

6.641 Electromagnetic Fields, Forces, and Motion
Spring 2009

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

Lecture 15: Force Densities, Stress Tensors, and Forces

I. Maxwell Stress Tensor

A. Notation

$$F_x = \nabla \cdot \bar{\tau}_x, \quad \bar{\tau}_x = T_{xx} \bar{i}_x + T_{xy} \bar{i}_y + T_{xz} \bar{i}_z$$

$$F_y = \nabla \cdot \bar{\tau}_y, \quad \bar{\tau}_y = T_{yx} \bar{i}_x + T_{yy} \bar{i}_y + T_{yz} \bar{i}_z$$

$$F_z = \nabla \cdot \bar{\tau}_z, \quad \bar{\tau}_z = T_{zx} \bar{i}_x + T_{zy} \bar{i}_y + T_{zz} \bar{i}_z$$

$$\bar{T} = \begin{bmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{bmatrix}$$

$$f_x = \int_V F_x dV = \int_V \nabla \cdot \bar{\tau}_x dV = \oint_S \bar{\tau}_x \cdot \bar{n} da = \oint_S [T_{xx} n_x + T_{xy} n_y + T_{xz} n_z] da$$

$$\bar{\tau}_x \cdot \bar{n} = T_{xx} n_x + T_{xy} n_y + T_{xz} n_z = T_{xn} n_n$$

$$\bar{\tau}_y \cdot \bar{n} = T_{yx} n_x + T_{yy} n_y + T_{yz} n_z = T_{yn} n_n$$

$$\bar{\tau}_z \cdot \bar{n} = T_{zx} n_x + T_{zy} n_y + T_{zz} n_z = T_{zn} n_n$$

$$f_i = \int_V \nabla \cdot \bar{\tau}_i dV = \oint_S \bar{\tau}_i \cdot \bar{n} dV = \oint_S T_{ij} n_j dS = \int_V F_i dV$$

$$\bar{F}_i = \nabla \cdot \bar{\tau}_i = \frac{\partial}{\partial x} T_{ix} + \frac{\partial}{\partial y} T_{iy} + \frac{\partial}{\partial z} T_{iz}$$

$$= \frac{\partial}{\partial x_j} T_{ij}$$

B. EQS Stress Tensor

$$\bar{F} = \rho_f \bar{E} - \frac{1}{2} \bar{E} \cdot \bar{E} \nabla \varepsilon + \nabla \left(\frac{1}{2} \bar{E} \cdot \bar{E} \frac{\partial \varepsilon}{\partial \rho} \rho \right)$$

$$= \nabla \cdot (\varepsilon \bar{E}) \bar{E} - \frac{1}{2} (\bar{E} \cdot \bar{E}) \nabla \varepsilon + \nabla \left(\frac{1}{2} \bar{E} \cdot \bar{E} \frac{\partial \varepsilon}{\partial \rho} \rho \right)$$

$$F_i = \frac{\partial(\epsilon E_j)}{\partial x_j} E_i - \frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial \rho} \rho \right)$$

$$\nabla \times \bar{E} = 0 \Rightarrow \frac{\partial E_i}{\partial x_j} = \frac{\partial E_j}{\partial x_i}$$

$$F_i = \frac{\partial}{\partial x_j} (\epsilon E_j E_i) - \epsilon E_j \frac{\partial E_i}{\partial x_j} - \frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial \rho} \rho \right)$$

$$F_i = \frac{\partial}{\partial x_j} (\epsilon E_i E_j) - \underbrace{\epsilon E_j \frac{\partial E_i}{\partial x_i}}_{\epsilon \frac{\partial}{\partial x_i} \left(\frac{1}{2} E_j E_j \right)} - \frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} E_k E_k \frac{\partial \epsilon}{\partial \rho} \rho \right)$$

$$F_i = \frac{\partial}{\partial x_j} (\epsilon E_i E_j) - \frac{\partial}{\partial x_i} \left[\frac{1}{2} \epsilon E_k E_k - \frac{1}{2} \rho \frac{\partial \epsilon}{\partial \rho} E_k E_k \right]$$

$$\frac{\partial}{\partial x_j} = \delta_{ij} \frac{\partial}{\partial x_i}$$

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases} \quad \text{Kronecker Delta}$$

$$F_i = \frac{\partial}{\partial x_j} \left[\epsilon E_i E_j - \frac{1}{2} \delta_{ij} E_k E_k \left(\epsilon - \rho \frac{\partial \epsilon}{\partial \rho} \right) \right] = \frac{\partial}{\partial x_j} T_{ij}$$

$$T_{ij} = \epsilon E_i E_j - \frac{1}{2} \delta_{ij} E_k E_k \left(\epsilon - \rho \frac{\partial \epsilon}{\partial \rho} \right)$$

