Содержание

Введение
1 Основные теоретические сведения
1.1 Уравнения фильтрации
1.2 Фракталы и степенные законы в средах с фрактальными свойствами 12
1.3 Дифференциальное исчисление на фрактальных кривых
2 Допустимость применения степенных законов в геометрических
характеристиках однофазных моделей фильтрации
2.1 Стационарная модель фильтрации
2.2 Нестационарная модель фильтрации
3 Применение степенных законов для обобщения моделей двухфазной
3 Применение степенных законов для обобщения моделей двухфазной фильтрации
· · · · · · · · · · · · · · · · · · ·
фильтрации
фильтрации. 23 3.1 Модель Баклея-Леверетта. 23
фильтрации. 23 3.1 Модель Баклея-Леверетта. 23 3.2 Модель капиллярной пропитки. 26
фильтрации. 23 3.1 Модель Баклея-Леверетта. 23 3.2 Модель капиллярной пропитки. 26 4 Применение дифференциального исчисления на фрактальных кривых для
фильтрации. 23 3.1 Модель Баклея-Леверетта. 23 3.2 Модель капиллярной пропитки. 26 4 Применение дифференциального исчисления на фрактальных кривых для обобщения моделей фильтрации. 30
фильтрации 23 3.1 Модель Баклея-Леверетта 23 3.2 Модель капиллярной пропитки 26 4 Применение дифференциального исчисления на фрактальных кривых для обобщения моделей фильтрации 30 Заключение 34

			1502.104082.105 ПЗ				
Изм.	№ докум.	Подпись	1002.101002.100110				
Разраб.	Абдулин			Лит	1.	Лист	Листов
Провер.	Байков					7	
Н. Контр.	Мухаметова					ПМИ-20)2M
Утвердил	Байков						

Введение

Обширное применение фракталов в прикладных задачах берет начало в работах Мандельброта [1]. Им было замечено, что они являются не просто абстрактными объектами, а часто появляются в природе и в случайных процессах. Так, Мандельбротом были обнаружены фрактальные структуры в формах береговых линий, колебаний цен в экономике, строении органов человека и т.д. Помимо этого, фракталы нашли свои применение в подземной гидродинамике – образование вязких пальцев в пористых средах (см., например, [2]), которые имеют фрактальную природу, в перколяционных задачах (см., например, [3]) и т.д.

Одним из подходов описания процессов во фрактальной среде является использование дробных производных. Было обнаружено (см., например, [4]), что статистические свойства канторовой лестницы описываются дифференциальным уравнением дробного порядка.

Другим подходом является использование фундаментального уравнения для описания переноса вещества во фрактальной среде [5]. В работе [6] оно используется для описания процесса фильтрации во фрактальной среде. Для вывода модели этого процесса предложен подход с заменой постоянных значений геометрических характеристик на степенные зависимости от пространственной координаты. В этой же работе разработана методика определения фрактальных свойств пористой среды через геометрические характеристики модели.

Одна из главных проблем математического описания фракталов это то, что фрактальные функции обычно не дифференцируемы в смысле обыкновенной производной или эта производная равна нулю. В работах [7-9] вводится дифференциальное и интегральное исчисления на фрактальных множествах, которые позволяют использовать фракталы, например, в качестве геометрии математической модели. Так, в [10] авторы выводят уравнение Фоккера-Планка для фрактальных кривых. В работе [11] обсуждается применение введенного исчисления для математической модель дифракции, строится для него решение. В

Изм.	Лист	№ докум.	Подпись	Дата

работе [12] выводятся соотношения для Ньютоновской механики и уравнение Ланжевена на фрактальных подмножествах числовой прямой. В работе [13] обобщен второй закон Ньютона на случай движения частиц вдоль фрактальных кривых.

Раздел 1 посвящен краткому обзору теоретических сведений, применяемых в работе.

Раздел 2 посвящен обоснованию на примере канторовой лестницы применения степенных законов в геометрических параметрах однофазных одномерных математических моделей фильтрации в случае степенного тренда в их распределениях.

