SURVIVAL ANALYSIS OF TCGA

What I've done- summary

In order to have a wide infrastructure and arsenal for the various tasks at hand, I've implemented multiple methods and a feature selection process below on each omic and on the merged omics for each cancer type.

All applied methods mentioned below are pending hyperparameter tuning.

Feature selection and cleaning

- Log transformation to mirna and exp files
- Handle samples with negative 'last contact days to'
- Removing duplicates
- Removing features with std == 0
- Normalization (scaling) of features
- Calculate mutual information and remove insignificant features relatively to the event the duration
- Correlation between all remaining features and remove highly correlated features (>0.9)

Methods

COX

- No Regularization
- Ridge
- Lasso
- Elastic net

Gradient Boosting

- No Regularization
- Dropout
- Subsample
- Learning rate

Random Survival Forest

Vanilla NN

Details about the methods

The Cox model

The Cox model with Ridge regularization coefficients optimize the problem below:

$$rg \max_{eta} \quad \log \operatorname{PL}(eta) - rac{lpha}{2} \sum_{j=1}^p eta_j^2$$

 $\alpha \ge 0$ is a hyper-parameter that controls the amount of shrinkage. I checked the alphas [0.01,0.1,0.3,0.5,0.7].

The Cox model with Lasso regularization coefficients optimize the problem below:

$$rg \max_{\beta} \quad \log \operatorname{PL}(\beta) - \alpha \sum_{j=1}^{p} |\beta_j|$$

α≥0 is a hyper-parameter that controls the amount of shrinkage. I checked 50 α values that give up to 5% of the estimated maximum.

The Cox model with Elastic net regularization coefficients optimize the problem below:

$$rg \max_{eta} \quad \log \operatorname{PL}(eta) - lpha \left(r \sum_{j=1}^p |eta_j| + rac{1-r}{2} \sum_{j=1}^p eta_j^2
ight)$$

r∈[0,1] is the relative weight of the L1 and L2 penalty.

I chose r = 0.5 and checked 50 α values that give up to 5% of the estimated maximum.

Gradient Boosting

The loss function is the partial likelihood loss of Cox's proportional hazards model . Therefore, the objective is to maximize the log partial likelihood function, but replacing the traditional linear model with the additive model.

 $f(\mathbf{x})$:

$$rg \min_{f} \quad \sum_{i=1}^{n} \delta_{i} \left[f(\mathbf{x}_{i}) - \log \left(\sum_{j \in \mathcal{R}_{i}} \exp(f(\mathbf{x}_{j})) \right) \right]$$

I used a test portion of 0.15 of the data.

I checked the range of the number of estimators (weak learners).

The range is between 25 to 160 with jumps of 5 estimators in each iteration.

I tried each of the number of estimators on each of the regularizations:

The Gradient boosting model with dropout forces the base learners to account for some of the previously fitted base learners to be missing.

I chose a dropout rate of 0.1.

The Gradient boosting model using subsample uses a subsample of less than 1 such that each iteration only a portion of the training data is used.

I chose a subsample of 0.5 in each iteration.

The Gradient boosting model using a learning rate less than 1 to restrict the influence of individual base learners.

I chose a learning rate of 0.1.

Random Survival Forest

I used a test portion of 0.20 of the data.

I checked 1000 estimators as the number of estimators.

Vanilla NN

I used a general NN from this link.

I chose to split the duration to 50 intervals.

I used a validation portion of 0.20 and a test portion of 0.15 of the data.

I'm planning to extend and explore this and other networks.

The Tasks

TASK 1

For this task I will choose the best model based on data of the merged omics.

The Results

COX

- No Regularization
- Ridge
- Lasso
- Elastic net

Cancer type	Regularization	alpha	Concordance index
BLCA	no regularization		0.551
	ridge	0.3	0.658
	elastic net	0.04	0.626
BRCA	no regularization		0.652
	ridge	0.1	0.658
	lasso	0.003	0.645
	elastic net	0.005	0.692
HNSC	no regularization		0.565
	ridge	0.05	0.627
	lasso	0.004	0.575
	elastic net	0.006	0.599
LAML	no regularization		0.53
	ridge	0.7	0.608
	lasso	0.027	0.596
	elastic net	0.011	0.58

LGG	no regularization		0.757
	ridge	0.3	0.886
	lasso	0.01	0.873
	elastic net	0.012	0.88
LUAD	no regularization		0.448
	ridge	0.3	0.55
	lasso	0.001	0.61
	elastic net	0.0318	0.588

