Das einphasige Ersatzschaltbild des Drehstromtransformators

R.G., 2020

1 Problem

Physikalisch gesehen sind beide Seiten des Drehstromtransformators (Ober- und Untersseite) über einen *Eisenkern* miteinander gekoppelt. Für praktische Berechnungen eignet sich jedoche eine *galvanische Kopplung* deutlich besser.

2 Lösung

Man erhält das Modell des galvanisch gekoppelten DS-Transformators über eine mathematische Umformung der beiden Maschengleichungen und folglicher Rekonstruktion des Schaltbildes aus den umgeformten Gleichungen.

Schritt 1: Aufstellen der beiden Maschengleichungen

$$\underline{U_1} = \underline{I_1} \cdot R_1 + j\omega L_1 \cdot \underline{I_1} + j\omega M \cdot \underline{I_2} \tag{1}$$

$$\overline{U_2} = \overline{I_2 \cdot R_2 + j\omega L_2 \cdot I_2 + j\omega M \cdot I_1}$$
 (2)

Schritt 2: Erweiterung der Maschengleichung der Sekundärseite um das Übersetzungsverhältnis

$$U_1 = I_1 \cdot R_1 + j\omega L_1 \cdot I_1 + j\omega M \cdot I_2 \tag{3}$$

$$\frac{\ddot{\mathbf{u}} \cdot \underline{I_2}}{\ddot{\mathbf{u}} \cdot \underline{I_2}} = \ddot{\mathbf{u}}^2 \cdot \frac{\underline{I_2}}{\ddot{\mathbf{u}}} \cdot R_2 + j \ddot{\mathbf{u}}^2 \cdot \omega L_2 \cdot \frac{\underline{I_2}}{\ddot{\mathbf{u}}} + j \omega \ddot{\mathbf{u}}^2 \cdot M \cdot \frac{\underline{I_1}}{\ddot{\mathbf{u}}} \tag{4}$$

Schritt 3: Anpassung des Terms mit der Gegeninduktivität in der ersten Gleichung an den der zweiten

$$\underline{U_1} = \underline{I_1} \cdot R_1 + j\omega L_1 \cdot \underline{I_1} + j\omega \ddot{\mathbf{u}} \cdot M \cdot \frac{\underline{I_2}}{\ddot{\mathbf{u}}}$$
 (5)

$$\ddot{\mathbf{u}} \cdot \underline{U_2} = \ddot{\mathbf{u}}^2 \cdot \frac{\underline{I_2}}{\ddot{\mathbf{u}}} \cdot R_2 + j \ddot{\mathbf{u}}^2 \cdot \omega L_2 \cdot \frac{\underline{I_2}}{\ddot{\mathbf{u}}} + j \omega \ddot{\mathbf{u}}^2 \cdot M \cdot \frac{\underline{I_1}}{\ddot{\mathbf{u}}}$$
(6)

Schritt 4: Einführung von Kurzschreibweisen (Strichgrößen)

$$\ddot{\mathbf{u}}^2 \cdot R = R', \quad \ddot{\mathbf{u}}^2 \cdot L = L', \quad \ddot{\mathbf{u}} \cdot M = M', \\ \frac{\underline{I}}{\ddot{\mathbf{u}}} = \underline{I}', \\ \ddot{\mathbf{u}} \cdot \underline{U} = \underline{U}'$$

$$U_1 = I_1 \cdot R_1 + j\omega L_1 \cdot I_1 + j\omega M' \cdot {I_2}' \tag{7}$$

$$\underline{U_1} = \underline{I_1} \cdot R_1 + j\omega L_1 \cdot \underline{I_1} + j\omega M' \cdot \underline{I_2}'
\underline{U_2}' = \underline{I_2}' \cdot R_2' + j \cdot \omega L_2' \cdot \underline{I_2}' + j\omega M \cdot \underline{I_1}$$
(8)

Schritt 5: Einführung ergänzender Größen, um identische Ausdrücke in beiden Gleichungen zu erhalten

$$\underline{U_1} = \underline{I_1} \cdot R_1 + j\omega L_1 \cdot \underline{I_1} - j\omega M' \underline{I_1} + j\omega M' \cdot \underline{I_2}' + j\omega M' \underline{I_1}$$
(9)

$$\underline{U_1} = \underline{I_1} \cdot R_1 + j\omega \underline{L_1} \cdot \underline{I_1} - j\omega \underline{M'} \underline{I_1} + j\omega \underline{M'} \cdot \underline{I_2'} + j\omega \underline{M'} \underline{I_1}
\underline{U_2'} = \underline{I_2'} \cdot R_2' + j \cdot \omega \underline{L_2'} \cdot \underline{I_2'} - j\omega \underline{M'} \underline{I_2'} + j\omega \underline{M} \cdot \underline{I_1} + j\omega \underline{M'} \underline{I_2'}$$
(9)

