

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenl. gungsschrift**
(10) **DE 198 36 737 A 1**

(51) Int. Cl.⁷:
A 01 N 57/20

DE 198 36 737 A 1

(21) Aktenzeichen: 198 36 737.6
(22) Anmeldej. 13. 8. 1998
(43) Offenlegungstag: 17. 2. 2000

(71) Anmelder:
Hoechst Schering AgrEvo GmbH, 13509 Berlin, DE

(72) Erfinder:
Hacker, Erwin, Dr., 65239 Hochheim, DE; Bieringer, Hermann, Dr., 65817 Eppstein, DE; Willms, Lothar, Dr., 65719 Hofheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Herbizide Mittel für tolerante oder resistente Maiskulturen
- (57) Zur Bekämpfung von Schadpflanzen in Mais, der aus toleranten oder resistenten Mutanten oder transgenen Maispflanzen besteht, eignen sich Herbizid-Kombinationen (A) + (B), gegebenenfalls in Gegenwart von Safenern, mit einem wirksamen Gehalt an
(A) breitwirksamen Herbiziden aus der Gruppe
(A1) Glufosinate(salze) und verwandter Verbindungen
(A2) Glyphosate(salze) und verwandte Verbindungen wie Sulfosate,
(A3) Imidazolinone wie Imazethapyr, Imazapyr, Imazquin, Imazamox oder deren Salzen und
(A4) herbiziden Azolen aus der Gruppe der Hemmstoffe der Protoporphyrinogen-oxidase (PPO-Hemmstoffe) und
(A5) Cyclohexandion-Herbiziden besteht,
und
(B) einem oder mehreren Herbiziden aus der Gruppe der Verbindungen, welche aus
(B0) einem oder mehreren strukturell anderen Herbiziden aus der genannten Gruppe (A) oder
(B1) gegen monokotyle und dikotyle Schadpflanzen wirksamen Herbiziden mit Blatt- und Bodenwirkung oder
(B2) selektiv in Mais gegen Dikotyle einsetzbare Herbizide oder
(B3) Herbizide, die blattwirksam und bodenwirksam sind und selektiv in Mais überwiegend gegen dicotyle Schadpflanzen eingesetzt werden können,
oder aus Herbiziden aus mehreren Gruppen (B0) bis (B3)
besteht,
aufweist und die Maiskulturen gegenüber den in der Kombination enthaltenen Herbiziden (A) und (B), gegebenenfalls in Gegenwart von Safenern, tolerant sind.

DE 198 36 737 A 1

Beschreibung

Die Erfindung liegt auf dem Gebiet der Pflanzenschutzmittel, die gegen Schadpflanzen in toleranten oder resistenten Kulturen von Maisc eingesetzt werden können und als Herbizidwirkstoffe eine Kombination von zwei oder mehreren 5 Herbiziden enthalten.

Mit der Einführung von toleranten oder resistenten Maissorten und -linien, insbesondere von transgenen Maissorten und -linien, wird das herkömmliche Unkrautbekämpfungssystem um neue, per se in herkömmlichen Maissorten nichtselektive Wirkstoffe ergänzt. Die Wirkstoffe sind beispielsweise die bekannte breitwirksame Herbicide wie Glyphosate, Sulfosate, Glufosinate, Bialaphos und Imidazolinon-Herbicide [Herbicide (A)], die nunmehr in den jeweils für sie entwickelten toleranten Kulturen eingesetzt werden können. Die Wirksamkeit dieser Herbicide gegen Schadpflanzen in den toleranten Kulturen liegt auf einem hohen Niveau, hängt jedoch – ähnlich wie bei anderen Herbizidbehandlungen – von der Art des eingesetzten Herbizids, dessen Aufwandmenge, der jeweiligen Zubereitungsform, den jeweils zu bekämpfenden Schadpflanzen, den Klima- und Bodenverhältnissen, etc. ab. Ferner weisen die Herbicide Schwächen (Lücken) 10 gegen spezielle Arten von Schadpflanzen auf. Ein weiteres Kriterium ist die Dauer der Wirkung bzw. die Abbaugeschwindigkeit des Herbizids. Zu berücksichtigen sind gegebenenfalls auch Veränderungen in der Empfindlichkeit von Schadpflanzen, die bei längerer Anwendung der Herbicide oder geographisch begrenzt auftreten können. Wirkungsverluste bei einzelnen Pflanzen lassen sich nur bedingt, wenn überhaupt, durch höhere Aufwandmengen der Herbicide ausgleichen. Außerdem besteht immer Bedarf für Methoden, die Herbizidwirkung mit geringerer Aufwandmenge an Wirkstoffen zu erreichen. Eine geringere Aufwandmenge reduziert nicht nur die für die Applikation erforderliche Menge eines 15 Wirkstoffs, sondern reduziert in der Regel auch die Menge an nötigen Formulierungshilfsmitteln. Beides verringert den wirtschaftlichen Aufwand und verbessert die ökologische Verträglichkeit der Herbizidbehandlung.

Eine Möglichkeit zur Verbesserung des Anwendungsprofils eines Herbizids kann in der Kombination des Wirkstoffs mit einem oder mehreren anderen Wirkstoffen bestehen, welche die gewünschten zusätzlichen Eigenschaften beisteuern. Allerdings treten bei der kombinierten Anwendung mehrerer Wirkstoffe nicht selten Phänomene der physikalischen und 20 biologischen Unverträglichkeit auf, z. B. mangelnde Stabilität einer Coformulierung, Zersetzung eines Wirkstoffs bzw. Antagonismus der Wirkstoffe. Erwünscht dagegen sind Kombinationen von Wirkstoffen mit günstigem Wirkungsprofil, hoher Stabilität und möglichst synergistisch verstärkter Wirkung, welche eine Reduzierung der Aufwandmenge im Vergleich zur Einzelapplikation der zu kombinierenden Wirkstoffe erlaubt.

Überraschenderweise wurde nun gefunden, daß Wirkstoffe aus der Gruppe der genannten breitwirksamen Herbicide 25 (A) in Kombination mit anderen Herbiziden aus der Gruppe (A) und gegebenenfalls bestimmten Herbiziden (B) in besonders günstiger Weise zusammenwirken, wenn sie in den Maiskulturen eingesetzt werden, die für die selektive Anwendung der erstgenannten Herbicide geeignet sind.

Gegenstand der Erfindung ist somit die Verwendung von Herbizid-Kombinationen zur Bekämpfung von Schadpflanzen in Maiskulturen, dadurch gekennzeichnet, daß die jeweilige Herbizid-Kombination einen synergistisch wirksamen 30 Gehalt an

(A) einem breitwirksamen Herbizid aus der Gruppe der Verbindungen, welche aus
(A1) Verbindungen der Formeln (A1),

worin Z einen Rest der Formel -OH oder einen Peptidrest der Formel -NHCH(CH₃)CONHCH(CH₃)COOH oder -NHCH(CH₃)CONHCH(CH₂CH(CH₃)₂)COOH bedeutet, oder deren Ester und Salze, vorzugsweise Glufosinate oder dessen Salze mit Säuren und Basen, insbesondere Glufosinate-ammonium, L = Glufosinate oder dessen Salze, Bialaphos oder dessen Salze mit Säuren und Basen,
50 (A2) Verbindungen der Formel (A2) und deren Ester und Salze,

vorzugsweise Glyphosate oder dessen Alkalimetallsalze oder Salze mit Aminen, insbesondere Glyphosate-isopropylammonium, oder Sulfosate,
(A3) Imidazolinonen, vorzugsweise Imazethapyr, Imazapyr, Imazamethabenz, Imazamethabenz-methyl, Imazaquin, Imazamox oder deren Salzen und
(A4) herbiziden Azolen aus der Gruppe der Hemmstoffe der Protoporphyrinogen-oxidase (PPO-Hemmstoffe) wie WC9717 (= CGA276854) und
(A5) Cyclohexandion-Herbiziden besteht, und
(B) einem oder mehreren Herbiziden aus der Gruppe der Verbindungen, welche aus
(B0) einem oder mehreren strukturell anderen Herbiziden aus der genannten Gruppe (A) und/oder

DE 198 36 737 A 1

- (B1) gegen monokotyle und dikotyle Schadpflanzen wirksamen Herbiziden mit Blatt- und Bodenwirkung und/
oder
(B2) selektiv in Mais gegen Dikotyle einsetzbare Herbicide-und/oder
(B3) Herbizide, die blattwirksam und bodenwirksam sind und selektiv in Mais überwiegend gegen dicotyle
Schadpflanzen eingesetzt werden können, besteht,

aufweist und die Maiskulturen gegenüber den in der Kombination enthaltenen Herbiziden (A) und (B), gegebenenfalls in Gegenwart von Safenern, tolerant sind.