C. MQS Stress Tensor

$$\bar{F} = \bar{J}_f \times \bar{B} - \frac{1}{2} \bar{H} \cdot \bar{H} \nabla \mu + \nabla \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} \bar{H} \cdot \bar{H} \right)$$

$$= (\nabla \times \bar{H}) \times (\mu \bar{H}) - \frac{1}{2} \bar{H} \cdot \bar{H} \nabla \mu + \nabla \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} \bar{H} \cdot \bar{H} \right)$$

$$(\nabla \times \bar{H}) \times \bar{H} = (\bar{H} \cdot \nabla) \bar{H} - \frac{1}{2} \nabla (\bar{H} \cdot \bar{H})$$

$$\bar{F} = \mu \left[(\bar{H} \cdot \nabla) \bar{H} - \frac{1}{2} \nabla (\bar{H} \cdot \bar{H}) \right] - \frac{1}{2} \bar{H} \cdot \bar{H} \nabla \mu + \nabla \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} \bar{H} \cdot \bar{H} \right)$$

$$\begin{aligned}
F_i &= \mu \left[H_j \frac{\partial}{\partial x_j} H_i - \frac{1}{2} \frac{\partial}{\partial x_i} (H_k H_k) \right] - \frac{1}{2} H_k H_k \frac{\partial \mu}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} H_k H_k \right) \\
&= \underbrace{\frac{\partial}{\partial x_j} (\mu H_i H_j)}_{\nabla \cdot \bar{B} = 0} - \underbrace{H_i \frac{\partial}{\partial x_j} (\mu H_j)}_{-\frac{\partial}{\partial x_i} \left(\frac{1}{2} \mu H_k H_k \right)} - \frac{\mu}{2} \frac{\partial}{\partial x_i} H_k H_k - \frac{1}{2} H_k H_k \frac{\partial \mu}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} H_k H_k \right)
\end{aligned}$$

$$\begin{aligned}
F_i &= \frac{\partial}{\partial x_j} (\mu H_i H_j) - \frac{\partial}{\partial x_i} \left(\frac{1}{2} \mu H_k H_k - \rho \frac{\partial \mu}{\partial \rho} H_k H_k \right) \\
&= \frac{\partial}{\partial x_j} \left[\mu H_i H_j - \frac{1}{2} \delta_{ij} H_k H_k \left(\mu - \rho \frac{\partial \mu}{\partial \rho} \right) \right] = \frac{\partial}{\partial x_j} T_{ij}
\end{aligned}$$

$$T_{ij} = \mu H_i H_j - \frac{1}{2} \delta_{ij} H_k H_k \left(\mu - \rho \frac{\partial \mu}{\partial \rho} \right)$$

II. Air-Gap Magnetic Machines

Fig. 4.2.1. Typical "air-gap" configurations in which a force or torque on a rigid "rotor" results from spatially periodic sources interacting with spatially periodic excitations on a rigid "stator." Because of the periodicity, the force or torque can be represented in terms of the electric or magnetic stress acting at the air-gap surfaces S_1 : (a) planar geometry or developed model; (b) planar or cylindrical beam; (c) cylindrical rotor.

Courtesy of MIT Press. Used with permission.

A. Generalized Description

$$f_z = \oint_S T_{zx} n_x dz dy = w \int_0^{2\pi/k} \mu_0 H_z H_x \Big|_{x=0} dz = w \int_0^{2\pi/k} \mu_0 H_z^r H_x^r dz$$

force on a wavelength

$$a(z, t) = \operatorname{Re}[\tilde{A} e^{-jkz}], b(z, t) = \operatorname{Re}[\tilde{B} e^{-jkz}]$$

$$\frac{k}{2\pi} \int_0^{2\pi/k} a(z, t) b(z, t) dz = \frac{1}{2} \operatorname{Re} [\tilde{A} \tilde{B}^*] = \frac{1}{2} \operatorname{Re} [\tilde{A}^* \tilde{B}]$$

$$f_z = \frac{2\pi w}{k} \frac{\mu_0}{2} \operatorname{Re} [\tilde{H}_z^r \tilde{H}_x^{r*}]$$

$$= \frac{2\pi w \mu_0}{k} \operatorname{Re} [-\tilde{K}_r \tilde{H}_x^{r*}]$$

$$\begin{bmatrix} \tilde{B}_x^s \\ \tilde{B}_x^r \end{bmatrix} = \mu_0 k \begin{bmatrix} -\coth kd & \frac{1}{\sinh kd} \\ -\frac{1}{\sinh kd} & \coth kd \end{bmatrix} \begin{bmatrix} \tilde{\chi}_s \\ \tilde{\chi}_r \end{bmatrix}$$

$$\tilde{H}_z = +jk\tilde{\chi} \Rightarrow \tilde{\chi}^s = \frac{1}{jk}\tilde{H}_z^s = \frac{\tilde{K}^s}{jk}$$

