数据结构

深圳技术大学 大数据与互联网学院

What is dynamic programming

- 与分治法类似,动态规划也是通过组合子问题的解来求解问题.
- 分治算法将问题划分成独立子问题,递归地解决 这些子问题,然后组合这些子问题的解来求解原 始问题.
- If these subproblems are not independent, what will happen?

算法总体思想

动态规划算法与分治法类似,其基本思想也是 将待求解问题分解成若干个子问题

算法总体思想

但是经分解得到的子问题往往不是互相独立的.不同 子问题的数目常常只有多项式量级.在用分治法求解 时,有些子问题被重复计算了许多次.

算法总体思想

如果能够保存已解决的子问题的答案,而在需要时再 找出已求得的答案,就可以避免大量重复计算,从而 得到多项式时间算法.

Those who cannot remember the past are doomed to repeat it.

【无法记取教训者必重蹈覆辙 】

The life of Reason,
Book I: Introduction and
Reason in Common

Sense (1905)

What is dynamic programming 什么是动态规划?

- 当子问题发生重叠时,分治法做了很多不必要的工作——重复对重叠的子问题进行求解.
- 动态规划算法对每个子问题求解一次,然后将结果保存在一张表里面,这样可以避免每个已求解子问题的重复计算.
- 对于Fibonacci序列,一个明显的方法是从f(1)开始自底向上地计算到f(n),只需要 $\Theta(n)$ 时间和 $\Theta(1)$ 空间.
- 和前面的方法相比,可以很大程度降低时间复杂度.

Fibonacci sequence(序列)

- Fibonacci序列定义如下:
 - □ 1. procedure f(n)
 - \square 2. if n=1 or n=2 then return 1
 - \square 3. else return f(n-1)+f(n-2)
- 这种递归形式有简洁、容易书写和容易查错等 优点,最主要是它的抽象性.
- 但是它远不是有效的算法.
 - □ 算法复杂性: Θ(φ¹)
 - □ Why???

9/21/2018

Matrix chain multiplication矩阵链相乘

- 设有4个矩阵A, B, C, D, 它们的维数分别是 A:50×10 B:10×40 C:40×30 D:30×5, 共有5种加括号 的方式:
- $\blacksquare (A((BC)D))$
 - □ 乘法次数: 16000
- $\blacksquare (A(B(CD)))$
 - □ 乘法次数: 10500
- ((AB)(CD))
 - □ 乘法次数: 36000
- (((AB)C)D)
 - □ 乘法次数: 87500
- ((A(BC))D)
 - □ 乘法次数: 34500

$M_1:5\times10$ $M_2:10\times4$ $M_3:4\times6$ $M_2:6\times10$ $M_5:10\times2$

C[1,1]=0	C[1,2]=200	C[1,3]=320	C[1,4]=620	C[1,5]=348
	C[2,2]=0	C[2,3]=240	C[2,4]=640	C[2,5]=248
		C[3,3]=0	C[3,4]=240	C[3,5]=168
			C[4,4]=0	C[4,5]=120
				C[5,5]=0

图7.3 矩阵链乘算法的一个例子

31