6.	(a)	(i)	Explain the operation of the <i>binary exponential back-off algorithm</i> as used in the CSMA/CD protocol employed by Ethernet. [4]
		(ii)	The encoded bit stream shown below is detected on an Ethernet LAN.
			Decode the information if: (1) Manchester Coding, and (2) Differential Manchester Coding, is used. [4]
		(iii)	A 100 Mbps CSMA/CD local area network (not Ethernet) has equally spaced nodes and a total length of 1.5 km. The signal propagation speed in the cable is 2 x 10 ⁸ m/s. There are no repeaters. What is the minimum frame length (in bits) that is required for correct operation of the CSMA/CD protocol? [3]
	(b)		stations, A, B, C and D exist within in an IEEE 802.11 wireless network. within range of B and C, but not D. D is within range of B and C, but not
		(i)	Explain what is meant by the <i>hidden station problem</i> [2]
		(ii)	Station A wishes to send to C using the 'Multiple Access with Collision Avoidance for Wireless' (MACAW) protocol that features 'virtual channel sensing'. With the aid of a timing diagram (for A, B, C and D) explain the operation of the protocol. [7]
		(iii)	Why may the successful throughput of a frame in this type of network be increased by fragmenting the frame into smaller parts? [2]
		(iv)	How is collision avoidance maintained if other stations set a network allocation vector (NAV) only for transmission of the first of a number of fragments and its corresponding ACK frame? [3]