Il calcolo letterale

Finora abbiamo studiato gli insiemi numerici N, Z, Q, \Re ed operato con numeri (espressioni numeriche).

In matematica però è molto importante saper operare con le lettere e sviluppare le regole di quello che viene chiamato calcolo letterale.

Abbiamo già trovato, nello studio della geometria, delle espressioni "letterali" : per esempio se vogliamo esprimere l'area del quadrato di lato l scriviamo $A = l^2$.

Questa scrittura è generale proprio perché fa uso di una lettera e non di un numero in particolare: se poi vogliamo determinare l'area di uno specifico quadrato, per esempio di lato l=5, sostituiremo il valore 5 al posto di l e otterremo l'area A=25.

Anche l'area di un triangolo, di base b e altezza h viene indicata con

$$A = \frac{b \cdot h}{2}$$

Anche questa è un'espressione "letterale".

Per imparare a fare operazioni con le espressioni letterali occorre partire da quelle più semplici.

Monomi

Le espressioni letterali più semplici si chiamano "monomi" (dal greco *monos* che significa unico) e sono costituite da lettere che vengono solo moltiplicate tra loro ed eventualmente per un coefficiente numerico.

Esempio

Le espressioni letterali

$$2a^3b$$
; $\frac{1}{3}a b^4c^2$; $-\frac{2}{5}a^2b^3$

sono esempi di monomi.

Esempio

Le espressioni letterali

$$a^2 - b$$
 oppure $a^{-2}b$

non sono monomi.

Osservazione

Lo stesso monomio può essere scritto in forme diverse.

Per esempio è chiaro che

 $2a^3b$ può anche essere scritto $2 \cdot a \cdot a \cdot a \cdot b$.

ma la prima scrittura si legge molto meglio!

Forma "normale" di un monomio

Diciamo che un monomio è ridotto a "**forma normale**" quando è scritto come prodotto fra un numero (chiamato **coefficiente** del monomio) e una o più lettere (diverse tra loro) con eventuali esponenti (si chiama **parte letterale** del monomio)

$$\begin{array}{cccc}
2 & a^3b \\
\text{coefficiente} & \text{parte letterale}
\end{array}$$

Esempio: la forma normale di 3 $a b^2 \cdot (-2) \cdot a^2 \cdot b$ risulta $-6a^3b^3$

Grado di un monomio

Si chiama "grado" del monomio la somma di tutti gli esponenti delle lettere: per esempio

$$2 a^3b$$

ha grado 3+1=4 (è di grado 3 rispetto alla lettera a e di grado 1 rispetto alla lettera b).

Poiché anche un numero può essere considerato un monomio, diremo che ha grado 0 perché possiamo sempre pensare che gli sia associata una parte letterale di grado 0 (che corrisponde a 1).

Esempio: 2 potrebbe essere considerato come $2 \cdot a^0$.

Operazioni con i monomi

Addizione e sottrazione di monomi

Supponiamo di dover sommare le aree in figura :

Quindi se i monomi hanno la stessa parte letterale (si dicono "simili") per sommarli si sommano i loro coefficienti e si considera come parte letterale la parte letterale dei due monomi.

E se i monomi non sono simili?

Come faccio per esempio se devo sommare

$$2a^3b + 3a^2$$
?

Quando i monomi non sono simili non posso fare niente: la scrittura va lasciata così e sarà chiamata "polinomio" (dal greco polys che significa "molto" nel senso di molti termini).

Esempi

1)
$$\frac{1}{2}ab - 3ab + ab = \left(\frac{1}{2} - 3 + 1\right)ab = \left(\frac{1 - 6 + 2}{2}\right)ab = -\frac{3}{2}ab$$
.

2)
$$2a^2b - \frac{1}{3}a^2b + a^2b = \left(2 - \frac{1}{3} + 1\right)a^2b = \left(\frac{6 - 1 + 3}{2}\right)a^2b = +\frac{8}{3}a^2b$$

$$3) \quad 5xy - 5xy = 0$$

4)
$$ab^4 - 2a^2b^4$$
 (rimane così)

5)
$$3a^2b^3 - a^2b^3 + ab^4 - \frac{1}{4}ab^4 = (3-1)a^2b^3 + \left(1 - \frac{1}{4}\right)ab^4 = 2a^2b^3 + \frac{3}{4}ab^4$$

6)
$$2x^3y - \frac{1}{2}x^2y^2 - x^3y + \frac{5}{4}x^2y^2 = (2-1)x^3y + \left(-\frac{1}{2} + \frac{5}{4}\right)x^2y^2 = x^3y + \left(\frac{-2+5}{4}\right)x^2y^2 = x^3y + \frac{3}{4}x^2y^2$$

7)
$$\frac{3}{2}xy - x^2y - \frac{3}{2}xy + 5x^2y = (\frac{3}{2} - \frac{3}{2})xy + (-1 + 5)x^2y = 0 + 4x^2y = 4x^2y$$

Moltiplicazione di monomi

Come possiamo moltiplicare due monomi?

Per esempio

$$(2ab)\cdot(3a^2)=?$$

E' chiaro che basta moltiplicare i coefficienti e la parte letterale.

Avremo

Esempi

1)
$$\frac{1}{2}ab \cdot 3a^2b^2 = \frac{3}{2}a^3b^3$$
.

2)
$$5x^4y \cdot (-2xy) = -10x^5y^2$$

$$3) \quad \frac{1}{3}ab \cdot 3b = ab^2$$

4)
$$(-2a^2b^3) \cdot \left(-\frac{1}{2}ab\right) = a^3b^4$$

Potenza di un monomio

Come possiamo sviluppare la potenza di un monomio? Per esempio :

$$\left(2a^2b\right)^2 = ?$$

Dovremo fare la potenza sia del coefficiente che della parte letterale. Nel nostro caso avremo:

$$(2a^2b)^2 = 2^2 \cdot a^4 \cdot b^2$$
potenza del coeff. potenza della parte letterale

Esempi

1)
$$\left(-\frac{1}{2}ab^2\right)^3 = \left(-\frac{1}{2}\right)^3a^3b^6 = -\frac{1}{8}a^3b^6$$

2)
$$(-2xy^3)^2 = (-2)^2 x^2 y^6 = 4x^2 y^6$$

Divisione tra monomi

Possiamo dividere due monomi?

Per esempio:

$$2a^2b : ab = ?$$

$$\frac{2\alpha^2 b}{ab}$$

Quindi in questo caso abbiamo ottenuto un monomio.

Ma è sempre così?

Se, per esempio, abbiamo:

$$2a^2b : a^3b = ?$$

$$\frac{2a^2b}{a^3b} = \frac{2}{a}$$

e quindi in questo caso non abbiamo un monomio.

Diremo che un monomio è divisibile per un altro monomio (divisore) quando nella sua parte letterale ci sono tutte le lettere del divisore con esponenti maggiori o uguali.

Esempi:

1)
$$2ab^4: 3ab^2 = \frac{2ab^4}{3ab^2} = \frac{2}{3}b^2$$

2)
$$5x^3y^2 : 10x^3y = \frac{5x^3y^2}{10x^3y} = \frac{1}{2}y$$

3)
$$3a^2b^3:(-3ab)=-\frac{3a^2b^3}{3ab}=-ab^2$$

4)
$$4a^2b^2 : 4a^2b^2 = \frac{4a^2b^2}{4a^2b^2} = 1$$

5)
$$3a^3b^2:9ab = \frac{3a^3b^2}{9ab} = \frac{1}{3}a^2b$$

Massimo comune divisore e minimo comune multiplo fra monomi

Come per i numeri naturali, possiamo definire il M.C.D. tra due o più monomi e il m.c.m. tra due o più monomi.

Massimo comun divisore (M.C.D.)

- come coefficiente del massimo comun divisore si prende il M.C.D. dei coefficienti se sono interi (senza considerare il loro segno) e 1 se i coefficienti non sono tutti interi;
- come parte letterale del massimo comun divisore si prende il prodotto delle lettere comuni prese una sola volta e con il minimo esponente.

Esempi

M.C.D.
$$\left(3a^2bc^3 ; 2ac^2\right) = ac^2$$

M.C.D.
$$\left(\frac{1}{2}abc^4\right)$$
; $4b^2c^3 = bc^3$

Minimo comune multiplo (m.c.m.)

- come coefficiente del minimo comune multiplo si prende il m.c.m. dei coefficienti se sono interi (senza considerare il loro segno) e 1 se i coefficienti non sono tutti interi;
- come parte letterale del minimo comune multiplo si prende il prodotto di tutte le lettere dei monomi prese una sola volta e con il massimo esponente.

Esempi

m.c.m.
$$(3x^2yz)$$
; $2xyz^4 = 6x^2yz^4$

m.c.m.
$$\left(\frac{1}{3}xy^3 \quad ; \quad 4y\right) = xy^3$$

m.c.m.
$$\left(2abc \quad ; \quad 4a^3\right) = 4a^3bc$$

m.c.m.
$$\left(\frac{1}{2}a^2b^3\right)$$
; $5abc^4 = a^2b^3c^4$

Il calcolo letterale in geometria

1) Consideriamo un quadrato di lato 3a. Come si esprime la sua area? Come risulta il suo perimetro?

$$A = (3a)^2 = 9a^2$$

$$2p = 3a \cdot 4 = 12a$$

2) Consideriamo un rettangolo di base 3a e altezza a. Come risulta la sua area? E il suo perimetro?

$$A = 3a \cdot a = 3a^2$$

$$2p = 3a \cdot 2 + a \cdot 2 = 6a + 2a = 8a$$

3*a*

Considera un triangolo isoscele ABC di base AB = 6a e altezza CH = 4a. Come risulta la sua area? E il suo perimetro?

$$A = \frac{6a \cdot 4a}{2} = 12a^2$$

Poiché
$$\overline{AH} = 3a$$
 e

$$\overline{AC} = \sqrt{(4a)^2 + (3a)^2} = \sqrt{16a^2 + 9a^2} = \sqrt{25a^2} = 5a$$

$$2p = 6a + 5a \cdot 2 = 6a + 10a = 16a$$

4) Considera un parallelepipedo rettangolo di dimensioni 2a, 3a, 4a. Come risulta la sua superficie totale? E il suo volume?

$$S_t = S_1 + 2 \cdot S_B = 2p_{base} \cdot 4a + 2 \cdot 2a \cdot 3a = 10a \cdot 4a + 12a^2 = 40a^2 + 12a^2 = 52a^2$$

$$V == 2a \cdot 3a \cdot 4a = 24a^3$$

ESERCIZI

1) Quali tra le seguenti espressioni algebriche sono monomi?

a)
$$-2x^{3}y^{6}$$

a)
$$-2x^3y^6$$
 b) $x-y-2$ c) $\frac{7}{2}$ d) $\frac{a}{b}$

c)
$$\frac{7}{2}$$

$$d)\frac{a}{b}$$

2) Riduci a forma normale i seguenti monomi:

$$(-3x)(5xy)x$$
; $aabbc5b3$; $(-a^2b^3)(5b^4a^3)$; $-x(-y)(-xy)$; $(3bx)(3bx)(3bx)$

- 3) Completa le seguenti frasi:
- In un monomio i fattori letterali devono avere come esponenti dei numeri
- Si dice grado di un monomio la degli della sua b)
- c) Un numero è considerato un monomio di grado.....
- d) Due monomi che hanno lo stesso e la stessa si dicono uguali.
- 4) Scrivi il grado di ciascuno dei seguenti monomi:

a)
$$3x^2 v$$

b)
$$7a^4m^5p^9$$
 c) $abcd$

d) 9 *y* e)
$$\frac{10}{7}$$

5) Completa la seguente tabella:

Monomio	Coefficiente	Parte letterale	Grado
2xy			
	4		3
		x^2y	
x/2			
	3		0

6) Completa la seguente tabella:

Monomio	Uguale	Simile	Opposto
$5ab^3$			
	6xyz		
		$-abc^2$	
			$+5x^{3}y^{5}$
x/2			

- 7) Utilizzando le lettere a e b, scrivi tutti i monomi possibili di coefficiente 2 e grado 3.
- 8) Per scrivere un monomio di grado 4 sono indispensabili quattro lettere?
- 9) Quante lettere sono necessarie per scrivere un monomio di grado 3? Perché?
- 10) Può un monomio di grado 3 essere composto da quattro lettere? Perché?

