mas441 homework

20208209 Jaemin Oh

2020년 11월 28일

Problem (1.5).

- (a) Let $\varepsilon > 0$ be given. There is open set O containing E such that $m(O \setminus E) < \varepsilon$. Since E is compact set contained in open set O, there is r > 0 such that r neighborhood of E is contained in O. For nr > 1, $O_n \subset O$. Therefore $m(O_n \setminus E) \le m(O \setminus E) < \varepsilon$. Therefore $\lim_{n \to \infty} m(O_n) = m(E)$.
- (b) For closed and unbounded set which does not satisfy above, consider $E = \{\sum_{k=1}^n \frac{1}{k} : n \in \mathbb{N}\}$. m(E) = 0 because of countability and $m(O_n) = \infty$ since each O_n contains (x, ∞) for some x > 0.

For open and bounded set which does not satisfy (a), consider $E = \bigcup_{i=1}^{\infty} \left(q_i - \frac{\varepsilon}{2^{i+1}}, q_i + \frac{\varepsilon}{2^{i+1}}\right)$ where q_i is enveration of rational numbers between 0 and 1. Then by countable additivity, $m(E) \leq \varepsilon$ and $O_n \supset [0,1]$. Since ε is arbitrary positive number, we can see that E does not satisfy (a).

Problem (1.7).

It will be shown in problem #8 that δE is measurable when E is measurable since δE is image of E under n by n matrix whose i-th diagonal entry is δ_i .

Consider $R = \prod_{i=1}^d [a_i, b_i]$. Then $\delta R = \prod_{i=1}^d [\delta_i a_i, \delta_i b_i]$. It is rectangle, so $|\delta R| = \prod_{i=1}^d |R|$ for all rectangle R.

Now suppose $\delta E \subset \bigcup_{j=1}^{\infty} Q_j$ where Q_j is a cube. Then $E \subset \bigcup_{j=1}^{\infty} \frac{1}{\delta} Q_j$. It leads $m_*(E) \leq \sum_{j=1}^{\infty} \prod_{i=1}^{d} \frac{1}{\delta_i} |Q_j|$. Therefore $\prod_{i=1}^{d} \delta_i m_*(E) \leq \sum_{j=1}^{\infty} |Q_j|$. Since $\bigcup_{j=1}^{\infty} Q_j$ is arbitrary, $\prod_{i=1}^{d} m_*(E) \leq m_*(\delta E)$.

On the contrary, suppose $E \subset \bigcup_{j=1}^{\infty} Q'_j$. Then $\delta E \subset \bigcup_{j=1}^{\infty} \delta Q'_j$. It leads $m_*(\delta E) \leq \sum_{j=1}^{\infty} \prod_{i=1}^d |Q'_j| = \prod_{i=1}^d \delta_i \sum_{j=1}^{\infty} |Q'_j|$. Since $\bigcup_{j=1}^{\infty} Q'_j$ is arbitrary, $m_*(\delta E) \leq \prod_{i=1}^d \delta_i m_*(E)$.

Problem (1.8).

(a) Note that $|Lx - Lx'| \le ||L|||x - x'||$ where $||L|| = \sup_{|x|=1} |Lx|$. It is well known that $||L|| < \infty$ for linear operator on d Euclidean space. Therefore L is continuous, which leads compactness of L(E) when E is compact. Also, $\bigcup_{\alpha} L(A_{\alpha}) = L(\bigcup_{\alpha} A_{\alpha})$. It means L preserves F_{σ} . Because we can represent any F_{σ} set as countable union of compact set by considering k-disc centered at origin. (k is positive integer)

(b) Assume E is measurable. Let $\varepsilon > 0$ be given. There is $F_{\sigma} \subset E$ such that $m(E \setminus F_{\sigma}) < \varepsilon$. By definition of Lebesgue measure, there is covering of $E \setminus F_{\sigma}$ by cubes, $\sum |Q_j| < \varepsilon$.

Then
$$m(L(E) - L(F_{\sigma})) \leq m(L(E \setminus F_{\sigma})) \leq \sum m_*(L(Q_i)) \leq (2\sqrt{d}M)^d \sum m_*(Q_i)$$
.

Notice that last term can be arbitrarily small and $L(F_{\sigma})$ is countable union of closed sets. By corollary 3.5, L(E) is measurable.

Problem (1.13).

