثر مقدار اندازه گیری کند.

فرومول:

$$Dynamic\ Range = \frac{MaxValue - MinValue}{Precision}$$

- حداكثر مقدار (Max Value): بالاترين مقدار ورودى كه حسگر يا سيستم مىتواند بدون اشباع شدن اندازه گيرى كند.
 - حداقل مقدار(Min Value): کوچکترین مقدار ورودی که سیستم قادر به تشخیص آن است.
 - دقت (Precision) : کوچکترین تغییری که سیستم میتواند به طور قابل اعتماد تشخیص دهد.

$$Precision(Resolation) = \frac{Vdd}{2^{N}}$$

$$if Vdd = 5V \text{ and } N = 10bits$$

$$Precision = \frac{5v}{2^{10}} = 0.00488V$$

$$if \text{ range} - 40 \text{ to } 125 = 164$$

$$dynamic \text{ Range} = \frac{165 * 10 + 500}{0.00488} = 440$$

فرض کنید از حسگر دمای TMP36 استفاده می کنیم که داده های ولتاژ خروجی را در بازه $C^\circ 20$ تا $C^\circ 40$ تولید می کند. ولتاژ خروجی به شرح زیر است:

- 709mV ولتاژ برای $C^{\circ}20$ مقدار •
- 899mV مقدار: $C^{\circ}40$ ولتاژ برای
- دقت مبدل آنالوگ به دیجیتال (ADC): 10-بیت و ولتاژ مرجع 5V

محاسبه:

1. بازه ولتاژ:

190mV = 709mV - 899mV = 190mVبازه ولتارُ

2. دقت ADC (رزولوشن):

$$4.88mVpproxrac{5V}{1024}=rac{6V}{102}$$
دقت $=rac{6V}{102}$

3. بازه دینامیکی:

$$39pproxrac{190mV}{4.88mV}=rac{190mV}{1.88m}$$
بازه ديناميكى $=rac{190mV}{1.88mV}$

بازه دینامیکی برابر با 39است، یعنی سیستم قادر است 39 سطح ولتاژ مختلف را در بازه دمای °C تا ℃ 100 اندازه گیری کند.

بخش ه)

State flow

لینک سایت:

https://www.tinkercad.com/things/1ulGTHNJjjL-embdedhw5?sharecode=1p564Jir5DrXZ5YhfYdk23 YzQ5AWnB9IBYqNdnuxWc