I - Exercice 1

On note $U = \{u_n, n \in \mathbb{N}\} \cap \{l\}$, soit $(a_n)_{n \in \mathbb{N}}$ une suite de U. On va distinguer 2 cas.

- ▶ Sit $\forall \epsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow d(a_n, l) \leq \epsilon$. On peut prendre $(\epsilon_n)_{n \in \mathbb{N}}$ tel que $\forall n \in \mathbb{N}$, $\epsilon_n = 2^{-n}$, on peut donc construire $\varphi(n)$ par récurrence :
 - n = 0, $\epsilon_0 = 1$. Par notre hypothèse, il existe $N_0 \in \mathbb{N}$ tel que $\forall n \geq N_0$, $d(a_n, l) \leq 1$. On peut prendre $\varphi(0) = N_0$, on a bien $d(a_{\varphi(0),l}) \leq \epsilon_0$
 - Supposons que on a construit $\varphi(n)$. Pour le rang n+1, on a $\exists N_{n+1} \in \mathbb{N}$ tel que $\forall n \geq N_{n+1}$, $d(a_n, l) \leq \epsilon_{n+1} = 2^{-(n+1)}$. On peut prendre $\varphi(n+1) = \max(\varphi(n) + 1, N_{n+1})$. Alors $\varphi(n+1) > \varphi(n)$, et $d(a_{\varphi(n+1)}, l) \leq \epsilon_{n+1}$

On obtient donc une extraction φ telle que $\forall n \in \mathbb{N}, d(a_{\varphi(n)}, l) \leq \epsilon_n = 2^{-n}, donc$

$$d(a_{\varphi(n)}, l) \xrightarrow[n \to +\infty]{} 0$$

donc

$$a_{\varphi}(n) \xrightarrow[n \to +\infty]{} l$$

 $(a_n)_{n\in\mathbb{N}}$ admet donc une valeur d'adhérence

▶ Sinon, c'est-à-dire $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N, d(a_n, l) > \epsilon$. On fixe tel ϵ . Comme on a

$$u_{\varphi}(n) \xrightarrow[n \to +\infty]{} l$$

alors pour cette ϵ , il existe $N \in \mathbb{N}$ tel que $\forall n > N, d(u_n, l) < \epsilon$. Donc on a

$$card(\{n \in \mathbb{N} | d(u_n, l) > \epsilon\}) \le N + 1$$

le cardinal est donc fini. On fixe tel N

Alors soit $n \geq N$ tel que $d(a_n, l) \geq \epsilon$ il existe $i \in [0, N]$ tel que

$$card(\{n \in \mathbb{N} | a_n = u_i\}) = +\infty$$

 $\operatorname{car}(a_n)_{n\in\mathbb{N}}$ est une suite de U

On peut donc construire une extraction φ telle que

$$\forall n \in \mathbb{N}, \varphi(n) = u_i$$

On a donc la suite-extraite $(a_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers u_i , $(a_n)_{n\in\mathbb{N}}$ admet donc une valeur d'adhérence.

En tous cas, $(a_n)_{n\in\mathbb{N}}$ admet donc une valeur d'adhérence. Donc U est un compact de (E,d)

II - Exercice 2

II.A -

Soit $(y_n)_{n\in\mathbb{N}}$ une suite de f(F) qui converge vers $y\in E$, montrons que $y\in f(F)$. Soit $n\in\mathbb{N}$, or $y_n\in f(F)$, il existe $x_n\in F$ tel que $y_n=f(x_n)$. Selon l'exercice 1, on a $Y=\{y_n,n\in\mathbb{N}\}\cup\{y\}$ est un compact de (E,d). Comme f est propre, on a $X=f^{-1}(Y)$ est un compact de (E, d). Comme $(x_n)_{n \in \mathbb{N}}$ est une suite de X, alors il existe une extraction φ est $x \in E$ tels que

$$x_{\varphi(n)} \xrightarrow[n \to +\infty]{} x$$

De plus, $x \in F$ car F est un fermé de (E, d). Comme f est continue, on a donc

$$f(x_{\varphi(n)}) = y_{\varphi(n)} \xrightarrow[n \to +\infty]{} f(x) \in f(F)$$

f(x) est donc une valeur d'adhérence de $(y_n)_{n\in\mathbb{N}}$. Comme $(y_n)_{n\in\mathbb{N}}$ converge, la valeur d'adhérence est unique, donc $y=f(x)\in f(F)$.

On en déduit que f(F) est un fermé de (E,d)

II.B -

▶ sens direct : Soient f est propre et $M \ge 0$, alors comme BF(0, M) est un compact de $(E, \|\cdot\|)$, donc $f^{-1}(BF(0, M))$ est un conpact par notre hypothèse, il est donc borné. Donc il existe $m \ge 0$ tel que $f^{-1}(BF(0, M)) \subset BF(0, m)$. On en déduit que

$$f(x) \in BF(0, M) \Rightarrow x \in BF(0, m)$$

c'est-à-dire

$$x \notin BF(0,m) \Rightarrow f(x) \notin BF(0,M)$$

On a donc

$$\forall M \ge 0, \exists m \ge 0, ||x|| > m \Rightarrow ||f(x)|| > M$$

C'est équivalent à

$$||f(x)|| \xrightarrow{||x|| \to +\infty} +\infty$$

▶ sens indirect : Soit K est un compact de $(E, \|\cdot\|)$, il est donc fermé et borné de $(E, \|\cdot\|)$. Comme f est continue, $f^{-1}(K)$ est donc un fermé de $(E, \|\cdot\|)$ Montrons que $f^{-1}(K)$ est borné de $(E, \|\cdot\|)$.

