Теория Колебаний

April 3-8, 2023

Содержание

1	Гар	монический осциллятор
	1.1	Гармонический осциллятор
		1.1.1 Груз на пружине
		1.1.2 Общее решение
	1.2	Начальные условия
	1.3	Энергия осциллятора
2	Рез	вонанс
	2.1	Комплексные числа
		2.1.1 Вопросы
	2.2	Вынужденные колебания с торможением
3	Пер	реходные решения
	3.1	Энергия осциллятора (2)
		3.1.1 Добротность

1 Гармонический осциллятор

1.1 Гармонический осциллятор

1.1.1 Груз на пружине

Гармонический осциллятор описывается линейным дифференциальным уравнением (ЛОДУ).

Простейший пример такой системы, груз массы m на пружинке.

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx \quad (21.2)$$

Функция $x = \cos(t)$ является решением данного уравнения если положить k/m = 1. Но каким образом мы можем все же учесть коэфициенты k и m?

Попробуем $x = A\cos(t)$ и откроем важное свойство ЛОДУ: решение умноженное на константу также является решением. Но мы по-прежнему не можем выразить коэфициенты k и m.

Попробуем $x = \cos(\omega_0 t)$ и найдем $\omega_0^2 = k/m$. Велечину $\omega_0 t$ часто называют фазой движения.

Период полного колебания t_0 , время за которое фаза изменяе
ися на 2π или $\omega_0 t_0 = 2\pi$

$$t_0 = 2\pi\sqrt{m/k} \quad (21.5)$$

Уравнение (21.2) определяет nepuod колебаний, но ничего не говорит нам о том $кa\kappa$ началось движение, насколько мы оттянули пружинку, а также об амплитуде колабаний. Для этого нужно задать нaчaльные условия.

1.1.2 Общее решение

Нужно найти более общее решение уравнения (21.2). Общее решение должно допускать изменение начала отсчета времени, например

$$x = a\cos(\omega_0(t - t_1)) \quad (21.6a)$$

или

$$x = a\cos(\omega_0 t + \Delta) \quad (21.6b)$$

Можно разложить $\cos(\omega_0 t + \Delta) = \cos \omega_0 t \cos \Delta - \sin \omega_0 t \sin \Delta$ и записать:

$$x = A\cos\omega_0 t + B\sin\omega_0 t \quad (21.6c)$$

где $A = a\cos\Delta$, а $B = -a\sin\Delta$

Рассмотрим некоторые величины в уравнениях (21.6)

 ω_0 - угловая частота, число радианов на которое фаза изменится за одну секунду, определяется дифференциальным уравнением (21.2)

Другие величины не определяются дифференциальным уравнением, а зависят от начальных условий

а - амплитуда колебаний

 Δ - сдвиг фазы, иногда называют фазой

Все вместе $\omega_0 t + \Delta$ - удобно называть фазой

1.2 Начальные условия

A и B или a и Δ , показывают как началось движение. Эти значения можно определить из начальных условий, например, пусть в начальный момент времени t=0 грузик смещен от положения равновесия на велечину x_0 и имеет скорость v_0 .

Для получения коэфициентов A и B (а затем a и Δ) удобно пользоваться формулой (21.6c)

Для задания начальных условия для $\Pi O \Pi V$ второго порядка, мы должны задать значение самой функции во время t=0 и значение ее первой производной (скорости).

Мы не можем задать начальное значение второй производной или *ускорения*, так как оно зависит от свойств пружины. Почему? Как это объясняется математически?

Посмотрим на (21.2)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{k}{m}x$$

Из решения (21.2) получаются формулы

$$x = a\cos(\omega_0 t + \Delta)$$
$$v = -\omega_0 a\sin(\omega_0 t + \Delta)$$
$$acc = -\omega_0^2 a\cos(\omega_0 t + \Delta) = -\omega_0^2 x$$

1.3 Энергия осциллятора

Если нет трения то в такой системе должна сохраняться энергия. Проверим это, для этого удобно воспользовать формулами:

$$x = a\cos(\omega_0 t + \Delta)$$

$$v = -\omega_0 a \sin(\omega_0 t + \Delta)$$

Найдем потенциальную энергию U

$$U = 1/2kx^2 = 1/2ka^2\cos^2(\omega_0 t + \Delta)$$

Найдем кинетическую энергию T

$$T = 1/2mv^2 = 1/2m\omega_0^2 a^2 \sin^2(\omega_0 t + \Delta)$$

Изменение кинетической энергии противоположно изменению потенциальной энергии и наоброт, следовательно полная энерния должна быть постоянна. Запишем суммартную энергию помня о том что $\omega_0^2 = k/m$, откуда $k = \omega_0^2 m$

$$T + U = 1/2m\omega_0^2 a^2(\cos^2(\omega_0 t + \Delta) + \sin^2(\omega_0 t + \Delta)) = 1/2m\omega_0^2 a^2$$

 $\it Cpedhss$ потенциальная энергия равна половине максимально и следовательно половине полной.

