

® BUNDESREPUBLIK DEUTSCHLAND

OffenlegungsschriftDE 199 55 133 A 1

⑤ Int. Cl.⁷: **B 60 K 15/03**

DEUTSCHES
PATENT- UND
MARKENAMT

- (2) Aktenzeichen: 199 55 133.2 (2) Anmeldetag: 17. 11. 1999
- (3) Offenlegungstag: 31. 5. 2001

② Erfinder:

Vetter, Siegfried, 91757 Treuchtlingen, DE; Büttner, Reiner, 91798 Höttingen, DE

56 Entgegenhaltungen:

DE 39 15 185 C1 DE 197 19 607 A1

(7) Anmelder:

Alfmeier Präzision Aktiengesellschaft Baugruppen und Systemlösungen, 91757 Treuchtlingen, DE

(14) Vertreter:

Mörtel & Höfner, 90402 Nürnberg

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (9) Kraftstofftank für Kraftfahrzeuge
- Die Erfindung betrifft einen Kraftstofftank für Kraftfahrzeuge mit einer ersten und einer zweiten Tankkammer (11, 12), die über eine Wölbung (13) des Tankbodens (14) voneinander abgegrenzt sind und in denen jeweils eine erste bzw. zweite Saugstrahlpumpe (8, 9) in Bodennähe angeordnet ist, einem in der ersten Tankkammer (11) vorhandenen, von beiden Saugstrahlpumpen mit Kraftstoff versorgten Stautopf (2), wobei die zweite Saugstrahlpumpe (9) über eine Förderleitung (6) in den Stautopf (2) fördert sowie mit einer die beiden Saugstrahlpumpen (8, 9) eingangsseitig miteinander verbindenden und vom Kraftstoffvor- oder -rücklauf gespeisten Treibleitung (7). Damit der in einer Saugstrahlpumpe ein Rückschlagventil angeordnet.

Beschreibung

Die Erfindung betrifft einen Kraftstofftank für Kraftfahrzeuge. Solche Tanks sind oft sattelförmig ausgebildet, d. h. eine in das Tankinnere gerichtete Wölbung des Tankbodens grenzt zwei Tankkammern voneinander ab. Über den sich oberhalb der Bodenvorwölbung befindlichen Tankraum sind die beiden Tankkammern miteinander verbunden. In einer ersten Tankkammer ist ein sogenannter Stautopf vorhanden. Eine gewöhnlich innerhalb des Stautopfes angeordnete 10 Kraftstoffpumpe fördert daraus Kraftstoff zum Fahrzeugmotor. Weiterhin ist in der ersten Tankkammer in Bodennähe eine erste Saugstrahlpumpe montiert, die Kraftstoff aus der Tankkammer in den Stautopf fördert. Wenn sich der Kraftstoffspiegel so weit abgesenkt hat, dass die beiden 15 Tankkammern durch die Bodenvorwölbung voneinander getrennt sind, muss dafür Sorge getragen werden, dass Kraftstoff auch aus der zweiten Tankkammer entnommen werden kann. In der Regel wird dies durch eine darin angeordnete zweite Saugstrahlpumpe erreicht, die über eine vom 20 Vor- oder Rücklauf gespeiste Treibleitung mit der ersten Saugstrahlpumpe und über eine Förderleitung mit dem Stautopf verbunden ist. Während des Fahrzeugbetriebes wird die erste Tankkammer bzw. der sich darin befindliche Stautopf mit Kraftstoff angefüllt, während die zweite Tankkammer 25 entleert wird. Es bildet sich somit in den Tankkammern ein unterschiedliches Kraftstoffniveau aus. Bei außer Betrieb befindlichem Fahrzeug gleicht sich der Niveauunterschied über die Treib- und gegebenenfalls über die Förderleitung wieder aus. Dieser Niveauausgleich der Tankkammern ist an 30 und für sich problemlos. Bei manchen Fahrzeugen ist jedoch ein elektronisches Leckage-Überwachungssystem vorhanden. Dieses System wertet den sich bei abgestelltem Fahrzeug in der ersten Tankkammer absenkenden Kraftstoffspiegel als Leck im Kraftstofftank. Der Fahrzeugbenutzer findet 35 bei Inbetriebnahme des Fahrzeuges eine entsprechende Warnanzeige vor, die zu einem - unnötigen - Werkstattbesuch auffordert.

