Contents

Theorem 0.1 (Cauchy-Schwarz) $\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y]^2$.

Theorem 0.2 (Markov's Inequality) If $X \geq 0$, then for all a, $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$.

Theorem 0.3 (Chebyshev's Inequality) Let $X \geq 0$, then

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[X^2]}{\varepsilon^2}.$$

Corollary 0.4 Let $\mu = \mathbb{E}[X]$. Then

$$\mathbb{P}(|X - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

Theorem 0.5 (Weak Law of Large Numbers) Let $X_1,...,X_n$ be IID RVs, mean μ . Let $S_n = \sum X_i$. Then

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) \to 0 \text{ as } n \to \infty.$$

i.e. $\frac{S_n}{n}$ tends to μ in probability.

Theorem 0.6 (Strong Law of Large Numbers) $\mathbb{P}\left(\frac{S_n}{n} \to \mu \text{ as } n \to \infty\right) = 1$, i.e. $\frac{S_n}{n} \to \mu \text{ as } n \to \infty$ almost surely. Strong law implies weak law.

Definition 0.7 Covariance of X and Y is

$$\mathrm{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Note that Cov(X, Y) = 0 does not imply X, Y independent.

Definition 0.8 Correlation coefficient of X and Y is

$$\operatorname{corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$$

It lies in [-1, 1].

Definition 0.9 Marginal distribution of X is

$$\mathbb{P}(X=x) = \sum_{y} \mathbb{P}(X=x, Y=y)$$

Definition 0.10 Conditional expectation of X given Y is

$$\mathbb{E}[X\mid Y=y] = \sum_{x} x \mathbb{P}(X=x\mid Y=y)$$

Can view $\mathbb{E}[X \mid Y]$ as random variable in Y.

Theorem 0.11 (Tower Property of Conditional Expectation, Law of Total Expectation) $\mathbb{E}_Y[\mathbb{E}_X[X\mid Y]] = \mathbb{E}_X[X]$. Equivalently,

$$\mathbb{E}[X] = \sum_i \mathbb{E}[X \mid A_i] \mathbb{P}(A_i)$$

where $A_1, ..., A_n$ is partition of Ω .

Definition 0.12 Let X be RV on \mathbb{N}_0 . Probability generating function (pgf) of X is

$$p_X(z) = \mathbb{E}\big[z^X\big] = \sum_{r=0}^\infty \mathbb{P}(X=r)z^r$$

The pgf of X uniquely determines (via derivatives) its distribution.

Theorem 0.13 (Abel's Lemma) $\mathbb{E}[X] = \lim_{z \to 1} p'(z)$.

Theorem 0.14 $\mathbb{E}[X(X-1)] = \lim_{z \to 1} p''(z)$.

Theorem 0.15 If $X_1, ..., X_n$ independent, then pgf of $X_1 + \cdots + X_n$ is $p_{X_1} ... p_{X_n}$.

Definition 0.16 Moment generating function of X is $m(\theta) = \mathbb{E}[e^{\theta X}]$.

Definition 0.17 mgf determines distribution of X, provided that $m(\theta) < \infty$ for all θ in some interval containing the origin.

Definition 0.18 The r-th moment of X is $\mathbb{E}[X^r]$.

Theorem 0.19 The r-th moment of X is the coefficient of $\frac{\theta^r}{r!}$ in $m(\theta)$, i.e.

$$\mathbb{E}[X^r] = \frac{\mathrm{d}^n}{\mathrm{d}\theta^n} m(\theta)|_{\theta=0} = m^{(n)}(0)$$

Theorem 0.20 If X, Y, independent, then $m_{X+Y}(\theta) = m_X(\theta)m_Y(\theta)$.

Theorem 0.21 (Central Limit Theorem) Let $X_1,...,X_n$ be IID RVs, $\mathbb{E}[X_i]=\mu$, $\mathrm{Var}(X_i)=\sigma^2<\infty$. Let $S_n=X_1+\cdots+X_n$. Then

$$\lim_{n\to\infty}\mathbb{P}\bigg(a\leq \frac{S_n-n\mu}{\sigma\sqrt{n}}\leq b\bigg)=\Phi(b)-\Phi(a)=\int_a^b\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^2}\,\mathrm{d}t$$

So $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges in distribution, \xrightarrow{D} , to the standard normal N(0,1).

Theorem 0.22 (Continuity Theorem) Let $X_1,...,X_n$ have $\operatorname{mgs} m_1(\theta),...,m_n(\theta)$ where $m_n(\theta)\to m(\theta)$ as $n\to\infty$ pointwise. Then $X_n\underset{D}{\to} Y$ where Y has $\operatorname{mgf} m(\theta)$.