Data Dictionary

- 1. Time: as the time (in years) since seroconversion, where a negative time denotes actual time before seroconversion.
- 2. Age: age at seroconversion (a baseline measurement), centred at 30 years of age, so that negative ages denote years younger than 30.
- 3. Packs: the number of packets of cigarettes smoked per day at time of measurement.
- 4. Drugs: a binary variable taking the values 1 or 0 to denote if the respondent takes recreational drugs or not respectively, measured at each time point.
- 5. Cesd: an index of depression measured at each time point, with time trends removed. Higher scores indicate greater depressive symptoms.
- 6. Sex: number of sexual partners reported at each time point. Looks to have been centred somehow and truncated at ± 5 .

Setup

```
library(knitr)
library(tinytex)
library(kableExtra)
library(latex2exp)
library(tidyverse)
library(gridExtra)
library(nlme)
library(splines)
```

Load dataset and create engineered features for later use.

```
cd4_df <- read.table("cd4data.txt", header = TRUE)
cd4_df <- cd4_df %>%
  mutate(
    CD4sqrt = CD4^0.5,
    yr = round(Time),
    yr.f = factor(yr, levels=c(-3,-2,-1,0,1,2,3,4,5)),
    quarter = round(4*Time)/4,
    smoker = ifelse(Packs > 0, 1, 0)
) %>%
  arrange(ID, Time) %>%
  group_by(ID) %>%
  mutate(
    obsnum = 1:n()
)
```

Exploratory Data Analysis

Look at how number of subjects and observations varied over the course of the study.

```
obs_per_year_df <- cd4_df %>% group_by(yr) %>% summarise(obs_cnt=n())
subs_per_year_df <- cd4_df %>% select(yr, ID) %>% distinct %>% group_by(yr) %>% summarise(sub_cnt=n())
sub_obs_df <- tibble(
   Year = obs_per_year_df$yr,</pre>
```

```
Num.Observations = obs_per_year_df$obs_cnt,
   Num.Subjects = subs_per_year_df$sub_cnt
)
kable(t(sub_obs_df), caption="Study Observations Profile", escape = F, digits = 6) %>%
   kable_styling(latex_options = c("hold_position"))
```

Table 1: Study Observations Profile

Year	-3	-2	-1	0	1	2	3	4	5
Num. Observations	71	198	315	529	431	346	254	163	69
Num.Subjects	70	133	211	307	279	226	167	109	51

Plot response curves over time: build a dataframe for the means at each time point

```
x <- sort(unique(cd4 df$yr))
means df <- cd4 df %>%
  select(yr, CD4sqrt) %>%
  group_by(yr) %>%
  summarise(mean_response = mean(CD4sqrt)) %>%
  arrange(yr)
y_lim = c(floor(min(cd4_df$CD4sqrt)), ceiling(max(cd4_df$CD4sqrt)))
y_scale <- seq(floor(min(cd4_df$CD4sqrt)), ceiling(max(cd4_df$CD4sqrt)))</pre>
ggplot(cd4_df)+
  geom_line(aes(x=yr, y=CD4sqrt, group=ID), color='lightblue')+
  geom_point(aes(x=yr, y=CD4sqrt, group=ID), shape=1, color='lightblue')+
  xlab('Time (Years)')+ ylab('CD4 Sqrt')+scale_x_continuous(breaks=x)+
  geom_vline(xintercept = 0, colour='black', lty=5)+
  annotate("text", label = "Seroconversion time", x = 0.1, y = 55, size = 5, colour = "black", hjust=0)
  geom_line(data = means_df, aes(x=yr, y=mean_response, colour='red'), lwd=1)+
  geom_smooth(aes(x=yr, y=CD4sqrt, colour='darkgreen'), se = F, method='loess', span=0.75)+
  geom smooth(aes(x=yr, y=CD4sqrt, colour='steelblue'), se = F, method='glm')+
  scale_colour_manual(values=c('red', 'darkgreen', 'steelblue'),
                      labels=c('Mean response', 'Lowess', 'Least squares'))+
  theme(legend.title = element_blank())
```


Plot a sample subset of responses:

Sample Variagram based on code from Week 2 lecture material. Use residuals from a simple spline fit.

```
cd4_df$resid <- resid(smooth.spline(cd4_df$yr, cd4_df$CD4sqrt))
# sample variogram from week 2 lecture material
vijk <- by(cd4_df, cd4_df$ID, function(df) {</pre>
  v <- outer(df$resid, df$resid,</pre>
              function(x, y) 0.5*(x-y)^2
  v[lower.tri(v)]
uijk <- by(cd4_df, cd4_df$ID, function(df) {
  u <- outer(df$Time, df$Time,
              function(x, y) abs(x - y))
  u[lower.tri(u)]
})
uijk <- unlist(uijk)</pre>
vijk <- unlist(vijk)</pre>
vu.lowess <- lowess(uijk, vijk)</pre>
sigma2 <- var(cd4_df$resid)</pre>
plot(uijk, vijk, col = "gray50", pch = 18, cex = 0.4,
```

```
xlim = c(0, 6), ylim = c(0, 50),
xlab = "Lag", ylab = "Half squared differences")
lines(vu.lowess, col = "red", lwd = 2)
abline(h = sigma2, lty = 2)
```


Table 2: Variances of the residuals from the simple spline fit above.

Table 2: Variances of Residuals										
	resid3	resid2	resid1	resid.0	resid.1	resid.2	resid.3	resid.4	resid.5	
Variances	27.98521	39.50176	40.56666	41.65118	28.78789	40.44546	37.82702	44.86887	53.37218	

And the full variance-covariance matrix:

