

Aprendizagem de Máquina

César Lincoln Cavalcante Mattos

2025

Agenda

1 Árvores de decisão

2 Tópicos adicionais sobre árvores de decisão

Referências

• Problema: Como diferenciar laranjas de limões?

• Ideia: Mapeamos largura (width) e altura (height) das frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

- Nós internos verificam valores de atributos.
- Cada ramificação é feita de acordo com o limiar (threshold) escolhido.
- Nós terminais (folhas) estão associados a uma classe específica.

Predições usando árvores de decisão

Dada uma árvore de decisão já existente e um padrão de teste:

- 1 Inicie no nó mais superior (raiz da árvore).
- 2 Considere o atributo do nó em questão.
- 3 Verifique o limiar do nó atual e siga um dos ramos existentes.
- 4 Caso chegue em um nó terminal (folha), retorne a saída associada. Caso contrário, desça para o próximo nó interno e continue.

- Cada caminho na árvore define uma região (partição) \mathcal{R}_k do espaço de entrada.
- Sejam os padrões $\mathcal{D}_k = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_k} \in \mathcal{R}_k$ os exemplos de treinamento que alcançam a região \mathcal{R}_k .

- Cada caminho na árvore define uma região (partição) \mathcal{R}_k do espaço de entrada.
- Sejam os padrões $\mathcal{D}_k = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_k} \in \mathcal{R}_k$ os exemplos de treinamento que alcançam a região \mathcal{R}_k .

Árvores de decisão para classificação

A saída associada à folha k é a classe mais comum em \mathcal{D}_k .

Árvores de decisão para regressão

A saída associada à folha k é a média das saídas contínuas em \mathcal{D}_k .

 Para dados (entrada e saída) discretos, árvores de decisão podem expressar qualquer função dos atributos de entrada.

 Para dados (entrada e saída) discretos, árvores de decisão podem expressar qualquer função dos atributos de entrada.

 No caso de dados contínuos, árvores podem aproximas funções com erros arbitrariamente pequenos.

• Problema: Classificação de peixe: salmão ou seabass (robalo)?

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

 Problema: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?

- **Problema**: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?
- Problema: Construir a menor árvore (mais concisa) é um problema NP completo.

- Problema: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?
- **Problema**: Construir a menor árvore (mais concisa) é um problema NP completo.
- **Ideia**: Seguir uma abordagem heurística gulosa (*greedy*):
 - 1 Comece de uma árvore vazia;
 - 2 Encontre o melhor atributo para realizar uma divisão;
 - Repita recursivamente o passo anterior para o próximo nó até encontrar uma folha.

 Problema: Como encontrar o melhor atributo para realizar a divisão?

- Problema: Como encontrar o melhor atributo para realizar a divisão?
- Ideia: Usar índices de pureza.
 - → **Pureza máxima**: Somente exemplos de uma mesma classe em uma folha.

- Problema: Como encontrar o melhor atributo para realizar a divisão?
- Ideia: Usar índices de pureza.
 - → **Pureza máxima**: Somente exemplos de uma mesma classe em uma folha.
 - → Pureza mínima: Quantidades iguais de todas as classes em uma folha.

- Problema: Como encontrar o melhor atributo para realizar a divisão?
- Ideia: Usar índices de pureza.
 - → **Pureza máxima**: Somente exemplos de uma mesma classe em uma folha.
 - → Pureza mínima: Quantidades iguais de todas as classes em uma folha.
 - → Distribuições intermediárias são quantificadas por um índice.
 - ightarrow A qualidade da divisão é dada pela média dos índices de pureza das folhas geradas ponderada pelas proporções de padrões.

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").
- Maior a pureza, menor a entropia, sendo quantificada por:

$$H = -\sum_{k} P(C_k) \log_2 P(C_k)$$

• Para \log_2 , temos **bits**, para \log natural, temos **nats**.

