## **DATA 240 Data Mining and Analytics**

#### "Mushroom Classification"

Group: 4

Greeshma Venkatesh

Neelima Jagtap

Rishikumar Ravichandran

Rushikesh Jagtap

Sougandhika Ayathamaraju

## Introduction

- Mushrooms contain protein, vitamins, minerals, and antioxidants.
- Mushrooms are formed from macrofungi that can be both hypogeous and epigeous.
- There are currently an estimated 1.5 million species of mushrooms in the world.
- Mushrooms are used as medicine in Eastern medicine for centuries as antioxidant, antidepressants, antidiabetic, etc

## **Motivation**

- Mushrooms have more medicinal values that helps in avoiding chronic heart disease and Cancer.
- Not all mushrooms are edible. Some may causes allergic reaction to death.
- It is recorded that poisonous mushrooms are the reason for 9 out of 10 deaths caused by fungi each year.
- Biologists have classified the list of poisonous mushrooms based on their morphology and the scientific family.
- With the advancement in the field of data science it is easy to classify them into poisonous and non-poisonous.
- That paved the way for us to classify mushrooms into poisonous and non-poisonous based on the behavioral features.

# **Data Summary**

- 1. The data is collected from the UCI machine learning repository.
- 2. In this dataset, different species of mushrooms are taken in count from the Agaricus and Lepiota family.
- 3. Total of 22 attributes like cap-shape, cap-color, gill-size, gill-color, stalk-root, ring-type, odor of the mushroom and 8124 instances.
- 4. Class Distribution after pre-processing:

-- edible: 4208 (51.8%) -- poisonous: 3916 (48.2%)



Cap

| cap-<br>shape | cap-<br>surface | cap-<br>color | bruises | odor | gill-<br>attachment | gill-<br>spacing | gill-<br>size | gill-<br>color | <br>surface-<br>below- | above- |   | type |   | ring-<br>number |   | spore-<br>print-<br>color | population | habitat |
|---------------|-----------------|---------------|---------|------|---------------------|------------------|---------------|----------------|------------------------|--------|---|------|---|-----------------|---|---------------------------|------------|---------|
| X             | S               | n             | t       | p    | f                   | С                | n             | k              | <br>s                  | W      | W | р    | W | 0               | р | k                         | S          | u       |
| X             | S               | у             | t       | а    | f                   | С                | b             | k              | <br>s                  | W      | W | p    | W | 0               | p | n                         | n          | g       |
| b             | s               | W             | t       | 1    | f                   | С                | b             | n              | <br>s                  | W      | W | р    | W | 0               | р | n                         | n          | m       |
| Х             | у               | W             | t       | p    | f                   | С                | n             | n              | <br>S                  | W      | W | р    | W | 0               | р | k                         | S          | u       |
| Х             | s               | g             | f       | n    | f                   | W                | b             | k              | <br>s                  | W      | W | р    | W | 0               | е | n                         | a          | g       |

ctalk ctalk ctalk

# **Understanding Mushroom Features**

- 1. Odor
- 2. Stalk-surface- (above, below) ring
- 3. Gill\_color
- 4. Gill\_size
- 5. Spore\_print\_color Powder from gills
- 6. Ring\_type A skirt type ring tissue around the stem (large, pendant)
- 7. Bruises Looks like someone pressed the mushroom. Bleeds blue or black.

### **MUSHROOM ANATOMY**



## **Feature Selection**

#### Why Feature Selection

- Speed up the operation
- Overfitting Risk reduction
- Improved the model performance
- Improved Data Visualization

#### Methods Implemented for Feature Selection

- Correlation Matrix
- Feature importance
- Univariate feature selection Importance value

# **Feature Selection**

| feature                       | importance | std      |
|-------------------------------|------------|----------|
| odor_n                        | 0.116294   | 0.059909 |
| gill-size_b                   | 0.070898   | 0.059909 |
| odor_f                        | 0.070394   | 0.059909 |
| gill-size_n                   | 0.055678   | 0.059909 |
| stalk-surface-above-ring_k    | 0.047470   | 0.059909 |
| gill-color_b                  | 0.046713   | 0.059909 |
| spore-print-color_h           | 0.045219   | 0.059909 |
| ring-type_p                   | 0.030550   | 0.059909 |
| $stalk-surface-below-ring\_k$ | 0.030436   | 0.059909 |
| ring-type_l                   | 0.029066   | 0.059909 |
|                               |            |          |



