

Lecture: Introduction & Administrivia

CSE606: Computer Graphics
Jaya Sreevalsan Nair, IIIT Bangalore
January 06, 2025

Computer Graphics and Related Areas

- Imaging: 2D representation
- Modeling: 3D representation
- Rendering: 2D impression of 3D world (Realism)
- Simulation/
 Animation: Temporal changes in scenes

State-of-the-Art in Graphics

Technical papers preview at ACM Siggraph

<u>2024</u> <u>2023</u> <u>2022</u>

Technical papers preview at ACM Siggraph Asia

<u>2024</u>

What does CG entail?

https://graphicscompendium.com/intro/01-graphics-pipeline/

https://dis.dankook.ac.kr/lectures/cq18/2018/09/25/coordinate-system/

What does CG entail?

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-lighting/introduction-to-lighting.html

https://cgg.mff.cuni.cz/members/wilkie/

Surface Modeling Using Meshes

S. Kircher & M. Garland / Progressive Multiresolution Meshes for Deforming Surfaces

(a) Sequence

(b) Static hierarchy

Figure 12: The multilevel mesh structure can easily be used with adaptive refinement schemes. Here, refinement is based on position along the x axis.

Surface Modeling Using Meshes

S. Kircher & M. Garland / Progressive Multiresolution Meshes for Deforming Surfaces

Figure 14: Levels of detail (original, 3200v, 800v) from the horse-to-man multilevel mesh sequence. Each approximation level adapts over time.

Particle System Modeling

Liquid jet simulation. (Image courtesy: TACC, UT-Austin).

Physics-based simulation of fire. (Image courtesy: Prof. Henrik Wann Jensen, UCSD).

Rendering

Subsurface scattering. (Image courtesy: Prof. Henrik Wann Jensen, UCSD).

Texture Mapping

Untextured mesh - rendered

Wireframe mesh - with shadows

Textured mesh - rendered with shadows

Photorealistic Rendering Using Ray Tracing

Figure 5: Image-swept volumes in a multi-object scene.

Image courtesy: Winter, Andrew S., and Min Chen. "Image-Swept Volumes." In Computer Graphics Forum, vol. 21, no. 3, pp. 441-450. Blackwell Publishing, Inc, 2002.

Image courtesy: Wikipedia

Non-photorealistic Rendering

Line-drawing of animation of deformable objects. (Image courtesy: Dr. Evangelos Kalogerakis, Stanford University).

Line-art rendering of smooth surfaces. (Image courtesy: Prof. Aaron Hertzman, Univ. of Toronto).

Early galaxy formation. (Image courtesy: TACC, UT-Austin).

Animation

Animation authoring tools (Image source: Blender.org)

Physics-based animation https://youtu.be/qi7eo3r4ydA?si=jTytZYioQmMm7iKG

Octree data structure for collision detection. (Image source: Nvidia)

AR/VR Systems

VR Training simulator (Image Source: Wikipedia, By <u>ESA</u>)

Head-mounted displays: Google Cardboard and Samsung Gear

What is after all an image?

https://www.youtube.com/watch?v=8OohzciQRPI

René Magritte's The Treachery of Images (This is Not a Pipe) - A 1929 surrealist painting by Belgian painter, Magritte.

The famous pipe. How people reproached me for it! And yet, could you stuff my pipe? No, it's just a representation, is it not? So if I had written on my picture "This is a pipe", I'd have been lying!

-René Magritte

What is after all an image? An array of pixels!

https://www.sony.com/electronics/support/articles/00342545

https://commons.wikimedia.org/wiki/File:Orc - Ra ster_vs_Vector_comparison.png

https://support.cognex.com/docs/cvl_900/web/EN/cvl_users_guide/Contentropics/Pixels_and_Coordinate_Gr.htm

Administrivia

Syllabus

H1: Introduction

- Graphics pipeline (introduction)
 - Graphics system and OpenGL architecture
 - Geometric transformations
 - Viewing
 - Lighting and shading
- Programming (introduction)
 - Introduction to WebGL
 - Rasterization and shaders
- Geometric Models

H2: Selected advanced topics

- Texture mapping
- Animation
 - Scene graphs
 - Collision algorithms
 - Hierarchies
- Graphics pipeline (advanced)
- Selected applications:
 - Virtual and Augmented Reality
- Lighting (advanced)
 - Ray tracing

References

Lecture Notes: Material mostly from below-mentioned textbooks.

