Group 5 Project Final Paper

Real-Estate agents and managers

December 5, 2023

BAN 4550 – Analytics Programming

Professor Kyunghee Yoon

Members: Ajinkya Kobal , Sangram Dedge, YNV Tanmayee

Introduction

- 1) Team members name:
 - A) Ajinkya Sanjay Kobal
 - B) Sangram Dedge
 - C) YNV Tanmayee
- 2) Summary of your question and findings:

The questions were regarding how the economic indicators significantly affect the Real Estate industry. The economic indicators we selected are Interest rate, Real income and House price index. After performing the regression analysis and other required statistics, it is found that the revenue and interest rate has a negative relationship while the house income and real income has a positive relationship with the revenue. It is also observed that the real estate industry is mostly affected by the interest rate as compared to the real income and house income.

Background

- Overview of the industry
- 3) **SIC code and its description:** 6531 Real Estate Agents & Managers.
- 4) Description of 3 representative companies with corresponding SEC EDGAR page:
- a) Marriott vacations worldwide Corp and https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=0001524358&owner=incl ude&count=40&hidefilings=0
- b) Kennedy-Wilson, Inc and https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=0000885720&owner=incl ude&count=40&hidefilings=0
- c) Silverleaf Resorts Inc and https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=0001033032&owner=incl ude&count=40&hidefilings=0

Research question with supporting evidence

- 5) Description Interested economic indicators (their definitions and when the interested economic indicator is used) and its FRED page:
- A) Interest Rate The real estate interest rate is an important economic metric that shows the cost of borrowing money for real estate investments or purchases. It is the annual percentage rate paid by lenders to borrowers for loans utilized in real estate transactions, such as mortgages for home purchases or commercial real estate. Changes in this interest rate can have a significant impact on the affordability and attractiveness of real estate investments, as higher rates can boost borrowing costs and potentially reduce demand, while lower rates can stimulate activity and investment.

https://fred.stlouisfed.org/series/DFF

B) **Real income** - A real income indicator is a measure of income that has been inflation-adjusted. This indicator, which is used to monitor individual and family spending, takes

the growing cost of goods and services into account over time. Real income indicators are crucial for the real estate sector since they have an impact on housing demand.

https://fred.stlouisfed.org/series/MEHOINUSA672N

C) **House price index** -House Price Index is an indicator which shows the changes in the price of residential houses in percentage from a particular date. It is estimated with the help of a weighted repeat sales index. It helps in measuring mortgages and provide results which are conventional as well as conforming.

https://fred.stlouisfed.org/series/CSUSHPINSA

- 6) Research questions and corresponding evidence with the summary:
- Q1) Why changing interest rates might not be as bad for the Real Estate sector as it seems? And what were the different strategies applied by many Real Estate firms and Agents to keep their profit/Revenue stable?
- Q2) Research Question: How does the fluctuation in real income levels influence the acquisition and disposition patterns of real estate companies, how should companies face fluctuations in real income indicators?

Hypothesis: The performance of the real estate industry is positively affected by the Housing Price Index.

We have taken revenue as the dependent variable and our expectations on revenue are the following:

- 1. The interest rate (independent variable) has a negative effect on the revenue (dependent variable) of the companies, so an increase in interest rate decreases the 5% revenue of the Real-Estate businesses
- 2. The house price index (independent variable) has a positive impact on the revenue (dependent variable) of the companies, i.e. the house price increase has an impact on the revenue of organizations.
- 3. The Real income (independent variable) has a positive impact on the revenue (dependent variable) of the companies; as the Real Income income increases, the revenue of organizations in Real-Estate also increases.

Data

7) Brief description of Compustat and FRED:

- Compustat: It contains the information of all the companies in the world which are active as well as inactive and their statistical, market and financial information. Information like fundamentals, integrated databases and proprietary data are provided.[1]
- FRED: Federal Reserve Economic Data (FRED) has all the information regarding Consumer and producer price indexes, US financial data and international data etc. in their database, which is maintained by Federal Reserve Bank of St. Louis's Research division. The time series data is collected from various sources like the US Census and Bureau of Labor Statistics.[2]

[1] https://en.wikipedia.org/wiki/Compustat

[2] https://en.wikipedia.org/wiki/Federal_Reserve_Economic_Data

Data preparation

8) Describe how you import data:

The data is imported through the WRDS and FRED by using the key and WRDS login.

```
In [6]: conn=wrds.Connection()
         Enter your WRDS username [Ajinkya]:akobal
         Enter your password: ....
         WRDS recommends setting up a .pgpass file.
         Create .pgpass file now [y/n]?: y
         Created .pgpass file successfully.
         You can create this file yourself at any time with the create pgpass_file() function.
         Loading library list...
In [138... real_estate = conn.raw_sql('''select cik, gvkey, datadate, conm, revt, ni from comp.funda
                                 where sich=6531 and datadate>='01/01/1975' and datadate<='12/31/2023'
                                 and datafmt = 'STD' and consol = 'C'and indfmt = 'INDL'
                                 ''', date_cols=['datadate'])
         real_estate['year']=pd.DatetimeIndex(real_estate['datadate']).year
         real_estate['month']=pd.DatetimeIndex(real_estate['datadate']).month
         real_estate.head()
Out[138]: cik gvkey datadate conm revt ni year month
         0 0000216039 005357 1987-12-31 GRUBB & ELLIS CO 336.989 0.250 1987
         1 0000216039 005357 1988-12-31 GRUBB & ELLIS CO 370.838 -1.946 1988
         2 0000216039 005357 1989-12-31 GRUBB & ELLIS CO 357.566 0.521 1989
         3 0000216039 005357 1990-12-31 GRUBB & ELLIS CO 319.022 -29.751 1990 12
         4 0000216039 005357 1991-12-31 GRUBB & ELLIS CO 266.234 -49.297 1991
```

