```
import numpy as np
import sklearn
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import random
%matplotlib inline
pallete = ['Accent_r', 'Blues', 'BrBG_r', 'BuPu', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'OrRd', 'Oranges', 'Paired', 'PuBu',
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
```

Mounting from Google Drive

import os

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

from google.colab import files
uploaded = files.upload()

Choose Files diabetes.csv

• **diabetes.csv**(application/vnd.ms-excel) - 23873 bytes, last modified: 8/17/2021 - 100% done Saving diabetes.csv to diabetes (1).csv

Reading Data

data = pd.read_csv('diabetes.csv')

print("shape",data.shape)
data.head(7)

shape (768, 9)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

Data	columns (total 9 columns)	•					
#	Column	Non-Null Count	Dtype				
0	Pregnancies	768 non-null	int64				
1	Glucose	768 non-null	int64				
2	BloodPressure	768 non-null	int64				
3	SkinThickness	768 non-null	int64				
4	Insulin	768 non-null	int64				
5	BMI	768 non-null	float64				
6	DiabetesPedigreeFunction	768 non-null	float64				
7	Age	768 non-null	int64				
8	Outcome	768 non-null	int64				
dtyne	dtynes: float64(2), int64(7)						

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000

data_null=data.isnull().sum()
print(data_null)

Pregnancies
Glucose
BloodPressure
SkinThickness
Insulin
BMI
DiabetesPedigreeFunction

Age Outcome

dtype: int64

EDA

px.pie(data, names="Outcome")

0 1

Pregnencies vs Outcome

sns.countplot(x="Pregnancies", hue = "Outcome", data=data, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fadc8615750>

sns.histplot(x="Pregnancies", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fadc74f76d0>

Blood Pressure vs Outcome

sns.histplot(x="BloodPressure", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb5eccdc150>

Glucose vs Outcome

sns.histplot(x="Glucose", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb5eaae2a90>

Skin Thickness vs Outcome

sns.histplot(x="SkinThickness", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb5eaa76390>

Insulin vs Outcome

sns.histplot(x="Insulin", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

Age vs Outcome

sns.histplot(x="Age", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fadc4dc0c10>

BMI vs Outcome

sns.histplot(x="BMI", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

DiabetesPedigreeFunction vs Outcome

sns.histplot(x="DiabetesPedigreeFunction", hue="Outcome", data=data, kde=True, palette=random.choice(pallete))

<matplotlib.axes._subplots.AxesSubplot at 0x7fadc4df72d0>

data.hist(bins=20, figsize=(15,10))
plt.show()

print("The minimum value for the {} column is {}".format(col, data[col].min()))

Data Preprocessing

for col in data.columns:

```
The minimum value for the Pregnancies column is 0
The minimum value for the BloodPressure column is 0
The minimum value for the BloodPressure column is 0
The minimum value for the BloodPressure column is 0
The minimum value for the Insulin column is 0
The minimum value for the Insulin column is 0.0
The minimum value for the BMI column is 0.0
The minimum value for the BMI column is 0.0
The minimum value for the Age column is 2.0
The minimum value for the Outcome column is 0

data[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']] = data[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']].replace(0, np)

data['Insulin'] = data['Insulin'].fillna(data['Insulin'].median())
for col in ['Glucose', 'BloodPressure', 'SkinThickness', 'BMI']:
    data[col] = data[col].fillna(data[col].mean())
```

Splitting Data

```
train, test = train_test_split(data, test_size=0.3, random_state=50)
x_train = train.drop(columns='Outcome')
y_train = train['Outcome']

x_val = test.drop(columns='Outcome')
y_val = test['Outcome']

scaler = StandardScaler().fit(x_train)
x_train = scaler.transform(x_train)
x_val = scaler.transform(x_val)
```

Logistic Regression

```
l = LogisticRegression(solver='liblinear', max_iter=100, C=0.25).fit(x_train, np.ravel(y_train))
y_pred_log= l.predict(x_val)
print('Classification report:\n\n{}'.format(classification_report(y_val, y_pred_log)))
print('The accuracy of the Logistic Regression is', accuracy_score(y_val, y_pred_log))
```

Classification report:

precision recall f1-score support

```
148
       0
             0.76
                   0.89
                           0.82
                  0.51
                          0.60
                                   83
                                   231
                           0.75
  accuracy
             0.74 0.70
                          0.71
                                   231
 macro avg
weighted avg
            0.75
                   0.75
                           0.74
                                   231
```

The accuracy of the Logistic Regression is 0.7532467532467533

K Neighbors Classifier

```
knn = KNeighborsClassifier(n_neighbors = 9).fit(x_train, y_train)
y_pred_knn = knn.predict(x_val)
print('Classification Report:\n\n{}'.format(classification_report(y_val, y_pred_knn)))
print('The accuracy of the KNN is', accuracy_score(y_val, y_pred_knn))
```

Classification Report:

	precision	recall	f1-score	support
0	0.79	0.84	0.81	148
1	0.68	0.59	0.63	83
accuracy			0.75	231
macro avg	0.73	0.72	0.72	231
weighted avg	0.75	0.75	0.75	231

The accuracy of the KNN is 0.7532467532467533

SVM

```
svm = SVC(kernel='rbf', degree=4, C=0.7, probability=True).fit(x_train, np.ravel(y_train))
y_pred_svm = svm.predict(x_val)
print('Classification Report:\n\n{}'.format(classification_report(y_val, y_pred_svm)))
print('The accuracy of the SVM is', accuracy_score(y_val, y_pred_svm))
```

Classification Report:

	precision	recall	f1-score	support
0 1	0.74 0.71	0.90 0.43	0.81 0.54	148 83
accuracy macro avg weighted avg	0.72 0.73	0.67 0.73	0.73 0.67 0.71	231 231 231

The accuracy of the SVM is 0.7316017316017316

✓ 0s completed at 9:39 PM