

Towards Cohesion-Fairness Harmony: Contrastive Regularization in Individual Fair Graph Clustering

The 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2024)

European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024

Siamak Ghodsi¹, Seyed Amjad Seyedi², and Eirini Ntoutsi³

- 1 "L3S Research Center, Leibniz University Hannover, Germany "
- 2 "University of Mons, Mons, Belgium "
- 3 "RI CODE, University of the Bundeswehr Munich, Germany "

1. Introduction

- Example
- Problem Formulation
- Fair Graph Clustering
 - Individual Fairness
- 2. Methodology
 - NMTF
 - iFairNMTF
 - Interpretability

3. Experiments

- Datasets
- Metrics
- Loss Convergence
- Fairness-Cohesion Results
- Correlation: Net/Fairness

4. Conclusions

Take-away

1. Introduction

Example

- Teacher with 10 students, 4 female 6 male.
- First day of school.
- You know only the gender and friendship of students from their last year records.
- How to divide: 2 teams (clusters) for classroom assignments?

Clustering #1

Clustering #2

Example contd.

Avg ind fairness score

$$\bar{\delta} = 0.141$$

Group fairness score

$$B = 0.33$$

B Group well-being?

Tolerand State 1 Individual links?

Clustering #1

Clustering #2

$$\bar{\delta} = 0.174 \uparrow$$

$$B = 0.66$$

- What about clustering quality? C#1 is better or C#2?
- ☐ What should be the **clustering quality /fairness equilibrium**?

Problem Formulation

Inputs

• Undirected graph $\mathcal{G} = (V, E)$ where $V = \{v_1, v_2, \dots, v_n\}$

• No self-loops
$$E \subseteq V \times V$$
 is a binary set of edges

• Adjacency matrix
$$A \in \mathbb{R}^{n \times n}$$
 encodes edge information

• Sensitive attribute
$$V_{\!\scriptscriptstyle S}$$
 $V=\dot{\cup}_{s\in[m]}V_s$

Output

• Non-overlapping clustering $V \text{ into } k \geq 2$ \longrightarrow $V = C_1 \dot{\cup} \ldots \dot{\cup} C_k$

1. Introduction

Fair graph clustering: Individual Fairness

Individual fairness (in i.i.d. data literature)

identically independently distributed data

• Pair-wise node distances in the input-output space \rightarrow Lipschitz continuity condition [2, 3].

$$D(f(v_i), f(v_j)) \le L \cdot d(v_i, v_j)$$

Individual fairness in graph clustering [4]

• Distribute representation (one-hop neighbors) of each node within clusters (max-min)

$$\frac{|\mathcal{C}_k \cap \mathcal{N}_{\mathcal{R}}(i)|}{|\mathcal{C}_k|} = \frac{|\mathcal{N}_{\mathcal{R}}(i)|}{N}, \ \forall k \in [K], \ \forall i \in [N].$$

Symmetric Non-negative Matrix Factorization (SNMF) [7]

Symmetric Non-negative Matrix Factorization (SNMF) [7]

$$\min_{\boldsymbol{H} \geq 0} \|\boldsymbol{A} - \boldsymbol{H} \boldsymbol{H}^{\top}\|_{F}^{2}, \qquad (A_{ij} > 0) \\
(A_{ij} = 0) \qquad (\boldsymbol{h}_{i} \boldsymbol{h}_{j}^{\top} > 0) \\
(\boldsymbol{h}_{i} \boldsymbol{h}_{j}^{\top} = 0)$$

$$\boldsymbol{H} \in \mathbb{R}^{n \times k}$$

Non-negative Matrix Tri-Factorization (NMTF) [8]

iFairNMTF

NMTF

iFair

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \mathcal{R}_{\boldsymbol{C}}(\boldsymbol{H}), \quad -$$

$$\min_{\mathbf{H}} \Re_{\mathbf{C}} = \sum_{i=1}^{n} \sum_{j=1}^{n} ||\mathbf{h}^{(i)} - \mathbf{h}^{(j)}||^{2} C_{ij} = \text{Tr}(\mathbf{H}^{\top} \mathbf{L} \mathbf{H}).$$

