ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2023-2024

---oOo-----

Môn thi: Toán rời rạc

 Mã môn học: MAT3500
 Số tín chỉ: 4
 Đề số: 1

 Lớp học phần: MAT3500 1, MAT3500 2
 Ngành học: KHDL

Thời gian làm bài: 120 phút (không kể thời gian phát đề)

Chú ý: Đề gồm 5 câu/1 trang. Không sử dụng tài liệu. Điểm bài kiểm tra này chiếm 70% tổng số điểm của môn học. Cán bộ coi thi không giải thích gì thêm.

Câu 1. (1 điểm) Cho tập $\Sigma = \{\mathsf{T},\mathsf{F}\}$ và số nguyên $n \geq 1$. Gọi Σ^n là tích Đềcác của n tập Σ . Một toán tử lôgic n-ngôi là một hàm $f: \Sigma^n \to \Sigma$. Ví dụ, toán tử \neg là một toán tử 1-ngôi. Cụ thể, hàm $\neg: \Sigma \to \Sigma$ định nghĩa bởi $\neg(\mathsf{T}) = \mathsf{F}$ và $\neg(\mathsf{F}) = \mathsf{T}$. (Chú ý là $\Sigma^1 = \Sigma$.) Tương tự, các toán tử $\wedge, \vee, \oplus, \to, \leftrightarrow$ là các toán tử 2-ngôi.

Có bao nhiêu toán tử lôgic n-ngôi khác nhau?

Câu 2. (1 điểm) Cho các tập hợp *A*, *B*, và *C*. Chứng minh hoặc tìm phản ví dụ cho đẳng thức

$$(A \setminus B) \setminus C = (A \setminus C) \setminus B \tag{1}$$

Câu 3. (2 điểm) Cho n là số nguyên không âm. Để chứng minh $n^9 - n$ chia hết cho 15, hãy chứng minh các phát biểu sau với mọi số nguyên không âm n.

- (a) $n^9 n$ chia hết cho 3.
- (b) $n^9 n$ chia hết cho 5.

Câu 4. (3 điểm) Phương trình

$$x_1 + x_2 + x_3 + x_4 = 25 (2)$$

có bao nhiều nghiệm nguyên không âm thỏa mãn điều kiện $x_i \geq 0$ với mọi $i \in \{1,2,3,4\}$ và

- (a) $x_1 \ge 8$, $x_2 \ge 5$, và $x_3 \ge 2$.
- (b) $x_1 \ge 10 \text{ và } x_3 \le 7.$
- (c) $x_1 \le 6 \text{ và } x_2 \le 12.$

Câu 5. (3 điểm)

- (a) Cho G là một đơn đồ thị phẳng có k thành phần liên thông. Giả sử G có n đỉnh, m cạnh, và một biểu diễn phẳng của G chia mặt phẳng ra thành r miền. Chứng minh rằng n-m+r=k+1.
- (b) Cho G=(V,E) là một đơn đồ thị vô hướng. Đặt $\delta(G)=\min_{v\in V}\deg(v)$. Chứng minh rằng tồn tại một đường đi đơn trong G có độ dài $\delta(G)$ nếu $\delta(G)\geq 2$.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2023-2024 Môn thi: Toán rời rạc

Mã môn học: **MAT3500** Số tín chỉ: **4** Đề số: **1** Lớp học phần: **MAT3500 1, MAT3500 2** Ngành học: **KHDL**

Lời giải 1. [1 điểm]

Để định nghĩa một hàm $f: \Sigma^n \to \Sigma$, ta cần lần lượt định nghĩa giá trị cho mỗi bộ $(x_1, \ldots, x_n) \in \Sigma^n$, trong đó $x_i \in \Sigma$ với $1 \le i \le n$. Có tất cả 2^n bộ. Có 2 lựa chọn cho giá trị	0.5
của mỗi bộ: T hoặc F.	
Do đó, theo quy tắc nhân, có 2^{2^n} cách định nghĩa một toán tử lôgic n -ngôi f . Nói cách	0.5
khác, có 2^{2^n} toán tử lôgic n -ngôi khác nhau.	

