(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-11099

(43)公開日 平成7年(1995)1月13日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C08L 55/02 25/12 LME

LDY

審査請求 未請求 請求項の数2 FD (全 10 頁)

(21)出願番号	特顧平5-178481	(71) 出願人 000000033
		旭化成工業株式会社
(22)出顧日	平成5年(1993)6月28日	大阪府大阪市北区堂島浜1丁目2番6号
		(72)発明者 山本 美穂子
		岡山県倉敷市潮通3丁目13番1 旭化成工
		業株式会社内
		(72)発明者 小寺 秀章
		岡山県倉敷市潮通3丁目13番1 旭化成工
		秦栋式会社内
		(72)発明者 笠原 秀夫
		岡山県倉敷市湖通3丁目13番1 旭化成工
		業株式会社内
		(74)代理人 弁理士 野崎 銕也
		(14)1(44) 开柱上 野啊 飘也

(54) 【発明の名称】 強装性、メッキ性に優れた樹脂組成物

(57)【要約】

【目的】 塗装後の塗膜の外観、鮮映性、密着性、多層 塗り密着性、耐水性、耐薬品性、メッキ性、ヒートサイ クル性の全てに優れた熱可塑性樹脂組成物。

【構成】 ゴム質重合体に、芳香族ビニル化合物とシア ン化ビニル化合物及び必要によりそれらと共重合し得る 単量体を共重合したグラフト共重合体(A)及び芳香族 ビニル化合物とシアン化ビニル化合物、必要により両化 合物と共重合し得る単量体を共重合した共重合体(B) からなる樹脂組成物において、グラフト鎖のVCNが2 5~45重量%であり、且つ遊離共重合体のVCNが2 0~28重量%である成分の割合が特定範囲内にあり、 且つVCNが32~45重量%である成分の割合が特定 範囲内にある熱可塑性樹脂組成物。

1

【特許請求の範囲】

【請求項1】 ゴム質重合体に、芳香族ビニル化合物と シアン化ビニル化合物、及び必要により50重量%まで の量のそれらと共重合し得る単量体を共重合して得られ るグラフト共重合体と遊離共重合体からなるグラフト共 重合体組成物(A)、並びに芳香族ビニル化合物とシア ン化ビニル化合物、及び必要により50重量%までの量 の該芳香族ビニル化合物又はシアン化ビニル化合物と共 重合し得る単量体を共重合して得られる共重合体(B) からなる熱可塑性樹脂組成物において、ゴム質重合体に 10 共重合しているグラフト鎖中のシアン化ビニル化合物の 含有率(VCN)が25~45重量%であり、且つゴム 質重合体にグラフトしていない遊離共重合体において、 シアン化ビニル化合物の含有率(VCN)20~28重 量%である成分(F1)の割合が図1中の点ABCDE Fに囲まれる斜線部の範囲内にあり、且つシアン化ビニ ル化合物の含有率(VCN)32~45重量%である成 分(F2)の割合が図2中の点GHIJKLに囲まれる 斜線部の範囲内にあることを特徴とする熱可塑性樹脂組 成物。

【請求項2】 ゴム質重合体に共重合しているグラフト 鎖中のシアン化ビニル化合物の含有率(VCN)が25 ~45重量%のグラフト共重合体が、それぞれのグラフ ト鎖中の該VCNが20~50重量%であるグラフト共 重合体を二種以上配合して得たグラフト共重合体である 請求項1 に記載された熱可塑性樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、塗装性及びメッキ性に 優れた熱可塑性樹脂組成物に関する。

[0002]

【従来の技術】ゴム質重合体にシアン化ビニル化合物と 芳香族ビニル化合物をグラフト共重合してなる樹脂組成 物はアクリロニトリル・ブタジエン・スチレン樹脂とし て知られており(以下ABS樹脂と記す)、機械的特性 に優れ、また良好な成形加工性を有することから広範囲 な分野において利用されている。特に、自動車分野では 軽量化によるメリットから、内装のみならず外装部品と しても用いられており、この場合、耐候性の付与あるい は意匠上の理由から塗装、メッキを施すことが多い。

【0003】一般に、ABS樹脂中のシアン化ビニル化 合物の含有量を増加させることにより、耐薬品性が向上 することが知られており、これまでに、ABS樹脂中の その割合を検討することによって塗装性を改良する方法 がいくつか報告されている。例えば特公昭60-283 11号公報では、側鎖部分を構成しているシアン化ビニ ル化合物の含有率が32~37重量部であるグラフト共 重合体とシアン化ビニル化合物の含有率20~37重量 部の共重合体を混合し、全遊離共重合体中のシアン化ビ

