Растровое изображение

Растровое изображение хранится в компьютере в виде массива числовых величин. Массив является прямоугольным, с определенных числом строк и столбцов. Каждая числовая величина представляет значение пикселя, записанного в этом месте. Этот массив называют «пиксельной картой» («pixel map»).

Двухуровневое изображение и его битовая карта

1	0	0	0	0	0	0	Ö
1	1	0	0	0	0	0	Ô
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0
1	1	7	1	7	0	0	0
1	1	7	1	Ť	1	0	0
1	1	۳	1	7	1	۳	0
1	1	1	1	7	1	7	1
1	1	4	1	4	0	0	0
1	0	1	1	1	0	0	0
1	0	0	0	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	1	1	0
0	0	0	0	Ó	1	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Если в растровом изображении имеются пикселы только с двумя значениями, то такое изображение называется двухуровневым или чернобелым.

Полутоновые изображения

Полутоновые изображения классифицируются по «глубине пикселя» («pixel depth»), которая равна числу бит, необходимых для представления уровней их полутонов (оттенков серого).

Поскольку n-битовая величина имеет 2^n возможных значений, то в изображении с глубиной пикселей, равной n, может быть 2^n оттенков серого.

Полутоновые изображения

Чаще всего используются такие величины:

- два бита на пиксель обеспечивают 4 оттенка серого;
- четыре бита на пиксель обеспечивают 16 оттенков серого;
- восемь бит на пиксель обеспечивают 256 оттенков серого

Шестнадцать уровней яркости серого цвета

Цветные изображения

Каждый пиксель цветного изображения имеет свой «код цвета» («color value») — числовое значение, которое каким-либо образом представляет цвет.

Чаще всего цвет описывается комбинацией величин красного, зеленого и синего цветов. Значение каждого пикселя представляет собой упорядоченную тройку, например (23,14,51), которая описывает интенсивности красной, зеленой и синей составляющих — в указанном порядке.

Число бит, используемых для представления цвета каждого пикселя, зазывают глубиной цвета.

Цветные изображения

Каждая величина в тройке (красный, зеленый и синий) занимает определенное число бит, глубина цвета является суммой этих трех величин.

Глубина цвета, равная трем, использует по одному биту на каждый

компонент.

Код цвета	Изображение
0, 0, 0	Черный
0, 0, 1	Синий
0, 1, 0	Зеленый
0, 1, 1	Голубой
1, 0, 0	Красный
1, 0, 1	Пурп урны й
1, 1, 0	Желтый
1, 1, 1	Белый

Цветные изображения

Многие изображения имеют глубину цвета равную восьми, по три бита под красную и зеленую составляющие и два под синюю.

Если используют по одному байту на каждую составляющую, то получаются изображения, обеспечивающие реалистичное цветовоспроизведение, их называют полноцветными изображениями (true color).

Растеризация в OpenGL

Назначение нужного цвета каждому отдельному пикселю «внутри» прямой или полигона называется «преобразованием развертки» или растеризацией.

Растровые алгоритмы

Алгоритмы растеризации

Алгоритмы перевода графических примитивов в растровую форму

Алгоритмы заполнения областей и многоугольн иков

Алгоритмы обработки растровых изображений

Регулировка яркости и контрастности

Масштабирование изображений -

Геометрические преобразования

Алгоритмы фильтрации

Связность

<u>Связность</u> – возможность соединения двух пикселей растровой линией, т.е. последовательным набором пикселей.

8-связность

4-связность

Пикселы P1 и P2 называются 4-СВЯЗНЫМИ, если у них отличаются только х-координаты или только у-координаты, причем только на 1: $\left| x1 - x2 \right| + \left| y1 - y2 \right| <= 1$

Пикселы P1 и P2 называются 8-СВЯЗНЫМИ, если у них отличаются х-координаты и/или у-координаты, но не более, чем

Четырехсвязная и восьмисвязная линии

Рисование отрезка прямой линии

```
void drawDot(GLint x, Glint y)
 glBegin(GL_POINTS); glVertex2i(x,y);
glEnd();
glFlush();
for (int x=x1; x<=x2; x++)//отрезок горизонтальной линии
drawDot(x,y1);
for (int y=y1; y<=y2;y++)//отрезок вертикальной линии
drawDot(x1,y);
```

Рисование отрезка прямой линии

Пусть конечные точки отрезка имеют целочисленные координаты, и уравнение прямой, содержащей отрезок:

Будем также считать, что тангенс угла наклона прямой лежит в пределах от 0 до 1. Тогда для изображения отрезка на растре достаточно для всех целых x, принадлежащих отрезку, выводить на экран точки с координатами (к. Round(р))

```
void line(int x1, int y1, int x2, int y2)
{
double k=((double)(y2-y1))/(x2-x1);
double b=y1-k*x1;
for (int x=x1;x<=x2;x++)
drawDot(x,(int)(k*x+b));
}</pre>
```

