Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

ОТЧЁТ

по курсовой работе

Дисциплина: Программирование микро	контроллеров для	и управления
роботами		
Тема: Разработка материнской платы		
Студент гр. 3331506/70401	<подпись>	Я. А. Шкабара
Преподаватель	<подпись>	Д. А. Капустин
		2021
	« »_	2021 г.

Санкт-Петербург 2021

СОДЕРЖАНИЕ

Задание на курсовую работу	3
Структура материнской плат	ъ
1 Преобразователь напряжен	ия5
1.1 Описание микросхемы	TPS54360BDDA5
1.2 Расчет частоты перекл	ючений транзистора и резистора на выводе
RT/CLK	
1.3 Расчет минимальной и	ндуктивности и пикового тока через неё 8
1.4 Расчет емкости выходн	ого конденсатора9
1.5 Расчет емкости входно	го конденсатора10
1.6 Выбор конденсатора на	а выводе ВООТ10
1.7 Расчет резисторов на в	ыводе FB 10
1.8 Расчет компенсирующи	их компонентов11
1.9 Выбор защитных комп	онентов13
2 Преобразователь интерфей	сов UART – RS-232 14
2.1 Описание микросхемы	MAX3221ECDB
2.2 Выбор элементов обвят	зки MAX3221ECDB16
3 Преобразователь интерфей	сов USB – UART 18
3.1 Описание микросхемы	CP2103-GM18
3.2 Выбор элементов обвят	зки CP2103-GM20
4 Датчик температуры	22
5 Пьезодинамик	24
6 Разъемы	25
СПИСОК ЛИТЕРАТУРЫ	26

Задание на курсовую работу

Разработать материнскую плату на базе компьютера Raspberry Pi 4. Плата должна обмениваться данными с платой управления через интерфейс RS-232, а также должна быть оснащена следующими разъемами для подключения внешних устройств:

- 1. HDMI (2 штуки);
- 2. Слот под SD-карту;
- 3. USB 2.0 (2 штуки);
- 4. Ethernet 100 Mb.

Кроме того, на плате должны быть установлены датчик температуры и динамик и реализован вывод отладочной информации с Raspberry Pi 4 через UART.

Питание платы осуществляется от напряжения 24 В.

Структура материнской платы

При разработке платы было принято решение использовать готовый модуль Raspberry Pi 4 Model B [1], поскольку он обладает требуемыми по заданию разъемами.

Поскольку Raspberry Pi 4 питается от напряжения 5 В при силе тока 3 А, необходим DC/DC преобразователь 24/5 В. Этот преобразователь реализован на базе схемы TPS54360BDDA [2].

В Raspberry Pi 4 нет встроенного интерфейса RS-232, поэтому используется преобразователь UART-RS-232 на базе схемы MAX3221ECDB [3].

Для возможности получения отладочной информации другим компьютером, используется преобразователь USB-UART на базе микросхемы CP2103-GM [4]

Используется датчик температуры HDC1080DMBR [5], поскольку он питается от напряжения 3.3 В, что является выходным напряжением для пинов Raspberry Pi 4.

В качестве динамика используется PKLCS1212E4001 [6], так как он крепится на плате поверхностным монтажом.

1 Преобразователь напряжения

1.1 Описание микросхемы TPS54360BDDA

TPS54360BDDA — это понижающий преобразователь напряжения со встроенным МОП-транзистором. Характеристики микросхемы представлены в таблице 1.

Таблица 1 – Характеристики микросхемы TPS54360BDDA

Параметр		Значение
V_{IN}	Входное напряжение, В	От 4.5 до 60
V_{OUT}	Выходное напряжение, В	От 0.8 до 58.8*
I_{SW}	Номинальный ток, А	3.5
F_{SW}	Частота переключения, МГц	От 0.1 до 2.5
T_{J}	Рабочая температура, °С	От -40 до 150

^{*} Выходное напряжение должно превышать входное

На рисунке 1 представлена схема микросхемы TPS54360BDDA в корпусе HSOIC-8 с указанием выводов.

Рисунок 1 – Расположение выводов микросхемы TPS54360BDDA

Назначение каждого из выводов описано в таблице 2.

Таблица 2 – Описание выводов микросхемы TPS54360BDDA

Вывод	Название	Описание		
1	ВООТ	Между ВООТ и SW требуется конденсатор. Если напряжение на этом конденсаторе ниже минимума, необходимого для работы МОПтранзистора, выход отключается до тех пор, пока конденсатор не обновится.		
2	V_{IN}	Входное напряжение питания.		
3	EN	Контакт включения с подтяжкой вверх. Для отключения необходимо опустить напряжение на этом контакте ниже 1.2 В.		
4	RT/CLK	Резистор, подключенный к этому выводу, определяет частоту переключения транзистора.		
5	FB	К этому выводу подключается делитель напряжения, задающий выходное напряжение.		
6	COMP	К этому выводу подключаются компоненты частотной компенсации.		
7	GND	Земля.		
8	SW	Исток полевого транзистора.		
9	PowerPAD	Термопад, предназначенный для более качественного охлаждения микросхемы.		

На рисунке 2 изображена микросхема TPS54360BDDA с элементами обвязки.

Рисунок 2 – Элементы обвязки микросхемы TPS54360BDDA

1.2 Расчет частоты переключений транзистора и резистора на выводе RT/CLK

Максимальная частота переключений транзистора $f_{SW(max)}$, Γ ц определяется по формуле

$$f_{SW(max)} = \frac{1}{t_{ON}} \cdot \left(\frac{I_{OUT} \cdot R_{dc} + V_{OUT} + V_d}{V_{IN} - I_{OUT} \cdot R_{DS(ON)} + V_d} \right), \tag{1}$$

где t_{ON} — минимальное время включения, с; I_{OUT} — сила тока на выходе, A; R_{dc} — сопротивление катушки индуктивности, Ом; V_{OUT} — напряжение на выходе, B; V_d — падение напряжения на диоде, B; V_{IN} — напряжение на входе, B; $R_{DS(ON)}$ - сопротивление транзистора, Ом.

Согласно документации на микросхему $t_{ON} = 135 \, \mathrm{hc}, \; R_{DS(ON)} = 92 \, \mathrm{mOm}.$

Выбираем катушку XAL1510-682МЕВ ($R_{dc}=4.17$ мОм, L=6.8 мкГн) и диод SL43-E3/57Т ($V_d=0.42$ В).

Из требований к питанию платы и Raspberry Pi 4 Model B $I_{OUT}=3$ A, $V_{OUT}=5$ B, $V_{IN}=24$ B.

По формуле (1) получаем

$$f_{SW(max)} = \frac{1}{135 \cdot 10^{-9}} \cdot \left(\frac{3 \cdot 4.17 \cdot 10^{-3} + 5 + 0.42}{24 - 3 \cdot 92 \cdot 10^{-3} + 0.42} \right) = 1.67 \text{ M}$$
Гц

Выбираем частоту переключений $f_{SW}=1.5~\mathrm{M}\Gamma$ ц.

Сопротивление резистора на выводе RT/CLK $R_{\rm RT/CLK}$, кОм можно рассчитать из выражения

$$R_{\rm RT/CLK} = \frac{101756}{(f_{\rm SW}(\kappa\Gamma \mu))^{1.008}}$$
 (2)

Подставляя значения в формулу (2), получаем

$$R_{\text{RT/CLK}} = \frac{101756}{(1500)^{1.008}} = 64.0 \text{ кОм}$$

Выбираем резистор RC0603FR-0768KL номиналом 68 кОм.

1.3 Расчет минимальной индуктивности и пикового тока через неё

Минимальную индуктивность L_{min} , Γ н можно определить из формулы

$$L_{min} = \frac{V_{IN} - V_{OUT}}{I_{OUT} \cdot K_{IND}} \cdot \frac{V_{OUT}}{V_{IN} \cdot f_{SW}},\tag{3}$$

где K_{IND} — отношение пульсаций тока индуктивности к максимальному входному току.

В документации к микросхеме рекомендуется принять $K_{IND}=0.3.$ Тогда, по формуле (3)

$$L_{min} = \frac{24-5}{3\cdot 0.3} \cdot \frac{5}{24\cdot 1.5\cdot 10^6} = 2.9$$
 мкГн

Емкость ранее выбранной катушки превышает минимальную, поэтому оставляем её.

Пульсации тока в индуктивности определяются по формуле

$$I_{RIPPLE} = \frac{V_{IN} - V_{OUT}}{L} \cdot \frac{V_{OUT}}{V_{IN} \cdot f_{SW}}$$
 (4)

Подставив значения в формулу (4), получаем

$$I_{RIPPLE} = \frac{24-5}{6.8 \cdot 10^{-6}} \cdot \frac{5}{24 \cdot 1.5 \cdot 10^{6}} = 0.388 \,\text{A}$$

Пиковый ток через катушку индуктивности $I_{L(peak)}$, А может быть рассчитан по формуле

$$I_{L(peak)} = I_{OUT} + \frac{I_{RIPPLE}}{2} \tag{5}$$

Подставим численные значения в формулу (5)

$$I_{L(peak)} = 3 + \frac{0.388}{2} = 3.194 \,\mathrm{A}$$

Полученное значение ниже тока насыщения I_{SAT} , А катушки XAL1510-682MEB ($I_{SAT}=36$ A), поэтому оставляем выбранную ранее катушку.

1.4 Расчет емкости выходного конденсатора

Емкость выходного конденсатора \mathcal{C}_{OUT} , Φ можно рассчитать по формуле

$$C_{OUT} = \frac{1}{8 \cdot f_{SW}} \cdot \frac{I_{RIPPLE}}{V_{OUT,RIPPLE}},\tag{6}$$

где $V_{OUT.RIPPLE}$ — пульсация напряжения на выходе, В.

Примем $V_{OUT.RIPPLE}$ равным 1% от выходного напряжения. Подставив значения в формулу (6), получаем.

$$C_{OUT} = \frac{1}{8 \cdot 1.5 \cdot 10^6} \cdot \frac{0.388}{5 \cdot 0.01} = 0.65 \cdot 10^{-6} \, \Phi$$

Согласно руководству, эквивалентное последовательное сопротивление конденсатора R_{ESR} , Ом должно быть ниже, чем величина, равная отношению пульсации напряжения на выходе к пульсации тока в индуктивности.

$$R_{ESR} < \frac{5 \cdot 0.01}{0.388} = 0.129 \,\mathrm{Om}$$
 (7)

Выбираем неполярный конденсатор CC0805KKX7R6BB106 (10 B, 10 мкФ), поскольку они обладают низким эквивалентным сопротивлением.

1.5 Расчет емкости входного конденсатора

Для TPS54360BDDA требуется входной конденсатор с эффективной емкостью не ниже 3 мкФ. Номинальный ток пульсации конденсатора должен превышать максимальную пульсацию входного тока $I_{CIN(rms)}$, А которую можно рассчитать по формуле

$$I_{CIN(rms)} = I_{OUT} \cdot \sqrt{\frac{V_{OUT}}{V_{IN}} \cdot \frac{V_{IN} - V_{OUT}}{V_{IN}}}$$
 (8)

Подставим численные значения в формулу (8)

$$I_{CIN(rms)} = 3 \cdot \sqrt{\frac{5}{24} \cdot \frac{24 - 5}{24}} = 1.22 \text{ A}$$

Установим параллельно 3 конденсатора 293D106X9050E2TE3 (10 мкФ, 50 В) с током пульсации 0.45 А.

1.6 Выбор конденсатора на выводе ВООТ

Керамический конденсатор емкостью 0.1 мкФ должен быть подключен между выводами ВООТ и SW. Рекомендуется использовать керамический конденсатор с диэлектриком не хуже X5R.

Выбираем конденсатор CC0402KRX5R8BB104 (0.1 мкФ, 25 В).

1.7 Расчет резисторов на выводе FB

Делитель напряжения состоит из двух резисторов: R_{HS} (между выводами SW и FB) и R_{LS} (между GND и FB). Сопротивления этих резисторов связаны между собой следующим уравнением

$$R_{HS} = R_{LS} \cdot \frac{V_{OUT} - 0.8}{0.8} \tag{9}$$

Выбираем резистор AA1218FK-0710K2L с сопротивлением 10.2 кОм на место R_{LS} .

Подставим значения в формулу (9)

$$R_{HS} = 10.2 \cdot 10^3 \cdot \frac{5 - 0.8}{0.8} = 53.6 \text{ кОм}$$

Выбираем резистор AA1218FK-0753K6L с сопротивлением 53.6 кОм на место R_{HS} .

1.8 Расчет компенсирующих компонентов

К компенсирующим компонентам относятся резистор R4 и конденсаторы C8 и C9, изображенные на рисунке 3.

Рисунок 3 – Компенсирующая цепь

Для расчета компенсирующих компонентов необходимо рассчитать несколько частот по следующим выражениям

$$f_{P(mod)} = \frac{I_{OUT}}{2 \cdot \pi \cdot V_{OUT} \cdot C_{OUT}}$$
 (10)

$$f_{Z(mod)} = \frac{1}{2 \cdot \pi \cdot R_{ESR} \cdot C_{OUT}}$$
 (11)

$$f_{CO} = \sqrt{f_{P(mod)} \cdot f_{Z(mod)}} \tag{12}$$

$$f_{CO} = \sqrt{f_{P(mod)} \cdot \frac{f_{SW}}{2}} \tag{13}$$

Подставим значения в формулы (10–13). Для f_{CO} выбирается меньшее значение, среди полученных по формулам (12) и (13).

$$f_{P(mod)} = \frac{3}{2 \cdot \pi \cdot 5 \cdot 10 \cdot 10^{-6}} = 9.6 \text{ кГц}$$

$$f_{Z(mod)} = \frac{1}{2 \cdot \pi \cdot 0.129 \cdot 10 \cdot 10^{-6}} = 123.5 \text{ кГц}$$

$$f_{CO} = \sqrt{9.6 \cdot 123.5} = 84.6 \text{ кГц}$$

$$f_{CO} = \sqrt{9.6 \cdot \frac{1500}{2}} = 34.4 \text{ кГц}$$

Сопротивление резистора R4 можно найти по формуле

$$R4 = \frac{2 \cdot \pi \cdot f_{CO} \cdot C_{OUT}}{gmps} \cdot \frac{V_{OUT}}{V_{REF} \cdot gmea},$$
(14)

где $gmps=12\,\mathrm{^A/_B}$; $V_{REF}=0.8\,\mathrm{B}$; $gmea=350\,\mathrm{^{MKA}/_B}$.

Подставим численные значения в формулу (14)

$$R4 = \frac{2 \cdot \pi \cdot 34.4 \, \cdot 10^{3} \cdot 10 \cdot 10^{-6}}{12} \cdot \frac{5}{0.8 \cdot 350 \cdot 10^{-6}} = 3.2 \ \text{кОм}$$

Выбираем резистор RC0603FR-073K3L номиналом 3.3 кОм.

Емкость конденсатора С9 можно рассчитать по формуле

$$C9 = \frac{1}{2 \cdot \pi \cdot R4 \cdot f_{P(mod)}} \tag{15}$$

Подставим значения в формулу (15)

$$C9 = \frac{1}{2 \cdot \pi \cdot 3.3 \cdot 10^3 \cdot 9.6 \cdot 10^3} = 5.1 \text{ H}\Phi$$

Выбираем конденсатор CC0603KRX7R9BB103 номиналом 10 нФ.

