COMP 484 Web Engineering I

Instructor: ~kaplan (akaplan@csun.edu)

Lecture #3: 7/20/2020

Relational Databases & SQL

- Different functionality in separate tiers
- Tiers of web-based app typically on separate computers
 - Can be on same computer

- Bottom Tier (Data/Information Tier)
 - Maintains application's data
 - E.g. MySQL relational database management system
 - Others: MS SQL Server, Oracle DBMS

- Middle Tier (Business Logic Tier)
 - Enforces business rules
 - Updates/queries database based on user inputs
 - Presents data to users

- Top Tier (Client/UI Tier)
 - Interacts with middle tier to make requests and retrieve data
 - Displays retrieved data to end user
 - Never interacts directly with bottom tier

Databases

- A database is an organized collection of data
- A database management system (DBMS) provides mechanisms for storing, organizing, retrieving and modifying data for many users
- Today's most popular database management systems are relational databases
- SQL is the international standard language used almost universally with relational database systems to perform queries and manipulate data
- Programs connect to, and interact with, relational databases systems via an interface

Why Host Web Server & Database on Separate Machines?

Top tier Middle tier Bottom tier also called also called User interface tier or Business logic tier Data tier or Client tier Information tier

Security

- Database should only be touched by web server (never accessed directly by internet clients), can be hosted on private subnet
- Scalability
 - Web servers (stateless) can scale easily behind load balancer
 - Databases hard to scale horizontally (consistency)

Performance

 Web server and database need not compete for resources on same machine

Relational Databases

- A relational database stores data in tables
 - Tables are composed of rows, and rows are composed of columns in which values are stored
 - Each column of a table represents a different attribute in a row of data
 - A primary key is a set of <u>one or more</u> columns which provide a value unique to each row
 - Cannot be replicated in other rows

	Number	Name	Department	Salary	Location
	23603	Jones	413	1100	New Jersey
	24568	Kerwin	413	2000	New Jersey
Row	34589	Larson	642	1800	Los Angeles
	35761	Myers	611	1400	Orlando
	47132	Neumann	413	9000	New Jersey
	78321	Stephens	611	8500	Orlando
	Primary key		Column		

SQL - 4 types of operations

- **SELECT**: read data from table(s)
- INSERT: create new data row
- UPDATE: change existing data row(s)
- DELETE: remove existing data row(s)

SQL: A Basic SELECT Query

- The basic form of a SELECT query is

 SELECT * FROM tableName
 in which the asterisk (*) wildcard character
 indicates that all columns from the tableName
 should be retrieved
- To retrieve specific columns, replace the * with a comma-separated list of column names

SELECT * FROM Authors

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

SELECT AuthorID, LastName FROM Authors

AuthorID	LastName
1	Deitel
2	Deitel
3	Deitel
4	Morgano
5	Kern

Table: Authors

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

Table: AuthorISBN

AuthorID	ISBN	AuthorID	ISBN
1	0132152134	2	01325750
2	0132152134	1	0132662
1	0132151421	2	0132662
2	0132151421	1	0132404
1	0132575663	2	0132404
1	013705842X	1	0132121
2	013705842X	2	0132121
3	013705842X	3	0132121
4	013705842X	4	0132121
5	013705842X		

Relational Database Overview: A *books* database

- The combined columns of the AuthorISBN table represent the table's *primary key*
 - thus, each row in this table must be a *unique* combination of an AuthorID and an ISBN
- A foreign key is a column in a table that matches the primary-key column in another table
 - The foreign key helps
 maintain the **Rule of Referential Integrity**:
 Every foreign-key value must appear as another table's primary-key value

Relational Database Overview: A books database (cont)

Table: Titles

ISBN	Title	EditionNumbe r	Copyrigh t
0132152134	Visual Basic 2010 How to Pro- gram	5	2011
0132151421	Visual C# 2010 How to Program	4	2011
0132575663	Java How to Program	9	2012
0132662361	C++ How to Program	8	2012
0132404168	C How to Program	6	2010
013705842X	iPhone for Programmers: An App- Driven Approach	1	2010
0132121360	Android for Programmers: An App-Driven Approach	1	2012

SQL: WHERE Clause

• SQL uses the optional WHERE clause in a query to specify the selection criteria for the query. The basic form of a query with selection criteria is

