Layer 2 redundancy – Spanning Tree Protocol

Lecture 5

SoftUni Team Technical Trainers

Software University

Questions

sli.do #CNF

Table of Contents

- 1. Spanning tree protocol (STP)
- 2. Rapid STP (RSTP)
- 3. Per-VLAN STP plus (PVST+)

Spanning tree protocol (STP)

Layer 2 networks and redundancy

- No redundancy for the link between Switch1 and Switch2
 - If the link fails, the communication stops

- With redundancy two paths between
 Switch1 and Switch2
 - If one path fails, the communication can continue over the other

The problem with layer 2 network redundancy

- Normally, the switches will build and use MAC address tables to help them with the forwarding decisions
- When redundant paths are present, the switches are confused and will forward the received packet everywhere
 - Their MAC address tables become unstable
 - Multiple copies of the same frame (data) are received by all devices, endlessly
 - The links are overloaded
 - This is known as Layer 2 loop and is very bad situation!

Switch2 MAC Table

MAC address	Port
1111-1111-1111	g0/4
2222-2222-2222	g0/6

Switch2 MAC Table

MAC address	Port
1111-1111-1111	g0/4 , g0/7 , g0/4 ?
2222-2222-2222	g0/6, g0/7, g0/4 ?

What is Spanning Tree Protocol (STP)?

- STP helps the network switches to deal with a problem which they can not handle alone the Layer 2 loops
- STP will <u>logically block</u> a port (or multiple ports) in a redundant topology and will leave only one active path at a time
- If the active path is broken, STP will automatically unblock the port(s) to restore the connectivity

The STP algorithm

- 1. Elect the Root switch (a.k.a. Root bridge or just Root)
 - This is the switch with the lowest BID (Bridge ID)
 - BID = Switch Priority and MAC
 - Default priority = 32768
- 2. Select the root ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per switch maximum one</u>
 - Only the non-Root switches have root ports
- 3. Select the designated ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per segment (connection) exactly one</u>
- 4. All other ports go to blocking state
 - The role of these ports is called "alternate"

The STP tie-breakers

- If there is a tie situation the same path cost via different paths, use the following tie-breakers:
 - When selecting Root port or Designated port, chose the neighboring switch which has the lowest Bridge ID
 - If the Bridge ID is the same, select the lowest Port ID (PID)
- Port ID = Port priority and port number

BPDUs, Bridge ID and Priority

- Switches communicate with each other by exchanging BPDUs
 (Bridge Protocol Data Units) this is how they "talk the STP language"
- One piece of information that the BPDU contains is the Bridge ID (BID) = 8 byte value
- BID = Priority (2 bytes) and "system ID" / MAC address (6 bytes)
- STP Priority:
 - A number between 0 and 61440
 - Must be configured in increments of 4096
 - Default is 32768 (+ the VLAN ID)
 - The switch with the <u>lowest</u> priority will become the Root
- If equal values for priority -> lowest MAC address wins (BID = Priority and MAC)

The priority field

Initially, the priority field allowed for 65536 different values (2¹⁶)

Priority (16 bits)															
(32768)	(16384)	(8192)	(4096)	(2048)	(1024)	(512)	(256)	(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)

- Later it was realized that some changes are required
- Nowadays, the priority field looks like this:

Pr	ority	(4 bi	ts)		Extended system ID (12 bits)											
(32768)	(16384)	(8192)	(4096)	(2048)	(1024)	(512)	(256)	(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	= 0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	= 4096
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	= 8192 (2x4096)
																Default
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	= 32768 (8x4096)
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	= 61440 (15x4096)

Link costs (path costs)

- This is the cost to get to the Root
- Calculated from the cost of a port and the number of links
- Higher port speed -> lower port cost
- The default values can be changed by administrator

Ethernet Speed	IEEE Cost: 1998	IEEE Cost: 2004
10 Mbps	100	2,000,000
100 Mbps	19	200,000
1 Gbps	4	20,000
10 Gbps	2	2,000
100 Gbps	N/A	200
1 Tbps	N/A	20

