Outline
Problem statement
Compression
Data gathering,
Encryption

Compressive/Compressed Sensing

September 18, 2020

Problem statement

Compression

Data gathering

Encryption

Compressive sensing

▶ A signal, $x \in \mathbb{R}^N$, is K-sparse when,

$$\mathsf{x} = \mathsf{\Psi}\theta,\tag{1}$$

and $||\theta||_0 = K$.

 Ψ is a transform.

▶ A signal, $x \in \mathbb{R}^N$, is called approximately sparse when,

$$\mathsf{x} = \mathsf{\Psi}\theta,\tag{2}$$

and most of the energy is concentrated in K transformed coefficients.

Encoding

Random linear measurements of a vector, x, is given as,

$$y = \Phi x \tag{3}$$

where $y \in \mathbb{R}^M$ is a measurement vector and $\Phi \in \mathbb{R}^{M \times N}$ is a sensing matrix.

Reconstruction

x is sparse in the canonical form

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} ||x||_1 \text{ s.t. } y = \Phi x. \tag{4}$$

x is approximately sparse

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^N} ||\theta||_1 \text{ s.t. } y = \Phi \Psi \theta.$$
 (5)

Linear program

Conversion of Eq. 4 to linear program.

 $y = \Phi x$ can be written as

$$y = [\Phi, -\Phi]z$$

where $z = [x^+; x^-] \in \mathbb{R}^{2N}$.

the equivalent optimization problem is,

$$\hat{\mathbf{z}} = \arg\min_{\mathbf{z} \in \mathbb{R}^{2N}} \mathbf{1}^T \mathbf{z}$$
 s.t. $[\Phi, -\Phi] \mathbf{z} = \mathbf{y}$ (6)

Reconstructed \hat{z} can be represented as,

$$\hat{z} = [\hat{x}^+; \hat{x}^-].$$

The reconstructed signal is given as,

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}^+ - \hat{\mathbf{x}}^-.$$

Outline
Problem statement
Compression
Data gathering
Encryption

Exercise 1

why l_1 not l_2 : Empirical evidence $l1_l2_comparison.m$

Figure: *l*₂ norm ball

Figure: *l*₁ norm ball

Figure: I.7 norm ball

exactlySparse.m code demonstrates how a sparse signal in time domain is sampled and reconstructed using l_1 minimization.

approximately ECG.m code demonstrates how a sparse signal in DCT domain is sampled and reconstructed using I_1 minimization

approximatelyAudio.m code demonstrates how an audio signal is sampled and reconstructed using l_1 minimization.

approximatelyImage.m code demonstrates how an image is sampled and reconstructed using I_1 minimization.

Data gathering

dataGatheringCS.m code demonstrates how sequential data gathering is performed using CS.

One-time sensing(OTS): CS encoding on the i^{th} block of plaintext, x_i , we get the i^{th} measurement vector, y_i , as,

$$y_i = \Phi_i x_i, \tag{7}$$

exactlySparseConfidentiality.m code demonstrates why CS is a good candidate for information secrecy

Homework

Extend the Exercise 5 for large image size for example 256×256 or 512×512 .

- ▶ Block encoding can be used. Image can be divided into blocks of size say 16×16 then CS encoding is performed on each block
- ▶ Reconstruction using block reconstruction algorithms.

```
Code: https://my.ece.msstate.edu/faculty/fowler/BCSSPL/\\ L. Gan, "Block compressed sensing of natural images," in Proc. 15th Int. Conf. Digit. Signal Process., Cardiff, U.K, pp. 403–406, 2007.
```

S. Mun and J. E. Fowler, "Block compressed sensing of images using directional transforms," in Proc. 16th IEEE Int. Conf. Image Process. (ICIP), Cairo, Egypt, pp. 3021–3024, 2009.