SURJECTIONS

Alessandro Coglio

Kestrel Institute

© 2020

Surjective Mapping

 $A \subseteq \mathcal{U}$ } domains (unary predicates) $A \subseteq \mathcal{U}$ } $A \subseteq \mathcal{U}$ $A \subseteq \mathcal{U}$ } $A \subseteq \mathcal{U}$ } $A \subseteq \mathcal{U}$ $A \subseteq \mathcal{U}$ } $A \subseteq \mathcal{U}$ $A \subseteq \mathcal$

A de B = dA , BB , dB - d is a surjection from A to B with right inverse B

$$\vdash$$
 \forall $b \in B$. \exists $a \in A$. $\alpha(a) = b$ — more typical definition of surjectivity — β is the witness function $b \in B$ $\beta(b) \in A$ $\alpha(\beta(b)) = b$ $\alpha \in A$, $\alpha(a) = b$ $\alpha \triangleq \beta(b)$

Guards

GB
$$\gamma_A = \mathcal{U}$$
 — A well-defined everywhere

Conditions

GB $\gamma_B = \mathcal{U}$ — B well-defined everywhere

GB $\gamma_A = \mathcal{U}$ — A well-defined at least over A

GB $\gamma_A = \mathcal{U}$ — A well-defined at least over B

$$G[A_{\overline{S}}^{\alpha}B] \triangleq GA_{\Lambda}GB_{\Lambda}GA_{\Lambda}GG$$
 — the surjection $A_{\overline{S}}^{\alpha}B$ satisfies the guard conditions

$$- \sqrt{AA} \omega_{AA}(a) = \left[\chi_{A}(a) \right] \left[a \in A = \right] \chi_{A}(a) \wedge \chi_{B}(a(a)) \right]$$

$$OED$$

$$+ (738) \omega_{BB}(b)$$
 $\omega_{BB}(b) = [83(b) \wedge [b \in B \Rightarrow 83(b) \wedge 84(36))]$

Generalization to Tuples

 $A \subseteq U^n$ $B \subseteq U^m$ $\alpha: U^n \to U^m$ $\beta: U^m \to U^n$

everything works the same as in the unary case