

Introduction

Heart Disease Detection

Some facts about

Heart Disease

A heart attack occurs when the blood flow that brings oxygen to the heart muscle is blocked

610,000

Leading cause of death

About **610,000 people** die of heart disease in the United States every year—that's **1 in every 4 deaths.**

735,000 *Yearly*

Every year about **735,000 Americans** have a heart attack. Of these, **525,000** are a first heart attack.

Our Goal

Building a model to assist doctors to detect whether these patients are under a high risk of heart disease

Data Set Introduction

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Cleveland database

 \mathfrak{b}^2

14 attributes 303 samples

Heart Disease Data Set

Download: Data Folder, Data Set Description

Abstract: 4 databases: Cleveland, Hungary, Switzerland, and the VA Long Beach

Data Set Characteristics:	Multivariate	Number of Instances:	303	Area:	Life
Attribute Characteristics:	Categorical, Integer, Real	Number of Attributes:	75	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	654686

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slop	ca	thal	num
63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
67	1	4	160	286	0	2	108	1	1.5	2	3	3	1
67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
56	1	2	120	236	0	0	178	0	0.8	1	0	3	0
62	0	4	140	268	0	2	160	0	3.6	3	2	3	1
57	0	4	120	354	0	0	163	1	0.6	1	0	3	0
63	1	4	130	254	0	2	147	0	1.4	2	1	7	1
53	1	4	140	203	1	2	155	1	3.1	3	0	7	1

Data Pre-processing

Data exploration & cleaning

Pickle generator

Save the result of Classification

2

Build Model

Compare the performance of KNN; Logistic Regression; Decision Tree; Random Forest

Build website

Use flask to build our heart disease prediction website

Building Model

Comparison of four models:

- 1) KNN 2) Logistic Regression
- 3) Decision Tree 4) Random Forest

Model Selection

Based on Accuracy, ROC Curve

Choose

Logistic Regression

 $R^2 = 0.843$

KNN Classification 84% Accuracy

Area under the ROC curve : 0.809269

Random Forest Classifier

 $R^2 = 0.774$

Decision Tress

 $R^2 = 0.604$

The optimal depth is 3. R^2 is not good enough. AUC is 0.923

3 Website

Base on Flask

Base on Flask

Website Interface

Heart Disease Detection

Sex: Female ✓
Chest pain type: typical angina
Resting blood pressure: mmHg
Serum cholestoral: mg/dl
Fasting blood sugar over 120 mg/dl?

Resting electrocardiographic results:

Value 1: ST-T wave abnormality

Value 2: left ventricular hypertrophy

Age:

0 🗸

Value 0: normal

Warning