されている。しかし、この方法では塗装後の塗膜との密 着性、特に水中浸後の密着性(以下、耐水性と記す)が 不充分であった。

【0004】また、塗装不良が生じた場合、不良箇所を サンディクするなどとして再度塗装ラインに通し、重ね 塗りを施すことがなされているが、この時、一度塗りと 同様の乾燥条件では、塗膜密着性(以下多層塗り密着性 と記す)は著しく低下してしまうという問題点がある。 また、メッキ時においては、エッチング不足によるメッ キ膜との密着不良や、ヒートサイクル試験において膨 れ、割れが発生してしまうという問題点もあった。 【0005】一方、特公昭60-28312号公報で は、側鎖部分を構成しているシアン化ビニル化合物の含 有率が20~32重量部のグラフト共重合体と、シアン 化ビニル化合物の含有率が20~37重量部の共重合体 を混合し、全遊離共重合体中のシアン化ビニル化合物の 含有率を28~33重量部に設定する方法を開示してい る。しかし、との方法も塗装後の鮮映性が不充分であ り、またメッキ時においては、オーバーエッチングによ るメッキ膜との密着不良や、ヒートサイクル試験におけ る膨れ、割れの発生等の障害があるという問題点があっ た。

[0006]

【発明が解決しようとする課題】以上のように、上記の 従来の技術では塗装後の塗膜の外観、鮮映性、密着性、 多層塗り密着性、耐水性、耐薬品性、メッキ性及びヒー トサイクル性の全特性を満足させることは出来なかっ た。本発明は、グラフト共重合体組成物における遊離共 重合体のシアン化ビニル化合物の含有率と分布状態、及 30 びゴム質重合体に共重合しているグラフト鎖中のシアン 化ビニル化合物の含有率を規定することにより、塗装後 の塗膜の外観、鮮映性を低下させることなく、塗膜との 密着性、耐水性、耐薬品性、多層塗り密着性、メッキ 性、及びヒートサイクル性全てに優れた樹脂組成物を提 供することを目的とするものである。

[0007]

【課題を解決するための手段】本発明者らは、上記課題 について鋭意検討した結果、遊離共重合体中のシアン化 ビニル化合物の含有率とその成分の割合、及びゴム質重 40 合体に共重合しているグラフト鎖中のシアン化ビニル化 合物の含有率を規定することにより、塗装後の塗膜の鮮 映性、密着性、多層塗り密着性、耐水性、耐薬品性、メ ッキ性、及びヒートサイクル性に優れた樹脂組成者が得 られることを見出し本発明に至った。

【0008】すなわち、ゴム質重合体に、芳香族ビニル 化合物とシアン化ビニル化合物、さらに上記と共重合し 得る単量体0~50重量%を共重合して得られるグラフ ト共重合体組成物(A)及び芳香族ビニル化合物とシア ン化ビニル化合物、さらに該芳香族ビニル化合物又はシ ニル化合物の含有率を22~-35%にする方法が開示 50 アン化ビニル化合物と共重合し得る単量体0~50重量

%を共重合して得られる共重合体組成物(B)からなる 樹脂組成物において、ゴム質重合体に共重合しているグ ラフト鎖中のシアン化ビニル化合物の含有率の平均が2 5~45重量%であり、且つゴム質重合体にグラフトし ていない遊離共重合体において、シアン化ビニル化合物 の含有率20~28重量%である成分(F1)の割合が 図1中の点ABCDEFに囲まれる斜線部の範囲内にあ り、且つシアン化ビニル化合物の含有率32~45重量 %である成分(F2)の割合が図2中の点GHIJKL に囲まれる斜線部の範囲内にあることを特徴とする熱可 10 塑性樹脂組成物に関する。

【0009】本発明に用いるゴム質重合体には、ジェン 系ゴムとしてポリブタジエン、ブタジエン-スチレン共 重合体、ブタジエンーアクリロニトリル共重合体、ポリ イソブレン等のジエン系ゴム、ブチルアクリレート、メ チルメタクリレート、(メタ)アクリル酸エステル重合 体等のアクリル系ゴム、水添ポリブタジエン、エチレン - プロピレン共重合ゴム、フッ素ゴム、シリコーンゴム 等の飽和型ゴム等を用いることが出来る。

