2014~2015 学年第二学期期中考试试题

《线性代数及其应用》

(考试时间: 2015年4月24日)

						$2x_1 + x_2 + 3x_3 + 5x_4 - 5x_5 = -1,$
	题号	满分	得分	1.	(13分)求线性方程组《	$x_1 + x_2 + x_3 + 4x_4 - 3x_5 = 0,$
		27			(13 月) 水线压力压组($x_1 - x_2 + 3x_3 - 2x_4 - x_5 = -2,$
•						$3x_1 + x_2 + 5x_3 + 6x_4 - 7x_5 = -2$

的向量形式的通解.

2. (14 分)讨论当 λ 取何值时齐次线性方程组 $\begin{cases} x_1+x_2 + x_3 = 0, \\ 2x_1-x_2 + \lambda x_3 = 0, \\ 4x_1+x_2 + \lambda^2 x_3 = 0 \end{cases}$

求出其相应的向量形式的通解.

						a	a	• • •	a	a	b	
						a	a	•••	a	b	a	
	题号	满分	得分	1	1. $(10 分)$ 计算 n 阶行列式 $D_n =$	a	a	•••	b	a	a	
		23		1.		:	:		:	:	:	•
•				'		a	b	•••	a	a	a	
						b	a		a	a	a	

2. (13 分)设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & 0 & -2 \\ 1 & -3 & 4 & -1 \\ 1 & 2 & 6 & 2 \end{bmatrix}$$
, 而 M_{ij} , A_{ij} 分别是 a_{ij} ($i, j = 1, 2, 3, 4$)的余

子式、代数余子式.

(1)
$$\dot{\mathbb{R}} M_{21} + 3M_{22} + 4M_{23} + M_{24}$$
; (2) $\dot{\mathbb{R}} A_{12} - A_{32} - A_{42}$.

					1	0	0	0	
题	号	满分	得分	 1. (14 分) 设实矩阵 A =	0	1	0	0	
=	111	24] 1. (14 刀) 仪头尼阡A-	1	0	1	0	, Д.
				•	0	-3	0	4_	

 $AXA^* = 8XA^{-1} + 12E_4$,求矩阵 X.

2. (10 分) 设 α_1 , α_2 , α_3 为 3 元列向量, $A_{3\times3} = [\alpha_1, \alpha_2, \alpha_3]$,且|A| = -1, B^* 是矩阵 B 的 件 随 矩 阵 , $B_{3\times3} = [2\alpha_1 - \alpha_2, 3\alpha_1 - \alpha_2 - 2\alpha_3, \alpha_1 + \alpha_3]$, 求 $|2A^{T}(B-A)B^*|$.

						$\lceil a \rceil$	b	1	c	
	题号	满分	得分	1. (12 分)设矩阵	1 -	16	0	8	40	的班 ャ(1) - 1
	四	26		1. (12 刀)以及片	A -	18	0	9	45	плах / (A) — 1.
•						10	0	5	25	

- (1) 试确定a,b,c的值.
- (2)试将矩阵 \mathbf{A} 分解成一个列矩阵与一个行矩阵的乘积,并求 \mathbf{A}^m . (\mathbf{m} 为正整数)
- 2. $(8 \, \beta)$ 设 \mathbb{P}^n 中的向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关. 向量 $\boldsymbol{\beta}_1$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,向量 $\boldsymbol{\beta}_2$ 不能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}$ 线性表示.证明:对于任意常数 k,向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ k $\boldsymbol{\beta}_1 + \sqrt{3}$ 线性无关.
- 3. (6 分) 设A 为n 阶可逆矩阵, α 为n 元列向量,b 为常数, 记分块矩阵

$$P = \begin{bmatrix} E & O \\ -\alpha^{\mathrm{T}}A^{*} & |A| \end{bmatrix}, \quad Q = \begin{bmatrix} A & \alpha \\ \alpha^{\mathrm{T}} & b \end{bmatrix},$$

其中 \mathbf{A}^* 是矩阵 \mathbf{A} 的伴随矩阵, \mathbf{E} 为n阶单位矩阵.证明:矩阵 \mathbf{Q} 可逆的充分必要条件是 $\mathbf{\alpha}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{\alpha} \neq \mathbf{b}$.