## Apuntes de un curso de

## MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

# Índice

| 1.         | Espacio de funciones                                 | 1  |
|------------|------------------------------------------------------|----|
|            | 1.1. Definiciones                                    | 1  |
|            | 1.2. Sucesiones de funciones                         | 3  |
|            | 1.3. Proceso de ortonormalización de Gram-Schmidt    | 9  |
|            | 1.4. Coeficientes de Fourier                         | 10 |
|            | 1.5. Integrales impropias (valor principal)          | 14 |
|            | 1.6. Convergencia según Cesàro                       | 15 |
| 2.         | Series de Fourier                                    | 19 |
| 3.         | Transformada de Fourier                              | 35 |
|            | 3.1. Definiciones                                    | 35 |
|            | 3.2. Ejemplos                                        | 36 |
|            | 3.3. Propiedades                                     | 41 |
|            | 3.4. Aplicaciones                                    | 43 |
| 4.         | Convolución                                          | 45 |
|            | 4.1. Espacio $S$                                     | 45 |
|            | 4.2. Producto de convolución                         | 46 |
|            | 4.3. El espacio $S$ como anillo                      | 49 |
| <b>5</b> . | Distribuciones temperadas                            | 53 |
|            | 5.1. Definiciones                                    | 53 |
|            | 5.2. Sucesión de distribuciones                      | 61 |
|            | 5.3. Producto de distribuciones                      | 71 |
|            | 5.4. Distribuciones y ecuaciones diferenciales       | 72 |
|            | 5.5. Convergencia débil                              | 73 |
| 6.         | Distribuciones y transformada de Fourier             | 79 |
| 7.         | Convolución de distribuciones                        | 87 |
|            | 7.1. Definiciones                                    | 87 |
|            | 7.2. Propiedades de la convolución de distribuciones | 89 |
|            | 7.3. Uso de convolución en Física                    | 91 |

IV ÍNDICE

| 8. | La función Gamma                                                    | 13         |
|----|---------------------------------------------------------------------|------------|
|    | 8.1. La función factorial                                           | ):         |
|    | 8.2. La función Gamma                                               | <b>)</b> 4 |
|    | 8.3. Función Beta                                                   | )(         |
|    | 8.4. Notación doble factorial                                       | 96         |
|    | 8.5. Fórmula de Stirling                                            |            |
|    | 8.6. Otras funciones relacionadas                                   |            |
| Ω  | Transformada de Laplace 10                                          | 12         |
| Э. | 9.1. Definición                                                     |            |
|    | 9.2. Inversión de la transformada de Laplace                        |            |
|    |                                                                     |            |
|    | 9.3. Propiedades de la transformada de Laplace                      |            |
|    | 9.4. Lista de transformadas de Lapiace                              | L٦         |
| 10 | O.Aplicaciones de la transformada de Laplace 11                     |            |
|    | 10.1. Ecuaciones diferenciales lineales con coeficientes constantes |            |
|    | 10.2. Ecuaciones integrales                                         |            |
|    | 10.3. Ecuaciones en derivadas parciales                             | 18         |
|    | 10.4. Sistema de ecuaciones lineales                                | 2(         |
| 11 | 1.Polinomios ortogonales 12                                         | 23         |
|    | 11.1. Definiciones                                                  |            |
|    | 11.2. Teoremas                                                      |            |
|    | 11.3. Relación de recurrencia                                       |            |
| 16 | 2.Polinomios de Hermite                                             | . –        |
| 14 | 12.1. Definición                                                    |            |
|    |                                                                     |            |
|    | 12.2. Función generatriz                                            |            |
|    | 12.3. Ortogonalidad                                                 |            |
|    | 12.4. Algunos resultados interesantes                               |            |
|    | 12.5. Solución por serie de la ecuación de Hermite                  | <b>)</b> ] |
| 13 | 3.Polinomios de Laguerre 13                                         |            |
|    | 13.1. Definición                                                    |            |
|    | 13.2. Función generatriz                                            | 33         |
|    | 13.3. Relaciones de recurrencia                                     | <b>}</b> [ |
|    | 13.4. Ecuación de Laguerre                                          | <b>}</b> [ |
|    | 13.5. Ortogonalidad                                                 | 36         |
|    | 13.6. Polinomios asociados de Laguerre                              | 38         |
| 1⊿ | 4.El problema de Sturm-Liouville 13                                 | }C         |
|    | 14.1. Operadores diferenciales autoadjuntos                         |            |
|    | 14.2. Operadores autohermíticos                                     |            |
|    | 14.3. Problema de autovalores                                       |            |
|    | 14.4. Ejemplos de funciones ortogonales                             |            |