【0010】芳香族ビニル化合物としては、スチレン、 α-メチルスチレン、クロル化スチレン、ブロム化スチ レン等のハロゲン化スチレン、ビニルトルエン、ジメチ ルスチレン等のアルキル化スチレン、ビニルナフタレン 等が挙げられるが、これらの中で好ましい単量体として は、スチレン、α-メチルスチレンである。シアン化ビ ニル化合物としては、アクリロニトリル、メタクリロニ トリル等が挙げられる。

【0011】共重合し得る単量体としては、フェニルマ レイミド、無水マレイン酸、メタクリル酸及び、α、β 素数1~10のアルキル基をもつアルキル(メタ)アク リレート、例えば、メチル (メタ) アクリレート、エチ ル(メタ)アクリレート、プロピル(メタ)アクリレー ト、ブチル (メタ) アクリレート、2-エチルヘキシル (メタ) アクリレート、ヒドロキシエチル (メタ) アク リレート、シクロヘキシル (メタ) アクレート、フェニ ル(メタ)アクリレート、ベンジル(メタ)アクリレー ト等が挙げられる。とれらの中では、メチルアクリレー ト、エチルアクリレート、プロピルアクリレート、ブチ ルアクリレート、メチルメタクリレート、フェニルアク 40 分においては、VCN32未満であると充分な鮮映性が リレート、フェニルメタクリレート、シクロヘキシルア クリレート、グリシジルメタクリレートが好ましい。 【0012】遊離共重合体とは、樹脂組成物においてゴ ム質重合体にグラフトしていない共重合体成分を表し、

グラフト鎖とはゴム質重合体にグラフトしている共重合 体成分を表す。また、遊離共重合体及びグラフト鎖のシ アン化ビニル化合物の割合を表すVCNとは次式で定義 される値をいう。

VCN=(シアン化ビニル化合物の占める重量)/

単量体) の占める重量]×100

【0013】グラフト共重合体(A)において、ゴム質 重合体の占める割合は、5~60重量%、好ましくは1 0~50重量%、芳香族ビニル化合物の占める割合は、 10~75重量%、好ましくは11~71重量%、シア ン化ビニル化合物の占める割合は、4~47重量%、好 ましくは9~44重量%である。

【0014】共重合体(B)において、芳香族ピニル化 合物の占める割合は、27~80重量%、好ましくは3 8~78重量%、さらに好ましくは44~78重量%、 シアン化ビニル化合物の占める割合は、10~45重量 %、好ましくは14~45重量%、さらに好ましくは1 6~45重量%である。

【0015】グラフト鎖のVCNが所定の範囲内に入る ように、重合時、一定のモノマー配合比で重合する方 法、二種以上の異なったVCNを持つグラフト共重合体 をブレンドする方法、単量体の割合を段階的に変化させ るか、あるいは逐次変化させることにより行う方法、あ るいはこれらを組み合わせて行う方法がある。

【0016】グラフト鎖のVCNは25~45、好まし くは26~43、さらに好ましくは27~40である。 グラフト鎖のVCNにおいて、これが25未満である と、充分な鮮映性が得られず、またメッキ時には、オー バーエッチングによりピール強度、ヒートサイクル性が 低下してしまい、45を越えると、塗膜との密着性、特 に、多層塗り密着性が劣ったものとなり、メッキ時に は、充分なエッチングが行われないため、充分なピール 強度、ヒートサイクル性が得られない。

【0017】また、二種以上の異なったVCNを持つグ 一不飽和カルボン酸アルキルエステル、例としては、炭 30 ラフト共重合体をブレンドする場合、各グラフト共重合 体のVCNは20~50、好ましくは23~47、さら に好ましくは24~46である。

> 【0018】遊離共重合体において、VCN20~28 である遊離共重合体(F1)と、VCN32~45であ る遊離共重合体(F2)が組み合わせて用いられる。

> (F1)成分において、VCNが20未満になると、塗 装後の鮮映性が得られず、また、メッキ時にはオーバー エッチングとなってピール強度が低下してしまい、28 を越えると充分な塗装密着性が得られない。(F2)成 得られず、45を越えると密着性が低下してしまい、メ ッキ時には、充分エッチングが行われないため、ピール 強度、ヒートサイクル性が損なわれてしまう。

> 【0019】図1においては、F1成分の割合(%)を Y軸、グラフト鎖中のシアン化ビニル化合物の含有率 (重量%)をX軸にとると、斜線の範囲の各頂点の座標 (X, Y) は、A (31, 100)、B (25, 4) 0), C(25, 0), D(45, 100), E(4 5、60)、F(36、100)である。