9) Primary key of data:

· WRDS: Gvkey and year

· FRED: Date

10) Number of observations:

IV) Ajinkya and Sangram and Tanmayee data merge

	<pre>allmerge=Adatamerge.merge(Sdata,how='inner', on='year') allmerge.head()</pre>										
	ci	k gvkey	datadate	conm	revt	ni	year	month	House_price	Interest_rate	Real_income
(000001722	1 002733	1997-07-31	CAPITAL INVESTMENT OF HAWAII	1.818	-0.847	1997	7	85.317833	3.199335	10046.794
1	000082090	6 013915	1997-12-31	COLOR IMAGING INC	0.024	0.676	1997	12	85.317833	3.199335	10046.794
2	000103797	6 065108	1997-12-31	JONES LANG LASALLE INC	221.535	25.840	1997	12	85.317833	3.199335	10046.794
:	Non	e 015098	1997-04-30	BECKER MILK CO LTD -CL B	2.124	-3.968	1997	4	85.317833	3.199335	10046.794
4	000140810	0 025632	1997-12-31	KENNEDY-WILSON HOLDINGS INC	25.568	4.030	1997	12	85.317833	3.199335	10046.794
ä	allmerge.s	hape									
	572, 11)										

• WRDS: 572 rows and 8 columns

11) Describe any steps related to change the data frame (adding variables, aggregating data, etc.):

Data imported from FRED is updated on a monthly basis and the data imported through WRDS is updated annually, so in order to merge the data, it is grouped by their mean based on the year.

```
In [56]: mykey='1453b54cebf781e8984cfe98db12fa16'
In [147... econ_var='REAINTRATREARAT10Y'
         fred = Fred(api_key=mykey)
          econ=fred.get_series(econ_var,observation_start='1975-01-01')
          econ=econ.to_frame().reset_index()
          econ=econ.rename(columns={0:'Interest_rate','index':'date'})
          econ['year']=pd.DatetimeIndex(econ['date']).year
          econ['month'] = pd. DatetimeIndex (econ['date']) .month
          econ[econ['year']>=1975].head()
Out[147]:
                 date Interest_rate year month
          0 1982-01-01
                        7.623742 1982
          1 1982-02-01
                        7.656648 1982
          2 1982-03-01
                        7.128993 1982
          3 1982-04-01
                        7.408347 1982
          4 1982-05-01 7.320041 1982
                                         5
In [148... econ.shape
Out[148]: (503, 4)
  In [151... trend_yi=econ.groupby('year')['Interest_rate'].mean()
            trend yi.head()
            year
  Out[151]:
            1982 6.934689
            1983 5.888257
            1984 6.637399
            1985 5.660393
            1986 4.048303
            Name: Interest rate, dtype: float64
```

12) Relation between your datasets and the reason why you select:

Relation between the datasets is **many to many** because there are multiple entries for different years for a company and the FRED data is updated on a monthly basis and WRDS data is updated annually

13) How you merge data sets and why you select (e.g., Inner, outer, left, right, etc.):

The data was merged using the inner joint, as it helps in getting the required data from 2 different tables into 1 table by filtering the unrelated data and merging them based on the matching rows and the data.

14) Description of merged data:

- a) Number of observations 572 columns and 11 rows
- b) Number of unique companies 99 unique companies
- c) Periods (e.g., 2000-2020): 1975 2023
 - IV) Ajinkya and Sangram and Tanmayee data merge

b) TABLE: field names, descriptions of fields (i.e., definition), the number of missing values by a field, and type of fields (string, float, date, etc.):

- o **CIK** The Central Index Key (CIK) is the SEC's unique identifier for corporations and individuals who have filed disclosures with the SEC. CIKs are not available for Exchange Traded Funds.[3]
- o **Gvkey** This item is a unique identifier and primary key for each company in the database. A company can be defined as a public company, a private company, a tracking stock, a structured product, an ETF, a subsidiary, a PREFASB record, a PROFORMA record, an Exchangeable Share or a component of a Dual-Listed Company.[4]
- o **Data date** It is the date of the given data.
- o Conm It is the name of the companies in the given data
- o Revt It is the revenue of the companies in the given year and month
- o NI It is the national income for the given year and month
- o Year & month It shows the year and month details
- o **House price** It is the price that the seller is asking and which will be entered into the sales contract. In simple terms it is the price at which the property is agreed to sell. There are many

factors like market value, property's location and its conditions etc., which affect the sales price.[5]

