Quiz 06

Due Jan 23, 2019 at 23:59

Points 10

Questions 8

Available Jan 22, 2019 at 11:00 - Jan 23, 2019 at 23:59 1 day

Time Limit 30 Minutes

Instructions

Quiz 06 covers the material in lectures 14 - 16 (pages 90 - 118 of the Course Notes)

This quiz is no longer available as the course has been concluded.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	14 minutes	9 out of 10

Score for this quiz: **9** out of 10 Submitted Jan 23, 2019 at 13:58

This attempt took 14 minutes.

	Question 1 1 / 1 pts	
	If we fit a Seasonal Factor model to monthly data, we	
Correct!	fit 11 dummy variables for the seasonal component	
	fit as many dummy variables as appear necessary from a plot of the data	
	fit 12 dummy variables for the seasonal component	
	fit 11 dummy variables for the seasonal component and delete any that are non-significant	

Question 2	1 / 1 pts
------------	-----------

If we fit 4 dummy variables to model the seasonal component in a quarterly series, ...

et!	All other options are correct	
	we have a situation where the sum of the dummy variables will always be every observation	e 1 for
	we will have perfect multicollinearity	
	Question 3	1 / 1 pts
,	When we fit a seasonal factor model, each seasonal estimate tells	us
	the difference between the season in question and the next season	
	nothing of practical interest	
	the difference between the season in question and the trend value	
t!	the difference between the season in question and the omitted baseline	level
	Question 4	1 / 1 pts
	If we fit a Cosine Harmonic model to a seasonal series	
t!	the coefficient associated with the Cosine term estimates the amplitude cosine curve	of the
	the coefficient associated with the Cosine term estimates the height of the cosine curve	ne

we are unable to correct for autocorrelation using a lagged response variable

the model cannot be estimated

Question 5		2 / 2 pts
f we have a monthly sea 	isonal series and we fit a F	ull Harmonic model, our
•		
predictions will be exact	tly the same as those from a So	easonal Factor model
predictions will be more	accurate than those from a Se	easonal Factor model
opredictions will be un	nreliable	

Correct!

Question 6 The main advantage of fitting a Full Harmonic model rather than fitting a Seasonal Factor model is ... we can delete any significant seasonal harmonics that are too small to be of any practical use orrect Answer we can delete non-significant seasonal harmonics prediction is always easier with a Full Harmonic model ou Answered the Full Harmonic model will always have more degrees of freedom than a Seasonal Factor model

Question 7	2 / 2 pts
If we fit a Full Harmonic model to a seasonal series, the initial mocorrected for autocorrelation will have the same	odel,
estimates for the time variable(s) and the lagged response variable at have the same values for the F-statistic, the R-squared value, the adj squared value, the Residual Standard error and the seasonal estimat	usted R-
estimates for the time variable(s) and the lagged response variable at have the same values for the F-statistic, the R-squared value, the adj squared value, the Residual Standard error and the intercept	
estimates for the time variable(s) and the lagged response variable at have the same values for the F-statistic, the R-squared value, the adjudence squared value and the Residual Standard error	
values for all the estimates, test statistics and P-values in the model s	summary
Question 8	1 / 1 pts
An alternative to removing all non-significant harmonics from a Femodel is to	ull Harmonic
only remove non-significant harmonics when the time estimates are n significant	ot
only remove non-significant pairs of harmonics of the same frequency	ency
only remove non-significant harmonics when the p-values are greater	than 0.2

Correct!

Correct!

only remove the same number of harmonics as there are non-significant seasonal terms in a Seasonal Factor model on the same data

Quiz Score: 9 out of 10