1 Aufgabe 7a

Zuerst werden die Werte aus 2 in einem Diagramm dargestellt. Dazu werden auch noch Fehlerbalken dargestellt, welche die Unsicherheit der Messwerte von \sqrt{N} anzeigen. Es sieht folgendermaßen aus:

1.1 Länge des Plateau-Bereichs

In diesem Diagramm ist ein Plateau zu erkennen. Es erstreckt sich von einer Spannung von 370V bis zu einer Spannung von 640V. Die Länge dieses Plateau-Bereichs beträgt also 270V.

1.2 Plateau-Steigung

Für die Plateau-Steigung wurde eine Ausgleichsrechnung mit der Python-Funktion " $curve_fit$ " aus "scipy.optimize", im Plateau-Bereich, durchgeführt. Dafür wurde eine Funktion der folgenden Form verwendet:

$$y = mx + n$$

Für die Parameter m und n ergibt sich:

Parameter	Wert	\pm Unsicherheit
m	1.151888	$\pm\ 0.223673$
\mathbf{n}	9584.29638	8 ± 114.390865

Dabei ist zu sagen, dass der Parameter m
 den Wert $\frac{1}{60Vs}$ und der Parameter n die Einheit $\frac{1}{60s}$ hat.

Die geforderte Plateau-Steigung ergibt sich durch folgende Gleichung:

$$PS = \frac{m}{60}$$
 Umrechnung auf 1/V
$$PS = \frac{m}{60} * 100\%$$

Die Plateau-Steigung in $\frac{\%}{100V}$ hat den Wert:

$$(1.9198 \pm 0.3728) \frac{\%}{100V}$$

2 Aufgabe 7c

Die Totzeit des Zählrohrs lässt sich mit der Zwei-Quellen-Methode durch folgende Formel bestimmen:

$$T = \frac{N_1 + N_2 - N_{1+2}}{2N_1 N_2}$$

Mit den Werten:

$$N_1 = (96041 \pm 309.9048) \frac{1}{120s} = (800.3 \pm 2.6) \frac{1}{s}$$

$$N_{1+2} = (158479 \pm 398.0942) \frac{1}{120s} = (1320.7 \pm 3.3) \frac{1}{s}$$

$$N_2 = (76518 \pm 276.6189) \frac{1}{120s} = (637.6 \pm 2.3) \frac{1}{s}$$

ergibt sich die Totzeit zu $(115 \pm 4)\mu s$.

3 Aufgabe 7d

Die Zahl der freigesetzten Ladungen pro einfallendem Teilchen lässt sich mit der folgenden Formel berechnen:

$$Z = \frac{I}{e_0 N}$$

Bei der Rechnung mit den Werten aus 3 ergeben sich die Folgenden Werte für Z:

U [V]	Z	$\pm \Delta Z$
350	190347943.7164	4 ± 31782654.8798
400	249785255.6062	2 ± 31322961.5228
450	425668000.0119	9 ± 30693787.9059
500	491893139.5496	6 ± 31128568.2739
550	612874025.3793	1 ± 31239706.1572
600	791374407.1782	2 ± 31424862.6028
650	832756380.8486	6 ± 30832368.7565
700	972955428.5987	7 ± 28502903.5459

Table 1: Freigesetzte Ladungen pro einfallendem Teilchen

Diese Werte werden nun zur Veranschaulichung graphisch dargestellt. Dafür werden sie gegen die Spannung in einem Diagramm aufgetragen. Außerdem werden die Unsicherheiten der einzelnen Werte in dem Diagramm als Fehlerbalken dargestellt. Das entstehende Diagramm ist das Folgende:

4 Diskussion

4.1 Länge des Plateau-Bereichs

Zur Länge des Plateau-Bereichs ist lediglich zu sagen, dass ein längerer Plateau-Bereich immer besser wäre. Das liegt daran, dass bei Spannungen, die außerhalb des Plateau-Bereichs liegen, entweder nicht richtig funktioniert oder zerstört wird. Ein Längerer Plateau-Bereich würde also einen größeren Arbeitsbereich des Zählrohrs liefern. Aufgrund fehlender Vergleichswerte kann an dieser Stelle jedoch keine Aussage darüber getroffen werden, ob der gemessene Plateau-Bereich nun lang oder kurz ist.

4.2 Plateau-Steigung

Ideal wäre hier wenn die Plateau-Steigung = 0 wäre. Dies ist aber, wie in der Theorie bereits erwähnt, praktisch nicht umsetzbar, da sich Nachentladungen nie vollständig vermeiden lassen und so immer eine gewisse Steigung entsteht. Auch sorgen hier gewissen Messfehler eventuell für eine stärkere Steigung. Die Steigung ist mit 2% pro 100 Volt aber im realistischen Bereich. Hier bleibt allerdings nur die Aussage, dass eine Steigung näher an 0 besser wäre, denn es fehlt ein Vergleichswert um eine genauere Bewertung vorzunehmen.

4.3 Totzeit

Bei der Totzeit gilt: Je kleiner diese ist, desto besser. Die gemessene Totzeit liegt im Breich von $100\mu s$ und weist einen sehr geringen Fehler von >4% auf. Da die Toteit sehr kurz und der Fehler gering ist, scheint die Bestimmung der Totzeit ein Erfolg gewesen zu sein, jedoch fehlt für eine genauere Bewertung auch hier der Vergleichswert.

4.4 freigesetzte Ladungen pro einfallendem Teilchen

Die freigesetzten Ladungen pro einfallendem Teilchen liefern sehr große Werte. Dies ist zu erklären mit dem Arbeitsbereich des Geiger-Müller Zählrohrs. Dieser liegt nämlich bei einer Anzahl von Elektronen-Paaren in der Größenordnung von 10 hoch 10. Damit sind die berechneten Werte im Bereich von 10 hoch 9 bis 10 hoch 10 durchaus im realistischen Bereich.

4.5 Fazit

Die Messunsicherheiten bleiben in einem akzeptablen Bereich und damit sind auch die entstehenden Fehler in Rechnungen eher gering. Dies liegt wahrscheinlich auch an einer Überlegung, die vor dem Experiment im Bezug auf den Aufbau gemacht wurde. So wurde die verwendete Tl-Quelle so plaziert, dass bei einer mittleren Zählrorhrspannung eine Zählrate von 100 Impulsen nicht überschritten wurde. Dies ist beim ablesen hilfreich, da nach 60 Sekunden ein Wert abgelesen werden muss und es wird sehr schwierig wenn dieser Wert sich sehr schnell ändert. Eine weitere Überlegung war immer erst nach 60 Sekunden abzulesen. Die Anzahl der gemessenen Impulse liegt dann im Bereich von

 $10000\ \mathrm{Impulsen}$ und dadurch fallen ungenauigkeiten beim Ablesen deutlich weniger ins Gewicht.

Die Durchführung des Experiments liefert realistische Werte, mit Abweichungen, die im Rahmen von den zu erwartenden Messunsicherheiten akzeptabel sind. Die zu betrachtenden Phänomene wie die Plateau-Steigung sind deutlich erkennbar und daher ist zu sagen, dass das Ziel des Experiments erfüllt wurde.

5 Tabellen

Spannung [V]	Impulse $[Imp/60s]$
320	9672
330	9689
340	9580
350	9837
360	9886
370	10041
380	9996
390	9943
400	9995
410	9980
420	9986
430	9960
440	10219
450	10264
460	10174
470	10035
480	10350
490	10290
500	10151
510	10110
520	10255
530	10151
540	10351
550	10184
560	10137
570	10186
580	10171
590	10171
600	10253
610	10368
620	10365
630 640	10224
	10338
650 660	10493 10467
670	10467
680	10040
690	11159
700	11547
	11011

Table 2: Gemessene Impulse bei verschiedenen Spannungen

Stromstärke [A]	Impulse $[Imp/60s]$
0.3	9837
0.4	9995
0.7	10264
0.8	10151
1.0	10184
1.3	10253
1.4	10493
1.8	11547

Table 3: Freigesetzte Ladungen pro einfallendem Teilchen Messwerte

6 Literaturangaben

Anleitung V703:

https://moodle.tu-dortmund.de/pluginfile.php/1502369/mod_folder/content/0/

V703.pdf?forcedownload=1 DantenHinweiseGeigerMueller:

https://moodle.tu-dortmund.de/pluginfile.php/1502369/mod_folder/content/0/

DatenHinweiseGeigerMueller.pdf?forcedownload=1