A better lower bound on average degree of k-list-critical graphs.

Landon Rabern

August 21, 2016

1 Introduction

Main Theorem. For $k \geq 7$, every non-complete k-list-critical graph has average degree at least

$$k-1+\frac{(k-3)^2(2k-3)}{k^4-2k^3-11k^2+28k-14}$$
.

We stated the bounds for

Let $c_k^*(G)$ be the number of components of G containing a copy of K_{k-1} . Let $q_k(G)$ be the number of non-cut vertices in G that appear in copies of K_{k-1} . Let $\beta_k(G)$ be the independence number of the subgraph of G induced on the vertices of degree k-1. When k is defined in context, 'just write $c^*(G)$, q(G) and $\beta(G)$. Sections 3 and 4 prove the following upper bounds on $q(\mathcal{L})$ and $\beta(\mathcal{L})$.

Lemma 1.1. Let G be a non-complete k-list-critical graph where $k \geq 5$. Let \mathcal{L} be the subgraph of G induced on (k-1)-vertices, \mathcal{H}^- the subgraph of G induced on k-vertices, \mathcal{H} the subgraph of G induced on (k+1)+-vertices. Then

$$q(\mathcal{L}) \leq c^*(\mathcal{L}) + 4 \left| \mathcal{H}^- \right| + \left\| \mathcal{H}^+, \mathcal{L} \right\|,$$

and if $k \geq 7$, then

$$q(\mathcal{L}) \le 2c^*(\mathcal{L}) + 3 \left| \mathcal{H}^- \right| + \left\| \mathcal{H}^+, \mathcal{L} \right\|.$$

Lemma 1.2. Let G be a k-list-critical graph. Let \mathcal{L} be the subgraph of G induced on (k-1)-vertices and \mathcal{H} the subgraph of G induced on k^+ -vertices. If $2 \le \lambda \le \frac{6(k-1)}{k}$, then

$$\beta(\mathcal{L}) \le \frac{2}{\lambda} \|\mathcal{H}\| + \frac{2\|G\| - (k-2)|G| - (\frac{k}{2} + \frac{k-1}{\lambda})|\mathcal{H}| - 1}{k-1}.$$

2 General bounds on average degree

Definition 1. A quadruple (p, h, z, f) of functions from \mathbb{N} to \mathbb{R} is r-Gallai if for every $k \geq r$ and Gallai tree $T \neq K_k$ with $\Delta(T) \leq k - 1$, the following hold:

- if $K_{k-1} \subseteq T$, then $2 \|T\| \le (k-3+p(k)) |T| + h(k)q(T) + z(k)\beta(T) + f(k)$; and
- if $K_{k-1} \not\subseteq T$, then $2||T|| \le (k-3+p(k))|T| + z(k)\beta(T)$.

Theorem 2.1. Let (p, h, z, f) be 7-Gallai. If $k \geq 7$ and $2 \leq z(k) \leq \frac{6(k-1)}{k}$, then for any non-complete k-list-critical graph G,

$$d(G) \ge k - 1 + \frac{2 - p(k) - \frac{z(k)}{k - 1} + \frac{\frac{z(k)}{k - 1} - (2h(k) + f(k))c^*(\mathcal{L})}{|G|}}{k + 1 + 3h(k) - p(k) - \frac{(k - 2)z(k)}{2(k - 1)}},$$

where \mathcal{L} is the subgraph of G induced on (k-1)-vertices.

Proof. Let \mathcal{L} be the subgraph of G induced on (k-1)-vertices, \mathcal{H}^- the subgraph of G induced on k-vertices, \mathcal{H} the subgraph of G induced on k^+ -vertices, \mathcal{H}^+ the subgraph of G induced on $(k+1)^+$ -vertices and \mathcal{D} the components of \mathcal{L} containing K_{k-1} . Plainly, the following bounds hold.

