Naive Bayes Introduction

To build a classifier, we will first start by creating conditional probabilities given the following table:

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

This allows us compute the following table of probabilities:

Pos	Neg
0.24	0.25
0.24	0.25
0.15	0.08
0.08	0
80.0	0.08
0.08	0.08
0.08	0.17
0.08	0.17
	0.24 0.24 0.15 0.08 0.08 0.08

Once you have the probabilities, you can compute the likelihood score as follows

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

A score greater than 1 indicates that the class is positive, otherwise it is negative.