

Machine Learning

Introduction to Machine Learning
Applications in Healthcare

Data Science and AI for Medicine - Training School 2025

Leipzig, 24 September 2025

Sina Sadeghi

Machine Learning: Overview

Machine Learning vs Deep Learning & Artificial Intelligence

Al: techniques that enables computers to mimic human intelligence / behaviour

ML: ability of computers to learn without explicitly being programmed

DL: learning complex patterns from DATA using multi-layered artificial neural networks

Machine Learning: Overview

Applications in Medicine & Healthcare

- Diagnosis & Risk Prediction: Detect diseases from images, labs, or genomics
- Prognosis & Survival Analysis: Predict disease progression, hospital stay
- * Treatment Recommendation: Personalized medicine and drug dosing
- ❖ Medical Imaging: Detect tumors, segment organs, assist radiologists
- * Resource Optimization: Predict patient flow, optimize hospital resources

Arthur Samuel (1959): Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.

Tom Mitchell (1998): Well-posed Learning Problem – A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Machine Learning: Workflow

Define Machine Learning Problem

- → Collect Data
- → Preprocess Data
- → Split Data (Train / Test)
- → Select Model
- → Train Model
- → Tune Hyperparameters
- → Evaluate Model

Machine Learning: Types

Supervised Learning

- Learns from labeled data (input → output)
- Goal: predict outcomes for new inputs
- Examples: classification, regression

Unsupervised Learning

- Learns patterns from unlabeled data
- Goal: discover structure or groupings
- Examples: clustering, dimensionality reduction

Reinforcement Learning

- Learns through interaction with an environment
- Goal: maximize cumulative reward via trial and error
- Examples: game playing, robotics

Machine Learning: Types

Supervised Learning

- Learns from labeled data (input → output)
- Goal: predict outcomes for new inputs
- Examples: classification, regression

Unsupervised Learning

- Learns patterns from unlabeled data
- Goal: discover structure or groupings
- Examples: clustering, dimensionality reduction

Reinforcement Learning

- Learns through interaction with an environment
- Goal: maximize cumulative reward via trial and error
- Examples: game playing, robotics

Classification

- ★ Predicts discrete categories
- ★ Output: class labels e.g., disease diagnosis: disease/no disease, classify tumors: benign vs. malignant
- ★ Examples: Logistic Regression, Decision Trees

sification vs. Regression Regression

- **★** Predicts continuous values
- ★ Output: numerical values
 e.g., patient survival time (after diagnosis/surgery),
 hospital length of stay (for admitted patients)
- ★ Examples: Linear Regression,▲ Neural Networks / MLP

Machine Learning: Tasks

Classification

- ★ Predicts discrete categories
- ★ Output: class labels e.g., disease diagnosis: disease/no disease, classify tumors: benign vs. malignant
- ★ Examples: Logistic Regression, Decision Trees

Regression

- **★** Predicts continuous values
- ★ Output: numerical values
 e.g., patient survival time (after diagnosis/surgery),
 hospital length of stay (for admitted patients)
- ★ Examples: Linear Regression, Neural Networks / MLP

Pima Indians Diabetes Database

National Institute of Diabetes and Digestive and Kidney Diseases

patient_i
$$j = 1 \dots M$$

Pima Indians Diabetes Database

Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus - PMC

Example

Binary Outcome

patient_i $j = 1 \dots M$

Pima Indians Diabetes Database

Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus - PMC

Binary Classification

Binary Classification

Logistic Regression

training vs. test

input data

Binary Classification

Rescaling numerical features to a common range (often [0, 1] or [-1, 1])

- Prevents features with large scales from dominating the model
- Improves convergence speed in optimization (e.g., gradient descent)

Min-Max Scaling:
$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Standardization:
$$x_{scaled} = \frac{x - \mu}{\sigma}$$

 σ standard deviation

Optimization

Goal: minimizes the prediction error for binary classification

Logistic Regression: Optimization

Binary Cross Entropy

M – number of instances

log – the natural logarithm

y – binary true label (0 or 1)

 \hat{y} - predicted probability

difference between what the model predicted and what the actual (true)

$$loss(y,\widehat{y}) = -(y\log(\widehat{y}) + (1-y)\log(1-\widehat{y}))$$

$$Loss(y, \hat{y}) = \frac{1}{M} \sum_{i=1}^{M} loss(y_i, \hat{y}_i)$$

Goal: minimize Loss function

Logistic Regression: Optimization

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

an iterative optimization method that approximates gradient descent by using a small randomly selected subset of data

$$w_{new} = w_{old} - \alpha \frac{\partial Loss(y, \hat{y})}{\partial w}$$

 α Learning rate

Maths

Logistic Regression: Optimization

Stochastic Gradient Descent (SGD)

an iterative optimization method that approximates gradient descent by using a small randomly selected subset of data

$$w_{new} = w_{old} - \alpha \frac{\partial Loss(y, \hat{y})}{\partial w}$$

 α Learning rate

Maths

Evaluation

sensitivity specificity Performance metrics

AUROC

- → Measures how well a trained model performs on unseen test data
- → Estimates how the model generalizes beyond the training data

