Politechnika Świętokrzyska Wydział Elektrotechniki, Automatyki i Informatyki

Grzegorz Bujak Arkadiusz Markowski Marcin Majdański

Układanie planu zajęć na studiach niestacjonarnych

Projekt zespołowy na studiach stacjonarnych o kierunku informatyka

> Opiekun projektu: Doktor Inżynier Grzegorz Słoń

Kielce, 2021

Spis treści

1	Cha	rakterystyka zadania	3
2	Pod	lstawa teoretyczna	3
3	Algorytm obliczeniowy		4
	3.1	Przechowywanie stanu programu	4
	3.2	Mutacje	5
	3.3	Obliczanie energii	5
		3.3.1 Wagi energii	6
	3.4	Stany nielegalne	6
4	Opis działania aplikacji		7
5	Podsumowanie i wnioski		8
6	Instrukcja obsługi aplikacji		8
7	Bibliografia		11

1 Charakterystyka zadania

Rozwiązywany problem to układanie planu lekcji na studiach niestacjonarnych. Problem można interpretować na wiele sposobów. W tym projekcie jest traktowany jako problem optymalizacji.

Do napisania algorytmu wykorzystano język Rust. Programy napisane w tym języku kompilują się do kodu maszynowego i są tak wydajne, jak programy napisane w C++.

Do prezentacji ułożonego planu jest używany HTML.

Kody źródłowe:

- Algorytm w Rust: https://github.com/gbujak/bfplan
- Aplikacja internetowa: https://github.com/arekmarko/projekt-zespolowy

2 Podstawa teoretyczna

Symulowane wyżarzanie to rodzaj algorytmu heurystycznego przeszukującego przestrzeń alternatywnych rozwiązań problemu w celu wyszukania najlepszego. Nazwa algorytmu bierze się z metalurgii, gdzie metal jest podgrzewany i chłodzony w celu osiągnięcia struktury krystalicznej o najmniejszej energii.

Przyjmując, że dowolny problem to funkcja matematyczna pewnego stanu S, szuka się stanu, który daje najlepszy wynik (najmniejszą wartość f(S)). Algorytm można przedstawić jako:

- 1. Wylosuj stan sąsiedni S' do obecnego S.
- 2. Oblicz f(S').
- 3. Zdecyduj, czy przyjąć stan S'. Jeśli nie, przejdź do kroku 1.
- 4. Ustaw stan S' jako obecny stan. Przejdź do kroku 1.

Decyzja o przyjęciu stanu zależy od f(S') oraz od temperatury. Symulowane wyżarzanie różni się tym od algorytmu zachłannego, że przy wysokiej temperaturze akceptuje zmianę stanu, która pogarsza wynik. Dzięki temu, algorytm nie zatrzymuje się w minimum lokalnym.

Temperatura maleje przy każdej zmianie stanu. Przy niskiej temperaturze, algorytm zaczyna działać jak algorytm zachłanny [1] [2].

3 Algorytm obliczeniowy

Napisany program implementuje algorytm symulowanego wyżarzania opisany w poprzedniej sekcji. W tej sekcji opisany jest sposób, w jaki program implementuje ten algorytm.

Większość czasu działania programu odbywa się w nieskończonej pętli, której działanie jest opisane w krokach w poprzedniej sekcji. Nasza implementacja algorytmu przerywa pracę, gdy odrzucone zostanie 1.000.000 zmian stanu z rzędu.

3.1 Przechowywanie stanu programu

```
struct PlanLekcji {
    lekcje: Array<{
        czas: int,
        grupa: int,
        nauczyciel: int,
        sala: int
}

czas_sala: HashMap<{czas: int, sala: int}, int>,
        czas_nauczyciel: HashMap<{czas: int, nauczyciel: int}, int>,
        czas_grupa: HashMap<{czas: int, grupa: int}, int>,
}
```

Listing 1: Stan planu lekcji w pseudokodzie

Stan planu przechowywany jest w naszym programie za pomocą czterech struktur danych. Są to: tablica i trzy tablice mieszające. Taka kombinacja znacznie zwiększa skomplikowanie programu, ale przyspiesza wykonywanie mutacji. Zwykła tablica przechowuje struktury zawierające dane o pojedynczej lekcji. Są to grupa studencka, nauczyciel, sala lekcyjna i czas. Tablice mieszające mapują pary czasu i innych charakterystyk do lekcji, która posiada taką kombinację czasu i charakterystyki.

