Reinforcement Learning

Learning to play games... and live in a complex world

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DeepLearning

Table of Contents

- Problem description
- Approaches
- Deep-Q networks
- AlphaGo
- "Specification gaming"

Reinforcement Learning Main points

OpenAl Gym(nasium)

• Install the Python library (<u>source</u>)

```
conda install conda-forge::gymnasium
```

```
pip install gymnasium
```

Usage

```
import gymnasium as gym
environment = gym.make("FrozenLake-v1")
```

- Goal: Reach cell G
 - Environment description
 - Slight complication: you don't always go in the direction you're trying to go

Reinforcement Learning

- Supervised or unsupervised?
 - Feedback system (reward)
 - Sequential learning (time-dependent process)
 - No supervisor; trial and error
 - The agent influences the environment
- Learning process
 - Similar to how children learn
 - Agent learns from environment by performing actions and taking rewards (positive / negative)
- RL loop
 - Observe state $S_i \in S$, S "state space"
 - Take action $A_i \in A$, A "action space"
 - Receive reward R_i , update state to S_{i+1}

Reinforcement Learning (2)

- Goal: maximize the cumulative reward *G*
- What doesn't work (every time)
 - Greedy search
 - Hand-coded heuristics
 - I.e., simply sum the rewards at each time step
- Tradeoff: instant gratification vs. later rewards
 - Discount each reward by $\gamma \in [0; 1)$
 - $\gamma \approx 0 \Rightarrow$ short-term rewards get a bigger weight (nearest cheese); and vice versa
 - $G_t = R_1 + \gamma R_2 + \gamma^2 R_3 + \dots = \sum \gamma^k R_{k+(t+1)}$ at time t

Exploration / Exploitation Tradeoff

- Tradeoff
 - Exploitation: Exploit known information to maximize R
 - Exploration: Find out more information about the environment
- Problem
 - Infinite amount of small cheese vs. one large piece
- Different approaches to avoid this
 - This is the main reason that greedy algorithms cannot perform too well on real-life problems
- Types of RL algorithms
 - Value-based: maximize expected reward V
 - Policy-based: optimize a function $a = \pi(s)$
 - Action = policy with given state

Q-Learning

- Value-based approach
 - Given the state and actions, take the most optimal one
 - Frozen lake: 16 states (cells that you can be in), 4 actions
 - Q-table: 16 × 4 grid
 - Equation: $Q(S_t, A_t) = (1 \alpha)Q(S_t, A_t) + \alpha \left(R_t + \gamma \max_{a} Q(S_{t+1}, A)\right)$
 - α learning rate
- Training
 - Update the values in the Q-table by playing a lot of games
- How about a different game?
 - Example: 10 000 states, 10 actions
 - Tables quickly become exponentially big
 - We need a lot of games

Deep Q-Learning

- Solution: use an NN as a function approximator
 - Doesn't even need to be recurrent!
- Loss / cost function
 - MSE: $J = \sum (\tilde{Q} Q)^2$
- Output: $\tilde{Q} = \mathbb{R}^A$
- For games where the state is a screen image, it's useful to add convolutional layers at the beginning

Playing Games

AlphaGo and its variations

Two-player Games

- Many different approaches to two-player games
 - We already saw how GANs learn: minimax algorithm
 - Idea: maximize your own reward while minimizing the opponent's reward
 - For small games, this is viable

■ Chess: ~10¹²⁰ nodes

• Atoms in the Universe: $\sim 10^{80}$

 One optimization: build the tree for, say 4 moves in advance

Exploration / exploitation tradeoff

- A variant: simulate
 - Monte Carlo tree search

Deep-Q Networks

Mnih et al., 2013; Mnih et al., 2015

AlphaGo

- Experience replay
 - Uses mini-batches to update Q values
 - Prevents overfitting (the network tends to play similar games)
- Target network
 - Doesn't update NN parameters (red rectangle) every step
 - Because they are unstable $Q(s_t,a) \leftarrow Q(s_t,a) + \alpha \left[r_{t+1} + \gamma \max_{p} Q(s_{t+1},p) \right] Q(s_t,a)$
 - Instead, updates them every 1000 steps
- Clipping rewards
 - Different games have different reward ranges; clip $R \in [-1; 1]$
- Skipping frames
 - Humans don't perform at 60fps ⇒ we can go away with a smaller NN
 - Uses 4 frames at a time

AlphaGo (2)

Performance w.r.t. experience replay / target network

Replay			×	×
Target	0	×	0	×
Breakout	316.8	240.7	10.2	3.2
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

■ Results (2015)

	Breakout	R. Raid	Enduro	Sequest	S. Invaders
DQN	316.8	7446.6	1006.3	2894.4	1088.9
Naive DQN	3.2	1453.0	29.1	275.8	302.0
Linear	3.0	2346.9	62.0	656.9	301.3

Silver et al., Science, 07.12.2018

Applications of DQNs

- Snake
- Small board games (<u>AlphaToe</u>)
- CNNs for OpenAl Gym
- LSTMs with attention
- DeepMind's <u>DQN papers</u>
 - Silver et al., 2017: AlphaGo Zero
- A3C algorithm, tensorflow

State of RL

- Key RL papers
 - Pay attention to "12. Reproducibility, Analysis, and Critique"
- Notes on important papers
- NeurlPS 2020 (videos, workshop)
- Overview of deep RL algorithms (Ivanov, 2019)
- Some interesting applications
 - <u>Text summarization</u> (Paulus et al., 2017)
 - <u>Traffic control</u> (Guo & Wang, 2019)
 - Molecular dynamics (Zhou et al., 2019)
 - Recommenders (online ads), Zhao et al., 2019
 - Autonomous driving (Kiran et al., 2021)
 - Robotics / drones (Yan et al., 2021)

"Specification gaming"

Source

- OpenAl article
- The hardest step in optimization is to choose the correct reward function
- A wrongly or poorly chosen reward tends to create algorithms which cheat

Examples

- Creatures bred for speed grow really tall and generate high velocities by falling over
- Simulated pancake making robot learned to throw the pancake as high in the air as possible in order to maximize time away from the ground
- Agent kills itself at the end of level 1 to avoid losing in level 2
- Self-driving car rewarded for speed learns to spin in circles
- Agent pauses the game indefinitely to avoid losing

Summary

- Problem description
- Approaches
- Deep-Q networks
- AlphaGo
- "Specification gaming"

Questions?