COL352 Problem Sheet 1

Himanshi Ghai (2019CS50433) Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399)

January 2022

Contents

1	Question 1	2
2	Question 2	3
3	Question 3	4
4	Question 4	5
5	Question 5	6
6	Question 6	7

Question 3	
Question. Question	
Solution. Solution	

Question 4	
Question. Question	
Solution. Solution	

Question 5

Question. For any string $w = w_1 w_2 \dots w_n$ the reverse of w written w^R is the string $w_n \dots w_2 w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, then so is A^R . In other words, regular languages are closed under the reverse operation.

Proof. Consider the DFA for $D_A = (Q, \Sigma, \delta, q_0, F)$. Construct the following NFA $N_A = (Q', \Sigma', \delta', q', F')$:

$$Q' = Q \cup q'$$

$$\Sigma' = \Sigma$$

$$\delta'(q_i, a) = q_j \iff \delta(q_j, a) = q_i$$

$$\delta'(q', \epsilon) = F$$

$$F' = \{q_0\}$$

$$(1)$$

Claim 5.1. N_A recognises the language A^R , i.e., every word in A^R is accepted by N_A and every word not in A^R is rejected by N_A

Proof. Consider any word w in A, it is recognised by D_A (from construction). Consider the sequence of states visited during the run of acceptance of w. Let it be $S = \{q_0 = q_{w_1}, q_{w_2}, \ldots, q_{w_n}\}$. Now consider the following run in N_A of w^R :

$$\{q', q_{w_n}, \dots, q_{w_2}, q_0 = q_{w_1}\}\$$
 (2)

The above is a valid run since each transition is a valid one from the construction of N_A (the first one is an ϵ -transition and the remaining are fixed transitions). This proves that every word in A is recognised by N_A .

To prove the converse, assume by contradiction that a word $w^R = w_n \dots w_2 w_1 \notin A$ is accepted by N_A . Let the sequence of states be $S' = \{q', q_{w_n}, \dots, q_{w_2}, q_{w_1} = q_0\}$. Now, from the construction of N_A , the following sequences of states should be accepted by D_A :

$$\{q_{w_1} = q_0, q_{w_2}, \dots, q_{w_n}\}\tag{3}$$

This corresponds to accepting the string w. However, D_A accepts only strings in A. This is a contradiction to our assumption. Therefore, N_A rejects every string not in A.

Therefore, A^R is recognised by N_A which is an NFA. Therefore, A^R is a regular language as well. Thus, regular languages are closed under the reverse operation. Hence, proved.

Question 6	
Question. Question	
Solution. Solution	