Claim Listing:

1. (Currently Amended) A method of treating or preventing chronic organ transplant rejection in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

$$R^1$$
 R^2 R^3 R^3

or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula

$$R^4$$
 $(CH_2)_y$

wherein y is 0, 1 or 2;

 R^4 is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)2amino, cyano, nitro, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl or (C_1-C_6) acylamino; or R^4 is (C_3-C_{10}) cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_6) acyloxy, (C_1-C_6) acylamino, $((C_1-C_6)$ alkyl)2amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, nitro (C_1-C_6) alkyl or (C_1-C_6) acylamino;

 R^5 is (C_2-C_9) heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo, (C_1-C_6) acyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH, (C_1-C_6) alkylamino-CO-, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkyl, nitro, cyano (C_1-C_6) alkyl, halo (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl

 $C_6) a cylamino(C_1-C_6) alkyl, \quad (C_1-C_6) alkoxy(C_1-C_6) a cylamino, \quad amino(C_1-C_6) a cyl, \quad amino(C_1-C_6) a cyl, \quad (C_1-C_6) alkyl)_2 amino(C_1-C_6) a cyl, \quad (C_1-C_6) alkyl)_2 amino(C_1-C_6) a cyl, \quad (C_1-C_6) alkyl)_2 amino(C_1-C_6) a cyl, \quad (C_1-C_6) a cyl, \quad (C_1-C_$

$$(CR^{6}R^{7})_{a} \qquad (X)_{b} \qquad (CR^{9}R^{10})_{d} \qquad (Y)_{e} \qquad f \qquad (Z)_{g} \qquad R^{12}$$

II

wherein a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

X is $S(O)_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;

Y is $S(O)_n$ wherein n is 0, 1 or 2; or carbonyl; and

Z is carbonyl, C(O)O-, C(O)NR- or $S(O)_n$ wherein n is 0, 1 or 2;

 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group consisting of hydrogen or (C_1-C_6) alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_6) acylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, nitro (C_1-C_6) alkyl or (C_1-C_6) acylamino;

 $R^{12} \text{ is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, } (C_1\text{-}C_6)\text{alkyl, trifluoromethyl}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy, halo, } (C_1\text{-}C_6)\text{acyl, } (C_1\text{-}C_6)\text{alkylamino, } ((C_1\text{-}C_6)\text{alkyl})_2 \text{ amino, amino}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy-CO-NH, } (C_1\text{-}C_6)\text{alkylamino-CO-, } (C_2\text{-}C_6)\text{alkenyl, } (C_2\text{-}C_6)\text{alkynyl, } (C_1\text{-}C_6)\text{alkylamino, hydroxy}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } \text{nitro, cyano}(C_1\text{-}C_6)\text{alkyl, halo}(C_1\text{-}C_6)\text{alkyl, nitro}(C_1\text{-}C_6)\text{alkyl, } \text{trifluoromethyl, trifluoromethyl}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{acylamino, } \text{amino}(C_1\text{-}C_6)\text{acylamino, } \text{amino}(C_1\text{-}C_6)\text{acylamino}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } \text{amino}(C_1\text{-}C_6)\text{acyl}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl)}_2 \text{amino}(C_1\text{-}C_6)\text{acyl, } R^{15}R^{16}N\text{-CO-O-, } R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{alkyl})_2 \text{amino}(C_1\text{-}C_6)\text{acyl, } R^{15}R^{16}N\text{-CO-O-, } R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{alkyl})_2 \text{amino}(C_1\text{-}C_6)\text{acyl, } R^{15}R^{16}N\text{-CO-O-, } R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{acyl, } R^{15}R^{16}N\text{-CO-O-, } R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}C_6)\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}(R^{15}R^{16}N\text{-CO-}(C_1\text{-}(R^{15}R^{16}N\text{-CO-}(R^{15}R^{16}N\text{-CO-}(R^{15}R^{16}N\text{-CO-}(R^{15}R^{15}R^{16}N\text{-CO-}(R^{15}R^{15}R^{16}N\text{-CO-}(R^{15}R^{15}R^{16}N\text{-CO-}(R^{15}R^{15}R^{16}N\text{-CO-}(R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{15}R^{$

