1. NUTRITION AND MALNUTRITION

- Nutrients are chemical substances in foods that are used in the human body.
- **Nutrition** is the **supply** of nutrients.
- In humans, there are **essential nutrients** that **cannot be made by the body** and so must be in our **diet**. These essential nutrients are divided into different groups:

ESSENTIAL NUTRIENT	DESCRIPTION		
Minerals	Specific elements such as calcium and iron		
Vitamins	Chemically diverse compounds needed in small amounts by the body such as ascorbic acid (Vitamin C) and calciferol (Vitamin D)		
Some amino acids	Some of the twenty amino acids cannot be made by the body and without them, proteins cannot be made		
Some fatty acids	Some fatty acids are essential for the same reason, such as omega-3 fatty acids		

- Carbohydrates are almost always present in human diets but specific carbohydrates are non-essential.
- Malnutrition is a deficiency, imbalance or excess of specific nutrients in the diet.
- There are **many forms** of malnutrition, depending on which nutrient is present in excessive or insufficient amounts.

2. MEASURING ENERGY CONTENT

- The energy content of food can be estimated by burning a food sample of known mass and measuring the energy released via calorimetry.
- Combustion of the food source causes the stored energy to be released as heat, which
 raises the temperature of water.
- The amount of energy required to raise 1 g of water by 1°C is 4.18 J this is called the specific heat capacity of water.
- The equation for calculating the energy content of a food source via calorimetry is as follows:

- The biggest source of error in calorimetry is usually caused by the unwanted loss of heat energy to the surrounding environment.
- The food sources should be burnt at a constant distance from the water to ensure reliability
 of results.
- The **initial temperature** and **volume** of **water** should also be kept **constant** (1 g of water = 1 cm³ or 1 ml).

When 0.5 g of food is burned, 20cm³ of water warms up by 10°C.

What is the energy content of the food, in J g⁻¹?

Energy content of food
$$(J g^{-1})$$
 = $\frac{\text{temperature rise (°C) } \times \text{ water volume (ml) } \times 4.2 (J)}{\text{mass of food (g)}}$
Energy content of food $(J g^{-1})$ = $\frac{10 (°C) \times 20 (ml) \times 4.2 (J)}{0.5 (g)}$ = $\frac{1680}{0.5} \text{ J g}^{-1}$

 More accurate estimates of energy content can be obtained by burning food in a food calorimeter, which traps heat from the burning much more efficiently.

3. ENERGY IN THE DIET

- Carbohydrates, amino acids and lipids can all be used in aerobic respiration as a source
 of energy.
- If the energy in the diet is **insufficient**, reserves of **glycogen** and **fat** are broken down and used.

STARVATION = The prolonged shortage of food

Once reserves of glycogen and fat are used up, body tissues are broken down and used in aerobic respiration

ANOREXIA = A condition in which a person does not eat enough food to sustain the body, even though it is available

As above, body tissues are broken down and, in advanced cases, even <u>heart muscle</u> is broken down

OBESITY = Excessive storage of fat in adipose tissue, due to prolonged intake of more energy in the diet than is used in respiration

- Most people do not overeat because leptin is produced by adipose tissue, causing a reduction in appetite.
- A centre in the hypothalamus is responsible for feelings of appetite (wanting to eat food), or saiety.
- Obese or overweight people are more likely to suffer from high blood pressure (hypertension), and type II diabetes.

4. CHOLESTEROL AND HEART DISEASE

• There is a **positive correlation** between high levels of **cholesterol** in the **blood** and an **increased risk** of **coronary heart disease** (CHD). However:

5. THE LIVER

can **make** cholesterol, so **dietary** cholesterol is **not** the **only** source

5. USE OF NUTRITIONAL DATABASES

- Internet databases are available that show the typical nutritional contents of foods.
- They can be used to estimate the overall content of a day's diet.
- The mass of each food eaten during the day is needed.
- The nutritional **analysis** can be done easily using free software, such as http://www.myfoodrecord.com.
- The table below shows:
 - different nutrients in 50 g of salted cashew nuts
 - the recommended daily amount (RDA) of each nutrient for a 14-18 year-old boy
 - the **percentage** of the RDA that these nuts contain

NUTRIENT	TOTAL	RDA	%RDA
Protein (g)	7.5	60.0	12.5
Saturated fat (g)	4.88	33.3	14.6
Cholesterol (mg)	0	300	0
Iron (mg)	2.5	12	20.8
Vitamin B1 thiamine	0.16	1.2	13.3
(mg)			

 By doing this analysis on a whole day's diet, we can determine if enough of each nutrient has been eaten.