Homomorphic Encryption for Arithmetic of Approximate Numbers

Jung Hee Cheon*, Andrey Kim*, Miran Kim†, Yongsoo Song*

*Seoul National University †University of California - SD

2017. 12. 04. ASIACRYPT 2017

Homomorphic Encryption

- $ct_1 \leftarrow Enc(m_1), \ldots, ct_k \leftarrow Enc(m_k)$.
- $ct^* \leftarrow Eval(f, ct_1, \dots, ct_k) \implies Dec(ct^*) = f(m_1, \dots, m_k).$

Can we compute the significant digits of four 32-bit integers in a second?

How long does it take to multiply 1024 floating-point numbers?

Homomorphic Rounding on Encrypted Plaintexts?

Can we compute the significant digits of four 32-bit integers in a second?

How long does it take to multiply 1024 floating-point numbers?

Homomorphic Rounding on Encrypted Plaintexts?

Bit-wise Encryption

- Input values have η -bit of precision.
- The depth of a circuit grows linearly on input precision: $L = \Omega(\eta)$. e.g. A single mult with $\eta = 64$ requires a bootstrapping.
- Fast Bootstrapping [DM15]: (Boot-time)×(# gate) > 1min.

Word Encryption

- Bitsize of plaintext grows exponentially on the depth.
- Base Encoding [DGL+15,CSVW16]
- High-Precision [CLPX17]

Our Contributions

- Support approximate addition, multiplication & rounding-off.
- Enable batching techinque with complex plaintexts.
- Evaluate analytic functions (e.g. sigmoid function)

Embracing Noise

- $ct = Enc_{sk}(m)$ satisfies $[\langle ct, sk \rangle]_Q = m + e$ for some small error e.
- Inserted noise is considered to be a part of the computational error from approximate arithmetic.
- The decrypted value m + e is an approximate to the original message.
- The precision of a plaintext is almost preserved.

e.g.
$$m = 1.23 * 10^4$$
, $e = -17$. $m + e = 12283 \approx m$.

CTX modulus (Q)

$$\langle ct, sk \rangle =$$
 m

Homomorphic Operations and Precision

- $[\langle ct_i, sk \rangle]_Q \approx m_i$ & $|m_i| \ll Q$
- $m_1 \cdot (1 \pm r_1) + m_2 \cdot (1 \pm r_2) = (m_1 + m_2) \cdot (1 \pm \max_i r_i)$.
- $m_1 \cdot (1 \pm r_1) * m_2 \cdot (1 \pm r_2) + e_{mult} \approx m_1 m_2 \cdot (1 \pm (r_1 + r_2))$.
- Optimal in the sense of precision loss.

Rescaling Process for Plaintext Rounding

- Divide the ciphertext modulus & encrypted plaintext by the base p.
- $ct \pmod{Q_\ell = p^\ell} \mapsto RS(ct) = \lfloor p^{-1} \cdot ct \rfloor \pmod{Q_{\ell-1} = p^{\ell-1}}.$

$$[\langle RS(ct), sk \rangle]_{Q_{\ell-1}} \approx p^{-1} \cdot [\langle ct, sk \rangle]_{Q_{\ell}}$$

The relative error is almost preserved.

Leveled Structure

- Evaluation of degree d circuit requires $L = \log d$ levels.
- Precision loss < (L+1) bits.
- $\log Q = \mathcal{O}(L \cdot \log p)$: Linear on depth & precision bits

Batching Technique

- Cyclotomic ring structure $\mathcal{R} = \mathbb{Z}[X]/(\Phi_M(X))$ with $N = \phi(M)$.
- Previous Method:
 - $\blacktriangleright \Phi_M(X) = \prod_i F_i(X) \pmod{t} \& CRT : \mathcal{R}_t \to \prod_i \mathbb{Z}[X]/(F_i(X)).$
- A plaintext is a small polynomial in \mathcal{R} .
 - ▶ Evaluate the roots of $\Phi_M(X)$ in algebraic extension \mathbb{C}
 - $\Phi_M(X) = \prod_{i \in \mathbb{Z}_{+i}^*} (X \zeta^j)$ over \mathbb{C} for $\zeta = \exp(-2\pi i/M)$.
- Decoding Map:
 - $\{\zeta_0,\ldots,\zeta_{N/2}\}$: Non-conjugate primitive roots of unity.
 - $M(X) \mapsto (m(\zeta_j))_{0 \le j < N/2}.$

Example

- Decoding map: $m(X) \mapsto (m(\zeta_j))_{0 \le j \le N/2} \in \mathbb{C}^{N/2}$.
- $\mathbb{Z}_M^* = \langle 5, -1 \rangle$ when M is a power-of-two. Set $\zeta_j = \zeta^{5^j}$ for $\zeta = \exp(-2\pi i/M)$ and $0 \le j < N/2$.
- Example: $M = 8 \ (\Phi_M(X) = X^4 + 1)$ and $\Delta = 128$.

