Abgabe Algebra I, Blatt 09

Studierende(r): Weerts, Steffen, steffen.weerts@uni-oldenburg.de

Aufgabe 9.1

(a) Sei p eine Primzahl, $F_p := \sum_{i=0}^{p-1} t^i \in \mathbb{Q}[t]$ und $\zeta_p := e^{\frac{2\pi i}{p}}$. Zu zeigen: F_p ist Minimalpolynom von ζ_p über \mathbb{Q} . Es gilt:

$$\left(e^{\frac{2\pi i}{p}}\right)^p = e^{2\pi i} = 1.$$

$$\implies \text{ für } h := t^p - 1 \text{ gilt } h(\zeta_p) = 0.$$

Da jedoch h nicht irreduzibel ist, ist h nicht das Minimalpolynom von ζ_p über \mathbb{Q} . Es gilt:

$$t^{p} - 1 = (t - 1)(t^{p-1} + t^{p-2} + \dots + t^{2} + t + 1)$$

$$= \sum_{i=0}^{p-1} t^{i} = (t - 1) \cdot F_{p}.$$

$$\implies e^{\frac{2\pi i}{p}} - 1 = 0 \text{ oder } F_{p} / e^{\frac{2\pi i}{p}} = 0.$$

Da $e^{\frac{2\pi i}{p}}-1=0\iff p=1$, kann $e^{\frac{2\pi i}{p}}-1\neq 0$, denn p ist Primzahl und damit nicht 1. Folglich muss $F_p(\zeta_p)=0$ gelten. Zu zeigen: F_p ist irreduzibel. Es gilt:

$$F_p = \sum_{i=0}^{p-1} t^i$$

$$\implies F_p \text{ konstant} \iff p = 1$$

$$\stackrel{p \text{ Primzahl}}{\Longrightarrow} F_p \text{ nicht konstant.}$$

Sei $a := 1 \in \mathbb{Q}$. Es gilt:

$$F_p(t+1) = \sum_{i=0}^{p-1} (t+1)^i$$

$$= (t+1)^{p-1} + (t+1)^{p-2} + \dots + (t+1)^2 + (t+1)^1 + (t+1)^0$$

$$= \sum_{i=0}^{p-1} {p-1 \choose i} \cdot t^{p-1-i} \cdot 1^i + \sum_{i=0}^{p-2} {p-2 \choose i} \cdot t^{p-2-i} \cdot 1^i + \dots$$

$$+ \sum_{i=0}^{p-2} {2 \choose i} \cdot t^{2-i} \cdot 1^i + \sum_{i=0}^{p-2} {1 \choose i} \cdot t^{1-i} \cdot 1^i + \sum_{i=0}^{p-2} {0 \choose i} \cdot t^{0-i} \cdot 1^i$$

$$= \sum_{i=0}^{p-1} \left(\sum_{j=0}^{i} \binom{i}{j} \cdot t^{i-j} \right)$$

Die Koeffizienten der einzelnen Summen (für $n \in \{0, \dots, p-1\}$)) finden sich als Zeilen im Pascalschen Dreieck, wobei die Koeffizienten mit gleicher Potenz von t auf einer Spalte (von rechts oben nach links unten) liegen. Diese Summe kann man also als Summe der Spalten bis zur Zeile p-1 auffassen. Diese ist:

$$\sum_{i=0}^{p-1} \left(t^i \cdot \sum_{j=0}^{p-1} {j \choose i} \right) = \sum_{i=0}^{p-1} \left(t^i \cdot \sum_{j=i}^{p-1} {j \choose i} \right).$$

Nach (A1) (siehe Anhang) gilt:

$$\sum_{i=0}^{p-1} \left(t^i \cdot \sum_{j=i}^{p-1} {j \choose i} \right) \stackrel{\text{Al}}{=} \sum_{i=0}^{p-1} {p \choose i+1} \cdot t^i =: f$$

Nun gilt:

(i)
$$p \nmid \binom{p}{(p-1)+1} = 1 = LC(F_p),$$

(ii)
$$p \mid {A2 \choose i+1} = a_i \quad \forall i = 0, \dots, p-2,$$

(iii)
$$p^2 \nmid \binom{p}{1} = p = a_0.$$

 $\stackrel{\text{Eisenstein}}{\Longrightarrow} F_p$ Minimal
polynom von ζ_p über \mathbb{Q} .