ÍNDICE v

| 15. Ecuaciones diferenciales con singularidades | 145 |
|-------------------------------------------------|-----|
| 15.1. Puntos singulares                         | 145 |
| 15.2. Solución por serie: método de Frobenius   | 146 |
| 15.3. Limitaciones del método. Teorema de Fuchs | 149 |
| 15.4. Una segunda solución                      | 151 |

## Capítulo 13

# Polinomios de Laguerre

versión preliminar 3.1-28 octubre 2002

#### 13.1. Definición

**Definición 13.1** Definimos el conjunto de los polinomios de Laguerre  $\{L_n(t)\}_{n\in\mathbb{N}^0}$  mediante una cualquiera de las siguientes ecuaciones:

$$L_n(t) = e^t \frac{d^n}{dt^n} \left( t^n e^{-t} \right) = (-1)^n t^n + \dots + n! , \qquad (13.1a)$$

$$L_n(t) = e^t \sum_{\nu=0}^n \binom{n}{\nu} \left(\frac{d^{n-\nu}t^n}{dt^{n-\nu}}\right) \frac{d^{\nu}e^{-t}}{dt^{\nu}} , \qquad (13.1b)$$

$$L_n(t) = \sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} \frac{n!}{\nu!} t^{\nu} = \sum_{\nu=0}^{n} (-1)^{\nu} \frac{n! \, n!}{(n-\nu)! \, (\nu!)^2} t^{\nu} . \tag{13.1c}$$

Algunos de los polinomios en forma explícita:

$$L_0(t) = 1$$

$$L_1(t) = -t + 1$$

$$L_2(t) = t^2 - 4t + 2$$

$$L_3(t) = -t^3 + 9t^2 - 18t + 6$$

$$L_4(t) = t^4 - 16t^3 + 72t^2 - 96t + 24$$

$$\vdots$$

### 13.2. Función generatriz

**Definición 13.2** La función generatriz  $\Psi(t,x)$  está definida por la siguiente relación:

$$\Psi(t,x) = \sum_{n=0}^{\infty} \frac{L_n(t)}{n!} x^n .$$
 (13.2)

Usando (13.1c) obtenemos:

$$\Psi(t,x) = \sum_{n=0}^{\infty} \sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!} \binom{n}{\nu} t^{\nu} x^{n}$$

Cambiemos el orden de suma. El primer gráfico corresponde a la forma en que estábamos sumando: fijamos un n en el eje horizontal, con  $n=1,\ldots,\infty$  y luego consideramos los v variando desde 1 a n (flechas verticales hacia arriba). El segundo corresponde a la misma suma pero hecha de forma diferente: fijamos un v en el eje vertical, con  $v=1,\ldots,\infty$  y luego consideramos los n variando desde v a  $\infty$  (flechas horizontales hacia la derecha).



