Robust and Effective Factorization Machines

Anonymous

Optimization Algorithm

The original objective for classification task takes the form:

$$\min_{\mathbf{w} \in \mathbf{R}^{d}, \mathbf{Z} \in \mathbf{S}_{+}^{d \times d}} \sum_{i=1}^{n} e_{i} (\max\{\max(y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} + \langle \mathbf{Z}, \mathbf{x}_{i}\mathbf{x}_{i}^{\top} \rangle), 0) - \epsilon_{1}, 0\})^{2} + \frac{\alpha}{2} \|\mathbf{w}\|^{2} + \sum_{s} \min\{\lambda_{s}^{2}, \epsilon_{3}\}, \tag{1}$$

$$e_i = \begin{cases} \frac{1}{2error}, & 0 < error \leq \epsilon_2; \\ 0, & otherwise \end{cases}$$

where $error = \max(y_i(\mathbf{w}^{\top}\mathbf{x}_i + \langle \mathbf{Z}, \mathbf{x}_i\mathbf{x}_i^{\top} \rangle), 0) - \epsilon_1$ The subgradient with respect to \mathbf{Z} is

$$\nabla_{\mathbf{Z},I} = \sum_{i=1}^{b} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} + \beta \mathbf{P}_{M} \mathbf{P}_{M}^{\top} \mathbf{Z}$$
 (2)

To incrementally calculate the SVD of $\mathbf{Z} - \eta \nabla_{\mathbf{Z},I}$. Let the symmetric and low rank matrix \mathbf{Z} has rank k and its economy SVD is $\mathbf{Z} = \mathbf{P}_k \Sigma_k \mathbf{P}_k^{\top}$. As matrix $\nabla_{\mathbf{Z},I}$ is symmetric and low rank, we can represent it as $\mathbf{A}\mathbf{A}^{\top}$.

$$\nabla_{\mathbf{Z},I} = \mathbf{X}\mathbf{X}^{\top} + \beta \mathbf{P}_{M} \mathbf{P}_{M}^{\top} \mathbf{Z}$$

$$= \mathbf{X}\mathbf{X}^{\top} + \beta$$
(3)

Experimental Results

Dataset	#Training	#Test	#Feature	#class
Magic04	12680	6340	10	2
w8a	49749	14951	300	2
IJCNN	49990	91701	22	2
Covtype	387342	193670	54	2
MNIST	60000	10000	784	10
epsilon	400000	100000	2000	2

Table 1: Summary of datasets used in our experiments.