The MOSEK optimization toolbox for MATLAB manual. Version 6.0 (Revision 137).

Published by MOSEK ApS, Denmark.

Copyright (c) 1998-2012 MOSEK ApS, Denmark. All rights reserved...

Disclaimer: MOSEK ApS (the author of MOSEK) accepts no responsibility for damages resulting from the use of the MOSEK software and makes no warranty, neither expressed nor implied, including, but not limited to, any implied warranty of fitness for a particular purpose. The software is provided as it is, and you, its user, assume all risks when using it.

Contact information

Phone +45 3917 9907 Fax +45 3917 9823

WEB http://www.mosek.com

Email sales@mosek.com Sales, pricing, and licensing.

support@mosek.com
info@mosek.com
Technical support, questions and bug reports.
Everything else.

Mail MOSEK ApS

C/O Symbion Science Park Fruebjergvej 3, Box 16 2100 Copenhagen \emptyset

Denmark

Contents

1	Cha	anges and new features in MOSEK 3
	1.1	Compilers used to build MOSEK
	1.2	General changes
	1.3	Optimizers
		1.3.1 Interior point optimizer
		1.3.2 The simplex optimizers
		1.3.3 Mixed-integer optimizer
	1.4	API changes
	1.5	<u>License system</u>
	1.6	Other changes
	1.7	<u>Interfaces</u>
	1.8	Platform changes
2	Intr	roduction 7
	2.1	What is optimization?
	2.2	Why you need the MOSEK optimization toolbox
		2.2.1 Features of the MOSEK optimization toolbox
	2.3	Comparison with the MATLAB optimization toolbox
3	Sup	oported MATLAB versions 11
4	Inst	tallation 13
	4.1	Locating the toolbox functions
		4.1.1 On Windows
		4.1.2 On Linux/UNIX/MAC OS X
		4.1.3 Permanently changing matlabpath
	4.2	Verifying that MOSEK works
	4.3	<u>Troubleshooting</u>
		4.3.1 ???? Undefined function or variable 'mosekopt'
		4.3.2 "libgcc_s.so.1 must be installed for pthread_cancel to work" 16
		4.3.3 Using the MATLAB compiler

vi CONTENTS

		4.3.4 Shadowing the m-file	
5			9
	5.1	MOSEK documentation	
	5.2	Additional reading	.9
6	MO	SEK / MATLAB integration 2	1
	6.1	MOSEK replacements for MATLAB functions	21
	6.2	The license system	21
		6.2.1 Waiting for a free license	22
7	A g	uided tour 2	23
	7.1	Introduction	23
	7.2	The tour starts	23
	7.3	The MOSEK terminolgy	24
	7.4	Linear optimization	24
		7.4.1 Using msklpopt	25
		7.4.2 Using mosekopt	26
	7.5	Convex quadratic optimization	27
		7.5.1 Two important assumptions	28
		7.5.2 Using mskqpopt	28
		7.5.3 Using mosekopt	29
	7.6	Conic optimization	30
			30
			31
		•	33
		· ·	34
			36
	7.7	• •	36
	7.8	*	37
			37
		· ·	39
			10
	7.9		11
			15
	7.10	10 1	16
		0 1	16
	7.11	•	17
		9 61 1	18
		7.11.2 Comments	19

CONTENTS	V	ii

CONTENTS						
	7.12	Separable convex optimization	50			
		7.12.1 Using mskscopt	51			
	7.13	Mixed-integer optimization	53			
		7.13.1 Solving an example	54			
		7.13.2 Speeding up the solution of a mixed-integer problem	55			
	7.14	Sensitivity analysis	57			
	7.15	Inspecting a problem	59			
	7.16	The solutions	61			
		7.16.1 The constraint and variable status keys	62			
	7.17	Viewing the task information	62			
	7.18	Inspecting and setting parameters	63			
	7.19	Advanced start (hot-start)	64			
		7.19.1 Some examples using hot-start	64			
		7.19.2 Adding a new variable	65			
		7.19.3 Fixing a variable	66			
		7.19.4 Adding a new constraint	66			
		7.19.5 Using numeric values to represent status key codes	67			
	7.20	Using names	69			
		7.20.1 Blanks in names	69			
	7.21	MPS files	69			
		7.21.1 Reading an MPS file	69			
		7.21.2 Writing a MPS files	70			
	7.22	User call-back functions	71			
		7.22.1 Log printing via call-back function	71			
		7.22.2 The iteration call-back function	72			
	7.23	The license system	73			
8	Con	mmand reference				
	8.1	Data structures	75			
		8.1.1 prob	75			
		8.1.2 names	80			
		8.1.3 cones	80			
		8.1.4 sol	81			
		8.1.5 prisen	81			
		8.1.6 duasen	82			
		8.1.7 info	83			
		8.1.8 symbcon	83			
		8.1.9 callback	83			
	8.2	An example of a command reference	83			
	8.3	Functions provided by the MOSEK optimization toolbox	84			
	8.4	MATLAB optimization toolbox compatible functions	88			

viii CONTENTS

		8.4.1	Linear and quadratic optimization
		8.4.2	For linear least squares problems
		8.4.3	The optimization options
9	Case	\mathbf{e} studi	ies 97
	9.1	Robus	t linear optimization
		9.1.1	Introductory example
		9.1.2	Data uncertainty and its consequences
		9.1.3	Robust linear optimization methodology
		9.1.4	Random uncertainty and ellipsoidal robust counterpart
		9.1.5	Further references
	9.2	Geome	etric (posynomial) optimization
		9.2.1	The problem
		9.2.2	Applications
		9.2.3	Modeling tricks
		9.2.4	Problematic formulations
		9.2.5	An example
		9.2.6	Solving the example
		9.2.7	Exporting to a file
		9.2.8	Further information
10	Mod	delling	121
		_	optimization
			Duality for linear optimization
			Primal and dual infeasible case
	10.2		atic and quadratically constrained optimization
		-	A general recommendation
			Reformulating as a separable quadratic problem
	10.3		optimization
			Duality for conic optimization
			Infeasibility
			·
		10.3.3	Examples $\dots \dots \dots$
			Examples
	10.4	10.3.4	Potential pitfalls in conic optimization
	10.4	10.3.4 Nonlin	Potential pitfalls in conic optimization
		10.3.4 Nonlin 10.4.1	Potential pitfalls in conic optimization
		10.3.4 Nonlin 10.4.1 Recom	Potential pitfalls in conic optimization
	10.5	10.3.4 Nonlin 10.4.1 Recom 10.5.1	Potential pitfalls in conic optimization
	10.5	10.3.4 Nonlin 10.4.1 Recom 10.5.1 Examp	Potential pitfalls in conic optimization

CONTENTS ix

11	The	optimizers for continuous problems	147
	11.1	How an optimizer works	. 147
		11.1.1 Presolve	. 147
		11.1.2 Dualizer	. 149
		11.1.3 Scaling	. 149
		11.1.4 Using multiple CPU's	. 150
	11.2	Linear optimization	. 150
		11.2.1 Optimizer selection	. 150
		11.2.2 The interior-point optimizer	. 150
		11.2.3 The simplex based optimizer	. 155
		11.2.4 The interior-point or the simplex optimizer?	. 157
		11.2.5 The primal or the dual simplex variant?	. 157
	11.3	Linear network optimization	. 157
		11.3.1 Network flow problems	. 157
		11.3.2 Embedded network problems	. 158
	11.4	Conic optimization	. 158
		11.4.1 The interior-point optimizer	. 158
	11.5	Nonlinear convex optimization	. 159
		11.5.1 The interior-point optimizer	. 159
	11.6	Solving problems in parallel	. 160
		11.6.1 Thread safety	. 160
		11.6.2 The parallelized interior-point optimizer	. 161
		11.6.3 The concurrent optimizer	. 161
	11.7	Understanding solution quality	. 162
		11.7.1 The solution summary	. 162
12	The	optimizer for mixed integer problems	165
	12.1	Some notation	. 165
	12.2	An important fact about integer optimization problems	. 166
	12.3	How the integer optimizer works	. 166
		12.3.1 Presolve	. 167
		12.3.2 Heuristic	. 167
		12.3.3 The optimization phase	. 167
	12.4	Termination criterion	. 167
	12.5	How to speed up the solution process	. 169
	12.6	Understanding solution quality	. 169
		12.6.1 Solutionsummary	. 169

X CONTENTS

13	The	analy	zers	171
	13.1	The pr	coblem analyzer	. 171
		13.1.1	General characteristics	. 173
		13.1.2	Objective	. 174
		13.1.3	Linear constraints	. 174
		13.1.4	Constraint and variable bounds	. 175
		13.1.5	Quadratic constraints	. 175
		13.1.6	Conic constraints	. 175
	13.2	Analyz	zing infeasible problems	. 175
		13.2.1	Example: Primal infeasibility	. 176
		13.2.2	Locating the cause of primal infeasibility	. 177
		13.2.3	Locating the cause of dual infeasibility	. 178
		13.2.4	The infeasibility report	. 178
			Theory concerning infeasible problems	
			The certificate of primal infeasibility	
		13.2.7	The certificate of dual infeasibility	. 183
14	Sons	sitivity	analysis	185
		•	$\operatorname{uction} \dots \dots \dots \dots \dots$	
			ctions	
			nces	
			vity analysis for linear problems	
	11.1		The optimal objective value function	
			The basis type sensitivity analysis	
			The optimal partition type sensitivity analysis	
			An example	
	14.5		ivity analysis in the MATLAB toolbox	
			On bounds	
			Selecting analysis type	
			An example	
A	The	MDC	file format	199
A			IPS file format	
	Л.1	A.1.1	An example	
		A.1.1 A.1.2	NAME	
		A.1.2 A.1.3	OBJSENSE (optional)	
		A.1.4	OBJNAME (optional)	
		A.1.4 A.1.5	ROWS	
		A.1.6	COLUMNS	
		A.1.7	RHS (optional)	
			RANGES (optional)	

CONTENTS xi

		A.1.9	QSECTION (optional)	205
		A.1.10	BOUNDS (optional)	206
		A.1.11	CSECTION (optional)	207
		A.1.12	ENDATA	209
	A.2	Integer	r variables	210
	A.3	Genera	al limitations	210
	A.4	Interp	retation of the MPS format	211
	A.5	The fr	ee MPS format	211
\mathbf{B}	The	LP fil	e format	2 13
	B.1	A warı	n <mark>ing</mark>	213
	B.2	The L	P file format	213
		B.2.1	The sections	214
		B.2.2	LP format peculiarities	218
		B.2.3	The strict LP format	219
		B.2.4	Formatting of an LP file	219
\mathbf{C}	The	OPF	format	221
			ed use	
			e format	
	0.2		Sections	
			Numbers	
			Names	
	C.3		eters section	
			g OPF files from MOSEK	
	0.0	-	Linear example lol.opf	
			Quadratic example qo1.opf	
			Conic quadratic example cqo1.opf	
			Mixed integer example milo1.opf	
D	Tho	XMI.	(OSiL) format	233
\mathbf{E}		ameter		235
	E.1		eter groups	
		E.1.1	Logging parameters	
		E.1.2	Basis identification parameters	
		E.1.3	The Interior-point method parameters	
		E.1.4	Simplex optimizer parameters	
		E.1.5	Primal simplex optimizer parameters	
		E.1.6	Dual simplex optimizer parameters	243

xii CONTENTS

		E.1.7 Network simplex optimizer parameters
		E.1.8 Nonlinear convex method parameters
		E.1.9 The conic interior-point method parameters
		E.1.10 The mixed-integer optimization parameters
		E.1.11 Presolve parameters
		E.1.12 Termination criterion parameters
		E.1.13 Progress call-back parameters
		E.1.14 Non-convex solver parameters
		E.1.15 Feasibility repair parameters
		E.1.16 Optimization system parameters
		E.1.17 Output information parameters
		± 1.18 Extra information about the optimization problem
		$\Xi.1.19$ Overall solver parameters
		E.1.20 Behavior of the optimization task
		E.1.21 Data input/output parameters
		E.1.22 Analysis parameters
		E.1.23 Solution input/output parameters
		E.1.24 Infeasibility report parameters
		± 1.25 License manager parameters
		E.1.26 Data check parameters
		E.1.27 Debugging parameters
	E.2	Double parameters
	E.3	Integer parameters
	E.4	String parameter types
.	a	1
\mathbf{F}	•	polic constants 385
		Constraint or variable access modes
		Function opcode
		Function operand type
		Basis identification 380 Bound keys 380
		Specifies the branching direction
	F.8	Progress call-back codes
	F.9	Compression types
		Cone types
		<i>V</i> 1
		Data format types
		Double parameters
	G1. 1	Feasibility repair types

CONTENTS	xiii
ONTENTS	X111

F.16 License feature
F.17 Integer information items
F.18 Information item types
F.19 Input/output modes
F.20 Integer parameters
F.21 Language selection constants
F.22 Long integer information items
F.23 Mark
F.24 Continuous mixed-integer solution type
F.25 Integer restrictions
F.26 Mixed-integer node selection types
F.27 MPS file format type
F.28 Message keys
F.29 Network detection method
F.30 Objective sense types
F.31 On/off
F.32 Optimizer types
F.33 Ordering strategies
F.34 Parameter type
F.35 Presolve method
F.36 Problem data items
F.37 Problem types
F.38 Problem status keys
F.39 Interpretation of quadratic terms in MPS files
F.40 Response codes
F.41 Response code type
F.42 Scaling type
F.43 Scaling type
F.44 Sensitivity types
F.45 Degeneracy strategies
F.46 Exploit duplicate columns
F.47 Hot-start type employed by the simplex optimizer
F.48 Problem reformulation
F.49 Simplex selection strategy
F.50 Solution items
F.51 Solution status keys
F.52 Solution types
F.53 Solve primal or dual form
F.54 String parameter types
F.55 Status keys
F.56 Starting point types

•	
XIV	CONTENTS

	F.57 Stream types
	F.58 Integer values
	F.59 Variable types
	F.60 XML writer output mode
\mathbf{G}	Problem analyzer examples 477
G	Problem analyzer examples 477 G.1 air04
G	· · · · · · · · · · · · · · · · · · ·
G	G.1 air04

License agreement

Before using the MOSEK software, please read the license agreement available in the distribution at

mosek\6\license.pdf

2 CONTENTS

Changes and new features in MOSEK

The section presents improvements and new features added to MOSEK in version 6.0.

1.1 Compilers used to build MOSEK

MOSEK has been build with the compiler shown in Table 1.1.

Platform	C compiler
linux32x86	Intel C 11.0 (gcc 4.3, glibc 2.3.4)
linux64x86	Intel C 11.0 (gcc 4.3, glibc 2.3.4)
osx32x86	Intel C 11.1 (gcc 4.0)
osx64x86	Intel C 11.1 (gcc 4.0)
solaris32x86	Sun Studio 12
solaris 64x86	Sun Studio 12
win32x86	Intel C 11.0 (VS 2005)
win64x86	Intel C 11.0 (VS 2005)

Table 1.1: Compiler version used to build MOSEK

.

1.2 General changes

• A problem analyzer is now available. It generates an simple report with of statistics and information about the optimization problem and relevant warnings about the problem formulation are included.

- A solution analyzer is now available.
- All timing measures are now wall clock times
- MOSEK employs version 1.2.3 of the zlib library.
- MOSEK employs version 11.6.1 of the FLEXnet licensing tools.
- The convexity of quadratic and quadratic constrained optimization is checked explicitly.
- On Windows all DLLs and EXEs are now signed.
- On all platforms the Jar files are signed.
- MOSEK no longer deals with ctrl-c. The user is responsible for terminating MOSEK in the callback.

1.3 Optimizers

1.3.1 Interior point optimizer

- The speed and stability of interior-point optimizer for linear problems has been improved.
- The speed and stability of the interior-point optimizer for conic problems has been improved. In particular, it is much better at dealing with primal or dual infeasible problems.

1.3.2 The simplex optimizers

• Presolve is now much more effective for simplex optimizers hot-starts.

1.3.3 Mixed-integer optimizer

• The stopping criteria for the mixed-integer optimizer have been changed to conform better with industry standards.

1.4 API changes

- The Mosek/Java API is now built for SUN Java 1.5 and later.
- The Mosek/.NET API is now built for MS .NET 2.0 and later.
- The Mosek/Python API is now based on Python CTypes and uses NumPy instead of Numeric. Python 2.5 and later is supported on all platforms where the ctypes module is available.

1.5 License system

- The license conditions have been relaxed, so that a license is shared among all tasks using a single environment. This means that running several optimizations in parallel will only consume one license, as long as the associated tasks share a single MOSEK environment. Please note this is NOT useful when using the MATLAB parallel toolbox.
- By default a license remains checked out for the lifetime of the environment. This behavior can be changed using the parameter MSK_IPAR_CACHE_LICENSE.
- Flexlm has been upgraded to version 11.6 from version 11.4.

1.6 Other changes

• The documentation has been improved.

1.7 Interfaces

- The AMPL interface has been augmented so it is possible to pass an initial (feasible) integer solution to mixed-integer optimizer.
- The AMPL interface is now capable of reading the constraint and variable names if they are avialable.

1.8 Platform changes

- MAC OSX on the PowerPC platform is no longer supported.
- Solaris on the SPARC platform is no longer supported.
- MAC OSX is supported on Intel 64 bit X86 i.e. osx64x86.
- Add support for MATLAB R2009b.

Introduction

This manual describes the features of the MOSEK optimization toolbox for MATLAB. The toolbox makes it possible to call the highly efficient MOSEK optimization engine from the MATLAB environment.

2.1 What is optimization?

Many decision problems facing individuals and companies can be cast as an optimization problem i.e. making an optimal decision given some constraints specifying the possible decisions. As an example consider the problem of determining an optimal production plan. This can be formulated as maximizing a profit function given a set of constraints specifying the possible production plans.

2.2 Why you need the MOSEK optimization toolbox

Before solving an optimization problem data is gathered and prepared. Subsequently an optimization problem is formulated based on this data and the problem is communicated to the optimization software. Finally, when the results have been obtained, they are analyzed and interpreted. A popular software tool for these tasks is MATLAB¹. The MOSEK optimization toolbox provides an industrial strength solver capable of solving huge problems that other less specialized MATLAB packages can't solve.

2.2.1 Features of the MOSEK optimization toolbox

Below is a partial list of features in the MOSEK optimization toolbox.

• Solve linear optimization problems using either an interior-point or a simplex optimizer.

¹MATLAB is made by MathWorks, see http://www.mathworks.com.

- Solve convex quadratic optimization problems.
- Handle convex quadratic constraints.
- Solve conic quadratic optimization problems.
- Solve mixed-integer linear optimization problems.
- Solve linear least squares problems. The problem can have arbitrary linear side constraints.
- Solve linear ℓ_1 and ℓ_{∞} norm minimization problems.
- Solve linearly constrained entropy optimization problems.
- Solve geometric programming problems (posynomial programming).
- Solve separable convex optimization problems.
- Read and write industry standard MPS files.

2.3 Comparison with the MATLAB optimization toolbox

MathWorks, the maker of MATLAB, also sells an optimization toolbox so an obvious question is how these two products compares on the following issues²:

Problem types: The MOSEK optimization toolbox can solve only **convex** optimization problems whereas the MATLAB toolbox handles nonconvex problems too.

On the other hand the MOSEK optimization toolbox can solve linear, quadratic and conic mixed-integer optimization problems which is not possible using the MATLAB optimization toolbox.

Algorithms: The emphasize of the MOSEK optimization toolbox is on large-scale and sparse problems. MOSEK offers only large-scale algorithms, but these algorithms perform very well for small and medium-sized problems too.

The main computational engine within the MOSEK optimization toolbox is a primal-dual type interior-point algorithm which has been demonstrated to be very well-suited for solving large-scale problems. Particularly when the algorithm is implemented using state-of-the-art (sparse) linear algebra as is the case for the MOSEK optimization toolbox. Readers interested in further details are referred to [4].

Furthermore, a primal and a dual simplex optimizer is available for linear problems.

²This is based on version 2 of the MATLAB optimization toolbox.

Compatibility: The MOSEK optimization toolbox for MATLAB includes the following functions

- linprog
- lsqlin
- lsqnonneg
- optimget
- optimset
- quadprog

which are also available in the MATLAB optimization toolbox. Moreover, these functions are compatible with the MATLAB functions of the same name in the sense that they accept the same arguments and return the same information.

The only differences between the functionality of the MOSEK and the MATLAB version of these functions are that the MOSEK version does not use all the MATLAB options, does not use an optional starting point³, and the MOSEK version of quadprog is intended for convex problems only. On the other hand the large-scale version of the MATLAB optimization toolbox does not accept arbitrary bounds and linear side constraints for quadratic problems whereas MOSEK does.

In general, for problems that both the MATLAB and the MOSEK optimization toolboxes handles, MOSEK delivers better reliability and performance.

³The large-scale linear programming optimizer in MATLAB does not use an optional starting point either.

Supported MATLAB versions

Table 3.1 shows on which platforms and for which MATLAB versions the MOSEK optimization toolbox is available.

Platform	MATLAB version	
type	R2006B-R2009A	R2009b
linux32x86	Yes	Yes
linux64x86	Yes	Yes
osx32x86	Yes	Yes
osx64x86		Yes
solaris32x86		
solaris64x86		
win32x86	Yes	Yes
win64x86	Yes	Yes

Table 3.1: Supported MATLAB versions.

Installation

In order to use the MOSEK optimization toolbox for MATLAB, you must install the MOSEK optimization tools. Please see Chapter 2 in the MOSEK installation manual for details on how to install MOSEK. An online version is available at

http://www.mosek.com/documentation/

4.1 Locating the toolbox functions

By default MATLAB cannot locate the MOSEK optimization toolbox functions. Therefore you must execute the addpath command within MATLAB to change the so-called matlabpath appropriately. Indeed matlabpath should include a path to the MOSEK optimization toolbox functions. The next subsections show how to use addpath.

4.1.1 On Windows

If you are using Windows you should do

% For MATLAB 7.9 (R2009b) or any later version do addpath 'c:\Program Files\mosek\6\toolbox\r2009b'

% For MATLAB 7.4 (R2007a) to MATLAB 7.8 (R2009a) addpath 'c:\Program Files\mosek\6\toolbox\r2007a'

% For MATLAB 7.3 (R2006b) do
addpath 'c:\Program Files\mosek\6\toolbox\r2006b'

This assumes that you installed MOSEK at

c:\Program Files\

If this is not the case, you will have to change the path given to addpath.

4.1.2 On Linux/UNIX/MAC OS X

If you are using UNIX or a UNIX-like operating system you should do

% For MATLAB 7.9 (R2009b) or any later version do addpath '/home/user/mosek/6/toolbox/r2009b'

% For MATLAB 7.4 (R2007a) to MATLAB 7.8 (R2009a) addpath '/home/user/mosek/6/toolbox/r2007a'

% For MATLAB 7.3 (R2006b)

addpath '/home/user/mosek/6/toolbox/r2006b'

This assumes that MOSEK is installed at

/home/user

If this is not the case, you will have to change the path given to addpath.

4.1.3 Permanently changing matlabpath

Normally, you will have to enter the addpath command every time MATLAB is started. This can be avoided if the addpath command is added to

<matlab>toolbox\local\startup.m

where <matlab> is the MATLAB root directory. Alternatively the permanent modification of the MATLAB path can be performed using the

\File\Set Path

menu item.

4.2 Verifying that MOSEK works

You can verify that MOSEK works by executing

mosekopt

in MATLAB. You should get a message similar to this:

MOSEK Version 3.1.1.62 (Build date: Dec 16 2004 11:49:51)
Copyright (c) 1998-2004 MOSEK ApS, Denmark. WWW: http://www.mosek.com

MOSEK command summary.

[r,res]=mosekopt(cmd,prob,param,log)

If you do not get this message, please read Section 4.3.

4.3 Troubleshooting

4.3.1 ??? Undefined function or variable 'mosekopt'

If you get the MATLAB error message

??? Undefined function or variable 'mosekopt'

you have not set up the matlabpath correctly as described in Section 4.1.

4.3.1.1 Unable to load MEX-file

One reason can be that you are not adding the correct path to the matlabpath, e.g. you may be trying to use the MOSEK optimization toolbox build for MATLAB 7 in MATLAB 6.

The other possible reasons are discussed below.

• Windows: MATLAB prints an error message similar to this:

```
DLL load failed for mex file c:\mosek\3\tools\toolbox\14sp3\mosekopt.dll The specified procedure could not be found. ??? Invalid MEX-file
```

Most likely this problem is caused by the fact that MOSEK cannot load the MOSEK DLL which in turn is caused by the environment variable

PATH

not being appropriately set up.

Please consult the *MOSEK installation manual* to learn how to install MOSEK under Windows and how to set up the operating system variable PATH.

• MAC OS X: The DYLD_LIBRARY_PATH environment variable is not appropriately set up. Setting this variable can be tricky, in particular if you are invoking MATLAB by clicking on the MATLAB icon. In this case a file named

```
$HOME/.MacOSX/environment.plist
```

with a proper content should exist on your computer. Further details about environment.plist and how to install MOSEK under MAC OS X are available in the MOSEK installation manual.

• UNIX: MATLAB prints an error message similar to this:

Unable to load mex file:

/usr/local/mosek/4/toolbox/14sp3/mosekopt.mexglx.

libmosek.so.2.5: cannot open shared object file: No such file or directory ??? Invalid MEX-file

The cause of the problem is that the shared library

libmosek.so.2.5

cannot be loaded. Normally this problem is caused by the fact that the OS environment variable

LD_LIBRARY_PATH

is not appropriately set up. Please note that LD_LIBRARY_PATH may have another name on some UNIX systems. Please consult the *MOSEK installation manual* to learn how to install MOSEK under UNIX.

4.3.2 "libgcc_s.so.1 must be installed for pthread_cancel to work"

This error is caused by the fact that an old version of the

libgcc_s.so.1

library is included in the MATLAB distribution. One method of solving this is to execute

export LD_PRELOAD=/usr/lib/libgcc_s.so

before running MATLAB.

Another workaround is to remove libgcc_s.so.1 from the MATLAB distribution. We suggest you rename

<matlab>sys/os/glnx86/libgcc_s.so.1

to

<matlab>sys/os/glnx86/BACKUP_libgcc_s.so.1.bak

which should solve the problem.

4.3.3 Using the MATLAB compiler

MATLAB scripts using MOSEK can be compiled with the MATLAB compiler. Below is a description of some possible errors and their solution.

4.3.4 Shadowing the m-file

If you encounter the error

The file

'/tools/mosek/4/toolbox/r14sp3/mosekopt.mexglx'
appears to be a MEX-file. It shadows the M-file
'/tools/mosek/4/toolbox/r14sp3/mosekopt.m'

but will not execute properly at runtime, as it does not export a function named 'mexFunction.'

??? Error executing mcc, return status = 1.

when compiling a MATLAB script using MOSEK, you must delete

c:\mosek\6\toolbox\<MATLABVERSION>\mosekopt.m

This should fix the compile error.

4.3.5 "Cannot find authentication file"

If you encounter the error

Cannot find authentication file
'C:\mosek\4\toolbox\r2006b\mosekopt_mexw32.auth'.

??? Invalid MEX-file 'C:\mosek\4\toolbox\r2006b\mosekopt.mexw32': .

Try to remove any addpath commands from your code when compiling. Instead, specify the location of the MOSEK files with

-I $c:\mosek\4\toolbox\r2006b$

in the compile command.

Getting support and help

5.1 MOSEK documentation

For an overview of the available MOSEK documentation please see ${\tt mosek\6\help\index.html}$

in the distribution.

5.2 Additional reading

In this manual it is assumed that the reader is familiar with mathematics and in particular mathematical optimization. Some introduction to linear programming is found in books such as "Linear programming" by Chvátal [16] or "Computer Solution of Linear Programs" by Nazareth [21]. For more theoretical aspects see e.g. "Nonlinear programming: Theory and algorithms" by Bazaraa, Shetty, and Sherali [11]. Finally, the book "Model building in mathematical programming" by Williams [25] provides an excellent introduction to modeling issues in optimization.

Another useful resource is "Mathematical Programming Glossary" available at http://glossary.computing.society.informs.org

MOSEK / MATLAB integration

In this chapter we provide some details concerning the integration of MOSEK in MATLAB. The information in this chapter is not strictly necessary for basic use of the MOSEK optimization toolbox for MATLAB. The novice user can safely ok to the next chapter.

6.1 MOSEK replacements for MATLAB functions

MOSEK provides replacements for the MATLAB functions:

- linprog
- quadprog
- optimget
- optimset
- lsqlin
- lsqnonneg

The corresponding MATLAB file for each function is located in the toolbox/solvers directory of the MOSEK distribution. To use the MATLAB version of these functions instead of the MOSEK version, delete the MATLAB files provided by MOSEK.

6.2 The license system

By default a license token remains checked out for the duration of the MATLAB session. This can be changed such that the license is returned after each call to MOSEK by setting the parameter MSK_IPAR_CACHE_LICENSE.

```
param.MSK_IPAR_CACHE_LICENSE = 'MSK_OFF'; %set parameter.
[r,res] = mosekopt('minimize',prob,param); %call mosek.
```

It should however be noted that there is a small overhead associated with checking out a license token from the license server.

6.2.1 Waiting for a free license

By default an error will be returned if no license token is available. By setting the parameter MSK_IPAR_LICENSE_WAIT MOSEK can be instructed to wait until a license token is available.

```
param.MSK_IPAR_LICENSE_WAIT = 'MSK_ON'; %set parameter.
[r,res] = mosekopt('minimize',prob,param); %call mosek.
```

Chapter 7

A guided tour

7.1 Introduction

One of the big advantages of MATLAB is that it makes it very easy to do experiments and try out things without doing a lot of programming. The MOSEK optimization toolbox has been designed with this in mind. Hence, it should be very easy to solve optimization problems using MOSEK.

Moreover, a guided tour to the optimization toolbox has been designed to introduce the toolbox by examples. After having studyied these examples, the reader should be able to solve his or her own optimization problems without much further effort. Nevertheless, for the user interested in exploiting the toolbox to the limits, a detailed discussion and command reference are provided in the following chapters.

7.2 The tour starts

The MOSEK optimization toolbox consists of two layers of functions. The procedures in the top layer are application specific functions which have an easy-to-use interface. Currently, there are five procedures in the top layer:

msklpopt Performs linear optimization.

mskqpopt Performs quadratic optimization.

mskenopt Performs entropy optimization.

mskgpopt Performs geometric optimization (posynomial case).

mskscopt Performs separable convex optimization.

The bottom layer of the MOSEK optimization toolbox consists of one procedure named mosekopt. This procedure provides a very flexible and powerful interface to the MOSEK

optimization package. However, the price for this flexibility is a more complicated calling procedure.

For compatibility with the MATLAB optimization toolbox MOSEK also provides an implementation of linprog, quadprog and so forth. For details about these functions we refer the reader to Chapter 8.

In the following sections usage of the MOSEK optimization toolbox is demonstrated using examples. Most of these examples are available in

mosek\6\toolbox\examp\

7.3 The MOSEK terminolgy

First, some MOSEK terminology is introduced which will make the following sections easy to understand.

The MOSEK optimization toolbox can solve different classes of optimization problems such as linear, quadratic, conic, and mixed-integer optimization problems. Each of these problems is solved by one of the optimizers in MOSEK. Indeed MOSEK includes the following optimizers:

- Interior-point optimizer.
- Conic interior-point optimizer.
- Primal simplex optimizer.
- Mixed-integer optimizer.

Depending on the optimizer different solution types may be produced, e.g. the interiorpoint optimizers produce a general interior-point solution whereas the simplex optimizer produces a basic solution.

7.4 Linear optimization

The first example is the linear optimization problem

minimize
$$x_1 + 2x_2$$

subject to $4 \le x_1 + x_3 \le 6$,
 $1 \le x_1 + x_2$,
 $0 \le x_1, x_2, x_3$. (7.1)

7.4.1 Using msklpopt

A linear optimization problem such as (7.1) can be solved using the msklpopt function which is designed for solving the problem

minimize
$$c^T x$$

subject to $l^c \le Ax \le u^c$, $l^x \le x \le u^x$. (7.2)

 l^c and u^c are called constraint bounds whereas l^x and u^x are variable bounds.

The first step in solving the example (7.1) is to setup the data for problem (7.2) i.e. the c, A, etc. Afterwards the problem is solved using an appropriate call to msklpopt.

```
% lo1.m
      = [1 2 0];
      = [[1 0 1];[1 1 0]];
blc
      = [4 1];
buc
      = [6 inf]';
blx
      = sparse(3,1);
      = [];
bux
[res] = msklpopt(c,a,blc,buc,blx,bux);
sol
      = res.sol;
% Interior-point solution.
                 % x solution.
sol.itr.xx'
                 % Dual variables corresponding to buc.
sol.itr.sux'
                 % Dual variables corresponding to blx.
sol.itr.slx'
% Basic solution.
sol.bas.xx'
                 % x solution in basic solution.
```

Please note that

- Infinite bounds are specified using -inf and inf. Moreover, the bux = [] means that all upper bounds u^x are plus infinite.
- The [res] = msklpopt(c,a,blc,buc) call implies that the lower and upper bounds on x are minus and plus infinity respectively.
- The lines after the msklpopt call can be omitted, but the purpose of those lines is to display different parts of the solutions. The res.sol field contains one or more solutions. In this case both the interior-point solution (sol.itr) and the basic solution (sol.bas) are defined.

7.4.2 Using mosekopt

The msklpopt function is in fact just a wrapper around the real optimization routine mosekopt. Therefore, an alternative to using the msklpopt is to call mosekopt directly. In general, the syntax for a mosekopt call is

```
[rcode,res] = mosekopt(cmd,prob,param)
```

The arguments prob and param are optional. The purpose of the arguments are as follows:

cmd A string telling mosekopt what to do, e.g. 'minimize info' tells mosekopt

that the objective should be minimized and information about the optimiza-

tion should be returned.

prob A MATLAB structure specifying the problem that should be optimized.

param A MATLAB structure specifying parameters controlling the behavior of the

MOSEK optimizer. However, in general it should not be necessary to change

the parameters.

The following MATLAB commands demonstrate how to set up the prob structure for the example (7.1) and solve the problem using mosekopt:

```
% lo2.m
clear prob;
% Specify the c vector.
prob.c = [ 1 2 0];
\% Specify a in sparse format.
subi = [1 2 2 1];
subj
      = [1 1 2 3];
valij = [1.0 1.0 1.0 1.0];
prob.a = sparse(subi, subj, valij);
% Specify lower bounds of the constraints.
prob.blc = [4.0 1.0];
% Specify upper bounds of the constraints.
prob.buc = [6.0 inf]';
% Specify lower bounds of the variables.
prob.blx = sparse(3,1);
% Specify upper bounds of the variables.
prob.bux = [];  % There are no bounds.
```

```
% Perform the optimization.
[r,res] = mosekopt('minimize',prob);
% Show the optimal x solution.
res.sol.bas.xx
```

Please note that

- A MATLAB structure named prob containing all the relevant problem data is defined.
- All fields of this structure are optional except prob.a which is required to be a sparse matrix.
- Different parts of the solution can be viewed by inspecting the solution field res.sol.

7.5 Convex quadratic optimization

A frequently occurring problem type is the quadratic optimization problem which consists of minimizing a quadratic objective function subject to linear constraints. One example of such a problem is:

minimize
$$x_1^2 + 0.1x_2^2 + x_3^2 - x_1x_3 - x_2$$
 subject to $1 \le x_1 + x_2 + x_3$
$$x > 0.$$
 (7.3)

In general, a quadratic optimization problem has the form

minimize
$$\frac{1}{2}x^TQx + c^Tx$$
 subject to
$$l^c \leq Ax, \leq u^c,$$

$$l^x \leq x \leq u^x,$$

$$(7.4)$$

which for the example (7.3) implies that

$$Q = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 0.2 & 0 \\ -1 & 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \tag{7.5}$$

and that

$$l^c = 1, \quad u^c = \infty, \quad l^x = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ and } u^x = \begin{bmatrix} \infty \\ \infty \\ \infty \end{bmatrix}$$

Please note the explicit $\frac{1}{2}$ in the objective function of (7.4) which implies that diagonal elements must be doubled in Q, i.e. $Q_{11} = 2$, whereas the coefficient in (7.3) is 1 in front of x_1^2 .

7.5.1 Two important assumptions

MOSEK assumes that the Q matrix is symmetric, i.e.

$$Q = Q^T$$

and that Q is positive semi-definite. A matrix is positive semi-definite if the smallest eigenvalue of the matrix is nonnegative. An alternative statement of the positive semi-definite requirement is

$$x^T Qx > 0, \ \forall x.$$

If Q is not positive semi-definite, then MOSEK will not produce reliable results or work at all.

One way of checking whether Q is positive semi-definite is to check whether all the eigenvalues of Q are nonnegative. The MATLAB command eig computes all eigenvalues of a matrix.

7.5.2 Using mskqpopt

The subsequent MATLAB statements solve the problem (7.3) using the mskqpopt MOSEK function

```
% qo1.m
% Set up Q.
      = [[2 0 -1];[0 0.2 0];[-1 0 2]];
% Set up the linear part of the problem.
      = [0 -1 0]';
      = ones(1,3);
      = [1.0];
blc
      = [inf];
buc
blx
      = sparse(3,1);
      = [];
bux
% Optimize the problem.
[res] = mskqpopt(q,c,a,blc,buc,blx,bux);
% Show the primal solution.
res.sol.itr.xx
```

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt except that the Q matrix is included as the first argument of the call. Similarly, the solution can be inspected by viewing the res.sol field.

7.5.3 Using mosekopt

The following sequence of MATLAB commands solves the quadratic optimization example by calling mosekopt directly.

```
% qo2.m
clear prob;
% c vector.
prob.c = [0 -1 0];
% Define the data.
\ensuremath{\text{\%}} First the lower triangular part of q in the objective
\% is specified in a sparse format. The format is:
    \label{eq:Qprob} \mbox{Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4}
prob.qosubi = [ 1 3 2
                          3]';
prob.qosubj = [ 1 1 2
prob.qoval = [ 2 -1 0.2 2]';
% a, the constraint matrix
subi = ones(3,1);
subj = 1:3;
valij = ones(3,1);
prob.a = sparse(subi, subj, valij);
% Lower bounds of constraints.
prob.blc = [1.0];
% Upper bounds of constraints.
prob.buc = [inf]';
% Lower bounds of variables.
prob.blx = sparse(3,1);
% Upper bounds of variables.
prob.bux = [];  % There are no bounds.
[r,res] = mosekopt('minimize',prob);
% Display return code.
fprintf('Return code: %d\n',r);
% Display primal solution for the constraints.
res.sol.itr.xc'
% Display primal solution for the variables.
```

res.sol.itr.xx'

This sequence of commands looks much like the one that was used to solve the linear optimization example using mosekopt except that the definition of the Q matrix in prob. mosekopt requires that Q is specified in a sparse format. Indeed the vectors qosubi, qosubj, and qoval are used to specify the coefficients of Q in the objective using the principle

$$Q_{\texttt{qosubi(t)},\texttt{qosubj(t)}} = \texttt{qoval(t)}, \quad \text{for } t = 1, \dots, \text{length(qosubi)}.$$

An important observation is that due to Q being symmetric, only the lower triangular part of Q should be specified.

7.6 Conic optimization

One way of generalizing a linear optimization problem is to include a constraint of the form

$$x \in \mathcal{C}$$

in the problem definition where C is required to be a *convex cone*. The resulting class of problems is known as *conic optimization*.

MOSEK can solve a subset of all conic problems and subsequently it is demonstrated how to solve this subset using the mosekopt toolbox function.

7.6.1 The conic optimization problem

A conic optimization problem has the following form

minimize
$$c^T x + c^f$$

subject to $l^c \le Ax \le u^c$,
 $l^x \le x \le u^x$, (7.6)
 $x \in \mathcal{C}$.

where \mathcal{C} must satisfy the following requirements. Let

$$x^t \in \mathbb{R}^{n^t}, \ t = 1, \dots, k$$

be vectors comprised of parts of the decision variable vector x such that each decision variable is a member of exactly **one** x^t vector, e.g.:

$$x^1 = \left[\begin{array}{c} x_1 \\ x_4 \\ x_7 \end{array} \right] \text{ and } x^2 = \left[\begin{array}{c} x_6 \\ x_5 \\ x_3 \\ x_2 \end{array} \right].$$

Next, define

$$\mathcal{C} := \left\{ x \in \mathbb{R}^n : \ x^t \in \mathcal{C}_t, \ t = 1, 2, \dots, k \right\}$$

where C_t must have one of the following forms.

• \mathbb{R} set:

$$\mathcal{C}_t = \{ x \in \mathbb{R}^{n^t} \}.$$

• Quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\}.$$

• Rotated quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \ x_1, x_2 \ge 0 \right\}.$$

A variable is by default members of the \mathbb{R} set unless it explicitly belongs to a specific cone.

Although the cones MOSEK can handle give rise to a limited class of conic problems it includes linear, quadratic, quadratically constrained optimization, and other classes of nonlinear convex optimization problems. See Section 10.3 for a discussion.

7.6.2 Solving an example

The problem

minimize
$$x_5 + x_6$$

subject to $x_1 + x_2 + x_3 + x_4 = 1$,
 $x_1, x_2, x_3, x_4 \geq 0$,
 $x_5 \geq \sqrt{x_1^2 + x_3^2}$,
 $x_6 \geq \sqrt{x_2^2 + x_4^2}$ (7.7)

is an example of a conic quadratic optimization problem. The problem involves some linear constraints and two quadratic cones. The linear constraints are specified as if the problem was a linear problem whereas the cones are specified using a MATLAB cell array¹ named cones. cones must contain one cell per cone, where a cell must contain the two fields type and sub. type is used to specify the type of the cone and sub is used to specify the member variables of the cone.

The following MATLAB code demonstrates how to solve the example (7.7) using MOSEK.

¹If you are not familiar with the MATLAB cell array, then consult the relevant MATLAB documentation.

```
% cqo1.m
clear prob;
% Specify the non-confic part of the problem.
prob.c = [0 0 0 0 1 1];
prob.a = sparse([1 1 1 1 0 0]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [0 0 0 0 -inf -inf];
prob.bux = inf*ones(6,1);
% Specify the cones.
% Define an empty cell array names 'cones' containing one cell per cone.
prob.cones = cell(2,1);
\% The first cone is specified.
prob.cones{1}.type = 'MSK_CT_QUAD';
prob.cones{1}.sub = [5 3 1];
% The second cone is specified.
prob.cones{2}.type = 'MSK_CT_QUAD';
prob.cones{2}.sub = [6 2 4];
\mbox{\ensuremath{\%}} The field 'type' specifies the cone type, i.e. whether it is quadratic cone
\% or rotated quadratic cone. The keys for the two cone types are MSK_CT_QUAD
\% MSK_CT_RQUAD respectively.
% The field 'sub' specifies the members of the cone, i.e. the above definitions
% imply that x(5) >= sqrt(x(3)^2+x(1)^2) and x(6) * x(2) >= x(4)^2.
% Optimize the problem.
[r,res]=mosekopt('minimize',prob);
% Display the primal solution.
res.sol.itr.xx'
```

Note in partiucular that:

- No variable can be member of more than one cone. This is not serious restriction see the following section.
- The \mathbb{R} set is not specified explicitly.

7.6.3 Quadratic and conic optimization

The example

minimize
$$x_1 + x_2 + x_3$$

subject to $x_1^2 + x_2^2 + x_3^2 \le 1$, $x_1 + 0.5x_2^2 + x_3 \le 0.5$ (7.8)

is not a conic quadratic optimization problem but can easily be reformulated as such.

Indeed the first constraint is equivalent to

$$\begin{array}{rcl}
x_4 & \geq & \sqrt{x_1^2 + x_2^2 + x_3^2}, \\
x_4 & = & 1
\end{array} \tag{7.9}$$

where x_4 is a new variable. This is a quadratic cone and a linear constraint. The second constraint in (7.8) is equivalent to

$$\begin{array}{rcl} x_1 + x_3 + x_5 & = & 0.5, \\ x_2 - x_7 & = & 0, \\ x_5 & \geq & 0, \\ x_6 & = & 1, \\ x_7^2 & \leq & 2x_5x_6, \end{array}$$

because this implies that

$$x_5 \ge 0.5x_7^2 = 0.5x_2^2.$$

and that

$$x_1 + 0.5x_2^2 + x_3 \le x_1 + x_3 + x_5 = 0.5.$$

Please note that no variable can occur in more than one cone and therefore the additional constraint

$$x_2 = x_7$$

is introduced and x_7 is included in the second conic constraint instead of x_2 . Using this "trick" it is always possible to obtain a formulation where no variable occurs in more than one cone.

Therefore, the example (7.8) is equivalent to the conic quadratic optimization problem

minimize
$$x_1 + x_2 + x_3$$

subject to $x_1 + x_3 + x_5 = 0.5$,
 $x_2 - x_7 = 0$,
 $x_4 = 1$,
 $x_5 \geq 0$,
 $x_6 = 1$,
 $x_4 \geq \sqrt{x_1^2 + x_2^2 + x_3^2}$,
 $2x_5x_6 \geq x_7^2$. (7.10)

This problem can be solved using MOSEK as follows:

```
% cqo2.m
% Set up the non-conic part of the problem.
              = [];
prob
             = [1 1 1 0 0 0 0];
prob.c
             = sparse([[1 0 1 0 1 0 0];...
                         [0 1 0 0 0 0 -1]]);
prob.blc
             = [0.5 0];
prob.buc
             = [0.5 0];
             = [-inf -inf -inf 1 -inf 1 -inf];
prob.blx
                           inf 1 inf 1 inf];
prob.bux
              = [inf
                       inf
\% Set up the cone information.
prob.cones
                   = cell(2,1);
prob.cones{1}.type = 'MSK_CT_QUAD';
prob.cones{1}.sub = [4 1 2 3];
prob.cones{2}.type = 'MSK_CT_RQUAD';
prob.cones{2}.sub = [5 6 7];
[r,res]
              = mosekopt('minimize', prob);
% Display the solution.
res.sol.itr.xx'
```

7.6.4 Conic duality and the dual solution

The dual problem corresponding to the conic optimization problem (7.6) is given by

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c}$$

$$+ (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x} + c^{f}$$
subject to
$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$A^{T} y + s_{l}^{x} - s_{u}^{x} + s_{n}^{x} = c,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0,$$

$$s_{n}^{x} \in \mathcal{C}^{*}$$

$$(7.11)$$

where the dual cone C^* is defined as follows. Let (s_n^x) be partitioned similar to x, i.e. if x_j is a member of x^t , then $(s_n^x)_j$ is a member of $(s_n^x)^t$ as well. Now, the dual cone is defined by

$$C^* := \left\{ s_n^x \in \mathbb{R}^{n^t} : (s_n^x)^t \in C_t^*, \ t = 1, \dots, k \right\}$$

where the type of C_t^* is dependent on the type of C_t . For the cone types MOSEK can handle the relation between the primal and dual cones is given as follows:

• \mathbb{R} set:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} \right\} \quad \Leftrightarrow \quad C_t^* := \left\{ s \in \mathbb{R}^{n^t} : \ s = 0 \right\}.$$

• Quadratic cone:

$$C_t := \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\} \quad \Leftrightarrow \quad C_t^* = C_t.$$

• Rotated quadratic cone:

$$\mathcal{C}_t := \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \ x_1, x_2 \ge 0 \right\} \quad \Leftrightarrow \quad \mathcal{C}_t^* = \mathcal{C}_t.$$

For a more detailed discussion about conic duality see Section 10.3.

7.6.4.1 How to obtain the dual solution

When solving a conic optimization problem using MOSEK, the dual solution is available. The following MATLAB code fragment shows where the dual solution is stored.

```
% cqo3.m
[r,res] = mosekopt('minimize', prob);
% Solution record.
res.sol
% Dual variables for lower
% bounds of constraints.
res.sol.itr.slc'
% Dual variables for upper
% bounds of constraints.
res.sol.itr.suc'
% Dual variables for lower
% bounds on variables.
res.sol.itr.slx'
% Dual variables for upper
% bounds on variables.
res.sol.itr.sux'
\% Dual variables with respect
\% to the conic constraints.
res.sol.itr.snx'
```

7.6.5 Setting accuracy parameters for the conic optimizer

Three parameters control the accuracy of the solution obtained by the conic interior-point optimizer. The following example demonstrates which parameters should be reduced to obtain a more accurate solution, if required.

```
% How to change the parameters that controls
% the accuracy of a solution computed by the conic
% optimizer.

param = [];

% Primal feasibility tolerance for the primal solution
param.MSK_DPAR_INTPNT_CO_TOL_PFEAS = 1.0e-8;

% Dual feasibility tolerance for the dual solution
param.MSK_DPAR_INTPNT_CO_TOL_DFEAS = 1.0e-8;

% Relative primal-dual gap tolerance.
param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-8;

[r,res]=mosekopt('minimize',prob,param);
```

7.7 Quadratically constrained optimization

In the previous section a quadratically constrained optimization problem was solved using the conic optimizer. It is also possible to solve such a problem directly. An example of such an optimization problem is

minimize
$$x_1 + x_2 + x_3$$

subject to $x_1^2 + x_2^2 + x_3^2 \le 1$, $x_1 + 0.1x_2^2 + x_3 \le 0.5$. (7.12)

Please note that there are quadratic terms in both constraints. This problem can be solved using mosekopt as follows:

```
prob.qcval = [2.0 2.0 2.0 0.2]';

% Specify the linear constraint matrix
prob.a = [sparse(1,3); sparse([1 0 1])];

prob.buc = [1 0.5]';

[r,res] = mosekopt('minimize',prob);

% Display the solution.
fprintf('\nx:');
fprintf('\n-4e',res.sol.itr.xx');
fprintf('\n||x||: %-.4e',norm(res.sol.itr.xx));
```

Note that the quadratic terms in the constraints are specified using the fields prob.qcsubk, prob.qcsubj, and prob.qcsubj as follows

$$Q_{\texttt{qcsubi(t)},\texttt{qcsubj(t)}}^{\texttt{qcsubk(t)}} = \texttt{qcval(t)}, \quad \text{for} \quad t = 1, \dots, \text{length(qcsubk)}$$

where $\frac{1}{2}x^TQ^kx$ is the quadratic term in the kth constraint. Also note that only the lower triangular part of the Q^k s should be specified.

7.8 Linear least squares and related norm minimization problems

A frequently occurring problem in statistics and in many other areas of science is the problem

$$minimize ||Fx - b|| (7.13)$$

where F and b are a matrix and vector of appropriate dimensions. x is the vector decision variables.

Typically, the norm used is the 1-norm, the 2-norm, or the infinity norm.

7.8.1 The case of the 2 norm

Initially let us focus on the 2 norm. In this case (7.13) is identical to the quadratic optimization problem

minimize
$$1/2x^T F^T F x + 1/2b^T b - b^T F x$$
 (7.14)

in the sense that the set of optimal solutions for the two problems coincides. This fact follows from

$$||Fx - b||^2 = (Fx - b)^T (Fx - b) x^T F^T Fx + b^T b + 2b^T Fx.$$

Subsequently, it is demonstrated how the quadratic optimization problem (7.14) is solved using mosekopt. In the example the problem data is read from a file, then data for the problem (7.14) is constructed and finally the problem is solved.

```
% nrm1.m
% Read data from 'afiro.mps'.
[r,res] = mosekopt('read(afiro.mps)');
\% Get data for the problem
              minimize ||f x - b||_2
f = res.prob.a';
b = res.prob.c;
% Solve the problem
              minimize 0.5 \text{ xf'fx+} 0.5*b'*b-(f'*b)'*x
% Clear prob
clear prob;
% Compute the fixed term in the objective.
prob.cfix = 0.5*b'*b
% Create the linear objective terms
prob.c = -f'*b;
% Create the quadratic terms. Please note that only the lower triangular
% part of f'*f is used.
[prob.qosubi,prob.qosubj,prob.qoval] = find(sparse(tril(f'*f)))
% Obtain the matrix dimensions.
[m,n] = size(f);
% Specify a.
prob.a = sparse(0,n);
[r,res] = mosekopt('minimize',prob);
% The optimality conditions are f'*(f x - b) = 0.
% Check if they are satisfied:
fprintf('\nnorm(f^T(fx-b)): %e',norm(f'*(f*res.sol.itr.xx-b)));
```

Often the x variables must be within some bounds or satisfy some additional linear constraints. These requirements can easily be incorporated into the problem (7.14). E.g. the constraint $||x||_{\infty} \leq 1$ can be modeled as follows

```
% nrm2.m. Continuation of nrm1.m.
% Assume that the same objective should be
```

```
% minimized subject to -1 <= x <= 1
prob.blx = -ones(n,1);
prob.bux = ones(n,1);

[r,res] = mosekopt('minimize',prob);

% Check if the solution is feasible.
norm(res.sol.itr.xx,inf)</pre>
```

7.8.2 The case of the infinity norm

In some applications of the norm minimization problem (7.13) it is better to use the infinity norm than the 2 norm. However, the problem (7.13) stated as an infinity norm problem is equivalent to the linear optimization problem

minimize
$$\tau$$

subject to $Fx + \tau e - b \ge 0$, $Fx - \tau e - b < 0$, (7.15)

where e is the vector of ones of appropriate dimension. This implies that

$$\begin{array}{rcl} \tau e & \geq & Fx - b \\ \tau e & \geq & -(Fx - b) \end{array}$$

and hence at optimum

$$\tau^* = \|Fx^* - b\|_{\infty}$$

holds.

The problem (7.15) is straightforward to solve.

7.8.3 The case of the 1-norm

By definition, for the 1-norm we have that

$$||Fx - b||_1 = \sum_{i=1}^{m} |f_{i:}x - b_i|.$$

Therefore, the norm minimization problem can be formulated as follows

minimize
$$\sum_{i=1}^{m} t_i$$
subject to $|f_{i:}x - b_i| = t_i, \quad i = 1, \dots, m,$ (7.16)

which in turn is equivalent to

minimize
$$\sum_{i=1}^{m} t_i$$
subject to
$$f_{i:x} - b_i \leq t_i, \quad i = 1, \dots, m,$$

$$-(f_{i:x} - b_i) \leq t_i, \quad i = 1, \dots, m.$$

$$(7.17)$$

The reader should verify that this is really the case.

In matrix notation this problem can be expressed as follows

minimize
$$e^T t$$

subject to $Fx - te \leq b$, $Fx + te \geq b$, (7.18)

where $e = (1, ..., 1)^T$. Next, this problem is solved.

```
% nrm4.m. Continuation of nrm1.m.

% Let x(n:(m+n)) play the role as t. Now,
% the problem can be solved as follows

clear prob;

prob.c = [sparse(n,1) ; ones(m,1)];
prob.a = [[f,-speye(m)] ; [f,speye(m)]];
prob.blc = [-inf*ones(m,1); b];
prob.buc = [b ; inf*ones(m,1)];

[r,res] = mosekopt('minimize',prob);

% The optimal objective value is given by:
norm(f*res.sol.itr.xx(1:n)-b,1)
```

7.8.3.1 A better formulation

It is possible to improve upon the formulation of the problem (7.17). Indeed problem (7.17) is equivalent to

minimize
$$\sum_{i=1}^{m} t_{i}$$
subject to $f_{i:}x - b_{i} - t_{i} + v_{i} = 0, \quad i = 1, ..., m,$

$$-(f_{i:}x - b_{i}) - t_{i} \leq 0, \quad i = 1, ..., m,$$

$$v_{i} \geq 0, \qquad i = 1, ..., m.$$
(7.19)

After eliminating the t variables then this problem is equivalent to

minimize
$$\sum_{i=1}^{m} (f_{i:}x - b_{i} + v_{i})$$
subject to
$$-2(f_{i:}x - b_{i}) - v_{i} \leq 0, \quad i = 1, \dots, m,$$

$$v_{i} \geq 0, \quad i = 1, \dots, m.$$
(7.20)

Please note that this problem has only half the number of general constraints than problem (7.17) since we have replaced constraints of the general form

$$f_{i:}x \leq b_i$$

with simpler constraints

$$v_i > 0$$

which MOSEK treats in a special and highly efficient way. Furthermore MOSEK stores only the non-zeros in the coefficient matrix of the constraints. This implies that the problem (7.20) is likely to require much less space than the problem (7.19).

It is left as an exercise for the reader to implement this formulation in MATLAB.

7.9 More about solving linear least squares problems

Linear least squares problems with and without linear side constraints appear very frequently in practice and it is therefore important to know how such problems are solved efficiently using MOSEK.

Now, assume that the problem of interest is the linear least squares problem

minimize
$$\frac{1}{2} \|Fx - f\|_2^2$$
subject to
$$Ax = b,$$

$$l^x \le x \le u^x,$$

$$(7.21)$$

where F and A are matrices and the remaining quantities are vectors. x is the vector of decision variables. The problem (7.21) as stated is a convex quadratic optimization problem and can be solved as such.

However, if F has much fewer rows than columns then it will usually be more efficient to solve the equivalent problem

minimize
$$\frac{1}{2} \|z\|_{2}^{2}$$
subject to
$$Ax = b,$$

$$Fx - z = f,$$

$$l^{x} < x < u^{x}.$$

$$(7.22)$$

Please note that a number of new constraints and variables has been introduced which of course seems to be disadvantageous but on the other hand the Hessian of the objective in problem (7.22) is much sparser than in problem (7.21). Frequently this turns out to be more important for the computational efficiency and therefore the latter formulation is usually the better one.

If F has many more rows than columns, then formulation (7.22) is not attractive whereas the corresponding dual problem is. Using the duality theory outlined in Section 10.4.1 we obtain the dual problem

maximize
$$b^{T}y + f^{T}\bar{y} + (l^{x})^{T}s_{l}^{x} + (u^{x})^{T}s_{u}^{x} - \frac{1}{2}\|z\|_{2}^{2}$$
subject to
$$A^{T}y + F^{T}\bar{y} + s_{l}^{x} - s_{u}^{x} = 0,$$

$$z - \bar{y} = 0,$$

$$s_{l}^{x}, s_{u}^{x} > 0$$

$$(7.23)$$

which can be simplified to

maximize
$$b^{T}y + f^{T}z + (l^{x})^{T}s_{l}^{x} + (u^{x})^{T}s_{u}^{x} - \frac{1}{2}\|z\|_{2}^{2}$$
subject to
$$A^{T}y + F^{T}z + s_{l}^{x} - s_{u}^{x} = 0,$$

$$s_{l}^{x}, s_{u}^{x} \ge 0$$

$$(7.24)$$

after eliminating the \bar{y} variables. Here we use the convention that

$$l_j^x = -\infty \implies (s_l^x)_j = 0$$
 and $u_j^x = \infty \implies (s_u^x)_j = 0$.

In practice such fixed variables in s_l^x and s_u^x should be removed from the problem.

Given our assumptions the dual problem (7.24) will have much fewer constraints than the primal problem (7.22); in general, the fewer constraints a problem contains, the more efficient MOSEK tends to be. A question is: If the dual problem (7.24) is solved instead of the primal problem (7.22), how is the optimal x solution obtained? It turns out that the dual variables corresponding to the constraint

$$A^T y + F^T z + s_l^x - s_u^x = 0$$

are the optimal x solution. Therefore, due to the fact that MOSEK always reports this information as the

```
res.sol.itr.y
```

vector, the optimal x solution can easily be obtained.

In the following code fragment it is investigated whether it is attractive to solve the dual rather than the primal problem for a concrete numerical example. This example has no linear equalities and F is a 2000 by 400 matrix.

```
% nrm5.m
% Read data from a file.
[rcode,res] = mosekopt('read(lsqpd.mps) echo(0)');
% Define the problem data.
F
        = res.prob.a;
f
           = res.prob.blc;
blx
           = res.prob.blx;
bux
           = [];
% In this case there are no linear constraints
% First we solve the primal problem:
% minimize 0.5|| z ||^2
% subject to F \times - z = f
            1 <= x <= u
% Note that m>>n
[m,n]
      = size(F);
prob
     = [];
prob.qosubi = n+(1:m);
prob.qosubj = n+(1:m);
prob.qoval = ones(m,1);
prob.a
        = [F,-speye(m,m)];
prob.blc = f;
prob.buc = f;
prob.blx = [blx;-inf*ones(m,1)];
         = bux;
prob.bux
fprintf('m=%d n=%d\n',m,n);
fprintf('First try\n');
tic
[rcode,res] = mosekopt('minimize echo(0)',prob);
```

```
% Display the solution time.
fprintf('Time
                  : %-.2f\n',toc);
try
  % x solution:
  x = res.sol.itr.xx;
  % objective value:
  fprintf('Objective value: %-6e\n', norm(F*x(1:n)-f)^2);
  % Check feasibility.
  fprintf('Feasibility
                           : %-6e\n', min(x(1:n)-blx(1:n)));
  fprintf('MSKERROR: Could not get solution')
end
% Clear prob.
prob=[];
% Next, we solve the dual problem.
% Index of lower bounds that are finite:
           = find(blx>-inf);
% Index of upper bounds that are finite:
           = find(bux<inf);</pre>
prob.qosubi = 1:m;
prob.qosubj = 1:m;
prob.qoval = -ones(m,1);
           = [f;blx(lfin);-bux(ufin)];
prob.c
prob.a
            = [F',...
               sparse(lfin,(1:length(lfin))',...
                      ones(length(lfin),1),...
                      n,length(lfin)),...
               sparse(ufin,(1:length(ufin))',...
                      -ones(length(ufin),1),...
                      n,length(ufin))];
prob.blc
            = sparse(n,1);
prob.buc
            = sparse(n,1);
            = [-inf*ones(m,1);...
prob.blx
               sparse(length(lfin)+length(ufin),1)];
            = [];
prob.bux
fprintf('\n\nSecond try\n');
[rcode,res] = mosekopt('maximize echo(0)',prob);
% Display the solution time.
```

Here is the output produced:

m=2000 n=400

First try

Time : 2.07

Objective value: 2.257945e+001 Feasibility : 1.466434e-009

Second try

Time : 0.47

Objective value: 2.257945e+001 Feasibility : 2.379134e-009

Both formulations produced a strictly feasible solution having the same objective value. Moreover, using the dual formulation leads to a reduction in the solution time by about a factor 5: In this case we can conclude that the dual formulation is far superior to the primal formulation of the problem.

7.9.1 Using conic optimization on linear least squares problems

Linear least squares problems can also be solved using conic optimization because the linear least squares problem

minimize
$$||Fx - f||_2$$

subject to $Ax = b$, (7.25)
 $l^x \le x \le u^x$

is equivalent to

minimize
$$t$$
 subject to $Ax = b$,
$$Fx - z = f,$$

$$l^{x} \leq x \leq u^{x},$$

$$||z||_{2} \leq t.$$
 (7.26)

This problem is a conic quadratic optimization problem having one quadratic cone and the corresponding dual problem is

maximize
$$b^{T}y + f^{T}\bar{y} + (l^{x})^{T}s_{l}^{x} - (u^{x})^{T}s_{u}^{x}$$

subject to $A^{T}y + F^{T}\bar{y} + s_{l}^{x} - s_{u}^{x} = 0,$
 $-\bar{y} + s_{z} = 0,$
 $s_{t} = 1,$
 $||s_{z}|| \leq s_{t},$
 $s_{l}^{x}, s_{u}^{x} \geq 0$ (7.27)

which can be reduced to

maximize
$$b^{T}y + f^{T}s_{z} + (l^{x})^{T}s_{l}^{x} - (u^{x})^{T}s_{u}^{x}$$

subject to $A^{T}y - F^{T}\bar{s}_{z} + s_{l}^{x} - s_{u}^{x} = 0,$
 $s_{t} = 1,$ (7.28)
 $||s_{z}|| \leq s_{t},$
 $s_{l}^{x}, s_{u}^{x} \geq 0.$

Often the dual problem has much fewer constraints than the primal problem. In such cases it will be more efficient to solve the dual problem and obtain the primal solution x as the dual solution of the dual problem.

7.10 Entropy optimization

7.10.1 Using mskenopt

An entropy optimization problem has the following form

minimize
$$\sum_{j=1}^{n} d_j x_j \ln(x_j) + c^T x$$
subject to $l^c \le Ax \le u^c$,
$$0 \le x$$
, (7.29)

where all the components of d must be nonnegative, i.e. $d_j \ge 0$. An example of an entropy optimization problem is

minimize
$$x_1 \ln(x_1) - x_1 + x_2 \ln(x_2)$$

subject to $1 \le x_1 + x_2 \le 1$, (7.30)
 $0 \le x_1, x_2$.

This problem can be solved using the mskenopt command as follows

```
d = [1 1]';
c = [-1 0]';
a = [1 1];
blc = 1;
buc = 1;
[res] = mskenopt(d,c,a,blc,buc);
res.sol.itr.xx;
```

7.11 Geometric optimization

A so-called geometric optimization problem can be stated as follows

minimize
$$\sum_{k \in J_0} c_k \prod_{j=1}^n t_j^{a_{kj}}$$
subject to
$$\sum_{k \in J_i} c_k \prod_{j=1}^n t_j^{a_{kj}} \leq 1, \quad i = 1, \dots, m,$$
$$t > 0,$$
 (7.31)

where it is assumed that

$$\bigcup_{k=0}^{m} J_k = \{1, \dots, T\}$$

and if $i \neq j$, then

$$J_i \cap J_j = \emptyset$$
.

Hence, A is a $T \times n$ matrix and c is a vector of length t. In general, the problem (7.31) is very hard to solve, but the posynomial case where

is relatively easy. Using the variable transformation

$$t_j = e^{x_j} (7.32)$$

we obtain the problem

minimize
$$\sum_{k \in J_0} c_k e^{a_{k:}x}$$
subject to
$$\sum_{k \in J_i} c_k e^{a_{k:}x} \leq 1, \quad i = 1, \dots, m,$$

$$(7.33)$$

which is convex in x for c > 0. We apply the log function to obtain the equivalent problem

minimize
$$\log(\sum_{k \in J_0} c_k e^{a_k : x})$$

subject to $\log(\sum_{k \in J_i} c_k e^{a_k : x}) \le \log(1), \quad i = 1, \dots, m,$

$$(7.34)$$

which is also a convex optimization problem since log is strictly increasing. Hence, the problem (7.34) can be solved by MOSEK.

For further details about geometric optimization we refer the reader to [11, pp. 531-538].

7.11.1 Using mskgpopt

MOSEK cannot handle a geometric optimization problem directly, but the transformation (7.34) can be solved using the MOSEK optimization toolbox function mskgpopt. Please note that the solution to the transformed problem can easily be converted into a solution to the original geometric optimization problem using relation (7.32).

Subsequently, we will use the example

minimize
$$40t_1^{-1}t_2^{-1/2}t_3^{-1} + 20t_1t_3 + 40t_1t_2t_3$$

subject to $\frac{1}{3}t_1^{-2}t_2^{-2} + \frac{4}{3}t_2^{1/2}t_3^{-1} \leq 1,$ (7.35)
 $0 < t_1, t_2, t_3$

to demonstrate how a geometric optimization problem is solved using mskgpopt. Please note that both the objective and the constraint functions consist of a sum of simple terms. These terms can be specified completely using the matrix

$$A = \begin{bmatrix} -1 & -0.5 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 0 \\ 0 & 0.5 & -1 \end{bmatrix},$$

and the vectors

$$c = \begin{bmatrix} 40 \\ 20 \\ 40 \\ \frac{1}{3} \\ \frac{4}{3} \end{bmatrix} \text{ and map} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

The interpretation is this: Each row of A, c describes one term, e.g. the first row of A and the first element of c describe the first term in the objective function. The vector map indicated whether a term belongs to the objective or to a constraint. If map_k equals zero, the kth term belongs to the objective function, otherwise it belongs to the map_k th constraint.

The following MATLAB code demonstrates how the example is solved using mskgpopt.

```
% Compute the optimal objective value and
% the constraint activities.
v = c.*exp(a*res.sol.itr.xx);

% Add appropriate terms together.
f = sparse(map+1,1:5,ones(size(map)))*v;

% First objective value. Then constraint values.
fprintf('Objective value: %e\n',log(f(1)));
fprintf('Constraint values:');
fprintf(' %e',log(f(2:end)));
fprintf('\n\n');

% Dual multipliers (should be negative)
fprintf('Dual variables (should be negative):');
fprintf(' %e',res.sol.itr.y);
fprintf('\n\n');
```

The code also computes the objective value and the constraint values at the optimal solution. Moreover, the optimal dual Lagrange multipliers for the constraints are shown and the gradient of the Lagrange function at the optimal point is computed.

7.11.2 Comments

7.11.2.1 Solving large scale problems

If you want to solve a large problem, i.e. a problem where A has large dimensions, then A must be sparse or you will run out of space. Recall that a sparse matrix contains few non-zero elements, so if A is a sparse matrix, you should construct it using MATLAB's **sparse** sparse as follows

```
A = sparse(subi,subj,valij); where a_{\mathtt{subi}[k],\mathtt{subj}[k]} = \mathtt{valij}[k].
```

For further details on the sparse function, please enter

help sparse

in MATLAB.