$$\mathcal{L} = \mathcal{L}_{\mathcal{F}} + \lambda \mathcal{R}_{\mathbf{C}}$$

$$\min_{\boldsymbol{H},\boldsymbol{W}>0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H})$$

$$C = P - N$$

$$\mathcal{P}_{i,j} = \begin{cases} 1, & \text{if } g_i \neq g_j \\ 0, & \text{otherwise.} \end{cases}$$

$$P_{ij} = \mathcal{P}_{ij} / \sum_{r=1}^{n} \mathcal{P}_{ir},$$

$$\mathcal{N}_{i,j} = \begin{cases} 1, & \text{if } g_i = g_j \\ 0, & \text{otherwise.} \end{cases}$$

$$N_{ij} = \mathcal{N}_{ij} / \sum_{r=1}^{n} \mathcal{N}_{ir},$$

2. Methodology

iFairNMTF

$$\min_{\boldsymbol{H},\boldsymbol{W} \geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_F^2 + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H}),$$

$$m{H} \leftarrow m{H} \odot \Big(rac{m{A}^{ op} m{H} m{W} + m{A} m{H} m{W}^{ op} + \lambda m{L}^{-} m{H}}{m{H} m{W}^{ op} m{H}^{ op} m{H} m{W} + m{H} m{W} m{H}^{ op} m{H} m{W}^{ op} + \lambda m{L}^{+} m{H}} \Big)^{rac{1}{4}}$$

$$oldsymbol{W} \leftarrow oldsymbol{W} \odot rac{oldsymbol{H}^ op oldsymbol{A} oldsymbol{H}}{oldsymbol{H}^ op oldsymbol{H} oldsymbol{W} oldsymbol{H}^ op oldsymbol{H}}$$

Algorithm 1 Individual Fair Nonnegative Matrix Tri-Factorization (iFairNMTF)

Input: adjacency matrix A, group set g, latent factor k, trade-off parameter λ ; Output: cluster assignment M;

- 1: Construct the contrastive graph C according to (7);
- 2: while convergence not reached do
- 3: Update cluster-membership matrix \mathbf{H} according to (13);
- 4: Update cluster-interaction matrix W according to (16);
- 5: end while
- 6: Calculate cluster assignment $M_i \leftarrow \arg\max(\mathbf{h}^{(i)}), \forall i \in \{1, ..., n\}$
- 7: **return** cluster-membership matrix \mathbf{H} and cluster-interaction matrix \mathbf{W} ;

iFairNMTF (Interpretability)

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H} \boldsymbol{W} \boldsymbol{H}^{\top}\|_F^2 + \lambda \text{Tr}(\boldsymbol{H}^{\top} \boldsymbol{L} \boldsymbol{H})$$

	I	II	III	IV	
I	2.9	0	4E-12	7E-13	
II	0	1.10	5E-08	5E-04	
III	4E-12	5E-08	2.74	0	
IV	7E-13	5E-04	0	1.91	

 $oldsymbol{W}$

Fig. 4: Interpretability of \boldsymbol{W} factor for a 40-node graph divided to 4 clusters. Shapes indicate groups.

Dataset Statistics

Table 1: Dataset statistics. |V|, |E|, |g|, indicate the number of nodes, edges, and groups.

