

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	KOM III
Popis sady vzdělávacích materiálů:	Konstrukční měření III, 3. ročník.
Sada číslo:	J-05
Pořadové číslo vzdělávacího materiálu:	16
Označení vzdělávacího materiálu:	VY_52_INOVACE_J-05-16
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Měření úhlů – nepřímá měřidla
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Měření úhlů

Měřidla nepřímá

Měřidla nepřímá k měření úhlů používají výpočet pomocí goniometrických funkcí.

Sinusové pravítko

Sinusové pravítko se skládá z destičky, ke které jsou připevněny dva přesné válečky. Na sinusové pravítko se položí měřená součást. Jeden váleček pravítka podkládáme pomocí koncových měrek, dokud horní plocha součásti nebude rovnoběžná s podložkou. Rovnoběžnost kontrolujeme číselníkovým úchylkoměrem, který posouváme po součásti. Z výšky podložení a rozteče válečků vypočteme pomocí funkce sinus požadovaný úhel. Toto měření je velmi přesné, dovedeme měřit s přesností minut. Používá se pro měření přesných úkosů a kuželů.

 $\sin\alpha = \frac{H}{L}$

Princip sinusového pravítka se někdy používá pro přesné nastavení upínacího stolu u nástrojařských brusek.

Tangentové pravítko

Je to obdoba sinusového pravítka. Každý váleček má jiný průměr a pomocí měrek se nastavuje jejich vzdálenost. Výpočet provedeme pomocí funkce tangent.

$$tg\frac{\alpha}{2} = \frac{\frac{D}{2} - \frac{d}{2}}{\frac{D}{2} + L + \frac{d}{2}}$$

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: Technologická a strojnická měření. Praha: SNTL, 1982. ISBN 04-214-82.