北京理工大学(二)

概率与数理统计试题 (A卷)

	座号		班:	级		学号_			姓名		
		卷共 8 页 次 草稿纸					页空白约	氏为草稿	纸,可携	f下,考i	试结束后
	题号	以早何 <u>机</u> 一	一二	三	四四	五	六	七	八	总分	核分
	得分										
	签名										_
		=0.994, Φ(i									
		= 2.3060									
		= 2.18,	$\chi^{2}_{0.975}(9)$	= 2.700	$, \chi_{0.025}^{2}(8)$	3)=17.53	$5, \chi_{0.02}$	₁₅ (9)=19.	023 , χ	0.05 (0) — 1	3.307 \$
	$\chi^2_{0.05}(9)$ =	=16.919				7					
	一、填空	空题(10:	分) 1	导分							
	1. 一名	射手连续门	句一目标	射击三次	大,事件 A	l;表示射 .	手第 i 次	击中目标	i=1,2,3),则 <i>私</i> し	$\overline{\bigcup A_2 \bigcup A_3}$
	表示的含	含义是									
	2. 设随机	孔变量 X	的分布函	的数满足.	F(x)=a	$-e^{-x}, x >$	0,则 <i>a</i>	=		<u> </u>	
	3. 如果(2	X,Y)服从二	二维正态	分布,则	其边缘分	}布	w. 1. /	(一定是	是或不一	定是) Ⅱ	态分布.
4	4. 设 <i>X</i> ~	~ N(0,0.5)	$Y \sim N(0)$,0.5), [$\exists X$ 与 Y	相互独立	L,则 EV	<i>Y-Y</i> =		·	
4	5. 设随机	1.变量 X /	服从几何	万布, 其	期望为4,	则 P(X=	=1)=				
ć	5. 设 <i>X</i> ₁ ,	$X_{2},,X_{n}$, 是独	立同分布	节的随机	变量序	列,且有	有限的	期望 E	$(X_k) = \mu$	与方差
		$\sigma^2 > 0, k =$									
7	. 设随机	L变量 X ~	F(n,n)	$\exists P(X >$	A) = 0.3	, <i>A</i> >0 为	常数,贝	P(X>	$\frac{1}{A}$)=		<u> </u>
8	. 某保险 00 个索贝	公司多年 倍户中,因 为	统计资料 目被盗向(斗表明, 保险公司	在索赔户	中,被篮	监索赔户	占 20%,	以X表		
9	. 设 <i>X</i> ₁ , <i>X</i>	X_2, \dots, X_n	为总体 N	(μ,σ^2) $\!$	勺一个样:	本,其中	$\mu \in R$,	σ> 0未	知, \bar{X} , \bar{X}	S² 分别是	是样本均
值	和样本	方差,则,	u的置信z	水平为1-	-α的置(言区间为					
		ҍ <i>Х~N(μ</i> , 4 01下的拒				样本值,	已知假设	ξH_0 : μ =	0, <i>H</i> ₁ :	$\mu > 0.7$	E显著性

第1页共8页

1. 叙述两个事件互斥和独立的关系.

2. 为了防止意外,某矿内同时设有两种报警系统甲和乙,每种系统单独使用时,系统甲有效的概率为 0.92,系统乙有效的概率为 0.93. 在系统甲失灵的情况下,系统乙有效的概率为 0.85. 求: (1)发生意外时,这两个报警系统至少有一个有效的概率; (2)在系统乙失灵的情况下,系统甲有效的概率.

第2页共8页

1.设随机变量 *X* 的分布函数如下:

$$F(x) = \begin{cases} 0, & x < -1 \\ 1/4, & -1 \le x < 2 \\ 1/2, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

求 (1) 随机变量 X 的分布律; (2) P(X > 1).

- 2. 设随机变量 X 服从区间 (-1,1) 上的均匀分布,求
 - (1) $P(|X|<\frac{1}{4})$; (2) 设 $Y=X^2$, 求Y的概率密度函数 $f_Y(y)$.

设随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 12e^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & 其它. \end{cases}$$

- (1) 求X和Y的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) 判断X和Y是否相互独立,并给出理由;
- (3) 求函数 $Z = \min(X, Y)$ 的密度函数 $f_z(z)$;
- (4) 求函数U = 3X + 4Y的分布函数 $F_U(u)$ 和密度函数 $f_U(u)$.

