FCC TEST REPORT

For

Jorge Enrique Jimenez Torres

GSM Digital mobile phone

Model No.: 103B

Additional models NO.:Please refer to page 36

Prepared for Jorge Enrique Jimenez Torres

Address carrera 35 oeste 7-32, Cali, 760042

Prepared by Shenzhen LCS Compliance Testing Laboratory Ltd.

Address 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Date of receipt of test sample : June 09, 2014

Number of tested samples 1

Serial number Prototype

Date of Test June 09, 2014 –June 21, 2014

Date of Report July 29, 2014

FCC TEST REPORT

FCC CFR 47 PART 22 SUBPART H AND PART 24 SUBPART E

Report Reference No.: LCS1406200652E_Rev

Date of Issue: July 29, 2014

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Full application of Harmonised standards

Testing Location/ Procedure......: Partial application of Harmonised standards □

Other standard testing method \Box

Applicant's Name.....: Jorge Enrique Jimenez Torres

Address: carrera 35 oeste 7-32, Cali, 760042

Test Specification

FCC CFR 47 PART 2, FCC CFR 47 PART 22 SUBPART H Standard:

AND PART 24 SUBPART E

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: : GSM Digital mobile phone

Trade Mark: GO-CEL

Model/ Type reference.....: 103B

DC 3.7V by battery(600mAh)

Ratings: Adapter parameters: Input: 100~240V AC, 50/60Hz, 0.3A; Output:

DC 5V, 2A

Result: Positive

Compiled by:

Supervised by:

Approved by:

Jacky Li/ File administrators

Danny Huang/ Technique principal

Danny Huang

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS1406200652E_Rev

July 29, 2014

Date of issue

Type / Model..... : 103B EUT..... : GSM Digital mobile phone : Jorge Enrique Jimenez Torres Applicant..... : carrera 35 oeste 7-32, Cali, 760042 Address..... Telephone..... : / Fax..... : / Manufacturer..... : Ying Tai Electronics Co.,Ltd : Rm1009-1010, Baotong Building, Baoming 1st Road, 13th Address..... District, Bao'an Shenzhen, Guangdong, China Telephone..... : / Fax..... : / : Ying Tai Electronics Co.,Ltd Factory..... Address..... : Rm1009-1010, Baotong Building, Baoming 1st Road, 13th District, Bao'an Shenzhen, Guangdong, China Telephone..... : / Fax.....

Test Result	Positive
Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

I. GENERAL INFORMATION	5
1.1. DESCRIPTION OF DEVICE (EUT)	5
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.3. EXTERNAL I/O CABLE	
1.4. DESCRIPTION OF TEST FACILITY	
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
1.6. Measurement Uncertainty	
1.7. TEST ENVIRONMENT	7
2. TEST METHODOLOGY	8
2.1. EUT CONFIGURATION	8
2.2. Objective	8
2.3. GENERAL TEST PROCEDURES	
2.4. Test Mode	9
3. SYSTEM TEST CONFIGURATION	10
3.1. JUSTIFICATION	10
3.2. EUT Exercise Software	10
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
3.6. TEST SETUP	10
4. SUMMARY OF TEST RESULTS	11
5. TEST RESULT	12
5.1. RF OUTPUT POWER	12
5.2. OCCUPIED BANDWIDTH	
5.3. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL	19
5.4. RADIATED SPURIOUS EMISSIONS MEASUREMENT	26
5.5. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS	30
5.6.MODULATION CHARACTERISTIC	
5.7. POWER LINE CONDUCTED EMISSIONS	
6. LIST OF MEASURING EQUIPMENTS	35
7. MANUFACTURER/ APPROVAL HOLDER DECLARATION	36

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : GSM Digital mobile phone

Test Model : 103B

DC 3.7V by battery(600mAh)

Power Supply : Adapter parameters: Input: 100~240V AC, 50/60Hz, 0.3A; Output:

DC 5V, 2A

□ GSM 850 (U.S.-Band) □ PCS 1900 (U.S.-Band)

