Stats – Résumé

I. Statistiques descriptive

 Quantitative : Modalités comparables entre elles Discrète / continue : modalités dénombrable / indénombrables Qualitative Binaire / Multimodale : deux modalités / plus de 2. Ordinale (ou non) : existence d'un ordre 					Quantit. discrète Quantit. continue	
Définition	Formule	Qualit. binaire	Qualit. multimod	Qualit. ordinale	ਰੋਂ ਰੋ	
• Fonction de répartition empirique $\widehat{F_X}$	$\widehat{F_X}(x) = \widehat{F_i^c} + (\widehat{F_i^c} - \widehat{F_{i-1}^c}) \frac{x - x_{i-1}}{x_i - x_{i-1}}$ $\widehat{F_X}(x_i) = \widehat{F_i^c} = \widehat{F_i} - \frac{1}{2} (\widehat{F_i} - \widehat{F_{i-1}})$				х	
• Moyenne \overline{x}	Moyenne		x	x	x x	
• Fractile et quartile	$\widehat{F_X}(\widehat{\phi}_p) = p \widehat{Q_1} = \widehat{\phi}_{\frac{1}{4}} \widehat{Q_3} = \widehat{\phi}_{\frac{3}{4}} DIQ = \widehat{Q_3} - \widehat{Q_1} Etendue = x_{\max} - x_{\min} $				хх	
Moment et moment centré	$\widehat{m_k} = \frac{1}{n} \sum_{i=1}^n x_i^k \qquad \widehat{\mu_k} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^k \qquad \overline{\bar{x}} = \widehat{m_1} \ \hat{S}^2 = \widehat{\mu_2} \ \frac{\widehat{\mu_3}}{\hat{S}^3} \ \frac{\widehat{\mu_4}}{\hat{S}^4}$ $\text{Dissymétrie Aplatissement}$		x		x x	
• Dépendance : (X, Y quant.)	$s_{XY}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ $= \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \bar{x}\bar{y})$ $= \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \bar{x}\bar{y})$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$ $S_X^2 = S_X^2 = 1$					
• Dépendance : (X qual, Y quant.)	$S_Y^2 = \underbrace{\frac{1}{n} \sum_{j \in \Omega_X} n_j (\bar{y}_j - \bar{y})^2}_{S_E^2: \text{variance expliquée}} + \underbrace{\frac{1}{n} \sum_{j \in \Omega_X} n_j S_j^2}_{S_E^2: \text{variance résiduelle}} $ $\underbrace{S_{Y/X}^2 = \frac{\sum_{j \in \Omega_X} n_j (\bar{y}_j - \bar{y})}{\sum_{i=1}^n (y_i - \bar{y})^2}}_{\text{Coef. de détermination}}$					
• Dépendance : (X, Y qual.)	$D_{\chi^{2}} = \sum_{i \in \Omega_{X}} \sum_{j \in \Omega_{Y}} \frac{\left(n_{ij} - \frac{n_{i\bullet}n_{\bullet j}}{n}\right)^{2}}{\frac{n_{i\bullet}n_{\bullet j}}{n}} = n \sum_{i \in \Omega_{X}} \sum_{j \in \Omega_{Y}} \frac{\left(\widehat{\mathbb{P}}_{ij}^{\text{eff obs}} - \widehat{\mathbb{P}}_{i}\widehat{\mathbb{P}}_{j}\right)^{2}}{\widehat{\mathbb{P}}_{i}\widehat{\mathbb{P}}_{j}}$ $\Phi^{2} = \frac{\chi^{2}}{n} \qquad T = \sqrt{\frac{\Phi^{2}}{\sqrt{(r-1)(c-1)}}} \qquad C = \sqrt{\frac{\Phi^{2}}{\min(r,c) - 1}}$ Coef de Tschuorow $C = \sqrt{\frac{\Phi^{2}}{\min(r,c) - 1}}$					
+	Plus petite valeur de l'épure $\widehat{Q_1}$ \widehat{M} $\widehat{Q_3}$ de l'épure Points aberrants					