Neben den erfahrungsgemäßen Herbizid-Kombinationen können weitere Pflanzenschutzmittelwirkstoffe und im Pflanzenschutz übliche Hilfsstoffe und Formulierungshilfsmittel verwendet werden.

Die synergistischen Wirkungen werden bei gemeinsamer Ausbringung der Wirkstoffe (A) und (B) beobachtet, können jedoch auch bei zeitlich getrennter Anwendung (Splitting) festgestellt werden. Möglich ist auch die Anwendung der Herbizide oder der Herbizid-Kombinationen in mehreren Portionen (Sequenzanwendung), z. B. nach Anwendungen im Voraufzug, gefolgt von Nachauflauf-Applikationen oder nach frühen Nachauflaufanwendungen, gefolgt von Applikationen im mittleren oder späten Nachauflauf. Bevorzugt ist dabei die simultane Anwendung der Wirkstoffe der jeweiligen Kombination, gegebenenfalls in mehreren Portionen. Aber auch die zeitversetzte Anwendung der Einzelwirkstoffe einer Kombination ist möglich und kann im Einzelfall vorteilhaft sein. In diese Systemanwendung können auch andere Pflanzenschutzmittel wie Fungizide, Insektizide, Akarizide etc. und/oder verschiedene Hilfsstoffe, Adjuvantien und/oder Düngergaben integriert werden.

Die synergistischen Effekte erlauben eine Reduktion der Aufwandmengen der Einzelwirkstoffe, eine höhere Wirkungsstärke gegenüber derselben Schadpflanzenart bei gleicher Aufwandmenge, die Kontrolle bislang nicht erfasster Arten (Lücken), eine Ausdehnung des Anwendungszeitraums und/oder eine Reduzierung der Anzahl notwendiger Einzelanwendungen und – als Resultat für den Anwender – ökonomisch und ökologisch vorteilhafte Unkrautbekämpfungssysteme.

Bspielweise werden durch die erfahrungsgemäßen Kombinationen aus (A)+(B) synergistische Wirkungssteigerungen möglich, die weit und in unerwarteter Weise über die Wirkungen hinausgehen, die mit den Einzelwirkstoffen (A) und (B) erreicht werden.

In WO-A-98/09525 ist bereits ein Verfahren zur Bekämpfung von Unkräutern in transgenen Kulturen beschrieben, welche gegenüber phosphorhaltigen Herbiziden wie Glufosinate oder Glyphosate resistent sind, wobei Herbizid-Kombinationen eingesetzt werden, welche Glufosinate oder Glyphosate und mindestens ein Herbizid aus der Gruppe Prosulfuron, Primisulfuron, Dicamba, Pyridate, Dimethenamid, Metolachlor, Flumeturon, Propaquazafop, Atrazin, Clodinafop, Norflurazone, Ametryn, Terbutylazin, Simazin, Prometryn, NOA-402989(3-Phenyl, 4-hydroxy-6-chlorpyridazin), eine Verbindung der Formel,

worin R = 4-Chlor-2-fluor-5-(methoxycarbonylmethylthio)-phenyl bedeutet, (bekannt aus US-A-4671819), CGA276854 = 2-Chlor-5-(3-methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydro-2H-pyrimidin-1-yl)-benzoësäure-1-allyloxycarbonyl-1-methylethyl-ester (= WC9717, bekannt aus US-A-5183492) und 2-(N-[N-(4,6-Dimethylpyrimidin-2-yl)-aminocarbonyl]-aminosulfonyl)-benzoësäure-4-oxetanylester (bekannt aus EP-A-496701) enthalten. Einzelheiten über die erzielbaren oder erzielten Effekte gehen aus der Druckschrift WO-A-98/09525 nicht hervor. Beispiele zu synergistischen Effekten oder zur Durchführung des Verfahrens in bestimmten Kulturen fehlen ebenso wie konkrete Kombinationen aus zwei, drei oder weiteren Herbiziden.

In eigenen Versuchen wurde gefunden, daß überraschenderweise große Unterschiede zwischen der Verwendbarkeit der in WO-A-98/09525 erwähnten Herbizid-Kombinationen und auch anderer neuartiger Herbizid-Kombinationen in Pflanzenkulturen bestehen.

Erfahrungsgemäß werden Herbizid-Kombinationen bereitgestellt, die in toleranten Maiskulturen besonders günstig eingesetzt werden können.

Die Verbindungen der Formel (A1) bis (A5) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Formel (A1) umfaßt alle Stereoisomeren und deren Gemische, insbesondere das Racemat und das jeweils biologisch wirksame Enantiomere, z. B. L-Glufosinate und dessen Salze. Beispiele für Wirkstoffe der Formel (A1) sind folgende:

- (A1.1) Glufosinate im engeren Sinne, d. h. D,L-2-Amino-4-[hydroxy(methyl)phosphinyl]-butansäure,
- (A1.2) Glufosinate-monoammoniumsalz,
- (A1.3) L-Glufosinate, L- oder (2S)-2 Amino-4-[hydroxy(methyl)phosphinyl]-butansäure,
- (A1.4) L-Glufosinate-monoammoniumsalz,
- (A1.5) Biafaphos (oder Bilanafos), d. h. L-2-Amino-4-[hydroxy(methyl)phosphinyl]-butanoyl-L-alanyl-L-alanin, insbesondere dessen Natriumsalz.

Die genannten Herbizide (A1.1) bis (A1.5) werden über die grünen Teile der Pflanzen aufgenommen und sind als Breitspektrum-Herbizide oder Totalherbizide bekannt; sie sind Hemmstoffe des Enzyms Glutaminsynthetase in Pflanzen; siehe "The Pesticide Manual" 11 th Edition, British Crop Protection Council 1997, S. 643-645 bzw. 120-121. Während ein Einsatzgebiet im Nachauflauf-Verfahren zur Bekämpfung von Unkräutern und Ungräsern in Plantagen-Kulturen

DE 198 36 737 A 1

und auf Nichtkulturland sowie mittels spezieller Applikationstechniken auch zur Zwischenreihenbekämpfung in landwirtschaftlichen Flächenkulturen wie Mais, Baumwolle u. a. besteht, nimmt die Bedeutung der Verwendung als selektive Herbizide in resistenten transgenen Pflanzenkulturen zu.

Glufosinate wird üblicherweise in Form eines Salzes, vorzugsweise des Ammoniumsalzes eingesetzt. Das Racemrat von Glufosinate bzw. Glufosinateammonium wird alleine üblicherweise in Dosierungen ausgebracht, die zwischen 200 und 2000 g AS/ha (= g a.i./ha = Gramm Aktivsubstanz pro Hektar) liegen. Glufosinate ist in diesen Dosierungen vor allem dann wirksam, wenn es über grüne Pflanzenteile aufgenommen wird. Da es im Boden mikrobiell innerhalb weniger Tage abgebaut wird, hat es keine Dauerwirkung im Boden. Ähnliches gilt auch für den verwandten Wirkstoff Bialaphos-Natrium (auch Bilanafos-Natrium); siehe "The Pesticide Manual" 11th Ed., British Crop Protection Council 1997 S. 120-121.

In den erfundungsgemäßen Kombinationen benötigt man in der Regel deutlich weniger Wirkstoff (A1), beispielsweise eine Aufwandmenge im Bereich von 20 bis 800, vorzugsweise 20 bis 600 Gramm Aktivsubstanz Glufosinate pro Hektar (g AS/ha oder g a.i./ha). Entsprechende Mengen, vorzugsweise in Mol pro Hektar umgerechnete Mengen, gelten auch für Glufosinate-ammonium und Bialafos bzw. Bialafos-Natrium.

