

Drag coefficients C_D for creeping flow at low Reynolds number (Re ≤ 1 where Re = VD/ν and $A = \pi D^2/4$).

length in direction normal to the page (for use in the drag force relation $F_D=C_DA_
ho V^2/2$ where V is the upstream velocity) Drag coefficients C_D of various two-dimensional bodies for $Re > 10^4$ based on the frontal area A = bD, where b is the

Shar	Roun front edg
Rectangular rod $ \frac{V}{V} = \frac{V}{V} $	

P 18

1.9 2.5 2.2

0.1

0.5

2 0.0 *Corresponds to thin plate

E E

6.0 0.7

0.7

2.0 4.0

1.2

0.5 1.0

1.3

1.7

2.0 3.0

1.0

Laminar: $C_D = 1.2$

Circular rod (cylinder)

Turbulent: $C_D = 0.3$

$C_D = 1$.			$C_D = 2.$
D	→ 	 -	<u>q</u> <

	Elliptical rod
--	----------------

shell	
lar	-
icircu	/
<u>:</u>	- (
Ĕ	
Sei	

\mathcal{C}_D Turbuler	0.20	0.15	0.10	
\mathcal{C}_D Laminar	09'0	0.35	0.25	
Q/7	2	4	8	

Semicircular rod

Representative drag coefficients \mathcal{C}_D for various three-dimensional bodies based on the frontal area for $\mathrm{Re}>10^4\,\mathrm{U}$ stated otherwise (for use in the drag force relation $F_D=C_DA_
ho V^2/2$ where V is the upstream velocity)

Cube, $A = D^2$

 $C_D = 1.1$ Thin circular disk, $A = \pi D^2/4$

Cone (for $\theta = 30^{\circ}$), $A = \pi D^2 / 4$

 $C_D = 0.2$ $Rc \gtrsim 2 \times 10^6$ See Fig. 11-36 for C_D vs. Re for smooth and rough spheres.

C_D Turbulent $Re \gtrsim 2 imes 10^6$	0.2	0.2	0.1	0.1	0.1
C_D Laminar $Re \lesssim 2 imes 10^5$	0.5	0.5	0.3	0.3	0.2
Q/I	0.75	_	2	4	8

Hemisphere, $A = \pi D^2/4$

$$C_D = 1.2$$

Finite cylinder, vertical, A = LD

Finite cylinder, horizontal, $A = \pi D^2/4$

1.0

Values are for laminar flow

 $(\mathrm{Re} \lesssim 2 \times 10^5)$

	s C_D	0.4-1.2	0.3-1.0	0.2-0.7
	V, m/s	10	20	30
4=trontal area	A = frontal area			

Streamlined body, $A = \pi D^2/4$

 $C_D = 0.04$

 $C_D = 1.10 + 0.02 (L/D + D/L)$ for 1/30 < (L/D) < 30

