Tutorials 7 (with solution)

Cryptography

Question 1: CRT (two equations)

☐ Find an *x* that solves the following simultaneous congruences:

$$x \equiv 3 \pmod{7}$$
$$x \equiv 5 \pmod{9}$$

Q1 (solution)

$$\Box$$
 7(4) + 9(-3) = 1

9	7		
1	0	9	a
0	1	7	b
1	-1	2	c = a - b
-3	4	1	d = b - 3c

$$c = 3(9)(-3) + 5(7)(4) \pmod{63}$$

= -81 + 140 (mod 63)
= 59

Question 2: CRT (three equations)

☐ Find an *x* that solves the following simultaneous congruences:

$$x \equiv 1 \pmod{5}$$

 $x \equiv 3 \pmod{7}$
 $x \equiv 6 \pmod{9}$

Q.2 (solution)

 a^{-1} is said to be a multiplicative inverse of $a \pmod{n}$ if $a a^{-1} \equiv 1 \pmod{n}$.

□ Define $M_i = \frac{M}{m_i}$, compute $\alpha_i = M_i^{-1} \pmod{m_i}$

•
$$M_1 = 7 \times 9 = 63$$
, $\alpha_1 = 63^{-1} = 2 \pmod{5}$

•
$$M_2 = 5 \times 9 = 45$$
, $\alpha_2 = 45^{-1} = -2 = 5 \pmod{7}$

•
$$M_3 = 5 \times 7 = 35, \alpha_3 = 35^{-1} = -1 = 8 \pmod{9}$$

$$= -1 = 8 \pmod{9}$$

$$63 \times \alpha_1 \equiv 1 \pmod{5}$$
$$63\alpha_1 + 5k = 1$$

gcd(a, n) = 1.

6351063a015b1123
$$c = a - 12b$$
-1132 $d = b - c = -a + 13b$ 2-251 $e = c - d = 2a - 25b$

$$63 \times 2 + 5 \times (-25) = 1$$

 $x \equiv 1 \pmod{5}$

 $x \equiv 3 \pmod{7}$

 $x \equiv 6 \pmod{9}$

i.e. a and n

are co-prime

Q.2 (solution)

- □ Define $M_i = \frac{M}{m_i}$, define $\alpha_i = M_i^{-1} \pmod{m_i}$
 - $M_1 = 7 \times 9 = 63$, $\alpha_1 = 63^{-1} = 2 \pmod{5}$
 - $M_2 = 5 \times 9 = 45$, $\alpha_2 = 45^{-1} = 5 \pmod{7}$
 - $M_1 = 5 \times 7 = 35, \alpha_3 = 35^{-1} = 8 \pmod{9}$
- □ Substitute into formula $c = \sum_i a_i M_i \alpha_i$
 - $c = a_1 M_1 \alpha_1 + a_2 M_2 \alpha_2 + a_3 M_3 \alpha_3$
 - $= 1 \times 63 \times 2 + 3 \times 45 \times 5 + 6 \times 35 \times 8 \pmod{5 \times 7 \times 9}$
 - $= 2481 \pmod{315} = 276$
 - x = 276

Question 3: OTP

□ The one-time pad encryption of plaintext cat (when converted from ASCII to binary) under key k is

10010100 10000111 01011100

- a) What is the key k?
- b) Is it secure if the same key is used to encrypt another 3-letter word? Why or why not?

etter	ASCII Code	Binary			
a	097	01100001			
b	098	01100010			
C	099	01100011			
d	100	01100100			
е	101	01100101			
f	102	01100110			
g	103	01100111			
h	104	01101000			
i	105	01101001			
j	106	01101010			
k	107	01101011			
1	108	01101100			
m	109	01101101			
n	110	01101110			
0	111	01101111			
р	112	01110000			
q	113	01110001			
r	114	01110010			
S	115	01110011			
t	116	01110100			
u	117	01110101			
V	118	01110110			
W	119	01110111			
X	120	01111000			
У	121	01111001			
Z	122	01111010			
Cryptography 7-7					

Q.3 (solution)

■ The key can be obtained by taking XOR between the plaintext and the ciphertext:

```
01100011 01100001 01110100 (cat in ASCII)
10010100 10000111 01011100 (ciphertext)
```

```
11110111 11100110 00101000
```

□ It is insecure. For example, if hat is encrypted, the second and third bytes will be the same as the ciphertext of cat.

Question 4: RSA

Use the RSA algorithm to encrypt the message m represented by the decimal number 32 with N=85 and e=61.

- a) Compute the ciphertext, *c.*
- b) Factorize *N*, and check your answer in (a) by decryption.
 - In practice, *N* is a very large number, so that factorization is extremely time consuming.

Q4 (solution)

(a) Encryption

$$c = m^e \mod n = 32^{61} \mod 85$$

 $32^2 \equiv 4 \mod 85$
 $32^4 \equiv 16 \mod 85$
 $32^8 \equiv 1 \mod 85$
 $32^{16} \equiv 1 \mod 85$
 $32^{32} \equiv 1 \mod 85$

$$32^{32}32^{16}32^{8}32^{4}32 \mod 85$$

= $16 \times 32 \mod 85 = 2$.

(b) Decryption

$$N = p \times q$$
 85 = 5×17.
 $\phi(N) = (p-1)(q-1)$
 $= 4 \times 16 = 64$.
 $ed \equiv 1 \mod 64$
 $61d \equiv 1 \mod 64 \implies d = 21$.
 $m = c^d \mod n$
 $= 2^{21} \mod 85$
 $= (2^5)^4(2) \mod 85$
 $= (32^4)(2) \mod 85$
 $= 16 \times 2 = 32$