NPTEL MOOC, JAN-FEB 2015 Week 8, Module 1

DESIGN AND ANALYSIS OF ALGORITHMS

Linear Programming

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Optimization problems

- * Many computational problems are optimization tasks ...
 - * Shortest paths, Minimum cost spanning tree, Longest common subsequence
- * ... subject to constraints
 - * Path follows edges in a graph, tree is a subset of given graph, subsequence has same letters

Linear programming

- * Optimization problem where constraints and quantity to be optimized are linear functions
 - * Constraints: $ax + by + \le K$, $ax + by + \ge K$
 - * Quantity (objective function): ax + by + ...

Example: Maximize profits

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- * Each box of barfis earns a profit of Rs 100, while each box of halwa earns a profit of Rs 600
- * Daily demand for barfis is at most 200 boxes, for halwa is at most 300 boxes
- * Staff can produce 400 boxes a day, altogether
- * What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- * b : number of boxes of barfis produced in a day
- * h: number of boxes of halwa produced in a day
- * Profit is 100b + 600h
- * Demand constraints: b ≤ 200, h ≤ 300
- * Production constraint: b + h ≤ 400
- * Implicit constraints: $b \ge 0$, $h \ge 0$

Linear program

Objective function

* Maximize 100b + 600h

Constraints

- * b ≤ 200
- * h ≤ 300
- * $b + h \le 400$
- * b, $h \ge 0$

Objective: 100b+600h = c

In pictures ...

Objective: 100b+600h = c

Solving linear programs

Simplex Algorithm

- * Start at any vertex, evaluate objective function
- * If an adjacent vertex has a better value, move
- * If current vertex is better than all neighbours, stop
- * Can be exponential, but efficient in practice
- * Theoretically efficient algorithms exist

Solving linear programs

Existence of solutions

- * Feasible region is convex
- May be empty constraints are unsatisfiable no solutions
- * May be unbounded no upper/lower limit on objective function

Example, extended

Grandiose Sweets adds almond rasmalai

- * Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- * Demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- * Production: 400 boxes a day, altogether
- * Milk supply: 600 boxes of halwa, 200 of rasmalai or any combination (rasmalai needs 3 times as much milk)
- * What is the most profitable mix to produce?

New linear program

Objective function

* Maximize 100b + 600h + 1300r

Constraints

- * b ≤ 200
- * h ≤ 300
- * $b + h + r \le 400$
- * $h + 3r \le 600$
- * b, h, $r \ge 0$

Now a 3D picture **Optimum** (0,300,100)**Profit: 310000**

Why (0,300,100)?

Constraints

- * b ≤ 200
- * $h \le 300 (A)$
- * $b + h + r \le 400$ (B)
- * $h + 3r \le 600 (C)$
- * 100x(A) + 100x(B) + 400x(C): $100b + 600h + 1300r \le 310000$
- * Profit is 100b + 600h + 1300r, value at (0,300,100) is 310000, hence optimal

LP duality

- * Can always construct a combination of constraints that tightly captures upper bound on objective function
- * Dual LP problem
 - * Minimize linear combination of constraints
 - * Variables are the multipliers
 - Optimum solution solves both original (primal) and dual LP