Resumo: Fundamentos Estatísticos para Ciência dos Dados

Ricardo Pagoto Marinho

17 de abril de 2018

1 Regra de Bayes

Inverte as probabilidades de interesse.

Exemplo:
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

2 Função distribuição acumulada de probabilidade

 $\mathbb{F}(x)$ definida $\forall x \in \mathbb{R}$ é dada por:

$$\mathbb{F} : \mathbb{R} \to [0, 1]$$

$$x \to \mathbb{F}(x) = \mathbb{P}(X \le x)$$

Caso geral de $\mathbb{F}(x)$

$$\mathbb{F}(x) = \mathbb{P}(X \le x) = \sum_{x_i \le x} p(x_i)$$

3 Esperança matemática ($\mathbb{E}(X)$)

3.1 V.A. Discreta

O valor esperado de uma V.A. discreta é a soma de seus valores possíveis ponderados pelas suas probabilidades respectivas.

$$\mathbb{E}(X) = \sum_{i} x_{i} p(x_{i})$$

Suponha que numa amostra grande de instâncias, x_i apareceu N_i vezes. A probabilidade de x_i ocorrer na amostra é sua frequência relativa, *i.e.*:

$$p(x_i) = \mathbb{P}(X = x_i) \approx \frac{N_i}{N}$$

Logo:

$$\mathbb{E}(X) = \sum_{i} x_{i} p(x_{i}) \approx \sum_{i} x_{i} \frac{N_{i}}{N}$$

Se a amostra for grande, o número teórico $\mathbb{E}(X)$ é aproximadamente igual à média aritmética dos N elementos da amostra.

3.2 V.A. contínuas

$$\mathbb{E}(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

3.3 Linearidade da esperança

Caso geral: Y=a+bX, onde a e b são constantes. Então $\mathbb{E}(X)$ e $\mathbb{E}(Y)$ estão relacionadas:

$$\mathbb{E}(Y) = \mathbb{E}(a + bX) = a + b\mathbb{E}(X)$$

Exemplo:

Medimos uma temperatura aleatória ${\bf C}$ em graus Celsius. Suponha que ${\mathbb E}(C)=28$ graus. Seja F a V.A. que mede a temperatura em graus Fahrenheit. Temos que C e F estão relacionadas por: $F=32+\frac{9}{5}C$. Pelo caso geral da linearidade, a=32 e b= $\frac{9}{5}$. Logo

$$\mathbb{E}(F) = \mathbb{E}(32 + \frac{9}{5}C)$$
= $32 + \frac{9}{5}\mathbb{E}(C)$
= $32 + \frac{9}{5} \times 28$
= 82.4

Caso duas variáveis aleatórias sejam DISJUNTAS:

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Se independentes:

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

4 Variância

$$\mathbb{V}(X) = \mathbb{E}((X - \mu)^2)$$

Outra fórmula:

$$\begin{split} \mathbb{V}(X) &= & \mathbb{E}((X - \mu)^2) \\ &= & \mathbb{E}(X^2) - (\mu)^2 \\ &= & \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \end{split}$$

Seja X uma v.a. com $\mu_x=\mathbb{E}(X)$ e $\sigma^2=\mathbb{V}(X)$. Se Y=a+bX, então $\mu_y=\mathbb{E}(Y)=a+b\mu_x$ e

$$\sigma_y^2 = \mathbb{V}(Y) = \mathbb{V}(a + bX) = b^2 \mathbb{V}(X) = b^2 \sigma_x^2$$

Em termos de DP das v.a.'s:

$$DP_y = |b|DP_X$$

Se as v.a.'s são independentes, temos:

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$$

4.1 Caso discreto

Como $\mathbb{E}(g(X)) = \sum_i g(x_i) \mathbb{P}(X = x_i)$, e tomando $g(X) = (X - \mu)^2$, então:

$$\mathbb{V}(X) = E((X - \mu)^2) = \sum_{i} (x_i - \mu)^2 \mathbb{P}(X = x_i)$$

4.2 Caso contínuo

$$\mathbb{V}(X) = \mathbb{E}((X - \mu)^2) = \int (x - \mu)^2 f(x) dx$$

5 Distribuição de Bernoulli

É a distribuição mais simples: dois resultados possíveis $X(\omega) \in \{0,1\} \, \forall \, \omega \in \Omega$ Duas probabilidades são definidas:

•
$$p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\omega \in \Omega : X(\omega) = 0)$$

