

Intégrer un automate M340 ou TSX Premium dans un système Schneider Electric (Unity Pro)

- 05 - Unity Pro: présentation des données

1.	PRES	SENTATION GENERALE DES DONNEES	3
2.	LES F	AMILLES DE TYPES DE DONNEES	4
		INTRODUCTION	
		LES VARIABLES	
		LES FONCTIONS	
		LES FONCTIONS ELEMENTAIRES (EF)	
		LES BLOCS FONCTIONS ELEMENTAIRES (EFB)	
		LES BLOCS FONCTIONS DERIVES (DFB)	
3.	PRÉS	SENTATION DES INSTANCES DE DONNÉES	10
_		INTRODUCTION	
	_	LES ADRESSES NON LOCALISEES	
		LES ADRESSES LOCALISEES	
		EXEMPLES	
		ALLOCATION MÉMOIRE DES INSTANCES	
4.	PRÉS	SENTATION DES RÉFÉRENCES DE DONNÉES	12
		INTRODUCTION	
		RÉFÉRENCES DE DONNÉES POSSIBLES SELON LE TYPE DE DONNÉES	

1. PRESENTATION GENERALE DES DONNEES

□ GENERALITES

- √ Une donnée désigne un d'objet qui peut être instancié tel que:
 - une variable,
 - un bloc fonction.
- √ Les données sont définies en trois phases qui sont:
 - la phase TYPES de DONNÉES, dans laquelle est précisée :
 - sa catégorie,
 - son format.
 - la phase INSTANCES de DONNÉES, dans laquelle est défini son emplacement mémoire et sa propriété qui est:
 - · localisée ou
 - non localisée.
 - la phase RÉFÉRENCES de DONNÉES, dans laquelle est défini son moyen d'accès :
 - par valeur immédiate,
 - par nom,
 - par adresse.

- √ Instancier une donnée consiste à partir de son type à lui allouer un emplacement mémoire.
- √ Référencer une donnée consiste à lui définir une référence (nom, adresse, etc...)
 permettant de l'atteindre en mémoire.

2. LES FAMILLES DE TYPES DE DONNEES

■ INTRODUCTION

- √ Un **type de donnée** est une information logicielle qui spécifie pour une donnée :
 - sa structure,
 - son format,
 - la liste de ses attributs,
 - son comportement.
- ✓ Ces propriétés sont partagées par toutes les instances du type de donnée.
- √ Les familles de types de données sont classées dans différentes catégories:

☐ LES VARIABLES

- √ Une variable permet d'identifier des objets de données.
- √ Son contenu est défini par:
 - 1 NOM (32 caractères maximum),
 - > 1 TYPE

	ТҮРЕ	DESIGNATION	EXEMPLE
IODDT	IO Derived Data Type	Données d'Entrées/Sorties dérivées Variable associée à plusieurs éléments d'un module d'entrées/sorties	Eléments nécessaires au diagnostic d'une voie analogique
DDT	Derived Data Type	Donnée Dérivée ou personnalisée pour une variable associée à plusieurs éléments	Tableau de données
EDT	Elementary Data Type	Donnée élémentaire	Temporisation, compteur, variable interne

- > 1 ADRESSE ou 1 NOM (non obligatoire)
- > 1 VALEUR INITIALE (non obligatoire)
- > 1 COMMENTAIRE (non obligatoire)

2. LES FAMILLES DE TYPES DE DONNEES

☐ LES FONCTIONS

- √ Les blocs fonctions sont des entités contenant:
 - des variables d'entrées et de sorties servant d'interface avec l'application,
 - un algorithme de traitement exploitant les variables d'entrées et renseignant les variables de sorties,
 - des variables internes privées et publiques exploitées par l'algorithme de traitement.

2. LES FAMILLES DE TYPES DE DONNEES

■ LES FONCTIONS

ТҮРЕ		DESIGNATION	EXEMPLES
EF	Elementary Function	Fonction Elémentaire Fonction logicielle prédéfinie qui n'a pas d'information d'état interne L'algorithme est écrit par le constructeur	Comparaison, fonctions logiques EQ AND EN ENO - EN ENO - IN1 OUT - IN1 OUT - IN2
EFB	Elementary Function Blocks	Blocs Fonctions Elémentaires Fonction logicielle prédéfinie qui possède des états et des paramètres internes L'algorithme est écrit par le constructeur	Compteurs, temporisations FBI 1 CTD EN ENOEN ENOEN ENOIN QID - PT ETPV CV -
DFB	Derived Function Blocks	Blocs Fonctions Dérivés Fonction logicielle prédéfinie qui possède des états et des paramètres internes L'algorithme est écrit en langage d'automatismes (IL, LD, ST, FBD)	Alarmes, diagnostic