Stan planu lekcji w pseudokodzie jest przedstawiony na listingu (Listing 1).

Czas jest przechowywany jako liczba całkowita. Można ją traktować jak ID.

- Czas o wartości "0" to pierwszy dzień zjazdu o godzinie 8:00.
- Czas o wartości "1" to pierwszy dzień zjazdu o godzinie 10:00.
- Czas o wartości "5" to pierwszy dzień zjazdu o godzinie 18:00.
- Czas o wartości "6" to drugi dzień zjazdu o godzinie 8:00.

3.2 Mutacje

Problemem typowej implementacji algorytmu symulowanego wyżarzania do rozwiązania problemu szukania planu lekcji jest rozmiar stanu. Typowa implementacja algorytmu wykonuje kopię całego stanu.

Kopiowanie stanu planu lekcji byłoby kosztowne. Z tego powodu, w programie są zaimplementowane "mutacje". Mutacja to struktura przechowująca rodzaj zmiany stanu i pozwalająca na wygenerowanie mutacji odwrotnej, której wykonanie przywróci stan przed oryginalną mutacją.

Losowanie stanu sąsiedniego w naszym programie polega na losowaniu mutacji. Mutacja jest następnie wykonywana na stanie programu. Oceniana jest energia stanu po mutacji i podejmowna jest decyzja o przyjęciu nowego stanu. Przy odrzuceniu nowego stanu, wykonywana jest mutacja odwrotna.

3.3 Obliczanie energii

Obliczanie energii jest wykonywane w metodach struktury BufferStatistics. W zwiększenia wydajności programu, różne składowe energii są obliczane w tym samym czasie. Znacznie komplikuje to logikę programu, ale dzięki temu program do obliczenia energii planu musi iterować po lekcjach tylko raz.

Przykładowo rozdzielenie obliczania ilości okienek prowadzących i ilości okienek studentów do osobnych funkcji uprościłoby logikę programu - każda funkcja byłaby odpowiedzialna za jeden problem. Spowodowałoby to jednak konieczność napisania dwóch pętli, a nie jednej.

3.3.1 Wagi energii

Energia stanu zależy od wielu czynników. Są to na przykład okienka studentów i okienka wykładowców. Energia dla tych czynników jest obliczana osobno. Następnie, z wykorzystaniem wag podanych przez użytkownika, wektorowa energia jest przetwarzana na liczbę zmiennoprzecinkową.

3.4 Stany nielegalne

```
pub enum IllegalStateSubject {

StudentGroup(u8),

Teacher(u8),

Classroom(u8),

pub enum IllegalStateObject {

StudentGroup(u8),

Teacher(u8),

Day(u8),

Day(u8),

DayHour(SimpleDate),

Classroom(u8),

Classroom(u8),
```

Listing 2: Stan nielegalny w kodzie aplikacji

Plan lekcji, który algorytm uzna za najlepszy nie zawsze jest możliwy do zastosowania. Jest tak na przykład, gdy jakiś prowadzący nie jest w stanie pracować pewnego dnia, lub jakaś sala pewnego dnia nie będzie w stanie umożliwiającym prowadzenie zajęć.

Zmiana ręczna wygenerowanego planu może okazać się trudna. Przeniesienie jednej lekcji na inny dzień może spowodować przypisanie dwóch lekcji do tej samej sali w tym samym czasie. Żeby rozwiązać ten problem, program posiada "stany nielegalne".

Są one przedstawione w programie, jako zdanie SVO (Subject Verb Object):

- Podmiot (Subject) zawarty w IllegalStateSubject,
- Orzeczenie (Verb) zawsze domyślne "nie może być związany z",
- Dopełnienie (Object) zawarty w IllegalStateObject.

