rOpenSci tools for accessing science literature for textmining

- Scott Chamberlain*,a
- ^arOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA
- 4 Abstract
- 5 Corresponding Author:
- 6 Scott Chamberlain
- 7 rOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA
- $_{8}$ Email address: myrmecocystus@gmail.com

^{*}Corresponding author

- 9 Background. xxxx.
- 10 Methods. xxxx.
- 11 Results. xxxx.

Discussion. xxxx.

12 Introduction

- 13 There's more than 100 million articles published (source: Crossref API), representing an enormous
- 14 amount of knowledge. In addition to simply reading these articles, they contain a vast trove of
- information of interest to researchers for machine aided questions.
- 16 For example, many researchers are interested in statistical outcomes of articles: questions about P-values,
- about effect sizes, and more. With regard to effect sizes, these are of particular interest, as they are
- often combined in meta-analyses to draw broad conclusions about a particular question.
- 19 Text-mining is the broad term associated with pulling information out of articles. Given the importance
- of text-mining, good text-mining tools are needed to make it easier for researchers. In particular, the R
- 21 programming language is used widely throughout many academic fields and thus tools in R for text
- 22 mining are of particular importance.
- 23 Here, we present an overview of text-mining tools in the R programming language. We do not cover
- 24 analysis tools per se, but rather those tools for searching for, acquiring, and "mashing up" text.

25 Digital articles: technical aspects

- 26 Those articles that are digital can be split into two groups: easily machine readable and non-machine
- 27 readable.
- The machine readable articles are those in XML, JSON, or plain text format. The former two, XML
- 29 and JSON, are ideal for the machine readable types because they are structured data, whereas plain
- 30 text has no structure it's simply a set of characters with line breaks and spaces in between.
- Of the non-machine readable kind, there's PDFs. These can be broken out into two groups: text based
- PDFs and scanned PDFs. The former are converted from digital versions of various kinds (MS Word,
- 33 OpenOffice, markdown, etc.), while the latter are PDFs created by scanning in print articles for which
- 34 there is no digital version.

35 Digital articles: the access landscape

- 36 Acces to full-text is the holy grail in text-mining. Some use cases can get by with article metadata
- 37 (authors, title, etc.), some with abstracts, but many use cases need full-text.

- 38 The landscape of access to full-text is extremely hetergeous, with the majority of variation along the
- ³⁹ publisher axis. The major hurdle is paywalls. The majority of articles are published by the big three
- 40 publishers Wiley, Springer, Elsevier and the majority of their articles are behind paywalls.
- 41 A promising sign is an increasing number of open access publishers, yet these represent a very small
- portion of the total articles (XXXXX) (ref.).
- With respect to paywalled articles, access varies by institution, depending on what each institution
- decided to pay for. In addition, some users may not realize access varies with IP address so that access
- 45 from campus vs. from home (if not on a VPN) will drastically differ.
- We can not end this section without mentioning SciHub. This is a last resort option for many probably,
- 47 providing access to full text of articles that are normally paywalled. No tools in this manuscript provide
- 48 access to SciHub.

49 The discovery problem

50 XXX

52 XXX

51

Data sources

- There is increasing open access scientific literature content available online. However, only a small
- proportion of scientific journals provide access to their full content; whereas, most publishers provide
- open access to their metadata only (most often through Crossref; Table 1). The following is a synopsis
- of the major data sources and associated R tools.

- Table 1. Sources of scientific literature, their content type provided via web services, whether rOpenSci
- bas an R packages for the service, and where to find the API documentation.

Data Provider	Content Type	rOpenSci Package	Documentation
Crossref	Metadata only	rcrossref/crminer	1
DataCite	Metadata only	rdatacite	2
Biodiversity Heritage Library	Full content/Metadata	rbhl	3
Public Library of Science (PLoS)	Full text/altmetrics	rplos	4
Scopus (Elsevier)	Full content/Metadata	fulltext	5
arXiv	Full content/Metadata	aRxiv	6
Biomed Central (via Springer)	Full content/Metadata	fulltext	7
bioRxiv	Full content/Metadata	fulltext	8
PMC/Pubmed (via Entrez)	Full content/Metadata	rentrez	9
Europe PMC	Full content/Metadata	europepmc	10
Microsoft Academic Search	Metadata	fulltext/microdemic	11
Directory of Open Access Journals	Metadata	jaod	12
JSTOR Data for Research	Full content	jstor	13
ORCID	Metadata	rorcid	14
Wikimedia's Citoid	Citations	rcitoid	15
Open Citation Corpus	Citations	citecorp	16

