Introduction to Variant Discovery

Basic concepts, variant types and respective workflows

Presenter: Duc-Minh Nguyen-Le, MD

Human genomic variation

GTGGAGCTGGGAAAGCAGCTGGC AAAATAGAGCCTGAGCTTGATGGC CTCAAGTGACCTCTCACGACGCT

3 billions sites in the human genome

Human shares 99.5% DNA with any other human

Variant sites are commonly shared among human and most of these are biallelic

Human genome reference build GRCh38

Jan. 2022 (T2T CHM13v2.0/hs1) (hs1)

Summary	GRCh38p13	CHM13v1.1	±%
Assembled bases (Gbp)	2.92	3.05	+4.5%
Unplaced bases (Mbp)	11.42	O	-100.0%
Gap bases (Mbp)	120.31	О	-100.0%
# Contigs	949	24	-97.5%
Ctg NG50 (Mbp)	56.41	154.26	+173.5%
# Issues	230	46	-80.0%
Issues (Mbp)	230.43	8.18	-96.5%
Gene Annotation			
# Genes	60,090	63,494	+5.7%
protein coding	19,890	19,969	+0.4%
# Exclusive genes	263	3,604	
protein coding	63	140	
# Transcripts	228,597	233,615	+2.2%
protein coding	84,277	86,245	+2.3%
# Exclusive transcripts	1,708	6,693	
protein coding	829	2,780	
Segmental duplications (SD	s)		
% SDs	5.00%	6.61%	
SD bases (Mbp)	151.71	201.93	+33.1%
# SDs	24097	41528	+72.3%
RepeatMasker			
% Repeats	50.03%	53.94%	
Repeat bases (Mbp)	1,516.37	1,647.81	+8.7%
LINE	626.33	631.64	+0.8%
SINE	386.48	390.27	+1.0%
LTR	267.52	269.91	+0.9%
Satellite	76.51	150.42	+96.6%
DNA	108.53	109.35	+0.8%
Simple repeat	36.5	77.69	+112.9%
Low complexity	6.16	6.44	+4.6%
Retroposon	4.51	4.65	+3.3%
rRNA	0.21	1.71	+730.4%

What is variant calling?

Identification of probable variants in an alignment.

Four main types of variants:

- 1. Single nucleotide polymorphisms(SNPs) / Short indels
- 2. Copy number variations
- 3. Structural variants
- 4. Microsatellite Instability

2 main types of variant classifications:

- 1. Germline variants
- 2. Somatic variants

Different types of genomic variants

What variants look like in a genome browser

SNPs classifications

SNP/SNV

https://www.differencebetween.com/what-is-the-difference-between-point-mutations-and-indels/

Associations between SNPs, methylation patterns and gene expression of biological traits

Variant calling tools

	Germline	Somatic
SNPs/Indels	Haplotypecaller, FreeBayes, Strelka, DeepVariant, mpileup	Mutect2, FreeBayes, Strelka
CNV	CNVKit	ASCAT, CNVKit, Control-FREEC
Structural variants	Manta, TIDDIT	
Microsatellite Instability	NA	MSIsensorpro

Variant callers are **not** concordant

Mean single-nucleotide variants (SNV) concordance over 15 exomes between five alignment and variant-calling pipelines

Variants are reported in **VCF** (Variant Call Format)

Standardised format for storing the most prevalent types of sequence variations Text file format in 2 parts: header and body.

VCF: Variant Call Format (2)

Types of variants

SNPs

Alignment VCF representation
ACGT POS REF ALT
ATGT 2 C T

Insertions

Alignment VCF representation
AC-GT POS REF ALT
ACTGT 2 C CT

Deletions

Alignment VCF representation
ACGT POS REF ALT
A--T 1 ACG A

Complex events

Alignment VCF representation
ACGT POS REF ALT
A-TT 1 ACG AT

Large structural variants

```
VCF representation
POS REF ALT INFO
100 T <DEL> SVTYPE=DEL; END=300
```

