习题讲解

期中试题及控制器课后作业

liangst@zju.edu.cn

一、将下面函数化简为最简与-或式。

(1) Y(D, C, B, A) =
$$\sum$$
 m(1,3,5,9,11,12,13), 无关项 \sum d(4,7)

DC BA	A 00	01	11	10
00	0	1	1	0
01	Х	1	Х	0
11	1	1	0	0
10	0	1	1	0

$$Y(D, C, B, A) = C\overline{B} + \overline{C}A$$

$$Y(D, C, B, A) = C\overline{B} + \overline{C}A + \overline{D}A$$

(2) Y (d, c, b, a) =
$$(a + b + c + d)(a + b + c)(a + b + d)(a + c + d)(b + c + d)$$
. (最大项)
= $\overline{(a + b + c + d)(a + b + c)(a + b + d)(a + c + d)(b + c + d)}$
= $\overline{(a + b + c + d)} + \overline{(a + b + c)} + \overline{(a + b + d)} + \overline{(a + c + d)} + \overline{(b + c + d)}$

\overline{Y}					Y	•				
dc ak	00	01	11	10		dc ab	00	01	11	10
00	1	1	0	1		00	0	0	1	0
01	1	0	0	0		01	0	1	1	1
11	0	0	0	0		11	1	1	1	1
10	1	0	0	0		10	0	1	1	1

Y (d, c, b, a) = ab + ac + ad + bc + bd + dc

二、有两个逻辑函数 $F_1(A, B, C, D) = \sum m(1,3,5,6,7,8,11,12,13,14,15), F_2 = \overline{A}B + BC + A\overline{C}D$ 且 $F = F_1 \overline{F_2} + \overline{F_1}F_2$ 。

(1) 求出F的最简与-或式。

CI	00	01	11	10		AB CI	00	01	11	10	
AB \	0	1	1	0		00	0	0	0	0	
01	0	1	1	1	\oplus	01	1	1	1	1	
11	1	1	1	1		11	0	1	1	1	
10	1	0	1	0		10	0	1	0	0	
		F	_					F	1		
		АВ	CD <u>00</u>	01	11	10	1				
		00	0	1	1	0					
	=	01	1	0	0	0		$F = \overline{E}$	BD +	BCD	$+A\overline{B}\overline{C}$
		11	1	0	0	0					

 $F = \overline{B}D + B\overline{C}\overline{D} + A\overline{C}\overline{D}$

(2) 以 B、C、D 为地址变量,用**8**选1数据选择器实现此函数,画出电路(允许使用非门)。

 $F = A \cdot \overline{B} \overline{C} \overline{D} + 1 \cdot \overline{B} \overline{C} D + 1 \cdot \overline{B} \overline{C} D + 1 \cdot B \overline{C} \overline{D}$

(3) 化简后的函数是否存在竞争冒险?若有,请写出消除了竞争冒险后的函数最简与-或式(假设输入变量每次只有一个改变状态);若没有,请说明理由。

$$F = \overline{B}D + B\overline{C}\overline{D} + A\overline{B}\overline{C}$$

$$\stackrel{\text{def}}{=} C = 0, D = 0, A = 1, F = \overline{B} + B$$

$$F = \overline{B}D + B\overline{C}\overline{D} + A\overline{B}\overline{C} + A\overline{C}\overline{D}$$

$$F = \overline{B}D + B\overline{C}\overline{D} + A\overline{C}\overline{D}$$

$$\stackrel{\text{def}}{=} B = 0$$
, $C = 0$, $A = 1$, $F = \overline{D} + D$

$$F = \overline{B}D + B\overline{C}\overline{D} + A\overline{B}\overline{C} + A\overline{C}\overline{D}$$

利用冗余项消除竞争冒险

Jedinse (Allafaga vera)

四、设计一个组合逻辑电路去验证与非门的输出是否正确,如果输出有误(本该输出'1'却输出'0',或者本该输出'0'却输出'1'),则使 LED 点亮,如下图所示。请写出真值表,并用 3 线-8 线译码器和门电路实现此检测电路,画出电路。

五、设计一个多功能组合逻辑电路, M_1M_0 为功能控制信号,ab 为输入逻辑变量,F为电路输出。功能如表所示。要求:请用一片 74HC153 器件和最少与非门实现该逻辑功能。要求写出逻辑表达式并画出电路图。