〔(シアン化ビニル化合物+芳香族ビニル化合物+他の 50 【0020】図2において、F2成分の割合(%)をY

軸、グラフト軸中のシアン化ビニル化合物の含有率(重 量%)をX軸にとると、斜線の範囲の各頂点の座標 (X, Y) は、G(25、100)、H(25、6 0), I (31, 0), J (36, 0), K (45, 4 0)、L(45、90)である。

【0021】図1及び図2中に示した(1)、(2)の 領域は、VCNの高い成分が少なく、一方でVCNの低 い成分が多すぎるため、塗装後充分な鮮映性が得られ ず、またメッキ時にはオーバーエッチングとなり、ピー ル強度、ヒートサイクル性が低下してしまう。

【0022】又、(3)の領域は、VCNの低い成分が 少なく、一方でVCNの高い成分が多すぎるため、塗膜 との密着性が低く、メッキ時には、充分にエッチングさ れないため、ビール強度、ヒートサイクル性が劣ったも のとなる。

【0023】例えば、グラフト鎖のVCNが29である 場合、(F1)成分の割合は、2~80%、好ましくは 10~70%、さらに好ましくは15~50%である。 この時、(F2)成分の割合は、20~98%、好まし くは30~90%、さらに好ましくは50~85%であ 20 る。(F1)成分が80%を越えると、あるいは(F 2)成分が20%未満であると塗膜の充分な鮮映性が得 られず、またメッキにおいてはオーバーエッチングとな り、ピール強度、ヒートサイクル性が損なわれてしま う。

【0024】グラフト鎖のVCNが33である場合、 (F1)成分の割合は、5~100%、好ましくは10 ~90%、さらに好ましくは15~85%である。この 時、(F2)成分の割合は、0~95%、好ましくは1 $0 \sim 90\%$ 、さらに好ましくは $15 \sim 85\%$ である。 (F1)成分が5%未満であると、あるいは(F2)成 分が95%を越えると、塗膜との充分な密着性が得られ ず、また、エッチングが不充分であるため、ピール強 度、ヒートサイクル性の劣ったものとなる。

【0025】グラフト鎖のVCNが40である場合、 (F1)成分の割合は、7~82%、好ましくは10~ 75%、さらに好ましくは20~70%である。との 時、(F2)成分の割合は、18~93%、好ましくは $25 \sim 90\%$ 、さらに好ましくは $30 \sim 80\%$ である。 分が93%を越えると、塗膜との充分な密着性、特に多

層塗り密着性が得られず、またメッキにおいては、エッ チングが不充分であるため、ピール強度、ヒートサイク ル性の劣ったものとなる。(F1)成分が82%を越え ると、あるいは(F2)成分が18%未満とあると、塗 装後の鮮映性が低下してしまい、メッキ時においては、 オーバーエッチングとなり、充分なピール強度、ヒート サイクル性が得られない。

【0026】遊離共重合体におけるVCNとその割合

重合時に行う方法、グラフト共重合体と共重合体をブレ ンドする方法、あるいはこれらを組み合わせて行う方法 等が挙げられる。例えば、グラフト共重合体重合時にお いて、遊離共重合体が所定のVCNの割合を持つよう単 量体の割合を段階的に変化させるか、あるいは逐次変化 させることにより行う方法、共重合体重合時において、 反応させる単量体の割合を段階的に変化させるか、ある いは逐次変化させることにより行う方法、二種以上の異 なったVCNを持つ共重合体を組み合わせてブレンドす 10 る方法、二種以上の異なったVCNのグラフト共重合体 を組み合わせてブレンドする方法、あるいは、グラフト 共重合体と共重合体とにおいて、VCNの異なる組み合 わせでブレンドする方法等がある。

【0027】また、遊離共重合体のVCNの分布状態に おいて、複数のピークトップを持つもの、ブロードな分 布状態を持つもの、あるいはこれらを組み合わせること により上記のような範囲にある共重合体を得ることがで きる。これらの重合体は、乳化重合、懸濁重合、溶液重 合、塊状重合及びこれらの方法を組み合わせることによ り得られる。

【0028】本発明の樹脂組成物には、必要に応じて顔 料、染料、滑剤、酸化防止剤、紫外線吸収剤、帯電防止 剤、補強剤、充填剤等各種添加剤をその物性を損なわな い程度に配合することが出来る。

[0029]

