## **IE1204** Digital Design:



# L3: CMOS circuits, Implementation Technologies

Masoumeh (Azin) Ebrahimi KTH/ICT mebr@kth.se

## **IE1204 Digital Design**



# Transistor - a switch with no moving parts



## Why CMOS?

- CMOS transistors are easy to manufacture
- CMOS transistors are made from ordinary sand
   => cheap raw materials
- A transistor is easy to get to work as a switch

### **PMOS and NMOS transistors**





#### **PMOS**

A PMOS transistor (p-channel MOS) is conducting (switch is closed) if the gate voltage ( $V_{GS}$ ) is close to  $V_{SS}$ .

#### **NMOS**

An NMOS (n-channel) is conducting (switch is closed) if the gate voltage  $(V_{GS})$  is close to  $V_{DD}$ .

### The structure of a CMOS circuit



### **PMOS and NMOS Transistors**



## **CMOS** inverter



- CMOS circuits are composed of both PMOS and NMOS transistors
- CMOS stands for Complementary MOS
- Area: A<sub>Inverter</sub> = 2 Transistors

| X | $T_1$ $T_2$ | f |
|---|-------------|---|
| 0 | on off      | 1 |
| 1 | off on      | 0 |

(A) Circuit

(B) Truth table and transistor states

# CMOS inverter voltage transfer characteristic



| Power Supply | 5.0V | 3.3V | 1.8V |
|--------------|------|------|------|
| $V_{OH}$     | 5.0  | 3.3  | 1,8  |
| $V_{IH}$     | 2,9  | 1,9  | 1.0  |
| $V_{IL}$     | 2,1  | 1,4  | 0.8  |
| $V_{OL}$     | 0.0  | 0.0  | 0.0  |

$$V_T = 0.2V_{DD}$$

Low Noise Margin: NM<sub>L</sub>= V<sub>IL</sub>-V<sub>OL</sub>

High Noise Margin  $NM_H = V_{OH} - V_{IH}$ 



## One point is unstable!



- CMOS circuit has a very stable transfer function
- At  $V_{into} = V_{DD}/2$  there is an unstable point, then both  $T_1$  and  $T_2$  are conducting
- If a circuit temporarily stuck in this mode, it enters a state called *metastability*
- If this state lasts for a long time,
   the transistors in the circuit may be
   damaged by the high current

Metastability will be discussed in later lectures

## Power consumption of CMOS

- NMOS and PMOS circuits consume both static and dynamic power
  - Static power is dissipated by the current that flows in the steady state
  - Dynamic power is dissipated when the current flows because of changes in the signal level

## **CMOS**–Dynamic power consumption!

Classical CMOS has *only* losses exactly at the *switching point*. The Power dissipation  $P_F$  is proportional to the clock-frequency!





# What would the world be without the CMOS?!





## **NAND** gate



| $V_A$               | $V_{B}$             | $V_{OH}$            |
|---------------------|---------------------|---------------------|
| V <sub>SS</sub> (0) | V <sub>SS</sub> (0) | V <sub>DD</sub> (1) |
| V <sub>SS</sub> (0) | V <sub>DD</sub> (1) | V <sub>DD</sub> (1) |
| V <sub>DD</sub> (1) | V <sub>SS</sub> (0) | V <sub>DD</sub> (1) |
| V <sub>DD</sub> (1) | V <sub>DD</sub> (1) | V <sub>SS</sub> (0) |

**Area:** A<sub>NAND</sub>= 4 Transistors

## **NOR** gate



| $V_A$               | $V_{B}$             | $V_{OH}$            |
|---------------------|---------------------|---------------------|
| V <sub>SS</sub> (0) | V <sub>SS</sub> (0) | V <sub>DD</sub> (1) |
| V <sub>SS</sub> (0) | V <sub>DD</sub> (1) | V <sub>SS</sub> (0) |
| V <sub>DD</sub> (1) | V <sub>SS</sub> (0) | V <sub>SS</sub> (0) |
| V <sub>DD</sub> (1) | V <sub>DD</sub> (1) | V <sub>SS</sub> (0) |

**Area:** A<sub>NOR</sub>= 4 Transistors

## **Group work**



Extract the function of the following circuit.

PUN network:  $F = \overline{X}_1 + \overline{X}_2 \overline{X}_3$ 

PDN network:  $\overline{F} = X_1(X_2 + X_3) = \overline{X_1 + X_2 X_3}$ 



## **Negative logic**

- You can also reverse the logic and let L (low voltage) represent the logic 1 and H (high voltage) represent the logic 0
  - This is called negative logic
- An AND function becomes an OR function and vice versa
  - It is not important which logic is used negative or positive, but positive logic is more traditional

## **Three-state (Tri-state)**

A CMOS-gate in addition to "1" or "0" is also provided with a third output state - the three-state "Z". (= unconnected output).

If many outputs are connected to the same line ("bus"), you can use one of the outputs at a time. The other outputs are held in the three-state condition.





## **Transmission gate (pass gate)**





- The pass gate acts as a switch controlled by E
- If E = 0, the switch is open, Q = Z
- If E = 1, the switch is closed, Q = A
- Pass gates have a smaller driving capacity than ordinary gates

| V <sub>A</sub> | V <sub>E</sub> | V <sub>OH</sub> |
|----------------|----------------|-----------------|
| L              | L              | Z               |
| L              | Η              | L               |
| Н              | L              | Z               |
| Н              | Н              | Н               |

Area:  $A_{TG}$ = 2 Transistors

## Multiplexer

#### **Example: MUX is a dataselector**



$$Q = XS + YS$$







The inverter is denoted by a circle

## MUX implementation by using Transmission gates



Area:  $A_{mux}$ = 6 Transistors

## XOR implementation by using Transmission gates



**Area:** A<sub>mux</sub>= 8 Transistors

Hardly obvious?

