臺北市立松山高級中學 111 學年度第二學期 開學考 二年級 數學 A 試題卷

一、單選題(占30分)

說明:第1題至第5題,每題6分。每題有5個選項,其中只有一個是正確或最適當的選項。各題答對者,得該題的 分數;答錯、未作答或劃記多於一個選項者,該題以零分計算。請將正確選項劃記在答案卡上。

)1. 在坐標平面上,將 $y = \left(\frac{1}{2}\right)^x$ 的圖形以x軸為對稱軸,作出線對稱圖形 Γ_1 ;再將 Γ_1 以 (

y=x 為對稱軸,作出線對稱圖形 Γ_2 。試問 Γ_2 應為下列何者?

)2. 在坐標平面上, 將 $y = \sin x$ 的圖形以y 軸為中心, 水平伸縮 2 倍;接著再向右平移 π 單 (位,會得到哪一個函數的圖形?

$$(1) y = \sin(2x - 2\pi)$$

$$(2) y = \sin(2x - \pi)$$

$$(3) y = \sin(2x - \frac{\pi}{2})$$

$$(4) y = \sin(\frac{x}{2} - \pi)$$

$$(5) y = \sin(\frac{x}{2} - \frac{\pi}{2})$$

) 3. 解不等式 $\log_{\frac{1}{3}}(x-2) > \log_{\frac{1}{3}}(7-2x)$, 可求得 x 的解為下列何者?

(

$$(3) 2 < x < \frac{7}{2}$$

(2)
$$x > 3$$
 (3) $2 < x < \frac{7}{2}$ (4) $2 < x < 3$ (5) $\frac{7}{2} < x < 3$

) 4. 坐標平面上 O 為原點,設 $\vec{u}=(1,2)$ 、 $\vec{v}=(3,4)$ 。令 Ω 為滿足 $\overrightarrow{OP}=x\vec{u}+y\vec{v}$ 的所有點 P所形成的區域,其中 $\frac{1}{2} \le x \le 1$ 、 $-3 \le y \le 2$,則 Ω 的面積為多少平方單位?

()5. 下列各選項中,哪一個的值最大?

(1)
$$\begin{vmatrix} \cos 31^{\circ} & -\sin 31^{\circ} \\ \sin 31^{\circ} & \cos 31^{\circ} \end{vmatrix}$$

$$\begin{array}{c|cccc}
\cos 31^{\circ} & \sin 31^{\circ} \\
\sin 29^{\circ} & \cos 29^{\circ}
\end{array}$$

$$(3) \begin{vmatrix} \sin 31^{\circ} & \cos 31^{\circ} \\ -1 & 1 \end{vmatrix}$$

(4)
$$\begin{vmatrix} \log_2 3 & \log_4 5 \\ \log_5 8 & \log_3 4 \end{vmatrix}$$

(5)
$$\begin{vmatrix} 53\sqrt{7} & 106\sqrt{7} \\ 78\sqrt{2} & 156\sqrt{2} \end{vmatrix}$$

二、多選題(占40分)

說明:第6題至第9題,每題有5個選項,其中至少有一個是正確的選項。各題之選項獨立判定,所有選項均答對者,得10分;答錯1個選項者,得6分;答錯2個選項者,得2分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。請將正確選項劃記在答案卡上。

() 6. 下列各方程式中,試選出有實數解的選項。(自然常數 $e \approx 2.71828$)

$$(1)\sin x + \cos x = \sqrt{3}$$

$$(2) \tan x + 10000000 = 0$$

$$(3) x - \log x = 0$$

(4)
$$\sin x = e^x + 1$$

(5)
$$2^{-x} = \log(x-2)$$
 °

()7. 下列關於函數及其圖形的特性,試選出正確的選項。

- $(1) y = 3^x$ 是嚴格遞增函數
- (2) $y = log_{\frac{1}{2}} x$ 的圖形凹口向下
- (3) 直線 $x = \pi$ 是 $y = \cos x$ 圖形的一條對稱軸
- (4) 直線 $x = \frac{\pi}{2}$ 是 $y = \tan x$ 圖形的一條鉛直漸近線
- (5) $y = \sin(2x)$ 的週期為 π 。

()8. 在坐標平面上,設 A(2,1), B(-2,3), C(0,-1), \overline{BA} 在 \overline{BC} 上的正射影為 \overline{u} 。 下列敘述中,試選出正確的選項。