Support Band : UMTS FDD Band II (U.S.-Band)

UMTS FDD Band V (U.S.-Band)

GSM 850: 824.2MHz ~ 848.8MHz

Uplink :

PCS 1900: 1850.2MHz ~ 1909.8MHz

GSM 850: 869.2MHz ~ 893.8MHz Downlink :

PCS 1900: 1930.2MHz ~ 1989.8MHz

Type Of Modulation : GSM/GPRS:GMSK

Antenna Description : Integral Antenna, Antenna Gain: 2.0dBi

Software Version : V1.1

Hardware Version V1.1

FCC ID: 2ACLQ103B

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.3. External I/O Cable

Cable Description	Length(M)	From/Port	То

1.4. Description of Test Facility

Site Description EMC Lab.

: Accredited by CNAS, June 04, 2010

The Certificate Registration Number. is L4595.

Accredited by FCC, July 14, 2011

The Certificate Registration Number. is 899208.

Accredited by Industry Canada, May. 02, 2011

The Certificate Registration Number. is 9642A-1

Accredited by VCCI, Japan January 30, 2012

The Certificate Registration Number. is C-4260 and R-3804

Accredited by ESMD, April 24, 2012

The Certificate Registration Number. is ARCB0108.

Accredited by UL, June 11, 2012

The Certificate Registration Number. is 100571-492.

Accredited by TUV, November 21, 2012

The Certificate Registration Number. is SCN1081

Accredited by Intertek, December 21, 2012

The Certificate Registration Number. is 2011-RTL-L1-50.

1.5. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
Dadiation Unaantainty		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
Conduction Uncertainty:		150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test environment

All tests were performed under the following environmental conditions:

Condition	Minimum value	Maximum value		
Barometric pressure	86kPa	106kPa		
Temperature	15 ℃	30 ℃		
Relative Humidity	20 %	75 %		
Power supply range	±5% of rated voltages			

2. TEST METHODOLOGY

All tests and measurements indicated in this document were performed in accordance with FCC CFR 47 part 2, FCC CFR 47 part 22 subpart H and part 24 subpart E.

Applicable Standards: TIA/EIA603-C, ANSI C63.4-2003. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. Objective

This type approval report is prepared on behalf of **Jorge Enrique Jimenez Torres** in accordance with FCC CFR 47 part 2, FCC CFR 47 part 22 subpart H and part 24 subpart E.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristics, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4

2.4. Test Mode

GSM / GPRS /EGPRS 850: Channel Low (CH128), Channel Mid (CH190) and Channel High (CH251) were chosen for full testing. The test PCL(Power Control Level)/Class is level 5/class 4.

PCS / GPRS /EGPRS 1900: Channel Low (CH512), Channel Mid (CH661) and Channel High (CH810) were chosen for full testing. The test PCL(Power Control Level)/Class is level 0/class 1.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

For the field strength of spurious emission, the worst emission was found in lie-down position (X axis) for GSM /GPRS 850, lie-down position (X axis) for PCS / GPRS 1900.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The EUT had been tested under operating condition. EUT staying in continuous transmitting mode.

3.2. EUT Exercise Software

N/A.

3.3. Special Accessories

N/A.

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: 47 CFR FCC Part 22 Subpart H, Part 24 Subpart E					
FCC Rules	Descri	ption of Test	Result		
§2.1046, §22.913 /	DE Output Down	Conducted Output Power	Compliant		
§24.232	RF Output Power	Radiated Output Power	Compliant		
§2.1049, §22.905	Occupi	ed Bandwidth	Compliant		
§2.917, §24.238	Occupi	eu Danuwium	Compliant		
§2.1053	Courious D	Compliant			
§2.917, §24.238	Spurious R	Compliant			
§2.1051	Spurious Emissio	Compliant			
§2.917, §24.238	Spurious Emissio	Compilant			
§2.917, §24.238	Band Edge		Compliant		
§2.1055	Eragu	anay Stability	Compliant		
§22.355, §24.235	Frequency Stability		Compliant		
§1.1310, §2.1091	RF Expos	Compliant			
§2.1047	Modulatio	Compliant			
§15.107 / §15.207	AC power line	conducted emissions	Compliant		

