CSIT504 Module 4 Homework

- 1. (Problem 13 on page 244 from Rosen) Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - $c \equiv 9a \pmod{13}$.
 - $c \equiv 11b \pmod{13}$.
 - $c \equiv a + b \pmod{13}$.
 - $c \equiv 2a + 3b \pmod{13}$.
 - $c \equiv a^2 + b^2 \pmod{13}$.
 - $c \equiv a^3 b^3 \pmod{13}$.
- 2. (Problem 31 on page 245 from Rosen) Find each of these values.
 - $(-133 \text{ m} \cdot \text{d} 23 + 261 \text{ m} \cdot \text{d} 23) \text{ m} \cdot \text{d} 31.$
 - (457 m•d 23 · 182 m•d 23) m•d 23.
- 3. (Problem 3 on page 272 from Rosen) Find the prime factorization of each of these integers.
 - 88
 - 126
 - 729
 - 1001
 - 1111
 - . 909090
- 4. (Problem 25 on page 273 from Rosen) What are the greatest common divisors of these pairs of integers?
 - 3⁷5³7³, 2¹¹3⁵5⁹
 - $11 \cdot 13 \cdot 17, 2^{9}3^{7}5^{5}7^{3}$
 - $23^{31}, 23^{17}$
 - $41 \cdot 43 \cdot 53, 41 \cdot 43 \cdot 53$
 - \bullet 3¹³5¹⁷2¹², 2¹²7²¹
 - 1111, ●
- 5. (Problem 13 on page 285 from Rosen) Find the solutions of the congruence $15x^2 + 19x \equiv 5 \pmod{11}$. [Hint:Show the congruence is equivalent to the congruence $15x^2 + 19x + 6 \equiv 0 \pmod{11}$. Factor the left-hand side of the congruence; show that a solution of the quadratic congruence is a solution of one of the two different linear congruences.]

6. (Problem 3 on page 292 from Rosen) A parking lot has 31 visitor spaces, numbered from 0 to 30. Visitors are assigned parking soaces using the hashing function $h(k) = k \mod 31$, where k is the number formed from the first three digits on a visitor's license plate.