Aufgabe der Erfindung ist es daher, einen Kraftstofftank vorzuschlagen, bei dem eine solche Fehlmeldung verhindert 40 ist.

Diese Aufgabe wird bei einem Kraftstofftank der eingangs genannten Art durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Danach ist in der Treibleitung oder im einer Saugstrahlpumpe ein Rückschlagventil angeordnet, 4s das bei außer Betrieb gesetzter Entnahmevorrichtung verhindert, dass Kraftstoff aus der ersten Tankkammer über die wie ein Saugheber wirkende Treibleitung in die zweite Tankkammer zurück fließt. Somit bleibt sowohl der Kraftstoffspiegel in der ersten als auch in der zweiten Tankkammer bei abgestelltem Kraftfahrzeug aufrecht erhalten. Einer die Leckage des Tanksystems überwachenden Elektronik wird somit kein Leck vorgegaukelt.

Vorzugsweise ist das Rückschlagventil in einer Saugstrahlpumpe angeordnet. Dort kann es auf konstruktiv und 55 montagetechnisch einfache Weise untergebracht werden. Die die beiden Saugstrahlpumpen miteinander verbindende Treibleitung kann somit auf übliche Weise ausgestaltet sein. Dadurch, dass das Schließelement des Rückschlagventils aus einem Elastomer besteht, ist die Geräuschbildung des Rückschlagventiles stark reduziert. Ein für die vorliegende Aufgabe besonders geeignetes Rückschlagventil weist eine Membrane auf, die mit ihrem Randbereich mit einem Ventil nach Art eines Klappenventils zusammenwirkt.

Um ein Zurückflicßen des Kraftstoffes aus dem Stautopf 65 bzw. aus der ersten Tankkammer über die Förderleitung zu verhindern, gibt es verschiedene Möglichkeiten. So kann beispielsweise das der ersten Tankkammer zugeordnete

Ende der Förderleitung so weit oberhalb des Stautopfes angeordnet werden, dass keine direkte Verbindung zwischen dessen Flüssigkeitsreservoir und der Förderleitung besteht. Nachteilig dabei ist jedoch, dass beispielsweise bei scharfen Kurvenfahrten der aus der Förderleitung austretende Kraftstoff nicht in den Stautopf, sondern daneben gefördert wird. Bei einer bevorzugten Ausgestaltung ist deshalb eine Lösung vorgesehen, bei der das Ende der Förderleitung in den Stautopf hineinragen kann. Hier weist nämlich die Förderleitung eine Belüftungsbohrung auf, die vorzugsweise oberhalb des maximalen Flüssigkeitsniveaus der ersten Tankkammer bzw. des Stautopfes angeordnet ist. Die Belüftungsöffnung ist dabei so bemessen, dass der aus ihr austretende Kraftstoff praktisch nicht ins Gewicht fällt. Bei abgestelltem Fahrzeug bewirkt die Belüftungsbohrung, dass die Kraftstoffsäule in der Förderleitung abreißt, so dass eine Saugheberwirkung verhindert ist.

Die Erfindung wird nun anhand der in den beigefügten Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:

Fig. 1 eine schematische Darstellung eines Kraftstofftanks mit vom Kraftstoffvorlauf angetriebenen Saugstrahlpumpen,

Fig. 2 eine schematische Darstellung eines Kraftstofftanks mit vom Kraftstoffrücklauf angetriebenen Saugstrahlpumpen, und

Fig. 3 einen Querschnitt durch eine an einem Stautopf montierte Saugstrahlpumpe mit integriertem Rückschlagventil.

Fig. 1 zeigt in schematischer Darstellung einen Kraftstofftank 1 mit einer Entnahmevorrichtung für einen Benzinmotor. Die Entnahmevorrichtung umfasst einen Stautopf 2, eine Kraftstoffpumpe 3, eine Vorlausteitung 4, eine Rücklausleitung 5, eine Förderleitung 6, eine Treibleitung 7, eine erste Saugstrahlpumpe 8 und eine zweite Saugstrahlpumpe 9. Der Kraftstofftank 1 ist sattelförmig ausgebildet und weist eine erste Tankkammer 11 und eine zweite Tankkammer 12 auf, die durch eine in das Tankinnere vorstehende Wölbung 13 des Tankbodens 14 voneinander getrennt sind. Die beiden Tankkammern 11 und 12 sind über den sich oberhalb der Wölbung 13 besindlichen Verbindungsbereich 15 des Tankinnenraums miteinander verbunden.