$$2\|G\| \ge k|G| - |\mathcal{L}| \tag{1}$$

$$2\|G\| \ge (k+1)|G| - |\mathcal{H}^-| - 2|\mathcal{L}| \tag{2}$$

$$2\|G\| \ge k|\mathcal{H}^-| + (k-1)|\mathcal{L}| + \|\mathcal{H}^+, \mathcal{L}\|$$
(3)

$$\|\mathcal{H}, \mathcal{L}\| = (k-1)|\mathcal{L}| - 2\|\mathcal{L}\| \tag{4}$$

Since (p, h, z, f) is 7-Gallai,

$$2\|\mathcal{L}\| \le (k-3+p(k))|\mathcal{L}| + f(k)|\mathcal{D}| + h(k)q(\mathcal{L}) + z(k)\beta(\mathcal{L}) \tag{5}$$

By Lemma 1.1,

$$q(\mathcal{L}) \le 2|\mathcal{D}| + 3|\mathcal{H}^-| + ||\mathcal{H}^+, \mathcal{L}||,$$

plugging this into (5) gives

$$2\|\mathcal{L}\| \le (k-3+p(k))|\mathcal{L}| + 3h(k)|\mathcal{H}^-| + h(k)||\mathcal{H}^+, \mathcal{L}|| + z(k)\beta(\mathcal{L}) + S_1, \tag{6}$$

where

$$S_1 := (2h(k) + f(k)) |\mathcal{D}|.$$

Now using (1) and (6),

$$2 \|G\| = 2 \|\mathcal{H}\| + 2 \|\mathcal{H}, \mathcal{L}\| + 2 \|\mathcal{L}\|$$

$$= 2 \|\mathcal{H}\| + 2((k-1)|\mathcal{L}| - 2 \|\mathcal{L}\|) + 2 \|\mathcal{L}\|$$

$$= 2 \|\mathcal{H}\| + 2(k-1)|\mathcal{L}| - 2 \|\mathcal{L}\|$$

$$\geq 2 \|\mathcal{H}\| + (k+1-p(k))|\mathcal{L}| - 3h(k)|\mathcal{H}^-| - h(k)||\mathcal{H}^+, \mathcal{L}|| - z(k)\beta(\mathcal{L}) - S_1$$
(7)

Adding h(k) times (3) to (7) gives

$$2\|G\| \ge \frac{2\|\mathcal{H}\| + (k+1+(k-1)h(k) - p(k))|\mathcal{L}| + (k-3)h(k)|\mathcal{H}^-| - z(k)\beta(\mathcal{L}) - S_1}{1 + h(k)}$$
(8)

Lemma 1.2 gives

$$\beta(\mathcal{L}) \le \frac{2}{z(k)} \|\mathcal{H}\| + \frac{2\|G\| - (k-2)|G| - \left(\frac{k}{2} + \frac{k-1}{z(k)}\right)|\mathcal{H}| - 1}{k-1}.$$

Plugging this into (8) yields

$$2\|G\| \ge \frac{(k+1+(k-1)h(k)-p(k))|\mathcal{L}| + (k-3)h(k)|\mathcal{H}^-| + \frac{(k-2)z(k)}{k-1}|G| + \left(\frac{kz(k)}{2(k-1)} + 1\right)|\mathcal{H}| + S_2}{1+h(k) + \frac{z(k)}{k-1}}, \quad (9)$$

where

$$S_2 := \frac{z(k)}{k-1} - S_1.$$

Now using $|\mathcal{H}| = |G| - |\mathcal{L}|$ gives

$$2\|G\| \ge \frac{\left(k + (k-1)h(k) - p(k) - \frac{kz(k)}{2(k-1)}\right)|\mathcal{L}| + (k-3)h(k)|\mathcal{H}^-| + \left(\frac{(3k-4)z(k)}{2(k-1)} + 1\right)|G| + S_2}{1 + h(k) + \frac{z(k)}{k-1}}.$$
 (10)

Now using (2) to get a lower bound on $|\mathcal{H}^-|$ gives

$$2\|G\| \ge \frac{\left(k - (k-5)h(k) - p(k) - \frac{kz(k)}{2(k-1)}\right)|\mathcal{L}| + \left((k+1)(k-3)h(k) + \frac{(3k-4)z(k)}{2(k-1)} + 1\right)|G| + S_2}{1 + (k-2)h(k) + \frac{z(k)}{k-1}}.$$
 (11)

