

EE092IU DIGITAL SIGNAL PROCESSING LABORATORY

Lab 4

Z TRANSFORM

Full name:
Student number:
Class:
Data

I. OBJECTIVES

Students know how to write m-file in Matlab to illustrate the properties of Z transform.

II. REQUIRED EQUIPMENT

- 1. Computer
- 2. Matlab software

III. INTRODUCTION

Just as with the Laplace transform for continuous-time signals and systems, the Z-transform provides a way to represent discrete-time signals and systems, and to process discrete-time signals. Although the Z-transform can be related to the Laplace transform, the relation is operationally not very useful. However, it can be used to show that the complex z-plane is in a polar form where the radius is a damping factor and the angle corresponds to the discrete frequency w in radians. Thus, the unit circle in the z-plane is analogous to the jw axis in the Laplace plane, and the inside of the unit circle is analogous to the left-hand s-plane. We will see that once the connection between the Laplace plane and the z-plane is established, the significance of poles and zeros in the z-plane can be obtained like in the Laplace plane.

The representation of discrete-time signals by the Z-transform is very intuitive—it converts a sequence of samples into a polynomial. The inverse Z-transform can be achieved by many more methods than the inverse Laplace transform, but the partial fraction expansion is still the most commonly used method. Using the one-sided Z-transform, for solving difference equations that could result from the discretization of differential equations, but not exclusively, is an important application of the Z-transform.

3.1. Mathematical Definition

The z transform of a discrete time signal is defined as:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
 (1)

Example 1: Compute the z-transform of the sequence $x(n) = [3,5,4,3], 0 \le n \le 3$

Commands	Results	Comments
syms z x0 = 3; x1 = 5; x2 = 4; x3 = 3; $xz = x0*(z^0) + x1*(z^-1) + x2*(z^2) + x3*(z^-3)$ pretty(Xz)	$3 + \frac{5}{z} + \frac{4}{z^2} + \frac{3}{z^3}$	<i>z</i> -Transform of the sequence $x[n]$.

An alternative and more elegant computation of the z-transform

Commands	Results	Comments
syms z x = [3 5 4 3]; n = [0 1 2 3]; $X = sum(x.*(z.^-n))$ pretty(X)	$3 + \frac{5}{z} + \frac{4}{z^2} + \frac{3}{z^3}$	Alternative way of computing the <i>z</i> -transform of the sequence $x[n]$.

Example 2: Compute the z-transform of the sequence $x(n) = 0.9^n u(n)$

Commands	Results	Comments
syms n z $x = 0.9^{n}$; $X = \text{symsum}(x.*(z.^{-n}),n,0,inf)$	X = 10 * z / (10 * z - 9)	The z-transform of the sequence $x[n] = 0.9^n u[n]$ is $X(z) = \frac{z}{z - 0.9}$.

In MATLAB, the z-transform F(z) of a sequence f(n) is computed easily by using the command ztrans. Moreover, the inverse z-transform of a function F(z) is computed by using the command iztrans.

Before using these two commands, the declaration of the complex variable z and of the discrete time n as symbolic variables is necessary. Recall that in order to define a symbolic variable, the command syms is used.

Example 3: Compute the z-transform of the sequence $f(n) = 2^n$

Commands	Results	Comments
<pre>syms n z f = 2^n; ztrans(f) simplify(ans)</pre>	ans = z/(z-2)	The z-transform of the sequence $f[n] = 2^n$.

Example 4: Compute the inverse z-transform of the function $F(z) = \frac{z}{(z-2)}$

Commands	Results	Comments
syms n z $F = z/(z-2);$ iztrans(F)	$ans = 2^n$	Inverse z-transform of the function $F(z) = \frac{z}{z-2}$.

Example 5: Using Partial Fraction Expansion of a Rational Function, express in the partial fraction form the signal which in the z-domain is given by

$$X(z) = \frac{z^2 + 3z + 1}{z^3 + 5z^2 + 2z - 8}$$

Commands	Results	Comments
A = [1 5 2 -8]; ro = roots(A)	ro=-4.0000 -2.0000 1.0000	The vector containing the coef- ficients of the denominator polynomial is defined and its roots are computed.
syms z $X = (z^2+3*z+1)/(z^3+5*z^2+2*z-8);$ $c1 = limit((z-ro(1))*X, z, ro(1))$ $c2 = limit((z-ro(2))*X, z, ro(2))$ $c3 = limit((z-ro(3))*X, z, ro(3))$	c1 = 1/2 c2 = 1/6 c3 = 1/3	The coefficients c_i are calculated according to Equation 10.27.

