Lecture 21
March 29, 2018 9:00 AM

Pagine

· Physical memory is divided into equal-sized frames · Divide logical memory into equal size pages Frame size = Page size

. To run a program w/ a size of h pages, we can do it if there are n free frames. Load the n pages into the n frames. Create a page table to translate page humbers to grame numbers

Pegs Logical Memory		
	A	0 0000
g	8	1 1001
	C	2 0910
	D	30011
	E	40100
l	1	80101
	G	60110
	H	70111
	I	8 1000
2	5	7 1001
	K	10 1010
	<u></u>	11 1011
	CPY	-

CP4

CPU Workt

Consider 8-bit Addresses => 28 = 256 byte address progett offset

· How big is a page? Ans $2^5 = 32$ bytes · How many pages are there? Ans $2^3 = 8$ pages · How many entries are in the page table? Ans 23=8 · How big is the page table? 8 * storage needed for a number

Consider en 32-bit Address sponce pase # (10 bits) offset

· It the parse specifies 10 bits, How many bits are in the offset? Ans 22

·How big is a frame? Ans 2 bytes ~ 4,000,000 ·How menny pages eve there? Ans 2 1P = 1024 ·How his in page table? Ans 2'0=1024 ·How his is the

·How big is the page table? Ans: Need more than I byk

to cound up to 1024. Need 2

bytes for each integer in

the page table => 1024 *2 bytes

=2KB

Consider 32-bit Addresses
20 bit pase 12 bit offset

· How big is a page? Ans 217 bytes = 4KB

· How many pages are there? Ans 220~ 4,000,000 · How many entries are in the page table? Ans 220 · How big is the page table? 220 x 4 bytes (size of int) = 4 MB

But, Page table is in memory, which means every memory access requires 2 memory access => System is slower

Partial Solution

- Associative Memory
(a cache that is electronically near the CPY)

=> Effective Access Time (EAT)

Hit

EAT = \preceq (1+E) + (1-\preceq) (2+E)

(0 \le \preceq \le 1)

\preceq => 99 \text{? of the time there is a hit}

14. of the time a miss