 $\widehat{Q}_3 + \frac{3}{2}DIQ$

DIQ

 $\widehat{Q_1} - \frac{3}{2}DIQ$

Épure

Stats – Résumé

II. Probabilités : variables aléatoires

1. Formules

	Discrète	Continue
	Loi de probabilité	Fonction de densité
Def.	$P(\Omega) = 1$ $P_X(x) = P(X = x)$	$\int_{-\infty}^{+\infty} f(t) \ dt = 1$
FDR	$F_X(x) = P(X \le x)$	$F_X(x) = \int_{-\infty}^x f(t) dt$ $F_X = \int f$
Somme Z = X + Y	$P(Z = z) = \sum_{i} P(X = x_i) P_{(X = x_i)}(Y = z - x_i)$	$h(x) = f * g = \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ avec * produit de convolution
Espérance	$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$ $E(\varphi(X)) = \sum_{i=1}^{n} \varphi(x_i) P(X = x_i)$ $E(aX + b) = aE(X) + b$	$E(X) = \int_{-\infty}^{+\infty} t f(t) dt$ $E(\varphi(X)) = \int_{-\infty}^{+\infty} \varphi(t) f(t) dt$
Variance	$V(X) = E\left(\left(X - E(X)\right)^{2}\right)$ $V(X) = E(X^{2}) - E(X)^{2}$ $\sigma(X) = \sqrt{V(X)}$	Propriétés : • $V(aX + b) = a^2V(X)$ • $\sigma(aX + b) = a \sigma(X)$

2. Lois usuelles

Nom	P(X=k)/f(x)	E(X)	V(X)	Propriétés
Uniforme $U(n)$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\Omega = \llbracket 1; n rbracket$
Binomiale $\mathcal{B}(n,p)$	$\binom{n}{k}p^k(1-p)^{n-k}$	пр	np(1-p)	$\Omega = \llbracket 0; n \rrbracket$ $n > 50, \begin{cases} p < 0,1 : & \mathcal{B} \to \mathcal{P} \\ p \ge 0,1 : & \mathcal{B} \to \mathcal{N} \end{cases}$
Poisson $\mathcal{P}(\lambda)$	$e^{-\lambda} rac{\lambda^k}{k!}$	λ	λ	λ grand : $\mathcal{P} \to \mathcal{N}$ $X_1 + X_2 \sim \mathcal{P}(\lambda_1 + \lambda_2)$
Uniforme $U_{[0;a]}$	$\frac{1}{a} \text{ si } x \in [0; a]$	$\frac{a}{2}$	$\frac{a^2}{12}$	
Exponentielle $E(\lambda)$	$\lambda e^{-\lambda x}$ si $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	
Normale $\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$Z \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Stats - Résumé

III. Estimateur et fonction de vraisemblance

1. Fonction de vraisemblance

$$\mathcal{L}(x_1,\ldots,x_n,\theta) = \prod_{i=1}^n f(x_i;\theta) \qquad \qquad \mathcal{L}(x_1,\ldots,x_n,\theta) = \prod_{i=1}^n P(X=x_i;\theta)$$

2. Estimateurs ponctuels

a. Formules, propriétés, théorèmes

$$\widehat{\Theta} = T = f(X_1, \dots, X_n)$$

Form./Prop./Th.	Définition		
$\widehat{\Theta}$ converge \Leftrightarrow	$E(\widehat{\Theta}) \xrightarrow{n \to \infty} \theta \text{ et } V(\widehat{\Theta}) \xrightarrow{n \to \infty} 0$		
$\widehat{\Theta}_1$ préférable à $\widehat{\Theta}_2 \Leftrightarrow$	$\forall \theta \in \mathbb{R}, R(\widehat{\Theta}_1, \theta) \leq R(\widehat{\Theta}_2, \theta)$		
Θ̂ admissible ⇔	aucun estimateur préférable		
θ exhaustive ⇔	contient toute l'info apportée par l'échantillon pour connaitre $\theta\Leftrightarrow\exists\ g,h\mid\mathcal{L}=g(t,\theta)h(x_1,\ldots,x_n)$		
Risque :	$R(\widehat{\Theta}, \theta) = E[(\widehat{\Theta} - \theta)^{2}] = V(\widehat{\Theta}) + (E(\widehat{\Theta}) - \theta)^{2}$		
Information de Fisher :	$I_n(\theta) = E\left[\left(\frac{\partial \ln \mathcal{L}}{\partial \theta}\right)^2\right] = -E\left[\frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2}\right] = nI_1(\theta)$		
• \hat{u} est. sans biais de $u(\theta)$ • Support de X indépendant de θ • $\frac{\partial \mathcal{L}}{\partial \theta}$ existe, continu, intégrable $\hat{u} \frac{\partial \mathcal{L}}{\partial \theta}$ intégrable • $I_n(\theta)$ finie $\Rightarrow V(\hat{u}) \geq BCR = \frac{u'(\theta)^2}{I_n(\theta)}$			
Estimateur efficace ⇔	$\begin{cases} \text{v\'erifie les cond. de Cramer-Rao} \\ \text{variance} = \text{variance de la BCR} = \text{variance min} \\ \text{v\'erifie les cond. de Cramer-Rao} \\ \Leftrightarrow \begin{cases} \exists \ A \mid \frac{\partial \ ln(L)}{\partial \theta} = A(n,\theta) \big(\hat{u} - u(\theta)\big) \end{cases} \end{cases}$		