Емкость конденсатора C8 рассчитывается по формулам (16) и (17), затем выбирается большее из полученных значений

$$C8 = \frac{R_{ESR} \cdot C_{OUT}}{R4} \tag{16}$$

$$C8 = \frac{1}{\pi \cdot R4 \cdot f_{SW}} \tag{17}$$

Подставим значения в формулы (16) и (17)

$$C8 = \frac{0.129 \cdot 10 \cdot 10^{-6}}{3.3 \cdot 10^{3}} = 3.9 \cdot 10^{-10} \,\Phi$$

$$C8 = \frac{1}{\pi \cdot 3.3 \cdot 10^{3} \cdot 1500 \cdot 10^{3}} = 6.4 \cdot 10^{-11} \,\Phi$$

Выбираем конденсатор CC0603KRX7R9BB102 емкостью 1 нФ.

1.9 Выбор защитных компонентов

Для защиты от повышенного напряжения при переходных процессах, а также от электростатического разряда, на входе питания устанавливается двунаправленная диодная сборка 8.0SMDJ45CA с напряжением стабилизации 45 В.

Для нивелирования скачков напряжения при подаче питания на Raspberry Pi 4 устанавливаем два конденсатора CC1210KRX5R5BB227 номиналом 220 мкФ каждый.

2 Преобразователь интерфейсов UART – RS-232

2.1 Описание микросхемы MAX3221ECDB

MAX3221ECDB – преобразователь UART – RS-232 с одним передатчиком и одним приемником, способный передавать данные со скоростью до 250 кб/с.

Основные характеристики микросхемы MAX3221ECDB представлены в таблице 3.

Параметр	Значение
Входное напряжение V_{CC} , В	3 5.5
Высокий логический уровень, В	> 2 (при $V_{CC} = 3.3$ В)
	> 2.4 (при $V_{CC} = 5.0$ В)
Низкий логический уровень, В	< 0.8
Рабочая температура, °С	0 70

На рисунке 4 представлена схема микросхемы MAX3221ECDB в корпусе SSOP-16 с указанием выводов.

Рисунок 4 – Расположение выводов микросхемы MAX3221ECDB

Назначение каждого из выводов микросхемы описано в таблице 4.

Таблица 4 – Описание выводов микросхемы MAX3221ECDB

Вывод	Название	Описание			
1	ĒΝ	Низкое напряжение на этом выводе делает активным вывод приемника <i>ROUT</i> .			
2, 5	C1+, C2+	Положительные выводы удвоителей напряжения зарядового насоса.			
3	V+	Питание 5.5 В, создаваемое зарядовым насосом.			
4, 6	C1-, C2-	Отрицательные выводы удвоителей напряжения зарядового насоса.			
7	V-	Питание -5.5 В, создаваемое зарядовым насосом.			
8	RIN	Вход приемника <i>RS-232</i>			
9	ROUT	Выход приемника.			
10	INVALID	На этом выводе низкий уровень, когда на <i>RIN</i> нет сигнала.			
11	DIN	Вход передатчика.			
12	FORCEON	Вход управления автоматическим отключением питания			
13	DOUT	Выход передатчика <i>RS-232</i> .			
14	GND	Земля.			
15	V_{CC}	Напряжение питания от 3 до 5.5 В.			
16	FORCEOFF	Вход управления автоматическим отключением питания.			

Схема типового применения микросхемы MAX3221ECDB изображена на рисунке 5.

Рисунок 5 — Схема типового применения MAX3221ECDB

Обозначения, используемые на рисунке 5, будут использоваться при выборе компонентов обвязки микросхемы.

2.2 Выбор элементов обвязки MAX3221ECDB

В таблице 5 представлены значения емкостей конденсаторов, рекомендуемых в руководстве к микросхеме, при напряжении питания 5 ± 0.5 В, а также выбранные конденсаторы.

