the identity on $L^p(\mu)$, $1 \le p < \infty$, is a kernel operator if and only if the measure space (X, Σ, μ) is purely atomic, i.e. $L^p(\mu) \cong \ell^p_I$ for some index set I. Moreover, from Axmann (1980) we quote the following result (see Satz 3.5 l.c.):

(2.9) If T is an irreducible kernel operator then $\inf\{T^n, T^m\} > 0$ for some n , m $\in \mathbb{N}$, n \neq m .

Corollary 2.11. Let $T=(T(t))_{t\geq 0}$ be a semigroup on $L^p(\mu)$ satisfying the assumptions of Thm.2.6 and assume that one operator $T(t_0)$ is a kernel operator. Then $\lim_{t \to \infty} T(t) f$ exists for every $f \in L^p(\mu)$.

<u>Proof.</u> First we note that $\ker A = \operatorname{Fix}(T)$ is a sublattice of $L^p(\mu)$, hence is itself an L^p -space. Since $T(t_0)_{\ker A} = \operatorname{Id}$ we conclude that $\ker A \cong L^p_I$. Thus $L^p(\mu)$ contains an orthogonal system $\{e_j \in \ker A: j \in I\}$ of atoms such that $\sup_{j \in I} e_j = e$. The closed principal ideal E_j generated by e_j in $L^p(\mu)$ is (T(t))-invariant and the restriction of $(T(t))_{t \geq 0}$ to this ideal yields an irreducible semigroup $(T_j(t))_{t \geq 0}$ having generator A_j . From C-III, Cor.3.9 we conclude that $\operatorname{Pr}(A_j) \cap \operatorname{IR} = \{0\}$. It follows that $T_j(t_0)$ is an irreducible kernel operator hence by (2.9) all the assumptions of Cor.2.10 are satisfied. Thus we have convergence on the the principal ideal E_j . Since the semigroup is bounded and the union of these ideals is total in $L^p(\mu)$ we have convergence on the whole space.

In all the results obtained so far we had to show or to assume that $P_\sigma(A)\cap i\mathbb{R}=\{0\}$. This is not surprising since for an eigenvector $g\in E$ corresponding to $i\alpha\neq 0$, $\alpha\in\mathbb{R}$, we have $T(t)g=e^{i\alpha t}g$ and $\lim_{t\to\infty}\,T(t)g$ does not exist. Nevertheless in some cases with $P_\sigma(A)\cap i\mathbb{R}\neq\{0\}$ one can describe the asymptotic behavior of $\{T(t)\}_{t\geq 0}$ for large t. Instead of convergence to an equilibrium point one obtains that T(t)f 'converges to a periodic function'.

To that purpose we consider a bounded, irreducible semigroup $\mathcal{T}=(T(t))_{t\geq 0}$ of positive operators on some Banach lattice E having order continuous norm. Under the assumption that the spectral bound s(A)=0 is a pole of the resolvent we can apply Theorem 3.12 of Chapter C-III. In particular, if 0 is not the only point in the boundary spectrum $\sigma(A)\cap \mathbb{R}$ we obtain that

 $\sigma(A) \cap i\mathbb{R} = P\sigma(A) \cap i\mathbb{R} = i\alpha \mathbb{Z}$ for some $0 < \alpha \in \mathbb{R}$.