Lời giải 2. [1 điểm]

		1
$(A \setminus B) \setminus C = \{x \mid x \in (A \setminus B) \setminus C\}$	Định nghĩa tập hợp	
$= \{x \mid x \in (A \setminus B) \land x \notin C\}$	Định nghĩa hiệu hai tập hợp	
$= \{x \mid (x \in A \land x \notin B) \land x \notin C\}$	Định nghĩa hiệu hai tập hợp	
$= \{x \mid (x \notin B \land x \in A) \land x \notin C\}$	Giao hoán trong lôgic	
$= \{x \mid x \notin B \land (x \in A \land x \notin C)\}$	Kết hợp trong lôgic	
$= \{x \mid x \notin B \land x \in (A \setminus C)\}$	Định nghĩa hiệu hai tập hợp	
$= \{x \mid x \in (A \setminus C) \setminus B\}$	Định nghĩa hiệu hai tập hợp	
$=(A\setminus C)\setminus B$	Định nghĩa tập hợp	

Lời giải 3. [2 điểm]

(a) Nếu n chia hết cho 3 thì hiển nhiên $n^9 - n$ cũng thế. Ta xét trường hợp n không chia hết cho 3. Theo Định lý Fermat nhỏ, $n^2 \equiv 1 \pmod{3}$. Do đó, $n^9 = (n^2)^4 n \equiv n \pmod{3}$. Suy ra $n^9 - n$ chia hết cho 3.	1
(b) Nếu n chia hết cho 5 thì hiển nhiên $n^9 - n$ cũng thế. Ta xét trường hợp n không chia	1
hết cho 5. Theo Định lý Fermat nhỏ, $n^4 \equiv 1 \pmod{5}$. Do đó, $n^9 = (n^4)^2 n \equiv n \pmod{5}$.	
Suy ra $n^9 - n$ chia hết cho 5.	

Lời giải 4. Chú ý rằng mỗi nghiệm của (2) là một bộ các số nguyên không âm (x_1, x_2, x_3, x_4) .

[**3** điểm]

(a) Đặt $x_1' = x_1 - 8 \ge 0$, $x_2' = x_2 - 5 \ge 0$, và $x_3' = x_3 - 2 \ge 0$. Phương trình (2) tương	1
đương với	
$x_1' + x_2' + x_3' + x_4 = 25 - 8 - 5 - 2 = 10 $ (3)	
trong đó x'_1 , x'_2 , x'_3 , và x_4 là các số nguyên không âm.	
Do đó, số nghiệm của (2) thỏa mãn $x_1 \ge 8$, $x_2 \ge 5$, $x_3 \ge 2$, và $x_4 \ge 0$ bằng với số nghiệm	
của (3) thỏa mãn $x_1' \ge 0$, $x_2' \ge 0$, $x_3' \ge 0$, và $x_4 \ge 0$, và bằng $C_{10+4-1}^{4-1} = C_{13}^3 = 286$.	
(b) Gọi U là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $x_3 \ge 0$, và $x_4 \ge 0$. Gọi	1
A là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $0 \le x_3 \le 7$, và $x_4 \ge 0$. Ta cần	
t inh A .	
Chú ý rằng $\overline{A} = U \setminus A$ là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $x_3 \ge 8$,	
và $x_4 \ge 0$. Thêm vào đó, $ A = U - \overline{A} $.	
Đặt $x_1' = x_1 - 10 \ge 0$. Tương tự như câu (a), $ U $ chính là số nghiệm của phương trình	
$x_1' + x_2 + x_3 + x_4 = 25 - 10 = 15$ thỏa mãn $x_1' \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, và $x_4 \ge 0$. Do đó,	
$ U = C_{15+4-1}^{4-1} = C_{18}^3 = 816.$	
Đặt $x_3' = x_3 - 8 \ge 0$. Tương tự như câu (a), $ \overline{A} $ chính là số nghiệm của phương trình	
$x_1' + x_2 + x_3' + x_4 = 25 - 10 - 8 = 7$ thỏa mãn $x_1' \ge 0$, $x_2 \ge 0$, $x_3' \ge 0$, và $x_4 \ge 0$. Do đó,	
$ \overline{A} = C_{7+4-1}^{4-1} = C_{10}^3 = 120.$	
Do đó, $ A = U - \overline{A} = 816 - 120 = 696.$	