M1	Μo	F
0	0	a∙b
0	1	a⊕b
1	0	a⊙b
1	1	a+b

$F = \overline{M_0} \overline{M_1} ab + \overline{M_1} M_0$	$(\bar{a}b + a\bar{b}) +$
$M_1\overline{M_0} (ab + \overline{a}\overline{b})$	$+ M_1 M_0 (a+b)$
	П

74HC153功能表

S_1'	A_1	A_0	Y_1	$S_2^{'}$	A_1	A_0	<i>Y</i> ₂
1	X	X	0	1	X	X	0
0	0	0	D_{10}	0	0	0	D_{20}
0	0	1	D_{11}	0	0	1	D_{21}
0	1	0	D_{12}	0	1	0	D_{22}
0	1	1	D_{13}	0	1	1	D_{23}

$$\begin{split} F = \overline{M_0} \overline{a} \ M_1 \overline{b} + \overline{M_0} a \ b + M_0 \overline{a} \ (\overline{M_1} b + M_1 b) &+ M_0 a \ (M_1 + \overline{b}) \\ & \qquad \qquad \bigcup \\ M_1 M_0 (M_1 + \overline{M_1} \overline{b}) \end{split}$$

六、试用 4 线/16 线译码器及门电路设计一个水位报警电路。输入为二进制数字的水位高度,用四位自然二进制数 $A_3A_2A_1A_0$ 表示,单位为米。当水位高于或等于 7 米时,白指示灯 W 点亮,否则,白灯熄灭;当水位高于或等于 9 米时,黄指示灯 Y 开始亮,否则,黄灯熄灭;当水位高于或等于 11 米时,红指示灯 R 开始亮,否则,红灯熄灭。另外,水位不可能上升至 14 米及以上。灯亮用 1 表示,灯灭用 0 表示。要求列出报警指示灯的真值表,写出设计过程,画出逻辑电路图。

$A_3A_2A_1A_0$	RYW		$A_3A_2A_1A_0$	RYW
0000	000	•	1000	100
0001	000		1001	110
0010	000	•	1010	110
0011	000	•	1011	111
0100	000	•	1100	111
0101	000		1101	111
0110	000		1110	-
0111	100		1111	-
	_	•		_

七、用 T 触发器和必要的门电路分别设计一个 JK 触发器和 D 触发器,请 写出设计过程, 画出电路图。

JK:
$$Q^* = JQ' + K'Q$$
 D: $Q^* = D$

$$D: Q^* = D$$

Q JK	00	01	11	10
0	0	0	1	1
1	1	0	0	1

$$T = JQ' + KQ$$

$$T = DQ' + D'Q$$

$$T = JK + JK'Q' + J'KQ$$

 $JK: Q^* = JQ' + K'Q$

D: $Q^* = D$

八、分析题八图所示的由 JK 触发器和门电路组成的同步加法计数器电路。

- (1)写出触发器的驱动(激励)函数、次态方程最简式、电路输出函数 C; 画出电路的完整状态转换图,指出电路为几进制计数器,并说明 能否自启动。
- (2)在题八图所示电路基础上,添加尽量少的电路,使其成为加、减可逆 计数器。要求 M=0 时为加法计数器, M=1 时为减法计数器,编码不 限。请画出电路,并做必要的设计说明。

(1)写出触发器的驱动(激励)函数、次态方程最简式、电路输出函数C; 画出电路的完整状态转换图,指出电路为几进制计数器,并说明能否自启动。

激励方程:

$$J_0 = K_0 = 1$$

 $J_1 = K_1 = Q'_2 Q_0$
 $J_2 = Q_1 Q_0 K_2 = Q_0$

状态方程:

$$\begin{array}{l} Q_0^* = Q_0' \\ Q_1^* = Q_2' Q_1' Q_0 + Q_1 (Q_2 + Q_0') \\ Q_2^* = Q_2' Q_1 Q_0 + Q_2 Q_0' \end{array}$$