 C_6)alkyl, $R^{15}C(O)NH$, $R^{15}OC(O)NH$, $R^{15}NHC(O)NH$, (C_1-C_6) alkyl- $S(O)_m$, (C_1-C_6) alkyl- $S(O)_m$, (C_1-C_6) alkyl, $R^{15}R^{16}NS(O)_m$, $R^{15}R^{16}NS(O)_m$,

R² and R³ are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydoxy, hydroxy, nitro, carboxy, (C2-C6)alkenyl, (C2-C6)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substittued substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl, (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, $((C_1-C_6)alkyl)_2$ amino, $(C_6-C_{10})arylamino$, $(C_1-C_6)alkylthio$, $(C_6-C_{10})arylthio$, $(C_1-C_6)alkylsulfinyl$, (C_6-C_{10}) ary lsulfinyl, (C_1-C_6) alkylsulfonyl, (C_6-C_{10}) ary lsulfonyl, (C_1-C_6) acyl, (C_1-C_6) alkoxy-CO-NH-, (C_1-C_6) alkyamino-CO-, (C_1-C_6) alkylamino-CO-, (C_5-C_9) heteroaryl, (C_2-C_9) heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH- (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy, carboxy, carboxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkoxy, benzyloxycarbonyl(C₁-C₆)alkoxy, (C₁- C_6)alkoxycarbonyl(C_1 - C_6)alkoxy, (C_6-C_{10}) aryl, amino, amino(C_1 - C_6)alkyl, $(C_1 C_6$)alkoxycarbonylamino, (C_6-C_{10}) aryl (C_1-C_6) alkoxycarbonylamino, (C_1-C_6) alkylamino, C₆)alkyl)₂amino, (C₁-C₆)alkylamino(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)alkyl, hydroxy, (C₁- C_6)alkoxy, carboxy, carboxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkoxycarbonyl(C_1 -C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)arylamino-CO-NH-, (C₅-C₉)heteroarylamino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino-CO-NH-(C₁-C₆)alkyl, (C₆-C₁₀)arylamino-CO-NH-(C₁-C₆)alkyl, (C₅-C₉)heteroarylamino-CO-NH- (C_1-C_6) alkylsulfonyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino (C_1-C_6) alkylsulfonylamino) (C_1-C_6) alkyl, C_6)alkyl, (C_6-C_{10}) arylsulfonyl, (C_6-C_{10}) arylsulfonylamino, (C_6-C_{10}) arylsulfonylamino (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino (C_1-C_6) alkyl, (C_5-C_9) heteroaryl or (C_2-C_9) C₉)heterocycloalkyl;

effective in treating such a condition.

- 2. (Original) A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 0; d is 0; e is 0; f is 0; and g is 0.
- 3. (Original) A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 0; d is 1; e is 0; f is 0, and g is 0.
- 4. (Original) A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 0; f is 0; and g is 0.
- 5. (Original) A method according to claim 1, wherein a is 0; b is 1; X is -C(=N=cyano)-; c is 1; d is 0; e is 0; f is 0; and g is 0.
- 6. (Original) A method according to claim 1, wherein a is 0; b is 0; c is 0; d is 0; e is 0; f is 0; g is 1; and Z is -C(O)-O-.
- 7. (Original) A method according to claim 1, wherein a is 0; b is 1; X is S(O)_n; n is 2; c is 0; d is 0; e is 0; f is 0; and g is 0.
- 8. (Original) A method according to claim 1, wherein a is 0; b is 1; X is S(O)_n; n is 2; c is 0; d is 2; e is 0; f is 1; g is 1; and Z is carbonyl.
- 9. (Original) A method according to claim 1, wherein a is 0; b is 1; X is S(O)_n; n is 2; c is 0; d is 2; e is 0; f is 1; and g is 0.
- 10. (Original) A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 1; Y is S(O)_n; n is 2; f is 0; and g is 0.