Der Stautopf 2 ist am Boden der ersten Tankkammer 11 angeordnet. In ihm ist die Kraftstoffpumpe 3 positioniert, die über die Vorlaufleitung 4 Kraftstoff, nämlich Benzin, zu einem Motor fördert. Am Boden der ersten Tankkammer 11 ist weiterhin die Saugstrahlpumpe 8 angeordnet, die in den unteren Bereich des Stautopfes 2 fördert. Die Rücklaufleitung 5 ist in die zweite Tankkammer hineingeführt und mündet dort - etwa in Bodennähe - in die die beiden Saugstrahlpumpen 8, 9 ausgangsseitig miteinander verbindende Treibleitung 7. An den Ausgang der Saugstrahlpumpe 9 ist die Förderleitung 6 angeschlossen. Die Förderleitung 6 erstreckt sich bis in die erste Tankkammer 11 und mündet dort in den Stautopf 2. Der Ausgang der ersten Saugstrahlpumpe 8 wird durch eine in Bodennähe angeordnete Öffnung im Stautopf 2 gebildet. In der ersten Saugstrahlpumpe 8 ist ein Rückschlagventil 17 integriert. In der Förderleitung 6 ist eine Belüftungsöffnung 18 angeordnet. Die Belüftungsöffnung 18 befindet sich dabei an einer Position, die höher liegt als das durch die Höhe der Tankbodenwölbung vorgegebene Kraftstoffniveau 19 in den Tankkammern 11, 12.

Im Fahrzeugbetrieb fördert die Kraftstoffpumpe 3 Benzin über die Vorlaufleitung 4 zum Motor. Überschüssiges Benzin läuft über die Rücklaufleitung 5 zurück. Die Rücklaufleitung mündet nach Art einer T-Verzweigung in die Treibleitung 7. Es wird somit über das eine Ende der Rücklaufleitung 7 Benzin zur Saugstrahlpumpe 9 und über den sich

über die Wölbung 13 erstreckenden Abschnitt der Treibleitung 7 Benzin zur Saugstrahlpumpe 8 gefördert. Die von der Saugstrahlpumpe 9 aus der zweiten Tankkammer abgepumpte Benzinmenge wird zusammen mit der Rücklaufmenge über die Förderleitung 6 zum Stautopf geleitet. Während bei gefülltem Kraftstofftank 1 über den Verbindungsbereich 15 ein Ausgleich zwischen den beiden Flüssigkeitsmengen in den Tankkammern 11 und 12 stattfinden kann, ist dies dann nicht mehr möglich, wenn die Kraftstoffmenge unter das Niveau 19 abgesunken ist. Dann kann es dazu 10 kommen, dass während des Betriebs die Tankkammer 11 ein höheres Kraftstoffniveau aufweist als die Tankkammer 12. Diese unterschiedlichen Niveaus werden nun dadurch aufrecht erhalten, dass zum einen die in der Förderleitung 6 enthaltene Kraftstoffsäule abreißt, da über die Belüftungsboh- 15 rung Luft angesaugt wird. Die Saugheberwirkung der Förderleitung 6 ist damit aufgehoben. Bei der Treibleitung 7 verhindert das Rückschlagventil 17, dass Kraftstoff aus dem Stautopf über die Treibleitung in die zweite Tankkammer 12 abfließen kann.

