PATENT

Amendments to the Claims:

Claims 14-16 and 41-45 have been amended herein. Please note that all claims currently pending and under consideration in the referenced application are shown below. Please enter these claims as amended. This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1-9 (Canceled)

10. (Previously Presented) A method in a wireless communication system, comprising: designating a multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data; and

designating a reverse link having at least one reverse link frequency bin, wherein the designation is responsive to loading and wherein the forward link frequency bins and the at least one reverse link frequency bin are designated such that bandwidth of the forward link can be allocated differently from bandwidth of the reverse link, and further wherein the forward link frequency bins and the at least one reverse link frequency bin comprise signals obtained by code spreading in the time domain, and further wherein each of the forward link bins and the at least one reverse link frequency bin are allocated for single-carrier CDMA communication within the respective bin.

11. (Previously Presented) The method of claim 10 further comprising:

selecting a first forward link frequency bin from the plurality of forward link frequency bins for forward link transmission, the first forward link frequency bin having an associated first reverse link frequency bin; and

selecting a second reverse link frequency bin for reverse link transmission corresponding to the forward link transmission wherein the second reverse link frequency bin is different from the first reverse link frequency bin.

Attorney Docket No.: 990482

- 12. (Previously Presented) The method of claim 11 wherein the selecting a second reverse link frequency bin is based on loading of the system.
 - 13. (Previously Presented) The method of claim 11, further comprising:

selecting a third reverse link frequency bin for reverse link transmission corresponding to the forward link transmission, wherein the third reverse link frequency bin is different from the first and second reverse link frequency bins.

- 14. (Currently Amended) The method in accordance with of claim 10, wherein said plurality of forward link frequency bins comprise three frequency bins.
- 15. (Currently Amended) The method in accordance with of claim 10, wherein said plurality of forward link frequency bins are adjacent frequency bins.
- 16. (Currently Amended) The method in accordance with of claim 11, wherein said multi-carrier forward link is adapted for transmission of a plurality of code channels, wherein one of said plurality of code channels is used to communicate power control information for said second reverse link frequency bin.
- 17. (Previously Presented) A method of allocating bandwidth for forward and reverse link transmissions in a wireless communication system, comprising:

receiving communications on a multi-carrier forward link, the multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data, the reverse link having at least one frequency bin, wherein the at least one frequency bin of the reverse link is selected responsive to loading;

wherein the forward link bins and the at least one reverse link frequency bins are configured such that the allocation of bandwidth for the forward and reverse link transmissions can be varied, and further wherein the forward link frequency bins and the at least one reverse link frequency bin comprise signals obtained by code spreading in the time domain, and further

Attorney Docket No.: 990482

wherein each of the forward link bins and the at least one reverse link frequency bin are allocated for single-carrier CDMA communication within the respective bin.

18. (Previously Presented) The method of claim 17, further comprising: receiving by a first device a communication on a forward link frequency bin, the forward link frequency bin having an associated first reverse link frequency bin; and

transmitting by a second device via a second reverse link frequency bin, wherein said second reverse link frequency bin is different from the first reverse link frequency bin.

- 19. (Previously Presented) The method of claim 18, further comprising: receiving by the first device an indication of a reverse link frequency bin.
- 20. (Previously Presented) An apparatus in a wireless communication system, comprising:

a first means for transmitting information on a multi-carrier forward link, wherein said multi-carrier forward link comprises a plurality of forward link frequency bins allocated to carry different types of payload data; and

a second means for designating a reverse link frequency bin, wherein the designation is responsive to loading, and further wherein said first and second means configure the frequency bins so as to enable differential allocation of bandwidth for forward link and reverse link transmissions, and further wherein the forward link frequency bins and the at least one reverse link frequency bin comprise signals obtained by code spreading in the time domain, and further wherein each of the forward link bins and the at least one reverse link frequency bin are allocated for single-carrier CDMA communication within the respective bin.

21. (Previously Presented) The apparatus of claim 20, further comprising:
means for selecting a first forward link frequency bin from the plurality of forward link
frequency bins for the forward link transmission, the first forward link frequency bin having an
associated first reverse link frequency bins; and

Attorney Docket No.: 990482

PATENT

means for selecting a second reverse link frequency bin for the reverse link transmission

corresponding to the forward link transmission, wherein the second reverse link frequency bin is

different from the first reverse link frequency bin.

22. (Previously Presented) The method of claim 10, wherein the designations of the

forward and reverse link includes allocating more bandwidth for the forward link than the reverse

link.

23. (Previously Presented) The method of claim 10, wherein the designation of the

forward link includes configuring the forward link as a cdma2000 3X forward link.

The method of claim 23, wherein the forward link includes 24. (Previously Presented)

first, second, and third carriers.

25. (Previously Presented) The method of claim 24, wherein said first, second, and

third carriers occupy first, second, and third adjacent frequency bins, respectively.

The method of claim 25, wherein the designation of the 26. (Previously Presented)

reverse link includes configuring the reverse link as a cdma2000 1X reverse link.

27. (Previously Presented) The method of claim 26, wherein the reverse link includes a

fourth carrier.

28. (Previously Presented) The method of claim 27, wherein the fourth carrier is

located in a frequency range similar to the second frequency bin.