cv.cd4.wide

```
## resid.-1 resid.0 resid.-3 resid.-2 resid.1 resid.2
## resid.-1 40.56666 20.68508 18.326055 25.28285 15.847902 16.085799
## resid.0 20.68508 41.65118 11.061741 20.43602 17.046089 13.198405
## resid.-3 18.32606 11.06174 27.985213 17.64018 8.873951 -3.473402
## resid.-2 25.28285 20.43602 17.640181 39.50176 11.738423 11.760714
## resid.1 15.84790 17.04609 8.873951 11.73842 28.787890 19.345113
## resid.2 16.08580 13.19840 -3.473402 11.76071 19.345113 40.445455
## resid.3 22.38065 13.50397 1.540104 14.42258 17.819749 26.889443
## resid.4 16.67129 18.52562 NA 39.67300 19.522630 26.481910
## resid.5 29.98802 21.97977 NA NA 27.560134 33.393318
```

```
resid.3 resid.4 resid.5
## resid.-1 22.380652 16.67129 29.98802
## resid.0 13.503973 18.52562 21.97977
## resid.-3 1.540104
                           NΔ
## resid.-2 14.422575 39.67300
## resid.1 17.819749 19.52263 27.56013
## resid.2 26.889443 26.48191 33.39332
## resid.3 37.827020 32.41964 32.00380
## resid.4 32.419638 44.86887 33.81394
## resid.5 32.003805 33.81394 53.37218
And the full correlation matrix:
cov2cor(cv.cd4.wide)
                                   resid.-3 resid.-2
                       resid.0
                                                        resid.1
##
            resid.-1
                                                                   resid.2
## resid.-1 1.0000000 0.5032212 0.54390126 0.6315869 0.4637482 0.3971213
## resid.0 0.5032212 1.0000000 0.32400041 0.5038189 0.4922732 0.3215681
## resid.-3 0.5439013 0.3240004 1.00000000 0.5305551 0.3126424 -0.1032419
## resid.-2 0.6315869 0.5038189 0.53055509 1.0000000 0.3480941
                                                                 0.2942325
## resid.1 0.4637482 0.4922732 0.31264235 0.3480941 1.0000000
                                                                0.5669327
## resid.2 0.3971213 0.3215681 -0.10324186 0.2942325 0.5669327
                                                                1.0000000
## resid.3 0.5713300 0.3402098 0.04733524 0.3731071 0.5400023 0.6874575
## resid.4 0.3907618 0.4285353
                                         NA 0.9423544 0.5432014
                                                                0.6216442
## resid.5 0.6444744 0.4661782
                                                   NA 0.7031030 0.7187325
##
              resid.3
                        resid.4 resid.5
## resid.-1 0.57133002 0.3907618 0.6444744
## resid.0 0.34020984 0.4285353 0.4661782
## resid.-3 0.04733524
## resid.-2 0.37310710 0.9423544
## resid.1 0.54000230 0.5432014 0.7031030
## resid.2 0.68745755 0.6216442 0.7187325
## resid.3 1.00000000 0.7869272 0.7122674
## resid.4 0.78692715 1.0000000 0.6909805
## resid.5 0.71226745 0.6909805 1.0000000
Response Variable Distribution:
pal <- c('red', 'steelblue', 'green', 'orange', 'purple', 'blue', 'tomato1', 'darkgreen', 'black')</pre>
plt.res.dens <- ggplot(cd4_df)+</pre>
  geom_density(aes(CD4sqrt), colour='steelblue')+
  ggtitle('Response Density') + ylab('Density')
plt.res.qq <- ggplot(cd4_df)+
  geom_qq(aes(sample=CD4sqrt))+
  xlab('Theoretical Quantiles')+
  ylab('Sample Quantiles')+
  ggtitle('Normal Q-Q Plot')
plt.res.dens.yr <- ggplot(cd4_df)+
  geom_density(aes(CD4sqrt, group=yr.f, colour=yr.f))+
  ggtitle('Response Density per Year') + ylab('Density') +
  scale_color_manual(name='Years', values = pal)
grid.arrange(plt.res.dens, plt.res.qq, ncol=2)
```


plt.res.dens.yr

Time Trends for covariates: population and sample

```
covariate_trend <- function(df, title, variable, colours=c('lightblue', 'steelblue', 'black')){
    g <- ggplot(df)+
        geom_line(aes_string(x = 'yr', y=variable, group='ID'), colour=colours[1])+
        geom_smooth(aes_string(x = 'yr', y=variable), colour=colours[2], se = F, method='loess', span=0.75)
    ggtitle(title) + xlab('Time (Years)') +
        geom_vline(xintercept = 0, colour=colours[3], lty=5)
    return(g)
}
# partners
covariate_trend(cd4_df, 'Number of Sexual Partners', 'Sex')</pre>
```


covariate_trend(sample_df, 'Number of Sexual Partners (Sample)', 'Sex')

depression score
covariate_trend(cd4_df, 'CESD Depression Score', 'Cesd')

covariate_trend(sample_df, 'CESD Depression Score (Sample)', 'Cesd')

drug use
covariate_trend(cd4_df, 'Drug Use', 'Drugs')

covariate_trend(sample_df, 'Drug Use (Sample)', 'Drugs')

smoking
covariate_trend(cd4_df, 'Packs per Day', 'Packs')

covariate_trend(sample_df, 'Packs per Day (Sample)', 'Packs')

Covariates and the evolution of the response over time

Not all of combinations of these plots were included in the main report due to space limitations.

'Smoking Status', c('Smoker', 'Non-smoker'))

Smoking Status

CESD Depression Score

Upper quartile
 Lower quartile

Separating Cross-sectional vs Longitudinal Effects

Plot covariate changes w.r.t baseline

```
baseline_ids <- cd4_df %>% filter(yr == 0) %>% select(ID) %>% distinct()
# there are 307 subjects with measurements at baseline
# data frame of baseline values for each covariate
baseline_df <- cd4_df %>% filter(ID %in% baseline_ids$ID & yr == 0) %>%
  group_by(ID) %>%
  top_n(n = 1, wt = -quarter) \%
  arrange(ID) %>%
  mutate(
    CD4sqrti = CD4sqrt,
    Agei = Age,
    Cesdi = Cesd,
    Packsi = Packs,
   Drugsi = Drugs,
    Sexi = Sex
  ) %>%
  select(ID, CD4sqrti, Agei, Cesdi, Packsi, Drugsi, Sexi)
cd4_base_lines_df <- cd4_df %>% filter(ID %in% baseline_ids$ID& yr >= 0) %>%
  inner_join(baseline_df)
cross_trend_baseline <- function(df, variable, xlabel, span=0.75){</pre>
  g <- ggplot(baseline_df)+</pre>
    geom_point(aes_string(x = variable, y = 'CD4sqrti'), alpha=0.75)+
    geom_smooth(aes_string(x = variable, y = 'CD4sqrti'), color='steelblue', se = F, method='loess', sp
    xlab(xlabel) + ylab('Baseline CD4sqrt')
  return(g)
long_trend_baseline <- function(df, variable, xlabel, span=0.75){</pre>
  g <- ggplot(df)+
    geom_point(aes_string(x = variable, y = 'CD4sqrt - CD4sqrti'), alpha=0.75)+
    geom_smooth(aes_string(x = variable, y = 'CD4sqrt - CD4sqrti'), color='steelblue', se = F, method='
```

```
xlab(xlabel) + ylab('Change in CD4sqrt')
return(g)
}

# CESD
cross_trend_baseline(baseline_df, 'Cesdi', 'Baseline CESD')
```


long_trend_baseline(cd4_base_lines_df, 'Cesd - Cesdi', 'Change in CESD')

Packs
cross_trend_baseline(baseline_df, 'Packsi', 'Baseline Packs')

long_trend_baseline(cd4_base_lines_df, 'Packs - Packsi', 'Change in Packs', span=0.95)

Age
cross_trend_baseline(baseline_df, 'Agei', 'Baseline Age')

long_trend_baseline(cd4_base_lines_df, 'Age - Agei', 'Change in Age')

Drugs
cross_trend_baseline(baseline_df, 'Drugsi', 'Baseline Drugs', span=0.95)

long_trend_baseline(cd4_base_lines_df, 'Drugs - Drugsi', 'Change in Drugs', span=0.95)

Sex
cross_trend_baseline(baseline_df, 'Sexi', 'Baseline Number of Partners')

long_trend_baseline(cd4_base_lines_df, 'Sex - Sexi', 'Change in Number of Partners')

Use rounding to nearest year to avoid unbalanced issues and look at correlation plot:

```
panel.cor <- function(x, y, digits=2, prefix="", cex.cor){
    usr <- par("usr");    on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- abs(cor(x, y,use="pairwise.complete.obs"))
    txt <- format(c(r, 0.123456789), digits=digits)[1]
    txt <- paste(prefix, txt, sep="")
    if(missing(cex.cor))    cex <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex = cex * r)
}
pairs(cd4.wide[,c(5, 2, 3, 6:8)], upper.panel = panel.cor)</pre>
```


