344.063/163 KV Special Topic: Natural Language Processing with Deep Learning Transformers

Navid Rekab-Saz

navid.rekabsaz@jku.at

Institute of Computational Perception

Agenda

- Transformers
 - Transformer encoder
 - Transformer decoder
- seq2seq with Transformers

Agenda

- Transformers
 - Transformer encoder
 - Transformer decoder
- seq2seq with Transformers

Attentions! - recap

 $\alpha_{i,j}$ is the attention of query q_i on value v_j α_i is the vector of attentions of query q_i on value vectors V α_i is a probability distribution f is the attention function

Attention Networks formulation – recap

• Given the query vector q_i , an attention network assigns attention $\alpha_{i,j}$ to each value vector v_j using attention function f:

$$\alpha_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$

where α_i forms a probability distribution over vector values:

$$\sum_{i=1}^{|V|} \alpha_{i,j} = 1$$

The output regarding each query is the weighted sum of the value vectors using attentions as weights:

$$\boldsymbol{o}_i = \sum_{j=1}^{|V|} \alpha_{i,j} \boldsymbol{v}_j$$

Example – recap

$$\widetilde{\boldsymbol{\alpha}}_{1} = \begin{bmatrix} \boldsymbol{q}_{1} \boldsymbol{v}_{1}^{\mathrm{T}} = -1 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{2}^{\mathrm{T}} = 4 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{3}^{\mathrm{T}} = 3.5 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{4}^{\mathrm{T}} = 9 \end{bmatrix} \rightarrow \boldsymbol{\alpha}_{1} = \begin{bmatrix} 0.000 \\ 0.007 \\ 0.004 \\ 0.989 \end{bmatrix}$$

$$\boldsymbol{o}_{1} = 0.000 \begin{bmatrix} 1\\4\\-3 \end{bmatrix} + 0.007 \begin{bmatrix} 2\\2\\2 \end{bmatrix} + 0.004 \begin{bmatrix} 0.5\\-2\\1 \end{bmatrix} + 0.989 \begin{bmatrix} 3\\0\\1 \end{bmatrix} \quad \begin{bmatrix} 3\\-1\\0 \end{bmatrix} \boldsymbol{q}_{1}$$

$$\boldsymbol{o}_{1} = \begin{bmatrix} 2.983\\0.006 \end{bmatrix}$$

Example – recap

$$\widetilde{\boldsymbol{\alpha}}_{2} = \begin{bmatrix} \boldsymbol{q}_{2} \boldsymbol{v}_{1}^{\mathrm{T}} = -1 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{2}^{\mathrm{T}} = 6 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{3}^{\mathrm{T}} = 2 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{4}^{\mathrm{T}} = 7 \end{bmatrix} \rightarrow \boldsymbol{\alpha}_{2} = \begin{bmatrix} 0.000 \\ 0.268 \\ 0.005 \\ 0.727 \end{bmatrix}$$

$$\boldsymbol{o}_{2} = 0.000 \begin{bmatrix} 1\\4\\-3 \end{bmatrix} + 0.268 \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} + 0.005 \begin{bmatrix} 0.5\\-2\\1 \end{bmatrix} + 0.727 \begin{bmatrix} 3\\0\\1 \end{bmatrix} \quad \begin{bmatrix} 3\\-1\\0 \end{bmatrix} \boldsymbol{q}_{1}$$

$$\boldsymbol{o}_{2} = \begin{bmatrix} 2.719\\0.526 \end{bmatrix}$$

Attention table

In the example:

	$oldsymbol{v}_1$	\boldsymbol{v}_2	\boldsymbol{v}_3	v_4
q_1	0.000	0.007	0.004	0.989
q_2	0.000	0.268	0.005	0.727

Transformers

- Attention network with DL best practices!
 - Originally introduced in the context of machine translation and is now widely adopted for sequence encoding and decoding

