MA

TD filtres

Ex 1:

Soit le montage ci-dessous, attaqué par un générateur de tension alternative sinusoïdale de pulsation ω .

- 1.a. Déterminer la fonction de transfert $\underline{H}(j\omega) = \underline{V}_{s} / \underline{V}_{e}$
- 2.a. Dans quelle condition aura t-on l'expression suivante?

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^4}} \text{ avec } \omega_0 = \frac{1}{\sqrt{LC}}$$

- b. Donner alors dans cette condition les valeurs de L et C en fonction de R et ω_0 .
- 3. Tracer avec précision le diagramme de Bode en Module de la fonction de transfert $\underline{H}(j\omega)$.

Ex 2:

Soit le quadripôle suivant

- \underline{V}_{e} est une tension sinusoïdale de pulsation ω
- 1. Déterminer la matrice Z de ce quadripôle.
- 2. Déduire les impédances d'entrée et de sortie.
- 3. Calculer la fonction de transfert $\underline{H}(j\omega) = \underline{V}_{s} / \underline{V}_{e}$
- 4. Tracer le diagramme de Bode de $\underline{H}(j\omega)$.

Ex 3:

On considère un circuit électrique de fonction de transfert $\underline{H}(j\omega)$.

Tel que
$$\underline{H}(j\omega) = \frac{1}{(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_2})}$$
 avec $\omega_1 < \omega_2$

Tracer le diagramme de Bode en module et phase de $\underline{H}(j\omega)$.

Ex 4:

Soit le circuit suivant :

On donne : R= 333 Ω ; R_1 = 167 k Ω ; R_2 = 3.2 k Ω ; C = 120 $\mu {\rm F}$; m = 334 ; R_g = 100 k Ω

- 1. Calculer la fonction de transfert $\underline{H}(j\omega) = \underline{V}_{s} / \underline{V}_{e}$
- 2. Montrer que $\underline{H}(j\omega)$ peut être écrite sous la forme :

$$\underline{\mathbf{H}}(j\omega) = H_0 \frac{\frac{(1+j\frac{\omega}{\omega_1})}{(1+j\frac{\omega}{\omega_2})}}{(1+j\frac{\omega}{\omega_2})}$$

- 3. Calculer numériquement $\,H_{0}^{}$, $\,\omega_{1}^{}$ et $\,\omega_{2}^{}$.
- 4. Tracer le diagramme de Bode en amplitude et phase de $\underline{H}(j\omega)$.
- 5. Déterminer I 'impédance de sortie par deux méthodes différentes.