

Guidorizzi solution volume 2 - cap. 13

Física
Universidade Federal de São João del-Rei (UFSJ)
15 pag.

Capítulo 13

Exercícios 13.1

1. a)
$$\nabla f(1,3) = \left(\frac{\partial f}{\partial x}(1,3), \frac{\partial f}{\partial y}(1,3)\right) = (2,6) \text{ pois } \frac{\partial f}{\partial x} = 2x \text{ e } \frac{\partial f}{\partial y} = 2y.$$

A reta tangente a γ em $\gamma(t_0) = (1, 3)$ coincide com a reta tangente à curva de nível f(x, y) = 10 em (1, 3). A equação da reta tangente a γ no ponto (1, 3) é

$$\nabla f(1,3) \cdot [(x,y) - (1,3)] = 0$$

$$(2, 6) \cdot (x - 1, y - 3) = 0$$

$$2(x-1) + 6(y-3) = 0$$
 ou $2x + 6y - 20 = 0$ ou

$$y = -\frac{x}{3} + \frac{10}{3}$$
.

Em notação vetorial (o vetor (-6, 2) é perpendicular a $\nabla f(1, 3) = (2, 6)$, logo é paralelo a $\gamma'(t_0)$):

$$(x, y) = (1, 3) + \lambda(-6, 2) \quad \lambda \in \mathbb{R}.$$

b) Seja
$$\gamma(t) = (x(t), y(t))$$
, satisfazendo

$$[x(t)]^2 + [y(t)]^2 = 10$$
, ou seja,

$$\left(\frac{x(t)}{\sqrt{10}}\right)^2 + \left(\frac{y(t)}{\sqrt{10}}\right)^2 = 1.$$

Logo
$$\frac{x(t)}{\sqrt{10}} = \operatorname{sen} t$$
, $x(t) = \sqrt{10} \operatorname{sen} t$, $\frac{y(t)}{\sqrt{10}} = \cos t \operatorname{e}$ $y(t) = \sqrt{10} \cos t$. Assim,

$$\gamma(t) = (\sqrt{10} \, \operatorname{sen} t, \, \sqrt{10} \, \operatorname{cos} t).$$

2. Seja
$$f(x, y) = xy - 10$$
.

$$\nabla f(2,5) = \left(\frac{\partial f}{\partial x}(2,5), \frac{\partial f}{\partial y}(2,5)\right) = (5,2), \text{ pois } \frac{\partial f}{\partial x} = y \text{ e } \frac{\partial f}{\partial y} = x.$$

Reta tangente em notação vetorial (o vetor (-2, 5) é perpendicular ao vetor $\nabla f = (5, 2)$; logo, o vetor (-2, 5) é paralelo à reta tangente):

$$(x, y) = (2, 5) + \lambda(-2, 5) \quad \lambda \in \mathbb{R}.$$

Reta normal em notação vetorial (o $\nabla f = (5, 2)$ é um vetor normal à curva de nível de f que passa por (2, 5)).

$$(x, y) = (2, 5) + \lambda (5, 2).$$

3.

a)
$$\nabla f = \left(\frac{\partial f}{\partial x}(1,2), \frac{\partial f}{\partial y}(1,2)\right) = (4,2) \text{ pois } \frac{\partial f}{\partial x} = 2x + y \text{ e } \frac{\partial f}{\partial y} = x + 2y - 3.$$

Reta tangente:

$$(x, y) = (1, 2) + \lambda(-2, 4)$$
 $\lambda \in \mathbb{R}$ (em notação vetorial)

ou

$$\nabla f \cdot [(x, y) - (1, 2)] = 0,$$

 $(4, 2) \cdot (x - 1, y - 2) = 0,$
 $4(x - 1) + 2(y - 2) = 0,$
 $4x - 4 + 2y - 4 = 0$ e, portanto, $y + 2x - 4 = 0.$

b) Sendo $f(x, y) = e^{2x - y} + 2x + 2y$, temos

$$f\left(\frac{1}{2},1\right) = 4 e$$

$$\nabla f\left(\frac{1}{2},1\right) = \left(\frac{\partial f}{\partial x}\left(\frac{1}{2},1\right), \frac{\partial f}{\partial y}\left(\frac{1}{2},1\right)\right) = (4,1), \text{ pois } \frac{\partial f}{\partial x} = 2e^{2x-y} + 2 \text{ e}$$

$$\frac{\partial f}{\partial x} = 2e^{2x-y} + 2 \text{ e}$$

$$\frac{\partial f}{\partial y} = -e^{2x - y} + 2.$$

Reta tangente:

$$\nabla f(\frac{1}{2}, 1) \cdot \left[(x, y) - (\frac{1}{2}, 1) \right] = 0$$

$$(4, 1) \cdot \left(x - \frac{1}{2}, y - 1 \right) = 0$$

$$4x - 2 + y - 1 = 0 \quad \text{ou seja}, \quad y = -4x + 3.$$

4.
$$-\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)} = -\frac{4x_0}{2y_0} = -\frac{2x_0}{y_0}$$
 (\(\delta\) o coefficiente angular da reta tangente \(\delta\) elipse).

$$2x + y = 5 \implies y = -2x + 5$$
 (-2 é o coeficiente angular da reta paralela).