- (1) A, B, C 三點共線
- (2) $\triangle ABC$ 的重心為 G(0,1)
- $(3)\cos \angle ABC = -\frac{4}{5}$
- (4) 點 A 到直線 BC 的距離為 $|\overline{BA} \overline{u}|$
- (5) 設點 A 在直線 BC 上的投影點為 D, 則 $\overrightarrow{BD} = \overrightarrow{u}$ 。

() 9. 設
$$k$$
 為實數,向量 $\vec{a} = \begin{bmatrix} k+1 \\ 1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 4 \\ k-2 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, 下列關於二元一次聯立方程組 $x\vec{a} + y\vec{b} = \vec{c}$

以及上述三個向量的敘述,試選出正確的選項。

- (1) 當 $k \neq 3$ 且 $k \neq -2$ 時,聯立方程組恰有一組解 $(x, y) = (\frac{4}{k+2}, \frac{1}{k+2})$
- (2) 當 $k \neq 3$ 且 $k \neq -2$ 時,兩向量 \vec{a} , \vec{b} 互相平行,即 $\vec{a} // \vec{b}$
- (3) 當 k=3 時,聯立方程組有無限多組解 (x, y) = (t, 1-t),其中 t 是實數
- (4) 當 $k \neq 3$ 時,兩向量 \vec{a} , \vec{c} 所張成的平行四邊形面積為 |k-3|
- (5) 當 k > 3 時,若聯立方程組的解為 (x, y),則 $x = \frac{\bar{b}, \bar{c}}{\bar{a}, \bar{b}}$ 所張的平行四邊形面積 。

三、選填題(占30分)

說明:第10題至第14題,每題有若干空格,各空格可能填入1,2,3,4,5,6,7,8,9,0,-,± 這些數字或符號其中一者。 各題中之空格皆填答正確給6分,答錯或未完全答對不給分。請將答案劃記至答案卡。

10. 試求
$$\cos \frac{5\pi}{6} \tan \frac{2\pi}{3} + \sin \frac{3\pi}{4} \cos \frac{7\pi}{4} = \underbrace{10}$$
 。

11. 如右圖所示,已知 ABCD, CDEF, EFGH 皆為正方形, $+ \nabla HBG = \alpha, \angle HCG = \beta \text{ , } \text{ 則 } \tan(\alpha+\beta) = \boxed{11} \text{ } \circ$

12. 解方程式
$$\log_3(x^2 + 2x) = \log_3(2 + x) + 1$$
 得 $x = 12$ 。

13. 平面上,設向量
$$\vec{a} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, 若非零向量 \vec{u} 滿足 \vec{u} $//(2\vec{a} - 3\vec{b})$ 且 \vec{u} \perp $(t\vec{a} - 8\vec{b})$, 則實數 $t = \boxed{13}$ 。

14. 在坐標平面上,若點
$$P(x, y)$$
 為直線 $L: 3x + 4y = 5$ 上的動點,則 $x^2 + y^2$ 的最小值為 (14) 。

参考公式及可能用到的數值

- 1. 首項為 a ,公差為 d 的等差數列前 n 項之和為 $S = \frac{n(2a + (n-1)d)}{2}$ 首項為 a ,公比為 r $(r \neq 1)$ 的等比數列前 n 項之和為 $S = \frac{a(1-r^n)}{1-r}$
- 2. 三角函數的和角公式: $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$
- 3. $\triangle ABC$ 的正弦定理: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ ($R \triangleq \Delta ABC$ 外接圓半徑) $\triangle ABC$ 的餘弦定理: $c^2 = a^2 + b^2 2ab\cos C$
- 4. 参考數值: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{6} \approx 2.449$, $\pi \approx 3.14159$, $e \approx 2.71828$
- 5. 對數值: log 2 pprox 0.3010, log 3 pprox 0.4771, log 7 pprox 0.8451

111-1 高二下 數學 A 開學考 參考解析

一、單選題(占30分)

1	2	3	4	5
2	5	4	5	3

1. 依題意可依序繪出下面的圖形,答案選 (2)

2. 將題意可依序繪出下面的圖形,答案選 (5)

