$\operatorname{MAT246}$ - Concepts in Abstract Mathematics

Callum Cassidy-Nolan

September 14, 2019

Contents

1	Lecture 1 1.1 Induction	9
2	Lecture 2 2.1 Proof of Induction	
3	Lecture 3 3.1 There is no largest prime	17 17
	Lecture 4 4.1 Modular Arithmetic	19 21

4 CONTENTS

List of Definitions

1	Definition (The principle of mathmatical induction)	9
2	Definition (Extended principle of mathmatical induction)	11
3	Definition (Well Ordering Principle)	13
4	Definition (Divides)	14
5	Definition (Prime)	14
6	Definition (Complete Induction)	15
7	Definition (Composite)	21
8	Definition (Congruence)	21

List of Theorems

1	Theorem ((Product of Primes)	14
2	Theorem ((Fundamental Theorem of Arithmetic)	19

Lecture 1

1.1 Induction

Note 1

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

 $\textbf{Definition 1} \ (\text{The principle of mathmatical induction }) \\$

 $suppose\ S\subseteq \mathbb{N}$

If

- $1 \in S$
- $k+1 \in S$ whenever $k \in S$

Then

$$S = \mathbb{N}$$

The principle of mathmatical induction is simply saying if 1 is in S then $2,3,\ldots$ is also in S

Example 1.1.1

Prove

$$\forall n \in \mathbb{N}, 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof.

Let $S = \{n \in \mathbb{N} : \chi \text{ holds }\}$ At this point we don't know what S consists of but we must

show it is \mathbb{N} , then we can conclude that the formula holds for all natural numbers. We commence by verifying that $1 \in S$, we have

$$1^2 = \frac{1(1+1)(2+1)}{6}$$

both the right hand side and left hand side are equal to eachother, so the formula holds for 1

We will now show if $k \in S$ then $k+1 \in S$. We assume that $k \in S$, that is:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

We observe that if we add k + 1 to both sides of the above equation we get the left hand side, of what we want to prove.

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}$$

After working out the right hand side it is the original formula with k+1 subbed in. Therefore we have shown that if $k \in S$ then $k+1 \in S$ as wanted, thus by the principle of mathmatical induction

$$S = \mathbb{N}$$

1.1. INDUCTION

Definition 2 (Extended principle of mathmatical induction)

This is the same as normal induction, though now we don't have to start with 1. If

- Let $n_0 \in \mathbb{N}, n_0 \in S$
- $k \in S \implies k+1 \in S$

Then

$$S \supseteq \{n_0, n_0 + 1, \ldots\}$$

Observe that S is only a subset of these numbers as these are the ones that are guarenteed to be in S, there may be others.

Example 1.1.2

Prove for all integers n greater than or equal to 7 that the following holds:

$$n! \ge 3^n \chi$$

Proof.

Let S be the set of all natural numbers that χ holds for. We verify that $7 \in S$

$$7!_{5040} \ge 3^{7}_{2187}$$

therefore 7 satisfies χ and so $7 \in S$. Let $k \in \mathbb{N}$, we assume χ holds for k, that is

$$k! \ge 3^k$$

We will prove

$$(k+1)! \ge 3^{k+1}$$

We observe that (k+1)! = (k+1)k!, but recall that we assumed that $k! \ge 3^k$ so we have

$$k!(k+1) \ge 3^k(k+1)$$

Recall that $k \geq 7$

$$\geq 3^k 8$$
$$> 3^{k+1}$$

Therefore, we've shown that

$$(k+1)! \ge 3^{k+1}$$

as required, and so

$$S \supseteq \{7,8,9,\ldots\}$$

Lecture 2

Definition 3 (Well Ordering Principle)

Every subset of \mathbb{N} other than \emptyset has a smallest element.

2.1 Proof of Induction

Remark 2.1.1

We accepted the Principle of Mathematical Induction, though we should prove it.

Recall, the Principle of Mathematical Induction, suppose $S \subseteq N$, if

- $1 \in S$
- $k+1 \in S$ whnever $k \in S$

then

$$S = \mathbb{N}$$

We'll prove the statement

Proof.