SELECT columnName1, columnName2, ... FROM tableName WHERE criteria

Table: Titles

ISBN	Title	EditionNumbe r	Copyrigh t
0132152134	Visual Basic 2010 How to Pro- gram	5	2011
0132151421	Visual C# 2010 How to Program	4	2011
0132575663	Java How to Program	9	2012
0132662361	C++ How to Program	8	2012
0132404168	C How to Program	6	2010
013705842X	iPhone for Programmers: An App- Driven Approach	1	2010
0132121360	Android for Programmers: An App-Driven Approach	1	2012

SELECT Title, EditionNumber, Copyright FROM Titles WHERE Copyright > 2010

Title	EditionNumber	Copyright
Visual Basic 2010 How to Program	5	2011
Visual C# 2010 How to Program	4	2011
Java How to Program	9	2012
C++ How to Program	8	2012
Android for Programmers: An App- Driven Approach	1	2012

SQL: WHERE Clause (cont.)

Pattern Matching: Zero or More Characters

- •The WHERE clause can contain operators <, >, <=, >=, =, <> and LIKE.
- •Operator LIKE is used for string pattern matching with wildcard characters percent (%) and underscore (_)
 - ⁻A percent character (%) in a pattern indicates that a string matching the pattern can have zero or more characters at the percent character's location in the pattern
 - An underscore (_) in the pattern string indicates a single character at that position in the pattern

Table: Authors

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

SELECT AuthorID, FirstName, LastName FROM Authors WHERE LastName LIKE 'D%'

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel

Table: Authors

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

SELECT AuthorID, FirstName, LastName FROM Authors WHERE LastName LIKE '_0%'

AuthorID	FirstName	LastName
4	Michael	Morgano

SQL: ORDER BY Clause

• The result of a query can be sorted in ascending or descending order using the optional ORDER BY clause. The simplest form of an ORDER BY clause is

SELECT columnName1, columnName2, ... FROM tableName ORDER BY column ASC

SELECT columnName1, columnName2, ... FROM tableName ORDER BY column DESC

where ASC specifies ascending order, DESC specifies descending order and column specifies the column on which the sort is based

- (The default sorting order is ascending, so ASC is optional)
- Multiple columns can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY column1 sortingOrder, column2 sortingOrder, ...

• The WHERE and ORDER BY clauses can be combined in one query. If used, ORDER BY must be the last clause in the query

SELECT AuthorId, FirstName, LastName FROM Authors ORDER BY LastName ASC

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
5	Eric	Kern
4	Michael	Morgano

SELECT AuthorId, FirstName, LastName FROM Authors ORDER BY LastName DESC

AuthorID	FirstName	LastName
4	Michael	Morgano
5	Eric	Kern
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel

SELECT AuthorId, FirstName, LastName FROM Authors ORDER BY LastName, FirstName

AuthorID	FirstName	LastName
3	Abbey	Deitel
2	Harvey	Deitel
1	Paul	Deitel
5	Eric	Kern
4	Michael	Morgano

Table: Titles

ISBN	Title	EditionNumbe r	Copyrigh t
0132152134	Visual Basic 2010 How to Program	5	2011
0132151421	Visual C# 2010 How to Program	4	2011
0132575663	Java How to Program	9	2012
0132662361	C++ How to Program	8	2012
0132404168	C How to Program	6	2010
013705842X	iPhone for Programmers: An App- Driven Approach	1	2010
0132121360	Android for Programmers: An App-Driven Approach	1	2012

SELECT * FROM Titles WHERE Title LIKE '%How to Program' ORDER BY Title ASC

ISBN	Title	Editio n- Number	Copy- right
0132404168	C How to Program	6	2010
0132662361	C++ How to Program	8	2012
0132575663	Java How to Program	9	2012
0132152134	Visual Basic 2010 How to Program	5	2011
0132151421	Visual C# 2010 How to Program	4	2011

Minor textbook error corrected in dark-red

Merging Data from Multiple Tables: INNER JOIN

• An INNER JOIN operator merges rows from two tables by matching values in columns that are common to the tables. The basic form for the INNER JOIN operator is:

```
SELECT columnName1, columnName2, ...

FROM table1

INNER JOIN table2

ON table1.columnName = table2.columnName
```

- The **ON clause** of the INNER JOIN specifies the columns from each table that are compared to determine which rows are merged
- The following query produces a list of authors accompanied by the ISBNs for books written by each author:

```
SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN
ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName
```

SELECT FirstName, LastName, ISBN
 FROM Authors
 INNER JOIN AuthorISBN
 ON Authors.AuthorID = AuthorISBN.AuthorID
 ORDER BY LastName, FirstName

can also be written in implicit join notation, as follows...