Transformer encoder

Transformer decoder

Transformer encoder

- Transformer encoder consists of two sub-layers:
 - 1st: Multi-head scaled dot-product self-attention
 - 2nd: Position-wise multi-layer perceptron (feed forward)
- Each sub-layer is followed by residual networks and layer normalization
 - drop-outs are applied after each computation

Transformer encoder

Let's start from multi-head scaled dot-product self-attention:

- Scaled dot-product attention
- Multi-head attention
- 3. self-attention

Basic dot-product attention – recap

First, non-normalized attention scores:

$$\tilde{\alpha}_{i,j} = \boldsymbol{q}_i \boldsymbol{v}_i^{\mathrm{T}}$$

- In this variant $d_q = d_v$
- There is no parameter to learn!
- Then, softmax over values:

$$\alpha_i = \operatorname{softmax}(\widetilde{\alpha}_i)$$

• Output: $\boldsymbol{o}_i = \sum_{j=1}^{|V|} \alpha_{i,j} \boldsymbol{v}_j$

Scaled dot-product attention

- Problem with basic dot-product attention:
 - As d gets large, the variance of $\tilde{\alpha}_{i,j}$ increases ...
 - ... this makes softmax very peaked for some values of $\widetilde{\pmb{lpha}}_i$...
 - ... and hence its gradient gets smaller
- One approach: normalize/scale $\tilde{\alpha}_{i,j}$ by vector size d

Scaled dot-product attention

Non-normalized attention scores:

$$\widetilde{lpha}_{i,j} = rac{oldsymbol{q}_i oldsymbol{v}_j^{ ext{T}}}{\sqrt{d}}$$

- Softmax over values: $\alpha_i = \operatorname{softmax}(\widetilde{\alpha}_i)$
- Output: $oldsymbol{o}_i = \sum_{j=1}^{|V|} lpha_{i,j} oldsymbol{v}_j$

From single-head to multi-head attention

- softmax is applied to non-normalized attention vectors
 - Recall: softmax makes the maximum value much higher than the other

$$z = [1 \ 2 \ 5 \ 6] \rightarrow softmax(z) = [0.004 \ 0.013 \ 0.264 \ 0.717]$$

- Common in language, a word may be related to <u>several</u> other words in a sequence, each through a <u>specific concept</u>
 - Like the relations of a verb to its subject and to its object
- However, in a single-head attention network, all concepts are aggregated in one attention set
- Due to softmax, value vectors must compete for the attention of query vector
 - → softmax bottleneck

Multi-head attention

 Multi-head attention approaches this issue by calculating multiple sets of attentions between a query and values

Multi-head attention:

- 1. Transfer each query/value vector to h subspaces (heads)
- In each subspace, apply a <u>single-head attention network</u> using the queries and values transferred to the subspace to achieve the output vectors of that subspace
- 3. Concatenate the output vectors of all subspaces in respect to a query to achieve the final output of the query
- In multi-head attention, each head (and each subspace) can specialize on capturing a specific kind of relations

Multi-head attention

Multi-head attention – formulation

• Transfer every query q_i to h vectors, each with size d/h:

size:
$$d/h$$
 $q_i^1 = q_i W_Q^1$... $q_i^h = q_i W_Q^h$ Matrix size: $d \times d/h$

• Transfer every value v_i to h vectors, each with size d/h:

size:
$$d/h$$
 $v_j^1 = v_j W_V^1$... $v_j^h = v_j W_V^h$ Matrix size: $d \times d/h$

Calculate outputs of subspaces corresponding to q_i:

size:
$$d/h$$
 $\boldsymbol{o}_i^1 = \operatorname{ATT}(\boldsymbol{q}_i^1, \boldsymbol{V}^1)$... $\boldsymbol{o}_i^h = \operatorname{ATT}(\boldsymbol{q}_i^h, \boldsymbol{V}^h)$

• Concatenate outputs of subspaces for q_i as its final output:

Multi-head attention – graphic in original paper

- Default number of heads in Transformers: h = 8
- Recall: Attentions (and Transformers) in fact have three inputs (not two), namely queries, keys, and values.
 - Keys are used to calculate attentions
 - Values are used to produce outputs