VCF format supports CNVs and SVs

```
##INFO=<ID=BKPTID, Number=., Type=String, Description="ID of the assembled alternate allele in the assembly fi
##INFO=<ID=CIEND, Number=2, Type=Integer, Description="Confidence interval around END for imprecise variants">
##INFO=<ID=CIPOS, Number=2, Type=Integer, Description="Confidence interval around POS for imprecise variants">
##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant described in this record">
###INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
##ALT=<ID=DEL,Description="Deletion">
##ALT=<ID=DUP, Description="Duplication">
##ALT=<ID=INS,Description="Insertion of novel sequence">
##ALT=<ID=INV, Description="Inversion">
##ALT=<ID=CNV,Description="Copy number variable region">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Float, Description="Genotype quality">
##FORMAT=<ID=CN, Number=1, Type=Integer, Description="Copy number genotype for imprecise events">
##FORMAT=<ID=CNQ, Number=1, Type=Float, Description="Copy number genotype quality for imprecise events">
#CHROM POS ID
                REF
                     ALT
                          QUAL
                                       FILTER
                                                  INFO
                                                             FORMAT
                                                                        NA00001
1 2827694 rs2376870 CGTGGATGCGGGGAC
                                             . PASS SVTYPE=DEL; END=2827708; HOMLEN=1; HOMSEQ=G; SVLEN=-14 GT: GQ
2 321682
                                       <DEL> 6 PASS SVTYPE=DEL:END=321887:SVLEN=-205:CIPOS=-56.20:CIEND=-10.
                                       <DUP> 14 PASS SVTYPE=DUP;END=12686200;SVLEN=21100;CIPOS=-500,500;CIEN
3 12665100
```

VCF header

- Lines that start with #
- Some mandatory lines : file format, column header.
- Optional header lines contain meta-data about annotations in the vcf body

Meta-data may vary a lot from a variant caller to another one!

INFO versus FORMAT:

- INFO = annotations on variant as a whole
- FORMAT = annotations that apply to each genotype

VCF representation of genotypes

Zygosity	VCF presentation
Heterozygous	0/1, 1/2, 0/2,
Homozygous	
Reference	0/0
Alternate	1/1, 2/2, 3/3,
Missing	./0, ./1, ./.,

VCF specification versions

Changes between VCFv4.1 and VCFv4.2:

- Information field format: adding source and version as recommended fields.
- INFO field can have one value for each possible allele (code R).
- For all of the ##INFO, ##FORMAT, ##FILTER, and ##ALT metainformation, extra fields can be included after the default fields.
- Alternate base (ALT) can include *: missing due to a upstream deletion.
- Quality scores, a sentence removed: High QUAL scores indicate high confidence calls. Although traditionally people use integer phred scores, this field is permitted to be a floating point to enable higher resolution for low confidence calls if desired.
- Examples changed a bit.

Changes between VCFv4.2 and VCFv4.3:

- VCF compliant implementations must support both LF and CR+LF newline conventions
- INFO and FORMAT tag names must match the regular expression ^[A-Za-z][0-9A-Za-z.]*\$
- Spaces are allowed in INFO field values
- Characters with special meaning (such as ';' in INFO, ':' in FORMAT, and '%' in both) can be encoded using the percent encoding (see Section 1.2) • The character encoding of VCF files is UTF-8. 35
- The SAMPLE field can contain optional DOI URL for the source data file
- Introduced ##META header lines for defining phenotype metadata
- New reserved tag "CNP" analogous to "GP" was added. Both CNP and GP use 0 to 1 encoding, which is a change from previous phred-scaled GP.
- In order for VCF and BCF to have the same expressive power, we state explicitly that Integers and Floats are 32-bit numbers. Integers are signed.
- We state explicitly that zero length strings are not allowed, this includes the CHROM and ID column, INFO IDs, FILTER IDs and FORMAT IDs. Meta-information lines can be in any order, with the exception of ##fileformat which must come first.
- All header lines of the form ##key= must have an ID value that is unique for a given value of "key". All header lines whose value starts with "<" must have an ID field. Therefore, also ##PEDIGREE newly requires a unique ID.
- We state explicitly that duplicate IDs, FILTER, INFO or FORMAT keys are not valid.
- A section about gVCF was added, introduced the <*> symbolic allele.

Copy number variations (CNV)

https://learngenomics.dev/docs/genomic-variation/copy-number-variation/

Structural variants

Workflows for all major variant classes

	GERMLINE	SOMATIC
SNPs & INDELs	HaplotypeCaller GVCF	Mutect2
Copy Number	GATK gCNV	GATK CNV + aCNV
Structure Variation	GATK SVDiscovery (beta)	(planned)

Workflow from variant calling to integrated report

Standard procedure for the review, reporting, and clinical translation of germline variants

Normal - Tumor paired variants calling

Trends in Cancer

Figure 1. Mutations Reported in Blood-Only, Tumor-Only, and Paired Tumor-Normal Sequencing.