2. LES FAMILLES DE TYPES DE DONNEES

□ LES FONCTIONS ELEMENTAIRES (EF)

√ DEFINITION

- > Elément, utilisé dans un programme, qui réalise une fonction logicielle prédéfinie.
- Une fonction élémentaire EF ne dispose pas d'information d'état interne. Plusieurs appels de la même fonction à l'aide des mêmes paramètres d'entrées fournissent toujours les mêmes valeurs de sortie.

√ UTILISATION

lcône associé aux Fonctions Elémentaires dans les bibliothèques:

Les fonctions élémentaires sont accessibles depuis la bibliothèques et sont classés selon différentes familles:

Les fonctions élémentaires ne sont pas instanciables.

2. LES FAMILLES DE TYPES DE DONNEES

■ LES BLOCS FONCTIONS ELEMENTAIRES (EFB)

√ DEFINITION

- > Bloc, utilisé dans un programme, qui réalise une fonction logicielle prédéfinie.
- > Un bloc fonction élémentaire EFB possède des états et des paramètres internes.

√ UTILISATION

- Icône associé aux Blocs Fonctions Elémentaires dans les bibliothèques:
- Les blocs fonctions élémentaires sont accessibles depuis la bibliothèques et sont classés selon différentes familles:

- Les EFB sont obligatoirement instancés. Un espace en mémoire est alloué au bloc dont la taille varie suivant le type de bloc.
- Exemple:

2. LES FAMILLES DE TYPES DE DONNEES

■ LES BLOCS FONCTIONS DERIVES (DFB)

√ DEFINITION

- Bloc, développé en langage d'automatisme par l'utilisateur, qui répond à une spécificité de l'application.
- > Les blocs fonctions dérivés DFB permettent de structurer et d'optimiser l'application.

√ UTILISATION

- lcône associé aux Blocs Fonctions Dérivés dans les bibliothèques:
- Les blocs fonctions dérivés sont accessibles depuis la bibliothèques et sont classés selon différentes familles:

3. PRÉSENTATION DES INSTANCES DE DONNÉES

□ INTRODUCTION

- √ Une instance de données est une entité fonctionnelle individuelle, qui possède toutes les caractéristiques du type de données duquel elle dépend.
- ✓ Une ou plusieurs instances peuvent être rattachées à un type de données.
- √ L'instance de données peut avoir une allocation mémoire :
 - > non localisée ou
 - Localisée

☐ LES ADRESSES NON LOCALISEES

- L'emplacement mémoire de l'instance est alloué automatiquement par le système, il peut changer à chaque génération de l'application.
- ✓ La variable est définie par:
 - > 1 NOM choisi par l'utilisateur
 - > 1 TYPE
 - 1 VALEUR INITIALE
 - 1 COMMENTAIRE

■ LES ADRESSES LOCALISEES

- ✓ L'emplacement mémoire de l'instance est fixe, il est prédéfini et ne change jamais.
- √ La variable est définie par:
 - > 1 NOM choisi par l'utilisateur
 - 1 ADRESSE définie par le constructeur
 - > 1 TYPE
 - > 1 VALEUR INITIALE
 - > 1 COMMENTAIRE

☐ EXEMPLES

Variables localisées Valeur Commentaire Nom Adresse M MANU WOR %MW1 Commandes manuelles M_PRISE BOOL mémoire "prise de la pièce" BOOK %MW1.12 M_TEST Commande de tous les voyants ROOL Mag_vide Magasin vide **EBOOL** %10.2.8 Sélection "marche manuelle" Manu Variables non localisées

3. PRÉSENTATION DES INSTANCES DE DONNÉES

□ ALLOCATION MÉMOIRE DES INSTANCES

4. PRÉSENTATION DES RÉFÉRENCES DE DONNÉES

☐ INTRODUCTION

- √ Une référence de donnée permet à l'utilisateur d'accéder à l'instance de cette donnée :
 - par valeur immédiate, uniquement pour les données de type EDT,
 - par adressage, uniquement pour les données de type EDT,
 - par nom (symbole), pour tous les types de données EDT, DDT, EFB, DFB ainsi que les objets SFC.

☐ RÉFÉRENCES DE DONNÉES POSSIBLES SELON LE TYPE DE DONNÉES

