A Group-Permutation Algorithm to Solve the Generalized SUDOKU

Florentin Smarandache University of New Mexico Gallup Campus, USA

Sudoku is a game with numbers, formed by a square with the side of 9, and on each row and column are placed the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, written only one time; the square is subdivided in 9 smaller squares with the side of 3×3 , which, also, must satisfy the same condition, i.e. each square to contain all digits from 1 to 9 written only once.

The Japanese company Nikoli has popularized this game in 1986 under the name of *sudoku*, meaning "single number".

Sudoku can be generalized to squares whose dimensions are $n^2 \times n^2$, where $n \ge 2$, using various symbols (numbers, letters, mathematical symbols, etc.), written just one time on each row and on each column; and the large square is divided into n^2 small squares with the side $n \times n$ and each will contain all n^2 symbols written only once.

An <u>elementary solution</u> of one of these <u>generalized Sudokus</u>, with elements (symbols) from the set

$$S = \{s_1, s_2, ..., s_n, s_{n+1}, ..., s_{2n}, ..., s_{n^2}\}$$

(supposing that their placement represents the relation of total order on the set of elements S), is:

Row 1: all elements in ascending order

$$S_1, S_2, ..., S_n, S_{n+1}, ..., S_{2n}, ..., S_{n^2}$$

On the next rows we will use circular permutations, considering groups of n elements from the first row as follows:

Row 2:

$$S_{n+1}, S_{n+2}, ..., S_{2n}; S_{2n+1}, ..., S_{3n}; ..., S_{n^2}; S_1, S_2, ..., S_n$$

Row 3:

$$S_{2n+1}, ..., S_{3n}; ..., S_{n^2}; S_1, S_2, ..., S_n; S_{n+1}, S_{n+2}, ..., S_{2n}$$

.....

Row n:

$$S_{n^{\wedge}2-n+1},..., S_{n^{\wedge}2}; S_1, ..., S_n, S_{n+1}; S_{n+2},..., S_{2n}; ..., S_{3n}; ..., S_{n^{\wedge}2-n}.$$

Now we start permutations of the elements of row n+1 considering again groups of n elements.

Row n+1:

$$S_2, ..., S_n, S_{n+1}; S_{n+2}, ..., S_{2n}, S_{2n+1}; S_{n \wedge 2-n+2}, ..., S_{n \wedge 2}, S_1$$

Row n+2:

$$S_{n+2}, ..., S_{2n}, S_{2n+1}; S_{n^2-n+2}, ..., S_{n^2}, S_1; S_2, ..., S_n, S_{n+1}$$

.....

Row 2n:

$$S_{n^{\wedge}2-n+2}$$
 ..., $S_{n^{\wedge}2}$, S_1 ; S_2 , ..., S_n , S_{n+1} ; S_{n+2} , ..., S_{2n} , S_{2n+1}

Row 2n+1:

$$S_3, ..., S_{n+2}; S_{n+3}, ..., S_{2n+2}; S_{n^2+3}, ..., S_{n^2}, S_1, S_2$$

and so on.

Replacing the set S by any <u>permutation</u> of its symbols, which we'll note by S', and applying the same procedure as above, we will obtain a new solution.

The classical Sudoku is obtained for n = 3.

Below is an example of this group-permutation algorithm for the classical case:

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8

For a $4^2 \times 4^2$ square we use the following 16 symbols: {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P} and use the same group-permutation algorithm to solve this Sudoku.

From one solution to the generalized Sudoku we can get <u>more solutions</u> by simply doing permutations of columns or/and of rows of the first solution.

A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P
E	F	G	H	Ι	J	K	L	M	N	O	P	A	В	C	D
I	J	K	L	M	N	0	P	A	В	C	D	E	F	G	H
M	N	0	P	A	B	C	D	E	F	G	H	I	J	K	L
В	C	D	E	F	G	H	I	J	K	L	\mathbf{M}	N	0	P	A
F	G	H	Ι	J	K	L	M	N	0	P	A	В	C	D	E
J	K	L	M	N	0	P	A	В	C	D	E	F	G	H	I
N	O	P	A	B	C	D	E	F	G	H	I	J	K	L	M
C	D	E	F	G	H	I	J	K	L	M	N	0	P	A	В
G	H	Ι	J	K	L	M	N	0	P	A	В	C	D	E	F
K	L	\mathbf{M}	N	O	P	A	В	C	D	E	F	G	H	I	J
0	P	A	В	C	D	E	F	G	H	I	J	K	L	\mathbf{M}	N
D	E	F	G	H	I	J	K	L	M	N	O	P	A	В	C
H	I	J	K	L	M	N	0	P	A	В	C	D	E	F	G
L	M	N	0	P	A	В	C	D	E	F	G	H	Ι	J	K
P	A	B	C	D	E	F	G	H	I	J	K	\mathbf{L}	M	N	0

References:

- 1. Zachary Pitkow, Sudoku: Medium to Hard, Chronicle Books, 2006.
- 2. Frank Longo, Absolutely Nasty Sudoku Level 4 (Mensa), Puzzlewright, 2007.
- 3. Peter Gordon, Frank Longo, *Mensa Guide to Solving Sudoku: Hundreds of Puzzles Plus Techniques to Help You Crack Them All*, Sterling, 2006.

{Published in Author's book *Frate cu meridianele și paralelele, Vol. IV*, Offsetcolor, Rm, Vâlcea, Romania, pp. 201-202, 2008.}