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").
- Maior a pureza, menor a entropia, sendo quantificada por:

$$H = -\sum_{k} P(C_k) \log_2 P(C_k)$$

• Para \log_2 , temos **bits**, para \log natural, temos **nats**.

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").
- Maior a pureza, menor a entropia, sendo quantificada por:

$$H = -\sum_{k} P(C_k) \log_2 P(C_k)$$

• Para \log_2 , temos **bits**, para \log natural, temos **nats**.

Índice (ou impureza de) Gini

- Frequência em que um exemplo aleatório é incorretamente classificado.
- Pode ser quantificado por:

$$G = \sum_{k} P(C_k)(1 - P(C_k)) = 1 - \sum_{k} P(C_k)^2$$

Índice (ou impureza de) Gini

- Frequência em que um exemplo aleatório é incorretamente classificado.
- Pode ser quantificado por:

$$G = \sum_{k} P(C_k)(1 - P(C_k)) = 1 - \sum_{k} P(C_k)^2$$

Índice (ou impureza de) Gini

- Frequência em que um exemplo aleatório é incorretamente classificado.
- Pode ser quantificado por:

$$G = \sum_{k} P(C_k)(1 - P(C_k)) = 1 - \sum_{k} P(C_k)^2$$

Comparação entre entropia e impureza de Gini

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

• Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

• Escolhendo Brilho > 0.7:

$$ightarrow$$
 1 Seabass e 0 Salmão: $G_1=1-\left(\frac{1}{1}\right)^2-\left(\frac{0}{1}\right)^2=0$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Brilho > 0.7:
 - \rightarrow X 1 Seabass e 0 Salmão: $G_1 = 1 \left(\frac{1}{1}\right)^2 \left(\frac{0}{1}\right)^2 = 0$
 - \rightarrow \checkmark 3 Seabass e 5 Salmão:

$$G_2 = 1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2 \approx 0.47$$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Brilho > 0.7:
 - \rightarrow X 1 Seabass e 0 Salmão: $G_1 = 1 \left(\frac{1}{1}\right)^2 \left(\frac{0}{1}\right)^2 = 0$
 - ightarrow ightarrow 3 Seabass e 5 Salmão: $G_2=1-\left(\frac{3}{8}\right)^2-\left(\frac{5}{8}\right)^2pprox 0.47$
 - \rightarrow Gini médio das ramificações: $G_B = \frac{1}{9}G_1 + \frac{8}{9}G_2 \approx 0.42$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
0.8	20	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

25

25

0.8

0.7

Seabass

Seabass

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

• Escolhendo Tamanho > 25:

$$ightarrow$$
 4 Seabass e 1 Salmão: $G_1=1-\left(rac{4}{5}
ight)^2-\left(rac{1}{5}
ight)^2pprox 0.32$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

• Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Tamanho > 25:
 - \rightarrow X 4 Seabass e 1 Salmão: $G_1 = 1 \left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right)^2 \approx 0.32$
 - → ✓ 0 Seabass e 4 Salmão:

$$G_2 = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Tamanho > 25:
 - ightarrow 4 Seabass e 1 Salmão: $G_1=1-\left(rac{4}{5}
 ight)^2-\left(rac{1}{5}
 ight)^2pprox 0.32$
 - \rightarrow \checkmark 0 Seabass e 4 Salmão: $G_2 = 1 \left(\frac{0}{4}\right)^2 \left(\frac{4}{4}\right)^2 = 0$
 - \rightarrow Gini médio das ramificações: $G_T = \frac{5}{0}G_1 + \frac{4}{0}G_2 \approx 0.18$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

Opções de ramificação:

Brilho
$$> 0.7 \rightarrow G_B \approx 0.42$$

Tamanho $> 25 \rightarrow G_T \approx 0.18$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass
	•	

• Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

• Opções de ramificação:

$$\label{eq:Brilho} {\sf Brilho} > 0.7 \to G_B \approx 0.42$$

$$\mbox{Tamanho} > 25 \to G_T \approx 0.18$$

 Escolhemos a opção (Tamanho > 25) que apresenta a maior queda de impureza Gini em relação ao nó pai.

