1. Dacă $E(x) = 4x^3 - 8x^2 + 2x + 3$ și $x_0 = \frac{1 + \sqrt{3}}{2}$, calculați $E(x_0)$. (3p) a) 0 b) -1 c) 1 d) 2 e) -2 2. Se consider funcția fRR, f(x)=x^2 -4x + 3. Precizrați f[0,3]). (3p) a) [0,3] b) [-1,3] c) [-1,0] d) [0,1] e) [-1,2] 3. Locul geometric al vărfurilor parabolelor asociate funcțiilor f_n : $R - 8x$ $f_n(x) = x^2 - 2(m-2)x + m-2$, $m \in R$, are ceuția: 4. Precizați perechea (m, n) pentru care f. $R \rightarrow R$, $f(x) = x^2 - 2(m-2)x + m-2$, $m \in R$, are ceuția: 4. Precizați perechea (m, n) pentru care f. $R \rightarrow R$, $f(x) = x^2 - 2(m + 2)x + m + 2(m + 2)x + m$		TESTUL 1								
1. Dacă $E(x) = 4x^3 - 8x^2 + 2x + 3$ gi $x_0 = \frac{1 + \sqrt{3}}{2}$, calculați $E(x_0)$. (3p a) 0 b) -1 c) 1 d) 2 e) -2 2. Se consideră funcția $R \to R$, $R(x) = x^3 - 4x + 3$. Precizeții $\{(1,3)\}$. (3p a) $[0,3]$ b) $[-1,3]$ c) $[-1,0]$ d) $[0,1]$ e) $[-1,2]$ 3. Locul geometric al vărfurilor parabolelor asociate funcțiilor $[n]$. $R \to R$ $[n(x) = x^2 - 2x + 2x]$ d) $y = x^2 + 2x$ e) $y = x^2 + x$ 4. Precizeții prechea (m, n) pentru care f . $R \to R$, $R(x) = \begin{cases} x^2 - p$ prutu $x \ge 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \le 2 \\ lmx + n, p$ pentru $x \ge 2 \\ lmx + n, p$ pentru		INDICE	oficiu 10 puncte		a) $\frac{1}{}$	b) $\frac{1}{-}$	c) $\frac{1}{}$	d) $\frac{7}{}$	e) $\frac{5}{}$	
(CE) si mijlocul F al acesteia. Determinați $b \in R$ pentru care AF = b-AD. 3. Dacă tg x = 2, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3 \sin^2 x - \cos^2 x}$. 4. Procizeți percecha (m, n) pentru care $E = \frac{2 \sin^2 x + \cos^2 x}{3}$. 5. Dacă tg x = 2, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3}$. 6. In triunghiul ABC se consideră $D \in (RC)$ as a incât BD = 2-DC, median. (CE) și mijlocul F al acesteia. Determinați $b \in R$ pentru care $E = \frac{2 \sin^2 x + \cos^2 x}{3}$. 7. Dacă tg x = 2, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3}$. 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu galben, suma numerelor obtinute sa fic cel mult egala cu r ? (4p) 2. Se consideră funcția f.RX = R, f(x) = x^2 + x + 3. Precizații [10,3]). (3p) 3. Locul geometric al vărfurilor parabolelor asociate funcțiilor $f_n : R \to R$ (4p) 4. Precizați percehea (m, n) pentru care f. R $\to R$, f(x) = x x 2, pentru x 2 2 (mx + n, pentru x < 2) 4. Precizați percehea (m, n) pentru care f. R $\to R$, f(x) = x x 2, pentru x 2 2 (mx + n, pentru x < 2) 5. Dacă G este centrul de greatta al unut irrunghi, 148 Eși M un punct oarecur din plan, determinați a e R pentru care MA $\to MH \to MC = a \to MG$. (4p) a) 0 b) 1 c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) 3 6. In triunghiul ABC se consideră $D \in (RC)$ asa incât BD = 2-DC, median. (CE) și mijlocul F al acesteia. Determinați b e R pentru care AF = b-AD. (3p) 7. Dacă tg x = 2, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3 \sin^2 x - \cos^2 x}$. (4p) 8. Dacă a, b, c sunt solutiile ecuației x 3-3x^2 + 2x + 1 = 0, calculați determinantu extente al mainte numar natural m m, m26, pentru care polinomul (4p) 11. Determinați cel mai mic numar natural m m, m26, pentru care polinomul (4p) 12. Fie (G, 7) un grup și H=G, H=G, un subgrup al sau. Pentru ace del natural m m, m26, pentru care del natural m		$\frac{1+\sqrt{3}}{2}$			Ü	2	5			
(CE) si mijlocul F al acesteia. Determinați a e R pentru care $\overline{MA} + \overline{MB} + \overline{MC} = a \cdot \overline{MG}$. (4p) a) 0 b) 1 c) $\frac{2}{5}$ d) $\frac{4}{3}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ c) $\frac{1}{2}$ d) 1 c) $\frac{2}{5}$ d) $\frac{4}{3}$ c) $\frac{1}{2}$ d) 1 c) $\frac{1}{2}$ d) 1 c) $\frac{1}{6}$ d) 1 c) $\frac{2}{6}$ d) $\frac{3}{3}$ d) 1 c) $\frac{3}{11}$ d) 1 c) $\frac{2}{5}$ d) $\frac{4}{3}$ c) $\frac{1}{2}$ d) $\frac{1}{2}$ d) $\frac{1}{2}$ d) $\frac{3}{3}$ d) 1 c) $\frac{1}{6}$ d) $\frac{3}{3}$ d) 1 c) $\frac{1}{6}$ d) 1 c) $\frac{3}{6}$ d) $\frac{3}{3}$ c) $\frac{1}{1}$ d) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ c) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ c) $\frac{1}{2}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ c) $\frac{1}{2}$ d) $\frac{4}{3}$ c) $\frac{7}{9}$ 8. Dacă $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{3}{3}$ c) $\frac{1}{1}$ d) $\frac{1}{1}$ c)		1. Dacă $E(x)=4x^3-8x^2+2x+3$ și $x_0=\frac{x^2+3}{2}$, calculați $E(x_0)$. (3p		10 C	1i		$(1,2)^{120}$) . o	(2n)
2. Se consideră funcția $f(R \rightarrow R, f(x)) = x^2 - 4x + 3$. Precizati $f([0,3])$ d) $f([$	\$4	2			10. Care este	cei mai mare te	rmen ar dezvor	$\left(\frac{1}{3} + \frac{1}{3}\right)$	<i>:</i>	(3p)
a) $[0,3]$ b) $[-1,3]$ c) $[-1,0]$ d) $[0,1]$ c) $[-1,2]$ 3. Locul geometric at variatinitor parabolelor associate functifior f_m ; R—R, $f_m(x) = \frac{1}{2}f_m(x) = \frac{1}{2}f_$	f_t .				a) T ₆₁	b) T ₈₁	c) T ₅₀	d) T ₈₀	e) T ₆₀	
3. Local geometric al variatrior parabolelor associate funcțiilor f_m :R—R $f_m(x) = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (4p a) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, m=R, are ecutaira: (2p) $y = x^2 - 2(m-2)x + m-2$, and all $y = x^2 - 2(m-2)x + m-2$, and all $y = x^2 - 2(m-2)x + m-2$, and all $y = x^2 - 2(m-2)x + m-2$. (4p) a) $y = x^2 - 2(m-2)x + m-2$ (4p) a) $y = x^2 - 2(m-2)x $							numar natural	l m′, m≥6, pe	entru care pol	inomul
$f_{n}(x) = x^{2} - 2(m - 2)x + m - 2, m = R, are equation a) y = x^{2} - 2(m - 2)x + m - 2, m = R, a$				P(x)=						
12. Fie (G,) un grup şi He-G, He-G, un subgrup al sau. Pentru ac edith notam $ H = x_1 = x_2 + x_3 + x_4 + x_4 + x_5 $	f _m (x	$= x^2 - 2(m-2)x + m - 2$ $m \in \mathbb{R}$ are equation	(4p		a) 6	b) 7	c) 8	d) 9	e) 10	
4. Precizați perechea (m, n) pentru care f. $\mathbf{R} \rightarrow \mathbf{R}$, $\mathbf{f}(\mathbf{x}) = \begin{cases} x^2, \text{ pentru } \mathbf{x} \geq 2 \\ \text{mx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, \text{ pentru } \mathbf{x} \leq 2 \\ \text{nx} + \text{n}, p$		a) $y=x-2$ b) $y=x-x^2$ c) $y=x-1$ d) $y=x^2-x$ e) $y=x$	$\chi^2 + \chi$							
este bijectiva. (4p) $(-1, 2)$ b) $(2, -2)$ $(-2, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(-2, 2)$ e) $(-2, 2)$ d) $(-2, 2)$ e) $(-2, 2)$ e) $(-2, 2)$ d) $(-2, 2)$ e) $($						dacă G este f	init, notam H	=m și aH =n.	Care afirma	ție este
este bijectiva. (4p) $(-1, 2)$ b) $(2, -2)$ $(-2, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(3, 2)$ d) $(-2, 2)$ e) $(-2, 2)$ e) $(-2, 2)$ d) $(-2, 2)$ e) $(-2, 2)$ e) $(-2, 2)$ d) $(-2, 2)$ e) $($		4. Precizați perechea (m, n) pentru care f: $\mathbf{R} \rightarrow \mathbf{R}$, $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{R} \rightarrow \mathbf{R} \\ \mathbf{m} \end{cases}$	v + n nentru v / ^	adeva				2	V . 2	(3p)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•					,		^e)m=n	24.5
5. Dacă G este centrul de greutate al unui triunghi ABC şi M un punct oarecare din plan, determinați $a \in R$ pentru care $\overline{MA} + \overline{MB} + \overline{MC} = a \cdot \overline{MG}$. (4p) a) 0 b) 1 c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) 3 6. În triunghiul ABC se consideră D \in (BC) asa încât BD $= 2 \cdot DC$, median. (CE) şi mijlocul F al acesteia. Determinați $b \in R$ pentru care $AF = b \cdot AD$. (3p) a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg $x = 2$, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3 \sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. (4p) $b = c$ a $b = c$ (4p) b) $c = a$ b) $c = c$ (4p) 2. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) 3. $c = c$ set probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) 4. Calculați $I = \int_{0}^{1} \frac{x^2}{1 + x^6} dx$. (3p) 4. Calculați $I = \int_{0}^{1} \frac{x^2}{1 + x^6} dx$. (3p) 4. Calculați $I = \int_{0}^{1} \frac{x^2}{1 + x^6} dx$. (3p) 5. Calculați $I = \int_{0}^{1} \frac{x^2}{1 + x^6} dx$. (3p) 6. In triunghiul ABC se consideră $D \in (BC)$ as încât $BD = 2 \cdot DC$, median. (2p) 6. In triunghiul ABC se consideră $D \in (BC)$ as încât $BD = 2 \cdot DC$, median. (2p) 6. In triunghiul ABC se consideră $D \in (BC)$ a							•		a) 0	(4p)
din plan, determinați a \in R pentru care $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = a \cdot \overrightarrow{MG}$. (4p) a) 0 b) 1 c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) 3 6. În triunghiul ABC se consideră D \in (BC) asa încât BD = 2-DC, mediant (CE) și mijlocul F al acesteia. Determinați b \in R pentru care AF = b-AD. (3p) a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg x = 2, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. b) $\frac{a}{b}$ c a a b b. (4p) a) A b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) a) $x + y - z = 0$ b) $x + 2y - z = 0$ b) $x + 2y - z = 0$ d) $x + 3y + z = 8$ e) $x - y - 3z = 6$ 14. Calculați $1 = \int_{1+x^6}^{A} dx$. (3p) a)	+				· ·		*	a) 6	e) 8	
a) 0 b) 1 c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) 3 6. In triunghiul ABC se consideră $D \in (BC)$ asa încât $BD = 2 \cdot DC$, median: (CE) și mijlocul F al acesteia. Determinați $b \in R$ pentru care $AF = b \cdot AD$. (3p) a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg $x = 2$, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3 \sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. $D = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$ 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) a) $0 = \frac{1}{2} \cdot \frac{x^2}{1 + c^2} \cdot \frac{x^2}{3} \cdot \frac$		3. Daca G este central de greatate al una triungin ADE și îv	i un punet oarceate		14. Calculati	$I = \int \frac{x^2}{x^2} dx$.				(4p)