Using (1) to get a lower bound on $|\mathcal{L}|$ and simplifying gives

$$\frac{2\|G\|}{|G|} \ge \frac{k^2 + 3(k-1)h(k) - kp(k) + 1 - \frac{k^2 - 3k + 4}{2(k-1)}z(k) + \frac{S_2}{|G|}}{k + 1 + 3h(k) - p(k) - \frac{(k-2)z(k)}{2(k-1)}}.$$
(12)

Now factoring out k-1 gives the desired bound.

A nearly identical argument, using the other inequality in Lemma 1.1, proves a bound that holds for $k \geq 5$.

Theorem 2.2. Let (p, h, z, f) be 5-Gallai. If $k \geq 5$ and $2 \leq z(k) \leq \frac{6(k-1)}{k}$, then for any non-complete k-list-critical graph G,

$$d(G) \ge k - 1 + \frac{2 - p(k) - \frac{z(k)}{k - 1} + \frac{\frac{z(k)}{k - 1} - (h(k) + f(k))c^*(\mathcal{L})}{|G|}}{k + 1 + 4h(k) - p(k) - \frac{(k - 2)z(k)}{2(k - 1)}},$$

where \mathcal{L} is the subgraph of G induced on (k-1)-vertices.

When k = 4, we cannot apply Lemma 1.1, but using h(k) = 0 and running through the same argument proves the following bound for $k \ge 4$.

Theorem 2.3. Let (p,0,z,f) be 4-Gallai. If $k \geq 4$ and $2 \leq z(k) \leq \frac{6(k-1)}{k}$, then for any non-complete k-list-critical graph G,

$$d(G) \ge k - 1 + \frac{2 - p(k) - \frac{z(k)}{k-1} + \frac{\frac{z(k)}{k-1} - f(k)c^*(\mathcal{L})}{|G|}}{k + 1 - p(k) - \frac{(k-2)z(k)}{2(k-1)}},$$

where \mathcal{L} is the subgraph of G induced on (k-1)-vertices.

When z(k) < 2, using Lemma 1.2 worsens the lower bound, so we may as well use z(k) = 0; that is, drop the $\beta(\mathcal{L})$ term entirely. Doing so in the above argument shows that Theorems 2.1, 2.2, 2.3 also hold for z(k) = 0. This gives the bounds proved by discharging in Cranston and R. [1].

3 Gallai quadruples

Lemma 3.1 (Gallai [2]). $(\frac{k+1}{k-1}, 0, 0, -2)$ is 4-Gallai.

Lemma 3.2 (Kostochka-Stiebitz [5]). $\left(\frac{4(k-1)}{k^2-3k+4}, \frac{k^2-3k}{k^2-3k+4}, 0, \frac{-4(k^2-3k+2)}{k^2-3k+4}\right)$ is 7-Gallai.

Lemma 3.3 (Cranston-R. [1]). $\left(\frac{3k-5}{k^2-4k+5}, \frac{k(k-3)}{k^2-4k+5}, 0, \frac{-2(k-1)(2k-5)}{k^2-4k+5}\right)$ is 5-Gallai.

Lemma 3.4 (R. [7]). (1,0,2,0) is 4-Gallai.

For an endblock B of a Gallai tree T, let x_B be the cutvertex contained in B.

Lemma 3.5. Let $z: \mathbb{N} \to \mathbb{R}$ such that z(k) = 0 or $z(k) \geq 2$. For all $k \geq 5$ and Gallai trees T with $\Delta(T) \leq k - 1$ and $K_{k-1} \not\subseteq T$, we have

$$2||T|| \le \left(k - 3 + \frac{\max\{2, 3 - z(k)\}}{k - 2}\right)|T| + z(k)\beta(T).$$

Proof. Suppose the lemma is false and choose a counterexample T minimizing |T|.

Claim 1. T has at least two blocks.

If T has only one block, then $2||T|| \le (k-3)|T|$.