Fig. 2 zeigt den Kraftstofftank 1a eines Dieselfahrzeuges. Hier sind die Saugstrahlpumpen 8, 9 vom Vorlauf angetrieben. Zu diesem Zweck mündet ein mit der Kraftstoffpumpe 3 verbundener Abschnitt 4a der Vorlaufleitung nach Art einer T-Verzweigung in die Treibleitung 7, welche die beiden 25 15 Verbindungsbereich Saugstrahlpumpen 8, 9 ausgangsseitig miteinander verbindet. In der zweiten Tankkammer 12 zweigt von der Treibleitung 7 ein zum Dieselmotor führender Abschnitt 4b der Vorlaufleitung ab. Die Rücklaufleitung 5a mündet in den Stautopf 2. Die Verhinderung des Absenkens des Kraftstoffspie- 30 gels in der ersten Tankkammer 11 wird hier ebenfalls durch ein Rückschlagventil 17 in der Saugstrahlpumpe 8 und durch eine Belüftungsöffnung 18 in der Förderleitung ver-

Fig. 3 zeigt einen Querschnitt durch den unteren Bereich 35 des Stautopfes 2 mit daran angeflanschter Saugstrahlpumpe 8. Die im Wesentlichen rohrabschnittförmig aufgebaute Saugstrahlpumpe 8 weist einen vorderen verengten Strömungskanal 20 auf, in den eine Düse 21 Kraftstoff hineinfördert. Der sich vor dem verengten Strömungskanal 20 be- 40 findliche Saugraum 22 ist über eine siebartige Durchbrechung 23 mit dem Tankinnenraum verbunden. Über die Durchbrechung 23 wird Kraftstoff angesaugt, wobei Partikel, die größer sind als die einzelnen Öffnungen der Durchbrechung 23, zurückgehalten werden. Die Treibleitung 7 45 35 Pfeil bzw. ein von der Saugstrahlpumpe 8 bereitgestellter Eingangskanal 24 dient der Zuführung von Kraftstoff. Im Eingangskanal 24 liegt ein Einsatz 25 ein, der einen ringförmigen Ventilsitz 26 und eine Schließmembran 27 aus Elastomermaterial umfasst. Der Ventilsitz ist an die Innenseite ei- 50 nes Rohrabschnittes 28 angeformt. An diese Innenseite sind weiterhin sich radial nach innen erstreckende Arme 29 angeformt, die ein zentrales Fixierauge 30 tragen. In diesem Fixierauge liegt ein von der Schließmembran 27 zentral abstehender Fixierzapfen 31 formschlüssig ein. Eine Abdich- 55 tung des Einsatzes 25 zur Innenwandung des Eingangskanals 24 erfolgt über einen in einer Umfangsnut des Einsatzes 25 einliegenden Dichtring 32. Der Einsatz 25 ist schließlich in Axialrichtung durch einen weiteren, im Eingangskanal 24 einliegenden und über einen Umfangsdichtring 32a abge- 60 dichteten und im Wesentlichen ebenfalls rohrabschnittförmigen Einsatz 32 fixiert. Im Betrieb strömt Kraftstoff zunächst in Richtung des Pfeiles 34 durch einen gegenüber dem Fixierzapfen 31 radial erweiterten Abschnitt des Fixierauges 30 und über die zwischen den Armen 29 vorhandenen 65 Zwischenräume entsprechend dem Pfeil 35 durch das Rückschlagventil 17 hindurch. Der Kraftstoff wird dann durch die Düse 21 in den verengten Strömungskanal 20 gefördert.

Dadurch entsteht im Saugraum 22 ein Unterdruck und Kraftstoff wird über die Durchbrechungen 23 aus der ersten Tankkammer 11 angesaugt. Die Randbereiche der Schließmembran 27 sind dabei vom Ventilsitz. 26 abgehoben. Bei außer Betrieb befindlichem Fahrzeug bzw. ruhiggestellter Kraftstoffpumpe drückt der Randbereich der Schließmembran 27 an den Ventilsitz 26 und verhindert, dass Kraftstoff in die erste Tankkammer 11 zurückströmen kann.

Bezugszeichenliste

- 1 Kraftstofftank
- 2 Stautopf
- 3 Kraftstoffpumpe
- 4 Vorlaufleitung
- 5 Rücklaufleitung
- 6 Förderleitung
- 7 Treibleitung
- 8 erste Saugstrahlpumpe
- 9 zweite Saugstrahlpumpe
 - 11 erste Tankkammer
 - 12 zweite Tankkammer
 - 13 Wölbung
 - 14 Tankboden
- - 16 Öffnung
 - 17 Rückschlagventil
 - 18 Belüftungsöffnung
 - 19 Kraftstoffniveau
- 20 verengter Strömungskanal
 - 21 Düse
 - 22 Saugraum
 - 23 Durchbrechung
 - 24 Eingangskanal
- 25 Einsatz
 - 26 Ventilsitz
 - 27 Schließmembran
 - 28 Rohrabschnitt
- 29 Arm
- 30 Fixierauge
 - 31 Fixierzapfen
 - 32 Umfangsdichtring
 - 33 Einsatz
 - 34 Pfeil