•
$$p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\omega \in \Omega : X(\omega) = 1)$$

$$p(0) + p(1) = 1 \rightarrow p(1) = 1 - p(0)$$

É comum escrever p(1) = p e p(0) = q. Daí, $\mathbb{E}(X) = 1 \times p + 0 \times (1-p) = p$ Como a média aritmética dessa distribuição é a proporção de 1's na amostra:

$$\mathbb{E}(X) \approx \hat{p} = \frac{1}{N} \sum_{i} x_{i}$$

6 Distribuição Binomial

Frequentemente utilizada quando um número máximo possível grande de n de repetições e θ muito pequeno.

n repetições independentes de um experimento de Bernoulli: sucesso ou fracasso. Probabilidade de sucesso é igual a $\theta \in [0,1]$

A V.A. X conta o número total de sucessos: $X \sim Bin(n, \theta)$. Os valores possíveis são: $0, 1, 2, \dots, n$ e suas probabilidades, respectivamente são: $(1 - \theta)^n$, $n\theta(1 - \theta), \dots, \theta^n$

Exemplo: n lançamentos de uma moeda não viciada.

$$Cara \rightarrow C$$
 $Coroa \rightarrow \tilde{C}$

$$\begin{array}{l} P(X=0) = (1-\theta)^n \\ [X=0] = \{\omega \in \Omega : X(\omega) = 0\} = \{\omega \in \Omega : \omega \in \{(\tilde{C}, \tilde{C}, \tilde{C}, \cdots, \tilde{C})\}\} = \\ P(\tilde{C} \ no \ 1^{\rm o}) \times P(\tilde{C} \ no \ 2^{\rm o}) \times \cdots = (1-\theta) \times (1-\theta) \cdots = (1-\theta)^n \end{array}$$

• Fórmula geral:

$$\mathbb{P}(Y=k) = \frac{n!}{k!(n-k)!} \theta^k (1-\theta)^{n-k}$$

•
$$\mathbb{E}(Y) = n\theta$$
 e $\mathrm{DP} = \sqrt{\mathbb{V}(Y)} = \sqrt{n\theta(1-\theta)}$

7 Distribuição Multinomial

Mais de duas categorias de resultados nos experimentos, diferente da Binomial que são só duas (1 ou 0). Ao fim de n lançamentos, teremos um vetor aleatório multinomial que conta quantas vezes cada categoria apareceu no experimento. Temos k categorias:

$$(N_1, N_2, \cdots, N_k) \sim \mathbb{M}(n; \theta_1, \cdots, \theta_k)$$

Sendo que $\theta_1, \dots, \theta_k$ são as probabilidades de cada categoria.

Exemplo: lançamento de um dado. k=6

 $N_1 = n^o$ de la namentos na categoria 1

 $N_2 = n^o de la namentos na categoria 2$

 $N_3=n^o$ de la namentos na categoria 3

:

 $N_6 = n^o$ de la namentos na categoria 6

$$(N_1, N_2, \cdots, N_6) \sim \mathbb{M}(n; \theta_1, \cdots, \theta_6)$$

Podemos escrever a Binomial como uma Multinomial de duas categorias: sucesso e fracasso. X é o número de sucessos em n repetições.

$$(X, n-X) \sim \mathbb{M}(n; \theta, 1-\theta)$$

A probabilidade de ocorrer uma configuração do vetor aleatório é:

$$\mathbb{P}(\mathbf{N} = (n_1, n_2, \cdots, n_k)) = \frac{n!}{n_1! n_2! \cdots n_k!} \theta_1^{n_1} \theta_2^{n_2} \cdots \theta_k^{n_k}$$
 (1)

Exemplo: 8 lançamentos de um dado. A probabilidade de:

$$\mathbb{P}(\mathbf{N} = (2, 0, 2, 1, 0, 3))$$

Existem várias configurações de ω as quais 8 lançamentos levam ao resultado acima. Uma é $\omega = (3, 1, 6, 6, 1, 4, 6, 3)$. Logo:

$$\mathbf{N}(\omega) = (N_1(\omega), N_2(\omega), \cdots, N_6(\omega)) = (2, 0, 2, 1, 0, 3)$$

A probabilidade de sair essa configuração, levando em conta que os lançamentos são independentes é:

$$\mathbb{P}(\omega = (3, 1, 6, 6, 1, 4, 6, 3)) = \mathbb{P}(sair \ 3 \ no \ 1^o \ E \ sair \ 1 \ no \ 2^o \ E \cdots \ sair \ 3 \ no \ 8^o)$$

$$= \mathbb{P}(sair \ 3 \ no \ 1^o) \mathbb{P}(sair \ 1 \ no \ 2^o) \cdots \mathbb{P}(sair \ 3 \ no \ 8^o)$$

$$= \theta_3 \ \theta_1 \ \theta_6 \ \theta_6 \ \theta_1 \ \theta_4 \ \theta_6 \ \theta_3$$

$$= \theta_1^2 \ \theta_2^0 \ \theta_3^2 \ \theta_4^1 \ \theta_5^0 \ \theta_6^3$$