Logo:

$$-\frac{2x_0}{y_0} = -2 \implies x_0 = y_0$$

$$(x_0, y_0) \in \text{elipse} \implies 2x_0^2 + x_0^2 = 3 \implies x_0 = \pm 1 \Rightarrow y_0 = \pm 1.$$

Reta tangente que passa por (1, 1):

$$\nabla f(1, 1) \cdot [(x, y) - (1, 1)] = 0$$

$$(4,2)\cdot(x-1,y-1)=0$$

$$4x - 4 + 2y - 2 = 0$$
 ou seja, $y = -2x + 3$.

Reta tangente por (-1, -1):

$$\nabla f(-1, 1) \cdot [(x, y) - (-1, -1)] = 0$$

$$(4, 2) \cdot (x + 1, y + 1) = 0$$

$$(4, 2) \cdot (x + 1, y + 1) = 0$$

$$4x + 4 + 2y + 2 = 0$$
 ou seja, $y = -2x - 3$.

5.
$$-\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)} = -\frac{2x_0 + y_0}{2y_0 + x_0}$$
 (coefficiente angular da reta tangente).

$$4x + 5y = 17 \implies 5y = -4x + 17 \implies y = -\frac{4}{5}x + \frac{17}{5}$$

(coeficiente angular da reta paralela: $-\frac{4}{5}$).

Então:
$$-\frac{2x_0 + y_0}{2y_0 + x_0} = -\frac{4}{5}$$

 $10x_0 + 5y_0 = 8y_0 + 4x_0 \Rightarrow 6x_0 = 3y_0 \Rightarrow y_0 = 2x_0.$

$$(x_0, y_0) = (x_0, 2x_0) \in \text{curva} \Rightarrow 4x_0^2 + 2x_0^2 + x_0^2 = 7 \Rightarrow x_0 = \pm 1 \text{ e}$$

 $y_0 = \pm 2$

Reta tangente à curva em (1, 2):

$$\nabla f(1, 2) \cdot [(x, y) - (1, 2)] = 0$$
, ou seja,

$$y = -\frac{4}{5}x + \frac{14}{5}.$$

Reta tangente à curva em (-1, -2):

$$\nabla f(-1, -2) \cdot [(x, y) - (-1, -2)] = 0$$
, ou seja,

$$y = -\frac{4}{5} x - \frac{14}{5}.$$

6. a)
$$3\frac{\partial f}{\partial x} + 2\frac{\partial f}{\partial y} = 0$$
.

Sendo f(x, y) uma solução da equação a derivadas parciais, para todo $(x, y) \in \mathbb{R}^2$, segue:

$$3\frac{\partial f}{\partial x}(x,y) + 2\frac{\partial f}{\partial y}(x,y) = 0$$

ou
$$(3, 2) \cdot \nabla f(x, y) = 0$$
.

Então, para todo (x, y), $\nabla f(x, y)$ é perpendicular ao vetor (3, 2). Como $\nabla f(x, y)$ é perpendicular, em (x, y), à curva de nível de f que passa por (3, 2), então as curvas de nível de f são retas paralelas a (3, 2). Assim f é constante sobre cada reta paralela ao vetor (3, 2). Logo f(x, y) = f(0, m). Temos

$$\frac{y-m}{x-0} = \frac{2}{3}$$
 ou $m = \frac{3y-2x}{3}$.

Assim,
$$f(x, y) = f\left(0, \frac{3y - 2x}{3}\right)$$
.

Tomando-se
$$\varphi(u) = f\left(0, \frac{u}{3}\right)$$
, resulta que $f(x, y) = \varphi(3y - 2x)$, onde $\varphi: \mathbb{R} \to \mathbb{R}$ é

função derivável, é solução de 6.a.

Assim, e^{3y-2x} , sen(3y-2x) etc. são soluções de 6.a.

b)
$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0 \implies \frac{\partial f}{\partial x}(x, y) - \frac{\partial f}{\partial x}(x, y) = 0.$$

$$(1, -1) \cdot \nabla f(x, y) = 0$$

 $f(x, y) = f(0, m)$

$$\frac{y-m}{x-0} = -0 \quad \Rightarrow \quad m = x + y$$

$$f(x, y) = f(0, x + y).$$

Assim, e^{x+y} , sen (x + y) etc. são soluções de 6.**b**.

c)
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0$$
. Como $f(x, y)$ é solução de $\frac{\partial f}{\partial x}(x, y) + \frac{\partial f}{\partial y}(x, y) = 0$

$$\nabla f(x, y) \cdot (1, 1) = 0.$$

$$f(x, y) = f(0, m)$$
 onde $\frac{y - m}{x - 0} = 1$, $m = y - x$

$$\varphi(u) = f(0, u)$$
 $\Rightarrow f(x, y) = \varphi(y - x)$ é solução de 6.c.

