# Movimento em uma dimensão

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

28 de Janeiro de 2022

### Sumário

- Posição e deslocamento
- Velocidade
- 3 Aceleração
- Apêndice

#### O movimento

Posição e deslocamento

000

- ✓ O movimento retilíneo se dá ao longo de uma reta (vertical, horizontal e inclinada);
- ✓ Todo movimento deve ser analisado a partir de um referencial, por exemplo, um automóvel pode adquirir movimentos diferentes se o referencial for uma pessoa ao lado de um poste ou dentro de outro automóvel;
- ✓ Se o objeto não for uma partícula, todas as partes desse objeto se movem na mesma direção e com a mesma velocidade.

## Corollary

A cinemática se preocupa em analisar e classificar o movimento dos objetos, mas sem se preocupar com a causa desse movimento.

### Vetor posição e deslocamento

### Posição

Posição e deslocamento

000

Localização de um objeto no espaço, plano ou uma reta,

$$\vec{r} \equiv \vec{x}$$
.

#### **Deslocamento**

A uma mudança da posição x<sub>0</sub> para x<sub>1</sub> é associado um deslocamento  $\Delta x$ 

$$\Delta \vec{x} = \vec{x}_1 - \vec{x}_0.$$



Representação de um movimento no eixo x.

### Posição como função do tempo

Posição e deslocamento

000



Posição de um tatu no decorrer do tempo [1].

#### Velocidade escalar média

Usa-se a idéia de velocidade para expressar a rapidez do movimento de um objeto. Se quisermos determinar a rapidez de um objeto em percorrer uma certa distância em um intervalo de tempo  $\Delta t$ , usamos o conceito de velocidade escalar média.

$$oldsymbol{s_{ ext{m\'edio}}} = rac{ ext{dist\^ancia percorrida}}{\Delta t}.$$



Trajetórias e distâncias percorridas diferentes para chegar na mesma posição.

### Corollary

A velocidade escalar média é uma grandeza escalar e ela é sempre positiva.

#### Velocidade média

Outra maneira de expressar a rapidez de um movimento é através da velocidade média, que é a razão entre o deslocamento  $\Delta \vec{x}$  e o intervalo de tempo  $\Delta t$ ,

$$ec{v}_{\mathsf{m\'edio}} = rac{\Delta ec{x}}{\Delta t}.$$

A velocidade média é uma grandeza vetorial e portanto depende da orientação.

## Corollary

A unidade de medida da velocidade no SI é metro por segundo (m/s).



Cálculo da  $v_{med}$  a partir de x(t).

#### Velocidade instantânea

Caso a velocidade varie com o tempo, para determiná-la usamos o conceito de velocidade instantânea. A velocidade instantânea é obtida a partir da velocidade média reduzindo o intervalo de tempo  $\Delta t$  a um valor infinitesimal,  $\Delta t \rightarrow 0$ ,

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}.$$

## Corollary

A velocidade instantânea é a taxa de variação da posição em um determinado instante de tempo.



Gráficos da posição e velocidade.

### Deslocamento à partir da velocidade instantânea

Considere o intervalo entre  $t_i$  a  $t_f$ , separando-o em vários trechos  $\Delta t$  e multiplicando pela altura temos a área dos retângulos. Sabendo que a altura corresponde a velocidade em cada trecho temos o deslocamento  $\Delta x$ . Somando a área de todos os retângulos teremos

$$\Delta x = \sum v \Delta t.$$

Se  $\Delta t \to 0$  a área dos retângulos se aproxima da área abaixo da curva, onde

$$\Delta x = \lim_{\Delta t \to 0} \Delta t = \int_{t_i}^{t_f} v(t) dt.$$



Força em função da posição.

## Função horária da posição à partir da velocidade

Da definição de velocidade instantânea temos  $v(t) = \frac{dx(t)}{dt}$ . Integrando os dois lados da equação chegamos a

$$\int_{t_0}^t v(t)dt = \int_{t_0}^t \frac{dx(t)}{dt}dt.$$

onde podemos usar a substituição infinitesimal  $dx = \frac{dx}{dt}dt$ ,

$$\int_{t_0}^t v(t)dt = \int_{x_0}^x dx,$$

$$\int_{t_0}^t v(t) dt = \left. x \right|_{x_0}^x, \ \int_{t_0}^t v(t) dt = \left. x(t) - x_0. 
ight.$$

Se a velocidade for constante e  $t_0 = 0$  s teremos a função horária da posição.

Função horária da posição (v = cte)

$$\vec{x}(t) = \vec{x}_0 + \vec{v}t.$$

## Aceleração média

De maneira semelhante a velocidade média, definimos aceleração média como razão entre a variação da velocidade  $\Delta \vec{v}$  no intervalo de tempo  $\Delta t$ ,

$$ec{a}_{ ext{m\'edio}} = rac{\Delta ec{v}}{\Delta t}.$$

Assim como a velocidade a aceleração média é uma grandeza vetorial e depende da orientação.

## Corollary

A unidade de medida da aceleração no SI é metro por segundo ao quadrado  $(m/s^2)$ .



Cálculo de a<sub>medio</sub> a partir de v(t).