Рисование отрезка прямой линии

```
Поскольку k = \frac{\Delta y}{\Delta x}, то один шаг по целочисленной сетке на оси x будет
соответствовать \Delta x = 1. Отсюда получаем, что y будет увеличиваться на
величину k (y_i = kx_i + b; y_{i+1} = kx_{i+1} + b; y_{i+1} - y_i = kx_{i+1} + b - kx_i - b = k(x_{i+1} - x_i) = k).
Итерационная последовательность выглядит следующим образом: x_{i+1} = x_i + 1,
y_{i+1} = y_i + k.
void line(int x1, int y1, int x2, int y2, int color)
double k = ((double)(y2 - y1)) / (x2 - x1);
double y = y1;
for (int x = x1; x \le x2; x++, y += k)
drawDot(x, (int)y);
```

начало отрезка совпадает с началом координат.

Если
$$(s-t)<0$$
, то $P_i=T_i=(r+1,q)$ и тогда $x_i=x_{i-1}+1$, $y_i=y_{i-1}$,

если же $(s-t) \ge 0$, то $P_i = S_i = (r+1, q+1)$ и тогда $x_i = x_{i-1} + 1$, $y_i = y_{i-1} + 1$

$$s = \frac{dy}{dx}(r+1) - q, \ t = q+1 - \frac{dy}{dx}(r+1), \Rightarrow$$

$$s-t=2\frac{dy}{dx}(r+1)-2q-1 \Rightarrow$$

$$dx(s-t) = 2(r \cdot dy - q \cdot dx) + 2dy - dx.$$

$$d_i = dx(s-t) = 2(r \cdot dy - q \cdot dx) + 2dy - dx$$
. $r = x_{i-1}$ $q = y_{i-1}$,

$$d_i = 2(x_{i-1} \cdot dy - y_{i-1} \cdot dx) + 2dy - dx = 2x_{i-1}dy - 2y_{i-1}dx + 2dy - dx$$

$$d_{i+1} = 2x_i dy - 2y_i dx + 2dy - dx$$

$$\begin{aligned} &d_{i+1} - d_i = 2x_i dy - 2y_i dx + 2dy - dx - 2x_{i-1} dy + 2y_{i-1} dx - 2dy + dx = 2x_i dy - 2x_{i-1} dy + 2y_{i-1} dx - 2y_i dx \\ &d_{i+1} - d_i = 2dy(x_i - x_{i-1}) - 2dx(y_{i-1} - y_i) \end{aligned}$$
 3 ная, что $x_i = x_{i-1} + 1$ (т.е. $x_i - x_{i-1} = 1$)

$$d_{i+1} = d_i + 2dy - 2dx(y_i - y_{i-1}).$$

Пусть на предыдущем шаге $d_i < 0$, тогда $(y_i - y_{i-1}) = 0$ и $d_{i+1} = d_i + 2dy$ и $y_{i+1} = y_i$. Если же на предыдущем шаге $d_i \ge 0$, то $(y_i - y_{i-1}) = 1$ и $d_{i+1} = d_i + 2(dy - dx)$ и $y_{i+1} = y_i + 1$.

Осталось узнать как вычислить d_1 . Так как при i = 1:

 $(x_0, y_0) = (0,0), \Rightarrow d_1 = 2dy - dx$. (при подстановке в первое определение $d_i = dx(s-t) = 2(r\cdot dy - q\cdot dx) + 2dy - dx$)

- 1. Рассчитаем $dx = (x_2 x_1)$ и $dy = (y_2 y_1)$.
- 2. i = 1, $d_i = 2dy-dx$, $y_i=y_1$, $x_i=x_1$.
- 3. Рисуем точку с координатами (x_i, y_i) .
- 4. Если $d_i < 0$, тогда $d_{i+1} = d_i + 2dy$ и $y_{i+1} = y_i$. Если $d_i \ge 0$, то $d_{i+1} = d_i + 2(dy dx)$

$$\mathbf{H} \ \ \mathbf{y}_{i+1} = \mathbf{y}_i + 1 \, .$$

- 5. $x_{i+1}=x_i+1$; i=i+1.
- 6. Если $x_i < x_2$, то перейти на пункт 3, иначе конец.

Если dy > dx, то необходимо будет использовать этот же алгоритм, но пошагово увеличивая у $(y_{i+1} = y_i + 1)$ и на каждом шаге вычислять х $(x_i = x_i + 1)$ или $x_i = x_i$, пока $y_i < y_2$.