Self-attention – recap

- Values are the same as queries
- Each encoded vector is the contextual embedding of the corresponding input vector
 - $\widetilde{\boldsymbol{v}}_i$ is the contextual embedding of \boldsymbol{v}_i

Residuals

Residual (short-cut) connection:

$$output = f(x) + x$$

- Learn in detail:
 - He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). "Deep Residual Learning for Image Recognition". In proc. of CVPR
 - Srivastava, Rupesh Kumar; Greff, Klaus; Schmidhuber, Jürgen (2015). "Highway Networks". https://arxiv.org/pdf/1505.00387.pdf

Layer normalization

- Layer normalization changes the activations of each vector to have mean 0 and variance 1 ...
 - ... and learns two parameters per layer to shift the mean and variance

Multi-layer perceptron on embedding

- In Transformers, a two-layer multi-layer perceptron (feed forward) neural network with ReLU is applied to each output embedding
 - The feed forward layer provides capacity for non-linear transformations over each (contextualized) embedding

Transformer encoder – all together

- Transformer encoder receive input embeddings and outputs the corresponding contextualized embeddings
 - Processing all inputs happen ast the same time → non auto-regressive

Transformer encoder – summary

- A self-attention model using
 - multi-head scaled dot-product attention
 - followed by the same feed-forward layer applied to each embedding
 - all packed with residuals, layer norms, and dropouts

Transformers as in attentions ...

- do not have locality (position) bias
 - A long-distance context has "equal opportunity"
- process all the input together with a single computation per each layer
 - Friendly with parallel computations in GPU
- Learn here more and study its PyTorch implementation: http://nlp.seas.harvard.edu/2018/04/03/attention.html

Position embeddings

- Transformers are agnostic to the position of tokens
 - A context token in long-distance has the same effect as one in short-distance (no locality bias)
- However depending on the task, the positions of tokens in a sequence can be informative

Position embeddings – a common approach in Transformers:

- Create embeddings representing positions in a sequence, and add the corresponding position embedding to the token embedding
 - Position embedding is usually created using a sine/cosine function
 - It can also be learned end-to-end with the model parameters
 - Using position embeddings, the same word at different locations in a sequence will have different representations

Position embeddings – examples

Dimensions (512)

26

Transformers with position embedding

Transformer decoder

Transformer decoder consists of three sublayers:

- 1st: Masked multi-head self-attention
- 2nd: Multi-head cross attention
 - Queries are the outputs of the previous sub-layer (contextualized embeddings)
 - Values come from outside (encoder)
 - Transformer decoder attends to the embeddings of an encoder (usually a Transformer encoder)
- 3rd: Position-wise multi-layer perceptron (feed forward)

Agenda

- Transformers
 - Transformer encoder
 - Transformer decoder
- seq2seq with Transformers

Seq2seq with Transformers – training

- 1. <u>Data preparation:</u> Source sequence *X* and target sequence *Y* are both started with < bos > and ended with < eos >
- 2. Transformer encoder: outputs contextualized embeddings \widetilde{X}
 - \tilde{X} is in size $|X| \times d$, where d is the embedding vector dimensions
- 3. Decoder self-attention: create contextualized embeddings \widetilde{Y}
 - \widetilde{Y} is in size $|Y| \times d$
- 4. Decoder cross-attention: \widetilde{Y} vectors attend to \widetilde{X} vectors (\widetilde{Y} queries \widetilde{X} values)
 - Resulting matrix is in size $|Y| \times d$
- 5. Prediction: Transformer decoder outputs are used to calculate \hat{Y} the probability distributions of the next tokens
 - \widehat{Y} is in size $|Y| \times |\mathbb{V}_d|$
 - E.g., vector $\hat{y}^{(2)}$ predicts the probability distribution of the token at position 3
- 6. Loss: is calculated using Negative Log Likelihood of the actual next words
 - E.g., based on the probability value of token $y^{(3)}$ in vector $\widehat{m{y}}^{(2)}$

Problem: in decoder self-attention, every token looks at all other tokens, namely the previous ones <u>but also the next tokens!</u>

Every token has access to what it is supposed to predict!