5. TEST RESULT

5.1. RF OUTPUT POWER

5.1.1. Standard Applicable

According to FCC \2.1046 and \22.913, the maximum effective radiated power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to FCC \2.1046 and \22.232, mobile and portable stations are limited to 2 Watts and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

5.1.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

5.1.3. Test Procedures

Conducted method:

Radiated method:

TIA 603-D section 2.2.17

5.1.4. Test Results

Temperature	25°C	Humidity	60%
ATM Pressure:	101.4kPa	Test Engineer	Jacky

Conducted Power:

Mode	Channel	Frequency	Peak Output Power	Limit
	Onamie	(MHz)	(dBm)	(dBm)
	128	824.2	31.27	38.45
GSM 850	190	836.6	31.45	38.45
	251	848.8	31.35	38.45
GPRS 850	128	824.2	31.32	38.45
	190	836.6	31.44	38.45
(Slot 1)	251	848.8	31.31	38.45
ODDC 050	128	824.2	29.26	38.45
GPRS 850 (Slot 2)	190	836.6	29.10	38.45
(3101 2)	251	848.8	29.22	38.45
ODDC 050	128	824.2	28.31	38.45
GPRS 850	190	836.6	28.39	38.45
(Slot 3)	251	848.8	28.37	38.45
CDDS 950	128	824.2	27.47	38.45
GPRS 850	190	836.6	27.44	38.45
(Slot 4)	251	848.8	27.41	38.45

Mode	Channel	Frequency	Peak Output Power	Limit
	Chamie	(MHz)	(dBm)	(dBm)
	512	1850.2	28.64	33
PCS 1900	661	1880.0	28.94	33
	810	1909.8	28.76	33
CDDC 4000	512	1850.2	29.23	33
GPRS 1900	661	1880.0	29.18	33
(Slot 1)	810	1909.8	28.45	33
CDDC 4000	512	1850.2	27.36	33
GPRS 1900 (Slot 2)	661	1880.0	27.25	33
	810	1909.8	27.18	33
CDDC 4000	512	1850.2	26.85	33
GPRS 1900	661	1880.0	26.77	33
(Slot 3)	810	1909.8	26.26	33
GPRS 1900	512	1850.2	26.44	33
	661	1880.0	26.14	33
(Slot 4)	810	1909.8	26.43	33

Radiated Power:

The worst test data as follow:

		_	Test Result		
Mode	Channel	Frequency (MHz)	Max. Peak ERP (dBm)	Polarization	Limit (dBm)
	128	824.2	29.85	Н	38.45
GSM 850	190	836.6	29.91	Н	38.45
	251	848.8	29.89	Н	38.45

			Test Result		
Mode	Channel	Frequency (MHz)	Max. Peak EIRP (dBm)	Polarization	Limit (dBm)
	512	1850.2	26.85	Н	33
PCS 1900	661	1880.0	26.99	Н	33
	810	1909.8	26.88	Н	33

NOTE:All conditions have been tested and we only record the worst results in each bands.

5.2. OCCUPIED BANDWIDTH

5.2.1. Standard Applicable

FCC §2.1049, §22.917, §22.905 and §24.238.

5.2.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

5.2.3. Test Procedures

The RF output of the transmitter was connected to the wireless communication tester and spectrum analyzer through attenuation.

The -26dB & 99% bandwidth was recorded.

5.2.4. Test Results

Temperature	25°C	Humidity	60%
ATM Pressure:	101.4kPa	Test Engineer	Jacky

The worst test data as follow:

Mode	Channel	Frequency (MHz)	Emission Bandwidth (-26dBc) (kHz)	Occupied Bandwidth (99%) (kHz)
	128	824.2	307.107	249.3498
GSM 850	190	836.6	316.616	242.6824
	251	848.8	317.277	245.6236

Mode	Channel	Frequency (MHz)	Emission Bandwidth (-26dBc) (kHz)	Occupied Bandwidth (99%) (kHz)
	512	1850.2	317.877	245.3245
PCS 1900	661	1880.0	317.371	244.2441
	810	1909.8	313.232	246.6929

NOTE:All conditions have been tested and we only record the worst results in each bands.

