Функції однієї змінної

Означення та найпростіщі властивості функції однієї змінної

Нехай X та Y деякі множини. Якщо задано закон f, за яким кожному $x \in X$ ставиться у відповідність певне єдине число $y \in Y$, то кажуть, що на множині X задано функцію f зі значеннями у множині Y. Тобто, y = f(x) — функція, $x \in X$ — аргумент функції, y — значення функції, X — область визначення функції, Y — область значень функції.

Означення. Функція f(x), визначена на множині X називається обмеженою на X, якщо існує таке число M>0, що для всіх $x\in X$ виконується умова $|f(x)|\leq M$.

Приклад. Функції $y = \sin x$ та $y = \cos x$ обмежені на множині дійсних чисел, оскільки для всіх $x \in \mathbb{R} \mid \sin x \mid \le 1$ і $\mid \cos x \mid \le 1$.

Означення. Функція f(x), визначена на множині X називається **зростаючою** на X, якщо для всіх x_1 і x_2 з множини X з нерівності $x_1 < x_2$ випливає нерівність $f(x_1) < f(x_2)$.

Означення. Функція f(x), визначена на множині X називається **спадною** на X, якщо для всіх x_1 і x_2 з множини X з нерівності $x_1 < x_2$ випливає нерівність $f(x_1) > f(x_2)$.

Означення. Функція f(x), визначена на множині X називається **незростаючою** на X, якщо для всіх x_1 і x_2 з множини X з нерівності $x_1 < x_2$ випливає нерівність $f(x_1) \ge f(x_2)$.

Означення. Функція f(x), визначена на множині X називається **неспадною** на X, якщо для всіх x_1 і x_2 з множини X з нерівності $x_1 < x_2$ випливає нерівність $f(x_1) \le f(x_2)$.

Означення. Зростаючі та спадні функції називаються строго монотонними.

Означення. Незростаючі та неспадні функції називаються монотонними.

Приклад. Функція $y = x^3$ зростаюча на множині R . Функція $y = \left(\frac{1}{2}\right)^x$ спадна на множині R .

Нехай область визначення X функції y = f(x) є симетричною відносно початку координат.

Означення. Функція f(x) називається **парною**, якщо для всіх $x \in X$ виконується умова f(-x) = f(x).

Означення. Функція f(x) називається **непарною**, якщо для всіх $x \in X$ виконується умова f(-x) = -f(x).

Приклад. Функції $y = x^2$, $y = x^4$, $y = \cos x$ є парними, функції y = x, $y = x^3$, $y = \sin x$, y = tgx, y = ctgx є непарними. Крім того, існують функції, які не належать ні до парних, ні до непарних функції. Функції y = x + 3, $y = x^2 - x + 2$ є ні парними, ні непарними.

Графіком парної функції ϵ лінія, симетрична стосовно осі Oy. Графіком непарної функції ϵ лінія, симетрична відносно початку координат.

Означення. Функція y = f(x), визначена на всій числовій осі називається **періодичною**, якщо f(x+T) = f(x) для всіх $x \in (-\infty,\infty)$. Число T називається **періодом** функції.

Приклад. Функції $y = \sin x$ та $y = \cos x$ періодичні, $T = 2\pi$, функції y = tgx, y = ctgx періодичні з періодом π .

Означення. Функція y = f(x), визначена на множині X називається **періодичною на множині** X, якщо існує таке число $T \neq 0$, що для будь-якого $x \in X$ x + T та x - T також належать до X і для всіх $x \in X$ f(x + T) = f(x).

Властивості та графіки елементарних функцій

Лінійні функції

Лінійна функція має вигляд y = kx + b, де b — відрізок, який задана пряма відтинає на осі Oy, k — тангенс кута нахилу заданої прямої до осі Ox, тобто $k = \lg \varphi$ (рис. 7).

