Classifier for Handwritten Hebrew Letters with CNN

תאריך ההגשה: 15.05.2022, שעה 23:59

בתרגיל זה עליכם לבנות Convolutional Neural Network (CNN) לסיווג תמונות של אותיות ממאגר 1 אותו המאגר שעבדתם איתו בתרגילי בית 1 HHD_0, שמורכב מאותיות בכתב יד בעברית – אותו המאגר שעבדתם איתו בתרגילי בית 1 ו-2.

מטרת התרגיל היא לאמן רשת נוירונים מסוג CNN לסווג אותיות.

העבודה תחולק למספר צעדים:

1. עיבוד מקדים (pre-processing) – עיבוד מקדים זהה לעיבוד שעשיתם בעבודה 2.

- 2. חלוקת המאמגר באופן אקראי לשלוש קבוצות בעבודות 1 ו-2. training, validation, and testing sets
 - **3.** אימון (training). בשלב זה יש לבנות ולאמן רשת נוירונים CNN בארכיטקטורה הבאה:

INPUT=>[CONV=>RELU=>CONV=>RELU=>POOL=>DO]*3=>FC=>RELU=>DO=>FC

- 32×32 בגודל grayscale שכבת ווני וויי וויי בגווני שכבת הערות:
- בהוספת שכבות קלט מסוג CONV2D נדרש לשלוח כ-tinput את הארגומט בהוספת שכבות קלט מסוג CONV2D נדרש לשלוח כ-nRows × nCols × nChannels חבוא שלישייה Rows, nCols הוא מספר שורות ועמודות בתמונה, ו-nChannels = 1 מספר ערוצים בתמונה. עבור תמונות בגווני אפור
- בהמשך להערה הקודמת, שכבת Conv2D מצפה לקבל כקלט תמונה המיוצגת על ידי שלושה מימדים Rows × nCols × nChannels, כלומר צריך להוסיף מימד שלישי (מספר הערוצים), למשל, על ידי שימוש בreshape.

.padding = 'same' - איס – השתמשו בפילטר בגודל 3×3 ו- CONV=>RELU=>CONV=>RELU=>POOL=>DO יש שלוש חזרות על הרצף

First iteration:

CONV=>RELU=>CONV=>RELU=>POOL=>DO

32 filters in each CONV DO with p = 0.25

Second iteration:

CONV=>RELU=>CONV=>RELU=>POOL=>DO

64 filters in each CONV DO with p = 0.25

Third iteration:

CONV=>RELU=>CONV=>RELU=>POOL=>DO

128 filters in each CONV DO with p = 0.25

- 2×2 בגודל max pooling באודל השתמשו בפילטר **P00L** בגודל -
 - שכבות FC=>RELU=>D0 -512 – FC p = 0.5 עם D0
 - שכבת FC האחרונה (פלט) עם 27 נוירונים

כאשר תדפיסו את סיכום המודל, אתם אמורים לקבל סיכום הבא:

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 32, 32, 32)	320
conv2d_1 (Conv2D)	(None, 32, 32, 32)	9248
<pre>max_pooling2d (MaxPooling2D)</pre>)(None, 16, 16, 32)	0
dropout (Dropout)	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496
conv2d_3 (Conv2D)	(None, 16, 16, 64)	36928
<pre>max_pooling2d_1 (MaxPooling</pre>	2D) (None, 8, 8, 64)	0
<pre>dropout_1 (Dropout)</pre>	(None, 8, 8, 64)	0
conv2d_4 (Conv2D)	(None, 8, 8, 128)	73856
conv2d_5 (Conv2D)	(None, 8, 8, 128)	147584
<pre>max_pooling2d_2 (MaxPooling</pre>	2D) (None, 4, 4, 128)	0
<pre>dropout_2 (Dropout)</pre>	(None, 4, 4, 128)	0
flatten (Flatten)	(None, 2048)	0
dense (Dense)	(None, 512)	1049088
<pre>dropout_3 (Dropout)</pre>	(None, 512)	0
dense_1 (Dense)	(None, 27)	13851

Total params: 1,349,371 Trainable params: 1,349,371 Non-trainable params: 0

יש לאמן את רשת בשתי קונפיגורציות, 50 epochs בכל קונפיגורציה:

- augmentation ללא.1
- 2. עם augmentation עם הפרמטרים הבאים:

```
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False,
rotation_range=10,
shear_range=0.2,
brightness_range=(0.2, 1.8),
rescale=1. / 255 # rescale the input to the range [0,1]
```

לאחר הניסויים, יש לבחור את הקונפיגורציה שנתנה ביצועיים הכי טובים על validation set.

4. הערכת ה-CNN על testing set. ברגע שמצאתם את הקונפיגורציה הטובה ביותר, יש להעריך את התוצאות של CNN על testing set ולדווח את התוצאות.

פלט התוכנית יכלול:

- 1. קובץ טקסט בשם "results.txt" שיכיל:
 - a. קונפיגורציה של המודל הסופי
- עבור המודל training & validation sets על Loss עבור המודל. b. הסופי. ראו דוגמה:

עבור כל אחת מהאותיות (27 אותיות testing set .c דיוק אליו הגיע המסווג על .c שונות) <u>ודיוק ממוצע</u> בפורמט

```
Letter Accuracy
0 ...
1 ...
26 ...
Avg ...
```

excel/scv עבור התוצאות בקובץ <u>Confusion matrix</u> **.2** ."confusion_matrix.csv"

הרצת התוכנית תתבצע משורת הפקודה בפורמט

> python cnn_classifier.py path

כאשר cnn_classifier.py הוא שם התוכנית ו-path הוא שם המאגר.

:הגשה

יש להגיש קובץ zip שמכיל את הקבצים הבאים:

1. קובץ קוד עם התוכנית.

הקוד שהוגש צריך לכלול ניסויים עם אימון ובחירת מודל, והרצת המודל הסופי על testing set. את עיבוד מקדים וחלוקה לקבוצות (שלבים 1 ו-2) אפשר לא לכלול.

- <u>readme.txt</u> קובץ **.2**
- confusion_matrix.csv" ו- "results.txt" בפורמט שמתואר למעלה

אופן הבדיקה:

הבדיקה תתבצע בצורה פרונטלית (או מקוונת אם בעקבות הגבלות הקורונה לא ניתן יהיה לבצע בדיקה פרונטלית). מועדי הבדיקה ייקבעו בהמשך.

עבודה נעימה!