

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

1/8

FIG. 1

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

2/8

FIG. 2

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

3/8

$\Phi = \frac{A \cdot \mu_0 I_R r_R^2}{2(r_R^2 + x^2)^{3/2}}$	
$\Phi = \frac{\pi \cdot \mu_0 \mu_R \cdot I_R N_R d^2}{4 \cdot l}$	

FIG. 3

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

4/8

FIG. 4

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

5/8

FIG. 5

BEST AVAILABLE COPY

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

6/8

FIG. 6

BEST AVAILABLE COPY

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

7/8

FIG. 7

BEST AVAILABLE COPIE

SENSOR FOR MONITORING ENVIRONMENTAL
PARAMETERS IN CONCRETE
Inventors: Johnson and Kulesza
Attorney Docket No. 2003-2

8/8

FIG. 8

BEST AVAILABLE COPY