Реализация этого алгоритма может выглядеть следующим образом:

```
void drawDot(GLint x, GLint y) // рисуем точку
{
  glBegin(GL_POINTS);
  glVertex2i(x,y);
  glEnd();
  glFlush();
}
```

```
void line (GLint x1, GLint y1, GLint x2, GLint y2) //
алгоритм Брезенхема для отрезка
  int dy=abs(y2-y1);
  int dx=abs(x2-x1);
  int tmp x, tmp y,x,y, flag;
  if (dx==0) { // вертикальная линия
  if (y2 < y1) {tmp y=y2; y2=y1; y1=tmp y;}
  for (y=y1; y <= y2; y++)
  drawDot(x1,y);
  return;
```

```
if (dy < dx) { // наклонная линия
  flag=0;
  if (x2<x1) {tmp_x=x2; x2=x1; x1=tmp_x; tmp_y=y2;y2=y1;
y1=tmp_y; }
  if (y2<y1) {flag=1;}
  int di;
  di=2*dy-dx;
  y=y1;
  x=x1;
  do {
     drawDot(x,y);
     if (di<0) {di=di+2*dy; x++;}
     else \{di=di+2*(dy-dx); x++; if (flag==0) \{y++;\}
else {y--;}}
      \} while (x<x2);
  return;
```

Растровая развертка окружности

$$x^2 + y^2 = R^2.$$

Чтобы изобразить часть окружности, будем изменять x с единичным шагом от 0 до R и на каждом шаге вычислять y.

$$y = \pm \sqrt{R^2 - x^2}$$

Растровая развертка окружности

использование параметрического представления окружности

$$x = R \cos \alpha$$
,

$$y = R \sin \alpha$$

при пошаговом изменении угла α от 0° до 360° .

Растровая развертка окружности

```
void cir_pix(int x0, int y0, int x, int y) // 8 TOURK
```

```
на окружности
  drawDot (x0+x, y0+y);
  drawDot (x0+y,y0+x);
  drawDot (x0+x,y0-y);
  drawDot (x0+y,y0-x);
  drawDot (x0-x,y0-y);
  drawDot (x0-y, y0-x);
  drawDot (x0-x,y0+y);
  drawDot (x0-y,y0+x);
```


Предположим, что точка P_{i-l} была выбрана как ближайшая к окружности при $x=x_{i-l}$. Теперь найдем, какая из точек (S_i или T_i) расположена ближе к окружности при $x=x_{i-l}+1$.

Заметим, что ошибка при выборе точки P_i (x_i , y_i) была равна

$$D(P_i) = (x_i^2 + y_i^2) - R^2.$$

Запишем выражение для ошибок, получаемых при выборе точки S_i или T_i :

$$D(S_i) = [(x_{i-1}+1)^2 + (y_{i-1})^2] - R^2$$

$$D(T_i) = [(x_{i-1}+1)^2 + (y_{i-1}-1)^2] - R^2.$$

Если $|D(S_i)| \ge |D(T_i)|$, то T_i ближе к реальной окружности, иначе выбирается S_i .

Введем $d_i = |D(S_i)| - |D(T_i)|$.

 T_i будет выбираться при $d_i \ge 0$, в противном случае будет устанавливаться S_i .

Опуская алгебраические преобразования, запишем d_i и d_{i+1} для разных вариантов выбора точки S_i или T_i .

$$D_1 = 3 - 2 R.$$

Если выбирается S_i (когда $d_i < 0$), то $d_{i+1} = d_i + 4 x_{i-1} + 6$.

Если выбирается T_i (когда $d_i \ge 0$), то $d_{i+1} = d_i + 4 (x_{i-1} - y_{i-1}) + 10$.

Алгоритм формулируется следующим образом. Дано (x_0, y_0) — центр окружности, R — радиус.

- 1. Берем первую точку i=1, $x_i=0$, $y_i=R$, рассчитываем $d_i=3-2$ R.
- Вызов функции рисования 8-ми точек на окружности по координатам одной точки, учитывая смещение центра окружности от начала координат.
 - 3. Если $d_i < 0$, то $d_{i+1} = d_i + 4 x_i + 6$, $x_{i+1} = x_i + 1$, $y_{i+1} = y_i$. Если $d_i \ge 0$, то $d_{i+1} = d_i + 4 (x_{i-1} - y_{i-1}) + 10$, $x_{i+1} = x_i + 1$, $y_{i+1} = y_i - 1$.
 - 4. i = i + 1.
 - 5. Если $x_i > R/\sqrt{2}$, то перейти на пункт 2, иначе конец.

$$x = P_x(t), \quad y = P_y(t).$$

$$P_{x}(t) = \sum_{i=0}^{m} C_{m}^{i} t^{i} (1-t)^{m-i} x_{i}, \quad P_{y}(t) = \sum_{i=0}^{m} C_{m}^{i} t^{i} (1-t)^{m-i} y_{i},$$

$$C_m^i = \frac{m!}{i!(m-i)!}.$$

1. m = 1 (по двум точкам).

$$P(t) = (1-t)P_0 + t P1$$

$$x(t) = (1-t) \cdot x_0 + t \cdot x_1$$

$$y(t) = (1-t) \cdot y_0 + t \cdot y_1$$

2. m = 2 (по трем точкам, рис. 12):

$$P(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2.$$

3. m = 3 (по четырем точкам, кубическая.

