Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Estratégias de Demonstração

Índice

Regras de dedução

O princípio de indução

3 O princípio da gaiola de pombos

Regras de dedução

O que precisamos?

Numa argumentação (= demonstração), temos que

O que precisamos?

Numa argumentação (= demonstração), temos que

• justificar a validade de fórmulas,

O que precisamos?

Numa argumentação (= demonstração), temos que

- justificar a validade de fórmulas,
- utilizar o conhecimento que uma certa fórmula é válida.

O que precisamos?

Numa argumentação (= demonstração), temos que

- justificar a validade de fórmulas,
- utilizar o conhecimento que uma certa fórmula é válida.

Portanto:

De acordo, para cada símbolo lógico (\land , ..., \Rightarrow , ..., \forall , \exists), especificamos regras para

O que precisamos?

Numa argumentação (= demonstração), temos que

- justificar a validade de fórmulas,
- utilizar o conhecimento que uma certa fórmula é válida.

Portanto:

De acordo, para cada símbolo lógico (\land , ..., \Rightarrow , ..., \forall , \exists), especificamos regras para

provar fórmulas com este símbolo (regras de introdução),

O que precisamos?

Numa argumentação (= demonstração), temos que

- justificar a validade de fórmulas,
- utilizar o conhecimento que uma certa fórmula é válida.

Portanto:

De acordo, para cada símbolo lógico (\land , ..., \Rightarrow , ..., \forall , \exists), especificamos regras para

- provar fórmulas com este símbolo (regras de introdução),
- utilizar a validade de fórmulas com este símbolo (regras de eliminação).

O que precisamos?

Numa argumentação (= demonstração), temos que

- justificar a validade de fórmulas,
- utilizar o conhecimento que uma certa fórmula é válida.

Portanto:

De acordo, para cada símbolo lógico (\land , ..., \Rightarrow , ..., \forall , \exists), especificamos regras para

- provar fórmulas com este símbolo (regras de introdução),
- utilizar a validade de fórmulas com este símbolo (regras de eliminação).

Exemplo (Regras para "e")

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \mathsf{E}_{\wedge}^{2}$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \mathsf{E}_{\wedge}^{2}$$

Estas regras especificam o seguinte

O caso de \land ("e")

Regras para "e":

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \mathsf{E}_{\wedge}^{2}$$

Estas regras especificam o seguinte

• Para provar a fórmula $\varphi \wedge \psi$, temos de provar a fórmula φ e a fórmula ψ .

Regras para "e":

$$\frac{\varphi \ \psi}{\varphi \wedge \psi} I_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} E_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} E_{\wedge}^{2}$$

Estas regras especificam o seguinte

- Para provar a fórmula $\varphi \wedge \psi$, temos de provar a fórmula φ e a fórmula ψ .
- Se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula $\varphi.$

Regras para "e":

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \, \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \, \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \, \mathsf{E}_{\wedge}^{2}$$

Estas regras especificam o seguinte

- Para provar a fórmula $\varphi \wedge \psi$, temos de provar a fórmula φ e a fórmula ψ .
- Se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula $\varphi.$
- Igualmente, se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula ψ .

Regras para "e":

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \, \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \, \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \, \mathsf{E}_{\wedge}^{2}$$

Estas regras especificam o seguinte

- Para provar a fórmula $\varphi \wedge \psi$, temos de provar a fórmula φ e a fórmula ψ .
- Se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula $\varphi.$
- Igualmente, se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula ψ .

Nada surpreendente até aqui: "e" significa "e".

Regras para "e":

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \, \mathsf{I}_{\wedge} \qquad \frac{\varphi \wedge \psi}{\varphi} \, \mathsf{E}_{\wedge}^{1} \qquad \frac{\varphi \wedge \psi}{\psi} \, \mathsf{E}_{\wedge}^{2}$$

Estas regras especificam o seguinte

- Para provar a fórmula $\varphi \wedge \psi$, temos de provar a fórmula φ e a fórmula ψ .
- Se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula $\varphi.$
- Igualmente, se sabemos que a fórmula $\varphi \wedge \psi$ é válida, podemos concluir a fórmula ψ .

Nada surpreendente até aqui: "e" significa "e". Mais interessantes são os casos dos quantificadores e em particular o caso da implicação.

A implicação

A implicação $\psi \Rightarrow \varphi$ expressa "Se ψ então φ ".

A implicação

A implicação $\psi \Rightarrow \varphi$ expressa "Se ψ então φ ".

Mas como justificar uma implicação?

A implicação

A implicação $\psi\Rightarrow\varphi$ expressa "Se ψ então φ ".

Mas como justificar uma implicação? E como utilizar?

A implicação

A implicação $\psi\Rightarrow\varphi$ expressa "Se ψ então φ ".

Mas como justificar uma implicação? E como utilizar?

Utilizar é mais fácil . . .

A implicação

A implicação $\psi \Rightarrow \varphi$ expressa "Se ψ então φ ".

Mas como justificar uma implicação? E como utilizar?

Utilizar é mais fácil . . .

Formulês

$$\frac{\psi \Rightarrow \varphi \quad \psi}{\varphi}$$

Português

Sabemos que, se ψ então φ e sabemos ψ . Logo φ .

A implicação

A implicação $\psi \Rightarrow \varphi$ expressa "Se ψ então φ ".

Mas como justificar uma implicação? E como utilizar?

Utilizar é mais fácil . . .

Formulês

$$\begin{array}{c|c} \psi \Rightarrow \varphi & \psi \\ \hline \varphi & \end{array}$$

Português

Sabemos que, se ψ então φ e sabemos ψ . Logo φ .

Exemplo

Sabemos

$$gato(Tom) \Rightarrow garra(Tom) e gato(Tom).$$

Logo garra(Tom).

A prova direta da implicação

Português

Suponha^a ψ . Então, ... (algo mais ou menos esperto) Logo, φ .

