Introduction to Support Vector Machines & Random Forest

Supervised learning

Cédric Hassen-Khodja, Volker Baecker, Jean-Bernard Fiche, Francesco Pedaci

Summary

- 1. History of SVM
- 2. Types Of Machine Learning
- 3. Why support vector machine?
- 4. What is support vector machine?
- 5. How does it work?
 - a. Hard Margin
 - b. Soft Margin c. Kernel trick
- 6. SVM in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity

History of SVM

- 1. 1963: Linear classifier Maximal Margin Classifier by Vapnik and Chervonenkis.
- 2. 1992: Nonlinear classification Kernel trick by Bernhard E. Boser.
- 3. 1995: The Soft Margin Classifier by Corinna Cortes and Vapnik.

Types of Machine Learning

Why support vector machine?

- · It works really well with clear margin of separation.
- · It is effective in high dimensional spaces.
- · Robust against the outliers (controlled with the parameter C).

What is support vector machine?

Support vector machines (SVMs) aim to find a decision hyperplane that separates data points of different classes with a maximal margin.

We are given a set of people with different:

HEIGHT	WEIGHT	SEX
145	55	Woman
155	50	Woman
160	52	Woman
158	68	Woman
174	74	Man
170	86	Man
180	62	Man
185	78	Man

Hard Margin

To separate the two classes we should split the data in the best possible way.

Hard Margin

Hard Margin

Prediction

Summary

- 1. History of SVM
- 2. Types Of Machine Learning
- 3. Why support vector machine?
- 4. What is support vector machine?
- 5. How does it work?
 - a. Hard Margin
 - b. Soft Margin
 - c. Kernel trick
- 6. SVM in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity

Soft Margin

Soft Margin

Summary

- 1. History of SVM
- 2. Type Of Machine Learning
- 3. Why support vector machine?
- 4. What is support vector machine?
- 5. How does it work?
 - a. Hard Margin
 - b. Soft Margin
 - c. Kernel trick
- 6. SVM in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity

Kernel trick

How to perform SVM for this type of dataset?

Kernel trick

Summary

- 1. History of SVM
- 2. Type Of Machine Learning
- 3. Why support vector machine?
- 4. What is support vector machine?
- 5. How does it work?
 - a. Hard Margin
 - b. Soft Margin
 - c. Kernel trick
- 6. SVM in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity

SVM in practice - Implementing biological application with Python

Use Case - Problem Statement

Estimate the lowest dose necessary to induce the cytoplasm to nucleus translocation of the FKHR-EGFP in U2OS (osteosarcoma cell line). Channel 1 = FKHR-GFP; Channel 2 = DNA

SVM in practice - Implementing biological application with Python

Use Case - Translocation Activity

Use Case - Translocation Activity

$$Accuracy = (\frac{CountTrue}{CountTotal}) * 100$$

$$ErrorRate = (\frac{CountFalse}{CountTotal}) * 100$$

$$ErrorRate = 1 - Accuracy$$

Use Case - Translocation Activity

Summary

- 1. History of Random Forest
- 2. Types Of Machine Learning
- 3. Why Random Forest?
- 4. What is Random Forest?
- 5. Decision Tree
- 6. How Does a decision tree work?
- 7. How Does a random forest work?
- 8. RF in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity
- 9. Machine Learning in Bioimage analysis

History of Random Forest

- 1. 1997: In an important paper on written character recognition, Amit and Geman define a large number of geometric features and search over a random selection of these for the best split at each node.
- 2. 1998: Ho has written a number of papers on "the random subspace" method which does a random selection of a subset of features to use to grow each tree.
- 3. 2001: The introduction of random forests proper was first made in a paper by Leo Breiman. This paper describes a method of building a forest of uncorrelated trees using a CART like procedure, combined with randomized node optimization and bagging.

Types of Machine Learning

Why Random Forest?

No Overfitting:

- · Number of trees increase
- · Training time is less

High Accuracy:

· Run efficiently on large database

Missing data:

· Accuracy when large proportion of data is missing

What is Random Forest?

Random Forest creates multiple Decision Trees during training phase. The Decision of the majority of the trees is chosen by the random forest as the final decision.

Summary

- 1. History of Random Forest
- 2. Types Of Machine Learning
- 3. Why Random Forest?
- 4. What is Random Forest?
- 5. Decision Tree
- 6. How Does a decision tree work?
- 7. How Does a random forest work?
- 8. RF in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity
- 9. Machine Learning in Bioimage analysis

Decision Tree is a tree shaped diagram. Each branch of the tree is an action and each node as a result of the decision taken.

