STATE OF MONTANA NATURAL RESOURCE DAMAGE PROGRAM

BUTTE GROUNDWATER INJURY ASSESSMENT REPORT UPPER CLARK FORK RIVER NPL SITES

JANUARY 1995

MONTANA STATE LIBRARY S 363.7394 H2bgie 1995 c.1 Maest Butte groundwater injury assessment repo

3 0864 00092680 1

BUTTE GROUNDWATER
INJURY ASSESSMENT REPORT
CLARK FORK RIVER BASIN
NPL SITES, MONTANA

Digitized by the Internet Archive in 2011 with funding from Montana State Library

BUTTE GROUNDWATER INJURY ASSESSMENT REPORT CLARK FORK RIVER BASIN NPL SITES, MONTANA

STATE OF MONTANA NATURAL RESOURCE DAMAGE LITIGATION PROGRAM

Prepared by:

RCG/Hagler Bailly P.O. Drawer O Boulder, CO 80306-1906 (303) 449-5515

Primary Authors:

Ann S. Maest, Ph.D., RCG/Hagler Bailly John J. Metesh, Montana Bureau of Mines and Geology Richard J. Brand, Ph.D., University of California-Berkeley

Contributing Author:

Ginette Abdo, Montana Bureau of Mines and Geology

JANUARY 1995

CONTENTS

LIST	OF TA	BLES		
LIST	OF FIG	URES		
EXE	CUTIVE	SUMN	MARY	ES-
1.0	INTR	ODUCT		
	1.1		DESCRIPTION	
			Overview of Operable Units and Features	
			Geology of the Study Area	
		1.1.3	Hydrogeology of the Study Area	1-10
2.0	GROU	JNDW A	ATER INJURY DETERMINATION	
	2.1	SOUR	CES RELEASING HAZARDOUS SUBSTANCES	. 2-
		2.1.1	Sources of Groundwater Contamination	
		2.1.2	Identity of Hazardous Substances	. 2-3
		2.1.3	Duration of Release	. 2-
		2.1.4	Relevant Standards	2-1
		2.1.5	Acceptance Criteria	2-1
	2.2	PATH	WAY DETERMINATION	2-13
		2.2.1	Physical and Hydrodynamic Characteristics of the Aquifers and	
			<u>Unsaturated Zone</u>	
		2.2.2	Primary Pathways for Groundwater Contamination	
		2.2.3	Mobility of Hazardous Substances	2-3
		2.2.4	Estimated Rate of Transport of Hazardous and Related	
			Substances in Groundwater	2-40
3.0	GROL	JNDWA	ATER INJURY QUANTIFICATION	
	3.1	BASE	LINE CONDITIONS	. 3-1
		3.1.1	Rationale for Selecting Control Sites	. 3-1
		3.1.2	Location and Description of Control Sites	
		3.1.3	Statistical Comparison of Control and Injured	
			<u>Groundwater</u>	3-18
		3.1.4	Comparison to Concentrations in Uncontaminated Groundwaters	
			Cited in the Literature	3-2
	3.2	EXTE	NT OF INJURED GROUNDWATER	3-33
		3.2.1	Areal Extent of Injured Groundwater	3-33
		3.2.2	Volume of Injured Groundwater	
		3.2.3	Flux or Yield of Injured Groundwater	3-8

CONTENTS

4.0	RECOVERABILITY 4.1 POTENTIAL IMMOBILIZATION MECHANISMS	
5.0	REFERENCES 5	i-1
ATTA	CHMENTS	
I	TESTING AND SAMPLING METHODS FOR NRDA BEDROCK AND ALLUVIA	L
II	AQUIFER SAMPLES INFORMATION USED TO CALCULATE FLUX OF INJURED ALLUVIAL GROUNDWATER IN AREA I	
APPE	DICES	
I	BERKELEY PIT WATER QUALITY DATA	
II	BEDROCK GROUNDWATER QUALITY DATA A - Butte Mine Flooding B - Bedrock Monitoring Wells C - NRDA Bedrock Monitoring Results D - Bedrock Aquifer Baseline Water Quality Data	
III	ALLUVIAL GROUNDWATER QUALITY DATA A - Area I Data	
	B - Leach Pads Area Data	
	C - Leach Pads Area Historic Data D - Alluvial Aquifer Baseline Water Quality Data	

TABLES

1-1	Description of Units and Features in Butte Mine Flooding Operable Unit	. 1-7
2-1	Sources of Groundwater Contamination and Identity of Hazardous Substances	
2-2	Primary and Secondary Drinking Water Standards	2-12
2-3	Average Concentrations of Contaminants (mg/l) and Average pH in Porewater at Ramsay Flats	2-26
2-4	Summary of Water Soluble Metals for Surface Materials;	2 20
	Area I Operable Unit Phase II Remedial Investigation	2-27
2-5	Summary of Water Soluble Metals for Subsurface Materials;	
2-6	Area I Operable Unit Phase II Remedial Investigation	2-28
2-0	Area I Operable Unit Phase II Remedial Investigation	2-31
2-7	Water Quality Comparison of Berkeley Pit and Inflow Waters	2-33
3-1	Median Concentrations of Identified Hazardous Substances in Unmineralized	
2 2 4	and Mineralized Portions of the Bedrock Aquifer: Control Wells	3-21
3-2A	Median Concentrations, Percentiles, and Interquartile Ranges of Substances in Bedrock Control Wells	3-22
3-2B	Median Concentrations, Percentiles, and Interquartile Ranges of Substances in	J 44 E
	Injured Bedrock Wells	3-23
3-3	Bedrock Aquifer Comparison of Baseline and Injured Areas: Median	
2 4 4	Concentrations and Two-sided p-Values	3-24
3-4A	Median Concentrations, Percentiles, and Interquartile Ranges of Substances in Alluvial Aquifer Control Wells	3-25
3-4B	Median Concentrations, Percentiles, and Interquartile Ranges of Substances in	3-23
	Injured Area I Alluvial Aquifer Wells	3-26
3-4C	Median Concentrations, Percentiles, and Interquartile Ranges of Substances in	
2.5	Injured Butte Hill Alluvial Aquifer Wells	3-27
3-5	Alluvial Aquifer Comparison of Baseline and Injured Areas: Median Concentrations and p-Values	3-28
3-6	Mean Values or Major-Ion Composition of Groundwater and Groundwater-Derive	
	Surface Water in Primarily Igneous Rock Areas (mg/l)	3-29
3-7	Analyses of Waters High in Dissolved Aluminum and Manganese	3-30
3 - 8 3 - 9	Analyses of Waters Containing Iron	3-31
3-9	Ranges of Compositions of Surface and Shallow Groundwaters in Contact with Undisturbed Mineral Deposits	3-32
3-10	Mine Projection Map Information Used to Calculate Area and Volume of	3-32
	Injured Bedrock Groundwater in the Butte Hill Area	3-40
3-11	Information Used to Calculate Area and Volume of Injured Alluvial	
2 10	Groundwater in the Butte Hill Area	3-44
3-12	Surface Area, Volume, and Flux of Injured Alluvial Groundwater in the Butte Hill Area	3-45
	Tan Theu	2-43

TABLES

3-13	Surface Area, Volume, and Flux of Injured Alluvial Groundwater in Area I	3-61
3-14	Volume of Injured Groundwater in the Butte Hill Area	3-63
3-15	Mean Flow Data for Area I Surface Waters	3-84
3-16	Summary of Areal and Volumetric Extent and Flux of Injured Groundwater in	
	Area I and Butte Mine Flooding Operable Units	3-84

FIGURES

1-1	Site Map, Butte Area, Montana	. 1-3
1-2	Butte Mine Flooding Operable Unit Features	
1-3	Butte Mine Flooding Operable Unit Process Flows and Units	
1-4	Map of Connected Underground Mine Workings	
1-5	Area I Operable Unit Features	
1-6	Generalized Geologic Map of Butte Area, Montana	1-11
1-7A	Limits of Unconsolidated Material in Lower Area I	
1-7B	Generalized Cross Sections Showing Depth to Bedrock in	
	Lower Area I	1-13
1-8	Contour Map of the Top of Weathered Bedrock in the	
	Butte Hill Area	1-14
2-1	Extent of Surface Tailings and Mill Waste Deposits from an	
	August 1955 Aerial Photograph	
2-2	Early Reduction Plants in the Butte Area, Montana	. 2-9
2-3	Cross-Section of Berkeley Pit with Water Level Elevations	
	Measured in December of Each Year from 1982-1993, as	
	Measured in the Kelley Mine	2-15
2-4	Water Level Contour Map and Theoretical Flow Paths for the	
	Bedrock Aquifer in the Butte Hill Area	2-17
2-5	Water Level Contour Map for the Alluvial Aquifer in the Butte	
	Hill Area	2-18
2-6A	Water Level Contour Map for the Alluvial Aquifer in Area I	
	- Metro Storm Drain Area	2-19
2-6B	Water Level Contour Map for the Alluvial Aquifer in Area I	
	- Lower Area I	2-19
2-7	Cross-Section of Water Levels in Alluvial and Bedrock Aquifer in	
	Butte Mine Flooding OU	2-20
2-8	Plan Map at Elevation 4,600 Feet Illustrating the General Distribution	
	of Ore Zones in the Butte Area	2-22
2.1	Mi Oi lai bai bai ba	
3-1	Major Cation and Anion Domains for Piper Diagrams	. 3-5
3-2	Piper Diagrams for Baseline Bedrock Groundwater Wells in Butte	2.5
2.2	Mine Flooding Area	. 3-7
3-3	Piper Diagrams for Baseline Bedrock Groundwater Wells in Area I	
3-4	Piper Diagrams for Historic Bedrock Groundwater Quality Data	
3-5	Piper Diagrams for Potential Baseline Alluvial Groundwater Wells	3-10
3-6	Piper Diagrams for Potential Baseline Alluvial Groundwater Wells	3-11

ACRONYMS

AMD Acid Mine Drainage

ARCO Atlantic Richfield Company

ASARCO American Smelting and Refining Company

BMP Bedrock Monitoring Program

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFRSSISOP Clark Fork River Superfund Site Investigation Standard Operating

Procedures

CFS Cubic Feet per Second

ICP - MS Inductively Coupled Argon Plasma - Mass Spectrometry

ICP - AES Inductively Coupled Argon Plasma - Atomic Emission Spectrometry

LAO Lower Area One

MBMG Montana Bureau of Mines and Geology

MCL Maximum Contaminant Level
MCLG Maximum Contaminant Level Goal

MDHES Montana Department of Health and Environmental Sciences

MGD Million Gallons per Day MPC Montana Power Company

MR Concentrator Montana Resources, Inc. Concentrator (formerly the Weed Concentrator)

MSD Metro Storm Drain

MSTP Metro Sewerage Treatment Plant
NRDA Natural Resource Damage Assessment

OU Operable Unit

QA/QC Quality Assurance/Quality Control

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision
SDWA Safe Drinking Water Act

SMCL Secondary Maximum Contaminant Level

USGS United States Geological Survey

EXECUTIVE SUMMARY

Introduction

Groundwater injury in two operable units of the Silver Bow Creek Superfund site, the Butte Mine Flooding Operable Unit (OU) and the Area I Operable Unit, are examined in this report.

Two types of aquifers are located in the study area: alluvial and bedrock. Groundwater in the bedrock aquifer occurs predominantly within fractures, joints, faults and in the underground mine workings. The upper 200 to 300 feet of the Butte quartz monzonite in the Butte Hill area bedrock aquifer is highly weathered and fractured. The alluvial aquifer comprises semiconsolidated Tertiary and Quaternary valley fill deposits that overlie weathered bedrock along Silver Bow Creek, the Metro Storm Drain (MSD), the Montana Resources (MR) Concentrator area, and the area to the southeast and east of the Berkeley Pit in the vicinity of the leach pads.

A large cone of depression exists around the Berkeley Pit as a result of pumping activities. Groundwater flow direction in the bedrock aquifer is toward the pit in all areas within the cone of depression. Groundwater flow patterns in the alluvial aquifer are also influenced by the cone of depression surrounding the pit. A groundwater divide exists between the Continental Pit and the Metro Storm Drain near the MR Concentrator. Groundwater north of the divide flows into the Berkeley Pit, while groundwater south of the divide flows parallel to and toward the Metro Storm Drain and Silver Bow Creek.

Sources of Groundwater Contamination

Gold was discovered in the Butte area in 1864. Mining and processing of gold, silver and copper ore has continued in one form or another (placer, underground, open pit, and leaching operations, smelting) to the present day.

The sources of groundwater contamination in the Butte Mine Flooding OU are: the underground workings; the walls of the Berkeley and Continental Pits; mine water in the underground workings; waste rock and tailings piles near the Berkeley Pit; leaking solutions from the leach pad and the Weed/MR Concentrator areas; leaking solutions from the Yankee Doodle Tailings Pond; contaminated soils and alluvium; and sulfuric acid added to the underground mines for copper leaching.

The sources of groundwater contamination in the Area I OU are: the buried Parrott tailings; slag, mill and other wastes around the historic Parrott Smelter and the City-County Shop

¹ Area I OU has been incorporated into the Butte Priority Soils Operable Unit.

Complex; manganese stockpiles and manganese flue dust in the manganese stock pile/Butte Reduction Works area (removed in 1992); surficial and buried tailings disposed of along the MSD and Silver Bow Creek; the Butte Reduction Works tailings impoundments (partially removed in 1994); the historic Colorado Smelter; railroad ballast; efflorescent salts on tailings piles and along the banks of Silver Bow Creek; streamside tailings along Silver Bow Creek and the Metro Storm Drain; contaminated soils; mixed contaminated soils/alluvial material and tailings throughout Area I, the Colorado Tailings, and mine water and process water discharged to Silver Bow Creek/MSD.

Identity of Hazardous Substances and Relevant Standards

The hazardous substances identified in source materials were: antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, zinc, sulfuric acid, and sulfides of several of these hazardous substances (copper, arsenic, zinc, lead, silver, antimony). In addition to the hazardous substances identified in sources of groundwater contamination, some substances are not listed as hazardous under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), yet are a result of mining operations in the study area. Acid mine drainage produced as a result of the release of hazardous substances will leach other sulfides and aluminosilicates in source materials in the study area and produce high concentrations of iron, manganese, aluminum, sulfate, metals, and metalloids. Although sulfate, iron, manganese, and aluminum are not listed as hazardous substances under the CERCLA, they do result from the release of hazardous substances. In addition, ferric sulfate and aluminum sulfate, which are both constituents of acid mine drainage, are listed as hazardous substances under CERCLA. Therefore, iron, manganese, sulfate, and aluminum are included in the list of relevant substances for the study area. Any mention of hazardous substances in this report refers to hazardous substances and the relevant related substances iron, manganese, aluminum and sulfate.

The relevant standards for groundwater injury in the study area are determined to be the primary drinking water standards (maximum contaminant levels [MCLs] and MCL goals [MCLGs]) and the secondary drinking water standards (secondary MCLs [SMCLs]) established under the Safe Drinking Water Act and relevant Montana statutes and regulations.

Pathway Determination

The principal pathways for groundwater contamination are: (1) leaching of hazardous substances in the unsaturated zone to downgradient groundwater via infiltration of surface runoff or rising capillary groundwater; (2) leaching of hazardous substances in the saturated zone via groundwater flow through sources or changes in groundwater level; and (3) transport of water containing hazardous substances (i.e., from leaking processing units or contaminated alluvial groundwater) through the unsaturated or saturated zone to downgradient groundwater, pit water and surface water.

Sources identified in the study area have been shown to leach substantial concentrations of hazardous substances to groundwater. Formation of acid mine drainage in the underground workings involves a similar leaching of primary source materials that generates substantial concentrations of dissolved sulfate, iron, aluminum and hazardous substances in minewater in the Butte Hill/Berkeley Pit area.

Sources of water containing hazardous substances include: (1) process solutions from the historic Weed Concentrator and the current MR Concentrator; (2) solutions associated with operation of the leach pads; (3) mine and process waters; and (4) contaminated alluvial and bedrock groundwater. These waters can be transported: (1) through the unsaturated zone to downgradient groundwater either in the alluvial or bedrock aquifers; (2) to the Berkeley Pit; and (3) to surface waters in the Metro Storm Drain and Silver Bow Creek.

It is apparent from the comparison of Berkeley Pit water chemistry with that of minewater and process inflow waters, that the range of minewater composition does not explain the observed chemistry of the pit water. Inflow of contaminated surface water and process water has had an effect on the composition of the pit water. Reactions involving the pit walls may also add hazardous substances to the Berkeley Pit water.

Wells completed in bedrock directly below the Colorado Tailings show extremely elevated concentrations of copper, zinc, sulfate and other hazardous substances. In this area, contamination from tailings has likely reached the bedrock aquifer. Directly downgradient of the Colorado Tailings, the alluvial aquifer groundwater discharges to and further contaminates Silver Bow Creek with hazardous substances.

The mobility of hazardous substances in aquifers is a complex function of hydrodynamic and biogeochemical processes and conditions, including recharge locations, infiltration rate, hydraulic gradient, groundwater velocity and flow patterns, discharge locations, permeability, solubility, precipitation, adsorption, desorption, oxidation/reduction, and other reactions. Some of the processes responsible for mobility of the identified hazardous substances are discussed in Section 2.2.3 of the report.

Maximum rates of transport for a number of hazardous substances were estimated for the alluvial aquifer groundwater plume in the vicinity of the Metro Storm Drain:

Sulfate	=	72.7 ft/yr
Zinc	=	63.6 ft/yr
Copper	=	62.5 ft/yr
Cadmium	=	61.4 ft/yr
Iron	=	45.5 ft/yr
Arsenic	=	19.9 ft/yr
Lead	=	14.2 ft/yr.

The above estimated transport rates are based on the farthest extent of the groundwater plume for each hazardous substance and the time since disposal of the source material (beginning of operation of the Parrott smelter). It is also possible that the discharge of untreated minewater to the MSD contributed to the extent and concentration of hazardous substances in the groundwater plumes. The midpoint of application of untreated minewaters would be later than 1900, and if the discharges contributed to the plumes, transport rates for hazardous substances would be shorter than those shown above.

Baseline Conditions

The following criteria were established to determine baseline groundwater conditions in the alluvial and bedrock aquifers:

- Similar geology to that of impacted areas
- Similar groundwater flow patterns and system to those of impacted areas
- Location of baseline wells away from obvious sources of hazardous substances and associated plumes
- Consideration of groundwater type and other geochemical indicators that may distinguish uncontaminated from contaminated groundwater.

Bedrock Aquifer

Baseline water quality from wells in the bedrock aquifer were initially divided into three categories based on the location of the wells relative to the mineralized and unmineralized portions of the bedrock aquifer and whether or not the wells were completed in weathered or unweathered (competent) bedrock:

- Unmineralized
- Weathered/mineralized
- Unweathered/mineralized.

Median concentrations in the unmineralized, weathered/mineralized, and unweathered/mineralized groundwaters did not exceed any MCL values. However, median concentrations exceeded three SMCL values in the unweathered/mineralized baseline wells: iron, manganese, and sulfate. The median sulfate concentration in the weathered/mineralized wells also exceeded the sulfate SMCL. The unmineralized samples generally had the lowest mean concentrations, while the unweathered/mineralized samples generally had the highest mean concentrations.

The groundwaters in the central ore zone are considered to be at least somewhat impacted by mining, and may have naturally-occurring elevated concentrations of some constituents. Elevated concentrations of sulfate (from formation of acid mine drainage under oxidizing conditions) in the unweathered/mineralized portion of the aquifer are more likely related to mining impacts, such as addition of sulfuric acid for underground leaching of copper. The groundwater sampled in the central ore zone samples has acquired sulfate along its flow path from traveling through the oxidized portions of the mineralized zone, which have been increased as a result of dewatering activities. Apparently the acquired sulfate is not currently being reduced within the unweathered mineralized portion of the bedrock aquifer in Butte Hill. Baseline bedrock groundwater quality will be represented by median concentration values [43 CFR § 11.72 (h)(5)]. The wells have been combined to represent overall baseline quality of the aquifer as a whole, including the wells that may be somewhat impacted by mining in the central ore zone. No median concentration exceeded either an MCL or SMCL value.

In the injured bedrock wells, the MCL value for cadmium (5µg/l) was exceeded, and SMCL values for iron, manganese, pH, zinc, and sulfate were also exceeded.

Median concentrations and p-values for the comparison of baseline and injured bedrock groundwater are presented in Table ES-1. All substances of concern with median concentrations that exceeded relevant standards in injured bedrock groundwater had statistically significant p-values when compared to median concentrations of these substances in baseline or control bedrock groundwater, which indicates that there is a statistically significant difference between baseline and injured bedrock groundwater.

Alluvial Aquifer

In the alluvial aquifer control wells, one of three samples from well GS-20 exceeded the thallium MCL; however, the other two samples for this well taken within one year of the first sample did not show that the thallium MCL value (2 µg/l) was exceeded. Median concentrations for the alluvial control well samples show that no other MCL or SMCL exceedences in the baseline alluvial groundwater (Table ES-2).

There were two injured alluvial aquifer areas: Area I and Butte Hill. Median concentrations exceeded MCL values for cadmium, and thallium and SMCL values for manganese, zinc, and sulfate in the Area I wells (Table ES-2). Median concentrations exceeded MCL values for cadmium and SMCL values for copper, manganese, zinc, sulfate, and TDS in the Butte Hill wells.

Table ES-2 also shows p-values for the Area I and Butte Hill wells as compared to baseline alluvial aquifer wells. In Area I, all substances that have median concentrations exceeding relevant standards have significant p-values when baseline and injured concentrations are compared. In the Butte Hill alluvial aquifer, for substances that do exceed relevant standards,

Table ES-1

Bedrock Aquifer

Comparison of Baseline and Injured Areas: Median Concentrations (µg/l; SO₄ in mg/l)

Analyte Baseline Injured p-Value 30.65 0.0005 1.96 Ag 24.5 20 0.4675 Al 0.0016 3.13 28.6 As Cd 1.02 9.5 0.0017 3.01 2.5 0.1611 Cr 25 8.5 0.0374 Cu 40 4,640 0.0019 Fe 45.1 2,400 0.0016 Mn Ni 6.9 356 0.0005 7.06 6.1 0.0002 pΗ SO₄ 174 948 0.0001 Zn 80.5 16,200 0.0026

and Two-Sided p-Values

only manganese does not show a statistically significant difference between baseline and injured wells when compared using the Mann-Whitney test (Table ES-2).

Extent of Injured Groundwater

Bedrock Aquifer

Source: Appendix II.

A substantial portion of injured water associated with the bedrock aquifer is in the Berkeley Pit. Berkeley Pit water exceeded primary and/or secondary drinking water standards for pH, sulfate, TDS, fluoride, iron, manganese, aluminum, arsenic, cadmium, copper, nickel, lead, and zinc. Bedrock groundwater in the Butte Hill area exceeded MCL and SMCL values for pH, sulfate, TDS, aluminum, arsenic, cadmium, copper, iron, fluoride, lead, manganese, nickel, and zinc.

Table ES-2 Alluvial Aquifer Comparison of Baseline and Injured Areas: Median Concentrations and p-Values $(\mu g/l; SO_4 \text{ in mg/l})$

Baseline		Area I		Butte	Hill		
Analyte	Median	Median	p-Value	Median	p-Value		
Al	9.4	157	0.0070	210	0.0164		
As	1.6	4.4	0.0457	.95	0.4929		
Cd	.55	23.8	0.0002	44.1	0.0003		
Cr	3.45	4	0.0255	2	0.9379		
Cu	3.75	90.5	0.0079	1,080	0.0002		
Fe	54	98	0.3750	39.5	0.9287		
Mn	33	11,000	0.0016	166	0.4835		
Ni	1.58	8.9	0.0189	57.4	0.0005		
Ag	0.5	ND	ND	1	0.0060		
Zn	85	7,200	0.0002	8,520	0.0002		
SO ₄	149	541	0.0006	810	0.0007		
Ве	.5	0.5	NC	ND	ND		
* not con	nputed	NC not calc	ulated	ND Not determine	ed		

Source: Appendix Ill.

The areal extent of contaminated bedrock aguifer groundwater in the Butte Hill area is 2.01 × 108 square feet (7.22 square miles or 4,620 acres). At the action level (5,410 feet), the volume of water in the Berkeley Pit is estimated to be 8.56 × 109 ft³ (1.96 × 10⁵ acre-feet or 64 billion gallons) (U.S. EPA, 1994). The volume of pit water at the action level is added to the volume of injured bedrock aquifer groundwater below the action level for a total of 1.43 × 10¹⁰ ft³ (327,000 acre-feet or 107 billion gallons) of injured bedrock groundwater in the Butte Mine Flooding area at the action level. The yield of the injured bedrock groundwater is estimated at 6,900 gpm or 1,300,000 ft³/yr or 11,100 acre-feet/yr.

Alluvial Aquifer

Area I: The following contaminants were elevated in alluvial groundwaters above their MCL/SMCL values in two or more wells placed >100 feet apart: aluminum, antimony, beryllium, chromium, fluoride, manganese, nickel, thallium, copper, zinc, arsenic, cadmium, lead, iron, and sulfate.

The groundwater plume in the Metro Storm Drain area extends ≥ 10 to 40 feet below the water table in the downgradient direction toward the confluence of the MSD with Silver Bow Creek. The ordering of decreasing area of injured alluvial groundwater (based on areas for each hazardous substance that exceed MCL/SMCL values both east and west of Montana Street) is:

sulfate > cadmium > zinc > iron > lead > copper > arsenic.

The total areal extent of alluvial groundwater contaminated with hazardous substances in Area I is 2.45×10^7 square feet (0.88 square miles or 563 acres).

The largest plume was the sulfate plume, which had a volume of 4.34×10^8 cubic feet (9,960 acre-feet or 3.25 billion gallons). The cadmium plume was the second largest plume and had a volume of 3.69×10^8 cubic feet.

The ordering of decreasing volume of injured alluvial groundwater in Area I is:

sulfate > cadmium > zinc > iron > copper > lead > arsenic.

The net groundwater discharge exiting the Butte Basin is estimated as the sum of the alluvial aquifer discharge (0.053 cfs) and the net surface water discharge (3.25 cfs), or 3.30 cfs (1,480 gpm or 2,390 acre-ft/year or 104,000,000 ft³/yr).

Butte Hill: Zinc, copper, iron, lead, cadmium, and sulfate concentrations exceeded relevant water quality standards in groundwater in the Butte Hill alluvial aquifer. The water quality standard for zinc was exceeded in every well; the water quality standard for lead was exceeded in only two wells. Sulfate concentrations exceeded the SMCL value (250 mg/l) in all but one well (LP10).

The areal extent of injured groundwater in the Butte Hill alluvial aquifer is given by the extent of the zinc plume (the zinc SMCL was exceeded in all wells), which is 2.20×10^7 ft² (0.79 mi² or 505 acres)

The volumetric extent of injured alluvial groundwater in the Butte Hill area at 20% porosity is 4,850 acre-feet $(2.12 \times 10^8 \text{ ft}^3)$, as represented by the sulfate plume. The volumetric extent of the cadmium plume (4,830 acre-feet) is only slightly less than that for sulfate. The average

flux of injured alluvial groundwater in the Butte Hill area is given by the flux of the largest plumes, zinc, sulfate, cadmium, and copper, which are 17,900 ft³/day (150 acre-ft/yr). This represents flux through the central portion of the Butte Hill alluvial aquifer.

A summary of the areal and volumetric extent and flux of all injured groundwater in the study area is presented in Table ES-3.

Table ES-3 Summary of Areal and Volumetric Extent and Flux of Injured Groundwater in Area I and Butte Mine Flooding Operable Units								
Aquifer Type and Location								
Bedrock Butte Hill	2.01 × 10 ⁸ ft ² 7.22 mi ² 4,620 acres	1.43 × 10 ¹⁰ ft ³ 327,000 ac-ft 107 billion gallons	6,900 gpm 1,330,000 ft ³ /ут 11,100 ac-ft/ут					
Alluvial Area I	2.45 × 10 ⁷ ft ² 0.88 mi ² 563 acres	4.34 × 10 ⁸ ft ³ 9,960 ac-ft 3.25 billion gallons	1,480 gpm 104,000,000 ft ³ /yr 2,390 ac-ft/yr					
Alluvial Butte Hill	2.20 × 10 ⁷ ft ² 0.79 mi ² 505 acres	2.12 × 10 ⁸ ft ³ 4,850 ac-ft 1.59 billion gallons	17,900 ft ³ /yr 150 ac-ft/yr					
Total	2.48 × 10 ⁸ ft ² 8.89 mi ² 5,690 acres	1.50 × 10 ¹⁰ ft ³ 342,000 ac-ft 112 billion gallons	105,000,000 ft ³ /ут 13,600 ас-ft/ут					

Recoverability

Recoverability is defined in this report as the time estimated for the groundwater resource to recover to baseline concentration levels if no additional remediation or restoration efforts are taken. Potential immobilization and mobilization mechanisms that will affect the extent of contaminated groundwater over time are discussed.

Assuming that the remaining hazardous substance sources that contaminate groundwater will not be removed, hazardous substances will continue to be transported in area groundwaters and thereby increase the size of contaminant plumes, especially in the upper MSD area. In Lower Area I, groundwater discharge to Silver Bow Creek limits the lateral extent of groundwater contamination, but the extent of contamination with depth may increase over time.

Sulfide minerals in source areas can be expected to leach lesser quantities of metals, metalloids, and sulfate to the unsaturated zone and groundwater over time as hazardous and related substances in these minerals are eventually exhausted by leaching mechanisms. This scenario depends on a number of geochemical and hydrodynamic factors, including consistent or overall oxidizing conditions in the source materials (buried tailings, etc.), availability of infiltrated water, sufficient hydraulic conductivities, etc. The production of sulfate from pyrite in mine wastes has been predicted to decrease exponentially in the first 50 to 100 years but not approach zero sulfate production until between 250 to over 350 years from the time of deposition of the wastes. At this future time the sources may have exhausted their ability to generate acid, but downgradient groundwater would still be injured with sulfate, metals and metalloids.

It can be assumed that hazardous substance sources in the study area will continue to adversely affect alluvial and bedrock aquifer groundwater and Berkeley Pit water for thousands to tens of thousands of years, absent removal of sources or implementation of effective remediation or restoration techniques.

1.0 INTRODUCTION

1.1 SITE DESCRIPTION

Gold was discovered in the Butte area in 1864, and large-scale copper mining began around 1882. Mining and processing of gold, silver and copper ore has continued in one form or another (underground, open pit and leaching operations, smelting) to the present day. Mining and processing operations have resulted in heavy metal and other contamination in the Butte area. This report addresses groundwater resource injury in two sections of the Silver Bow Creek/Butte Area Superfund site located in and near the city of Butte, Montana (Figure 1-1). The site is part of the Clark Fork Superfund complex, which is the largest group of Superfund sites in the United States.

1.1.1 Overview of Operable Units and Features

Groundwater injury occurring principally in two operable units, the Butte Mine Flooding Operable Unit and the Area I Operable Unit, are examined in this report. Generally, these Operable Units together comprise the study area.

Butte Mine Flooding Operable Unit. The Butte Mine Flooding Operable Unit (Mine Flooding OU) extends from the Continental Divide on the east to Missoula Gulch on the west side and from the Yankee Doodle Tailings Pond on the northern side to Silver Bow Creek on the southern side (Figure 1-2). The major features in the Butte Mine Flooding OU are:

- Yankee Doodle Tailings Pond
- ► Leach pads area
- ► Waste rock dumps
- Precipitation plant
- Berkeley Pit
- ► Continental Pit
- ► MR Concentrator area (formerly the Weed Concentrator)
- Underground mine workings
- Silver Lake Pipeline.

The underground mining areas were separated into the East Camp and West Camp in the early 1960s by concrete bulkheads to reduce the volume of water that had to be pumped to keep the central underground mines working. The East Camp includes the Berkeley Pit, the Kelley, Anselmo, Belmont, Chester, Granite Mountain, Lexington and Steward mines, and associated underground mine workings. The West Camp includes the Emma, Ophir, and Travona mines (Canonie, 1992a). The Marget Ann, Missoula and Orphan Boy mines are considered to be in the Outer Camp. The major connected underground workings extend for

at least 3,000 miles (James, 1980, as referenced in U.S. EPA, 1994). Pumping occurred from the Kelley shaft in the East Camp and the Travona shaft in the West Camp. The majority of the Butte Mine Flooding OU features are displayed in Figure 1-3; the underground mine workings (with connections) are displayed schematically in Figure 1-4. A description of these features can be found in Table 1-1.

Area I Operable Unit. The Area I Operable Unit extends from below the MR Concentrator (formerly the Weed Concentrator) parallel to the Metro Storm Drain and Silver Bow Creek to the Colorado Tailings (Figure 1-5). The Colorado Tailings/Butte Reduction Works vicinity is referred to as Lower Area I. The main features of the operable unit are:

- ► The historic Parrott Smelter
- The exposed and buried Parrott and other Tailings (near and under the City-County Shop Complex area)
- ► The Metro Storm Drain, Silver Bow Creek and Blacktail Creek
- ► The Butte Reduction Works and Manganese Stockpile area
- ▶ Butte Reduction Works Tailings impoundments
- ► The historic Colorado Smelter
- ► The Colorado Tailings.

A Phase I Remedial Investigation (RI) was completed by MultiTech (1987), and a Draft Final RI was completed in August 1990 by CH₂M Hill/Chen-Northern (CH₂M Hill and Chen-Northern, 1990).

1.1.2 Geology of the Study Area

Bedrock. The mountains in the upper Silver Bow basin are composed predominantly of quartz monzonite, which is a silica-rich plutonic rock (rocks formed from subsurface magma) in the granite family that has roughly equal amounts of orthoclase (potassium) and plagioclase (sodium/calcium) feldspars (Jackson, 1970). These rocks are part of a granitic mass known as the Boulder Batholith, which extends southwesterly from Helena to the Big Hole River in Beaverhead county (Sales, 1913).

Site Map, Butte Area, Montana. Sources: Canonie, 1992a; CH2M Hill and Chen-Northern, 1990. Figure 1-1.

RCG/Hagler Bailly

Figure 1-2. Butte Mine Flooding Operable Unit Features. Source: Canonie, 1992a.

Figure 1-3. Butte Mine Flooding Operable Unit Process Flows and Units. Source: Canonie, 1992a.

Figure 1-4. Map of Connected Underground Mine Workings. Source: Canonie, 1992a.

Table 1-1
Description of Units and Features in Butte Mine Flooding Operable Unit

Unit/Feature	Dimensions	Status	Description	Inputs/ Inflows	Outputs/ Outflows
Berkeley Pit	1780 ft. deep; 675 acres (1.06 mi ²); 1.18 × 10 ¹⁰ ft ³	Inactive	Open pit copper mine, now filling with water	Precipitation Plant surplus water; Upset flows from MR Concentrator and McQueen Booster Station; Minewater; Groundwater; Runoff; Precipitation	Evaporation
Continental Pit	~5,000 ft × 2,000 ft	Active	Open pit mine for low-grade copper-moly ore	Groundwater; Runoff; Precipitation	Pumped water → MR Concentrator
Leach pads area	9 unlined leach pads, 300 to 500 ft. thick, cover 10 to 120 acres each	7 Active pads; 2 Inactive pads	Leaching of low-grade ore and waste rock previously mined from Berkeley Pit	Leaching solution leaving Precipitation Plant (includes Horseshoe Bend seeps+sulfuric acid)	Pregnant solution from leach pads - Unlined Storage ponds - Precipitation Plant
MR concentrator (previously known as weed concentrator)	Processes 48,000 tons ore/day	Active	Mills ore from Continental Pit; produces copper and moly concentrates	Decant water from Tailings Pond; Water from Silver Lake Pipeline; Water pumped from Continental Pit	Copper and Moly concentrates; Tailings → Yankee Doodle Tailings Pond
Precipitation plant	Uses ~13 mgd water	Active	Precipitates copper on detinned iron scrap	Pregnant solution from leach pads; Horseshoe Bend seep water	Barren solution - Leach Pads or Tailings Pond

Table 1-1 (cont.) Description of Units and Features in Butte Mine Flooding Operable Unit							
Unit/Feature Dimensions Status Description Inflows Outflow							
Unlined storage ponds for Horseshoe Bend seep water and pregnant solution from leach pads	7 unlined storage ponds; 9.76 acres total	7 Active storage ponds	Hold make-up/ surplus water for Precipitation Plant and pregnant solution from leach pads	Acidic seep water from Horseshoe Bend area; Pregnant solution from leach pads	Make-up water and pregnant solution → Precipitation Plant; Surplus Water → Berkeley Pit		
Yankee Doodle Tailings Pond	750 Acres	Active	Settling basin for tailings slurry from Concentrator	Tailings slurry from MR Concentrator; Excess barren leach solution from Precipitation Plant; Runoff; Precipitation	Decant water MR Concentrator; Groundwater seepage		
Waste rock dumps	2 major dumps: N of pit; SE of pit	N dump Inactive; SE dump Active	Received/ receives waste rock and overburden from Berkeley and Continental Pits	Alluvial overburden and below economic grade bedrock from Continental Pit; Precipitation; Run-on	Infiltration → groundwater; Runoff		
Mine shafts	Several thousand miles of inter- connected workings	Inactive	Abandoned underground workings mined for copper	Flooding groundwater	Flooding groundwater → Berkeley Pit		
Metro storm drain Sources: Car	78,000 ft in length	NA	Open channel ditch; Previously stretch of Silver Bow Creek	Stormwater runoff	Silver Bow Creek starts at confluence of Metro Storm Drain and Blacktail Creek		

Figure 1-5. Area I Operable Unit Features. Source: CH2M Hill and Chen-Northern, 1990.

RCG/Hagler Bailly

The town of Butte is named for Big Butte, a volcanic vent complex that emitted the rhyolite (a fine-grained equivalent of granite) that drapes the northwestern part of the upper Silver Bow basin (Meinzer, 1914). Younger rhyolitic and quartz-porphyry plugs and dikes intrude the quartz monzonite and are often associated with ore deposits. The quartz monzonite and the Boulder Batholith in general were formed over a 10-million year period (78 to 68 million years ago) during late Cretaceous time (Smedes, 1973). Weed (1912) has mapped the exposed bedrock in the Butte region. A generalized geologic map of the igneous rocks in the Butte area is presented in Figure 1-6. The upper 200 to 300 feet of the bedrock aquifer is highly fractured and oxidized; the remainder of the bedrock aquifer is competent bedrock with abundant sulfides (Botz and Knudson, 1970). The composition of the ore body is discussed in Section 2.2.1.5.

Alluvium. More recent unconsolidated Quaternary and semi-consolidated Tertiary valley fill and alluvial deposits line the Silver Bow Creek area (Figure 1-7A and B). These deposits overlie and are derived in part from weathering of the quartz monzonite bedrock and range from over 300 feet thick near the MR Concentrator to less than 30 feet in the Colorado Tailings area. A structurally-controlled, north-south trending bedrock trough east of the Berkeley Pit contains several hundred feet of alluvial deposits (Figure 1-8). The steep dropoff of the bedrock surface by Montana Street (Fig. 1-7B, A-A') may be due to the presence of a normal fault, which brings quartz monzonite bedrock to within 50 feet of the ground surface (Multitech, 1987; Botz, 1969).

1.1.3 Hydrogeology of the Study Area

Two water-bearing rock or sediment units (aquifers) are located in the study area: the alluvial aquifer and the bedrock aquifer.

Bedrock Aquifer. Groundwater in the bedrock aquifer occurs predominantly within fractures, joints and faults in the quartz monzonite and in the underground mine workings (Canonie, 1992a). A weathered and leached zone is present in the upper 100 to 200 feet of bedrock (Botz and Knudson, 1970). The Butte Hill area is composed of bedrock with variable but lesser amounts of alluvial cover than the bedrock in the study area away from Butte Hill. Before dewatering, depth to groundwater ranged from 20 to 100 feet in the vicinity of the Berkeley Pit, and the groundwater flow direction was from north to south (Hydrometrics, 1982). The water level in the mine area was lowered by approximately 4,200 feet by pumping (U.S. EPA, 1994). Currently, a large cone of depression exists around the Berkeley Pit, and depth to groundwater in bedrock is up to 800 to 900 feet below the ground surface (Kelley Mine shaft and Granite Mountain mine).

Figure 1-6. Generalized Geologic Map of Butte Area, Montana. Source: MultiTech, 1987.

Figure 1-7A. Limits of Unconsolidated Material in Lower Area I. Source: MultiTech, 1987.

RCG/Hagler Bailly

Figure 1-7B. Generalized Cross Sections Showing Depth to Bedrock in Lower Area I. Source: MultiTech, 1987.

Figure 1-8. Contour Map of the Top of Weathered Bedrock in the Butte Hill Area. Source: Canonie, 1992a.

Alluvial Aquifer. The alluvial aquifer comprises unconsolidated and semi-consolidated Quaternary and Tertiary valley fill deposits that overlie weathered bedrock in the Silver Bow Creek/Metro Storm Drain/MR Concentrator area and the area to the southeast and east of the Berkeley Pit in the vicinity of the leach pads (see Figures 1-6, 1-7, and 1-8). Groundwater is recharged from precipitation, snowmelt runoff, streams and artificial recharge. Groundwater discharges to springs and sections of Silver Bow Creek below Harrison Avenue (although the majority of groundwater discharge to the MSD is in its lower reaches), the lower reaches of Blacktail Creek, and Silver Bow Creek below the Colorado Tailings. Groundwater flow direction in the Area I OU alluvial aquifer generally is parallel to the MSD/Silver Bow Creek or into the streams in discharge areas. The cone of depression around the Berkeley Pit moves groundwater toward the pit in the Upper MSD area. Groundwater flow patterns in the alluvial aquifer in the Butte Mine Flooding OU are also toward the Berkeley Pit for those portions within the cone of depression. Groundwater flow further east of the pit is to the south.

2.0 GROUNDWATER INJURY DETERMINATION

Groundwater resources are defined as being injured by the release of a hazardous substance if one or more relevant standard is exceeded in groundwater that was potable before the release, and/or if concentrations of substances in groundwater have caused injury to surface water, air, geologic or biologic resources when exposed to groundwater [43 CFR § 11.62(c)]. Exposure pathways from the sources of hazardous substances to the injured resource must be determined [43 CFR § 11.61(a)]. This section describes:

- Sources releasing hazardous substances
- ▶ Identity of hazardous substances released
- Duration of release
- Relevant standards that are exceeded in groundwater resources in the study area
- Pathways for transport of hazardous substances from the sources to the injured groundwater.

2.1 SOURCES RELEASING HAZARDOUS SUBSTANCES

Both primary and secondary sources can release hazardous substances to groundwater in the study area. Primary sources are directly derived from mining, processing and disposal practices and include: underground mine workings; waste rock or overburden; stock piles; tailings, and waste rock piles. Secondary sources are the result of reworking of primary sources of contamination by physical (i.e., transport in surface water) or chemical (i.e., leaching) mechanisms. Secondary sources of contamination include: streamside tailings; soils and aquifer materials contaminated by primary sources; surface salts; smelter airfall, groundwater contaminated with hazardous substances and acid mine drainage (AMD).

2.1.1 Sources of Groundwater Contamination

A summary of the primary and secondary sources of groundwater contamination can be found in Table 2-1.

Butte Mine Flooding OU. The sources of groundwater contamination in the Butte Mine Flooding OU are: (1) underground mine workings and the walls of the Berkeley and Continental Pits; (2) tailings and waste rock piles; (3) leaking solutions from the leach pads area; (4) leaking solutions from the Yankee Doodle Tailings Pond; (5) contaminated soils and alluvium; (6) leaking solutions from the Weed/MR Concentrator area; and (7) sulfuric acid

Table 2-1	
Sources of Groundwater Contamination	and
Identity of Hazardous Substances	

	77 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Contaminant Source	Hazardous Substances Identified
Underground mine workings and pit walls; acid mine drainage ¹	Ag, As, Cd, Cu, Ni, Pb, Sb, V, Zn, sulfides
Waste rock piles near Berkeley Pit ²	Ag, As, Cr, Cu, Pb, Se, V, Zn, sulfides
Buried Parrot and other tailings ²	Ag, As, Cd, Cu, Hg, Pb, Sb, V, Zn, sulfides
Colorado tailings ²	Ag, As, Cd, Cr, Hg, Ni, Pb, Sb, Se, V, Zn, sulfides
Butte Reduction Works tailings ²	Ag, As, Cd, Cr, Cu, Ni, Pb, Sb, V, Zn, sulfides
Manganese stock piles and flue dust ²	Ag, As, Be, Cd, Cr, Cu, Hg, Pb, Ni, Sb, Se, Tl, V, Zn
Slag, slag sand and gravel ²	Ag, As, Be, Cd, Cu, Pb, Ni, Sb, V, Zn
Railroad bed fill ²	Ag, As, Cr, Cu, Pb, Ni, Sb, Se, V, Zn, sulfides
Efflorescent salts ³	Cd, Cu, Pb, Zn
Streamside tailings ³	Cd, Cu, Pb, Zn, sulfides
Contaminated soils ²	Ag, As, Be, Cd, Cr, Cu, Ni, Pb, Sb, Se, V, Zn
Mixed alluvial soils and tailings ²	Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, Tl, V, Zn
Leach pad solutions ⁴	As, Cd, Cr, Cu, Ni, Zn, sulfuric acid
Weed concentrator ⁵ solutions	Cd, Cu, Zn
Sulfuric acid used in underground leaching ⁶	Sulfuric acid

Sources:

Appendices I and IIA. Results from composition of mine water and Berkeley Pit water were used to determine identity of hazardous substances.

² CH₂M Hill/Chen-Northern, 1990, Appendix C-6 and Chapter 4.

MultiTech, 1987, Chapter 3 and Appendix B, Part 4, Attach. VI.

Canonie, 1992a. Table 3.2.2. MCL/SMCL exceedences for hazardous substances in pregnant and leaching solution are used.

Results from well AMC-5 were used to determine identity of contaminants released from Weed Concentrator operations (MultiTech, 1987, Appendix B, Part 4, Attachment VI).

Spindler, 1977; Spindler, 1992.

Key: Sb = antimony, As = arsenic, Be = beryllium, Cd = cadmium, Cr = chromium, Cu = copper, Ni = nickel, Pb = lead, Hg = mercury, Se = selenium, Ag = silver, Tl = thallium, V = vanadium, Zn = zinc.

added to the underground mines for copper leaching. The locations of these sources can be found in Figures 1-1, 1-2, and 1-3.

Area I OU. There are three generalized source areas for copper, zinc, cadmium, lead, iron and sulfate in Area I: near the historic Parrott Smelter and buried Parrott tailings (City-County Shop Complex); the Butte Reduction Works tailings impoundment area (north of Silver Bow Creek and west of Missoula Gulch), and the Colorado Tailings area (see Figure 1-5 for locations of these areas). Additional source areas for arsenic include the historic Colorado Smelter and the Silver Bow Creek alluvium west of the Colorado Tailings (CH₂M Hill and Chen-Northern, 1990).

The specific sources of groundwater contamination in the Area I OU are: (1) the buried Parrott tailings; (2) slag, mill and other wastes around the historic Parrott Smelter and the City-County Shop Complex; (3) manganese stockpiles and manganese flue dust in the manganese stock pile/Butte Reduction Works area (removed in 1992); (4) surficial and buried tailings disposed of along the MSD and Silver Bow Creek; (5) the Butte Reduction Works tailings impoundments (partially removed in 1994); (6) the historic Colorado Smelter; (7) railroad ballast; (8) efflorescent salts on tailings piles and along the banks of Silver Bow Creek; (9) streamside tailings along Silver Bow Creek and the Metro Storm Drain; (10) contaminated soils; (11) mixed contaminated soils/alluvial material and tailings throughout Area I; (12) the Colorado Tailings; and (13) mine water and process water discharged to SBC/MSD. The locations of these sources can be found in Figures 1-5 and 2-1.

This report does not address contaminated groundwater associated with the Clark Tailings, which are located about 1 mile south of Area I. Adequate data on the extent of injury associated with the Clark Tailings are not yet available.

2.1.2 Identity of Hazardous Substances

2.1.2.1 Hazardous Substances Derived Directly from Sources

The hazardous substances identified in sources are listed in Table 2-1. All the major metals and metalloids that are listed as hazardous under CERCLA were found in sources of groundwater contamination in the study area [40 CFR § 302.4]. The hazardous substances identified in source materials were: antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, sulfuric acid, thallium, vanadium, zinc and sulfides of several of these hazardous substances (copper, arsenic, zinc, lead, silver, antimony) (see Section 2.2.1.5). Not all sources and alluvial and bedrock groundwaters were analyzed for every hazardous substance identified in the study area.

Groundwater quality data from the Phase II RI are available for the hazardous substances antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium and zinc (CH₂M Hill and Chen-Northern, 1990). The Phase I RI (MultiTech, 1987), however, only has groundwater quality data for the hazardous substances arsenic, cadmium, copper, lead and zinc. Soils, tailings and waste material samples in the Phase II RI (CH2M Hill and Chen-Northern, 1990, Volume 1, Chapter 4-1 and Volume II, Appendix C-6) were analyzed for the hazardous substances antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium and zinc. The manganese ore was not analyzed in this study, although it is identified as a material unit (Unit 6B (Manganese Ore Piles), in Table 4-5 in CH₂M Hill and Chen-Northern, 1990). The hazardous substances identified in the manganese flue dust are likely to be similar to (and a subset of) those in the manganese ore piles because the flue dust is derived from smelting of the ores. The Phase I RI (MultiTech, 1987) only analyzed soils, tailings and waste materials for copper, cadmium, lead, zinc and sulfides. Prior to the installation of the wastewater treatment system (1972), sulfuric acid was added to minewater in the underground mines to increase dissolved copper, which was later extracted in the leach dumps. The underground leaching was discontinued to lower the lime demand for neutralization of underground minewater (Spindler, 1977).

2.1.2.2 Other Substances Resulting from Release and Oxidation of Hazardous Substances

In addition to the hazardous substances identified above, some substances identified in groundwater are not defined as hazardous under CERCLA, yet are derived from mining operations in the study area and are present in concentrations exceeding relevant standards [43 CFR § 11.62(c)(1)(i)]. For groundwater determined to be injured that contains no hazardous substances, it must be demonstrated that the substances causing the injury occur in the groundwater resource as a result of physical, biological or chemical reactions resulting from or initiated by the release of hazardous substances [43 CFR § 11.62(c)(4)]. Acid mine drainage contains very high concentrations of sulfate, iron and other metals. These substances are present in groundwater as a result of the oxidation and dissolution of pyrite and other metal/metalloid sulfides in underground mine workings, tailings and waste rock piles. The acid mine drainage formed by oxidation and dissolution of pyrite further dissolves other metal sulfides and aluminosilicates, which release heavy metals and metalloids, sulfate, iron, manganese and aluminum to groundwater and surface water. A discussion of the formation of acid mine drainage is presented below.

Generation of Acid Mine Drainage

The formation of acid mine drainage (AMD) involves many types of biogeochemical reactions, including: oxidation (both biological and chemical), dissolution, precipitation, hydrolysis and complexation.

Extent of Surface Tailings and Mill Waste Deposits from an August, 1955 Aerial Photograph. Source: CH₂M Hill and Chen-Northern, 1990. Figure 2-1.

The first step in the formation of AMD is the oxidation and dissolution of pyrite or marcasite (both are iron disulfide minerals) to form acid (H^+), sulfate (SO_4^{2-}) and reduced iron (Fe^{2+}):

$$FeS_2 + 7/2 O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+.$$
 (1)

The oxidation of reduced iron is the rate-limiting step in the formation of acid mine drainage. The oxidation rate is accelerated by up to one million times by the presence of the iron-oxidizing bacterium, *Thiobacillus ferrooxidans*:

$$Fe^{2+} + 1/4O_2 + H^+ + Fe^{3+} + 1/2 H_2O.$$
 (2)

The oxidized iron (ferric iron or Fe³⁺) produced is also a strong oxidizing agent and will promote further oxidation and dissolution of pyrite (FeS₂):

$$FeS_2 + 14Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16 H^+.$$
 (3)

Ferric iron hydrolyzes above pH 2.2 and eventually precipitates ferric hydroxides or basic iron sulfates. At higher sulfate concentrations, aqueous ferric sulfate complexes $[Fe(SO_4)_2]$ or $FeSO_4^+$ form, which can inhibit further iron precipitation. Heavy metals such as lead, cadmium, copper and zinc can be removed from solution either by coprecipitation with or adsorption onto ferric hydroxides:

$$Fe^{3+} + 3H_2O - Fe(OH)_3 + 3H^+.$$
 (4)

Below about pH 2, the hydrogen ions in acid mine drainage combine with free sulfate ions to form the bisulfate ion (HSO₄), which buffers further decreases in pH:

$$H^+ + SO_4^{2-} - HSO_4^{-}$$
 pK = 1.98. (5)

References: (Doyle and Mirza, 1990; Nordstrom, 1982; Olson, 1986; Stumm and Morgan, 1981; University of California, 1988)

These reactions can be slowed, or the acid (shown as H⁺ here) that is generated can be neutralized, by the presence of carbonate material:

$$H^+ + CaCO_3 - Ca^{2+} + HCO_3^-. \tag{6}$$

Leaching of Other Heavy-Metal Sulfides

The acid produced by AMD can dissolve other metal sulfide minerals and release sulfate and heavy metals and metalloids such as copper, cadmium, lead, arsenic and zinc to the environment. Chalcocite, enargite, pyrite, covellite, bornite, sphalerite, chalcopyrite, rhodochrosite, tetrahedrite, tennantite, and molybdenite in source materials can be leached by

AMD, and sulfate, copper, zinc, arsenic, silver, iron, manganese, antimony and lead will be released (see Section 2.2.1.5 for composition of these minerals). These minerals, and aluminosilicates in soils and overburden or waste materials, will be leached by the acid and ferric iron in AMD. High concentrations of aluminum can result from leaching of aluminosilicates. Alunite and jarosite (basic aluminum and iron hydroxy-sulfates) will precipitate as waters with leached constituents mix with higher-pH groundwater or surface water.

Acidic ferric sulfate [Fe₂(SO₄)₃⁰] produced by the biologically-catalyzed oxidation of pyrite can act as a powerful oxidant for dissolving other sulfides that contain heavy metals:

$$M_x S_v + 2Fe^{3+} \rightarrow xM^{n+} + 2Fe^{2+} + yS^0,$$
 (7)

or, for example for chalcopyrite:

$$CuFeS2 + 2Fe2(SO4)30 \rightarrow CuSO4 + 5FeSO4 + 2So$$
 (8)

where M = metals in other sulfides, such as zinc (Zn), lead (Pb), copper (Cu), iron (Fe), cadmium (Cd), manganese (Mn), nickel (Ni), arsenic (As), cobalt (Co), silver (Ag) and antimony (Sb); S⁰ = elemental sulfur. Ferric sulfate is a CERCLA hazardous substance [40 CFR § 302.4].

This indirect leaching mechanism relies upon biological regeneration of ferric iron or ferric sulfate. Ferric sulfate leaching proceeds even in the absence of oxygen or viable bacteria. Elemental sulfur would normally coat the pyrite surfaces and inhibit further reaction, but microbes such as *T. thiooxidans* and *T. ferrooxidans* can oxidize this elemental sulfur film, produce sulfuric acid, and expose pyrite surfaces again and again to further attack by water, oxygen and *T. ferrooxidans* (Hutchins et al., 1986; Olson, 1986).

In addition, bacteria can attack some metal sulfides directly (including pyrite) and produce soluble metal sulfates (Olson, 1986):

$$MS + 2O_2 \rightarrow MSO_4$$
 (generalized formula). (9)

Aluminum (Al) can also be leached from soils and sediments by acid mine drainage and is very mobile at low pH values. This can lead to high Al concentrations in affected waters. Aluminum sulfate is a CERCLA hazardous substance [40 CFR § 302.4].

The AMD produced by the reactions described above will leach other sulfides, carbonates and aluminosilicates in source materials in the study area and produce high concentrations of aluminum, sulfate, iron, manganese, and other metals and metalloids. These reactions indicate that, in addition to the substances listed as hazardous under CERCLA, dissolved sulfate, aluminum, manganese and iron can be formed from generation of acid mine drainage

at the Butte site, which is a product of the release of a hazardous substance. Groundwaters downgradient from known source materials (tailings, etc.) are contaminated with sulfate, aluminum, manganese and iron in addition to heavy metals and metalloids. Although sulfate, iron, manganese and aluminum are not specifically listed as hazardous substances under CERCLA, they do result from the release of hazardous substances and cause injury to groundwater. Therefore, iron, sulfate, manganese and aluminum will be considered as if they were listed as hazardous substances.

2.1.3 Duration of Release

Gold was discovered in Silver Bow Creek in 1864, and shallow gold and silver placer mining continued in Silver Bow Creek and its tributaries, especially along Missoula Gulch, until 1876. Underground copper mining also began during this period, and Butte was the most important copper producer in the world between 1887 and 1920. Little mining occurred between 1869 to 1874. Silver mining was regenerated in 1875, and in 1882 large-scale copper mining began. By 1884 there were over 300 mines and eight smelters were operating in the district. Butte was an important mining, milling and smelting district until 1896 when most of the large silver mines closed because of declining silver prices.

In 1884 the <u>Anaconda Smelter</u> was built in Anaconda. Within months of the opening of the smelter in Anaconda, arsenic poisoning occurred in cattle, sheep and horses over a 260-km² area (Moore and Luoma, 1990). Some of the early mills and smelters in the Butte area are identified in Figure 2-2. The major smelters constructed along Silver Bow Creek operated nearly continuously until 1910. By 1910 Anaconda Copper Mining Company had purchased and closed all of the major concentrators/smelter except the Pittsmont, and most of the ore was shipped to the Anaconda smelter for processing. The Pittsmont Smelter operated until 1930. Smelting continued in Anaconda until 1980.

The <u>Parrott Smelter</u> was opened in about 1881 and terminated operations in 1910. Peak annual copper production at the mill was over 14 million pounds. The <u>Butte Reduction Works</u> were constructed in 1883 and operated nearly continuously until 1911 when a fire destroyed the plant. The <u>Colorado Smelter</u> was constructed in about 1878 and operated until about 1904. Peak copper production was in 1902, when over 10 million pounds of copper were produced. Tailings from the facility were deposited onto the Silver Bow Creek floodplain, and Silver Bow Creek eventually required rechannelization to the north because it was encroaching on the tailings area. The <u>Timber Butte Mill</u> operated from 1914 to 1928. In 1917, approximately 150 mines were operating in and around Butte. Tailings from the Timber Butte Mill, Butte and Superior, and East Butte concentrators were sluiced in to tributaries of Silver Bow creek until at least 1918.

By 1950, over 400 underground mines were in operation in Butte, consisting of several thousand miles of interconnected underground mine workings. In the late 1950s/early 1960s,

Figure 2-2. Early Reduction Plants in the Butte Area, Montana. Source: CH₂M Hill and Chen-Northern, 1990.

the mining district in Butte Hill was separated into the East Camp and the West Camp by bulkheads. In 1965, basements along Front Street in Butte began to flood with groundwater from the West Camp area. In order to decrease groundwater discharge to Butte basements, Anaconda Minerals Company (AMC) drilled relief well #21 (directly north of Silver Bow Creek and east of Missoula Gulch), which flowed into Missoula Gulch for three years. Water levels dropped in the spring of 1969 for an unknown reason but began to rise again in May 1984.

The Metro Storm Drain was constructed as a WPA project in the early 1930s. The Domestic Manganese and Development Company facility, which produced manganese ore, operated from 1928 to 1959.

In 1964, the <u>Weed Concentrator</u> (now the MR Concentrator) became operational and discharged untreated waste to upper Silver Bow Creek (Metro Storm Drain) until 1972. The upper MSD historically received process wastewater inflow averaging approximately 13 cfs from the Weed Concentrator. Primary treatment began at the Weed Concentrator in 1972. A secondary system was installed at the Weed Concentrator in 1975. AMC operated the Weed Concentrator until early 1983. MRI purchased the Concentrator and began operations again in 1986.

The Berkeley Pit, owned by the Anaconda Copper Mining Company, began operating in July 1955. Ore from the Berkeley Pit was smelted in Anaconda. In 1977 ARCO purchased the Anaconda Copper Mining Company and changed the company name to Anaconda Minerals Company (AMC). AMC operated the Butte Mine until 1983. Mining in the Berkeley Pit ceased in 1982. The large waste dumps were receiving material from the Berkeley pit until its closure in 1982. The last underground mine, the Kelley, closed in 1981. The underground workings and the pit were continuously dewatered at a rate of 4,000 to 5,000 gpm through pumping of underground workings, and the water was discharged to the Metro Storm Drain/Silver Bow Creek. Pumping stopped in April 1982, and the Pit closed in June. ARCO closed the adjacent East Berkeley Pit in 1983.

Montana Resources Inc. (MRI) purchased the operations, including the Berkeley Pit, East Berkeley Pit, Continental East Pit, and the Yankee Doodle Tailings Ponds in 1985 and resumed mining in the East Berkeley Pit (now the Continental Pit) in July 1986. In 1989 American Smelting and Refining Company (ASARCO) purchased minority ownership of MRI's Butte operations. MRI and ASARCO are currently mining ore from the East Berkeley Pit and producing copper and molybdenum concentrates at the MR Concentrator. Leachate from the leach pad area (low-grade ore previously mined from the Berkeley Pit) is currently being processed at the Precipitation Plant. The precipitation plant and leach pads were constructed in the early 1960s.

All sources remaining in the study area continue to release hazardous substances to the present day.

Sources for Section 2.1.3: (Canonie, 1992a; CH₂M Hill and Chen-Northern, 1990; MultiTech, 1987; Smith, 1953; Montgomery, 1993).

2.1.4 Relevant Standards

An injury to groundwater from release of a hazardous substance is defined as an exceedence of one or more of the following physical or chemical quality aspects of the groundwater resource [43 CFR § 11.62(c)]:

- (1) Concentrations in excess of drinking water standards established under the Safe Drinking Water Act (SDWA), or other Federal or State laws that establish such standards, in groundwater that was potable before release of the hazardous substance. These drinking water standards include maximum contaminant levels (MCL), maximum contaminant level goals (MCLG), and secondary maximum contaminant levels (SMCL).
- (2) Concentrations of substances sufficient to have caused injury to surface water, air, geologic or biologic resources when exposed to groundwater.

The relevant standards for groundwater injury in the study area are determined to be the primary drinking water standards (MCLs, MCLGs) and the secondary drinking water standards (SMCLs) established under the Safe Drinking Water Act and Montana State Law. These standards are listed in Table 2-2.

In addition, concentrations of hazardous substances in groundwater have caused injury to surface water in areas where the Metro Storm Drain and Silver Bow Creek are gaining streams. Concentrations of hazardous substances in groundwater have also caused injury to geologic resources (soils, aquifer materials) as a result of fluctuations in the groundwater table. Changes in the elevation of the groundwater table can occur either seasonally or as a result of changes in artificial recharge (e.g., operation and then draining of process ponds at the historic Weed Concentrator) or pumping and mine flooding associated with the Berkeley Pit. This type of injury is discussed in the Pathway Determination Section (2.2).