五、(14分) 得分

- 1. 叙述切比雪夫不等式.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其它.} \end{cases}$$

 $\Leftrightarrow Y=X^2$.

- (1) 求 E(X), D(X), E(Y), D(Y); (2) 求X与Y的相关系数;
- (3) 判断X与Y是否相关,判断X与Y是否独立 (说明理由).

六、(8分) 得分

设 X_1, X_2, \dots, X_5 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,令 $Z = \frac{\sqrt{3}(X_1 + X_2)}{\sqrt{2(X_3^2 + X_4^2 + X_5^2)}}$ 。

(1) 求 Z 的分布; (2) 求 Z^2 的分布. (要求写出具体过程)

得分

1、设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2}, & \sqrt{\alpha} < x < \sqrt{\alpha} + 2\\ 0, & 其他 \end{cases}$$

其中, $\alpha>0$ 为未知参数。 X_1,X_2,\cdots,X_n 为取自该总体的样本, x_1,x_2,\cdots,x_n 为相应的样本观测值. 求参数 α 的矩估计.

2. 设总体 X 服从以 p 为参数的两点分布,即其分布律为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

其中 $0 未知,<math>X_1, X_2, \cdots, X_n$ 为取自该总体的样本, x_1, x_2, \cdots, x_n 为相应的样本观测值。求

参数
$$p$$
 及 $\beta = \frac{1-p}{p}$ 的最大似然估计.

八、(14分) 得分

- 1. 叙述假设检验的理论依据.
- 2. 某卷装卫生纸净含量按标准要求为200克/卷,已知该卷装卫生纸净含量服从正态分布 $N(\mu, \sigma^2)$ 。今抽取9卷,测得其净含量样本均值 $\bar{x}=197$ 克,样本标准差s=4.5克。问在显著性水平 $\alpha=0.05$ 下,该卷装卫生纸净含量是否符合要求?

概率与数理统计试题(A卷)-参考答案(二)

一、填空题(10分,每空1分)

1. 三次都没有击中目标; 2. 1; 3. 一定是; 4.
$$\sqrt{\frac{2}{\pi}}$$
; 5. 0.25; 6. $\sigma^2 + \mu^2$;

7. 0.7; 8. 0.927; 9.
$$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$$
; 10. $\{(x_1, x_2, \dots, x_{16}) : \overline{x} \ge 2.33\}$

二、(12分)

1. 答: 设事件为 *A* 和 *B*, 当 *P*(*A*) > 0 且 *P*(*B*) > 0 时, *A* 和 *B* 互斥可以推出 *A* 和 *B* 不独立; 反之, *A* 和 *B* 独立则有 *A* 和 *B* 不互斥;

若 P(A) 和 P(B) > 0 至少一个为 0 时,由互斥可以推出独立,独立不一定互斥.

2.解:设 A 表示系统甲单独使用时有效,

B表示系统乙单独使用时有效

则已知条件为: $P(A)=0.92, P(B)=0.3, P(B|\overline{A})=0.85$

(1)
$$P(B|\overline{A}) = \frac{P(B\overline{A})}{P(\overline{A})} = \frac{P(B) - P(BA)}{1 - P(A)}$$

$$\Rightarrow P(BA) = P(B) - P(B \mid \overline{A})[1 - P(A)] = 0.93 - 0.85 \times 0.08 = 0.862$$

$$P(B \cup A) = P(B) + P(A) - P(BA) = 0.92 + 0.93 - 0.862 = 0.988$$

(2)
$$P(A|\overline{B}) = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(BA)}{1 - P(B)} = \frac{0.92 - 0.862}{1 - 0.93} = \frac{29}{35} = 0.829$$

三、(12分)

解: 1. 随机变量 X 的分布列为

X	-1	2 /145	3
P	1/4	1/4	1/2

$$P(X > 1) = P(X = 2) + P(X = 3) = 3/4$$

2. (1)
$$P(|X|<1/4) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

(2) 随机变量
$$X$$
 的概率密度函数为 $f(x) = \begin{cases} 1/2, & x \in (-1,1) \\ 0, & \text{其他} \end{cases}$

显然, 当 $y \le 0$ 时, $P(Y \le y) = P(X^2 \le y) = 0$

当
$$y \in (0,1)$$
 时, $P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} dx = \sqrt{y}$