Se a sequência ω tiver n lançamentos:

 n_1 aparies da face1 n_2 aparies da face2 \vdots

n₆ aparies da face6

Teremos:

$$\mathbb{P}(\omega) = \theta_1^{n_1} \ \theta_2^{n_2} \ \theta_3^{n_3} \ \theta_4^{n_4} \ \theta_5^{n_5} \ \theta_6^{n_6}$$

Dessa forma, seja A o evento formado por todos os ω tais que $\mathbb{P}(\mathbf{N} = (2,0,2,1,0,3))$

 $\mathbb{P}(\mathbf{N}=(2,0,2,1,0,3))=\mathbb{P}(A)=\sum_{\omega\in A}\mathbb{P}(\omega)=c\times\theta_1^2~\theta_2^0~\theta_3^2~\theta_4^1~\theta_5^0~\theta_6^3~\text{Onde} c \text{ \'e o n\'umero de sequências de tamanho 8 tais que }\mathbb{P}(\mathbf{N}=(2,0,2,1,0,3))~c \text{ \'e o n\'umero de permutações do vetor }\omega=(3,1,6,6,1,4,6,3).$ Generalizando para k categorias, temos:

$$\mathbf{N} = (N_1, N_2, \cdots, N_k) \sim \mathbb{M}(n; \theta_1, \cdots, \theta_n)$$

Então, chegamos na Equação 1.

8 Distribuição de Poisson

Frequentemente utilizada em situações onde o número de ocorrências não tem um limite claro para o limite.

$$\mathbb{P}(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$\mathbb{E}(Y) = \lambda$$

9 Distribuição geométrica

Y é o número de **fracassos** em uma sequência de ensaios independentes de Bernoulli até que um sucesso (probabilidade θ) seja observado. Logo, Y=0 significa que no primeiro ensaio houve um sucesso e $\mathbb{P}(Y=0) = \mathbb{P}(S) = \theta$. Y=1 significa que o primeiro ensaio foi um fracasso e o segundo sucesso: $\mathbb{P}(Y=1) = \mathbb{P}(FS) = (1-\theta)\theta$.

De forma geral,
$$\mathbb{P}(Y=k)=(1-\theta)^k\theta$$

Para uma geométrica com probabilidade de sucesso θ :

$$\mathbb{E}(Y) = \frac{1}{\theta}$$

Uma distribuição geométrica com θ alto significa que a probabilidade de sucesso é grande. Logo, a função de distribuição de probabilidade se concentrará mais nos números iniciais.

10 Distribuição de Zipf ou de Pareto

 $X \in \{1, 2, 3, \dots, N\}$, sendo que N pode ser infinito.

$$\mathbb{P}(X=k) = \frac{C}{k(1+\alpha)}, \ com \ \alpha > 0$$

C é uma constante que garante que as probabilidades somem 1:

$$1 = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \dots$$

$$= C(\frac{1}{1^{1+\alpha}} + \frac{1}{2^{1+\alpha}} + \frac{1}{3^{1+\alpha}} + \dots)$$

$$= C\sum_{k=1}^{N} \frac{1}{k^{1+\alpha}}$$

O que implica que:

$$C = \frac{1}{\sum_{k=1}^{N} \frac{1}{k^{1+\alpha}}}$$

IMPORTANTE:

$$\mathbb{P}(X=k) \propto \frac{1}{k^{1+\alpha}}$$

i.e., inversamente proporcional a uma potência de k.

Com $\alpha=1.0$, a probabilidade de 0 é maior (≈0.6). Com $\alpha=0.5$, a probabilidade de 0 diminui.

Como $\mathbb{P}(Y=k) \propto \frac{1}{k}$:

$$\mathbb{P}(Y=1) \propto 1$$
 $\mathbb{P}(Y=2) \propto \frac{1}{2}$ $\mathbb{P}(Y=2) \propto \frac{1}{3}, etc$

11 Desigualdade de Tchebyshev

$$\mathbb{P}(|Y - \mu| > k\sigma) \le \frac{1}{k^2}$$

12 Normal bivariada

Importante distribuição para um vetor aleatório: $\mathbf{Y} = Y_1, Y_2$. Cada v.a. segue uma distribuição gaussiana com sua própria esperança μ_j e variância σ_j^2 , i.e., $Y_1 \sim N(\mu_1, \sigma_1^2)$ e $Y_2 \sim N(\mu_2, \sigma_2^2)$ As v.a.s não são (em geral) independentes, ou seja, Y_2 muda se soubermos o valor de Y_1 . $\rho \in [-1, 1]$ controla o grau de associação, ou correlação, entre Y_1 e Y_2 .

