

ATIVIDADE PRÁTICA EXERCÍCIOS COMPLEMENTARES

Instruções gerais:

Esta Lista de Exercícios é Opcional e não será entregue no Canvas

Boas práticas:

- Esta lista de exercícios foi elaborada para ajudá-lo a praticar Lógica de Programação e os Conceitos Fundamentais da Linguagem de Programação que você está estudando.
- 2. A lista contém 20 exercícios, organizados nas seguintes categorias:
 - Variáveis e Operadores
 - Laços Condicionais
 - Laços de Repetição
 - Vetores
 - Matrizes
- 3. Leia atentamente o enunciado de cada exercício antes de iniciar a resolução.
- 4. Observe as indicações de Entrada e Saída esperadas para cada exercício.
- 5. Preste atenção nos **desenhos**, **diagramas**, **fórmulas** e **dicas** fornecidas, pois elas o ajudarão a simplificar a solução.
- 6. Utilize o **Cookbook**, os **Vídeos da Plataforma** e os **Códigos guia** como referências ao longo da resolução.
- 7. Se restar alguma dúvida, entre em contato com os **instrutores da sua turma** pelo Discord.
- 8. Após finalizar a implementação de todos os exercícios, **envie os códigos para um repositório no seu GitHub**.

VARIÁVEIS E OPERADORES

1) Elabore um algoritmo para calcular a área de um círculo. O algoritmo deverá solicitar ao usuário, via teclado, a entrada de um número do tipo *float*, que representará o raio do círculo. Em seguida, o programa calculará e exibirá a área do círculo. Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite o raio do círculo: 2.00	A área do círculo é: 12.57
Digite o raio do círculo: 100.64	A área do círculo é: 31819.34

Fórmula para o cálculo da área do círculo:

$$area = \pi * r^2$$

 $\pi = 3.1415$

→ **Dica:** Geralmente as Linguagens de Programação possuem Bibliotecas nativas para cálculos matemáticos, que fornecem a constante PI e a Potenciação.

- Variáveis
- Entrada e Saída de dados

- 2) Elabore um algoritmo para calcular e exibir a quantidade de litros de combustível consumidos durante uma viagem com um automóvel que possui rendimento de 12 km/L. O cálculo do consumo de combustível deve ser feito com base em dois parâmetros que serão lidos via teclado:
 - Tempo gasto na viagem (em horas);
 - Velocidade média durante a viagem (em km/h).

Com essas informações, é possível calcular a **distância percorrida** e, em seguida, determinar a **quantidade de combustível necessária**. O resultado deve ser apresentado com **duas casas decimais** após o ponto. Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite o tempo gasto na viagem (em horas): 10 Digite a velocidade média (em KM por horas): 85	Total de combustível gasto (em litros): 70.83

Fórmula para o cálculo da distância:

distancia = tempoViagem * velocidadeMedia

Fórmula para o cálculo do consumo do combustível:

consumoCombustivel = distancia / rendimento

3) Elabore um algoritmo que leia via teclado um número inteiro que representa um intervalo de tempo em segundos. Na sequência exiba este tempo na tela expresso em **horas:minutos:segundos**. Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite o tempo: 556	Tempo expresso em (hh:mm:ss): 0:9:16
Digite o tempo: 140153	Tempo expresso em (hh:mm:ss): 38:55:53

Fórmulas:

- Calcular as Horas: [tempo / 3600]

- **Calcular os Minutos**: |(tempo % 3600) / 60|

- Calcular os Segundos: tempo~%~60

→ **Dica:** O símbolo Li inserido nas fórmulas para o cálculo das horas e dos minutos, é a função **floor (piso)**, que tem o objetivo de obter apenas a parte inteira da divisão. A função floor geralmente está disponível na Biblioteca nativa para cálculos matemáticos da linguagem de programação.