3. 對數有意義可知「真數」為正,有 x-2>0 且 7-2x>0,先得 $2< x< \frac{7}{2}$

又底數 $\frac{1}{3}$ <1,於是x-2<7-2x,解得x<3。綜合而得 (4) 2<x<3。

- **4.** If $\sqrt[3]{1-\frac{1}{2}(2-(-3))} |\vec{u}| = (1-\frac{1}{2})(2-(-3)) |\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} | = \frac{1}{2} \cdot 5 \cdot |4-6| = 5$ **3** (5) •
- 5. (1) $\begin{vmatrix} \cos 31^{\circ} & -\sin 31^{\circ} \\ \sin 31^{\circ} & \cos 31^{\circ} \end{vmatrix} = \cos 31^{\circ} \cos 31^{\circ} (-\sin 31^{\circ}) \sin 31^{\circ} = \cos^{2} 31^{\circ} + \sin^{2} 31^{\circ} = 1$
 - (2) $\begin{vmatrix} \cos 31^{\circ} & \sin 31^{\circ} \\ \sin 29^{\circ} & \cos 29^{\circ} \end{vmatrix} = \cos 31^{\circ} \cos 29^{\circ} \sin 31^{\circ} \sin 29^{\circ} = \cos(31^{\circ} + 29^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$
 - (3) $\begin{vmatrix} \sin 31^{\circ} & \cos 31^{\circ} \\ -1 & 1 \end{vmatrix} = \sin 31^{\circ} (-\cos 31^{\circ}) = \sin 31^{\circ} + \cos 31^{\circ} = \sqrt{2} \sin 76^{\circ}$
 - (4) $\begin{vmatrix} \log_2 3 & \log_4 5 \\ \log_5 8 & \log_3 4 \end{vmatrix} = \log_2 3 \log_3 4 \log_4 5 \log_5 8 = \log_2 4 \log_4 8 = 2 \frac{3}{2} = \frac{1}{2}$
 - (5) $\begin{vmatrix} 53\sqrt{7} & 106\sqrt{7} \\ 78\sqrt{2} & 156\sqrt{2} \end{vmatrix} = 53\sqrt{7} \cdot 78\sqrt{2} \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0$

其中以 (3) $\sqrt{2} \sin 76^{\circ} > \sqrt{2} \sin 45^{\circ} = 1$,此數為各選項中最大者。

二、多選題(占40分)

6	7	8	9
25	1345	245	1345

- **6.** (1) 利用三角函數疊合, $y = \sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4}) \le \sqrt{2} < \sqrt{3}$
 - (2) 正切函數 $y = \tan x$ 的值域 $(-\infty, \infty)$, 故存在實數 x 使得 $\tan x = -10000000$
 - (3), (5) 可透過畫圖找出實數解,如下所示
 - (4) $\sin x \le 1 < e^x + 1$,因此 $\sin x = e^x + 1$ 無解。

6-(3)	6-(5)	7-(3)	7-(4)
y = x	$y = 2^{-x}$	$y = \cos x$	$y = \tan x$
$y = \log x$	$y = \log(x - 2)$	$x = \pi$	$x = \frac{\pi}{2}$

- 7. (1) 因為底數 a = 3 > 1, 所以 $y = 3^x$ 是嚴格遞增函數
 - (2) $y = \log_{\frac{1}{2}} x$ 的函數圖形應為凹口向上
 - (3), (4) 可透過畫圖找出對稱軸、漸近線,如上所示。
 - (5) 將 $y = \sin x$ 的圖形以 y 軸為中心壓縮 $\frac{1}{2}$ 倍可得 $y = \sin(2x)$ 的圖形,故週期為 π 。
- 8. (1) 兩向量 $\overrightarrow{BA} = (4, -2), \ \overrightarrow{BC} = (2, -4)$ 不平行,故A, B, C三點不共線
 - (2) $\oint G\left(\frac{2+(-2)+0}{3}, \frac{1+3+(-1)}{3}\right) \mathbb{P} G(0, 1)$ (3) f(3) f(3) f(3) f(3)
 - (4) $d(A, \overrightarrow{BC}) = |\overrightarrow{DA}| = |\overrightarrow{BA} \overrightarrow{BD}| = |\overrightarrow{BA} \overrightarrow{u}|$ (5) 點 $A \times \overrightarrow{BC}$ 投影點 D 滿足 $\overrightarrow{BD} = \overrightarrow{u}$ \circ

$$\overrightarrow{B}$$
 \overrightarrow{u} D C

- **9.** (1) 利用<u>克拉瑪</u>公式,可解得 $(x, y) = (\frac{4}{k+2}, \frac{1}{k+2})$
 - (2) 此時 $\Delta \neq 0$,故應為兩向量 \vec{a} , \vec{b} 不平行
 - (3) 方程式 x + y = 1 的一個參數式 (x, y) = (t, 1 t), t 是實數
 - (4) If $|\vec{a}| = |\vec{a}| = |\vec{$