2.1.5 Acceptance Criteria

Injury to groundwater resources is determined by measurement of concentrations of a hazardous substance or a constituent caused by release of a hazardous substance (e.g., sulfate) in two groundwater samples from the same geohydrologic unit. The samples must be taken from either two properly constructed wells, a well and a spring or seep, or two springs or seeps that are separated by a straight-line distance of at least 100 feet [43 CFR § 11.62(c)(2)]. Groundwater samples in the Butte Hill bedrock aquifer are taken from wells or shafts that are

Table 2-2
Primary and Secondary Drinking Water Standards
(µg/l except where noted)

Contaminant	MCL	Montana Water Quality Standards	MCLG	SMCL
Aluminum				50-200
Antimony	6	14	6	
Arsenic ¹	50	0.018	50	
Barium	2,000/1,000 ⁵	1,000	2,000	
Beryllium	4	4	4	
Cadmium	5	5	5	
Chromium	100	100	100	
Copper ²	TT ³	1,000	1,300	1,000
Fluoride	4,000	4,000	4,000	2,000
Iron		300		300
Lead ²	TT⁴	15	0	
Manganese		50		50
Mercury	2	0.14	2	
Nickel	100	100	100	••
pH				6.5-8.5
Selenium	50	50	50	
Silver				100
Sulfate (mg/l)	500 ⁵			250
Thallium	2	1.7	0.5	
Zinc		5,000		5,000

Under revision; proposed rule due November 1995.

Proposed MCL; proposed rule due December 1994.

Sources: Safe Drinking Water Act [42 USC 300f-300j-10]; State of Montana, 1994.

Treatment technique requirement in effect.

Action level = $1,300 \mu g/l$.

Action level = 15 μ g/l (at tap).

at least 100 feet apart. Groundwater samples in the alluvial aquifer are taken from wells that vary from less than to much greater than 100 feet apart. Therefore, acceptance criteria have been met for both aquifers.

2.2 PATHWAY DETERMINATION

The pathway determination addresses the route and manner of transport of the hazardous substances from the location of their release to the location of the injured groundwater resource. The pathway determination includes consideration of: (1) the chemical and physical characteristics of the released hazardous substances when transported by natural processes or while present in natural media; (2) the rate or mechanism of transport by natural processes of the released hazardous substance; and (3) combinations of pathways that may transport released hazardous substances to the groundwater resource [43 CFR § 11.63(a)].

2.2.1 Physical and Hydrodynamic Characteristics of the Aquifers and Unsaturated Zone

2.2.1.1 Local Geographical Extent of Aquifer and Confining Units

Two water-bearing rock or sediment units (aquifers) are located in the study area: the alluvial aquifer and the bedrock aquifer. The alluvial aquifer comprises unconsolidated Tertiary and Quaternary valley fill deposits that overlie weathered bedrock in the Silver Bow Creek/Metro Storm Drain/MR Concentrator area and the area to the southeast and east of the Berkeley Pit in the vicinity of the leach pads (see Figures 1-7 and 1-8). As discussed in Section 1.1.2, the bedrock aquifer is predominantly in the weathered and fractured upper 200 to 300 feet of the Butte quartz monzonite. In places, a layer of clay-rich oxidized material (Meinzer, 1914) or volcanic ash (Canonie, 1992a; Botz and Knudson, 1970) above the bedrock may inhibit transport of groundwater between the alluvial and bedrock aquifers.

Groundwater in the bedrock aquifer occurs predominantly in fractures, joints, faults and in the underground mine workings. Productivity of the aquifer in the absence of mine workings is limited by fracture-controlled permeability (Canonie, 1992a).

2.2.1.2 Depth to Saturated Zone Beneath the Site

Bedrock Aquifer. Before dewatering, depth to groundwater ranged from 20 to 100 feet in the vicinity of the Berkeley Pit, and the groundwater flow direction was from north to south (Hydrometrics, 1982). Currently, a large cone of depression exists around the Berkeley Pit, and depth to groundwater in bedrock is up to 770 to 945 feet below the ground surface (in the Kelley and Granite Mountain shafts, respectively, as measured in November 1994). Water

levels in bedrock monitoring wells B, E, and F are 165 to 350 feet higher than in other bedrock wells, as measured in November 1994. These wells are not in an area of extensive mine workings, which have much higher hydraulic conductivities than bedrock fractures. Water levels in the West Camp area are about 290 feet higher than in the East Camp system, as measured in Travona (West Camp) and Anselmo (East Camp) shafts in November 1994, suggesting that there is only a partial hydraulic connection between the Camps. However, some interconnection is inferred because of the concurrent rise in East and West Camp water levels (CDM/FPC, 1990; MDHES, 1992). The West Camp (Travona) is pumped intermittently, and water levels consequently fluctuate occasionally.

The volume of water in the Berkeley Pit increases by approximately 5 million gallons per day (mgd). The volume increase is contributed by surface water flow (1.69 mgd average, most coming from the Horseshoe Bend area); alluvium inflow (0.58 mgd); bedrock aquifer inflow (2.49 mgd); and direct precipitation, adjacent runoff, and evaporation (0.30 mgd) (U.S. EPA, 1994). The rate of rise of the water level elevation in the Berkeley Pit is shown in Figure 2-3. The average rate of rise is about 2.5 ft/month, and this rate has not slowed appreciably since December 1991.

Alluvial aquifer. Depth to groundwater in the unconsolidated valley fill ranges from 2 to over 60 feet, with greater depths to groundwater occurring upgradient near the Berkeley Pit/upper MSD area (CH₂M Hill and Chen-Northern, 1990; Canonie, 1992a). Water levels in the alluvial aquifer fluctuate approximately five to seven feet annually in the vicinity of Lower Area I (LAO — the area from Montana Street to the west end of the Colorado Tailings).

2.2.1.3 Recharge/Discharge Areas and Sources

Groundwater is recharged from precipitation, snowmelt runoff, streams and artificial recharge. Sources of groundwater recharge to the Area I OU include the areas to the east and south of the Berkeley Pit, the Blacktail Creek alluvium, Butte Hill and the foothills south of the Colorado Tailings. The lower portion of LAO receives groundwater from the south (Montana Pole site) and the north (Missoula Gulch area) (CH₂M Hill and Chen-Northern, 1990). Artificial recharge from the leach pad area and the Yankee Doodle Tailings impoundment occurs northeast of the Berkeley Pit. Groundwater mounding has been decreasing in the MR Concentrator area since the on-site process ponds were drained, indicating that leakage during active operations was artificially recharging groundwater in the area (CH₂M Hill and Chen-Northern, 1990).

Artificial recharge to the alluvial and possibly the bedrock aquifer occurs from the over 100-year old Butte municipal water supply, which has been estimated to leak 2.4 million gallons per day (mgd) (Montgomery, 1988). Groundwater discharges to springs and sections of Silver Bow Creek below Montana Street where the bedrock-alluvial interface is closer to the ground surface. The lower reach of the Metro Storm Drain from about Harrison Avenue to

Cross-Section of Berkeley Pit with Water Level Elevations Measured in December of Each Year from 1982-1993, as Measured in the Kelley Mine. Source: MBMG, 1994. Figure 2-3.

Blacktail Creek is also a groundwater discharge area. The lower reaches of Blacktail Creek, and Silver Bow Creek near the Colorado Tailings are gaining streams where groundwater discharges to surface water (MultiTech, 1987).

Local Recharge Rates. The mean annual precipitation for the Butte area is 12.69 inches based on a 96-year period of record (USDA-SCS data for Butte Airport). MSE, Inc. (MSE, 1992) calculated the infiltration rate for 187 acres of mining-disturbed area on the Butte hill. It was reported that 62 percent of the total precipitation or 76 gallons per minute (0.1 mgd) infiltrates to groundwater. Dewatering of the underground workings required a continuous discharge ranging from 5.7 to 7.2 mgd until 1982. The pumping rate fluctuated seasonally, indicating that the bedrock aquifer is recharged by infiltration (CDM/FPC, 1990).

2.2.1.4 Direction of Groundwater Flow in Aquifers

Bedrock aquifer. Not much information is available on groundwater flow patterns in or aquifer characteristics of the bedrock aquifer underlying the alluvial aquifer along Silver Bow Creek. Both aquifers are intersected by the Berkeley Pit. The water level contour map and groundwater flow directions for the bedrock aquifer around the Berkeley Pit are shown in Figure 2-4. A large cone of depression exists around the Berkeley Pit, and groundwater flow direction in the bedrock aquifer is toward the pit in all areas around the pit. Groundwater flow direction in the West Camp (Emma and Travona mines), which was separated from the East Camp by bulkheads in the late 1950s/early 1960s, is not currently toward Silver Bow Creek, but water in the Travona shaft is only 36 feet below the Silver Bow Creek alluvium.

Alluvial aquifer. Groundwater flow patterns in the alluvial aquifer around the Berkeley Pit are influenced by the cone of depression surrounding the Pit. A groundwater divide exists between the Continental pit and the MSD near the MR Concentrator, and groundwater north of the divide generally flows into the Pit, while groundwater south of the divide flows parallel or toward the MSD and Silver Bow Creek (Figures 2-5, 2-6A, and 2-6B. Also see Figure 3-49 in CH₂M Hill and Chen-Northern, 1990 for 1990 depths to groundwater table). A cross-sectional view showing water levels in the bedrock and alluvial aquifers on the east side of the pit near the leach pads area is displayed in Figure 2-7. The location of cross-section A-A' can be found in Figure 2-4. In Area I, groundwater from the Blacktail Creek alluvial system enters the upper Silver Bow Creek system (both groundwater and surface water) at the intersection of the MSD and Silver Bow Creek. The average horizontal hydraulic gradient of the Butte Hill alluvial aquifer, as calculated from a water level contour map, was 0.044; the groundwater velocity was estimated as 1 to 20 ft/d (364 to 7,280 ft/yr) (Botz and Knudson, 1970).

A downward groundwater gradient exists in the area near the City-County shop complex (wells GS-41, GS-42, GS-10, GS-43), while an upward gradient exists southwest of Harrison Avenue (wells GS-35, GS-9, GS-11, GS-31) (CH₂M Hill and Chen-Northern, 1990,

Figure 2-4. Water Level Contour Map and Theoretical Flow Paths for the Bedrock Aquifer in the Butte Hill Area. Source: ARCO, 1994.

Figure 2-5. Water Level Contour Map for the Alluvial Aquifer in the Butte Hill Area. Source: ARCO, 1994.

Figure 2-6A. Water Level Contour Map for the Alluvial Aquifer in Area I - Metro Storm Drain Area.

Figure 2-6B. Water Level Contour Map for the Alluvial Aquifer in Area I - Lower Area I.

Source: MultiTech, 1987.

Figure 2-7. Cross-Section of Water Levels in Alluvial and Bedrock Aquifer in Butte Mine Flooding OU. Source: Canonie, 1992a.

Fig. 3-51). The downward gradient may be caused by: a high permeability zone at depth; a dewatered bedrock system below the saturated alluvial groundwater system, leakage from the unlined process ponds at the previous Weed Concentrator, or the downward gradient could simply be the normal pattern in a recharge area. AMC stopped operations at the Weed Concentrator in early 1983; water levels in wells near the Weed Concentrator declined between 5 to 9 feet from early 1983 to 1986.

Montana Resources, Inc. began operating the Concentrator in 1986; water levels in the same wells began to rise in 1986 to mid-1987 and have been stable since that time. These changes in water levels in wells proximal to the Weed Concentrator indicate that leaking of process ponds (the Barrel Ponds) to the alluvial aquifer most likely explains changes in groundwater vertical gradients in this area (CH₂M Hill and Chen-Northern, 1990). The upward gradient in the middle section of the MSD indicates a decrease in permeability in deeper sediments to the southwest or a decrease in the thickness of saturated sediments. There are fine-grained sediments at 80 to 100 feet below the ground surface in this area (CH₂M Hill and Chen-Northern, 1990).

2.2.1.5 Lithology, Mineralogy and Porosity of Rocks or Sediments Comprising the Aquifers

Bedrock Aquifer. Groundwater occurs in the quartz monzonite bedrock throughout the Butte area. Groundwater flow through the bedrock aquifer in the Butte Mining District area occurs in four possible pathways: (1) joints; (2) discrete fractures; (3) the fractured matrix; and (4) underground mine openings. There are two subunits in the bedrock, a weathered zone and a competent zone. The weathered zone consists of clays interspersed with pebble- and cobble-sized rock fragments and is 100 to 200 feet thick. The competent zone underlies the weathered bedrock and consists of unweathered, highly fractured bedrock. The fracture zone in the competent bedrock extends at least as deep as 350 feet below the weathered/competent bedrock contact and provides the primary groundwater flow pathways in the bedrock aquifer (Canonie, 1992a). The underground workings increase the amount of aquifer storage by about 13% (U.S. EPA, 1994).

Fracture porosity is commonly reported to range from < 1 to 10 percent. Metesh (1990) estimated the porosity in the vicinity of the Marget Ann Mine (Outer Camp) as 5 percent. The porosity in the bedrock aquifer has not been measured but is assumed to be 1 percent fracture porosity plus an additional 0.23 percent to account for the mined volume (see Section 3.2.2).

There are three concentric zones of ore/vein deposition in the Butte area (Meyer et al., 1968; Sales, 1913) (Figure 2-8):

Figure 2-8. Plan Map at Elevation 4,600 Feet Illustrating the General Distribution of Ore Zones in the Butte Area. Source: Sales, 1913.

- ► Central Zone (copper)
- ► Intermediate Zone (silver, zinc, lead and manganese)
- Peripheral Zone (silver, gold, zinc).

The most common minerals in the central zone are chalcocite (Cu_2S) and enargite (Cu_3AsS_4), with pyrite and quartz gangue and lesser amounts of bornite (Cu_5FeS_4) and covellite (CuS). The most common minerals in the intermediate zone are chalcocite, enargite, sphalerite (ZnS), rhodochrosite ($MnCO_3$) and galena (PbS), with lesser amounts of chalcopyrite ($CuFeS_2$), tetrahedrite ((Cu,Fe,Zn,Ag)₁₂ Sb_4S_{13}) and tennantite ((Cu,Fe,Zn,Ag)₁₂ As_4S_{13}). Molybdenite (MoS_2) is also present. The peripheral zone contains vein fillings of rhodochrosite and rhodonite ($Mn(SiO_3)$), sphalerite, galena, quartz, and lesser amounts of chalcopyrite and pyrite. The Butte Mining District has also produced lesser quantities of cadmium, bismuth, arsenic, selenium, and tellurium in addition to major production of gold, silver and copper (CH_2M Hill and Chen-Northern, 1990). [Cu = copper; As = arsenic; S = sulfur; Fe = iron; S = zinc; S = manganese; S = carbonate; S = lead; S = silver; S = antimony; S = molybdenum].

Alluvial Aquifer. The Butte Quartz Monzonite serves as the principal parent material for alluvium and colluvium in the Butte valley. Grain size in the alluvium ranges from clay to gravel and is often poorly sorted. Areally continuous layers of a given lithology are most often restricted to a few hundred feet. Competent clay layers are often encountered in areas associated with the floodplain of Silver Bow Creek and Blacktail Creek. Several wetland areas that have been filled with mine waste are also evident on the floodplain. The sandy clay layers are likely to act as local aquitards or aquicludes. However, numerous excavations for pipelines, plant activities, and the groundwater / product collection system have disturbed the upper portion of the aquifer. Thus, the confining nature of these units is probably restricted to local extent (tens of feet).

Column tests were conducted on alluvial material from the Montana Pole site in LAO (Moore, 1989). The composition of the alluvial material, based on four test sites, was 7 to 11% gravel, 9 to 20% silt and clay, and 71 to 81% sand. The porosity ranged from 28 to 37%, with an average of 32% porosity.

The composition of the alluvial aquifer includes gravel, sand, silt, and clay and is generally not laterally continuous or correlatable. Tailings, waste rock, smelter wastes (slag) and other waste materials overlie the alluvial deposits and are covered locally by man-emplaced fill (CH₂M Hill and Chen-Northern, 1990). Streamside tailings in the upper MSD and Silver Bow Creek area are sandy and have high percentages of pyrite associated with them (MultiTech, 1987). These materials were deposited in a high energy environment where larger-grained (sand-size) and higher-density (density of pyrite = 5.02) particles would tend to settle out.

2.2.1.6 Transmissivity, Hydraulic Conductivity and Hydraulic Connection Between Groundwater and Local Surface Water Resources

Bedrock Aquifer. Hydraulic conductivity values for the bedrock aquifer on the Butte Hill range from 6×10^{-5} cm/s to 3.4×10^{-4} cm/s (~62 to 352 ft/yr or 0.17 to 0.96 ft/day) (Metesh, 1990). Canonie (1992a) reported an average value of 5.3×10^{-5} cm/s (54.9 ft/yr or 0.15 ft/day) for wells east of the Berkeley Pit in an area that is not transected by mine workings. Rising-head tests were conducted in seven bedrock wells (A, B, C, D-1, D-2, E, F), and hydraulic conductivities ranged from 7.10×10^{-6} to 3.46×10^{-4} cm/s (0.02 to 0.98 ft/day), with an average of 1.34×10^{-4} cm/s (0.38 ft/day). Three constant discharge aquifer tests were conducted in bedrock wells A, D-2, and E to estimate the transmissivity of the bedrock aquifer. Measured transmissivities ranged from 1.3 to 13.2 ft²/day. (ARCO, 1994).

Alluvial/Bedrock connection. The extent of vertical hydraulic connection between the bedrock aquifer and the alluvial aquifer beneath the site is uncertain. In other areas of the Butte valley, vertical connection between the two aquifers is controlled by the presence of a claygrus which may act as a low-hydraulic-conductivity, confining layer. The grus is a result of in situ, physical weathering of the quartz monzonite resulting in an accumulation of coarse grained fragments. Chemical weathering of the fragments in the presence of groundwater, which tends to form clays, is accelerated by the increased surface area. Fractures and joints are in-filled or collapsed and a clayey, granular zone is formed on top of the bedrock. Post-chemical-weathering transport occurs in some areas and is the source of the clays and silts encountered in the alluvium. In other areas, however, no transport occurs and a hydraulically confining layer is formed.

Based on observations made during drilling at the Montana Pole Treatment Plant site, the MPC transformer storage yard, and LAO, the clay-grus appears continuous and is often greater than 10 feet thick. Exceptions are noted, however, in areas where bedrock water elevation is at or near alluvial groundwater elevation and where bedrock water-levels, although lower than alluvial groundwater levels, are higher than those in the flooded mines. The higher water levels may, in part, be due to vertical recharge from the alluvial aquifer to the bedrock aquifer where the clay-grus is nonexistent or has been eroded.

Alluvial Aquifer. Hydraulic conductivity covaries with lithology throughout the Butte Valley. In the area south of the Montana Resources leach pad area, hydraulic conductivity (K) averaged 2.1×10^{-4} cm/s (217 ft/yr or 0.60 ft/day) with an average transmissivity (T) of 8.55×10^{-1} cm²/s or 79.5 ft²/day, assuming an average thickness of 130 feet (Canonie, 1992a). The highest hydraulic conductivities in the alluvial aquifer are in the intermittent and discontinuous sand and gravel lenses that can be up to 20 feet or greater in thickness (Canonie, 1992a).

Aquifer tests were conducted in four wells within the Area I Operable Unit during the Phase II Remedial Investigation. Hydraulic conductivity (K) ranged from 8.8 × 10⁻⁴ cm/s to 5.9 × 10⁻² cm/s (911 to 61,060 ft/yr or 8.2 to 17.7 ft/day); aquifer thickness ranged from 19.5 to 35 feet (CH₂M Hill and Chen-Northern, 1990).

Additional aquifer tests have been conducted in the Lower Area I Operable Unit by several entities. ARCO (1991) reported a range of 7.87×10^{-3} cm/s to 1.02×10^{-1} cm/s (8145 to 105,560 ft/yr or 22.3 to 289 ft/day) for hydraulic conductivity (K). Based on an average thickness of 35 feet, transmissivity ranged from 8.39 to 109 cm²/s (780 to 10,133 ft²/day). In the same area, values for hydraulic conductivity in wells at the Montana Pole Treatment Plant site ranged from 3.8×10^{-5} cm/s to 4.2×10^{-2} cm/s (39.3 to 43,466 ft/yr or 0.11 to 119 ft/day) (Keystone, 1992).

Direct measurement of the capillary rise of water in the unsaturated zone has never been conducted on the alluvial material. Moore (1989), however, conducted a capillary column experiment using material from the Montana Pole Treatment Plant site. The capillary rise determined was approximately 1.4 feet. This rise corresponds to that which would be expected for a silty sand and agrees with the lithology of the area.

2.2.2 Primary Pathways for Groundwater Contamination

The predominant pathways for groundwater contamination are: (1) infiltration of precipitation and snow melt through sources of contamination in the unsaturated zone, which leaches hazardous substances to downgradient groundwater; (2) rising of capillary groundwater to sources of contamination in the unsaturated zone, which leaches and transports hazardous substances to downgradient groundwater during an infiltration event; (3) inundation and leaching of source materials in the saturated zone to groundwater via groundwater flow through sources or changes in groundwater level; and (4) transport of contaminated water (i.e., from leaking process solutions or contaminated alluvial groundwater) through the unsaturated or saturated zone to downgradient groundwater, pit water and surface water. The first three pathways involve leaching of source materials, which has been examined in some detail in the study area and nearby areas. The fourth pathway has also been documented around the MR Concentrator and the leach pads area, in the bedrock aquifer below the alluvial aquifer, and in gaining sections of the Metro Storm Drain and Silver Bow Creek.

2.2.2.1 Leaching of Primary and Secondary Source Materials

One of the best methods for assessing the potential for hazardous substances in the unsaturated zone to leach to groundwater is to analyze porewater in the unsaturated zone around the source material. MultiTech (1987) collected and analyzed porewaters from lysimeter clusters in tailings at Ramsay Flats; results are presented in Table 2-3. The first

A	Average Cor				nts (mg/l		erage pH	in	
Lysimeter Location	Depth, Ft.	pН	SO ₄	Cu	Zn	Fe	Cd	Pb	As
West	2.0	4.99	6,225	215	1,013	.682	5	.525	.024
	4.8	6.40		.168	2.29	7.66	.015	.005	.018
	6.8	6.26	964	.223	11.6	11.1	.023	.224	.038
East	7.5	6.89	1,720	.090	1.29	1.3	.006	.003	.025
	9.5	7.17	1,725	.109	.857	.041	.002	.144	.164

three lysimeters were in the western cluster, and the last two (7.5 and 9.5 ft) were in the east cluster. Samples were taken at different depths to estimate the tendency for metal flux to groundwater or metal immobilization in the unsaturated zone. The 2-ft deep lysimeter was in tailings material, and the 4.8- and 6.8-ft deep lysimeters were in organic-rich silt and coarse, sandy alluvium, respectively. The two deeper lysimeters in the east cluster were in natural alluvium.

Porewater in the immediate vicinity of the tailings material (West lysimeter, 2.0-foot depth) had extremely elevated concentrations of sulfate, copper, zinc, cadmium and lead, all of which are similar to concentrations found in Area I groundwaters immediately surrounding the three major sources of hazardous substances: the buried Parrott tailings; the Butte Reduction Works area, and the Colorado Tailings. Iron concentrations in porewaters increased with depth, but did not reach the higher end of concentrations in Area I OU. Arsenic concentrations in porewaters were also lower than concentrations in groundwater in Area I OU. The reduced form of both of these elements is more mobile than the oxidized form, and this may affect their mobility and leachability.

Another method for determining the potential of hazardous substances to leach from solids is to perform leach tests on the source materials. Tables 2-4 and 2-5 present the results of water leaches on surface and subsurface materials, respectively, in Area I OU (CH₂M Hill and Chen-Northern, 1990). A water leach is conducted to evaluate the potential of either runoff or infiltrated precipitation to leach contaminants from source materials.

Table 2-4

SUMMARY OF WATER SOLUBLE METALS FOR SURFACE (0 TO 1 INCH) MATERIALS;

AREA I OPERABLE UNIT PHASE II REMEDIAL INVESTIGATION

LOCATION	LOCATION/LITHOLOGY INFORMATION					CONCENTRATION (4g/L)					
GEOGRAPHIC AREA	SAMPLE NO.	MATERIAL UNIT	SAMPLED INTERVAL (1981)	As	Cd	Cr	Cu	Pb	Zn		
Upper Metro Storm Drain	134-01	4	0-0.1	46	100	53	41,000	< 0.4	21,000		
Upper Metro Storm Drain	140-01	5	0-0.2	3,900	89	69	27,000	1.8	25,000		
Upper Metro Storm Drain	147-01	6C/D	0-0.1	15	370	<8	730	<0.4	86,000		
Lower Metro Storm Drain	121-01	4	0-0.1	7.1	220	66	3,300	<0.4	92,000		
Lower Metro Storm Drain	125-01	4	0-0.2	25	280	19	750	<0.4	110,000		
Lower Metro Storm Drain	126-01	4	0-0.2	110	<0.1	8.0	40	<0.4	40		
Lower Metro Storm Drain	128-01	4	0-0.2	3.8	22	<8	1,300	1.3	27,000		
Lower Metro Storm Drain	131-01	4	0-0.1	9.2	100	<8	57	<0.4	26,000		
Lower Metro Storm Drain	145-01	4	0-0.1	130	0.11	<8	91	0.8	21		
Lower Metro Storm Drain	173-01	4	0-0.1	3.8	10	<8	98	<0.4	1,400		
Lower Metro Storm Drain	174-01	7	0-0.1	160	<0.1	<8	23	2.2	21		
Lower Metro Storm Drain	132-01	7	0-0.1	45	0.15	10	57	1.3	22		
Manganese Stockpile	505-01	1	0-0.1	3.7	470	100	370,000	< 0.4	150,000		
Manganese Stockpile	184-01	2	0-0.1	8,900	1,800	71	900,000	<0.4	660,000		
Manganese Stockpile	117-01	3	0-0.1	9.3	<0.1	<8	<6	<0.4	86		
Manganese Stockpile	151-01	5	0-0.2	12	26	14	8,100	1.3	21,000		
Manganese Stockpile	186-01	5	0-0.3	20	2,000	9.0	42,000	6.7	670,000		
Colorado Tailings	113-01	1	0-0.2	34	< 0.1	<8	7.0	< 0.4	20		
Colorado Tailings	111-01	6A/C	0-0.1	9.8	360	<8	150	<0.4	39,000		
Area West of Colorado Tailings	100-01	4	0-0.1	12	350	<8	23,000	< 0.4	70,000		

KEY

Meterial Unit No.	Material Type	Material Unit No.	Material Type
1	Exposed Tailings	6C	Sieg and Sieg Sand and Gravel
2	Covered Tailings	6D	Demolition/Land-fill Debris
3	Manganese Flue Dust	6E	Waste Rock
4	Alluvium/Tailings	7	Exposed Native Soil
5	Railroad Bed Fill	8	Covered Netive Soil/Sediment
6	Transported Fill	8A	Organic Silt and Clay, including peat
6A	Sand, Gravel, Colluvium	88	Sand, Grevel, and Silt (upper two feet)
68	Manganese Ore Piles	8C	Sand, Grevel, and Silt (below unit 8B)

Source: CH2M Hill and Chen-Northern, 1990

Table 2-5

SUMMARY OF WATER SOLUBLE METALS FOR SUBSURFACE MATERIALS
AREA I OPERABLE UNIT PHASE II REMEDIAL INVESTIGATION

	LITHOLOGIC			CONCENTRATION (4.9/L)						
AREA	SAMPLE NO.	UNIT	DEPTH (feet)	As	Cd	œ	Cu	Pb	Zn	
Upper Metro Storm Drain	134-03	4	1.3-2.5	280	290	81	820,000	<0.4	33,000	
Upper Metro Storm Drain	606-09	6C	2.0-5.5	<3	73	<8	270	4.8	20.000	
Upper Metro Storm Drain	811-18	2	22-25.3	140	1.8	<8	1,700	8	640	
Upper Metro Storm Drain	814-10	8C	12-20	<3	6.3	<8	890	0.4	610	
Upper Metro Storm Drain	GW-GS-50	aC	162-164	<3	0.49	<8	<6	<0.4	83	
Upper Metro Storm Drain	GW-GS-50	8C	186-167	<3	0.83	<8	11	<0.4	70	
Upper Metro Storm Drain	GW-GS-50	8 C	168-176	<3	<0.1	<8	47	<0.4	120	
Upper Metro Storm Drain	GW-GS-50	8C	242-244	29	<0.1	<8	<6	<0.4	28	
Upper Metro Storm Drain	GW-GS-80	aC	244-248	44	<0.1	<8	<6	0.89	68	
Upper Metro Storm Drain	GW-GS-50	ac	245	51	<0.1	<8	<6	<0.4	87	
Upper Metro Storm Drain	GW-GS-50	aC	270	'9.8	0.52	<8	<6	<0.4	18	
Lower Metro Storm Drain	123-01	4	0-1.2	4.9	66	<8	660	<0.4	11,000	
Lower Metro Storm Drain	173-04	4	1.7-2.4	5.3	0.72	<8	140	2.2	310	
Lower Metro Storm Drain	175-02	7	0.2-1.5	12	0.86	<8	54	42	300	
Lower Metro Storm Drain	182-05	84	7.0-7.8	120	12	<8	32	<0.4	6,200	
Manganese Stockpile	152-03	2	2.8-3.7	16	240	<8	520,000	2.0	100,000	
Manganese Stockpile	507-11	2	2.0-3.5	24	40	18	300	10	14,000	
Manganese Stockpile	506-11	4	6.0-9.5	18	180	14	6.0	800	23,000	
Manganese Stockpile	509-09	4	0.8-2.8	23	4,100	25	330,000	15	740,000	
Colorado Tailings	112-05	2	24-28	86	120	<8	170,000	5.4	39,000	
Colorado Tailings	516-10	2	1.0-3.0	23	31	9	180,000	9.8	7,000	
Colorado Tallings	518-04	84	1.5-2.5	9.5	330	<8	100	0.9	22,000	

KEY

Material Unit No.	Material Type	Material Unit No.	Material Type
1	Exposed Tailings	6C	Siag and Siag Sand and Gravel
2	Covered Tailings	6D	Demolition/Land-fill Debris
3	Manganese Flue Dust	6E	Waste Rock
4	Alluvium/Tallings	7	Exposed Native Soil
5	Railroad Bed Fill	8	Covered Native Soil/Sediment
6	Transported Fill	8.4	Organic Silt and Clay, Including peat
6A	Sand, Gravel, Colluvium	8B	Sand, Gravel, and Silt (upper two feet)
6B	Manganese Ore Piles	8C	Sand, Gravel, and Silt (below unit 6B)

Source: CH2M Hill and Chen-Northern, 1990

Significant concentrations (above the MCL of 50 μg/l) of arsenic were leached from railroad bed fill; alluvium/tailings; covered tailings; exposed contaminated soils; buried contaminated silt, sand and gravel, and organic-rich silt and clay. Significant concentrations of cadmium (> 5 μg/l) were leached from alluvium tailings; railroad bed fill; slag and slag sand and gravel; demolition/land-fill debris; exposed and covered tailings; contaminated sand, gravel, colluvium, and organic silt, clay and peat. For chromium, only exposed tailings leached concentrations equal to or greater than the MCL value of 100 μg/l. Exposed and covered tailings; mixed alluvium and tailings, and railroad bed fill materials leached copper concentrations above 1,000 μg/l. Lead in excess of the 50 μg/l MCL was leached only from one manganese stockpile sample. Exposed and covered tailings; mixed alluvium and tailings, railroad bed fill; contaminated sand gravel, colluvium; slag and slag sand and gravel; demolition/land-fill debris, and organic silt, clay and peat leached zinc concentrations above the SMCL value of 5,000 μg/l (CH₂M Hill and Chen-Northern, 1990 Chapter 4, Volume I).

A water leach is a relatively mild leach and does not simulate leaching of source materials with more aggressive solutions such as acids from the formation of acid mine drainage. In the Phase I RI for Silver Bow Creek area (MultiTech, 1987), a number of extractions were performed on the solid samples, including: saturation extract (paste method); 1.0N ammonium acetate extract; and Olsen (sodium bicarbonate) or Bray (ammonium fluoride+hydrochloric acid) extraction for arsenic and phosphorous (see MultiTech, 1987, Table 2-2, Appendix B, Part 1). Results for these extractions were presented by MultiTech (1987, Appendix B, Part 4). Maximum concentrations of soluble metals were generally found either at the surface or at the base of tailings or occasionally in soil directly below tailings. Extractable metal levels were often highest in soils just below the tailings.

Surface salts (efflorescent salts on tailings piles) in the Ramsay Flats area, which are also present along Silver Bow Creek in Area I OU, had extremely elevated concentrations of soluble and total metals, low pH values (2.8 to 3.9) and high specific conductance values. Soluble metal concentrations (mg/kg) ranged from 1,030 to 2,320 (Cu); 383 to 980 (Zn); 0.36 to 7.03 (Fe); 11.8 to 449 (Mn); 0.977 to 4.23 (Cd), and 0 to 0.13 (Pb). Total metal concentrations (mg/kg) ranged from 65,500 to 98,500 (Cu); 22,200 to 31,200 (Zn); 4,140 to 9,700 (Fe); 7,500 to 1,9700 (Mn); 48.3 to 120 (Cd), and 25.8 to 149 (Pb) (MultiTech, 1987, Appendix B, Part 4, Att. VI-C, samples 26, 27, 29). Metals in efflorescent salts are extremely soluble and are significant metal contamination threats to shallow groundwater in a number of locations along Silver Bow Creek in Lower Area I.

EP Toxicity leaches were performed on materials in Area I OU (CH₂M Hill and Chen-Northern, 1990). This test is performed on waste materials to determine whether it is hazardous (as a waste characteristic) under the Resource Conservation and Recovery Act. The test is designed to predict whether the material can leach significant (100 times the MCL value) concentrations to groundwater or surface waters when it contacts a solution similar to that found in municipal waste landfills (acetic acid mixture). The test is not particularly relevant to mining waste for a number of reasons, including:

- Organic acids are not often associated with mining wastes (sulfuric acid, for example, may be more appropriate)
- The length of time that the acid solution is allowed to contact the material for leaching is generally only a small fraction of the time that earth materials would take to leach steady-state concentrations of contaminants to the solution
- The dilution factor of 0.01 MCL may not be appropriate for evaluating concentrations in groundwater (dilution of this magnitude is common in surface waters).

The results for the EP Toxicity test, nonetheless, do give some kind of lower-end estimate of the concentrations of hazardous substances that could leach from mining wastes in a short time. A number of source materials in the study area have the potential to leach cadmium, lead and arsenic to groundwater at concentrations above their MCL values (Table 2-6).

Hazardous substances can be leached from source materials either in the unsaturated or saturated zone. Infiltration of precipitation or snow melt or rising capillary water from the water table can leach materials in the unsaturated zone. Groundwater flowing through contaminant sources in the saturated zone can likewise leach hazardous substances. Changes in water table level, either seasonally, as a result of artificial recharge or in response to ceasing dewatering operations, can inundate primary or secondary source materials and leach hazardous substances to groundwater. Both primary and secondary sources identified in the study area have been shown to leach significant concentrations of hazardous substances to groundwater.

Formation of acid mine drainage in the underground workings involves a similar leaching of primary source materials that generates significant concentrations of dissolved sulfate, iron, manganese, aluminum and hazardous substances in minewater in the Butte Hill/Berkeley Pit area. The mechanisms for formation of acid mine drainage are discussed in Section 2.1.2.2. The leaching of mineralized material, including efflorescent salts, remaining in underground workings is the primary pathway for contamination of the bedrock aquifer in the Butte Hill/Berkeley Pit area.

2.2.2.2 Transport of Contaminated Water to Groundwater, Pit Water or Surface Water

For this pathway, water contaminated with hazardous substances includes: (1) process solutions from the historic Weed Concentrator and the current MR Concentrator; (2) solutions associated with operation of the leach pads; (3) mine and process water pumped from underground workings and precipitation plant to SBC/MSD; (4) sulfuric acid added to leach copper from underground mines; and (5) contaminated alluvial and bedrock groundwater.

Table 2-6

SUMMARY OF EP TOXICITY LABORATORY DATA FOR SURFACE AND SUBSURFACE MATERIALS; AREA I OPERABLE UNIT PHASE II REMEDIAL INVESTIGATION

CONCENTRATION (#g/L)

						CONC	FNIKA	TION (#8	/L)		
Area	Sample No.	Material Unit	Depth (feet)	_&	Ва	_ca	Cr	_Pb	Hg .	Se .	Ag
Upper Metro Storm Drain Area	611-18	2	22.0-25.3	11	117	<2	<6	<25	<0.15	<1	<7
Upper Metro Storm Drain Area	606-09	6C	2.0-5.5	5	154	44	<6	<25	<0.15	<1	<7
Upper Metro Storm Drain Area	614-10	8C	12.0-20.0	0.6	207	3	<6	<25	<0.15	<1	<7
Lower Metro Storm Drain Area	123-01	4	0.0-1.2	9.6	80.5	110	دد >	33.2	<0.15	<1.1	<7
Lower Metro Storm Drain Area	179-01	வ	0.0-5.6	161	207	10.8	<\$5	71.3	<0.15	<11	<7
Manganese Stockpile Area	505-01	1	0.0-0.1	3	96	300	6	<25	0.4	<1	<7
Manganese Stockpile Area	152-01	2	0.0-1.3	25.0	104	85.7	<55	84.6	<0.15	<1.1	<7
Manganese Stockpile Area	507-11	2	2.0-3.5	10	115	23	<6	42	0.4	<1	<7
Manganese Stockpile Area	506-11	4	6.0-9.5	27	31	339	<6	17900°	0.4	<1	<7
Manganese Stockpile Area	509-09	4	0.8-2.8	9	72	1620°	<6	51	<0.15	<1	<7
Manganese Stockpile Area	186-01	5	0.0-0.3	6.6	75.2	917	دد>	447	<0.15	<1.1	<7
Colorado Tailings Area	515-10	4/8A	12.0-15.5	10	199	277	8	2660	<0.15	<1	<7
Colorado Tailings Area	518-04	84	15-25	2	111	1030°	6	<25	0.25	<1	<7
Area West of Colorado Tailings	100-03	4	0.8-1.7	293	112	43.8	<5.5	1310	<0.15	<11	<7
Area West of Colorado Tailings	104-02	4	0.1-1.2	31.4	212	131	<5.5	3310	0.86	<1.1	<7

* Exceeds EP Toxicity Maximum Concentrations

KEY

Material Unit No.	Material Type	Material Unit No.	Material Type
1	Exposed Tailings	6C	Sing and Sing Sand and Gravel
2	Covered Tailings	6D °	Demolition/Land-fill Debris
3	Manganese Flue Dust	6E	Waste Rock
4	Alluvium/Tailings	7	Exposed Native Soil
5	Railroad Bed Fill	8	Covered Native Soil/Sediment
6	Transported Fill	8A	Organic Silt and Clay, including peat
6A	Sand, Gravel, Colluvium	8B	Sand, Gravel, and Silt (upper two feet)
6B	Manganese Ore Piles	8C	Sand, Gravel, and Silt (below unit 8B)

Source: CH2M Hill and Chen-Northern, 1990

These waters can be transported: (1) through the unsaturated zone to downgradient groundwater in either the alluvial or bedrock aquifers; (2) to the Berkeley Pit; and (3) to surface waters in the Metro Storm Drain and Silver Bow Creek.

Process Waters

The Weed Concentrator was operational from 1964 to 1983; the MR Concentrator has been operational from 1986 to the present. Groundwater mounding and changes in groundwater level correspond to active and inactive periods at the Weed Concentrator, indicating that unlined process ponds were and are leaking to the alluvial aquifer (CH₂M Hill and Chen-Northern, 1990). Alluvial groundwater in this area flows into the Berkeley Pit (see Figures 2-4 and 2-5A).

A comparison of water quality of groundwaters and process waters that are ultimately influent to the Berkeley Pit is displayed in Table 2-7. Well AMC-5, located downgradient from the Concentrator, shows elevated concentrations of cadmium, copper, iron, zinc, sulfate and conductivity which likely resulted from transport of process waters from leaking ponds at the Weed Concentrator. More recent samples of AMC-5 are presented in Figures 3-22, 3-24, 3-26, 3-28, 3-30, 3-32 and 3-42 (in CH₂M Hill and Chen-Northern, 1990), and similar elevated levels of hazardous substances are present.

The leach pads have been operational from the 1960s to the present. Alluvial groundwater in this area flows toward the Berkeley Pit, and well LP-03 (well #3 in Figure 2-5) is downgradient from the leach pads area. The composition of water from this alluvial well is shown in Table 2-7 and compared to water from the pregnant and leaching solutions from the leach pad operations. The major ion and metal concentrations, pH values and conductivities of these three solutions are all very similar, indicating, along with groundwater flow directions, that the process waters from the leach pad area are being transported through the unsaturated zone and contaminating groundwater in the Butte Hill alluvial aquifer with hazardous substances.

The composition of the Berkeley Pit water is also shown in Table 2-7 (surface and 400-ft depth). Concentrations of metals and other constituents in the Berkeley Pit are lower in surface water than at depth, most likely as a result of dilution with precipitation, runoff and inflow water (leach water) (CDM, 1988; Davis and Ashenberg, 1989). In almost all cases, concentrations in the lower Berkeley Pit are intermediate between pregnant/leaching solution and Kelley Shaft water concentrations, but the pit water concentrations are much closer to those in the process solutions than in the minewater. Concentrations of contaminants in the Kelley minewater are generally the highest of all the shafts (Table 6.3.1, Canonie, 1992a); therefore, the Kelley composition represents a maximum of minewater input concentration values.

		Water Qua	ulity Compariso (mg/l unl	Table 2-7 ter Quality Comparison of Berkeley Pit and Inflow Waters (mg/l unless otherwise noted)	it and Inflow oted)	Waters		
	Berke	Berkeley Pit	Pregnant	Well	Leaching	Kellev	Surplus	Well
	0,	400,	Solution	LP-03	Solution	Shaft	Water	AMC-S
Date	May 1991	May 1991	1991 Avg.	1991 Avg.	1991 Avg.	1991 Avg.	1991 Avg.	Dec 1985
hd H			2.59	3.18	2.78	5.61	3.11	4.2
Field Cond.*	2.73	8 050	15,900	12,100	8,080	3,700	5,990	2,370
Colding	2,26	226	13,200	10,500	14,200	079	3,230	
Aluminum	274	285	1,450	1,160	1,480	1.80	283	
Arsenic	0.21	0.88	0.3	0.05	0.24	06'0	0.05	< 0.003
Cadmium	1.81	1.57	3.97	5.65	3.36	0.002	2.00	0.49
Copper	178	187	144	297	21.6	0.28	105	20.9
Iron	649	1,100	1,830	229	2,190	277	311	253
Manganese	190	182	451	543	450	50.2	150	
Nickel	1.05	1.06	3.32	3.42	3.11	0.44	0.85	
Zinc	505	906	1,160	1,040	1,240	109	353	96.4
Sulfate	7,220	8,080	37,100	31,300	34,600	1,570	11,500	098 1
Sodium	71.2	69.7	29.4	38.1	29.1	42.0	68.1	1,600
Calcium	473	488	438	387	429	486	0.42	701.7
Potassium	15.7	20.9	5.99	4.57		29.0	2.56	167
Magnesium	422	420	1,440	1,380	1,500	158	386	43.8
Chloride			51	43.2	,		i	14.6
Fluoride	37.9	18.0	[2]	797	101		70.2	0.58
Silicon (as SiO ₂)	001	98.5	103	14.4	111		71.8	
Sources:								
1. Canonie, 19	Canonie, 1992a: Tables 3.3.2, 7.5.2	3.2, 7.5.2, 6.3.1	, 6.3.1. Data are for filtered samples.	filtered samples.				
	Canonie, 1992a. 1aoies D.1 and 9., MultiTech. 1987. Appendix B. Part		4. Attachment VI (AMC-5)	(C-5)				
Field Condu	Field Conductivity in µmhos/cm.							
1991 Avg. = Average of May and August	ge of May and	_	ta (avg. pH = -1	991 data (avg. pH = $-\log((H^+ + H^+)/2)$)	; <u>)</u> ;			
		ш					The second secon	

CDM (1988) estimated that 3.1 mgd of bedrock groundwater and 0.55 mgd of alluvial groundwater were flowing into the Berkeley Pit from 1985 to 1987. At that time 3.60 mgd of precipitation plant discharge (surplus water) was also estimated to flow into the pit (see Table 3.2.1, Canonie, 1992a). In 1991/92, Canonie estimated that only 1.50 mgd of surplus water from the precipitation plant was flowing into the pit, and the volume of minewater (bedrock seepage) was not estimated (see Table 3.4.1, Canonie, 1992a). It may be assumed that the volume will have decreased because of decreased hydraulic head into the pit as a result of rising water levels in the pit (however, Canonie estimates that the bedrock aquifer contributes 3.5 mgd to the pit — 1992a, pg. 61). Concentrations of contaminants in Berkeley Pit water based on concentrations in inflow water are difficult to predict at this time because of uncertainties in the volume of inflow waters. In addition, dissolution, precipitation and other geochemical reactions in the pit and involving the pit walls may affect final pit water chemistry, and these reactions have not been specifically described.

It is apparent, however, from the comparison of Berkeley Pit water chemistry with that of inflow waters, that minewater composition does not adequately explain the observed chemistry of the pit water. Inflow of contaminated surface water and process water has had an effect on the composition of the pit water. Reactions involving the pit walls may also add hazardous substances to the Berkeley Pit water.

Alluvial groundwater containing hazardous substances along Silver Bow Creek in Lower Area I may contaminate the underlying bedrock aquifer. The top of the bedrock aquifer west of Montana Street is much closer to the ground surface than the bedrock east of this area. High concentrations of certain metals are in groundwater in the bedrock aquifer at the west end of the Colorado Tailings. This may indicate that contaminated groundwater from the alluvial aquifer is being transported to the underlying bedrock aquifer (CH₂M Hill and Chen-Northern, 1990). Wells BMW-2B and BMW-4B are completed in bedrock directly below the Colorado Tailings (see Plate I) and show extremely elevated concentrations of copper, zinc, sulfate and other hazardous substances. Concentrations in BMW-2A and BMW-4A in the alluvial aquifer above also show very elevated concentrations of hazardous substances, and in this area contamination from tailings has likely reached the bedrock aquifer.

Directly downgradient of the Colorado Tailings, the alluvial aquifer groundwater discharges to and further contaminates Silver Bow Creek with hazardous substances. Groundwater quality below the Colorado Tailings degrades significantly from south to north and from east to west (Duaime et al., 1984 as cited in MultiTech, 1987). Groundwater discharges to sections of Silver Bow Creek below Montana Street and to the lower reaches of the Metro Storm Drain from about Harrison Avenue to Blacktail Creek.

Sulfuric acid was added to minewater for underground leaching of copper (Spindler, 1977; Spindler, 1992). The extent of injury from the addition of sulfuric acid is unknown; however, the presence of sulfate in reducing portions of the bedrock aquifer in Butte Hill may be explained by the addition of sulfuric acid for underground leaching. Another possible source

of groundwater contamination in this area is the discharging of untreated minewater from underground workings to Silver Bow Creek, which occurred from the late 1800s and continued at least until the 1960s (Spindler, 1977).

2.2.3 Mobility of Hazardous Substances

The mobility of hazardous substances in aquifers is a complex function of hydrodynamic and biogeochemical processes and conditions, including recharge locations, infiltration rate, hydraulic gradient, groundwater velocity and flow patterns, discharge locations, permeability, solubility, precipitation, adsorption, desorption, oxidation/reduction and other reactions.

Available data and observations can be assembled to gain an overall understanding of the mobility of hazardous substances in the Butte area aquifers. Canonie is constructing a model of contaminant migration in the bedrock and alluvial aquifers for the Berkeley Pit area that will consider sources of hazardous substances, groundwater flow patterns and geochemical factors (Canonie, 1992a).

2.2.3.1 Hydrodynamic Considerations

The groundwater flow patterns for the alluvial and bedrock aquifer in the study area have been discussed in previous sections and are displayed in Figures 2-3, 2-4, and 2-5. Areas of contaminated alluvial groundwater (discussed in more detail in Sections 3.2.1 and 3.2.2) are located downgradient of known sources of hazardous substances, which indicates considerable mobility of metals, metalloids and sulfate from sources to groundwater resources. The groundwater plume associated with sources in the upper MSD area has migrated to a greater extent than those plumes associated with sources in Lower Area I.

One of the hydrodynamic factors that determines the extent of the plumes is the proximity of hazardous substance sources to groundwater discharge locations. In the upper MSD area, groundwater does not discharge to surface water until it reaches Harrison Avenue in the lower MSD area, thereby providing a longer lateral stretch for contamination of the alluvial aquifer. In Lower Area I, groundwater discharges to Silver Bow Creek below Montana Street where the bedrock-alluvial interface is closer to the ground surface, forcing groundwater upward into Silver Bow Creek. Groundwater contaminated with hazardous substances from the Butte Reduction Works area, on the north side of Silver Bow Creek, and the Colorado Tailings discharges in relatively short order to Silver Bow Creek, thereby limiting the lateral extent of the groundwater plume but significantly impacting surface water in the creek.

MultiTech performed a study of hazardous substance transport in tailings in the Ramsay Flats area (MultiTech, 1987, Chapter 3); the results are discussed earlier in this report (Section 2.2.2). Generally, except for iron and arsenic, metal concentrations decreased with depth in

the lysimeter samples in the tailings. MultiTech concluded that either little downward groundwater movement was occurring, or metals were immobilized near the base of the tailings. The year MultiTech conducted these experiments (1985) was a below-normal rainfall year, and consequently the soil water potential gradient (downward movement) was very low. They felt that the low gradient, rather than immobilization of metals, explained the segregation of the unsaturated and the saturated zone. When MultiTech modeled an increase in rainfall at 30% above normal, substantial drainage from the unsaturated zone was predicted.

The lithology of the alluvial aquifer is very heterogeneous, resulting in extremely variable hydraulic conductivities and transmissivities. Most groundwater appears to flow through discontinuous sand and gravel lenses. Many of the low-lying areas are thought to be underlain by an organic-rich layer (CH₂M Hill and Chen-Northern, 1990), although this has not been substantiated in many areas. Organic-rich silts have low hydraulic conductivity and transmissivity and, if present, could limit groundwater and hazardous substance mobility below tailings deposits. However, groundwater contamination in the upper MSD area has migrated below the organic-rich layer, which is known to occur at depths of ~20 feet (see CH₂M Hill and Chen-Northern, 1990, Vol. 1, Fig. 4-18).

2.2.3.2 Geochemical Considerations

Geochemical reactions can either limit or enhance the mobility of a hazardous substance in the groundwater resource. Dissolution (leaching) and desorption reactions will cause migration of hazardous substances, while precipitation and adsorption reactions will limit the mobility of hazardous substances in groundwater aquifers. Oxidation and reduction reactions can either enhance or limit the mobility of hazardous substances, depending on the dissolved species produced by the redox reactions. Geochemical reactions specific to the identified hazardous substances are discussed below

Dissolution/precipitation reactions. Dissolution reactions have been discussed in Section 2.1.2.2 (dissolution of pyrite, other sulfides and aluminosilicates in the mined portions of the Butte Hill bedrock aquifer) and Section 2.2.2.1 (leaching of sources of contamination). Dissolution reactions are responsible for the generation of high concentrations of arsenic, cadmium, copper, lead, iron, manganese, zinc, sulfate and other hazardous substances. Precipitation reactions have been discussed in Section 2.1.2.2. Precipitation reactions can limit the concentrations and/or mobilities of contaminants in the study area. Metal/metalloid and sulfate concentrations can vary with pH and/or the redox state of the water.

The major solubility control for oxidized dissolved arsenic (arsenate, As(V)) is scorodite (FeAsO₄·2H₂O), which controls arsenate solubility between a limited pH range (4-5) (Davis and Ashenberg, 1989), however, scorodite can be transformed to iron hydroxide and dissolved arsenic over time in tailings impoundments (Dove and Rimstidt, 1985). Arsenic in tailings

materials was related in part to sulfide content, and a number of arsenic sulfides are associated with the ore. Under oxidizing conditions, these arsenic sulfides will dissolve and release arsenic to the unsaturated or saturated zone. Extractable arsenic was found 25 inches below the tailings, indicating a fairly high potential for arsenic movement into groundwater (MultiTech, 1987). An aerial deposition source for arsenic (smelter airfall) has been proposed, but the mobility of arsenic from this source has not been evaluated.

MultiTech (1987) argues that copper (Cu) carbonate minerals (malachite and azurite) may control copper solubility above pH 5, and cupric ferrite (CuFe₂O₄) may control copper solubility below pH 5. MultiTech also discusses a possible lead sulfate solubility control for groundwater concentrations of lead.

The low solubility of lead (Pb) sulfate may limit lead mobility in groundwater in the study area because of the high sulfate concentrations associated with contaminated groundwater.

Cadmium (Cd) has moved well below the tailings into underlying soils at Ramsay Flats, and total and exchangeable cadmium concentrations in both upper soil layers and tailings were roughly equivalent (MultiTech, 1987). It is unlikely that significant mineral solubility controls affect cadmium concentrations in the groundwater systems in the study area.

Solubility controls on manganese (Mn) are a strong function of the redox state of the groundwater. Minerals that could limit manganese concentrations in study area groundwaters include pyrolusite, manganite and rhodochrosite (manganese oxide, hydroxide and carbonate, respectively).

Iron (Fe) solubility may be controlled by jarosite (potassium ferric hydroxy-sulfate) below pH 4-5. The fraction of soluble iron in tailings and soils was low, indicating little potential for iron mobilization in groundwaters. Dissolved iron, however, is very widespread in area groundwaters, especially those in the upper MSD area, most likely as a result of the greater solubility of reduced iron.

Aluminum (Al) solubility may be controlled by alunite (potassium aluminum hydroxysulfate). Thallium is also a group III metal and is a by-product of purification of cadmium and lead. Thallium sulfate (Tl₂SO₄) has been used as rat poison. TIOH is a soluble weak base.

Ferrous (reduced) iron can decrease the solubility of vanadium (V) by formation of ferrous vanadate, which can exert a solubility control on vanadium in mildly reducing, near neutral to alkaline waters (Hem, 1977). Elevated concentrations of molybdenum occur in Berkeley Pit water (see Section 3.2.1.1). The U.S. EPA has issued irrigation guidelines for molybdenum. As with vanadium, ferrous iron may exert a solubility control on molybdenum between pH 5.3 and 8.3.

Zinc (Zn) concentrations increase with sulfate concentrations, indicating that zinc may be related to the amount of past pyrite oxidation (MultiTech, 1987). Franklinite (a zinc iron oxide) may control zinc solubility below pH 5. At higher pH values, zinc silicates or carbonates may control zinc solubility. Zinc, copper and sulfate occur together in contaminated area groundwaters and appear to have similar mobilities.

As discussed in an earlier section (2.2.2.1) surface salts had extremely high concentrations of total and soluble copper, zinc, manganese and cadmium and are rapidly dissolved upon contact with precipitation and runoff. These salts can also exist in the unsaturated zone where infiltration can leach substantial quantities of metals to shallow groundwater.

Adsorption/desorption reactions. Under the lower pH conditions associated with much of the contaminated groundwater, little metal adsorption can be expected. As pH increases, adsorption of lead, cadmium, zinc, copper and other metals will occur on most natural inorganic solids.

Arsenic behaves nearly the opposite of the metals in terms of adsorption. Unlike most metals, it exists in complexes that are either negatively charged (as $H_2AsO_4^{-1}$, $HAsO_4^{-2}$ for As(V)) or uncharged (pKa₁ for $H_3AsO_3^{-0}$ (As(III)), is 9.3) in most natural waters. Arsenate (As(V)) can adsorb to iron hydroxides and other solids at lower pH values but will tend to desorb at higher pH values. At neutral pH values, selenium, arsenic and antimony concentrations in freshwater environments are controlled by adsorption onto iron and manganese hydrous oxides (Seyler and Martin, 1989; Balistrieri and Chao, 1990; Belzile and Tessier, 1990; and Mok and Wai, 1990).

Cadmium and other metals may be adsorbed to organic-rich silts or peat in the study area. A peat layer ranging from 6 to 24 inches thick underlies most of the Colorado Tailings deposit and thins toward the northwest (Duaime et al., 1982 as cited in MultiTech, 1987). The peat layer below the northwest corner of the Colorado Tailings contains elevated concentrations of total iron, manganese, copper, lead and zinc compared to overlying tailings materials and underlying alluvium (Thornell, 1985 as cited in MultiTech, 1987). The peat layer apparently adsorbs or otherwise immobilizes certain metals leached downward from the tailings deposit. Metals temporarily immobilized in the peat layer may subsequently leach to the unsaturated alluvium and groundwater, and the underlying alluvial aquifer and Silver Bow Creek have been contaminated by hazardous substances leaching from the Colorado Tailings. Organic-rich silt and clay in the study area were shown to contain leachable arsenic and metals (Section 2.2.2.1).

Oxidation/reduction reactions. The following identified substances can undergo oxidation/reduction reactions that will significantly affect their mobility and toxicity: arsenic, antimony, selenium, vanadium, chromium, iron, manganese and sulfate.

Arsenic (As) and antimony (Sb) have similar redox chemistries: both occur as oxyanions with the metalloid in the 3+ and 5+ oxidation states in most natural waters; both can form less toxic methylated species, and both are released from contaminated sediments with increasing pH (Andreae, 1983; Mok and Wai, 1990). Arsenic in Berkeley Pit water was shown to be predominantly As(V) (Davis and Ashenberg, 1989). A nearly opposite distribution of arsenic species was shown in an alkaline saline lake (As(III) concentrations dominate at lake depths where dissolved oxygen is below detection) (Maest et al., 1992).

Selenium (Se) and sulfur (S) have similar chemistries, and both occur as oxyanions with selenium and sulfur in the 4+ and 6+ state in most natural waters. Adsorption of oxidized selenium (Se(VI)) is not pH-dependent, as is the case for other oxyanions, and is considered a strongly-binding anion. Sulfate can be reduced to sulfide by sulfate-reducing bacteria. Formation of sulfide in reducing waters can decrease metals concentrations via precipitation of metal/metalloid sulfides. Apparently, sulfide is not forming to an appreciable extent at depths in Berkeley Pit water, because metal concentrations do not decrease with depth in the pit. The low pH may favor the formation of bisulfate (HSO₄-) complexes.

Vanadium (V) occurs as both oxyanions and an oxocation in natural waters, with vanadium in the 3+, 4+, and 5+ oxidation states. V(IV) forms strong complexes with organic ligands (Middelburg et al., 1988). The more toxic V(V) can be reduced to V(IV) by *Thiobacillus thiooxidans*, a bacterium associated with acid mine drainage. The oxocation, V(OH)²⁺, can be complexed by organic matter and adsorb to oxides under high pH, reducing conditions (Domagalski et al., 1990). Elevated concentrations of vanadium occur in Berkeley Pit water (see Section 3.2.1.1).

Chromium (Cr) occurs as Cr(III) and Cr(VI) in natural waters. The oxyanion, chromate Cr(VI), is considerably more toxic than Cr(III). Cr(III) usually occurs as particulates, while Cr(VI) is much more soluble and mobile under oxidizing to mildly reducing conditions.

Iron occurs in the 2+ (ferrous) and 3+ (ferric) oxidation states. The solubility of ferric hydroxides is extremely low in waters with pH values above 3; therefore, reduced iron is much more mobile in most site groundwaters. It is likely that the high concentrations of iron in the alluvial and bedrock aquifers and Berkeley Pit waters are in the reduced form, ferrous iron. Manganese, like iron, is much more mobile in groundwaters in its reduced form, Mn(II). Mn(IV) is very insoluble. Elevated concentrations of iron and manganese in groundwaters, which occur throughout study area groundwaters, indicate reducing conditions or oxygen depletion (Stumm and Morgan, 1981).

2.2.4 Estimated Rate of Transport of Hazardous and Related Substances in Groundwater

As discussed in the previous section, a number of hydrodynamic and geochemical factors can increase or decrease hazardous substance mobility and concentrations in groundwaters. The mobility of hazardous substances in the bedrock aquifer has been complicated by mining-related pumping.

In the alluvial aquifer, especially in the upper MSD area, it is possible to arrive at an estimate for the transport rate of certain hazardous substances. In this area, the major sources — the Parrott tailings and other buried slag and mill waste piles — are associated with the highest concentrations of hazardous substances in groundwater, and the contaminated groundwater plume has decreasing concentrations of hazardous substances in the downgradient direction approximately parallel to the MSD. The highest groundwater concentrations in the upper MSD area are associated with the more northeasterly slag and mill waste dump area shown in Figure 2-1 (from a 1955 aerial photo taken before the wastes were buried). Material in this dump most likely originated from the Parrott Smelter.

Another possible source of groundwater contamination in this area is the discharging of minewater from underground workings, which were pumped in order to lower water levels in the underground mines and the Berkeley Pit, and process water from the precipitation plant. The discharging of untreated minewater and process water to the Metro Storm Drain and Silver Bow Creek began in the late 1800s and continued at least until the 1960s. Silver Bow Creek and MSD water quality was improved to some extent after the installation of the wastewater treatment system, which began operation in 1972 (Spindler, 1977).

Isopleths were drawn for copper, zinc, arsenic, cadmium, lead, iron and sulfate in the upper MSD alluvial aquifer (Figures 3-21, 3-32, 3-41 and 3-42 in CH₂M Hill and Chen-Northern, 1990). CH₂M Hill and Chen-Northern defined the upper aquifer as the upper 10 feet of the alluvial aquifer system, and the lower aquifer as between 10 and 40 feet below water level. Isopleths were drawn for each substance listed above for the upper and the lower alluvial aquifer in Area I.

Using the isopleth maps in CH₂M Hill and Chen-Northern (1990), the distances of greatest extent of the contaminant plumes are determined based on the distance between the middle of the Parrott Tailings area and the greatest downgradient extent of the following isopleths: copper, $100 \mu g/l$; zinc, $1,000 \mu g/l$; cadmium, $10 \mu g/l$; lead, $10 \mu g/l$; sulfate, 500 m g/l. The arsenic and iron plumes with the greatest extent seem to be associated with the waste dump southwest of Harrison Avenue and northwest of the MSD (Figure 9) instead of the Parrott waste piles, and the middle of this waste dump was used to estimate the extent of the arsenic and iron plumes. The $10 \mu g/l$ isopleth was used for arsenic, and the $1,000 \mu g/l$ isopleth was used for iron. The distances of greatest extent of the contaminant plumes, taken approximately parallel to the MSD, are: copper = 5,500 feet (lower aquifer); zinc = 5,600 feet

(lower aquifer); arsenic = 1,750 feet (upper aquifer); cadmium = 5,400 feet (lower aquifer); lead = 1,250 feet (lower and upper aquifer); iron = 4,000 feet (upper aquifer), and sulfate = 6,400 feet (lower aquifer).

The groundwater chemistry samples for the Phase II RI were collected in 1988-1989, some 108 years after the beginning of operation of the Parrott smelter. The midpoint of the source application is estimated to be the year 1900. By dividing the lateral extent of the contaminant plumes (as described above) by the time since disposal of the source material (88 years), the following estimated order of transport rates is derived (fastest rate to slowest rate of transport):

```
sulfate > zinc = copper = cadmium > iron > arsenic > lead.
```

The estimated rates of transport for these contaminants in upper MSD area plumes are:

Sulfate = 72.7 ft/yr
Zinc = 63.6 ft/yr
Copper = 62.5 ft/yr
Cadmium = 61.4 ft/yr
Iron = 45.5 ft/yr
Arsenic = 19.9 ft/yr
Lead = 14.2 ft/yr.