- o **Interest rate** It is the cost that a borrower has to pay for the amount he has taken in the form of loan from an institution or a lender. Interest on mortgages is affected by many factors like personal earnings and ability to pay, state of general economy etc.[6]
- o **Real income** It is the real value of income after adjusting the changes in living costs and inflation. It shows the more accurate level of spending power of an individual. It is calculated using the formula Real Income = [Wages/(1+InflationRate)].[7]
- [1] https://www.alacra.com/alacra/outside/lei/info/cik.html
- [1] https://www.alacra.com/alacra/outside/lei/info/gvkey.html
- [1] https://www.investopedia.com/terms/h/house-price-index-hpi.asp
- [1] https://www.investopedia.com/mortgage/mortgage-rates/housing-market/#:~:text=The%20interest%20rate%20is%20the,economy%20and%20your%20personal%20circumstances
- [1] https://www.investopedia.com/terms/r/realincome.asp

```
In [103... # Check missing values
            merge_ind.isnull().sum()
  Out[103]: cik
gvkey
                           0
           gvkey
datadate
                           0
                           0
           conm
           revt
                           0
           year
            month
                           0
           House_price 0
Interest_rate 0
Real_income 0
            Real_income
            dtype: int64
  In [106... merge_ind.shape
  Out[106]: (23, 11)
  In [107... merge_ind.dropna(how='any').shape
  Out[107]: (19, 11)
  In [108... merge_ind.dropna(how='all').shape
  Out[108]: (23, 11)
  In [111... merge_ind.dropna(subset=['revt'], how='any').shape
  Out[111]: (19, 11)
In [111...
         merge_ind.dropna(subset=['revt'], how='any').shape
Out[111]: (19, 11)
In [112... merge_ind.dropna(subset=['revt'], how='any').isnull().sum()
Out[112]: cik
                           0
          gvkey
          datadate
          conm
          revt
          ni
          year
          month
                          0
         House_price
          Interest_rate 0
          Real income
          dtype: int64
```

Figure 2

o There are 4 missing values in the revt and ni column and their type is float. Missing values were handled by dropping them. (Figure 2)

Data analysis

Descriptive statistics:

15) max, mean, etc. for your interested variables:

From the figure 3 we can see that the **max value** of revenue, National Income and Interest rate are 30,828.246, 1,407.37 and 4.45 respectively. **Min value** of revenue, National Income and Interest rate are -356.79, -1912 and -0.12 respectively. **Mean values** of revenue, National Income and Interest rate are 1277.41, 12.82 and 1.80 respectively.

in [31]:	Ajdat	Ajdata.describe()										
ut[31]:	datadate		revt	ni	year	month	Interest_rate	norm	log_revt			
	count	572	565.000000	565.000000	572.000000	572.000000	572.000000	565.000000	564.000000			
	mean	2007-03-17 15:08:48.671328768	1277.414473	12.823004	2006.291958	11.013986	1.799518	639.207236	4.434322			
	min	1986-12-31 00:00:00	-356.790000	-1912.000000	1986.000000	1.000000	-0.119478	-177.895000	-0.693147			
	25%	1998-01-23 06:00:00	36.151000	-4.765000	1997.750000	12.000000	0.589024	18.575500	2.970877			
	50%	2007-12-31 00:00:00	255.030000	1.192000	2007.000000	12.000000	1.445796	128.015000	4.865459			
	75%	2016-12-31 00:00:00	904.499000	24.557000	2016.000000	12.000000	3.116589	452.749500	6.116614			
	max	2022-12-31 00:00:00	30828.246000	1407.370000	2022.000000	12.000000	4.452901	15414.623000	9.643072			
	std	NaN	2857.895545	219.147399	10.466546	2.584437	1.385928	1428.947773	2.526005			

Figure 3

The trend of interested variables:

We can see that there is a decrease in Interest Rate along the years from 1980 to 2020 in fast rate.

16) The trend of revenues over the years (group by mean):

The following diagram shows the trend of revenues over the years and we can see that there are ups and downs in the revenue. Initially revenue has fallen then it is stable and then it keeps on increasing. First increase in the revenue is seen in the year 2005 after which the revenue started to increase significantly from the year 2014.

We can see that there is a Increase in Revenue along the years from 1980 to 2020 in fast rate.

Figure 4

17) The trend of your interested economic variable over the years:

Here the interesting economic variable is interest rate and it shows the negative trend. There are fluctuations in the interest rate but the most significant decrease can be seen in the years from 1983 to 1987 and from 2008 to 2012. We can see the decrease in the interest rates from 1980 to 2021 but increased later in 2022. (Figure 5)

We can see that there is a decrease in Interest Rate along the years from 1980 to 2020 in fast rate.

Figure - 5

Correlation

Correlation between all Economic Indicators and Revnue

```
In [104]: # Correlation
           econ_all = allmerge[['revt','Real_income','House_price','Interest_rate']]
           econ_Call =econ_all.corr()
           econ_Call
Out[104]:
                             revt Real_income House_price Interest_rate
                   revt 1.000000
                                     0.414739
                                                 0.442127
                                                            -0.310096
            Real_income 0.414739
                                     1.000000
                                                 0.946404
                                                             -0.901816
            House_price 0.442127
                                     0.946404
                                                 1.000000
                                                            -0.769529
                                    -0.901816
                                                -0.769529
            Interest_rate -0.310096
In [105]: econ_Call.shape
Out[105]: (4, 4)
```

18) Any analysis showing a correlation between revenues and your economic variables:

Here the economic variables are Real Income, House Price and Interest Rate. From the figure-6 we can see that real income, house price has positive correlation while the interest rate has negative correlation. Correlation between revenue and interest rate is -0.31, between revenue and house price is 0.44 and between revenue and real income is 0.414. Correlation between real income and house price is 0.95 and between real income and interest rate is -0.90. Correlation between house price and interest rate is -0.77.