Entropy

Entropy is a measure of disorder, of uncertainty In a dataset.

Information gain

Leaf node

Decision node

Root node

Entropy

Entropy is a measure of disorder, of uncertainty in a dataset.

E1 High Entropy

Entropy

Entropy is a measure of disorder, of uncertainty in a dataset.

Calculate entropy

$$Entropy = -\sum P(X)logp(X)$$

where p(x) is a fraction of a given class

$$P_{lemon}=rac{3}{6}=0.5$$

$$P_{apple}=rac{3}{6}=0.5$$

$$E_1 = -\sum P_{lemon}log_2(P_{lemon}) + P_{apple}log_2(P_{apple})$$

$$E_1 = -(-0.5 + (-0.5)) = 1$$

Calculate entropy

$$P_{lemon} = rac{1}{3} = 0.334$$
 $P_{apple} = rac{2}{3} = 0.667$ $E_{left} = -(0.334log_2(0.334) + 0.667log_2(0.667)) = -(-0.52 + (-0.38)) = 0.9$ $E_{right} = -(0.334log_2(0.334) + 0.667log_2(0.667)) = -(-0.52 + (-0.38)) = 0.9$ $E_2 = rac{nclassesinleftchildnode}{ntotalclassesinparentnode} * E_{left} + rac{nclassesinrightchildnode}{ntotalclassesinparentnode} * E_{right}$ $E_2 = rac{3}{6} * 0.9 + rac{3}{6} * 0.9 = 0.9$

Entropy

<u>Information</u> <u>Gain</u>

It is the measure of decrease in entropy after dataset is split

Leaf node

Decision node

Root node

<u>Information</u> <u>Gain</u>

It is the measure of decrease in entropy after dataset is split

Decision Tree

Information Gain

$$Informationgain = E_{parent} - [weightes average] * E_{children} \ Informationgain = E_1 - E_2 = 1 - 0.9 = 0.10$$

Decision Tree

Entropy

Information Gain Leaf node

caries the classification of the decision

Decision node

Decision node has two branch

Root node

The top of the decision tree is known as the root node

Decision Tree

Use case:

To classify the
Different types of
Fruits based on features

Use case:

To classify the Different types of Fruits based on features

The dataset is looking messy and the entropy is high in this case

Use case:

To classify the Different types of Fruits based on features

The dataset is looking messy and the entropy is high in this case

How to split the data

We looking for a high information gain to split the dataset

We split the data

After the split, entropy has decreases considerably.

We split the data

After the split, entropy has decreases considerably.

This node require a split to decrease the entropy.

We split the data

Summary

- 1. History of Random Forest
- 2. Types Of Machine Learning
- 3. Why Random Forest?
- 4. What is Random Forest?
- 5. Decision Tree
- 6. How Does a decision tree work?
- 7. How Does a random forest work?
- 8. RF in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity
- 9. Machine Learning in Bioimage analysis

Let this be tree 1

Let this be tree 2

Let this be tree 3

Now lets try to classify this fruit

Tree 1 classify this fruit as a lemon

Summary

- 1. History of Random Forest
- 2. Types Of Machine Learning
- 3. Why Random Forest?
- 4. What is Random Forest?
- 5. Decision Tree
- 6. How Does a decision tree work?
- 7. How Does a random forest work?
- 8. RF in practice Implementing biological application with Python
 - a. Use Case Problem Statement
 - b. Use Case Translocation Activity
- 9. Machine Learning in Bioimage analysis

RF in practice - Implementing biological application with Python

Use Case - Problem Statement

Estimate the lowest dose necessary to induce the cytoplasm to nucleus translocation of the FKHR-EGFP in U2OS (osteosarcoma cell line). Channel 1 = FKHR-GFP; Channel 2 = DNA

RF in practice - Implementing biological application with Python

Use Case - Translocation Activity

Machine Learning in Bioimage analysis

Christoph Sommer, and Daniel W. Gerlich J Cell Sci 2013;126:5529-5539

© 2013. Published by The Company of Biologists Ltd

Machine Learning in Bioimage analysis

Christoph Sommer, and Daniel W. Gerlich J Cell Sci 2013;126:5529-5539

Machine Learning in Bioimage analysis

