Computer Security: Principles and Practice

Chapter 6 – Malicious Software

Malicious Software

- >programs exploiting system vulnerabilities
- >known as malicious software or malware
- >Classification criteria
 - Independence level of the program
 - program fragments that need a host program (e.g. viruses, logic bombs, and backdoors)
 - independent self-contained programs
 - e.g. worms, bots
 - Replicating or not

Malicious Software (other classifications)

- > Propagation
 - Infected content e.g., viruses
 - Vulnerability exploit e.g., worms
 - Social engineering e.g., spam and trojans
- ➤ Payload action
 - System corruption
 - Attack agent e.g., bots
 - Information theft e.g., keyloggers and spyware
 - Stealthing e.g., backdoors and rootkits

Malware Terminology

- ➤ Virus: attaches itself to a program and propagates copies of itself to other programs
- ➤ Worm: runs independently and propagates copies of itself to other programs
- ➤ Logic bomb: triggers action when condition occurs
- > Trojan horse: contains unexpected additional functionality
- > Backdoor (trapdoor): modification that allows unauthorized access to functionality
- Mobile code: can be shipped unchanged to a heterogeneous collection of platforms and execute with identical semantics
- ➤ Auto-rooter Kit (virus generator): hacker tools used to break into new machines to generate new viruses automatically
- > Spammer and Flooder programs: send large volumes of unwanted e-mail, or to attack systems with a large volumes of traffic to carry out a DoS attack
- ➤ Keyloggers: captures keystrokes on a compromised system
- **Rootkit:** set of hacker tools used after attacker has broken into a computer system and gained root-level access
- **Zombie**, bot: program on infected machine activated to launch attacks on other machines

Virus

Def: a program that can infect other programs by modifying them to include a, possibly evolved, version of itself

Fred Cohen 1983

Viruses

- > piece of software that infects programs
 - modifying them to include a copy of the virus
 - so it executes secretly when host program is run
- > specific to operating system and hardware
 - taking advantage of their details and weaknesses
- > a typical virus goes through phases of:
 - dormant
 - propagation
 - triggering
 - execution

Virus Structure

- **>**components:
 - infection mechanism enables replication
 - trigger event that makes payload activate
 - payload what it does, malicious or benign
- >prepended / postpended / embedded
- ➤ the infected program, when invoked, will first execute the virus code and then execute the original code of the program
- → or propagation (with access controls)

Virus Structure

```
program V :=
{goto main;
   1234567;
   subroutine infect-executable :=
       {loop:
       file := get-random-executable-file;
                                            Propagation
       if (first-line-of-file = 1234567)
         then goto loop
         else prepend V to file; }
   subroutine do-damage :=
                                              Execution
       (whatever damage is to be done)
   subroutine trigger-pulled :=
                                             Triggering
       {return true if some condition holds}
main:
       main-program :=
       {infect-executable;
       if trigger-pulled then do-damage;
       goto next;}
next:
```

Compression Virus

```
program CV :=
{goto main;
    01234567;
    subroutine infect-executable :=
          {loop:
               file := get-random-executable-file;
          if (first-line-of-file = 01234567) then goto loop;
               compress file;
        (2)
               prepend CV to file;
main:
       main-program :=
          (if ask-permission then infect-executable;
               uncompress rest-of-file;
        (3)
        (4)
               run uncompressed file;}
```


Virus Classification

- ➤ By target
 - boot sector
 - file infector
 - macro virus
- ➤ By concealing strategy
 - encrypted virus
 - stealth virus
 - polymorphic virus
 - metamorphic virus

Macro Virus

- > became very common in mid-1990s since
 - platform independent
 - infect documents
 - easily spread
- > exploit macro capability of office apps
 - executable program embedded in office doc
 - often a form of Basic
- > more recent releases include protection
- > recognized by many anti-virus programs

