Hidrologia Física (ERHA7017)

Aula 08 - Precipitação

Hietograma de Projeto e Precipitação Máxima Provável

Roteiro de Aula

- 1) Hietograma de projeto baseado na IDF
- 2) Precipitação Máxima Provável (PMP)
- 3) PMP Métodos Hidrometeorológicos
- 4) PMP Métodos Estatísticos

Hietograma de projeto baseado na IDF

Método do Bureau of Reclamation: método utilizado para o cálculo da precipitação de projeto do modelo SCS (Soil Conservation Service).

Procedimento:

- 1) determinar as precipitações referentes a diferentes durações (mínimo de seis durações) até o tempo de concentração;
- 2) determinar os incrementos de chuva correspondentes a cada incremento de duração;
- 3) rearranjar os incrementos de chuva da seguinte forma: 6, 4, 3, 1 (*maior chuva*), 2, 5.

Hietograma de projeto baseado na IDF

Método do Bureau of Reclamation: rearranjo das chuvas.

Rearranjo nos 6 primeiros intervalos de tempo

Hietograma de projeto baseado na IDF -Exemplo numérico

Estabelecer o hietograma de projeto para uma bacia hidrográfica localizada na cidade de Curitiba, supondo-se que o tempo de concentração é de aproximadamente 90 minutos. Adotar tempo de recorrência (*T*) igual a 5 anos.

Hietograma de projeto baseado na IDF -Exemplo numérico

Solução: Curitiba -Prof. Parigot de Souza (1959):

IDF:
$$\bar{\iota} = \frac{5950 \, T^{0,217}}{(t+26)^{1,15}}$$

onde: $\bar{\iota}$ = intensidade média de chuva (mm/h);

 t_d = tempo de duração (*minuto*);

T = tempo de recorrência (ano).

Hietograma de projeto baseado na IDF -Exemplo numérico

i	t	i	P _{acum}	Pi	Pi
	(min)	(mm/h)	(mm)	(mm)	(mm)
1	10	136,9	22,8	22,8	2,0
2	20	103,3	34,4	11,6	4,3
3	30	82,4	41,2	6,8	6,8
4	40	68,2	45,5	4,3	22,8
5	50	58,0	48,3	2,9	11,6
6	60	50,3	50,3	2,0	2,9
7	70	44,3	51,7	1,4	1,4
8	80	39,5	52,7	1,0	1,0
9	90	35,7	53,5	0,7	0,7
					rearranio

 $\bar{\iota} = \frac{5950 \, \mathbf{T}^{0,217}}{(t+26)^{1,15}}$

 $P = \bar{\iota} t$

diferença entre acumulados

Hietograma de projeto baseado na IDF - Exemplo numérico

Hietograma de projeto baseados na IDF

Outros métodos: ver artigos.

Precipitação Máxima Provável (PMP)

Precipitação Máxima Provável (PMP): "limite superior" de precipitação em um dado local, resultado da interação de vários fatores meteorológicos e com base na existência de uma quantidade de massa atmosférica constante ao nível da Terra.

Visão alternativa: A precipitação máxima provável (PMP) representa um evento de precipitação cuja superação apresenta uma probabilidade muito baixa.

Precipitação Máxima Provável (PMP)

Métodos hidrometeorológicos

Métodos de avaliação da PMP

Métodos estatísticos

Precipitação Máxima Provável (PMP)

Métodos hidrometeorológicos maximização de tormentas severas observadas

uso de modelos de tormentas

Métodos estatísticos

Equação geral da frequência (Chow, 1964)

maximização de tormentas severas: envolve o uso de técnicas de maximização da umidade, maximização espacial (*transposição*) e maximização da sequência de tormentas severas.

Maximização de tormentas severas

maximização da umidade

transposição de tormentas severas

maximização da sequência de tormentas severas

Obs: aplicável quando existem dados meteorológicos/pluviométricos de um número significativo de tormentas severas na região de estudo.

Maximização da umidade

Hipóteses básicas:

a altura de precipitação observada é **diretamente proporcional** à massa de vapor de água na atmosfera (altura de água precipitável).

