3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 MATHEMATICS - I

SEMESTER - 1

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	CHO	use u	le correct afternatives for	ally terror u	ic ionowing .	10 / 1 = 10	
	i)	If A	If $A = \{ 1, 2, 3, 4, 8 \}$, $B = \{ 2, 4, 6, 7 \}$, then $A \triangle B$ is				
		a)	{ 2, 4 }				
		b)	{ 1, 2, 3, 4, 6, 7, 8 }		•		
•		c)	ф				
		d)	{ 1, 3, 6, 7, 8 }.				
	ii)	lim x →`	$(1+x)^{1/x}$ is equal to				
		a)	1	b)	e		
-		c)	0	d)	∞ .		
	iii)	$\frac{\mathrm{d}}{\mathrm{d}x}$	$(\log_a x)$ is equal to				
		a)	$\frac{1}{x}$	b)	$\log(1/x)$		
		c)	$(1/x)\log_a e$	d)	$x \log e$.		
	4)	īf.	- log v2 the value of	$\frac{d^2y}{d^2}$	· ·		

b)

d)

2x.

v) The matrix
$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 is an

- a) orthogonal matrix
- b) idempotent matrix

c) identity matrix

- d) none of these.
- vi) Derivative of x^4 with respect to x^2 is
 - a) $4x^3$

b) 2x

c) 2x

- d) 4
- vii) If the rocts of the equation $ax^2 + bx + c = 0$ ($a \ne 0$) are real and unequal, then its discriminant D satisfies
 - a) D > 0 and D = a perfect square
 - b) D = 0
 - c) D > 0 and $D \neq a$ perfect square
 - d) D < 0.

.

- viii) If $A = \{1, 2, 3\}$, $B = \{2, 3, 6\}$, then $A \cup B$ is
 - a) { 1, 2, 3 }

b) { 2, 3 }

c) { 1, 2, 3, 6 }

- d) none of these.
- L....
- ix) If α , β , γ be the roots of $x^3 3x^2 + 6x 2 = 0$, then $\sum \alpha \beta$ is
 - a) < 3

b)

c) 2

- d) none of these.
- x) If f(x) = 3 + 2x; when $x \ge 0$

= -3 - 2x; when x < 0,

then $\lim_{x\to 0} f(x)$ is

a) 3

b) - 3

c) 0

d) none of these.

11205 (8/12)

5

- xi) If $f(x) = \frac{x}{|x|}$; when $x \neq 0$ = 1; when x = 0, then
 - a) f(x) is continuous at x = 0
 - b) f(x) is continuous, but not differentiable at x = 0
 - c) f(x) is discontinuous at x = 0
 - d) none of these.
- xii) The value of $\int_{-1}^{2} |x| dx$ is
 - a) 3

b)

c) 5/2

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. If α , β , γ be the roots of the equation, $x^3 + px^2 + qx + r = 0$, then find the value of $\sum \alpha^3$.
- 3. If $u = \tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u$.
- 4. Prove that the set of even integers (including zero) forms an additive group.
- 5. Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$
- 6. If $P = \begin{pmatrix} 9 & 1 \\ 4 & 3 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 5 \\ 7 & 12 \end{pmatrix}$, find the matrix R so that 5P + 3Q + 2R is a null matrix.

11205 (8/12)

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) State Rolle's Theorem.
 - b) Differentiate n times the following equation:

$$(1+x^2)y_2 + (2x-1)y_1 = 0.$$

c) If $y = \sin(m \sin^{-1} x)$, show that

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n=0.$$
 4+5+6

- 8. a) If pth, qth and rth terms of an A.P. are P, Q and R respectively, show that p(Q-R)+q(R-P)+r(P-Q)=0.
 - b) Show that the centroid of a triangle with vertices $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) is $(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$.
 - c) Find the equation of a straight line through the point of intersection of lines 2x 3y + 4 = 0 and 3x + 4y 5 = 0 and that is perpendicular to the line 6x 7y + 8 = 0. 5 + 5 + 5
- 9. a) Show that $\cos x > 1 \frac{x^2}{2}$ if $0 < x < \frac{\pi}{2}$.
 - b) If $f(x, y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0, \end{cases}$

then show that $f_{xy}(0,0) = f_{yx}(0,0)$.

- c) Evaluate $\int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$. 4 + 6 +
- 10. a) Reduce the following equation to its canonical form and determine the nature of the conic represented by it:

$$6x^2 - 5xy - 6y^2 + 14x + 5y + 4 = 0.$$

b) Find the equation of the ellipse one of whose foci is (-1, 1), eccentricity is 0.5 and the corresponding directrix is y = x + 3.

11205 (8/12)

CS/BCA/SEM-1/BM-101/08/(09)

- 11. a) Solve the equation by Cardan's method, $2x^3 + 3x^2 + 3x + 1 = 0$.
 - b) Let $G = \{ a \in R / -1 < a < 1 \}$. Define a binary operation \otimes on G by $a \otimes b = \frac{a+b}{1+ab} \ \forall \ a, \ b \in G$. Show that (G, \otimes) is a group.
 - c) Find the nature of the roots $x^4 + qx^2 + rx s = 0$ by Descartes' rule of signs (where q, r, s, being positive).
- 12. a) If by a trnasformation of one rectangular axis to another with same origin the expression ax + by changes to $a^{i}x^{j} + b^{k}y^{j}$,

prove that $a^2 + b^2 = a^{1/2} + b^{1/2}$,

- b) Show that $\int_{0}^{\infty} \frac{dx}{(x+1)(x+2)} = \log 2.$
- c) Use the method of integration to evaluate $\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}$; k > 0.

15

END