Somma di monomi, prodotto di monomi, potenza di monomi

11)
$$\left(\frac{1}{2}ab\right) \cdot (ab) + 3a^2b^2$$
 $\left[\frac{7}{2}a^3b^3\right]$

12) $\left(\frac{1}{5}x^2y\right) \cdot (-5x) + 2x^3y$ $\left[x^3y\right]$

13) $(5ab) \cdot \left(-\frac{1}{3}a\right) + \frac{1}{3}a^2 \cdot (-2b)$ $\left[-\frac{7}{3}a^2b\right]$

14) $(2ab)^2 \cdot \left(\frac{1}{4}a\right) - (-2a) \cdot (ab)^2$ $\left[3a^3b^2\right]$

15) $(2a)^3 \cdot \left(\frac{1}{2}b\right)^2 + (5ab) \cdot \left(-\frac{1}{5}a^2b\right)$ $\left[a^3b^2\right]$

16) $\left(-\frac{1}{2}a^2b\right)^3 \cdot (2ab)^2 - (ab)^2 \cdot (3a^6b^3)$ $\left[-\frac{7}{2}a^8b^2\right]$

17) $\left(\frac{1}{2}x^2y\right)^4 - \left(-\frac{1}{2}x^4y^2\right)^2$ $\left[-\frac{3}{3}a^8y^4\right]$

18) $\left(-\frac{1}{3}ab\right)^2 \cdot (-3a)^2 + \left(a^2b^2\right) \cdot \left(-\frac{1}{5}a^2\right)$ $\left[\frac{4}{5}a^4b^2\right]$

19) $\left(-2x^2\right)^3 \cdot \left(\frac{1}{4}xy\right) - (3xy) \cdot \left(\frac{1}{6}x^6\right)$ $\left[-\frac{5}{2}x^7y\right]$

20) $\left(-a\right)^3 + \frac{1}{2}a(-a)^2 + (ab)^2 - a^2 \cdot (-3b^2)$ $\left[4a^2b^2 - \frac{1}{2}a^3\right]$

21) $2x\left(-\frac{1}{2}y\right) - (xy)^2 \cdot \left(-\frac{1}{2}x\right) + xy + 2x^2 \cdot \left(-\frac{1}{4}xy^2\right)$ [0]

22) $\left(-\frac{1}{2}a\right)^3 \cdot (-b)^2 + 3a \cdot \left(\frac{1}{2}ab\right)^2$ $\left[\frac{5}{8}a^3b^2\right]$

23) $(2x + x)^2 - 5x \cdot \left(-\frac{1}{3}x\right)$ $\left[\frac{32}{3}x^2\right]$

24) $\left(-2ab\right)^4 + a \cdot \left(-\frac{1}{2}b\right) + (a^2b^2)^2 + 2a \cdot \left(-\frac{3}{4}b\right)$ $\left[17a^4b^4 - 2ab\right]$

25) $\left(-\frac{1}{3}x^2\right)^2 \cdot (-2y) + (-xy)^3 + xy \cdot \left(-\frac{1}{9}x\right) + x^3y \cdot (-y)^2$ $\left[-\frac{1}{3}x^2y\right]$

Esercizi di ricapitolazione sui monomi

26)
$$\left(xy - \frac{2}{3}xy\right)y^3 - x\left(-y^2\right)^3 : \left(-\frac{1}{3}y\right)^2 + \frac{2}{3}xy^4$$
 [10xy⁴]

$$(5ab - ab)^{2} \cdot (-a^{2}b) - (3a^{3}b^{3})^{2} \cdot (9ab^{2})^{2} + \left(-\frac{3}{2}a^{2}\right)^{2} \cdot b^{3}$$

$$\left[-\frac{1}{9}a^{4}b^{2}\right]$$

28)
$$[a^2b - (-2a^2b)] \cdot (-3ab^2) + (-2a^2b^2)^2 : \frac{1}{2}ab$$

$$[-a^3b^3]$$

29)
$$3ab(-2a)^{2} + (4ab^{2}c : \frac{1}{4}bc)a^{2} - 6a^{3}b$$
 [22a³b]

30)
$$\left[-3xy \left(\frac{1}{9}x^2y \right) - y^2(-x)^3 \right] : (-x)^2 + 2x^2y^2 : (-x)$$

$$\left[-\frac{4}{3}xy^2 \right]$$

31) Con i dati della figura trova il perimetro e l'area della zona colorata.

 $[10a; 5a^2]$

32) In un triangolo isoscele la base misura 10*a* e il lato obliquo 13*a*. Determina perimetro e area.

$$[36a; 60a^2]$$

33) Considera un prisma a base quadrata il cui spigolo di base è 3a e l'altezza 6a. Determina superficie totale e volume.

$$[90a^2; 54a^3]$$

34) Considera un cilindro di raggio a e altezza 3a. Determina superficie totale e volume.

$$[8\pi \cdot a^2; 3\pi \cdot a^3]$$

Polinomi

Un polinomio è una somma algebrica di monomi.

Esempio: $a^2b + 2a$; $xy - \frac{1}{2}y^2$; $a^3 + b^3 + c^2$ sono polinomi.

I vari monomi che compongono il polinomio si chiamano "termini" del polinomio. Un monomio può anche essere considerato come un polinomio con un solo termine.

NOTA: se in un polinomio ci sono monomi simili questi si sommano e il polinomio si dice ridotto a forma normale.

Esempio: $6ab - x^2y^2 - 2ab = 4ab - x^2y^2$

Definizione: se un polinomio ridotto a forma normale ha 2 termini, cioè è costituito da 2 monomi, si chiama *binomio*, se è costituito da 3 monomi si chiama *trinomio*.

Esempio: 2a+b è un binomio $2a^2+b+c^3$ è un trinomio

Definizione: il grado di un polinomio è il grado del suo termine di grado maggiore.

Esempio: $x^3y - xy^2$ ha grado 4

Definizione: il grado di un polinomio rispetto ad una lettera è il massimo degli esponenti con cui compare quella lettera.

Esempio: $x^3y - xy^2$ ha grado 3 rispetto alla lettera x e grado 2 rispetto alla lettera y.

Termine "noto" di un polinomio: è il termine di grado 0 cioè il termine in cui non compare nessuna lettera.

Esempio: $a^2b + 2$ 2 è il termine noto

Polinomio omogeneo: un polinomio si dice omogeneo quando tutti i suoi termini hanno lo stesso grado.

Esempio: $a^3b + 3a^2b^2 + ab^3$ è un polinomio omogeneo poiché tutti i suoi termini hanno grado 4.

Operazioni con i polinomi

Addizione tra polinomi

La somma tra due o più polinomi è il polinomio che ha per termini tutti i termini dei polinomi addendi.

Differenza tra polinomi

La differenza tra due polinomi si ottiene sommando al primo polinomio l'opposto del secondo (si cambia il segno dei coefficienti del secondo).

Esempio:
$$(x^2y + xy) - (2xy - 4x^2y + x^3) = \underline{x^2y} + \underline{xy} - \underline{2xy} + \underline{4x^2y} - x^3 = 5x^2y - xy - x^3$$

Per indicare addizione e sottrazione tra polinomi si parla di somma algebrica.

Moltiplicazione di un monomio per un polinomio

Per moltiplicare un monomio per un polinomio si applica la proprietà distributiva della moltiplicazione rispetto all'addizione e si moltiplica il monomio per ciascun termine del polinomio.

Esempio:
$$5a^2 \cdot (a+3b) = 5a^2 \cdot a + 5a^2 \cdot 3b = 5a^3 + 15a^2b$$

Moltiplicazione tra due polinomi

Si moltiplica ogni termine del 1° polinomio per ogni termine del 2° e si sommano i risultati (sempre per la proprietà distributiva della moltiplicazione rispetto all'addizione).

Esempio:
$$(5a^2 + b) \cdot (a + 3b) = 5a^2 \cdot (a + 3b) + b \cdot (a + 3b) = 5a^3 + 15a^2b + ab + 3b^2$$

NOTA: il grado del prodotto è la somma dei gradi dei polinomi fattori (per la proprietà delle potenze).

NOTA: come si moltiplicano tre polinomi? Prima si moltiplicano due polinomi e il risultato si moltiplica per il terzo.

Esempio:
$$(x+1)(2x+2)(x-4) =$$

$$(2x^2 + 2x + 2x + 2)(x-4) =$$

$$(2x^2 + 4x + 2)(x-4) =$$

$$2x^3 - 8x^2 + 4x^2 - 16x + 2x - 8 =$$

$$2x^3 - 4x^2 - 14x - 8$$

Problemi di geometria Polinomi

1) Determina perimetro e area della figura tratteggiata

$$[2p = 2b + 6a; A = \frac{5}{2}ab]$$

2) Problema svolto

Considera il trapezio isoscele in figura e determinane l'area.

Osservando il triangolo AHD (triangolo rettangolo isoscele) si ha

$$\overline{AH} = \overline{KB} = b$$

Quindi
$$\overline{AB} = 2a + 2b$$

In conclusione
$$A = \frac{1}{2}(2a + 2b + 2a) \cdot b = \frac{1}{2}(4a + 2b) \cdot b = (2a + b) \cdot b = 2ab + b^2$$

Prodotti notevoli

Nella moltiplicazione dei polinomi ci sono dei casi particolari che conviene ricordare.

Prodotto della somma di due monomi per la loro differenza

$$(A+B)(A-B)$$

Consideriamo per esempio:

$$(2a+b)(2a-b) = 4a^2 - 2ab + 2ab - b^2 = 4a^2 - b^2$$

In generale si ha:

$$(A+B)(A-B) = A^2 - AB + AB - B^2 = A^2 - B^2$$

cioè si ottiene sempre la differenza tra il quadrato del 1° monomio e il quadrato del 2° monomio.

Esempi

1)
$$(a+1)(a-1) = a^2 - 1$$

2)
$$(3a+5b)(3a-5b) = 9a^2 - 25b^2$$

3)
$$\left(\frac{1}{2}x - y\right)\left(\frac{1}{2}x + y\right) = \frac{1}{4}x^2 - y^2$$

4)
$$(x + y)(-y + x) = (x + y)(x - y) = x^2 - y^2$$

5)
$$(3a-b)(b+3a) = (3a-b)(3a+b) = 9a^2 - b^2$$

6)
$$(a-1)(a+1)(a^2+1) = (a^2-1)(a^2+1) = a^4-1$$

Quadrato di un binomio

$$(A+B)^2$$

Consideriamo per esempio:

$$(2a+b)^2 = (2a+b)(2a+b) = 4a^2 + 2ab + 2ab + b^2 =$$

$$= 4a^2 + 4ab + b^2 =$$

$$= (2a)^2 + 2 \cdot (2a) \cdot b + (b)^2$$

In generale si ha:

$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + AB + B^2 =$$

= $A^2 + 2AB + B^2$

Quindi il quadrato di un binomio risulta uguale alla somma tra il quadrato del 1° termine, il quadrato del 2° termine e il doppio prodotto tra il 1° termine e il 2° termine del binomio.