### Aceleração instantânea

Assim como no caso anterior, podemos determinar a aceleração instantânea a partir da aceleração média reduzindo o intervalo de tempo  $\Delta t$  a um valor infinitesimal,  $\Delta t \rightarrow 0$ ,

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}.$$

### Corollary

A aceleração instantânea é a taxa de variação da velocidade num determinado instante de tempo.



000000

Gráficos da velocidade e aceleração.

## Função horária da velocidade à partir da aceleração

Da definição de velocidade instantânea temos  $a(t) = \frac{dv(t)}{dt}$ . Integrando os dois lados da equação chegamos a

$$\int_{t_0}^t a(t)dt = \int_{t_0}^t \frac{dv}{dt}dt,$$

onde podemos usar a substituição infinitesimal  $dv = \frac{dv}{dt}dt$ ,

$$\int_{t_0}^t a(t)dt = \int_{v_0}^v dv,$$

$$\int_{t_0}^t a(t)dt = |v|_{v_0}^v,$$
 $\int_{t_0}^t a(t)dt = |v(t) - v_0|.$ 

000000

Se a aceleração for constante e  $t_0 = 0$  s teremos a função horária da posição.

Função horária da velocidade se a=cte

$$\vec{v}(t) = \vec{v}_0 + \vec{a}t.$$

## Função horária da posição à partir da aceleração

Se a=cte, definimos a função horária da velocidade como  $v(t) = v_0 + at$ . Integrando novamente teremos

$$\int_{t_0}^t v(t)dt = \int_{t_0}^t (v_0 + at)dt.$$

Temos do resultado anterior aue  $\int_{t}^{t} v(t)dt = \Delta x$ , portanto

$$\Delta x = \int_{t_0}^t (v_0 + at) dt.$$

Integrando o lado direito e considerando que a aceleração é constante teremos

$$\Delta x = v_0 t + \frac{1}{2} a t^2.$$

Considerando  $t_0 = 0$  s teremos a função horária da posição.

### Função horária da posição se a=cte

$$\vec{x}(t) = \vec{x}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2.$$

### Equação de Torricelli

Considerando as funções horárias da posição x(t) e da velocidade v(t) podemos combiná-las de modo a eliminar a variável tempo. Primeiramente isolamos t em v(t),

$$v = v_0 + at,$$

$$t = \frac{v - v_0}{a}.$$

Substituindo em x(t) temos

$$x = x_0 + v_0 \left(\frac{v - v_0}{a}\right) + \frac{1}{2}a \left(\frac{v - v_0}{a}\right)^2,$$

$$x = x_0 + \frac{v_0 (v - v_0)}{a} + \frac{a(v - v_0)^2}{2a^2},$$

$$x = x_0 + \frac{v_0 v}{a} - \frac{v_0^2}{a} + \frac{v^2}{2a} - \frac{v_0 v}{a} + \frac{v_0^2}{2a}.$$

000000

Somando os termos remanescentes, temos como opção

$$v^2 = v_0^2 + 2a\Delta x.$$

## Forma alternativa da função horária da posição

Podemos também eliminar  $v_0$  em v(t),

$$v_0 = v - at$$
.

Substituindo em x(t) temos

$$x = x_0 + vt - at^2 + \frac{1}{2}at^2$$
.

Resultando em

$$x(t) = x_0 + vt - \frac{1}{2}at^2.$$

Equações com aceleração constante.

| Equação                                | Variável que falta |
|----------------------------------------|--------------------|
| $\overline{v=v_0+at}$                  | $\Delta x$         |
| $\Delta x = v_0 t + \frac{1}{2} a t^2$ | V                  |
| $v^2 = v_0^2 + 2a\Delta x$             | t                  |
| $\Delta x = \frac{1}{2}(v_0 + v) t$    | а                  |
| $\Delta x = vt - \frac{1}{2}at^2$      | $v_0$              |

#### Transformar um número em notação científica

#### Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

### **Exemplo**

6 590 000 000 000 000,  $0 = 6.59 \times 10^{15}$ 

#### Conversão de unidades em uma dimensão



1 mm = 
$$1 \times 10^{(-1)\times 2}$$
 dm  $\to 1 \times 10^{-2}$  dm

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

10 ms = 
$$10 \times 10^{(-1) \times 3}$$
 s  $\to 10 \times 10^{-3}$  s

#### Conversão de unidades em duas dimensões



$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

#### Conversão de unidades em três dimensões



$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times \textcolor{red}{3}} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

**Apêndice** 

## Alfabeto grego

Alfa Α  $\alpha$ Beta Gama Delta Δ **Epsílon** Ε  $\epsilon, \varepsilon$ Zeta Eta Н Θ Teta lota K Capa Lambda Λ Mi Μ

Ni Ν  $\nu$ Csi ômicron 0 Ρi П  $\pi$ Rô P Sigma  $\sigma$ Tau Ípsilon vFi Φ  $\phi,\varphi$ Qui Psi Ψ  $\psi$ Ômega Ω  $\mu$ ω

# Observações<sup>1</sup>

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

<sup>&</sup>lt;sup>1</sup>Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

### Referências



D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)

Velocidade