$$\vec{z} = (1.2 - 3.4i, 5.6 + 7.8i) \xrightarrow{\text{invDFT}} \frac{1}{10} (34 - 39\sqrt{2}X + 22X^2 - 17\sqrt{2}X^3)$$

$$\xrightarrow{\lfloor (\cdot) \times \Delta \rfloor} m(X) = 435 - 706X + 282X^2 - 308X^3.$$

$$m(\zeta) = 128(1.1998.. + i * 3.3984..), m(\zeta^5) = 128(5.5970.. + i * 7.8047..).$$

Rotation

- Let $m(X) = \langle ct, sk \rangle = b(X) + a(X) \cdot s(X) \pmod{Q}$ for ct = (b(X), a(X)) and sk = (1, s(X)).
- Decoding map: $m(X) \mapsto (m(\zeta_j))_{0 \le j \le N/2} \in \mathbb{C}^{N/2}$ for $\zeta_j = \zeta^{5^j}$.
- Slot Rotation
 - $ct' = (b(X^5), a(X^5))$ encrypts $m(X^5)$ w.r.t. $sk' = (1, s(X^5))$.
 - $m(X^5) \mapsto (m(\zeta_{j+1}))_{0 \le j < N/2}$.
- Slotwise Conjugtation
 - $ct'' = (b(X^{-1}), a(X^{-1}))$ encrypts $m(X^{-1})$ w.r.t. $sk'' = (1, s(X^{-1})).$
 - $M(X^{-1}) \mapsto (\overline{m(\zeta_j)})_{0 \le j < N/2}.$

└ Main Idea

Funcionality

Functionalities

• Packing multiple complex numbers (max. N/2) in a single ciphertext.

Functionalities

- Packing multiple complex numbers (max. N/2) in a single ciphertext.
- Addition, multiplication, and rounding in a SIMD manner.

Functionalities

- Packing multiple complex numbers (max. N/2) in a single ciphertext.
- Addition, multiplication, and rounding in a SIMD manner.
- Rotation & Conjugation

Implementation

Sigmoid Function

- Globol Approximation on [-8,8].
- Compute $y = g_7(x)$ homomorphically. $|y \frac{1}{1 + \exp(-x)}| \le 0.03$.

Input	Depth	Total	Amortized	
Precision	Бериі	time	time	
16 bits	3	0.43s	0.10ms	

☐ Implementation

Multiplicative Inverse

- Exponential function: exp x.
- Trigonometric functions: $\cos x$, $\sin x$, ...
- Multiplicative inverse.

 - ► Let y = 1 x with $|y| \le 1/2$. ► $x^{-1} \approx (1 + y)(1 + y^2) \cdots (1 + y^{2^{l-1}}) = x^{-1} \cdot (1 \pm 2^{-2^l})$.

Input	Depth	Total	Amortized
Precision	Бериі	time	time
16 bits	4	0.45s	0.11ms

Library

iDASH Genomic S&P Protection Competition

Task3: HE based Logistic Regression Model Learning

- Binary Classification based on 18 features of 1579 records.
- Dataset: 1422 for training & 157 for prediction.
- Learning: 10 min, with 2% of AUC loss (On a machine with Xeon CPUs).

Teams	AUC 0.7136	Encryption		Secure learning		Decryption		Overall time
		Size (MB)	Time (mins)	Time (mins)	Memory (MB)	Size (MB)	Time (mins)	
SNU	0.6934	537.667	0.060	10.250	2775.333	64.875	0.050	10.360
CEA LIST	0.6930	53.000	1.303	2206.057	238.255	0.350	0.003	2207.363
KU Leuven	0.6722	4904.000	4.304	155.695	7266.727	10.790	0.913	160.912
EPFL	0.6584	1011.750	1.633	15.089	1498.513	7.125	0.017	16.739
MSR	0.6574	1945.600	11.335	385.021	26299.344	76.000	0.033	396.390
Waseda*	0.7154	20.390	1.178	2.077	7635.600	20.390	2.077	5.332
Saarland	N/A	65536.000	1.633	48.356	29752.527	65536	7.355	57.344

^{*} Interactive mechanism, no complete guarantee on 80-bit security at "analyst" side

HE Standardization Activity

- http://homomorphicencryption.org
- White papers about APIs, Security, and Applications.
- 2nd: MIT in Mar. 2018 (1st workshop in Jul. 2017).

- <u>cuHE</u>: This library explores the use of GPGPUs to accel
- HeaAn: This library implements a scheme with native
- HELib: This is an early and widely used library from IB
- Λολ (pronounced "L O L"): This is a Haskell library fo FHE.
- NFLlib: This library is an outgrowth of the European H homomorphic encryption using low-level processor p
- <u>PALISADE</u>: This is a general lattice encryption library to including multiple homomorphic encryption schemes
- SEAL: This is a widely used library from Microsoft that
- Homomorphic Encryption for Arithmetic of Approximate Numbers
- HEAAN (慧眼). Available at http://github.com/kimandrik/HEAAN.

Protecting REAL Data with HE

Comming Soon!