- 11. (Original) A method according to claim 1, wherein a is 0; b is 1; X is S(O)_n; n is 2; c is 1; d is 0; e is 0; f is 0; and g is 0.
- 12. (Original) A method according to claim 1, wherein R^{12} is cyano, trifluoromethyl, (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkynyl, cyano (C_1-C_6) alkyl, (C_1-C_6) alkyl-S(O)_m wherein m is 0, 1 or 2.
- 13. (Currently Amended) A method according to claim 1, wherein said compound is selected from the group consisting of:

Methyl-[4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine;

- 4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid methyl ester;
- 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
- 4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid dimethylamide;
- ({4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carbonyl}-amino)-acetic acid ethyl ester;
- 3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile;
- 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
- 1-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-but-3-yn-1-one;
- 1-{3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-piperidin-1-yl}-propan-1-one;
- 1-{3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-piperidin-1-yl}-propan-1-one;

N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-N'-propyl-

piperidine-1-carboxamidine;

N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxamidine;

Methyl-[(3R,4R)-4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine;

- (3R,4R)-)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid methyl ester;
- 3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
- (3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid dimethylamide;
- {(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carbonyl}-amino)-acetic acid ethyl ester;
- 3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile;
- 3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
- 1-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-but-3-yn-1-one;
- 1-{(3R,4R)-3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-piperidin-1-yl}-propan-1-one;
- 1-{(3R,4R)-3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-piperidin-1-yl}-propan-1-one;
- (3R,4R)-N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-N'-propyl-piperidine-1-carboxamidine; and
- (3R,4R)-N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxamidine

or a pharmaceutically acceptable salt thereof.

14. (Currently Amended) A method of treating or preventing acute organ transplant rejection in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2} \mathbb{R}^{3}

or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula

$$R^4$$
 $(CH_2)_y$

wherein y is 0, 1 or 2;

R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

 R^5 is (C_2-C_9) heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo, (C_1-C_6) acyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH, (C_1-C_6) alkylamino-CO-, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkyl, nitro, cyano (C_1-C_6) alkyl, halo (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkyl, amino (C_1-C_6) acylamino, amino (C_1-C_6) acylamino, amino (C_1-C_6) acyl, amino (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alkoxy (C_1-C_6) acylamino, amino (C_1-C_6) acyl, amino (C_1-C_6) acylamino, amino (C_1-C_6) acylamino

 $C_6) a cyl(C_1-C_6) a lkyl, \ (C_1-C_6) a lkylamino(C_1-C_6) a cyl, \ ((C_1-C_6) a lkyl)_2 a mino(C_1-C_6) a cyl, \ R^{15}R^{16}N-CO-C_1-C_6) a lkyl, \ (C_1-C_6) a lkyl-S(O)_m, \ R^{15}R^{16}NS(O)_m, \ R^{15}R^{16}NS(O)_m, \ R^{15}R^{16}NS(O)_m \ (C_1-C_6) a lkyl, \ R^{15}S(O)_m R^{16}N, \ R^{15}S(O)_m R^{16}N(C_1-C_6) a lkyl \ wherein \ m \ is \ 0, \ 1 \ or \ 2 \ and \ R^{15} \ and \ R^{16} \ are each independently selected from hydrogen or (C_1-C_6) a lkyl; or a group of the formula$

$$(CR^{6}R^{7})_{a} \qquad (X)_{b} \qquad (CR^{9}R^{10})_{d} \qquad (Y)_{e} \qquad (X)_{g} \qquad R^{12}$$

П

wherein a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

X is $S(O)_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;