Masking attentions

 In seq2seq with Transformers, we mask the attentions to every future token according to the <u>self-attentions</u> table of the <u>decoder</u>

Example

Non-normalized self-attention table of decoder:

	attends to				
		$y^{(1)}$	$y^{(2)}$	$y^{(3)}$	y ⁽⁴⁾
Vectors of	$y^{(1)}$	5	თ	1	-4
output (target) sequence	$y^{(2)}$	1	4	-2	3
	$y^{(3)}$	0	2	2	-3
	y ⁽⁴⁾	3	-1	1	4

Non-normalized self-attention values						attentions masks			
	$y^{(1)}$	$y^{(2)}$	$y^{(3)}$	y ⁽⁴⁾		$y^{(1)}$	$y^{(2)}$	$y^{(3)}$	$y^{(4)}$
$y^{(1)}$	5	3	1	-4	$y^{(1)}$	1	0	0	0
$y^{(2)}$	1	4	-2	3	$y^{(2)}$	1	1	0	0
$y^{(3)}$	0	-2	2	-3	$y^{(3)}$	1	1	1	0
$y^{(4)}$	3	-1	1	4	$y^{(4)}$	1	1	1	1

Applying masks to attention scores

- adds -∞ for every mask value 0
- adds 0 for every mask value 1

	$y^{(1)}$	$y^{(2)}$	$y^{(3)}$	$y^{(4)}$
$y^{(1)}$	5	$-\infty$	$-\infty$	-8
$y^{(2)}$	1	4	$-\infty$	8
$y^{(3)}$	0	-2	2	8
$\mathbf{v}^{(4)}$	3	-1	1	4

Final sself-attention values

	$y^{(1)}$	$y^{(2)}$	$y^{(3)}$	$y^{(4)}$
)	1.00	0.00	0.00	0.00
)	0.04	0.96	0.00	0.00
)	0.11	0.01	0.86	0.00
)	0.25	0.01	0.34	0.70

 $rac{1}{2}$ In Transformers, there are h times of such attention matrices. The same masking is applied to each of them.

Seq2seq with Transformers – training (completed!)

- 1. <u>Data preparation:</u> Source sequence *X* and target sequence *Y* are both started with < bos > and ended with < eos >
- 2. Transformer encoder: outputs contextualized embeddings \widetilde{X}
 - \tilde{X} is in size $|X| \times d$, where d is the embedding vector dimensions
- 3. Decoder self-attention: create contextualized embeddings \tilde{Y} while masking future tokens
 - \widetilde{Y} is in size $|Y| \times d$
- 4. Decoder cross-attention: \widetilde{Y} vectors attend to \widetilde{X} vectors (\widetilde{Y} queries \widetilde{X} values)
 - Resulting matrix is in size $|Y| \times d$
- 5. <u>Prediction:</u> Transformer decoder outputs are used to calculate \hat{Y} the probability distributions of the next tokens
 - \widehat{Y} is in size $|Y| \times |V_d|$
 - E.g., vector $\widehat{\mathbf{y}}^{(2)}$ predicts the probability distribution of the token at position 3
- 6. Loss: is calculated using Negative Log Likelihood of the actual next words
 - E.g., based on the probability value of token $y^{(3)}$ in vector $\hat{y}^{(2)}$

Inference (decoding)

- In inference similar to training, the encoding of input sequence is done with a single computation (non-autoregressive)
- Decoding is however autoregressive (similar to seq2seq with RNNs):
 - Pass the 1st target token, generate the 2nd token
 - Pass the 1st and 2nd generated target tokens, generate the 3rd token

_ ..

Seq2seq with Transformers – code

 Each Transformer encoder/decoder is a block. You can stack them several times and make the network deep!