Раздел 3 посвящен обобщению моделей двухфазной фильтрации на случай фрактальных сред с применением степенных законов.

Раздел 4 посвящен обобщению математической модели стационарной фильтрации на случай фрактальных сред с применением дифференциального исчислений на фракталах и решение первой краевой задачи для поставленной модели.

Изм.	Лист	№ докум.	Подпись	Дата

1 Основные теоретические сведения

1.1 Одномерные модели фильтрации

Рассмотрим стационарную и нестационарную одномерные модели однофазной фильтрации [14].

Уравнение неразрывности соответственно для стационарной и нестационарной фильтрации имеют вид

$$\frac{\partial(\rho u)}{\partial x} = 0,\tag{1}$$

$$\frac{\partial m\rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} = 0, (2)$$

где t, x — временная и пространственная координаты, m — пористость породы, u — скорость фильтрации жидкости, ρ — плотность жидкости. Помимо этого, предполагается выполнение закона Дарси

$$u = -\frac{k}{\mu} \frac{\partial p}{\partial x'},\tag{3}$$

где μ — вязкость жидкости, p — давление, k — проницаемость породы.

Полагая [14] для нестационарной модели фильтрации $\beta = \frac{\partial \rho}{\partial P} \equiv const, \gamma = \frac{\rho}{\mu\beta} \equiv const,$ получим

$$\frac{\partial}{\partial t}(mp) - \frac{\partial}{\partial x}\left(\gamma k \frac{\partial p}{\partial x}\right) = 0. \tag{4}$$

Рассмотрим две одномерной модели двухфазной фильтрации: Баклея-Леверетта [14, 15], пропитки в цилиндрическом образце [14].

Модель Баклея-Леверетта описывает фильтрацию двух жидкостей в пористой среде при следующих допущениях:

- жидкости не смешиваются, несжимаемы, подчиняются линейному закону Дарси. Их плотность постоянна, источников и стоков нет;
- пористая среда полностью заполнена жидкостью, несжимаема, абсолютная проницаемость постоянна;
- поток одномерный, влияния гравитации, температурных эффектов,

Изм.	Лист	№ докум.	Подпись	Дата

капиллярного давления малы.

В этом случае система дифференциальных уравнений, описывающих модель имеет вид

$$u_{i}(t,x) = -\frac{kf_{i}(s_{i})}{\mu_{i}} \frac{\partial p_{i}(t,x)}{\partial x},$$

$$\frac{\partial \left(ms_{i}(t,x)\right)}{\partial t} + \frac{\partial u_{i}(t,x)}{\partial x} = 0, i = 1,2;$$

$$s_{1}(t,x) + s_{2}(t,x) = 1;$$

$$p_{1}(t,x) - p_{2}(t,x) = 0,$$
(6)

где i — номер фазы, t,x — временная и пространственная координаты, k — абсолютная проницаемость, m — пористость, μ_i — вязкости флюидов, $u_i(t,x)$ — скорости фильтрации флюидов, $f_i(s_i)$ — относительные фазовые проницаемости фаз, $p_i(t,x)$ — давления в фазах, $s_i(t,x)$ — насыщенности порового пространства фазами.

Используя условие заполнения флюидами всего порового пространства, получим выражение для давления и одно уравнение на насыщенности

$$(f_1(s) + \mu_0 f_2(s)) \frac{\partial p}{\partial x} = C(t),$$

$$q(t) = -\frac{k}{\mu_0} C(t), \mu_0 = \frac{\mu_1}{\mu_2},$$

$$\frac{\partial s}{\partial t} - \frac{q(t)F'(s)}{m} \frac{\partial s}{\partial x} = 0,$$

$$F(s) = \frac{f_1(s)}{f_1(s) + \mu_0 f_2(s)},$$

$$(7)$$

где q(t) – суммарный расход жидкости через трубку тока.

Применяя метод характеристик, получим решение уравнения на насыщенности (7)

$$x = x(s, t_0) + F'(s) \int_{t_0}^t \frac{q(y)dy}{m},$$

где $x(s,t_0)$ – начальное распределение насыщенности при $t=t_0$.