当
$$y \ge 1$$
时, $P(Y \le y) = P(X^2 \le y) = 1$

因此,
$$Y$$
的分布函数为 $F_Y(y) = \begin{cases} 0, & y \le 0 \\ \sqrt{y}, & y \in (0,1) \\ 1, & y \ge 1 \end{cases}$

Y的概率密度函数为

$$f_{Y}(y) = \begin{cases} \frac{1}{2} \frac{1}{\sqrt{y}}, & y \in (0,1) \\ 0, & \text{其他} \end{cases}$$

四、(16分)

1. 解: (1) X的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} 3e^{-3x} \int_{0}^{\infty} 4e^{-4y} dy, & x > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases} = \begin{cases} 3e^{-3x}, & x > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$$

Y的边缘密度函数为

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} 4e^{-4y} \int_{0}^{\infty} 3e^{-3x} dx, & y > 0 \\ 0, & \text{‡} \\ \end{array} = \begin{cases} 4e^{-4y}, & y > 0 \\ 0, & \text{‡} \\ \end{cases}$$

- (2) 由于 $f(x,y) = f_X(x)f_Y(y)$, 因此 X和 Y相互独立
- (3) X和 Y的分布函数分别为

$$F_{X}(x) = \begin{cases} 1 - e^{-3x} & , & x > 0 \\ 0 & \text{#$\dot{\Xi}$} \end{cases} \qquad F_{Y}(y) = \begin{cases} 1 - e^{-4y} & , & y > 0 \\ 0 & \text{#$\dot{\Xi}$} \end{cases}$$

 $Z = \min(X, Y)$ 的分布函数为

$$\begin{split} F_Z(z) &= P(Z \le z) = 1 - P(X > z, Y > z) = 1 - P(X > z)P(Y > z) \\ &= 1 - (1 - F_X(z))(1 - F_Y(z)) = \begin{cases} 1 - e^{-7z}, & z > 0 \\ 0, & \text{其它} \end{cases} \end{split}$$

$$Z = \min(X, Y)$$
的密度函数为 $f_z(z) = \begin{cases} 7e^{-7z}, & z > 0 \\ 0, & \text{其它} \end{cases}$

(4) U = 3X + 4Y 的分布函数为

$$F_{U}(u) = P(U \le u) = P(3X + 4Y \le u) = \begin{cases} \iint\limits_{3x+4} 12e^{-(3x+4y)} dx dy, & u > 0 \\ 0, & \text{其他} \end{cases}$$

$$= \begin{cases} 12 \int_{0}^{\frac{u}{3}} \int_{0}^{\frac{u-3x}{4}} e^{-(3x+4y)} dy dx, & u > 0 \\ 0, & \text{其他} \end{cases}$$

$$= \begin{cases} 12 \int_{0}^{\frac{u}{3}} \int_{0}^{\frac{u-3x}{4}} e^{-(3x+4y)} dy dx, & u > 0 \\ 0, & \text{其他} \end{cases}$$

$$U=3X+4Y$$
的密度函数为 $f_U(u)=\begin{cases} ue^{-u}, & u>0\\ 0, & \text{其他} \end{cases}$

五、(14分)

1.答: 切比雪夫不等式为:

设随机变量 X的期望 $EX=\mu$,方差 $DX=\sigma^2>0$,

则对于任意 ε >0,成立不等式:

第2页共5页

一种 八年 何以

$$P\{|X - \mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$
或者 $P\{|X - \mu| \le \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}$ 2.解: (1)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x e^{-x} dx = 1.$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{2} e^{-x} dx = 2.$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = 2 - 1 = 1.$$

$$E(Y) = E(X^{2}) = 2.$$

$$E(Y^{2}) = \int_{-\infty}^{\infty} x^{4} f(x) dx = \int_{0}^{\infty} x^{4} e^{-x} dx = 24.$$

$$D(Y) = E(Y^{2}) - [E(Y)]^{2} = 24 - 4 = 20.$$

(2) 因为

$$E(XY) = E(X^3) = \int_{-\infty}^{\infty} x^3 f(x) dx = \int_{0}^{\infty} x^3 e^{-x} dx = 6.$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 6 - 1 \times 2 = 4.$$

所以

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{4}{\sqrt{1}\sqrt{20}} = \frac{2}{\sqrt{5}}$$

(3) 因为
$$\rho_{XY} = \frac{2}{\sqrt{5}} \neq 0$$

所以 X与Y相关.