Отже, пряму, яка ϵ графіком лінійної функції можна побудувати так: на осі Oy відкласти відрізок b і через цю точку провести пряму

під кутом $\varphi = \operatorname{arctg} k$ до осі Ox. Однак набагато зручніше будувати пряму за двома точками, одна з яких — точка з координатами (0;b), другу точку можна визначити, порахувавши значення функції для якогось довільного значення x.

Часткові випадки лінійної функції.

1. Якщо немає вільного члена (b=0), то функція набуває вигляду y=kx, графіком такої функції є пряма, що проходить через початок координат (рис. 8). Якщо k>0, то пряма розміщена в першій і третій координатних чвертях, зокрема, при k=1 пряма y=x утворює кут 45° з віссю Ox. Якщо ж k<0, то пряма розташована в другій і четвертій чвертях, зокрема при k=-1 пряма y=-x є бісектрисою другої та четвертої

координатних чвертей.

- 2. При k = 0 функція набуває вигляду y = b; графіком функції є пряма, паралельна осі Ox, яка перебуває на відстані b від цієї осі (рис. 9).
- 3. Рівняння x = a задає пряму, яка паралельна до осі Oy і відстань від якої до цієї осі дорівнює a (рис. 9).

Степеневі функції

Найпростіша степенева функція задається рівнянням $y = x^n$, де n — довільне додатне число.

При n = 1 функція набуває вигляду y = x. Графіком цієї функції є пряма, що проходить через початок координат і утворює кут 45° з віссю Ox.

Розглянемо тільки праву гілку графіка степеневої функції, яка розташована в першій чверті (рис. 10).

розміщена крива.

При побудові повного графіка степеневої функції $y = x^n$ треба враховувати таке:

а) якщо степінь парний (n = 2k), то функція $y = x^{2k}$ парна, оскільки $(-x)^{2k} = x^{2k}$. Графік такої функції симетричний стосовно осі Оу і розміщений тільки в верхній півплощині, наприклад, $y = x^2$ (рис. 11);

б) якщо степінь непарний (n = 2k + 1), то функція $y = x^{2k+1}$ непарна, оскільки $(-x)^{2k+1} = -x^{2k+1}$. Графік такої функції симетричний стосовно початку координат і розміщений у першій і третій координатних чвертях, наприклад, $y = x^3$ (рис. 12);

Рис. 12

в) якщо показник степеня дробове число, яке можна звести до правильного дробу $\frac{m}{n}$, де m і n — взаємно прості числа, то можливі три випадки:

1) знаменник — парне число (чисельник обов'язково повинен бути непарним). Тоді функція існує тільки для $x \ge 0$, графік функції розміщений у першій чверті, наприклад, $y = x^{\frac{1}{2}}$ (рис. 13);

2) знаменник — непарне число, чисельник — парне число, наприклад, $y = x^{\frac{2}{3}}$. Функція парна, оскільки $f(-x) = (-x)^{\frac{2}{3}} = \sqrt[3]{(-x)^2} = \sqrt[3]{x^2} = x^{\frac{2}{3}} = f(x)$. Графік такої функції є в першій і другій координатних чвертях (рис. 14);

3) знаменник і чисельник — непарні взаємно прості числа, наприклад, $y=x^{\frac{1}{3}}$. Функція непарна, оскільки $f(-x)=(-x)^{\frac{1}{3}}=\sqrt[3]{-x}=-\sqrt[3]{x}=-x^{\frac{1}{3}}=-f(x).$

Графік такої функції розміщений у першій і третій координатних чвертях (рис. 15).

Якщо в степеневій функції показник від'мний, то загальний вигляд функції $y = x^{-n}$, або $y = \frac{1}{x^n}$, де n- довільне додатне число.

Властивості функції.

- 1. Для функції з від'ємним показником $x \neq 0$ і $y \neq 0$, тобто графік не перетинає осей координат.
- 2. Графік проходить через точку (1;1). Праві гілки графіків, що зображають функції з від'ємними показниками, розташовані в першій чверті (рис. 18). Залежно від показника n крива буде крутішою чи пологішою.

