NPN SILICON PLANAR MEDIUM POWER DARLINGTON TRANSISTORS

BCX38A/B/C

ISSUE 1 - MARCH 94

FEATURES

- * 60 Volt V_{CEO}
- * Gain of 10K at $I_C=0.5$ Amp
- * P_{tot}=1 Watt

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Collector-Base Voltage	V _{CBO}	80	V
Collector-Emitter Voltage	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	10	V
Peak Pulse Current	I _{CM}	2	А
Continuous Collector Current	I _C	800	mA
Power Dissipation at T _{amb} =25°C	P _{tot}	1	W
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +200	°C

ELECTRICAL CHARACTERISTICS (at Tamb = 25°C).

PARAMETE	R	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
Collector-Ba Breakdown		V _{(BR)CBO}	80			V	I _C =10μA, I _E =0
Collector-En		V _{CEO(sus)}	60			V	I _C =10mA, I _B =0
Emitter-Bas Breakdown		V _{(BR)EBO}	10			V	I _E =10μA, I _C =0
Collector Co Current	ut-Off	I _{CBO}			100	nA	V _{CB} =60V, I _E =0
Emitter Cut Current	-Off	I _{EBO}			100	nA	V _{EB} =8V, I _C =0
Collector-En		V _{CE(sat)}			1.25	V	I _C =800mA, I _B =8mA*
Base-Emitte Turn-on Vo		V _{BE(on)}			1.8	V	I _C =800mA, V _{CE} =5V*
Static Forward Current Transfer Ratio	BCX38A	h _{FE}	500 1000				I _C =100mA, V _{CE} =5V* I _C =500mA, V _{CE} =5V*
	BCX38B		2000 4000				I _C =100mA, V _{CE} =5V* I _C =500mA, V _{CE} =5V*
	BCX38C		5000 10000				I _C =100mA, V _{CE} =5V* I _C =500mA, V _{CE} =5V*

BCX38A/B/C

TYPICAL CHARACTERISTICS

BCX38A/B/C

The maximum permissable operational temperature can be obtained using the equation:

$$T_{amb(max)} = \frac{Power(max) - Power(actual)}{0.0057} + 25^{\circ} C$$

 $T_{amb(max)}$ = Maximum operating ambient temperature

Power (max) = Maximum power dissipation figure, for a given V_{CE} and source resistance (R_S)

Power (actual) = Actual power dissipation in users circuit