Test Plots For GSM 850

Test Plots For PCS 1900

5.3. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL

5.3.1. Standard Applicable

FCC §2.1051, §22.917 and §24.238.

5.3.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

5.3.3. Test Procedures

The RF output of the transmitter was connected to the wireless communication tester and spectrum analyzer through attenuation.

5.3.4. Test Results

Please refer to the following plots.

Transmitting Mode, CH 128, GSM 850

Transmitting Mode, CH 190, GSM 850

Transmitting Mode, CH 251, GSM 850

Transmitting Mode, CH 512, PCS 1900

Transmitting Mode, CH 661, PCS 1900

Transmitting Mode, CH 810, PCS 1900

Next Pk Left

Min Search

More

Pk-Pk Search

Span 1 MHz

Sweep 114.4 ms (401 pts)

M1 S2 S3 FC

Center 824 MHz

#Res BW 3 kHz

#VBW 10 kHz

Test Result of Band Edge Emissions, PCS 1900

NOTE:All conditions have been tested and we only record the worst results in each bands.

5.4. RADIATED SPURIOUS EMISSIONS MEASUREMENT

5.4.1. Standard Applicable

FCC §2.1053, §22.917 and §24.238.

5.4.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

5.4.3. Test Procedures

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain <math>(dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

For radiated spurious emissions below 1GHz

For radiated spurious emissions above 1GHz

Substituted Method

5.4.4. Test Results

The worst test data as follow: 30MHz~10GHz

The Worst Test Result For GSM 850, CH 128					
Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result	Polarity	
82.45	-64.25				
243.25	-70.15				
697.44	-69.55	-13	Pass	Н	
1778.86	-28.84				
2500.16	-33.71				
82.45	-65.25				
243.25	-72.44				
697.44	-71.51	-13	Pass	V	
1778.86	-30.22				
2500.16	-34.81				

The Worst Test Result For GSM 850, CH 190					
Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result	Polarity	
82.45	-64.54	-13			
243.25	-70.24	-13			
697.44	-69.71	-13	Pass	Н	
1862.41	-28.32	-13			
2632.24	-33.85	-13			
82.45	-65.14	-13			
243.25	-72.63	-13			
697.44	-71.74	-13	Pass	V	
1862.41	-30.56	-13			
2632.24	-34.12	-13			

The Worst Test Result For GSM 850, CH 251					
Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result	Polarity	
82.45	-64.24	-13			
243.25	-70.57	-13			
697.44	-69.23	-13	Pass	Н	
1875.23	-28.14	-13			
2644.22	-33.76	-13			
82.45	-65.32	-13			
243.25	-72.72	-13			
697.44	-71.62	-13	Pass	V	
1875.23	-30.27	-13			
2644.22	-34.27	-13			

30MHz~20GHz

The Worst Test Result For PCS 1900, CH 512					
Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result	Polarity	
82.45	-67.14	-13			
243.25	-72.25	-13		н	
697.44	-76.14	-13	Pass		
3650.33	-28.28	-13			
5434.11	-34.39	-13			
82.45	-67.34	-13			
243.25	-67.38	-13			
697.44	-79.85	-13	Pass	V	
3613.10	-26.32	-13			
5752.95	-36.74	-13			

The Worst Test Result For PCS 1900, CH 661				
Frequency (MHz)	Emission Level	Limit (dBm)	Result	Polarity
82.45	-67.65	-13		
243.25	-72.25	-13		
697.44	-76.32	-13	Pass	Н
3819.97	-28.54	-13		
5729.49	-34.68	-13		
82.45	-67.11	-13		
243.25	-67.66	-13		
697.44	-79.52	-13	Pass	V
3819.66	-26.84	-13		
5726.94	-36.78	-13		

