4.7 Exercícios

- 4.1 Mostre, para a sentença 00001111 na gramática G_1 (Seção 2.3), a sua árvore sintática, as derivações canônicas mais à esquerda e mais à direita e as correspondentes seqüências de reconhecimento.
- 4.2 Mostre a árvore sintática, as derivações canônicas e as correspondentes seqüências de reconhecimento para a sentença aabb na gramática $G_b = \{V_t, V_n, P, S\}$, com $V_t = \{a, b\}$, $V_n = \{A, S\}$ e as produções $P = \{S \rightarrow A, A \rightarrow aAb, A \rightarrow ab\}$.
- 4.3 Mostre a árvore sintática, as derivações canônicas e as correspondentes seqüências de reconhecimento para a sentença $x \, x \, x \, y \, y \, z \, x \, x \, z$ na gramática G_c , com $V_n = \{S, A, B, C\}$, $V_t = \{x, y, z\}$, símbolo sentencial S e produções $S \to AxByC$, $A \to xAx$, $A \to \varepsilon$, $B \to By$, $B \to \varepsilon$, $C \to zAz$.
- 4.4 Dada a gramática com símbolo não-terminal e sentencial S, símbolos terminais a, b e produções

$$S \rightarrow aSbS \mid bSaS \mid \epsilon$$

mostre, usando a sentença abab, que esta é ambígua. Para tanto, apresente para a sentença:

- (a) Duas derivações canônicas mais à direita;
- (b) Duas derivações canônicas mais à esquerda;
- (c) Duas árvores sintáticas.

4.5 Para a árvore

- (a) Qual é a sequência de apresentação dos seus elementos quando a estratégia de varredura pré-ordem é adotada?
- (b) Qual é a sequência de apresentação dos seus elementos quando a estratégia de varredura pós-ordem é adotada?
- 4.6 Uma árvore binária com nove nós apresenta a seguinte estrutura:

Atribua a cada nó, preservando essa estrutura, os dígitos de 1 a 9 de forma que a varredura da árvore apresente os valores em ordem ascendente quando a estratégia adotada é:

- (a) pré-ordem;
- (b) intra-ordem;
- (c) pós-ordem.

- 4.7 Apresente todas as árvores sintáticas para as seguintes sentenças em G_2 (Seção 4.1):
 - (a) $v \times v$
 - (b) $v \times v + v$
 - (c) $v \times (v+v)$
 - (d) $v + v \times v + v$
 - (e) $(v+v) \times (v+v)$
- 4.8 Considere a gramática G_g com símbolos não-terminais $\{S, L\}$, símbolos sentencial S, símbolos terminais $\{(,), a, \Delta\}$ e produções

$$S \rightarrow (L)$$

$$S \rightarrow a$$

$$L \rightarrow L \triangle S$$

$$L \rightarrow S$$

- (a) Apresente as árvores sintáticas para as sentenças:
 - $(a \triangle a)$
 - $(a \triangle (a \triangle a))$
 - $(a \triangle ((a \triangle a) \triangle (a \triangle a)))$
- (b) Monte a tabela sintática para um analisador sintático preditivo para reconhecer sentenças nessa linguagem e mostre a operação do analisador sintático preditivo para cada uma das sentenças do item *a*.
- (c) Obtenha as relações de Wirth-Weber entre os símbolos da gramática ${\cal G}_q.$
- (d) Se possível, construa o analisador de precedência fraca para a gramática G_g e mostre sua operação para cada uma das sentenças do item a. Caso contrário, indique qual condição é violada.
- 4.9 Para a gramática $G_h = \{V_n, V_t, P, S\}$, com $V_n = \{A, S\}$, $V_t = \{a, b\}$ e produções $P = \{S \to A, A \to aAb, A \to ab\}$.
 - (a) Monte a tabela sintática para o analisador preditivo, se possível.
 - (b) Obtenha as relações de Wirth-Weber e mostre que a gramática é de precedência fraca.

- (c) Monte a tabela DR para o analisador de precedência fraca.
- (d) Mostre a operação do analisador no reconhecimento da sentença *aabbb*, com a correspondente construção da árvore sintática a cada passo.
- 4.10 Considere a gramática G_i cujas produções são apresentadas a seguir, com símbolo sentencial S e símbolos terminais $\{a, e, o, l, x\}$:

$$S \rightarrow ABe$$

$$A \rightarrow a$$

$$A \rightarrow o$$

$$B \rightarrow x$$

$$B \rightarrow l$$

- (a) Construa o analisador sintático preditivo.
- (b) Construa o analisador sintático de precedência fraca.
- (c) Mostre a operação dos dois analisadores no reconhecimento da sentença axe.
- 4.11 O seguinte fragmento de um arquivo yacc define os símbolos e produções para uma gramática G_i :

```
%token T1, T2, T3, T4
%%
n1 : n2 T1 n2 T2 | T2;
n2 : n3 | n4;
n3 : n4 T3 n4 | T3 n4;
n4 : n4 T4 | T4;
```

- (a) Mostre a representação formal para G_j .
- (b) Mostre a representação de G_i em BNF.
- (c) Mostre a representação gráfica de G_j na notação de diagramas sintáticos.
- 4.12 O seguinte fragmento de uma especificação yacc tenta representar o comando condicional (IF) de alguma linguagem:

Ao compilar essa especificação, o gerador de analisador sintático produz uma mensagem de aviso para indicar que a gramática especificada tem uma ambigüidade que produz um conflito de deslocamento ou redução.

- (a) Qual é a causa desse conflito na especificação?
- (b) Complemente a especificação de modo que seja possível executar um exemplo que permita descobrir qual é a ação padrão tomada pelo analisador gerado numa dessas situações de conflito.
- 4.13 Complemente o exemplo da Seção 4.6.3 de forma a contemplar as quatro operações básicas e a incluir valores negativos com o operador unário –.
- 4.14 Complemente o exemplo da Seção 4.6.3 de forma a aceitar valores reais além de inteiros.
- 4.15 Complemente o exemplo da Seção 4.6.3 de forma a definir uma calculadora científica que aceita valores inteiros e reais e que, além das quatro operações aritméticas e de valores negativos, reconheça as operações da biblioteca matemática de C, especificadas no arquivo cmath, como as funções pow, log e sin.