2 Резонанс

2.1 Комплексные числа

Формула Эйлера

$$e^{ix} = \cos x + i\sin x$$

Функцию $F = F_0 \cos(\omega t - \Delta)$ будем рассматривать как действительную часть комплексного числа $F_0 e^{-i\Delta} e^{i\omega t}$. В физике не бывает комплексных сил, однако мы будет пользоваться данной записью для удобства

$$F = F_0 e^{-i\Delta} e^{i\omega t} = \hat{F} e^{i\omega t}$$

Шляпка над буквой будет указывать что мы имеем дело с комплексным числом, в таком виде можно сразу описать амплитуду и сдвиг по фазе колебаний

$$\hat{F} = F_0 e^{-i\Delta}$$

Будем решать уравнение, где на наш осциллятор действует внешняя сила F

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx + F$$

Будем предпологать что внешняя сила также осциллирует

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{kx}{m} = \frac{F}{m} = \frac{F_0}{m} \cos \omega t \quad (23.2)$$

Перепишем уравнение сделав подстановку с комплексными числами, такую подстановку можно сделать не всегда, а только для $\mathit{линейныx}$ уравнений содержащих x в первой или нулевой степени. В таком случае можно выделить в исходном уравнении действительную и мнимую часть, при этом действительная часть будет в точности совпадать с исходным уравнением.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{kx}{m} = \frac{\hat{F}e^{i\omega t}}{m}$$

в этом уравнении x также комплексное число $x=\hat{x}e^{i\omega t}$, а каждое дифференцирование по времени равно умножению на $(i\omega)$. Мы применяем тут форму решения x в виде $x=x_0\cos(\omega t+\Delta)$ или в комплексной форме $x=e^{i\Delta}e^{i\omega t}=\hat{x}e^{i\omega t}$ - грузик начинает колебаться с частотой действующей силы.

После дифференцирования и сокращения $e^{i\omega t}$ получаем

$$(i\omega)^2 \hat{x} + \frac{k\hat{x}}{m} = \frac{\hat{F}}{m}$$

откуда легко получить

$$\hat{x} = \frac{\hat{F}}{m(\omega_0^2 - \omega^2)}$$
 (23.5)

Грузик колеблется с частотой действующей силы, а амплитуда колебаний зависит от соотношения ω и ω_0 . Когда ω очень мала, грузик движется вслед за силой, если слишком быстро менять направление толчков, то грузик начинает двигаться в противоположном по отношению к силе направлению. При очень высокой частоте внешней силы грузик практически не двигается.

Так как $m(\omega_0^2-\omega^2)$ действительное число, фазовые углы F и x совпадают(или отличаются на 180 градусов если $\omega^2>\omega_0^2$).

2.1.1 Вопросы

Bonpoc: Какого вида числа \hat{F} и \hat{x} ? $\hat{F} = F_0 e^{i\Delta_1}$ и $\hat{x} = x_0 e^{i\Delta_2}$ или это просто комплексные числа так как нет смысла говорить о фазе в данном случае? Omeem: Решая эту же задачу в Главе 21, без использования комплексных чисел, мы не учитывали сдвиг по фазе в решении x и получили:

$$x_0 = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

теперь мы имеем:

$$x_0 e^{i\Delta_1} = \frac{F_0}{m(\omega_0^2 - \omega^2)} e^{i\Delta_2}$$

Вопрос: Что имеется в виде под термином фазовый угол, величина $\omega t + \Delta$ или просто Δ ? Ответ: Под фазовыми углами имеется ввиду величины Δ_1 и Δ_2 , если они отличаются на 180 градусов, то $e^{i(\Delta+\pi)}=e^{i(\Delta)}e^{i(\pi)}=-e^{i(\Delta)}$

Bonpoc: Значит ли это что мы всегда получаем положительную амплитуду из уравнения (23.5)?

Bonpoc: Имеет ли тут вообще смысл говорить о сдвиге фазы Δ так как данные уравнения описывают уже устроявшийся процесс и нам не важно какая фаза была в начале? Omeem: Δ описывает устоявшуюся разницу в фазах между двумя уравнениями колебаний.

Упражение: Попробовать представить как такое возможно, что *если слишком* быстро менять направление толчков, то грузик начинает двигаться в противоположном по отношению к силе направлению.