Assim, e^{y-x} , sen (y-x) etc. são soluções de 6.c.

d)
$$y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial y} = 0$$

$$\nabla f(x, y)(y, -x) = 0$$

(y, -x) é vetor tangente, em (x, y), à circunferência de centro na origem e que passa por este ponto. Assim, f(x, y) deve ser constante sobre tais circunferências, logo,

 $f(x, y) = \varphi(x^2 + y^2)$, com $\varphi(u)$ diferenciável, é a solução da equação dada.

Assim, $e^{x^2 + y^2}$, sen $(x^2 + y^2)$ etc. são soluções de 6.**d**.

7.
$$z = f(x, y) = \varphi(x + y)$$
, com $\varphi(u)$ derivável, satisfaz à condição $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$.

Seja $\varphi(u) = au^2 + bu + c$. Temos

$$\varphi(1+1) = \varphi(2) = 3 \implies 4a + 2b + c = 3,$$

 $\varphi(0+0) = \varphi(0) = 1 \implies c = 1,$

$$\varphi(0+1) = \varphi(0) = 1 \implies c = 1,$$

$$\varphi(0+1) = \varphi(1) = 2 \implies a+b+c=2.$$

Então
$$a = 0, b = 1, c = 1$$
 e $(u) = u + 1$.

Assim $\varphi(x + y) = x + y + 1$ e, portanto, f(x, y) = x + y + 1 atende às condições propostas.

8.
$$z = f(x, y) = \varphi(u) = \varphi(2x + y)$$
 satisfaz $\frac{\partial f}{\partial x} = 2 \frac{\partial f}{\partial y}$.

Para que o gráfico de f contenha a imagem de

$$y(t) = (t, t, t^2), t \in \mathbb{R}, \text{ é preciso que } \underbrace{\varphi(3t)}_{\varphi(2t+t)} = t^2$$

$$[x = t, y = t, z = f(x, y) = t^2].$$

Assim
$$\varphi(u) = \frac{u^2}{9}$$
.

A função $f(x, y) = \frac{1}{9} (2x + y)^2$ resolve o problema.

9. Seja
$$F(x, y) = x^2 + 2y^2$$
.

106

Vamos determinar $\gamma(t) = (x(t), y(t))$ que intercepte ortogonalmente F(x, y) = c. Devemos ter $\gamma'(t) = \nabla F(\gamma(t))$. Temos

$$\gamma'(t) = \left(\frac{dx}{dt}, \frac{dy}{dt}\right)$$
. Então $\frac{dx}{dt} = 2x$ e $\frac{dy}{dt} = 4y$.

Segue que $x = k_1 e^{2t}$ e $y = k_2 e^{4t}$.

$$\gamma(0) = (1, 2) e$$
 $\gamma(0) = (k_1, k_2)$. Logo, $k_1 = 1 e k_2 = 2$.

Portanto, $\gamma(t) = (e^{2t}, 2e^{4t})$ intercepta ortogonalmente todas as curvas da família $x^2 + 2y^2 = c$ e passa por (1, 2).

10. Seja F(x, y) = xy.

A função y = y(x) deve interceptar ortogonalmente as curvas da família xy = c, com

x > 0 e y > 0. O coeficiente angular da direção determinada pelo vetor $\nabla F \in \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x}}$. Então

$$\frac{dy}{dx} = \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x}}, \text{ ou seja,}$$

$$\frac{dy}{dx} = \frac{x}{y}$$
. Temos $xdx = y dy$ e daí $y^2 = x^2 + c$.

a)
$$y(1) = 1 \implies c = 0$$
. Logo,
 $y = x$.

b)
$$y(1) = 2 \implies 4 = 1 + c \implies c = 3$$
. Daí $y^2 = x^2 + 3$ e, portanto, $y = \sqrt{x^2 + 3}$.

Exercícios 13.2

1. a)
$$F(x, y, z) = x^2 + 3y^2 + 4z^2 - 8$$
. Temos

$$\nabla F(x, y, z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) = (2x, 6y, 8z) \text{ e daí}$$

$$\nabla F(1, -1, 1) = (2, -6, 8).$$

Plano tangente em (1, -1, 1):

$$\nabla F(1, -1, 1) \cdot [(x, y, z) - (1, -1, 1)] = 0$$
, ou seja,

$$x - 3y + 4z = 8.$$

Reta normal em (1, -1, 1):

$$(x, y, z) = (1, -1, 1) + \lambda(2, -6, 8) \quad \lambda \in \mathbb{R}.$$

b) F(x, y, z) = 2xyz - 3. Temos

$$\nabla F(x, y, z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) = (2yz, 2xz, 2xy)$$
 e daí

$$\nabla F(\frac{1}{2}, 1, 3) = (6, 3, 1).$$

Plano tangente em $(\frac{1}{2}, 1, 3)$:

$$\nabla F(\frac{1}{2}, 1, 3) \cdot [(x, y, z) - (\frac{1}{2}, 1, 3)] = 0$$
, ou seja,

$$6x + 3y + z = 9$$
.