$$\tilde{\chi}^r = \frac{\tilde{H}_z^r}{jk} = -\frac{\tilde{K}_r}{jk}$$

$$\mu_0 \tilde{H}_x^r = \mu_0 k \left[\frac{-\tilde{\chi}^s}{\sinh kd} + \tilde{\chi}^r \coth kd \right]$$

$$= \mu_0 k \left[\frac{-\tilde{K}^s}{jk \sinh kd} - \frac{\tilde{K}^r}{jk} \coth kd \right]$$

$$\operatorname{Re} \left[-\tilde{K}_r^* \tilde{H}_x^r \mu_0 \right] = -\operatorname{Re} \left[\frac{+j\mu_0 K}{K} \left(\frac{\tilde{K}_r^* \tilde{K}^s}{\sinh kd} + \tilde{K}_r^* \tilde{K}_r \coth kd \right) \right]$$

$$= \operatorname{Re} \left[-\mu_0 j \tilde{K}_r^* \tilde{K}_s^s / \sinh kd \right]$$

$$f_z = -\frac{\pi W}{k} \frac{\mu_0}{\sinh kd} \operatorname{Re} \left[j \tilde{K}_r^* \tilde{K}_s^s \right] \text{ (force on each wavelength)}$$

B. Synchronous Interaction

Fig. 4.3.1. Rotor and stator reference frames z' and z .

Courtesy of MIT Press. Used with permission.

$$K^s = K_0^s \sin[\omega_s t - kz] = \operatorname{Re}[-jK_0^s e^{j(\omega_s t - kz)}]$$

$$K^r = K_0^r \sin[\omega_r t - k(z' - \delta)]; \quad z' = z - Ut$$

$$= K_0^r \sin[(\omega_r + kU)t - k(z - \delta)]$$

$$= \operatorname{Re}[-jK_0^r e^{j(\omega_r + kU)t} e^{jk\delta}]$$

$$\tilde{K}^s = -jK_0^s e^{j\omega_s t}$$

$$\tilde{K}^r = -jK_0^r e^{jk\delta} e^{j(\omega_r + kU)t}$$

$$f_z = -\frac{\pi W}{k} \frac{\mu_0}{\sinh kd} \operatorname{Re}[j(-jK_0^s) e^{j\omega_s t} (jK_0^r e^{-jk\delta}) e^{-j(\omega_r + kU)t}]$$

$$= -\frac{\pi W}{k} \frac{\mu_0}{\sinh kd} K_0^s K_0^r \operatorname{Re}[je^{-jk\delta} e^{j(\omega_s - \omega_r - kU)t}]$$

For time average force $\Rightarrow \omega_s = \omega_r + kU$ (synchronous condition)

Usually $\omega_r = 0 \Rightarrow \omega_s = kU$

$$\langle f_z \rangle = -\frac{\pi W}{k} \frac{\mu_0}{\sinh kd} K_0^s K_0^r \sin k\delta$$

Table 4.3.1. Basic configurations illustrating classes of electromechanical interactions and devices. MQS and EQS systems respectively in left and right columns.

Courtesy of MIT Press. Used with permission.

III. Electrostatic Machine

$$f_z = \frac{w2\pi}{k} \int_0^{2\pi/k} T_{zx} \Big|_{x=0} dz = \frac{2\pi w}{k} \int_0^{2\pi/k} \epsilon_0 E_z E_x \Big|_{x=0}$$

$$\tilde{E}_z^r = jk \tilde{V}_r$$

$$f_z = \frac{1}{2} \frac{\lambda \pi w}{k} \operatorname{Re} \left[\epsilon_0 \tilde{E}_z^r * \tilde{E}_x^r \right]$$

$$= \frac{\pi w}{k} \operatorname{Re} \left[\epsilon_0 (-jk \tilde{V}_r) \tilde{E}_x^r \right]$$

$$\begin{bmatrix} \tilde{D}_x^s \\ \tilde{D}_x^r \end{bmatrix} = \epsilon_0 k \begin{bmatrix} -\coth kd & \frac{1}{\sinh kd} \\ -\frac{1}{\sinh kd} & \coth kd \end{bmatrix} \begin{bmatrix} \tilde{V}_s \\ \tilde{V}_r \end{bmatrix}$$

$$\epsilon_0 \tilde{E}_x^r = \epsilon_0 k \left[\frac{-\tilde{V}_s}{\sinh kd} + \tilde{V}_r \coth kd \right]$$

$$\operatorname{Re} \left[-jk \epsilon_0 \tilde{V}_r^* \tilde{E}_x^r \right] = \operatorname{Re} \left[-jk^2 \epsilon_0 \tilde{V}_r^* \left(\frac{-\tilde{V}_s}{\sinh kd} + \tilde{V}_r \coth kd \right) \right]$$