7.11.2.2 Preprocessing tip

Before solving a geometric optimization problem it is worthwhile to check if a column of the A matrix inputted to mskgpopt contains only positive elements. If this is the case, the corresponding variable t_i can take the value zero in the optimal solution: This may cause

problems for MOSEK so it is better to remove such variables from the problem — doing so will have no influence on the optimal solution.

7.12 Separable convex optimization

This section discusses separable convex nonlinear optimization problems. A general separable nonlinear optimization problem can be specified as follows:

minimize
$$f(x) + c^T x$$
 subject to
$$g(x) + Ax - x^c = 0,$$

$$l^c \leq x^c \leq u^c,$$

$$l^x \leq x \leq u^x,$$

$$(7.36)$$

where

- \bullet m is the number of constraints.
- \bullet *n* is the number of decision variables.
- $x \in \mathbb{R}^n$ is a vector of decision variables.
- $x^c \in \mathbb{R}^m$ is a vector of slack variables.
- $c \in \mathbb{R}^n$ is the linear part of the objective function.
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $f: \mathbb{R}^n \to \mathbb{R}$ is a nonlinear function.
- $g: \mathbb{R}^n \to \mathbb{R}^m$ is a nonlinear vector function.

This implies that the ith constraint essentially has the form

$$l_i^c \le g_i(x) + \sum_{j=1}^n a_{ij} x_j \le u_i^c$$

when the x_i^c variable has been eliminated.

The problem (7.36) must satisfy the three important requirements:

1. Separability: This requirement implies that all nonlinear functions can be written on the form

$$f(x) = \sum_{j=1}^{n} f^{j}(x_{j})$$

and

$$g_i(x) = \sum_{j=1}^{n} g_i^j(x_j).$$

Hence, the nonlinear functions can be written as a sum of functions which depends on only one variable.

2. Differentiability: All functions should be twice differentiable for all x_i satisfying

$$l_i^x < x < u_i^x$$

if x_j occurs in at least one nonlinear function. Hence, if $\sqrt{x_2}$ appears in the problem, then the lower bound on x_2 should be 0.

3. Convexity: The problem should be a convex optimization problem. See Section 10.4 for a discussion of this requirement.

7.12.1 Using mskscopt

Subsequently, we will use the following example

minimize
$$x_1 - \ln(x_1 + 2x_2)$$

subject to $x_1^2 + x_2^2 \le 1$ (7.37)

to demonstrate solving a convex separable optimization problem using the MOSEK optimization toolbox function mskscopt.

First, note that the problem (7.37) is not a separable optimization problem due to the fact that the logarithmic term in objective is not a function of a single variable. However, by introducing one additional constraint and variable the problem can be made separable as follows

minimize
$$x_1 - \ln(x_3)$$

subject to $x_1^2 + x_2^2 \le 1$, $x_1 + 2x_2 - x_3 = 0$, $x_3 > 0$. (7.38)

This problem is separable and equivalent to the previous problem. Moreover, note that all nonlinear functions are well defined for values of x satisfying the variable bounds strictly, i.e.

$$x_3 > 0$$
.

This (almost) makes sure that function evaluation errors will not occur during the optimization process since MOSEK will only evaluate $\ln(x_3)$ for $x_3 > 0$.

When using the mskscopt function to solve problem (7.38), the linear part of the problem, such as a c and A, is specified as usual using MATLAB vectors and matrices. However, the nonlinear functions must be specified using five arrays which in the case of problem (7.38) can have the form

```
opr = ['log'; 'pow'; 'pow'];
opri = [0;
                1;
                        1
oprj = [3;
                1;
                        2
                             ];
oprf = [-1;
                             ];
                1;
                        1
                             ];
oprg = [0;
                2;
                        2;
```

Hence, opr(k,:) specifies the type of a nonlinear function, opri(k) specifies in which constraint the nonlinear function should be added (zero means objective), and oprj(k) means that the nonlinear function should be applied to x_j . Finally, oprf(k) and oprg(k) are parameters used by the mskscopt function according to the table:

opr(k,:)	opri(k)	oprj(k)	oprf(k)	oprg(k)	function
ent	i	j	f	(not used)	$fx_j \ln(x_j)$
exp	i	j	f	g	fe^{gx_j}
log	i	j	f	(not used)	$f \ln(x_j)$
pow	i	j	f	g	fx_j^g

The i value indicates which constraint the nonlinear function belongs to. However, if i is identical to zero, then the function belongs to the objective. Using this notation a separable convex optimization problem can be solved with the function:

All the elements for solving a separable convex nonlinear optimization problem have now been discussed and therefore we will conclude this section by showing the MATLAB code that will solve the example problem (7.38).

```
% scol.m
% Specify the linear part of the problem.
            = [1;0;0];
С
            = sparse([[0 0 0];[1 2 -1]]);
blc
            = [-inf; 0];
buc
            = [1;0];
blx
            = [-inf;-inf;0];
% Specify the nonlinear part.
opr
            = ['log'; 'pow'; 'pow'];
opri
            = [0;
                       1;
                              1
                                   ];
            = [3;
                              2
oprj
                       1;
                                   ];
                      1;
                                   ];
            = [-1;
                              1
oprf
            = [0;
                       2;
                                   ];
oprg
% Call the optimizer.
\% Note that bux is an optional parameter which should be added if the variables
% have an upper bound.
[res]
            = mskscopt(opr,opri,oprj,oprf,oprg,c,a,blc,buc,blx);
% Print the solution.
res.sol.itr.xx
```

7.13 Mixed-integer optimization

Up until now it has been assumed that the variables in an optimization problem are continuous. Hence, it has been assumed that any value between the bounds on a variable is feasible. In many cases this is not a valid assumption because some variables are integer-constrained. E.g. a variable may denote the number of persons assigned to a given job and it may not be possible to assign a fractional person.

Using a mixed-integer optimizer MOSEK is capable of solving linear and quadratic optimization problems where one or more of the variables are integer-constrained. ²

²The mixed-integer optimizer is a separately licensed option.

7.13.1 Solving an example

Using the example

minimize
$$-2x_1 - 3x_2$$

subject to $195x_1 + 273x_2 \le 1365$,
 $4x_1 + 40x_2 \le 140$, (7.39)
 $x_1 \le 4$,
 $x_1, x_2 \ge 0$, and integer

we will demonstrate how to solve an integer optimization problem using MOSEK.

```
% milo1.m
% Specify the linear problem data as if
% the problem is a linear optimization
% problem.
clear prob
            = [-2 -3];
prob.c
            = sparse([[195 273];[4 40]]);
prob.a
prob.blc
            = -[inf inf];
            = [1365 140];
prob.buc
            = [0 0];
prob.blx
prob.bux
             = [4 inf];
% Specify indexes of variables that are integer
% constrained.
prob.ints.sub = [1 2];
% Optimize the problem.
[r,res] = mosekopt('minimize',prob);
try
 % Display the optimal solution.
 res.sol.int
  res.sol.int.xx'
  fprintf('MSKERROR: Could not get solution')
end
```

Please note that compared to a linear optimization problem with no integer-constrained variables:

- The prob.ints.sub field is used to specify the indexes of the variables that are integer-constrained.
- The optimal integer solution is returned in the res.sol.int MATLAB structure.

7.13.2 Speeding up the solution of a mixed-integer problem

In general, a mixed-integer optimization problem can be very difficult to solve. Therefore, in some cases it may be necessary to improve upon the problem formulation and "assist" the mixed-integer optimizer.

How to obtain a good problem formulation is beyond the scope of this section and the reader is referred to [26]. However, two methods for assisting the mixed-integer optimizer are discussed subsequently.

7.13.2.1 Specifying an initial feasible solution

In many cases a good feasible integer solution to the optimization problem may be known. If this is the case, it is worthwhile to inform the mixed-integer optimizer since this will reduce the solution space searched by the optimizer.

Consider the problem:

maximize
$$7x_0 + 10x_1 + x_2 + 5x_3$$

subject to $x_0 + x_1 + x_2 + x_3 \le 2.5$
 $x_3 \ge 0$
 $x_0, x_1, x_2 \ge 0$ and integer, (7.40)

where only some of the variables are integer and the remaining are continuous. A feasible solution to this problem is:

$$x_0 = 0, x_1 = 2, x_2 = 0, x_3 = 0.5$$
 (7.41)

The following example demonstrates how to input this initial solution to MOSEK.

```
% milo2.m
clear prob
clear param
[r,res]
                 = mosekopt('symbcon');
sc
                 = res.symbcon;
                 = [7 10 1 5];
prob.c
prob.a
                 = sparse([1 1 1 1 ]);
prob.blc
                 = -[inf];
prob.buc
                 = [2.5];
                 = [0 \ 0 \ 0 \ 0];
prob.blx
prob.bux
                 = [inf inf inf inf];
prob.ints.sub
                 = [1 2 3];
prob.sol.int.xx = [0 2 0 0.5];
% Optionally set status keys too.
```

It is also possible to specify only the values of the integer variables and then let MOSEK compute values for the remaining continuous variables in order to obtain a feasible solution. If the MSK_IPAR_MIO_CONSTRUCT_SOL parameter is set to MSK_ON then MOSEK tries to compute a feasible solution from the specified values of the integer variables. MOSEK generates the feasible solution by temporarily fixing all integer variables to the specified values and then optimizing the resulting continuous linear optimization problem. Hence, using this feature it is necessary to specify only the values of prob.sol.int.xx corresponding to the integer-constrained variables.

Suppose it is known that $x_0 = 0$, $x_1 = 2$, $x_2 = 0$ are candidates for good integer values to our problem, then the following example demonstrates how to optimize the problem (7.40) using a feasible starting solution generated from the integer values as $x_0 = 0$, $x_1 = 2$, $x_2 = 0$.

```
% milo3.m
[r,res]
             = mosekopt('symbcon');
             = res.symbcon;
clear prob
prob.c
             = [7 10 1 5];
             = sparse([1 1 1 1 ]);
prob.a
prob.blc
            = -[inf];
prob.buc
            = [2.5];
prob.blx
            = [0 0 0 0];
         = [inf inf inf inf];
prob.bux
prob.ints.sub = [1 2 3];
% Values for the integer variables are specified.
prob.sol.int.xx = [0 2 0 0]';
% Tell Mosek to construct a feasible solution from a given integer
% value.
param.MSK_IPAR_MIO_CONSTRUCT_SOL = sc.MSK_ON;
[r,res] = mosekopt('maximize',prob,param);
```

```
try
  % Display the optimal solution.
  res.sol.int.xx'
catch
  fprintf('MSKERROR: Could not get solution')
end
```

7.13.2.2 Using branching priorities

The mixed-integer optimizer in MOSEK employs the so-called *branch-and-bound* algorithm to search for the optimal solution. See [26, pp. 91-112] for details about the branch-and-bound algorithm. The branch-and-bound algorithm can benefit from knowing about priorities of the integer variables.

E.g. in an optimization model some integer variables may denote which factories to build and other variables which products to make in the factories. It seems natural to decide upon which factories to build first and then decide upon which products to make in which factories. Hence, some integer variables are more important than others.

In MOSEK it is possible to assign priorities to all the integer variables. The higher priority assigned to a variable the more important the variable is considered by the branch-and-bound algorithm. Priorities are specified using the prob.ints.pri field as follows:

```
prob.ints.sub = [4 1 2 3];  % Integer variables.
prob.ints.pri = [5 10 2 4];  % Priorities.
```

This implies that variable 4 has priority 5, variable 1 has priority 10 and so forth.

An example of the usage of priorities can be seen in [26, pp. 232-235].

7.14 Sensitivity analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective value changes when a problem parameter is perturbed. E.g. the objective function may reflect the price of a raw material such as oil which may not be known with certainty. Therefore, it is interesting to know how the optimal objective value changes as the oil price changes.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity analysis.

Consider the problem: minimize

$$1x_{11} + 2x_{12} + 5x_{23} + 2x_{24} + 1x_{31} + 2x_{33} + 1x_{34}$$
 (7.42)

subject to

The example below demonstrate how sensitivity analysis can answer questions of the type: What happens to the optimal solution if we decrease the upper bound of the first constraint with 1? For more information on sensitivity analysis see Chapter 14.

```
% sensitivity2.m
% Setup problem data.
clear prob
                                                       0;
                              Ο,
                                    Ο,
prob.a = sparse([1,
                       1,
                                          0,
                                                 0,
                 0,
                       Ο,
                              1,
                                    1,
                                          0,
                                                       0;
                 0,
                        Ο,
                              Ο,
                                    Ο,
                                          1,
                                                       1;
                                    0,
                        0,
                              0,
                                          1,
                                                 0,
                                                       0;
                                          0,
                       1,
                              0,
                                    0,
                 0,
                                                 Ο,
                                                       0;
                       0,
                              1,
                                    0,
                                          0,
                 0,
                                                 1,
                                                       0;
                              0,
                 0,
                       0,
                                    1,
                                                       1]);
          [1,2,5,2,1,2,1];
prob.c =
prob.blc = [-Inf,-Inf,-Inf,800,100,500, 500];
prob.buc = [400,1200,1000,800,100,500,500];
prob.bux(1:7) = Inf;
prob.blx(1:7) = 0;
% Analyze upper bound of constraint 1.
prob.prisen.cons.subu = [1];
[r,res] = mosekopt('minimize echo(0)',prob);
fprintf ('Optimal objective value: %e\n',prob.c * res.sol.bas.xx );
fprintf('Sensitivity results for constraint 1:');
res.prisen.cons
% If we change the upper bound of constraint 1 with a
% value v in [res.prisen.cons.lr_bu(1),res.prisen.cons.rr_bu(1)]
\% then the optimal objective changes with - v * ls_bu(0)
\% e.g. changing prob.buc(1) with -1
prob.buc(1) = prob.buc(1) - 1;
new_sol_predicted = prob.c * res.sol.bas.xx + 1 * res.prisen.cons.ls_bu(1);
fprintf ('New optimal objective after changing bound predicted to: %e\n', ...
         new_sol_predicted);
```

```
[r,res] = mosekopt('minimize echo(0)',prob);
fprintf ('New optimal objective value: %e\n',prob.c * res.sol.bas.xx );
```

The output from running the example is given below:

```
Optimal objective value: 3.000000e+03
Sensitivity results for constraint 1:
ans =

lr_bl: []
    rr_bl: []
    ls_bl: []
    rs_bl: []
    lr_bu: -300
    rr_bu: 0
    ls_bu: 3
    rs_bu: 3
```

New optimal objective after changing bound predicted to:3.003000e+03 New optimal objective value: 3.003000e+03

7.15 Inspecting a problem

The problem analyzer (discussed in detail in Sec. 13.1) provides useful diagnostics about an optimization problem, and is quick way to verify that a model has been specified correctly. For example, executing the command

```
mosekopt('anapro',prob)
```

will generate a report looking like

[0.32, 1)

```
Constraints Bounds Variables
upper bd: 19 lower bd: all cont: all
fixed: 8

Objective, cx
  range: min |c|: 0.00000 min |c|>0: 0.320000 max |c|: 10.0000
distrib: |c| vars
  0 27
```

4

```
[1, 10]
```

Constraint matrix A has

- 27 rows (constraints)
- 32 columns (variables)
- 83 (9.60648%) nonzero entries (coefficients)

Row nonzeros, A_i

range:	min A_i: 1	(3.125%)	max A_i: 9	(28.125%)
distrib:	A_i	rows	rows%	acc%
	1	2	7.41	7.41
	2	16	59.26	66.67
	[3, 7]	8	29.63	96.30
	[8, 9]	1	3.70	100.00

Column nonzeros, A|j

range:	min A j: 1	(3.7037%)	max A j: 4	(14.8148%)
distrib:	Alj	cols	cols%	acc%
	1	1	3.12	3.12
	2	21	65.62	68.75
	[3, 4]	10	31.25	100.00

A nonzeros, A(ij)

range: min |A(ij)|: 0.107000 max |A(ij)|: 2.42900

distrib: A(ij) coeffs
[0.107, 1) 17
[1, 2.43] 66

Constraint bounds, lb <= Ax <= ub

distrib:	b	lbs	ubs
	0	7	20
	[10, 100)	1	3
[[100, 1000]		4

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs
0 32

The report provides an overview of the objective function, the number of constraints and bounds, as well as sparsity information and distributions of nonzero elements.

7.16 The solutions

Whenever an optimization problem is solved using MOSEK, one or more optimal solutions are reported depending on which optimizer is used. These solutions are available in the

```
res.sol
```

structure, which has one or more of the subfields

```
res.sol.itr % Interior solution.
res.sol.bas % Basic solution.
res.sol.int % Integer solution.
```

The interior (point) solution is an arbitrary optimal solution which is computed using the interior-point optimizer. The basic solution is available only for linear problems and is produced by the simplex optimizer or the basis identification process which is an add-on to the interior-point optimizer. Finally, the integer solution is available only for problems having integer-constrained variables and is computed using the integer optimizer.

Each of the three solutions may contain one or more of the following subfields:

.prosta	Problem status. See Appendix F.38.
.solsta	Solution status. See Appendix F.51.
.skc	Constraint status keys. See Tablen 7.1 below.
.skx	Variable status keys. See Table 7.1 below.
.xc	Constraint activities.
.xx	Variable activities.
· y	Identical toslc+.suc.
.slc	Dual variables corresponding to lower constraint bounds.
.suc	Dual variables corresponding to upper constraint bounds.
.slx	Dual variables corresponding to lower variable bounds.
.sux	Dual variables corresponding to upper variable bounds.
.snx	Dual variables corresponding to the conic constraints.

7.16.1 The constraint and variable status keys

In a solution both constraints and variables are assigned a status key which indicates whether the constraint or variable is at its lower limit, its upper limit, is super basic and so forth in the optimal solution. For interior-point solutions these status keys are only indicators which the optimizer produces.

In Table 7.1 the possible values for the status keys are shown accompanied with an interpretation of the key.

Symbolic	Numeric	String	Interpretation
constant	constant	code	
MSK_SK_UNK	0	UN	Unknown status
MSK_SK_BAS	1	BS	Is basic
MSK_SK_SUPBAS	2	SB	Is superbasic
MSK_SK_LOW	3	LL	Is at the lower limit (bound)
MSK_SK_UPR	4	UL	Is at the upper limit (bound)
MSK_SK_FIX	5	EQ	Lower limit is identical to upper limit
MSK_SK_INF	6	**	Is infeasible i.e. the lower limit is
			greater than the upper limit.

Table 7.1: Constraint and variable status keys.

By default the constraint and variable status keys are reported using string codes but it is easy to have MOSEK report the numeric codes instead. Indeed in the example

```
% Status keys in string format.
[rcode,res]=mosekopt('minimize statuskeys(0)',prob);
res.sol.skc(1)
res.sol.prosta
the status keys are represented using string codes whereas in the example
% Status keys in string format.
```

```
[rcode,res]=mosekopt('minimize statuskeys(1)',prob);
res.sol.skc(1)
res.sol.prosta
```

the status keys are represented using numeric codes.

7.17 Viewing the task information

In MOSEK the optimization problem and the related instructions with respect to the optimization process are called an optimization task or for short a task. Whenever MOSEK

performs operations on a task it stores information in the task information database. Examples of information that is stored are the number of interior-point iterations performed to solve the problem and time spent doing the optimization.

All the items stored in the task information database are listed in Appendixes F.13 and F.17. It is possible to see the whole or part of the task information database from within MATLAB.

```
% Solve a problem and obtain
% the task information database.
[r,res]=mosekopt('minimize info',prob);
% View one item
res.info.MSK_IINF_INTPNT_ITER
% View the whole database
res.info
```

7.18 Inspecting and setting parameters

A large number of parameters controls the behavior of MOSEK, e.g. there is a parameter controlling which optimizer is used, one that limits the maximum number of iterations allowed, and several parameters specifying the termination tolerance. All these parameters are stored in a database internally in MOSEK. The complete parameter database can be obtained and viewed using the commands:

```
[r,res] = mosekopt('param');
res.param
```

We will not describe the purpose of each parameter here but instead refer the reader to Appendix E where all the parameters are presented in detail.

In general, it should not be necessary to change any of the parameters but if required, it is easily done. In the following example code it is demonstrated how to modify a few parameters and afterwards performing the optimization using these parameters.

```
% Obtain all symbolic constants
% defined by MOSEK.

[r,res] = mosekopt('symbcon');
sc = res.symbcon;

param = [];
% Basis identification is unnecessary.
param.MSK_IPAR_INTPNT_BASIS = sc.MSK_OFF;
% Alternatively you can use
```

```
%
% param.MSK_IPAR_INTPNT_BASIS = 'MSK_OFF';
%
% Use another termination tolerance.
param.MSK_DPAR_INTPNT_TOLRGAP = 1.0e-9;
% Perform optimization using the
% modified parameters.
[r,res] = mosekopt('minimize',prob,param);
```

7.19 Advanced start (hot-start)

In practice it frequently occurs that when an optimization problem has been solved, then the same problem slightly modified should be reoptimized. Moreover, if it is just a small the modification, it can be expected that the optimal solution to the original problem is a good approximation to the modified problem. Therefore, it should be efficient to start the optimization of the modified problem from the previous optimal solution.

Currently, the interior-point optimizer in MOSEK cannot take advantage of a previous optimal solution, however, the simplex optimizer can exploit any basic solution.

7.19.1 Some examples using hot-start

Using the example

minimize
$$x_1 + 2x_2$$

subject to $4 \le x_1 + x_3 \le 6$,
 $1 \le x_1 + x_2$,
 $0 \le x_1, x_2, x_3$ (7.44)

the hot-start facility using the simplex optimizer will be demonstrated. A quick inspection of the problem indicates that $(x_1, x_3) = (1,3)$ is an optimal solution. Hence, it seems to be a good idea to let the initial basis consist of x_1 and x_3 and all the other variables be at their lower bounds. This idea is used in the example code:

```
% advs1.m

clear prob param bas

% Specify an initial basic solution.

bas.skc = ['LL';'LL'];

bas.skx = ['BS';'LL';'BS'];

bas.xc = [4 1]';

bas.xx = [1 3 0]';
```

```
prob.sol.bas = bas;
% Specify the problem data.
prob.c = [ 1 2 0];
            = [1 2 2 1];
subi
subj
            = [1 1 2 3];
valij
             = [1.0 \ 1.0 \ 1.0 \ 1.0];
prob.a
            = sparse(subi, subj, valij);
prob.blc
            = [4.0 1.0];
            = [6.0 inf]';
prob.buc
            = sparse(3,1);
prob.blx
prob.bux
             = [];
% Use the primal simplex optimizer.
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_PRIMAL_SIMPLEX';
[r,res] = mosekopt('minimize',prob,param)
```

Some comments:

- In the example the dual solution is defined. This is acceptable because the primal simplex optimizer is used for the reoptimization and it does not exploit a dual solution. In the future MOSEK will also contain a dual simplex optimizer and if that optimizer is used, it will be important that a "good" dual solution is specified.
- The status keys bas.skc and bas.skx must contain only the entries BS, EQ, LL, UL, and SB. Moreover, e.g. EQ must be specified only for a fixed constraint or variable. LL and UL can be used only for a variable that has a finite lower or upper bound respectively.
- The number of constraints and variables defined to be basic must correspond exactly to the number of constraints, i.e. the row dimension of A.

7.19.2 Adding a new variable

Next, assume that the problem

minimize
$$x_1 + 2x_2 - x_4$$

subject to $4 \le x_1 + x_3 + x_4 \le 6$, $x_1 + x_2$, $0 \le x_1, x_2, x_3, x_4$. (7.45)

should be solved. It is identical to the problem (7.44) except that a new variable x_4 has been added. In continuation of the previous example this problem can be solved as follows (using hot-start):

```
% advs2.m. Continuation of advs1.m.
prob.c = [prob.c;-1.0];
```

```
prob.a
            = [prob.a, sparse([1.0 0.0]')];
prob.blx
            = sparse(4,1);
% Reuse the old optimal basic solution.
            = res.sol.bas;
% Add to the status key.
bas.skx
            = [res.sol.bas.skx;'LL'];
% The new variable is at it lower bound.
bas.xx = [res.sol.bas.xx;0.0];
bas.slx = [res.sol.bas.slx;0.0];
           = [res.sol.bas.sux;0.0];
prob.sol.bas = bas;
[rcode,res] = mosekopt('minimize',prob,param);
% The new primal optimal solution
res.sol.bas.xx'
```

7.19.3 Fixing a variable

In e.g. branch-and-bound methods for integer programming problems it is necessary to reoptimize the problem after a variable has been fixed to a value. This can easily be achieved as follows:

```
% advs3.m. Continuation of advs2.m.

prob.blx(4) = 1;
prob.bux = [inf inf inf 1]';

% Reuse the basis.
prob.sol.bas = res.sol.bas;

[rcode,res] = mosekopt('minimize',prob,param);

% Display the optimal solution.
res.sol.bas.xx'
```

The x_4 variable is simply fixed at the value 1 and the problem is reoptimized. Please note that the basis from the previous optimization can immediately be reused.

7.19.4 Adding a new constraint

Now, assume that the constraint

$$x_1 + x_2 \ge 2 \tag{7.46}$$

should be added to the problem and the problem should be reoptimized. The following example demonstrates how to do this.

Please note that the slack variable corresponding to the new constraint are declared basic. This implies that the new basis is nonsingular and can be reused.

7.19.5 Using numeric values to represent status key codes

In the previous examples the constraint and variable status keys are represented using string codes. Although the status keys are easy to read they are sometimes difficult to work with in a program. Therefore, the status keys can also be represented using numeric values as demonstrated in the example:

```
% sk1.m

% Obtain all symbolic constants
% defined in MOSEK.

clear prob bas;

[r,res] = mosekopt('symbcon');
sc = res.symbcon;

% Specify an initial basic solution.
```

```
% Please note that symbolic constants are used.
\% I.e. sc.MSK_SK_LOW instead of 4.
           = [sc.MSK_SK_LOW;sc.MSK_SK_LOW];
bas.skc
             = [sc.MSK_SK_BAS;sc.MSK_SK_LOW;sc.MSK_SK_BAS];
bas.skx
             = [4 1];
bas.xc
             = [1 3 0];
bas.xx
prob.sol.bas = bas;
\% Specify the problem data.
prob.c = [ 1 2 0]';
subi
         = [1 2 2 1];
subj
         = [1 1 2 3];
valij
        = [1.0 \ 1.0 \ 1.0 \ 1.0];
prob.a = sparse(subi, subj, valij);
prob.blc = [4.0 1.0];
prob.buc = [6.0 inf]';
prob.blx = sparse(3,1);
prob.bux = [];
% Use the primal simplex optimizer.
clear param;
param.MSK_IPAR_OPTIMIZER = sc.MSK_OPTIMIZER_PRIMAL_SIMPLEX;
[r,res] = mosekopt('minimize statuskeys(1)',prob,param)
% Status keys will be numeric now i.e.
res.sol.bas.skc'
% is a vector of numeric values.
```

Please note that using the commands

```
[r,res] = mosekopt('symbcon');
sc = res.symbcon;
```

all the symbolic constants defined within MOSEK are obtained and used in the lines

```
bas.skc = [sc.MSK_SK_LOW;sc.MSK_SK_LOW];
bas.skx = [sc.MSK_SK_BAS;sc.MSK_SK_LOW;sc.MSK_SK_BAS];
```

These two lines are in fact equivalent to

```
bas.skc = [1;1];
bas.skx = [3;1;3];
```

However, it is **not** recommended to specify the constraint and variable status keys this way because it is less readable and portable. Indeed if e.g. MOSEK later changes the definition that 1 is equivalent to 'LL', all programs using numerical keys will be incorrect whereas using the symbolic constants the programs remain correct.

7.20. USING NAMES 69

7.20 Using names

In MOSEK it is possible to give the objective, each constraint, each variable, and each cone a name. In generalm such names are not really needed except in connection with reading and writing MPS files. See Section 7.21 for details.

All the names are specified in the prob.names structure.

```
% The problem is named.
                  = 'CQO example';
prob.names.name
% Objective name.
                  = 'cost';
prob.names.obj
% The two constraints are named.
prob.names.con{1} = 'constraint_1';
prob.names.con{2} = 'constraint_2';
% The six variables are named.
prob.names.var = cell(6,1);
for j=1:6
  prob.names.var{j} = sprintf('x%d',j);
end
% Finally the two cones are named.
prob.names.cone{1} = 'cone_a';
prob.names.cone{2} = 'cone_b';
```

7.20.1 Blanks in names

Although it is allowed to use blanks (spaces) in names it is not recommended to do so except for the problem name. In general, avoid names like "x 1" or "con 1".

7.21 MPS files

An industry standard format for storing linear optimization problems in an ASCII file is the so-called MPS format. For readers not familiar with the MPS format a specification of the MPS format supported by MOSEK can be seen in Appendix A.

The advantage of the MPS format is that problems stored in this format can be read by any commercial optimization software, so it facilitates communication of optimization problems.

7.21.1 Reading an MPS file

It is possible to use mosekopt to read an MPS file containing the problem data. In this case mosekopt reads data from an MPS file and returns both the problem data and the optimal

solution, if required. Assume that afiro.mps is the MPS file from which mosekopt should read the problem data, then this task is performed using the command

```
[r,res] = mosekopt('read(afiro.mps'));
In this case res.prob will contain several fields with the problem data. E.g.
```

will display the c-vector.

res.prob.c'

The names used in the MPS file is also available in the prob.names structure.

```
% All names.
prob.names

% Constraint names.
prob.names.con
```

The quadratic terms of a problem can be accessed and displayed in a similar manner:

```
% mpsrd.m

% Read data from the file wp12-20.mps.

[r,res] = mosekopt('read(wp12-20.mps)');

% Looking at the problem data
prob = res.prob;
clear res;

% Form the quadratic term in the objective.
q = sparse(prob.qosubi,prob.qosubj,prob.qoval);

% Get a graphical picture.
spy(q) % Notice that only the lower triangular part is defined.
```

7.21.2 Writing a MPS files

It is possible to write an MPS file using MOSEK. To write a problem contained in a MATLAB structure prob to the file "datafile.mps", use the command:

```
% Write the data defined by prob to an MPS file
% named datafile.mps
mosekopt('write(datafile.mps)',prob);
```

If the prob.names field is defined, MOSEK will use those names when writing the MPS file, otherwise MOSEK will use generic (automatically generated) names.

7.22 User call-back functions

A call-back function is a user-defined MATLAB function to be called by MOSEK on a given event. The optimization toolbox supports two types of call-back functions which are presented below.

7.22.1 Log printing via call-back function

When using mosekopt it is possible to control the amount of information that mosekopt prints to the screen, e.g.

```
[r,res] = mosekopt('minimize echo(0)',prob)
```

forces mosekopt to not print log information — the string echo(0) indicates that no output should be printed during optimization. A high value in the echo(n) command, e.g. echo(3), forces MOSEK to display more log information.

It is possible to redirect the MOSEK log printing almost anywhere using a user-defined log call-back function. It works as follows. Create an m-file to handle the log output, similar to:

```
function myprint(handle,str)
% handle: Is user defined data structure
% str : Is a log string.
%
fprintf(handle,'%s',str);
```

The name and actions of the function are not important, but its argument list must be identical to the example: It must accept two arguments. The first argument, handle, is a user-defined MATLAB structure and the second argument, str, is a text string. In the example above myprint prints the string to a file defined by handle.

The following code fragment shows how to tell MOSEK to send log output to the myprint function.

```
mosekopt('minimize',prob,[],callback);
```

7.22.2 The iteration call-back function

It is possible to specify a function to be called frequently during the optimization. Typically this call-back function is used to display information about the optimization process or to terminate it.

The iteration call-back function has the following form:

```
function [r] = myiter(handle, where, info)
% handle: Is a user-defined data structure.
% where : Is an integer indicating from where in the optimization
          process the callback was invoked.
 info : A MATLAB structure containing information about the state of the
          optimization.
r = 0;
         % r should always be assigned a value.
if handle.symbcon.MSK_CALLBACK_BEGIN_INTPNT == where
    fprintf('Interior point optimizer started\n');
% Print primal objective
fprintf('Interior-point primal obj.: %e\n',info.MSK_DINF_INTPNT_PRIMAL_OBJ);
% Terminate when cputime > handle.maxtime
if info.MSK_DINF_INTPNT_TIME > handle.maxtime
      r = 1;
else
 r = 0;
end
if handle.symbcon. MSK_CALLBACK_END_INTPNT == where
    fprintf('Interior-point optimizer terminated\n');
end
```

The function accepts three arguments: The first argument, handle, is a user-defined MATLAB structure, the second argument, where, indicates from where in the optimization process the call-back was invoked and the third argument, info, is a structure containing information about the process. For details about info see Section 8.1.7g If the function returns a non-zero value, MOSEK will terminate the optimization process immediately.

In order to inform MOSEK about the iteration call-back function the fields iter and iterhandle are initialized as shown in the following example.

7.23 The license system

By default a license token remains checked out for the duration of the matlab session. This can be changed such that the license is returned after each call to mosek by setting the parameter MSK_IPAR_CACHE_LICENSE.

```
param.MSK_IPAR_CACHE_LICENSE = 'MSK_OFF'; %set parameter.
[r,res] = mosekopt('minimize',prob,param); %call mosek.
```

By default an error will be returned if no license token is available. By setting the parameter MSK_IPAR_LICENSE_WAIT mosek can be instructed to wait until a license token is available.

```
param.MSK_IPAR_LICENSE_WAIT = 'MSK_ON'; %set parameter.
[r,res] = mosekopt('minimize',prob,param); %call mosek.
```

Chapter 8

Command reference

After studying the examples presented in the previous chapter, it should be possible to use most of the facilities in the MOSEK optimization toolbox. A more formal specification of the main data structures employed by MOSEK and a command reference are provided in this chapter.

8.1 Data structures

In each of the subsequent sections the most important data structures employed by MOSEK are discussed.

8.1.1 prob

Description: The prob data structure is used to communicate an optimization problem to MOSEK or for MOSEK to return an optimization problem to the user. It defines an optimization problem using a number of subfields.

Subfields:

.names	A MATLAB structure which contains the problem name, the name of the objective, and so forth. See Section 8.1.2.
.qosubi	i subscript for element q_{ij}^o in Q^o . See (8.6).
.qosubj	j subscript for element q_{ij}^o in Q^o . See (8.6).
.qoval	Numerical value for element q_{ij}^o in Q^o . See (8.6).
.qcsubk	k subscript for element q_{ij}^p in Q^p . See (8.7).
.qcsubi	i subscript for element q_{ij}^p in Q^p . See (8.7).
.qcsubj	j subscript for element q_{ij}^p in Q^p . See (8.7).
.qcval	Numerical value for element q_{ij}^p in Q^p . See (8.7).

Linear term in the objective. . с

The constraint matrix. It must be a sparse matrix having the num-.a ber of rows and columns equivalent to the number of constraints and variables in the problem. This field should always be defined, even if the problem does not have any constraints. In that case a sparse matrix having zero rows and the correct number of columns is the appropriate definition of the field.

.blc Lower bounds of the constraints. $-\infty$ denotes an infinite lower bound. If the field is not defined or blc==[], then all the lower bounds are assumed to be equal to $-\infty$.

> Upper bounds of the constraints. ∞ denotes an infinite upper bound. If the field is not defined or buc==[], then all the upper bounds are assumed to be equal to ∞ .

Lower bounds on the variables. $-\infty$ denotes an infinite lower bound. If the field is not defined or blx==[], then all the lower bounds are assumed to be equal to $-\infty$.

Upper bounds on the variables. ∞ denotes an infinite upper bound. If the field is not defined or bux==[], then all the upper bounds are assumed to be equal to ∞ .

A MATLAB structure which has the subfields

.sub; % Required. .pri; % Subfields.

ints.sub is a one-dimensional array containing the indexes of the integer-constrained variables. Hence, ints.sub is identical to the set \mathcal{J} in (8.5). ints.pri is also a one dimensional array of the same length as ints.sub. The ints.pri(k) is the branching priority assigned to variable index ints.sub(k).

A MATLAB cell array defining the conic constraints (8.4). See Section 8.1.3 for details on this structure.

A MATLAB structure containing a guess on the optimal solution which some of the optimizers in MOSEK may exploit. See Section 8.1.4 for details on this structure.

A MATLAB structure which has the subfields:

.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.

Indexes of constraints, where lower bounds are ana-.cons.subl lyzed for sensitivity.

.buc

.blx

.bux

.ints

.cones

.sol

.prisen

.vars.subu Indexes of variables, where upper bounds are ana-

lyzed for sensitivity.

.vars.subl Indexes of variables, where lower bounds are analyzed

for sensitivity.

.sub Index of variables where coefficients are analysed for

sensitivity.

Comments:

MOSEK solves an optimization problem which has the form of minimizing or maximizing an objective function

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}^{o} x_i x_j + c_j x_j \tag{8.1}$$

subject to the functional constraints

$$l_k^c \le \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n q_{ij}^p x_i x_j + \sum_{j=1}^n a_{kj} x_j \le u_k^c, \ k = 1, \dots, m,$$
(8.2)

the variable bound constraints

$$l_j^x \le x_j \le u_j^x, \ j = 1, \dots, n$$
 (8.3)

and the conic constraint

$$x \in \mathcal{C}. \tag{8.4}$$

Finally, some variables may be integer-constrained, i.e.

$$x_j$$
 integer-constrained for all $j \in \mathcal{J}$ (8.5)

where x is the decision variables and all the other quantities are the parameters of the problem and they are presented below:

 Q^o : The quadratic terms $q_{ij}^o x_i x_j$ in the objective are stored in the matrix Q^o as follows

$$Q^{o} = \left[\begin{array}{ccc} q_{11}^{o} & \cdots & q_{1n}^{o} \\ \vdots & \cdots & \vdots \\ q_{n1}^{0} & \cdots & q_{nn}^{o} \end{array} \right].$$

In MOSEK it is assumed that Q^o is symmetric, i.e.

$$q_{ij}^o = q_{ii}^o$$

and therefore only the lower triangular part in Q^o should be specified.

c: It is the linear part of the objective specifying the c_j in the linear term $c_j x_j$.

 Q^p : The quadratic terms $q_{ij}^p x_i x_j$ in the kth constraint are stored in the Q^p matrix as follows

$$Q^p = \left[\begin{array}{ccc} q_{11}^p & \cdots & q_{1n}^p \\ \vdots & \cdots & \vdots \\ q_{n1}^p & \cdots & q_{nn}^p \end{array} \right].$$

MOSEK assumes that Q^p is symmetric, i.e.

$$q_{ij}^p = q_{ii}^p$$

and therefore only the lower triangular part in Q^p should be specified.

A: The constraint matrix A is given by

$$A = \left[\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right].$$

In MOSEK it is assumed that A is a sparse matrix, i.e. most of the coefficients in A are zero. Therefore, only non-zeros elements in A are stored and worked with. This usually saves a lot of storage and speeds up the computations.

 l^c : Specifies the lower bounds of the constraints.

 u^c : Specifies the upper bounds of the constraints.

 l^x : Specifies the lower bounds on the variables.

 u^x : Specifies the upper bounds on the variables.

cones: Specifies the conic constraint. Let

$$x^t \in \mathbb{R}^{n^t}, \ t = 1, \dots, k$$

be vectors comprised of disjoined subsets of the decision variables x (each decision variable is a member of exactly one x^t), e.g.

$$x^{1} = \begin{bmatrix} x_1 \\ x_4 \\ x_7 \end{bmatrix} \text{ and } x^{2} = \begin{bmatrix} x_6 \\ x_5 \\ x_3 \\ x_2 \end{bmatrix}.$$

Next, define

$$\mathcal{C} := \left\{ x \in \mathbb{R}^n : \ x^t \in \mathcal{C}_t, \ t = 1, \dots, k \right\}$$

where C_t must have one of the following forms

 $-\mathbb{R}$ set:

$$\mathcal{C}_t = \{ x \in \mathbb{R}^{n^t} \}.$$

- Quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\}.$$

- Rotated quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : 2x_1x_2 \ge \sqrt{\sum_{j=3}^{n^t} x_j^2}, \ x_1, x_2 \ge 0 \right\}.$$

All the parameters of the optimization problem are stored using one or more subfields of the prob structure using the naming convention in Table 8.1.

Field name	Type	Dimen-	Optio-	Problem
		sion	$_{\mathrm{nal}}$	parameter
qosubi	int	length(qoval)	Yes	$\overline{q_{ij}^o}$
qosubj	int	<pre>length(qoval)</pre>	Yes	q_{ij}^{o}
qoval	double	<pre>length(qoval)</pre>	Yes	$q_{ij}^{\check{o}}$
С	double	n	Yes	c_j
qcsubk	int	<pre>length(qcval)</pre>	Yes	q_{ij}^p
qcsubi	int	length(qcval)	Yes	$q_{i,i}^{\check{p}}$
qcsubj	int	length(qcval)	Yes	$egin{aligned} q_{ij}^p \ q_{ij}^p \ q_{ij}^p \ q_{ij}^p \end{aligned}$
qcval	double	length(qcval)	Yes	$q_{ij}^{\vec{p}}$
a	Sparse matrix	$m \times n$	No	a_{ij}
blc	double	m	Yes	l_k^c
buc	double	m	Yes	u_k^c
blx	double	n	Yes	l_k^x
bux	double	n	Yes	u_k^x
ints	MATLAB structure	$ \mathcal{J} $	Yes	$\mathcal J$
cones	MATLAB cell array	k	Yes	\mathcal{C}

Table 8.1: The relation between fields and problem parameters.

In Table 8.1 all the parameters are listed with their corresponding type. The int type indicates that the field must contain an integer value, double indicates a real number. The relationship between Q^o and Q^p and the subfields of the prob structure is as follows:

• The quadratic terms in the objective:

$$q_{\texttt{qosubi}(\texttt{t}),\texttt{qoval}(\texttt{t})}^o = \texttt{qoval}(\texttt{t}), \ t = 1, 2, \dots, \texttt{length}(\texttt{qoval}). \tag{8.6}$$

Since Q^o by assumption is symmetric, all elements are assumed to belong to the lower triangular part. If an element is specified multiple times, the different elements are added together.

• The quadratic terms in the constraints:

$$q_{\texttt{qcsubi}(\texttt{t}),\texttt{qcsubj}(\texttt{t})}^{\texttt{qcsubk}(\texttt{t})} = \texttt{qcval}(\texttt{t}), \ t = 1, 2, \dots, \texttt{length}(\texttt{qcval}). \tag{8.7}$$

Since Q^p by assumption is symmetric, all elements are assumed to belong to the lower triangular part. If an element is specified multiple times, the different elements are added together.

8.1.2 names

This structure is used to store all the names of individual items in the optimization problem such as the constraints and the variables. The structure contains the subfields:

.name	Contains the problem name.
.obj	Contains the name of the objective.
.con	Is a MATLAB cell array where $\mathtt{names.con}\{\mathtt{i}\}$ contains the name of the $i\mathtt{th}$ constraint.
.var	Is a MATLAB cell array where $\mathtt{names.var}\{\mathtt{j}\}$ contains the name of the j th constraint.
.cone	Is a MATLAB cell array where $\mathtt{names.cone}\{\mathtt{t}\}$ contains the name of the $t\mathtt{th}$ conic constraint.

8.1.3 cones

cones is a MATLAB cell array containing one structure per cone in the optimization problem, i.e. $cones\{t\}$ is used to specify the tth cone in the optimization problem.

The structure contains the subfields:

.type	$cones\{t\}$.type contains the cone type for the t th cone. The type subfield
	has one of the values 'MSK_CT_QUAD' or 'MSK_CT_RQUAD', indicating if cone
	is a quadratic cone or a rotated quadratic cone.

.sub cones $\{t\}$.sub is a list of variable indexes specifying which variables are members of the cone.

8.1.4 sol

Description: A MATLAB structure used to store one or more solutions to an optimization problem. The structure has one subfield for each possible solution type.

Subfields:

.itr Interior (point) solution computed by the interior-point optimizer.
.bas Basic solution computed by the simplex optimizers and basis identification procedure.
.int Integer solution computed by the mixed-integer optimizer.

Comments: Each of the solutions sol.itr, sol.bas, and sol.int may contain one or more of the fields:

.prosta	Problem status. See Appendix F.38.
.solsta	Solution status. See Appendix F.51.
.skc	Constraint status keys. See Table 7.1.
.skx	Variable status keys. See Table 7.1.
.skn	Conic status keys. See Section 7.1.
.xc	Constraint activities, i.e. $x_c = Ax$ where x is the optimal solution.
.xx	Variable activities, i.e. the optimal x solution.
· y	Identical to sol.slc-sol.suc.
.slc	Dual solution corresponding to the lower constraint bounds.
.suc	Dual solution corresponding to the upper constraint bounds.
.slx	Dual solution corresponding to the lower variable bounds.
.sux	Dual solution corresponding to the upper variable bounds.
.snx	Dual solution corresponding to the conic constraint.
.pobjval	The primal objective value.

The fields .skn and .snx cannot occur in the .bas and .int solutions. In addition the fields .y, .slc, .suc, .slx, and .sux cannot occur in the .int solution since integer problems does not have a well-defined dual problem, and hence no dual solution.

8.1.5 prisen

Description:

Results of the primal sensitivity analysis.

Subfields:

.cons	MATLAB struc	cture with the subfields:
	.lr_bl	Left value β_1 in the linearity interval for a lower bound.
	.rr_bl	Right value β_2 in the linearity interval for a lower bound.
	.ls_bl	Left shadow price s_l for a lower bound.
	.rs_bl	Right shadow price s_r for a lower bound.
	.lr_bu	Left value β_1 in the linearity interval for an upper bound.
	.rr_bu	Right value β_2 in the linearity interval for an upper bound.
	.ls_bu	Left shadow price s_l for an upper bound.
	.rs_bu	Right shadow price s_r for an upper bound.
.var	MATLAB struc	cture with the subfields:
	.lr_bl	Left value β_1 in the linearity interval for a lower bound on a variable.
	.rr_bl	Right value β_2 in the linearity interval for a lower bound on a variable.
	.ls_bl	Left shadow price s_l for a lower bound on a variable.
	.rs_bl	Right shadow price s_r for a lower bound on a variable.
	.lr_bu	Left value β_1 in the linearity interval for an upper bound on a variable.
	.rr_bu	Right value β_2 in the linearity interval for an upper bound on a variable.
	.ls_bu	Left shadow price s_l for an upper bound on a variable.
	.rs_bu	Right shadow price s_r for an upper bound on a variable.

8.1.6 duasen

Description:

Results of dual the sensitivity analysis.

Subfields:

.lr_c	Left value β_1 in linearity interval for an objective coefficient.
.rr_c	Right value β_2 in linearity interval for an objective coefficient.
.ls_c	Left shadow price s_l for an objective coefficient.
.rs_c	Right shadow price s_r for an objective coefficient.

8.1.7 info

info is a MATLAB structure containing a subfield for each item in the MOSEK optimization task database, e.g. the info.MSK_DINF_BI_CPUTIME field specifies the amount of time spent in the basis identification in the last optimization. In Sections F.13 and F.17 all the items in the task information database are listed.

8.1.8 symbcon

symboon is a MATLAB structure containing a subfield for each MOSEK symbolic constant, e.g. the field symboon.MSK_DINF_BI_CPUTIME specifies the value of the symbolic constant "MSK_DINF_BI_CPUTIME". In Appendix F allthe symbolic constants are listed.

8.1.9 callback

callback A MATLAB structure containing the subfields (all of them are optional):

.loghandle A MATLAB data structure or just [].

.log The name of a user-defined function which must accept two input arguments, e.g.

function myfunc(handle,str)

where handle will be identical to callback.handle when myfunc is called, and str is a string of text from the log file.

.iterhandle A MATLAB data structure or just [].

.iter The name of a user-defined function which must accept three input arguments, e.g.

function myfunc(handle, where, info)

where handle will be identical to callback.iterhandle when myfunc is called, where indicates the current progress of the colver and info is the current information database. See 8.1.7 for further details about the info data structure.

8.2 An example of a command reference

All functions are documented using the format:

• somefunction

Description: The purpose of the function.

Syntax:

[ret1,ret2] = somefunction(arg1,arg2)

Arguments:

A description of this argument. arg1

(Optional) A description of this argument which is optional. Howarg2

ever, if argument 3 is specified, this argument must be specified

too.

Another useful argument. arg3

Returns:

A description of the first return ret1. ret1

(Optional) A description of the second return ret2. ret2

Comments:

Potentially some comments about the function.

Examples:

Some examples of the use of the function.

8.3 Functions provided by the MOSEK optimization toolbox

• mosekopt

Description

Solves an optimization problem. Data specifying the optimization problem can either be read from a file or be inputted directly from MATLAB. It is also possible to write a file using mosekopt.

Syntax:

[rcode,res] = mosekopt(cmd,prob,param,callback)

Arguments:

cmd cmd is a string containing commands to MOSEK on what to do.

> E.g. the string 'minimize info' means that the objective should be minimized, and information about the optimization process should be returned in res.info. The following commands are

recognized by mosekopt:

aformat(n)

If the problem data are read from a file, this command controls the format res.prob.a upon return. For aformat(0) res.prob.a is a sparse matrix, and for aformat(1) the constraint matrix is given in coordinate format in which case the sparse matrix can be constructed as

```
m = % number of constraints
n = % number of variables
a = sparse(res.prob.a.subi,...
           res.prob.a.subj,...
           res.prob.a.val,...
           m,n);
```

anapro

Runs the problem analyzer.

echo(n)

Controls how much information is echoed to the screen. Here, n must be a nonnegative integer, where 0 means that no information is displayed and 3 means that all information is displayed.

info

Return the complete task information database in res.info. This database contains various task specific information. See Section 8.1.7 for details the info data structure.

Return the complete parameter database in res.param. param

Maximize the objective. maximize minimize Minimize the objective.

nokeepenv

Delete the MOSEK environment after each run. This can increase the license checkout overhead significantly and is therefore only intended as a debug feature.

read(name)

Request that data is read from a file "name".

statuskeys(n)

Controls the format of status keys (problem status, solution status etc.) in the returned problem, where statuskeys(0) means that all the status keys are returned as strings, and statuskeys (1) means that all the status keys are returned as

numeric codes.

symbcon

Return the symboon data structure in res. symboon. See Section 8.1.8 for details on the symboon data structure.

write(name), write() Write problem to the file "name".

prob (Optional) A MATLAB structure containing the problem data.

See Table 8.1 for details.

param (Optional) A MATLAB structure which is used to specify algo-

rithmic parameters to MOSEK. The fields of param must be valid MOSEK parameter names. Moreover, the values corresponding to the fields must be of a valid type, i.e. the value of a string parameter must be a string, the value of an integer parameter must

be an integer etc.

callback (Optional) A MATLAB structure defining call-back data and

functions. See Sections 7.22 and 8.1.9 for details.

Returns:

rcode Return code. The interpretation of the value of the return code

is listed in Appendix F.

res (Optional) Solution obtained by the interior-point algorithm.

.sol The data structure of the type sol is discussed

in Section 8.1.

.info A MATLAB structure containing the task in-

formation database which contains various task related information such as the number of iterations used to solve the problem. However, this field is only defined if info appeared in the cmd

command when mosekopt is invoked.

.param A MATLAB structure which contain the com-

plete MOSEK parameter database. However, this field is defined only if the param command is present in cmd when mosekopt is invoked.

.prob Contains the problem data if the problem data

was read from a file.

Examples: The following example

demonstrates how to display the MOSEK parameter database and how to use the primal simplex optimizer instead of the default optimizer.

```
% Obtain the parameter database.
[rcode,res] = mosekopt('param');

% Display the parameter database.
res.param
param = res.param;

% Modify a parameter.
param.MSK_IPAR_OPTIMIZER = 3
```

```
% Optimize a problem.
[rcode,res]=mosekopt('minimize info',prob,param);

% Display the information database.
res.info
```

- msklpopt
- mskqpopt
- mskenopt
- mskgpopt
- mskscopt

Description These functions provide an easy-to-use but less flexible interface than the mosekopt function. In fact these procedures is just wrappers around the mosekopt interface and they are defined in MATLAB m-files.

Syntax:

Arguments: For a description of the arguments we refer the reader to the actual m files stored in

<root>\mosek\6\toolbox\matlab\solvers

Please note that the MATLAB command help, e.g.

help msklpopt

will produce some usage information for the functions.

Returns:

Identical to the res structure returned by mosekopt.

• mskgpwri

Description This function writes a Geometric Programming (gp) problem to a file in a format compatible with the mskexpopt command line tool.

Syntax:

res = mskgpwri(c,a,map,filename)

Arguments:

c,a,map Data in the same format accepted by mskgpopt.

filename The output file name.

Returns: Nothing.

• mskgpread

Description This function reads a Geometric Programming (gp) problem from a file compatible with the mskexpopt command line tool.

Syntax:

Arguments:

filename The name of the file to read.

Returns:

c,a,map Data in the same format accepted by mskgpopt.

8.4 MATLAB optimization toolbox compatible functions

The functions presented in this section intents to provide compatibility with the corresponding MATLAB optimization toolbox functions. Although they are not perfectly compatible, the differences usually do not cause any problems.

8.4.1 Linear and quadratic optimization

• linprog

Description

Solves the linear optimization problem:

$$\begin{array}{lll} \text{minimize} & f^T x \\ \text{subject to} & Ax & \leq b, \\ Bx & = c, \\ l \leq x \leq u. \end{array}$$

Syntax:

Arguments:

f	The objective function.		
A	Constraint matrix for the less-than equal inequalities. Use $A = []$ if there are no inequalities.		
b	Right-hand side for the less-than equal inequalities. Use $b = []$ if there are no inequalities.		
В	(Optional) Constraint matrix for the equalities. Use $B=[]$ if there are no equalities.		
С	(Optional) Right-hand side for the equalities. Use $c=[]$ if there are no equalities.		
1	(Optional) Lower bounds on the variables. Please use $-\infty$ to represent infinite lower bounds.		
u	(Optional) Upper bounds on the variables. Please use ∞ to represent infinite upper bounds.		
хO	(Optional) An initial guess for the starting point. This information is ignored by MOSEK.		
options	(Optional) An optimization options structure. See the optimset function for the definition of the optimization options structure. linprog uses the options .Diagnostics .Display .MaxIter		
turns:	MAXIVEI		

Ret

x	The optimal x s	olution.
fval	The optimal obj	ective value, i.e. $f^T x$.
exitflag	A number which	has the interpretation:
	< 0	The problem is likely to be either primal or dual infeasible.
	=0	The maximum number of iterations was reached.
	> 0	x is an optimal solution.
output	.iterations	Number of iterations spent to reach the optimum.
	.algorithm	Always defined as 'large-scale: interior-point'.
lambda	.lower	Lagrange multipliers for lower bounds l .
	.upper	Lagrange multipliers for upper bounds u .
	.ineqlin	Lagrange multipliers for the inequalities.
	.eqlin	Lagrange multipliers for the equalities.

Examples:

```
% Optimize a problem having only linear inequalities. x = linprog(f,A,b);
```

• quadprog

Description

Solves the quadratic optimization problem:

minimize
$$\frac{1}{2}x^THx + f^Tx$$

subject to $Ax \leq b$,
 $Bx = c$,
 $l \leq x \leq u$. (8.8)

Syntax:

```
[x,fval,exitflag,output,lambda]
= quadprog(H,f,A,b,B,c,l,u,x0,options)
```

Arguments:

Н	Hessian of the objective function. H must be a symmetric matrix. Contrary to the MATLAB optimization toolbox, MOSEK handles only the cases where H is positive semi-definite. On the other hand MOSEK always computes a global optimum, i.e. the objective function has to be strictly convex.
f	See (8.8) for the definition.
A	Constraint matrix for the less-than equal inequalities. Use $A = []$ if there are no inequalities.
b	Right-hand side for the less-than equal inequalities. Use $b=[]$ if there are no inequalities.
В	(Optional) Constraint matrix for the equalities. Use $B=[]$ if there are no equalities.
С	(Optional) Right-hand side for the equalities. Use $c=[]$ if there are no equalities.
1	(Optional) Lower bounds on the variables. Please use $-\infty$ to represent infinite lower bounds.
u	(Optional) Upper bounds on the variables. Please use ∞ to represent infinite upper bounds.
х0	(Optional) An initial guess for the starting point. This information is ignored by MOSEK.

.Write

options	(Optional) An optimization options structure. See the optimset function for the definition of the optimizations options structure. quadprog uses the options .Diagnostics
	.Display
	.MaxIter

Returns:

X	The x solution.	
fval	The optimal objective value i.e. $\frac{1}{2}x^THx + f^Tx$.	
exitflag	A scalar which has the interpretation:	
	< 0	The problem is likely to be either primal or dual infeasible.
	=0	The maximum number of iterations was reached.
	> 0	x is an optimal solution.
output	.iterations	Number of iterations spent to reach the opti-
		mum.
	$. {\tt algorithm}$	Always defined as 'large-scale: interior-point'.
lambda	.lower	Lagrange multipliers for lower bounds l .
	.upper	Lagrange multipliers for upper bounds u .
	.ineqlin	Lagrange multipliers for inequalities.
	.eqlin	Lagrange multipliers for equalities.
	-	

Examples:

```
% Optimizes problem only
% having linear inequalities.
x = quadprog(H,f,A,b);
```

8.4.2 For linear least squares problems

 \bullet lsqlin

Description

Solves the linear least squares problem:

minimize
$$\frac{1}{2} \|Cx - d\|_{2}^{2}$$
 subject to
$$Ax \leq b,$$

$$Bx = c,$$

$$l \leq x \leq u.$$

$$(8.9)$$

Syntax:

```
[x,resnorm,residual,exitflag,output,lambda]
 = lsqlin(C,d,A,b,B,c,l,u,x0,options)
```

Arguments:

	C	A matrix. See problem (8.9) for the purpose of the argument.		
	d	A vector. See problem (8.9) for the purpose of the argument.		
	A	Constraint matrix for the less-than equal inequalities. Use $A=[]$ if there are no inequalities.		
	b	Right-hand side for the less-than equal inequalities. Use $b = []$ if there are no inequalities.		
	В	(Optional) Constraint matrix for the equalities. Use $B=[]$ if there are no equalities.		
	С	(Optional) Right-hand side for the equalities. Use $c = []$ if there are no equalities.		
	1	(Optional) Lower bounds on the variables. Please use $-\infty$ to represent infinite lower bounds.		
	u	(Optional) Upper bounds on the variables. Please use ∞ to represent infinite lower bounds.		
	x0	(Optional) An initial guess for the starting point. This information is ignored by MOSEK.		
	options	(Optional) An optimization options structure. See the function optimset function for the definition of the optimization options structure. lsqprog uses the options		
		.Diagnostics		
		.Display		
		.MaxIter		
t	urns:			

Ret

eturns:				
x	The optima	The optimal x solution.		
resnorm	-	d norm of the optimal residuals, i.e. $ Cx - d ^2$ evaluoptimal solution.		
residual	The residua	The residual $Cx - d$.		
exitflag	A scalar which has the interpretation:			
	< 0	The problem is likely to be either primal or dual infeasible.		
	=0	The maximum number of iterations was reached.		
	> 0	x is the optimal solution.		

output	.iterations	Number of iterations spent to reach the opti-
		mum.
	$. { t algorithm}$	Always defined as 'large-scale: interior-point'.
lambda	.lower	Lagrange multipliers for lower bounds l .
	.upper	Lagrange multipliers for upper bounds u .
	.ineqlin	Lagrange multipliers for inequalities.
	.eglin	Lagrange multipliers for equalities.

Examples:

```
% Solve a linear least
% squares problem.
x = lsqlin(C,d,A,b);
```

• lsqnonneg

Description

Solves the linear least squares problem:

minimize
$$\frac{1}{2} \|Cx - d\|_2^2$$

subject to
$$x \ge 0.$$
 (8.10)

Syntax:

[x,resnorm,residual,exitflag,output,lambda]
= lsqnonneg(C,d,x0,options)

Arguments:

C See problem (8.10).
d See problem (8.10).

x0 (Optional) An initial guess for the starting point. This informa-

tion is ignored by MOSEK.

options (Optional) An optimizations options structure. See the optimset

function for the definition of the optimization options structure.

lsqlin uses the options

.Diagnostics .Display

.MaxIter

Returns:

 \mathbf{x} The x solution.

resnorm The squared norm of the optimal residuals, i.e.

 $||Cx - d||^2$

evaluated at the optimal solution.

residual	The residual $Cx - d$.		
exitflag	A number which has the interpretation:		
	< 0	The problem is likely to be either primal or dual infeasible.	
	=0	The maximum number of iterations was reached.	
	> 0	x is optimal solution.	
output	.iterations	Number of iterations spend to reach the optimum.	
	$. { t algorithm}$	Always defined to be 'large-scale: interior-point'.	
lambda	.lower	Lagrange multipliers for lower bounds l .	
	.upper	Lagrange multipliers for upper bounds u .	
	.ineqlin	Lagrange multipliers for inequalities.	
	.eqlin	Lagrange multipliers for equalities.	

Comments:

This procedure just provides an easy interface to lsqlin. Indeed all the procedure does is to call lsqlin with the appropriate arguments.

Examples:

```
% Solve the problem x = lsqnonneg(C,d);
```

8.4.3 The optimization options

The procedures in the optimization toolbox accepts some options controlling e.g. the amount of information displayed or the stopping criterion.

In general, due to the fact that MOSEK and MATLAB optimization toolboxes employ different algorithms the toolboxes use different options. Therefore, the MOSEK optimization toolbox ignores most of the options recognized by the MATLAB toolbox. The description of the optimset function lists which MATLAB options MOSEK recognizes.

8.4.3.1 Viewing and modifying the optimization options

• optimget

Description

Obtains a value of an optimization parameter.

Syntax:

```
val = optimget(options,param,default)
```

Arguments:

The optimization options structure. options

Name of the optimization parameter for which the value should param

be obtained.

default (Optional) If param is not defined, the value of default is re-

turned instead.

Returns:

Value of the required option. If the option does not exist, then [] val

is returned unless the value 'default' is defined in which case

the default value is returned.

Comments: See the optimset function for which parameters that can be set.

Examples:

```
% Obtain the value of the diagnostics
% option.
val = optimget(options, 'Diagnostics');
\% val is equal to the default value.
val = optimget(options,'Nopar',1.0e-1);
```

• optimset

Description

Obtains and modifies the optimization options structure. Only a subset of the fields in the optimization structure recognized by the MATLAB optimization toolbox is recognized by MOSEK.

In addition the optimization options structure can be used to modify all the MO-SEK specific parameters defined in Appendix E.

Used to control how much diagnostic information is printed. Fol-.Diagnostics

lowing values are accepted:

off No diagnostic information is printed.

Diagnostic information is printed.

Defines what information is displayed. The following values are .Display

accepted:

off No output is displayed.

Some output is displayed for each iteration. iter

Only the final output is displayed. final

Maximum number of iterations allowed. .MaxIter

A filename to write the problem to. If equal to the empty string .Write

no file is written. E.g the option

Write(myfile.opf)

writes the file myfile.opf in the opf format.

Syntax:

Arguments:

arg1 (Optional) Is allowed to be any of the following two things:

Any string The same as using no argument.

A structure The argument is assumed to be a structure con-

taining options, which are copied to the return

options.

param1 (Optional) A string containing the name of a parameter that

should be modified.

value1 (Optional) The new value assigned to the parameter with the

name param1.

param2 (Optional) Has the same interpretation as param1.

value2 (Optional) Has the same interpretation as value1.

Returns:

options The updated optimization options structure.

Examples:

```
% Obtain the default options.
opt = optimset

% Modify the value of the parameter
% display in the optimization
% options structure
opt = optimset(opt, 'display', 'on');

% Return default options
opt = optimset('whatever')

% Modify a MOSEK parameter.
opt = [];
opt = optimset(opt, 'MSK_DPAR_INTPNT_TOLMURED', 1.0e-14);
```

Chapter 9

Case studies

9.1 Robust linear optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that the problem data, such as c and A, is known with certainty. However, in practice this is seldom the case, e.g. the data may just be roughly estimated, affected by measurement errors or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the assumption that the problem data is known exactly. Rather it is assumed that the data belongs to some set, i.e. a box or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB but could equally well have been implemented using the MOSEK API.

This section is co-authored with A. Ben-Tal and A. Nemirovski.

9.1.1 Introductory example

Consider the following toy-sized linear optimization problem: A company produces two kinds of drugs, DrugI and DrugII, containing a specific active agent A, which is extracted from a raw materials that should be purchased on the market. The drug production data are as follows:

Drug	Selling price,	Content of agent A,	Production expenses per 1000 packs		
	\$ per 1000 packs	gm per 1000 packs	manpower, hours	equipment, hours	operational costs, \$
DrugI	6200	0.500	90.0	40.0	700
DrugII	6900	0.600	100.0	50.0	800

There are two kinds of raw materials, RawI and RawII, which can be used as sources of the active agent. The related data is as follows:

Raw material	Purchasing price,	Content of agent A,	
	\$ per kg	gm per kg	
RawI	100.00	0.01	
RawII	199.90	0.02	

Finally, the monthly resources dedicated to producing the drugs are as follows:

Budget, \$	Manpower, hours	Equipment, hours	Capacity of raw materials storage, kg
100000	2000	800	1000

The problem is to find the production plan which maximizes the profit of the company, i.e. minimize the purchasing and operational costs

$$100 \cdot \mathtt{RawI} + 199.90 \cdot \mathtt{RawII} + 700 \cdot \mathtt{DrugI} + 800 \cdot \mathtt{DrugII}$$

and maximize the income

$$6200 \cdot \mathtt{DrugI} + 6900 \cdot \mathtt{DrugII}$$

The problem can be stated as the following linear programming program: Minimize

$$-\left(100 \cdot \texttt{RawI} + 199.90 \cdot \texttt{RawII} + 700 \cdot \texttt{DrugI} + 800 \cdot \texttt{DrugII}\right) + \left(6200 \cdot \texttt{DrugI} + 6900 \cdot \texttt{DrugII}\right) \\ (9.1)$$

subject to

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased and the amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced. The objective (9.1) denotes the profit to be maximized, and the inequalities can be interpreted as follows:

- (a) Balance of the active agent.
- (b) Storage restriction.
- (c) Manpower restriction.
- (d) Equipment restriction.
- (e) Ducget restriction.

Here is the MATLAB script which specifies the problem and solves it using the MOSEK optimization toolbox:

```
% rlo1.m
clear prob;
        = [-100; -199.9; 6200-700; 6900-800];
prob.c
      = sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;
prob.a
                   0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]);
prob.blc = [0;-inf;-inf;-inf;-inf];
prob.buc = [inf;1000;2000;800;100000];
prob.blx = [0;0;0;0];
prob.bux = [inf;inf;inf;inf];
[r,res] = mosekopt('maximize',prob);
        = res.sol.itr.xx;
RawI
        = xx(1);
RawII
        = xx(2);
         = xx(3);
DrugI
        = xx(4);
DrugII
disp(sprintf('*** Optimal value: %8.3f',prob.c'*xx));
disp('*** Optimal solution:');
disp(sprintf('RawI:
                      %8.3f', RawI));
disp(sprintf('RawII: %8.3f', RawII));
disp(sprintf('DrugI: %8.3f',DrugI));
disp(sprintf('DrugII: %8.3f',DrugII));
```

When executing this script, the following is displayed:

```
*** Optimal value: 8819.658

*** Optimal solution:
RawI: 0.000
RawII: 438.789
DrugI: 17.552
DrugII: 0.000
```

We see that the optimal solution promises the company a modest but quite respectful profit of 8.8%. Please note that at the optimal solution the balance constraint is active: the production process utilizes the full amount of the active agent contained in the raw materials.

9.1.2 Data uncertainty and its consequences.

Please note that not all problem data can be regarded as "absolutely reliable"; e.g. one can hardly believe that the contents of the active agent in the raw materials are exactly the "nominal data" 0.01 gm/kg for RawI and 0.02 gm/kg for RawII. In reality, these contents definitely vary around the indicated values. A natural assumption here is that the actual contents of the active agent a_I in RawI and a_{II} in RawII are realizations of random variables somehow distributed around the "nominal contents" $a_I^n = 0.01$ and $a_{II}^n = 0.02$. To be more

specific, assume that a_I drifts in the 0.5% margin of a_I^n , i.e. it takes with probability 0.5 the values from the interval $a_I^n(1 \pm 0.005) = a_I^n\{0.00995; 0.01005\}$. Similarly, assume that a_{II} drifts in the 2% margin of a_{II}^n , taking with probabilities 0.5 the values $a_{II}^n(1 \pm 0.02) = a_I^n\{0.0196; 0.0204\}$. How do the perturbations of the contents of the active agent affect the production process?

The optimal solution prescribes to purchase 438.8 kg of RawII and to produce 17552 packs of DrugI. With the above random fluctuations in the content of the active agent in RawII, this production plan, with probability 0.5, will be infeasible – with this probability, the actual content of the active agent in the raw materials will be less than required to produce the planned amount of DrugI. For the sake of simplicity, assume that this difficulty is resolved in the simplest way: when the actual content of the active agent in the raw materials is insufficient, the output of the drug is reduced accordingly. With this policy, the actual production of DrugI becomes a random variable which takes, with probabilities 0.5, the nominal value of 17552 packs and the 2% less value of 17201 packs. These 2% fluctuations in the production affect the profit as well; the latter becomes a random variable taking, with probabilities 0.5, the nominal value 8,820 and the 21% less value 6,929. The expected profit is 7,843, which is by 11% less than the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example that small (and in reality unavoidable) perturbations of the data may make the optimal solution infeasible, and a straightforward adjustment to the actual solution values may heavily affect the solution quality.

