#### Steven Choi HW8

 $\underline{\mathbf{1.}} \quad \text{alpha} : p \rightarrow (q \rightarrow r)$ 

 $\neg p \lor (q \rightarrow r)$  : implication

 $\neg p \lor (\neg q \lor r)$  : implication

 $\neg$  (p  $\land$  q)  $\lor$  r : de Morgan's Law

 $\neg p \lor \neg q \lor r$ : distribute

beta :  $(p \land q) \rightarrow (q \rightarrow r)$ 

 $\neg (p \land q) \lor (q \rightarrow r)$  : implication

 $\neg(p \land q) \lor (\neg q \lor r)$  : implication

 $(\neg p \lor \neg q) \lor (\neg q \lor r)$ : de Morgan's Law

 $\neg p \lor \neg q \lor r$ : distribute

Knowledge Base:

$$\neg p, \neg q, r, \neg p \lor \neg q \lor r$$

remove complements of each other, then knowledge base = null;

proof by contradiction

proved that alpha = beta

### <u>2a</u>.

Child(x) = x is a child

Loves(x,y) = x loves y

Reindeer(x) = x is a reindeer

Rednose(x) = x has a red nose

```
Weird(x) = x is weird
```

Clown(x) = x is a clown

a. 
$$\forall$$
 x (Child(x)  $\rightarrow$  Loves(x, santa))

b. 
$$\forall x (Loves(x, Santa) \rightarrow \forall y (Reindeer(y) \rightarrow Loves(x, y)))$$

- c. Reindeer(Rudolph) ∧ Rednose(Rudolph)
- d.  $\forall x (Rednose(x) \rightarrow Weird(x) \lor Clown(x))$
- e.  $\neg \exists x (Reindeer(x) \land Clown(x))$
- f.  $\forall$  x (Weird(x)  $\rightarrow$  ¬ Loves(Scrooge, x))
- g. ¬ Child(Scrooge)

### <u>2b</u>.

Austinite(x) = x is a Austinite

Conservative(x) = x is conservative

Armadillo(y) = y is an armadillo

Loves(x,y) = x loves y

Wear\_shirt(x) = x wears a maroon-and-white shirt

Dog(x) = x is a dog

- <u>a.</u>  $\forall$  x (Austinite(x)  $\land$  ¬ Conservative(x)  $\rightarrow$   $\exists$  y (Armadillo(y)  $\land$  Loves(x, y)))
- **b.**  $\forall$  x (Wear Shirt(x)  $\rightarrow$  Aggie(x))
- $\underline{\mathbf{c}}$   $\forall$  x (Aggie(x)  $\rightarrow$   $\forall$  y (Dog(y)  $\rightarrow$  Loves(x, y)))
- <u>**d.**</u> ¬ ∃ x (( $\forall$  y (Dog(y)  $\rightarrow$  Loves(x, y)))  $\land$  ∃ z (Armadillo(z)  $\land$  Loves(x, z)))
- e. Austinite(Clem) ∧ Wear Shirt(Clem)
- $\underline{\mathbf{f}}$ .  $\exists x (Austinite(x) \land Conservative(x))$

```
<u>a.</u> Alice: \neg Murderer(alice) \rightarrow (Friends(barney, victor) \land \neg Friends(caddy, victor))
          Barney: ¬ Murderer(barney) → ¬ Friends(barney, victor)
          Caddy: ¬ Murderer(caddy) → Friends(barney, victor)
         b. \forall x \ \forall y \ Friends(x, y) \rightarrow (\neg \ Kill(x, y) \ \land \neg \ Kill(y, x))
          \forall x \forall y \neg Murderer(x) \land \neg Murderer(y)
          \forall x (Person(x) \land \neg Murderer(x)) \rightarrow \neg lie(x)
         c. (Murderer(alice) V Friends(barney, victor)) \land (Murderer(alice) \lor \neg
Friends(caddy, victor))
          Murderer(barney) V ¬ Friends(barney, victor)
          Murderer(caddy) V Friends(barney, victor)
          \negfriends(x, y) \lor \negkill(x, y) \land (\negfriends(x, y) \lor \negkill(y, x))
          ¬murderer(x) V ¬murderer(y)
          \neg person(x) V murderer(x) V \neglie(x)
         d. ∃x kill(x, victor)
         <u>e.</u> ¬ Murderer(caddy) \rightarrow (Friends(barney, victor) \land Friends(caddy, victor))
         f. No, it is not satisfiable.
          knowledge base after removing complements: murderer(alice),
murderer(barney), murderer(caddy)
```

as we see, the knowledge base is not null, therefore proved that the knowledge base is unsatisfied.

