Міністерство освіти і науки України Київський національний університет імені Тараса Шевченка Український фізико-математичний ліцей Київського національного університету імені Тараса Шевченка XXIV Всеукраїнська учнівська Інтернет-олімпіада з фізики

2024/2025 навчального року I (заочний) етап II тур 9 Клас

1. «Серед морів, серед крижин живе розумненький пінгвін!»

Пінгвін Понго полюбляє не тільки спортивне плавання, але і фізику, і вміє знаходити найвигідніші шляхи, добираючись до цілі за найкоротший час. Однак при цьому Понго завжди

поспішає і розглядає лише траєкторії, які мало відхиляються від прямої, що з'єднує точку старту та фінішу. Сьогодні перед Понго стоїть непроста задача. Він повинен добратися до фінішу F, який знаходиться у області з крижинами, де його швидкість пересування зменшується втричі, з u до u/3 (див. рис.). Радіус крижаної області R, відстань до неї L=5R. Виявилося, що якщо фініш знаходився достатньо близько до дальньої границі крижаної області, то Понго не плив по прямій, а обирав інший шлях, що представляв собою ламану з двох відрізків, у воді і у крижаній області. Однак при наближенні фінішу F до центру кола стратегія Понго перестала давати виграш.

- А) Яким було це **критичне положення** фінішу $F_{\kappa p}$, після якого Понго мав змінити стратегію? Відстань вкажіть від дальньої точці крижаної області.
- Б) **За яких відстаней** L такої такої точки не буде і Понго завжди буде вигідно рухатися по прямій?
- В) Нехай тепер відстань L буде набагато перевищувати радіус області R, а фініш буде поблизу дальньої точки крижаної області. Якою тепер, на ваш погляд, буде **оптимальна траєкторія** Понго, якщо він врахує навіть такі траєкторії, які сильно відрізнятимуться від прямолінійної?

<u>Примітки</u>: а) уважайте, що початкова позиція Понго, центр області і фініш знаходяться завжди на одній прямій; б) розмірами Понго порівняно з важливими відстанями у задачі знехтуйте; в) для x, значення яких набагато менше за одиницю, справедлива наближена рівність $\sqrt{1+x} \approx 1+x/2$

Розв'язання:

А) Розглянемо траєкторії, що перетинають передню границю крижаної області на відстані x, малій порівняно з R. Очевидно, обидві ділянки траєкторії найвигідніше вибирати прямолінійними. Тоді, наближено розраховуючи довжини гіпотенуз, отримаємо

$$t = \frac{5R + \frac{x^2}{2 \cdot 5R} + \frac{x^2}{2R}}{u} + \frac{S + \frac{x^2}{2 \cdot S} - \frac{x^2}{2R}}{u/3} = \frac{5R + 3S}{u} + \frac{x^2}{2u} \left(\frac{3}{S} - \frac{9}{5R}\right).$$

Отже, бачимо, що на відстані S>5R/3 (тобто на відстані менше R/3 від дальньої границі) час руху по такій траєкторії буде меншим, ніж по прямій. Ця відстань відповідає положенню «зображення» точкового джерела світла, що знаходиться у точці старту, у «лінзі»-крижаній області.

б) Для довільного L маємо аналогічно

$$t = \frac{L + \frac{x^2}{2 \cdot L} + \frac{x^2}{2R}}{u} + \frac{S + \frac{x^2}{2 \cdot S} - \frac{x^2}{2R}}{u/3} = \frac{L + 3S}{u} + \frac{x^2}{2u} \left(\frac{3}{S} - \frac{2}{R} + \frac{1}{L}\right).$$

Тоді, вимагаючи, щоб S>2R отримуємо, що L<2R.

