1. Определение линейного оператора.

Определение 1.1. Линейным оператором в векторном пространстве V (эндоморфизмом пространства V) называется отображение $\mathcal{A}\colon V \to V$, удовлетворяющее условиям:

- 1. $\mathcal{A}(x+y) = \mathcal{A}x + \mathcal{A}y$ для любых $x, y \in V$;
- 2. $\mathcal{A}(\lambda x) = \lambda \mathcal{A}x$ для любых $x \in V$, $\lambda \in F$.

Множество всех линейных операторов в пространстве V будем обозначать $\operatorname{End}(V).$

2. Перечислите операции в множестве End(X).

Сложение и умножение на скаляры

3. Определение образа оператора

Определение 1.2. Для линейного оператора \mathcal{A} определяется его *образ* $\operatorname{Im}(\mathcal{A}) = \{Ax \mid x \in V\}$ и *ядро* $\operatorname{Ker}(\mathcal{A}) = \{x \in V \mid \mathcal{A}x = 0\}.$

4. Определение ядра оператора.

Определение 1.2. Для линейного оператора \mathcal{A} определяется его *образ* $\mathrm{Im}\left(\mathcal{A}\right)==\{\mathcal{A}x\,|\,x\in V\}$ и *ядро* $\mathrm{Ker}(\mathcal{A})=\{x\in V\,|\,\mathcal{A}x=0\}.$

5. Сформулируйте теорему о ядре и образе.

dim V = ранг матрицы

Теорема 1.1. dim Im A + dim Ker A = dim V.

6. При каком(их) условии(ях) А является изоморфизмом?

Следствие 1.1.1. Следующие свойства линейного оператора \mathcal{A} эквивалентны: 1) \mathcal{A} — изоморфизм; 2) $\operatorname{Ker} \mathcal{A} = \{0\}$; 3) $\operatorname{Im} \mathcal{A} = V$.

7. Определение матрицы линейного оператора.

Определение 2.1. Матрицей линейного оператора \mathcal{A} в базисе e_1, e_2, \dots, e_n называется матрица $A = (a_{ij})$, определяемая из равенств $\mathcal{A}e_j = \sum_{i=1}^n a_{ij}e_i$.

8. Чему равна размерность пространства End(X)?

Замечание 2.1. Если $\dim V = n$, то размерность $\operatorname{End}(V)$ как векторного пространства равна n^2 .

9. Сформулируйте закон преобразования матрицы оператора при смене базиса.

 $\widetilde{A} = C^{-1}AC.$

10. Какой оператор называют невырожденным?

Невырожденные операторы в пространстве V , у которых det $A \neq 0$. Невырожденные линейные оператора в пространстве V образуют группу GL(V) , называемую полной линейной группой пространства V .

11. Определение инвариантного подпространства.

Определение 3.1. Подпространство $U \leqslant V$ называется *инвариантным* относительно оператора \mathcal{A} (\mathcal{A} -инвариантным), если $\mathcal{A}U \leqslant U$, то есть для любого $x \in U$ его образ $\mathcal{A}x \in U$.

12. Определение собственного вектора.

Определение 4.1. Ненулевой вектор $x \in V$ называется собственным вектором оператора \mathcal{A} , если $\mathcal{A}x = \lambda x$. Число $\lambda \in F$ называется при этом собственным значением (собственным числом) оператора \mathcal{A} , отвечающим собственному вектору x.

13. Определение собственного значения.

Определение 4.1. Ненулевой вектор $x \in V$ называется собственным вектором оператора \mathcal{A} , если $\mathcal{A}x = \lambda x$. Число $\lambda \in F$ называется при этом собственным значением (собственным числом) оператора \mathcal{A} , отвечающим собственному вектору x.

14. Определение собственного подпространства.