Далее, рассмотрим одну из моделей [1] капиллярной пропитки. В

Изм.	Лист	№ докум.	Подпись	Дата

заполненный газом цилиндрический образец пористой среды с непроницаемой боковой поверхностью с одного из концов впитывается жидкость. Справедливы уравнения (4). Так как вязкость газа по сравнению с вязкостью жидкости мала, то для газовой фазы давление можно считать постоянным

$$p_2(t,x) = p_0 = const, (8)$$

а также выполняется соотношение

$$p_0 - p_1(t, x) = \frac{\alpha}{d} J(s), d = \sqrt{\frac{k}{m'}}$$
(9)

где s — насыщенность жидкости, J(s) — функция Леверетта, α — межфазное натяжение d — характерный размер пор.

Из уравнений (5), (8), (9) можно получить одно уравнение на насыщенность жидкости

$$\frac{\partial}{\partial t}(ms) + \frac{\partial}{\partial x} \left(\frac{k}{\mu_1} f_2(s) F(s) J'(s) \frac{\partial}{\partial x} \left(\alpha \sqrt{\frac{m}{k}} J(s) \right) \right) = 0.$$

1.2 Фракталы и степенные законы в средах с фрактальными свойствами

В рамках данной работы будем пользоваться определением фрактала, как самоподобной кривой с размерностью Хаусдорфа D>1 строго больше топологической.

Одно из свойств объектов с фрактальной структурой – это необычное распределение массы, которое определяется соотношением, установленным Мандельбротом [1, 6]

$$M\sim L^D$$
,

где M — масса вещества, распределенного вдоль фрактала, L — размер пространственной области. Пусть $\rho(x)$ — плотность вещества, спроецированная на вещественную прямую. Тогда $M = \int \rho(x) dx \sim L^D$, откуда $\rho(x) = \rho^* x^{D-1}$.

Как известно [14] пористость m и абсолютная проницаемость k являются чисто геометрическими характеристиками. Будем рассматривать случай, когда

Изм.	Лист	№ докум.	Подпись	Дата

распределения этих характеристик обладают свойством фрактальности. В работе [6] на основе следствия из соотношения Мандельброта получены следующие формулы

$$m = \tilde{m}x^{(D_m - 1)}, k = \tilde{k}x^{(D_k - 1)},$$
 (10)

где $D_m, D_k, \widetilde{m}, \widetilde{k}$ — величины, которые можно вычислить по экспериментальным данным.

Так, в работе [6], применяя формулы (10), модель нестационарной фильтрации (4) обобщена на случай среды с фрактальной структурой

$$\frac{\partial}{\partial t} (\widetilde{m} x^{D_m - 1} p) - \frac{\partial}{\partial x} \left(\gamma \widetilde{k} x^{D_k - 1} \frac{\partial p}{\partial x} \right) = 0.$$

1.3 Дифференциальное исчисление на фрактальных кривых

В работе [2] введено интегральное и дифференциальное исчисление. Ниже выписаны основные определения и утверждения.

Пусть F – фрактальная кривая в пространстве \mathbb{R}^n .

Фрактальная кривая $F \subset \mathbb{R}^n$ является непрерывно параметризованной, если существует непрерывное взаимно-однозначное отображение $w: [a_0, b_0] \to F \subset \mathbb{R}^n$.

Подразбиение $P_{[a,b]}$ интервала $[a,b] \subset [a_0,b_0]$ — это конечное множество точек $\{a=z_0,z_1,...,z_n=b\},\ a< b.$

Для множества F и подразбиения $P_{[a,b]}, [a,b] \subset [a_0,b_0]$ определим функцию

$$\sigma^{\alpha}[F,P] = \sum_{i=0}^{n-1} \frac{|w(z_{i+1}) - w(z_i)|^{\alpha}}{\Gamma(\alpha+1)}, z_i \in P,$$

где $|\cdot|$ – евклидова норма в \mathbb{R}^n , $1 \le \alpha \le n$.