It turns out that the outlined phenomenon is found in many linear programs of practical origin. Usually, in these programs at least part of the data is not known exactly and can vary around its nominal values, and these data perturbations can make the nominal optimal solution – the one corresponding to the nominal data – infeasible. It turns out that the consequences of data uncertainty can be much more severe than in our toy example. The analysis of linear optimization problems from the NETLIB collection¹ reported in [13] demonstrates that for 13 of 94 NETLIB problems, already 0.01% perturbations of "clearly uncertain" data can make the nominal optimal solution severely infeasible: with these perturbations, the solution, with a non-negligible probability, violates some of the constraints by 50% and more. It should be added that in the general case, in contrast to the toy example we have considered, there is no evident way to adjust the optimal solution by a small modification to the actual values of the data. Moreover there are cases when such an adjustment is impossible — in order to become feasible for the perturbed data, the nominal optimal solution should be "completely reshaped".

¹NETLIB is a collection of LP's, mainly of the real world origin, which is a standard benchmark for evaluating LP algorithms

9.1.3 Robust linear optimization methodology

A natural approach to handling data uncertainty in optimization is offered by the *Robust Optimization Methodology* which, as applied to linear optimization, is as follows.

9.1.3.1 Uncertain linear programs and their robust counterparts.

Consider a linear optimization problem

minimize
$$c^T x$$

subject to $l_c \leq Ax \leq u_c$, $l_x \leq x \leq u_x$, (9.3)

with the data $(c, A, l_c, u_c, l_x, u_x)$, and assume that this data is not known exactly; all we know is that the data varies in a given *uncertainty set* \mathcal{U} . The simplest example is the one of *interval uncertainty*, where every data entry can run through a given interval:

$$\mathcal{U} = \left\{ (c, A, l_c, u_c, l_x, u_x) : \\
(c^{n} - dc, A^{n} - dA, l_c^{n} - dl_c, u_c^{n} - du_c, l_x^{n} - dl_x, u_x^{n} - du_x) \le (c, A, l_c, u_c, l_x, u_x) \\
\le (c^{n} + dc, A^{n} + dA, l_c^{n} + dl_c, u_c^{n} + du_c, l_x^{n} + dl_x, u_x^{n} + du_x) \right\}.$$
(9.4)

Here

$$(c^{\mathbf{n}},A^{\mathbf{n}},l_c^{\mathbf{n}},u_c^{\mathbf{n}},l_x^{\mathbf{n}},u_x^{\mathbf{n}})$$

is the nominal data,

$$dc, dA, dl_c, du_c, dl_x, du_x > 0$$

is the *data perturbation bounds*. Please note that some of the entries in the data perturbation bounds can be zero, meaning that the corresponding data entries are certain (the expected values equals the actual values).

- The family of instances (9.3) with data running through a given uncertainty set \mathcal{U} is called an *uncertain linear optimization problem*.
- A vector x is called a *robust feasible solution* to an uncertain linear optimization problem, if it remains feasible for all realizations of the data from the uncertainty set, i.e. if

$$l_c \le Ax \le u_c, l_x \le x \le u_x \text{ for all } (c, A, l_c, u_c, l_x, u_x) \in \mathcal{U}.$$
 (9.5)

• If for some value t we have $c^T x \leq t$ for all realizations of the objective from the uncertainty set, we say that robust value of the objective at x does not exceed t.

The Robust Optimization methodology proposes to associate with an uncertain linear program its robust counterpart (RC) which is the problem of minimizing the robust optimal value over the set of all robust feasible solutions, i.e. the problem

$$\min_{t,x} \{ t : c^T x \le t, \, l_c \le Ax \le u_c, \, l_x \le x \le u_x \text{ for all } (c, A, l_c, u_c, l_x, u_x) \in \mathcal{U} \}.$$
 (9.6)

The optimal solution to (9.6) is treated as the "uncertainty-immuned" solution to the original uncertain linear programming program.

9.1.3.2 Robust counterpart of an uncertain linear optimization problem with interval uncertainty

In general, the RC (9.6) of an uncertain linear optimization problem is not a linear optimization problem since (9.6) has infinitely many linear constraints. There are, however, cases when (9.6) can be rewritten equivalently as a linear programming program; in particular, this is the case for interval uncertainty (9.4). Specifically, in the case of (9.4), the robust counterpart of uncertain linear program is equivalent to the following linear program in variables x, y, t:

minimize
$$t$$
 subject to $(c^{n})^{T}x + (dc)^{T}y - t \leq 0$, (a) $l_{c}^{n} + dl_{c} \leq (A^{n})x - (dA)y$, (b) $(A^{n})x + (dA)y \leq u_{c}^{n} - du_{c}$, (c) (9.7) $0 \leq x + y$, (d) $0 \leq -x + y$, (e) $l_{x}^{n} + dl_{x} \leq x \leq u_{x}^{n} - du_{x}$, (f)

The origin of (9.7) is quite transparent: The constraints (9.7.d-e) linking x and y merely say that $y_i \ge |x_i|$ for all i. With this in mind, it is evident that at every feasible solution to (9.7) the entries in the vector

$$(A^{\mathbf{n}})x - (dA)y$$

are lower bounds on the entries of Ax with A from the uncertainty set (9.4), so that (9.7.b) ensures that $l_c \leq Ax$ for all data from the uncertainty set. Similarly, (9.7.c) and (9.7.a), (9.7.f) ensure, for all data from the uncertainty set, that $Ax \leq u_c$, $c^Tx \leq t$, and that the entries in x satisfy the required lower and upper bounds, respectively.

Please note that at the optimal solution to (9.7), one clearly has $y_j = |x_j|$. It follows that when the bounds on the entries of x impose nonnegativity (nonpositivity) of an entry x_j , then there is no need to introduce the corresponding additional variable y_i — from the very beginning it can be replaced with x_j , if x_j is nonnegative, or with $-x_j$, if x_j is nonpositive.

Another possible formulation of problem (9.7) is the following. Let

$$l_c^{\rm n} + dl_c = (A^{\rm n})x - (dA)y - f, \quad f \ge 0$$

then this equation is equivalent to (a) in (9.7.b). If $(l_c)_i = -\infty$, then equation i should be dropped from the computations. Similarly,

$$-x + y = g \ge 0$$

is equivalent to (9.7.d). This implies that

$$l_c^{\rm n} + dl_c - (A^{\rm n})x + f = -(dA)y$$

and that

$$y = q + x$$

Substituting these values into (9.7) gives

minimize
$$(c^{n})^{T}x + (dc)^{T}(g+x) - t \leq 0,$$
subject to
$$(c^{n})^{T}x + (dc)^{T}(g+x) - t \leq 0,$$

$$0 \leq f,$$

$$2(A^{n})x + (dA)(g+x) + f + l_{c}^{n} + dl_{c} \leq u_{c}^{n} - du_{c},$$

$$0 \leq g,$$

$$0 \leq g,$$

$$0 \leq 2x + g,$$

$$l_{x}^{n} + dl_{x} \leq x \leq u_{x}^{n} - du_{x},$$

$$(9.8)$$

which after some simplifications leads to

minimize
$$(c^{n} + dc)^{T}x + (dc)^{T}g - t \leq 0, \quad (a)$$
 subject to
$$(c^{n} + dc)^{T}x + (dc)^{T}g - t \leq 0, \quad (a)$$

$$0 \leq f, \quad (b)$$

$$2(A^{n} + dA)x + (dA)g + f - (l_{c}^{n} + dl_{c}) \leq u_{c}^{n} - du_{c}, \quad (c)$$

$$0 \leq g, \quad (d)$$

$$0 \leq g, \quad (d)$$

$$0 \leq 2x + g, \quad (e)$$

$$l_{x}^{n} + dl_{x} \leq x \leq u_{x}^{n} - du_{x}, \quad (f)$$

$$(9.9)$$

and

minimize
$$(c^{n} + dc)^{T}x + (dc)^{T}g - t \leq 0, \qquad (a)$$
 subject to
$$(c^{n} + dc)^{T}x + (dA)g + f \leq u_{c}^{n} - du_{c} + l_{c}^{n} + dl_{c}, \qquad (b)$$

$$0 \leq 2x + g, \qquad (c) \qquad (9.10)$$

$$0 \leq f, \qquad (d)$$

$$0 \leq g, \qquad (e)$$

$$l_{x}^{n} + dl_{x} \leq x \leq u_{x}^{n} - du_{x}. \qquad (f)$$

Please note that this problem has more variables but much fewer constraints than (9.7). Therefore, (9.10) is likely to be solved faster than (9.7). Note too that (9.10.b) is trivially redundant if $l_x^n + dl_x \ge 0$.

9.1.3.3 Introductory example (continued)

Let us apply the Robust Optimization methodology to our drug production example presented in Section 9.1.1, assuming that the only uncertain data is the contents of the active agent in the raw materials, and that these contents vary in 0.5% and 2% neighborhoods of the respective nominal values 0.01 and 0.02. With this assumption, the problem becomes an uncertain LP affected by interval uncertainty; the robust counterpart (9.7) of this uncertain LP is the linear program

```
(Drug_RC):
maximize
                                                                  t
subject to
            t \leq -100 \cdot \mathtt{RawI} - 199.9 \cdot \mathtt{RawII} + 5500 \cdot \mathtt{DrugI} + 6100 \cdot \mathtt{DrugII}
0.01 \cdot 0.995 \cdot \mathtt{RawI} + 0.02 \cdot 0.98 \cdot \mathtt{RawII} - 0.500 \cdot \mathtt{DrugI} - 0.600 \cdot \mathtt{DrugII}
                                                                                                                           0
                                                                                           RawI + RawII
                                                                                                                           1000
                                                                   90.0 \cdot \mathtt{DrugI} + 100.0 \cdot \mathtt{DrugII}
                                                                                                                           2000
                                                                     40.0 \cdot \mathtt{DrugI} + 50.0 \cdot \mathtt{DrugII}
                                                                                                                           800
                    100.0 \cdot \mathtt{RawI} + 199.90 \cdot \mathtt{RawII} + 700 \cdot \mathtt{DrugI} + 800 \cdot \mathtt{DrugII}
                                                                                                                           100000
                                                                     RawI, RawII, DrugI, DrugII
                                                                                                                          0
```

Solving this problem with MOSEK we get the following output:

```
*** Optimal value: 8294.567

*** Optimal solution:
RawI: 877.732
RawII: 0.000
DrugI: 17.467
```

0.000

DrugII:

We see that the robust optimal solution we have built "costs money" – it promises a profit of just \$8,295 (cf. with the profit of \$8,820 promised by the nominal optimal solution). Please note, however, that the robust optimal solution remains feasible whatever are the realizations of the uncertain data from the uncertainty set in question, while the nominal optimal solution requires adjustment to this data and, with this adjustment, results in the average profit of \$7,843, which is by 5.4% less than the profit of \$8,295 guaranteed by the robust optimal solution. Note too that the robust optimal solution is significantly different from the nominal one: both solutions prescribe to produce the same drug DrugI (in the amounts 17,467 and 17,552 packs, respectively) but from different raw materials, RawI in the case of the robust solution and RawII in the case of the nominal solution. The reason is that although the price per unit of the active agent for RawII is sligthly less than for RawI, the content of the agent in RawI is more stable, so when possible fluctuations of the contents are taken into account, RawI turns out to be more profitable than RawII.

9.1.4 Random uncertainty and ellipsoidal robust counterpart

In some cases, it is natural to assume that the perturbations affecting different uncertain data entries are random and independent of each other. In these cases, the robust counterpart based on the interval model of uncertainty seems to be too conservative: Why should we expect that all the data will be simultaneously driven to its most unfavorable values and immune the solution against this highly unlikely situation? A less conservative approach is offered by the *ellipsoidal* model of uncertainty. To motivate this model, let us seseee what happens with a particular linear constraint

$$a^T x \le b \tag{9.11}$$

at a given candidate solution x in the case when the vector a of coefficients of the constraint is affected by random perturbations:

$$a = a^{n} + \zeta, \tag{9.12}$$

where a^n is the vector of nominal coefficients and ζ is a random perturbation vector with zero mean and covariance matrix V_a . In this case the value of the left-hand side of (9.11), evaluated at a given x, becomes a random variable with the expected value $(a^n)^T x$ and the standard deviation $\sqrt{x^T V_a x}$. Now let us act as an engineer who believes that the value of a random variable never exceeds its mean plus 3 times the standard deviation; we do not intend to be that specific and replace "3" in the above rule by a safety parameter Ω which will be in our control. Believing that the value of a random variable "never" exceeds its mean plus Ω times the standard deviation, we conclude that a "safe" version of (9.11) is the inequality

$$(a^{\mathbf{n}})^T x + \Omega \sqrt{x^T V_a x} \le b. \tag{9.13}$$

The word "safe" above admits a quantitative interpretation: If x satisfies (9.13), one can bound from above the probability of the event that random perturbations (9.12) result in violating the constraint (9.11) evaluated at x. The bound in question depends on what we know about the distribution of ζ , e.g.

1. We always have the bound given by the Tschebyshev inequality:

satisfies (9.13)
$$\Rightarrow \operatorname{Prob}\left\{a^T x > b\right\} \leq \frac{1}{\Omega^2}.$$
 (9.14)

2. When ζ is Gaussian, then the Tschebyshev bound can be improved to

satisfies (9.13)
$$\Rightarrow \text{Prob}\left\{a^T x > b\right\} \le \frac{1}{\sqrt{2\pi}} \int_{\Omega}^{\infty} \exp\{-t^2/2\} dt \le 0.5 \exp\{-\Omega^2/2\}.$$
 (9.15)

3. Assume that $\zeta = D\xi$, where Δ is certain $n \times m$ matrix, and $\xi = (\xi_1, ..., \xi_m)^T$ is a random vector with independent coordinates $\xi_1, ..., \xi_m$ symmetrically distributed in the segment [-1, 1]. Setting $V = DD^T$ (V is a natural "upper bound" on the covariance matrix of ζ), one has

$$x \text{ satisfies } (9.13) \Rightarrow \text{Prob} \{a^T x > b\} \le 0.5 \exp\{-\Omega^2/2\}.$$
 (9.16)

Please note that in order to ensure the bounds in (9.15) and (9.16) to be $\leq 10^{-6}$, it suffices to set $\Omega = 5.13$.

Now, assume that we are given a linear program affected by random perturbations:

minimize
$$[c^{n} + dc]^{T} x$$
subject to
$$(l_{c})_{i} \leq [a_{i}^{n} + da_{i}]^{T} x \leq (u_{c})_{i}, i = 1, ..., m,$$

$$l_{x} \leq x \leq u_{x},$$

$$(9.17)$$

where $(c^n, \{a_i^n\}_{i=1}^m, l_c, u_c, l_x, u_x)$ are the nominal data, and dc, da_i are random perturbations with zero means². Assume, for the sake of definiteness, that every one of the random perturbations $dc, da_1, ..., da_m$ satisfies either the assumption of item 2 or the assumption of item 3, and let $V_c, V_1, ..., V_m$ be the corresponding (upper bounds on the) covariance matrices of the perturbations. Choosing a safety parameter Ω and replacing the objective and the bodies of all the constraints by their safe bounds as explained above, we arrive at the following optimization problem:

minimize
$$t$$
subject to
$$[c^{n}]^{T}x + \Omega\sqrt{x^{T}V_{c}x} \leq t,$$

$$(l_{c})_{i} \leq [a_{i}^{n}]^{T}x - \Omega\sqrt{x^{T}V_{a_{i}}x},$$

$$[a_{i}^{n}]^{T}x + \Omega\sqrt{x^{T}V_{a_{i}}x} \leq (u_{c})_{i}, i = 1, ..., m,$$

$$l_{x} \leq x \leq u_{x}.$$

$$(9.18)$$

The relation between problems (9.18) and (9.17) is as follows:

If (x,t) is a feasible solution of (9.18), then with probability at least

$$p = 1 - (m+1) \exp\{-\Omega^2/2\}$$

x is feasible for randomly perturbed problem (9.17), and t is an upper bound on the objective of (9.17) evaluated at x.

We see that if Ω is not too small (9.18) can be treated as a "safe version" of (9.17).

On the other hand, it is easily seen that (9.18) is nothing but the robust counterpart of the uncertain linear optimization problem with the nominal data $(c^n, \{a_i^n\}_{i=1}^m, l_c, u_c, l_x, u_x)$ and the

For the sake of simplicity, we assume that the bounds l_c , u_c , l_x , u_x are not affected by uncertainty; extensions to the case when it is not so are evident.

row-wise ellipsoidal uncertainty given by the matrices $V_c, V_{a_1}, ..., V_{a_m}$. In the corresponding uncertainty set, the uncertainty affects the coefficients of the objective and the constraint matrix only, and the perturbation vectors affecting the objective and the vectors of coefficients of the linear constraints run, independently of each other, through the respective ellipsoids

$$E_c = \left\{ dc = \Omega V_c^{1/2} u : u^T u \le 1 \right\},$$

$$E_{a_i} = \left\{ da_i = \Omega V_{a_i}^{1/2} u : u^T u \le 1 \right\}, i = 1, ..., m.$$

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less conservative and thus better suited for practice, than the interval model of uncertainty.

Last but not least, it should be mentioned that problem (9.18) is equivalent to a conic quadratic program, specifically to the program

minimize
$$t$$
 subject to $[c^{n}]^{T}x + \Omega z \leq t$, $(l_{c})_{i} \leq [a_{i}^{n}]^{T}x - \Omega z_{i}$, $[a_{i}^{n}]^{T}x + \Omega z_{i} \leq (u_{c})_{i}, i = 1, ..., m$, $0 = w - D_{c}x$ $0 = w^{i} - D_{a_{i}}x$, $i = 1, ..., m$, $0 \leq z - \sqrt{w^{T}w}$, $0 \leq z_{i} - \sqrt{(w^{i})^{T}w^{i}}$, $i = 1, ..., m$, $l_{x} \leq x \leq u_{x}$. (9.19)

where D_c and D_{a_i} are matrices satisfying the relations

$$V_c = D_c^T D_c, V_{a_i} = D_{a_i}^T D_{a_i}, i = 1, ..., m.$$

9.1.4.1 Example: Interval and Ellipsoidal robust counterparts of uncertain linear constraint with independent random perturbations of coefficients

Consider a linear constraint

$$l \le \sum_{j=1}^{n} a_j x_j \le u \tag{9.20}$$

and assume that the a_j coefficients of the body of the constraint are uncertain and vary in intervals $a_j^n \pm \sigma_j$. The worst-case-oriented model of uncertainty here is the interval one, and the corresponding robust counterpart of the constraint is given by the system of linear inequalities

$$l \leq \sum_{j=1}^{n} a_{j}^{n} x_{j} - \sum_{j=1}^{n} \sigma_{j} y_{j},$$

$$\sum_{j=1}^{n} a_{j}^{n} x_{j} + \sum_{j=1}^{n} \sigma_{j} y_{j} \leq u,$$

$$0 \leq x_{j} + y_{j},$$

$$0 \leq -x_{j} + y_{j},$$

$$j = 1, ..., n.$$

$$(9.21)$$

Now, assume that we have reasons to believe that the true values of the coefficients a_j are obtained from their nominal values a_j^n by random perturbations, independent for different j and symmetrically distributed in the segments $[-\sigma_j, \sigma_j]$. With this assumption, we are in the situation of item 3 and can replace the uncertain constraint (9.20) with its ellipsoidal robust counterpart

$$l \leq \sum_{j=1}^{n} a_{j}^{n} x_{j} - \Omega z,$$

$$\sum_{j=1}^{n} a_{j}^{n} x_{j} + \Omega z \leq u,$$

$$0 \leq z - \sqrt{\sum_{j=1}^{n} \sigma_{j}^{2} x_{j}^{2}}.$$

$$(9.22)$$

Please note that with the model of random perturbations, a vector x satisfying (9.22) satisfies a realization of (9.20) with probability at least $1 - \exp{\Omega^2/2}$; for $\Omega = 6$. This probability is $\geq 1 - 1.5 \cdot 10^{-8}$, which for all practical purposes is the same as sayiong that x satisfies all realizations of (9.20). On the other hand, the uncertainty set associated with (9.21) is the box

$$B = \left\{ a = (a_1, ..., a_n)^T : a_i^n - \sigma_i \le a_i \le a_i^n + \sigma_i, j = 1, ..., n \right\},\,$$

while the uncertainty set associated with (9.22) is the ellipsoid

$$E(\Omega) = \left\{ a = (a_1, ..., a_n)^T : \sum_{j=1}^n (a_j - a_j^n)^{\frac{2}{\sigma_j^2}} \le \Omega^2 \right\}.$$

For a moderate value of Ω , say $\Omega = 6$, and $n \ge 40$, the ellipsoid $E(\Omega)$ in its diameter, typical linear sizes, volume, etc. is incomparably less than the box B, the difference becoming more dramatic the larger the dimension n of the box and the ellipsoid. It follows that the ellipsoidal robust counterpart (9.22) of the randomly perturbed uncertain constraint (9.20) is much less conservative than the interval robust counterpart (9.21), while ensuring basically the same "robustness guarantees". To illustrate this important point, consider the following numerical examples:

There are n different assets on the market. The return on \$ 1 invested in asset j is a random variable distributed symmetrically in the segment $[\delta_j - \sigma_j, \delta_j + \sigma_j]$, and the returns on different assets are independent of each other. The problem is to distribute \$ 1 among the assets in order to get the largest possible total return on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

maximize
$$\sum_{j=1}^{n} a_{j}x_{j}$$
subject to
$$\sum_{j=1}^{n} x_{j} = 1,$$

$$0 \leq x_{j}, \qquad j = 1, ..., n.$$

$$(9.23)$$

where a_i are the uncertain returns of the assets. Both the nominal optimal solution (set all returns a_i equal to their nominal values δ_i) and the risk-neutral Stochastic Programming approach (maximize the expected total return) result in the same solution: Our \$ 1 should be invested in the most promising asset(s) – the one(s) with the maximal nominal return. This solution, however, can be very unreliable if, as is typically the case in reality, the most promising asset has the largest volatility σ and is in this sense the most risky. To reduce the risk, one can use the Robust Counterpart approach which results in the following optimization problems.

The Interval Model of Uncertainty:

t $0 \leq -t + \sum_{j=1}^{n} (\delta_j - \sigma_j) x_j,$ $\sum_{j=1}^{n} x_j = 1,$ $0 \leq x_j, \qquad j = 1, ..., n$ (9.24)maximize subject to

and

The ellipsoidal Model of Uncertainty:maximize

The ellipsoidal Model of Uncertainty: maximize
$$t$$
 subject to
$$0 \leq -t + \sum_{j=1}^{n} (\delta_j) x_j - \Omega z,$$

$$0 \leq z - \sqrt{\sum_{j=1}^{n} \sigma_j^2 x_j^2},$$

$$\sum_{j=1}^{n} x_j = 1,$$

$$0 \leq x_j, \qquad j = 1, ..., n$$

Note that the problem (9.25) is essentially the risk-averted portfolio model proposed in mid-50's by Markowitz.

The solution of (9.24) is evident — our \$ 1 should be invested in the asset(s) with the largest possible guaranteed return $\delta_i - \sigma_i$. In contrast to this very conservative policy (which in reality prescribes to keep the initial capital in a bank or in the most reliable, and thus low profit, assets), the optimal solution to (9.25) prescribes a quite reasonable diversification of investments which allows to get much better total return than (9.24) with basically zero risk³. To illustrate this, assume that there are n = 300 assets with the nominal returns (per year) varying from 1.04 (bank savings) to 2.00:

$$\delta_j = 1.04 + 0.96 \frac{j-1}{n-1}, j = 1, 2, ..., n = 300$$

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

$$\sigma_j = 1.152 \frac{j-1}{n-1}, j = 1, ..., n = 300.$$

Here is a MATLAB script which builds the associated problem (9.25), solves it via the MO-SEK optimization toolbox, displays the resulting robust optimal value of the total return and the distribution of investments, and finally runs 10,000 simulations to get the distribution of the total return on the resulting portfolio (in these simulations, the returns on all assets are uniformly distributed in the corresponding intervals):

```
% File: rlo2.m
% Problem:
% Maximize t subject to
% t \le sum(delta(j)*x(j)) - Omega*z,
y(j) = sigma(j)*x(j), j=1,...,n,
% sum(x(j)) = 1,
% norm(y) <= z,
% 0 <= x.
clear prob;
     = 300;
Omega = 6;
% Set nominal returns and volatilities
delta = (0.96/(n-1))*[0:1:n-1]+1.04;
sigma = (1.152/(n-1))*[0:1:n-1];
% Set mosekopt description of the problem
prob.c = -[1; zeros(2*n+1,1)];
       = [-1, ones(1,n)+delta, -Omega, zeros(1,n); zeros(n+1,2*n+2)];
for j=1:n,
    % Body of the constraint y(j) - sigma(j)*x(j) = 0:
    A(j+1,j+1) = -sigma(j);
    A(j+1,2+n+j) = 1;
end;
```

³Recall that in our discussion we have assumed the returns on different assets to be independent of each other. In reality, this is not so and this is why diversification of investments, although reducing the risk, never eliminates it completely

```
A(n+2,2:n+1)
                   = ones(1,n);
                  = sparse(A);
prob.a
                  = [zeros(n+1,1);1];
prob.blc
                  = [inf;zeros(n,1);1];
prob.buc
prob.blx
                  = [-\inf; zeros(n,1); 0; zeros(n,1)];
prob.bux
                  = \inf * ones(2*n+2,1);
prob.cones
                  = cell(1,1);
prob.cones{1}.type = 'MSK_CT_QUAD';
prob.cones{1}.sub = [n+2; [n+3:1:2*n+2]'];
% Run mosekopt
[r,res]=mosekopt('minimize echo(1)',prob);
% Display the solution
xx = res.sol.itr.xx;
t = xx(1);
disp(sprintf('Robust optimal value: %5.4f',t));
x = \max(xx(2:1+n), zeros(n,1));
plot([1:1:n],x,'-m');
grid on;
disp('Press <Enter> to run simulations');
pause
% Run simulations
Nsim = 10000:
out = zeros(Nsim,1);
for i=1:Nsim,
    returns = delta+(2*rand(1,n)-1).*sigma;
    out(i) = returns*x;
disp(sprintf('Actual returns over %d simulations:',Nsim));
disp(sprintf('Min=%5.4f Mean=%5.4f Max=%5.4f StD=%5.2f',...
   min(out), mean(out), max(out), std(out)));
hist(out);
```

Here are the results displayed by the script:

```
Robust optimal value: 1.3428
Actual returns over 10000 simulations:
Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03
```

Please note that with our set-up there is exactly one asset with guaranteed return greater than 1- asset # 1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust counterpart (9.24) prescribes to put our \$ 1 in the bank, thus getting a 4% profit. In contrast to this, the diversified portfolio given by the optimal solution of (9.25) never yields profit less than 57.2%, and yields at average a 69.67% profit with pretty low (0.03) standard

Figure 9.1: Distribution of investments among the assets in the optimal solution of.

deviation. We see that in favorable circumstances the ellipsoidal robust counterpart of an uncertain linear program indeed is less conservative than, although basically as reliable as, the interval robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The latter prescribes to invest everything we have in the most promising asset (in our example this is the asset # 300 with a nominal return of 2.00 and volatility of 1.152). Assuming that the actual return is uniformly distributed in the corresponding interval and running 10,000 simulations, we get the following results:

```
Nominal optimal value: 2.0000
Actual returns over 10000 simulations:
Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66
```

We see that the nominal solution results in a portfolio which is much more risky, although better at average, than the portfolio given by the robust solution.

9.1.4.2 Combined Interval-Ellipsoidal Robust Counterpart

We have considered the case when the coefficients a_j of uncertain linear constraint (9.20) are affected by uncorrelated random perturbations symmetrically distributed in given intervals $[-\sigma_j, \sigma_j]$, and we have discussed two ways to model the uncertainty:

- The interval uncertainty model (the uncertainty set \mathcal{U} is the box B), where we ignore the stochastic nature of the perturbations and their independence. This model yields the Interval Robust Counterpart (9.21);
- The ellipsoidal uncertainty model (\mathcal{U} is the ellipsoid $E(\Omega)$), which takes into account the stochastic nature of data perturbations and yields the Ellipsoidal Robust Counterpart (9.22).

Please note that although for large n the ellipsoid $E(\Omega)$ in its diameter, volume and average linear sizes is incomparably smaller than the box B, in the case of $\Omega > 1$ the ellipsoid $E(\Omega)$ in certain directions goes beyond the box. E.g. the ellipsoid E(6), although much more narrow than B in most of the directions, is 6 times wider than B in the directions of the coordinate axes. Intuition says that it hardly makes sense to keep in the uncertainty set realizations of the data which are outside of B and thus forbidden by our model of perturbations, so in the situation under consideration the intersection of $E(\Omega)$ and B is a better model of the uncertainty set than the ellipsoid $E(\Omega)$ itself. What happens when the model of the uncertainty set is the "combined interval-ellipsoidal" uncertainty $\mathcal{U}(\Omega) = E(\Omega) \cap B$?

First, it turns out that the RC of (9.20) corresponding to the uncertainty set $\mathcal{U}(\Omega)$ is still given by a system of linear and conic quadratic inequalities, specifically the system

$$l \leq \sum_{j=1}^{n} a_{j}^{n} x_{j} - \sum_{j=1}^{n} \sigma_{j} y_{j} - \Omega \sqrt{\sum_{j=1}^{n} \sigma_{j}^{2} u_{j}^{2}},$$

$$\sum_{j=1}^{n} a_{j}^{n} x_{j} + \sum_{j=1}^{n} \sigma_{j} z_{j} + \Omega \sqrt{\sum_{j=1}^{n} \sigma_{j}^{2} v_{j}^{2}} \leq u,$$

$$-y_{j} \leq x_{j} - u_{j} \leq y_{j}, j = 1, ..., n,$$

$$-z_{j} \leq x_{j} - v_{j} \leq z_{j}, j = 1, ..., n.$$

$$(9.26)$$

Second, it turns out that our intuition is correct: As a model of uncertainty, $U(\Omega)$ is as reliable as the ellipsoid $E(\Omega)$. Specifically, if x can be extended to a feasible solution of (9.26), then the probability for x to satisfy a realization of (9.20) is $\geq 1 - \exp\{-\Omega^2/2\}$.

The conclusion is that if we have reasons to assume that the perturbations of uncertain coefficients in a constraint of an uncertain linear optimization problem are (a) random, (b) independent of each other, and (c) symmetrically distributed in given intervals, then it makes sense to associate with this constraint an interval-ellipsoidal model of uncertainty and use a system of linear and conic quadratic inequalities (9.26). Please note that when building the robust counterpart of an uncertain linear optimization problem, one can use different models of the uncertainty (e.g., interval, ellipsoidal, combined interval-ellipsoidal) for different uncertain constraints within the same problem.

9.1.5 Further references

For further information about robust linear optimization consult [13, 14].

9.2 Geometric (posynomial) optimization

9.2.1 The problem

A geometric optimization problem can be stated as follows

minimize
$$\sum_{k \in J_0} c_k \prod_{j=0}^{n-1} t_j^{a_{kj}}$$
subject to
$$\sum_{k \in J_i} c_k \prod_{j=0}^{n-1} t_j^{a_{kj}} \leq 1, \quad i = 1, \dots, m,$$
$$t > 0,$$
 (9.27)

where it is assumed that

$$\bigcup_{k=0}^{m} J_k = \{1, \dots, T\}$$

and if $i \neq j$, then

$$J_i \cap J_j = \emptyset$$
.

Hence, A is a $T \times n$ matrix and c is a vector of length T. Given $c_k > 0$ then

$$c_k \prod_{j=0}^{n-1} t_j^{a_{kj}}$$

is called a *monomial*. A sum of monomials i.e.

$$\sum_{k \in J_i} c_k \prod_{j=0}^{n-1} t_j^{a_{kj}}$$

is called a *posynomial*. In general, the problem (9.27) is very hard to solve. However, the posynomial case where it is required that

is relatively easy. The reason is that using a simple variable transformation a convex optimization problem can be obtained. Indeed using the variable transformation

$$t_j = e^{x_j} (9.28)$$

we obtain the problem

minimize
$$\sum_{k \in J_0} c_k e^{\sum_{j=0}^{n-1} a_{kj} x_j}$$
subject to
$$\sum_{k \in J_i} c_k e^{\sum_{j=0}^{n-1} a_{kj} x_j} \leq 1, \quad i = 1, \dots, m,$$

$$(9.29)$$

which is a convex optimization problem that can be solved using MOSEK. We will call

$$c_{t}e^{\left(\sum_{j=0}^{n-1} a_{tj}x_{j}\right)} = e^{\left(\log(c_{t}) + \sum_{j=0}^{n-1} a_{tj}x_{j}\right)}$$

a term and hence the number of terms is T.

As stated, the problem (9.29) is non-separable. However, using

$$v_t = \log(c_t) + \sum_{j=0}^{n-1} a_{tj} x_j$$

we obtain the separable problem

minimize
$$\sum_{t \in J_0} e^{v_t}$$
subject to
$$\sum_{t \in J_i} e^{v_t} \leq 1, \qquad i = 1, \dots, m,$$

$$\sum_{j=0}^{n-1} a_{tj}x_j - v_t = -\log(c_t), \quad t = 0, \dots, T,$$

$$(9.30)$$

which is a separable convex optimization problem.

A warning about this approach is that the exponential function e^x is only numerically well-defined for values of x in a small interval around 0 since e^x grows very rapidly as x becomes larger. Therefore numerical problems may arise when solving the problem on this form.

9.2.2 Applications

A large number of practical applications, particularly in electrical circuit design, can be cast as a geometric optimization problem. We will not review these applications here but rather refer the reader to [15] and the references therein.

9.2.3 Modeling tricks

A lot of tricks that can be used for modeling posynomial optimization problems are described in [15]. Therefore, in this section we cover only one important case.

9.2.3.1 Equalities

In general, equalities are not allowed in (9.27), i.e.

$$\sum_{k \in J_i} c_k \prod_{j=0}^{n-1} t_j^{a_{kj}} = 1$$

is not allowed. However, a monomial equality is not a problem. Indeed consider the example

$$xyz^{-1} = 1$$

of a monomial equality. The equality is identical to

$$1 \le xyz^{-1} \le 1$$

which in turn is identical to the two inequalities

$$\begin{array}{cccc} xyz^{-1} & \leq & 1, \\ \frac{1}{xyz^{-1}} & = & x^{-1}y^{-1}z & \leq & 1. \end{array}$$

Hence, it is possible to model a monomial equality using two inequalities.

9.2.4 Problematic formulations

Certain formulations of geometric optimization problems may cause problems for the algorithms implemented in MOSEK. Basically there are two kinds of problems that may occur:

- The solution vector is finite, but an optimal objective value can only be a approximated.
- The optimal objective value is finite but implies that a variable in the solution is infinite.

9.2.4.1 Finite unattainable solution

The following problem illustrates an unattainable solution:

minimize
$$x^2y$$

subject to $xy \le 1$,
 $x, y > 0$.

Clearly, the optimal objective value is 0 but because of the constraint the x, y > 0 constraint this value can never be attained: To see why this is a problem, remember that MOSEK substitutes $x = e^{t_x}$ and $y = e^{t_y}$ and solves the problem as

$$\begin{array}{ll} \text{minimize} & e^{2t_x}e^{t_y} \\ \text{subject to} & e^{t_x}e^{t_y} & \leq & 1, \\ & t_x,t_y \in \mathbb{R}. \end{array}$$

The optimal solution implies that $t_x = -\infty$ or $t_y = -\infty$, and thus it is unattainable.

Now, the issue should be clear: If a variable x appears only with nonnegative exponents, then fixing x=0 will minimize all terms in which it appears — but such a solution cannot be attained.

9.2.4.2 Infinite solution

A similar problem will occur if a finite optimal objective value requires a variable to be infinite. This can be illustrated by the following example:

minimize
$$x^{-2}$$

subject to $x^{-1} \le 1$,
 $x > 0$,

which is a valid geometric programming problem. In this case the optimal objective is 0, but this requires $x = \infty$, which is unattainable.

Again, this specific case will appear if a variable x appears only with negative exponents in the problem, implying that each term in which it appears can be minimized for $x \to \infty$.

9.2.5 An example

Consider the example

minimize
$$x^{-1}y$$

subject to $x^2y^{-\frac{1}{2}} + 3y^{\frac{1}{2}}z^{-1} \le 1$,
 $xy^{-1} = z^2$,
 $-x \le -\frac{1}{10}$,
 $x \le 3$,
 $x, y, z > 0$,

which is not a geometric optimization problem. However, using the obvious transformations we obtain the problem

minimize
$$x^{-1}y$$

subject to $x^{2}y^{-\frac{1}{2}} + 3y^{\frac{1}{2}}z^{-1} \leq 1$,
 $xy^{-1}z^{-2} \leq 1$,
 $x^{-1}yz^{2} \leq 1$,
 $\frac{1}{10}x^{-1} \leq 1$,
 $\frac{1}{3}x \leq 1$,
 $x, y, z > 0$, (9.31)

which is a geometric optimization problem.

9.2.6 Solving the example

The problem (9.31) can be defined and solved in the MOSEK toolbox as shown below.

% go2.m

$$c = [1 \ 1 \ 3 \ 1 \ 1 \ 0.1 \ 1/3]$$
;

```
= sparse([[-1 1 0];
                 [2 - 0.5 0];
                 [0 \ 0.5 \ -1];
                 [1 -1 -2];
                 [-1 1 2];
                 [-1 0 0];
                 [1 0 0]]);
      = [0 \ 1 \ 1 \ 2 \ 3 \ 4 \ 5]';
[res] = mskgpopt(c,a,map);
fprintf('\nPrimal optimal solution to original gp:');
fprintf(' %e',exp(res.sol.itr.xx));
fprintf('\n\n');
% Compute the optimal objective value and
% the constraint activities.
v = c.*exp(a*res.sol.itr.xx);
% Add appropriate terms together.
f = sparse(map+1,1:7,ones(size(map)))*v;
% First objective value. Then constraint values.
fprintf('Objective value: %e\n',log(f(1)));
fprintf('Constraint values:');
fprintf(' %e',log(f(2:end)));
fprintf('\n\n');
% Dual multipliers (should be negative)
fprintf('Dual variables (should be negative):');
fprintf(' %e',res.sol.itr.y);
fprintf('\n\n');
```

9.2.7 Exporting to a file

It's possible to write a geometric optimization problem to a file with the command:

```
mskgpwri(c,a,map,filename)
```

This file format is compatible with the mskexpopt command line tool. See the MOSEK Tools User's manual for details on mskexpopt. This file format can be useful for sending

debug information to MOSEK or for testing. It's also possible to read the above format with the command:

9.2.8 Further information

More information about geometric optimization problems is located in [11, 12, 15].

Chapter 10

Modelling

In this chapter we will discuss the following issues:

- The formal definitions of the problem types that MOSEK can solve.
- The solution information produced by MOSEK.
- The information produced by MOSEK if the problem is infeasible.
- A set of examples showing different ways of formulating commonly occurring problems so that they can be solved by MOSEK.
- Recommendations for formulating optimization problems.

10.1 Linear optimization

A linear optimization problem can be written as

where

- \bullet m is the number of constraints.
- \bullet *n* is the number of decision variables.
- $x \in \mathbb{R}^n$ is a vector of decision variables.
- $c \in \mathbb{R}^n$ is the linear part of the objective function.
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.

- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.

A primal solution (x) is (primal) feasible if it satisfies all constraints in (10.1). If (10.1) has at least one primal feasible solution, then (10.1) is said to be (primal) feasible.

In case (10.1) does not have a feasible solution, the problem is said to be *(primal) infeasible*.

10.1.1 Duality for linear optimization

Corresponding to the primal problem (10.1), there is a dual problem

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c}$$

$$+ (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x} + c^{f}$$
subject to
$$A^{T} y + s_{l}^{x} - s_{u}^{x} = c,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \ge 0.$$

$$(10.2)$$

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0, and we use the convention that the product of the bound value and the corresponding dual variable is 0. E.g.

$$l_j^x = -\infty \implies (s_l^x)_j = 0 \text{ and } l_j^x \cdot (s_l^x)_j = 0.$$

This is equivalent to removing variable $(s_l^x)_j$ from the dual problem.

A solution

$$(y, s_l^c, s_u^c, s_l^x, s_u^x)$$

to the dual problem is feasible if it satisfies all the constraints in (10.2). If (10.2) has at least one feasible solution, then (10.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

We will denote a solution

$$(x, y, s_l^c, s_u^c, s_l^x, s_u^x)$$

so that x is a solution to the primal problem (10.1), and

$$(y, s_l^c, s_u^c, s_l^x, s_u^x)$$

is a solution to the corresponding dual problem (10.2). A solution which is both primal and dual feasible is denoted a *primal-dual feasible solution*.

10.1.1.1 A primal-dual feasible solution

Let

$$(x^*, y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*)$$

be a primal-dual feasible solution, and let

$$(x^c)^* := Ax^*.$$

For a primal-dual feasible solution we define the *optimality gap* as the difference between the primal and the dual objective value,

$$c^{T}x^{*} + c^{f} - ((l^{c})^{T}s_{l}^{c} - (u^{c})^{T}s_{u}^{c} + (l^{x})^{T}s_{l}^{x} - (u^{x})^{T}s_{u}^{x} + c^{f})$$

$$= \sum_{i=1}^{m} ((s_{l}^{c})_{i}^{*}((x_{i}^{c})^{*} - l_{i}^{c}) + (s_{u}^{c})_{i}^{*}(u_{i}^{c} - (x_{i}^{c})^{*}) + \sum_{j=1}^{n} ((s_{l}^{x})_{j}^{*}(x_{j} - l_{j}^{x}) + (s_{u}^{x})_{j}^{*}(u_{j}^{x} - x_{j}^{*}))$$

$$\geq 0$$

where the first relation can be obtained by multiplying the dual constraints (10.2) by x and x^c respectively, and the second relation comes from the fact that each term in each sum is nonnegative. It follows that the primal objective will always be greater than or equal to the dual objective.

We then define the *duality gap* as the difference between the primal objective value and the dual objective value, i.e.

$$c^{T}x^{*} + c^{f} - ((l^{c})^{T}s_{l}^{c} - (u^{c})^{T}s_{u}^{c} + (l^{x})^{T}s_{l}^{x} - (u^{x})^{T}s_{u}^{x} + c^{f})$$

Please note that the duality gap will always be nonnegative.

10.1.1.2 An optimal solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist feasible primal and dual solutions so that the duality gap is zero, or, equivalently, that the *complementarity conditions*

$$(s_l^c)_i^*((x_i^c)^* - l_i^c) = 0, \quad i = 1, \dots, m,$$

$$(s_u^c)_i^*(u_i^c - (x_i^c)^*) = 0, \quad i = 1, \dots, m,$$

$$(s_l^x)_j^*(x_j - l_j^x) = 0, \quad j = 1, \dots, n,$$

$$(s_u^x)_j^*(u_j^x - x_j^*) = 0, \quad j = 1, \dots, n$$

are satisfied.

If (10.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual solution are reported, including a status indicating the exact state of the solution.

10.1.1.3 Primal infeasible problems

If the problem (10.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal infeasibility: The dual solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize
$$(l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x$$

subject to
$$A^T y + s_l^x - s_u^x = 0,$$

$$-y + s_l^c - s_u^c = 0,$$

$$s_l^c, s_u^c, s_l^x, s_u^x \ge 0.$$

$$(10.3)$$

so that the objective is strictly positive, i.e. a solution

$$(y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*)$$

to (10.3) so that

$$(l^c)^T(s_l^c)^* - (u^c)^T(s_u^c)^* + (l^x)^T(s_l^x)^* - (u^x)^T(s_u^x)^* > 0.$$

Such a solution implies that (10.3) is unbounded, and that its dual is infeasible.

We note that the dual of (10.3) is a problem which constraints are identical to the constraints of the original primal problem (10.1): If the dual of (10.3) is infeasible, so is the original primal problem.

10.1.1.4 Dual infeasible problems

If the problem (10.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual infeasibility: The primal solution reported is a certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize
$$c^T x$$

subject to $Ax - x^c = 0$, $\bar{l}^c \le x^c \le \bar{u}^c$, $\bar{l}^x \le x \le \bar{u}^x$ (10.4)

where

$$\bar{l}_i^c = \left\{ \begin{array}{ll} 0, & \text{if } l_i^c > -\infty, \\ -\infty & \text{otherwise} \end{array} \right. \quad \text{and} \quad \bar{u}_i^c := \left\{ \begin{array}{ll} 0, & \text{if } u_i^c < \infty, \\ \infty & \text{otherwise} \end{array} \right.$$

and

$$\bar{l}_j^x = \begin{cases} 0, & \text{if } l_j^x > -\infty, \\ -\infty & \text{otherwise} \end{cases} \quad \text{and} \quad \bar{u}_j^x := \begin{cases} 0, & \text{if } u_j^x < \infty, \\ \infty & \text{otherwise} \end{cases}$$

so that the objective value $c^T x$ is negative. Such a solution implies that (10.4) is unbounded, and that the dual of (10.4) is infeasible.

We note that the dual of (10.4) is a problem which constraints are identical to the constraints of the original dual problem (10.2): If the dual of (10.4) is infeasible, so is the original dual problem.

10.1.2 Primal and dual infeasible case

In case that both the primal problem (10.1) and the dual problem (10.2) are infeasible, MO-SEK will report only one of the two possible certificates — which one is not defined (MOSEK returns the first certificate found).

10.2 Quadratic and quadratically constrained optimization

A convex quadratic optimization problem is an optimization problem of the form

minimize
$$\frac{1}{2}x^{T}Q^{o}x + c^{T}x + c^{f}$$
subject to $l_{k}^{c} \leq \frac{1}{2}x^{T}Q^{k}x + \sum_{j=0}^{n-1} a_{k,i}x_{j} \leq u_{k}^{c}, \quad k = 0, \dots, m-1,$

$$l^{x} \leq x \qquad \leq u^{x}, \quad j = 0, \dots, n-1,$$
(10.5)

where the convexity requirement implies that

- Q^o is a symmetric positive semi-definite matrix.
- If $l_k^c = -\infty$, then Q^k is a symmetric positive semi-definite matrix.
- If $u_k^c = \infty$, then Q^k is a symmetric negative semi-definite matrix.
- If $l_k > -\infty$ and $u_k^k < \infty$, then Q^k is a zero matrix.

The convexity requirement is very important and it is strongly recommended that MOSEK is applied to convex problems only.

10.2.1 A general recommendation

Any convex quadratic optimization problem can be reformulated as a conic optimization problem. It is our experience that for the majority of practical applications it is better to cast them as conic problems because

- the resulting problem is convex by construction, and
- the conic optimizer is more efficient than the optimizer for general quadratic problems.

See Section 10.3.3.1 for further details.

10.2.2 Reformulating as a separable quadratic problem

The simplest quadratic optimization problem is

minimize
$$1/2x^TQx + c^Tx$$

subject to $Ax = b$, (10.6)
 $x \ge 0$.

The problem (10.6) is said to be a separable problem if Q is a diagonal matrix or, in other words, if the quadratic terms in the objective all have this form

 x_i^2

instead of this form

$$x_i x_i$$
.

The separable form has the following advantages:

- It is very easy to check the convexity assumption, and
- the simpler structure in a separable problem usually makes it easier to solve.

It is well-known that a positive semi-definite matrix Q can always be factorized, i.e. a matrix F exists so that

$$Q = F^T F. (10.7)$$

In many practical applications of quadratic optimization F is known explicitly; e.g. if Q is a covariance matrix, F is the set of observations producing it.

Using (10.7), the problem (10.6) can be reformulated as

minimize
$$1/2y^T I y + c^T x$$

subject to $Ax = b$,
 $Fx - y = 0$,
 $x \ge 0$. (10.8)

The problem (10.8) is also a quadratic optimization problem and has more constraints and variables than (10.6). However, the problem is separable. Normally, if F has fewer rows than columns, it is worthwhile to reformulate as a separable problem. Indeed consider the extreme case where F has one dense row and hence Q will be a dense matrix.

The idea presented above is applicable to quadratic constraints too. Now, consider the constraint

$$1/2x^T(F^TF)x \le b \tag{10.9}$$

where F is a matrix and b is a scalar. (10.9) can be reformulated as

$$\begin{array}{rcl} 1/2y^TIy & \leq & b, \\ Fx-y & = & 0. \end{array}$$

It should be obvious how to generalize this idea to make any convex quadratic problem separable.

Next, consider the constraint

$$1/2x^T(D+F^TF)x \le b$$

where D is a positive semi-definite matrix, F is a matrix, and b is a scalar. We assume that D has a simple structure, e.g. that D is a diagonal or a block diagonal matrix. If this is the case, it may be worthwhile performing the reformulation

$$1/2((x^TDx) + y^TIy) \le b,$$

$$Fx - y = 0.$$

Now, the question may arise: When should a quadratic problem be reformulated to make it separable or near separable? The simplest rule of thumb is that it should be reformulated if the number of non-zeros used to represent the problem decreases when reformulating the problem.

10.3 Conic optimization

Conic optimization can be seen as a generalization of linear optimization. Indeed a conic optimization problem is a linear optimization problem plus a constraint of the form

$$x \in \mathcal{C}$$

where \mathcal{C} is a convex cone. A complete conic problem has the form

minimize
$$c^T x + c^f$$

subject to $l^c \leq Ax \leq u^c$,
 $l^x \leq x \leq u^x$,
 $x \in \mathcal{C}$. (10.10)

The cone C can be a Cartesian product of p convex cones, i.e.

$$C = C_1 \times \cdots \times C_n$$

in which case $x \in \mathcal{C}$ can be written as

$$x = (x_1, \ldots, x_p), x_1 \in \mathcal{C}_1, \ldots, x_p \in \mathcal{C}_p$$

where each $x_t \in \mathbb{R}^{n_t}$. Please note that the *n*-dimensional Euclidean space \mathbb{R}^n is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically

$$\mathcal{C} = \mathcal{C}_1 \times \cdot \times \mathcal{C}_p$$

where each C_t has one of the following forms

• \mathbb{R} set:

$$\mathcal{C}_t = \{x \in \mathbb{R}^{n^t}\}.$$

• Quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\}.$$

• Rotated quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \ x_1, x_2 \ge 0 \right\}.$$

Although these cones may seem to provide only limited expressive power they can be used to model a large range of problems as demonstrated in Section 10.3.3.

10.3.1 Duality for conic optimization

The dual problem corresponding to the conic optimization problem (10.10) is given by

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c}$$

$$+ (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x} + c^{f}$$
subject to
$$A^{T} y + s_{l}^{x} - s_{u}^{x} + s_{n}^{x} = c,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0,$$

$$s_{n}^{x} \in \mathcal{C}^{*}$$

$$(10.11)$$

where the dual cone C^* is a product of the cones

$$\mathcal{C}^* = \mathcal{C}_1^* \times \cdots \mathcal{C}_n^*$$

where each C_t^* is the dual cone of C_t . For the cone types MOSEK can handle, the relation between the primal and dual cone is given as follows:

• \mathbb{R} set:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} \right\} \quad \Leftrightarrow \quad C_t^* := \left\{ s \in \mathbb{R}^{n^t} : \ s = 0 \right\}.$$

• Quadratic cone:

$$\mathcal{C}_t := \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\} \quad \Leftrightarrow \quad \mathcal{C}_t^* = \mathcal{C}_t.$$

• Rotated quadratic cone:

$$\mathcal{C}_t := \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \ x_1, x_2 \ge 0 \right\}. \quad \Leftrightarrow \quad \mathcal{C}_t^* = \mathcal{C}_t.$$

Please note that the dual problem of the dual problem is identical to the original primal problem.

10.3.2 Infeasibility

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works exactly as for linear problems (see Sections 10.1.1.3 and 10.1.1.4).

10.3.3 Examples

This section contains several examples of inequalities and problems that can be cast as conic optimization problems.

10.3.3.1 Quadratic objective and constraints

From Section 10.2.2 we know that any convex quadratic problem can be stated on the form

minimize
$$0.5 ||Fx||^2 + c^T x$$
,
subject to $0.5 ||Gx||^2 + a^T x \le b$, (10.12)

where F and G are matrices and c and a are vectors. For simplicity we assume that there is only one constraint, but it should be obvious how to generalize the methods to an arbitrary number of constraints.

Problem (10.12) can be reformulated as

minimize
$$0.5 ||t||^2 + c^T x$$
,
subject to $0.5 ||z||^2 + a^T x \le b$,
 $Fx - t = 0$,
 $Gx - z = 0$ (10.13)

after the introduction of the new variables t and z. It is easy to convert this problem to a

conic quadratic optimization problem, i.e.

minimize
$$v + c^T x$$
,
subject to $p + a^T x = b$,
 $Fx - t = 0$,
 $Gx - z = 0$,
 $w = 1$,
 $q = 1$,
 $||t||^2 \le 2vw$, $v, w \ge 0$,
 $||z||^2 \le 2pq$, $p, q \ge 0$. (10.14)

In this case we can model the last two inequalities using rotated quadratic cones.

If we assume that F is a non-singular matrix — e.g. a diagonal matrix — then

$$x = F^{-1}t$$

and hence we can eliminate x from the problem to obtain:

minimize
$$v + c^T F^{-1}t$$
,
subject to $p + a^T F^{-1}t = b$,
 $GF^{-1}t - z = 0$,
 $w = 1$, (10.15)
 $q = 1$,
 $||t||^2 \le 2vw$, $v, w \ge 0$,
 $||z||^2 \le 2pq$, $p, q \ge 0$.

In most cases MOSEK performs this reduction automatically during the presolve phase before the optimization is performed.

10.3.3.2 Minimizing a sum of norms

The next example is the problem of minimizing a sum of norms, i.e. the problem

minimize
$$\sum_{i=1}^{k} ||x^{i}||$$
 subject to
$$Ax = b,$$
 (10.16)

where

$$x := \left[\begin{array}{c} x^1 \\ \vdots \\ x^k \end{array} \right].$$

This problem is equivalent to

minimize
$$\sum_{i=1}^{k} z_{i}$$
subject to
$$Ax = b,$$

$$\|x^{i}\| \leq z_{i}, \quad i = 1, \dots, k,$$

$$(10.17)$$

which in turn is equivalent to

minimize
$$\sum_{i=1}^{k} z_{i}$$
subject to
$$Ax = b,$$

$$(z_{i}, x^{i}) \in C_{i}, \qquad i = 1, \dots, k$$

$$(10.18)$$

where all C_i are of the quadratic type, i.e.

$$C_i := \{(z_i, x^i) : z_i \ge ||x^i||\}.$$

The dual problem corresponding to (10.18) is

maximize
$$b^T y$$

subject to $A^T y + s = c,$
 $t_i = 1, i = 1, \dots, k,$
 $(t_i, s^i) \in \mathcal{C}_i,$ $i = 1, \dots, k$ (10.19)

where

$$s := \left[\begin{array}{c} s^1 \\ \vdots \\ s^k \end{array} \right].$$

This problem is equivalent to

maximize
$$b^T y$$

subject to $A^T y + s = c$, $\|s^i\|_2^2 \le 1$, $i = 1, \dots, k$. (10.20)

Please note that in this case the dual problem can be reduced to an "ordinary" convex quadratically constrained optimization problem due to the special structure of the primal problem. In some cases it turns out that it is much better to solve the dual problem (10.19) rather than the primal problem (10.18).

10.3.3.3 Modelling polynomial terms using conic optimization

Generally an arbitrary polynomial term of the form

$$fx^g$$

cannot be represented with conic quadratic constraints, however in the following we will demonstrate some special cases where it is possible.

A particular simple polynomial term is the reciprocal, i.e.

 $\frac{1}{x}$.

Now, a constraint of the form

$$\frac{1}{x} \le y$$

where it is required that x > 0 is equivalent to

$$1 \le xy$$
 and $x > 0$

which in turn is equivalent to

$$\begin{array}{rcl} z & = & \sqrt{2}, \\ z^2 & \leq & 2xy. \end{array}$$

The last formulation is a conic constraint plus a simple linear equality.

E.g., consider the problem

minimize
$$c^T x$$

subject to $\sum_{j=1}^n \frac{f_j}{x_j} \le b$,
 $x \ge 0$,

where it is assumed that $f_j > 0$ and b > 0. This problem is equivalent to

minimize
$$c^T x$$

subject to $\sum_{j=1}^n f_j z_j = b$,
 $v_j = \sqrt{2}, \quad j = 1, \dots, n$,
 $v_j^2 \leq 2z_j x_j, \quad j = 1, \dots, n$,
 $x, z \geq 0$,
$$(10.21)$$

because

$$v_j^2 = 2 \le 2z_j x_j$$

implies that

$$\frac{1}{x_j} \le z_j$$
 and $\sum_{j=1}^n \frac{f_j}{x_j} \le \sum_{j=1}^n f_j z_j = b$.

The problem (10.21) is a conic quadratic optimization problem having n 3-dimensional rotated quadratic cones.

The next example is the constraint

$$\begin{array}{ccc} \sqrt{x} & \geq & |t|, \\ x & \geq & 0, \end{array}$$

where both t and x are variables. This set is identical to the set

$$t^2 \le 2xz,$$

 $z = 0.5,$
 $x, z, \ge 0.$ (10.22)

Occasionally, when modeling the market impact term in portfolio optimization, the polynomial term $x^{\frac{3}{2}}$ occurs. Therefore, consider the set defined by the inequalities

$$\begin{array}{rcl}
x^{1.5} & \leq & t, \\
0 & \leq & x.
\end{array} \tag{10.23}$$

We will exploit that $x^{1.5} = x^2/\sqrt{x}$. First define the set

$$\begin{array}{rcl}
x^2 & \leq & 2st, \\
s, t & > & 0.
\end{array}$$
(10.24)

Now, if we can make sure that

$$2s \le \sqrt{x}$$
,

then we have the desired result since this implies that

$$x^{1.5} = \frac{x^2}{\sqrt{x}} \le \frac{x^2}{2s} \le t.$$

Please note that s can be chosen freely and that $\sqrt{x} = 2s$ is a valid choice.

Let

then

$$\begin{array}{rcl} s^2 & = & w^2 \\ & \leq & 2vr \\ & = & \frac{v}{4} \\ & = & \frac{x}{4}. \end{array}$$

Moreover,

$$x^2 \leq 2st, \\ \leq 2\sqrt{\frac{x}{4}}t$$

leading to the conclusion that

$$x^{1.5} < t$$
.

(10.25) is a conic reformulation which is equivalent to (10.23). Please note that the $x \ge 0$ constraint does not appear explicitly in (10.24) and (10.25), but implicitly since $x = v \ge 0$.

As we shall see next, any polynomial term of the form x^g where g is a positive rational number can be represented using conic quadratic constraints [2, pp. 12-13], [14].

10.3.3.4 Optimization with rational polynomials

We next demonstrate how to model convex polynomial constraints of the form $x^{p/q} \leq t$ (where p and q are both positive integers) as a set of rotated quadratic cone constraints.

Following Ben-Tal et al. [14, p. 105] we use an intermediate result, namely that the set

$$\{s \in \mathbb{R}, y \in \mathbb{R}^{2^l}_+ \mid s \le (2^{l2^{l-1}}y_1y_2\cdots y_{2^l})^{1/2^l}\}$$

is convex and can be represented as a set of rotated quadratic cone constraints. To see this, we rewrite the condition (exemplified for l = 3),

$$s \le \left(2^{12} \cdot y_1 \cdot y_2 \cdot y_3 \cdot y_4 \cdot y_5 \cdot y_6 \cdot y_7 \cdot y_8\right)^{1/8} \tag{10.26}$$

as

$$s^{8} \le \left(2^{12} \cdot y_{1} \cdot y_{2} \cdot y_{3} \cdot y_{4} \cdot y_{5} \cdot y_{6} \cdot y_{7} \cdot y_{8}\right) \tag{10.27}$$

since all $y_i \geq 0$. We next introduce l levels of auxiliary variables and (rotated cone) constraints

$$y_{11}^2 \le 2y_1y_2, \quad y_{12}^2 \le 2y_3y_4, \quad y_{13}^2 \le 2y_5y_6, \quad y_{14}^2 \le 2y_7y_8,$$
 (10.28)

$$y_{21}^2 \le 2y_{11}y_{12}, \quad y_{22}^2 \le 2y_{13}y_{14},$$
 (10.29)

and finally

$$s^2 \le 2y_{21}y_{22}.\tag{10.30}$$

By simple substitution we see that (10.30) and (10.27) are equivalent, and since (10.30) involves only a set of simple rotated conic constraints then the original constraint (10.26) can be represented using only rotated conic constraints.

10.3.3.5 Convex increasing power functions

Using the intermediate result in section 10.3.3.4 we can include convex power functions with positive rational powers, i.e., constraints of the form

$$x^{p/q} \le t, \quad x \ge 0$$

where p and q are positive integers and $p/q \ge 1$. For example, consider the constraints

$$x^{5/3} < t, \quad x > 0.$$

We rewrite it as

$$x^8 \le x^3 t^3, \quad x \ge 0$$

which in turn is equivalent to

$$x^8 \le 2^{12}y_1y_2\cdots y_8$$
, $x = y_1 = y_2 = y_3$, $y_4 = y_5 = y_6 = t$, $y_6 = 1$, $y_7 = 2^{-12}$, $x, y_i \ge 0$,

i.e., it can be represented as a set of rotated conic and linear constraints using the reformulation above.

For general p and q we choose l as the smallest integer such that $p \leq 2^l$ and we construct the problem as

$$x^{2^{l}} \le 2^{l2^{l-1}} y_1 y_2 \cdots y_{2^{l}}, \quad x, y_i \ge 0,$$

with the first $2^l - p$ elements of y set to x, the next q elements set to t, and the product of the remaining elements as $1/2^{l2^{l-1}}$, i.e.,

$$x^{2^l} \le x^{2^l - p} t^q, \quad x \ge 0 \qquad \Longleftrightarrow \qquad x^{p/q} \le t, \quad x \ge 0.$$

10.3.3.6 Decreasing power functions

We can also include decreasing power functions with positive rational powers

$$x^{-p/q} \le t, \quad x \ge 0$$

where p and q are positive integers. For example, consider

$$x^{-5/2} \le t, \quad x \ge 0,$$

or equivalently

$$1 \le x^5 t^2, \quad x \ge 0,$$

which, in turn, can be rewritten as

$$s^8 \le 2^{12}y_1y_2\cdots y_8$$
, $s = 2^{3/2}$, $y_1 = \cdots = y_5 = x$, $y_6 = y_7 = y_8 = t$, $x, y_i \ge 0$.

For general p and q we choose l as the smallest integer such that $p+q \leq 2^l$ and we construct the problem as

$$s^{2^l} \le y_1 y_2 \cdots y_{2^l}, \quad y_i \ge 0,$$

with $s = 2^{l/2}$ and the first p elements of y set to x, the next q elements set to t, and the remaining elements set to 1, i.e.,

$$1 \le x^p t^q, \quad x \ge 0 \qquad \Longleftrightarrow \qquad x^{-p/q} \le t, \quad x \ge 0.$$

10.3.3.7 Minimizing general polynomials

Using the formulations in section 10.3.3.5 and section 10.3.3.6 it is straightforward to minimize general polynomials. For example, we can minimize

$$f(x) = x^2 + x^{-2}$$

which is used in statistical matching. We first formulate the problem

minimize
$$u+v$$

subject to $x^2 \le u$
 $x^{-2} \le v$,

which is equivalent to the quadratic conic optimization problem

$$\begin{array}{ll} \text{minimize} & u+v\\ \text{subject to} & x^2 \leq 2uw\\ & s^2 \leq 2y_{21}y_{22}\\ & y_{21}^2 \leq 2y_{1}y_{22}\\ & y_{22}^2 \leq 2y_{3}y_{4}\\ & w=1\\ & s=2^{3/4}\\ & y_1=y_2=x\\ & y_3=v\\ & y_4=1 \end{array}$$

in the variables $(x, u, v, w, s, y_1, y_2, y_3, y_4, y_{21}, y_{22})$.

10.3.3.8 Further reading

If you want to learn more about what can be modeled as a conic optimization problem we recommend the references [2, 14, 19].

10.3.4 Potential pitfalls in conic optimization

While a linear optimization problem either has a bounded optimal solution or is infeasible, the conic case is not as simple as that.

10.3.4.1 Non-attainment in the primal problem

Consider the example

minimize
$$z$$

subject to $2yz \ge x^2$,
 $x = \sqrt{2}$,
 $y, z \ge 0$, (10.31)

which corresponds to the problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{y} \\ \text{subject to} & y & \geq & 0. \end{array} \tag{10.32}$$

Clearly, the optimal objective value is zero but it is never attained because implicitly we assume that the optimal y is finite.

10.3.4.2 Non-attainment in the dual problem

Next, consider the example

minimize
$$x_4$$

subject to $x_3 + x_4 = 1$,
 $x_1 = 0$,
 $x_2 = 1$,
 $2x_1x_2 \ge x_3^2$,
 $x_1, x_2 \ge 0$, (10.33)

which has the optimal solution

$$x_1^* = 0$$
, $x_2^* = 1$, $x_3^* = 0$ and $x_4^* = 1$

implying that the optimal primal objective value is 1.

Now, the dual problem corresponding to (10.33) is

maximize
$$y_1 + y_3$$

subject to $y_2 + s_1 = 0$,
 $y_3 + s_2 = 0$,
 $y_1 + s_3 = 0$,
 $y_1 = 1$,
 $2s_1s_2 \geq s_3^2$,
 $s_1, s_2 \geq 0$. (10.34)

Therefore,

$$y_1^* = 1$$

and

$$s_3^* = -1.$$

This implies that

$$2s_1^*s_2^* \ge (s_3^*)^2 = 1$$

and hence $s_2^* > 0$. Given this fact we can conclude that

$$y_1^* + y_3^* = 1 - s_2^* < 1$$

implying that the optimal dual objective value is 1, however, this is never attained. Hence, no primal-dual bounded optimal solution with zero duality gap exists. Of course it is possible to find a primal-dual feasible solution such that the duality gap is close to zero, but then s_1^* will be similarly large. This is likely to make the problem (10.33) hard to solve.

An inspection of the problem (10.33) reveals the constraint $x_1 = 0$, which implies that $x_3 = 0$. If we either add the redundant constraint

$$x_3 = 0$$

to the problem (10.33) or eliminate x_1 and x_3 from the problem it becomes easy to solve.

10.4 Nonlinear convex optimization

MOSEK is capable of solving smooth (twice differentiable) convex nonlinear optimization problems of the form

minimize
$$f(x) + c^T x$$
 subject to
$$g(x) + Ax - x^c = 0,$$

$$l^c \leq x^c \leq u^c,$$

$$l^x \leq x \leq u^x,$$
 (10.35)

where

- m is the number of constraints.
- \bullet *n* is the number of decision variables.
- $x \in \mathbb{R}^n$ is a vector of decision variables.
- $x^c \in \mathbb{R}^m$ is a vector of constraints or slack variables.
- $c \in \mathbb{R}^n$ is the linear part objective function.
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.

- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $f: \mathbb{R}^n \to \mathbb{R}$ is a nonlinear function.
- $g: \mathbb{R}^n \to \mathbb{R}^m$ is a nonlinear vector function.

This means that the *i*th constraint has the form

$$l_i^c \le g_i(x) + \sum_{j=1}^n a_{i,j} x_j \le u_i^c$$

when the x_i^c variable has been eliminated.

The linear term Ax is not included in g(x) since it can be handled much more efficiently as a separate entity when optimizing.

The nonlinear functions f and g must be smooth in all $x \in [l^x; u^x]$. Moreover, f(x) must be a convex function and $g_i(x)$ must satisfy

$$\begin{array}{cccc} l_i^c = -\infty & \Rightarrow & g_i(x) & \text{is convex,} \\ u_i^c = \infty & \Rightarrow & g_i(x) & \text{is concave,} \\ -\infty < l_i^c \leq u_i^c < \infty & \Rightarrow & g_i(x) = 0. \end{array}$$

10.4.1 Duality

So far, we have not discussed what happens when MOSEK is used to solve a primal or dual infeasible problem. In the following section these issues are addressed.

Similar to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in this case the Lagrange function is defined by

$$\begin{array}{lcl} L(x^c,x,y,s^c_l,s^c_u,s^x_l,s^x_u) &:= & f(x)+c^Tx+c^f \\ & & -y^T(Ax+g(x)-x^c) \\ & & -(s^c_l)^T(x^c-l^c)-(s^c_u)^T(u^c-x^c) \\ & & -(s^x_l)^T(x-l^x)-(s^x_u)^T(u^x-x). \end{array}$$

and the dual problem is given by

$$\begin{array}{ll} \text{maximize} & L(x^c, x, y, s^c_l, s^c_u, s^x_l, s^x_u) \\ \text{subject to} & \nabla_{(x^c, x)} L(x^c, x, y, s^c_l, s^c_u, s^x_l, s^x_u) &= & 0, \\ & s^c_l, s^c_u, s^x_l, s^x_u \geq 0. \end{array}$$

which is equivalent to

maximize
$$f(x) - y^{T}g(x) - x^{T}(\nabla f(x)^{T} - \nabla g(x)^{T}y) + ((l^{c})^{T}s_{l}^{c} - (u^{c})^{T}s_{u}^{c} + (l^{x})^{T}s_{l}^{x} - (u^{x})^{T}s_{u}^{x} + c^{f}$$
subject to
$$-\nabla f(x)^{T} + A^{T}y + \nabla g(x)^{T}y + s_{l}^{x} - s_{u}^{x} = c,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \ge 0.$$
(10.36)

10.5 Recommendations

Often an optimization problem can be formulated in several different ways, and the exact formulation used may have a significant impact on the solution time and the quality of the solution. In some cases the difference between a "good" and a "bad" formulation means the ability to solve the problem or not.

Below is a list of several issues that you should be aware of when developing a good formulation.

- 1. Sparsity is very important. The constraint matrix A is assumed to be a sparse matrix, where sparse means that it contains many zeros (typically less than 10% non-zeros). Normally, when A is sparser, less memory is required to store the problem and it can be solved faster.
- 2. Avoid large bounds as these can introduce all sorts of numerical problems. Assume that a variable x_i has the bounds

$$0.0 \le x_i \le 1.0e16$$
.

The number 1.0e16 is large and it is very likely that the constraint $x_j \leq 1.0e16$ is non-binding at optimum, and therefore that the bound 1.0e16 will not cause problems. Unfortunately, this is a naïve assumption because the bound 1.0e16 may actually affect the presolve, the scaling, the computation of the dual objective value, etc. In this case the constraint $x_j \geq 0$ is likely to be sufficient, i.e. 1.0e16 is just a way of representing infinity.

- 3. Avoid large penalty terms in the objective, i.e. do not have large terms in the linear part of the objective function. They will most likely cause numerical problems.
- 4. On a computer all computations are performed in finite precision, which implies that

$$1 = 1 + \varepsilon$$

where ε is about 10^{-16} . This means that the results of all computations are truncated and therefore causing rounding errors. The upshot is that very small numbers and very large numbers should be avoided, e.g. it is recommended that all elements in A either are zero or belong to the interval $[10^{-6}, 10^6]$. The same holds for the bounds and the linear objective.

- 5. Decreasing the number of variables or constraints does not *necessarily* make it easier to solve a problem. In certain cases, i.e. in nonlinear optimization, it may be a good idea to introduce more constraints and variables if it makes the model separable. Furthermore, a big but sparse problem may be advantageous compared to a smaller but denser problem.
- 6. Try to avoid linearly dependent rows among the linear constraints. Network flow problems and multi-commodity network flow problems, for example, often contain one or more linearly dependent rows.
- 7. Finally, it is recommended to consult some of the papers about preprocessing to get some ideas about efficient formulations. See e.g. [3, 5, 17, 18].

10.5.1 Avoid near infeasible models

Consider the linear optimization problem

minimize subject to
$$x + y \le 10^{-10} + \alpha$$
, $1.0e4x + 2.0e4y \ge 10^{-6}$, $x, y \ge 0$. (10.37)

Clearly, the problem is feasible for $\alpha = 0$. However, for $\alpha = -1.0e - 10$ the problem is infeasible. This implies that an insignificant change in the right side of the constraints makes the problem status switch from feasible to infeasible. Such a model should be avoided.

10.6 Examples continued

10.6.1 The absolute value

Assume that we have a constraint for the form

$$|f^T x + g| \le b \tag{10.38}$$

where $x \in \mathbb{R}^n$ is a vector of variables, and $f \in \mathbb{R}^n$ and $g, b \in \mathbb{R}$ are constants.

It is easy to verify that the constraint (10.38) is equivalent to

$$-b \le f^T x + g \le b \tag{10.39}$$

which is a set of ordinary linear inequality constraints.

Please note that equalities involving an absolute value such as

$$|x| = 1$$

cannot be formulated as a linear or even a as convex nonlinear optimization problem. It requires integer constraints.

10.6.2 The Markowitz portfolio model

In this section we will show how to model several versions of the Markowitz portfolio model using conic optimization.

The Markowitz portfolio model deals with the problem of selecting a portfolio of assets, i.e. stocks, bonds, etc. The goal is to find a portfolio such that for a given return the risk is minimized. The assumptions are:

- A portfolio can consist of n traded assets numbered $1, 2, \ldots$ held over a period of time.
- w_i^0 is the initial holding of asset j where $\sum_i w_i^0 > 0$.
- r_j is the return on asset j and is assumed to be a random variable. r has a known mean \bar{r} and covariance Σ .

The variable x_j denotes the amount of asset j traded in the given period of time and has the following meaning:

- If $x_j > 0$, then the amount of asset j is increased (by purchasing).
- If $x_j < 0$, then the amount of asset j is decreased (by selling).

The model deals with two central quantities:

• Expected return:

$$E[r^T(w^0 + x)] = \bar{r}^T(w^0 + x).$$

• Variance (Risk):

$$V[r^{T}(w^{0} + x)] = (w^{0} + x)^{T} \Sigma(w^{0} + x).$$

By definition Σ is positive semi-definite and

Std. dev. =
$$\left\| \sum_{1}^{\frac{1}{2}} (w^{0} + x) \right\|$$

= $\left\| L^{T}(w^{0} + x) \right\|$

where L is any matrix such that

$$\Sigma = LL^T$$

A low rank of Σ is advantageous from a computational point of view. A valid L can always be computed as the Cholesky factorization of Σ .

10.6.2.1 Minimizing variance for a given return

In our first model we want to minimize the variance while selecting a portfolio with a specified expected target return t. Additionally, the portfolio must satisfy the budget (self-financing) constraint asserting that the total amount of assets sold must equal the total amount of assets purchased. This is expressed in the model

minimize
$$V[r^T(w^0 + x)]$$

subject to $E[r^T(w^0 + x)] = t$, (10.40)
 $e^T x = 0$,

where $e := (1, ..., 1)^T$. Using the definitions above this may be formulated as a quadratic optimization problem:

minimize
$$(w^0 + x)^T \Sigma (w^0 + x)$$

subject to $\bar{r}^T (w^0 + x) = t,$
 $e^T x = 0.$ (10.41)

10.6.2.2 Conic quadratic reformulation

An equivalent conic quadratic reformulation is given by:

minimize
$$f$$

subject to $\Sigma^{\frac{1}{2}}(w^0 + x) - g = 0$,
 $\bar{r}^T(w^0 + x) = t$, $e^T x = 0$,
 $f \ge ||g||$. (10.42)

Here we minimize the standard deviation instead of the variance. Please note that $\Sigma^{\frac{1}{2}}$ can be replaced by any matrix L where $\Sigma = LL^T$. A low rank L is computationally advantageous.

10.6.2.3 Transaction costs with market impact term

We will now expand our model to include transaction costs as a fraction of the traded volume. [1, pp. 445-475] argues that transaction costs can be modeled as follows

commission +
$$\frac{\text{bid}}{\text{ask}}$$
 - spread + $\theta \sqrt{\frac{\text{trade volume}}{\text{daily volume}}}$, (10.43)

and that it is important to incorporate these into the model.

In the following we deal with the last of these terms denoted the *market impact term*. If you sell (buy) a lot of assets the price is likely to go down (up). This can be captured in the market impact term

$$\theta \sqrt{\frac{\text{trade volume}}{\text{daily volume}}} \approx m_j \sqrt{|x_j|}.$$

The θ and "daily volume" have to be estimated in some way, i.e.

$$m_j = \frac{\theta}{\sqrt{\text{daily volume}}}$$

has to be estimated. The market impact term gives the cost as a fraction of daily traded volume $(|x_j|)$. Therefore, the total cost when trading an amount x_j of asset j is given by

$$|x_j|(m_j|x_j|^{\frac{1}{2}}).$$

This leads us to the model:

minimize
$$f$$

subject to $\Sigma^{\frac{1}{2}}(w^0 + x) - g = 0,$
 $\bar{r}^T(w^0 + x) = t,$
 $e^T x + e^T y = 0,$
 $|x_j|(m_j|x_j|^{\frac{1}{2}}) \leq y_j,$
 $f \geq ||g||.$ (10.44)

Now, defining the variable transformation

$$y_j = m_j \bar{y}_j$$

we obtain

minimize
$$f$$

subject to $\Sigma^{\frac{1}{2}}(w^{0} + x) - g = 0$,
 $\bar{r}^{T}(w^{0} + x) = t$,
 $e^{T}x + m^{T}\bar{y} = 0$,
 $|x_{j}|^{3/2} \leq \bar{y}_{j}$,
 $f \geq ||g||$. (10.45)

As shown in Section 10.3.3.3 the set

$$|x_j|^{3/2} \le \bar{y}_j$$

can be modeled by

10.6.2.4 Further reading

For further reading please see [20] in particular, and [23] and [1], which also contain relevant material.

Chapter 11

The optimizers for continuous problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular class of problems i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter is to discuss which optimizers are available for the continuous problem classes and how the performance of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for *continuous problems* with no integer variables.

11.1 How an optimizer works

When the optimizer is called, it roughly performs the following steps:

Presolve: Preprocessing to reduce the size of the problem.

Dualizer: Choosing whether to solve the primal or the dual form of the problem.

Scaling: Scaling the problem for better numerical stability.

Optimize: Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more efficient and robust.

11.1.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called presolve. The purpose of the presolve is to

• remove redundant constraints,

- eliminate fixed variables,
- remove linear dependencies,
- substitute out free variables, and
- reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the returned solution is valid for the original problem. Hence, the presolve is completely transparent. For further details about the presolve phase, please see [3, 5].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This is done by setting the parameter MSK_IPAR_PRESOLVE_USE to MSK_PRESOLVE_MODE_OFF.

The two most time-consuming steps of the presolve are

- the eliminator, and
- the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

11.1.1.1 Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using substitution. For instance, given the constraints

$$\begin{array}{rcl} y & = & \sum_j x_j, \\ y, x & \geq & 0, \end{array}$$

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.

If the eliminator consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This can be done with the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_USE to MSK_OFF.

11.1.1.2 Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities. For instance, the three linear equalities

$$x_1 + x_2 + x_3 = 1,$$

 $x_1 + 0.5x_2 = 0.5,$
 $0.5x_2 + x_3 = 0.5$

contain exactly one linear dependency. This implies that one of the constraints can be dropped without changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical problems in the optimization phase.

It is best practise to build models without linear dependencies. If the linear dependencies are removed at the modeling stage, the linear dependency check can safely be disabled by setting the parameter MSK_IPAR_PRESOLVE_LINDEP_USE to MSK_OFF.

11.1.2 Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer manually by setting the parameters:

- MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
- MSK_IPAR_SIM_SOLVE_FORM: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

11.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e+9 or 1.0e-7, are often hard to solve. Significant digits may be truncated in calculations with finite precision, which can result in the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme coefficients should be avoided. In general, data around the same "order of magnitude" is preferred, and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important to be aware that the optimizer terminates when the termination criterion is met on the scaled problem, therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems. The best solution to this problem is to reformulate it, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex optimizers can be controlled with the parameters

MSK_IPAR_INTPNT_SCALING and MSK_IPAR_SIM_SCALING

respectively.

11.1.4 Using multiple CPU's

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear, quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can take advantage of multiple CPU's.

By default MOSEK uses one thread to solve the problem, but the number of threads (and thereby CPUs) employed can be changed by setting the parameter MSK_IPAR_INTPNT_NUM_THREADS This should never exceed the number of CPU's on the machine.

The speed-up obtained when using multiple CPUs is highly problem and hardware dependent, and consequently, it is advisable to compare single threaded and multi threaded performance for the given problem type to determine the optimal settings.

For small problems, using multiple threads will probably not be worthwhile.

11.2 Linear optimization

11.2.1 Optimizer selection

Two different types of optimizers are available for linear problems: The default is an interior-point method, and the alternatives are simplex methods. The optimizer can be selected using the parameter MSK_IPAR_OPTIMIZER.

11.2.2 The interior-point optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems on standard form

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$. (11.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to standard form before solving, then convert it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (11.1) has an optimal solution, is primal infeasible or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that MOSEK solves the so-called homogeneous model

$$\begin{array}{rcl}
Ax - b\tau & = & 0, \\
A^{T}y + s - c\tau & = & 0, \\
-c^{T}x + b^{T}y - \kappa & = & 0, \\
x, s, \tau, \kappa & \geq & 0,
\end{array}$$
(11.2)

where y and s correspond to the dual variables in (11.1), and τ and κ are two additional scalar variables. Note that the homogeneous model (11.2) always has solution since

$$(x, y, s, \tau, \kappa) = (0, 0, 0, 0, 0)$$

is a solution, although not a very interesting one.

Any solution

$$(x^*, y^*, s^*, \tau^*, \kappa^*)$$

to the homogeneous model (11.2) satisfies

$$x_{i}^{*}s_{i}^{*} = 0$$
 and $\tau^{*}\kappa^{*} = 0$.

Moreover, there is always a solution that has the property

$$\tau^* + \kappa^* > 0.$$

First, assume that $\tau^* > 0$. It follows that

$$A\frac{x^*}{\tau^*} = b,$$

$$A^T \frac{y^*}{\tau^*} + \frac{s^*}{\tau^*} = c,$$

$$-c^T \frac{x^*}{\tau^*} + b^T \frac{y^*}{\tau^*} = 0,$$

$$x^*, s^*, \tau^*, \kappa^* \ge 0.$$
(11.3)

This shows that $\frac{x^*}{\tau^*}$ is a primal optimal solution and $(\frac{y^*}{\tau^*}, \frac{s^*}{\tau^*})$ is a dual optimal solution; this is reported as the optimal interior-point solution since

$$(x, y, s) = \left(\frac{x^*}{\tau^*}, \frac{y^*}{\tau^*}, \frac{s^*}{\tau_*}\right)$$

is a primal-dual optimal solution.

On other hand, if $\kappa^* > 0$ then

$$Ax^* = 0, A^T y^* + s^* = 0, -c^T x^* + b^T y^* = \kappa^*, x^*, s^*, \tau^*, \kappa^* \ge 0.$$
 (11.4)

This implies that at least one of

$$-c^T x^* > 0 \tag{11.5}$$

or

$$b^T y^* > 0 \tag{11.6}$$

is satisfied. If (11.5) is satisfied then x^* is a certificate of dual infeasibility, whereas if (11.6) is satisfied then y^* is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required for a solution to the original problem is obtained. A solution to the homogeneous model can be computed using a primal-dual interior-point algorithm [10].

11.2.2.1 Interior-point termination criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution

$$(x^k, y^k, s^k, \tau^k, \kappa^k)$$

to homogeneous model is generated where

$$x^k, s^k, \tau^k, \kappa^k > 0.$$

Whenever the trial solution satisfies the criterion

the interior-point optimizer is terminated and

$$\frac{(x^k, y^k, s^k)}{\tau^k}$$

is reported as the primal-dual optimal solution. The interpretation of (11.7) is that the optimizer is terminated if

- $\frac{x^k}{\tau^k}$ is approximately primal feasible,
- $\left(\frac{y^k}{\tau^k}, \frac{s^k}{\tau^k}\right)$ is approximately dual feasible, and
- the duality gap is almost zero.

On the other hand, if the trial solution satisfies

$$-\varepsilon_i c^T x^k > \frac{\|c\|}{\max(\|b\|, 1)} \|Ax^k\|$$
(11.8)

then the problem is declared dual infeasible and x^k is reported as a certificate of dual infeasibility. The motivation for this stopping criterion is as follows: First assume that $||Ax^k|| = 0$; then x^k is an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

$$\left\|Ax^k\right\| > 0,$$

Tolerance	Parameter name
$\overline{\varepsilon_p}$	MSK_DPAR_INTPNT_TOL_PFEAS
$arepsilon_d$	MSK_DPAR_INTPNT_TOL_DFEAS
ε_q	MSK_DPAR_INTPNT_TOL_REL_GAP
$arepsilon_i$	MSK_DPAR_INTPNT_TOL_INFEAS

Table 11.1: Parameters employed in termination criterion.

and define

$$\bar{x} := \varepsilon_i \frac{\max(1, ||b||) x^k}{\|Ax^k\| \|c\|}.$$

It is easy to verify that

$$||A\bar{x}|| = \varepsilon_i \text{ and } -c^T\bar{x} > 1,$$

which shows \bar{x} is an approximate certificate dual infeasibility where ε_i controls the quality of the approximation. A smaller value means a better approximation.

Finally, if

$$\varepsilon_i b^T y^k \ge \frac{\|b\|}{\max(1, \|c\|)} \left\| A^T y^k + s^k \right\| \tag{11.9}$$

then y^k is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances ε_p , ε_d , ε_g and ε_i using parameters; see table 11.1 for details.

The default values of the termination tolerances are chosen such that for a majority of problems appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually is not worthwhile. However, an inspection of (11.7) reveals that quality of the solution is dependent on ||b|| and ||c||; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and dual feasibility at the same rate [10]. This means that if the optimizer is stopped prematurely then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most cases all the tolerances, ε_p , ε_d and ε_g , has to be relaxed together to achieve an effect.

The basis identification discussed in section 11.2.2.2 requires an optimal solution to work well; hence basis identification should turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually is not worthwhile.

11.2.2.2 Basis identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique primal and dual optimal solution. Therefore, the interior-point optimizer has

an optional post-processing step that computes an optimal basic solution starting from the optimal interior-point solution. More information about the basis identification procedure may be found in [7].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis identification procedure can be turned off. The parameters

- MSK_IPAR_INTPNT_BASIS,
- MSK_IPAR_BI_IGNORE_MAX_ITER, and
- MSK_IPAR_BI_IGNORE_NUM_ERROR

controls when basis identification is performed.

11.2.2.3 The interior-point log

Below is a typical log output from the interior-point optimizer presented:

```
Optimizer
          - threads
                                    : 1
Optimizer - solved problem
                                    : the dual
Optimizer - constraints
                                    : 2
                                                        variables
                                                                                : 6
Factor
           - setup time
                                    : 0.04
                                                         order time
                                                                                : 0.00
Factor
           - GP order used
                                                        GP order time
                                                                                : 0.00
                                    : no
Factor
           - nonzeros before factor : 3
                                                         after factor
                                                                                : 3
Factor
           - offending columns
                                                         flops
                                                                                : 1.70e+001
ITE PFEAS
             DFEAS
                      KAP/TAU POBJ
                                                 DOBJ
                                                                    MU
    2.0e+002 2.9e+001 2.0e+002 -0.000000000e+000 -1.204741644e+003 2.0e+002 0.44
    2.2e+001 3.1e+000 7.3e+002 -5.885951891e+003 -5.856764353e+003 2.2e+001 0.57
    3.8e+000 5.4e-001 9.7e+001 -7.405187479e+003 -7.413054916e+003 3.8e+000 0.58
    4.0e-002 5.7e-003 2.6e-001 -7.664507945e+003 -7.665313396e+003 4.0e-002 0.58
    4.2e-006 6.0e-007 2.7e-005 -7.667999629e+003 -7.667999714e+003 4.2e-006 0.59
    4.2e-010 6.0e-011 2.7e-009 -7.667999994e+003 -7.667999994e+003 4.2e-010 0.59
```

The first line displays the number of threads used by the optimizer and second line tells that the optimizer choose to solve the dual problem rather the primal problem. The next line displays the problem dimensions as seen by the optimizer, and the "Factor..." lines show various statistics. This is followed by the iteration log.

Using the same notation as in section 11.2.2 the columns of the iteration log has the following meaning:

- ITE: Iteration index.
- PFEAS: $||Ax^k b\tau^k||$. The numbers in this column should converge monotonically towards to zero.

- DFEAS: $||A^Ty^k + s^k c\tau^k||$. The numbers in this column should converge monotonically toward to zero.
- KAP/TAU: κ^k/τ^k . If the numbers in this column converge toward zero then the problem has an optimal solution. Otherwise if the numbers converge towards infinity, the problem is primal or/and dual infeasible.
- POBJ: $c^T x^k / \tau^k$. An estimate for the primal objective value.
- DOBJ: $b^T y^k / \tau^k$. An estimate for the dual objective value.
- MU: $\frac{(x^k)^T s^k + \tau^k \kappa^k}{n+1}$. The numbers in this column should always converge monotonically to zero.
- TIME: Time spend since the optimization started.

11.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal solution to reduce the solution time. Depending on the problem it may be faster or slower to use an initial guess; see section 11.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this later.

11.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate. A basic solution is optimal when it is primal and dual feasible; see (10.1) and (10.2) for a definition of the primal and dual problem. Due the fact that to computations are performed in finite precision MOSEK allows violation of primal and dual feasibility within certain tolerances. The user can control the allowed primal and dual infeasibility with the parameters MSK DPAR BASIS_TOL_X and MSK DPAR BASIS_TOL_S.

11.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce the solution time significantly. When a simplex optimizer starts from an existing solution it is said to perform a *hot-start*. If the user is solving a sequence of optimization problems by solving the problem, making modifications, and solving again, MOSEK will hot-start automatically.

Setting the parameter MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs very few iterations to find the optimal solution it may be better to turn off the presolve.

11.2.3.3 Numerical difficulties in the simplex optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible when working in finite precision. MOSEK counts a "numerical unexpected behavior" event inside the optimizer as a *set-back*. The user can define how many set-backs the optimizer accepts; if that number is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences where the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still occur, trying one or more of the following suggestions may be worthwhile:

- Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of
 - MSK_DPAR_BASIS_TOL_X, and
 - MSK_DPAR_BASIS_TOL_S.
- Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.
- Switch optimizer: Try another optimizer.
- Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.
- Experiment with other pricing strategies: Try different values for the parameters
 - MSK_IPAR_SIM_PRIMAL_SELECTION and
 - MSK_IPAR_SIM_DUAL_SELECTION.
- If you are using hot-starts, in rare cases switching off this feature may improve stability. This is controlled by the MSK_IPAR_SIM_HOTSTART parameter.
- Increase maximum set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS.
- If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See the parameter MSK_IPAR_SIM_DEGEN for details.

11.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point optimizer behaves more predictably — it tends to use between 20 and 100 iterations, almost independently of problem size — but cannot perform hot-start, while simplex can take advantage of an initial solution, but is less predictable for cold-start. The interior-point optimizer is used by default.

11.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and computational improvements, which, in our experience, makes it faster on average than the primal simplex optimizer. Still, it depends much on the problem structure and size.

Setting the MSK_IPAR_OPTIMIZER parameter to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try all the optimizers.

11.3 Linear network optimization

11.3.1 Network flow problems

MOSEK includes a network simplex solver which, on avarage, solves network problems 10 to 100 times faster than the standard simplex optimizers.

To use the network simplex optimizer, do the following:

- Input the network flow problem as an ordinary linear optimization problem.
- Set the parameters
 - MSK_IPAR_SIM_NETWORK_DETECT to 0, and
 - MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX.

MOSEK will automatically detect the network structure and apply the specialized simplex optimizer.

Parameter name	Purpose
MSK_DPAR_INTPNT_CO_TOL_PFEAS	Controls primal feasibility
MSK_DPAR_INTPNT_CO_TOL_DFEAS	Controls dual feasibility
MSK_DPAR_INTPNT_CO_TOL_REL_GAP	Controls relative gap
MSK_DPAR_INTPNT_TOL_INFEAS	Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_CO_TOL_MU_RED	Controls when the complementarity is reduced enough

Table 11.2: Parameters employed in termination criterion.

11.3.2 Embedded network problems

Often problems contains both large parts with network structure and some non-network constraints or variables — such problems are said to have *embedded network structure*.

If the procedure described in section 11.3.1 is applied, MOSEK will attemt to exploit this structure to speed up the optimization.

This is done heuristically by detecting the largest network embedded in the problem, solving this subproblem using the network simplex optimizer, and using the solution to hot-start a normal simplex optimizer.

The MSK_IPAR_SIM_NETWORK_DETECT parameter defines how large a percentage of the problem should be a network before the specialized solver is applied. In general, it is recommended to use the network optimizer only on problems containing a substantial embedded network.

If MOSEK only finds limited network structure in a problem, consider trying to switch off presolve MSK_IPAR_PRESOLVE_USE and scaling MSK_IPAR_SIM_SCALING, since in rare cases it might disturb the network heuristic.

11.4 Conic optimization

11.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed description of the algorithm, please see [6].

11.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 11.2.

11.5 Nonlinear convex optimization

11.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and self-dual algorithm. For a detailed description of the algorithm, please see [8, 9].

11.5.1.1 The convexity requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:

- MSK_IPAR_CHECK_CONVEXITY: Turn convexity check on/off.
- MSK_DPAR_CHECK_CONVEXITY_REL_TOL: Tolerance for convexity check.
- MSK_IPAR_LOG_CHECK_CONVEXITY: Turn on more log information for debugging.

11.5.1.2 The differentiabilty requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

$$f(x) = x^2$$

is differentiable everywhere whereas the function

$$f(x) = \sqrt{x}$$

is only diffrentiable for x > 0. In order to make sure that MOSEK evaulates the functions at points where they are differentiable, the function domains must be defined by setting appropriate variable bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within the bounds. Hence, imposing the bound

$$x \ge 0$$

in the case of \sqrt{x} is sufficient to guarantee that the function will only be evaluated in points where it is differentiable.

Parameter name	Purpose
MSK_DPAR_INTPNT_NL_TOL_PFEAS	Controls primal feasibility
MSK_DPAR_INTPNT_NL_TOL_DFEAS	Controls dual feasibility
MSK_DPAR_INTPNT_NL_TOL_REL_GAP	Controls relative gap
MSK_DPAR_INTPNT_TOL_INFEAS	Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_NL_TOL_MU_RED	Controls when the complementarity is reduced enough

Table 11.3: Parameters employed in termination criteria.

However, if a function is differentiable on closed a range, specifying the variable bounds is not sufficient. Consider the function

$$f(x) = \frac{1}{x} + \frac{1}{1-x}. (11.10)$$

In this case the bounds

$$0 \le x \le 1$$

will not guarantee that MOSEK only evalues the function for x between 0 and 1. To force MOSEK to strictly satisfy both bounds on ranged variables set the parameter MSK_IPAR_INTPNT_STARTING_POINT to MSK_STARTING_POINT_SATISFY_BOUNDS.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe ranged bounds strictly. For instance, (11.10) can be reformulated as follows

$$f(x) = \frac{1}{x} + \frac{1}{y}$$

$$0 = 1 - x - y$$

$$0 \le x$$

$$0 \le y.$$

11.5.1.3 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in Table 11.3.

11.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK to take advantage of this to speed up solution times.

11.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at any given time — accessing two separate tasks from two separate threads at the same time is safe. Sharing an environment between threads is safe.

11.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that whenever the MOSEK interior-point optimizer solves an optimization problem, it will try to divide the work so that each CPU gets a share of the work. The user decides how many CPUs MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations and the coordination of the work is processed sequentially, even if several CPUs are present. Therefore, the speed-up obtained when using multiple CPUs is highly problem dependent. However, as a rule of thumb, if the problem solves very quickly, i.e. in less than 60 seconds, it is not advantageous to use the parallel option.

The MSK_IPAR_INTPNT_NUM_THREADS parameter sets the number of threads (and therefore the number of CPUs) that the interior point optimizer will use.

11.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the *concurrent optimizer*. The idea of the concurrent optimizer is to run multiple optimizers on the same problem concurrently, for instance, it allows you to apply the interior-point and the dual simplex optimizers to a linear optimization problem concurrently. The concurrent optimizer terminates when the first of the applied optimizers has terminated successfully, and it reports the solution of the fastest optimizer. In that way a new optimizer has been created which essentially performs as the fastest of the interior-point and the dual simplex optimizers. Hence, the concurrent optimizer is the best one to use if there are multiple optimizers available in MOSEK for the problem and you cannot say beforehand which one will be faster.

Note in particular that any solution present in the task will also be used for hot-starting the simplex algorithms. One possible scenario would therefore be running a hot-start dual simplex in parallel with interior point, taking advantage of both the stability of the interior-point method and the ability of the simplex method to use an initial solution.

By setting the

MSK_IPAR_OPTIMIZER

parameter to

MSK_OPTIMIZER_CONCURRENT

the concurrent optimizer chosen.

The number of optimizers used in parallel is determined by the

MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS.

parameter. Moreover, the optimizers are selected according to a preassigned priority with optimizers having the highest priority being selected first. The default priority for each optimizer

Optimizer	Associated	Default
	parameter	priority
MSK_OPTIMIZER_INTPNT	MSK_IPAR_CONCURRENT_PRIORITY_INTPNT	4
MSK_OPTIMIZER_FREE_SIMPLEX	MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX	3
MSK_OPTIMIZER_PRIMAL_SIMPLEX	MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX	2
MSK_OPTIMIZER_DUAL_SIMPLEX	MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX	1

Table 11.4: Default priorities for optimizer selection in concurrent optimization.

is shown in Table 11.6.3. For example, setting the MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS parameter to 2 tells the concurrent optimizer to the apply the two optimizers with highest priorities: In the default case that means the interior-point optimizer and one of the simplex optimizers.

11.7 Understanding solution quality

MOSEK will, in general, not produce an *exact* optimal solution; for efficiency reasons computations are performed in finite precision. This means that it is important to evaluate the quality of the reported solution. To evaluate the solution quality inspect the following properties:

- The solution status reported by MOSEK.
- Primal feasibility: How much the solution violates the original constraints of the problem
- Dual feasibility: How much the dual solution violates the constraints of the dual problem.
- Duality gap: The difference between the primal and dual objective values.

Ideally, the primal and dual solutions should only violate the constraints of their respective problem *slightly* and the primal and dual objective values should be *close*. This should be evaluated in the context of the problem: How good is the data precision in the problem, and how exact a solution is required.

11.7.1 The solution summary

The solution summary is a small display generated by MOSEK that makes it easy to check the quality of the solution.

Normally, in the optimization toolbox for MATLAB the solution summary is displayed immediately after the optimization has completed.

11.7.1.1 The optimal case

The solution summary has the format

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal - objective: 5.5018458883e+03 eq. infeas.: 1.20e-12 max bound infeas.: 2.31e-14
Dual - objective: 5.5018458883e+03 eq. infeas.: 1.15e-14 max bound infeas.: 7.11e-15

i.e. it shows status information, objective values and quality measures for the primal and dual solutions.

Assumeing that we are solving a linear optimization problem and referring to the problems (10.1) and (10.2), the interpretation of the solution summary is as follows:

- Problem status: The status of the problem.
- Solution status: The status of the solution.
- Primal objective: The primal objective value.
- Primal eq. infeas: $||Ax^x x^c||_{\infty}$.
- Primal max bound infeas.: $\max(l^c x^c; x^c u^c; l^x x^x; x^x u^x; 0)$.
- Dual objective: The dual objective value.
- Dual eq. infeas: $\left\|-y+s_l^c-s_u^c; A^Ty+s_l^x-s_u^x-c\right\|_{\infty}$.
- Dual max bound infeas.: $\max(-s_l^c; -s_u^c; -s_l^x; -s_u^x; 0)$.

In the solution summary above the solution is classified as OPTIMAL, meaning that the solution should be a good approximation to the true optimal solution. This seems very reasonable since the primal and dual solutions only violate their respective constraints slightly. Moreover, the duality gap is small, i.e. the primal and dual objective values are almost identical.

11.7.1.2 The primal infeasible case

For an infeasible problem the solution summary might look like this:

```
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Primal - objective: 0.00000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
Dual - objective: 1.0000000000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
```

It is known that if the problem is primal infeasible then an infeasibility certificate exists, which is a solution to the problem (10.3) having a positive objective value. Note that the primal solution plays no role and only the dual solution is used to specify the certificate.

Therefore, in the primal infeasible case the solution summery should report how good the dual solution is to the problem (10.3). The interpretation of the solution summary is as follows:

- Problem status: The status of the problem.
- Solution status: The status of the solution.
- Primal objective: Should be ignored.
- Primal eq. infeas: Should be ignored.
- Primal max bound infeas.: Should be ignored.
- Dual objective: $(l^c)^T s_l^c (u^c)^T s_u^c + (l^x)^T s_l^x (u^x)^T s_u^x$.
- Dual eq. infeas: $||-y + s_l^c s_u^c; A^T y + s_l^x s_u^x 0||_{\infty}$.
- Dual max bound infeas.: $\max(-s_l^c; -s_u^c; -s_l^x; -s_u^x)$.

Please note that

- any information about the primal solution should be ignored.
- the dual objective value should be strictly positive if primal problem is minimization problem. Otherwise it should be strictly negative.
- the bigger the ratio

$$\frac{(l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x}{\max(\left\| -y + s_l^c - s_u^c; A^T y + s_l^x - s_u^x - 0 \right\|_{\infty}, \max(-s_l^c; -s_u^c; -s_l^x; -s_u^x))}$$

is, the better the certificate is. The reason is that a certificate is a ray, and hence only the direction is important. Therefore, in principle, the certificate should be normalized before using it.

Please see Section 13.2 for more information about certificates of infeasibility.

Chapter 12

The optimizer for mixed integer problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained to be integers. The integer optimizer available in MOSEK can solve integer optimization problems involving

- linear,
- quadratic and
- conic

constraints. However, a problem is not allowed to have both conic constraints and quadratic objective or constraints.

Readers unfamiliar with integer optimization are strongly recommended to consult some relevant literature, e.g. the book [26] by Wolsey is a good introduction to integer optimization.

12.1 Some notation

In general, an integer optimization problem has the form

$$z^* = \underset{\text{subject to}}{\text{minimize}} \qquad c^T x$$

$$subject to \quad l^c \leq Ax \leq u^c,$$

$$l^x \leq x \leq u^x,$$

$$x_j \in \mathcal{Z}, \quad \forall j \in \mathcal{J},$$

$$(12.1)$$

where \mathcal{J} is an index set specifying which variables are integer-constrained. Frequently we talk about the continuous relaxation of an integer optimization problem defined as

$$\underline{z} = \underset{\text{subject to}}{\text{minimize}} \qquad c^{T} x \\
\text{subject to} \quad l^{c} \leq Ax \leq u^{c}, \\
l^{x} \leq x \leq u^{x}$$
(12.2)

i.e. we ignore the constraint

$$x_j \in \mathcal{Z}, \ \forall j \in \mathcal{J}.$$

Moreover, let \hat{x} be any feasible solution to (12.1) and define

$$\overline{z} := c^T \hat{x}$$
.

It should be obvious that

$$z \le z^* \le \overline{z}$$

holds. This is an important observation since if we assume that it is not possible to solve the mixed-integer optimization problem within a reasonable time frame, but that a feasible solution can be found, then the natural question is: How far is the *obtained* solution from the *optimal* solution? The answer is that no feasible solution can have an objective value smaller than \underline{z} , which implies that the obtained solution is no further away from the optimum than $\overline{z} - \underline{z}$.

12.2 An important fact about integer optimization problems

It is important to understand that in a worst-case scenario, the time required to solve integer optimization problems grows exponentially with the size of the problem. For instance, assume that a problem contains n binary variables, then the time required to solve the problem in the worst case may be proportional to 2^n . It is a simple exercise to verify that 2^n is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near optimal solution quickly rather than at locating an optimal solution.

12.3 How the integer optimizer works

The process of solving an integer optimization problem can be split in three phases:

Presolve: In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques. Moreover, it strengthens the continuous relaxation, if possible.

Heuristic: Using heuristics the optimizer tries to guess a good feasible solution.

Optimization: The optimal solution is located using a variant of the branch-and-cut method.

In some cases the integer optimizer may locate an optimal solution in the preprocessing stage or conclude that the problem is infeasible. Therefore, the heuristic and optimization stages may never be performed.

12.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can be turned off using the MSK_IPAR_MIO_PRESOLVE_USE parameter.

12.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:

- First a very simple rounding heuristic is employed.
- Next, if deemed worthwhile, the *feasibility pump* heuristic is used.
- Finally, if the two previous stages did not produce a good initial solution, more sophisticated heuristics are used.

The following parameters can be used to control the effort made by the integer optimizer to find an initial feasible solution.

- MSK_IPAR_MIO_HEURISTIC_LEVEL: Controls how sophisticated and computationally expensive a heuristic to employ.
- MSK_DPAR_MIO_HEURISTIC_TIME: The minimum amount of time to spend in the heuristic search.
- MSK_IPAR_MIO_FEASPUMP_LEVEL: Controls how aggressively the feasibility pump heuristic is used.

12.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

12.4 Termination criterion

In general, it is impossible to find an exact feasible and optimal solution to an integer optimization problem in a reasonable amount of time, though in many practical cases it may be possible. Therefore, the integer optimizer employs a relaxed feasibility and optimality criterion to determine when a satisfactory solution is located.

A candidate solution, i.e. a solution to (12.2), is said to be an integer feasible solution if the criterion

$$\min(|x_i| - |x_i|, \lceil x_i \rceil - |x_i|) \le \max(\delta_1, \delta_2 |x_i|) \ \forall j \in \mathcal{J}$$

is satisfied. Hence, such a solution is defined as a feasible solution to (12.1).

Tolerance	Parameter name
δ_1	MSK_DPAR_MIO_TOL_ABS_RELAX_INT
δ_2	MSK_DPAR_MIO_TOL_REL_RELAX_INT
δ_3	MSK_DPAR_MIO_TOL_ABS_GAP
δ_4	MSK_DPAR_MIO_TOL_REL_GAP
δ_5	MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
δ_6	MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Table 12.1: Integer optimizer tolerances.

Parameter name	Delayed	Explanation
MSK_IPAR_MIO_MAX_NUM_BRANCHES	Yes	Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS	Yes	Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS	Yes	Maximum number of feasible integer solutions allowed.

Table 12.2: Parameters affecting the termination of the integer optimizer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

$$\overline{z} - \underline{z} \le \max(\delta_3, \delta_4 \max(1, |\overline{z}|))$$

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution as an optimal solution. Please note that \underline{z} is a valid lower bound determined by the integer optimizer during the solution process, i.e.

$$\underline{z} \leq z^*$$
.

The lower bound \underline{z} normally increases during the solution process.

The δ tolerances can are specified using parameters — see Table 12.1. If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ a relaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasible solution and has spent at least the number of seconds defined by the MSK_DPAR_MIO_DISABLE_TERM_TIME parameter on solving the problem, it will check whether the criterion

$$\overline{z} - z \leq \max(\delta_5, \delta_6 \max(1, |\overline{z}|))$$

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is **near optimal** and then terminate. All δ tolerances can be adjusted using suitable parameters — see Table 12.1. In Table 12.2 some other parameters affecting the integer optimizer termination criterion are shown. Please note that if the effect of a parameter is delayed, the associated termination criterion is applied only after some time, specified by the MSK_DPAR_MIO_DISABLE_TERM_TIME parameter.

12.5 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

- Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to relax the termination criterion see Section 12.4 for details.
- Specify a good initial solution: In many cases a good feasible solution is either known or easily computed using problem specific knowledge. If a good feasible solution is known, it is usually worthwhile to use this as a starting point for the integer optimizer.
- Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one form and quite easy in another form. However, it is beyond the scope of this manual to discuss good formulations for mixed-integer problems. For discussions on this topic see for example [26].

12.6 Understanding solution quality

To determine the quality of the solution one should check the following:

- The solution status key returned by MOSEK.
- The *optimality gap*: A messure for how much the located solution can deviate from the optimal solution to the problem.
- Feasibility. How much the solution violates the constraints of the problem.

The *optimality gap* is a measure for how close the solution is to the optimal solution. The optimality gap is given by

```
\epsilon = |(\text{objective value of feasible solution}) - (\text{objective bound})|.
```

The objective value of the solution is guarentted to be within ϵ of the optimal solution.

The optimality gap can be retrived through the solution item MSK_DINF_MIO_OBJ_ABS_GAP. Often it is more meaningful to look at the optimality gap normalized with the magnitude of the solution. The relative optimality gap is available in MSK_DINF_MIO_OBJ_REL_GAP.

12.6.1 Solutionsummary

After a call to the optimizer the solution summary might look like this:

Problem status : PRIMAL_FEASIBLE Solution status : INTEGER_OPTIMAL

Primal - objective: 1.2015000000e+06 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00

cone infeas.: 0.00e+00 integer infeas.: 0.00e+00

The second line contains the solution status key. This shows how MOSEK classified the solution. In this case it is INTEGER_OPTIMAL, meaning that the solution is considered to be optimal within the selected tolerances.

The third line contains information relating to the solution. The first number is the primal objective function. The second and third number is the maximum infeasibility in the equality constraints and bounds respectfully. The fourth and fifth number is the maximum infeasibility in the conic and integral contraints. All the numbers relating to the feasibility of the solution should be small for the solution to be valid.

Chapter 13

The analyzers

13.1 The problem analyzer

The problem analyzer prints a detailed survey of the model's

- linear constraints and objective
- quadratic constraints
- conic constraints
- variables

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying that the model has been built or imported correctly. In later stages it can help revealing special structures within the model that may be used to tune the optimizer's performance or to identify the causes of numerical difficulties.

The problem analyzer is run using the mosekopt('anapro') command and produces something similar to the following (this is the problemanalyzer's survey of the aflow30a problem from the MIPLIB 2003 collection, see Appendix G for more examples):

Analyzing the problem

Constraints	В	Sounds	Variables	
upper bd:	421	ranged : all	cont:	421
fixed :	58	_	bin :	421
Objective, min	CX			
range: min	c : 0.00000	min c >0: 11.0000	max c : 500	.000
distrib:	c	vars		
	0	421		

```
[11, 100)
                            150
          [100, 500]
                            271
Constraint matrix A has
      479 rows (constraints)
      842 columns (variables)
      2091 (0.518449%) nonzero entries (coefficients)
Row nonzeros, A_i
  range: min A_i: 2 (0.23753%)
                                  max A_i: 34 (4.038%)
 distrib:
                A_i
                       rows
                                    rows%
                                                  acc%
                 2
                           421
                                     87.89
                                                 87.89
            [8, 15]
                           20
                                      4.18
                                                 92.07
            [16, 31]
                            30
                                      6.26
                                                 98.33
           [32, 34]
                             8
                                      1.67
                                                100.00
Column nonzeros, Alj
  range: min A|j: 2 (0.417537%)
                                  max A|j: 3 (0.626305%)
 distrib:
                Αlj
                           cols
                                     cols%
                                                  acc%
                  2
                           435
                                     51.66
                                                 51.66
                  3
                            407
                                     48.34
                                                100.00
A nonzeros, A(ij)
  range: min |A(ij)|: 1.00000
                                  max |A(ij)|: 100.000
 distrib:
             A(ij)
                         coeffs
            [1, 10)
                          1670
           [10, 100]
                            421
Constraint bounds, lb <= Ax <= ub
             |b|
 distrib:
                        lbs
                                               ubs
                 0
                                               421
            [1, 10]
                                58
                                                58
Variable bounds, lb <= x <= ub
 distrib:
                |b|
                                lbs
                                               ubs
                  0
                                842
             [1, 10)
                                               421
                                                421
           [10, 100]
```

The survey is divided into six different sections, each described below. To keep the presentation short with focus on key elements the analyzer generally attempts to display information on issues relevant for the current model only: E.g., if the model does not have any conic constraints (this is the case in the example above) or any integer variables, those parts of the

analysis will not appear.

13.1.1 General characteristics

The first part of the survey consists of a brief summary of the model's linear and quadratic constraints (indexed by i) and variables (indexed by j). The summary is divided into three subsections:

Constraints

upper bd: The number of upper bounded constraints, $\sum_{j=0}^{n-1} a_{ij}x_j \leq u_i^c$

lower bd: The number of lower bounded constraints, $l_i^c \leq \sum_{i=0}^{n-1} a_{ij}x_j$

ranged : The number of ranged constraints, $l_i^c \leq \sum_{j=0}^{n-1} a_{ij} x_j \leq u_i^c$

fixed : The number of fixed constraints, $l_i^c = \sum_{j=0}^{n-1} a_{ij} x_j = u_i^c$

free : The number of free constraints

Bounds

upper bd: The number of upper bounded variables, $x_j \leq u_j^x$

lower bd: The number of lower bounded variables, $l_k^x \leq x_j$

ranged : The number of ranged variables, $l_k^x \le x_j \le u_j^x$ fixed : The number of fixed variables, $l_k^x = x_j = u_i^x$

free : The number of free variables

Variables

cont: The number of continuous variables, $x_i \in \mathbb{R}$

bin : The number of binary variables, $x_j \in \{0, 1\}$

int: The number of general integer variables, $x_j \in \mathbb{Z}$

Only constraints, bounds and domains actually in the model will be reported on, cf. appendix G; if all entities in a section turn out to be of the same kind, the number will be replaced by all for brevity.

13.1.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the optimization sense and the coefficients' absolute value range and distribution. The number of 0 (zero) coefficients is singled out (if any such variables are in the problem).

The range is displayed using three terms:

min |c|: The minimum absolute value among all coeffecients

min |c|>0: The minimum absolute value among the nonzero coefficients

max |c|: The maximum absolute value among the coefficients

If some of these extrema turn out to be equal, the display is shortened accordingly:

- If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed
- If only one or two different coefficients occur this will be displayed using all and an explicit listing of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude (with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each line of the table is headed by an interval (half-open intervals including their lower bounds), and is followed by the number of variables with their objective coefficient in this interval. Intervals with no elements are skipped.

13.1.3 Linear constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total, three sections provide further details on how the nonzero coefficients are distributed by row-wise count (A_i), by column-wise count (A|j), and by absolute value (|A(ij)|). Each section is headed by a brief display of the distribution's range (min and max), and for the row/column-wise counts the corresponding densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros per row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2). For each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns reported in this part of the survey relate to the linear terms only. If empty rows and/or columns are found in the linear constraint matrix, the problem is analyzed further in order to determine if the corresponding constraints have any quadratic terms or the corresponding variables are used in conic or quadratic constraints; cf. the last two examples of appendix G.

The distribution of the absolute values, |A(ij)|, is displayed just as for the objective coefficients described above.

13.1.4 Constraint and variable bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise, displayed by orders of magnitude (with a ratio of 10).

13.1.5 Quadratic constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the quadratic constraints, i.e. the nonzero row counts for the column vectors Qx. The table is similar to the tables for the linear constraints' nonzero row and column counts described in the survey's third part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear constraints survey; this means that if a problem has one or more pure quadratic constraints, part three of the survey will report an equal number of linear constraint rows with 0 (zero) nonzeros, cf. the last example in appendix G. Likewise, variables that appear in quadratic terms only will be reported as empty columns (0 nonzeros) in the linear constraint report.

13.1.6 Conic constraints

The last part of the survey summarizes the model's conic constraints. For each of the two types of cones, quadratic and rotated quadratic, the total number of cones are reported, and the distribution of the cones' dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

13.2 Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be either infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have been left out.

In this chapter we will

- go over an example demonstrating how to locate infeasible constraints using the MOSEK infeasibility report tool,
- discuss in more general terms which properties that may cause infeasibilities, and
- present the more formal theory of infeasible and unbounded problems.

13.2.1 Example: Primal infeasibility

A problem is said to be *primal infeasible* if no solution exists that satisfy all the constraints of the problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of transportation between a number of production plants and stores: Each plant produces a fixed number of goods, and each store has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in figure 13.1.

Figure 13.1: Supply, demand and cost of transportation.

The problem represented in figure 13.1 is infeasible, since the total demand

$$2300 = 1100 + 200 + 500 + 500 \tag{13.1}$$

exceeds the total supply

$$2200 = 200 + 1000 + 1000 \tag{13.2}$$

If we denote the number of transported goods from plant i to store j by x_{ij} , the problem can

be formulated as the LP:

minimize
$$x_{11} + 2x_{12} + 5x_{23} + 2x_{24} + x_{31} + 2x_{33} + x_{34}$$
 subject to $x_{11} + x_{12} = 0$ ≤ 200 , ≤ 1000

Solving the problem (13.3) using MOSEK will result in a solution, a solution status and a problem status. Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a *certificate of the infeasibility* was found. The certificate is returned in place of the solution to the problem.

13.2.2 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and therefore the question arises: "What is the cause of the infeasible status?" When trying to answer this question, it is often advantageous to follow these steps:

- Remove the objective function. This does not change the infeasible status but simplifies the problem, eliminating any possibility of problems related to the objective function.
- Consider whether your problem has some necessary conditions for feasibility and examine if these are satisfied, e.g. total supply should be greater than or equal to total demand.
- Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely. The MOSEK infeasibility report (Section 13.2.4) may assist you in finding the constraints causing the infeasibility.

Possible ways of relaxing your problem include:

• Increasing (decreasing) upper (lower) bounds on variables and constraints.

• Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint

$$x_{12} = 200 (13.4)$$

makes the problem feasible.

13.2.3 Locating the cause of dual infeasibility

A problem may also be *dual infeasible*. In this case the primal problem is often unbounded, mening that feasible solutions exists such that the objective tends towards infinity. An example of a dual infeasible and primal unbounded problem is:

minimize
$$x_1$$

subject to $x_1 \le 5$. (13.5)

To resolve a dual infeasibility the primal problem must be made more restricted by

- Adding upper or lower bounds on variables or constraints.
- Removing variables.
- Changing the objective.

13.2.3.1 A cautious note

The problem

minimize 0
subject to
$$0 \le x_1$$
,
 $x_j \le x_{j+1}$, $j = 1, \dots, n-1$,
 $x_n < -1$ (13.6)

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem becomes feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the constraints are involved in the infeasibility. Hence, it may not always be easy or possible to pinpoint a few constraints which are causing the infeasibility.

13.2.4 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be turned on by setting the MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON. This causes MOSEK to print a report on variables and constraints involved in the infeasibility.

The MSK_IPAR_INFEAS_REPORT_LEVEL parameter controls the amount of information presented in the infeasibility report. The default value is 1.

13.2.4.1 Example: Primal infeasibility

```
We will reuse the example (13.3) located in infeas.lp:
\ An example of an infeasible linear problem.
minimize
 obj: + 1 \times 11 + 2 \times 12 + 1 \times 13
      + 4 \times 21 + 2 \times 22 + 5 \times 23
      + 4 x31 + 1 x32 + 2 x33
st
  s0: + x11 + x12
                      <= 200
  s1: + x23 + x24  <= 1000
  s2: + x31 + x33 + x34 \le 1000
  d1: + x11 + x31 = 1100
  d2: + x12
                       = 200
  d3: + x23 + x33 = 500
                       = 500
  d4: + x24 + x34
bounds
end
```

Using the command line

```
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp
```

MOSEK produces the following infeasibility report

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index	Name	Lower bound	Upper bound	Dual lower	Dual upper
0	s0	NONE	2.000000e+002	0.000000e+000	1.000000e+000
2	s2	NONE	1.000000e+003	0.000000e+000	1.000000e+000
3	d1	1.100000e+003	1.100000e+003	1.000000e+000	0.000000e+000
4	d2	2.000000e+002	2.000000e+002	1.000000e+000	0.000000e+000

The following bound constraints are involved in the infeasibility.

Index	Name	Lower bound	Upper bound	Dual lower	Dual upper
8	x33	0.000000e+000	NONE	1.000000e+000	0.000000e+000
10	x34	0.000000e+000	NONE	1.000000e+000	0.000000e+000

The infeasibility report is divided into two sections where the first section shows which constraints that are important for the infeasibility. In this case the important constraints are the ones named s0, s2, d1, and d2. The values in the columns "Dual lower" and "Dual upper" are also useful, since a non-zero dual lower value for a constraint implies that the lower bound on the constraint is important for the infeasibility. Similarly, a non-zero dual upper value implies that the upper bound on the constraint is important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The command line

```
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp
```

produces the files rinfeas.bas.inf.lp. In this case the content of the file rinfeas.bas.inf.lp is

```
minimize
 Obj: + CFIXVAR
 s0: + x11 + x12 \le 200
 s2: + x31 + x33 + x34 \le 1e+003
 d1: + x11 + x31 = 1.1e+003
 d2: + x12 = 200
bounds
 x11 free
 x12 free
 x13 free
 x21 free
 x22 free
 x23 free
 x31 free
 x32 free
 x24 free
 CFIXVAR = 0e+000
end
```

which is an optimization problem. This problem is identical to (13.3), except that the objective and some of the constraints and bounds have been removed. Executing the command

```
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON rinfeas.bas.inf.lp
```

demonstrates that the reduced problem is **primal infeasible**. Since the reduced problem is usually smaller than original problem, it should be easier to locate the cause of the infeasibility in this rather than in the original (13.3).

13.2.4.2 Example: Dual infeasibility

The example problem

```
maximize - 200 y1 - 1000 y2 - 1000 y3
         - 1100 y4 - 200 y5 - 500 y6
         - 500 y7
subject to
   x11: y1+y4 < 1
   x12: y1+y5 < 2
   x23: y2+y6 < 5
   x24: y2+y7 < 2
   x31: y3+y4 < 1
   x33: y3+y6 < 2
   x44: y3+y7 < 1
bounds
   y1 < 0
   y2 < 0
   y3 < 0
   y4 free
   y5 free
   y6 free
   y7 free
end
```

is dual infeasible. This can be verified by proving that

is a certificate of dual infeasibility. In this example the following infeasibility report is produced (slightly edited):

The following constraints are involved in the infeasibility.

Index	Name	Activity	Objective	Lower bound	Upper bound
0	x11	-1.000000e+00		NONE	1.000000e+00
4	x31	-1.000000e+00		NONE	1.000000e+00

The following variables are involved in the infeasibility.

```
Index Name Activity Objective Lower bound Upper bound 3 y4 -1.000000e+00 -1.100000e+03 NONE NONE
```

Interior-point solution

Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER

Primal - objective: 1.1000000000e+03 eq. infeas:: 0.00e+00 max bound infeas:: 0.00e+00 cone infeas:: 0.00e+00 Dual - objective: 0.0000000000e+00 eq. infeas:: 0.00e+00 max bound infeas:: 0.00e+00 cone infeas:: 0.00e+00

Let x^* denote the reported primal solution. MOSEK states

- that the problem is dual infeasible,
- that the reported solution is a certificate of dual infeasibility, and
- that the infeasibility measure for x^* is approximately zero.

Since it was an maximization problem, this implies that

$$c^t x^* > 0.$$
 (13.7)

For a minimization problem this inequality would have been reversed — see (13.19).

From the infeasibility report we see that the variable y4, and the constraints x11 and x33 are involved in the infeasibility since these appear with non-zero values in the "Activity" column.

One possible strategy to "fix" the infeasibility is to modify the problem so that the certificate of infeasibility becomes invalid. In this case we may do one the the following things:

- Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.
- Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the inequality (13.7) and thus the certificate.
- Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does *not* imply that the problem becomes dual feasible — the infeasibility may simply "move", resulting in a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the model that produced the problem.

13.2.5 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to produce an infeasibility report. In general, MOSEK solves the problem

minimize
$$c^T x + c^f$$

subject to $l^c \le Ax \le u^c$, (13.8)
 $l^x \le x \le u^x$

where the corresponding dual problem is

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c}$$

$$+ (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x} + c^{f}$$
subject to
$$A^{T} y + s_{l}^{x} - s_{u}^{x} = c,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0.$$

$$(13.9)$$

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at zero (and thus will have no influence on the dual problem). For example

$$l_j^x = -\infty \Rightarrow (s_l^x)_j = 0 (13.10)$$

13.2.6 The certificate of primal infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c}$$

$$+ (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x}$$
subject to
$$A^{T} y + s_{l}^{x} - s_{u}^{x} = 0,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \ge 0.$$

$$(13.11)$$

with a positive objective value. That is, $(s_l^{c*}, s_u^{c*}, s_u^{c*}, s_u^{x*}, s_u^{x*})$ is a certificate of primal infeasibility if

$$(l^c)^T s_l^{c*} - (u^c)^T s_u^{c*} + (l^x)^T s_l^{x*} - (u^x)^T s_u^{x*} > 0$$
(13.12)

and

$$A^{T}y + s_{l}^{x*} - s_{u}^{x*} = 0, -y + s_{l}^{c*} - s_{u}^{c*} = 0, s_{l}^{c*}, s_{u}^{c*}, s_{l}^{x*}, s_{u}^{x*} \ge 0.$$
 (13.13)

The well-known Farkas Lemma tells us that (13.8) is infeasible if and only if a certificate of primal infeasibility exists.

Let $(s_l^{c*}, s_u^{c*}, s_l^{x*}, s_u^{x*})$ be a certificate of primal infeasibility then

$$(s_l^{c*})_i > 0 \quad ((s_u^{c*})_i > 0)$$
 (13.14)

implies that the lower (upper) bound on the ith constraint is important for the infeasibility. Furthermore,

$$(s_l^{x*})_j > 0 \quad ((s_u^{x*})_i > 0) \tag{13.15}$$

implies that the lower (upper) bound on the jth variable is important for the infeasibility.

13.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize
$$c^T x$$

subject to $\bar{l}^c \leq Ax \leq \bar{u}^c$, $\bar{l}^x \leq x \leq \bar{u}^x$ (13.16)

with negative objective value, where we use the definitions

$$\bar{l}_i^c := \begin{cases} 0, & l_i^c > -\infty, \\ -\infty, & \text{otherwise,} \end{cases} \quad \bar{u}_i^c := \begin{cases} 0, & u_i^c < \infty, \\ \infty, & \text{otherwise,} \end{cases}$$
(13.17)

and

$$\bar{l}_i^x := \begin{cases} 0, & l_i^x > -\infty, \\ -\infty, & \text{otherwise,} \end{cases} \text{ and } \bar{u}_i^x := \begin{cases} 0, & u_i^x < \infty, \\ \infty, & \text{otherwise.} \end{cases}$$
 (13.18)

Stated differently, a certificate of dual infeasibility is any x^* such that

$$c^{T}x^{*} < 0,$$

$$\bar{l}^{c} \leq Ax^{*} \leq \bar{u}^{c},$$

$$\bar{l}^{x} \leq x^{*} \leq \bar{u}^{x}$$

$$(13.19)$$

The well-known Farkas Lemma tells us that (13.9) is infeasible if and only if a certificate of dual infeasibility exists.

Note that if x^* is a certificate of dual infeasibility then for any j such that

$$x_j^* \neq 0,$$
 (13.20)

variable j is involved in the dual infeasibility.

Chapter 14

Sensitivity analysis

14.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal objective value change when the problem parameters are perturbed. For instance assume that a bound represents a capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it worthwhile to know what the value of additional capacity is. This is precisely the type of questions sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity analysis.

14.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover, MOSEK can only deal with perturbations in bounds or objective coefficients.

14.3 References

The book [16] discusses the classical sensitivity analysis in Chapter 10 whereas the book [22, Chapter 19] presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [24] to avoid some of the pitfalls associated with sensitivity analysis.

14.4 Sensitivity analysis for linear problems

14.4.1 The optimal objective value function

Assume that we are given the problem

$$z(l^{c}, u^{c}, l^{x}, u^{x}, c) = \underset{\text{subject to}}{\text{minimize}} c^{T}x$$

$$subject to \quad l^{c} \leq \underset{l^{x} \leq x \leq u^{x}}{Ax} \leq u^{c}, \quad (14.1)$$

and we want to know how the optimal objective value changes as l_i^c is perturbed. In order to answer this question then define the perturbed problem for l_i^c as follows

$$f_{l_i^c}(\beta) = \text{minimize} \qquad c^T x$$

subject to $l^c + \beta e_i \leq Ax \leq u^c$, (14.2)

where e_i is the *i*th column of the identity matrix. The function

$$f_{l_{\cdot}^{c}}(\beta) \tag{14.3}$$

shows the optimal objective value as a function of β . Note that a change in β corresponds to a perturbation in l_i^c and hence (14.3) shows the optimal objective value as a function of l_i^c .

It is possible to prove that the function (14.3) is a piecewise linear and convex function i.e. the function may look like the illustration in Figure 14.1.

Figure 14.1: The optimal value function $f_{l_i^c}(\beta)$. Left: $\beta = 0$ is in the interior of linearity interval. Right: $\beta = 0$ is a breakpoint.

Clearly, if the function $f_{l_i^c}(\beta)$ does not change much when β is changed, then we can conclude that the optimal objective value is insensitive to changes in l_i^c . Therefore, we are interested in how $f_{l_i^c}(\beta)$ changes for small changes in β . Now define

$$f_{l_i^{\prime}}^{\prime}(0) \tag{14.4}$$

to be the so called *shadow price* related to l_i^c . The shadow price specifies how the objective value changes for small changes in β around zero. Moreover, we are interested in the so called *linearity interval*

$$\beta \in [\beta_1, \beta_2] \tag{14.5}$$

for which

$$f'_{l_i^c}(\beta) = f'_{l_i^c}(0). \tag{14.6}$$

To summarize the sensitivity analysis provides a shadow price and the linearity interval in which the shadow price is constant.

The reader may have noticed that we are sloppy in the definition of the shadow price. The reason is that the shadow price is not defined in the right example in Figure 14.1 because the function $f_{l_i^c}(\beta)$ is not differentiable for $\beta = 0$. However, in that case we can define a left and a right shadow price and a left and a right linearity interval.

In the above discussion we only discussed changes in l_i^c . We define the other optimal objective value functions as follows

$$f_{u_i^c}(\beta) = z(l^c, u^c + \beta e_i, l^x, u^x, c), \quad i = 1, \dots, m,$$

$$f_{l_j^x}(\beta) = z(l^c, u^c, l^x + \beta e_j, u^x, c), \quad j = 1, \dots, n,$$

$$f_{u_j^x}(\beta) = z(l^c, u^c, l^x, u^x + \beta e_j, c), \quad j = 1, \dots, n,$$

$$f_{c_j}(\beta) = z(l^c, u^c, l^x, u^x, c + \beta e_j), \quad j = 1, \dots, n.$$

$$(14.7)$$

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the parameters u_i^c etc.

14.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraints or a ranged constraints. Suppose constraint i is an equality constraint. We then define the optimal value function for constraint i by

$$f_{e_c^c}(\beta) = z(l^c + \beta e_i, u^c + \beta e_i, l^x, u^x, c)$$
 (14.8)

Thus for a equality constraint the upper and lower bound (which are equal) are perturbed simultaneously. From the point of view of MOSEK sensitivity analysis a ranged constrain with $l_i^c = u_i^c$ therefore differs from an equality constraint.

14.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [16, Chapter 10], is based on an optimal basic solution or equivalently on an optimal basis. This method may produce misleading results [22, Chapter 19] but is **computationally cheap**. Therefore, and for historical reasons this method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which provides a partition of variables into basic and non-basic variables then the basis type sensitivity analysis computes the linearity interval $[\beta_1, \beta_2]$ such that the basis remains optimal for the perturbed problem. A shadow price associated with the linearity interval is also computed. However, it is well-known that an optimal basic solution may not be unique and therefore the result depends on the optimal basic solution employed in the sensitivity analysis. This implies that the computed interval is only a subset of the largest interval for which the shadow price is constant. Furthermore, the optimal objective value function might have a breakpoint for $\beta = 0$. In this case the basis type sensitivity method will only provide a subset of either the left or the right linearity interval.

In summary the basis type sensitivity analysis is computationally cheap but does not provide complete information. Hence, the results of the basis type sensitivity analysis should be used with care.

14.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the *optimal partition* type sensitivity analysis. The main drawback to the optimal partition type sensitivity analysis is it is computationally expensive. This type of sensitivity analysis is currently provided as an experimental feature in MOSEK.

Given optimal primal and dual solutions to (14.1) i.e. x^* and $((s_l^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^x)^*, (s_u^x)^*)$ then the optimal objective value is given by

$$z^* := c^T x^*. \tag{14.9}$$

The left and right shadow prices σ_1 and σ_2 for l_i^c is given by the pair of optimization problems

$$\sigma_{1} = \text{minimize} \qquad e_{i}^{T} s_{l}^{c}
\text{subject to} \qquad A^{T}(s_{l}^{c} - s_{u}^{c}) + s_{l}^{x} - s_{u}^{x} = c,
(l_{c})^{T}(s_{l}^{c}) - (u_{c})^{T}(s_{u}^{c}) + (l_{x})^{T}(s_{l}^{x}) - (u_{x})^{T}(s_{u}^{x}) = z^{*},
s_{l}^{c}, s_{l}^{c}, s_{l}^{c}, s_{u}^{c} \ge 0$$
(14.10)

and

$$\sigma_{2} = \text{maximize} \qquad e_{i}^{T} s_{l}^{c}
\text{subject to} \qquad A^{T}(s_{l}^{c} - s_{u}^{c}) + s_{l}^{x} - s_{u}^{x} = c,
(l_{c})^{T}(s_{l}^{c}) - (u_{c})^{T}(s_{u}^{c}) + (l_{x})^{T}(s_{l}^{x}) - (u_{x})^{T}(s_{u}^{x}) = z^{*},
s_{l}^{c}, s_{u}^{c}, s_{l}^{c}, s_{u}^{x} \ge 0.$$
(14.11)

The above two optimization problems makes it easy to interpret-ate the shadow price. Indeed assume that $((s_l^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*)$ is an arbitrary optimal solution then it must hold

$$(s_l^c)_i^* \in [\sigma_1, \sigma_2]. \tag{14.12}$$

Next the linearity interval $[\beta_1, \beta_2]$ for l_i^c is computed by solving the two optimization problems

$$\beta_{1} = \underset{\text{subject to}}{\text{minimize}} \qquad \beta \\ \text{subject to} \quad l^{c} + \beta e_{i} \leq Ax \leq u^{c}, \\ c^{T}x - \sigma_{1}\beta = z^{*}, \\ l^{x} \leq x \leq u^{x},$$
 (14.13)

and

$$\beta_{2} = \underset{\text{subject to}}{\text{maximize}} \qquad \beta$$

$$subject to \quad l^{c} + \beta e_{i} \leq \underset{c}{Ax} \leq u^{c},$$

$$c^{T}x - \sigma_{2}\beta = z^{*},$$

$$l^{x} < x < u^{x}.$$

$$(14.14)$$

The linearity intervals and shadow prices for u_i^c , l_j^x , and u_j^x can be computed in a similar way to how it is computed for l_i^c .

The left and right shadow price for c_j denoted σ_1 and σ_2 respectively is given by the pair optimization problems

$$\sigma_{1} = \underset{\text{subject to}}{\text{minimize}} \qquad e_{j}^{T} x$$

$$subject to \quad l^{c} + \beta e_{i} \leq \underset{c}{Ax} \leq u^{c},$$

$$c^{T} x = z^{*},$$

$$l^{x} \leq x \leq u^{x}$$

$$(14.15)$$

and

$$\sigma_{2} = \underset{\text{subject to}}{\text{maximize}} \qquad e_{j}^{T} x$$

$$subject to \quad l^{c} + \beta e_{i} \leq \underset{c}{Ax} \leq u^{c},$$

$$c^{T} x = z^{*},$$

$$l^{x} < x < u^{x}.$$

$$(14.16)$$

Once again the above two optimization problems makes it easy to interpret-ate the shadow prices. Indeed assume that x^* is an arbitrary primal optimal solution then it must hold

$$x_j^* \in [\sigma_1, \sigma_2]. \tag{14.17}$$

The linearity interval $[\beta_1, \beta_2]$ for a c_j is computed as follows

$$\beta_{1} = \text{minimize} \qquad \beta \\ \text{subject to} \qquad A^{T}(s_{l}^{c} - s_{u}^{c}) + s_{l}^{x} - s_{u}^{x} \qquad = c + \beta e_{j}, \\ (l_{c})^{T}(s_{l}^{c}) - (u_{c})^{T}(s_{u}^{c}) + (l_{x})^{T}(s_{l}^{x}) - (u_{x})^{T}(s_{u}^{x}) - \sigma_{1}\beta \leq z^{*}, \\ s_{l}^{c}, s_{u}^{c}, s_{l}^{c}, s_{u}^{x} \geq 0 \qquad (14.18)$$

and

$$\beta_{2} = \underset{\text{subject to}}{\text{maximize}} \qquad \beta \\ \text{subject to} \qquad A^{T}(s_{l}^{c} - s_{u}^{c}) + s_{l}^{x} - s_{u}^{x} = c + \beta e_{j}, \\ (l_{c})^{T}(s_{l}^{c}) - (u_{c})^{T}(s_{u}^{c}) + (l_{x})^{T}(s_{l}^{x}) - (u_{x})^{T}(s_{u}^{x}) - \sigma_{2}\beta \leq z^{*}, \\ s_{l}^{c}, s_{u}^{c}, s_{l}^{c}, s_{u}^{x} \geq 0. \qquad (14.19)$$

14.4.4 An example

As an example we will use the following transportation problem. Consider the problem of minimizing the transportation cost between a number of production plants and stores. Each plant supplies a number of goods and each store has a given demand that must be met. Supply, demand and cost of transportation per unit are shown in Figure 14.2.

Figure 14.2: Supply, demand and cost of transportation.

If we denote the number of transported goods from location i to location j by x_{ij} , the problem can be formulated as the linear optimization problem minimize

$$1x_{11} + 2x_{12} + 5x_{23} + 2x_{24} + 1x_{31} + 2x_{33} + 1x_{34}$$
 (14.20)

subject to

The basis type and the optimal partition type sensitivity results for the transportation problem is shown in Table 14.1 and 14.2 respectively.

Basis type

	Dasi	stype		
Con.	β_1	β_2	σ_1	σ_2
1	-300.00	0.00	3.00	3.00
2	-700.00	$+\infty$	0.00	0.00
3	-500.00	0.00	3.00	3.00
4	-0.00	500.00	4.00	4.00
5	-0.00	300.00	5.00	5.00
6	-0.00	700.00	5.00	5.00
7	-500.00	700.00	2.00	2.00
Var.	β_1	β_2	σ_1	σ_2
x_{11}	$-\infty$	300.00	0.00	0.00
x_{12}	$-\infty$	100.00	0.00	0.00
x_{23}	$-\infty$	0.00	0.00	0.00
x_{24}	$-\infty$	500.00	0.00	0.00
x_{31}	$-\infty$	500.00	0.00	0.00
x_{33}	$-\infty$	500.00	0.00	0.00
x_{34}	-0.000000	500.00	2.00	2.00

Optimal partition type

	Optimal	Partition	on oppo	
Con.	β_1	β_2	σ_1	σ_2
1	-300.00	500.00	3.00	1.00
2	-700.00	$+\infty$	-0.00	-0.00
3	-500.00	500.00	3.00	1.00
4	-500.00	500.00	2.00	4.00
5	-100.00	300.00	3.00	5.00
6	-500.00	700.00	3.00	5.00
7	-500.00	700.00	2.00	2.00
Var.	β_1	β_2	σ_1	σ_2
x_{11}	$-\infty$	300.00	0.00	0.00
x_{12}	$-\infty$	100.00	0.00	0.00
x_{23}	$-\infty$	500.00	0.00	2.00
x_{24}	$-\infty$	500.00	0.00	0.00
x_{31}	$-\infty$	500.00	0.00	0.00
x_{33}	$-\infty$	500.00	0.00	0.00
x_{34}	$-\infty$	500.00	0.00	2.00

Table 14.1: Ranges and shadow prices related to bounds on constraints and variables. Left: Results for basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

Looking at the results from the optimal partition type sensitivity analysis we see that for the constraint number 1 we have $\sigma_1 \neq \sigma_2$ and $\beta_1 \neq \beta_2$. Therefore, we have a left linearity interval of [-300,0] and a right interval of [0,500]. The corresponding left and right shadow price is 3 and 1 respectively. This implies that if the upper bound on constraint 1 increases by

$$\beta \in [0, \beta_1] = [0, 500] \tag{14.22}$$

Racic	tuno
Basis	LVIJE
	~ <i>J</i> P ~

			<i>.</i> .	
Var.	β_1	β_2	σ_1	σ_2
c_1	$-\infty$	3.00	300.00	300.00
c_2	$-\infty$	∞	100.00	100.00
c_3	-2.00	∞	0.00	0.00
c_4	$-\infty$	2.00	500.00	500.00
c_5	-3.00	∞	500.00	500.00
c_6	$-\infty$	2.00	500.00	500.00
c_7	-2.00	∞	0.00	0.00

Optimal partition type

Var.	β_1	eta_2	σ_1	σ_2
c_1	$-\infty$	3.00	300.00	300.00
c_2	$-\infty$	∞	100.00	100.00
c_3	-2.00	∞	0.00	0.00
c_4	$-\infty$	2.00	500.00	500.00
c_5	-3.00	∞	500.00	500.00
c_6	$-\infty$	2.00	500.00	500.00
c_7	-2.00	∞	0.00	0.00

Table 14.2: Ranges and shadow prices related to the objective coefficients. Left: Results for basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

then the optimal objective value will decrease by the value

$$\sigma_2 \beta = 1\beta. \tag{14.23}$$

Correspondingly, if the upper bound on constraint 1 is decreased by

$$\beta \in [0, 300] \tag{14.24}$$

then the optimal objective value will increased by the value

$$\sigma_1 \beta = 3\beta. \tag{14.25}$$

14.5 Sensitivity analysis in the MATLAB toolbox

The following describe sensitivity analysis from the MATLAB toolbox.

14.5.1 On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields of the matlab structure prob:

- .prisen.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.
- .prisen.cons.subl Indexes of constraints, where lower bounds are analyzed for sensitivity.
- .prisen.vars.subu Indexes of variables, where upper bounds are analyzed for sensitivity.
- .prisen.vars.subl Indexes of variables, where lower bounds are analyzed for sensitivity.

.duasen.sub Index of variables where coefficients are analysed for sensitivity.

For an equality constraint, the index can be specified in either subu or subl. After calling

[r,res] = mosekopt('minimize',prob)

the results are returned in the subfields prisen and duasen of res.

14.5.1.1 prisen

The field prisen is structured as follows:

.cons	MATLAB structure with subfields:		
	.lr_bl	Left value β_1 in the linearity interval for a lower bound.	
	.rr_bl	Right value β_2 in the linearity interval for a lower bound.	
	.ls_bl	Left shadow price s_l for a lower bound.	
	.rs_bl	Right shadow price s_r for a lower bound.	
	.lr_bu	Left value β_1 in the linearity interval for an upper bound.	
	.rr_bu	Right value β_2 in the linearity interval for an upper bound.	
	.ls_bu	Left shadow price s_l for an upper bound.	
	.rs_bu	Right shadow price s_r for an upper bound.	
.var	MATLAB struc	ture with subfields:	
	.lr_bl	Left value β_1 in the linearity interval for a lower bound on a variable.	
	.rr_bl	Right value β_2 in the linearity interval for a lower bound on a variable.	
	.ls_bl	Left shadow price s_l for a lower bound on a variable.	
	.rs_bl	Right shadow price s_r for lower bound on a variable.	
	.lr_bu	Left value β_1 in the linearity interval for an upper bound on a variable.	
	.rr_bu	Right value β_2 in the linearity interval for an upper bound on a variable.	
	.ls_bu	Left shadow price s_l for an upper bound on a variables.	
	.rs_bu	Right shadow price s_r for an upper bound on a variables.	

14.5.1.2 duasen

The field duasen is structured as follows:

.lr_c	Left value β_1 of linearity interval for an objective coefficient.
.rr_c	Right value β_2 of linearity interval for an objective coefficient.
.ls_c	Left shadow price s_l for an objective coefficients .
.rs_c	Right shadow price s_r for an objective coefficients.

14.5.2 Selecting analysis type

The type (basis or optimal partition) of analysis to be performed can be selected by setting the parameter

```
MSK_IPAR_SENSITIVITY_TYPE
to one of the values:

MSK_SENSITIVITY_TYPE_BASIS = 0

MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION = 1
as seen in the following example.
```

14.5.3 An example

Consider the problem defined in (14.21). Suppose we wish to perform sensitivity analysis on all bounds and coefficients. The following example demonstrates this as well as the method for changing between basic and full sensitivity analysis.

```
% sensitivity.m

% Obtain all symbolic constants
% defined by MOSEK.
[r,res] = mosekopt('symbcon');
sc = res.symbcon;
[r,res] = mosekopt('read(transport.lp) echo(0)');
prob = res.prob;
% analyse upper bound 1:7
prob.prisen.cons.subl = [];
prob.prisen.cons.subu = [1:7];
% analyse lower bound on variables 1:7
prob.prisen.vars.subl = [1:7];
```

```
prob.prisen.vars.subu = [];
% analyse coeficient 1:7
prob.duasen.sub = [1:7];
%Select basis sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_BASIS;
[r,res] = mosekopt('minimize echo(0)',prob,param);
results(1) = res;
% Select optimal partition sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION;
[r,res] = mosekopt('minimize echo(0)',prob,param);
results(2) = res;
%Print results
for m = [1:2]
  if m == 1
    fprintf('\nBasis sensitivity results:\n')
    fprintf('\nOptimal partition sensitivity results:\n')
  fprintf('\nSensitivity for bounds on constraints:\n')
  for i = 1:length(prob.prisen.cons.subl)
    fprintf (...
    'con = \%d, beta_1 = \%.1f, beta_2 = \%.1f, delta_1 = \%.1f,delta_2 = \%.1f\n', ...
    prob.prisen.cons.subu(i),results(m).prisen.cons.lr_bu(i), ...
    results(m).prisen.cons.rr_bu(i),...
    results(m).prisen.cons.ls_bu(i),...
    results(m).prisen.cons.rs_bu(i));
  end
  for i = 1:length(prob.prisen.cons.subu)
    fprintf (...
    'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
    prob.prisen.cons.subu(i),results(m).prisen.cons.lr_bu(i), ...
    results(m).prisen.cons.rr_bu(i),...
    results(m).prisen.cons.ls_bu(i),...
    results(m).prisen.cons.rs_bu(i));
  end
  fprintf('Sensitivity for bounds on variables:\n')
  for i = 1:length(prob.prisen.vars.subl)
  fprintf (...
  'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
   prob.prisen.vars.subl(i),results(m).prisen.vars.lr_bl(i), ...
```

```
results(m).prisen.vars.rr_bl(i),...
  results(m).prisen.vars.ls_bl(i),...
  results(m).prisen.vars.rs_bl(i));
  end
  for i = 1:length(prob.prisen.vars.subu)
    fprintf (...
    'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
   prob.prisen.vars.subu(i),results(m).prisen.vars.lr_bu(i), ...
   results(m).prisen.vars.rr_bu(i),...
   results(m).prisen.vars.ls_bu(i),...
   results(m).prisen.vars.rs_bu(i));
  end
  fprintf('Sensitivity for coefficients in objective:\n')
  for i = 1:length(prob.duasen.sub)
    fprintf (...
    'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
   prob.duasen.sub(i),results(m).duasen.lr_c(i), ...
   results(m).duasen.rr_c(i),...
   results(m).duasen.ls_c(i),...
   results(m).duasen.rs_c(i));
  end
end
```

The output from running the example sensitivity.m is shown below.

Basis sensitivity results:

```
Sensitivity for bounds on constraints:

con = 1, beta_1 = -300.0, beta_2 = 0.0, delta_1 = 3.0, delta_2 = 3.0

con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = 0.0, delta_2 = 0.0

con = 3, beta_1 = -500.0, beta_2 = 0.0, delta_1 = 3.0, delta_2 = 3.0

con = 4, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 4.0, delta_2 = 4.0

con = 5, beta_1 = -0.0, beta_2 = 300.0, delta_1 = 5.0, delta_2 = 5.0

con = 6, beta_1 = -0.0, beta_2 = 700.0, delta_1 = 5.0, delta_2 = 5.0

con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0, delta_2 = 2.0

Sensitivity for bounds on variables:

var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0, delta_2 = 0.0

var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0, delta_2 = 0.0

var = 3, beta_1 = Inf, beta_2 = 0.0, delta_1 = 0.0, delta_2 = 0.0
```

```
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
```

Optimal partition sensitivity results:

```
Sensitivity for bounds on constraints:
con = 1, beta_1 = -300.0, beta_2 = 500.0, delta_1 = 3.0, delta_2 = 1.0
con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = -0.0, delta_2 = -0.0
con = 3, beta_1 = -500.0, beta_2 = 500.0, delta_1 = 3.0, delta_2 = 1.0
con = 4, beta_1 = -500.0, beta_2 = 500.0, delta_1 = 2.0, delta_2 = 4.0
con = 5, beta_1 = -100.0, beta_2 = 300.0, delta_1 = 3.0, delta_2 = 5.0
con = 6, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 3.0, delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0, delta_2 = 2.0
Sensitivity for bounds on variables:
var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0, delta_2 = 0.0
var = 3, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0, delta_2 = 2.0
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0, delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0, delta_2 = 0.0
var = 7, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0, delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0, delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0, delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0, delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0, delta_2 = 0.0
```

Appendix A

The MPS file format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the MPS format the book by Nazareth [21] is a good reference.

A.1 The MPS file format

The version of the MPS format supported by MOSEK allows specification of an optimization problem on the form

$$l^{c} \leq Ax + q(x) \leq u^{c},$$

$$l^{x} \leq x \leq u^{x},$$

$$x \in \mathcal{C},$$

$$x_{\mathcal{J}} \text{ integer},$$
(A.1)

where

- $x \in \mathbb{R}^n$ is the vector of decision variables.
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $q: \mathbb{R}^n \to \mathbb{R}$ is a vector of quadratic functions. Hence,

$$q_i(x) = 1/2x^T Q^i x$$

where it is assumed that

$$Q^i = (Q^i)^T. (A.2)$$

Please note the explicit 1/2 in the quadratic term and that Q^i is required to be symmetric.

- C is a convex cone.
- $\mathcal{J} \subseteq \{1, 2, \dots, n\}$ is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

```
2
*2345678901234567890123456789012345678901234567890
               [name]
NAME
OBJSENSE
    [objsense]
OBJNAME
    [objname]
ROWS
 ? [cname1]
COLUMNS
    [vname1]
               [cname1]
                            [value1]
                                          [vname3]
                                                     [value2]
RHS
               [cname1]
    [name]
                            [value1]
                                          [cname2]
                                                     [value2]
RANGES
    [name]
               [cname1]
                            [value1]
                                          [cname2]
                                                     [value2]
QSECTION
               [cname1]
               [vname2]
                                          [vname3]
    [vname1]
                            [value1]
                                                     [value2]
BOUNDS
               [vname1]
                            [value1]
 ?? [name]
CSECTION
               [kname1]
                            [value1]
                                          [ktype]
    [vname1]
ENDATA
```

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined names or values. A couple of notes on the structure:

Fields: All items surrounded by brackets appear in *fields*. The fields named "valueN" are numerical values. Hence, they must have the format

$$[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]$$

where

$$X = [0|1|2|3|4|5|6|7|8|9].$$

Sections: The MPS file consists of several sections where the names in capitals indicate the beginning of a new section. For example, COLUMNS denotes the beginning of the columns section.

Comments: Lines starting with an "*" are comment lines and are ignored by MOSEK.

Keys: The question marks represent keys to be specified later.

Extensions: The sections QSECTION and CSECTION are MOSEK specific extensions of the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain fixed positions. MOSEK also supports a *free format*. See Section A.5 for details.

A.1.1 An example

A concrete example of a MPS file is presented below:

NAME	EXAMPLE			
OBJSENSE				
MIN				
ROWS				
N obj				
L c1				
L c2				
L c3				
L c4				
COLUMNS				
x1	obj	-10.0	c1	0.7
x1	c2	0.5	c3	1.0
x1	c4	0.1		
x2	obj	-9.0	c1	1.0
x2	c2	0.833333333	c3	0.66666667
x2	c4	0.25		
RHS				
rhs	c1	630.0	c2	600.0
rhs	c3	708.0	c4	135.0
ENDATA				

Subsequently each individual section in the MPS format is discussed.

A.1.2 NAME

In this section a name ([name]) is assigned to the problem.

A.1.3 OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE section contains one line at most which can be one of the following

MIN MINIMIZE MAX MAXIMIZE

It should be obvious what the implication is of each of these four lines.

A.1.4 OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

A.1.5 ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
?	2	1	Yes	Constraint key
[cname1]	5	8	Yes	Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cname1]. Please note that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key (?) must be present to specify the type of the constraint. The key can have the values E, G, L, or N whith ther following interpretation:

Constraint	l_i^c	u_i^c
type		
E	finite	l_i^c
G	finite	∞
L	$-\infty$	finite
N	$-\infty$	∞

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the key \mathbb{N} will be used as the objective vector c. In general, if multiple \mathbb{N} type constraints are specified, then the first will be used as the objective vector c.

A.1.6 COLUMNS

In this section the elements of A are specified using one or more records having the form

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[vname1]	5	8	Yes	Variable name
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

Hence, a record specifies one or two elements a_{ij} of A using the principle that [vname1] and [cname1] determines j and i respectively. Please note that [cname1] must be a constraint name specified in the ROWS section. Finally, [value1] denotes the numerical value of a_{ij} . Another optional element is specified by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

- All elements belonging to one variable must be grouped together.
- Zero elements of A should not be specified.
- At least one element for each variable should be specified.

A.1.7 RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[name]	5	8	Yes	Name of the RHS vector
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general, several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS section. Now, assume that this name has been assigned to the ith constraint and v_1 denotes the value specified by [value1], then the interpretation of v_1 is:

Constraint	l_i^c	u_i^c
type		
E	v_1	v_1
G	v_1	
L		v_1
N		

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way. Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

A.1.8 RANGES (optional)

A record in this section has the form

_				
Lname		Ivalue1	l lcname2	l [value2]
LIIGING	_ Lonamor	L V CL L CL.	l Chames	_ Lvaraczj

where the requirements for each fields are as follows:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[name]	5	8	Yes	Name of the RANGE vector
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values in l^c and u^c . A record has the following interpretation: [name] is the name of the

RANGE vector and [cname1] is a valid constraint name. Assume that [cname1] is assigned to the *i*th constraint and let v_1 be the value specified by [value1], then a record has the interpretation:

Constraint	Sign of v_1	l_i^c	u_i^c
type			
E	-	$u_i^c + v_1$	_
E	+		$l_i^c + v_1$
G	- or +		$l_i^c + v_1 $
L	- or +	$u_i^c - v_1 $	
N			

A.1.9 QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[vname1]	5	8	Yes	Variable name
[vname2]	15	8	Yes	Variable name
[value1]	25	12	Yes	Numerical value
[vname3]	40	8	No	Variable name
[value2]	50	12	No	Numerical value

A record specifies one or two elements in the lower triangular part of the Q^i matrix where [cname1] specifies the i. Hence, if the names [vname1] and [vname2] have been assigned to the kth and jth variable, then Q^i_{kj} is assigned the value given by [value1] An optional second element is specified in the same way by the fields [vname1], [vname3], and [value2].

The example

$$\begin{array}{ll} \text{minimize} & -x_2 + 0.5(2x_1^2 - 2x_1x_3 + 0.2x_2^2 + 2x_3^2) \\ \text{subject to} & x_1 + x_2 + x_3 & \geq & 1, \\ & x \geq 0 & \end{array}$$

has the following MPS file representation

NAM	E	qoexp	
ROW	S		
N	obj		
G	c1		
COL	UMNS		
	x1	c1	1
	x2	obj	-1
	x2	c1	1
	x3	c1	1
RHS			
	rhs	c1	1
QSE	CTION	obj	
	x1	x1	2
	x1	x3	-1
	x2	x2	0.2
	x3	x3	2
END.	ATA		

Regarding the QSECTIONs please note that:

- Only one QSECTION is allowed for each constraint.
- The QSECTIONs can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
- All entries specified in a QSECTION are assumed to belong to the lower triangular part of the quadratic term of Q.

A.1.10 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors l^x and u^x are specified. The default bounds vectors are $l^x = 0$ and $u^x = \infty$. Moreover, it is possible to specify several sets of bound vectors. A record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
??	2	2	Yes	Bound key
[name]	5	8	Yes	Name of the BOUNDS vector
[vname1]	15	8	Yes	Variable name
[value1]	25	12	No	Variable name

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the bound vector and [vname1] is the name of the variable which bounds are modified by the record. ?? and [value1] are used to modify the bound vectors according to the following table:

??	l_i^x	u_i^x	Made integer
	J	J	(added to \mathcal{J})
FR	$-\infty$	∞	No
FX	v_1	v_1	No
LO	v_1	unchanged	No
MI	$-\infty$	unchanged	No
PL	unchanged	∞	No
UP	unchanged	v_1	No
BV	0	1	Yes
LI	$\lceil v_1 \rceil$	∞	Yes
UI	unchanged	$\lfloor v_1 \rfloor$	Yes

 v_1 is the value specified by [value1].

A.1.11 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

$$x \in \mathcal{C}$$
.

in (A.1).

It is assumed that C satisfies the following requirements. Let

$$x^t \in \mathbb{R}^{n^t}, \ t = 1, \dots, k$$

be vectors comprised of parts of the decision variables x so that each decision variable is a member of exactly **one** vector x^t , for example

$$x^1 = \begin{bmatrix} x_1 \\ x_4 \\ x_7 \end{bmatrix}$$
 and $x^2 = \begin{bmatrix} x_6 \\ x_5 \\ x_3 \\ x_2 \end{bmatrix}$.

Next define

$$\mathcal{C} := \left\{ x \in \mathbb{R}^n : \ x^t \in \mathcal{C}_t, \ t = 1, \dots, k \right\}$$

where C_t must have one of the following forms

• \mathbb{R} set:

$$\mathcal{C}_t = \{ x \in \mathbb{R}^{n^t} \}.$$

• Quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\}. \tag{A.3}$$

• Rotated quadratic cone:

$$C_t = \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \ x_1, x_2 \ge 0 \right\}.$$
 (A.4)

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership of the \mathbb{R} set is not. If a variable is not a member of any other cone then it is assumed to be a member of an \mathbb{R} cone.

Next, let us study an example. Assume that the quadratic cone

$$x_4 \ge \sqrt{x_5^2 + x_0^2} \tag{A.5}$$

and the rotated quadratic cone

$$2x_3x_7 \ge x_1^2 + x_8^2, \ x_3, x_7 \ge 0, \tag{A.6}$$

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as follows:

*	1	2 3	4	5	6
*23456789	90123456789	01234567890	12345678901	.2345678901	234567890
${\tt CSECTION}$	konea	0.0	QU	JAD	
x4					
x5					
x8					
${\tt CSECTION}$	koneb	0.0	RQ	UAD	
x7					
x3					
x1					
x0					

This first CSECTION specifies the cone (A.5) which is given the name konea. This is a quadratic cone which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (A.6). Please note the keyword RQUAD in the CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic cone. The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirement for each field are as follows:

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[kname1]	5	8	Yes	Name of the cone
[value1]	15	12	No	Cone parameter
[ktype]	25		Yes	Type of the cone.

The possible cone type keys are:

Cone type key	Members	Interpretation.
QUAD	≥ 1	Quadratic cone i.e. (A.3).
RQUAD	≥ 2	Rotated quadratic cone i.e. (A.4).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone must have at least two members. A record in the CSECTION has the format

[vname1] where the requirements for each field are

Field	Starting	Maximum	Re-	Description
	position	width	quired	
[vname1]	2	8	Yes	A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur in only one CSECTION.

A.1.12 ENDATA

This keyword denotes the end of the MPS file.

A.2 Integer variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables should be integer-constrained i.e. be members of \mathcal{J} . However, an alternative method is available.

This method is available only for backward compability and we recommend that it is not used. This method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS

x1	obj	-10.0	c1	0.7
x1	c2	0.5	с3	1.0
x1	c4	0.1		

* Start of integer-constrained variables.

MARK000	'MARKER'		'INTORG'	
x2	obj	-9.0	c1	1.0
x2	c2	0.833333333	c3	0.66666667
x2	c4	0.25		
x3	obj	1.0	c6	2.0
MARK001	'MARKER'		'INTEND'	

* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables. Furthermore be aware of the following

- IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and a default upper bound of 1. **This may not be what is intended.** If it is not intended, the correct bounds should be defined in the BOUNDS section of the MPS formatted file.
- MOSEK ignores field 1, i.e. MARKO001 and MARKO01, however, other optimization systems require them.
- Field 2, i.e. 'MARKER', must be specified including the single quotes. This implies that no row can be assigned the name 'MARKER'.
- Field 3 is ignored and should be left blank.
- Field 4, i.e. 'INTORG' and 'INTEND', must be specified.
- It is possible to specify several such integer marker sections within the COLUMNS section.

A.3 General limitations

• An MPS file should be an ASCII file.

A.4 Interpretation of the MPS format

Several issues related to the MPS format are not well-defined by the industry standard. However, MOSEK uses the following interpretation:

- If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are added together.
- If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are added together.

A.5 The free MPS format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

- By default a line in the MPS file must not contain more than 1024 characters. However, by modifying the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.
- A name must not contain any blanks.

To use the free MPS format instead of the default MPS format the MOSEK parameter MSK_IPAR_READ_MPS_FORMAT should be changed.

Appendix B

The LP file format

MOSEK supports the LP file format with some extensions i.e. MOSEK can read and write LP formatted files.

B.1 A warning

The LP format is not a well-defined standard and hence different optimization packages may interpretate a specific LP formatted file differently.

B.2 The LP file format

The LP file format can specify problems on the form

minimize/maximize
$$c^{T}x + \frac{1}{2}q^{o}(x)$$
subject to
$$l^{c} \leq Ax + \frac{1}{2}q(x) \leq u^{c},$$

$$l^{x} \leq x \leq u^{x},$$

$$x_{\mathcal{T}} \text{ integer,}$$

where

- $x \in \mathbb{R}^n$ is the vector of decision variables.
- $c \in \mathbb{R}^n$ is the linear term in the objective.
- $q^o :\in \mathbb{R}^n \to \mathbb{R}$ is the quadratic term in the objective where

$$q^o(x) = x^T Q^o x$$

and it is assumed that

$$Q^o = (Q^o)^T. (B.1)$$

- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $q: \mathbb{R}^n \to \mathbb{R}$ is a vector of quadratic functions. Hence,

$$q_i(x) = x^T Q^i x$$

where it is assumed that

$$Q^i = (Q^i)^T. (B.2)$$

• $\mathcal{J} \subseteq \{1, 2, \dots, n\}$ is an index set of the integer constrained variables.

B.2.1 The sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds, and variable types. The section keywords may be any mix of upper and lower case letters.

B.2.1.1 The objective

The first section beginning with one of the keywords

max

maximum

maximize

min

minimum

minimize

defines the objective sense and the objective function, i.e.

$$c^T x + \frac{1}{2} x^T Q^o x.$$

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as in the example

$$4 x1 + x2 - 0.1 x3$$

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or multiplied as in the examples

x1 ^ 2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is:

minimize

```
myobj: 4 \times 1 + \times 2 - 0.1 \times 3 + [\times 1^2 + 2.1 \times 1 \times 2]/2
```

Please note that the quadratic expressions are multiplied with $\frac{1}{2}$, so that the above expression means

minimize
$$4x_1 + x_2 - 0.1 \cdot x_3 + \frac{1}{2}(x_1^2 + 2.1 \cdot x_1 \cdot x_2)$$

If the same variable occurs more than once in the linear part, the coefficients are added, so that $4 \times 1 + 2 \times 1$ is equivalent to 6×1 . In the quadratic expressions $\times 1 \times \times 2$ is equivalent to $\times 2 \times \times 1$ and as in the linear part, if the same variables multiplied or squared occur several times their coefficients are added.

B.2.1.2 The constraints

The second section beginning with one of the keywords

```
subj to
subject to
s.t.
st
```

defines the linear constraint matrix (A) and the quadratic matrices (Q^i) .

A constraint contains a name (optional), expressions adhering to the same rules as in the objective and a bound:

```
subject to
  con1: x1 + x2 + [ x3 ^ 2 ]/2 <= 5.1</pre>
```

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound may be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports defining ranged constraints by using double-colon (":") instead of a single-colon (":") after the constraint name, i.e.

$$-5 \le x_1 + x_2 \le 5 \tag{B.3}$$

may be written as

con::
$$-5 < x_1 + x_2 < 5$$

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded and lower bounded constraints or be written as en equality with a slack variable. For example the expression (B.3) may be written as

$$x_1 + x_2 - sl_1 = 0, -5 \le sl_1 \le 5.$$

B.2.1.3 Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound bounds

The bounds section is optional but should, if present, follow the **subject to** section. All variables listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and $+\infty$. A variable may be declared free with the keyword free, which means that the lower bound is $-\infty$ and the upper bound is $+\infty$. Furthermore it may be assigned a finite lower and upper bound. The bound definitions for a given variable may be written in one or two lines, and bounds can be any number or $\pm\infty$ (written as $+\inf/-\inf/+\inf\inf$) as in the example

bounds

```
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf
```

B.2.1.4 Variable types

The final two sections are optional and must begin with one of the keywords

bin binaries binary and

gen

general

Under general all integer variables are listed, and under binary all binary (integer variables with bounds 0 and 1) are listed:

```
general
x1 x2
binary
x3 x4
```

Again, all variables listed in the binary or general sections must occur in either the objective or a constraint.

B.2.1.5 Terminating section

Finally, an LP formatted file must be terminated with the keyword

end

B.2.1.6 An example

A simple example of an LP file with two variables, four constraints and one integer variable is:

```
minimize
-10 x1 -9 x2
subject to
0.7 x1 + x2 <= 630
0.5 x1 + 0.833 x2 <= 600
x1 + 0.667 x2 <= 708
0.1 x1 + 0.025 x2 <= 135
bounds
10 <= x1
x1 <= +inf
```

```
20 <= x2 <= 500
general
x1
end
```

B.2.2 LP format peculiarities

B.2.2.1 Comments

Anything on a line after a "\" is ignored and is treated as a comment.

B.2.2.2 Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and the characters

```
!"#$%&()/,.;?@_','{}|~
```

The first character in a name must not be a number, a period or the letter 'e' or 'E'. Keywords must not be used as names.

It is strongly recommended not to use double quotes (") in names.

B.2.2.3 Variable bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest bounds. If a variable is fixed (with =), then it is considered the tightest bound.

B.2.2.4 MOSEK specific extensions to the LP format

Some optimization software packages employ a more strict definition of the LP format that the one used by MOSEK. The limitations imposed by the strict LP format are the following:

- Quadratic terms in the constraints are not allowed.
- Names can be only 16 characters long.
- Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfies the strict definition, then the parameter

MSK_IPAR_WRITE_LP_STRICT_FORMAT

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness and change the problem.

To get around some of the inconveniences converting from other problem formats, MO-SEK allows lines to contain 1024 characters and names may have any length (shorter than the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in LP names. Setting the parameters

MSK_IPAR_READ_LP_QUOTED_NAMES

and

MSK_IPAR_WRITE_LP_QUOTED_NAMES

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from quoted names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put quotes around any semi-illegal name (names beginning with a number or a period) and fully illegal name (containing illegal characters). As double quote is a legal character in the LP format, quoting semi-illegal names makes them legal in the pure LP format as long as they are still shorter than 16 characters. Fully illegal names are still illegal in a pure LP file.

B.2.3 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of the LP format. To make MOSEK's definition of the LP format more compatible whith the definitions of other vendors use the paramter setting

```
MSK_IPAR_WRITE_LP_STRICT_FORMAT MSK_ON
```

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution to this problem is to use the paramter setting

```
MSK_IPAR_WRITE_GENERIC_NAMES MSK_ON
```

which will cause all names to be renamed systematically in the output file.

B.2.4 Formatting of an LP file

A few parameters control the visual formatting of LP files written by MOSEK in order to make it easier to read the files. These parameters are

```
MSK_IPAR_WRITE_LP_LINE_WIDTH
MSK_IPAR_WRITE_LP_TERMS_PER_LINE
```

The first parameter sets the maximum number of characters on a single line. The default value is 80 corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coefficient, and a name (for example "+ 42 elephants"). The default value is 0, meaning that there is no maximum.

B.2.4.1 Speeding up file reading

If the input file should be read as fast as possible using the least amount of memory, then it is important to tell MOSEK how many non-zeros, variables and constraints the problem contains. These values can be set using the parameters

MSK_IPAR_READ_CON MSK_IPAR_READ_VAR MSK_IPAR_READ_ANZ MSK_IPAR_READ_QNZ

B.2.4.2 Unnamed constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains unnamed constraints or objective these are given their generic names when the file is read (however unnamed constraints in MOSEK are written without names).

Appendix C

The OPF format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions, comments and extra information relevant for solving the problem. It is designed to be easily read and modified by hand and to be forward compatible with possible future extensions.

C.1 Intended use

The OPF file format is meant to replace several other files:

- The LP file format. Any problem that can be written as an LP file can be written as an OPF file to; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary characters in names, fixed expressions in the objective, empty constraints, and conic constraints.
- Parameter files. It is possible to specify integer, double and string parameters along with the problem (or in a separate OPF file).
- Solution files. It is possible to store a full or a partial solution in an OPF file and later reload it.

C.2 The file format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag may accept a list of unnamed and named arguments, for examples

```
[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument in quotes [/tag]
```

Unnamed arguments are identified by their order, while named arguments may appear in any order, but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted text string, i.e.

```
[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]
```

C.2.1 Sections

The recognized tags are

• [comment] A comment section. This can contain *almost* any text: Between single quotes (') or double quotes (") any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

• [objective] The objective function: This accepts one or two parameters, where the first one (in the above example 'min') is either min or max (regardless of case) and defines the objective sense, and the second one (above 'myobj'), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

• [constraints] This does not directly contain any data, but may contain the subsection 'con' defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the constraint, otherwise it is given a null-name. The section contains a constraint definition written as linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality. Examples:

[constraints]

Constraint names are unique. If a constraint is apecified which has the same name as a previously defined constraint, the new constraint replaces the existing one.

- [bounds] This does not directly contain any data, but may contain the subsections 'b' (linear bounds on variables) and 'cone' (quadratic cone).
 - [b]. Bound definition on one or several variables separated by comma (','). An upper or lower bound on a variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given only this bound is replaced. This means that upper and lower bounds can be specified separately. So the OPF bound definition:

[b]
$$x,y \ge -10$$
 [/b]
[b] $x,y \le 10$ [/b]

results in the bound

$$-10 \le x, y \le 10.$$
 (C.1)

[cone]. Currently, the supported cones are the quadratic cone and the rotated quadratic cone A conic constraint is defined as a set of variables which belongs to a single unique cone.

A quadratic cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$x_1^2 > \sum_{i=2}^n x_i^2$$
.

A rotated quadratic cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$x_1 x_2 > \sum_{i=3}^n x_i^2.$$

A [bounds]-section example:

[bounds]

```
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
# Let (x,y,z,w) belong to the cone K</pre>
```

[cone quad] x,y,z,w [/cone] # quadratic cone

[cone rquad] x,y,z,w [/cone] # rotated quadratic cone [/bounds]

By default all variables are free.

- [variables] This defines an ordering of variables as they should appear in the problem. This is simply a space-separated list of variable names.
- [integer] This contains a space-separated list of variables and defines the constraint that the listed variables must be integer values.
- [hints] This may contain only non-essential data; for example estimates of the number of variables, constraints and non-zeros. Placed before all other sections containing data this may reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this section a hint in a subsection is defined as follows:

```
[hint ITEM] value [/hint]
```

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic constraints), numanz (number if linear non-zeros in constraints) and numqnz (number of quadratic non-zeros in constraints).

• [solutions] This section can contain a number of full or partial solutions to a problem, each inside a [solution]-section. The syntax is

```
[solution SOLTYPE status=STATUS]...[/solution]
where SOLTYPE is one of the strings
    - 'interior', a non-basic solution,
    - 'basic', a basic solution,
```

and STATUS is one of the strings

- 'integer', an integer solution,

```
- 'UNKNOWN',
- 'OPTIMAL',
- 'INTEGER_OPTIMAL',
- 'PRIM_FEAS',
- 'DUAL_FEAS',
- 'PRIM_AND_DUAL_FEAS',
- 'NEAR_OPTIMAL',
- 'NEAR_PRIM_FEAS',
- 'NEAR_PRIM_AND_DUAL_FEAS',
- 'NEAR_PRIM_AND_DUAL_FEAS',
- 'PRIM_INFEAS_CER',
- 'DUAL_INFEAS_CER',
- 'NEAR_PRIM_INFEAS_CER',
- 'NEAR_DUAL_INFEAS_CER',
```

'NEAR_INTEGER_OPTIMAL'.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines solution values for a single variable or constraint, each value written as

KEYWORD=value

where KEYWORD defines a solution item and value defines its value. Allowed keywords are as follows:

- sk. The status of the item, where the value is one of the following strings:
 - * LOW, the item is on its lower bound.
 - * UPR, the item is on its upper bound.
 - * FIX, it is a fixed item.
 - * BAS, the item is in the basis.
 - * SUPBAS, the item is super basic.
 - * UNK, the status is unknown.
 - * INF, the item is outside its bounds (infeasible).
- lvl Defines the level of the item.
- sl Defines the level of the variable associated with its lower bound.
- su Defines the level of the variable associated with its upper bound.
- sn Defines the level of the variable associated with its cone.
- y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk and lvl, and optionally sl, su and sn.

A [con] section should always contain sk and lvl, and optionally sl, su and y.

An example of a solution section

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters defining solver parameters. When reading a vendor section, any unknown vendor can be safely ignored. This is described later.

Comments using the '#' may appear anywhere in the file. Between the '#' and the following line-break any text may be written, including markup characters.

C.2.2 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part and an exponent. The decimal point is always '.' (a dot). Some examples are

```
1
1.0
.0
1.
1e10
1e+10
1e-10
```

Some *invalid* examples are

```
e10  # invalid, must contain either integer or decimal part
.  # invalid
.e10  # invalid
```

More formally, the following standard regular expression describes numbers as used:

```
[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?
```

C.2.3 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash. Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

```
an_unqouted_name
another_name{123}
'single qouted name'
"double qouted name"
"name with \"qoute\" in it"
"name with []s in it"
```

C.3 Parameters section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter is written as

```
[p PARAMETER_NAME] value [/p]
```

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_..., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both integer values and named values may be used. Some simple examples are:

```
[vendor mosek]
  [parameters]
  [p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10  [/p]
  [p MSK_IPAR_OPF_WRITE_PARAMETERS]  MSK_ON [/p]
  [p MSK_DPAR_DATA_TOL_BOUND_INF]  1.0e18 [/p]
  [/parameters]
[/vendor]
```

C.4 Writing OPF files from MOSEK

To write an OPF file set the parameter MSK_IPAR_WRITE_DATA_FORMAT to MSK_DATA_FORMAT_OP as this ensures that OPF format is used. Then modify the following parameters to define what the file should contain:

- MSK_IPAR_OPF_WRITE_HEADER, include a small header with comments.
- MSK_IPAR_OPF_WRITE_HINTS, include hints about the size of the problem.
- MSK_IPAR_OPF_WRITE_PROBLEM, include the problem itself objective, constraints and bounds.
- MSK_IPAR_OPF_WRITE_SOLUTIONS, include solutions if they are defined. If this is off, no solutions are included.
- MSK_IPAR_OPF_WRITE_SOL_BAS, include basic solution, if defined.
- MSK_IPAR_OPF_WRITE_SOL_ITG, include integer solution, if defined.
- MSK_IPAR_OPF_WRITE_SOL_ITR, include interior solution, if defined.
- MSK_IPAR_OPF_WRITE_PARAMETERS, include all parameter settings.

C.5. EXAMPLES 229

C.5 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear, quadratic and conic problems.

C.5.1 Linear example lol.opf

Consider the example:

minimize
$$-10x_1$$
 $-9x_2$,
subject to $7/10x_1$ + $1x_2$ ≤ 630 ,
 $1/2x_1$ + $5/6x_2$ ≤ 600 ,
 $1x_1$ + $2/3x_2$ ≤ 708 ,
 $1/10x_1$ + $1/4x_2$ ≤ 135 ,
 x_1 , x_2 ≥ 0 . (C.2)

In the OPF format the example is displayed as shown below:

```
[comment]
 Example lo1.mps converted to OPF.
[/comment]
[hints]
 # Give a hint about the size of the different elements in the problem.
 # These need only be estimates, but in this case they are exact.
 [hint NUMVAR] 2 [/hint]
 [hint NUMCON] 4 [/hint]
 [hint NUMANZ] 8 [/hint]
[/hints]
[variables]
 # All variables that will appear in the problem
 x1 x2
[/variables]
[objective minimize 'obj']
  -10 x1 - 9 x2
[/objective]
[constraints]
 [con 'c1'] 0.7 x1 +
                                  x2 \le 630 [/con]
 [con 'c2'] 0.5 \times 1 + 0.8333333333 \times 2 \le 600 [/con]
 [/constraints]
[bounds]
 # By default all variables are free. The following line will
```

```
# change this to all variables being nonnegative.
[b] 0 <= * [/b]
[/bounds]</pre>
```

C.5.2 Quadratic example qol.opf

An example of a quadratic optimization problem is

minimize
$$x_1^2 + 0.1x_2^2 + x_3^2 - x_1x_3 - x_2$$
 subject to $1 \le x_1 + x_2 + x_3,$ (C.3)
$$x > 0.$$

This can be formulated in opf as shown below.

```
[comment]
 Example qo1.mps converted to OPF.
[/comment]
[hints]
 [hint NUMVAR] 3 [/hint]
 [hint NUMCON] 1 [/hint]
 [hint NUMANZ] 3 [/hint]
[/hints]
[variables]
 x1 x2 x3
[/variables]
[objective minimize 'obj']
  # The quadratic terms are often multiplied by 1/2,
  # but this is not required.
  - x2 + 0.5 ( 2 x1 ^ 2 - 2 x3 * x1 + 0.2 x2 ^ 2 + 2 x3 ^ 2 )
[/objective]
[constraints]
 [con 'c1'] 1 <= x1 + x2 + x3 [/con]
[/constraints]
[bounds]
 [b] 0 <= * [/b]
[/bounds]
```

C.5. EXAMPLES 231

C.5.3 Conic quadratic example cqo1.opf

Consider the example:

minimize
$$1x_1 + 2x_2$$

subject to $2x_3 + 4x_4 = 5$,
 $x_5^2 \le 2x_1x_3$,
 $x_6^2 \le 2x_2x_4$, (C.4)
 $x_5 = 1$,
 $x_6 = 1$,
 $x \ge 0$.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the cone-section is the names of variables that belong to the cone.

```
Example cqo1.mps converted to OPF.
[/comment]
[hints]
 [hint NUMVAR] 6 [/hint]
 [hint NUMCON] 1 [/hint]
 [hint NUMANZ] 2 [/hint]
[/hints]
[variables]
 x1 x2 x3 x4 x5 x6
[/variables]
[objective minimize 'obj']
  x1 + 2 x2
[/objective]
[constraints]
 [con 'c1'] 2 x3 + 4 x4 = 5 [/con]
[/constraints]
[bounds]
 # We let all variables default to the positive orthant
 [b] 0 <= * [/b]
 # ... and change those that differ from the default.
 [b] x5, x6 = 1 [/b]
 # We define two rotated quadratic cones
 # k1: 2 x1 * x3 >= x5^2
 [cone rquad 'k1'] x1, x3, x5 [/cone]
 \# k2: 2 x2 * x4 >= x6^2
 [cone rquad 'k2'] x2, x4, x6 [/cone]
```

[/bounds]

C.5.4 Mixed integer example milo1.opf

Consider the mixed integer problem:

maximize
$$x_0 + 0.64x_1$$

subject to $50x_0 + 31x_1 \le 250$,
 $3x_0 - 2x_1 \ge -4$,
 $x_0, x_1 \ge 0$ and integer (C.5)

This can be implemented in OPF with:

```
[comment]
  Written by MOSEK version 5.0.0.7
  Date 20-11-06
  Time 14:42:24
[/comment]
[hints]
 [hint NUMVAR] 2 [/hint]
 [hint NUMCON] 2 [/hint]
 [hint NUMANZ] 4 [/hint]
[/hints]
[variables disallow_new_variables]
 x1 x2
[/variables]
[objective maximize 'obj']
  x1 + 6.4e-1 x2
[/objective]
[constraints]
 [con 'c1']
                       5e+1 x1 + 3.1e+1 x2 \le 2.5e+2 [/con]
 [con 'c2'] -4 \le 3 x1 - 2 x2 [/con]
[/constraints]
[bounds]
 [b] 0 <= * [/b]
[/bounds]
[integer]
 x1 x2
[/integer]
```

Appendix D

The XML (OSiL) format

MOSEK can write data in the standard OSiL xml format. For a definition of the OSiL format please see http://www.optimizationservices.org/. Only linear constraints (possibly with integer variables) are supported. By default output files with the extension .xml are written in the OSiL format.

The parameter ${\tt MSK_IPAR_WRITE_XML_MODE}$ controls if the linear coefficients in the A matrix are written in row or column order.

Appendix E

Parameters

Subsequently all parameters that are in MOSEK parameter database is presented. For each parameter their name, purpose, type, default value etc. are presented.

E.1 Parameter groups

Parameters grouped by meaning and functionality.

E.1.1 Logging parameters.

• MSK_IPAR_LOG	2
• MSK_IPAR_LOG_BI	
• MSK_IPAR_LOG_BI_FREQ32 Controls the logging frequency.	3
• MSK_IPAR_LOG_CONCURRENT	3
• MSK_IPAR_LOG_CUT_SECOND_OPT	
• MSK_IPAR_LOG_FACTOR	4
• MSK_IPAR_LOG_FEASREPAIR	4

•	MSK_IPAR_LOG_FILE	. 325
•	MSK_IPAR_LOG_HEAD	. 325
•	If turned on, then a header line is added to the log. MSK_IPAR_LOG_INFEAS_ANA Controls log level for the infeasibility analyzer.	. 325
•	MSK_IPAR_LOG_INTPNT	. 326
•	MSK_IPAR_LOG_MIO	. 326
•	MSK_IPAR_LOG_MIO_FREQ The mixed-integer solver logging frequency.	.326
•	MSK_IPAR_LOG_NONCONVEX	. 326
•	MSK_IPAR_LOG_OPTIMIZER Controls the amount of general optimizer information that is logged.	. 327
•	MSK_IPAR_LOG_ORDER	. 327
•	MSK_IPAR_LOG_PARAM	. 327
•	MSK_IPAR_LOG_PRESOLVE	
•	MSK_IPAR_LOG_RESPONSE	
•	MSK_IPAR_LOG_SENSITIVITY	. 328
•	MSK_IPAR_LOG_SENSITIVITY_OPT	. 328
•	MSK_IPAR_LOG_SIM Controls the amount of log information from the simpley optimizers	. 329

E.1.	PARAMETER GROUPS	237
•	MSK_IPAR_LOG_SIM_FREQ Controls simplex logging frequency.	329
•	MSK_IPAR_LOG_SIM_NETWORK_FREQ. Controls the network simplex logging frequency.	330
•	MSK_IPAR_LOG_STORAGE. Controls the memory related log information.	330
E.1.	.2 Basis identification parameters.	
•	MSK_IPAR_BI_CLEAN_OPTIMIZER Controls which simplex optimizer is used in the clean-up phase.	307
•	MSK_IPAR_BI_IGNORE_MAX_ITER. Turns on basis identification in case the interior-point optimizer is terminated due maximum number of iterations.	
•	MSK_IPAR_BI_IGNORE_NUM_ERROR. Turns on basis identification in case the interior-point optimizer is terminated due numerical problem.	
•	MSK_IPAR_BI_MAX_ITERATIONS	308
•	MSK_IPAR_INTPNT_BASIS	314
•	MSK_IPAR_LOG_BI Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.	
•	MSK_IPAR_LOG_BI_FREQ Controls the logging frequency.	323
•	MSK_DPAR_SIM_LU_TOL_REL_PIV	

E.1.3 The Interior-point method parameters.

Parameters defining the behavior of the interior-point method for linear, conic and convex problems.

• MSK_IPAR_BI_IGNORE_MAX_ITER	
• MSK_IPAR_BI_IGNORE_NUM_ERROR30 Turns on basis identification in case the interior-point optimizer is terminated due to numerical problem.	
• MSK_DPAR_CHECK_CONVEXITY_REL_TOL	2
• MSK_IPAR_INTPNT_BASIS	4
• MSK_DPAR_INTPNT_CO_TOL_DFEAS	5
• MSK_DPAR_INTPNT_CO_TOL_INFEAS	6
• MSK_DPAR_INTPNT_CO_TOL_MU_RED	6
• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL	6
• MSK_DPAR_INTPNT_CO_TOL_PFEAS	7
• MSK_DPAR_INTPNT_CO_TOL_REL_GAP	7
• MSK_IPAR_INTPNT_DIFF_STEP	5
• MSK_IPAR_INTPNT_MAX_ITERATIONS	6
• MSK_IPAR_INTPNT_MAX_NUM_COR	6
• MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS	6
• MSK_DPAR_INTPNT_NL_MERIT_BAL	

• MSK_DPAR_INTPNT_NL_TOL_DFEAS Dual feasibility tolerance used when a nonlinear model is solved.	277
• MSK_DPAR_INTPNT_NL_TOL_MU_RED	278
• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL	278
• MSK_DPAR_INTPNT_NL_TOL_PFEAS	278
• MSK_DPAR_INTPNT_NL_TOL_REL_GAP	279
• MSK_DPAR_INTPNT_NL_TOL_REL_STEP	
• MSK_IPAR_INTPNT_OFF_COL_TRH	317
• MSK_IPAR_INTPNT_ORDER_METHOD	317
• MSK_IPAR_INTPNT_REGULARIZATION_USE	318
• MSK_IPAR_INTPNT_SCALING	
• MSK_IPAR_INTPNT_SOLVE_FORM. Controls whether the primal or the dual problem is solved.	319
• MSK_IPAR_INTPNT_STARTING_POINT	319
• MSK_DPAR_INTPNT_TOL_DFEAS	
• MSK_DPAR_INTPNT_TOL_DSAFE	279
• MSK_DPAR_INTPNT_TOL_INFEAS	280
• MSK_DPAR_INTPNT_TOL_MU_RED	280

• MSK_DPAR_INTPNT_TOL_PATH
• MSK_DPAR_INTPNT_TOL_PFEAS
• MSK_DPAR_INTPNT_TOL_PSAFE
• MSK_DPAR_INTPNT_TOL_REL_GAP
• MSK_DPAR_INTPNT_TOL_REL_STEP
• MSK_DPAR_INTPNT_TOL_STEP_SIZE
• MSK_IPAR_LOG_CONCURRENT
• MSK_IPAR_LOG_INTPNT
• MSK_IPAR_LOG_PRESOLVE
• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
• MSK_IPAR_QO_SEPARABLE_REFORMULATION
E.1.4 Simplex optimizer parameters.
Parameters defining the behavior of the simplex optimizer for linear problems.
• MSK_DPAR_BASIS_REL_TOL_S
• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

• MSK_DPAR_BASIS_TOL_S	271
• MSK_DPAR_BASIS_TOL_X	
• MSK_IPAR_LOG_SIM	329
• MSK_IPAR_LOG_SIM_FREQ. Controls simplex logging frequency.	329
• MSK_IPAR_LOG_SIM_MINOR. Currently not in use.	329
• MSK_IPAR_SENSITIVITY_OPTIMIZER	354
• MSK_IPAR_SIM_BASIS_FACTOR_USE. Controls whether a (LU) factorization of the basis is used in a hot-start. For refactorization sometimes improves the stability of the simplex optimizers, but it cases there is a performance penanlty.	cing a
• MSK_IPAR_SIM_DEGEN	356
• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD	356
• MSK_IPAR_SIM_EXPLOIT_DUPVEC	358
• MSK_IPAR_SIM_HOTSTART	358
• MSK_IPAR_SIM_INTEGER. An exprimental feature.	359
• MSK_DPAR_SIM_LU_TOL_REL_PIV	
MSK_IPAR_SIM_MAX_ITERATIONS. Maximum number of iterations that can be used by a simpley optimizer.	359

• MSK_IPAR_SIM_MAX_NUM_SETBACKS
• MSK_IPAR_SIM_NETWORK_DETECT_METHOD
• MSK_IPAR_SIM_NON_SINGULAR
• MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
• MSK_IPAR_SIM_REFORMULATION
• MSK_IPAR_SIM_SAVE_LU
• MSK_IPAR_SIM_SCALING
• MSK_IPAR_SIM_SCALING_METHOD
• MSK_IPAR_SIM_SOLVE_FORM
• MSK_IPAR_SIM_STABILITY_PRIORITY
• MSK_IPAR_SIM_SWITCH_OPTIMIZER
• MSK_DPAR_SIMPLEX_ABS_TOL_PIV
E.1.5 Primal simplex optimizer parameters.
Parameters defining the behavior of the primal simplex optimizer for linear problems.
• MSK_IPAR_SIM_PRIMAL_CRASH

rates.

• MSK_DPAR_INTPNT_NL_TOL_DFEAS
• MSK_DPAR_INTPNT_NL_TOL_MU_RED
• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
• MSK_DPAR_INTPNT_NL_TOL_PFEAS
• MSK_DPAR_INTPNT_NL_TOL_REL_GAP
• MSK_DPAR_INTPNT_NL_TOL_REL_STEP
• MSK_DPAR_INTPNT_TOL_INFEAS
• MSK_IPAR_LOG_CHECK_CONVEXITY
If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also shown.
E.1.9 The conic interior-point method parameters.
Parameters defining the behavior of the interior-point method for conic problems.
• MSK_DPAR_INTPNT_CO_TOL_DFEAS
• MSK_DPAR_INTPNT_CO_TOL_INFEAS
• MSK_DPAR_INTPNT_CO_TOL_MU_RED
• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS
• MSK_DPAR_INTPNT_CO_TOL_REL_GAP
E.1.10 The mixed-integer optimization parameters.
• MSK_IPAR_LOG_MIO
• MSK_IPAR_LOG_MIO_FREQ320 The mixed-integer solver logging frequency.
• MSK_IPAR_MIO_BRANCH_DIR
• MSK_IPAR_MIO_BRANCH_PRIORITIES_USE
• MSK_IPAR_MIO_CONSTRUCT_SOL
• MSK_IPAR_MIO_CONT_SOL
• MSK_IPAR_MIO_CUT_LEVEL_ROOT
• MSK_IPAR_MIO_CUT_LEVEL_TREE
• MSK_DPAR_MIO_DISABLE_TERM_TIME
• MSK_IPAR_MIO_FEASPUMP_LEVEL
• MSK_IPAR_MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial in teger feasible solution.

• MSK_DPAR_MIO_HEURISTIC_TIME Time limit for the mixed-integer heuristics.	.283
• MSK_IPAR_MIO_HOTSTART	. 334
• MSK_IPAR_MIO_KEEP_BASIS	. 334
• MSK_IPAR_MIO_MAX_NUM_BRANCHES. Maximum number of branches allowed during the branch and bound search.	.335
• MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations in branch and bound search.	. 335
• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS	. 336
• MSK_DPAR_MIO_MAX_TIME. Time limit for the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_MAX_TIME_APRX_OPT. Time limit for the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_NEAR_TOL_ABS_GAP. Relaxed absolute optimality tolerance employed by the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_NEAR_TOL_REL_GAP. The mixed-integer optimizer is terminated when this tolerance is satisfied.	. 285
• MSK_IPAR_MIO_NODE_OPTIMIZER. Controls which optimizer is employed at the non-root nodes in the mixed-integer mizer.	
• MSK_IPAR_MIO_NODE_SELECTION. Controls the node selection strategy employed by the mixed-integer optimizer.	.337
• MSK_IPAR_MIO_OPTIMIZER_MODE. An exprimental feature.	.338
• MSK_IPAR_MIO_PRESOLVE_AGGREGATE	
• MSK_IPAR_MIO_PRESOLVE_PROBING	. 338

	SK_IPAR_MIO_PRESOLVE_USE
	SK_DPAR_MIO_REL_ADD_CUT_LIMITED
Γ	SK_DPAR_MIO_REL_GAP_CONST
	SK_IPAR_MIO_ROOT_OPTIMIZER
	SK_IPAR_MIO_STRONG_BRANCH
	Absolute optimality tolerance employed by the mixed-integer optimizer.
	ISK_DPAR_MIO_TOL_ABS_RELAX_INT
F	Seasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below this value will be considered feasible.
	SK_DPAR_MIO_TOL_REL_GAP
	ISK_DPAR_MIO_TOL_REL_RELAX_INT
	Absolute solution tolerance used in mixed-integer optimizer. 287
E.1.1	1 Presolve parameters.
	Maximum amount of fill-in in the elimination phase.
	SK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
	ISK_IPAR_PRESOLVE_ELIMINATOR_USE

• MSK_IPAR_PRESOLVE_LEVEL
• MSK_IPAR_PRESOLVE_LINDEP_USE
• MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM
• MSK_DPAR_PRESOLVE_TOL_AIJ
• MSK_DPAR_PRESOLVE_TOL_LIN_DEP
• MSK_DPAR_PRESOLVE_TOL_S
• MSK_DPAR_PRESOLVE_TOL_X
• MSK_IPAR_PRESOLVE_USE
E.1.12 Termination criterion parameters.
Parameters which define termination and optimality criteria and related information.
• MSK_DPAR_BASIS_REL_TOL_S
• MSK_DPAR_BASIS_TOL_S
• MSK_DPAR_BASIS_TOL_X
• MSK_IPAR_BI_MAX_ITERATIONS
• MSK_DPAR_INTPNT_CO_TOL_DFEAS
• MSK_DPAR_INTPNT_CO_TOL_INFEAS

•	MSK_DPAR_INTPNT_CO_TOL_MU_RED Optimality tolerance for the conic solver.	276
•	MSK_DPAR_INTPNT_CO_TOL_NEAR_REL Optimality tolerance for the conic solver.	276
•	MSK_DPAR_INTPNT_CO_TOL_PFEAS. Primal feasibility tolerance used by the conic interior-point optimizer.	277
•	MSK_DPAR_INTPNT_CO_TOL_REL_GAP	277
•	MSK_IPAR_INTPNT_MAX_ITERATIONS	
•	MSK_DPAR_INTPNT_NL_TOL_DFEAS. Dual feasibility tolerance used when a nonlinear model is solved.	277
•	MSK_DPAR_INTPNT_NL_TOL_MU_RED. Relative complementarity gap tolerance.	278
•	MSK_DPAR_INTPNT_NL_TOL_NEAR_REL	278
•	MSK_DPAR_INTPNT_NL_TOL_PFEAS. Primal feasibility tolerance used when a nonlinear model is solved.	278
•	MSK_DPAR_INTPNT_NL_TOL_REL_GAP	279
•	MSK_DPAR_INTPNT_TOL_DFEAS	279
•	MSK_DPAR_INTPNT_TOL_INFEAS	280
•	MSK_DPAR_INTPNT_TOL_MU_RED	280
•	MSK_DPAR_INTPNT_TOL_PFEAS	281
•	MSK_DPAR_INTPNT_TOL_REL_GAP	281
•	MSK_DPAR_LOWER_OBJ_CUT Objective bound.	282

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH Objective bound.	. 282
• MSK_DPAR_MIO_DISABLE_TERM_TIME	
• MSK_IPAR_MIO_MAX_NUM_BRANCHES. Maximum number of branches allowed during the branch and bound search.	.335
• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS	. 336
• MSK_DPAR_MIO_MAX_TIME. Time limit for the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_NEAR_TOL_REL_GAP. The mixed-integer optimizer is terminated when this tolerance is satisfied.	. 285
• MSK_DPAR_MIO_REL_GAP_CONST	
• MSK_DPAR_MIO_TOL_REL_GAP. Relative optimality tolerance employed by the mixed-integer optimizer.	.287
• MSK_DPAR_OPTIMIZER_MAX_TIME. Solver time limit.	.288
• MSK_IPAR_SIM_MAX_ITERATIONS	.359
• MSK_DPAR_UPPER_OBJ_CUT	.290
• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH	291
E.1.13 Progress call-back parameters.	
MSK_DPAR_CALLBACK_FREQ Controls progress call-back frequency.	. 272
MSK_IPAR_SOLUTION_CALLBACK Indicates whether solution call-backs will be performed during the optimization.	367

E.1.14	Non-convex solver parameters.
	TIPAR_LOG_NONCONVEX
	ZIPAR_NONCONVEX_MAX_ITERATIONS
	S_DPAR_NONCONVEX_TOL_FEAS
	timality tolerance used by the nonconvex optimizer.
E.1.15	Feasibility repair parameters.
Tol	EDPAR_FEASREPAIR_TOL
E.1.16	Optimization system parameters.
	ers defining the overall solver system environment. This includes system and platform aformation and behavior.
Cor	atrols whether the solution information items are automatically updated after an imization is performed.
	TIPAR_CACHE_LICENSE
	C_IPAR_CACHE_SIZE_L1
	CIPAR_CACHE_SIZE_L2
	z_IPAR_CPU_TYPE
Cor pos	atrols the number of threads employed by the interior-point optimizer. If set to a itive number MOSEK will use this number of threads. If zero the number of threads d will equal the number of cores detected on the machine.

• MSK_IPAR_LICENSE_CACHE_TIME
• MSK_IPAR_LICENSE_CHECK_TIME
• MSK_IPAR_LICENSE_WAIT
• MSK_IPAR_LOG_STORAGE
• MSK_IPAR_TIMING_LEVEL
E.1.17 Output information parameters.
• MSK_IPAR_INFEAS_REPORT_LEVEL
• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
• MSK_IPAR_LOG
• MSK_IPAR_LOG_BI
• MSK_IPAR_LOG_BI_FREQ
• MSK_IPAR_LOG_CUT_SECOND_OPT
• MSK_IPAR_LOG_FACTOR
• MSK_IPAR_LOG_FEASREPAIR
• MSK_IPAR_LOG_FILE

E.1.	PARAMETER GROUPS 253
•	MSK_IPAR_LOG_HEAD
•	MSK_IPAR_LOG_INFEAS_ANA
•	MSK_IPAR_LOG_INTPNT326 Controls the amount of log information from the interior-point optimizers.
•	MSK_IPAR_LOG_MIO
•	MSK_IPAR_LOG_MIO_FREQ. 326 The mixed-integer solver logging frequency.
•	MSK_IPAR_LOG_NONCONVEX
•	MSK_IPAR_LOG_OPTIMIZER
•	MSK_IPAR_LOG_ORDER
•	MSK_IPAR_LOG_PARAM
•	MSK_IPAR_LOG_RESPONSE
•	MSK_IPAR_LOG_SENSITIVITY
•	MSK_IPAR_LOG_SENSITIVITY_OPT
•	MSK_IPAR_LOG_SIM
•	MSK_IPAR_LOG_SIM_FREQ

Currently not in use.

• MSK_IPAR_LOG_SIM_NETWORK_FREQ
• MSK_IPAR_LOG_STORAGE
• MSK_IPAR_MAX_NUM_WARNINGS
• MSK_IPAR_WARNING_LEVEL
E.1.18 Extra information about the optimization problem.
• MSK_IPAR_OBJECTIVE_SENSE
E.1.19 Overall solver parameters.
• MSK_IPAR_BI_CLEAN_OPTIMIZER
• MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS
• MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX
• MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX
• MSK_IPAR_CONCURRENT_PRIORITY_INTPNT
• MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX
• MSK_IPAR_DATA_CHECK

• MSK_IPAR_FEASREPAIR_OPTIMIZE31: Controls which type of feasibility analysis is to be performed.	3
• MSK_IPAR_INFEAS_PREFER_PRIMAL	
• MSK_IPAR_LICENSE_WAIT	2
• MSK_IPAR_MIO_CONT_SOL	2
• MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER	5
• MSK_IPAR_MIO_MODE	6
• MSK_IPAR_OPTIMIZER	3
• MSK_IPAR_PRESOLVE_LEVEL	5
• MSK_IPAR_PRESOLVE_USE	6
• MSK_IPAR_SENSITIVITY_OPTIMIZER	4
• MSK_IPAR_SENSITIVITY_TYPE	5
• MSK_IPAR_SOLUTION_CALLBACK	7
E.1.20 Behavior of the optimization task.	
Parameters defining the behavior of an optimization task when loading data.	
• MSK_IPAR_ALLOC_ADD_QNZ	5
• MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL	9

• MSK_IPAR_READ_ADD_ANZ	. 347
• MSK_IPAR_READ_ADD_CON	. 347
• MSK_IPAR_READ_ADD_CONE	.348
• MSK_IPAR_READ_ADD_QNZ	. 348
• MSK_IPAR_READ_ADD_VAR	. 348
• MSK_IPAR_READ_ANZ	. 348
• MSK_IPAR_READ_CON	. 349
MSK_IPAR_READ_CONE Controls the expected number of conic constraints.	. 349
• MSK_IPAR_READ_QNZ	. 353
• MSK_IPAR_READ_TASK_IGNORE_PARAM	. 354
• MSK_IPAR_READ_VAR	. 354
• MSK_IPAR_WRITE_TASK_INC_SOL	. 376
E.1.21 Data input/output parameters.	
Parameters defining the behavior of data readers and writers.	
• MSK_SPAR_BAS_SOL_FILE_NAME	378
• MSK_SPAR_DATA_FILE_NAME	378

• MSK_IPAR_INFEAS_REPORT_AUTO	14
• MSK_SPAR_INT_SOL_FILE_NAME	7 9
• MSK_SPAR_ITR_SOL_FILE_NAME	7 9
• MSK_IPAR_LOG_FILE	25
• MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS	
• MSK_IPAR_OPF_MAX_TERMS_PER_LINE	
• MSK_IPAR_OPF_WRITE_HEADER	41
• MSK_IPAR_OPF_WRITE_HINTS	41
• MSK_IPAR_OPF_WRITE_PARAMETERS	41
• MSK_IPAR_OPF_WRITE_PROBLEM	42
• MSK_IPAR_OPF_WRITE_SOL_BAS	42
• MSK_IPAR_OPF_WRITE_SOL_ITG	42
• MSK_IPAR_OPF_WRITE_SOL_ITR	43
• MSK_IPAR_OPF_WRITE_SOLUTIONS	43

•	MSK_SPAR_PARAM_COMMENT_SIGN	379
•	MSK_IPAR_PARAM_READ_CASE_NAME	344
•	MSK_SPAR_PARAM_READ_FILE_NAME	380
•	MSK_IPAR_PARAM_READ_IGN_ERROR	344
•	MSK_SPAR_PARAM_WRITE_FILE_NAME The parameter database is written to this file.	380
•	MSK_IPAR_READ_ADD_ANZ	347
•	MSK_IPAR_READ_ADD_CON. Additional number of constraints that is made room for in the problem.	347
•	MSK_IPAR_READ_ADD_CONE	348
•	MSK_IPAR_READ_ADD_QNZ Controls how the quadratic matrixes are extended.	348
•	MSK_IPAR_READ_ADD_VAR	348
•	MSK_IPAR_READ_ANZ Controls the expected number of constraint non-zeros.	348
•	MSK_IPAR_READ_CON	349
•	MSK_IPAR_READ_CONE	349
•	MSK_IPAR_READ_DATA_COMPRESSED	349
•	MSK_IPAR_READ_DATA_FORMAT Format of the data file to be read.	350
•	MSK_IPAR_READ_KEEP_FREE_CON	350

• MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU	350
• MSK_IPAR_READ_LP_QUOTED_NAMES. If a name is in quotes when reading an LP file, the quotes will be removed.	351
• MSK_SPAR_READ_MPS_BOU_NAME	
• MSK_IPAR_READ_MPS_FORMAT	351
• MSK_IPAR_READ_MPS_KEEP_INT	352
• MSK_SPAR_READ_MPS_OBJ_NAME	380
• MSK_IPAR_READ_MPS_OBJ_SENSE	352
• MSK_IPAR_READ_MPS_QUOTED_NAMES	352
• MSK_SPAR_READ_MPS_RAN_NAME	
• MSK_IPAR_READ_MPS_RELAX	352
• MSK_SPAR_READ_MPS_RHS_NAME	
• MSK_IPAR_READ_MPS_WIDTH	
• MSK_IPAR_READ_Q_MODE	353
• MSK_IPAR_READ_QNZ Controls the expected number of quadratic non-zeros.	353
• MSK_IPAR_READ_TASK_IGNORE_PARAM	354

•	MSK_IPAR_READ_VAR Controls the expected number of variables.	. 354
•	MSK_SPAR_SOL_FILTER_XC_LOW	. 381
•	MSK_SPAR_SOL_FILTER_XC_UPR	. 382
•	MSK_SPAR_SOL_FILTER_XX_LOW	. 382
•	MSK_SPAR_SOL_FILTER_XX_UPR	. 382
•	MSK_IPAR_SOL_QUOTED_NAMES	. 366
•	MSK_IPAR_SOL_READ_NAME_WIDTH	.367
•	MSK_IPAR_SOL_READ_WIDTH	. 367
•	MSK_SPAR_STAT_FILE_NAME	. 383
•	MSK_SPAR_STAT_KEY	. 383
•	MSK_SPAR_STAT_NAME	. 383
•	MSK_IPAR_WRITE_BAS_CONSTRAINTS	. 368
•	MSK_IPAR_WRITE_BAS_HEAD	. 368
•	MSK_IPAR_WRITE_BAS_VARIABLES	. 369
•	MSK_IPAR_WRITE_DATA_COMPRESSED	. 369
•	MSK_IPAR_WRITE_DATA_FORMAT	. 369

Controls the output MPS file format.