Model Formulation

Initial 2 simple linear fixed effect models:

```
lm.basic1.fit <- lm(CD4sqrt ~ Time + smoker + Age + Drugs + Cesd + Sex, data = cd4_df)</pre>
sum.lm.basic1.fit <- summary(lm.basic1.fit)</pre>
sum.lm.basic1.fit
##
## Call:
## lm(formula = CD4sqrt ~ Time + smoker + Age + Drugs + Cesd + Sex,
       data = cd4_df)
##
##
## Residuals:
                       Median
       Min
                  1Q
                                    3Q
                                            Max
## -21.7751 -4.2911 -0.3021
                                3.6952
                                        27.5620
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.30720
                           0.28239 93.158 < 2e-16 ***
## Time
               -1.62659
                           0.07026 -23.150 < 2e-16 ***
                2.87334
                           0.26732 10.749 < 2e-16 ***
## smoker
                0.02261
                           0.01702
                                     1.329 0.18412
## Age
## Drugs
                1.00294
                           0.30618
                                     3.276 0.00107 **
## Cesd
               -0.02923
                           0.01332 -2.194 0.02830 *
## Sex
                0.01192
                           0.03715
                                     0.321 0.74839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.13 on 2369 degrees of freedom
## Multiple R-squared: 0.2479, Adjusted R-squared: 0.246
## F-statistic: 130.2 on 6 and 2369 DF, p-value: < 2.2e-16
lm.basic2.smkr.int.fit <- lm(CD4sqrt ~ Time*smoker + Age + Drugs + Cesd + Sex, data = cd4_df)</pre>
sum.lm.basic2.smkr.int.fit <- summary(lm.basic2.smkr.int.fit)</pre>
sum.lm.basic2.smkr.int.fit
```

```
##
## Call:
## lm(formula = CD4sqrt ~ Time * smoker + Age + Drugs + Cesd + Sex,
      data = cd4_df)
## Residuals:
       Min
                 10 Median
                                   30
                                           Max
## -21.4488 -4.2807 -0.3642 3.7588 27.1795
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.16067
                          0.28476 91.870 < 2e-16 ***
## Time
              -1.45497
                          0.08531 -17.054 < 2e-16 ***
## smoker
              3.26100
                          0.28842 11.306 < 2e-16 ***
              0.02647
                          0.01701
## Age
                                    1.556 0.119886
## Drugs
              0.98109
                          0.30551
                                    3.211 0.001339 **
## Cesd
              -0.03024
                          0.01329 -2.275 0.022967 *
## Sex
               0.01309
                          0.03706 0.353 0.723959
                          0.14117 -3.529 0.000426 ***
## Time:smoker -0.49813
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.115 on 2368 degrees of freedom
## Multiple R-squared: 0.2519, Adjusted R-squared: 0.2497
## F-statistic: 113.9 on 7 and 2368 DF, p-value: < 2.2e-16
anova(lm.basic1.fit, lm.basic2.smkr.int.fit)
## Analysis of Variance Table
## Model 1: CD4sqrt ~ Time + smoker + Age + Drugs + Cesd + Sex
## Model 2: CD4sqrt ~ Time * smoker + Age + Drugs + Cesd + Sex
    Res.Df RSS Df Sum of Sq
                                  F
## 1
      2369 89026
      2368 88560 1
                       465.67 12.451 0.0004256 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
3-knot piecewise linear model:
cd4_dfTime0 <- (cd4_dfTime)*(cd4_dfTime >= 0)
cd4_dfTime1 <- (cd4_dfTime)*(cd4_dfTime >= 1)
cd4_dfTime3 <- (cd4_dfTime)*(cd4_dfTime >= 3)
cd4_df$smoker.Time0 <- cd4_df$Time0 * (cd4_df$smoker == 1)
cd4_df$smoker.Time1 <- cd4_df$Time1 * (cd4_df$smoker == 1)
cd4_df$smoker.Time3 <- cd4_df$Time3 * (cd4_df$smoker == 1)</pre>
lm.basic3.3knots.fit <- lm(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +</pre>
                            smoker.Time0 + smoker.Time1 + smoker.Time3 +
                            Age + Drugs + Cesd + Sex, data = cd4_df)
sum.lm.basic3.3knots.fit <- summary(lm.basic3.3knots.fit)</pre>
sum.lm.basic3.3knots.fit$coefficients
                  Estimate Std. Error
                                         t value
                                                     Pr(>|t|)
## (Intercept) 27.62100224 0.42794520 64.5433153 0.000000e+00
               -0.49509735 0.28322409 -1.7480764 8.058073e-02
## Time
## smoker
                3.41618031 0.57565138 5.9344604 3.382017e-09
```

```
## TimeO
                -4.61848193 1.00864168 -4.5789124 4.916571e-06
## Time1
                 2.60944372 0.74984995 3.4799545 5.105892e-04
## Time3
                 0.82646767 0.19072683 4.3332533 1.530719e-05
## smoker.Time0 -1.11693076 1.61832253 -0.6901781 4.901500e-01
## smoker.Time1 0.82155255 1.20090047
                                        0.6841138 4.939704e-01
## smoker.Time3 0.55113524 0.33201655 1.6599632 9.705460e-02
                 0.02634387 0.01681906 1.5663103 1.174099e-01
## Age
                 1.00121795 0.30277721 3.3067811 9.578813e-04
## Drugs
## Cesd
                -0.03023167 0.01314667 -2.2995680 2.155955e-02
                -0.02650970 0.03706504 -0.7152212 4.745430e-01
## Sex
## Time:smoker -0.56652489 0.45668532 -1.2405148 2.149083e-01
AIC(lm.basic1.fit, lm.basic2.smkr.int.fit, lm.basic3.3knots.fit)
##
                          df
                                  AIC
## lm.basic1.fit
                           8 15368.25
## lm.basic2.smkr.int.fit 9 15357.79
## lm.basic3.3knots.fit
                         15 15303.75
```

Plot residuals from 3-knot model

Im(CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + smoker.Time0 + smoker...