## 

Α

В

С

 $A \wedge B \Rightarrow D$ 

 $B \wedge D \Rightarrow F$ 

 $F \Rightarrow G$ 

 $\mathsf{A} \wedge \mathsf{E} \Rightarrow \mathsf{H}$ 

 $A \wedge C \Rightarrow E$ 

ΑΛС

 $A \wedge B$ 

Ε

D

 $A \wedge E$ 

ВΛЕ



Н

F

H is true.

# <u>b.</u>

 $\mathsf{P} \Rightarrow \mathsf{Q}$ 

 $\mathsf{E}\Rightarrow\mathsf{B}$ 

 $\mathsf{R} \Rightarrow \mathsf{Q}$ 

 $M \wedge N \Rightarrow Q$ 

 $A \wedge B \Rightarrow P$ 

 $A \Rightarrow M$ 

 $C \Rightarrow M$ 

 $\mathsf{D} \Rightarrow \mathsf{N}$ 

D

Α

Μ

Ν

 $M \wedge N$ 

Q:Qistrue



## 

### <u>a.</u>

BOS and NY: 156.43

(BOS, NY) & DC: 249.79

DEN & SLC: 371.59

SF & LA: 542.14

(BOS, NY, DC) & ATL: 577.29

(SF, LA) & (SLC, DEN): 577.29

(BOS, NY, DC, ATL) & MIA: 598.5

(SF, LA, SLC, DEN) & SEA: 677.1

Final Cluster: 1215.87



## <u>b.</u>

(MIA, ATL, BOS, NY, DC) (DEN, SLC, SF, LA) (SEA)

## <u>5b.</u>

a.

| City | Distance x | Distance y | Cluster |
|------|------------|------------|---------|
| BOS  | 20.371     | 31.448     | 1       |
| NY   | 18.025     | 28.511     | 1       |
| DC   | 17.094     | 24.662     | 1       |
| MIA  | 26.109     | 20.241     | 2       |
| SLC  | 23.754     | 16.070     | 2       |
| SEA  | 32.389     | 28.409     | 2       |

| SF  | 34.621 | 23.719 | 2 |
|-----|--------|--------|---|
| LA  | 32.374 | 18.656 | 2 |
| DEN | 18.196 | 10.913 | 2 |

b.

| City | New coordinate x | New coordinate y |
|------|------------------|------------------|
| BOS  | 46.2             | 80.55            |
| NY   | 45.85            | 82               |
| DC   | 44.45            | 83.5             |
| MIA  | 27.9             | 90.1             |
| SLC  | 35.4             | 105.95           |
| SEA  | 38.8             | 111.15           |
| SF   | 33.9             | 111.2            |
| LA   | 32.05            | 109.1            |
| DEN  | 34.85            | 102.5            |
| ATL  | 31.85            | 92.15            |

c.

| City | Distance x | Distance y |
|------|------------|------------|
| BOS  | 10.18541   | 25.31289   |
| NY   | 9.012353   | 23.9838    |
| DC   | 8.547076   | 21.93291   |
| MIA  | 22.10023   | 10.12028   |
| SLC  | 21.62319   | 8.035079   |

| SEA | 23.93246 | 14.20431 |
|-----|----------|----------|
| SF  | 26.62048 | 11.8596  |
| LA  | 26.21092 | 9.328049 |
| DEN | 19.64109 | 5.456418 |
| ATL | 18.2769  | 8.065048 |

Cluster 1 : BOS, NY, DC

Cluster 2: MIA, SLC, SEA, SF, LA, DEN, ATL