Implementation

Michael Brodskiy

Professor: B. O'Connell

September 29, 2022

• Proof of Concept

- Functionally equivalent but incomplete representations tested in a controlled environment
- Model certain relevant characteristics and apply those models to potential designs

• Models

 Models are designed to behave in the same way as the real processes or systems but under certain conditions

• Prototypes

- A prototype is the first of its kind
- Prototypes are used to demonstrate that a product will function as designed, tested in actual/uncontrolled/real world operating environments
- What does your first prototype look like?
 - A proof of concept
 - Depends on your design, budget, goals
 - For the initial demo, use household items to show the functionality of your design

• Refining your Prototype

- Mock-ups
 - * Construct a mock-up of a 3D part from 2D cutouts
 - * These 2D parts can be made using vinyl cutter or a laser cutter
 - * Parts are then assembled into 3D mock-ups of design
 - * Materials used for these mock-ups might be foam, thin plastic, or wood

- Machining
 - * Woodworking machines
 - * Metal shop
- Rapid Prototyping
 - * A group of techniques used to fabricate a scale model of a physical part or assembly using three-dimensional computer-aided design (CAD) data
 - * 3D printing is one of those techniques: Convert these 3D files into thin 2D layers to build the 3D part

• Planning

- Determine the Critical Path
 - * List your goals
 - * Identify the main tasks
 - * Identify subtasks
- Evaluate tasks
 - * Estimate durations
 - * Estimate support
 - * Estimate materials
- Organize those tasks
 - * Allocate the time needed
 - * Assign to team members
 - * Budget for materials
- Industry Barriers to Implementation
 - Manufacturing costs
 - Maintenance costs
 - Lack of suitable materials
 - Unreasonable labor demands
 - Unsustainable practices
- Design for X
 - X can be:
 - * Manufacturing
 - * Sustainability
 - * Reliability
 - * Quality

- * Maintainability
- * Disassembly
- * Recyclability

• Commonly Added Objectives

- Minimize cost to us
- Minimize price for consumer
- Decrease time to market
- Minimize maintenance and repair costs
- Maximize level of quality and reliability
- Make the design upgradable

• Design for Manufacturing Guidelines

- Use standard parts
- Design for an assembly line
 - * Use machine assembly
 - * Minimize number of assembly operations
 - * Minimize tolerances for easy assembly
 - * Provide access points for assembly
- Minimize number of parts
 - * Design parts to be multifunctional
 - * Minimize part variations
 - * Use reusable models and subassemblies
 - * Avoid separate fasteners

• Design for Sustainability

- Overall Design
 - * Dematerialize the product
 - * Use materials with low resource requirements
- Manufacturing
 - * Reduce process resource consumption
 - * Reduce process emissions
 - * Consider process and background and foreground supply chains
 - * Dematerialize the product chain
 - * Improve factory safety and ergonomics
 - * Improve factory economics