Treinamento guloso (greedy) de árvores de decisão

- 1 Calcule o índice de pureza/impureza do nó atual (nó pai);
- 2 Crie ramificações a partir de um atributo e um limiar candidatos;
- Escolha a ramificação com maior queda de impureza (maior pureza) em relação ao nó pai;
- 4 Para cada nó criado pela ramificação escolhida:
 - Se n\u00e3o houver exemplos de treinamento, retorne a classe mais comum no n\u00f3 pai.
 - Se todos os exemplos são de uma mesma classe, retorne-a.
 - Caso contrário, retorne ao primeiro passo.

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação das flores íris

Arvore de decisão para classificação das flores íris

Arvore de decisão para classificação das flores íris

- Podemos formalizar o procedimento detalhado até aqui.
- Seja $\mathcal{D}_n = \{(\boldsymbol{x}_i, y_i) \in N_n\}$ os dados no n-ésimo nó da árvore.

- Podemos formalizar o procedimento detalhado até aqui.
- Seja $\mathcal{D}_n = \{(\boldsymbol{x}_i, y_i) \in N_n\}$ os dados no n-ésimo nó da árvore.
- Seja $\mathcal{D}_n^L(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} \leq t\}$ e $\mathcal{D}_n^R(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} > t\}$ uma bipartição de \mathcal{D}_n .
 - No caso de atributos categóricos, teríamos

$$\mathcal{D}_{n}^{L}(d,t) = \{(\mathbf{x}_{i}, y_{i}) \in N_{n} : x_{id} = t\} \text{ e}$$

 $\mathcal{D}_{n}^{R}(d,t) = \{(\mathbf{x}_{i}, y_{i}) \in N_{n} : x_{id} \neq t\}.$

- Podemos formalizar o procedimento detalhado até aqui.
- Seja $\mathcal{D}_n = \{(\boldsymbol{x}_i, y_i) \in N_n\}$ os dados no n-ésimo nó da árvore.
- Seja $\mathcal{D}_n^L(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} \leq t\}$ e $\mathcal{D}_n^R(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} > t\}$ uma bipartição de \mathcal{D}_n .
 - No caso de atributos categóricos, teríamos $\mathcal{D}_n^L(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} = t\}$ e $\mathcal{D}_n^R(d,t) = \{(\boldsymbol{x}_i,y_i) \in N_n : x_{id} \neq t\}.$
- A escolha do melhor atributo d_n e do melhor limiar t_n será dado pela otimização abaixo:

$$(d_n, t_n) = \arg \min_{d \in \{1, \dots, D\}} \min_{t \in \mathcal{T}_d} \frac{|\mathcal{D}_n^L(d, t)|}{|\mathcal{D}_n|} c(\mathcal{D}_n^L(d, t)) + \frac{|\mathcal{D}_n^R(d, t)|}{|\mathcal{D}_n|} c(\mathcal{D}_n^R(d, t)),$$

em que $c(\cdot)$ é a função custo (e.g. índice Gini, entropia ou MSE) e \mathcal{T}_d é o conjunto de possíveis limiares para o atributo d.

• **Importante**: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo?

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo? Sim (overfitting)!

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo? Sim (overfitting)!
- Ideias:
 - → Evitar árvores muito grandes fixando uma variação mínima de pureza para executar uma ramificação.
 - → Podar a árvore gerada (remover e/ou unir nós) usando um conjunto de validação.

Algoritmos para treinamento de árvores de decisão

- ID3 (Iterative Dichotomizer): Um dos primeiros e mais simples algoritmos de árvore de decisão. Normalmente usa a entropia para escolher novas ramificações.
- C4.5: Versão mais avançada do algoritmo ID3, com suporte a poda e dados discretos, contínuos, faltantes.
- CART (Classification And Regression Tree): Similar ao algoritmo C4.5. Normalmente usa a impureza de Gini para escolher novas ramificações.