a) 0 b) 1 c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) 3 6. In triunghiul ABC se consideră D e (BC) asa încât BD = 2·DC, mediant (CE) și mijlocul F al acesteia. Determinați b e R pentru care AF = b·AD. (3p. a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg x = 2, calculați E = $\frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p. a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ b & c & a \\ a & 34 & b) 9 & c) 16 & d) 1 & e) 3 \\ 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma nurherelor obtinute sa fie cel mult egala cu 7? (4p) a) 1 b) 2 c) 0 d) 3 x+2y-z=6 d) 3x+3y+z=8 e) x-y-3z=6 19. Prin focarul parabolei de ecuație y^2 = 2px se duce o coarda perpendiculara$	din p	lan, determinați $a \in \mathbf{R}$ pentru care $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = a \cdot \overrightarrow{MG}$.	. (4p)			0				7
6. In triunghiul ABC se consideră $D \in (BC)$ asa încât $BD = 2 \cdot DC$, medians (CE) și mijlocul F al acesteia. Determinați $b \in \mathbf{R}$ pentru care $AF = b \cdot AD$. (3p) a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg $x = 2$, calculați $E = \frac{2 \sin^2 x + \cos^2 x}{3 \sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ b & c & a \\ b & b & c \\ a & 4 & b \end{pmatrix} = 0$ 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) (3p) 15. Calculați $\lim_{n \to \infty} \int_{1}^{\infty} (\ln x)^n dx$. (3p) 16. Calculați $I = \int_{1}^{\infty} \frac{x^2}{1 + e^x} dx$. (3p) 17. Câte puncte de extrem are funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \int_{0}^{\infty} e^t \cdot \ln(1 - t - t^2) dt$? (4p) a) $1 = \int_{1}^{\infty} \frac{x^2}{1 + e^x} dx$. (3p) 18. Scrieti ecuația planului ce contine punctele: $A(3, -1, 2)$, $B(4, -1, -1)$, $C(2, 0, 2)$. 18. Scrieti ecuația planului ce contine punctele: $A(3, -1, 2)$, $B(4, -1, -1)$, $C(2, 0, 2)$. (4p) a) $x + y - z = 0$ b) $2x + 2y - z = 2$ c) $x - y + z = 6$ d) $3x + 3y + z = 8$ e) $x - y - 3z = 6$ 19. Prin focarul parabolei de ecuație $y^2 = 2px$ se duce o coarda perpendiculara	•				A 1 2	π π	2π		π	
(CE) şi mijlocul F al acesteia. Determinați $b \in \mathbf{R}$ pentru care $AF = b \cdot AD$. (3p) a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg $x = 2$, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 \cdot 3x^2 + 2x + 1 = 0$, calculați determinantu. D = $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9 Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) 15. Calculați $\lim_{n \to \infty} \int (\ln x)^n dx$. (3p) 16. Calculați $I = \int_{-1}^{1} \frac{x^2}{1 + e^x} dx$. (3p) 17. Câte puncte de extrem are funcția f: $\mathbf{R} \to \mathbf{R}$, $f(x) = \int_{0}^{x} e^t \cdot \ln(1 - t - t^2) dt$? (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: $A(3,-1,2)$, $B(4,-1,-1)$, $C(2,0,2)$. (4p) a) $x+y-z=0$ b) $2x+2y-z=2$ c) $x-y+z=6$ d) $3x+3y+z=8$ e) $x-y-3z=6$ 19. Prin focarul parabolei de ecuație $y^2=2px$ se duce o coarda perpendiculara		a) 0 b) 1 c) $\frac{1}{3}$ d) $\frac{1}{3}$	e) 3		a) in 2	$\frac{6}{4}$	$\frac{c}{3}$	u) 1	$\frac{6}{12}$	
a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg x = 2, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. D = $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) a) 0 b) 1 c) ∞ d) $\frac{1}{e}$ e) e 16. Calculați $I = \int_{-1}^{1} \frac{x^2}{1 + e^x} dx$. (3p) 17. Câte puncte de extrem are funcția f: $\mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \int_{0}^{\infty} e^{t} \cdot \ln(1 - t - t^2) dt$? (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0,2). (4p) a) $x + y - z = 0$ b) $2x + 2y - z = 2$ c) $x - y + z = 6$ d) $3x + 3y + z = 8$ e) $x - y - 3z = 6$ 19. Prin focarul parabolei de ecuație $y^2 = 2px$ se duce o coarda perpendiculara		6. In triunghiul ABC se consideră D ∈ (BC) asa încât BI	$D = 2 \cdot DC$, mediana			e fa >n.				(2)
a) $\frac{3}{4}$ b) 1 c) $\frac{5}{6}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$ 7. Dacă tg x = 2, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. D = $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) a) 0 b) 1 c) ∞ d) $\frac{1}{e}$ e) e 16. Calculați $I = \int_{-1}^{1} \frac{x^2}{1 + e^x} dx$. (3p) 17. Câte puncte de extrem are funcția f: $\mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \int_{0}^{\infty} e^{t} \cdot \ln(1 - t - t^2) dt$? (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0,2). (4p) a) $x + y - z = 0$ b) $2x + 2y - z = 2$ c) $x - y + z = 6$ d) $3x + 3y + z = 8$ e) $x - y - 3z = 6$ 19. Prin focarul parabolei de ecuație $y^2 = 2px$ se duce o coarda perpendiculara	(CE)	și mijlocul F al acesteia. Determinați $b \in \mathbf{R}$ pentru care AF =	= b·AD. (3p		15. Calculați	$\lim_{n\to\infty}\int (\ln x)^n dx$	•	,		(3p)
7. Dacă tg x = 2, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației x^3 - $3x^2$ + $2x$ + 1 = 0, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri, unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) 4 a) $x = \frac{1}{3} = \frac{x^2}{11 + e^x} $	•	3 b) 1 c) 5	2) 1			1		1		V
7. Dacă tg x = 2, calculați $E = \frac{2\sin^2 x + \cos^2 x}{3\sin^2 x - \cos^2 x}$. (4p) a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației $x^3 - 3x^2 + 2x + 1 = 0$, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) 16. Calculați $I = \int_{1}^{1} \frac{x^2}{1 + e^x} dx$. 39 a) e b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) 1 e) $\frac{1}{6}$ 17. Câte puncte de extrem are funcția f: $R \rightarrow R$, $f(x) = \int_{0}^{x} e^{t} \cdot \ln(1 - t - t^2) dt$? 49 a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0,2). 40 a) $x + y - z = 0$ b) $2x + 2y - z = 2$ c) $x - y + z = 6$ d) $3x + 3y + z = 8$ e) $x - y - 3z = 6$ 19. Prin focarul parabolei de ecuație $y^2 = 2px$ se duce o coarda perpendiculara		$\frac{a}{4}$ $\frac{b}{6}$ $\frac{c}{6}$ $\frac{a}{3}$	$\frac{c}{2}$		a) 0	b) 1	c) ∞	d) $\frac{1}{a}$	e) e	:
a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației x^3 - $3x^2$ + $2x$ + 1 = 0, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p)		$2\sin^2 x + \cos^2 x$	(4					C		
a) $\frac{9}{11}$ b) $\frac{5}{11}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$ e) $\frac{7}{9}$ 8. Dacă a, b, c sunt solutiile ecuației x^3 - $3x^2$ + $2x$ + 1 = 0, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p) galben, suma numerelor obtinute sa fie cel mult egala cu 7 ? (4p)		7. Daca $\lg x = 2$, calculați $E = \frac{3\sin^2 x - \cos^2 x}{3\sin^2 x - \cos^2 x}$	(4p)		16. Calculați	$I = \int \frac{x}{1-x} dx$.	THURS AND 21			(3p)
8. Dacă a, b, c sunt solutiile ecuației $x^3-3x^2+2x+1=0$, calculați determinantu. $D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$ 17. Câte puncte de extrem are funcția f: $\mathbf{R} \rightarrow \mathbf{R}$, $\mathbf{f}(\mathbf{x}) = \int_{0}^{\mathbf{x}} e^{t} \cdot \ln(1-t-t^2) dt$? 4p) a) 4		9 1 5 2 1 4	、 7			-1				
8. Dacă a, b, c sunt solutiile ecuației x³-3x²+2x+1 = 0, calculați determinantu a b c c a b b c a a b c c a b c a b c a a b c c a b c a b c a a b c c a b c a a b c c a b c a b c a a b c c a b c a b c a a c c a c a c a c a c a c a c a c a c		a) $\frac{1}{11}$ b) $\frac{1}{11}$ c) $\frac{1}{3}$	e) —		a) e	b) $\frac{1}{-}$	c) $\frac{1}{}$	d) 1	e) $\frac{1}{2}$	
D = $\begin{vmatrix} c & a & b \\ b & c & a \end{vmatrix}$. a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) (4p) (3) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0,2). (4p) (4p) (3) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0,2). (4p) (4p) (4p) (4p) (4p) (3) 1 b) 2 c) 0 d) 3 e) 4 (4p) (4p) (4p) (4p) (4p) (3) x+y-z=0 b) 2x+2y-z=2 c) x-y+z=6 d) 3x+3y+z=8 e) x-y-3z=6 19. Prin focarul parabolei de ecuație $y^2=2px$ se duce o coarda perpendiculara		8. Dacă a, b, c sunt solutiile ecuației $x^3-3x^2+2x+1=0$, calc	culați determinantu.		,	['] 3	2	,	´ 6	
a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0, 2). (4p) (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0, 2). (4p) (4p) a) x+y-z=0 b) 2x+2y-z=2 c) x-y+z=6 d) 3x+3y+z=8 e) x-y-3z=6 19. Prin focarul parabolei de ecuație y²=2px se duce o coarda perpendiculara		a b c			17 Câte nun	cte de extrem	are functia f	$\mathbf{P} \rightarrow \mathbf{P} \mathbf{f}(\mathbf{v}) =$	$\int_{0}^{x} e^{t} \cdot \ln(1-t)$. t ²)dt 2
b c a a) 4 b) 9 c) 16 d) 1 e) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0, 2). 4p) (4p) a) 1 b) 2 c) 0 d) 3 e) 4 e) 3 e) 4 e) 6 e) 7 e) 7 e) 7 e) 7 e) 8 e)	D =	c a b	(4p)		17. Cate pun	ete de extrem	are funcția i.	1 (A)	je inti	t jui.
a) 4 b) 9 c) 16 d) 1 e) 3 9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) a) 1 b) 2 c) 0 d) 3 e) 4 18. Scrieti ecuația planului ce contine punctele: A(3,-1,2), B(4,-1,-1), C(2,0, 2). (4p) a) x+y-z=0 b) 2x+2y-z=2 c) x-y+z=6 d) 3x+3y+z=8 e) x-y-3z=6 19. Prin focarul parabolei de ecuație y²=2px se duce o coarda perpendiculara	-		(· r	(4p)						
9. Care este probabilitatea ca, aruncind deodata 2 zaruri , unul rosu și unul galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) (3) (4p)			. 2		a) 1	b) 2	c) 0	d) 3	e) 4	
galben, suma numerelor obtinute sa fie cel mult egala cu 7? (4p) a) x+y-z=0 b) 2x+2y-z=2 c) x-y+z=6 d) 3x+3y+z=8 e) x-y-3z=6 19. Prin focarul parabolei de ecuație y²=2px se duce o coarda perpendiculara			,		18. Scrieti ecu	uația planului ce	e contine puncte	ele: $A(3,-1,2)$,	B(4,-1,-1), C(2,0, 2).
19. Prin focarul parabolei de ecuație $y^2=2px$ se duce o coarda perpendiculara	galh		•						And I ame a	`
	gaio	ni, suma numereror commune sa ne cer munt egana cu 7:	(4F)							
pe axa tocata a parabolet. Determinați lungimea acestei coarde. (4p)			·	1_			,		oarda perpend	
				pe ax	la locala a par	abolei. Determi	nați iungimea a	cester coarde.		(4F)

