Masking: A New Perspective of Noisy Supervision

Bo Han*^{1,2} Jiangchao Yao*^{3,1} Gang Niu² Mingyuan Zhou⁴ Ivor W. Tsang¹ Ya Zhang³ Masashi Sugiyama^{2,5}

¹University of Technology Sydney ²RIKEN ³Shanghai JiaoTong University ⁴ University of Texas at Austin ⁵University of Tokyo

Overview

TL;DR: The masking conveys human cognition of invalid class transitions, and speculates the **structure** of the noise transition matrix. Therefore, we only learn the noise transition probability to reduce the estimation burden.

- Noisy labels are corrupted from ground-truth labels, which degenerates the robustness of learning models.
- Deep neural networks have the high capacity to fit any noisy labels. The solutions are as follows.
- ♦ Noise **transition** matrix estimation. E.g., F-correction.
- ♦ **Regularization**. E.g., VAT and Mean teacher.
- ♦ Training on **selected** samples. E.g., MentorNet.
- We present a human-assisted approach called **Masking** combating with noisy labels.
- ♦ Conveying human cognition of invalid class transitions.
- ♦ Speculating the structure of the noise transition matrix.
- ♦ Deriving a **structure-aware probabilistic model**, which incorporates a **structure prior**.
- Empirical results on **CIFAR10**, **CIFAR100** with three noise structures and **Clothing1M** demonstrate that, our approach can improve the robustness of classifiers.

Deficiency of Benchmarks

- Independent framework: not for **agnostic** noisy data.
- Unified framework: suffer from **local** minimums.

Structure-aware Probabilistic Model (MASKING)

- Human cognition **masks** the invalid class transitions.
- The model focuses on the noise **transition probability**.
- The estimation burden will be **largely reduced**.

ELBO of MASKING

$$\ln P(\tilde{y}|x) \ge \mathbb{E}_{Q(s)} \left[\frac{\ln \sum_{y} P(\tilde{y}|y,s) P(y|x) - \ln \left(Q(s_o) / \underbrace{P(s_o)}_{\text{structure prior}} \right) \Big|_{s_o = f(s)} \right],$$

where Q(s) is the variational distribution to approximate the **posterior** of the noise transition matrix s, and $Q(s_o) =$ $Q(s)\frac{ds}{ds_o}|_{s_o=f(s)}$ is the corresponding variational distribution of the structure s_o .

QR Code

Estimating Noise Transition Matrix

Motivation: Data Perspective

- (a) beach \leftrightarrow mountain; **beach** \leftrightarrow **dog**.
- (b1) Australian terrier \leftrightarrow Norwich terrier; (b2) **Norfolk terrier** \leftrightarrow **Norwich terrier** \leftrightarrow **Irish terrier**.

Principled Realization

Q1: Challenge from **structure extraction**.

A1: the **tempered sigmoid func** as $f(\cdot)$ to map from s to s_o ,

$$f(s) = \frac{1}{1 + \exp(-\frac{s-\alpha}{\beta})}, \text{ where } \alpha \in (0,1), \beta \ll 1.$$

Q2: Challenge from **structure alignment**.

A2: **GAN-like structure** to model the structure instillation.

CIFAR10 and CIFAR100

• The test accuracy vs iterations on **benchmark** datasets.

Clothing1M

• The test accuracy on **Clothing1M** from Taobao.com.

Models	Performance(%)
NOISY	68.9
F-correction	69.8
S-adaption	70.3
MASKING	71.1
CLEAN	75.2