- unknown

C:\Python37\python.exe "D:\Program Files\PyCharm 2019.2 14049 .1\helpers\pydev\pydevconsole.py" --mode=client --port=

pythonl语[]) sys.path.extend(['E:\\C-01-pythonl⊡⊡', 'E:/C-01import sys; print('Python %s on %s' % (sys.version, sys .platform))

Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 21:26:53 information Type 'copyright', 'credits' or 'license' for more) [MSC v.1916 32 bit (Intel)]

IPython 7.11.1 -- An enhanced Interactive Python. Type '?' for help

PyDev console: using IPython 7.11.1

```
য়ারারারার / Data_analyse_train/SHstock_predict')
                                                                                                                                                                                                                              Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 21:26:53
                                                                                            SHstock_predict/SHstock_predict.py', wdir='E:/C-05-
                                                                                                                                    In[2]: runfile('E:/C-05-@@@@@@/Data_analyse_train/
                                                                                                                                                                                    ) [MSC 	extsf{v.}1916 32 bit (Intel)] on win32
Timestamp
       Price
```

Timestamp

* * *

Machine precision = 2.220D-16

This problem is unconstrained.

At X0

0 variables are exactly at the bounds

0

00000D+00

$$|proj g| = 0.$$

* *

*

= total number

II total number of iterations of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

= number of active bounds at final generalized

Cauchy point

- unknown

Projg = norm of the final projected gradient II final function value

* * *

Z Tit Tnf Tnint Skip Nact Projg

∞

F = 8.3891800015170919

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

RUNNING THE L-BFGS-B CODE

This problem is unconstrained.

* * *

Z ||

≥

12

At X0

0 variables are exactly at the bounds

At iterate 24658D-02

0

f= 7.78968D+00

|proj g|=

At iterate 56728D-05

ъ

f= 7.78855D+00

proj g|=

At iterate

30713D-03

10

f= 7.78854D+00

proj g = 1

At iterate

86260D-04

15

f= 7.78834D+00

proj g = 2.

* *

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy

searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient = final function value

* * *

Z Tit Tnint Skip Nact Projg

18

20

0

0

0.000D+00

788D+00

F = 7.7883382661592560

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

PPPP: (0, 2) PPPP: (0, 3)

RUNNING THE L-BFGS-B CODE This problem is unconstrained.

* * *

Machine precision = 2.220D-16

Z ||

12

At X0 0 variables are exactly at the bounds

64651D-03	At iterate
	0
	f=
	6.59375D+00
	proj g =

9

At iterate 20 f=
$$6.59111D+00$$
 |proj g|= 7.

70290D-04

*

*

*

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized

Cauchy point

Projg = norm of the final projected gradient

= final function value

* * *

Z Tit 24 Tnf Tnint Skip Nact 0 0 8.882D-07 Projg

591D+00

- unknown

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

This problem is unconstrained. RUNNING THE L-BFGS-B CODE

At X0

Z II

0 variables are exactly at the bounds

12

At iterate 23324D-03

0

f= 6.54128D+00

|proj g| = 5.

unknown

At iterate 15 f=
$$6.54042D+00$$
 |proj g|= 1.92220D-03

At iterate

68292D-03

At iterate 25
$$f=6.53953D+00$$
 $|proj g|=3.73035D-06$

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy

searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized

Cauchy point

Projg = norm of the final projected gradient

= final function value

Tit Tnint Skip Nact Projg

540D+00 28 0 0 5.329D-07

TI 6.5395272639161171

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

RUNNING THE L-BFGS-B CODE
This problem is unconstrained.

$$N = 4$$
 $M = 12$
At X0 0 variables are exactly at the bounds

At iterate 5 f=
$$6.52455D+00$$
 |proj g|= 4.

28191D-04

∞

$$\theta$$
 f= 6.52448D+ $\theta\theta$ |proj g|= 4.

35563D-03

At iterate

At iterate 25
$$f= 6.52387D+00$$
 $|proj g|= 1.72928D-04$

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Skip Projg = norm of the final projected gradient Cauchy point Nact = number of active bounds at final generalized = number = final function value of BFGS updates skipped

* * *

Z Tit 40 Tnint Skip 0 Nact 0 0.000D+00 Projg

• 0

- unknown

$$F = 6.5238707653172190$$

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

This problem is unconstrained. RUNNING THE L-BFGS-B CODE

At X0

0 variables are exactly at the bounds

12

At iterate 36486D-03

0

f= 6.51556D+00

|proj g| = 6.

