EE 046746 - Technion - Computer Vision

Dahlia Urbach

Tutorial 09 - Introduction to 3D Deep Learning

<u>Image source (https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9)</u>

- Depth Cameras Quick overview
 - Stereo Cameras Next Week
 - Time of Flight
- 3D Deep Learning
 - Voxels
 - Multi-View
 - Point Clouds
- 3D Applications
- Recommended Tools
- Recommended Videos
- Credits

Robotics

Augmented Reality

Autonomous driving

Medical Image Processing

In [1]: # pytorch imports

import torch

import torch.nn as nn

LiDAR point cloud support | Feature Highlight | Unreal Engine (https://www.youtube.com/watch?v=R-ZXdAEGbiw&feature=youtu.be)

Depth Cameras

- Stereo Cameras Next week
- Time of flight

Time of Flight Cameras

- Light travels at approximately a constant speed $c=3 imes10^8$ (meters per second).
- Measuring the time it takes for light to travel over a distance once can infer distance.
- Can be categorized into two types:
 - 1. Direct TOF switch laser on and off rapidly.
 - 2. Indirect TOF send out modulated light, then measure phase difference to infer depth.

1. Direct - TOF

- Light Detection And Ranging (LiDAR) probably best example in computer vision and robotics.
- High-energy light pulses limit influence of background illumination.
- However, difficulty to generate short light pulses with fast rise and fall times.
- High-accuracy time measurement required.
- Prone to motion blur.
- Sparser as objects grow in distance.

Gif source - Wikipedia (https://en.wikipedia.org/wiki/Lidar)

Sydney Dataset (http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml)

Autonomous Car - LiDAR

SLAM + LIDAT - Zebedee

zebedee (https://research.csiro.au/robotics/zebedee/)

2. Indirect - TOF

- Continuous light waves instead of short light pulses.
- Modulation in terms of frequency of sinusoidal waves.
- Detected wave after reflection has shifted phase.
- Phase shift proportional to distance from reflecting surface.

🔼 Deep Learning on Point Clouds

- Calssification
- Semantic segmentation
- · Part segmentation
 - Each point belongs to a specific part of the object
- .

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." CVPR. 2017.

- What are the differences between 2D images an a point cloud?
- Why it might be hard to feed a point cloud as neural network input?
- What are the benefits of using a point cloud?

NA Point Clouds Problems

- Point Clouds Vary in Size (not constant)
- · Unordered Input
 - Data is unstructured (no grid)
 - Data is invariant to point ordering (permutations)

Other Point Clouds Challenges

- Missing data
- Noise
- Rotations

• Different point clouds represent the same object

Problem - Unordered Input

Point cloud: $N \operatorname{\bf orderless}$ points, each represented by a $D \dim \operatorname{vector}$

How many semi-equal representations?

Solution:

• Convert the raw point clouds into Voxels or multiple 2D RGB(D) images

Point Cloud

Volumetric

Projected View RGB(D)

Another 3D representation (not in this course):

Part Assembly

$$F(x) = 0$$

Implicit Shape

Idea: generalize 2D convolutions to regular 3D grids

• The straightforward approach: transform the point clouds into a voxel grid by rasterizing and use 3D CNNs

Voxel grid is a 3D grid of equal size volumes (voxels), can be occupied by:

- Binary 0/1 Is there any point within the voxel?
- Weighted The amount of point located within each voxel

Usually we use binary occupancy

Maturana, Daniel, and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object recognition. IROS, 2015.

NA Voxalization Problems

- · Large memory cost
- Slow processing time
- · Limited spatial resolution
- · Quantization artifacts

Idea: Transfrom the problem into a well known domain (3D \rightarrow 2D)

- The multi-view approach: project multiple views to 2D and use CNN to process
 - How many views do we need? (Another hyper parameter)

 CNN_1 - We can use pre-trained networks to extract features followed by fine tune layers

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multiviewconvolutional neural networks for 3d shape recognition. CVPR, 2015.

Apply Deep Learning Directly on 3D Point Clouds

Idea: Most of the raw 3D data are point clouds - Solve the problems!

Note: Point Clouds Problems:

- Point Clouds Vary in Size (not constant)
- · Unordered Input
 - Data is unstructured (no grid)
 - Data is invariant to point ordering (permutations)

Permutation Invariance: Symetric Function

$$f(x_1,x_2,\ldots,x_n)\equiv f(x_{\pi_1},x_{\pi_2},\ldots,x_{\pi_n}), x_i\in R^D$$

 π is a different permutation

Example:

$$f(x_1, x_2, \dots, x_n) = max\{x_1, x_2, \dots, x_n\}$$

 $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$

• How can we construct a family of symmetric functions by neural networks?