Reta normal em $(\frac{1}{2}, 1, 3)$:

$$(x, y, z) = (\frac{1}{2}, 1, 3) + \lambda(6, 3, 1), \quad \lambda \in \mathbb{R}.$$

c)
$$F(x, y, z) = z e^{x-y} + z^3 - 2$$
.

$$\nabla F(x, y, z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) = (ze^{x-y}, -ze^{x-y}, e^{x-y} + 3z^2)$$
 e daí

$$\nabla F(2, 2, 1) = (1, -1, 4).$$

Plano tangente em (2, 2, 1):

$$\nabla F(2, 2, 1) \cdot [(x, y, z) - (2, 2, 1)] = 0$$
, ou seja,

$$x - y + 4z = 4$$
.

Reta normal em (2, 2, 1):

$$(x, y, z) = (2, 2, 1) + \lambda(1, -1, 4), \quad \lambda \in \mathbb{R}.$$

2.
$$F(x, y) = x^3 + y^3 + z^3 - 10 \implies \nabla F(x, y, z) = (3x^2, 3y^2, 3z^2).$$

$$z = f(x, y) = \sqrt[3]{10 - x^3 - y^3}$$
 e
 $z = f(1, 1) = \sqrt[3]{8} = 2.$

Plano tangente em (1, 1, f(1, 1)) = (1, 1, 2):

$$\nabla F(1, 1, 2) \cdot [(x, y, z) - (1, 1, 2)] = 0$$
, ou seja,

$$x + y + 4z = 10.$$

3. Seja
$$F(x, y, z) = x^2 + 3y^2 + 2z^2 - \frac{11}{6}$$
. Temos

 $\nabla F(x, y, z) = (2x, 6y, 4z).$

Seja (x_0, y_0, z_0) o ponto de tangência. Logo:

$$x_0^2 + 3y_0^2 + 2z_0^2 = \frac{11}{6}$$
.

Da condição de paralelismo:

$$\nabla F(x_0, y_0, z_0) = \lambda(1, 1, 1)$$

(ortogonal ao plano x + y + z = 10).

Portanto:

$$2x_0 = \lambda$$
, $6y_0 = \lambda$, $4z_0 = \lambda$, ou seja, $x_0 = \frac{\lambda}{2}$, $y_0 = \frac{\lambda}{6}$ e $z_0 = \frac{\lambda}{4}$.

Substituindo na equação, temos

$$\left(\frac{\lambda}{2}\right)^2 + 3\left(\frac{\lambda}{6}\right)^2 + 2\left(\frac{\lambda}{4}\right)^2 = \frac{11}{6} \text{ e, portanto, } \lambda^2 = 4, \text{ ou seja, } \lambda = \pm 2. \text{ Assim, os pontos}$$
 de tangência são $\left(1, \frac{1}{3}, \frac{1}{2}\right) = \left(-1, -\frac{1}{3}, -\frac{1}{2}\right)$.

Plano tangente em $(1, \frac{1}{3}, \frac{1}{2})$:

$$\nabla F(1, \frac{1}{3}, \frac{1}{2})[(x, y, z) - (1, \frac{1}{3}, \frac{1}{2})] = 0$$
, ou seja,

$$x + y + z = \frac{11}{6}$$
.

Plano tangente em $(-1, -\frac{1}{2}, -\frac{1}{2})$:

$$\nabla F(-1, -\frac{1}{3}, -\frac{1}{2})[(x, y, z) - (-1, -\frac{1}{3}, -\frac{1}{2})] = 0$$

ou seja,
$$x + y + z = -\frac{11}{6}$$
.

4.
$$F(x, y, z) = x^2 + y^2 + z^2 - 1$$
.

 $\nabla F(x, y, z) = 2x, 2y, 2z$) e daí

$$\nabla F(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}) = (1, 1, \sqrt{2}).$$

$$\nabla F(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}) \cdot [(x, y, z) - (\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2})] = 0$$
, ou seja,

 $x + y + \sqrt{2}z = 2$ é a equação do plano tangente.