- (a) Every open set is countable union of almost disjoint cubes. Therefore open set is F_{σ} . By considering complement, every closed set is countable intersection of open sets.
- (b) \mathbb{Q} is F_{σ} set because $\mathbb{Q} = \bigcup_{i=1}^{\infty} \{q_i\}$, where one-point set is closed. Assume $\mathbb{Q} = \bigcap_{i=1}^{\infty} G_i$ where G_i is an open set. Since \mathbb{Q} is dense in \mathbb{R} , each G_i is open dense subset of \mathbb{R} . Consider $G_i \setminus \{q_i\} = G'_i$. It is also dense in \mathbb{R} and open. By Baire's theorem, $\bigcap_{i=1}^{\infty} G'_i$ must be nonempty. But actually $\bigcap_{I=1}^{\infty} G'_i$ is empty. It is contradiction. Therefore \mathbb{Q} is not G_{δ} set.
- (c) Consider $\mathbb{Q}_{>0} \cup \mathbb{I}_{\leq 0}$ where \mathbb{I} is set of irrational number. It is disjoint union of F_{σ} set and G_{δ} set. If that set is G_{δ} set, by intersection(-ing) with positive real numbers, we get $\mathbb{Q}_{>0} = G_{\delta}$ which is contradiction. If that set is F_{σ} , its complement is G_{δ} , and it leads $\mathbb{Q}_{\leq 0}$ is G_{δ} set by intersection with nonpositive real numbers. It also contradicts with (b). # positive rationals and nonpositive rationals are not G_{δ} set by same reasoning in (b).

Problem (1.14).

- (a) $J_*(E) \leq J_*(\bar{E})$ is trivial. Let $E \subset \bigcup_{j=1}^N I_j$. Then $\bar{E} \subset \bigcup_{j=1}^N \bar{I}_j = \overline{\bigcup_{j=1}^N I_j}$. But $\sum |I_j| = \sum |\bar{I}_j|$. Therefore $J_*(\bar{E}) \leq \sum_{j=1}^N |\bar{I}_j| = \sum_{j=1}^N |I_j|$. By taking infimum over all $\bigcup_{j=1}^N \supset E$, $J_*(\bar{E}) \leq J_*(E)$.
- (b) $E = \mathbb{Q} \cap [0,1]$. Then m(E) = 0 but covering of E by finitely many intervals must contain [0,1]. So $J_*(E) = 1$.

Problem (1.15).

 $m_*^{\mathcal{R}}(E) \leq m_*(E)$ since class of rectangles contains class of cubes.

Assume $m_*^{\mathcal{R}}(E) < m_*(E)$. Then there is $\bigcup_{j=1}^{\infty} R_j$ containing E such that $m_*(E) > \sum |R_j|$ by definition of $m_*^{\mathcal{R}}$. This is impossible since $m_*(E) \le m_*(\bigcup_{i=1}^{\infty} R_j) \le \sum m_*(R_j) = \sum |R_j|$ by countable additivity of m_* . Therefore $m_*^{\mathcal{R}}(E) = m_*(E)$.

Problem (1.16).

(a) $x \in E$ iff for any n, there is $k \ge n$ such that $x \in E_k$ iff $x \in \bigcup_{k \ge n} E_k$ for any n iff $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$.

Therefore, E is measurable.

(b) $m(E) \leq m\left(\bigcup_{k\geq n} E_k\right) \leq \sum_{k=n}^{\infty} m(E_k)$ for any positive integer n. But, since $\sum_{k=1}^{\infty} m(E_k) < \infty$, for given $\varepsilon > 0$, there is positive integer N such that $n \geq N$ implies $\sum_{k=n}^{\infty} m(E_k) < \varepsilon$. Therefore $m(E) < \varepsilon$ for every positive ε . This means m(E) = 0.

Problem (1.17).

Fix k. $m(|f_k| = \infty) = \lim_{n \to \infty} m(|f_k| > n) = 0$. So we can choose positive integer N_k such that $N_k \le N_{k+1}$ and $m(|f_k| > N_k) < 2^{-k}$. Let $N_k = \frac{c_k}{k}$.

Then $\sum_{k=1}^{\infty} m\left(\frac{|f_k|}{c_k} > \frac{1}{k}\right) \le 1 < \infty$. By Borel-Cantelli lemma, $m\left(\limsup E_k\right) = 0$. So, if $x \notin \limsup E_k$, then $x \in \bigcap_{k \ge n} E_k^c$ for some positive integer n, and it means $\frac{|f_k(x)|}{c_k} \le \frac{1}{k}$ for all $k \ge n$. Therefore $\lim_{k \to \infty} \frac{|f_k|}{c_k} = 0$ for almost every x.

