Modelação e Simulação Inteligente

Mestrado em Engenharia Informática

Sistemas de Informação e Conhecimento

Paulo Matos

@ DFI/ISFP

1

Teachers

• Paulo Matos

• Email: psm@isep.ipp.pt

• Gabinete: B119

ODSS

Specific Aims

- By the end of this course, the student must be able to construct complete simulation studies:
 - CO1 Interpret the system in study through simulation techniques (Bloom
 - CO2 Design simulation models for medium complexity systems (Bloom level 4)
 - CO3 Construct simulation studies by applying the adequate simulation approach and good practices of engineering (Bloom level 6)

2023/24

Specific Aims

- By the end of this course, the student must be able to construct complete simulation studies:
 - CO4 Validate model and interpret simulation results (Bloom level 5)
 - CO5 Estimate future system performance (Bloom level 5)
 - CO6 Describe in syntactic and semantically rigorous form, the processes and results of the previous points, adopting appropriate engineering sciences and best practices (Bloom level 4)

2023/24

NODSS

@ DFI/ISE

5

Contents

- What is Simulation?
 - The nature of Simulation
 - Advantages, Disadvantages, and Pitfalls of Simulation
 - Steps in a Simulation Study
- Modelling
 - Systems, Models and Simulation
 - Modelling Complex Systems

MODSS

© DEI/ISEP

Contents

- Computer Simulation
 - Discrete Systems Simulation: activities, events and processes approach
 - Programming Simulation Studies: basic probability and statistics, random number generators, selecting input probability distributions, output data analysis
 - Simulation studies using General-Purpose Languages
 - Verification and Validation

2023/24 MODSS 7

7

Contents

- Simulation Software
 - Classification of Simulation Software
 - Desirable software features
 - Comparison of Simulation Languages
 - Development of a project in a simulation language
- Distributed and Agent-based simulation
 - Characteristics
 - Development Platforms

2023/24 MODSS 8

Main Teaching Material

- Titles (available at the school library)
 - "Simulation, Modelling and Analysis", Averill M. Law, W. David Kelton, McGraw Hill
 - Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018.
 Co-Simulation: A Survey. ACM Comput. Surv. 51, 3, Article 49 (May 2019), 33 pages.
 DOI:https://doi.org/10.1145/3179993
 - B. R. Barricelli, E. Casiraghi and D. Fogli, "A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications," in IEEE Access, vol. 7, pp. 167653-167671, 2019, doi: 10.1109/ACCESS.2019.2953499.
 - Bécue, A.; Maia, E.; Feeken, L.; Borchers, P.; Praça, I. A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future. Appl. Sci. 2020, 10, 4482. https://doi.org/10.3390/app10134482

2023/24 MODS 9

9

Main Teaching Material

- Moodle
 - Teaching Materials
 - Working documents
 - Project Proposals

2023/24 MODSS

Teacher's Assessment

EVALUATION DURING THE TERM WITH MANDATORY FINAL EVALUATION

- · During the semester
 - 1 Simulation Project with two milestones (groups of 2 students)

NFreq = N_P.1*30% + N_P.2*70%

- Exam by the end of the semester
 - PExam

Students evaluation is individual! Different scores may be achieved by diferente members of the same working group

2023/24 MODSS

© DEI/ISEP

11

Teacher's Assessment

EVALUATION DURING THE TERM AND 1st EXAM

- ➤ Nfinal = NFreq*70% + PExam*30%
 - Min NFREQ = 9,5
 - Min PExam = 8,0

EVALUATION 2nd EXAM

- ➤ Nfinal = NFreq*70% + PExam*30%
 - Min NFREQ = 9,5

• Min PExam = 8,0

12

2023/24

Teacher's Assessment

Simulation Project with two milestones

- NProj_P.1 Analysis of an emergent simulation trend (30%), technical report and slides to present for assessment.
- NProj_P.2 Simulation project (70%), based on generic programming language or on the emergent technology studied in Nproj_P.1. The system to simulate is to be chosen by students. Students must deliver the implementation, a technical report and discuss the project with the professor.

2023/24 MODSS 13

13

Teacher's Assessment

Deadlines

Milestones	Deadline	To deliver:
N_P.1	deliver on week 7 (7 April) presentation on week 7 (T classes)	Paper + Slides Presentation
N_P.2	deliver week 15 (14 June) presentation week 16	Source code + technical report Presentation mandatory

2023/24 MODSS 14

Supplemental Exams

 Retake the final exam only, keeping the other components obtained previously.

2023/24

MODSS

© DEI/ISE

15