Claim 2. Each endblock of T is K_{k-2} .

Suppose T has an endblock B that is an odd cycle or K_t where $2 \le t \le k-3$. Then removing $V(B) \setminus \{x_B\}$ from T to get T' and applying minimality of |T| gives

$$2\|B\| > \left(k - 3 + \frac{\max\{2, 3 - z(k)\}}{k - 2}\right)(|B| - 1) + z(k)(\beta(T) - \beta(T')).$$

This is a contradiction unless k = 5, $B = K_3$, $z(k) \ge 2$ and $\beta(T) = \beta(T')$. Removing V(B) from T to get T^* and applying minimality of |T| gives

$$6 + 2(d_T(x_B) - 2) > 3\left(2 + \frac{2}{3}\right) + 2(\beta(T) - \beta(T^*)).$$

This is a contradiction unless $d_T(x_B) = 4$ and $\beta(T^*) = \beta(T)$. But $\beta(T^*) < \beta(T)$ since x_B 's neighbors in T^* have degree at most 3 in T^* .

Claim 3. If B is an endblock of T, then $d_T(x_B) = k - 1$.

Suppose B is an endblock of T with $d_T(x_B) < k-1$. Then $B = K_{k-2}$ by Claim 2 and hence $d_T(x_B) = k-2$. Removing V(B) from T to get T^* and applying minimality of |T| gives the contradiction

$$(k-2)(k-3)+6 > \left(k-3 + \frac{\max\{2, 3 - z(k)\}}{k-2}\right)(k-1).$$

Claim 4. T does not exist.

By the previous claims, we know that every endblock T is a K_{k-2} that shares a vertex with an odd cycle. Pick and endblock B that is the end of a longest path in the block-tree of T. Let C be the odd cycle sharing x_B with B. Since B is the end of a longest path in the block-tree, there is a neighbor y of x_B on C such that $d_T(y) = 2$ or y is contained in another endblock A (which must be a K_{k-2}). First, suppose $d_T(y) = 2$. Removing $V(B) \cup \{y\}$ from T to get T' and applying minimality of |T| gives the contradiction (since $\beta(T') < \beta(T)$)

$$(k-2)(k-3)+6 > \left(k-3 + \frac{\max\{2, 3 - z(k)\}}{k-2}\right)(k-1) + z(k)(\beta(T) - \beta(T')).$$

Hence y is contained in another K_{k-2} endblock A. Removing $V(B) \cup V(A)$ from T to get T^* and applying minimality of |T| gives the contradiction (since $\beta(T^*) < \beta(T)$)

$$2(k-2)(k-3)+6 > \left(k-3 + \frac{\max\{2, 3-z(k)\}}{k-2}\right)(2(k-2)) + z(k)(\beta(T) - \beta(T^*)).$$

Lemma 3.6. Let $p: \mathbb{N} \to \mathbb{R}_{\geq 0}$, $f: \mathbb{N} \to \mathbb{R}$, $h: \mathbb{N} \to \mathbb{R}_{\geq 0}$, $z: \mathbb{N} \to \mathbb{R}_{\geq 0}$. For all $k \geq 5$ and Gallai trees $T \neq K_k$ with $\Delta(T) \leq k-1$ and $K_{k-1} \subseteq T$, we have

$$2\|T\| \le (k-3+p(k))|T| + f(k) + h(k)q(T) + z(k)\beta(T)$$

whenever p, f, h and z satisfy all of the following conditions:

1.
$$f(k) \ge (k-1)(1-p(k)-h(k))$$
; and

2.
$$p(k) \ge \frac{3-z(k)}{k-2}$$
; and

3.
$$p(k) > h(k) + 5 - k$$
; and

4.
$$p(k) \ge \frac{2+h(k)}{k-2}$$
; and

5.
$$(k-1)p(k) + (k-3)h(k) + z(k) \ge k+1$$
.

Proof. Suppose the lemma is false and choose a counterexample T minimizing |T|.

Claim 1. T has at least two blocks.

Claim 2. T has no K_t endblock where $3 \le t \le k-3$.

Claim 3. T has no K_2 endblock.