Boosting

- No Regularization
- Dropout
- Subsample
- Learning rate

Cancer type	Regularization	Number of estimators	Concordance index
BLCA	dropout	70	0.691
BRCA	no regularization	145,150,150	0.851
LAML	no regularization	65	0.862
LGG	no regularization	90,95,120	0.796
	dropout	25,30	
LUAD	subsample	40	0.75
HNSC	no regularization	150	0.783

BRCA:

HNSC:

LAML:

LGG:

LUAD:

Random Survival Forest

Cancer type Random Survival Forest

BLCA **0.596**

BRCA **0.658**

LAML **0.741**

LGG **0.839**

LUAD **0.72**

HNSC **0.444**

Vanilla NN

Cancer type Concordance index

BLCA **0.92**

BRCA **0.964**

LAML **0.874**

LGG **0.623**

LUAD **0.932**

HNSC **0.972**

Task 1 best results using 5-cross validation concordance index

Cancer type	Regularization	Hyper parameter	Concordance index
LGG	ridge	Alpha 0.3	0.886
LAML	Boosting no regularization	65	0.862
BRCA	Boosting no regularization	145 150 150	0.851
HNSC	Boosting no regularization	150	0.783
LUAD	Boosting subsample	40	0.75
BLCA	Boosting dropout	70	0.691

Plans

- Check tuning of hyper parameters
- Add features from the clinical data as gender and age in RSF if that's improves the model - make a predictor to the clinical data based on the omics and then integrate it as a feature
- Check methods to consider the multi view omics- probably use the baseline predictors for each omic

Task 2

I build a baseline survival predictor based on each omic for each cancer type. For now the end results of this task are the best model based on data of gene expression.

The Results

COX

- No Regularization
- Ridge
- Lasso
- Elastic net

Cancer type	Regularization	alpha	Concordance index
BLCA	no regularization		0.579
	ridge	0.05	0.679
	lasso	0.004	0.613
	elastic net	0.005	0.681
BRCA	no regularization		0.529
	ridge	0.05	0.679
	lasso	0.004	0.613
	elastic net	0.006	0.66
LAML	no regularization		0.574
	ridge	0.05	0.641
	lasso	0.004	0.608
	elastic net	0.01	0.606
LGG	no regularization		0.696
	ridge	0.1	0.877
	lasso	0.006	0.857

	elastic net	0.006	0.868
LUAD	no regularization		0.464
	ridge	0.7	0.551
	lasso	0.016	0.584
	elastic net	0.033	0.588

Boosting

- No Regularization
- Dropout
- Subsample
- Learning rate

Cancer type	Regularization	Number of estimators	Concordance index
BLCA	no regularization	65, 100	0.728
BRCA	no regularization	50, 55	0.712
LAML	subsample	30	0.837
LGG	no regularization	45, 55	0.855
LUAD	learning rate	25, 30, 35	0.599
HNSC	no regularization	95	0.795

BLCA:

BRCA:

HNSC:

LAML:

LGG:

LUAD:

Random Survival Forest

Cancer type	RF
BLCA	0.606
BRCA	0.726
LAML	0.666
LGG	0.833
LUAD	0.672
HNSC	0.399

Vanilla NN

Cancer type	Concordance Index
BLCA	0.773
BRCA	0.99
LAML	0.951
LGG	0.965
LUAD	0.954
HNSC	0.978

Task 2 best results using 5-cross validation concordance index

Cancer type	Regularization	alpha	Concordance index
BLCA	no regularization	65,100	0.728
BRCA	no regularization	50,55	0.712
HNSC	no regularization	95	0.795
LAML	subsample	30	0.837
LGG	ridge	0.1	0.877
LUAD	learning rate	25,30,35	0.599

Plans

- Check tuning of hyper parameters
- Learn the other omics representation based on the tested omic
 - \circ NN
 - Regression
 - o RF Regressor
 - o Gradient Boosting Regressor
- Add the representation of the other omics the survival predictor of the tested omic
- Compare the results

Task 3

I build a baseline survival predictor based on all the omics for each cancer type. For now the end results of this task are the best model based on data of tested cancer type - the same results as in task 1.

Plans

- Check tuning of hyper parameters
- Learn the representation of the other cancer types survival based on the tested on
 - \circ NN
 - Regression
 - o RF regressor
 - Gradient Boosting Regressor
- Add the representation of the other cancer types to the survival predictor of the tested cancer type
- Compare results to baseline and to each other