Portanto, $\psi\Rightarrow\varphi$ está provada. (E já não suponhamos ψ .)

^aNotam o conjuntivo!!

A prova direta da implicação

Português

Suponha^a ψ . Então, ... (algo mais ou menos esperto) Logo, φ .

Portanto, $\psi\Rightarrow\varphi$ está provada. (E já não suponhamos ψ .)

^aNotam o conjuntivo!!

A prova direta de $\psi\Rightarrow\varphi$ é um argumento hipotético: suponhamos (temporariamente) ψ até conseguimos deduzir φ , não afirmamos que ψ é válida (nem que é "razoável").

A prova direta da implicação

Fórmulês $\begin{array}{c} \hline \psi \\ \vdots \\ \varphi \\ \hline \psi \Rightarrow \varphi \end{array}$

Português

Suponha^a ψ . Então, ... (algo mais ou menos esperto) Logo, φ .

Portanto, $\psi\Rightarrow\varphi$ está provada. (E já não suponhamos ψ .)

^aNotam o conjuntivo!!

A prova direta de $\psi\Rightarrow\varphi$ é um argumento hipotético: suponhamos (temporariamente) ψ até conseguimos deduzir φ , não afirmamos que ψ é válida (nem que é "razoável").

Exemplo

Teorema. Se o Porto ganha todos os jogos, então o Porto é campeão.

Demonstração. Suponha que o Porto ganha todos os jogos. . . . □

Intermezzo: o quantificador ∃ ("existe")

Intermezzo: o quantificador ∃ ("existe")

Como provar uma fórmula da forma $\exists x \dots$?

Formulês

 $\begin{cases}
t/x \\
 \end{cases}$ $\exists x \psi$

Português

 $\label{eq:problem} \dots \quad \text{concluímos } \psi \text{ com o termo } t \\ \text{(tipicamente sem variáveis) em} \\ \text{lugar da variável } x.$

Portanto, $\exists x \, \psi$ está provada.

Intermezzo: o quantificador ∃ ("existe")

Como provar uma fórmula da forma $\exists x \dots$?

Português

 \dots concluímos ψ com o termo t (tipicamente sem variáveis) em lugar da variável x.

Portanto, $\exists x \, \psi$ está provada.

Como utilizar uma fórmula da forma $\exists x \dots$?

Português

Sabemos que $\exists x \psi$.

Seja x_0 um elemento tal que $\psi\{x_0/x\}$ (algo esperto) Logo, φ .

Portanto, φ está provada.

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Teorema

Sejam a e b números inteiros: se a é par, então ab é par.

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Teorema

Sejam a e b números inteiros: se a é par, então ab é par.

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a = 2n$.

Portanto. a fórmula $\exists n \ ba = 2n$

está provada.

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Teorema

Sejam a e b números inteiros: se a é par, então ab é par.

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a=2n$. Seja k um número inteiro com a=2k.

Portanto. a fórmula $\exists n \ ba = 2n$

está provada.

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Teorema

Sejam a e b números inteiros: se a é par, então ab é par.

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a=2n$. Seja k um número inteiro com a=2k. Portanto.

$$ba = b(2k) = 2(bk);$$

Portanto. a fórmula $\exists n \ ba = 2n$

está provada.

Definição

Um número inteiro c é par quando é divisível por 2, ou seja,

$$\exists n \ c = 2n$$
.

Teorema

Sejam a e b números inteiros: se a é par, então ab é par.

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a = 2n$. Seja k um número inteiro com a = 2k. Portanto,

$$ba = b(2k) = 2(bk);$$

ou seja ba = 2n com n = bk. Portanto, a fórmula $\exists n \ ba = 2n$ está provada.

Teorema

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a=2n$. Seja k um número inteiro com a=2k.

. . .

Teorema

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists n \ a=2n$. Seja k um número inteiro com a=2k.

. . .

Nota

• As duas ocorrências de *n* são independentes (como são ligadas a quantificadores diferentes).

Teorema

$$(\exists k \ a = 2k) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que $\exists k \ a = 2k$. Seja k um número inteiro com a = 2k.

. . .

Nota

- As duas ocorrências de *n* são independentes (como são ligadas a quantificadores diferentes).
- Por exemplo, podemos escrever k em lugar de n na primeira fórmula.

Teorema

$$(\exists k \ a = 2k) \implies (\exists n \ ba = 2n)$$

Demonstração.

Suponha que existe um número inteiro k com a = 2k.

. . .

Nota

- As duas ocorrências de *n* são independentes (como são ligadas a quantificadores diferentes).
- Por exemplo, podemos escrever k em lugar de n na primeira fórmula.
- Portanto, podemos escrever a primeira linha da demonstração numa forma mais simples.

Intermezzo 2: o quantificador ∀ ("para todo")

Como provar uma fórmula da forma $\forall x \dots$?

Português

Seja^a x. ...(algo esperto) Logo, ψ .

Portanto, $\forall x \, \psi$ está provada.

^aNotam outra vez conjuntivo!!

Intermezzo 2: o quantificador ∀ ("para todo")

Como provar uma fórmula da forma $\forall x \dots$?

Formulês x

Português

Seja^a x. ...(algo esperto) Logo, ψ .

Portanto, $\forall x \, \psi$ está provada.

^aNotam outra vez conjuntivo!!

Como utilizar uma fórmula da forma $\forall x \dots$?

Formulês

$$\frac{\forall x \, \psi \quad t \text{ um termo}}{\psi\{t/x\}}$$

Português

Sabemos que $\forall x \, \psi$. Em particular, $\psi\{t/x\}$.

Teorema

Para todos os números inteiros a e b: se a é par, então ab é par.

$$\forall a, b ((\exists n \ a = 2n) \implies (\exists n \ ba = 2n))$$

Teorema

Para todos os números inteiros a e b: se a é par, então ab é par.

$$\forall a, b ((\exists n \ a = 2n) \implies (\exists n \ ba = 2n))$$

Demonstração.

