Задание 1.

1. Необходимо выбрать метрику и привести аргументацию.

По условию задачи целевая метрика равна какой-то из колонок, и тест заключается в том, чтобы проверить увеличение дохода. За доход как раз отвечает колонка NPV, поэтому метрика — среднее NPV.

```
In [ ]: import csv
        import pandas as pd
        df = pd.read_csv('hist_telesales.csv',
                          index_col='ID',
                                sep=',')
        df
```

Out[]:		Флаг дозвона	Флаг продажи	Расходы	PV	NPV
	ID					
	0	1	0	90	0	-90
	1	0	0	5	0	-5
	2	0	0	68	0	-68
	3	1	0	22	0	-22
	4	1	0	22	0	-22
	•••				•••	•••
	72156	1	1	577	1346	769
	72157	0	0	8	0	-8
	72158	0	0	23	0	-23
	72159	0	0	4	0	-4
	72160	1	1	132	1385	1253

72161 rows × 5 columns

2. Альтернатива в критерии.

Альтернатива H_1 — уменьшение цены продукта позволит суммарно увеличить доходность продукта. То есть $H_1: NPV_{ ext{тест}} > NPV_{ ext{контроль}}$

3.1. Каков размер выборки? Привести аргументацию и написать как получилось то или иное число.

```
In [ ]: from statistics import pvariance
        import scipy.stats
        a = 0.05
        b = 0.2
        sigma2 = pvariance(df.NPV.tolist())
        z_1_a = scipy.stats.norm.ppf(1 - a)
        z_b = scipy.stats.norm.ppf(b)
        k = 0.5
        MDE = 0.05 * df.NPV.mean()
        N = sigma2 * (z_1_a - z_b)**2 / (k * MDE**2)
        28671.429203969576
```

следовательно, минимальное N равно 28671

Out[]:

4. Принятие решения. Расписать подробно с аргументами.

Так как нужно сравнить средние, стоит выбор между применением критерия Стьюдента и критерием Манна-Уитни. Из документации к scipy.stats.mannwhitneyu: The Mann-Whitney U test is a non-parametric version of the t-test for independent samples. When the means of samples from the populations are normally distributed, consider scipy.stats.ttest_ind.

Поэтому проверим, являются ли обе выборки нормально распределёнными. Посмотрим на график:

```
In [ ]: import pylab
        df_control = pd.read_csv('Контроль.csv',
                          index_col='ID',
                                sep=',')
        df_test= pd.read_csv('Tect.csv',
                          index_col='ID',
```

```
sep=',')
scipy.stats.probplot(df_test.NPV.to_numpy(), dist="norm", plot=pylab)
pylab.show()
```


Действительно, тестовая выборка не имеет нормальное распределение, поэтому используем критерий Манна Уитни

Out[]: 0.917100825637646

pvalue > 0.05, значит, мы не можем отвергнуть нулевую гипотезу теста. Следовательно, мы не можем утверждать, что уменьшение цены продукта позволит суммарно увеличить доходность продукта.

Задание 2.

1. Необходимо выбрать метрику и привести аргументацию.

Целевая метрика равна какой-то из колонок по условию задачи. Целью теста является увеличение доходности услуги, поэтому целевой метрикой является NPV.

Out[]:		Возраст	Доход клиента	Вероятность банкротства	Флаг утилизации счёта	Расходы	PV KK	PV услуги	NPV
	ID								
	0	19	21620.835463	0.138061	0	102	0	0	-102
	1	27	24897.990863	0.035508	1	409	11686	1754	13031
	2	50	23989.526947	0.098793	0	16	0	0	-16
	3	18	38442.409756	0.365661	1	788	13738	1578	14528
	4	24	21291.521612	0.036909	1	1048	6594	2213	7759
	•••						•••		•••
	123250	32	26099.633927	0.110756	0	47	0	0	-47
	123251	20	24579.749275	0.113920	1	594	14268	1672	15346
	123252	36	34062.902531	0.247122	1	77	5950	2017	7890
	123253	67	24609.838522	0.020752	1	279	6278	1847	7846
	123254	36	23378.281337	0.092221	1	186	7093	6109	13016

123255 rows × 8 columns

2. Альтернатива в критерии.

Альтернатива H_1 — увеличение стоимости продукта позволит суммарно увеличить доходность продукта. То есть $H_1: NPV_{ ext{тест}} > NPV_{ ext{контроль}}$

3. Нужно выбрать параметр(-ы), влияющий(-ие) на целевую метрику. Привести аргументацию.

Посчитаем коэффициенты корреляции:

Коэффициент корреляции для NPV и всех параметров, кроме PV КК, близок к 0, а значит эти параметры на целевую метрику практически не влияют. Корреляция между NPV и PV КК равна 1, поэтому на целевую метрику влияет параметр PV КК.

4.1. Каков размер выборки? Привести аргументацию и написать как получилось то или иное число.

Воспользуемся формулой из лекции и условием задачи:

Out[]:

```
In []: a = 0.05
        sigma2 = pvariance(df.NPV.tolist())
        z_1_a = scipy.stats.norm.ppf(1 - a)
        z_b = scipy.stats.norm.ppf(b)
        k = 0.5
        MDE = 0.08 * df.NPV.mean()
        N = sigma2 * (z_1_a - z_b)**2 / (k * MDE**2)
        17290.572625567944
```

Следовательно, минимально допустимый размер выборки равен 17290

5. Проверка на однородность, применение критерия. Принятие решения. Расписать подробно с аргументами.

Для проверки на однородность можем выбрать метрику, коррелирующую с целевой метрикой — среднее PV КК. Нужно проверить, имеют ли выборки на тесте и на контроле одинаковое распределение. Используем критерий Андерсона:

Поскольку проверка однородности выбранного параметра осуществяется с уровнем значимости 2%, мы не можем отклонить нулевую гипотезу, согласно которой выборки имеют одинаковое распределение. Следовательно, проводим тест для целевой метрики. Поскольку целевая метрика — среднее значение, то мы выбираем между критерием Стьюдента и критерием Манна Уитни.

Из документации к scipy.stats.mannwhitneyu: The Mann-Whitney U test is a non-parametric version of the t-test for independent samples. When the means of samples from the populations are normally distributed, consider scipy.stats.ttest_ind.

Посмотрим, имеют ли обе выборки нормальное распределение:

```
In []: scipy.stats.probplot(df_test.NPV.to_numpy(), dist="norm", plot=pylab)
    pylab.show()
```


Для убедительности проведём тест

Здесь уже очевидно, что тестовая выборка не имеет нормальное распределение. Поэтому применим критерий Манна Уитни:

```
In []: mannwhitneyu(df_control.NPV, df_test.NPV, alternative = 'greater').pvalue
Out[]: 0.500000214910426
```

pvalue > 0.05, значит, мы не можем отвергнуть нулевую гипотезу теста. Следовательно, мы не можем утверждать, что увеличение стоимости продукта позволит суммарно увеличить доходность продукта.