DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 3

Due. 13 September 2021

LECTURE 6

- $[k] \cdot [l] = [kl]$ is well-defined on $\mathbb{Z}/_n$ with respect to choice of n.
- Unlike $(\mathbb{Z} \{0\}, \cdot, [1])$, $(\mathbb{Z}/_n \{0\}, \cdot, [1])$ is NOT necessarily a monoid!

Ex. $\mathbb{Z}/_4 - \{[0]\} \ni [2]$, but $[2] \cdot [2] = [0] \notin \mathbb{Z}/_4 - \{[0]\}$.

Ex. $\mathbb{Z}/_3 - \{[0]\} := ([1], [2])$ and $[2] \cdot [2] = [1]$. This is stronger than a monoid; it's a group! (This is actually an "avatar" of the cyclic group of order 2)

• Q: What's going on??

Congruence and gcd

Lemma (6.1). Let n > 1. If $k \equiv l \pmod{n}$ and gcd(k, n) = 1, then gcd(l, n) = 1.

Theorem (6.2). Let n > 1. Define $\mathbb{Z}^{\times}/_n := \{[k] \in \mathbb{Z}/_n - \{[0]\} | \gcd(k, n) = 1\}$. Then $(\mathbb{Z}^{\times}/_n, \cdot, [1])$ is an abelian group called the **Group of Units mod** n.

Proof.

- 1. If [k], $[l] \in \mathbb{Z}^{\times}/_n$, then $[kl] \in \mathbb{Z}^{\times}/_n$ by Lem 6.3. Hence, \cdot is a well-defined binary operator.
- 2. (Check Group Axioms):
 - (a) Associativity (easy)
 - (b) Left/Right Identity (easy)
 - (c) Left/Right Inverse: Let $[a] \in \mathbb{Z}^{\times}/_n$. WTS $\exists [u] \in \mathbb{Z}^{\times}/_n$ such that [a][u] = [1] = [u][a]. Well, $\exists u, v \in \mathbb{Z}$ such that $au + nv = 1 \implies ua + nv = 1 \implies \gcd(u, n) = 1 \implies [u] \in \mathbb{Z}^{\times}/_n$. Moreover, $au + nv = 1 \implies n|au 1$. Therefore, [au] = [1]. Hence, [u] is the inverse of [a]. Similar proof gives $[u] \cdot [a] = [1]$.

3. Show abelian: $\forall [a], [b] \in \mathbb{Z}^{\times}/_n$, $[a] \cdot [b] = [b] \cdot [a]$. This is obvious due to commutativity of integers.

Remark.

- 1. $\mathbb{Z}^{\times}/_n$ is well-defined by Lem 6.1.
- 2. We are "discarding" elements from $\mathbb{Z}^{\times}/_{n} \{[0]\}$ to get a group.

Lemma (6.3). Let $a, b \in \mathbb{Z}$ with n < 1. If gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof. There exist $u, u', v, v' \in \mathbb{Z}$ such that au + nv = 1 and bu' + nv' = 1. Therefore $(au + nv)(bu' + nv') = 1 \implies ab(uu') + n(\cdots) = 1$. Thus gcd(ab, n) = 1 by Thm 2.2.

Corollary (6.4). Let $p \in \mathbb{Z}$ be prime.

- 1. $\mathbb{Z}^{\times}/_n = \mathbb{Z}/_p \{[0]\} = \{[1], [2], \dots, [p-1]\}.$
- 2. Every non-0 element of $\mathbb{Z}/_p$ has a multiplicative inverse.

Comparing Groups

Definition (6.5). The <u>order |G| of a group G is the cardinality of G as a set. G is <u>finite</u> iff $|G| < \infty$. e.g. $|\mathbb{Z}/_n| = n$, $|\mathbb{Z}| = \infty$, $|GL_2(\mathbb{Z}/_p)| = (p^2 - 1)(p^2 - p)$ </u>

Definition (6.6). Let $(G, *_G, e_G)$ and $(H, *_H, e_H)$ be groups. A **group homomorphism** between G and H is a function $\rho : G \to H$ such that $\forall a, b \in G$, $\rho(a *_G b) = \rho(a) *_H \rho(b)$.

Lecture 7

Definition. A function $\rho: G \to H$ is **group isomorphic** iff ρ is a bijection and also a homomorphism. We say G, H are **isomorphic** iff there exists a group isomorphism $\rho: G \to H$. We say $G \cong H$.

Ex (Basic Examples).

- 1. Let *G* be a group. Then $id_G : G \to G$ is a group isomorphism.
- 2. Let $n \in \mathbb{Z}$. Define $n\mathbb{Z} := \{nk | k \in \mathbb{Z}\}$. Define $\rho : n\mathbb{Z} \to \mathbb{Z}$, $\rho(na) := na$. Observe that ρ is a homomorphism, but not a group isomorphism since ρ is not surjective.
- 3. Let $\mathbb{R}^{\times} := \mathbb{R} \{0\}$, where $(\mathbb{R}^{\times}, \cdot, 1)$ is a group. Then det : $GL_2 \to \mathbb{R}^{\times}$. Observe that this is a homomorphism, but not an isomorphism since it is not injective.
- 4. Let n > 1 and $\pi : \mathbb{Z} \to \mathbb{Z}/_n$, $\pi(a) := [a]$. This is a group homomorphism, but not an isomorphism (not injective).

Ex (Non-Examples). Let $f, g : \mathbb{Z} \to \mathbb{Z}$.

Define f(a) := a+1. This is not a homomorphism: $f(a+b) = a+b+1 \neq a+b+2 = f(a)+f(b)$. Define $g(a) := a^2$. This is also not a homomorphism: $g(a+b) = a^2 + 2ab + b^2 \neq a^2 + b^2 = g(a) + g(b)$.

Abstract Properties of Group Homomorphisms

Proposition (7.1). Let $(G, *_G, e_G)$ and $(H, *_H, e_H)$ be groups. Let $\rho : G \to H$ be a group homomorphism.

- i. $\rho(e_G) = e_H$.
- ii. $\forall g \in G$, if g^{-1} is the inverse of g, then $\rho(g^{-1})$ is the inverse of $\rho(g) \in H$.

Proposition (7.2). If $\rho: G \to H$ for G, H groups is a group isomorphism, then

- i. |G| = |H|.
- ii. *G* is abelian iff *H* is abelian.