¹https://api.crossref.org

565d9001ca73072048922d97

²https://support.datacite.org/docs/api

³http://bit.ly/KYQ1Rd

⁴http://api.plos.org/solr

⁵http://bit.ly/J9S616

⁶https://arxiv.org/help/api/index

⁷https://dev.springer.com/

⁸http://www.biorxiv.org/

⁹https://www.ncbi.nlm.nih.gov/books/NBK25500

¹⁰https://azure.microsoft.com/en-us/services/cognitive-services

 $^{^{11}} https://dev.labs.cognitive.microsoft.com/docs/services/56332331778 daf02 acc0 a 50 b/operations/dev.labs.cognitive.microsoft.com/docs/services/56332331778 daf02 acc0 a 50 b/operations/dev.labs.cognitive.microsoft.com/docs/services$

¹²https://doaj.org/api/v1/docs

¹³https://www.jstor.org/dfr/

¹⁴https://pub.orcid.org/

 $^{^{15}} https://en.wikipedia.org/api/rest_v1/\#/Citation/getCitation$

¹⁶http://opencitations.net/

- 60 Crossref/Datacite
- 61 Crossref is a non-profit that creates (or "mints") Digital Object Identifiers (DOIs). In addition, they
- 62 maintain metadata associated with each DOI. The metadata ranges from simple (including author, title,
- dates, DOI, type, publisher) to including number of citations to the article, as well as references in the
- article, and even abstracts. At the time of writing they hold 100 million DOIs.
- One can search by DOI or search citation data to get citations. In addition, Crossref has a text-mining
- opt-in program for publishers. The result of this is that some publishers provide URLs for full text
- content of their articles. The majority of these links are pay-walled, while some are open access. Using
- any of the various tools for working with Crossref data, you can filter your search to get only articles
- 69 with full text links, and further to get only articles with full text links that are open access.
- 70 The main interfaces for Crossref in R are rcrossref and crminer. Similar interfaces are available in Ruby
- 71 (serrano) and Python (habanero).
- 72 Datacite is similar to Crossref, but focuses on datasets instead of articles. The main interface for
- Datacite in R is rdatacite.
- 74 Biodiversity Heritage Library
- 75 The Biodiversity Heritage Library (BHL) houses scans of biodiversity books, and provides web interfaces
- ⁷⁶ and APIs to query and fetch those data. They also provide text of the scanned pages. The main R
- interace to BHL is through rbhl.
- 78 Public Library of Science
- 79 The Public Library of Science (PLOS) is one of the largest open access only publishers. They as of this
- 80 writing have published 2.1 million articles. One of the strongs advantages of PLOS is that they provide
- an API to their Solr instance, which is a very flexible way to search their articles. The main R interace
- to PLOS is through rplos.
- 83 Elsevier/Scopus
- 84 Elsevier is one of the largest publishers. Most of their articles are not open access. However, they have a
- number of advantages if you have access to their articles: they are one of the few publishers to provide

- machine readable XML (many publishers do have XML versions of articles, but do not provide it); they
- are one of the few (two) publishers part of Crossref's text and data mining program. The packages
- 88 fulltext and crminer can be used to access Elsevier articles through Crossref's TDM program. There's
- an interface to Scopus article search within fulltext.
- 90 arXiv/bioRxiv
- arXiv and bioRxiv are preprint publishers, the former in existence for many years, and the latter new
- on the scene. You can access articles from these publishers through fulltext. arXiv does provide a web
- API that we hook into; bioRxiv does not, but we can get you articles nonetheless.
- $Pubmed/PMC/Europe\ PMC$
- 95 Pubmed/PMC is a corpus/website of NIH funded research in the United States; while Europe PMC is
- an equivalent for the European Union. You can access articles from Pubmed/PMC through fulltext,
- ⁹⁷ and for Europe PMC through europepmc.
- 98 Microsoft Academic Research
- 99 Microsoft Academic Research (MAR) is a search engine for research articles. You can use their GUI
- web interface to search, and they provide APIs for programmatic access. The R interface for MAR is
- microdemic; and fulltext hooks into microdemic as well for article search and abstract retrieval.
- 102 Directory of Open Access Journals
- 103 XXXXX
- 104 JSTOR
- 105 XXXXX
- 106 ORCID
- 107 XXXXX
- 108 Citoid/Open Citation Corpus
- 109 XXX

How to text mine from R: Three case studies

- 111 Case study 1: Citation mining
- 112 In this example, xxxx
- 113 Load libraries

```
library("rcrossref")
library("rplos")
library("rorcid")
library("rcitoid")
library("citecorp")
```

