Prediction of Fine Dust by Weather

22000120 Kim Shin 22000350 Seo Jueun 22000532 Lee Seungjae 22000690 Jung Yiju

CONTENTS

- 1. Problem Definition
- 2. Background
- 3. Proposed Method
- 4. Results

Problem Definition

The average annual fine dust level is more than OECD average

Problem Definition

Fine dust causes conjunctivitis, rhinitis, and bronchitis

Problem Definition

People want to predict the concentration of fine dust and prepare for it

Background

- X

Air quality information and weather information

- X

Linear prediction techniques, nonlinear techniques using machine learning and time series models

Proposed Method

(Random Forest)

-Form multiple decision trees

-New data points pass through each tree at the same time

-Each tree will vote on the results classified to select the result with the most votes as the final classification result

Proposed Method

(Random Forest)

	PM10	일시	평균풍속 (m/s)	최대풍속 (m/s)	최대풍속풍향 (deg)	평균기은 (℃)	평균최고기온 (℃)	평균최저기온 (℃)	강수량 (mm)	평균습도 (%rh)	최저습도 (%rh)	일: : 합 rr)	일: <mark>1</mark> 율 %)	일 <mark>/</mark> 합 (MJ/ <mark>2</mark>)
0	60.0	Jan-12	2.5	7.5	320	-2.8	1.3	-6.3	6.7	49.0	12,0	1 0.5	62 05	23- 50
1	50.0	Feb-12	2.9	8.1	290	-2.0	3.0	-6.0	0.8	43.0	11.0	2. 4.9	7 74	32: 25
2	47.0	Mar- 12	3.5	10.2	290	5.1	9.5	1.5	47.4	52.0	9.0	11 1.8	5 63	361 51
3	51.0	Apr-12	3.4	12.0	290	12.3	17.9	7.8	157.0	54.0	9.0	2 2.5	51 72	44: 48
4	52.0	May- 12	2.7	8.6	250	19.7	25.1	15.4	8.2	48.0	11.0	2. 1.3	51 04	55: 40
115	21.0	Aug- 21	2.1	8.3	320	25.9	29.7	22.8	211.2	74.0	39.0	1. 7.3	3(24	42 88
116	15.0	Sep-21	2.3	7.1	320	22.6	26.9	18.8	131.0	71.0	38.0	1 2.0	41 82	47- 13
117	27.0	Oct-21	2.1	10.6	290	15.6	20.5	11.6	57.0	70.0	25.0	1 8.4	44 38	351 62
118	46.0	Nov- 21	2.1	9.3	270	8.2	13.1	4.0	62.4	68.0	27.0	1 3.6	5: 57	27 64
119	39.0	Dec-21	2.3	8.1	290	0.6	5.1	-3.5	7.9	62.0	26.0	1 5.4	6.07	251 25
120 rd	ws × 1	4 columns	;											

```
In [158]: #기본적인 randomforest모형

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score # 정확도 함수

clf = RandomForestClassifier(n_estimators=100, max_depth=100,random_state=0)
clf.fit(train_x,train_y)

predict1 = clf.predict(test_x)
print(accuracy_score(test_y,predict1))

0.333333333333333333
```


Proposed Method

(Multiple Linear Regression)

Linear approach for modeling the relationship between a scalar response and one or more explanatory variables

Add solar radiation data

```
<u>'평균최고기온(☆)', </u>'평균최저기온(☆)',
[348]: x = df[['평균품속(m/s)', '최대품속(m/s)', '최대품속품향(des)'
              y = df[['PM10']]
      x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.9, test_size=0.1)
[349]: mlr = LinearRegression()
      mlr.fit(x_train, y_train)
[349]: LinearRegression()
[350]: y_predict = mlr.predict(x_test)
[351]: plt.scatter(y_test, y_predict, alpha=0.4)
      x = y = plt.xlim()
      plt.plot(x, y)
      plt.xlabel("Actual Rent")
      plt.ylabel("Predicted Rent")
      plt.title("MULTIPLE LINEAR REGRESSION")
      plt.show()
                   MULTIPLE LINEAR REGRESSION
        50
        30
[352]: accuracy = mlr.score(x_test, y_test)
      print("{:.2f}%".format(accuracy * 100))
      77.86%
```


Exclude solar radiation data

```
[468]: x = df[['평균풍속(m/s)', '최대풍속(m/s)', '최대풍속풍향(deg)', '평균기온(´C)', '평균최고기온(´C)', '평균최저기온(´C)', '강수량(mm)', '평균습도(%rh)', '최저습도(%rh)']]
       x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.9, test_size=0.1)
[469]: mlr = LinearRegression()
       mlr.fit(x_train, y_train)
[469]: LinearRegression()
[470]: y predict = mlr.predict(x test)
[471]: plt.scatter(y_test, y_predict, alpha=0.4)
       x = y = plt.xlim()
       plt.plot(x, y)
       plt.xlabel("Actual Rent")
       plt.ylabel("Predicted Rent")
       plt.title("MULTIPLE LINEAR REGRESSION")
       plt.show()
                       MULTIPLE LINEAR REGRESSION
          60
          30
                                Actual Rent
[472]: accuracy = mlr.score(x_test, y_test)
       print("{:.2f}%".format(accuracy * 100))
```


Exclude the data related to the solar radiation with X variables

Linear regression techniques are more effective

Accuracy about 70 to 80 percent

