Apéndice 1. Matrices elementales y factorización LU

- 1 Matrices elementales i
- 2 Inversa de una matriz elemental i
- 3 Operación elemental sobre A como producto de A por matriz elemental ii
- 4 Transformación triangular iii

1 Matrices elementales

Si partimos de la matriz identidad I y efectuamos exactamente una operación elemental en sus filas, la matriz resultante se denomina **matriz elemental**.

Ejemplos de matrices elementales de orden 3:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \overset{F_{1(3)}}{\longrightarrow} \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_1 \quad \text{Se multiplica la 1^a fila por 3}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad F_{\underbrace{31(-2)}} \begin{bmatrix} & 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = E_2 \quad \text{Se suma a la 3^a fila la 1^a por -2}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \xrightarrow{F_{23}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_3 \quad \text{Se intercambia fila } 2^a \text{ con fila } 3^a$$

2 Inversa de una matriz elemental

Si E es una matriz elemental tiene inversa, y E^{-1} es la matriz elemental correspondiente a la operación elemental inversa.

La inversa de $F_{i(\alpha)}$ es $F_{i(1/\alpha)}$

La inversa de F_{ij} (α) es F_{ij} ($-\alpha$)

La inversa de F_{ij} es F_{ij}

Ejemplos para las matrices anteriores:

$$E_1^{-1}E_1 = \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2^{-1}E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_3^{-1}E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3 Operación elemental sobre A como producto de A por matriz elemental

Dadas la matriz $A_{m \times n}$ y la matriz elemental E correspondiente a una operación elemental, la matriz $B_{m \times n}$ que resulta de efectuar dicha o. e. sobre $A_{m \times n}$ es igual al producto $EA_{m \times n}$.

Esquema:

Ejemplo 1: A partir de la matriz $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 4 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 2 \end{bmatrix}$ queremos obtener la matriz B que tiene

intercambiadas las filas 2 y 4. Determina la matriz elemental E tal que E A = B

$$E \text{ es } 4 \times 4, \text{ pues } A \text{ tiene 4 filas.} \quad F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Comprobación:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 4 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 4 & 1 \end{bmatrix}$$

 $E ext{ es } 3 \times 3$, pues $A ext{ tiene } 3 ext{ filas}$.

$$E = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 es la matriz elemental que resulta de sumarle a la fila 2^a de I_3 , la 1^a multiplicada por (-2) .

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 & -1 \\ 1 & -2 & 1 & -2 \\ 3 & -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & -1 \\ -3 & -4 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{bmatrix}$$

Coincide con el resultado obtenido al sumar a la 2^a fila de A la 1^a multiplicada por (-2), es decir, al efectuar $F_{21(-2)}$ sobre A.

ii

4 Transformación triangular

Tomado de Leon, Steve. Linear Algebra with Applications PDF EBook, Global Edition, Pearson Education, Limited, 2015. Página 83.

Si una matriz A_n se puede escalonar a una forma estrictamente triangular superior, es decir, con los elementos de la diagonal principal distintos de cero, efectuando únicamente operaciones elementales de reemplazamiento, entonces A se puede factorizar como A = LU, siendo L una matriz triangular inferior invertible, con unos en la diagonal principal, y U la matriz triangular superior antes mencionada.

Ejemplo 3:

Aplicación a la matriz
$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & -9 & 5 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix} = U$$

Pasos efectuados y su orden: $F_{21(-1/2)}$, $F_{31(-2)}$ y $F_{32(3)}$

$$E_3E_2E_1A = U$$

Premultiplicando por $(E_3E_2E_1)^{-1}$

$$A = (E_3 E_2 E_1)^{-1} U$$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} U$$

$$E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{1/2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mathbf{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\mathbf{3} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{1/2} & 1 & 0 \\ \mathbf{2} & -\mathbf{3} & 1 \end{bmatrix} = L$$

$$A = LU$$

L es triangular inferior, invertible, con unos en la diagonal principal, y los elementos l_{ij} para i > j son los opuestos de los escalares k de la operación $F_i = F_i + kF_j$.

Aplicación para la resolución de SLs. Ejemplo 4:

Resuelve el SL $A\vec{x} = \vec{b}$, con A la matriz del ejemplo anterior y $\vec{b} = (4, 9, 5)$.

Aprovechando A = LU podemos escribir el SL como $LU\vec{x} = \vec{b}$.

Definiendo \vec{y} como $U\vec{x} = \vec{y}$, tendremos un primer SL $L\vec{y} = \vec{b}$ que podemos resolver calculando \vec{y} mediante sustitución hacia adelante.

Seguidamente resolvemos \vec{x} en el SL $U\vec{x} = \vec{y}$ mediante sustitución hacia atrás.

Aquí vemos el SL completo:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 2 & -3 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}} = \begin{bmatrix} 4 \\ 9 \\ -5 \end{bmatrix}$$

La resolución de $L\vec{y} = \vec{b}$ es como sigue:

$$y_1 = 4$$

 $y_2 = 9 - 1/2$ $y_1 = 9 - 2 = 7$
 $y_3 = -5 - 2$ $y_1 + 3$ $y_2 = -5 - 8 + 21 = 8$

Por tanto
$$\vec{y} = \begin{bmatrix} 4 \\ 7 \\ 8 \end{bmatrix}$$

La resolución de $U\vec{x} = \vec{y}$ es como sigue:

$$\begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 8 \end{bmatrix}$$

$$8x_3 = 8 \Rightarrow x_3 = 1$$

 $3x_2 + x_3 = 7 \Rightarrow x_2 = (7 - x_3)/3 = 6/3 = 2$
 $2x_1 + 4x_2 + 2x_3 = 4 \Rightarrow x_1 = (4 - 4x_2 - 2x_3)/2 = (4 - 8 - 2)/2 = -6/2 = -3$

La solución es $\vec{x} = (-3, 2, 1)$

Este procedimiento simplifica mucho las operaciones, por lo que se utiliza para SLs con muchas variables por la rapidez y por la reducción de errores de redondeo.