((MARKS)) (1/2/3)	1
((QUESTION))	Two main measures for the efficiency of an algorithm are
((OPTION_A))	Processor and memory
((OPTION_B))	Complexity and capacity
((OPTION_C))	Time and space
((OPTION_D))	Data and space
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Which of the following case does not exist in complexity theory
((OPTION_A))	Best case
((OPTION_B))	Worst case
((OPTION_C))	Average case
((OPTION_D))	Null case
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The Worst case occur in linear search algorithm when
((OPTION_A))	Item is somewhere in the middle of the array
((OPTION_B))	Item is not in the array at all
((OPTION_C))	Item is the last element in the array
((OPTION_D))	Item is the last element in the array or is not there at all

((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	•

((MARKS)) (1/2/3)	1
((QUESTION))	The complexity of merge sort algorithm is
((OPTION_A))	O(n)
((OPTION_B))	O(log n)
((OPTION_C))	O(n²)
((OPTION_D))	O(n log n)
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The input to a merge sort is 6,5,4,3,2,1 and the same input is applied to quick sort then which is the best algorithm in this case
((OPTION_A))	Merge sort
((OPTION_B))	Quick sort
((OPTION_C))	Both have same time complexity in this case as they have same running time
((OPTION_D))	Cannot be decided
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
-------------------	---

((QUESTION))	If there exists two functions $f(n)$ and $g(n)$. The constant c>0 and there exists an integer constant $n_0>=1$. If $f(n)<=c*g(n)$ for every integer $n>=n_0$ then we say that
((OPTION_A))	f(n)=O(g(n))
((OPTION_B))	f(n)=⊖ (g(n))
((OPTION_C))	$f(n) = {}^{\Omega} \Omega (g(n))$
f(n)=⊖ (g(n))	f(n)=o(g(n))
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	Basic definition of big oh notation

((MARKS)) (1/2/3)	1
((QUESTION))	In practice is used to define tight upper bound on growth of function f(n)
((OPTION_A))	Big oh
((OPTION_B))	Big omega
((OPTION_C))	Big theta
((OPTION_D))	None of these
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	The definition of big oh notation is $f(n) \le c*g(n)$ which defines the upper bound on growth of the function $f(n)$

((MARKS)) (1/2/3)	1
((QUESTION))	Examples of O(1) are
((OPTION_A))	Multiplying two numbers
((OPTION_B))	Assigning some value to a variable
((OPTION_C))	Displaying some integer on console
((OPTION_D))	All of the above

((CORRECT_CHOICE)) (A/B/C/D)	D
	All these operations are computed by single line expression evaluation

((MARKS)) (1/2/3)	1
((QUESTION))	Examples of O(n²) algorithms are
((OPTION_A))	Adding two matrices
((OPTION_B))	Finding transpose of a matrix
((OPTION_C))	Initializing all elements of the matrix by 0
((OPTION_D))	All of the above
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	Within two for loops(nested), all these operations are performed.

((MARKS)) (1/2/3)	1
((QUESTION))	Choose the correct time complexity of following code
	while(n>0)
	{
	n=n/10
	}
	0(4)
((OPTION_A))	O(1)
((OPTION_B))	O(n)
((OPTION_C))	O(log n)
((OPTION_D))	O(n²)
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The time complexity of binary search is
((OPTION_A))	O(n)
((OPTION_B))	O(log n)
((OPTION_C))	O(n log n)
((OPTION_D))	O(n²)
((CORRECT_CHOICE)) (A/B/C/D)	В
((EXPLANATION)) (OPTIONAL)	The list is divided at the mid and then the element is searched in either left half or right half.

((MARKS)) (1/2/3)	1
((QUESTION))	Consider recurrence relation as
	T(0)=c1
	T(n)=T(n-1)+c2
	This can be expressed as
((OPTION_A))	O(n)
((OPTION_B))	O(log n)
((OPTION_C))	O(n log n)
((OPTION_D))	O(n²)
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	T(n)=T(n-1)+c2
	=T(n-2)+2c2
	=T(n-3)+3c2
	=T(n-k)+kc2
	If k=n then T(n)=c1+nc2 Hence, T(n)=O(n)

((MARKS)) (1/2/3)	1
((QUESTION))	Consider recurrence relation as
	T(0)=c1 and T(1)=c2
	T(n)=T(n/2)+c3
	This can be expressed as
((OPTION_A))	O(n)
((OPTION_B))	O(log n)
((OPTION_C))	O(n log n)
((OPTION_D))	O(n²)
((CORRECT_CHOICE)) (A/B/C/D)	В
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Following is the method of solving recurrence relation
((OPTION_A))	Greedy method
((OPTION_B))	Backtracking
((OPTION_C))	Forward substitution method
((OPTION_D))	Divide and Conquer method
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The recurrence relation for factorial function is of the form
((OPTION_A))	T(n)=T(n-1)+c
((OPTION_B))	T(n)=T(n-1)+T(n-2)+c

((OPTION_C))	T(n/2)+c
((OPTION_D))	None of these
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	The factorial function is as follows- fact(n) { if n=1 return 1 else return n * fact(n-1) }

```
((MARKS)) (1/2/3...)
((QUESTION))
                        The recurrence relation for fibonacci function is of the form _
((OPTION_A))
                        T(n)=T(n-1)+c
                        T(n)=T(n-1)+T(n-2)+c
((OPTION B))
((OPTION_C))
                        T(n/2)+c
((OPTION_D))
                        None of these
((CORRECT_CHOICE) B
) (A/B/C/D)
                        The fibonacci function is as follows-
((EXPLANATION))
                        fibb(n)
(OPTIONAL)
                          if n = 0
                              return 0
                          if n = 1
                               return 1
                          else
                               return (fibb(n-1) + fibb(n-2))
```