Observe:

$$f(x_1,x_2,\ldots,x_n)=\gamma\circ g(h(x_1),\ldots,h(x_n))$$

is symmetric if g is symmetric

Empirically, we use multi-layer perceptron (MLP) and max pooling:

Input MLP:

Pooling layer:

Classification MLP:

$$h(x_i):R^3\to R^D$$

$$g(h(x_1),\dots,h(x_n)):R^{N imes D} o R^{D_{out}}$$

$$\gamma \circ g(h(x_1), \dots, h(x_n)): R^D o R^{D_{NumClasses}}$$

The shared MLP implementation "trick":

We can represent the dims ${\cal D}$ as 2D image channels ${\cal C}$

- $\bullet \ \ \text{Input:} \ R^{1 \times N \times C_{in}} \\$
- Layers: 2D convolution with output size of $1 \times 1 \times C_{out}$, followed by activation layer. Where C_{out} is the number of filters, each has size of $1 \times 1 \times C_{in}$, simmilar to 1D fully connected layer.
- Output: $R^{1 \times N \times C_{out}}$ --> Shared MLP implementation "trick":
- Use conv layers : Number of filters C_{out} , each filter size is $1 imes C_{in}$.
- Input: $R^{N imes C_{in}}$
- Output: $R^{N imes C_{out}}$

MLP:

$$h: R^{C_{in}}
ightarrow R^{C_1}
ightarrow \cdots
ightarrow R^{C_{out}}$$

```
In [3]: class Tnet(nn.Module):
            def __init__(self, k=3):
                 super().__init__()
                 self.k=k
                 self.conv1 = nn.Conv1d(k,64,1)
                 self.conv2 = nn.Conv1d(64,128,1)
                self.conv3 = nn.Conv1d(128,1024,1)
                self.fc1 = nn.Linear(1024,512)
                self.fc2 = nn.Linear(512,256)
                self.fc3 = nn.Linear(256,k*k)
                self.bn1 = nn.BatchNorm1d(64)
                self.bn2 = nn.BatchNorm1d(128)
                self.bn3 = nn.BatchNorm1d(1024)
                 self.bn4 = nn.BatchNorm1d(512)
                self.bn5 = nn.BatchNorm1d(256)
            def forward(self, input):
                # input.shape == (bs,n,3)
                bs = input.size(0)
                xb = F.relu(self.bn1(self.conv1(input)))
                xb = F.relu(self.bn2(self.conv2(xb)))
                xb = F.relu(self.bn3(self.conv3(xb)))
                 pool = nn.MaxPool1d(xb.size(-1))(xb)
                 flat = nn.Flatten(1)(pool)
                xb = F.relu(self.bn4(self.fc1(flat)))
                xb = F.relu(self.bn5(self.fc2(xb)))
                #initialize as identity
                init = torch.eye(self.k, requires_grad=True).repeat(bs,1,1)
                if xb.is_cuda:
                     init=init.cuda()
                    matrix = self.fc3(xb).view(-1,self.k,self.k) + init
                return matrix
        class Transform(nn.Module):
            def __init__(self):
                super().__init__()
                self.input\_transform = Tnet(k=3)
                 self.feature_transform = Tnet(k=64)
                 self.conv1 = nn.Conv1d(3,64,1)
                 self.conv2 = nn.Conv1d(64,128,1)
                self.conv3 = nn.Conv1d(128,1024,1)
                self.bn1 = nn.BatchNorm1d(64)
                self.bn2 = nn.BatchNorm1d(128)
                self.bn3 = nn.BatchNorm1d(1024)
            def forward(self, input):
                matrix3x3 = self.input_transform(input)
                 # batch matrix multiplication
                xb = torch.bmm(torch.transpose(input,1,2), matrix3x3).transpose(1,2)
                xb = F.relu(self.bn1(self.conv1(xb)))
                matrix64x64 = self.feature_transform(xb)
                xb = torch.bmm(torch.transpose(xb,1,2), matrix64x64).transpose(1,2)
                xb = F.relu(self.bn2(self.conv2(xb)))
                xb = self.bn3(self.conv3(xb))
                 xb = nn.MaxPool1d(xb.size(-1))(xb)
                 output = nn.Flatten(1)(xb)
                return output, matrix3x3, matrix64x64
        class PointNet(nn.Module):
            def __init__(self, classes = 10):
                 super().__init__()
self.transform = Transform()
                self.fc1 = nn.Linear(1024, 512)
                self.fc2 = nn.Linear(512, 256)
                self.fc3 = nn.Linear(256, classes)
                self.bn1 = nn.BatchNorm1d(512)
                 self.bn2 = nn.BatchNorm1d(256)
                 self.dropout = nn.Dropout(p=0.3)
                self.logsoftmax = nn.LogSoftmax(dim=1)
            def forward(self, input):
                 xb, matrix3x3, matrix64x64 = self.transform(input)
                xb = F.relu(self.bn1(self.fc1(xb)))
                 xb = F.relu(self.bn2(self.dropout(self.fc2(xb))))
```

```
output = self.fc3(xb)
return self.logsoftmax(output), matrix3x3, matrix64x64
```

