Exercises

I. Sets & Functions (Chapters 1 & 2)

- 1. True or False: For any two sets A and B, $(A \cup B)^c = A^c \cap B^c$. [Exercise 1.11] True (De Morgan's Law: $(A \cup B)^c = A^c \cap B^c$ holds universally.)
- 2. **Short Answer**: Let $\Omega=\{1,2,3\}$. List all elements of the power set $\mathcal{P}(\Omega)$. [Example 4.2] $\mathcal{P}(\Omega)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \text{ (Power set includes all subsets.)}$
- 3. **True or False**: The function $f:\mathbb{R} \to \mathbb{R}$ defined by $f(x)=\sin(x)$ is an injective function. [Definition 2.5]

False
$$(\sin(x_1) = \sin(x_2))$$
 does not imply $x_1 = x_2$, e.g., $\sin(0) = \sin(\pi)$.)

4. **Short Answer**: Let $f(x) = x^3 - x$. Is f a strictly monotonic function on \mathbb{R} ? Justify your answer. [Definition 2.9, Proposition 2.5]

No, since
$$f'(x)=3x^2-1$$
 changes sign (e.g., decreasing around $x=0$, increasing when $|x|>\frac{1}{\sqrt{3}}$).

5. **True or False**: The set of rational numbers $\mathbb Q$ is countable. [Proposition 2.6]

True (\mathbb{Q} is countable because it can be enumerated as a sequence.)

II. Sequences (Chapter 3)

- 1. True or False: Every bounded sequence of real numbers converges. [Proposition 3.3] False (Bounded sequences need not converge; e.g., $a_n=(-1)^n$ is bounded but
 - divergent.)
- 2. **Short Answer**: Consider the sequence $a_n=(-1)^n\cdot \left(1+\frac{1}{n}\right)$ for $n\in\mathbb{N}$. Find its limit inferior ($\lim\inf_{n\to\infty}a_n$) and limit superior ($\limsup_{n\to\infty}a_n$). [Definition 3.10, Example 3.12] $\lim\inf_{n\to\infty}a_n=-1$, $\lim\sup_{n\to\infty}a_n=1$ (Odd terms $\to -1$, even terms $\to 1$.)
- 3. True or False: If a sequence $(a_n)_{n\in\mathbb{N}}$ diverges to $-\infty$, then $\liminf_{n\to\infty}a_n=-\infty$ and $\limsup_{n\to\infty}a_n=-\infty$. [Exercise 3.10]

True (Divergence to $-\infty$ implies both \liminf and \limsup are $-\infty$.)

III. Measurable Spaces & Measures (Chapters 4 & 5)

- 1. **True or False**: The family $\mathcal{F}=\{\emptyset,\{a\},\{b,c\}\}$ is a σ -field on $\Omega=\{a,b,c\}$. [Definition 4.1] **False** (Missing $\{a,b,c\}$; a σ -field must include Ω itself.)
- 2. **Short Answer**: For a non-empty set Ω , what is the smallest possible σ -field on Ω ? What is the largest possible σ -field on Ω ? [Example 4.1, Example 4.2] **Smallest**: $\{\emptyset, \Omega\}$. **Largest**: $\mathcal{P}(\Omega)$.
- 3. **True or False**: Given a measurable space (Ω, \mathcal{F}) , the set function $\mu(A) = 5 \cdot \#A$ (if A is finite, ∞ otherwise) for $A \in \mathcal{P}(\Omega)$ is a measure on $\mathcal{P}(\Omega)$. [Proposition 5.2, Definition 5.1] **True** (It satisfies $\mu(\emptyset) = 0$ and countable additivity.)
- 4. **Short Answer**: Let δ_x be the Dirac measure at a point $x \in \Omega$. What is $\delta_x(A)$ if $x \notin A$? [Definition 2, Example 5.1] $\delta_x(A) = 0$ (Dirac measure assigns 1 only if $x \in A$; else 0.)
- 5. **True or False**: For any two sets A,B in a measurable space (Ω,\mathcal{F}) with measure μ , if $A\subset B$, then $\mu(B\setminus A)=\mu(B)-\mu(A)$ is always true. [Proposition 5.3 (iii)] **False** (Only true if $\mu(A)<\infty$; else $\mu(B)-\mu(A)$ is undefined.)