Obtenemos

$$\Psi(t,x) = \sum_{\nu=0}^{\infty} \sum_{n=\nu}^{\infty} \frac{(-1)^{\nu}}{\nu!} t^{\nu} \binom{n}{\nu} x^{n} .$$

Haciendo el cambio de índice  $m = n - \nu$ :

$$\Psi(t,x) = \sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{\nu}}{\nu!} t^{\nu} \binom{m+\nu}{\nu} x^{m+\nu} .$$

Reordenando

$$\Psi(t,x) = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\nu!} t^{\nu} x^{\nu} \sum_{m=0}^{\infty} \binom{m+\nu}{\nu} x^{m} .$$

Pero

$$\sum_{m=0}^{\infty} \binom{m+\nu}{\nu} \; x^m = \left(\frac{1}{1-x}\right)^{\nu+1} \qquad \text{cuando } \mid x \mid <1 \; ,$$

luego

$$\Psi(t,x) = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\nu!} t^{\nu} \left(\frac{x}{1-x}\right)^{\nu} \frac{1}{1-x} = \frac{1}{1-x} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\nu!} \left(\frac{tx}{1-x}\right)^{\nu}.$$

Finalmente

$$\Psi(t,x) = \frac{1}{1-x} \exp\left(\frac{-tx}{1-x}\right) = \sum_{n=0}^{\infty} \frac{L_n(t)}{n!} x^n$$
 (13.3)

#### 13.3. Relaciones de recurrencia

Reescribamos la definición de la función generatriz

$$\exp\left(\frac{-tx}{1-x}\right) = (1-x) \sum_{n=0}^{\infty} \frac{L_n(t)}{n!} x^n . \tag{13.4}$$

Derivemos respecto a x:

$$\frac{-t}{(1-x)^2} \exp\left(\frac{-tx}{1-x}\right) = (1-x) \sum_{n=1}^{\infty} \frac{L_n(t)}{(n-1)!} x^{(n-1)} - \sum_{n=0}^{\infty} \frac{L_n(t)}{n!} x^n.$$

Usando (13.4) y comparando coeficientes de x,

$$L_{n+1}(t) + (t - 2n - 1)L_n(t) + n^2 L_{n-1}(t) = 0$$
(13.5)

De la misma manera, derivando (13.4) respecto a t, se obtiene

$$L'_{n}(t) - n L'_{n-1}(t) + n L_{n-1}(t) = 0 \qquad n \ge 1.$$
(13.6)

#### 13.4. Ecuación de Laguerre

Diferenciando dos veces (13.4) respecto a t,

$$L_{n+2}''(t) + (t - 2n - 3)L_{n+1}''(t) + (n+1)^2 L_n''(t) + 2L_{n+1}'(t) = 0.$$
(13.7)

De (13.6) tenemos

$$L'_{n+1}(t) = (n+1) \left[ L'_n(t) - L_n(t) \right] , \qquad (13.8)$$

de donde obtenemos, derivando nuevamente,

$$L_{n+1}''(t) = (n+1)\left[L_n''(t) - L_n'(t)\right] . (13.9)$$

Cambiando  $n \to n+1$ ,

$$L''_{n+2}(t) = (n+2) \left[ L''_{n+1}(t) - L'_{n+1}(t) \right].$$

Usando (13.8) y (13.9),

$$L''_{n+2}(t) = (n+2)(n+1) [L''_n(t) - L'_n(t) - L'_n(t) + L_n(t)] ,$$
  

$$L''_{n+2}(t) = (n+2)(n+1) [L''_n(t) - 2L'_n(t) + L_n(t)] .$$
(13.10)

Reemplazando (13.8), (13.9) y (13.10) en (13.7),

$$(n+2)(n+1) \left[ L_n''(t) - 2L_n'(t) + L_n(t) \right] + (t-2n-3)(n+1) \left[ L_n''(t) - L_n'(t) \right]$$

$$+ (n+1)^2 L_n''(t) + 2(n+1) \left[ L_n'(t) - L_n(t) \right] = 0$$

$$(n+1) (n+2+t-2n-3+n+1) L_n''(t) + (n+1) (2n-4-t+2n+3+2) L_n'(t)$$

$$+ (n+1) (n+2-2) L_n(t) = 0$$

$$(n+1) t L_n''(t) + (n+1) (1-t) L_n'(t) + (n+1)n L_n(t) = 0.$$

Dividiendo por (n+1) obtenemos

$$\left| t \, L_n''(t) + (1-t) \, L_n'(t) + n \, L_n(t) = 0 \right| \tag{13.11}$$

