Movimiento Browniano

Ejercicios entregables - Semana 1

Lucio Santi lsanti@dc.uba.ar

10 de abril de 2017

Ejercicio. Este ejercicio es para caracterizar la σ -álgebra de Borel \mathcal{B} en $C([0,T],\mathbb{R})$.

- a) Sea (E,d) un espacio métrico separable y completo (polaco). Probar que todo abierto $U \subset E$ se puede escribir como unión numerable de bolas abiertas.
- b) Sea (E,d) un espacio métrico polaco. Probar que existen numerables bolas B_1, \ldots, B_n, \ldots tal que la σ -álgebra de Borel $\mathcal{B}(E)$ verifica

$$\mathcal{B}(E) = \sigma\left(\left\{B_n : n \in \mathbb{N}\right\}\right)$$

c) Para $\omega \in C([0,T],\mathbb{R})$ definimos $\pi_t(\omega) = \omega(t)$. Probar que $\pi_t : C([0,T],\mathbb{R}) \to \mathbb{R}$ es continua.

En $(C([0,T],\mathbb{R}),\|\cdot\|_{\infty})$ definimos la σ -álgebra de Kolmogorov,

$$\mathcal{K} = \sigma\left(\left\{\pi_t^{-1}(B) : t \in [0, T], B \in \mathcal{B}(\mathbb{R})\right\}\right)$$

- d) Probar que las bolas abiertas están en K.
- e) Probar que K = B.

Resolución.

a) Sea $U \subset E$ un conjunto abierto no vacío. Por ser (E,d) un espacio métrico separable, sabemos que existe $S = \{s_1, \ldots, s_n, \ldots\} \subset E$ numerable y denso tal que $U \cap S = V \neq \emptyset$. Podemos entonces escribir $U = V \cup W$, donde W es tal que no posee ningún subconjunto abierto (de lo contrario, un tal subconjunto X satisfaría $X \cap S \neq \emptyset$, de manera que $X \subset V$). Por ser U abierto, dado $w \in W$, se tiene que existe $\epsilon > 0$ tal que $B_{\epsilon}(w) \subset U$, de manera que debe existir por lo menos un $v \in V$ en $B_{\epsilon}(w)$ (de no ser así, $B_{\epsilon}(w) \subset W$, pero ya argumentamos que W no puede tener subconjuntos abiertos). Pero $v \in S$, lo cual significa que $v = s_i$ para cierto $i \in \mathbb{N}$. Por simetría de d, sabemos que $d(s_i, w) = d(w, s_i) < \epsilon \Rightarrow w \in B_{\epsilon}(s_i)$. Esta observación sugiere tomar en consideración las bolas

$$B_n = \{x \in E : d(s_n, x) < \epsilon_n\},$$

$$\epsilon_n = \sup \{d(s_n, w) : w \in W \land s_n \in B_{\epsilon}(w), \epsilon > 0\} \cup \{\epsilon_0\}$$

para cada $n \in \mathbb{N}$, en donde $\epsilon_0 > 0$ se introduce a los efectos de cubrir eventuales elementos de V que no fuesen alcanzados por ningún $w \in W$. Se tiene entonces que $U \subset \bigcup B_n^{-1}$.

¹Se ve claramente que mi argumento no utiliza la hipótesis de que (E,d) es completo. ¿Es realmente necesaria?

Ejercicio. (1.6 - Mörters y Peres). Sea $\{B(t): t \geq 0\}$ un movimiento browniano standard. Probar que, casi seguramente,

$$\lim_{t\to\infty}\frac{B(t)}{t}=0$$

Resolución. Sea $X_i = B(t-i+1) - B(t-i)$, $1 \le i \le \lfloor t \rfloor$. Por ser B un movimiento browniano, se tiene que $X_1, \ldots, X_{\lfloor t \rfloor}$ son variables aleatorias iid con $X_i \sim N(0, (t-i+1) - (t-i)) = N(0,1)$. Luego, valiéndonos de la Ley de los Grandes Números,

$$\frac{1}{|t|} \sum_{i=1}^{\lfloor t \rfloor} X_i \xrightarrow{\text{c.s.}} \mathbb{E}[X_i] = 0$$

cuando $t \to \infty$. A partir de la definición de X_i , tenemos:

$$\frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} X_i = \frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} B(t-i+1) - B(t-i)$$

$$= \frac{1}{\lfloor t \rfloor} (B(t) - B(r))$$

$$= \frac{B(t)}{\lfloor t \rfloor} - \frac{B(r)}{\lfloor t \rfloor}$$

$$\xrightarrow{\text{c.s.}} 0$$

con $r=t-\lfloor t \rfloor$. Pero $0 \le r < 1$, con lo cual $\frac{B(r)}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. De esto se desprende que necesariamente $\frac{B(t)}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. A su vez, esto implica que $\left| \frac{B(t)}{\lfloor t \rfloor} \right| = \frac{|B(t)|}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. Luego,

$$0 \le \frac{|B(t)|}{t} \le \frac{|B(t)|}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$$

Se ve entonces que $\left|\frac{B(t)}{t}\right| = \frac{|B(t)|}{t} \xrightarrow[t \to \infty]{} 0$, de lo que se puede concluir que $\frac{B(t)}{t} \xrightarrow[t \to \infty]{} 0$, que es lo que se prentedía demostrar².

²Dada $f: \mathbb{R} \to \mathbb{R}$ tal que $|f(x)| \underset{x \to \infty}{\longrightarrow} 0, -|f(x)| \le f(x) \le |f(x)| \Rightarrow f(x) \underset{x \to \infty}{\longrightarrow} 0.$