29. (Previously Presented) A method in a wireless communication system, comprising:

designating a multi-carrier forward link having a plurality of forward link frequency bins

allocated to carry different types of payload data; and

PATENT

designating a reverse link having a plurality of reverse link frequency bins, wherein the

designation is responsive to loading, and further wherein a subset of the reverse link frequency

bins are time-division-duplexed, wherein the forward link frequency bins and the reverse link

frequency bins are designated such that bandwidth of the forward link can be allocated differently

from bandwidth of the reverse link, and further wherein the forward link frequency bins and the

reverse link frequency bins comprise signals obtained by code spreading in the time domain.

30. (Previously Presented) The method of claim 10, wherein forward link data is

allocated to each of the forward link frequency bins depending on a data type of the forward link

data.

31. (Previously Presented) A method in a wireless communication system, comprising:

designating a multi-carrier forward link having a plurality of forward link frequency bins

allocated to carry different types of payload data; and

designating a reverse link having at least one reverse link frequency bin, wherein the

designation is responsive to loading and wherein the forward link frequency bins and the at least

one reverse link frequency bin are designated such that bandwidth of the forward link can be

allocated differently from bandwidth of the reverse link.

32. (Previously Presented) The method of claim 31 further comprising:

selecting a first forward link frequency bin from the plurality of forward link frequency

bins for forward link transmission, the first forward link frequency bin having an associated first

reverse link frequency bin; and

selecting a second reverse link frequency bin for reverse link transmission corresponding

to the forward link transmission wherein the second reverse link frequency bin is different from

the first reverse link frequency bin.

33. (Previously Presented) A method of allocating bandwidth for forward and reverse

link transmissions in a wireless communication system, comprising:

receiving communications on a multi-carrier forward link, the multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data, the reverse link having at least one frequency bin, wherein the at least one frequency bin of the reverse link is selected responsive to loading;

wherein the forward link bins and the at least one reverse link frequency bins are configured such that the allocation of bandwidth for the forward and reverse link transmissions can be varied.

34. (Previously Presented) The method of claim 33, further comprising: transmitting communications over the at least one frequency bin of the reverse link.

35. (Previously Presented) The method of claim 34, further comprising: receiving an indication of a reverse link frequency bin.

36. (Previously Presented) An apparatus in a wireless communication system comprising:

means for designating a multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data; and

means for designating a reverse link having at least one reverse link frequency bin, wherein the designation is responsive to loading and wherein the forward link frequency bins and the at least one reverse link frequency bin are designated such that bandwidth of the forward link can be allocated differently from bandwidth of the reverse link.

37. (Previously Presented) The apparatus of claim 36 further comprising:

means for selecting a first forward link frequency bin from the plurality of forward link frequency bins for forward link transmission, the first forward link frequency bin having an associated first reverse link frequency bin; and

means for selecting a second reverse link frequency bin for reverse link transmission corresponding to the forward link transmission wherein the second reverse link frequency bin is different from the first reverse link frequency bin.

Attorney Docket No.: 990482

38. (Previously Presented) An apparatus in a wireless communications system comprising:

means for receiving communications on a multi-carrier forward link, the multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data, the reverse link having at least one frequency bin, wherein the at least one frequency bin of the reverse link is selected responsive to loading, wherein the forward link bins and the at least one reverse link frequency bins are configured such that the allocation of bandwidth for the forward and reverse link transmissions can be varied; and

means for transmitting communications over the at least one frequency bin of the reverse link.

- 39. (Cancelled).
- 40. (Previously Presented) The apparatus of claim 38 further comprising: means for receiving an indication of a reverse link frequency bin.
- 41. (Currently Amended) A <u>non-transitory</u> computer-readable medium including computer-executable instructions comprising:

a first set of instructions for designating a multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data; and

a second set of instructions for designating a reverse link having at least one reverse link frequency bin, wherein the designation is responsive to loading and wherein the forward link frequency bins and the at least one reverse link frequency bin are designated such that bandwidth of the forward link can be allocated differently from bandwidth of the reverse link.

Attorney Docket No.: 990482

42. (Currently Amended) The <u>non-transitory</u> computer-readable medium of claim 41 further comprising:

a third set of instructions for selecting a first forward link frequency bin from the plurality of forward link frequency bins for forward link transmission, the first forward link frequency bin having an associated first reverse link frequency bin; and

a fourth set of instructions for selecting a second reverse link frequency bin for reverse link transmission corresponding to the forward link transmission wherein the second reverse link frequency bin is different from the first reverse link frequency bin.

43. (Currently Amended) A <u>non-transitory</u> computer-readable medium including computer-executable instructions comprising:

a first set of instructions for receiving communications on a multi-carrier forward link, the multi-carrier forward link having a plurality of forward link frequency bins allocated to carry different types of payload data, the reverse link having at least one frequency bin, wherein the at least one frequency bin of the reverse link is selected responsive to loading;

wherein the forward link bins and the at least one reverse link frequency bins are configured such that the allocation of bandwidth for the forward and reverse link transmissions can be varied.

44. (Currently Amended) The <u>non-transitory</u> computer-readable medium of claim 43 further comprising:

a second set of instructions for transmitting communications over the at least one frequency bin of the reverse link.

45. (Currently Amended) The <u>non-transitory</u> computer-readable medium of claim 44 further comprising:

a third set of instructions for receiving an indication of a reverse link frequency bin.

Attorney Docket No.: 990482