Kod źródłowy programu opisujący fragmenty stany nielegalnego znajduje się na listingu (Listing 2).

Program, przy wprowadzaniu mutacji, sprawdzi, czy nowy stan zmienionych lekcji nie posiada żadnego z wprowadzonych stanów nielegalnych. Gdy tak będzie, mutacja zostanie odrzucona.

4 Opis działania aplikacji

Program implementujący algorytm to aplikacja terminalowa. Aplikacja spodziewa się otrzymania danych do ułożenia planu w formacie JSON na standardowe wejście (stdin).

Ręczne uruchomienie programu wygląda tak:

\$./bfplan < ./test.json</pre>

Aplikacja zapisuje wynik pracy do pliku output.json.

Po utworzeniu plików z wynikami powinny być one przeniesione na stronę internetową (niezaimplementowane) i widoczny powinien być utworzony plan zajęć (Rysunek 1).

Rysunek 1: Przykładowe zdjęcie planu

5 Podsumowanie i wnioski

Algorytmy genetyczne są trudne do debugowania. Z tego powodu należy zadbać o dobrą strukrutę i prostotę kodu. W pierwszej implementacji, w celu optymalizacji, program wykorzystywał to, że struktura HashMap ze standardowej biblioteki Rust zwraca poprzednią wartość klucza, gdy taka istnieje i próbuje się ją nadpisać. Pierwsza implementacja algorytmu nie wykonywała czytania z mapy. Toretycznie pozwalało to na uniknięcie podwójnego wywołania funkcji mieszającej mapy. Implementacja podmieniała wartość i cofała podmianę, gdy była błędna. Ta optymalizacja okazała się zbyt skomplikowana i została zastąpiona prostszym rozwiązaniem.

Kolejnym problemem przy pisaniu takich algorytmów jest to, że błędy nie są widoczne. Błędy dało się wykryć dopiero po dodaniu asercji w najważniejszych funkcjach programu.

6 Instrukcja obsługi aplikacji

Większość strony zajmuje sam plan, na którym zajęcia są oznakowane różnymi kolorami w zależności od typu zajęć, co opisane jest także w legendzie poniżej planu (Rysunek 2).

Rysunek 2: Przykładowe zdjęcie planu

Na górze strony znajduje się menu, w którym można wybrać wyświetlany plan w zależności od grupy, prowadzącego zajęcia lub przedmiotu (Rysunek 3).

Tuż nad samym planem znajduje się okienko z wyborem, który tydzień ma być pokazy-

Rysunek 3: Wybór grupy w menu górnym

wany (Rysunek 4), a zatwierdzenie wyboru przyciskiem 'Wybierz' powinno wyświetlić na ekranie plan dla wybranego przez użytkownika tygodnia zajęć (niezaimplementowane).

Rysunek 4: Widok wyboru tygodnia

Dodatkową funkcjonalnością na stronie jest możliwość ustawienia trybu ciemnego poprzez suwak znajdujący się w prawym górnym rogu strony (Rysunek 5).

W prawym górnym rogu strony znajduje się przycisk zaloguj, który przenosi użytkownika na stronę logowania (Rysunek 6).

Po zalogowaniu się na konto administratora otworzy się panel (Rysunek 7), w którym znajdują się zakładki 'Dodaj salę', 'Dodaj grupę' i 'Dodaj wykładowcę'. W każdej zakładce można dodać odpowiedni element do bazy danych, z której następnie można

Rysunek 5: Strona z włączonym trybem ciemnym

Rysunek 6: Ekran logowania

wygenerować plan przyciskiem po prawej stronie zakładek (niezaimplementowane).

Rysunek 7: Widok zalogowanego administratora

7 Bibliografia

- [1] Busetti Franco. "Simulated annealing overview." World Wide Web URL http://cite seerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.5018&rep=rep1&type=pdf 4 (2003). (dostęp 2021-06-15)
- [2] Rutenbar, Rob A. "Simulated annealing algorithms: an overview," in IEEE Circuits and Devices Magazine, vol. 5, no. 1, pp. 19-26, Jan. 1989, doi: 10.1109/101.17235.