5.
$$F(x, y, z) = x^2 + y^2 + z^2 = 3 e$$

 $G(x, y, z) = x^2 + 3y^2 - z^2 = 3.$

Para todo t no domínio de γ tem-se

$$F(\gamma(t) = 3 \text{ e } G(\gamma(t)) = 3$$
, pois a imagem de γ está contida nas superfícies $F(x, y, z) = 3$ e $G(x, y, z) = 3$. Segue que

$$\nabla F(\gamma(t_0)) \cdot \gamma'(t_0) = 0 e$$

$$\nabla G(\gamma(t_0)) \cdot \gamma'(t_0) = 0.$$

$$\gamma'(t_0)$$
 é normal aos vetores $\nabla F(1, 1, 1) = (2, 2, 2)$ e $\nabla G(1, 1, 1) = (2, 6, -2)$.

Logo $\gamma'(t_0)$ é paralelo ao produto vetorial

$$\nabla F(1,1,1) \wedge \nabla G(1,1,1) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 2 & 2 \\ 2 & 6 & -2 \end{vmatrix} = -16\vec{i} + 8\vec{j} + 8\vec{k}.$$

A equação da reta tangente a γ no ponto $\gamma(t_0) = (1, 1, 1)$ é

$$(x, y, z) = (1, 1, 1) + \lambda(-16, 8, 8)$$
 ou

$$(x, y, z) = (1, 1, 1) + \lambda(-2, 1, 1), \quad \lambda \in \mathbb{R}.$$

6. a)
$$F(x, y, z) = x^2 + y^2 = 2 e$$

$$G(x, y, z) = x^2 + y^2 + z^2 = 3$$
. Temos

$$\nabla F(1, 1, 1) = (2x, 2y, 0) = (2, 2, 0) e$$

$$\nabla G(1, 1, 1) = (2x, 2y, 2z) = (2, 2, 2).$$

$$\nabla F(1,1,1) \wedge \nabla G(1,1,1) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{vmatrix} = 4\vec{i} - 4\vec{j}.$$

Reta tangente:

$$(x, y, z) = (1, 1, 1) + \lambda(1, -1, 0), \quad \lambda \in \mathbb{R}.$$

b)
$$\begin{cases} x^2 + y^2 = 2 \\ x^2 + y^2 + z^2 = 3 \end{cases} \implies z^2 = 1 \implies z = 1 \text{ ou } z = -1.$$

110

Como a curva deve passar por (1, 1, 1) vamos considerar z = 1.

$$x^2 + y^2 = 2$$
 $\Rightarrow \left(\frac{x(t)}{\sqrt{2}}\right)^2 + \left(\frac{y(t)}{\sqrt{2}}\right)^2 = 1$. Fazendo

$$\frac{x(t)}{\sqrt{2}} = \operatorname{sen} t$$
 e $\frac{y(t)}{\sqrt{2}} = \cos t$ temos a curva

$$\gamma(t) = (\sqrt{2} \operatorname{sen} t, \sqrt{2} \cos t, 1).$$

7. a)
$$F(x, y, z) = 4x^2 + y^2 = 1$$
 e
 $G(x, y, z) = x + y + z = 1$.

$$\nabla F(0, 1, 0) = (8x, 2y, 0) = (0, 2, 0) e$$

$$\nabla G(0, 1, 0) = (1, 1, 1) = (1, 1, 1).$$

$$\nabla F(0,1,0) \wedge \nabla G(0,1,0) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 2\vec{i} - 2\vec{k}.$$

Reta tangente a γ em $\gamma(t_0) = (0, 1, 0)$:

$$(x, y, z) = (0, 1, 0) + \lambda(1, 0, -1), \quad \lambda \in \mathbb{R}.$$

b)
$$[2x(t)]^2 + [y(t)]^2 = 1$$
 onde $x(t) = \frac{\sin t}{2}$ e $y(t) = \cos t$.

De x + y + z = 1 vem z(t) = 1 - x - y. Daí

$$z(t) = 1 - \frac{\sin t}{2} - \cos t$$
 e, portanto,

$$\gamma(t) = (\frac{1}{2} \sin t, \cos t, 1 - \frac{1}{2} \sin t - \cos t).$$

8. a)
$$z = \frac{\sqrt[4]{8 + x^2 + y^2}}{y}$$
 $\Rightarrow zy = \sqrt[4]{8 + x^2 + y^2}$

$$\Rightarrow y^4 z^4 = 8 + x^2 + y^2 \Rightarrow \underbrace{x^2 + y^2 - y^4 z^4 + 8}_{F(x, y, z)} = 0.$$

b)
$$\nabla F(2, 2, 1) \cdot [(x, y, z) - (2, 2, 1)] = 0$$
, ou seja,

$$x - 7y - 16z = -28$$
.

