sobre parâmetros

sobre a forma

... de uma população

... comparação da forma entre grupos

Objetivo: Validar

afirmações

... de uma população

... comparação entre grupos

Testes de Hipóteses – Introdução

A fábrica A produz componentes cuja duração média, por questões de controlo de qualidade, não deverá ser inferior a 35 u.t. Admita-se que:

- i) o tempo de vida das componentes se distribui de forma Normal e
- ii) a variabilidade do tempo de vida é conhecida e igual a 2,2 u.t.

Seis componentes foram testadas, tendo-se registado os valores abaixo.

Estará o processo fora de controlo?

Α	
32	
33	
34	
37	
34	
34	

Média=34

Será "muito" ou "pouco" provável obter este tipo de amostras (ou outras com médias ainda mais baixas) quando efetivamente μ é 35, sendo σ = 2,2?

HIPÓTESES EM TESTE

H0: $\mu = 35$

H1: μ < 35 (processo fora de controlo)

> caso1 <- mean(xx <= m_obs1)
> round(caso1,4)
[1] 0.122

E nestes outros casos?

Será "muito" ou "pouco" provável obter este tipo de amostras (ou outras com médias ainda mais baixas) quando efetivamente μ é 35, sendo σ = 2,2?

> caso2 <- mean(xx <= m_obs2)
> round(caso2,4)
[1] 0.018

> caso3 <- mean(xx <= m_obs3)
> round(caso3,4)
[1] 0.003

Conclusões?

Aparentemente, se a média da população for mesmo 35, obter amostras de dimensão 6 com média amostral até 34 (caso 1), não é muito raro... (neste exemplo, aconteceu em cerca de 12% dos casos)

Não deve ser de rejeitar que μ seja 35

Mas obter amostras de dimensão 6 com média amostral até 33.2 (caso 2) acontece muito menos vezes... (neste exemplo, aconteceu em cerca de 1.8% dos casos)

Talvez seja de rejeitar que μ seja 35... ??

E obter amostras de dimensão 6 com média amostral até 32.2 (caso 3) é muito pouco frequente... (neste exemplo, aconteceu em cerca de 0.3% dos casos)

Parece que μ não deve ser 35...

Testes de Hipóteses – Introdução

Podemos calcular estes valores teoricamente, já que sabemos que $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$

$$z_{1} = \frac{34 - 35}{2.2/\sqrt{6}} = -1.113$$

$$z_{2} = \frac{33.17 - 35}{2.2/\sqrt{6}} = -2.041$$

$$z_{3} = \frac{32.17 - 35}{2.2/\sqrt{6}} = -3.155$$

Conclusão em cada uma das situações??

Testes de Hipóteses – Introdução

Como definir em que condições dizemos que os valores obtidos são "grandes" ou são "demasiadamente" pequenos?

Para respondermos a esta questão vamos ter de introduzir mais alguns conceitos

- Para construir um ensaio de hipóteses, é preciso, em 1º lugar, estabelecer as hipóteses em teste.
- Existe sempre:
 - Uma hipótese, dita **hipótese nula**, **H0**, que estabelece pelo menos um valor específico para o parâmetro (ou para a forma)
 - (ou seja, tem de conter uma igualdade, podendo ser =, <= ou >=)
 - Uma hipótese, dita hipótese alternativa, H1, que contradiz a anterior

No exemplo, recorde-se o ponto de partida:

"A fábrica A produz componentes cuja duração média, por questões de controlo de qualidade, não deverá ser inferior a 35 u.t"

Então o processo está

- i) sob controlo, se a duração média for superior ou igual a 35 ($\mu \ge 35$); e
- ii) fora de controlo se a duração média for inferior a 35 u.t, (μ < 35)

E as hipóteses em teste serão:

H0: $\mu \ge 35$ H1: $\mu < 35$

hipótese nula hipótese alternativa

H0: μ ≥ 35

hipótese nula

H1: μ < 35

hipótese alternativa

- Quando recolhemos dados, vamos confrontá-los com as hipóteses colocadas
- Sabemos que, numa amostra, a média \bar{x} não vai ser igual à "verdadeira média", ou seja, a média populacional, μ .
 - É preciso tentar ver se a diferença observada é ou não "credível" se a hipótese nula for verdadeira
 - Parece algo credível observarmos a amostra 1, mas o mesmo não se passa com as amostras 2 ou 3...

No fundo, tentamos avaliar em que medida os dados são ou não contraditórios com a afirmação colocada na hipótese nula.