- Variáveis
- Entrada e Saída de dados

4) Elabore um algoritmo que leia via teclado um número inteiro que representa um valor em Reais (R\$). Na sequência exiba o menor número de notas (Cédulas de dinheiro), do qual este valor pode ser decomposto. Para o exercício, considere as notas de R\$ 200.00, R\$ 100.00, R\$ 50.00, R\$ 20.00, R\$ 10.00, R\$ 5.00, R\$ 2.00 e R\$ 1.00. Veja os exemplos abaixo:

ENTRADA	SAÍDA
	Para o valor R\$ 576,00 utilizaremos:
Digite um valor em Reais (sem os	
centavos): 576.00	2 nota(s) de R\$ 200,00
	1 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	0 nota(s) de R\$ 2,00
	1 nota(s) de R\$ 1,00

Fórmulas:

- **Definir o Valor Restante Inicial:** valorRestante = valor
- Calcular o número de Notas: |valorRestante | valorNota|
- Atualizar o Valor Restante: valorRestante % = valorNota
- → **Dica 01**: A variável **valorRestante** armazena o valor que sobra após a decomposição em cada tipo de nota. Por exemplo, para um valor de R\$ 250,00, é utilizada uma nota de R\$ 200,00, restando R\$ 50,00.
- → **Dica 02**: O símbolo LJ, presente nas fórmulas para o cálculo das horas e dos minutos, representa a função **floor** (piso). Essa função retorna apenas a parte inteira da divisão e está disponível na biblioteca nativa de cálculos matemáticos da maioria das linguagens de programação.
- → **Dica 03**: A fórmula para calcular as notas e atualizar o valor restante deve ser aplicada sequencialmente para todas as denominações, começando pela nota de R\$ 200,00 e seguindo até a de R\$ 1,00.

- Variáveis
- Entrada e Saída de dados

LAÇOS CONDICIONAIS

- 5) Elabore um algoritmo que leia 3 valores inteiros e ordene-os tanto em ordem crescente quanto em ordem decrescente. No final, o programa deve exibir os valores na seguinte sequência:
 - Na sequência original;
 - Em ordem crescente;
 - Em ordem decrescente.

Cada sequência deve ser exibida em uma linha separada, com uma linha em branco entre elas. Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 7 Digite o segundo número inteiro: 21 Digite o terceiro número inteiro: -14	Sequência original: 7 21 -14 Ordem crescente: -14 7 21 Ordem decrescente: 21 7 -14

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais

- 6) Leia três valores de ponto flutuante A, B e C, que representam os lados de um triângulo. Em seguida, determine o tipo de triângulo que esses três lados formam, com base nas condições abaixo, exibindo a mensagem correspondente:
 - Se A ≥ B + C, o programa deve exibir: NÃO FORMA TRIÂNGULO.
 - Se todos os lados forem iguais, o programa deve exibir: TRIÂNGULO EQUILÁTERO.
 - Se apenas dois lados forem iguais, o programa deve exibir: TRIÂNGULO ISÓSCELES.
 - Se todos os lados forem diferentes e formarem um triângulo, o programa deve exibir: TRIÂNGULO ESCALENO.

Veja a imagem abaixo:

Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite o tamanho do lado A: 6.0 Digite o tamanho do lado B: 6.0 Digite o tamanho do lado C: 6.0	TRIANGULO EQUILÁTERO
Digite o tamanho do lado A: 5.0 Digite o tamanho do lado B: 7.0 Digite o tamanho do lado C: 9.0	TRIANGULO ESCALENO
Digite o tamanho do lado A: 6.0 Digite o tamanho do lado B: 6.0 Digite o tamanho do lado C: 10.0	TRIANGULO ISÓSCELES
Digite o tamanho do lado A: 10.0 Digite o tamanho do lado B: 20.0 Digite o tamanho do lado C: 30.0	NÃO FORMA TRIANGULO

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais

7) Elabore um algoritmo que leia via teclado um número inteiro que representa o DDD de uma cidade. Na sequência exiba o nome da cidade o qual o DDD pertence. Para o exercício, considere a tabela de cidades abaixo. Caso o DDD não seja encontrado, exiba a mensagem DDD não encontrado!

DDD	CIDADE
11	São Paulo
21	Rio de Janeiro
27	Vitória
31	Belo Horizonte

Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite um DDD: 11	O DDD 11 pertence à cidade de São Paulo
Digite um DDD:	DDD não encontrado!

