

Bayer Russia Plant Biotechnology Conference:

Protoplast Systems

Bayer Russia Biotechnology Conference

July 2023

Plant Protoplasts as Tools

ADVANTAGES

- Physiology similar to whole plants
- Fast, high throughput automated systems
- Individual cell observations
- Time course experiments
- Adapted to multiple species
- Easy to transform and bypasses whole plant transformations

LIMITATIONS

- Less holistic than whole plants approaches
 - Complementary to whole plant studies
 - Specific culture conditions
 - Stress caused by the isolation process
 - ★ Mixture of cellular types
- ★ Short-timed viability

Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. Frontiers in Plant Science (2021).

Plant Protoplasts: Common Techniques Applied

https://www.frontiersin.org/articles/10.3389/fpls.2021.749581/full

Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. Frontiers in Plant Science (2021).

B A BAYER E R

Protoplast isolation for transient assays

5. **PEG** delivery

Protoplast collection

DNA RNA

Protein

Cellulase enzyme digestion

2. Leaves cutting

1. Arabidopsis plants

6. Secondary assays 2 - 72h post transformation

Localization, protein interaction & expression

ELISA & Reporter assays

sequencing

Transient Assay Setup

Generic co-transfection of plasmids & setup

DNA **Plasmids Tested variants** Test 1 Fluc (Promoter 1) (n=3)Test 2 GUS (Promoter 2) Internal control Renilla Luc **Internal Controls:** Provide viability and transformation efficiency information across

wells

Samples

Replicates suggested to include:

Data Analysis Outline

QC of controls and test samples + calculations for data analysis

Raw Data

Background Normalization

Fold Calculation

Graphs

Subtract mean of No DNA samples for each assay Divide test values by Internal Control(s) to obtain ratio Set mean ratio of 1 reference test construct to 1 fold or 100%. Remaining test constructs shown relative to 1 fold

QC metrics:

Outlier detection/removal

Comparison of Expression Elements in Protoplasts

Transient expression profiles mimic plant expression profiles

Promoter deletion series

Relative Promoter strength assessment

Stable Plant Data

Useful reporter constructs for transient expression studies in *Arabidopsis* mesophyll protoplast assays

Nature Protocols 2, 1565–1572 (2007) https://doi.org/10.1038/nprot.2007.199

Name	GenBank locus	Arabidopsis Biological Resource Center stock number	Promoter of interest (POI)	Use	References
pHBT-sGFP(S65T)-NOS	EF090408	CD3-911	35S derivative	Transfection control	<u>19</u>
pRD29A-LUC-NOS	EF090409	CD3-912	At5g52310	Abscisic acid response	<u>5,13</u>
pAtGH3-LUC-NOS	EF090410	CD3-913	At2g23710	Auxin response	<u>5,13</u>
pWRKY29-LUC-NOS	EF090411	CD3-914	At4g23550	Bacterial flg22 response	<u>15</u>
pGST6-LUC-NOS	EF090412	CD3-915	At2g47730	General stress response	<u>5</u>
pHSP18.2-LUC-NOS	EF090413	CD3-916	At5g59720	Heat response	<u>13</u>
pARR6-LUC-NOS	EF090414	CD3-917	At5g62920	Cytokinin response	<u>13</u>
pGCC1-LUC-NOS	EF090415	CD3-918	8xGCC box synthetic promoter	Ethylene response	<u>12</u>
pFRK1-LUC-NOS	EF090416	CD3-919	At2g19190	Bacterial flg22 response	<u>16</u>

Examples of Comparisons Used in Literature

Promoter activity in response to various hormone stimuli. A) Different promoters are shown in different color bars B) Dose response of a single promoter response C) One promoter response to various compounds tested.

Arabidopsis Protoplast Isolation

Before Digestion

After Digestion & Release

Cell Pellet After Filtration & Centrifugation

Sub-cellular Localization

Sub-cellular Localization

Different color fluorescent proteins can be used to tag multiple compartments or study co-localization in a cell

Signal Peptides & Localization Signals

Localization of native proteins or chimeric protein designs

Plant Biotechnology Journal, Volume: 6, Issue: 7, Pages: 633-648, First published: 08 August 2008, DOI: (10.1111/j.1467-7652.2008.00344.x)

Nuclear Localization Signals (NLS)

Proteins of <70 KDa can passively diffuse into nuclei. NLS studies generally use protein fusions that require active import (>70 kDa).

Two major import pathways to the nuclei: Classic & Non-classic

There are Six Classic NLS Classes

Class 1 & 2 are predominant across organisms, Class 3-5 vary by importin and tissue. Class 5 is plant specific

References:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707185/pdf/main.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091121/

Plastid

Endoplasmic Reticulum

Endoplasmic Reticulum

Cyan – Cytoplasm
Yellow – Nucleus
Green – Chloroplasts
Red – Plastid autofluorescence

DISCLAIMER

THE INFORMATION CONTAINED HEREIN IS EXPERIMENTAL IN NATURE AND IS PROVIDED "AS IS". BAYER MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO THE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE INFORMATION WILL NOT INFRINGE ANY THIRD-PARTY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS.

Thank you!

Any questions?

How to Isolate Healthy Arabidopsis Leaf Protoplasts

ASPB2006 Protoplast Workshop Movie Jen Sheen's Lab - Harvard Medical School (22 minutes long)

https://www.youtube.com/watch?v=5-xm1EoLrW4