(5) 當 k > 3 時,由 (1) 可知 x > 0,此時 Δ 和 Δ_x 同正負號,於是

$$x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} 4 & 4 \\ 1 & k-2 \end{vmatrix}}{\begin{vmatrix} k+1 & 4 \\ 1 & k-2 \end{vmatrix}} = \frac{\begin{vmatrix} 4 & 4 \\ 1 & k-2 \end{vmatrix}}{\begin{vmatrix} k+1 & 4 \\ 1 & k-2 \end{vmatrix}} = \frac{\bar{b}, \bar{c}}{\bar{a}, \bar{b}}$$
 所張的平行四邊形面積。

三、填充題(占30分)

10	11	12	13	14
2	1	3	7	1

10.
$$\cos \frac{5\pi}{6} \tan \frac{2\pi}{3} + \sin \frac{3\pi}{4} \cos \frac{7\pi}{4} = \left(-\frac{\sqrt{3}}{2}\right) \left(-\sqrt{3}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) = \frac{3}{2} + \frac{1}{2} = \mathbf{2}$$

11. 依圖
$$\tan \alpha = \frac{1}{3}$$
, $\tan \beta = \frac{1}{2}$,和角公式 $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \cdot \frac{1}{2}} = 1$ 。

12. 因為「真數」為正,所以
$$x^2 + 2x > 0$$
 且 $2 + x > 0$ 先知道 $x > 0$; 利用對數定義及對數律得 $x^2 + 2x = 3(2 + x)$,易解得 $x = 3$ 或 -2 (不合)。

13. 因為
$$\vec{u}$$
 // $(2\vec{a} - 3\vec{b})$,可設 $\vec{u} = k(2\vec{a} - 3\vec{b}) = k \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ 其中 $k \neq 0$;

又因為 $\vec{u} \perp (t\vec{a} - 8\vec{b}) = \begin{bmatrix} 2t - 16 \\ -4t + 24 \end{bmatrix}$,故有

 $k \begin{bmatrix} -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2t - 16 \\ -4t + 24 \end{bmatrix} = k[(-4t + 32) + (-4t + 24)] = 0$ 整理得 $8t = 56$ 解得 $t = 7$ 。

14. <方法一> 利用直線參數式,設
$$P(3-4t,-1+3t)$$
 代入 x^2+y^2 得

$$x^2 + y^2 = (3 - 4t)^2 + (-1 + 3t)^2 = 25t^2 - 30t + 10 = 25(t - \frac{3}{5})^2 + 1 \ge 1$$

<方法二> 利用點到直線的距離,原點 O(0,0) 到 L: 3x + 4y = 5 的距離為

$$d = d(O, L) = \frac{|3 \cdot 0 + 4 \cdot 0 - 5|}{\sqrt{3^2 + 4^2}} = 1$$
,可得 $x^2 + y^2 \ge d^2 = 1^2 = 1$ 。

<方法三> 利用柯西不等式,有
$$(3^2 + 4^2)(x^2 + y^2) \ge (3x + 4y)^2$$

將
$$3x + 4y = 5$$
 代入上式,得 $25(x^2 + y^2) \ge 5^2$ 整理得 $x^2 + y^2 \ge 1$;

等號成立於
$$\frac{x}{3} = \frac{y}{4}$$
,令 $\begin{cases} x = 3t \\ y = 4t \end{cases}$,令 $\begin{cases} x = 3t \\ y = 4t \end{cases}$,令人 $3x + 4y = 5$ 得 $3 \cdot 3t + 4 \cdot 4t = 5$

解得
$$t = \frac{1}{5}$$
 。於是,當 $(x, y) = (\frac{3}{5}, \frac{4}{5})$ 時, $x^2 + y^2$ 有最小值 $(\frac{3}{5})^2 + (\frac{4}{5})^2 = \mathbf{1}$ 。