Y is $S(O)_n$ wherein n is 0, 1 or 2; or carbonyl; and

Z is carbonyl, C(O)O-, C(O)NR- or S(O)_n wherein n is 0, 1 or 2;

 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group consisting of hydrogen or (C_1-C_6) alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_6) acylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, nitro (C_1-C_6) alkyl or (C_1-C_6) acylamino;

R¹² is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂- C_6) alkynyl, (C_1-C_6) alkylamino, hydroxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)alkyl, cyano(C₁-C₆)alkyl, halo(C_1 - C_6)alkyl, nitro(C_1 - C_6)alkyl, C_6)acyloxy(C_1 - C_6)alkyl, nitro, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁ $amino(C_1-C_6)acyl(C_1-C_6)alkyl$, C_6)alkoxy(C_1 - C_6)acylamino, amino(C_1 - C_6)acyl, $C_6) alkylamino (C_1 - C_6) acyl, \quad ((C_1 - C_6) alkyl)_2 amino (C_1 - C_6) acyl, \quad R^{15} R^{16} N - CO - O -, \quad R^{15} R^{16} N - CO - (C_1 - C_6) alkyl)_2 amino (C_1 - C_6) acyl, \quad R^{15} R^{16} N - CO - O -, \quad R^{15} R^{16} N - O -, \quad R^{15$ C₆)alkyl, R¹⁵C(O)NH, R¹⁵OC(O)NH, R¹⁵NHC(O)NH, (C₁-C₆)alkyl-S(O)_m, (C₁-C₆)alkyl-S(O)_m-(C₁-

 C_6)alkyl, $R^{15}R^{16}NS(O)_m$, $R^{15}R^{16}NS(O)_m$ (C_1 - C_6)alkyl, $R^{15}S(O)_m$ $R^{16}N$, $R^{15}S(O)_m$ $R^{16}N(C_1$ - C_6)alkyl wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or (C_1 - C_6)alkyl;

R² and R³ are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, hydroxy, nitro, carboxy, (C2-C6)alkenyl, (C2-C6)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substittuedsubstituted by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl, (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, $((C_1-C_6)alkyl)_2$ amino, $(C_6-C_{10})arylamino$, $(C_1-C_6)alkylthio$, $(C_6-C_{10})arylthio$, $(C_1-C_6)alkylsulfinyl$, (C_6-C_{10}) ary lsulfinyl, (C_1-C_6) alkylsulfonyl, (C_6-C_{10}) ary lsulfonyl, (C_1-C_6) acyl, (C_1-C_6) alkoxy-CO-NH-, (C₁-C₆)alkyamino-CO-, (C₁-C₆)alkylamino-CO-, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH- (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy, carboxy, carboxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkoxy, benzyloxycarbonyl(C₁-C₆)alkoxy, (C₁- C_6)alkoxycarbonyl(C_1 - C_6)alkoxy, (C_6-C_{10}) aryl, amino. $amino(C_1-C_6)alkyl$, $(C_{1} C_6$)alkoxycarbonylamino, (C_1 - C_6)alkoxycarbonylamino, (C_1 - C_6)alkylamino, ((C_1 - C_6)alkyl)₂amino, (C_1-C_6) alkylamino (C_1-C_6) alkyl, $((C_1-C_6)$ alkyl)₂amino (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl)₃amino (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl C_6)alkoxy, carboxy, carboxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkoxycarbonyl(C_1 -C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)arylamino-CO-NH-, (C₅-C₉)heteroarylamino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino-CO-NH- (C_1-C_6) alkyl, (C_6-C_{10}) arylamino-CO-NH- (C_1-C_6) alkyl, (C_5-C_9) heteroarylamino-CO-NH- (C_1-C_6) alkylsulfonyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino (C_1-C_6) alkylsulfonylamino) (C_1-C_6) alkyl, C_6)alkyl, (C_6 - C_{10})arylsulfonyl, (C_6 - C_{10})arylsulfonylamino, (C_6 - C_{10})arylsulfonylamino(C_1 - C_6)alkyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino (C_1-C_6) alkyl, (C_5-C_9) heteroaryl or (C_2-C_9) C₉)heterocycloalkyl;

effective in treating such a condition.