в) Тепер легко здогадатися, що більш вигідним буде просто «обійти» крижану область стороною, тобто рухатися по відрізку прямої лінії до майже верхньої точки області, а потім рухатися по чверті дуги кола, поки не дістатися фінішу. Дійсно, прямолінійна ділянка шляху в цьому випадку близька до L+R, і тоді легко порівняти час руху по прямолінійній і по такій, «обхідній», траєкторії,

$$t_1 \approx \frac{L+R}{u} + \frac{\pi R/2}{u}, \qquad t_2 = \frac{L}{u} + \frac{2R}{u/3} > t_1.$$

(Більш точний розрахунок у квадратичному наближенні дає $t_1 \approx \frac{L+R-R^2/2L}{u} + \frac{(\pi/2+R/L)R}{u}$, що, як бачите, відрізняється лише на квадратичні доданки!) Очевидно, що «зкосити», тобто перейти на будь-яку хорду в середині

крижаної області, показану на рисунку зеленим, не дасть виграшу (впевнитися в цьому можна прямим розрахунком). Цікаво подумати над оптичною аналогією і в цьому випадку: окрім прямолінійного променю, який виходить з місця старту і

потрапляє у точку фінішу, можна також уявити собі і промінь, який зазнає повного внутрішнього відбиття на ділянці чверті кола, саме він і відповідає мінімуму часу розповсюдження!

2. «Вангуємо покази амперметра!»

_У схемі, показаній на рисунку, потужності, що виділяються на резисторах 1 і 2 дорівнюють відповідно P і 2P, напруга на колі U, а амперметр A_1 показує значення сили струму I_0 . Що може показувати амперметр A_2 ? Прилади вважайте ідеальними, опором з'єднувальних дротів знехтуйте.

Розв'язання.

Струм, який показує амперметр A_2 дорівнює різниці струму через резистор 1, тобто I_0 , і струму I_2 через резистор 2. Знайдемо I_2 , знаючи потужність, що виділяється на резисторі 2, і напругу, яка дорівнює різниці напруги на колі і напруги на першому резисторі,

$$I_2 = \frac{2P}{U - U_1} = \frac{2P}{U - P/I_0}.$$

Тоді отримуємо шуканий струм через амперметр A_2 :

$$I_{A2} = I_0 - I_2 = I_0 - \frac{2P}{U - P/I_0} = I_0 \frac{UI_0 - 3P}{UI_0 - P}.$$

Зазначимо, що знаменник цього дробу обов'язково повинен бути додатним (оскільки напруга на другому резисторі менша за загальну напругу), а от чисельник може бути як додатним, так і від'ємним, що відповідає ситуації, коли струм тече через амперметр в одному або іншому напрямку.

Амперметр A_1 показує лише величину струму, тому можливі два варіанти. Позначимо напругу на першому резисторі U_1 , тоді на другому напруга $U - U_1$. Позначимо також силу струму, що тече по першому резистору, I_x , тоді по другому резистору вона дорівнює I_x+I_0 . Для потужностей на двох резисторах отримуємо

$$P = U_1 I_x$$
, $2P = (U - U_1)(I_x + I_0)$.

Виключаючи U_1 , отримаємо квадратне рівняння для I_x ,

$$I_x^2 - \left(\frac{3P}{U_0} - I_0\right)I_x - \frac{PI_0}{U} = 0.$$

Розв'язуючи його і враховуючи, що I_0 може бути як додатнім, так і від'ємним, отримуємо можливі значення сили струму у першому резисторі:

$$I_x = \frac{3P}{2U} \left(1 - \frac{UI_0}{3P}\right) \left[1 \pm \sqrt{1 + \frac{4PUI_0}{(3P - UI_0)^2}}\right].$$

Підходять такі розв'язки з цих чотирьох коренів, які будуть давати додатне значення струму (оскільки ми вибрали знак загальної напруги) і відповідатимуть значенню $U_1 = P/I_x$, меншому за U.

3. «Важіль на намистинці»

На рисунку показаний важіль AB, до кінців важеля прив'язані кінці невагомої нитки, що огинає два нерухомі блоки C,D. Уздовж нитки може ковзати масивна «намистинка» E. Важіль і нитка невагомі, тертя відсутнє.

А) Де крізь стержень АВ має проходити

вісь обертання, якщо його горизонтальне положення відповідає стану рівноваги системи?

Б) **Чи не припущено на рисунку неточності** у виборі положення «намистинки»? **Обґрунтуйте** свою відповідь.