It is also likely that the discharge of untreated minewater to the MSD contributed to the extent and concentration of hazardous substances in the groundwater plumes. The midpoint of application of untreated minewaters would be later than 1900 and would thus result in faster transport rates for the above hazardous substances.

3.0 GROUNDWATER INJURY QUANTIFICATION

3.1 BASELINE CONDITIONS

3.1.1 Rationale for Selecting Control Sites

The following criteria were established to determine baseline groundwater conditions in the alluvial and bedrock aquifers:

- Similar geology to that of impacted areas
- Similar groundwater flow patterns and system to those of impacted areas
- Location of baseline wells away from obvious sources of contamination and associated plumes
- Consideration of groundwater type and other geochemical indicators that may distinguish uncontaminated from contaminated groundwater.

3.1.1.1 Similar Geology

Bedrock Aquifer. Wells for determining baseline water quality conditions in the bedrock aquifer were completed in both the weathered (Silver Bow Creek area wells; Hebgen; residential wells 93-69, 93-73, 93-83) and the competent quartz monzonite (wells A, B, C, D-1, D-2, E, F). Residential well 93-70 was completed in unweathered rhyolite. The distinction between weathered and competent bedrock is operationally defined based on the color of the rock as reported in the drilling logs: reddish rock is considered to be weathered (oxidation of iron sulfides) and grey rock is considered to be unweathered. The red color may be from residual hematitic oxidation products from iron sulfides with limonite texture (i.e., gossan or leached capping) or from disseminated hematite in a rock that was never mineralized with metal sulfides. As discussed in Section 2.2.1.5, the ore body is zonal in character (see Figure 2-7), and wells completed in different zones may have quite different water quality characteristics. Wells A, B, C, D-1, D-2, E, and residential well 93-83 are in the central zone; Hebgen well and well F are in the intermediate zone; and residential wells 93-69, 93-70, and 93-73 are in the peripheral zone. Although residential well 93-70 is in the Outer Camp and the peripheral ore zone, it is drilled in the rhyolite dike that forms Big Butte; therefore, this well is in unmineralized bedrock. The wells in bedrock along Silver Bow Creek are all in unmineralized bedrock

Alluvial Aquifer. Only wells completed in Quaternary alluvium or Tertiary sediments were chosen for consideration as being representative of baseline water quality in the alluvial

aquifer. Overlying Quaternary alluvial deposits associated with the historic Silver Bow Creek channel cannot be distinguished from underlying Tertiary valley fill materials.

The composition of the Quaternary alluvium and Tertiary sediments is very heterogeneous in places, with variable percentages of gravel, sand, silt, clay and organic matter. Quaternary alluvium on the north side of the MSD/Silver Bow Creek should be more representative of weathering of the mineralized Butte Hill area than alluvial material on the south side of the drainage because of closer proximity to the central part of the ore body, but no significant differences in composition between the two sides have been observed.

3.1.1.2 Similar Hydrology

Bedrock Aquifer. Groundwater flow patterns for the bedrock aquifer are described in Section 2.2.1.4. All wells considered for baseline water quality for the bedrock aquifer, except the Silver Bow Creek area wells, lie within the zone of concentric water contours where groundwater flow is into the pit. The Silver Bow Creek area bedrock wells are in areas where groundwater flow is generally parallel to or toward Silver Bow Creek.

Alluvial Aquifer. Groundwater flow patterns for the alluvial aquifer are described in Section 2.1.4. Wells considered for determining baseline water quality in the alluvial aquifer are cated upgradient from known sources of hazardous substances and associated plumes. Baseline wells in the Butte Mine Flooding OU are located upgradient from areas of past and current mining activity.

3.1.1.3 Location Away from Known Sources of Hazardous Substances and Associated Plumes

Although samples taken as close to the contaminated area as possible are most likely to be representative of the geology and hydrology of the contaminated area, baseline groundwater quality must be represented by samples taken away from known sources of hazardous substances and outside of associated groundwater plumes so that pre-mining conditions can be estimated. Contaminated groundwater itself is considered a secondary source of contamination that can adversely affect aquifer materials and surface waters.

In some cases, groundwater contaminated with hazardous substances is laterally or vertically discontinuous in an aquifer, and groundwater samples taken very close to the known impact areas may be representative of baseline conditions. This is especially true in the alluvial aquifer. In this section, water from a number of wells will be eliminated from consideration as being representative of baseline water quality because the samples were taken within known groundwater contaminant plumes and are clearly affected by releases from mining waste source materials.

3.1.1.3.1 Bedrock Aquifer

Butte Hill. Isopleths (equal concentration contour lines) have not and cannot easily be drawn for the bedrock aguifer in the Butte Hill area because of fracture-controlled groundwater flow: therefore, evaluation of the bedrock groundwater samples based on proximity to known contaminant plumes is generally not possible. Most of the Bedrock Monitoring Program (BMP) wells (A. B. C. D-1, D-2, E) are in an area of intensive historic mining activity but are not shafts. The Hebgen well and well F are on the edge of the mined area; residential well 93-69, 93-70, and 93-73 are in the Outer Camp, and well 93-83 is in the East Camp, which are all mined areas. It is possible that all wells/shafts considered for baseline bedrock water quality, except those along Silver Bow Creek, are somewhat impacted by mining because of their proximity to the ore body and past mining activity and the extensive "secondary porosity" created by the underground workings. The secondary porosity allows increased surface area of the mineralized material to be exposed to oxygen and water, forming AMD and secondary soluble salts on the walls and floor of the mine. However, the following wells in the Butte Hill area will be considered for use in determination of baseline water quality: Hebgen Park, BMP wells A, B, C, D-1, D-2, E, F, and residential wells 93-69, 93-70, 93-73, and 93-83. As these wells are in an impacted area, they provide conservative estimates (maximum baseline concentration values) of baseline bedrock groundwater quality. In addition, sulfuric acid was added to minewater for underground leaching of copper (Spindler, 1977; Spindler, 1992). The extent of injury from the addition of sulfuric acid is unknown. It is possible that the added sulfuric acid plume and the acid mine drainage influence could be separated on the basis of sulfur isotopes, but such a study has not been conducted.

Area I. Some of the wells drilled into bedrock in the Silver Bow Creek area can be evaluated in terms of proximity to known areas of groundwater contamination based on isopleth maps in the Draft Phase II RI Report (CH₂M Hill and Chen-Northern, 1990). The following wells in this area were drilled into bedrock: BMW-1B, BMW-2B, BMW-3B, BMW-4B, BMW-5B, BMW-6B, BMW-7B, BMW-8B, BMW-11B, BMW-13B, DW-125 (MF-13), DW-128 and DW-129.

Several of these wells are in known areas of groundwater contaminant plumes: BMW-2B and BMW-4B (both in copper, zinc, arsenic, cadmium, lead, iron and sulfate plumes under the Colorado Tailings); BMW-3B (in zinc, arsenic, cadmium, iron and sulfate plumes under the Colorado Tailings); BMW-6B (in copper, zinc, cadmium, iron and sulfate plumes near the Colorado Tailings), and BMW-7B (in copper, zinc, cadmium, lead and sulfate plumes in the Butte Reduction Works area). No data are presented for BMW-8B, although it is probably within the zinc, cadmium and iron plumes associated with the Butte Reduction Works area. Thus, only wells BMW-1B, BMW-5B, BMW-11B, BMW-13B, DW-125, DW-128 and DW-129 are considered for baseline bedrock water quality sample locations.

3.1.1.3.2 Alluvial Aquifer

Butte Hill. Wells in the Butte Mine Flooding OU alluvial aquifer were drilled to determine the impact of the leach pads on alluvial and pit water quality (Canonie, 1992a). All wells are affected by contamination from the leach pads area and will not be used to determine baseline water quality in the Butte Mine Flooding OU alluvial aquifer. Water quality data from 1982 to 1987 indicate that wells AMC-8, AMC-15 and AMC-25 are outside the area of influence of the leach pads (Canonie, 1992a). Three wells (AW1, AW2, AW3) drilled as part of the NRDA groundwater investigation in alluvium upgradient from most mining activity will also be used to determine baseline water quality (Plate I).

Area 1. Isopleth maps for the Area I alluvial groundwater are presented for dissolved copper, zinc, arsenic, cadmium, lead, iron and sulfate by CH₂M Hill and Chen-Northern (1990, Volume I, Figures 3-21 through 3-32 and 3-41 through 3-42). These maps demonstrate that much of the groundwater in the shallow (< 10 feet) and deeper (10 to 40 feet) zones within the alluvial aquifer in the vicinity of the Metro Storm Drain and Silver Bow Creek is contaminated with metals, arsenic and sulfate. Nonetheless, there are wells located outside of the known plumes associated with release of hazardous substances from mining activity that may be used to estimated baseline bedrock groundwater quality.

A lower concentration isopleth (250 mg/l = SMCL for sulfate) could be drawn for sulfate because sulfate concentrations continue to decrease away from both the upper and lower alluvial aquifer sulfate plumes (CH₂M Hill and Chen-Northern, 1990, Figures 3-41 and 3-42). Using an approximated 250 mg/l isopleth for sulfate, which is the plume with the greatest volumetric extent, the only alluvial aquifer groundwater wells in this area that are outside of and upgradient from identified groundwater plumes are GS-20 and MF-4.

3.1.1.4 Groundwater Type

Major ion concentrations of alluvial aquifer groundwater samples were used to classify and characterize groundwater types in the study area. Piper diagrams allow plotting of the relative amounts of cations (Mg, Ca, Na+K) and anions (SO₄, Cl, CO₃+HCO₃) as percentages of milliequivalents per liter. Piper diagrams have the advantage of being able to plot a number of samples on the same diagram, while a different Stiff plot is required for each water sample. Piper diagrams are useful for evaluating mixing and chemical evolution of groundwaters, and as such are an important tool for distinguishing baseline and mining-impacted groundwaters.

Morgan and Winner (1962, as cited in Freeze and Cherry, 1979) and Back (1966, as cited in Freeze and Cherry, 1979) identified domains in the Piper diagrams for classification of groundwaters in terms of major-ion percentages (Figure 3-1). Stiff diagrams and Piper diagrams were used to visually depict differences in groundwater chemistry and are displayed

Figure 3-1. Major Cation and Anion Domains for Piper Diagrams. Source: Freeze and Cherry, 1979.

in several reports on the study area (MultiTech, 1987, Appendix B, Part 1, Figures 3-5 through 3-8 and Part 4, page VI-27 through VI-31; CH₂M Hill and Chen-Northern, 1990, Volume 1, Figures 3-39, 3-40; Canonie, 1992a, Figures 7-5 through 7-7; Botz, 1969, Figures 5 and 6). Piper diagrams are presented for selected bedrock groundwater samples in Figures 3-2, 3-3, and 3-4 and for selected alluvial groundwater samples in Figures 3-5 and 3-6.

3.1.1.4.1 Bedrock Aquifer

Butte Hill. Piper diagrams for bedrock aquifer baseline wells in the Butte Hill area are presented in Figure 3-2. Samples from Hebgen Park and the residential wells 93-69, 93-70 (no calcium data available), 93-73, and 93-83 are calcium-sulfate/bicarbonate waters, while all BMP well samples (wells A, B, C, D-1, D-2, E, F) have higher percentages of sulfate and plot as calcium-sulfate type waters (well F is a Ca/Na+K-SO₄ type water). The high percentage of sulfate in the BMP well samples most likely indicates that they have been impacted by contamination from mining activity. However, it is also possible for sulfate to be derived from natural weathering of sulfides under oxygenated conditions (Bassett et al., 1992; Runnells et al., 1992). The pH range of the BMP wells was 5.84 to 7.68 (the pH of 9.25 for well D-2 on August 31, 1994 seems unreliable, because all other pH values for that well were 6.47 to 6.59). Therefore, the groundwater in these wells is not considered to be entirely acid mine drainage.

Bedrock aquifer control sites in Butte Hill are in an area of the ore body that could generate high concentrations of sulfate if exposed to oxygen and water because pyrite is common as a gangue mineral in the central ore zone. However, the Butte Hill control wells are in competent, unweathered, unoxidized bedrock and should not be in a naturally oxidizing zone. Nearby mining and dewatering activities exposed these wells to oxygen and may have caused the observed elevated dissolved sulfate concentrations. The BMP wells (wells A, B, C, D-1, D-2, E, F) will be considered baseline wells with the caveat that they most likely are somewhat contaminated by exposure to oxygen and hazardous substance source materials. Hazardous substance concentrations in these wells therefore are considered maximum baseline concentration values for groundwater in the bedrock aquifer control areas.

The major element chemistry of water in the mine shafts, which can be considered mining impacted, indicates that calcium-sulfate is the predominant water type (see Appendix IIA). Minor amounts of bicarbonate are present in the Anselmo and Belmont shaft. The Granite, Kelley, Lexington, and Steward mine waters show the most pronounced calcium and sulfate concentrations. This is to be expected in mines where oxidation of sulfide minerals results in higher sulfate concentrations. As discussed previously, addition of sulfuric acid, which is a CERCLA hazardous substance, to underground mines (Spindler, 1977; Spindler, 1992) may also have contributed to the concentrations in and extent of the sulfate injury in the area of mining.

Figure 3-2. Piper Diagrams for Baseline Bedrock Groundwater Wells in Butte Mine Flooding Area.

Figure 3-3. Piper Diagrams for Baseline Bedrock Groundwater Wells in Area L

Figure 3-4. Piper Diagrams for Historic Bedrock Groundwater Quality Data.

Figure 3-5. Piper Diagrams for Potential Baseline Alluvial Groundwater Wells.

Figure 3-6. Piper Diagrams for Potential Baseline Alluvial Groundwater Wells (continued).

Area I. Piper diagrams for selected bedrock aquifer baseline wells in Area I are presented in Figure 3-3. The groundwaters are predominantly calcium-bicarbonate type waters and can be considered to be representative of baseline water quality for the unmineralized, weathered bedrock aquifer.

The groundwater in all four domestic wells (analyses 7-10 in Figure 3-3) is of calciumbicarbonate type. The Scott well also contains some sulfate. The Piper diagrams for the domestic wells indicate that groundwaters associated with the Butte quartz monzonite in nonore producing areas are predominantly calcium-bicarbonate type waters.

Historic bedrock groundwater quality. Piper diagrams for selected historic bedrock groundwater quality data are presented in Figure 3-4. Analyses 19-24 are from the upper Silver Bow Creek area (Botz, 1969). Samples 19-21 are well samples from groundwater in quartz monzonite and other granitic rocks, and samples 22-24 are from springs that issue from quartz monzonite. Analyses 25-27 are of water from shallow springs and wells in granitic rocks near Butte (Meinzer, 1914). The piper diagram for the historic bedrock groundwater samples plot similarly to the baseline bedrock groundwater samples in Area I (Figure 3-3). Most of the historic bedrock groundwater samples plotted in Figure 3-4 are calciumbicarbonate type waters. This groundwater type is most likely representative of baseline groundwater in unmineralized bedrock.

W. H. Weed performed a classic study entitled 'Geology and ore deposits of the Butte District, Montana' (Weed, 1912; these samples are not plotted in Figure 3-4). As part of this study he collected six water samples from the mines in Butte. One sample was collected from the 2,200-foot level of the Green Mountain Mine and was taken to represent:

... as near as practical the composition of the water of the deep levels of the district. It is from a fissure in normal granite remote from any known veins and far from any old mine workings, coming from a fissure tapped by a newly opened crosscut the day before the sample was taken.

This sample contained 407 mg/l sulfate, 13.5 mg/l bicarbonate, 151 mg/l calcium, 1.8 mg/l ferrous iron and 0.5 mg/l manganese.

Another sample was collected from the 800-foot level west of the Anaconda Mine:

It is faintly alkaline and may be assumed to represent the water descending through that great vein at a point beyond the reach of oxidizing influences.

This sample contained lower concentrations of sulfate and calcium: 90.6 mg/l sulfate, 12 mg/l chloride, 11.1 mg/l sodium, 49 mg/l calcium, 3.5 mg/l potassium, 10.3 mg/l magnesium, 0.9 mg/l ferrous iron and 2.5 mg/l manganese.

These results, which can be used only qualitatively, illustrate the presence of waters with elevated sulfate, iron and manganese concentrations in mineralized granitic bedrock of the area. It is possible, therefore, that waters with somewhat elevated sulfate, iron and manganese concentrations from the Butte Hill wells are representative of natural background in the mineralized portions of the bedrock aquifer. Although the analyses by Weed showed elevated concentrations of sulfate, iron and manganese, concentrations of hazardous substances such as copper, lead and arsenic are listed as "trace" and zinc concentrations are below the SMCL of 5.0 mg/l (Weed, 1912).

3.1.1.4.2 Alluvial Aquifer

Piper diagrams for selected alluvial aquifer baseline wells and historic data are presented in Figures 3-5 and 3-6.

Butte Hill. Not enough information is presented to evaluate the groundwater type of wells AMC-15 and AMC-25 (alluvial wells, along with AMC-8, in the Butte Hill area that are outside of the influence of the leach pads). Well AMC-8 (DW-103) is a calcium-sulfate type water, but up to 31% carbonate is also present and the specific conductance is quite low (350 to 440 µmhos/cm). There are Phase I RI data for AMC-8 and AMC-15 (DW-106), but no major ion chemistry is presented for recent samples of these wells (Table 7.2.2, Canonie, 1992a lists pH, four metals and sulfate). Stiff diagrams for these wells are presented in Canonie, 1992a (Figure 7-7). Concentrations of all major cations and anions are quite low, indicating that the groundwaters were not affected or were only minimally impacted by contaminated water. Data from the NRDA baseline alluvial wells, AW1, AW2 and AW3 are also plotted on Piper diagrams (Figures 3-5 and 3-6). The groundwaters from the NRDA baseline wells are all of calcium-bicarbonate type.

Area I. Contaminated alluvial groundwater in the MSD and the Upper Silver Bow Creek areas is predominantly of calcium-sulfate type, and Stiff diagrams for these groundwater samples exhibit a "skewed" sulfate component (a "peak" at the sulfate point of the Stiff diagram). Elevated sulfate concentrations are most likely the result of oxidation of pyrite and other sulfide minerals. Piper diagrams for alluvial groundwater in the MSD area show that several wells plot separately from the majority of wells adjacent to the MSD (Figure 3-5, in MultiTech, 1987, Appendix B, Part 1).

The wells that are plotted separately are either a distance from the MSD (DW-111 and DW-115) or are influenced by the relatively uncontaminated Blacktail Creek alluvial system (DW-121). The major ion chemistry of these wells is closer to a calcium-bicarbonate type and may represent the pre-contaminated alluvial groundwater type. A potential mixing trend is shown in the Piper diagram for the MSD groundwater samples that is particularly evident in the anion trilinear diagram (Figure 3-5, MultiTech, 1987, Appendix B, Part 1). Mixing

between end-members of high sulfate (contaminated) and high bicarbonate (uncontaminated) waters may explain the trend.

Piper diagrams for contaminated alluvial groundwater samples in Lower Area I also show that the predominant type is calcium-sulfate with several exceptions. DW-130 has no dominant cation type, but is a sulfate-type water. DW-123 has no dominant anion type (although chloride predominates), but is a calcium-type water. Samples DW-133, GS-15A and GS-15B have no dominant anion type, but do not plot in the sulfate field in the Piper diagram (Figure 3-7, MultiTech, 1987, Appendix B, Part 1).

Samples discussed above that are potentially representative of baseline water quality plot in the calcium-type field in Piper cation diagrams (i.e., they could be calcium-bicarbonate or calcium-chloride type waters) but not very far into the sulfate dominance field in the anion diagrams. Therefore, the anion type of groundwater in the study area appears to be more distinctive than cation type for distinguishing contaminated and uncontaminated groundwater areas.

Those groundwaters that plot on the edge or outside of the sulfate-type dominance field in Piper diagrams, therefore, are either candidates for baseline groundwater quality or represent mixtures of contaminated and uncontaminated groundwater. Samples evaluated in the MultiTech report (1987) in Area I that plot on the edge or outside of the sulfate dominance field in Piper diagrams include: DW-111 (MBMG MF-11), DW-115 (MBMG MF-04), DW-121 (MBMG MF-01), DW-123 (MBMG MF-14 and MP-01), DW-133 (MBMG S-01 and DW-124F), GS-15A (GS-15D) and GS-15B (GS-15S). Of these, only DW-111, DW-115, DW-121 and DW-123 are upgradient of known contaminants plumes and will be considered as representative of baseline water quality.

A number of more recently collected alluvial groundwater samples from Area I were evaluated in the CH₂M Hill/Chen-Northern report (1990). Again, the dominant groundwater type from Stiff or Piper diagrams is calcium-sulfate. A number of samples do not plot in the sulfate dominance field in Piper diagrams even though they are in the vicinity of known contaminant plumes (see CH₂M Hill/Chen-Northern, 1990, Figures 3-21 through 3-32, 3-41, 3-42, 3-47, 3-48), and are either mixtures of contaminated and uncontaminated groundwater or are candidates for baseline groundwater quality: GS-15D, GS-15S, GS-20, GS-21D, GS-21S, GS-27D, GS-27S, GS-46S, and MF-04 (DW-115). Piper diagrams for these samples are presented in Figures 3-5 and 3-6. Sulfate percentages for samples from these wells range from 32 to 49% of total anions (bicarbonate+carbonate, chloride, sulfate). Of these, only MF-04, identified earlier, and GS-20 are upgradient from known contaminant plumes.

Historic alluvial groundwater quality. Historic groundwater quality can be used for qualitative evaluation of groundwater types for contaminated and uncontaminated alluvial groundwater. The average major element composition of 41 groundwater samples (excluding those in bedrock and one well north of Silver Bow Creek in a known area of contamination)

in the Upper Silver Bow Creek/Blacktail Creek area analyzed by Botz (Botz, 1969) shows these groundwaters to be of calcium-bicarbonate type. Average chloride, sulfate and bicarbonate concentrations were 6.95, 51.0 and 93.8 mg/l, respectively (n = 41); while average calcium, magnesium, sodium and potassium concentrations were 30.9, 8.81, 13.2, and 3.29 mg/l, respectively. These historic groundwater quality data represent background for waters away from contamination in the alluvial aquifer.

An early paper by Meinzer (1914) includes analyses of groundwater from Quaternary alluvium in the upper Silver Bow basin near Butte. Results from ten alluvial groundwater samples are presented (Meinzer, 1914, pg. 115). Water from six of the samples was more highly mineralized: one well (Le Toile well) in southern Butte; and water from wells at the Butte "Classification yards" (Butte Reduction works area). The six mineralized samples were excluded because of potential contamination from mining activity. The remaining four alluvial wells contained water that was also of calcium-bicarbonate type, with average calcium, magnesium and sodium+potassium concentrations of 26, 6.58 and 6.25 mg/l, respectively. Average bicarbonate, sulfate and chloride concentrations were 107, 7.3, and 7.25 mg/l, respectively, and average total dissolved solid concentration was 148 mg/l. The four wells are generally in the vicinity of Blacktail Creek and are representative of baseline water quality in the unmineralized, weathered portion of the bedrock aquifer in an area not affected by mining. Because historic data were not validated, water quality data will be used only for qualitative comparisons.

In summary, the above analysis of bedrock and alluvial baseline groundwater type indicates that the presence of elevated concentrations of sulfate is representative of mining-related groundwater contamination in the alluvial and unmineralized bedrock aquifers. For groundwater in mineralized bedrock, sulfate (and iron and manganese in unoxidized portions) may occur naturally. As shown with the historic bedrock groundwater quality, and as will be demonstrated below, elevated concentrations of hazardous metals and metalloids such as arsenic, zinc, cadmium, etc., are representative of mining-related groundwater contamination in the mineralized bedrock aquifer. In addition, some unknown amount of the dissolved sulfate, especially in unweathered mineralized portions of the bedrock aquifer, may be related to exposure of sulfides to oxygen via dewatering and other mining-related activities.

3.1.2 Location and Description of Control Sites

3.1.2.1 Bedrock Aquifer

The following wells are chosen to represent baseline bedrock groundwater quality.

Butte Hill		
A B C D-1 D-2 E F	Hebgen Park 93-69 93-70 93-73 93-83	
BMW-1B BMW-5B BMW-11B BMW-13B	DW-125 (MF-13) DW-128 DW-129	Hall Scott Tarkelson Johnson

Butte Hill

Wells A, B, C, D-1, D-2, E, F. These wells are located within the Butte Mine Flooding OU. They were installed as part of the RI/FS to verify the direction of groundwater flow and to characterize groundwater quality (Canonie, 1992a; ARCO, 1994). The wells are all screened in competent bedrock in the central zone of the ore body. The well logs contain a description of 'traces of sulfides' up to 20% to 30% sulfides in these wells (Canonie, 1992a). Sulfides are common in the ore-bearing rock in this area. The closest mine shafts to this area are the Pittsmont No. 1, 2, 3, and 4 shafts. The 400-foot level was the shallowest level mined in the No. 1 and No. 4 shaft. The 2600-foot level was the deepest level mined in the Pittsmont No. 4. The Pittsmont shafts have been closed off and no water level information is available. The proximity of these wells to the Pittsmont Mine and the presence of sulfides indicate that they are located in an ore-bearing area. These wells were chosen to represent water quality in the minimally weathered, mineralized bedrock in an area somewhat impacted by mining.

Hebgen Park well. The Hebgen Park well is southwest of the Berkeley Pit and was drilled in 1988 to a depth of 275 feet into the Butte quartz monzonite. The Montana Bureau of Mines and Geology currently monitors the water level in this well as part of the Butte Mine Flooding monitoring program. The well is located in the weathered portion of the bedrock aquifer. The well log describes the rock between 150 to 300 feet (sample depth is 75 feet) as hard red oxidized granite or soft red oxidized granite. It is located in the intermediate zone of the ore body, and was chosen to represent groundwater quality in the weathered, mineralized bedrock.

Residential wells 93-69, 93-70, 93-73, and 93-83. These bedrock wells are also located within the Butte Mine Flooding OU (see Figure 8-3, ARCO, 1994 for location of wells). Well 93-69 was screened at 138-193 feet in weathered, mineralized quartz monzonite and is located in the Outer Camp area in the peripheral ore zone. Well 93-70 is also in the Outer Camp and was screened at 135-175 feet in unweathered, unmineralized rhyolite, which is part of the dike that forms Big Butte. No well logs exist for wells 93-73 or 93-83. However, 93-73 is in the Outer Camp and peripheral ore zone and is likely in weathered, mineralized quartz monzonite. Well 93-83 is in the highly mineralized central ore zone and the East Camp, and is likely also in the weathered quartz monzonite.

Area I

Wells BMW-1B, BMW-5B, BMW-11B and BMW-13B are all in Lower Area I on the periphery of the Colorado Tailings. BMW-1B and BMW-5B are southeast of the Colorado Tailings and south of Silver Bow Creek. BMW-11B and BMW-13B are north of Silver Bow Creek; SMW-11B is north of the Colorado Tailings, while BMW-13B is east of the tailings (see Plate I).

Wells DW-125 (MF-13), DW-128 and DW-129 are all completed in quartz monzonite (MultiTech, 1987, App. B, Part 2, Attach. II-A). Well DW-125 (MF-13) is south of Silver Bow Creek, west of Montana Street and south of I-90. DW-128 is south of Silver Bow Creek and southwest of the Colorado Tailings (not shown on Plate I; see Fig. 1-7A). DW-129 is not shown on any available map but has an official location of T03N R08W S22 DBB (MultiTech, 1987). All bedrock wells in Area 1 are considered to be in weathered, oxidized, unmineralized quartz monzonite.

Four domestic wells were also used for baseline bedrock groundwater quality (locations not shown on Plate I). The Scott and Johnson wells are located in the Little Basin Creek drainage approximately six miles southwest of the city of Butte. Hall's well is located in the Little Blacktail Creek drainage approximately six miles southeast of Butte. Tarkelson's well is located in the southern part of Butte in an area known locally as the 'flats.' These wells are located in the Butte quartz monzonite, but not in a known mineralized area. The sample depths of the Scott, Tarkelson and Johnson are in unweathered bedrock; the Hall well sampling depth may be in weathered bedrock.

3.1.2.2 Alluvial Aquifer

The following wells are chosen to represent baseline alluvial groundwater quality. Their locations are shown in Plate I.

Butte Hill

AW1

AW2

AW3

DW-103 (AMC-8)

Area I

DW-111 (MF-11)

DW-115 (MF-4)

DW-121 (MF-1)

DW-123 (MF-14)

GS-20

Butte Hill. Wells AW1, AW2 and AW3 were drilled as part of the NRDA investigation. AW1 is located above the Yankee Doodle Tailings impoundment in the very upper reaches of Silver Bow Creek by the Continental Divide. AW2 and AW3 are located west and east, respectively of I-15 toward Helena above Columbia Gardens and are also close to the Continental Divide. Both are completed in Quaternary alluvium.

Well DW-103 (AMC-8) is located southeast of the Berkeley Pit and west of the Continental Pit and does not appear to be impacted by mining activity.

Area I. Wells DW-111 (MF-11) and DW-115 (MF-4) are in the Metro Storm Drain area. DW-111 is located south of the MSD, while DW-115 is north of the MSD. DW-121 (MF-1) is in the vicinity of Blacktail Creek, south of Silver Bow Creek. Well DW-123 (MF-14) is in Lower Area I in the Montana Pole site area. Well GS-20 is located south of Centennial Street and west of Missoula Gulch. Well DW-123 is on the south side of Silver Bow Creek, and well GS-20 is on the north side of Silver Bow Creek.

3.1.3 Statistical Comparison of Control and Injured Groundwater

The analysis of data was based on all of the repeated measurements (including duplicates and splits) included in the appendices (injured bedrock = App. IIA and IIB, bedrock control = App. IID, injured Area I alluvial = App. IIIA, injured Butte Hill alluvial = App. IIIB, alluvial control = App. IIID). For the bedrock control well analysis, some supplementary summary statistics are provided for the unmineralized, weathered mineralized, and unweathered mineralized portions of the aquifer. For the alluvial analysis, there are two distinct injured areas: Area I and Butte Hill. Data for these two injured alluvial areas are compared to data from baseline alluvial wells using both the descriptive methods and significance testing procedures described below.

In order to collapse the data down to a single number for each well, for each substance, a two-step process was used.

In the first step, any duplicate or split sample data were averaged to provide a single number to summarize the one or more measurements that were made on each well on a given sampling date. In most cases there were no duplicate or split data, so the first stage of collapsing the data had no effect.

In the second step, the single measurements obtained from the first stage of analysis for each sampling data were collapsed further by computing the median of the data over the various sampling dates. In this way, a central value to summarize the data from each well was obtained. This approach, using medians at the second stage of collapsing the data, was used to minimize sensitivity to any outlying values in the repeat data from the well.

The resulting well-by-well values were then used as the basis for subsequent analysis to compare baseline and injured areas. For each substance, using the collapsed well-by-well values, the descriptive comparison of areas is based on use of the median to indicate the central tendency of the data for the area. The spread in the data is indicated by the 25th percentile, the 75th percentile, and the interquartile range, which is the 75th percentile minus the 25th percentile. These descriptive measures were chosen because they are generally applicable and interpretable regardless of the shape of the distribution of the well-by-well data.

A Mann-Whitney nonparametric test of the difference between medians was used to assess whether or not differences observed between the medians for the baseline and injured portions of the aquifer were greater than one could expect by the play of chance in the sampling process. The results of these statistical tests are summarized by two-sided p-values. These calculations were done using the Stata computer software package.

The use of a one-sided testing approach, which would give more significant differences between baseline and injured areas, would actually be justified in this situation because there are only two possible outcomes of interest. Either the presumed injured area has significantly higher median concentrations, or it does not. If the injured area does not have higher median concentrations, the consequences would be the same whether the medians for the injured and baseline wells are the same, or what was presumed to be the injured area actually had a lower median concentration than the baseline area. Thus, from a statistical point of view, it is appropriate to use a one-sided upper alternative hypothesis and the one-sided p-value. However, the more conservative two-sided approach was chosen for the statistical analyses presented.

3.1.3.1 Bedrock Aquifer

Baseline water quality from wells in the bedrock aquifer will be divided into the categories listed below to distinguish the mineralized and unmineralized parts of the bedrock aquifer. For mineralized area, the wells are further split into weathered and unweathered areas. Median concentrations are provided for wells in the unmineralized, weathered mineralized, and unweathered mineralized portions of the aquifer (Table 3-1). However, overall median concentrations for all baseline bedrock groundwater samples are discussed at the end of this section and will be used for comparison to concentration of hazardous substances in injured bedrock groundwater.

Unmineralized Area			
BMW-1B BMW-5B BMW-11B BMW-13B	DW-125 (MF-13) DW-128 DW-129	Hall Scott Tarkelson Johnson	93-70
Mineralized Area			
Weathered			
Hebgen Park	93-69	93-73	93-83
Unweathered			
A B	C D-1	D-2 E	F
D	ו-ע	E	

Median concentrations for identified hazardous and related substances in bedrock aquifer baseline groundwater (mineralized and unmineralized) are found in Table 3-1. Median concentrations in the unmineralized, weathered/mineralized, and unweatherized/mineralized groundwaters did not exceed any MCL values. However, median concentrations exceeded three SMCL values in the unweathered/mineralized baseline wells: iron, manganese, and sulfate. The median sulfate concentration in the weatherized/mineralized wells also exceeded the sulfate SMCL. The unmineralized samples generally had the lowest mean concentrations, while the unweathered/mineralized samples generally had the highest mean concentrations.

As discussed in the previous section, the groundwaters in the central ore zone are considered to be at least somewhat impacted by mining, and also may have naturally-occurring elevated concentrations of several constituents, particularly iron and manganese, which can be elevated under reducing conditions. The elevated iron and manganese concentrations in unweathered bedrock, and to some extent those for sulfate in the weathered/mineralized portion of the

Table 3-1
Median Concentrations of Identified Hazardous Substances in Unmineralized and Mineralized Portions of the Bedrock Aquifer: Control Wells (µg/l; SO₄ in mg/l)

	Unmineralized	Weathered Mineralized	Unweatherized Mineralized
Ag	0.05	1.63	3.48
Al	13	45.3	64.5
As	2.65	2.35	10.9
Ве	0.5	ND	1
Cd	0.51	1.6	1.23
Cr	4	2.13	3.01
Cu	15	12	4.25
Fe	13.3	21.4	8,450
Pb	1.05	13.5	1.4
Mn	1	33.5	1,700
Ni	0.65	5.5	14
pН	7.08	6.82	6.54
Sb	10.5	ND	ND
SO ₄	166	317	606
Tì	1.0	ND	ND
V	1.5	19	61.5
Zn	18	110	137
Zr	ND	4	29.25

ND = Not Determined.

Source: Appendix IID.

bedrock aquifer, may represent natural background. Elevated concentrations of sulfate (from formation of acid mine drainage under oxidizing conditions) in the mineralized portion of the aquifer are more likely related to mining impacts, such as dewatering and addition of sulfuric acid for underground leaching of copper. The groundwater sampled in the central ore zone (wells A, B, C, D-1, D-2, E, F, 93-83) has acquired sulfate along its flow path from traveling through the oxidized portions of the mineralized zone, which have been increased in extent as a result of dewatering activities. Apparently the acquired sulfate is not currently being reduced within the unweathered mineralized portion of the bedrock aquifer in Butte Hill.

Baseline bedrock groundwater quality will be represented by median concentration values [43 CFR § 11.72 (h)(5)]. Overall median values and percentiles for all baseline bedrock groundwater samples are presented in Table 3-2A. The wells have been combined to represent overall baseline quality of the aquifer as a whole, including the wells that may be somewhat impacted by mining in the central ore zone. No median concentration exceeds either an MCL or SMCL value.

The medians, percentiles, and interquartile ranges for the injured bedrock wells are presented in Table 3-2B. The MCL value for cadmium $(5\mu g/l)$ was exceeded, and SMCL values for iron, manganese, pH, zinc, and sulfate were also exceeded.

Table 3-2A

Median Concentrations, Percentiles, and Interquartile Ranges
of Substances in Bedrock Control Wells
(µg/l; SO₄ in mg/l)

Analyte	# Wells	Median Concentration	25% Percentile	75% Percentile	Interquartile Range
Ag	14	1.96	0.5	3.48	2.98
Al	15	24.5	15	74	59
As	22	3.13	2	10.5	8.5
Be	9	1	0.5	1	0.5
Cd	22	1.02	0.51	1.75	1.24
Cr	15	3.01	1.75	4	2.25
Cu	22	8.5	2	18	16
Fe	23	40	2.5	1,100	1,097.5
Mn	19	45.1	1	1,560	1,559
Ni	14	6.9	1.0	19	18.0
pН	23	7.06	6.79	7.8	1.01
Sb	3	10.5	10.5	10.5	0
SO ₄	32	174	52.5	332	279.5
TI	3	1	I	1	0
V	8	38	3.1	61.5	58.4
Zn	22	80.5	18	438	420
Zr	5	22	21	36.5	15.5

Table 3-2B

Median Concentrations, Percentiles, and Interquartile Ranges
of Substances in Injured Bedrock Wells
(µg/l; SO₄ in mg/l)

Analyte	# Wells	Median Concentration	25% Percentile	75% Percentile	Interquartile Range
Ag	6	30.65	15.85	32.65	16.8
Al	11	20	15	1,280	1,265
As	11	28.6	12	153	141
Cd	11	9.5	1	120	119
Cr	11	2.5	1	2.6	1.6
Cu	11	25	6.5	590	583.5
Fe	11	4,640	409	24,700	24,291
Mn	11	2,400	1,250	6,870	5,620
Ni	6	356	122.8	599.5	476.7
pН	11	6.1	5.73	6.6	0.87
SO ₄	11	948	627	2,050	1,423
Zn	11	16,200	36	93,700	93,664
Sources: A	appendices IIA	and IIB.			

P-values for the comparison of median concentrations in baseline and injured bedrock groundwater are presented in Table 3-3. All substances of concern except for aluminum and chromium show a statistically significant difference (at a p-value of 0.05) between injured and baseline bedrock groundwater. In order to establish that differences between the control and injured areas are statistically significant, the median concentrations should be compared using the Mann-Whitney test [43 CFR § 11.72 (h)(5)]. All substances of concern with median concentrations that exceeded relevant standards in injured bedrock groundwater had statistically significant p-values when compared to median concentrations of these substances in baseline or control bedrock groundwater, which indicates that there is a statistically significant difference between baseline and injured bedrock groundwater.

Table 3-3 Bedrock Aquifer Comparison of Baseline and Injured Areas: Median Concentrations (µg/l; SO4 in mg/l) and Two-Sided p-Values

Analyte	Baseline	Injured	p-Value
Ag	1.96	30.65	0.0005
Al	24.5	20	0.4675
As	3.13	28.6	0.0016
Cd	1.02	9.5	0.0017
Cr	3.01	2.5	0.1611
Cu	8.5	25	0.0374
Fe	40	4,640	0.0019
Mn	45.1	2,400	0.0016
Ni	6.9	356	0.0005
рН	7.06	6.1	0.0002
SO ₄	174	948	0.0001
Zn	80.5	16,200	0.0026

Source: Appendix II.

3.1.3.2 Alluvial Aquifer

Baseline range and median concentrations of hazardous substances in alluvial aquifer groundwaters in the study area are shown in Tables 3-4A through C. Median concentrations will be used to represent baseline conditions (Table 3-4A). One of three samples from well GS-20 exceeds the thallium MCL; however, the other two samples for this well taken within one year of the first sample do not show that the thallium MCL value (2 µg/l) was exceeded. The antimony MCL (6 µg/l) was actually not exceeded in any well. All values were below detection (21 µg/l), and one-half that value was used in the statistical analyses. Median concentrations for the alluvial control well samples (Table 3-4A) show no other MCL or SMCL exceedences in the baseline alluvial groundwater.

Table 3-4A

Median Concentrations, Percentiles, and Interquartile Ranges
of Substances in Alluvial Aquifer Control Wells
(µg/l; SO₄ in mg/l)

Analyte	# Wells	Median Concentration	25% Percentile	75% Percentile	Interquartile Range
Al	5	9.4	7.8	11.5	3.7
As	9	1.6	1.5	1.75	.25
Cd	9	.55	.5	1.4	.9
Cr	6	3.45	1.6	4	2.4
Cu	9	3.75	3.1	13.5	10.4
Fe	9	54	16.5	116	99.5
Mn	6	33	20	69	49
Ni	6	1.58	1	1.9	0.9
Ag	5	0.5	.1	.5	.4
Zn	9	85	47	188	141
SO ₄	7	149	59	199	140
Be	5	.5	.5	.5	0
TI	2	2.75	1	4.5	3.5
Sb	2	10.5	10.5	10.5	0
Source: A	ppendix IIID.				

Median concentrations for substances in the injured Area I and Butte Hill alluvial aquifers are shown in Tables 3-4B and 3-4C, respectively. Median concentrations exceeded MCL values for cadmium, and thallium and SMCL values for manganese, zinc, and sulfate in the Area I wells (Table 3-4B). Median concentrations exceeded MCL values for cadmium and SMCL values for copper, manganese, zinc, sulfate, and TDS in the Butte Hill wells (Table 3-4C).

Table 3-4B

Median Concentrations, Percentiles, and Interquartile Ranges
of Substances in Injured Area I Alluvial Aquifer Wells
(µg/l; SO₄ in mg/l)

Analyte	# Wells	Median Concentration	25% Percentile	75% Percentile	Interquartile Range
Al	83	157	11	660	649
As	83	4.4	1.5	19	17.5
Cd	83	23.8	3	210	207
Cr	83	4	4	4	0
Cu	83	90.5	6.85	5,000	4,993.15
Fe	83	98	10.5	13,600	13,589.5
Mn	83	11,000	140	37,800	37,660
Ni	83	8.9	1.6	81.6	80
Zn	83	7,200	430	52,000	51,570
SO₄	84	541	300	1,510	1,210
Ве	83	0.5	0.5	1.5	1.0
Со	83	8.1	4	65.8	61.8
T1	83	5	2	20	18
Source: A	ppendix IIIA.				

Table 3-5 shows p-values for the Area I and Butte Hill wells as compared to baseline alluvial aquifer wells. All p-values for the Area I/baseline comparison show a statistically significant difference between baseline and injured groundwater, except for iron. All substances that have median values exceeding relevant standards do have significant p-values when baseline and injured concentrations are compared. For the Butte Hill/baseline comparison, arsenic, chromium, iron, and manganese do not have statistically significant p-values. This may reflect the differences in concentrations in the shallower and deeper wells. For substances that do exceed relevant standards, only manganese does not show a statistically significant difference between baseline and injured wells when compared using the Mann-Whitney test.

Table 3-4C
Median Concentrations, Percentiles, and Interquartile Ranges
of Substances in Injured Butte Hill Alluvial Aquifer Wells
(µg/l, unless otherwise noted)

Analyte	# Wells	Median Concentration	25% Percentile	75% Percentile	Interquartile Range
Al	15	210	17.4	63,200	63,182.6
As	15	0.95	0.5	2.75	2.25
Cd	15	44.1	5.9	3,820	3,814.1
Cr	15	2	1.8	5.95	4.15
Cu	15	1,080	233	74,400	74,167
Fe	15	39.5	13.6	156	142.4
Mn	15	166	10.8	167,000	166,989.2
Ni	15	57.4	7	2,140	2,133
Ag	15	1	0.5	22.7	22.2
Zn	15	8,520	1,190	379,000	377,810
F (mg/l)	15	1.0	0.45	25.2	24.75
SO ₄ (mg/l)	15	810	463	5,160	4,697
TDS (mg/l)	15	1,310	895	7,120	6,225

3.1.4 Comparison to Concentrations in Uncontaminated Groundwaters Cited in the Literature

Table 3-6 presents major ion chemistry of groundwater or springs in primarily igneous rock areas (Freeze and Cherry, 1979). These waters are generally of low ionic strength and have low sulfate concentrations. Tables 3-5 and 3-6 present water chemistry from groundwaters, springs, hot springs and surface waters that are high in dissolved aluminum or manganese, and iron, respectively (Hem, 1992). Analyses 1 and 4 in Table 3-7 represent water of low pH, which can be responsible for generating high concentrations of dissolved aluminum (Hem, 1992). Analyses 1, 2 and 3 in Table 3-8 probably typify iron-containing groundwater where a pyrite-oxidation mechanism is plausible (Hem, 1992). These analyses do show that

Table 3-5
Alluvial Aquifer
Comparison of Baseline and Injured Areas: Median Concentrations and p-Values
(µg/l; SO₄ in mg/l)

	Baseline	Ar	ea I	Butte	e Hill
Analyte	Median	Median	p-Value	Median	p-Value
Al	9.4	157	0.0070	210	0.0164
As	1.6	4.4	0.0457	.95	0.4929
Cd	.55	23.8	0.0002	44.1	0.0003
Cr	3.45	4	0.0255	2	0.9379
Cu	3.75	90.5	0.0079	1,080	0.0002
Fe	54	98	0.3750	39.5	0.9287
Mn	33	11,000	0.0016	166	0.4835
Ni	1.58	8.9	0.0189	57.4	0.0005
Ag	0.5	ND	ND	1	0.0060
Zn	85	7,200	0.0002	8,520	0.0002
SO ₄	149	541	0.0006	810	0.0007
Be	.5	0.5	NC	ND	ND
* not con Source: A	nputed ppendix III.	NC not calc	ulated	ND Not determine	ed

naturally elevated concentrations of sulfate, iron, aluminum and manganese can occur in groundwaters under certain geochemical conditions; however, none of these waters is quite comparable to groundwater in the study area.

Table 3-9 presents ranges of pH values and concentrations of copper, zinc, lead and cadmium in shallow groundwaters and springs (some compilations of samples include surface water samples) in contact with undisturbed mineral deposits (Runnells et al., 1992). Maximum values for copper exceeded 1000 µg/l in three of 12 sites reporting data (all springs); zinc concentrations exceeded 5000 µg/l at only one site; lead values exceeded 50 µg/l in 5 of 7 sites reporting data for springs and groundwaters, and cadmium concentrations exceeded

Table 3-6
Mean Values or Major-Ion Composition of Groundwater and Groundwater-Derived
Surface Water in Primarily Igneous Rock Areas (mg/l)

	Location*	Number	pН	HCO3	CI-	SO ₄ 2-	SiO ₂	Na+	K+	Ca2+	Mg ²⁺
(1)	Vosges, France	51	6.1	15.9	3.4	10.9	11.5	3.3	1.2	5.8	2.4
(2)	Brittany, France	7	6.5	13.4	16.2	3.9	15.0	13.3	1.3	4.4	2.6
(3)	Central Massif, France	10	7.7	12.2	2.6	3.7	15.1	4.2	1.2	4.6	1.3
(4)	Alrance Spring F, France	77	5.9	6.9	<3	1.15	5.9	2.3	0.6	1.0	0.4
(5)	Alrance Spring A, France	47	6.0	8.1	<3	1.1	11.5	2.6	0.6	0.7	0.3
(6)	Corsica	25	6.7	40.3	22.0	8.6	13.2	16.5	1.4	8.1	4.0
(7)	Senegal	7	7.1	43.9	4.2	0.8	46.2	8.4	2.2	8.3	3.7
(8)	Chad	2	7.9	54.4	<3	1.4	85	15.7	3.4	8.0	2.5
(9)	Ivory Coast	54	5.5	6.1	<3	0.4	10.8	0.8	1.0	1.0	0.10
	(Korhogo, dry season)										
(10)	Ivory Coast	59	5.5	6.1	<3	0.5	8.0	0.2	0.6	<1	< 0.1
	(Korhogo, wet season)										
(11)	Malagasy	2	5.7	6.1	1	0.7	10.6	0.95	0.62	0.40	0.12
	(high plateaus)										
(12)	Sierra Nevada, Calif.		6.2	2.0	0.5	1.0	16.4	3.03	1.09	3.11	0.70
	(ephemeral springs)										
(13)	Sierra Nevada, Calif.		6.8	54.6	1.06	2.38	24.6	5.95	1.57	10.4	1.70
	(perennial springs)										
(14)	Kenora, NW Ontario	12	6.3	24.0	0.6	1.1	18.7	2.07	0.59	4.8	1.54
	(unconfined aquifer)										
(15)	Kenora, NW Ontario	6	6.9	59.2	0.7	0.8	22.1	3.04	1.05	11.9	4.94
	(confined aquifer)										

^{*(1),} A spring after thawing, 1967; (2) and (3), streams after several dry months, summer 1967; (4) and (5), two springs throughout 1966; (6), streams throughout the Island after 6 dry months, 1967; (7), streams in eastern regions, dry season 1967; (8), stream in Guera, dry season 1967; (9) and (10), streams in Korhogo area, 1965; (11), on the high plateaus and on the eastern coast, dry season 1967; (12) and (13), springs during 1961; (14) and (15), piezometers in glacial sands derived from granitic Precambrian rocks. SOURCES: Tardy, 1971 (1) to (11); Feth et al., 1964 (12) and (13); and Bottomley, 1974 (14) and (15).

Source: Freeze and Cherry, 1979.

Table 3-7
Analyses of Waters High in Dissolved Aluminum and Manganese

Constituent	Dec.	1 13, 1955	Dec.	2 3, 1955	Aug.	3 31, 1958		4 8 - 10, 1963	Mar.	5 25, 1953
	mg/L	meq/L	mg/L	meq/L	mg/L	meq/L	mg/L	meq/L	mg/L	meq/L
Silica (SiO ₂)	98		10		92		9.7		31	
Aluminum (Al)	28		.1		.35		3.5		.2	••••••
Iron (Fe)	.88		.04		.02		.10		2.7	
Manganese (Mn)	9.6		1.3		.31	************	2.5		.22	
Calcium (Ca)	424	21.16	58	2.89	67	3.34	32	1.60	28	1.40
Magnesium (Mg)	194	15.96	13	1.07	.0	.00	11	.90	1.9	.16
Sodium (Na)		18.10	23	1.00	477	20.75	12	.52	6.8	.30
Potassium (K)		.28	2.8	.07	40	1.02	3.7	.09	4.2	.11
Hydrogen (H)		10 .			*****			.16		
Carbonate (CO ₃)			0		0	.00	0			**
Bicarbonate							•			•••••
HCO ₃)	0		101	1.66	1,020	16.72	0		121	1.98
Sulfate (SO ₄)		50.38	116	2.42	169	3.52	171	3.56	1.4	.03
Chloride (CI)		10.72	39	1.10	206	5.81	5.0	.14	1.0	.03
Fluoride (F)	1.8	.09	.0		6.8	.36	.1	.01	.1	.03
Nitrate (NO ₃)	3.1	.05	.6	.01	1.8	.03	5.3	.09	.2	.00
Orthophosphate		.02	.0	.01	1.0	.03	3.3	.09	.2	.00
PO ₄)	.0		1		.11				^	
Boron (B)			••	***************************************	2.8			•••••	.0	***************************************
Dissolved solids:			• • • • • • • • • • • • • • • • • • • •	••••••	2.8	***************************************		• • • • • • • • • • • • • • • • • • • •		
Calculated	2 000		314							
Residue at	3,770	***************************************	314		1.570	•••••	256	***************************************	137	***************************************
180°C	4 100		220							
Hardness as	4,170	***************************************	338	***************************************	1,560	••••••	260	•••••	• • • • • • • • • • • • • • • • • • • •	
CaCO ₃	1.000									
		***************************************	198		168	•	125		78	•••••
Noncarbonate		***************************************	115	•••••	0		125		0	
pecific conductance (micromhos at 25°C).	4,570	***************************************	517		2,430		507	•••••	192	
эн	4.0		7.0	••••	6.7	***************************************	3.8		6.9	

Well, 7 mi northeast of Monticello, Drew County, Ark, Depth, 22 ft. Water-bearing formation, shale, sand, and marl of the Jackson Group. Also contained radium (Ra), 1.7 pCi/L, and uranium (U), 17 μg/L.

Source: Hem, 1992.

^{2.} Composite from two radial collector wells at Parkersburg, Kanawha County, W. Va. Depth, 52 ft. Water from sand and gravel. Also contained copper (Cu), 0.01 mg/L, and zinc (Zn), 0.01 mg/L.

^{3.} Wagon Wheel Gap hot spring, Mineral County, Colo. Discharge, 20 gpm; temperature, 62.2°C. Associated with vein of the Wagon Wheel Gap fluorite mine. Also contained 2.3 mg/L Li, 0.9 mg/L NH₄, 0.3 mg/L Br, and 0.3 mg/L l.

⁴ Kiskiminitas River at Leechburg (Vandergrift), Pa. Composite of nine daily samples. Mean discharge for period, 10,880 cfs.

^{5.} Well, 167 ft deep, Baltimore County, Md. Water-bearing formation, Port Deposit granutic gneiss. Also contained 0.01 mg/L copper (Cu).

Table 3-8
Analyses of Waters Containing Iron

Constituent	May 2	1 28. 1952	Mar	2 . 8, 1952	Feb.	3 27, 1952	Oct. 1	4 -31, 1962
	mg/L	meq/L	mg/L	meq/L	mg/L	meq/L	mg/L	meq/
Silica (SiO ₂)	20	•	12	******************	26		11	
Aluminum (Al)			1.2		1.2			
ron (Fe)	2.3	***************	2.9	***************************************	10	***************************************	1.4	
Manganese (Mn)	.00			•••••				
Calcium (Ca)	126	6.29	2.7	.135	8.8	.439	18	.898
Magnesium (Mg)	43	3.54	2.0	.164	8.4	.691	8.0	.658
Sodium (Na)	13	.56	35	1.522	34	1.478	9.3	.40
Potassium (K)	2.1	.05	1.7	.044	2.9	.074	9.3	.40
Bicarbonate (HCO ₃)	440	7.21	100	1.639	65	1.065	69	1.131
ulfate (SO ₄)	139	2.89	5.6	.117	71	1.478	29	.604
Chloride (CI)	8.0	.23	2.0	.056	2.0	.056	6.4	.181
Fluoride (F)	.7	.04	.1	.005	.3	.016		
litrate (NO ₃)	.2	.00	.6	.010	.0	.000	2.9	.046
Dissolved solids:								
Calculated	594		113		187			
Residue on evaporation	571		101	***************	180		156	
lardness as CaCO ₃	490	•••••	15		56		78	
Noncarbonate	131		0		3		21	
pecific conductance (micromhos at 25°C).	885		162		264		188	
Н	7.6		7.4	***************************************	6.4		6.9	
Color	1	***************************************	23		7		140	***********

^{1.} Well 3. Nelson Rd., Water Works, Columbus, Ohio. Depth, 117 ft; temperature, 13.3°C. Water from glacial outwash.

Source: Hem, 1992.

^{2.} Well 79:8-50, public supply, Memphis, Tenn. Depth. 1,310 ft; temperature, 22.2°C. Water from sand of the Wilcox Formation.

^{3.} Well 5:290-1, 6 mi southeast of Maryville, Blount County, Tenn. Depth. 66 ft; temperature, 14.4°C. Water from the Chattanooga Shale.

^{4.} Partridge River near Aurora, Minn. Composite sample. Mean discharge, 30.8 cfs.

^{5.} Brine produced with oil from well in NW1/4 sec. 3, T. 11 N., R. 12 E., Okmulgee County, Okla. Depth, 2,394 ft. Water from the Gilcrease sand of drillers. Atoka Formation.

Ranges of Compositions of	Table 3-9 Ranges of Compositions of Surface and Shallow Groundwaters in Contact with Undisturbed Mineral Deposits	s in Contact	with Undistur	bed Miner	al Deposits	
				Concent	Concentration (mg/L)	
Location (Type of Water Sampled)	Rocks	bН	Cu	Zn	Pb	Cd
North Wales, Great Britain (stream and groundwater)	Turbidite, slate, diorite	nr	> 0.10 ^b	nr	nr	nr
Russia (six regions) (groundwater)	nr	nr :	0.01-0.13	0.04-0.5	nr	nr
Northwest Territories, Canada (2 springs)	Metavolcanics, carbonate-poor	3.4	0.87-2.1	1.1-2.0	0.34-0.51	nr
Russia (many sites; maximum values in shallow groundwaters)	Shallow portions of weathered ore deposits	6.2-7.8	1.0 (max.)	2.5 (max.)	0.25 (max.)	0.26 (max.)
Arkansas, Ouachita Mtns. (regional groundwater)	Shale, chert, sandstone, limestone	nr	0.001-0.85	0.002-	< 0.01- 0.059	nr
Northwest Arizona(one spring)	Intrusive igneous	4.0	12.0 ⁶	3.3 ⁶	nr	nr
Czechoslovakia (many springs, wells, streams)	nr	nr	nr	0.05-0.25 not sp	0.05-0.25 (Zn or Pb, not specified)	nr
Wisconsin Zn-Pb district (3,766 springs)	Dolomite, chert, limestone	6.9-7.4 (21 samples)	nr	0.05-0 percentile	0.05-0.27 (75th percentile, mainly Zn)	Ju
Wisconsin (approx. 90 springs and streams)	Dolomite, chert, limestone	7.1-8.7	nr	< 0.002-1 metals, 1	< 0.002-1.5 (total heavy metals, mainly Zn)	nr
Ontario, Canada (four shallow groundwaters)	Precambrian metamorphics	nr	0.003-0.070	nr	nr	nr
Park County, Montana (two springs)	Igneous, sedimentary, contact	2.73-3.93	0.30-7.9	0.07-1.1	< 0.01	< 0.0002- 0.003
Basin and Parent Creeks, Yukon (three springs)	Metamorphic, with minor limestone	4-6	0.080, 1.	7, 50. (total	0.080, 1.7, 50. (total heavy metals, mainly Zn)	mainly Zn)
Flambeau, Wisconsin (groundwater)	Precambrian volcanics	5.8-7.4	0.003- 0.085 ^b	0.005- 1.8 ^b	< 0.0025 ^b	0.0002-0.024 ^b
Crandon, Wisconsin (groundwater)	Glacial drift, above subcrop of sulfide ore in volcanics	7.7 (mean)	< 0.001- 0.09 ^b	< 0.001- 2.6 ^b	< 0.01-0.10 ⁵	< 0.001-0.015 ^b
Crandon, Wisconsin (groundwater)	Volcanic bedrock (six deep drillholes)	5.9-8.1	< 0.001- 0.27 ^b	0.041- 1.5 ^b	< 0.01-0.39 ^b	< 0.001-0.027 ^b
Type of enclosing rock is listed if reported. Values are for total metal except where indicated; nr = not reported; max. = maximum value reported; na = not applicable, Runnels, D. D. University of Colorado, Boulder, unpublished data, 1981. Source: Runnells et al., 1992.	ed. Values arc for total metal except where indicate versity of Colorado, Boulder, unpublished data, 1981	it where indicalished data, 199	sted; nr = not 1.	reported; ma	x. = maximum	value reported;

5 μg/l at 4 of 5 sites with data for springs or groundwater. The quality of these data is not established in the article, although it can be assumed that few if any of the samples were collected and analyzed using U.S. EPA protocols. These analyses do show that naturally elevated concentrations of some metals can exist in groundwaters in the vicinity of mineral deposits. However, none of the areas described by the authors are documented as being similar in geologic or hydrologic setting to the Butte area; therefore, the data are not directly relevant to conditions in the study area.

3.2 EXTENT OF INJURED GROUNDWATER

3.2.1 Areal Extent of Injured Groundwater

3.2.1.1 Bedrock Aquifer

A significant portion of injured water associated with the bedrock aquifer is in the Berkeley Pit. Water quality data for historic and recent sampling of pit water are presented in Appendix I. Concentrations of hazardous substances in Berkeley Pit water exceeded primary and/or secondary drinking water standards for pH, sulfate, TDS, fluoride, iron, manganese, aluminum, silver, arsenic, cadmium, copper, nickel, lead and zinc. Cobalt, molybdenum, vanadium and zirconium concentrations were also elevated. Concentrations are plotted versus depth for Berkeley Pit waters in Figures 3-7A through 3-7I. Relevant MCL and SMCL values are also plotted for comparison of pit water concentrations to drinking water standards.

Butte Hill bedrock groundwater quality data are presented in Appendix II. The areal extent of injury is approximately the same for both hazardous and other (e.g., sulfate) substances of concern.

The areal extent of injured bedrock groundwater in the Butte Hill area is based on subsurface mine map information presented in Table 3-10. A polygon was constructed to include the farthest extent of mining projected to the surface. The total area of the East Camp system is approximately 1.66×10^8 square feet; the area of the West Camp is approximately 1.43×10^7 square feet, and the Outer Camp is 1.66×10^6 square feet. The areal extent of injured bedrock aquifer groundwater in the Butte Hill area is 1.8×10^8 square feet (6.46 square miles or 4,133 acres). The areal extent of injured groundwater in the Berkeley Pit is 2.126×10^7 square feet (0.76 square miles or 488 acres). The total areal extent of injured bedrock groundwater in the Butte Hill area is 2.01×10^8 square feet (7.22 square miles or 4,620 acres). The approximate areal extent of injury is shown on Figure 3-8 and encompasses the area of connected underground mine workings. Those wells used for baseline groundwater quality are not part of the connected mine workings, but are within the injured area. Figure 3-8, taken from the Record of Decision (U.S. EPA, 1994), shows a somewhat larger area of extent than that calculated above.

Figure 3-7A & 3-7B.

Berkeley Pit Water Chemistry, Concentrations vs. Depth for:
(A) Dissolved Oxygen and pH; (B) Iron, Manganese and
Aluminum. Source: Appendix I.

Figure 3-7C & 3-7D.

Berkeley Pit Water Chemistry, Concentrations vs. Depth for (C) Eh and Specific Conductance; and (D) Sulfate and Fluoride. Source: Appendix I.

Figure 3-7E & 3-7F.

Berkeley Pit Water Chemistry, Concentrations vs. Depth for:
(E) Cadmium, Cobalt and Lead; (F) Arsenic and Nickel.
Source: Appendix I.

Figure 3-7G & 3-7H.

Berkeley Pit Water Chemistry, Concentrations vs. Depth for:
(G) Vanadium and Zirconium; (H) Silver, Boron and
Molybdenum. Source: Appendix I.

Figure 3-71. Berkeley Pit Water Chemistry, Concentrations vs. Depth for: (I) Copper and Zinc. Source: Appendix I.

3.2.1.2 Alluvial Aquifer

3.2.1.2.1 Butte Hill

The areal extent of injured alluvial groundwater in the Butte Hill area was estimated using isopleth maps for iron, zinc, sulfate, cadmium, arsenic, lead and copper constructed using data in Appendix III plotted with the graphing program SURFER.¹ The areal extent of injured groundwater for each constituent (area exceeding MCL or SMCL values) was estimated using the 2-D contour plots like those shown in Figures 3-9A through 3-9C for cadmium, copper, and sulfate. The x and y axes on these figures are longitude and latitude. The area

¹ The location of the wells can be found in Figure 2-4 and Plate I.

U.S. EPA, 1994. Area of Potential Contaminated Bedrock Aquifer in the Butte Hill Area. Source: Figure 3-8.

