ControlSysLab - Projet Systèmes Asservis

Application interactive pour l'analyse et la commande de systèmes

Par: BADIBANGA BADIBANGA 1ICE EE

DZAPILI MITANO 1ICE EE

LOOTA BETOKO 1ICE EE

MARHEGANE BITATI 1ICE IN

Plan

- > Introduction
- Objectifs spécifiques
- > Technologies utilisées
- > Fonctionalités
- > Images d'illustration
- > Perspectives

Introduction

•Contexte : besoin d'un outil pédagogique pour l'analyse et la conception de systèmes de contrôle.

 Objectif général : combiner théorie et pratique via une application interactive.

Objectifs spécifiques

- ·Analyse d'un système linéaire à partir de son équation d'état.
- ·Vérification de la contrôlabilité et observabilité.
- ·Commande par retour d'état et retour de sortie.
- •Étude de systèmes non linéaires.
- •Synthèse de régulateurs PID.

Technologies utilisées

Architecture MVC

- Backend: Python (NumPy, SciPy, SymPy, Control)
- Interface graphique : PyQt5
- Simulation: Matplotlib, Plotly.
- Exportation : PDF / CSV des résultats.

Fonctionalités

Analyse d'État

Entrée: matrices (A, B, C, D).

·Sorties: pôles, zéros, stabilité.

- ·Visualisation : réponses temporelles, diagrammes de Bode.
- ·(Ajouter une illustration de graphe ou schéma du manuel)

Contrôlabilité & Observabilité

Calcul des matrices Wc et Wo.

Vérification automatique (contrôlable / observable).

Visualisation des états accessibles.

Exemple : rang(Wc) = rang(Wo) = $2 \rightarrow \text{système contrôlable et observable.}$

Commande d'État

Placement de pôles désirés.

Calcul automatique du gain K.

Simulation boucle fermée (avec et sans contrôle).

Exemple : pôles choisis (-4, -5) \rightarrow gain K généré.

Commande de Sortie

Observateur de Luenberger.

Mesure partielle ou complète.

Comparaison boucle complète vs partielle.

Exemple: y = x1, pôles observateur = (-6, -7).

Systèmes Non Linéaires

Éditeur d'équations différentielles.

Linéarisation automatique (Jacobienne).

Méthode de Lyapunov.

Affichage : portraits de phase, surfaces de stabilité.

Régulateurs PID

Réglages manuels et automatiques (Ziegler-Nichols, Cohen-Coon).

Comparaison des performances (réponses temporelles, Nyquist).

Exemple : G(s) défini \rightarrow PID simulé avec gain ajusté.

Résultats du Design

Commande d'État

Commande de Sortie

Systèmes Non-Linéaires

Système prédéf Équations difféi	rentielles (format Python/SymPy):
Point d'équilibr	e [x1, x2]: [2, 3]
Valider Syste	ème Linéariser Simuler
Analyse de I	Linéarisation
Linéarisation	n automatique Afficher valeurs propres
Analyse de S	Stabilité de Lyapunov
Méthode: Au	tomatique (Lyapunov linéarisé)
Fonction V(x) p	ersonnalisée (optionnel):
x1**2 + x2**2	
	Analyser Stabilité Lyapunov
Paramètres	de Simulation
Temps final	20.0 s
Pas de temps	0.010 s
Plage x1	5.0
Plage x2	5.0

SIMULATION PID TERMINÉE

Configuration:

- Kp = 1.0000
- Ki = 0.0000
- KI = U.UUUU
- Kd = 0.0000
- Anti-windup: Activé

rerrormances optenues:

- Temps de montée: 0.110 s
- Dépassement: 429.9 %
- lemps d'établissement: 19.550 s
- Erreur statique: 84.0594
- ISE (Intégrale erreur²): 838742.336043

Perspectives

Implémenter une interface web (front-end web)

Concevoir une version app mobile qui soit simple d'utilisation

Déployer sur toutes les plateformes de téléchargement

Merci!