Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

Отчёт Лабораторная работы №5 по дисциплине "Методы оптимизации"

Выполнили студенты: Салихов С. Шарапов С. Мальцов Д. группа: 3630102/70401

Проверил: к.ф-м.н. Родионова Е.А.

Содержание

		Этр.
1.	Общая постановка задачи	3
	1.1. Требования	3
2.	Постановка задачи	3
3.	Обоснование применимости методов	3
4.	Описание алгоритма	3
	4.1. Метод отсекающей гиперплоскости	3
	4.1.1 Постановка задачи	3
	4.1.2 Алгоритм метода	3
	4.2. Метод вычисления субградиента	4
	4.3. Восстановление решения задачи из решения двойственной	4
5.	Результаты	4
6.	Оценка достоверности результатов	4

1 Общая постановка задачи

Дана задача условной оптимизации:

$$\overline{\phi_0} - > min$$

$$x \in \overline{\Omega} = \{x | \phi_1(x) <= 0, \phi_2 <= 0\}$$

 $x\in R^2;\phi_1,\phi_2$ - выпуклые ф-ии такие, что $\overline{\Omega}$ - замкнутое; $\overline{\phi_0}$ - нелинейная функция цели.

1.1 Требования

- 1) Привести заачу к виду, пригодному для использования метода отсекающей гиперплоскости.
- 2) Построить замкнутый многогранник $S = \{x \mid Ax <= b\}$, при $\Omega \subset S$, для начального этапа метода отсекающей гиперплоскости.
- 3) Решить задачу используя метод отсекающей гиперплоскости, решая на каждом этапе проблему линейной минимизации следующим способом: 1. привести к двойственному виду, 2. применить симплекс метод, 3. восстановить решение прямой по решению двойственной.

2 Постановка задачи

3 Обоснование применимости методов

4 Описание алгоритма

4.1 Метод отсекающей гиперплоскости

4.1.1 Постановка задачи

- 1) ϵ заданная точность вычислений.
- 2)Выпуклый многогранник S, Ω ⊂ S.
- $3)\phi$ функция, определяюющая Ω , с вожмозностью в каждой точки нахождения субградиета.

4.1.2 Алгоритм метода

- 1)Задаче (x, c) -> min_x , $x \in S = \{x|Ax <= b\}$ составляется двойственная: (y, -b) -> min_y , $y \in \overline{S} = \{y|A^Ty = c, y >= 0\}$. Решаем задачу и в качестве результата получаем вектор y^* и его базис (N_k) .
 - 2)Восстанавливается решение исходной задачи. Решением будет являтся x^*
- 3)Далее проверяется условие $x^* \in \Omega$, если условие выполненно, то решением задачи является x^* , иначе преобразуем матрицы A и b: $A_new = \begin{pmatrix} A \\ -subgrad\phi(x^*) \end{pmatrix}$,

 $b_new = \begin{pmatrix} b \\ -\phi(x^*) + -subgrad\phi(x^*) * x^* \end{pmatrix}$. Далее повторяем шаги 1, 2 для новых матриц и получаем в качестве решения x_2^* . Если $||x^* - x_2^*|| < \epsilon$, то x_2^* решение, иначе $\mathbf{x} = x_2^*$, $\mathbf{y} = y_2^*$.

4.2 Метод вычисления субградиента

subgrad
$$\phi(\mathbf{x}) = \nabla \ \phi_i(x), \ \forall \ \mathbf{i} \in \mathbf{I} = \{\mathbf{i} \mid \phi_i(x) = max\phi_i(x), 1 <= i <= m\} (\mathbf{m} = 3)$$

- 4.3 Восстановление решения задачи из решения двойственной
- 5 Результаты
- 6 Оценка достоверности результатов