В первых двух заданиях считаю именно так, как это делалось на семинаре.

- 1. 1) Порядка 2: элементов x, удовлетворяющих условию $x^2 = 0$ в группе $\mathbb{Z}_2 2$, в группе $\mathbb{Z}_6 2$, в группе $\mathbb{Z}_9 1$. Итого в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$ элементов x, удовлетворяющих условию $x^2 = 0 4$. Из них 1 элемент порядка $1 \Rightarrow 3$ элемента порядка 2.
 - 2) Порядка 3: элементов x, удовлетворяющих условию $x^3 = 0$ в группе $\mathbb{Z}_2 1$, в группе $\mathbb{Z}_6 3$, в группе $\mathbb{Z}_9 3$. Итого в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$ элементов x, удовлетворяющих условию $x^3 = 0 9$. Из них 1 элемент порядка $1 \Rightarrow 8$ элементов порядка 3.
 - 3) Порядка 6: элементов x, удовлетворяющих условию $x^6=0$ в группе \mathbb{Z}_2-2 , в группе \mathbb{Z}_6-6 , в группе \mathbb{Z}_9-3 . Итого в группе $\mathbb{Z}_2\times\mathbb{Z}_6\times\mathbb{Z}_9$ элементов x, удовлетворяющих условию $x^6=0-36$. Из них 3 элемента порядка 2, 8 элементов порядка 3, 1 элемент порядка $1\Rightarrow 24$ элементов порядка 6.
 - 4) Порядка 9: элементов x, удовлетворяющих условию $x^9 = 0$ в группе $\mathbb{Z}_2 1$, в группе $\mathbb{Z}_6 3$, в группе $\mathbb{Z}_9 9$. Итого в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$ элементов x, удовлетворяющих условию $x^9 = 0 27$. Из них 8 элементов порядка 3, 1 элемент порядка $1 \Rightarrow 18$ элементов порядка 9.

Ответ: 3, 8, 24, 18

2. Дано: нециклическая абелева группа A порядка 99

 $99=3^2\cdot 11\Rightarrow A\simeq \mathbb{Z}_3\times \mathbb{Z}_3\times \mathbb{Z}_{11}$ или $A\simeq \mathbb{Z}_9\times \mathbb{Z}_{11}$, но 11 и 9 - взаимнопросты \Rightarrow группа $\mathbb{Z}_9\times \mathbb{Z}_{11}\simeq \mathbb{Z}_{99}\Rightarrow$ является циклической, а это не подходит по условиям $\Rightarrow A\simeq \mathbb{Z}_3\times \mathbb{Z}_3\times \mathbb{Z}_{11}$

1) В каждой группе порядка 3 ровно два элемента порядка 3 – 1 и 2 (*)

Найдём количество элементов порядка 3 в группе $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$: элементов x, удовлетворяющих условию $x^3 = 0$ в группе $\mathbb{Z}_3 - 3$, в группе $\mathbb{Z}_3 - 3$, в группе $\mathbb{Z}_{11} - 1$. Итого в группе $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^3 = 0 - 9$. Из них 1 элемент порядка $1 \Rightarrow 8$ элементов порядка 3 (**)

- (*), (**) \Rightarrow в группе порядка 99: $\frac{8}{2} = 4$ подгрупп порядка 3
- 2) Посчитаем количество элементов порядка 33 в группе порядка 33: $\mathbb{Z}_{33} \simeq \mathbb{Z}_3 \times \mathbb{Z}_{11}$ Элементов порядка 3: элементов x, удовлетворяющих условию $x^3 = 0$ в группе $\mathbb{Z}_3 3$, в группе $\mathbb{Z}_{11} 1$. Итого в группе $\mathbb{Z}_3 \times \mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^3 = 0 3$. Из них 1 элемент порядка $1 \Rightarrow 2$ элемента порядка 3.

Элементов порядка 11: элементов x, удовлетворяющих условию $x^{11}=0$ в группе \mathbb{Z}_3-1 , в группе $\mathbb{Z}_{11}-11$. Итого в группе $\mathbb{Z}_3\times\mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^{11}=0-11$. Из них 1 элемент порядка $1\Rightarrow 10$ элементов порядка 11.

Элементов порядка 33: элементов x, удовлетворяющих условию $x^{33}=0$ в группе \mathbb{Z}_3-3 , в группе $\mathbb{Z}_{11}-11$. Итого в группе $\mathbb{Z}_3\times\mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^{33}=0-33$. Из них 1 элемент порядка 1, 10 элементов порядка 11, 2 элемента порядка 3 \Rightarrow 33 - 10 - 2 - 1 = 20 элементов порядка 33 (*)

Найдём количество элементов порядка 33 в группе $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$:

Элементов порядка 3: элементов x, удовлетворяющих условию $x^3 = 0$ в группе $\mathbb{Z}_3 - 3$, в группе $\mathbb{Z}_3 - 3$, в группе $\mathbb{Z}_{11} - 1$. Итого в группе $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^3 = 0 - 9$. Из них 1 элемент порядка $1 \Rightarrow$, 8 элемента порядка 3.