Regression analysis

3) Coef - 0.0004 which is positive

```
A model3 = smf.ols(formula='log_revt \sim Real_income+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', \ data=Sadata) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) +
print(Aresults3.summary())
                                                                        OLS Regression Results
                                                                          log_revt
                                                                                                       R-squared:
Dep. Variable:
Model:
                                                                                       OLS
                                                                                                        Adj. R-squared:
Method:
                                                             Least Squares
                                                                                                        F-statistic:
                                                                                                                                                                                              19.28
                                                      Mon, 04 Dec 2023
                                                                                                        Prob (F-statistic):
Date:
Time:
                                                                          00:06:51
                                                                                                       Log-Likelihood:
                                                                                                                                                                                        -1238.0
No. Observations:
Of Residuals:
                                                                                       553
                                                                                                       BTC:
Covariance Type:
                                                                         nonrobust
                                                     coef
                                                                         std err
                                                                                                                                        P>|t|
                                                                                                                                                                      [0.025
                                                                                                                                                                                                     0.9751
Intercept
                                             -0.5383
                                                                                                         -1.160
                                                                                                                                         0.246
                                                                                                                                                                      -1.450
                                                                                                                                                                                                        0.373
 y_2014[T.True]
                                              -0.1404
                                                                                0.611
                                                                                                           -0.230
                                                                                                                                         0.818
                                                                                                                                                                      -1.340
                                                                                                                                                                                                        1.060
                                                                                                                                                                       -1.216
y_2015[T.True]
                                                -0.0746
y_2016[T.True]
y_2017[T.True]
y_2018[T.True]
                                               -0.2136
                                                                                0.568
                                                                                                           -0.376
                                                                                                                                         0.707
                                                                                                                                                                      -1.330
                                                                                                                                                                                                        0.903
                                                                                0.606
                                                                                                            0.597
                                                                                                                                          0.551
                                                                                                                                                                                                        1.553
                                                0.2640
                                                                                0.581
                                                                                                            0.454
                                                                                                                                         0.650
                                                                                                                                                                                                        1.405
                                                                                                                                                                       -0.877
                                                                                                                                                                                                        1.397
y_2019[T.True]
                                                0.2913
                                                                                0.563
                                                                                                            0.518
                                                                                                                                          0.605
                                                                                0.532
y 2020[T.True]
                                               -0.4735
                                                                                                           -0.890
                                                                                                                                         0.374
                                                                                                                                                                       -1.519
                                                                                                                                                                                                        0.572
    _2021[T.True]
                                              -0.5659
                                                                                0.529
                                                                                                           -1.069
                                                0.0004
                                                                        3.82e-05
                                                                                                            9.800
                                                                                                                                                                        0.000
                                                                                                                                                                                                       0.000
Real income
                                                                                                                                         0.000
                                                                                39.847
Omnibus:
                                                                                                       Durbin-Watson:
Prob(Omnibus):
                                                                                   0.000
                                                                                                        Jarque-Bera (JB):
                                                                                                                                                                                           47.227
                                                                                 -0.707
                                                                                                        Prob(JB):
Skew:
Kurtosis:
                                                                                 2.891
                                                                                                       Cond. No.
                                                                                                                                                                                     1.36e+05
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.36e+05. This might indicate that there are
 strong multicollinearity or other numerical problems.
1) Prob (F-statistic) - This value is <0.1, so we will consider this regression analysis.
2) R-squared - Value is significant as it is between 0 to 1.
```

- Figure 7 is the regression analysis of Revenue and Real Income and below is its summary.

R2 - 0.259

Coefficient of real income - 0.0004

P-value - 0

Bmodel2 = smf.ols(formula='log_revt ~ Interest_rate+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', data=Ajdata)
Bresults2 = Bmodel2.fit()
print(Bresults2.summary())

OLS Regression Results								
Dep. Variable:		log_revt	R-squared:			0.223		
Model:		OLS	Adj. R-squ	ared:		0.209		
Method:	Lea	st Squares	F-statisti	c:		15.89		
Date:	Mon, 0	4 Dec 2023	Prob (F-st	atistic):	3.0	7e-25		
Time:		00:06:56	Log-Likeli	hood:	-1	251.2		
No. Observations:		564	AIC:			2524.		
Df Residuals:		553	BIC:			2572.		
Df Model:		10						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
			23.175					
y_2013[T.True]					-1.769			
y_2014[T.True]			-0.261	0.794				
y_2015[T.True]			0.234			1.308		
7	-0.0274	0.584						
	0.9612	0.609	1.577	0.115	-0.236	2.158		
		0.567			0.262	2.490		
7	1.1494	0.553		0.038		2.236		
·	0.2824	0.524			-0.746	1.311		
y_2021[T.True]	0.5878	0.497	1.182	0.238	-0.389	1.565		
Interest_rate	-0.7436	0.091	-8.155	0.000	-0.923	-0.565		
Omnibus:		33.116	Durbin-Wat			1.847		
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	_	7.877		
Skew:		-0.629	Prob(JB):		5.9	6e-09		
Kurtosis:		2.830	Cond. No.			21.5		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation :

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) Coef 1.7250 which is positive

Figure 8

- Figure 8 is the regression analysis of Revenue and Interest rate and below is its summary.

Prob(F-stat) - It is < 0.1

R2 - 0.223

Coefficient of interest rate – (-0.7436)

19) Brief description of the definition of regression analysis:

By using regression analysis, we can analyze and estimate the relationship between 2 or more dependent or independent variables. It helps us to identify the important factors and also to determine the factors that can be ignored. [8]

20) Summary of your findings from regression analysis (F-stat, R2, and your interested variable's coefficient and its p-value):