Die Kombinationen mit den blauwirksamen Herbiziden (A1) werden zweckmäßig in Maiskulturen eingesetzt, die gegenüber den Verbindungen (A1) resistent oder tolerant sind. Einige toleranten Maiskulturen, die gentechnisch erzeugt wurden, sind bereits bekannt und werden in der Praxis eingesetzt; vgl. Artikel in der Zeitschrift "Zuckergrübe" 47. Jahrgang (1998), S. 217 ff.; zur Herstellung transgener Pflanzen, die gegen Glufosinate resistent sind, vgl. EP-A-0242246, EP A-242236, EP-A-257542, EP-A-275957, EP-A-0513054).

Beispiele für Verbindungen (A2) sind

- (A2.1) Glyphosate, d. h. N-(Phosphonomethyl)-glycin,
- (A2.2) Glyphosate-monoisopropylammoniumsalz,
- (A2.3) Glyphosate-natriumsalz,
- (A2.4) Sulfosate, d. h. N-(Phosphonomethyl)-glycin-trimesiumsalz = N-(Phosphonomethyl)-glycin-trimethylsulfoxoniumsalz,

Glyphosate wird üblicherweise in Form eines Salzes, vorzugsweise des Monoisopropylammoniumsalzes oder des Trimethylsulfoxoniumsalzes (= Trimesiumsalzes = Sulfosate) eingesetzt. Bezogen auf die freie Säure Glyphosate liegt die Einzeldosierung im Bereich von 0,5-5 kg AS/ha. Glyphosate ist unter manchen anwendungstechnischen Aspekten dem Glufosinate ähnlich, jedoch ist es im Gegensatz dazu ein Hemmstoff für das Enzyms 5-Enolpyruvylshikimat-3-phosphat-Syntase in Pflanzen; siehe "The Pesticide Manual" 11th Ed., British Crop Protection Council 1997 S. 646-649. In den erfundungsgemäßen Kombinationen benötigt man in der Regel Aufwandmengen im Bereich von 20 bis 1000, vorzugsweise 20 bis 800 g AS/ha Glyphosate.

Auch für Verbindungen (A2) sind bereits gentechnisch erzeugte toleranten Pflanzen bekannt und in der Praxis eingeführt worden; vgl. "Zuckergrübe" 47. Jahrgang (1998), S. 217 ff.; vgl. auch WO 92/00377, EP-A-115673, EP-A-409815.

Beispiele für Imidazolinon-Herbizide (A3) sind

- (A3.1) Imazapyr und dessen Salze und Ester,
- (A3.2) Imazethapyr und dessen Salze und Ester,
- (A3.3) Imazamethabenz und dessen Salze und Ester,
- (A3.4) Imazamethabenz-methyl,
- (A3.5) Imazamox und dessen Salze und Ester,
- (A3.6) Imazaquin und dessen Salze und Ester, z. B. das Ammoniumsalz.

Die Herbizide hemmen das Enzym Acetolactatsynthase (ALS) und damit die Proteinsynthese in Pflanzen; sie sind sowohl boden- als auch blauwirksam und weisen teilweise Selektivitäten in Kulturen auf; vgl. "The Pesticide Manual" 11th Ed., British Crop Protection Council 1997 S. 697-699 zu (A3.1), S. 701-703 zu (A3.2), S. 694-696 zu (A3.3) und (A3.4), S. 696-697 zu (A3.5) und 699-701 zu (A3.6). Die Aufwandmengen der Herbizide sind üblicherweise zwischen 0,1 bis 2 kg AS/ha. In den erfundungsgemäßen Kombinationen liegen sie im Bereich von 10 bis 200 g AS/ha.

Die Kombinationen mit Imidazolinonen werden zweckmäßig in Maiskulturen eingesetzt, die gegenüber den Imidazolinonen resistent sind. Derartige toleranten Kulturen sind bereits bekannt. EP-A-0360750 beschreibt z. B. die Herstellung von ALS-inhibitor-toleranten Pflanzen durch Selektionsverfahren oder gentechnische Verfahren. Die Herbizid-Toleranz der Pflanzen wird hierbei durch einen erhöhten ALS-Gehalt in den Pflanzen erzeugt. US-A-5,198,599 beschreibt sulfonylharnstoff- und imidazolinon-tolerante Pflanzen, die durch Selektionsverfahren gewonnen wurden.

Beispiele für PPO-Hemmstoffe (A4) sind

- (A4.1) Pyraflufen und dessen Ester wie Pyraflufen-ethyl,
- (A4.2) Carfentrazone und dessen Ester wie Carfentrazone-ethyl,
- (A4.3) Oxadiargyl
- (A4.4) Sulfentrazone
- (A4.5) WC9717 oder CGA276854 = 2-Chlor-5-(3-methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydro-2H-pyrimidin-1-yl)-benzoësäure-1-allyloxy carbonyl-1-methylethyl-ester (bekannt aus US-A-5183492)

Die genannten Azole sind bekannt als Hemmstoffe des Enzyms Protoporphyrinogenoxidase (PPO) in Pflanzen; siehe "The Pesticide Manual" 11th Ed., British Crop Protection Council 1997 S. 1048-1049 zu (A4.1), S. 191-193 zu (A4.2), S. 904-905 zu (A4.3) und S. 1126-1127 zu (A4.4). Tolerante Pflanzenkulturen sind bereits beschrieben. Die Aufwandmengen der Azole sind in der Regel im Bereich von 5 bis 200 g AS/ha.

Einige gegenüber PPO-Hemmern tolerante Pflanzen sind bereits bekannt.

Beispiele für Cyclohexandion-Herbizide (A5) sind

- (A5.1) Sethoxydim ("The Pesticide Manual" 11th Ed., British Crop Protection Council 1997 (im folgenden "PM", S. 1101-1103), d. h. (E,Z)-2-(1-Ethoxyiminobutyl)-5-[2-(ethylthio)-propyl]-3-hydroxy-cyclohex-2-enon,
- (A5.2) Cycloxydim (PM, S. 290-291), d. h. 2-(1-Ethoxyiminobutyl)-3-hydroxy-5-thian-3-ylcyclohex-2-enon,
- (A5.3) Clethodim (PM, S. 250-251), d. h. 2-[(E)-3-Chlorallyoxyimino]-propyl]-5-[2-(ethylthio)-propyl]-3-hy-

droxy)cyclohex-2-enon.

Die Herbizide hemmen die Mitosis und damit die Fettsäuresynthese in Pflanzen; sie sind besonders blattwirksam und weisen teilweise Selektivitäten in Kulturen auf. Die Aufwändungen der Herbizide sind üblicherweise zwischen 0,2 bis 1 kg AS/ha. In den erfundungsgemäßen Kombinationen liegen sie im Bereich von 10 bis 1000 g AS/ha. Die Kombinationen mit Cyclohexandionen werden zweckmäßig in Maiskulturen eingesetzt, die gegenüber den Cyclohexandionen resistent sind. Derartige tolerante Kulturen sind bereits bekannt.

5

Als Kombinationspartner (B) kommen beispielsweise Verbindungen der Untergruppen (B1) bis (B4) in Frage:

(B1) Herbizide, die sowohl blattwirksam als auch bodenwirksam sind und selektiv in Mais gegen Gräser und Dikotyle eingesetzt werden können, beispielsweise die folgenden Verbindungen (Angabe mit dem "common name" und der Referenzstelle aus "The Pesticide Manual" 11 th Ed., British Crop Protection Council 1997, abgekürzt "PM"):

10

(B1.1) Cyanazine (PM, S. 280–283), d. h. 2-(4-Chlor-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methyl-propionsäurenitril,

15

(B1.2) Atrazin (PM, S. 55–57), d. h. N-Ethyl-N'-isopropyl-6-chlor = 2,4-diamino-1,3,5-triazin,

(B1.3) Terbutylazin (PM, S. 1168–1170), d. h. N-Ethyl-N'-tert.-butyl-6-chlor-2,4-diamino-1,3,5-triazin,

20

(B1.4) Acetochlor (PM, S. 10–12), d. h. 2-Chlor-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamid,

(B1.5) Metolachlor (PM, S. 833–834), d. h. 2-Chlor-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamid,

25

(B1.6) Alachlor (PM, S. 23–24), d. h. 2-Chlor-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamid,

