Question Number	Answer		Mark
16(a)(i)	Use of $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Re-arrangement with $\omega = \frac{2\pi}{T}$ to obtain $T^2 = \frac{(2\pi)^2}{GM}r^3$	(1)	
	Statement that G, M (and π) are constants, so $T^2 \propto r^3$ (dependent upon MP2)	(1)	
	OR		
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Re-arrangement with $v = \frac{2\pi r}{T}$ to obtain $T^2 = \frac{(2\pi)^2}{GM} r^3$	(1)	
	Statement that G, M (and π) are constants, so $T^2 \propto r^3$ (dependent upon MP2)	(1)	3
	Example of calculation		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\frac{GM}{r^2} = \left(\frac{2\pi}{T}\right)^2 r$ $T^2 = \frac{(2\pi)^2}{GM} r^3$ $\therefore T^2 \propto r^3$		
	$T^2 = \frac{(2\pi)^2}{GM} r^3$		
	$\therefore T^2 \propto r^3$		

16(a)(ii)	Use of $T^2 \propto r^3$	(1)	
	$T_{\rm J} = 142 \; {\rm months} \; (11.9 \; {\rm years})$	(1)	
	Use of $\omega = \frac{\theta}{t}$ and $\omega = \frac{2\pi}{T}$	(1)	
	Calculation of time elapsed for planets to be in opposition		
	Time between opposition is 13.1 months, with an appropriate conclusion (dependent upon MP4)	(1) (1)	5
	Example of calculation		
	$\left(\frac{T_J}{T_E}\right)^2 = \left(\frac{r_J}{r_E}\right)^3$		
	$\left(\frac{T_J}{1 \text{ year}}\right)^2 = \left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^3$		
	$T_J = 12 \text{ months} \times \sqrt{\left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^3} = 142 \text{ months}$		
	At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed.		
	If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$.		
	$\frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad} t}{142 \operatorname{month}} \div t = 13.1 \operatorname{month}$		
16(b)	Use of $V = (-)\frac{GM}{r}$	(1)	
	Use of $\Delta V \times m$	(1)	
	$\Delta E_{\rm grav} = 3.3 \times 10^{34} \mathrm{J}$	(1)	3
	Example of calculation		
	$\Delta V = -GM\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$		
	$\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}} \right)$		
	$\Delta V = 1.76 \times 10^7 \mathrm{J kg^{-1}}$		
	$\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{J kg}^{-1} \times 1.9 \times 10^{27} \text{kg} = 3.34 \times 10^{34} \text{J}$		

11

Total for question 16