Esempi

1)
$$(x+y)^2 = x^2 + 2xy + y^2$$

2)
$$(x-y)^2 = x^2 + 2(x)(-y) + (-y)^2 = x^2 - 2xy + y^2$$

3)
$$\left(\frac{1}{2}x + y\right)^2 = \frac{1}{4}x^2 + 2 \cdot \frac{1}{2}x \cdot y + y^2 = \frac{1}{4}x^2 + xy + y^2$$

Interpretazione geometrica

$$(a+b)^2 = a^2 + 2ab + b^2$$

Il quadrato di lato a+b è dato dall'unione del quadrato di lato a, del quadrato di lato b e di due rettangoli di lati a e b (e quindi area 2ab)

Nota: vediamo come risulta il quadrato di un trinomio.

$$(A+B+C)^{2} = (A+B+C)(A+B+C) =$$

$$= A^{2} + AB + AC + BA + B^{2} + BC + CA + CB + C^{2} =$$

$$= A^{2} + B^{2} + C^{2} + 2AB + 2AC + 2BC$$

Quindi il quadrato di un trinomio è dato dalla somma tra quadrato del 1° termine, quadrato del 3° termine e il doppio prodotto tra il 1° e il 2° termine, il doppio prodotto tra il 1° e il 3° termine e il doppio prodotto tra il 2° e il 3° termine.

Esempio

$$(3a-b-2c)^{2} =$$

$$= 9a^{2}+b^{2}+4c^{2}+2\cdot (3a)\cdot (-b)+2\cdot (3a)\cdot (-2c)+2\cdot (-b)\cdot (-2c) =$$

$$= 9a^{2}+b^{2}+4c^{2}-6ab-12ac+4bc$$

Cubo di un binomio

$$(A+B)^{3} = (A+B)(A+B)(A+B) =$$

$$= (A+B)^{2}(A+B) = (A^{2}+2AB+B^{2})(A+B) =$$

$$= A^{3}+A^{2}B+2A^{2}B+2AB^{2}+AB^{2}+B^{3} =$$

$$= A^{3}+3A^{2}B+3AB^{2}+B^{3}$$

Quindi il cubo di un binomio risulta la somma tra cubo del 1°termine, cubo del 2°termine, triplo prodotto tra il quadrato del 1°termine e il 2°termine, triplo prodotto tra il 1°termine e il quadrato del 2°termine.

Esempi

1)
$$(2a+b)^3 = 8a^3 + b^3 + 3 \cdot (2a)^2 \cdot (b) + 3 \cdot (2a) \cdot (b)^2 = 8a^3 + b^3 + 12a^2b + 6ab^2$$

2)
$$(2a-b)^3 = 8a^3 + (-b)^3 + 3 \cdot (2a)^2 \cdot (-b) + 3 \cdot (2a) \cdot (-b)^2 = 8a^3 - b^3 - 12a^2b + 6ab^2$$

Divisione tra polinomi

Divisione di un polinomio per un monomio

Esempio 1

$$(2a^3b + a^2)$$
: $a^2 = ?$

Per la proprietà distributiva della divisione rispetto all'addizione ho:

$$(2a^3b:a^2)+(a^2:a^2)=2ab+1$$

Quindi in questo caso, essendo ogni termine del polinomio divisibile per il monomio, il polinomio risulta divisibile per il monomio.

$$(2a^3b + a^2)$$
: $a^2 = 2ab + 1$

Quindi: $(2ab+1) \cdot a^2 = 2a^3b + a^2$ cioè se

Esempio 2

$$(2a^3b + a^2)$$
: $a^3 = ?$

In questo caso il polinomio non è divisibile per a^3 poiché il suo 2° termine a^2 non è divisibile per a^3 .

Possiamo scrivere $\frac{2a^3b+a^2}{a^3} = 2b + \frac{1}{a}$ ma non è un polinomio.

Esercizi

1)
$$(x^3y^2 + x^2)$$
: $x = \dots$

2)
$$(3ab^2 - 2b)$$
: $b = \dots$

Divisione tra due polinomi in una sola lettera

Consideriamo polinomi contenenti una sola lettera.

Definizione: dati 2 polinomi A e B diciamo che A è divisibile per B se esiste un polinomio Q che moltiplicato per B dà A cioè:

$$\begin{array}{c|c}
A & B \\
\hline
Q & Q
\end{array}$$

Esempio

$$(x^2-1):(x+1)=?$$

Poiché sappiamo che $(x+1)(x-1) = x^2 - 1$ abbiamo

$$x^{2}-1$$
 $x+1$ poiché $(x+1)(x-1)=x^{2}-1$ $x-1$

Ma in generale come possiamo trovare il quoziente?

Per svolgere la divisione tra due polinomi possiamo seguire un procedimento simile a quello usato per la divisione tra due numeri.

Riprendiamo l'esempio precedente:

• I polinomi vanno ordinati secondo le potenze decrescenti della loro lettera e dobbiamo lasciare, nel dividendo A, degli spazi vuoti in corrispondenza delle potenze mancanti

$$x^2$$
 -1 $x+1$ A B

• Dividiamo il 1° termine del dividendo per il 1° termine del divisore e scriviamo il risultato (1° termine del quoziente Q)

$$x^2$$
 -1 $x+1$ x

• Moltiplichiamo x per ogni termine del divisore (x+1) e sottraiamo i risultati ai termini corrispondenti in grado del dividendo A (x^2-1) ; sommiamo in colonna e otteniamo -x-1

$$\begin{array}{c|c}
x^2 & -1 & x+1 \\
-x^2 - x & x
\end{array}$$

• Poiché -x-1 ha grado uguale al divisore si può ancora dividere. Ripetiamo quindi il procedimento precedente partendo da -x-1 ed in questo caso otterremo resto R=0 e quoziente Q=x-1

$$\begin{array}{c|cccc}
x^2 & -1 & x+1 \\
-x^2 - x & & x-1 \\
\hline
 & -x-1 & & Q \text{ quoziente} \\
\hline
 & x & 1 & & \\
\hline
 & y & y & y & y \\
\hline
 & y & y & y & y \\
\hline
 & y & y & y & y \\
\hline
 & y & y & y & y \\
\hline
 & y & y & y & y & y \\
\hline
 & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y & y & y & y \\
\hline
 & y & y & y &$$

NOTA IMPORTANTE

Se il resto R (di grado minore del divisore) è diverso da zero, A non è divisibile per B ma si avrà:

$$Q \cdot B + R = A$$

Esempio
$$(x^2 + x + 1): (x + 1) = ?$$

NOTA: il grado di Q è uguale alla differenza tra il grado di A e il grado di B.

Esempi svolti

1)
$$(x^3-8):(x-2)$$

Quindi $x^3 - 8$ è divisibile per x - 2 e $(x^2 + 2x + 4)(x - 2) = x^3 - 8$

2)
$$(x^3-2x+1):(2x-1)$$

Verifichiamo che $Q \cdot B + R = A$

$$\left(\frac{1}{2}x^2 + \frac{1}{4}x - \frac{7}{8}\right)(2x - 1) + \frac{1}{8} = x^3 - \frac{1}{2}x^2 + \frac{1}{2}x^2 - \frac{1}{4}x - \frac{7}{4}x + \frac{7}{8} + \frac{1}{8} = x^3 - 2x + 1$$

ESERCIZI

Somma e prodotto tra polinomi

1)
$$(4x^3 - 5x^2 + 2) + (-3x^2 + 2x^2 - 2)$$
 [$4x^3 - 6x^2$]
2) $(-8a^5 + 6a^3 + 3a - 2) + (5a^5 - 3a^3 + 2a)$ [$-3a^5 + 3a^3 + 5a - 2$]
3) $(3a^3 + 5a^2 - 2a + 1) - (3a^3 - 2a^2 + 5a - 7)$ [$7a^2 - 7a + 8$]
4) $(3x^3 - 4y^2) + (5y^2 - 4x^3) + (x^3 - y^3)$ [$y^2 - y^3$]
5) $(3x - 2) - (3x + 2) - (-2x + 1) - (-3x - 1)$ [$5x - 4$]
6) $x^2(x + y - 1) - x(x - y) - y(x^2 - 2) - xy$ [$x^3 - 2x^2 + 2y$]
7) $[-2a(3a - 2) - a] \cdot (-2a^2) - (-2a^3)(3a - 1) - 2a(9a^3)$ [$-8a^3$]
8) $(-x^3)(-x^2) \cdot (2a - 3x) - 3x^3 - 2ax(x^4 - 1)$ [$2ax$]
9) $(3a + 2)(a - 3) + (4a - 1)(a + 2)$ [$7a^2 - 8$]
10) $(2a - 1)(a + 1) - (a - 1)(2a - 3)$ [$6a - 4$]
11) $(a^3 + 2b)(a^3 - 2b) - (a^5 + a)(a - 1)$ [$a^5 - a^2 + a - 4b^2$]
12) $(4x^2 + 9y^2)(4x^2 - 9y^2) - y^3(16x^2 - 81y)$ [$16x^4 - 16x^2y^3$]
13) $(a + b)(a - b)(a^2 + b^2)$ [$a^4 - b^4$]
14) $3a(a + 2)5a - 2a(a + 3)(a - 1)$ [$13a^3 + 26a^2 + 6a$]
15) $(3x - 2y)(x - 4y) - (5x + 3y)(2x - 5y)$ [$-7x^2 + 23y^2 + 5xy$]
16) $\frac{3}{2}a(1 + 3a)(3a - 1) + 3(\frac{1}{2}a + \frac{1}{3})(a + \frac{1}{3})$ [$\frac{27}{2}a^3 + \frac{3}{2}a^2 + \frac{1}{3}$]

 $[10x^2 - 34x - 3]$

(x+3)(2x-5)+(1-3x)(4-x)+(2-5x)(4-x)

17)

Appunti di Matematica 1 – Liceo Scientifico I polinomi -

Prodotti notevoli

18)
$$3x(x+2)-(x-1)-(x+3)(x-3)-2x^2$$
 [5x+10]

19)
$$3a^2 + (2a - 5b)(2a + 5b) - b(a - 3b) + 22b^2 + ab$$
 [7a²]

20)
$$(1-2x)^2 + (x+2)^2 - 5(x^2-2)$$
 [15]

21)
$$\left(\frac{1}{2}-a\right)^2-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2(a-1)^2$$
 [3-5a]

22)
$$\left(\frac{3}{2}a - 2b\right)^2 - \left(-\frac{1}{2}a + 3b\right)^2 - 2(-a)^2$$
 [-3ab - 5b²]

23)
$$(a-1)^2 - (a-1)(a+1)(a^2-1) + (a^2+1)^2$$
 [5 $a^2 - 2a + 1$]

24)
$$(x+3)^2 - (6+x)(x-6) - (1-x)^2 + x(x-8)$$
 [44]

25)
$$(x+a+2)^2 - (x+a)^2 - 4(2+x+a)$$
 [-4]

26)
$$(a+1+2y)^2 - (a-1)(a+1) - (1+2y)^2 - 2a$$
 [1+4ay]

27)
$$a^3 - (-b)^3 - (a+b)^3 - \frac{1}{3}a(3b+1)(1-3b)$$
 $[-3a^2b - \frac{1}{3}a]$

28)
$$(x-2y)^3 - (2x-y)^3 - 6xy(x+y) + 7y^3 + 8x^3$$
 [x³]

29)
$$(x+y)^2 - 2y(x-y) - (x+y)(y-x)$$
 [2x²+2y²]

30)
$$(a^2+b^2)(a^2-b^2)-(a^2+b^2)^2+2a^2(a^2+b^2)$$
 [2 a^4-2b^4]

31)
$$(x+1)^3 + 3(x+1)^2 + 3(x+1) + 1$$
 $[x^3 + 6x^2 + 12x + 8]$

32)
$$(2a+x-2)^2 + 4a(2-x) - (x-3)^2 - [(-2a)^2 - 5]$$
 [2x]

Appunti di Matematica 1 – Liceo Scientifico I polinomi -

33) 16)
$$(a-3)(a+3)-(2a+1)^2$$
 [$-3a^2-4a-10$]

34)
$$\left(\frac{1}{2}x - y\right)\left(y + \frac{1}{2}x\right) + \frac{1}{2}(x + y)^2$$
 $\left[\frac{3}{4}x^2 - \frac{1}{2}y^2 + xy\right]$

35)
$$(x-2y)(2y-x)-(x+y)(x-y)$$
 [$-2x^2-3y^2+4xy$]

36)
$$\left(\frac{1}{3}a+1\right)\left(\frac{1}{3}a-1\right)+\left(a-1\right)^2-\frac{2}{9}a(5a-9)$$
 [0]

37)
$$(2x-1)^2 + \left(\frac{3}{2}x-1\right)^2$$
 $\left[\frac{25}{4}x^2 - 7x + 2\right]$

38)
$$(x+2y)^2 - (x-2y)^2 - 8xy$$
 [0]

39)
$$\left(x - \frac{y}{2}\right)^2 + \left(x + \frac{y}{2}\right)^2 - \frac{y^2}{2}$$
 [$2x^2$]

40)
$$(2x-3y)(2x+3y)-(2x+3y)^2$$
 [$-18y^2-12xy$]

41)
$$(xy+1)(1-xy)+(xy+1)^2$$
 [$2xy+2$]

42)
$$(a^2-2)^2-(a^2-2)(a^2+1)-a^2-6$$
 [$-4a^2$]

43)
$$(3x-y^2)^2 - (3x+y^2)(3x-2y^2) - y^2(y^2-3x+2y^2)$$
 [0]

44)
$$2x(3x-2y)^2 + x(x+4y)(x-4y) + 8xy^2$$
 [$19x^3 - 24x^2y$]

45)
$$(5ab-3a)^2 - 2(5ab-3a)(3a+5ab) + (4a+5ab)^2$$
 [$43a^2 + 10a^2b$]

46)
$$[(x+1)(x-1)]^2 - (2+x^2)^2 + \frac{3}{2}(2x-3)(2x+3)$$
 [-\frac{33}{2}]

47)
$$2(y-3x)^2 + 2(2x+y)(y-2x) - 9x^2 - 2xy - (2y-x)^2$$
 [-10xy]

Calcolo letterale e geometria

48) Determina perimetro e area della figura tratteggiata.

$$[2p = 12a + 6b; A = 16ab]$$

49) Determina perimetro e area del rombo in figura sapendo che $\overline{AC} = 6a$; $\overline{BD} = 8a$.

$$[2p = 20a; A = 24a^2]$$

50) Determina l'area A del settore circolare tratteggiato sapendo che il raggio misura 2a.

$$[A = \frac{10}{3}\pi a^2]$$

51) Considera un rettangolo R di dimensioni a e b . Se a viene aumentato del 50% e b viene diminuito del 50% come risulta l'area del nuovo rettangolo R'? Come risulta rispetto all'area di R?

$$[A_{R'} = \frac{3}{4}ab; A_{R'} = \frac{3}{4}A_{R}]$$

Appunti di Matematica 1 – Liceo Scientifico I polinomi -

52) Determina l'area della zona tratteggiata.

 $[14a^2]$

53) Determina l'area di un esagono regolare di lato 2a.

$$[A = 6\sqrt{3}a^2]$$

54) Considera un quadrato di lato 3a e determina l'area della zona tratteggiata .

 $[A = \frac{7}{2}a^2]$

55) Determina perimetro e area della figura seguente.

 $[6r + 3\pi r; \frac{5}{2}\pi r^2]$

56) Un parallelepipedo rettangolo ha dimensioni *a*, 2*a*, 3*a* . Calcola il suo volume V. Aumenta di 1 tutte le dimensioni e calcola il nuovo volume V'.

$$[V = 6a^3; V' = 6a^3 + 11a^2 + 6a + 1]$$

57) Calcola l'area A della zona tratteggiata.

$$[A = a^2 + b^2]$$

58) Calcola l'area del quadrato ABCD di lato $\overline{AB} = 2a + 3$ e l'area del quadrato A'B'C'D' ottenuto congiungendo i punti medi. Come risulta l'area di A'B'C'D' rispetto all'area di ABCD?

[
$$A(ABCD) = 4a^2 + 9 + 12a$$
; $A(A'B'C'D') = 2a^2 + \frac{9}{2} + 6a$]

59) Determina perimetro e area del trapezio ABCD.

$$[2p = 18a; A = 15a^2]$$

Divisione tra polinomi in una sola lettera

60)
$$(x^4 + 3x^2 - 4):(x^2 - 4)$$
 [$Q = x^2 + 7$; $R = 24$]

61)
$$(15a^3 - 8a^2 - 9a + 2): (3a + 2)$$
 $[Q = 5a^2 - 6a + 1; R = 0]$

62)
$$(7a-a^3+2+a^2):(a^2+2)$$
 [$Q=-a+1$; $R=9a$]

63)
$$(16x^5 - 8x^3 + 2x - 1): (x^3 - 1)$$
 $[Q = 16x^2 - 8; R = 16x^2 + 2x - 9]$

64)
$$(2a^3 - 4a^2 + a + 2): (2a^2 + a - 1)$$
 $[Q = a - \frac{5}{2}; R = \frac{9}{2}a - \frac{1}{2}]$

65)
$$(x^5 - x^3 + 1): (x^2 + 1)$$
 $[Q = x^3 - 2x ; R = 2x + 1]$

66)
$$(y^3 - 5y^2 + 3y - 6): (y^2 + 1 - 2y)$$
 [$Q = y - 3$; $R = -4y - 3$]

67)
$$\left(-3y^3 + 11y^2 - 9y - 2\right): \left(3y^2 - 5y - 1\right)$$
 $\left[Q = 2 - y ; R = 0\right]$

68)
$$(a^2 - a - 12): (a - 4)$$
 [$Q = a + 3; R = 0$]

(69)
$$(2x^3 - 9x + 1): (x - 3)$$
 [$Q = 2x^2 + 6x + 9$; $R = 28$]

70)
$$(3x^3 + x^2 - 8x + 4):(x+2)$$
 [$Q = 3x^2 - 5x + 2$; $R = 0$]

71)
$$(b^2 - b + b^3 + 15): (3+b)$$
 [$Q = b^2 - 2b + 5$; $R = 0$]

72)
$$(2x^3 - x - 3x^2 + 2):(x-1)$$
 [$Q = 2x^2 - x - 2$; $R = 0$]

SCHEDA PER IL RECUPERO

CALCOLO LETTERALE: MONOMI E POLINOMI

1.
$$\left(-\frac{1}{3}x\right)^2 \cdot \left(-2y\right) + \left(-xy\right)^3 + xy \cdot \left(-\frac{1}{9}x\right) + x^3y \cdot \left(-y\right)^2$$
 $\left[-\frac{1}{3}x^2y\right]$

2.
$$\left[-3xy \cdot \left(\frac{1}{9}x^2y\right) - y^2 \cdot (-x)^3\right] : (-x)^2 + 2x^2y^2 : (-x)$$
 $\left[-\frac{4}{3}xy^2\right]$

3. In un triangolo isoscele la base misura 10a e il lato obliquo 13a. Determina perimetro e area del triangolo.

$$[36a ; 60a^2]$$

4. Un quadrato ha lato che misura 4a. Calcola perimetro, area e misura della diagonale.

$$[16a; 16a^2; 4a\sqrt{2}]$$

5. Considera un triangolo equilatero di lato 3b. Determina perimetro e area del triangolo.

$$[9b; \frac{9}{4}\sqrt{3}b^2]$$

6.
$$(x+3)\cdot(2x-5)+(1-3x)\cdot(4-x)+(2-5x)\cdot(4-x)$$
 [$10x^2-34x-3$]

7.
$$\left(\frac{1}{2}-a\right)^2 - 3\cdot\left(a-\frac{1}{2}\right)\cdot\left(a+\frac{1}{2}\right) + 2\cdot\left(a-1\right)^2$$
 [3-5a]

8.
$$(a-2b)^2 - (a+b)\cdot (a-b)$$
 [5b² - 4ab]

9.
$$(2a^2b+ab^3): a+(a-b)^2$$
 [$a^2+b^2+b^3$]

10-
$$(a-2b)^3 - (a-b) \cdot (a^2 + 2ab) - (-2b)^3$$
 [-7 $a^2b + 14ab^2$]

11.
$$(x^3 + x^2 - 1): (x + 1)$$
 [$Q = x^2; R = -1$]

12.
$$(2x^2 - 3x^3 + x + 2):(x - 2)$$
 [$Q = -3x^2 - 4x - 7; R = -12$]

La scomposizione dei polinomi

Scomporre in fattori un polinomio significa scriverlo come prodotto di polinomi di grado inferiore.

Esempio: $x^2 - 1 = (x+1)(x-1)$

Osserviamo che l'uguaglianza, letta da destra verso sinistra, è il prodotto notevole (A + B)(A - B).

Metodi per la scomposizione di un polinomio

Raccoglimento a fattor comune

Se in tutti i termini di un polinomio è contenuto lo stesso fattore (che può essere anche un numero) si può "raccogliere" questo fattore comune (si dice anche "mettere in evidenza")

Esempi

1)
$$3x^{2} - 2x = x(3x - 2)$$

2)
$$4x^3 - 2x^2 + 8x = 2x(2x^2 - x + 4)$$

Nota importante: il fattore comune può essere un polinomio.

Esempi

1)
$$2(a^2+b)-3a(a^2+b)=(a^2+b)(2-3a)$$

2)
$$(x+y)^2 + 2(x+y) = (x+y)(x+y) + 2(x+y) = (x+y)[(x+y)+2] = (x+y)(x+y+2)$$

Raccoglimento parziale

Esempio: $x^3 - x^2 + 4x - 4 =$ raccogliamo x^2 tra i primi due termini e il numero 4 tra il 3° ed il 4° termine

$$= x^{2}(x-1) + 4(x-1) =$$
 possiamo raccogliere $(x-1)$

$$= (x-1)(x^2+4)$$

Osservazione: è come percorressimo all'indietro i passaggi per la moltiplicazione di due polinomi.

NOTA: perché questo metodo funzioni è essenziale che dopo il primo raccoglimento si possa ancora raccogliere.

Esempio:
$$x^3 - x^2 + 4x + 4 = x^2(x-1) + 4(x+1)$$
 ... non funziona!

• Scomposizioni collegate ai prodotti notevoli

Esempio:
$$x^2 - 4 = (x+2)(x-2) \leftarrow A^2 - B^2 = (A+B)(A-B)$$

 $x^2 - y^2 = (x+y)(x-y)$
 $9x^2 - 1 = (3x+1)(3x-1)$
 $4a^2 - b^2 = (2a+b)(2a-b)$

Esempio:
$$x^2 + 2x + 1 = (x+1)^2 \leftarrow A^2 + 2AB + B^2 = (A+B)^2$$

 $x^2 - 2x + 1 = (x-1)^2 \leftarrow A^2 - 2AB + B^2 = (A-B)^2$
 $4x^2 + 4x + 1 = (2x+1)^2$
 $9b^2 - 6b + 1 = (3b-1)^2$
 $25x^2 - 10xy + y^2 = (5x - y)^2$

Esempio:
$$x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = (x + y + z)^2 \leftarrow (A + B + C)^2 = ...$$

 $x^2 + y^2 + 4 + 2xy + 4x + 4y = (x + y + 2)^2$
 $4a^2 + b^2 + 1 + 4ab + 4a + 2b = (2a + b + 1)^2$

Esempio:
$$x^3 + 3x^2 + 3x + 1 = (x+1)^3 \leftarrow (A+B)^3 = \dots$$

 $8a^3 - 12a^2 + 6a - 1 = (2a-1)^3$

NOTA: differenza di cubi, somma di cubi

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Infatti
$$(A-B)(A^2+AB+B^2)=A^3+\underline{A^2B}+\underline{\underline{AB^2}}-\underline{A^2B}-\underline{\underline{AB^2}}-B^3=A^3-B^3$$

Quindi per esempio: $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

Analogamente
$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

Quindi per esempio: $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$

Esempi

$$x^{3} + 1 = (x+1)(x^{2} - x + 1)$$

$$x^{3} - 1 = (x-1)(x^{2} + x + 1)$$

$$8a^{3} + 1 = (2a+1)(4a^{2} - 2a + 1)$$

$$8a^{3} - 1 = (2a-1)(4a^{2} + 2a + 1)$$

• Scomposizione con il "teorema di Ruffini"

Consideriamo un polinomio contenente una sola lettera, per esempio

$$P(x) = 2x^3 - 5x^2 + 5x - 6$$

Se non riusciamo a scomporlo con i metodi considerati finora possiamo provare ad utilizzare il seguente teorema di Ruffini.

Teorema di Ruffini

Dato un polinomio P(x), se sostituendo alla lettera x un valore a otteniamo zero, cioè se P(a) = 0, allora il polinomio è divisibile per (x - a) e viceversa.

Dimostrazione

Supponiamo di dividere P(x) per x-a: avremo $P(x) = (x-a) \cdot Q(x) + R$.

Sostituendo a x il valore a abbiamo P(a) = R ma per ipotesi P(a) = 0 e quindi si ha che $R = 0 \Rightarrow P(x)$ è divisibile per x-a.

Viceversa se P(x)è divisibile per (x-a) vuol dire che $P(x) = (x-a) \cdot Q(x)$ e quindi sostituendo alla lettera x il valore a otterrò come risultato zero

$$P(a) = \left(\underbrace{a-a}_{0}\right) \cdot Q(a) = 0$$

Nel nostro esempio abbiamo che

$$P(2) = 2 \cdot 8 - 5 \cdot 4 + 5 \cdot 2 - 6 = 0$$

e quindi (x-2) è un divisore di P(x).

Eseguiamo la divisione

Quindi
$$2x^3 - 5x^2 + 5x - 6 = (x - 2)(2x^2 - x + 3)$$

Appunti di Matematica 1 – Liceo Scientifico Scomposizione dei polinomi -

NOTA: ma come facciamo a sapere se esiste un numero intero a che annulla il polinomio?

Se a intero esiste, deve essere un divisore del termine noto di P(x): infatti se osserviamo l'ultimo passaggio della divisione dell'esempio, per avere R=0 dovrà essere

$$a \cdot \text{numero} = \text{termine noto di } P(x)$$

e quindi a deve essere (se è intero) un divisore del termine noto del polinomio.

Nel nostro esempio quindi avremmo dovuto provare a sostituire alla lettera x i divisori di -6 cioè

$$\pm 1$$
 ; ± 2 ; ± 3 ; ± 6

Generalmente si parte da ± 1 e si va avanti con i divisori finché non si trova a: P(a) = 0.

Se nessun divisore annulla il polinomio vuol dire che non c'è a intero tale che P(x) sia divisibile per x-a.

Esempio:
$$P(x) = x^3 - 2x^2 - x - 6$$

I divisori di -6 sono: ± 1 ; ± 2 ; ± 3 ; ± 6

$$P(1) = 1 - 2 - 1 - 6 \neq 0$$

$$P(-1) = -1 - 2 + 1 - 6 \neq 0$$

$$P(2) = 8 - 8 - 2 - 6 \neq 0$$

$$P(-2) = -8 - 8 + 2 - 6 \neq 0$$

$$P(3) = 27 - 18 - 3 - 6 = 0$$

Quindi $x^3 - 2x^2 - x - 6$ è divisibile per x - 3: possiamo eseguire la divisione per scomporre il polinomio:

Quindi
$$x^3 - 2x^2 - x - 6 = (x - 3)(x^2 + x + 2)$$

NOTA IMPORTANTE

Scomposizione di particolari trinomi di secondo grado (metodo della somma e del prodotto)

Esempio 1

Consideriamo il trinomio $x^2 - 5x + 6$.

Possiamo cercare di scomporlo con il teorema di Ruffini e abbiamo che

$$P(2) = 4 - 10 + 6 = 0$$

Dividendo $x^2 - 5x + 6$ per x - 2 otteniamo x - 3 e quindi

$$x^{2}-5x+6=(x-2)\cdot(x-3)$$

Ma in questo caso c'è un procedimento più veloce se riusciamo a trovare due numeri p,q tali che

$$\begin{cases} p+q=m \\ p\cdot q=n \end{cases}$$

Nel nostro caso si vede facilmente che questi numeri ci sono e sono

$$p = -2$$
, $q = -3$

Se allora scriviamo

$$x^2 - 5x + 6 = x^2 - 2x - 3x + 6$$

possiamo fare un raccoglimento parziale

$$x^{2}-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)$$

e quindi scomporre il trinomio.

In generale se abbiamo un trinomio di secondo grado con coefficiente di x^2 uguale a 1 e ci sono due numeri interi la cui somma dà il coefficiente di grado 1 e il cui prodotto dà il termine noto possiamo scrivere:

$$x^{2} + ax + b = x^{2} + (p+q)x + p \cdot q = x^{2} + px + qx + p \cdot q = x(x+p) + q(x+p) = (x+p)(x+q)$$

Esempio 2

Consideriamo il trinomio $x^2 + x - 2$

In questo caso, cercando le combinazioni di segni di 1,2 che danno come prodotto -2 e come somma 1, abbiamo p = 2, q = -1 e quindi abbiamo:

$$x^{2} + 2x - x - 2 = x(x+2) - (x+2) = (x+2)(x-1)$$

Esempio 3

Consideriamo il trinomio $x^2 + x + 1$: ci si rende conto che non si trovano due numeri che abbiano somma 1 e prodotto 1. Anche con Ruffini abbiamo che P(1) = 3, P(-1) = 1. Quindi questo trinomio non possiamo scomporlo (si dice irriducibile).

ESERCIZI

Raccoglimento a fattor comune, raccoglimento parziale

1)
$$3x+6y$$
 ; a^3x-a^3y ; x^3+4x

2)
$$8a^4 - 4a^3 + 2a^2$$
; $3xy + 6x^2 - 9y^2$; $a^2b - ab$

3)
$$2ab-4a^2$$
 ; $\frac{1}{2}a^3+\frac{1}{2}a$; $2ax-4a+2a^2$

4)
$$5x-10xy+15y$$
; $-27a^2+9ay-18a$; $-6a^3+9a^2b+3a^2$

5)
$$(x+3y)-(x+3y)^2$$
 ; $(a-b)^2-(a-b)$; $(2x-3y^2)^3+(2x-3y^2)^2$

6)
$$5ay - y - 5a + 1$$
 $[(5a - 1)(y - 1)]$

7)
$$x^2y^2 + 1 + x^2 + y^2$$
 $[(x^2 + 1)(y^2 + 1)]$

8)
$$3a^2b-2a+12ab-8$$
 [$(3ab-2)(a+4)$]

9)
$$x^3 + 12x^2 + 6x + 72$$
 $[(x+12)(x^2+6)]$

10)
$$5ax + 2ay + 5bx + 2by$$
 [$(5x + 2y)(a + b)$]

11)
$$ay - by - b + a$$
 [$(a-b)(y+1)$]

12)
$$(a+b)^2 - ax - bx$$
 [$(a+b)(a+b-x)$]

13)
$$ay - 4a - 3y + 12$$
 $[(y-4)(a-3)]$

14)
$$2ax + 4x - 3a - 6$$
 [$(a+2)(2x-3)$]

15)
$$a^2bx + a^2b + bxy^2 + by^2$$
 $[b(x+1)(a^2+y^2)]$

16)
$$x^4 + 4x^2 - x^3y - 4xy$$
 $[x(x^2 + 4)(x - y)]$

Scomposizione con prodotti notevoli

17)
$$x^2 - 49y^2$$
 ; $9 - a^2b^2$

18)
$$4x^2 - 9y^2$$
 ; $25a^6b^8 - \frac{1}{4}$

19)
$$81-a^2$$
 ; $16x^2-a^4$

20)
$$x^4 - y^4$$
 $[(x^2 + y^2)(x + y)(x - y)]$

21)
$$5z^2-5$$
 ; x^3-9xy^2 ; $25a^5b^3-a^3b$

22)
$$a^2x - b^2x + a^2y - b^2y - a^2 + b^2$$
 [$(a+b)(a-b)(x+y-1)$]

23)
$$(3a-x)^3-4(3a-x)$$
 $[(3a-x)(3a-x+2)(3a-x-2)]$

24)
$$4a^3 - 4a^2 - 4a + 4$$
 [4(a-1)(a-1)(a+1)]

25)
$$9b-18-(b^2-4)$$
 [$(b-2)(7-b)$]

26)
$$9x^2 + 6x + 1$$
 ; $a^2 + 4ab + 4b^2$

27)
$$y^2 - 6y + 9$$
 ; $4 + 9b^2 - 12b$

28)
$$x^2 - 4x + 4$$
 ; $25x^2 - 60x + 36$

29)
$$4a-4a^2-1$$
 ; $9y^2+\frac{1}{4}-3y$

30)
$$4a^2 + 4ab + b^2 - c^2$$

 $[(2a+b+c)(2a+b-c)]$

31)
$$25x^2 - y^2 - 10x + 1$$
 [$(5x - 1 + y)(5x - 1 - y)$]

32)
$$a^2 - x^2 + 2xy - y^2$$
 [$(a - x + y)(a + x - y)$]

33)
$$a^2 - 4b - b^2 - 4$$
 [$(a+b+2)(a-b-2)$]

Appunti di Matematica 1 – Liceo Scientifico Scomposizione dei polinomi -

34)
$$27x^3 + 27x^2 + 9x + 1$$
 [(3x+1)³]

35)
$$a^3 - 6a^2b + 12ab^2 - 8b^3$$
 [$(a-2b)^3$]

36)
$$-a^3 + 3a^2b - 3ab^2 + b^3$$
 [$(b-a)^3$]

37)
$$x^6 + 1 + 3x^4 + 3x^2$$
 $[(x^2 + 1)^3]$

38)
$$8a^3 + b^3$$
 ; $\frac{8}{27}a^3 - 1$

39)
$$27x^3 - 1$$
 ; $125a^3 + 8b^3$

40)
$$x^3 + 27$$
 ; $a^3b^3 + 1$

41)
$$24x^7 - 3x$$
 $[3x(2x^2 - 1)(4x^4 + 2x^2 + 1)]$

42)
$$2x^9 + x^6 - 2x^3 - 1$$
 $[(2x^3 + 1)(x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)]$

