

Capstone Project - 2

Team 4: Retail Sales Prediction

Content

- 1. Problem Statement
- 2. Data Summary
- 3. Analysis of Data
- 4. Feature Engineering
- 5. Data Preprocessing
- 6. Model Selection
- 7. Stacking

Problem Statement

- 1. Rossmann operates over 3000 drug stores in 7 European countries.
- 2. Rossmann Managers are tasked with predicting their sales for 6 weeks in advance.
- 3. The sales are influenced by many parameters and the task is to predict the sales based on the parameters.

Data Summary

The dataset spans over three years - 2013, 2014 and 2015. Below are few important features:

- 1. Customer: The Number of customers on a given day in a store.
- 2. State Holiday: Indicates a state holiday.
- 3. Store Type: Differentiate between 4 different store models.
- 4. Assortment : Describes an assortment level i.e a : basic, b : extra and c : extended.
- 5. Competition Distance : Distance in meters to the nearest competition store.

Data Summary (Contd.)

- 7. CompetitionOpenSince[Year/Month] :- Gives the approximate year and month of the time the nearest competitor is opened.
- 8. Promo :- Indicates whether a store is running a promo on that day.
- 9. Promo2: Indicates whether a store is continuing promotion.
- 10. Promo2Since[Year/Week] :- Gives the approximate year and calendar week of the time when the store started participating in Promo2.
- 11. PromoInterval: Describes an interval or name of months when the store runs Promo2.

Sales - Distribution

- 1. The Sales distribution lived up to the expectation with no irregularities.
- 2. It seems to be a perfect gaussian distribution with small positive skewness.

Sales VS Store Type

Weekly Sales Trend

Sales Trend over the years

Holiday Sales

How Competition affects Sales

Sales VS Competition Distance

Competition Distance Distribution

Sales and Promotions

Sales are increasing because of Promotion. Let's just go ahead with Promotion

EDA Conclusion

- 1. There are very few stores open on 'State Holiday' and they make a good profit on those days then any average day.
- 2. On School Holidays there is no large difference in sale. So promos running on School holidays can be reduced.
- 3. Sales for assortment type a and c seems to be less as compared to assortment type b.
- 4. At the start of month the sales increases. People might be planning to shop for the entire month in its beginning.

Feature Engineering

- 1. Extraction of Year, Month and Date from the Date column.
- 2. One hot encoding for Stateholiday, Storetype, Assortment and Promo Interval.
- 3. Creating Total Competition month as a new feature by using 'CompetitionOpenSinceYear' and 'CompetitionOpenSinceMonth'.
- 4. Creating Total Promotion Year and Total Promotion Week as new features by using 'Promo2SinceYear' and 'Promo2SinceWeek'.
- 5. Creating 'IsPromoMonth' as a new feature to account for whether a month is promotional or not using 'PromoInterval' feature.
- 6. Creating 'Average Sales' and 'Average Customers' columns and dropping the 'Customers' column.

Models Used So Far For Prediction

- 1. Linear Regression (Baseline Model)
- 2. Decision Tree Regressor
- 3. Random Forest Regressor
- 4. Light GBM

Feature Importance From Linear Regression

Feature Importance From Decision Tree

Feature Importance From Random Forest

Feature Importance From Light GBM

Let's Stack...

- 1. Even though Random forest gave a 92% R2-Score, but was overfitting on the train dataset.
- 2. Decision Tree Regressor, Random Forest Regressor and Light GBM participated in stacking to overcome the issue of overfitting.
- 3. XGBoost Regressor has been used as meta learning algorithm.
- 4. Finally overfitting was resolved with stacking.

Evaluation of Models

```
pu.Datarrame({ roughts : | Linear regression ,
# Model conclusion Df
Result df.set index('Models')
                   Train R2 score Test R2 score
                                                                                  Conclusion
           Models.
Linear regression
                                              74.00
                                                                            Simple base Model
                              73.99
  Decision Tree
                              93.92
                                              88.16
                                                                        a bit of overfitting model
 Random Forest
                              96.54
                                              92.46
                                                            Good Accuraccy, but a bit a overfitting
                                                       Good Model but comparitively low accuracy
       LGB
                              87.69
                                              87.77
     Stacked
                              92.31
                                              92.48 Optimal model with good accuracy and best fit
feature df = pd.merge(feature importances DTR, feature importances rf, left index=True, right
feature df = pd.merge(feature_df, feature_importances_LGB, left_index=True, right_index=True
```


Conclusion for features

Challenges

- 1. Handling large amount of sales data (10,17,210 observations on 13 variable).
- 2. Prediction of sales of individual stores(out of 1115) and most of stores have different pattern of sales.

Conclusion

- 1. Our final optimal model would be the stack model as it resolves the issue of overfitting and gives us an R2- score of 92%.
- 2. Moreover getting lowest RMSE value for stacked model.
- 3. Applied only three model for stacking. So there are scope of applying more algorithms like SVM, Principal Component Regression.