Table 3-10

Mine Projection Map Information Used to Calculate Area and Volume of Injured Bedrock

Groundwater in the Butte Hill Area

Sheet Number	Area (sq ft)	Range (level)	Thickness (feet)	Volume (cu ft)
4	25,217,920	400 to 800	500	1.26E+10
9	86,158,720	900 to 1,300	500	4.31E+10
14	133,514,880	1,400 to 1,800	500	6.68E+10
19	136,224,960 ·	1,900 to 2,000	200	2.72E+10
21	163,393,760	2,100 to 2,500	500	8.17E+10
26	95,477,280	2,600 to 3,000	500	4.77E+10
31	139,961,120	3,100 to 4,000	1,000	1.40E+11
41	90,702,560	4,100 to 4,500	500	4.54E+10
46	23,477,600	4,600 to 5,000	500	1.17E+10
51	4,664,640	5,100 to 5,200	100	4.66E+08

Notes:

- 1. Elevation of Base of Pit = 4,320 ft. (AMC); 4,263 ft. (USGS).
- 2. Base of Pit corresponds to the 1,600 level of the Kelley Mine.
- 3. The 1,600 level of the Kelley Mine corresponds to Sheet 21.
- 4. The Kelley Pump Station is on the 3,900 level.
- 5. Present elevation of water level in Pit = 5.040 ft. (USGS).
- 6. An elevation of 5,040 ft. corresponds to the 800 level of the Kelley Mine (Sheet 14).
- 7. Current action level elevation (5,410 ft. USGS) corresponds to the 450 level of the Kelley Mine (Sheet 9).

exceeding the MCL or SMCL value was estimated using a planimeter. Zinc, copper, iron, lead, cadmium, and sulfate concentrations exceeded relevant water quality standards. The water quality standard for zinc was exceeded in every well; the water quality standard for lead was exceeded in only two wells. Sulfate concentrations exceeded the SMCL value (250 mg/l) in all but one well (LP10). The information used to calculate the area of injured alluvial groundwater in the Butte Hill area is presented in Table 3-11, and the areal extent of each contaminant plume is presented in Table 3-12. The areal extent of injured groundwater in the Butte Hill alluvial aquifer is given by the extent of the zinc plume (the zinc SMCL was exceeded in all wells), which is 2.20×10^7 ft² (0.79 mi² or 505 acres), as shown in Table 3-12.

Figure 3-9A. Areal Extent of Injured Groundwater in the Butte Hill Alluvial Aquifer (Deep Wells): Cadmium. Source: Appendix IIIB.

Figure 3-9B. Areal Extent of Injured Groundwater in the Butte Hill Alluvial Aquifer (Deep Wells): Copper. Source: Appendix IIIB.

Figure 3-9C. Areal Extent of Injured Groundwater in the Butte Hill Alluvial Aquifer (Deep Wells): Sulfate. Source: Appendix IIIB.

	Inform	nation Usec	1 to Calculate	Table 3-11 Information Used to Calculate Area and Volume of Injured Alluvial Groundwater in the Butte Hill Area	3-11 ijured Allu	vial Gro	undwat	er in th	e Butte	Hill A	rea	
	Latitude/l	Latitude/Longitude	Screen	4	Average				l/gm			
Well	East	North	Interval (ft)	Average Depth (ft) (center of screen)	SWL (ft)	Zu	Cu	Fe	Pb	As	°os	PO
LP1	1240026	750462	175-195	185	133	16.4	2.54	0.14	0.03	0.00	1,640	0.26
LP2	1240085	750456	127-157	142	134	0.99	78.1	0.36	0.03	0.01	5,650	3.43
LP3	1238704	750870	20-60	40	19	36.2	315	773	0.03	0.02	31,533	5.41
LP4	1239992	749728	115-155	135	06	84.5	5.97	0.11	0.02	0.00	3,097	0:30
LPS	1239961	749713	186-226	206	107	41.2	2.93	0.12	0.01	0.00	1,138	0.05
LP6	1241771	750230	95-105	100	108	145	0.14	0.03	0.00	0.00	609	00.0
LP7	1240026	750269	90-95	92.5	88	57.3	432	8.58	90.0	0.03	20,000	9.95
LP8	1239991	749542	79.5-94.5	87	59	45.0	413	0.82	0.07	0.03	24,000	92.9
LP9	1239223	749802	80-100	06	72	146	0.23	0.13	0.02	0.00	3,900	0.46
LP10	1241068	748332	130-160	145	121	16.3	0.91	0.04	0.03	0.00	160	00.0
LP12	1240038	746110	108-128	118	78	45.0	0.62	0.03	0.00	0.00	530	0.01
LP13	1240014	746118	215-235	225	84	33.6	0.70	0.03	0.00	0.00	310	0.00
LP14	1239052	745795	82-102	92	65	23.5	0.05	0.05	0.00	0.00	620	0.01
LP15	1238178	746903	215-235	225	84	27.1	0.01	0.03	0.00	0.00	310	0.01
LP16	1238212	746887	100-120	110	83	34.7	1.07	0.05	0.00	0.00	810	0.02
Source	Source: Canonie, 1992a	1992a.										

SWL = depth from ground surface to static water level.

	Surface Surface Area (sq ft) 2.20E+07 2.19E+07 2.10E+07 1.60E+07 5.25E+06	Table 3-12 Surface Area, Volume, and Flux of Injured Alluvial Groundwater in the Butte Hill Area Volume Calculations Volume Calculations Crea Avg. Depth (ft) Avg. SWL (ft) Avg. Cont. GW (cu ft) Volume Volume (acres) 07 505 133 88.3 44.5 9.79E+08 22,5 07 503 134 86.9 48.3 1.06E+09 24,3 07 482 134 84.3 50.1 1.05E+09 24,2 07 367 125 89.1 35.6 5.69E+08 13,1 06 121 90.4 75.0 15.4 8.07E+07 1,8	Avg. Depth (ft) 133 135 135 125 90.4	Table 3-12 of Injured Alluvial G Volume Calculations Of the Avg. SWL Av (ft) 88.3 86.9 86.9 84.3 89.1	Ons Avg. Cont. GW Depth (ft) 44.5 48.3 50.1 50.1 15.4	the Butte Hi Volume (cu ft) 9.79E+08 1.05E+09 5.69E+08	Volume (acre-ft) 22,500 24,300 24,200 13,100 1,850	Volume (acre-ft) @ 20% Porosity 4,500 4,850 4,830 2,610
Surface area = area e Average groundwater Section (approx.)	Surface area = area exceeding rel Average groundwater depth = ave Section (approx.)	Surface area = area exceeding relevant water quality standards. Average groundwater depth = average screened depth - SWL (Table 3-11) Flux Calcu Section (approx.) (sq ft/d)	y standards. yth - SWL (Tab Flu T (sq ft/d)		ations n (from map)	(ii)	O (cu ft/d)	(ac-ft/yr)
			79.5		6 6	25 25 25 25 25	17,900	150
			79.5		2 3 7	25	5,960	50.0
Based on RI static wat Q = n * T * CI Where: Q: Discharge (cu. n: Number of flo Avg. Depth Avg. SWL Avg. Cont. GW Depth	n RI static water levels an T * CI Discharge (cu. ft./day). Number of flow tubes. pth = Avera VL = Avera out. GW Depth = Avg.	Based on RI static water levels and transmissivity values. Q = n * T * CI Where: Q: Discharge (cu. ft./day). T: Transmissivity (sq. ft./day). CI: Contour interval (ft.). Avg. Depth = Average depth of wells with exceedences. Avg. SWL = Average depth to water table for wells with exceedences. Avg. Cont. GW Depth = Avg. Depth - Avg. SWL.	ransmissivity (sq. ft./day). Contour interval (ft.). f wells with exceedences. o water table for wells with	/day). ces. with exceeder	ıces.			

3.2.1.2.2 Area I

Plan view isopleth maps were constructed for arsenic, cadmium, copper, iron, lead, sulfate, and zinc for the area west of Montana street (Figures 3-10A through 3-10G) and for cadmium, copper, iron, lead, sulfate, and zinc in the Area I alluvial aquifer east of Montana Street (Figures 3-11A through 3-11F) using data in Appendix IIIA and the graphing program SURFER. The areal extent of injured alluvial groundwater is much greater east of Montana Street than west of Montana Street (Table 3-13). The areal extent of Area I groundwater both east and west of Montana Street that exceeds any relevant standard is shown in Figure 3-12.

For the area west of Montana Street the areal extent of the hazardous substance groundwater plumes decreases in the following order:

cadmium > sulfate > zinc > iron > lead > copper > arsenic.

For the area east of Montana Street the areal extent of the hazardous substance groundwater plumes decreases in a very similar order:

sulfate > zinc > cadmium > iron > lead > copper.

Arsenic concentrations do not exceed the MCL value of 50 µg/l east of Montana Street, and therefore no groundwater plume for arsenic is shown.

For the combined areas both east and west of Montana street, the areal extent of the hazardous substance groundwater plumes decreases in the following order:

sulfate > cadmium > zinc > iron > lead > copper > arsenic.

Isopleth maps for a number of other constituents were not constructed, but the following hazardous and other substances are also elevated in alluvial groundwaters above their MCL/SMCL values in wells that are at least 100 feet apart (see Table 2-2 and Appendix IIIA): aluminum, antimony, beryllium, chromium, fluoride, manganese, nickel, thallium and nitrate. Selenium and silver MCLs are exceeded in only one well each. Elevated nitrate levels may not be related to mining activity.

The areal extent of injured alluvial groundwater west and east of Montana Street and for the combined areas is presented in Table 3-13. A planimeter was used to estimate the area in the 2-D contour maps that exceed the MCL or SMCL value. The total areal extent of injured alluvial groundwater in Area I is given by the extent of the sulfate plume, which is 2.45×10^7 square feet (0.88 square miles or 562.5 acres). The plume of injured alluvial groundwater for cadmium is almost as large, i.e., 530 acres or 0.83 square miles. Moreover, the composite plume which includes all injured groundwater, is even larger than the sulfate plume (Figure 3-12).

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Arsenic (µg/l). Source: Appendix IIIA. Figure 3-10A.

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Cadmium (µgA). Source: Appendix IIIA. Figure 3-10B.

COPPER

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Copper (µgA). Source: Appendix IIIA. Figure 3-10C.

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Iron (µg/l). Source: Appendix IIIA. Figure 3-10D.

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Lead (µg/l). Source: Appendix IIIA. Figure 3-10E.

SULFATE

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Sulfate (µg/I). Source: Appendix IIIA. Figure 3-10F.

Areal Extent of Injured Alluvial Groundwater in Area I West of Montana Street: Zinc (µg/l). Source: Appendix IIIA. Figure 3-10G.

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Cadmium (µg/I). Source: Appendix IIIA. Figure 3-11A.

RCG/Hagler Bailly

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Copper (µg/I). Source: Appendix IIIA. Figure 3-11B.

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Iron (µg/l). Source: Appendix IIIA. Figure 3-11C.

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Lead (µg/l). Source: Appendix IIIA. Figure 3-11D.

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Sulfate (mg/l). Source: Appendix IIIA. Figure 3-11E.

Areal Extent of Injured Alluvial Groundwater in Area I East of Montana Street: Zinc (µg/l). Source: Appendix IIIA. Figure 3-11F.

Figure 3-12. Areal Extent of Injured Alluvial Groundwater in Area I Exceeding Any Relevant Standard. Source: Appendix IIIA.

Table 3-13
Surface Area, Volume and Flux of Injured Alluvial Groundwater in Area I

Volume Calculations West of Montana Street Avg. Cont. GW Approx Depth Volume Average Volume @ 20% Surface Area Approx. Depth C-C' D-D' Depth Depth (ft) (cu ft) Porosity (cu ft) (sq ft) 27.5 1.47E+08 2.94E+07 Fe 5.35E+06 65 36.5 2.48E+08 Zn 7.29E+06 21 65 43.0 34.0 4.96E+07 42.5 33.5 2.69E+08 5.37E+07 8.02E+06 20 65 SO4 Cd 8.36E+06 21 60 40.5 31.5 2.63E+08 5.27E+07 33.0 5.02E+07 65 42.0 1.00E+07 1.52E+06 19 As 20.5 5.54E+07 2.70E+06 45 29.5 1.11E+07 РЬ 14 6.54E+07 Cu 2.11E+06 15 65 40.0 31.0 1.31E+07 Fact of Montana Street

East of Montana Street									
	Surface Area Approx. (sq ft) Depth A-A'		Approx. Depth B-B'	Average Depth (ft)	Avg. Cont. GW Depth (ft)	Volume (cu ft)	Volume @ 20% Porosity (cu ft)		
Fe	1.43E+07	50	180	115.0	97.6	1.40E+09	2.79E+08		
Zn	1.48E+07	25	210	117.5	100.1	1.48E+09	2.96E+08		
SO ₄	1.65E+07	55	210	132.5	115.1	1.90E+09	3.80E+08		
Cd	1.47E+07	40	210	125.0	107.6	1.58E+09	3.16E+08		
As	0	_	_	_	_	0	0		
Pb	3.86E+06	25	60	42.5	25.1	9.69E+07	1.94+07		
Cu	1.64E+06	25	250	137.5	120.1	1.97E+08	3.94+07		

Total East and West Surface Area Volume Volume @ 20% (cu ft) Porosity (cu ft) (sq ft) Fe 1.97E+07 1.54E+09 3.09E+08 Zn 2.21E+07 1.73E+09 3.46E+08 SO₄ 2.45E+07 2.17E+09 4.34E+08 Cd 2.31E+07 1.85E+09 3.69E+08 As 1.52E+06 5.02E+07 1.00E+07 Рb 6.56E+06 1.52E+08 3.04E+07 3.75E+06 2.62E+08 5.25E+07

Based on contour maps and cross sections.

Surface area = area exceeding relevant water quality standards.

Flux Calculations Т Section Q1 Q2 Q (avg.) Q (avg.) (cu ft/d) (ac.-ft/yr) (cu ft/d) (approx.) (range) (from map) (cu ft/d) B - B' 45 - 400 10 900 8,000 4,450 37.3 C - C' 2400 - 6000 16 76,800 192,000 134,400 61,126.2 4,550 270 - 380 3,780 5,320 38.1

Based on Phase II RI static water levels and transmissivity values.

 $Q = n \times T \times CI$

Where:

Q: Discharge (cu ft/d).

T: Transmissivity (sq ft/day).

Avg. Cont. GW Depth = Avg. depth of contaminated groundwater = Avg. Depth - Avg. SWL.

n: Number of flow tubes.

CI: Contour interval (= 2 ft).

Avg. SWL West of Montana St. = 9 ft Avg. SWL East of Montana St. = 17.4 ft.

3.2.2 Volume of Injured Groundwater

3.2.2.1 Bedrock Aquifer

Table 3-10 presents information used to calculate the volume of injured bedrock groundwater in the Butte Mine Flooding area. The volume was calculated using mine projection maps. Fifty-one mine projection maps exist, and each sheet represents one level (100 feet) of mine workings (mine workings extend to approximately 5,100 feet below the ground surface). Maps from ten evenly-spaced working mine levels were used for volume calculations (Table 3-14).

The areas were determined by outlining each map based on the farthest extent of workings in both the West Camp and the East Camp. The result was a polygon with 4 to 11 points depending on the complexity of the level. The area for each level was calculated by dividing each area into triangles and summing their areas. Polygon areas were verified by digitizing each sheet and calculating an area using ARC/INFO software.

Volumes were calculated by integrating the determined areas into a solid volume and applying porosity values for the bedrock aquifer and mined "porosity" to account for the total void volume of the mine workings. Fracture porosity in the bedrock is conservatively estimated to be 1%; mined porosity is estimated to be 0.23%.

Volumes for four conditions are presented in Table 3-13. The first condition (Base of Pit to 5,100 level) calculates a volume for the area from the base of the Pit to the deepest extent of mine workings (5,100 feet below ground surface). The second condition considers the volume of bedrock aquifer with mine workings below the present groundwater level (SWL - static water level), using an elevation of 5,080 feet, to the deepest extent of mining. The water elevation in the Berkeley Pit was approximately 5,080 feet in October 1994 and rises 2 to 3 feet per month. The approximated current water elevation used in this report is 5,080 feet.

The third condition uses the action level for the East Camp (elevation = 5,410 feet). A volume was calculated using this elevation, which corresponds to the 450-foot level of the Kelley Mine and the deepest extent of mining. The action level will be used to estimate the volume of injured bedrock groundwater.

The fourth condition calculates the solid volume from the base of the pit to the 3,900 level. CDM/FPC (1989) estimated the mined volume of 4.6×10^8 cubic feet from the base of the Berkeley Pit to the Kelley Mine pump station on the 3900 level. Comparison of this to the solid volume indicates a mine-to-rock ratio of 0.23 percent.

Hill Area	tions	tions	tions	tions	Groundwater Volume (1.23% porosity)	Acre-Ft Billion Gallons	92,300 30.1	119,000 38.7	131,000 42.7	56,200 18.3	Fracture porosity is estimated at 1%. CDM/FPC (1989) estimated the volume mined from the 3900 level to base of Pit at 4.6E+08 cubic feet or 0.23% of total solid volume.		Volume	Acre-Ft Billion Gallons	6.41E+04 20.9	1.96E+05 64.0	2.13E+05 69.4	
	Table 3-14 Tolume of Injured Groundwater in the Butte Hill Area	I. Volume of Groundwater in Bedrock Using Four Conditions		Cu Ft	4.02E+09	5.18E+09	5.71E+09	2.45E+09	Pit at 4.6E+08 cubic	ne Berkeley Pit		Cu Ft	2.79E+09	8.56E+09	9.28E+09			
	Table 3-14 ured Groundwater	undwater in Bedro	Groundwater Volume (1% porosity)	Acre-Ft	75,100	96,700	107,000	45,700	1900 level to base of	II. Volume of Water in the Berkeley Pit		Area at Contour (sq ft)	9.63E+06	1	2.29E+07	1004		
	Volume of Inj	. Volume of Gro	Gròundy (1%	Cu Ft	3.27E+09	4.21E+09	4.64E+09	1.99E+09	mined from the 3	II. Vo		Area at (9.6		2.3	h. and TIC EDA		
		I	Solid Volume (no porosity)	Cu Ft	3.27E+11	4.21E+11	4.64E+11	1.99E+11	imated at 1%. nated the volume			(tr)				la. Canonia 1003		
				Conditions	1. Base of Pit to 5,100 level	2. Below present SWL (5,080)	3. Below Action Level (5,410)	4. Base of Pit to 3,900 level	Fracture porosity is estimated at 1%. CDM/FPC (1989) estimated the volu			Elevation (ft)	5,043	5,410	5,443	Sources: Canonie 1993a: Canonie 1993h: and 11 C EDA 1994		

Injured bedrock groundwater volumes were based on (1) 1 percent fracture porosity; and (2) 1 percent fracture porosity plus an additional 0.23 percent mined volume (= 1.23%). Volumes for each of these assumptions are presented in Table 3-14. A porosity value of 1.23 was used as the best estimate of total porosity of the injured bedrock aquifer in the Butte Mine Flooding area because it uses a conservative (low) estimate for fracture porosity and includes the porosity to account for the mine workings. Volumes of injured groundwater at both the action level (elevation = 5,410 feet) and the present water level (5,080 feet) are presented in Table 3-14. Based on a porosity of 1.23% and using the action level of 5,410 feet elevation, the volume of injured groundwater in the bedrock aquifer on Butte Hill is estimated to be 5.71×10^9 ft³ (131,000 acre-feet or 42.7 billion gallons). At the approximate current water level of 5,080 feet, the volume of injured groundwater in the bedrock aquifer is 5.18×10^9 ft³ (119,000 acre-feet or 38.7 billion gallons).

The volume of water in the Berkeley Pit at an elevation of 5,443 feet, just above the action level of 5,410 feet, was calculated at 9.28×10^9 ft³ (2.13 × 10⁵ acre-feet or 69.4 billion gallons) (Canonie, 1993a,b) (Table 3-14). At the action level, the volume of water in the Berkeley Pit is estimated to be 8.56×10^9 ft³ (1.96 × 10⁵ acre-feet or 64 billion gallons) (U.S. EPA, 1994). The volume of pit water at the action level is added to the volume of injured bedrock aquifer groundwater below the action level for a total of 1.43×10^{10} ft³ (327,000 acre-feet or 107 billion gallons) of injured bedrock groundwater in the Butte Mine Flooding area at the action level.

The total volume at the action level will be used as the best estimate of injured bedrock groundwater in the Butte Hill area. The volume of injured bedrock groundwater calculated in the Record of Decision (ROD) (U.S. EPA, 1994) is higher than the estimate calculated above. In the ROD, the volume of injured bedrock groundwater in underground workings and fractures is estimated at 61.1 billion gallons instead of 42.7 billion gallons (U.S. EPA, 1994). The discrepancy may result from the different methods of calculating the extent of injured bedrock aquifer, although the ROD does not provide details on calculation methods.

3.2.2.2 Alluvial Aquifer

3.2.2.2.1 Butte Hill

Volume of injured groundwater in the Butte Hill alluvial aquifer was estimated based on 2-D plan view isopleth maps (Figures 3-9A through 3-9C) and is presented in Table 3-12. Zinc, copper, iron, cadmium, lead, and sulfate concentrations exceeded relevant standards. The SMCL value for sulfate was exceeded in all wells considered except well LP10 (see Table 3-11). The volume of contaminated groundwater was estimated using the average contaminated groundwater depths in Table 3-11 and the contoured area that exceeded the relevant standards.

A porosity of 20% was used for calculating the volume of injured groundwater for each of the constituents (conservative average value for silty sand; Freeze and Cherry, 1979). The volumetric extent of injured alluvial groundwater in the Butte Hill area at 20% porosity is 4,850 acre-feet (2.12×10^8 ft³ or 1.59 billion gallons), as represented by the sulfate plume. The volumetric extent of the cadmium plume (4,830 acre-feet) is only slightly less than that for sulfate.

3.2.2.2.2 Area I

Injury of alluvial aquifer groundwater in parts of Area I is very discontinuous for certain metals. Contamination "hot spots" exist around and downgradient from known sources of hazardous substances (buried tailings, surface tailings and other mining waste deposits, etc.). As discussed above, the areal extent of injured groundwater in the MSD area is greater than that in Lower Area I where the plumes are more confined, in part because of their proximity to groundwater discharge areas. In addition, because of the greater depth to bedrock in the MSD area, groundwater injury may extent to greater depths in the alluvial aquifer east of Montana Street than west of Montana Street. The graphing program Axum[®] (TriMetrix, Inc., 1992) was used to create 2-D cross-sectional contour maps to better estimate the depth of injured groundwater in Area I.

Both the plan view 2-D contour maps presented earlier (Figures 3-10 and 3-11) and cross-sectional (vertical) 2-D contour maps constructed for Area I were used to estimate the volumetric extent of injured groundwater. Figure 3-13A and B shows the location of the cross sections and wells used to develop the cross-sectional isopleth maps. The isopleth maps for Area I were constructed for four cross-sections oriented approximately perpendicular to Silver Bow Creek/Metro Storm Drain: A-A' and B-B' (east of Montana Street) and C-C' and D-D' (west of Montana Street). The following wells were used in these cross-sections: A-A' = GS33, GS32, GS30D, GS30S, GS11, GS31D, GS31S, GS14; B-B' = GS45,GS50, GS43D, GS43S, GS44D, GS44S, AMC-13; C-C' = GS20, GS16, GS17D, GS17S, GS22; D-D' = BMW-6B, BMW-4A, BMW-4T, BMW-4B. All isopleth maps were constructed using 1989 Phase II RI data for Area I (Appendix IIIA). Average values for the two 1989 sampling dates were used if they were within 20% RPD (relative percent difference = difference of two values divided by their mean). If not within 20% RPD, the 1989 value closest to the 1990 sampling value was used. All concentrations values shown are in μg/l, except for sulfate, which is in mg/l. The depth values on the y axis represent depth below the land surface.

Representative cross-sectional isopleth maps are presented for the area east of Montana Street in Figure 3-14A through 3-14C (copper, lead and zinc for A-A') and Figure 3-14D through 3-14F (iron, lead and sulfate for B-B'). Representative cross-sectional isopleth maps are also presented for the area west of Montana Street in Figure 3-15A through 3-15D (copper, lead, sulfate and zinc for C-C') and Figure 3-15E through 3-15F (iron and zinc for D-D').

Location of Cross Sections and Wells Used in Cross-Sectional Isopleth Maps: East of Montana Street. Figure 3-13A.

SILVER BOW CREEK WELLS

SCALE: 1" - 880'

Location of Cross Sections and Wells Used in Cross-Sectional Isopleth Maps: West of Montana Street. Figure 3-13B.

RCG/Hagler Bailly

Cross-Sectional Isopleth Map for Area I East of Montana Street: Copper (μg/l), A-A'. Source: Appendix IIIA. Figure 3-14A.

Cross-Sectional Isopleth Map for Area I East of Montana Street: Lead (µg/l), A-A'. Source: Appendix IIIA. Figure 3-14B.

Cross-Sectional Isopleth Map for Area I East of Montana Street: Zinc (µg/l), A-A'. Source: Appendix IIIA. Figure 3-14C.

Cross-Sectional Isopleth Map for Area I East of Montana Street: Iron (µg/l), B-B'. Source: Appendix IIIA. Figure 3-14D.

Cross-Sectional Isopleth Map for Area I East of Montana Street: Lead (µg/l), B-B'. Source: Appendix IIIA. Figure 3-14E.

Cross-Sectional Isopleth Map for Area I East of Montana Street: Sulfate (mg/l), B-B'. Source: Appendix IIIA. Figure 3-14F.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Copper (µg/l), C-C'. Source: Appendix IIIA. Figure 3-15A.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Lead (μg/l), C-C'. Source: Appendix IIIA. Figure 3-15B.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Sulfate (mg/l), C-C'. Source: Appendix IIIA. Figure 3-15C.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Zinc (µg/l), C-C'. Source: Appendix IIIA. Figure 3-15D.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Iron (µg/l), D-D'. Source: Appendix IIIA. Figure 3-15E.

Cross-Sectional Isopleth Map for Area I West of Montana Street: Zinc (μg/l), D-D'. Source: Appendix IIIA. Figure 3-15F.

The isopleth maps are to be used to assess the impact of known sources of hazardous substances on the location of groundwater plumes and to approximate the depth and extent of injured groundwater in Area I. Variations in lithologies and hydraulic conductivities, etc., between wells and lack of data make it impossible to use these isopleth maps in a strictly quantitative manner. However, in general the cross-sectional isopleths maps correspond well with groundwater flow patterns. In the Metro Storm Drain area, concentrations decrease with depth, which corresponds to a shallow source and a downward component of groundwater flow. Cross-section A-A' and B-B' are located in groundwater recharge areas, although B-B' can be in a groundwater discharge area, especially when stream flows are lower in the summer months. Conversely, in the Colorado Tailings area, D-D' is located in a groundwater discharge area and, as would be expected, concentrations increase with depth, indicating upward groundwater flow through a source of hazardous substances. C-C' is also located in a groundwater discharge area, especially during low stream flow in the summer months. The C-C' isopleth maps clearly show the old Silver Bow Creek channel, which was located closer to well GS-16 along this cross section. Contours curve around under the old Silver Bow Creek channel on the left side of the C-C' isopleth maps (near C), and concentrations in the isopleth maps do increase with depth in this vicinity. Similar groundwater flow patterns that follow or outline the old Silver Bow Creek channel are found in the Colorado Tailings area (Duaime et al., 1985).

The volume of injured groundwater in the Area I alluvial aquifer was estimated using the areal extent from the plan-view isopleth maps and the average depth of the groundwater plumes from the cross-sectional isopleth maps. The average depth of injury was estimated by first estimating the total area then to determine, by trial and error, the depth at which one-half of the total area lied above and below a horizontal line. For cross-section D-D' (west of Montana Street), if concentrations from the isopleth maps indicated a depth of injury exceeding the approximate alluvial-bedrock contact, a conservative depth of 65 feet was used for the depth of injured groundwater.

Some wells completed in bedrock in the Colorado Tailings areas do have concentrations of hazardous substances that exceed relevant standards. The surface area (in ft²), depth and volume of injured alluvial groundwater in Area I are presented in Table 3-13 for the areas west and east of Montana Street. Total volume of injured alluvial groundwater in Area I is also presented. A porosity of 20% was used for calculating the volume of injured groundwater for each hazardous substance. If the volumes of injured groundwater for areas both west and east of Montana Street are combined, the volume of hazardous substance groundwater plumes decreases in the following order:

sulfate > cadmium > zinc > iron > copper > lead > arsenic.

The largest plume was the sulfate plume, which had a volume of 4.34×10^8 cubic feet (9,960 acre-feet or 3.25 billion gallons). The cadmium plume was the second largest plume and had

a volume of 3.69×10^8 cubic feet. The composite of all plumes is larger than the sulfate plume and is shown in Figure 3-12.

3.2.3 Flux or Yield of Injured Groundwater

3.2.3.1 Yield of Injured Bedrock Aquifer Groundwater

In order to maintain water levels below mine workings, bedrock groundwater was pumped from the Kelley Mine at the rate of 5,000 to 8,000 gallons per minute (CDM/FPC, 1990). Piper (1960) described the "pumping capacity" of the mines as 8,000 gpm with "frequent flows" of 6,900 gpm for periods of up to 90 minutes.

The flow required to maintain water levels below mine workings represents the yield of injured groundwater associated with the underground mine workings during the period of underground mining. Groundwater within the volume of influence of the mines would be intercepted by mine workings and become injured with sulfate and metals. The yield of the injured bedrock groundwater is estimated at 6,900 gpm or 1,300,000 ft³/yr or 11,100 acrefeet/yr.

3.2.3.2 Flux of Injured Alluvial Aquifer Groundwater

3.2.3.2.1 Butte Hill

Flux calculation were based on a flow-net constructed from potentiometric data presented in Canonie (1992a) and Darcy's Law:

 $Q = n \cdot T \cdot CI$

where

n = Number of flow tubes within the areal extent of the contamination

 $T = Transmissivity (ft^2/day)$

CI = Contour interval or hydraulic gradient.

A flow net is constructed by plotting streamlines, which are parallel to groundwater flow, and equipotential lines, which are perpendicular to groundwater flow. The streamlines and equipotential lines are spaced so that they are all equal in width and length (the flow net is composed of "squares"). The result is a flow net in which a flow tube is formed by adjacent streamlines. Discharge is equal throughout any one flow tube.

The transmissivity value used was that reported in Canonie (1992a). Flux values were calculated for cadmium, copper, iron, lead, sulfate, and zinc and are presented in Table 3-12. The average flux of injured alluvial groundwater in the Butte Hill area is given by the flux of the largest plumes, zinc, sulfate, cadmium, and copper, which are 17,900 ft³/day (150 acreft/yr). This represents flux through the central portion of the Butte Hill alluvial aquifer.

3.2.3.2.2 Area I

The Colorado Tailings is located in a groundwater discharge area, as described in earlier sections. Fractured bedrock is close to the surface at the west end of the Colorado Tailings, and this area has a thin layer of alluvium compared to areas east of the Colorado Tailings. Consequently, the majority of groundwater in Lower Area I exits the Butte Basin as surface water at the west end of the Colorado Tailings. The total discharge to Silver Bow Creek at the west end of the tailings, however, includes surface water from within the basin. Surface water inflows include Blacktail Creek, Metro Storm Drain, Missoula Gulch and the Metro Sewer Treatment Plant (MSTP).

The net groundwater discharge was calculated by subtracting each of the surface water inflows from the total discharge of Silver Bow Creek at the west end of the Colorado Tailings. The result is a net groundwater discharge leaving the Butte Basin as surface water. The net groundwater flow calculated by this method underestimates the total groundwater discharge from the basin, because the groundwater discharging as groundwater through the alluvium and bedrock are not accounted for. Data were not available to calculate a bedrock aquifer discharge; however, a groundwater discharge was estimated for the alluvial aquifer based on data presented in CH₂M Hill and Chen-Northern (1990).

Surface water discharge data were obtained for Blacktail Creek and Silver Bow Creek from USGS gaging stations, for Metro Storm Drain and Missoula Gulch from the USGS (MBMG, 1994), and for the Metro Sewerage Treatment Plant from USGS personnel and directly from MSTP personnel. Attachment II presents data from the USGS gaging station in Blacktail Creek at Butte and in Silver Bow Creek below Blacktail Creek at Butte, and data on flows in the MSD and Missoula Gulch from April and November, 1990 from the USGS.

Groundwater flow was calculated using long term averages of annual flows, where available. The data are summarized in Table 3-15. A better method would be to use a groundwater flow model with input data from pump tests in alluvial aquifer and better flow estimates on Missoula Gulch and MSD; however, the data for such a method were not currently available. The surface water inflows from Blacktail Creek, the Metro Storm Drain and the Metro Sewerage Treatment Plant were subtracted from the gaging station below the Colorado Tailings. The net groundwater discharge as surface water for the basin is 3.25 cfs.

Flux of injured groundwater was determined based on a flow net constructed from potentiometric data presented in CH₂M Hill and Chen-Northern (1990) and Darcy's Law (as described above) and is presented in Table 3-13. Transmissivity values used were those reported in CH₂M Hill and Chen-Northern (1990). Lack of transmissivity data precluded estimating a flux for the cross-section A-A'. Groundwater exiting the basin via alluvium was calculated based on the discharge through the alluvium near the west end of the Colorado Tailings (Section D-D') and is estimated as 0.053 cfs (4,550 ft³/d or 38.1 acre-ft/yr) (Table 3-13). The net groundwater discharge exiting the Butte Basin is estimated as the sum of the alluvial aquifer discharge (0.053 cfs) and the net surface water discharge (3.25 cfs) (Table 3-15), or 3.30 cfs (1,480 gpm or 2,390 acre-ft/year or 104,000,000 ft³/yr).

Summary information on areal extent, volumetric extent and flux of injured groundwater in the study area is presented in Table 3-16.

Table 3-15 Mean Flow Data for Area I Surface Waters

	Mean (cfs)	Basis
Blacktail Creek above MSD	10.2	Mean annual flow, water years 1989-93; USGS
Metro Storm Drain	0.30	Mean of two measurements (4/12/90 & 11/8/90) USGS
Missoula Gulch	0.74	Mean of two measurements (4/12/90 & 11/8/90) USGS
Metro Sewerage Treatment Plant	7.21	Mean of five years (1988-1992) MSTP pers. comm.
Silver Bow Creek below Colorado Tailings	21.7	Mean annual flow, water years 1984-93; USGS

Net Flow: Silver Bow Creek - Colorado Tailings =

3.25 cfs

1,459 gpm 2,353 acre-ft/yr

Source: Attachment II.

Table 3-16 Summary of Areal and Volumetric Extent and Flux of Injured Groundwater in Area I and Butte Mine Flooding Operable Units

Aquifer Type and Location	Areal Extent	Volumetric Extent	Flux or Yield
Bedrock Butte Hill	2.01 × 10 ⁸ ft ² 7.22 mi ² 4,620 acres	1.43 × 10 ¹⁰ ft ³ 327,000 ac-ft 107 billion gallons	6,900 gpm 1,330,000 ft ³ /yr 11,100 ac-ft/yr
Alluvial Area I	2.45 × 10 ⁷ ft ² 0.88 mi ² 563 acres	4.34 × 10 ⁸ ft ³ 9,960 ac-ft 3.25 billion gallons	1,480 gpm 104,000,000 ft ³ /yr 2,390 ac-ft/yr
Alluvial Butte Hill	2.20 × 10 ⁷ ft ² 0.79 mi ² 505 acres	2.12 × 10 ⁸ ft ³ 4,850 ac-ft 1.59 billion gallons	17,900 ft ³ /yr 150 ac-ft/yr
Total	2.48 × 10 ⁸ ft ² 8.89 mi ² 5,690 acres	1.50 × 10 ¹⁰ ft ³ 342,000 ac-ft 112 billion gallons	105,000,000 ft ³ /yr 13,600 ac-ft/yr

4.0 RECOVERABILITY

Recoverability is defined in this report as the time estimated for the groundwater resource to recover to baseline concentration levels if no additional remediation or restoration efforts are taken. The groundwater in the alluvial and bedrock aquifers is contaminated with inorganic hazardous substances — metals, metalloids, and sulfate — which generally are not capable of being biologically degraded or transformed into less toxic or mobile species. Potential immobilization and mobilization mechanisms that may affect the extent of contaminated groundwater over time are discussed below.

4.1 POTENTIAL IMMOBILIZATION MECHANISMS

Several of the metalloids — arsenic, selenium and antimony — can be transformed to methylated species by bacteria and/or fungi. Methylated arsenic and antimony are less toxic than their inorganic counterparts, but they are still dissolved species and would remain in affected groundwaters.

Sulfate can also be reduced to elemental sulfur or sulfide by microbes. Sulfide can complex with a number of metals and metalloids to form relatively insoluble (under reducing conditions) solid sulfides. Elemental sulfur and sulfide minerals could be immobilized in sediments, aquifer materials or the Berkeley Pit under sufficiently reducing conditions. Unfortunately, dissolved sulfide was not determined in any study area groundwaters or in the pit water. It appears that the redox state of large portions of the groundwater and pit water is relatively reducing, judging from the mobility of iron and manganese and the pH range. However, even though reduced iron and manganese are present, there must not be sufficiently reducing conditions to generate significant quantities of sulfide, which could immobilize metals and metalloids by formation of sulfide minerals.

Minewater quality in a few of the shafts has been improving over time to some extent (Ted Duaime, personal communication; Appendix II), and this may be due to increased reducing conditions, the formation of sulfide and the precipitation of metal/metalloid sulfides in the minewaters. In contrast, the quality of the pit water appears to worsening with time (Ted Duaime, personal communication; Appendix I), perhaps as a result of increased time for reaction of the pit walls with enclosed pit water under mildly reducing conditions. At present, geochemical conditions in the Berkeley Pit are not capable of immobilizing contaminants by precipitation of sulfide minerals.

4.2 POTENTIAL ENLARGEMENT OF PLUME

Maximum transport rates for several groundwater contaminants were estimated in an earlier section using plan-view isopleth maps from CH₂M Hill and Chen-Northern (1990) and assuming that the year 1900 was the mid-point of source application:

Sulfate	=	72.7 ft/yr
Zinc	=	63.6 ft/yr
Copper	=	62.5 ft/yr
Cadmium	=	61.4 ft/yr
Iron	=	45.5 ft/yr
Arsenic	-	19.9 ft/уг
Lead	=	14.2 ft/yr.

The ordering of transport rates would be somewhat different if the plan-view isopleth maps presented in this report (Chapter 3.0) were used. In addition, as discussed earlier, the rate of transport would be more rapid if a more recent data was used as the mid-point of application of minewater discharge to the MSD and Silver Bow Creek. It was also found that this ordering of decreasing transport rates roughly corresponded to decreasing volume of groundwater plumes contaminated with hazardous substances in the alluvial aquifer in Area I:

sulfate > cadmium > zinc > iron > copper > lead > arsenic.

Assuming that the sources hazardous substances to groundwater will not be removed, these and other contaminants can be expected to be transported at similar estimated maximum transport rates in the future and thereby increase the size of hazardous substance plumes, especially in the upper MSD area. In Lower Area One, groundwater discharge to Silver Bow Creek limits the lateral extent of groundwater contamination, but the extent of contamination with depth may increase over time.

Sulfide minerals in the primary sources of hazardous substances in the study area can be expected to leach lesser quantities of metals, metalloids and sulfate to the unsaturated zone and groundwater over time as hazardous and related substances are exhausted by leaching mechanisms. This scenario depends on a number of geochemical and hydrodynamic factors including consistent or overall oxidizing conditions in the source materials (buried tailings, etc.) and availability of infiltrated water, sufficient hydraulic conductivities, etc. The oxidation of pyrite in mine wastes has been modeled, assuming that the oxidation rate is limited by the rate of oxygen supplied to pyrite. Oxygen supply was assumed to be by diffusion through pore space in the wastes followed by diffusion into a moving reaction front within the particles (Davis et al., 1986; Davis and Ritchie, 1986). The production of sulfate from pyrite in mine wastes was predicted to decrease exponentially in the first 50 to 100 years but not approach zero sulfate production until between 250 to over 350 years from the

time of deposition of the wastes (Figure 4-1). If reducing conditions are generated periodically over time as a result of rising water levels in the alluvial aquifer, for example, this process of exhaustion of hazardous and related materials by leaching will be interrupted and slowed. Any reclamation attempts to reduce the oxidation of pyritic waste materials (i.e., capping) without preventing migration of hazardous substances to groundwater (i.e., by use of a liner system) will eventually reduce the rate of acid formation but extend the time frame of groundwater injury.

It can be assumed that sources of hazardous substances in the study area will continue to adversely affect alluvial and bedrock groundwater and Berkeley Pit water for thousands to tens of thousands of years absent removal of the sources or implementation of effective in situ remediation or restoration techniques (Tetra Tech, 1986).

Figure 4-1. Total Sulfate Production Rate as a Function of Time After Creation of Wastes. Source: Davis and Ritchie, 1986.

5.0 REFERENCES

Andreae, M.O. 1983. Determination of trace metals. In K. Grasshoff, M. Ehrhardt, and K. Kremling, eds., Methods of Seawater Analysis. Weinheim: Verlag-Chemie. pp. 218-225.

ARCO. 1991. Silver Bow Creek/Butte Area CERCLA Site, Lower Area One — Expedited Response Action, Engineering Evaluation/Cost Analysis. Draft Final. November 1.

ARCO. 1992. Clark Fork River Superfund Site Investigations: Standard Operating Procedures. Prepared by ARCO, Anaconda, MT. March.

ARCO. 1994. Butte Mine Flooding Operable Unit Remedial Investigation/Feasibility Study. Draft Remedial Investigation Report. Prepared by ARCO, Anaconda, MT. January.

Balistrieri, L.S. and T.T. Chao. 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. *Geochim. Cosmochim. Acta* 54(3): 739-751.

Bassett, R.L., W.R. Miller, J. McHugh, and J.G. Catts. 1992. Simulation of natural acid sulfate weathering in an alpine watershed. Water Resources Research 28(9): 2197-2209.

Belzile, N. and A. Tessier. 1990. Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim. Cosmochim. Acta 54(1): 103-109.

Botz, M.K. 1969. Hydrogeology of the Upper Silver Bow Creek Drainage Area, Montana. Montana Bureau of Mines and Geology. Bulletin 75.

Botz, M.K. and G.L. Knudson. 1970. Hydrogeology of the Berkeley Pit Area. Prepared for the Anaconda Company, Butte, MT. April 7. Project No. 70-24.

Canonie. 1992a. Preliminary Remedial Investigation Report for the Mine Flooding Operable Unit Remedial Investigation/Feasibility Study - Revision O. Prepared by Canonie Environmental Services Corp. for ARCO, Anaconda, MT. September. Project 89-121-13.

Canonie. 1992b. Inflow Control Investigation - Data Summary Report, Second Quarter. Remedial Investigation/Feasibility Study, Mine Flooding Operable Unit, Butte, Montana. Prepared by Canonie Environmental Services Corp. for ARCO, Anaconda, MT. April. Project 89-121-05.

Canonie. 1993a. Preliminary Modeling of Future Berkeley Pit Water-Level Elevations and Inflow Rates. Prepared for ARCO. February. Document #92-428-03.

Canonie. 1993b. Butte Mine Flooding Operable Unit Remedial Investigation/Feasibility Study: Preliminary Remedial Investigation Report. Prepared by Canonie Environmental Services Corp. March.

CDM. 1988. Factors Affecting the Geochemistry of the Berkeley Pit, Butte, Montana. Prepared by Camp Dresser & McKee, Inc., Denver, CO. June 21. U.S. EPA Contract No. 68-01-6939.

CDM/FPC. 1989. Final Work Plan for Remedial Investigation/Feasibility Study, Butte Mine Flooding Operable Unit, Butte Addition to the Silver Bow Creek NPL Site. Butte, MT.

CDM/FPC. 1990. Work Plan for Remedial Investigation/Feasibility Study, Butte Mine Flooding Operable Unit (Final). Butte Addition to the Silver Bow Creek/Butte Area NPL Site, Butte, MT. Prepared by CDM Federal Programs Corp., Golden, CO. for U.S. EPA. U.S. EPA Contract No. 68-W9-0021.

CH₂M Hill and Chen-Northern. 1990. Silver Bow Creek CERCLA Phase II Remedial Investigation Data Summary, Area I Operable Unit - Volume I and Volume II (Draft Final).

Davis, A. and D. Ashenberg. 1989. The aqueous geochemistry of the Berkeley Pit, Butte, Montana. Appl. Geochem. 4: 23-36.

Davis, G.B. and A.I.M. Ritchie. 1986. A model of oxidation in pyritic mine wastes: Part 1: Equations and approximate solution. *Appl. Math. Modelling* 10(October): 314-322.

Davis, G.B., G. Doherty, and A.I.M. Ritchie. 1986. A model of oxidation in pyritic mine wastes: Part 2: Comparison of numerical and approximate solutions. *Appl. Math. Modelling* 10(October): 323-329.

Domagalski, J.L., H.P. Eugster, and B.F. Jones. 1990. Trace metal geochemistry of Walker, Mono, and Great Salt Lakes. In R.J. Spencer and I.M. Chou, eds., Fluid-Mineral Interactions: A Tribute to H.P. Eugster (Special Publication No. 2). The Geochemical Society. Article 6.

Dove, P. and J. Rimstidt. 1985. The solubility and stability of scorodite, FeAsO₄·H₂O. American Mineralogist 70: 838-844.

Doyle, F.M. and A.H. Mirza. 1990. Understanding the mechanisms and kinetics of acid and heavy metals release from pyritic wastes. In F.M. Doyle, eds., *Mining and Mineral Processing Wastes*. Littleton, CO: Society for Mining Metallurgy and Exploration, Inc. pp. 43-51.

Duaime, T.E., J.L. Sonderegger, and M. Zakuski. 1985. Hydrogeology of the Colorado Tailings Area, Butte, Montana. In C.E. Carlson and L.L. Bahls, eds., *Proceedings of the Clark Fork River Symposium*. Montana College of Mineral Science and Technology. pp 4-20.

Freeze, R.A. and J.A. Cherry. 1979. *Groundwater*. Englewood Cliffs, NJ: Prentice-Hall, Inc. 604 p.

Hem, J. 1977. Reaction of metal ions at surfaces of hydrous iron oxide. Geochim. Cosmochim. Acta, 41: 527-538.

Hem, J.D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2254. U.S. Government Printing Office, Washington, DC. 263 p.

Hutchins, S.R., M.S. Davidson, J.A. Brierley, and C.L. Brierley. 1986. Microorganisms in reclamation of metals. *Ann. Rev. Microbiol.* 40: 311-36.

Hydrometrics. 1982. Potential Impacts of Alternative Mine Water Management Plans. Prepared for the Anaconda Minerals Company, Butte, MT. April. 47 p.

Jackson, K.C. 1970. Textbook of Lithology. New York: McGraw-Hill. 552 p.

Keystone. 1992. Remedial Investigation Report: Montana Pole and Treatment Plant, Butte, Montana (Draft). Prepared by Keystone Environmental Resources, Inc. for ARCO. July.

Maest, A.S., S.P. Pasilis, L.G. Miller, and D.K. Nordstrom. 1992. Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In Y.K. Kharaka and A.S. Maest, eds., Water-Rock Interaction. A.A. Balkema. pp. 507-511.

MBMG. 1992. Sampling and Analysis Plan, Butte Hill Investigation. Montana Bureau of Mines and Geology.

MBMG. 1992 and 1994. Analytical Data Sheets and Graphs. Ted Duaime, Montana Bureau of Mines and Geology.

MDHES. 1992. Briefing Memorandum on the Butte West Camp Mine Flooding Problem. Prepared by the Montana Dept. of Health and Environmental Sciences at the request of the Governor's office. 5 p.

Meinzer, O.E. 1914. The Water Resources of Butte, Montana. U.S. Geological Survey, Water Supply Paper 345-G. pp. 79-125.

Metesh, J.J. 1990. Aquifer Testing and Evaluation at the Travona Mine and the Marget Ann Mine, Butte, Montana. Masters thesis, Montana College of Mineral Science and Technology. 93 p.

Meyer, C., E.P. Shea, and C.C. Goddard. 1968. Ore deposits at Butte, Montana. In J.D. Ridge, ed., *Ore Deposits in the United States 1933-1967*. American Society of Mining Engineers. pp. 1373-1416.

Middelburg, J.J., D. Hoede, H.A. Van Der Sloot, C.H. Van Der Wiejden, and J. Wijkstra. 1988. Arsenic, antimony and vanadium in the North Atlantic Ocean. *Geochim. Cosmochim. Acta.* 52: 2871-2878.

Mok, W.M. and C.M. Wai. 1990. Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho. *Environ. Sci. Technol.* 24: 102-108.

Montgomery, J.M. 1988. Butte Water System Master Plan. Prepared by James Montgomery, Consulting Engineers, Inc. for the Butte-Silver Bow Government and Butte Water Company.

Montgomery, J.M. 1993. Silver Bow Creek/Butte Area NPL Site, Butte Priority Soils Operable Unit, Draft Work Plan, Supplemental Hydrologic Investigations. Prepared by James Montgomery, Consulting Engineers, Inc. for the PRP Group. January. 65 p.

Moore, H.R. 1989. Evaluation of the Product (Diesel/PCP Mixture) Bearing Soils at the Montana Pole Plant NPL Site, Butte, Montana. Masters thesis, Montana College of Mineral Science and Technology. 81 p.

Moore, J.N. and S.N. Luoma. 1990. Hazardous wastes from large-scale metal extraction. A case study. *Environ. Sci. & Technol.* 24(9): 1278-1285.

MSE. 1992. SubTask 3-2: Disturbed Soils Investigation RI/FS Butte Mine Flooding Operable Unit. April.

MultiTech. 1987. Silver Bow Creek Remedial Investigation Final Report, Appendix B, Parts 1-4: Groundwater and Tailings Investigation Report. Prepared by MultiTech Division of MSE, Inc. for Montana Dept. of Health and Environmental Sciences, Helena, MT. April.

Nordstrom, D.K. 1982. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In *Acid Sulfate Weathering*. Madison, WI: Soil Science Society of America. pp. 37-61.

Olson, G.J. 1986. Microbial intervention in trace element-containing industrial process streams and waste products. In M. Bernhard, F.E. Brinckman and P.J. Sadler, eds., *The Importance of Chemical "Speciation" in Environmental Processes*. New York: Springer-Verlag. pp. 493-509.

Piper, R.D. 1960. Investigation of Contamination of the Clark Fork River from Sources in Silver Bow Creek. Report by R.D. Piper, Chief Mining Engineer, The Anaconda Company. November 1960. 15 p.

Runnells, D.D, T.A. Shepherd, and E.E. Angino. 1992. Metals in water. *Environ. Sci. Technol.* 26: 2316-2321.

Sales, R.H. 1913. Ore deposits at Butte, Montana. In *Transactions of the American Institute of Mining Engineers*, Vol. XLVI, Butte meeting. August. pp. 3-109.

Seyler, P. and J.M. Martin. 1989. Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake. *Environ. Sci. Technol.* 23: 1258-1263.

Smedes, H.W. 1973. Regional setting and general geology of the Boulder Batholith, Montana. In R.N. Miller, eds., Guidebook for the Butte Field Meeting of Society of Economic Geologists. Anaconda, MT: The Anaconda Company. pp. A1-A6.

Smith, R.I. 1953. History of the Early Reduction Plants - Butte, Montana. Montana Bureau of Mines and Geology. Reprint Series R-2. 17 p.

Spindler, J.C. 1977. The Clean-Up of Silver Bow Creek. *Mining Congress Journal*. pp. 58-63.

Spindler, J.C. 1992. Deposition of John Spindler, Nov. 18-19, 1992 in lawsuit Montana v. Atlantic Richfield Company, USDC Case #CV-83-317-HLN-PGH.

State of Montana. 1994. Montana Numerical Water Quality Standards, Circular WQB-7. July 15.

Stumm, W. and J.J. Morgan. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: John Wiley & Sons. 780 p.

Tetra Tech. 1986. Anaconda Smelter RI/FS Geochemistry Report. Prepared by Tetra Tech, Inc., Bellevue, WA, for Anaconda Minerals Company. July.

TriMetrix, Inc. 1992. Axum[®]. Technical Graphics and Data Analysis, 2nd edition. 592 p.

U.S. EPA. 1994. Butte Mine Flooding Operable Unit Silver Bow Creek/Butte Area NPL Site Butte, Montana. Record of Decision. U.S. EPA Region VIII, Montana Office and Montana Dept. of Health and Environmental Sciences, Helena, MT.

USGS. 1994. Streamflow Data for Pend Orielle River Basin, MT. U.S. Geological Survey.

University of California. 1988. Mining Waste Study, Final Report. Prepared by the Mining Waste Study Team of the University of California - Berkeley. Commissioned by the California State Legislature. July 1.

Weed, W.H. 1912. Geology and Ore Deposits of the Butte District, Montana. U.S. Geological Survey, Professional Paper 74. 262 p.

ATTACHMENT I

TESTING AND SAMPLING METHODS FOR NRDA BEDROCK AND ALLUVIAL AQUIFER SAMPLES

1.0 TESTING AND SAMPLING METHODS FOR NRDA BEDROCK AND ALLUVIAL AQUIFER SAMPLES

1.1 BEDROCK GROUNDWATER SAMPLING

1.1.1 Bedrock Sampling Locations

Bedrock water quality samples were collected from one mine shaft, four bedrock monitoring wells and one municipal well (Hebgen) as part of the Natural Resource Damage Assessment (NRDA) investigation. Sampling locations are shown on Plate I. Analytical results from these samples are provided in Appendix IIC. The Marget Ann mine shaft is located in Walkerville, north of the city of Butte, and Hebgen Park, the municipal well, is located approximately three-quarters of a mile southwest of the Berkeley Pit. Bedrock monitoring wells B, E, D1 and D2 are located within Montana Resources, Inc. (MRI) property and were installed as part of the Butte Mine Flooding Remedial Investigation/Feasibility Study (RI/FS). The Hebgen Park well, Marget Ann shaft, wells B and D1 were sampled in April 1992, and wells D2 and E were sampled in May 1992. Table AI-1 provides information on the well depth, screened interval, and static water level at the time of sampling for each of the locations. Wells A and C, included in this table, were also installed as part of the Butte Mine Flooding RI/FS. Although they were not sampled for the NRDA investigation, data obtained from previous sampling episodes are included in this report. The analytical results for the NRDA bedrock water quality investigation are displayed in Appendix II-C.

1.1.2 Bedrock Groundwater Collection Methods

Field procedures followed during this investigation are described in the Sampling and Analysis Plan for the Butte Hill Investigation (MBMG, 1992) and the Clark Fork River

Superfund Site Investigations Standard Operating Procedures (CFRSSISOP) (ARCO, 1992). Static water level was measured before purging and sampling at each location (CFRSSISOP GW-5). The pH meter was calibrated before use at each well according to CFRSSISOP HG-8. The accuracy of the Eh meter was checked according to CFRSSISOP HG-8. The specific conductivity meter was calibrated according to CFRSSISOP HG-7. Sample bottles were precleaned according to CFRSSISOP HG-3.1. Documentation of field activities conformed to CFRSSISOP G-4. Field equipment was decontaminated according to CFRSSISOP G-8. Deviation from this SOP occurred when the inside of the pump was not flushed with distilled water. Groundwater samples were collected using a stainless steel submersible pump attached to a discharge hose or pipe. The wells and mine shaft were purged until specific conductivity, temperature, pH and Eh stabilized to ±10% for three consecutive readings. A minimum of three casing volumes was removed from each well.

Tal	ole AI-1	
Bedrock Sampling	Location	Information

[]					
Location	Well/Shaft Depth (ft)	Screen Interval (ft)	TOC Elevation (ft)	Depth to Water	Water Elevation (ft)
Hebgen	300	140-300	5,526.5	31.86	5,494.64
Marget Ann	600	None	NA	119.08	
Well A	745	680-700 720-740	5,524.98	NS	
Well B	640	568-578	5,557.82	317.44	5,240.38
Well C	800	755-795	5,577.98	NS	
Well D1	635	600-620 620-630	5,591.54	560.13	5,031.41
Well D2	775	660-670 720-740 760-770	5,579.51	548.93*	5,030.58
Well E	355	270-290 320-350	5,562.45	170.58	5,391.87

NA = Not Available.

NS = Not Sampled for NRDA Investigation.

TOC = Top of Casing Elevation.

* = D2 Depth to water taken on 5/01/92.

Depth to water = Static water level prior to sampling well.

1.1.3 Sample Handling and Preservation

Two sets of samples were collected at each location. One set of samples was signed over to ARCO oversight personnel using chain of custody forms. The following set of samples was collected:

- ▶ 1 500-ml filtered, preserved with 5 ml of nitric acid (pH < 2)
- ► 1 500-ml unfiltered, unpreserved (raw)
- ▶ 1 250-ml filtered, unpreserved.

Preservation and holding times were described in the Sampling and Analysis Plan for the Butte Hill Investigation (MBMG, 1992).

1.1.4 Analytical Protocols Applied to the Bedrock Groundwater Analysis

The suite of samples was submitted to the Montana Bureau of Mines and Geology Analytical Division laboratory in polyethylene bottles. A field sheet (MBMG Form 173) containing information about each sample, the requested analyses, and chain of custody documentation accompanied each set of bottles. A separate chain of custody document (U.S. EPA R8 014B) accompanied the submittals from each sampling event. The samples were logged into the laboratory and given a laboratory identification number. The sample storage area of the MBMG Analytical Division is a locked, restricted access area within the main office. When samples were removed from the area for analysis, a custody logbook was maintained.

The raw unpreserved samples were analyzed for specific conductance, pH, and alkalinity immediately upon receipt at the laboratory. The filtered unpreserved samples were analyzed for F, Cl, Br, NO₃-N, OPO₄-P, and SO₄ within 28 days of log-in. The filtered acidified samples were analyzed for the dissolved major cations and trace metals. Table AI-2 identifies the appropriate U.S. EPA Methods for the parameters.

Table AI-2 Analytical Methods Employed by MBMG for NRDA Groundwater Samples												
Parameter	Bottle Type	U.S. EPA Method										
Ca, Mg, Na, K, Fe, Ag, Al, B, Cr, Ni, P, Sr, Ti, V, Zr	FA	200.7										
SiO ₂	FU	200.7										
As, Cd, Cu, Mn, Mo, Pb, Zn	FA	200.8										
Alkalinity	RU	310.1										
Specific Conductance	RU	120.1										
рН	RU	150.1										
F	FU	340.2										
Cl, Br, NO ₃ -N, OPO ₄ -P, SO ₄	FU	300.0A										
FA = Filtered, Acidified. FU = Filtered, Unpreserved. RU = Raw, Unpreserved.												

For the critical elements, spikes and duplicates were included at a 10% frequency; Initial and Continuing Calibration Standards from different sources were included at the appropriate intervals. A Laboratory Control Sample from the USGS Standard Reference Waters was included with every run.

The required demonstration of instrument performance for both ICP-AES (for Fe) and ICP-MS (for As, Cd, Cu Mn, Mo, Pb, Zn) was carried out before the analysis of samples. The data produced for these elements have been validated. MBMG Analytical Division Quality Assurance guidelines were followed in determining the remaining analytes. These guidelines also require spiking and duplication of samples at 10% frequency and the analysis of control samples. The cation-anion balance is an additional quality assurance parameter imposed on the analysis of dissolved constituents. The parameter a(2), which assesses the lack of agreement in the balance must be within ±1; otherwise the sample is reanalyzed for suspect analytes. If balance is not achieved after reanalysis, the data are flagged.

1.2 ALLUVIAL GROUNDWATER SAMPLING

1.2.1 Alluvial Sampling Locations and Monitoring Well Installations

The location of the alluvial aquifer baseline monitoring wells (AW1, AW2, AW3) is shown in Figure AI-1. These wells were drilled into alluvium underlain by the Butte Quartz Monzonite, the host rock to the ore deposits in Butte. The wells are upgradient from known mining activities. The analytical results for the NRDA alluvial aquifer baseline monitoring wells are presented in Appendix III-D.

The three monitoring wells were drilled using the MBMG's Mobile B-50 drill rig and the hollow stem auger drilling method (ARCO, 1992, Clark Fork River Superfund Site Investigations Standard Operating Procedure (CFRSSISOP) GW-3). Prior to drilling each bore hole, the hollow stem augers were rinsed with water to remove any soil and/or sediment, thus preventing cross contamination between sites (CFRSSISOP G-8).

Each well was drilled in two stages. During the first stage, a hole was drilled using 3.25-inch inside diameter (ID) hollow stem augers. A split sampler was used during this stage of the drilling, and where possible, continuous samples were collected. The split sampler was decontaminated each time it was removed from the hole, after collecting the sample (CFRSSISOP G-8).

The split sampler was advanced with the auger flights as the hole was drilled. In some cases, the split sampler would encounter a rock that would prevent the auger flights from advancing. In these cases, the split sampler was removed from the hole to allow the auger flights to advance past the rock, and hence continuous samples were not collected. The samples were placed on a piece of plastic and logged lithologically. Lithologic logs for the wells are included in the following pages. After logging the hole, the samples were bagged and are on file at the MBMG. Samples from the screened intervals from the three wells were submitted to the analytical lab at the MBMG for analysis. The 3.25-inch ID hollow stem auger bore hole was drilled until presumably bedrock was encountered — the depth at which the augers would not advance any farther. The monitoring well construction information and schematics specific to each site are provided in Table AI-3.

Figure AI-1. Location of Monitoring Wells.

