We thank reviewers R1, R2, R3 for substantial time investment, incisive feedback, and [Ba].

- **Limits.** R1 highlights ways our precision must improve. Thm2 states: {{For each d, every non-deg. local min. θ_{\star} has a nbhd U whose every member θ_0 induces, via Thm1, a sequence $(L_{d,T}:T\in\mathbb{N})$ of truncations, each a degree-d polynomial in η , that converges ptwise as $T\to\infty$ to some polynomial L_{d} .} So if $L_{d,T}(\eta)$ is Thm1's truncation, Thm2 controls $L_{d}(\eta)=\lim_{\tilde{I}\to\infty}L_{d,\tilde{I}}(\eta)$ but not $L_{T}(\eta)=\lim_{\tilde{I}\to\infty}L_{\tilde{I},T}(\eta)$, even for $d,T\gg 1$. **Empirically**, we find that Thm1/2's formal power series [**Wi**] predict SGD-in-practice (w.r.t. which any infinities are idealizations). Regarding our mathematics as but a strong heuristic, we didn't examine when L_{d} , L_{T} agree. Still: **Prop A**. {{Fix $U\subseteq M$ open, $\theta_{\star}\in U$ a non-deg. local min. of l. Assume §B.1 and global, prob.-1 bounds ($|l_{x}(\theta)|, ||\nabla l_{x}(\theta_{\star})||) < C$. If $\exists Q_{-}, Q_{+} \in SPD$ bounding the hessian $(Q_{-} < \nabla \nabla l_{x}(\theta) < Q_{+})$ on U, then $\forall d$ and $\forall \theta_{0}$ in some nbhd V_{d} of θ_{\star} : $\exists T_{0}, A, B > 0$ so that $\sup_{T\geq T_{0}} ReLU(|L_{d}(\eta) L_{T}(\eta)| \exp(A BT))$ exists on some nbhd in SPSD of $\eta=0$ and is $o(\eta^{d})$.} **SP(S)D** consists of symmetric positive (semi)definites.
- Sharp Minima. Like us, R3 finds Cor5 counterintutive. SGD's noise consists not of weight **displacements** but of error terms $\nabla l_x \nabla l$ in the **gradient** estimate; compare Fig5 \square to [**Ke**]'s Fig1. Say θ is 1D with $l(\theta) = a\theta^2/2$ and training loss $\hat{l}(\theta) = l(\theta) + b\theta$. At \hat{l} 's min. $\theta = -b/a$, $l(\theta) = b^2/(2a)$. So for fixed b, sharp min'a ($a \gg 1$) overfit less (demo here). C controls b^2 , hence Cor5's C/2H factor. Here, opt'z'n to convergence favors sharp min'a (\star); cnv'gnce is slow at flat min'a, so flat min'a also overfit little (\diamond). (Our small- η assumption precludes H from being so sharp that SGD diverges: we treat $\eta H \ll 1$). Prior work (Pg12Par5, e.g. [**Ke**] and [**Di**]) supports both pro-flat and pro-sharp intuitions. Recognizing η 's role in translating gradients to displacements, we account for both (\star , \diamond), unifying existing intuitions (§4.3). It is a merit that our theory makes such counterintuitive phenomena visible.
- **ODE**. [**Ba**]'s LemA.3 specializes LemKey. In our terms, [**Ba**]'s Thm3.1 computes η^2 weight displacements using *fuzzless* diagrams (noiseless \equiv cumulants vanish \equiv fuzzy diagrams vanish); see Tab1 for the leading corrections to [**Ba**] due to noise. Per §A.6 (fix E=B=1), GD displaces θ by $\Delta_{GD}^l(\eta,T) = -T + \binom{T}{2} + o(\eta^2)$. Now, $2 = \nabla^{\mu} \gamma$, whence arises [**Ba**]Pg2's $\lambda R = \eta G^2/4 = \frac{\gamma}{2} + \frac{\gamma}{2} +$
- **NOTATION.** R3 recognizes our expectands as tensor expressions; they are often fully contracted (so scalar) and are always random variables in some \mathbb{R}^k . Per R2,R3, we'll disemploy 'Einstein notation' and cite [Cu] (+ a new §D) for tensor examples. If advised, we'll also forgo diagrams: e.g. [a][ab: c:d][bcd] for (letters name edges). R3, Pg6Thm2 defines 'non-degenerate' as ' $H \in SPD$ '.
- ORGANIZATION. R2,R3 stress the paper's narrative challenge. We'll arrange the paper into 3 self-contained tracks, each pertinent to a different goal: TrkA [pgs 1-4], for casual readers, will eschew diagrams, theorems, and §1.1/§2.2's heavy notations; illustrate Taylor series via §2.1's proof; identify §3.3's terms; state Cor4 (w/ §B.1's assumptions explicit, w/ PrpA's precision); explain §4.2's curl effect. TrkB [pgs 1-4, 5-12], for seekers of physical intuition, will use TrkA to motivate (and §A.4 to illustrate) §1.1/§2's definitions; relegate §2.2/2.1's LemKey/discussion to §B; add to §2.3.1 a resummation cartoon à la Fig5,7. For space, §C will absorb §4. TrkC [pgs 5-12, 15-45], for our theory's extenders, will include PrpA (per R1) and more explicit statements and arguments throughout.
- REFERENCES. [Ba] D.G.Barrett, B.Dherin. *Implicit Gradient Regularization*. ICLR 2021. [Cu] P.McCullagh. *Tensor Methods in Statistics*, §1.1-1.4,§1.8. Dover 2017. [Di] L.Dinh, R.Pascanu, S.Bengio, Y.Bengio. *Sharp Minima Can Generalize for Deep Nets*, §1,§5. ICML 2017. [Ke] N.S.Keskar et alia. *Large-Batch Training for Deep Learning*, §4. ICLR 2017. [Wi] H.Wilf. *Generatingfunctionology*, §2.1-2.3. Academic Press 1994.

^{1.} By cl'cal.mech. (CM) of thermal continua, ice cubes have energy=∞ [McQuarrie '97, §1-1]. Still, CM gives insight.

^{2.} i.e.: that **overfitting** $(\triangleq l(\theta_T) - l(\theta_0)$ where θ_0 is a min. of l) has an η^2 term greatest when ηH has moderate eigenvalues.