Definition: Euclidean Algorithm

Given two positive integers m and n find their greatest common divisor, that is, the largest positive integer that evenly divides both m and n.

- 1. Divide m by n and let r be the remainder where $0 \le r < n$
- 2. If r = 0, the algorithm terminates; n is the answer.
- 3. Set $m \leftarrow n$, $n \leftarrow r$ and return to step 1
- 1: **procedure** Euclid(a, b)

 - $r \leftarrow a \bmod b$
 - while $r \neq 0$ do
 - $a \leftarrow b$
 - $b \leftarrow r$
- 5: $r \leftarrow a \bmod b$ 6:

2:

3:

- 7:
- end while return b
- 9: end procedure
- - Correctness —
 - To see why we would be applying the quotient remainder theorem on n in the next iteration to obtain $n = qn_1 + r_1$, then we would have
- - $gcd(n,m) = gcd(n,r) = gcd(n_1,r_1)$
- After finitely many iterations our algorithm get to the second step (read the termination proof) and say it's called with n_t, r_t (t for termination)
- It's in the second step so $r_t = 0$ and $n_t = \gcd(n_t, 0) = \gcd(n_t, r_t) = \ldots \gcd(n_t, r_t) = \gcd(n, r) = \gcd(m, n)$ (the chain of equalities)
- Our output would be $n_t = \gcd(n, m)$, as required.

Termination —

The program terminates if r = 0, the value of n decreases by at least 1 after each iteration specified by the strict inequality from the quotient remainder theorem, therefore if n_k is the value of n after k iterations then n_0, n_1, \dots is a decreasing sequence of positive integers, and so it must be finite, therefore there is a $r \in \mathbb{N}$ such that the algorithm terminates on iteration r (as $n_r = 0$)

• Note that by the GCD invariant we have: gcd(m,n) = gcd(n,r), then each time we go to step 3 this chain of equalities would expand by one

 \triangleright The g.c.d. of a and b

 \triangleright The gcd is b

 \triangleright We have the answer if r is 0