Es decir,  $L_n(t)$  es una solución de la ecuación de Laguerre

$$t y''(t) + (1-t) y'(t) + n y(t) = 0.$$
(13.12)

Consideremos esta ecuación, pero en una forma más general:

$$t y''(t) + (1 - t) y'(t) + \lambda y(t) = 0.$$

Buscando soluciones del tipo

$$y(t) = \sum_{\nu=0}^{\infty} a_{\nu} t^{\nu} ,$$

es fácil demostrar que los  $a_{\nu}$  satisfacen la siguiente relación de recurrencia:

$$a_{\nu+1} = \frac{\nu - \lambda}{(\nu+1)^2} a_{\nu} .$$

Lo anterior tiene varias consecuencias:

(i) El coeficiente  $a_0$  puede elegirse libremente, quedando  $a_1, a_2, \ldots$  así determinados por  $a_0$ . Se obtiene un espacio de soluciones de dimensión uno. Para encontrar la otra solución linealmente independiente hay que analizar ecuaciones del tipo

$$f'' + p(z)f' + q(z)f = 0.$$

Esto se hará en el capítulo siguiente.

(ii) Al hacer el cuociente entre los coeficientes tenemos

$$\frac{a_{\nu+1}}{a_{\nu}} = \frac{1}{\nu} \ .$$

Esto implica radio de convergencia infinito para la serie.

- (iii) Los valores  $\lambda = 0, 1, 2, 3, \dots$  son excepcionales: dan soluciones polinomiales.
- (iv) Si  $\lambda \notin \mathbb{N}^0$  todos los coeficientes de índice suficientemente grande son positivos o negativos. Esto implica un crecimiento muy rápido.

### 13.5. Ortogonalidad

Consideremos

$$I = \int_0^\infty t^m L_n(t) e^{-t} dt$$
, con  $m < n$ .

Sea m > 0, entonces

$$I = \int_0^\infty t^m \, \frac{d^n}{dt^n} \left( t^n \, e^{-t} \right) \, dt \, ,$$

integrando por partes,

$$t^{m} \frac{d^{n-1}}{dt^{n-1}} \left( t^{n} e^{-t} \right) \Big|_{0}^{\infty} - m \int_{0}^{\infty} t^{m-1} \frac{d^{n-1}}{dt^{n-1}} \left( t^{n} e^{-t} \right) dt .$$

Integrando n veces por partes se obtiene entonces

$$I = (-1)^n \ m! \int_0^\infty \frac{d^{n-m}}{dt^{n-m}} \left( t^n \ e^{-t} \right) \ dt \ .$$

Si m < n,

$$I = (-1)^n m! \frac{d^{n-m-1}}{dt^{n-m-1}} \left( t^n e^{-t} \right) \Big|_0^{\infty} = 0 ,$$

luego

$$\int_0^\infty L_n(t) \ L_m(t) \ e^{-t} \ dt = 0 \qquad \text{si } m < n \ .$$

Por simetría la integral va a ser nula siempre que  $m \neq n$ .

Si m=n,

$$\int_0^\infty L_n^2(t) \; e^{-t} \; dt = (-1)^n (-1)^n n! \int_0^\infty t^n \; e^{-t} \; dt = (n!)^2 \; .$$

Resumiendo ambos casos,

$$\int_{0}^{\infty} L_{n}(t) L_{m}(t) e^{-t} dt = (n!)^{2} \delta_{nm}$$
(13.13)

Basados en la relación de ortogonalidad (13.13) podemos definir un conjunto de funciones

$$\varphi_n(t) = \frac{1}{n!} L_n(t) e^{-t/2} . {13.14}$$

Claramente

$$\int_0^\infty \varphi_n(t) \; \varphi_m(t) \; dt = \delta_{nm} \; .$$

Es decir, el conjunto  $\{\varphi_n(t)\}_{n\in\mathbb{N}^0}$  corresponde a un conjunto de funciones ortonormales en el intervalo  $[0,\infty)$ .