Example 6: Using Partial Fraction Expansion of a Rational Function, express in the partial fraction form the signal which in the z-domain is given by

$$X(z) = \frac{z^2 + 3z + 1}{z^3 - 3z + 2}$$

Commands	Results		Comments
$A = [1 \ 0 \ -3 \ 2];$ $rt = roots(A)$	rt=-2.0000 1 1.0000	L.0000	First, the roots of the denominator are calculated. The root $\lambda = 1$ is repeated two times. Notice that the coefficient of z^2 is zero and must be taken into account when formulating matrix A .
syms z $X = (z^2+3*z+1)/(z^3-3*z+2);$ $c_1 = limit((z-rt(1))*X,z,rt(1))$	$c_1 = -1/9$		The coefficient c_1 is computed according to the lower part of (10.29).
r = 2			In order to compute the coefficients c_2 and c_3 (that correspond to $i=1$ and $i=2$, respectively), we set $r=2$ as there are two repeated roots. First, we compute coefficient c_2 .
$f = ((z-1)^r) *X;$			Calculation of $(z - \lambda_1)^r X(z)$.
di = diff(f,z,r-1);			Calculation of $\frac{d^{r-i}[(z-\lambda_1)^rX(z)]}{dz^{r-i}}$.
<pre>fact = 1/factorial(r-1);</pre>			Calculation of $\frac{1}{(r-i)!}$. Notice that $i=1$ when calculating c_2 .
$c_2 = limit(fact*di,z,1)$	$c_2 = 10/9$		Coefficient c_2 is computed according to the upper part of (10.29).
<pre>di = diff(f,z,r-2); fact = 1/factorial(r-2); c₃ = limit(fact*di,z,1)</pre>	$c_3 = 5/3$		Coefficient c_3 is computed in the same way to c_2 , but here we set $i = 2$.

We also can use residue command

Commands	Results		Comments
num = [131]; den = [10-32]			The coefficients of numerator and denominator polynomials are defined as usual.
<pre>[R,P,K] = residue (num, den)</pre>	1.6667	1.1111	$X(z)$ is expressed in partial fraction form as $X(z) = \frac{-0.1111}{z+2} + \frac{1.1111}{z-1} + \frac{1.6667}{(z-1)^2}$, which is the same result as the one obtained by the analytical way.

3.2. Basic Properties of the Z Transform

Properties of the z-Transforms

_		
Property	<i>x</i> [<i>n</i>]	X(z)

1. Linearity ax[n] + by[n] aX(z) + bY(z)

2. Time-shifting x[n-m] $z^{-m}X(z) + z^{-m+1}x[-1] + \dots + z^{-1}x[-m+1] + x[-m]$

3. Frequency scaling $a^n x[n]$ $X\left(\frac{z}{a}\right)$

4. Time reversal x[-n] $X\left(\frac{1}{z}\right)$

5. Multiplication by n nx[n] $-z\frac{d}{dz}X(z)$

6. Multiplication by n^2 $n^n x[n]$ $z \frac{d}{dz} X(z) + z^2 \frac{d^2}{dz^2} X(z)$

7. Modulation

Multiplication by $e^{j\Omega_0 n}$ $e^{j\Omega_0 n} x[n]$ $X(e^{-j\Omega_0}z)$

Multiplication by $\cos \Omega n$ $(\cos \Omega n)x[n]$ $\frac{1}{2} \left[X(e^{j\Omega}z) + X(e^{-j\Omega}z) \right]$

Multiplication by $\sin \Omega n$ $(\sin \Omega n)x[n]$ $\frac{j}{2} \left[X(e^{j\Omega}z) - X(e^{-j\Omega}z) \right]$

8. Accumulation $\sum_{k=0}^{n} x[k] \qquad \frac{z}{z-1} X(z)$

9. Convolution x[n] * h[n] X(z)H(z)

10. Initial value $x[0] = \lim_{z \to \infty} X(z)$

11. Final value $x[\infty] = \lim_{z \to 1} (1 - z^{-1})X(z)$

Table 1: Z-transform property

3.3. Z Transform Pairs

Sequence	Transform	ROC
1. δ[n]	1	All z
2. u[n]	$ \frac{1}{1 - z^{-1}} \\ \frac{1}{1 - z^{-1}} $	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - a z^{-1}}$	z > 0

Table 2: Z-transform pairs

3.4 Using the z-Transform to Solve Difference Equations

Example 7: Find the solutions of the difference equation $y[n] + 0.5y[n-1] + 2y[n-2] = 0.9^n u[n]$, where y[n] = 0, n < 0

Solution:

We have:

$$Z\{y[n]\}=Y(z).$$

$$Z{y[n-1]} = z^{-1}Z{y[n]} = z^{-1}Y(z).$$

$$Z\{y[n-2]\} = z^{-2}Z\{y[n]\} = z^{-2}Y(z).$$

The computational procedure as follow:

- 1. Applying *z*-transform to both parts of the differential equation yields $Z\{y[n] + 0.5y[n-1] + 2y[n-2]\} = Z\{0.9^n u[n]\}.$
- 2. Due to the linearity property, we get

$$Z\{y[n]\} + 0.5Z\{y[n-1]\} + 2Z\{y[n-2]\} = \frac{z}{z-0.9},$$

where the *z*-transform pair $a^n u[n] \leftrightarrow \frac{z}{z-a}$ is used.

