Mathematics 16.08.22 Notes

Eason Shao, Mr Finch-Noyes

16.08.22

1

1

Contents

2 Numbers

1 General Introduction of the Course

Section 1 General Introduction of the Course
Intro 1.1. (Course Structure)
(1) IGCSE Maths, CIE, 0580, A*-E;
(2) IGCSE Additional Maths, CIE, 0606, A*-E.
Intro 1.2. (Maths) Core and Extended, Aug - Oct.
(1) Paper 2: 90 mins, 70 pts, 23 Short Qs;
(2) Paper 4: 150 mins, 130 pts, 12 Longer Qs.
Intro 1.3. (Additional Maths) Nov - Mar.
(1) Paper 1: 120 mins, 80 pts;
(2) Paper 2: 120 mins, 80 pts.
Intro 1.4. (Important Documents) Syllabus (Changed in 2020 and 2022); 2017- Practice Problems Intro 1.5. (Curriculum) Number 15-20%, Algebra 35-40%, Geometry 30-35%, Stat/Prob 10-15%.

Section 2 Numbers

Definition 2.1. (Integers) \cdots , -3, -2, -1, 0, 1, 2, 3, \cdots . All whole numbers including 0. Symbol: \mathbb{Z} . **Definition 2.2.** (Natural Numbers) 1, 2, 3, \cdots . All positive whole mumbers without 0. Symbol: \mathbb{V} or \mathbb{Z}^+ .

Definition 2.3. (Rational Numbers) Can be written as $\frac{a}{b}$ where $a, b \in \mathbb{Z}$. Any number with termintating or repeating decimals. Symbol: \mathbb{Q} .

Definition 2.4. (Irrational Numbers) Real numbers excluding rational numbers.

Example 2.5. (Irrational Numbers) $\pi, \sqrt{2}, \sqrt{3}, \sqrt{9.2}, \sqrt[5]{19}, e.$

Definition 2.6. (Real Numbers) All numbers. Symbol: \mathbb{R} .

Definition 2.7. (Factors) Factors of a number n: a where $\frac{n}{a} \in \mathbb{N}$.

Example 2.8. (Factors) Factors of 12: 1, 2, 3, 4, 6, 12.

Definition 2.9. (Multiples) Multiples of a number n: an where $a \in \mathbb{N}$.

Example 2.10. (Multiples) Multiples of 12: $12, 24, 36, \cdots$.

Definition 2.11. (Prime Numbers) $2, 3, 5, 7, 11, \cdots$. Exactly two factors.

Method 2.12. (Determine whether a number n is Prime) Check every Prime up to \sqrt{n} .

Problem 2.13. Determine whether 149 is a prime. Solution. $\sqrt{149} \approx 12.02$, check 2, 3, 5, 7, 11.

- (1) $149 \equiv 1 \pmod{2}$,
- (2) $149 \equiv 2 \pmod{3}$,
- (3) $149 \equiv 4 \pmod{5}$,
- (4) $149 \equiv 2 \pmod{7}$,
- (5) $149 \equiv 6 \pmod{11}$.

Therefore 149 is a prime.

Definition 2.14. (Reciprocal): Reciprocal of a non-zero number n is $\frac{1}{n}$. **Method 2.15.** (Highest Common Factor, HCF) Factorization. Do a Venn Diagram of factors. Multiple ONLY the common factors.

Problem 2.16. Find the HCF of 156 and 72. Solution.

$$156 = 2 \times 78$$

$$= 2 \times 2 \times 39$$

$$= 2 \times 2 \times 3 \times 13$$

$$= 2^{2} \times 3 \times 13;$$

$$72 = 2 \times 36$$

$$= 2 \times 2 \times 18$$

$$= 2 \times 2 \times 2 \times 9$$

$$= 2 \times 2 \times 2 \times 3 \times 3$$

$$= 2^{3} \times 3^{2}.$$

Common Factors: 2^2 , 3; 156-Only Factors: 13; 72-Only Factors: 2, 3. $hcf(156,72) = 2^2 \times 3 = 12$.

Method 2.17. (Least Common Multiple, LCM) Factorization. Do a Venn Diagram of factors. Multiple ALL factors (only multiple the common ones once).

Problem 2.18. Find the LCM of 156 and 72. **Solution.** Common Factors: 2^2 , 3; 156-Only Factors: 13; 72-Only Factors: 2, 3. $lcm(156,72) = 2^3 \times 3^2 \times 13 = 936$.