【実施例】以下に実施例を用いて本発明を更に具体的に 説明するが、本発明はこれらの実施例により何らその範 囲を限定されるものではない。

【0030】参考例1 グラフト共重合体(A-1)の 30 製造

ポリプタジエンゴムラッテクス(重量平均粒子径0.2 5μm、ゴム固形分45重量%) 1000重量部、アル ケニルコハク酸カリウム (アルケニル基はC₁,~C₁,) 2重量部を環冷却器付き重合槽にいれ、気相部を窒素置 換しながら70℃に昇温した。アクリロニトリル280 重量部、スチレン420重量部、クメンハイドロパーオ キサイド2部、t-ドデシルメルカプタン0.7重量部 の混合液、及び脱イオン水500部にソジウムホルムア ルデヒドスルホキシレート1.0部、硫酸第一鉄0.0 (F1)成分が7%未満であると、あるいは(F2)成 40 1部、エチレンジアミンテトラ酢酸ナトリウム0.4部 を溶解した液を6時間にわたり連続追添加し、反応させ た。この間、重合系の温度を70℃にコントロールし、 追添加終了後さらに1時間その状態を維持し、重合を完 結させた。得られた共重合体ラテックスを凝集塩析した 後、洗浄、脱水、乾燥して、グラフト共重合体の固体粉 末を得た。グラフト鎖のVCNは39.9であった。 【0031】参考例2~6 グラフト共重合体(A-2 ~6)の製造

シアン化ビニル化合物と芳香族ビニル化合物の割合を変 は、グラフト共重合体の重合時に行う方法、共重合体の 50 えた以外は、グラフト共重合体A-1と同様に製造し、

下記のグラフと共重合体を得た。

グラフト共重合体A-2:グラフト鎖のVCNは32. 9であった。

グラフト共重合体A-3:グラフト鎖のVCNは28. 0であった。

グラフト共重合体A-4:グラフト鎖のVCNは25.

グラフト共重合体A-5:グラフト鎖のVCNは20. 3であった。

グラフト共重合体A-6:グラフト鎖のVCNは47. 5であった。

【0032】参考例7 共重合体(B-1)の製造 アクリロニトリル40重量部、スチレン60重量部及び 溶媒としてエチルベンゼンを用い、完全混合タイプの重 合反応器に上記混合液を連続的にフィードし、重合系の 温度を120~130℃にコントロールして重合反応を 行った。その後、ポリマーを含む混合液を重合反応器か ら取り出して未反応モノマーと溶媒を真空下に除去する ことにより共重合体を得た。そのVCNは窒素分析の結 果37.8であった。

【0033】参考例8~10 共重合体(B-2~4)

アクリロニトリル及びスチレンの割合を変えた以外は、 共重合体 B-1と同様に製造し、下記の共重合体を得

共重合体B-2:VCNは窒素分析の結果33.5であ った。

共重合体B-3:VCNは窒素分析の結果27.8であ

った。

【0034】参考例11 共重合体(B-5)の製造 アクリロニトリル40重量部、スチレン50重量部、メ チルアクリレート10重量部を連続追添した以外は、参 考例7と同様に製造した。VCNは窒素分析の結果3 8. 9であった。また、メチルアクリレートの含有量 は、IR分析により9.6重量%であった。

【0035】実施例1

グラフト共重合体(A-1)35重量部、共重合体(B 配合した後、押出機にて溶融混練し、ペレットとして得 た。次いで、該ペレットを用いて物性測定用試験片をシ リンダー温度240℃、金型温度45℃にて射出成形機 により作製した。

【0036】との試験片を以下の項目につき夫々につい て記載してある方法で評価した。射出成形機にて50× 90×3mmの平板を成形し、次の条件でメッキを施し た。

【0037】(1) エッチング

(硫酸 (98%) /無水クロム酸=20vo1%/リッ 50 二、三度塗りの場合、

トル/400g/リットル)の混合液を68℃とし、試 験片を10~20分間浸した後、純水にて洗浄し次の工 程処理を行った。

(2)酸処理

10%塩酸水溶液を23℃とし、1分間浸漬した後、純 水にて洗浄し次の工程処理を行った。

【0038】(3) キャタリスト

塩化パラジウム、塩化第一スズ及び塩酸からなる水溶液 を20℃とし、二分間浸漬した後、純水にて洗浄し次の 10 工程処理を行った。

(4) アクセレーター

硫酸(10%)水溶液を40℃とし、3分間浸漬した 後、純水にて洗浄し次の工程処理を行った。

【0039】(5)化学ニッケルメッキ

硫酸ニッケル、クエン酸ナトリウム、次亜燐酸ナトリウ ム、塩化アンモニウム及びアンモニウム水からなる水溶 液を40℃とし、8分間浸漬した後、純水にて洗浄し、 次の工程処理を行った。

