The Effect of Climate Change and Regulations on Fishers Portfolios:

Substitution between Coastal Pelagic Species

Felipe J. Quezada UC Santa Cruz & NOAA Southwest Fisheries Science Center November 3rd, 2021

California Current System

- 1. Unique ecosystem
 - Ecosystem services,
 - Sustains commercial and recreational fisheries
 - Protected species.
- 2. Climate is changing:

- 3. Changes in species distribution and regulations
- 3. Changes in species distribution and regulations

Research Question

• Big picture:

How will climate change impact fishing communities?

• Specific question:

• How does changes in species distribution and regulations (i.e. closures) will affect catch composition and landings in the *Coastal Pelagic Species (CPS)* fishery?

• Two approaches:

- Landing model (result for the public aggregate data):
- Participation model (no results yet).

Landing model

Landing model

- Hierarchical Bayesian Hurdle model
 - Uncertainty from modeling and observation. All parameters are random variables
 - Multilevel effects (i.e. hierarchical effects by ports).
 - Incorporate previous knowledge as a prior (Smith et al., 2020).
 - Hurdle part allows to model the zeros.

Landing model

- Separate model for:
 - Pacific sardine, Northern anchovy and Market squid.
- Interaction between species
 - Through the probability of presence (SDMs outputs)

Landing model: Bayesian framework.

• In general, our Bayesian models have the following structure:

$$[heta_i|q_{i,t}] \propto f\left(q_{i,t}| heta_i
ight) imes [heta_i]$$

- \circ where $q_{i,t}$ is the observed landings of the corresponding species in port $i \in (1,\ldots,L)$ at year t,L is the total number of port, and θ_i are the parameters (i.e. random-coefficients) to be estimated at the port level.
- The distribution $f\left(q_{it}| heta_{j}
 ight)$ can be rewritten as:

$$f\left(q_{it}| heta_i
ight) = egin{cases} p_{it} & ext{if} & q_{it} = 0 \ \left[1-p_{it}
ight] ext{gamma}\left(q_{it}|rac{\mu_{it}^2}{\sigma^2},rac{\mu_{it}}{\sigma^2}
ight) & ext{if} & q_{it} > 0. \end{cases}$$

 \circ where $ext{logit}(p_{it}) = \mathbf{X} \gamma_{\mathbf{i}}$ and $\mu_{it} = \mathbf{X} eta_{\mathbf{i}}$.

Landing model: Bayesian framework.

• Specifically μ_{it} is defined as the following:

$$egin{aligned} \mu_{it} = & eta_i^0 + eta_i^1 Pr(Prec.\,PSDN)_{it} \ & + \ eta_i^2 Pr(Prec.\,MSQD)_{it} \ & + \ eta_i^3 Pr(Prec.\,NANC)_{it} \end{aligned}$$

- where Pr(Prec) is the probability of presence. $\operatorname{logit}(p_{it})$ follows the same structure.
- Other variables:
 - Annual Catch Limits (ACL)
 - Closure
 - Prices by port
 - Average distances traveled (To be included)
 - Fuel cost (To be included)

Port radious is used to compute presence.

Participation model

Participation model

<< No results yet! >>

- Effect of abundance/closure in seasonal participation.
- ullet We model the probability p_{ijm} that vessel i fishes species j in month m as:

$$egin{aligned} ext{logit}(p_{ijy}) = & eta_1 + eta_2 Closure + eta_3 Mean. \, revenue_j + eta_4 Expected Catch_j \ & + eta_5 HHI_i + eta_6 Percent. \, revenue_j + eta_7 LCG_i + eta_8 LI_i \ & + eta_9 Year. \, fished. \end{aligned}$$

- From (Richerson & Holland, 2017):
 - HHI = Diversification measurement
 - Percent.revenue = Dependence on the species in consideration
 - Latitudinal center of gravity (LCG) = Typical landings location
 - Latitude inertia (LI) = Dispersion around center of gravity

Results

Results: Effect of presence

Results: Interaction effects on PSDN

Results: Interaction effects on MSQD

Results: Interaction effects on NANC

Results: Pacific sardine closure

Conclusions

Conclusions

- 1. Slightly positive effect on presence on landings.
- 2. Substitution between market squid and Pacific sardine.
 - It seems that Pacific sardine is more preferred than market squid.
- 3. Northern anchovy is less preferred.
 - Exit when sardine abundance is high or low.
- 4. Closure reduce market squid landings. Participation decrease?
- 5. More in details on constraints

Future work

Future work

- Incorporate individual data for landings.
 - Vessels landings? or port landings?
- Estimate participation model.
- Forecast using SDM projections.
- Study changes on effort? (number of trips by species)
- Other project:
 - Discrete choice model
 - 1. Daily information for landings.
 - 2. Global Fishing Watch.
 - 3. Decision where and what to fish.
 - 4. Forecast future fleet movements.

Thank you for your attention!

felipequezada.com

★ felipe.quezada@noaa.edu

Postdoctoral Scholar, UC Santa Cruz & NOAA-SWFSC