Covariance Structures

Table 3 below shows the results of using the piecewise linear model as our 'maximal' model while exploring various candidate covariance structures.

```
# Gaussian model with nugget
gls.gau.nug.fit <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                         smoker.Time0 + smoker.Time1 + smoker.Time3 +
                         Age + Drugs + Cesd + Sex, data = cd4_df,
                       correlation = corGaus(form = ~ Time | ID, nugget=T, value=c(1.5)))
# Gaussian model with nugget
gls.gau.nug.fit <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +</pre>
                         smoker.Time0 + smoker.Time1 + smoker.Time3 +
                         Age + Drugs + Cesd + Sex, data = cd4_df,
                       correlation = corGaus(form = ~ Time | ID, nugget=T, value=c(1.5)))
# accrue
variance.models <- c('Compound symmetry', 'Exponential Decay', 'Exponential Decay', 'Gaussian Decay', '
nugget.eff <- c(NA, 'No', 'Yes', 'No', 'Yes')</pre>
aics < c(14444.61, 14454.11, 14264.99, 14863.40, 14277.90)
cov.struct.df <- tibble(</pre>
  Variance.Model = variance.models,
  Nugget = nugget.eff,
  AIC = aics
kable(cov.struct.df, caption="Covariance Structures Summary", escape = F, digits = 6) %>%
  kable_styling(latex_options = c("hold_position"))
```

Table 3: Covariance Structures Summary

Table 5: Covariance Structures Summary									
Variance.Model	Nugget	AIC							
Compound symmetry	NA	14444.61							
Exponential Decay	No	14454.11							
Exponential Decay	Yes	14264.99							
Gaussian Decay	No	14863.40							
Gaussian Decay	Yes	14277.90							

Likelihood ratio tests performed against the compound symmetry model for both exponential and Gaussian models.

```
anova(gls.homo.fit, gls.exp.nug.fit)
##
                   Model df
                                 AIC
                                          BIC
                                                  logLik
                                                           Test L.Ratio
                       1 16 14444.61 14536.89 -7206.306
## gls.homo.fit
                       2 17 14265.00 14363.04 -7115.497 1 vs 2 181.6172
## gls.exp.nug.fit
                   p-value
## gls.homo.fit
## gls.exp.nug.fit <.0001
anova(gls.homo.fit, gls.gau.nug.fit)
                   Model df
                                          BIC
                                 AIC
                                                  logLik
                                                           Test L.Ratio
## gls.homo.fit
                       1 16 14444.61 14536.89 -7206.306
                       2 17 14277.90 14375.94 -7121.950 1 vs 2 168.7124
## gls.gau.nug.fit
                   p-value
## gls.homo.fit
## gls.gau.nug.fit <.0001
```

The next step is to refit this model using maximum likelihood and re-assess the fixed effects currently in this model through a sequence of drop-refit cycles.

```
gls.exp.nug.fit.ml <- update(gls.exp.nug.fit, method='ML')</pre>
# drop Age and refit
gls.exp1.nug.fit.ml <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                         smoker.Time0 + smoker.Time1 + smoker.Time3 + Drugs + Cesd + Sex,
                       correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                       data = cd4_df, method='ML')
sum.gls.exp1.nug.fit.ml <- summary(gls.exp1.nug.fit.ml)</pre>
anova(gls.exp.nug.fit.ml, gls.exp1.nug.fit.ml)
                       Model df
##
                                     AIC
                                              BIC
                                                     logLik
                                                              Test
                                                                     L. Ratio
## gls.exp.nug.fit.ml
                           1 17 14239.49 14337.63 -7102.745
                           2 16 14237.68 14330.06 -7102.843 1 vs 2 0.1958589
## gls.exp1.nug.fit.ml
                       p-value
##
## gls.exp.nug.fit.ml
## gls.exp1.nug.fit.ml 0.6581
sum.gls.exp1.nug.fit.ml$tTable
##
                      Value Std.Error
                                          t-value
                                                       p-value
## (Intercept) 28.67690237 0.46959962 61.0667068 0.000000e+00
## Time
                -0.15264484 0.25780139 -0.5921025 5.538386e-01
## smoker
                1.46566684 0.56018599 2.6163932 8.943018e-03
## TimeO
                -4.99998094 0.71140296 -7.0283387 2.723909e-12
## Time1
                2.54524236 0.50207323 5.0694644 4.298791e-07
## Time3
                0.51836481 0.14848976 3.4909128 4.901987e-04
## smoker.Time0 -0.29416816 1.14909809 -0.2559992 7.979738e-01
## smoker.Time1 0.68370781 0.80810374 0.8460644 3.976025e-01
## smoker.Time3 0.38167399 0.26605794 1.4345521 1.515471e-01
## Drugs
               0.62123710 0.31388426 1.9791917 4.791033e-02
## Cesd
                -0.04433498 0.01364592 -3.2489545 1.174541e-03
                 0.09895057 0.03721560 2.6588470 7.893759e-03
## Time:smoker -0.93307566 0.40577307 -2.2995012 2.156331e-02
gls.exp4.nug.fit.ml <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                          Drugs + Cesd + Sex,
                           correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                           data = cd4_df, method='ML')
# take out smoker.TimeO
gls.exp2.nug.fit.ml <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                             smoker.Time1 + smoker.Time3 +
                             Drugs + Cesd + Sex,
                           correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                           data = cd4_df, method='ML')
anova(gls.exp1.nug.fit.ml, gls.exp2.nug.fit.ml)
##
                       Model df
                                     AIC
                                              BIC
                                                     logLik
                                                               Test
                                                                       L.Ratio
## gls.exp1.nug.fit.ml
                           1 16 14237.68 14330.06 -7102.843
                           2 15 14235.75 14322.35 -7102.875 1 vs 2 0.06587116
## gls.exp2.nug.fit.ml
                       p-value
##
## gls.exp1.nug.fit.ml
## gls.exp2.nug.fit.ml 0.7974
summary(gls.exp2.nug.fit.ml)
```