9. $\nabla F(1,2,3) \wedge \nabla G(1,2,3)$ é perpendicular ao plano normal a determinar. Como

$$\nabla F(1, 2, 3) = (2, 4, 6) e$$

$$\nabla G(1, 2, 3) = (6, 3, 2)$$
, resulta

$$\nabla F(1,2,3) \wedge \nabla G(1,2,3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 4 & 6 \\ 6 & 3 & 2 \end{vmatrix} = -10\vec{i} + 32\vec{j} - 18\vec{k}.$$

$$(-10, +32, -18) \cdot (x - 1, y - 2, z - 3) = 0$$
, ou seja,

$$-5x + 16y - 9z = 0.$$

10. Equação do plano tangente α em (x_0, y_0, z_0) :

$$x_0(x - x_0) + 2y_0(y - y_0) + z_0(z - z_0) = 0$$
. Temos

$$(5,0,1) \in \alpha \Rightarrow x_0^2 + 2y_0^2 + z_0^2 - z_0 - 5x_0 = 0,$$

$$(1,0,3) \in \alpha \Rightarrow x_0^2 + 2y_0^2 + z_0^2 - x_0 - 3z_0 = 0 \text{ e}$$

$$x_0^2 + 2y_0^2 + z_0^2 = 7.$$

Daí
$$5x_0 + z_0 = 7$$
 e $x_0 + 3z_0 = 7$.
Logo $x_0 = 1$, $z_0 = 2$ e $y_0 = \pm 1$.

Plano tangente em (1, 1, 2):

$$(2, 4, 4) (x - 1, y - 1, z - 2) = 0 \implies 2(x - 1) + 4(y - 1) + 4(z - 2) = 0$$

$$\implies x + 2y + 2z = 7.$$

Plano tangente em (1, -1, 2):

$$2(x-1) + 4(y+1) + 4(z-2) = 0 \implies x - 2y + 2z = 7.$$

Exercícios 13.4

1. a) Sejam
$$f(x, y) = x^2 - 3y^2$$
, $(x_0, y_0) = (1, 2)$ e

$$\vec{u} = \frac{(2,1)}{\sqrt{5}} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right).$$

$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \nabla f(x_0, y_0) \cdot \vec{u} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) \cdot \vec{u}, \text{ ou seja,}$$

$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = (2, -12) \cdot \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = \frac{4}{\sqrt{5}} - \frac{12}{\sqrt{5}} = \frac{-8}{\sqrt{5}}.$$

b) Sejam
$$f(x, y) = e^{x^2 - y^2}$$
; $(x_0, y_0) = (1, 1)$ e $\vec{u} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right)$.

$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \nabla f(x_0, y_0) \cdot \vec{u} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) \cdot \vec{u} e$$

$$\nabla f(x, y) = (2xe^{x^2-y^2}, -2ye^{x^2-y^2})$$
. Então,

$$\frac{\partial f}{\partial \vec{u}}(1,1) = (2,-2) \cdot \left(\frac{3}{5}, \frac{4}{5}\right) = -\frac{2}{5}.$$

2. a)
$$f(x, y) = x^2 + xy + y^2$$
 em (1, 1).

 $\nabla f(1, 1) = (3, 3) = 3\vec{i} + 3\vec{j}$ aponta, em (1, 1), a direção e sentido de maior crescimento da função.

 $-\nabla f(1, 1) = -3\vec{i} - 3\vec{j}$ dá a direção e sentido de maior decrescimento da função.

b)
$$f(x, y) = \ln \sqrt{x^2 + y^2}$$
 em $(1, -1)$.

$$\nabla f(1,-1) = \left(\frac{\partial f}{\partial x}(1,-1), \frac{\partial f}{\partial y}(1,-1)\right) = \left(\frac{x_0}{x_0^2 + y_0^2}, \frac{y_0}{x_0^2 + y_0^2}\right) = \left(\frac{1}{2}, -\frac{1}{2}\right).$$

 $\vec{i} - \vec{j}$ dá a direção e o sentido de maior crescimento e

 $-\vec{i} + \vec{j}$ dá a direção e o sentido de decrescimento mais rápido.

c)
$$f(x, y) = \sqrt{4 - x^2 - 2y^2}$$
, em $\left(1, \frac{1}{2}\right)$. Temos

$$\nabla f(1, \frac{1}{2}) = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$
. Assim,

-i-j dá a direção e o sentido de maior crescimento e i + j dá a direção e o sentido de decrescimento mais rápido.

7.
$$T(x, y, z) = 16 - 2x^2 - y^2$$
.

$$\gamma(t) = (x(t), y(t)) e$$

$$\gamma'(t) = \nabla T(\gamma(t)).$$

$$\gamma'(t) = \nabla T(\gamma(t)) \iff (\dot{x}(t), \dot{y}(t)) = (-4x(t), -2y(t)).$$

$$\dot{x} = -4x \iff x(t) = k_1 e^{-4t} e^{-4t}$$

$$\dot{y} = -2y \iff y(t) = k_2 e^{-2t}$$
.

