ZhdanovDS 25112024-192008

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 1 на частоте 1 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- $1 W_T$ больше 26 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.7f_{\rm B}$:

```
s_{11}=0.57-0.289і.
(Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 20 Om
- 2) 178 Om
- 3) 134 Ом
- 4) 123 Ом

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь . Была выполнена калибровка на частоте 5.5 ГГц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: -0.73 + 0.68i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 94.9 cm
- 2) 16.4 cm
- 3) 11.8 см
- 4) 123.4 см

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=18~{\rm Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4.4~\Gamma\Gamma$ ц и $f_{\rm B}=8.5~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.26 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

- 1) 0.5 дБ
- 2) 1.4 дБ
- 3) 1 дБ
- 4) 0.3 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.406 мм и с волновым сопротивлением 26 Ом;
- 2 толщиной 0.203 мм и с волновым сопротивлением 21 Ом;
- 3 толщиной 0.508 мм и с волновым сопротивлением 52 Ом;
- 4 толщиной 0.305 мм и с волновым сопротивлением 25 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования