Форматы представления данных в компьютере

Для вопросов по курсу: natalya.razmochaeva@moevm.info

Берленко Татьяна Андреевна Шевская Наталья Владимировна СПбГЭТУ "ЛЭТИ", ФКТИ, МОЭВМ

План работы: min(Теории) + max(Практики)

- 1. Little-endian VS Big-endian
- 2. Дополнительный код
- 3. Порядок и мантисса
- ?. Пример для МТ

Little-endian VS Big-endian

 при работе с многобайтными данными (какой байт считать первым -младшим, какой последним -- старшим?)

Прямой и обратный порядок байтов

Пример

Записан текст.

Char* - 1 байт.

Разделим на байты и конвертируем в символы.

1 байт -- 8 бит.

(PyCharm)

Формат представления беззнаковых целых чисел

123:

7	6	5	4	3	2	1	0
0	1	1	1	1	0	1	1

Диапазон значений:

Для n = 8: $0 \dots 2^8 - 1 \Rightarrow 0 \dots 255$

	7	6	5	4	3	2	1	0
255:	1	1	1	1	1	1	1	1

Формат представления знаковых целых чисел

$$n = 8$$

- Прямой код $(-2^{n-1} + 1 \dots 2^{n-1} 1)$ $(-2^{8-1} + 1 \dots 2^{8-1} 1) \Rightarrow (-2^7 + 1 \dots 2^7 1) \Rightarrow$

 $(-128 + 1 \dots 128 - 1) \Rightarrow (-127 \dots 127)$

- ightharpoonup Обратный код (-2ⁿ⁻¹ + 1 ... 2ⁿ⁻¹-1) (-2⁸⁻¹ + 1 ... 2⁸⁻¹-1) \Rightarrow ... \Rightarrow (-127 ... 127)
- -123: 1
- Доп. код

(-2ⁿ⁻¹ ... 2ⁿ⁻¹-1)

 $(-2^{8-1} \dots 2^{8-1}-1) \Rightarrow (-2^7 \dots 2^7-1) \Rightarrow (-128 \dots 127)$

-123: 1

Прямой, обратный и дополнительный код

Пример для 8 бит	Прямой	Обратный	Дополнительный
123	01111011	01111011	01111011
-123	1 1111011	10000100	10000101
-42	10101010	1 1010101	1 1010110
-127	11111111	10000000	10000001
-128	impossible	impossible	10000000

Примеры с доп. кодом: -126 - 2 = -128

Примеры с доп. кодом: -126 - 2 = -128

-126₁₀ **1** 0 0 0 0 0 1 0

+

-2₁₀ | 1 | 1 | 1 | 1 | 1 | 0

Примеры с доп. кодом: 126 - 2 = 124

126₁₀ 0 1 1 1 1 1 0 + -2₁₀ 1 1 1 1 1 0

124₁₀ 0 1 1 1 1 0 0

Примеры с доп. кодом: -126 + 2 = -124

Примеры с доп. кодом: -126 - 2 = -128

Одинарная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- > 8 бит порядок
- 23 бита дробная значащая часть числа мантисса
- 127 смещение

1,111101 - мантисса, записывается только дробная часть

2 - истинный порядок, 129 - смещенный порядок

3	знак	нак порядок								мантисса									
	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1		0	0	0

Двойная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- 11 бит порядок
- > 52 бита дробная значащая часть числа мантисса
- > 1023 смещение

$$111,1101 = 1,111101 * 2^2$$

1,111101 - мантисса

2 - истинный порядок, 1025 - смещенный порядок

знак				порядок				мантисса								
0	0	1	0	•••	0	0	1	1	1	1	•••	0	0	0	15	

Пример 446.15625 в одинарной точности

446,15625₁₀ 446₁₀ 🖚 отдельно обрабатываем целую часть ⇒ 110111110₂ ставим запятую и начинаем думать про хвост

 \Rightarrow 110111110,??????... \Rightarrow сначала выделим порядок

не понимаем, какой хвост?

порядок: 8 знаков влево \Rightarrow 1,10111110???????????????? хвост из 15 знаков

собираем хвост....