IV. Measurable Functions & Integration (Chapters 7, 8 & 9)

- 1. **True or False**: Any continuous function $f: \mathbb{R}^m \to \mathbb{R}^k$ is a Borel function. [Proposition 7.2] **True** (Continuous functions are Borel-measurable since pre-images of open sets are open.)
- 2. **Short Answer**: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. If $f:\Omega\to\mathbb{R}$ is a non-negative \mathcal{F} -measurable function such that $f(\omega)=0$ for all ω except for a set $N\in\mathcal{F}$ with $\mu(N)=0$, what can you say about $\int_\Omega f(\omega)\mu(d\omega)$? [Example 8.3] $\int_\Omega f(\omega)\mu(d\omega)=0$ (Integral over a null set is zero.)
- 3. **Short Answer**: Calculate the integral: $\int_{\mathbb{N}} \mathbf{1}_{\{1,2,3\}}(x)\mu(dx)$, where μ is the counting measure on $\mathcal{P}(\mathbb{N})$. [Exercise 1 (d) from Mock Exam 1 (Solutions).pdf, Section 5.1.2] = 3 (Counting measure gives 1 for each of $\{1,2,3\}$, sum = 3.)
- 4. **True or False**: If $f:\mathbb{R}\to\mathbb{R}$ is a Borel measurable function, then |f| is also Borel measurable. [Exercise 7.5 (c) and (b)]

True (Absolute value preserves measurability.)

5. Short Answer: Let $\phi(x) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x)$. Calculate $\int_{\mathbb{R}} x \phi(x) dx$. [Proposition 9.4, Example 9.2] = 0 (Odd function $x\phi(x)$ integrated over symmetric interval [-1,1].)

V. Probability (Chapter 10, 11 & 12)

1. **True or False**: If A and B are two events such that $P(A \cap B) = P(A)P(B)$, then A and B are independent. [Definition 11.1]

True (Definition of independence.)

- 2. **Short Answer**: A discrete random variable X has support $E=\{0,1,2\}$ and P(X=0)=0.3, P(X=1)=0.5, P(X=2)=0.2. Calculate E[X] and Var(X). [Section 10.3, Definition 10.11]
 - E[X] = 0.9, Var(X) = 0.49:
 - $E[X] = 0 \cdot 0.3 + 1 \cdot 0.5 + 2 \cdot 0.2 = 0.9$.
 - $E[X^2] = 0^2 \cdot 0.3 + 1^2 \cdot 0.5 + 2^2 \cdot 0.2 = 1.3 \implies Var(X) = 1.3 0.9^2 = 0.49.$
- 3. **True or False**: If a sequence of random variables $(X_n)_{n\in\mathbb{N}}$ converges in probability to X (i.e., $X_n\to_P X$), then it must also converge almost surely to X (i.e., $X_n\to_{a.s.} X$). [Proposition 12.3 and Example 12.2]

False (Convergence in probability does not imply a.s. convergence; e.g., "drifting spikes" counterexample.)

4. True or False: If X and Y are two independent random variables, then E[XY] = E[X]E[Y]. [Proposition 11.2]

True (Independence implies ${\cal E}[XY] = {\cal E}[X]{\cal E}[Y]$.)

5. Short Answer: Let $X \sim \mathrm{Poisson}(\lambda)$, where $\lambda > 0$. What is E[X]? [Example 10.11, Exercise 10.3]

 $E[X] = \lambda$ (Mean of $Poisson(\lambda)$.)

Mathematics and Probability Questions

Chapter 1: Primary tools: First part

1. Define the Cartesian product of $A_1,...,A_n$ sets.

A set of all ordered n-tuples $(a_1,...,a_n)$ where $a_i \in A_i$ for each i: $A_1 \times \cdots \times A_n = \{(a_1,...,a_n) \mid a_1 \in A_1,...,a_n \in A_n\}$.

2. State the distributive law relating union and intersection of sets.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

3. Explain the concept of the empty set and provide one of its elementary properties with respect to any given set A.

The empty set \emptyset contains no elements. Elementary property: $\emptyset \subseteq A$ for any set A.