Грубой массой называется функция, которая определяется формулой

$$\gamma_{\delta}^{\alpha}(F, a, b) = \inf_{P_{[a,b]}: |P| \le \delta} \sigma^{\alpha}[F, P],$$

где
$$|P| = \max_{0 \le i \le n-1} (z_{i+1} - z_i).$$

Массовой функцией называется функция $\gamma^{\alpha}(F,a,b)$, задаваемая формулой

Изм.	Лист	№ докум.	Подпись	Дата

$$\gamma^{\alpha}(F, a, b) = \lim_{\delta \to 0} \gamma^{\alpha}_{\delta}(F, a, b), \tag{11}$$

если a=b, то $\gamma^{\alpha}(F,a,b)=0$.

Функция (1) обладает следующими свойствами:

- 1. $\gamma^{\alpha}(F,a,c) = \gamma^{\alpha}(F,a,b) + \gamma^{\alpha}(F,b,c)$, если $a_0 \le a < b < c \le b_0$ и $\gamma^{\alpha}(F,a,c) < \infty$.
 - 2. Если $b \leq b_1$, то $\gamma^{\alpha}(F, a, b) \leq \gamma^{\alpha}(F, a, b_1)$.
 - 3. Если $a \le a_1$, то $\gamma^{\alpha}(F, a_1, b) \le \gamma^{\alpha}(F, a, b)$.
 - 4. Если $\gamma^{\alpha}(F, a, b) < \infty$, то $\gamma^{\alpha}(F, a, z)$ непрерывна при $z \in [a, b]$.

В работе [2] показано, что массовая функция инвариантна относительно параметризации фрактальной кривой. В введенной мере (11) сумма конечна, что позволяет, в отличие от меры Хаусдорфа, численно рассчитывать данную меру фрактальной кривой.

Интегральная ступенчатая функция $S_F^{\alpha}(z)$ порядка α для множества F это функция, задаваемая формулой

$$S_F^{\alpha}(t) = \begin{cases} \gamma^{\alpha}(F, p_0, z), z \ge p_0; \\ -\gamma^{\alpha}(F, z, p_0), z < p_0, \end{cases}$$
(12)

где $p_0 \in [a_0, b_0]$ – произвольное, но фиксированное число (далее $p_0 = a_0$).

Величина γ -размерности множества F определяется соотношением

$$dim_{\gamma}(F) = inf\{\alpha: \gamma^{\alpha}(F, a_0, b_0) = 0\} =$$

$$= sup\{\alpha: \gamma^{\alpha}(F, a_0, b_0) = \infty\}.$$
(13)

Теорема 1. Для самоподобных фрактальных кривых F верно

$$dim_{\gamma}F = dim_{H}F = dim_{H}F$$
,

где $dim_H F$ – размерность Хаусдорфа.

Пусть $F \subset \mathbb{R}^n$, $f: F \to \mathbb{R}$, $\theta \in F$. Число l называется F-пределом функции f через точки F при $\theta' \to \theta$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \theta' \in F, |\theta' - \theta| < \delta \Rightarrow |f(\theta') - l| < \varepsilon.$$

Если l существует, то обозначается $l = F - \lim_{\theta \mapsto \theta} f(\theta')$.

Функция $f: F \to R$ называется F-непрерывной в точке $\theta \in F$, если

Изм.	Лист	№ докум.	Подпись	Дата

$$f(\theta) = F - \lim_{\theta' \to \theta} f(\theta').$$

Определим однозначное отображение $J(\theta) = S_F^{\alpha}(w^{-1}(\theta))$.

 F^{α} -производная функции f в точке $\theta \in F$ задается формулой

$$D_F^{\alpha} f(\theta) = F - \lim_{\theta' \to \theta} \frac{f(\theta') - f(\theta)}{J(\theta') - J(\theta)},$$
(14)

если предел существует.