		_	sion Results			
Dep. Variable:		log revt	R-squared:			0.253
Model:		OLS	Adj. R-squ			0.240
Method:	Lea	ast Squares	F-statisti	.c:		18.72
Date:	Mon, 0	04 Dec 2023	Prob (F-st	atistic):	1.0	6e-29
Γime:		00:07:01	Log-Likeli	.hood:	-1	238.2
No. Observations:			AIC:			2498.
Of Residuals:		552	BIC:			2546.
Of Model:		10				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.5726	0.266	5.922	0.000	1.051	2.094
/_2013[T.True]	0.4170	0.549	0.760	0.447	-0.661	1.495
	0.4406	0.604	0.730	0.466	-0.746	1.627
2015[T.True]	0.6247	0.569	1.098	0.273	-0.493	1.742
/_2016[T.True]	0.4241	0.556	0.763	0.446	-0.668	1.516
/_2017[T.True]	0.9946	0.593	1.677	0.094	-0.170	2.159
/_2018[T.True]	0.8870	0.565	1.570	0.117	-0.223	1.997
/_2019[T.True]	0.9953	0.542	1.838	0.067	-0.068	2.059
_2020[T.True]	0.3838	0.498	0.770	0.442	-0.595	1.363
_2021[T.True]	-0.0681	0.508	-0.134	0.893	-1.065	0.929
House_price	0.0182	0.002	9.535	0.000	0.014	0.022
Omnibus:		37.538	Durbin-Wat			1.919
Prob(Omnibus):		0.000	Jarque-Ber			3.203
Skew:		-0.666	Prob(JB):	a (55).		6e-10
Kurtosis:		2.742	Cond. No.			9e+03

Figure 7

- Figure 7 is the regression analysis of Revenue and Real Income and below is its summary.

Prob(\mathbf{F} - \mathbf{stat}) – It is < 0.1

3) coef - Value is positive.

R2 - 0.259

Coefficient of House Price - 0.0182

Bmodel2 = smf.ols(formula='log_revt ~ Interest_rate+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', data=Ajdata)
Bresults2 = Bmodel2.fit()
print(Bresults2.summary())

0.223

01.5			
OLS	Regress	1on	Kesults

log_revt R-squared:

Model:		OLS	Adj. R-squ	ared:	0.209		
Method:	Lea	Least Squares		c:		15.89	
Date:	Mon, 0	Mon, 04 Dec 2023		atistic):	3.0	3.07e-25	
Time:		00:06:56	Log-Likeli	hood:	-1	251.2	
No. Observations:		564	AIC:			2524.	
Df Residuals:		553	BIC:			2572.	
Df Model:		10					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	5.6370	0.243	23.175	0.000	5.159	6.115	
y_2013[T.True]	-0.6146	0.588	-1.046	0.296	-1.769	0.540	
y_2014[T.True]	-0.1647	0.631	-0.261	0.794	-1.405	1.076	
y_2015[T.True]	0.1390	0.595	0.234	0.815	-1.030	1.308	
y_2016[T.True]	-0.0274	0.584	-0.047	0.963	-1.174	1.120	
y_2017[T.True]	0.9612	0.609	1.577	0.115	-0.236	2.158	
y_2018[T.True]	1.3756	0.567	2.426	0.016	0.262	2.490	
y_2019[T.True]	1.1494	0.553	2.078	0.038	0.063	2.236	
y_2020[T.True]	0.2824	0.524	0.539	0.590	-0.746	1.311	
y_2021[T.True]	0.5878	0.497	1.182	0.238	-0.389	1.565	
Interest_rate	-0.7436	0.091	-8.155	0.000	-0.923	-0.565	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation:

1) Prob (F-statistic) - This value is <0.1, so we will consider this regression analysis.

2) R-squared - Value is significant as it is between 0 to 1.

 Omnibus:
 33.116
 Durbin-Watson:

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):

 Skew:
 -0.629
 Prob(JB):

 Kurtosis:
 2.830
 Cond. No.

3) Coef - 1.7250 which is positive

Figure 8

37.877 5.96e-09

- Figure 8 is the regression analysis of Revenue and Interest rate and below is its summary.

Prob(F-stat) – It is < 0.1

R2 - 0.223

Coefficient of interest rate – (-0.7436)

Cmodel3 = smf.ols(formula='log_revt ~ House_price+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', data=datamerge)
Cresults3 = Cmodel3.fit()
print(Cresults3.summary())

		OLS Regres	sion Results				
Dep. Variable:		log_revt	R-squared:			0.253	
Model:		OLS	Adj. R-squ	ared:		0.240	
Method:	Lea	st Squares	F-statisti	c:	18.72		
Date:	Mon, 0	4 Dec 2023	Prob (F-st	atistic):	1.06e-29		
Time:		00:07:01	Log-Likeli	hood:	-1238.2		
No. Observations:		563	AIC:			2498.	
Df Residuals:		552	BIC:			2546.	
Df Model:		10					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.9	
Intercept	1.5726	0.266	5.922	0.000	1.051	2.	
v 2012[T Tours]		0.200	0.760	0.000	0.661	1	

	coef	std err	t	P> t	[0.025	0.975]				
Intercept	1.5726	0.266	5.922	0.000	1.051	2.094				
y_2013[T.True]	0.4170	0.549	0.760	0.447	-0.661	1.495				
y_2014[T.True]	0.4406	0.604	0.730	0.466	-0.746	1.627				
y_2015[T.True]	0.6247	0.569	1.098	0.273	-0.493	1.742				
y_2016[T.True]	0.4241	0.556	0.763	0.446	-0.668	1.516				
y_2017[T.True]	0.9946	0.593	1.677	0.094	-0.170	2.159				
y_2018[T.True]	0.8870	0.565	1.570	0.117	-0.223	1.997				
y_2019[T.True]	0.9953	0.542	1.838	0.067	-0.068	2.059				
y_2020[T.True]	0.3838	0.498	0.770	0.442	-0.595	1.363				
y_2021[T.True]	-0.0681	0.508	-0.134	0.893	-1.065	0.929				
House_price	0.0182	0.002	9.535	0.000	0.014	0.022				

Omnibus:	37.538	Durbin-Watson:	1.919
Prob(Omnibus):	0.000	Jarque-Bera (JB):	43.203
Skew:	-0.666	Prob(JB):	4.16e-10
Kurtosis:	2.742	Cond. No.	1.29e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.29e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) coef Value is positive.

