Range Min Query (RMQ) Static: given array a, a, ..., a, find Min[l,r) = min {a, a, a, n, a, n, }-Dynamic: also support Mange (pos, value) // apris := value; to speed up gneries, we can do preprocessing < O(f(N)), O(g(N)) > means O(f(N))

time for preproassing and O(g(NI) per guery

$$\langle O(2), O(N) \rangle$$
 - Naive Loop
 $\langle O(N^2), O(1) \rangle$ - precalc all ranges
 $\binom{N}{2} = \frac{N(N-1)}{2} \in O(N^2)$ pairs osectors
Square root decomposition:
 $K = \Theta(N)$
 $G_i = \min \{a_{Ki}, a_{Ki+1}, ..., a_{Ki+K-1}\}$
 $2 = 3$
 $3 = 8 = 4 = 2 = 6$

Bonus: Com Support Mange () in QTN)

Use this idea log_N times. Se g ment tole 1 = 7 [0,8)[4,8) (0, h) [92) (7,4) /[4,6)) [68) [2,7)=[2,4)+[4,6)+[6,7)

Seegment tree Lemma 1: any [1,r) can be split in no mote than 2 log_ N segments. Lemna 2: there are O(N) modes < O(N), O(log N)> data structura for RMQ Bonns: supports changes in Orkon) (update leaf value & all parents)

How to get O(1) query?
Only static setting.

o: X * X -> X is idempotent, if

X o X = X

Examples: min(x,x) = x max(x,x) = xCounter examples: $x + x \neq 2x$ in general Sparse Table idea for any (e,r) 3k: $[\ell, r) = [\ell, \ell+2^{k}) \cup [r-2^{k}, r)$

β_{k,i} = min { α_i, α_{i+1}, ..., α_{i+2}^k-1} 6. : = a; b_{k,i} = min { b_{k-1,i}, b_{k-1,i+2} x-1 } find Min (1, r) = min 26x, e, 6x, r-2k) thow much memory for 6? ((log N) × O(N) = O(N log N)

How to find
$$K$$
?
 $S = \Gamma - \ell$ elements in $[\ell, \Gamma)$
 $2^{K} \leq S$!
take maximal k that $2^{K} \leq S$

$$S = \theta$$
 $2^{k} = \theta$ $k = 3$

$$Z = 11$$
 $Z_K = A$ $K = 3$

$$S = 12$$
 $S_{\kappa} = 4$ $\kappa = 3$

$$k = get Highest Bit(r-e)$$
 $k = \lfloor log_2(T-e) \rfloor$

How to find k quickly?

Brute force: $O(log N)$

Binary search: $O(log log N)$
 $k = 0$;

 $if(s \geqslant 2^n) \nmid k + = 16$; $s = s/2^n$; $f(s \geqslant 2^n) \nmid k + = 1$; $s = s/2^n$; $f(s \geqslant 2^n) \nmid k + = 1$; $f($

Precalculate
$$\log_2 S$$

 $\log_2 J = 0$
 $\log_2 S = 1 + \log_2 \frac{S}{2}$
 $\lfloor \log_2 S \rfloor = 1 + \lfloor \log_2 \lfloor \frac{S}{2} \rfloor \rfloor$
 $MG(S) = 1 + MG(\lfloor \frac{S}{2} \rfloor)$
 $MG(S) = 1 + MG(\lfloor \frac{S}{2} \rfloor)$
 $MG(S) = 1 + MG(\lfloor \frac{S}{2} \rfloor)$

All together makes < 0 (Nly N), 0(1)> Static RMQ using Sparse Table Memory E O(N ly N)

The ultimate Goal: (O(N), O(1)?
RMO (to be continued ...)