Schritt 6: Zusammenfassen der Ausdrücke

$$U_1 = R_1 \cdot I_1 + j\omega(L_1 - M') \cdot \underline{I_1} + j\omega M'(I_1 + I_2')$$
 (11)

$$\underline{U_2}' = R_2' \cdot \underline{I_2}' + j\omega(L_2' - M') \cdot \underline{I_2}' + j\omega M'(\underline{I_1} + I_2')$$
 (12)

Schritt 5: Konstruktion des Ersatzschaltbildes aus den beiden neuen Maschengleichungen (11) und (12)

Da wir die Sekundärgrößen (I_2,U_2,L_2,R_2) auf die Primärseite bezogen haben (I_2', U_2', L_2', R_2') , gehört jetzt auf die Sekundärseite noch ein idealer Übertrager mit ü, der uns dann die realen Sekundärgrößen liefert:

Das galvanische Ersatzschaltbild, das ja ein fiktives Modell ist, verhält sich nach außen hin (Eingangs- zu Ausgangsgrößen) genauso wie das induktive Ersatzschaltbild, also der reale Transformator.

ELEKTROENERGIETECHNIK

Übung: Ersatzschaltbild Transformator

Gegeben sind die einphasigen Größen eines Drehstromtransformators ($S_n = 400 \text{ kVA}$, ü = 10 kV / 0.4 kV):

$$R_1 = 77 \text{ m}\Omega$$

$$L_1 = 4,52 \text{ H}$$

$$R_2 = 5.1 \text{ m}\Omega$$

$$L_2 = 7,25 \text{ mH}$$

$$M = 180 \text{ mH}$$

1. Geben Sie alle Größen für das galvanisch gekoppelte ESB an (Vernachlässigung von R_{Fe}).

Wie wird in diesem ESB das Übersetzungsverhältnis berücksichtigt?

2. Der Transformator wird mit <u>Z</u> = (350 + j 330) mΩ symmetrisch in jeder Phase belastet. Dabei soll die Spannung über dem Verbraucher den Nennwert haben. Ermitteln Sie alle Strom- und Spannungsgrößen und zeichnen Sie das vollständige Zeigerbild dieser Größen.

Verändern Sie Z:
$$\underline{Z} = 350 \text{ m}\Omega$$
 ohmsche Belastung $\underline{Z} = (350 - \text{j} 330) \text{ m}\Omega$ ohmsch-kapazitive Belastung

Wie groß ist die Eingangsspannung dann (Betrag und Winkel)?

3. Geben Sie für alle 3 Fälle die aus dem Netz entnommene Scheinleistung und die im Transformator entstehenden Wicklungsverluste an.

3 Übungen

1. Berechnung der Größen des galvanisch gekoppelten ESBs, Vernachlässigung von ${\cal R}_{Fe}$

$$S_n=400\,\mathrm{kV}\,\mathrm{A}, \ddot{u}=10\,\mathrm{kV}/0.4\,\mathrm{kV}$$

$$R_1=77\,\mathrm{m}\Omega, R_2=5.1\,\mathrm{m}\Omega$$

$$L_1=4.52\,\mathrm{H}, L_2=7.25\,\mathrm{mH}$$

$$M=180\,\mathrm{mH}$$

(a) Widerstände

$$R_1=R_1=77\,\mathrm{m}\Omega$$

$$R_2'=R_2\cdot\ddot{u}^2=5.1\,\mathrm{m}\Omega\cdot25^2=3.188\,\Omega$$

(b) Selbstinduktivitäten

$$L_1=L_1=4.52\,\mathsf{H}$$

$$L_2'=L_2\cdot\ddot{u}^2=7.25\,\mathsf{mH}\cdot25^2=4.531\,\mathsf{H}$$

(c) Gegeninduktivität

$$M'=M\cdot\ddot{u}=180\,\mathrm{mH}\cdot25=4.5\,\mathrm{H}$$

(d) Als Reaktanzen:

$$X_1 = j\omega(L_1 - M') = j2\pi 50 \text{Hz} \cdot (4.52 - 4.5) \, \text{H} = j6.283 \, \Omega$$

$$X_2 = j\omega(L_2' - M') = j2\pi 50 \text{Hz} \cdot (4.531 - 4.5) \, \text{H} = j9.739 \, \Omega$$

$$X_n' = j\omega M' = 1413.717 \, \Omega$$

Der ideale Übertrager ist nicht dargestellt.

