# Minimum Spanning Trees (MST)

## 1 Definitions

### 1.1 Path

A path is a sequence of edges which connects a sequence of nodes.

### 1.2 Cycle

A cycle is a path with no repeated nodes or edges other than the start and end nodes.

### 1.3 Tree

A undirected graph is a tree if it is connected and does not contain a cycle. The basic tree theorem is stated below: Let G be an undirected graph on n nodes (may not be the tree), then any two of the following statements imply the third:

- 1. G is connected.
- 2. G does not contain a cycle.
- 3. G has n-1 edges

## 1.4 Spanning Tree

An undirected graph is a spanning tree if it is a tree and touches every vertex in G. The definition of Minimum Spanning Tree (MST) is slightly different. Given a connected graph G = (V, E) with real-valued edge weights  $c_e$ , an MST is a subset of the edges T such that T is a spanning tree whose sum of edge weights is minimized.



Figure 1: MST Overview

Based on Cayley's Theorem, there are  $n^{n-2}$  spanning trees with n nodes.

## 2 Properties

### 2.1 Cut

#### 2.1.1 Definition

A cut is a partition of the nodes into two nonempty subsets S and V - S. The cutset D of a cut S is the set of edges with exactly one endpoint in S.



Figure 2: Cut and Cutset Definitions

### 2.1.2 Property

Assume all edge costs  $c_e$  are distinct. Then consider a cut in a graph that divides the vertices into two disjoint subsets. Among the edges that cross the cut (those that have one endpoint in each subset), if the weight of an edge e is the smallest, then **every** MST contains e.



Figure 3: Cut Property

#### 2.1.3 Proof

- 1. Define e as the minimum cost edge in the cutset for a set S, and define  $T^*$  as an MST.
- 2. Suppose e does not belong to  $T^*$
- 3. Because  $T^*$  is an MST, so the endpoints u and v must be connected by a path in  $T^*$
- 4. Adding e to  $T^*$  will create a cycle C in  $T^*$ , because  $T^*$  is a tree, adding any edge connecting two vertices will create a cycle.
- 5. This cycle must contain another edge f that crosses the cut S, because the cycle must enter and leave each part of the cut, and e was one such edge crossing. We can remove f to break the cycle and still have a spanning tree.
- 6. By the assumption of the cut property, the weight of e is less than or equal to the weight of f, because e is the minimum weight edge crossing the cut. Therefore replacing f with e can not increase the total weight of the tree.
- 7. This replacement results in another spanning tree T' with a weight less than or equal to that of T. If T was a MST, then T' is either another MST or has a smaller weight, which contradicts the assumption that T was the MST without e.
- 8. Therefore, every MST contains e.

## 2.2 Cycle

### 2.2.1 Definition

Again, we assume all edge costs  $c_e$  are distinct. We define cycle as a set of edges that form a - b, b - c, c - d, ..., y - z, z - a, as shown below:



Figure 4: Cycle Definition

Now, define C as any cycle, and let f be the max cost edge belonging to C. Then every MST does not contain f.

#### 2.2.2 Proof

- 1. Define f as the maximum weight in a cycle C is included in a MST T.
- 2. Suppose f is part of some cycle in the graph G, and T includes f.
- 3. Because f is part of a cycle, we can remove f from T without disconnecting the graph. Removing e breaks the cycle and leaves a spanning tree because the rest of the graph remains connected.
- 4. By removing f, which has the maximum weight in the cycle, the total weight of the spanning tree is reduced. This new spanning tree T' has a lower total weight than T, assuming f was part of T.
- 5. This contradicts the assumption that T was a MST of G, as T included an edge e that could be removed to reduce its total weight.