Claim 4. Each endblock of T is K_{k-2} or K_{k-1} .

Claim 5. T has at most one K_{k-1} endblock.

Claim 6. If B is an endblock of T, then $d_T(x_B) = k - 1$.

Claim 7. T does not exist.

4 Bounding $q(\mathcal{L})$

This section is devoted to extracting the reusable Lemma 4.1 from the proof of Kierstead and R. [3].

Definition 2. A graph G is AT-reducible to H if H is a nonempty induced subgraph of G which is f_H -AT where $f_H(v) := \delta(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

Lemma 4.1. Let G be a non-complete AT-irreducible graph with $\delta(G) = k-1$ where $k \geq 5$. Let \mathcal{L} be the subgraph of G induced on (k-1)-vertices, \mathcal{H}^- the subgraph of G induced on k-vertices, \mathcal{H} the subgraph of G induced on (k+1)+-vertices and \mathcal{D} the components of \mathcal{L} containing K_{k-1} . Then

$$q(\mathcal{L}) \le |\mathcal{D}| + 4 |\mathcal{H}^-| + ||\mathcal{H}^+, \mathcal{L}||,$$

and if $k \geq 7$, then

$$q(\mathcal{L}) \le 2 |\mathcal{D}| + 3 |\mathcal{H}^-| + ||\mathcal{H}^+, \mathcal{L}||$$

Observation. The hypotheses of Lemma 4.1 are satisfied by non-complete k-critical, k-list-critical, online k-list-critical and k-AT-critical graphs.

The proof of Lemma 4.1 requires the following four lemmas from [3].

Lemma 4.2. Let G be a graph and $f: V(G) \to \mathbb{N}$. If $||G|| > \sum_{v \in V(G)} f(v)$, then G has an induced subgraph H such that $d_H(v) > f(v)$ for each $v \in V(H)$.

Proof. Suppose not and choose a counterexample G minimizing |G|. Then $|G| \geq 3$ and we have $x \in V(G)$ with $d_G(x) \leq f(x)$. But now $||G - x|| > \sum_{v \in V(G - x)} f(v)$, contradicting minimality of |G|.

Let \mathcal{T}_k be the Gallai trees with maximum degree at most k-1, excepting K_k . For a graph G, let $W^k(G)$ be the set of vertices of G that are contained in some K_{k-1} in G.

Lemma 4.3. Let $k \geq 5$ and let G be a graph with $x \in V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. G-x has t components H_1, H_2, \ldots, H_t , and all are in \mathcal{T}_k ; and
- 3. $d_G(v) \leq k-1$ for all $v \in V(G-x)$; and
- 4. $|N(x) \cap W^k(H_i)| \geq 1$ for $i \in [t]$; and
- 5. $d_G(x) > t + 2$.

Then G is f-AT where $f(x) = d_G(x) - 1$ and $f(v) = d_G(v)$ for all $v \in V(G - x)$.

For a graph G, $\{X,Y\}$ a partition of V(G) and $k \geq 4$, let $\mathcal{B}_k(X,Y)$ be the bipartite graph with one part Y and the other part the components of G[X]. Put an edge between $y \in Y$ and a component T of G[X] iff $N(y) \cap W^k(T) \neq \emptyset$. The next lemma tells us that we have a reducible configuration if this bipartite graph has minimum degree at least three.

Lemma 4.4. Let $k \geq 7$ and let G be a graph with $Y \subseteq V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. the components of G-Y are in \mathcal{T}_k ; and
- 3. $d_G(v) \leq k-1$ for all $v \in V(G-Y)$; and
- 4. with $\mathcal{B} := \mathcal{B}_k(V(G-Y), Y)$ we have $\delta(\mathcal{B}) \geq 3$.

Then G has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for all $v \in V(G' - Y)$.

We also have the following version with asymmetric degree condition on \mathcal{B} . The point here is that this works for $k \geq 5$. The consequence is that we trade a bit in our bound for the proof to go through with $k \in \{5,6\}$.