Confusion Matrix

	Model Prediction		
ruth		Р	N
\vdash	Р	TP	FN
Ground	N	FP	TN

$$Precision = \frac{TP}{TP + FP}$$

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Sensitivity =
$$\frac{TP}{TP + FN}$$
 = Recall

Specificity =
$$\frac{TN}{TN + FP}$$

21	4
3	22

Acc = 0.86Sen = 0.84

Spe = 0.88

0	2	Acc = 0.940
		Sen = 0.0
1	47	Spe = 0.979

2	0	Acc = 0.98
		Sen = 1.0
1	47	Spe = 0.979

Confusion Matrix

$$Precision = \frac{TP}{TP + FP}$$

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Sensitivity =
$$\frac{TP}{TP + FN}$$
 = Recall

Specificity =
$$\frac{TN}{TN + FP}$$

21	4
3	22

Acc = 0.86Sen = 0.84 Spe = 0.88

0	2	Acc = 0.940
1	47	Sen = 0.0 Spe = 0.979

2	0	Acc = 0.98
		Sen = 1.0
1	47	Spe = 0.979

Confusion Matrix

$$\frac{TP}{TP + FP}$$

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Sensitivity =
$$\frac{TP}{TP + FN}$$
 = Recall

Specificity =
$$\frac{TN}{TN + FP}$$

21	4
3	22

Acc = 0.86Sen = 0.84

0	2	Acc = 0.940
1	47	Sen = 0.0 Spe = 0.979

2	0	Acc = 0.98
		Sen = 1.0
1	47	Spe = 0.979

Confusion Matrix

Precision =

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
Sensitivity =
$$\frac{TP}{TP + FN}$$
 = Recall
Specificity =
$$\frac{TN}{TN + FP}$$

21	4	
3	22	
Acc = 0.86 Sen = 0.84		

Spe = 0.88

)
0	2	Acc = 0.940
		Sen = 0.0
1	47	Spe = 0.979
	ļ	

TP + FP

2	0	Acc = 0.98
1	47	Sen = 1.0
		Spe = 0.979

Hyperparameters

Hyperparameters vs. Parameters in ML

Hyperparameters

- Define the model's structure and training process
- Set before training (not learned from data)
- Examples: learning rate, regularization strength

Parameters

- Define how the model makes predictions
- Learned from data during training
- Examples: weights, biases in neural networks

Under- vs. Overfitting

Good fit (robust model)

- Model captures patterns in data without excessive noise
- Performs well on both training and test dataset

Underfitting (simple model)

- Model is too simple, fails to capture patterns
- High error on training and test dataset

Binary Classification

Overfitting (complex model)

- ☐ Model is too complex, memorizes training data
- Low training error but high test error

Bias-Variance Trade-off

Bias: Error from overly simplistic models (underfitting)

→ model misses important patterns

Variance: Error from overly complex models (overfitting)

→ model learns noise in the training data

Trade-off:

- ➤ Increasing model complexity: bias ↓ but variance ↑
- > Goal = find the balance that minimizes **Total Error** on unseen data

Bias² (Underfitting)

Total Error = Bias² + Variance + Irreducible Error

Regularization

- Prevents overfitting by penalizing large coefficients
- Adds a penalty term to the loss function
 - L2 Regularization (Ridge) Shrinks coefficients smoothly (reduces their magnitude)
 - L1 Regularization (Lasso) Introduces sparsity (feature selection) – some coefficients become 0
- Improves generalization and model robustness on unseen data

$$\mathsf{Loss}(y,\widehat{y}) = \mathcal{L}$$

$$\mathcal{L}_{L2} = \mathcal{L} + \lambda \sum_{j=1}^{N} w_j^2$$

$$\mathcal{L}_{L2} = \mathcal{L} + \lambda \sum_{j=1}^{N} w_j^2$$

$$\mathcal{L}_{L1} = \mathcal{L} + \lambda \sum_{j=1}^{N} |w_j|$$

regularization strength (controls the penalty in the Loss function) λ

no regularization $\lambda = 0$

Binary Classification

L2 Regularization

Feature 1

PIMA Diabetes Dataset

Goal: Predict whether a patient has diabetes (No/Yes)

Data: Medical measurements from PIMA Indian women (age ≥ 21)

- Features: age, BMI, blood pressure, glucose, insulin, pregnancies, etc.
- Target: Diabetes (0 = No, 1 = Yes)

Approach:

- Logistic Regression (binary classifier)
- Train/test split to evaluate generalization
- Metrics: accuracy, sensitivity, specificity

Insights:

- Logistic regression provides **probability estimates** (risk of diabetes)
- Useful for **medical decision support** (screening, risk assessment)

Pima Indians Diabetes Database

Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus - PMC

Learning

- Machine Learning Specialization
- Al for Medicine Specialization
- Machine Learning Mastery
- StatQuest with Josh Starmer YouTube
- Big Data and Machine Learning in Health Care | Artificial Intelligence | JAMA
- Disease Prediction by Machine Learning Over
 Big Data From Healthcare Communities |
 IEEE Journals & Magazine

THANK YOU!

Sina Sadeghi Medical Data Science