0.15625 в бинарном виде

0,15625	* 2	=	<mark>0,</mark> 3125	⇒	1,10111110 <mark>0??????????</mark>
0,3125	* 2	=	<mark>0,</mark> 625	⇒	1,1011111000??????????
0,625	* 2	=	1,25	-1 ⇒	1,10111110 <mark>001?????????</mark>
0,25	* 2	=	0,5	⇒	1,10111110 <mark>0010?????????</mark>
0,5	* 2	=	1,0	-1 ⇒	1,10111110 <mark>00101?????????</mark>

Где взять все остальные знаки? Забить нулями!

1,10111110001010000000000

превратим в знак | порядок | мантисса

446.15625 в памяти компьютера

Знак: 0

Порядок: истинный 8 + смещение 127 = 135₁, ⇒ 1000 0111

Мантисса: 1,1011111000101000000000

Итого:

Двойная точность:

Знак: 0

Порядок: истинный 8 + смещение 1023 = $1031_{10} \Rightarrow 100\ 0000\ 0111_{2}$

Мантисса: 1,1011111000101000000000 + 29 нулей

Собираем число обратно в 10-СС

Знак: 1 -- отрицательное

Порядок: 1000 0111 $_2$ ⇒ 135 $_{10}$ (смещенный) ⇒ 135 - 127 = 8 (истинный)

Мантисса:

переводим хвост привычным способом:

Переводим 0,011 в 10-СС

0,011 0000 0000 0000

0	,	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15	-16
0	,	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0

$$= 0^{2}^{-1} + 1^{2}^{-2} + 1^{2}^{-3} + 0^{2}^{-4} + 0^{2}^{-5} + \dots + 0^{2}^{-16} = 0 + \frac{1}{4} + \frac{1}{8} + 0 + \dots + 0 = 0,375$$

Соединяем "голову" и хвост, припоминая про отрицательный знак:

переводим 2-СС делением на 2 собираем *остатки в обратном порядке*

переводим в 2-СС умножением на 2 собираем **целые части в прямом порядке**

- 1) вычисляем истинный порядок
 - 2) идем в мантиссу и выделяем оттуда целую часть 10-го числа

- 4) двоичный "хвост" переводим в 10-СС с отрицательными степенями
- 5) собираем число из знака, целой и вещественной части

Чем двойная точность отличается от одинарной?

Знак -- тот же самый (1 бит)

Порядок -- вместо 8 работаем с **11** битами (смещение из-за этого равно не 127, а **1023**)

Мантисса -- вместо 23 бита работаем с **52** битами (в худшем случае при переводе дробной части выполним на *29* итераций больше)

Пример с "плохим" хвостом числа

0,8919

Какая целая часть у этого числа?

Какой порядок у этого числа?

Сколько итераций для вычисления мантиссы придется сделать?

0,8919 переводим в 2-СС

1)
$$0.8919 * 2 = 1.7838 \Longrightarrow 0.1$$
 (-1)

2)
$$0.7838 * 2 = 1.5676 \Longrightarrow 0.11 (-1)$$

3)
$$0.5676 * 2 = 1.1352 \Longrightarrow 0.111 (-1)$$

4)
$$0.1352 * 2 = 0.2704 \Longrightarrow 0.1110$$

5)
$$0,2704 * 2 = 0,5408 \Longrightarrow 0,11100$$

6)
$$0.5408 * 2 = 1.0816 \Longrightarrow 0.111001 (-1)$$

• • • •

Мантисса и порядок для числа 0,8919

$$0,111001?.. = 1,11001?.. *2^{(-1)}$$

. . . .

$$0,0816 * 2 = \dots$$

истинный -1 ==> -1 + 127 = 126 ==> 0111 1110 $0 \mid 0111 \mid 1110 \mid 11001$? сколько итераций нужно сделать еще? 23-5=18

Источники

- ➤ Ч. Петцольд "Код"
- Э. Таненбаум "Архитектура Компьютера"
- > https://stepik.org/course/253 Курс на Stepik "Введение в Архитектуру ЭВМ"

Вопросы по курсу можно задавать:

Шевская Наталья Владимировна natalya.razmochaeva@moevm.info,

Берленко Татьяна Андреевна tatyana.berlenko@moevm.info