Dag Tanneberg¹

Potsdam Center for Quantitative Research University of Potsdam, Germany November 8/9, 2018

¹Quantitative Social Scientist, www.dtanneberg.de

Introduction

Introduction

0000

Before we start...

- Quit & reopen RStudio.
- Open the notebook "notebook_06.Rmd" in RStudio
- Load "./06/dta/asoiaf.csv" from the course material.
- Execute the following code below. What does it do?

```
asoiaf[, "is dead"] <- !is.na(asoiaf[, "book of death"])
```

What do we intent to do?

- Question: What's the chance that Jon Snow is going to die?
- **Means**: Regression on a linear combination of predictors

$$p(Death = 1|x, \beta) = \sum_{K} \beta_k x_k$$

■ Caveat: Chance of death is not a well-behaved response.

Outline

Introduction

0000

- 1 Introduction
- 2 Linear Models in \mathcal{R}
- 3 Working With Results
- 4 Generalized Linear Models
- 5 Checking Assumptions
- 6 Summary

Linear Models in ${\cal R}$

Linear Models in \mathcal{R}

000000

Checking Assumptions

```
fit <- lm(
  formula = <formula>,
  data = <data>,
  subset = <subset>,
  weights = <weights>,
  na.action = na.omit, # Retains only complete cases.
  <...> # Further options.
)
```

\mathcal{R} 's Formula Interface²

Generic Example

$$y \sim x_1 + x_2 + \dots + x_k$$

Formula Creation

Symbol	Meaning	Example
:	Specify an interaction	$y \sim x : z \Rightarrow y = xz$
*	Specify all possible interactions	$y \sim x * z \Rightarrow y = x + z + xz$
^	Specify interactions up to some degree	$y \sim (x+z)^2 \Rightarrow y = x+z+xz$
	Wildcard for all other variables	$y \sim . \Rightarrow y = x + z + w + \dots$
-	Remove variable(s)	$y \sim (x+z)^2 \dot{x}: z \Rightarrow y = x+z$
-1 OR $0+$	Remove the intercept	$y \sim x - 1 \text{ OR } y \sim 0 + x$
I()	Arithmetical transformation	$y \sim I(x^2) \Rightarrow y = x^2$
function	Other mathematical transformations	$\log 10(y) \sim x \Rightarrow log_{10}(y) = x$
2 1 1	IC I/ I CC D 0011 D 1 A 11	CL II L I M

²Adapted from Kabacoff, R. 2011. R in Action. Shelter Island: Manning Publications, p. 178.

\mathcal{R} 's Formula Interface, contd.

Linear Models in R.

Exercise How would you write the following formulas?³

- y = a + x + z + xz
- $y = a + x + x^2 + x^3$
- $\log_{10}(y) = x + z + w + xz + xw + wz$
- 4 y as a function of variables in the data but k

³Assume a is the constant.

Get Your Hands Dirty

Now it's your turn. Use the **asoiaf** data to

- regress is_dead on
- allegiances,
- the full interaction of gender and nobility, and
- a cubic polynomial on age_in_chapters.
- Save the results to an object called **myfit**.

Linear Models in \mathcal{R}

000000

Summary

Checking Assumptions

```
myfit <- glm(
  formula = is_dead ~ 0 + allegiances +
    gender * nobility +
    age_in_chapters + I(age_in_chapters^2) +
    I(age_in_chapters^3),
    data = asoiaf
)</pre>
```

Working With Results

A Menu of Typical Options⁴

0000

Function	Output
summary()	Display detailed model results
coef()	Display fitted model parameters
confint()	Provide confidence intervals
fitted()	Return fitted values
residuals()	Return residual values
anova()	Return an ANOVA table for a fitted
	model or compare fitted models
vcov()	Return the variance-covariance matrix
AIC()	Return Akaike's Information Criterion
plot()	Display diagnostics plots
predict()	Predict response values for new data

⁴Adapted from Kabacoff, R. 2011. R in Action. Shelter Island: Manning Publications, p. 179.

Generic Sequence

- Define scenarios to predict
- 2 Create a date frame which contains those scenarios
- 3 Use predict() to return quantities of interest
- 4 Summarize the results

Example: How does the chance to die change over time?

```
# Steps 1 & 2 Prediction scenarios
pred dta <- data.frame(</pre>
  allegiances = "Baratheon",
  gender = mean(asoiaf$gender),
  nobility = mean(asoiaf$nobility),
  age_in_chapters = 1:343, stringsAsFactors = FALSE
# Step 3 Predict
pred_dta[, "fitted"] <- predict(myfit,</pre>
  newdata = pred dta)
# Step 4 Summarize
ggplot(data = pred dta,
  aes(x = age in chapters, y = fitted)) + geom line()
```

Generalized Linear Models

Intuition

Problem

- a. We don't obseverve probabilities but discrete events.
- **b.** Probabilities are restricted to [0,1], but $X\beta$ can take any value.
- Challenge: Map $X\beta$ to the domain of our response
- Applies to many quantities of interest, e.g.,
 - Household income
 - Satisfaction with democracy
 - Number of bills per session of parliament
- **GLMs**: link function $g(\cdot)$ relates response to $\mathbf{X}\beta$
 - logit transformation $[ln(\frac{p}{1-p})]$ for binary DVs
 - \blacksquare natural log $(ln(\mu))$ for count data

Generic Format of Fitting GLMs

Family Generators and Link Functions in glm()⁵

A Practical Example

	link = " <arg>"</arg>							
family	μ identity	μ^{-1} inverse	$ln(\mu)$ log	$ln(\frac{\mu}{1-\mu})$ logit	$\Phi(\mu)$ probit	$ln[-ln(1-\mu)]$ cloglog	$\sqrt{\mu}$ sqrt	$1/\text{mu}^2$
gaussian()	•	0	0					
binomial()			0	•	0	0		
poisson()	0		•				0	
Gamma()	0	•	0					
inverse.gaussian()	0	0	0					•
quasi()	•	0	0	0	0	0	0	0
quasibinomial()				•	0	0		
quasi()	0		•				0	

Legend: • default. ○ possible

⁵Adapted from Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression. 2nd ed. London: SAGE, pp. 231, 233.

Get Your Hands Dirty

Now it's your turn. Is John Snow going to die? Setup possible scenarios and evaluate the results.

One Possible Solution

```
jon_snow <- which(asoiaf$name == "Jon Snow")</pre>
pred dta <- asoiaf[rep(jon snow, 3), ]; rm(jon snow)</pre>
pred dta[2, "allegiances"] <- "Stark"</pre>
pred dta[3, "allegiances"] <- "Targaryen"</pre>
pred dta[, "fitted"] <- predict(</pre>
  myfit, newdata = pred_dta, type = "response"
pred_dta[, "fitted"]
```

Checking Assumptions

Checking Assumptions

Always check your diagnostic plots

plot(myfit)

■ For detailed instructions see: Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression. 2nd ed. London: SAGE.

- \blacksquare base \mathcal{R} offers many probability models
- Numerous extensions are available (see the CRAN Taskviews)
- Discussion of marginal effects requires some acrobatics
 - Familiarize yourselves with Fox's and Weisberg's car package
 - Check out Daniel Lüdecke's ggeffects package