HONTAGE BOLLAGO OF THE STATE OF	
County Silver Bow Location: T. 04N R 07W Sec. 28 Tenet CDBC or number AW1	
Silver Bow Creek above Yankee Doodle Tailings Pond	
Recorded J. Madison Date hole 9/18/92 Completed 9/23/92 Delber F. Schmidt company MEMG	
Total well 4 in. casing and screen large diameter(s) 12ft. 13ft. Sch 80 PC (depth (ft.) 18 ft. diameter(s) 6 in. protective casing diameter(s) 13ft. 18ft Sch 80 0.000	Casing) in PVC screen
21L 4 0 puntile	
	210cms and MTI 9 FIRE
Lutervalperforated E	. Slotted with a torch . Screened by pulling casing . Other (specify)
or screened: Dit William I. Martin I.	
Has or will well be test pumped? Ym No Were material exceptes taken? Ym No Was a water excepte(s) taken?	Yes No
Remarks Collected water sample. LAB Number 9201433 Drilled with 3.25 in ID Hollo	w Stem Augers
to 23'. Reamed this hole with 6.0 in. ID Hollow stem augers to 18'	

		DRILLING LOG	L				npo	dtios	<u> </u>
From	To	Geological, drilling, and water conditions; sumarks and sampling	Gr		_		11	₹ 2	t de
)	1"	Humus or Duff. Organic Rich, Black		П					
	-	- Additional Control of the Control						1	1
=	1.5	B-Horizon. Grey. Dry. Particle size range from clay to 2-3 m m							
		Larger Clast Consists of Quartz, and Plagicclase. Few clast					1		
		up to 2 cm diameter							
.5'	4'	Greyish brown. Material consists of quartz, mica, and feldspare							
		with mostly clay. Larger particles are angular. From 3' to 4							
		becomes clay rich as well as moist. Fresh Quartz Monzonite							
		at 4'.							
•	12'	No sample collected in split sampler. Collected sample from							
		end of auger which was reddish brown clay with a few clast of							
		Quartz, Mica and Feldspar 1-2 mm diameter.							
	10'	Approximately hit water							
21	14'	Hole slough. Brown, water saturated Clay rich. Clast of							
		Quartz, biotite, Feldspar 1-2 mm diameter, some clast up to 2				Ц			
		cm diameter							
4 '	16'	Clay.yellowish brown mostly clay. Few Quartz clast at about							
		16' encountered crumbly white rock. Original igneous texture							
		preserved. All minerals except Quartz altered to clay.							
5'	19'	Only small amount of sample. Looks like altered/weathered							T
		quartz monzowite. Sample is fractured. Sample is coated							
		with Fe2 O ₃							
) '	23'	No Sample collected							
D		-							

	a a	77-1
CROUND	WATER	יסוצריחם

MONTANA BUREAU OF			Sicio name	
County Silver Bow Loo	T. 03N R 07W	Sec. 15 Test C	DB er sember AW7	
	e a count of Old C	hlimbia Carriens	CURTO HOUSE	
Hole location West Of 1-1	South State		. DelDint	
Recorded J. Madison stars	bale 9/24/92 Des loss 9	/24/92 Den F.Sc	rmidt company MHMG	
J. Madison			48 0 0208 C	
	+2-15 - 4" PVC	Cassing 15-20	-4" 0.020" Screen	
Total well 20 ft. Well dies	+2-4-6" Steel E	rotective casing		
destà (ft.) 20 It. dies	noter(s) 12 7 0 December			
- a a final Glack)	C. Plastic E. Wood cribbin D. Oyes hole P. Other (specif	Weight or gag	Method-perforated	A. No ensing in hole B. Open bottom only C. Stotad with Mil's knife D. Stotad with a torch
Interval -performed		_		E. Screened by pulling camp
or screened: 15'-20	n non classed Pi	rc sch 80		P. Other (specify)
15'-20	0.020 STOCKED F	C DC.I GC		
Has or will wall be test pumped? Remarks 3.25" ID Holl		amoles taken? Yes I	Was a water exemple(s) to 9'. Reamed 6" ID Holl	ow stem auger
Remarks 3.23 10 1011				
to 201 Water	quality analysis 920	01435 on file at	MENG.	
W 20 . Water				

		DRILLING LOG			Estimated composition, %								
From	To	Geological, defiling, and water conditions; sumarks and sampling	Carro	_		रान	alt	di					
							П	Г					
0"	8=	Black low density organic rich horizon				11	\vdash	H					
8"	1.2'	Greyish brown horizon. Low moisture content. Core is crumbly.	-	+-		++	╁	-					
		Material is mostly silt and clay. Small % of clast are 2-5 mm		+-		++	+	╀					
		diameter. Clast are quartz and unweathered country rock.	\vdash	+	-	┼┼	╀╾	╀					
1.2'	1.9'	Similiar to 8" - 1.2' zone. This zone is darker than 8" - 1.2'	11	+	1	++	╀	╀					
		zone.	14	+	Н	 	╄	╀					
1 2'	2 11	Boulder upon which soil above 1.9 formed on. Consists of	Ц	1	1	11	1	1					
1.2		Q-Monzonite. Most of Biotite has been weathered/altered. Rock	Ш					1					
		is grey with some Pe(OH)3 staining.				П	1	1					
		Coarse grain alluvium. Composed of clast of feldspar, mica,				11	1	1					
2.1	4.		П	T	П	H	1						
		quartz and Q-monzonite. Clast are very angular. Some clast.			П	11	T	1					
		which are O-monzonite, are up to 1 cm in diameter. Very wet.	\Box	T	11	11	T	T					
4'	4.8"	Same as 2.1'-4'. Only difference is contains some clay which	11	+	11	11	T	T					
		makes the sample sticky.	\forall	t	11	11	+	Ť					
4.8	5.4	Fine grain. Mostly clay and silt. Buff color. Contains	H	+	$^{++}$	+	1	+					
		organic rich (black) stringers. Gold mica is present.	Н	+	++	+	+	+					
5.4	12'	Coarse grain. Clast of quartz, feldspar, O-Monzonite, and mice	44	+	$^{++}$	+	+	+					
		Not much clay - Core is crumbly. Gold color mica. Grey.	Н	4	11	11	+	4					
	!	Clasts are angular.	Н	4	11	++	+	1					
12.	12.	Organic rich layer. Roots and twigs chocolate color.			11	11	1	4					
	12.4	Charse grain. Clay makes core sticky Clast are quartz, felds	er.		11	11	1	Ц					
12.	2 13.	and mica. Poorly sorted. Fe(OH)3 Stains on clast.			11		1						
	-	Coarse grain. Fragments of unaltered O-Monzonite up to 4cm			П		1						
13'	14'				П		1						
	-	diameter, Angular clast.	1		П		T	٦					
14'	16'	No sample. Had to remove sampler from hole to advance past m		H	T		1	1					
16'	19'	Coarse grain. Buff color. Clast up to 2 cm diameter but most	-	H			+	1					

MONITOR BOTTON	Hole name N. 13
County Silver Bow Location: T. 03N R 07W Sec. 15	Tract CCDD or number AW3
Recorded J. Madison by Hole location East of 1-15 on Child Guide. Date hole 9/30/92 Date hole 9/30/92 parted by 12.5 - 23.4" BVC Casing	E Schmidt Delling MPMG
Recorded J. Madison months 9/30/92 completed 9/30/92	Alle I - Scritter (Company 122.5)
+2 5 -23 4" PVC Casing	12-18 4" 0.020" Slotted PVC
Wall 12 7 -2 Aff Steel protect	tive casing
Total well 2 8 ft - Well +2.7 -2 4" Steel protect depth (ft.) 2 8 ft - diameter(s)	
ecpus (IL)	Method-perforated A. No casing in hole
Type of A Steel (black) C. Plant E. Wood cribbing	Weight or gage Method—perforsted A. No casing in hole at casing SCh 80pp/C or acreesed: B. Open bottom only C. Scond with MIT's knife.
Type of A. Steel (black) D. Open bole F. Other (specify) Canna(s): B. Steel (gal.) D. Open bole F. Other (specify)	C. Shorted with Mill's knife D. Shorted with a torch
	E. Screened by pulling casing
interval-perforated	P. Other (specify)
or screened: 23-28 0.020 Slotted PMC	
OK SCIANDER:	

Has or will well be sest pumped? We No Were material complex taken? The No Was a water cample(s) taken? The No Remarks 3.25" ID Hollow stem auger hold drilled to 32'. Reamed with 6.0" ID Hollow stem augers to 28. Water quality analysis 9201441 on file at MBMG

		DRILLING LOG				ted Co.		posit	08,	<u>*</u>
From	To	Geological, drilling, and water conditions; sweaths and compling	Cer					1 न	ailt	de
	1.5'	Light brown. Coarse grain. clasts of quartz, feldspar, and				1	1	1		_
0	1.5	0-Monzonite. Clast are 2-5 mm diameter. Small & of Silt and			\perp	4	4	\downarrow	_	_
		clay. Core is crumbly and dry. Small % of mica.				_	4	+	_	<u> </u>
1.51	5.51	Dark grey almost black, mostly clay and/or silt. Core sticks			Ц	4	4	4	_	
		together well. Small & of quartz, feldspar, and mica.			Н	4	4	+	_	-
5.51	7.2	in place preserving primary			\square	4		+	╀	-
J. J		Ingenous texture. Feldspar all weathered into clay.				_		- -	-	+
7.2'	8	White. Fairly fresh rock. Fractured. Fe(OH)3 Staining.						4	$oldsymbol{\downarrow}$	1
1.2		Biotite & Hornblende mostly gone.		_			Ц	-	╀	+
g	11'	No Sample		_	Ц			- -	╀	1
11'	14'	Weathered O-Monzonite. Primary Igneous texture preserved.	_	L				-	+	<u> </u>
		Some fresh rock. Fresh rock is white with mica & hornblende	_	-		_			+	+-
		weathered out or altered.	L	L	_	L			+	+
15'	19.	No Sample	1_	Ļ	\perp	L		1	+	1
19:	32'	Could not use sampler to drill this interval. Collected	$oldsymbol{\downarrow}$	\downarrow	$oldsymbol{\downarrow}$	L	╀	$\left \cdot \right $	+	:
		sample from end of auger. Sample was wet. Clasts of quartz,	↓_	Ļ	+	_	+	- -	+	<u> </u>
		feldspar, and Q-Monzonite, Some Mica. Lot of clay and/or silt	1	\downarrow	1	╀	╀-		+	<u>:</u>
		Sample very sticky.	╀	ļ	1	L	Ļ.	\sqcup	+	ļ
	1221		\downarrow	1	1	L	\downarrow	\sqcup	\downarrow	\dotplus
T.D.	32!		\perp	\downarrow	\perp	ļ	1		1	+
			1	1	\downarrow	\downarrow	\downarrow	\sqcup	+	+
			+	1	+	1	+	\Box	+	\downarrow
			1	1	1	1	+	-	4	+
			1	+	+	+	+		4	+
			1	+	+	+	+		+	+
				1	1	1	1		4	4

CROUND WATER DISTRICT

		Location: T. R. Sec. Tract de nombre							
Record	ded	Date hole Date hole Delling company							
Total		Well Coming diameter(s) and length(s)	_						
OC 1	d-period	Steel (black) C. Plastic E. Wood cribbing Weight or gage Method—perform of casing Nethod—perform of casing or screened: ated	_		000	codes to be otted o total total ther (s	rith with	MET a a trace pullar y)	kai
Ramar	tu							-	_
		•	_						
From	To	DRILLING LOG Geological, drilling, and water conditions; remarks and mospling				Seed			$\overline{}$
		2-5 mm diameter. Consist of quartz, feldspar and Q-Monzonite.							T
		Core is crumbly, not much mica present.	-	┞	\square	+	Н		+
19'	20'	Coarse grain. Fairly competant material. Sampler barely advanced into this material. Buff color. Fe(OH)3 stains.	╁	╁		+	Н	+	+
		Gruss?	\dagger		H	+	Н		\dagger
20'	29'	Could not sample this zone because sampler would not advance							+
		into it. At 29' Feet augers scraping on competant rock. Not				I			I
		advancing.	L		Ц	\perp	Ц		1
T.D.	291		-		\dashv	+	H	+	+
			-		+	+	Н	+	+
			+	Г	Н	t	Н	+	†
			T		П	1		1	1
									T
					Ц	1			1
			H	L	Н	+	Н	+	+
	-		H	H	Н	+	Н	+	+
			H	H	Н	+	Н	+	+
			-		H	t	Н	+	$^{+}$
	-		H		Ħ	+	Н	+	†
								1	T
									I
			L		Ш	1	Ц	1	1
			-	-	Н	+	Н	1	4
	<u> </u>		1	_	Ц	+	Н	. 4	1

Table AI-3 Monitoring Well Construction

TAS values are distances below land surface in last emport those proceeded by + which are distances above land surface)

	Total Depth	Total Depth					
	of 3.25°	of 6.00°					
	ID Hollow	ID Hollow			Sand		Protective
	Stem Auger	Stem Auger	Cased	Screened	Packed	Grouted	Casing
Well	Hole	Hole	Interval	Interval	Interval	Interval	Interval
AW1	23	18.5	+2-13	13-18	11-18	0-11	+2.3-4
AW2	29	20	+2-15	15-20	14-20	12-14, 0-5	+23-4
EWA	32	28	+2.4-23	23-28	22-28	0-22	+2.7-2

During the second stage, the 3.25-inch ID hollow stem auger pilot hole was reamed using 6.0-inch ID hollow stem augers. To prevent the 6.0-inch ID hollow stem augers from filling with cuttings, a tapered wooden plug was hammered into the bottom of the lead auger. After drilling to the desired depth, an iron rod about 3 feet long and 1.25 inches in diameter attached to a rope was dropped inside the hollow stem augers to knock the wooden plug out.

After the wooden plug was knocked out, 5 feet of 4-inch PVC Triloc 0.020" slotted screen and the desired length of 4-inch PVC triloc casing were screwed together and placed in the augers (See Table AI-3). The augers were pulled out of the hole in 1- to 2-foot increments, and filter pack that consisted of 10-20 Colorado silica sand was placed in the annular space adjacent to the screen. The top of the filter pack was at least one foot above the top of the screen (Figures AI-2, AI-3, and AI-4).

Once the filter pack was in place, a bentonite slurry was poured into the augers, and the augers were pulled out of the hole. The bentonite slurry consisted of 0.25-inch bentonite crumbles, liquid polymer (Ultra-Vis), and tap water from Montana Tech. The well annulus was filled with the bentonite slurry from the top of the sand pack to land surface at most of the sites (See Figures AI-2, AI-3, and AI-4) (CFRSSISOP GW-10).

The top of the casing of all wells was at least 2 feet above land surface. A 6-inch steel protective casing was placed around all wells. The protective casing extended from a few inches above the top of the well casing to a minimum of about 2 feet below land surface. A 3 feet × 3 feet × 6 inch concrete apron was poured around the protective casing. The wells were secured with locking protective caps that were installed on the protective casings (CFRSSISOP GW-10).

Figure AI-2. Schematic of Monitoring Well AW1.

RCG/Hagler Bailly

Figure AI-3. Schematic of Monitoring Well AW2. RCG/Hagler Bailly

Figure AI-4. Schematic of Monitoring Well AW3.

RCG/Hagler Bailly

All of the wells were developed by surging and pumping (CFRSSISOP GW-4). The wells were pumped until the water was visually sediment free. However, pumping the wells after they had recovered always resulted in turbid water that would become visually sediment free after pumping for some period of time.

1.2.2 Alluvial Groundwater Collection Methods

Groundwater samples were collected using a stainless steel submersible pump attached to a flexible discharge hose (CFRSSISOP GW-1). Static water levels were measured at each site prior to purging using a decontaminated electric tape (CFRSSISOP GW-5). The wells were purged until a minimum of three casing volumes was removed, and specific conductivity, temperature, and pH stabilized within 10% (CFRSSISOP GW-1).

Prior to sampling each site, the pump, the hose, and any other equipment used to sample were decontaminated (CFRSSISOP G-8). The decontamination procedure consisted of circulating dilute nitric acid solution through the pump and hose for about 10 minutes. The nitric acid rinse was followed by flushing about 10 gallons of deionized water through the pump and hose.

Samples that required filtering were filtered using 0.45µm disposable filters. The filter was attached to a connection on the end of the pump hose using a short piece of disposable tygon tubing. The filter and hose were disposed of after collecting sample from each site.

1.2.3 Sample Handling and Preservation

Two sets of groundwater samples were collected at each location. One set of samples was signed over to ARCO oversight personnel using chain of custody forms. The other set of samples was signed over to the MBMG laboratory using chain of custody forms and MBMG laboratory forms (CFRSSISOP G-7). The following set of groundwater samples was collected at each site:

- ▶ 1 500-ml filtered, preserved with 5 ml of nitric acid (pH < 2)
- ▶ 1 500-ml unfiltered, unpreserved (raw)
- ► 1 250-ml filtered, unpreserved.

In addition to the groundwater samples collected at the three sites, Quality Assurance/Quality Control (QA/QC) samples were also collected (CFRSSISOP G-6). The set of QA/QC samples consisted of a rinseate blank, a filter blank, a bottle blank, a duplicate, and two trip blanks.

1.2.4 Analytical Protocols Applied to the Analysis of Alluvial Groundwater Samples

The suite of samples was submitted to the Montana Bureau of Mines and Geology Analytical Division laboratory in polyethylene bottles. A field sheet (MBMG Form 173) containing information about each sample, the requested analyses, and chain of custody documentation accompanied each set of bottles. A separate chain of custody document (U.S. EPA R8 014B) accompanied the submittals from each sampling event. The samples were logged into the laboratory and given a laboratory identification number. The sample storage area of the MBMG Analytical Division is a locked, restricted access area within the main office. When samples were removed from the area for analysis, a custody logbook was maintained.

The raw unpreserved bottles were analyzed for specific conductance, pH, and alkalinity immediately upon receiving the samples. The filtered unpreserved bottles were analyzed for F, Cl, Br, NO₃-N, OPO₄-P, and SO₄ within twenty-eight days of log-in. The filtered acidified samples were analyzed for the dissolved major cations and trace metals. Table AI-4 identifies the appropriate U.S. EPA Methods for the parameters.

Table AI-4 Analytical Methods Employed for NRDA Groundwater		
Parameter	Bottle Type	U.S. EPA Method
Ca, Mg, Na, K, Fe, Ag, Al, B, Cr, Ni, P, Sr, Ti, V, Zr	FA	200.7
SiO ₂	FU	200.7
As, Cd, Cu, Mn, Mo, Pb, Zn	FA	200.8
Alkalinity	RU	310.1
Specific Conductance	RU	120.1
рН	RU	150.1
F	FU	340.2
Cl, Br, NO ₃ -N, OPO ₄ -P, SO ₄	FU	300.0A
FA = Filtered, Acidified. FU = Filtered, Unpreserved. RU = Raw, Unpreserved.		

For the critical elements, spikes and duplicates were included at a 10% frequency; Initial and Continuing Calibration Standards from different sources were included at the appropriate intervals. A Laboratory Control Sample from the USGS Standard Reference Waters was included with every run.

The required demonstration of instrument performance for both ICP-AES (for Fe) and ICP-MS (for As, Cd, Cu, Mn, Mo, Pb, Zn) was carried out prior to the analysis of samples. The data produced for these elements have been validated. MBMG Analytical Division Quality Assurance guidelines were followed in determining the remaining analytes. These guidelines also require spiking and duplication of samples at 10% frequency and the analysis of control samples. The cation-anion balance is an additional quality assurance parameter imposed on the analysis of dissolved constituents. The parameter $\sigma(2)$, which assesses the lack of agreement in the balance, must be within ± 1 ; otherwise the sample is reanalyzed for suspect analytes. If balance is not achieved after reanalysis, the data are flagged.

ATTACHMENT II

INFORMATION USED TO CALCULATE FLUX OF INJURED ALLUVIAL GROUNDWATER IN AREA I

12/01/94

STATION NUMBER 12323240 BLACKTAIL CREEK AT BUTTE STREAM SOURCE AGENCY USGS LATITUDE 455438 LONGITUDE 1123138 DRAINAGE AREA 95.4 DATUM STATE 30 COUNTY 093

DISCHARGE, CUBIC FEET PER SECOND DAILY MEAN VALUES

1

	89 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	279.8	281.1	254.9	242.0	199.4	450.4	525	527	354.8	260.5	349.8	318.0
MEAN	9.03	9.37	8.55	7.81	7.12	14.5	17.5	17.0	11.8	8.60	11.3	10.6
MAX	14	12	10	8.0	7.9	46	29	23	16	12	17	21
MIN	8.1	8.9	7.8	7.5	6.5	7.0	11	13	8.9	6.9	8.8	9.3
AC-FT	555	558	525	480	396	893	1040	1050	704	529	694	631
WTR	YR 1989	TOTAL 40	58.7 MEAN	11.1 MAX 4	6 MIN 6.5 /	AC-FT 8050						
19	90 OCT	NOV	DEC	MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	355	293.5	287.3	302.4	259.5	315.5	422	415	391.3	261.1	285.2	254.6
MEAN	11.5	9.78	9.27	9.75	9.27	10.2	14.1	13.4	13.0	8.42	9.23	8.49
MAX	13	10	9.7	14	12	13	19	27	18	12	14	11
MIN	10	8.8	9.0	8.8	8.5	8.8	12	10	8.7	6.8	6.7	7.5
AC-FT	704	582	570	600	515	626	837	823	776	518	568	505
CAL	YR 1989			11.4 MAX 4								
WTR	YR 1990	TOTAL 38	43.4 MEAN	10.5 MAX 2	7 MIN 8.7 A	AC-FT 7620						
19	91 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	259.0	275.2	237.1	243.3	227.1	230.1	327.8	578.7	523	244.0	284.9	261.5
MEAN	8.68	9.17	7.65	7.85	8.11	7.42	10.9	18.7	17.4	7.87	9.19	8.72
MAX	11	11	8.5	9.0	8.6	8.2	14	31	30	12	17	13
MIN	7.8	8.5	6.0	7.0	7.8	6.5	8.2	9.5	12	6.6	7.8	6.8
AC-FT	534	546	470	483	450	456	650	1150	1040	484	565	519
CAL	YR 1990	TOTAL 36	88.9 MEAN	10.1 MAX 2	7 MIN 6.0 A	AC-FT 7320						
WTR	YR 1991	TOTAL 37	01.5 MEAN	10.1 MAX 3	MIN 6.0 A	AC-FT 7340						
	92 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	253.3	280.8	260.3	250.9	243.0	333.0	280.9	226.7	298.2	254.2	207.8	179.4
MEAN	8.17	9.36	8.40	8.09	8.40	10.8	9.36	7.31	9.94	8.20	6.70	5.98
MAX	9.5	12	10	8.8	11	13	11	11	24	15	11	7.9
MIN	7.5	7.9	7.7	7.8	7.4	9.7	7.4	5.8	6.3	6.0	5.5	4.4
AC-FT	502	557	516	498	483	662	557	450	591	504	412	356
CAL	YR 1991	TOTAL 37	14.6 MEAN	10.2 MAX 3	1 MIN 6.5	AC-FT 7370						
WTR	YR 1992	TOTAL 30	70.0 MEAN	8.39 MAX 2	4 MIN 4.4	AC-FT 5090						
	92 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	253.3	280.8	260.3	250.9	243.0	333.9	280.9	226.7	298.2	254.2	207.8	179.4
MEAN	8.17	9.36	8.40	8.09	8.40	10.8	9.36	7.31	9.94	8.20	6.70	5.98
MAX	9.5	12	10	8.8	11	13	11	11	24	15	11	7.0
199	93 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	253.4	233.6	243.8	215.8	177.3	364.9	349	374.9	510	427.1	469.8	288.1
MEAN	8.17	7.79	7.65	6.95	6.33	11.8	11.6	12.1	17.0	13.8	15.2	9.60
MAX	19	8.3	8.5	7.5	6.8	20	15	24	48	26	42	13
MIN	6.9	7.4	7.1	6.5	5.8	6.2	10	7.7	10	9.2	6.2	8.2
AC-FT	503	463	484	428	352	724	692	744	1010	847	932	571
CAL	YR 1992					AC-FT 5960						
WTR	YR 1993	TOTAL 390	7.7 MEAN	10.7 MAX 4	8 MIN 5.8	AC-FT 7750						
	94 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	352.3		254.5	234.7			561	566	312.4	349.0	197.4	
MEAN	11.4		8.21	7.57			18.7	18.3	10.4	11.3	6.37	
MAX	15		9.0	8.0			31	30	14	68	8.3	
MIN	8.4		7.4	7.1			12	13	5.0	6.0	5.3	
AC-FT	899		505	466			1110	1120	620	692	392	
											41.0	055
	95 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	270.6	255.6										
MEAN	8.73	8.52										
MAX	12	13										
MIN	0.6	7.7										
AC-FT	537	507										
CAL YR 1	1992 TOTA	L 3005.4 M	EAN 8.21 I	MAX 24 MIN	4.4 AC-FT	5960						
				MAX 24 MIN MAX 48 MIN								
WTR YR							APR	MAY	JUN	JUL	AUG	SEP
WTR YR	1993 TOTA	L 3907.7 N	EAN 10.7	MAX 48 MIN	15.8 AC-F	T 7750	APR 561	MAY 566	JUN 312.4	JUL 349.0	AUG 197.4	SEP
WTR YR	1993 TOTA 94 OCT	L 3907.7 N	DEC	MAX 48 MIN JAN	FEB	T 7750 MAR						
WTR YR 196 TOTAL	1993 TOTA 94 OCT 352.3	NOV	DEC 254.5	MAX 48 MIN JAN 234.7	FEB	T 7750 MAR	561	566	312.4	349.0	197.4	
WTR YR 190 TOTAL MEAN	1993 TOTA 94 OCT 352.3 11.4	NOV	DEC 254.5 6.21	MAX 48 MIN JAN 234.7 7.57	FEB 	MAR 	561 18.7	566 18.3	312.4 10.4	349.0 11.3	197.4 6.37	
WTR YR 195 TOTAL MEAN MAX	1993 TOTA 94 OCT 352.3 11.4 15	NOV	DEC 254.5 6.21 9.0	MAX 48 MIN JAN 234.7 7.57 8.0	FEB 	MAR 	561 18.7 31	566 18.3 30	312.4 10.4 14	349.0 11.3 68	197.4 6.37 8.3	

12/01/94

UNITED STATES DEPARTMENT OF THE INTERIOR - GEOLOGICAL SURVEY - MONTANA

STATION NUMBER 12323250 SILVER BOW CREEK BL BLACKTAIL CREEK AT BUTTE MT STREAM SOURCE AGENCY USGS LATITUDE 455949 LONGITUDE 1123343 DRAINAGE AREA 103.00 DATUM 5410.8 STATE 30 COUNTY 093

DISCHARGE, CUBIC FEET PER SECOND DAILY MEAN VALUES

19	84 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	828	772	702	795	637	798	1124	1361	1282	722	703	666
MEAN	26.7	25.7	22.6	25.6	22.0	25.7	37.5	43.9	42.7	23.3	22.7	22.2
MAX	33	28	24	48	23	32	59	72	89	36	35	26
MIN	23	23	21	21	21	21	27	32	26	21	20	21
AC-FT	1640	1530	1390	1580	1260	1580	2230	2700	2540	1430	1390	1320
19	85 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	748	722	659	623	536	737	1181	778	694	570	539	602
MEAN	24.1	24.1	21.3	20.1	19.1	23.8	38.7	25.1	23.1	18.4	17.4	20.1
MAX	27	27	23	22	20	29	100	43	59	38	34	52
MIN	23	22	20	10	18	20	23	19	16	16	14	14
AC-FT	1480	1430	1310	1240	1060	1460	2300	1540	1380	1130	1070	1190
10	86 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	622	500	486	488	682	873	761	965	750	569	606	704
MEAN	20.1	16.7	15.7	15.7	24.4	28.2	25.4	31.1	25.0	19.0	19.5	23.5
MAX	24	19	17	20	91	37	30	46	57	33	64	58
MIN	18	16	15	15	16	22	21	23	16	16	15	18
AC-FT	1230	992	964	968	1350	1730	1510	1910	1490	1170	1200	1400
	107 OCT	NOV	DEC	1441	CED	MAR	APR	MAV	11.484	11.11	ALIC	SEP
TOTAL	87 OCT	NOV 579	DEC 494	JAN 529	FEB 514	871	929	MAY 1212	JUN 789	JUL 1056	AUG 859	5EP 686
MEAN	597 19.3	19.3	15.9	17.1	18.4	28.1	31.0	39.1	26.3	34.1	27.7	22.2
MAX	28	25	18	19	22	65	39	99	40	75	39	25
MIN	18	16	14	16	17	18	22	19	17	17	24	20
AC-FT	1180	1150	980	1050	1020	1730	1840	2400	1560	2090	1700	1320
19	88 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	677	606	556	532	538	686	1016	850	621	511	579	507
MEAN	21.8	20.2	17.9	17.2	18.6	22.1	33.9	27.4	20.7	16.5	18.7	16.9
MAX	23	22	25	18	22	30	65	65	38	20	24	29
MIN	21	18	16	17	17	19	22	18	16	14	14	13
AC-FT	1340	1200	1100	1060	1070	1360	2020	1890	1230	1010	1150	1010
19	89 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	559	568	477	416	447	950	892	699	544	568	683	616
MEAN	18.0	18.9	15.4	13.4	16.0	30.6	29.7	22.5	18.1	18.3	22.0	20.5
MAX	32	25	18	15	18	118	58	38	26	31	39	52
MIN	16	17	12	13	12	16	20	16	15	15	17	17
AC-FT	1110	1130	946	825	887	1880	1770	1390	1080	1130	1350	1220
19	90 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	588	597	660	635	519	598	696	888	632	718	799	512
MEAN	19.0	19.9	21.3	20.5	18.5	19.3	23.2	28.6	21.1	23.2	25.8	17.1
MAX	27	21	22	36	27	23	31	98	38	33	56	19
MIN AC-FT	18 1170	18 1180	20 1310	18 1260	17 1030	17 1190	16 1380	21 1760	15 1250	18 1420	17 1580	16 1020
19	91 OCT	NOV	DEC	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	526	515	533	504	463	534	597	894	848	483	507	478
MEAN	17.0	17.2	17.2	16.3	16.5	17.2	19.9	28.8	28.3	15.6	16.4	15.9
MAX	20	19	19	17	18	20	24	59	48	21	36	25
MIN	16	16	16	16	16	16	17	17	21	14	14	13
AC-FT	1040	1020	1080	1000	918	1060	1180	1770	1660	958	1010	948
	92 OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
TOTAL	553	579	583	528	511	605	447	391.0	562	505	439	489
MEAN MAX	17.8 20	19.3 24	18.8 22	17.0 18	17.6 21	19.5 21	14.9 18	12.6 20	18.7 52	16.3 35	14.2 23	16.3 21
MIN	16	17	18	16	16	18	12	8.0	13	12	23 11	13
AC-FT	1100	1150	1160	1050	1010	1200	887	776	1110	1000	871	970
STATISTI	ICS OF MO	NTHLY MEA	N DATA FOI	R WATER Y	EARS 1984 -	- 1994 BY W	VATER YEAR	(WY)				
MEAN	20.4	20.1	18.5	18.1	19.0	23.8	28.2	28.8	24.9	20.5	20.5	19.4
MAX	26.7	25.7	22.6	25.6	24.4	30.6	38.7	43.9	42.7	34.1	27.7	23.5
(WY)	1984	1984	1984	1984	1986	1989	1985	1984	1984	1987	1987	1986
MIN	17.0	16.7	15.4	13.4	16.0	17.2	14.9	12.6	18.1	15.6	14.2	15.9
(WY)	1991	1986	1989	1989	1989	1991	1992	1992	1989	1001	1992	1991

Table AII-1
Summary Flow Statistics for Blacktail Creek and Silver Bow Creek

		reek at Butte rs 1989-1993	Blackta	Creek Below il Creek rs 1984-1993
Flow Statistic	Flow (cfs)	Sample Date	Flow (cfs)	Sample Date
Annual mean	10.2		21.7	
Highest annual mean	11.1	1989	28.4	1984
Lowest annual mean	8.39	1992	16.9	1992
Highest daily mean	48	06/16/93	118	03/11/89
Lowest daily mean	4.4	09/03/92	8.0	05/08/92
Annual 7-day minimum	4.7	09/01/92	11	05/02/92
Instantaneous peak flow	171*	06/11/92	320**	05/29/90
Instantaneous peak stage	4.29	08/13/93	3.72	05/29/90
Instantaneous low flow	3.9	09/03/92	7.1	05/07/92
Annual runoff (acre-ft)	7,370		15,730	
10% exceeds	15		30	
50% exceeds	9.1		19	
90% exceeds	7		16	

^{*} Revised, from indirect measurement; gage height, 3.81 feet.

Source: USGS, 1994.

^{**} From indirect measurement.

United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Federal Building, Room 428 301 South Park Avenue, Drawer 10076 Helena, Montana 59626-0076

May 14, 1990

Mr. Ted Duaime
Montana Bureau of Mines
and Geology
Butte, Montana 59701

Dear Ted:

Attached are the preliminary results of the seepage run (streamflow gain-loss determination) made on Silver Bow Creek on April 12, 1990. Also included are copies of portions of USGS quad maps showing measuring site locations.

Please give me a call (449-5263) if you have any questions.

Sincerely,

Charles Parrett

Supervisory Hydrologist

Attachments

Blacktoil-Siver Bow Creek Seepage Study, April 12,1590

1. Placktail Creek nr. Butte 12-3232.00			3.69		
2. Blacktail Cr at Ninemile Junction			4.00		
3. Little Blacktail Creek	RE	.68			
A. Blacktail Creek S.E. of Airport		•00	3.55		
·	RB	.05	3.,,		
5. Blacktail Creek above Butte Country Cl		.03			
			4.58		
	PT:	0.00			
7. Basin Creek				• 67	LE
8. Blacktail Creek at Harrison Ave.			8.49		
9. Sand Creek				.01	1.18
10. Grove Gulch				•67	LB
11. Blacktail Creek of Butte 12-3232.40			12.9		
			1		
.2. Silver Bow Creek above mouth of Blacktail Cr.		70	:		
		•30			
Blacktail Creek enters on Left Bank <			0		
12A. Drainage blw Blacktail Creek mouth		•05			
13. Kissoula Creek	RB	.18			
14. Silver How Creek ab Sewage Treatment Plant		14.1			
15. Butte Sewage Treatment Plant discharge	RB	7.1			
16. Silver Bow Creek blu Sewage Treatment Plant		21.8			
17. Silver Bow Creek blw Blacktail Cr 12-3232.	.50				
18. Unnamed Trib blw gage		0.0			
· ·	174.	V.V	0.0		
19. Unnamed Trib blw gage	P.F.	0.5	0.0		LE
20. Whiskey Gulch nr. Rocker	RB				
21. Silver Bow Creek at Rocker		21.0			

United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Federal Building, Room 428 301 South Park Avenue, Drawer 10076 Helena, Montana 59626-0076

November 30, 1990

Mr. Ted Duaime Montana Bureau of Mines and Geology Butte, Montana 59701

Dear Ted:

Attached are the preliminary results of the seepage run (streamflow gain-loss determination) made on Silver Bow Creek On November 8, 1990. Also included are copies of portions of USGS quad maps showing measuring site locations.

Please give me a call (449-5263) if you have any questions.

Sincerely, '

thuck)

Charles Parrett

Supervisory Hydrologist

Enclosures

Site No.	. Stream name (station number) D	ischarge, cfs
1.	Blacktail Creek nr. Butte (12-323200)	0.84
2.	Blacktail Cr at Ninemile Junction	1.07
	Little Blacktail Creek	0.11
4.	Blacktail Creek S.E. of Airport	EST 0.25
4A.	Irrigation ditch bypass	0.00
5.	Blacktail Creek above Butte Country Club	1.31
6.	Reese Creek	0.00
7.	Basin Creek	0.67
7A.	STORM DRAIN	EST 0.75
8.	Blacktail Creek at Harrison Ave.	4.73
9.	Sand Creek	0.06
10.	Grove Gulch	0.00
	POND DISCHARGE	0.60
	Blacktail Creek at Butte (12-3232.40)	9.1
	Silver Bow Creek above mouth of Blacktail Cr	
	Drainage blw Blacktail Creek mouth	EST 0.2
	Missoula Creek	1.30
	Silver Bow Creek ab Sewage Treatment Plant	11.8
	Butte Sewage Treatment Plant discharge	6.9
	Silver Bow Creek blw Sewage Treatment Plant	19.6
	Silver Bow Creek blw Blacktail Cr (12-3232.5)	
	Unnamed Trib blw gage	0.00
	Unnamed Trib blw gage	0.00
	Whiskey Gulch nr. Rocker	EST 0.05
21.	Silver Bow Creek at Rocker	17.6 *

^{*} Apparent decrease in flow from site 17 is the result of a flow change over time, evidently at the sewage treatment plant, and not a loss to groundwater.

APPENDIX I BERKELEY PIT WATER QUALITY DATA

Appendix I. Berkeley Pit Water Quality Data.

(MY) (MCI) (C) (UMHOS) (A) NA NA 5.6 4250 292 NA NA 6.5 4865 4.68 NA NA 10.2 3965 2.75 NA NA 10.4 5585 2.65 NA NA NA NA NA 817 6.89 11.5 NA 2.24 720 5.47 8.2 NA 2.0 643 0.01 11.1 NA 2.44 463 0.13 13.5 NA 2.44 463 0.13 13.1 NA 2.44 463 0.13 13.1	Sample Depth
NA NA 5.6 4250 292 19758 NA NA 6.5 4865 4.68 2087.5 NA NA 10.2 3965 2.75 1637.9 NA NA 10.4 5585 2.65 2160.5 NA NA NA NA NA NA 1674.5 NA NA NA NA NA NA 2214.6 817 6.89 11.5 NA 2.24 1707.4 720 5.47 8.2 NA 2.20 1807.3 643 0.07 11.5 NA 2.40 2230.9 501 0.13 13.3 NA 2.42 2390.9 457 0.13 13.5 NA 2.24 2393.8 610 5.34 13.0 6871 2.70 2840.3 417 NA 6.1 NA NA NA 250.0 613 NA 13.1 NA NA 250.0 613 NA 13.1 NA NA 250.0 614 NA 15.2 NA 2.24 2393.8 617 6.06 6.1 7240 2.73 2947.3 618 NA 13.1 NA NA 2550.0 619 NA 13.1 NA NA 2550.0 611 NA NA 2550.0 612 NA 15.2 237.3 6250.0 6275 2918.0	(Peet) (UMHOS)
NA NA 6.5 4865 4.68 NA NA 10.2 3965 2.75 NA NA 10.4 5385 2.65 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 817 6.89 11.5 NA 2.24 720 5.47 8.2 NA 2.24 643 0.07 11.5 NA 2.10 570 0.13 13.3 NA 2.44 457 0.13 13.5 NA 2.24 463 0.13 13.5 NA 2.24 410 0.06 6.1 NA NA 417 NA 6.1 NA NA 417 NA 15.2 273	Surface 4320
NA NA 10.2 3965 2.75 NA NA 10.4 5585 2.65 NA N	
NA NA 10.4 5585 2.65 NA N	Surface NA
NA N	~ 100 NA
NA N	Ć Z
NA N	
NA N	220 NA
NA SERIA (11.5 NA 2.24 1.20 1.20 1.20 1.21 NA 2.10 1.21 NA 2.44 1.27 NA 2.24 1.3.0 6871 2.70 1.3 1.3.7 NA 2.24 1.3.0 6871 2.70 1.3 1.3.1 NA NA 1.3.2 2.73 2.73	330 NA
817 6.89 11.5 NA 2.24 720 5.47 8.2 NA 2.20 643 0.07 11.5 NA 2.10 570 0.10 12.1 NA 2.10 501 0.13 13.3 NA 2.42 468 0.13 13.5 NA 2.42 468 0.13 13.5 NA 2.44 463 0.13 13.5 NA 2.44 463 0.13 13.1 NA 2.44 463 0.13 13.1 NA 2.44 417 NA 6.1 NA NA 13.1 417 0.60 6.1 NA NA 13.1 548 NA 15.2 2.73	390 NA
720 5.47 8.2 NA 2.20 643 0.07 11.5 NA 2.10 570 0.10 12.1 NA 2.10 571 0.13 13.3 NA 2.44 468 0.13 13.5 NA 2.44 463 0.13 13.7 NA 2.44 463 0.13 13.7 NA 2.44 417 NA 13.1 NA NA 13.1 613 NA 13.1 NA NA 13.1 614 NA 13.1 NA NA NA 13.1 615 NA 13.1 NA NA NA 13.1 NA NA 13.1 NA NA 6.1 NA 6.1 NA NA 6.1 NA 6.1 NA NA 6.1 NA 6.	0 4260
643 0.07 11.5 NA 2.10 570 0.10 12.1 NA 2.10 501 0.13 13.3 NA 2.42 468 0.13 13.5 NA 2.44 463 0.13 13.5 NA 2.44 463 0.13 13.7 NA 2.44 416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 6.1 417 NA 6.1 NA NA 13.1 417 NA 6.1 NA NA 13.1 548 NA 15.2 2.73	3 4240
570 0.10 12.1 NA 2.10 501 0.13 13.3 NA 2.04 458 0.13 13.5 NA 2.44 463 0.13 13.7 NA 2.44 610 5.34 13.0 6871 2.70 613 NA 13.1 NA NA 613 NA 6.1 NA NA 417 NA 6.1 NA NA 417 NA 6.1 NA NA 617 NA 6.1 NA NA 618 NA 15.2 2.73 548 NA 15.2 2.73	10 5200
501 0.13 13.3 NA 2.04 457 0.13 13.5 NA 2.42 468 0.13 13.5 NA 2.42 610 5.34 13.0 6871 2.70 613 NA 13.1 NA NA 613 NA 13.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	50 6180
457 0.13 13.5 NA 2.42 468 0.13 13.5 NA 2.44 463 0.13 13.7 NA 2.24 610 5.34 13.0 6871 2.70 416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 613 NA 6.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	100 6980
468 0.13 13.5 NA 2.44 463 0.13 13.7 NA 2.24 610 5.34 13.0 6871 2.70 416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 417 NA 6.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	200 7050
463 0.13 13.7 NA 2.24 610 5.34 13.0 6871 2.70 416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 613 NA 6.1 NA NA 417 NA 6.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	300 7080
610 5.34 13.0 6871 2.70 416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 613 NA 13.1 NA NA 613 NA 13.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2	400 7100
416 0.06 6.1 7240 2.73 613 NA 13.1 NA NA 417 NA 6.1 NA NA 613 NA 13.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	3.4 7030
613 NA 13.1 NA NA 14.7 NA 6.1 NA NA 6.13 NA 13.1 NA NA 14.7 NA 6.1 NA NA 41.7 0.60 6.1 NA NA 5.8 NA 15.2 2.73	400 8050
417 NA 6.1 NA NA 613 1 NA NA 613 NA 13.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	3.4 8977
613 NA 13.1 NA NA 417 NA 6.1 NA NA 417 0.60 6.1 NA NA 548 NA 15.2 2.73	400 12066
417 NA 6.1 NA NA 417 0.60 6.1 NA NA S48 NA 15.2 2.73	3.4DUP 8977
417 0.60 6.1 NA NA S48 NA 15.2 2.73	400DUP 12066
548 NA 15.2 2.73	400 8320
SEC SCOOL SCOOL STR. CON	3 6090
2.84 410 NA 13.5 10405 2.75 2949.0	

Appendix I. Berkeley Pit Water Quality Data.

							Dicent	Dissolved Concentration	ncontr	ation						
							10001									
Analy.	Date	<u>ವ</u>	M	Z	×	Pe	Mn	Si02	HC003	803	٥	804	NO3-N	2	₹	₹
Lab	(mm/dd/yy)	(mg/l)	(mg/l)	(mg/J)	(mg/l)	(mg/l)	(mg/l)	(L/Zm)	(L/8m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(J/d n)	(ngn)
MBMG	11/21/84	455.0	204.0	63.2	4.9	214.0	87.5	83.6	0.0	0.0	12.0	3707	0.2	4.2	120000	17
MBMG	11/21/84	447.0	236.0	61.7	4.4	256.0	106.0	87.6	3.7	0.0	12.3	4410	0.1	5.8	142000	8
MBMG	6/18/85	412.0	148.0	64.8	7.9	114.0	68.1	85.6	0.0	0.0	12.3	3200	0.2	3.7	86000	33
MBMG	6/18/85	435.0	261.0	60.3	8.8	451.0	116.0	100.0	0.0	0.0	8.3	5550	0.2	13.6	172000	43
MBMG	10/17/86	425.0	149.0	59.3	12.9	177.0	64.0	78.9	Ϋ́	N V	NA NA	YZ V	N V	YZ YZ	91600	19
MBMG	10/17/86	457.0	250.0	64.7	19.5	685.0	122.0	104.0	V V	Y V	V V	NA	N A	V V	171000	32
MBMG	10/17/86	450.0	291.0	65.8	24.3	918.0	144.0	108.0	Y V	NA NA	Ϋ́	NA	N A	Ϋ́	192000	37
MBMG	10/17/86	457.0	310.0	66.5	297	1010.0	154.0	109.0	۲ ۲	Υ V	٧	Y V	N V	Š	201000	43
MBMG	10/17/86	456.0	310.0	65.4	26.2	1020.0	156.0	111.0	۷ ۷	۲	ζ Z	Y V	Y V	Y Y	203000	43
MBMG	10/14/87	425.0	157.0	70.0	17.2	183.0	65.6	65.5	0.0	0.0	11.0	3580	1.5	0.9	97900	22
MBMG	10/14/87	444.0	169.0	9.69	17.7	231.0	70.8	69.2	0.0	0.0	11.0	3760	1:1	0.9	106000	14
MBMG	10/14/87	463.0	213.0	67.5	18.0	376.0	86.7	77.8	0.0	0.0	11.0	4720	0.5	0.9	144000	88
MBMG	10/14/87	483.0	249.0	67.1	22.0	711.0	115.0	95.5	0.0	0.0	11.5	5810	0.1	7.6	162000	77
MBMG	10/14/87	484.0	288.0	9.89	28.5	982.0	142.0	98.6	0.0	0.0	12.5	6710	0.4	8.4	187000	8
MBMG	10/14/87	480.0	292.0	9.89	29.5	983.0	143.0	109.0	0.0	0.0	12.0	0099	0.2	8.4	186000	79
MBMG	10/14/87	479.0	292.0	69.4	29.2	984.0	143.0	111.0	0.0	0.0	12.5	9200	0.2	8.4	189000	88
MBMG	10/14/87	475.0	291.0	68.8	29.7	1010.0	147.0	112.0	0.0	0.0	12.0	6780	0.2	8.4	191000	19
MBMG	05/21/91	460.0	411.0	66.1	15.4	0.999	191.0	94.4	0.0	0.0	10.8	7261	0.2	14.3	268700	9>
MBMG	05/21/91	488.0	420.0	69.7	20.9	1095.0	182.0	98.5	0.0	0.0	11.1	8084	0.5	18.0	284900	9>
ARCO	05/21/91	431.0	407.0	72.1	18.2	593.0	155.0	39.7	X A	Y V	21.4	15300	0.1	26.2	268000	70
ARCO	05/21/91	442.0	162.0	71.3	23.8	970.0	162.0	42.4	Υ _N	NA NA	27.3	17200	0.1	32.0	271000	3.3
ARCO	05/21/91	415.0	392.0	67.9	17.5	567.0	163.0	40.1	Υ V	Y N	22.6	17400	0.1	29.5	257000	2.8
ARCO	05/21/91	428.0	384.0	66.6	22.8	943.0	158.0	41.9	N A	NA A	26.4	17800	0.1	31.6	265000	4.6
CDM-FPC	05/21/91	206.0	426.0	57.4	23.6	1030.0	186.0	50.6	0.0	0.0	N	13000	0.0	×	298000	S
MBMG	05/22/91	473.0	422.0	71.2	15.7	649.0	190.0	100.0	0.0	0.0	15.1	7217	0.2	32.9	274200	9>
MBMG	05/22/91	492.0	418.0	68.3	20.3	1088.0	182.0	97.0	0.0	0.0	10.9	8010	0.2	19.2	288000	9>

Appendix I. Berkeley Pit Water Quality Data.

					Disso	Dissolved Concentration	oncent	ration								
Analy.	Date	2	В	3	3	b	đ	7	Mo	Z	Pe	ðs	F	>	Z.	72
Lab	(mm/dd/yy)	(ng/J)	(l/gn)	(ng/l)	(ng/l)	(l/gn)	(L/An)	(L/Sn)	(ng/l)	(L/An)	(ng/l)	(ngn)	(l/8n)	(pan)	(ngn)	(L/8 n)
MBMG	11/21/84	54	110	1230	820	19	89600	100	170	630	170.0	98	79	87	196000	19.0
MBMG	11/21/84	197	200	1540	086	97 1	164000	120	310	820	160.0	88	25	98	255000	35.0
MBMG	6/18/85	21	100	1000	3	84	00069	110	92	470	ž	970	92	31	134000	31.0
MBMG	6/18/85	426	150	1620	1170		229000	150	200	830	¥	006	82		329000	47.0
		;	1					,		3			,			•
MBMG	10/17/86	9 5	150	1000	570		114000	160	949	9 60	ď:	98	2 ;		178000	4 6
MBMG	10/17/86	33	250	1620	940	42 1	196000	230	210	8	Y Z	1030	15		375000	23.0
MBMG	10/17/86	41	330	1740	1050		204000	250	230	910	Y Y	1020	22		460000	49.0
MBMG	10/17/86	20	390	1800	1060	55 2	214000	270	280	970	Ϋ́	1020	14	310	472000	20.0
. MBMG	10/17/86	123	400	1690	1070	47 2	213000	260	250	920	٧٧	1000	27	310	477000	620
MBMG	10/14/87	4.2	130	1090	089	2 1	127000	120	8	044	220	1070	20	g	198000	47.0
MBMG	10/14/87	3.9	210	1450	930	33 1	134000	140	8	260	610	1090	84	8	214000	150.0
MBMG	10/14/87	4.2	150	1710	069	35 1	149000	160	8	200	720	1120	8	110	269000	180.0
MBMG	10/14/87	8.0	200	1890	930	<2 2	205000	200	100	980	086	1060	62	290	390000	230.0
MBMG	10/14/87	335	220	1740	1370	<2 2	205000	230	150	086	1340	1120	26	340	391000	240.0
MBMG	10/14/87	755	170	1760	1190	<2 1	199000	230	130	8	1390	1120	28	340	469000	260.0
MBMG	10/14/87	695	200	1780	1020	<2 1	199000	230	110	086	1360	1130	28	330	470000	250.0
MBMG	10/14/87	1010	130	1780	1110	<2 1	196000	220	120	8	1240	1120	62	330	478000	250.0
MBMG	05/21/91	209	380	1708	1690	56 1	178800	251	20	1030	80	1330	80	4	506300	9>
MBMG	05/21/91	880	420	1573	1830	54 1	186600	500	20	1060	<50	1350	80	178	546600	9
ARCO	05/21/91	190	N A	1870	N A	50 1	50 150000	Y V	N A	893	51.8	N A	AN	Y Y	441000	Š
ARCO	05/21/91	830	Y Y	1770	ΑN	63 1	171000	NA	V V	98	96.4	Ϋ́	NA NA	Y'N	484000	Y N
ARCO	05/21/91	215	NA V	1790	Ϋ́	49 1	158000	NA	Y.	832	8.94	V.	N A	¥Z	439000	Υ _Z
ARCO	05/21/91	892	NA NA	1730	NA NA	8	166000	NA	NA VA	826	40.2	Ϋ́ V	Y Y	Y'N	471000	Š
CDM-FPC	05/21/91	449	N A	2030	X	5 1	195000	Y Y	Ϋ́ V	1060	35	Š	NA	× X	558000	Z A
MBMG	05/22/91	209	410	1807	1680	54 1	54 177800	292	8	1110	<50	1420	92	19	505400	9>
MBMG	05/22/91	830	400	1572	1800	55 1	55 191300	366	20	1050	8	0 4 6	75	180	180 552400	9>

Appendix I. Berkeley Pit Water Quality Data.

Appendix I. Berkeley Pit Water Quality Data.

							Discolused Concentration	od Co.	- Juous	4:00						
							Deer			HODE						
Analy.	Date	đ	X,	ž	×	Pc	ΨD	SiO2	11003	CO3	ರ	204	NO3-N	<u>-</u>	7	*
Lab	(mm/dd/yy)	(µ\$u)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(Mg/l)	(mg/l)	(mg/l)	(mg/J)	(V9m)	(mg/J)	(V9m)	(mg/J)	(Mg/J)	
ENERGY	05/22/91	493.0	413.0	NA	V.	483.0	N A	132.0	ν V	N A	A A	NA	AA	٧	X	17
ENERGY	05/22/91	538.0	415.0	NA	NA	941.0	NA	141.0	Υ V	Υ _N	NA A	N A	X A	Z A	NA A	=
BEUERMAN	05/22/91	596.5	403.1	35.1	6.6	1033.0	196.0	55.6*	X X	A A	X A	N A	X	X A	284300	140
MBMG**	2/28/92	48.2	21.7	3.5	0.4	11.4	10.9	2.4	0.0	0.0	5.7	400	۸.1	1.4	15120	<10
MBMG**	2/28/92	69.5	51.4	7.2	6.0	36.0	25.0	6.9	0.0	0.0	10.5	823	v.1	5.6	33900	<10
MBMG	2/28/92	90.3	69.2	9.1	1.9	50.5	34.5	10.4	0.0	0.0	11.5	1121	~ .1	3.3	45300	<10
MBMG	2/28/92	96.1	88.3	13.4	1.8	46.6	43.7	11.6	0.0	0.0	11.5	1300	0.7	4.0	26500	<10
МВМБ	3/3/92	242.0	230.0	33.0	5.6	234.0	113.7	56.1	0.0	0.0	42.1	3823	9.0	6.9	146000	7
ARCO	8/18-19/92	499.0	408.0	53.5	8.5	411.0	239.0	50.4	<10	0.0	15.0	5620	7	<0.5	240000	\$
ARCO	8/18-19/92	486.0	377.0	8.99	15.6	1077.0	208.0	51.0	<10	0.0	16.0	6530	₹	<0.5	246000	<3
ARCO	8/18-19/92	505.0	421.0	56.2	0.6	415.0	242.0	51.8	<10	0.0	15.0	5760	7	<0.5	248000	\$
ARCO	8/18-19/92	484.0	373.0	55.4	15.3	1075.0	207.0	50.5	<1 0	0.0	16.0	9009	7	<0.5	243000	\$
MBMG	8/19/92	463.0	452.0	71.0	10.5	373.0	233.0	103.0	0.0	0.0	30.0	6930	0.2	21.5	79900	<10
MBMG	8/19/92	444.0	400.0	72.3	18.8	0.996	191.0	101.0	0.0	0.0	77.2	8014	<.2	45.2	80500	<1 0
MBMG	5/18/93	430.0	410.0	0.89	11.0	293.0	194.0	87.0	0.0	0.0	49.0	0809	A. A.	29.1	252000	<10
MBMG	10/7/93	432.0	417.0	76.0	16.9	1083.0	191.0	103.0	0.0	0.0	34.3	7508	<.2	46.8	288000	^
MBMG	10/21/93	417.0	415.0	75.9	17.5	1088.0	196.0	103.0	0.0	0.0	15.0	7622	<.25	41.0	288000	^
MBMG	12/1/93	405.0	368.0	64.8	15.2	1035.0	180.0	94.7	0.0	0.0	15.5	7994	\$.	38.7	265000	۸ 4
MBMG	12/9/93	432.0	400.0	71.0	17.2	1141.0	187.0	91.6	0.0	0.0	16.9	7882	0.3	37.4	275000	^
MBMG	4/19/94	459.0	431.0	78.5	18.5	1160.0	198.0	106.0	0.0	0.0	14.2	7650	<.25	41.6	293000	V V
MBMG	4/19/94	457.0	439.0	10.	18.0	110/.0	700.0	0.4.0	O:O	0.0	20.0	/043	C7.>	41.0	000767	7

Appendix I. Berkeley Pit Water Quality Data.

					Disso	lved C	Dissolved Concentration	ration								
Analy.	Date	2	В	3	පී	ڻ	5	2	Мо	Z	£	Sr	F	>	4 2	12
Į.	(mm/dd/yy)	(Mg/J)	(Mg/J)	(Mg/J)	(me/l)	(Mg/J)	(Mg/J)	(Mg/J)	(Mg/J)	(Jegy)	(Mg/J)	(Me/)			(Me/J)	(May)
ENERGY	05/22/91	70	A'A	2160	NA	NA 1	NA 180000	NA A	\$	N A	130	N A	X A	X X	204000	×Z
ENERGY	05/22/91	46	NA	2190	NA	NA	NA 193000	Y Y	30	Y Y	150	NA	NA A	Y Y	578000	A'N
BEUERMAN	05/22/91	240	Ϋ́ V	2850	2000	10 1	10 186400	X Y	400	2900	200	1670	X A	300	300 596000	X A
MBMG	2/28/92	0.5	<100	120	Y Y	<10	10500	10	< 40	7	<50	139	% V	<10	28800	8
MBMG	2/28/92	2.3	< 100	278	N A	10	21200	23	<40	134	< 50	203	10	<10	57500	8
MBMG.	2/28/92	3.9	110	386	N A	<10	26900	49	< 40	220	190.0	248	20	< 10	82200	49.0
MBMG	2/28/92	2	120	503	Υ _N	<10	31800	20	<40	244	140.0	272	20	×10	97100	20.0
MBMG	3/3/92	120	180	1240	387	2	93000	144	<50	685	40.9	682	92	₹	261000	<10
ARCO	8/18-19/92	150	X	2550	X V	80 1	173000	₹ Z	₹ Z	1080	9.0	Y Y	Ϋ́	×	537000	X A
ARCO	8/18-19/92	1350	ΥN	2280	V V	105 1	177000	ΥN	Ϋ́	066	7.0	AN	Ϋ́	۲	579000	N A
ARCO	8/18-19/92	150	٧X	2560	ΥN	94 1	178000	Y V	٧X	1110	7.0	Y X	۲	X	542000	N A
ARCO	8/18-19/92	1350	Y V	2280	Ϋ́	105 1	175000	X V	Υ _Α	1010	0.9	NA	X A	X A	578000	X A
MBMG	8/19/92	103	<100	2300	1440	41 1	41 189000	272	< 40	1250	48.0	1700	< 50	<20	<20 519000	×100
MBMG	8/19/92	1303	< 100	1960	1360	60 1	190000	296	< 40	1280	97.0	1460	<20	123	240000	<200
MBMG	5/18/93	108	<100	2032	1235	80 1	80 162000	266	95	806	43.0	1519	<10	<10	<10 437000	<50
MBMG	10/7/93	1190	<50	1927	1367	100 2	100 201000	350	53	1090	9.68	1380	28	120	120 587000	<50
MBMG	10/21/93	1200	09>	1900	1337	60 1	000561 09	333	92	1135	82.7	1320	28	111	117 595000	<50
MBMG	12/1/93	1210	<80	1773	1363	63 1	63 180000	282	84	921	80.1	1150	<10	122	585000	<40
MBMG	12/9/93	1220	<80	1840	1361	66 1	000921 99	281	23	911	81.6	1144	<10	122	289000	< 40
MBMG	4/19/94	1300	08 %	1928	1321	60 1	60 195000	358	% 5	1175	82.0	1441	01×	112	112 606000	235.0
SMC	4/13/34	1710	200	1895	1302	10	01 198000	320	7/	COL	134.0	7761		TO?	103 608000	720.0

Source: Dualme, T.B. 1992 and 1994, Personal Communication to Ann Macst of ROG/Hagler Bailiy containing unpublished MBMG data.

Notes: NA – data not available 1991–92 data preliminary, subject to data validation MBMG** Samples are of pit to MBMG**. Samples are of pit to

APPENDIX II

BEDROCK GROUNDWATER QUALITY DATA

- A Butte Mine Flooding
- **B** Bedrock Monitoring Wells
- C NRDA Bedrock Monitoring Results
- D Bedrock Aquifer Baseline Water Quality Data

Appendix IIA. Bedrock Groundwater Quality Data. Butte Mine Flooding Area.

			6			_		-	-	-								-			-		-	_	_		-	-	-	-	-	_		_	
		ઝ	(ug/)	01		\C	_	(6	0	0	5	_	**	~	~	_	_				•	•			_						_			
		*	(L/8n)	9.5	79.	8.6	8.4	14.(10.0	11.0	94.0	9.6	6.5	19.4	4	2.3	5.0	8420.0	57.(\$100.0	43.0	5.2	. 8.5	12.0	8.4	8.0	13.0	8.2	17.0	13.0	16.0	12.0	7.5	14.9	21.7
		Zp	(l/gn)	20000	53000	24900	14600	11000	26000	57500	17870	9620	11300	5570	8850	36800	3320	446000	30800	264000	21200	23700	22800	23000	20900	23600	21400	17300	20900	20100	21100	21610	2480	2790	23700
		2	(ng/l)								0 *>					×40	64 9										4 0	4 0	19	22	<40	O\$>	2.4	8.5	1.7
tion		రె	(ngn)	56	44	1600	12	∞	78	40	23	24	^	24	35.7	2700	3945	36400	1360	6430	530	260	860	900	400	550	480	65	230	520	530	611	186	916	10900
centra		ర	(l/8n)	7	7	7	7	7	9	7	9	15	\$	<i>C.L.></i>	<5.2	6	=	140	9	26	4	7	~	7	7	7	7	7	7	9	7	7	<i>L.L></i>	<5.2	<7.7>
d Con		2	(l/8n)	∞	63	45	7	7	38	69	S	♡	=	14.1	6.9	230	210	940	170	650	96	110	140	100	110	110	100	92	75	29	2	75	189	224	95.4
Dissolved Concentration		7	(l/8n)	0	_		_	_	_	_	<30		_		_	3200	0099	29900	009	18000	400	40	260	240	130	8	8	8	420	400	420	533	314	635	896
Ω		NO3	(mg/l)	1.31	0.11	0.17	90:0	<.02	0.20	0.20	0.19	90.>	90:0	<0.5R	<0.5R	4.80			0.85	11.10	0.08	90.0	90.0	0.20	0.08	0.14	0.24	0.13	0.03	1.23	1.47	0.04	0.7R	<0.5R	<0.5R
		204	(mg/l)	882	1095 25	617	998	939	972	1200	1060	1000	957	823	962	1200			1040	4100	1020	202	988	948	826	792	794	765	906	894	808	955	88 88 88	818	444
		ರ	(Mgm	30.5	27.1	21.1	29.3	29.1	27.0	32.0	30.2	31.2	29.4			31.2			24.1	31.0	56.9	25.5	24.5	23.2	22.8	22.4	23.7	22.9	22.7	22.7	23.5	23.1			
		Mn	(l/8m)	99.6	28.40	9.78	11.00	10.20	19.30	35.30	22.10	16.56	16.57	10.20	11.10	12.20	11.50	129.00	9.92	57.60	8.95	8.46	8.42	00.6	7.90	7.35	99'L	7.08	7.65	7.94	8.19	8.48	8.12	9.16	16.50
		Fe	(mg/l) (0.0	0.1	0.4	0.3	9.0	0.1	0.3	4.0	0.2	0.1	0.2	0.1	9.1	4.4	1620.0	4.1	748.0	0.3	1.1	2.0	2.1	1.8	1.2	2.2	9.0	0.7	9.0	0.4	8.0	0.4	6.0	0.4
		Alkalinity		169.0	226.9	141.8	287.9	250.2	205.3	193.7	2625	255.9	256.7	274.0	2620	1		0.0		0.0	22.1	26.0	62.4	48.4	54.7	94.1	72.0	58.6	30.4	31.3	25.2	39.0	32.0	44.0	85.0
		Temp All									15.0					11.0		1.0	14.5	13.0	0.11	14.6	12.8	12.6	6.6	11.0	12.4	9.5	12.0	12.0	12.0	13.0	13.5	14.0	13.3
		SC T	(UMIIOS)								2045					2121		7300	1730	4470	07.71	1630	1230	1695	1260	662	1340	1508		1649	1991	1720	1689	1600	1029
STS	FIELD		(C)	9.9	6.1	6.3	6.1	6.5	9.9	6.5	6.4	6.3	6.1	6.7	6.7	5.0	3.7	3.4	5.7	3.4	5.1	5.8	5.6	9.6	5.9	0.9	5.9	5.9	5.9	0.9	5.8	5.4	6.2	5.7	6.1
ramet	ئنا	Sample pil	Depth																																
Physical Parameters		SWL	(FT)	6.686	970.9	843.1	817.3	808.2	804.5		798.0	785.5	776.1			1,867.2		1,165.6	1,101.2	1,050.7	878.0	856.9	8522	839.5	825.8	8.869	685.7	670.1	659.4	654.4	653.6	649.5			
Physi		Time	Hours)	13:40	13:30	13:35	15:10	14:45	14:38	14:57	19:00	15:00	15:50			11:45	12:30	12:10	11:02	12:20	12:49	13:30	06:50	00:60	10:30	09:51	06:50	10:50	09:53	10:00	10:15	06:50			
		Date	(mm/dd/yy) (Hours)	07/31/86	98/97/60	05/31/88	11/30/88	02/27/89	03/30/89	04/26/89	08/04/89	12/28/89	06/10/50	16/50	08/91	04/28/83	10/13/83	04/26/84	07/26/84	10/18/84	02/22/86	05/29/86	98/97/90	07/31/86	98/97/60	05/31/88	07/28/88	11/30/88	02/22/89	03/30/89	04/26/89	08/04/89	05/91	16/80	16/50
		Site		Anscimo	(East Camp											Belmont																			Chester

Appendix IIA. Bedrock Groundwater Quality Data. Butte Mine Flooding Area.

