Comcast Telecom Consumer Complaints

```
1. Import data into Python environment
```

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
%matplotlib inline
```

```
In [5]: # Import csv file
data = pd.read_csv("C:\\New folder\\Comcast_telecom_complaints_data.csv")
```

```
In [7]: # view data
data.head()
```

Out[7]:

	Ticket #	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
0	250635	Comcast Cable Internet Speeds	22- 04- 15	22-Apr-15	3:53:50 PM	Customer Care Call	Abingdon	Maryland	21009	Closed	No
1	223441	Payment disappear - service got disconnected	04- 08- 15	04-Aug-15	10:22:56 AM	Internet	Acworth	Georgia	30102	Closed	No
2	242732	Speed and Service	18- 04- 15	18-Apr-15	9:55:47 AM	Internet	Acworth	Georgia	30101	Closed	Yes
3	277946	Comcast Imposed a New Usage Cap of 300GB that	05- 07- 15	05-Jul-15	11:59:35 AM	Internet	Acworth	Georgia	30101	Open	Yes
4	307175	Comcast not working and no service to boot	26- 05- 15	26-May-15	1:25:26 PM	Internet	Acworth	Georgia	30101	Solved	No

```
In [8]: #check for null values
print (data.isnull().sum())
```

```
Ticket #
Customer Complaint
                                0
Date
                                0
                                0
Date_month_year
                                0
Time
Received Via
                                0
City
State
Zip code
Status
Filing on Behalf of Someone
dtype: int64
```

```
In [10]: # view shape of the data
data.shape
```

Out[10]: (2224, 11)

```
In [11]: # Drop the Ticket and time coulmn
data=data.drop(['Ticket #','Time'], axis=1)
```

In [12]: # view data after droping 2 columns data.head()

Out[12]:

	Customer Complaint	Date	Date_month_year	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
0	Comcast Cable Internet Speeds	22-04- 15	22-Apr-15	Customer Care Call	Abingdon	Maryland	21009	Closed	No
1	Payment disappear - service got disconnected	04-08- 15	04-Aug-15	Internet	Acworth	Georgia	30102	Closed	No
2	Speed and Service	18-04- 15	18-Apr-15	Internet	Acworth	Georgia	30101	Closed	Yes
3	Comcast Imposed a New Usage Cap of 300GB that	05-07- 15	05-Jul-15	Internet	Acworth	Georgia	30101	Open	Yes
4	Comcast not working and no service to boot	26-05- 15	26-May-15	Internet	Acworth	Georgia	30101	Solved	No

In [13]: # view shape of the data after dropping 2 columns
 data.shape

Out[13]: (2224, 9)

2. Provide the trend chart for the number of complaints at monthly and daily granularity levels.

In [17]: data['Date_month_year']=data['Date_month_year'].apply(pd.to_datetime)
data=data.set_index('Date_month_year')

In [19]: months= data.groupby(pd.Grouper(freq="M")).size().plot()
 plt.xlabel("Months")
 plt.ylabel("Frequenecy")
 plt.title("Monthly Trends Chart")

Out[19]: Text(0.5, 1.0, 'Monthly Trends Chart')

#Conclusion complaints for the month of june 2015 are maximum.

```
In [20]: data["Date"].value_counts(dropna=False)[:8]
Out[20]: 24-06-15
                      218
                      190
         23-06-15
         25-06-15
                      98
                       55
         26-06-15
         30-06-15
                       53
         29-06-15
                       51
         18-06-15
                       47
         06-12-15
                       43
         Name: Date, dtype: int64
```

```
In [21]: # Daily trebnds Chart
data = data.sort_values(by='Date')
plt.figure(figsize=(6,6))
data['Date'].value_counts().plot()
plt.xlabel("Date")
plt.ylabel("Frequency")
plt.title("Daily Trends Chart")
```

Out[21]: Text(0.5, 1.0, 'Daily Trends Chart')

3. Provide a table with the frequency of complaint types.

In [22]: data['Customer Complaint'].value_counts(dropna=False)[:9]

```
Out[22]: Comcast
                                      83
         Comcast Internet
                                      18
         Comcast Data Cap
                                      17
         comcast
                                      13
         Data Caps
                                      11
         Comcast Billing
                                      11
         Comcast Data Caps
                                      11
         Unfair Billing Practices
                                       9
                                       8
         Comcast data caps
```

Name: Customer Complaint, dtype: int64

```
In [26]: data['Customer Complaint'].value_counts(dropna=False)[0:9].plot.bar()
```

Out[26]: <AxesSubplot:>


