MTH 101-Calculus

Spring-2021

Assignment 8-Solutions: Vectors, Curves, Surfaces, Vector Functions

- 1. (a) If the three planes intersect at a single point then the determinant of the coefficients will be nonzero and hence $a \neq -4$.
 - (b) If the three planes intersect in a line, then the plane P_3 must pass through the line of intersection of the planes P_1 and P_2 .

Hence, clearly a=-4. There exists $\alpha, \beta \in \mathbb{R}$ such that $\alpha(x-y+z-1)+\beta(x-4y-2z+10)=2x-3y+z+b$. Therefore, $b=\frac{5}{3}$.

- (c) a = -4 and $b \neq \frac{5}{3}$.
- 2. Any point on the curve is of the form (x_0, y_0, h) . The equation of a line passing through (x_0, y_0, h) and (0, -a, 0) is

$$\frac{x-0}{x_0}=\frac{y+a}{y_0+a}=\frac{z-0}{h-0}.$$
 We get $x_0=\frac{hx}{z}$ and $y_0=\frac{h(y+a)}{z}-a.$

Since (x_0, y_0, h) lies on the curve, we get the equation of the cone to be $h^2x^2 = 2z[h(y+a)-az]$.

- 3. $c(t) = (\sin t + 2)i + (\cos t 1)j + (t + 1)k$. $\cos \theta = \frac{c(t) \cdot c'(t)}{\|c(t)\| \|c'(t)\|}$
- 4. $||c(t)|| = \sqrt{\sin^2 t^2 + \cos^2 t^2 + 25} = \sqrt{26}$. Easy to see c(t).c'(t) = 0. ||c'(t)|| = 2t, thereby showing that the velocity vector is not of constant magnitude.

5.
$$s(t) = \int_{0}^{t} \sqrt{25\cos^2 u + 25\sin^2 u + 144} \ du = 13t$$
.

Since the arc length is given to be 26π , we get $t=2\pi$. The coordinates of the required point are $(0,5,24\pi)$.

- 6. (a) $s(t) = \int_{0}^{t} \sqrt{u^2 + u^4} du = (1 + t^2)^{\frac{3}{2}} 1$. Hence $t = \sqrt{(3s+1)^{\frac{2}{3}} 1}$. Substitute t in the equation.
 - (b) $s(t) = 2t \Rightarrow t = \frac{s}{2}$.
- 7. Let $f(x) = ax^2$. Then f'(x) = 2ax and f''(x) = 2a. Use the formula for the curvature $\kappa = \frac{|f''(x)|}{[1 + f'(x)^2]^{3/2}}$ to get the result.