				 		_	-	-	_	-	I				_		_		_	6.0		_			_	-		-	_	_		_	7
	9	(ngn)	_		_				f+3	(1)							(_											10				3 0.2
	*	(San)	16.7	4.5	4.4	14.0	10.0	19.0	27 E	32.6E	2040.0	3720	1020	2880.0	136.0		2780.0	5340.0	1670.0	1.9	5130.0	4730.0	4280.0	4640.0	1210.0	16130.0	16580.0	1870.0	1.5	2880.0	241.0	4.6	11.8
	Za	(San)	42200	24300	14200	11900	14980	16800	14400 E	17100 E	708000	90300	22700	344000	8540	853000	824000	623000	269000	32100	687000	000999	000099	652000	457000	1550000	1590000	296000	63500	498000	448000	441000	168000
	£	(n/gn)	3			4	×40	110	1.9E	6.3E	×40	×40	160														_						
ition	đ	_	20800	420	180	35	138	97	251S	1280 E	3410	23800	34000	43800	2130	908	3040	7790	2120	780	00006	93400	91900	90700	10600	6480	6200	10900	79	340	320	320	3310
Dissolved Concentration	ت	(ngn)	<5.2	\$ ×2	S	<2	7	\$	<7.7E		340	43	102	10	15	700	130	120	8	<u>0</u>	140	130	120	140	2	320	330	99	7	8	69	\$	<2
og Con	3	_	174	20	19	7	7	\$		<2.9E<5.2E	4160	460	1040	099	170	0261	970	1220	470	130	920	1250	0666	1230	490	1170	1280	830	36	160	5	130	62
issolve	7	(1/8n)	3010	230	120	210	327	320	574E 35.7E	982 E	209000	41500	73600	188000	29500	448000	464000	325000	119000	1430	124000	122000	122000	120000	53900	799000	841000	63900	330	46000	23200	23200	0096
D	NOS	(mg/l) (mg/l)	725 <0.5R	2.28		0.14		<0.09	r•1		0.45	1.34				3.39		0.13	3.51		_	0.24		0.37			-			0.03	1.65	0.30	0.05
	504		725	9 1932	3 1960	0 2050		7 2660	2560 E	247E	4 9600	2 3310				33.0 12800		17.8 10400		3 2490			8080	0.777 0	29.0 5410	5 23500	. 4	5 6440					4 3480
	ַ	ت	9			30 10.0	70 19.6	00 10.7	щ	SS	00 13.4	60 58.2		ឧ	8				10 36.7	90 44.3													60 32.4
	Σ	٦	4 31.40					0 100.00	E 94E	E 97.3S	0 238.00	7 34.60	0 93.40	0 94.20	.7 27.80	.0 250.00	0 244.00	0 169.00						_		-	~	_		0 118.00		0 95.80	
			0.4			4 2.3		0 114.0	3 137E	3 144E	0.65.0	12.7	0 286.0	0 1080.0	0 90.7	0.0800	0 3270.0	0 2520.0	0.798 0	2 0.4	0 1633.0					0.0609	0 6200.0	0 1240.0	7 1.3	0 1320.0			327.0
	Temp Alkalinley	(MG/L)	39.0	92.	82.4	76.	90.1	0.0	34 E	46 E	0	37.4	0.0	0.0	0.0	0.0	0.0	0.0	0:0	7.2	<u>~</u>	0.0	0.0	0.0	0:0	<u>o</u>	0.0	0.0	47.7	0.0	0.0	0.0	0.0
	Temp		16.0			15.0					18.0									14.0						29.7			15.0	19.0			18.6
	sc	(UMHOS)	1352	1590	2020		3250	3520	2893	3770	90.06	3900	2400	0089	4800	12100	12700	0066	5725	3500	7535	7940	7710	7150	6010	16245	16300	6360	3915	6400	2800	2160	4590
cters	FIELD Sample pil		5.8	6.1	6.1	7.0	5.8	5.7	5.8	5.72	2.3	4.3	4.4	3.7	4.2	7 3.7	3 3.6	5 3.9	4.0	5.7	3.6		3.6				3 3.5		5 5.9	0.4.6			2 4.8
Param				0	7.	∞i		0.			9.	∞i	.2	6.5	.2	.2 2137	.2 1788	.2 1475	e.j	7.	∞i	.8 2200	-	-			.4 1788		.0 1186	.0 2200			.8 1132
Physical Parameters	SWL			0 1,206.0	5 1,169.7	5 1,108.8	1,099.1	5 1,074.0			7 1,905.6	8.169,1 (3 1,494.2	1,437.3	3 1,388.2	1,388.2												_	1,186.0			•	1,132.8
Phy	Time	y) (Hour		7 12:50	3 10:35	9 10:45	9 12:35	0 12:45	_	_	3 09:07	3 09:40	1 09:43	_	14:08	14:30	15:00	15:20	1 09:16	10:15	1 09:20	1 09:40	\$ 09:55		_	•	5 10:50	5 11:00	5 09:35	5 09:50			5 09:40
	Date	(mar/dd/yy) (Hours)	08/91	06/25/87	05/31/88	03/03/89	08/04/89	05/01/90	5/91	8/91	07/28/83	10/13/83	02/16/84	04/26/84	07/12/84	07/12/84	07/12/84	07/12/84	07/26/84	10/18/84	11/30/84	11/30/84	11/30/84	11/30/84	05/30/85	05/30/85	05/30/85	05/30/85	10/31/85	10/31/85	10/31/85	10/31/85	05/25/86
	Site		Chester	Granite	Mountain						Kelley																						

		ઝ	(Ngn)	0.2	0.4	0.2	0.3														r t. State and												~ =	<u>~</u>	0.1	1 .
		.	(ng ₁)	7	0.0089	19.0	12.0	4290.0	3390.0	3590.0	7000.0	1680.0	29.0	31.0	888.0	1050.0	1040.0	14.0	18.0	14.0	1455.0	103.0	141.0	1126.0	237.0	59.0	24.0	54.0	29.0	234.0	2020.0	1310 E	489 E	198.0	193.0	203.0
		7.0	(\ngu)	162000	267000	177000	172000	253000	232000	234000	510000	163000	54000	55200	106000	115000	114000	20900	20700	00666	144000	125000	120000	144000	131000	131000	12100	12200	95000	13000	13800	12000 E	105000 E	162000	165000	164000
		P.	(ng/J)										20	40	20	120	8	×40	<40			130	1250	<40	370	99	8	091	99	120	110	1681	_	100	8	<40
lion		õ	ug/l) (3180	1760	3760	4300	089	200	240	1670	92	130	120	140	150	140	140	172	110	83	130	120	180	166	83	62	75	8	16	120	440E	1168	∞	6	9
Dissolved Concentration		స	(l/8n)	<2 <2	7	7	2 >	7	7	<2>	<2>	2	⊽	7	7	7	7>	4	7	7	7	6	120	90	3%	13	7	25	11	7	\$	1.7E	:5.2 E	7	7	\$
Conc		2	1) ([/8]	120	28	110	42	7	7	<2>	12	69	250	260	120	110	110	180	144	49	11	19	84	86	35	23	40	80	901	20	\$	1.4E<	V	54	19	20
olved		- -			120000	2500	0059	2200	200	10300	64000	4310	1380	840	2780	3080	3260	0601	0201	1930	2420	3900	3880	4710	3560	4310	3610	3510	026	3020		2030 E <	V	<30	20	<30
Diss		NO3		80.0	_		_				16	0.18		0.19									0.09							0.99	0.06	20	15	0.50	0.33	0.50
		SO4 N		3400 0								3300 0		1315 0									3010 0								v	2870 E	262 E	_		1620 0
		5		_		_			_			39.5		18.5									38.8							41.3	45.4 3	8	7			39.3
		₩ S		26.00	28.00	29.80	61.20	00:00	04.30	95.90	169.00	06.67	21.40	20.80	47.90	52.10	52.40	20.50	22.70	20.00	74.10	09.89	65.80	20.00	70.40	07.07	99.10	08.70	35.70	82.00	72.41	4.9E	55.4 S	118.00	18.00	17.00
		ie.		314.0	_		356.0				_																					1			28.1	-
		_	_				0.0				_												43.8 4								0.0	65E 2	84E 3			6.002
		Temp Alkalinity	(MG/IL)	0	7	6	₹	7	9	x																							8		•	
		Tem					0 18.4			5 19.8			17.6		12.	<u>8</u>	28.		0 19.5	` '	•	0 22.2				` `	24.0		8 25.0			11 24	8 2		0 15.0	
	_	SC	(UMIIO	4540	907	311	396	429	321	418	714	373		1220				506	2020	241	566	382	426	4080	4305	2990		4714	4418	4320	4240	398	371	115	121	1280
cters	FIELD	Sample plf		5.6	5.0	5.0	5.2	4.9	4.9	4.9	4.	5.4	7 4.0	7 3.8	7 5.5	7 5.5	7 5.4	4.3	4.1	4.2	5.4	5.6	5.7	5.6	9.6	5.3		5.9	5.6	5.5	5.4	5.82	5.47	5.4	5.4	0.4.6
aram			Depth	3 2200	3 1132		~	••	1088	1400	\$ 2200	7	1007	1 1057	1100	1 1207	1 1507	~	~	7	7 1500	2	~	~	2	_	~	5	_	1	2			₩		4 1500
Physical Parameters		SWL	(F1)	1,132.8	1,132.8		1,118.3	1,099.4	1,088.4	1,088.4	1,088.4	1,021.2	1,007.1	1,007.1	1,007.1	1,007.1	1,007.1	993.2	981.8	970.7	970.7	962.6	958.3	949.2	942.6	9470	930.8	917.5	925.1	7.7.2	9.206			1,318.4	1,318.4	1,318.4
Phys		Time	(Hours)	10:50	11:20		14:45	16:00	10:45	10:45	11:55	13:25	14:20	15:00	15:40	16:00	16:30	10:30	09:50	12:44	13:10	10:56	11:10	10:30	11:15	11:25	11:28	11:30	11:27	11:20	13:00			10:20	10:55	11:25
		Date	(mm/dd/yy) (Hours)	05/29/86	98/67/50	98/97/90	07/31/86	09/56/86	10/30/86	10/30/86	10/30/86	07/31/87	10/14/87	10/14/87	10/14/87	10/14/87	10/14/87	01/27/88	03/29/88	05/31/88	05/31/88	88/67/90	07/28/88	88/62/60	10/27/88	11/30/88	02/22/89	03/30/89	04/26/89	08/04/89	12/28/89	5/91	8/91	11/11/87	11/11/87	11/11/87
		Site		Kelley																																

		8	(ngn)					:0.1	<0.1											<u>~</u>	0.7												_		
		۸s	n) (//an)	520	157.0	153.0	191.0			6.7 S	58	113.0	0.6	27.5	0.76	55.0	15.0	21.0	21.0			57.0	88.0	39.0	0.9991	1900.0	0.063	1628.0	905.0	537.0	520.0	145.0	0.80	528.0	1460.0
		•	_													_		_									_						_	_	
		7.0	(l/g=)	152000	14400	130000	124000	129000	123000	215000 E	12000E	254000	140000	109000	110000	7710	37000	126000	93500	8800	7210	7520	7190	22600	9370	103000	103000	00606	8700	8790	8180	94000	95400	10430	94300
		2	(ng/l)	<40	9		2	9	20	1.8E	4.3 E		90													130	1320	8	×40	2	23	8	110	4 0	8
Ition		ð	(ng/l)	<2	7	~	17	13	∞	267S	178 S	11500	11700	12800	7680	8530	4680	10000	8050	8230	5140	8140	2400	4820	210	550	490	360	446	220	280	730	610	1580	28
centra		ప	(l/gn)	=	7	7	7	~	\$:7.7E	14 E	32	48	23	12	7	7	7	7	7	9	7	7	7	77	33	160	∞	7	7	S	12	13	~	♡
d Con		PJ	(ng/l)	98	11	24	49	328	285	547E <	378 E	170	700	140	140	9	68	200	140	150	140	210	120	132	14	23	120	88	15	77	3	2	75	87	Ş
Dissolved Concentration		₹	(l/8n)	_	<30	<30	20	<40	40	23155	396E 3	4780	2030	1720	2030	96	1280	4920	3910	2800	390	420	270	200	1460	2560	3770	2130	2160	1580	920	870	710	948	820
Di		NO3	(Ngm)	0.78	0.39	0.05	0.05	1.19				5.92	96.0		0.18	0.93	0.55	1.59	0.03	0.10	0.04	0.27	0.09	1.15	90.0	90.0	0.05	0.11		0.04	0.05	0.22	1.43	0.98	20.09
		204	(mg/l) (1576	1570	1493	1512	1580		1800 E	1540 E	2450	1900		1520	980	514	1670	1560	1605	1258	1010	1176	936	2610	2650	2720	2370		2360	2310	2460	2380	2740	2650 <
		ರ	(mg/l)	39.1	40.2	40.8	41.8	41.7				37.3	43.5		29.5	33.3	11.3	32.0	32.7	45.9	45.6	41.3	36.9	41.1	39.2	38.7	38.6	38.9		39.0	36.7	40.1	37.7	39.6	36.7
		Ā	(mg/l)	111.00	104.00	96.20	90.60	106.00	106.00	129 E	109 S	45.90	38.60	27.00	33.10	17.30	5.97	27.00	21.40	22.20	13.70	10.60	15.10	9.27	42.50	45.80	46.10	39.40	39.30	39.60	38.00	38.40	35.60	41.40	40.10
		Ę.	(mg/l)	25.3	24.7	25.4	24.3	6.1	8.0	0.738 S	0.743 E	150.0	Ξ:	5.1	17.9	8.8	2.7	58.3	20.7	27.6	21.3	8.4	18.5	5.4	298.0	329.0	334.0	261.0	249.0	241.0	236.0	209.0	183.0	196.0	206.0
	-	kalinity	4G/L,)	220.1	154.6	231.4	255.3	151.7	0.0	142E		0.0	0.0	0.0	19.6	81.8	1.3	0.0	0.0	0.0	33.4	61.0	81.0	73.7	138.4	116.5	89.9	37.2	0.0	148.1	1527	118.5	25.7	0.0	0.0
		Temp Alkalinity	_				17.0		15.0	8.6	16	17.5	16.0	11.0	17.1		10.5	14.5	16.0	18.2	12.8	15.5	13.8		22.0	22.0	22.4	23.0	22.0	22.0	23.0	22.0	23.0	23.0	22.5
		SC T		2680					2555	2714	2525	3265	2470	2100	2325	1480	006	4000	2070	2590	1560	2320	1950		2476					2839		4005	3454	3200	3540
r.S	FIELD		MU)	0.9		5.9	5.8	6.3	6.4	5.57	6.4		9.	5.0								5.7	5.8			5.5		5.8	5.2	5.5	5.7	5.7		2.7	9.
amete	豆	Sample pil	Depth	·	Č	•	•,	1400	1600	6.			4	•,	•,	•,	4	(~)	٠,	<i>c</i> ,	•	•	•,	•	•,	•,	•,	•.	•,	•,	•,		•	•	
Physical Parameters		SWL S	(FI)	,307.3	,302.3	,287.3	,279.3	1,214.0	1,214.0			1,878.3		1,402.0	,333.5	1,287.0	,198.0	1,146.6	1,113.5	1,092.3	9.780,1	1.077.1	1,059.3	991.4	934.4	6.826	926.2	913.6	8.606	905.7	895.5	891.9	889.4	886.2	873.1
Physic		Time	lours)	10:00	13:55	10:45	10:10	10:00	10:30			10:08		14:15	10:08	11:23	11:40	11:30		12:15		10:20	11:20	93:60	15:00	13:25	14:45	14:00	14:50	14:20	4:04	13:47	14:13	18:10	14:05
		Date	(mm/dd/yy) (Hours)	02/29/88		06/01/88	07/29/88	04/02/90	04/02/90	5/91	8/91	07/28/83	10/15/83	04/26/84	07/26/84	10/18/84	05/30/85	10/31/85	07/27/86	05/29/86		07/31/86	09/56/86	06/25/87		06/29/88	07/28/88	88/62/60	10/27/88	11/30/88	03/22/80	03/30/89	04/26/89	•	12/28/89
		Site)	Lexington								Steward																							

Appendix IIA. Bedrock Groundwater Quality Data. Butte Mine Flooding Area.

		မွ	(ng _n)		_							T	_				-				0.1	0.7	_			_				_				
		:	(l/gn)	1170.0	1410 E	1380 E	161.0	147.0	126.0	118E	119E	97.0	80.0	78.0	76.5	93.0	125.0	101.0	91.0	74.7	0.96	99.0	187.0			179.0	175.0	177.0	150.0	138.0	164.0	1220	170.0	175.0
		Za	(l/8n)	77800	119000E	94500 E	2190	2780	2200	831E	3290 E	81	41	86	240	81	74	36	140	55	230	**	120			160	190	93	120	63	113	160	28	78
		2	(Ug/J)	120	1.8E 1	4.4E	<40	20	×40	1.4E	2.8 E																<40	<40	×40	<40	<40			
tion		♂	(\ng/\)		737E	965E	∞	20	က	16 S	46.4 S	24	15	8	20	69	62	*	2	?	7	?	<2			9	7	6	c.	7	<2	9	10	2
centra		Ç	(ng/l) (<7.7E	<5.2E	2	?	7	<7.7E		2	7	< 7	?	7	60	7	7	?	~	~	~			7	7	?	7	7	~	7	~	<2 <
Conc		3	(l/gu)				12	9	7		<2.9 E <5.2 E	<2 <2	7	<2>	7	7	7	7	7	~	3	7	<2			7	7	7	~	7	<2	7	7	<2 <
Dissolved Concentration		7) (J/8n)	089	862E 150E	904E 80.2E	<30	<30	<30	86 S 13.4 S	263E <	1300	<30	8	<30	×30	8	<30	3 30	×38	<30	<30	<30			<30	<30	<30	<30	<30	<30	<30	<30	×30
Dis		NO3		90.0			0.11	0.07	0.08			3.80	1.30	0.03		1.73	0.70	0.15	0.12	0.07	0.04	3.04	0.33			0.14	0.62	0.03	0.93	1.68	0.07	0.02	0.17	0.17
		804	(mg/l) (mg/l) (mg/l)	36.4 2450	2130 E	216E	641	L99	627	552 E	522E	372	344	391		352	365	381	380	335	375	349	394			624	573	602	614	658	615	869	573	280
		ວ	(mg/l)	36.4			37.1	37.2		٠,		41.4	44.9	35.6		33.2	41.6	40.0	40.1	39.9	41.5	38.3	37.6			35.7	34.7	35.1	34.3	33.0	35.7	35.8	35.8	36.4
		M .		37.15	28.9 E	31.85	20.80	20.30	17.70	12.5E	19.5 S	2.15	2.20	2.64	2.49	2.64	3.35	3.39	3.45	3.43	3.45	3.54	5.96			28.30	28.80	26.00	25.70	28.30	24.30	20.10	19.40	19.10
		<u>5</u>	(mg/l)	189.0	166 E	178 E	12.9	8.7	10.3	7.94 S	9.15E	1.3	Ξ:	2.5	2.0	1.8	3.0	2.3	3.1	1.6	2.3	1.7	3.3			8.7	∞ ∞	8.2	8.2	8.2	7.7	9.7	9.7	7.4
		Temp Alkalinity	(MG/I.)	113.2	48 E	124 E	296.1	259.2	272.3	291E	259 E	245.2	248.5	242.5	0.0	265.7	257.5	2723	271.5	285.4	270.7	273.1	287.1	0.0	0.0	240.6	258.4	247.7	238.5	247.7	230.8	298.5	275.6	250.2
		Temp A		24.0	77	N N	15.0	13.8	16.2	15.5	16.5	10.0	12.0	11.0	8.0	15.2	10.4	11.3	10.5	14.5	14.0	13.8	11.3	11.0	12.0	14.0	12.0	13.0	13.0	12.0	11.0	12.0	13.0	13.0
		SC	(UMIIOS)	3410	3139	3212	1740	1560	1680	1448	1534	1270	1216	1000	1150	1248	1120	1250	1200	1110	1180	1120	1290	1525	1550	1330	1250	1290	870	1660	1520	1778	1420	1420
Physical Parameters	FIELD	Sample p11	Depth (1	5.8	5.58	5.71	9.9	6.7	6.7	92.9	6.55	7.0	6.7	9.9	7.2	7.1	8.9	0.9	9.9	6.5	9.9	8.9	6.5	8.9	6.2	6.4	6.5	6.5	9.9	6.5	9.9	6.5		300 6.3
al Par		SWI, S	(FT)	8624			228.1		230.0			417.8	423.1	387.6	384.5	380.0	355.4	287.6	287.6	270.2		265.6	257.0	245.1	240.9	226.1	221.4	210.8	203.2	193.7	193.4		197.0	197.0
Physic		Time	Hours)	14:30			14:50	17:30	14:45			13:25	15:15	12:10		12:05	13:55	14:00	14:20	14:15		11:40	14:20	13:45	13:15	10:05	12:05		15:20	15:30	15:25	16:20	14:50	14:20
		Date	(mm/dd/yy) (Hours)		2/91	16/8	10/31/88	04/07/89	08/08/89	. 16/5	16/8	04/28/83	10/13/83	02/16/84	04/26/84	07/26/84	10/18/84	10/31/85	10/31/85	98/67/50	98/97/90	07/31/86	98/97/60	12/23/86	01/27/87	06/25/87	07/31/87	09/28/87	10/30/87	02/22/88	03/29/88	05/31/88	06/03/88	06/03/88
		Site		Steward			Етта	(West Camp	System)			Travona											ń.											

		×	(ngn)																																	
		•	- [0	0.	0:	0	0	0	0	0	0:	0.	0	0.	0.	8	0.	2	8	143	\$	9	33	20	126	112	149	158	167	134	=	37	268	120	189
		₹	(ngn)	185.0	209.0	151.0	158.0	178.0	162	143.0	144	=	82	134	143	20	=	180	=	=	~	~	Ž	-	=	=	=	~	=	=	=		≃	7	=	<u>۳</u>
		Zn	(ng/l)	38	6	120	93	11	83	6	17	7	100	9	290	110	30	22	15	53	307	59	62	23	S	3	14	19	7	9	15	12	49	20	8	24
		2) ([/Bn]			<40	<40	<40	<40	- 4 0	<40	2	4 9	<40	<40	<40	_	\$ \$	~	-	4	7	-	_	_	_	_	_	_	_	_	-	_	_	4	-
			- 1	6	7	S	~	· 7>	4	7	7	7	7	. 2	4	^ *	S	· ∞	∞	45	32	4	4	4	4	7	21	_	_	_	_	12	7	7	43	-
ıtratio		♂	(ug/l)	<2	<2	7	<2	<2>	<2	<2	<2	<2>	<2	<2	<2	\$		\$																		
Dissolved Concentration		Ċ	(ug/l)													·			_	~	6	9	_	_	_	~	S	∞	S	S	_					
cd C		3	(LBJ)		~	~	< 2	- <2	< 2		<2	2	2	< 2	~	_ \$			0.1	0.0	0.19	0.1				1.5	1.5	438	1.5	1.5						
issolv		₹	(l/gn)	<30	~ ~	~30 ~30	<30	×30	<30	<30	<30	\$	~30 ~30	\$30	\$30	~ 40		38																		
Ω		NO3	(mg/)	0.12	90.0	0.03	0.02	0.16		0.04	0.02	0.03	0.07	90.0	0.47	0.05		1.66																		
		SO4	(mg/l)	285	296	592	570	532		278	525	537	206	481	494	495		514	236	511	517	204	469	462	440	447	426	438	472	468	480	488				
		5		36.7	35.8	36.3	37.0	37.1		35.9	36.6	34.6	38.1	37.4	36.2	37.7		35.0																		
		Ä	(mg/l)	19.40	21.10	18.50	16.50	16.20	16.30	17.50	17.30	17.30	11.70	11.50	12.10	12.84	11.10	14.36	15.70	14.10	12.40	12.80	10.50	9.47	8.95	9.50	8.8	8.79	8.19	9.17	9.32	8.12	10.40	10.20	8.49	8.85
		<u>.e</u>	(mg/l) (1.1	8.4	7.0	6.5	6.7	9.9	7.0	8.9	6.9	1.5	4.3	4.3	4.6	2.8	9.6	7.1	6.4	5.8	5.9	5.0	4.6	4.5	4.3	3.6	4.7	4.1	4.4	2.0	0.0	5.1	5.3	4.4	4.5
		linlty	(MG/L) (255.9	8.692	247.7	254.3	45.0	0.0	290.3	287.9	74.8	49.3	53.4	51.8	64.2		255.9			_															-
		Temp Alkalinlty																																		
		•										12.4			• •			12.0																		i
	_	SC	(UMIIOS)	155	149	1310	170	121(1519	1298	160	145	1700	136	147	1126		1420																		
meters	FIELD			6.1	6.7	6.1	8.9	6.9	6.7	6.4	6.5	8.9	6.9	6.9	5.8	6.9		9.9																		
ramc		Sample pil	Depth	200	800													240																		1
al Pa		SWL	- 1	197.0	197.0	197.6	195.4	185.8	1825	180.3	180.3		200.0	200.0	192.1	184.3		174.0																		
Physical Parameters		Time	lours)	13:55	15:25	15:20	16:10	15:30	16:10	16:00	16:30	00:20	18:55	19:20	15:27	20:00		14:40																		
			N										_				68/		06/	28	25	8	96	95	8	06/6	06/9	16/	16/	16/1	16/9	76/	767	76/	76/0	/93
		Date	p/ww)	88/60/90	06/03/88	06/29/88	07/28/88	09/28/88	10/27/88	11/30/88	11/30/88	01/29/89	04/01/89	04/02/89	04/26/89	68/60/80	12/21/89	12/29/89	1/30/90	2/27/90	3/5/90	4/25/90	7/23/90	8/24/90	9/28/90	11/29/90	12/26/90	8/28/91	9/26/91	10/31/91	12/26/91	3/31/92	8/26/92	9/28/92	10/29/92	2/16/93
		Site		Travona																																

		8	S.						V	v	v	\ -						-	1			-				th making	-			0.1			
			(l/gu)	153	171	140	11	178	0.0	2.9		1.3	2.0	2.4	2.1	9.0	9.0	5.2 S	4.8 S	<1.0	<1.0	1.0	9.0	6.0	0.3	5.6	2.0	2.6		0.06	18.0	12.0	175.0
		<	<u>.</u>		7	10	14	24		4	· V	6	2	6	0	0	_					35	19	∞	3	0	4	0					
		72	(Ug/J)	1		_	_	7	330	64	_			69	280	10	61	11 E	35.9 S	<3.0	₹3.	6	_		\$	30	44	2440		_	22	7	46
		£	(ngn)	-	-	2	7	7	×40	4 0	0 *	<40	40		40	04	<50	<.82 E	1.3E	<0.4	<0.4	4	4 0	<40	40		~ 40	<40					<40
tion		8	(ng/J)	-	*	-	_	7	6	*	ę	<2	9	7	9	?	*	10 S	29.3 S	<2.0	<2.0	~	77	?	?	180	∞	56		15	~	<2>	<2>
cntra		Ċ	(l/8n)						2	7>	~	7	9	7	7	15	\$	<7.7E	<5.2E	6.0	<6.0	~	7	7	?	7	~	77		~	7>	~	<2>
Conc		రె	(ug/l) (2	7	7	7	7	7	7	~	\$	> 86.9	<2.9E <	<1.0	<1. 0	<2	7	7>	7	7	7	7		7	7>	77	<2>
Dissolved Concentration		~	(ug/l) (39	<30	<30	<30	80	<30	<30	80	×40		116E <	×100	<100	<30	3 30	3 30	°33	<30	<30	<30		<30	3 30	<30	<30
Dis		NO3							0.34	0.50	0.14	0.36	90:0	0.12	0.15	0.14	90.0			<0.1	<0.1	0.05	0.03	0.04	90.0	0.03	0.13	5.27		0.13		90.0	0.07
		204	(mg/l) (mg/l) (mg/l)						288	282	282	298	278	268	283	280	992	179 E	225 E	247	248	1276	1274	1272	1281	1245	1270	518		707			648
		ಶ	(mg/l) (19.5	18.5	18.4	17.7	18.4	37.8	35.7	28.8	25.5	_	7	22	24.7	48.5	48.2	47.7	49.6	49.6	51.0	15.7		14.5		14.5	14.5
		ž	(Mg/l)	8.78	8.16	6.67	8.17	7.64	2.02	1.43	1.40	1.86	1.36	1.62	1.94	1.47	2.28	1.97E	2.26 S	1.78	1.87	12.50	12.70	12.60	12.60	10.90	10.30	7.37		8.84	8.18	1.67	8.04
		<u>.e</u>	(mg/l)	4.2	3.9	3.4	2.0	3.7	0.4	9.0	0.4	9.0	0.4	0.4	0.5	0.1	0.1	0.104 S	0.187 S	0.097	0.102	3.0	3.0	3.0	3.0	3.3	2.4	0.4		0.3	0.3	9.0	0.5
		kalinity	(MG/I.)						1028	102.4	103.3	110.9	100.1	135.7	121.1	181.9	189.5	198E	204E	204.14	203.73	378.9	383.0	380.6	3822	365.8	360.1	164.0	0.0			770.1	750.5
		Temp Alkalinity	- 1						8.5	8.3	8.0	25.0	8.0	0.6	11.0	11.9	7.0	9.1	9.5	11.4		9.0	0.6	10.0	10.0	10.0	11.0	12.1	24.0	17.6		25.0	18.2
		SC	(FIMHOS) (C)						425	420	410	272	615	868	820	840	890	814	883	826	826	2260	2500	2450	2340	1942	2180	1370	2400				2210
crs	FIELD	Ę	=						7.4	7.7	7.7	7.9	9.9	6.7	6.9	7.4	7.1	98.9	7.18	7.3	7.3	7.1	7.2	7.3	7.3	7.8	9.9	7.3	6.4	6.5	9.9	6.3	6.3
rame		Sample pll	Depth						105	150	200	250					250					315	320	400	490								
Physical Parameters		SWL	(FT)						105.6	105.6	105.6	105.6	106.0	113.1	109.5	118.8	118.5					3120	3120	3120	3120	316.6	3125	304.6	124.4	127.5	125.5	124.0	124.1
Physi		Time	Hours)						14:45	15:04	15:10	15:25	11:15	11:20	11:36	15:45	11:40					10:40	10:50	11:00	11:20	85:60	06:60	15:50	14:00	12:40	11:25	17:10	17:10
		Date	mm/dd/yy) (Hours)	3/18/93	7/14/93	8/12/93	9/23/93	10/23/93	11/11/87	11/11/87	11/11/87	11/11/87	02/29/88	06/01/88	07/29/88	08/10/80	04/02/90	5/91	8/91	04/02/92	04/02/92	02/04/88	02/04/88	02/04/88	02/04/88		88/62/10	68/60/80	01/27/87	05/28/87	06/25/87	05/31/88	06/29/88
		Site		Travona					Marget Ann													Missoula							Orphan	Boy			

Appendix IIA. Bedrock Groundwater Quality Data. Butte Mine Flooding Area.

		Physic	al Pa	Physical Parameters								Dis	solve	Con	Dissolved Concentration	tion				
				FIELD	٥															
Site	Date	Time	SWL	Time SWL Sample plf SC		Temp ,	Temp Alkalinlty Fe	Fe	Æ	CI SO4 NO3 VI CA Cr	S04 P	103	7	2	ప	ය ව	2	92	.	Š
	mm/dd/vv) (1	llours)	(FD	(UMIIOS) (FI) Depth (UMIIOS)		(3)	(MG/L)	(Mg/l)	(mg/l)) (1/3 (1)	1) (/300	1) (1/8u) (1/81) (J/8n	(1/87	(l/8n)	(ngu)	(l/gu)	(ng/)	2
Ornhan	5/91			96.9		26	26 1020 E 0.095 S 6.28 E 507 E 123 S.11 E <7.7 S 18 S .8 E 11 S 32.3 E	0.095 S	6.28 E	S	07E		1338 .	11E <	7.7 S	18 S	∞ :	118	32.3 E	
Boy	8/91			6.72		23.5	730E 1.73E 5.79S	1.73E	S.79 S	S	254 E	7	04E <	2.9E <	5.2 E	204E <2.9E <5.2E 39.1S 2.1E	2.1E	296 E	24.8 E	

Source: Duaime, T.E. 1992. Personal Communication to Ann Maest of RCG/Hagler, Bailly, Inc. containing unpublished MBMG data. November 11.

Notes: S = Screening quality data

E = Enforcement quality data

(mg/l) <0.5R 0.15 <0.5R <0.5R <0.5R <.03 A.05 1.2R 0.9R 086 (V**an**) 942.0 892 900.0 533.3 579.8 580 336.0 336.0 336.0 336.0 3300.0 538 552.1 647 647 654.3 350.0 Dissolved Concentration 804 30.4 29.7 29.7 3.7 5.8 5.0 5.0 22.1 9.61 11.4 17.5 5 CI TeA 4.55 3.88 5.00 1.62 1.41 Mn (mg/l) 0.03 (mg/l) 15.2 15.20 13.3 17.20 0.84 0.15 0.15 0.74 887 861 0.64 0.0 0.0 0.0 0.0 0.0 (ng/l) 42.0 59.2 57.0 58.8 99.2 43.21 63.3 191.0 190.0 191.1 282.0 217.0 Alkalinit Temp 18.8 18.6 15.3 14.5 16.4 10.0 12 10.5 11.0 19.5 (umhos) 1698 926 926 988 988.5 1214 220 190 198 Field SC Physical Parameters Sample Field Depth (ft.) p11 6.50 6.13 7.73 7.83 5.84 5.84 6.02 5.88 6.52 6.52 6.56 6.56 6.50 6.50 6.59 6.70 6.76 6.76 6.76 6.76 6.78 7.68 570 310 310 280 280 ន្តន្តន 77. 715 715 89 775 620 568.0 568.0 568.0 560.1 560.1 501.2 575.0 578.6 174.2 174.2 170.6 170.6 537.0 317.4 32.4 34.9 33.9 SWL 15:38 12:05 17:59 17:59 12:55 12:57 18:45 18:30 17:15 12:30 20:38 17:05 13:45 10:30 16:44 (mm/dd/yy (hours) 05/91 13:31 Time 08/24/94 04/92 04/14/92 04/14/92 08/30/94 05/28/92 05/29/92 05/19/93 03/30/92 16/01/60 08/29/94 08/2:5/94 16/16/50 08/31/94 08/91 08/25/94 07/21/92 05/91 08/91 05/29/91 66/61/50 08/91 date(1992) 5/91 8/91 05/91 Competent Bedrock 233 72.5 242 88 22 88 Depth to (11) 643 800 635 77 355 639 Well (11) Screened Intervals (ft.) 680-700 720-740 270-290 320-350 568-578 628-638 755-795 720-740 0/1-09/ 614-634 600-635 0/9-009 Well D-2 Well D-1 Hebgen WellA Well B Well B Well C Well F Parrott

Appendix IIB. Bedrock Groundwater Quality Data: Bedrock Monitoring Wells.

									Disse	Dissolved Concentration	nccutra	lion							
						- 1													
	Date	 Z	పె	ప	<u>ವ</u>	P _P	Zu	>s				_	Wo	Ž	~	Sr		>	Zr
Site	(mm/dd/yy)	(V8n)	(ng/J)	(ng/)	(ng/)	(ng/J)	90	(ng/)	(ug/)	(ng/)	(ng/)	(N8/J)	(Lg/)	(ng/)	(ng/)	(ng/)	(ug/)	(LB/)	(ng/J)
Well A	16/50	7.	3.7	<7.7	129	<.82	372	96.2											
	16/01/60	00I ×	9	01 >	9>	001 v		74.0		00[v		201	0 4 0		9	750			
	16/5	88	۳,	<\$2	24	6		51.7											
	08/24/94	<u>چ</u>	\$	2	7	<2		55.6		8×		113	۶ ۲		⊽	ē			
Well B	26/87/10	05.>	9>	9>	9>	05×	62	16.7		× 100		16	<40		9>	009			
	date(1992)	×100	7	80	\$	~		13.0		120		22	6			585			
	04/92	×100	<1.0	80	<2.0	<0.4		13		120	134	22	6	<20.0	91	\$85	S	19	23
	\$/20/93	38.1	2.3	2.8	1.2	-		6.9						738000					
	00000	ç	,	ç	ç	ç	,	7		Ç		ç	9		,	3,6			
	08/29/94	Q.	7	7	7>	7	0	6./		3		3			⊽	8			
Well C	16/5	68. 88.	0	L'L>	₹.	=	2660	₹. ≅											_
	05/29/91	460	9	9	9	9; V	2630	2.0		×100		E	×40		9	356			
	16/8	726	6		19	е.	1840	6.1											
	08/25/94	367	<2	2	<2	<2	1180	1.6		08 >		31	<10		<1	326			
Well D-1	04/14/92	00I ×	<1.0	6	<2.0	<0.4	1983	10		<100	<100	23	<1.0	<20.0	16	20.1	35	62	21
	04/14/92	01×	⊽	6	^	^	1983	10.0		~100		ຄ	⊽		16	20.1			
	08/30/94	96	2	\$	3	~	935	11.8		æ ∨		22	01 >		⊽	145			
Well D-2	16/91	121	-	1.7>	16	-	1690	17.7											
	16/16/50	08>	9	9	9>	05.>	1580	10.0		×100		33	×40		9	327			_
	08/91	70.8	<2.9	<\$2	16	7	1900	7.9											
	05/28/92	200	⊽	\$	\$	12	1691	38.0		~100		2	⊽		8.	ដ			
	05/29/92	200	<1.0	\$	<2.0	1.2	1691	88		×100	×100	1	<1.0	<20.0	8	123	2	82	7
	08/31/94	0.5	\$	7	2	~	2	3.4		98×		200	9.4		⊽	952			
Well B	16/50	62	3	L.T.>	7	<.82	27	32.5											
	16/91	28	<2.9	<52	8	S	22	38.4				1							
	05/29/92	00[×	<1.0	2	2	1.8	23	32			0 <u>1</u> ×	88	_	~ 20.0	11	631	C	×	82
	05/29/92	<u>8.</u>	<1.0	71	<2.0	1.8	61	32		00I ×	~100	22	-	< 20.0		9	\$	88	\$
	08/25/94	×30	<2	۷2	<2	\$	16	27.0		98 V		81	<10		⊽	727			
Well F	26/10/10	<20	?	7	7	2.8	47	242.0		375		965	82		⊽	4500			
	04/19/93	×30	7	7	\$	\$	125	240.0		412		1038	×10		⊽	4425			
	06/19/93	24.4	2.3	2.8	1.2	1.5		22											
	05/19/93	27.3	2.3	2.8	1.2	1.5		232											
	08/24/94	0.5	<2	٤.	<2	<2	101	273.8		419		965	<10		-1	4331			
Hebgen	16/50	73	80	L.7.>	13	3	129	4.2											
	16/91	151	<2.9	<\$2	33	9	554	3.8											
	03/30/92	~100	-	<6.0	2	22	8	2		×100	222	13	⊽	020	9>	Š	\$	19	8>
Parrott	16/90	\$	219	L'L>	319	47	1670	7.4											
	16/80	320	236	<52	327	જ	2150	3.6											

Sources: Canonie, 1992a.

MBMG, 1992 and 1994. Analytical data sheets for Bedrock Monitoring, Ted Duaime. Canonie, 1994.

Appendix IIC. Bedrock Groundwater Quality Data: NRDA Bedrock Monitoring Results.

Table 1

Analytical Results (mg/l) for the NRDA Bedrock Sampling Locations

Sample											
Designation	Location	ЬН	Sulfate	Arsenic	Cadmium	Copper	Iron	Manganese	Molybdenum	Lead	Zinc
Well 1	Trip Blank	۷N	0.0	U 100.	U 100.	.002 U	U 5500.	U 200.	U 100.	.0004 U	D 500.
Well 2	Hebgen	6.78	247.5	0.005	0.001	0.005	0.008	0.029	O 100.	0.022	0.099
Well 3	Afnseate Blank-1	5.27	J L.	.001 U	J 100.	0.005	⊃ ‱.	.002 ∪	U 100.	.0004 U	0.005
Well 4	Trip Blank	¥ Z	Y X	.001 U	0 100.	.002 U	J 600.	.002 U	U 100.	.001 U .0004 U	.‱ ∪
Well 5	Marget Ann	7.35	246.7	U 100.	.001 U	.002 U	0.097	1.780	U 100.	.0004 U	003 ∪
Well 6	Marget Ann-Dup	7.38	249.7	U 100.	.001 U	.002 U	0.102	1.870	U 100.	.0004 ∪	D 600.
Well 7	Trip Blank	X X	A N	∪ 100.	U 100.	.002 U	0 ∞	.002 U	.001 U	.0004 U	900'0
Well 8	Well B	7.89	579.8	0.013	.001 U	.002 U	0.154	1.410	0.003	.0004 U	0.064
Well 9	Well D-1	6.62	273.6	0.010	.001 U	.002 U	4.100	1.350	U 100.	.0004 U	1.983
Well 10	Rinseate Sample-	7.38	5.5	0.001	.001 U	0.003	0.003	.002 U	U 100.	.0004 U	0.007
Well 11	Well E	6.82	356.5	0.032	.001 U	0.005	1.940	1.430	0.001	0.0018	0.023
Well 12	Well E-dup	6.85	353.0	0.032	.001 U	.002 U	1.910	1.410	0.001	0.0018	0.019
Well 13	Well D-2	6.52	654.3	0.038	.001 U	.002 U	25.910	3.210	D 100.	0.0012	1.691
Well 14	Bottle Blank	¥	0.0	001 U	U 100.	.002 U	U 5000.	.002 U	U 100.	.0004 U	D 800.
Well 15	Filter Blank	NA V	0.0	.001 U	U 100.	.002 U	.1 U	.002 U	.001 U	.001 U .0004 U	0.003

U: Below method detection limit

NA: Not Analyzed

Table 2

Analytical Results (mg/l) for Bedrock Sampling Locations

	MCL	å	bgen Park		Σ	larget Ann		Well A	4	Well B
		May 91	Sept 91	Mar 92	May 91	Sept 91	Apr 92	May 91		
Arsenic	.05 (a)	.0042 S	S 8000°	0.002		.0048.8	0.100	0962 F	1	1
Cadmium	.005 (a)	S 800.	.0029 UE	0.001		.0029 UE	0011	0037.8		
Copper	1.0 (b)	.013 S	.0318 \$	0.002	o. 10.	.0283 S	.002 U	129.8	•	
Iron	.3 (b)	S 890.	.0477 S	9000		.1878	.097	15.2.8		
Manganese	(a) SO:	S 820.	.0451 S	0.029		2.26 S	1.78	4.17 E		
Molybdenum	Y N	Y Z	Y Z	0 100		A N	100	2		
Lead	.05 (b)	Š	.0061 E	0.002	8		000	311 CBOOO		
Zinc	5.0 (b)			0.099			000	372 E		•
Sulfate	250.0 (b)	•	229.0 E	247.5	179.0 E	225.0 E	248.7	280 OF T	80.0E	
Hd			6.82	6.78		7.18	7.35	6.46	6.50	7.89

	MCL	Well C		Well D1		Well D2			WellE	
		May 91		Apr 92			May 92	May 91		May 92
Arsenic	.05 (a)	.0051 R		0.010			0.038	.0325 E		0.032
Cadmlum	.005 (a)	.00044 E	•	.001 U			010	.0027 8		0. 0.
Copper	1.0 (b)	.015 S		.002 U			.002 U	s 700.		0.002
lωu	(a) E.	9.46 S		4.10			25.91	2.79 S		<u>2</u> .
Manganese	(q) 50.	1.67 E		1.35			3.21	1.7 E		1.43
Molybdenum	ΥZ	Y Y		.001 U			001 U	¥Z		0.001
Lead	(d) 50.	.0011 E	.0029 E	.0004 U	3 69000.	.0073 E	0.0012	.00082 UE	.0047 E	0.0018
Zinc	5.0 (b)	2.66 E		1,983			1.891	.027 E	.0723 S	0.023
Sulfate	250.0 (b)	313.0 E		273.6			654.3	390.0 E	404.0 E	356.5
됩		5.84		6.62			6.52	6.79	6.82	6.82

Data not validated for 1992 sampling event

E = Enforcement quality data S = Screening quality data

R = Rejected data

U = Below method detection limit

(a) Primary maximum contaminent levels (MCLe), July 1, 1991, (CFR 40 Sections 141.11 and 143.3) NA = Not Available for Data

(b) Secondary EPA maximum contaminent levels (MCLs), July 1, 1991, (CFR 40 Sections 141.11 and 143.3) Data Sources:

Remedial Investigation/Feasibility Study. Prepared by Canonie Environmental Services Corp. ARCO. 1992a. Preliminary Remedial investigation Report for The Butte Mine Flooding Operable Unit MBMG. 1992. Analytical data sheets for the 1992 Sampling Event.

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

								l/gm	
				Weathered	Field SC	Field	రొ	Mg	Na
Well #	Date	Depth (ft)	Aquifer	Competent	nmhos/cm	pH	Calcium	Magnesium	Sodium
BMW-1B	04/20/90	38.7-58.7	Bedrock	Weathered	1080	7.3	123	30.3	61.9
BMW-5B	٠	37.5-57.5	Bedrock	Weathered					
BMW-11B	04/20/90	55-75	Bedrock	Weathered	1271	7.3	86	27.1	142
BMW-13B	04/20/90	45-65	Bedrock	Weathered	006	7.0	112	27.1	58.2
DW-125	01/18/85	16-31	Bedrock	Weathered	1040	7.0	138	31.8	39
DW-128	01/16/85	35-65	Bedrock	Weathered	435	6.8	64	13.4	16.6
	01/16/85	35-65	Bedrock	Weathered	435	8.9	62.2	13.1	17.2
DW-129	01/07/85	40-80	Bedrock	Weathered	785	7.0	112	21.4	26.7
Hall	09/19/85	140	Bedrock	Weath/Unweath		7.06	28.9	4.4	10.6
Scott	11/06/80	460	Bedrock	Unweathered		7.43	75.7	17	12.5
Tarkelson	07/14/80	100	Bedrock	Unweathered		7.83	32	8.7	21.1
Johnson	05/20/92	240	Bedrock	Unweathered		7.1	26	15.1	11.7
Hebgen Pk	03/30/92	140-300	Bedrock	Weathered	666	6.79	123	30.5	38.6
	May 1991	(sample	Bedrock	Weathered	926	7.04	115	30.2	36.6
	Sept 1991	depth = 75	Bedrock	Weathered	988	6.82	109	28.8	32.1
Well A	May 1991	002-089	Bedrock	Competent	1698	6.46	165	4.17	108
	Aug 1991	720-740	Bedrock		1724	6.5	164	3.88	114
	16/01/6						198.0	52.4	126.0
	8/24/94				1690	6.13	204.9	56.3	118.0
Well B	08/27/92	565-575	Bedrock	Competent	1198	7.83	145	37.7	62.5
	1/28/92				1190	7.73	150.0	38.7	65.6
	4/20/93				1365	7.25	176.0	47.6	8.99
	8/29/94				1406	6.42	200.0	52.2	0.99
	05/20/93				1330	7.25	172	46.9	6.19
Well C	May 1991	755-795	Bedrock	Competent	683	5.84	83.2	16.6	22.8
	Sept 1991		Bedrock		738	6.02	86.2	16.9	22.9
	5/29/91				089	5.84	86.3	17.1	24.5
	8/25/94				069	5.88	90.4	17.7	25.6
Well D-1	04/14/92	610-630	Bedrock	Competent	623	6.52	65.5	19.1	18.8
	8/30/94				089	5.87	74.9	25.7	22.9

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

				l/gm				√gn		
		Х	ס	HCO3	co3	CaCO3	Z	Sb	As	Be
Well #	Date	Potassium	Chloride	Bicarbonate	Carbonate	Tot Alk	Aluminum	Antimony	Arsenic	Beryllium
BMW-1B	04/20/90	7.79	42			240	<22	<21	4.8	<1.0
BMW-5B	2								~1 0	
BMW-11B	04/20/90	4.49	37			160	<22	<21	5.2	<1. 0
BMW-13B	04/20/90	6.28	29			170	24.5	<21	60	<1.0
DW-125	01/18/85	5.2	26.5			260			<4.6	
DW-128	01/16/85	2.3	6.5			115			<6.5	
	01/16/85	2.1	7			117			<6.5	
DW-129	01/07/85	5.1	57.3			171			<5.3	
IIall	09/19/85	1.6	NA	78.1					0.4	
Scott	11/06/80	3.1	٧X	164					1	
Tarkelson	07/14/80	1.9	Y X	117					Y Y	
Johnson	05/20/92	4.1	NA	77.6					0.5	
Hebgen Pk	03/30/92	6.7	57	233	0		<100		2	
	May 1991	6.89	V			191	73		4.2	
	Sept 1991	6.51	NA			190	151		3.8	
Well A	May 1991	19.9	X X			42	247		96.2	
	Aug 1991	20.6	٧			57	108		51.7	
	9/10/91	21.5	19.6	72.2	0.0		<100		74.0	Y V
	8/24/94	23.3	17.5	7.1.7	0.0		<30		55.6	9
Well B	08/27/92	6.6	29.7	52.7	0		~ 100		13	
	1/28/92	8.6	30.4	121.0	0.0		\$\$ \$\$		16.7	AN
	4/20/93	10.8	82	127.0	0.0		0£>		7.6	\$
	8/29/94	10.4	27.5	124.4	0.0		<30		7.9	Y'Z
	05/20/93	10.1	56	97	20		38.1		6.9	
Well C	May 1991	9.37	Ϋ́			25	589		~	
	Sept 1991	99.6	٧×			25	726		6.1	
	5/29/91	10.0	3.5	30.0	0.0		460		2.0	Y V
	8/25/94	12.2	4	41.5	0.0		367		1.6	< <u>~</u>
Well D-1	04/14/92	10.4	3.7	40.8	0		×100		10	
	8/30/94	11.9	2.5	29.5	0.0		<30		11.8	NA

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

					Voii				
		2	ڻ	5	Fe	Pb	Mn	Z	Ag
Well#	Date	Cadmium	Chroniun	Copper	Iron	Lead	Manganese	Nickel	Silver
BMW-113	04/20/90	0.08	<8.0	<4.0	\$	<0.5	<2>	<1.3	<0.1
BMW-513	2	\$		<25	<100	\$			
BMW-1113	04/20/90	0.17	<8.0	<4.0	\$	9.0	<2	<1.3	<0.1R
BMW-1313	04/20/90	0.36	<8.0	<4.0	\$>	<0.5	218	<1.3	<0.1
DW-125	01/18/85	<1.1		<40	<31	<4.3			
DW-128	01/16/85	<0.8		<40	72	<8.9			
	01/16/85	<0.8		<40	81	<8.9			
DW-129	01/07/85	<0.5		<40	<31	1.1			
Hall	09/19/85	<2.0		2	<2.0	VN N	1		
Scott	11/06/80	<10.0		110	65	<40	11		
Tarkelson	07/14/80	₹ Z		۲ ۲	40	YN V	4		
Johnson	05/20/92	0.9>		<6.0	11	<1.0	<2.0		
Hebgen Pk	03/30/92	1	9>	2	9	2.2	29	<20	9>
	May 1991	80	7.7	13	89	3.1	78	19	18
	Sept 1991	<2.9	5.2	31.8	31.8	6.1	45.1	37.6	<2.9
Well A	May 1991	3.7	1.1>	129	15200	<0.82	4170	64.5	12
	Aug 1991	<2.8	<5.2	24	13300	2.8	3880	38	<2.9
	9/10/91	9>	<10	9>	15.2	<100	4.55		9>
	8/24/94	<2	2	<2	17.2	<2>	\$		^ \
Well B	08/27/92	~	∞	<2	154	<0.4	1410	<20	16
	1/28/92	9>	9>	9>	0.84	<\$0	1.62		9>
	4/20/93	<2	<2	<2	1.32	4	2.12		^ \
	8/29/94	<2	<2	<2	1.8	<2	2.39		-
	05/20/93	2.3	2.8	1.2	1380	-	2070	8.8	2.4
Well C	May 1991	0.4	1.7>	15	9460	1.1	1670	54	25
	Sept 1991	<2.9	<5.2	19.1	9640	2.9	1670	45.1	3.5
	5/29/91	9>	9>	9>	19.61	<50	1.72		9>
	8/25/94	<2	2	<2	5.78	<2	1.77		<u>^</u>
Well D-1	04/14/92	₹	6	<2	4100	<0.4	1350	<20	16
	8/30/94	<2	<2	3	12.8	<2	1.7		<1

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

				-			
		n)g/l		l/gn			
		SO4	П	>	Zn	Zr	
Well #	Date	Sulfate	Thallium	Vanadium	Zinc	Zirconium	Reference
13MW-113	04/20/90	190	<2.0	4.7	10		1
BMW-5B	٠	302			<20		-
BMW-11B	04/20/90	340	<2.0	<3.0	18		-
BMW-13B	04/20/90	290	<2.0	<3.0	438		1
DW-125	01/18/85	265			LZ>		2
DW-128	01/16/85	123			20		2
	01/16/85	130			89		2
DW-129	01/07/85	184			110		2
Ifall	09/19/85	36.9			11		
Scott	11/06/80	129			2400		
Tarkelson	07/14/80	55.2			٧X		
Johnson	05/20/92	27.9			<8.0		
Hebgen Pk	03/30/92	248		19	66	8>	\$
	May 1991	242			129		9
	Sept 1991	229			554		9
Well A	May 1991	086			372		9
	Aug 1991	892			146		9
	9/10/91	942			128		S
	8/24/94	006			112		2
Well B	08/27/92	580		61	2	22	S
	1/28/92	533.3			62		S
	4/20/93	625			••		S
	8/29/94	059			9		\$
	05/20/93	640			6'6		9
Well C	May 1991	313			2660		9
	Sept 1991	376			1840		9
	5/29/91	336			2630		S
	8/25/94	300			1180		S
Well D-1	04/14/92	273.6		62	1983	21	S.
	8/30/94	300			935		5

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

								me/l	
				Weathered	Field SC	Field	٤	Ma	ž
				TO TO TO TO) C PI SI	niol.	3	M.B	2
Well #	Date	Depth (ft)	Aquifer	Competent	nmhos/cm	Hd	Calcium	Magnesium	Sodium
Well D-2	05/29/92	029-099	Bedrock	Competent	1173	6.59	139	47.1	35.9
	May 1991		Bedrock		1233	95'9	140	46.5	37.5
	16/18/5				1195	92'9	139.0	47.4	37.8
	Aug 1991		Bedrock		1198	6.47	127	43.9	31.1
	8/31/94				800	9.25	76.1	17.4	58.2
Well E	05/29/92	270-290	Bedrock	Competent	787	92.9	85.4	24.8	26.9
	05/29/92	(sample	Bedrock		787	92.9	98	24.6	26.5
	May 1991	depth=260)	Bedrock		1406	6.79	82	27.4	27.1
	8/25/94				790	6.38	93.1	27.0	29.0
	Sept 1991		Bedrock		191	6.82	86.7	25.6	25.7
									_
Well F	7/31/92				1320	2.68	190.0	19.9	179.0
	4/19/93				1585	7.59	182.0	18.5	178.0
	5/19/93				1545	7.59	170.0	17.9	169.0
	5/19/93				1545	7.59	153	15.9	144
	8/24/94				1620	7.25	196.9	19.6	173.0
93-69	06/61/20		•		1040	7.19	167	30.6	21
93-70	خ				685	7.75		15.7	23.2
93-73	11/16/89				800	7.45	1117	29.2	45
	٤				8.999	7.35		22.8	25.6
93-83	11/01/88				1527		206	58.8	31.5
25 CAD	09/04/68	2	Bedrock	Weathered	296	7.58	30	10	15.3
36 ADA	09/04/68	3	Bedrock	Weathered	284	6.75	31	9.8	11.7
31 CCB	99/97/80	3	Bedrock	Weathered	307	7.95	34	11.7	6.5
06 BBB	99/57/80	Spring	Bedrock	Weathered	345	∞	40	9.8	6.4
06CBD	08/24/66	Spring	Bedrock	Weathered	300	7.85	30	9.8	6.2
27 CAD	99/10/10	Spring	Bedrock	Weathered	210	7.8	26	4.8	7.2

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

				l/am				Van		
		:	ċ			0000				
		×	บ	11003	r S		₹	SP	As	Be
Well #	Date	Potassium	Chloride	Bicarbonate	Carbonate	Tot Alk	Aluminum	Antimony	Arsenic	Beryllium
Well D-2	05/29/92	15.4	11.4	33.9	0		200		38	
	May 1991	15.6	٧Z			31	121		17.7	
	5/31/91	16.4	5.8	31.8	0.0		<80		10.0	Y Z
	Aug 1991	15.6	×Z			24	70.8		7.9	
	8/31/94	29.7	17.5	46.3	6.7		<30		3.4	<2
Well E	05/29/92	12.7	5.8	41.4	0		< 100		32	
	05/29/92	13	5.8	41.6	0		150		32	
	May 1991	10.9	YN V			30	29		32.5	
	8/25/94	14.1	5	39.5	0.0		<30		27.0	<2
	Sept 1991	11.2	V V			42	184		38.4	
Well F	7/31/92	24.0	21.7	160.0	0.0		< 20		242.0	VX V
	4/19/93	23.6	22.1	202.0	0.0		<30		240.0	<2
	5/19/93	22.3	18	127.0	20		52		254.0	
	5/19/93	20	16	129	20		46.9		232	
	8/24/94	23.1	17.5	77.2	0.0		<30		273.8	<2
93-69	04/11/20	3.79	13.2	185	0		74		2.7	0.025
93-70	i	m	13.1	191	0		30		4.5	
93-73	11/16/89	3.46	14.4	229	0		40		1.3	0.047
	٠.	3.7	18.3	262	0		30		2.7	
93-83	11/01/88	5.6	42.1	258	0		30		7.36	0.055
25 CAD	09/04/68	VV	5.7	132	0					
36 ADA	09/04/68	Y'A	5.4	113	0					
31 CCB	99/52/80	3.3	4.2	89	0					
06 BBB	08/26/66	3.4	6.3	96	0					
06CBD	08/24/66	3.5	6.9	59	0					
27 CAD	99/L0/L0	AN NA	2.4	80	0					

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

					Von				
			,		Ì				
		కె	ర	J̄	Fe	Pb	Mn	Z	Ag
Well #	Date	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Silver
Well D-2	05/29/92	^	40	<2	25910	1.2	3210	<20	20
	May 1991	9.0	<i>L. L L L L L L L L L L</i>	16	19000	0.7	3370	58	00
	16/16/5	9>		9>	19.7	<50	3.26		9>
	Aug 1991	<2.9	V	15.8	17600	7.3	2320	40.8	<2.9
	8/31/94	<2	<2	2	0.01	<2	0.63		<u>~</u>
Well E	05/29/92	~	10	2	1940	1.8	1430	<20	17
	05/29/92	<u>~</u>	21	<2	1910	1.8	1410	<20	29
	May 1991	2.7	<i>L. L L L L L L L L L L</i>	7	2790	<0.8	1700	14	00
	8/25/94	<2	<2	<2	1.7	<2	1.39		<u>~</u>
	Sept 1991	<2.9	<5.2	35.5	3050	4.7	0691	54.5	5.6
Well F	7/31/92	<2	<2	<2	0.74	2.8	0.42		<u>~</u>
	4/19/93	<2	<2	<2	0.85	<2	0.55		~
	5/19/93	2	m	1.2	887	1.5	520	8 0.	2.4
	5/19/93	2.3	2.8	1.2	861	1.5	469	8.8	2.4
	8/24/94	<2	3	<2	0.64	<2	0.61		<
93-69	04/11/20	5	5	∞	210		521		4
93-70	٤	2	2	18	8	2		2	-
93-73	11/16/89	5	S	4	4	20	38	20	.4
	٤	2	2	9	33	1.9		2	7
93-83	11/01/88	2	2	4	19	40	19	10	2
25 CAD	09/04/68								
36 ADA	09/04/68								
31 CCB	99/56/80								
06 BBB	99/97/80								
06CBD	08/24/66								
27 CAD	99/L0/L0								

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

		l/gm		l/gu			
		804	F	>	Zn	Zr	
Well #	Date	Sulfate	Thallium	Vanadium	Zinc	Zirconium	Reference
Well D-2	05/29/92	654		78	1691	77	S
	May 1991	868			1690		9
	16/18/5	95.2			1580		S
	Aug 1991	647			1900		9
	8/31/94	83.2			2		S
Well E	05/29/92	357		98	23	29	S
	05/29/92	353		58	19	44	S
	May 1991	390			27		9
	8/25/94	90.2			16		S
	Sept 1991	404			72.3		9
Well F	7/31/92	83.3			47		S
	4/19/93	78.9			125	•	S
	5/19/93	720			126		9
	5/19/93	720			115		9
	8/24/94	89.9			101		5
93-69	04/11/20	392			18		80
93-70	2	147			70		80
93-73	11/16/89	226			172		80
	2	101			10		00
93-83	11/01/88	514			545		80
25 CAD	09/04/68	40					8
36 ADA	09/04/68	40					m
31 CCB	99/56/80	20					æ
06 BBB	99/97/80	53					3
06CBD	08/24/66	65					3
27 CAD	99/20/20	22					3

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

								lgm	
				Weathered	Field SC	Field	౮	Mg	Na
Well #	Date	Depth (ft)	Aquifer	Competent	nmhos/cm	Hd	Calcium	Magnesium	Sodium
Spring 1	02/03/09	Spring	Bedrock	Weathered			14	4.7	22
Spring 2	11/18/13	Spring	Bedrock	Weathered			5.8	2.5	9.5
Well	02/26/10	9	Bedrock	Weathered			22	8.9	8.4
MCL						6.5-8.5			
SMCL									
Mean.									
(u)									

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

4

				l/gm				l/gu		
		Ж	C	HCO3	CO3	CaCO3	V	Sb	As	Be
Well #	Date	Potassium	Chloride	Chloride Bicarbonate Carbonate Tot Alk Aluminum Antimony Arsenic Beryllium	Carbonate	Tot Alk	Aluminum	Antimony	Arsenic	Beryllium
Spring 1	02/03/09		5.9		23					
Spring 2	11/18/13		4.9		15					
Well	02/26/10		11		53					
MCL									20	
SMCL										
Mcan*										
(")										

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

					l/gu	J.			
		సై	Ċ	Cu	Fe	Pb	Mn	ž	Ag
Well #	Date	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Silver
Spring 1	02/03/09								
Spring 2	11/18/13								
Well	02/26/10								
MCL		5	100			20		100	
SMCL				1000	300		20		
Mean*									
(E)									

Appendix IID. Bedrock Aquifer Baseline Water Quality Data.

		mg/l		l/gu		1	
		SO4	11	>	Zn	Zr	
Well #	Date	Sulfate	Thallium	Vanadium	Zinc	Zirconium	Reference
Spring 1	02/03/09	52				1	4
Spring 2	11/18/13	8.9					4
Well	02/26/10	5.1					4
MCL							
SMCL		250			2000		
Mean*	-						
(u)							

References:

1 = CH2M HILL/Chen-Northern, 1990, Vol. II, Appendix B-3 and B-4;

limited data for well BMW - 5 from isopleth maps.

2 = MultiTech, 1987, Appendix B, Part 4, Attachment VI-A.

3 = Botz, 1969, Table 7.

4 = Meinzer, 1914, pg. 97.

5 = MBMG, 1992 and 1994, Bedrock sampling.