b. Création d'un estimateur ponctuel

• Méthode du maximum de variance

$$\widehat{\Theta}_{MV} = \theta \mid \frac{\partial \ln \mathcal{L}}{\partial \theta} = 0 \text{ et } \frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2} < 0$$

 $\max_{\widehat{\Theta}} \mathcal{L}$

Propriétés :

- $\bullet \quad \widehat{\Theta}_{\mathit{MV}} \ \mathsf{MV} \ \mathsf{de} \ \theta \Rightarrow u \Big(\widehat{\Theta}_{\mathit{MV}} \Big) \ \mathsf{MV} \ \mathsf{de} \ u(\theta)$
- $\widehat{\Theta}_{MV}$ asy. sans biais
- $\widehat{\Theta}_{MV}$ asy. efficace et asy. gaussien si CCR vérifiées

• Méthode des moments

On utilise les $\widehat{m_k}$ et les $\widehat{\mu_k}$ et on en déduit des estimateurs $\widehat{\Theta}_m$ des paramètres.

Propriétés:

- Convergent : $\widehat{\Theta}_m \to \widehat{\Theta}$
- Asymptotiquement gaussien : $\sqrt{n}(\widehat{\Theta} \theta) \rightarrow \mathcal{N}(0, \sigma_m^2)$

v1

Stats - Résumé

c. Convergence des estimateurs courants et propriétés

$$X_i$$
 i.i.d. avec $E(X_i) = E(X) = \mu$ $V(X_i) = \sigma^2$

$\widehat{\mathbf{\Theta}}$	$E(\widehat{m{\Theta}})$	$V(\widehat{m{\Theta}})$	Loi gd nombres	$X \sim \mathcal{N}(\mu, \sigma^2)$
$\bar{X} = \frac{\sum X_i}{n}$	μ	$\frac{\sigma^2}{n}$	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \to \mathcal{N}(0,1)$	$\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$
$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$\frac{n-1}{n}\sigma^2$	$pprox rac{\mu_4 - \sigma^4}{n}$	$\frac{S^2 - \frac{n-1}{n}\sigma^2}{\sqrt{V(S^2)}} \to \mathcal{N}(0,1)$	$\frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$
$S^{*2} = \frac{n}{n-1}S^2$	σ^2			

3. Estimation par intervalle de confiance

a. Principe

$$\mathbb{P} \big(\theta \in \big[\widehat{\Theta}_1, \widehat{\Theta}_2 \big] \big) = 1 - \alpha$$
 Principe

 $\left[\widehat{\Theta}_1,+\infty\right[$

Intervalle de confiance unilatéral

 $1-\alpha$: niveau de confiance

 α : risque

 $\left[\widehat{\Theta}_{1},\widehat{\Theta}_{2}\right]$

Intervalle de confiance bilatéral risque symétrique ou non

v1

b. Construction

Soit un estimateur $\widehat{\Theta}$ de loi de probabilité \mathcal{P} .

- 1. Construire la fonction pivotale $f(\widehat{\Theta}, \theta)$ loi de proba. ne dépendant pas de θ
- 2. Déterminer $I_{1,2}$ tel que $\mathbb{P}\big(I_1 \leq f\big(\widehat{\Theta}, \theta\big) \leq I_2\big) = 1 \alpha$
- 3. En déduire $\widehat{\Theta}_{1,2}$ tel que $\mathbb{P}(\widehat{\Theta}_1 \leq f(\widehat{\Theta}, \theta) \leq \widehat{\Theta}_2) = 1 \alpha$

c. Fonctions pivotales usuelles

θ	S^2	${\mathcal{S}^*}^2$	\overline{X} σ connu	\overline{X} σ estimé
O	σ^2 :	=V(X)	$\mu = 1$	
$f(\widehat{\mathbf{\Theta}}, \boldsymbol{ heta})$	$\frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{(n-1)S^{*^2}}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$	$\frac{\bar{X} - \mu}{\sqrt{\frac{S^{*^2}}{n}}} \sim \mathcal{T}_{n-1}$
Prop.	rop. $E(\chi_p^2) = p$ • $V(\chi_p^2) = 2p$ • $\sqrt{2\chi_p^2} \sim \mathcal{N}(\sqrt{2p-1}, 1)$		• $E(\mathcal{T}_p) = 0$ • $V(\mathcal{T}_p) = \frac{p}{p-2}$ • $\mathcal{T}_p \sim \mathcal{N}\left(0, \frac{p}{p-2}\right)$	