Network	V	E	Sensitive Attribute	a		Homophily	
	2,000	267,430	attribute	2	0.133	0.82	
SBM	5,000	978,959	attribute	2	0.078	0.82	
	10,000	2,603,190	attribute	2	0.052	0.82	
Diaries	120	348	gender	2	0.048	0.61	
Friendship	134	406	gender	2	0.049	0.60	
Facebook	156	1,437	gender	2	0.120	0.57	
DrugNet	293	284	ethnicity	3	0.014	0.88	
NBA	403	8,285	nationality	2	0.102	0.72	
LastFM	7,624	27,806	country	6	0.001	0.92	

$$\rho = \frac{2|E|}{|V|(|V|-1)}$$

Group Imbalance Ratio as per sensitive-attribute

Datasets: Group Imbalance Ratio

Datasets: Node degree distributions

Metrics

Average Individual Balance [4, 9]

$$\overline{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$

$$\delta_i = \min_{k,l \in \{1,...,K\}} \frac{|C_k : \cap N_{v_i}|}{|C_l : \cap N_{v_i}|}$$

Average Group Balance [1, 9]

$$B = \frac{1}{k} \sum_{l=1}^{k} Balance(C_l),$$

$$Balance(C_l) = \min_{s \neq s' \in [m]} \frac{|V_s \cap C_l|}{|V_{s'} \cap C_l|}$$

Cohesion (Modularity) [10]

$$Q = \frac{1}{|E|} \sum_{i,j} \left(A_{ij} - \frac{deg(i)deg(j)}{|E|} \right) \delta(c_i, c_j)$$

i(individual)-Fairness

Individual balance [4, 9]

$$\overline{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i \longrightarrow \delta_i = \min_{k,l \in \{1,\dots,K\}} \frac{|C_k : \cap N_{v_i}|}{|C_l : \cap N_{v_i}|}$$

- ❖ Fixed number of clusters k=5.
- \diamond Best value of λ for our model according to slide 19.

$\overline{\delta}$ individual balance score								
Network	FairSC SC		iFairSC	iFairNMTF				
Contact Diaries	0.123	0.347	0.166	0.426				
Facebook	0.011	0.010	0.000	0.348				
Friendship	0.028	0.033	0.031	0.519				
DrugNet	0.000	0.016	0.000	0.339				
NBA	0.000	0.000	0.000	0.323				
LastFM	0.000	0.001	0.000	0.020				

Fairness-Cohesion

Fixed number of clusters k=5. Best value of λ for our model according to slide 19. Best B is **bold-underlined** and best Acc/Q with **boldfaced** gray

Network	${\bf Fair SC}$		sFa	$\mathbf{sFairSC}$		iFairSC		DMoN		iFairNMTF	
	В	Q	В	Q	В	Q	В	Q	В	Q	
Diaries	0.708	0.612	0.809	0.684	0.699	0.647	0.263	0.145	0.648	0.640	
Facebook	0.327	0.449	$\underline{0.602}$	0.500	0.330	0.448	0.268	0.048	0.514	0.509	
Friendship	0.391	0.483	0.485	0.627	0.374	0.392	0.183	0.140	0.631	0.669	
DrugNet	0.052	0.263	0.052	0.270	0.061	0.263	0.000	0.326	$\underline{0.124}$	0.588	
NBA	0.083	0.000	$\underline{0.323}$	0.113	0.072	0.000	0.036	0.057	0.286	0.150	
LastFM	0.065	0.003	0.056	0.035	0.066	0.002	0.000	0.526	0.069	0.600	
	В	Acc	В	Acc	В	Acc	В	Acc	В	Acc	
SBM-2K	0.575	0.588			0	0.799			0.953	0.958	
SBM-5K	$\underline{0.995}$	0.998	_	_	0	0.799	_	_	0.941	0.962	
SBM-10K	0.999	0.999	_	_	0	0.600	_	_	1	1	

Fairness-Cohesion (Parameter Selection)

Choice of λ is problem/dataset specific

Cluster-sizes

4. Conclusion

- * Flexible (adjustable) degree of trade-off between individual fairness and cohesion (clustering objective) compared to existing hard-constrained graph-clustering frameworks.
- **Contrastive regularization**: takes Lipschitz condition (individual fairness) and also group membership of nodes into account.
- **Individual-fair** by definition but also **group-fair by design**.
- ❖ The **first work** to incorporate fairness in **NMF** framework.
- * It enables users/policy-makers to enforce required degree of fairness in compromise to accuracy.

