Lecture 19: ANOVA Part I

Chapter 5.5

Analysis of Variance (ANOVA)

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

Analysis of Variance (ANOVA)

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

Analysis of Variance (ANOVA)

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

 \triangleright n_i plants assigned to each of the k=4 fertilizers:

► Count the number of tomatoes on each plant

Tomato Fertilizer

We observe the following, where each point is one tomato plant.

5/17

Tomato Fertilizer

We observe the following, where each point is one tomato plant. Plot the sample mean of each level.

5/17

Tomato Fertilizer

We observe the following, where each point is one tomato plant.

Plot the sample mean of each level. Question: are the mean tomato yields different?

5/17

Analysis of Variance

Say we have k groups and want to compare the k means:

$$\mu_1, \mu_2, \dots, \mu_k$$

We could do $\binom{k}{2}$ individual two-sample tests.

Ex. for groups 1 & 2:

 $H_0: \mu_1 = \mu_2$

vs. H_{a} : $\mu_1 \neq \mu_2$

Analysis of Variance

Or we do a single overall test via Analysis of Variance ANOVA:

The hypothesis test is:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

vs. H_a : at least one of the μ_i 's are different

Analysis of Variance

ANOVA asks: where is the overall variability of the observations originate from?

The test statistic used to compute a p-value is now the F-statistic:

$$F = \frac{\text{measure of between-group variability}}{\text{measure of within-group variability}}$$

Numerator: the between-group variation refers to the variability between the levels (the 4 horizontal lines):

.

Tomato Fertilizer Example

Denominator: the within-group variation refers to the variability within each level (the 4 vertical arrows):

10 / 17

Tomato Fertilizer Example

Now compare the following two plots. Which has "more different" means?

Tomato Fertilizer Example

- ▶ They have the same within-group variability. Call this value W
- ► The right plot has higher between group variability b/c the 4 means are more different. Call these values B_{left} and B_{right} with B_{left} < B_{right}
- $\qquad \qquad \textbf{Recall } F = \frac{\text{measure of between-group variability}}{\text{measure of within-group variability}}$
- \blacktriangleright Since $\frac{B_{left}}{W} < \frac{B_{right}}{W}$, thus $F_{left} < F_{right}$ The right plot as a larger F-statistic

F Distributions

Assuming H_0 is true (that $\mu_1 = \mu_2 = \ldots = \mu_k$), the F-statistic

$$F = \frac{\text{measure of between-group variability}}{\text{measure of within-group variability}}$$

follows the F distribution with $df_1 = k - 1$ and $df_2 = n - k$ degrees of freedom where

- ► n = total number of observations
- k = number of groups

12 / 17

F Distributions

For $df_1 = 4$ and $df_2 = 6$, the F distribution looks like:

F Distributions

p-values are computed where "more extreme" means larger. Say the F=3, the p-value is the area to the right of 3 and is computed in R: pf(3,df1=4,df2=6,lower.tail=FALSE)

15 / 17

Conducting An F-Test

The results are typically summarized in an ANOVA table:

Source of Variation	df	SS	MS	F	p-value
Between groups	k-1	SSTr	$MSTr = \frac{SSTr}{k-1}$	MSTr MSE	р
Within groups	n – k	SSE	$MSE = \frac{SSE}{n-k}$		
Total	n-1	SST			

Conditions

- 1. The observations have to be independent. 10% rule.
- 2. Trade off of *n* and normality of observations within each group.
- 3. Each of the groups has constant variance $\sigma_1^2=\ldots=\sigma_k^2=\sigma^2$. Check via:
 - boxplots
 - \triangleright comparing the sample standard deviations s_1, \ldots, s_k

-- ---