Problem (1.18).

First consider characteristic function 1_E of finite measure set E. There are $F_n \subset E \subset G_n$ where F_n, G_n are closed, open repectively and $m(G_n \setminus F_n) < 2^{-n}$. We can assume G_n is decreasing by considering $G'_n = \bigcap_{k=1}^n G_k$. Similarly, we can regard F_n as increasing sequence of closed sets.

Now, for each n, there is Urysohn function f_n which is continuous, vanishes outside of G_n and equal to 1 on F_n . Then clearly $f_n \to 1_E$ as $n \to \infty$ except on $\bigcap_{n\geq 1} (G_n \setminus F_n)$. But $m(\bigcap_{n\geq 1} (G_n \setminus F_n) = 0$. This says there is sequence of continuous function whose a.e. limit is 1_E .

From now on, using the above, consider measurable function f. There is sequence of simple function s_n whose pointwise limit is f. By above, for each n, there is $\{f_{n,k}\}_{k=1}^{\infty}$ whose a.e. limit is s_n .

Choose $k_n \leq k_{n+1}$ so that $m(\{f_{n,k_n} \neq s_n\}) < 2^{-n}$. By Borel Cantelli lemma, $m(\limsup A_n) = 0$ where $A_n = \{f_{n,k_n} \neq s_n\}$. If $x \in (\limsup A_n)^c$, then $x \in \bigcap_{n \geq N} A_n^c$ for some N, then $f_{n,k_n} = s_n$ for $n \geq N$. Therefore $\lim_{n \to \infty} f_{n,k_n} = \lim_{n \to \infty} s_n = f$ for almost every x.

Problem (1.22).

Assume $f=1_{[0,1]}$ a.e. where 1_A denotes characteristic function of A. If $f \neq 1$ for some $x \in (0,1)$, there is $\delta > 0$ such that $(x-\delta,x+\delta) \subset (0,1)$ and $f \neq 1$ on $(x-\delta,x+\delta)$ by continuity. It contradicts with $f=1_{[0,1]}$ a.e. Therefore f=1 for $x \in (0,1)$. Similarly, f=0 for |x|>1. Then f must be discontinuous at x=0,1. It leads the fact that there is no such f.

Problem (1.23).

Fix n. Then $\mathbb{R} = \bigcup_{k \in \mathbb{Z}} \left(\frac{k}{n}, \frac{k+1}{n}\right]$. So for each $x \in \mathbb{R}$, there exists unique k such that $x \in \left(\frac{k}{n}, \frac{k+1}{n}\right]$. Now, fix y. For $x \in \left(\frac{k}{n}, \frac{k+1}{n}\right]$, define $f_n(x, y)$ as follows:

$$f_n(x,y) = n \left[f\left(\frac{k}{n}, y\right) \left(\frac{k+1}{n} - x\right) + f\left(\frac{k+1}{n}, y\right) \left(x - \frac{k}{n}\right) \right]$$

It is line segemnt connecting $\left(\frac{k}{n}, f\left(\frac{k}{n}, y\right)\right)$ and $\left(\frac{k+1}{n}, f\left(\frac{k+1}{n}, y\right)\right)$. Note that it is sum of product of two continuous functions. Hence f_n is measurable.

Also, consider below:

$$f_n(x,y) - f(x,y) = \left[f\left(\frac{k}{n}, y\right) - f(x,y) \right] (k+1-nx)$$
$$+ \left[f\left(\frac{k+1}{n}, y\right) - f(x,y) \right] (nx-k)$$

Note that $k < nx \le k+1$ hence $0 \le k+1-nx \le 1$ and $0 \le nx-k \le 1$. By continuity of $f(\cdot,y)$, as $n \to \infty$, $f_n(x,y) - f(x,y) \to 0$ since $\frac{k}{n}, \frac{k+1}{n} \to x$.

Therefore f(x,y) is pointwise limit of measurable function hence measurable.

Problem (1.25).

Let E be measurable. Then E^c is also measurable. By definition of measurability, there is open set O containing E^c such that $m_*(O \setminus E^c) = m_*(E \setminus O^c) < \varepsilon$. Therefore E is measurable in new sense.

Assume that E is measurable in new sense. For each $\varepsilon > 0$, there is closed $F \subset E$ such that $m_*(E \setminus F) = m_*(F^c \setminus E^c) < \varepsilon$. It leads measurability of E^c and therefore E is measurable in old sense because class of measurable sets is closed under complement set operation.

Problem (1.26).