$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2 (1-t) P_2 + t^3 P_3.$$

Геометрический алгоритм для кривой Безье

Этот алгоритм позволяет вычислить координаты (x, y) точки кривой Безье по значению параметра t.

- 1. Каждая сторона контура многоугольника, который проходит по точкам-ориентирам, делится пропорционально значению t.
- Точки деления соединяются отрезками прямых и образуют новый многоугольник. Количество узлов нового контура на единицу меньше, чем количество узлов предшествующего контура.
- 3. Стороны нового контура снова делятся пропорционально значению t. И так далее. Это продолжается до тех пор, пока не будет получена единственная точка деления. Эта точка и будет точкой кривой Безье .

Геометрический алгоритм для кривой Безье

Пример. Пусть заданы вершины многоугольника Безье $P_0[1\ 1],\ P_1[2\ 3],$ $P_2[4\ 3]$ и $P_3[3\ 1]$. Найдем семь точек, лежащих на кривой Безье.

В общем виде многочлен Безье имеет вид:

$$\mathbf{P}(t) = (1-t)^m \mathbf{P}_0 + \sum_{i=1}^{m-1} C_m^i t^i (1-t)^{m-i} \mathbf{P}_i + t^m \mathbf{P}_m.$$

В нашем случае m = 3 (по четырем точкам, кубическая)

$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t) P_2 + t^3 P_3.$$

$$P(0) = P0 = [1 \ 1],$$

$$P(0.15) = 0.614P_0 + 0.325 P_1 + 0.058 P_2 + 0.003 P_3 = [1.5 \ 1.765],$$

$$P(0.35) = 0.275 P_0 + 0.444 P_1 + 0.239 P_2 + 0.042 P_3 = [2.248 \ 2.367],$$

$$P(0.5) = 0.125 P_0 + 0.375 P_1 + 0.375 P_2 + 0.125 P_3 = [2.75 \ 2.5],$$

$$P(0.65) = 0.042 P_0 + 0.239 P_1 + 0.444 P_3 + 0.275 P_3 = [3.122 \ 2.367],$$

$$P(0.85) = 0.003 P_0 + 0.058 P_1 + 0.325 P_3 + 0.614 P_3 = [3.248 \ 1.765],$$

$$P(1) = P_3 = [3 \ 1].$$

Матричная форма кривой Безье

$$P(t) = [T][N][G]$$

$$P(t) = [T][N][G] = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}.$$

$$P(t) = \begin{bmatrix} t_4 & t_3 & t_2 & t & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ -4 & 12 & -12 & 4 & 0 \\ 6 & -12 & 6 & 0 & 0 \\ -4 & 4 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

Матричная форма кривой Безье

$$P(t) = [T][N][G]$$

Матрица N в общем виде

$$\begin{bmatrix} \binom{n}{0}\binom{n}{n}(-1)^n & \binom{n}{1}\binom{n-1}{n-1}(-1)^{n-1} & \cdots & \binom{n}{n}\binom{n-n}{n-n}(-1)^0 \\ \binom{n}{0}\binom{n}{n-1}(-1)^{n-1} & \binom{n}{1}\binom{n-1}{n-2}(-1)^{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \binom{n}{0}\binom{n}{1}\binom{n}{1}(-1)^1 & \binom{n}{1}\binom{n-1}{0}(-1)^0 & \cdots & 0 \\ \binom{n}{0}\binom{n}{0}\binom{n}{0}(-1)^0 & 0 & \cdots & 0 \end{bmatrix}$$

Сплайн Эрмита

$$x(t) = TM_h G_{hx}$$

$$y(t) = TM_h G_{hy}$$

$$z(t) = TM_h G_{hz}$$

$$\begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

В-сплайны

$$x(t) = TM_sG_{sx},$$

$$M_{s} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}. \qquad G_{s}^{i} = \begin{bmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{bmatrix}, \quad 2 \le i \le n-2.$$

$$G_s^i = \begin{bmatrix} P_{i-1} \\ P_i \\ P_{i+1} \\ P_{i+2} \end{bmatrix}, \quad 2 \le i \le n-2$$