(B1.7) Terbutryn (PM, S. 1170–1172), d. h. N-(1,1-Dimethylethyl)-N'-ethyl-6-methylthio-2,4-diamino-1,3,5-triazin,

30

(B1.8) Benoxacor (PM, S. 102–103), d. h. 4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin,

(B1.9) Nicosulfuron (PM, S. 877–879), d. h. 2-(4,6-Dimethoxypyrimidin-2-yl)-3-(3-dimethylcarbamoyl-2-pyridylsulfonyl)-harnstoff,

35

(B1.9) Rimsulfuron (PM, S. 1095–1097), d. h. 1-(4,6-Dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonyl-2-pyridylsulfonyl)-harnstoff,

(B1.9) Primisulfuron und Ester wie der Methylester (PM, S. 997–999), d. h. 2-[4,6-Bis(disfluormethoxy)-pyrimidin-2-ylcarbamoylsulfamoyl]-benzoësäure bzw. -methylester,

(B1.10) Dimethenamid (PM, S. 409410), d. h. 2-Chlor-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methyl-ethyl)-acetamid,

40

(B1.11) Fluthiamide (BAY FOE 5043) (PM, S. 82–83), d. h. 4'-Fluor-N-isopropyl-2-(5-trifluormethyl-1,3,4-thiadiazol-2-yloxy)-acetanilid,

(B1.12) Sulcotrione (PM, S. 1124–1125), d. h. 2-(2-Chlor-4-mesylbenzoyl)-cyclohexan-1,3-dion,

(B2) selektiv in Mais gegen Dikotyle einsetzbare Herbizide, beispielsweise die Verbindungen(B2.1) Pendimethalin (PM, S. 937–939), d. h. N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidin,

45

(B2.2) Pyridate (PM, S. 1064–1066), d. h. Thiokohlensäure-O-(6-Chlor-3-phenyl-pyridazin-4-yl)-S-(octyl)-diester,

(B2.3) Iodosulfuron (proposed common name) und vorzugsweise der Methylester (vgl. WO 96/41537), d. h. 4-10d-2-(4-Methoxy-6-methyl-1,3,5-triazin-2-ylcarbamoylsulfamoyl)-benzoësäure bzw. -methylester, bekannt aus WO-A-92/13845,

(B2.4) Metosulam (PM, S. 836–895), d. h. 2',6'-Dichlor-5,7-dimethoxy-3'-methyl-[1,2,4]triazolo[1,5a]pyrimidin-2-sulfonanilid,

(B2.5) Isoxaflutole (PM, S. 737–739), d. h. (5-Cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluormethyl)phenyl]methanon,

50

(B2.6) Metribuzin (PM, S. 4-Amino-6-tert.-butyl-3-methylthio-1,2,4-triazin-5(4H)-on,

(B2.7) Cloransulam und vorzugsweise der Methylester (PM, S. 165), d. h. 3-Chlor-2-(5-ethoxy-7-fluor-[1,2,4]triazolo-[1,5-c]pyrimidin-2-ylsulfonamido)benzoësäure oder -methylester,

(B2.8) Flumetsulam (PM, S. 573–574), d. h. 2',6'-Dichlor-5-methyl-[1,2,4]triazolo[1,5a]pyrimidin-2-sulfonanilid und

(B2.9) Linuron (PM, S. 751–753), d. h. 3-(3,4-Dichlorophenyl)-1-methoxy-1-methyl-harnstoff und

(B3) Herbizide, die blattwirksam und bodenwirksam sind und selektiv in Mais überwiegend gegen dicotyle Schadpflanzen eingesetzt werden können, beispielsweise die Verbindungen:

55

(B3.1) Bromoxynil (PM, S. 149–151), d. h. 3,5-Dibrom-4-hydroxy-benzonitril,

(B3.2) Dicamba (PM, S. 356–357), d. h. 3,6-Dichlor-o-anissäure und deren Salze,

(B3.3) 2,4-D (PM, S. 323–327), d. h. 2,4-Dichlorphenoxyessigsäure und deren Salze und Ester,

(B3.4) Clopyralid (PM, S. 260–263), d. h. 3,6-Dichlor-2-pyridincarbonsäure und deren Salze und Ester,

(B3.5) Prosulfuron (PM, S. 1041–1043), d. h. 1-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-3-[2-(3,3,3-trifluoropropyl)-phenylsulfonyl]-harnstoff,

60

(B3.6) Thifensulfuron und dessen Ester, vorzugsweise der Methylester (PM, S. 1188–1190), d. h. 3-[[[(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]-carbonyl]-amino]sulfonyl]-2-thiophencarbonsäure bzw. -methylester,

(B3.6) Carfentrazone und deren Salze und Ester, vorzugsweise der Ethylester (PM, S. 191–193), d. h. 2-Chlor-3-[2-chlor-5-(disfluormethyl-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl)-4-fluorphenyl]-propionsäure bzw. -ethylester,

65

(B3.8) Lab271272 und

(B3.9) CGA152008.

Im Falle von Wirkstoffen auf Basis von Carbonsäuren oder anderen salz- oder esterbildenden Wirkstoffen soll die Be-

DE 198 36 737 A 1

zeichnung der Herbizide durch den "common name" der Säure auch die Salze und Ester erfassen, vorzugsweise die handelsüblichen Salze und Ester, insbesondere die gängige Handelsform des Wirkstoffes.

Die Aufwandmengen der Herbizide (B) können von Herbizid zu Herbizid stark variieren. Als grobe Richtgröße können folgende Bereiche gelten:

- 5 Zu Verbindungen (B0): 5–2000 g AS/ha (vgl. die Angaben zur Gruppe der Verbindungen (A))
Zu Verbindungen (B1): 1–5000 g AS/ha Zu Verbindungen (B2): 1–5000 g AS/ha Zu Verbindungen (B3): 1–5000 g AS/ha

Die Mengenverhältnisse der Verbindungen (A) und (B) ergeben sich aus den genannten Aufwandmengen für die Einzelstoffe und sind beispielsweise folgende Mengenverhältnisse von besonderem Interesse:

- (A) : (B) im Bereich von 2000 : 1 bis 1 : 1000, vorzugsweise von 200 : 1 bis 1 : 100,
10 (A) : (B0) vorzugsweise von 400 : 1 bis 1 : 400, insbesondere 200 : 1 bis 1 : 200,
(A1) : (B1) vorzugsweise von 1500 : 1 bis 1 : 250, insbesondere von 200 : 1 bis 1 : 100,
(A1) : (B2) vorzugsweise von 1500 : 1 bis 1 : 250, insbesondere von 200 : 1 bis 1 : 100,
(A1) : (B3) vorzugsweise von 1500 : 1 bis 1 : 250, insbesondere von 200 : 1 bis 1 : 100,
15 (A2) : (B1) vorzugsweise von 2000 : 1 bis 1 : 50, insbesondere von 300 : 1 bis 1 : 20,
(A2) : (B2) vorzugsweise von 2000 : 1 bis 1 : 50, insbesondere von 300 : 1 bis 1 : 20,
(A2) : (B3) vorzugsweise von 2000 : 1 bis 1 : 50, insbesondere von 300 : 1 bis 1 : 20,
(A3) : (B1) vorzugsweise von 200 : 1 bis 1 : 500, insbesondere von 100 : 1 bis 1 : 200,
(A3) : (B2) vorzugsweise von 200 : 1 bis 1 : 500, insbesondere von 100 : 1 bis 1 : 200,
20 (A3) : (B3) vorzugsweise von 200 : 1 bis 1 : 500, insbesondere von 100 : 1 bis 1 : 200,
(A4) : (B1) vorzugsweise von 200 : 1 bis 1 : 1000, insbesondere von 100 : 1 bis 1 : 250,
(A4) : (B2) vorzugsweise von 200 : 1 bis 1 : 1000, insbesondere von 100 : 1 bis 1 : 250,
(A4) : (B3) vorzugsweise von 200 : 1 bis 1 : 1000, insbesondere von 100 : 1 bis 1 : 250,
(A5) : (B1) vorzugsweise von 1000 : 1 bis 1 : 500, insbesondere von 200 : 1 bis 1 : 100,
25 (A5) : (B2) vorzugsweise von 1000 : 1 bis 1 : 500, insbesondere von 200 : 1 bis 1 : 100,
(A5) : (B3) vorzugsweise von 1000 : 1 bis 1 : 500, insbesondere von 200 : 1 bis 1 : 100,