4. Given a set Ω , define the complement of a subset A in Ω , denoted A^c.

$$A^c = \{\omega \in \Omega \mid \omega \not\in A\}.$$

5. What is the purpose of the principle of induction in mathematics, as indicated in the text?

To prove statements for all natural numbers by verifying a base case and an inductive step.

Chapter 2: Primary tools: Second part

1. What is the difference between a surjective function and an injective function?

Surjective: Range = codomain (every element in codomain is mapped to). Injective: Distinct inputs map to distinct outputs.

2. When are two sets A and B said to have the same cardinality (#A = #B)?

When there exists a bijection (one-to-one correspondence) between them.

3. Provide the definition of an open set $U \subset \mathbb{R}^k$.

$$\forall x \in U, \ \exists \epsilon > 0 \ \text{such that the open ball} \ B(x, \epsilon) \subseteq U.$$

4. If f: $I \to \mathbb{R}$, where $I \subset \mathbb{R}$, is a strictly monotonic function, what can be concluded about its inverse function on f(I)?

The inverse f⁻¹ exists and is strictly monotonic on f(l).

5. State the Euclidean norm of a vector $x \in \mathbb{R}^k$ and the Euclidean distance between two points x, $y \in \mathbb{R}^k$.

$$\|x\| = \sqrt{\sum_{i} x_{i}^{2}}, d(x,y) = \|x - y\|.$$

Chapter 3: Primary tools: Third part

1. Define a real-valued sequence.

A function from \mathbb{N} to \mathbb{R} , denoted $(a_n)_n \in \mathbb{N}$ where $a_n \in \mathbb{R}$.

2. What is a monotonic sequence?

Non-decreasing $(a_n \le a_{n+1} \ \forall n)$ or non-increasing $(a_n \ge a_{n+1} \ \forall n)$.

3. Explain the concept of a series $\sum \{i \in \mathbb{N}\}\ a_i$ as a sequence.

Defined via partial sums $S_n = \sum_{i=1}^n a_i$; the series converges if (S_n) converges.

4. Define an accumulation point of a sequence $(a_n)_{n \in \mathbb{N}}$.

A point L such that $\forall \epsilon > 0$, infinitely many a_n lie in (L- ϵ , L+ ϵ).

5. If a sequence $(a_n)_{n \in \mathbb{N}}$ is increasing and diverges, what is its limit?

 $\lim a_n = +\infty.$

Chapter 4: Measurable spaces

1. List the three properties that define a σ -field \mathcal{J} on a nonempty set Ω .

(i)
$$\Omega \in \mathcal{J}$$
, (ii) $A \in \mathcal{J} \Rightarrow A^c \in \mathcal{J}$, (iii) $A_n \in \mathcal{J} \ \forall n \Rightarrow \cup_n A_n \in \mathcal{J}$.

- 2. What is the largest possible σ -field on a nonempty set Ω , and what is it commonly denoted as? The power set of Ω , denoted $\mathcal{P}(\Omega)$.
- 3. If $\{A_i : i \in \mathbb{N}\}$ is a collection of sets belonging to a σ -field \mathscr{Z} , what can be said about their intersection?

 $\bigcap_i A_i \in \mathcal{F}$ (closed under countable intersections).

4. Define the Borel σ -field $\mathcal{B}(\mathbb{R}^k)$ on \mathbb{R}^k .

The σ -field generated by all open sets in \mathbb{R}^k .

5. Is the union of two $\sigma\text{-fields}$ on Ω necessarily a $\sigma\text{-field}$ on $\Omega?$

No, not necessarily (fails closure properties).

Chapter 5: Measure spaces

1. What two conditions must a function μ : $\mathcal{J} \to \mathbb{R}^+$ satisfy to be considered a measure on a measurable space (Ω, \mathcal{J}) ?

(i) $\mu(\emptyset) = 0$, (ii) Countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint $A_i \in \mathcal{X}$.

2. Define a "point measure" $\mu(A) = \sum_{i \in I} \alpha_i \delta_{x_i}(A)$.

Dirac masses: $\delta_{x_i}(A) = 1$ if $x_i \in A$, else 0. μ assigns weights α_i to points x_i .

3. In the context of a finite set Ω , how is the counting measure $\mu(A)$ defined on the power set $\mathcal{P}(\Omega)$?

 $\mu(A)$ = number of elements in A.