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais

8) A empresa Portugol TI resolveu conceder um aumento de salários a seus funcionários conforme a tabela abaixo:

SALÁRIO	PERCENTUAL DE REAJUSTE
R\$ 1412,00	15%
R\$ 1412,01 a R\$ 2824,00	12%
R\$ 2824,01 a R\$ 4236,00	10%
R\$ 4236,01 a R\$ 5648,00	7%
Acima de R\$ 5648,00	5%

Elabora um algoritmo que leia via teclado o salário do funcionário (numero float) e calcule e mostre o **novo salário**, bem como o **valor de reajuste** ganho e o **índice percentual do reajuste**. Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o valor do salário (R\$): 3000.00	Novo salario: R\$ 3300.00 Valor do reajuste: R\$ 300.00 Percentual do aumento: 10%

Fórmula para o cálculo do salário:

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais

9) A fabricação de presentes para o Natal é um processo desafiador. Muitas vezes, os duendes trabalham até tarde para garantir que tudo esteja pronto a tempo e com perfeição. Para organizar melhor suas tarefas, os duendes calcularam o tempo necessário, em minutos, para fabricar cada presente.

Agora, com o expediente chegando ao fim, o duende Ed precisa de sua ajuda! Ele ainda tem dois presentes para fabricar e faltam N minutos para o término do expediente. Sua missão é ajudá-lo a descobrir se ele conseguirá finalizar os dois presentes hoje ou se precisará adiar o trabalho para amanhã.

Elabore um algoritmo que:

- Leia um número inteiro N (entre 0 e 100), indicando os minutos restantes no expediente.
- Leia dois números inteiros A e B (entre 0 e 100), representando o tempo necessário para fabricar cada um dos dois presentes.

Calcule se o tempo restante é suficiente para concluir ambos os presentes e exiba:

- "Farei hoje!" se for possível fabricar os dois presentes dentro do tempo disponível.
- "Deixa para amanhã!" caso contrário.

Veja os exemplos abaixo:

ENTRADA	SAÍDA
Tempo restante (min): 12 Tempo de fabricação do presente 01 (min): 5 Tempo de fabricação do presente 02 (min): 4	Farei hoje!
Tempo restante (min): 15 Tempo de fabricação do presente 01 (min): 10 Tempo de fabricação do presente 02 (min): 8	Deixa para amanhã!

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais

LAÇOS DE REPETIÇÕES

10)Desenvolva um algoritmo para determinar todos os divisores de um número inteiro. O algoritmo deverá solicitar ao usuário a entrada via teclado de um número inteiro e, em seguida, calcular e exibir todos os divisores inteiros que o dividem exatamente (resto da divisão igual a zero). Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite um número inteiro: 6	Os divisores positivos do número 6 são: 1 2 3 6
Digite um número inteiro: 30	Os divisores positivos do número 30 são: 1 2 3 5 6 10 15 30

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição

11) Elabore um algoritmo que leia 2 valores inteiros **X** e **Y**. A seguir, calcule e mostre a **soma de todos os números impares entre eles**. Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 2 Digite o segundo número inteiro: 10	A Soma de todos os números ímpares é 24

Na construção do Algoritmo, utilize os seguintes conteúdos:

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- 12) Elabore um algoritmo que leia 1 valor inteiro N, entre 5 e 2000 e a seguir, calcule e mostre todos os números pares entre 1 e N (incluindo N), elevados ao quadrado. Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 6	2^2 = 4 4^2 = 16 6^2 = 36

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição

13) Elabore um algoritmo que leia 1 valor inteiro N, entre 1 e 1000 e a seguir, calcule e mostre todos os números entre 1 e N (incluindo N), elevados ao quadrado e ao cubo. Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 5	1 1 1 2 4 8 3 9 27
	4 16 64 5 25 125

Na construção do Algoritmo, utilize os seguintes conteúdos:

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- 14) O Natal traz tanta alegria que você sente vontade de gritar para o mundo: "Feliz Nataaaal!!". Para expressar toda essa felicidade, crie um algoritmo que receba um número inteiro I (entre 1 e 100), representando o seu índice de felicidade. Com base nesse índice, determine quantas vezes a letra 'a' será repetida na última palavra da frase "Feliz Natal". Veja o exemplo abaixo:

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 5	Feliz Nataaaaal!

