Introduction to Econometrics PS #4 - Introduction to Simple Regression Model

1 Population and sample regression function

Suppose you are interested in the relationship between class attendance (X) and test scores (Y) for your cohort.

- 1. Assume that you have data for the entire class (population). How would you best describe the average relationship denoted by $E(Y_i|X_i)$?
- 2. The $E(Y_i|X_i)$ (also called the CEF) does not fit all the data points perfectly. Write the equation for Y_i that accounts for this error.
- 3. Getting data on the entire population is often costly, suppose you draw a random sample instead. What is the best way to describe the relationship from your sample?

2 Derivation of OLS estimators

The true relationship in the population is: $Y_i = \beta_0 + \beta_1 X_i + u_i$. However, with access to only a random sample, we need the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.

- 1. Derive the OLS estimators by minimizing the sum of squared distances between each sample data point and the SRF.
- 2. Show that $\hat{\beta}_1 = \frac{cov(X_i, Y_i)}{V(X_i)}$. Explain the intuition behind this estimator.

3 Re-scaling variables

Your boss asks you to estimate the relationship between the factory's output (Y_i) and the distance of the factory from the headquarters (D_i) . Assume that the data on distance (D_i) is originally measured in Kilometers. However, your boss wants you to estimate this relationship using distance measured in Meters.

- 1. Specify the original regression model. Report the OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$.
- 2. Specify the regression model of interest by scaling D_i appropriately. [Note: 1km = 1000m]
- 3. Find the OLS estimators $\tilde{\beta}_0$ and $\tilde{\beta}_1$.
- 4. Your boss is highly indecisive he now asks for the relationship with distance measured in Kilometers. Find the resulting OLS estimate $\hat{\beta_1}$.

Suppose that you multiplied both the output (Y_i) and the distance (D_i) (measured in Kilometers) by 1000

- 5. Specify the regression model by scaling both variables.
- 6. Find the OLS estimators, are the results equivalent to Q3.1?

4 Slight Detour: Law of Iterated Expectations

Assume that X and Y are two jointly distributed discrete random variables. Prove that $E(Y) = E\{E(Y|X)\}$ [Note: We have already seen LIE in action, in Problem Set #2 Q.3]

5 Gauss-Markov Theorem

Suppose that we are interested in the relationship between wages and the years of education for France. The simple regression model for the same is specified as:

$$w_i = \beta_0 + \beta_1 e du c_i + u_i \tag{1}$$

- 1. Is the model linear in parameters?
- 2. Suppose that our sample is only drawn from the players of Paris Saint-Germain F.C. Would you consider this as a random sample in the context of the entire French labor market?
- 3. Assuming that $V(educ_i) = 0$, find the OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$. Do the estimators give any information on the relationship of interest?
- 4. Show that

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (educ_i - \overline{educ})u_i}{\sum_{i=1}^n (educ_i - \overline{educ})^2}$$

Use the ZCM assumption i.e., $E(u_i|e_i) = 0$ to show that $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators.

5. The errors of the regression are said to be homoskedastic when $V(u_i|e_i) = 0$. From Figure 1 below, what can you conclude about the variance of u_i as e_i increases?

Figure 1: Scatterplot of wages and education + estimated regression line