3. (P→q) 1 (P→r), 1,2, 1, 1, p = a 2, p7r 4. (PV a) , 1, condition prove p= (91) 5. (-pV+), 2, cond,
6. (1pvq) 1 (rpvp), 4,5, 7/(xpuq) axp) V((xpuq) Ar)/ 8. ((mprop) v (mpage) V (cmpr) v (gA. 9. (NPV (NPMA))V((MAN)V(911)) HO. (Apv (gAr)) V ((apra) V (gAr)) V ((apra) V (a V(pla (2pV(-par)), 1, dute 7. vp V (anr), 6, distillative 8. P-7 (91v), 7, (ord/1/ora) 1, P -> (qvr) 2, Py (avr) 3. (P-7(qur)) 1 (P7(qur)), 1,2, conjunca 4. (~pV(qVV)), 1, conditions S. (npv (qurr)), z, conditional B. (~pv(qVr)) / (~pv(qv~r)), 4,5, conjunc 7. ((~prq)vr) 1 ((~prq) xnr), 6, associ 8. (npva) V (VNA), 7, distribution a. (cpva) VF 18, idemporant 9. 20 pray 9, elimination (prog) VF, 8, megatic 17. Pag conditional P > 91 GPAr

2,	2. P 9 V Wr P 9 V P 9 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P 1 V P V P 1 V P V P 1 V P V P V P V P V P V P V P V P V P V P V P V P V P V V
3.	
	satisfieble too to logy

(FA)

					4		
	3,		rp	79	1971	(p-74)	(r+q)1 (4
			0	! 	7		1
		0 1	6 6	7	0	1	0
		1 0	0 1	22 252	0	Б	0
E.		0 0				1	
		0 1				1	1
		1 0	1) 1		1	0
		- 1 1	1111			1	1
				sa-t	cflable	tautology	
	3,	3. pq/	79 1	PZq)79	7/	
		0 0	/ /	0	/ //		
		0 1	1	0			
		10	0	/			
		1		/		<i>Y</i>	
	7	4. p 2/r	hilaur	01 6	1 tan	tology	1 1014 - 1
	3,	0000	prqur	mp/:	re my	who want	pural
		6	1	1 0			U
		100	1	n 1	11	1	1
		1110		0 0	111	<i>j</i>	
		0 01	1	1 1	0		1 1
		0 1 1	[1 0	D	1	0 1
		101		0	0		1 0
		1 1111	1 1	0 0	01	0 1	
		LAND	tate	m (pv	900)1(~1	rgun) 1 (pu	-a)1 (quar)1
	2	/			0		
		0			0		
		0			0		upa tistiqble
		1	=	<u> </u>	0		40111111111
		1	<u> </u>		0		
		1			•		

PV (anw(r1(5->+))) PV (Q 1 ~ (r 1 (~ sv +))) Conditional

PV (Q 1 ~ ((r 1 ~ s) V (r 1 +))) distributive

PV (Q 1 (~ (r 1 ~ s) 1 ~ (r 1 +))) de Morgan's low

PV (Q 1 (hr V s) 1 (r r v r t))) distributive

PV (Q 1 (hr V s) 1 (r r v r t))) distributive (PV9) 1 (PV (2rV5))1 (PV(2rV2t)) distributive (pv9) 1 (pv~rvs) 1 (pv~rv~t) associative PUNIVAT puq Ó 6 1 101 [1]1 I used exhaustive enumeration to prove that this formula is satisfiable because the conjunctive normal form involved the ANDS of multiple statements, requiring all substatements to be true for the formula to be true I wrote a and r tre same becomes 4 is only in