Given that B and C are two languages and $B \leftarrow C = \{w \in B \mid \text{ for some } y \in C, \text{srings } w \text{ and } y \text{ contain equal numbers of } 1\}$ over the alphabet $\Sigma = \{0,1\}$

We have to prove that class of regular languages closed under ____ operation

That means if B and C are regular languages than $B \leftarrow C$ is also a regular language.

So given that B and C are regular languages.

We know that

"A language is regular if it is recognized by an automation"

• Let $M_{\scriptscriptstyle R}$ be the DFA that recognizes the language B

$$M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$$

• Let M_c be the DFA that recognizes the language C $M_C = (Q_C, \Sigma, \delta_C, q_C, F_C)$

Now we have to construct an NFA which recognizes $B \leftarrow C$.

Construction of NFA to recognize $B \leftarrow C$:

Let
$$N = (Q, \Sigma, \delta, q_0, F)$$
 be the NFA.

Now N has to decide whether a string $w \in B \leftarrow C$ or not.

- For that first machine M checks whether $w \in B$ or not.
- If $w \in B$, then non deterministically find out a string of that contains the same number of 1s as contained in w and checks that $y \in C$.
- That means for each string B, there are C (number of strings in C) parallel machings will exist

Thus Q = set of states

$$=Q_B \times Q_C$$

 Σ = set of alphabet

= same as B and C

 δ is given by, for $(q,r) \in Q$ and $a \in \Sigma$

$$\delta(q,r), a = \begin{cases} \left\{ \left(\delta_{\scriptscriptstyle B} \left(q,0 \right), r \right) \right\} \text{ if } a = 0 \\ \left\{ \left(\left(\delta_{\scriptscriptstyle B} \left(q,1 \right) \right), \delta_{\scriptscriptstyle C} \left(r,1 \right) \right) \right\} \text{ if } a = 1 \\ \left\{ \left(q, \delta_{\scriptscriptstyle C} \left(r,0 \right) \right) \right\} \text{ if } a = \epsilon \end{cases}$$

 q_0 = start state

$$=(q_B,q_c)$$

F = set of final states

$$= F_R \times F_C$$

Thus we defined an NFA N to recognize $B \leftarrow C$.

Hence $B \leftarrow C$ is regular.

Therefore class of regular languages closed under $B \leftarrow C$ operation