Зимний коллоквиум по курсу «Теории вероятностей и математическая статистика»

hse-ami-open-exams

Содержание

1	Вероятностное пространство. Сигма алгебра событий. Борелевская сигма алгебра. Ве-	
	роятностная мера. Непрерывность вероятностной меры. 1.1 Вероятностное пространство. 1.2 Сигма алгебра событий. 1.3 Борелевская сигма алгебра. 1.4 Вероятностная мера. 1.5 Непрерывность вероятностной меры.	2 2 2 2 2
2	Случайная величина и ее распределение. Функция распределения случайной величины. Совместное распределение двух случайных величин. Свойства функции распределения.	3
	2.1 Случайная величина и ее распределение. 2.2 Функция распределения случайной величины. 2.3 Совместное распределение двух случайных величин. 2.4 Свойства функции распределения.	3 3 3
3	Независимые случайные величины. Характеризация независимости в терминах функций распределения и плотностей. Плотность распределения суммы двух независимых случайных величин. 3.1 Независимые случайные величины. 3.2 Характеризация независимости в терминах функций распределения и плотностей. 3.3 Плотность распределения суммы двух независимых случайных величин.	4 4
4	Математическое ожидание дискретной случайной величины и его свойства: линейность, монотонность, неравенство Чебышева. Математическое ожидание произведения независимых величин. 4.1 Математическое ожидание дискретной случайной величины и его свойства	5 5 5
5	Общее определение математического ожидания и его корректность. Математическое ожидание случайной величины, распределение которое задано плотностью. 5.1 Общее определение математического ожидания и его корректность	6
6	Дисперсия и ее свойства. Ковариация и коэффициент корреляции двух случайных величин, геометрический смысл. 6.1 Дисперсия и ее свойства	7 7
7	Математическое ожидание и дисперсия случайной величины, имеющей нормальное, показательное или равномерное распределение. 7.1 Математическое ожидание и дисперсия случайной величины, имеющей нормальное, показательное или равномерное распределение	8
8	Закон больших чисел в слабой форме. Метод Монте-Карло. 8.1 Закон больших чисел в слабой форме.	9

1 Вероятностное пространство. Сигма алгебра событий. Борелевская сигма алгебра. Вероятностная мера. Непрерывность вероятностной меры.

1.1 Вероятностное пространство.

Определение 1. Класс множеств, который содержит \varnothing и Ω , замкнутый относительно операций \cap и \cup , содержит вместе с каждым множеством его дополнение и называется алгеброй множеств или алгеброй событий.

1.2 Сигма алгебра событий.

Определение 2. Если алгебра событий замкнута относительно счетных объединений и пересечений, то ее называют σ -алгеброй.

1.3 Борелевская сигма алгебра.

Определение 3.

- Борелевская σ-алгебра минимальная σ-алгебра, содержащая все открытые подмножества топологического пространства.
- Борелевская σ -алгебра $\mathcal{B}(\mathbb{R})$ σ -алгебра, порожденная отрезками, интервалами или полуинтервалами.

1.4 Вероятностная мера.

Пусть $A - \sigma$ -алгебра.

Определение 4. Φ ункция $P:A \to [0,1]$ называется вероятностной мерой, если

- $P(\Omega) = 1$
- Для любого набора попарно непересекащихся событий $\{A_n\} \in A$ выполняется $P(\bigcup_n A_n) = \sum_n P(A_n)$.

1.5 Непрерывность вероятностной меры.

Теорема 1. Пусть (Ω, A, P) – вероятностное пространство. Тогда

- 1. Ecsu $\{A_n\} \in A, A_n \subset A_{n+1} \ u \ A = \bigcup_n A_n, \ mo \lim_{n \to \infty} P(A_n) = P(A).$
- 2. Если $\{A_n\} \in A, A_{n+1} \subset A_n$ и $A = \bigcap_n A_n$, то $\lim_{n \to \infty} P(A_n) = P(A)$.

Доказательство.