(c)

1

Cách 1: Gọi U là tập hợp các nghiệm của (2) thỏa mãn $x_i \ge 0$ với mọi $i \in \{1,2,3,4\}$. Gọi A là tập hợp các nghiệm của (2) thỏa mãn $0 \le x_1 \le 6$ và $x_i \ge 0$ với mọi $i \in \{2,3,4\}$. Gọi B là tập hợp các nghiệm của (2) thỏa mãn $0 \le x_2 \le 12$ và $x_i \ge 0$ với mọi $i \in \{1,3,4\}$. Ta cần tính $|A \cap B|$.

Ta có $\overline{A} = U \setminus A$, $\overline{B} = U \setminus B$, và $\overline{A \cap B} = U \setminus (A \cap B)$. Theo luật De Morgan, ta cũng có $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Theo quy tắc bù trừ, $|\overline{A} \cup \overline{B}| = |\overline{A}| + |\overline{B}| - |\overline{A} \cap \overline{B}|$. Do đó, ta cũng có $|A \cap B| = |U| - |\overline{A} \cap \overline{B}| = |U| - |\overline{A} \cup \overline{B}| = |U| - |\overline{A}| - |\overline{B}| + |\overline{A} \cap \overline{B}|$.

Ta có
$$|U| = C_{25+4-1}^{4-1} = C_{28}^3 = 3276.$$

Chú ý rằng \overline{A} là tập hợp các nghiệm của (2) thỏa mãn $x_1 \geq 7$ và $x_i \geq 0$ với mọi $i \in \{2,3,4\}$. Đặt $x_1' = x_1 - 7 \geq 0$. Tương tự câu (a), $|\overline{A}|$ bằng số nghiệm của phương trình $x_1' + x_2 + x_3 + x_4 = 25 - 7 = 18$ thỏa mãn $x_1' \geq 0$ và $x_i \geq 0$ với mọi $i \in \{2,3,4\}$. Do đó, $|\overline{A}| = C_{18+4-1}^{4-1} = C_{21}^3 = 1330$.

Chú ý rằng \overline{B} là tập hợp các nghiệm của (2) thỏa mãn $x_2 \geq 13$ và $x_i \geq 0$ với mọi $i \in \{1,3,4\}$. Đặt $x_2' = x_2 - 13 \geq 0$. Tương tự câu (a), $|\overline{B}|$ bằng số nghiệm của phương trình $x_1 + x_2' + x_3 + x_4 = 25 - 13 = 12$ thỏa mãn $x_2' \geq 0$ và $x_i \geq 0$ với mọi $i \in \{1,3,4\}$. Do đó, $|\overline{B}| = C_{12+4-1}^{4-1} = C_{15}^{3} = 455$.

Chú ý rằng $\overline{A} \cap \overline{B}$ là tập hợp các nghiệm của (2) thỏa mãn $x_1 \geq 7$, $x_2 \geq 13$ và $x_i \geq 0$ với mọi $i \in \{3,4\}$. Đặt $x_1' = x_1 - 7 \geq 0$ và $x_2' = x_2 - 13 \geq 0$. Tương tự câu (a), $|\overline{A} \cap \overline{B}|$ bằng số nghiệm của phương trình $x_1' + x_2' + x_3 + x_4 = 25 - 13 - 7 = 5$ thỏa mãn $x_1' \geq 0$, $x_2' \geq 0$, và $x_i \geq 0$ với mọi $i \in \{3,4\}$. Do đó, $|\overline{A} \cap \overline{B}| = C_{5+4-1}^{4-1} = 56$.

