

V.GOKULKUMAR

velicharlagokulkumar@gmail.com IITH Future Wireless Communication (FWC)

ASSIGN-5

Contents

FWC22034

1	Problem	1
2	Solution	1
3	Construction	1

1 **Problem**

ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar(ACB) = ar(ACF)

(ii) ar(AEDF) = ar(ABCDE)

2 Solution

Theory:

In pentagon ABCDE, $AC \parallel BF$ **To Prove:** Ar(ACB) = Ar(ACF)

 Δ ACB and Δ ACF lies on same base AC and are between

same parallel AC and BF

Theorem: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

$$\therefore$$
 Ar(\triangle ACB)=Ar(\triangle ACF).....(1)
Hence, Proved

To Prove: Ar(AEDF)=Ar(ABCDE) Add Ar(AEDC) to (1) both sides

 $Ar(\Delta ACB) + Ar(AEDC) = Ar(\Delta ACF) + Ar(AEDC)$

$$\therefore$$
 Ar(ABCDE)=Ar(AEDF)
Hence, Proved

termux commands:

oython3 matrix.py	p
-------------------	---

The input parameters for this construction are

Symbol	Value	Description
r1	4	DC
r2	8	DB
r3	6.5	DA
r4	4	DE
θ_1	$17\pi/36$	∠BDC
θ_2	$53\pi/180$	∠ADC
θ_3	$2\pi/3$	∠EDC
D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point D

To Prove: Ar(ACB) = Ar(ACF)

Area of the triangle $\triangle ACF$ is given by $Ar(\Delta ACB) = \frac{1}{2} ||\mathbf{v}\mathbf{1} \times \mathbf{v}\mathbf{2}||.....(2)$

Area of the triangle $\triangle ACB$ is given by $Ar(\Delta ACF) = \frac{1}{2} ||\mathbf{v3} \times \mathbf{v4}||....(3)$

To Prove: Ar(AEDF)=Ar(ABCDE)

Ar(
$$\triangle$$
AED)= $\frac{1}{2}$ ||**A** × **E**||.....(5)
Ar(\triangle ADC)= $\frac{1}{2}$ ||**A** × **C**||.....(6)

$$Ar(AEDC) = Ar(\Delta AED) + Ar(\Delta ADC)$$

$$\therefore$$
 Ar(AEDF)=Ar(AEDC)+Ar(\triangle ACF)......(7)
 \therefore Ar(ABCDE)=Ar(AEDC)+Ar(\triangle ACB)......(8)

The below python code realizes the above construction:

https://github.com/velicharlagokulkumar/FWC_module1/ tree/main/matrices/lines/codes/matrix.py

3 Construction

Figure of construction