Workflow continues

Ready for variant calling!!

Best Practices for Germline SNPs and Indels in Whole Genomes and Exomes - June 2016

GERMLINE SNPs & INDELs

Main steps for Germline Cohort Data

Main steps for Germline Single-Sample Data

Variant calling with HaplotypeCaller

Basic operation and algorithm

GATK HaplotypeCaller calls germline short variants

1. Define Active Regions

- Sliding window along the reference
- Count mismatches, indels and soft-clips
- Measure of entropy

Trim and continue with ActiveRegions over threshold

2. Assemble plausible haplotypes

- Local realignment via graph assembly
- Traverse graph to collect most likely haplotypes
- Align haplotypes to reference using Smith-Waterman

Likely haplotypes + candidate variant sites

Example HaplotypeCaller assembly graph

- Ignore previous alignments
- Graph consists of every possible sequence combination based on reads
- Count reads that support paths

Graph assembly recovers indels and removes artifacts

Showing 100bp region starting at 10:96,825,862 for NA12878

Resolves complexity caused by mapper limitations

Mapper can represent two different ways, at random:

HaplotypeCaller will settle on one representation -> cleaner output call

Functional implications of variant phasing

Two SNPs in the same codon: A > T and C > G

In trans – two copies, each with a missense mutation In cis – one functional copy and one loss of function!

3. Score haplotypes using PairHMM

- PairHMM* aligns each read to each haplotype
- Uses base qualities as the estimate of error

Likelihoods of the haplotypes given reads

PairHMM uses base qualities to score alignments

State

- (M) Match
- (I_x) Insertion
- (I_{ν}) Deletion

Transition probabilities

- (ε) = Gap continuation
- (δ) = Gap open penalty
- (1ε) = Base precedes an insertion or a deletion
- $(1 2\delta)$ = Base matches
- and continues

Haplotypes

Reads

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & & & A_{2n} \\ \vdots & & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

A_{ij} = probability of haplotype-read pair

Matrix contains likelihoods of the haplotypes given the reads

4. Genotype each sample at each potential variant site

- Determine most likely combination of allele(s) for each site
- Based on allele likelihoods (from PairHMM)
- Apply Bayes' theorem with ploidy assumption*

$$P(G_i \mid R) = \frac{P(R \mid G_i)P(G_i)}{\sum_k P(R \mid G_k)P(G_k)} \propto L(R \mid G_i)P(G_i)$$

$$L(R \mid G_i) = \prod_j \left(\frac{L(R_j \mid H_1)}{2} + \frac{L(R_j \mid H_2)}{2}\right) \qquad G_i = H_1H_2 \text{ for diploids}$$

$$L(R_i \mid H_i) \qquad \text{Read-haplotype likelihoods}$$

Genotype calls

^{*} Default is diploid; can set desired ploidy in command line

Finally, Bayesian math for genotype probability

HaplotypeCaller recap: reads in / variants out

For scalable analysis: emit GVCF + add joint calling step

Running HaplotypeCaller

Basic mode (no GVCF):

```
gatk HaplotypeCaller \
  -R reference.fasta \
  -I preprocessed_reads.bam \
  -0 germline_variants.vcf
```

To produce a block-compressed GVCF, substitute output filename and add:

```
-O germline_variants.g.vcf \
-ERC GVCF
```

Joint variant calling

GVCF-based workflow

Joint analysis empowers discovery

- Single genome in isolation: almost never useful
- Family or population data add valuable information
 - rarity of variants
 - de novo mutations
 - ethnic background

Discovery is empowered at difficult sites

- Sample #1 or Sample #N alone:
 - weak evidence for variant
 - · may miss calling the variant

- Both samples seen together:
 - unlikely to be artifact
 - call the variant more confidently

Joint analysis helps resolve bias issues (1)

Single sample showing strand and allelic biases – would you call it?

Joint analysis helps resolve bias issues (2)

Decision process using evidence from multiple samples to filter out sites showing systematic biases

Gather full information at all sites of interest

Analyzed individually:

- No call for either sample
- Very different reasons!
- In joint analysis with other samples:
 - Hom-ref call and no-call genotypes emitted

Joint calling implemented as a two-step process for scalability

GVCF intermediate contains reference confidence estimate

GVCFs are valid VCFs with extra information

Joint calling produces final multi-sample VCF

Consolidate GVCFs before joint calling!

