CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion

Author: Jiayi Yao, Junchen Jiang, etc. University of Chicago

Presenter: Yicheng Zhang USTC

Outline

1	Background & Motivation
2	Design
3	Evaluation
4	Discussion

Retrieval-Augmented Generation

What is Andy's weight?

Without additional context, I don't have information about Andy's weight.

Retrieval-Augmented Generation

KV Cache: in Prefill State

KV Cache: Reuse the KV Cache of same prefix

Each token's attention output depends only on itself and all preceding tokens

Same prefix ——— Same attention result

KV Cache: Reuse the KV Cache of same prefix

Can we use KV cache in RAG?

Each token's attention output depends only on itself and all preceding tokens

Same prefix ——— Same attention result

Only chunk I's KV can be reused!

Position & Cross-chunk Attention effect

Only chunk I's KV can be reused!

Position: Different position means different positional encoding result, KV is different

empty Chunk2

is not equal to

Chunk2 empty

Position: Different position means different positional encoding result, KV is different

Can be solved by multiplying the K vector by a rotation matrix

Only chunk I's KV can be reused!

Cross-chunk Attention: Chunks effect attention result of each others

In layer I, we can reuse T_2 's KV Cache

Only chunk I's KV can be reused!

Cross-chunk Attention: Chunks effect attention result of each others

In layer I, we can reuse T_2 's KV Cache

Only chunk I's KV can be reused!

Cross-chunk Attention: Chunks effect attention result of each others

In layer I, we can reuse T_2 's KV Cache

Layer2:
$$T_1' \\ T_2' \\ T_3'$$
 $Q_1' K_1'^T \\ Q_2' K_1'^T Q_2' K_2'^T \\ Q_3' K_1'^T Q_3' K_2'^T Q_3' K_3'^T$

$$Q_2' K_1'^T = W_Q(Q_2 K_1^T V_2 + Q_2 K_2^T V_2)(W_K Q_1 K_1^T V_1)^T$$

However, In layer 2, we cannot reuse T_2 's KV Cache

For T_2' cannot be precomputed

Only chunk I's KV can be reused!

Cross-chunk Attention: Chunks effect attention result of each others

Full KV re-compute

Use same prefix's KV: RAGCache

Use same prefix's KV: RAGCache

Prefix Caching: RAGCache adopts knowledge tree to cache hot prefix's KV

Use same prefix's KV: RAGCache

Prefix Caching: RAGCache adopts knowledge tree to cache hot prefix's KV

Cons: cannot work when prefix is not the same

Full KV reuse (ignore cross-chunk attention): PromptCache

Full KV reuse (ignore cross-chunk attention): PromptCache

Full KV reuse (ignore cross-chunk attention): PromptCache

Precompute most chunk's KV with position information, ignore cross-chunk attention

Full KV reuse (ignore cross-chunk attention): PromptCache

Cons: low quality when #chunk is large

Reuse KV in RAG: Insight I

□Only a small fraction of tokens have large KV deviation

Distribution of KV deviation of different tokens on one layer.

Reuse KV in RAG: Insight 2

□Recompute only a small number of token's KV cache can get high generation quality

Definition of forward attention deviation:

$$\left\| \operatorname{Attn}(\operatorname{KV}_{\operatorname{pre}}, Q) - \operatorname{Attn}(\operatorname{KV}_{\operatorname{re}}, Q) \right\|_2$$
 Q is the user's query

Recompute the KV of the tokens with the highest KV deviation (HKVD)

Reuse KV in RAG: Insight 3

□Tokens with the highest KV deviations on one layer are likely to have the highest KV deviations on the next layer.

Definition of Spearman's rank correlation:

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

Rank of KV deviation at layer I:

Rank of KV deviation at layer I+I:

n = 5
d = [1, 2, 3, 4, 5] - [2, 1, 3, 5, 4] = [-1, 1, 0, -1, 1]
$$\rho = 0.8$$

Rank correlation of the KV deviation per token between two consecutive layers.

Outline

1	Background &	Motivation
	Design	
3	Evaluation	
4	Discussion	

Design: Key Idea

Recompute a small number of tokens' KV cache

Pipeline the small recompute overhead with loading delay

Maintain both HIGH generation quality and LOW recompute overhead

Design: System Overview

KV Cache Blender: Recover positional embedding

□Positional information can be done easily by multiplying the Key vector by a rotation matrix

KV Cache Blender: Selective re-computation

□Cross-chunk Attention effect

(b) Selective KV recompute on two selected tokens

How to select tokens?

KV Cache Blender: Selective recomputation

Layer i selected token is slightly larger than layer i+ I

KV Cache Blender: Selective re-computation

Loading Controller

- □Pipline KV Cache loading and Recompute
- ☐Time of selective KV recomputed should be the same as loading KV into GPU

Loading Controller

□Pipline KV Cache loading and Recompute

Outline

1	Background &	Motivation
	Design	
3	Evaluation	
4	Discussion	

Setup

□Hardware

- **❖ 128 GB RAM**
- ❖2 Nvidia A40 GPUs
- ❖ ITB NVME SSD (4.8GB/s thpt)

□Models

- ❖Mistral-7B, run on I GPU
- ❖Yi-34B, run on 1 GPU, applied 8-bit model quantization
- Llama-70B, run on 2 GPUs, applied 8-bit model quantization

Setup

□Basic Dataset:

❖2WikiMQA: 200 test cases

❖ Musique: I50 test cases

❖ SAMSum: 200 test cases

❖ MultiNews: 60 sampled test cases

□Simulate RAG chunk reuse

- *extended Musique and 2WikiMQA: generating 6000 queries (1500 original + 3 GPT-4-augmented per query) with contexts split into 512-token chunks
- *retrieving top-6 chunks per query to simulate chunk reuse in RAG scenarios

Setup

□Metrics:

- ❖FI-Score: for 2WikiMQA and Musique datasets
- *Rouge-L score: for MultiNews and SAMSum datasets

□Baselines:

- ❖Full KV Recompute
- Prefix caching: adopt technique from SGLang
- ❖Full KV reuse: adopt approach proposed by PromptCache
- ❖ MapReduce: generate result per chunk then reduce
- ❖ MapRerank: generate result per chunk then return the result with best score

Overall Improvement

□Compared with full KV reuse, CacheBlend is slower but its quality stably outperforms

Overall Improvement

□Compared to Prefix Caching and Full KV recompute, CacheBlend's significantly reduces the TTFT by 2.2-3.3× with little reduction in F1-score

Overall Performance

□Compared to MapReduce, CacheBlend has a 2-5× lower TTFT and higher FI score.

Overall Performance

- ☐ CacheBlend achieves higher throughput and lower delay
 - On Musique extended and 2WikiMQA datasets under different request rates.

Sensitivity Analysis

□Varying chunk numbers and lengths

conducted on 2WikiMQA with Mistral-7B model

Sensitivity Analysis

□Varying recompute ratio, with 5%-18% recompute ratio

Across all dataset on Yi-34B model

Outline

1	Background & Motivation	
	Design	
3	Evaluation	
4	Discussion	-1

Discussion

- □CacheBlend uses KV cache's sparsity in a novel way
- ☐But using SSD to store/load KV cache and without GPU direct is a little weird

Thanks!