Zu zeigen: $[\mathbb{Q}(\zeta_p):\mathbb{Q}] = p-1$ und $(1,\zeta_p,\zeta_p^2,\cdots,\zeta_p^{p-2})$ ist Basis von $\mathbb{Q}(\zeta_p)$. Es gilt:

 ζ_p ist algebraisch über $\mathbb Q$

$$\stackrel{6.2.9}{\Longrightarrow} [\mathbb{Q}(\zeta_p) : \mathbb{Q}] = \deg(F_p) = p - 1 \text{ und } (1, \zeta_p, \zeta_p^2, \cdots, \zeta_p^{p-2}) \text{ ist Basis von } \mathbb{Q}(\zeta_p).$$

Zu zeigen: Alle Nullstellen von F_p liegen in $\mathbb{Q}(\zeta_p)$. Fehlt.

"□"

(b) (i) Sei $f_1 = t^4 - 5 \in \mathbb{Q}[t]$. Es gilt:

$$f_1 = t^4 - 5$$

$$= (t^2 + \sqrt{5})(t^2 - \sqrt{5})$$

$$= (t + \sqrt[4]{5}i)(t - \sqrt[4]{5}i)(t + \sqrt[4]{5})(t - \sqrt[4]{5})$$

Da $\pm \sqrt[4]{5}$, $\pm \sqrt[4]{5}i \in \mathbb{Q}(\sqrt[4]{5},i)$, zerfällt f_q über $\mathbb{Q}(\sqrt[4]{5},i)$.

Zu zeigen:
$$\begin{split} &\mathbb{Q}(\sqrt[4]{5},i):\mathbb{Q}(\sqrt[4]{5})] = 2. \\ &\operatorname{Da} f_{i,\mathbb{Q}(\sqrt[4]{5})} = t^2 + 1, \ \operatorname{ist} \ [\mathbb{Q}(\sqrt[4]{5},i):\mathbb{Q}(\sqrt[4]{5})] = \deg(f_{i,\mathbb{Q}(\sqrt[4]{5})}) = 2. \end{split}$$

Zu zeigen: $[\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}]=4$. Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}})=1$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt[4]{5} \notin \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 1.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 2$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{5} - a_1\sqrt[4]{5} \notin \mathbb{Q} \quad \forall a_1 \in \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 2.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 3$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5}^3 + a_2\sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0$$

$$= \sqrt{5}\sqrt[4]{5} + a_2\sqrt{5} + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{5}\sqrt[4]{5} - a_2\sqrt{5} - a_1\sqrt[4]{5} \notin \mathbb{Q} \quad \forall a_1, a_2 \in \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 3.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 4$.

Es gilt:

$$\begin{split} f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) &= \sqrt[4]{5}^4 + a_3\sqrt[4]{5}^3 + a_2\sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0 \\ &= 5 + a_3\sqrt{5}\sqrt[4]{5} + a_2\sqrt{5} + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0 \\ \Longrightarrow a_0 &= -5 - a_3\sqrt{5}\sqrt[4]{5} - a_2\sqrt{5} - a_1\sqrt[4]{5} \in \mathbb{Q} \text{ für } a_1 = a_2 = a_3 = 0 \\ \Longrightarrow f_{\sqrt[4]{5},\mathbb{Q}} &= t^4 - 5 \\ \Longrightarrow [\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}] &= \deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 4. \end{split}$$

Insgesamt ergibt sich:

$$[\mathbb{Q}(\sqrt[4]{5}, i) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{5}, i) : \mathbb{Q}(\sqrt[4]{5})] \cdot [\mathbb{Q}(\sqrt[4]{5}) : \mathbb{Q}] = 2 \cdot 4 = 8.$$

(ii) Sei $f_2 = t^4 + 1$. Es gilt:

$$f_2 = t^4 + 1$$

= $(t^2 + i)(t^2 - i)$
= $(t + i\sqrt{i})(t - i\sqrt{i})(t + \sqrt{i})(t - \sqrt{i}).$

Da $\sqrt{i}, i\sqrt{i} \notin \mathbb{Q}$, zerfällt f_2 nicht über \mathbb{Q} , jedoch über $\mathbb{Q}(i, \sqrt{i})$, denn $\sqrt{i}, i\sqrt{i}$ sind die Nullstellen von f_2 in $\mathbb{Q}(i, \sqrt{i})$.