Necessary for efficient scaling

- In GATK 3.x : CombineGVCFs
 Hierarchical merge on batches of 200 samples max;
 outputs GVCF
- In GATK 4.x : GenomicsDBImport
 All samples processed in a single command; outputs datastore

With CombineGVCFs:

```
gatk CombineGVCFs \
  -R reference.fasta \
  -V sample1.g.vcf \
  -V sample2.g.vcf \
  -0 combined.g.vcf
```

With GenomicsDBImport:

```
gatk GenomicsDBImport \
   -R reference.fasta \
   -V sample1.g.vcf \
   -V sample2.g.vcf \
   -L chr20,chr21 \
   --genomicsdb-workspace-path gvcfs_db
```

Joint calling with GenotypeGVCFs

On a single- or multi-sample GVCF:

```
gatk GenotypeGVCFs \
  -R reference.fasta \
  -V variants.g.vcf \
  -O final_variants.vcf
```

On a GenomicsDB workspace:

```
gatk GenotypeGVCFs \
  -R reference.fasta \
  -V gendb://gvcfs_db \
  -O final_variants.vcf
```

GenotypeGVCFs cannot take multiple inputs (unlike the GATK3 version)

- GenotypeGVCFs can take either a single GVCF file (can be a merged multi-sample GVCF from CombineGVCFs) or a GenomicsDB datastore
- No more multiple inputs! (unlike GATK3)

Variant Filtering

Assigning accurate confidence scores to each putative mutation call

Variant Context Annotations Describe the Observed Data

Each variant has a diverse set of statistics associated with it:

VCF record for an A/G SNP at 22:49582364

GATK: Filtering variants

- Calling algorithms are very permissive
- Calling sets contain many false positives
- Two filtering approaches :
 - Hard filtering : using thresholds on annotations
 - Variant recalibration using machine learning
- Sensitivity vs Specificity

GATK: Hard filtering

- Suitable for all experiments (targeted gene, WES, small sample size, etc.)
- Goal: define annotations and thresholds to filter bad variants
- Pros:
 - Easy to perform
- Cons:
 - Hard to define annotations to use
 - Hard to define threshold
 - May filter good variants, may keep bad variants

QualByDepth

- The QUAL field of the VCF file is defined as a <u>Phred score</u> that reflects the <u>variant quality.</u>
- The QualByDepth (QD) score is the QUAL score divided by the allele depth of the variant (i.e., the ALT allele depth).
- There is <u>no</u> "normal" range for this value, but a QD under 2 is considered poor quality.

FisherStrand

- This parameter is an estimate of <u>strand bias</u>, a kind of sequencing bias in which one strand is favored over the other.
- The higher the value for FS, the more likely there is to be bias or false-positive calls.
- Values of FS over 60 are taken to be strong evidence for strand bias.

RMSMappingQuality

- The root mean square of the mapping quality provides an estimation of the overall mapping quality of reads supporting a variant call.
- The RMS is based on the mapping qualities of the n reads that support variant call.
- The threshold suggested by GATK for MQ is 40

MappingQualityRankSumTest

- The rank sum test for <u>mapping qualities of REF reads versus ALT reads</u>.
- Compares the mapping qualities of the reads supporting the reference allele with those supporting the alternate allele.
- For variant calling, we are interested in whether there is evidence that the quality of the data supporting the alternate allele is comparatively low.
- GATK suggests filtering if MQRankSum is less than -12.5.

ReadPosRankSumTest

- The rank sum test for <u>relative positioning of REF versus ALT alleles</u> within reads.
- Tests whether there is evidence of bias in the genomic position of reference and alternate alleles within the reads that support them.
- If a variant is called only near the ends of reads, can be an indication of error.
- GATK suggests filtering if ReadPosRankSum is less than -8.

Strand Odds Ratio (SOR)

- The strand odds ratio measures the ratio of the odds of the variant being observed on the <u>forward strand versus the reverse strand</u>.
- A high SOR value suggests that the variant is more likely to be real, since it is observed on both strands and is less likely to be a sequencing artifact.
- A low SOR value suggests that the variant may be an artifact or that there
 may be a bias in the sequencing or genotyping process.