Von besonderem Interesse ist die Anwendung der Kombinationen

- (A1.1) + (B1.1), (A1.1) + (B1.2), (A1.1) + (B1.3), (A1.1) + (B1.4), (A1.1) + (B1.5),
(A1.1) + (B1.6), (A1.1) + (B1.7), (A1.1) + (B1.8), (A1.1) + (B1.9), (A1.1) + (81.10),
(A1.1) + (B1.11), (A1.1) + (B1.12),
30 (A1.2) + (81.1), (A1.2) + (B1.2), (A1.2) + (81.3), (A1.2) + (B1.4), (A1.2) + (B1.5),
(A1.2) + (B1.6), (A1.2) + (B1.7), (A1.2) + (B1.8), (A1.2) + (B1.9), (A1.2) + (B1.10),
(A1.2) + (B1.11), (A1.2) + (81.12),
(A1.1) + (B2.1), (A1.1) + (B2.2), (A1.1) + (82.3), (A1.1) + (82.4), (A1.1) + (B2.5),
(A1.1) + (82.6), (A1.1) + (B2.7), (A1.1) + (82.8), (A1.1) + (82.9),
35 (A1.2) + (82.1), (A1.2) + (82.2), (A1.2) + (B2.3), (A1.2) + (B2.4), (A1.2) + (B2.5),
(A1.2) + (B2.6), (A1.2) + (B2.7), (A1.2) + (B2.8), (A1.2) + (B2.9),
(A1.1) + (83.1), (A1.1) + (B3.2), (A1.1) + (B3.3), (A1.1) + (B3.4), (A1.1) + (B3.5),
(A1.1) + (83.6), (A1.1) + (83.7), (A1.1) + (B3.8), (A1.1) + (B3.9),
40 (A1.2) + (B3.1), (A1.2) + (B3.2), (A1.2) + (B3.3), (A1.2) + (83.4), (A1.2) + (B3.5),
(A1.2) + (B3.6), (A1.2) + (83.7), (A1.2) + (B3.8), (A1.2) + (83.9),
(A2.2) + (B1.1), (A2.2) + (81.2), (A2.2) + (B1.3), (A2.2) + (81.4), (A2.2) + (81.5),
(A2.2) + (B1.6), (A2.2) + (B1.7), (A2.2) + (B1.8), (A2.2) + (B1.9), (A2.2) + (B1.10),
(A2.2) + (B1.11), (A2.2) + (B1.12),
(A2.2) + (B2.1), (A2.2) + (B2.2), (A2.2) + (B2.3), (A2.2) + (B2.4), (A2.2) + (B2.5),
45 (A2.2) + (B2.6), (A2.2) + (B3.7), (A2.2) + (B2.8), (A2.2) + (B2.9),
(A2.2) + (B3.1), (A2.2) + (B3.2), (A2.2) + (B3.3), (A2.2) + (B3.4), (A2.2) + (B3.5),
(A2.2) + (B3.5), (A2.2) + (B3.6), (A2.2) + (B3.7), (A2.2) + (B3.8), (A2.2) + (B3.9),

Im Falle der Kombination einer Verbindung (A) mit einer oder mehreren Verbindungen (B0) handelt es sich definiti-
50 onsgemäß um eine Kombination von zwei oder mehreren Verbindungen aus der Gruppe (A). Wegen der breitwirksamen
Herbizide (A) setzt eine solche Kombination voraus, daß die transgenen oder Pflanzen oder Mutanten kreuzresistent ge-
genüber verschiedenen Herbiziden (A) sind. Derartige Kreuzresistenzen bei transgenen Pflanzen sind bereits bekannt;
vgl. WO-A-98/20144.

In Einzelfällen kann es sinnvoll sein, eine oder mehrere der Verbindungen (A) mit mehreren Verbindungen (B), vor-
zugsweise aus den Klassen (B1), (B2), und (B3) zu kombinieren.

55 Weiterhin können die erfundungsgemäßen Kombinationen zusammen mit anderen Wirkstoffen beispielsweise aus der
Gruppe der Safener, Fungizide, Insektizide und Pflanzenwachstumsregulatoren oder aus der Gruppe der im Pflanzen-
schutz üblichen Zusatzstoffe und Formulierungshilfsmittel eingesetzt werden.

Zusatstoffe sind beispielsweise Düngemittel und Farbstoffe.

Bevorzugt sind Herbizid-Kombinationen aus einer oder mehreren Verbindungen (A) mit einer oder mehreren Verbin-
60 dungen der Gruppe (B1) oder (B2) oder (B3). Weiter bevorzugt sind Kombinationen von einer oder mehreren Verbin-
dungen (A), z. B. (A1.2) + (A2.2), vorzugsweise einer Verbindung (A), mit einer oder mehreren Verbindungen (B) nach
dem Schema:

(A) + (B1) + (B2), (A) + (B1) + (B3), (A) + (B2) + (B3).

Dabei sind auch solche Kombinationen erfundungsgemäß, denen noch ein oder mehrere weitere Wirkstoffe anderer
65 Struktur [Wirkstoffe (C)] zugesezt werden wie

(A) + (B1) + (C), (A) + (B2) + (C) oder (A) + (B3) + (C),

(A) + (81) + (B2) + (C) oder (A) + (B1) + (B3) + (C) oder (A) + (B2) + (83) + (C).

Für Kombinationen der letztgenannten Art mit drei oder mehr Wirkstoffen gelten die nachstehend insbesondere für er-

DE 198 36 737 A 1

findungsgemäße Zweierkombinationen erläuterten bevorzugten Bedingungen in erster Linie ebenfalls, sofern darin die erfundungsgemäßen Zweierkombinationen enthalten sind und bezüglich der betreffenden Zweierkombination.

Von besonderem Interesse ist auch die erfundungsgemäße Verwendung der Kombinationen mit einem oder mehreren Herbiziden aus der Gruppe (A), vorzugsweise (A1.2) oder (A2.2), insbesondere (A1.2) und mit einem oder mehreren Herbiziden, vorzugsweise einem Herbizid, aus der Gruppe (B1') Cyanazine, Acetochlor, Metolachlor, Alachlor, Terbutryn, Benoxacor, Nicosulfuron, Rimsulfuron, Fluthiamide und Sulcotrione oder (B2') Pendimethalin, Iodosulfuron, Metosulfuron, Isoxaflutole, Metribuzin, Cloransulam, Flumetsulam und Linuron oder (B3') Broinoxynil, Dicamba, 2,4-D, Clopyralid, Thifensulfuron, Carfentrazone, Lab271272 und CGA152008 oder Herbiziden aus mehreren der Gruppen (B1') bis (B3').

Bevorzugt sind dabei die Kombinationen aus der jeweiligen Komponente (A) mit einem oder mehreren Herbiziden aus der Gruppe (B1'), (B2') oder B3').

Weiter bevorzugt sind die Kombinationen (A)+(B1')+(B2'), (A)+(B1')+(B3') oder (A)+(B2')+(B3').

Die erfundungsgemäßen Kombinationen (= herbiziden Mittel) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es gleichgültig, ob die Substanzen im Vorsaat-, Vorauslauf- oder Nachauslaufverfahren ausgebracht werden. Bevorzugt ist die Anwendung im Nachauslaufverfahren oder im frühen Nachsaat-Vorauslaufverfahren.

Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfundungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Auf der Seite der monokotylen Unkrautarten werden z. B. Echinochloa spp., Setaria spp., Digitaria spp., Brachiaria spp., Panicum spp., Agropyron spp., Wildgetreideformen und Sorghum spp. gut erfaßt, aber auch Avena spp., Alopecurus spp., und Cynodon spp., Lolium spp., Phalaris spp., Poa spp. sowie Cyperusarten und Imperata.

Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten wie z. B. Chenopodium spp., Amaranthus spp., Solanum spp., Datura spp., Abutilon spp., Ipomoea spp., Polygonum spp., Xanthium spp., Stellaria spp., Kochia spp. und Viola spp., aber auch Chrysanthemum spp., Matricaria spp., Veronica spp., Anthemis spp., Thlaspi spp., Galium spp., Lamium spp., Pharbitis spp., Sida spp., Sinapis spp., Cupressella spp., Cirsium spp., Convolvulus spp., Rumex und Artemisia.