De
$$x(0) = 1$$
 e $y(0) = 2$ segue $k_1 = 1$ e $k_2 = 2$.

De
$$x(0) = 1$$
 e $y(0) = 2$ segue $k_1 = 1$ e $k_2 = 2$.
Logo, $x(t) = e^{-4t}$ e $y(t) = 2e^{-2t}$, $t \ge 0$.

9. Sejam
$$\gamma(t) = (x_0 + at, y_0 + bt, f(x_0 + at, y_0 + bt)) e(x_0, y_0) = (1, 2).$$

 $\nabla f(x, y) = (y, x) \implies \nabla f(1, 2) = (2, 1).$

Então
$$\gamma(t) = (1 + 2t, 2 + t, f(1 + 2t, 2 + t)).$$

$$\gamma(0) = (1, 2, f(1, 2)) = (1, 2, 2)$$

$$\gamma'(0) = (a, b, \frac{\partial f}{\partial \vec{u}}(1, 2)), \quad \text{com } (a, b) \text{ unitário.}$$

$$\frac{\partial f}{\partial \vec{u}}(1,2) = \nabla f(1,2) \cdot \vec{u} = (2,1) \cdot \frac{\nabla f(1,2)}{\|\nabla f(1,2)\|}, \text{ ou seja,}$$

$$\frac{\partial f}{\partial \vec{u}}(1,2) = (2,1) \cdot \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = \frac{4}{\sqrt{5}} + \frac{1}{\sqrt{5}} = \frac{5}{\sqrt{5}} = \sqrt{5}$$
. Então

$$\gamma'(0) = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \sqrt{5}\right).$$

A tangente em $\gamma(0)$ é a reta procurada:

$$(x, y, z) = (1, 2, 2) + \lambda \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \sqrt{5}\right), \quad \lambda \in \mathbb{R},$$

ou

$$(x, y, z) = (1, 2, 2) + \lambda(2, 1, 5).$$

11.
$$\nabla f(x, y) = (8x, 2y)$$
, daí $\nabla f(1, 1) = (8, 2)$.

Sendo P' a projeção de P sobre o plano xy, P' move-se na direção e sentido de máximo crescimento de f, ou seja, na direção do vetor $\nabla f(x, y) = (8x, 2y)$.

$$\frac{dy}{dx} = \frac{2y}{8x} \implies \ln y = \frac{1}{4} \ln x + k. \text{ Como } y(1) = 1 \text{ temos } k = 0 \text{ e } y = \sqrt[4]{x}.$$

$$y = t \implies x = t^4.$$

$$z = f(x(t), y(t)) = f(t^4, t) = 4t^8 + t^2.$$

Logo, a parametrização para a trajetória de P é

$$\gamma(t) = (t^4, t, 4t^8 + t^2).$$

14. a)
$$T(x, y) = 40 - x^2 - 2y^2$$
 e
 $T(3, 2) = 23$.
 $40 - x^2 - 2y^2 = 23 \implies x^2 + 2y^2 = 17$.

b)
$$\nabla T(3, 2) = (-2x, -4y) = (-6, -8) = -6\vec{i} - 8\vec{j}$$
.

c)
$$\frac{\partial T}{\partial \vec{u}}(3,2) = \|\nabla T(3,2)\| = \|(-6,-8)\| = 10.$$

A partir do ponto (3, 2) e na direção e sentido de $\nabla T(3, 2) = -6\vec{i} - 8\vec{j}$, a temperatura está aumentando a uma taxa de 10°C por km. Caso caminhe 0,01 km nesta direção a temperatura se elevará de $0,01 \cdot 10 = 0,1$ °C, aproximadamente.

d)
$$\frac{\partial f}{\partial \vec{j}}(3,2) = \nabla T(3,2) \cdot (0,1) = (-6,-8) \cdot (0,1) = -8.$$

Na direção \vec{j} a temperatura decresce a uma taxa de 8°C por km.

Caso caminhe, na direção \vec{j} , 0,01 km a temperatura decrescerá 0,01 \cdot 8 = 0,08°C aproximadamente.

15. *a*)
$$f(x, y, z) = xyz$$
 em (1, 1, 1) e na direção $\vec{w} = 2\vec{i} + \vec{j} - \vec{k}$. Temos

$$\vec{u} = \frac{\vec{w}}{\|\vec{w}\|} = \frac{2}{\sqrt{6}} \vec{i} + \frac{1}{\sqrt{6}} \vec{j} - \frac{1}{\sqrt{6}} \vec{k},$$

$$\frac{\partial f}{\partial \vec{u}}(1,1,1) = \nabla f(1,1,1) \cdot \vec{u}$$
, ou seja,

$$\frac{\partial f}{\partial \vec{u}}(1,1,1) = (1,1,1) \cdot \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right) = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3}.$$