	finim legea de o	compozitie x*	y = x+y+2xy a	tunci elementul		$4x^3 - 9x^2$
al acestei legi est			1		4p	13. Fie f: $\mathbb{R}\setminus\{2\} \to \mathbb{R}$, $f(x) = \frac{4x^3 - 9x^2}{4(x - 2)}$ atunci $\int_3^4 f(x) dx$ este:
a) 1	b) -1	c) 0	d) $\frac{1}{2}$	e) nu exista	ι	263 1 2 1 263 1 2 2 263 1 2 2 2 2 2 2 2 2 2
6. Fie x, y,	z numere reale s	strict pozitive a	stfel încât x·y·z	z=1. Atunci		a) $\frac{263}{64} + \ln 2$ b) $\frac{263}{64} - \ln 2$ c) $-\frac{263}{64} + \ln 2$ d) $\ln 2 + \ln 3$ e) 1
	The most reconstruction of Tanana				3р	14. Dacă $S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + + \frac{1}{n(n+1)}$ atunci S este:
$\frac{1}{1+x+xy} + \frac{1}{1+y}$	y + yz + 1 + z + x	– este egai cu. Z	-		Эþ	, ,
a) 1	b) 2	c) $\frac{1}{2}$	d) $\frac{1}{3}$	e) $\frac{1}{4}$		a) $1 - \frac{1}{n}$ b) $1 - \frac{1}{n+1}$ c) $1 + \frac{1}{n}$ d) $1 + \frac{1}{n+1}$ e) $\frac{1}{n} + \frac{1}{n+1}$
7. Dacă n=	$\sqrt{5 + \sqrt{24}} - \sqrt{5}$	$-\sqrt{24} - \sqrt{8}$ at	unci n ²⁰⁰³ este		4p	15. Dacă polinomul $f = X^3 + \alpha X^2 - 10$ admite radacina 1 atunci suma celor trei
	b) 2√8		d) 1	e) 0		radacini ale lui f este: 3p a) 9 b) 8 c) -8 d) 10 e) -9
	elementului 2 î		3) 1	c) o	3р	16. Ecuația $x^2+2ax\sqrt{a^2-8}+9=0$ are radacini egale pentru: 3p
				57.69	эр	a) $a \in \mathbb{R}$ b) $a = \sqrt{2}$ sau $a = -\sqrt{2}$ c) $a = 3$ sau $a = -3$ d) $a = 6$ sau $a = -6$ e) $a \in [-5, 5]$
The second secon	b) 7	100	d) 13	e) 4	15	a) $a \in \mathbf{R}$ b) $a = \sqrt{2}$ sati $a = -\sqrt{2}$ c) $a = 3$ sati $a = -3$ d) $a = 6$ sati $a = -6$ e) $a \in [-3, 3]$ 17. Prin centrul de greutate G al triunghiului ABC ducem o dreapta care
	ighi echilateral	are cele trei vi	irfuri în z _i =1, 2	$t_2=2+1 \text{ $1 Z_3. At}$		
este egal cu:	1. /5	2 5	5 2 5	1. 5	4р	intersecteaza pe AB şi AC în M şi N. Atunci $\frac{MB}{MA} + \frac{NC}{NA}$ este:
-	$+i\frac{1+\sqrt{2}}{2}$ b)		-	-		a) 1
also i	$+i\frac{2+\sqrt{2}}{2}$ sau	300 C	-			18. Se consideră f: $\mathbb{R}\setminus\{2, 4\} \to \mathbb{R}$, $f(x) = \frac{x^2 - 2x + a}{x^2 - 6x + 8}$. Dacă graficul funcției este
10. Sirul (x _n) _{n≥2} cu terme	nul general x	$_{n}=\left(1-\frac{1}{2^{2}}\right)\cdot\left(1-\frac{1}{2^{2}}\right)$	$-\frac{1}{3^2}$ \cdots $\left(1-\frac{1}{n}\right)$	are	tangent axei OX atunci a este: (a) 1
limita:			/ (-,	4p	19. $\lim_{n \to \infty} n(an + \sqrt{2 + bn + cn^2})$ exista şi este egala cu 1 pentru:
1	b) $\frac{1}{2}$	1	d) 1	-\ 1	580	n→∞ '
3		4		e) <u>-</u>		a) a= -1, b=0, c=1 b) a= 1, b=0, c= -1 c) a= -1, b= -1, c=0 d) a= 1, b= -1, c=1 e) a= -1, b= -1, c= -1
 Dacă a_r 	$\int_{0}^{\infty} \frac{x-1}{x+1} dx$, $n \in$	N, n≥1 atunci	lim an este:		4p	20. Se dau vectorii $\overrightarrow{v_1} = \overrightarrow{i} + \overrightarrow{j}$ şi $\overrightarrow{v_2} = \overrightarrow{i} - \overrightarrow{j}$. Atunci unghiul celor doi vectori
	11.00		Accessed 1			este: 4p
a) 2	b) 3	c) 4	d) $\frac{1}{2}$	e) 1		a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{3}$ e) π
12. Fie f: ($(0, \infty) \to \mathbb{R}, \ f(x) =$	$x - \frac{2}{x}$. Atunci	derivata funcț	iei inverse este	data de	21. Se alege la intimplare un numar de doua cifre, mai mic strict decât 50.
702 (1026)		X	-			Atunci probabilitatea ca el sa fie prim este: 3p
(f -1) (y) este:	E-52 (4-5)	60			4p	a) $\frac{11}{40}$ b) $\frac{13}{40}$ c) $\frac{11}{39}$ d) $\frac{13}{39}$ e) $\frac{15}{50}$
- 1 (.	y) 1(у).	1+y	1-y 1+	2y	22. Coeficientul lui x^4 din dezvoltarea $(1+x-x^2+x^4)^4$ este:
a) $\frac{1}{2}$ 1+ $\frac{1}{2}$	$\left(\frac{y}{y^2+8}\right)$ b) $\frac{1}{4}\left(1-\frac{y}{y^2+8}\right)$	$\frac{1}{\sqrt{v^2 + 8}}$ (c)	$\frac{1}{2\sqrt{v^2+8}}$ d) $\frac{1}{2}$	$\sqrt{v^2 + 8}$ e) $\sqrt{2 - \sqrt{v}}$	2 + 8	a) 1 b) -1 c) 2 d) -2 e) 5
- (V	,,	V) +0)	277 +0 21	13 . 6 243	1.14	23. Intr-un trapez dreptunghic și ortodiagonal inaltimea este: 3p

```
a) media geometrica a bezelor b) suma bazelor c) media aritmetica a bazelor
                                                                                                                                                             b) \left(\frac{11}{5},4\right) c) (2, 4) d) (-1, 3)
        d) media armonica a bazelor e) media patratica a bazelor
        24. Intr-un triunghi echilateral avem:
                                                                                                                   4p
                                                                                                                                        8. Numarul \sqrt{36^{\log_6 5} + 10^{1-\lg 2} - 3^{\log_9 36} + 1} este:
                                                              d) R = r\sqrt{2} e) R = r
        a) R < 2r b) R = 2r
                                         c) R > 2r
       25. Solutia ecuației: \frac{\log_2(2x-5)}{\log_2(x^2-8)} = \frac{1}{2} este:
                                                                                                                                                                                    c) 5
                                                                                                                   4p
                                                                                                                                        9. Daca termenii sirului (a_n)_{n\geq 1} sunt in progresie aritmetica de ratie r atunci
                                                                                                                                                               S = \frac{a_1 + a_2}{a_1^2 \cdot a_2^2} + \frac{a_2 + a_3}{a_2^2 \cdot a_3^2} + \dots + \frac{a_n + a_{n+1}}{a_2^2 \cdot a_3^2} \text{ este:}
        a) 7 b) \frac{13}{3} c) \frac{10}{3} d) \frac{11}{3}
                                                                    Ioana Crăciun si Gheorghe Crăciun
                                                                                                                                       a) \frac{n(a_1 + a_n)}{a_1^2 \cdot a_{n+1}^2} b) \frac{n(a_1 + a_2)}{a_1^2 \cdot a_{n+1}^2} c) \frac{r}{a_1^2 \cdot a_{n+1}^2} d) \frac{1}{a_1 \cdot a_{n+1}} e) \frac{a_1 + a_{n+1}}{a_1^2 \cdot a_{n+1}^2}
                                                          TEST 4
                                                                                                                                        10. Polinomul P(x) = X^{4^n} + X^3 - X - 1 se divide cu:
                                                                                                                                        a) (X^{-1})^2 b) (X^2+1)(X+1) c) (X^2+X+1)(X^2-1)d) (X^2+1)(X^2-1)e) (X^2-X+1)(X^2-1)
                                                                                                oficiu 10 puncte
        1. Valorile lui m \in \mathbb{R} pentru care ecuatiile: x^2-(m+4)x+m+6=0;
                                                                                                                                        11. Solutiile ecuatiei (z-1)^n=I(z+1)^n sunt:
                                                                                                                  (3p)
        x^2-(m-1)x-m=0 au o radacina comuna sunt:
                                                                                                                                       a) z_k = i \operatorname{ctg}\left(\frac{\pi}{4n} + \frac{k\pi}{n}\right) b) z_k = i \operatorname{tg}\left(\frac{\pi}{4n} + \frac{k\pi}{n}\right) c) z_k = i \operatorname{ctg}\frac{k\pi}{n}
        a) m=1 sau m=\frac{5}{2} b) m=-2 sau m=-\frac{17}{2} c) m=2 sau m=-\frac{11}{2}
                                                                                                                                       d) z_k = -i \operatorname{ctg} \frac{k\pi}{n} e) z_k = \operatorname{ctg} \frac{k\pi}{n}, k = \overline{0, n-1}
        d) m = -1 sau m = -2 e) m = 3 sau m = 5
       2. Valoarea numarului \sqrt[3]{45 + 29\sqrt{2}} + \sqrt[3]{45 - 29\sqrt{2}} este:
                                                                                                                 (3p)
                                                                                                                                        12. Tetraedrul ABCD are muchiile AB=CD=2; AD=BC=\sqrt{3}, BD=\sqrt{2},
        a) 2
                                                                                              e) 8
                                                                                                                                   =\sqrt{5}. Unghiul format de AB si CD este:
                                                                                                                                                                                                                                                  (5p)
        3. Se considera functia f: \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R}, f(x) = \frac{-x^2 - 2x - 3}{x^2 + 2x + 1}. Imaginea functiei f
                                                                                                                                       a) \arccos \frac{1}{4} b) \arccos \frac{3}{8} c) \frac{\pi}{2} d) \arccos \frac{1}{8} e) \frac{\pi}{3}
                                                                                                                                       13. Determinantul \begin{vmatrix} a^3 & 3a^2 & 3a & 1 \\ a^2 & a^2 + 2a & 2a + 1 & 1 \\ a & 2a + 1 & a + 2 & 1 \end{vmatrix} se divide cu:
                              b) (-\infty, -1] c) [1, \infty) d) [-3, -1]
        a) (-\infty, -1)
                                                                                              e) [-1, \infty)
       4. Fie functia f: \mathbf{R} \rightarrow \mathbf{R}, f(x) = \begin{cases} ax + 2, x \ge 2 \\ x - 1, x < 2 \end{cases}, a \in \mathbf{R}. Valoarea lui a pentru care f
                                                                                                                                                                                                                                                  (4p)
este bijectiva este:
                                                                                                                                                              b) (a+1)^4 c) (a^2+1)^2 d) (a^3+1)^2 e) (a-1)^6
                                              c) a>0
        a) a=1
                              b) a=2
                                                                                               e) a \in \emptyset
        5. sin 18° este egal cu:
       a) \frac{\sqrt{5}-1}{4} b) \frac{\sqrt{5}+1}{4} c) \frac{\sqrt{3}-1}{2} d) \frac{\sqrt{2}+1}{4} e) \frac{\sqrt{6}-\sqrt{2}}{4}
                                                                                                                                        14. Fie matricea A = \begin{bmatrix} n & n+1 & n+2 \end{bmatrix} m, n, p \in \mathbb{Z}. In ce conditii A^* = A^{-1}? (4p)
                                                                                                                                                                    1 p
        6. Solutiile in R ale ecuatiei: 1-x=arccos2x sunt:
                                                                                                                                        a) p \in \{0, 1\} si m=n+1 b) p \in \{0, 2\} si m=n-1 c) p \in \{1, 2\} si m=n-1
                        b) \frac{1}{2} c) \frac{\sqrt{3}-1}{2} d) \varnothing
                                                                                                                                        d) n \in \{0, 1\} si p=m-1 e) p \in \{0, 2\} si m=n+1
                                                                                                                                        15. Limita sirului (a_n)_{n\geq 1}, a_n = \sqrt[n]{\frac{(2n)!}{(n!)^2}} este:
        7. Se considera punctele A(4, 2), B(-2, 1), C(3, -2). Coordonatele unui punct D
                                                                                                                                                                                                                                                  (3p)
pentru care avem 5 \overrightarrow{AD} = 2 \overrightarrow{AB} - 3 \overrightarrow{AC} sunt:
                                                                                                                  (3p)
                                                                                                                                                                                     c) 1
                                                                                                                                                                                                         d) 2
                                                                                                                                        a) 0
                                                                                                                                                               b) 4
                                                                                                                                                                                                                              e) 5
```