SELECT FirstName, LastName, ISBN
 FROM Authors, AuthorISBN
 WHERE Authors.AuthorID = AuthorISBN.AuthorID
 ORDER BY LastName, FirstName

SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN
ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

FirstName	LastName	ISBN	FirstName	LastName	ISBN
Abbey	Deitel	013705842X	Paul	Deitel	0132151421
Abbey	Deitel	0132121360	Paul	Deitel	0132575663
Harvey	Deitel	0132152134	Paul	Deitel	0132662361
Harvey	Deitel	0132151421	Paul	Deitel	0132404168
Harvey	Deitel	0132575663	Paul	Deitel	013705842X
Harvey	Deitel	0132662361	Paul	Deitel	0132121360
Harvey	Deitel	0132404168	Eric	Kern	013705842X
Harvey	Deitel	013705842X	Michael	Morgano	013705842X
Harvey	Deitel	0132121360	Michael	Morgano	0132121360
Paul	Deitel	0132152134			

SQL - 4 types of operations

- SELECT: read data from table(s)
- **INSERT:** create new data row
- UPDATE: change existing data row(s)
- DELETE: remove existing data row(s)

SQL: INSERT Statement

• An INSERT statement inserts a new row into a table. The basic form of this statement is

where *tableName* is the table in which to insert the row

- Followed by a comma-separated list of column names in parentheses
- Then, SQL keyword VALUES and a comma-separated list of values in parentheses
- Each value is mapped to corresponding column in inserted row

```
INSERT INTO Authors (
FirstName, LastName)
VALUES ( 'Sue', 'Red' )
```

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

- The statement indicates that values are provided for the FirstName and LastName columns.
 - The corresponding values are 'Sue' and 'Red'
- AuthorID not specified in INSERT because it is an autoincremented column

SQL - 4 types of operations

- SELECT: read data from table(s)
- INSERT: create new data row
- **UPDATE:** change existing data row(s)
- DELETE: remove existing data row(s)

SQL: UPDATE Statement

 An UPDATE statement modifies data in a table. Its basic form is

where *tableName* is the table in which to update data

The *tableName* is followed by keyword SET and a comma-separated list of column name/value pairs in the format *columnName* = *value*

The optional WHERE clause *criteria* determines which rows to update (without it, all rows of the table are updated)

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern
6	Sue	Red

UPDATE Authors SET LastName = 'Black' WHERE FirstName = 'Sue' AND LastName = 'Red'

1 Paul Deitel 2 Harvey Deitel 3 Abbey Deitel 4 Michael Morgano	AuthorID	FirstName	LastName
3 Abbey Deitel	1	Paul	Deitel
	2	Harvey	Deitel
4 Michael Morgano	3	Abbey	Deitel
4 Michael Molgano	4	Michael	Morgano
5 Eric Kern	5	Eric	Kern
6 Sue Black	6	Sue	Black

SQL - 4 types of operations

- SELECT: read data from table(s)
- INSERT: create new data row
- UPDATE: change existing data row(s)
- **DELETE:** remove existing data row(s)

DELETE Statement

• A SQL DELETE statement removes rows from a table. Its basic form is

DELETE FROM tableName WHERE criteria

where *tableName* is the table from which to delete a row (or rows)

The optional WHERE *criteria* determines which rows to delete. If this clause is omitted, all the table's rows are deleted

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern
6	Sue	Black

DELETE FROM Authors WHERE FirstName = 'Sue' AND LastName = 'Black'

AuthorID	FirstName	LastName
1	Paul	Deitel
2	Harvey	Deitel
3	Abbey	Deitel
4	Michael	Morgano
5	Eric	Kern

MySQL

- MySQL (pronounced "my sequel") is a robust and scalable relational database management system (RDBMS) that was created by the Swedish consulting firm TcX in 1994
- MySQL, now owned by Oracle, is a multiuser, multithreaded RDBMS server that uses SQL to interact with and manipulate data
- Multithreading capabilities enable MySQL database to perform multiple tasks concurrently, allowing the server to process client requests efficiently
- Implementations of MySQL are available for Windows, Mac OS X, Linux and UNIX

Creating and Deleting Tables in MySQL

- DROP TABLE Employee
 - Will delete the Employee table

```
    CREATE TABLE Employee (

      id int unsigned not null auto_increment
                               primary key,
      firstname varchar(20),
      lastname varchar(20),
      title varchar(30),
      age int,
      yearofservice int,
      salary int,
      perks int,
      email varchar(60)
```

 Creates the Employee table with auto-incrementing primary key named id