Inbreeding Coefficient (InbreedingCoeff)

- A filter option applied to <u>indel(insertion/deletion)</u> variants.
- It is calculated based on the <u>observed and expected number of homozygous</u> genotypes in a population.
- A <u>positive</u> inbreeding coefficient suggests an <u>excess</u> of homozygotes, indicating potential inbreeding or relatedness, while a <u>negative</u> coefficient suggests a <u>deficit</u> of homozygotes.
- Variants with <u>extreme positive or negative</u> inbreeding coefficients may be more likely to be artifacts or sequencing errors and can be <u>filtered out</u>.

GATK: Hard filtering recommendations

- Filtering SNPs where any:
 - **QD** < 2.0
 - **MQ** < 40.0
 - **FS** > 60.0
 - ∘ **SOR** > 3.0
 - MQRankSum < -12.5
 - ∘ ReadPosRankSum < -8.0

- Filtering Indels where any:
 - **QD** < 2.0
 - ∘ ReadPosRankSum < -20.0
 - o InbreedingCoeff¹ < -0.8
 - **FS** > 200.0
 - ∘ **SOR** > 10.0
- ¹ When sample size > <u>10</u>

Warning: Threshold on maximum depth should not be used for WES data

GATK: Variant Quality Score Recalibration (VQSR)

- Preferred method
- Requires:
 - DNA-seq data (not working on RNA-seq data)
 - Well curated training/truth resources (usually not available for non human organisms)
 - Large amount of variants (no targeted gene panels, etc.)
 - > 30 samples for WES data (1000G WES samples can be added if needed but not optimal)
- Based on machine learning

GATK: VQSR workflow

GATK: VQSR SNP human resources

Hapmap

- Training
- Truth
- Prior = 15

Omni

- o Training
- Truth
- o Prior = 12

1000G SNPs High confidence

- Training
- o Prior = 10

dbSNP

- Known
- Prior = 2

Annotations: QD, MD, MQRankSum, ReadPosRankSum, FS, SOR, DP¹, InbreedingCoeff

GATK: VQSR Indel human resources

- Mills Indels
 - Training
 - Truth
 - Prior = 12

- dbSNP
 - Known
 - ∘ Prior = 2

Annotations: QD, MD, MQRankSum, ReadPosRankSum, FS, SOR, DP1, InbreedingCoeff

Convolutional Neural Net (CNN)

- Annotate a VCF with scores from a Convolutional Neural Network (CNN).
- The default model should not be used on VCFs with annotations from joint call-sets.
- Two ways to score variants
 - o 1D Model
 - Variant annotations
 - Reference
 - 2D Model
 - Variant annotations
 - Reference
 - Read information

```
gatk CNNScoreVariants \
  -V vcf_to_annotate.vcf.gz \
  -R reference.fasta \
  -0 annotated.vcf
```

```
gatk CNNScoreVariants \
   -I aligned_reads.bam \
   -V vcf_to_annotate.vcf.gz \
   -R reference.fasta \
   -O annotated.vcf \
   -tensor-type read-tensor
```

Filter Variants with Filter Variant Tranches

- Apply tranche filtering to VCF based on scores from an annotation in the INFO field.
- Tranches are specified in percent sensitivity to the variants in the resource files.
- <u>Higher</u> tranches = More sensitive, less precise (
 lower variant scores)
- <u>Lower</u> tranches = Less sensitive, higher precision
- The default tranche filtering threshold for SNPs is
 99.95 and for INDELs it is 99.4.

```
gatk FilterVariantTranches \
   -V input.vcf.gz \
   --resource hapmap.vcf \
   --resource mills.vcf \
   --info-key CNN_1D \
   --snp-tranche 99.95 \
   --indel-tranche 99.4 \
   -0 filtered.vcf
```

```
gatk FilterVariantTranches \
-V input.vcf.gz \
--resource hapmap.vcf \
--resource mills.vcf \
--info-key CNN_2D \
--snp-tranche 99.95 \
--indel-tranche 99.4 \
--invalidate-previous-filters \
-0 filtered.vcf
```

References

- Robinson, P.N., Piro, R.M., & Jager, M. (2017). Computational Exome and Genome Analysis (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315154770
- https://gatk.broadinstitute.org/hc/en-us
- Official Github of GATK : https://github.com/broadinstitute/gatk
- Germline short variant discovery:
 https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-S
 NPs-Indels-
- Somatic short variant discovery:
 https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-S

NVs-Indels-

