Name:Pranil Rego

Task 3- Exploratory Data Analysis - Retail

To Perform 'Exploratory Data Analysis' on dataset "SampleSuperstore" To detect the weak areas where more work is necessary to make profit.

Importing the Libraries

```
In [29]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading the Data

```
In [13]: df = pd.read_csv(r'C:\Users\Pranil Rego\Downloads\SampleSuperstore.csv')
    df.head()
```

Out[13]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Q
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	
4											•

Preprocessing Part-1

```
In [14]: #Check the shape
df.shape
Out[14]: (9994, 13)
```

```
In [15]: #check for the missing value
         df.isnull().sum()
Out[15]: Ship Mode
                         0
         Segment
                         0
         Country
                         0
         City
                         0
         State
                         0
         Postal Code
         Region
                         0
         Category
                         0
                         0
         Sub-Category
         Sales
                         0
         Quantity
                         0
         Discount
                         0
         Profit
                         0
         dtype: int64
In [20]: #count of each category under shipment mode
         df["Ship Mode"].value_counts()
Out[20]: Standard Class
                           5968
         Second Class
                           1945
         First Class
                           1538
         Same Day
                            543
         Name: Ship Mode, dtype: int64
In [21]: df["Country"].nunique()
Out[21]: 1
In [22]: ## dropping columns which dont affect profits much.
         df = df.drop(["Country","Postal Code"],axis=1)
In [23]: #checking for duplicate values
         df.duplicated().sum()
```

Out[23]: 50

In [24]: #dropping the duplicate values
df.drop_duplicates(inplace=True)

Out[24]:

	Ship Mode	Segment	City	State	Region	Category	Sub- Category	Sales	Quantity	Dis
0	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Bookcases	261.9600	2	
1	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	
2	Second Class	Corporate	Los Angeles	California	West	Office Supplies	Labels	14.6200	2	
3	Standard Class	Consumer	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775	5	
4	Standard Class	Consumer	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	
9989	Second Class	Consumer	Miami	Florida	South	Furniture	Furnishings	25.2480	3	
9990	Standard Class	Consumer	Costa Mesa	California	West	Furniture	Furnishings	91.9600	2	
9991	Standard Class	Consumer	Costa Mesa	California	West	Technology	Phones	258.5760	2	
9992	Standard Class	Consumer	Costa Mesa	California	West	Office Supplies	Paper	29.6000	4	
9993	Second Class	Consumer	Westminster	California	West	Office Supplies	Appliances	243.1600	2	
9944 ı	rows × 12	columns								

In [28]: import seaborn as sns

In [30]: sns.distplot(df["Quantity"]) plt.show()

C:\Users\Pranil Rego\AppData\Local\Temp\ipykernel_23928\903518770.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df["Quantity"])

In [31]: sns.distplot(df["Discount"]) plt.show()

C:\Users\Pranil Rego\AppData\Local\Temp\ipykernel_23928\3783034909.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df["Discount"])


```
In [32]: sns.distplot(df["Profit"])
plt.show()
```

C:\Users\Pranil Rego\AppData\Local\Temp\ipykernel_23928\861365785.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df["Profit"])

Out[33]:

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200469	-0.028625	0.479078
Quantity	0.200469	1.000000	0.008307	0.066089
Discount	-0.028625	0.008307	1.000000	-0.219939
Profit	0.479078	0.066089	-0.219939	1.000000

In [34]: sns.heatmap(corr, annot = True)

Out[34]: <AxesSubplot:>


```
In [35]: sales_df = df.groupby("State")["Profit"].sum()
    sales_df = sales_df.reset_index()
    sales_df.head()
```

Out[35]:

	State	Profit
0	Alabama	5786.8253
1	Arizona	-3427.9246
2	Arkansas	4008.6871
3	California	76215.9705
4	Colorado	-6527 8579

```
In [36]: plt.figure(figsize=(12,7))
    sns.barplot(x= sales_df["State"] , y = sales_df["Profit"])
    plt.ylabel("Profit")
    plt.xlabel("State")
    plt.xticks(rotation = "vertical")
    plt.show()
```


We can infer from the above barplot that the states - California and New York are having the highest profit while Ohio, Pennsylvania and Texas are having the highest losses or least profits(negative)

Category vs Profit

```
In [37]: category_df = df.groupby("Category")["Profit"].sum()
    category_df = category_df.to_frame().reset_index()
    category_df
```

Out[37]:

	Category	Profit
0	Furniture	18484.9459
1	Office Supplies	122196.0726
2	Technology	145416.5394


```
In [41]: plt.figure(figsize=(15,7))
    sns.countplot(x="Sub-Category", hue= "Region", data=df)
    plt.xticks(rotation="vertical")
    plt.plot()
```

Out[41]: []

Copiers, Machines and Supplies are the least sold products overall. South accounts for the least sales in any of the sub-categories.

Sales per State

```
In [42]: df_state = df.groupby("State")["Sales"].sum().sort_values(ascending = False)
    df_state = df_state.to_frame().reset_index()
    df_state.head()
```

Out[42]:

	State	Sales
0	California	456629.9285
1	New York	310349.2150
2	Texas	170101.1278
3	Washington	138560.8100
4	Pennsylvania	116383.0100

```
In [43]: df_state.plot(kind = "bar" , x = "State" , y = "Sales" , figsize = (12,8))
plt.ylabel("Sales")
```

Out[43]: Text(0, 0.5, 'Sales')

Highest sales- California, New York and Texas

Profit and sales for sub-categories

```
In [44]: sub_df = df.groupby("Sub-Category")["Profit" , "Sales"].sum()
sub_df.plot(kind = "bar" ,figsize = (12 , 8))
plt.show()
```

C:\Users\Pranil Rego\AppData\Local\Temp\ipykernel_23928\3316674198.py:1: FutureWarn ing: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

```
sub_df = df.groupby("Sub-Category")["Profit" , "Sales"].sum()
```


Conclusion:

- We can conclude that our sales are higher as compared to our profit.
- Tables, Bookcases and Supplies are responsible for maximum losses(in negative)

Weak Areas:

- Though Copiers are the least sold products it makes most of the profit so, we must look for ways to improve the sales of the Copiers.
- Tables should either be removed from the market or major changes should be made to tables in order to not incur losses in future.
- We should try to improve our sales in North Dakota, South Dakota, West Virginia and Columbia using new techniques.
- Our sales at Illinois, Ohio, Texas and Pennsylvania are making losses so we must concentrate on the loss making issues in this region.

	 So, in order to improve our sales and profit we must pay special attention to our losses and strengthen our weak areas as mentioned above.
[n []:	