43)
$$2a^2 + 2b^2 + 12a + 12b + 4ab + 18$$
 [$2(a+b+3)^2$]

44)
$$x^4 + 2x^3 - x - 2$$
 [$(x-1)(x+2)(x^2+x+1)$]

45)
$$x^3 - 2x^2 - 9x + 18$$
 [$(x+3)(x-3)(x-2)$]

46)
$$5x^4y^4 - 10x^2y^2 + 5$$
 [$5(xy+1)^2(xy-1)^2$]

47) Determina l'area del quadrato in figura come differenza tra l'area *A* del quadrato ABCD e le aree dei triangoli:

Teorema di Ruffini, trinomio di secondo grado

48)
$$x^2 - x - 2$$
 [(x+1)(x-2)]

49)
$$2x^2 + 3x - 2$$
 [$(x+2)(2x-1)$]

50)
$$x^2 - 6x + 8$$
 $[(x-2)(x-4)]$

51)
$$x^3 - x^2 - 3x - 9$$
 [$(x-3)(x^2 + 2x + 3)$]

52)
$$2b^3 + 5b^2 - 4b - 3$$
 [(b-1)(b+3)(2b+1)]

53)
$$3b^3 - 4b^2 + 5b - 4$$
 [$(b-1)(3b^2 - b + 4)$]

54)
$$x^3 - 3x - 2$$
 [$(x+1)^2(x-2)$]

55)
$$x^2 - 6x + 5$$
 [$(x-1)(x-5)$]

56)
$$x^3 - 2x^2 - 5x + 6$$
 [$(x-1)(x+2)(x-3)$]

57)
$$6x^4 - 5x^3 - 2x^2 + x$$
 [$x(x-1)(6x^2 + x - 1)$]

58)
$$y^4 - 4y^3 - 2y^2 + 9y - 4$$
 [$(y-4)(y-1)(y^2 + y-1)$]

59)
$$x^2 + 5x + 4$$
 [$(x+1)(x+4)$]

ESERCIZI DI RICAPITOLAZIONE

Scomposizione dei polinomi

 $a^3 - a^2b - ab - a$

79)

[a(a+1)(a-b-1)]

Appunti di Matematica 1 – Liceo Scientifico Scomposizione dei polinomi -

Problemi

- 100) Considera la somma di due numeri dispari consecutivi. Cosa osservi? Puoi dimostrare che la somma di due numeri dispari consecutivi è sempre un multiplo di 4?
- 101) Considera la differenza tra il quadrato di un numero dispari e 1. Cosa osservi? Come puoi dimostrare che il numero che si ottiene è divisibile per 8?
- 102) Il gioco "Pensa un numero..."

Il gioco è questo: si chiede a qualcuno di pensare un numero (intero) e poi gli si chiede di svolgere mentalmente queste operazioni:

- addiziona al numero 12
- moltiplica il risultato per 5
- sottrai 4 volte il numero pensato
- addiziona al risultato 40

Alla fine viene chiesto il risultato finale: sottraendo 100 da tale risultato si "indovina" il numero pensato in partenza.

Perché?

Prova a capirlo..

Suggerimento: indica con x il numero pensato e prova ad eseguire le operazioni indicate...

103) Un appezzamento di terreno è costituito da un quadrato ABCD e all'interno c'è uno stagno di forma quadrata EFGH.

Per recintare sia il perimetro esterno del terreno che il bordo dello stagno sono stati necessari 360m di rete; la recinzione di ABCD ha richiesto 280m di rete in più rispetto alla recinzione di EFGH. Qual è l'area della parte calpestabile dell'appezzamento?

 $|6300m^2|$

- Appunti di Matematica 1 – Liceo Scientifico -- Scomposizione dei polinomi -

SCHEDA PER IL RECUPERO

CALCOLO LETTERALE: SCOMPOSIZIONE DI UN POLINOMIO

1.
$$x^2 + xy + x + y$$
 [$(x + y)(x + 1)$]
2. $x^2 + 2xy + 2x + 4y$ [$(x + 2y)(x + 2)$]
3. $6a + axy - 3ay - 2ax$ [$a(x - 3)(y - 2)$]
4. $16a^2 - 36b^2$ [$4(2a - 3b)(2a + 3b)$]
5. $a^2 + 6a + 9$ [$(a + 3)^2$]
6. $2a^2 + 12a + 18$ [$2(a + 3)^2$]
7. $a^2 + 6a + 9 - b^2$ [$(a + 3 + b)(a + 3 - b)$]
8. $\frac{4}{9}a^2 - b^2$ [$(a + 3)(2a + 3b)$]
9. $x^2 - xy + \frac{1}{3}ax - \frac{1}{3}ay$ [$(x - y)(x + \frac{1}{3}a)$]
10. $3x(a - b) - 2(a - b)$ [$(a - b)(3x - 2)$]
11. $x^3 - x^3$ [$x^3(x + 1)(x - 1)$]
12. $4a^2b^3 - 6ab^2$ [$2ab^2(2ab - 3)$]
13. $(x + y)^2 - 1$ [$(x + y + 1)(x + y - 1)$]
14. $9a^2 - 9b^2$ [$9(a + b)(a - b)$]
15. $x^4 - 1$ [$(x^2 + 1)(x + 1)(x - 1)$]
16. $8x^3 - 12x^2y + 6xy^2 - y^3$ [$(2x - y)^3$]
17. $x^2 - y^3$ [$(x - y)(x^2 + xy + y^2)$]
18. $27a^3 + 8$ [$(3a + 2)(9a^2 - 6a + 4)$]
19. $x^2 - 2x - 8$ [$(x - 2)(x + 4)$]

 $x^2 + 5x + 4$

20.

[(x+1)(x+4)]

Le frazioni algebriche

Definizione: se A e B sono due polinomi e B è diverso dal polinomio nullo, $\frac{A}{B}$ viene detta frazione algebrica.

Esempio:
$$\frac{x^2 - 1}{x + 3}$$
 ; $\frac{a^2 + b^2}{3a - b}$; $\frac{x + 1}{x}$

sono esempi di frazioni algebriche.

NOTA: ogni monomio o polinomio può essere considerato come una frazione algebrica il cui denominatore è il monomio 1.

L'insieme delle frazioni algebriche è un ampliamento dell'insieme dei polinomi.

Così come abbiamo imparato a semplificare, sommare, moltiplicare le frazioni numeriche vedremo come si possono semplificare, sommare ecc. le frazioni algebriche.

Per prima cosa però dobbiamo studiare la cosiddetta "condizione di esistenza" (C.E.) di una frazione algebrica: infatti abbiamo detto che il denominatore deve essere un polinomio diverso da zero e dobbiamo quindi escludere i valori delle lettere che annullano il denominatore della frazione.

Condizione di esistenza di una frazione algebrica

Una frazione algebrica perde significato per tutti i valori delle lettere che annullano il denominatore della frazione.

Determinare le "condizioni di esistenza" (abbreviato con C.E.) significa individuare i valori delle lettere che annullano il denominatore della frazione algebrica e per determinarli è necessario *risolvere un'equazione*.

Esempio 1

Per determinare il campo di esistenza della frazione algebrica $\frac{a+3}{5a-2}$ dobbiamo risolvere l'equazione 5a-2=0 (per determinare il valore di a che annulla il denominatore).

Per risolvere l'equazione di primo grado 5a - 2 = 0

- si "sposta" il termine -2 cambiandolo di segno poiché se 5a-2=0 è chiaro che 5a=2;
- a questo punto si divide 2 per il coefficiente 5, cioè si ha $a = \frac{2}{5}$.

Quindi il C.E. della frazione algebrica è : $a \neq \frac{2}{5}$

Esempio 2

Per determinare il campo di esistenza della frazione algebrica $\frac{b^2+1}{\frac{1}{2}b+3}$ dobbiamo risolvere

1'equazione $\frac{1}{2}b + 3 = 0$. Abbiamo: $\frac{1}{2}b = -3 \rightarrow b = \frac{-3}{\frac{1}{2}} = -6$ o direttamente $b = (-3) \cdot 2 = -6$

Quindi il C.E. è : $b \neq -6$

Esempio 3

Per determinare il campo di esistenza della frazione algebrica $\frac{x+5}{x^2-4}$ dobbiamo risolvere

l'equazione $x^2 - 4 = 0$. Se l'equazione è di grado superiore al primo dobbiamo prima di tutto scomporla : in questo caso abbiamo:

$$x^2 - 4 = (x+2)(x-2)$$

Quindi dobbiamo risolvere (x+2)(x-2)=0

Sappiamo che un prodotto è nullo quando almeno uno dei fattori è nullo e quindi

$$(x+2) = 0 \rightarrow x = -2$$
$$(x-2) = 0 \rightarrow x = 2$$

In conclusione il C.E. è : $x \neq \pm 2$.

Esempio 4

Per determinare il campo di esistenza della frazione algebrica $\frac{a+3}{a^2+a}$ dobbiamo risolvere l'equazione $a^2+a=0$.

Anche in questo caso scomponiamo (mettendo in evidenza):

$$a^2 + a = a(a+1)$$

Quindi dobbiamo risolvere

$$a(a+1)=0$$

Abbiamo:

$$a = 0$$
$$a + 1 = 0 \rightarrow a = -1$$

e in conclusione il C.E. è: $a \neq 0$; $a \neq -1$

Esempio 5

Per determinare il campo di esistenza della frazione algebrica $\frac{b+4}{b^2-5b+6}$ dobbiamo risolvere l'equazione $b^2-5b+6=0$.

Scomponiamo il denominatore con Ruffini ed abbiamo $b^2 - 5b + 6 = (b-2)(b-3)$.

$$(b-2)(b-3)=0 \rightarrow b=2, b=3$$

In conclusione C.E.: $b \neq 2$, $b \neq 3$

Esempio 6

Per determinare il campo di esistenza della frazione algebrica $\frac{y-2}{y^3-1}$ dobbiamo risolvere l'equazione $y^3-1=0$.

Poiché $y^3 - 1 = (y - 1)(y^2 + y + 1)$ abbiamo che $(y - 1)(y^2 + y + 1) = 0 \rightarrow y = 1$ (l'equazione $y^2 + y + 1$ non si scompone ulteriormente e quindi non ci sono altre soluzioni reali).

Quindi C.E: $y \neq 1$

Il calcolo con le frazioni algebriche

Semplificazione di una frazione algebrica

Come per le frazioni numeriche, dividendo numeratore e denominatore di una frazione algebrica per uno stesso polinomio (diverso da zero) si ottiene una frazione algebrica equivalente.

Esempio:
$$\frac{x^2 - 1}{x^2 + x} = \frac{(x+1)(x-1)}{x(x+1)} = \frac{x-1}{x}$$

(C.E.
$$x \neq 0$$
 e $x \neq -1$)

Attenzione: si semplificano i fattori della scomposizione del numeratore e del denominatore e mai gli addendi!

$$\frac{x^2 - \cancel{\lambda}}{x - \cancel{\lambda}}$$
 ERRORE GRAVE!

Somma algebrica

Per sommare due o più frazioni algebriche bisogna prima di tutto ridurle allo stesso denominatore (come per le frazioni numeriche).

Esempio:

$$\frac{x}{x-1} + \frac{1}{x+2} = ?$$

Dobbiamo prendere come denominatore comune il m.c.m. dei denominatori, in questo caso (x-1)(x+2)

$$\frac{x(x+2)+1(x-1)}{(x-1)(x+2)} = \frac{x^2+2x+x-1}{(x-1)(x+2)} = \frac{x^2+3x-1}{(x-1)(x+2)}$$

Importante: per determinare il mc.m. dei denominatori delle frazioni algebriche da sommare occorre scomporli.