输出方程: $C = Q_2 Q_0$

 $Q_2Q_1Q_0$ / $Q_2Q_1Q_0$

加法状态转换图

Homework 2

6. 试用4 位并行加法器74HC283 设计一个加/减运算电路。当控制信号M=0 时,它将两个输入的4 位二进制数相加,而M=1 时它将两个输入的4 位二进制数相减。两数相加的绝对值不大于15。允许附加必要的门电路。

解: M = 0时, $S_3S_2S_1S_0 = a_3a_2a_1a_0 + b_3b_2b_1b_0$

输出的和是补码形式,

 S_F 是和的符号位,

和为正数时 $S_F = 0$,

和为负数是 $S_F = 1$ 。

(2)在题八图所示电路基础上,添加尽量少的电路,使其成为加、减可逆计数器。要求 M=0 时为加法计数器, M=1 时为减法计数器,编码不限。请画出电路,并做必要的设计说明。

激励方程:

$$J_{0} = K_{0} = 1$$

$$J_{1} = Q_{2}Q'_{0}; K_{1} = Q'_{2}Q'_{0} + Q_{2}Q_{0}$$

$$J_{2} = Q'_{1}Q'_{0}; K_{2} = Q'_{1}Q'_{0} + Q_{1}Q_{0}$$

状态方程:

$$Q_0^* = Q_0'$$

$$Q_1^* = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0 + Q_2 Q_1 Q_0'$$

$$Q_2^* = Q_2' Q_1' Q_0' + Q_2' Q_1 Q_0' + Q_2 Q_1 Q_0'$$

激励方程1:

$$J_0 = K_0 = 1$$
 $J_1 = K_1 = Q_2' Q_0$
 $J_2 = Q_1 Q_0; K_2 = Q_0$

激励方程2:

$$J_0 = K_0 = 1$$

$$J_1 = Q_2 Q_0'; K_1 = Q_2' Q_0' + Q_2 Q_0$$

$$J_2 = Q_1' Q_0'; K_2 = Q_1' Q_0' + Q_1 Q_0$$

$$Q_2 Q_0' \neq (Q_2' Q_0)'$$

加法状态转换图

减法状态转换图

九、有一控制器状态图如下,其中 X_1X_2 是二个互斥的外输入,Y为外输出,输入为 x 表示 0 或 1 均可。请以 JK 触发器及其它必要的器件设计此控制器。要求写出状态转换表,写出触发器的激励函数及控制器的输出函数,要求函数尽量简单。

	$Q_2Q_1Q_0$	$Q_{2}^{*}Q_{1}^{*}Q_{0}^{*}$	X_1X_2	Y
S_0	000	000	0x	0
5 0	000	001	10	0
S_1	001	000	0x	0
001	001	010	10	0
S ₂	010	000	0x	0
	010	011	10	0
S ₃		000	00	0
	011	000	01	1
		100	10	0
S ₄	100	000	0x	0
	100	100	10	0

$$Q_1^* = (Q_1' Q_0 + Q_1 Q_0') X_1 X_2'$$

$$J_1 = Q_0 X_1 X_2'; K_1 = (Q_0' X_1 X_2')'$$

$$= Q_0 + X_1' + X_2$$

$$Q_{1}^{*}$$
 $Q_{1}Q_{0}$
 Q_{2}
 Q_{2}
 Q_{3}
 Q_{4}
 Q_{5}
 Q_{5}
 Q_{7}
 $Q_{$

$$Q_{2}^{*} = (Q_{2} + Q_{1}Q_{0})X_{1}X_{2}'$$

$$= (Q_{2} + Q_{2}'Q_{1}Q_{0})X_{1}X_{2}'$$

$$J_{2} = Q_{1}Q_{0}X_{1}X_{2}'; K_{2} = (X_{1}X_{2}')'$$

$$= X_{1}' + X_{2}$$

控制器课后作业

- 数字系统的设计过程可分成两个部分
 - 数据路径中的寄存器传输设计和控制单元中的控制逻辑设计
 - 控制逻辑是一个有限状态机,米里和摩尔型输出 控制着数据路径中的操作
 - 控制单元的输入是外部输入,内部状态信号从数据路径反馈到控制电路
- 控制电路是时序电路,可以采用时序逻辑设计步骤进行设计。我们控制器方法是对时序电路设计方法的补充