Lemma 4.5. Let $k \geq 5$ and let G be a graph with $Y \subseteq V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. the components of G-Y are in \mathcal{T}_k ; and
- 3. $d_G(v) \le k-1$ for all $v \in V(G-Y)$; and
- 4. with $\mathcal{B} := \mathcal{B}_k(V(G-Y),Y)$ we have $d_{\mathcal{B}}(y) \geq 4$ for all $y \in Y$ and $d_{\mathcal{B}}(T) \geq 2$ for all components T of G-Y.

Then G has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for all $v \in V(G' - Y)$.

Proof of Lemma 4.1. Put $W := W^k(\mathcal{L})$ and $L' := V(\mathcal{L}) \setminus W$. Define an auxiliary bipartite graph F with parts A and B where:

- 1. $B = V(\mathcal{H}^-)$ and A is the disjoint union of the following sets A_1, A_2 and A_3 ,
- 2. $A_1 = \mathcal{D}$ and each $T \in \mathcal{D}$ is adjacent to all $y \in B$ where $N(y) \cap W^k(T) \neq \emptyset$,
- 3. For each $v \in L'$, let $A_2(v)$ be a set of $|N(v) \cap B|$ vertices connected to $N(v) \cap B$ by a matching in F. Let A_2 be the disjoint union of the $A_2(v)$ for $v \in L'$,
- 4. For each $y \in B$, let $A_3(y)$ be a set of $d_{\mathcal{H}}(y)$ vertices which are all joined to y in F. Let A_3 be the disjoint union of the $A_3(y)$ for $y \in B$.

Define $f\colon V(F)\to\mathbb{N}$ by f(v)=1 for all $v\in A_1\cup A_2\cup A_3$ and f(v)=3 for all $v\in B$. First, suppose $\|F\|>\sum_{v\in V(F)}f(v)$. Then by Lemma 4.2, F has an induced subgraph Q such that $d_Q(v)>f(v)$ for each $v\in V(Q)$. In particular, $V(Q)\subseteq B\cup A_1$ and $d_Q(v)\geq 4$ for $v\in B\cap V(Q)$ and $d_Q(v)\geq 2$ for $v\in A_1\cap V(Q)$. Put $Y:=B\cap V(Q)$ and let X be $\bigcup_{T\in V(Q)\cap A_1}V(T)$. Now $Z:=G[X\cup Y]$ satisfies the hypotheses of Lemma 4.5, so Z has an induced subgraph G' that is f-AT where $f(y)=d_{G'}(y)-1$ for $y\in Y$ and $f(v)=d_{G'}(v)$ for $v\in X$. Since $Y\subseteq B$ and $X\subseteq V(\mathcal{L})$, we have $f(v)=k-1+d_{G'}(v)-d_G(v)$ for all $v\in V(G')$. Hence, G is AT-reducible to G', a contradiction. Therefore $\|F\|\leq \sum_{v\in V(F)}f(v)=3|B|+|\mathcal{D}|+|A_2|+|A_3|$. By Lemma 4.3, for each $y\in B$ we have $d_F(y)\geq k-1$. Hence $\|F\|\geq (k-1)|B|$. This gives $(k-4)|B|\leq |\mathcal{D}|+|A_2|+|A_3|$. Now the first inequality in the lemma follows since $B=V(\mathcal{H}^-)$, $|A_3|=\sum_{v\in V(\mathcal{H}^-)}d_{\mathcal{H}}(v)$ and

$$|A_2| = -q(\mathcal{L}) + \|\mathcal{H}, \mathcal{L}\|$$

= $-q(\mathcal{L}) + k |\mathcal{H}^-| + \|\mathcal{H}^+, \mathcal{L}\| - \sum_{v \in V(\mathcal{H}^-)} d_{\mathcal{H}}(v).$