15. (Currently Amended) A pharmaceutical composition for treating or preventing chronic organ transplant rejection in a mammal, including a human, comprising an amount of a compound of the formula

$$R^1$$
 R^2 R^3

or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula

$$R^4$$
 $(CH_2)_y$

wherein y is 0, 1 or 2;

R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

 R^5 is (C_2-C_9) heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo, (C_1-C_6) acyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH, (C_1-C_6) alkylamino-CO-, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkyl, nitro, cyano (C_1-C_6) alkyl, halo (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkyl, amino (C_1-C_6) acylamino, a

C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_m R¹⁶N, R¹⁵S(O)_m R¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl; or a group of the formula

$$(CR^{6}R^{7})_{a} \qquad (X)_{b} \qquad (CR^{9}R^{10})_{d} \qquad (Y)_{e} \qquad f \qquad (Z)_{g} \qquad R^{12}$$

II

wherein a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

X is $S(O)_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;

Y is $S(O)_n$ wherein n is 0, 1 or 2; or carbonyl; and

Z is carbonyl, C(O)O-, C(O)NR- or $S(O)_n$ wherein n is 0, 1 or 2;

 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group consisting of hydrogen or (C_1-C_6) alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_6) acyloxy, (C_1-C_6) acylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, nitro (C_1-C_6) alkyl or (C_1-C_6) acylamino;

R¹² is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂- C_6 alkynyl, (C_1-C_6) alkylamino, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alkyl, $(C_1-C_6$ C_6)acyloxy(C_1 - C_6)alkyl, nitro, cyano(C_1 - C_6)alkyl, halo(C₁-C₆)alkyl, nitro(C_1 - C_6)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁- C_6)alkoxy(C_1 - C_6)acylamino, amino(C_1 - C_6)acyl, amino (C_1-C_6) acyl (C_1-C_6) alkyl, C_6)alkylamino(C_1 - C_6)acyl, ((C_1 - C_6)alkyl)₂amino(C_1 - C_6)acyl, $R^{15}R^{16}N$ -CO-O-, $R^{15}R^{16}N$ -CO-(C_1 - $C_6) alkyl, \, R^{15}C(O)NH, \, R^{15}OC(O)NH, \, R^{15}NHC(O)NH, \, (C_1-C_6) alkyl-S(O)_m, \, (C_1-C_6) alkyl-S(O)_m + (C_1-C_6)_m + (C_1-$ C_6)alkyl, $R^{15}R^{16}NS(O)_m$, $R^{15}R^{16}NS(O)_m$ (C_1 - C_6)alkyl, $R^{15}S(O)_m$ $R^{16}N$, $R^{15}S(O)_m$ $R^{16}N(C_1$ - C_6)alkyl wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or (C_1 - C_6)alkyl;