$$= \operatorname{Re} \left[+jk^2 \epsilon_0 \tilde{V}_s \tilde{V}_r^* / \sinh kd \right]$$

$$f_z = \frac{\pi w}{\kappa} \frac{k^2 \epsilon_0}{\sinh kd} \operatorname{Re} \left[j \tilde{V}_s \tilde{V}_r^* \right]$$

$$V_s = V_0^s \cos(\omega_s t - kz)$$

$$V_r = -V_0^r \cos(\omega_r t - k(z' - \delta)); z' = z - Ut$$

$$\tilde{V}^r = -V_0^r e^{j(\omega_r + kU)t} e^{jk\delta}$$

$$\tilde{V}^s = V_0^r e^{j\omega_s t}$$

$$\langle f_z \rangle = \frac{\pi w k \epsilon_0}{\sinh kd} \operatorname{Re} \left[-j V_0^s V_0^r e^{-jk\delta} e^{j(\omega_s - \omega_r - kU)t} \right]$$

$$\omega_s = \omega_r + kU$$

$$\langle f_z \rangle = -\frac{\pi w k \epsilon_0}{\sinh kd} V_0^s V_0^r \sin(k\delta)$$

IV. Derivation of the Korteweg-Helmholtz Force Density for Incompressible Media from the Quasistatic Poynting's Theorem

A. Poynting's Theorem

$$\nabla \times \bar{E} = -\frac{\partial \bar{B}}{\partial t}$$

$$\nabla \times \bar{H} = \bar{J}_f + \frac{\partial \bar{D}}{\partial t}$$

$$\nabla \cdot \bar{D} = \rho_f$$

$$\nabla \cdot \bar{B} = 0$$

$$\nabla \cdot (\bar{E} \times \bar{H}) = \bar{H} \cdot (\nabla \times \bar{E}) - \bar{E} \cdot (\nabla \times \bar{H})$$

$$= -\bar{H} \cdot \frac{\partial \bar{B}}{\partial t} - \bar{E} \cdot \frac{\partial \bar{D}}{\partial t} - \bar{E} \cdot \bar{J}_f$$

B. Power In Quasistatic Electric Circuits

Far away from the circuit elements

$$\nabla \times \bar{E} = 0 \Rightarrow \bar{E} = -\nabla \Phi$$

$$\nabla \times \bar{H} = \bar{J}_f \Rightarrow \nabla \cdot \bar{J}_f = 0$$

$$P_{in} = -\oint_S (\bar{E} \times \bar{H}) \cdot d\bar{S}$$

$$= +\oint_S (\nabla \Phi \times \bar{H}) \cdot d\bar{S}$$

$$= \int_V \nabla \cdot (\nabla \Phi \times \bar{H}) dV$$

$$\nabla \cdot (\nabla \Phi \times \bar{H}) = \bar{H} \cdot \nabla \times (\nabla \Phi) - \nabla \Phi \cdot (\nabla \times \bar{H})$$

$$= -\bar{J}_f \cdot \nabla \Phi = -\nabla \cdot (\bar{J}_f \Phi)$$

$$P_{in} = - \int_V \nabla \cdot (\bar{J}_f \Phi) dV$$

$$= - \oint_S \bar{J}_f \Phi \cdot \overline{da}$$

$$= - \sum_{k=1}^N V_k \underbrace{\oint_S \bar{J}_f \cdot \overline{da}}_{-I_k}$$

$$= \sum_{k=1}^N V_k I_k$$

C. Electroquasistatics (EQS)

Ohmic Media: $\bar{J}_f' = \sigma \bar{E}' = \bar{J}_f - \rho_f \bar{v} \Rightarrow \bar{J}_f = \sigma \bar{E} + \rho_f \bar{v}$

$$\bar{D} = \epsilon(x, y, z) \bar{E}$$

$$\int_V \nabla \cdot (\bar{E} \times \bar{H}) dV = \oint_S \bar{E} \times \bar{H} \cdot \overline{da} = - \sum_k V_k I_k = - \int_V \bar{E} \cdot \frac{\partial}{\partial t} (\epsilon(x, y, z) \bar{E}) dV - \int_V \bar{E} \cdot (\sigma \bar{E} + \rho_f \bar{v}) dV$$

$$\sum_k V_k I_k = \int_V \frac{\epsilon(x, y, z) \bar{E}}{\epsilon(x, y, z)} \cdot \frac{\partial}{\partial t} (\epsilon(x, y, z) \bar{E}) dV + \int_V \sigma |\bar{E}|^2 dV + \int_V \rho_f \bar{E} \cdot \bar{v} dV$$

$$= \int_V \frac{1}{2} \frac{1}{\epsilon(x, y, z)} \frac{\partial}{\partial t} [\epsilon^2(x, y, z) |\bar{E}|^2] dV + \int_V \sigma |\bar{E}|^2 dV + \int_V \rho_f \bar{E} \cdot \bar{v} dV$$