Figure 9

Figure 9 is the regression analysis of Revenue and House Price and below is its summary.

Prob(F-stat) – It is <0.1

R2 - 0.253

Coefficient of interest rate – 0.0182

model2 = smf.ols(formula='log_Interest_rate ~ House_price+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', data=Adatamerge) print(results2.summary())

OLS Regression Results								
Dep. Variable:	log_Int	erest_rate	R-squared:			0.713		
Model:		OLS		ared:	0.708			
Method:	Lea	st Squares	F-statisti	c:		138.9		
Date:	Mon, 0	4 Dec 2023	Prob (F-st	atistic):	1.53	e-144		
Time:		00:07:05	Log-Likeli	hood:	-1	09.87		
No. Observations:		571	AIC:			241.7		
Df Residuals:		560	BIC:			289.6		
Df Model:		10						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
		300 em		12151	[0.025	0.5/5]		
Intercept	1.0068	0.035	28.399	0.000	0.937	1.076		
y 2013[T.True]	-0.7517	0.074	-10.203	0.000	-0.896	-0.607		
y 2014[T.True]	-0.4815	0.081	-5.937	0.000	-0.641	-0.322		
	-0.4622	0.076	-6.050	0.000	-0.612	-0.312		
y 2016[T.True]	-0.5348	0.075	-7.166	0.000	-0.681	-0.388		
v 2017[T.True]	-0.2931	0.080	-3.681	0.000	-0.449	-0.137		
y 2018[T.True]	-0.0206		-0.272		-0.170			
y 2019[T.True]	-0.3290	0.073	-4.527		-0.472			
	-0.8278		-12.384	0.000	-0.959			
	-0.5621	0.068	-8.263		-0.696			
House price	-0.0045	0.000	-17.637	0.000	-0.005	-0.004		
nouse_price	-0.0045		-17.037	0.000	-0.005	-0.004		
Omnibus:		237.368	Durbin-Wat	son:		0.041		
Prob(Omnibus):		0.000	Jarque-Ber			2.706		
Skew:		-1.957	Prob(JB):	a (30):		e-190		
Kurtosis:		7.622	Cond. No.			e-190 9e+03		
Kur-tosis:		7.022	cond. No.		1.2	26+02		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.29e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Observation:

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) coef Value is positive.

Figure 10

Figure 10 is the regression analysis of Revenue and House Price and below is its summary.

Prob(F-stat) – It is <0.1

R2 - 0.713

Coefficient of house price – (-0.0045)

 $Fmodel3 = smf.ols(formula='log_House_price \sim Real_income+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', \ data=Sdatamerge) \\ Fresults3 = Fmodel3.fit()$ print(Fresults3.summary())

OI S	Regression	Reculte

Dep. Variable:	log_l	House_price	R-squared:		0.954		
Model:		OLS	Adj. R-squ	ared:	0.954		
Method:	Lea	ast Squares	F-statisti	c:	1173.		
Date:	Mon, (04 Dec 2023	Prob (F-st	atistic):		0.00	
Time:		00:07:09	Log-Likeli	hood:	5	71.57	
No. Observations:		571	AIC:		-	1121.	
Df Residuals:		560	BIC:		-	1073.	
Df Model:		10					
Covariance Type:		nonrobust					
	coef	std err		P> t		0.975]	
Intercept	2 5280	0 010			2.491	2.565	
y_2013[T.True]							
y 2014[T.True]							
y 2015[T.True]							
y 2016[T.True]							
y 2017[T.True]				0.000	-0.188	-0.003	
y_2017[T.True]							
v 2019[T.True]							
y 2020[T.True]							
y 2021[T.True]					-0.267		
		1.55e-06		0.000	0.000	0.000	
Omnibus:		62.514	Durbin-Wat	son:		0.030	
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	10	7.258	
Skew:		0.699	Prob(JB):		5.1	2e-24	
Kurtosis:		4.599	Cond. No.		1.3	6e+05	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.36e+05. This might indicate that there are strong multicollinearity or other numerical problems.

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) coef Value is positive.

Figure 11

Figure 11 is the regression analysis of House Price and Real Income and below is its summary.

Prob(F-stat) – It is < 0.1

R2 - 0.954

Coefficient of real income - 0.0001

: Gmodel3 = smf.ols(formula='log_Real_income ~ Interest_rate+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018+y_2019+y_2020+y_2021', data=Asdata) Gresults3 = Gmodel3.fit() print(Gresults3.summary())