Sejam a, b números inteiros.

Teorema

Para todos os números inteiros a e b: se a é par, então ab é par.

$$\forall a, b ((\exists n \ a = 2n) \implies (\exists n \ ba = 2n))$$

Demonstração.

Sejam a, b números inteiros.

Agora temos de provar a fórmula

$$(\exists n \ a = 2n) \implies (\exists n \ ba = 2n),$$

tratando a e b como símbolos de constante (tal como 2).

Teorema

Para todos os números inteiros a e b: se a é par, então ab é par.

$$\forall a, b ((\exists n \ a = 2n) \implies (\exists n \ ba = 2n))$$

Demonstração.

Sejam a, b números inteiros.

Suponha que $\exists n \ a=2n$. Seja k um número inteiro com a=2k. Portanto,

$$ba = b(2k) = 2(bk);$$

ou seja b=2n com n=bk. Portanto, a fórmula $\exists n\ ba=2n$ está provada.

Recordamos

$$(p \Leftrightarrow q) \equiv ((p \Rightarrow q) \land (q \Rightarrow p)).$$

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \varnothing).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \emptyset).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \emptyset).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

Agora temos de provar:

$$((x R y) \Leftrightarrow [x] \cap [y] \neq \emptyset).$$

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \emptyset).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

" \Rightarrow ": Suponha que x R y.

 $\log o [x] \cap [y] \neq \varnothing.$

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \varnothing).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

"⇒": Suponha que x R y. Então, $x \in [x]$ e $x \in [y]$, logo $[x] \cap [y] \neq \emptyset$.

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \varnothing).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

"\(\Rightarrow\)": Suponha que x R y. Então, $x \in [x]$ e $x \in [y]$, portanto $x \in [x] \cap [y]$, logo $[x] \cap [y] \neq \emptyset$.

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \varnothing).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

" \Rightarrow ": Suponha que x R y. Então, $x \in [x]$ e $x \in [y]$, portanto $x \in [x] \cap [y]$, logo $[x] \cap [y] \neq \emptyset$.

"\(\sim \)": Suponha que $[x] \cap [y] \neq \emptyset$;

xRy.

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \varnothing).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

- " \Rightarrow ": Suponha que x R y. Então, $x \in [x]$ e $x \in [y]$, portanto $x \in [x] \cap [y]$, logo $[x] \cap [y] \neq \emptyset$.
- "\(\phi\)": Suponha que $[x] \cap [y] \neq \emptyset$; isto \(\epsilon\), existe $z \in [x] \cap [y]$. x R v.

Teorema

Seja R uma relação de equivalência num conjunto X. Então,

$$\forall x, y ((x R y) \Leftrightarrow [x] \cap [y] \neq \emptyset).$$

Recordamos: $[x] = \{z \in X \mid x R z\} = \{z \in X \mid z R x\}.$

Demonstração.

Sejam $x, y \in X$.

- " \Rightarrow ": Suponha que x R y. Então, $x \in [x]$ e $x \in [y]$, portanto $x \in [x] \cap [y]$, logo $[x] \cap [y] \neq \emptyset$.
- "\(\infty\)": Suponha que $[x] \cap [y] \neq \emptyset$; isto \(\neq \), existe $z \in [x] \cap [y]$. Portanto, $x R z \in z R y$, e, como $R \in x \in x R y$.

Recordamos

$$(\bot\Rightarrow p)\equiv \top$$
, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p .

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Teorema

Todos os unicórnios são brancos.

$$\forall x (unic\'{o}rnio(x) \Rightarrow branco(x))$$

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Teorema

Todos os unicórnios são brancos.

$$\forall x (unic\'ornio(x) \Rightarrow branco(x))$$

Demonstração.

Seja x

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Teorema

Todos os unicórnios são brancos.

$$\forall x (unic\'ornio(x) \Rightarrow branco(x))$$

Demonstração.

Seja x um unicórnio.

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Teorema

Todos os unicórnios são brancos.

$$\forall x (unic\'{o}rnio(x) \Rightarrow branco(x))$$

Demonstração.

Seja x um unicórnio. Mas não há unicórnios, temos uma contradição!!

Recordamos

 $(\bot\Rightarrow p)\equiv \top$, ou seja, $\bot\Rightarrow p$ é verdadeira qualquer que seja p. Portanto, se conseguimos deduzir uma contradição, podemos concluir qualquer afirmação.

Axioma

Não há unicórnios.

Teorema

Todos os unicórnios são brancos.

$$\forall x (unic\'ornio(x) \Rightarrow branco(x))$$

Demonstração.

Seja x um unicórnio. Mas não há unicórnios, temos uma contradição!! Logo, x é branco (do Porto, esperto, rico, gordo,...)

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar".

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar". Portanto, provamos a fórmula:

$$\forall a, b (((a \in \text{impar}) \land (b \in \text{impar})) \implies (ab \in \text{impar})).$$

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar". Portanto, provamos a fórmula:

$$\forall a, b (((a \in impar) \land (b \in impar)) \implies (ab \in impar)).$$

Demonstração. Sejam *a* e *b* números

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar". Portanto, provamos a fórmula:

$$\forall a, b (((a \in impar) \land (b \in impar)) \implies (ab \in impar)).$$

Demonstração. Sejam *a* e *b* números ímpares.

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar". Portanto, provamos a fórmula:

$$\forall a, b (((a \in \text{impar}) \land (b \in \text{impar})) \implies (ab \in \text{impar})).$$

Demonstração. Sejam a e b números ímpares. Isto é: existem números inteiros n e m com a = 2n + 1 e b = 2m + 1.

Prova por contraposição

Aqui utilizamos

a tautologia $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

A afirmação "se ab é par, então a é par ou b é par" é equivalente à "se a é ímpar (= não par) e b é ímpar, então ab é ímpar". Portanto, provamos a fórmula:

$$\forall a, b (((a \in \text{impar}) \land (b \in \text{impar})) \implies (ab \in \text{impar})).$$

Demonstração. Sejam a e b números ímpares. Isto é: existem números inteiros n e m com a=2n+1 e b=2m+1. Logo,

$$ab = (2n+1)(2m+1) = 4nm+2n+2m+1 = 2(2nm+n+m)+1;$$

isto é, ab é ímpar.

] [

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

Exemplo

Teorema. Para todos os números inteiros a e b: se ab é par, então a é par ou b é par.

Corolário. Para todo o número inteiro a, se a^2 é par, então a é par.

$$\forall a ((a^2 \text{ é par}) \implies (a \text{ é par}))$$

Demonstração. Utilizar o teorema acima no caso a = b.

A negação

Aqui utilizamos

a tautologia $\neg p \equiv (p \Rightarrow \bot)$; ou seja, $\neg p$ significa "p implica um absurdo (uma contradição)".

A negação

Aqui utilizamos

a tautologia $\neg p \equiv (p \Rightarrow \bot)$; ou seja, $\neg p$ significa "p implica um absurdo (uma contradição)".

Português

Suponha ψ . Então, ...(algo mais ou menos esperto) Logo, uma contradição.

Portanto, $\neg \psi$ está provada. (E já não suponhamos ψ .)

A negação

Aqui utilizamos

a tautologia $\neg p \equiv (p \Rightarrow \bot)$; ou seja, $\neg p$ significa "p implica um absurdo (uma contradição)".

Formulês

Português

Suponha ψ . Então, ... (algo mais ou menos esperto) Logo, uma contradição.

Portanto, $\neg \psi$ está provada. (E já não suponhamos ψ .)

Nota

As vezes refere-se a este princípio também como *redução ao absurdo*. (Vamos revisitar a "redução ao absurdo" em breve.)

Teorema

O número real $\sqrt{2}$ é irracional (= $n\~ao$ racional). (Ou seja, $n\~ao$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional;

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n, m com $(\frac{n}{m})^2 = 2$. Aqui podemos supor que n e m não têm divisores comuns.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n, m com $(\frac{n}{m})^2 = 2$. Aqui podemos supor que n e m não têm divisores comuns.

Agora vamos deduzir uma contradição.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n, m com $(\frac{n}{m})^2 = 2$. Aqui podemos supor que n e m não têm divisores comuns.

Como
$$(\frac{n}{m})^2 = 2$$
, então $n^2 = 2m^2$.

Teorema,

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2=2$, então $n^2=2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2 = 2$, então $n^2 = 2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par. Isto é, existe um número k com n = 2k.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2=2$, então $n^2=2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par. Isto é, existe um número k com n=2k. Consequentemente,

$$2m^2=n^2=4k^2$$

o que implica $m^2 = 2k^2$.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2=2$, então $n^2=2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par. Isto é, existe um número k com n=2k. Consequentemente,

$$2m^2=n^2=4k^2$$

o que implica $m^2 = 2k^2$. Logo, m^2 é par e por isso m é par,

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2=2$, então $n^2=2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par. Isto é, existe um número k com n=2k. Consequentemente,

$$2m^2=n^2=4k^2$$

o que implica $m^2 = 2k^2$. Logo, m^2 é par e por isso m é par, o que contradiz o facto que n e m não têm divisores comuns.

Teorema

O número real $\sqrt{2}$ é irracional (= $n\tilde{a}o$ racional). (Ou seja, $n\tilde{a}o$ existem números inteiros n, m com $\left(\frac{n}{m}\right)^2 = 2$.)

Demonstração.

Suponha que $\sqrt{2}$ é racional; ou seja, existem números inteiros n,m com $(\frac{n}{m})^2=2$. Aqui podemos supor que n e m não têm divisores comuns.

Como $(\frac{n}{m})^2=2$, então $n^2=2m^2$. Portanto, n^2 é par e, pelo corolário anterior, n é par. Isto é, existe um número k com n=2k. Consequentemente,

$$2m^2 = n^2 = 4k^2$$

o que implica $m^2 = 2k^2$. Logo, m^2 é par e por isso m é par, o que contradiz o facto que n e m não têm divisores comuns.

Portanto, está provado que $\sqrt{2}$ não é racional.

Г

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Este princípio já foi utilizado no último capítulo (dedução automática).

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo).

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo). Suponhamos que não, portanto,

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo). Suponhamos que não, portanto, x^y é irracional para todos os números reais irracionais x e y.

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo). Suponhamos que não, portanto, x^y é irracional para todos os números reais irracionais x e y. Em particular, $\sqrt{2}^{\sqrt{2}}$ é irracional.

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo). Suponhamos que não, portanto, x^y é irracional para todos os números reais irracionais x e y. Em particular, $\sqrt{2}^{\sqrt{2}}$ é irracional. Logo, $x=\sqrt{2}^{\sqrt{2}}$ é irracional e $y=\sqrt{2}$ é irracional,

Aqui utilizamos

a tautologia $p \equiv \neg \neg p \equiv (\neg p \Rightarrow \bot)$; ou seja, em lugar de p mostramos que " $\neg p$ implica um absurdo (uma contradição)".

Exemplo

Teorema. Existem números reais irracionais x e y tal que x^y é racional.

Demonstração (via redução ao absurdo). Suponhamos que não, portanto, x^y é irracional para todos os números reais irracionais x e y. Em particular, $\sqrt{2}^{\sqrt{2}}$ é irracional. Logo, $x=\sqrt{2}^{\sqrt{2}}$ é irracional e $y=\sqrt{2}$ é irracional, mas

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2}\sqrt{2})} = \sqrt{2}^{2} = 2$$

é racional; uma contradição.

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Verificamos: $log_2(9)$ é irracional (= $n\tilde{a}o$ racional).

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Verificamos: $log_2(9)$ é irracional (= $n\tilde{a}o$ racional).

Suponha que $log_2(9)$ é racional,

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Verificamos: $log_2(9)$ é irracional (= $n\tilde{a}o$ racional).

Suponha que $\log_2(9)$ é racional, ou seja existem números inteiros não nulos a e b com $2^{\frac{a}{b}}=9$.

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Verificamos: $log_2(9)$ é irracional (= $n\tilde{a}o$ racional).

Suponha que $\log_2(9)$ é racional, ou seja existem números inteiros não nulos a e b com $2^{\frac{a}{b}}=9$. Logo,

$$2^a = 9^b = 3^{3b}$$
;

uma contradição porque 2^a é par e 3^{3b} é ímpar.

Devemos acreditar?

Conhecemos realmente números irracionais x e y com x^y racional?

Prova direta

Recordamos: $\sqrt{2}$ é irracional.

Verificamos: $log_2(9)$ é irracional (= $n\tilde{a}o$ racional).

Suponha que $\log_2(9)$ é racional, ou seja existem números inteiros não nulos a e b com $2^{\frac{a}{b}}=9$. Logo,

$$2^a = 9^b = 3^{3b}$$
;

uma contradição porque 2^a é par e 3^{3b} é ímpar.

Finalmente: Calculamos

$$\sqrt{2}^{(\log_2 9)} = \sqrt{2^{(\log_2 9)}} = \sqrt{9} = 3.$$

Resumo

Utilizar $\psi \Rightarrow \varphi$

Sabemos que, se ψ então φ e sabemos ψ . Logo φ .

Prova direta de $\psi \Rightarrow \varphi$

Suponha ψ Logo, φ .

Contraposição

$$(\psi \Rightarrow \varphi) \equiv (\neg \varphi \Rightarrow \neg \psi).$$

Suponha $\neg \psi$ Logo, $\neg \varphi$.

Negação

$$\neg \psi \equiv (\psi \Rightarrow \bot)$$
:

Suponha ψ Contradição.

Redução ao absurdo

 $\psi \equiv \neg \neg \psi \equiv (\neg \psi \Rightarrow \bot).$

Suponha $\neg \psi$ Contradição.

Utilizar $\forall x \psi$

 $\dots \forall x \psi$. Em particular, $\psi\{t/x\}$.

Provar $\forall x \psi$

Seja x Logo, ψ .

Utilizar $\exists x \psi$

 $\dots \exists x \ \psi$. Seja $x_0 \ \text{com} \ \psi\{x_0/x\}$.

Provar $\exists x \psi$

 $\dots \psi \{t/x\}$. Logo, $\exists x \psi$.

O princípio de indução

A intuição

(No caso da indução em \mathbb{N})

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

A intuição

(No caso da indução em \mathbb{N})

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

(No caso da indução em \mathbb{N})

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

1. 0 tem a propriedade P,

Nestas circunstâncias:

• P(0)

(No caso da indução em \mathbb{N})

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

Nestas circunstâncias:

• P(0)

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

•
$$P(0)$$
 e $P(0) \Rightarrow P(1)$

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

- P(0) e $P(0) \Rightarrow P(1)$
- P(1)

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

- P(0) e $P(0) \Rightarrow P(1)$
- P(1) e $P(1) \Rightarrow P(2)$

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

- P(0) e $P(0) \Rightarrow P(1)$
- P(1) e $P(1) \Rightarrow P(2)$
- P(2)

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

- P(0) e $P(0) \Rightarrow P(1)$
- P(1) e $P(1) \Rightarrow P(2)$
- P(2) e $P(2) \Rightarrow P(3)$

(No caso da indução em IN)

Temos como objetivo provar que todos os números naturais têm uma certa propriedade P.

$$\forall n P(n)$$

Suponhamos que podemos provar que

- 1. 0 tem a propriedade P,
- 2. um número n > 0 tem a propriedade P sempre que o número anterior a tem.

- P(0) e $P(0) \Rightarrow P(1)$
- P(1) e $P(1) \Rightarrow P(2)$
- P(2) e $P(2) \Rightarrow P(3)$
- *P*(3) ...

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos $X = \{n \in \mathbb{Z} \mid n \geq n_0\}$ e P uma propriedade "aplicável" aos elementos de X.

$$\frac{P(n_0) \quad \forall n \geq n_0 \ (P(n) \Rightarrow P(n+1))}{\forall n \geq n_0 \ P(n)}$$

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos $X = \{n \in \mathbb{Z} \mid n \geq n_0\}$ e P uma propriedade "aplicável" aos elementos de X.

$$\frac{P(n_0) \quad \forall n \geq n_0 \ (P(n) \Rightarrow P(n+1))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos duas tarefas:

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos $X = \{n \in \mathbb{Z} \mid n \geq n_0\}$ e P uma propriedade "aplicável" aos elementos de X.

$$\frac{P(n_0) \quad \forall n \geq n_0 \ (P(n) \Rightarrow P(n+1))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos duas tarefas:

1. Condição inicial: verificar que a afirmação $P(n_0)$ é verdadeira, e

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos $X = \{n \in \mathbb{Z} \mid n \geq n_0\}$ e P uma propriedade "aplicável" aos elementos de X.

$$\frac{P(n_0) \quad \forall n \geq n_0 \ (P(n) \Rightarrow P(n+1))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos duas tarefas:

- 1. Condição inicial: verificar que a afirmação $P(n_0)$ é verdadeira, e
- 2. Passo de indução: para cada $n \ge n_0$, provar a implicação

$$P(n) \Rightarrow P(n+1)$$
.

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos $X = \{n \in \mathbb{Z} \mid n \geq n_0\}$ e P uma propriedade "aplicável" aos elementos de X.

$$\frac{P(n_0) \quad \forall n \geq n_0 \ (P(n) \Rightarrow P(n+1))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos duas tarefas:

- 1. Condição inicial: verificar que a afirmação $P(n_0)$ é verdadeira, e
- 2. Passo de indução: para cada $n \ge n_0$, provar a implicação

$$P(n) \Rightarrow P(n+1)$$
.

Seja $n \ge n_0$ e suponha P(n). ... Então, P(n+1).

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

Demonstração.

1. Para n = 0:

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

Demonstração.

1. Para n = 0: $(1+x)^0 = 1 \ge 1$.

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

- 1. Para n = 0: $(1+x)^0 = 1 \ge 1$.
- 2. Seja $n \in \mathbb{N}$ e suponhamos que $(1+x)^n \ge 1 + nx$.

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

- 1. Para n = 0: $(1+x)^0 = 1 \ge 1$.
- 2. Seja $n\in\mathbb{N}$ e suponhamos que $(1+x)^n\geq 1+nx$. Então,

$$(1+x)^{n+1}$$

$$1 + (n+1)x$$
.

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

- 1. Para n = 0: $(1+x)^0 = 1 \ge 1$.
- 2. Seja $n \in \mathbb{N}$ e suponhamos que $(1+x)^n \geq 1+nx$. Então,

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$1+(n+1)x.$$

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

- 1. Para n = 0: $(1+x)^0 = 1 \ge 1$.
- 2. Seja $n \in \mathbb{N}$ e suponhamos que $(1+x)^n \geq 1+nx$. Então,

$$(1+x)^{n+1}=(1+x)(1+x)^n$$

$$\geq (1+x)(1+nx)$$
 [por hipótese da indução e porque $1+x\geq 0$]
$$1+(n+1)x.$$

Teorema

Seja $x \in \mathbb{R}$ com $x \ge -1$. Para todo o $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

- 1. Para n = 0: $(1 + x)^0 = 1 \ge 1$.
- 2. Seja $n \in \mathbb{N}$ e suponhamos que $(1+x)^n \geq 1+nx$. Então,

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

 $\geq (1+x)(1+nx)$
[por hipótese da indução e porque $1+x \geq 0$]
 $= 1 + (n+1)x + nx^2 \geq 1 + (n+1)x$.

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Demonstração. Para n = 1, a afirmação é verdadeira.

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Demonstração. Para n = 1, a afirmação é verdadeira.

Seja $n \ge 1$ e consideramos os números reais x_1, \dots, x_{n+1} . Por hipótese da indução,

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Demonstração. Para n=1, a afirmação é verdadeira.

Seja $n \ge 1$ e consideramos os números reais x_1, \dots, x_{n+1} . Por hipótese da indução,

$$x_1 = \cdots = x_n$$

е

$$x_2=\cdots=x_{n+1}.$$

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Demonstração. Para n=1, a afirmação é verdadeira.

Seja $n \ge 1$ e consideramos os números reais x_1, \ldots, x_{n+1} . Por hipótese da indução,

$$x_1 = \cdots = x_n$$

е

$$x_2=\cdots=x_{n+1}.$$

Logo,
$$x_1 = x_2 = \cdots = x_n = x_{n+1}$$
.

Exemplo

Teorema. Para todo o $n \ge 1$, quaisquer n números reais são iguais.

Demonstração. Para n = 1, a afirmação é verdadeira.

Seja $n \ge 1$ e consideramos os números reais x_1, \dots, x_{n+1} . Por hipótese da indução,

$$x_1 = \cdots = x_n$$

е

$$x_2 = \cdots = x_{n+1}$$
.

Logo,
$$x_1 = x_2 = \cdots = x_n = x_{n+1}$$
.

TPC: Onde está o erro???

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos o conjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$.

$$\frac{\forall n \geq n_0 \ ((\forall k < n \ P(k)) \Rightarrow P(n))}{\forall n \geq n_0 \ P(n)}$$

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos o conjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$.

$$\frac{\forall n \geq n_0 \ ((\forall k < n \ P(k)) \Rightarrow P(n))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos a seguinte tarefa:

• para cada $n \ge n_0$, provar P(n) supondo que, para todo o k < n (e $k \ge n_0$), P(k) é válida.

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos o conjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$.

$$\frac{\forall n \geq n_0 \ ((\forall k < n \ P(k)) \Rightarrow P(n))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos a seguinte tarefa:

• para cada $n \ge n_0$, provar P(n) supondo que, para todo o k < n (e $k \ge n_0$), P(k) é válida.

Nota

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos o conjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$.

$$\frac{\forall n \geq n_0 \ ((\forall k < n \ P(k)) \Rightarrow P(n))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos a seguinte tarefa:

• para cada $n \ge n_0$, provar P(n) supondo que, para todo o k < n (e $k \ge n_0$), P(k) é válida.

Nota

• O caso $n = n_0$ acima significa "provar $P(n_0)$ " porque "para todo o $k < n_0$, P(k)" é trivialmente válida.

O princípio

Aqui fixamos $n_0 \in \mathbb{Z}$ e consideramos o conjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$.

$$\frac{\forall n \geq n_0 \ ((\forall k < n \ P(k)) \Rightarrow P(n))}{\forall n \geq n_0 \ P(n)}$$

Mais em detalhe:

Portanto, para provar $\forall n \geq n_0 \ P(n)$, temos a seguinte tarefa:

• para cada $n \ge n_0$, provar P(n) supondo que, para todo o k < n (e $k > n_0$), P(k) é válida.

Nota

- O caso $n = n_0$ acima significa "provar $P(n_0)$ " porque "para todo o $k < n_0$, P(k)" é trivialmente válida.
- Dependente do contexto, as vezes é necessário verificar primeiro os casos iniciais $P(n_0)$, $P(n_0 + 1)$, ..., $P(n_0 + k)$.

