Linear Maps

2024年1月9日

目录

1	The Vector Space of Linear Maps	1
	1.1 Definition linear map	. 1

1 The Vector Space of Linear Maps

1.1 Definition linear map

A linear map form V to W is a function $T:V\Rightarrow W$ with the following peiperties:

- additivity: T(u+v) = Tu = Tv for all $u,v \in V$;
- homogeneity: $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in F$ and all $v \in V$;

1.2 Example lihnear maps

from R^3 to R^2 define $T \in L(R^3, R^2)$ by

$$T(x, y, z) = (2x - y + 3z, 7x + 5y - 6z)$$

from F^n to F^m

generalizing the previous example, let m and n be positive integers, let $A_{i,k} \in F$ for j=1,...,m and k=1,...,n and define $T \in l(F^n,F^m)$ by $T(x_1,...,x_n)=(A_{1,1}x_1+...+A_{1,n}x_n,...,A_{m,1}x_1+...+A_{m,n}x_n)$ actually every linear map from $F^n to F^m$ is of this form.

1.3 linear maps and basis of domain

Suppose $v_1,...,v_m$ is a basis of the V and $w_1,...,w_n\in W$. then there exists a unque linear map $T:V\to W$ sunch that

$$Tv_j = w_j$$

for each j = 1,...,n.