Vantagens

- Facilmente interpretáveis, pois geram regras de decisão.
- São escaláveis.
- Seleção automática de atributos importantes.
- Podem lidar com dados faltosos.

Vantagens

- Facilmente interpretáveis, pois geram regras de decisão.
- São escaláveis.
- Seleção automática de atributos importantes.
- Podem lidar com dados faltosos.

Desvantagens

- Tendência ao overfitting.
- Pequenas variações no conjunto de treinamento resultam em árvores diferentes.

Árvores de decisão como bases adaptativas

 De uma maneira geral, a saída de um modelo de árvore de decisão pode ser escrita como:

$$f(\boldsymbol{x}) = \sum_{k=1}^K w_k \mathbb{I}(\boldsymbol{x} \in \mathcal{R}_k), \quad w_k = \frac{\sum_i y_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)}{\sum_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)},$$

em que \mathcal{R}_k denota a k-ésima partição, w_k indica a "resposta média" dos exemplos da partição \mathcal{R}_k .

Árvores de decisão como bases adaptativas

 De uma maneira geral, a saída de um modelo de árvore de decisão pode ser escrita como:

$$f(\boldsymbol{x}) = \sum_{k=1}^K w_k \mathbb{I}(\boldsymbol{x} \in \mathcal{R}_k), \quad w_k = \frac{\sum_i y_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)}{\sum_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)},$$

em que \mathcal{R}_k denota a k-ésima partição, w_k indica a "resposta média" dos exemplos da partição \mathcal{R}_k .

• Considerando uma função $\phi(\cdot)$ responsável por criar as partições:

$$f(\boldsymbol{x}) = \sum_{k=1}^K w_k \phi(\boldsymbol{x}, \boldsymbol{\theta}_k) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{\Theta}), \quad \boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K],$$

em que θ_k reúne os parâmetros (atributos e limiares) que definem a partição \mathcal{R}_k .

Árvores de decisão como bases adaptativas

 De uma maneira geral, a saída de um modelo de árvore de decisão pode ser escrita como:

$$f(\boldsymbol{x}) = \sum_{k=1}^K w_k \mathbb{I}(\boldsymbol{x} \in \mathcal{R}_k), \quad w_k = \frac{\sum_i y_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)}{\sum_i \mathbb{I}(\boldsymbol{x}_i \in \mathcal{R}_k)},$$

em que \mathcal{R}_k denota a k-ésima partição, w_k indica a "resposta média" dos exemplos da partição \mathcal{R}_k .

• Considerando uma função $\phi(\cdot)$ responsável por criar as partições:

$$f(\boldsymbol{x}) = \sum_{k=1}^K w_k \phi(\boldsymbol{x}, \boldsymbol{\theta}_k) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{\Theta}), \quad \boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K],$$

em que θ_k reúne os parâmetros (atributos e limiares) que definem a partição \mathcal{R}_k .

 Portanto, uma árvore de decisão pode ser entendida como um modelo de bases adaptativas.

Agenda

Árvores de decisão

2 Tópicos adicionais sobre árvores de decisão

Referências

Tópicos adicionais sobre árvores de decisão

- Poda (prunning) de árvores.
- Modelos de mistura em árvores.
- Árvores aditivas: Bayesian additive regression trees (BART).
- Bagging e boosting de árvores de decisão (ainda veremos!)

Agenda

Árvores de decisão

2 Tópicos adicionais sobre árvores de decisão

Referências

Referências bibliográficas

- Caps. 5 e 16 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Cap. 18 MURPHY, Kevin P. Probabilistic Machine Learning: An Introduction, 2021.
- Cap. 14 BISHOP, C. Pattern recognition and machine learning, 2006.