16)
$$\frac{\partial f}{\partial \overline{v}}(1,1,1) = \left(\frac{\partial f}{\partial x}(1,1,1), \frac{\partial f}{\partial y}(1,1,1), \frac{\partial f}{\partial z}(1,1,1)\right) \cdot \left(0, \frac{4}{5}, \frac{3}{5}\right) = 1,$$

$$\frac{\partial f}{\partial \vec{w}}(1,1,1) = \left(\frac{\partial f}{\partial x}(1,1,1), \frac{\partial f}{\partial y}(1,1,1), \frac{\partial f}{\partial z}(1,1,1)\right) \cdot \left(-\frac{4}{5}, \frac{3}{5}, 0\right) = 2 e$$

$$\frac{\partial f}{\partial \vec{j}}(1,1,1) = \left(\frac{\partial f}{\partial x}(1,1,1), \frac{\partial f}{\partial y}(1,1,1), \frac{\partial f}{\partial z}(1,1,1)\right) \cdot (0,1,0) = 0. \text{ Assim,}$$

$$\frac{4}{5}\frac{\partial f}{\partial y} + \frac{3}{5}\frac{\partial f}{\partial z} = 1; -\frac{4}{5}\frac{\partial f}{\partial x} + \frac{3}{5}\frac{\partial f}{\partial y} = 2; \frac{\partial f}{\partial y} = 0.$$

Logo,
$$\frac{\partial f}{\partial x}(1,1,1) = -\frac{5}{2}$$
; $\frac{\partial f}{\partial y}(1,1,1) = 0$; $\frac{\partial f}{\partial z}(1,1,1) = \frac{5}{3}$. Então

$$\frac{\partial f}{\partial \vec{u}}(1,1,1) = \|\nabla f(1,1,1)\| = \|\left(-\frac{5}{2},0,\frac{5}{3}\right)\| = \sqrt{\frac{325}{36}} = \frac{5\sqrt{13}}{6}$$

17. $\nabla f(x, y)$ é um vetor do \mathbb{R}^2 .

Como \vec{u} e \vec{v} são dois vetores unitários e ortogonais de \mathbb{R}^2 , eles constituem uma base ortonormal do \mathbb{R}^2 .

Logo $\nabla f(x, y)$ deve ser escrito como combinação linear de \vec{u} e \vec{v} . Então $\nabla f(x, y) = a \vec{u} + b \vec{v}$ onde a e b são as componentes de $\nabla f(x, y)$ em relação à base { \vec{u} , \vec{v} }.

Por outro lado,
$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) e \nabla f \cdot \vec{u} = \frac{\partial f}{\partial \vec{u}}.$$

Fazendo o produto escalar:

$$\underbrace{\nabla f(x,y) \cdot \vec{u}}_{\frac{\partial f}{\partial \vec{u}}} = a \underbrace{\vec{u} \cdot \vec{u}}_{\|\vec{u}\|^2 = 1} + b \underbrace{\vec{v} \cdot \vec{u}}_{0} \quad \text{(os vetores são ortogonais), logo } \frac{\partial f}{\partial \vec{u}}(x,y) = a$$

$$\underbrace{\nabla f(x, y) \cdot \vec{v}}_{\underbrace{\partial f}_{\partial \vec{v}}} = a \underbrace{\vec{u} \cdot \vec{v}}_{0} + b \underbrace{\vec{v} \cdot \vec{v}}_{\|v\|^{2} = 1}, \log_{0}, \underbrace{\frac{\partial f}{\partial \vec{v}}}_{0}(x, y) = b.$$

Portanto,

$$\nabla f(x, y) = \frac{\partial f}{\partial \vec{u}}(x, y) \, \vec{u} + \frac{\partial f}{\partial \vec{v}}(x, y) \, \vec{v} \, .$$

19.
$$f(x, y) = \left[\arcsin \frac{y}{\sqrt{x^2 + y^2}} \right]^4$$
. Seja $g(r, \theta) = f(x, y)$ onde

 $x = r \cos \theta e y = r \sin \theta$. Temos

$$g(r, \theta) = \left[\arcsin \frac{r \sin \theta}{\sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta}} \right]^4 = \theta^4$$

Sabemos que pelo item c do Exercício 18,

$$\|\nabla f(x, y)\|^2 = \frac{1}{r^2} [4\theta^3]^2 = \frac{16\theta^6}{r^2}.$$

Temos
$$x = 1$$
, $y = 1$, $r \cos \theta = 1$, $r \sin \theta = 1$, $r^2 = 2$, $r = \sqrt{2}$ e $\theta = \frac{\pi}{4}$. Daí

$$\|\nabla f(1,1)\|^2 = \frac{16\theta^6}{r^2} \ \Rightarrow \|\nabla f(1,1)\| = \frac{4|\theta^3|}{r} \ \Rightarrow \|\nabla f(1,1)\| = \frac{\sqrt{2}\,\pi^3}{32}.$$