Les suites

1.1 Premières définitions

Une *suite* est une application $u: \mathbb{N} \to \mathbb{R}$. Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème terme ou terme général de la suite.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n \in \mathbb{N}} \text{ est } \frac{\text{major\'e}}{\text{minor\'e}} \text{ si } \exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad u_n \leq M.$ $(u_n)_{n \in \mathbb{N}} \text{ est } \frac{\text{minor\'e}}{\text{minor\'e}} \text{ si } \exists m \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad u_n \geq m.$
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire: $\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$ $u_{n+1} \ge u_n$. $(u_n)_{n\in\mathbb{N}}$ est *strictement croissante* si $\forall n\in\mathbb{N}$ $u_{n+1} > u_n$.
- $(u_n)_{n \in \mathbb{N}}$ est décroissante si $\forall n \in \mathbb{N}$ $u_{n+1} \leq u_n$. $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante si $\forall n \in \mathbb{N}$ $u_{n+1} < u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est *monotone* si elle est croissante ou décroissante.

Remarque.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N} \quad u_{n+1}-u_n\geqslant 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ avec $u_n>0$ est croissante si et seulement si $\forall n\in\mathbb{N}$ $\frac{u_{n+1}}{u_n}\geqslant 1$.

— La suite $(u_n)_{n∈\mathbb{N}}$ a pour limite $\ell \in \mathbb{R}$ si : pour tout $\varepsilon > 0$, Définition. il existe un entier naturel N tel que si $n \ge N$ alors $|u_n - \ell| \le \varepsilon$:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \qquad (n \geq N \implies |u_n - \ell| \leq \varepsilon)$$

— La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si:

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \ge N \implies u_n \ge A)$$

— Une suite $(u_n)_{n\in\mathbb{N}}$ est *convergente* si elle admet une limite *finie*. Elle est *divergente* sinon (c'est-à-dire soit la suite tend vers $\pm \infty$, soit elle n'admet pas de limite).

Proposition. Si une suite est convergente, sa limite est unique.

Proposition.
$$\lim_{n\to +\infty} u_n = \ell \iff \lim_{n\to +\infty} (u_n-\ell) = 0 \iff \lim_{n\to +\infty} |u_n-\ell| = 0,$$

Proposition (Opérations sur les limites). Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. $Si \lim_{n \to +\infty} u_n = \ell$, où $\ell \in \mathbb{R}$, alors pour $\lambda \in \mathbb{R}$ on a $\lim_{n \to +\infty} \lambda u_n = \ell$
- 2. $Si \lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, où $\ell, \ell' \in \mathbb{R}$, alors $\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell' \qquad \qquad \lim_{n \to +\infty} (u_n \times v_n) = \ell \times \ell'$
- 3. Si $\lim_{n\to+\infty} u_n = \ell$ où $\ell \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ alors $u_n \neq 0$ pour n assez grand et $\lim_{n\to+\infty} \frac{1}{u_n} = \frac{1}{\ell}$.

Proposition (Opérations sur les limites infinies). *Soient* $(u_n)_{n\in\mathbb{N}}$ *et* $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty} \nu_n = +\infty$.

- 1. $\lim_{n\to+\infty}\frac{1}{\nu_n}=0$
- 2. Si $(u_n)_{n\in\mathbb{N}}$ est minorée alors $\lim_{n\to+\infty} (u_n+v_n)=+\infty$.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est minorée par un nombre $\lambda > 0$ alors $\lim_{n\to+\infty} (u_n \times v_n) = +\infty.$
- 4. Si $\lim_{n\to+\infty} u_n = 0$ et $u_n > 0$ pour n assez grand alors $\lim_{n\to+\infty} \frac{1}{u_n} =$ $+\infty$.

Proposition.

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}$, $u_n \leq v_n$. Alors

$$\lim_{n\to+\infty}u_n\leq\lim_{n\to+\infty}v_n$$

- 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n \in \mathbb{N}, \ v_n \ge u_n$. Alors $\lim_{n \to +\infty} v_n = +\infty$.
- 3. Théorème des « gendarmes » : $si(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont trois suites telles que

$$\forall n \in \mathbb{N} \quad u_n \leq v_n \leq w_n$$

et $\lim_{n\to+\infty}u_n=\ell=\lim_{n\to+\infty}w_n$, alors la suite $(v_n)_{n\in\mathbb{N}}$ est conver $gente\ et\ \lim\nolimits_{n\to +\infty} \nu_n=\ell.$

1.2 Exemples remarquables

Suite géométrique

Proposition (Suite géométrique). On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n = a^n$.