```
#4. Complaint types are maximum i.e., around internet, network issues, or across any other domains.
In [29]: # check count for customer complaint each category
         internet_issues1=data[data["Customer Complaint"].str.contains('network')].count()
In [31]: | internet_issues2=data[data["Customer Complaint"].str.contains('speed')].count()
In [32]: internet_issues3=data[data["Customer Complaint"].str.contains('data')].count()
In [33]: internet_issues4=data[data["Customer Complaint"].str.contains('internet')].count()
In [40]: total_internet_issue=internet_issues1+internet_issues2+internet_issues3+internet_issues4
         print(total_internet_issue)
                                         374
         Customer Complaint
         Date
                                         374
         Received Via
                                         374
                                         374
         City
                                         374
         State
         Zip code
                                         374
         Status
                                         374
         Filing on Behalf of Someone
                                         374
         dtype: int64
In [34]: billing_issues1=data[data["Customer Complaint"].str.contains('bill')].count()
In [35]: billing_issues2=data[data["Customer Complaint"].str.contains('billing')].count()
In [36]: billing_issues3=data[data["Customer Complaint"].str.contains('charges')].count()
```

```
In [41]: total billing issues=billing issues1+billing issues2+billing issues3
         print(total billing issues)
         Customer Complaint
                                         353
                                         353
         Date
         Received Via
                                         353
         City
                                         353
         State
                                         353
         Zip code
                                         353
         Status
                                         353
         Filing on Behalf of Someone
                                         353
         dtype: int64
In [37]: service issues1=data[data["Customer Complaint"].str.contains('service')].count()
In [38]: service_issues2=data[data["Customer Complaint"].str.contains('customer')].count()
In [42]: total service issues=service issues1+service issues2
         print(total service issues)
         Customer Complaint
                                         360
         Date
                                         360
         Received Via
                                         360
         City
                                         360
         State
                                         360
                                         360
         Zip code
         Status
                                         360
         Filing on Behalf of Someone
                                         360
         dtype: int64
In [50]: Total other issues=2224-(total billing issues+total internet issue+total service issues)
         print(Total_other_issues)
         Customer Complaint
                                         1137
         Date
                                         1137
         Received Via
                                         1137
         City
                                         1137
         State
                                         1137
         Zip code
                                         1137
         Status
                                         1137
         Filing on Behalf of Someone
                                         1137
         dtype: int64
         Conclusion
         total_internet_issue are 374
         total_billing_issues are 353
         total service issues are 360
         Total_other_issues are 1137 out of 2224
         5. Create a new categorical variable with value as Open and Closed.
         Open & Pending is to be categorized as Open and Closed &
         Solved is to be categorized as Closed.
In [51]: data.Status.unique()
Out[51]: array(['Closed', 'Open', 'Solved', 'Pending'], dtype=object)
```

In [54]: data["newStatus"]=["Open" if Status=="Open" or Status=="Pending" else "Closed"for Status in data ["Status
data=data.drop(['Status'],axis=1)
data

Out[54]:

	Customer Complaint	Date	Received Via	City	State	Zip code	Filing on Behalf of Someone	newStatus
Date_month_year								
2015-01-04	Fraudulent claims reported to collections agency	04- 01-15	Customer Care Call	Atlanta	Georgia	30312	No	Closed
2015-01-04	Comcast refusal of service	04- 01-15	Customer Care Call	Wayne	Pennsylvania	19087	No	Closed
2015-01-04	Comcast Cable	04- 01-15	Internet	Franklin	Tennessee	37067	No	Closed
2015-01-04	Data Overages	04- 01-15	Internet	Savannah	Georgia	31406	No	Closed
2015-01-04	Comcast	04- 01-15	Internet	North Huntingdon	Pennsylvania	15642	No	Closed

2015-05-31	Comcast	31- 05-15	Customer Care Call	Beaverton	Oregon	97006	No	Open
2015-05-31	Comcast of East Windsor NJ Complaint	31- 05-15	Internet	East Windsor	New Jersey	8520	No	Open
2015-05-31	n/a (b) (6)	31- 05-15	Internet	Loganville	Georgia	30052	No	Open
2015-05-31	Complaint against Comcast for incredibly bad s	31- 05-15	Customer Care Call	Edgewood	Washington	98372	No	Open
2015-05-31	Questionable internet slowdown	31- 05-15	Customer Care Call	Peabody	Massachusetts	1960	No	Closed

2224 rows × 8 columns