## 3 Prim's Algorithm

### 3.1 Definition

The Prim's Algorithm includes the following steps:

- 1. Start with a set 'MST' that contains a chosen starting vertex (arbitrary)
- 2. While 'MST' does not yet include all vertices:
  - (a) Select and remove the edge with the smallest weight that **connects a vertex** in MST to a vertex outside MST

- (b) Add the selected edge and vertex not in MST to MST
- (c) Update the priority queue by adding the new edges that connect the newly added vertex to any vertex not yet in MST

### 3.2 Proof

### 3.2.1 Simple Version

Prim's algorithm utilizes the cut property, that the min cost edge is always inside the MST. So if we keep adding the min cost edge, we can get a MST.

### 3.3 Implementation

Implementation. Use a priority queue (as for Dijkstra).

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge v to a node in S.
- $\bullet$   $O(n^2)$  with an array;  $O(m \log n)$  with a binary heap.

```
\begin{aligned} & \textbf{Frim}(G,\,c) \, \{ \\ & \textbf{foreach} \, (v \in \, V) \, \, \textbf{insert} \, v \, \, \textbf{onto} \, \, Q \\ & \textbf{Initialize} \, \textbf{set} \, \, \textbf{of} \, \, \textbf{explored} \, \, \textbf{nodes} \, \, \textbf{S} \leftarrow \phi \\ & \textbf{Cheapest} \, \underline{\textbf{edge}} \, \textbf{between} \, \textbf{v} \, \, \textbf{and} \, \, \textbf{a} \\ & \textbf{foreach} \, (v \in \, V) \, \, \textbf{a[v]} \leftarrow \infty & \textbf{node} \, \textbf{in} \, \textbf{explored} \, \textbf{set} \, \textbf{S} \\ & \textbf{Initialize} \, \textbf{a} \, \, \textbf{priority} \, \, \textbf{queue} \, Q \\ & \textbf{while} \, (Q \, \textbf{is} \, \, \textbf{not} \, \textbf{empty}) \, \{ \\ & \textbf{u} \leftarrow \, \textbf{delete} \, \textbf{min} \, \textbf{element} \, \textbf{from} \, Q \\ & \textbf{S} \leftarrow \textbf{S} \, \cup \, \{ \textbf{u} \, \} \\ & \textbf{foreach} \, (\textbf{edge} \, \textbf{e} = (\textbf{u}, \, \textbf{v}) \, \textbf{incident} \, \textbf{to} \, \textbf{u}) \\ & \textbf{if} \, ((\textbf{v} \notin \, \textbf{S}) \, \textbf{and} \, (\textbf{c}_{e} < \textbf{a[v]})) \\ & \textbf{decrease} \, \textbf{key} \, \textbf{a[v]} \, \textbf{to} \, \textbf{c}_{e} \\ & \textbf{\}} \end{aligned}
```

Figure 5: Prim's Algorithm Implementation

## 4 Kruskal's Algorithm

### 4.1 Definition

- 1. First sort all the edges of the graph in **non-decreasing** order of their weights.
- 2. Start with  $T = \emptyset$ . Insert edge e in ascending order in T unless doing so would create a cycle.

### 4.2 Proof

### 4.2.1 Simple Version

There are two situations when adding an edge e:

- 1. If adding e creates a cycle, then skip e. This is valid by the cycle property.
- 2. If adding e does not create a cycle, then add e. It is valid by the cut property.

### 4.3 Implementation

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$  for sorting and  $O(m \alpha (m, n))$  for union-find.

```
m \leq n^2 \Rightarrow \log m is O(\log n) essentially a constant

Kruskal(G, c) {

Sort edges weights so that c_1 \leq c_2 \leq ... \leq c_m.

T \leftarrow \phi

foreach (u \in V) make a set containing singleton u

for i = 1 to m

are u and v in different connected components?

(u,v) = e_i

if (u and v are in different sets) {

T \leftarrow T \cup \{e_i\}

merge the sets containing u and v

}

return T
```

Figure 6: Kruskal's Algorithm Implementation

## 5 Reverse-Delete Algorithm

### 5.1 Definition

Start with T = E, where E is the edge array. Then consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

### 5.2 Proof

If removing edge e does not disconnect the graph, then e is part of a cycle. Therefore the edges removed do not belong to any MST. Finally, the output is a spanning tree, connected and no cycle.