4. Given a measure μ on (Ω, \mathcal{Z}) , if A, B $\in \mathcal{Z}$ such that A \subset B, what relationship holds between μ (A) and μ (B)?

```
\mu(A) \le \mu(B) (monotonicity).
```

5. List the three properties that define a semiring on Ω .

```
(i) \emptyset \in \mathcal{A}, (ii) Closed under finite intersections, (iii) If A,B \in \mathcal{A}, A \subseteq B, then B \setminus A is a finite disjoint union of sets in \mathcal{A}.
```

Chapter 6: From outer measure to measure

1. Define a countable covering of a set A by sets from a collection \mathcal{A} .

```
A sequence (E_n) \in \mathcal{A} such that A \subseteq \cup_n E_n.
```

2. What is an outer measure μ^* , and what three properties does it satisfy?

```
(i) \mu^*(\emptyset)=0, (ii) Monotonicity: A\subseteq B\Rightarrow \mu^*(A)\leq \mu^*(B), (iii) Subadditivity: \mu^*(\cup A_n)\leq \sum \mu^*(A_n).
```

3. How is the outer measure ℓ^* defined for a set $A \in \mathcal{P}(\mathbb{R})$?

```
\ell^*(A) = \inf\{\sum_i (b_i - a_i) : A \subseteq \cup_i (a_i, b_i]\} (inf over countable open coverings by intervals).
```

4. Is every Borel set also Lebesgue measurable?

```
Yes.
```

5. What is the relationship between $\mu^*(A \cap E) + \mu^*(A^c \cap E)$ and $\mu^*(E)$ for a μ^* -measurable set A? $\mu^*(A \cap E) + \mu^*(A^c \cap E) = \mu^*(E) \ \forall E \subseteq \Omega \ (Carathéodory \ condition).$

Chapter 7: Measurable functions

- 1. When is a function f: $(\Omega, \mathcal{Z}) \to (\Omega^*, \mathcal{Z}^*)$ considered measurable? $f^{-1}(B) \in \mathcal{Z}$ for all $B \in \mathcal{Z}^*$.
- 2. Can any continuous function $f: \mathbb{R}^m \to \mathbb{R}^k$ be classified as a Borel function? Yes (preimages of open sets under continuous functions are Borel measurable).
- 3. What defines a "standard" simple function? $f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}} \text{ with } \alpha_{i} \in \mathbb{R} \text{ , disjoint } A_{i} \in \mathcal{Z}.$

4. For
$$\mathscr{Z}$$
-measurable functions f, g: $\Omega \to \mathbb{R}$, what can be said about the set $\{\omega \in \Omega : f(\omega) = g(\omega)\}$? It belongs to \mathscr{Z} .

5. If a function $f: \Omega \to \mathbb{R}$ is \mathscr{Z} -measurable and nonnegative, does there exist a sequence of standard simple functions $(f_n)_{n \in \mathbb{N}}$ that approximates f?

Chapter 8: Integration: First part

1. What is a partition of a set Ω ?

```
A disjoint collection \{A_1,...,A_n\} \subseteq \mathcal{Z} with \cup_i A_i = \Omega.
```

2. How is the integral of a simple function $f(\omega) = \sum_{i=1}^{N} \alpha_i A_i(\omega)$ defined over Ω with respect to a measure μ ?

```
\int f \ d\mu = \sum_i \alpha_i \ \mu(A_i) \ (assuming \ \mu(A_i) < \infty \ or \ \alpha_i \ge 0).
```

3. What does it mean for a random variable X to be "integrable" with respect to a probability measure P?

$$\mathbb{E}[|X|] = \int |X| \, dP < \infty.$$

4. For a measure space $(\Omega, \mathscr{F}, \mu)$ and a \mathscr{F} -measurable function $f: \Omega \to \mathbb{R}$, if $\{A_i : i \in I\} \subset \mathscr{F}$ is a disjoint collection with $I \subset \mathbb{N}$, how can the integral of f over $\cup \{i \in I\}A_i$ be expressed?

$$\int_{-}\{\cup A_i\} f d\mu = \sum_i \int_{-}\{A_i\} f d\mu.$$

5. In a measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ where μ is the counting measure, how does the integral of a nonnegative $\mathcal{P}(\mathbb{N})$ -measurable function $f: \mathbb{N} \to \mathbb{R}$ relate to summation?

