Set 27: More on Hypothesis testing

Errors in testing:

Parameter Space

Decision	H_0 true	H ₁ true
Reject H_0	Type I Error	
$\boxed{ \textbf{Do not reject } \textbf{H}_0 }$		Type II Error

Discussion questions:

- what is a good test?
- can we have a perfect test?

Example: We examine Type I error and Type II error in the earlier example where a defendent is accused of a crime in a court of law.

Probabilities associated with errors in testing:

	Parameter Space		
Decision	H_0 true	H ₁ true	
Reject H ₀	α	$1-\beta$	
Do not reject Ho		β	

Discussion points:

- $\bullet \alpha$ is the *significance level* of a test
- we typically fix α
- 1β is referred to as the *power* of a test
- we want the power to be large
- α , β are test properties
- note that in our examples, H_0 is simple
- note that in our examples, H₁ is *composite*

Example: We return to the one sample problem where X_1, \ldots, X_n are iid, $\sigma = 1.8$, $\alpha = 0.05$ and n = 100. We are interested in testing $H_0: \mu = 3$ versus $H_1: \mu > 3$.

- (a) Find the critical region (rejection region).
- (b) Calculate the power at $\mu = 3.2$.
- (c) Calculate the power at $\mu = 3.5$.
- (d) What happens in (b) when $n = 100 \rightarrow 400$?

This example is answered in the book. Please read over the solution.