

*SCR
S/J
Conc/14*
*H1
Conf.*

a gate insulating layer contacting said [channel] semiconductor layer; and

a gate electrode adjacent to said [channel] semiconductor layer with said gate insulating layer therebetween,

wherein said [channel] semiconductor layer comprises a [non-single] crystalline silicon semiconductor layer containing oxygen, nitrogen or carbon at a concentration [5] 1×10^{19} atoms/cm³ or less and said semiconductor layer shows a Raman shift at a wavenumber of 512 cm⁻¹ or higher.

Substitution
K2 X

24. (Amended) The thin film transistor of claim 23 wherein said [channel] semiconductor layer is formed on an insulating surface of a substrate.

*S/J
H3*

25. (Three Times Amended) A thin film transistor comprising:
[an intrinsic channel] a semiconductor layer having an intrinsic or substantially intrinsic channel region;

a gate insulating layer contacting said [channel] semiconductor layer; and

a gate electrode adjacent to said [channel] semiconductor layer with said gate insulating layer therebetween,

wherein said [channel] semiconductor layer comprises a [non-single] crystalline silicon semiconductor layer containing oxygen, nitrogen or carbon at a concentration [5] 1×10^{19} atoms/cm³ or less and a ratio of a full band width at half maximum (FWHM) of a Raman peak of said [channel] semiconductor layer to a FWHM of a Raman peak of a single crystalline silicon is less than 3.

~~Subst. K4~~
26. (Amended) The thin film transistor of claim 25 wherein said [channel] semiconductor layer is formed on an insulating surface of a substrate.

~~Sub
53
45~~
27. (Three Times Amended) A thin film transistor comprising:
[an intrinsic channel] a semiconductor layer having an intrinsic
or substantially intrinsic channel region;
a gate insulating layer contacting said [channel] semiconductor
layer; and
a gate electrode adjacent to said [channel] semiconductor layer
with said gate insulating layer therebetween,
wherein said [channel] semiconductor layer comprises a [non-
single] crystalline silicon semiconductor layer containing oxygen, nitrogen
or carbon at a concentration [5] 1×10^{19} atoms/cm³ or less and a peak
intensity ratio I_a/I_c of said [channel] semiconductor layer is less than 0.4
where I_a represents a Raman peak intensity at a wavenumber of 480 cm⁻¹
for an amorphous component of said [channel] semiconductor layer and I_c
represents a Raman peak intensity at 521 cm⁻¹ for a single crystalline
silicon.

~~Subst.
H K6~~
28. (Amended) The thin film transistor of claim 27 wherein said [channel] semiconductor layer is formed on an insulating surface of a substrate.

~~Sub
LX H~~
29. (Amended) The thin film transistor of claim 23 wherein said [channel] semiconductor layer comprises a laser annealed[, non-single]
crystalline silicon semiconductor layer.

H7
Cont

30. (Amended) The thin film transistor of claim 25 wherein said [channel] semiconductor layer comprises a laser annealed[, non-single] crystalline silicon semiconductor layer.

31. (Amended) The thin film transistor of claim 27 wherein said [channel] semiconductor layer comprises a laser annealed[, non-single] crystalline silicon semiconductor layer.

32. (Twice Amended) A thin film transistor produced by a process comprising the steps of:

forming on a surface a semiconductor film having an intrinsic or substantially intrinsic channel region [silicon semiconductor film] containing therein carbon, nitrogen or oxygen at a concentration of [5] 1×10^{19} atoms/cm³ or less; and

irradiating said entire semiconductor film with a laser beam or a light having a strength equivalent to the laser beam with melting the semiconductor film to increase the degree of crystallinity thereof.

33. (Twice Amended) A thin film transistor comprising:
[an intrinsic channel] a semiconductor layer having an intrinsic or substantially intrinsic channel region,
a gate insulating layer contacting said semiconductor [channel] layer; and

a gate electrode adjacent to said semiconductor [channel] layer with said gate insulating layer therebetween;

wherein said [channel] semiconductor layer comprises a non-single crystalline silicon semiconductor layer containing oxygen at a

concentration 1×10^{19} atoms/cm³ or less and said semiconductor layer shows a Raman shift at a wavenumber of 512 cm⁻¹ or higher.

*Sec 5
cont.*

34. (Twice Amended) A thin film transistor comprising:

[an intrinsic channel] a semiconductor layer having an intrinsic or substantially intrinsic channel region;

a gate insulating layer contacting said [channel] semiconductor layer; and

a gate electrode adjacent to said [channel] semiconductor layer with said gate insulating layer therebetween,

wherein said [channel] semiconductor layer comprises a non-single crystalline silicon semiconductor layer containing oxygen at a concentration 1×10^{19} atoms/cm³ or less and a ratio of a full band width at half maximum (FWHM) of a Raman peak of said [channel] semiconductor layer to a FWHM of a Raman peak of a single crystalline silicon is less than 3.

H & G

35. (Twice Amended) A thin film transistor comprising:

[an intrinsic channel] a semiconductor layer having an intrinsic or substantially intrinsic channel region;

a gate insulating layer contacting said [channel] semiconductor layer; and

a gate electrode adjacent to said [channel] semiconductor layer with said gate insulating layer therebetween,

wherein said [channel] semiconductor layer comprises a non-single crystalline silicon semiconductor layer containing oxygen at a concentration 1×10^{19} atoms/cm³ or less and a peak intensity ratio I_a/I_c of

SUR
Cont'd
Hg
Q.S.

said [channel] semiconductor layer is less than 0.4 where I_a represents a Raman peak intensity at a wavenumber of 480 cm⁻¹ for an amorphous component of said [channel] semiconductor layer and I_c represents a Raman peak intensity at 521 cm⁻¹ for a single crystalline silicon.

H9

[Please add new claims 36-38 as follows:]

--36. A thin film transistor produced by a process comprising the steps of:

forming on a surface a semiconductor film having an intrinsic or substantially intrinsic channel region containing therein carbon at a concentration of 1×10^{19} atoms/cm³ or less; and

irradiating the semiconductor film with a laser beam or a light having a strength equivalent to the laser beam to increase the degree of crystallinity of the semiconductor film.

37. A thin film transistor produced by a process comprising the steps of:

forming on a surface a semiconductor film having an intrinsic or substantially intrinsic channel region containing therein nitrogen at a concentration of 1×10^{19} atoms/cm³ or less; and

irradiating the semiconductor film with a laser beam or a light having a strength equivalent to the laser beam to increase the degree of crystallinity of the semiconductor film.

38. A thin film transistor produced by a process comprising the steps of: