4 הרצאה

2019 באפריל 2019

קבוצת הפסוקים היכחיים/משפטים מורמליים - סינטקטי בסוקים עם $\{\leftarrow, \rightarrow\}$ בלבד. הגדרה אידוקטיבית:

$$B = A_1 \cup A_2 \cup A_3$$

$$A_1 = \{(\alpha \to (\beta \to \alpha)) | \alpha, \beta \in WFF\{\neg, \to\}\}$$

$$A_2 = \{((\alpha \to (\beta \to \gamma) \to ((\alpha \to \beta)) \to (\alpha \to \gamma)) | \alpha, \beta, \gamma \in WFF\{\neg, \to\}\}$$

$$A_3 = \{((\neg \alpha \to \neg \beta) \to (\beta \to \alpha)) | \alpha, \beta \in ...\}$$

$$F = \{MP\}$$

$$\underbrace{\alpha, \alpha \to \beta}_{\beta}$$

כדי להראות ספסוק שייך לקבוצת הפסוקים היכיחיים צריך להראות <u>סדרת יצירה</u> שנקראת סדרת הוכחה.

 $lpha_1,\ldots,a_n$ סדרת הפסוקים הוא המוק פסוק סדרת הוכחה סדרת הוכחה עבור פסוק

MP שכל אחד מהם בהסדרה או אכסיומה או אכסיומה של אחד מהקודמים שכל אחד או אכסיומה או שכל אחד מה

$$a_n = \beta$$
 בנוסף $a_1 a_2 a_3 \mid \dots a_n$ Proof series for a_3

דוגמה:

$$\vdash \alpha \rightarrow \alpha$$
 צ"ל

 β כ־כ $\alpha \to \alpha$ נסמן נסמן בקריאות כסימון להקלה כסימון כסימון

$$(\alpha \to (\beta \to \alpha)) \underbrace{\longrightarrow}_{\uparrow} ((\alpha \to \beta) \to (\alpha \to \alpha)) A_2$$
 .1

$$(\alpha o (\beta o \alpha)) \ A_1$$
 .2

$$((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \alpha)) MP1, 2$$
 .3

:
$$\beta$$
 הכנסת (א)
$$(\alpha \to (\underline{\alpha \to \alpha})) \to (\alpha \to \alpha))$$

$$(\alpha \to (\alpha \to \alpha)), A_1 \ .4$$

$$(\alpha \to \alpha) \ ,MP \ 4,3 \ .5$$

$$\vdash (\alpha \to \alpha)$$

דוגמה:

$$\vdash (\neg \alpha \to (\alpha \to \beta))$$

$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)) A_3$$
 .1

$$((\neg\beta\to\neg\alpha)\to(\alpha\to\beta))\to(\neg\alpha\to((\neg\beta\to\neg\alpha)\to(\alpha\to\beta))) \text{ ,} A_1 \text{ .2}$$

$$(\neg \alpha \rightarrow ((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))) MP 1, 2$$
 .3

$$(\underbrace{\neg \alpha}_{\alpha} \to ((\underbrace{\neg \beta \to \neg \alpha}_{\beta}) \to (\underbrace{\alpha \to \beta}_{\gamma}))) \xrightarrow{1} : A_{2} .4$$

$$(\underbrace{\neg \alpha}_{\alpha} \to (\underbrace{\neg \beta \to \neg \alpha}_{\beta})) \xrightarrow{2}$$

$$(\underbrace{\neg \alpha}_{\alpha} \to (\underbrace{\alpha \to \beta}_{\gamma}))$$

$$\underbrace{(\underbrace{\neg \alpha}_{\alpha} \to (\underbrace{\alpha \to \beta}_{\gamma}))}_{\gamma}$$

$$(\neg \alpha \rightarrow (\neg \beta \rightarrow \neg \alpha)) \rightarrow (\neg \alpha \rightarrow (\alpha \rightarrow \beta))) MP 3,4 .5$$

$$(\neg \alpha \rightarrow (\neg \beta \rightarrow \neg \alpha)) A_1$$
 .6

$$(\neg \alpha \rightarrow (\alpha \rightarrow \beta))MP \ 5,6 \ .7$$

 $\vdash (\neg \alpha \rightarrow (\alpha \rightarrow \beta))$

הוכחה על סמד הנחות

X נתונה קבוצת המסקנות אל , X נגדיר של קבוצת המסקנות של (X'קבוצת הפסוקים היכחיים עס'

$$\underbrace{\alpha \to \beta, \beta \to \gamma}_{X = \{\alpha \to \beta, \beta \to \gamma | \alpha, \beta, \gamma \in \text{WFF}_{\{\to, \neg\}}\}}$$

$$lpha
ightarrow eta$$
 הנחה .1

.
$$eta o \gamma$$
 הנחה .2 $\{lpha o eta, eta o \gamma\} dash (lpha o \gamma)$ מטרה:

