

Figure 3

Figure 4

Figure 5

Figure 6A

7/26

Figure 7

11/26

(with ound tion)	SEL										0.53		1.0			0.07			0.82	
Ref B (with background correction)	MDL				23						38		32			234		37	11	
chelle)	SEL							3.9	56	91	1.4			2.4		0.25			3.5	
Ref A (echelle)	MDL							28	4.2	2.0	20			32		126			17	
(with round tion)	SEL										1.0		1.5			4.6			11.4	
Ref C (with background correction)	MDL SEL										29		98			25			180	
Ref C (without background correction)	SEL							. 9.1	11	77	0.27	0.60	0.61			0.08	0.19		0.57	
Ref C (backg corre	MDL						2.7	9.3	3.3	9.0	33	34	43		16	33	7.4	7.5	70	
Present work	SEL	9	150	3000		22		90		2000		19	22			5 6	0.6		30	22
Pre	MDL	7.0	1.7	0.1	0.5	1.5	5.6	7.6		0.1		9/	39		2.2	7.2	2.5	3.0	40	9/
	element wavelength, nm	174.2	180.7	184.9	193.1	177.5	247.9	251.6	253.6	253.7	470.4	478.6	479.5	481.0	486.1	545.4	656.1	656.3	685.6	777.2
	element	z	S	퇀	U	ıL	ပ	S	۵.	Hg	ፙ	ъ	ਹ	ರ	I	S	۵	I	ட	0

Comparison of Detection Limits in pg/s (MDL) and Selectivities $\times\,10^3(\text{SEL})$

Reference A uses peak width at base instead of peak width at half height to determine MDL, and the numbers have been adjusted accordingly for comparison. Reference B uses 1σ instead of peak to peak (6σ) to measure noise for MDL, and their numbers have been adjusted accordingly for comparison. ^CVersus hydrogen.

Figure 11

Figure 12

Figure 14

Application Serial No. 10/748,029 Filed: December 30, 2003 Reply to Notice of Incomplete Reply REPLACEMENT SHEET

BEST AVAILABLE COPY

17/26

Figure 18

	Alialy to Masses - 1 mm Celligal & Concentration								
	N ppt	N∉ ppt	N ₂ ppt N ₃ ppt						
A	∞x1	500x100	5 x 10,000 1/x 50,000						
3	നാവ	1000x100	10x10,000 1x100,000						
C	∞ x1	5.000x100	50x10.000 1x500.000						
Ð	ωx1	10,000x100	100x10,000 1x520,000+lcss						
E	∞x1	100,000x100	1,000x10,000:10x1,000,000 (10 ⁷)						

Figure 19

Pres. Drop at 100 cm/s, 100x100 μm

No. of Elem.	Length	Pres. Drop	Peak P.		
N1	L	∑ p	Q		
-	cm	psi	watts		
50	0.5	2.629	20.5		
505	0.1	5.311	41.3		
1010	0.1	10.621	82.6		

Fígure 21

Figure 22

23/26

Figure 23

つょ/つ	
1411	n

			k=0.2	∆R(v-vo)	%	2.5	6.2
∆p in psi	.671	5.365	k=2	~	ı	8.76	8.00
/ in cm3/min	0.588	0.588	k=2	v(optimal)	cm/s	26	118
/ mm ui /	Ŋ	2.5	k=0.2	v(optimal)	cm/s	8.89	149.2
s in µm	 1	0.15	k=6	共	sec	3.00	0.24
L in cm	25	10	Half-Width	∇ţ	ms	20	7
ID in cm	0.014	0.007		ಧ	ms	200	40
v in cm/s	20	250		>	cm/s	20	250
	µGC-1	µGC-2				µGC-1	µGC-2
	vincm/s ID incm Lincm sinµm ≀inmm Vincm3/min∆pinpsi		v in cm/s ID in cm L in cm s in µm l in cm3/min ∆p in psi µGC-1 50 0.014 25 1 5 0.588 .671 µGC-2 250 0.007 10 0.15 2.5 0.588 5.365	v in cm/s ID in cm L in cm s in µm ℓ in mm V in cm3/min △p in psi 50 0.014 25 1 5 0.588 .671 250 0.007 10 0.15 2.5 0.588 5.365 Half-Width k=6 k=0.2 k=2 k=2	v in cm/s 1D in cm L in cm s in μ m ℓ in mm V in cm3/min $\triangle p$ in p si 50 0.014 25 1 5 0.588 .671 250 0.007 10 0.15 2.5 0.588 5.365 Half-Width k=6 k=0.2 k=2 k=2 v to $\triangle t$ tR v(optimal) v(optimal) R $_{2}$	v in cm/s 1D in cm L in cm s in μ m ℓ in mm V in cm3/min Δp in p si 50 0.014 25 1 5 0.588 .671 250 0.007 10 0.15 2.5 0.588 5.365 Half-Width k=6 k=0.2 k=2 k=2 v to Δt tR v(optimal) v(optimal) R cm/s ms sec cm/s cm/s -	v in cm/s 1D in cm L in cm s in μ m ℓ in μ in mm V in cm3/min Δp in ρ si 50 0.014 25 1 5 0.588 .671 250 0.007 10 0.15 2.5 0.588 5.365 Half-Width k=6 k=0.2 k=2 k=2 v to Δt tR v(optimal) v(optimal) R cm/s ms sec cm/s cm/s - 50 500 20 3.00 68.8 56 8.76

25/26

Figure 25