Or K est borné, il existe M>0 tel que $K\subset BO(0,M)$. Car $\|f(x)\|\xrightarrow{\|x\|\to +\infty} +\infty$,

donc il existe m>0 tel que $f(x)\subset BO(0,m)\Rightarrow x\subset BO(0,m)$, ce qui implique que $f^{-1}(BO(0,M))\subset BO(0,m)$.

On a donc $f^{-1}(K) \subset f^{-1}(BO(0,M)) \subset BO(0,m)$, il est donc borné. On en déduit que $f^{-1}(K)$ est un compact de $(E,\|\cdot\|)$

Finalement, on en déduit que

$$f$$
 est propre $\Leftrightarrow ||f(x)|| \xrightarrow{||x|| \to +\infty} +\infty$

III - Exercice 3

III.A -

Soient $(f,g) \in E^2$, $\lambda \in \mathbb{R}$, donc soit $x \in [0,1]$, on a

$$\phi(f + \lambda g)(x) = \int_0^x t(f + \lambda g)(t) \, dt + x \int_x^1 (f + \lambda g)(t) \, dt$$

$$= \int_0^x t f(t) \, dt + x \int_x^1 f(t) \, dt + \lambda \left(\int_0^x t g(t) \, dt + x \int_x^1 g(t) \, dt \right)$$

$$= \phi(f)(x) + \lambda \phi(g)(x)$$

On a donc $\phi(f + \lambda g) = \phi(f) + \lambda \phi(g)$

De plus $x \mapsto \int_0^x t f(t) dt$ et $x \mapsto \int_x^1 f(t) dt$ sont continues car elles sont dérivables. Donc $\phi(f) \in E$ car tous ses composants sont continues par addition et multiplication. Donc $\phi(f) \in \mathcal{L}(E)$

III.B -

Soit $f \in E$, comme f est continue sur [0,1], sa borne supérieure est atteinte, on la note $A = \sup_{x \in [0,1]} |f(x)|$.

Soit $x \in [0,1]$ fixé, soit $t \in [0,x]$, on a donc $|tf(t)| \le tA$. En intégrant, on a

$$\left| \int_0^x t f(t) \, dt \right| \le \int_0^x |t f(t)| \, dt \le \int_0^x t A \, dt = A \int_0^x t \, dt = \frac{1}{2} A x^2$$

De même,

$$\left| x \int_{x}^{1} f(t) dt \right| \le x \int_{x}^{1} A dt = Ax(1-x)$$

On a donc

$$\left| \int_{0}^{x} t f(t) dt + x \int_{x}^{1} f(t) dt \right| \leq \left| \int_{0}^{x} t f(t) dt \right| + \left| x \int_{x}^{1} f(t) dt \right| \leq (x - \frac{1}{2}x^{2}) A$$

cette inégalité est valide pour tout $x \in [0,1]$, on a donc $x - \frac{1}{2}x^2 \le \frac{1}{2}$, donc

$$\forall x \in [0,1], \left| \int_0^x t f(t) \, dt + x \int_x^1 f(t) \, dt \right| \le \frac{1}{2} A$$

En passant à la limite, on obtient

$$\sup_{x \in [0,1]} \left(\left| \int_0^x t f(t) \, dt + x \int_x^1 f(t) \, dt \right| \right) \le \frac{1}{2} A$$

Donc on a

$$\|\phi(f)\|_{\infty} \le \frac{1}{2} \|f\|_{\infty}$$

Donc ϕ est continue sur E car elle est une application linéaire.

III.C -

Comme ϕ est continue sur E

$$|||\phi||| = \sup_{f \in E \setminus \{0_E\}} \frac{\|\phi(f)\|_{\infty}}{\|f\|_{\infty}}$$

est bien définie, et on a $|||\phi||| \le \frac{1}{2}$.

Si on prend $f: t \in [0,1] \mapsto 1$, on a $f \in E$, et $||f||_{\infty} = \sup_{t \in [0,1]} f(t) = 1$. De plus, soit $x \in [0,1]$

$$\phi(f(x)) = \int_{0}^{x} t \, dt + x \int_{0}^{1} dt = x - \frac{1}{2}x^{2}$$

Donc $\|\phi(f)\|_{\infty} = \sup_{x \in [0,1]} \phi(f(x)) = \frac{1}{2}$. On a donc $\frac{\|\phi(f)\|_{\infty}}{\|f\|_{\infty}} = \frac{1}{2}$, donc $\|\phi(f)\|_{\infty} \ge \frac{1}{2}$.

Par double inégalité, on obtient $|||\phi||| = \frac{1}{2}$