1. Wstep

Przy rozwiązaniach numerycznych, struktura macierzy jest bardzo ważna. Jeśli ona nie jest rządka, to nie możemy z nią zrobić coś sensownego dla optymizacji złożoności. Przy macierzach wstęgowych, które są rządki, już możemy ją optymalizować, wykorzystując pewne algorytmy, żeby niepotrzebne elementy nie zaśmiecali pamięć.

2. Zadanie

Macierz, która jest dana – wstęgowa. Większość elementów w tej macierze są zerami. Żeby nie zaśmiecać pamięć, macierz będzie przetrzymywana w formie wektorów, bez zer. Użyje metody LU, bo ona zachowuje strukturę macierzy. W tym wypadku zera i tak będą zerować macierz L i U, więc nie potrzebujemy ich i tak. Będę używać takich wzorów, dla faktoryzacji macierzy.

$$\begin{split} U_{i,i} &= A_{i,i} - \sum_{k < i} L_{i,k} U_{k,i} \\ U_{i,i+1} &= A_{i,i+1} - \sum_{k < i} L_{i,k} U_{k,i+1} \\ U_{i,i+2} &= A_{i,i+2} - \sum_{k < i} L_{i,k} U_{k,i+2} \end{split}$$

$$L_{i+1,i} = \frac{A_{i+1,i} - \sum_{k < i+1} L_{i+1,k} U_{k,i}}{U_{i,i}}$$

W zadaniu trzeba wyznaczyć y = $A^{-1}x$ dla i wyznacznik macierzy A, dla N = 100:

$$A = \begin{pmatrix} 1.2 & \frac{0.1}{1} & \frac{0.4}{1^2} \\ 0.2 & 1.2 & \frac{0.1}{2} & \frac{0.4}{2^2} \\ & 0.2 & 1.2 & \frac{0.1}{3} & \frac{0.4}{3^2} \\ & & & \dots & \dots & \dots \\ & & & 0.2 & 1.2 & \frac{0.1}{N-2} & \frac{0.4}{(N-2)^2} \\ & & & & 0.2 & 1.2 & \frac{0.1}{N-1} \\ & & & & 0.2 & 1.2 & \frac{0.1}{N-1} \end{pmatrix}$$

3. Wyniki

$$y = \begin{pmatrix} 0.0328713348604139 \\ 1.3396227980963753 \\ 2.066480295894664 \\ 2.825543605175336 \\ 3.557571715528883 \\ 4.284492868897645 \\ \vdots \\ 71.53915685603329 \end{pmatrix}$$

det(A) = 78240161.00959387

4. Podsumowanie

Trzeba zawsze uważać na strukturę macierzy i podbierać odpowiedni algorytm dla niej. Może to nam zaoszczędzić dużo pamięci oraz czasu.