根据电路框图和算法流程图,采用热位法和选择器型法设计控制器

电路框图

数据选择器

$$Q_0^* = \operatorname{start} Q_1' Q_0' + Q_1 Q_0' + \operatorname{E} Q_1 Q_0$$

$$Q_1^* = \text{Zero}' Q_1' Q_0 + Q_1 Q_0' + \text{E}' Q_1 Q_0$$

ready = $Q_1'Q_0'$

Load_regs = $Q'_1Q'_0$ ·start

shift_left = $Q_1Q'_0$

Incr_R2 = $Q_1'Q_0$

热位法

 $S_Idle: Q_0$ $S_{\text{Incr}}: Q_1$ S_Shift: *Q*₂ S_Loop: Q_3 $Q_0^* = \operatorname{start}' Q_0 + \operatorname{Zero} Q_1$ $Q_1^* = \operatorname{start} Q_0 + \operatorname{E} Q_3$ $Q_2^* = \operatorname{Zero}' Q_0 + \operatorname{E}' Q_3$ $Q_3^* = Q_2$

ready = Q_0 Load_regs = Q_0 ·start

shift_left = Q_2 Incr_R2 = Q_1

期中考试补充练习

一、将下面函数化简为最简。

$$Y_1 = C\overline{D}(A \oplus B) + \overline{A}B\overline{C} + A\overline{B}\overline{D} + \overline{A}\overline{C}D$$
 约束条件为: $AB + AC = 0$

- 二、下图所示是一个基于移位寄存器的同步时序投票电路。 其中M是一个多数门,即它的输出与它的大多数输入取相同的值。
 - (1) 分析此电路,写出其状态图和状态表,说明电路能否自启动。
 - (2)请重新设计实现上述电路功能的时序电路,要求用2个D 触发器。请写出电路的状态图和状态表,触发器激励函数和输出函数的表达式。

解:

$$Y_1(A, B, C, D) = \sum m(1,4,5,6, 8, 10) + \sum d(10,11,12,13,14, 15)$$

$$Y_1 = A\overline{D} + B\overline{D} + \overline{A} \overline{C}D$$

二、(1)分析此电路,写出其状态图和状态表,说明电路能否自

启动。 $q_2^* = w$, $q_1^* = q_2$, $q_0^* = q_1$ $y = q_2q_1 + q_1q_0 + q_2q_0$

——现态 q ₂ q ₁ q ₀	次态 q ₂ *q ₁ *q ₀ *			·出 /
424140	w=0			w=1
000	000	100	0	0
001	000	100	0	0
010	001	101	0	1
011	001	101	0	1
100	010	110	0	1
101	010	110	0	1
110	011	111	1	1
111	011	111	1	1

二、(1)分析此电路,写出其状态图和状态表,说明电路能否自启动。。

二、(2)请重新设计实现上述电路功能的时序电路,要求用2个D 触发器。请写出电路的状态图和状态表,触发器激励函数和输出函数的表达式。

现态 q1 q 0	次态 q ₁ *q ₀ *		输出 y	
	w=0	w=1	w=0	w=1
00	00	10	0	0
01	00	10	0	1
10	01	11	0	1
11	01	11	1	1

激励函数
$$D_1 = w, D_0 = q_1$$
 输出函数 $y = wq_0 + wq_1 + q_1q_0$

一台自动贩卖机由一个状态机控制,它有三个输入信号 A、B、C。每当投入 10 便士、20 便士或 50 便士之后, A、B 或 C(每次只有一个)在时钟上升沿后立刻变为 1,并会在一个时钟周期内保持为 1。状态机有三个输出 X、Y、Z,各自代表给出一条巧克力棒、找回 10 便士和找回 20 便士。图 5.1 为该自动贩卖机的状态转换图,图中除了在状态转换箭头上已标注的外,其余输出信号均为 0。

- (1) 完成图 5.2 的时序图: 状态 S2:0序列用十进制数表示, 并画出 X、Y、Z的波形。
- (2) 推导出巧克力棒的价格。
- (3) 给出 X、Y、Z 的最简逻辑表达式。
- (4) 画出修改设计后的新状态转换图:与前面有相同的输入和输出信号,但巧克力棒的价格为40便士,且输出Y和Z不能同时为1。