3. The z-transforms of y[n], y[n-1], and y[n-2] are substituted according to Equations 10.35 through 10.37, and the difference equation is converted to the algebraic equation

$$Y(z) = 0.5z^{-1}Y(z) + 2z^{-2}Y(z) = \frac{z}{z - 0.9}.$$

4. We solve the equation for Y(z) and get

$$Y(z) = \frac{z}{(z - 0.9)(1 + 0.5z^{-1} + 2z^{-2})} = \frac{z^3}{(z - 0.9)(z^2 + 0.5z + 2)}.$$

5. The solution y[n] of the difference equation is obtained by applying inverse z-transform to Y(z), i.e., $y[n] = Z^{-1}{Y(z)}$.

In Matlab:

Commands	Results	Comments
syms n z Y		Y(z) is denoted by Y.
X = ztrans(0.9 ⁿ ,z)		The z-transform of the right side of the difference equation is computed.
Y1=z^(-1)*Y;		The <i>z</i> -transform of $y[n-1]$, that is, $Z\{y[n-1]\}$ is defined according to (10.36). The result is assigned to variable $Y1$.
$Y2 = z^{(-2)} *Y;$		$Z\{y[n-2]\}$ is denoted by Y2 and is defined according to (10.37).
This is the crucial point of the equation and the whole left:		The term <i>X</i> is moved to the left side of the difference
G = Y + 0.5*Y1 + 2*Y2 - X;		The term G is a function of Y and z .
<pre>SOL = solve(G,Y); pretty(SOL);</pre>	$\frac{z^3}{(z-0.9)(z^2+0.5z+2)}.$	Using the command solve allows us to solve for Y. This is the solution of the differential equation expressed in the z-domain. The obtained solution is same as the analytically computed solution.
y=iztrans(SOL,n);		Applying inverse z -transform yields the solution $y[n]$ of the difference equation.

In order to confirm that y[n] is in fact the solution of the difference equation, y[n] is inserted to the difference equation, if it satisfies the difference equation, then it is indeed its solution

Commands	Results	Comments
yn1 = subs(y,n,n-1); yn2 = subs(y,n,n-2);		The terms $y[n-1]$ and $y[n-2]$ are computed from the derived sequence $y[n]$.
test = y+0.5*yn1+2*yn2-0.9 n ; test = simplify(test)	test = 0	The obtained sequence $y[n]$ is indeed the solution of the difference equation $y[n] + 0.5y[n-1] + 2y[n-2] = 0.9^n$.

PROCEDURE

Problem 1:

Express in partial fraction form the signal and determine x(n)

$$X(z) = \frac{12 - 38z^{-1} + 11z^{-2} + 3z^{-3} + 54z^{-4}}{1 - 5z^{-1} + 6z^{-2}}$$
$$X(z) = \frac{2z^{2} + z - 1}{z^{3} - 3z + 2}$$
$$X(z) = \frac{5 - 11z^{-1}}{1 - 5z^{-1} + 6z^{-2}}$$

Problem 2:

Compute of the Z-transform of the following sequence using the symbolic toolbox of MATLAB

$$h_1[n] = 0.8u(n)$$

$$h_2[n] = u[n] - u[n - 10]$$

$$h_3[n] = cos(\omega_0 n)u[n]$$

$$h_4[n] = h_1[n]h_3[n]$$

Problem 3:

Consider an FIR filter with impulse response

$$h(n) = \delta(n) + \delta(n-1) + \delta(n-2)$$

Find the filter output for an input

$$x(n) = \cos\left(\frac{2\pi n}{3}\right) \left(u(n) - u(n-14)\right)$$

Use the convolution sum to find the output, and verify your results with MATLAB.

Use z-transform to find the output

Problem 4:

Use z-transform to find the solution of the difference equations:

$$a/y[n] + 1.5y[n-1] + 0.5y[n-2] = x[n] + x[n-1], where x[n] = 0.8^{n} u[n]$$

b/
$$y[n] - y[n-1] = x[n] + x[n-1]$$
, where $x[n] = 0.8^{n} u[n]$

Plot the solution for 0 < n < 20.

Confirm your result by inserting the obtained solution in the difference equation.