AULA 20

Prof. Mathias

Classes de problemas P e NP

Análise de Algoritmos

- Aula anterior
- Introdução
- Exemplo
- Exercícios
- Próxima aula

Aula Anterior

Programação dinâmica

- Aula anterior
- Introdução

- Problemas de decisão e otimização
 - Otimização:
 - Dentre as soluções que satisfazem uma certa propriedade, qual a <u>melhor</u> em relação a uma dada função.
 - Um problema de otimização é aquele onde se procura determinar os valores extremos de uma função, isto é, o maior ou o menor valor que uma função pode assumir em um dado intervalo.
 - Exemplo:
 - Determine um caminho de custo mínimo
 - Determine um circuito hamiltoniano de caminho mínimo
 - Determine um máximo de valor para um mochila

- Problemas de decisão e otimização
 - Decisão:
 - Existe uma solução que satisfaz um certa propriedade? Resposta: <u>Sim ou Não</u>.
 - Um problema de decisão é uma questão sobre um sistema formal com uma resposta do tipo sim-ou-não.
 - Exemplo:
 - Dado um grafo, pode-se afirmar que é hamiltoniano?
 - Dado um valor de K, existe o máximo de valor para uma mochila < K?
 - Dado um valor de K, existe um caminho mínimo menor que k?

- As classes P e NP
 - O estudo da teoria da complexidade de algoritmos concentra-se nos problemas de decisão.
 - Conceito da classe P:
 - A classe P representa o conjunto de <u>problemas de</u> decisão que podem ser resolvidos por um algoritmo polinomial.
 - Esse grafo é euleriano?

As classes P e NP

 O estudo da teoria da complexidade de algoritmos concentra-se nos problemas de decisão.

Conceito da classe NP:

- A classe NP representa o conjunto de problemas de decisão que dada uma instsancia do problema para a qual a resposta é "sim", existe um certificado validando este fato e que pode ser verificado em tempo polinomial.
- Se refere ao restante de problemas conhecidos ou não que ainda não se sabe a solução, mas pode-se verificar em tempo polinomial. Certificado se refere a solução (função, algoritmo)

- Vamos praticar::::::
 - Dado um grafo com instancia:
 - é bipartido?
 - tem aresta de corte?
 - é hamiltoniano?
 - é conexo?
 - tem uma clique de tamanho ≥ k?
 - existe um caminho mínimo < k, entre o vértice u e v.

- As classes P e NP
 - O estudo da teoria da complexidade de algoritmos concentra-se nos problemas de decisão.
 - Conceito da classe P e NP:
 - A classe P está contido em NP.

- As classes P e NP
 - Questão da fundamental da ciência da computação:
 - P = NP?
 - Em geral acredita-se que a questão é falsa.
 - Acredita-se que NP >> P, pois para muitos problemas em NP, não existem algoritmos polinomiais conhecidos, nem um limite inferior nãopolinomial provado.

- As classes P e NP
 - Como mostrar que a questão é falsa?
 - Encontrar um problema em NP e mostrar que nenhum algoritmo polinomial pode resolve-lo.
 - Como mostrar que a questão é verdadeira?
 - Mostra que para todo problema em NP existe um algoritmo polinomial que o resolve.

• Redução entre problemas

- Uma forma comum de resolver um dado problema A é transforma-lo em um outro problema B cuja solução é conhecida e converter a solução de B para outra solução em de A.
- Esse procedimento é chamada de redução.

- Definição Formal: Redução entre problemas
 - Dados dois problemas A e B. Uma redução polinomial de A para B (notação A ≤ B) é um algoritmo polinomial que resolve A utilizando B, onde cada chamada de B é contado como um passo de computação.
 - Exemplo:
 - K-ésimo mínimo pode ser reduzido ao problema de ordenação.

- Definição: Redução entre problemas
 - Observação:
 - Se $B \in P$, então $A \in P$
 - Se B \leq C, então A \leq C
 - A \leq B significa que B é pelo menos tão difícil quanto A.

- Aula anterior
- Introdução
- Exemplo

Exemplo

- Problema 1:
 - Seja A = a1, a2, ..., an e B = b1, b2, ..., bn duas cadeias de caracteres. Determinar se B é um deslocamento cíclico de A.
 - Obs.: B é um deslocamento ciclico de $A \Leftrightarrow B$ é subcadeia de AA. Portanto, este problema pode ser reduzido ao KMP.
 - Problema 1

 KMP.

- Aula anterior
- Introdução
- Exemplo
- Exercícios

Exercícios

- Dois grafos G e H são isomorfos?
- Cite 2 problemas em P.
- Cite 2 problemas em NP.

Consulte: The Design and Analysis of Computer Algorithms

- Aula anterior
- Introdução
- Exemplo
- Exercícios
- Próxima aula

Próxima aula

NP-Completo

AULA 20

Prof. Mathias