Таблица 5 – Элементы обвязки	MAX3221ECDB
------------------------------	-------------

Обозначение на схеме	Емкость, мкф	Наименование
C1	0.047	CC0603KRX7R9BB473
C2, C3, C4	0.33	293D334X9050B2TE3
C_{BYPASS}	0.1	293D104X9050A2TE3

Для защиты от перенапряжения на линии RS-232 устанавливается две двунаправленные диодные сборки SD12C-01FTG (одна на линию приема, другая – на линию передачи) с напряжением стабилизации 12B.

3 Преобразователь интерфейсов USB – UART

3.1 Описание микросхемы СР2103-GМ

CP2103-GM — преобразователь USB-UART, обладающий встроенным преобразователем напряжения с 5В до 3В и четырьмя контактами ввода/вывода общего назначения.

Основные характеристики микросхемы CP2103-GM представлены в таблице 6.

Таблица 6 – Характеристики микросхемы CP2103-GM

Параметр	Значение
\mathbf{B} ходное напряжение V_{DD} , \mathbf{B}	3 3.6
Входное напряжение V_{IO} , В	$1.8 \dots V_{DD}$
Высокий логический уровень V_{IH} , В	> 2
Низкий логический уровень V_{IL} , В	< 0.8
Входное напряжение преобразователя, В	4.0 5.25
Рабочая температура, °С	-40 85

На рисунке 6 представлена схема микросхемы CP2103-GM в корпусе QFN28 с указанием выводов.

Рисунок 6 – Расположение выводов микросхемы СР2103-GM

Назначение каждого из выводов микросхемы описано в таблице 7.

Таблица 7 – Описание выводов микросхемы СР2103-GМ

Вывод	Название	Описание		
1	RI	Индикатор звонка		
2	GND	Земля		
-	SGND	Земля		
3	D+	USB D+		
4	D-	USB D-		
5	V_{IO}	Напряжение питания от 1.8В до V_{DD}		
6	V_{DD}	Напряжение питания 3.0–3.6 В или выход преобразователя напряжений 3.3 В		
7	REGIN	Вход регулятора напряжения		
8	VBUS	Подключается к сигналу VBUS USB		
9	\overline{RST}	Вывод для перезагрузки микросхемы		
10, 13-15, 20-21	NC	Остаются неподключенными		
11	SUSPEND	Низкий уровень, когда схема ожидает USB		
12	SUSPEND	Высокий уровень, когда схема ожидает USB		
16-19	<i>GPIO</i>	Конфигурируемый пользователем ввод/вывод		
22	CTS	Флаг CTS интерфейса RS-232		
23	RTS	Флаг RTS интерфейса RS-232		
24	RXD	Приемник UART		
25	TXD	Передатчик UART		
26	DSR	Флаг DSR интерфейса RS-232		
27	DTR	Флаг DTR интерфейса RS-232		
28	DCD	Флаг DCD интерфейса RS-232		

Схема типового применения микросхемы CP2103-GM изображена на рисунке 7.

Рисунок 7 – Схема типового применения СР2103-GM

Обозначения, используемые на рисунке 7, будут использоваться при выборе компонентов обвязки микросхемы. Схема на рисунке изображена для режима питания от USB, который используется в данной работе.

3.2 Выбор элементов обвязки СР2103-GM

В таблице 8 представлены выбранные на основании рисунка 7 компоненты.

Tao.	пица 8	3 – Элементы	обвязки	CP2103-GM
------	--------	--------------	---------	-----------

Обозначение на схеме	Номинал	Наименование
$C_{IO}, C1$	1 мкФ	CC0603KRX7R8BB105
C2	0.1 мкФ	CC0603KRX7R8BB104
R1	4.7 кОм	RC0603FR-074K7L

В качестве защитного контура используются диодная сборка для подавления помех SP0503BAHTG, ферритовая бусина BLM18PG221SN1D и диод Шоттки SL13-E3/5AT.

Также для индикации приема и передачи данных через UART используются светодиоды TLMS1000-GS08 и TLMG1100-GS08, каждый из которых последовательно соединен с резистором RC0603FR-07220RL.

