

PROJETO INTERDISCIPLINAR

Calculadora de Conversão

Conversão decimal para as bases binário, hexadecimal e octal.

Alunos:

RGM	Nome
33001791	Aslanny Pereira Dos Santos
33103241	Bryan Cristovam Silva
33704422	Jessica Ribeiro Da Silva
33633134	Siesley Lucas Gomes Vieira Da Silva
27758613	Rodolpho Nascimento Sernajoto

São Paulo 2023

UNIVERSIDADE CRUZEIRO DO SUL

PROJETO INTERDISCIPLINAR

Calculadora de Conversão

Conversão decimal para as bases binário, hexadecimal e octal.

Trabalho apresentado como parte do requisito para aprovação na Disciplina de Projeto Interdisciplinar do curso de Análise e Desenvolvimento de Sistemas da Universidade Cruzeiro do Sul.

Orientadores: Prof. Maurício Gagliardi Diniz de Paiva e Profa. Cristiane Camilo Hernandez

São Paulo 2023

Sumário

Apresentação	4
1.1 Justificativa e Motivação	4
1.2 Dados do Sistema	4
• Requisitos de Organização e Arquitetura de Computadores	4
Requisitos de Programação de Computadores	4
Considerações finais	8
BIBLIOGRAFIA	8
Cronograma de entrega de atividades	9

1. APRESENTAÇÃO:

1.1 Justificativa e Motivação

O conversor é interessante para quem está aprendendo programação. Ele envolve a aplicação e os conceitos fundamentais, como operações e matemática básicas, estrutura de controle de fluxo e estrutura de dados. Ele é um projeto que pode ser implementado em diversas linguagens de programação, desde as mais simples às mais complexas.

1.2 Dados do Sistema.

Um conversor de número decimal, para bases binário, hexadecimal e octal, a relevância desse sistema é a facilidade e praticidade de uma conversão rápida e exata.

2. REQUISITOS DE ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES

Conversão da base numérica é a passagem de representação de um número de uma base numérica para outra, alterando a simbologia para se adequar à nova base. Com isso o requisito utilizado neste projeto foi a conversão para decimal para as bases binário, hexadecimal e octal.

3. REQUISITOS DE PROGRAMAÇÃO DE COMPUTADORES

Desenvolvimento de uma estrutura de menu com possibilidade de escolha de conversão em código Python: Binário, Hexadecimal e Octal.

Como requisito, usamos as bases "**import**" essas linhas importam módulos que serão usados no código, sendo eles: "os" para interagir com o sistema operacional, "**platform**" para obter informações sobre a plataforma em que o código está sendo executado e "**time**" para manipular o tempo, como a pausa da execução por x segundos.

```
import os
import platform
import time
```

A função "**clear()**" é usada para limpar a tela do terminal/console de acordo com o sistema operacional em que o código está sendo executado. Ela utiliza o módulo "os" e "**platform**" para identificar o sistema e chamar o comando correto para limpeza da tela.

```
def error(msg):
   for i in range(1, 4):
      clear()
      print(msg + ('.' * i))
      time.sleep(1)

clear()
```

A função "error(msg)" é responsável por exibir uma mensagem de erro e esperar um segundo antes de limpar a tela. Ela é usada para exibir mensagens de erro personalizadas em caso de exceções na execução do código.

```
def error(msg):
    for i in range(1, 4):
        clear()
        print(msg + ('.' * i))
        time.sleep(1)

clear()
```

Essa função "converter(num, base)" recebe um número decimal e uma base (2, 8 ou 16) e retorna uma string com o valor convertido para a base informada. O algoritmo de conversão é baseado em divisões sucessivas do número decimal pelo valor da base até que o resultado seja zero. A lista "resultado" armazena os restos das divisões e depois é invertida e convertida para a base adequada. No caso da base 16, a lista "exa" é usada para converter valores maiores que 9 para letras (de A a F).

```
def converter(num, base):
    resultado = list()
    exa = {10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f"}

while num > 0:
    resultado.append(num % base)
    num //= base

resultado = list(reversed(resultado))

for i, alg in enumerate(resultado):
    resultado[i] = str(exa.get(alg) if alg > 9 else alg)

return ''.join(map(str, resultado))
```

Este loop que roda infinitamente, até que o usuário escolha a opção "0" para sair. Dentro do loop, o código limpa a tela do terminal, e exibe as opções de conversão disponíveis para o usuário e, em seguida, solicita que o usuário escolha uma opção.