Generalized least squares fit by maximum likelihood

```
##
     Model: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + smoker.Time1 +
                                                                                 smoker.Time3 + Drugs
##
    Data: cd4_df
##
         AIC
                  BIC
                          logLik
##
     14235.75 14322.35 -7102.875
## Correlation Structure: Exponential spatial correlation
  Formula: ~Time | ID
   Parameter estimate(s):
##
      range
               nugget
## 5.5045999 0.2943834
## Coefficients:
                   Value Std.Error t-value p-value
## (Intercept) 28.713698 0.4470470 64.22971 0.0000
               -0.126077 0.2359790 -0.53427
                                             0.5932
## Time
## smoker
                1.374836 0.4339717 3.16803
                                             0.0016
## TimeO
               -5.111527 0.5618721 -9.09731
                                             0.0000
## Time1
                2.614014 0.4237690 6.16849
                                             0.0000
## Time3
                0.525070 0.1461000 3.59391
                                            0.0003
## smoker.Time1 0.505385 0.4093128 1.23472
## smoker.Time3 0.361291 0.2538494 1.42325
                                            0.1548
## Drugs
                0.618203 0.3136013 1.97130
## Cesd
               -0.044284 0.0136417 -3.24619
                                             0.0012
## Sex
                0.099144 0.0372010 2.66510
## Time:smoker -1.003789 0.2971212 -3.37838 0.0007
## Correlation:
                (Intr) Time
                             smoker Time0 Time1 Time3 smk.T1 smk.T3
## Time
                0.395
## smoker
               -0.362 -0.138
## TimeO
                -0.398 -0.575 -0.004
## Time1
                0.110 0.082 0.181 -0.802
## Time3
                0.152  0.120  -0.061  -0.241  -0.034
## smoker.Time1 0.180 0.370 -0.487 0.027 -0.380 0.231
## smoker.Time3 -0.024 0.013 0.112 -0.037 0.162 -0.516 -0.429
               -0.541 -0.031 -0.039 -0.006 0.043 -0.002 -0.006 -0.002
## Drugs
## Cesd
               -0.068 -0.032 0.007 -0.017 0.036 -0.004 -0.035 0.001
## Sex
                0.002 0.076 -0.043 0.111 -0.103 -0.107 0.063 -0.029
## Time:smoker -0.116 -0.485 0.290 -0.006 0.296 0.002 -0.781 0.007
##
               Drugs Cesd
                             Sex
## Time
## smoker
## TimeO
## Time1
## Time3
## smoker.Time1
## smoker.Time3
## Drugs
## Cesd
                -0.014
## Sex
                -0.138 -0.045
## Time:smoker
                0.009 0.045 -0.044
## Standardized residuals:
##
          Min
                                  Med
                                               Q3
                                                          Max
```

```
## -3.30647137 -0.62678600 -0.02401535 0.64542868 4.33027322
##
## Residual standard error: 6.153606
## Degrees of freedom: 2376 total; 2364 residual
# take out smoker. Time1
gls.exp3.nug.fit.ml <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                             smoker.Time3 +
                             Drugs + Cesd + Sex,
                           correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                           data = cd4_df, method='ML')
anova(gls.exp2.nug.fit.ml, gls.exp3.nug.fit.ml)
                       Model df
                                     AIC
                                              BIC
                                                     logLik
                                                              Test L.Ratio
                          1 15 14235.75 14322.35 -7102.875
## gls.exp2.nug.fit.ml
                           2 14 14235.28 14316.11 -7103.641 1 vs 2 1.530821
## gls.exp3.nug.fit.ml
##
                       p-value
## gls.exp2.nug.fit.ml
## gls.exp3.nug.fit.ml
                         0.216
summary(gls.exp3.nug.fit.ml)
## Generalized least squares fit by maximum likelihood
    Model: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + smoker.Time3 +
                                                                                  Drugs + Cesd + Sex
##
    Data: cd4_df
##
          AIC
                  BIC
                         logLik
     14235.28 14316.11 -7103.641
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~Time | ID
  Parameter estimate(s):
      range
               nugget
## 5.4939855 0.2949111
##
## Coefficients:
##
                    Value Std.Error t-value p-value
## (Intercept) 28.613441 0.4396531 65.08186 0.0000
## Time
               -0.233966 0.2192496 -1.06712 0.2860
## smoker
                1.637719 0.3790024 4.32113
               -5.130389 0.5618161 -9.13179
## TimeO
                                             0.0000
## Time1
                2.812942 0.3921217 7.17364
## Time3
                0.483629 0.1421790 3.40155
                                             0.0007
## smoker.Time3 0.495774 0.2293822 2.16135
## Drugs
                0.620875 0.3136252 1.97967
                                              0.0479
## Cesd
                -0.043679 0.0136347 -3.20352
                                              0.0014
## Sex
                0.096165 0.0371309 2.58988 0.0097
## Time:smoker -0.717558 0.1857015 -3.86404 0.0001
##
## Correlation:
##
                (Intr) Time
                              smoker TimeO Time1 Time3 smk.T3 Drugs
## Time
                0.359
## smoker
                -0.319 0.052
## TimeO
               -0.410 -0.630 0.010
## Time1
                0.196 0.259 -0.004 -0.856
## Time3
                0.116  0.038  0.061  -0.255  0.060
```

```
## smoker.Time3 0.060 0.204 -0.122 -0.028 -0.001 -0.475
## Drugs
               -0.549 -0.031 -0.048 -0.006  0.045 -0.001 -0.005
                -0.063 -0.021 -0.011 -0.016 0.024 0.004 -0.015 -0.014
## Cesd
                -0.010 0.057 -0.014 0.109 -0.085 -0.126 -0.003 -0.138
## Sex
                0.039 -0.339 -0.166  0.024 -0.002  0.299 -0.580  0.006
## Time:smoker
##
                Cesd Sex
## Time
## smoker
## TimeO
## Time1
## Time3
## smoker.Time3
## Drugs
## Cesd
## Sex
                -0.043
## Time:smoker
                 0.028 0.009
##
## Standardized residuals:
##
           Min
                        Q1
                                   Med
                                                Q3
## -3.31648886 -0.63024169 -0.02186527 0.64301790 4.33187149
##
## Residual standard error: 6.152046
## Degrees of freedom: 2376 total; 2365 residual
# take out smoker. Time3
gls.exp4.nug.fit.ml <- gls(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                          Drugs + Cesd + Sex,
                           correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                           data = cd4_df, method='ML')
anova(gls.exp3.nug.fit.ml, gls.exp4.nug.fit.ml)
                       Model df
                                     AIC
                                              BIC
                                                     logLik
                                                              Test L.Ratio
                           1 14 14235.28 14316.11 -7103.641
## gls.exp3.nug.fit.ml
                           2 13 14237.96 14313.01 -7105.981 1 vs 2 4.680938
## gls.exp4.nug.fit.ml
                       p-value
## gls.exp3.nug.fit.ml
## gls.exp4.nug.fit.ml 0.0305
summary(gls.exp4.nug.fit.ml)
## Generalized least squares fit by maximum likelihood
    Model: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + Drugs + Cesd +
##
                                                                                   Sex
     Data: cd4 df
##
          AIC
##
                   BIC
                          logLik
     14237.96 14313.01 -7105.981
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~Time | ID
## Parameter estimate(s):
##
      range
               nugget
## 5.4497074 0.2932164
##
## Coefficients:
                   Value Std.Error t-value p-value
## (Intercept) 28.556413 0.4394516 64.98192 0.0000
```

```
## Time
                                  -0.330707 0.2150764 -1.53763 0.1243
                                   1.736490 0.3765655 4.61139 0.0000
## smoker
## TimeO
                                  -5.094444 0.5619903 -9.06500 0.0000
## Time1
                                   2.811457 0.3922413 7.16767 0.0000
## Time3
                                    0.628540 0.1253094 5.01591 0.0000
## Drugs
                                    0.624050 0.3138564 1.98833 0.0469
## Cesd
                                  -0.043203 0.0136425 -3.16678 0.0016
                                    0.096322 0.0371662 2.59167 0.0096
## Sex
## Time:smoker -0.484140 0.1515726 -3.19411 0.0014
##
##
      Correlation:
##
                                  (Intr) Time
                                                                  smoker TimeO Time1 Time3 Drugs Cesd
## Time
                                   0.356
## smoker
                                  -0.315 0.079
## TimeO
                                  -0.410 -0.638 0.007
## Time1
                                   0.196 0.264 -0.004 -0.856
## Time3
                                   0.164 0.156 0.003 -0.304 0.068
## Drugs
                                  -0.549 -0.030 -0.049 -0.006 0.045 -0.003
                                  -0.062 -0.018 -0.013 -0.016  0.024 -0.004 -0.014
## Cesd
                                  -0.009 0.058 -0.015 0.109 -0.085 -0.144 -0.138 -0.043
## Time:smoker 0.090 -0.276 -0.293 0.010 -0.002 0.033 0.005 0.023 0.009
## Standardized residuals:
##
                                                       01
                                                                                Med
                                                                                                              03
## -3.28265506 -0.62421825 -0.01781463 0.64676820 4.28889470
## Residual standard error: 6.161593
## Degrees of freedom: 2376 total; 2366 residual
Table 4 shows the model fit improvements made at each step when this is done.
removed.var <- c('Refit by ML', 'Remove Age', 'Remove smoker.Time0', 'Remove smoker.Time1', 'Remove smoker.Time1',
removed.aics <- c(14239.49, 14237.69, 14235.75, 14235.28, 14237.96)
fixed.ml.refit.df <- tibble(</pre>
    Action = removed.var,
    AIC = removed.aics
kable(fixed.ml.refit.df, caption="Fixed Effects Simplification Steps", escape = F, digits = 6) %>%
    kable_styling(latex_options = c("hold_position"))
```