• MSK_IPAR_WRITE_PRECISION
• MSK_IPAR_WRITE_SOL_CONSTRAINTS
• MSK_IPAR_WRITE_SOL_HEAD
• MSK_IPAR_WRITE_SOL_VARIABLES
• MSK_IPAR_WRITE_TASK_INC_SOL
• MSK_IPAR_WRITE_XML_MODE
E.1.22 Analysis parameters.
Parameters controling the behaviour of the problem and solution analyzers.
• MSK_IPAR_ANA_SOL_BASIS
• MSK_DPAR_ANA_SOL_INFEAS_TOL
• MSK_IPAR_ANA_SOL_PRINT_VIOLATED
E.1.23 Solution input/output parameters.
Parameters defining the behavior of solution reader and writer.
• MSK_SPAR_BAS_SOL_FILE_NAME
• MSK_IPAR_INFEAS_REPORT_AUTO
• MSK_SPAR_INT_SOL_FILE_NAME

E.1.	PARAMETER GROUPS	263
•	MSK_SPAR_ITR_SOL_FILE_NAME. Name of the itr solution file.	379
•	MSK_IPAR_SOL_FILTER_KEEP_BASIC	366
•	MSK_IPAR_SOL_FILTER_KEEP_RANGED	366
•	MSK_SPAR_SOL_FILTER_XC_LOW	381
•	MSK_SPAR_SOL_FILTER_XC_UPR	382
•	MSK_SPAR_SOL_FILTER_XX_LOW	382
•	MSK_SPAR_SOL_FILTER_XX_UPR	382
•	MSK_IPAR_SOL_QUOTED_NAMES	366
•	MSK_IPAR_SOL_READ_NAME_WIDTH. Controls the input solution file format.	367
•	MSK_IPAR_SOL_READ_WIDTH	367
•	MSK_IPAR_WRITE_BAS_CONSTRAINTS	368
•	MSK_IPAR_WRITE_BAS_HEAD	368
•	MSK_IPAR_WRITE_BAS_VARIABLES	369
•	MSK_IPAR_WRITE_INT_CONSTRAINTS Controls the integer solution file format.	371
•	MSK_IPAR_WRITE_INT_HEAD	371
•	MSK_IPAR_WRITE_INT_VARIABLES	372

• MSK_IPAR_WRITE_SOL_CONSTRAINTS	375
• MSK_IPAR_WRITE_SOL_HEAD	375
• MSK_IPAR_WRITE_SOL_VARIABLES	375
E.1.24 Infeasibility report parameters.	
• MSK_IPAR_INFEAS_GENERIC_NAMES	313
• MSK_IPAR_INFEAS_REPORT_LEVEL	314
• MSK_IPAR_LOG_INFEAS_ANA Controls log level for the infeasibility analyzer.	325
E.1.25 License manager parameters.	
• MSK_IPAR_LICENSE_ALLOW_OVERUSE	320
• MSK_IPAR_LICENSE_CACHE_TIME Setting this parameter no longer has any effect.	320
• MSK_IPAR_LICENSE_CHECK_TIME. Controls the license manager client behavior.	320
• MSK_IPAR_LICENSE_DEBUG	321
• MSK_IPAR_LICENSE_PAUSE_TIME. Controls license manager client behavior.	321
• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS	321
MSK_IPAR_LICENSE_WAIT Controls if MOSEK should queue for a license if none is available.	322

E.1.26 Data check parameters.

These parameters defines data checking settings and problem data tolerances, i.e. which values are rounded to 0 or infinity, and which values are large or small enough to produce a warning.

• MSK_IPAR_CHECK_CONVEXITY
• MSK_IPAR_CHECK_TASK_DATA
• MSK_DPAR_DATA_TOL_AIJ
• MSK_DPAR_DATA_TOL_AIJ_HUGE
• MSK_DPAR_DATA_TOL_AIJ_LARGE
• MSK_DPAR_DATA_TOL_BOUND_INF
• MSK_DPAR_DATA_TOL_BOUND_WRN
• MSK_DPAR_DATA_TOL_C_HUGE
• MSK_DPAR_DATA_TOL_CJ_LARGE
• MSK_DPAR_DATA_TOL_QIJ
• MSK_DPAR_DATA_TOL_X
• MSK_IPAR_LOG_CHECK_CONVEXITY
If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also shown

E.1.27 Debugging parameters.

These parameters defines that can be used when debugging a problem.

•	MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
	Controls whether the elements in each column of A are sorted before an optimization is performed.
•	MSK_IPAR_CHECK_TASK_DATA
E.2	Double parameters
•	MSK_DPAR_ANA_SOL_INFEAS_TOL
•	MSK_DPAR_BASIS_REL_TOL_S
•	MSK_DPAR_BASIS_TOL_S
•	MSK_DPAR_BASIS_TOL_X
•	MSK_DPAR_CALLBACK_FREQ
•	MSK_DPAR_CHECK_CONVEXITY_REL_TOL
•	MSK_DPAR_DATA_TOL_AIJ
•	MSK_DPAR_DATA_TOL_AIJ_HUGE
•	MSK_DPAR_DATA_TOL_AIJ_LARGE
•	MSK_DPAR_DATA_TOL_BOUND_INF

• MSK_DPAR_DATA_TOL_BOUND_WRN
• MSK_DPAR_DATA_TOL_C_HUGE
• MSK_DPAR_DATA_TOL_CJ_LARGE
• MSK_DPAR_DATA_TOL_QIJ
• MSK_DPAR_DATA_TOL_X
• MSK_DPAR_FEASREPAIR_TOL
• MSK_DPAR_INTPNT_CO_TOL_DFEAS
• MSK_DPAR_INTPNT_CO_TOL_INFEAS
• MSK_DPAR_INTPNT_CO_TOL_MU_RED
• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
• MSK_DPAR_INTPNT_CO_TOL_PFEAS
• MSK_DPAR_INTPNT_CO_TOL_REL_GAP
• MSK_DPAR_INTPNT_NL_MERIT_BAL
• MSK_DPAR_INTPNT_NL_TOL_DFEAS
• MSK_DPAR_INTPNT_NL_TOL_MU_RED

•	MSK_DPAR_INTPNT_NL_TOL_NEAR_REL	278
•	MSK_DPAR_INTPNT_NL_TOL_PFEAS	278
•	MSK_DPAR_INTPNT_NL_TOL_REL_GAP	279
•	MSK_DPAR_INTPNT_NL_TOL_REL_STEP	279
•	MSK_DPAR_INTPNT_TOL_DFEAS Dual feasibility tolerance used for linear and quadratic optimization problems.	279
•	MSK_DPAR_INTPNT_TOL_DSAFE Controls the interior-point dual starting point.	279
•	MSK_DPAR_INTPNT_TOL_INFEAS. Nonlinear solver infeasibility tolerance parameter.	280
•	MSK_DPAR_INTPNT_TOL_MU_RED	280
•	MSK_DPAR_INTPNT_TOL_PATH	280
•	MSK_DPAR_INTPNT_TOL_PFEAS Primal feasibility tolerance used for linear and quadratic optimization problems.	281
•	MSK_DPAR_INTPNT_TOL_PSAFE Controls the interior-point primal starting point.	281
•	MSK_DPAR_INTPNT_TOL_REL_GAP	281
•	MSK_DPAR_INTPNT_TOL_REL_STEP. Relative step size to the boundary for linear and quadratic optimization problems.	. 281
•	MSK_DPAR_INTPNT_TOL_STEP_SIZE. If the step size falls below the value of this parameter, then the interior-point optim assumes that it is stalled. It it does not not make any progress.	
•	MSK_DPAR_LOWER_OBJ_CUT. Objective bound.	.282

• MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH	. 282
• MSK_DPAR_MIO_DISABLE_TERM_TIME	
• MSK_DPAR_MIO_HEURISTIC_TIME Time limit for the mixed-integer heuristics.	. 283
• MSK_DPAR_MIO_MAX_TIME. Time limit for the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_MAX_TIME_APRX_OPT. Time limit for the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_NEAR_TOL_ABS_GAP. Relaxed absolute optimality tolerance employed by the mixed-integer optimizer.	. 284
• MSK_DPAR_MIO_NEAR_TOL_REL_GAP. The mixed-integer optimizer is terminated when this tolerance is satisfied.	. 285
• MSK_DPAR_MIO_REL_ADD_CUT_LIMITED	285
• MSK DPAR MIO_REL_GAP_CONST	
• MSK_DPAR_MIO_TOL_ABS_GAP. Absolute optimality tolerance employed by the mixed-integer optimizer.	.286
• MSK_DPAR_MIO_TOL_ABS_RELAX_INT. Integer constraint tolerance.	. 286
• MSK_DPAR_MIO_TOL_FEAS Feasibility tolerance for mixed integer solver. Any solution with maximum infeasible below this value will be considered feasible.	
• MSK_DPAR_MIO_TOL_REL_GAP	.287
• MSK_DPAR_MIO_TOL_REL_RELAX_INT. Integer constraint tolerance.	. 287

• MSK_DPAR_MIO_TOL_X	287
• MSK_DPAR_NONCONVEX_TOL_FEAS	287
• MSK_DPAR_NONCONVEX_TOL_OPT	288
• MSK_DPAR_OPTIMIZER_MAX_TIME. Solver time limit.	288
• MSK_DPAR_PRESOLVE_TOL_AIJ	288
• MSK_DPAR_PRESOLVE_TOL_LIN_DEP. Controls when a constraint is determined to be linearly dependent.	289
• MSK_DPAR_PRESOLVE_TOL_S	289
• MSK_DPAR_PRESOLVE_TOL_X	289
• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL	
• MSK DPAR SIM LU TOL REL PIV	
• MSK_DPAR_SIMPLEX_ABS_TOL_PIV	290
• MSK_DPAR_UPPER_OBJ_CUT. Objective bound.	290
• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH	291
• ana_sol_infeas_tol	
Corresponding constant: MSK_DPAR_ANA_SOL_INFEAS_TOL	

Description:

If a constraint violates its bound with an amount larger than this value, the constraint name, index and violation will be printed by the solution analyzer.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

+1e-8

• basis_rel_tol_s

Corresponding constant:

MSK_DPAR_BASIS_REL_TOL_S

Description:

Maximum relative dual bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-12

• basis_tol_s

Corresponding constant:

MSK_DPAR_BASIS_TOL_S

Description:

Maximum absolute dual bound violation in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and +inf.

Default value:

1.0e-6

• basis_tol_x

Corresponding constant:

MSK_DPAR_BASIS_TOL_X

Description:

Maximum absolute primal bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and $+\inf$.

Default value:

1.0e-6

• callback_freq

Corresponding constant:

MSK_DPAR_CALLBACK_FREQ

Description:

Controls the time between calls to the progress call-back function. Hence, if the value of this parameter is for example 10, then the call-back is called approximately each 10 seconds. A negative value is equivalent to infinity.

In general frequent call-backs may hurt the performance.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1.0

• check_convexity_rel_tol

Corresponding constant:

MSK_DPAR_CHECK_CONVEXITY_REL_TOL

Description:

This parameter controls when the full convexity check declares a problem to be non-convex. Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the cholesky factor of a matrix which is required to be PSD (NSD). This parameter controles how much this non-negativity requirement may be violated.

If d_i is the pivot element for column i, then the matrix Q is considered to not be PSD if:

$$d_i \leq -|Q_{ii}| * check_convexity_rel_tol$$

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1e-10

• data_tol_aij

Corresponding constant:

MSK_DPAR_DATA_TOL_AIJ

Description:

Absolute zero tolerance for elements in A. If any value A_{ij} is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate a warning.

Possible Values:

Any number between 1.0e-16 and 1.0e-6.

Default value:

1.0e-12

• data_tol_aij_huge

Corresponding constant:

MSK_DPAR_DATA_TOL_AIJ_HUGE

Description:

An element in A which is larger than this value in absolute size causes an error.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e20

• data_tol_aij_large

Corresponding constant:

MSK_DPAR_DATA_TOL_AIJ_LARGE

Description:

An element in A which is larger than this value in absolute size causes a warning message to be printed.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e10

• data_tol_bound_inf

Corresponding constant:

MSK_DPAR_DATA_TOL_BOUND_INF

Description:

Any bound which in absolute value is greater than this parameter is considered infinite.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e16

• data_tol_bound_wrn

Corresponding constant:

MSK_DPAR_DATA_TOL_BOUND_WRN

Description:

If a bound value is larger than this value in absolute size, then a warning message is issued.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e8

• data_tol_c_huge

Corresponding constant:

MSK_DPAR_DATA_TOL_C_HUGE

Description:

An element in c which is larger than the value of this parameter in absolute terms is considered to be huge and generates an error.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e16

• data_tol_cj_large

Corresponding constant:

MSK_DPAR_DATA_TOL_CJ_LARGE

Description:

An element in c which is larger than this value in absolute terms causes a warning message to be printed.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e8

• data_tol_qij

Corresponding constant:

MSK_DPAR_DATA_TOL_QIJ

Description:

Absolute zero tolerance for elements in Q matrices.

Any number between 0.0 and $+\inf$.

Default value:

1.0e-16

• data_tol_x

Corresponding constant:

MSK_DPAR_DATA_TOL_X

Description:

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less than this value, then the lower and lower bound is considered identical.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-8

• feasrepair_tol

Corresponding constant:

MSK_DPAR_FEASREPAIR_TOL

Description:

Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

Possible Values:

Any number between 1.0e-16 and 1.0e+16.

Default value:

1.0e-10

• intpnt_co_tol_dfeas

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_DFEAS

Description:

Dual feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL Optimality tolerance for the conic solver.

• intpnt_co_tol_infeas

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Description:

Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

• intpnt_co_tol_mu_red

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_MU_RED

Description:

Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

intpnt_co_tol_near_rel

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Description:

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the termination tolerances with value of this parameter. If the solution then satisfies the termination criteria, then the solution is denoted near optimal, near feasible and so forth.

Possible Values:

Any number between 1.0 and $+\inf$.

Default value:

100

• intpnt_co_tol_pfeas

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_PFEAS

Description:

Primal feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL Optimality tolerance for the conic solver.

• intpnt_co_tol_rel_gap

Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Description:

Relative gap termination tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL Optimality tolerance for the conic solver.

• intpnt_nl_merit_bal

Corresponding constant:

MSK_DPAR_INTPNT_NL_MERIT_BAL

Description:

Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Possible Values:

Any number between 0.0 and 0.99.

Default value:

1.0e-4

• intpnt_nl_tol_dfeas

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_DFEAS

Description:

Dual feasibility tolerance used when a nonlinear model is solved.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

• intpnt_nl_tol_mu_red

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_MU_RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-12

• intpnt_nl_tol_near_rel

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

Description:

If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the prescribed accuracy, then it will multiply the termination tolerances with value of this parameter. If the solution then satisfies the termination criteria, then the solution is denoted near optimal, near feasible and so forth.

Possible Values:

Any number between 1.0 and $+\inf$.

Default value:

1000.0

• intpnt_nl_tol_pfeas

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_PFEAS

Description:

Primal feasibility tolerance used when a nonlinear model is solved.

Any number between 0.0 and 1.0.

Default value:

1.0e-8

• intpnt_nl_tol_rel_gap

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_REL_GAP

Description:

Relative gap termination tolerance for nonlinear problems.

Possible Values:

Any number between 1.0e-14 and $+\inf$.

Default value:

1.0e-6

• intpnt_nl_tol_rel_step

Corresponding constant:

MSK_DPAR_INTPNT_NL_TOL_REL_STEP

Description:

Relative step size to the boundary for general nonlinear optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.9999999.

Default value:

0.995

• intpnt_tol_dfeas

Corresponding constant:

MSK_DPAR_INTPNT_TOL_DFEAS

Description:

Dual feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

• intpnt_tol_dsafe

Corresponding constant:

MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly.

Possible Values:

Any number between 1.0e-4 and +inf.

Default value:

1.0

• intpnt_tol_infeas

Corresponding constant:

MSK_DPAR_INTPNT_TOL_INFEAS

Description:

Controls when the optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

• intpnt_tol_mu_red

Corresponding constant:

MSK_DPAR_INTPNT_TOL_MU_RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-16

• intpnt_tol_path

Corresponding constant:

MSK_DPAR_INTPNT_TOL_PATH

Description:

Controls how close the interior-point optimizer follows the central path. A large value of this parameter means the central is followed very closely. On numerical unstable problems it may be worthwhile to increase this parameter.

Any number between 0.0 and 0.9999.

Default value:

1.0e-8

• intpnt_tol_pfeas

Corresponding constant:

MSK_DPAR_INTPNT_TOL_PFEAS

Description:

Primal feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

intpnt_tol_psafe

Corresponding constant:

MSK_DPAR_INTPNT_TOL_PSAFE

Description:

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be worthwhile to increase this value.

Possible Values:

Any number between 1.0e-4 and $+\inf$.

Default value:

1.0

• intpnt_tol_rel_gap

Corresponding constant:

MSK_DPAR_INTPNT_TOL_REL_GAP

Description:

Relative gap termination tolerance.

Possible Values:

Any number between 1.0e-14 and $+\inf$.

Default value:

1.0e-8

• intpnt_tol_rel_step

Corresponding constant:

MSK_DPAR_INTPNT_TOL_REL_STEP

Description:

Relative step size to the boundary for linear and quadratic optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.999999.

Default value:

0.9999

• intpnt_tol_step_size

Corresponding constant:

MSK_DPAR_INTPNT_TOL_STEP_SIZE

Description:

If the step size falls below the value of this parameter, then the interior-point optimizer assumes that it is stalled. It it does not not make any progress.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-10

lower_obj_cut

Corresponding constant:

MSK_DPAR_LOWER_OBJ_CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value is outside, the interval [MSK_DPAR_LOWER_OBJ_CUT, MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is terminated.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1.0e30

See also:

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH Objective bound.

• lower_obj_cut_finite_trh

Corresponding constant:

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value, then the lower objective cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as $-\infty$.

Possible Values:

Any number between -inf and +inf.

Default value:

-0.5e30

• mio_disable_term_time

Corresponding constant:

MSK_DPAR_MIO_DISABLE_TERM_TIME

Description:

The termination criteria governed by

- MSK_IPAR_MIO_MAX_NUM_RELAXS
- MSK_IPAR_MIO_MAX_NUM_BRANCHES
- MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
- MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled the first n seconds. This parameter specifies the number n. A negative value is identical to infinity i.e. the termination criteria are never checked.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

See also:

- MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations in branch and bound search.
- MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed during the branch and bound search.
- MSK_DPAR_MIO_NEAR_TOL_ABS_GAP Relaxed absolute optimality tolerance employed by the mixed-integer optimizer.
- MSK_DPAR_MIO_NEAR_TOL_REL_GAP The mixed-integer optimizer is terminated when this tolerance is satisfied.
- mio_heuristic_time

Corresponding constant:

MSK_DPAR_MIO_HEURISTIC_TIME

Minimum amount of time to be used in the heuristic search for a good feasible integer solution. A negative values implies that the optimizer decides the amount of time to be spent in the heuristic.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

• mio_max_time

Corresponding constant:

MSK_DPAR_MIO_MAX_TIME

Description:

This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number means infinity.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1.0

• mio_max_time_aprx_opt

Corresponding constant:

MSK DPAR MIO MAX TIME APRX OPT

Description:

Number of seconds spent by the mixed-integer optimizer before the MSK_DPAR_MIO_TOL_REL_RELAX_INT is applied.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

60

• mio_near_tol_abs_gap

Corresponding constant:

MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

Description:

Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termination criteria is delayed. See MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

Any number between 0.0 and $+\inf$.

Default value:

0.0

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-integer optimizer for period time specified by the parameter.

• mio_near_tol_rel_gap

Corresponding constant:

MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Description:

The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination criteria is delayed. See MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-3

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-integer optimizer for period time specified by the parameter.

mio_rel_add_cut_limited

Corresponding constant:

MSK_DPAR_MIO_REL_ADD_CUT_LIMITED

Description:

Controls how many cuts the mixed-integer optimizer is allowed to add to the problem. Let α be the value of this parameter and m the number constraints, then mixed-integer optimizer is allowed to αm cuts.

Possible Values:

Any number between 0.0 and 2.0.

Default value:

0.75

• mio_rel_gap_const

Corresponding constant:

MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to an integer optimization problem.

Possible Values:

Any number between 1.0e-15 and $+\inf$.

Default value:

1.0e-10

• mio_tol_abs_gap

Corresponding constant:

MSK_DPAR_MIO_TOL_ABS_GAP

Description:

Absolute optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

0.0

• mio_tol_abs_relax_int

Corresponding constant:

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Description:

Absolute relaxation tolerance of the integer constraints. I.e. $\min(|x|-\lfloor x\rfloor, \lceil x\rceil-|x|)$ is less than the tolerance then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-5

• mio_tol_feas

Corresponding constant:

MSK_DPAR_MIO_TOL_FEAS

Description:

Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below this value will be considered feasible.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-7

• mio_tol_rel_gap

Corresponding constant:

MSK_DPAR_MIO_TOL_REL_GAP

Description:

Relative optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-4

mio_tol_rel_relax_int

Corresponding constant:

MSK_DPAR_MIO_TOL_REL_RELAX_INT

Description:

Relative relaxation tolerance of the integer constraints. I.e $(\min(|x|-\lfloor x\rfloor,\lceil x\rceil-|x|))$ is less than the tolerance times |x| then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

• mio_tol_x

Corresponding constant:

MSK_DPAR_MIO_TOL_X

Description:

Absolute solution tolerance used in mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

• nonconvex_tol_feas

Corresponding constant:

MSK_DPAR_NONCONVEX_TOL_FEAS

Feasibility tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

• nonconvex_tol_opt

Corresponding constant:

MSK_DPAR_NONCONVEX_TOL_OPT

Description:

Optimality tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-7

• optimizer_max_time

Corresponding constant:

MSK_DPAR_OPTIMIZER_MAX_TIME

Description:

Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number means infinity.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

• presolve_tol_aij

Corresponding constant:

MSK_DPAR_PRESOLVE_TOL_AIJ

Description:

Absolute zero tolerance employed for a_{ij} in the presolve.

Possible Values:

Any number between 1.0e-15 and $+\inf$.

Default value:

1.0e-12

• presolve_tol_lin_dep

Corresponding constant:

MSK_DPAR_PRESOLVE_TOL_LIN_DEP

Description:

Controls when a constraint is determined to be linearly dependent.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-6

• presolve_tol_s

Corresponding constant:

MSK_DPAR_PRESOLVE_TOL_S

Description:

Absolute zero tolerance employed for s_i in the presolve.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-8

• presolve_tol_x

Corresponding constant:

MSK_DPAR_PRESOLVE_TOL_X

Description:

Absolute zero tolerance employed for x_i in the presolve.

Possible Values:

Any number between 0.0 and $+\inf$.

Default value:

1.0e-8

• qcqo_reformulate_rel_drop_tol

Corresponding constant:

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

Description:

This parameter determines when columns are dropped in incomplete cholesky factorization doing reformulation of quadratic problems.

Any number between 0 and +inf.

Default value:

1e-15

• sim_lu_tol_rel_piv

Corresponding constant:

MSK_DPAR_SIM_LU_TOL_REL_PIV

Description:

Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase in the computational work.

Possible Values:

Any number between 1.0e-6 and 0.999999.

Default value:

0.01

• simplex_abs_tol_piv

Corresponding constant:

MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Description:

Absolute pivot tolerance employed by the simplex optimizers.

Possible Values:

Any number between 1.0e-12 and +inf.

Default value:

1.0e-7

• upper_obj_cut

Corresponding constant:

MSK_DPAR_UPPER_OBJ_CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value is outside, [MSK_DPAR_LOWER_OBJ_CUT, MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is terminated.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value: 1.0e30	
See also:	
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH Objective bound.	
• upper_obj_cut_finite_trh	
Corresponding constant: MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH	
Description: If the upper objective cut is greater than the value of this value parameter, the the upper objective cut $MSK_DPAR_UPPER_OBJ_CUT$ is treated as ∞ .	then
Possible Values: Any number between -inf and +inf.	
Default value: 0.5e30	
E.3 Integer parameters	
• MSK_IPAR_ALLOC_ADD_QNZ Controls how the quadratic matrixes are extended.	305
• MSK_IPAR_ANA_SOL_BASIS	305
• MSK_IPAR_ANA_SOL_PRINT_VIOLATED	. 306
• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT	
• MSK_IPAR_AUTO_UPDATE_SOL_INFO. Controls whether the solution information items are automatically updated after optimization is performed.	
• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE	
• MSK TPAR BT CLEAN OPTIMIZER.	307

Controls which simplex optimizer is used in the clean-up phase.

• MSK_IPAR_BI_IGNORE_MAX_ITER	
• MSK_IPAR_BI_IGNORE_NUM_ERROR	
• MSK_IPAR_BI_MAX_ITERATIONS	8
• MSK_IPAR_CACHE_LICENSE	9
• MSK_IPAR_CACHE_SIZE_L1	9
• MSK_IPAR_CACHE_SIZE_L230 Specifies the size of the level 2 cache of the processor.	9
• MSK_IPAR_CHECK_CONVEXITY	0
• MSK_IPAR_CHECK_TASK_DATA	
• MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS	
• MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX	
• MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX	
• MSK_IPAR_CONCURRENT_PRIORITY_INTPNT	
• MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX	

MSK_IPAR_CPU_TYPE31 Specifies the CPU type.	12
MSK_IPAR_DATA_CHECK	12
MSK_IPAR_FEASREPAIR_OPTIMIZE	13
MSK_IPAR_INFEAS_GENERIC_NAMES	13
MSK_IPAR_INFEAS_PREFER_PRIMAL	
MSK_IPAR_INFEAS_REPORT_AUTO	14
MSK_IPAR_INFEAS_REPORT_LEVEL	14
MSK_IPAR_INTPNT_BASIS	14
MSK_IPAR_INTPNT_DIFF_STEP	15
MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL	15
MSK_IPAR_INTPNT_FACTOR_METHOD	16
MSK_IPAR_INTPNT_MAX_ITERATIONS	16
MSK_IPAR_INTPNT_MAX_NUM_COR	16
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS	16
MSK_IPAR_INTPNT_NUM_THREADS	a

•	MSK_IPAR_INTPNT_OFF_COL_TRH. Controls the aggressiveness of the offending column detection.	. 317
•	MSK_IPAR_INTPNT_ORDER_METHOD Controls the ordering strategy.	. 317
•	MSK_IPAR_INTPNT_REGULARIZATION_USE Controls whether regularization is allowed.	. 318
•	MSK_IPAR_INTPNT_SCALING	318
•	MSK_IPAR_INTPNT_SOLVE_FORM	319
•	MSK_IPAR_INTPNT_STARTING_POINT	319
•	MSK_IPAR_LIC_TRH_EXPIRY_WRN	319
•	MSK_IPAR_LICENSE_ALLOW_OVERUSE	320
•	MSK_IPAR_LICENSE_CACHE_TIME. Setting this parameter no longer has any effect.	320
•	MSK_IPAR_LICENSE_CHECK_TIME. Controls the license manager client behavior.	320
•	MSK_IPAR_LICENSE_DEBUG Controls the license manager client debugging behavior.	. 321
•	MSK_IPAR_LICENSE_PAUSE_TIME. Controls license manager client behavior.	321
•	MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS	321
•	MSK_IPAR_LICENSE_WAIT	. 322
•	MSK_IPAR_LOG Controls the amount of log information.	322

• MSK_IPAR_LOG_BI	
• MSK_IPAR_LOG_BI_FREQ	23
• MSK_IPAR_LOG_CHECK_CONVEXITY	
If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) the a list of negative (positive) pivot elements is printed. The absolute value of the pivelements is also shown.	
• MSK_IPAR_LOG_CONCURRENT	23
• MSK_IPAR_LOG_CUT_SECOND_OPT	
• MSK_IPAR_LOG_FACTOR	24
• MSK_IPAR_LOG_FEASREPAIR	24
• MSK_IPAR_LOG_FILE	25
• MSK_IPAR_LOG_HEAD	25
If turned on, then a header line is added to the log.	
• MSK_IPAR_LOG_INFEAS_ANA	25
• MSK_IPAR_LOG_INTPNT	26
• MSK_IPAR_LOG_MIO	26
• MSK_IPAR_LOG_MIO_FREQ	26
• MSK_IPAR_LOG_NONCONVEX	26

•	MSK_IPAR_LOG_OPTIMIZER
	MSK_IPAR_LOG_ORDER
•	MSK_IPAR_LOG_PARAM
•	MSK_IPAR_LOG_PRESOLVE
•	MSK_IPAR_LOG_RESPONSE
•	MSK_IPAR_LOG_SENSITIVITY
•	MSK_IPAR_LOG_SENSITIVITY_OPT
•	MSK_IPAR_LOG_SIM
•	MSK_IPAR_LOG_SIM_FREQ. 329 Controls simplex logging frequency.
•	MSK_IPAR_LOG_SIM_MINOR. 329 Currently not in use.
•	MSK_IPAR_LOG_SIM_NETWORK_FREQ
•	MSK_IPAR_LOG_STORAGE
•	MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS
•	MSK_IPAR_MAX_NUM_WARNINGS
•	MSK_IPAR_MIO_BRANCH_DIR

• MSK_IPAR_MIO_BRANCH_PRIORITIES_USE. Controls whether branching priorities are used by the mixed-integer optim	
• MSK_IPAR_MIO_CONSTRUCT_SOL	
• MSK_IPAR_MIO_CONT_SOL	
• MSK_IPAR_MIO_CUT_LEVEL_ROOT	
• MSK_IPAR_MIO_CUT_LEVEL_TREE	
• MSK_IPAR_MIO_FEASPUMP_LEVEL	
• MSK_IPAR_MIO_HEURISTIC_LEVEL	
• MSK_IPAR_MIO_HOTSTART	334
• MSK_IPAR_MIO_KEEP_BASIS	334
• MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER Controls the size of the local search space when doing local branching.	335
• MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed during the branch and bound sear	
• MSK_IPAR_MIO_MAX_NUM_RELAXS	335
• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS	
• MSK_IPAR_MIO_MODE	336

• MSK_IPAR_MIO_NODE_OPTIMIZER	
• MSK_IPAR_MIO_NODE_SELECTION	37
• MSK_IPAR_MIO_OPTIMIZER_MODE	38
• MSK_IPAR_MIO_PRESOLVE_AGGREGATE	3 8
• MSK_IPAR_MIO_PRESOLVE_PROBING	3 8
• MSK_IPAR_MIO_PRESOLVE_USE	}9
• MSK_IPAR_MIO_ROOT_OPTIMIZER	
• MSK_IPAR_MIO_STRONG_BRANCH	10
• MSK_IPAR_NONCONVEX_MAX_ITERATIONS	10
• MSK_IPAR_OBJECTIVE_SENSE	10
If the objective sense for the task is undefined, then the value of this parameter is use as the default objective sense.	
• MSK_IPAR_OPF_MAX_TERMS_PER_LINE	
• MSK_IPAR_OPF_WRITE_HEADER	‡ 1
• MSK_IPAR_OPF_WRITE_HINTS	11
• MSK_IPAR_OPF_WRITE_PARAMETERS	11

342
342
342
343
343
343
344
344
345
345
346
346

•	MSK_IPAR_READ_ADD_ANZ Controls how the constraint matrix is extended.	347
•	MSK_IPAR_READ_ADD_CON	347
•	MSK_IPAR_READ_ADD_CONE	348
•	MSK_IPAR_READ_ADD_QNZ	348
•	MSK_IPAR_READ_ADD_VAR	348
•	MSK_IPAR_READ_ANZ	348
•	MSK_IPAR_READ_CON	349
•	MSK_IPAR_READ_CONE	349
•	MSK_IPAR_READ_DATA_COMPRESSED	349
•	MSK_IPAR_READ_DATA_FORMAT Format of the data file to be read.	350
•	MSK_IPAR_READ_KEEP_FREE_CON	350
•	MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU	350
•	MSK_IPAR_READ_LP_QUOTED_NAMES. If a name is in quotes when reading an LP file, the quotes will be removed.	351
•	MSK_IPAR_READ_MPS_FORMAT	351
•	MSK_IPAR_READ_MPS_KEEP_INT	352
•	MSK_IPAR_READ_MPS_OBJ_SENSE. Controls the MPS format extensions	352

• MSK_IPAR_READ_MPS_QUOTED_NAMES	352
• MSK_IPAR_READ_MPS_RELAX	352
• MSK_IPAR_READ_MPS_WIDTH	
• MSK_IPAR_READ_Q_MODE	<mark>3</mark> 53
• MSK_IPAR_READ_QNZ	
• MSK_IPAR_READ_TASK_IGNORE_PARAM	354
• MSK_IPAR_READ_VAR	354
• MSK_IPAR_SENSITIVITY_OPTIMIZER	
• MSK_IPAR_SENSITIVITY_TYPE	355
• MSK_IPAR_SIM_BASIS_FACTOR_USE. Controls whether a (LU) factorization of the basis is used in a hot-start refactorization sometimes improves the stability of the simplex optimizers, cases there is a performance penanlty.	. Forcing a
• MSK_IPAR_SIM_DEGEN	356
• MSK_IPAR_SIM_DUAL_CRASH	356
• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD An exprimental feature.	356
• MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION	357
MSK_IPAR_SIM_DUAL_SELECTION. Controls the dual simplex strategy.	357

•	MSK_IPAR_SIM_EXPLOIT_DUPVEC. Controls if the simplex optimizers are allowed to exploit duplicated columns.	.358
•	MSK_IPAR_SIM_HOTSTART	. 358
•	MSK_IPAR_SIM_HOTSTART_LU	. 358
•	MSK_IPAR_SIM_INTEGER. An exprimental feature.	.359
•	MSK_IPAR_SIM_MAX_ITERATIONS. Maximum number of iterations that can be used by a simplex optimizer.	.359
•	MSK_IPAR_SIM_MAX_NUM_SETBACKS	.359
•	MSK_IPAR_SIM_NETWORK_DETECT. Level of aggressiveness of network detection.	.360
•	MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART Level of aggressiveness of network detection in a simplex hot-start.	. 360
•	MSK_IPAR_SIM_NETWORK_DETECT_METHOD. Controls which type of detection method the network extraction should use.	.360
•	MSK_IPAR_SIM_NON_SINGULAR. Controls if the simplex optimizer ensures a non-singular basis, if possible.	. 361
•	MSK_IPAR_SIM_PRIMAL_CRASH. Controls the simplex crash.	. 361
•	MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD	. 361
•	MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION	. 362
•	MSK_IPAR_SIM_PRIMAL_SELECTION	. 362
•	MSK_IPAR_SIM_REFACTOR_FREQ	. 363
•	MSK_IPAR_SIM_REFORMULATION	. 363

• MSK_IPAR_SIM_SAVE_LU Controls if the LU factorization stored should be replaced with the LU factorization corresponding to the initial basis.	
• MSK_IPAR_SIM_SCALING	
• MSK_IPAR_SIM_SCALING_METHOD. Controls how the problem is scaled before a simplex optimizer is used.	364
• MSK_IPAR_SIM_SOLVE_FORM	
• MSK_IPAR_SIM_STABILITY_PRIORITY	365
• MSK_IPAR_SIM_SWITCH_OPTIMIZER	365
• MSK_IPAR_SOL_FILTER_KEEP_BASIC	366
• MSK_IPAR_SOL_FILTER_KEEP_RANGED	366
• MSK_IPAR_SOL_QUOTED_NAMES	366
• MSK_IPAR_SOL_READ_NAME_WIDTH. Controls the input solution file format.	367
• MSK_IPAR_SOL_READ_WIDTH	367
• MSK_IPAR_SOLUTION_CALLBACK	
• MSK_IPAR_TIMING_LEVEL	368
• MSK_IPAR_WARNING_LEVEL	368

•	MSK_IPAR_WRITE_BAS_CONSTRAINTS	368
•	MSK_IPAR_WRITE_BAS_HEAD	368
•	MSK_IPAR_WRITE_BAS_VARIABLES	369
•	MSK_IPAR_WRITE_DATA_COMPRESSED	369
•	MSK_IPAR_WRITE_DATA_FORMAT Controls the output file format.	. 369
•	MSK_IPAR_WRITE_DATA_PARAM Controls output file data.	. 370
•	MSK_IPAR_WRITE_FREE_CON Controls the output file data.	370
•	MSK_IPAR_WRITE_GENERIC_NAMES	370
•	MSK_IPAR_WRITE_GENERIC_NAMES_IO	371
•	MSK_IPAR_WRITE_INT_CONSTRAINTS	371
•	MSK_IPAR_WRITE_INT_HEAD	371
•	MSK_IPAR_WRITE_INT_VARIABLES	372
•	MSK_IPAR_WRITE_LP_LINE_WIDTH Controls the LP output file format.	.372
•	MSK_IPAR_WRITE_LP_QUOTED_NAMES Controls LP output file format.	372
•	MSK_IPAR_WRITE_LP_STRICT_FORMAT	373
•	MSK_IPAR_WRITE_LP_TERMS_PER_LINE	373

	MSK_IPAR_WRITE_MPS_INT
•	MSK_IPAR_WRITE_MPS_OBJ_SENSE
•	MSK_IPAR_WRITE_MPS_QUOTED_NAMES
•	MSK_IPAR_WRITE_MPS_STRICT
•	MSK_IPAR_WRITE_PRECISION
•	MSK_IPAR_WRITE_SOL_CONSTRAINTS
•	MSK_IPAR_WRITE_SOL_HEAD
•	MSK_IPAR_WRITE_SOL_VARIABLES
•	MSK_IPAR_WRITE_TASK_INC_SOL
	MSK_IPAR_WRITE_XML_MODE
•	alloc_add_qnz
	Corresponding constant: MSK_IPAR_ALLOC_ADD_QNZ
	$\begin{tabular}{ll} \textbf{Description:} \\ Additional number of Q non-zeros that are allocated space for when numanz exceeds \\ \texttt{maxnumqnz} \ during \ addition \ of \ new \ Q entries. \\ \end{tabular}$
	Possible Values: Any number between 0 and +inf.
	Default value: 5000

• ana_sol_basis

Corresponding constant:

MSK_IPAR_ANA_SOL_BASIS

Description:

Controls whether the basis matrix is analyzed in solaution analyzer.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• ana_sol_print_violated

Corresponding constant:

MSK_IPAR_ANA_SOL_PRINT_VIOLATED

Description:

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• auto_sort_a_before_opt

Corresponding constant:

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Description:

Controls whether the elements in each column of A are sorted before an optimization is performed. This is not required but makes the optimization more deterministic.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• auto_update_sol_info

Corresponding constant:

MSK_IPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically updated after an optimization is performed.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• basis_solve_use_plus_one

Corresponding constant:

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

Description:

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with -1 in the right position. However, if this parameter is set to MSK_ON, -1 is replaced by 1.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• bi_clean_optimizer

Corresponding constant:

MSK_IPAR_BI_CLEAN_OPTIMIZER

Description:

Controls which simplex optimizer is used in the clean-up phase.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE The optimizer is chosen automatically.

MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX The primal dual simplex optimizer is used.

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.

MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.

MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:

MSK_OPTIMIZER_FREE

• bi_ignore_max_iter

Corresponding constant:

MSK_IPAR_BI_IGNORE_MAX_ITER

Description:

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point optimizer has terminated due to maximum number of iterations, then basis identification is performed if this parameter has the value MSK_ON.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• bi_ignore_num_error

Corresponding constant:

MSK_IPAR_BI_IGNORE_NUM_ERROR

Description:

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point optimizer has terminated due to a numerical problem, then basis identification is performed if this parameter has the value MSK_ON.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• bi_max_iterations

Corresponding constant:

MSK_IPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1000000

• cache_license

Corresponding constant:

MSK_IPAR_CACHE_LICENSE

Description:

Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or returned to the server immediately after the optimization (off).

Check-in and check-out of licenses have an overhead. Frequent communication with the license server should be avoided.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• cache_size_l1

Corresponding constant:

MSK_IPAR_CACHE_SIZE_L1

Description:

Specifies the size of the cache of the computer. This parameter is potentially very important for the efficiency on computers if MOSEK cannot determine the cache size automatically. If the cache size is negative, then MOSEK tries to determine the value automatically.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

• cache_size_12

Corresponding constant:

MSK_IPAR_CACHE_SIZE_L2

Specifies the size of the cache of the computer. This parameter is potentially very important for the efficiency on computers where MOSEK cannot determine the cache size automatically. If the cache size is negative, then MOSEK tries to determine the value automatically.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

check_convexity

Corresponding constant:

MSK_IPAR_CHECK_CONVEXITY

Description:

Specify the level of convexity check on quadratic problems

Possible values:

MSK_CHECK_CONVEXITY_SIMPLE Perform simple and fast convexity check.

MSK_CHECK_CONVEXITY_NONE No convexity check.

MSK_CHECK_CONVEXITY_FULL Perform a full convexity check.

Default value:

MSK_CHECK_CONVEXITY_FULL

check_task_data

Corresponding constant:

MSK_IPAR_CHECK_TASK_DATA

Description:

If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before an optimization is performed.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• concurrent_num_optimizers

Corresponding constant:

MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS

The maximum number of simultaneous optimizations that will be started by the concurrent optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

2

concurrent_priority_dual_simplex

Corresponding constant:

MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX

Description:

Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

2

• concurrent_priority_free_simplex

Corresponding constant:

MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX

Description:

Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

3

concurrent_priority_intpnt

Corresponding constant:

MSK_IPAR_CONCURRENT_PRIORITY_INTPNT

Description:

Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

4

• concurrent_priority_primal_simplex

Corresponding constant:

MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX

Description:

Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• cpu_type

Corresponding constant:

MSK_IPAR_CPU_TYPE

Description:

Specifies the CPU type. By default MOSEK tries to auto detect the CPU type. Therefore, we recommend to change this parameter only if the auto detection does not work properly.

Possible values:

MSK_CPU_POWERPC_G5 A G5 PowerPC CPU.

MSK_CPU_INTEL_PM An Intel PM cpu.

MSK_CPU_GENERIC An generic CPU type for the platform

MSK_CPU_UNKNOWN An unknown CPU.

MSK_CPU_AMD_OPTERON An AMD Opteron (64 bit).

MSK_CPU_INTEL_ITANIUM2 An Intel Itanium2.

MSK_CPU_AMD_ATHLON An AMD Athlon.

MSK_CPU_HP_PARISC20 An HP PA RISC version 2.0 CPU.

MSK_CPU_INTEL_P4 An Intel Pentium P4 or Intel Xeon.

MSK_CPU_INTEL_P3 An Intel Pentium P3.

 ${\tt MSK_CPU_INTEL_CORE2} \ \, {\rm An\ Intel\ CORE2\ cpu}.$

Default value:

MSK_CPU_UNKNOWN

data_check

MSK_IPAR_DATA_CHECK

Description:

If this option is turned on, then extensive data checking is enabled. It will slow down MOSEK but on the other hand help locating bugs.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• feasrepair_optimize

Corresponding constant:

MSK_IPAR_FEASREPAIR_OPTIMIZE

Description:

Controls which type of feasibility analysis is to be performed.

Possible values:

MSK_FEASREPAIR_OPTIMIZE_NONE Do not optimize the feasibility repair problem.

MSK_FEASREPAIR_OPTIMIZE_COMBINED Minimize with original objective subject to minimal weighted violation of bounds.

MSK_FEASREPAIR_OPTIMIZE_PENALTY Minimize weighted sum of violations.

Default value:

MSK_FEASREPAIR_OPTIMIZE_NONE

• infeas_generic_names

Corresponding constant:

MSK_IPAR_INFEAS_GENERIC_NAMES

Description:

Controls whether generic names are used when an infeasible subproblem is created.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• infeas_prefer_primal

MSK_IPAR_INFEAS_PREFER_PRIMAL

Description:

If both certificates of primal and dual infeasibility are supplied then only the primal is used when this option is turned on.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• infeas_report_auto

Corresponding constant:

MSK_IPAR_INFEAS_REPORT_AUTO

Description:

Controls whether an infeasibility report is automatically produced after the optimization if the problem is primal or dual infeasible.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• infeas_report_level

Corresponding constant:

MSK_IPAR_INFEAS_REPORT_LEVEL

Description:

Controls the amount of information presented in an infeasibility report. Higher values imply more information.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• intpnt_basis

Corresponding constant:

MSK_IPAR_INTPNT_BASIS

Controls whether the interior-point optimizer also computes an optimal basis.

Possible values:

MSK_BI_ALWAYS Basis identification is always performed even if the interior-point optimizer terminates abnormally.

MSK_BI_NO_ERROR Basis identification is performed if the interior-point optimizer terminates without an error.

MSK_BI_NEVER Never do basis identification.

MSK_BI_IF_FEASIBLE Basis identification is not performed if the interior-point optimizer terminates with a problem status saying that the problem is primal or dual infeasible.

MSK_BI_OTHER Try another BI method.

Default value:

MSK_BI_ALWAYS

See also:

MSK_IPAR_BI_IGNORE_MAX_ITER Turns on basis identification in case the interior-point optimizer is terminated due to maximum number of iterations.

MSK_IPAR_BI_IGNORE_NUM_ERROR Turns on basis identification in case the interior-point optimizer is terminated due to a numerical problem.

• intpnt_diff_step

Corresponding constant:

MSK_IPAR_INTPNT_DIFF_STEP

Description:

Controls whether different step sizes are allowed in the primal and dual space.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• intpnt_factor_debug_lvl

Corresponding constant:

MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL

Description:

Controls factorization debug level.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• intpnt_factor_method

Corresponding constant:

MSK_IPAR_INTPNT_FACTOR_METHOD

Description:

Controls the method used to factor the Newton equation system.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• intpnt_max_iterations

Corresponding constant:

MSK_IPAR_INTPNT_MAX_ITERATIONS

Description:

Controls the maximum number of iterations allowed in the interior-point optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

400

• intpnt_max_num_cor

Corresponding constant:

MSK_IPAR_INTPNT_MAX_NUM_COR

Description:

Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value means that MOSEK is making the choice.

Possible Values:

Any number between -1 and $+\inf$.

Default value:

-1

• intpnt_max_num_refinement_steps

MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

Description:

Maximum number of steps to be used by the iterative refinement of the search direction. A negative value implies that the optimizer Chooses the maximum number of iterative refinement steps.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1

intpnt_num_threads

Corresponding constant:

MSK_IPAR_INTPNT_NUM_THREADS

Description:

Controls the number of threads employed by the interior-point optimizer. If set to a positive number MOSEK will use this number of threads. If zero the number of threads used will equal the number of cores detected on the machine.

Possible Values:

Any integer greater or equal to 0.

Default value:

1

• intpnt_off_col_trh

Corresponding constant:

MSK_IPAR_INTPNT_OFF_COL_TRH

Description:

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

40

• intpnt_order_method

MSK_IPAR_INTPNT_ORDER_METHOD

Description:

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation system.

Possible values:

MSK_ORDER_METHOD_NONE No ordering is used.

MSK_ORDER_METHOD_APPMINLOC2 A variant of the approximate minimum local-fill-in ordering is used.

MSK_ORDER_METHOD_APPMINLOC1 Approximate minimum local-fill-in ordering is used.

MSK_ORDER_METHOD_GRAPHPAR2 An alternative graph partitioning based ordering.

MSK_ORDER_METHOD_FREE The ordering method is chosen automatically.

MSK_ORDER_METHOD_GRAPHPAR1 Graph partitioning based ordering.

Default value:

MSK_ORDER_METHOD_FREE

• intpnt_regularization_use

Corresponding constant:

MSK_IPAR_INTPNT_REGULARIZATION_USE

Description:

Controls whether regularization is allowed.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• intpnt_scaling

Corresponding constant:

MSK_IPAR_INTPNT_SCALING

Description:

Controls how the problem is scaled before the interior-point optimizer is used.

Possible values:

MSK_SCALING_NONE No scaling is performed.

MSK_SCALING_MODERATE A conservative scaling is performed.

MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.

MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:

MSK_SCALING_FREE

• intpnt_solve_form

Corresponding constant:

MSK_IPAR_INTPNT_SOLVE_FORM

Description:

Controls whether the primal or the dual problem is solved.

Possible values:

MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.

MSK_SOLVE_DUAL The optimizer should solve the dual problem.

MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual problem.

Default value:

MSK_SOLVE_FREE

• intpnt_starting_point

Corresponding constant:

MSK_IPAR_INTPNT_STARTING_POINT

Description:

Starting point used by the interior-point optimizer.

Possible values:

MSK_STARTING_POINT_GUESS The optimizer guesses a starting point.

MSK_STARTING_POINT_SATISFY_BOUNDS The starting point is choosen to satisfy all the simple bounds on nonlinear variables. If this starting point is employed, then more care than usual should employed when choosing the bounds on the nonlinear variables. In particular very tight bounds should be avoided.

MSK_STARTING_POINT_CONSTANT The optimizer constructs a starting point by assigning a constant value to all primal and dual variables. This starting point is normally robust.

MSK_STARTING_POINT_FREE The starting point is chosen automatically.

Default value:

MSK_STARTING_POINT_FREE

lic_trh_expiry_wrn

MSK_IPAR_LIC_TRH_EXPIRY_WRN

Description:

If a license feature expires in a numbers days less than the value of this parameter then a warning will be issued.

Possible Values:

Any number between 0 and +inf.

Default value:

7

• license_allow_overuse

Corresponding constant:

MSK_IPAR_LICENSE_ALLOW_OVERUSE

Description:

Controls if license overuse is allowed when caching licenses

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK ON

• license_cache_time

Corresponding constant:

MSK_IPAR_LICENSE_CACHE_TIME

Description:

Setting this parameter no longer has any effect. Please see MSK_IPAR_CACHE_LICENSE for an alternative.

Possible Values:

Any number between 0 and 65555.

Default value:

5

• license_check_time

Corresponding constant:

MSK_IPAR_LICENSE_CHECK_TIME

The parameter specifies the number of seconds between the checks of all the active licenses in the MOSEK environment license cache. These checks are performed to determine if the licenses should be returned to the server.

Possible Values:

Any number between 1 and 120.

Default value:

1

• license_debug

Corresponding constant:

MSK_IPAR_LICENSE_DEBUG

Description:

This option is used to turn on debugging of the incense manager.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• license_pause_time

Corresponding constant:

MSK_IPAR_LICENSE_PAUSE_TIME

Description:

If MSK_IPAR_LICENSE_WAIT=MSK_ON and no license is available, then MOSEK sleeps a number of milliseconds between each check of whether a license has become free.

Possible Values:

Any number between 0 and 1000000.

Default value:

100

• license_suppress_expire_wrns

Corresponding constant:

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Description:

Controls whether license features expire warnings are suppressed.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• license_wait

Corresponding constant:

MSK_IPAR_LICENSE_WAIT

Description:

If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter MOSEK will wait for an available license.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_OFF

• log

Corresponding constant:

MSK_IPAR_LOG

Description:

Controls the amount of log information. The value 0 implies that all log information is suppressed. A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any subsequent optimizations.

Possible Values:

Any number between 0 and +inf.

Default value:

10

See also:

MSK_IPAR_LOG_CUT_SECOND_OPT Controls the reduction in the log levels for the second and any subsequent optimizations.

• log_bi

Corresponding constant:

MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

• log_bi_freq

Corresponding constant:

MSK_IPAR_LOG_BI_FREQ

Description:

Controls how frequent the optimizer outputs information about the basis identification and how frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

2500

• log_check_convexity

Corresponding constant:

MSK_IPAR_LOG_CHECK_CONVEXITY

Description:

Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also shown.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• log_concurrent

Corresponding constant:

MSK_IPAR_LOG_CONCURRENT

Description:

Controls amount of output printed by the concurrent optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_cut_second_opt

Corresponding constant:

MSK_IPAR_LOG_CUT_SECOND_OPT

Description:

If a task is employed to solve a sequence of optimization problems, then the value of the log levels is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced by the value of this parameter for the second and any subsequent optimizations.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

See also:

MSK_IPAR_LOG Controls the amount of log information.

MSK_IPAR_LOG_INTPNT Controls the amount of log information from the interior-point optimizers.

MSK_IPAR_LOG_MIO Controls the amount of log information from the mixed-integer optimizers.

MSK_IPAR_LOG_SIM Controls the amount of log information from the simplex optimizers.

• log_factor

Corresponding constant:

MSK_IPAR_LOG_FACTOR

Description:

If turned on, then the factor log lines are added to the log.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• log_feasrepair

MSK_IPAR_LOG_FEASREPAIR

Description:

Controls the amount of output printed when performing feasibility repair.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• log_file

Corresponding constant:

MSK_IPAR_LOG_FILE

Description:

If turned on, then some log info is printed when a file is written or read.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_head

Corresponding constant:

MSK_IPAR_LOG_HEAD

Description:

If turned on, then a header line is added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_infeas_ana

Corresponding constant:

MSK_IPAR_LOG_INFEAS_ANA

Description:

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• log_intpnt

Corresponding constant:

MSK_IPAR_LOG_INTPNT

Description:

Controls amount of output printed printed by the interior-point optimizer. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

• log_mio

Corresponding constant:

MSK_IPAR_LOG_MIO

Description:

Controls the log level for the mixed-integer optimizer. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

• log_mio_freq

Corresponding constant:

MSK_IPAR_LOG_MIO_FREQ

Description:

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Possible Values:

A integer value.

Default value:

1000

• log_nonconvex

MSK_IPAR_LOG_NONCONVEX

Description:

Controls amount of output printed by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_optimizer

Corresponding constant:

MSK_IPAR_LOG_OPTIMIZER

Description:

Controls the amount of general optimizer information that is logged.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• log_order

Corresponding constant:

MSK_IPAR_LOG_ORDER

Description:

If turned on, then factor lines are added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_param

Corresponding constant:

MSK_IPAR_LOG_PARAM

Description:

Controls the amount of information printed out about parameter changes.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• log_presolve

Corresponding constant:

MSK_IPAR_LOG_PRESOLVE

Description:

Controls amount of output printed by the presolve procedure. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_response

Corresponding constant:

MSK_IPAR_LOG_RESPONSE

Description:

Controls amount of output printed when response codes are reported. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• log_sensitivity

Corresponding constant:

MSK_IPAR_LOG_SENSITIVITY

Description:

Controls the amount of logging during the sensitivity analysis. 0: Means no logging information is produced. 1: Timing information is printed. 2: Sensitivity results are printed.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_sensitivity_opt

MSK_IPAR_LOG_SENSITIVITY_OPT

Description:

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0 means no logging information is produced.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• log_sim

Corresponding constant:

MSK_IPAR_LOG_SIM

Description:

Controls amount of output printed by the simplex optimizer. A higher level implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

• log_sim_freq

Corresponding constant:

MSK_IPAR_LOG_SIM_FREQ

Description:

Controls how frequent the simplex optimizer outputs information about the optimization and how frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and +inf.

Default value:

500

• log_sim_minor

Corresponding constant:

MSK_IPAR_LOG_SIM_MINOR

Description:

Currently not in use.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• log_sim_network_freq

Corresponding constant:

MSK_IPAR_LOG_SIM_NETWORK_FREQ

Description:

Controls how frequent the network simplex optimizer outputs information about the optimization and how frequent the user-defined call-back function is called. The network optimizer will use a logging frequency equal to MSK_IPAR_LOG_SIM_FREQ times MSK_IPAR_LOG_SIM_NETWORK_FREQ.

Possible Values:

Any number between 0 and +inf.

Default value:

50

• log_storage

Corresponding constant:

MSK_IPAR_LOG_STORAGE

Description:

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

0

• lp_write_ignore_incompatible_items

Corresponding constant:

MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS

Description:

Controls the result of writing a problem containing incompatible items to an LP file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• max_num_warnings

Corresponding constant:

MSK_IPAR_MAX_NUM_WARNINGS

Description:

Waning level. A higher value results in more warnings.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

10

• mio_branch_dir

Corresponding constant:

MSK_IPAR_MIO_BRANCH_DIR

Description:

Controls whether the mixed-integer optimizer is branching up or down by default.

Possible values:

 ${\tt MSK_BRANCH_DIR_DOWN} \ \ {\tt The\ mixed-integer\ optimizer\ always\ chooses\ the\ down\ branch} \\ {\tt first.}$

 ${\tt MSK_BRANCH_DIR_UP} \ \, {\tt The \ mixed-integer \ optimizer \ always \ chooses \ the \ up \ branch \ first$

MSK_BRANCH_DIR_FREE The mixed-integer optimizer decides which branch to choose.

Default value:

MSK BRANCH DIR FREE

• mio_branch_priorities_use

Corresponding constant:

MSK_IPAR_MIO_BRANCH_PRIORITIES_USE

Description:

Controls whether branching priorities are used by the mixed-integer optimizer.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• mio_construct_sol

Corresponding constant:

MSK_IPAR_MIO_CONSTRUCT_SOL

Description:

If set to MSK_ON and all integer variables have been given a value for which a feasible mixed integer solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing all integer values and solving the remaining problem.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• mio_cont_sol

Corresponding constant:

MSK_IPAR_MIO_CONT_SOL

Description:

Controls the meaning of the interior-point and basic solutions in mixed integer problems.

Possible values:

MSK_MIO_CONT_SOL_ITG The reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. A solution is only reported in case the problem has a primal feasible solution.

MSK_MIO_CONT_SOL_NONE No interior-point or basic solution are reported when the mixed-integer optimizer is used.

MSK_MIO_CONT_SOL_ROOT The reported interior-point and basic solutions are a solution to the root node problem when mixed-integer optimizer is used.

MSK_MIO_CONT_SOL_ITG_REL In case the problem is primal feasible then the reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. If the problem is primal infeasible, then the solution to the root node problem is reported.

Default value:

MSK_MIO_CONT_SOL_NONE

• mio_cut_level_root

Corresponding constant:

MSK_IPAR_MIO_CUT_LEVEL_ROOT

Description:

Controls the cut level employed by the mixed-integer optimizer at the root node. A negative value means a default value determined by the mixed-integer optimizer is used. By adding the appropriate values from the following table the employed cut types can be controlled.

GUB cover	+2
Flow cover	+4
Lifting	+8
Plant location	+16
Disaggregation	+32
Knapsack cover	+64
Lattice	+128
Gomory	+256
Coefficient reduction	+512
GCD	+1024
Obj. integrality	+2048

Possible Values:

Any value.

Default value:

-1

• mio_cut_level_tree

Corresponding constant:

MSK_IPAR_MIO_CUT_LEVEL_TREE

Description:

Controls the cut level employed by the mixed-integer optimizer at the tree. See MSK_IPAR_MIO_CUT_LEVEL_ROOT for an explanation of the parameter values.

Possible Values:

Any value.

Default value:

-1

• mio_feaspump_level

Corresponding constant:

MSK_IPAR_MIO_FEASPUMP_LEVEL

Feasibility pump is a heuristic designed to compute an initial feasible solution. A value of 0 implies that the feasibility pump heuristic is not used. A value of -1 implies that the mixed-integer optimizer decides how the feasibility pump heuristic is used. A larger value than 1 implies that the feasibility pump is employed more aggressively. Normally a value beyond 3 is not worthwhile.

Possible Values:

Any number between -inf and 3.

Default value:

-1

• mio_heuristic_level

Corresponding constant:

MSK_IPAR_MIO_HEURISTIC_LEVEL

Description:

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means that a gradually more sophisticated heuristic is used which is computationally more expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5 should be optimal.

Possible Values:

Any value.

Default value:

-1

• mio_hotstart

Corresponding constant:

MSK_IPAR_MIO_HOTSTART

Description:

Controls whether the integer optimizer is hot-started.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

 MSK_ON

• mio_keep_basis

MSK_IPAR_MIO_KEEP_BASIS

Description:

Controls whether the integer presolve keeps bases in memory. This speeds on the solution process at cost of bigger memory consumption.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

mio_local_branch_number

Corresponding constant:

MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER

Description:

Controls the size of the local search space when doing local branching.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1

• mio_max_num_branches

Corresponding constant:

MSK_IPAR_MIO_MAX_NUM_BRANCHES

Description:

Maximum number of branches allowed during the branch and bound search. A negative value means infinite.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-integer optimizer for period time specified by the parameter.

mio_max_num_relaxs

MSK_IPAR_MIO_MAX_NUM_RELAXS

Description:

Maximum number of relaxations allowed during the branch and bound search. A negative value means infinite.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-integer optimizer for period time specified by the parameter.

• mio_max_num_solutions

Corresponding constant:

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

Description:

The mixed-integer optimizer can be terminated after a certain number of different feasible solutions has been located. If this parameter has the value n and n is strictly positive, then the mixed-integer optimizer will be terminated when n feasible solutions have been located.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-integer optimizer for period time specified by the parameter.

• mio_mode

Corresponding constant:

MSK_IPAR_MIO_MODE

Description:

Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer optimization problem.

Possible values:

MSK_MIO_MODE_IGNORED The integer constraints are ignored and the problem is solved as a continuous problem.

MSK_MIO_MODE_LAZY Integer restrictions should be satisfied if an optimizer is available for the problem.

MSK_MIO_MODE_SATISFIED Integer restrictions should be satisfied.

Default value:

MSK_MIO_MODE_SATISFIED

• mio_node_optimizer

Corresponding constant:

MSK_IPAR_MIO_NODE_OPTIMIZER

Description:

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE The optimizer is chosen automatically.

MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX The primal dual simplex optimizer is used.

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.

MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.

MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:

MSK_OPTIMIZER_FREE

mio_node_selection

Corresponding constant:

MSK_IPAR_MIO_NODE_SELECTION

Description:

Controls the node selection strategy employed by the mixed-integer optimizer.

Possible values:

MSK_MIO_NODE_SELECTION_PSEUDO The optimizer employs selects the node based on a pseudo cost estimate.

MSK_MIO_NODE_SELECTION_HYBRID The optimizer employs a hybrid strategy.

MSK_MIO_NODE_SELECTION_FREE The optimizer decides the node selection strategy.

MSK_MIO_NODE_SELECTION_WORST The optimizer employs a worst bound node selection strategy.

MSK_MIO_NODE_SELECTION_BEST The optimizer employs a best bound node selection strategy.

MSK_MIO_NODE_SELECTION_FIRST The optimizer employs a depth first node selection strategy.

Default value:

MSK_MIO_NODE_SELECTION_FREE

• mio_optimizer_mode

Corresponding constant:

MSK_IPAR_MIO_OPTIMIZER_MODE

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 1.

Default value:

0

• mio_presolve_aggregate

Corresponding constant:

MSK_IPAR_MIO_PRESOLVE_AGGREGATE

Description:

Controls whether the presolve used by the mixed-integer optimizer tries to aggregate the constraints.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• mio_presolve_probing

Corresponding constant:

MSK_IPAR_MIO_PRESOLVE_PROBING

Controls whether the mixed-integer presolve performs probing. Probing can be very time consuming.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• mio_presolve_use

Corresponding constant:

MSK_IPAR_MIO_PRESOLVE_USE

Description:

Controls whether presolve is performed by the mixed-integer optimizer.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• mio_root_optimizer

Corresponding constant:

MSK_IPAR_MIO_ROOT_OPTIMIZER

Description:

Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE The optimizer is chosen automatically.

MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX The primal dual simplex optimizer is used.

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.

MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used. MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:

MSK_OPTIMIZER_FREE

• mio_strong_branch

Corresponding constant:

MSK_IPAR_MIO_STRONG_BRANCH

Description:

The value specifies the depth from the root in which strong branching is used. A negative value means that the optimizer chooses a default value automatically.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

• nonconvex_max_iterations

Corresponding constant:

MSK_IPAR_NONCONVEX_MAX_ITERATIONS

Description:

Maximum number of iterations that can be used by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

• objective_sense

Corresponding constant:

MSK IPAR OBJECTIVE SENSE

Description:

If the objective sense for the task is undefined, then the value of this parameter is used as the default objective sense.

Possible values:

MSK_OBJECTIVE_SENSE_MINIMIZE The problem should be minimized.

MSK_OBJECTIVE_SENSE_UNDEFINED The objective sense is undefined.

MSK_OBJECTIVE_SENSE_MAXIMIZE The problem should be maximized.

Default value:

MSK_OBJECTIVE_SENSE_MINIMIZE

• opf_max_terms_per_line

Corresponding constant:

MSK_IPAR_OPF_MAX_TERMS_PER_LINE

Description:

The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Possible Values:

Any number between 0 and +inf.

Default value:

5

• opf_write_header

Corresponding constant:

MSK_IPAR_OPF_WRITE_HEADER

Description:

Write a text header with date and MOSEK version in an OPF file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• opf_write_hints

Corresponding constant:

MSK_IPAR_OPF_WRITE_HINTS

Description:

Write a hint section with problem dimensions in the beginning of an OPF file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

 ${\tt MSK_ON}$

• opf_write_parameters

MSK_IPAR_OPF_WRITE_PARAMETERS

Description:

Write a parameter section in an OPF file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• opf_write_problem

Corresponding constant:

MSK_IPAR_OPF_WRITE_PROBLEM

Description:

Write objective, constraints, bounds etc. to an OPF file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• opf_write_sol_bas

Corresponding constant:

MSK_IPAR_OPF_WRITE_SOL_BAS

Description:

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is defined, include the basic solution in OPF files.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

 MSK_ON

• opf_write_sol_itg

Corresponding constant:

MSK_IPAR_OPF_WRITE_SOL_ITG

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined, write the integer solution in OPF files.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• opf_write_sol_itr

Corresponding constant:

MSK_IPAR_OPF_WRITE_SOL_ITR

Description:

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined, write the interior solution in OPF files.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• opf_write_solutions

Corresponding constant:

MSK_IPAR_OPF_WRITE_SOLUTIONS

Description:

Enable inclusion of solutions in the OPF files.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• optimizer

Corresponding constant:

MSK_IPAR_OPTIMIZER

The paramter controls which optimizer is used to optimize the task.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE The optimizer is chosen automatically.

MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX The primal dual simplex optimizer is used.

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.

MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.

MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:

MSK_OPTIMIZER_FREE

• param_read_case_name

Corresponding constant:

MSK_IPAR_PARAM_READ_CASE_NAME

Description:

If turned on, then names in the parameter file are case sensitive.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• param_read_ign_error

Corresponding constant:

MSK_IPAR_PARAM_READ_IGN_ERROR

Description:

If turned on, then errors in paramter settings is ignored.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK OFF

• presolve_elim_fill

Corresponding constant:

MSK_IPAR_PRESOLVE_ELIM_FILL

Description:

Controls the maximum amount of fill-in that can be created during the elimination phase of the presolve. This parameter times (numcon+numvar) denotes the amount of fill-in.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

1

• presolve_eliminator_max_num_tries

Corresponding constant:

MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES

Description:

Control the maximum number of times the eliminator is tried.

Possible Values:

A negative value implies MOSEK decides maximum number of times.

Default value:

-1

• presolve_eliminator_use

Corresponding constant:

MSK_IPAR_PRESOLVE_ELIMINATOR_USE

Description:

Controls whether free or implied free variables are eliminated from the problem.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• presolve_level

Corresponding constant:

MSK_IPAR_PRESOLVE_LEVEL

Description:

Currently not used.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

• presolve_lindep_use

Corresponding constant:

MSK_IPAR_PRESOLVE_LINDEP_USE

Description:

Controls whether the linear constraints are checked for linear dependencies.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• presolve_lindep_work_lim

Corresponding constant:

MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM

Description:

Is used to limit the amount of work that can done to locate linear dependencies. In general the higher value this parameter is given the less work can be used. However, a value of 0 means no limit on the amount work that can be used.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• presolve_use

Corresponding constant:

MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is optimized.

Possible values:

MSK_PRESOLVE_MODE_ON The problem is presolved before it is optimized.

MSK_PRESOLVE_MODE_OFF The problem is not presolved before it is optimized.

MSK_PRESOLVE_MODE_FREE It is decided automatically whether to presolve before the problem is optimized.

Default value:

MSK_PRESOLVE_MODE_FREE

• qo_separable_reformulation

Corresponding constant:

MSK_IPAR_QO_SEPARABLE_REFORMULATION

Description:

Determine if Quadratic programing problems should be reformulated to separable form.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• read_add_anz

Corresponding constant:

MSK_IPAR_READ_ADD_ANZ

Description:

Additional number of non-zeros in A that is made room for in the problem.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• read_add_con

Corresponding constant:

MSK_IPAR_READ_ADD_CON

Description:

Additional number of constraints that is made room for in the problem.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• read_add_cone

Corresponding constant:

MSK_IPAR_READ_ADD_CONE

Description:

Additional number of conic constraints that is made room for in the problem.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• read_add_qnz

Corresponding constant:

MSK_IPAR_READ_ADD_QNZ

Description:

Additional number of non-zeros in the Q matrices that is made room for in the problem.

Possible Values:

Any number between 0 and +inf.

Default value:

0

• read_add_var

Corresponding constant:

MSK_IPAR_READ_ADD_VAR

Description:

Additional number of variables that is made room for in the problem.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

0

• read_anz

MSK_IPAR_READ_ANZ

Description:

Expected maximum number of A non-zeros to be read. The option is used only by fast MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

• read_con

Corresponding constant:

MSK_IPAR_READ_CON

Description:

Expected maximum number of constraints to be read. The option is only used by fast MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

• read_cone

Corresponding constant:

MSK_IPAR_READ_CONE

Description:

Expected maximum number of conic constraints to be read. The option is used only by fast MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

2500

• read_data_compressed

Corresponding constant:

MSK_IPAR_READ_DATA_COMPRESSED

Description:

If this option is turned on, it is assumed that the data file is compressed.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• read_data_format

Corresponding constant:

MSK_IPAR_READ_DATA_FORMAT

Description:

Format of the data file to be read.

Possible values:

MSK_DATA_FORMAT_XML The data file is an XML formatted file.

MSK_DATA_FORMAT_FREE_MPS The data data a free MPS formatted file.

MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file format.