114 rcrossref

Using rcrossref for Crossref data:

```
x <- cr_works(query="NSF")
head(x$data)
#> # A tibble: 6 x 32
     alternative.id container.title created deposited published.print doi
     <chr>
                    <chr>
                                     <chr>
                                             <chr>
#>
                                                       <chr>
                                                                        <chr>
#> 1 S106352031630~ Applied and Co~ 2016-0~ 2019-02-~ 2018-03
                                                                        10.1~
#> 2 <NA>
                    Biogeosciences~ 2017-0~ 2017-07-~ <NA>
                                                                        10.5~
#> 3 <NA>
                    Global Biogeoc~ 2018-0~ 2019-01-~ 2018-10
                                                                        10.1~
#> 4 <NA>
                    IEEE Communica~ 2016-1~ 2017-12-~ 2017
                                                                        10.1~
#> 5 S002178241400~ Journal de Mat~ 2014-0~ 2018-10-~ 2014-10
                                                                        10.1~
                    Light: Science~ 2019-0~ 2019-01-~ 2019-12
#> 6 123
                                                                        10.1~
#> # ... with 26 more variables: indexed <chr>, issn <chr>, issue <chr>,
       issued <chr>, member <chr>, page <chr>, prefix <chr>, publisher <chr>,
       reference.count <chr>, score <chr>, ...
```

- 116 Case study 2: Abstract mining
- Sometimes you just need abstracts for your research question. The benefit of only needing abstracts,
- and not need full text, is that there's many more articles that will have abstracts available than have

- their full text available.
- As an example, let's say you xxxx

```
library("fulltext")
```

121 *xxxxx*

122 Using fulltext:

```
res <- ft_search("ecology", from = "crossref",
    crossrefopts = list(filter = c(has_abstract = TRUE)))
ids <- res$crossref$data$doi
out <- ft_abstract(x = ids, from = "crossref")
abstracts <- vapply(out$crossref, "[[", "", "abstract")</pre>
```

Using quanteda, read the abstracts into a corpus

```
library("quanteda")
corp <- corpus(abstracts)
docvars(corp) <- ids</pre>
```

124 Get a summary of the abstracts

```
summary(corp)
#> Corpus consisting of 10 documents:
#>
#>
     Text Types Tokens Sentences
                                                    V1
#>
    text1
            143
                   262
                              10
                                  10.2458/v22i1.21112
#>
    text2
            117
                                  10.2458/v17i1.21696
                 244
                               6
    text3
            75
                               4 10.2458/v25i1.23119
#>
                   118
#>
    text4
            5
                     8
                               1 10.2458/v1i1.21154
#>
    text5
            105
                   171
                               7
                                   10.1155/2011/868426
     text6
            112
                   181
                                   10.1155/2012/273413
     text7
            117
                   240
                               8 10.5194/we-13-91-2013
```

```
text8
                                9 10.5194/we-13-95-2013
#>
             140
                    245
     text9
                                    10.1155/2014/198707
#>
             107
                    202
    text10
                    224
                                    10.5402/2011/897578
#>
             118
                                6
#> Source: /Users/sckott/qithub/ropensci/textmine/use-cases/* on x86_64 by sckott
#> Created: Fri Apr 5 11:36:04 2019
#> Notes:
```

Use the kwic() function to see a word in context across the abstracts

```
kwic(corp, pattern = "ecology")
#>
     [text1, 33] knowledge production within critical political / ecology /
     [text1, 50]
                              in scientific articles on dryland / ecology /
#>
    [text1, 204]
                                  to equilibrium models in range | ecology |
    [text1, 246]
                   communal areas. Keywords: Critical political | ecology |
#>
    [text1, 255]
                                  , scientific models, rangeland / ecology /
                                             < jats:p> Political | ecology |
     [text2, 5]
#>
    [text2, 23]
                       manifestations of political economy and | ecology |
#>
     [text2, 45]
                                       I try to extend political / ecology /
    [text2, 149]
                                    , in dialogue with political / ecology /
    [text2, 177]
                            people and resources that political / ecology /
    [text2, 229]
                     indigeneity scholars. Key words: political / ecology /
     [text3, 71]
                                    an analysis from a political / ecology /
    [text3, 114]
                                system, supermarkets, political | ecology |
    [text6, 134]
                                was observed when allopatry and | ecology |
    [text7, 167]
                           ecosystem should be considered for | ecology |
    [text7, 185]
                                        the" four-color issue of | ecology |
#>
    [text7, 201]
                             step toward advancing knowledge in / ecology /
    [text9, 195]
                        or for theoretical studies integrating / ecology /
#>
   . This article is a
#>
```

```
\#> , and investigates the functions
#> , and the fence-line photographs
   , fence-line photography, scientific
#>
   , Southern Africa</
#>
   has expanded in multiple new
#>
   in the" problem"
#>
   to engage with ethnic studies
   approaches to better understand the
   focuses on cannot be adequately
#>
#>
   , coloniality, Maidu,
   standpoint allows a different interpretation
#>
   </ jats:p>
   act together, leading to
#>
#>
   "? Here, I
#> ", and propose that
#> and conservation biology. In
#> and biogeography.
```