因为X与Y相关,即存在线性关系,所以X与Y不独立。

六、(8分)

解: (1)
$$:: X_i \sim N(0, \sigma^2)$$
, $:: \frac{X_i}{\sigma} \sim N(0, 1), i = 1, 2, \dots, 5,$
且有 $:: X_1 + X_2 \sim N(0, 2\sigma^2) \Rightarrow \frac{X_1 + X_2}{\sigma\sqrt{2}} \sim N(0, 1)$

$$\therefore \sum_{i=3}^{5} (\frac{X_i}{\sigma})^2 \sim \chi^2(3), \exists \mathbb{P} \frac{X_3^2 + X_4^2 + X_5^2}{\sigma^2} \sim \chi^2(3)$$

由独立性和t分布的定义知

$$\frac{\frac{X_1 + X_2}{\sigma\sqrt{2}}}{\sqrt{\frac{X_3^2 + X_4^2 + X_5^2}{3\sigma^2}}} \sim t(3), \text{RP} \frac{\sqrt{3}(X_1 + X_2)}{\sqrt{2(X_3^2 + X_4^2 + X_5^2)}} \sim t(3)$$

(2) 由 (1) 知
$$\frac{X_3^2 + X_4^2 + X_5^2}{\sigma^2} \sim \chi^2$$
(3), $\frac{X_1 + X_2}{\sigma\sqrt{2}} \sim N(0,1)$,

所以有
$$\frac{(X_1+X_2)^2}{2\sigma^2}$$
~ χ^2 (1)

由独立性和F分布的定义知

$$\frac{\frac{(X_1 + X_2)^2}{2\sigma^2}}{\frac{X_3^2 + X_4^2 + X_5^2}{3\sigma^2}} = \frac{3}{2} \frac{(X_1 + X_2)^2}{X_3^2 + X_4^2 + X_5^2} \sim F(1,3)$$

七、(14分)

解: (1) 由于
$$EX = \sqrt{\alpha} + 1$$
,

令
$$EX = \overline{X}$$
, 解得 α 的矩估计为 $\hat{\alpha} = (\overline{X} - 1)^2$

(2) 先求p的最大似然估计

似然函数为
$$L(p) = \prod_{i=1}^{n} p^{x_i} \left(1 - p\right)^{1 - x_i} = p^{\sum_{i=1}^{n} x_i} \left(1 - p\right)^{n - \sum_{i=1}^{n} x_i}$$

对数似然函数为
$$\ln L(p) = \left(\sum_{i=1}^{n} x_i\right) \ln p + \left(n - \sum_{i=1}^{n} x_i\right) \ln \left(1 - p\right)$$

对
$$p$$
 求导并令其为零,得
$$\frac{d \ln L(p)}{dp} = \frac{\sum_{i=1}^{n} x_i}{p} + \frac{n}{1-p} + \frac{\sum_{i=1}^{n} x_i}{1-p} = 0$$

解得
$$p$$
 的最大似然估计值为
$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$$

最大似然估计量为
$$\hat{p} = \bar{X}$$

由最大似然估计的不变性知

$$\beta = \frac{1-p}{p}$$
的最大似然估计为
$$\hat{\beta} = \frac{1-\hat{p}}{\hat{p}} = \frac{1-X}{\bar{X}}$$

八、(14分)

 答:实际统计推断原理,又叫小概率原理: 即在一次试验中,概率很小的事件实际上几乎是不发生的.

2. 解: 提出假设
$$H_0$$
: $\mu = 200$, H_1 : $\mu \neq 200$.

选取检验统计量
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \stackrel{H_0 \to \infty}{\sim} t(n-1)$$

拒绝域
$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1)$$

已知
$$n=9$$
, $\mu_0=200$, $\overline{x}=197$, $s=4.3589$, $\alpha=0.05$,

第4页共5页

查表
$$t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.306$$

计算
$$|t| = \left| \frac{197 - 200}{4.5/\sqrt{9}} \right| = 2 < 2.306$$

接受 H_0 ,即在显著性水平 $\alpha = 0.05$ 下认为该卷装卫生纸净含量符合要求。