Around GCD

Lesson by Senya, group L4

The problems about GCD or the idea of considering GCD are quite popular. One of the most important observations about GCD is that (a, b) = (a - b, b) (recall that (a, b) stands for "GCD of a and b), the consequences of this fact (e.g boud onf GCD) also play a big role.

Problem 1. There are two numbers: one consists of n ones in its decimal representation, another one consists of m ones in its decimal representation. What is their gcd?

Problem 2. i) Prove that for any positive integers m and n there are integer numbers a, b such that am + bn = (m, n). (This is actually a well-known theorem)

ii) Using the fact above, answer the following question: "Given integers a, b, c when does equation ax + by = c have integer solutions? When it does have solutions, how do they look like?

Problem 3. With the help of the problem above, do the following problems:

- i) Solve in integers: 2x + 3y = 11. Note: there are indeed infinitely many solutions to this equation, so what you need to do is to describe them nicely;
- ii) Solve in integers: 2x + 3y + 5z = 11;

Problem 4. Numbers m and n satisfy the equation lcm(m,n) + gcd(m,n) = m+n. Prove that one of the numbers m or n is divisible by another.

Problem 5. Show that for any n the number $2^{2^n} - 1$ has at least n distinct positive divisors.

Problem 6. Find all positive integers m, n, k such that $m + n = (m, n)^2, m + k = (m, k)^2, n + k = (n, k)^2$.

Problem 7. There is a sequence of integer numbers a_i such that $(a_i, a_j) = (i, j)$. Does it mean that we must have $a_i = i$ for all i?

Problem 8. Positive integers x and y are such that $2x^2 - 1 = y^{15}$. Prove that if x > 1 then x is divisible by 5.

Problem 9. Solve in integers

$$(x+2)^4 - x^4 = y^3$$

Problem 10. There are n distinct positive integers $a_1, ..., a_n$. It turned out that for any $1 \le i, j \le n$ the following holds: $(|a_i - a_j|, |i - j|) < 2013$. What is the largest possible value of n?