1. Пусть $C_{n+1} = A_{n+1} \setminus A_n, C_1 = A_1$. Тогда $A = \bigcup_n C_n$ и $A_{n+1} = \bigcup_{k=1}^n C_k$. По своству аддитивности вероятностной меры P получаем:

$$P(A) = \sum_{n} P(C_n) = \lim_{n \to \infty} \sum_{k=1}^{n} P(C_k) = \lim_{n \to \infty} P(A_{n+1}).$$

2. Пусть $A'_n = \Omega \setminus A_n$. Тогда по закону де Моргана получаем первый пункт.

2 Случайная величина и ее распределение. Функция распределения случайной величины. Совместное распределение двух случайных величин. Свойства функции распределения.

2.1 Случайная величина и ее распределение.

Пусть (Ω, A, P) – вероятностное пространство.

Определение 5. Функция $\xi:\Omega\to\mathbb{R}$ называется случайной величиной, если для любого промежутка I выполнено:

$$\xi^{-1}(I) = \{ w \mid \xi(w) \in I \} \in A.$$

Определение 6. Распределением случайной величины ξ называется вероятностная мера μ_{ξ} на $B = \mathcal{B}(\mathbb{R})$, определяемая равенством

$$\mu_{\xi}(B) = P(\{w \mid \xi(w) \in B\}) = P(\xi^{-1}(B)).$$

2.2 Функция распределения случайной величины.

Определение 7. Функцией распределения F_{ξ} вероятностной меры μ_{ξ} называется функцией распределения случайной величины ξ , то есть

$$F_{\varepsilon}(t) = \mu_{\varepsilon}((-\infty, t]) = P(\{w \mid \xi(w) \leqslant t\}),$$

мера μ_{ξ} показывает с какой вероятностью ξ принимает те или иные значения.

2.3 Совместное распределение двух случайных величин.

Пусть ξ и η – случайные велечины.

Определение 8. Отображение $w \mapsto (\xi(w), \eta(w))$ определяет вероятностную меру $\mu(B) = P(\{w | (\xi(w), \eta(w)) \in B\})$ – совместное распределение случайных величин ξ и η :

$$F(x,y) = \mu((-\infty,x] \times (-\infty,y]) = P(\{w \mid \xi(w) \leqslant x \land \eta(w) \leqslant y\}).$$

2.4 Свойства функции распределения.

Теорема 2. Если F – функция распределения, то

- 1. $0 \le F \le 1$
- 2. F неубывает
- 3. F непрерывна справа, m.e. $\lim_{t\to s+} F(t) = F(s)$
- 4. $\lim_{t\to-\infty} F(t) = 0$ $u \lim_{t\to\infty} F(t) = 1$

Доказательство.

- 1. Очевидно, т.к. $0 \leqslant P \leqslant 1$
- 2. $b > a \Rightarrow F(b) F(a) = P(a \leqslant \xi \leqslant b)$
- 3. Найдем $\lim_{t\to s+} F(t)$. Пусть $A_n = \left(-\infty, s + \frac{1}{n}\right], A_{n+1} \subset A_n, \bigcap_n A_n = (-\infty, s]$. Из непрерывности меры μ следует, что

$$\mu(A_n) \to \mu\left(\bigcap_n A_n\right) \Rightarrow F\left(s + \frac{1}{n}\right) \to F(s).$$

4. Доказывается аналогично 3 свойству.

3 Независимые случайные величины. Характеризация независимости в терминах функций распределения и плотностей. Плотность распределения суммы двух независимых случайных величин.

3.1 Независимые случайные величины.

Определение 9. Случайные величины ξ и η называются независимыми, если для всяких промежутков U и V выполняется равенство

$$P(\{w \mid \xi(w) \in U \land \eta(w) \in V\}) = P(\{w \mid \xi(w) \in U\}) \cdot P(\{w \mid \eta(w) \in V\}), \ \textit{mo ecmb } \mu_{\xi}(U) = \mu_{\eta}(V).$$

3.2 Характеризация независимости в терминах функций распределения и плотностей.