este:

intreaga este: (3p)a) $\frac{x}{6}$ b) $\frac{x}{2}$ c) $\frac{2x}{3}$ d) $\frac{x}{3}$ e) 0 17. $\lim_{n \to \infty} \frac{1 - \cos x \sqrt{\cos 2x} ... \sqrt[n]{\cos nx}}{2}$, $n \ge 1$ este: a) $\frac{n(n+1)}{2}$ b) $\frac{n(n-1)}{6}$ c) $\frac{n(n+1)}{4}$ d) $\frac{n^2}{4}$ e) $\frac{n(n+2)}{4}$ **18.** Fie functia f: $(0, \infty) \rightarrow (1, \infty)$, $f(x)=x^4+x^2+x+1$ bijectiva. atunci $(f^{-1})^{n}(4)$ este: a) $\frac{1}{7}$ b) $-\frac{2}{49}$ c) $\frac{2}{49}$ d) $\frac{2}{7}$ e) $\frac{1}{14}$ 19. Care dintre urmatoarele perechi de grupuri sunt izomorfe? (5p)a) $(\mathbf{R}, +)$ si $(\mathbf{R}^*, +)$ b) $(\mathbf{Q}, +)$ si $(\mathbf{R}, +)$ c) $(\mathbf{Q}^*, +)$ si $(\mathbf{Q}^*, +)$ d) $(\mathbf{Q}^{\star}, \cdot)$ si $(\mathbf{Q}, +)$ e) $(\mathbf{R}^{\star}, \cdot)$ si $(\mathbf{R}^{\star}, \cdot)$ **20.** Fie vectorii v_1 =(a, 1, 1), v_2 =(1, a, 1), v_3 =(1, 1, a) in \mathbb{R}^3 . Valorile lui $a \in \mathbb{R}$ pentru care v₁, v₂, v₃ sunt liniari independenti sunt: a) a= -1 sau a=2 b) a=1 sau a= -2 c) a= 3 sau a= -1 d) a= -3 sau a= -1 e) $a \in \emptyset$ 21. Primitivele functiei $f(x) = \frac{\cos(n-1)x}{\cos^{n+1}x}$ sunt: (3p)a) $-\frac{1}{n} \cdot \frac{\cos nx}{\cos^n x} + c$ b) $\frac{\sin nx}{\cos^n x} + c$ c) $\frac{1}{n} \cdot \frac{\sin nx}{\cos^n x} + c$ d) $\frac{1}{n} \cdot \frac{\sin nx \cdot \cos nx}{\cos^{n+1}x} + c$ e) $-\frac{1}{n} \cdot \frac{\cos(n-1)x}{\cos^{n}x} + c$ 22. Primitovele functiei $f(x) = \frac{1 + \sin x}{1 + \cos x} \cdot e^x$ sunt: (3p)a) $\frac{1 + \cos x}{1 + \sin x} \cdot e^x + c$ b) $\frac{\cos x}{1 + \cos x} \cdot e^x + c$ c) $\frac{\sin x}{(1 + \cos x)^2} \cdot e^x + c$ d) $\frac{\sin x}{1 + \cos x} \cdot e^x + c$ e) $tg x \cdot e^x + c$ 23. Valoarea integralei $\int_{-\infty}^{3} \frac{\cos x}{e^{3x} + 1} dx$ este: (3p)