 $m_*(E \setminus A) \leq m_*(B \setminus A) = m(B) - m(A) = 0$ since measure of B is finite. Therefore $E \setminus A$ is zero measure set, therefore measurable. $E = E \setminus A \cup A$ which is union of two measurable set. Therefore E is measurable.

Problem (1.27).

Let $Q_t = [-\frac{1}{2}t, \frac{1}{2}t]^d$ and $K_t = E_1 \cup (E_2 \cap Q_t)$. Clearly K_t is compact for each $t \geq 0$. It is straightforward from definition that $E_1 \subset K_t \subset E_2$.

Note that $K_0 = E_1$ and $K_M = E_2$ for large M such that $E_2 \subset Q_M$. Now define the function $\varphi(t) = m(K_t)$. Then, for s, t, $|\varphi(s) - \varphi(t)| \leq |m(Q_s) - m(Q_t)| = |s^d - t^d|$. For every $\varepsilon > 0$, there is $\delta > 0$ such that $|s - t| < \delta$ implies $|s^d - t^d| < \varepsilon$. This leads continuity of $\varphi(t)$.

Since domain of φ is connected and codomain of φ is ordered, we can use intermediate value theorem. So there is $p \in [0, M]$ so that $m(E_1) < m(K_p) < m(E_2)$. And clearly $E_1 \subset K_p \subset E_2$.

Problem (1.28).

Let $\alpha \in (0,1)$. $\frac{1}{\alpha}m_*(E) > m_*(E)$ so there is open set O containing E such that $m_*(E) = m_*(E \cap \bigcup_{j \geq 1} I_j) = m_*(\bigcup_{j \geq 1} E \cap I_j) > \alpha m_*(O) = \alpha \sum_{j \geq 1} m_*(I_j)$ where I_j 's are disjoint interval whose union is O.

If $m_*(E \cap I_j) < \alpha m_*(I_j)$ for all positive integer j, then $m_*(E) \leq \sum_{j \geq 1} m_*(E \cap I_j) \leq \alpha \sum_{j \geq 1} m_*(I_j)$ which contradicts to above.

Therefore there is I_j such that $m_*(E \cap I_j) \ge \alpha m_*(I_j)$.

Problem (1.37).

Consider $f1_{[-n,n]}$. It is uniformly continuous on [-n,n]. Let $\varepsilon > 0$ be arbitrary. choose $\delta > 0$ less than n such that $d(x,y) < \delta$ implies $d(f(x), f(y)) < \varepsilon$ for all $x, y \in [-n, n]$.

For each $x \in [-n,n]$, consider $\left(x-\frac{\delta}{2},x+\frac{\delta}{2}\right)$. Such interval forms open cover of [-n,n]. We can cover [-n,n] by at most $\frac{2n+1}{\delta}$ number of such intervals. Let Γ_n be graph of $f1_{[-n,n]}$. Then $m_*(\Gamma_n) \leq \frac{2n+1}{\delta}\delta 2\varepsilon = 2(2n+1)\varepsilon$ which can be arbitrarily small. Therefore $m_*(\Gamma_n) = 0$ for all n and $m(\Gamma) = \sum_{n=1}^{\infty} m(\Gamma_n) = 0$ where Γ is graph of f.

Problem (3.5).

(a) It is enough to show that $\int_0^{1/2} \frac{dx}{x(\log x)^2} < \infty$.

$$\int_0^{1/2} \frac{dx}{x(\log x)^2} = \lim_{n \to \infty} \int_{1/n}^{1/2} \frac{dx}{x(\log x)^2}$$

$$= \lim_{n \to \infty} \int_{-\log n}^{-\log 2} \frac{dt}{t^2}$$

$$= \lim_{n \to \infty} (1/\log 2 - 1/\log n) = 1/\log 2 < \infty$$

By MCT and the change of variable formula. Thus f is integrable.

 $(b) \ \ Fix \ x \in [-1/2, 1/2]. \ \ Let \ \varepsilon > 0 \ \ be \ small. \ \ Consider \ B = (-|x| - \varepsilon, |x| + \varepsilon).$

$$f^*(x) \ge \frac{1}{2|x| + 2\varepsilon} \int_{-|x| - \varepsilon}^{|x| + \varepsilon} \frac{dt}{|t|(\log|t|)^2}$$

$$= \frac{1}{|x| + \varepsilon} \int_0^{|x| + \varepsilon} \frac{dt}{t(\log t)^2}$$

$$\ge \frac{1}{|x| + \varepsilon} \int_0^{|x|} \frac{dt}{t(\log t)^2}$$

$$= \frac{1}{|x| + \varepsilon} \frac{1}{-\log|x|}$$

by similar calculation to above. The above inequality for maximal function of f holds for all small $\varepsilon > 0$, thus we can say that $f^*(x) \ge 1/(-|x|\log|x|)$.