83897D-05	At iterate
	5
	_ =
	6.51488D+00
	proj g =

9

At iterate

69029D-04

37188D-03

At iterate 25
$$f= 6.51405D+00$$
 $|proj g|= 3.$

32907D-07

* * *

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Projg = norm of the final projected gradient Skip = number of BFGS updates skipped Cauchy point Nact = number of active bounds at final generalized = final function value

* * *

Z Tnint Skip Nact Projg

31

42

0

0

6.217D-07

• 0

514D+00

TI

6.5140478372685990

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

RUNNING THE L-BFGS-B CODE This problem is unconstrained.

* *

Machine precision = 2.220D-16

Z ||

12

At X0

0 variables are exactly at the bounds

□□ - unknown

$$|proj g| = 4.$$

$$f=6.$$

$$|proj g| = 1.$$

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized

Cauchy point

Projg = norm of the final projected gradient

= final function value

Tit Tnint Skip Nact Projg

529D+00 TI 6.5293303666835003 22 29 0 0 0.000D+00 . თ

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

RUNNING THE L-BFGS-B CODE This problem is unconstrained.

$$4$$
 M = 12 0 variables are exactly at the bounds

At X0

0

Z ||

At iterate 0 f=
$$6.53044D+00$$
 |proj g|= 4. $68194D-03$

At iterate 5 f=
$$6.52989D+00$$
 | proj g|= 2.

unknown

43272D-04

<u></u>ნ

$$f = 6.52917D + 00$$
 | proj g | = 1.

At iterate 25 f=
$$6.52917D+00$$
 |proj g|= 1.84741D-05

At iterate 30 f= $6.52917D+00$ |proj g|= 1.77636D-07

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Skip Projg = norm of the final projected gradient Cauchy point Nact = number of active bounds at final generalized = number = final function value of BFGS updates skipped

* *

Z Tit 39 Tnint Skip 0 Nact 0 8.882D-08 Projg

• 0

- unknown

$$F = 6.5291733630680504$$

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

This problem is unconstrained. RUNNING THE L-BFGS-B CODE

12

0

$$|proj g| = 3.$$

07114D-03	At iterate
	Л
	f =
	6.51435D+00
	proj g =

96065D-04

At iterate 30 f=
$$6.51360D+00$$
 |proj g|= 4.

□□ - unknown

07407D-04

At iterate 35 f=
$$6.51360D+00$$
 |proj g|= 7.99361D-07

*

*

*

Tnint = total number of segments explored during Cauchy searches П = total number total number of iterations of function evaluations

Skip = number Cauchy point Nact = numberof active bounds at final generalized of BFGS updates skipped

- GINIOWI

Projg = norm of the final projected gradient II final function value

* * *

Z Tit Tnf Tnint Skip Nact Projg

514D+00 TI 6.5135974997484247 40 49 0 0

3.553D-07

<u>.</u>

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

This problem is unconstrained. RUNNING THE L-BFGS-B CODE

* * *

28 / 49

At X0

0 variables are exactly at the bounds

At iterate 69500D-03

0

<u>f</u>= 6.51318D+00

|proj g|=

J

At iterate

68008D-04

<u>†</u>= 6.51261D+00

proj g|=

At iterate

77680D-05

10

_= 6.51257D+00

proj g|= 6

At iterate 25597D-05

15

_= 6.51257D+00

proj g = 2.

At iterate 30 f=
$$6.51181D+00$$
 |proj g|= 1. $34115D-05$

* * *

Skip = number of BFGS updates skipped Tit Tnf Tnint = total number of segments explored during Cauchy searches П = total number total number of iterations total number of function evaluations

unknown

Cauchy point Nact = number of active bounds at final generalized

Projg = norm of the final projected gradient = final function value

* * *

512D+00 Z Tit 32 Tnf Tnint 41 Skip 0 Nact 0 3.553D-07 Projg

> • 0

TI 6.5118149314743823

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH This problem is unconstrained.