$$\int_V \frac{1}{2\epsilon(x, y, z)} \frac{\partial}{\partial t} [\epsilon^2(x, y, z) |\bar{E}|^2] dV = \int_V \frac{\partial}{\partial t} \left[\frac{\epsilon'(x, y, z) |\bar{E}|^2}{2\epsilon(x, y, z)} \right] dV$$

$$- \int_V \frac{\epsilon^2(x, y, z) |\bar{E}|^2}{2} \frac{\partial}{\partial t} \left(\frac{1}{\epsilon(x, y, z)} \right) dV$$

$$= \int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \epsilon(x, y, z) |\bar{E}|^2 \right] dV + \int_V \frac{|\bar{E}|^2}{2} \frac{\partial}{\partial t} (\epsilon(x, y, z)) dV$$

$$\text{Theorem: } \frac{d}{dt} \int_V \alpha dV = \int_V \frac{\partial \alpha}{\partial t} dV + \int_V \nabla \cdot (\alpha \bar{v}) dV$$

Conservation of mass: $\alpha = \rho$ mass density

$$\frac{d}{dt} \int_V \rho dV = 0 = \int_V \frac{\partial \rho}{\partial t} dV + \int_V \nabla \cdot (\rho \bar{v}) dV$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{v}) = 0 = \frac{\partial \rho}{\partial t} + (\bar{v} \cdot \nabla) \rho + \rho (\nabla \cdot \bar{v}) = 0$$

$$\text{Incompressible: } \boxed{\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + (\bar{v} \cdot \nabla) \rho = 0} \quad \Rightarrow \quad \boxed{\nabla \cdot \bar{v} = 0}$$

$$\frac{d}{dt} \int_V \varepsilon dV = \int_V \frac{\partial \varepsilon}{\partial t} dV + \int_V \nabla \cdot (\varepsilon \bar{v}) dV = 0$$

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot (\varepsilon \bar{v}) = \frac{\partial \varepsilon}{\partial t} + (\bar{v} \cdot \nabla) \varepsilon + \varepsilon \cancel{\nabla \cdot \bar{v}} = 0$$

$$\boxed{\frac{\partial \varepsilon}{\partial t} = -(\bar{v} \cdot \nabla) \varepsilon}$$

$$\int_V \frac{1}{2\varepsilon(x,y,z)} \frac{\partial}{\partial t} \left[\varepsilon^2(x,y,z) |\bar{E}|^2 \right] dV = \int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(x,y,z) |\bar{E}|^2 \right] dV$$

$$+ \int_V \frac{|\bar{E}|^2}{2} (-\bar{v} \cdot \nabla) \varepsilon(x,y,z) dV$$

$$\sum_k V_k I_k = \underbrace{\int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(x,y,z) |\bar{E}|^2 \right] dV}_{\text{Energy Stored (W}_E\text{) Rate}} + \underbrace{\int_V \sigma |\bar{E}|^2 dV}_{\text{Power Dissipated P}_E} + \underbrace{\int_V \left[\rho_f \bar{E} - \frac{1}{2} |\bar{E}|^2 \nabla \varepsilon \right] \cdot \bar{v} dV}_{\text{Force Density}} \\ \underbrace{\text{Work Rate} = \text{Mechanical Power}}$$

$$\bar{F} = \rho_f \bar{E} - \frac{1}{2} |\bar{E}|^2 \nabla \varepsilon \quad (\text{force per unit volume}) \\ \text{nt/m}^3$$

$$\bar{f} = \int_V \bar{F} dV$$

↑
force (nts)

D. Magnetoquasistatics

$$\bar{J}_f' = \bar{J}_f, \bar{E}' = \bar{E} + \bar{v} \times \bar{B} \Rightarrow \bar{J}_f' = \bar{J}_f = \sigma \bar{E}' = \sigma (\bar{E} + \bar{v} \times \bar{B})$$

$$\bar{B} = \mu(x, y, z) \bar{H}$$

$$\int_V \nabla \cdot (\bar{E} \times \bar{H}) dV = \oint_S \bar{E} \times \bar{H} \cdot d\bar{a} = - \sum_k V_k I_k = - \int_V \bar{H} \cdot \frac{\partial}{\partial t} (\mu(x, y, z) \bar{H}) dV$$

$$- \int_V [\bar{E}' - \bar{v} \times \bar{B}] \cdot \bar{J}_f dV$$

$$P_{\text{dissipated}} = \int_V \bar{E}' \cdot \bar{J}_f' dV = \int_V \bar{E}' \cdot \bar{J}_f dV$$

$$\bar{J}_f \cdot (\bar{v} \times \bar{B}) = -\bar{J}_f \cdot (\bar{B} \times \bar{v}) = -(\bar{J}_f \times \bar{B}) \cdot \bar{v}$$

