

Project Introduction

Objective: Train and optimize a sentiment classification model and then measure sentiment accuracy across other domain data sets

- 1. Primary model built off Amazon Food Reviews dataset
 - a) 568k reviews
 - b) Text reviews paired with 1-5 rating scale
- 2. Bulk of project was focused on optimizing model, not just using first working model
- 3. Test data sets selection (restaurants, beer, and movies) based on diversity of domain, review style, and dataset size

Key Question:

What can we learn about cross-domain sentiment analysis?

Research Process

The team spent significant amount of time on model training, testing, optimization, and error analysis.

^{*}Includes Base Model Error Analysis

Baseline Models

Naïve Bayes

- Split the data 2/3 training and 1/3 test
- Used the Scikit-learn BernoulliNB classifier
- 87.6% test accuracy on the Amazon reviews

Neural Bag-of-Words

- Split the data 60% training, 10% validation, and 30% test
- Used the model from our assignment 2 (Bengio 2003)
- 93.7% test accuracy on the Amazon reviews

LSTM Model

Data Preparation

- Ratings need to be converted to a 0 or 1
- Ratings are converted to tokens, which are converted to word IDs.

Word Embeddings

We use pre-trained GloVe vectors (dimension 50)

TensorFlow Graph

 Consists of an embedding, RNN, output, and softmax layer.

Training

- A loop feeds training data to the TF graph.
- The graph is then saved as a checkpoint that can be loaded by the testing code.

LSTM Model Optimizations

Test	LSTM Layers		Dropout keep probability	Batch size	Test Accuracy
1-layer LSTM model	1	0.001	0.75	24	0.87
1-layer LSTM model with larger batch size	1	0.001	0.75	50	0.81

LSTM		Dropout keep		
Layers	Learning Rate	probability	Batch size	Test Accuracy
2	0.001	0.75	24	0.91
2	0.001	0.9	24	0.63
2	0.001	0.75	24	0.91
2	0.001	0.75	24	0.86
	_	Layers Learning Rate 2 0.001 2 0.001	Layers Learning Rate probability 2 0.001 0.75 2 0.001 0.9 2 0.001 0.75	Layers Learning Rate probability Batch size 2 0.001 0.75 24 2 0.001 0.9 24 2 0.001 0.75 24

Base Model Error Analysis

Mis-predicted reviews were analyzed to understand where the model failed

Failure Categories

- Fact Heavy: Review is description based (price, neutral phrasing, little sentiment) instead of opinion based
- Category Specific: Text contains taste specific descriptions unique to a food type (i.e. coffee, dog food)
- **3. Incorrect Rating:** Binary based model forces fringe ratings (2-4) to fall on one side of the fence, sometimes incorrectly
- **4. Review Commingling:** Text mixes focus between products for comparison purposes

Failure Corrections

- 1. Summary Text (R): Concatenate summary text to main review text
- **2. Misspellings (RNI):** Build incorrect spelling dictionary to correct misspellings
- Category Specific (DNR): Train category specific models to differentiate between category specific language
- 4. Fact/Opinion Tagging (DNR): Tag phrases as fact or opinion and de-value the role that pure facts play in sentiment weighting

R = Revise; RNI = Revised, No Improvement; DNR = Did Not Revise

Cross Domain Testing

	Amazon: Fine Foods	Yelp: Restuarants	RateBeer: Beer	IMDB: Movies
Size	568k reviews	1.5k reviews	71k reviews	2k reviews
Qualitative Review		- Short reviews - Mix of restaurant description (factual) and reviewer experience (opinion) - High use of taste, smell, visual descriptions	- Long reviews - Fact based descriptions (color, viscosity, etc.) with little expression - Opinion and sentiment usually at end of review - Review distribution skewed higher	- Extremely long reviews - Descriptive in nature - No food, taste, smell descriptors used - Opinion often clouded by complex sarcasm or phrasing
Accuracy	Accuracy: 0.91	Accuracy: 0.72	Accuracy: 0.66	Accuracy: 0.44
Loss	Loss: .27	Loss: 0.59	Loss: 0.72	Loss: 1.38
Error Analysis Comments		Forecast: Good performance due to food related overlap in vocabulary and strong opinions. Post Testing: Errors due to restaurant comparison, situational descriptions, and implicit price/quality descriptions	Forecast: Good performance due to visual, taste, and smell related descriptions. Post Testing: Almost all errors have domain specific descriptions (head, color, beer specific taste)	Forecast: Moderate performance due to no food domain overlap. Post Testing: Length of reviews and complex sarcasm / phrasing led to terrible performance

Conclusion

Achieving 72% accuracy on Yelp restaurant reviews shows it is possible to share classifier models across review data sets. The most impactful considerations are review length and dataset domain overlap.

Lessons Learned:

- Don't underestimate workload to train, optimize, and re-test LSTM models on very large datasets
- Binary sentiment is one thing, but multi-class sentiment could be more beneficial
- Many variables present in test data sets can impact accuracy
- Error analysis processes could be more robust to handle advanced problems (word weighting, word specific sentiment, etc.)