Układy równań liniowych

Miłosz Ilecki

184577

Spis treści	1
Wstęp	2
Zadanie A	3
Zadanie B	4
Zadanie C	5
Zadanie D	6
Zadanie E	7
Zadanie F	8

Wstęp

Projekt polegał na implementacji algorytmów rozwiązujących układy równań liniowych.

Zaimplementowałem metody Jacobiego i Gaussa-Seidla, oraz faktoryzację LU, w języku Python.

Do wizualizacji wyników w formie wykresów wykorzystałem Excel'a.

Podczas implementacji korzystałem z bibliotek:

- *math* podstawowe działania i funkcje matematyczne,
- time służyła do mierzenia czasów algorytmów,
- copy wykonywanie kopii obiektów zamiast ich referencji.

Konstrukcja układu równań

Zadanie A

Dla indeksu 184577,

- N = 977,
- a1 = 10, a2 = a3 = -1.
- c = 7, d = 7, e = 5, f = 4

Macierz pasmowa A która ma wymiary NxN wygląda następująco:

10	-1	-1	0	0	0	0		0
-1	10	-1	-1	0	0	0		0
0	-1	10	-1	-1	0	0		0
0	-1	-1	10	-1	-1	0		0
0			0	0	0	-1	-1	10

Wektor b o długości N = 977, którego n-ty element ma wartość: $sin(n \cdot 5)$, wygląda tak:

sin(0*5)
sin(1*5)
sin(2*5)
sin(977*5)

Zadanie B

W tabeli są wyniki czasowe jak i ilość iteracji dla każdej z metod aby osiągnąć normę z wektora residuum równą 10E-09.

Metody iteracyjne zostały użyte do rozwiązania układu równań z podpunktu A.

Jacob				
iteracje 26				
czas[s] 2,46				
Gaussa-Seidla				
iteracje 18				
czas[s] 2,25				

Metoda Gaussa-Seidla jest szybsza od metody Jacobiego i potrzebuje mniejszej liczby iteracji.

Zadanie C

W ramach tego zadania sprawdzamy czy zaimplementowane powyżej metody będą się zbiegać dla nowych danych:

$$N = 977$$
, $a1 = 3$, $a2 = a3 = -1$.

Nasza nowa macierz pasmowa A która ma wymiary NxN wygląda następująco:

3	-1	-1	0	0	0	0		0
-1	3	-1	-1	0	0	0	:	0
0	-1	3	-1	-1	0	0		0
0	-1	-1	3	-1	-1	0		0
0			0	0	0	-1	-1	3

Dla podanej wyżej macierzy otrzymujemy takie statystyki.

Jacob					
iteracje	69				
czas[s]	6,56				
norma (powyżej)	1,00E+10				
Gaussa-Se	Gaussa-Seidla				
iteracje	29				
czas[s]	3,86				
norma (powyżej)	1,00E+10				

Metody iteracyjne dla danej macierzy nie zbiegają się. Wywnioskować to możemy z zwiększającej się normy z wektora residuum podczas kolejnych iteracji.

Dla iteracji 69 w metodzie Jacobiego oraz w 29 iteracji w metodzie Gaussa-Seidla osiągnęła ona wartość powyżej 10E+9.

Zadanie D

podpunktu C.

Zaimplementowano metodę bezpośredniego rozwiązania układów równań liniowych: metoda faktoryzacji LU. Metoda została użyta do rozwiązania układu równań z

LU	
czas[s]	41,97
norma	8,35 E-13

Czas trwania faktoryzacji LU jest najdłuższy ze wszystkich metod użytych w tym projekcie.

Niemniej jedynie metoda faktoryzacji poradziła sobie z rozwiązaniem układu z Zadania C, czego nie udało się osiągnąć metodom iteracyjnym.

Zadanie E

Stworzono wykres zależności czasu trwania poszczególnych algorytmów od liczby niewiadomych N = $\{100, 500, 1000, 2000, 3000\}$ dla przypadku z punktu A. Wykres powstał na podstawie danych:

	100	500	1000	2000	3000	
Jacob						
norm(res)	6,19E-09	5,94E-09	8,47E-09	4,81E-09	5,90E-09	
czas [s]	0.03	0.68	2.77	11.7	24.53	
iteracji	25	26	26	27	27	
	Gauss-Seidla					
norm(res)	3,09E-09	7,64E-09	2,73E-09	3,88E-09	4,76E-09	
czas [s]	0.03	0.62	2.51	10.13	22.16	
iteracji	17	17	18	18	18	
Lu						
norm(res)	4,16E-15	1,28E-12	8,29 E-13	9,28E-13	1,43E-12	
czas [s]	0.05	5.2	42.57	335.13	1137.64	

Zadanie F

Metody iteracyjne wykazały się ogromną różnicą czasową w porównaniu do metody faktoryzacji. Niestety nie są one idealne i kosztem dużej prędkości otrzymujemy też duża niepewność poprawności naszego rozwiązania. Kontrolowanie normy z residuum pozwala nam stwierdzić czy zmierzamy w dobrą stronę. Natomiast metoda faktoryzacji nie cechuje się dobrym czasem, ale jest w stanie rozwiązać układ którego metody iteracyjne nie są. (dowody Zad C i D) Dodatkowym wniosek który można wyciągnąć z tego projektu już po jego napisaniu, jest to że jawne odwracanie macierzy to bardzo czasochłonny błąd, który można rozwiązać metodą podstawienie w przód. Został on zaimplementowany ręcznie na rzecz tego projektu.