Recordamos que

cada subconjunto $A\subseteq\mathbb{N}$ não-vazio tem um menor elemento.

Recordamos que

cada subconjunto $A\subseteq\mathbb{N}$ não-vazio tem um menor elemento.

Agora:

Sabemos que

$$\forall m \geq n_0 \ ((\forall k < m \ P(k)) \Rightarrow P(m))$$

e suponhamos que

Recordamos que

cada subconjunto $A\subseteq\mathbb{N}$ não-vazio tem um menor elemento.

Agora:

Sabemos que

$$\forall m \geq n_0 \ ((\forall k < m \ P(k)) \Rightarrow P(m))$$

e suponhamos que $A = \{n \in \mathbb{N} \mid \neg P(n)\} \neq \emptyset$.

Recordamos que

cada subconjunto $A\subseteq\mathbb{N}$ não-vazio tem um menor elemento.

Agora:

Sabemos que

$$\forall m \geq n_0 \ ((\forall k < m \ P(k)) \Rightarrow P(m))$$

e suponhamos que $A = \{n \in \mathbb{N} \mid \neg P(n)\} \neq \emptyset$. Então, A tem um menor elemento, digamos m.

A intuição

Recordamos que

cada subconjunto $A \subseteq \mathbb{N}$ não-vazio tem um menor elemento.

Agora:

Sabemos que

$$\forall m \geq n_0 \ ((\forall k < m \ P(k)) \Rightarrow P(m))$$

e suponhamos que $A = \{n \in \mathbb{N} \mid \neg P(n)\} \neq \emptyset$. Então, A tem um menor elemento, digamos m. Logo, para todo o k < m, P(k).

A intuição

Recordamos que

cada subconjunto $A \subseteq \mathbb{N}$ não-vazio tem um menor elemento.

Agora:

Sabemos que

$$\forall m \geq n_0 \ ((\forall k < m \ P(k)) \Rightarrow P(m))$$

e suponhamos que $A = \{n \in \mathbb{N} \mid \neg P(n)\} \neq \emptyset$. Então, A tem um menor elemento, digamos m. Logo, para todo o k < m, P(k). Portanto, P(m); uma contradição.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

Г

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

Caso 1: n é primo. Portanto, n = n (produto com um fator) e a afirmação é verdadeira.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

Caso 1: n é primo. Portanto, n = n (produto com um fator) e a afirmação é verdadeira.

Caso 2: n não é primo.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

Caso 1: n é primo. Portanto, n = n (produto com um fator) e a afirmação é verdadeira.

Caso 2: n não é primo. Portanto, n = ab com números naturais a, b < n.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

- Caso 1: n é primo. Portanto, n = n (produto com um fator) e a afirmação é verdadeira.
- Caso 2: n não é primo. Portanto, n = ab com números naturais a, b < n. Por hipótese de indução,

$$a=p_1\cdot\dots\cdot p_r$$
 e $b=q_1\cdot\dots\cdot q_s$,

com números primos $p_1, \ldots, p_r, q_1, \ldots, q_s$.

Teorema

Cada número natural $n \ge 2$ é um produto de números primos, isto é, existem números primos p_1, \ldots, p_k com $n = p_1 \cdot \cdots \cdot p_k$.

Demonstração.

Seja $n \ge 2$ e suponha que cada número natural k com $2 \le k < n$ é um produto de números primos.

- Caso 1: n é primo. Portanto, n = n (produto com um fator) e a afirmação é verdadeira.
- Caso 2: n não é primo. Portanto, n = ab com números naturais a, b < n. Por hipótese de indução,

$$a=p_1\cdot\dots\cdot p_r$$
 e $b=q_1\cdot\dots\cdot q_s$,

com números primos $p_1, \ldots, p_r, q_1, \ldots, q_s$. Logo.

$$n = ab = p_1 \cdot \dots \cdot p_r \cdot q_1 \cdot \dots \cdot q_s$$

é um produto de números primos.

A ideia

n pombos devem ser postos em m casas. Se n > m, então pelo menos uma casa irá conter mais de um pombo.

Também conhecido como "princípio das gavetas de Dirichlet". Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como "princípio das gavetas de Dirichlet". Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Mais formal

Sejam A e B conjuntos finitos e $f:A\to B$ uma função.

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Mais formal

Sejam A e B conjuntos finitos e $f:A\to B$ uma função. Se |A|>|B|,

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Mais formal

Sejam A e B conjuntos finitos e $f:A\to B$ uma função. Se |A|>|B|, então f não é injetiva.

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Mais formal

Sejam A e B conjuntos finitos e $f:A\to B$ uma função. Se |A|>|B|, então f não é injetiva.

A contraposição é mais "óbvia": Se f é injetiva, então $|A| \leq |B|$.

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Mais formal

Sejam A e B conjuntos finitos e $f:A\to B$ uma função. Se |A|>|B|, então f não é injetiva.

A contraposição é mais "óbvia": Se f é injetiva, então $|A| \leq |B|$.

Formulação alternativa

Sejam A um conjunto com |A| = n, m < n e $(A_i)_{1 \le i \le m}$ uma família de subconjuntos de A dois à dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Então, para algum $1 \le i \le m$, $|A_i| \ge 2$.

Há duas pessoas aqui na sala que fazem anos no mesmo mês.

Exemplo

Há duas pessoas aqui na sala que fazem anos no mesmo mês.

Consideramos a função

```
f \colon \{ {\sf pessoas \ na \ sala} \} \longrightarrow \{ {\sf janeiro, \, \dots, \, dezembro} \}, p \longmapsto {\sf o \ m\^{e}s \ do \ nascimento \, de \, } p
```

com

$$|\{\text{janeiro}, \ldots, \text{dezembro}\}| = 12$$

е

$$|\{ ext{pessoas na sala}\}| > 12$$
 (espero).

Logo, f não é injetiva.