R² and R³ are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydoxy, hydroxy, nitro, carboxy, (C2-C6)alkenyl, (C2-C6)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio, (C₁-C₆)alkylamino, ((C₁-C₆)alkylamino, C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl, (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, $((C_1-C_6)alkyl)_2amino, (C_6-C_{10})arylamino, (C_1-C_6)alkylthio, (C_6-C_{10})arylthio, (C_1-C_6)alkylsulfinyl,$ (C_6-C_{10}) arylsulfinyl, (C_1-C_6) alkylsulfonyl, (C_6-C_{10}) arylsulfonyl, (C_1-C_6) acyl, (C_1-C_6) alkoxy-CO-NH-, (C₁-C₆)alkyamino-CO-, (C₁-C₆)alkylamino-CO-, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH- (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy-CO-NH- (C_1-C_6) alkoxy, $carboxy, \quad carboxy(C_1-C_6)alkyl, \quad carboxy(C_1-C_6)alkoxy, \quad benzyloxycarbonyl(C_1-C_6)alkoxy, \quad (C_1-C_6)alkyl, \quad carboxy(C_1-C_6)alkoxy, \quad (C_1-C_6)alkyl, \quad (C_1-C_6)alk$ amino(C_1 - C_6)alkyl, C_6)alkoxycarbonyl(C_1 - C_6)alkoxy, (C_6-C_{10}) aryl, amino. $(C_{1} C_6$)alkoxycarbonylamino, (C_6-C_{10}) aryl (C_1-C_6) alkoxycarbonylamino, (C_1-C_6) alkylamino, $((C_1-C_6))$ C_6)alkyl)₂amino, (C_1-C_6) alkylamino (C_1-C_6) alkyl, $((C_1-C_6)$ alkyl)₂amino (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl)₂amino (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl)₂amino (C_1-C_6) alkyl C_6)alkoxy, carboxy, carboxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkoxycarbonyl(C_1 -C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)arylamino-CO-NH-, (C_5-C_9) heteroarylamino-CO-NH-, (C_1-C_6) alkylamino-CO-NH- (C_1-C_6) alkyl, $((C_1-C_6)$ alkyl)₂amino-CO-NH- (C_1-C_6) alkyl, (C_6-C_{10}) arylamino-CO-NH- (C_1-C_6) alkyl, (C_5-C_9) heteroarylamino-CO-NH-(C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁- (C_1-C_6) alkyl, C_6)alkyl, (C_6-C_{10}) arylsulfonyl, (C_6-C_{10}) arylsulfonylamino, (C_6-C_{10}) arylsulfonylamino (C_1-C_6) alkyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₅-C₉)heteroaryl or (C₂-C₉)heterocycloalkyl,

effective in such disorders or conditions and a pharmaceutically acceptable carrier.

- 16. (New) A method according to claim 1, wherein the compound is 3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile or a pharmaceutically acceptable salt thereof.
- 17. (New) A method according to claim 14, wherein the compound is 3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile or a pharmaceutically acceptable salt thereof.
- 18. (New) A pharmaceutical composition according to claim 15, wherein the compound is 3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile or a pharmaceutically acceptable salt thereof.
- 19. (New) A method according to claim 1, wherein the compound is administered in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents.
- 20. (New) A method according to claim 14, wherein the compound is administered in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents.
- 21. (New) A method according to claim 16, wherein the compound is administered in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents.
- 22. (New) A method according to claim 17, wherein the compound is administered in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents.
- 23. (New) A method according to claim 19, wherein the one or more additional agents is selected from the group consisting of cyclosporin A, rapamycin, tacrolimus, leflunomide,

deoxyspergualin, mycophenolate mofetil, azathioprine, daclizumab, muromonab-CD3, antithymocyte globulin, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, prednisolone and dexamethasone.

- 24. (New) A method according to claim 20, wherein the one or more additional agents is selected from the group consisting of cyclosporin A, rapamycin, tacrolimus, leflunomide, deoxyspergualin, mycophenolate mofetil, azathioprine, daclizumab, muromonab-CD3, antithymocyte globulin, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, prednisolone and dexamethasone.
- 25. (New) A method according to claim 21, wherein the one or more additional agents is selected from the group consisting of cyclosporin A, rapamycin, tacrolimus, leflunomide, deoxyspergualin, mycophenolate mofetil, azathioprine, daclizumab, muromonab-CD3, antithymocyte globulin, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, prednisolone and dexamethasone.
- 26. (New) A method according to claim 22, wherein the one or more additional agents is selected from the group consisting of cyclosporin A, rapamycin, tacrolimus, leflunomide, deoxyspergualin, mycophenolate mofetil, azathioprine, daclizumab, muromonab-CD3, antithymocyte globulin, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, prednisolone and dexamethasone.

[REMAINDER OF PAGE BLANK]