A partir de (13.14) podemos despejar los polinomios de Laguerre

$$L_n(t) = n! e^{t/2} \varphi_n(t) ,$$

y usando la ecuación diferencial (13.11) que satisfacen, encontramos la ecuación para las funciones  $\varphi_n(t)$ :

$$t \varphi_n''(t) + \varphi_n'(t) + \left(n + \frac{1}{2} - \frac{t}{2}\right) \varphi_n(t) = 0$$
 (13.15)

Además,  $\varphi_n(t)$  satisface

$$\lim_{t \to \infty} \varphi_n(t) = 0 \qquad \text{y} \qquad \lim_{t \to 0} \varphi_n(t) < \infty .$$

#### 13.6. Polinomios asociados de Laguerre

Al diferenciar m veces la ecuación (13.11) obtenemos

$$t\; L_n^{(m+2)}(t) + (m+1-t)\; L_n^{(m+1)}(t) + (n-m)\; L_n^{(m)}(t) = 0 \; .$$

Podemos definir un nuevo conjunto de polinomios

$$L_n^m(t) = \frac{d^m}{dt^m} L_n(t) \quad \text{para } n \ge m , \qquad (13.16)$$

conocidos como los *polinomios asociados de Laguerre*. Los cuales son soluciones de la siguiente ecuación diferencial:

$$t y''(t) + (m+1-t) y'(t) + (n-m) y(t) = 0.$$
(13.17)

Algunos de los primeros polinomios son:

$$\begin{split} L_1^1 &= -1 \ , \\ L_2^1 &= -4 + 2t \ , & L_2^2 &= 2 \ , \\ L_3^1 &= -18 + 18t - 3t^2 \ , & L_3^2 &= 18 - 6t \ , & L_3^3 &= -6 \ . \end{split}$$

La función generatriz

$$\Psi_m(t,x) = (-1)^m x^m \exp\left(\frac{-tx}{1-x}\right) = (1-x)^{m+1} \sum_{n=m}^{\infty} \frac{L_n^m(t)}{n!} x^n .$$
 (13.18)

Utilizando esta ecuación podemos obtener las relaciones de recurrencia

$$\frac{d}{dt} L_n^m(t) = L_n^{m+1}(t) , \qquad (13.19)$$

$$L_{n+1}^{m}(t) + (t - 2n - 1)L_{n}^{m}(t) + m L_{n}^{m+1}(t) + n^{2}L_{n-1}^{m}(t) = 0, (13.20)$$

$$L_n^m(t) - n L_{n-1}^m(t) + n L_{n-1}^{m-1}(t) = 0.$$
 (13.21)

Finalmente, en forma análoga a lo que hicimos con los polinomios de Laguerre podemos definir las funciones ortogonales a partir de los polinomios asociados de Laguerre de la siguiente forma:

$$R_{n\ell}(t) \equiv e^{-t/2} t^{\ell} L_{n+\ell}^{2\ell+1}(t)$$
 (13.22)

Estas funciones satisfacen la ecuación diferencial

$$\frac{d^2y(t)}{dt^2} + \frac{2}{t}\frac{dy(t)}{dt} - \left(\frac{1}{4} - \frac{n}{t} + \frac{\ell(\ell+1)}{t^2}\right)y(t) = 0.$$
 (13.23)

Esta ecuación aparece en Mecánica Cuántica al resolver el átomo de Hidrógeno. Específicamente, corresponde a la ecuación radial de Schrödinger para la función de onda del átomo de Hidrógeno.