Элементов порядка 11:элементов x, удовлетворяющих условию $x^{11}=0$ в группе \mathbb{Z}_3-1 , в группе \mathbb{Z}_3-1 , в группе $\mathbb{Z}_{11}-11$. Итого в группе $\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^{11}=0-11$. Из них 1 элемент порядка $1\Rightarrow$, 10 элементов порядка 11.

Элементов порядка 33: элементов x, удовлетворяющих условию $x^{33}=0$ в группе \mathbb{Z}_3-3 , в группе \mathbb{Z}_3-3 , в группе $\mathbb{Z}_{11}-11$. Итого в группе $\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_{11}$ элементов x, удовлетворяющих условию $x^{33}=0$ – 99. Из них 1 элемент порядка 1, 10 элементов порядка 11, 8 элемента порядка 3 \Rightarrow

99 - 10 - 8 - 1 = 80 элементов порядка 33 (**)

(*), (**) \Rightarrow в группе порядка 99: $\frac{80}{20} = 4$ подгрупп порядка 33

Ответ: 4, 4

3. По теореме: $\forall n, m, l \in \mathbb{N} : n = m \cdot l \Rightarrow \mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$. Воспользуемся этой теоремой:

$$\Rightarrow \mathbb{Z}_{15} \simeq \mathbb{Z}_5 \times \mathbb{Z}_3, \mathbb{Z}_{36} \simeq \mathbb{Z}_9 \times \mathbb{Z}_4, \mathbb{Z}_{50} \simeq \mathbb{Z}_{25} \times \mathbb{Z}_2$$

$$\Rightarrow \mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50} \simeq \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25} \times \mathbb{Z}_{2}$$

$$\Rightarrow \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \simeq \mathbb{Z}_{15} \times \mathbb{Z}_4 \simeq \mathbb{Z}_{60}, \mathbb{Z}_9 \times \mathbb{Z}_{25} \times \mathbb{Z}_2 \simeq \mathbb{Z}_9 \times \mathbb{Z}_{50} \simeq \mathbb{Z}_{450}$$

 $\Rightarrow \mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50} \simeq \mathbb{Z}_{60} \times \mathbb{Z}_{450} \Rightarrow$ ответ максимум n=2. Докажем, что нельзя получить n=1:

Докажем, что нельзя получить n=1: достаточно доказать, что $\mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50}$ не изоморфно \mathbb{Z}_{27000} . В \mathbb{Z}_{27000} \exists элемент порядка 27000 – это 1. По доказанному ниже (в задании 4) порядок любого элемента в $\mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50} \leqslant 900$. То есть, в $\mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50}$ нет элемнта порядка 27000 $\Rightarrow \mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50}$ не изоморфна \mathbb{Z}_{27000}

(также можно заметить, что 15 и 50, к примеру, невзаимнопросты. Поэтому не выполняется условие теоремы для $\mathbb{Z}_{15} \times \mathbb{Z}_{36} \times \mathbb{Z}_{50} \simeq \mathbb{Z}_{27000}$)

Ответ: 2

4. По теореме: $A \simeq \mathbb{Z}_{p_*^{k_1}} \times ... \times \mathbb{Z}_{p_*^{k_t}}$

Утверждение: $k = \text{HOK}(p_1^{k_1},...,p_t^{k_t})$ и k кратно порядку любого элемента из A

Доказательство:

- 1) Докажем, что такое k подойдёт:
 - а) Возьём элемент $x = (x_1, ..., x_t) \in A$. Найдём наименьшее $m : x^m = 0 = (0, 0, ...0)$

$$x^{m} = 0 \Leftrightarrow \begin{cases} x_{1}^{m} = 0 \\ \dots \\ x_{t}^{m} = 0 \end{cases} \quad \text{Пусть } ord(x_{1}) = s_{1}, \dots, ord(x_{t}) = s_{t} \Rightarrow \begin{cases} m : s_{1} \\ \dots \\ m : s_{t} \end{cases}$$

Но m - наименьшее $\Rightarrow m = \mathrm{HOK}(s_1,...,s_t)$

b) Утверждение: $\forall x \in A : k : m$ Доказательство:

Из выбора
$$m$$
 следует, что
$$\begin{cases} m \vdots s_1 \\ ... \\ m \vdots s_t \end{cases}$$
 и $m = \mathrm{HOK}(s_1,...,s_t)$

По следствию из теоремы Лагранжа $\forall i: |\mathbb{Z}_{p_i^{k_i}}| : ord(x_i) \Rightarrow |\mathbb{Z}_{p_i^{k_i}}| : s_i \Rightarrow p_i^{k_i} : s_i \Rightarrow k : m$ \Rightarrow такое k подойдёт и хотя бы k будет достаточно $(\forall x \in A \Rightarrow m \leqslant k)$

2) Докажем, что меньше k получить нельзя

Приведём пример: возьмём
$$x=(1,1,...,1)$$
. $\forall i: ord(x_i)=p_i^{k_i}\Rightarrow m=\mathrm{HOK}(p_1^{k_1},...,p_t^{k_t})\Rightarrow m=k$ $max(ord(x))=k, x\in A$