Stats - Résumé

IV. Tests statistiques

1. Les hypothèses

(\mathcal{H}_0 : hypothèse nulle (privilégiée, plus vraisemblable / habituelle / prudente / facile à formuler) \mathcal{H}_1 : hypothèse alternative

 $heta= heta_0$ (autres param. connus) Hypothèse simple :

Hypothèse composite : $\theta \in \Omega$ (ou $\theta = \theta_0$ avec param. inconnu(s))

2. Risque

Risque de 1^{ère} espèce : $\alpha = \mathbb{P}(\mathcal{H}_1|\mathcal{H}_0 \text{ vraie})$

Risque de 2^{nde} espèce : $\beta = \mathbb{P}(\mathcal{H}_0|\mathcal{H}_1 \text{ vraie})$

Puissance du test : $1-\beta=\mathbb{P}(\mathcal{H}_1|\mathcal{H}_1 \text{ vraie})$

Vérité Décision	\mathcal{H}_0	\mathcal{H}_1
\mathcal{H}_0	$1-\alpha$	β
\mathcal{H}_1	α	1 – ß

 α fixé, β à minimiser

Règle de décision

R_{UPP} est uniformément plus puissant si :

$$\forall \theta, \forall R, (1 - \beta_{R_{UPP}}) \ge (1 - \beta_R)$$

Choix de la statistique T variable de décision : tel que T soit exhaustif et efficace, de loi différente sous $\mathcal{H}_{0/1}$ et de loi connue sous \mathcal{H}_0 .

Région critique W: ensemble des valeurs de T tel que l'on choisi \mathcal{H}_1 . (\overline{W} r. d'acceptation)

$$\mathbb{P}(W \mid \mathcal{H}_0) = \alpha \qquad \mathbb{P}(W \mid \mathcal{H}_1) = 1 - \beta$$

Stats – Résumé

4. Tests paramétriques

	HS-HS		HS-HC	нс-нс	
\mathcal{H}_0	$\theta = \theta_0$	$\theta = \theta_0$	$\theta = \theta_0$	$\theta \le \theta_0$	$ heta = heta_0$ params inc.
\mathcal{H}_1	$\theta = \theta_1 \gtrless \theta_0$	$\theta \geq \theta_0 \\ \Leftrightarrow \theta = \theta_i \geq \theta_0$	$\theta \neq \theta_0$	$\theta > \theta_0$	$\theta \gtrless \theta_0$ params inc.
W	$W = \{\hat{\theta} \ge A\}$ $W = \begin{cases} \mathcal{L}(x_1,, x_n, \theta_1) \\ \mathcal{L}(x_1,, x_n, \theta_0) \end{cases} > k_{\alpha} $ RC optimale d'après Neyman-Pearson		$W = \{ \hat{\theta} < A_1 \}$ $\cup \{ \hat{\theta} > A_2 \}$	$W = \{\hat{\theta} > A\}$ Si $\frac{\mathcal{L}(x_1, \dots, x_n, \theta')}{\mathcal{L}(x_1, \dots, x_n, \theta)} \nearrow \hat{\theta}$ pour $\theta' > \theta$	basé sur fct.
A	$\mathbb{P}(W \mathcal{H}_0)=lpha_fix\acute{e} o A$		$\mathbb{P}(W \mathcal{H}_0) = \alpha_{fix\acute{e}}$ $\Leftrightarrow \mathbb{P}(\hat{\theta} < A_1 \mathcal{H}_0)$ $= \frac{\alpha}{2}$ $+ \mathbb{P}(\hat{\theta} > A_2 \mathcal{H}_0) = \alpha$ $= \frac{\alpha}{2}$ $\to A_1, A_2$	$\mathbb{P}\left(\hat{\theta} > A \middle \begin{matrix} \mathcal{H}_{0, \text{ critique}} \\ \theta = \theta_0 \end{matrix}\right)$ $= \alpha_{\text{fixé}} \to A$	pivotale Même RC que les autres
UPP	UPP	UPP	Non-UPP	UPP	Non-UPP
α	$\alpha = \alpha_{fix\acute{e}}$	$\alpha = \alpha_{fix\acute{e}}$	$\alpha \leq \alpha_{fix\acute{e}}$	$\alpha \leq \alpha_{fix\acute{e}}$	$\alpha \leq \alpha_{fix\acute{e}}$
β	$\beta = cst$	$\beta = f(\theta)$	$\beta = f(\theta)$	$\beta = f(\theta)$	$\beta = f(\theta)$

