Generalized linear mixed models

In this lecture we will consider the task of combining multilevel models and generalized linear models to give *generalized linear mixed models*. We will then consider an example using betablocker data which will involve fitting a logistic mixed model. We will finish with some software considerations.

These notes make use of some aspects of Aitkin, M., Francis, B., Hinde, J., and Darnell, R., *Statistical Modelling in R*, 2009.

This is also available via the library.

Brief reminder

We know for Gaussian response models (i.e. "linear models"), how to account for data with hierarchical (multilevel) structure. We have seen in the last lecture for one-level models, how to account for data with non-Gaussian response.

Gap: Data with multilevel structure and non-Gaussian response.

Models which bridge this gap are referred to as *generalized linear mixed models* (GLMMs), a combination of mixed models (i.e. multilevel models) and generalized linear models.

Framework for GLMMs

Recall the earlier defined random-intercept-and-slope model (Lecture 4), for two levels (i=lower, j=upper):

$$y_{ij} = a + bx_{ij} + u_j + v_j x_{ij} + \epsilon_{ij}$$

We worked out that

$$E(y_{ij}|x_{ij}) = a + bx_{ij}$$

The more relevant quantity for the current context is

$$E(y_{ij}|x_{ij}, u_j, v_j) = a + bx_{ij} + u_j + v_j x_{ij} \tag{*}$$

Thinking now of a situation with p predictor variables, we would have observations x_{ij1}, \ldots, x_{ijp} , yielding $\boldsymbol{x}_{ij} = (1, x_{ij1}, \ldots, x_{ijp})^T$, and a corresponding upper-level vector of random effects $\boldsymbol{z}_j = (u_j, v_{j1}, \ldots, v_{jp})^T$.

Hence, equation (*) can be written as

$$E(y_{ij}|\boldsymbol{x}_{ij},\boldsymbol{z}_j) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{x}_{ij}^T \boldsymbol{z}_j$$

which gives the mixed model character of the multilevel model explicit.

Recall also the generalized linear model (at one level), with

$$E(y_i|\boldsymbol{x}_i) = h(\boldsymbol{x}_i^T\boldsymbol{\beta}).$$

From this, we define a model of type

$$E(y_{ij}|\boldsymbol{x}_{ij},\boldsymbol{z}_j) = h(\boldsymbol{x}_{ij}^T\boldsymbol{\beta} + \boldsymbol{x}_{ij}^T\boldsymbol{z}_j)$$

for some response function h (link function $g = h^{-1}$). This is called a *generalized linear mixed model (GLMM)*.

Example: Logistic mixed models (the beta-blocker trial)

Consider a large multi-centre study (*meta-analysis* of several clinical trials) to check the effectiveness of beta-blockers in reducing mortality after myocardial infarction (beta-blockers "block" the release of certain hormones, to reduce blood pressure).

The data set has 44 rows: one for each of treatment and control, for each of 22 centres. For each centre and treatment, r patients died out of n treated.

Read in the data via:

```
betablok <-
   read.table('https://andygolightly.github.io/teaching/MATH43515/betablok.dat')</pre>
```

Now add trial and centre information:

```
names(betablok) <- c('r','n')
betablok$treat <- factor(gl(2,1),labels=c(0,1))
betablok$center <- gl(22,2)</pre>
```

View the data:

```
head(betablok)
##
        n treat center
     r
     3 39
               0
## 1
## 2 3 38
               1
                      1
## 3 14 116
               0
                      2
## 4 7 114
                      2
              1
## 5 11 93
              ()
                      3
## 6 5 69
              1
                      3
dim(betablok)
## [1] 44 4
```

Logistic model

Firstly, ignore the two-level structure and fit a GLM, with Binomial response and logit link:

```
betablok.glm <- glm(cbind(r,(n-r))~treat, data=betablok, family=binomial)
summary(betablok.glm)
##
## Call:
## glm(formula = cbind(r, (n - r)) ~ treat, family = binomial, data = betablok)
##
## Deviance Residuals:
     Min 1Q Median
                               ЗQ
                                      Max
## -5.3160 -1.4916 -0.1341 1.7067 5.8564
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
0.04942 -5.207 1.91e-07 ***
## treat1 -0.25737
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 332.99 on 43 degrees of freedom
## Residual deviance: 305.76 on 42 degrees of freedom
## AIC: 527.19
##
## Number of Fisher Scoring iterations: 4
```

Two-level mixed model

Now, recognize the two-level structure, with centers in the upper level:

```
require(lme4)
betablok.glmer <- glmer(cbind(r,(n-r)) ~ treat + (1|center),
    data=betablok, family=binomial)
summary(betablok.glmer)
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
##
## Family: binomial (logit)
## Formula: cbind(r, (n - r)) ~ treat + (1 | center)
##
    Data: betablok
##
##
      AIC
             BIC logLik deviance df.resid
     324.4 329.8 -159.2 318.4 41
##
##
## Scaled residuals:
     Min 1Q Median 3Q
                                  Max
## -1.8876 -0.5129 0.0605 0.4969 1.8623
##
## Random effects:
               Variance Std.Dev.
## Groups Name
## center (Intercept) 0.2362 0.486
## Number of obs: 44, groups: center, 22
##
## Fixed effects:
             Estimate Std. Error z value Pr(>|z|)
## treat1
           -0.26091 0.04982 -5.237 1.63e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
        (Intr)
## treat1 -0.205
```

Beta-blocker example summary

We have seen that, in this particular case, accounting for the multilevel structure did not make much difference.

The treatment of myocardial infarction patients with beta-blockers reduces the log-odds of patient death by the value 0.26. That is, after treatment, the odds of dying against not dying have reduced by the factor $\exp(-0.26) = 0.77$, i.e. 77% of the untreated value.

Summary

Generalized linear mixed models are in principle simple to apply: we use glmer (or glmmTMB) with the respective family argument.

We have seen the R package **Ime4** (functions lmer and glmer). Other R packages for random effect modelling in R include

- **nlme** (for non-linear models)
- **npmlreg** (for non-Gaussian random effect distributions),
- gamlss (very general modelling framework, incl. smoothing).