【0040】(6)電気銅メッキ

20 硫酸銅、硫酸及び光沢剤からなる水溶液を20℃とし、 電流密度4A/dm²にて60分間浸漬した後、純水に て洗浄し、80℃にて2時間乾燥した後、充分冷却し た。メッキ被膜の厚みは、約40μmであった。

【0041】メッキ性評価項目

- (1) ピール強度:メッキ被膜を一定の幅(10mm) に切除した後、試験片から90°の角度で剥離する時の 強度を測定した。
- (2) ヒートサイクル試験:メッキ成形品を-30°C× 1 時間→室温×15分間→80°C×1時間→室温×15 共重合体B-4:VCNは窒素分析の結果22.2であ 30 分間を1サイクルとして8サイクルの試験を行い、メッ キ被膜の膨れ、割れの有無を観察した。

〇……膨れ、割れなし。

×……膨れ、割れあり。

【0042】塗装試験

射出成形機にて50×90×3mmの平板を成形し、下 記の条件で塗装した。

塗料:アクリル-エポキシ2液系塗料

(川上塗料製, アクトン500 NH 237P) アンダーコート(黒)+トップコート(クリアー)

- -1)5重量部、及び共重合体(B-3)60重量部を 40 (1)面洗浄:表面をイソプロバノールを含ませたガー ゼで拭く。
 - (2) スプレー塗装: アンダーコート (膜厚20~25 μ m)
 - (3)セッティング:室温×5分間
 - (4)スプレー塗装:トップコート(膜厚20~25μ
 - (5) セッティング: 室温×10分間
 - (6)焼き付け:75℃×30分間
 - (7)冷却:室温×30分間

10

(8)空焼き:75℃×30分間

(9)→(2)~(8)の工程を二回もしくは三回繰り 返して塗装を行い、試験用サンブルとした。

【0043】塗装性評価項目

(1) 鮮映性:写像性測定装置 I CM-ID (スガ試験 機(株)製)

クシ幅1mm, 反射角45°

評価は、一度塗りアンダーコートのみの試験片で行っ た。測定値は百分率で示し、最高値を100とし、下記 の判定基準で判定した。

○……鮮映度50%以上。

×……鲜映度50%未満。

【0044】(2)密着性:一度塗りの試験片に、マル チクロスカッターでゲート側、非ゲート側に碁盤目クロ スカット(1×1mmのマス目100個)を施した後、 セロハンテープ剥離試験を行った。評価は、ゲート側及 び非ゲート側での(剥離しないマス目の数)/(碁盤目 の数) の平均を求めて行った。

【0045】(3)多層塗り密着性:二、三度塗りの試 験片に、マルチクロスカッターで、ゲート側、非ゲート 20 側に碁盤目クロスカット(1×1mmのマス目100 個)を施した後、セロハンテープ剥離試験を行った。評 価は、ゲート側及び非ゲート側での(剥離しないマス目 の数)/(碁盤目の数)の平均を求めて行った。

【0046】(4)耐水性:一度塗りの試験片を40℃ 温水中に240時間浸漬後、マルチクロスカッターでゲ ート側、非ゲート側に碁盤目クロスカット(1×1mm のマス目100個)を施した後、セロハンテープ剥離試 験を行った。評価はゲート側及び非ゲート側での(剥離 しないマス目の数)/(碁盤目の数)の平均を求めて行 30 254nmにおける吸光度を表す。 った。

【0047】(5)耐薬品性:一度塗りの試験片に非イ オン系界面活性剤エルマゲンを接触させ、23℃で24 時間放置した時のクラックの発生の有無及び塗膜の剥離 の有無を観察し、次の判定基準で判定した。

○……クラック及び剥離のないもの

×……クラックあるいは剥離のあるもの

以上のメッキ性、塗装性についての評価結果は第3表に 示した。尚、樹脂組成物におけるVCN、ゴム質重合体 VCNとその成分の割合は、以下の測定方法により求 め、その結果は第2表に示してある。

【0048】TotalVCNの測定方法

ABS樹脂のペレットを180℃でコンプレッション成 形を行い、厚さ約3μmのフィルムを作成する。そのフ ィルムをIR透過法により測定し、検量線法により各成 分の定量を行った。その時、(シアン化ビニル化合物の 占める重量)/(シアン化ビニル化合物+芳香族ビニル 化合物+ゴム質重合体を除く他の単量体の占める重量) ×100の値をTotalVCNとした。