$$\bar{H} \cdot \frac{\partial}{\partial t} [\mu(x, y, z) \bar{H}] = \frac{\mu(x, y, z) \bar{H}}{\mu(x, y, z)} \frac{\partial}{\partial t} [\mu(x, y, z) \bar{H}]$$

$$= \frac{1}{\mu(x, y, z)} \frac{\partial}{\partial t} \left[\frac{1}{2} \mu^2(x, y, z) |\bar{H}|^2 \right]$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \frac{\mu'(x, y, z) |\bar{H}|^2}{\mu(x, y, z)} \right] - \frac{1}{2} \mu^2(x, y, z) |\bar{H}|^2 \frac{\partial}{\partial t} \left[\frac{1}{\mu(x, y, z)} \right]$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(x, y, z) |\bar{H}|^2 \right] + \frac{1}{2} \frac{\mu^2(x, y, z) |\bar{H}|^2}{\mu^2(x, y, z)} \frac{\partial}{\partial t} [\mu(x, y, z)]$$

$$\frac{d}{dt} \int_V \mu dV = 0 \Rightarrow \frac{\partial \mu}{\partial t} + (\bar{v} \cdot \nabla) \mu = 0 \quad (\nabla \cdot \bar{v} = 0)$$

$$\bar{H} \cdot \frac{\partial}{\partial t} [\mu(x, y, z) \bar{H}] = \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(x, y, z) |\bar{H}|^2 \right] - \frac{1}{2} |\bar{H}|^2 \nabla \mu \cdot \bar{v}$$

$$\sum_k V_k I_k = \underbrace{\int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(x, y, z) |\bar{H}|^2 \right] dV}_{\text{Energy density } W_M} + P_{\text{dissipated}}$$

$$+ \int_V \bar{v} \cdot \left[\bar{J}_f \times \bar{B} - \underbrace{\frac{1}{2} |\bar{H}|^2 \nabla \mu}_{\bar{F}_M = \text{force density}} \right] dV$$

Mechanical Power

$$W_M = \underbrace{\int_V \frac{1}{2} \mu(x, y, z) |\bar{H}|^2 dV}_{\text{Total Magnetic Energy}}, \quad P_{\text{dissipated}} = \int_V \bar{E}' \cdot \bar{J}_f dV = \int_V \bar{E}' \cdot \bar{J}_f' dV = \int_V \sigma |\bar{E}'|^2 dV$$

$$F_M = \bar{J}_f \times \bar{B} - \frac{1}{2} |\bar{H}|^2 \nabla \mu \quad \text{force density}$$

V. Compressible Media

A. Electroquasistatics (EQS)

Ohmic media: $\bar{J}' = \sigma \bar{E}'$

Polarization dependent on mass density (ρ) alone, electrically linear

$$\bar{D} = \epsilon(\rho) \bar{E}$$

EQS Galilean Transformation: $\bar{J} = \sigma \bar{E} + \rho_f \bar{v}$

$$\int_V \nabla \cdot (\bar{E} \times \bar{H}) dV = \oint_S \bar{E} \times \bar{H} \cdot d\bar{a} = - \sum_k V_k I_k = - \int_V \bar{E} \cdot \frac{\partial}{\partial t} [\epsilon(\rho) \bar{E}] dV$$

$$- \int_V \bar{E} \cdot (\sigma \bar{E} + \rho_f \bar{v}) dV$$

$$\bar{E} \cdot \frac{\partial}{\partial t} [\epsilon(\rho) \bar{E}] = \frac{\epsilon(\rho) \bar{E}}{\epsilon(\rho)} \cdot \frac{\partial}{\partial t} [\epsilon(\rho) \bar{E}] = \frac{1}{\epsilon(\rho)} \frac{\partial}{\partial t} \left[\frac{1}{2} \epsilon^2(\rho) |\bar{E}|^2 \right]$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \frac{\varepsilon^2(\rho)}{\varepsilon(\rho)} |\bar{E}|^2 \right] - \frac{\varepsilon^2(\rho) |\bar{E}|^2}{2} \frac{\partial}{\partial t} \left(\frac{1}{\varepsilon(\rho)} \right)$$

$$\bar{E} \cdot \frac{\partial}{\partial t} [\varepsilon(\rho) \bar{E}] = \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(\rho) |\bar{E}|^2 \right] + \frac{\cancel{\varepsilon^2(\rho)} |\bar{E}|^2}{2} \left(\cancel{\frac{+1}{\varepsilon^2(\rho)}} \frac{\partial \varepsilon(\rho)}{\partial t} \right)$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(\rho) |\bar{E}|^2 \right] + \frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon(\rho)}{\partial t}$$

$$\frac{\partial \varepsilon(\rho)}{\partial t} = \frac{\partial \varepsilon(\rho)}{\partial \rho} \frac{\partial \rho}{\partial t} ; \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{v}) = 0 \quad (\text{Conservation of mass})$$

