CPSC 421: Introduction to Theory of Computing

Winter Term 1 2018-19

Lecture 3: September 10

Lecturer: Nicholas Harvey

Scribes: Kaitian Xie

3.1 Regular Language (Continued)

Definition 3.1 A regular language is any language L s.t. some finite automaton accepts L.

We will study operations on the class of regular languages.

For strings x, y their concatenation is denoted $x \circ y$ or just xy.

Definition 3.2 For languages L_1 and L_2

$$L_1 \circ L_2 = \{x \circ y : x \in L_1 and y \in L_2\}$$

If L_1 and L_2 are regular, is $L_1 \circ L_2$ also?

 $L_1 = \{Messi\}$

 $L_2 = \{Alba\}$

 $L_1 \circ L_2 = \{MessiAlba\}$

 M_3 accepts $L_1 \circ L_2 \Rightarrow L_1 \circ L_2$ is regular.

3.2 Non-determinism

Definition 3.3 A non-deterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ s.t.

- Q, Σ, q_0, F are the same
- $\delta: Q \times (\Sigma \cup {\epsilon}) \to 2^Q$
 - $-\delta(q,s)$ is a subset of Q

For a set S, 2^S is called the power set of S. It contains all subsets of S.

$$2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

Definition 3.4 The NFA M accepts the string $w = w_1 w_2 \cdots$ if there exists a string $y = y_1 y_2 \cdots y_m \in (\Sigma \cup \{\epsilon\})^*$ and a sequence $r0, r_1, \cdots r_m \in Q$ such that:

- $w = y_1 \circ y_2 \circ \cdots \circ y_m$
- $\bullet \ r_0 = q_0$
- $r_i \in \delta(r_{i-1}, y_i)$ for $i = 1, \dots, m$
- $r_m \in F$

Input string: w = 00

$$y = \epsilon 00, \, r = q_0 q_1 q_2 q_1$$

$$\delta(q_0,\epsilon) = \{q_1,q_3\}$$