A condição extrema de chuva é obtida somente pela **maximização** da referida massa de vapor de água.

Maximização da umidade

Procedimento:

- a) seleção da maiores chuvas observadas na região;
- b) obtenção da umidade *representativa* e *máxima provável* de cada evento selecionado;
- c) cálculo dos fatores de maximização da umidade;
- d) estimativa das chuvas maximizadas.

Transposição de tormentas severas (maximização espacial)

Transposição

Número de tormentas severas observadas é insuficiente.

É válida se existem reais condições de que a tormenta possa ocorrer na bacia.

As duas regiões devem ser meteorologicamente homogêneas.

Obs: duas regiões são **meteorologicamente homogêneas**, quando estão sujeitas à incursão das mesmas massas de ar e aos mesmos tipos de tormentas.

Transposição de tormentas severas (maximização espacial)

Transposição

A transposição é realizada multiplicando-se a altura pluviométrica da tormenta observada por um ou mais **fatores**, usados para representar as diferenças das condições das duas áreas.

Fatores:

topográficos, morfológicos, geométricos e de orientação da bacia.

Maximização da sequência de tormentas severas (maximização temporal)

Maximização da sequência

a área de drenagem da bacia é significativamente superior à extensão das tormentas.

define-se a sequência temporal mais adversa entre as máximas precipitações acumuladas e a propagação das enchentes.

Referência: Probable Maximum Storm Sequence (Myers, 1981).

Permitem uma rápida estimativa da PMP.

Métodos estatísticos

Existem dados de precipitação, mas os dados meteorológicos são escassos.

O método mais aceito é proposto por Hershfield (1961, 1965), recomendado para bacias de até 1.000 km².

Método de Hershfield: é baseado na maximização do fator de recorrência da equação geral de frequência (Chow, 1964)

Equação geral de frequência (Chow, 1964):

$$X_T = \overline{X}_n + K_T S_n$$

onde:

 x_T = precipitação com tempo de recorrência T;

 \bar{X}_n = média da série de n máximos anuais de precipitação;

 S_n = desvio-padrão da série de n máximos anuais de precipitação;

 K_T = fator de recorrência para o tempo de recorrência T.

Estimativa de K_T (Sugai e Fill, 1990):

<u>Distribuição assintótica exponencial</u>: assimetria = 2.

$$K_T = ln(T) - 1$$

<u>Distribuição assintótica de Gumbel</u>: assimetria = 1,1396.

$$K_T = 0.7797 \ln(T) - 0.45$$

Equação geral de frequência (Chow, 1964):

$$X_T = \bar{X}_n + K_T S_n$$

Se a maior chuva possível (PMP), representada por X_m , substitui a chuva para o tempo de recorrência $T(X_T)$, então a equação geral da frequência pode ser escrita como:

$$X_m = \bar{X}_n + K_m S_n$$

onde K, não está mais associado a um tempo de recorrência T, mas representa o número de desvios-padrão para se obter X_m .

 $\begin{array}{c} \textbf{Determinação} \\ \textbf{de } \textbf{K}_{\textbf{m}} \end{array}$

Comparar as estimativas da PMP pelo método estatístico e da precipitação decamilenar para a estação pluviométrica Curitiba (02549006) para chuvas de 24 h.

A partir dos dados observados (período 1889-2019), temse os seguintes parâmetros estatísticos para a série de precipitações diárias máximas anuais.

n =	129	
média =	76,2	
DP =	22,7	
assim. =	0,96	

Estimativa da PMP

$$X_m = \bar{X}_n + KS_n$$

$$\bar{X}_n = 76,2 \ mm$$

$$S_n = 22,7 \ mm$$

$$K_m \cong 16,5$$

$$K_m \cong 450.8 \ mm$$

Estimativa da Precipitação Decamilenar

$$X_T = \bar{X}_n + K_T S_n$$

$$\bar{X}_n = 76,2 \ mm$$

$$S_n = 22,7 \ mm$$

$$Assim. = 0.96$$

$$K_{10000} = 6.7$$
 (Gumbel)

$$K_m \cong 228,3 \ mm$$