Do đó,
$$|A \cap B| = |U| - |\overline{A}| - |\overline{B}| + |\overline{A} \cap \overline{B}| = 3276 - 1330 - 455 + 56 = 1547.$$

Cách 2: Số nghiệm của (2) thỏa mãn $0 \le x_1 \le 6$, $0 \le x_2 \le 12$, $x_3 \ge 0$, và $x_4 \ge 0$ là hệ số của x^{25} trong hàm sinh

$$G(x) = (x^{0} + x^{1} + \dots + x^{6})(x^{0} + x^{1} + \dots + x^{12})(x^{0} + x^{1} + \dots + x^{25})^{2}$$

= $(1 - x^{7} - x^{13} + x^{20})(1 - 2x^{26} + x^{52})(1 - x)^{-4}$

Chú ý rằng hệ số của x^r trong khai triển của $(1-x)^{-4}$ là $(-1)^r C_{-4}^r = (-1)^r ((-1)^r C_{4+r-1}^r) = C_{r+3}^r$. Để có x^{25} trong khai triển của G(x) ta có thể

- (i) Nhân x^0 trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{25} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(i)}$ của x^{25} ở đây là hệ số của x^{25} trong khai triển của $(1-x)^{-4}$.
- (ii) Nhân x^7 trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{18} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(ii)}$ của x^{25} ở đây là hệ số của x^{18} trong khai triển của $(1-x)^{-4}$.
- (iii) Nhân x^{13} trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{12} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(iii)}$ của x^{25} ở đây là hệ số của x^{12} trong khai triển của $(1-x)^{-4}$.
- (iv) Nhân x^{20} trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^5 trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(iv)}$ của x^{25} ở đây là hệ số của x^5 trong khai triển của $(1-x)^{-4}$.

Hệ số của x^{25} trong khai triển của G(x) là $c_{(i)} - c_{(ii)} - c_{(iii)} + c_{(iv)} = C_{28}^{25} - C_{21}^{18} - C_{15}^{12} + C_{8}^{5} = 1547$.

Lời giải 5. [3 điểm]

(a) Gọi G_i , $1 \le i \le k$, là các thành phần liên thông của G . Giả sử G_i có n_i đỉnh, m_i cạnh, và
một biểu diễn phẳng của G_i chia mặt phẳng thành r_i miền, với $i \in \{1, 2,, k\}$. Theo công
thức Euler, với $i \in \{1, 2,, k\}$, $n_i - m_i + r_i = 2$. Thêm vào đó, ta cũng có $n = \sum_{i=1}^k n_i$,
$m = \sum_{i=1}^k m_i$, và $r = \sum_{i=1}^k r_i - k + 1$ (do các biểu diễn phẳng của G_i ($1 \le i \le k$) có chung
miền vô hạn). Do đó,

$$n - m + r = \sum_{i=1}^{k} n_i - \sum_{i=1}^{k} m_i + (\sum_{i=1}^{k} r_i - k + 1)$$
$$= \sum_{i=1}^{k} (n_i - m_i + r_i) - k + 1$$
$$= 2k - k + 1$$

= k + 1.

(b) Gọi
$$P = v_0, v_1, v_2, \ldots, v_k$$
 là đường đi đơn dài nhất trong G . Do $\delta(G) \geq 2$, ta cũng có $\deg_G(v_0) \geq \delta(G) \geq 2$.

Xét đính $w \in N_G(v_0)$ bất kỳ. Ta chứng minh $w \in V(P)$. Thật vậy, giả sử $w \notin V(P)$. Đường đi $P' = w, v_0, v_1, v_2, \ldots, v_k$ là đường đi đơn trong G có độ dài lớn hơn P, mâu thuẫn với định nghĩa của P. Do đó, $w \in V(P)$.

Ta đã chứng minh với mọi $w \in N_G(v_0)$, $w \in V(P)$. Do đó, $N_G(v_0) \cup \{v_0\} \subseteq V(P)$, suy ra $\delta(G) + 1 \le |N_G(v_0) \cup \{v_0\}| \le |V(P)|$. Do đó, P là một đường đi đơn có độ dài tối thiểu là $\delta(G)$, và ta luôn chọn được một đường đi con của P có độ dài chính xác $\delta(G)$ thỏa mãn yêu cầu đề ra.

Hà Nội, ngày 20 tháng 05 năm 2024 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ ho tên)

1.5

1.5

Hoàng Anh Đức