ที่ทรชาหน (ม กา เพีย เพชา Binary Search Tree 650 10814

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

H

1.

2.

3.

A

A R

5.

6.

หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น A H H I R U.....

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AIHMR ไป

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

HHERV

8.

HHIV

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
      tree2.insert('0');
2.
      tree2.insert('I');
3.
4.
      tree2.insert('N');
      tree2.insert('G');
5.
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

١,

2.

&.

9

10.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็นหาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็นหาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

GEOIGMNRTY EGGIMNORTY EGMN17TROG 4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


14

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

GEO.MGR EGGMOR EGMROG 5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HOFEDCBA

1

2

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น

เหาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) BST กัไม่ balance มีชั้นมากาว เพตะไม่สถานลใต้ บังมาชัก
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากับ อย่างไร (ขอสั้นๆ) BST balance มีออกว่า เพาะมีกาวจัการะบบ มีขับคอ นกาศัมนาใช้วาวน
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10	D. ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ) โหม balance เนื่องจากอะไร (ขอยาวๆ) โหม balance ไพ่แล้วได้ของการ โหม โหม สังคุณ โหม โหม สังคุณ โหม