 μ_1 e μ_2 são as esperanças MARGINAIS de Y_1 e Y_2 . As esperanças podem ser condicionais, *i.e.*, $\mathbb{E}(Y_1|Y_2=x)$ ou $\mathbb{E}(Y_2|Y_1=x)$. Essas esperanças provavelmente não serão iguais. A mesma análise vale para o desvio padrão σ^2 .

A distribuição da probabilidade condicional é uma normal: $(Y_2|Y_1=x) \approx N(\mu_{Y_2|Y_1=x}, \sigma^2_{Y_2|Y_1=x})$. Assim, obtemos uma fórmula geral para expressar qual é essa distribuição. Ela depende do coeficiente de correlação ρ :

$$(Y_2|Y_1 = y) \sim N(\mu_{Y_2|Y_1 = y}, \sigma_{Y_2|Y_1 = y}^2)$$

$$com$$

$$\mu_{Y_2|Y_1 = y} = \mu_2 + \frac{\rho\sigma_2}{\sigma_1}(y - \mu_1)$$

$$\sigma_{Y_2|Y_1 = y} = \sigma_2\sqrt{1 - \rho^2}$$

12.1 Matriz de covariância

Matriz 2x2 simétrica:

$$\sum = \left[\begin{array}{cc} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{array} \right]$$

Onde $\rho \in [-1, 1]$ e σ_x e σ_y são os desvios padrões de cada marginal. A fórmula geral de uma normal bivariada é igual a

$$f_{\mathbf{Y}(\mathbf{y})} = cte \times e^{-\frac{1}{2}d^2(y,\mu)}$$

onde $d^2(y,\mu)$ é a distância entre o ponto \mathbf{y} e o vetor esperado μ . Essa distância não é a euclidiana:

distância não é a euclidiana:
$$d^2(y,\mu) = (y-\mu)' \sum^{-1} (y-\mu) \text{ sendo que:}$$

$$\mu = (\mu_1, \mu_2)' = (\mathbb{E}(Y_1), \mathbb{E}(Y_2))$$

é um vetor-coluna 2x1 das esperanças marginais.

Um vetor normal multivariado tem uma densidade conjunta que é proporcional à explonencial de menos uma medida de distância ao quadrado.

$$f_{\mathbf{Y}(\mathbf{y})} = cte \times e^{-\frac{1}{2}d^2(y,\mu)}$$

A densidade decai exponencialmente à medida que a distância ao quadrado entre \mathbf{y} e μ aumenta.

12.2 Desvio padronizado

O desvio padronizado é definido como segue:

$$Z = \frac{Y - \mu}{\sigma}$$

Ou seja, ele é medido relativamente ao desvio-padrão μ da v.a. Y. Se Z=2, significa um afastamento de 2 DPs em relação a μ .

Para medir a associação entre duas v.a.s Y_1 e Y_2 , medidas num mesmo item, comparamos os desvios padronizados das duas, ou seja, comparamos $Z_1 = \frac{Y_1 - \mu_1}{\sigma_1}$ com $Z_2 = \frac{Y_2 - \mu_2}{\sigma_2}$. Se um for grande implicar numa tendencia do outro aumentar, então elas possuem correlação.

Uma forma de medir a correlação é o índice de correlação de Pearson:

$$Z_1 Z_2 = \frac{Y_1 - \mu_1}{\sigma_1} \times \frac{Y_2 - \mu_2}{\sigma_2}$$

Se desvios grandes e positivos (negativos) de Y_1 tendem a ocorrer com desvios grandes e positivos (negativos) de Y_2 , seu produto será maior (menor) ainda

O produto Z_1Z_2 é uma v.a., logo:

$$\rho = Corr(Y_1, Y_2) = \mathbb{E}(Z_1 Z_2) = \mathbb{E}(\frac{Y_1 - \mu_1}{\sigma_1} \times \frac{Y_2 - \mu_2}{\sigma_2})$$

Pela definição:

$$Corr(Y_1, Y_2) = \mathbb{E}(Z_1 Z_2) = Corr(Y_2, Y_1)$$

 $Corr(Y, Y) = 1$

Se Y_1 é uma v.a. independente da v.a. Y_2 , então $\rho=0$, formando um gráfico de dispersão como uma nuvem sem inclinação.