```
In [55]: data.shape
```

Out[55]: (2224, 8)

 $\underline{\text{#6}}$ Which state has the maximum complaints

In [59]: data.groupby(["State"]).size().sort_values(ascending=False)[:5]

Out[59]: State

Georgia 288
Florida 240
California 220
Illinois 164
Tennessee 143
dtype: int64

Georgia state have maximum complaint (288)

#7 State wise status of complaints in a stacked bar chart

In [60]: Status_complaints = data.groupby(["State","newStatus"]).size().unstack()
print(Status_complaints)

newStatus	Closed	0pen
State Alabama	17.0	9.0
Arizona	14.0	6.0
Arkansas	6.0	NaN
California	159.0	61.0
Colorado	58.0	22.0
Connecticut	9.0	3.0
Delaware	8.0	4.0
District Of Columbia	14.0	2.0
District of Columbia	1.0	NaN
Florida	201.0	39.0
Georgia	208.0	80.0
Illinois	135.0	29.0
Indiana	50.0	9.0
Iowa	1.0	NaN
Kansas	1.0	1.0
Kentucky	4.0	3.0
Louisiana	12.0	1.0
Maine	3.0	2.0
Maryland	63.0	15.0
Massachusetts	50.0	11.0
Michigan	92.0	23.0
Minnesota	29.0	4.0
Mississippi	23.0	16.0
Missouri	3.0	1.0
Montana	1.0	NaN
Nevada	1.0	NaN
New Hampshire	8.0	4.0
New Jersey	56.0	19.0
New Mexico	11.0	4.0
New York	6.0	NaN
North Carolina	3.0	NaN
Ohio	3.0	NaN
Oregon	36.0	13.0
Pennsylvania	110.0	20.0
Rhode Island	1.0	NaN
South Carolina	15.0	3.0
Tennessee	96.0	47.0
Texas	49.0	22.0
Utah	16.0	6.0
Vermont	2.0	1.0
Virginia Washington	49.0 75.0	11.0 23.0
Washington	8.0	3.0
West Virginia	0.0	5.0

Out[61]: <AxesSubplot:xlabel='State'>

#conclusion
Georgia state have maximum complaint (288) from bar chart

8. State has the highest percentage of unresolved complaints

In [63]: print(data['newStatus'].value_counts())

Closed 1707 Open 517

Name: newStatus, dtype: int64

newStatus	Closed	0pen	Unresolved_cmp_prct
State	200.0	80.0	15 473000
Georgia California	208.0 159.0	61.0	15.473888 11.798839
	96.0	47.0	
Tennessee		39.0	9.090909
Florida	201.0		7.543520
Illinois	135.0	29.0	5.609284
Washington	75.0	23.0	4.448743
Michigan	92.0	23.0	4.448743
Colorado	58.0	22.0	4.255319
Texas	49.0	22.0	4.255319
Pennsylvania	110.0	20.0	3.868472
New Jersey	56.0	19.0	3.675048
Mississippi	23.0	16.0	3.094778
Maryland	63.0	15.0	2.901354
Oregon	36.0	13.0	2.514507
Virginia	49.0	11.0	2.127660
Massachusetts	50.0	11.0	2.127660
Alabama	17.0	9.0	1.740812
Indiana	50.0	9.0	1.740812
Utah	16.0	6.0	1.160542
Arizona	14.0	6.0	1.160542
New Hampshire	8.0	4.0	0.773694
New Mexico	11.0	4.0	0.773694
Minnesota	29.0	4.0	0.773694
Delaware	8.0	4.0	0.773694
West Virginia	8.0	3.0	0.580271
Connecticut	9.0	3.0	0.580271
Kentucky	4.0	3.0	0.580271
South Carolina	15.0	3.0	0.580271
Maine	3.0	2.0	0.386847
District Of Columbia	14.0	2.0	0.386847
Kansas	1.0	1.0	0.193424
Vermont	2.0	1.0	0.193424
Missouri	3.0	1.0	0.193424
Louisiana	12.0	1.0	0.193424
Montana	1.0	0.0	0.000000
Rhode Island	1.0	0.0	0.000000
Ohio	3.0	0.0	0.000000
District of Columbia	1.0	0.0	0.000000
North Carolina	3.0	0.0	0.000000
New York	6.0	0.0	0.000000
Nevada	1.0	0.0	0.000000
Arkansas	6.0	0.0	0.000000
Iowa	1.0	0.0	0.000000

In [65]: unresolved_data.plot()

Out[65]: <AxesSubplot:xlabel='State'>

#conclusion
Georgia state have maximum unresolved complaints

#9. Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls

```
In [66]: resolved_data = data.groupby(["Received Via", 'newStatus']).size().unstack().fillna(0)
    resolved_data['resolved'] = resolved_data['Closed']/resolved_data['Closed'].sum()*100
    resolved_data['resolved']
```

Out[66]: Received Via

Customer Care Call 50.615114 Internet 49.384886 Name: resolved, dtype: float64

In [68]: resolved_data.plot(kind='bar')

Out[68]: <AxesSubplot:xlabel='Received Via'>