Let $T = \{n \in \mathbb{N} : n \notin S\}$. suppose that $T \neq \emptyset$, therefore by the Well Ordering Principle we know that T has a smallest element, let n_0 be that element. Note that $n_0 \in \mathbb{N}$, $n_0 \neq 1$ since $1 \in S : 1 \notin T$, therefore $n_0 \geq 2$.

since $n_0 \ge 2$ we know $n_0 - 1 \in \mathbb{N}$ and that $n_0 - 1 \notin T$ since n_0 is the smallest element in T.

$$n_0 - 1 \not\in T \implies n_0 - 1 \in S$$

But by property 2, of S we know that if $n_0 \in S$ then $n_0 \in S$, though this is a contradiction as $n_0 \notin S$

Therefore
$$T = \emptyset$$
 and $S = \mathbb{N}$

2.2 Division

Definition 4 (Divides)

for $a, b \in \mathbb{N}$ we say that a divides b if there exists a $c \in \mathbb{N}$ such that

$$b = ca$$

And we say

$$a \mid b$$

Remark 2.2.1

 $2 \cdot 3.5 = 7$, though our definition is only for natural numbers, since no $c \in \mathbb{N}$ gives $2 \cdot c = 7$

Definition 5 (Prime)

 $p \in \mathbb{N}$ is prime if the only divisor of p are 1 and p and $p \neq 1$

Example

- 7 is prime, since the only divisor is 1 and 7
- 10 is not prime, 2 and 5 divide 10

Theorem 1 (Product of Primes)

for all $n \in \mathbb{N}$, $n \neq 1$ n can be written as a product of primes

Example

- $42 = 2 \cdot 3 \cdot 7$
- $12 = 3 \cdot 2^2$

2.2. DIVISION 15

Definition 6 (Complete Induction)

Let $S \subseteq \mathbb{N}$

• if $n_0 \in S$

- and
$$k + 1 \in S$$
 when $n_0, n_0 + 1, ..., k \in S$

Then

$$S \supseteq \{n_0, n_0 + 1, \ldots\}$$

We will prove the product of primes theorem

Proof.

Let $S = \{n \in \mathbb{N} : \text{ theorem holds for } n\}$ we will prove

$$S = \mathbb{N}$$

- 2, is prime therefore it is a product of primes and so the Base Case holds.
- We assume if $2, 3, \ldots, k \in S$ then $k + 1 \in S$
 - Case 1: k+1 is prime, then we are done like the base case
 - Case 2: k+1 is not prime, then there exists an $m \in \mathbb{N}$ such that 1 < m < k+1 and $m \mid k+1$ by definition this means

$$k+1=c\cdot m$$
, for some $c\in\mathbb{N}$

observe that 1 < c < k+1 since if c = 1, c = k+1 or if larger we get a contradiction.

Therefore we can use the Induction Hypothesis on c and m to write them both as a product of primes, multiplying them together gives us a new product of primes equal to k+1 as required.

Therefore by the principle of complete induction we can say that

$$S \supseteq \{2, 3, \ldots\}$$

though we want to show that $S = \{1, 2, 3, ...\}$ observe that 1 is not a product of primes as it is not prime and also not composite, therefore $1 \notin S$ so $S = \{2, 3, ...\}$

The intuition behind this proof comes from the fact that if we take a number say 24 it is either prime or not, in this case it is not, and we can write it as $24 = 6 \cdot 4$ then by an inductive argument, we already know that 6 and 4 are already product of primes so we are done. We will show next that in fact this is a unique product.

Lecture 3

Recall from last lecture we showed that every natural number besides 1 can be written as a product of primes. Thus we have the following

 $\forall n \in \mathbb{N}, n \geq 1 \implies n$ is divisible by some prime

Let's call the above α

3.1 There is no largest prime

Proof.

suppose by contradiction p is the largest prime, that is

$$\{2, 3, \ldots, p\}$$

are all the primes. Let $m=(2\cdot 3\cdot \cdots p)+1$, we note that for any $j\in\{2,3,\ldots,p\}$ they must not division m as they each of a remainder of 1. We observe that $m\geq 1$ thus by α we know that there exists some $q\in\mathbb{N}$ where q is prime such that

$$q \mid m$$

So then $q \neq 2, 3, ..., p$ and so we have found a new prime, which contradicted that we had found all primes, so we get a contradiction, therefore there is no largest prime.

Lecture 4

Theorem 2 (Fundamental Theorem of Arithmetic)

Every natural number other than 1, is a product of primes (proved last lecture) and the primes in the product are unique (including multiplicity) except for the order in which they occur.

Recall given $n \in \mathbb{N}, n \neq 1, n$ is a product of primes that is

$$n = p_1 p_2 \cdots p_{k-1} p_k$$

for example

$$180 = 9 \cdot 10 \cdot 2 = 3^2 \cdot 5^1 \cdot 2^2$$

So equivalently we have

$$\forall n \in \mathbb{N}, 1 < n \implies n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

where p_i are distinct primes and $\alpha_i \in \mathbb{N}$

We will prove that the prime factorization of any natural number greater than 1 has is unique by contradiction.