Розв'язання

Модуль T сили натягу невагомої нитки за відсутності тертя однаковий у всіх перерізах цієї нитки. Отже, в точках A і B на важіль діють однакові за модулем сили, які утворюють різні кути з горизонтом (відповідно α і β). З рисунку бачимо: $\sin \alpha = \frac{4}{5}$, $\sin \beta = \frac{3}{5}$. Якщо сили натягу нитки в точках A і B розкласти на вертикальні та горизонтальні складові, то обертальний момент відносно осі обертання важеля дадуть тільки вертикальні складові, модулі яких $T \sin \alpha$ і $T \sin \beta$. Отже, умову рівноваги важеля можна записати у вигляді $T \sin \alpha \cdot l_A = T \sin \beta \cdot l_B$ (тут l_A , l_B — відстані відповідно точок A і B від точки опори важеля).

Таким чином, $4l_A = 3l_B$. Якщо позначити довжину важеля L, то $l_A = 3L/7$, $l_B = 4L/7$. Точка опори розташована в 6 клітинках від точки A і в 8 клітинках від точки B.

З умов рівноваги випливає, що праворуч і ліворуч від «намистинки» нитка має утворювати однакові кути з горизонтом. Наведений рисунок не дуже точно відповідає цій умові.

4. «Безсенсовий камін»

Уявіть собі камін, який не віддає жодного тепла в кімнату, в якій він знаходиться, хоча в ньому й спалюється вугілля. Висота теплоізольованої від навколишнього середовища труби димаря каміна дорівнює h.

Уважайте, що:

- при спаленні вугілля (який складається лише з вуглецю) єдиними наслідками процесу є утворення вуглекислого газу та віддача тепла повітрю, що підіймається по трубі;
- при проходженні повітря через полум'я в хімічній реакції задіюється лише відсоткова (за масою) частина β від всієї кількості кисню в повітрі (масова частка кисню в повітрі

складає $\delta=23\%$). Значення β є відомим і набагато меншим за 100%, тож склад повітря майже не змінюється;

- швидкість повітря в трубі каміна всюди однакова та описується наступним виразом:

$$V = \sqrt{\frac{2\Delta p}{\rho}}$$
, де Δp — різниця тисків на вході в камін зі сторони кімнати перед полум'ям та в димарі каміна в його нижній точці, ρ — густина повітря в трубі димаря;

- повітря в димарі однорідне, має майже однакову густину та температуру в будь-якій точці. Питому теплоємність повітря вважайте відомою c_p . Площа поперечного перерізу труби димаря рівна S;
- температури навколишнього середовища та кімнати однакові та рівні T_0 (камін явно не справляється зі своїми обов'язками), а температура повітря в гарно прогрітому димоході T_h . Зв'язок між температурою повітря та його густиною наближено можна описати формулою $\rho = \frac{\gamma}{T}$, де γ відомий коефіцієнт.
- Питома теплота згоряння вугілля q та будь-які необхідні маси атомів хімічних елементів та молекул відомі.

Знайдіть, яка маса вугілля спалюється за одиницю часу.

Розв'язання.

Тиски в точках A та B однакові бо знаходяться на одному рівні. Тиск в точці C рівний $p_C = p_B + \rho_0 gh$, він же майже рівний тиску в точці D в каміні перед димарем.

Тиск в точці Е рівний $p_E = p_A + \rho_h gh$.

Тоді використовуючи формулу $\rho = \frac{\gamma}{T}$ різниця тисків на вході в димар та в середині димаря в його нижній частині: $\Delta p = (\rho_0 - \rho_h)gh = \gamma\left(\frac{T_h - T_0}{T_h T_0}\right)gh$.

Знайдемо також швидкість повітря в димарі:
$$V = \sqrt{\frac{2\Delta p}{\rho_h}} = \frac{2\gamma(T_h - T_0)gh}{2}$$

Запишемо закон енергії для нагрівання повітря в пічці димаря:

$$qm_{ ext{вугілля}} = c_p m_{ ext{повітря}} (T_h - T_0)$$
 $q lpha = c_p (T_h - T_0)$

Тут α це відношення маси вугілля, яке згорає, до маси повітря, яке за цей час прокачується через пічку.