The Worst Test Result For PCS 1900, CH 810					
Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result	Polarity	
82.45	-67.21	-13			
243.25	-72.24	-13			
697.44	-76.65	-13	Pass	Н	
3809.74	-28.56	-13			
5727.65	-34.83	-13			
82.45	-67.14	-13			
243.25	-67.65	-13			
697.44	-79.62	-13	Pass	V	
3780.76	-26.72	-13			
5680.60	-36.28	-13			

NOTE: The result below 30MHz is too low, there is only base environmental noise. We Only record the worst results above 30MHz.

5.5. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE

VARIATIONS

5.6.1. Standard Applicable

FCC §2.1055, §22.355 and §24.235, Frequency Tolerance: 2.5ppm

5.6.2. Test Procedures

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.

Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Temperature Chamber

5.6.3. Test Results

Pass

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz					
Power supplied (Vdc)	Temperature (°C)	F	requency error	Limit (ppm)	Result
Tower supplies (+ss)	reimperature (e)	Hz	ppm	2 (PP)	Result
	-30	24	0.028688		
	-20	24	0.028688		
	-10	21	0.025101		
	0	23	0.027492		
3.70	10	22	0.026297	2.5	Pass
	20	20	0.023906		
	30	21	0.025101		
	40	24	0.028688		
	50	23	0.027492		
R	Reference Frequency: P	CS1900 Mid	dle channel=661 channel=	=1880MHz	
Power supplied (Vdc)	Temperature (°C)	Frequency error			Result
	F (-)	Hz	ppm		333333
	-30	28	0.014894		
	-20	24	0.012766		
	-10	26	0.013830		
	0	22	0.011702		
3.70	10	21	0.011170	2.5	Pass
	20	24	0.012766		
	30	25	0.013298		
	40	23	0.012234		
	50	20	0.010638		

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz						
Temperature (°C)	emperature (°C) Power supplied Frequency error		Limit (ppm)	Result		
F ,	(Vdc)	Hz	ppm	417		
	4.25	24	0.028688		Pass	
25	3.70	26	0.031078	2.5		
	3.40	22	0.026297			
F	Reference Frequency: P	CS1900 Middle cha	annel=661 channel=	1880MHz		
Temperature (°C)	Power supplied	Frequen	cy error	Limit (ppm)	Result	
P * * * * * * * * * * * * * * * * * * *	(Vdc)	Hz	ppm	417		
	4.25	23	0.012234			
25	3.70	24	0.012766	2.5	Pass	
	3.40	21	0.011170			

NOTE:All conditions have been tested and we only record the worst results in each bands.

5.6.MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

5.7. POWER LINE CONDUCTED EMISSIONS

5.7.1 Standard Applicable

According to §15.107 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

PASS.

The test data please refer to following page.

Env. Ins: EUT: M/N: m/N:
Power Rati
Test Mode:
Operator:
Memo:
Pol: Rating: 24*/56% GSM Digital Mobile Phone 103B AC 110V/60Hz TX-GSM 850

JACKY

	Freq	Reading	LisnFac	CabLos	Measured	Limit	Over	Remark
	MHz	dBpW	dB	dB	dBpW	dBp₩	dB	
1	0.17	27.70	9.59	0.02	47.31	65.16	-17.85	QP
2	0.17	3.64	9.59	0.02	23.25	55.16	-31.91	Average
3	0.49	15.99	9.62	0.04	35.65	56.23	-20.58	QP
4	0.49	-1.36	9.62	0.04	18.30	46.23	-27.93	Average
5	1.65	0.75	9.64	0.05	20.44	46.00	-25.56	Average
6	1.65	18.99	9.64	0.05	38.68	56.00	-17.32	QP
7	2.68	3.06	9.64	0.05	22.75	46.00	-23.25	Average
8	2.68	20.01	9.64	0.05	39.70	56.00	-16.30	QP
9	4.41	-2.78	9.65	0.06	16.93	46.00	-29.07	Average
10	4.41	16.67	9.65	0.06	36.38	56.00	-19.62	QP
11	15.80	23.68	9.72	0.10	43.50	60.00	-16.50	QP
12	15.80	11.59	9.72	0.10	31.41	50.00	-18.59	Average

Measured = Reading + Lisn Factor +Cable Loss.
 The emission levels that are 20dB below the official limit are not reported.