$$\frac{\partial \varepsilon(\rho)}{\partial t} = \frac{\partial \varepsilon(\rho)}{\partial \rho} (-\nabla \cdot (\rho \bar{v}))$$

$$-\sum_k V_k I_k = -\int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(\rho) |\bar{E}|^2 \right] dV - \int_V \frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon(\rho)}{\partial t} dV$$

$$-\int_V \sigma |\bar{E}|^2 dV - \int_V \rho_f \bar{E} \cdot \bar{v} dV$$

$$\int_V \frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon(\rho)}{\partial t} dV = -\int_V \frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon}{\partial \rho} \nabla \cdot (\rho \bar{v}) dV$$

$$= -\int_V \nabla \cdot \left[\frac{1}{2} \frac{\partial \varepsilon}{\partial \rho} |\bar{E}|^2 \rho \bar{v} \right] dV + \int_V \rho \bar{v} \cdot \nabla \left[\frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon}{\partial \rho} \right] dV$$

$$= -\oint_S \frac{1}{2} \rho \frac{\partial \varepsilon}{\partial \rho} |\bar{E}|^2 \bar{v} \cdot \bar{n} da + \int_V \bar{v} \cdot \left\{ \nabla \left[\frac{1}{2} \rho \frac{\partial \varepsilon}{\partial \rho} |\bar{E}|^2 \right] - \frac{1}{2} |\bar{E}|^2 \frac{\partial \varepsilon}{\partial \rho} \nabla \rho \right\} dV$$

$$\sum_k V_k I_k = \int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon(\rho) |\bar{E}|^2 \right] dV + \int_V \sigma |\bar{E}|^2 dV$$

$$-\oint_S \frac{1}{2} \rho \frac{\partial \varepsilon}{\partial \rho} |\bar{E}|^2 \bar{v} \cdot \bar{n} da$$

$$+\int_V \bar{v} \cdot \left[\rho_f \bar{E} - \frac{1}{2} |\bar{E}|^2 \nabla \varepsilon + \nabla \left[\frac{1}{2} \rho \frac{\partial \varepsilon}{\partial \rho} |\bar{E}|^2 \right] \right] dV$$

where

$$\frac{\partial \epsilon}{\partial \rho} \nabla \rho = \nabla \epsilon$$

electric energy

$$W_E = \int_V \frac{1}{2} \epsilon(\rho) |\bar{E}|^2 dV, \quad P_{\text{dissipated}} = \int_V \sigma |\bar{E}|^2 dV \quad (\text{power dissipated})$$

$$\bar{F}_E = \rho_f \bar{E} - \frac{1}{2} |\bar{E}|^2 \nabla \epsilon + \nabla \left[\frac{1}{2} \rho \frac{\partial \epsilon}{\partial \rho} |\bar{E}|^2 \right] \quad \text{force density}$$

$$\oint_S \frac{1}{2} \rho \frac{\partial \epsilon}{\partial \rho} |\bar{E}|^2 \bar{v} \cdot \bar{n} da = 0 \quad \text{because as } S \rightarrow \infty, |\bar{E}|^2 da \rightarrow 0$$

$$\sum_k V_k I_k = \frac{\partial W_E}{\partial t} + P_{\text{dissipated}} + \underbrace{\int_V \bar{F}_E \cdot \bar{v} dV}_{\text{Mechanical Power}}$$

B. Magnetoquasistatics (MQS)

MQS Galilean Transformation: $\bar{J}_f' = \bar{J}_f, \bar{E}' = \bar{E} + \bar{v} \times \bar{B}$

$$\bar{B} = \mu(\rho) \bar{H}$$

$$\int_V \nabla \cdot (\bar{E} \times \bar{H}) dV = \oint_S \bar{E} \times \bar{H} \cdot d\bar{a} = - \sum_k V_k I_k = - \int_V \bar{H} \cdot \frac{\partial}{\partial t} [\mu(\rho) \bar{H}] dV$$

$$- \int_V [\bar{E}' - \bar{v} \times \bar{B}] \cdot \bar{J}_f dV$$

$$P_{\text{dissipated}} = \int_V \bar{E}' \cdot \bar{J}_f' dV = \int_V \bar{E}' \cdot \bar{J}_f dV$$

$$\bar{J}_f \cdot (\bar{v} \times \bar{B}) = - \bar{J}_f \cdot (\bar{B} \times \bar{v}) = - (\bar{J}_f \times \bar{B}) \cdot \bar{v}$$