Хімічна формула, що описує згоряння:

$$C + O_2 \rightarrow CO_2$$

Тоді, приблизно $\alpha = \frac{m_{\text{вугілля}}}{m_{\text{повітря}}} = \beta \delta \frac{\mu_{\textit{C}}}{\mu_{\textit{O}_2}}$, тобто пропорційна відношенню молярних мас.

Врешті решт, отримуємо:

$$\frac{\Delta m_{\text{вугілля}}}{\Delta t} = \alpha \rho_h V S = \left(\beta \delta \frac{\mu_C}{\mu_{O_2}}\right)^{3/2} \frac{\gamma}{\frac{q\beta \delta}{c_p} \frac{\mu_C}{\mu_{O_2}} + T_0} \sqrt{\frac{2\gamma qgh}{T_0 c_p}} S$$

Розв'язок, якщо вважати, що T_h відома.

Тиски в точках A та B однакові бо знаходяться на одному рівні. Тиск в точці C рівний $p_C = p_B + \rho_0 gh$, він же майже рівний тиску в точці D в каміні перед димарем. Тиск в точці E рівний $p_E = p_A + \rho_h gh$.

Тоді використовуючи формулу $\rho = \frac{\gamma}{T}$ різниця тисків на вході в димар та в середині димаря в його нижній частині: $\Delta p = (\rho_0 - \rho_h)gh = \gamma\left(\frac{T_h - T_0}{T_h T_0}\right)gh$.

Хімічна формула, що описує згоряння:

$$C+O_2\to CO_2$$

Тоді, приблизно $\alpha = \frac{m_{\text{вугілля}}}{m_{\text{повітря}}} = \beta \delta \frac{\mu_{\textit{C}}}{\mu_{\textit{O}_2}}$, тобто пропорційна відношенню молярних мас.

Тут α це відношення маси вугілля, яке згорає, до маси повітря, яке за цей час прокачується через пічку.

Врешті решт, отримуємо:

$$\frac{\Delta m_{\text{вугілля}}}{\Delta t} = \alpha \rho_h V S = \beta \delta \frac{\mu_C}{\mu_{O_2}} \frac{\gamma}{T_h} \sqrt{\frac{2\gamma (T_h - T_0)gh}{T_0}} S$$

5. «Гламурний кулькопідшипник»

Один з приладів космічного корабля потребує використання відшліфованих до сферичної форми алмазів, діаметром d=1 см кожний. Алмазні кулі мають розміщатися ззовні золотого циліндру і всередині платинового (див. схем. Рис.). Цей прилад має використовуватись у широкому діапазоні температур, але будь-які механічні напруження алмазних кульок або їх випадання з зазору між циліндрами не допускаються. Температурні коефіцієнти лінійного розширення при температурі

 20° С і діаметру кульок 1 см: алмазу $\alpha = 10^{-6^{\circ}}$ С $^{-1}$, золота $\alpha_3 = 14 \cdot 10^{-6^{\circ}}$ С $^{-1}$, платини $\alpha_{\Pi} = 9 \cdot 10^{-6^{\circ}}$ С $^{-1}$. Ці коефіцієнти можуть бути використані під час розрахунків в інтервалі температур 20° С $\pm 200^{\circ}$ С роботи цього приладу. За рахунок великої теплопровідності алмазу і металів температуру усіх елементів приладу у будь-який момент часу можна вважати однаковою.

- **А)** Якими мають бути радіус золотого циліндру r і радіуси платинового R_1 , R_2 за температури 20°С, щоб прилад працював у широкому інтервалі температур?
- **Б)** Оцінити максимальну кількість алмазних куль, які в один ряд помістяться навколо золотого циліндра? Урахуйте, що для унеможливлення дотику сусідніх куль між ними вставлені тонкі прокладки товщиною 50 мкм з таким самим коефіцієнтом α , що й у алмаза.
- **В) У якому інтервалі температур** за цієї кількості куль прилад вдасться експлуатувати?