【0049】グラフト鎖のVCNの測定方法

ABS樹脂をアセトンに溶解し、その不溶分を乾燥す る。これを180℃でコンプレッション成形を行い、厚 さ約3 µ mのフィルムを作成する。そのフィルムを I R 透過法により測定し、検量線法により各成分の定量を行 10 った。その時、(シアン化ビニル化合物の占める重量) /(シアン化ビニル化合物+芳香族ビニル化合物+ゴム 質重量体を除く他の単量体の占める重量)×100の値 をグラフト鎖のVCNとした。

【0050】遊離共重合体のVCNとその成分量

ABS樹脂をアセトンに溶解し、その可溶分を乾燥して 遊離共重合体を得た。これをテトラヒドロフランに溶解 し、試料とした。あらかじめ窒素分析によってVCNが 既知の標準試料を用いて、VCNとリテンションタイム (Tr)の関係を検量線で表しておく。上記試料を高速 液体クロマトグラフィーにより分離して、検量線とリテ ンションタイム (Tr) からVCNを求めた。

【0051】測定条件は以下の通りである。

機器:高速液体クロマトグラフィー(島津製作所製)

カラム:シリカ系シアノプロピル処理品

展開溶剤:テトラヒドロフラン/n-ヘキサン

検出器:紫外線(254nm)

尚、(F1)成分量および(F2)の割合(%)は、図 3に示すように高速液体クロマトグラフィーによるピー クの面積比より計算により求めた。図3中のΔ,,,とは

【0052】実施例2~12

グラフト共重合体(A)、共重合体(B)を第1表の割 合で配合する以外は、実施例1と同様にして、サンブル を作製、評価した。

【0053】比較例1~9

グラフト共重合体(A)、共重合体(B)を表1の割合 で配合する以外は、実施例1と同様にして、サンブルを 作製、評価した。

【0054】以上の結果を総合評価として第4に示し にグラフトしたグラフト鎖のVCN及び遊離共重合体の 40 た。第4表の総合評価から、本発明の樹脂組成物は、メ ッキ性、ヒートサイクル性、塗装後の鮮映性、密着性、 多層塗り密着性、耐水性、耐薬品性の全てに優れている ことがわかる。

[0055]

【表1】

特開平7-11099

11

第1表(配合表)

			グラフト共業合体					共業合体				
<u></u>		A-1	A-2	A-3	A-4	A-5	A-6	B-1	B-2	B-3	B-4	B-5
П	1	35						5		60		
	2	35						50		15		
実	3	35						20		20	25	
1^	4	25		23							5 2	
	5	25		23				5 2				
施	6		35						35		30	
	7	13		33							5 4	
_	8	13		33				5 4				
7	9			43				10		47		
	10			43				30			27	
	11		25		10				65			
	12			43						47		10
	1	35						6.5				
	2	3 5						60		5		
比	3	35									6 5	
	4	28	7							65	•	
較	5		35					6 5				
	6			35						6.5		
91	7				35			35			30	
	8					3 5		6 5				
	9						3 5	35			3 0	

【0056】 【表2】

特開平7-11099

13

			第 2 2	2	
		total V C N	グラフト値の VCN	(F1) (%)	(F2) (%)
	1	31.6	39.9	11	21
	2	36, 7	39.7	1 2	8 0
実	3	31.2	39.7	4 1	4 6
	4	25.4	33.0	8 4	1 5
	5	36.7	33.0	8	9 1
施	6	30.5	32.9	4 3	3 9
	7	25.6	. 31. 5	87	6
١ ـ.	8	35.5	31.0	7	8 4
例	9	2.9. 7	28.0	7	3 6
	10	29.8	28, 0	4 5	4 5
	11	31. 9	27.7	10	7 1
	12	29.5	28.0	9	40.
	1	38.9	40.0	0	8 8
	2	37.8	39.9	3	9 6
比	3	25.7	40.0	8 3	1 5
	4	30.4	38.7	3 9	10
較	5	36.8	32.8	1	9 9
	6	28.7	27.8	. 8	2 3
例	7	29.8	25.7	4.8	4 0
	8	33.9	20.5	15	8 4
	8	34.7	47.5	3 9	80

[0057]