$$\bar{H} \cdot \frac{\partial}{\partial t} [\mu(\rho) \bar{H}] = \frac{\mu(\rho) \bar{H}}{\mu(\rho)} \cdot \frac{\partial}{\partial t} [\mu(\rho) \bar{H}] = \frac{1}{\mu(\rho)} \frac{\partial}{\partial t} \left[\frac{1}{2} \mu^2(\rho) |\bar{H}|^2 \right]$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \frac{\mu^2(\rho)}{\mu(\rho)} |\bar{H}|^2 \right] - \frac{1}{2} \mu^2(\rho) |\bar{H}|^2 \frac{\partial}{\partial t} \left[\frac{1}{\mu(\rho)} \right]$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(\rho) |\bar{H}|^2 \right] + \frac{1}{2} \frac{\mu^2(\rho)}{\cancel{\mu^2(\rho)}} |\bar{H}|^2 \frac{\partial \mu(\rho)}{\partial t}$$

$$= \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(\rho) |\bar{H}|^2 \right] + \frac{1}{2} |\bar{H}|^2 \frac{\partial \mu(\rho)}{\partial t}$$

$$\frac{d}{dt} \int_V \mu(\rho) dV = 0 \Rightarrow \frac{\partial \mu(\rho)}{\partial t} + \nabla \cdot [\mu(\rho) \bar{v}] = 0$$

$$\frac{\partial \mu(\rho)}{\partial t} = \frac{\partial \mu(\rho)}{\partial \rho} \frac{\partial \rho}{\partial t} ; \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{v}) = 0$$

$$\frac{\partial \mu(\rho)}{\partial t} = \frac{\partial \mu(\rho)}{\partial \rho} (-\nabla \cdot (\rho \bar{v}))$$

$$-\sum_k V_k I_k = -\int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(\rho) |\bar{H}|^2 \right] dV - \int_V \frac{1}{2} |\bar{H}|^2 \frac{\partial \mu(\rho)}{\partial t} dV - P_{diss}$$

$$-\int_V (\bar{J}_f \times \bar{B}) \cdot \bar{v} dV$$

$$\int_V \frac{1}{2} |\bar{H}|^2 \frac{\partial \mu(\rho)}{\partial t} dV = -\int_V \frac{1}{2} |\bar{H}|^2 \frac{\partial \mu}{\partial \rho} \nabla \cdot (\rho \bar{v}) dV$$

$$= -\int_V \nabla \cdot \left[\frac{1}{2} \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \rho \bar{v} \right] dV + \int_V \rho \bar{v} \cdot \nabla \left[\frac{1}{2} |\bar{H}|^2 \frac{\partial \mu}{\partial \rho} \right] dV$$

$$= -\oint_S \frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \bar{v} \cdot \bar{n} da + \int_V \bar{v} \cdot \left\{ \nabla \left[\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \right] - \frac{1}{2} |\bar{H}|^2 \frac{\partial \mu}{\partial \rho} \nabla \rho \right\} dV$$

$$\sum_k V_k I_k = \int_V \frac{\partial}{\partial t} \left[\frac{1}{2} \mu(\rho) |\bar{H}|^2 \right] dV + P_{diss} - \oint_S \frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \bar{v} \cdot \bar{n} da$$

$$+ \int_V \bar{v} \cdot \left[\bar{J}_f \times \bar{B} - \frac{1}{2} |\bar{H}|^2 \nabla \mu + \nabla \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \right) \right] dV$$

where

$$\frac{\partial \mu}{\partial \rho} \nabla \rho = \nabla \mu \quad \text{magnetic energy}$$

$$W_M = \int_V \frac{1}{2} \mu(\rho) |\bar{H}|^2 dV, \quad P_{\text{dissipated}} = \int_V \bar{E}' \cdot \bar{J}_f dV = \int_V \bar{E}' \cdot \bar{J}_f dV \quad \text{Power dissipated}$$

$$\bar{F}_M = \bar{J}_f \times \bar{B} - \frac{1}{2} |\bar{H}|^2 \nabla \mu + \nabla \left(\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \right) \quad \text{force density}$$

$$\oint_S \frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \bar{v} \cdot \bar{n} da = 0 \quad \text{because as } S \rightarrow \infty, |\bar{H}|^2 da \rightarrow 0$$

$$\sum_k V_k I_k = \frac{\partial W_M}{\partial t} + P_{\text{dissipated}} + \underbrace{\int_V \bar{F}_M \cdot \bar{v} dV}_{\text{Mechanical Power}}$$

C. Conclusions

Force densities

$$\text{EQS: } \bar{F}_E = \rho_f \bar{E} - \frac{1}{2} |\bar{E}|^2 \nabla \epsilon + \nabla \left[\frac{1}{2} \rho \frac{\partial \epsilon}{\partial \rho} |\bar{E}|^2 \right]$$

$$\text{MQS: } \bar{F}_M = \bar{J}_f \times \bar{B} - \frac{1}{2} |\bar{H}|^2 \nabla \mu + \nabla \left[\frac{1}{2} \rho \frac{\partial \mu}{\partial \rho} |\bar{H}|^2 \right]$$