Future Outlook

- Multi-objective techniques to effectively balance fairness and cohesion objectives.
- **Extend to group fairness notions and fusion ideas.**
- Investigating further network characteristic evaluations to uncover clustering/fairness correlations.

5. References

- [1] Kleindessner, Matthäus, et al., "Guarantees for spectral clustering with fairness constraints", In: International Conference on Machine Learning. PMLR, 2019.
- [2] Dwork, Cynthia, Hardt, Moritz, Pitassi, Toni, Reingold, O., Zemel, Richard.S, "Fairness through awareness", In: Proceedings of the 3rd ITCS Conference. pp. 214–226 (2012)
- [3] Zemel, Richard.S., Wu, Yu, Swersky, Kevin, Pitassi, Toni, Dwork, Cynthia, "Learning fair representations", In: International Conference on Machine Learning. PMLR, 2013.
- [4] Gupta, Shubham, and Ambedkar Dukkipati, "Consistency of Constrained Spectral Clustering under Graph Induced Fair Planted Partitions.", In: Advances in Neural Information Processing Systems. 2022.
- [5] Wang, Yu-Xiong, and Yu-Jin Zhang, "Nonnegative matrix factorization: A comprehensive review", In: IEEE Transactions on knowledge and data engineering 25.6 (2012): 1336-1353.
- [6] Cai, Deng, et al, "Graph regularized nonnegative matrix factorization for data representation", In: IEEE transactions on pattern analysis and machine intelligence 33.8 (2010): 1548-1560.
- [7] Ding, Chris, Xiaofeng He, and Horst D. Simon, "On the equivalence of nonnegative matrix factorization and spectral clustering", In: Proceedings of the 2005 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2005.
- [8] Pei, Y., Chakraborty, N., Sycara, K.P., "Nonnegative matrix tri-factorization with graph regularization for community detection in social networks", In: IJCAI. pp. 2083–2089. AAAI Press (2015).
- [9] Dong, Yushun, et al., "Fairness in Graph Mining: A Survey", In: arXiv preprint arXiv:2204.09888 (2022).
- [10] Chakraborty, Tanmoy, et al., "Metrics for community analysis: A survey", IN: ACM Computing Surveys (CSUR) 50.4 (2017): 1-37.
- [11] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii, "Fair clustering through fairlets", In: Advances in Neural Information Processing Systems. (2017).

Siamak Ghodsi ghodsi@l3s.de

S. Amjad Seyedi amjadseyedi@uok.ac.ir

Eirini Ntoutsi eirini.ntoutsi@unibw.de

For code and Supplemental material,

https://github.com/SiamakGhodsi/iFairNMTF

Thank you for your attention

2. Methodology

Introducing NMF

Loss Convergence

$$\mathcal{L} = \mathcal{L}_{\mathcal{F}} + \lambda \mathcal{R}_{\mathbf{C}}$$

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H}),$$

Datasets: Network Factors

- Degree mean
- Clustering coefficient
- Assortativity coefficient

- Heterophily index
- Homophily index
- Degree centrality
- Betweenness centrality

- Closeness centrality
- Edge density
- Graph sparsity

	Degree mean	Clustering coefficient	Assortativity coefficient	Homophily	Heterophily	Degree centrality	Betweenness centrality	Closeness centrality	Edge density	Graph sparsity
DrugNET	2.83	0.14	0.79	0.88	0.12	0.01	0.03	0.15	0.01	0.99
Facebok	18.22	0.62	0.13	0.57	0.43	0.12	0.01	0.41	0.12	0.88
Friendship	6.24	0.54	0.20	0.60	0.40	0.05	0.02	0.25	0.05	0.95
Diaries	5.80	0.45	0.21	0.61	0.39	0.05	0.04	0.19	0.05	0.95
NBA	53.10	0.34	0.22	0.72	0.28	0.13	0.00	0.52	0.13	0.87
LastFM	7.03	0.21	0.90	0.92	0.08	0.00	0.00	0.19	0.00	1.00

Datasets: Node degree distributions

Correlation of individual fairness to network factors

