

#### UNITED KINGDOM · CHINA · MALAYSIA

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING FACULTY OF ENGINEERING

ELECTRONIC PROCESSING AND COMMUNICATIONS
(EEEE2044 UNUK) (FYR1 22-23)

# LTspice Simulation of Sequential Circuits

Author: George Downing

Student Number: 20273662

October 24, 2022

## Contents

| Question 1  | 2  |
|-------------|----|
| Question 2  | 3  |
| Question 3  | 4  |
| Question 4  | 5  |
| Question 5  | 5  |
| Question 6  | 6  |
| Question 7  | 6  |
| Question 8  | 6  |
| Question 9  | 7  |
| Question 10 | 7  |
| Question 11 | 8  |
| Question 12 | 9  |
| Question 13 | 9  |
| Question 14 | 10 |
| Question 15 | 11 |
| Question 16 | 12 |
| Question 17 | 13 |
| Question 18 | 15 |
| Question 19 | 16 |
| Question 20 | 17 |



Figure 1: State Diagram for Q1

| Present State | Next    | State $(n+1)$ | Present Output |
|---------------|---------|---------------|----------------|
| (n)           | X=0 X=1 |               | Z              |
| $S_0$         | $S_0$   | $S_1$         | 0              |
| $S_1$         | $S_2$   | $S_2$         | 0              |
| $S_2$         | $S_0$   | $S_3$         | 0              |
| $S_3$         | $S_2$   | $S_1$         | 1              |

Table 1: State Transition Table in terms of  $\mathcal{S}_0$  and  $\mathcal{S}_1$ 

| Î        | Pre            | sent    | N           | lext Sta    | te(n+1)     | D-inputs reqired |       |       | Output |       |          |
|----------|----------------|---------|-------------|-------------|-------------|------------------|-------|-------|--------|-------|----------|
| $\mid S$ | tat            | e(n)    | X :         | = 0         | X :         | = 1              | X :   | =0    | X =    | = 1   | 7 Output |
| Q        | $\binom{A}{n}$ | $Q_n^B$ | $Q_{n+1}^A$ | $Q_{n+1}^B$ | $Q_{n+1}^A$ | $Q_{n+1}^B$      | $D_A$ | $D_B$ | $D_A$  | $D_B$ |          |
| (        | 0              | 0       | 0           | 0           | 0           | 1                | 0     | 0     | 0      | 1     | 0        |
| (        | 0              | 1       | 1           | 0           | 0           | 1                | 1     | 0     | 0      | 1     | 0        |
|          | 1              | 0       | 0           | 0           | 1           | 1                | 0     | 0     | 1      | 1     | 0        |
|          | 1              | 1       | 1           | 0           | 0           | 1                | 1     | 0     | 0      | 1     | 1        |

Table 2: State Transition Table in terms of  $\mathcal{Q}_n^A$  and  $\mathcal{Q}_n^B$ 



Figure 2: Karnaugh map for the Input of flip-flop  $D_A$ 



Figure 3: Karnaugh map for the Input of flip-flop  $D_B$ 

$$D_A = Q_n^B \cdot \overline{X} + Q_n^A \cdot \overline{Q_n^B} \cdot X \tag{1}$$

$$D_B = X (2)$$

$$Z = Q_n^A \cdot Q_n^B \tag{3}$$

Eq. 1 is the input of flip-flop  $D_A$  derived from the Karnaugh map as shown in figure 2. Eq. 2 is the input of flip-flop  $D_B$  derived from the Karnaugh map as shown in figure 3. Eq. 3 is the output of the flip-flop  $D_A$  as shown by Table 2.



Figure 4: LTspice schematic for Q4



Figure 5: LTspice Simulation Traces V(CLK), V(X) and V(Z) for Q5

$$t_{AFGCD} = t_{pd} + t_{A1} + t_{A5} (4)$$

$$t_{DGCD} = t_{pd} + t_{A1} + t_{A5} (5)$$

Eq. 4 and 5 denote the delay through paths  $t_{DGCD}$  and  $t_{AFGCD}$ .

#### Question 7

$$t_{JGCD} = t_{A1} + t_{A5} (6)$$

Eq. 6 denotes the delay through path  $t_{JGCD}$ .

