

Wireless Communications Principles

Digital Baseband Transmission

Spectral Characteristics

Relevant Properties

- Symbol/Bit Rate
- Symbol/Bit Duration
- Energy Conveyed per Symbol
- Energy Conveyed per Bit
- Spectral Characteristics
- Bandwidth Usage

- We have a finite bandwidth available for modulation
- Different pulse shapes will have different spectral shapes
 - Think of Fourier transforms...
- Some signaling schemes (with temporal correlations) may also change the spectral shape
- Some pulse shapes and signaling schemes will be more bandwidth-efficient than others
- The spectral occupation is described by the Wiener– Khinchin theorem

John G. Proakis Masoud Salehi

2.7-1 Wide-Sense Stationary Random Processes

Random process X(t) is wide-sense stationary (WSS) if its mean is constant and $R_X(t_1, t_2) = R_X(\tau)$ where $\tau = t_1 - t_2$. For WSS processes $R_X(-\tau) = R_X^*(\tau)$. Two processes X(t) and Y(t) are jointly wide-sense stationary if both X(t) and Y(t) are WSS and $R_{XY}(t_1, t_2) = R_{XY}(\tau)$. For jointly WSS processes $R_{YX}(-\tau) = R_{XY}^*(\tau)$. A complex process is WSS if its real and imaginary parts are jointly WSS.

The power spectral density (PSD) or power spectrum of a WSS random process X(t) is a function $S_X(f)$ describing the distribution of power as a function of frequency. The unit for power spectral density is watts per hertz. The Wiener-Khinchin theorem states that for a WSS process, the power spectrum is the Fourier transform of the autocorrelation function $R_X(\tau)$, i.e.,

$$S_X(f) = \mathscr{F}[R_X(\tau)] \tag{2.7-4}$$

Similarly, the *cross spectral density* (CSD) of two jointly WSS processes is defined as the Fourier transform of their cross-correlation function.

Fifth Edition

Digital Communications

Ergodic and Wide Sense Stationary processes

- Our data sequence might not be described as ergodic
 - That would mean that any sizeable sequence could be equally representative of the whole infinite sequence
- Instead, we describe it as wide sense stationary (or stationary, for simplicity)
 - Its mean is constant (independent of time)
 - And the autocorrelation $R(t_1, t_2)$ depends only on the time difference τ between t_1 and t_2 , not on t_1 and t_2 individually
- Even symmetry means
 - $-R(\tau) = R^*(-\tau)$ or $R(\tau) = R(-\tau)$ for real-valued processes
 - Maximum at τ = 0, where R(0) is equal to the mean-square value

- The power spectral density has information about the bandwidth and bandwidth efficiency of the signaling scheme.
- It depicts the distribution of signal power over frequency.
- The question is how to determine the power spectral density of the digital signaling scheme:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k \cdot p(t - kT_s)$$

• Note that this is a cyclo-stationary random process because both the mean and the auto-correlation function are periodic with period T_s .

The auto-correlation function is given by:

$$R_{X}(t+\tau,t) = E\left\{x(t+\tau)x^{*}(t)\right\} = \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} R_{X}(k_{1}-k_{2})p(t+\tau-k_{1}T)p^{*}(t-k_{2}T)$$

and the average auto-correlation function is given by:

$$\overline{R}_{x}(\tau) = \frac{1}{T_{s}} \int_{0}^{T_{s}} E\left\{x(t+\tau)x^{*}(t)\right\} dt = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} R_{x}(k) p(t+\tau-kT) p^{*}(t) dt$$

where

$$R_X(k) = R_X(k_1 - k_2) = E\{X_{k_1} X_{k_2}^*\}$$

• represents the auto-correlation function of the stationary sequence of symbols $\{X_k\}$.

 The (average) power spectral density corresponds to the Fourier transform of the (average) auto-correlation function:

$$S_{x}(f) = \int_{-\infty}^{\infty} \overline{R}_{x}(\tau) e^{-j2\pi f\tau} d\tau = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} R_{x}(k) |P(f)|^{2} e^{-j2\pi k f T_{s}} = \frac{1}{T_{s}} S_{x}(f) |P(f)|^{2}$$

• where P(f) is the Fourier transform of p(t) and $S_{\times}(f)$ represents the power spectral density of the discrete-time stationary random process $\{X_k\}$ i.e.

$$P(f) = \int_{-\infty}^{\infty} p(t)e^{-j2\pi ft} dt$$
$$S_X(f) = \sum_{-\infty}^{\infty} R_X(k)e^{-j2\pi kfT_s}$$

$$S_X(f) = \sum_{k=-\infty}^{\infty} R_X(k) e^{-j2\pi k f T_s}$$

- How to obtain $S_X(f)$ the power spectral density of the discrete time random process?
- Need to sum the auto-/cross-correlation for all pulse intervals, $R_X(k) = \mathbb{E} \{X_{i+k} X_i^*\}$
- So, for k = 0, $R_X(0) = E\{X_i X_i^*\}$
- For k = 1 etc., $R_X(1) = E\{X_{i+1} X_i^*\}$
- Which gives:

$$S_X(f) = E\{X_i X_i^*\} + E\{X_{i+1} X_i^*\} e^{-j2\pi f T_S} + E\{X_{i-1} X_i^*\} e^{j2\pi f T_S} + \dots$$

showing only $k = 0, k = \pm 1$

 If adjacent symbols are uncorrelated and there is no DC content, only k = 0 needs to be considered

Spectral Characteristic and Bandwidth: Example I

• Consider a basic pulse shape $p(t)=\pi(t/T_s)$. Assume that

$$x(t) = \sum_{k=-\infty}^{\infty} X_k p(t - kT_s)$$

- where $\{X_k\}$ is a sequence of independent symbols that take the values ± 1 with equal probability.
- We know that for such a unit pulse

$$|P(f)|^2 = T_S \operatorname{sinc}^2(fT_S)$$

- Then, for k = 0 $R_X(0) = E(X_i X_i^*) = \Pr(X_i = 1) (1.1) + \Pr(X_i = -1) (-1.-1) = 1$
- $R_x(k) = 0$ for all other k, due to pulses being uncorrelated, and no DC content
- Which results in $S_x(f) = T_s \operatorname{sinc}^2(fT_s)$

Spectral Characteristic and Bandwidth: Example II

Assume now that

$$x(t) = \sum_{k=-\infty}^{\infty} X_k p(t - kT_s)$$

- where $\{X_k\}$ is a sequence of independent symbols that take the values -3, -1, 1, 3 with equal probability.
- We assume the same unit pulse.
- Then, for k = 0 $R_X(0) = E(X_i X_i^*)$ $= \Pr(X_i = 3) (3.3) + \Pr(X_i = 1) (1.1) + \Pr(X_i = -1) (-1.-1)$ $+ \Pr(X_i = -3) (-3.-3) = 5$
- $R_X(k) = 0$ for all other k, due to the pulses being uncorrelated
- Which results in

$$S_x(f) = 5T_s \operatorname{sinc}^2(fT_s)$$

Spectral Characteristic and Bandwidth: Example II

