数据结构与算法笔记

Χ

2017年10月25日

本文是作者关于数据结构与算法的读书笔记,侧重于记录和总结算法相关的数学方法,主要参考了Mark Allen Weiss的数据结构与算法分析(C语言描述)。本文的章节顺序,数学符号等都尽量与该书保持一致,同时也参考了网络资源或者其他书籍,均在对应章节或者习题序号下列出。由于水平所限,文中谬误在所难免,欢迎指正。

目录

	前言	2
1	初等数论基础	4
	1.1 基本概念	4
	1.1.1 整除性	4
2	算法分析	5
	2.1 算法复杂度的数学定义	5
	2.2 算法复杂度的性质	5

1 初等数论基础 4

1 初等数论基础

[夜深人静写算法: 初等数论, http://www.cppblog.com/menjitianya/archive/2015/12/02/212395.html]

1.1 基本概念

1.1.1 整除性

若a,b为整数,a整除b是指b是a的倍数,a是b的约数,记做a|b。关于整除的性质有

- 1. 任意性: 若a|b,则对于任意非零整数m,都有am|bm。

- 4. 组合性: 若c|a且c|b,则对于任意整数m,n,都有c|ma+nb。

Exercise 1.1. 假设x,y,z均为整数,若11|(7x+2y-5z),求证11|(3x-7y+12z)。

Solution 1.1.

Proof. 令3x - 7y + 12z = m(7x + 2y - 5z) + 11(ax + by + cz),其中m, a, b, c均为整数。 如果等式要成立,则两边x, y, z的系数均要相等,得到

$$\begin{cases}
7m + 11a = 3 \\
2m + 11b = -7 \\
-5m + 11c = 12
\end{cases} \tag{1}$$

可知其中的一个解为m = 2, a = -1, b = -1, c = 2。

故可以得到3x - 7y + 12z = 2(7x + 2y - 5z) + 11(-1x - 1y + 2z)。即(3x - 7y + 12z)可以分解为11与(7x + 2y - 5z)的加权之和。

又因为11|(7x+2y-5z),以及11|11,故根据整除性的组合性质,11|(3x-7y+12z)。

2 算法分析 5

2 算法分析

2.1 算法复杂度的数学定义

Definition 2.1. 关于算法的复杂度本文使用如下定义

- 1. 如果对于所有足够大的n, T(N)的上界由f(N)的常数倍决定,也就是说,如果存在正常数c和 n_0 ,使得当 $N \ge n_0$ 时,都有 $T(N) \le cf(N)$,则记为 $T(N) = \mathcal{O}(f(N))$ 。
- 2. 对于所有足够大的n, T(N)的下界由g(N)的常数倍决定, 也就是说, 如果存在正常数c和 n_0 , 使得 当 $N \ge n_0$ 时, 都有 $T(N) \ge cg(N)$, 则记为 $T(N) = \Omega(g(N))$ 。
- 3. 如果对于所有足够大的n,T(N)的上界和下界由h(N)的常数倍决定,也就是说,如果存在正常数 c_1,c_2 和 n_0 ,使得当 $N\geq n_0$ 时,都有 $c_1g(N)\leq T(N)\leq c_2g(N)$,则记为 $T(N)=\Theta(g(N))$ 。
- 4. 如果 $T(N) = \mathcal{O}(p(N))$ 且 $T(N) \neq \Theta(p(N))$, 则T(N) = o(p(N))。

2.2 算法复杂度的性质

Theorem 2.1. 如果 $T_1(N) = \mathcal{O}(f(N))$ 且 $T_2(N) = \mathcal{O}(g(N))$,那么

- $T_1(N) + T_2(N) = \max(\mathcal{O}(f(N)) + \mathcal{O}(g(N)))$ •
- $T_1(N)T_2(N) = \mathcal{O}(f(N)g(N))$.

Proof.

Theorem 2.2.

对于任意常数k, $\log^k N = \mathcal{O}(N)$ 。该条定理说明对数增长非常缓慢。