Table 4: Fixed Effects Simplification Steps

Action	AIC
Refit by ML	14239.49
Remove Age	14237.69
Remove smoker.Time0	14235.75
Remove smoker.Time1	14235.28
Remove smoker.Time3	14237.96

Final GLS model:

Random Effects

Intercept Only:

```
me.exp.fit <- lme(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                   Drugs + Cesd + Sex, data = cd4_df,
                 random = ~ 1 | ID,
                 correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                 control = lmeControl(opt = 'optim', maxIter = 200))
summary(me.exp.fit)
## Linear mixed-effects model fit by REML
  Data: cd4 df
##
         AIC
                  BIC
                         logLik
##
    14261.61 14342.38 -7116.806
##
## Random effects:
## Formula: ~1 | ID
##
           (Intercept) Residual
           0.8709348 6.11799
## StdDev:
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~Time | ID
## Parameter estimate(s):
      range
               nugget
## 5.2275789 0.2969823
## Fixed effects: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + Drugs + Cesd +
                                                                                       Sex
##
                  Value Std.Error
                                    DF t-value p-value
## (Intercept) 28.555814 0.4397272 1998 64.93984 0.0000
              -0.331342 0.2152309 1998 -1.53947 0.1238
## Time
## smoker
               1.733834 0.3767272 1998 4.60236 0.0000
## TimeO
              -5.089535 0.5619440 1998 -9.05701 0.0000
## Time1
              2.808323 0.3921278 1998 7.16175 0.0000
## Time3
              0.627509 0.1254243 1998 5.00309
                                                 0.0000
## Drugs
              0.623072 0.3138874 1998 1.98502 0.0473
## Cesd
              -0.043207 0.0136426 1998 -3.16705 0.0016
## Sex
               0.096282 0.0371749 1998 2.58996 0.0097
## Time:smoker -0.483620 0.1516019 1998 -3.19007 0.0014
## Correlation:
##
             (Intr) Time
                            smoker TimeO Time1 Time3 Drugs Cesd
## Time
              0.356
## smoker
              -0.315 0.079
## TimeO
              -0.410 -0.638 0.007
## Time1
              0.196 0.263 -0.004 -0.856
              0.164 0.156 0.003 -0.305 0.068
## Time3
              -0.549 -0.030 -0.049 -0.006 0.044 -0.003
## Drugs
## Cesd
              -0.062 -0.018 -0.013 -0.017 0.024 -0.004 -0.014
              -0.009 0.058 -0.015 0.109 -0.085 -0.143 -0.138 -0.043
## Time:smoker 0.090 -0.276 -0.293 0.010 -0.002 0.034 0.005 0.023 0.009
## Standardized Within-Group Residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -3.29249705 -0.61275838 -0.01706265 0.63169992 4.21185980
##
## Number of Observations: 2376
```

```
## Number of Groups: 369
Intercept and Slope
me.exp2.fit <- lme(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                    Drugs + Cesd + Sex, data = cd4_df,
                  random = ~ Time | ID,
                 correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                  control = lmeControl(opt = 'optim', maxIter = 200))
summary(me.exp2.fit)
## Linear mixed-effects model fit by REML
   Data: cd4 df
##
         AIC
                  BIC
                         logLik
     14230.02 14322.33 -7099.011
##
##
## Random effects:
## Formula: ~Time | ID
   Structure: General positive-definite, Log-Cholesky parametrization
##
              StdDev
                         Corr
## (Intercept) 2.0964407 (Intr)
              0.9845339 0.503
## Time
## Residual
              5.3098138
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~Time | ID
## Parameter estimate(s):
##
      range
               nugget
## 4.8780932 0.4217302
## Fixed effects: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + Drugs + Cesd +
                                                                                        Sex
                   Value Std.Error
                                    DF t-value p-value
## (Intercept) 28.599133 0.4143627 1998 69.01957 0.0000
## Time
              -0.264699 0.2147327 1998 -1.23269 0.2178
               1.878705 0.3560576 1998 5.27641
## smoker
                                                  0.0000
## TimeO
              -5.332975 0.5557041 1998 -9.59679
                                                  0.0000
## Time1
               2.899091 0.3877502 1998 7.47670
                                                 0.0000
## Time3
               0.556828 0.1232737 1998 4.51700
                                                  0.0000
## Drugs
               0.602292 0.3107112 1998 1.93843
                                                  0.0527
## Cesd
              -0.041618 0.0134624 1998 -3.09141 0.0020
## Sex
               0.092962 0.0365338 1998 2.54456 0.0110
## Time:smoker -0.603932 0.1609632 1998 -3.75198 0.0002
## Correlation:
##
                            smoker TimeO Time1 Time3 Drugs Cesd
              (Intr) Time
## Time
              0.384
              -0.309 0.052
## smoker
## TimeO
              -0.411 -0.625 0.010
## Time1
               0.210 0.270 -0.006 -0.860
## Time3
               0.163 0.134 0.004 -0.281 0.065
              -0.575 -0.038 -0.059 -0.003 0.045 0.002
## Drugs
              -0.064 -0.018 -0.020 -0.017 0.023 -0.005 -0.013
## Cesd
## Sex
              -0.010 0.065 -0.011 0.107 -0.084 -0.150 -0.137 -0.043
## Time:smoker 0.049 -0.297 -0.198 0.011 -0.002 0.039 0.019 0.026 -0.004
## Standardized Within-Group Residuals:
##
          Min
                        Q1
                                                QЗ
                                                           Max
                                  Med
```

```
## -3.19926913 -0.57397965 -0.01855209 0.56955317 4.35946801
##
## Number of Observations: 2376
## Number of Groups: 369
Intercept, Slope and additional slope effects for each piecewise segment:
me.exp3.fit <- lme(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                     Drugs + Cesd + Sex, data = cd4_df,
                   random = ~ Time + Time0 + Time1 + Time3 | ID,
                   correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                   control = lmeControl(opt = 'optim', maxIter = 200))
AIC(me.exp.fit, me.exp2.fit, me.exp3.fit)
               df
                       AIC
## me.exp.fit 14 14261.61
## me.exp2.fit 16 14230.02
## me.exp3.fit 28 14247.21
Drop Drugs covariate for final model
me.exp4.fit <- lme(CD4sqrt ~ Time*smoker + Time0 + Time1 + Time3 +
                    Cesd + Sex, data = cd4_df,
                  random = ~ Time | ID,
                  correlation = corExp(form = ~ Time | ID, nugget = T, value=c(2, 0.1)),
                  control = lmeControl(opt = 'optim', maxIter = 200))
summary(me.exp4.fit)
## Linear mixed-effects model fit by REML
  Data: cd4_df
##
##
          AIC
                   BIC
                          logLik
##
     14226.69 14313.23 -7098.345
##
## Random effects:
## Formula: ~Time | ID
## Structure: General positive-definite, Log-Cholesky parametrization
              StdDev Corr
## (Intercept) 3.870145 (Intr)
## Time
              1.194359 0.114
## Residual
              4.101988
## Correlation Structure: Exponential spatial correlation
## Formula: ~Time | ID
## Parameter estimate(s):
##
      range
                nugget
## 0.7225396 0.5739228
## Fixed effects: CD4sqrt ~ Time * smoker + Time0 + Time1 + Time3 + Cesd + Sex
                                    DF t-value p-value
                   Value Std.Error
## (Intercept) 29.052133 0.3327126 1999 87.31901 0.0000
## Time
              -0.291148 0.2182508 1999 -1.33401 0.1824
## smoker
               1.849093 0.3566748 1999 5.18425 0.0000
## TimeO
              -5.272980 0.5604966 1999 -9.40769 0.0000
               2.827089 0.3901273 1999 7.24658 0.0000
## Time1
## Time3
               0.554318 0.1232589 1999 4.49718 0.0000
## Cesd
              -0.041219 0.0134607 1999 -3.06220 0.0022
## Sex
              0.099269 0.0362553 1999 2.73805 0.0062
```

```
## Time:smoker -0.576220 0.1621713 1999 -3.55316 0.0004
##
   Correlation:
              (Intr) Time
##
                           smoker TimeO Time1
                                              Time3 Cesd
                                                           Sex
              0.399
## Time
## smoker
              -0.427
                    0.057
## TimeO
              -0.492 -0.630 0.007
## Time1
              0.296 0.276 -0.002 -0.861
              0.230 0.152 0.001 -0.282 0.057
## Time3
##
  Cesd
              -0.089 -0.018 -0.020 -0.017
                                        0.024 -0.008
## Sex
             Time:smoker 0.080 -0.295 -0.214 0.013 -0.004 0.038 0.025
##
## Standardized Within-Group Residuals:
##
           Min
                        Q1
                                                Q3
                                                           Max
## -3.717867678 -0.525988959 -0.001285655 0.527522235 5.105774184
##
## Number of Observations: 2376
## Number of Groups: 369
AIC(me.exp4.fit)
```