- 3. Якщо n парне (n=2k), то функція парна, графік розташований у верхній півплощині, ліва гілка симетрична до правої стосовно осі Y. Наприклад, $y=\frac{1}{x^2}$ (рис. 19).
- 4. Якщо n непарне (n=2k+1), то функція непарна, ліва гілка симетрична до правої стосовно початку координат, наприклад, $y=\frac{1}{x^3}$ (рис. 20).

Логарифмічні функції

Логарифмічна функція має вигляд $y = \log_a x$ (a > 1). Областю визначення функції є інтервал $(0; \infty)$, оскільки x > 0. Функція не є ні парною, ні непарною. Графік перетинає вісь X у точці (1;0) (рис. 21). Функція зростає на всій області визначення, якщо a > 1, то $\log_a x_1 < \log_a x_2$ при $x_1 < x_2$. Функція опукла вгору на всій області визначення. На графік нанесено контрольну точку (a;1), оскільки при x = a $y = \log_a a = 1$.

Графік функції $y = \log_a x \ (0 < a < 1)$ можна побудувати, використавши рівність $\log_{1/a} x = -\log_a x$. Отже, графік цієї функції зображено на рис. 22.

Показникові функції

Показникова функція має вигляд $y = a^x$ $(a > 0 \text{ i } a \neq 1)$.

Областю визначення цієї функції ϵ вся числова вісь $x \in (-\infty, \infty)$. Область значень функції $0 < y < \infty$, графік розміщений вище від осі абсцис. Графік проходить через точку (0;1), оскільки при x = 0 $y = a^0 = 1$. Подальше дослідження функції $y = a^x$ дає різні результати залежно від значення основи a.

При a > 1 функція зростаюча, оскільки при збільшенні аргументу x збільшується і функція $y = a^x$ при всіх значеннях аргументу x (рис. 23).

При 0 < a < 1 функція є спадною, оскільки при зростанні аргументу x функція $y = a^x$ спадає при всіх значеннях аргументу x. Графік функції $y = a^x$ при 0 < a < 1 зображено на рис. 24.

Тригонометричні функції

1) $y = \sin x$.

Областю визначення цієї функції ϵ вся числова вісь $x \in (-\infty; \infty)$. Область значень функції $-1 \le y \le 1$. Функція періодична з періодом 2π . Задана функція ϵ непарною. Графік функції $y = \sin x$ зображено на рис. 25.

2) $y = \cos x$.

Областю визначення цієї функції ϵ вся числова вісь $x \in (-\infty; \infty)$. Область значень функції $-1 \le y \le 1$. Функція періодична з періодом 2π . Функція ϵ парною. Графік функції $y = \cos x$ зображено на рис. 26.

Рис. 26

3)
$$y = tg x$$
.

Областю визначення цієї функції є нескінченний набір відкритих інтервалів $\left(-\frac{\pi}{2} + \pi n; \frac{\pi}{2} + \pi n\right)$, оскільки $x \neq \pi n \pm \frac{\pi}{2}$. Функція періодична з періодом π . Задана функція — непарна. Функція є зростаючою. Графік функції $y = \operatorname{tg} x$ зображено на рис. 27.

4)
$$y = \operatorname{ctg} x$$
.

Областю визначення цієї функції є нескінченний набір відкритих інтервалів $(\pi n; \pi + \pi n)$, оскільки $x \neq \pi n$. Функція періодична з періодом π . Задана функція — непарна. Функція є спадною. Графік функції $y = \operatorname{ctg} x$ зображено на рис. 28.

Рис. 28

Обернені тригонометричні функції

1) $y = \arcsin x$.

Областю визначення функції ϵ відрізок [-1;1], а множиною значень відрізок $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$. Функція ϵ непарною. Графік функції $y=\arcsin x$ зображено на рис. 45.

2) $y = \arccos x$.