E-Mail Viruses/Worms

- > more recent development
- >e.g. Melissa
 - exploits MS Word macro in attached doc
 - if attachment opened, macro activates
 - sends email to all on users address list
 - and does local damage
- newer version can be activated by opening an email that contains the virus rather than opening an attachment
- hence much faster propagation

Malware Countermeasures

- >prevention ideal solution but difficult
 - Policy / awareness / vulnerability mitigation
- > realistically need:
 - detection
 - identification
 - removal
- if detect but can't identify or remove, must discard and replace infected program
- > Where to detect: host / perimeter / distributed

Anti-Virus Evolution

- >virus & antivirus tech have both evolved
- > early viruses simple code, easily removed
- ⇒as become more complex, so must the countermeasures
- → generations
 - first signature scanners
 - second heuristics
 - third identify actions
 - fourth combination packages

Generic Decryption

- >runs executable files through GD scanner:
 - CPU emulator to interpret instructions
 - virus scanner to check known virus signatures
 - emulation control module to manage process
- >periodically scan for virus signatures
- - tradeoff chance of detection vs time delay

Digital Immune System

Behavior-Blocking Software

Worms

- > replicating program that propagates over net
 - using email, remote exec, remote login
- > has phases like a virus:
 - dormant, propagation, triggering, execution
 - propagation phase: searches for other systems, connects to it, copies self to it and runs
- > may disguise itself as a system process
- > concept seen in Brunner's "Shockwave Rider"
- > implemented by Xerox Palo Alto labs in 1980's

Morris Worm

- >one of best know worms
- >released by Robert Morris in 1988
- >various attacks on UNIX systems
 - cracking password file to use login/password to logon to other systems
 - exploiting a bug in the finger protocol
 - exploiting a bug in sendmail
- >if succeed have remote shell access
 - sent bootstrap program to copy worm over

Worm Propagation Model

Recent Worm Attacks

- > Code Red
 - July 2001 exploiting MS IIS bug
 - probes random IP address, does DDoS attack
 - consumes significant net capacity when active
- Code Red II variant includes backdoor
- SQL Slammer
 - early 2003, attacks MS SQL Server
 - compact and very rapid spread
- > Mydoom
 - mass-mailing e-mail worm that appeared in 2004
 - installed remote access backdoor in infected systems
- > Stuxnet target (Iranian/nuclear) industrial control system

Worm Technology

- ➤ Multiplatform: not limited to Windows machines
- ➤ Multi-exploit: penetrate systems in a variety of ways
- ➤ ultrafast spreading: conduct a prior Internet scan to accumulate Internet addresses of vulnerable machines
- ➤ Polymorphic: Each copy of the worm has new code generated on the fly
- ➤ Metamorphic: have a repertoire of behavior patterns that are unleashed at different stages of propagation
- >transport vehicles: ideal for spreading other distributed attack tools
- >zero-day exploit: exploit an unknown vulnerability

Worm Countermeasures

- > overlaps with anti-virus techniques
- > once worm on system A/V can detect
- > worms also cause significant net activity
- > worm defense approaches include:
 - signature-based worm scan filtering
 - filter-based worm containment
 - payload-classification-based worm containment
 - threshold random walk scan detection
 - rate limiting and rate halting

Proactive Worm Containment

Network Based Worm Defense

Bots

- >program taking over other computers
- > to launch hard to trace attacks
- >if coordinated form a botnet
- >characteristics:
 - remote control facility
 - via IRC/HTTP etc
 - spreading mechanism
 - attack software, vulnerability, scanning strategy
- > various counter-measures applicable

Rootkits

- > set of programs installed for admin access
- > malicious and stealthy changes to host O/S
- > may hide its existence
 - subverting report mechanisms on processes, files, registry entries etc
- > may be:
 - persistent or memory-based
 - user or kernel mode
- > installed by user via trojan or intruder on system
- > range of countermeasures needed

Rootkit System Table Mods

(a) Normal kernel memory layout

(b) After nkark install