$$\int f d\mu = \sum_{n=1}^{\infty} f(n).$$

Chapter 9: Integration: Second part

1. What is the effect of a measure μ on (Ω, \mathcal{J}) being pushed forward by a measurable function $g: (\Omega, \mathcal{J}) \to (\Omega^*, \mathcal{J}^*)$?

```
Defines a measure \mu \circ g^{-1} on (\Omega^*, \mathscr{Z}^*) by \mu \circ g^{-1}(B) = \mu(g^{-1}(B)) for B \in \mathscr{Z}^*.
```

- 2. How is the integral of a continuous function f: [a,b] $\to \mathbb{R}$ defined in terms of its antiderivative? Via the fundamental theorem: If F' = f, then $\int_{a}^{a} f dx = F(b) F(a)$.
- 3. State the Substitution Rule for integrals involving continuous and differentiable functions.

```
\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.
```

- 4. If a continuous function f: $[-a,a] \to \mathbb{R}$ is odd, what is the value of $\int_{-a}^{a} f(x) dx$?
 - 0.
- 5. What is the Fubini-Tonnelli theorem, and what conditions does it require for measures?

Allows interchange of integration order for product measures. Requires nonnegativity or integrability of the integral of absolute values.

Chapter 10: General notions in probability

1. How is a probability P defined on a measurable space (Ω, \mathcal{F}) ?

A measure P: $\mathcal{Z} \rightarrow [0,1]$ satisfying P(Ω) = 1.

2. What distinguishes a random variable from a random vector?

Random variable: maps to \mathbb{R} . Random vector: maps to \mathbb{R}^k , $k \ge 1$.

3. When is a random vector X considered "discrete"?

Takes values in a countable subset of \mathbb{R}^k .

4. Define a "continuous" random vector, and what is its associated function called?

Has an absolutely continuous law w.r.t. Lebesque measure; characterized by a probability density function (pdf).

5. State Chebyshev's inequality.

For X with mean μ and variance σ^2 : $P(|X - \mu| \ge k\sigma) \le 1/k^2 \ \forall k > 0$.

Chapter 11: Collections of random vectors

1. If $X_1,...,X_n$ are n independent random vectors, what relationship holds for $P(X_1 \in B_1) \cap (X_n \in A_n)$ B_n) for measurable sets $B_1,...,B_n$?

 $P(\cap_i \{X_i \in B_i\}) = \prod_i P(X_i \in B_i).$

- 2. What is the law of an independent collection of random vectors in terms of their individual laws? Joint law is the product measure: $P_{\{X_1,...,X_n\}} = P_{\{X_1\}} \otimes P_{\{X_n\}}$.
- 3. If $X_1,...,X_n$ are independent random variables such that $\mathbb{E}[|X_i|] < \infty$ for all i, what can be said about $\mathbb{E}[\sum_{i=1}^n X_i]$?

 $\mathbb{E}[\Sigma X_i] = \Sigma \mathbb{E}[X_i].$

4. What is the characteristic function of the sum of n independent random vectors?

 $\Phi_{x} = \prod_{i \in A} \Phi_{x}(x_i) = \prod_{i \in A} \Phi_$

5. If $X = (X_1,...,X_k)$ is a Gauss vector, what can be said about each of its components $X_1,...,X_k$?

Each is a univariate Gaussian random variable.

Chapter 12: Convergence of random vectors

1. When does a sequence of random vectors (X_n) converge to X in L^p $(p \ge 1)$?

```
If \lim \mathbb{E}[|X_n - X|^p] = 0.
```

2. If $\sum_{n=1}^{\infty} P(A_n) < \infty$ for a sequence of events $\{A_n : n \in \mathbb{N}\} \subset \mathcal{Z}$, what does the Borel-Cantelli lemma state about $P(\lim \sup_{n\to\infty} A_n)$?

P(lim sup A_n) = 0 (infinitely many A_n occur with probability 0).

- 3. What is the relationship between convergence in L¹ and convergence in probability?