4 Датчик температуры

HDC1080DMBR — это цифровой датчик влажности со встроенным датчиком температуры.

Основные характеристики датчика температуры представлены в таблице 9.

Таблица 9 – Характеристики датчика HDC1080DMBR

Параметр	Значение	
Входное напряжение, В	От 2.7 до 5.5	
Интерфейс передачи данных	I2C	
Рабочая температура датчика влажности, °С	От -20 до 70	
Рабочая температура датчика температуры, °С	От -40 до 125	

На рисунке 8 представлена схема микросхемы датчика HDC1080DMBR с указанием выводов.

Рисунок 8 – Расположение выводов микросхемы HDC1080DMBR

Описание выводов датчика представлено в таблице 10.

Таблица 10 – Назначение выводов датчика HDC1080DMBR

Вывод	Название	Описание	
1	SDA	Последовательная линия данных. Необходим подтягивающий резистор к VDD.	
2	GND	Земля	
3, 4	NC	Не подключается	
5	VDD	Питание.	
6	SCL	Последовательная линия тактирования. Необходим подтягивающий резистор к VDD.	
-	DAP	Не подключается (контакт на нижней плоскости корпуса).	

В качестве подтягивающих резисторов используется RC0603FR-074K7L номиналом 4.7 кОм.

Также в документации к микросхеме рекомендуется установить конденсатор между VDD и GND номиналом $0.1\,$ мк Φ , на место которого выбран CC0402KRX5R8BB104.

5 Пьезодинамик

PKLCS1212E4001 — пьезоэлектрический динамик для поверхностного монтажа.

Основные характеристики пьезодинамика представлены в таблице 11.

Таблица 11 – Характеристики пьезодинамика PKLCS1212E4001

Параметр	Значение
Максимальное входное напряжение, В	±12.5 или 25
Уровень звукового давления, дБ	≥75 при напряжении ±1.5 В
Рабочая температура, °С	От -20 до 70

Схема управления пьезодинамиком изображена на рисунке 9.

Рисунок 9 – Расположение выводов микросхемы HDC1080DMBR

В таблице 12 представлены выбранные резисторы.

Таблица 12 – Элементы обвязки пьезодинамика

Обозначение на схеме	Номинал	Наименование
<i>R</i> 5	100 Ом	RC0603FR-07100RL
R6, R3	1 кОм	RC0603FR-071KL
R4	10 кОм	RC0603FR-0710KL

Транзистор IRLML2502TRPBF открывается ШИМ-сигналом с Raspberry Pi 4.

6 Разъемы

В качестве разъема питания выбрана клеммная колодка от Molex 395021004.

Обмен сообщениями с платой управления осуществляется через разъем DS1069-4MRW6XA.

Для установки модуля Raspberry Pi 4 Model B используется разъем 15453240 от Molex.

Вывод отладочных сообщений осуществляется на разъем micro-USB 2108877-1 от TE Connectivity.

СПИСОК ЛИТЕРАТУРЫ

1. Raspberry Pi 4 Model B datasheet, URL:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm27 11/rpi_DATA_2711_1p0_preliminary.pdf

2. TPS54360B 60-V Input, 3.5-A, Step-Down DC/DC Converter With Eco-Mode datasheet, URL:

https://www.ti.com/lit/ds/symlink/tps54360b.pdf

3. MAX3221E 3-V to 5.5-V Single-Channel RS-232 Line Driver/Receiver With ±15-kV IEC ESD Protection datasheet, URL: https://www.ti.com/lit/ds/symlink/max3221e.pdf

4. Single - chip USB to UART bridge CP2103, URL: https://www.silabs.com/documents/public/data-sheets/CP2103.pdf

 HDC1080 Low Power, High Accuracy Digital Humidity Sensor with Temperature Sensor datasheet, URL: https://www.ti.com/lit/ds/symlink/hdc1080.pdf

6. Piezoelectric Sound Components, URL:

http://www.farnell.com/datasheets/2157985.pdf