Assignment or Homework

Student ID: **-***

May 31, 2020

Template based on my answers for Special Assignments 1 and 2 of ODS FS2020.

We start by showing some claims that will be reused in several assignments.

Claim 1. claim

Proof. proof \Box

Claim 2. claim

Proof. proof

We will also allow ourselves to use the following standard property of Gaussian distributions.

Fact 1. Let $M, m \in \mathbb{N}$ and $g \sim \mathcal{N}(0, \Sigma)$ for any positive semi-definite matrix $\Sigma \in \mathbb{R}^{m \times m}$, and let any matrix $A \in \mathbb{R}^{M \times m}$ independent from g. Then $Ag \sim \mathcal{N}(0, A\Sigma A^T)$.

Proof. By known properties of Gaussian distributions, Ag is Gaussian and

$$\mathbb{E}Ag = A\mathbb{E}g = 0 \tag{0.1}$$

$$\mathbb{E}(Ag)(Ag)^T = \mathbb{E}Agg^T A^T \tag{0.2}$$

$$= A \left(\mathbb{E} g g^T \right) A^T \tag{0.3}$$

$$= A\Sigma A^{T} \tag{0.4}$$

by linearity of expectation. So $Ag \sim \mathcal{N}(0, A\Sigma A^T)$.

As a special case, we have a classic "isotropy" result:

Fact 2. Let $m \in \mathbb{N}$ and $g \sim \mathcal{N}(0, \sigma^2 I_m)$ for some $\sigma > 0$, and let $u \in \mathbb{R}^m$ be a vector independent from g. Then $\langle g, u \rangle = u^T g \sim \mathcal{N}(0, \sigma^2 ||u||^2)$.

First part of the homework

Assignment 1

My answer to the question By Claim 1, ...

Assignment 2

We consider the following algorithm, where N is to be specified and $\kappa = 2\sqrt{2}$.

Algorithm 1: Repeated Accelerated Gradient Descent

We now prove that for $N \ge \log_2 \frac{\mu R^2}{2\varepsilon}$, x_N is an ε -optimal solution. Indeed, according to the previous question, in Alg. 1...

Assignment 3

My answer to the question

Second part of the homework

Assignment 4

My answer to the question

Assignment 5

My answer to the question