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas entre eles com distância menor do que 1.5 m.

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas entre eles com distância menor do que 1.5 m.

Dividimos a sala em quadrados "unitários" e consideramos a função

 $f: \{ {\sf pessoas\ na\ sala} \} \longrightarrow \{ {\sf os\ quadrados} \}$ $p \longmapsto {\sf o\ quadrado\ onde\ } p \ {\sf est\'a}$

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas entre eles com distância menor do que 1.5 m.

Dividimos a sala em quadrados "unitários" e consideramos a função

$$f : \{ ext{pessoas na sala} \} \longrightarrow \{ ext{os quadrados} \}$$

$$p \longmapsto ext{o quadrado onde } p \text{ está}$$

(se p está na fronteira, escolhemos um dos quadrados).

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas entre eles com distância menor do que 1.5 m.

Dividimos a sala em quadrados "unitários" e consideramos a função

$$f : \{ ext{pessoas na sala} \} \longrightarrow \{ ext{os quadrados} \}$$

$$p \longmapsto ext{o quadrado onde } p \text{ está}$$

(se p está na fronteira, escolhemos um dos quadrados). Como

$$|\{\text{pessoas na sala}\}| = 50 \quad \text{e} \quad |\{\text{os quadrados}\}| = 49,$$

há duas pessoas p e q no mesmo quadrado (f não é injetiva).

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas entre eles com distância menor do que 1.5 m.

Dividimos a sala em quadrados "unitários" e consideramos a função

$$f : \{ \text{pessoas na sala} \} \longrightarrow \{ \text{os quadrados} \}$$

$$p \longmapsto \text{o quadrado onde } p \text{ est\'a}$$

(se p está na fronteira, escolhemos um dos quadrados). Como

$$|\{\text{pessoas na sala}\}| = 50 \quad \text{e} \quad |\{\text{os quadrados}\}| = 49,$$

há duas pessoas p e q no mesmo quadrado (f não é injetiva). Logo

"distância entre p e q" \leq o comprimento do diagonal do quadrado

$$=\sqrt{2}<1.5.$$

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Nota: Logo,
$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn} \le \frac{1}{n^2}$$
.

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

Para cada $k \in \{0, 1, ..., n\}$, consideramos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

Para cada $k \in \{0, 1, \dots, n\}$, consideramos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Aqui $\lfloor x \rfloor$ denota o maior número inteiro a com $a \leq x$. Logo,

$$|x-\lfloor x\rfloor|<1.$$

Nota-se que $r_0 = 0$.

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

Para cada $k \in \{0, 1, ..., n\}$, consideramos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Aqui $\lfloor x \rfloor$ denota o maior número inteiro a com $a \leq x$. Logo,

$$|x - |x|| < 1.$$

Nota-se que $r_0=0$. Consideramos a função

$$f: \{0, 1, \ldots, n\} \longrightarrow \left\{ \left[0, \frac{1}{n}\right[, \left[\frac{1}{n}, \frac{2}{n}\right[, \ldots, \left[\frac{n-1}{n}, 1\right[\right]\right] \right\}$$

$$k \longmapsto$$
 o intervalo I com $r_k \in I$

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

Para cada $k \in \{0, 1, ..., n\}$, consideramos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Pelo princípio da gaiola de pombos, existem números l e k (digamos l < k) tal que r_l e r_k tem uma distância menor do que $\frac{1}{n}$.

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

Para cada $k \in \{0, 1, ..., n\}$, consideramos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Pelo princípio da gaiola de pombos, existem números l e k (digamos l < k) tal que r_l e r_k tem uma distância menor do que $\frac{1}{n}$. Portanto,

$$\frac{1}{n} > |k\alpha - \lfloor k\alpha \rfloor - l\alpha + \lfloor l\alpha \rfloor| = |(k-l)\alpha - (\lfloor k\alpha \rfloor - \lfloor l\alpha \rfloor)|$$

e escolhemos $q = k - l \in \{1, \dots n\}$ e $p = \lfloor k\alpha \rfloor - \lfloor l\alpha \rfloor$.

Ideia

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Ideia

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição:

Ideia

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que mk bolas, então uma caixa tem mais do que k bolas.

Ideia

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que mk bolas, então uma caixa tem mais do que k bolas.

Mais formal

Sejam A e B conjuntos finitos e $f: A \to B$ uma função. Se |A| > k|B|, então existe um $b \in B$ com $|f^{-1}(b)| > k$.

Ideia

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que mk bolas, então uma caixa tem mais do que k bolas.

Mais formal

Sejam A e B conjuntos finitos e $f: A \to B$ uma função. Se |A| > k|B|, então existe um $b \in B$ com $|f^{-1}(b)| > k$.

Formulação alternativa

Sejam A um conjunto com |A| = n, mk < n e $(A_i)_{1 \le i \le m}$ uma família de subconjuntos de A dois à dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Então, para algum $1 \le i \le m$, $|A_i| > k$.

Exemplo

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2 821 697 pessoas^a.)

^afonte: Wikipédia.

Exemplo

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2 821 697 pessoas^a.)

Agora consideramos a função "número de fios de cabelo na cabeça":

 $f: \{ Lisboetas \} \longrightarrow \{0, 1, \dots, 200000 \}.$

^afonte: Wikipédia.

Exemplo

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2 821 697 pessoas^a.)

Agora consideramos a função "número de fios de cabelo na cabeça":

$$f: \{ \mathsf{Lisboetas} \} \longrightarrow \{0, 1, \dots, 200000 \}.$$

Como $14 \cdot 200001 < 2821697$, existe um $n \in \{0, 1, \dots, 200000\}$ com

$$|f^{-1}(n)| > 14;$$
 (Nota: $f^{-1}(n) = \{p \mid f(p) = n\}$)

isto é, há pelo menos 15 pessoas com n fios de cabelo na cabeça.

^afonte: Wikipédia.