2.2 Вынужденные колебания с торможением

Изменим формулу (23.2) так чтобы учесть трение

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + c\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F \quad (23.6)$$

если положить $c=m\gamma$ и $k=m\omega_0^2$ и поделить обе части на m то получим:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = \frac{F}{m} \quad (23.6a)$$

применим комплексные числа:

$$e^{i\omega t}[(i\omega)^2\hat{x} + \gamma(i\omega)\hat{x} + \omega_0^2\hat{x}] = \frac{\hat{F}}{m}e^{i\omega t}$$
 (23.7)

откуда легко найдем отклик осциллятора

$$\hat{x} = \frac{\hat{F}}{m(\omega_0^2 - \omega^2 + i\gamma\omega)} \quad (23.8)$$

формулу (23.8) иногда называют "резонансной"

Обозначим множитель перед \hat{F} через R

$$R = \frac{1}{m(\omega_0^2 - \omega^2 + i\gamma\omega)}$$

тогда

$$\hat{x} = \hat{F}R \quad (23.9)$$

Множитель R можно записать в виде p+iq или $\rho e^{i\theta}$. Запишем в виде $\rho e^{i\theta}$ и посмотрим к чему это приведет.

$$\hat{x} = R\hat{F} = \rho e^{i\theta} F_0 e^{i\Delta} = \rho F_0 e^{i(\theta + \Delta)}$$

Помня что $x=\hat{x}e^{i\omega t}$ найдем:

$$x = \rho F_0 \cos(\omega t + \Delta + \theta) \quad (23.10)$$

из этой формулы видно что ρ и θ - это величина и фазовый сдвиг отклика.

Найдем значение ρ и θ . Из свойств комплексных чисел мы значем что если r модуль комплексного числа $a=x+iy=re^{i\theta},$ то $r^2=aa^*,$ a $\operatorname{tg}\theta=\frac{y}{x}$

Вычислим ρ

$$\rho^{2} = \frac{1}{m^{2}(\omega_{0}^{2} - \omega^{2} + i\gamma\omega)(\omega_{0}^{2} - \omega^{2} - i\gamma\omega)} = \frac{1}{m^{2}[(\omega_{0}^{2} - \omega^{2})^{2} + \gamma^{2}\omega^{2}]}$$
(23.11)

Вычислим θ

$$\frac{1}{R} = \frac{1}{\rho e^{i\theta}} = \frac{1}{\rho} e^{-i\theta} = m(\omega_0^2 - \omega^2 + i\gamma\omega)$$

заметим что перед θ появился знак минус, а $tg(-\theta) = -tg \theta$, тогда

$$tg \theta = -\frac{\gamma \omega}{\omega_0^2 - \omega^2} \quad (23.12)$$

Из (23.12) видно что угол θ отрицательный при любых значениях ω , то есть смещение x отстает по фазе от силы F

График зависимости ρ^2 от частоты ω называют *резонансной* кривой. ρ^2 в физике интереснее чем ρ , так как ρ^2 пропорционально квадрату амплитуды, а значит той *энергии* которую передает осциллятору внешняя сила.

Иногда удобней работать с упрощенной версией формулы (23.8). При малых γ наиболее интересная область резонансной кривой находится около частоты $\omega = \omega_0$. Если $\gamma << \omega_0$ и $\omega \approx \omega_0$

$$\hat{x} \approx \frac{\hat{F}}{2m\omega_0(\omega_0 - \omega + i\gamma/2)}$$
$$\rho^2 \approx \frac{1}{4m\omega_0^2[(\omega_0 - \omega)^2 + \gamma^2/4]}$$

Интресен следующий вопрос: при каком расстоянии от ω_0 на резонансной кривой расположены частоты которым соответствует ρ^2 вдвое меньше максимального? Можно показать что при очень малом γ эти точки отстоят друг от друга на расстоянии $\Delta\omega=\gamma$. Это значит что резонанс становится все более острым по мере того как влияние трения становится все слабее и слабее.

Другой мерой ширины резонанса можется служить добротность $Q=\omega_0/\gamma$

3 Переходные решения

Transients

3.1 Энергия осциллятора (2)

При изучении энергии нам часто необходимо рассмотреть квадрат какой-либо величины. Если мы работаем с этой величиной A как с действительной частью комплексного числа $A=\hat{A}e^{i\omega t}$, то мы не можем возводить в квадрат комплексное число, так как действительная составляющая квадрата комплексного числа не равна квадрату самого действительного числа. Таким образом если мы захотим найти энергию и посмотреть на ее превращения, нам придется на время забыть о комплексных числах.

