CSC 611: Analysis of Algorithms

Lecture 2

Mathematical Background and Order Complexity

Algorithms Analysis

- The amount of resources used by the algorithm
 - Space
 - Computational time
- Running time:
 - The number of primitive operations (steps) executed before termination
- Order of growth
 - The leading term of a formula
 - Expresses the behavior of a function toward infinity
 - Ignores machine depending constants and looks at growth of T(n) as $n \to \infty$

Asymptotic Notations

- A way to describe behavior of functions in the limit
 - How we indicate running times of algorithms
 - Describe the running time of an algorithm as n grows to ∞
- O notation: asymptotic "less than": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than": f(n) "≥" g(n)
- ⊖ notation: asymptotic "equality": f(n) "=" g(n)

CSC 611 - Lecture 2

Asymptotic Notations

- Theorem 1
 - Leading constants and lower order terms don't matter
 - Justification
 - Can choose constant big enough to make high-order term swamp other terms
- Theorem 2
 - (O and $\Omega \Leftrightarrow \Theta$)
 - How easy can you prove this?

Logarithms

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\lg n = \log_2 n$$
 $\log^k n = (\log n)^k$

Natural logarithm $\ln n = \log_e n$ $\log\log n = \log(\log n)$
 $\log x^y = y\log x$
 $\log xy = \log x + \log y$
 $\log \frac{x}{y} = \log x - \log y$
 $\log_a x = \log_a b\log_b x$
 $a^{\log_b x} = x^{\log_b a}$

Asymptotic Notations - Examples

• For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or f(n) is O(g(n)). Determine which relationship is correct.

-
$$f(n) = log n^2$$
; $g(n) = log n + 5$ $f(n) = \Theta(g(n))$
- $f(n) = n$; $g(n) = log n^2$ $f(n) = \Omega(g(n))$
- $f(n) = log log n$; $g(n) = log n$ $f(n) = O(g(n))$
- $f(n) = n$; $g(n) = log^2 n$ $f(n) = \Omega(g(n))$
- $f(n) = n log n + n$; $g(n) = log n$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = O(g(n))$

Asymptotic notations

• O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

 Intuitively: O(g(n)) = the set of functions with a smaller or same order of growth as g(n)

g(n) is an asymptotic upper bound for f(n).

CSC 611 - Lecture 2

Examples

-
$$2n^2 = O(n^3)$$
: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$

-
$$n^2 = O(n^2)$$
: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

-
$$1000n^2 + 1000n = O(n^2)$$
:

$$1000n^2 + 1000n \le 1000n^2 + 1000n^2 = 2000n^2$$

 $\Rightarrow c = 2000 \text{ and } n_0 = 1$

-
$$n = O(n^2)$$
: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

Asymptotic notations (cont.)

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 Intuitively: Ω(g(n)) = the set of functions with a larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

CSC 611 - Lecture 2

Examples

$$-5n^2 = \Omega(n)$$

 $\exists c, n_0 \text{ such that: } 0 \le cn \le 5n^2 \implies cn \le 5n^2 \implies c = 1 \text{ and } n_0 = 1$

- 100n + 5 ≠
$$\Omega(n^2)$$

 \exists c, n_0 such that: $0 \le cn^2 \le 100n + 5$

 $100n + 5 \le 100n + 5n (\forall n \ge 1) = 105n$

 $cn^2 \le 105n \Rightarrow n(cn - 105) \le 0$

Since n is positive \Rightarrow cn - $105 \le 0 \Rightarrow$ n $\le 105/c$

 \Rightarrow contradiction: n cannot be smaller than a constant

-
$$n = \Omega(2n)$$
, $n^3 = \Omega(n^2)$, $n = \Omega(logn)$

Asymptotic notations (cont.)

• Θ-notation

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0$.

Intuitively $\Theta(g(n)) =$ the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

CSC 611 - Lecture 2

O Notation: Example 1

Prove that: $\frac{1}{2}n^2 - 3n \in \Theta(n^2)$

Well,
$$c_n n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \Longrightarrow$$

$$\mathbf{c}_{_{1}} \leq \frac{1}{2} - \frac{3}{n} \leq \mathbf{c}_{_{2}}$$

c,has to be positive
$$\Rightarrow$$
 c, $\leq \frac{1}{2} - \frac{3}{7} = \frac{1}{14}$

$$c_{z}$$
 has to be positive $c_{z} \ge \frac{1}{2}$

O Notation: Example 2

Prove that:
$$\frac{1}{2}n^2 + 2n \in \Theta(n^2)$$

Well,
$$c_n n^2 \le \frac{1}{2} n^2 + 2n \le c_2 n^2 \Rightarrow$$

$$c_n \le \frac{1}{2} + \frac{2}{n} \le c_2$$

$$c_1$$
 has to be positive $\Rightarrow c_1 \le \frac{1}{2} + \frac{2}{n} = \frac{5}{2}$

 c_{z} has to be positive $c_{z} \ge \frac{1}{2}$

$$n_{_{\circ}} = 1$$

CSC 611 - Lecture 2

O Notation: Example 3

$$- n^2/2 - n/2 = \Theta(n^2)$$

•
$$\frac{1}{2}$$
 $n^2 - \frac{1}{2}$ $n \le \frac{1}{2}$ $n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$

