The group G is isomorphic to the group labelled by [24, 1] in the Small Groups library. Ordinary character table of $G \cong \mathbb{C}3$: $\mathbb{C}8$:

	1 <i>a</i>	2a	4a	4b	3a	6a	12a	12b	8a	8b	8c	8 <i>d</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_3	1	1	-1	-1	1	1	-1	-1	E(4)	E(4)	-E(4)	-E(4)
χ_4	1	1	-1	-1	1	1	-1	-1	-E(4)	-E(4)	E(4)	E(4)
χ_5	1	-1	E(4)	-E(4)	1	-1	E(4)	-E(4)	E(8)	-E(8)	$E(8)^{3}$	$-E(8)^3$
χ_6	1	-1	E(4)	-E(4)	1	-1	E(4)	-E(4)	-E(8)	E(8)	$-E(8)^3$	$E(8)^{3}$
χ_7	1	-1	-E(4)	E(4)	1	-1	-E(4)	E(4)	$E(8)^{3}$	$-E(8)^{3}$	E(8)	-E(8)
χ_8	1	-1	-E(4)	E(4)	1	-1	-E(4)	E(4)	$-E(8)^{3}$	$E(8)^{3}$	-E(8)	E(8)
χ_9	2	2	2	2	-1	-1	-1	-1	0	0	0	0
χ_{10}	2	2	-2	-2	-1	-1	1	1	0	0	0	0
χ_{11}	2	-2	2 * E(4)	-2 * E(4)	-1	1	-E(4)	E(4)	0	0	0	0
χ_{12}	2	-2	-2*E(4)	2 * E(4)	-1	1	E(4)	-E(4)	0	0	0	0

Trivial source character table of $G \cong C3$: C8 at p=2:

Trivial source character table of $G = C_3$. Co at $p = 2$.							
Normalisers N_i	N_1		N_2		N_3		N_4
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3		P_4
Representatives $n_j \in N_i$				3a	1a	3a	1 <i>a</i>
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	-4	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1	2	-1	2	-1	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong \mathbb{C}_2$

 $P_3 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24)]) \cong C4$

 $P_4 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12)]) \cong C8$

 $N_1 = Group([(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:C8$ $N_2 = Group([(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:C8$ $N_3 = Group([(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:C8$ $N_4 = Group([(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2,24)(1,$