Quantifying nitrogen oxides and ammonia via frequency modulation in gas sensors

Master Thesis - Mid term seminar

Marcos F Mourão

March 25, 2021

Outline

Problem recap
Motivation
Research Questions

What has been done so far

Caveats

(Dummy) data

Methods

(Preliminary) Results

Real data

What is next

Problem in a nutshell

NOx are detrimental to the environment Ammonia can neutralize NOx Gas sensors can be used to quantify NOx and Ammonia However, it is not trivial: hey

What has been done so far

- Writing
 - Introduction Done.
 - Theory Done.
 - Data Partially done.
- Some preliminary implementation of the methods
 - Linear Regression
 - Principal Component Regression
 - Partial Least Squares Regression
 - Ridge Regression

Caveats

- Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations
 - Measurement of shape features
 - Naïve window of measurements
 - High frequencies problematic

(Dummy) data

(Dummy) data

	Unnamed: 0	NO2	NO	NH3	slope0	slope1	slope2	slope3	slope4	slope5	 avg40	avg41	avg42	avg43	avg44
o	mix0	50	100	25	0.000261	0.000347	0.000378	0.000342	0.000255	0.000254	 1.788009e- 07	-0.000001	-1.270353e- 06	-1.920155e- 06	-1.117044e- 06
1	mix1	100	25	100	0.000244	0.000334	0.000371	0.000342	0.000256	0.000257	 -6.433617e- 07	0.000002	2.373382e- 06	1.108367e- 06	1.701933e- 06
2	mix2	25	100	50	0.000258	0.000343	0.000374	0.000340	0.000256	0.000254	 -3.621577e- 06	-0.000003	-9.317178e- 07	7.781265e- 07	-3.612217e- 08
3	mix3	50	25	100	0.000249	0.000341	0.000375	0.000341	0.000261	0.000261	 2.510960e- 06	0.000003	1.811447e- 06	7.319652e- 08	4.306713e- 07
4	mix4	100	100	25	0.000256	0.000340	0.000371	0.000332	0.000252	0.000251	 3.064678e- 06	0.000003	9.766817e- 07	-7.697217e- 07	-3.745022e- 07

Methods

- 1. Linear Regression
- 2. Principal Component Regression
- 3. Partial Least Squares Regression
- 4. Ridge Regression

(Preliminary) Results

Real data will be much better!

- More gas mixtures
- More frequencies
- More cycles
- Shape features directly measured

Real data will be much better!

Table: Data acquisition details

Parameter	Value
Factors (gases)	3
Levels (concentrations)	5
Frequencies	16
Features per frequency	4 (2 slopes and 2 averages)
Features per cycle	64
Number of cycles	5
Data points per mixture	320
Number of mixtures	125
Datapoints per experiment	40.000
Number of experiments	3
Total data points	120.000

Real data will be much better!

What is next

- 1. Apply methods to real data
- 2. Assess results
- 3. Define what is "good" in "good prediction levels"
- 4. Look into neural networks alternatives
- Keep writing!

Thank you!