1.0

- 0.8

- 0.6

0.4

- 0.2

-0.2

-0.4

## Importance of selected features from Domain Knowledge

According to the literature review feature importance for mushroom classification V. Vanitha( etal) mentioned that higher score indicates that the particular features have high impact on model predictions. The main purpose of this paper is to feature selection is to eliminate the features that have the least impact on mushroom categorization for the better model performance. (https://bbrc.in/wp-content/uploads/2021/01/Galley-Proof-009.pdf)

2. According Nuanmeesri, Sriurai they mentioned feature selection criteria for the mushroom classification. In this paper they implemented the chi-square method and information gain for feature selection. They got the highest accuracy for the random forest method by using fewer features. (https://www.ijeat.org/wp-content/uploads/papers/v9i2/B4115129219.pdf)

# **Results with different metrics**

## **Accuracy Comparison Table**

| Accuracy                     | Random Forest | K-Nearest Neighbor | Naive Bayes | Decision Tree |  |
|------------------------------|---------------|--------------------|-------------|---------------|--|
| Without Feature<br>Selection | 0.9581        | 1.0000             | 0.9643      | 1.0000        |  |
| With Feature<br>Selection    | 0.9735        | 0.9649             | 0.9298      | 0.9766        |  |

## **F-1 Score Comparison Table**

| F-1 Score                    | Random Forest | K-Nearest Neighbor | Naive Bayes | Decision Tree |  |
|------------------------------|---------------|--------------------|-------------|---------------|--|
| Without Feature<br>Selection | 0.9548        | 1.0000             | 0.9644      | 1.0000        |  |
| With Feature<br>Selection    | 0.9722        | 0.9617             | 0.9213      | 0.9755        |  |

# **Results with different metrics**

#### **Training Time Comparison Table**

| <b>Training Time</b>         | Random Forest | K-Nearest Neighbor | Naive Bayes  | Decision Tree |  |
|------------------------------|---------------|--------------------|--------------|---------------|--|
| Without Feature<br>Selection | 2 min 14 sec  | 1 min 88 sec       | 1 min 87 sec | 2 min 10 sec  |  |
| With Feature<br>Selection    | 1 min 54 sec  | 1 min 95 sec       | 1 min 98 sec | 1 min 53 sec  |  |

#### **Confusion Matrix for Decision Tree Classifier**

|                 | Predict Positive | Predict Negative |
|-----------------|------------------|------------------|
| Actual Positive | 828              | 24               |
| Actual Negative | 14               | 759              |

## **Results with different metrics**

AUC-RoC Curve and Cumulative Gain curve for Decision Tree Classifier





## Why is a certain method better than other methods?

#### **Decision Tree**

- Decision Tree is better when the dataset have a "Feature" that is really important to take a decision.
- Easy interpretability
- Adapts quickly to the dataset

#### Why Decision Tree is Best Model for Our Dataset

- 1) Accuracy 97.66%
- 2) F1 score 97.55
- 3) Training Time Lowest
- 4) False positive Rate (Incorrect predictions of poisonous mushrooms as edible) 0.018 (FP/TN+FP)

# **Extracted knowledge from Data**

- Generally, Green colour indicates poisonous, if the gill colour or spore print colour is green the mushrooms are not edible.
- we found that the mushrooms with orange caps (label 'n') are mostly poisonous and the ones with red caps (label 'r') are less poisonous.
- Mostly foul smelling mushrooms are poisonous.

# Thanks So Mush



# References

- [1] https://archive.ics.uci.edu/ml/datasets/Mushroom
- [2] <a href="https://www.webmd.com/diet/health-benefits-mushrooms">https://www.webmd.com/diet/health-benefits-mushrooms</a>
- [3] https://en.wikipedia.org/wiki/Edible mushroom
- [4] https://ieeexplore.ieee.org/abstract/document/8405508
- [5] https://www.betterhealth.vic.gov.au/health/healthyliving/fungi-poisoning