Lecture 18: Outliers and Robust Regression

STA702

Merlise Clyde
Duke University

Body Fat Data

Which analysis do we use? with Case 39 or not – or something different?

Cook's Distance

1 plot(bodyfat.lm, which=5)

Options for Handling Outliers

What are outliers?

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population
- Report results with and without the case
- Model Averaging to Account for Model Uncertainty?
- Full model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{I}_n \delta + \epsilon$
- δ is a n imes 1 vector; $oldsymbol{eta}$ is p imes 1
- All observations have a potentially different mean!

Outliers in Bayesian Regression

- Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification
- This is implemented in the package BMA in the function MC3. REG
- This has the advantage that more than 2 points may be considered as outliers at the same time
- The function uses a Markov chain to identify both important variables and potential outliers, but is coded in Fortran so should run reasonably quickly.
- Can also use BAS or other variable selection programs

Model Averaging and Outliers

- ullet Full model $\mathbf{Y} = \mathbf{X}oldsymbol{eta} + \mathbf{I}_n \delta + \epsilon$
- δ is a $n \times 1$ vector; $\boldsymbol{\beta}$ is $p \times 1$
- ullet 2^n submodels $\gamma_i=0\Leftrightarrow \delta_i=0$
- If $\gamma_i=1$ then case i has a different mean ``mean shift'' outliers

Mean Shift = **Variance Inflation**

- Model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{I}_n \delta + \epsilon$
- Prior

$$egin{aligned} \delta_i \mid \gamma_i \sim N(0, V \sigma^2 \gamma_i) \ \gamma_i \sim \mathsf{Ber}(\pi) \end{aligned}$$

• Then ϵ_i given σ^2 is independent of δ_i and

$$\epsilon_i^* \equiv \epsilon_i + \delta_i \mid \sigma^2 egin{cases} N(0,\sigma^2) & wp & (1-\pi) \ N(0,\sigma^2(1+V)) & wp & \pi \end{cases}$$

- Model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon^*$ variance inflation
- ullet V+1=K=7 in the paper by Hoeting et al. package BMA

Simultaneous Outlier and Variable Selection

```
1 library(BMA)
 2 bodyfat.bma = MC3.REG(all.y = bodyfat$Bodyfat, all.x = as.matrix(t)
 3
                          num.its = 10000, outliers = TRUE)
 4 summary(bodyfat.bma)
Call:
MC3.REG(all.y = bodyfat$Bodyfat, all.x = as.matrix(bodyfat$Abdomen),
num.its = 10000, outliers = TRUE)
Model parameters: PI = 0.02 K = 7 nu = 2.58 lambda = 0.28 phi = 2.85
      models were selected
  15
          models (cumulative posterior probability = 0.9939 ):
 Best
                              model 2
                                        model 3
                                                   model 4
                                                             model 5
           prob
                    model 1
variables
  all.x
           1
011+1:0xa
```

BAS with Truncated Prior

```
bodyfat.w.out = cbind(bodyfat[, c("Bodyfat", "Abdomen")],

diag(nrow(bodyfat)))

bodyfat.bas = bas.lm(Bodyfat ~ ., data=bodyfat.w.out,

prior="hyper-g-n", a=3, method="MCMC",

MCMC.it=2^18,

modelprior=tr.beta.binomial(1,254, 50))
```


Change Error Assumptions

Use a Student-t error model

$$Y_i \stackrel{ ext{ind}}{\sim} t(
u, lpha + eta x_i, 1/\phi) \ L(lpha, eta, \phi) \propto \prod_{i=1}^n \phi^{1/2} igg(1 + rac{\phi (y_i - lpha - eta x_i)^2}{
u} igg)^{-rac{(
u+1)}{2}}$$

- Use Prior $p(\alpha, \beta, \phi) \propto 1/\phi$
- Posterior distribution

$$p(lpha,eta,\phi\mid Y) \propto \phi^{n/2-1} \prod_{i=1}^n \left(1 + rac{\phi(y_i - lpha - eta x_i)^2}{
u}
ight)^{-rac{(
u+1)}{2}}$$

Bounded Influence

• Treat σ^2 as given, then **influence** of individual observations on the posterior distribution of $\boldsymbol{\beta}$ in the model where $\mathbf{E}[\mathbf{Y}_i] = \mathbf{x}_i^T \boldsymbol{\beta}$ is investigated through the score function:

$$rac{d}{doldsymbol{eta}}{\log p}(oldsymbol{eta} \mid \mathbf{Y}) = rac{d}{doldsymbol{eta}}{\log p}(oldsymbol{eta}) + \sum_{i=1}^n \mathbf{x}_i g(y_i - \mathbf{x}_i^Toldsymbol{eta})$$

• influence function of the error distribution (unimodal, continuous, differentiable, symmetric)

$$g(oldsymbol{\epsilon}) = -rac{d}{doldsymbol{\epsilon}} {\log p(oldsymbol{\epsilon})}$$

- An outlying observation y_j is accommodated if the posterior distribution for $p(\boldsymbol{\beta} \mid \mathbf{Y}_{(i)})$ converges to $p(\boldsymbol{\beta} \mid \mathbf{Y})$ for all $\boldsymbol{\beta}$ as $|\mathbf{Y}_i| \to \infty$.
- Requires error models with influence functions that go to zero such as the Student t (O'Hagan, 1979, West 1984)

Choice of df for Student-t

Investigate the Score function

$$rac{d}{doldsymbol{eta}} {\log p}(oldsymbol{eta} \mid \mathbf{Y}) = rac{d}{doldsymbol{eta}} {\log p}(oldsymbol{eta}) + \sum_{i=1}^n \mathbf{x}_i g(y_i - \mathbf{x}_i^Toldsymbol{eta})$$

- Score function for t with α degrees of freedom has turning points at $\pm\sqrt{\alpha}$
- $g'(\epsilon)$ is negative when $\epsilon^2 > \alpha$ (standardized errors)
- Contribution of observation to information matrix is negative and the observation is doubtful
- Suggest taking $\alpha=8$ or $\alpha=9$ to reject errors larger than $\sqrt{8}$ or 3 sd.