Voir si $\hat{\theta} \in W$ ou pas

5. Tests non-paramétrique

	Comparaison d'échantillons appariés	Tests d'adéquation	
	Test du signe	Test du χ²	Test de Kolmogorov- Smirnov
$\{m{\mathcal{H}}_0 \ m{\mathcal{H}}_1$	$\begin{cases} \mathcal{H}_0 \colon p = p_0 = \frac{1}{2} \\ \mathcal{H}_0 \colon p = p_1 \neq p_0 \end{cases}$	$ \begin{cases} \mathcal{H}_0: F = F_0 \\ \mathcal{H}_1: F \neq F_0 \end{cases} \begin{pmatrix} \mathcal{H}_0: \widehat{N}_k = N_k = np_k \\ \mathcal{H}_1: \widehat{N}_k \neq N_k \end{pmatrix} $	$ (\mathcal{H}_0: F = F_0 (\mathcal{H}_1: F \neq F_0) $
Т	$Z = \operatorname{count} Y_i > X_i$	$D^2 = \sum_{k=1}^K \frac{\left(\widehat{N}_k - N_k\right)^2}{N_k}$	$D_n = \max_{x} F_n^*(x) - F_0(x) $
$f(T)^{\mathcal{H}_0}$	$Z \stackrel{\mathcal{H}_0}{\sim} \mathcal{B}(n, p = p_0)$	$D^2 \stackrel{\mathcal{H}_0}{\sim} \chi_{K-1}^2$	$D_n \overset{\mathcal{H}_0}{\sim} D_n$
W	W $= \{Z < A\}$ $\cup \{Z > B\}$ $A = b_{n,p,\frac{\alpha}{2}}$ $B = b_{n,p,1-\frac{\alpha}{2}}$	$W = \{D^2 > A\}$ $A = \chi_{K-1-r,1-\alpha}$	$W = \{D_n > A\}$ $A = d_{n,1-\alpha}$
Rqs	$X_i = Y_i$: on supprime le couple $Y > X \Leftrightarrow p_1 > p_0$	But : X suit une loi déterminée ? K classes / n obs. / r params. inconnus sous \mathcal{H}_0 N_k/\hat{N}_k nombre de valeurs (théorique / mesurées) dans la classe k Si $N_k < 5$, regrouper des classes	
Thomas		Page 6	v1_

