期中练习题

一. 填空题 (每小题 4 分, 共 32 分)

1. 已知 $|\vec{a}| = 1$, $|\vec{b}| = 2$, 向量 \vec{a} 与 \vec{b} 的夹角 $(\vec{a}, \vec{b}) = \frac{\pi}{3}$, 则 $\vec{a} \cdot \vec{b} = ______$, $|2\vec{a} - 3\vec{b}| = ______$.

2. 点 P(2,3,4) 到直线 $\frac{x-1}{2} = \frac{y-2}{5} = \frac{z-3}{6}$ 的距离 $d = \underline{\qquad}$

5. 函数 $f(x,y) = e^x \ln(1+y)$ 的二阶麦克劳林公式(带佩亚诺余项)为 $f(x,y) = _____$.

8. 函数 $f(x,y) = x^2 + 2y^2 - 5$ 在区域 $D: x^2 + y^2 \le 1$ 上的最大值 M =________,最小值 m =_______

二. (10 分)设 $x^2 + y^2 + z^2 = f(xy, z - 2x)$, 其中 f 有连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

三. (12 分) 证明直线 $L_1: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{2}$ 与 $L_2: \begin{cases} x+2y=1 \\ y+z=2 \end{cases}$ 共面,并求过直线 L_1 与 L_2 的平面方程.

四. (12 分) 计算二重积分 $\iint_{D} \frac{|y-x|}{x^2+y^2} dx dy$, 其中 D 是由直线 y=x, 2 y=2, 与圆 $x^2+(y-1)^2=1$ 所围成的阴影部分区域(如图).

五. (11 分) 在曲面 $3x^2 + y^2 + z^2 = 16$ 上求一点,使曲面在此点的切平面与直线 $L_1: \frac{x-3}{4} = \frac{y-6}{5} = \frac{z+1}{8}$ 和 $L_2: x=y=z$ 都平行.

六. (11 分) 计算三重积分 $I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} e^{\frac{y}{1-x-z}} dz$.

七. (12 分) 设 M 是椭圆 $\begin{cases} 2x^2 - y^2 + z^2 = 5 \\ x + y = 0 \end{cases}$ 上的点, $\frac{\partial f}{\partial \vec{e}}$ 是函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在 点 M 处沿方向 $\{1,-1,1\}$ 的方向导数,求使 $\frac{\partial f}{\partial \vec{e}}$ 取得最大值和最小值的点 M 及 $\frac{\partial f}{\partial \vec{e}}$ 的最大值和最小值.