Introduction to Phylogenetics Week 1

Basic Concepts of Molecular Evolution

- Most life uses DNA as its genetic template
- Some viruses use RNA as the genetic template
- Evolution rate Depends a great deal on generation time, fidelity of enzymes, fecundity and environmental stressors

 Purines are A or G and pyrimidines are T or C (or U)

A=T and G≅C

Kind of a big deal when it comes to evolution

- Because of purine: pyrimidine base pairing, transitions are more likely to occur than transversions
 - Transitions (4): A <-> G, C <-> T
 - Transversions (8): A <-> C, A <-> T, G <-> C, G <-> T

Kind of a big deal when it comes to evolution

Genetic code is degenerate

Second base of coden

Second base of codon											
		U		С		Α		G			
First base of codon	U	UUU	Phenylalanine phe	UCC	Serine ser	UAU	Tyrosine tyr	UGU	Cysteine cys	U C	
		UUA	Leucine leu	UCA		UAA UAG	STOP codon	UGA UGG	STOP codon Tryptonphan trp	A G	
	С	CUU CUC CUA CUG	Leucine leu	CCU CCC CCA CCG	Proline pro	CAU CAC CAA CAG	Histidine his Glutamine gin	CGU CGC CGA CGG	Arginine arg	U C A G	Third base
	Α	AUU AUC AUA	Isoleucine ile Methionine met (start codon)	ACU ACC ACA ACG	Threonine thr	AAU AAC AAA AAG	Asparagine asn Lysine lys	AGU AGC AGA AGG	Serine ser Arginine arg	U C A G	se of codon
	G	GUU GUC GUA GUG	Valine val	GCU GCC GCA GCG	Alanine ala	GAU GAC GAA GAG	Aspartic acid asp Glutamic acid glu	GGU GGC GGA GGG	Glycine gly	U C A G	

Only change in AA:

30% at 3rd base 100% at 2nd base 96% at 1st base

 AAs can have similar chemistry

Figure 3-5 Biological Science, 2/e

© 2005 Pearson Prentice Hall, Inc.

- Synonymous mutation silent mutation
 - Generally under neutral selection
 - Can affect RNA stability
 - Can affect tRNA usage
- Non-synonymous mutation non-silent
 - change in amino acid coding

- Gene duplication
- Orthologs
 - High selection pressure
- Paralogs
 - Relaxed selection pressure
 - Increased mutation rate
 - Evolution unique functions

II. Population genetics

Mutations – polymorphisms in offspring

Fixation rate – rate where polymorphisms

reach 100%

II. Population genetics

- Many genetic changes are maintained as polymorphisms in a population
- Cannot calculate rate of fixation

$$\frac{1}{2N} \cdot 2Nm = m$$

 Can use difference in genetic structure as equivalent to genetic differences

II. Population genetics

- Rate of population change
 - Underlying mutation rate
 - Generation time
 - Impact of allele on fitness
 - Positive selection
 - Negative selection
 - Balancing selection
 - Population size

II. Population genetics: Bottlenecks

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Deterministic

- Chance events (other than environmental) do not dramatically effect allele frequencies
- Change dependent positive/negative selection
- Needs large population

Stochastic

- Random fluctuations determine allele frequency
- Change cannot be determined by mutation rate
- More important in small populations
- Genetic drift (random sampling more important)

- Evolution is likely a combination of deterministic and stochastic effects
 - Mutations result in genetic variation that natural selection acts as dominant force
- Adaptive evolution positive selective pressure on mutations
- Neutral theory stochastic fixation of neutral/nearly neutral mutations
 - Assumes many organisms well adapted to current conditions
 - Positive selection only affects few individuals within greater population

Adaptive landscapes

III. Phylogeny

Carl Linnaeus - Father of modern taxonomy

Began classifying plants based on structure – published *Systema Naturae* in 1735

III. Phylogeny

Haeckle - First to include microorganisms within a tree Created the group – Monera Five-kingdom Tree of Life

- Determine relationships between genes/gene fragments
- Homologous regions need to be aligned (program)
- Missing sequence data must be trimmed (program)
- Determine appropriate evolutionary model to use (program)
- Generate phylogenetic tree (program)
- Test tree (program)

(a) Sequence alignment and analysis

Microbe	1	2	3	4
1	1.0	0.27	0.27	0.33
2		1.0	0.27	0.33
3			1.0	0.20
4				1.0

Micrope	1	4	3	4
1	1.0	0.32	0.32	0.44
2		1.0	0.32	0.44
3			1.0	0.26
4				1.0

(b) Calculated evolutionary distance

(c) Corrected evolutionary distance

(d) Phylogenetic tree

Class Planctomycea

I. Definitions

- Synonymous mutation
- Non-synonymous mutation
- Transition
- Transversion
- Indels
- Positive selection
- Neutral selection
- Neutral theory
- Stochastic effects
- Allee effects