Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения большего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 1

1. Рассмотрим отображение

$$[0,1] \to M[0,1], \quad x \mapsto \delta_x,$$

где δ_x — мера Дирака, сосредоточенная в x (т.е. равная единице на любом множестве, содержащем x, и нулю на остальных). Является ли это отображение непрерывным, если снабдить M[0,1] 1) слабой* топологией; 2) слабой топологией?

2. Пространство S состоит из всех бесконечно дифференцируемых функций f на \mathbb{R} , для каждых $k, \ell \in \mathbb{Z}_{\geq 0}$ удовлетворяющих условию

$$||f||_{k,\ell} = \int_{\mathbb{R}} |f^{(k)}(x)|(1+|x|)^{\ell} dx < \infty.$$

Для каждых $k,\ell\in\mathbb{Z}_{\geqslant 0}$ введем полунорму $\|\cdot\|_{k,\ell}^\infty$ на S формулой

$$||f||_{k,\ell}^{\infty} = \sup_{x \in \mathbb{R}} |f^{(k)}(x)|(1+|x|)^{\ell}.$$

- 1) Мажорирует ли семейство полунорм $\{\|\cdot\|_{k,\ell}: k,\ell \in \mathbb{Z}_{\geqslant 0}\}$ семейство $\{\|\cdot\|_{k,\ell}^{\infty}: k,\ell \in \mathbb{Z}_{\geqslant 0}\}$? 2) Мажорирует ли семейство полунорм $\{\|\cdot\|_{k,\ell}^{\infty}: k,\ell \in \mathbb{Z}_{\geqslant 0}\}$ семейство $\{\|\cdot\|_{k,\ell}: k,\ell \in \mathbb{Z}_{\geqslant 0}\}$?
- 3. Пусть T ограниченный самосопряженный оператор в гильбертовом пространстве, и пусть E — его спектральная мера. Докажите, что T фредгольмов тогда и только тогда, когда для некоторой окрестности нуля $U \subset \mathbb{R}$ проектор E(U) имеет конечномерный образ.
- 4. Функция $f: X \to \mathbb{R}$ на топологическом пространстве X называется полунепрерывной сверxy (соответственно, chusy), если множество $f^{-1}(-\infty,c)$ (соответственно, $f^{-1}(c,+\infty)$) открыто в X для каждого $c \in \mathbb{R}$.

Пусть H — гильбертово пространство. Снабдим пространство ограниченных операторов $\mathscr{B}(H)$ слабой операторной топологией. Зафиксируем $x \in H \setminus \{0\}$. Является ли функция 1) полунепрерывной сверху? 2) полунепрерывной снизу? $T \mapsto ||Tx||$ на $\mathscr{B}(H)$

5. Оператор $T \colon L^2[-\pi,\pi] \to L^2[-\pi,\pi]$ действует по формуле

$$(Tf)(x) = \int_{-\pi}^{\pi} \frac{e^{i(x-y)}f(y)}{2 - e^{i(x-y)}} dy.$$

Пусть $\varphi \colon \mathbb{R} \to \mathbb{R}$ — непрерывная функция, равная 0 вне отрезка $[\pi/4, 3\pi/4]$, равная 1 в точке $\pi/2$ и линейная на отрезках $[\pi/4, \pi/2]$ и $[\pi/2, 3\pi/4]$. Докажите, что оператор $\varphi(T)$ тоже является интегральным оператором, т.е. задается формулой

$$(\varphi(T)f)(x) = \int_{-\pi}^{\pi} K(x, y)f(y) \, dy,$$

и найдите функцию K в явном виде.

- 6. Пусть T ограниченный самосопряженный оператор в гильбертовом пространстве.
- **1)** Докажите, что если $\sigma(T) \subseteq \{0,1\}$, то T проектор.
- 2) Верно ли предыдущее утверждение, если Т несамосопряжен?

Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения бо́льшего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 2

- 1. Пусть (f_n) последовательность функций в $L^p[0,1]$, такая, что $\|f_n\|\leqslant 1$ для всех n, и для каждого $t \in [0,1]$ существует не более одного $n \in \mathbb{N}$, для которого $f_n(t) \neq 0$. Следует ли отсюда, что (f_n) слабо сходится к нулю, если **1)** 1 ;**2)**<math>p = 1?
- 2. Пространство L состоит из всех бесконечно дифференцируемых функций f на \mathbb{R} , для каждых $k, \ell \in \mathbb{Z}_{\geqslant 0}$ удовлетворяющих условию

$$||f||_{k,\ell} = \int_{\mathbb{R}} |f^{(k)}(x)| (\ln(1+|x|))^{\ell} dx < \infty.$$

Для каждых $k,\ell\in\mathbb{Z}_{\geqslant 0}$ введем полунорму $\|\cdot\|_{k,\ell}^\infty$ на L формулой

$$||f||_{k,\ell}^{\infty} = \sup_{x \in \mathbb{R}} |f^{(k)}(x)| (\ln(1+|x|))^{\ell}.$$

- 1) Мажорирует ли семейство полунорм $\{\|\cdot\|_{k,\ell}: k,\ell\in\mathbb{Z}_{\geqslant 0}\}$ семейство $\{\|\cdot\|_{k,\ell}^{\infty}: k,\ell\in\mathbb{Z}_{\geqslant 0}\}$? 2) Мажорирует ли семейство полунорм $\{\|\cdot\|_{k,\ell}^{\infty}: k,\ell\in\mathbb{Z}_{\geqslant 0}\}$ семейство $\{\|\cdot\|_{k,\ell}: k,\ell\in\mathbb{Z}_{\geqslant 0}\}$?
- 3. Пусть T ограниченный самосопряженный оператор в гильбертовом пространстве, и пусть E — его спектральная мера. Докажите, что T компактен тогда и только тогда, когда $E(\mathbb{R}\setminus K)=0$ для некоторого не более чем счетного компакта $K\subset\mathbb{R}$, каждая ненулевая точка λ которого изолирована в K и такова, что проектор $E(\{\lambda\})$ имеет конечномерный образ.
- **4.** Функция $f: X \to \mathbb{R}$ на топологическом пространстве X называется полунепрерывной сверxy (соответственно, chusy), если множество $f^{-1}(-\infty,c)$ (соответственно, $f^{-1}(c,+\infty)$) открыто в X для каждого $c \in \mathbb{R}$.

 Π усть H — гильбертово пространство. Снабдим пространство ограниченных операторов $\mathscr{B}(H)$ сильной операторной топологией. Является ли операторная норма на $\mathscr{B}(H)$ 1) полунепрерывной сверху? 2) полунепрерывной снизу?

5. Оператор $T \colon \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ действует по формуле

$$(Tx)_n = \sum_{k \in \mathbb{Z}} \frac{x_{n-k}}{2^{|k|}}.$$

Пусть $\varphi \colon \mathbb{R} \to \mathbb{R}$ — характеристическая функция (индикатор) отрезка [3/5, 3]. Докажите, что оператор $\varphi(T)$ действует по формуле

$$(\varphi(T)x)_n = \sum_{k \in \mathbb{Z}} c_k x_{n-k},$$

и найдите числа c_k в явном виде.

- **6.** Пусть T ограниченный самосопряженный оператор в гильбертовом пространстве.
- 1) Докажите, что любая изолированная точка спектра T является его собственным значе-
- **2)** Верно ли предыдущее утверждение, если T несамосопряжен?