Corso di Linguaggi di Programmazione Prova scritta del 21 Gennaio 2021.

Tempo a disposizione: ore 2.

Svolgere gli esercizi 1-4 e 5-8 su due fogli differenti.

- 1. Determinare una grammatica per il linguaggio $L = \{a^n b^m \mid n \neq m, n \geq 0, m \geq 0\}$. Il linguaggio L è libero?
- 2. Costruire il più semplice automa che riconosca il linguaggio $L = \{w \mid w = bxaa, x \in \{a,b\}^*\}.$
- 3. Si consideri la grammatica G:

$$\begin{array}{ccc} S & \rightarrow & \mathbf{a}S \mid A \\ A & \rightarrow & \epsilon \mid \mathbf{b}A\mathbf{a} \end{array}$$

- (i) Determinare il linguaggio L(G). (ii) Calcolare i first e i follow per i due nonterminali. (iii) Verificare se G è LL(1) e, in caso affermativo, costruire la tabella di parsing LL(1).
- 4. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & \mathtt{a}A \mid \mathtt{c}S\mathtt{b} \mid \epsilon \\ A & \rightarrow & \mathtt{a}A \mid \epsilon \end{array}$$

(i) Costruire l'automa canonico LR(0) per G. (ii) Riempire la tabella di parsing SLR(1). (iii) Mostrare il funzionamento del parser SLR(1) per input cb.

1)
$$L = \{a^{n}b^{m} \mid n \neq m, m \geqslant 0, m \geqslant 0\}$$
 $S \rightarrow AC \mid CB \qquad L(S) = L$
 $A \rightarrow \alpha \mid aA \qquad L(A) = \{a^{n}\mid n \geqslant 1\}$
 $B \rightarrow b \mid bB \qquad L(B) = \{b^{n}\mid n \geqslant 1\}$
 $C \rightarrow aCb\mid E \qquad L(C) = \{a^{n}b^{n}\mid n \geqslant 0\}$
 $A \rightarrow ACb \qquad aacb \qquad aab$
 $AC \qquad aacb \qquad aacb \qquad aaacb$
 $AC \qquad aacb \qquad aacb$
 $AC \qquad aacb \qquad aa$

b (a16) *aa e una expressione repolare per L

(90)
$$\xrightarrow{b}$$
 \xrightarrow{a} $\xrightarrow{a$

$$S \rightarrow aS \mid A$$

 $A \rightarrow \epsilon \mid bAa$

First	Follow
α, ε, ь	First(as) Λ First(A) = ϕ a. β (as) Λ Follow(s) = ϕ
ε, 6	FINT(E) A FINT(bAa)=\$
	(Follow (A) A First (b Aa) = \$
	GELL(1)
a	b \$
	α, ε, 6

	a	b	+
5	Sas	$S \rightarrow A$	$S \rightarrow A$
A	$A \rightarrow \varepsilon$	A -> bAa	$A \rightarrow \varepsilon$

