Zadania zamknięte

Zadanie 1 (2 pkt)

Prosta prostopadła do y = 2x + 1 przechodząca przez punkt (2,1) ma równanie:

A.
$$y = \frac{1}{2}x - 1$$

B.
$$y = -\frac{1}{2}x + 1$$
,

C.
$$y = \frac{1}{2}x + 2$$

A.
$$y = \frac{1}{2}x - 1$$
 B. $y = -\frac{1}{2}x + 1$, **C.** $y = \frac{1}{2}x + 2$ **D.** $y = -\frac{1}{2}x + 2$

Zadanie 2 (2 pkt)

Proste o równaniach $y = m^2x - 1$ oraz y = (2m + 3)x + 1 są równoległe, gdy:

A.
$$m = 3$$

B.
$$m = -1$$
.

B.
$$m = -1$$
, **C.** $m = 2$ lub $m = -2$ **D.** $m = 3$ lub $m = -1$

D
$$m = 3$$
 lub $m = -1$

Zadanie 3 (2 pkt)

Dla każdej nieujemnej liczby całkowitej n określamy $a_n = \frac{2n-6}{n+3}$. Wówczas liczba niedodatnich wyrazów tego ciągu jest równa

Zadanie 4 (2 pkt)

Suma piątego i dziewiątego wyrazu pewnego ciągu arytmetycznego jest równa 34. Wówczas siódmy wyraz tego ciągu jest równy

Zadanie 5 (4 pkt)

Prosta k jest styczna w punkcie A do okręgu o środku O. Prosta l, przechodząca przez punkt O, przecina prostą k w punkcie C pod kątem 20° . Niech B oznacza punkt przecięcia prostej l z okregiem. Wówczas miara kata BAC jest równa:

A.
$$25^{\circ}$$

C.
$$35^{\circ}$$

D.
$$40^{\circ}$$

Zadanie 6 (4 pkt)

 W trójkącie ABC przeciw
prostokątna AB ma długość 10, a sinus kąta przy wierzchołku A jest równy $\frac{3}{5}$. Wówczas pole prostokąta jest równe:

B.
$$\frac{50}{3}$$
 C. 24 D. $\frac{48}{5}$

D.
$$\frac{48}{5}$$

Zadanie 7 (4 pkt)

Pole pewnego trójkąta równobocznego jest równe $\frac{4\sqrt{3}}{25}$. Wówczas pole kwadratu o boku równym bokowi tego trójkąta wynosi:

A. $\frac{3}{4}$

B. $\frac{16}{25}$

C. $\frac{3\sqrt{2}}{5}$ D. $\frac{8}{25}$

Zadanie 8 (4 pkt)

Liczba $\frac{2\log\sqrt{10}-\log\sqrt[3]{10}}{\log\sqrt{1000}-\log\sqrt{10}}$ jest równa:

A. $\frac{1}{2}$

B. $\frac{2}{3}$,

C. 1

D. 2

Zadanie 9 (4 pkt)

Liczba $\frac{(\sqrt{2}+1)^2-4\sin 45^{\circ}}{5 \operatorname{tg}^2 30^{\circ}-0.(6)}$ jest równa:

B. $\frac{3}{2}$, **C.** $2\sqrt{2}$

D. 3

Zadanie 10 (4 pkt)

Zbiorem rozwiązań nierówności $2x^2 - x > 3$ jest:

A. $\left(-\frac{1}{2}, 1\right)$ **B.** $(-\infty, -1) \cup \left(\frac{3}{2}, \infty\right)$, **C.** $(-1, \infty)$ **D.** $\left(\frac{1}{2}, \frac{3}{2}\right)$

Zadanie 11 (4 pkt)

Losujemy dwa spośród wierzchołków ośmiościanu foremnego. Prawdopodobieństwo, że odcinek łączący te wierzchołki nie będzie krawędzią tego ośmiościanu, jest równe:

A. $\frac{1}{5}$

B. $\frac{1}{4}$, C. $\frac{1}{3}$, D. $\frac{2}{5}$

Zadanie 12 (4 pkt)

Pole pięciokąta ABCDS (patrz rysunek) jest równe $15\sqrt{3}$. Środek S okręgu leży na odcinku łączącym wierzchołki B i D. Wówczas promień tego okręgu jest równy:

A. $2\sqrt{3}$

B. $2\sqrt{5}$, **C.** $3\sqrt{3}$

D. 5

