

Machine Learning in Health

Using ML/DL in medical applications

Madhu Nagathihalli Kantharaju Image Data Analysis MDC, Berlin

Scientific Background

Masters Project

HelmholtzZentrum münchen
German Research Center for Environmental Health

Institute of Computational Biology

Neural cell fate prediction using time-lapse microscopy images

Cell reprogramming

Applications: For cell-based replacement therapy for traumatic brain injury or neurodegenerative disease.

Cell reprogramming

Data at 24 hours

Data at 60 hours

Data at 116 hours

Annotated data at 116 hours

Supervised Learning

Reprogramming statistics

Fig: The graph shows the number of cells reprogrammed at the end of every 10 hours

Fig: The number of cells cumulatively reprogrammed.

Speed of reprogramming

Relation between the 'speed of reprogramming' and 'cell fate'.

Early reprogramming - less than 48 hours, 50 cells, 62% survived.

Late reprogramming - 52 cells, 73% survived. Wilcoxon test fails to reject null hypothesis at p 0.062.

Network architecture

Fig: Illustration of Mask R-CNN architecture. Image taken from [8].

Detections obtained from the model

PhD Project

Computational Methods to Achieve Real-Time Whole Brain Imaging in Behaving Animals

Computational methods pave the way towards smart and active microscopy

Behaviour is influenced by environmental cues

Spiking activity recorded with voltage imaging

- Recently, Abelfattah et al^[1] have succeeded in recording spiking activity of neurons in zebrafish with voltage imaging.
- We want to extend this to a brain-wide scale

Data is a z-stack

Z-stack images: each stack has 45 images. E.g. best focused images

Define an objective focus measure

- Faster image acquisition
- High quality image acquisition

Blood-flow artifact correction I

Blood-flow artifact correction II

Blood-flow artifact correction III

Take home message

- ML models are data driven
- 2. Supervised Learning has both inputs and annotations
- Understanding data is key
- 4. Visualising always helps
- 5. There are different types of (image) data
- 6. You do not always need to use ML models
- 7. Simpler the model, the better

References

- 1) Abdelfattah*, Kawashima* et al., (2020). Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science, 365 (6454). * co-first author.
- 2) Part of the End-to-End Machine Learning School Course 193, How Neural Networks Work at https://e2eml.school/193
- 3) Mahmoudzadeh, Amir Pasha, and Nasser H. Kashou. "Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration." International Journal of Biomedical Imaging 2013 (2013).