A próxima parte é um bloco de **try-except** para lidar com exceções lançadas ao solicitar a entrada do usuário. Se o usuário escolher a opção "**0**", o loop termina e a tela limpa novamente. Se o usuário escolher uma opção válida (entre 1 e 3), o código solicita que o usuário digite o número decimal que deseja converter.

Depois de obter a entrada do usuário, o código verifica qual opção foi selecionada. Se a opção for 1, o código chama a função "**converter**" e exibe o resultado da conversão para binário. Se a opção for 2, o código chama a função "**converter**" e exibe o resultado da conversão para hexadecimal. Se o usuário escolher uma opção inválida o código exibe uma mensagem de erro.

```
while True:
 clear()
 print('##### Conversor de números decimais para outras bases #####\n')
 print('[1] Converter Decimal para Binário')
 print('[2] Converter Decimal para Octal')
 print('[3] Converter Decimal para Hexadecimal\n')
 print('[0] Sair\n')
   opt = int(input('Escolha uma das opções para Conversão de Base: '))
   if opt == 0:
     clear()
     break
   elif opt >= 1 and opt <= 3:
     num = int(input('Digite um número decimal para Conversão: '))
     if opt == 1:
       print(f'O valor {num} convertido para BINÁRIO é {converter(num,2)}.')
     elif opt == 2:
       print(f'0 valor {num} convertido para OCTAL é {converter(num,8)}.')
     elif opt == 3:
       print(f'0 valor {num} convertido para HEXADECIMAL é {converter(num,16)}.')
       error('Opção inválida')
     input('\nPressione Enter retornar.')
   else:
     error('Opção Inválida')
   error('Valor inválido')
```

Por fim, o código solicita que o usuário pressione "ENTER" para continuar, limpa a tela e reinicia o loop.

4. CONSIDERAÇÕES FINAIS

Uma das facilidades durante a elaboração do sistema foi a comunicação do grupo para o sucesso do projeto, a dificuldade encontrada foi a inexperiência ao colocar em prática códigos e a elaboração em questão do tema abordado, também a rotina dos colaboradores que não são compatíveis.

5. BIBLIOGRAFIA

Conteúdo de estudo da aula de programação/Prof. Cristiane Camilo.

Conteúdo da aula de arquitetura. /Prof. Mauricio Gagliardi

https://learnxinyminutes.com/docs/pt-br/python-pt/

https://www.w3schools.com/python/python_functions.asp

https://acervolima.com/modulo-de-plataforma-em-python/

https://docs.python.org/pt-br/3/library/time.html

https://docs.python.org/3/library/os.html

#	Descrição		Data	Prazo do Cronograma em Dias																																			
		Início	Término		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31				
1	Definição do tema e planejamento	14/04	20/04	Р																																			
•	inicial		20/04	R																																			
2	Justificativa e motivação	21/04	23/04	Р																																			
_	oudinounta o montaguo	2.,04		R																																			
3	Dados do sistema	24/04 27/	27/04	Р																																			
				R																																			
4	Requisitos de organização e	28/04	01/05	Р																																			
	arquitetura de computadores.			R																																			
5	Requisitos de técnicas de	02/05	02/05	02/05	02/05	02/05	08/05	Р																															
	Desenvolvimento de algoritmos.		00/00	R																																			
6	Considerações finais.	. 09/05	13/05	Р																																			
6	Considerações ilitais.		13/03	R																																			
7	Entrega do projeto final	13/05	15/05	Р																																			
	Entrega do projeto ilhai	13/03	13/03	R																																			