Se $\rho \approx \pm 1$, então Y_2 é aproximadamente uma função linear perfeita de Y_1 , *i.e.*, os valores de (Y_1, Y_2) formarão um gráfico de dispersão na forma aproximada de uma linha reta.

12.3 Matriz de correlação

Quando existem p v.a.s em um vetor, cria-se uma matriz de correlação pxp. Na posição (i,j) temos:

$$\rho_{ij} = Corr(Y_i, Y_j) = \mathbb{E}(\frac{Y_1 - \mu_i}{\sigma_i} \times \frac{Y_j - \mu_j}{\sigma_j})$$

Como $Corr(Y_i, Y_J) = Corr(Y_J, Y_i)$, a matriz é simétrica, e como $Corr(Y_i, Y_i) = 1$, a diagonal principal é toda de 1's.

 ρ é invariante por mudança linear de escala. Ou seja, se Y_1,Y_2 e Y_3 são v.a.s e $Y_3=2.3Y_2,$ $Corr(Y_1,Y_2)=Corr(Y_1,2.3Y_3)=Corr(Y_1,Y_2)$

Para estimar ρ , podemos utilizar as aproximações $\bar{Y} \approx \mathbb{E}(Y)$ e $S = \sqrt{\sum_i \frac{(Y_i - \bar{Y})^2}{n}} \approx \sigma$, ou seja:

$$\rho = \mathbb{E}(\frac{Y_1 - \mu_1}{\sigma_1} \times \frac{Y_2 - \mu_2}{\sigma_2}) \approx \mathbb{E}(\frac{Y_1 - \bar{Y}_1}{S_1} \times \frac{Y_2 - \bar{Y}_2}{S_2})$$

Para o desvio padronizado empírico, deve-se calcuar o desvio realizado de cada um dos n valores das duas variáveis. Para a variável 1, com os n valores y_{11}, \ldots, y_{n1} da coluna 1 da tabela, calcule a nova coluna formada por

$$z_{i1} = \frac{y_{i1} - \bar{y_1}}{S_1}$$

Da mesma forma, pode-se calcular z_{i2} para a coluna 2

$$z_{i2} = \frac{y_{i2} - \bar{y_2}}{S_2}$$

Então, multiplique as duas colunas de desvios padronizados e tire a sua média aritmética:

$$r = \frac{1}{n} \sum_{i=1}^{n} z_{i1} z_{i2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{i1} - \bar{y_1}}{S_1} \right) \left(\frac{y_{i2} - \bar{y_2}}{S_2} \right)$$

A distância estatística de pontos, indica o quanto o ponto se distanciou da distribuição, ou seja, não é a distância euclidiana. Esta distância pode ser vista como uma elipse em volta dos pontos.

Para uma distância c>0 do centro, os pontos satisfazem a equação

$$d(y,\mu) = \sqrt{(\frac{y_1 - \mu_1}{\sigma_1})^2 + (\frac{y_2 - \mu_2}{\sigma_2})^2} = c$$

Os eixos da elipse possuem comprimentos iguais a $c\sigma_1$ e $c\sigma_2$. O maior eixo da elipse e a variável com maior DP.

Quantas vezes maior é o eixo maior em relação ao menor não depende de c:

$$\frac{eixomaior}{eixomenor} = \frac{c\sigma_1}{c\sigma_2} = \frac{\sigma_1}{\sigma_2}$$

Considerando que σ_1 é o maior. Variando c
 temos elipses concêntricas.

$$d^{2}(y,\mu) = \frac{\left(\frac{y_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} + \left(\frac{y_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{\left(y_{1}-\mu_{1}, y_{2}-\mu_{2}\right)\left[\begin{array}{cc} \frac{1}{\sigma_{1}^{2}} & 0\\ 0 & \frac{1}{\sigma_{2}^{2}} \end{array}\right] \left(\begin{array}{cc} y_{1}-\mu_{1}\\ y_{2}-\mu_{2} \end{array}\right)}$$

$$= \left(y_{1}-\mu_{1}, y_{2}-\mu_{2}\right)\left[\begin{array}{cc} \sigma_{1}^{2} & 0\\ 0 & \sigma_{2}^{2} \end{array}\right]^{-1} \left(\begin{array}{cc} y_{1}-\mu_{1}\\ y_{2}-\mu_{2} \end{array}\right)$$

$$= \left(\begin{array}{cc} y_{1}-\mu_{1}\\ y_{2}-\mu_{2} \end{array}\right)' \sum^{-1} \left(\begin{array}{cc} y_{1}-\mu_{1}\\ y_{2}-\mu_{2} \end{array}\right)$$

$$= \left(y-\mu\right)' \sum^{-1} (y-\mu)$$