Proof.

We commence

- Suppose there are some numbers with two distinct factorizations into primes.
- Let \mathcal{X} be the set of these numbers, observe that $\mathcal{X} \subseteq \mathbb{N}$ thus by the Well Ordering Principle we let n be the smallest such number in \mathcal{X} , we have

$$n = p_1 p_2 \cdots p_{k-1} p_k = q_1 q_2 \cdots q_{l-1} q_l$$

(Note here we aren't using powers, but we allow for repeated primes, and that p_i, q_j are primes)

- Suppose that the two product of primes share at least one factor, say $p_r = q_r$, then in each product of primes they cancel out and we get that a new smaller number that can be written as a product of primes, though this would cause a contradiction since we assumed n was the smallest such number with this property.
 - Therefore all the p_i are different than the q_i
- Since we know $p_i \neq q_j$ then specifically $p_1 \neq q_1$ if this is true there are two cases either $p_1 \leq q_1$ or $p_1 \geq q_1$.
- Case 1: $p_1 < q_1$
 - We note $n = q_1 q_2 \cdots q_{l-1} q_l > p_1 q_2 \cdots q_{l-1} q_l$
 - $p_1 q_2 \cdots q_{l-1} q_l < n \Leftrightarrow 0 < n p_1 q_2 \cdots q_{l-1} q_l$
 - Note that $p_i, q_j \in \mathbb{N}$ so the product of any of them is also an element of the naturals, and then also $n p_1 q_2 \cdots q_{l-1} q_l \in \mathbb{N}$.

Why?

- Note that $m < n \implies m$ has a unique factorization into primes, we know
 - $m = p_1 p_2 \cdots p_{k-1} q_k q_1 q_2 \cdots q_{l-1} q_l = p_1 (p_2 \cdots p_{k-1} p_k q_2 \cdots q_{l-1} q_l)$
 - $m = q_1 q_2 \cdots q_{l-1} q_l p_1 q_2 \cdots q_{l-1} p_l = (q_2 \cdots q_{l-1} q_l)(q_1 p_1)$
 - * Together

$$p_1(p_2 \cdots p_{k-1}p_k - q_2 \cdots q_{l-1}q_l) = \underbrace{(q_2 \cdots q_{l-1}q_l)}_{\chi} (q_1 - p_1)$$

- The left hand side of the above tells us that p_1 is a prime factor of m which means it is also a factor of the right hand side.
 - But observe $p_1 \nmid \chi$ since $p_1 \neq q_i$
 - Therefore it must be that $p_1|(q_1-p_1)$ this is true if and only if $p_1|q_1$ since q_1 is prime this means that $p_1=1$ or $p_1=q_1$ either of which are contradictions, therefore

What does this contradict?

21

Techniques Used in this proof

• Here

Definition 7 (Composite)

A natural number c is called composite if

$$c \neq 1$$

c is not prime

Q: Can we find 20 consecutive composite numbers?

Yes, consider

$$21! + 2, 21! + 3, \dots, 21! + 21$$

Observe 2 divides the first number, 3, divides the next on until 21, giving us 20 composites

Q: Can we find k consecutive composite numbers?

Yes, using hte same method we have

$$(k+1)! + 2, (k+1)! + 3, \dots, (k+1)! + k + 1$$

thus we conclude there are arbitrary long stretches of composite numbers.

4.1 Modular Arithmetic

For some intuition, consider military time, if somone tells us it's 15 o clock we know that this is equivalent to 3 o clock, and this will help us represent this type of situation

First we define the integers that is

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$$

Definition 8 (Congruence)

Let $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$. if

$$m \mid (a-b)$$

then we say a is congruent to b and we write

$$a \equiv b \pmod{m}$$

Example

- Let m = 12 (the hours on the clock)
 - it follows that $13 \equiv 1 \pmod{12}$ since $12 \mid (13-1)$
 - $-14 \equiv 2 \pmod{12}$ and $23 \equiv -1 \pmod{12}$
 - So this shows us in the world of the clock some numbers are the "same"
- m = 2
 - We observe
 - * $0 \equiv 0 \pmod{2} \Leftrightarrow 2 \mid (0-0)$ which is true since we take c=0 in the definition of divisibility.
 - $*1 \equiv 1 \pmod{2}$
 - $* 2 \equiv 0 \pmod{2}$
 - $* 3 \equiv 1 \pmod{2}$
 - $*4 \equiv 0 \pmod{2}$
 - $*5 \equiv 1 \pmod{2}$