[1] 14226.69

Diagnostic Plots

A residual plot, a variogram and an ACF for the residuals from this final model are shown below

```
par(mfrow=c(1,2))
plot(me.exp4.fit, form = resid(., level = 0) ~ fitted(.))
```



```
me.exp4.fit.variogram <- Variogram(me.exp4.fit, form = ~ Time | ID, nint = 100, robust = T)
plot(me.exp4.fit.variogram)</pre>
```


plot(ACF(me.exp4.fit))

par(mfrow=c(1,2)) qqnorm(me.exp4.fit, ~ resid(., type = "p"), abline = c(0, 1))

qqnorm(me.exp4.fit, ~ ranef(.))

Final Model Fixed Effects

```
sum.me.exp4.fit <- summary(me.exp4.fit)
round(sum.me.exp4.fit$tTable, digits = 4)</pre>
```

```
Value Std.Error
                                  DF t-value p-value
## (Intercept) 29.0521
                         0.3327 1999 87.3190 0.0000
## Time
              -0.2911
                         0.2183 1999 -1.3340 0.1824
               1.8491
                         0.3567 1999 5.1843 0.0000
## smoker
## TimeO
              -5.2730
                         0.5605 1999 -9.4077
                                             0.0000
## Time1
               2.8271
                         0.3901 1999 7.2466 0.0000
## Time3
               0.5543
                         0.1233 1999 4.4972 0.0000
## Cesd
              -0.0412
                         0.0135 1999 -3.0622 0.0022
## Sex
               0.0993
                         0.0363 1999 2.7381 0.0062
## Time:smoker -0.5762
                         0.1622 1999 -3.5532 0.0004
```

Components of Variability

```
sigma.b <- 3.870145 # (Intercept StdDev)
sigma.squ.b <- sigma.b^2 # 14.97802
sigma.squ.U.and.e <- 4.101988^2 # = 16.82631 (squared res std dev)
nugget <- 0.5739228
sigma.squ.e <- nugget * sigma.squ.U.and.e # 9.657003
sigma.squ.U <- sigma.squ.U.and.e - sigma.squ.e # = 7.169307</pre>
```

Application to Individual Trajectories

Subject 30119

Table 5: Estimated Variances for Subject 30119

1	2	3	4	5	6	7	8	9	10	11	12
35.66	33.55	32.24	31.67	31.65	32.09	33.21	36.17	38.57	42.71	47.2	52.68

kable(t(cor.30119[1,]), caption="Estimated Correlations for Subject 30119", escape = F, digits = 2) %>%
kable_styling(latex_options = c("hold_position"))

Table 6: Estimated Correlations for Subject 30119

1	2	3	4	5	6	7	8	9	10	11	12
1	0.61	0.53	0.48	0.45	0.41	0.36	0.29	0.26	0.21	0.17	0.13

Full covariance matrix:

```
var.cov.30119
```

```
## ID 30119
## Marginal variance covariance matrix
           1
                   2
                          3
                                 4
                                        5
## 1 35.6590 21.0730 18.136 16.206 14.965 13.704 12.401 10.549 9.5093
## 2 21.0730 33.5450 19.488 17.030 15.672 14.463 13.356 11.936 11.1830
## 3 18.1360 19.4880 32.244 18.773 16.926 15.512 14.437 13.326 12.8190
## 4 16.2060 17.0300 18.773 31.671 19.069 17.030 15.718 14.713 14.3880
## 5 14.9650 15.6720 16.926 19.069 31.646 18.915 17.083 15.939 15.7010
## 6 13.7040 14.4630 15.512 17.030 18.915 32.089 19.353 17.609 17.3620
## 7 12.4010 13.3560 14.437 15.718 17.083 19.353 33.209 20.099 19.5790
## 8 10.5490 11.9360 13.326 14.713 15.939 17.609 20.099 36.165 24.4130
      9.5093 11.1830 12.819 14.388 15.701 17.362 19.579 24.413 38.5680
## 10 8.0963 10.1810 12.194 14.077 15.600 17.426 19.649 23.684 26.7810
## 11 6.8452 9.3063 11.671 13.867 15.620 17.682 20.096 24.087 26.7690
## 12 5.5518 8.4071 11.146 13.680 15.693 18.039 20.739 24.996 27.6370
##
          10
                  11
## 1
      8.0963 6.8452 5.5518
## 2 10.1810 9.3063 8.4071
## 3 12.1940 11.6710 11.1460
     14.0770 13.8670 13.6800
## 5 15.6000 15.6200 15.6930
## 6 17.4260 17.6820 18.0390
## 7
     19.6490 20.0960 20.7390
## 8
     23.6840 24.0870 24.9960
## 9 26.7810 26.7690 27.6370
## 10 42.7060 31.4410 31.7400
## 11 31.4410 47.2050 36.3210
## 12 31.7400 36.3210 52.6780
```