•
$$\frac{1}{2}$$
 $n^2 - \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 - \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ n^2

$$\Rightarrow c_1 = \frac{1}{4}$$

-
$$n \neq \Theta(n^2)$$
: $c_1 n^2 \le n \le c_2 n^2$

 \Rightarrow only holds for: $n \le 1/c_1$

O Notation: Example 4

- $6n^3$ ≠ $\Theta(n^2)$: $c_1 n^2 \le 6n^3 \le c_2 n^2$ ⇒ only holds for: $n \le c_2 /6$
- n ≠ $\Theta(\log n)$: $c_1 \log n \le n \le c_2 \log n$ ⇒ $c_2 \ge n/\log n$, $\forall n \ge n_0$ - impossible

CSC 611 - Lecture 2

More on Asymptotic Notations

- There is no unique set of values for \mathbf{n}_0 and \mathbf{c} in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$
 - $100n + 5 \le 100n + n = 101n \le 101n^2$ for all $n \ge 5$

 $n_0 = 5$ and c = 101 is a solution

- $100n + 5 \le 100n + 5n = 105n \le 105n^2$ for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n_0 that satisfy the asymptotic notation relation

CSC 611 - Lecture 2

Comparisons of Functions

• Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

CSC 611 - Lecture 2

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means:

There exists a function $f(n) \in \Theta(n)$ such that

$$2n^2 + 3n + 1 = 2n^2 + f(n)$$

On the left-hand side

$$2n^2 + \Theta(n) = \Theta(n^2)$$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Limits and Comparisons of Functions

Using limits for comparing orders of growth:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0, t(n) \text{ has a smaller order of growth than } g(n) : t(n) \in O(g(n)) \\ c, t(n) \text{ has the same order of growth as } g(n) : t(n) \in O(g(n)) \\ \infty, t(n) \text{ has a larger order of growth than } g(n) : t(n) \in \Omega(g(n)) \end{cases}$$

• Compare $\frac{1}{2}$ n (n-1) and n^2

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2}\lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2}\lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = \frac{1}{2}$$

CSC 611 - Lecture 2

Limits and Comparisons of Functions

 Any positive exponential function grows faster than any polynomial

$$\lim_{n\to\infty}\frac{n^{\scriptscriptstyle b}}{a^{\scriptscriptstyle n}}=0\Longrightarrow n^{\scriptscriptstyle b}\in o(a^{\scriptscriptstyle n})$$

Limits and Comparisons of Functions

• L'Hopital rule:

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\lim_{n\to\infty}\frac{t'(n)}{g'(n)}$$

• Compare Ign and \sqrt{n}

$$\lim_{n\to\infty} \frac{(\lg n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{\frac{1}{n} \lg e}{\frac{1}{2\sqrt{n}}} = 2\lg e \lim_{n\to\infty} \frac{\sqrt{n}}{n} = 0$$

CSC 611 - Lecture 2

Mathematical Review

 Changing the base of logarithm changes the value of the logarithm by only a constant factor

$$\log_b a = \frac{\log_c a}{\log_c b}$$

Mathematical Review: Common Functions

Factorials

$$n! = \prod_{k=1}^{n} k$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n} \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$
 Stirling's approximation
$$\lg(n!) = \Theta(n \lg n)$$

- Floors and ceilings
 - $\lfloor x \rfloor$: the greatest integer less than or equal to x
 - [x]: the least integer greater than or equal to x
 - $-x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$

CSC 611 - Lecture 2

Some Simple Summation Formulas

• Arithmetic series:
$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Geometric series:
$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case:
$$\chi < 1$$
:
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

• Harmonic series:
$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Mathematical Induction

- Used to prove a sequence of statements (S(1),
 S(2), ... S(n)) indexed by positive integers
- Proof:
 - Basis step: prove that the statement is true for n = 1
 - Inductive step: assume that S(n) is true and prove that S(n+1) is true for all $n \ge 1$
- Find case n "within" case n+1

CSC 611 - Lecture 2

Example 1

- Prove that: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for all $n \ge 1$
- Basis step:

$$- n = 1$$
: $\sum_{i=1}^{1} i = \frac{1(1+1)}{2} = 1$

- Inductive step:
 - Assume inequality is true for n, and prove it is true for (n+1):

- Assume
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 and prove: $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$

Example 2

- Prove that: $2n + 1 \le 2^n$ for all $n \ge 3$
- Basis step:

- n = 3:
$$2 \times 3 + 1 < 2^3 \Leftrightarrow 7 < 8$$
 TRUE

- Inductive step:
 - Assume inequality is true for n, and prove it for (n+1)

Assume: 2n + 1 ≤ 2ⁿ

Must prove: $2(n + 1) + 1 \le 2^{n+1}$

$$2(n + 1) + 1 = (2n + 1) + 2 \le 2^n + 2 \le 2^n + 2 \le 2^n + 2^n = 2^{n+1}$$
, since $2 \le 2^n$ for $n \ge 1$

CSC 611 - Lecture 2

More Examples

$$\sum_{i=1}^{n} (2i - 1) = n^2 \quad \forall n \ge 1$$

$$n! \ge 2^{n-1} \quad \forall n \ge 1$$

Readings

CSC 611 - Lecture 2