16. Limita sirului $a_n = \frac{[x] + [2^2 x] + ... + [n^2 x]}{x^3}$ unde [] reprezinta partea

b) $\frac{1}{2}$ c) $\frac{\sqrt{3}}{4}$ d) $\frac{3}{4}$ e) $\frac{\sqrt{3}}{2}$ a) $\sqrt{3}$ **24.** Fie $n \in \mathbb{N}^+$ si f:[a, 1] $\to \mathbb{R}$ continua astfel incit $\int_{-\infty}^{\infty} f(x) dx = \sum_{k=1}^{n} \frac{C_k^n}{k+1}$. Atunci (\exists) c \in (0, 1) astfel ca: (4p) a) $f(c) = 1 + c^n$ b) $f(c) = (1 + c)^n$ c) f(c) = 0 d) $f(c) = 1 + c + c^2 + ... + c^n$ e) f(c)= $\frac{1}{1}$ 25. Ecuatia unui plan care trece prin punctul A(3, -2, -7) si este paralel cu planul 2x-3z+5=0 este: a) 2x-3z-27=0 b) 3x-2z-27=0 c) x+z-9=0 d) -2x+3z-6=0 e) x-2z-5=0Vlad Petru TEST 5 oficiu 10 puncte 1. Multimea soluțiilor inecuației x^2 -3x+2 \le 0 este: a) $(-\infty,2)\cup(3,\infty)$ b) $(-\infty,1]\cup[2,\infty)$ c) $(-\infty,3]$ d) [1,2] e) (1,2) **2.** Cel mai mare număr întreg care nu este mai mare decât $\sqrt{5} - \sqrt{95}$ este: a) - 8b) -6c)-4d) 2 e) 7. 3. Suma S = 1.2+2.3+3.4+...+99.100 este egală cu: c) 333.300 a) 364.000 b) 382.600 d) 296.400 e)424.600 4. Limita, $\lim_{x \to \infty} x \left[\left(1 + \frac{1}{x} \right)^x - e \right]$ este egală cu: b) -e c) $-\frac{e}{2}$ e) -∞ 5. Termenul cel mai mare al șirului $a_n = -\frac{5}{6}n^2 + 17n + 1$, $n \in \mathbb{N}^*$, are rangul: e) 10 6. Dacă $S = \sum_{n=0}^{\infty} \log_2 \left(1 - \frac{1}{2} \right)$, atunci: a) $S = \log_2 \frac{n-1}{2n}$ b) $S = \log_2 \frac{n+1}{2n}$ c) $S = \log_2 (n+1)$ d) $S = \log_2 \frac{2n}{n+1}$ e) $S = \log_2 n$ 7. Dacă funcția f: $\mathbf{R} \rightarrow \mathbf{R}$, f(x) = ax+b satisface relația

b) a=-1,b=-2 c) a)1,b=-2 d) a=-1,b=-1 e) a=1,b=-1

 $f(1-x) + f(x) + f^{-1}(1+x) = x$, atunci:

a) a=1.b=2

	8. Mulțimea so	luțiilor inecuaț	iei $\frac{\log_2(3-3^{x-1})}{x+1}$	$\frac{+1}{-}$ > 0 este:		
	a) (-2,-1) b) ($(-3,-1)$ c) $\left(-\frac{1}{2}\right)$	∞ , $\log_3 \frac{2}{3}$	d) $\left(-1, \log_3 \frac{2}{3}\right)$	$\left(\frac{2}{3}\right)$ e) $(-\infty,-1)$	
(qb)	9. Dacă limita	$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \frac{1}{x^2 + 1} \right) = 0$	$+\sqrt{x^2-1}-ax$	este finită, atun	ci:	
	a) $a = 2$	b) a = -2	c) $a = \sqrt{2}$	d) $a = \frac{1}{2}$	e) $a = \frac{\sqrt{2}}{2}$	
f(x)=	10. Mulțime $min\{x^2+1,x+m\}$	a valorilor este:	reale m p	entru care	funcția $f: \mathbf{R} \rightarrow \mathbf{R}$,	tei
	a) $\left(0,\frac{3}{4}\right)$		(/	d) $\left(\frac{3}{4},1\right)$	e) $\left(\frac{3}{4},\infty\right)$	
	11. Limita $l = \frac{1}{l}$	$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n+1} \text{ este}$	egală cu:			
	a) 0		c) e	d) $\frac{1}{e}$	e) ∞	
	12. Dacă mat	ricele A,B∈M	$_{2}(\mathbf{R}), A = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	x y comută, atunci	
suma	x+y este egală					
	a) –1	b) 1	c) -2		e) 0	
	13. Câte eleme	nte are mulțime	$ea A = \{x \in N C_1^x\}$	$C_5^{-2} > C_{15}^x$?		
	a) 1	b) 3	c) 5	d) 7	e) 9	
	14. Determinaț	=		x ₂ ale ecuației		
	mx^2 -(m+1)x-m		•	1		
	a) 1	2	c) $\frac{1}{3}$, Z	e) -1.	
	15. Termenul d	lezvoltării $\left(x\sqrt[4]{}\right)$	$\left(\frac{1}{x} - \frac{1}{x}\right)^8$ care îl	conține pe x ⁶ e	ste:	
	a) T ₃	b) T ₅	c) T ₆	d) T ₇	e) nici un termen	
	16. Dacă $\int_0^x (t^2)^{-x} dt$	$+t)_e^{-t}dt = 3 - \frac{7}{e}$	-, atunci:			sat
	a) x=1	b) $x = \frac{1}{2}$	c) $x = \frac{3}{2}$	d) x=2	e) $x = \frac{3}{4}$	

```
17. Dacă l = \lim_{n \to \infty} n \cdot \int_n^{n+1} \frac{dx}{\sqrt{x^2 + x}}, atunci:
                                                                                            e) l=\sqrt{2}
    a) l=1
                         b) l=0
                                            c) l=\infty
                                                               d) l=ln2
   18. Dacă l = \lim_{x \to 2} \frac{x^4 - 4}{x - 2}, atunci:
    a) l=1+\ln 2
                         b) l=2+\ln 2 c) l=4(1+\ln 2) d) l=0
    19. Dacă ecuația x^3+3x^2-x-m=0 are rădăcinile în progresie aritmetică, atunci:
    a) m=0
                         b) m=1
                                            c) m=2
                                                                d) m=3
                                                                                  e) m=4
    20. Şapte numere reale pozitive în progresie geometrică. Suma primilor 3
rmeni este 26, iar suma ultimilor 3 termeni este 2106. Rația progresiei este:
                                            c) 2 + \sqrt{2} d) 3 + \sqrt{2}
                         b) 3
                                                                                  e) 2 + \sqrt{3}
    a) 2
    21. Dacă A\left(-2,\frac{1}{2}\right) este punct de extrem local pentru funcția f:\mathbf{R} \rightarrow \mathbf{R},
   f(x) = \frac{x^2 + ax + b}{x^2 + 2}, atunci f(1) este:
                        b) 2 c) \frac{5}{3} d) -\frac{11}{3} e) \frac{8}{3}
    a) 1
    22. Dacă limita \lim_{x\to\infty} x^k \left(\sqrt{x+1} - \sqrt{x}\right) este finită și nenulă, atunci:
                b) k=2 c) k=\frac{1}{2} d) k=\frac{3}{2}
    a) k=1
                                                                                            e) k=0
   23. Integrala I = \int_{1/2}^{2} \frac{1 - x^3}{1 + x^5} dx este egală cu:
                        b) -1 c) \ln 2 d) 2\sqrt{3} - \ln 2
    a) 0
                                                                                            e) 1-2ln2
   24. Calculați I = \int_{1}^{2} \frac{f''(x)}{f'(x)} dx, unde f(x) = \frac{x^{2}}{2} + \ln x.
                        b) 1 c) \ln \frac{3}{4} d) \ln \frac{5}{4} e) 1 + \ln \frac{7}{4}
    a) 0
   25. Cu cât este egală suma \alpha+\beta, știind că matricea A = \begin{pmatrix} 1 & -2 \\ -3 & -4 \end{pmatrix} \in \mathbf{M}_2(\mathbf{R})
tisface A^2 + \alpha A + \beta I_2 = O_2?
```

a) -7

b) 5

c)-3

d) 1

e) o

Mortici Cristinel

TEST 6

1. Care este suma inverselor rădăcinilor polinomului $P(x) = X^3 - 3X^2 + X + 1$?

2. În care din următoarele inele 5 este insersul lui 7?