Now, it remains to show that f^* is not locally integrable. This can be done by considering the following:

$$\int_{-1/2}^{1/2} f^*(x) dx \ge 2 \int_0^{1/2} \frac{dx}{-x \log x}$$

$$= 2 \lim_{n \to \infty} \int_{1/n}^{1/2} \frac{dx}{-x \log x}$$

$$= 2 \lim_{n \to \infty} (\log (1/\log 2) - \log (1/\log n)) = \infty$$

Thus f^* is not integrable on (-1/2, 1/2), this implies the result.

Problem (3.12).

By chain rule, F' exists for all $x \neq 0$. But,

$$\lim_{h \to 0} \frac{F(h)}{h} = \lim_{h \to 0} h \sin(1/h^2) = 0$$

Thus F' exists for all $x \in \mathbb{R}$.

For $1/\sqrt{2n\pi + \pi/6} \le x \le 1/\sqrt{2n\pi - \pi/6}$, $2n\pi - \pi/6 \le 1/x^2 \le 2n\pi + \pi/6$, thus $\cos 1/x^2 \ge sqrt3/2$ and $\left|\sin 1/x^2\right| \le 1/2$. So $|F'| \ge 2/x \cos 1/x^2 - 2x \left|\sin 1/x^2\right| \ge \sqrt{3}\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi - \pi/6}$.

By using the above,

$$\int_{0}^{1} |F'| dm \ge \sum_{n=1}^{\infty} \left(1/\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi + \pi/6} \right) \left(\sqrt{3}\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi - \pi/6} \right)$$

$$= \sum_{n=1}^{\infty} \frac{\pi/\sqrt{3}}{\sqrt{2n\pi + \pi/6} \left(\sqrt{2n\pi + \pi/6} + \sqrt{2n\pi - \pi/6} \right)}$$

$$- \sum_{n=1}^{\infty} \frac{\pi/3}{(2n\pi - \pi/6)\sqrt{2n\pi + \pi/6} \left(\sqrt{2n\pi + \pi/6} + \sqrt{2n\pi - \pi/6} \right)}$$

where the last sum converges and previous one diverges (by p-test.) Thus F' is non-integrable.

Problem (3.14).

(a) Given $\varepsilon > 0$, we can always find $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Therefore,

$$\limsup_{h \downarrow 0} \frac{F(x+h) - F(x)}{h} = \lim_{n \to \infty} \sup_{0 < h < 1/n} \frac{F(x+h) - F(x)}{h}$$

Let q be a rational number. Clearly, the following is true:

$$\sup_{0 < q < 1/n} \frac{F(x+q) - F(x)}{q} \le \sup_{0 < h < 1/n} \frac{F(x+h) - F(x)}{h}$$
 (3.14.2)

If the above inequality is strict, then there is $h' \in (0, 1/n)$ such that

$$\sup_{0 < q < 1/n} \frac{F(x+q) - F(x)}{q} < \frac{F(x+h') - F(x)}{h'}$$
 (3.14.3)

Let $q_i \in (0, 1/n)$ be a sequence of rational numbers such that $q_i \to h'$. Then by continuity of F and h' > 0,

$$\lim_{i \to \infty} \frac{F(x+q_i) - F(x)}{q_i} = \frac{F(x+h') - F(x)}{h'}$$

But the above is impossible due to strict inequality in 3.14.3. Thus, only equality can be possible in 3.14.2.

Therefore,

$$\limsup_{h \downarrow 0} \frac{F(x+h) - F(x)}{h} = \inf_{n} \sup_{0 < q < 1/n} \frac{F(x+q) - F(x)}{q}$$

which is countable \limsup . And $\frac{F(x+q)-F(x)}{q}$ is measurable due to the continuity of F. Thus the result follows.

Problem (3.15).

Let F be function of bounded variation on [a,b]. We can write $F(x) = F(a) + P_F(a,x) - N_F(a,x)$ for $x \in [a,b]$. Let $F_1(x) = F(a) + P_F(a,x)$ and F_2 be the other. Clearly F_i 's are bounded, increasing function. Thus it remains to show that P_F , N_F are continuous provided by the continuity of F.