- 126 Case study 3: Full text mining
- 127 In this example, xxxx

```
library("fulltext")
# library("crminer")
```

- 128 Search for articles
- $_{129}$ Search for the term ecology in PLOS journals.

```
(res1 <- ft_search(query = 'ecology', from = 'plos'))
#> Query:
#> [ecology]
#> Found:
#> [PLoS: 47337; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0; Europe PMC: 0; Scopus:
```

```
#> Returned:
#> [PLoS: 10; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0; Europe PMC: 0; Scopus: 0;
```

Each publisher/search-engine has a slot with metadata and data

```
res1$plos
#> Query: [ecology]
#> Records found, returned: [47337, 10]
#> License: [CC-BY]
#>
                                id
#> 1 10.1371/journal.pone.0001248
#> 2 10.1371/journal.pone.0059813
#> 3 10.1371/journal.pone.0155019
#> 4 10.1371/journal.pone.0080763
#> 5 10.1371/journal.pone.0208370
#> 6 10.1371/journal.pone.0150648
#> 7 10.1371/journal.pcbi.1003594
#> 8 10.1371/journal.pone.0102437
#> 9 10.1371/journal.pone.0175014
#> 10 10.1371/journal.pone.0166559
```

131 Get full text

Using the results from ft_search() we can grab full text of some articles

```
(out <- ft_get(res1))
#> <fulltext text>
#> [Docs] 10
#> [Source] ext - /Users/sckott/Library/Caches/R/fulltext
#> [IDs] 10.1371/journal.pone.0001248 10.1371/journal.pone.0059813
#> 10.1371/journal.pone.0155019 10.1371/journal.pone.0080763
#> 10.1371/journal.pone.0208370 10.1371/journal.pone.0150648
#> 10.1371/journal.pohi.1003594 10.1371/journal.pone.0102437
#> 10.1371/journal.pohi.1003594 10.1371/journal.pone.0166559 ...
```

- 133 Extract text from pdfs
- 134 Ideally for text mining you have access to XML or other text based formats. However, sometimes you
- only have access to PDFs. In this case you want to extract text from PDFs. fulltext can help with
- 136 that.
- You can extract from any pdf from a file path, like:

```
path <- system.file("examples", "example1.pdf", package = "fulltext")

ft_extract(path)

#> <document>/Library/Frameworks/R.framework/Versions/3.5/Resources/library/fulltext/examples/ex

#> Title: Suffering and mental health among older people living in nursing homes---a mixed-met

#> Producer: pdfTeX-1.40.10

#> Creation date: 2015-07-17
```

- 138 Extract text chunks
- Requires the pubchunks library. Here, we'll search for some PLOS articles, then get their full text, then extract various parts of each article with pub_chunks().

```
library("pubchunks")
res <- ft_search(query = "ecology", from = "plos", limit = 3)</pre>
x <- ft_get(res)
x %>% ft_collect() %>% pub_chunks(c("doi", "history")) %>% pub_tabularize()
#> $plos
#> $plos$`10.1371/journal.pone.0001248`
#>
                               doi history.received history.accepted
#> 1 10.1371/journal.pone.0001248
                                         2007-07-02
                                                           2007-11-06
#>
     .publisher
#> 1
           plos
#>
#> $plos$`10.1371/journal.pone.0059813`
                               doi history.received history.accepted
#> 1 10.1371/journal.pone.0059813
                                         2012-09-16
                                                           2013-02-19
     .publisher
```

Future directions

142 XXXX

143 Acknowledgments

144 XXXX

145 Data Accessibility

All scripts and data used in this paper can be found in the permanent data archive Zenodo under the digital object identifier (DOI). This DOI corresponds to a snapshot of the GitHub repository at https://github.com/ropensci/textmine. Software can be found at https://github.com/ropensci/xxx, xxxx, all under MIT licenses.

150 References