Scale-Mixtures of Normal Representation

Latent Variable Model

$$egin{aligned} Y_i \mid lpha, eta, \phi, \lambda \overset{ ext{ind}}{\sim} N(lpha + eta x_i, rac{1}{\phi \lambda_i}) \ \lambda_i \overset{ ext{iid}}{\sim} G(
u/2,
u/2) \ p(lpha, eta, \phi) \propto 1/\phi \end{aligned}$$

• Joint Posterior Distribution:

$$egin{aligned} p((lpha,eta,\phi,\lambda_1,\ldots,\lambda_n\mid Y) &\propto \ \phi^{n/2} \exp\left\{-rac{\phi}{2}\sum \lambda_i (y_i-lpha-eta x_i)^2
ight\} imes \ \phi^{-1} \ &\prod_{i=1}^n \lambda_i^{
u/2-1} \exp(-\lambda_i
u/2) \end{aligned}$$

• Integrate out ``latent'' λ 's to obtain marginal t distribution

JAGS - Just Another Gibbs Sampler

```
rr.model = function() {
     df < -9
 2
 3
     for (i in 1:n) {
        mu[i] <- alpha0 + alpha1*(X[i] - Xbar)</pre>
        lambda[i] ~ dgamma(df/2, df/2)
        prec[i] <- phi*lambda[i]</pre>
 7
        Y[i] ~ dnorm(mu[i], prec[i])
8
     phi ~ dgamma(1.0E-6, 1.0E-6)
 9
     alpha0 \sim dnorm(0, 1.0E-6)
10
11
     alpha1 \sim dnorm(0,1.0E-6)
12
     beta0 <- alpha0 - alpha1*Xbar # transform back
13
     beta1 <- alpha1
     sigma <- pow(phi, -.5)</pre>
14
     mu34 \leftarrow beta0 + beta1*2.54*34 #mean for a man w/ a 34 in waist
15
     y34 ~ dt(mu34,phi, df) # integrate out lambda 34
16
```

A

Warning! Normals and Student-t are parameterized in terms of precisions!

What output to Save?

The parameters to be monitored and returned to R are specified with the variable parameters

```
1 parameters = c("beta0", "beta1", "sigma", "mu34", "y34", "lambda[3
```

- Use of <- for assignment for parameters that calculated from the other parameters.
 (See R-code for definitions of these parameters.)
- mu34 and y34 are the mean functions and predictions for a man with a 34in waist.
- lambda [39] saves only the 39th case of λ
- To save a whole vector (for example all lambdas, just give the vector name)

Running JAGS from R

Install jags from sourceforge

```
1 library(R2jags)
 2
 3 # Create a data list with inputs for Winpost/Jags
 4
 5 bf.data = list(Y = bodyfat$Bodyfat, X=bodyfat$Abdomen)
 6 bf.data$n = length(bf.data$Y)
  bf.data$Xbar = mean(bf.data$X)
 8
  # run jags
 9
10 bf.sim = jags(bf.data, inits=NULL, par=parameters,
11
                 model=rr.model, n.chains=2, n.iter=20000)
1 # create an MCMC object
 2 library(coda)
 3 bf.post = as.mcmc(bf.sim$BUGSoutput$sims.matrix)
```

Posterior Distributions

Posterior of Expected Bodyfat for Men with 34 inch Waist

Predictive Distribution of Bodyfat for Men with 34 inch Waist

Posterior of λ_{39}

Posterior Distribution

Comparison

95% Confidence/Credible Intervals for eta

	2.5 %	97.5 %
lm all	0.5750739	0.6875349
robust bayes	0.6016984	0.7184886
Im w/out 39	0.6144288	0.7294781

- Results intermediate without having to remove any observations!
- Case 39 down weighted by λ_{39} in posterior for β
- ullet Under prior $E[\lambda_i]=1$
- large residuals lead to smaller λ

$$\lambda_j \mid ext{rest}, Y \sim G\left(rac{
u+1}{2}, rac{\phi(y_j-lpha-eta x_j)^2 +
u}{2}
ight)$$

Prior Distributions on Parameters

- As a general recommendation, the prior distribution should have `heavier" tails than the likelihood
- with t_9 errors use a t_lpha with lpha < 9
- also represent via scale mixture of normals
- Horseshoe, Double Pareto, Cauchy all have heavier tails

Summary

- Classical diagnostics useful for EDA (checking data, potential outliers/influential points) or posterior predictive checks
- BMA/BVS and Bayesian robust regression avoid interactive decision making about outliers
- Robust Regression (Bayes) can still identify outliers through distribution on weights
- continuous versus mixture distribution on scale parameters
- Other mixtures (sub populations?) on scales and β ?
- Be careful about what predictors or transformations are used in the model as some outliers may be a result of model misspecification!