- 1. Si a = 1, on a pour tout $n \in \mathbb{N}$: $u_n = 1$.
- 2. Si a > 1, alors $\lim_{n \to +\infty} u_n = +\infty$.
- 3. Si 1 < a < 1, alors $\lim_{n \to +\infty} u_n = 0$.
- 4. Si $a \leq -1$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Série géométrique

Proposition (Série géométrique). Soit a un réel, $a \neq 1$. En notant $\sum_{k=0}^{n} a^{k} = 1 + a + a^{2} + \dots + a^{\hat{n}}, \text{ on } a:$

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

Si $a \in]-1,1[$ et $(u_n)_{n\in\mathbb{N}}$ est la suite de terme général : $u_n=\sum_{k=0}^n a^k$, alors $\lim_{n\to+\infty}u_n=\frac{1}{1-a}$. Ces formules sont aussi valables si $a\in\mathbb{C}\setminus\{1\}$. Si a=1, alors $1+a+a^2+\cdots+a^n=n+1$.

Théorème. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On suppose qu'il existe un réel ℓ tel que pour tout entier naturel n (ou seulement à partir d'un certain rang) on ait : $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$. Alors $\lim_{n \to +\infty} u_n = 0$.

Corollaire. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls.

$$Si \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0$$
, alors $\lim_{n \to +\infty} u_n = 0$.

Exemple. Soit $a \in \mathbb{R}$. Alors $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

1.3 Théorèmes de convergence

Proposition. Toute suite convergente est bornée.

Théorème.

Toute suite croissante et majorée est convergente.

Remarque. Et aussi:

- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers −∞.

Définition. Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites *adjacentes* si

- 1. $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante,
- 2. pour tout $n \ge 0$, on a $u_n \le v_n$,
- 3. $\lim_{n\to+\infty} (v_n u_n) = 0.$

Théorème.

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, elles convergent vers la même limite.

Les termes de la suite sont ordonnés ainsi :

$$u_0 \le u_1 \le u_2 \le \dots \le u_n \le \dots \dots \le v_n \le \dots \le v_2 \le v_1 \le v_0$$

Définition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Une suite extraite ou sous-suite de $(u_n)_{n\in\mathbb{N}}$ est une suite de la forme $(u_{\phi(n)})_{n\in\mathbb{N}}$, où $\phi:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante.

Proposition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si $\lim_{n\to+\infty}u_n=\ell$, alors pour toute suite extraite $(u_{\phi(n)})_{n\in\mathbb{N}}$ on a $\lim_{n\to+\infty} u_{\phi(n)} = \ell$.

Corollaire. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si elle admet une sous-suite divergente, ou bien si elle admet deux sous-suites convergeant vers des limites distinctes, alors elle diverge.

Exemple. La suite de terme $u_n = (-1)^n$ diverge.

Théorème (Théorème de Bolzano-Weierstrass). Toute suite bornée admet une sous-suite convergente.

1.4 Suites récurrentes

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Une *suite récurrente* est :

$$u_0 \in \mathbb{R}$$
 et $u_{n+1} = f(u_n)$ pour $n \ge 0$.

Proposition. Si f est une fonction continue et la suite récurrente (u_n) converge vers ℓ , alors ℓ est une solution de l'équation :

$$f(\ell) = \ell$$

Proposition (Cas d'une fonction croissante). Soit $f : [a, b] \rightarrow [a, b]$ une fonction continue et **croissante**, alors quel que soit $u_0 \in [a, b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$

Pour appliquer cette proposition, il faut vérifier que $f([a,b]) \subset [a,b]$.

Proposition (Cas d'une fonction décroissante). *Soit* $f : [a, b] \rightarrow [a, b]$ *une* fonction continue et **décroissante**. Soit $u_0 \in [a, b]$ et la suite récurrente (u_n) définie par $u_{n+1} = f(u_n)$. Alors :

- La sous-suite (u_{2n}) converge vers une limite ℓ vérifiant $f \circ f(\ell) = \ell$.
- La sous-suite (u_{2n+1}) converge vers une limite ℓ' vérifiant $f \circ f(\ell') =$