6 = Canonie, 1992a, Table 6.3.1.; Canonie, 1994. Tables 6.3.6 and 6.3.7

7 = MultiTech/MSE, 1992. Bedrock Monitoring Task Second Quarterly Sampling Report, Feb. 1992.

8 = Canonie, 1994. Table 8.3.1 and 8.4.2.

APPENDIX III

ALLUVIAL GROUNDWATER QUALITY DATA

- A Area I Data
- B Leach Pads Area Data
- C Leach Pads Area Historic Data
- D Alluvial Aquifer Baseline Water Quality Data

[•] includes some wells completed in bedrock.

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	Depth (ft.)	Average		Static		Measuring	MP Height
	Sampling	Screened	Screened	Probable	Water		Point	from
Well #	Date	Interval	Depth	Aquifer	Level	Date	Elevation (ft.)	G.S. (ft.)
AI-GW-GS-07	08/24/89	130-160	145	Ts/Qal	25.6	11/27/85	5479.90	2.2
	11/06/89				24.3	10/89	5479.40	1.9
AI-GW-GS-08	08/24/89	125.5-145.5	135.5	Ts/Qal	12.4	11/26/85	5458.00	1.5
	11/07/89				6.6	10/89	5458.00	1.5
	11/07/89				10.8	10/89	5457.40	1:1
A1-GW-GS-12	08/25/89	19.5-29.5	24.5	\Qa	11.0	12/03/85	5442.70	1.5
	11/13/89				8.8	10/89	5442.70	1.5
AI-GW-GS-13A	08/22/80	12.5-17.5	15	Qal	6.2	12/18/85	5441.20	1.6
					5.1	08/80	5441.20	1.6
AI-GW-GS-13B	11/13/89	24-28, 31-32	26,31.5	Qal	5.8	12/19/85	5440.60	0.5
					5.0	68/60	5440.60	0.5
AI-GW-GS-14	08/22/80	52-62	57	Ts/Qal	6.9	12/20/85	5455.20	1.6
	11/09/89				8.1	10/89	5455.20	1.6
	04/19/90							
AI-GW-GS-15D	08/22/80	27-32	29.5	Qal	9.5	10/89	5445.30	0.0
(15A)	11/09/89				0.6	12/17/85	5445.30	0.0
	04/23/90							
AI-GW-GS-15S	08/22/80	0-15	7.5	Qal	8.6	10/89	5445.30	0.0
(15B)					9.2	12/17/85	5445.30	0.0
	04/23/90							
AI-GW-GS-16	08/22/80	11.2-16.2	13.7	Qal	0.6	10/89	5440.40	2.0
	11/13/89							
	04/23/90							
AI-GW-GS-17D	08/22/89	17.7-27.7	22.7	Qal	3.2	10/89	5434.10	2.1
	08/22/80							
	11/13/89							
	04/19/90							

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling	ت	(umpos/cm)	(mV)			(l/gu)		(mg/l)
Well #	Date	hН	SC	Eh	VI	As	Be	Cd	Ca
AI-GW-GS-07	08/24/89	5.5	3021		72.8S	<0.6S	2.5	135	468
	11/06/89	5.5	2693	255	320	<3.0	<1.0	93.0	470S
	04/17/90	5.6	3130		126S	1.85	<1.0	100S	372S
AI-GW-GS-08	08/24/89	9.9	1211	-300	<11.5S	3.75	2.5	7.0S	176
	11/07/89	6.2	2429	265	82S	<3.0	<1.0	360	140S
	11/07/89	6.4	1212	190	100S	4.8	<1.0	260	3008
	04/18/90	5.9	2234		95.2S	<0.7	<1.0	169	289
AI-GW-GS-12	08/22/80	7.1	578	09	11.68	4.2S	1.7	18.3	74.1
	11/13/89	6.7	451	180	270S	4.0S	<1.0	12.0S	62.0
AI-GW-GS-13A	08/22/80	9.9	1313	-70	15.68	4.8S	<1.0	45.0	233
Al-GW-GS-13B	11/13/89	6.6	1575	150	180S	<3.05	<1.0	1.58	140
AI-GW-GS-14	08/25/89	6.5	1700	80	<11.5	33.45	5.0	10.8	243
	11/09/89				260S	7.98	<1.0	4.5	270
	04/19/90	6.4	1931		<22.0	2.7S	<1.0	6.48	284
AI-GW-GS-15D	08/25/89	7.4	405	50	<11.5	11.65	1.7	5.3S	52.0
(15A)	11/09/89	7.1	549	06	75.0S	9.5	<1.0	4.2S	43.0
	04/23/90	7.2	495		<22.0	6.48	<1.0	4.8R	51.15
	04/23/90				<22.0	86.9	<1.0	4.5R	50.75
AI-GW-GS-15S	08/22/80	6.3	473	120	<11.5	5.75	1.7	6.9	56.8
(15B)	11/09/89	7.0	208	06	200S	13.0	<1.0	8.3	48.0
	04/23/90	6.9	512		<22.0	12.18	<1.0	4.5R	57.9S
AI-GW-GS-16	08/25/89	9.9	692	-80	14.0S	1.85	<1.0	364	82.4
	11/13/89	5.8	905	190	230S	<3.0S	<1.0	430	64.0
	04/23/90	9.9	837		<22.0	1.95	<1.0	3338	80.7S
AI-GW-GS-17D	08/22/80	6.7	752	140	<11.5	4.6	<1.0	88.6	84.2
	08/22/80				<11.5	2.0	<1.0	5.15	78.0
	11/13/89	6.7	819	141	120S	5.58	<1.0	1.68	75.0
	04/19/90	6.7	1000		<22.0	4.48	<1.0	6.25	103

	Water Qual								
	Sampling			(ug/l) .			(mg/l)	(l/gu)	
Well #	Date	Cr	ပ္	Cu	Fe	Pb	Mg	Mn	N.
AI-GW-GS-07	08/24/89	<2.8S	20.9	4960S	1490S	<5.08	136	30900	151
	11/06/89	21.0S	30.0	2900	S095	<0.4S	130	27000S	100
	04/17/90	<8.0	27.3S	4440S	1750S	1.68	125S	25700S	125S
AI-GW-GS-08	08/24/89	<2.8S	<2.6	25.0S	17S	<0.55	28.9	62	8.6
	11/07/89	<8.0S	<12.0	35.0S	15S	300S	29.0	S09	2.0
	11/07/89	22.0S	31.0	10000	2000S	230	110	34000S	28.0
	04/18/90	<8.0	37.5	0609	3580	194S	88.2	32900	26.25
A1-GW-GS-12	08/22/80	<2.8	<2.6	<1.15	4	<0.5	18.0	2230S	<1.15
	11/13/89	14.0	14.0	<6.0	57S	0.4R	16.0S	1600S	4.58
AI-GW-GS-13A	08/22/89	<2.8S	<2.6	S29S	1538	61.58	36.0	61500	28.9
AI-GW-GS-13B	11/13/89	<8.0	22.0	<6.0	2700	0.4R	38.0S	7800S	<2.0S
AI-GW-GS-14	08/22/89	<2.8	5.3	16.4S	880	<5.05	59.8	532S	<1.15
	11/09/89	<8.0	24.0	<0.0S	110S	<0.4S	65.0S	130	<2.0
	04/19/90	<8.0	<8.0	8.4	<5	<0.5S	74.8	48	1.68
AI-GW-GS-15D	08/22/89	<2.8	<2.6	37.88	8.0	<0.5	12.3	149S	<1.15
(15A)	11/09/89	<8.0	19.0	45.0S	26S	<0.4S	12.0S	140	<2.0
	04/23/90	<8.0	<8.0	51.7	<58	0.5	11.8	1358	<1.3S
	04/23/90	<8.0	<8.0	48.2	<58	<0.5	11.7	135S	<1.3S
AI-GW-GS-15S	08/22/80	<2.8	<2.6	218S	0.6	2.6	12.8	20S	<1.15
(15B)	11/09/89	<8.0	22.0	170S	48S	<0.4S	12.0S	26S	<2.0
	04/23/90	<8.0	<8.0	184	<58	3.1	12.5	S9	<1.3S
AI-GW-GS-16	08/22/80	<2.85	3.3	49.7S	S9	12.2S	26.5	11000	15.1
	11/13/89	16.0	<12.0	43.0	250S	2.28	31.0S	13000S	25.0S
	04/23/90	<8.0	<8.0	37.2	<58	18.5	27.0	10400S	13.1R
AI-GW-GS-17D	08/22/89	<2.85	8.4	40.8	^	0.78	18.7	1230	3.48
	08/22/89	<2.85	7.0	35.7	^	<0.5S	16.7	1120	2.5S
	11/13/89	<8.0	23.0	13.0	49S	0.4R	20.0S	310S	<2.0S
	04/19/90	<8.0	<8.0	32.1	<\$	1.0	25.1	648	<1.3S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	(mg/l)		(l/gu)			(Mg/l)	<u></u>		(mg/l)
	Sampling						Nic	Nitrate + Nitrite	e e	
Well #	Date	K	Na	П	Zn	C	F	Z	Sulfate	Total Alk
AI-GW-GS-07	08/24/89	33.68	181	2.0R	29800	29.8	<0.05	<0.05	2414	13
	11/06/89	36.0S	190	370	31000	22.4	<0.10	<0.015	2470	107
	04/17/90	30.2	167S	<2.0S	24500S	27.0	0.56	0.058	1980	13
AI-GW-GS-08	08/24/89	15.58	6'16	20.0S	822	11.8	0.79	3.09	230	64
	11/07/89	16.0S	110	<9.0	720	33.6	<0.10	< 0.01S	1480	148
	11/07/89	36.0S	130	610	72000	48.5	0.55	< 0.01S	562	92
	04/18/90	22.3	98.2	<2.0	30300	30.0	0.58	0.05S	1280S	100
AI-GW-GS-12	08/22/80	8.72S	31.6	20.0R	1300	39.1	1.31	2.60	163	100
	11/13/89	8.10	29.0	24.0	1200	25.6	1.10	2.40	486	111
AI-GW-GS-13A	08/22/80	12.08	18.6	20.08	16600	25.6	3.07	0.28	706	158
AI-GW-GS-13B	11/13/89	8.80	30.0	110	360	21.9	0.96	3.60	721	197
AI-GW-GS-14	08/25/89	13.9	87.0	20.0R	591	34.4	<0.05	1.62	3550	<2
	11/09/89	12.0	86.0	<9.0	420S	29.0	<0.10	0.998	1410	75S
	04/19/90	16.0	111	<2.0S	491S	32.0	0.40	1.20S	086	48
AI-GW-GS-15D	08/25/89	4.12S	29.6	20.0R	345	37.0	0.97	4.50	8.09	105
(15A)	11/09/89	4.40	28.0	<9.0	310S	27.4	0.84	4.60	48.8	136
	04/23/90	4.21	30.1	<2.0S	3125	40.0S	1.10S	4.00S	\$1.0S	110
	04/23/90	4.34	29.8	<2.0S	3118	38.0S	1.20S	3.90S	49.0S	110
AI-GW-GS-15S	08/22/89	4.20S	29.4	20.0R	525S	38.0	0.94	4.74	67.5	110
(15B)	11/09/89	4.30	26.0	<9.0	S10S	27.9	0.76	4.94	55.4	148
	04/23/90	4.50	30.4	<2.0S	531S	38.0S	1.10S	3.40S	61.0S	120
AI-GW-GS-16	08/22/89	8.988	32.2	20.0S	22000	40.9	5.16	2.85	280	118
	11/13/89	7.30	26.0	160	00099	30.6	3.50	2.90	345	126
	04/23/90	8.82	34.8	<2.0S	\$6100S	33.0S	1.20S	2.30S	250S	120
AI-GW-GS-17D	08/22/89	6.44	9.69	20.0R	1220	41.6	0.89	3.99	22.2	102
	08/22/89	5.85	52.3	20.0R	1080	41.6	0.89	3.93	22.2	103
	11/13/89	09.9	78.0	<9.0	390	39.1	0.61	5.80	272	126
	04/19/90	7.03	68.9	<2.0	881S	50.0	0.73	7.60	190	140

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Oual	Depth (ft.)	Average		Static		Measuring	MP Height
	Sampling	Screened	Screened	Probable	Water		Point	from
Well #	Date	Interval	Depth	Aquifer	Level	Date	Elevation (ft.)	G.S. (ft.)
AI-GW-GS-17S	68/22/80	3-8	5.5	Qal	3.8	10/89	5434.70	2.8
	11/13/89					-		
AI-GW-GS-18	08/22/89	11–16	13.5	Oal	10.0	10/89	5439.10	2.2
	11/13/89							
	04/19/90							
AI-GW-GS-19	08/24/89	13.5-18.5	16	Qal	13.2	10/89	5445.30	1.6
	11/13/89							
AI-GW-GS-20	08/24/89	18-23	20.5	Qal	18.6	10/89	5457.20	1.9
	11/10/89							
	04/20/90							
AI-GW-GS-21D	08/25/89	23.6-33.6	28.6	Qal	13.2	10/89	5447.80	1.8
	08/25/89							
	11/09/89							
	04/23/90							
AI-GW-GS-21S	08/22/80	11-21	16	Qal	13.0	10/89	5447.60	1.6
	11/09/89							
	04/23/90							
AI-GW-GS-22	08/25/89	5-15	10	Qal	7.6	10/89	5435.90	2.5
	11/13/89							
	04/24/90							
AI-GW-GS-23	08/24/89	14.5-19.5	17	Qal	14.9	10/89	5437.20	1.5
	11/14/89							
A1-GW-GS-24D	08/22/89	21.7-31.7	26.7	Qal	6.8	10/89	5433.50	1.6
	11/14/89							
	11/14/89							
	04/23/90							
A1-GW-GS-24S	08/22/89	9.5-14.5	12	Qal	7.3	10/89	5434.10	1.8
	11/14/89							
	04/23/90		:					

Appendix IIIA. Area I Alluvial Groundwater Quality Data

yį.

	Water Qual								
	Sampling	•	(umhos/cm)	(mV)			(l/gn)		(mg/l)
Well #	Date	pII	SC	Eh	V	As	Be	Cd	Ca
AI-GW-GS-17S	08/22/89	4.6	1648	250	13500	2.7	8.1	937	134
	11/13/89	4.3	1341	230	8300S	3.98	4.7	620	73.0
	04/19/90	5.3	799		1490	1.58	1.0	218	41.8
AI-GW-GS-18	08/25/89	6.8	1272	20	<11.5	2.88	<1.0	68.2	177
	11/13/89	6.2	961	200	100S	3.2S	<1.0	35.0	93.0
	04/19/90	6.7	1074		<22.0	3.28	<1.0	23.8	143
AI-GW-GS-19	08/24/89	6.4	704	100	<11.5	13.25	1.7	60.3	78.9
	11/13/89	6.3	675	175	92.0S	11.08	<1.0	50.0	54.0
AI-GW-GS-20	08/24/89	9.9	464	80	<11.5	1.78	2.5	3.58	71.2
	11/10/89	7.1	564	140	170S	<3.08	<1.0	5.2	67.0
	04/20/90	6.7	617		<22.0	1.98	<1.0	2.9S	66.4
AI-GW-GS-21D	08/25/89	7.2	756	-30	<11.5	9.68	<1.0	S9.8	94.1
	08/25/89				<11.5	89.9	<1 .0	5.38	92.2
	11/09/89	7.1	989	06	170S	11.0	<1.0	3.58	74.0
	04/23/90	7.1	774		<22.0	89.6	<1.0	6.2R	99.38
Al-GW-GS-21S	08/22/89	7.0	999	30	15.0	19.18	<1.0	9.5	92.7
	11/09/89	7.0	721	110	210S	23.0	<1.0	6.4	71.0
	04/23/90	7.0	731		<22.0	22.5S	<1.0	9.0R	97.58
Al-GW-GS-22	08/22/89	7.4	1126	-330	<11.5	1588	1.7	2.48	152
	11/13/89	6.5	1024	160	300S	110S	<1.0	3.75	100
	04/24/90	7.6	1004		<22.0	63.08	<1.0	1.1R	126S
AI-GW-GS-23	08/24/89	7.3	704	-390	<11.5	11.78	1.7	0.6S	110
	11/14/89	6.8	702	190	280S	12.0S	<1.0	0.58	76.0
AI-GW-GS-24D	08/22/89	6.5	955	-20	<11.5	1.4	<1.0	17.9	73.3
	11/14/89	0.9	807	150	180S	<3.0S	<1.0	30.0	26.0
	11/14/89	6.1	807	155	230S	<3.0S	<1.0	28.0	51.0
	04/23/90	6.7	696		<22.0	1.4S	<1.0	30.0S	66.25
AI-GW-GS-24S	08/22/89	6.5	2040	40	28.5	802	1.6	13.2	200
	11/14/89	6.4	1847	06	130S	1210S	<1.0	4.38	240
	04/23/90	6.5	2492		<22.0	1440S	<1.0	7.5R	190S

						And the second s			
	Water Qual								
	Sampling			(ng/l)			(mg/l)	(l/gu)	
Well #	Date	Cr	Co	Cu	Fe	Pb	Mg	Mn	ž
AI-GW-GS-17S	08/22/89	<2.85	64.2	79400	320	3520	39.2	98700	51.8
	11/13/89	43.0	37.0	62000	220S	2600S	28.0S	20006Z	33.0S
	04/19/90	<8.0	16.0	23500	8.0	2920	13.9	27600	12.0S
AI-GW-GS-18	08/22/80	<2.8S	4.9	1220S	12S	0.85	28.6	7860	6.6
	11/13/89	<8.0	30.0	790	828	0.4R	30.0S	3900S	4.25
	04/19/90	<8.0	<8.0	555	<>	<0.5	30.7	3610	5.38
AI-GW-GS-19	08/24/89	<2.8S	<2.6	748S	26S	89.88	14.7	4220	7.6
	11/13/89	11.0	<12.0	720	525	110S	17.0S	4300S	7.15
AI-GW-GS-20	08/24/89	<2.8S	<2.6	<1.15	42S	<0.5S	14.6	25S	<1.15
	11/10/89	<8.0	20.0	<0.0S	<12S	<0.45	21.0S	30S	<2.0
	04/20/90	<8.0	<8.0	5.9	<5	1.0	16.7	4S	1.65
AI-GW-GS-21D	08/22/89	<2.8S	<2.6	72.58	10S	5.3S	22.6	137	1.7
	08/22/89	<2.8S	<2.6	57.0S	115	2.6S	22.2	146	3.2
	11/09/89	<8. 0	34.0	75.0S	16S	<0.45	20.0S	34S	<2.0
	04/23/90	<8.0	<8.0	126	<58	<0.58	23.0	31S	1.48
AI-GW-GS-21S	08/22/89	<2.8	<2.6	\$62.0S	16S	16.2	22.7	2130	8.2
	11/09/89	<8.0	14.0	390.0S	<12S	61.0	21.0S	2400	3.4
	04/23/90	<8.0	8.1	1080	<58	14.6	23.1	2650S	1.85
AI-GW-GS-22	08/22/89	<2.8	<2.6	10.0S	4>	<0.58	36.1	42S	8.98
	11/13/89	22.0	24.0	20.0	160S	0.4R	28.0S	40S	10.0S
	04/24/90	<8.0	<8.0	22.7S	<58	<0.58	32.8	5S	1.6R
AI-GW-GS-23	08/24/89	<2.8S	2.7	<1.15	<4S	<0.58	20.3	S6	<1.1
	11/14/89	20.0	<12.0	<6.0	130S	0.4R	20.0S	14S	12.08
AI-GW-GS-24D	08/22/89	<2.8S	3.3	16.08	264	1.38	17.8	12800	4.38
	11/14/89	<8.0	17.0	<6.0	715	0.4R	16.0S	15000S	4.78
	11/14/89	13.0	<12.0	<6.0	338	0.4R	15.0S	13000S	4.38
	04/23/90	<8.0	<8.0	19.18	<58	4.2	15.2	13100S	11.0R
AI-GW-GS-24S	08/22/89	<2.85	7.7	18.2	4060	48.1	40.3	105000	4.25
	11/14/89	67.0	<12.0	<6.0	8700	83.0S	43.0S	100000S	9.48
	04/23/90	<8.0	16.0	10.9	8100	54.7	37.2	108000S	3.7R

Appendix IIIA. Area I Alluvial Groundwater Quality Data

Well # AI-GW-GS-17S				(ng/l)	_		(mg/)	€	_	(mg/l)
Well # AI-GW-GS-17S	Sampling						Z	Nitrate + Nitrite	te	
AI-GW-GS-17S	Date	K	Na	П	Zu	C	F	Z	Sulfate	Total Alk
	08/22/89	7.79	32.8	2.0R	220000	33.6	4.09	1.45	1592	<25
	11/13/89	7.00	29.0	096	190000	22.9	1.10	2.00	910	<38
	04/19/90	6.19	29.8	<2.0S	S00579	37.0	1.00	1.20S	290	5
AI-GW-GS-18	08/25/89	4.27S	38.7	20.0S	32800	25.8	0.88	2.28	541	162
	11/13/89	3.90	32.0	46.0	15000	18.6	<0.10	1.80	413	177
	04/19/90	6.33	52.4	<2.0	8620S	23.0	0.52	1.70S	330	180
AI-GW-GS-19	08/24/89	8.215	22.5	20.0S	14700	30.5	1.98	2.15	228	76
	11/13/89	7.10	21.0	68.0	13000	21.4	1.60	1.80	234	93
AI-GW-GS-20	08/24/89	5.883S	23.4	20.0S	711	26.9	1.14	2.84	149	101
	11/10/89	08.9	27.0	< 9.0	710S	29.9	0.70	6.56	220	133
	04/20/90	6.12	32.6	<2.0	643S	50.0	0.82	2.40S	160	100
AI-GW-GS-21D	08/22/89	4.92S	39.5	20.0S	202	9.09	0.87	8.92	127	141
	08/25/89	5.358	40.3	20.0S	460	60.9	0.79	8.92	127	141
	11/09/89	5.50	36.0	<9.0	260S	48.5	0.48	6.87	115	165
	04/23/90	5.59	40.1	<2.0S	428S	80.99	S89°	9.10S	160S	160
AI-GW-GS-21S	08/25/89	4.885	38.2	20.0S	1190	9.29	1.09	3.21	149	149
	11/09/89	4.40	33.0	26.0	S089	53.5	0.80	2.71	146	196
	04/23/90	6:39	39.0	<2.0S	1590S	64.0S	S66°	3.40S	130S	160
AI-GW-GS-22	08/25/89	14.9S	86.1	20.0R	71	18.6	1.70	1.94	422	221
	11/13/89	13.0	0.99	23.0	320	12.6	2.00	1.90	359	303
	04/24/90	14.0	76.4	<2.0S	154S	32.0S	1.20S	1.90S	490S	260
AI-GW-GS-23	08/24/89	2.628	47.5	20.0S	30S	11.7	08.0	3.12	231	182
	11/14/89	3.60	48.0	< 9.0	17S	6.9	0.56	3.30	220	197
AI-GW-GS-24D	08/22/89	11.6	107	20.0R	4340	43.8	1.35	1.82	324	93
	11/14/89	9.30	67.0	220	12000	32.8	1.14	1.668	358	114
	11/14/89	7.70	63.0	180	12000	32.2	1.12	1.89S	348	102
	04/23/90	10.1	84.1	<2.0S	11100S	46.0S	1.50S	1.90S	3008	80
AI-GW-GS-24S	08/22/89	19.2	229	20.0R	13200	51.8	3.04	0.16	1280	159
	11/14/89	21.0	310	1400	11000	41.3	1.20	<0.01	1260	222
	04/23/90	19.3	239	2.1S	15000S	\$7.0S	1.40S	0.298	S096	160

Appendix IIIA. Area I Alluvial Groundwater Quality Data

MP Height	from	G.S. (ft.)	1.8		1.8		1.2			2.3			2.0		1.9			2.3			1.5				1.3			1.2		
Measuring M	Point	Elevation (ft.)	5427.80		5425.70		5419.00			5419.90			5446.30		5443.20			5443.30			5456.30				5456.50			5451.80		
		Date	10/89		10/89		10/89			10/89			10/89		10/89			10/89			10/89				10/89			10/89		
Static	Water	Level	4.7		9.8		5.6	,		9.9			4.5		4.5			5.1			9.2				9.4			5.0		
	Probable	Aquifer	Qal		Qal		Qal			Qal			Qal		Qal			Qal			Qal				Qal			Qal		
Average	Screened	Depth	7		12		17.2			9.5			8.5		34.6			10.5			33.5				16.2			33.6		
Depth (ft.)	Screened	Interval	4.5-9.5		9.5-14.5		12.2-22.2			7-12			6-11		29.6-39.6			8-13			28.5-38.5				13.7-18.7			28.6-38.6		
Water Qual	Sampling	Date	08/24/89	11/14/89 04/24/90	08/22/89	11/14/89	08/22/89	11/15/89	04/24/90	08/22/89	11/15/89	04/24/90	08/23/89	11/09/89	08/23/89	11/09/89	04/23/90	08/23/80	11/09/89	04/23/90	08/18/80	11/07/89	11/07/89	04/18/90	68/81/80	11/07/89	04/18/90	68/57/80	11/08/89	04/19/90
		Well #	AI-GW-GS-25		AI-GW-GS-26		AI-GW-GS-27D			AI-GW-GS-27S			AI-GW-GS-28		AI-GW-GS-29D			AI-GW-GS-29S			A1-GW-GS-30D				AI-GW-GS-30S			AI-GW-GS-31D		

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling	ت	(mmyos/cm)	(mV)			(ng/l)		(mg/l)
Well #	Date	hН	sc	Eh	V	As	Be	ਣ	Ca
AI-GW-GS-25	08/24/89	6.6	1100	-300	82.0	42.2S	5.0	60.2	152
	11/14/89	6.2	919	190	210S	40.0S	<1.0	53.0	100
	04/24/90	6.7	1104		52.7	25.5S	<1.0	71.0S	1508
AI-GW-GS-26	08/22/89	4.7	1962	200	3090	43.4	3.3	276	199
	11/14/89	5.0	1623	230	2700S	5.68	2.7	240	160
	04/25/90	0.9	1840		0209	216	5.5	405S	265
AI-GW-GS-27D	08/22/89	6.3	2953	-20	<11.5	223	1.6	0.78	253
	11/15/89	6.1	2726	-30	300S	190S	<1.0	1.25	240
	04/24/90	9.9	1863		28.6	1328	<1.0	<0.03S	244S
AI-GW-GS-27S	08/22/89	6.4	2953	-30	<11.5	146	<1.0	0.38	199
	11/15/89	8.9	2792	-25	220S	180S	<1.0	1.38	200
	04/24/90	7.0	1830		34.0	369S	<1.0	0.118	212S
A1-GW-GS-28	08/23/89	5.9	1312	-300	74.6	5.48	3.4	0.88	152
	11/09/89	9.9	1174	150	73.0S	7.9	<1.0	1.0S	110
AI-GW-GS-29D	08/23/89	7.1	1212	-320	<11.5	17.4S	1.7	2.4S	114
	11/09/89	7.2	849	145	180S	19.0	<1.0	1.18	0.69
	04/23/90	7.0	1114		<22.0	30.0S	<1.0	0.44R	1198
AI-GW-GS-29S	08/23/89	9.9	1388	-180	<11.5	19.58	<1.0	0.7S	199
	11/09/89	9.9	1474	150	<41.0S	38.0	<1.0	1.38	140
	04/23/90	6.7	1507		<22.0	72.5S	<1.0	0.90R	221S
AI-GW-GS-30D	08/18/89	6.3	3438	40	<11.5	2.4S	2.4	27.1	622
	11/07/89	6.7	3390		230S	<3.0	<1.0	17.0	S009
	11/07/89	6.5	3374		<41.0S	<3.0	<1.0	17.0	202S
	04/18/90	6.2	3189		26.3S	1.2	<1.0	21.6	515
AI-GW-GS-30S	08/18/89	6.4	1965	30	451	27.1	3.1	0.98	216
	11/07/89	6.1	1416	120	110S	13.0	<1.0	1.15	230S
	04/18/90	6.3	1142		58.9S	13.0	<1.0	0.098	184
AI-GW-GS-31D	08/23/89	0.9	1267	190	<11.5	<0.6S	<1.0	3.65	188
	11/08/89	5.7	1454	150	110S	<3.0	<1.0	0.98	170S
	04/19/90	6.4	1437		<22.0S	1.48	<1.0	1.95	212

Appendix IIIA. Area I Alluvial Groundwater Quality Data

Water Qual Sampling Al-GW-GS-25 08/24/89 <2.8S							
Sampling Date 08/24/89 11/14/89 04/24/90 08/22/89 11/15/89 04/25/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/13/89 11/07/89 11/07/89 04/18/90 08/18/90 08/18/99							
Date Cr 08/24/89		(ng/l)			(mg/l)	(l/gu)	
08/24/89 11/14/89 04/24/90 08/22/89 11/14/89 04/25/90 08/22/89 04/24/90 08/22/89 11/15/89 04/24/90 08/23/89 04/24/90 08/23/89 04/23/89 04/23/89 04/23/89 04/23/89 04/23/89 11/09/89 04/23/89 04/23/89 11/07/89 11/07/89 11/07/89 04/18/90 08/18/90 04/18/90	Cr Co	Cu	Fe	Pb	Mg	Mn	ï
11/14/89 04/24/90 08/22/89 11/14/89 04/25/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/89 04/23/89 04/23/89 11/09/89 11/09/89 04/23/89 11/09/89 11/09/89 04/13/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89	<2.8S <2.6	140.0S	110S	<0.5S	25.4	14800	7.9
04/24/90 08/22/89 11/14/89 04/25/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 11/09/89 04/13/90 08/18/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89	12.0 18.0	61.0	S86	0.4R	23.0S	2006Z	9.28
08/22/89 11/14/89 04/25/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/13/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89	<8.0 12.4	161	<58	<0.5	25.6	13800S	5.98
11/14/89 04/25/90 08/22/89 11/15/89 04/24/90 08/23/89 11/109/89 04/23/89 04/23/89 04/23/89 04/23/89 11/09/89 04/23/90 08/13/89 11/09/89 11/07/89 11/07/89 11/07/89 11/07/89 11/07/89	<2.8S 91.9	17800	869000	259S	41.0	35600	81.6
04/25/90 08/22/89 04/24/90 08/22/89 11/15/89 04/24/90 08/23/89 04/23/89 04/23/89 04/23/90 08/23/89 04/23/90 08/13/89 11/07/89 11/07/89 11/07/89 04/18/90 08/18/90 08/18/90	15.0 74.0	19000	72000	160S	40.0S	30000E	41.0S
08/22/89 11/15/89 04/24/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/89 04/23/90 08/23/89 11/09/89 04/23/90 08/13/89 11/07/89 11/07/89 04/18/90 08/18/90	<8.0 162	29900	136000S	291	57.0	45300	108
11/15/89 04/24/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/89 11/09/89 04/23/90 08/13/89 11/07/89 11/07/89 04/18/90 08/18/99 04/18/90	<2.8S 8.2	10.2S	132000	<0.58	66.7	34500	6.78
04/24/90 08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/18/89 11/07/89 11/07/89 04/18/90 08/18/99 04/18/90	<8.0 17.0	<0.09>	120000	<0.4S	53.0S	32000	<2.0
08/22/89 11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 04/23/90 08/13/89 11/07/89 11/07/89 11/07/89 04/18/90 08/18/90	<8.0 <8.0	<4.0S	135000	<0.5S	62.5	34700S	8.5R
11/15/89 04/24/90 08/23/89 11/09/89 04/23/90 04/23/90 04/23/90 04/23/90 04/23/90 04/18/89 11/07/89 11/07/89 11/07/89 04/18/90 08/18/90 04/18/90	<2.8S 6.2	4.48	87900	<5.0S	56.5	27400	1.68
04/24/90 08/23/89 11/09/89 04/23/89 04/23/90 08/23/89 11/09/89 04/23/90 08/18/89 11/07/89 11/07/89 11/07/89 11/07/89 04/18/90	<8.0 15.0	<0.0S	00006	<0.45	S0.9S	28000	3.0
08/23/89 11/09/89 08/23/89 04/23/90 08/23/89 11/09/89 04/23/90 08/18/89 11/07/89 11/07/89 11/07/89 04/18/90	<8.0 13.4	5.58	98200	<0.58	58.9	29200S	1.3S
11/09/89 08/23/89 11/09/89 04/23/89 11/09/89 04/23/90 08/18/89 11/07/89 04/18/90 08/18/90 04/18/90	<2.8S 12.0	10.7S	1450S	<0.58	387	559	2.1
08/23/89 11/09/89 04/23/90 08/23/89 11/09/89 08/18/89 11/07/89 04/18/90 08/18/90 04/18/90	<8.0 19.0	<0.0S	710	<0.4S	35.0	200S	<2.0
11/09/89 04/23/90 04/23/90 11/09/89 04/23/90 08/18/89 11/07/89 04/18/90 04/18/90	<2.8S <2.6	1.4S	<4S	<0.58	29.4	71	<11.0S
04/23/90 08/23/89 11/09/89 04/23/90 08/18/89 11/07/89 11/07/89 11/07/89 11/07/89 04/18/90	<8.0 15.0	<0.09>	<12S	<0.45	27.0S	12S	<2.0
08/23/89 11/09/89 04/23/90 08/18/89 11/07/89 04/18/90 04/18/90	<8.0 <8.0	<4.0	<58	<0.5S	30.4	<25	<1.3S
11/09/89 04/23/90 08/18/89 11/07/89 04/18/90 08/18/89 11/07/89 04/18/90	<2.8S <2.6	2.98	22S	<5.08	52.3	1700	8.3
04/23/90 08/18/89 11/07/89 11/07/89 04/18/90 04/18/90	<8.0 <12.0	<6.0S	2600	<0.45	46.0S	1300	4.5
08/18/89 11/07/89 11/07/89 04/18/90 08/18/89 04/18/90	<8.0 <8.0	<4.0	3280	0.78	56.4	1860S	6.0R
11/07/89 11/07/89 04/18/90 08/18/89 11/07/89 04/18/90	16.0 28.2	135	3480	<0.58	167	15200	87.0
11/07/89 04/18/90 08/18/89 11/07/89 04/18/90	<8.0S 25.0	S0.6S	3500S	<0.45	140	80008	25.0
04/18/90 08/18/89 11/07/89 1 04/18/90	13.0S 31.0	130	2800S	<0.45	140	8500S	24.0
08/18/89 11/07/89 1 04/18/90	16.5 15.5	469	239	<2.5S	143	4240	39.0
04/18/90	<2.8 <2.6	8.9	14700	20.6	60.4	21200	5.98
04/18/90	17.0S 23.0	29.0S	14000S	<0.45	63.0	26000S	5.9
08/2/80	<8.0 <8.0	<4.0	19500	<2.5S	57.1	24200	1.5
69/57/90	<2.85 7.0	21.8	24.0	<5.08	49.9	98	1.55
11/08/89 8.0S	8.05 27.0	52.0S	53.0	<0.45	53.0S	140S	3.0
04/19/90 <8.0		<4.0	\$	<2.5	65.2	9	1.4S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

•		//	_	(n - m)			,,	1		10-1
_	water Quai	(1/8m)		(ngn)			(mg/l	1)		(mg/1)
	Sampling						ž	Nitrate + Nitrite	ite	
	Date	¥	Na	.1.1	Zu	C	F	z	Sulfate	Total Alk
	08/24/89	9.92S	51.8	20.0S	24000	37.4	5.04	0.49	480	109
	11/14/89	7.60	43.0	210	25000	25.5	2.90	0.46	380	101
	04/24/90	9.32	53.6	<2.0S	26800S	37.0S	4.60S	0.258	200S	120
	08/22/89	8.79	78.7	2.0R	82900	55.0	3.30	0.17	1300	<25
	11/14/89	7.80	77.0	350	77000	41.4	1.00	<0.01	1100	<38
	04/25/90	8.73	110	<2.0S	132000S	55.0S	0.928	< 0.015	1780S	\$
AI-GW-GS-27D	08/22/89	13.6	294S	20.0R	1200	671	3.96	<0.05	515	146
-	11/15/89	18.0	300S	380	1500	979	1.53	<0.015	517	267
	04/24/90	13.5	315	<2.0S	1320S	640S	2.50S	<0.015	S065	220
AI-GW-GS-27S	08/22/89	20.9	306	20.0R	2650	684	4.99	<0.05	536	154
	11/15/89	25.0	350S	260	1800	651	3.68	<0.01S	542	274
	04/24/90	23.8	357	<2.0S	2730S	640S	2.80S	<0.01S	590S	220
	08/23/89	8.555	55.9	20.0S	267	28.0	1.29	0.16	562	69
	11/09/89	7.70	43.0	13.0	160S	20.3	<0.10	0.028	448	928
AI-GW-GS-29D	08/23/89	10.2S	103	20.0S	538	12.2	2.00	<0.05	508	92
	11/09/89	6.90	0.79	22.0	75	11.1	1.35	<0.015	385	124S
	04/23/90	11.3	109	<2.0S	16S	20.0S	1.80S	0.12S	280S	220
AI-GW-GS-29S	08/23/89	11.75	87.2	20.0S	1400	24.8	1.69	1.72	756	68
	11/09/89	11.0	0.99	23.0	S006	19.8	0.71	0.828	619	114S
	04/23/90	15.4	94.6	<2.0S	2250S	31.0S	0.82S	<0.01S	500S	110
A1-GW-GS-30D	08/18/89	24.3	110	20.0R	2900	42.2	2.20	0.61	1320	92
	11/07/89	20.0S	100	140	3000	27.6	<0.10	<0.50S	2560	73
	11/07/89	18.0S	94.0	120	3000	31.4	<0.10	0.658	2340	89
	04/18/90	18.0	86.7	<2.0	3650	57.0	0.55	1.40S	2620S	73
AI-GW-GS-30S	08/18/89	12.0	296	20.0R	161	42.2	1.59	<0.05	887	139
	11/07/89	8.30S	26.0	410	838	39.7	<0.10	<0.01S	753	126
	04/18/90	8.96	50.3	<2.0	73	40.0	0.27	<0.01S	S016	100
AI-GW-GS-31D	08/23/89	9.48	48.7	20.0R	341	21.7	0.84	3.93	757	28
	11/08/89	11.0	S7.0S	<9.0	330	11.9	<0.10	1.92	770S	835
_	04/19/90	13.9	72.6	<2.0	173S	18.0	0.34	2.20S	610S	65

Appendix IIIA. Area I Alluvial Groundwater Quality Data

MP Height	from	G.S. (ft.)	1.1		2.1			1.8			1.4			1.1			1.1			2.1			1.4			2.0			2.5		
Measuring	Point	Elevation (ft.)	5451.60		5450.80			5474.90			5434.50			5434.60			5465.60			5466.60			5481.30			5491.30			5491.90		
		Date	10/89		10/89			10/89			10/89			10/89			10/89			10/89			10/89			10/89			10/89		
Static	Water	Level	5.1		3.5			25.4			7.1			7.0			12.5			12.8			22.1			33.4			33.3		
	Probable	Aquifer	Qal		Oal	,		Qal			Qal			Qal			Qal			Qal			Qal			Qal			Qal		
Average	Screened	Depth	17.1		32			44			26.2			14.8			28.5			16.8			57			55.5			36		
Depth (ft.)	Screened	Interval	14.6-19.6		27-37			39-49			21.2-31.2			12.3-17.3			23.5-33.5			14.3-19.3			52-62			50.5-60.5			33.5-38.5		
Water Qual	Sampling	Date	08/23/80	11/08/89	08/23/89	11/08/89	04/18/90	08/11/80	11/08/89	04/20/90	08/22/89	11/14/89	04/24/90	08/22/89	11/14/89	04/24/90	68/11/80	11/08/89	04/20/90	08/11/80	11/08/89	04/20/90	08/12/80	11/06/89	04/16/90	08/12/80	11/08/89	04/16/90	08/12/80	11/08/89	04/16/90
		Well #	AI-GW-GS-31S		AI-GW-GS-32			AI-GW-GS-33			AI-GW-GS-34D			AI-GW-GS-34S			AI-GW-GS-35D			AI-GW-GS-35S			AI-GW-GS-40			AI-GW-GS-41D			AI-GW-GS-41S		

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Oual								
	Sampling		(mayorqua)	(V m)			(1)		(Dem)
Well *	Date	Н	SC SC	 	IA	Ac	Re.	2	(./9)
AI-GW-GS-31S	08/23/89	6.5	894	150	<11.5	17.7	<1.0	5.58	120
	11/08/89	6.4	4525	06	150S	<3.0S	<1.0	3.08	S0.66
	04/19/90	6.4	1000		<22.0S	1.15	<1.0	0.758	136
AI-GW-GS-32	08/23/89	6.1	2453	190	<11.5	5.68	<1.0	40.9	492
	11/08/89	5.8	2478	135	S30S	<3.0S	<1.0	29.0	460
	04/18/90	6.1	2807	·	74.3S	3.4S	<1.0	35.2	453
AI-GW-GS-33	08/17/89	7.0	1775	160	<11.5	8.4S	2.4	12.8	167
	11/08/89	6.4	1505	95	65.0S	8.5	<1.0	6.9	140S
	04/20/90	7.0	1710		<22.0	12.9S	<1.0	5.0	163
AI-GW-GS-34D	08/22/89	6.2	1012	150	54.8	>0.0	<1.0	53.1	103
	11/14/89	6.3	983	190	71.0S	<3.0S	<1.0	19.0	71.0
	04/24/90	6.4	1043		33.7	1.8S	<1.0	48.25	86.48
AI-GW-GS-34S	08/22/80	5.6	1280	150	644	12.8	1.6	260	103
	11/14/89	5.3	1232	190	610S	12.0S	<1.0	230	80.0
	04/24/90	5.6	929		469	13.0S	<1.0	167S	68.15
AI-GW-GS-35D	08/11/80	6.4	1898	180	<11.5	<0.65	<1.0	62.1	242
	11/08/89	6.3	1090	145	<41.0S	<3.0S	<1. 0	92.0	83.0S
	04/20/90	6.1	1415		31.2	2.58	<1.0	1318	136
AI-GW-GS-35S	08/11/80	6.1	1310	180	42.0	0.78	2.4	135	122
	11/08/89	5.9	974	150	<41.0S	<3.0S	<1.0	110	80.0S
	04/20/90	6.3	1176		28.2	1.98	<1.0	1418	104
AI-GW-GS-40	08/11/80	5.4	1170	180	188	0.6S	1.6	52.6	292
	11/06/89	5.9	2543	210	180S	<3.0	<1.0	43.0	320S
	04/16/90	5.6	2318		280S	1.18	<1.0	48.58	3218
AI-GW-GS-41D	08/12/89	3.9	6835	120	71800	3.0S	40.8	1640	435
	11/08/89	4.2	5780	250	93000	38.0S	28.0	1700	400S
	04/16/90	3.9	7216		74700S	24.8S	37.2	1930S	3828
AI-GW-GS-41S	08/12/80	3.8	9009	85	92400	21.6S	36.9	1780	387
	11/08/89	4.1	5338	185	84000	63.0S	29.0	1700	340S
	04/16/90	3.8	6361		103000S	43.4S	38.9	1800S	388S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling			(ng/l)			(mg/l)	(l/gu)	
Well #	Date	Cr	Co	Cu	Fe	Pb	Mg	Mn	ï
A1-GW-GS-31S	08/23/80	<2.8S	<2.6	5.85	22.0	<0.55	29.8	148	2.2S
	11/08/89	<8.0S	26.0	14.0S	<12	<0.4S	34.0S	110S	<2.0
	04/19/90	<8.0	<8.0	<4.0	<5	<0.5S	39.3	82	<1.3S
AI-GW-GS-32	08/23/89	<2.8S	<2.6	48.9	25.0	<5.0S	112	367	52.1
	11/08/89	<8.0	16.0	S029	<12S	<0.45	110S	54S	31.0
	04/18/90	<8.0	<8.0	714	<58	4.0S	110	132	30.38
A1-GW-GS-33	08/11/80	<2.8	5.3	200.0S	115	<0.5S	49.6S	320	4.6
	11/08/89	<8.0S	28.0	140	<12	<0.48	420S	638	3.7
	04/20/90	<8.0	<8.0	131	<5	0.0	44.2	27S	<1.38
AI-GW-GS-34D	08/22/80	<2.8S	15.6	509	297	<0.5S	7.72	18600	<13.9S
	11/14/89	<8.0	<12.0	56.0	19S	0.4R	22.0S	14000S	8.98
	04/24/90	<8.0	14.9	541	<58	9.0	22.4	16900S	20.6R
AI-GW-GS-34S	08/22/89	<2.8S	30.9	12100	24600	S6L1	27.8	50300	13.98
	11/14/89	32.0	15.0	11000	22000	140S	26.0S	47000S	17.0
	04/24/90	<8.0	21.6	7700	15000	122	17.8	30700S	17.0R
A1-GW-GS-35D	68/11/80	<2.8	22.4	169S	358	<0.58	60.48	44500	73.8S
	11/08/89	14.0S	43.0	180	<12	<0.4S	24.0S	31000	70.0
	04/20/90	<8.0	32.0	250	<\$	<0.5	35.7	37800	106
A1-GW-GS-35S	08/11/80	<2.8	51.1	55.38	152	<0.58	33.0S	37500	120S
	11/08/89	19.0	0.99	90.0	72S	<0.45	24.0S	34000S	88.0
	04/20/90	<8.0	39.6	63.4	<\$	<0.5	29.1	35700	120
AI-GW-GS-40	08/12/80	<2.8	270	80.4S	42000	<0.58	97.25	114000	233S
	11/06/89	87.0	310	120S	\$3000S	<0.45	91.0	110000S	150
	04/16/90	<8.0	3358	90.58	\$7800S	<0.58	1038	127000S	202S
AI-GW-GS-41D	08/12/89	<2.8	1130	294000S	1800000	50.3	2198	153000	681S
	11/08/89	85.0	1300	320000	1569950	120	210S	160000S	460
	04/16/90	<8.0	1200S	338000S	2010000S	31.8S	206S	143000S	S029
AI-GW-GS-41S	08/12/80	<2.8	810	492000S	1100000	101	169S	00866	6138
	11/08/89	48.0S	096	52000	890000	93.0	170S	110000S	470
	04/16/90	29.2	S966	\$40000S	1140000S	99.5S	176S	110000S	Z117S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	(mg/l)		(l/gu)			(l/gm)			(mg/l)
	Sampling						Nit	Nitrate + Nitrite	te	
Well #	Date	К	Na	П	Zn	CI	F	N	Sulfate	Total Alk
AI-GW-GS-31S	08/23/89	6.58	31.7	20.0R	128	22.2	0.92	0.09	438	86
	11/08/89	09.9	36.0S	<9.0	46S	13.4	<0.10	3.58	428S	1168
	04/19/90	8.43	42.7	<2.0S	36S	20.0	0.37	3.60	390	88
AI-GW-GS-32	08/23/89	19.1	103	20.0R	7540	29.8	1.24	1.96	1930	<2
	11/08/89	17.0	100	<9.0	7200S	20.6	<0.10	1.528	2080S	102S
	04/18/90	18.1	11.3	<2.0	6850	27.0	0.74	1.20S	1970S	95
AI-GW-GS-33	08/11/80	8.36	1598	<1.0S	382	127	1.70	14.7	192	310
	11/08/89	7.70	140S	<9.0	420	161	<0.10	13.7	4018	330
	04/20/90	8.53	150	<2.0	327S	160	0.52	10.0	310	300
AI-GW-GS-34D	08/22/89	7.53	79.5	20.0R	32600	43.1	1.89	3.07	453	65
	11/14/89	6.40	0.69	170	21000	35.9	1.20	2.70	414	92
	04/24/90	7.37	72.4	<2.0S	33500S	52.0S	1.80S	1,90S	460S	70
AI-GW-GS-34S	08/22/89	6.71	52.2	20.0R	151000	53.0	2.70	<0.05	778	<2
	11/14/89	5.80	41.0	480	140000	35.6	0.96	<0.01	929	<38
	04/24/90	6.30	47.0	<2.0S	103000S	40.0S	1.70S	0.56S	250S	20
AI-GW-GS-35D	08/11/80	12.9	109S	<1.0S	12400	0.66	1.95	8.34	805	180
	11/08/89	10.0	46.0S	240	24000	48.7	0.74	8.61	427S	160
	04/20/90	13.4	55.9	<2.0	27500S	64.0	1.60	8.00	540	140
AI-GW-GS-35S	08/11/80	14.6	65.18	<1.0S	32200	52.8	1.39	10.2	206	111
	11/08/89	13.0	49.0S	450	33000	40.9	0.82	8.44	397S	126S
	04/20/90	14.0	52.5	<2.0S	33200S	45.0	1.00	7.50	13.0	130
AI-GW-GS-40	08/12/89	19.4	31.75	<1.05	21200	8.9	2.84	0.18	1570	7
	11/06/89	20.0S	31.0	1600	24000	4.0	1.62	<0.015	2170	<u>~</u>
	04/16/90	21.5	33.0S	<2.0S	19200S	8.0	0.86	<0.015	1580	<\$
AI-GW-GS-41D	08/12/89	14.8	75.8S	<1.0S	373000	21.9	14.1	0.11	10010	1>
	11/08/89	15.0	74.0S	2400	420000	18.0	18.0	0.398	234	<38
	04/16/90	16.4	75.15	<10.0S	434000S	19.0	0.34	<0.015	0698	<5
AI-GW-GS-41S	08/12/89	14.2	67.2S	<10.0	316000	6.09	14.6	<0.05	8050	<u> </u>
	11/08/89	14.0	80.09	2100	360000	66.5	6.54	0.47S	8610	<38
	04/16/90	15.0	66.3S	<10.0S	389000S	96.0	0.32	<0.015	0650	<5

Appendix IIIA. Area I Alluvial Groundwater Quality Data

MP Height	from	G.S. (ft.)	1.7			2.0				0.0			0.0			0.0			0.0			1.7			0.0			0.0			0.0	
Measuring		Elevation (ft.)	5471.10			5471.40				5475.00			5475.00			5476.20			5476.20			5490.90			5484.00			5483.80			5475.70	
		Date	10/89			10/89				10/89			10/89			10/89			10/89			10/89			10/89			10/89			10/89	
Static	Water	Level	14.1			13.8				17.7			17.4			19.7			19.0			31.4			24.6			25.0			25.0	
	Probable	Aquifer	Qal			Qal				Qal			Qal			Qal			Qal			Qal			Qal			Qal			Ts	
Average	Screened	Depth	52.5			15.5				54			20.5			55.4			22.2			54			26			72			258	
Depth (ft.)	Screened	Interval	47.5-57.5			13-18				49-59			18-23			50.4-60.4			19.7-24.7			49-59			51-61			24.5-29.5			248-268	
Water Oual	Sampling	Date	08/16/89	11/07/89	04/16/90	08/16/89	08/16/89	11/07/89	04/17/90	08/16/89	11/06/89	04/17/90	08/16/89	11/06/89	04/17/90	08/11/80	11/07/89	04/18/90	08/11/80	11/07/89	04/18/90	08/12/80	11/06/89	04/16/90	08/11/80	11/06/89	04/18/90	08/11/80	11/06/89	04/18/90	08/21/89	11/06/89
		Well #	AI-GW-GS-42D			A1-GW-GS-42S				Al-GW-GS-43D			A1-GW-GS-43S			A1-GW-GS-44D			A1-GW-GS-44S			AI-GW-GS-45			A1-GW-GS-46D			AI-GW-GS-46S			AI-GW-GS-50	

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	water Qual								
	Sampling	٥	(umhos/cm)	(MV)			(l/gu)		(mg/l)
Well #	Date	pH	SC	Eh	V	As	Be	25	Ca
AI-GW-GS-42D	08/16/89	4.2	3625	120	13300	1.65	16.8	1010	423
	11/07/89	4.1	4492	280	14000	<3.0	15.0	096	460S
	04/16/90	4.0	2970		15300S	1.85	14.4	1070S	433S
AI-GW-GS-42S	08/16/89	3.9	2567		111000	<6.0S	41.0	834	385
	08/16/89	3.7	2860		110000	<6.0S	42.1	842	386
	11/07/89				110000	33.0	29.0	920	390S
	04/17/90	3.6	7505		121000S	<3.55	39.5	1350S	378S
AI-GW-GS-43D	08/16/89	5.1	2530		1030	<0.65	<1.0	150	451
	11/06/89	5.3	3306	210	099	<3.0	<1.0	110	440S
	04/17/90	5.4	2100		552S	1.58	<1.0	1168	3585
AI-GW-GS-43S	08/16/89	4.4	1930		8570	0.78	11.1	533	274
	11/06/89	3.5	1980	290	9100	3.6	12.0	610	300S
	04/17/90	4.6	1440		9530S	6.35	15.4	963S	3018
AI-GW-GS-44D	08/11/80	5.5	1084	220	382	<0.65	1.6	91.7	120
	11/07/89	6.2	820	210	540	<3.0	1.5	100	838
	04/18/90	5.3	868		513	1.1	1.5	102	8.96
AI-GW-GS-44S	08/11/80	5.3	339	230	989	<0.65	2.1	25.4	29.3
	11/07/89	6.3	301	220	720	<3.0	1.3	36.0	24.0S
	04/18/90	4.8	390		1040	<0.7	2.2	41.2	31.4
AI-GW-GS-45	08/12/80	4.0	4100	200	26900	<6.0S	22.9	954	446
	11/06/89	4.2	4125	300	61000	53.0	20.0	1000	480S
	04/16/90	3.7	3738		2000Z	7.0S	22.8	1170S	442S
AI-GW-GS-46D	08/11/80	6.3	557		20.1	<0.65	<1.0	4.7	65.0
	11/06/89	6.5	653	200	140S	<3.0	<1.0	8.9	58.0S
	04/18/90	6.3	581		35.7S	1.2	<1.0	2.4S	62.6
AI-GW-GS-46S	08/11/80	6.7	357		238	<0.65	1.6	10.0	36.4
	11/06/89	8.9	449		<41.0S	<3.0	<1.0	5.6	46.0S
	04/18/90	9.9	513		37.0S	1.3	<1.0	5.4S	52.6
AI-GW-GS-50	08/21/89	7.2	1214	130	56.9	15.8	<1. 0	3.48	
	11/06/89	7.2	2268	165	83.0S	18.0	<1.0	3.0S	100S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling			(ng/l)			(mg/l)	(l/gu)	
Well #	Date	Cr	Co	Cu	Fe	Pb	Mg	Mn	N.
AI-GW-GS-42D	08/16/89	<2.8	1580	68200S	98200	29.3S	170S	352000	S90S
	11/07/89	150	1900	81000	130000S	81.0	180	360000S	400
	04/16/90	<8.0	1970S	67400S	151000S	18.0S	164S	396000S	673S
AI-GW-GS-42S	08/16/89	<2.8	648	279000S	1730000	30.9S	230S	110000	4158
	08/16/89	<2.8	639	285000S	1770000	31.38	239S	112000	422S
	11/07/89	53.0S	740	350000	1581210	150	180S	100000S	250
	04/17/90	<8.0	818S	293000S	2410000S	17.58	2128	108000S	478S
AI-GW-GS-43D	08/16/89	<2.8	277	2240S	31700	<0.55	152S	142000	270S
	11/06/89	100	810	1200	30009E	<0.4S	110	120000S	210
	04/11/90	<8.0	636S	938S	36500S	2.0S	1085	114000S	258S
AI-GW-GS-43S	08/16/89	<2.8	377	15100S	219S	12.0S	61.85	64400	223S
	11/06/89	\$0.0S	420	17000	340S	12.0	56.0	S000L9	200
	04/17/90	<8.0	405S	15000S	164S	7.0S	61.38	73800S	3138
AI-GW-GS-44D	08/11/80	<2.8	175	3110S	30S	<0.5S	34.1S	33400	157S
	11/07/89	17.0S	230	4600	210	<0.4S	26.0S	34000S	110
	04/18/90	<8.0	197	3930	715	<0.55	28.9	31500	137
AI-GW-GS-44S	08/11/80	<2.8	34.9	1980S	1068	<0.5S	7.56S	2670	23.2
	11/07/89	<8.0S	47.0	2000	458	2.2S	S09'9	2000Z	29.0
	04/18/90	<8.0	45.7	2790	19S	0.95	8.48	6950	3.48
AI-GW-GS-45	08/12/80	<2.8	2760	20096L	1988	7.78	164S	219000	\$26S
	11/06/89	140	2700	93000	858	<0.48	120	200000S	380
	04/16/90	<8.0	2600S	78000S	430S	<0.58	104S	192000S	526S
AI-GW-GS-46D	08/11/80	<2.8	3.8	11.85	107S	<0.58	17.7S	132	2.8
	11/06/89	<8.0S	15.0	15.0S	<12.0S	<0.4S	17.0	62S	2.5
	04/18/90	<8.0	<8.0	16.8	<58	<0.58	17.2	3	2.6
AI-GW-GS-46S	08/11/80	<2.8	<2.6	221S	130S	0.98	10.58	543	8.8
	11/06/89	<8.0S	<12.0	19.0S	23.0S	<0.48	14.0	S89	4.5
	04/18/90	<8.0	<8.0	23.5	<58	<0.55	14.7	4	0.9
AI-GW-GS-50	08/21/89	<2.8	2.8	8.7	1158	<0.58	18.0	262	2.68
	11/06/89	<8.0S	<12.0	13.08	33.0S	<0.4S	18.0	190S	2.6

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	(mg/l)		(l/g/l)			(mg/l)	9		(mg/l)
	Sampling						Z	Nitrate + Nitrite	ite	
Well #	Date	X	Na	П	Zn	CI	F	Z	Sulfate	Total Alk
AI-GW-GS-42D	08/16/89	21.7	91.78	13.4	220000	33.8	7.94	0.07	9220	<1>
	11/07/89	23.0S	100	4900	280000	26.4	3.74	0.25S	2170	<3
	04/16/90	23.2	94.48	<2.0S	245000S	35.0	0.42	<0.015	3190	<>
AI-GW-GS-42S	08/16/89	15.4	79.4S	<1.0S	200000	52.9	12.1	< 0.05	11400	1>
	08/16/89	14.6	75.98	<1.0S	223000	53.0	12.4	< 0.05	11500	7
	11/07/89	14.0	72.0S	1200	290000	43.4	4.60	0.278	2340	<38
	04/17/90	14.5	79.2S	<2.0S	280000S	37.0	0.21	<0.015	8920	<\$
AI-GW-GS-43D	08/16/89	27.4	50.38	14.2	44600	32.5	3.87	<0.05	2680	1>
	11/06/89	23.0S	39.0	200	24000	22.3	<0.10	< 0.015	3230	\$
	04/17/90	22.5	37.4S	<2.0S	37400S	26.0	0.52	0.128	1910	<>
AI-GW-GS-43S	08/16/89	19.7	40.15	<10.0	73500	24.8	6.47	0.30	1632	<u>^</u>
	11/06/89	17.0S	41.0	920	00096	7.7	2.70	12.4	1970	\$
	04/17/90	19.1	40.2S	<2.0S	80100S	16.0	0.72	13.0S	1280	\$>
AI-GW-GS-44D	08/11/80	9.33	26.25	12.5	23300	14.3	1.52	2.01	561	16
	11/07/89	6.50	21.0S	260	25000	23.1	7.92	1.40	532	32S
	04/18/90	7.94	23.7	<2.0	23500	16.0	1.10	0.918	430S	80
AI-GW-GS-44S	08/11/80	3.72	14.48	<1.0S	7520	19.2	1.12	5.53	121	80
	11/07/89	3.30	11.08	91.0	8300	16.2	0.82	8.33	125	27S
	04/18/90	4.65	13.9	<2.0	0896	18.0	1.10	8.50S	200S	<\$
AI-GW-GS-45	08/12/89	25.0	93.38	<10.0	171000	47.4	15.3	7.16	3930	\ \ \
	11/06/89	23.0S	87.0	4100	250000	42.2	9.75	7.84	4160	\$3
	04/16/90	17.1	85.55	<2.0S	192000S	53.0	0.36	12.0S	2350	\$
AI-GW-GS-46D	08/17/89	5210	30.18	<1.0S	4 4 4	28.1	0.26	10.1	117	7
	11/06/89	5.30S	29.0	< 9.0	430	18.8	<0.10	10.2	117	117
	04/18/90	4.03	28.8	<2.0	339	25.0	0.20	11.08	140S	100
AI-GW-GS-46S	08/11/80	4.40	24.6S	<1.05	1750	8.6	0.37	5.26	53.4	106
	11/06/89	5.10S	27.0	19.0	1000	14.0	0.29	6.05	44.7	135
	04/18/90	3.87	31.9	<2.0	823	19.0	0.36	9.00S	61.0S	190
AI-GW-GS-50	08/21/89	15.4	9.66	20.0R	799	21.7	2.06	0.15	486	100
	11/06/89	17.0S	90.0	<9.0	770	18.0	1.36	0.29S	1290	109

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	Depth (ft.)	Average		Static		Measuring	MP Height
	Sampling	Screened	Screened	Probable	Water		Point	from
Well #	Date	Interval	Depth	Aquifer	Level	Date	Elevation (ft.)	G.S. (ft.)
AI-GW-GS-50	04/16/90	248-268	258	Ts	25.0	10/89	5475.70	0.0
A1-PW-04	11/08/89	9.5-19.5	14.5	Qal	7.0	10/89	00.00	3.0
	11/08/89							
AI-PW-01	11/15/89	17-42	29.5	Qal	21.2	68/6	0.00	2.5
AMC-06	04/17/90				33.9	68/6	5493.40	1.9
AMC-08	04/17/90				61.9	68/6	5525.60	2.0
AMC-12	11/08/89	35-45	40	Qal	21.3	68/6	5480.10	2.0
	04/11/90							
AMC-13	08/24/89	47-55	51	Qal	19.7	68/6	5475.30	2.4
	11/06/89							
	04/18/90							
AMC-23	11/08/89	19-29	24	Qal	5.4	03/28/85	5448.30	1.8
	04/19/90			•				
AMC-24	11/08/89	13-23	18	Qal	9.3	03/28/85	5452.10	1.9
	04/18/90							
BMW-1B	04/20/90				7.0	07/12/89	5433.90	0.7
BMW-2A	04/24/90				5.8	06/28/89	5423.70	1.2
BMW-2B	04/24/90				7.1	07/12/89	5424.20	1.0
BMW-2T	04/24/90				6.5	07/12/89	5423.80	1.3
BMW-4A	11/09/89	5.5-11.5	8.5	Qal	2.7	07/12/89	5416.00	0.7
	04/24/90							
BMW-4B	11/09/89	27.5-37.5	32.5	Tqm	4.0	07/12/89	5419.30	9.0
	04/24/90							
BMW-4T	11/15/89	2.0-4.0	E	Tailings	3.5	07/12/89	5418.90	1.0
	11/15/89							
	04/24/90							
	04/24/90							
BMW-6B	11/09/89	59.0-79.0	69	Tqm	10.2	07/12/89	5426.10	0.0
	04/25/90							
BMW-7A	04/19/90				2.3	07/12/89	5435.70	1.6