## XOR implementation by using Transmission gates





# Things Take Time ... About delays in circuits

## **Delays in circuits**

- Each wire in an electronic circuits has a capacitance
- Capacitance has a negative effect on the speed of operation of logic circuits



## **Typical delays**

NAND, NOR T

NOT ½ T, T (if implemented using

NAND-gate)

AND, OR 2T (2 NANDs in a row)

XOR, XNOR, MUX 3T...5T

XOR, MUX (using pass-gate) 2T

## **Optimized structures (MUX)**







Area:  $A_{MUX} = 2+6+6+6=20$ 

**Transistors** 

Delay:  $T_{MUX} = 5T_{NAND}$ 

Area:  $A_{MUX}$ = 6 Transistors

Delay: T<sub>MUX</sub>= ~2T<sub>NAND</sub>

Area:  $A_{MUX}=2+4+4+4=14$ 

**Transistors** 

**Delay:** T<sub>MUX</sub>= 3T<sub>NAND</sub>



## **Optimized structures (XOR)**



Area:  $A_{MUX}$ = 2+2+6+6+6=22

**Transistors** 

Delay:  $T_{MUX} = 5T_{NAND}$ 

#### **NAND** only



**Area:** A<sub>MUX</sub>= 16 Transistors

Delay:  $T_{MUX} = 3T_{NAND}$ 

#### **DeMorgan**



**Area:** A<sub>MUX</sub>= 2+2+4+4+4=16 Transistors

Delay: T<sub>MUX</sub>= 3T<sub>NAND</sub>



**Area:** A<sub>MUX</sub>= 2x4=8 Transistors

Delay:  $T_{MUX} = \sim 2T_{NAND}$ 

### Fan-in

- Fan-in is the number of inputs to the gate.
- If a gate has many inputs, it has a larger internal capacitance => its internal delay T<sub>i</sub> (also called the intrinsic delay) becomes larger.

## **Gates with more than 2 inputs**



- Gates with more than three or four inputs are used rarely
- The internal capacitance becomes too large and gates too slow
- A long line of transistors connected in series gives long delay!

## High fan-in is solved with treestructures



$$a \cdot b \cdot c \cdot d = (a \cdot b) \cdot (c \cdot d)$$
 
$$\overline{(a \cdot b) + (c \cdot d)} = a \cdot b \cdot c \cdot d$$

### More tree structures ...

### Fan-out

- Fan-out is the number of other gates that a specific gate drives
- Each of the driven gates increases the capacitive load on f



- (A) Inverter that drives *n* other inverters
- (B) Equivalent circuit for timing purposes

## Effect of fan-out on propagation delay

The propagation time for different fan-outs



## **Buffering**

- A buffer is a circuit that implements the function f(x) = x
- They have larger transistors and can drive higher-than-normal capacitive loads
- They are also used when high current flow is needed to drive external devices

## **High Fan-out: Use Buffers**







| X | En | f |
|---|----|---|
| 0 | 0  | Z |
| 0 | 1  | 0 |
| 1 | 0  | Z |
| 1 | 1  | 1 |





Non-Inverting Buffer

High-Fan-Out Buffer

**Tri-State Buffer** 

When En = 0, f is disconnected from x

When En = 1, f = x

## **Critical Path (Longest path)**

$$f = \sum m (3,2,0) = \overline{x}_2 x_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$



#### Critical Path (cont'd.)

$$f = x_{0}x_{1}x_{2} + x_{0}x_{2} + x_{1}x_{2}$$

$$x_{0}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{2}$$

$$x_{5}$$

$$x_{2}$$

$$x_{4}$$

$$x_{2}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{2}$$

 $x_0 x_1 x_2$  all pass NOT, AND, and OR on their way to the output f, but  $x_2$  has the load of *three* inputs (it is two for  $x_0$  and  $x_1$ ). Thus "Critical path" becomes from  $x_2$  to f!

#### **Signal Racing**



#### Look-up tables (LUT)



A LUT with *n* inputs can realize all combinational functions with up to *n* inputs

The usual size in an FPGA is n = 4

Two-input LUT

# **Example: XOR gate**





# 7400 Series Standard Chips



(a) Dual-inline package



(b) Structure of 7404 chip

# Implementation of a logic function



An implementation of  $f = x_1x_2 + x_2\overline{x}_3$ 

## Implementation of a logic function



An implementation of  $f = x_1x_2 + \overline{x}_2x_3$ 

#### **Three-way light control**

Brown/Vranesic: 2.8.1

Suppose that we need to be able to turn on / off the lamp from three different places.



| $x_1$ | $\mathcal{X}_2$ | $x_3$ | f |
|-------|-----------------|-------|---|
| 0     | 0               | 0     | 0 |
| 0     | 0               | 1     | 1 |
| 0     | 1               | 0     | 1 |
| 0     | 1               | 1     | 0 |
| 1     | 0               | 0     | 1 |
| 1     | 0               | 1     | 0 |
| 1     | 1               | 0     | 0 |
| 1     | 1               | 1     | 1 |



#### **Three-way light control**

$$f = \sum m(1,2,4,7) = \bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 \bar{x}_3$$



(a) Sum-of-products realization

#### **NAND-NAND**

If we change to NAND-NAND all necessary gates are included with the simulator.

7404

2A 3

3A 5

3Y 6

GND 7

14 VCC

13 6A

12 6Y

10 5Y



You must enter the pin number in the schematic - otherwise



#### Simulate!



#### **Summary**

- Logic gates can be implemented with CMOS technology
- Logic circuits have a delay
- CMOS circuits have relatively low power consumption