#### Question 8

$$t_{AEBCD} = t_{pd} + t_{A2} + t_{A5}$$

$$= 40ns + 27ns + 22ns$$

$$= 89ns$$
(7)

$$t_{AFGCD} = t_{pd} + t_{A1} + t_{A5}$$

$$= 40ns + 27ns + 22ns$$

$$= 89ns$$
(8)

$$t_{DGCD} = t_{pd} + t_{A1} + t_{A5}$$

$$= 40ns + 27ns + 22ns$$

$$= 89ns$$
(9)

Eq. 7, 8 and 9 denote the delay through paths  $t_{AEBCD}$ ,  $t_{AFGCD}$  and  $t_{DGCD}$  respectively. The maximum delay of these three paths is  $t_{min} = 89ns$ .

$$t_{JHBCD} = t_{A4} + t_{A2} + t_{A5}$$

$$= 22ns + 27ns + 22ns$$

$$= 71ns$$
(10)

$$t_{JGCD} = t_{A1} + t_{A5}$$
  
=  $27ns + 22ns$   
=  $49ns$  (11)

Eq. 10 and 11 denote the delay through paths  $t_{JHBCD}$  and  $t_{JGCD}$  respectively. the maximum delay of these two paths is  $t_{min} = 71ns$ .



Figure 6: LTspice Simulation Traces V(CLK), V(X) and V(Z) for Q10



Figure 7: LTspice Simulation Traces V(CLK), V(X) and V(Z) for Q11

Figure 8 shows the output V(Z) as a flat line indicating the circuit is not operating correctly due to being clocked too fast.

V(X) clocked on the falling edge of V(CLK) and V(Z) is clocked on the rising edge of V(CLK). This means any change in V(X) only has half a clock cycle to propagate to the the input of  $D_a$ .  $t_{JHBCD}=71ns$  which is more than half of the clock cycle (60ns) when  $t_{CLK}=120ns$ . This means the circuit is not operating correctly due to being clocked too fast.



Figure 8: LTspice Simulation Traces V(CLK), V(X) and V(Z) for Q12

Figure 8 shows the output V(Z) now producing the correct output when clocked at 120ns. Introducing a delay of 10ns, the time between a change in V(x) and the rising edge of V(CLK) now becomes 60ns + 10ns + 0.5ns = 70.5ns, where the 10ns is the additional delay and 0.5ns, the delay caused by a 1ns rise time. the mesured value of  $t_{JHBCD} = 70.36$  which is less than 70.50ns therfore will propergate in time V(Z) to be clocked.

| State | Description of state                  |
|-------|---------------------------------------|
| $S_0$ | Initial State/Last bit is '0'         |
| $S_1$ | Detect '1' in most recent bit.        |
| $S_2$ | Detect '10' in most recent two bit.   |
| $S_3$ | Detect '100' in most recent two bit.  |
| $S_4$ | Detect '1000' in most recent two bit. |

Table 3: State description table for mealy machine to detect the sequence 10001

| ID            | 20273662                  |
|---------------|---------------------------|
| Test sequence | 10001                     |
| Test stream   | 1111110001100111010001110 |

Table 4: Data for Q14



Figure 9: State Diagram for Q14  $\,$ 

The number of flip flops required is  $\lceil \sqrt{n} \rceil$  where n is the number of states. In this case, n=5 so  $\lceil \sqrt{5} \rceil=3$  flip flops are required. The flip-flip state allocation is shown in table 5 below.

| State       | Flip Flop Output |       |       |  |  |  |
|-------------|------------------|-------|-------|--|--|--|
| State       | $Q^A$            | $Q^B$ | $Q^C$ |  |  |  |
| $S_0$ $S_1$ | 0                | 0     | 0     |  |  |  |
|             | 0                | 0     | 1     |  |  |  |
| $S_2$       | 0                | 1     | 0     |  |  |  |
| $S_3$       | 0                | 1     | 1     |  |  |  |
| $S_4$       | 1                | 0     | 0     |  |  |  |

Table 5: Flip Flop State Allocation

| Present<br>State (n) | Next        | state (n+1) | Output Z(n) |     |  |
|----------------------|-------------|-------------|-------------|-----|--|
| State (II)           | X=0 X=1     |             | X=0         | X=1 |  |
| $S_0$                | $S_0$ $S_1$ |             | 0           | 0   |  |
| $S_1$                | $S_2$ $S_1$ |             | 0           | 0   |  |
| $S_2$                | $S_3$       | $S_1$       | 0           | 0   |  |
| $S_3$                | $S_4$       | $S_1$       | 0           | 0   |  |
| $S_4$                | $S_0$       | $S_1$       | 0           | 1   |  |

Table 6: State Transition Table in terms of  $\mathcal{S}_0$  and  $\mathcal{S}_1$ 

