

OSDF

A cloud enabled system to store, access, and analyze scientific data

Anup Mahurkar
Institute for Genome Sciences
BOSC 2013

Motivation

- Work based on NIH Human Microbiome
 Project Data Analysis and Coordination Center
- Manage large collections of data sets
- Decorate data sets with rich metadata
- Develop a framework that could be reused for other collaborative or multi-center projects
- Ease of development using a language agnostic API
- Scalable and cloud-enabled

What is OSDF?

- Generic extensible framework for associating data with metadata
- Examples of data
 - Reference Databases, Sequenced Reads,
 Assemblies, Alignments, Annotation
- Examples of metadata
 - Sequencing platform, Library Preparation,
 Sequencing Strategy, Assembly method,
 Alignment method, Alignment reference, Subject information

What is OSDF?

- Includes a mechanism for
 - Defining data model for elements
 - Reliance on Ontologies, and controlled vocabularies
 - Defining relationships between elements
 - Generic RESTful API for accessing and placing data
 - Domain specific API with Perl/Python/Java bindings
 - Versioning and history
 - Access control

Technologies Used

- JavaScript Object Notation (JSON) objects for modeling data elements
 - Lightweight data interchange format
 - Allows sparse data in elements
 - Easy to generate and parse
 - Compact and human readable
 - JSON Schema for validation
- CouchDB for storing JSON objects
 - Document-oriented database
 - Apache project
 - RESTful JSON API out of the box
 - Real-time bi-directional replication

Technologies Used

- ElasticSearch
 - Rapid indexing on all keys and attributes of JSON
 - Query language for complex ad-hoc queries
 - Allows wild card, proximity, range, and Boolean operators
- Metadata modeled by CVs, ontologies, standards, and dictionaries
 - MIGS, MIMS, MIMARKS, GO, Relationship
- API implementation using node.js
 - Scalable server optimized for concurrency
 - Implement JSON validation using JSON Schema
- UI Implementation
 - ExtJS, GraphViz, jQuery, D3

OSDF Architecture

School OF MEDICINE SCHOOL OF MED

```
"type": "object",
"description": "Sample nodes describe physical samples.",
"properties": {
  "hmp body site": {
    "$ref": "body sites"
  "hmp supersite": {
    "$ref": "supersites"
  "mimarks frag": {
    "$ref": "mimarks frag"
  "mims frag": {
    "$ref": "mims_frag"
  "visit number": {
    "type": "integer",
    "minimum": 1.
    "required": true
  "fma body site": {
    "title": "Typically a term from the FMA ontology.",
    "type": "string",
    "required": true
  "body product": {
    "type": "string",
    "required": true
"additional Properties": false
```

```
"linkage": {
 "part of": ["c8550ef8d3ea8c9b980650de1c6e86cf"],
 "collected from": ["c8550ef8d3ea8c9b980650de1c87e0e1"]
"node type": "sample",
"meta": {
 "body product": "",
 "hmp supersite": "skin",
 "visit number": 1,
 "mimarks frag": {
  "geo loc name": "United States of America",
  "samp mat process": "",
 "lat Ion": "Unknown",
  "samp collect device": "Catch-All sample collection swab",
  "biome": "terrestrial biome [ENVO:00000446]",
  "samp size": "",
  "feature": "human-associated habitat [ENVO:00009003]",
  "collection date": "Unknown",
  "env package": "human-associated",
  "investigation type": "mimarks-survey",
  "material": "biological product [ENVO:02000043]",
  "rel to oxygen": ""
 "fma body site": "",
 "hmp body site": "left retroauricular crease"
"id": "091f03831014afe9b2da67d698000c51",
"ver": 1
```


Node Editor

Current HMP DACC Site

Current News

July 2013

Human Microbiome Science: Vision for the Future conference to be held in Bethesda, MD July 24-26

May 2013

Human Microbiome Consortium Virtual Meeting: Approaches in Microbiome Assembly

May 2013
 Booth at ASM 2013 (#639)

More News Items

Publications

- Colitis-induced Bone Loss is Gender Dependent and Associated with Incr...
- Topographic diversity of fungal and bacterial communities in human ski...
- Comparative metagenomic and rRNA microbial diversity characterization ...

More Publications

Partner Resources

- NIH Common Fund
- NCBI HMP Data Repository

HMSCP - Shotgun community profiling

Reads generated by Illumina wgs sequencing were mapped on to a database of reference genomes in order to calculate organism abundance. For each sample, we provide three files:

▶ Feedback

- A tab delimited abundance table, indicating depth and breath of mapping to each reference
- A metrics file, summarizing the number of reads mapped versus the number that aligned to a reference
- Mapping alignment files in bam format
- Data Table
- · Protocols and Tools
- Related Pages

HMSCP			
Description _	Download	Size	MD5
⊞ SRS011061 (3 Rows)			
☐ SRS011084 (3 Rows)			
Abundance Table	TP TP	6.4 KB	21f28e1f2b5e2359b025eebdb37a4dfe
BAM File	TP.	7.5 GB	38b89e68b52bfdd1db4cd2165c7e3cf9
Metrics File	TP TP	64.0 bytes	5633a925bfeld142fd31fde215fc5924
⊞ SRS011086 (3 Rows)			
☐ SRS011090 (3 Rows)			
Abundance Table	T)	3.1 KB	eef2d2eda1358a6745d93c51a1c3217c
BAM File	TP.	145.7 MB	7ea19443bd981e67e59e63a8fd6d45a1
Metrics File	TP	162.0 bytes	1f4b8ecab4453e7dcaa7299f034d691a

Programmatic Access

- Generic RESTful API
 - Get
 - Put
 - Update
 - Delete
- Domain Specific API
 - Metagenomics Perl API
 - Sequence data R operations
 - Assembly CR operations
 - Compress files
 - Upload files
 - Link nodes

Performance Testing

- Server specifications
 - VM running on VMWare ESX server
 - Ubuntu 12.04
 - 4 vCPUs, 16GB RAM
 - Node.js v0.10
 - Elastic Search v0.90
 - CouchDB v1.2
- Client specifications
 - 8 cores, 6GB RAM
- Benchmark
 - Use 'ab' Apache Server Benchmarking Tool
 - Run 5000 operations with increasing concurrency from 20 to 500 operations
 - { "query": {"term": {"node_type": "sample" }}}

Performance Numbers - Node Retrieval

Future Development

- Deployment in the cloud
- Replication
- Distributed deployment
- Performance enhancements
- Richer microbiome domain API
- Language bindings in Perl/Python/Java
- Host 1000 Genomes Data

Acknowledgements

- Principal Investigator
 - Owen White
- Institute for Genome Sciences
 - Sonia Agrawal
 - Cesar Arze
 - Jonathan Crabtree
 - Noam Davidovics
 - Victor Felix
 - Aaron Miller
 - Mike Schor

- University of Colorado Boulder
 - Rob Knight
- University of Chicago/Argonne National Lab
 - Folker Meyer
 - Narayan Desai
 - Jared Wilkening

Funding provided by:

NHGRI

U01 HG006537

Resources

- OSDF Website
 - http://osdf.igs.umaryland.edu
- OSDF Code
 - http://sourceforge.net/projects/osdf/
- Metagenome API site
 - http://sourceforge.net/projects/metagenosdf/
- DACC Website
 - http://hmpdacc.org

We invite you to take a look and participate

Performance Numbers – Node Creation

Performance Numbers – Node Query

