Banco de dados NoSQL

Programação Orientada a Objetos

NoSQL

- NoSQL é um termo genérico
- Bancos de dados modelados de forma diferente das relações tabulares usadas nos bancos de dados relacionais
- Algumas aplicações: Facebook, Google e Amazon.com
- São cada vez mais usados em big data e aplicações web de tempo real
- Não substitui o relacional

Características

- Simplicidade de projeto
- Escalonamento horizontal mais simples para clusters de máquinas
 - Onde seria problema para bancos de dados relacionais
- Controle mais refinado sobre a disponibilidade
- Estruturas de dados
 - Chave-valor
 - Coluna larga
 - Grafo ou documento
 - outros

 A adequação particular de um determinado banco de dados NoSQL depende do problema que ele deve resolver

- Algumas barreiras
 - Não usa linguagem SQL
 - Não realiza junções entre tabelas (como os relacionais)
 - Falta de interfaces padronizadas (várias soluções)
 - Investimento anterior em relacional

- A maioria dos bancos de dados NoSQL oferece um conceito de Consistência Posterior em que as alterações do banco de dados são propagadas para todos os nós "posteriormente" (geralmente em milissegundos)
- De forma que as consultas de dados podem não retornar dados atualizados imediatamente
- Problema conhecido como leitura obsoleta

- Alguns sistemas NoSQL podem exibir gravações perdidas e outras formas de perda de dados
- Para o processamento de transações distribuídas em vários bancos de dados, a consistência de dados é um desafio ainda maior, que é difícil tanto para bancos de dados relacionais quanto NoSQL
- O intuito não é eliminar bancos de dados relacionais, mas oferecer uma alternativa

Desafios de armazenamento de dados

- Grande volume de informação
- Informações de diversos tipos, em forma
 - Estruturada (ex.: planilha)
 - Não estruturada (ex.: documento de texto)
- Constância de mudanças no software
- Custos de hardware para escalabilidade
- Cenários de redução de custos

Algumas características do NoSQL

- Independente de esquema
 - Armazenamento não possui uma organização rígida
 - Conjunto de bibliotecas para acesso mais simples
- Livre de junções de tabelas
 - Não são indicadas as junções
 - Mesmo que possíveis em alguns modelos
 - Torna a utilização menos complexa

Algumas características do NoSQL

- Relativamente fácil crescimento horizontal
 - A maioria das soluções NoSQL são escaláveis
 - Fácil anexar mais computadores
 - Não necessariamente computadores mais caros
- Hardware mais simples
 - Hardware barato pela própria arquitetura da solução

Algumas características do NoSQL

Autocontido

- Cada computador que funciona como armazenamento é independente
- Levando em diversos casos, cópias das bases de dados
- Controle de usuário
 - Necessita de poucos elementos de controle de
 - Usuário
 - Transação
 - Concorrência

Modelos de dados para NoSQL

- Quatro modelos mais comuns para organizar a informação dentro de um NoSQL
 - Chave-valor (Key-value)
 - Documento (Document stores)
 - Orientado a colunas
 - Grafo
- O melhor modelo depende da aplicação

Descrição dos modelos

- Coluna: usa tabelas, linhas, e colunas
 - Diferentemente de um banco de dados relacional, os nomes e o formato das colunas podem variar de linha para linha na mesma tabela
- **Documento**: armazena informação em documentos (JSON, BSON, XML, etc.)
- **Chave-valor**: usa arrays associativos (dicionários ou tabelas hash)
- Grafo: usa estruturas de grafos

Modelo *key-value*

- Estrutura mais simples
- Cada conjunto de dados possui apenas uma chave principal

	Dados
Key	Value
1	Aluno: João
	Curso: Ciência da Computação
	Conclusão: 2020
2	Aluno: Pedro
	Curso: Ciência da Computação
	Conclusão: 2022
	Origem: Transferência interna

não é necessário padronizar os dados

Modelo *key-value*

- Exemplo: Amazon SimpleDB
- Algumas vantagens:
 - Flexibilidade na modelagem: os *Values* (dados) podem ser inseridos e alterados, relacionados a cada registro
 - Operação simples: é necessário apenas buscar a Key e já se tem acesso aos dados
 - Escalabilidade e disponibilidade: pela sua simples estrutura, as técnicas computacionais para aumentar a capacidade e redundância são facilmente aplicadas

Modelo *Document stores*

- Diversos arquivos formatados para fazer o armazenamento
 - Extensible Markup Language (XML)
 - JavaScript Object Notation (JSON)

exemplo JSON

Modelo document stores

- Exemplo: MongoDB
- Algumas vantagens:
 - Capacidade organizacional: junto do JSON é possível armazenar arquivos e outros tipos de dados binários
 - Forma organizada: existem grande quantidade de informação já colocada em JSON, dessa forma a migração é algo menos complicado
 - Informação variada: pela sua estrutura é possível ter dados em que alguns elementos do registro estão disponíveis e outro não (null).

Modelo orientado a colunas

- Semelhante ao modelo de Document stores
- Usa estruturas separadas para juntar informações pertinentes a uma entidade
- Uso relacionado a sistemas com grande volume de dados já estruturados e com necessidade de processamento rápido

Família de super coluna: Clientes

RowID: 1

Super Coluna: Nome

Nome: João

Sobrenome: Silva

Super Coluna: Curso

Nome: Ciência da Computação

Conclusão: 2020

RowID: 2

Super Coluna: Nome

Nome: Pedro

Sobrenome: Silva

Super Coluna: Curso

Nome: Engenharia de Computação

Conclusão: 2020

Modelo orientado a colunas

- Exemplo: Apache Cassandra
- Usado em
 - Netflix
 - Organização Europeia para Pesquisa Nuclear (CERN)

Modelo orientado a grafos

- A informação pode ter uma estrutura inicial de *key-value*
- Existe algum tipo de relacionamento entre cada uma das entradas dos dados

Algumas implementações

- Há várias abordagens para se classificar bancos de dados NoSQL, sendo que algumas delas se sobrepõem
 - Coluna: Accumulo, Cassandra, Druid, HBase, Vertica
 - Documento: Apache CouchDB, Elasticsearch, ArangoDB, BaseX, Clusterpoint, Couchbase, Cosmos DB, IBM Dominio, MarkLogic, MongoDB, OrientDB, Qizx, RethinkDB
 - Chave-valor: Aerospike, Apache Ignite, ArangoDB, Couchbase, Dynamo, FoundationDB, InfinityDB, MemcacheDB, MUMPS, Oracle NoSQL Database, etc.
 - **Grafo**: AllegroGraph, ArangoDB, InfiniteGraph, Apache Giraph, MarkLogic, Neo4J, OrientDB, Virtuoso
 - Multi-modelo: Apache Ignite, ArangoDB, Couchbase, FoundationDB, InfinityDB, MarkLogic, OrientDB

• Exemplo de como armazenar os dados no MongoDB

```
| JSON

| ' _ id' : 1,
| 'nome' : { 'Nome' : João, 'Sobrenome' : 'Silva' },
| 'curso' : [ 'Ciência da computação'],
| 'notaMedia' : [ 9.8]
| }
| Proposition | João | João
```