Для $z_1, z_2 \in [a_0, b_0], z_1 \le z_2$ определим сегмент $\mathcal{C}(z_1, z_2)$

$$C(z_1,t_2)=\{w(z')\colon\! z'\in [z_1,z_2]\}.$$

Теорема 2. Если $D_F^{\alpha}f(\theta)$ существует для всех $\theta \in C(a,b)$, тогда f является F-непрерывной при $\theta \in C(a,b)$.

Обозначим B(F) — класс ограниченных функций $h: F \to \mathbb{R}$, B([c,d]) — класс ограниченных функций $h: [c,d] \to \mathbb{R}$.

Обозначим $\varphi: B(F) \to B([S_F^\alpha(a_0), S_F^\alpha(b_0)])$ такое, что для каждого $t \in [a_0, b_0]$ справедливо

$$\varphi[f]\big(S_F^\alpha(z)\big) = f\big(w(z)\big).$$

Теорема 3. Пусть функция $h \in B(F)$ такая, что $g = \varphi[h]$ дифференцируема в смысле обычной производной на отрезке $[S_F^{\alpha}(a_0), S_F^{\alpha}(b_0)]$. Тогда $D_F^{\alpha}f(\theta)$ существует для всех $\theta \in F$ и

$$D_F^{\alpha}h(\theta) = \frac{dg(v)}{dv}\Big|_{v=I(\theta)}.$$
 (15)

Теорема 4. Пусть функция $h \in B(F)$ дифференцируема в смысле F^{α} -производной при любых $\theta \in F$. Пусть $g = \varphi[h]$, тогда dg/dv существует в точках $v = J(\theta)$ и справедливо

$$\left. \frac{dg(v)}{dv} \right|_{v=I(\theta)} = D_F^{\alpha} h(\theta). \tag{16}$$

Рассмотрим алгоритм [9] Монте-Карло для вычисления массовой функции $\gamma^{\alpha}(F,a,b)$ для кривой F с непрерывной параметризацией $w(z), z \in [a,b]$.

В качестве начального подразбиения P рассматривается равномерная сетка с диаметром $|P| = \delta/4$. Выберем два случайных числа $x, y \in [a, b], x < y$. Пусть

Изм.	Лист	№ докум.	Подпись	Дата

 $P' = \{z_i \in P \cap [x,y] : 0 \le i \le m\}$. Далее, случайным образом преобразуем P' в P'' одним из следующих способов:

А. С вероятностью $p_c = \min(1, \delta/(y-x))$ сдвигаем точки $z_i, i = 1..m$ на случайную величину $[-\delta/2, \delta/2]$, если полученное подразбиение P'' удовлетворяет условию $|P''| \leq \delta$.

Б. С вероятностью $p_d = \min(1, \delta/(y-x))$ удалим точки $z_i, i = 1..m$, если полученное подразбиение P'' удовлетворяет условию $|P''| \leq \delta$. С. С вероятностью $p_h = \min(1, \delta/(y-x))$ добавим точку в каждом интервале $[z_i, z_{i+1}], i = 0..m-1$.

Рассмотрим новое подразбиение $P_1 = (P \cap [a,x]) \cup P'' \cup (P \cap [y,b])$ и функцию

$$\sigma^{\alpha}[F,P] = \sum_{i=0}^{n-1} \frac{|w(z_{i+1}) - w(z_i)|^{\alpha}}{\Gamma(\alpha+1)}, z_i \in P.$$

Если после преобразовании одним из способов выше способов подразбиение P_1 удовлетворяет условию $\sigma^{\alpha}[F,P_1]<\sigma^{\alpha}[F,P]$, то разбиение P_1 принимается за начальное и алгоритм полностью повторяется. Иначе, снова выбираются два случайных числа x,y откуда получаем P',P'',P_1 и т.д.

Авторы предполагают независимость массовой функции от δ , поскольку $\gamma^{\alpha}_{\delta}(F,a,b)$ сходится к конечной ненулевой величине. Справедливость этого предположения авторы показывают на примере кривой Коха.

Изм.	Лист	№ докум.	Подпись	Дата