Full correlation matrix:

```
cor.30119
```

```
## 1 1.0000000 0.6092848 0.5348636 0.4822465 0.4454697 0.4051114 0.3603646

## 2 0.6092848 1.0000000 0.5925652 0.5224840 0.4810007 0.4408240 0.4001655

## 3 0.5348636 0.5925652 1.0000000 0.5874764 0.5298669 0.4822404 0.4411858

## 4 0.4822465 0.5224840 0.5874764 1.0000000 0.6023299 0.5342000 0.4846511

## 5 0.4454697 0.4810007 0.5298669 0.6023299 1.0000000 0.5935467 0.5269723

## 6 0.4051114 0.4408240 0.4822404 0.5342000 0.5935467 1.0000000 0.5928468

## 7 0.3603646 0.4001655 0.4411858 0.4846511 0.5269723 0.5928468 1.0000000

## 8 0.2937402 0.3427017 0.3902508 0.4347269 0.4711373 0.5169137 0.5799661

## 9 0.2564189 0.3108982 0.3635204 0.4116680 0.4494231 0.4935164 0.5470764
```

Standard Deviations: 5.9715 5.7918 5.6784 5.6277 5.6255 5.6648 5.7627 6.0137 6.2103 6.535 6.8706 7

```
## 10 0.2074715 0.2689963 0.3285993 0.3827660 0.4243480 0.4707403 0.5217681
## 11 0.1668432 0.2338668 0.2991542 0.3586281 0.4041466 0.4543088 0.5075714
## 12 0.1280965 0.1999953 0.2704401 0.3349100 0.3843576 0.4387527 0.4958531
##
              8
                        9
                                 10
                                           11
## 1 0.2937402 0.2564189 0.2074715 0.1668432 0.1280965
## 2 0.3427017 0.3108982 0.2689963 0.2338668 0.1999953
## 3 0.3902508 0.3635204 0.3285993 0.2991542 0.2704401
## 4 0.4347269 0.4116680 0.3827660 0.3586281 0.3349100
## 5 0.4711373 0.4494231 0.4243480 0.4041466 0.3843576
## 6 0.5169137 0.4935164 0.4707403 0.4543088 0.4387527
## 7 0.5799661 0.5470764 0.5217681 0.5075714 0.4958531
## 8 1.0000000 0.6536855 0.6026589 0.5829710 0.5726844
## 9 0.6536855 1.0000000 0.6598877 0.6273784 0.6131577
## 10 0.6026589 0.6598877 1.0000000 0.7002634 0.6691875
## 11 0.5829710 0.6273784 0.7002634 1.0000000 0.7283677
## 12 0.5726844 0.6131577 0.6691875 0.7283677 1.0000000
BLUPs for Five
# get subject ids with 7 or more observations
sub.ids.7.plus <- cd4_df %% group_by(ID) %% summarise(num_obs = max(obsnum)) %%%
 filter(num_obs >= 7) %>% arrange(ID, num_obs) %>% select(ID)
cd4 7 df <- cd4 df %>% filter(ID %in% sub.ids.7.plus$ID)
target_sids <- c(30119, 40286, 20777, 10213, 10453)
target_df <- cd4_7_df %>% filter(ID %in% target_sids)
# build covariate matrix for selected subjects
X df <- target df %>%
  mutate(Intercept = rep(1, n())) %>%
  select(Intercept, Time, smoker, Time0, Time1, Time3, Cesd, Sex) %>%
  mutate(
    Time.Smoker = Time * smoker
  )
# define a method that returns a data frame containing the empirical BLUP for a subject
calculate_blup <- function(subjectId, df, mdl.fit){</pre>
  # extract subject design matrix
  X.sub <- as.matrix(df %>% ungroup() %>% filter(ID == subjectId) %>% select(-ID))
  # calculate fixed effects
  fe.sub <- X.sub %*% mdl.fit$coefficients$fixed</pre>
  # calculate random effects
  preds.sub <- mdl.fit$coefficients$random$ID[as.character(subjectId),]</pre>
  X.re <- X.sub[,c(1,2)]
  # do it componentwise and return data frame
  re.sub <- X.re %*% preds.sub
  blup.sub <- fe.sub + re.sub
  blup.df.sub <- tibble(</pre>
    ID = rep(subjectId, length(blup.sub)),
    Time = X.re[,2],
    Blup = blup.sub[,1]
  return(blup.df.sub)
# apply to selected subjects
blup_df.30119 <- calculate_blup(30119, X_df, me.exp4.fit)
```

```
blup_df.40286 <- calculate_blup(40286, X_df, me.exp4.fit)
blup_df.20777 <- calculate_blup(20777, X_df, me.exp4.fit)
blup_df.10213 <- calculate_blup(10213, X_df, me.exp4.fit)
blup_df.10453 <- calculate_blup(10453, X_df, me.exp4.fit)
```

Plot BLUPs

```
ggplot(cd4_df)+
 ggtitle('Population Average and BLUPs for Selected Subjects')+ xlab('Time (Years)')+ ylab('CD4 Sqrt')+
 scale_x_continuous(breaks=x)+
 geom_vline(xintercept = 0, colour='black', lty=5)+
 annotate("text", label = "Seroconversion time", x = 0.1, y = 50, size = 4, colour = "black", hjust=0)+
 geom_smooth(aes(x=yr, y=CD4sqrt), colour='red', se = F, method='loess', span=0.75)+
  # 30119
 geom_point(data=target_df %>% filter(ID == 30119), aes(x=yr, y=CD4sqrt), color='blue', shape=3)+
 geom_line(data=blup_df.30119, aes(x=Time, y=Blup), color='blue', lwd=1)+
  annotate("text", label = "30119", x = blup_df.30119[1,]$Time, y = blup_df.30119[1,]$Blup, size = 5, colour = "blue", hjust=0,
 # 20777
 geom_point(data=target_df %>% filter(ID == 20777), aes(x=yr, y=CD4sqrt), color='darkorange', shape=3)+
 geom_line(data=blup_df.20777, aes(x=Time, y=Blup), color='darkorange', lwd=1)+
 annotate("text", label = "20777", x = blup_df.20777[1,]$Time, y = blup_df.20777[1,]$Blup, size = 5, colour = "darkorange", hju
 # 40286
 geom_point(data=target_df %>% filter(ID == 40286), aes(x=yr, y=CD4sqrt), color='darkgreen', shape=3)+
 geom_line(data=blup_df.40286, aes(x=Time, y=Blup), color='darkgreen', lwd=1)+
 annotate("text", label = "40286", x = blup_df.40286[1,]$Time, y = blup_df.40286[1,]$Blup, size = 5, colour = "darkgreen", hjus
 geom_point(data=target_df %>% filter(ID == 10213), aes(x=yr, y=CD4sqrt), color='steelblue', shape=3)+
 geom_line(data=blup_df.10213, aes(x=Time, y=Blup), color='steelblue', lwd=1)+
 annotate("text", label = "10213", x = blup_df.10213[1,]$Time, y = blup_df.10213[1,]$Blup, size = 5, colour = "steelblue", hjus
 geom_point(data=target_df %>% filter(ID == 10453), aes(x=yr, y=CD4sqrt), color='black', shape=3)+
 geom_line(data=blup_df.10453, aes(x=Time, y=Blup), color='black', lwd=1)+
 annotate("text", label = "10453", x = blup_df.10453[1,]$Time, y = blup_df.10453[1,]$Blup, size = 5, colour = "black", hjust=0,
```

Population Average and BLUPs for Selected Subjects