משפט:

:נתון

 $.\vdash\beta$ ולכל אזי נסיק $\vdash\alpha$, $\alpha\in X$ ולכל $X\vdash\beta$

צ"ל:

$$\alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$$

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))A2$$
 .1

$$((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma)))A1$$
 .2

$$eta
ightarrow \gamma$$
 הנחה .3

$$(\alpha \rightarrow (\beta \rightarrow \gamma)), MP~2, 3$$
 .4

$$(\alpha \to \beta) \to (\alpha \to \gamma), MP \ 1,4 \ .5$$

$$lpha
ightarrow eta$$
 הנחנה. 6

$$\alpha \rightarrow \beta, MP 5,6$$
 .7
 $\beta \rightarrow \gamma, \alpha \rightarrow b \vdash \alpha \rightarrow \gamma$

:1 טענה

$$X \vdash \alpha$$
 אז $\alpha \in X$ אם הוכחה:
$$1.\alpha$$
 הנחנה
$$X \vdash \alpha$$

$$\alpha \vdash \alpha$$

:2 טענה

 $Y \vdash \alpha$ אז $X \vdash \alpha$ אם $X \vdash \alpha$ אז לכל פסוק אז לכל $X \subseteq Y$ אם התכונה נקראת: מונוטוניות של הוכחה.

נוסח אלטרנטיבי לטענה 2:

$$X_{B_1,F}\subseteq X_{B_2,F}$$
 אם $B_1\subseteq B_2$ אם

מסקנה:

Xאט לכל קבוצה א
ו $X \vdash \alpha$ אז לכל קבוצה אם א

:3 טענה

 $Y \vdash \alpha \ , X = \alpha$ אם לכל פסוק $X \vdash \beta$ אז לכל פסוק אז אז לכל פסוק אם אז לכל פסוק או

 $\underbrace{a_1,\ldots,}_{\mathrm{from}\ X},\underbrace{a_n}_{eta}$, $X \vdash eta$ נתון

"Xימ" על כל איבר a_i שהסדרה שלו היא על כל איבר נחליף אותו בסדרת הוכחה מתוך Y

דוגמה:

$$X = \{ lpha
ightarrow eta, eta
ightarrow \gamma \}$$
 $\delta = lpha
ightarrow \gamma$ ידוע $Y = \{ eta, \gamma \}$ נוכיח ש־ $y dash lpha
ightarrow eta$ $y dash lpha
ightarrow eta$ $y dash eta
ightarrow \gamma$ נסיק γ

$$v\beta \rightarrow (\alpha \rightarrow \beta)$$
, A1 .1

$$\beta$$
 y ב. הנחה מ-2

$$\begin{array}{c} \alpha \to \beta \ .\mathbf{3} \\ y \vdash \alpha \to \beta \end{array}$$

$$(\gamma \to (\beta \to \gamma)), \text{ A1 }$$
 (א)

$$.\gamma \ y$$
ב) הנחה מ־(ב)

טענה 4 (הוכחות הן סופיות)

(infinite)

 $X' \vdash \alpha$ אז קיימת תת קבוצה סופית של א $X' \subseteq X$ כך ש־ אז קיימת תת קבוצה אז האז קיימת על

משפט הדדוקציה:

 $\overline{A_1 ext{-}A_2}$ לכל מערכת הוכחה שיש בה לפחות את האכסיומות

MP ויש בה בדיוק את כלל ההיסק

מתקיים:

 $:\!\alpha,\beta$ ופסוקים אופסוקים לכל לכל קבוצת אופסוקים $X \vdash \alpha \to \beta$ אם ורק אם $X,\alpha \vdash \beta$

 $\vdash \beta \rightarrow \alpha \Leftarrow \beta \vdash \alpha$ מסקנה:

$$X \vdash \alpha \to \beta$$
 נתון \Rightarrow הוכחה: $X, \alpha \vdash \beta$ נוכיח

- lpha הנחה.1
- .lpha
 ightarrow eta מ־ע מ־2.
 - $\begin{array}{c} \beta \text{ MP .3} \\ X, \alpha \vdash \beta \end{array}$