assignment_01_BasitAbdul

September 3, 2022

0.1 Title: Assignment 1

0.2 Subtitle: Computer performance, reliability, and scalability calculation

0.3 Author: Abdul Basit

0.4 Date: 2nd September, 2022

0.4.1 1.2 Assignment

Data Item	Size per Item	Ref
128 character message.	128 Bytes	1
1024x768 PNG image	$1.5~\mathrm{MB}$	2
1024×768 RAW image	$2.25~\mathrm{MB}$	3
HD (1080p) HEVC Video (15 minutes)	$2500~\mathrm{MB}$	4
HD (1080p) Uncompressed Video (15 minutes)	$15600~\mathrm{MB}$	5
4K UHD HEVC Video (15 minutes)	$2550~\mathrm{MB}$	6
4k UHD Uncompressed Video (15 minutes)	$255000~\mathrm{MB}$	7
Human Genome (Uncompressed)	$1.5~\mathrm{GB}$	8

a. Data Sizes

0.5 Solution Reference:

- 1. http://extraconversion.com/data-storage/characters/characters-to-bits.html
- 2. ((1024 * 768 * 16 bit)/(8 * 1024))/1024=1.5 MB
- 3. ((1024 * 768 * 24 bit))/(8 * 1024))/1024=2.25 MB
- 4. http://extraconversion.com/data-storage/characters/characters-to-bits.html
- $5. \ https://www.digitalrebellion.com/webapps/videocalc?format=uncompressed_8_1080\&frame_rate=f30\&lender_1080\&frame_rate=f30\&le$
- 6. 170MB per 60 seconds (1 minute) so 170MB*15minutes = 2550 MB
- 7. Same as 6 https://www.imore.com/how-shoot-trim-edit-and-share-4k-video-iphone
- 8. https://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/

	Size	# HD
Daily Twitter Tweets (Uncompressed)	64GB	1
Daily Twitter Tweets (Snappy Compressed)	37.65 GB	1

	Size	# HD
Daily Instagram Photos	112.5TB	12
Daily YouTube Videos	500TB	50
Yearly Twitter Tweets (Uncompressed)	23.36TB	3
Yearly Twitter Tweets (Snappy Compressed)	13.75TB	2
Yearly Instagram Photos	$41062.5\mathrm{TB}$	4107
Yearly YouTube Videos	$182500\mathrm{TB}$	18250

b. Scaling

0.6 Solution:

- 1. 500 million * 128 bytes = 64GB
- 2. 64GB / 1.7 = 37.65 GB
- 3. 75 Million Instagram Pictures * 1.5 MB PNG Image = 112500000MB = 112.5 TB. 112.5 TB / 10 TB per HD = 11.25 HD. (round up = 12 HD)
- 4. 500 hours * 60 mins = 30000 mins. 15 min = 2500 MB, 30000/15 = 2000, 2000 * 2500 = 5000000 MB = 500 TB
- 5. 64 GB (daily) * 365 = 23360 GB = 23.36 TB, 23.36 / 10 TB per HD = 2.336 (round up = 3 HD)
- 6. 37.65 GB (daily) * 365 = 13742.25 GB = 13.75 TB, 13.75 / 10 TB per HD = 1.375 (round up = 2 HD)
- 7. 112.5 TB (daily) * 365 = 41062.5 TB, 41062.5 / 10 TB per HD = 4106.25 (round up = 4107 HD)
- 8. 500 TB (daily) * 365 = 182500 TB, 182500 / 10 TB per HD = 18250 HD

	# HD	# Failures
Twitter Tweets (Uncompressed)	3	0.0255
Twitter Tweets (Snappy Compressed)	2	0.017
Instagram Photos	4107	34.9095
YouTube Videos	18250	3155.125

c. Reliability

0.7 Solution:

Failure rate = 0.85% (https://www.backblaze.com/b2/hard-drive-test-data.html) 0.0085 * 3 = 0.0255 0.0085 * 2 = 0.017 0.0085 * 4107 = 34.9095 0.0085 * 18250 = 155.125

	One Way Latency
Los Angeles to Amsterdam	139.611 ms
Low Earth Orbit Satellite	600 ms
Geostationary Satellite	240 ms
Earth to the Moon	2560 ms

	One Way Latency
Earth to Mars	13 minutes

d. Latency

0.8 Solution:

- 1. https://wondernetwork.com/pings
- $2. \ https://www.omniaccess.com/leo/\#:\sim: text=The\%20GEO\%20 latency\%20 is\%20 of, and\%20 an\%20 essential\%20 of the following the following statement of the$
- $3. \ https://www.satsig.net/latency.htm$
- $4. \ https://en.wikipedia.org/wiki/Earth\%E2\%80\%93Moon\%E2\%80\%93Earth_communication\#:\sim:text=Propagation And the propagation of the propagation of$
- $5. \ https://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth$

0.9 END