Void Reduction in Self-Healing Swarms (Using proximity detection)

Neil Eliot¹, David Kendall¹, Alun Moon¹, Michael Brockway¹, Martyn Amos¹

> ¹Department of Computer and Information Sciences University of Northumbria

> > ALife, 2019

Video

Figure: Simulator

https://www.youtube.com/watch?v=iyMSpj10elk

Introduction

- 1 How did we do that?
- 2 Set the Ground Rules!
 - Swarm Rules
- 3 Communications and/or Sensing
 - Communications
 - Sensing
- 4 Void Reduction
 - Model
 - Local Effect
 - Global Effect
 - Simulated Results

Swarm Rules

- Swarms consist of many agents (mobile robots or drones) that interact according to a simple set of rules.
- We consider swarms of agents that:
 - Capable of detecting their neighbours (proximity detection).
 - Do not require any another form of communication.
- Swarms can be made fault tolerant (resilient to agent loss).

Why no communications?

- Communication propagation protocol overhead.
 - $n_1 \rightarrow n_3$
 - $n_1 \rightarrow n_2$
 - $n_3 \rightarrow n_2$ (decision!)
- Message propagation takes time which limits swarm size.

Figure: Swarm Communications

Proximity Sensing

- Proximity detection only, no other form of communication required.
- Arbitrary sized swarms possible.
- Agent attributes include various ranges (as shown in figure).

Figure: Ranges - R_b - repulsion, C_b - cohesion, S_b - sensing, and O_b - obstacles avoidance.

Agent Movement

 Agent movement is computed as the weighted sum of 4 vectors, as shown in equation 1

$$v(b) = k_c v_c(b) + k_r v_r(b) + k_d v_d(b) + k_o v_o(b)$$
 (1)

- $v_c(b)$ cohesion to ensure agents remain part of the swarm.
- $v_r(b)$ repulsion to ensure agents do not collide.
- $v_d(b)$ destination vector for goal based swarms.
- $v_o(b)$ obstacle avoidance vector.
- k_c , k_r , k_d , k_o are weightings to allow modifications to the vector effects.

The Swarm

Figure: Stable Structures

Figure: The Swarm - (Simulator)

Perimeter Detection

NOTE

Perimeter detection is used as part of the *void reduction* process. This will be discussed later.

- Perimeter detection allows for directional coordination with reduced resource usage.
 - 'Internal' agents don't need to use their GPS.
- Reduces computational overhead in agents.

Model

What is a Perimeter?

Figure: Internal (red) and external (green) perimeters

Perimeter Detection (Concave)

Figure: Concave gap (Void Reduction)

Perimeter Detection (Convex)

Figure: Convex gap

Void Reduction Movement

Figure: Concave detection

As part of the perimeter detection a pair (G_b) of agents is generated. This is the first two agents identified as creating a 'gap' in agent b's neighbours. Equation 2 calculates the centroid of the identified 'gap'.

$$D_{pos}(b) = \frac{1}{2} \sum_{n \in G_b} n \qquad (2)$$

Agent movement

Figure: Initial positions

Figure: Agent movement

Agent movement

Figure: Initial positions

Figure: Agent movement 📱 🕫 🤊 🤉 🤈

Scenario

Figure: Oil Slick Encapsulation

Summary

- Void reduction has a local effect creating a global emergent behaviour that improves the shape and structure of a swarm.
- Void reduction removes anomalies on internal and external perimeters.
- Void reduction can be applied to both static swarms and directional swarms.

Thank You

THANK YOU! QUESTIONS?

Agent Movement

$$v_r(b) = \frac{1}{|\mathcal{R}_b|} \left(\sum_{b' \in \mathcal{R}_b} \left(1 - \frac{|b'|}{R_b} \right) b' \right) \tag{3}$$

$$v_c(b) = \frac{-1}{|\mathcal{C}_b|} \left(\sum_{b' \in \mathcal{C}_b} b' \right) \tag{4}$$

Agent Movement

$$v_d(b) = d (5)$$

$$v_{o}(b) = O_{b}\hat{q}_{o}$$
where $q_{o} = \sum_{o \in \mathcal{O}_{b}} \hat{o}$

$$v_{o}(b) = O_{b} \left(\sum_{o \in \mathcal{O}_{b}} \hat{o} \right)^{\wedge}$$
(6)