Patentansprüche

- 1. Kraftstofftank für Kraftfahrzeuge mit
 - einer ersten und einer zweiten Tankkammer (11, 12), die über eine Wölbung (13) des Tankbodens (14) voneinander abgegrenzt sind und in denen jeweils eine erste bzw. zweite Saugstrahlpumpe (8, 9) in Bodennähe angeordnet ist,
 - einem in der ersten Tankkammer (11) vorhandenen, von beiden Saugstrahlpumpen mit Kraftstoff versorgten Stautopf (2), wobei die zweite Saugstrahlpumpe (9) über eine Förderleitung (6) in den Stautopf (2) fördert und
 - einer die beiden Saugstrahlpumpen (8, 9) eingangsseitig miteinander verbindenden und vom Kraftstoffvor- oder -rücklauf gespeisten Treibleitung (7),

dadurch gekennzeichnet,

dass in der Treibleitung (7) oder in einer Saugstrahlpumpe (8, 9) ein Rückschlagventil (17) angeordnet ist. 2. Kraftstofftank nach Anspruch 1, dadurch gekennzeichnet, dass das Schließelement des Rückschlagven-

DE 199	5:
5	
tils (18) aus einem Elastomermaterial besteht. 3. Kraftstofftank nach Anspruch 2, dadurch gekennzeichnet, dass das Schließelement eine Membran (27 ist, die mit ihrem Randbereich mit einem Ventilsitz (26) zusammenwirkt. 4. Kraftstofftank nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass in der Förderleitung (6) eine Belüftungsbohrung (18) vorhanden ist. 5. Kraftstofftank nach Anspruch 4, dadurch gekennzeichnet, dass die Belüftungsbohrung an einer oberhalbles von der Höhe der Tankbodenwölbung vorgegebenen Kraftstoffniveaus der Tankkammern (11, 12) angeordnet ist.) 7. 5.) 10.
Hierzu 3 Seite(n) Zeichnungen	15
	20
	25
· .	30
	35
	40
	45
	50

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 199 55 133 A1 B 60 K 15/03**31. Mai 2001

POWERED BY Dialog

Internal fuel supply system for vehicle saddle style fuel tank having two chambers separated by a dome in the tank floor

Patent Assignee: ALFMEIER PRAEZISION BAUGRUPPEN & SYSTEML

Inventors: BUETTNER R; VETTER S

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week Ty
DE 19955133	A1	20010531	DE 1055133	A	19991117	200144 B

Priority Applications (Number Kind Date): DE 1055133 A (19991117)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
DE 19955133	A1			B60K-015/03	

Abstract:

DE 19955133 A1

NOVELTY This saddle style fuel tank has two chambers (11,12) separated by a dome (13) in the tank floor (14) and is provided with two injector pumps (8,9) situated close to the tank floor, one in each chamber.

DETAILED DESCRIPTION In one of the chambers is a fuel baffle chamber (2), which is supplied with fuel by the injection pumps. Fuel is supplied to the baffle chamber by the second injector pump (9) through a supply tube (6), whilst the two pumps are connected by a drive pipe (7). So that the drive pipe does not act as a siphon, a non-return valve is fitted in the pipe or in one of the injector pumps.

USE Saddle style fuel tanks.

ADVANTAGE Avoids the reporting of fuel equalization between tank chambers as fuel leakage.

DESCRIPTION OF DRAWING(S) Shows a schematic view of a fuel tank in accordance with the invention.

Fuel baffle chamber (2)

Fuel supply pipe (6)

Fuel drive pipe (7)

Injector pumps (8,9)

THIS PAGE BLANK (USPTO)

Tank chambers (11,12)

Dome (13)

Fuel tank floor (14)

pp; 0 DwgNo 1/1

Derwent World Patents Index © 2004 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 13925923 THIS PAGE BLANK (USPTO)