Se decidirmos que os dados contradizem a H0, então REJEITAMOS H0

Se decidirmos que os dados NÃO contradizem a H0, então NÃO REJEITAMOS H0

Em qualquer dos casos, corremos sempre o risco de errar...

Erros nos ensaios de hipóteses

• Em qualquer dos casos, corremos sempre o risco de errar...

Podemos, por exemplo, decidir que uma diferença é "demasiadamente grande" para ser devida ao acaso, e decidir rejeitar H0... mas acontecer que esta até é verdadeira...

Rejeitar H0 | H0 verdadeira

Erro tipo I

No exemplo, concluir que a média populacional é inferior a 35, ou seja, que o processo está fora de controlo, quando na realidade isso não acontece

Podemos, por outro lado, decidir que uma diferença é "pequena" e pode ser devida ao acaso e consequentemente não rejeitar a H0, mas acontecer que ela é efetivamente falsa...

Não Rejeitar H0 | H0 falsa

Erro tipo II

No exemplo, concluir que a média populacional não é inferior a 35, ou seja, que o processo parece estar sob controlo, quando na realidade isso não acontece

Erros nos ensaios de hipóteses

H0: O réu é inocente
 H1: O réu é culpado

	Situação real		
Decisão baseada	H0 é verdadeira	H0 é falsa	
nas provas	(o réu é mesmo inocente)	(o réu é realmente culpado)	
Não rejeitar H0 (réu não é considerado culpado, sendo absolvido)	O juiz tomou uma <u>decisão</u> <u>correta</u>	O juiz tomou uma decisão incorreta: considerou inocente um réu que, na verdade, era culpado <u>Erro tipo II</u>	
		(Não rejeitar H0 H0 falsa)	
Rejeitar H0 (réu é considerado culpado, sendo condenado)	O juiz tomou uma decisão incorreta: considerou culpado um réu que, na verdade, era inocente Erro tipo I (Rejeitar H0 H0 verdadeira)	O juiz tomou uma <u>decisão</u> <u>correta</u>	

Erros nos ensaios de hipóteses

- Estes erros variam inversamente, ou seja, quando aumenta o erro tipo I diminui o erro tipo II, e vice-versa
- Nos procedimentos estatísticos a utilizar, a probabilidade máxima de ocorrência do erro tipo I é fixada a priori (ou seja, controla-se a probabilidade de rejeitar indevidamente a hipótese nula)
- Esta probabilidade, $P[\text{Rejeitar H0} \mid \text{H0 verdadeira}], \\ \text{chama-se significância e designa-se por } \alpha.$
- Uma vez escolhido o ensaio, a probabilidade de ocorrência do erro tipo II, β , é a menor **possível**, para o nível de significância escolhido, α (e para esse ensaio)

• Para construir um ensaio de hipóteses, é preciso, em 2° lugar, fixar α , nível de significância de referência, ou seja, a probabilidade de erro tipo I.

No exemplo, admita-se $\alpha=0.05=P[Rejeitar\ H_0|H_0\ verdadeira]$

Recordando as hipóteses

H0: $\mu \ge 35$ hipótese nula

H1: $\mu < 35$ hipótese alternativa **Teste unilateral esquerdo**

- E definir a regra de decisão, tradicionalmente definindo duas regiões:
- A região CRÍTICA, RC: caso a Estatística de teste pertença à RC rejeitar-se-á a HO
- A região NÃO CRÍTICA, RNC: caso a Estatística de teste pertença à RNC, H0 não será rejeitada
- A regra de decisão pode ser construída tendo por base a probabilidade de Estatística de teste assumir um valor tão ou mais extremo que o observado na amostra concreta recolhida, e que se chama valor-p (pvalue):
- Se p-value $\leq \alpha$, rejeita-se H0
- Se p-value > α , não se rejeita H0

No exemplo, admita-se $\alpha=0.05=P[Rejeitar\ H_0|H_0\ verdadeira]$

Recordando as hipóteses

H0: $\mu \ge 35$ hipótese nula

H1: μ < 35 hipótese alternativa

Como o teste é unilateral esquerdo, o ponto fronteira entre RC e RNC é o quantil de probabilidade $\alpha=0.05$ de uma normal standard, $z_{crit}=-1.645$

Temos então
$$RC =]-\infty, -1.645]$$
 e $RNC =]-1.645 + \infty[$

Se tivermos observado a amostra 1, $z_1=-1.113\in RNC$ e não rejeitamos H0, para $\alpha=0.05$

Se tivermos observado a amostra 2, $z_2=-2{,}041\in RC$ e rejeitamos H0, para $\alpha=0{,}05$