Областю визначення функції ϵ відрізок [-1;1], множиною значень відрізок [0; π]. Функція не ϵ ні парною, ні непарною. Графік функції $y = \arccos x$ зображено на рис. 46.

3) $y = \operatorname{arctg} x$.

Областю визначення функції є вся числова вісь $(-\infty,\infty)$, множиною значень інтервал $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Функція є непарною. Функція зростає на всій області визначення, її графік проходить через початок координат. Графік функції $y = \arctan x$ зображено на рис. 47.

4) $y = \operatorname{arccrg} x$

Областю визначення функції ϵ вся числова вісь $(-\infty,\infty)$, множиною значень інтервал $(0,\pi)$. Функція не ϵ ні парною, ні непарною. Функція спада ϵ на всій області визначення, її графік проходить через точку $\left(0,\frac{\pi}{2}\right)$. Графік функції $y=\arccos x$ зображено на рис. 48.

Границя функції

Нехай функція y = f(x) визначена в деякому околі точки a, крім, можливо, самої точки a.

Означення. Число A називається **границею функції** f(x) **в точці** a ($A = \lim_{x \to a} f(x)$), якщо для довільного числа $\varepsilon > 0$ існує таке число $\delta > 0$, що для всіх x з умови $|x - a| < \delta$ випливає, що $|f(x) - A| < \varepsilon$.

Геометрична інтерпретація поняття границі функції точці: для всіх x з δ – околу точки a значення функції f(x) містяться в ε – околі точки A . Див рисунок:

Означення. Число A називається границею функції f(x) при $x \to \infty$ ($A = \lim_{x \to \infty} f(x)$), якщо для довільного числа $\varepsilon > 0$ існує таке число M > 0, що для всіх x з умови |x| > M випливає, що $|f(x) - A| < \varepsilon$.

Властивості границі функції

Твердження 1. Функція f(x) не може мати двох різних границь в одній точці.

D доведення. Від супротивного. Припустимо, що $\lim_{x\to a} f(x) = A$ і $\lim_{x\to a} f(x) = B$ і $A\neq B$. Оскільки $\lim_{x\to a} f(x) = A$, то для довільного числа $\varepsilon>0$ існує таке число $\delta_1>0$, що для всіх x з умови $|x-a|<\delta_1$ випливає, що $|f(X)-A|<\varepsilon$. Оскільки $\lim_{x\to a} f(x) = B$, то для довільного числа $\varepsilon>0$ існує таке число $\delta_2>0$, що для всіх x з умови $|x-a|<\delta_2$ випливає, що $|f(X)-B|<\varepsilon$. Нехай $\delta=\min\{\delta_1,\delta_2\}$. Тоді для довільного числа $\varepsilon>0$ для всіх x з умови $|x-a|<\delta$ випливає, що $|f(X)-B|<\varepsilon$. Нехай $\delta=\min\{\delta_1,\delta_2\}$. Тоді для довільного числа $\varepsilon>0$ для всіх $\varepsilon=0$ для всіх $\varepsilon=0$ випливає, що $|f(X)-A|<\varepsilon=0$ і $|f(X)-B|<\varepsilon=0$. Тобто, $|A-B|=|A-f(x)+f(x)-B|\le |A-f(x)|+|f(x)-B|=|f(x)-A|+|f(x)-B|<\varepsilon=0$. Тобто, $|A-B|<2\varepsilon$. Оскільки $\varepsilon=0$ довільне додатне число, то нехай $\varepsilon=0$. Тоді |A-B|<0. Тоді |A-B|<0. Оскільки |A|=00. Суперечність, отже, функція не може мати двох різних границь в одній точці.

Твердження 2. (про граничний перехід)

Якщо в деякому околі точки a, крім, можливо, самої точки a виконується нерівність $f(x) \le g(x)$ і кожна з функцій f(x) та g(x) має границю в точці a, то $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.