Esempi

1)
$$\frac{2}{x^2 - 1} + \frac{1}{x - 1} = \frac{2}{(x - 1)(x + 1)} + \frac{1}{x - 1} = \frac{2 + 1(x + 1)}{(x - 1)(x + 1)} = \frac{x + 3}{(x - 1)(x + 1)}$$

2)
$$\frac{1}{x^2 + x} + \frac{2}{x^2} = \frac{1}{x(x+1)} + \frac{2}{x^2} = \frac{x + 2(x+1)}{x^2(x+1)} = \frac{3x + 2}{x^2(x+1)}$$

3)
$$\frac{2}{a^2 + 2ab + b^2} + \frac{a}{2a + 2b} = \frac{2}{(a+b)^2} + \frac{a}{2(a+b)} = \frac{4 + a(a+b)}{2(a+b)^2} = \frac{a^2 + ab + 4}{2(a+b)^2}$$

4)
$$\frac{3x}{x^3 - 1} - \frac{1}{x - 1} = \frac{3x}{(x - 1)(x^2 + x + 1)} - \frac{1}{x - 1} = \frac{3x - (x^2 + x + 1)}{(x - 1)(x^2 + x + 1)} = \dots$$

5)
$$\frac{1}{x^2 - 4x + 4} - \frac{x}{x^2 - 2x} = \frac{1}{(x - 2)^2} - \frac{x}{x(x - 2)} = \frac{1 - (x - 2)}{(x - 2)^2} = \frac{3 - x}{(x - 2)^2}$$

6)
$$\frac{1}{x-3} + \frac{2}{x^2 - 9} - \frac{x}{2x+6} = \frac{1}{x-3} + \frac{2}{(x-3)(x+3)} - \frac{x}{2(x+3)} = \frac{2(x+3)+4-x(x-3)}{2(x-3)(x+3)} = \dots$$

7)
$$\frac{1}{a^2 + ab + 2a + 2b} - \frac{2}{a^2 + 4a + 4} + \frac{b}{3a + 3b} =$$

$$\frac{1}{a(a+b)+2(a+b)} - \frac{2}{(a+2)^2} + \frac{b}{3(a+b)} = (a+b)(a+2)$$

$$\frac{3(a+2)-6(a+b)+b(a+2)^2}{3(a+b)(a+2)^2} = \dots$$

Moltiplicazione

Il prodotto di due o più frazioni algebriche è una frazione algebrica che ha per numeratore il prodotto dei numeratori e per denominatore il prodotto dei denominatori.

$$\frac{A \cdot C}{B \cdot D} = \frac{A \cdot C}{B \cdot D}$$

Esempi

1)
$$\frac{x-1}{x+2} \cdot \frac{x}{x-3} = \frac{(x-1)x}{(x+2)(x-3)}$$
 (C.E. $x \neq -2$ e $x \neq 3$)

2)
$$\frac{x^2 - 1}{x + 2} \cdot \frac{1}{x - 1} = \frac{(x - 1)(x + 1)}{x + 2} \cdot \frac{1}{(x - 1)} = \frac{x + 1}{x + 2}$$

NOTA: prima di moltiplicare conviene scomporre numeratore e denominatore delle frazioni algebriche per effettuare eventuali semplificazioni.

Divisione

Il quoziente di due frazioni algebriche è la frazione algebrica che si ottiene moltiplicando la prima frazione per la reciproca della seconda.

$$\frac{A}{B} : \frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C} \qquad (B \neq 0 ; D \neq 0 ; C \neq 0)$$

Esempio

$$\frac{x}{x^2 - 1} : \frac{x}{2x + 2} = \frac{x}{(x - 1)(x + 1)} : \frac{x}{2(x + 1)} =$$

$$= \frac{x}{(x - 1)(x + 1)} \cdot \frac{2(x + 1)}{x} = \frac{2}{x - 1}$$
(C.E. $x \neq \pm 1$ e $x \neq 0$)

Potenza

$$\left(\frac{A}{B}\right)^n = \frac{A^n}{B^n}$$

Esempio
$$\left(\frac{a+b}{a^2+3b}\right)^2 = \frac{(a+b)^2}{\left(a^2+3b\right)^2}$$

ESERCIZI

Determina le condizioni di esistenza delle seguenti frazioni algebriche

1)
$$\frac{2}{3x+6}$$
 ; $\frac{1}{2x-2}$; $\frac{2x+3}{2x+4}$; $\frac{a}{a^2+a}$

2)
$$\frac{3x}{x^2+1}$$
 ; $\frac{x}{x^2-1}$; $\frac{5}{4-x^2}$; $\frac{1}{9-b^2}$

3)
$$\frac{2}{a^2 - 2a + 1}$$
; $\frac{2a + 3}{a^2 + 4a}$; $\frac{1}{2b^2 + 3b}$; $\frac{1}{a^2 - b^2}$

4)
$$\frac{1}{x^2 - 5x}$$
 ; $\frac{2x}{x + y}$; $\frac{5}{x^2 - y^2}$; $\frac{b}{x^2 - 4a^2}$

5)
$$\frac{1}{x^2+4}$$
 ; $\frac{x}{x^3+1}$; $\frac{5}{x^2}$; $\frac{1}{x^4-16}$

Dopo aver determinato C.E. semplifica le seguenti frazioni algebriche

6)
$$\frac{x^2 - 4x + 4}{3x^2 - 12}$$
 [C.E. $x \neq -2$ e $x \neq 2$; $\frac{x - 2}{3(x + 2)}$]

7)
$$\frac{2x-2y}{y-x}$$
 [C.E. $x \neq y \; ; -2$]

8)
$$\frac{x^2 - x}{x - 1}$$
 [C.E. $x \neq 1$; x]

9)
$$\frac{x^2 + 3x}{3x}$$
 [C.E. $x \neq 0$; $\frac{x+3}{3}$]

10)
$$\frac{9a^2-9}{3a+3}$$
 [C.E. $a \neq -1$; $3(a-1)$]

11)
$$\frac{ay + ax + 2y + 2x}{4ay + 4ax}$$
 [C.E. $a \neq 0$ e $x \neq -y$; $\frac{a+2}{4a}$]

12)
$$\frac{4x^{2}-4x+1}{2ax+2x-a-1}$$
[C.E. $a \neq -1$ e $x \neq \frac{1}{2}$; $\frac{2x-1}{a+1}$]

13)
$$\frac{x^{2}-4}{x^{2}-x-2}$$
[C.E. $x \neq -1$ e $x \neq 2$; $\frac{x+2}{x+1}$]

14)
$$\frac{a^{4}-16}{2a^{2}+8}$$
[C.E. $x \neq -1$ e $x \neq 2$; $\frac{x+2}{x+1}$]

15)
$$\frac{ax-x+3a-3}{x^{2}+4x+3}$$
[C.E. $x \neq -3$ e $x \neq -1$; $\frac{a-1}{x+1}$]

16)
$$\frac{y^{2}-9}{y^{3}-3y^{2}}$$
[C.E. $x \neq 0$ e $y \neq 3$; $\frac{y+3}{y^{2}}$]

17)
$$\frac{x^{3}+4x^{2}+4x}{4-x^{2}}$$
[C.E. $x \neq -2$ e $x \neq 2$; $\frac{x(x+2)}{2-x}$]

18)
$$\frac{x^{2}y-4y}{-2y-xy}$$
[C.E. $x \neq -2$ e $x \neq 2$; $\frac{x}{2}$ = 1

19)
$$\frac{a^{2}-10a+25}{a^{2}-25}$$
[C.E. $x \neq 0$ e $x \neq -2$; $2-x$]

20)
$$\frac{6x^{3}-6xy^{2}}{x^{2}+xy}$$
[C.E. $x \neq 0$ e $x \neq -y$; $6(x-y)$]

21)
$$\frac{2x^{3}+2}{x^{3}+x^{2}+y+1}$$
[C.E. $x \neq 0$ e $x \neq -y$; $6(x-y)$]

23)
$$\frac{8y^2 - 8}{4ay + 12y + 4a + 12}$$
 [C.E. $a \neq -3$ e $y \neq -1$; $\frac{2(y - 1)}{a + 3}$]

[C.E. $a \neq -1$ e $a \neq 2$; a - 2]

 $22) \qquad \frac{a^3 - 3a^2 + 4}{a^2 - a - 2}$

Esegui le seguenti somme algebriche (supponi che siano verificate le condizioni di esistenza)

$$24) \qquad \frac{2}{a^2b} + \frac{3b}{ab^2} - 1 \qquad \left[\frac{2 + 3a - a^2b}{a^2b} \right]$$

25)
$$\frac{a}{a+1} + \frac{1}{a^2 - 1}$$
 $\left[\frac{a^2 - a + 1}{(a-1)(a+1)}\right]$

26)
$$\frac{a}{a+1} + \frac{a^2 - ab + 2a}{ab - a + b - 1} - \frac{b}{1 - b}$$
 $\left[\frac{a+b}{b-1}\right]$

27)
$$\frac{3a-b}{3a+b} - \frac{3a+b}{3a-b} = \left[-\frac{12ab}{9a^2 - b^2} \right]$$

28)
$$\frac{x+2}{x^2+x-2} + \frac{x}{x+2} - \frac{1}{x-1}$$
 $\left[\frac{x}{x+2}\right]$

29)
$$\frac{x+3}{x^2 - xy} + \frac{y-3}{xy - y^2} - \frac{2}{x - y}$$
 $\left[-\frac{3}{xy} \right]$

30)
$$\frac{x^2}{x^2 - y^2} + \frac{y^2}{y^2 - x^2} - \frac{xy - y^2}{2xy - x^2 - y^2} \qquad \left[\frac{x}{x - y}\right]$$

31)
$$\frac{2}{x+2} + \frac{9x^2 - 3x}{3x^2 + 5x - 2} + \frac{1}{-x-2}$$
 $\left[\frac{3x+1}{x+2}\right]$

32)
$$\frac{x-y}{x+y} - \frac{x+y}{x-y} + \frac{6xy}{x^2 - y^2}$$
 $\left[\frac{2xy}{x^2 - y^2}\right]$

33)
$$\frac{4a+4a^2+1}{4a-8a^2}+a-\frac{4a^2+1}{4a}$$
 $\left[\frac{2a+3}{2-4a}\right]$

34)
$$\frac{2+x}{x+3} - \frac{3x-1}{x^2+x-6} - \frac{x}{x+3}$$
 $\left[\frac{1}{2-x}\right]$

35)
$$\frac{a-1}{1+a} - \frac{2a^3+6}{a^3-a^2-a+1} + \frac{a^2+2a+1}{a^2-2a+1} \qquad \left[\frac{6}{a^2-1}\right]$$

Esegui le seguenti moltiplicazioni di frazioni algebriche (supponi che siano verificate le condizioni di esistenza)

36)
$$\frac{x^2 + 4x + 4}{x^2 - 4} \cdot \frac{2x - x^2}{2x}$$
 $\left[-\frac{(x+2)}{2} \right]$

37)
$$\frac{4a^2}{a^2 - x^2} \cdot \frac{x + a}{2a}$$
 $\left[\frac{2a}{a - x}\right]$

38)
$$\frac{x^2 - 2x + 1}{y^2} \cdot \frac{3y^3 - 3xy^3}{(1 - x)^3}$$
 [3y]