Se tivermos observado a amostra 3, $z_3 = -3.155 \in RC$ e rejeitamos H0, para $\alpha = 0.05$

OU (regra alternativa)

$$pvalue_1=0.133>\alpha=0.05$$
, logo não rejeitamos H0, para $\alpha=0.05$ $pvalue_2=0.021\leq\alpha=0.05$, logo rejeitamos H0, para $\alpha=0.05$ $pvalue_3=0.001\leq\alpha=0.05$, logo rejeitamos H0, para $\alpha=0.05$

Tipos de testes de hipóteses

Genericamente, classificamos os testes de acordo com o posicionamento dos valores indicados na hipótese alternativa.

Tendo como exemplo uma população Normal e uma significância (normalmente representado por um α) de 0.05:

- A igualdade está sempre na hipótese nula!!
- A significância tem relação com o nível de confiança, conceito apresentado no conjunto de slides anteriores (intervalos de confiança).

Testes de Hipóteses - ETAPAS

- 1. Escrever as hipóteses;
- Escolher o teste adequado;
- Estipular o erro máximo que nos permitimos correr ou por outras palavras, através do nível de significância definir a região crítica e não crítica;
- Calcular e verificar se o valor do teste(t) está na região crítica ou não
- Tomar a decisão (sem esquecer que nunca se afirma que se aceita a H0: ou a rejeitamos, ou não a rejeitamos)

Em vez de 4, verificar se a probabilidade de obter um valor tão ou mais extremo que o obtido para o valor do teste (t), ou seja, o valor-p ou *p-value*, é inferior ou igual (HO rejeitada) ou superior (HO não rejeitada) ao nível de significância.

We accept the null hypothesis.

We fail to reject the null hypothesis.

www.statanalytica.com

Estatísticas de Teste

Parâmetro a testar	Tipo de populações	Conhece-se $\sigma_1^2 \ { m e} \ \sigma_2^2$?	Estatística de teste	Distribuição amostral
μ	Normal (qualquer n) ou Qualquer (TLC, n grande)	Sim	$\frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	N(0,1)
μ	Normal (qualquer n) ou Qualquer (TLC, n grande)	Não	$\frac{\overline{X} - \mu_0}{\frac{S'}{\sqrt{n}}}$	$t_{(n-1)}$ Se n grande, pode usar-se $N(0,\!1)$
$\mu_1 - \mu_2$	Normais	Sim	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)
$\mu_1 - \mu_2$	Normais (qualquer n_1 e n_2) ou Quaisquer (TLC, n_1 e $n_2 > 30$)	Não, e assume-se $\sigma_1^2=\sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{(n_1 - 1)s_1'^2 + (n_2 - 1)s_2'^2}{n_1 + n_2 - 2}}}$	$t_{(n_1+n_2-2)}$
$\mu_1 - \mu_2$	Normais (qualquer n_1 e n_2) ou Quaisquer (TLC, n_1 e $n_2>30$)	Não, e $\sigma_1^2 \neq \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{s_1'^2}{n_1} + \frac{s_2'^2}{n_2}}}$	$t_{(\nu)} \ com \ v \ dado \ por$ $\frac{\left(\frac{s_1'^2}{n_1} + \frac{s_2'^2}{n_2}\right)^2}{\frac{s_1'^4}{n_1(n_1+1)} + \frac{s_2'^2}{n_2(n_2+1)}} - 2$ Se n grande, pode usar-se $N(0,1)$

Estatísticas de teste

Parâmetro a testar	Tipo de população	Dimensão da amostra	Variável fulcral	Distribuição amostral
p	Bernoulli	<i>n</i> > 30	$\frac{\bar{X} - p}{\sqrt{p(1-p)/n}}$	<i>∼N</i> (0,1)
$p_1 - p_2$	Bernoulli	$n_1 > 30 \text{ e}$ $n_2 > 30$	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)_0}{\sqrt{\hat{p}(1 - \hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \text{ , com } \hat{p} = \frac{n_1 \bar{X}_1 + n_2 \bar{X}_2}{n_1 + n_2}$	<i>∼N</i> (0,1)
σ^2	Normal	qualquer	$\frac{(n-1)S'^2}{\sigma_0^2}$	$\chi^2_{(n-1)}$
$\frac{\sigma_1^2}{\sigma_2^2}$	Normal	qualquer	$\frac{S_1^2}{S_2^2} \left(\frac{\sigma_2^2}{\sigma_1^2}\right)_0$	$F_{(n_1-1;n_2-1)}$