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição

VETORES

15)Elabore um algoritmo que leia um vetor de inteiros com 10 posições. No final, mostre todas as posições do vetor que armazenam um valor menor ou igual a 10 e o valor armazenado em cada uma das posições.

ENTRADA	SAÍDA
Digite o primeiro número inteiro: 5 Digite o segundo número inteiro: 10 Digite o terceiro número inteiro: 7 Digite o quarto número inteiro: 15 Digite o quinto número inteiro: 20 Digite o sexto número inteiro: 25 Digite o sétimo número inteiro: 2 Digite o oitavo número inteiro: 1 Digite o nono número inteiro: 3 Digite o décimo número inteiro: 35	Números menores do que 10: vetor[0] = 5 vetor[1] = 10 vetor[2] = 7 vetor[6] = 2 vetor[7] = 1 vetor[8] = 3

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Vetores

16)Elabore um algoritmo que crie um vetor de inteiros com 20 posições e exiba os dados do vetor na tela. Na sequência, troque o primeiro elemento com o último, o segundo elemento com o penúltimo, o terceiro com o antepenúltimo e assim sucessivamente, até trocar o 10° com o 11° valor. No final, mostre o vetor modificado.

ENTRADA	SAÍDA
vetor = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]	Vetor original: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] Vetor modificado: [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Vetores

17) Elabore um algoritmo que crie um vetor de inteiros com 100 posições e leia um número T inteiro entre 2 e 50. Preencha o vetor de inteiros com uma sequência repetitiva de números de 0 até T - 1. O ciclo deve se repetir até que todas as 100 posições do vetor sejam preenchidas. Após preencher o vetor, exiba o conteúdo na tela. Veja o exemplo abaixo:

ENTRADA	SAÍDA
	N[0] = 0
Digite um número inteiro entre 2 e 50:	N[1] = 1
5	N[2] = 2
	N[3] = 3
	N[4] = 4
	N[5] = 0
	N[6] = 1
	N[7] = 2
	N[8] = 3
	N[9] = 4
	N[95] = 0
	N[96] = 1
	N[97] = 2
	N[98] = 3
	N[99] = 4

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Vetores

MATRIZES

18) Escreva um algoritmo que leia um número inteiro **N** entre 0 e 100, representando a ordem de uma matriz quadrada **M**, e construa a matriz seguindo o padrão descrito abaixo:

Para cada valor **N** lido (exceto o 0), imprima a matriz correspondente com as seguintes regras de formatação:

- Cada elemento da matriz deve ocupar um campo de tamanho 3, alinhado à direita e separado por um espaço.
- Não devem existir espaços extras ao final de cada linha da matriz.
- Após a exibição de cada matriz, insira uma linha em branco.

Veja os exemplos abaixo:

ENTRADA	SAÍDA
Digite a ordem da matriz: 3	1 1 1 1 2 1 1 1 1
Digite a ordem da matriz: 5	1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1

- → **Dica 01:** Para eliminar os espaços em branco no início e no final da string, utilize a função **trim()**.
- → **Dica 02:** Para adicionar os 3 espaços em branco no final do valor, converta o valor para string e utilize a função **padStart()**.

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Matrizes

19) Crie um algoritmo que leia os seguintes valores via teclado:

- Um número inteiro **N** (entre 0 e 11), representando uma linha específica de uma matriz onde será realizada uma determinada operação matemática.
- Um caractere maiúsculo **O** ('S' ou 'M'), indicando a operação matemática que será executada:

o 'S': Soma dos elementos.

o 'M': Média dos elementos.

Em seguida, faça o seguinte:

- Crie uma matriz M[12][12], preenchida com números inteiros aleatórios.
- Identifique os elementos da **área verde** da matriz (correspondente à linha **N**) e, conforme a operação indicada ('S' ou 'M'), calcule e exiba o resultado.

