Chapter 2 Stationary Currents

2.4. Electric Power and Power Transmission

- ➤ What is electric power? How do we calculate it?
- Which part of the generated power is delivered to the consumer? How can we minimize the losses and maximize the power available at the consumer side?

2.4.1 Electric Power of a Point Charge in an Electric Field

We know from chapter 1: differential work of a point charge in an electric field along a curve

2.4.2 Electric Power of a Flow Field (current density)

$$\vec{T} = q \cdot \mathbf{n} \cdot \vec{\mathbf{r}}$$

One particle: Pel = q. E. V

Multiply by N:
$$N \cdot Pel = N \cdot q \cdot \vec{E} \cdot \vec{V}$$

No Pel = $N \cdot q \cdot \vec{E} \cdot \vec{V}$

No Pel = total power for all particles

Pel = J. E (2.27)

N. Rel = total power Volume

power density of an electric current density

= power density pel

2.4.3 Electric Power Losses

Pel =
$$\vec{J} \cdot \vec{E}$$
, if we consider Ohmic transport: $\vec{J} = 6\vec{E}$ 6 = Conductivity

Pel = $\vec{J} \cdot \vec{E}$, if we consider Ohmic transport: $\vec{J} = 6\vec{E}$ 6 = Conductivity

Pel = $\vec{J} \cdot \vec{E}$, if we consider Ohmic transport: $\vec{J} = 6\vec{E}$ 6 = Conductivity

Pel = $\vec{J} \cdot \vec{E}$, if we consider Ohmic transport: $\vec{J} = 6\vec{E}$ 6 = Conductivity

Pel is dissiparted as heat Ohmic transport means UNI JNE

Power loss in an Ohmic resistor:

Total power dissipation: => integrate over volume V of wire

$$P_{el} = I \cdot u = \frac{U^2}{R} = R \cdot I^2$$
 (2.29)

Examples:

Bulb:

Sources: Wikipedia

Edison-bulb (1888)

bulb 230V, 40 W power consumption

Brightness vs. Life time

wire:

R= p.A

P= u I = L2 = I2.R

At at location, where diameter is slightly smaller \Rightarrow A smaller \Rightarrow R is Larger $p = T^2 \cdot R \Rightarrow I = const.$, but $R \cdot T \Rightarrow P T \Rightarrow$ this point warms up/heated; for metals: R in creases with temperature.

Heat dissipation in an array of power transistors:

Soure: dissertation at TEP@TUM

2.4.4 Electric Energy Transmission

e.g. energy plant, provides electric energy

e.g. households Needs electric energy

(i) Energy generation plantvoltage and power at consumer side: $U\alpha$; $P_{\alpha} = U_{\alpha} \cdot I$

(ii) voltage and power at consumer side: U_c ; $P_c = U_c \cdot I$

(iii) resistance (lumped) of transmission lines (ohmic losses) : $R_L \Rightarrow U_c = U_G - R_L \cdot I$

(iv) efficiency of energy transmission: $2 = \frac{P_c}{P_G}$ ($\gamma = \frac{e^{-\epsilon_0}}{e^{-\epsilon_0}}$)

Insert (i) in (iv) leads:

HVDC transmission = High Yoltage Direct Current fransmission