Розв'язання.

А) Від зовнішнього радіусу платинового циліндру R_2 відповідь не залежить. Тому для спрощення запису позначатимемо внутрішній радіус R_1 як R. Необхідно, щоб за будьякої температури точно виконувалось R = r + d, тобто

$$R_0(1 + \alpha_{\Pi}\Delta t) = r_0(1 + \alpha_{3}\Delta t) + d_0(1 + \alpha \Delta t),$$

де $R_0 = r_0 + d_0$ – зв'язок між лінійними розмірами при «початковій» температурі $t_0 = 20$ °C. Тоді після скорочення отримуємо

$$R_0 \alpha_{\Pi} = r_0 \alpha_3 + d_0 \alpha$$

і разом з рівнянням $R_0 = r_0 + d_0$, де $d_0 = 1$ см, знайдемо $r_0 = 1,6$ см, $R_0 = 2,6$ см. Зрозуміло, що зовнішній радіус R_2 платинового циліндру має бути більшим за 2,6 см. Б) За температури 20°С центри алмазних кульок віддалені від осі симметрії на відстань $(R_0 + r_0)/2 = 2,1$ см. Приблизну кількість кульок можна оцінити, поділивши довжину кола радіусом 2,1 см на діаметр кульки з товщиною однієї прокладки 1,005 см: $\approx 13,13$. Можна очікувати, що в один ряд між циліндрами вміститься 13 кульок. Зробивши таке припущення, слід все ж таки розрахувати сторону правильного 13-ти кутника, яка має бути не меншою, ніж 1,005 см — відстань між центрами сусідніх кульок у стані дотику.

Справа в тому, що довжина кола більша за периметр вписаного в нього правильного

багатокутника і тому таку перевірку слід зробити. На рисунку зображений прямокутний трикутник з гіпотенузою 2,1 см, кутом $\alpha=180^\circ/13$ і протилеглим від кута катетом, який дорівнює половині сторони багатокутника. Звідси за допомогою калькулятора знаходимо, що сторона такого тринадцятикутника $a_0=1,0051258$ см, ледь-ледь більше $\bar{d}_0=1$ см + 50 мкм = 1,005 см, тобто кульки вмістяться, але відстані між ними будуть маленькими. Чи не призведе це при зміні температури до їх зіткнення й руйнації? Порахуємо. При зміні температури на Δt , діаметр кульки стане $\bar{d}=\bar{d}_0(1+\alpha\Delta t)$, гіпотенуза ж трикутника

 $(R+r)/2 = (R_0(1+\alpha_{\scriptscriptstyle \Pi}\Delta t)+r_0(1+\alpha_{\scriptscriptstyle 3}\Delta t))/2 = (2,1+(1,3\alpha_{\scriptscriptstyle \Pi}+0,8\alpha_{\scriptscriptstyle 3})\Delta t)$ см. Кут α не зміниться, і сторона тринадцятикутника дорівнюватиме

$$a = a_0 + 0.47863 \cdot (1.3\alpha_{\Pi} + 0.8\alpha_3)\Delta t \text{ cm} = a_0 + 10.961 \cdot 10^{-6} \text{°C}^{-1}\Delta t \text{ cm}.$$

Руйнування не відбудеться, якщо $a \ge \bar{d}$. Отже за

$$\Delta t = t - 20^{\circ}\text{C} \ge -\frac{0,0001258}{9,956} \cdot 10^{6} \text{°C} \approx -12,64^{\circ}\text{C},$$

Виходить користуватися цим приладом з тринадцятьма кулями можна буде тільки за температур вищих ніж

$$20^{\circ}\text{C} - \Delta t \approx +7.37^{\circ}\text{C}$$
.

У подібних випадках слід округлювати результат так, щоб не отримати менше значення ніж допустиме.

Якщо в радіальному напрямку відстань між циліндрами змінюватиметься узгоджено зі зміною діаметру кульки, то у дотичному окружному напрямку – ні.

Задачі запропонували: 1-2. Майзеліс З.О. 3. Гельфгат І.М., 4. Олійник А.О., 5. Орлянський О.Ю.