- b) Z₁₇

- e) Z₃₅

3. Dacă $S = \frac{1}{2\sqrt{1} + 1\sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \dots + \frac{1}{100\sqrt{99} + 99\sqrt{100}}$, atunci:

- b) S=10 c) S= $\frac{10}{9}$ d) S= $\frac{9}{10}$ e) S= $\frac{\sqrt{99}}{10}$

4. Rezolvați ecuația $\log_2 x + \log_{\sqrt{2}} x + \log_{\frac{1}{2}} x = 4$.

- b) x=2 c) $x=2+\sqrt{2}$ d) $x=1+\sqrt{2}$ e) x=4

5. Câte elemente are multimea $A = \left\{ x / x = \frac{n^2 + 2}{n + 2}, n = \overline{1,100} \right\}$?

a) 100 b) 101 c) 99 d) 96 e) 103 **6.** Restul împărțirii polinomului $P(x) = 1 + X + X^2 + ... + X^{100}$ la $Q(x) = X^2 - 1$ este:

- a) 51X-50

- b) 50X-51 c) 51X+50 d) -50X+51 e) 50X+51

7. Dacă $\lim_{n\to\infty} \left(\sqrt[3]{n^3 + 1} - an - b \right) = 0$ auntei a+b este egal cu:

- c) 1
- d) $1+\sqrt[3]{2}$ e) $\sqrt[3]{2}$

8. Dacă a,b \in R sunt soluții ale ecuației $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2$ și a-b=1, atunci $\frac{a}{b}$ este:

- a) $\frac{3}{2}$ b) 2 c) $\frac{5}{2}$ d) $\frac{5}{3}$ e) $\frac{1}{2}$

9. Dacă $l = \lim_{n \to \infty} \frac{3^n}{\left(3 + \frac{1}{n}\right)^{n+1}}$, atunci:

- a) l=3e b) $l=\frac{3}{e}$ c) $\frac{1}{3}e^{-\frac{1}{3}}$ d) $e^{\frac{1}{3}}$

 Determinați m∈R știind că rădăcinile x₁,x₂ ale ecuației x²-(2m-1)x+m = 0 satisfac $\frac{3}{4} + \frac{2}{4} = 5$

a) $m = 1 \pm \sqrt{7}$ b) $m = -1 \pm \sqrt{7}$ c) $m = -2 \pm \sqrt{5}$ d) $m = 2 \pm \sqrt{5}$ e) $m = 1 \pm \sqrt{5}$

11. Dacă f: $\mathbf{R} \rightarrow \mathbf{R}$, $f(x) = \begin{cases} xe^x, & x \le 1 \\ -x^2 + ax + b, x > 1 \end{cases}$ este derivabilă, atunci:

- a) a = 2e + 1, b = e 1c) a = e, b = -e + 1
- b) a = 2e + 2, b = -e 1d) a = e + 2, b = e
- e) a = -e, b = 2e+1

12. Dacă polinomul $P(x) = X^4 - 4X^3 + 4X^2 - m \in \mathbb{R}[x]$ admite rădăcina $x_1 = 1 - \sqrt{13}$,

- a) m = 36

- b) m = 64 c) m = 144 d) m = 169 e) m = 196

13. Dacă $I_n = \int_0^{\pi/2} \sin^n x dx$, $n \ge 2$, atunci $\frac{I_{n-2}}{I}$ este egal cu:

- a) $\frac{n+1}{n-1}$ b) $\frac{n}{n-1}$ c) $\frac{n-1}{n}$ d) $\frac{n-2}{n}$ e) $\frac{n+1}{n}$

14. Să se determine $m \in \mathbb{R}$ astfel ca $\int_1^3 \frac{x+m}{x} dx = 2 + \ln 3$

- a) m = 0
- c) m = -1 d) m = 2
- e) $m = 1 + \ln 2$

15. Calculati $\alpha = f(0+0) - f(0-0)$ pentru functia $f: \mathbf{R} \rightarrow \mathbf{R}$,

$$f(x) = \begin{cases} \frac{\ln(1+x)}{2x}, & x > 0\\ -1, & x = 0\\ \frac{e^{x^2} - 1}{x}, & x < 0 \end{cases}$$

- a) $\alpha = \frac{1}{2}$ b) $\alpha = 1$ c) $\alpha = -\frac{1}{2}$ d) $\alpha = -\frac{3}{2}$ e) $\alpha = \frac{1}{3}$

 Dacă F este primitivă a funcției f:R→R, f(x) = xe^x, atunci F(1) – F(0) este egal cu:

- b) -1
- c) 1+e d) 1
- e) 1-c

17. Funcția $f:(1,\infty)\to \mathbb{R}$, $f(x)=\frac{2x^2+1}{x-1}$ are asimptota oblică:

a) 1

- a) y = 2x+2 b) y = 2x+1 c) y = 2x-1 d) y = -2x+1 e) y = -2x-1
- 18. Suma cuburilor rădăcinilor polinomului $P(x) = X^3 2X^2 + X + 1$ este: b) -1c)-2 d) 2
- 19. Suma modulclor soluțiilor reale ale ecuației $\sqrt[3]{5+x} \sqrt[3]{x-3} = 2$ este:
 - b) 3
- c) 5
- d) 8
- e) 17

20. Calculați $I = \int_0^2 f(x) dx$, unde $f(x) = \lim_{n \to \infty} \frac{1 - x + x^2 - x^3 + ... + x^{2n}}{1 + x + x^2 + x^3}$, $x \in [0,2]$ a) $I = 2 \ln \frac{4}{3}$ b) $I = 2 \ln \frac{5}{4}$ c) $I = 3 \ln \frac{3}{2}$ d) $I = 4 \ln \frac{3}{5}$ e) $I = \ln \frac{3}{2}$ 21. Calculați $\lim_{n \to \infty} xe^{-x^2} \int e^{r^2} dt$ c) $\frac{1}{2}$ d) $\frac{3}{2}$ a) 0 Dacă suma a două rădăcini ale ecuației x³+5x-x-m = 0 este -6, atunci: b) m = -2c) m = 3 d) m = -1a) m = 5**23.** Calculați P = abc, știind că $\frac{1}{\log_{10} 3} + \frac{1}{\log_{10} 3} + \frac{1}{\log_{10} 3} = \frac{1}{\lg 3}$ b) P = 10 c) $P = \sqrt{3}$ d) P = 3 Într-o progresie aritmetică avem S₁₀ = 100, S₃₀ = 900. Calculați S₅₀. a) 5600 b) 6400 c) 2500 d) 2800 Care este multimea numerelor reale r > 0 pentru care H = {z∈C / |z|≤r} este parte stabilă a lui C în raport cu înmultirea numerelor complexe? $d)(0,\infty)$ e) (1, ∞) a) {1} b) (0,1) c) (0.11 Mortici Cristinel TEST 7 10 puncte din oficiu 1. Se dă $f: \mathbf{R} \rightarrow \mathbf{R}$; $f(x) = \max\{|x-x-1||; x\} \text{ cu } x \in \mathbf{R}$. Funcția f este continuă pe: b) **R**; **R**-{0} c) **R**-{1} d) **R**-{1/3} e) **R**- $\left\{0; \frac{1}{2}; \frac{1}{3}\right\}$ a) R-{0;1} 2. Se consideră matricea: $A = \begin{pmatrix} 0 & m & 1 \\ m & -2 & 0 \\ 1 & -1 & m \end{pmatrix}$ unde $m \in \mathbb{R}$. Matricea A este inversibilă dacă: a) $m \in \mathbb{R}$ b) $m \in \mathbb{R} - \{1\}$ c) $m \in \mathbb{R}^*$ d) $m \in \{0; 1\}$ e) $m \neq 0$ Se dă (G, ·) un grup, a∈G, e element neutru al grupului G și f:G→G prin f(x) = a⁻¹xa. Functia f(x) este: a) surjectivă
 b) injectivă
 c) bijectivă
 d) surjectivă dar nu injectivă e) injectivă dar nu surjectivă 4. Se consideră șirul $(I_n)_{n\geq 1}$, unde $I_n = \int_0^1 x^n \sqrt{1+x} dx \ \forall \ n\geq 1$. Atunci șirul $(I_n)_{n\geq 1}$

a) constant b) monoton c) mărginit d) monoton și mărginit e) nici un răspuns nu-i corect 5. Se dă f:C \rightarrow C; $f(x) = x^2 + 2x$, atunci ecuatia $(f \circ f \circ f)(x) = 0$ are: 3p b) 2 rădăcini reale c) 4 reale și 4 imaginare a) o rădăcină reală d) nici o rădăcină reală e) toate sunt reale **6.** Se dă șirul $(x_n)_{n\geq 1}$ de numere reale pozitive, încât $(n+1)\cdot x_{n+1} < nx_n$. Atunci şirul $(x_n)_{n>1}$ este: a) monoton b) mărginit c) convergent d) nu i se poate calcula limita; e) limita sirului este un număr din R* 7. Se dă f:[1;+ ∞) \to R, cu $f(x) = \frac{1}{(2x-1)(2x+1)}$. Atunci suma S = f(1)+f(2)+...+f(n) este: a) $\frac{1}{2} - \frac{1}{2n+1}$ b) $\frac{n}{2n+1}$ c) $\frac{n}{2(2n+1)}$ d) $\frac{n}{2n-1}$ e) $\frac{n}{2(2n-1)(2n+1)}$ **8.** Se dă $I = \int \sin^2 x dx$. Atunci valoarea integralei este: a) $\frac{n!}{(n-1)!}\frac{\pi}{2}$ b) $\frac{(2n-1)!}{(2n)!}\cdot\pi$ c) $\frac{(2n-1)(2n-3)....3\cdot 1}{2n(2n-2)....4\cdot 2}\cdot\frac{\pi}{2}$ d) $\frac{\pi}{(2n)!}$ e) $\frac{\pi \cdot 2^n}{n!}$ **9.** Se dă f:**R** \to **R**, f(x) = $x^5 + x^3 + 1$, atunci: 3p a) f(x) este inversabilă b) nu este inversabilă c) este inversabilă cu inversa f¹ derivabilă d) f¹ nu-i derivabilă e) f(x) inversabilă și f⁻¹ nu-i derivabilă 10. Se dă f:D \rightarrow R definită de $f(x) = \sqrt{x-2-2\sqrt{x-3}}$ D \subset R. Atunci domeniul maxim de definitie D este: a) $[3;+\infty)$ b) $[3;6\sqrt{2});$ c) $(3;+\infty);$ d) \mathbf{R}_{+} e) \mathbf{R}_{-} 11. Se dă $I = \int_{x}^{2} x \arccos \frac{1}{x} dx$. Atunci valoarea integrală este: a) $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$ b) $\frac{2\pi}{3} - \frac{\sqrt{2}}{3}$ c) $\frac{2\pi}{3}$ d) $\frac{\sqrt{3}}{2}$ e) $\frac{2\pi}{3} + \frac{\sqrt{3}}{2}$ **12.** Se dă $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$; $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$; $C = \begin{pmatrix} -4 & 2 \\ 3 & -3 \end{pmatrix}$ și $A \cdot X^2 + B \cdot X + C = O_2$, atunci:

este:

a) $X = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ b) $X = \begin{pmatrix} -2 & 1 \\ -1 & 1 \end{pmatrix}$ c) $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ d) $X = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$ e) $X = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ 13. Dacă A(x,y) este un punct în plan, r > 0 și $B(x_0;y_0)$ este alt punct în plan, atunci: $(x-x_0)^2 + (y-y_0)^2 = r^2$, reprezintă: b) ecuatia hiperbolei a) distanta dintre punctele A și B c) ecuația implicită a unui cerc C de centru (x_0,y_0) și rază Re) toate variantele sunt false d) ecuatia elipsei 14. Se dă șirul $(x_n)_{n\geq 1}$, $x_n = \sum_{k=1}^{p} \frac{1}{2k}$ k; $p \in \mathbb{N}$. Atunci șirul $(x_n)_{n\geq 1}$ este: a) divergent b) convergent c) mărginit d) monoton e) toți termenii în intervalul $0,\frac{3}{2}$ 15. Fie $f;g:\mathbf{R} \rightarrow \mathbf{R}$ două funcții cu proprietatea că există $n \in \mathbf{N}^*$, încât $\underbrace{f \circ f \circ f \circ ... \circ f}_{} = g$. Atunci, una din relațiile următoare este adevărată: a) $f \circ f = g \circ f$ b) $f \circ g = g$ c) $g \circ f = f$ d) $f \circ g = g \circ f$ e) $f \circ f \circ g = g \circ g \circ f$ **16.** Se dă sistemul $\begin{cases} y(x+y+z) = 12 \end{cases}$, atunci soluția sistemului este: 3p z(x+y+z)=18a) (1;2;3) b) (-1;-2;-3) c) $S=\{(-1;-2;-3),(1;2;3)\}$ d) (3;2;1) e) (-2;-1;3)17. Dacă $I = [\ln[x]dx, n \in \mathbb{N} \text{ atunci valoarea lui I este:}]$ d) $\ln n!$ e) $\frac{\ln n!}{2}$ a) $\frac{1}{2}$ b) $\frac{\pi}{2}$ c) $\ln 2 \cdot \sqrt{n}$ 18. Se consideră f: $\mathbf{R} \rightarrow \mathbf{R}$; $f(x) = 3^{-2x} - 2 \cdot 3^{-x}$. Atunci: f(x) are: a) un punct de inflexiune $x = log_3^2$ b) nu are puncte de inflexiune c) are 3 puncte de inflexiune d) este monotonă și nu are puncte de inflexiune;

e) are 2 puncte de inflexiune: $x_1 = log_2 3$ si $x_2 = log_3 2$. d) $m \in (-2; +\infty)$ e) $m \in (1; +\infty) - \{2\}$

19. Se dă f:R- $\{-1\}\rightarrow \mathbf{R}$, dată de f(x) = $\frac{x^2 - m}{x + 1} \cdot e^x$; m – parametru real. Valoarea lui "m" pentru care funcția f are 3 puncte de extrem este:

b) $m \in (2; +\infty)$ c) m = 1a) $m \in (1;2)$

20. Fie f:R-{1} \rightarrow R, dată de f(x) = $\frac{x^2 + ax + b}{x^4}$ Dacă funcția admite un extrem, egal cu 1 în punctul de abscisă 0, atunci a și b sunt: a) a=1, b=1 b) a=-1; b=1 c) a=1, b=-1 d) a=-1, b=-1 e) a=2, b=0 $\sin A \sin B \sin C$ 21. Dacă A,B,C sunt unghiurile unui triunghi şi $|\sin B| \sin C \sin A = 0$, $\sin C \sin A \sin B$ atunci ABC este: a) dreptunghic b) isoscel c) echilaterald) dreptunghic isoscel c) obtuzunghic 22. Se dā f:R→R prin formula f(x) = x-cosx. Atunci functia f este: a) impară b) pară c) surjectivă d) injectivă e) bijectivă Se dă ecuația: x³+mx-10 = 0, m∈R și x₁;x₂;x₃ rădăcinile ecuației. Dacă între rădăcini există relația $x_1+x_2 = x_3$ (m²-10m+9) atunci m este: b) m=10e) m{1;9;10} a) m=1 c) m=9 d) m{1;9} [-x+2y+3z=0]24. Se consideră sistemul: $\begin{cases} x-y-z=0 \\ \end{cases}$ atunci determinantul lui este: 3p 2x - y - 4z = 0b) 2 c) 4 d)-4

 În sistemul de axe de coordonate XOY se consideră punctele A_n(-n;-n+1). ∀ n∈N. Atunci lungimea segmentului A_nA_{n+1} este:

a) \sqrt{n}

b) $\sqrt{2}$

c) $\sqrt{2n}$

Constantin Zălog

TEST 8

oficiu 10 puncte

1. Dacă ABC este un triunghi și M mijlocul segmentului [BC] atunci vectorul AM este egal cu:

a)
$$\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
 b) $\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$ c) $\frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$

$$0) \frac{1}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}$$

c)
$$\frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{A}$$

d)
$$\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$
 e) $\overrightarrow{AB} + \overrightarrow{AC}$

a) I b)
$$\frac{1}{2}$$
 c) $\frac{\sqrt{2}}{2}$ d) $\frac{1}{4}$ e) $\frac{3}{2}$

3. Ecuația
$$\sin x + \cos x - x = \sqrt{3}$$
 are în R:

4p

```
c) nici o soluție

 b) o infinitate de soluții

       a) două soluții
                                                                                                                               13. Fie A \in M<sub>2</sub>(R) A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} și (a<sub>n</sub>), (b<sub>n</sub>), (c<sub>n</sub>), (d<sub>n</sub>) șiruri de numere este
                                       e) o unică soluție.
       d) patru soluții
                                                                                                            4p
      4. Un ΔABC este echilateral dacă și numai dacă:
      a) \sin A + \sin B + \sin C < \frac{3\sqrt{3}}{2} b) \cos A + \cos B + \cos C = \frac{3}{2}
                                                                                                                        convergente astfel ca \forall n \in \mathbb{N}^* A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, atunci ad-be aparține mulțimii: 3p
                                                                                                                                                     b) (1,\infty) c) (-\infty,-1] d) (2,3)
      c) \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} < \frac{1}{R} d) AB^2 = AC^2 + BC^2 e) m(\hat{A}) + m(\hat{B}) + m(\hat{C}) = \pi
                                                                                                                               14. Dacă A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} atunci mulțimea \{A^n, n \in \mathbb{N}^*\} are:

 Prima zecimală a numărului √n² + n unde n∈N* este:

                                                                                                                                                                                                                                 3p
                                                                                         e) depinde de n.
       6. Ecuația [x] + \left[x + \frac{1}{2}\right] + \left[x + \frac{2}{3}\right] = [3x] are în R:
                                                                                                                                a) 2 elemente
                                                                                                                                                               b) 6 elemente
                                                                                                                                                                                           c) o infinitate de elemente
                                                                                                                                d) 12 elemente
                                                                                                                                                               e) 3 elemente
                                                                     c) patru soluții
                                       b) trei soluții
                                                                                                                                 15. Dacă A,B \in M_2(C) și det(A) = i det(B) = 0 atunci det(A+b)+det(A-B) este
       a) două soluții
                                       e) o infinitate de soluții
       d) o unică soluție
                                                                                                                         egal cu:
       7. Fie (a_n)_{n \geq 1} un şir de numere reale astfel încât a_1 + a_2 + ... + a_n = n^2 + n, \ \forall n \geq 1
                                                                                                                                a) 2
atunci sirul (a<sub>n</sub>)<sub>n>1</sub> este:
       a) progresie aritmetică b) progresie geometrică
                                                                               c) märginit
                                                                                                                                16. Multimea valorilor lui m pentru care matricea A = \begin{bmatrix} 0 & x+m & 3 \end{bmatrix}
                                        e) periodic
       d) convergent
       8. Fie n \in \mathbb{N}, n \ge 2 și a = (\lg 2)^n + (\lg 12)^n, b = (\lg 4)^n + (\lg 6)^n, atunci:
                                                                                                             4p
                                                                                         e)a>0, b<0
                                                                     d) a < b
                             b) 2a=b
                                                 c) a>b
        a) a = b
       9. Ecuația planului determinat de punctele A(1,0,0) B(0,1,0) C(0,0,1) este: 4p
                                                                                                                         inversibilă x∈R este:
                                                                                                                                                                                                                                 3p
                                                                               c) 2x+y-z-1=0
                                       b) x+y+z-1 = 0
                                                                                                                                a) R
                                                                                                                                                     b) [0,\infty)
                                                                                                                                                                                           d)Ø
                                                                                                                                                                                                              e) (-\infty,0]
        a) x-y+z-1 = 0
                                                                                                                                17. Dacă l = \lim_{n \to \infty} n^3 \left( \frac{3^{n+1} + 4^{n+1} + 5^{n+1}}{3^n + 4^n + 5^n} \right) atunci:
                                        e) x \cdot y - z = 0
        d) x+y+z=0

    Valoarea lui a∈R pentru care distanța de la punctul A(1,1,1) la planul de

                                                                                                                                                                                                                                 3p
ecuație x+y+z+a^2=0 este egală cu \sqrt{3} se află în mulțimea:
                                                                                                                                                                        c) I=5
                                                                                                                                                                                                              e) /=+∞
                                                                                                                                a) /=1
                                                                                                                                                                                           d) /=-1
                                                                                                                                                     b) /=0
                          b) \{-\sqrt{3}, 0, \sqrt{3}\} c) \{2,4\}
                                                                               d) {-1,1}
                                                                                                    e){1,4}
        a) {1,2,3}
                                                                                                                                18. Fie f: \mathbf{R} \to \mathbf{R} f(n) = 2^x + 6^x - 3^x - 4^x si a = f^{(n)}(0), unde n \in \mathbb{N}, n > 2, atunci:
                                                                                                                                                                                                                                 3p
        11. Multimea G = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{Z} \text{ si } a^2 - 2b^2 = 1 \right\} are:
                                                                                                                                a) a \ge 0 b) a = 0 c) a > 0
                                                                                                                                                                        d)semnul lui n depinde de paritatea lui n e) a<-1
                                                                                                              3p
                                                                                                                                19. Pentru functia f: \mathbf{R} \rightarrow \mathbf{R} f(\mathbf{x}) = \operatorname{arc sinx punctul} \mathbf{x}_0 = -1 este:
                                                                                                                                a) punct de inflexiune b) punct de întoarcere
                                                                                                                                                                                                    c) punct de maxim local
                                                                      c) unul singur pe l2
                                        b) trei elemente
        a) două elemente
                                                                                                                                d) punct unghiular
                                                                                                                                                            e) punct de discontinuitate
                                        e) o infinitate de elemente
        d) patru elemente
                                                                                                                                20. Funcția f(0,)\setminus\{1\}-R f(n) = \frac{\ln x}{x-1} are:
                                                                                                                                                                                                                                 3p
        12. Dacă A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} atunci suma elementelor de pe diagonala secundară a
                                                                                                                                                                                                         e) două asimptote

 a) o singură asimptotă

                                                                                                                                b) au asimptote din care dr.x = 1 este asimptotă verticală d) nu are asimptote
 matricei A2000 este:
                                                                                                                                e) patru asimptote
                                                                                                    e) 2
                                                            c) 10003
                                                                                d) 2003
                               b) 1000
         a) 1
                                                                                                                                21. Partea întreagă a numărului \int_2^3 \frac{\ln x}{x-1} dx este:
                                                                                                                                                                                                                                 3p
                                                                                                                                                                        c) 0
                                                                                                                                                                                                             e) 4
                                                                                                                                                     b) 2
                                                                                                                                                                                           d) 11
                                                                                                                                a) -1
```