Твердження 3. (про границю проміжної функції)

Якщо в деякому околі точки a, крім, можливо, самої точки a виконується нерівність $f(x) \le g(x) \le h(x)$ і кожна з функцій f(x) та h(x) має границю в точці a і $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$, то функція g(x) теж має границю в точці a і $\lim_{x \to a} g(x) = A$.

Твердження 4.

Якщо функції f(x) та g(x) мають границю в точці a, то в цій точці мають границю функції f(x) + g(x), f(x) - g(x), $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ ($\lim_{x \to a} g(x) \neq 0$) і мають місце рівності:

1)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
,

2)
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
,

3)
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$$

4)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Важливі границі

При обчисленні границь, що містять тригонометричні функції та зводяться до невизначеності виду $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, часто використовують **першу важливу границю**:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1. \tag{1}$$

Доведемо рівність (1). Для цього використаємо відому подвійну нерівність $\sin x < x < \operatorname{tg} x$, що виконується при $x \in \left(0; \frac{\pi}{2}\right)$. Поділимо всі частини цієї подвійної нерівності на $\sin x > 0$. Отримаємо нерівність:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
.

Звідси маємо: $\cos x < \frac{\sin x}{x} < 1$. Перейдемо у цій нерівності до границі при $x \to 0$. Отримуємо:

$$\lim_{x\to 0} \cos x \le \lim_{x\to 0} \frac{\sin x}{x} \le \lim_{x\to 0} 1.$$

Оскільки $\lim_{x\to 0} \cos x = \lim_{x\to 0} 1 = 1$, то, отримуємо, що $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Нехай $x \to 0$ і при цьому x < 0. Тоді $\frac{\sin x}{x} = \frac{\sin(-x)}{-x}$, -x > 0. У цьому випадку маємо:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{-x \to 0} \frac{\sin(-x)}{-x} = \lim_{t \to 0} \frac{\sin t}{t} = 1.$$

При обчисленні цієї границі ми використали заміну -x = t. При $x \to 0$ $t \to 0$. Таким чином, і у цьому випадку має місце рівність (1).

Наслідок. $\lim_{x\to 0} \frac{x}{\sin x} = 1$

Доведемо формулу:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{2}$$

Формулу (2) називають другою важливою границею.

Для доведення формули (2) розглянемо два випадки.

1. Нехай $x \to +\infty$. Кожне значення змінної x знаходиться між двома послідовними натуральними числами: $n \le x < n+1$, де $n = \left[x\right]$, $n \in \square$. Тоді виконується нерівність $\frac{1}{n+1} < \frac{1}{x} \le \frac{1}{n}$, звідки $1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n}$. З цієї нерівності отримаємо:

$$\left(1+\frac{1}{n+1}\right)^n < \left(1+\frac{1}{r}\right)^x \le \left(1+\frac{1}{n}\right)^{n+1}$$
.

При $x \to +\infty$ $n \to \infty$, тому, перейшовши у останній подвійній нерівності до границі при $n \to \infty$, маємо:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n \le \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \le \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1}. \tag{3}$$

Далі використаємо формулу $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, $n\in \square$. Знайдемо границі послідовностей у лівій та правій частинах нерівності (3).

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+1} \right)^{n+1}}{1 + \frac{1}{n+1}} = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1}}{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)} = \frac{e}{1} = e.$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e \cdot 1 = e.$$

Таким чином, $e \le \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x \le e$, звідки випливає формула (2).

2. Нехай $x \to -\infty$. Зробимо заміну змінної -x = t. Тоді знаходимо:

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{t \to +\infty} \left(1 - \frac{1}{t}\right)^{-t} = \lim_{t \to +\infty} \left(\frac{t-1}{t}\right)^{-t} = \lim_{t \to +\infty} \left(\frac{t}{t-1}\right)^t = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^t = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^t = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^{-t} = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^t = \lim$$

Таким чином, формула (2) виконується при $x \to \pm \infty$.