Code source (https://github.com/nikitakaraevv/pointnet/blob/master/nbs/PointNetClass.ipynb) - Full implementation of PointNet Classification (can be opened in Colab)

Deep Learning on Point clouds: Implementing PointNet in Google Colab (https://towardsdatascience.com/deep-learning-on-point-clouds-implementing-pointnet-in-google-colab-1fd65cd3a263). - Nikita Karaev

PointNet Classification Network

Image source (https://towardsdatascience.com/deep-learning-on-point-clouds-implementing-pointnet-in-google-colab-1fd65cd3a263)

Transformation Invariance

Learn transformation matrix to improve task performance. We want our network to be invariante to rigid transformation of the object.

• Practically, more augmentation over the training dataset also solved the transformation invariance

<u>Image source (https://medium.com/@luis_gonzales/an-in-depth-look-at-pointnet-111d7efdaa1a)</u>

	input	#views	accuracy	accuracy
			avg. class	overall
SPH [12]	mesh	-	68.2	
3DShapeNets [29]	volume	1	77.3	84.7
VoxNet [18]	volume	12	83.0	85.9
Subvolume [19]	volume	20	86.0	89.2
LFD [29]	image	10	75.5	-
MVCNN [24]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2
	3DShapeNets [29] VoxNet [18] Subvolume [19] LFD [29] MVCNN [24] Ours baseline	SPH [12] mesh 3DShapeNets [29] volume VoxNet [18] volume Subvolume [19] volume LFD [29] image MVCNN [24] image Ours baseline point	SPH [12] mesh - 3DShapeNets [29] volume 1 VoxNet [18] volume 12 Subvolume [19] volume 20 LFD [29] image 10 MVCNN [24] image 80 Ours baseline point -	SPH [12] mesh - 68.2 3DShapeNets [29] volume 1 77.3 VoxNet [18] volume 12 83.0 Subvolume [19] volume 20 86.0 LFD [29] image 10 75.5 MVCNN [24] image 80 90.1 Ours baseline point - 72.6

Qi, Charles R., et al. "PointNet: Deep learning on point sets for 3d classification and segmentation." CVPR 2017.

PointNet Segmentation Network

- Extract local features Describes each point seperatly
- Extract global feature Describes the entire point cloud
- Concatenate the local and global features and feed it into a shared mlp The mlp learns to process the point feature acording to a condition. The condition is described by the global feature vectore.

Code (https://github.com/nikitakaraevv/pointnet/blob/master/nbs/PointNetSeg.ipynb). - Full implementation of PointNet Segmentation (can be opened in Colab)

Semantic Scene Parsing

Qi, Charles R., et al. "PointNet: Deep learning on point sets for 3d classification and segmentation." CVPR 2017.

Results - Robustness to Missing Data (Classification example)

• Why is PointNet so robust to missing data?

Visualizing Global Point Cloud Features

Which input points are contributing to the global feature? (critical points)

Visualize What is Learned by Reconstruction

The "critical points" are those who influenced the global feature vector, a.k.a the pooling layer. The "critical" object's geometry structured is reserved.

Point function visualization

For each per-point function h (mlp), calculate the values of h(p) for all the points p in the cube.

Random 15 function out of the 1024 learned functions:

• Semi-equivalent to filter response in CNNs

Qi, Charles R., et al. "PointNet: Deep learning on point sets for 3d classification and segmentation." CVPR 2017.

<u>Hierarchical</u> feature learning <u>Multiple levels</u> of abstraction

3D CNN (Wu et al.)

V.S. Global feature learning Either one point or all points

PointNet (vanilla) (Qi et al.)