RUNNING THE L-BFGS-B CODE

0 variables are exactly at the bounds

$$|proj g| = 4.$$

08562D-06

$$|proj g| = 4.$$

20997D-05

$$|proj g| = 4.$$

□□ - unknown

71481D-04

At iterate 25
$$f=$$
 6.52915D+00 $|proj g|=$ 2.44249D-05

Warning: more than 10 function and gradient evaluations in the last line search. Termination may possibly be caused by a bad search direction. = total number of function evaluations = total number of iterations

□ - unknown

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized

Cauchy point

Projg = norm of the final projected gradient

= final function value

* * *

Tit Tnint Skip Nact Projg

Z

-

0

0

0

1.972D-05

. თ

529D+00

F = 6.5291545478177397

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

RUNNING THE L-BFGS-B CODE This problem is unconstrained.

$$N = 5$$
 $M = 12$
At X0 0 variables are exactly at the bounds

At iterate 5 f=
$$6.52676D+00$$
 |proj g|= 1.93978D-04

unknown

93827D-05

At iterate 35
$$f=6.52608D+00$$
 $|projg|=1.41220D-05$

At iterate 77636D-07 40 # 1 6.52608D+00 proj g|=

* * *

Inint = total number of segments explored during Cauchy searches Ш П total number of iterations total number of function evaluations

Skip Nact = number of active bounds at final generalized Cauchy point = number of BFGS updates skipped

Projg = norm of the final projected gradient = final function value

* * *

37 / 49

. თ

526D+00

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

This problem is unconstrained. RUNNING THE L-BFGS-B CODE

At X0

0 variables are exactly at the bounds

0

$$|proj g| = 4.$$

<u>_</u>

20

$$|proj g| = 4.$$

<u>.</u>

* *

*

unknown

searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized

Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

nf Tnint Skip

<ip Nact

Projg

Z

Tit

42

61

0

Ø

1.315D-05

• 0

510D+00

F = 6.5096765098397205

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

RUNNING THE L-BFGS-B CODE

At X0 This problem is unconstrained. 0 variables are exactly at the bounds

$$|proj g| = 7.$$

v

02167D-04

$$|proj g| = 4$$

<u>f</u>=

$$|proj g| = 5.$$

□□ - unknown

79981D-05

51621D-04

50351D-06 At iterate 40 <u>†</u>= 6.51251D+00 |proj g|= 9

* * *

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches

Projg = norm of the final projected gradient Cauchy point Nact = number of active bounds at final generalized Skip = number of BFGS updates skipped = final function value

* * *

unknown

Tit Tnint Skip Nact

42

53

0

0 5.329D-07

• 0

Projg

513D+00

т || 6.5125095124134624

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

ARMA Model Results

Ш Ш Ш

Dep. Variable:

Observations: Model:

Price

No.

ARMA(3, 2)

339

Log Likelihood

-2206.780

Method:

css-mle S.D. of

 const 183 797.921	[0.025	 		Sample:		Time:		Date:	innovations
 1.3647 2864.808	======= coef std 0.975]	 	42		2		2	Sun, 23	161.512
527.277	derr	2-28-2019	4438.233	12-31-1990	4454.343	13:32:36	4427.561	Sun, 23 Feb 2020	512
3.473	 	 		HQIC		BIC		AIC	
0.001	P > z	 							

🗆 🗆 - unknown

======================================		0.358	ma.L2.Price	0.510	ma.L1.Price	-0.031	ar.L3.Price	-0.247	ar.L2.Price	0.179	ar.L1.Price
Real Freque	 	0.730	0.5442	1.142	0.8261	0.480	0.2243	0.686	0.2194	0.864	0.5214
1 1 1			0.095		0.161		0.130		0.238		0.175
inary	Roots		5.736		5.124		1.719		0.921		2.986
1	 		0.000		0.000		0.086		0.357		0.003

		2798.466278	2019-05-31
		2861.324475	2019-04-30
		2842.743776	2019-03-31
		2508.819393	2019-02-28
		0.3446	3555
1	+1.1231j	-0.7590	MA.2
		-0.3446	3555
1	-1.1231j	-0.7590	MA.1
		0.3294	0897
2.	+1.8350j	-0.9998	AR.3
		-0.3294	0897
2.	-1.8350j	-0.9998	AR.2
		-0.0000	0211
1.	-0.0000j	1.0211	AR.1

Name: forecast	2020-02-29	2020-01-31	2019-12-31	2019-11-30	2019-10-31	2019-09-30	2019-08-31	2019-07-31	2019-06-30
Name: forecast, dtvpe: float64	2642.175315	2659.377800	2676.814628	2694.605241	2713.367440	2731.401413	2749.466732	2773.526829	2788.400966