Theorem 2.19. (Teorema de caracterizare a subgrupului)

Let (G, \cdot) be a group and $H \subseteq G$. The following statements are equivalent:

- 1) H is a subgroup of (G,\cdot) .
- 2) The following conditions hold for H:
 - $\alpha) H \neq \emptyset;$
 - β) $h_1, h_2 \in H \Rightarrow h_1 h_2 \in H$;
 - γ) $h \in H \Rightarrow h^{-1} \in H$.
- 3) The following conditions hold for H:
 - $\alpha) H \neq \emptyset;$
 - $\delta) \ h_1, h_2 \in H \Rightarrow h_1 h_2^{-1} \in H.$

Definition 2.23. Let (G,*), (G',\bot) be two groups. A map $f:G\to G'$ is called **homomorphism** if

$$f(x_1 * x_2) = f(x_1) \perp f(x_2), \ \forall \ x_1, x_2 \in G.$$

A bijective homomorphism is called **isomorphism**. A homomorphism of (G, *) into itself is called **endomorphism** of (G, *). An isomorphism all ui (G, *) into itself is called **automorphism** of (G, *). If there exists an isomorphism $f: G \to G$, we say that the groups (G, *) and (G', \bot) are isomorphic and we denote this by $G \simeq G'$ or $(G, *) \simeq (G', \bot)$.

Theorem 2.25. Let (G, \cdot) and (G', \cdot) be groups, and let 1 and 1', respectively, be the identity element of (G, \cdot) and (G', \cdot) , respectively. If $f: G \to G'$ is a group homomorphism, then:

- (i) f(1) = 1';
- (ii) $[f(x)]^{-1} = f(x^{-1}), \forall x \in G.$

Definition 2.31. Let $f: G \to G'$ be a group homomorphism. Then the set

$$Ker f = \{x \in G \mid f(x) = 1'\}$$

is called the **kernel** of the homomorphism f.

characterization theorem for subrings:

Theorem 2.45. Let $(R, +, \cdot)$ be a ring and $A \subseteq R$. The following conditions are equivalent:

- 1) A is a subring of $(R, +, \cdot)$.
- 2) The following conditions hold for A:
 - α) $A \neq \emptyset$;
 - β) $\alpha_1, \alpha_2 \in A \Rightarrow a_1 a_2 \in A$;
 - γ) $\alpha_1, a_2 \in A \Rightarrow a_1 a_2 \in A$.
- 3) The following conditions hold for A:
 - α) $A \neq \emptyset$;
 - β') $a_1, a_2 \in A \Rightarrow a_1 + a_2 \in A$;
 - β'') $a \in A \Rightarrow -a \in A$;
 - $\gamma) \ a_1, a_2 \in A \Rightarrow a_1 a_2 \in A.$

16

CARACT SUBFIELD

Next result provide us with a characterization theorem for subfields.

Theorem 2.48. Let $(K, +, \cdot)$ be a field and $A \subseteq K$. The following conditions are equivalent: 1) A is a subfield of $(K, +, \cdot)$.

- 2) The following conditions hold for A:
 - α) $|A| \geq 2$;
 - $\beta) \ a_1, a_2 \in A \Rightarrow a_1 a_2 \in A;$
 - γ) $a_1, a_2 \in A; \ a_2 \neq 0 \Rightarrow a_1 a_2^{-1} \in A;$
- 3) The following conditions hold for A:
 - α) $|A| \geq 2$;
 - β') $a_1, a_2 \in A \Rightarrow a_1 + a_2 \in A$;
 - β'') $a \in A \Rightarrow -a \in A$;
 - γ') $a_1, a_2 \in A \Rightarrow a_1 a_2 \in A$;
 - γ'') $a \in A$; $a \neq 0 \Rightarrow a^{-1} \in A$.

Definition 2.50. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings and $f : R \to R'$. Then f is called a **(ring) homomorphism** if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in R$$

$$f(x \cdot y) = f(x) \cdot f(y), \ \forall x, y \in R.$$

The notions of (ring) isomorphism, endomorphism and automorphism are defined as usual.

Definition 2.53. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings with identity elements 1 and 1' respectively and let $f: R \to R'$ be a ring homomorphism. Then f is called a **unitary homomorphism** if f(1) = 1'.

Definition 3.1. A vector space over K (or a K-vector space) is an abelian group (V, +) together with an external operation

$$\cdot: K \times V \to V$$
, $(k, v) \mapsto k \cdot v$,

satisfying the following axioms:

- $(L_1) k \cdot (v_1 + v_2) = k \cdot v_1 + k \cdot v_2;$
- $(L_2) (k_1 + k_2) \cdot v = k_1 \cdot v + k_2 \cdot v;$
- $(L_3) (k_1 \cdot k_2) \cdot v = k_1 \cdot (k_2 \cdot v);$
- $(L_4) \ 1 \cdot v = v,$

for any $k, k_1, k_2 \in K$ and any $v, v_1, v_2 \in V$.

Hence we have the following characterization theorem for subspaces.

Theorem 3.8. Let V be a vector space over K and let $S \subseteq V$. The following conditions are equivalent:

- 1) $S \leq_K V$.
- 2) The following conditions hold for S:
 - $\alpha) S \neq \emptyset;$
 - β) $\forall x, y \in S$, $x + y \in S$;
 - γ) $\forall k \in K$, $\forall x \in S$, $kx \in S$.
- 3) The following conditions hold for S:
 - $\alpha) S \neq \emptyset;$
 - $\delta) \ \forall k_1, k_2 \in K, \ \forall x, y \in S, \ k_1 x + k_2 y \in S.$

Definition 3.25. Let V and V' be vector spaces over K. The map $f: V \to V'$ is called a (vector space) homomorphism or a linear map (or a linear transformation) if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in V,$$

$$f(kx) = kf(x), \ \forall k \in K, \ \forall x \in V.$$

The notions of (vector space) isomorphism, endomorphism and automorphism are defined as usual.

Theorem 3.27. Let V and V' be vector spaces over K and $f: V \to V'$. Then f is a linear map if and only if

$$f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2), \ \forall k_1, k_2 \in K, \ \forall v_1, v_2 \in V.$$