Zu zeigen: $[\mathbb{Q}(i) : \mathbb{Q}] = 2$. Es gilt:

$$f_{i,\mathbb{Q}} = t^2 + 1.$$

 $\Longrightarrow [\mathbb{Q}(i) : \mathbb{Q}] = \deg(f_{i,\mathbb{Q}}) = 2.$

Zu zeigen: $[\mathbb{Q}(i, \sqrt{i}) : \mathbb{Q}(i)] = 2$. Angenommen, $\deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 1$. Es gilt:

$$f_{\sqrt{i},\mathbb{Q}(i)}(\sqrt{i}) = \sqrt{i} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{i} \notin \mathbb{Q}(i)$$

$$\implies \deg(f_{\sqrt{i},\mathbb{Q}(i)}) \neq 1.$$

Angenommen, $deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 2$.

Es gilt:

$$f_{\sqrt{i},\mathbb{Q}(i)}(\sqrt{i}) = \sqrt{i}^2 + a_1\sqrt{i} + a_0$$

$$= i + a_1\sqrt{i} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -i - a_1\sqrt{i}$$

$$\implies (a_0 \in \mathbb{Q}(i) \iff a_1 = 0)$$

$$\implies f_{\sqrt{i},\mathbb{Q}(i)} = t^2 - i$$

$$\implies [\mathbb{Q}(i,\sqrt{i}) : \mathbb{Q}(i)] = \deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 2.$$

Insgesamt ergibt sich:

$$[\mathbb{Q}(i,\sqrt{i}):\mathbb{Q}] = [\mathbb{Q}(i,\sqrt{i}):\mathbb{Q}(i)] \cdot [\mathbb{Q}(i):\mathbb{Q}] = 2 \cdot 2 = 4.$$

(c) (i) Sei $K := \mathbb{Q} \subseteq \mathbb{Q}(i) =: L$ Körpererweiterung, $f = t^2 + 1 \in K[t], n := \deg(f) = 2$. Es gilt:

$$f = t^{2} + 1$$

$$= t^{2} - i^{2}$$

$$= (t + i)(t - i).$$

Außerdem gilt:

 $t+i, t-i \in L[t] \implies f$ zerfällt über L, aber nicht über K, da $i \not \in K.$

Zu zeigen: [L:K]=2.

Da $i \notin \mathbb{Q}$ ist, muss der Grad des Minimalpolymoms von i größer als 1 sein. Da $i^2+1=0$, ist f das Minimalpolynom von i über \mathbb{Q} . Es gilt:

$$[L:K] = \deg(f) = 2.$$

(ii) Sei $K=\mathbb{R}\subseteq\mathbb{C}=\mathbb{R}(i)=L$ eine Körpererweiterung, $f=t^2+1\in\mathbb{R}[t]$ Polynom. Es gilt:

$$f = t^2 + 1 = (t+i)(t-i)$$

Außerdem gilt:

i algebraisch über \mathbb{R} $\Longrightarrow [\mathbb{C} : \mathbb{Q}] = [\mathbb{Q}(i) : \mathbb{Q}] = \deg(f) = 2 = 2!.$ (iii) Seien $K=\mathbb{Q}, L=\mathbb{Q}(\sqrt{2},i)$ Körper, $f:=t^3\in\mathbb{Q}[t]$ mit $n:=\deg(f)=3.$

Es gilt:

$$[L:K] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4$$

Außerdem gilt:

$$n = 3 < 4 = [L:K] = 4 < 6 = 3! = n!$$

Da f über \mathbb{Q} zerfällt, zerfällt f auch über $\mathbb{Q}(\sqrt{2},i)$.