Suppose $k \geq 7$. Define $f: V(F) \to \mathbb{N}$ by f(v) = 1 for all $v \in A_2 \cup A_3$ and f(v) = 2 for all $v \in B \cup A_1$. First, suppose $||F|| > \sum_{v \in V(F)} f(v)$. Then by Lemma 4.2, F has an induced subgraph Q such that $d_Q(v) > f(v)$

for each $v \in V(Q)$. In particular, $V(Q) \subseteq B \cup A_1$ and $\delta(Q) \geq 3$. Put $Y := B \cap V(Q)$ and let X be $\bigcup_{T \in V(Q) \cap A_1} V(T)$. Now $Z := G[X \cup Y]$ satisfies the hypotheses of Lemma 4.4, so Z has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for $v \in X$. Since $Y \subseteq B$ and $X \subseteq V(\mathcal{L})$, we have $f(v) = k - 1 + d_{G'}(v) - d_G(v)$ for all $v \in V(G')$. Hence, G is AT-reducible to G', a contradiction.

Therefore $||F|| \leq \sum_{v \in V(F)} f(v) = 2(|B| + |\mathcal{D}|) + |A_2| + |A_3|$. By Lemma 4.3, for each $y \in B$ we have $d_F(y) \geq k - 1$. Hence $||F|| \geq (k - 1) |B|$. This gives $(k - 3) |B| \leq 2 |\mathcal{D}| + |A_2| + |A_3|$. Now the second inequality in the lemma follows as before.

5 Bounding $\beta(\mathcal{L})$

This section is devoted to extracting the reusable Lemma 5.1 from the proof of R. [?].

Definition 3. A graph G is OC-reducible to H if H is a nonempty induced subgraph of G which is online f_H -choosable where $f_H(v) := \delta(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not OC-reducible to any nonempty induced subgraph, then it is OC-irreducible.

Lemma 5.1. Let G be an OC-irreducible graph with $\delta(G) = k - 1$. Let \mathcal{L} be the subgraph of G induced on (k-1)-vertices and \mathcal{H} the subgraph of G induced on k^+ -vertices. If $2 \le \lambda \le \frac{6(k-1)}{k}$, then

$$\beta(\mathcal{L}) \leq \frac{2}{\lambda} \|\mathcal{H}\| + \frac{2\|G\| - (k-2)|G| - \left(\frac{k}{2} + \frac{k-1}{\lambda}\right)|\mathcal{H}| - 1}{k-1}.$$

Observation. The hypotheses of Lemma 5.1 are satisfied by k-critical, k-list-critical and online k-list-critical graphs.

The proof of Lemma 5.1 requires the following lemma from Kierstead and R. [4] that generalizes a kernel technique of Kostochka and Yancey [6].

Definition. The maximum independent cover number of a graph G is the maximum mic(G) of $||I, V(G) \setminus I||$ over all independent sets I of G.

Kernel Magic. Every OC-irreducible graph G with $\delta(G) = k - 1$ satisfies

$$2 \|G\| \ge (k-2) |G| + \operatorname{mic}(G) + 1.$$

Theorem 5.2. [Lowenstein, et al.] If G is a connected graph then

$$\alpha(G) \ge \frac{2}{3}|G| - \frac{1}{4}||G|| - \frac{1}{3}.$$

Corollary 5.3. If G is a connected graph then

$$\alpha(G) \ge \frac{2}{3} |G| - \frac{1}{3} ||G||.$$

Proof. By Theorem 5.2,

$$\alpha(G) \geq \frac{2}{3} \, |G| - \frac{1}{3} \, \|G\| + \frac{1}{12} \, \|G\| - \frac{1}{3},$$

so, the corollary holds if $\frac{1}{12} \|G\| \ge \frac{1}{3}$. If not, then $\|G\| < 4$, so G is K_1 , K_2 , P_3 or K_3 which all satisfy the desired bound.