Let $\varepsilon > 0$ be given, choose $\delta > 0$ such that $|F(x+h) - F(x)| < \varepsilon$ if $|h| < \delta$. Without loss of generality, assume h > 0. By the definition of P_F , there are partitions of [a,x], [a,x+h] such that $P_F(a,x) - \sum_+ (F(t_j) - F(t_{j-1})) < \varepsilon$ and $P_F(a,x+h) - \sum_+ (F(s_j) - F(s_{j-1})) < \varepsilon$. Now consider the common refinement of those two partition. Then:

$$P_{F}(a, x + h) - P_{F}(a, x) \le 2\varepsilon + \sum_{+} (F(s_{j}) - F(s_{j-1})) - \sum_{+} (F(t_{j}) - F(t_{j-1}))$$

$$= 2\varepsilon + \sum_{+} (F(s'_{j}) - F(s'_{j-1}))$$

$$\le 2\varepsilon + |F(x + h) - F(x)| \le 3\varepsilon$$

where s'_j is a positive part of partition of [x, x + h]. When h < 0, by similar manipulation, we can get the same result. Thus P_F is continuous.

All the above calculation can be applied to the process showing the continuity of N_F .

Problem (3.16).

(a) Let $F(x) = F(a) + P_F(a, x) - N_F(a, x) = F_1(x) + F_2(x)$. Since F, F_1, F_2 are of bounded variation(because F_i 's are increasing), their derivative exists a.e. Further, $F' = F'_1 - F'_2$. Since F_i 's are increasing, we can say $F'_i \geq 0$ a.e. So $F' = F'_1 - F'_2 \leq F'_1 + F'_2$. Similarly, $-F' \leq F'_1 + F'_2$. So $|F'| \leq F'_1 + F'_2$. By integrating the previous inequality from a to b, we get $\int_a^b |F'| dm \leq \int_a^b F'_1 + F'_2 dm$.

But the last one is $\leq F_1(b) - F_1(a) + F_2(b) - F_2(a) = P_F(a,b) + N_F(a,b) = T_F(a,b)$.

Problem (3.24).

(a) $F(x) \leq F(b)$ so F is bdd increasing function. Let F_J be corresponding jump function of F. Then $F - F_J$ is continuous and increasing, so bounded. By theorem 3.11, derivative of $F - F_J$ exists a.e., ≥ 0 , and integrable. So, $F_A(x) = \int_a^x (F - F_J)' dm \leq (F - F_J)(x) - (F - F_J)(a)$. Then clearly F_A is absolutely continuous. Let $F_C(x) = F(x) - F_J(x) - F_A(x)$. Then F_C is sum of continuous functions, so continuous. And since F_A is absolutely continuous, its derivative is equal to $(F - F_J)'$ so $F'_C = 0$ a.e. Note that $(F - F_J)' \geq 0$ implies F_A is increasing. Also note that for $x \leq y$,

$$F_C(x) - F_C(y) = F(x) - F(y) - F_J(x) + F_J(y) + \int_x^y (F - F_J)' dm$$

$$\leq F(x) - F(y) - F_J(x) + F_J(y) + (F - F_J)(y) - (F - F_J)(x)$$

$$= 0$$

so F_C is increasing function.

(b) Let $F = F_A + F_C + F_J$. Note that F_J can vary up to additive constant. Since $F'_C = 0$ a.e., derivative of $F - F_J$ and derivative of F_A are equal almost everywhere. So, due to absolute continuity of F_A , $F_A(x) - F_A(a) = \int_a^x F' dm = \int_a^x (F - F_J)' dm$. This means that F_J determines F_A up to additive constant. Then F_C is determined automatically.

Problem (3.32).

Assume the Lipschitz condition. Take $\delta = \varepsilon/M$ when $\varepsilon > 0$ is given. For (a_i,b_i) such that $\sum_i (b_i-a_i) < \delta$, then $\sum_i |f(b_i)-f(a_i)| \leq M \sum_i (b_i-a_i) < M\delta = \varepsilon$. Thus f is absolutely continuous. So f' exists a.e. Now consider the following:

 $|f'(x)| = \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} \le M$

Thus $|f'| \leq M$ a.e. x.

For the other direction, without loss of generality, assume $x \leq y$. Since f is absolutely continuous, f' exists a.e, and $\int_x^y f' dm = f(y) - f(x)$. Thus, $|f(x) - f(y)| = \left| \int_x^y f' dm \right| \leq \int_x^y |f'| dm \leq (y - x)M = |x - y|M$.