Определение 4.2. Подпространство ${\rm Ker}(\mathcal{A}-\lambda\mathcal{E})$ называется co6cm6enным nodnpocmpancm6om оператора $\mathcal{A},$ соответствующим собственному значению λ и обозначается $V_{\lambda}.$ Помимо собственных векторов, оно содержит нулевой.

15. Определение геометрической кратности.

Определение 4.3. Геометрической кратностью $g(\lambda)$ собственного значения λ называется размерность соответствующего ему собственного подпространства: $g(\lambda) = \dim V_{\lambda}$.

16. Как находится характеристический полином?

Определение 5.1. Многочлен $\chi_{\mathcal{A}}(t) = (-1)^t \det(\mathcal{A} - t\mathcal{E}) = \det(t\mathcal{E} - \mathcal{A})$ называется характеристическим многочленом оператора \mathcal{A} .

17. Определение алгебраической кратности.

Определение 5.2. Алгебраической кратностью $m(\lambda)$ собственного значения λ называется его кратность как корня характеристического многочлена.

18. Определение линейной независимости подпространств.

Определение 6.1. Подпространства V_1,\dots,V_k называются липейной независимыми, если равенства $v_1+\dots+v_k=0,\,v_k\in V_k$ следует, что $v_1=\dots=v_k=0.$

19. Определение оператора с простым спектром.

Следствие 6.1.1. Если характеристический многочлен оператора имеет $n=\dim V$ различных корпей (оператор с простым спектром), то существует базис из собственных векторов этого оператора.

20. Как выглядит матрица оператора с простым спектром?

На диагонали находятся собственные значения, остальные числа 0.

21. Определение диагонализуемого оператора (оператора скалярного типа).

Определение 6.2. Линейный оператор в конечномерном векторном пространстве называется *диагонализируемым*, если существует базис, в котором матрицам этого оператора имеет диагональный вид.

22. Перечислите свойства проекторов.

Линейный оператор P:X -> является проектором тогда и только тогда, когда существуют такие подпространства U и V пространства X, что X раскладывается в их прямую сумму, и при этом для любой пары элементов $u \in U, \ v \in V$ имеем P(u+v) = u. Подпространства U и V – соответственно образ и ядро проектора P.

23. Что такое спектральное разложение диагонализуемого оператора?

Пусть оператор $\mathcal A$ диагонализируем и $V=\bigoplus\limits_{i=1}^k V_{\lambda_i}$. Рассмотрим проектор $\mathcal P_i$ на подпространство V_{λ_i} параллельно прямой сумме оставшихся подпространств. Тогда $\mathcal P_i^2=\mathcal P_i, \mathcal P_i\mathcal P_j=\mathcal O$ при $i\neq j$ и $\sum\limits_{i=1}^k \mathcal P_i=\mathcal E$. Легко проверяется, что оператор $\mathcal A$ действует на любой вектор так же, как оператор $\sum\limits_{i=1}^k \lambda_i \mathcal P_i$. Выражение $\mathcal A=\sum\limits_{i=1}^k \lambda_i \mathcal P_i$ называется спектральным разложением оператора $\mathcal A$.

24. Сформулируйте критерий диагонализуемости.

Теорема 6.2. (критерий диагонализируемости) Оператор диагонализируем тогда и только тогда, когда выполняются следующие два условия:

1) Характеристический многочлен раскладывается на линейные сомножители (то есть все его корни лежат в поле F);

2) Геометрическая кратность каждого собственного значения равна его алгебраической кратности.

25. Определение корневого вектора высоты к.

Определение 7.1. Вектор $x \in V$ называется кориевым вектором оператора \mathcal{A} , отвечающим собственному значению $\lambda \in F$, если существует такое целое неотрицательное число k, что $(\mathcal{A} - \lambda \mathcal{E})^k x = 0$. Наименьшее такое k называется высотой кориевого вектора x.

26. Какую высоту имеет собственный вектор?