Werden die erfundungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab.

Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauslaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.

Die erfundungsgemäßen herbiziden Mittel zeichnen sich im Vergleich zu den Einzelpräparaten durch eine schneller einsetzende und länger andauernde herbizide Wirkung aus. Die Regenfestigkeit der Wirkstoffe in den erfundungsgemäßen Kombinationen ist in der Regel günstig. Als besonderer Vorteil fällt ins Gewicht, daß die in den Kombinationen verwendeten und wirksamen Dosierungen von Verbindungen (A) und (B) so gering eingestellt werden können, daß ihre Bodenwirkung optimal ist. Somit wird deren Einsatz nicht nur in empfindlichen Kulturen erst möglich, sondern Grundwasser-Kontaminationen werden praktisch vermieden. Durch die erfundungsgemäßen Kombination von Wirkstoffen wird eine erhebliche Reduzierung der nötigen Aufwandmenge der Wirkstoffe ermöglicht.

Bei der gemeinsamer Anwendung von Herbiziden des Typs (A)+(B) treten überadditive (= synergistische) Effekte auf. Dabei ist die Wirkung in den Kombinationen stärker als die zu erwartende Summe der Wirkungen der eingesetzten Einzelherbizide. Die synergistischen Effekte erlauben eine Reduzierung der Aufwandmenge, die Bekämpfung eines breiteren Spektrums von Unkräutern und Ungräsern, einen schnelleren Einsatz der herbiziden Wirkung, eine längere Dauerwirkung, eine bessere Kontrolle der Schadpflanzen mit nur einer bzw. wenigen Applikationen sowie eine Ausweitung des möglichen Anwendungszeitraumes. Teilweise wird durch den Einsatz der Mittel auch die Menge an schädlichen Inhaltsstoffen in der Kulturpflanze, wie Stickstoff oder Ölsäure, reduziert. Die genannten Eigenschaften und Vorteile sind in der praktischen Unkrautbekämpfung gefordert, um landwirtschaftliche Kulturen von unerwünschten Konkurrenzpflanzen freizuhalten und damit die Erträge qualitativ und quantitativ zu sichern und/oder zu erhöhen. Der technische Standard wird durch diese neuen Kombinationen hinsichtlich der beschriebenen Eigenschaften deutlich übertroffen.

Ogleich die erfundungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden die toleranten bzw. kreuztoleranten Maispflanzen nur unwesentlich oder gar nicht geschädigt.

Darüberhinaus weisen die erfundungsgemäßen Mittel teilweise hervorragende wachstumsregulatorische Eigenschaften bei den Maispflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen eingesetzt werden. Des Weiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann.

Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Mittel zur Bekämpfung von Schadpflanzen in bekannten toleranten oder kreuztoleranten Maiskulturen oder noch zu entwickelnden toleranten oder gentechnisch veränderten Maiskulturen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, neben den Resistenz gegenüber den erfundungsgemäßen Mitteln beispielsweise durch Resistenz gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z. B. das

Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Ölgehalt oder veränderter Qualität, z. B. anderer Fettsäurezusammensetzung des Ernteguts bekannt.

Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z. B. EP-A-0221044, EP-A-0131624). Beschrieben wurden beispielsweise in mehreren Fällen

- gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806),
- transgene Kulturpflanzen, welche Resistenzen gegen andere Herbizide aufweisen, beispielsweise gegen Sulfonylharnstoffe (EP-A-0257993, US-A-5013659),
- transgene Kulturpflanzen, mit der Fähigkeit *Bacillus thuringiensis*-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259).
- transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).

Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 oder Christou, "Trends in Plant Science" 1 (1996) 423-431).

Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe der obengenannten Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyme, das spezifisch Transkripte des obengenannten Genprodukts spaltet.

Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codierenden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.

Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).

Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d. h. sowohl mono- als auch dikotyle Pflanzen.

So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibition homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.

Gegenstand der Erfindung ist deshalb auch ein Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs in toleranten Maiskulturen, dadurch gekennzeichnet, daß man ein oder mehrere Herbizide des Typs (A) mit einem oder mehreren Herbiziden des Typs (B) auf die Schadpflanzen, Pflanzenteile davon oder die Anbaufläche appliziert.

Gegenstand der Erfindung sind auch die neuen Kombinationen aus Verbindungen (A)+(B) und diese enthaltende herbizide Mittel.

Die erfundungsgemäßen Wirkstoffkombinationen können sowohl als Mischformulierungen der zwei Komponenten, gegebenenfalls mit weiteren Wirkstoffen, Zusatzstoffen und/oder üblichen Formulierungshilfsmitteln vorliegen, die dann in üblicher Weise mit Wasser verdünnt zur Anwendung gebracht werden, oder als sogenannte Tankmischungen durch gemeinsame Verdünnung der getrennt formulierten oder partiell getrennt formulierten Komponenten mit Wasser hergestellt werden.

Die Verbindungen (A) und (B) oder deren Kombinationen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physischen Parameter vorgegeben sind. Als allgemeine Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wässrige Lösungen (SL), Emulsionen (EW) wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen oder Emulsionen, Dispersionen auf Öl- oder Wasserbasis, Suspensions, Staubmittel (DP), Beizmittel, Granulate zur Boden- oder Streuapplikation oder wasserdispersierbare Granulat (WG), ULV-Formulierungen, Mikrokapseln oder Wachse.

Die einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; von Valkenburg, "Pesticides Formulations", Marcel Dekker N. Y., 1973; K Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N. J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley.

DE 198 36 737 A 1

& Sons, N. Y. Marsden, "Solvents Guide", 2nd Ed., Interscience, N. Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N. J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N. Y. 1964; Schönenfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesellschaft, Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie anderen Herbiziden, Fungiziden oder Insektiziden, sowie Safenern, Düngernmitteln und/oder Wachstumsregulatoren herstellen, z. B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver (benetzbares Pulver) sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdunnungs- oder Inertsstoff noch Tenside ionischer oder nichtionischer Art (Netznüttel, Dispergiermittel), z. B. polyoxethylierte Alkylphenole, polyethoxylierte Fettalkohole oder -Fettsäure, Alkansulfonate oder Alkylbenzolsulfonate, ligninsulfonaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonaures Natrium, dibutynaphthalin-sulfonaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffs in einem organischen Lösungsmittel, z. B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren ionischen oder nichtionischen Tensiden (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden:

Alkylarylsulfonsaure Calcium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxyethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffs mit fein verteilten festen Stoffen, z. B. Talcum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomenerde.

Granulate können entweder durch Verdünnen des Wirkstoffs auf adsorptionsfähiges, granulierte Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z. B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise – gewünschtenfalls in Mischung mit Düngemitteln – granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 2 bis 95 Gew.-%, Wirkstoffe der Typen A und/oder B, wobei je nach Formulierungsart folgende Konzentrationen üblich sind:

In Spritzpulvern beträgt die Wirkstoffkonzentration z. B. etwa 10 bis 95 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration z. B. 5 bis 80 Gew.-%, betragen.

Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,2 bis 25 Gew.-% Wirkstoff.

Bei Granulaten wie dispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel und Füllstoffe verwendet werden. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstoffformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Farb- und Trägerstoffe, Entschäumer, Verdunstungshemmer und Mittel, die den pH-Wert oder die Viskosität beeinflussen.