Examples – find the blocked ports

- 1. Elect the Root switch (a.k.a. Root bridge or just Root)
 - This is the switch with the lowest BID (Bridge ID)
 - BID = Switch Priority and MAC
 - Default priority = 32768
- 2. Select the root ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per switch maximum one</u>
 - Only the non-Root switches have root ports
- 3. Select the designated ports
 - They have the best (lowest) cost to the Root
 - Selected per segment (connection) exactly one
- 4. All other ports go to blocking state
 - The role of these ports is called "alternate"

The STP tie-breakers

- If there is a tie situation the same path cost via different paths, use the following tie-breakers:
- When selecting Root port or Designated port, chose the neighboring switch which has the lowest Bridge ID
- If the Bridge ID is the same, select the lowest Port ID (PID)
- Port ID = Port priority and port number

Additional example 1

Find the Root, the RP, the DP and the Blocking ports

Additional example 2

Find the Root, the RP, the DP and the Blocking ports

Note: All links are with the same cost

History and flavors

- STP The original Spanning Tree Protocol, IEEE 802.1D
 - Problem very slow convergence (between 30 and 50 seconds)
 - Problem single Root for the entire Layer 2 topology
- RSTP Rapid STP, IEEE 802.1W
 - Much faster convergence (no more timers, introducing the concept of an "edge" port)
 - Still have the issue with single Root for the entire Layer 2 topology
- PVST+ Per-VLAN STP, Cisco proprietary
 - Calculates STP for each particular VLAN independently can have multiple Roots
 - It is also "rapid"
- MSTP Multiple STP, IEEE 802.1S
 - Calculates STP for each "instance" (group of VLANs) can have multiple Roots
 - It is also "rapid"

STP (the good old Spanning Tree)

- Spanning Tree Protocol
- The industry standard name is IEEE 802.1D
- Slow convergence
- Port states:
 - Disabled
 - Blocking (up to 20 sec)
 - Listening (up to 15 sec)
 - Learning (up to 15 sec)
 - Forwarding

RSTP (the faster STP)

- Rapid STP
- The industry standard name is IEEE 802.1W
- Much faster convergence than STP
- Introducing Edge port a port which is connected to an end device
- RSTP uses the same algorithm as STP
- Port states:
 - Discarding
 - Learning
 - Forwarding

Per-VLAN STP plus (PVST+)

PVST+

- Per-VLAN Spanning Tree is Cisco protocol
- Why? It has a similar idea as MSTP to distribute the load
- Creates a spanning tree topology for each VLAN separately
- PortFast in PVST+ is like Edge port in STP/RSTP

PVST+ (2)

PVST+ (3)

The good and the bad about PVST+

- PVST+ advantages:
 - triggers STP calculation only if there is a potential loop in a particular VLAN
 - detailed "look" of the network does not block ports when there is no loop on the trunks for a given VLAN
- PVST+ disadvantages
 - generates a lot of overhead in the network
 - proprietary protocol

Examples - answers

- 1. Elect the Root switch (a.k.a. Root bridge or just Root)
 - This is the switch with the lowest BID (Bridge ID)
 - BID = Switch Priority and MAC
 - Default priority = 32768
- 2. Select the root ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per switch maximum one</u>
 - Only the non-Root switches have root ports
- 3. Select the designated ports
 - They have the best (lowest) cost to the Root
 - Selected per segment (connection) exactly one
- 4. All other ports go to blocking state
 - The role of these ports is called "alternate"

The STP tie-breakers

- If there is a tie situation the same path cost via different paths, use the following tie-breakers:
 - When selecting Root port or Designated port, chose the neighboring switch which has the lowest Bridge ID
 - If the Bridge ID is the same, select the lowest Port ID (PID)
- Port ID = Port priority and port number

Summary

- 1. Spanning tree protocol (STP)
- 2. Rapid STP (RSTP)
- 3. Per-VLAN STP plus (PVST+)

Questions?

SoftUni Foundation

SoftUni Diamond Partners

SUPER HOSTING .BG

Решения за твоето утре

Educational Partners

Trainings @ Software University (SoftUni)

- Software University High-Quality Education, Pr ofession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