22. Num			local ale	funcției	$f: \mathbf{R} \to \mathbf{R}$
$f(x) = \int_0^x e^{-t^2} (t^3)$	-3t+2)dt este	12			4p
a) 1	b) 2	c) 3	d) 4	e) 0.	
23. Dacă n-	$\lim_{n \to \infty} n \cdot \int_0^1 x^n \cdot arc tg$	gxdx = l, atunci:			4p
a) <i>l</i> =1	b) <i>l</i> =-1	c) $\frac{\pi}{2}$	d) $\frac{\pi}{3}$	e) $\frac{\pi}{4}$	
	e ecuației x ³ -x=				4p
a) $x \in \{0,1\}$	b) $x \in \{0,1,2,3,4\}$	$\{\hat{s},\hat{s}\}\ c)\ x \in \{\hat{1},\hat{3},\hat{s}\}$	d) $x \in \{\hat{2}, \hat{4}\}$	e) x ∈ {0	,5}
25. Număru	ıl rădăcinilor po	olinomului f∈ Z ₀ [x	$[f = x^3 + \hat{5}x e]$	ste:	4p
a) 1	b) 2	c) 3	d) 6	e) 5.	(9) (m. com (m. com)
			D	an-Ştefan i	Marinescu
		$-M_2-$			
		TEST 1			
		TEST 1		oficiu	10 puncte
1. In dezvol	Itarea $(x^2 + \sqrt{x})$		lea este 15x ⁶ .	6.8	200
	Itarea $(x^2 + \sqrt{x})$	TEST 1)* termenul al 5 – c) 7	lea este 15x ⁶ .	6.8	200
a) 5	b) 6)" termenul al 5 –	d) 9	Atunci n es	ste: (3p)
a) 5 2. Fie legea	b) 6)" termenul al 5 – c) 7 asociativa defini	d) 9 ta pe R , prin	Atunci n es e) 10. x*y = xy-2	ste: $(3p)$ 2x-2y = a.
a) 5 2. Fie legea Atunci a este a) 0	b) 6 a de compozitie b) 1)" termenul al 5 – c) 7 asociativa defini c) -1	d) 9 ta pe R , prin d) 6	Atunci n es	ste: (3p)
a) 5 2. Fie legea Atunci a este a) 0	b) 6 a de compozitie b) 1)" termenul al 5 – c) 7 asociativa defini	d) 9 ta pe R , prin d) 6	Atunci n es e) 10. x*y = xy-2	ste: $(3p)$ 2x-2y = a.
a) 5 2. Fie legea Atunci a este a) 0 3. Daca A	b) 6 a de compozitie b) 1 $= \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix} \text{ si B}$)" termenul al 5 – c) 7 asociativa defini c) -1	d) 9 ta pe R , prin d) 6 nci B este:	Atunci n ee e) 10. x*y = xy-2 e) 4.	2x-2y = a. (3p)
a) 5 2. Fie legea Atunci a este a) 0 3. Daca A = a) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	b) 6 a de compozitie b) 1 $= \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix} \text{ si B}$ b) $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	o) termenul al 5 – c) 7 asociativa defini c) -1 = A ² -3A-10I ₂ atur	d) 9 ta pe R , prin d) 6 nci B este: d) $\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$	Atunci n ee e) 10. x*y = xy-2 e) 4.	ste: (3p) 2x-2y = a. (3p) (3p) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
a) 5 2. Fie legea Atunci a este a) 0 3. Daca A = a) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 4. Daca a_n	b) 6 a de compozitie b) 1 = $\begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}$ si B b) $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ = $\frac{n}{(n+1)!}$, $n \in$	c) n termenul al 5 – c) 7 e asociativa defini c) -1 = A^{2} -3 A -10 I_{2} atur	d) 9 ta pe R , prin d) 6 nci B este: d) $\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$	Atunci n ee e) 10. x*y = xy-2 e) 4. e) (cu:	ste: (3p) 2x-2y = a. (3p) (3p) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (4p)
a) 5 2. Fie legea Atunci a este a) 0 3. Daca A = a) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 4. Daca a_n a) $1 - \frac{1}{(n+1)}$	b) 6 a de compozitie $= \begin{pmatrix} b & 1 \\ -1 & 2 \\ 3 & 4 \end{pmatrix} \text{ si B}$ $= \begin{pmatrix} b & -1 & 0 \\ 0 & 1 \\ \hline -1 & 0 \end{pmatrix}$ $= \frac{n}{(n+1)!}, n \in$ $= \frac{n}{(n+1)!}, n \in$	o) ^a termenul al 5 – c) 7 c asociativa defini c) -1 = A^2 -3 A -10 I_2 atur o) c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ IN atunci a_1 + a_2 +.	d) 9 ta pe R , prin d) 6 nci B este: d) $\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ +a _n este egal d) $\frac{1}{(n+1)!}$	Atunci n ee e) 10. $x*y = xy-2$ e) 4. $e) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4$	ste: (3p) 2x-2y = a. (3p) (3p) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (4p)

$-M_1-$

TEST 1

1c, 2b, 3b, 4c, 5e, 6a, 7a, 8b, 9d, 10b, 11b, 12c, 13b, 14e, 15a, 16b, 17b, 18d, 19c, 20a, 21c, 22b, 23a, 24b, 25b.

TEST 2

1c, 2a, 3b, 4c, 5d, 6c, 7b, 8b, 9d, 10a, 11c, 12b, 13a, 14d, 15b, 16c, 17d, 18c, 19d, 20c, 21c, 22b, 23c, 24c, 25b.

TEST 3

1c, 2a, 3a, 4b, 5c, 6a, 7e, 8c, 9b, 10b, 11e, 12a, 13b, 14b, 15e, 16c, 17a, 18a, 19a, 20a, 21a, 22b, 23a, 24b, 25d

TEST 4

1b, 2d, 3a, 4e, 5a, 6a, 7b, 8c, 9b, 10c, 11a, 12d, 13e, 14e, 15b, 16d, 17c, 18b, 19a, 20b, 21c, 22d, 23e, 24b, 25a

TEST 5

1.d, 2. a); 3. c); 4. c); 5. e); 6. b); 7. c); 8. d); 9. a); 10. b); 11. d); 12. a); 13. d); 14. c); 15. e); 16. a); 17. a); 18. e); 19. d); 20. b); 21. b); 22. c); 23. a); 24. d); 25. a).

TEST 6

1. a); 2. b); 3. d); 4. e); 5. a); 6. e); 7. c); 8. b); 9. c); 10. a); 11. b); 12. c); 13. b); 14. b); 15. a); 16. d); 17. a); 18. b); 19. d); 20. a); 21. c); 22. a); 23. b); 24. c); 25. c).

TEST 7

1. b; 2. b; 3. c; 4. d; 5. b; 6. c; 7. b; 8. c; 9. c; 10. a; 11. a; 12. a; 13. c; 14. b; 15. d; 16. c; 17. d; 18. a; 19. e; 20.c; 21. c; 22. d; 23. d; 24. c; 25. b.

TEST 8

1. a); 2. c); 3. c); 4. b); 5. d); 6. e); 7. a); 8. c); 9. b); 10. b); 11. e); 12. d); 13. a); 14. d); 15. b); 16. d); 17. b); 18. c); 19. d); 20. c); 21. c); 22. a); 23. e); 24. b); 25. d).

- M₂ -

TEST 1

1b, 2d, 3e, 4a, 5b, 6d, 7d, 8d, 9a, 10e, 11b, 12e, 13d, 14c, 15b, 16e, 17c, 18d, 19e, 20d, 21e, 22d, 23e, 24d, 25b.