The algebra of partial equivalence relations

Fabio Zanasi Radboud University Nijmegen ``Linear" Lawvere theory

PROPs

A PROP is (just) a symmetric monoidal category with set of objects N

Petri Nets

Signal flow graphs

Quantum processes

Syntactic PROP

freely generated by a theory (Σ, E)

 $\mathcal{T} \stackrel{\cong}{ o} \mathcal{S}$

Semantic PROP LTSs

Subspaces

Linear maps on Hilbert spaces

$$\begin{array}{ccc} \text{Commutative} & \cong \\ & \longrightarrow & \text{Functions} \end{array}$$

Arrows are diagrams freely generated by the syntax

and quotiented by equations

Arrows $n \rightarrow m$ are functions $\{1, ..., n-1\} \rightarrow \{1, ..., m-1\}$ ``Linear" Lawvere theory

PROPs

A PROP is (just) a symmetric monoidal category with set of objects N

Petri Nets

Signal flow graphs

Quantum processes

Syntactic PROP

freely generated by a theory (Σ, E)

 $\mathcal{T} \stackrel{\cong}{ o} \mathcal{S}$

Semantic PROP LTSs

Subspaces

Linear maps on Hilbert spaces

$$\begin{array}{ccc} \text{Commutative} & \cong \\ & \longrightarrow & \text{Functions} \end{array}$$

Commutative
$$\stackrel{\cong}{\longrightarrow}$$
 Functions op

Separable
$$\cong$$
 Frobenius \longrightarrow Cospans algebras

$$\begin{array}{c} \cong \\ \text{Hopf algebras} \end{array} \xrightarrow{\cong} \begin{array}{c} \text{Matrices on} \\ \text{comm. rings} \end{array}$$

PROPs, modularly

Interacting Hopf algebras ≅ Subspaces→ on a field k(k-linear relations)

LRel_k

arrows $n \to m$ are subspaces of $k^n \times k^m$

PROP sum

PROP fibered sum

Sum modulo some common structure. Arrows' shape: both $\rightarrow \leftarrow$ and $\leftarrow \rightarrow$.

PROP composition

Quotient of the sum by a distributive law λ : \longleftrightarrow \longrightarrow \longleftrightarrow Arrows' shape: \longleftrightarrow \longleftarrow .

PROP composition

Quotient of the sum by a distributive law λ : $\longrightarrow \longleftarrow \longrightarrow$ Arrows' shape: $\longleftarrow \longrightarrow$.

Question of this work

Is the cube construction a more general phenomenon?

- Outcome: modular characterisation of other relational PROPs
 - A presentation for equivalence relations

$$IFR \stackrel{\cong}{\to} ER$$

A presentation for partial equivalence relations

$$\mathsf{IPFR} \overset{\cong}{\to} \mathsf{PER}$$

Overview

The linear case

The cartesian case, take II

The cartesian case

The partial cartesian case

The cartesian case

Separable Frobenius algebras

Bialgebras

The cartesian case, take II

Separable Frobenius algebras

Distributivity of • over

Irredundant Separable Frobenius Algebras

ER has arrows $n \rightarrow m$ equivalence relations on $\{1, ..., n-1\} \uplus \{1, ..., m-1\}$

The partial cartesian case

The partial cartesian case

PF has arrows $n \rightarrow m$ partial functions

$$\{1, \dots, n-1\} \rightarrow \{1, \dots, m-1\}$$

The partial cartesian case

Partial Separable Frobenius algebras

Distributivity of • over •

Irredundant Partial Separable Frobenius Algebras

PER has arrows $n \rightarrow m$ partial eq. relations on $\{1, ..., n-1\} \uplus \{1, ..., m-1\}$

Conclusions

- A case study for axiomatisation by PROP operations: ER and PER.
- Cube constructions are ubiquitous

• The general cube recipe remains an open question.