【表3】

16

第3表 メッキ性 塗装性評価

			4 7	キ性		整 装 性					
		ピール		ヒートサイク	塗装	銷快度	松碧性	多層塗り密着性		耐水性	耐寒
		強度		ル性	外観	୯ନ	10-46E	二度塗り	三度塗り	m/NE	品性
	1	1.	1	0	0	8 0	109/100	100/108	100/100	180/100	0
	2	1.	3	0	0	7 2	100/100	100/100	100/100	199/199	0
実	3	1.	7	0	0	7 5	100/100	100/100	100/100	109/109	0
1	4	1.	7	0	0	58	100/100	100/100	100/100	100/100	0
1	5	1.	2	0	0	64	100/200	100/100	100/100	100/100	0
施	6	2.	0	0	0	78	100/111	100/100	100/100	199/199	0
	7	ı.	9	0	0	71	111/111	100/100	100/100	100/100	0
	œ	1.	5	0	0	68	100/100	100/100	100/100	100/100	0
例	9	1.	6	0	0	5 2	101/101	100/100	100/100	100/100	0
1 4	11	1.	5	0	0	5 5	101/111	100/100	100/100	100/100	O
	11	1.	7	0	0	62	101/101	160/100	100/100	100/100	0
	12	1.	9	0	Ó	5 5	100/101	100/100	100/100	100/100	Ö
	1	0.	7	×	0	77	10/101	0/100	50/100	25/100	0
	2	0.	8	×	0	70	95/100	0/100	50/100	50/100	0
比	3	0.	8	×	×	31	100/114	100/100	100/100	100/101	×
	4	0.	9	×	0	35	111/111	100/100	110/108	100/100	0
校	5	1.	0	×	0	66	95/100	50/100	100/100	30/100	0
	6	0.	9	×	×	16	100/100	100/100	100/100	110/110	×
94	7	0.	7	×	×	20	100/100	100/100	100/100	100/100	×
	8	0.	5	×	×	11	100/100	100/100	100/100	100/104	X
Ш	9	0.	7	×	×	9	190/100	90/100	100/100	90/100	×

【0058】(注)上記表中において、

塗装外観:○……フローマーク、吸い込みなし

×……フローマーク、吸い込みあり

ヒートサイクル性:〇……膨れ、割れなし

×……膨れ、割れあり

*耐薬品性:○……塗膜のクラック、ハガレなし

×……塗膜のクラック、ハガレあり

[0059]

【表4】

*

				3	月4 衰 4	各合	平 伍			
		メッ	+ 性			建	支 性			•••
1		ピール	ピート	数 装			多用		耐蒸	総 合
1 .			サイク		鮮映度	密着性	独り	耐水性		罪無
		強度	ル性	外観			密着性		品性	P4 100
	1	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0
実	4	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0
施	6	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0
例	8	0	0	0	0	0	0	0	O	0
1	9	0	0	0	0	0	0	0	0	0
ł	10	0	0	0	0	0	0	0	0	•
ł	11	0	0	0	0	0	0	0	0	0
	12	0	0	0	.0	0	Ó	0	0	0
	1	. X	×	0	· O	×	×	×	0	×
	2	×	×	0	0	×	×	×	0	×
比	3	×	×·	×	X.	0	0	0	×	Χ.
	4	×	X	0	'X	0	0	0	0	×
較	5	0	×	0	0	×	×	Χ.	0	×
	6	×	×	×	×	0	0	0	×	×
例	7	×	X	X	×	0	0_	0	X	×
	8	×	×	×	x	0	0	0	0	×
	9	×	×	X.	×	0	×	0	×	×

(10)

特開平7-11099

17

【0060】(注)上記表中において、

·ピール強度: 〇……1.0以上

×……1. 0未満

・ヒートサイクル性:○……彫れ、割れなし

×……膨れ、割れあり

・塗装外観:○……フローマーク、吸い込みなし

×……フローマーク、吸い込みあり

· 鲜映度: 〇……50%以上

×……50%未満

・密着性:○……100/100 (剥離なし)

×……剥離あり

・多層塗り密着性:〇……二、三度塗りともに剥離なし

×……剥離あり

・耐水性:〇……100/100 (剥離なし)

×·····剥離あり

【図1】

×……塗膜のクラック、ハガレあり 【0061】 【発明の効果】本発明により、 微葉後の塗膜の外

*・耐薬品性:○……塗膜のクラック、ハガレなし

【発明の効果】本発明により、塗装後の塗膜の外観、鮮 映性を低下させるととなく、塗膜との密着性、耐水性、 耐薬品性、多層塗り密着性、メッキ性、及びヒートサイ クル性の全てに優れた樹脂組成物を提供することができ た効果は大きい。

【図面の簡単な説明】

10 【図1】F1成分の割合の範囲をグラフト鎖中のシアン 化ビニル化合物の含有率の範囲の関係を示す図である。 【図2】F2成分の割合の範囲とグラフト鎖中のシアン 化ビニル化合物の含有率の範囲の関係を示す図である。 【図3】F1、F2の成分量を算出するために用いた高 速液体クロマトグラフィーの説明図である。

【図2】

【図3】

