## 12 Least Squares Data Fitting



Unit 1: Vectors, Book ILA Ch. 1-5

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

Unit 3: Least Squares, Book ILA Ch. 12-14

- 11 Least Squares
- 12 Least Squares Data Fitting
- 13 Least Squares Classification

## **Outline: 12 Least Squares Data Fitting**

- Least Square Model Fitting
- Validation
- Feature Engineering

# True relationship: f

Definition: When we believe that a scalar y and an n-vector x are related by model:

$$y \approx f(x)$$
,

we use the following vocabulary:

- x is called the independent variable
- y is called the outcome or response variable
- ullet  $f:\mathbb{R}^n o\mathbb{R}$  represents the "true" relationship between x and y.

Generally, we do not know f, we just assume it exists. Our goal is to learn f, or a reasonable approximation of it, using data.

#### **Data**

**Definition**: The data:

$$x^{(1)}, \dots, x^{(N)}, y^{(1)}, \dots, y^{(N)}$$

are called observations, examples, samples, or measurements.

- $ullet \ x^{(i)}, y^{(i)}$  is ith data pair
- $x_{j}^{(i)}$  is the jth component of ith data point  $x^{(i)}$ .

# Model: $\hat{f}$

**Definition**: Choosing a set of basis functions:  $f_i : \mathbb{R}^n \to \mathbb{R}$ , for i = 1...p, we model a guess or approximation of f as:

$$\hat{f}(x) = \theta_1 f_1(x) + \ldots + \theta_p f_p(x),$$

where:

- $\theta_i$  are model parameters that we will learn from the data,
- $\hat{y}^{(i)} = \hat{f}\left(x^{(i)}\right)$  is (the model's) prediction of  $y^{(i)}$ .

Remark: If our model is good, then  $\hat{y}^{(i)} pprox y^{(i)}$ , i.e., model is consistent with observed data.

### Residuals

**Definition:** Given:

- ullet observations  $x^{(1)},\ldots,x^{(N)},\ldots,y^{(1)},y^{(N)}$  ,
- ullet a model  $\hat{f}$  generating  $\hat{y}^{(i)} = \hat{f}\left(x^{(i)}
  ight)$  predictions of  $y^{(i)}$ , for  $i=1,\ldots,p$ ,

we define the prediction error, or residual:

$$r_i=y^{(i)}-\hat{y}^{(i)}.$$

### **Least Square Data Fitting**

**Definition**: The Least Square Data Fitting problem is the problem of choosing model's parameters  $\theta_1, \ldots, \theta_n$  that minimize the RMS prediction error on the dataset:

$$\left(rac{r_1^2{+}\ldots{+}r_N^2}{N}
ight)^{1/2}.$$

## LS Data Fitting and LS

The Least Square (LS) Data Fitting problem can be formulated as a Least Squares (LS) Problem.

Notations: We can express  $y^{(i)}, \hat{y}^{(i)}$  , and  $r_i$  as N-vectors:

- ullet  $y=(y^{(1)},\ldots,y^{(N)})$  is vector of outcomes,
- $oldsymbol{\hat{y}} = (\hat{y}^{(1)}, \dots, \hat{y}^{(N)})$  is vector of predictions,
- $r=(r_1,\ldots,r_N)$  is vector of residuals.

Proposition: Define the  $N \times p$  matrix A with elements  $A_{ij} = f_j(x^{(i)})$ , such that  $\hat{y} = A\theta$ . The least square data fitting problem amounts to choose  $\theta$  that minimizes:

$$\left|\left|A heta-y
ight|
ight|^2,$$

which shows that it can be written as a Least Square Problem.

## Solving the LS Data Fitting Problem

Proposition: Consider a LS Data Fitting problem formulated as minimizing  $||A\theta-y||^2$ . Assuming that the columns of A are independent, the solution is:

$$\hat{\theta} = (A^T A)^{-1} A^T y.$$