- · No local context for each point
- Global feature depends on **absolute** coordinate. Hard to generalize to unseen scene configurations

Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution
- · Kernels have compact spatial support
- · For convolution, we need to find neighboring points
- · Possible strategies for range query
 - Ball query (results in more stable features)
 - k-NN query (faster)

PointNet v2.0: Multi-Scale PointNet

Repeated layers:

- · Sample anchor points
- · Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing systems. 2017.

More Point Clouds DL solutions:

- 3DmFV
- Dynamic Graph CNN
- PCNN
- PointCNN
- KPConv

3D Deep Learning Applications

- Calssification (V)
- Semantic segmentation (V)
- Part segmentation
- Object detection (Upcoming)
- Reconstraction
- Generation (Upcoming)
- Registration (Upcoming)
- Sampling Downsampling, Upsampling
- SLAM
- · Normal Estimation
- and many more...

Registration:

Problem statment: Find the rotation and translation transformation between objects

- PointNetLK (blue) Deep Learning, based on Lucas-Kanade method (Tracking lecture)
 - Comparing 2 point clouds using PointNet features
- ICP (orange) Classic registration method

Both inputs (target and source) are being processed by PointNet architecture

Aoki, Yasuhiro, et al. "PointNetLK: Robust & efficient point cloud registration using PointNet." CVPR 2019.

Generation

Conditional generation

Free generation

Learning Representations and Generative Models for 3D Point Clouds (Achlioptas et al.)

- FC layer as generator
- PointNet as discriminator

Achlioptas et al., "Learning Representations and Generative Models for 3D Point Clouds", ICML 2018

More generation methods:

- AtlasNet
- FoldingNet
- PointFlow
- OccupancyNetworks
- DeepSDF
- ..

Detection:

- Generate object proposals from a view (e.g., using SSD)
- Recognize using PointNet

Qi et al., "Frustum PointNets for 3D Object Detection from RGB-D Data", CVPR 2018

- What are the differences between 2D images an a point cloud?
 - Unstructured
 - Vary number of points
 - Unordered
- Why it might be hard to feed a point cloud as neural network (NN) input?
 - Does not rely on a grid
 - Does not has a fix size
 - Different permutation represent the same point cloud All three diffrences influence directly the abbility of using NN!
- What are the benefits of using a point cloud?
 - Most sensors raw outputs are point clouds (LiDAR)
 - Very efficient representation of 3D data (no empty voxels)
 - Reserve geometric details (no quantization)

Python:

- Open3D
- trimesh
- Ipyvolume Visualization for Notebooks

Deep Learning:

- Python3D
- Kaolin (Pytorch)
- · TensorFlow Graphics

Visualize Tools (drop and view):

- CloudCompare
- MeshLab

For more 3D deep learnig frameworks and datasets:

- awesome-point-cloud-analysis (https://github.com/Yochengliu/awesome-point-cloud-analysis)
- 3D-Machine-Learning#datasets (https://github.com/timzhang642/3D-Machine-Learning#datasets)

Datasets:

- ModelNet
- ShapeNet
- PartNet
- Sydney Urban Opject DAtaset
- · Stanford 3D
- KITTI
- _

Recommended Videos

- These videos do not replace the lectures and tutorials.
- · Please use these to get a better understanding of the material, and not as an alternative to the written material.

Video By Subject

- 3D Deep Learning
 - General (Both highly recomanded):
 - 3D Deep Learning Tutorial from SU lab at UCSD (https://www.youtube.com/watch?time_continue=6&v=vfL6uJYFrp4&feature=emb_logo) Hao Su
 - Geometric deep learning (https://www.youtube.com/watch?v=wLU4YsC 4NY o) Micahel Bronstein
 - PointNet (https://www.youtube.com/watch?v=Cge-hot0Oc0&t=24s)
 - 3DmFV (https://www.youtube.com/watch?v=HIUGOKSLTcE)

- Slides Yizhak (Itzik) Ben-Shabat (http://www.itzikbs.com/category/research-blog), Simon Lucey (CMU) (https://ci2cv.net/people/simon-lucey/), Hao Su, Jiayuan Gu and Minghua Liu(UCSanDiego) (https://cseweb.ucsd.edu/~haosu/)
- Multiple View Geometry in Computer Vision Hartley and Zisserman Sections 9,10 $\,$
- Computer Vision: Algorithms and Applications (https://www.springer.com/gp/book/9781848829343)
 Richard Szeliski Sections 11,12
- Icons from Icon8.com (https://icons8.com/) https://icons8.com (https://icons8.com)