Теорема 3. Случайные величины ξ и η независимы тогда и только тогда, когда $F(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$.

Доказательство. Совместное распределение одднозначно определяется функцией распределения F. Если F совпадает с функцией распределения меры $\mu_{\xi} \times \mu_{\eta}$, то меры совпадают.

Теорема 4. Пусть распределения ξ и η заданы плотностями. Тогда независимость ξ и η равносильна тому, что совместное распределение задано плотностью

$$\rho(x,y) = \rho_{\xi}(x) \cdot \rho_{\eta}(y).$$

Доказательство. По теореме Фубини:

$$\int_{a}^{b} \rho_{\xi}(x)dx \cdot \int_{c}^{d} \rho_{\eta}(x)dy = \iint_{[a,b]\times[c,d]} \rho_{\xi}(x)\rho_{\eta}(y)dxdy = \mu([a,b]\times[c,d]).$$

3.3 Плотность распределения суммы двух независимых случайных величин.

Теорема 5. Пусть ξ и η независимы и их распределение задано плотностями. Тогда распределение суммы $\nu = \xi + \eta$ задано плотностью

$$\rho_{\nu}(x) = \int_{-\infty}^{+\infty} \rho_{\xi}(t) \rho_{\eta}(x-t) dt.$$

Доказательство.

$$F_{\nu}(t) = P(\{w \mid \xi(w) + \eta(w) \leqslant t\}) = \iint_{x+y \leqslant t} \rho_{\xi}(x)\rho_{\eta}(y)dxdy$$

Пусть u=x+y, v=x. Тогда, применив теорему Фубини, получим

$$\int\limits_{-\infty}^{t} \left(\int\limits_{-\infty}^{+\infty} \rho_{\xi}(t) \rho_{\eta}(x-t) dt \right) du$$

- 4 Математическое ожидание дискретной случайной величины и его свойства: линейность, монотонность, неравенство Чебышева. Математическое ожидание произведения независимых величин.
- 4.1 Математическое ожидание дискретной случайной величины и его свойства.

Пусть ξ – случайная дискретная величина на (Ω, A, P) , принимающая значения $\{x_1, ..., x_n\}$. Положим $A_i = \xi^{-1}(\{x_i\})$. Тогда

$$\xi = x_1 \mathbb{I}_{A_1} + \ldots + x_n \mathbb{I}_{A_n}.$$

Определение 10. Математическим ожиданием случайной величины ξ называется число

$$E\xi = x_1 P(A_1) + ... + x_n P(A_n).$$

Теорема 6.

- 1. $E(\alpha \xi + \beta \eta) = \alpha E \xi + \beta E \eta$
- 2. Если $\xi \geqslant \eta$ почти наверняка, то $E\xi \geqslant E\eta$.
- 3. Если $\xi \geqslant 0$, то для любого C > 0 верно $P(\xi \geqslant C) \leqslant \frac{E\xi}{C}$

Доказательство.

- 1. Следует из определения математического ожидания дискретной случайной величины и разложения случайной величины в сумму произведений значений и индикаторов.
- 2. $0 \le E(\eta \xi) = E\eta E\xi \Rightarrow E\eta \ge E\xi$
- 3. Пусть $A = \{w \mid \xi \geqslant C\}$. Тогда

$$\xi \geqslant C \cdot \mathbb{I}_A$$
.

Неравенство выполняется для любых значений \mathbb{I}_A . Применив свойства монотонности и линейности получим:

$$E\xi \geqslant CE\mathbb{I}_A = CP(A) \Rightarrow \frac{E\xi}{C} \geqslant P(A).$$

4.2 Математическое ожидание произведения независимых величин.

Теорема 7. Если случайные величины ξ и η независимы, то $E(\xi \cdot \eta) = E\xi \cdot E\eta$.

