* Transferable utility

- Think of the case that utility is generated by matching.

- Change to the environment

· ET = (T,B; u,V)

· (u: Tx (BU sø)) -> IR [utility of all Tagants]
· (v: (TU sø) x B) -> IR [utility of all Bagants]

 $\frac{(t_{\lambda}, b_{j})}{(v(t_{\lambda}, b_{j}))} = \frac{(utility)}{(v(t_{\lambda}, b_{j}))} = \frac{(utility)}{(utility)} = \frac{(utility)}{(utility$

* Unmatched case (ti, \emptyset) \rightarrow $U(ti, \emptyset)$: [utility of ti when unmatched] utility (\emptyset , bi) \rightarrow $V(\emptyset$, bj): [utility of bj when unmatched]

· W: TxB - IR

[Welfare when matching]

W(t,b) = U(t,b) + V(t,b) : Welfare of the math (t,b)

Consider utility transfer between t and b. $\overline{W}(t,b)$ represent t's shale of W(t,b) $\underline{W}(t,b)$ represent b's shale of W(t,b)

Thus, W(+,6) = W(+,6) + W(+,6)

U-W(t,b): represent t's transfer V-W(t,b): represent b's transfer. Example)

Q: Can we have a matching in that is stable with MCt, 2=62 and MCto)=61?

- In this case, we should make a matching Not to be blocked by (t, bi) (tz, bi)

- It stable.

$$\overline{W}$$
 (t₁, b₂) + \overline{W} (t₂, b₁) $\geq W$ (t₁, b₁) --- $\stackrel{\textcircled{}}{\mathscr{Y}}$
to is getting be is getting welface produced by (t₁, b₁)
in his current in his current
match

Note If NOT (; W(t1,b1) > $\overline{W}(t_1,b_2) + \underline{W}(t_2,b_1)$,

then we could construct transfers $\overline{W}(t_1,b_1)$ with $\overline{W}(t_1,b_1) > \overline{W}(t_1,b_2)$ $\underline{W}(t_1,b_1)$ with $\overline{W}(t_1,b_1) > \overline{W}(t_2,b_1)$ and so, they would block \underline{M} .

-> Simarly, if stable; W(t2,b1) + W(t1,b2) ≥ W(t2,b2) ... (**)

From ((t, b) + W(t2, b) = W(t1, b)

 $W(t_1,b_1)-\underline{W}(t_1,b_1)+\underline{W}(t_2,b_1)-\overline{W}(t_2,b_1)\geq W(t_1,b_1)-\underline{W}'$

Adding up (x) and (x): $(x) + W(t_2,b_1) \ge W(t_1,b_1) + W(t_2,b_2)$ Welfare of match (x) Welfare that would be produced if matched $(x) + b_1$, $(x) + b_2$

If M is stable, then M is going to maximize the sum of Weltare. (relative to any other markes)

- (1) for each (t, b) & T×B, W(t, b) + W(t, b) = U(t, b) + V(t, b)
- (2) for each teT, $\overline{U}(t,\emptyset) = U(t,\emptyset)$
- (3) for each beB. W(\$,6) = V(\$,6)
- Def Given Σ^{TV} and $(\overline{W}, \underline{W})$ transfer functions,

 this defines on NTU environment $\Sigma^{NTU} = (T : B : (Z : J : E T U B))$ $-b \not\in b'$ iff $\overline{W}(t,b) \supseteq \overline{W}(t,b')$ $-b \not\in t$ iff $\overline{W}(t,b) \supseteq \overline{W}(t,b')$, etc
- (bef) M is stable relative to $(\Sigma^{TV}: \overline{W}, \underline{W})$ if it is stable in the NTV environment induced by $(\Sigma^{TU}: (\overline{W}, \underline{W}))$.

Welfare of a match M $M [M] = \{i \in TUB : M(i) \neq i\}$ $W [M] = \sum u(t, M(t)) + \sum v(M(b), b) + \sum u(t, \emptyset) + \sum v(\emptyset, b)$ $t \in T \cap M(M)$ $t \in T \cap M(M)$

= Check am example for Welface of a match 1.

Example 1) T= {t, t2} B= {6, 62}

ti	bı		62	
	20	2	18	1
ta	18	1	5	1

If we were in a NTU world, ti : b1 \(\frac{1}{2}\) b2 \(\frac{1}{2}\) ti \(\frac{1}{2}\) bi \(\frac{1}{2}\) ti \(\frac{1}{2}\) bi \(\frac{1}{2}\) ti \(\frac{1}{2}\) bi

-> Unique stable match: M(t) = b1) Positive Assortative Match (PAM)

Will want to understand: , (1) What matches are stable with thansfers? (2) What matches maximize welfare?

· Comparing Welteres of PAM and NAM

1 PAM: (ti.bi); (tz.b2) = 20 +5+2+1 = 28

@ NAM: (ta, 61), (t, 62) $u(t_1,b_1)+u(t_2,b_2)+v(t_1,b_1)+v(t_2,b_2)$ = 20+5+2+1=28 = 18+18+1+2=39

· Utility thansfers cases

1) transfers case A	@ Hansfers case B		
(w(t, b1), w(t, b1)) = (11, 11)	(W(t,61), &(t,61))= (1,11)		
$(\overline{w}(t_2,b_2), \underline{w}(t_2,b_3)) = (3,3)$	(to (ts, b2), W (t2, b2)) = (3,3)		
(w(t, b2), w(t, b2)) = (16,4)	(W(t,b2), W(t, b2)) = (10,10)		
$(\overline{W}(t_2,b_1), \underline{W}(t_2,b_1)) = (4,15)$	$(\overline{w}(t_2,b_1), \underline{w}(t_2,b_1)) = (95,95)$		
b2 & 61 & t1 t2 t3 t1 t3 b1	bitibititi bitabitata => Induced NTV		
りをなるななけるなかか	tizitzzibi tizitzzibi assortative preference.		
=> M(ti)=62, M(t2)=(61) : PAM	=> stable relative to W. W: PAM.		

=> key point : A stable match can be changed depending on how to thanks citility