39)
$$\frac{x-1}{x^2-4} \cdot \frac{x^2+x-6}{3x-3}$$
 $\left[\frac{x+3}{3x+6}\right]$

40)
$$\frac{2a^2 + 2a}{2a - 1} \cdot \frac{6 - 12a}{a^2 - a - 2}$$
 $\left[\frac{12a}{2 - a}\right]$

41)
$$3x \cdot \frac{x+y}{x-y} \cdot \frac{2xy-x^2-y^2}{x^2+y^2+2xy}$$
 $\left[\frac{3x(y-x)}{x+y}\right]$

42)
$$\frac{b^3 - 8}{8 + b^3} \cdot \frac{b + 2}{4 + 2b + b^2}$$
 $\left[\frac{b - 2}{4 - 2b + b^2}\right]$

43)
$$\frac{3y - 3x}{2b - a} \cdot \frac{a^2 - 4b^2}{2x - 2y} \left[\frac{3(2b + a)}{2} \right]$$

44)
$$\frac{x^2 - y^2}{x^2 + y^2} \cdot \frac{x^4 - y^4}{x + y}$$
 [(x + y)(x - y)²]

$$(1+\frac{1}{x})\cdot \left(1-\frac{1}{1-x^2}\right) \qquad \left[\frac{x}{x-1}\right]$$

46)
$$\left(x-2+\frac{6}{x+3}\right)\cdot\frac{x^2+6x+9}{2x+6}\cdot\frac{1}{x+x^2}$$
 $\left[\frac{1}{2}\right]$

47)
$$\frac{x^2 - 4y^2}{x} \cdot \left(\frac{1}{x - 2y} + \frac{1}{2y + x} \right)$$
 [2]

Esegui le seguenti divisioni di frazioni algebriche

48)
$$\frac{a^2 + 3a}{a - 3} : \frac{a}{a^2 - 9}$$
 [C.E. $a \neq \pm 3$ e $a \neq 0$; $(a + 3)^2$]

49)
$$\frac{a^2 - b^2}{6ab}$$
: $\frac{a+b}{12a}$ [C.E. $a \neq 0$, $b \neq 0$ e $a \neq -b$; $\frac{2(a-b)}{b}$]

50)
$$\frac{x^2 - 1}{x} : \frac{x - 1}{x^2}$$
 [C.E. $x \neq 0$ e $x \neq 1$; $x(x + 1)$]

51)
$$\frac{\frac{x-2}{x^2-9}}{\frac{x+1}{x-3}}$$
 [C.E. $x \neq \pm 3$ e $x \neq -1$; $\frac{x-2}{(x+3)(x+1)}$]

52)
$$\frac{\frac{x^2 + x}{x - 2}}{\frac{x + 1}{x^2 - 4}}$$
 [C.E. $x \neq \pm 2$ e $x \neq -1$; $x(x + 2)$]

Potenze di frazioni algebriche

53)
$$\left(\frac{2a+2b}{a^2+2ab+b^2}\right)^3$$
 $\left[\frac{8}{(a+b)^3}\right]$

54)
$$\left(\frac{4a^2-4b^2}{2b-2a}\right)^2$$
 [4(a+b)²]

$$(x - \frac{xy}{x+y})^2$$

56)
$$\left(\frac{b}{b-1}\right)^2 \cdot \left(b - \frac{1}{b}\right)^2$$

$$[(b+1)^2]$$

Espressioni con frazioni algebriche

58)
$$\frac{2}{a} \cdot \left(\frac{a+b}{2b} + \frac{b}{a-b} \right) : \frac{a^2 + b^2}{ab - b^2}$$
 $\left[\frac{1}{a} \right]$

59)
$$\left(1+\frac{2}{x-1}\right)\cdot\frac{x^2+x-2}{x^2+x}:\left(x^2-4\right)$$
 $\left[\frac{1}{x(x-2)}\right]$

60)
$$\frac{1}{x} : \left(\frac{x - 3y}{xy} + \frac{x + y}{x^2} - \frac{y^3 - 2xy^2}{x^2 y^2} \right)$$
 $\left[\frac{y}{x} \right]$

61)
$$\left[\left(\frac{1}{x^2} - \frac{1}{y^2} \right) : \left(\frac{1}{x} - \frac{1}{y} \right) \right] : \frac{x + y}{xy}$$
 [1]

62)
$$\frac{a}{a+1}:\left(\frac{2a-1}{a+3} - \frac{2a-5}{a+1} - \frac{14}{a^2+4a+3}\right)$$
 [impossibile, perché ...]

63)
$$x(2x-1):\left(2x+\frac{1}{2x-2}+\frac{2x-1}{2x-2}\right)$$
 [x-1]

64)
$$\frac{x^2 - 3x}{x^2 - 1} : \left(\frac{x}{x + 1} - \frac{2x}{3x - 3} + \frac{9 - x}{3x^2 - 3}\right) \left[\frac{3x}{x - 3}\right]$$

65)
$$\left| \left(\frac{1}{1+b} + \frac{b}{1-b} \right) : \left(\frac{1}{1-b} - \frac{b}{1+b} \right) - a \right| : (1-a^2)$$
 $\left[\frac{1}{1+a} \right]$

66)
$$\left(\frac{6a}{a^2-9} + \frac{a}{a+3} + \frac{3}{3-a}\right)^3 : \left(\frac{b}{b-2} + \frac{8}{4-b^2} - \frac{2}{b+2}\right)^4$$
 [1]

67)
$$\left(y^2 + 2y + 1 - \frac{1}{y^2 - 2y + 1}\right) : \left(\frac{y}{y - 1} + y\right)$$
 $\left[\frac{y^2 - 2}{y - 1}\right]$

68)
$$\left(\frac{x+2y}{2x-4y} + \frac{2y-x}{4y+2x} + \frac{8y^2}{x^2-4y^2} \right) : \frac{8y}{x-2y}$$
 $\left[\frac{1}{2} \right]$

69)
$$\left(\frac{x-8}{x^2+5x-6} - \frac{2}{x+6} + \frac{2}{x-1}\right) : \frac{1}{x^2-1}$$
 [x+1]

70)
$$\left[\left(\frac{x}{y} + 1 \right)^2 : \left(\frac{x}{y} - 1 \right) \right] \cdot \left(\frac{x}{y} - 1 \right)^2 : \left(\frac{x}{y} + 1 \right) + 2 + \frac{2x}{y}$$

$$\left[\left(\frac{x + y}{y} \right)^2 \right]$$

71)
$$\left[\left(x + \frac{1}{x+2} \right)^2 - \left(x - \frac{1}{x+2} \right)^2 \right] \cdot \left(\frac{2}{x^3} + \frac{1}{x^2} \right)$$
 $\left[\frac{4}{x^2} \right]$

72)
$$\left(\frac{1}{a-2} - \frac{2}{a-3} + 1\right) : \left(\frac{2a^2 - 1}{a^2 - 5a + 6} - 2\right)$$
 $\left[\frac{a^2 - 6a + 7}{10a - 13}\right]$

73)
$$\left(\frac{3}{x^2-4} - \frac{1}{x-2} + \frac{1}{x+2}\right) : \frac{1}{x^2+4x+4}$$
 $\left[\frac{2+x}{2-x}\right]$

74)
$$\left(\frac{a+2}{a^2-4a+4} - \frac{1}{a-2}\right) : \left(\frac{a}{2-a} + 1\right)$$
 $\left[\frac{2}{2-a}\right]$

75)
$$\left(\frac{b+2}{b^3-8} - \frac{1}{b^2+2b+4}\right) \cdot \left(\frac{b}{2} - 1\right)$$
 $\left[\frac{2}{b^2+2b+4}\right]$

76)
$$\left(1 - \frac{27}{27 - x^3}\right) : \left(\frac{1}{9 + 3x + x^2} - \frac{1}{6 - 2x}\right)$$
 $\left[\frac{2x^3}{x^2 + 5x + 3}\right]$

77)
$$\left(\frac{1}{b^2 - 4} + \frac{1}{2 - b} - \frac{2}{2 + b}\right) \cdot \frac{b + 2}{b - 1}$$
 $\left[\frac{3}{2 - b}\right]$

78)
$$\left(\frac{1}{a} + \frac{1}{a^2} + \frac{1}{a^3}\right) \cdot \left(\frac{1}{1 - a^3} - 1\right)$$
 $\left[\frac{1}{1 - a}\right]$

79)
$$\left(\frac{3b-1}{2b-1} + \frac{b+1}{1-2b}\right) : \frac{2b^2}{1-4b^2}$$
 $\left[\frac{(1-b)(2b+1)}{b^2}\right]$

80)
$$\left(\frac{1}{3x-y} - \frac{2}{y-3x}\right) \cdot (3x-y)^2$$
 [$3(3x-y)$]

81)
$$\left(\frac{1}{x-2y} + \frac{2}{2x+y}\right) \cdot \left(\frac{2x}{x^2-1} - \frac{1}{x+1} - \frac{1}{x-1}\right)$$
 [0]

82)
$$\left(\frac{6a}{9a^2-1} - \frac{1}{3a+1} - \frac{1}{3a-1}\right) \cdot \left(\frac{2}{a+1} - 3\right)$$
 [0]

83)
$$\left(\frac{3x+1}{3x-1} - \frac{3x-1}{3x+1}\right) : \frac{4x^2}{1-3x}$$
 $\left[-\frac{3}{x(3x+1)}\right]$

84)
$$(2-x)^2 \cdot \left(\frac{1}{x^2-4} + \frac{1}{x+2}\right) : \left(\frac{x^2-2x+1}{x-1}\right)$$
 $\left[\frac{x-2}{x+2}\right]$

85)
$$\left(\frac{2a^2}{a^3-8} - \frac{a+2}{a^2+2a+4} + \frac{1}{2-a}\right) \cdot \frac{8-a^3}{4}$$
 $\left[\frac{a}{2}\right]$

SCHEDA PER IL RECUPERO

FRAZIONI ALGEBRICHE

Semplifica le seguenti frazioni algebriche, dopo aver determinato il C.E:

1.
$$\frac{a^2 - 2a}{a - 2}$$
 [$a \neq 2$; a]

$$2. \qquad \frac{x}{2x^2 - x} \qquad \left[x \neq 0; \quad \frac{1}{2} \quad ; \quad \frac{1}{2x - 1} \right]$$

3.
$$\frac{x^3 - x^2}{4x^2y}$$

$$\left[x \neq 0; \quad y \neq 0 \quad ; \frac{x-1}{4y}\right]$$

4.
$$\frac{4a^2 - 4}{2a + 2}$$
 [$a = -1$; $2(a - 1)$]

Svolgi i calcoli e semplifica il risultato:

1.
$$\frac{3}{3x+3} - \frac{x-1}{1-x^2} - 3$$
 $\left[-\frac{(3x+1)}{x+1} \right]$

2.
$$\frac{2+x}{x+3} - \frac{3x-1}{x^2+x-6} - \frac{x}{x+3}$$
 $\left[\frac{1}{2-x}\right]$

3.
$$\frac{x^2 - 2x + 1}{y^2} \cdot \frac{3y^3 - 3xy^3}{(1 - x)^3}$$
 [3y]

4.
$$\frac{x^2 - 3x}{x^2 - 1} : \left(\frac{x}{x + 1} - \frac{2x}{3x - 3} + \frac{9 - x}{3x^2 - 3}\right)$$

$$\left[\frac{3x}{x - 3}\right]$$

5.
$$\left[\left(\frac{1}{1+b} + \frac{b}{1-b}\right) : \left(\frac{1}{1-b} - \frac{b}{1+b}\right) - a\right] : \left(1-a^2\right)$$