- 2. Symmetrische Belastung des Transformators in jeder Phase
 - (a) Belastung mit $\underline{Z} = 350 \text{m}\Omega + j330 \text{m}\Omega$
 - (b) Spannung über Verbraucher (Sekundärseitig): 0.4 kV (Nennwert, s.o.)
 - (c) Ermittlung aller Strom- und Spannungsgrößen und deren Zeigerbild

i. Wir befinden uns im $\emph{EINPHASIGEN}$ ESB. Die Spannung U_2^\prime ist die Strangspannung

$$U_2' = \frac{10\,\mathrm{kV}}{\sqrt{3}}$$

und die Spannung \mathcal{U}_2 ist die Strangspannung

$$U_2 = \frac{0.4\,\mathrm{kV}}{\sqrt{3}}$$

Belastung mit \underline{Z} an der Sekundärseite des idealen Übertragers (nicht eingezeichnet). Wandlung zu $\underline{Z'}$.

Wiederholung: Impedanzwandlung beim idealen Übertrager

(a) Die Leistung auf beiden Seiten des Übertragers ist gleich.

$$S_1 = S_2$$

$$\underline{U_1} \cdot \underline{I_1} = \underline{U_2} \cdot \underline{I_2}$$

(b) Es gilt

$$\ddot{\mathbf{u}} = \frac{U_1}{U_2} = \frac{I_2}{I_1}$$

(c) sowie

$$rac{U_1}{I_1}= \underline{Z_1},$$
 Eingangsseitig gesehene Impedanz

 $rac{U_2}{I_2} = \underline{Z_2},$ Ausgangsseitig gesehene Impedanz

(d) (a) in (b)

$$\frac{U_1}{U_2} = \frac{I_1 \cdot \ddot{u}}{\frac{I_2}{\ddot{u}}}$$

$$\frac{U_1}{I_1} = \frac{U_2}{I_2} \cdot \ddot{u}^2$$

$$Z_1 = Z_2 \cdot \ddot{u}^2$$

Dadurch ist die eingangsseitige Impedanz Z'

$$Z' = Z \cdot \ddot{u}^2 = (350 + j330) \text{m}\Omega \cdot 25^2$$

Da Spannung und Impedanz bekannt sind (Spannung wird einfach zum Winkel 0 definiert), kann der Strom I_2' berechnet werden. Darüber lassen sich dann auch alle weiteren Ströme und Spannungen berechenen. Letztendlich kommt man auf eine Eingangsspannung von

$$U_1 = 6.058 \,\mathrm{kV} \cdot e^{j1.7^\circ}$$

Bei rein ohmscher Belastung ($Z=350\,\mathrm{m}\Omega$) ist

$$U_1 = 5.901 \, \text{kV} \cdot e^{j4.12^{\circ}}$$

Bei rein induktiver Belastung ($Z=j330\,\mathrm{m}\Omega$) ist

$$\underline{U_1} = 6.250\,\mathrm{kV} \cdot e^{-j0.85^\circ}$$

Bei ohmsch-kapazitiver Belastung ($Z=(350-j330)\,\mathrm{m}\Omega)$ ist

$$U_1 = 5.640 \, \text{kV} \cdot e^{j2.72^{\circ}}$$

- 3. Aus dem Netz entnommene Scheinleistung und Wirkleistungsverluste im Transformator
 - (a) Die Spannung U_1 ist die Strangspannung. Die Leiter-Leiter-Spannung beträgt

$$U_{1.1.} = \sqrt{3} \cdot 6.058 \,\mathrm{kV} = 10.49 \,\mathrm{kV}$$

(b) Scheinleistung ($Z = (350 + j330) \text{m}\Omega$):

$$S_{ges} = 3 \cdot \underline{U_1} \cdot \underline{I_1}^* = \sqrt{3} \cdot \underline{U_{1_{LL}}} \cdot \underline{I_1}^*$$

$$S_{ges} = 406\,\mathrm{kV}\,\mathrm{A}\cdot e^{j52.7\,^\circ}$$

(c) Wirkleistungsverluste im Transformator (Z' zählt nicht dazu!!)

$$P_{Vi} = R_1 \cdot I_1^2 + R_2 \cdot I_2'^2 = 1215 \,\mathrm{W}$$

$$P_{Vges} = 3 \cdot P_{Vi} = 3644 \,\mathrm{W}$$