OLS Regression Results

Dep. Variable:	log_R	eal_income	R-squared:	:		0.864	
Model:	OLS		Adj. R-squared:		0.864		
Method:	Lea	st Squares	F-statisti	ic:		6254.	
Date:	Mon, 0	4 Dec 2023	Prob (F-st	tatistic):		0.00	
Time:		00:07:13	Log-Likeli	ihood:		8590.4	
No. Observations:		9826	AIC:		-1.7	716e+04	
Df Residuals:		9815	BIC:		-1.7	708e+04	
Df Model:		10					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
	9.0828	0.003	3518.312	0.000	9.078		
y_2013[T.True]		0.006	-20.568	0.000	-0.144		
/	-0.0395	0.008	-5.263	0.000	-0.054	-0.025	
,	0.0003	0.007	0.048	0.962	-0.013	0.013	
y_2016[T.True]	-0.0125	0.006	-1.973	0.048	-0.025	-8.31e-05	
/	0.0706	0.007	10.066	0.000	0.057	0.084	
y_2018[T.True]	0.1755	0.006	28.452	0.000	0.163	0.188	
y_2019[T.True]	0.0999	0.006	17.446	0.000	0.089	0.111	
y_2020[T.True]		0.005	8.592	0.000	0.033	0.053	
7	0.1044	0.005	22.883	0.000	0.095	0.113	
Interest_rate	-0.1731	0.001	-171.301	0.000	-0.175	-0.171	
Omnibus:		882.927	Durbin-Wat			0.003	
Prob(Omnibus):		0.000	Jarque-Ber	ra (JB):		313.601	
Skew:		0.700	Prob(JB):		5.6	59e-286	
Kurtosis:		4.117	Cond. No.			20.2	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) coef Value is positive.

Figure 12

- Figure 12 is the regression analysis of Real Income and Interest Rate and below is its summary.

Prob(F-stat) – It is <0.1

R2 - 0.864

Coefficient of interest rate – (-0.1731)

```
Hmodel3 = smf.ols(formula='log_revt ~ Interest_rate+y_2019+y_2020+y_2021+y_2022', data=Ajdata)
Hresults3 = Hmodel3.fit()
print(Hresults3.summary())
```

OLS Regression Results

Dep. Variable:	log_revt	R-squared:	0.225
Model:	OLS	Adj. R-squared:	0.218
Method:	Least Squares	F-statistic:	32.40
Date:	Mon, 04 Dec 2023	Prob (F-statistic):	5.05e-29
Time:	00:07:27	Log-Likelihood:	-1250.5
No. Observations:	564	AIC:	2513.
Df Residuals:	558	BIC:	2539.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept y_2019[T.True] y_2020[T.True] y_2021[T.True] y_2022[T.True] Interest rate	5.5607 1.2133 0.3615 0.6648 1.5256 -0.7204	0.193 0.537 0.498 0.472 0.449 0.078	28.871 2.261 0.726 1.409 3.396 -9.235	0.000 0.024 0.468 0.159 0.001	5.182 0.159 -0.617 -0.262 0.643 -0.874	5.939 2.267 1.340 1.592 2.408 -0.567
Omnibus:		36 798	Durhin-Wat	son.		1 860

Omnibus:	36.798	Durbin-Watson:	1.860
Prob(Omnibus):	0.000	Jarque-Bera (JB):	42.880
Skew:	-0.671	Prob(JB):	4.88e-10
Kurtosis:	2.844	Cond. No.	15.1

. .

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation:

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) Coef Value is positive

Figure 13

- Figure 13 is the regression analysis of House Price and Real Income and below is its summary.

Prob(F-stat) – It is < 0.1

R2 - 0.864

Coefficient of interest rate – (-0.1731)

```
Hmodel3 = smf.ols(formula='log_revt ~ Interest_rate+y_2019+y_2020+y_2021+y_2022', data=Ajdata)
Hresults3 = Hmodel3.fit()
print(Hresults3.summary())
```

OLS	Reg	ression	Resu:	lts
-----	-----	---------	-------	-----

Dep. Variable:	log_revt	R-squared:	0.225				
Model:	OLS	Adj. R-squared:	0.218				
Method:	Least Squares	F-statistic:	32.40				
Date:	Mon, 04 Dec 2023	Prob (F-statistic):	5.05e-29				
Time:	00:07:27	Log-Likelihood:	-1250.5				
No. Observations:	564	AIC:	2513.				
Df Residuals:	558	BIC:	2539.				
Df Model:	5						
Covaniance Type:	nonnohust						

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.5607	0.193	28.871	0.000	5.182	5.939
y_2019[T.True]	1.2133	0.537	2.261	0.024	0.159	2.267
y_2020[T.True]	0.3615	0.498	0.726	0.468	-0.617	1.340
y_2021[T.True]	0.6648	0.472	1.409	0.159	-0.262	1.592
y_2022[T.True]	1.5256	0.449	3.396	0.001	0.643	2.408
Interest_rate	-0.7204	0.078	-9.235	0.000	-0.874	-0.567
Omnibus:		36.798	Durbin-Wat	son:		1.860
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	4	2.880
Skew:		-0.671	Prob(JB):		4.8	8e-10
Kurtosis:		2.844	Cond. No.			15.1

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation:

- 1) Prob (F-statistic) This value is < 0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) Coef Value is positive

Figure 14

Figure 14 is the regression analysis of Revenue and Interest Rate for the Covid period (2019 - 2022) and below is its summary.

Prob(F-stat) – It is < 0.1

R2 - 0.225

Coefficient of interest rate – (-0.7204)

- Figure 15 is the regression analysis of Revenue and Interest Rate of real estate crisis during 1978 - 1983 and below is its summary.