Доказательство. Разложим ξ и η в сумму произведений значений и индикаторов:

$$\xi = \sum_i a_i \mathbb{I}_{A_i}, \eta = \sum_j b_j \mathbb{I}_{B_j} \Rightarrow \xi \cdot \eta = \sum_{i,j} a_i b_j \mathbb{I}_{A_i \cap B_j} \Rightarrow E(\xi \cdot \eta) = \sum_{i,j} a_i b_j P(A_i \cap B_j) = \sum_{i,j} a_i b_j P(A_i) P(B_j) = E\xi \cdot E\eta$$

5 Общее определение математического ожидания и его корректность. Математическое ожидание случайной величины, распределение которое задано плотностью.

5.1 Общее определение математического ожидания и его корректность.

Теорема 8. Для любой случайной величины ξ существует последовательность случайных величин $\{\xi_n\}$ такая, что $\xi_n \rightrightarrows \xi$ на Ω .

Доказательство. Пусть
$$\xi_n = 10^{-n} \cdot |10^n \cdot \xi|$$
. Тогда $\sup |\xi_n - \xi| \leq 10^{-n} \to 0$.

Определение 11. Пусть множество значений $\{x_1, x_2, x_3, ...\}$ дискретной случайной величины ξ бесконечно. Положим $A_i = \xi^{-1}(\{x_i\})$. Будем говорить, что у ξ существует конечное математическое ожидание если ряд $E\xi = \sum_{k=1}^{\infty} x_k P(A_k)$ сходится абсолютно.

Доказательство корректности. Так как перестановка членов абсолютно сходящегося ряда не влияет на сходимость и сумму ряда, а произведение абсолютно сходящихся рядов сходится к произведению их сумм, то все свойства математического ожидания будут выполняться и для суммы этого ряда. □

5.2 Математическое ожидание случайной величины, распределение которое задано плотностью.

Теорема 9. Пусть φ – кусочно-непрерывная функция на \mathbb{R} и $\xi:\Omega\to\mathbb{R}$ – случайная величина, распределение которой задано плотностью ρ_{ξ} , тогда

$$\exists E(\varphi(\xi)) \Leftrightarrow \int_{-\infty}^{\infty} |\varphi(x)\rho_{\xi}(x)| dx \ cxo \partial umcs.$$

В случае сходимости

$$E(\varphi(\xi)) = \int_{-\infty}^{\infty} \varphi(x)\rho_{\xi}(x)dx.$$

Доказательство. Докажем для кусочно-постоянных функций. Пусть f – кусочно-постоянная функция, а это значит, что $f(\xi)$ – дискретная величина, тогда

$$E(f(\xi)) = \sum_{n} C_n P(A_n) = \sum_{n} C_n \int_{\Delta n} \rho_{\xi}(x) dx = \sum_{n} \int_{\Delta n} f(x) \rho_{\xi}(x) dx = \int_{-\infty}^{+\infty} f(x) \rho_{\xi}(x) dx.$$

В общем случае мы можем разбивать числовую прямую на счетное число промежутков таким образом, чтобы каждое такое разбиение задавало кусочно-постоянную функцию $f_n(x)$, и при этом $f_n(\xi) \rightrightarrows \varphi(\xi)$, тогда получим то же утверждение для кусочно-непрерывной функции $\varphi(x)$.

- 6 Дисперсия и ее свойства. Ковариация и коэффициент корреляции двух случайных величин, геометрический смысл.
- 6.1 Дисперсия и ее свойства.
- 6.2 Ковариация и коэффициент корреляции двух случайных величин, геометрический смысл.

- 7 Математическое ожидание и дисперсия случайной величины, имеющей нормальное, показательное или равномерное распределение.
- 7.1 Математическое ожидание и дисперсия случайной величины, имеющей нормальное, показательное или равномерное распределение.

- 8 Закон больших чисел в слабой форме. Метод Монте-Карло.
- 8.1 Закон больших чисел в слабой форме.
- 8.2 Метод Монте-Карло.