MSK_DATA_FORMAT_MPS The data file is MPS formatted.

MSK_DATA_FORMAT_LP The data file is LP formatted.

MSK_DATA_FORMAT_MBT The data file is a MOSEK binary task file.

MSK_DATA_FORMAT_OP The data file is an optimization problem formatted file.

Default value:

MSK_DATA_FORMAT_EXTENSION

• read_keep_free_con

Corresponding constant:

MSK_IPAR_READ_KEEP_FREE_CON

Description:

Controls whether the free constraints are included in the problem.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• read_lp_drop_new_vars_in_bou

MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU

Description:

If this option is turned on, MOSEK will drop variables that are defined for the first time in the bounds section.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• read_lp_quoted_names

Corresponding constant:

MSK_IPAR_READ_LP_QUOTED_NAMES

Description:

If a name is in quotes when reading an LP file, the quotes will be removed.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• read_mps_format

Corresponding constant:

MSK_IPAR_READ_MPS_FORMAT

Description:

Controls how strictly the MPS file reader interprets the MPS format.

Possible values:

MSK_MPS_FORMAT_STRICT It is assumed that the input file satisfies the MPS format strictly.

MSK_MPS_FORMAT_RELAXED It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

MSK_MPS_FORMAT_FREE It is assumed that the input file satisfies the free MPS format. This implies that spaces are not allowed in names. Otherwise the format is free.

Default value:

MSK_MPS_FORMAT_RELAXED

• read_mps_keep_int

Corresponding constant:

MSK_IPAR_READ_MPS_KEEP_INT

Description:

Controls whether MOSEK should keep the integer restrictions on the variables while reading the MPS file.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• read_mps_obj_sense

Corresponding constant:

MSK_IPAR_READ_MPS_OBJ_SENSE

Description:

If turned on, the MPS reader uses the objective sense section. Otherwise the MPS reader ignores it.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• read_mps_quoted_names

Corresponding constant:

MSK_IPAR_READ_MPS_QUOTED_NAMES

Description:

If a name is in quotes when reading an MPS file, then the quotes will be removed.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• read_mps_relax

MSK_IPAR_READ_MPS_RELAX

Description:

If this option is turned on, then mixed integer constraints are ignored when a problem is read.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• read_mps_width

Corresponding constant:

MSK_IPAR_READ_MPS_WIDTH

Description:

Controls the maximal number of characters allowed in one line of the MPS file.

Possible Values:

Any positive number greater than 80.

Default value:

1024

• read_q_mode

Corresponding constant:

MSK_IPAR_READ_Q_MODE

Description:

Controls how the Q matrices are read from the MPS file.

Possible values:

MSK_Q_READ_ADD All elements in a Q matrix are assumed to belong to the lower triangular part. Duplicate elements in a Q matrix are added together.

MSK_Q_READ_DROP_LOWER All elements in the strict lower triangular part of the Q matrices are dropped.

MSK_Q_READ_DROP_UPPER All elements in the strict upper triangular part of the Q matrices are dropped.

Default value:

MSK_Q_READ_ADD

read_qnz

MSK_IPAR_READ_QNZ

Description:

Expected maximum number of Q non-zeros to be read. The option is used only by MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

20000

• read_task_ignore_param

Corresponding constant:

MSK_IPAR_READ_TASK_IGNORE_PARAM

Description:

Controls whether MOSEK should ignore the parameter setting defined in the task file and use the default parameter setting instead.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• read_var

Corresponding constant:

MSK_IPAR_READ_VAR

Description:

Expected maximum number of variable to be read. The option is used only by MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

• sensitivity_optimizer

Corresponding constant:

MSK_IPAR_SENSITIVITY_OPTIMIZER

Controls which optimizer is used for optimal partition sensitivity analysis.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE The optimizer is chosen automatically.

MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX The primal dual simplex optimizer is used.

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.

MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.

MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.

MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:

MSK_OPTIMIZER_FREE_SIMPLEX

• sensitivity_type

Corresponding constant:

MSK_IPAR_SENSITIVITY_TYPE

Description:

Controls which type of sensitivity analysis is to be performed.

Possible values:

MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION Optimal partition sensitivity analysis is performed.

MSK_SENSITIVITY_TYPE_BASIS Basis sensitivity analysis is performed.

Default value:

MSK_SENSITIVITY_TYPE_BASIS

sim_basis_factor_use

Corresponding constant:

MSK_IPAR_SIM_BASIS_FACTOR_USE

Description:

Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in most cases there is a performance penanlty.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• sim_degen

Corresponding constant:

MSK_IPAR_SIM_DEGEN

Description:

Controls how aggressively degeneration is handled.

Possible values:

MSK_SIM_DEGEN_NONE The simplex optimizer should use no degeneration strategy.

MSK_SIM_DEGEN_MODERATE The simplex optimizer should use a moderate degeneration strategy.

MSK_SIM_DEGEN_MINIMUM The simplex optimizer should use a minimum degeneration strategy.

MSK_SIM_DEGEN_AGGRESSIVE The simplex optimizer should use an aggressive degeneration strategy.

MSK_SIM_DEGEN_FREE The simplex optimizer chooses the degeneration strategy.

Default value:

MSK_SIM_DEGEN_FREE

• sim_dual_crash

Corresponding constant:

MSK_IPAR_SIM_DUAL_CRASH

Description:

Controls whether crashing is performed in the dual simplex optimizer.

In general if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

90

• sim_dual_phaseone_method

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

sim_dual_restrict_selection

Corresponding constant:

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

Description:

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first choose a subset of all the potential outgoing variables. Next, for some time it will choose the outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

• sim_dual_selection

Corresponding constant:

MSK_IPAR_SIM_DUAL_SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex optimizer.

Possible values:

MSK_SIM_SELECTION_FULL The optimizer uses full pricing.

MSK_SIM_SELECTION_PARTIAL The optimizer uses a partial selection approach. The approach is usually beneficial if the number of variables is much larger than the number of constraints.

MSK_SIM_SELECTION_FREE The optimizer chooses the pricing strategy.

MSK_SIM_SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).

Default value:

MSK_SIM_SELECTION_FREE

• sim_exploit_dupvec

Corresponding constant:

MSK_IPAR_SIM_EXPLOIT_DUPVEC

Description:

Controls if the simplex optimizers are allowed to exploit duplicated columns.

Possible values:

MSK_SIM_EXPLOIT_DUPVEC_ON Allow the simplex optimizer to exploit duplicated columns.

MSK_SIM_EXPLOIT_DUPVEC_OFF Disallow the simplex optimizer to exploit duplicated columns.

MSK_SIM_EXPLOIT_DUPVEC_FREE The simplex optimizer can choose freely.

Default value:

MSK_SIM_EXPLOIT_DUPVEC_OFF

• sim_hotstart

Corresponding constant:

MSK IPAR SIM HOTSTART

Description:

Controls the type of hot-start that the simplex optimizer perform.

Possible values:

MSK_SIM_HOTSTART_NONE The simplex optimizer performs a coldstart.

MSK_SIM_HOTSTART_STATUS_KEYS Only the status keys of the constraints and variables are used to choose the type of hot-start.

MSK_SIM_HOTSTART_FREE The simplex optimize chooses the hot-start type.

Default value:

MSK_SIM_HOTSTART_FREE

• sim_hotstart_lu

MSK_IPAR_SIM_HOTSTART_LU

Description:

Determines if the simplex optimizer should exploit the initial factorization.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• sim_integer

Corresponding constant:

MSK_IPAR_SIM_INTEGER

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

• sim_max_iterations

Corresponding constant:

MSK_IPAR_SIM_MAX_ITERATIONS

Description:

Maximum number of iterations that can be used by a simplex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

10000000

• sim_max_num_setbacks

Corresponding constant:

MSK_IPAR_SIM_MAX_NUM_SETBACKS

Description:

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where the optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical problems.

Possible Values:

Any number between 0 and +inf.

Default value:

250

sim_network_detect

Corresponding constant:

MSK_IPAR_SIM_NETWORK_DETECT

Description:

The simplex optimizer is capable of exploiting a network flow component in a problem. However it is only worthwhile to exploit the network flow component if it is sufficiently large. This parameter controls how large the network component has to be in "relative" terms before it is exploited. For instance a value of 20 means at least 20% of the model should be a network before it is exploited. If this value is larger than 100 the network flow component is never detected or exploited.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

101

• sim_network_detect_hotstart

Corresponding constant:

MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART

Description:

This parameter controls has large the network component in "relative" terms has to be before it is exploited in a simplex hot-start. The network component should be equal or larger than

```
max(MSK_IPAR_SIM_NETWORK_DETECT, MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)
```

before it is exploited. If this value is larger than 100 the network flow component is never detected or exploited.

Possible Values:

Any number between 0 and +inf.

Default value:

100

• sim_network_detect_method

Corresponding constant:

MSK_IPAR_SIM_NETWORK_DETECT_METHOD

Controls which type of detection method the network extraction should use.

Possible values:

MSK_NETWORK_DETECT_SIMPLE The network detection should use a very simple heuristic.

MSK_NETWORK_DETECT_ADVANCED The network detection should use a more advanced heuristic.

MSK_NETWORK_DETECT_FREE The network detection is free.

Default value:

MSK_NETWORK_DETECT_FREE

• sim_non_singular

Corresponding constant:

MSK_IPAR_SIM_NON_SINGULAR

Description:

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK ON

• sim_primal_crash

Corresponding constant:

MSK_IPAR_SIM_PRIMAL_CRASH

Description:

Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Possible Values:

Any nonnegative integer value.

Default value:

90

• sim_primal_phaseone_method

Corresponding constant:

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

sim_primal_restrict_selection

Corresponding constant:

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

Description:

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer first choose a subset of all the potential incoming variables. Next, for some time it will choose the incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

• sim_primal_selection

Corresponding constant:

MSK_IPAR_SIM_PRIMAL_SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex optimizer.

Possible values:

MSK_SIM_SELECTION_FULL The optimizer uses full pricing.

MSK_SIM_SELECTION_PARTIAL The optimizer uses a partial selection approach. The approach is usually beneficial if the number of variables is much larger than the number of constraints.

MSK_SIM_SELECTION_FREE The optimizer chooses the pricing strategy.

MSK_SIM_SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).

Default value:

MSK_SIM_SELECTION_FREE

• sim_refactor_freq

Corresponding constant:

MSK_IPAR_SIM_REFACTOR_FREQ

Description:

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

0

• sim_reformulation

Corresponding constant:

MSK_IPAR_SIM_REFORMULATION

Description:

Controls if the simplex optimizers are allowed to reformulate the problem.

Possible values:

MSK_SIM_REFORMULATION_ON Allow the simplex optimizer to reformulate the problem.

MSK_SIM_REFORMULATION_AGGRESSIVE The simplex optimizer should use an aggressive reformulation strategy.

MSK_SIM_REFORMULATION_OFF Disallow the simplex optimizer to reformulate the problem.

MSK_SIM_REFORMULATION_FREE The simplex optimizer can choose freely.

Default value:

MSK_SIM_REFORMULATION_OFF

• sim_save_lu

Corresponding constant:

MSK_IPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the LU factorization corresponding to the initial basis.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_OFF

• sim_scaling

Corresponding constant:

MSK_IPAR_SIM_SCALING

Description:

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Possible values:

MSK_SCALING_NONE No scaling is performed.

MSK_SCALING_MODERATE A conservative scaling is performed.

MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.

MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:

MSK_SCALING_FREE

• sim_scaling_method

Corresponding constant:

MSK_IPAR_SIM_SCALING_METHOD

Description:

Controls how the problem is scaled before a simplex optimizer is used.

Possible values:

MSK_SCALING_METHOD_POW2 Scales only with power of 2 leaving the mantissa untouched.

MSK_SCALING_METHOD_FREE The optimizer chooses the scaling heuristic.

Default value:

MSK_SCALING_METHOD_POW2

• sim_solve_form

MSK_IPAR_SIM_SOLVE_FORM

Description:

Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Possible values:

MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.

MSK_SOLVE_DUAL The optimizer should solve the dual problem.

MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual problem.

Default value:

MSK_SOLVE_FREE

• sim_stability_priority

Corresponding constant:

MSK_IPAR_SIM_STABILITY_PRIORITY

Description:

Controls how high priority the numerical stability should be given.

Possible Values:

Any number between 0 and 100.

Default value:

50

• sim_switch_optimizer

Corresponding constant:

MSK_IPAR_SIM_SWITCH_OPTIMIZER

Description:

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem. This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized, then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is switched to the dual (primal).

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• sol_filter_keep_basic

Corresponding constant:

MSK_IPAR_SOL_FILTER_KEEP_BASIC

Description:

If turned on, then basic and super basic constraints and variables are written to the solution file independent of the filter setting.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• sol_filter_keep_ranged

Corresponding constant:

MSK_IPAR_SOL_FILTER_KEEP_RANGED

Description:

If turned on, then ranged constraints and variables are written to the solution file independent of the filter setting.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• sol_quoted_names

Corresponding constant:

MSK_IPAR_SOL_QUOTED_NAMES

Description:

If this options is turned on, then MOSEK will quote names that contains blanks while writing the solution file. Moreover when reading leading and trailing quotes will be stripped of.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK OFF

• sol_read_name_width

Corresponding constant:

MSK_IPAR_SOL_READ_NAME_WIDTH

Description:

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks, then a maximum name width much be specified. A negative value implies that no name contain blanks.

Possible Values:

Any number between $-\inf$ and $+\inf$.

Default value:

-1

• sol_read_width

Corresponding constant:

MSK_IPAR_SOL_READ_WIDTH

Description:

Controls the maximal acceptable width of line in the solutions when read by MO-SEK.

Possible Values:

Any positive number greater than 80.

Default value:

1024

• solution_callback

Corresponding constant:

MSK_IPAR_SOLUTION_CALLBACK

Description:

Indicates whether solution call-backs will be performed during the optimization.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• timing_level

Corresponding constant:

MSK_IPAR_TIMING_LEVEL

Description:

Controls the a amount of timing performed inside MOSEK.

Possible Values:

Any integer greater or equal to 0.

Default value:

1

• warning_level

Corresponding constant:

MSK_IPAR_WARNING_LEVEL

Description:

Warning level.

Possible Values:

Any number between 0 and +inf.

Default value:

1

• write_bas_constraints

Corresponding constant:

MSK_IPAR_WRITE_BAS_CONSTRAINTS

Description:

Controls whether the constraint section is written to the basic solution file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_bas_head

Corresponding constant:

MSK_IPAR_WRITE_BAS_HEAD

Description:

Controls whether the header section is written to the basic solution file.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_bas_variables

Corresponding constant:

MSK_IPAR_WRITE_BAS_VARIABLES

Description:

Controls whether the variables section is written to the basic solution file.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_data_compressed

Corresponding constant:

MSK_IPAR_WRITE_DATA_COMPRESSED

Description:

Controls whether the data file is compressed while it is written. 0 means no compression while higher values mean more compression.

Possible Values:

Any number between 0 and $+\inf$.

Default value:

0

write_data_format

Corresponding constant:

MSK_IPAR_WRITE_DATA_FORMAT

Description:

Controls the file format when writing task data to a file.

Possible values:

MSK_DATA_FORMAT_XML The data file is an XML formatted file.

MSK_DATA_FORMAT_FREE_MPS The data data a free MPS formatted file.

MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file format.

MSK_DATA_FORMAT_MPS The data file is MPS formatted.

MSK_DATA_FORMAT_LP The data file is LP formatted.

MSK_DATA_FORMAT_MBT The data file is a MOSEK binary task file.

MSK_DATA_FORMAT_OP The data file is an optimization problem formatted file.

Default value:

MSK_DATA_FORMAT_EXTENSION

write_data_param

Corresponding constant:

MSK_IPAR_WRITE_DATA_PARAM

Description:

If this option is turned on the parameter settings are written to the data file as parameters.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• write_free_con

Corresponding constant:

MSK_IPAR_WRITE_FREE_CON

Description:

Controls whether the free constraints are written to the data file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

• write_generic_names

Corresponding constant:

MSK_IPAR_WRITE_GENERIC_NAMES

Controls whether the generic names or user-defined names are used in the data file.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

write_generic_names_io

Corresponding constant:

MSK_IPAR_WRITE_GENERIC_NAMES_IO

Description:

Index origin used in generic names.

Possible Values:

Any number between 0 and +inf.

Default value:

1

write_int_constraints

Corresponding constant:

MSK_IPAR_WRITE_INT_CONSTRAINTS

Description:

Controls whether the constraint section is written to the integer solution file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

write_int_head

Corresponding constant:

MSK_IPAR_WRITE_INT_HEAD

Description:

Controls whether the header section is written to the integer solution file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_int_variables

Corresponding constant:

MSK_IPAR_WRITE_INT_VARIABLES

Description:

Controls whether the variables section is written to the integer solution file.

Possible values:

 ${\tt MSK_ON}$ Switch the option on.

MSK_OFF Switch the option off. **Default value:**

MSK_ON

• write_lp_line_width

Corresponding constant:

MSK_IPAR_WRITE_LP_LINE_WIDTH

Description:

Maximum width of line in an LP file written by MOSEK.

Possible Values:

Any positive number.

Default value:

80

• write_lp_quoted_names

Corresponding constant:

MSK_IPAR_WRITE_LP_QUOTED_NAMES

Description:

If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_lp_strict_format

Corresponding constant:

MSK_IPAR_WRITE_LP_STRICT_FORMAT

Description:

Controls whether LP output files satisfy the LP format strictly.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:

MSK_OFF

• write_lp_terms_per_line

Corresponding constant:

MSK_IPAR_WRITE_LP_TERMS_PER_LINE

Description:

Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Possible Values:

Any number between 0 and +inf.

Default value:

10

• write_mps_int

Corresponding constant:

MSK_IPAR_WRITE_MPS_INT

Description:

Controls if marker records are written to the MPS file to indicate whether variables are integer restricted.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_mps_obj_sense

MSK_IPAR_WRITE_MPS_OBJ_SENSE

Description:

If turned off, the objective sense section is not written to the MPS file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_mps_quoted_names

Corresponding constant:

MSK_IPAR_WRITE_MPS_QUOTED_NAMES

Description:

If a name contains spaces (blanks) when writing an MPS file, then the quotes will be removed.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_mps_strict

Corresponding constant:

MSK_IPAR_WRITE_MPS_STRICT

Description:

Controls whether the written MPS file satisfies the MPS format strictly or not.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_OFF

ullet write_precision

Corresponding constant:

MSK_IPAR_WRITE_PRECISION

Controls the precision with which double numbers are printed in the MPS data file. In general it is not worthwhile to use a value higher than 15.

Possible Values:

Any number between 0 and +inf.

Default value:

8

write_sol_constraints

Corresponding constant:

MSK_IPAR_WRITE_SOL_CONSTRAINTS

Description:

Controls whether the constraint section is written to the solution file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK ON

• write_sol_head

Corresponding constant:

MSK_IPAR_WRITE_SOL_HEAD

Description:

Controls whether the header section is written to the solution file.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

write_sol_variables

Corresponding constant:

MSK_IPAR_WRITE_SOL_VARIABLES

Description:

Controls whether the variables section is written to the solution file.

Possible values:

MSK_ON Switch the option on. MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_task_inc_sol

Corresponding constant:

MSK_IPAR_WRITE_TASK_INC_SOL

Description:

Controls whether the solutions are stored in the task file too.

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:

MSK_ON

• write_xml_mode

Corresponding constant:

MSK_IPAR_WRITE_XML_MODE

Description:

Controls if linear coefficients should be written by row or column when writing in the XML file format.

Possible values:

MSK_WRITE_XML_MODE_COL Write in column order.

MSK_WRITE_XML_MODE_ROW Write in row order.

Default value:

MSK_WRITE_XML_MODE_ROW

E.4 String parameter types

•	MSK_SPAR_BAS_SOL_FILE_NAME	378
	Name of the bas solution file.	
	MSK_SPAR_DATA_FILE_NAME Data are read and written to this file.	378
	MSK_SPAR_DEBUG_FILE_NAME	378

E.4.	STRING PARAMETER TYPES	377
•	MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL	379
•	MSK_SPAR_INT_SOL_FILE_NAME	379
•	MSK_SPAR_ITR_SOL_FILE_NAME	379
•	MSK_SPAR_PARAM_COMMENT_SIGN	.379
•	MSK_SPAR_PARAM_READ_FILE_NAME	.380
•	MSK_SPAR_PARAM_WRITE_FILE_NAME	380
•	MSK_SPAR_READ_MPS_BOU_NAME Name of the BOUNDS vector used. An empty name means that the first BOUL vector is used.	
•	MSK_SPAR_READ_MPS_OBJ_NAME	380
•	Name of the RANGE vector used. An empty name means that the first RANGE veis used.	
•	Name of the RHS used. An empty name means that the first RHS vector is used.	381
•	MSK_SPAR_SOL_FILTER_XC_LOW	381
•	MSK_SPAR_SOL_FILTER_XC_UPR	382
•	MSK_SPAR_SOL_FILTER_XX_LOW	382
•	MSK_SPAR_SOL_FILTER_XX_UPR	382
•	MSK_SPAR_STAT_FILE_NAME	383

•	MSK_SPAR_STAT_KEY Key used when writing the summary file.	383
•	MSK_SPAR_STAT_NAME Name used when writing the statistics file.	383
•	MSK_SPAR_WRITE_LP_GEN_VAR_NAME	383
•	bas_sol_file_name	
	Corresponding constant: MSK_SPAR_BAS_SOL_FILE_NAME	
	Description: Name of the bas solution file.	
	Possible Values: Any valid file name.	
	Default value:	
•	data_file_name	
	Corresponding constant: MSK_SPAR_DATA_FILE_NAME	
	Description: Data are read and written to this file.	
	Possible Values: Any valid file name.	
	Default value:	
•	debug_file_name	
	Corresponding constant: MSK_SPAR_DEBUG_FILE_NAME	
	Description: MOSEK debug file.	
	Possible Values: Any valid file name.	
	Default value:	

• feasrepair_name_wsumviol

Corresponding constant:

MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL

Description:

The constraint and variable associated with the total weighted sum of violations are each given the name of this parameter postfixed with CON and VAR respectively.

Possible Values:

Any valid string.

Default value:

"WSUMVIOL"

• int_sol_file_name

Corresponding constant:

MSK_SPAR_INT_SOL_FILE_NAME

Description:

Name of the int solution file.

Possible Values:

Any valid file name.

Default value:

11 1

• itr_sol_file_name

Corresponding constant:

MSK_SPAR_ITR_SOL_FILE_NAME

Description:

Name of the itr solution file.

Possible Values:

Any valid file name.

Default value:

11 1

• param_comment_sign

Corresponding constant:

MSK_SPAR_PARAM_COMMENT_SIGN

Description:

Only the first character in this string is used. It is considered as a start of comment sign in the MOSEK parameter file. Spaces are ignored in the string.

Possible Values:

Any valid string.

Default value:

"%%"

• param_read_file_name

Corresponding constant:

MSK_SPAR_PARAM_READ_FILE_NAME

Description:

Modifications to the parameter database is read from this file.

Possible Values:

Any valid file name.

Default value:

11 1

• param_write_file_name

Corresponding constant:

MSK_SPAR_PARAM_WRITE_FILE_NAME

Description:

The parameter database is written to this file.

Possible Values:

Any valid file name.

Default value:

,, ,

• read_mps_bou_name

Corresponding constant:

MSK_SPAR_READ_MPS_BOU_NAME

Description:

Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Possible Values:

Any valid MPS name.

Default value:

11 1

• read_mps_obj_name

MSK_SPAR_READ_MPS_OBJ_NAME

Description:

Name of the free constraint used as objective function. An empty name means that the first constraint is used as objective function.

Possible Values:

Any valid MPS name.

Default value:

11 1

• read_mps_ran_name

Corresponding constant:

MSK_SPAR_READ_MPS_RAN_NAME

Description:

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Possible Values:

Any valid MPS name.

Default value:

11 1

• read_mps_rhs_name

Corresponding constant:

MSK_SPAR_READ_MPS_RHS_NAME

Description:

Name of the RHS used. An empty name means that the first RHS vector is used.

Possible Values:

Any valid MPS name.

Default value:

11 1

• sol_filter_xc_low

Corresponding constant:

MSK_SPAR_SOL_FILTER_XC_LOW

Description:

A filter used to determine which constraints should be listed in the solution file. A value of "0.5" means that all constraints having xc[i]>0.5 should be listed, whereas "+0.5" means that all constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Possible Values:

Any valid filter.

Default value:

11 11

• sol_filter_xc_upr

Corresponding constant:

MSK_SPAR_SOL_FILTER_XC_UPR

Description:

A filter used to determine which constraints should be listed in the solution file. A value of "0.5" means that all constraints having xc[i]<0.5 should be listed, whereas "-0.5" means all constraints having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Possible Values:

Any valid filter.

Default value:

11 11

• sol filter xx low

Corresponding constant:

MSK_SPAR_SOL_FILTER_XX_LOW

Description:

A filter used to determine which variables should be listed in the solution file. A value of "0.5" means that all constraints having xx[j] >= 0.5 should be listed, whereas "+0.5" means that all constraints having xx[j] >= blx[j] + 0.5 should be listed. An empty filter means no filter is applied.

Possible Values:

Any valid filter..

Default value:

11 11

• sol_filter_xx_upr

Corresponding constant:

MSK_SPAR_SOL_FILTER_XX_UPR

Description:

A filter used to determine which variables should be listed in the solution file. A value of "0.5" means that all constraints having xx[j]<0.5 should be printed, whereas "-0.5" means all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Possible Values:

Any valid file name.

Default value:

11 11

• stat_file_name

Corresponding constant:

MSK_SPAR_STAT_FILE_NAME

Description:

Statistics file name.

Possible Values:

Any valid file name.

Default value:

11 11

• stat_key

Corresponding constant:

MSK_SPAR_STAT_KEY

Description:

Key used when writing the summary file.

Possible Values:

Any valid XML string.

Default value:

11 11

• stat_name

Corresponding constant:

MSK_SPAR_STAT_NAME

Description:

Name used when writing the statistics file.

Possible Values:

Any valid XML string.

Default value:

11 11

• write_lp_gen_var_name

Corresponding constant:

MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Description:

Sometimes when an LP file is written additional variables must be inserted. They will have the prefix denoted by this parameter.

Possible Values:

Any valid string.

Default value:

"xmskgen"

Appendix F

Symbolic constants

F.1 Constraint or variable access modes

Value	Name
	Description
0	MSK_ACC_VAR
	Access data by columns (variable orinted)
1	MSK_ACC_CON
	Access data by rows (constraint oriented)

F.2 Function opcode

Value	Name
	Description
1	MSK_ADOP_SUB
	Subtract two operands.
4	MSK_ADOP_POW
	First operand to the power the second operand.
7	MSK_ADOP_RET
	Return one operand.
0	MSK_ADOP_ADD
	Add two operands.
5	MSK_ADOP_EXP
	Exponential function of one oparand.
2	MSK_ADOP_MUL
	Multiply two operands.
	continued on next page

conti	continued from previous page	
3	MSK_ADOP_DIV	
	Divide two operands.	
6	MSK_ADOP_LOG	
	Logarithm function of one operand.	

F.3 Function operand type

Value	Name
	Description
2	MSK_ADOPTYPE_VARIABLE
	Operand refers to a variable.
0	MSK_ADOPTYPE_NONE
	Operand not used.
1	MSK_ADOPTYPE_CONSTANT
	Operand refers to a constant.
3	MSK_ADOPTYPE_REFERENCE
	Operand refers to the result of another operation.

F.4 Basis identification

Value	Name
	Description
1	MSK_BI_ALWAYS
	Basis identification is always performed even if the interior-point op-
	timizer terminates abnormally.
2	MSK_BI_NO_ERROR
	Basis identification is performed if the interior-point optimizer termi-
	nates without an error.
0	MSK_BI_NEVER
	Never do basis identification.
3	MSK_BI_IF_FEASIBLE
	Basis identification is not performed if the interior-point optimizer
	terminates with a problem status saying that the problem is primal
	or dual infeasible.
4	MSK_BI_OTHER
	Try another BI method.

F.5 Bound keys

Value	Name
	Description
2	MSK_BK_FX
	The constraint or variable is fixed.
0	MSK_BK_LO
	The constraint or variable has a finite lower bound and an infinite
	upper bound.
3	MSK_BK_FR
	The constraint or variable is free.
1	MSK_BK_UP
	The constraint or variable has an infinite lower bound and an finite
	upper bound.
4	MSK_BK_RA
	The constraint or variable is ranged.

F.6 Specifies the branching direction.

Value	Name
	Description
2	MSK_BRANCH_DIR_DOWN
	The mixed-integer optimizer always chooses the down branch first.
1	MSK_BRANCH_DIR_UP
	The mixed-integer optimizer always chooses the up branch first.
0	MSK_BRANCH_DIR_FREE
	The mixed-integer optimizer decides which branch to choose.

F.7 Progress call-back codes

Value	Name
	Description
44	MSK_CALLBACK_END_INTPNT
	The call-back function is called when the interior-point optimizer is
	terminated.
21	MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX_BI
	continued on next page

The call-back function is called from within the basis identification procedure when the primal-dual simplex clean-up phase is started.

48 MSK_CALLBACK_END_NETWORK_PRIMAL_SIMPLEX

The call-back function is called when the primal network simplex optimizer is terminated.

99 MSK_CALLBACK_READ_ADD_CONS

A chunk of constraints has been read from a problem file.

115 MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the primal simplex clean-up phase. The frequency of the call-backs is controlled by the MSK_IPAR_LOG_SIM_FREQ parameter.

46 MSK_CALLBACK_END_MIO

The call-back function is called when the mixed-integer optimizer is terminated.

13 MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX

The call-back function is called when the dual network simplex optimizer is started.

35 MSK_CALLBACK_END_CONCURRENT

Concurrent optimizer is terminated.

93 MSK_CALLBACK_NEW_INT_MIO

The call-back function is called after a new integer solution has been located by the mixed-integer optimizer.

88 MSK_CALLBACK_IM_PRIMAL_SIMPLEX

The call-back function is called at an intermediate point in the primal simplex optimizer.

64 MSK_CALLBACK_END_SIMPLEX_NETWORK_DETECT

The call-back function is called when the network detection procedure is terminated.

47 MSK_CALLBACK_END_NETWORK_DUAL_SIMPLEX

The call-back function is called when the dual network simplex optimizer is terminated.

72 MSK_CALLBACK_IM_INTPNT

The call-back function is called at an intermediate stage within the interior-point optimizer where the information database has not been updated.

68 MSK_CALLBACK_IM_DUAL_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the dual phase.

8	ued from previous page MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK
O	Begin full convexity check.
3	MSK_CALLBACK_BEGIN_DUAL_BI
	The call-back function is called from within the basis identification
	procedure when the dual phase is started.
4	MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY
	Dual sensitivity analysis is started.
79	MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX
	The call-back function is called at an intermediate point in the mixed-
	integer optimizer while running the primal simplex optimizer.
19	MSK_CALLBACK_BEGIN_PRIMAL_BI
	The call-back function is called from within the basis identification
	procedure when the primal phase is started.
100	MSK_CALLBACK_READ_ADD_QNZ
	A chunk of Q non-zeos has been read from a problem file.
1	MSK_CALLBACK_BEGIN_CONCURRENT
	Concurrent optimizer is started.
104	MSK_CALLBACK_UPDATE_DUAL_BI
	The call-back function is called from within the basis identification
	procedure at an intermediate point in the dual phase.
70	MSK_CALLBACK_IM_DUAL_SIMPLEX
	The call-back function is called at an intermediate point in the dual
	simplex optimizer.
11	MSK_CALLBACK_BEGIN_LICENSE_WAIT
	Begin waiting for license.
31	MSK_CALLBACK_IM_NETWORK_PRIMAL_SIMPLEX
	The call-back function is called at an intermediate point in the primal
	network simplex optimizer.
1 9	MSK_CALLBACK_END_NETWORK_SIMPLEX
	The call-back function is called when the simplex network optimizer
	is terminated.
32	MSK_CALLBACK_CONIC
	The call-back function is called from within the conic optimizer after
	the information database has been updated.
89	MSK_CALLBACK_IM_QO_REFORMULATE
	The call-back function is called at an intermediate stage of the QP to
	SOCP reformulation.
2	MSK_CALLBACK_BEGIN_CONIC
	The call-back function is called when the conic optimizer is started.

contin	ued from previous page
106	MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI
	The call-back function is called from within the basis identifica-
	tion procedure at an intermediate point in the dual simplex clean-
	up phase. The frequency of the call-backs is controlled by the
	MSK_IPAR_LOG_SIM_FREQ parameter.
51	MSK_CALLBACK_END_OPTIMIZER
	The call-back function is called when the optimizer is terminated.
110	MSK_CALLBACK_UPDATE_PRESOLVE
	The call-back function is called from within the presolve procedure.
90	MSK_CALLBACK_IM_SIMPLEX
	The call-back function is called from within the simplex optimizer at
	an intermediate point.
102	MSK_CALLBACK_READ_OPF
	The call-back function is called from the OPF reader.
73	MSK_CALLBACK_IM_LICENSE_WAIT
	MOSEK is waiting for a license.
15	MSK_CALLBACK_BEGIN_NETWORK_SIMPLEX
	The call-back function is called when the simplex network optimizer
	is started.
36	MSK_CALLBACK_END_CONIC
	The call-back function is called when the conic optimizer is termi-
	nated.
107	MSK_CALLBACK_UPDATE_NETWORK_DUAL_SIMPLEX
	The call-back function is called in the dual network simplex optimizer.
26	MSK_CALLBACK_BEGIN_QCQO_REFORMULATE
	Begin QCQO reformulation.
38	MSK_CALLBACK_END_DUAL_SENSITIVITY
	Dual sensitivity analysis is terminated.
59	MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI
	The call-back function is called from within the basis identification
	procedure when the primal clean-up phase is terminated.
101	MSK_CALLBACK_READ_ADD_VARS
	A chunk of variables has been read from a problem file.
103	MSK_CALLBACK_READ_OPF_SECTION
	A chunk of Q non-zeos has been read from a problem file.
74	MSK_CALLBACK_IM_LU
	The call-back function is called from within the LU factorization pro-
	cedure at an intermediate point.
41	MSK_CALLBACK_END_DUAL_SIMPLEX_BI
	continued on next page

The call-back function is called from within the basis identification procedure when the dual clean-up phase is terminated.

- 45 MSK_CALLBACK_END_LICENSE_WAIT
 - End waiting for license.
- 84 MSK_CALLBACK_IM_PRESOLVE

The call-back function is called from within the presolve procedure at an intermediate stage.

- 5 MSK_CALLBACK_BEGIN_DUAL_SETUP_BI
 - The call-back function is called when the dual BI phase is started.
- 43 MSK_CALLBACK_END_INFEAS_ANA

The call-back function is called when the infeasibility analyzer is terminated.

- 92 MSK_CALLBACK_INTPNT
 - The call-back function is called from within the interior-point optimizer after the information database has been updated.
- 111 MSK_CALLBACK_UPDATE_PRIMAL_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the primal phase.

- 94 MSK_CALLBACK_NONCOVEX
 - The call-back function is called from within the nonconvex optimizer after the information database has been updated.
- 113 MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the primal-dual simplex clean-up phase. The frequency of the call-backs is controlled by the MSK_IPAR_LOG_SIM_FREQ parameter.

- 109 MSK_CALLBACK_UPDATE_NONCONVEX
 - The call-back function is called at an intermediate stage within the nonconvex optimizer where the information database has been updated.
- 37 MSK_CALLBACK_END_DUAL_BI
 - The call-back function is called from within the basis identification procedure when the dual phase is terminated.
- 61 MSK_CALLBACK_END_READ
 - MOSEK has finished reading a problem file.
- 98 MSK_CALLBACK_READ_ADD_CONES
 - A chunk of cones has been read from a problem file.
- 25 MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI

The call-back function is called from within the basis identification procedure when the primal simplex clean-up phase is started.

30 MSK_CALLBACK_BEGIN_SIMPLEX_NETWORK_DETECT

The call-back function is called when the network detection procedure is started.

97 MSK_CALLBACK_READ_ADD_ANZ

A chunk of A non-zeos has been read from a problem file.

86 MSK_CALLBACK_IM_PRIMAL_DUAL_SIMPLEX

The call-back function is called at an intermediate point in the primaldual simplex optimizer.

114 MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX

The call-back function is called in the primal simplex optimizer.

33 MSK_CALLBACK_DUAL_SIMPLEX

The call-back function is called from within the dual simplex optimizer.

71 MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK

The call-back function is called at an intermediate stage of the full convexity check.

95 MSK_CALLBACK_PRIMAL_SIMPLEX

The call-back function is called from within the primal simplex optimizer.

16 MSK_CALLBACK_BEGIN_NONCONVEX

The call-back function is called when the nonconvex optimizer is started.

91 MSK_CALLBACK_IM_SIMPLEX_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the simplex cleanup phase. The frequency of the call-backs is controlled by the MSK_IPAR_LOG_SIM_FREQ parameter.

6 MSK_CALLBACK_BEGIN_DUAL_SIMPLEX

The call-back function is called when the dual simplex optimizer started.

24 MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX

The call-back function is called when the primal simplex optimizer is started.

50 MSK_CALLBACK_END_NONCONVEX

The call-back function is called when the nonconvex optimizer is terminated.

23 MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI

contin	ued from previous page
	The call-back function is called when the primal BI setup is started.
17	MSK_CALLBACK_BEGIN_OPTIMIZER
	The call-back function is called when the optimizer is started.
27	MSK_CALLBACK_BEGIN_READ
	MOSEK has started reading a problem file.
82	MSK_CALLBACK_IM_NONCONVEX
	The call-back function is called at an intermediate stage within the nonconvex optimizer where the information database has not been updated.
58	MSK_CALLBACK_END_PRIMAL_SIMPLEX
	The call-back function is called when the primal simplex optimizer is
	terminated.
55	MSK_CALLBACK_END_PRIMAL_DUAL_SIMPLEX_BI
	The call-back function is called from within the basis identification
	procedure when the primal-dual clean-up phase is terminated.
66	MSK_CALLBACK_IM_BI
	The call-back function is called from within the basis identification
	procedure at an intermediate point.
80	MSK_CALLBACK_IM_NETWORK_DUAL_SIMPLEX
	The call-back function is called at an intermediate point in the dual
	network simplex optimizer.
39	MSK_CALLBACK_END_DUAL_SETUP_BI
	The call-back function is called when the dual BI phase is terminated.
34	MSK_CALLBACK_END_BI
	The call-back function is called when the basis identification proce-
	dure is terminated.
57	MSK_CALLBACK_END_PRIMAL_SETUP_BI
	The call-back function is called when the primal BI setup is termi-
	nated.
31	MSK_CALLBACK_BEGIN_WRITE
	MOSEK has started writing a problem file.
63	MSK_CALLBACK_END_SIMPLEX_BI
	The call-back function is called from within the basis identification
	procedure when the simplex clean-up phase is terminated.
56	MSK_CALLBACK_END_PRIMAL_SENSITIVITY
	Primal sensitivity analysis is terminated.
28	MSK_CALLBACK_BEGIN_SIMPLEX
	The call-back function is called when the simplex optimizer is started.
52	MSK_CALLBACK_END_PRESOLVE
	continued on next page

continu	ued from previous page
	The call-back function is called when the presolve is completed.
96	MSK_CALLBACK_QCONE
	The call-back function is called from within the Qcone optimizer.
9	MSK_CALLBACK_BEGIN_INFEAS_ANA
	The call-back function is called when the infeasibility analyzer is
	started.
20	MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX
	The call-back function is called when the primal-dual simplex opti-
	mizer is started.
22	MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY
	Primal sensitivity analysis is started.
7	MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI
	The call-back function is called from within the basis identification
	procedure when the dual simplex clean-up phase is started.
60	MSK_CALLBACK_END_QCQO_REFORMULATE
	End QCQO reformulation.
87	MSK_CALLBACK_IM_PRIMAL_SENSIVITY
	The call-back function is called at an intermediate stage of the primal
	sensitivity analysis.
65	MSK_CALLBACK_END_WRITE
	MOSEK has finished writing a problem file.
40	MSK_CALLBACK_END_DUAL_SIMPLEX
	The call-back function is called when the dual simplex optimizer is
	terminated.
112	MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX
	The call-back function is called in the primal-dual simplex optimizer.
29	MSK_CALLBACK_BEGIN_SIMPLEX_BI
	The call-back function is called from within the basis identification
4.0	procedure when the simplex clean-up phase is started.
10	MSK_CALLBACK_BEGIN_INTPNT
	The call-back function is called when the interior-point optimizer is
co	started.
69	MSK_CALLBACK_IM_DUAL_SENSIVITY
	The call-back function is called at an intermediate stage of the dual
CO	sensitivity analysis.
62	MSK_CALLBACK_END_SIMPLEX
	The call-back function is called when the simplex optimizer is terminated.
53	nated. MSK_CALLBACK_END_PRIMAL_BI
	continued on next page
	continued on next page

continued	from	previous	page

The call-back function is called from within the basis identification procedure when the primal phase is terminated.

75 MSK_CALLBACK_IM_MIO

The call-back function is called at an intermediate point in the mixedinteger optimizer.

105 MSK_CALLBACK_UPDATE_DUAL_SIMPLEX

The call-back function is called in the dual simplex optimizer.

77 MSK_CALLBACK_IM_MIO_INTPNT

The call-back function is called at an intermediate point in the mixedinteger optimizer while running the interior-point optimizer.

54 MSK_CALLBACK_END_PRIMAL_DUAL_SIMPLEX

The call-back function is called when the primal-dual simplex optimizer is terminated.

67 MSK_CALLBACK_IM_CONIC

The call-back function is called at an intermediate stage within the conic optimizer where the information database has not been updated.

78 MSK_CALLBACK_IM_MIO_PRESOLVE

The call-back function is called at an intermediate point in the mixedinteger optimizer while running the presolve.

0 MSK_CALLBACK_BEGIN_BI

The basis identification procedure has been started.

76 MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX

The call-back function is called at an intermediate point in the mixedinteger optimizer while running the dual simplex optimizer.

116 MSK_CALLBACK_WRITE_OPF

The call-back function is called from the OPF writer.

108 MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX

The call-back function is called in the primal network simplex optimizer.

42 MSK_CALLBACK_END_FULL_CONVEXITY_CHECK

End full convexity check.

83 MSK_CALLBACK_IM_ORDER

The call-back function is called from within the matrix ordering procedure at an intermediate point.

85 MSK_CALLBACK_IM_PRIMAL_BI

The call-back function is called from within the basis identification procedure at an intermediate point in the primal phase.

18 MSK_CALLBACK_BEGIN_PRESOLVE

The call-back function is called when the presolve is started.

conti	continued from previous page				
12	MSK_CALLBACK_BEGIN_MIO				
	The call-back function is called when the mixed-integer optimizer is				
	started.				
14	MSK_CALLBACK_BEGIN_NETWORK_PRIMAL_SIMPLEX				
	The call-back function is called when the primal network simplex				
	optimizer is started.				

F.8 Types of convexity checks.

Value	Name
	Description
1	MSK_CHECK_CONVEXITY_SIMPLE
	Perform simple and fast convexity check.
0	MSK_CHECK_CONVEXITY_NONE
	No convexity check.
2	MSK_CHECK_CONVEXITY_FULL
	Perform a full convexity check.

F.9 Compression types

Value	Name
	Description
2	MSK_COMPRESS_GZIP
	The type of compression used is gzip compatible.
0	MSK_COMPRESS_NONE
	No compression is used.
1	MSK_COMPRESS_FREE
	The type of compression used is chosen automatically.

F.10 Cone types

Value	Name	
	Description	
0	MSK_CT_QUAD	
	The cone is a quadratic cone.	
		continued on next page

cont	continued from previous page		
1 MSK_CT_RQUAD			
	The cone is a rotated quadratic cone.		

F.11 CPU type

Value	Name
	Description
8	MSK_CPU_POWERPC_G5
	A G5 PowerPC CPU.
9	MSK_CPU_INTEL_PM
	An Intel PM cpu.
1	MSK_CPU_GENERIC
	An generic CPU type for the platform
0	MSK_CPU_UNKNOWN
	An unknown CPU.
7	MSK_CPU_AMD_OPTERON
	An AMD Opteron (64 bit).
6	MSK_CPU_INTEL_ITANIUM2
	An Intel Itanium2.
4	MSK_CPU_AMD_ATHLON
	An AMD Athlon.
5	MSK_CPU_HP_PARISC20
	An HP PA RISC version 2.0 CPU.
3	MSK_CPU_INTEL_P4
	An Intel Pentium P4 or Intel Xeon.
2	MSK_CPU_INTEL_P3
	An Intel Pentium P3.
10	MSK_CPU_INTEL_CORE2
	An Intel CORE2 cpu.

F.12 Data format types

Value	Name	
	Description	
5	MSK_DATA_FORMAT_XML	
	The data file is an XML formatted file.	
		continued on next page

continued from previous page			
6	MSK_DATA_FORMAT_FREE_MPS		
	The data data a free MPS formatted file.		
0	MSK_DATA_FORMAT_EXTENSION		
	The file extension is used to determine the data file format.		
1	MSK_DATA_FORMAT_MPS		
	The data file is MPS formatted.		
2	MSK_DATA_FORMAT_LP		
	The data file is LP formatted.		
3	MSK_DATA_FORMAT_MBT		
	The data file is a MOSEK binary task file.		
4	MSK_DATA_FORMAT_OP		
	The data file is an optimization problem formatted file.		

F.13 Double information items

Value	Name
	Description
13	MSK_DINF_INTPNT_PRIMAL_FEAS
	Primal feasibility measure reported by the interior-point or Qcone
	optimizers. (For the interior-point optimizer this measure does not
	directly related to the original problem because a homogeneous model
	is employed).
58	MSK_DINF_SOL_ITR_MAX_PCNI
	Maximal primal cone infeasibility in the interior-point solution. Up-
	dated at the end of the optimization.
32	MSK_DINF_RD_TIME
	Time spent reading the data file.
28	MSK_DINF_PRESOLVE_ELI_TIME
	Total time spent in the eliminator since the presolve was invoked.
22	MSK_DINF_MIO_OPTIMIZER_TIME
	Time spent in the optimizer while solving the relaxtions.
10	MSK_DINF_INTPNT_FACTOR_NUM_FLOPS
	An estimate of the number of flops used in the factorization.
25	MSK_DINF_MIO_TIME
	Time spent in the mixed-integer optimizer.
4	MSK_DINF_BI_DUAL_TIME
	Time spent within the dual phase basis identification procedure since
	its invocation.
	continued on next page

conti	nued from previous page
37	MSK_DINF_SIM_NETWORK_TIME
	Time spent in the network simplex optimizer since invoking it.
30	MSK_DINF_PRESOLVE_TIME
	Total time (in seconds) spent in the presolve since it was invoked.
29	MSK_DINF_PRESOLVE_LINDEP_TIME
	Total time spent in the linear dependency checker since the presolve
	was invoked.
33	MSK_DINF_SIM_DUAL_TIME
	Time spent in the dual simplex optimizer since invoking it.
60	MSK_DINF_SOL_ITR_MAX_PINTI
	Maximal primal integer infeasibility in the interior-point solution.
	Updated at the end of the optimization.
38	MSK_DINF_SIM_OBJ
	Objective value reported by the simplex optimizer.
21	MSK_DINF_MIO_OBJ_REL_GAP
	Given that the mixed-integer optimizer has computed a feasible so-
	lution and a bound on the optimal objective value, then this item
	contains the relative gap defined by
	(objective value of feasible solution) – (objective bound)
	$\max(\delta, (\text{objective value of feasible solution}))$
	where δ is given by the paramater MSK_DPAR_MIO_REL_GAP_CONST. Oth-
	erwise it has the value -1.0.
48	MSK_DINF_SOL_BAS_PRIMAL_OBJ
	Primal objective value of the basic solution. Updated at the end of
	the optimization.
17	MSK_DINF_MIO_HEURISTIC_TIME
	Time spent in the optimizer while solving the relaxtions.
57	MSK_DINF_SOL_ITR_MAX_PBI
	Maximal primal bound infeasibility in the interior-point solution. Up-
	dated at the end of the optimization.
45	MSK_DINF_SOL_BAS_MAX_PBI
	Maximal primal bound infeasibility in the basic solution. Updated at
	the end of the optimization.
27	MSK_DINF_OPTIMIZER_TIME
	Total time spent in the optimizer since it was invoked.
55	MSK_DINF_SOL_ITR_MAX_DCNI

Maximal dual cone infeasibility in the interior-point solution. Updated at the end of the optimization.

24 MSK_DINF_MIO_ROOT_PRESOLVE_TIME

Time spent in while presolveing the root relaxation.

9 MSK_DINF_INTPNT_DUAL_OBJ

Dual objective value reported by the interior-point or Qcone optimizer.

15 MSK_DINF_INTPNT_TIME

Time spent within the interior-point optimizer since its invocation.

16 MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

If MOSEK has successfully constructed an integer feasible solution, then this item contains the optimal objective value corresponding to the feasible solution.

34 MSK_DINF_SIM_FEAS

Feasibility measure reported by the simplex optimizer.

56 MSK_DINF_SOL_ITR_MAX_DEQI

Maximal dual equality infeasibility in the interior-point solution. Updated at the end of the optimization.

40 MSK_DINF_SIM_PRIMAL_TIME

Time spent in the primal simplex optimizer since invoking it.

41 MSK_DINF_SIM_TIME

Time spent in the simplex optimizer since invoking it.

36 MSK_DINF_SIM_NETWORK_PRIMAL_TIME

Time spent in the primal network simplex optimizer since invoking it.

47 MSK_DINF_SOL_BAS_MAX_PINTI

Maximal primal integer infeasibility in the basic solution. Updated at the end of the optimization.

51 MSK_DINF_SOL_INT_MAX_PINTI

Maximal primal integer infeasibility in the integer solution. Updated at the end of the optimization.

3 MSK_DINF_BI_CLEAN_TIME

Time spent within the clean-up phase of the basis identification procedure since its invocation.

31 MSK_DINF_QCQO_REFORMULATE_TIME

Time spent with QP reformulation.

53 MSK_DINF_SOL_ITR_DUAL_OBJ

Dual objective value of the interior-point solution. Updated at the end of the optimization.

	c	•	
continued	from	previous	page

49 MSK_DINF_SOL_INT_MAX_PBI

Maximal primal bound infeasibility in the integer solution. Updated at the end of the optimization.

8 MSK_DINF_INTPNT_DUAL_FEAS

Dual feasibility measure reported by the interior-point and Qcone optimizer. (For the interior-point optimizer this measure does not directly related to the original problem because a homogeneous model is employed.)

7 MSK_DINF_CONCURRENT_TIME

Time spent within the concurrent optimizer since its invocation.

11 MSK_DINF_INTPNT_KAP_DIV_TAU

This measure should converge to zero if the problem has a primaldual optimal solution or to infinity if problem is (strictly) primal or dual infeasible. In case the measure is converging towards a positive but bounded constant the problem is usually ill-posed.

50 MSK_DINF_SOL_INT_MAX_PEQI

Maximal primal equality infeasibility in the basic solution. Updated at the end of the optimization.

61 MSK_DINF_SOL_ITR_PRIMAL_OBJ

Primal objective value of the interior-point solution. Updated at the end of the optimization.

35 MSK_DINF_SIM_NETWORK_DUAL_TIME

Time spent in the dual network simplex optimizer since invoking it.

20 MSK_DINF_MIO_OBJ_INT

The primal objective value corresponding to the best integer feasible solution. Please note that at least one integer feasible solution must have located i.e. check MSK_IINF_MIO_NUM_INT_SOLUTIONS.

26 MSK_DINF_MIO_USER_OBJ_CUT

If the objective cut is used, then this information item has the value of the cut.

43 MSK_DINF_SOL_BAS_MAX_DBI

Maximal dual bound infeasibility in the basic solution. Updated at the end of the optimization.

46 MSK_DINF_SOL_BAS_MAX_PEQI

Maximal primal equality infeasibility in the basic solution. Updated at the end of the optimization.

19 MSK_DINF_MIO_OBJ_BOUND

The best known bound on the objective function. This value is undefined until at least one relaxation has been solved: To see if this is the case check that MSK_IINF_MIO_NUM_RELAX is strictly positive.

0 MSK_DINF_BI_CLEAN_DUAL_TIME

Time spent within the dual clean-up optimizer of the basis identification procedure since its invocation.

6 MSK_DINF_BI_TIME

Time spent within the basis identification procedure since its invocation.

42 MSK_DINF_SOL_BAS_DUAL_OBJ

Dual objective value of the basic solution. Updated at the end of the optimization.

1 MSK_DINF_BI_CLEAN_PRIMAL_DUAL_TIME

Time spent within the primal-dual clean-up optimizer of the basis identification procedure since its invocation.

14 MSK_DINF_INTPNT_PRIMAL_OBJ

Primal objective value reported by the interior-point or Qcone optimizer.

12 MSK_DINF_INTPNT_ORDER_TIME

Order time (in seconds).

52 MSK_DINF_SOL_INT_PRIMAL_OBJ

Primal objective value of the integer solution. Updated at the end of the optimization.

5 MSK_DINF_BI_PRIMAL_TIME

Time spent within the primal phase of the basis identification procedure since its invocation.

18 MSK_DINF_MIO_OBJ_ABS_GAP

Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal objective value, then this item contains the absolute gap defined by

(objective value of feasible solution) – (objective bound).

Otherwise it has the value -1.0.

44 MSK_DINF_SOL_BAS_MAX_DEQI

Maximal dual equality infeasibility in the basic solution. Updated at the end of the optimization.

59 MSK_DINF_SOL_ITR_MAX_PEQI

continued from previous page	
	Maximal primal equality infeasibility in the interior-point solution.
	Updated at the end of the optimization.
39	MSK_DINF_SIM_PRIMAL_DUAL_TIME
	Time spent in the primal-dual simplex optimizer optimizer since in-
	voking it.
2	MSK_DINF_BI_CLEAN_PRIMAL_TIME
	Time spent within the primal clean-up optimizer of the basis identi-
	fication procedure since its invocation.
54	MSK_DINF_SOL_ITR_MAX_DBI
	Maximal dual bound infeasibility in the interior-point solution. Up-
	dated at the end of the optimization.
23	MSK_DINF_MIO_ROOT_OPTIMIZER_TIME
	Time spent in the optimizer while solving the root relaxation.

F.14 Double parameters

T. 1	
Value	Name
	Description
40	MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
	If the lower objective cut is less than the value of this parameter value,
	then the lower objective cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated
	as $-\infty$.
43	MSK_DPAR_MIO_MAX_TIME
	This parameter limits the maximum time spent by the mixed-integer
	optimizer. A negative number means infinity.
2	MSK_DPAR_BASIS_TOL_S
	Maximum absolute dual bound violation in an optimal basic solution.
60	MSK_DPAR_PRESOLVE_TOL_S
	Absolute zero tolerance employed for s_i in the presolve.
65	MSK_DPAR_UPPER_OBJ_CUT
	If either a primal or dual feasible solution is found proving that
	the optimal objective value is outside, [MSK_DPAR_LOWER_OBJ_CUT,
	MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is terminated.
16	MSK_DPAR_INTPNT_CO_TOL_DFEAS
	Dual feasibility tolerance used by the conic interior-point optimizer.
8	MSK_DPAR_DATA_TOL_AIJ_LARGE
	An element in A which is larger than this value in absolute size causes
	a warning message to be printed.
	continued on next page

40	
continued from previous page	

49 MSK_DPAR_MIO_TOL_ABS_GAP

Absolute optimality tolerance employed by the mixed-integer optimizer.

66 MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

If the upper objective cut is greater than the value of this value parameter, then the upper objective cut MSK_DPAR_UPPER_OBJ_CUT is treated as ∞ .

50 MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute relaxation tolerance of the integer constraints. I.e. $\min(|x| - \lfloor x \rfloor, \lceil x \rceil - |x|)$ is less than the tolerance then the integer restrictions assumed to be satisfied.

56 MSK_DPAR_NONCONVEX_TOL_OPT

Optimality tolerance used by the nonconvex optimizer.

55 MSK_DPAR_NONCONVEX_TOL_FEAS

Feasibility tolerance used by the nonconvex optimizer.

64 MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Absolute pivot tolerance employed by the simplex optimizers.

42 MSK_DPAR_MIO_HEURISTIC_TIME

Minimum amount of time to be used in the heuristic search for a good feasible integer solution. A negative values implies that the optimizer decides the amount of time to be spent in the heuristic.

5 MSK_DPAR_CHECK_CONVEXITY_REL_TOL

This parameter controls when the full convexity check declares a problem to be non-convex. Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the cholesky factor of a matrix which is required to be PSD (NSD). This parameter controles how much this non-negativity requirement may be violated.

If d_i is the pivot element for column i, then the matrix Q is considered to not be PSD if:

$$d_i \leq -|Q_{ii}| * \texttt{check_convexity_rel_tol}$$

61 MSK_DPAR_PRESOLVE_TOL_X

Absolute zero tolerance employed for x_i in the presolve.

24 MSK_DPAR_INTPNT_NL_TOL_MU_RED

Relative complementarity gap tolerance.

46 MSK_DPAR_MIO_NEAR_TOL_REL_GAP

The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination criteria is delayed. See MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

6 MSK_DPAR_DATA_TOL_AIJ

Absolute zero tolerance for elements in A. If any value A_{ij} is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate a warning.

15 MSK_DPAR_FEASREPAIR_TOL

Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

30 MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly.

51 MSK_DPAR_MIO_TOL_FEAS

Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below this value will be considered feasible.

31 MSK_DPAR_INTPNT_TOL_INFEAS

Controls when the optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

25 MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the prescribed accuracy, then it will multiply the termination tolerances with value of this parameter. If the solution then satisfies the termination criteria, then the solution is denoted near optimal, near feasible and so forth.

57 MSK_DPAR_OPTIMIZER_MAX_TIME

Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number means infinity.

14 MSK_DPAR_DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less than this value, then the lower and lower bound is considered identical.

0 MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this value, the constraint name, index and violation will be printed by the solution analyzer.

47 MSK_DPAR_MIO_REL_ADD_CUT_LIMITED

Controls how many cuts the mixed-integer optimizer is allowed to add to the problem. Let α be the value of this parameter and m the number constraints, then mixed-integer optimizer is allowed to αm cuts.

- 32 MSK_DPAR_INTPNT_TOL_MU_RED
 - Relative complementarity gap tolerance.
- 18 MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point optimizer.

- 21 MSK_DPAR_INTPNT_CO_TOL_REL_GAP
 - Relative gap termination tolerance used by the conic interior-point optimizer.
- 39 MSK_DPAR_LOWER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is outside, the interval [MSK_DPAR_LOWER_OBJ_CUT, MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is terminated.

- 41 MSK_DPAR_MIO_DISABLE_TERM_TIME
 - The termination criteria governed by
 - MSK_IPAR_MIO_MAX_NUM_RELAXS
 - MSK IPAR MIO MAX NUM BRANCHES
 - MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
 - MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled the first n seconds. This parameter specifies the number n. A negative value is identical to infinity i.e. the termination criteria are never checked.

- 37 MSK_DPAR_INTPNT_TOL_REL_STEP
 - Relative step size to the boundary for linear and quadratic optimization problems.
- 54 MSK_DPAR_MIO_TOL_X
 - Absolute solution tolerance used in mixed-integer optimizer.
- 11 MSK_DPAR_DATA_TOL_C_HUGE
 - An element in c which is larger than the value of this parameter in absolute terms is considered to be huge and generates an error.
- 59 MSK_DPAR_PRESOLVE_TOL_LIN_DEP

Controls when a constraint is determined to be linearly dependent.

63 MSK_DPAR_SIM_LU_TOL_REL_PIV

Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase in the computational work.

12 MSK_DPAR_DATA_TOL_CJ_LARGE

An element in c which is larger than this value in absolute terms causes a warning message to be printed.

28 MSK_DPAR_INTPNT_NL_TOL_REL_STEP

Relative step size to the boundary for general nonlinear optimization problems.

38 MSK_DPAR_INTPNT_TOL_STEP_SIZE

If the step size falls below the value of this parameter, then the interior-point optimizer assumes that it is stalled. It it does not not make any progress.

34 MSK_DPAR_INTPNT_TOL_PFEAS

Primal feasibility tolerance used for linear and quadratic optimization problems.

1 MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic solution.

17 MSK_DPAR_INTPNT_CO_TOL_INFEAS

Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

48 MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to an integer optimization problem.

58 MSK_DPAR_PRESOLVE_TOL_AIJ

Absolute zero tolerance employed for a_{ij} in the presolve.

44 MSK_DPAR_MIO_MAX_TIME_APRX_OPT

Number of seconds spent by the mixed-integer optimizer before the MSK_DPAR_MIO_TOL_REL_RELAX_INT is applied.

33 MSK_DPAR_INTPNT_TOL_PATH

Controls how close the interior-point optimizer follows the central path. A large value of this parameter means the central is followed very closely. On numerical unstable problems it may be worthwhile to increase this parameter.

22 MSK_DPAR_INTPNT_NL_MERIT_BAL

Controls if the complementarity and infeasibility is converging to zero at about equal rates.

3 MSK_DPAR_BASIS_TOL_X

Maximum absolute primal bound violation allowed in an optimal basic solution.

36 MSK_DPAR_INTPNT_TOL_REL_GAP

Relative gap termination tolerance.

7 MSK_DPAR_DATA_TOL_AIJ_HUGE

An element in A which is larger than this value in absolute size causes an error.

10 MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a warning message is issued.

9 MSK_DPAR_DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is considered infinite.

35 MSK_DPAR_INTPNT_TOL_PSAFE

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be worth-while to increase this value.

19 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the termination tolerances with value of this parameter. If the solution then satisfies the termination criteria, then the solution is denoted near optimal, near feasible and so forth.

4 MSK_DPAR_CALLBACK_FREQ

Controls the time between calls to the progress call-back function. Hence, if the value of this parameter is for example 10, then the callback is called approximately each 10 seconds. A negative value is equivalent to infinity.

In general frequent call-backs may hurt the performance.

26 MSK_DPAR_INTPNT_NL_TOL_PFEAS

Primal feasibility tolerance used when a nonlinear model is solved.

continued from previous page	
23	MSK_DPAR_INTPNT_NL_TOL_DFEAS
	Dual feasibility tolerance used when a nonlinear model is solved.
52	MSK_DPAR_MIO_TOL_REL_GAP
	Relative optimality tolerance employed by the mixed-integer opti-
	mizer.
29	MSK_DPAR_INTPNT_TOL_DFEAS
	Dual feasibility tolerance used for linear and quadratic optimization
	problems.
45	MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
	Relaxed absolute optimality tolerance employed by the mixed-
	integer optimizer. This termination criteria is delayed. See
	MSK_DPAR_MIO_DISABLE_TERM_TIME for details.
53	MSK_DPAR_MIO_TOL_REL_RELAX_INT
	Relative relaxation tolerance of the integer constraints. I.e $\min(x -$
	$\lfloor x \rfloor, \lceil x \rceil - x)$ is less than the tolerance times $ x $ then the integer
60	restrictions assumed to be satisfied.
62	MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
	This parameter determines when columns are dropped in incomplete
19	cholesky factorization doing reformulation of quadratic problems.
13	MSK_DPAR_DATA_TOL_QIJ
97	Absolute zero tolerance for elements in Q matrices.
27	MSK_DPAR_INTPNT_NL_TOL_REL_GAP Deletive gen tempinetien telepanee for monlineer problems
20	Relative gap termination tolerance for nonlinear problems.
20	MSK_DPAR_INTPNT_CO_TOL_PFEAS Drived feesibility telegrange used by the conic interior point entimizer
	Primal feasibility tolerance used by the conic interior-point optimizer.

F.15 Feasibility repair types

Value	Name
	Description
0	MSK_FEASREPAIR_OPTIMIZE_NONE
	Do not optimize the feasibility repair problem.
2	MSK_FEASREPAIR_OPTIMIZE_COMBINED
	Minimize with original objective subject to minimal weighted viola-
	tion of bounds.
1	MSK_FEASREPAIR_OPTIMIZE_PENALTY
	Minimize weighted sum of violations.

F.16 License feature

Value	Name
	Description
2	MSK_FEATURE_PTOM
	Mixed-integer extension.
1	MSK_FEATURE_PTON
	Nonlinear extension.
0	MSK_FEATURE_PTS
	Base system.
3	MSK_FEATURE_PTOX
	Non-convex extension.

F.17 Integer information items.

Value	Name
	Description
57	MSK_IINF_RD_NUMINTVAR
	Number of integer-constrained variables read.
90	MSK_IINF_SOL_BAS_SOLSTA
	Solution status of the basic solution. Updated after each optimiza-
	tion.
97	MSK_IINF_STO_NUM_A_TRANSPOSES
	Number of times the A matrix is transposed. A large number implies
	that maxnumanz is too small or an inefficient usage of MOSEK. This
	will occur in particular if the code alternate between accessing rows
	and columns of A .
48	MSK_IINF_MIO_TOTAL_NUM_OBJ_CUTS
	Number of obj cuts.
88	MSK_IINF_SIM_SOLVE_DUAL
	Is non-zero if dual problem is solved.
30	MSK_IINF_MIO_NUMCON
	Number of constraints in the problem solved be the mixed-integer
.	optimizer.
53	MSK_IINF_OPT_NUMVAR
	Number of variables in the problem solved when the optimizer is
	called
77	MSK_IINF_SIM_NUMVAR
	continued on next page

contin	continued from previous page	
	Number of variables in the problem solved by the simplex optimizer.	
46	MSK_IINF_MIO_TOTAL_NUM_LATTICE_CUTS	
	Number of lattice cuts.	
71	MSK_IINF_SIM_NETWORK_PRIMAL_DEG_ITER	
	The number of primal network degenerate iterations.	
58	MSK_IINF_RD_NUMQ	
	Number of nonempty Q matrices read.	
0	MSK_IINF_ANA_PRO_NUM_CON	
	Number of constraints in the problem.	
19	MSK_IINF_INTPNT_FACTOR_NUM_OFFCOL	
	Number of columns in the constraint matrix (or Jacobian) that has	
	an offending structure.	
11	MSK_IINF_ANA_PRO_NUM_VAR_INT	
	Number of general integer variables.	
69	MSK_IINF_SIM_NETWORK_DUAL_INF_ITER	
	The number of iterations taken with dual infeasibility in the network	
	optimizer.	
8	MSK_IINF_ANA_PRO_NUM_VAR_CONT	
	Number of continuous variables.	
65	MSK_IINF_SIM_DUAL_ITER	
	Number of dual simplex iterations during the last optimization.	
61	MSK_IINF_SIM_DUAL_DEG_ITER	
	The number of dual degenerate iterations.	
20	MSK_IINF_INTPNT_ITER	
	Number of interior-point iterations since invoking the interior-point	
	optimizer.	
45	MSK_IINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS	
	Number of knapsack cover cuts.	
33	MSK_IINF_MIO_TOTAL_NUM_BASIS_CUTS	
	Number of basis cuts.	
76	MSK_IINF_SIM_NUMCON	
	Number of constraints in the problem solved by the simplex optimizer.	
83	MSK_IINF_SIM_PRIMAL_DUAL_ITER	
	Number of primal dual simplex iterations during the last optimiza-	
	tion.	
5	MSK_IINF_ANA_PRO_NUM_CON_UP	
	Number of constraints with an upper bound and an infinite lower	
	bound.	
36	MSK_IINF_MIO_TOTAL_NUM_CLIQUE_CUTS	

contin	ued from previous page
	Number of clique cuts.
80	MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART
	If 1 then the primal dual simplex algorithm is solving from an ad-
	vanced basis.
22	MSK_IINF_INTPNT_SOLVE_DUAL
	Non-zero if the interior-point optimizer is solving the dual problem.
67	MSK_IINF_SIM_NETWORK_DUAL_HOTSTART
	If 1 then the dual network simplex algorithm is solving from an ad-
	vanced basis.
54	MSK_IINF_OPTIMIZE_RESPONSE
	The reponse code returned by optimize.
93	MSK_IINF_SOL_ITR_PROSTA
	Problem status of the interior-point solution. Updated after each
	optimization.
60	MSK_IINF_RD_PROTYPE
	Problem type.
94	MSK_IINF_SOL_ITR_SOLSTA
	Solution status of the interior-point solution. Updated after each
	optimization.
2	MSK_IINF_ANA_PRO_NUM_CON_FR
	Number of unbounded constraints.
81	MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART_LU
	If 1 then a valid basis factorization of full rank was located and used
	by the primal dual simplex algorithm.
31	MSK_IINF_MIO_NUMINT
	Number of integer variables in the problem solved be the mixed-
	integer optimizer.
35	MSK_IINF_MIO_TOTAL_NUM_CARDGUB_CUTS
	Number of cardgub cuts.
38	MSK_IINF_MIO_TOTAL_NUM_CONTRA_CUTS
	Number of contra cuts.
49	MSK_IINF_MIO_TOTAL_NUM_PLAN_LOC_CUTS
	Number of loc cuts.
64	MSK_IINF_SIM_DUAL_INF_ITER
	The number of iterations taken with dual infeasibility.
32	MSK_IINF_MIO_NUMVAR
	Number of variables in the problem solved be the mixed-integer op-
	timizer.
27	MSK_IINF_MIO_NUM_CUTS
	continued on next page

Number of cuts generated by the mixed-integer optimizer.

