Tema III - Ex. 3

Ichim Teodora & Radu Mihai-Emilian - 2B1

Universitatea Alexandru Ioan Cuza Iasi, Facultatea de Informatica

a) G nu este 2 ring \implies

$$\begin{cases} 1) & \forall \ v, \ d(v) \ par \ si \ m \ par \\ 2) & \exists \ v \ astfel \ incat \ d(v) \ impar \end{cases} \tag{1}$$

1) \forall v, d(v) par, G conex \implies G admite un ciclu eulerian

Mergand pe ciclu, coloram alternativ muchiile cu rosu si albastru. Muchia v_1v_p este albastra deoarece m este par. Consideram un varf v arbitrar si ne uitam la toate aparitiile lui in ciclu. Pentru fiecare astfel de aparitie \exists o muchie si una albastra \Longrightarrow nr de muchii rosii incidente cu v = numarul de muchii albastre incidente cu v.

$$\implies |c_w^{-1}(R) - c_w^{-1}(A)| = 0 \implies$$
 G admite o 2 - colorare-fair

2) \exists nr par de noduri de grad impar.

Fie $u_1, u_2, ..., u_{2k}$ multimea acestor noduri.

Grupam nodurile 2 cate 2 cu $(u_1u_2), (u_3u_4)...(u_{2k-1}u_{2k})$ si adaugam cate o muchie intre nodurile grupate (k-muchii). \Longrightarrow fiecare nod are grad par, G' conex \Longrightarrow G' admite un ciclu eulerian.

i)m par \Longrightarrow procedam ca la (1) \Longrightarrow obtinem o colorare 2-colorare-fair $c_v^{-1}(R)=c_v^{-1}(A)\;\forall\;v\epsilon V$

Deoarece $v\epsilon V$ se elimina maxim o muchie incidenta cu el $\Longrightarrow |c_v-1-c_v^{-1}(A)|\leq 1$

ii) m impar \implies procedam ca la (2) doarca muchia $v_m v_1$ o sa fie de aceeasi culoare cu muchia $v_1 v_2$.

Fara a restrange generalitatea presupunem ca v_1v_2 este o muchie adaugata de noi, deci va fi eliminata.

Pentru $\forall v \in V \setminus \{v_1\}$ inecuatia este adevarata folosind (i).

Pentru v_1 initial diferenta este 2, nr muchii rosii = 2+nr muchii albastre

Singura muchie eliminata incidenta cu v_1 este v_1v_2 care este rosie \implies diferenta devine 1.

 $din (1,2) \implies G admite o 2-colorare-fair.$

b) Presupunem ca G admite o p-colorare-fair.

Aratam ca $\forall v \in V, |c_v^{-1}(h) - c_v^{-1}(k)| = 0 \ \forall 1 \le h, k \le p.$

Fie
$$k_i(v) = |c_v^{-1}(i)|, i = 1, 2, ..., p$$

Fie v un nod arbitrar, fara a restrange generalitatea, consideram $k_i(v) \le k_2(v) \le \dots \le k_p(v)$ (*)

Presupunem ca $k_p(v) \neq k_1(v)$ si cum G admite o p-colorare-fair $\implies k_p(v) = 1 + k_1(v)$

⇒ In (*)∃ r valori egale cu $k_1(v)$ si p-r valori egale cu $k_1(v)+1$, $1 \le r \le p-1$ $d(v)=k_1(v)+k_2(v)+...+k_p(v)=r \times k_1(v)+(p-r)(k_1(v)+1)=p \times k_1(v)+p-r$, p-r $\in \{1, \, \, , \, p\text{-}1\}$

 $\implies p \not\mid d(v) \implies$ G nu este p-ring

Contradictie! $\implies k_1(v) = k_p(v) \implies k_1(v) = k_2(v) = \dots = k_p(v)$

$$2m = \sum_{v \in V} d(v) = \sum_{v \in V} \sum_{i=1}^{p} k_i(v) = \sum_{v \in V} p \times k_1(v) = p \times \sum_{v \in V} k_1(v)$$

$$2m = p \times 2 \times nr_1$$

 nr_1 =nr muchii colorate cu culoarea 1 din G.

$$m = p \times nr_1 \implies p|m \implies$$

G nu admite o p-colorare-fair.