|         | State   |         | Next State (n+1) |         |         |         | Out     | put     |            |     |
|---------|---------|---------|------------------|---------|---------|---------|---------|---------|------------|-----|
|         | (n)     |         |                  | X=0     |         |         | X=1     |         | $\top$ (Z) |     |
| $Q_n^A$ | $Q_n^B$ | $Q_n^C$ | $Q_n^A$          | $Q_n^B$ | $Q_n^C$ | $Q_n^A$ | $Q_n^B$ | $Q_n^C$ | X=0        | X=1 |
| 0       | 0       | 0       | 0                | 0       | 0       | 0       | 0       | 1       | 0          | 0   |
| 0       | 0       | 1       | 0                | 1       | 0       | 0       | 0       | 1       | 0          | 0   |
| 0       | 1       | 0       | 0                | 1       | 1       | 0       | 0       | 1       | 0          | 0   |
| 0       | 1       | 1       | 1                | 0       | 0       | 0       | 0       | 1       | 0          | 0   |
| 1       | 0       | 0       | 0                | 0       | 0       | 0       | 0       | 1       | 0          | 1   |
| 1       | 0       | 1       | X                | X       | X       | X       | X       | X       | X          | X   |
| 1       | 1       | 0       | X                | X       | X       | X       | X       | X       | X          | X   |
| 1       | 1       | 1       | X                | X       | X       | X       | X       | X       | X          | X   |

Table 7: State Transition Table in terms of  $\mathcal{Q}_n^A$  and  $\mathcal{Q}_n^B$ 

| $Q_n^B \cdot Q_n^C$       |    |    |    |    |  |  |  |
|---------------------------|----|----|----|----|--|--|--|
| $X \cdot Q_n^A \setminus$ | 00 | 01 | 11 | 10 |  |  |  |
| 00                        | 0  | 0  | 1  | 0  |  |  |  |
| 01                        | 0  | X  | x  | х  |  |  |  |
| 11                        | 0  | X  | X  | х  |  |  |  |
| 10                        | 0  | 0  | 0  | 0  |  |  |  |

Figure 10: Karnaugh map for the Input of flip-flop  $D_A$ 

$$D_A = \overline{X} \cdot Q_n^B \cdot Q_n^C \tag{12}$$

Figure 10 shows the Karnaugh map for the input of flip-flop  $D_A$ . The Karnaugh map was created using the state transition table shown in Table 7. The input of flip-flop  $D_A$  is given by Eq. 12.



Figure 11: Karnaugh map for the Input of flip-flop  $D_B$ 

$$D_{B} = \overline{X} \cdot \overline{Q_{n}^{B}} \cdot Q_{n}^{C} + \overline{X} \cdot Q_{n}^{B} \cdot \overline{Q_{n}^{C}}$$

$$= \overline{X} \left( \overline{Q_{n}^{B}} \cdot Q_{n}^{C} + \cdot Q_{n}^{B} \cdot \overline{Q_{n}^{C}} \right)$$

$$= \overline{X} \left( Q_{n}^{B} \oplus Q_{n}^{C} \right)$$
(13)

Figure 11 shows the Karnaugh map for the input of flip-flop  $D_B$ . The Karnaugh map was created using the state transition table shown in Table 7. The input of flip-flop  $D_B$  is given by Eq. 13.

| $Q_n^B \cdot Q_n^C$       |    |    |    |                     |  |  |  |
|---------------------------|----|----|----|---------------------|--|--|--|
| $X \cdot Q_n^A \setminus$ | 00 | 01 | 11 | 10                  |  |  |  |
| 00                        | 0  | 0  | 0  | 1                   |  |  |  |
| 01                        | 0  | X  | X  | x                   |  |  |  |
| 11                        | 1  | X  | X  | X                   |  |  |  |
| 10                        | 1  | 1  | 1  | $\lfloor 1 \rfloor$ |  |  |  |

Figure 12: Karnaugh map for the Input of flip-flop  $D_C$ 

$$D_C = X + Q_n^B \cdot \overline{Q_n^C} \tag{14}$$

Figure 12 shows the Karnaugh map for the input of flip-flop  $D_C$ . The Karnaugh map was created using the state transition table shown in Table 7. The input of flip-flop  $D_C$  is given by Eq. 14.



Figure 13: Karnaugh map for the Output Z

$$Z = X \cdot Q_n^A \tag{15}$$

Figure 13 shows the Karnaugh map for the output Z. The Karnaugh map was created using the state transition table shown in Table 7. The output Z is given by Eq. 15.

```
0.999999m 1
1.999999m 1
2m 1
2.999999m 1
3m 1
3.999999m 1
4m 1
4.999999m 1
5m 1
5.999999m 1
6m 0
6.999999m 0
7m 0
7.999999m 0
8m 0
8.999999m 0
9m 1
9.99999m 1
10m 1
10.999999m 1
11m 0
11.999999m 0
12m 0
12.999999m 0
13m 1
13.999999m 1
14m 1
14.999999m 1
15m 1
15.999999m 1
16m 0
16.999999m 0
17m 1
17.999999m 1
18m 0
18.999999m 0
19m 0
19.999999m 0
20m 0
20.999999m 0
21m 1
21.999999m 1
22m 1
22.999999m 1
23.999999m 1
24m 0
24.999999m 0
```



Figure 14: LT spice schematic for Q19  $\,$ 



Figure 15: LTspice Simulation Traces V(CLK), V(X) and V(Z) for Q20