Proof of Lemma 5.1. Fix λ with $2 \leq \lambda \leq \frac{6(k-1)}{k}$. Let M be the maximum of $||I, V(G) \setminus I||$ over all independent sets I of G with $I \subseteq \mathcal{H}$. Since the vertices in \mathcal{L} with k-1 neighbors in \mathcal{L} have no neighbors in \mathcal{H} ,

$$\operatorname{mic}(G) \ge M + (k-1)\beta(\mathcal{L}).$$
 (13)

Claim 1. If C is a component of $G[\mathcal{H}]$, then

$$k\alpha(C) \ge \left(\frac{k}{2} + \frac{k-1}{\lambda}\right)|C| - \left(\frac{2(k-1)}{\lambda}\right)||C||.$$

First, suppose ||C|| < |C|. Then ||C|| = |C| - 1 and C is a tree. If $|C| \ge 2$, then

$$\begin{split} k\alpha(C) &\geq k\frac{|C|}{2} \\ &\geq \left(\frac{k}{2} - \frac{k-1}{\lambda}\right)|C| + \frac{2(k-1)}{\lambda} \\ &= \left(\frac{k}{2} + \frac{k-1}{\lambda}\right)|C| - \left(\frac{2(k-1)}{\lambda}\right)(|C|-1) \\ &= \left(\frac{k}{2} + \frac{k-1}{\lambda}\right)|C| - \left(\frac{2(k-1)}{\lambda}\right)\|C\|\,. \end{split}$$

If instead, |C| = 1, then $k\alpha(C) = k \ge \left(\frac{k}{2} + \frac{k-1}{\lambda}\right) = \left(\frac{k}{2} + \frac{k-1}{\lambda}\right) |C| - \left(\frac{2(k-1)}{\lambda}\right) |C|$ since $\lambda \ge 2$. So, we may assume $||C|| \ge |C|$. Applying Corollary 5.3, we conclude

$$\begin{split} k\alpha(C) &\geq \frac{2k}{3} \left| C \right| - \frac{k}{3} \left\| C \right\| \\ &= \left(\frac{k}{2} + \frac{k-1}{\lambda} \right) \left| C \right| - \left(\frac{2(k-1)}{\lambda} \right) \left\| C \right\| + \left(\frac{k}{6} - \frac{k-1}{\lambda} \right) \left| C \right| - \left(\frac{k}{3} - \frac{2(k-1)}{\lambda} \right) \left\| C \right\| \\ &= \left(\frac{k}{2} + \frac{k-1}{\lambda} \right) \left| C \right| - \left(\frac{2(k-1)}{\lambda} \right) \left\| C \right\| + \left(\frac{k-1}{\lambda} - \frac{k}{6} \right) \left| C \right| \\ &\geq \left(\frac{k}{2} + \frac{k-1}{\lambda} \right) \left| C \right| - \left(\frac{2(k-1)}{\lambda} \right) \left\| C \right\| \,, \end{split}$$

where in the final inequality we used $\lambda \leq \frac{6(k-1)}{k}$.

Claim 2. Lemma 5.1 is true.

Summing the bound in Claim 1 over all components of $G[\mathcal{H}]$ and plugging into (13) gives

$$\operatorname{mic}(G) \ge \left(\frac{k}{2} + \frac{k-1}{\lambda}\right) |\mathcal{H}| - \left(\frac{2(k-1)}{\lambda}\right) ||\mathcal{H}|| + (k-1)\beta(\mathcal{L}). \tag{14}$$

Applying Kernel Magic using (14) and solving for $\beta(\mathcal{L})$ proves the claim.

References

- [1] D. Cranston and L. Rabern, Edge lower bounds for list critical graphs, via discharging, arXiv:1602.02589 (2016).
- [2] T. Gallai, Kritische Graphen I., Publ. Math. Inst. Hungar. Acad. Sci 8 (1963), 165–192 (in German).
- [3] H.A. Kierstead and L. Rabern, Improved lower bounds on the number of edges in list critical and online list critical graphs, arXiv:1406.7355 (2014).
- [4] _____, Extracting list colorings from large independent sets, arXiv:1512.08130 (2015).
- [5] A.V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs and hypergraphs, Journal of Combinatorial Theory, Series B 87 (2003), no. 2, 374–402.
- [6] A.V. Kostochka and M. Yancey, Ore's conjecture on color-critical graphs is almost true, J. Combin. Theory Ser. B 109 (2014), 73–101. MR 3269903
- [7] Landon Rabern, A better lower bound on average degree of 4-list-critical graphs, arXiv:1602.08532 (2016).