Beispielsweise ist bekannt, daß die Wirkung von Glufosinate-ammonium (A1.2) ebenso wie die seines L-Enantiomeren durch oberflächenaktive Substanzen verbessert werden kann, vorzugsweise durch Netzmittel aus der Reihe der Alkylpolyglykolethersulfate, die beispielsweise 10 bis 18 C-Atomen enthalten und in Form ihrer Alkali- oder Ammoniumsalze, aber auch als Magnesiumsalz verwendet werden, wie C₁₂/C₁₄-Fettalkohol-diglykolethersulfat-Natrium (Genapol LRO, Hoechst); siehe EP-A-0476555, EP-A-0048436, EP-A-0336151 oder US-A-4,400,196 sowie Proc. EWRS Symp. "Factors Affecting Herbical Activity and Selectivity", 227–232 (1988). Weiterhin ist bekannt, daß Alkylpolyglykolethersulfate auch als Penetrationshilfsmittel und Wirkungsverstärker für eine Reihe anderer Herbizide, unter anderem auch für Herbizide aus der Reihe der Imidazolinone geeignet ist; siehe EP-A-0502014.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z. B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulat, sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Die Wirkstoffe können auf die Pflanzen, Pflanzenteile, Pflanzensamen oder die Anbaufläche (Ackerboden) ausgebracht werden, vorzugsweise auf die grünen Pflanzen und Pflanzenteile und gegebenenfalls zusätzlich auf den Ackerboden. Eine Möglichkeit der Anwendung ist die gemeinsame Ausbringung der Wirkstoffe in Form von Tankmischungen, wobei die optimal formulierten konzentrierten Formulierungen der Einzelwirkstoffe gemeinsam im Tank mit Wasser gemischt und die erhaltene Spritzbrühe ausgebracht wird.

Eine gemeinsame herbicide Formulierung der erfundungsgemäßen Kombination an Wirkstoffen (A) und (B) hat den Vorteil der leichteren Anwendbarkeit, weil die Mengen der Komponenten bereits im richtigen Verhältnis zueinander eingestellt sind. Außerdem können die Hilfsmittel in der Formulierung aufeinander optimal abgestimmt werden, während ein Tankmix von unterschiedlichen Formulierungen unerwünschte Kombinationen von Hilfsmitteln ergeben kann.

A. Formulierungsbeispiele allgemeiner Art

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile eines Wirkstoff/Wirksstoffgemisches und 90 Gew.-Teile Talcum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile eines Wirk-

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 198 36 737 A 1

stoffslWirkstoffgemischs, 64 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew.-Teile eines WirkstoffslWirkstoffgemischs mit 6 Gew.-Teilen Alkylphenolpolyglykolether (Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z. B. ca. 255 bis 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlst.

d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen eines Wirkstoffs/Wirkstoffgemischs, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol als Emulgator:

e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew.-Teile eines Wirkstoffs/Wirkstoffgemischs, 10 Gew.-Teile ligninsulfonsaures Calcium, 5 Gew.-Teile Natriumlaurylsulfat, 3 Gew.-Teile Polyvinylalkohol und 7 Gew.-Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew.-Teile eines Wirkstoffs/Wirkstoffgemischs, 5 Gew.-Teile 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, 2 Gew.-Teile oleoylmethyltaurinsaures Natrium, 1 Gew.-Teil Polyvinylalkohol, 17 Gew.-Teile Calciumcarbonat und 50 Gew.-Teile Wasser auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

20

Biologische Beispiele

1. Unkrautwirkung im Vorauflauf

Samen bzw. Rhizomstücke von mono- und dikotylen Unkrautpflanzen werden in Papptöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von konzentrierten wässrigen Lösungen, benetzbaren Pulvern oder Emulsionskonzentraten formulierten Mittel werden dann als wässrige Lösung, Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in unterschiedlichen Dosierungen auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Unkräuter gehalten. Die optische Bonitur der Pflanzen- bzw. Auflaufschäden erfolgt nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3 bis 4 Wochen im Vergleich zu unbehandelten Kontrollen. Wie die Testergebnisse zeigen, weisen die erfundungsgemäßen Mittel eine gute herbizide Vorauflawirkksamkeit gegen ein breites Spektrum von Ungräsem und Unkräutern auf.

Dabei werden häufig Wirkungen der erfundungsgemäßen Kombinationen beobachtet, die die formale Summe der Wirkungen bei Einzelapplikation der Herbizide übertreffen (= synergistische Wirkung).

Wenn die beobachteten Wirkungswerte bereits die formale Summe der Werte zu den Versuchen mit Einzelapplikationen übertreffen, dann übertreffen sie den Erwartungswert nach Colby ebenfalls, der sich nach folgender Formel errechnet und ebenfalls als Hinweis auf Synergismus angesehen wird (vgl. S. R. Colby; in Weeds 15 (1967) S. 20 bis 22):

$$E = A+B-(A \cdot B/100)$$

Dabei bedeuten: A, B = Wirkung der Wirkstoffe A bzw. in % bei a bzw. b g AS/ha; E = Erwartungswert in % bei a+b g AS/ha.

Die beobachteten Werte der Versuche zeigen bei geeigneten niedrigen Dosierungen eine Wirkung der Kombinationen, die über den Erwartungswerten nach Colby liegen.

45

2. Unkrautwirkung im Nachauflauf

Samen bzw. Rhizomstücke von mono- und dikotylen Unkräutern werden in Papptöpfen in sandigem Lehm Boden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstadium mit den erfundungsgemäßen Mitteln behandelt. Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfundungsgemäßen Mittel werden in verschiedenen Dosierungen mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha auf die grünen Pflanzenteile gesprüht. Nach ca. 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate optisch im Vergleich zu unbehandelten Kontrollen bonitiert. Die erfundungsgemäßen Mittel weisen auch im Nachauflauf eine gute herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger Ungräser und Unkräuter auf.

Dabei werden häufig Wirkungen der erfundungsgemäßen Kombinationen beobachtet, die die formale Summe der Wirkungen bei Einzelapplikation der Herbizide übertreffen. Die beobachteten Werte der Versuche zeigen bei geeigneten niedrigen Dosierungen eine Wirkung der Kombinationen, die über den Erwartungswerten nach Colby (vgl. Bonitur in Beispiel 1) liegen.

3. Herbizide Wirkung und Kulturpflanzenverträglichkeit (Feldversuch)

Pflanzen von transgener Mais mit einer Resistenz gegen ein oder mehrere Herbizide (A) wurden unter zusammen mit typischen Unkrautpflanzen im Freiland auf Parzellen der Größe 2 x 5 m unter natürlichen Freilandbedingungen herangezogen; alternativ stellte sich beim Heranziehen der Maispflanzen die Verunkrautung natürlich ein. Die Behandlung mit den erfundungsgemäßen Mitteln und zur Kontrolle separat mit alleiniger Applikation der Komponentenwirkstoffe erfolgte unter Standardbedingungen mit einem Parzellen-Spritzgerät bei einer Wasseraufwandmenge von 200–300 Liter

DE 198 36 737 A 1

Wasser je Hektar in Parallelversuchen gemäß dem Schema aus Tabelle 1, d. h. im Vorsaat-Vorauflauf, im Nachsaat-Vorauflauf oder im Nachauflauf im frühen, mittleren oder späten Stadium.

Tabelle 1

Anwendungsschema – Beispiele

Applikation der Wirkstoffe	Vorsaat	Vorauflauf nach Saat	Nachauflauf 1-2-Blatt	Nachauflauf 2-4-Blatt	Nachauflauf 6-Blatt	
kombiniert	(A)+(B)					
"		(A)+(B)				
"			(A)+(B)			
"				(A)+(B)		
"					(A)+(B)	
sequentiell	(A)		(B)			
"		(A)	(B)			
"		(A)		(B)		
"		(A)	(A)	(B)		
"		(A)		(B)	(B)	
"		(A)		(A)+(B)		
"	(B)		(A)			
"		(B)		(A)+(B)		
"		(A)+(B)		(A)+(B)		
"	(A)+(B)	(A)+(B)	(A)+(B)			
"		(A)+(B)	(A)+(B)			
"		(A)+(B)	(A)+(B)	(A)+(B)		
"		(A)+(B)	(A)+(B)	(A)+(B)	(A)+(B)	
"			(A)+(B)	(A)+(B)		
"			(A)+(B)	(A)+(B)	(A)+(B)	
"				(A)+(B)	(A)+(B)	
					(A)+(B)	
					(A)+(B)	

Im Abstand von 2, 4, 6 und 8 Wochen nach Applikation wurde die herbizide Wirksamkeit der Wirkstoffe bzw. Wirkstoffmischungen anhand der behandelten Parzellen im Vergleich zu unbehandelten Kontroll-Parzellen visuell bonitiert. Dabei wurde Schädigung und Entwicklung aller oberirdischen Pflanzenteile erfaßt. Die Bonitierung erfolgte nach einer Prozentskala (100% Wirkung = alle Pflanzen abgestorben; 50% Wirkung = 50% der Pflanzen und grünen Pflanzenteile abgestorben; 0% Wirkung = keine erkennbare Wirkung = wie Kontrollparzelle. Die Boniturwerte von jeweils 4 Parzellen wurden gemittelt.