((MARKS)) (1/2/3)	1
((QUESTION))	The frequency count of following code is
	for(i=0;i <m;i++)< td=""></m;i++)<>
	{

	for(j=0;i <n;j++) c[i][j]="a[i][j]+b[i][j];" th="" {="" }="" }<=""></n;j++)>
((OPTION_A))	m + mn + mn
((OPTION_B))	m + n + mn
((OPTION_C))	$m + n^2 + mn$
((OPTION_D))	(m+1) + m(n+1) + mn
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Consider $T(n)=15n^3 + n^2 + 4$. Select the correct statement
((OPTION_A))	T(n)=O(n⁴)
((OPTION_B))	$T(n) = {}^{\Omega} \Omega (n^3)$
((OPTION_C))	$T(n) = {}^{\Omega} \Omega (n^2)$
((OPTION_D))	All of the above
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Give the frequency count of 3 rd Statement
	for(i=1;i<=n;i++) for(j=1;j<=i;j++) x=x+1;

((OPTION_A))	$\frac{1}{2}(n^2+n)$
((OPTION_B))	$\frac{1}{2}(n^2+3n)$
((OPTION_C))	n^2
((OPTION_D))	$(n+1)^2$
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	There are four algorithms for solving a problem. Their time complexities are O(n), O(n2), O(log n) and O(n log n). Which is the best algorithm?
((OPTION_A))	O(n)
((OPTION_B))	$O(n^2)$
((OPTION_C))	O(log n)
((OPTION_D))	O(n log n)
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The order of the recurrence relation a_r - $7a_{r-1}$ + $10a_{r-2}$ = 0 is
((OPTION_A))	3
((OPTION_B))	2
((OPTION_C))	1
((OPTION_D))	В
((CORRECT_CHOICE)) (A/B/C/D)	D

((MARKS)) (1/2/3)	1
((QUESTION))	Characteristic roots of the recurrence relation a _r -2a _{r-1} +a _{r-2} =0 are
((OPTION_A))	1, -1
((OPTION_B))	-1, -1
((OPTION_C))	1, 1
((OPTION_D))	None of these
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Charactristic polynomial of the recurrence relation b _n =-3b _{n-1} -b _{n-2} is
((OPTION_A))	Z^2 -3 Z -2=0
((OPTION_B))	$Z^2+3Z-2=0$
((OPTION_C))	$Z^2+3Z+2=0$
((OPTION_D))	None of these
((CORRECT_CHOICE)) (A/B/C/D)	С
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The general solution of the recurrence relation a _r -2a _{r-1} =0 is
((OPTION_A))	$a^{r}=c1(-2)^{r}$

((OPTION_B))	$a^{r}=c^{2}(2)^{r}$
((OPTION_C))	$a^{r}=c1(1)^{r}$
((OPTION_D))	None of these
((CORRECT_CHOICE)) (A/B/C/D)	В
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Consider the recurrence relation, $a_n = a_{n-1} + 2a_{n-2}$ with $a_9 = 3$ and $a_{10} = 5$. Find a_7 .
((OPTION_A))	1
((OPTION_B))	3
((OPTION_C))	5
((OPTION_D))	None
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Charactristic polynomial of the recurrence relation a_{r+2} - a_{r-2} =0 is
((OPTION_A))	Z-1=0
((OPTION_B))	Z^2 -1=0
((OPTION_C))	$(Z-1)^2=0$
((OPTION_D))	None
((CORRECT_CHOICE)) (A/B/C/D)	D

(OPTIONAL)	Given homogeneous recurrence relation can be written as $a_{r+2} + 0a_{r+1} + 0a_r + 0a_{r-1} - a_{r-2} = 0$
	Order of this recurrence relation is 4.
	Hence characteristic polynomial is Z^4 - 1 = 0

((MARKS)) (1/2/3)	1
((QUESTION))	Which of the following is not a homogeneous linear recurrence relation
((OPTION_A))	$a_{r+2}-a_{r-2}=0$
((OPTION_B))	$a_{r} = a_{r-1} + a_{r-2}$
((OPTION_C))	$a_{r}-2a_{r-1}=-a_{r-2}$
((OPTION_D))	$a_{r+3} + 6a_{r+2} \cdot a_{r+1} - 4a_r = 0$
((CORRECT_CHOICE)) (A/B/C/D)	D
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	If 4 and -1 are the characteristic roots of the recurrence relation then its homogeneous solution becomes
((OPTION_A))	$a^{r}=c1(-1)^{r}+c2(4)^{r}$
((OPTION_B))	$a^{r}=c0(-1)^{r}+c2$
((OPTION_C))	$a^{r}=(c_{1}+c_{2}.r)(-1)^{r}$
((OPTION_D))	None
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	A recurrence relation of degree 1 is called
((OPTION_A))	Linear
((OPTION_B))	Homogeneous
((OPTION_C))	Quadratic
((OPTION_D))	None
((CORRECT_CHOICE)) (A/B/C/D)	A
((EXPLANATION)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The generating function for the sequence 1, a, a ² , a ³ , is
((OPTION_A))	1/(1-z)
((OPTION_B))	1/(1-az)
((OPTION_C))	1/(1+az)
((OPTION_D))	None
((CORRECT_CHOICE)) (A/B/C/D)	В
((EXPLANATION)) (OPTIONAL)	