Aufgabe 9.2

(a) Sei $f := t^4 + t^3 + 2t^2 + 1 \in \mathbb{Z}_3[t]$. Zu zeigen: $f = (t+1) \cdot (t^3 + 2t + 1)$ ist eine Zerlegung von f in irreduzible Polynome über \mathbb{Z}_3 .

Es gilt:

$$f = t^{4} + t^{3} + 2t^{2} + 1$$

= $t^{4} + t^{3} + 2t^{2} + 2t + t + 1$
= $(t+1)(t^{3} + 2t + 1)$.

Zu zeigen: t+1 irreduzibel über \mathbb{Z}_3 .

Es gilt:

 \mathbb{Z}_3 Körper und $\deg(t+1) = 1 \stackrel{5.1.2}{\Longrightarrow} t+1$ irreduzibel über \mathbb{Z}_3 .

Zu zeigen: $h := t^3 + 2t + 1$ irreduzibel über \mathbb{Z}_3 .

Angenommen, h sei reduzibel über \mathbb{Z}_3 . Da \mathbb{Z}_3 Körper ist und $\deg(h) = 3$ hat h nach Beobachtung 5.1.6 eine Nullstelle in \mathbb{Z}_3 . Es gilt:

$$h(0) = 0^{3} + 2 \cdot 0 + 1 = 1 \neq 0,$$

$$h(1) = 1^{3} + 2 \cdot 1 + 1 = 1 \neq 0,$$

$$h(2) = 2^{3} + 2 \cdot 2 + 1 = 1 \neq 0.$$

Dies steht im Widerspruch zu Beobachtung 5.1.6, weshalb h nicht reduzibel über \mathbb{Z}_3 sein kann.

Insgesamt ergibt sich, dass $f = (t+1) \cdot (t^3 + 2t + 1)$ eine Zerlegung von f in irreduzible Polynome über \mathbb{Z}_3 ist.

- (b) Fehlt.
- (c) Fehlt.

Aufgabe 9.3

Sei $R := \mathbb{Z}_6$ und $M := R \times R$.

Zu zeigen: X := ((2,4)) linear unabhängig.

Es gilt:

$$\begin{aligned} 0 &\neq 3 \in R \\ &\implies 3 \cdot (2,4) = (3 \cdot 2, 3 \cdot 4) = (0,0) \\ &\implies ((2,4)) \text{ ist eine linear abhängige Familie.} \end{aligned}$$

Anhang

(A1) Sei $n \in \mathbb{N}_0, p \in \mathbb{N}$. Dann ist

$$\sum_{i=0}^{p-1} \binom{n+i}{n} = \binom{n+p}{n+1}.$$

Beweis:

(IA) Sei p = 1. Es gilt:

$$\sum_{i=0}^{n-1} \binom{n+i}{n} = \binom{n}{n} = \binom{n+1}{n+1} = \binom{n+p}{n+1}.$$

(IV) Gelte die Behauptung für ein beliebiges, aber festes $p \in \mathbb{N}$.

(IS) $p \rightsquigarrow p+1$. Es gilt:

$$\sum_{i=0}^{(p+1)-1} \binom{n+i}{n} = \sum_{i=0}^{p-1} \binom{n+i}{n} + \binom{n+p}{n}$$
$$= \binom{n+l}{n+1} + \binom{n+p}{n} = \binom{n+(p+1)}{n+1}.$$

(A2) Sei p Primzahl. Sei $n\in\{1,2,\cdots,p-1\}.$ Dann gilt:

$$p \mid \binom{p}{n}$$
.

Beweis:

Sei p Primzahl, $n \in \{1, 2, \cdots, p-1\}.$ Es gilt:

$$\binom{p}{n} \cdot n! = \frac{p!}{n! \cdot (p-n)!} \cdot n!$$

$$= \frac{p!}{(p-n)!}$$

$$= p(p-1)(p-2) \cdots (p-n+2)(p-n+1)$$

$$\implies p \mid \frac{p!}{(p-n)!}$$

$$\implies p \mid \binom{p}{n} \cdot n!$$

$$\stackrel{p \text{Primzahl}}{\underset{p>n>0}{\Longrightarrow}} p \mid \binom{p}{n}.$$

korrigiert von am