 Convergence in L¹ implies convergence in probability.
- 4. If a sequence of random vectors (X_n) converges to X in probability, what can be said about the existence of a subsequence that converges almost surely?

```
\exists subsequence (X_{n_k}) such that X_{n_k} \rightarrow X a.s.
```

5. State the Law of Large Numbers for a sequence of i.i.d. random variables.

If X_n i.i.d. with $\mathbb{E}[|X_1|] < \infty$, then $(1/n)\sum_{i=1}^n X_i \to \mathbb{E}[X_1]$ almost surely and in L^1 .

part 2

Mathematics and Probability Questions

Chapter 1: Primary tools: First part

1. Define what it means for two sets A and B to be equal.

Two sets are equal (A=B) if $A\subset B$ and $B\subset A$.

2. Given three sets A, B, and C, state the associative law for union.

$$(A \cup B) \cup C = A \cup (B \cup C).$$

3. Let A and B be two sets. Show that $A\cap B\subset A$.

For any $x \in A \cap B$, by definition $x \in A$ and $x \in B$, thus $x \in A$.

4. Given a set Ω , what is the complement of the empty set \emptyset^c and the complement of Ω itself Ω^c ?

$$\emptyset^c = \Omega$$
 and $\Omega^c = \emptyset$.

5. State the definition of an upper bound for a set $A \subset \mathbb{R}$.

 $b \in \mathbb{R}$ is an upper bound for A if $orall a \in A$, $a \leq b$.

Chapter 2: Primary tools: Second part

1. Let f:A o B be a function. Define its image f(C) for a subset $C\subset A$.

$$f(C) = \{f(x) \in B : x \in C\}.$$

2. Provide an example of a function $f:\mathbb{R} o [0,\infty)$ that is surjective but not injective.

$$f(x) = x^2$$
.

3. Given an open set $U_1\subset \mathbb{R}^k$ and $U_2\subset \mathbb{R}^k$, is their intersection $U_1\cap U_2$ necessarily open?

Yes - finite intersection of open sets is open.

4. Define what it means for a set $V \subset \mathbb{R}^k$ to be closed.

Its complement V^c is open.

5. When are two sets A and B said to have cardinality $\#A \leq \#B$?

If there exists an injective mapping from A to B.

Chapter 3: Primary tools: Third part

1. What condition must a sequence $(a_n)_{n\in\mathbb{N}}$ satisfy to be considered convergent?

$$\exists L \in \mathbb{R}$$
 such that $orall \epsilon > 0$, $\exists N$ with $|a_n - L| < \epsilon$ for $n \geq N$.

2. If a sequence $(a_n)_{n\in\mathbb{N}}$ is convergent, what can be concluded about its boundedness?

All convergent sequences are bounded.

3. Let (a_n) and (b_n) be two convergent sequences with limits a and b. What is $\lim (a_n b_n)$?

ab.

4. Define divergence to ∞ for a sequence $(a_n)_{n\in\mathbb{N}}$.

$$\forall M>0,\,\exists N ext{ such that } a_n>M ext{ for } n\geq N.$$

5. State the Bolzano-Weierstrass theorem.

Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Chapter 4: Measurable spaces

1. What is the smallest σ -field on a nonempty set Ω ?

$$\{\emptyset,\Omega\}.$$

2. Show that if $\{A_i\}\subset \mathcal{F}$, then $\cap_i A_i\in \mathcal{F}$.

By De Morgan's: $\cap_i A_i = (\cup_i A_i^c)^c \in \mathcal{F}.$

3. Can $G=\{A\subset\Omega:A ext{ finite or } A^c ext{ finite}\}$ be a σ -field if Ω infinite?

No, because infinite unions of finite sets may not be in G.

4. Define $\mathcal{B}(\mathbb{R})$.

The σ -field generated by $\{(a, b] : a < b\}$.

5. Define $\sigma(f)$ where f:X o Y.

$$\sigma(f) = \{f^{-1}(B) : B \in \mathcal{B}\}.$$

Chapter 5: Measure spaces

1. Define the Dirac measure δ_x .

$$\delta_x(A)=1$$
 if $x\in A$, else 0 .

2. If $A\subset B$ and $\mu(A)<\infty$, what is $\mu(B\setminus A)$?

$$\mu(B) - \mu(A)$$
.

3. State the relationship between $\mu(A \cup B)$ and $\mu(A) + \mu(B)$.

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).$$

4. For nested sets A_i , what is $\mu(\cup_i A_i)$?

 $\lim_n \mu(A_n)$ (continuity from below).