A figura abaixo ilustra um exemplo em que o valor **N** = **2** é informado, destacando os elementos da área verde que serão considerados na operação.

	0	1	2	3	4	5	6	7	8	9	10	11
0	1	3	5	8	2	1	2	6	3	4	6	5
1	10	2	7	9	5	4	8	2	1	6	5	1
2	5	7	8	10	2	3	7	9	6	2	5	3
3	3	0	1	2	5	4	7	9	6	5	2	0
4	9	8	7	4	5	6	3	2	1	0	0	1
5	5	2	0	3	6	4	8	5	2	9	2	1
6	1	3	5	8	2	1	2	6	3	4	6	5
7	10	2	7	9	5	4	8	2	1	6	5	1
8	3	0	1	2	5	4	7	9	6	5	2	0
9	9	8	7	4	5	6	3	2	1	0	0	1
10	5	2	0	3	6	4	8	5	2	9	2	1
11	1	3	5	8	2	1	2	6	3	4	6	5

Veja o exemplo abaixo, baseado na matriz acima:

ENTRADA	SAÍDA
Digite um número inteiro entre 1 e 11: 2 Digite a operação (S ou M): S	A soma de todos os elementos da linha 2 é 67
Digite um número inteiro entre 1 e 11: 2 Digite a operação (S ou M): M	A média de todos os elementos da linha 2 é 5,58

→ **Dica:** Para gerar números aleatórios inteiros na matriz, utilize a combinação das funções **floor()** e **random()**. A função random gera números aleatórios.

Exemplo - gerar números aleatórios entre 1 e 10:

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Matrizes

20) Crie um algoritmo que leia os seguintes valores via teclado:

- Um número inteiro **N** (entre 0 e 11), representando uma coluna específica de uma matriz onde será realizada uma determinada operação matemática.
- Um caractere maiúsculo **O** ('S' ou 'M'), indicando a operação matemática que será executada:
 - o 'S': Soma dos elementos.
 - o 'M': Média dos elementos.

Em seguida, faça o seguinte:

- Crie uma matriz M[12][12], preenchida com números inteiros aleatórios.
- Identifique os elementos da área verde da matriz (correspondente à coluna
 N) e, conforme a operação indicada ('S' ou 'M'), calcule e exiba o resultado.

A figura abaixo ilustra um exemplo em que o valor **N** = **2** é informado, destacando os elementos da área verde que serão considerados na operação.

	0	1	2	3	4	5	6	7	8	9	10	11
0	1	3	5	8	2	1	2	6	3	4	6	5
1	10	2	7	9	5	4	8	2	1	6	5	1
2	5	7	8	10	2	3	7	9	6	2	5	3
3	3	0	1	2	5	4	7	9	6	5	2	0
4	9	8	7	4	5	6	3	2	1	0	0	1
5	5	2	0	3	6	4	8	5	2	9	2	1
6	1	3	5	8	2	1	2	6	3	4	6	5
7	10	2	7	9	5	4	8	2	1	6	5	1
8	3	0	1	2	5	4	7	9	6	5	2	0
9	9	8	7	4	5	6	3	2	1	0	0	1
10	5	2	0	3	6	4	8	5	2	9	2	1
11	1	3	5	8	2	1	2	6	3	4	6	5

Veja o exemplo abaixo, baseado na matriz acima:

ENTRADA	SAÍDA
Digite um número inteiro entre 0 e 11: 2 Digite a operação (S ou M): S	A soma de todos os elementos da coluna 2 é 54
Digite um número inteiro entre 0 e 11: 2 Digite a operação (S ou M): M	A média de todos os elementos da coluna 2 é 4,50

→ **Dica:** Para gerar números aleatórios inteiros na matriz, utilize a combinação das funções **floor()** e **random()**. A função random gera números aleatórios.

Exemplo - gerar números aleatórios entre 1 e 10:

- Variáveis
- Entrada e Saída de dados
- Laços Condicionais
- Laços de Repetição
- Matrizes