Page 6

Stats – Résumé

		Comparaison d'échantillons non appariés			
	Test séquentiel	Gauss Test de Fisher (égalité des	iens Test de Student (égalité des	Distribution inconnue	
		variances)	moyennes à variance égale)	Test non-paramétrique de Wilcoxon	
$\{ m{\mathcal{H}}_0 \ m{\mathcal{H}}_1 $	$ \begin{cases} \mathcal{H}_0 \colon p = p_0 \\ \mathcal{H}_1 \colon p = p_1 > p_0 \end{cases} $	$\{\mathcal{H}_0:\sigma_X^2=\sigma_Y^2\ \mathcal{H}_1:\sigma_X^2 eq\sigma_Y^2$	$ \{ \mathcal{H}_0 \colon \mu_X = \mu_Y \\ \mathcal{H}_1 \colon \mu_X \neq \mu_Y $	$\{\mathcal{H}_0: F_X = F_Y \\ \mathcal{H}_1: F_X > F_Y $	
T	$Z_i = \ln \frac{\mathcal{L}(X_1, \dots, X_n, p_1)}{\mathcal{L}(X_i, p_0)}$	$\frac{(n-1)}{\sigma_X^2} S_X^{*2} \sim \chi_{n-1}^2 \frac{(m-1)}{\sigma_Y^2} S_Y^{*2} \sim \chi_{m-1}^2$	$\overline{X},\overline{Y}$	$rangs = sort([X Y])$ $W_X = \sum rang X_i$	
$f(T) \overset{\mathcal{H}_0}{\sim}$		$rac{{S_X^*}^2}{{S_Y^*}^2} \stackrel{\mathcal{H}_0}{\sim} \mathcal{F}_{n-1,m-1}$	$\frac{\bar{X} - \bar{Y}}{S^* \sqrt{\frac{1}{n} + \frac{1}{m}}} \stackrel{\mathcal{H}_0}{\sim} \mathcal{T}_{n+m-2}$	$\frac{W_X - \mu_W}{\sigma_W} \xrightarrow{\mathcal{H}_0} \mathcal{N}(0,1)$ $\mu_W = \frac{n(n+m+1)}{2}$ $\sigma_W^2 = \frac{nm(n+m+1)}{12}$	
W	$\begin{cases} \sum_{i=1}^{n} Z_i \geq \ln \frac{1}{\alpha} & \mathcal{H}_1 \\ \sum_{i=1}^{n} Z_i \leq \ln \beta & \mathcal{H}_0 \\ \text{sinon} & n = n+1 \end{cases}$	$W = \{T < A\} \cup \{T > B\}$ $A = f_{n-1,m-1,\frac{\alpha}{2}}$ $B = f_{n-1,m-1,1-\frac{\alpha}{2}}$	$W = \{T < A\} \cup \{T > B\}$ $A = t_{n+m-2,\frac{\alpha}{2}}$ $B = t_{n+m-2,1-\frac{\alpha}{2}}$	$W = \{T < A\}$ $A = n_{1-\alpha}$	
Rqs		$S^{*2} = \frac{(n-1)S_X^{*2} + (m-1)S_Y^{*2}}{n+m-2}$ $V_1 \sim \chi_n^2 V_2 \sim \chi_m^2 \frac{\frac{V_1}{n}}{\frac{V_2}{m}} \sim \mathcal{F}_{n,m}$ $f_{n,m,\alpha} = f_{m,n,1-\alpha}$		$F_X > F_Y \Leftrightarrow X < Y$ Si $X_i = X_j$, rang = rang moyen	

Stats – Résumé

Autres

6. Formules

$$\int_0^{+\infty} x^n e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}}$$

Définition de probabilité

 Ω ensemble fini

P proba sur Ω $P: \Omega \rightarrow [0, 1]$ verifie:

•
$$P(\Omega) = 1$$

•
$$\forall A \ R \in \mathcal{P}(0)^2$$

$$A \cap B = \emptyset$$

•
$$\forall A, B \in \mathcal{P}(\Omega)^2$$
 $A \cap B = \emptyset$ $P(A \cup B) = P(A) + P(B)$

Propriétés

•
$$P(\emptyset) = 0$$

•
$$P(A^c) = 1 - P(A)$$

•
$$P(A-B) = P(A) - P(A \cap B)$$

• Si
$$A \subset B$$
 alors $P(A) \leq P(B)$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

8. Formules de probabilité

$$\binom{n}{p} = \frac{n!}{p! (n-p)!}$$

Formule de Poincaré ou formule d'inclusion-exclusion :

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{\substack{i_{1} \dots i_{k} \\ 1 \le i_{1} < \dots < i_{k} \le n}} P\left(\bigcap_{j=i_{1}}^{i_{k}} A_{j}\right)\right)$$

Probas conditionnelles:

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P_{\bigcap_{j=1}^{i-1} A_{j}}(A_{i})$$

$$P(B) = \sum_{i=1}^{n} P(A_{i}) P_{A_{i}}(B)$$

$$P(B) = \sum_{i=1}^{n} P(A_i) P_{A_i}(B)$$

Tchebychev:

 $P(|X - E(X)| > k\sigma) \le \frac{1}{\nu^2}$

$$V(X+Y) = V(X) + V(Y) + 2cov(X,Y)$$
$$cov(X,Y) = E(XY) - E(X)E(Y) = E\left((X - E(X)(Y - E(Y))\right)$$

Statistique exhaustive : Théorème de Darmois

X VA dont le domaine ne dep pas de θ $(X_1, ..., X_n)$ échantillon i.i.d.

$$f(x) = e^{a(x)\alpha(\theta) + b(x) + \beta(\theta)} \Rightarrow \text{stat. suffisante}$$

a bijective et cont. différentiable $\Rightarrow T = \sum a(X_i)$ stat. exhaustive

10. Théorème de Huygens

$$\forall \ a \in \mathbb{R}, \sum_{i=1}^{n} (X_i - a)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - a)^2$$