Estimation of individual privacy risk in data sharing using predictive models

Master Thesis Proposal

Manjari Chaudhri

RWTH Aachen, Informatik 5, Information Systems Prof. Dr. Stefan Decker

Advisors: Felix Hermsen and Mehdi Akbari Gurabi

Motivation for data spaces

Single point of failure

Inflexibility |

Governance

| Accountability

Ineffective

Data spaces – Medical data space

All data sharing must be GDPR complaint.

Data sharing and privacy risk

87% of Americans identified based on 5-digit ZIP, gender, date of birth – Sweeney (2000)

Solution – PETs: Syntactic anonymization, Differential Privacy, Synthetic data

How much data utility do we lose?

Privacy enhancing technologies

! Does not really work in practice

! Utility tradeoffs

Gives an upper bound on privacy risk

Synthetic Dataset Generation

! Utility tradeoffs

Residual risk remains

GDPR and privacy risk

Singling out

DOB	Gender	Attempts	Postcode		Status
10-01-1955	Male	3	17329	\rightarrow	Accepted

Inference

Linkability

DOB	Gender	Attempts	🕤	
13-03-1994	Male	4		AND

Problems with current methods

Metrics not well defined

Privacy metrics in research

In research, privacy is measured in many different ways

Two rough categories -

- Inherent to data entropy, information gain : statistical properties of the dataset
 - Quantifiable properties of a dataset dispersion, skewness, correlation, outliers
- Adversary based
 - Probability of success
 - Time to success
 - Accuracy

Privacy metrics in research

Information based	Attack based		
Do not need an adversary.	Dependent of adversary capabilities		
Which statistics are important for privacy?	How can we model every adversary?		
How do they relate to practical privacy?	Can we make them computationally efficient?		

Can we combine these two approaches to predict privacy risk in a computationally efficient manner?

Does every record have the same level of risk?

Research question

Research question – Can we use Machine Learning to predict privacy risk for each record individually? Can we make the privacy metric legally meaningful (GDPR aligned)?

Conceptual approach – Model learns from inherent characteristics of the dataset based on simulated attacks to predict the privacy risk score for each individual

Conceptual approach

Risk distribution graph - Regression

Risk distribution graphs - Classification

Timeline

Summary

- Privacy risks in a dataset are currently a subjective measure.
- Statistical properties of a dataset can be used to quantify the privacy risk.
- Using attack based metrics (with a legal standing) can give practical meaning to privacy of an individual record.
- We will use machine learning to predict privacy risk by using a combination of the two approaches.

Thank you for your attention!