Сама действительная величина изменяется по закону $A=A_0\cos(\omega t+\Delta)$, а квадрат этой велечины равен $A^2=A_0^2\cos^2(\omega t+\Delta)$. Зачастую нам совсем не обязательно знать энергию в каждый определенный момент времени, во многих случаях достаточно знать лишь среднее значение величины A^2 за какой-то промежуток времени много больший периода колебаний.

Можно усреднить квадрат косинуса и доказать следущую **теорему**: если A представляется комплексным числом, то среднее значение A^2 равно $1/2A_0^2$, где A_0 это модуль комплесного числа $\hat{A}=A_0e^{i\Delta}$

$$\langle A^2 \rangle = 1/2A_0^2 = 1/2\hat{A}\hat{A}^*$$

Будем рассматривать осциллятор на который дейстует внешняя сила, мы также предполагаем что эта сила пропорциональна $\cos \omega t$

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + m\gamma\frac{\mathrm{d}x}{\mathrm{d}t} + m\omega_0^2x = F(t) \quad (24.1)$$

Выясним много ли приходится этой силе работать, сначала найдем мощность:

$$P = F \frac{\mathrm{d}x}{\mathrm{d}t} = m \left[\frac{\mathrm{d}x}{\mathrm{d}t} \left(\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \right) + \omega_0^2 x \frac{\mathrm{d}x}{\mathrm{d}t} \right] + m\gamma \left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2$$

Как легко проверить простым дифференицированием, первые два члена можно переписать в виде:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} m \left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \frac{1}{2} m \omega_0^2 x^2 \right]$$

выражение в квадратных скобках это сумма кинетической и потенциальной энергии, будем называть эту велечину запасенной энергией. Если сила работает уже давно, то запасенная энергия не изменяется и ее производная по времени равна нулю. Тогда получается что если усреднять по многим циклам, вся энергия поглощается из-за сопротивления, описываемого членом $m\gamma(dx/dt)^2$. При этом в начале действия силы осциллятор накапливает определенную часть энергиии.

Запишем среднюю мощность

$$\langle P \rangle = \langle m \gamma (dx/dt)^2 \rangle$$

Так как $x = \hat{x}e^{i\omega t} = x_0e^{i\Delta}e^{i\omega t}$, то $(dx/dt)^2 = i\omega\hat{x}e^{i\omega t}$. А теперь применим нашу **теорему** о том что $\langle A^2 \rangle = 1/2A_0^2$ и вычислим среднюю мощность:

$$\langle P \rangle = \frac{1}{2} m \gamma \omega^2 x_0^2$$

не потреряли ли мы минус когда возводили в квадрат $(i\omega x_0)^2$?

Интересен также вопрос о том сколько энергии может *накопить* осциллятор. В каждый момент времени осциллятор обладает вполне определенной энергией, поэтому можно вычислить среднюю *запасенную* энергию.

$$\langle E \rangle = \frac{1}{2} m \langle (dx/dt)^2 \rangle + \frac{1}{2} m \omega_0^2 \langle x^2 \rangle$$

мы уже вычислили $\langle (dx/dt)^2 \rangle = \frac{1}{2}\omega^2 x_0^2,$ а $\langle x^2 \rangle = \frac{1}{2}x_0^2,$ таким образом

$$\langle E \rangle = \frac{1}{2}m(\omega^2 + \omega_0^2)\frac{1}{2}x_0^2$$

3.1.1 Добротность

The efficiency of an oscillator

Добротность осциллятора можно измерить как отношение запасенной энергии к работе совершенной силой за один период. Эту велечину обозначают Q - умноженное на 2π отношение средней запасенной энергии к работе за один период.

$$Q=2\pi\frac{\langle E\rangle}{\langle P\rangle\frac{2\pi}{\omega}}=2\pi\frac{\frac{1}{2}m(\omega^2+\omega_0^2)\frac{1}{2}x_0^2}{\frac{1}{2}m\gamma\omega^2x_0^2\frac{2\pi}{\omega}}=\frac{\omega^2+\omega_0^2}{2\gamma\omega}$$

Величина Q не несет много смысла пока она не достаточно велика. Когда Q достаточно велика, она может служать характристикой того насколько хорошим является осциллятор, насколько эффективно он запасает энергию.

Если мы имеет дело с хорошим осциллятором вблизи резонансной частоты $\omega \approx \omega_0$ то

$$Q = \frac{\omega_0}{\gamma}$$

такое определение мы уже давали раньше.

Вопрос: Если будет рассматриваться работа за один paduah то откуда уйдет множитель 2π ? В чем смысл умножения Q на 2π ?