- Interactive Computer Graphics: A Top-Down Approach with WebGL, Edward Angel and Dave Shreiner, seventh edition, Pearson, 2017.
 - Resources from Prof. Angel
 https://www.cs.unm.edu/~angel/BOOK/INTERACTIVE_COMPUTER_GR

 APHICS/SEVENTH_EDITION/
- Fundamentals of Computer Graphics, Peter Shirley, Michael Ashikhmin, and Steve Marschner, A K Peters, third revised edition, 2009.

Additional textbook references:

- Donald Hearn and Pauline Baker, Computer Graphics with OpenGL (third edition), Prentice Hall, 2003.
- F. S. Hill Jr. and S. M. Kelley, Computer Graphics using OpenGL (third edition), Prentice Hall, 2006.

Programming

Environments:

- OpenGL2.0 + WebGL1.0 for assignments (pre-midterm)
 - Blender for creating a model
- Blender and WebGL for project (post-midterm)

References for OpenGL[®]:

- OpenGL[®] Programming Guide: The Official Guide to Learning
- OpenGL[®], Version 2 (The OpenGL[®] Red Book),
- OpenGL[®] Architecture Review Board, Dave Shreiner, et.al., Addison-Wesley Professional, seventh edition, 2009.
- OpenGL[®] Shading Language (The OpenGL[®] Orange Book),Randi J. Rost, Bill Licea-Kane, et.al., Addison-Wesley Professional, third edition, 2009.

Resources for Programming

- WebGL code samples and tutorials: https://webglfundamentals.org/
- GLSL Tutorials by Lighthouse 3D:
 http://www.lighthouse3d.com/tutorials/glsl-tutorial/

Others:

- OpenGL Tutorials for v3.3 or later: http://www.opengl-tutorial.org/
- OpenGL+GLUT Tutorials by Nate Robins (older versions of OpenGL): https://user.xmission.com/~nate/tutors.html
- OpenGL Tutorials (recommended by previous batches): https://learnopengl.com/

System Requirements

WebGL/OpenGL:

- Nothing extra on a relatively new laptop
- Firefox/Chrome browsers

Blender:

- 64-bit dual core 2GHz CPU with SSE2 support
- 4 GB RAM
- 1280x768 display
- Mouse, trackpad, or pen+tablet
- Graphics card 1 GB RAM, supporting OpenGL 3.3
- < 10 years old</p>

Administrivia

- TA: To be confirmed, based on final class-size.
- Grading (H1=pre-break; H2=post-break):
 - H1: 2 programming (warm-up) assignments A1, A2 (10% each of final grade),
 - A2 is announced in H1, but is due in H2
 - H1: Written midterm exam (20% of final grade),
 - H2: Group assignment (GA) with 2 parts GA-1, GA-2 (25% of final grade)
 - Groups of 3
 - H1: 1 technical report writing assignment RWA (10% of final grade),
 - H2: End-term exam (20% of final grade),
 - Attendance (5% of final grade).

Administrivia

- Instructor/TA/Time/Venue:
 - MW 9:15 am 10:45 am: Prof. Jaya Sreevalsan Nair
 - TA: Shridhar Sharma
- Programming assignments:
 - TA to provide primer for A1, and optionally, for A2
 - Submissions every 2-3 weeks
 - Evaluation of demo, code and report for A1-A2, GA.
 - By TA for A1-A2.
 - Demos could be video (pre-recorded) or live will be informed during the course.
 - By Instructor for GA-1 and GA-2
- Technical report for RWA is based on reading an ACM Siggraph or ACM TOG paper
 - The report is a review/critique of a paper selected by the student from a list provided by the instructor/TA
 - Evaluated by TA
- All assignment submissions only through LMS.
 - Email submissions will not be graded