Prob(F-stat) – It is < 0.1

Dep. Variable:

R2 - 0.213

Coefficient of interest rate – (-0.6856)

P-value - 0

Jmodel3 = smf.ols(formula='log_revt ~ Interest_rate+y_2012+y_2013+y_2014+y_2015+y_2016+y_2017+y_2018', data=Ajdata)
Jresults3 = Jmodel3.fit()
print(Jresults3.summary())

OLS Regression Results

0.237

Model:	OLS		Adj. R-squared:		0.226	
Method:	Least Squares		F-statistic:		21.59	
Date:	Mon, 0	4 Dec 2023	Prob (F-st	Prob (F-statistic):		1e-28
Time:		00:07:38	Log-Likeli	hood:	-1	246.0
No. Observations:		564	AIC:	AIC:		2510.
Df Residuals:		555	BIC:			2549.
Df Model:		8				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
	6.1850		31.919		5.804	
y_2012[T.True]		0.534	-3.926	0.000	-3.143	-1.047
y_2013[T.True]	-1.1110	0.567	-1.960	0.050	-2.224	0.002
y_2014[T.True]	-0.6028	0.614	-0.982	0.327	-1.809	0.603
y_2015[T.True]	-0.3033	0.577	-0.525	0.600	-1.437	0.831
y_2016[T.True]	-0.4999	0.564	-0.886	0.376	-1.608	0.609
y 2017[T.True]	0.5435	0.593	0.917	0.360	-0.621	1.708
y_2018[T.True]	1.0352	0.554	1.869	0.062	-0.053	2.123
Interest_rate	-0.9232	0.077	-11.990	0.000	-1.074	-0.772
Omnibus:		32.687	Durbin-Wat	son:		1.882
Prob(Omnibus):		0.000	0.000 Jarque-Bera (JB):		37.274	
Skew:		-0.623	Prob(JB):		8.0	5e-09
Kurtosis:		2.822	Cond. No.			18.2

log_revt R-squared:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation:

- 1) Prob (F-statistic) This value is <0.1, so we will consider this regression analysis.
- 2) R-squared Value is significant as it is between 0 to 1.
- 3) Coef Value is Negative.

Figure 16

- Figure 16 is the regression analysis of Revenue and Interest Rate of Financial recovery during 1983 - 1990 and below is its summary.

Prob(F-stat) – It is <0.1

R2 - 0.237

Coefficient of interest rate – (-0.9232)

- 21) Definition of the statistical terms (e.g., F-stat, etc.) you use above:
- a) F-Statistics It is also known as F-Value. It is used to test weather means of two or more populations are different significantly. It is calculated by F=MSB/MSE.[9]
- **b)** \mathbb{R}^2 It is also know as coefficient of determination. It is a statistical tool that describes how a regression analysis explains the variance in dependent variable.[10]
- **c)** Coefficient The relationship between the dependent and independent variable is described by a numerical value known as coefficient. It can also be used to predict the unknown variable by using the known variable.[11]
- **d) P-Value** It is a statistical number that determines whether the relationship present in the sample is also present in the large population. Null hypothesis is tested that there is no correlation between dependent and independent variables.[12]

Conclusion

Business implication

22) This is for Clark & Co., a consulting company. What do we learn from this analysis?

From this analysis we can see that there is negative relationship between the revenue and interest rate while the relationship between revenue & house income and revenue & real income is positive. Real estate is significantly affected by the interest rates, as the interest rate increase the house sales comes down, as people are not ready to take mortgage for their property purchase. Meanwhile when the house income and real income increase the revenue also increases, as people tend to invest more in real estate.

Limitations of this research:

- o There are only 3 economic indicators used in this research which are Interest rate, House price and Real income. So, this research may not exactly show the perfect results.
- o Sample size is also small as we considered only one company which may not be accurate to research for the whole industry.
- o The scope of this research is limited due to which the predictions are not exact or they may be insignificant.

Potential project

23) If you adopt 1) predictive and 2) prescriptive analytics, what research questions you can explore with the data you examine? Write at least one research question corresponding to each analytic (predictive and prescriptive individually):

Predictive Analytics: Will there be a boom or recession in the real estate in the future?

Prescriptive Analytics: How to overcome recession without major loss?

24) Include brief definitions of predictive and prescriptive analytics

Predictive analysis uses the historical data to predict the future events. Tools like machine learning, statistical algorithms and historical data are used to study the trends or patterns, based on which the future behavior is predicted.[13]

Prescriptive analysis is the analysis of what we should do in the future and the best course of action based on the past data. It uses both predictive and descriptive analytics to make the conclusions. Email automation is the best example of this analysis.[14]

- [1] https://en.wikipedia.org/wiki/Compustat
- [2] https://en.wikipedia.org/wiki/Federal Reserve Economic Data
- [3] https://www.alacra.com/alacra/outside/lei/info/cik.html
- [4] https://www.alacra.com/alacra/outside/lei/info/gvkey.html
- [5] https://www.investopedia.com/terms/h/house-price-index-hpi.asp

[6]

https://www.investopedia.com/mortgage/mortgage-rates/housing-market/#:~:text=The%20interest%20rate%20is%20the,economy%20and%20your%20personal%20circumstances.

- [7] https://www.investopedia.com/terms/r/realincome.asp
- [8] https://www.alchemer.com/resources/blog/regression-analysis/
- [9] https://www.statisticshowto.com/probability-and-statistics/f-statistic-value-test/
- [10] https://www.investopedia.com/terms/r/r-squared.asp

[11]

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression

Γ121

https://blog.minitab.com/en/adventures-in-statistics-2/how-to-interpret-regression-analysis-result s-p-values-and-coefficients

[13]

https://cloud.google.com/learn/what-is-predictive-analytics#:~:text=Predictive%20analytics%20is%20the%20process,that%20might%20predict%20future%20behavior.

[14]

https://www.qlik.com/us/augmented-analytics/prescriptive-analytics#:~:text=Prescriptive%20analytics%20is%20the%20use,%E2%80%9CWhat%20should%20we%20do%3F%E2%80%9D