Наслідок.
$$\lim_{x\to 0} (1+x)^{1/x} = e$$

Нескінченно великі функції

<u>Означення</u>. Функцію y = f(x) називають нескінченно великою при $x \to x_0$, якщо

$$\forall M > 0 \ \exists \delta(M) > 0 \colon 0 < |x - x_0| < \delta \Rightarrow |f(x)| > M$$
.

Використовують позначення: $\lim_{x\to x_0} f(x) = \infty$, або $f(x) \to \infty$ при $x \to x_0$.

Приклад. Функція $y = \frac{1}{x-2}$ є нескінченно великою при $x \to 2$.

Означення. Функцію y = f(x) називають нескінченно великою при $x \to \infty$, якщо

$$\forall M > 0 \ \exists P(M) > 0: |x| > P \Longrightarrow |f(x)| > M.$$

Використовують позначення: $\lim_{x\to\infty} f(x) = \infty$, або $f(x) \to \infty$ при $x \to \infty$.

Приклад. Функція $y = x^2$ є нескінченно великою при $x \to \infty$.

Нескінченно малі функції та їх властивості

<u>Означення.</u> Функцію f(x) називають *нескінченно малою* при $x \to x_0$ $(x \to \infty)$, якщо $\lim_{x \to x_0} f(x) = 0$ $\left(\lim_{x \to \infty} f(x) = 0\right)$.

Умову $\lim_{x \to x_0} f(x) = 0$ можна записати у вигляді:

$$\lim_{x \to x_0} f(x) = 0 \Leftrightarrow \forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : 0 < |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon.$$

Використовуючи означення нескінченно малої величини, можна довести наступні основні властивості нескінченно малих величин.

- 1. Сума скінченної кількості нескінченно малих величин ϵ нескінченно малою.
- 2. Добуток обмеженої функції на нескінченно малу ϵ нескінченно малою.
- 3. Добуток нескінченно малих величин ϵ нескінченно малою.
- 4. Частка від ділення нескінченно малої при $x \to x_0$ величини на функцію, що має границю, відмінну від нуля при $x \to x_0$, є нескінченно малою.
- 5. Якщо функція $\alpha(x)$ є нескінченно малою, то обернена їй функція $\frac{1}{\alpha(x)}$ є нескінченно

великою, і, навпаки, якщо f(x) є нескінченно великою, то $\frac{1}{f(x)}$ є нескінченно малою.

Порівняння нескінченно малих функцій

Дві нескінченно малі функції порівнюють між собою за допомогою дослідження їх відношення. Нехай $\alpha(x)$ та $\beta(x)$ – нескінченно малі функції при $x \to x_0$, тобто виконуються рівності:

$$\lim_{x\to x_0}\alpha(x)=\lim_{x\to x_0}\beta(x)=0.$$

Означення. Функції $\alpha(x)$ та $\beta(x)$ називають нескінченно малими одного порядку_при $x \to x_0$, якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = C \neq 0$, $C \in \mathbb{R}$.

 $\underline{\mathbf{O}}$ значення. Функцію $\alpha(x)$ називають нескінченно малою вищого порядку, ніж $\beta(x)$ при $x \to x_0$, якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$.

<u>Означення.</u> Функцію $\alpha(x)$ називають *нескінченно малою k -го_порядку* відносно $\beta(x)$ при $x \to x_0$, якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta^k(x)} = C \neq 0$, $C \in \mathbb{R}$.

<u>Означення.</u> Нескінченно малі функції $\alpha(x)$ та $\beta(x)$ називають *непорівняними* при $x \to x_0$, якщо у точці x_0 не існує границі їх відношення.

У означеннях замість $x \to x_0$ може розглядатися $x \to \pm \infty$.

Серед нескінченно малих функцій одного порядку важливе значення для практичних застосувань мають еквівалентні нескінченно малі.

<u>Означення.</u> Функції $\alpha(x)$ та $\beta(x)$, що є нескінченно малими при $x \to x_0$, називают еквівалентними нескінченно малими, якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$.

Використовують позначення $\alpha(x) \sim \beta(x)$.