Assignment #12

Use the Eccentric Braced Frame (EBF) configuration shown below and the same forces as used in Assignment # 11 for BRBF (R=8 Ct=0.03 x=0.75)

- 1) Estimate a Link Beam size, using W24, for each story. Steps 1-5 in notes.
- 2) At the second floor only:
  (a) Check the beam outside the link WZ4×103
  (b) Determine brace size (W14)



(3) What would you change to make a more effecient EBF design? e? Link d?

|                                       |                |                                           |                                                                      | Vp=2Mp/e                                       | 186.1<br>277.8<br>277.8<br>311.1<br>311.1 |            |
|---------------------------------------|----------------|-------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------|
|                                       |                |                                           |                                                                      | lexural Link<br>e(min) V                       | 5.08<br>6.69<br>6.54<br>6.83<br>6.79      |            |
|                                       |                |                                           |                                                                      | Shear Link Flexural Link<br>e(max) e(min)      | 3.13<br>4.12<br>4.03<br>4.20<br>4.18      |            |
|                                       |                |                                           |                                                                      |                                                | 516.9<br>754.1<br>727.8<br>809.7<br>801.8 |            |
|                                       |                | 15.4<br>27.0<br>35.4<br>40.7<br>43.1      |                                                                      | Мра                                            | 264.6<br>292.9<br>289.3<br>308.2<br>307.0 |            |
|                                       | Z Area         | 69.5<br>121.7<br>159.5<br>183.3           |                                                                      | Vpa                                            | 267.3<br>297.8<br>297.8<br>318.1          |            |
|                                       | Mp             | 260.6<br>456.4<br>597.9<br>687.3<br>728.1 |                                                                      | Pu/Py Vp                                       | 0.143<br>0.181<br>0.237<br>0.247          |            |
|                                       | ţ              | 0.146<br>0.256<br>0.336<br>0.386<br>0.409 |                                                                      | Pu                                             | 115.8<br>202.9<br>265.8<br>305.5<br>323.6 |            |
| 2017                                  | Vu -Link       | 86.9<br>152.1<br>199.3<br>229.1<br>242.7  |                                                                      | 2                                              | 16.2<br>22.4<br>22.4<br>24.7<br>24.7      |            |
|                                       | N <sub>O</sub> |                                           |                                                                      | ∢                                              | 134.0<br>200.0<br>200.0<br>224.0<br>224.0 |            |
| W24 Llink Beams                       | ×              | 231.6<br>405.7<br>531.5<br>610.9<br>647.2 | 6.0                                                                  | 2                                              | 0.505<br>0.680<br>0.680<br>0.770<br>0.770 |            |
| W                                     | ξ              | 231.6<br>174.2<br>125.7<br>79.4<br>36.2   |                                                                      | #                                              | 0.395<br>0.440<br>0.440<br>0.470          | 7          |
| Assignment #12 Eccentric Braced Frame | L brace (1)    | 18.0<br>18.0<br>18.0<br>18.0              | ksi<br>feet<br>feet<br>feet<br>inches<br>inches                      | tf)]<br>tw                                     | 23.6<br>23.92<br>23.92<br>24.1<br>24.1    | eams/Links |
|                                       |                | 15.0<br>15.0<br>15.0<br>15.0              | 1.1<br>50 ksi<br>40 fee<br>15 fee<br>6 fee<br>24 incl<br>1 incl      | Req'd tw = Vu / [φ 0.6 Fy (d-2 tf)]<br>Story d | W24x55<br>W24x76<br>W24x76<br>W24x84      | Dear       |
|                                       | хq             |                                           | = -/+:                                                               | / n/ = Vu /                                    | W W W W W W W W W W W W W W W W W W W     |            |
| Assign                                | Story          | Roof<br>5th<br>4th<br>3rd<br>2nd          | Ry =<br>Fy =<br>L =<br>h =<br>e =<br>d-link +/- =<br>tf - link +/- = | Req'd t                                        | Roof<br>5th<br>4th<br>3rd<br>2nd          |            |
|                                       |                |                                           |                                                                      |                                                |                                           |            |

2 W24 × 103 / A = 30,3 d = 24.53  $t_w = 0.55$   $t_{bf} = 0.98$   $V_p = 0.6(50)(24.53 - 2 \times 0.98) 0.55 = 3.72.4 \times 0.98$  $V_{ulf} = 1.25R_yV_p = 1.25 \times 1.1 \times 372.4 = 512^K$ 

(b) Brace  $P_u = V_{ult} \times \frac{22.7}{15!}$   $= 775 \times \frac{17}{15!} \times \frac{17}{1$ 

(a) Muf =  $\frac{eV_{ul}f}{2} = \frac{(6 \times 512)}{2} = 1536^{14}$   $M_{bol} = \frac{(I/L)_{bol}}{(I/L)_{bol} + (I/L)_{brace}} \times Muff$   $= \frac{(3000/17)}{(3000/17) + (999/22.7)} \times 1536 = 0.80 \times 1536 = 1229^{14}$ 

 $L_{p}=7.03' \text{ brace at } 6 \times 12 = 1 \times 6 \times 12 = 36.2$   $\Phi_{ex}^{\dagger}=40.9 \quad \Phi_{n}^{\dagger}=A\Phi_{ox}^{\dagger}=30.3\times40.9=1229\times12$   $P_{ex}^{\dagger}=\frac{175}{1239}=0.63 \quad >0.2$   $\left[\frac{P_{u}}{\Phi_{n}}+\frac{9}{9}\frac{M_{n}}{\Phi_{n}}\right]\times1.1=\left[0.63+\frac{8}{9}\times\frac{1229\times12}{0.9\times50\times280}\right]\times1.1$   $=\left[0.63+1.04\right]\times1.1=\left[0.84\right)\times1.0$ 

3) Decrease e=4' > Mbol = 819'k helps & smaller/lighter beam