5. Is $\{(a,b]\} \cup \{\emptyset\}$ a semiring?

Yes, because intersection of two left-open intervals satisfies semiring properties.

Chapter 6: From outer measure to measure

1. State Lebesgue measure λ on (a,b].

$$\lambda((a,b]) = b - a.$$

2. What is $\ell^*(\{a\})$?

0 (singletons are null sets).

3. Is outer measure μ^* finitely additive?

No, only countably subadditive.

4. Are there non-Lebesgue measurable sets?

Yes (Vitali sets exist under AC).

5. When is measure unique?

Chapter 7: Measurable functions

1. Define Borel function $f: \mathbb{R}^m o \mathbb{R}^k$.

Preimages of Borel sets are Borel.

2. Sufficient condition for measurability?

$$f^{-1}((-\infty,a])\in \mathcal{F}$$
 for all $a\in \mathbb{R}.$

3. Measurability of composition $g(f_1,...,f_k)$?

It remains measurable.

4. Define f^+ and f^- .

$$f^+ = \max(f,0), f^- = \max(-f,0).$$

 ${f 5.}$ Can any measurable ${f f}$ be approximated by simple functions?

Yes, via
$$f_n = \sum_{k=-n2^n}^{n2^n} k2^{-n} 1_{\{k2^{-n} \le f < (k+1)2^{-n}\}}.$$

Chapter 8: Integration: First part

1. Monotonicity of integral:

$$\int f d\mu \leq \int g d\mu.$$

2. Monotone Convergence Theorem:

If
$$f_n \uparrow f$$
, then $\int f_n d\mu \uparrow \int f d\mu$.

3. Linearity of integral:

$$\int (lpha f + eta g) d\mu = lpha \int f d\mu + eta \int g d\mu.$$

4. Integral over null set:

0 (since μ -a.e. equal to 0).

5. Integral with respect to sum measure:

$$\int fd(\sum_i \mu_i) = \sum_i \int fd\mu_i$$
.

Chapter 9: Integration: Second part

1. Integral with density ϕ :

$$\int_A f(\omega)\phi(\omega)\mu(d\omega).$$

2. Lebesgue integrability:

When both $\int_E f^+ d\lambda$ and $\int_E f^- d\lambda$ are finite.

3. Integration by parts:

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g.$$

4. Even function integral:

$$\int_{-a}^{a} f = 2 \int_{0}^{a} f.$$

5. Product σ-field:

$$\sigma(\{A \times B : A \in \mathcal{X}, B \in \mathcal{Y}\}).$$

Chapter 10: General probability

1. Law of random vector X:

$$P_X(B) = P(X \in B).$$

2. Discrete law:

$$P_X = \sum_{x \in E} P(X = x) \delta_x.$$

3. Classical discrete distributions:

Bernoulli and Poisson.

4. Expectation of continuous X:

$$E[X] = \int_{-\infty}^{\infty} x \phi(x) dx.$$

5. Properties of variance:

i.
$$\operatorname{Var}(X) \geq 0$$

ii.
$$Var(aX + b) = a^2Var(X)$$

ii.
$$\operatorname{Var}(aX+b)=a^2\operatorname{Var}(X)$$
 iii. $\operatorname{Var}(X)=E[X^2]-E[X]^2$

Chapter 11: Random vectors

1. Independent vectors:

$$P_X = \otimes_{i=1}^n P_{X_i}$$
 (product measure).

2. Covariance of independent variables:

3. PDF of sum:

$$\phi_{X_1+X_2} = \phi_1 * \phi_2$$
 (convolution).

4. Gauss vector:

$$X$$
 where $\langle v, X
angle$ is Gaussian $orall v.$

5. Characteristic function:

$$\Phi_X(v) = \exp(i\langle \mu, v
angle - rac{1}{2} v^T \Sigma v).$$

Chapter 12: Convergence

1. Almost sure convergence:

$$P(\lim_n X_n = X) = 1.$$

2. limsup of events:

$$\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_k$$
 ("infinitely often").

3. a.s. implies in probability?

Yes.

4. Does convergence in probability imply a.s. of subsequence?

Yes (via Bolzano-Weierstrass argument).

5. L^1 convergence condition:

When dominated by integrable Y ($|X_n| \leq Y$).