Training and Racing: A story told in Data

Hi there.

My name is Keith Kruelskie.

Today I will talk about training, racing, and how we analyze it. You can find me at https://github.com/keithkruelskie (or out running or biking)

My Journey (So Far)

- "In many ways, a race is analogous to life itself.
 Once it is over, it can not be re-created. All that is left are impressions in the heart, and in the mind."
 - -Chris Lear

Training Data Fundamentals

Background and Problem Statement

Data in Training

Why is it important?

- Monitoring/Accountability
- Improve Future training
- Predict Athlete outcomes

Acquiring Data

User consent

Important Training Metrics

Distance

- Known before race day
- Generally, defines if aerobic/ anaerobic effort
- Standardized

Pace

- Varies with distance, time, elevation
- Hard to predict accurately
- Determines race finish

Heart Rate

- Measure of intensity
- Recorded continuously
- Can be inaccurate

Can we predict an athlete's race pace based on their previous training?

Training Data Exploration

Data Processing and EDA

Importing and EDA

Wrangling Garmin Data

- Variable Features file to file
- Mixed Data Types
- Few data points to many per athlete
- Hobbyists and Racers

Initial Findings

Initial Findings

Key Takeaways:

- Pace over Intensity = "Threshold Pace"
- Athletes train at a variety of different intensities through their training
- Heart rate indicator of effort level

Modeling

autoARIMA and PyMC3 Bayesian Forecasting

Bright Spots

- Quickly finds correlations(if any) based on time
- Accurate predictions, train to race data

Limitations

- Essentially defaults to linear regression in this dataset
- Does not account for seasonality of training

Bright Spots

- Accurate Short term forecasting
- Confidence Intervals

Limitations

- Can be construed as overfit/sensitive to data errors
- Not useful for long term projections

PyMC3 Predictions

Statsmodels SARIMAX (1,0,1) model wrapped by PyMC3

Results:

- Pace Predicted on most athletes within :10-15s/mile (linear autoARIMA)
- One step ahead predictions and confidence intervals accurate over time

Forecasting

PyMC3 Seasonality Prediction

So, What's the Problem?

- We can predict athlete racing with a training history.
- But, what if we want to look into the future?

Athlete Training Pace Curve

- Valuable to Athlete and Coach
- Builds on the current pace
- Built on PyMC3
- Weekly smoothing

Speed

Athlete Training Pace Curve (Behind the scenes)

Synthetic Data Simulation for Model Design

Trace Plots on actual athlete data

Athlete Training Pace Curve - Results

- Predictions within 10-15s/mile on half Marathon and Marathon distances
- Pace curves match with predicted increases (for coached athletes)

THANKS!

Any questions?

You can find me at @keithkruelskie & k.kruelskie@gmail.com