Der Vergleich zeigte, daß die erfundungsgemäßen Kombinationen meist mehr, teilweise erheblich mehr herbizide Wirkung aufweisen als die Summe der Wirkungen der Einzelherbizide. Die Wirkungen lagen in wesentlichen Abschnitten des Boniturzeitraums über den Erwartungswerten nach Colby (vgl. Bonitur in Beispiel 1) und weisen deshalb auf einen Synergismus hin. Die Maispflanzen dagegen wurden infolge der Behandlungen mit den herbiziden Mitteln nicht oder nur

unwesentlich geschädigt.

Tabelle 2

Herbizide Wirkung im Feldversuch in Mais

Wirkstoff(e)	Dosis ¹⁾ g AS/ha	Schaden in % am Mais LL	Herbizide Wirkung ²⁾ (%) gegen		
			Digitaria Sanguinalis	Panicum dichotomiflorum	
(A1.2)	200	2	0	8	
	400	4	15	50	
	600	3	30	92	
(B3.2)	300	0	88	0	
(A1.2) + (B3.2)	200+300 400+300	3 4	94 100	75 92	

Abkürzungen zu Tabelle 2:

³⁰ 1) = Applikation im 5-6-Blattstadium 2) = Bonitur 11 Tage nach Applikation

g AS/ha = Gramm Aktivsubstanz (= 100% Wirkstoff) pro Hektar

35 (A1.2) = Glufosinate-ammonium

(B3.2) = Dicamba

40

45

50

55

60

65

Tabelle 3

Herbizide Wirkung im Feldversuch in Mais

Wirkstoff(e)	Dosis ¹⁾ g AS/ha	Herbizide Wirkung ²⁾ (%) gegen			Schädigung in % an Mais LL ²⁾
		AGRRE	SETVI	AMARE	
(A1.2)	200	0	72	65	3
	300	0	72	84	2
	400	11	69	82	5
	600	15	69	87	3
	1000	74	74	85	4
(B1.2)	1500	26	53	3	0
(A1.2) + (B1.2)	200+1500	32	95 (E=89)	87	3
	400+1500	68	97 (E=75)	88	4
	300+300 ³⁾	95	100 (E=92)	100 (E=99)	4

Abkürzungen zu Tabelle 3:

¹⁾ = Applikation im 2-4-Blattstadium ²⁾ = Bonitur 3 Wochen nach Applikation³⁾ = Sequenzbehandlung: Applikation von (B1.2) 7 Tage nach Applikation von (A1.2)

g AS/ha = Gramm Aktivsubstanz (= 100% Wirkstoff) pro Hektar

(A1.2) = Glufosinate-ammonium

(B1.2) = Atrazin

Patentansprüche

1. Verwendung von Herbizid-Kombinationen zur Bekämpfung von Schadpflanzen in Maiskulturen, dadurch gekennzeichnet, daß die jeweilige Herbizid-Kombination einen wirksamen Gehalt an

(A) einem breitwirksamen Herbizid aus der Gruppe der Verbindungen, welche aus
(A1) Verbindungen der Formeln (A1),

worin Z einen Rest der Formel -OH oder einen Peptidrest der Formel
 -NHCH(CH₃)CONHCH(CH₃)COOH oder
 -NHCH(CH₃)CONHCH[CH₂CH(CH₃)₂]COOH bedeutet, oder deren Ester und Salze,
 (A2) Verbindungen der Formel (A2) und deren Ester und Salze,

- (A3) Imidazolinonen,
 10 (A4) herbiziden Azolen aus der Gruppe der Herumstoffe der Protoporphyrinogen-oxidase (PPO-Hemmstoffe) und
 (A5) Cyclohexandion-Herbiziden besteht, und
 (B) einem oder mehreren Herbiziden aus der Gruppe der Verbindungen, welche aus
 15 (B0) einem oder mehreren strukturell anderen Herbiziden aus der genannten Gruppe (A) oder
 (B1) gegen monokotyle und dikotyle Schadpflanzen wirksamen Herbiziden mit Blatt- und Bodenwirkung oder
 (B2) selektiv in Mais gegen Dikotyle einsetzbare Herbicide oder
 (B3) Herbizide, die blattwirksam und bodenwirksam sind und selektiv in Mais überwiegend gegen dicotyle Schadpflanzen eingesetzt werden können, oder aus Herbiziden aus mehreren der Gruppen (B0) bis
 20 (B3) besteht,
 aufweist und die Maiskulturen gegenüber den in der Kombination enthaltenen Herbiziden (A) und (B), gegebenenfalls in Gegenwart von Safenern, tolerant sind.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als Wirkstoff (A) Glufosinate-ammonium eingesetzt wird.
- 25 3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als Wirkstoff (A) Glyphosate-isopropylammonium eingesetzt wird.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Komponente (B) ein oder mehrere Herbizide aus der Gruppe, welche aus
 30 (B0) Herbiziden (A) aus der Gruppe der Herbicide (A1) bis (A5), die nicht mit dem
 der Komponente (A) identisch sind,
 (B1) Cyanazine, Atrazin, Terbutylazin, Acetochlor, Metolachlor, Alachlor, Terbutryn, Benoxacor, Nicosulfuron, Rimsulfuron, Primisulfuron, Dimethenamid, Fluthiamide und Sulcotrione oder
 (B2) Pendimethalin, Pyridate, Iodosulfuron, Metosulam, Isoxaflutole, Metribuzin, Cloransulam, Flumetsulam und Linuron oder
 35 (B3) Bromoxynil, Dicamba, 2,4-D, Clopyralid, Prosulfuron, Thifensulfuron, Carfentrazone, Lab271272 und CGA152008 oder aus Herbiziden aus mehreren der Gruppen (B0) bis (B3) besteht.
5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Herbizid-Kombinationen in Gegenwart weiterer Pflanzenschutzmittelwirkstoffe und im Pflanzenschutz übliche Hilfsstoffe und Formulierungshilfsmittel verwendet werden.
- 40 6. Verfahren zur Bekämpfung von Schadpflanzen in toleranten Maiskulturen, dadurch gekennzeichnet, daß man die Herbizide der Herbizid-Kombination, definiert gemäß einem oder mehreren der Ansprüche 1 bis 4, gemeinsam oder getrennt im Vorauflauf, Nachauflauf oder im Vor- und Nachauflauf auf die Pflanzen, Pflanzenteile, Pflanzensamen oder die Anbaufläche appliziert.
7. Herbizide Zusammensetzung, dadurch gekennzeichnet, daß sie die Herbizide der Herbizid-Kombination, definiert gemäß einem oder mehreren der Ansprüche 1 bis 4 enthält.
- 45 8. Herbizide Zusammensetzung nach Anspruch 6, dadurch gekennzeichnet, daß sie eine Kombination aus einem oder mehreren Herbiziden (A) und einem oder mehreren Herbiziden aus der Gruppe
 (B1) Cyanazine, Acetochlor, Metolachlor, Alachlor, Terbutryn, Benoxacor, Nicosulfuron, Rimsulfuron, Fluthiamide und Sulcotrione oder
 (B2) Pendimethalin, Iodosulfuron, Metosulam, Isoxaflutole, Metribuzin, Cloransulam, Flumetsulam und Linuron oder
 50 (B3) Bromoxynil, Dicamba, 2,4-D, Clopyralid, Thifensulfuron, Carfentrazone, Lab271272 und CGA152008 oder aus Herbiziden aus mehreren der Gruppen (B1) bis (B3').
 9. Zusammensetzung gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, daß sie im Pflanzenschutz übliche Zusatzstoffe und Formulierungshilfsmittel enthält.
- 55 10. Verwendung der nach Anspruch 6 oder 7 definierten Zusammensetzung zur Wachstumsregulierung von Maispflanzen.
11. Verwendung der nach Anspruch 6 oder 7 definierten Zusammensetzung zur Beeinflussung des Ertrags oder der Inhaltsstoffe von Maispflanzen.

60

65