Stacking

feature1	feature2	feature3	prediction

Step 1: Split training data to n folds

feature1	feature2	feature3	prediction

Step 1: Split training data to k folds In this case let's assume k=3, so the training data will be split to 3 subset

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

Fold 1:

training data: subset1 subset2

Testing data:

subset3

We can use 2 subsets for training and 1 subset for testing

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

We can use 2 subsets for training and 1 subset for testing

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

We can use 2 subsets for training and 1 subset for testing

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

We can use 2 subsets for training and 1 subset for testing

Step 2: train models and make prediction

feature1 feature2 feature3 prediction

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

We can use 2 subsets for training and 1 subset for testing

Step 2: train models and make prediction

For each fold, we have training data and testing data

subset1

subset2

subset3

feature1 feature2 feature3 prediction

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

We can use 2

subsets for

training and

1 subset for

testing

Assuming that we have the above training dataset (e.g., 14 samples, 3 features)

Then we apply testing data to the trained model and get the prediction

Step 1: Split training data to k folds
In this case let's assume k=3, so the training data will be split to 3 subset

Fold 1:

training data:

Testing data: subset3

subset1

subset1

subset2

subset3

Fold 2:

training data:

Testing data:

We can use 2 subsets for training and

). Note:

Fold 3:

- training
- Testing (

Step 2: train models and make prediction For each fold, we have training data a For example, for Fold1, we train 3 mo

Then we apply testing data to the trained moc and get the prediction

Note that the predictions here are a matrix, for example, if subset3 only have one sample, then we have

Step 1: Split training data to k folds In this case let's assume k=3, so the training data will be split to 3 subset

Fold 1:

training data: subset1

Testing data:

Fold 2:

training data:

Testing data: sul

We can use 2 subsets for training and

13.

Fold 3:

- training
- Testing (

Step 2: train models and make prediction

For each fold, we have training data a

For example, for Fold1, we train 3 mo

Then we apply testing data to the trained moc and get the prediction

Note that the predictions here are a matrix, for example, if subset3 only have one sample, then we have

subset2

subset3

subset3

subset1

if subset3 have 3 sample, then we have the prediction as

Step 3: we go through "step 2" for the rest fold2 and fold3, and we "stack" the predictions together

Step 3: we go through "step 2" for the rest fold2 and fold3, and we "stack" the predictions together

Step 4: Then we attach the "truth" from the testing dataset to the predictions

Prediction from RF

Prediction from AB

Prediction from LR

Prediction fr three models:
RF, AB and LR

"truth"

Step 3: we go through "step 2" for the rest fold2 and fold3, and we "stack" the predictions together

Step 4: Then we attach the "truth" from the testing dataset to the predictions

Step 5: We can use another model to "train" this new dataset

So if we have new testing data,

- first it will go through RF, AB and LR as usual
- Then we will have a prediction containing three individual predictions
- These 3 predictions will be treated as a completely new dataset, and being used in the "final" model to make the "final prediction"

Step 3: we go through "step 2" for the rest fold2 and fold3, and we "stack" the predictions together

Step 4: Then we attach the "truth" from the testing dataset to the predictions

Step 5: We can use another model to "train" this new dataset