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling		(umhos/cm)	(mV)			(l/gn)		(mg/l)
Well #	Date	pH	SC	Eh	V	As	Be	ಶ	Ca
AI-GW-GS-50	04/16/90	7.3	1125		40.7S	33.68	<1.0	2.1S	129S
AI-PW-04	11/08/89	3.8	1863	210	2600	1600	1.9	180	130S
	11/08/89	3.7	1912	190	2500	1800	1.5	170	110S
AI-PW-01	11/15/89	6.7	863	135					
AMC-06	04/17/90	6.5	1460		<22.0S	1.3S	<1.0	3.0S	1758
AMC-08	04/17/90	0.0	418		38.58	<0.7	<1.0	0.84S	50.1
AMC-12	11/08/89	5.2	2986		550	<3.0	1.8	290	340S
	04/17/90	5.5	2760		684S	1.7S	1.5	3528	380S
AMC-13	08/24/89	6.3	1410	09	<11.5	2.8S	1.7	13	229
	11/06/89	6.1	1093	170	100S	<3.0	<1.0	5.9	210S
	04/18/90	6.1	1434		53.78	0.98	<1.0	8.88	192
AMC-23	11/08/89	9.9	2776		<41.0S	<3.0	<1.0	18.0	309£
	04/19/90	6.2	2245		<22.0	1.98	<1.0	17.8	382
AMC-24	11/08/89	9.9	1413	120	<41.0S	5.38	<1.0	2.4S	140S
	04/18/90	6.7	1290		56.58	26.5	<1.0	0.578	160
BMW-1B	04/20/90	7.3	1080		<22.0	4.8S	<1.0	0.08S	123
BMW-2A	04/24/90	3.7	2218		5450	2950	6.7	297S	209
BMW-2B	04/24/90	3.9	4050		16700	4900	10.3	674S	387
BMW-2T	04/24/90	2.6	3576		113000	1310	4.9	1840S	115
BMW-4A	11/09/89	4.0	1922	180	9500	2300	2.3	260	130
	04/24/90	3.9	2162		11800	2100S	3.1	316S	181
BMW-4B	11/09/89	5.0	2246	180	4000	630	3.5	410	210
	04/24/90	4.5	2050		4560	2040	4.5	410S	196
BMW-4T	11/15/89	5.8	2032	165	S006	130	<1.0	140S	310
	11/15/89	5.0	1914	200	7200	1700	2.1	250S	220
	04/24/90	3.4	2397		10700	1090	1.4	294S	193
	04/24/90	3.2	2430		10900	750	1.9	3018	192
BMW-6B	11/09/89	5.5	2698	220	1300	<3.0	3.0	210	280
	04/25/90	5.5	2950		991	<0.7S	2.7	217S	381
BMW-7A	04/19/90	6.5	653		<22.0	2.28	<1.0	22.0	81.9

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling			(ng/l)			(mg/l)	(l/gu)	
Well #	Date	CŁ	Co	Cu	Fe	Pb	Mg	Mn	ž
AI-GW-GS-50	04/16/90	<8.0	<8.0S	<4.0S	28.0S	<0.5S	19.68	758	2.2
AI-PW-04	11/08/89	12.0S	42.0	14000	41000	460	28.0S	15000S	19.0
	11/08/89	13.0S	49.0	13000	33000	650	25.0S	15000S	25.0
AI-PW-01	11/15/89								
AMC-06	04/17/90	<8.0	<8.0S	<4.0S	13000S	<0.5S	39.58	13400S	58.4S
AMC-08	04/17/90	<8.0	<8.0	4.2	185	<0.55	13.5	190	1.98
AMC-12	11/08/89	87.0	790	1600	11000	<0.48	80.86	120000S	250
	04/11/90	<8.0	719S	1290S	12000S	<0.5S	107S	124000S	348S
AMC-13	08/24/89	<2.85	<2.6	<1.15	3480S	<0.58	53.6	19500	72.5
	11/06/89	<9.08	18.0	12.0S	4300S	<0.48	53.0	18000S	51.0
	04/18/90	<8.0	<8.0	<4.0	3250	<2.58	59.8	18600	71.5
AMC-23	11/08/89	<8.0S	13.0	100S	1900	<0.48	86.0S	958	11.0
	04/19/90	<8.0	<8.0	62.9	1600	<2.5S	93.8	09	17.38
AMC-24	11/08/89	<8.0S	18.0	16.0S	2600	<0.4S	43.0S	1300S	4.6
	04/18/90	<8.0	<8.0	7.5	2520	<0.55	48.8	1390	3.1
BMW-1B	04/20/90	<8.0	<8.0	<4.0	<\$	<0.5	30.3	<2S	<1.3S
BMW-2A	04/24/90	<8.0	151	20300	131000S	160	45.9	61500	102
BMW-2B	04/24/90	<8.0	376	58500	283000S	7.5	108	152000	224
BMW-2T	04/24/90	<8.0	114	408000	217000S	39.6	23.7	25800	172
BMW-4A	11/09/89	27.0	72.0	25000S	100000	260	35.0S	34000	37.0
	04/24/90	<8.0	0.96	28100	109000S	204	41.7	40700	80.5
BMW-4B	11/09/89	25.0	120	11000S	220000	63.0	49.0S	40000	58.0
	04/24/90	<8.0	127	12500	20000S	86.7	42.5	37800	101
BMW-4T	11/15/89	<8.0	59.0	Z009Z	200000	<0.4S	54.0S	2,000	23.0
	11/15/89	29.0	28.0	20000S	170000	250S	47.0S	20000	39.0
	04/24/90	<8.0	85.3	34700	102000S	069	41.7	45600	66.5
	04/24/90	<8.0	8.06	35800	100000S	S90S	41.4	45500	69.7
BMW-6B	11/09/89	20.0	150	11000S	15000	<0.4S	89.0S	43000	78.0
	04/25/90	<8.0	110	6910	11300S	<0.58	107	40900	138
BMW-7A	04/19/90	<8.0	<8.0	28.7	\$	2.5	21.0	8900	4.48

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Oual	(mg/l)		(l/gn)			(Mgm)	1		(Mg/l)
	Sampling						Z	Nitrate + Nitrite	te	
Well #	Date	×	Na	П	Zo	CI	7	N	Sulfate	Total Alk
AI-GW-GS-50	04/16/90	17.6	1115	<2.0S	2115	21.0	2.00	0.368	440	100
AI-PW-04	11/08/89	4.50	S0.98	200	74000	28.3	0.63	<0.015	2150S	<38
	11/08/89	4.80	82.0S	170	00029	23.8	0.62	<0.015	1190S	<38
AI-PW-01	11/15/89				:	23.9	<0.10	1.15S	256	301
AMC-06	04/17/90	6.13	25.88	<2.0S	4310S	15.0	0.41	0.948	019	45
AMC-08	04/17/90	4.06	13.6	<2.0	321	20.0	0.16	4.60S	120S	50
AMC-12	11/08/89	18.0	39.0S	2200	00006	19.0	2.29	<0.015	2380	27S
	04/17/90	20.1	44.4S	<2.0S	S00£69	20.0	1.10	0.028	1790	5
AMC-13	08/24/89	5.428	25.8	2.0R	3560	14.9	0.23	0.57	910	31
	11/06/89	7.70S	29.0	330	2800	12.5	<0.10	0.598	795	\$
	04/18/90	7.97	32.0	<2.0	2670	16.0	0.19	0.638	780S	35
AMC-23	11/08/89	13.0	86.0S	<9.0	3600	67.8	1.14	5.50	1400S	131S
	04/19/90	15.3	92.0	<2.0	3630	70.0	0.68	5.60	1230	120
AMC-24	11/08/89	8.80	48.0S	<9.0	330	14.0	<0.10	2.05	642S	104S
	04/18/90	10.0	53.2	<2.0	358	19.0	0.50	2.00S	\$20S	06
BMW-1B	04/20/90	7.79	61.9	<2.0	10S	42.0	0.17	23.0	190	240
BMW-2A	04/24/90	8.53	88.6	<2.0S	118000S	33.0S	1.80S	0.028	1360S	<>
BMW-2B	04/24/90	16.0	96.1	<10.0S	298000S	40.0S	0.99S	<0.01S	5320S	<>
BMW-2T	04/24/90	1.34	52.9	6.5	97500S	22.0S	0.358	0.078	3480S	<5
BMW-4A	11/09/89	6.70	100	380	86000S	23.3	0.93	<0.015	1630	<38
	04/24/90	6.18	122	<2.0S	109000S	33.0S	1.60S	<0.01S	1260S	<\$
BMW-4B	11/09/89	10.0	58.0	360	120000S	17.9	1.22	<0.015	2180	<38
	04/24/90	9.70	74.0	<2.0S	117000S	31.0S	1.90S	<0.018	1330S	<\$
BMW-4T	11/15/89	7.80	73.0S	260	64000	23.4	2.00	<0.01S	1860	<38
	11/15/89	5.70	20.9Z	470	95000	23.3	2.34	<0.01S	1820	<38
	04/24/90	4.54	91.3	<2.0S	105000S	33.0S	1.40S	<0.01S	1400S	\$
	04/24/90	4.27	91.3	<2.0S	107000S	34.0S	1.50S	<0.015	1610S	\$
BMW-6B	11/09/89	8.20	93.0	480	73000	65.3	1.74	5.01	1860	34S
	04/25/90	9.85	130	<2.0S	69400S	85.0S	1.80S	3.80S	2010S	20
BMW-7A	04/19/90	7.12	38.1	<2.0	1880S	54.0	1.00	6.20	120	100

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	Depth (ft.)	Average		Static		Measuring	MP Height
	Sampling	Screened	Screened	Probable	Water		Point	Lom
Well #	Date	Interval	Depth	Aquifer	Level	Date	Elevation (ft.)	G.S. (ft.)
BMW-7B	04/19/90				2.3	07/12/89	5435.60	1.0
BMW-9B	04/19/90							
BMW-10A	11/09/89	4.0-7.0	5.5	Qal	5.0	07/12/89	5437.70	2.3
	04/19/90							
BMW-11B	04/20/90				10.9	09/12/89	0.00	1.0
BMW-13B	04/20/90				5.3	09/12/89	00:00	6.0
CT-84-10	11/10/89							
	11/10/89							
MF-04	11/09/89			Qal	14.3	03/28/85	5459.70	0.5
MP-07	11/15/89	6-16		Qal	3.6	03/28/85	00:00	-0.4
AI-DW-01	08/22/80							
	11/06/89							
	04/18/90							
AI-DW-02	08/22/80							
	11/14/89							
	04/17/90							
	04/17/90							
AI-DW-03	11/15/89							
AI-DW-04	04/19/90							
	04/19/90			:				
AI-DW-132	04/20/90							
	04/20/90							

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling		(umhos/cm)	(mV)			(ng/l)		(mg/l)
Well #	Date	hН	SC	Eh	V	As	Be	ප	Ca
BMW-7B	04/19/90	6.5	689		<22.0	6.48	<1.0	23.8	59.3
BMW-9B	04/19/90	7.0	895		<22.0	47.5S	<1.0	<0.03S	101
BMW-10A	11/09/89	6.2	1263	230	S80S	9.9	<1.0	220	110
	04/19/90	8.9	1220		<22.0	8.3S	<1.0	0.69	178
BMW-11B	04/20/90	7.3	1271		<22.0	5.2S	<1.0	0.17	0.86
BMW-13B	04/20/90	7.0	006		24.5	3.0S	<1.0	0.36S	112
CT-84-10	11/10/89	4.5	1395	210	1900	1100	<1.0	140	120
	11/10/89	4.6	1427	210	1900	2000	<1.0	150	130
MF-04	11/09/89	7.0	1757	100	220S	<3.0S	<1.0	1.48	130
MP-07	11/15/89	6.3	784	110	140S	3.85	<1.0	2.28	110
AI-DW-01	08/22/89	5.7	1030	-40	946	2.5S	9.9	245	156
	11/06/89	3.4	1237	260	1200	<3.0	2.8	380	140S
	04/18/90	5.6	1260		478	<0.7S	2.4	377	128
AI-DW-02	08/25/89	6.4	576	30	<11.5S	<0.6S	1.7	1.25	78.4
	11/14/89	6.8	565	180	230S	<3.0S	<1.0	1.0S	59.0
	04/17/90	6.4	652		<22.0S	<0.7S	<1.0	0.38S	75.78
	04/17/90	6.5	029		<22.0S	<0.7S	<1.0	0.44S	76.3S
AI-DW-03	11/15/89	6.9	372	75	170S	<3.0	<1.0	0.85	62.0
AI-DW-04	04/19/90	7.0	1421		59.1S	16.5	<1.0	2.20S	165
	04/19/90	6.7	1421		27.6Z	32.6	<1.0	3.00S	166
AI-DW-132	04/20/90	6.3	1137		27.8	5.38	<1.0	106	119
	04/20/90	6.2	1123		24.3	6.8S	<1.0	110	123

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual								
	Sampling			(l/gu)			(mg/l)	(l/gu)	
Well #	Date	Ċ	Co	n C	Fe	Pb	Mg	Mn	ï
BMW-7B	04/19/90	<8.0	<8.0	<4.0	<5	<0.58	15.5	9120	1.3S
BMW-9B	04/19/90	<8.0	<8.0	<4.0	777	<0.5	25.8	1300	<1.38
BMW-10A	11/09/89	<8.0	42.0	14000S	94S	<2.75	31.0S	33000	20.0
	04/19/90	<8.0	<8.0	2520	<>	4.4	40.0	6040	80.6
BMW-11B	04/20/90	<8.0	<8.0	<4.0	<5	9.0	27.1	<25	<1.3S
BMW-13B	04/20/90	<8.0	<8.0	<4.0	<5	<0.5	27.1	218	<1.35
CT-84-10	11/10/89	<8.0	28.0	8200S	17000	400	28.0S	12000	8.0
	11/10/89	<8.0	23.0	7800S	17000	390	26.0S	13000	10.0
MF-04	11/09/89	<8.0	20.0	<6.0S	52S	<0.45	51.0S	418	<2.0
MP-07	11/15/89	<8.0	<12.0	<6.0S	S69	<0.48	30.0S	1600	2.0
AI-DW-01	08/25/89	<2.8	293	2950S	14700	24.1	44.0	48600S	204
	11/06/89	32.0S	280	4500	8500	160	39.0	43000S	170
	04/18/90	<8.0	244	1150	12800	<0.55	36.7	38800	206
Al-DW-02	08/25/89	<2.8	<2.6	30.0S	10	<0.5S	19.3	238	<1.15
	11/14/89	<8.0	<12.0	8.0	20S	0.4R	17.0S	54S	<2.0S
	04/17/90	<8.0	<8.0S	<4.0	16S	0.85	17.95	29S	<1.3
	04/11/90	<8.0	<8.0S	32.2S	115	1.58	18.0S	23S	<1.3
A1-DW-03	11/15/89	<8.0	<12.0	<6.0S	29S	<0.4S	14.0S	6	<2.0
A1-DW-04	04/19/90	<8.0	<8.0	9.1	22S	<0.58	45.9	1650	<1.3S
	04/19/90	<8.0	<8.0	31.1	110S	<0.5S	45.8	1650	1.7
AI-DW-132	04/20/90	<8.0	<8.0	785	\$>	13	25.2	22500	11.58
	04/20/90	<8.0	8.5	810	<>	15.68	26.1	23500	14.0S

Appendix IIIA. Area I Alluvial Groundwater Quality Data

	Water Qual	(mg/l)	((l/gu)			(Mgm)	(1)		(mg/l)
	Sampling						N	Nitrate + Nitrite	tc	
Well #	Date	Ж	Na	11.	Zn	CI	1.	z	Sulfate	Total Alk
BMW-713	04/19/90	9.59	76.6	<2.0	1120S	43.0	0.86	4.30	170	100
BMW-9B	04/19/90	6.04	80.6	<2.0	49S	28.0	0.69	0.078	320	140
BMW-10A	11/09/89	7.00	45.0	390	73000S	21.0	1.77	0.688	579	1285
	04/19/90	7.81	58.2	<2.0S	18700S	24.0	1.50	1.40S	360	200
BMW-11B	04/20/90	4.49	142	<2.0S	185	37.0	1.40	0:30	340	160
BMW-13B	04/20/90	6.28	58.2	<2.0	438S	29.0	0.54	1.50S	290	170
CT-84-10	11/10/89	3.70	76.0	130	\$1000S	29.1	0.62	<0.015	1170	<38
	11/10/89	3.90	79.0	150	\$3000S	31.4	09:0	<0.018	1200	<38
	11/09/89	6.30	120	< 9.0	47S	137	< 0.10	14.3	199	473
	11/15/89	6.10	40.0S	15.0	355	18.3	<0.10	0.958	354	238
AI-DW-01	08/22/89	8.64S	28.5	2.0R	29100	15.2	2.18	<0.05	184	<2
	11/06/89	13.0S	27.0	750	36000	7.8	0.99	<0.015	834	10
	04/18/90	7.21	27.5	<2.0	23500	14.0	1.20	0.038	620S	20
AI-DW-02	08/25/89	4.228	21.1	20.0R	581	35.9	0.48	15.2	155	89
	11/14/89	4.00	19.0	< 9.0	490	17.0	0.28	15.10S	152	8.3
	04/17/90	4.10	19.78	<2.0S	421S	20.0	0.30	16.0S	130	80
	04/17/90	4.17	19.78	<2.0S	S30S	19.0	0.28	16.08	120	83
AI-DW-03	11/15/89	4.10	18.08	<9.0	82	10.1	0.34	7.60S	57.9	160
AI-DW-04	04/19/90	9.62	76.9	<2.0	55	84.0	0.98	5.70S	400S	320
	04/19/90	9.56	76.1	<2.0	69	83.0	1.30	\$.90S	330S	310
AI-DW-132	04/20/90	06'6	56.1	<2.0S	39900S	39.0	2.30	1.608	570	110
	04/20/90	10.2	58.6	<2.0	41200S	39.0	2.20	1.70S	240	110

1989-1990 data: CH2M Hill and Chen-Northern, 1990, Volume II, Appendix B and Addendum. Sources: 1985-1986 data: MultiTech, April 1987, Appendix B, Part 2, Attachments II and VI.

LEGEND

R = value unuseable because quality control criteria were not met.

S = screening level data.

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

Dates Interval (ft) Temp (C)	Field Conductivity	Field	Field	7	2	2	2	0	٥
Apr 91 175–195 14.2 E July 91 16.8 E May 92 Apr 91 127–157 13.8 E July 91 30–50 15.7 E 11 May 92(T) 125–145 16.1 11 May 92(T) 16.1 16.1 11 May 92(T) 16.1 16.1 11 May 92(T) 16.1 16.1 11 Apr 91 125–145 12.2 E July 91 (D) 13.2 E Apr 91 186–226 13.2 E Apr 91 90–110 8.2 E July 91 (D) 17.9 E July 92 (D) 13.2 E Apr 91 80–110 8.2 E July 91 (D) 13.3 11 May 92 90–95 13.5 11 Aug 92 (T) 13.5 11 Aug 92 (T) 13.5 11 Aug 92 (T) 13.5 11			Eh (mV)	Aluminum	Arsenie	Barium	Cadmium	Calcium	Chromium
July 91 16.8 E May 92 11.8 July 91 127-157 13.8 E July 91 30-50 15.7 E 1 July 91 30-50 15.7 E 1 May 92(T) 16.1 1 May 92(T) 16.1 1 May 92(T) 16.1 1 Apr 91 125-145 12.2 E July 91 166-226 13.2 E Apr 91(D) 13.2 E 13.2 E July 91 17.9 E 13.2 E July 91 17.9 E 17.9 E May 92 12.5 12.5 May 92 90-110 8.2 E July 91 17.9 E May 92 12.5 Aug 92(T) 13.5 1 Aug 92(T)	E	m	273 E	0.624 E	0.0007 R	0.0443 S	0.287 E	385 E	0.0018 E
May 92 11.8 July 91 127-157 13.8 E July 91 14.4 14.4 May 92 14.4 14.4 May 92(T) 16.1 1 May 92(T) 16.1 1 May 92(T) 125-145 16.1 1 May 92(T) 16.1 1 1 May 92(T) 16.1 1 1 Apr 91 125-145 12.2 E 1 July 91 16.1 14 E 14 E Apr 91(D) 13.2 E 13.2 E 1 July 91 17.9 E 17.9 E 1 Apr 91(D) 17.9 E 17.9 E 1 May 92 90-110 8.2 E 1 May 92 90-95 13.5 1 Aug 92 90-95 13.5 1 Aug 92(T) 13.5 1 Aug 92(T) 13.5 1 Aug 92(T) 13.5 1 Aug 92(T) 13.5 1	16.8 E 1920 E	5.49 E	301 E	0.497 E	0.0016 E	0.0421 S	0.274 E	380 E	0.0031 US
Apr 91 127-157 138 E July 91 14.4 Apr 91 30-50 15.7 E 1 July 91 16.1 16.1 1 May 92(T) 16.1 1 1 Apr 91 125-145 12.2 E 13.1 Apr 91 125-145 12.2 E 13.1 Apr 91(D) 186-226 13.2 E 13.2 E July 91 17.9 E 17.9 E 17.9 E May 92 90-110 8.2 E 12.5 Apr 91 90-110 8.2 E 12.5 May 92 90-95 13.5 1 Aug 92 90-95 13.5 1 Aug 92(T) 13.5	11.8 1600	5.54	279	0.354 E	0.001 UE	0.0428 S	0.232 E	389 E	0.004 UE
July 91 14.8 E May 92 14.4 July 91 30-50 15.7 E 1 May 92(T) 16.1 1 Apr 91 125-145 12.2 E July 91 186-226 13.2 E July 91 17.9 E 17.9 E July 91 17.9 E 12.5 Apr 91 90-110 8.2 E July 91 13.5 1 May 92 90-95 13.5 1 May 92 90-95 13.5 1 Aug 92(T) 13.5 </th <th>13.8 E 6365 E</th> <th>4.81 E</th> <th>351 E</th> <th>39.7 E</th> <th>0.0007 R</th> <th>0.192 S</th> <th>4.07 E</th> <th>327 E</th> <th>0.0018 E</th>	13.8 E 6365 E	4.81 E	351 E	39.7 E	0.0007 R	0.192 S	4.07 E	327 E	0.0018 E
May 92 14.4 July 91 30-50 15.7 E 1 July 92 16.1 1 1 May 92(T) 16.1 1 1 May 92(T) 16.1 1 1 May 92(T) 125-145 12.2 E 1 July 91 166-226 13.2 E 14 E Apr 91(D) 13.2 E 13.2 E 1 July 91 17.9 E 17.9 E 17.9 E July 91 17.9 E 17.9 E 12.5 May 92 90-110 8.2 E 12.5 May 92 90-95 13.5 1 May 92 (D) 13.5 1 Aug 92 (T) 13.5	14.8 E 6100 E	4.42 E	333 E	63.2 E	0.01 UE	0.216 S	3.82 E	317 E	0.0119 UE
Apr 91 30–50 15.7 E 1 July 91 16 E 1 May 92(T) 16.1 1 May 92(T) 16.1 1 Apr 91 125–145 12.2 E July 91 125–145 12.2 E Apr 91 186–226 13.1 E Apr 91 186–226 13.2 E July 91 17.9 E 17.9 E July 91 17.9 E 12.5 Apr 91 90–110 8.2 E July 91 13.5 1 May 92 13.5 1 Aug 92 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1	14.4 4300	4.1	320	109 E	0.002 US	0.029 US	2.39 E	304 E	0.0188 E
July 91 16 E May 92 (T) 16.1 May 92(T) 16.1 Apr 91 125-145 16.1 July 91 125-145 12.2 E Apr 91 13.1 14 E Apr 91(D) 13.2 E 13.2 E July 91 (D) 17.9 E 17.9 E May 92 12.5 12.5 May 92 12.1 13 E May 92 13.5 1 May 92 13.5 1 Aug 92 (T) 13.5 1	15.7 E 13270 E	3.14 E	310 E	1110 E	0.014 R	0.483 S	5.94 E	396 E	0.0529 E
May 92(T) 16.1 1 May 92(T) 16.1 1 Apr 91 125-145 12.2 E July 91 14 E 14 E Apr 91 186-226 13.1 E Apr 91(D) 13.2 E 17.9 E July 91 17.9 E 17.9 E May 92 12.5 12.5 May 92 12.1 13 E May 92 (D) 13.5 1 Aug 92 (T) 13.5 1	16 E 11000 E	3.23 E	312 E	1210 E	0.02 UE	0.541 S	5.25 E	377 E	0.0897 E
May 92(T) 16.1 1 May 92(T) 16.1 1 Apr 91 125-145 12.2 E July 91 14 E 14 E Apr 91 186-226 13.2 E Apr 91(D) 13.2 E 13.2 E July 91 17.9 E 17.9 E May 92 12.5 12.5 May 92 12.1 13 E May 92 (D) 13.5 1 Aug 92 (T) 13.5 1	16.1 11900	3.44	297	1380 E	0.136 S	0.0179 US	5.03 E	385 E	0.153 E
May 92(T) 16:1 1 Apr 91 125-145 12.2 E July 91 14 E 14 E Apr 91 186-226 13.2 E July 91 13.2 E 13.2 E July 91 17.9 E 17.9 E Apr 91 90-110 8.2 E July 91 13.5 1 May 92 12.1 13.5 1 May 92 90-95 13.5 1 Aug 92 (T) 13.5 1	16.1 11900	3.44	297	1160	0.0406	0.0094	5.15	352	0.122
Apr 91 125-145 122 E July 91 14 E May 92 13.1 Apr 91(D) 13.2 E July 91(D) 17.9 E July 91 90-110 8.2 E July 91 90-110 8.2 E July 91 90-95 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1	16.1 11900	3.44	297	1370	10:0	0.0171	431	317	0.118
July 91 14 E May 92 13.1 Apr 91 (D) 186-226 13.2 E July 91 17.9 E July 91 (D) 17.9 E May 92 (D) 12.5 May 92 (D) 12.1 May 92 (D) 13.5 1 Aug 92 (T) 13.5 1	12.2 E 3100 E	5.71 E	291 E	0.323 E	0.0007 R	0.0412 S	0.237 E	611 E	0.0018 E
May 92 13.1 Apr 91 186-226 13.2 E July 91(D) 13.2 E 13.2 E July 91(D) 17.9 E 17.9 E May 92 12.5 12.5 May 92 12.1 13 E May 92 (D) 13.5 1 Aug 92 (T) 13.5 1	14 E 2810 E	5.43 E	295 E	. 0.284 E	0.0014 E	0.0421 S	0.27 E	545 E	0.0024 US
Apr 91 186–226 13.2 E July 91 17.9 E May 92 17.9 E Apr 91 90–110 8.2 E July 91 90–110 8.2 E May 92 12.1 13 E May 92 12.1 13 E May 92 13.5 1 Aug 92 (T) 13.5 1	13.1 2900	5.63	304	0.142 UE	0.001 US	0.0359 S	0.382 E	480 E	0.004 UE
Apr 91(D) July 91 July 91 May 92 Apr 91 May 92 May 92 (D) Aug 92 (T) Aug 92 (T) Aug 92 (T) July 91 Aug 92 (T) Aug 92 (T) July 91 Hare 13.5 Hare 13.5	13.2 E 1386 E	5.55 E	278 E	0.461 E	0.0007 R	0.0235 S	0.0442 E	211 E	0.0018 E
July 91(D) 17.9 E May 92 Apr 91 July 91 May 92 Aug 92 (T) July 91 Aug 92 (T) Aug 92 (T) July 91 17.9 E 12.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 14.5 15.5 15.6 15.7 15.8	13.2 E 1386 E	5.55 E	278 E	0.466 E	0.0007 R	0.0223 S	0.044 E	210 E	0.0018 E
July 91(D) 17.9 E Apr 91 90-110 8.2 E July 91 13 E May 92 12.1 May 92 (D) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1	17.9 E 1220 E	5.52 E	263 E	0.366 E	0.0011 E	0.0211 S	0.0446 E	219 E	0.0024 UE
May 92 12.5 Apr 91 90-110 8.2 E July 91 13 E May 92 12.1 May 92 (D) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1	17.9 E 1220 E	5.52 E	263 E	0.398 E	0.001 UE	0.0224 S	0.051 E	240 E	0.0024 UE
Apr 91 90-110 8.2 E July 91 13 E May 92 90-95 12.1 May 92 (D) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1 Aug 92 (T) 13.5 1	12.5	5.45	264	0.182 E	0.001 UE	0.019 E	0.0426 E	200 E	0.004 UE
July 91 13 E May 92 12.1 May 92 (D) 13.5 12 Aug 92 (T) 13.5 14 Aug 92 (T) 13.5 14 Aug 92 (T) 13.5 14	8.2 E 1088 E	8.41 E	177 E	0.204 E	0.0098 R	0.086 S	0.0018 E	94.7 E	0.0018 E
May 92 12.1 May 92 (D) 90-95 13.5 12 Aug 92 (T) 13.5 14 14 Aug 92 (T) 13.5 14 14 Aug 92 (T) 13.5 14	13 E 960 E	8.45 E	148 E	0.117 E	0.008 E	0.077 S	0.002 UE	94.6 E	0.0024 UE
May 92 (D) 90-95 13.5 May 92 (D) 13.5 Aug 92 (T) 13.5 Aug 92 (T) 13.5	12.1 980	8.01	203	0.013 E	0.001 UE	0.0826 E	0.002 UE	105 E	0.004 UE
May 92 (D) 13.5 Aug 92 (T) 13.5 Aug 92 (T) 13.5	13.5 12000	3.68	340	1160 E	0.106 S	0.0336 S	9.95 E	333 E	0.111 E
Aug 92 (T) 13.5 Aug 92 (T) 13.5	13.5 12000	3.68	340	0711	0.01	0.0362	10.5	359	0.115
Aug 92 (T) 13.5 Aug 92 (T) 13.5	13.5 14467	3.50	408	957 E	0.01 US	0.0313 E	10.4 E	382 E	0.0459 E
Aug 92(T) 13.5	13.5 14467	3.50	408	939	0.0105	0.024	9.33	361	0.032
	13.5 14467	3.50	408	096	0.01	0.0313	10.5	388	0.0519
	12.2 12400	3.73	345	1510 E	0.02 UE	0.0309 US	6.76 E	349 E	0.0797 E
Aug 92 13.3 140	13.3 14019	3.38	358	1780 E	0.02 US	0.0338 E	9.58 E	396 E	0.0859 E

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

	Sampling	Screened		Field Conductivity	Field	Field	2	2	Ba	3	3	ర
Well ID:	Dates	Interval (ft)	Temp (C)	(umhos/cm)	plf (SU)	Eh (mV)	Aluminum	Arsenic	Barium	Cadmium	Calcium	Chromium
LP-09	May 92	80-100	10	3550	5.77	288	0.0604 UE	0.001 US	0.019 US	0.458 E	400 E	0.004 UE
	Aug 92		11.8	4036	5.53	237	0.0933 E	0.001 US	0.0178 S	0.507 E	443 E	0.004 UE
1.P-10	May 92	130-160	15	310	5.50	294	0.225 E	0.001 UE	0.0129 E	0.0042 E	42.6 E	0.004 UE
	Aug 92		12.5	372	89.6	265	0.195 E	0.001 UE	0.0139 E	0.002 UE	47.3 E	0.004 UE
LP-12	May 92	107-127	10.5	800	5.83	283	0.036 UE	0.001 UE	0.0162 E	0.0142 E	160 E	0.004 UE
	Aug 92		10.3	853	5.46	161	0.015 UE	0.001 UE	0.0139 E	0.0138 E	154 E	0.004 UE
LP-13	May 92	216.5-236.5	11.8	520	5.37	285	0.0295 UE	0.001 UE	0.021 E	0.0044 E	89.1 E	0.004 UE
	Aug 92		11.5	655	5.02	195	0.0232 E	0.001 UE	0.0156 E	0.0078 E	88.9 E	0.004 UE
	Aug 92(D)		11.5	655	5.02	195	0.0387	0.001	0.0147	0.007	88.4	0.004
LP-14	May 92	82.5-102.5	8.7	800	80.9	303	0.013 UE	0.001 UE	0.0362 E	0.0097 E	192 E	0.004 UE
	Aug 92		6.7	1222	5.87	245	0.015 UE	0.001 UE	0.0373 E	0.0112 E	231 E	0.004 UE
LP-15	May 92	215-235	12.3	200	6.39	257	0.0193 UE	0.001 E	0.0114 E	0.0052 E	84.5 E	0.004 UE
	Aug 92		11.1	099	6.03	270	0.015 UE	0.0011 B	0.0116 E	0.0045 E	84.2 E	0.004 UE
1.P-16	May 92	100-120	11.2	1050	5.90	251	0.0212 UE	0.001 UE	0.0155 E	0.0187 E	22.5 E	0.004 UE
	Aug 92		9.8	1328	6.20	262	0.0242 E	0.001 UE	0.0165 E	0.0171 E	229 E	0.004 UE

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

	Sampling	J	Fe	P.6	Mg	Ma	118	ž	×	۶
Well ID:	Dates	Copper	Iron	1,cad	Magnesium	Manganese	Mercury	Nickel	Potassium	Silver
1.P-01	Apr 91	2.03 E	0.191 E	0.0089 R	103 E	0.0448 E	0.0001 E	0.23 S	13.1 E	0.0028 R
	July 91	2.44 E	0.0747 UE	0.036 S	104 E	0.0261 UE	0.0001 R	0.225 E	13 E	0.0024 R
	May 92	3.14 E	0.156 E	0.0181 E	110 E	0.0213 UE	0.0002 UE	0.197 E	9.94 S	0.002 UE
1.P-02	Apr 91	74.4 E	0.147 E	0.0021 R	656 E	167 E	0.00014 E	2.14 E	14.1 E	0.0028 R
	July 91	86.2 E	0.0182 UE	0.0025 S	710 E	181 E	0.00012 S	2.21 E	14.9 E	0.012 R
	May 92	73.6 E	0.55 E	0.0416 E	527 E	139 E	0.0002 UE	1.58 E	12.9 E	0.0227 S
LP-03	Apr 91	287 E	602 E	0.022 R	1270 B	487 E	0.00028 E	3.41 E	5.02 E	0.0028 R
	July 91	307 E	751 E	0.014 S	1480 E	598 E	0.0002 S	2.43 E	4.12 E	0.024 R
	May 92	350 E	3996	0.0386 E	1640 E	642 E	0.0002 UE	3.58 E	0.496 US	0.125 E
	May 92(T)	307	189	0.041	2430	\$99	0.0002	4.36	4.09	90:0
	May 92(T)	347	156	0.0227	1620	634	0.0002	2.90	3.84	0.101
LP-04	Apr 91	6.04 E	0.0419 E	0.0086 R	223 E	1.8 E	0.0001 E	0.247 E	19.1 E	0.0028 R
	July 91	5.96 E	0.0429 US	0.0167 S	241 E	4.77 E	0.0001 R	0.344 E	18.9 E	0.0024 R
	May 92	5.91 E	0.132 UE	0.0183 E	267 E	14.3 E	0.0002 UE	0.572 E	17.9 E	0.002 UE
LP-05	Apr 91	2.91 E	0.378 E	0.0015 R	64.6 E	0.19 E	0.0001 E	0.0612 S	13.5 B	0.0028 R
	Apr 91(D)	2.89 E	0.0747 E	0.0054 R	64.2 E	0.189 E	0.0001 E	0.0536 S	13 E	0.0028 R
	July 91	2.93 E	0.0281 US	0.0096 S	70.1 E	0.106 E	0.00012 S	0.0568 E	14.3 E	0.0024 R
	July 91(D)	3.23 E	0.0212 US	0.010I S	76.7 E	0.111 E	0.0001 R	0.0629 E	15.5 E	0.0024 R
	May 92	2.67 E	0.0763 UE	0.0132 E	63.0 E	0.0514 E	0.0002 UE	0.0557 E	12.1 B	0.002 UE
1.P-06	Apr 91	0.0145 E	0.0328 E	0.002 R	17.8 E	0.0135 E	0.0001 E	0.00425 S	5.29 E	0.0028 R
	July 91	0.394 E	0.0133 US	0.00041 S	22.4 E	0.0085 US	0.0001 R	0.0354 E	5.91 E	0.0024 R
	May 92	0.01 UE	0.0176 UE	0.001 US	35.3 E	0.0171 UE	0.0002 UE	0.007 UE	3.110 UE	0.002 UE
1.P-07	May 92	432 E	8.6 E	0.0606 US	2590 E	858 E	0.0002 UE	6.35 B	19.3 E	0.121 E
	May 92 (D)	436	6	90.0	2640	864	0.0002	6.88	19.4	0.131
	Aug 92	389 E	0.586 S	0.0183 E	2580 E	823 E	0.00059 E	7.13 E	20.1 E	0.124 E
	Aug 92 (T)	355	0.916	0.157	2250	808	0.0022	7.12	22.2	0.0025
	Aug 92 (T)	385	2.45	0.0273	2570	818	0.0053	72.7	20.2	0.127
LP-08	May 92	413 E	0.823 E	0.0736 E	2270 E	785 E	0.0002 E	4.50 E	23.5 E	0.147 E
	Aug 92	469 E	0.537 S	0.0848 E	2520 E	1110 E	0.0023 E	5.25 E	24.8 E	0.156 S

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

	Sampling	<u>ನ</u>	Fe	Pb	M ₈	Mo	el1	ž	×	*
Well ID:	Dates	Copper	lron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Silver
LP-09	May 92	0.23 E	0.125 UE	0.0158 E	607 E	56.2 E	0.0002 UE	1.21 E	11.0 E	0.0089 US
	Aug 92	0.236 E	0.131 S	0.0068 E	648 E	55.3 E	0.0002 UE	1.29 E	10.6 S	0.0034 UE
LP-10	May 92	0.91 E	0.0432 UE	0.0348 E	9.85 E	0.167 E	0.0002 UE	0.0122 E	4.17 UE	0.002 UE
	Aug 92	0.907 E	0.0034 US	0.0034 E	11.4 E	0.194 E	0.0002 UE	0.0087 E	3.04 S	0.003 UE
LP-12	May 92	0.62 E	0.03 UE	0.0031 E	35.7 E	0.0182 E	0.0002 UE	0.012 E	4.86 E	0.002 UE
	Aug 92	0.674 E	0.0328 US	0.0015 E	35.1 E	0.0067 UE	0.0002 UE	0.008 UE	4.14 S	0.003 UE
LP-13	May 92	0.70 E	0.0258 UE	0.0041 E	18.6 E	0.206 E	0.0002 UE	0.0103 E	5.71 E	0.002 UE
	Aug 92	1.11 E	0.0093 US	0.0013 E	19.9 E	0.127 E	0.0002 UE	0.0145 E	4.41 S	0.003 UE
	Aug 92(D)	1.11	0.0074	0.0016	19.7	0.126	0.0002	0.0186	4.27	0.003
LP-14	May 92	0.05 E	0.045 UE	0.0016 E	45.9 E	0.006 E	0.0002 UE	0.007 UE	6.07 E	0.002 UE
	Aug 92	0.0561 E	0.0565 S	0.001 UE	57.8 E	0.0026 UE	0.0002 UE	0.008 UE	3.28 S	0.003 UE
LP-15	May 92	0.01 UE	0.0298 UE	0.0013 E	21.8 E	0.0065 E	0.0002 UE	0.007 UE	5.96 E	0.002 UE
	Aug 92	0.0062 UE	0.0246 US	0.001 UE	21.8 E	0.0033 UE	0.0002 UE	0.008 UE	7.23 UE	0.003 UE
1.P-16	May 92	1.07 E	0.0502 UE	0.0043 E	60.2 E	0.021 E	0.0002 UE	0.0165 E	5.72 E	0.002 UE
	Aug 92	1.09 E	0.0598 US	0.0028 E	60.5 E	0.0059 UE	0.0002 UE	0.0189 S	7.07 UE	0.003 US

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

Sodium 7 40.1 E 37.4 E 36.9 E 68 E 68.0 E 69.1 E 61.0 E 38.2 E 38.2 E 32.4 E 28.7 E 56.6 E 88.3 E 40.6 E 40.6 E 40.6 E 40.6 E 40.6 E 40.6 E 45.2 E 37.7 E 127 E 0 155 E 64.5 E 66.7 C 72.7 T 8 UE 66.7 E 66.		Sampling	a Z	Zu					כ	В	Nitrate
Apr 91 40.1 E July 91 37.4 E May 92 36.9 E Apr 91 68.1 E May 92 61.0 E Apr 91 38.2 E May 92(T) 28.7 May 92(T) 28.7 Apr 91 86.6 E July 91 86.6 E July 91 86.6 E Apr 91 40.8 E Apr 91 40.8 E Apr 91 40.6 E July 91 41.6 E July 91 153 E May 92 (D) 45.2 E May 92 (D) 45.2 E May 92 (D) 45.2 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7	Well ID:	Dates	Sodium	Zinc	Acidity	Alkalinity	CO3	11CO3	Chloride	Fluoride	Z S
July 91 May 92 Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 May 92 Apr 91 May 92 Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 July 91 Apr 91 July 91 Apr 91 Apr 91 July 91 Apr 91 Apr 91 Apr 91 July 91 Apr 92	1.P-01	Apr 91	40.1 E	17.6 E	16 E	24 E			9.1 S	1.3 E	3.9 S
Apr 91 68 E July 91 68 E July 91 69.1 E Apr 91 38.2 E July 91 38.2 E May 92 (T) 28.7 May 92 (T) 24.8 Apr 91 86.6 E July 91 88.3 E Apr 91 86.6 E July 91 40.6 E July 91(D) 40.6 E July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E May 92 (D) 46.5 May 92 (D) 64.5 Aug 92 (T) 71.8 UE Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		July 91	37.4 E	16.3 E	26 UE	20 E			13.6 E	1.2 S	3.4 E
Apr 91 68 E July 91 69.1 E May 92 61.0 E Apr 91 38.2 E July 91 38.2 E May 92(T) 28.7 May 92(T) 24.8 Apr 91 86.6 E July 91 86.6 E July 91 86.8 E Apr 91 40.8 E Apr 91 40.8 E Apr 91 40.6 E July 91 41.6 E July 91 153 E May 92 73 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7		May 92	36.9 E	15.3 E	62 US	20 E	20 UE	20 E	8.2 E	1.4 S	4.1 E
July 91 May 92 Apr 91 July 91 May 92(T) May 92(T) May 92(T) Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 July 91 Apr 91 July 91 Apr 91 July 91 Apr 92 Apr 91 July 91 Apr 92 Apr 91 Apr 91 Apr 91 Apr 92 Apr 93 Apr 94 Apr 92 Apr 92 Apr 93 Apr 94 Apr 92 Apr 92 Apr 92 Apr 93 Apr 94 Apr 92 Apr 92 Apr 93 Apr 94 Apr 92 Apr 92 Apr 92 Apr 92 Apr 92 Apr 93 Apr 94 Apr 92	LP-02	Apr 91	E 89	379 E	1110 E	4 E			13.7 S	38.7 E	3.8
May 92 61.0 E Apr 91 38 E July 91 38.2 E May 92(T) 28.7 May 92(T) 24.8 Apr 91 86.6 E July 91 88.3 E Apr 91 40.8 E Apr 91 40.6 E July 91 41.6 E July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		July 91	69.1 E	412 E	1240 E	4.8 E			14.1 E	25.2 S	2.9 E
Apr 91 July 91 May 92 (T) May 92 (T) May 92 (T) Apr 91 Apr 91 Apr 91 Apr 91 July 91 (D) Apr 91 July 91 (D) Apr 91 May 92 Apr 91 July 91 May 92 (D) May 92 (D) Aug 92 (T)		May 92	61.0 E	322 E	1400 E	20 UE	20 UE	20 B	11 E	22 E	3.6 S
July 91 May 92 (T) May 92(T) Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 July 91 Apr 91 July 91 Apr 91 Apr 91 Apr 91 July 91 Apr 92 Apr 91 July 91 Apr 92 Apr 91 July 91 Aug 92 A	L.P-03	Apr 91	38 E	955 E	10100 E	2.4 E			25.3 S	104 E	S 0
May 92 (T) May 92(T) May 92(T) Apr 91 86.6 B July 91 88.3 E Apr 91 40.8 E Apr 91 40.6 B July 91(D) 40.6 B July 91(D) 45.2 E May 92 37.7 E Apr 91 155 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		July 91	38.2 E	1130 E	10900 E	4.8 E			61.6 E	430 S	an o
May 92(T) May 92(T) Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 Apr 91 July 91(D) Apr 91 July 91(D) Apr 91 July 91 May 92 Apr 91 July 91 Apr 92 Apr 92 Aug 92		May 92	32.4 E	1370 E	3890 E	20 UE	20 UE	20 UE	7.6 E	110 E	0.2 US
May 92(T) 24.8 Apr 91 86.6 E July 91 88.3 E Apr 91 40.8 E Apr 91 40.6 E July 91(D) 41.6 E July 91(D) 45.2 E Apr 91 153 E Apr 91 155 E May 92 127 E Aug 92 71.8 UE Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		May 92(T)	28.7	0.11	11390	01	01	10	16	0.5	0.5
Apr 91 86.6 B July 91 88.3 E May 92 78.5 E Apr 91 40.8 E July 91 40.6 E July 91 41.6 E July 91 45.2 E Apr 91 153 E Apr 91 153 E May 92 127 E May 92 73.3 E Aug 92 71.8 UE Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		May 92(T)	24.8	1350	5700	20	20	20	9.2	110	0.2
July 91 88.3 E Apr 91 78.5 E Apr 91(D) 40.6 E July 91 41.6 E July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E 0 July 91 155 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 May 92 (T) 72.7	LP-04	Apr 91	86.6 E	31.5 E	28 E	40 E			9.8 S	0.83 E	0.82 S
Apr 91 78.5 E Apr 91 40.8 E Apr 91(D) 40.6 E July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E 0 July 91 155 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		July 91	88.3 E	36.8 E	54 E	40 E			20.3 E	3.3 S	0.85 E
Apr 91 40.8 E Apr 91(D) 40.6 E July 91 41.6 E July 91(D) 45.2 E Apr 91 153 E July 91 155 E May 92 127 E May 92 71.8 UE Aug 92 (T) 66.7 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7		May 92	78.5 E	57.6 E	186 US	40 E	20 UE	40 E	8 9.6 S	1.0 E	0.8 E
Apr 91(D) 40.6 E July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E Apr 91 153 E May 92 127 E May 92 127 E May 92 77.3 E Aug 92 71.8 UE Aug 92 71.8 UE Aug 92 71.8 UE Aug 92 71.8 UE	LP-05	Apr 91	40.8 E	8.52 E	10 E	20 E			9.7 S	0.86 E	3.3 S
July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E 0 July 91 155 E May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 (T) 66.7 Aug 92 (T) 72.7 May 92 (T) 72.7		Apr 91(D)	40.6 E	8.51 E	12 E	16 E			S 9.6	0.91 E	3.3 S
July 91(D) 45.2 E May 92 37.7 E Apr 91 153 E 0 July 91 155 E 0 May 92 127 E 0 May 92 (D) 64.5 71.8 UE Aug 92 (T) 66.7 72.7 Aug 92 (T) 72.7 72.7 May 92 45.0 E 66.7		July 91	41.6 E	8.62 E	12 UE	16 E			13.6 E	2.5 S	3.4 E
May 92 37.7 E Apr 91 153 E 0 July 91 155 E 0 May 92 127 E 0 May 92 57.3 E 0 Aug 92 (D) 64.5 0 Aug 92 (T) 71.8 UE 0 Aug 92 (T) 72.7 0 May 92 (T) 72.7 0 May 92 (T) 45.0 E 0		July 91(D)	45.2 E	9.44 E	12 UE	16 E			14.2 E	1.8 S	3.4 E
Apr 91 153 E 0 July 91 155 E May 92 127 E 0 May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 Aug 92 (T) 72.7 May 92 (T) 72.7		May 92	37.7 E	8.17 E	41 US	20 UE	20 UE	20 UE	S 01	1.1 E	3.1 E
July 91 155 E May 92 127 E 0 May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 (T) 72.7	P-06	Apr 91	153 E	0.0954 E	4.8 E	120 E			16.3 S	18	8.1 S
May 92 127 E 0 May 92 57.3 E May 92 (D) 64.5 Aug 92 71.8 UE Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 45.0 E		July 91	155 E	0.43 E	4.8 UE	108 E			17.5 E	2.7 S	8.3 E
May 92 (D) 64.5 Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 (T) 72.7 May 92 45.0 E		May 92	127 E	0.0082 UE	2 UE	134 E	20 UE	134 E	17 E	0.8 S	6.8 E
May 92 (D) 64.5 Aug 92 Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 Aug 92 (T) 72.7	LP-07	May 92	57.3 E	1770 E	10000 E	20 UE	20 UE	20 UE	6.7 E	120 S	0.3 E
Aug 92 71.8 UE Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 45.0 E		May 92 (D)	64.5	07.71	9420	20	20	20	6.2	120	0.2
Aug 92 (T) 66.7 Aug 92 (T) 72.7 May 92 45.0 E		Aug 92	71.8 UE	1550 S	S 00091	20 UE	20 UE	20 UE	38 UE	100 E	1.0 US
Aug 92 (T) 72.7 May 92 45.0 E		Aug 92 (T)	66.7	1620	10	10	10	01	10	0.5	10.0
May 92 45.0 E		Aug 92 (T)	72.7	1540	7300	20	20	20	46	100	1.0
	1.P-08	May 92	45.0 E	1510 E	2 UE	20 UE	20 UE	20 UE	7.3 E	170 E	0.2 UE
47.4 UE		Aug 92	47.4 UE	1620 S	15000 S	20 UE	20 UE	20 UE	61 UE	150 E	1.0 UE

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

	Sampling	s X	Zo					כ	ů.	Nitrate
Well ID:	Dates	Sodium	Zinc	Acidity	Alkalinity	c03	11003	Chloride	Fluoride	Z se
LP-09	May 92	146 E	174 E	344 E	148 E	20 UE	148 E	12 E	0.6 E	4.1 E
	Aug 92	158 UE	147 S	402 S	136 E	20 UE	136 E	90 UE	0.6 E	4.8 E
LP-10	May 92	16.3 E	1.18 E	20 UE	20 UE	20 UE	20 UE	3.5 E	0.5 E	0.2 UE
	Aug 92	18 UE	1.19 S	22 S	20 UE	20 UE	20 UE	3 UE	0.6 E	0.2 E
LP-12	May 92	45.0 E	1.73 E	18 E	36 E	20 UE	26 E	30 E	0.4 E	6.5 E
	Aug 92	45.9 UE	1.62 S	39 S	59 E	20 UE	59 E	34 UE	0.4 E	6.7 E
LP-13	May 92	33.6 E	2.25 E	22 E	30 E	20 UE	30 E	15 E	0.5 E	2.3 E
	Aug 92	29.8 UE	2.69 S	32 S	20 E	20 UE	20 E	13 UE	0.4 E	2.4 €
	Aug 92(D)	29.7	2.67	36	20	20	20	13	0.4	2.3
LP-14	May 92	23.5 E	0.812 E	20 UE	36 E	20 UE	36 E	6.5 E	0.3 E	5.4 E
	Aug 92	26.7 UE	0.902 S	20 US	40 E	20 UE	40 E	7.8 UE	0.3 E	5.4 E
LP-15	May 92	27.1 E	0.673 E	20 UE	40 E	20 UE	40 E	7.1 E	0.6 E	1.6 E
	Aug 92	25.5 UE	0.684 E	20 US	36 E	20 UE	20 UE	6.9 UE	0.7 E	1.5 E
LP-16	May 92	34.7 E	3.54 E	22 E	53 E	20 UE	53 E	8.9 E	0.3 E	4.6 E
	Aug 92	25.7 UE	3.53 E	28 S	49 E	20 UE	20 UE	8.5 UE	0.3 E	4.2 E

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

	TOC	1.5 E	1.8/1.8 E	0.5 UE	3.6 E	3.0/3.3 E	1.9 E	7.9 E	8.7/7.8 E	6.1 E	7	9	2.4 E	3.3/3.1 S	1.1 E	1.7 E	1.8 US	1.2/1 US	1.3/1 E	0.5 UE	5.1 E	4.9/4.3 E	1.4 E	7.7 E	7.9	5.55 E	8.00	5.61	8.4 E	6.35 E
	TDS	2040 E	2140 E	2180 E	7120 E	7850 E	7080 E	26400 E	28100 E	34000 E	29900	33000	3380 E	4060 E	4370 E	1320 E	1260 E	1300 E	1320 E	1320 E	844 E	895 E	933 E	34700 E	34700	31800 E	32800	32400	35100 E	35700 E
	Sulfate	1310 E	2210 E	1400 E	\$160 E	9 0669	4800 E	26200 E	36400 E	22000 E	20260	22000	1930 E	4260 E	3100 E	766 E	762 E	1700 E	1650 E	810 E	463 E	1320 E	440 E	20000 E	22000	24000 E	16700	22000	24000 E	21000 E
Sampling	Dates	Apr 91	July 91	May 92	Apr 91	July 91	May 92	Apr 91	July 91	May 92	May 92(T)	May 92(T)	Apr 91	July 91	May 92	Apr 91	Apr 91(D)	July 91	July 91(D)	May 92	Apr 91	July 91	May 92	May 92	May 92 (D)	Aug 92	Aug 92 (T)	Aug 92 (T)	May 92	Aug 92
	Well 1D:	1.P-01			LP-02			LP-03					LP-04			LP-05					1.P-06			LP-07					LP-08	

Concentrations in mg/l unless otherwise noted.

Appendix IIIB. Alluvial Groundwater Quality Data: Leach Pads Area.

		Notes:	-	2.	3.	4	.5.	.6	7.	⊗ô	6	10.	11.	12.	13.	
	TOC	3.1 E	2.47 E	0.5 UE	0.55 UE	0.5 UE	1.12 E	0.5 UE	0.55 UE	0.55	0.5 UE	0.55 UE	0.5 UE	0.50 US	0.5 UE	0.50 US
	TDS	6180 E	6100 E	320 E	310 UE	930 E	910 E	577 E	558 E	553	1030 E	1160 E	338 E	548 E	1240 E	1270 E
	Sulfate	3900 E	4100 E	160 E	160 E	530 E	470 E	310 UE	290 E	290	620 E	670 E	310 UE	290 E	810	790 E
Sampling	Dates	May 92	Aug 92	May 92	Aug 92	May 92	Aug 92	May 92	Aug 92	Aug 92(D)	May 92	Aug 92	May 92	Aug 92	May 92	Aug 92
	Well ID:	LP-09		LP-10		LP-12		LP-13			LP-14		LP-15		LP-16	

,	(D) = Duplicate Sample	1991 Samples = Phase 1	1992 Samples - Phase II	NR = Not Reported	ND = Not Detected	(C) = degrees Celsius	(umhos/cm) = micromhos per centimeter	SU = standard plI units	E = enforcement quality data	S = screening quality data	R = rejected data	U = undetected at the concentration shown	(T) = triplicate samples		Canonie, 1992a. Tables 7.3.1 and 7.3.2
		2.	eř.	4	5.	.0	7.	œ	6	10.	11.	12.	13.		Source

Canonie, Jan, 1994. Tables 7.3.9 and 7.3.10

SO4	Sulfate	5895	4310	970	588	592	365	2062	1705	244	360	473	145	86.60	209	116
Zu	Zinc	306	200	0.01	0.01	0.01	0.02	23.80	52.20	0.82	2.51	1.95	0.19	0.133	0.159	0.257
Fe	Iron	185	5	0.20	0.30	0:30	0.50	13.10	48.90	0.534	0.204	0.25	1.25	0.387	0.610	0.137
Cu	Copper	390	355	0.00	0.00	0.00	0.02	5.31	21.00	0.075	0.52	0:30	0.01	0.054	0.015	0.047
PO	Cadmium	NR	NR	NR	NR	NR	NR	0.291	0.574	0.003	0.010	NR	NR	0.002	0.002	0.002
	(SU)		4.45	98.9	7.20	8.12	7.50	5.94	5.24	6.37	6.03	7.15	7.18	6.27	6.64	6.41
	Dates	1970	1969	1969	1969	1969	1969	1982-87	1982-87	1982-87	1982-87	1969	1969	1982-87	1982-87	1982-87
	Well ID:	EX-2A	EX-2	EX-2	EX-2	EX-2	2N	AMC-1	AMC-2	AMC-3	AMC-4	7.5	115	AMC-8	AMC-15	AMC-25

Sources:

- 1. Botz, M.K., and G.L. Knudson, 1970, "Hydrogeology of the Berkely Pit Area, part 1 The Alluvium," Project 70-24, April 7.
- 2. U.S. Environmental Portection Agency, 1990, "Administrative Order on Consent, Remedial Investigation/Feasibility Study for Butte, Montana Area Mine Flooding Operable Unit (Silver Bow Creek/Butte Area NPL Site)," Docket No. CERCLA VIII-90-09, Attachment 4, Butte Mine Flodding Operable Unit Data Package.

Notes: Concentrations in mg/l unless otherwise noted.

- 1. Data for AMC wells are averages based on 9 or 10 sample events from 1982 to 1987; values below detection included at one-half the detection limit; pH values are medians.
 - 2. Data for non-AMC wells are from one sampling event.
- 3. NR = Value not reported.

		Screened					:		
		Depth (ft)	Probable	Spec. Cond		mg/l			
Well#	Date	or Total	Aquifer	umhos/cm	డి		Na	K	S04
AW-1	10/06/92		Qal	284	35.5	8.9	5.5	2.6	27.6
AW-2	10/06/92			320	34.2	9.5	8.6	2.4	43.5
	dup			320	38.3	6.6	6.6	2.6	43.9
AW-3	10/09/92			137	13	3.7	4.9	1.7	25.4
DW-103	07/24/84	55-65	Qal	350	40.8	11.2	13	6.19	84.8
(AMC-8)	07/23/85			387	54.3	14.4	12.3	3.83	105
	12/10/85			440	38	12.2	5.72	4.71	118
	12/18/85			380	47.4	11.1	12.6	3.75	127
	04/17/90			418	50.1	13.5	13.6	4.06	120
DW-111	12/06/85	15.5	Qal	851	87.1	25.5	45.3	5.4	149
(MF-11)	01/16/85			890	75.9	25	45.9	5.36	149
MF-4	11/09/89	28	Qal	1757	130	51	120	6.3	199
DW-121	01/16/85	12.1		399	42	10.1	22.6	3.7	28
(MF-1)	03/06/85			393					9
	07/25/85a			446					
	07/25/85b			446	41.9	10.9	26.8	4.7	33
	12/06/85		•	445	39.1	9.6	25.5	4.27	73
DW-123	01/18/85	17-37	Qal	973	100	21.8	40.1	4.7	263
GS-20	08/24/89			464	71.2	14.6	23.4	5.88	149
	11/10/89			264	<i>L</i> 9	21	27	8.9	220
	04/20/90			617	66.4	16.7	32.6	6.12	160
Botz, '69	1966-1968	13-78	Qal	283	30.9	8.81	13.2	3.29	51
Meinzer, '14	1912	5-76	Qal	TDS=148	56	6.58	6.25		7.3

Appendix IIID. Alluvial Aquifer Baseline Water Quality Data

, S		1.5	<1.0	<1.0	<1.0	\$\times_{\colored}\$	⋄	<3.1	<3.2		>9>	4.1	<3.0	7.4	5.6	w		12	<3.5					
l/gu		∞	2	9	∞					5 <21.0										5 <40.0				
		-	11.	7.	3.8				10	38.5	10			_						11.5				
Tot A 15	101 AIK					47	53	54	99	20	245	258	473	100			104	108	221	101	133	100		
003																								
mg/l HCO3	200	142.9	132.5	132.7	48.3																		93.8	
5	5 8	2.3	4.4	4.4	2.3	10.8	14	14.5	12.8	20	29	24.4	137	17				28.5	320	26.9	29.9	20	6.95	
Dote	Dale	10/06/92	10/06/92	dup	10/09/92	07/24/84	07/23/85	12/10/85	12/18/85	04/11/90	12/06/85	01/16/85	11/09/89	01/16/85	03/06/85	07/25/85a	07/25/85b	12/06/85	01/18/85	08/24/89	11/10/89	04/20/90	1966-1968	- :
Well#	well#	AW-1	AW-2		AW-3	DW-103	(AMC-8)				DW-111	(MF-11)	MF-4	DW-121	(MF-1)				DW-123	GS-20			Botz, '69	· ·

			į	l/gu	í	1	į	1	
Well#	Date	Be	Cd	Ċ	Cn	Fe	Pb	Mn	z
AW-1	10/06/92	<1.0	<1.0	2.9	3.4	152	<1.0	15	2.1
AW-2	10/06/92	<1.0	<1.0	1.3	4.6	157	<1.0	76	1.7
	ldnb	<1.0	<1.0	1.9	2.9	116	<1.0	20	1.4
AW-3	10/09/92	<1.0	<1.0	<1.0	3.1	72	<1.0	74	1.6
DW-103	07/24/84		e		18	197	<>	69	
(AMC-8)	07/23/85		2		70	235	< 5	<33	
`	12/10/85		9.0		<11	1630	5.2		
	12/18/85		1.2		<11	293	<0.7		
	04/11/90	<1.0	0.84	<8.0	4.2	18	<0.5	190	1.9
DW-111	12/06/85		<1.0		<40	<31	3.1		
(MF-11)	01/16/85		<0.3		<14	<35	<2.1		
MF-4	11/09/89		1.4	<8.0	0.9>	52	<0.4	41	<2.0
DW-121	01/16/85		1.6		<40	31	<8.9		
(MF-1)	03/06/85		1.2		<27	33	2		
	07/25/85a		2.6		21	75	5.6		
	07/25/85b								
	12/06/85		9.0		<14	77	<2.1		
DW-123	01/18/85		<1.1		<40	<31	<4.3		
GS-20	08/24/89	2.5	3.5	<2.8	<1.1	42	<0.5	25	<1.1
	11/10/89	<1.0	5.2	<8.0	0.9>	<12	<0.4	30	<2.0
	04/20/90	<1.0	2.9	<8.0	5.9	<>	1	4	1.6
Botz, '69	1966-1968								
Meinzer, '14	1912								

	Reference	7	7	7	7	-	-	2	2	4	2	2	4	2		2	2	2	2	E.	E	3	5	9	
mg/l	SO4	27.6	43.5	43.9	25.4	84.8	105	118	127	120	149	149	199	58	09		33	73	263	149	220	160	51	7.3	
	Zu	85	86	58	188	101	168	148	93	321	<27	24	47	390	189	264		95	<27	711	710	643			
	Λ	< 1.0	< 1.0	<1.0	<1.0					4.4										5.2	0.9>	<3.0			
l/gn	II									< 2.0										20	< 9.0	< 2.0			
	Ag	<1.0	<1.0	<1.0	<1.0					<0.1										<1.0	<0.2	<0.1			
	Date	10/06/92	10/06/92	dup	10/09/92	07/24/84	07/23/85	12/10/85	12/18/85	04/17/90	12/06/85	01/16/85	11/09/89	01/16/85	03/06/85	07/25/85a	07/25/85b	12/06/85	01/18/85	08/24/89	11/10/89	04/20/90	1966-1968	1912	
	Well#	AW-1	AW-2		AW-3	DW-103	(AMC-8)				DW-111	(MF-11)	MF-4	DW-121	(MF-1)				DW-123	GS-20			Botz, '69	Meinzer, '14	

Sources:

- 1 = MultiTech, 1987, Appendix B, Part 2, Attachment I-A and II-A. 2 = MultiTech, 1987, Appendix B, Part 4, Attachment VI-A and Part 2, AttachmentII-A.
 - - 3 = CH2M Hill/Chen-Northem, 1990, Volume II, Appendix B-3 and B-4.
 - 4 = CH2M Hill/Chen-Northem, 1990, Addendum, Nov. 29, 1990.
 - 5 = Botz, 1969, Table 7.
- 6 = Meinzer, 1914, Table on pg. 115. Includes four wells near Butte; does not include Le Toile well or wells at Butte Reduction Works. 7 = MRMG 1992 Alluvial baseline sampling data