Пример 7.1. а) Корневые векторы высоты 0 — нулевые векторы;

- б) Корневые векторы высоты 1- собственные векторы;
- в) Каждый многочлен есть корневой вектор с собственным числом 0 оператора дифференцирования пространства многочленов, причём высота многочлена как корневого вектора равна n+1, где n- степень этого многочлена;

27. Определение корневого подпространства.

где $V^{\lambda}=$ {все корневые векторы с собственным значение λ } — корневое подпространство с собственным значением λ :

$$V^{\lambda} = \bigcup_{i=1}^{\infty} \operatorname{Ker}(A - \lambda \mathcal{E})^{i}.$$

28. Перечислите свойства корневых подпространств.

Теорема 7.1. (свойства корневых подпространств)

- 1) V^{λ} А-инвариантно; 2) ($A \lambda \mathcal{E}$) $|_{V^{\lambda}} = \mathcal{N}$ нильпотентный оператор, то есть существует такое неотрицательное целое m, то $\mathcal{N}^m = \mathcal{O}$; 3) ($A \mu \mathcal{E}$) $|_{V^{\lambda}}$ невырожден при $\mu \neq \lambda$; 4) $\dim V^{\lambda} = m(\lambda)$ (геометрический смысл алгебраической кратности).

29. Определение нильпотентного оператора.

Пусть \mathcal{N} — нильпотентный оператор, то есть существует такое неотрицательное целое m, что $\mathcal{N}^m=\mathcal{O}.$ Наименьшее из таких m называют $\pmb{\epsilon}$ ысотой нильпотентного оператора. Для него все векторы V — корневые с собственным значением 0, высоты не больше m.

30. Определение циклического подпространства.

Определение 8.1. Подпространство $U = \langle x, \mathcal{N}x, \mathcal{N}^2x, \dots, \rangle$ называется $\boldsymbol{uu\kappa}$ - $\textbf{\it nuческим nodnpocmpaнcmsom}\;$ нильпотентного оператора $\mathcal{N},$ порождённым вектором x.

31. Что находится в клетках диаграммы Юнга?

32. Что находится в столбцах диаграммы Юнга?

Наглядно можно изображать структуру нильпотентного оператора с помощью так называемой *диаграммы Юнга*, которая в данном случае схематически показывает, как действует нильпотентный оператор на базисных векторах жорданова базиса:

С помощью такой диаграммы нильпотентный оператор задаётся однозначно. Квадратики — векторы жорданова базиса, нильпотентный оператор действует на них сверху вниз.

- Высота строки соответствует высоте базисного вектора, а высота произвольного вектора (линейной комбинации базисных) определяется как наибольшая высота базисного вектора, входящего в эту линейную комбинапию с ненулевым коэффициентом
- \bullet i-тый столбец соответствует жордановой цепочке базису циклического пространства U_i
- Ядро оператора \mathcal{N}^k линейная оболочка векторов, стоящих в строках высоты не больше k
- Векторы, лежащие в нижней строке, при действии оператора переходят в

33. Напишите общий вид матрицы жордановой клетки.

Если вернуться к произвольному линейному оператору $\mathcal A$, то можно заметить, что на циклическом подпространстве нильпотентного оператора $\mathcal N=\mathrm{Ker}(\mathcal A-\lambda\mathcal E)|_{V^\lambda}$ оператор $\mathcal A$ задаётся матрицей

$$J(\lambda) = J(0) + \lambda E = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

называемой $\mathbf{\varkappa}$ ордановой $\mathbf{\varkappa}$ леткой с собственным значением λ

34. Как выглядит жорданова нормальная форма?

матрица

$$J = \begin{pmatrix} J_1 & & & \mathbf{O} \\ & J_2 & & \\ & & \ddots & \\ \mathbf{O} & & & J_k \end{pmatrix}$$

где $J_1, J_2, \dots J_k$ — какие-то жордановы клетки.

Жорданова матрица также называется эксордановой нормальной формой (ЖНФ) для оператора $\mathcal A$. Верна следующая