Grace: 398
Env. Ins:
EUT:
M/N:
Power Rating:
Test Mode:
Operator:
Memo:
Pol:

GSM Digital Mobile Phone 103B

AC 110V/60Hz TX-GSM 850 JACKY NEUTRAL

	Freq	Reading	LisnFac	CabLos	Measured	Limit	Over	Remark
	MHz	dBpW	dB	dВ	dBpW	dBpW	dВ	
1	0.16	28.33	9.67	0.02	48.02	65.34	-17.32	Peak
2	0.16	14.60	9.67	0.02	34.29	55.33	-21.04	Average
3	0.49	16.50	9.62	0.04	36.16	56.23	-20.07	Peak
4	0.49	0.28	9.62	0.04	19.94	46.23	-26.29	Average
5	1.03	-2.98	9.63	0.05	16.70	46.00	-29.30	Average
6	1.03	16.40	9.63	0.05	36.08	56.00	-19.92	Peak
7	1.12	-0.18	9.63	0.05	19.50	46.00	-26.50	Average
8	1.12	16.20	9.63	0.05	35.88	56.00	-20.12	Peak
9	5.71	15.04	9.67	0.06	34.77	60.00	-25.23	Peak
10	5.71	-1.41	9.67	0.06	18.32	50.00	-31.68	Average
11	15.23	11.60	9.74	0.10	31.44	50.00	-18.56	Average
12	15.23	23.58	9.74	0.10	43.42	60.00	-16.58	Peak

 Measured = Reading + Lisn Factor +Cable Loss.
 The emission levels that are 20dB below the official limit are not reported. Remarks:

Note: Pre-scan all mode and recorded the worst case results in this report (GSM 850, Normal Link)

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18, 2014	June 17, 2015
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 18,2013	July 17,2014
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 25,2013	June 24,2014
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 25,2013	June 24,2014
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 25,2013	June 24,2014
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 25,2013	June 24,2014
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-1GHz 3m	June 18, 2014	June 17, 2015
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 16, 2014	June 15, 2015
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16,2013	July 15,2014
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16,2013	July 15,2014
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	July 16,2013	July 15,2014
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 16, 2014	June 15, 2015
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 16, 2014	June 15, 2015
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 16, 2014	June 15, 2015
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 16, 2014	June 15, 2015
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 25,2013	June 24,2014
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 25,2013	June 24,2014
Spectrum Meter	R&S	FSP 30	100023	9kHz-30GHz	July 16,2013	July 15,2014
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18, 2014	June 17, 2015
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18, 2014	June 17, 2015
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18, 2014	June 17, 2015
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	June 18, 2014	June 17, 2015
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	June 18, 2014	June 17, 2015
Temp. and Humidigy	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 18, 2014	June 17, 2015
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 25,2013	June 24,2014
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 25,2013	June 24,2014
Vector signal Generator	R&S	SMU200A	102098	100kHz~6GHz	June 18,2014	June 17,2015
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	July 16,2013	July 15,2014
Universal Radio Communication	R&S	CMU200	112012	N/A	July 18,2013	July 17,2014
Substitution antennas	Laplace instrument	RF300	10210	30MHz~6GHz	July 18,2013	July 17,2014

Note: All equipment through GRGT EST calibration

7. MANUFACTURER/ APPROVAL HOLDER DECLARATION

The following identical model(s):

K440	NX14A	NX14B	NX14C
2232	T677	T699	

Belong to the tested device:

Product description : GSM Digital mobile phone

Model name : 103B

Remark: PCB board, structure and internal of these model(s) are the same,

So no additional models were tested.