- 23 MSK_IINF_MIO_CONSTRUCT_SOLUTION
 - If this item has the value 0, then MOSEK did not try to construct an initial integer feasible solution. If the item has a positive value, then MOSEK successfully constructed an initial integer feasible solution.
- 6 MSK_IINF_ANA_PRO_NUM_VAR
 - Number of variables in the problem.
- 95 MSK_IINF_STO_NUM_A_CACHE_FLUSHES

Number of times the cache of A elements is flushed. A large number implies that maxnumanz is too small as well as an inefficient usage of MOSEK.

- 91 MSK_IINF_SOL_INT_PROSTA
 - Problem status of the integer solution. Updated after each optimization.
- 66 MSK_IINF_SIM_NETWORK_DUAL_DEG_ITER
 - The number of dual network degenerate iterations.
- 92 MSK_IINF_SOL_INT_SOLSTA
 - Solution status of the integer solution. Updated after each optimization.
- 15 MSK_IINF_CACHE_SIZE_L1
 - L1 cache size used.
- 16 MSK_IINF_CACHE_SIZE_L2
 - L2 cache size used.
- 59 MSK_IINF_RD_NUMVAR
 - Number of variables read.
- 79 MSK_IINF_SIM_PRIMAL_DUAL_DEG_ITER
 - The number of degenerate major iterations taken by the primal dual simplex algorithm.
- 12 MSK_IINF_ANA_PRO_NUM_VAR_LO
 - Number of variables with a lower bound and an infinite upper bound.
- 47 MSK_IINF_MIO_TOTAL_NUM_LIFT_CUTS
 - Number of lift cuts.
- 89 MSK_IINF_SOL_BAS_PROSTA
 - Problem status of the basic solution. Updated after each optimization.
- 75 MSK_IINF_SIM_NETWORK_PRIMAL_ITER
 - Number of primal network simplex iterations during the last optimization.
- 3 MSK_IINF_ANA_PRO_NUM_CON_LO

contin	nued from previous page
	Number of constraints with a lower bound and an infinite upper
	bound.
44	MSK_IINF_MIO_TOTAL_NUM_GUB_COVER_CUTS
	Number of GUB cover cuts.
68	MSK_IINF_SIM_NETWORK_DUAL_HOTSTART_LU
	If 1 then a valid basis factorization of full rank was located and used
	by the dual network simplex algorithm.
74	MSK_IINF_SIM_NETWORK_PRIMAL_INF_ITER
	The number of iterations taken with primal infeasibility in the net-
	work optimizer.
84	MSK_IINF_SIM_PRIMAL_HOTSTART
	If 1 then the primal simplex algorithm is solving from an advanced
	basis.
26	MSK_IINF_MIO_NUM_BRANCH
	Number of branches performed during the optimization.
96	MSK_IINF_STO_NUM_A_REALLOC
	Number of times the storage for storing A has been changed. A large
	value may indicates that memory fragmentation may occur.
29	MSK_IINF_MIO_NUM_RELAX
	Number of relaxations solved during the optimization.
34	MSK_IINF_MIO_TOTAL_NUM_BRANCH
	Number of branches performed during the optimization.
42	MSK_IINF_MIO_TOTAL_NUM_GCD_CUTS
	Number of gcd cuts.
41	MSK_IINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS
	Number of flow cover cuts.
28	MSK_IINF_MIO_NUM_INT_SOLUTIONS
	Number of integer feasible solutions that has been found.
85	MSK_IINF_SIM_PRIMAL_HOTSTART_LU
	If 1 then a valid basis factorization of full rank was located and used
	by the primal simplex algorithm.
18	MSK_IINF_CPU_TYPE
	The type of cpu detected.
1	MSK_IINF_ANA_PRO_NUM_CON_EQ
	Number of equality constraints.
13	MSK_IINF_ANA_PRO_NUM_VAR_RA
	Number of variables with finite lower and upper bounds.
86	MSK_IINF_SIM_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.

continu	ed from previous page
55	MSK_IINF_RD_NUMCON
33	Number of constraints read.
56	MSK_IINF_RD_NUMCONE
	Number of conic constraints read.
10	MSK_IINF_ANA_PRO_NUM_VAR_FR
	Number of free variables.
25	MSK_IINF_MIO_NUM_ACTIVE_NODES
	Number of active nodes in the branch and bound tree.
50	MSK_IINF_MIO_TOTAL_NUM_RELAX
	Number of relaxations solved during the optimization.
7	MSK_IINF_ANA_PRO_NUM_VAR_BIN
	Number of binary (0-1) variables.
73	MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART_LU
	If 1 then a valid basis factorization of full rank was located and used
	by the primal network simplex algorithm.
87	MSK_IINF_SIM_PRIMAL_ITER
	Number of primal simplex iterations during the last optimization.
62	MSK_IINF_SIM_DUAL_HOTSTART
	If 1 then the dual simplex algorithm is solving from an advanced basis.
24	MSK_IINF_MIO_INITIAL_SOLUTION
	Is non-zero if an initial integer solution is specified.
21	MSK_IINF_INTPNT_NUM_THREADS
	Number of threads that the interior-point optimizer is using.
63	MSK_IINF_SIM_DUAL_HOTSTART_LU
	If 1 then a valid basis factorization of full rank was located and used
	by the dual simplex algorithm.
14	MSK_IINF_ANA_PRO_NUM_VAR_UP
	Number of variables with an upper bound and an infinite lower bound.
	This value is set by
70	MSK_IINF_SIM_NETWORK_DUAL_ITER
	Number of dual network simplex iterations during the last optimiza-
	tion.
9	MSK_IINF_ANA_PRO_NUM_VAR_EQ
	Number of fixed variables.
17	MSK_IINF_CONCURRENT_FASTEST_OPTIMIZER
	The type of the optimizer that finished first in a concurrent optimiza-
	tion.
51	MSK_IINF_MIO_USER_OBJ_CUT
	If it is non-zero, then the objective cut is used.
	continued on next page

contin	continued from previous page	
43	MSK_IINF_MIO_TOTAL_NUM_GOMORY_CUTS	
	Number of Gomory cuts.	
72	MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART	
	If 1 then the primal network simplex algorithm is solving from an	
	advanced basis.	
40	MSK_IINF_MIO_TOTAL_NUM_DISAGG_CUTS	
	Number of diasagg cuts.	
37	MSK_IINF_MIO_TOTAL_NUM_COEF_REDC_CUTS	
	Number of coef. redc. cuts.	
82	MSK_IINF_SIM_PRIMAL_DUAL_INF_ITER	
	The number of master iterations with dual infeasibility taken by the	
	primal dual simplex algorithm.	
4	MSK_IINF_ANA_PRO_NUM_CON_RA	
	Number of constraints with finite lower and upper bounds.	
39	MSK_IINF_MIO_TOTAL_NUM_CUTS	
	Total number of cuts generated by the mixed-integer optimizer.	
52	MSK_IINF_OPT_NUMCON	
	Number of constraints in the problem solved when the optimizer is	
	called.	
78	MSK_IINF_SIM_PRIMAL_DEG_ITER	
	The number of primal degenerate iterations.	

F.18 Information item types

Value	Name
	Description
0	MSK_INF_DOU_TYPE
	Is a double information type.
2	MSK_INF_LINT_TYPE
	Is a long integer.
1	MSK_INF_INT_TYPE
	Is an integer.

F.19 Input/output modes

Value	Name
	Description
0	MSK_IOMODE_READ
	The file is read-only.
1	MSK_IOMODE_WRITE
	The file is write-only. If the file exists then it is truncated when it is
	opened. Otherwise it is created when it is opened.
2	MSK_IOMODE_READWRITE
	The file is to read and written.

F.20 Integer parameters

Value	Name
	Description
175	MSK_IPAR_SIM_STABILITY_PRIORITY
	Controls how high priority the numerical stability should be given.
125	MSK_IPAR_READ_ADD_CONE
	Additional number of conic constraints that is made room for in the
	problem.
166	MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
	An exprimental feature.
204	MSK_IPAR_WRITE_MPS_STRICT
	Controls whether the written MPS file satisfies the MPS format
	strictly or not.
25	MSK_IPAR_INFEAS_REPORT_AUTO
	Controls whether an infeasibility report is automatically produced
	after the optimization if the problem is primal or dual infeasible.
93	MSK_IPAR_MIO_NODE_OPTIMIZER
	Controls which optimizer is employed at the non-root nodes in the
	mixed-integer optimizer.
118	MSK_IPAR_PRESOLVE_LEVEL
	Currently not used.
127	MSK_IPAR_READ_ADD_VAR
	Additional number of variables that is made room for in the problem.
121	MSK_IPAR_PRESOLVE_USE
	Controls whether the presolve is applied to a problem before it is
	optimized.
70	MSK_IPAR_LOG_SENSITIVITY_OPT
	continued on next page

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0 means no logging information is produced.

- 109 MSK_IPAR_OPF_WRITE_SOL_ITG
 - If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined, write the integer solution in OPF files.
- 186 MSK_IPAR_WRITE_BAS_HEAD
 - Controls whether the header section is written to the basic solution file.
- 79 MSK_IPAR_MIO_BRANCH_PRIORITIES_USE
 Controls whether branching priorities are used by the mixed-integer optimizer.
- 83 MSK_IPAR_MIO_CUT_LEVEL_TREE

 Controls the cut level employed by the mixed-integer optimizer at

the tree. See MSK_IPAR_MIO_CUT_LEVEL_ROOT for an explanation of the parameter values.

188 MSK_IPAR_WRITE_DATA_COMPRESSED

Controls whether the data file is compressed while it is written. 0 means no compression while higher values mean more compression.

- 140 MSK_IPAR_READ_MPS_RELAX
 - If this option is turned on, then mixed integer constraints are ignored when a problem is read.
- 106 MSK_IPAR_OPF_WRITE_PARAMETERS
 - Write a parameter section in an OPF file.
- 129 MSK_IPAR_READ_CON
 - Expected maximum number of constraints to be read. The option is only used by fast MPS and LP file readers.
- 196 MSK_IPAR_WRITE_INT_VARIABLES
 - Controls whether the variables section is written to the integer solution file.
- 123 MSK_IPAR_READ_ADD_ANZ
 - Additional number of non-zeros in A that is made room for in the problem.
- 36 MSK_IPAR_INTPNT_ORDER_METHOD
 - Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation system.
- 110 MSK_IPAR_OPF_WRITE_SOL_ITR
 - If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined, write the interior solution in OPF files.
- 69 MSK_IPAR_LOG_SENSITIVITY

Controls the amount of logging during the sensitivity analysis. 0: Means no logging information is produced. 1: Timing information is printed. 2: Sensitivity results are printed.

143 MSK_IPAR_READ_QNZ

Expected maximum number of Q non-zeros to be read. The option is used only by MPS and LP file readers.

59 MSK_IPAR_LOG_INFEAS_ANA

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies that more information is logged.

168 MSK_IPAR_SIM_PRIMAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex optimizer.

194 MSK_IPAR_WRITE_INT_CONSTRAINTS

Controls whether the constraint section is written to the integer solution file.

199 MSK_IPAR_WRITE_LP_STRICT_FORMAT

Controls whether LP output files satisfy the LP format strictly.

148 MSK_IPAR_SENSITIVITY_TYPE

Controls which type of sensitivity analysis is to be performed.

153 MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first choose a subset of all the potential outgoing variables. Next, for some time it will choose the outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

62 MSK_IPAR_LOG_MIO_FREQ

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

108 MSK_IPAR_OPF_WRITE_SOL_BAS

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is defined, include the basic solution in OPF files.

14 MSK_IPAR_CHECK_TASK_DATA

If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before an optimization is performed.

contin	ued from previous page
99	MSK_IPAR_MIO_ROOT_OPTIMIZER
	Controls which optimizer is employed at the root node in the mixed-
	integer optimizer.
191	MSK_IPAR_WRITE_FREE_CON
	Controls whether the free constraints are written to the data file.
115	MSK_IPAR_PRESOLVE_ELIM_FILL
	Controls the maximum amount of fill-in that can be created dur-
	ing the elimination phase of the presolve. This parameter times
	(numcon+numvar) denotes the amount of fill-in.
101	MSK_IPAR_NONCONVEX_MAX_ITERATIONS
	Maximum number of iterations that can be used by the nonconvex
	optimizer.
88	MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER
	Controls the size of the local search space when doing local branching.
192	MSK_IPAR_WRITE_GENERIC_NAMES
	Controls whether the generic names or user-defined names are used
	in the data file.
184	MSK_IPAR_WARNING_LEVEL
	Warning level.
51	MSK_IPAR_LOG_BI_FREQ
	Controls how frequent the optimizer outputs information about the
	basis identification and how frequent the user-defined call-back func-
	tion is called.
16	MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX
	Priority of the dual simplex algorithm when selecting solvers for con-
	current optimization.
67	MSK_IPAR_LOG_PRESOLVE
	Controls amount of output printed by the presolve procedure. A
100	higher level implies that more information is logged.
126	MSK_IPAR_READ_ADD_QNZ
	Additional number of non-zeros in the Q matrices that is made room
200	for in the problem.
206	MSK_IPAR_WRITE_SOL_CONSTRAINTS
25	Controls whether the constraint section is written to the solution file.
35	MSK_IPAR_INTPNT_OFF_COL_TRH
	continued on next page

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

128 MSK_IPAR_READ_ANZ

Expected maximum number of A non-zeros to be read. The option is used only by fast MPS and LP file readers.

92 MSK_IPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer optimization problem.

134 MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU

If this option is turned on, MOSEK will drop variables that are defined for the first time in the bounds section.

71 MSK_IPAR_LOG_SIM

Controls amount of output printed by the simplex optimizer. A higher level implies that more information is logged.

41 MSK_IPAR_LIC_TRH_EXPIRY_WRN

If a license feature expires in a numbers days less than the value of this parameter then a warning will be issued.

182 MSK_IPAR_SOLUTION_CALLBACK

Indicates whether solution call-backs will be performed during the optimization.

173 MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.

72 MSK_IPAR_LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information about the optimization and how frequent the user-defined call-back function is called.

63 MSK_IPAR_LOG_NONCONVEX

Controls amount of output printed by the nonconvex optimizer.

22 MSK_IPAR_FEASREPAIR_OPTIMIZE

Controls which type of feasibility analysis is to be performed.

198 MSK_IPAR_WRITE_LP_QUOTED_NAMES

If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

55 MSK_IPAR_LOG_FACTOR

If turned on, then the factor log lines are added to the log.

4 MSK_IPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically updated after an optimization is performed.

203 MSK_IPAR_WRITE_MPS_QUOTED_NAMES

If a name contains spaces (blanks) when writing an MPS file, then the quotes will be removed.

141 MSK_IPAR_READ_MPS_WIDTH

Controls the maximal number of characters allowed in one line of the MPS file.

183 MSK_IPAR_TIMING_LEVEL

Controls the a amount of timing performed inside MOSEK.

65 MSK_IPAR_LOG_ORDER

If turned on, then factor lines are added to the log.

82 MSK_IPAR_MIO_CUT_LEVEL_ROOT

Controls the cut level employed by the mixed-integer optimizer at the root node. A negative value means a default value determined by the mixed-integer optimizer is used. By adding the appropriate values from the following table the employed cut types can be controlled.

GUB cover +2Flow cover +4Lifting +8Plant location +16Disaggregation +32Knapsack cover +64Lattice +128+256Gomory Coefficient reduction +512GCD +1024Obi. integrality +2048

5 MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with -1 in the right position. However, if this parameter is set to MSK_ON, -1 is replaced by 1.

8 MSK_IPAR_BI_IGNORE_NUM_ERROR

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point optimizer has terminated due to a numerical problem, then basis identification is performed if this parameter has the value MSK_ON.

94 MSK_IPAR_MIO_NODE_SELECTION

Controls the node selection strategy employed by the mixed-integer optimizer.

2 MSK_IPAR_ANA_SOL_PRINT_VIOLATED

181 MSK_IPAR_SOL_READ_WIDTH

Controls the maximal acceptable width of line in the solutions when read by MOSEK.

120 MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM

Is used to limit the amount of work that can done to locate linear dependencies. In general the higher value this parameter is given the less work can be used. However, a value of 0 means no limit on the amount work that can be used.

33 MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

Maximum number of steps to be used by the iterative refinement of the search direction. A negative value implies that the optimizer Chooses the maximum number of iterative refinement steps.

124 MSK_IPAR_READ_ADD_CON

Additional number of constraints that is made room for in the problem.

53 MSK_IPAR_LOG_CONCURRENT

Controls amount of output printed by the concurrent optimizer.

73 MSK_IPAR_LOG_SIM_MINOR

Currently not in use.

159 MSK_IPAR_SIM_MAX_ITERATIONS

Maximum number of iterations that can be used by a simplex optimizer

31 MSK_IPAR_INTPNT_MAX_ITERATIONS

Controls the maximum number of iterations allowed in the interiorpoint optimizer.

20 MSK_IPAR_CPU_TYPE

Specifies the CPU type. By default MOSEK tries to auto detect the CPU type. Therefore, we recommend to change this parameter only if the auto detection does not work properly.

50 MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.

32 MSK_IPAR_INTPNT_MAX_NUM_COR

Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value means that MOSEK is making the choice.

- 197 MSK_IPAR_WRITE_LP_LINE_WIDTH
 - Maximum width of line in an LP file written by MOSEK.
- 180 MSK_IPAR_SOL_READ_NAME_WIDTH

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks, then a maximum name width much be specified. A negative value implies that no name contain blanks.

- 45 MSK_IPAR_LICENSE_DEBUG
 - This option is used to turn on debugging of the incense manager.
- 48 MSK_IPAR_LICENSE_WAIT

If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter MOSEK will wait for an available license.

- 1 MSK_IPAR_ANA_SOL_BASIS
 - Controls whether the basis matrix is analyzed in solaution analyzer.
- 116 MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
 - Control the maximum number of times the eliminator is tried.
- 193 MSK_IPAR_WRITE_GENERIC_NAMES_IO
 - Index origin used in generic names.
- 15 MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS

The maximum number of simultaneous optimizations that will be started by the concurrent optimizer.

- 169 MSK_IPAR_SIM_REFACTOR_FREQ
 - Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines the best point of refactorization.
 - It is strongly recommended NOT to change this parameter.
- 154 MSK_IPAR_SIM_DUAL_SELECTION
 - Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex optimizer.
- 174 MSK_IPAR_SIM_SOLVE_FORM
 - Controls whether the primal or the dual problem is solved by the primal-/dual- simplex optimizer.
- 13 MSK_IPAR_CHECK_CONVEXITY
 - Specify the level of convexity check on quadratic problems
- 122 MSK_IPAR_QO_SEPARABLE_REFORMULATION
 - Determine if Quadratic programing problems should be reformulated to separable form.

	ed from previous page
76	MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS
	Controls the result of writing a problem containing incompatible items
	to an LP file.
144	MSK_IPAR_READ_TASK_IGNORE_PARAM
	Controls whether MOSEK should ignore the parameter setting de-
	fined in the task file and use the default parameter setting instead.
95	MSK_IPAR_MIO_OPTIMIZER_MODE
	An exprimental feature.
60	MSK_IPAR_LOG_INTPNT
	Controls amount of output printed printed by the interior-point op-
	timizer. A higher level implies that more information is logged.
61	MSK_IPAR_LOG_MIO
	Controls the log level for the mixed-integer optimizer. A higher level
	implies that more information is logged.
156	MSK_IPAR_SIM_HOTSTART
	Controls the type of hot-start that the simplex optimizer perform.
66	MSK_IPAR_LOG_PARAM
	Controls the amount of information printed out about parameter
	changes.
189	MSK_IPAR_WRITE_DATA_FORMAT
	Controls the file format when writing task data to a file.
155	MSK_IPAR_SIM_EXPLOIT_DUPVEC
	Controls if the simplex optimizers are allowed to exploit duplicated
	columns.
78	MSK_IPAR_MIO_BRANCH_DIR
	Controls whether the mixed-integer optimizer is branching up or down
	by default.
29	MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL
	Controls factorization debug level.
179	MSK_IPAR_SOL_QUOTED_NAMES
	If this options is turned on, then MOSEK will quote names that
	contains blanks while writing the solution file. Moreover when reading
	leading and trailing quotes will be stripped of.
46	MSK_IPAR_LICENSE_PAUSE_TIME
-	If MSK_IPAR_LICENSE_WAIT=MSK_ON and no license is available, then
	MOSEK sleeps a number of milliseconds between each check of
	whether a license has become free.
	whether a needle has become nee.
96	MSK_IPAR_MIO_PRESOLVE_AGGREGATE

Controls whether the presolve used by the mixed-integer optimizer tries to aggregate the constraints.

- 209 MSK_IPAR_WRITE_TASK_INC_SOL
 - Controls whether the solutions are stored in the task file too.
- 43 MSK_IPAR_LICENSE_CACHE_TIME
 Setting this parameter no longer has any effect. Please see
 MSK_IPAR_CACHE_LICENSE for an alternative.
- 9 MSK_IPAR_BI_MAX_ITERATIONS
 Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.
- 157 MSK_IPAR_SIM_HOTSTART_LU

 Determines if the simplex optimizer should exploit the initial factorization.
- 111 MSK_IPAR_OPF_WRITE_SOLUTIONS
 Enable inclusion of solutions in the OPF files.
- 162 MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART

 This parameter controls has large the network component in "relative" terms has to be before it is exploited in a simplex hot-start. The network component should be equal or larger than

max(MSK_IPAR_SIM_NETWORK_DETECT, MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)

before it is exploited. If this value is larger than 100 the network flow component is never detected or exploited.

- 119 MSK_IPAR_PRESOLVE_LINDEP_USE
 - Controls whether the linear constraints are checked for linear dependencies.
- 114 MSK_IPAR_PARAM_READ_IGN_ERROR
 - If turned on, then errors in paramter settings is ignored.
- 104 MSK_IPAR_OPF_WRITE_HEADER
 - Write a text header with date and MOSEK version in an OPF file.
- 81 MSK_IPAR_MIO_CONT_SOL
 - Controls the meaning of the interior-point and basic solutions in mixed integer problems.
- 102 MSK_IPAR_OBJECTIVE_SENSE
 - If the objective sense for the task is undefined, then the value of this parameter is used as the default objective sense.
- 195 MSK_IPAR_WRITE_INT_HEAD

Controls whether the header section is written to the integer solution file.

40 MSK_IPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.

49 MSK_IPAR_LOG

Controls the amount of log information. The value 0 implies that all log information is suppressed. A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any subsequent optimizations.

19 MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX

Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

138 MSK_IPAR_READ_MPS_OBJ_SENSE

If turned on, the MPS reader uses the objective sense section. Otherwise the MPS reader ignores it.

10 MSK_IPAR_CACHE_LICENSE

Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or returned to the server immediately after the optimization (off).

Check-in and check-out of licenses have an overhead. Frequent communication with the license server should be avoided.

74 MSK_IPAR_LOG_SIM_NETWORK_FREQ

Controls how frequent the network simplex optimizer outputs information about the optimization and how frequent the user-defined call-back function is called. The network optimizer will use a logging frequency equal to MSK_IPAR_LOG_SIM_FREQ times MSK_IPAR_LOG_SIM_NETWORK_FREQ.

28 MSK_IPAR_INTPNT_DIFF_STEP

Controls whether different step sizes are allowed in the primal and dual space.

172 MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

200 MSK_IPAR_WRITE_LP_TERMS_PER_LINE

Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

146 MSK_IPAR_SENSITIVITY_ALL

Not applicable.

178 MSK IPAR SOL FILTER KEEP RANGED

If turned on, then ranged constraints and variables are written to the solution file independent of the filter setting.

7 MSK_IPAR_BI_IGNORE_MAX_ITER

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point optimizer has terminated due to maximum number of iterations, then basis identification is performed if this parameter has the value MSK_ON.

56 MSK_IPAR_LOG_FEASREPAIR

Controls the amount of output printed when performing feasibility repair.

39 MSK_IPAR_INTPNT_SOLVE_FORM

Controls whether the primal or the dual problem is solved.

103 MSK_IPAR_OPF_MAX_TERMS_PER_LINE

The maximum number of terms (linear and quadratic) per line when an OPF file is written.

205 MSK_IPAR_WRITE_PRECISION

Controls the precision with which double numbers are printed in the MPS data file. In general it is not worthwhile to use a value higher than 15.

149 MSK_IPAR_SIM_BASIS_FACTOR_USE

Controls whether a (LU) factorization of the basis is used in a hotstart. Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in most cases there is a performance penanlty.

210 MSK_IPAR_WRITE_XML_MODE

Controls if linear coefficients should be written by row or column when writing in the XML file format.

37 MSK_IPAR_INTPNT_REGULARIZATION_USE

Controls whether regularization is allowed.

6 MSK_IPAR_BI_CLEAN_OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase.

97 MSK_IPAR_MIO_PRESOLVE_PROBING

Controls whether the mixed-integer presolve performs probing. Probing can be very time consuming.

42 MSK_IPAR_LICENSE_ALLOW_OVERUSE

Controls if license overuse is allowed when caching licenses

24 MSK_IPAR_INFEAS_PREFER_PRIMAL

If both certificates of primal and dual infeasibility are supplied then only the primal is used when this option is turned on.

187 MSK_IPAR_WRITE_BAS_VARIABLES

Controls whether the variables section is written to the basic solution file.

75 MSK_IPAR_LOG_STORAGE

When turned on, MOSEK prints messages regarding the storage usage and allocation.

98 MSK_IPAR_MIO_PRESOLVE_USE

Controls whether presolve is performed by the mixed-integer optimizer.

135 MSK_IPAR_READ_LP_QUOTED_NAMES

If a name is in quotes when reading an LP file, the quotes will be removed.

27 MSK_IPAR_INTPNT_BASIS

Controls whether the interior-point optimizer also computes an optimal basis.

54 MSK_IPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems, then the value of the log levels is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced by the value of this parameter for the second and any subsequent optimizations.

137 MSK_IPAR_READ_MPS_KEEP_INT

Controls whether MOSEK should keep the integer restrictions on the variables while reading the MPS file.

91 MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

The mixed-integer optimizer can be terminated after a certain number of different feasible solutions has been located. If this parameter has the value n and n is strictly positive, then the mixed-integer optimizer will be terminated when n feasible solutions have been located.

44 MSK_IPAR_LICENSE_CHECK_TIME

The parameter specifies the number of seconds between the checks of all the active licenses in the MOSEK environment license cache. These checks are performed to determine if the licenses should be returned to the server.

208 MSK_IPAR_WRITE_SOL_VARIABLES

continued from previous page Controls whether the variables section is written to the solution file. MSK_IPAR_SENSITIVITY_OPTIMIZER 147 Controls which optimizer is used for optimal partition sensitivity analvsis. 201 MSK_IPAR_WRITE_MPS_INT Controls if marker records are written to the MPS file to indicate whether variables are integer restricted. 160 MSK_IPAR_SIM_MAX_NUM_SETBACKS Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where the optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical problems. 21 MSK_IPAR_DATA_CHECK If this option is turned on, then extensive data checking is enabled. It will slow down MOSEK but on the other hand help locating bugs. MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX 17 Priority of the free simplex optimizer when selecting solvers for concurrent optimization. MSK_IPAR_READ_KEEP_FREE_CON 133 Controls whether the free constraints are included in the problem. 57 MSK_IPAR_LOG_FILE If turned on, then some log info is printed when a file is written or read. 18 MSK_IPAR_CONCURRENT_PRIORITY_INTPNT Priority of the interior-point algorithm when selecting solvers for concurrent optimization. 164 MSK_IPAR_SIM_NON_SINGULAR Controls if the simplex optimizer ensures a non-singular basis, if possible. 190 MSK_IPAR_WRITE_DATA_PARAM If this option is turned on the parameter settings are written to the data file as parameters. 150 MSK_IPAR_SIM_DEGEN Controls how aggressively degeneration is handled. 105 MSK_IPAR_OPF_WRITE_HINTS

Write a hint section with problem dimensions in the beginning of an

continued on next page

OPF file.

117

MSK_IPAR_PRESOLVE_ELIMINATOR_USE

Controls whether free or implied free variables are eliminated from the problem.

0 MSK_IPAR_ALLOC_ADD_QNZ

Additional number of Q non-zeros that are allocated space for when numanz exceeds maxnumqnz during addition of new Q entries.

86 MSK_IPAR_MIO_HOTSTART

Controls whether the integer optimizer is hot-started.

136 MSK_IPAR_READ_MPS_FORMAT

Controls how strictly the MPS file reader interprets the MPS format.

113 MSK_IPAR_PARAM_READ_CASE_NAME

If turned on, then names in the parameter file are case sensitive.

139 MSK_IPAR_READ_MPS_QUOTED_NAMES

If a name is in quotes when reading an MPS file, then the quotes will be removed.

64 MSK_IPAR_LOG_OPTIMIZER

Controls the amount of general optimizer information that is logged.

202 MSK_IPAR_WRITE_MPS_OBJ_SENSE

If turned off, the objective sense section is not written to the MPS file.

34 MSK_IPAR_INTPNT_NUM_THREADS

Controls the number of threads employed by the interior-point optimizer. If set to a positive number MOSEK will use this number of threads. If zero the number of threads used will equal the number of cores detected on the machine.

89 MSK_IPAR_MIO_MAX_NUM_BRANCHES

Maximum number of branches allowed during the branch and bound search. A negative value means infinite.

165 MSK_IPAR_SIM_PRIMAL_CRASH

Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

80 MSK_IPAR_MIO_CONSTRUCT_SOL

If set to MSK_ON and all integer variables have been given a value for which a feasible mixed integer solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing all integer values and solving the remaining problem.

3 MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Controls whether the elements in each column of A are sorted before an optimization is performed. This is not required but makes the optimization more deterministic.

100 MSK IPAR MIO STRONG BRANCH

The value specifies the depth from the root in which strong branching is used. A negative value means that the optimizer chooses a default value automatically.

152 MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

An exprimental feature.

158 MSK_IPAR_SIM_INTEGER

An exprimental feature.

167 MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer first choose a subset of all the potential incoming variables. Next, for some time it will choose the incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

130 MSK_IPAR_READ_CONE

Expected maximum number of conic constraints to be read. The option is used only by fast MPS and LP file readers.

112 MSK_IPAR_OPTIMIZER

The paramter controls which optimizer is used to optimize the task.

77 MSK_IPAR_MAX_NUM_WARNINGS

Waning level. A higher value results in more warnings.

47 MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.

207 MSK_IPAR_WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.

185 MSK_IPAR_WRITE_BAS_CONSTRAINTS

Controls whether the constraint section is written to the basic solution file.

84 MSK_IPAR_MIO_FEASPUMP_LEVEL

Feasibility pump is a heuristic designed to compute an initial feasible solution. A value of 0 implies that the feasibility pump heuristic is not used. A value of -1 implies that the mixed-integer optimizer decides how the feasibility pump heuristic is used. A larger value than 1 implies that the feasibility pump is employed more aggressively. Normally a value beyond 3 is not worthwhile.

23 MSK_IPAR_INFEAS_GENERIC_NAMES

Controls whether generic names are used when an infeasible subproblem is created.

161 MSK_IPAR_SIM_NETWORK_DETECT

The simplex optimizer is capable of exploiting a network flow component in a problem. However it is only worthwhile to exploit the network flow component if it is sufficiently large. This parameter controls how large the network component has to be in "relative" terms before it is exploited. For instance a value of 20 means at least 20% of the model should be a network before it is exploited. If this value is larger than 100 the network flow component is never detected or exploited.

68 MSK_IPAR_LOG_RESPONSE

Controls amount of output printed when response codes are reported. A higher level implies that more information is logged.

26 MSK_IPAR_INFEAS_REPORT_LEVEL

Controls the amount of information presented in an infeasibility report. Higher values imply more information.

11 MSK_IPAR_CACHE_SIZE_L1

Specifies the size of the cache of the computer. This parameter is potentially very important for the efficiency on computers if MOSEK cannot determine the cache size automatically. If the cache size is negative, then MOSEK tries to determine the value automatically.

12 MSK_IPAR_CACHE_SIZE_L2

Specifies the size of the cache of the computer. This parameter is potentially very important for the efficiency on computers where MO-SEK cannot determine the cache size automatically. If the cache size is negative, then MOSEK tries to determine the value automatically.

176 MSK_IPAR_SIM_SWITCH_OPTIMIZER

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem. This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized, then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is switched to the dual (primal).

131 MSK_IPAR_READ_DATA_COMPRESSED

If this option is turned on, it is assumed that the data file is compressed.

142 MSK_IPAR_READ_Q_MODE

Controls how the Q matrices are read from the MPS file.

107 MSK_IPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.

52 MSK_IPAR_LOG_CHECK_CONVEXITY

Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also shown.

132 MSK_IPAR_READ_DATA_FORMAT

Format of the data file to be read.

151 MSK_IPAR_SIM_DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer. In general if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

163 MSK_IPAR_SIM_NETWORK_DETECT_METHOD

Controls which type of detection method the network extraction should use.

145 MSK_IPAR_READ_VAR

Expected maximum number of variable to be read. The option is used only by MPS and LP file readers.

58 MSK_IPAR_LOG_HEAD

If turned on, then a header line is added to the log.

170 MSK_IPAR_SIM_REFORMULATION

Controls if the simplex optimizers are allowed to reformulate the problem.

171 MSK_IPAR_SIM_SAVE_LU

contini	continued from previous page	
	Controls if the LU factorization stored should be replaced with the	
	LU factorization corresponding to the initial basis.	
30	MSK_IPAR_INTPNT_FACTOR_METHOD	
	Controls the method used to factor the Newton equation system.	
90	MSK_IPAR_MIO_MAX_NUM_RELAXS	
	Maximum number of relaxations allowed during the branch and	
	bound search. A negative value means infinite.	
177	MSK_IPAR_SOL_FILTER_KEEP_BASIC	
	If turned on, then basic and super basic constraints and variables are	
	written to the solution file independent of the filter setting.	
85	MSK_IPAR_MIO_HEURISTIC_LEVEL	
	Controls the heuristic employed by the mixed-integer optimizer to lo-	
	cate an initial good integer feasible solution. A value of zero means	
	the heuristic is not used at all. A larger value than 0 means that	
	a gradually more sophisticated heuristic is used which is computa-	
	tionally more expensive. A negative value implies that the optimizer	
	chooses the heuristic. Normally a value around 3 to 5 should be	
	optimal.	
87	MSK_IPAR_MIO_KEEP_BASIS	
	Controls whether the integer presolve keeps bases in memory. This	
	speeds on the solution process at cost of bigger memory consumption.	
38	MSK_IPAR_INTPNT_SCALING	
	Controls how the problem is scaled before the interior-point optimizer	
	is used.	

F.21 Language selection constants

Value	Name
	Description
1	MSK_LANG_DAN
	Danish language selection
0	MSK_LANG_ENG
	English language selection

F.22 Long integer information items.

Value	Name
	Description
6	MSK_LIINF_BI_CLEAN_PRIMAL_ITER
	Number of primal clean iterations performed in the basis identifica-
	tion.
9	MSK_LIINF_INTPNT_FACTOR_NUM_NZ
	Number of non-zeros in factorization.
10	MSK_LIINF_MIO_INTPNT_ITER
	Number of interior-point iterations performed by the mixed-integer optimizer.
4	MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_ITER
	Number of primal-dual clean iterations performed in the basis identification.
3	MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_DEG_ITER
5	Number of primal-dual degenerate clean iterations performed in the
	basis identification.
2	MSK LIINF BI CLEAN PRIMAL DEG ITER
_	Number of primal degenerate clean iterations performed in the basis
	identification.
1	MSK_LIINF_BI_CLEAN_DUAL_ITER
	Number of dual clean iterations performed in the basis identification.
13	MSK_LIINF_RD_NUMQNZ
	Number of Q non-zeros.
12	MSK_LIINF_RD_NUMANZ
	Number of non-zeros in A that is read.
8	MSK_LIINF_BI_PRIMAL_ITER
	Number of primal pivots performed in the basis identification.
7	MSK_LIINF_BI_DUAL_ITER
	Number of dual pivots performed in the basis identification.
0	MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER
	Number of dual degenerate clean iterations performed in the basis
	identification.
11	MSK_LIINF_MIO_SIMPLEX_ITER
	Number of simplex iterations performed by the mixed-integer optimizer.
5	MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_SUB_ITER
	Number of primal-dual subproblem clean iterations performed in the
	basis identification.

F.23 Mark

Value	Name
	Description
0	MSK_MARK_LO
	The lower bound is selected for sensitivity analysis.
1	MSK_MARK_UP
	The upper bound is selected for sensitivity analysis.

F.24 Continuous mixed-integer solution type

Value	Name
	Description
2	MSK_MIO_CONT_SOL_ITG
	The reported interior-point and basic solutions are a solution to the
	problem with all integer variables fixed at the value they have in the
	integer solution. A solution is only reported in case the problem has
	a primal feasible solution.
0	MSK_MIO_CONT_SOL_NONE
	No interior-point or basic solution are reported when the mixed-
	integer optimizer is used.
1	MSK_MIO_CONT_SOL_ROOT
	The reported interior-point and basic solutions are a solution to the
	root node problem when mixed-integer optimizer is used.
3	MSK_MIO_CONT_SOL_ITG_REL
	In case the problem is primal feasible then the reported interior-point
	and basic solutions are a solution to the problem with all integer
	variables fixed at the value they have in the integer solution. If the
	problem is primal infeasible, then the solution to the root node prob-
	lem is reported.

F.25 Integer restrictions

Value	Name
	Description
0	MSK_MIO_MODE_IGNORED
	The integer constraints are ignored and the problem is solved as a
	continuous problem.
2	MSK_MIO_MODE_LAZY
	continued on next page

cont	continued from previous page	
	Integer restrictions should be satisfied if an optimizer is available for	
	the problem.	
1	MSK_MIO_MODE_SATISFIED	
	Integer restrictions should be satisfied.	

F.26 Mixed-integer node selection types

Value	Name
	Description
5	MSK_MIO_NODE_SELECTION_PSEUDO
	The optimizer employs selects the node based on a pseudo cost esti-
	mate.
4	MSK_MIO_NODE_SELECTION_HYBRID
	The optimizer employs a hybrid strategy.
0	MSK_MIO_NODE_SELECTION_FREE
	The optimizer decides the node selection strategy.
3	MSK_MIO_NODE_SELECTION_WORST
	The optimizer employs a worst bound node selection strategy.
2	MSK_MIO_NODE_SELECTION_BEST
	The optimizer employs a best bound node selection strategy.
1	MSK_MIO_NODE_SELECTION_FIRST
	The optimizer employs a depth first node selection strategy.

F.27 MPS file format type

Value	Name
	Description
0	MSK_MPS_FORMAT_STRICT
	It is assumed that the input file satisfies the MPS format strictly.
1	MSK_MPS_FORMAT_RELAXED
	It is assumed that the input file satisfies a slightly relaxed version of
	the MPS format.
2	MSK_MPS_FORMAT_FREE
	It is assumed that the input file satisfies the free MPS format. This
	implies that spaces are not allowed in names. Otherwise the format
	is free.

F.31. ON/OFF 439

F.28 Message keys

Value	Name
	Description
1000	MSK_MSG_READING_FILE
	None
1001	MSK_MSG_WRITING_FILE
	None
1100	MSK_MSG_MPS_SELECTED
	None

F.29 Network detection method

Value	Name
	Description
1	MSK_NETWORK_DETECT_SIMPLE
	The network detection should use a very simple heuristic.
2	MSK_NETWORK_DETECT_ADVANCED
	The network detection should use a more advanced heuristic.
0	MSK_NETWORK_DETECT_FREE
	The network detection is free.

F.30 Objective sense types

Value	Name
	Description
1	MSK_OBJECTIVE_SENSE_MINIMIZE
	The problem should be minimized.
0	MSK_OBJECTIVE_SENSE_UNDEFINED
	The objective sense is undefined.
2	MSK_OBJECTIVE_SENSE_MAXIMIZE
	The problem should be maximized.

F.31 On/off

Value	Name
	Description
1	MSK_ON
	Switch the option on.
0	MSK_OFF
	Switch the option off.

F.32 Optimizer types

Value	Name
	Description
1	MSK_OPTIMIZER_INTPNT
	The interior-point optimizer is used.
10	MSK_OPTIMIZER_CONCURRENT
	The optimizer for nonconvex nonlinear problems.
8	MSK_OPTIMIZER_MIXED_INT
	The mixed-integer optimizer.
5	MSK_OPTIMIZER_DUAL_SIMPLEX
	The dual simplex optimizer is used.
0	MSK_OPTIMIZER_FREE
	The optimizer is chosen automatically.
6	MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX
	The primal dual simplex optimizer is used.
2	MSK_OPTIMIZER_CONIC
	The optimizer for problems having conic constraints.
9	MSK_OPTIMIZER_NONCONVEX
	The optimizer for nonconvex nonlinear problems.
3	MSK_OPTIMIZER_QCONE
	For internal use only.
4	MSK_OPTIMIZER_PRIMAL_SIMPLEX
	The primal simplex optimizer is used.
7	MSK_OPTIMIZER_FREE_SIMPLEX
	One of the simplex optimizers is used.
_	The primal simplex optimizer is used. MSK_OPTIMIZER_FREE_SIMPLEX

F.33 Ordering strategies

Value	Name
	Description
5	MSK_ORDER_METHOD_NONE
	No ordering is used.
2	MSK_ORDER_METHOD_APPMINLOC2
	A variant of the approximate minimum local-fill-in ordering is used.
1	MSK_ORDER_METHOD_APPMINLOC1
	Approximate minimum local-fill-in ordering is used.
4	MSK_ORDER_METHOD_GRAPHPAR2
	An alternative graph partitioning based ordering.
0	MSK_ORDER_METHOD_FREE
	The ordering method is chosen automatically.
3	MSK_ORDER_METHOD_GRAPHPAR1
	Graph partitioning based ordering.

F.34 Parameter type

Value	Name
	Description
0	MSK_PAR_INVALID_TYPE
	Not a valid parameter.
3	MSK_PAR_STR_TYPE
	Is a string parameter.
1	MSK_PAR_DOU_TYPE
	Is a double parameter.
2	MSK_PAR_INT_TYPE
	Is an integer parameter.

F.35 Presolve method.

Value	Name
	Description
1	MSK_PRESOLVE_MODE_ON
	The problem is presolved before it is optimized.
0	MSK_PRESOLVE_MODE_OFF
	The problem is not presolved before it is optimized.
2	MSK_PRESOLVE_MODE_FREE
	continued on next page

continued from previous page
It is decided automatically whether to presolve before the problem is
optimized.

F.36 Problem data items

Value	Name
	Description
0	MSK_PI_VAR
	Item is a variable.
2	MSK_PI_CONE
	Item is a cone.
1	MSK_PI_CON
	Item is a constraint.

F.37 Problem types

Value	Name
	Description
2	MSK_PROBTYPE_QCQO
	The problem is a quadratically constrained optimization problem.
0	MSK_PROBTYPE_LO
	The problem is a linear optimization problem.
4	MSK_PROBTYPE_CONIC
	A conic optimization.
3	MSK_PROBTYPE_GECO
	General convex optimization.
5	MSK_PROBTYPE_MIXED
	General nonlinear constraints and conic constraints. This combina-
	tion can not be solved by MOSEK.
1	MSK_PROBTYPE_QO
	The problem is a quadratic optimization problem.

F.38 Problem status keys

Value	Name
	Description
6	MSK_PRO_STA_PRIM_AND_DUAL_INFEAS
	The problem is primal and dual infeasible.
4	MSK_PRO_STA_PRIM_INFEAS
	The problem is primal infeasible.
7	MSK_PRO_STA_ILL_POSED
	The problem is ill-posed. For example, it may be primal and dual
	feasible but have a positive duality gap.
0	MSK_PRO_STA_UNKNOWN
	Unknown problem status.
2	MSK_PRO_STA_PRIM_FEAS
	The problem is primal feasible.
8	MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS
	The problem is at least nearly primal and dual feasible.
10	MSK_PRO_STA_NEAR_DUAL_FEAS
	The problem is at least nearly dual feasible.
11	MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED
	The problem is either primal infeasible or unbounded. This may occur
	for mixed-integer problems.
1	MSK_PRO_STA_PRIM_AND_DUAL_FEAS
	The problem is primal and dual feasible.
5	MSK_PRO_STA_DUAL_INFEAS
	The problem is dual infeasible.
9	MSK_PRO_STA_NEAR_PRIM_FEAS
_	The problem is at least nearly primal feasible.
3	MSK_PRO_STA_DUAL_FEAS
	The problem is dual feasible.

F.39 Interpretation of quadratic terms in MPS files

Value	Name
	Description
0	MSK_Q_READ_ADD
	All elements in a Q matrix are assumed to belong to the lower trian-
	gular part. Duplicate elements in a Q matrix are added together.
1	MSK_Q_READ_DROP_LOWER
	All elements in the strict lower triangular part of the Q matrices are
	dropped.
	continued on next page

continued from previous page	
2	MSK_Q_READ_DROP_UPPER
	All elements in the strict upper triangular part of the Q matrices are
	dropped.

F.40 Response codes

Value	Name
	Description
352	MSK_RES_WRN_SOL_FILE_IGNORED_VAR
	One or more lines in the variable section were ignored when reading
	a solution file.
1218	MSK_RES_ERR_PARAM_TYPE
	The parameter type is invalid.
1203	MSK_RES_ERR_INDEX_IS_TOO_SMALL
	An index in an argument is too small.
2501	MSK_RES_ERR_INV_MARKI
	Invalid value in marki.
803	MSK_RES_WRN_PRESOLVE_BAD_PRECISION
	The presolve estimates that the model is specified with insufficient
	precision.
1500	MSK_RES_ERR_INV_PROBLEM
	Invalid problem type. Probably a nonconvex problem has been spec-
	ified.
1268	MSK_RES_ERR_INV_SKX
	Invalid value in skx.
1551	MSK_RES_ERR_MIO_NO_OPTIMIZER
	No optimizer is available for the current class of integer optimization
	problems.
4009	MSK_RES_TRM_MIO_NUM_BRANCHES
	The mixed-integer optimizer terminated as to the maximum number
	of branches was reached.
4004	MSK_RES_TRM_MIO_NEAR_ABS_GAP
	The mixed-integer optimizer terminated because the near optimal
	absolute gap tolerance was satisfied.
2001	MSK_RES_ERR_NO_DUAL_INFEAS_CER
	A certificate of infeasibility is not available.
1254	MSK_RES_ERR_MUL_A_ELEMENT
	An element in A is defined multiple times.
	continued on next page

continu	ned from previous page
1170	MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE
	An invalid name occurred in a solution file.
1114	MSK_RES_ERR_MPS_MUL_QOBJ
	The Q term in the objective is specified multiple times in the MPS
	data file.
1063	MSK_RES_ERR_NO_INIT_ENV
	env is not initialized.
1265	MSK_RES_ERR_UNDEF_SOLUTION
	MOSEK has the following solution types:
	• an interior-point solution,
	• an basic solution,
	• and an integer solution.
	Each optimizer may set one or more of these solutions; e.g by default
	a successful optimization with the interior-point optimizer defines the
	interior-point solution, and, for linear problems, also the basic solu-
	tion. This error occurs when asking for a solution or for information
	about a solution that is not defined.
1288	MSK_RES_ERR_LASTJ
	Invalid lastj.
1001	MSK_RES_ERR_LICENSE_EXPIRED
	The license has expired.
3055	MSK_RES_ERR_SEN_INDEX_INVALID
	Invalid range given in the sensitivity file.
1274	MSK_RES_ERR_INV_SKN
	Invalid value in skn.
1295	MSK_RES_ERR_OBJ_Q_NOT_PSD
	The quadratic coefficient matrix in the objective is not positive semi-
	definite as expected for a minimization problem.
1234	MSK_RES_ERR_INF_LINT_NAME
	A long integer information name is invalid.
903	MSK_RES_WRN_ANA_CLOSE_BOUNDS
	This warning is issued by problem analyzer, if ranged constraints
	or variables with very close upper and lower bounds are detected.
	One should consider treating such constraints as equalities and such
1000	variables as constants.

continued on next page

MSK_RES_ERR_MISSING_LICENSE_FILE

1008

contini	ned from previous page
	MOSEK cannot find the license file or license server. Usually this
	happens if the operating system variable MOSEKLM_LICENSE_FILE is
	not set up appropriately. Please see the MOSEK installation manual
	for details.
1235	MSK_RES_ERR_INDEX
	An index is out of range.
1350	MSK_RES_ERR_SOL_FILE_INVALID_NUMBER
	An invalid number is specified in a solution file.
2800	MSK_RES_ERR_LU_MAX_NUM_TRIES
	Could not compute the LU factors of the matrix within the maximum
	number of allowed tries.
1267	MSK_RES_ERR_INV_SKC
	Invalid value in skc.
201	MSK_RES_WRN_DROPPED_NZ_QOBJ
	One or more non-zero elements were dropped in the Q matrix in the
	objective.
3000	MSK_RES_ERR_INTERNAL
	An internal error occurred. Please report this problem.
1610	MSK_RES_ERR_BASIS_FACTOR
	The factorization of the basis is invalid.
1204	MSK_RES_ERR_INDEX_IS_TOO_LARGE
	An index in an argument is too large.
1154	MSK_RES_ERR_LP_INVALID_VAR_NAME
	A variable name is invalid when used in an LP formatted file.
2950	MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL
	No dual information is available for the integer solution.
1590	MSK_RES_ERR_OVERFLOW
	A computation produced an overflow i.e. a very large number.
1150	MSK_RES_ERR_LP_INCOMPATIBLE
	The problem cannot be written to an LP formatted file.
1501	MSK_RES_ERR_MIXED_PROBLEM
	The problem contains both conic and nonlinear constraints.
1700	MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX
	An optimization problem cannot be relaxed. This is the case e.g. for
	general nonlinear optimization problems.
1207	MSK_RES_ERR_PARAM_NAME_INT
	The parameter name is not correct for an integer parameter.
3057	MSK_RES_ERR_SEN_SOLUTION_STATUS
	continued on next page

continu	ned from previous page
	No optimal solution found to the original problem given for sensitivity
	analysis.
1225	MSK_RES_ERR_INF_LINT_INDEX
	A long integer information index is out of range for the specified type.
4008	MSK_RES_TRM_MIO_NUM_RELAXS
	The mixed-integer optimizer terminated as the maximum number of
	relaxations was reached.
405	MSK_RES_WRN_TOO_MANY_BASIS_VARS
	A basis with too many variables has been specified.
1081	MSK_RES_ERR_SPACE_NO_INFO
	No available information about the space usage.
1205	MSK_RES_ERR_PARAM_NAME
	The parameter name is not correct.
1106	MSK_RES_ERR_MPS_UNDEF_VAR_NAME
	An undefined variable name occurred in an MPS file.
200	MSK_RES_WRN_NZ_IN_UPR_TRI
	Non-zero elements specified in the upper triangle of a matrix were
	ignored.
505	MSK_RES_WRN_LICENSE_FEATURE_EXPIRE
	The license expires.
1263	MSK_RES_ERR_NEGATIVE_SURPLUS
	Negative surplus.
1404	MSK_RES_ERR_INV_QCON_SUBK
	Invalid value in qcsubk.
1406	MSK_RES_ERR_INV_QCON_SUBJ
	Invalid value in qcsubj.
705	MSK_RES_WRN_ZEROS_IN_SPARSE_ROW
	One or more (near) zero elements are specified in a sparse row of
	a matrix. It is redundant to specify zero elements. Hence it may
4400	indicate an error.
1198	MSK_RES_ERR_ARGUMENT_TYPE
1015	Incorrect argument type.
1017	MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON
2001	The MOSEKLM license manager daemon is not up and running.
2901	MSK_RES_ERR_INVALID_WCHAR
1050	An invalid wchar string is encountered.
1059	MSK_RES_ERR_END_OF_FILE
0100	End of file reached.
3102	MSK_RES_ERR_AD_INVALID_CODELIST
	continued on next page

continu	ned from previous page
	The code list data was invalid.
1462	MSK_RES_ERR_NAN_IN_BUC
	u^c contains an invalid floating point value, i.e. a NaN.
1290	MSK_RES_ERR_NONLINEAR_EQUALITY
	The model contains a nonlinear equality which defines a nonconvex
	set.
1055	MSK_RES_ERR_DATA_FILE_EXT
	The data file format cannot be determined from the file name.
1210	MSK_RES_ERR_PARAM_INDEX
	Parameter index is out of range.
1285	MSK_RES_ERR_FIRSTI
	Invalid firsti.
1000	MSK_RES_ERR_LICENSE
	Invalid license.
1299	MSK_RES_ERR_ARGUMENT_PERM_ARRAY
	An invalid permutation array is specified.
85	MSK_RES_WRN_LP_DROP_VARIABLE
	Ignored a variable because the variable was not previously defined.
	Usually this implies that a variable appears in the bound section but
	not in the objective or the constraints.
1287	MSK_RES_ERR_FIRSTJ
	Invalid firstj.
1432	MSK_RES_ERR_USER_NLO_FUNC
	The user-defined nonlinear function reported an error.
1219	MSK_RES_ERR_INF_DOU_INDEX
	A double information index is out of range for the specified type.
1286	MSK_RES_ERR_LASTI
	Invalid lasti.
1431	MSK_RES_ERR_USER_FUNC_RET_DATA
	An user function returned invalid data.
3900	MSK_RES_ERR_SIZE_LICENSE_NUMCORES
	The computer contains more cpu cores than the license allows for.
1199	MSK_RES_ERR_NR_ARGUMENTS
	Incorrect number of function arguments.
1293	MSK_RES_ERR_CON_Q_NOT_PSD
	The quadratic constraint matrix is not positive semi-definite as ex-
	pected for a constraint with finite upper bound. This results in a
	nonconvex problem.
63	MSK_RES_WRN_ZERO_AIJ
	continued on next page

continu	ned from previous page
	One or more zero elements are specified in A.
2504	MSK_RES_ERR_INV_NUMJ
	Invalid numj.
1650	MSK_RES_ERR_FACTOR
	An error occurred while factorizing a matrix.
3201	MSK_RES_ERR_INVALID_BRANCH_PRIORITY
	An invalid branching priority is specified. It should be nonnegative.
1216	MSK_RES_ERR_PARAM_IS_TOO_SMALL
	The parameter value is too small.
1163	MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM
	The problem contains cones that cannot be written to an LP format-
	ted file.
1002	MSK_RES_ERR_LICENSE_VERSION
	The license is valid for another version of MOSEK.
1240	MSK_RES_ERR_MAXNUMCON
	The maximum number of constraints specified is smaller than the
	number of constraints in the task.
1050	MSK_RES_ERR_UNKNOWN
	Unknown error.
1162	MSK_RES_ERR_READ_LP_NONEXISTING_NAME
	A variable never occurred in objective or constraints.
2503	MSK_RES_ERR_INV_NUMI
	Invalid numi.
1292	MSK_RES_ERR_NONLINEAR_RANGED
	The model contains a nonlinear ranged constraint which by definition
1045	defines a nonconvex set.
1047	MSK_RES_ERR_THREAD_MUTEX_UNLOCK
1100	Could not unlock a mutex.
1100	MSK_RES_ERR_MPS_FILE
1156	An error occurred while reading an MPS file.
1156	MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME
1159	Empty variable names cannot be written to OPF files.
1152	MSK_RES_ERR_LP_DUP_SLACK_NAME The name of the slack variable added to a ranged constraint already
	exists.
2000	MSK_RES_ERR_NO_PRIMAL_INFEAS_CER
2000	A certificate of primal infeasibility is not available.
1158	MSK_RES_ERR_WRITE_LP_FORMAT
1100	Problem cannot be written as an LP file.
	continued on next page
	continued on next page

continu	ned from previous page
1461	MSK_RES_ERR_NAN_IN_BLC
	l^c contains an invalid floating point value, i.e. a NaN.
3058	MSK_RES_ERR_SEN_NUMERICAL
	Numerical difficulties encountered performing the sensitivity analysis.
3052	MSK_RES_ERR_SEN_INDEX_RANGE
	Index out of range in the sensitivity analysis file.
1027	MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT
	The license server does not support the requested feature. Possible
	reasons for this error include:
	• The feature has expired.
	• The feature's start date is later than today's date.
	• The version requested is higher than feature's the highest supported version.
	• A corrupted license file.
	Try restarting the license and inspect the license server debug file,
	usually called lmgrd.log.
66	MSK_RES_WRN_SPAR_MAX_LEN
	A value for a string parameter is longer than the buffer that is sup-
	posed to hold it.
3050	MSK_RES_ERR_SEN_FORMAT
	Syntax error in sensitivity analysis file.
1407	MSK_RES_ERR_INV_QCON_VAL
	Invalid value in qcval.
1206	MSK_RES_ERR_PARAM_NAME_DOU
	The parameter name is not correct for a double parameter.
1172	MSK_RES_ERR_OPF_PREMATURE_EOF
	Premature end of file in an OPF file.
1300	MSK_RES_ERR_CONE_INDEX
	An index of a non-existing cone has been specified.
1470	MSK_RES_ERR_NAN_IN_C
	c contains an invalid floating point value, i.e. a NaN.
1066	MSK_RES_ERR_LIVING_TASKS
	All tasks associated with an environment must be deleted before the
	environment is deleted. There are still some undeleted tasks.
1304	MSK_RES_ERR_MAXNUMCONE

continu	ned from previous page
	The value specified for maxnumcone is too small.
1103	MSK_RES_ERR_MPS_NULL_CON_NAME
	An empty constraint name is used in an MPS file.
1417	MSK_RES_ERR_QCON_UPPER_TRIANGLE
	An element in the upper triangle of a Q^k is specified. Only elements
	in the lower triangle should be specified.
1171	MSK_RES_ERR_LP_INVALID_CON_NAME
	A constraint name is invalid when used in an LP formatted file.
1125	MSK_RES_ERR_MPS_TAB_IN_FIELD2
	A tab char occurred in field 2.
270	MSK_RES_WRN_MIO_INFEASIBLE_FINAL
	The final mixed-integer problem with all the integer variables fixed
	at their optimal values is infeasible.
710	MSK_RES_WRN_ZEROS_IN_SPARSE_COL
	One or more (near) zero elements are specified in a sparse column of
	a matrix. It is redundant to specify zero elements. Hence, it may
	indicate an error.
1433	MSK_RES_ERR_USER_NLO_EVAL
	The user-defined nonlinear function reported an error.
1232	MSK_RES_ERR_INF_TYPE
	The information type is invalid.
800	MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK
	The linear dependency check(s) was not completed and therefore the
	A matrix may contain linear dependencies.
503	MSK_RES_WRN_USING_GENERIC_NAMES
	The file writer reverts to generic names because a name is blank.
1127	MSK_RES_ERR_MPS_TAB_IN_FIELD5
	A tab char occurred in field 5.
1056	MSK_RES_ERR_INVALID_FILE_NAME
	An invalid file name has been specified.
804	MSK_RES_WRN_WRITE_DISCARDED_CFIX
	The fixed objective term could not be converted to a variable and was
	discarded in the output file.
1415	MSK_RES_ERR_QOBJ_UPPER_TRIANGLE
	An element in the upper triangle of Q^o is specified. Only elements in
	the lower triangle should be specified.
1054	MSK_RES_ERR_FILE_WRITE
	File write error.
1048	MSK_RES_ERR_THREAD_CREATE
	continued on next page

continu	ned from previous page
	Could not create a thread. This error may occur if a large number of
	environments are created and not deleted again. In any case it is a
	good practice to minimize the number of environments created.
1243	MSK_RES_ERR_MAXNUMQNZ
	The maximum number of non-zeros specified for the Q matrices is
	smaller than the number of non-zeros in the current Q matrices.
2506	MSK_RES_ERR_CANNOT_HANDLE_NL
	A function cannot handle a task with nonlinear function call-backs.
1600	MSK_RES_ERR_NO_BASIS_SOL
	No basic solution is defined.
1131	MSK_RES_ERR_ORD_INVALID
	Invalid content in branch ordering file.
1303	MSK_RES_ERR_CONE_REP_VAR
	A variable is included multiple times in the cone.
1075	MSK_RES_ERR_INVALID_OBJ_NAME
	An invalid objective name is specified.
1052	MSK_RES_ERR_FILE_OPEN
	Error while opening a file.
250	MSK_RES_WRN_IGNORE_INTEGER
	Ignored integer constraints.
1296	MSK_RES_ERR_OBJ_Q_NOT_NSD
	The quadratic coefficient matrix in the objective is not negative semi-
	definite as expected for a maximization problem.
1064	MSK_RES_ERR_INVALID_TASK
	The task is invalid.
1065	MSK_RES_ERR_NULL_POINTER
	An argument to a function is unexpectedly a NULL pointer.
3059	MSK_RES_ERR_CONCURRENT_OPTIMIZER
	An unsupported optimizer was chosen for use with the concurrent
	optimizer.
3005	MSK_RES_ERR_API_FATAL_ERROR
	An internal error occurred in the API. Please report this problem.
1550	MSK_RES_ERR_INV_OPTIMIZER
	An invalid optimizer has been chosen for the problem. This means
	that the simplex or the conic optimizer is chosen to optimize a non-
40.0	linear problem.
1310	MSK_RES_ERR_REMOVE_CONE_VARIABLE
00	A variable cannot be removed because it will make a cone invalid.
62	MSK_RES_WRN_LARGE_AIJ
	continued on next page

continued from previous page	
	A numerically large value is specified for an $a_{i,j}$ element in A. The pa-
	rameter MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an $a_{i,j}$ is con-
	sidered large.
1208	MSK_RES_ERR_PARAM_NAME_STR
	The parameter name is not correct for a string parameter.
1018	MSK_RES_ERR_LICENSE_FEATURE
	A requested feature is not available in the license file(s). Most likely
	due to an incorrect license system setup.
251	MSK_RES_WRN_NO_GLOBAL_OPTIMIZER
	No global optimizer is available.
1040	MSK_RES_ERR_LINK_FILE_DLL
	A file cannot be linked to a stream in the DLL version.
1701	MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED
	The relaxed problem could not be solved to optimality. Please consult
	the log file for further details.
1221	MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL
	An index in an array argument is too small.
1259	MSK_RES_ERR_SOLVER_PROBTYPE
	Problem type does not match the chosen optimizer.
1220	MSK_RES_ERR_INF_INT_INDEX
	An integer information index is out of range for the specified type.
1053	MSK_RES_ERR_FILE_READ
	File read error.
1440	MSK_RES_ERR_USER_NLO_EVAL_HESSUBI
	The user-defined nonlinear function reported an invalid subscript in
	the Hessian.
1441	MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ
	The user-defined nonlinear function reported an invalid subscript in
	the Hessian.
300	MSK_RES_WRN_SOL_FILTER
	Invalid solution filter is specified.
4030	MSK_RES_TRM_INTERNAL
	The optimizer terminated due to some internal reason. Please contact
	MOSEK support.
1110	MSK_RES_ERR_MPS_NO_OBJECTIVE
	No objective is defined in an MPS file.
1403	MSK_RES_ERR_INV_QOBJ_VAL
	Invalid value in qoval.
1400	MSK_RES_ERR_INFINITE_BOUND
	continued on next page

continu	ned from previous page
	A numerically huge bound value is specified.
1030	MSK_RES_ERR_OPEN_DL
	A dynamic link library could not be opened.
3001	MSK_RES_ERR_API_ARRAY_TOO_SMALL
	An input array was too short.
1046	MSK_RES_ERR_THREAD_MUTEX_LOCK
	Could not lock a mutex.
1262	MSK_RES_ERR_LAST
	Invalid index last. A given index was out of expected range.
1151	MSK_RES_ERR_LP_EMPTY
	The problem cannot be written to an LP formatted file.
1011	MSK_RES_ERR_SIZE_LICENSE_VAR
	The problem has too many variables to be solved with the available
	license.
1062	MSK_RES_ERR_INVALID_STREAM
	An invalid stream is referenced.
2505	MSK_RES_ERR_CANNOT_CLONE_NL
	A task with a nonlinear function call-back cannot be cloned.
2520	MSK_RES_ERR_INVALID_ACCMODE
	An invalid access mode is specified.
1250	MSK_RES_ERR_NUMCONLIM
	Maximum number of constraints limit is exceeded.
2550	MSK_RES_ERR_MBT_INCOMPATIBLE
	The MBT file is incompatible with this platform. This results from
	reading a file on a 32 bit platform generated on a 64 bit platform.
1104	MSK_RES_ERR_MPS_NULL_VAR_NAME
	An empty variable name is used in an MPS file.
72	MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR
	A BOUNDS vector is split into several nonadjacent parts in an MPS
1000	file.
1026	MSK_RES_ERR_LICENSE_SERVER_VERSION
	The version specified in the checkout request is greater than the high-
1005	est version number the daemon supports.
1025	MSK_RES_ERR_LICENSE_INVALID_HOSTID
	The host ID specified in the license file does not match the host ID
1045	of the computer.
1045	MSK_RES_ERR_THREAD_MUTEX_INIT
5.4	Could not initialize a mutex.
54	MSK_RES_WRN_LARGE_CON_FX
	continued on next page

continued from previous page	
	An equality constraint is fixed to a numerically large value. This can
	cause numerical problems.
1280	MSK_RES_ERR_INV_NAME_ITEM
	An invalid name item code is used.
3106	MSK_RES_ERR_AD_MISSING_RETURN
	The code list data was invalid. Missing return operation in function.
53	MSK_RES_WRN_LARGE_UP_BOUND
	A numerically large upper bound value is specified.
3910	MSK_RES_ERR_INFEAS_UNDEFINED
	The requested value is not defined for this solution type.
901	MSK_RES_WRN_ANA_C_ZERO
	This warning is issued by the problem analyzer, if the coefficients in
	the linear part of the objective are all zero.
1112	MSK_RES_ERR_MPS_MUL_CON_NAME
	A constraint name was specified multiple times in the ROWS section.
1801	MSK_RES_ERR_INVALID_IOMODE
	Invalid io mode.
1115	MSK_RES_ERR_MPS_INV_SEC_ORDER
	The sections in the MPS data file are not in the correct order.
1016	MSK_RES_ERR_LICENSE_MAX
	Maximum number of licenses is reached.
4007	MSK_RES_TRM_USER_CALLBACK
	The optimizer terminated due to the return of the user-defined call-
	back function.
805	MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS
	After fixing the integer variables at the suggested values then the
	problem is infeasible.
1058	MSK_RES_ERR_INVALID_MBT_FILE
1001	A MOSEK binary task file is invalid.
1294	MSK_RES_ERR_CON_Q_NOT_NSD
	The quadratic constraint matrix is not negative semi-definite as ex-
	pected for a constraint with finite lower bound. This results in a
9,000	nonconvex problem.
3600	MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE
1001	The problem type is not supported by the XML format.
1231	MSK_RES_ERR_INF_INT_NAME
1107	An integer information name is invalid.
1107	MSK_RES_ERR_MPS_INV_CON_KEY
	An invalid constraint key occurred in an MPS file.

continued on next page

continu	ed from previous page
1425	MSK_RES_ERR_FIXED_BOUND_VALUES
	A fixed constraint/variable has been specified using the bound keys
	but the numerical value of the lower and upper bound is different.
4025	MSK_RES_TRM_NUMERICAL_PROBLEM
	The optimizer terminated due to numerical problems.
3056	MSK_RES_ERR_SEN_INVALID_REGEXP
	Syntax error in regexp or regexp longer than 1024.
52	MSK_RES_WRN_LARGE_LO_BOUND
	A numerically large lower bound value is specified.
3999	MSK_RES_ERR_API_INTERNAL
	An internal fatal error occurred in an interface function.
70	MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR
	An RHS vector is split into several nonadjacent parts in an MPS file.
3053	MSK_RES_ERR_SEN_BOUND_INVALID_UP
	Analysis of upper bound requested for an index, where no upper
	bound exists.
1702	MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND
	The upper bound is less than the lower bound for a variable or a
	constraint. Please correct this before running the feasibility repair.
1449	MSK_RES_ERR_Y_IS_UNDEFINED
	The solution item y is undefined.
3200	MSK_RES_ERR_INVALID_BRANCH_DIRECTION
	An invalid branching direction is specified.
1430	MSK_RES_ERR_USER_FUNC_RET
	An user function reported an error.
1750	MSK_RES_ERR_NAME_MAX_LEN
	A name is longer than the buffer that is supposed to hold it.
1305	MSK_RES_ERR_CONE_TYPE
	Invalid cone type specified.
4005	MSK_RES_TRM_USER_BREAK
	Not in use.
1256	MSK_RES_ERR_INV_BKC
	Invalid bound key is specified for a constraint.
4020	MSK_RES_TRM_MAX_NUM_SETBACKS
	The optimizer terminated as the maximum number of set-backs was
	reached. This indicates numerical problems and a possibly badly
	formulated problem.
4015	MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS
	continued on next page

continu	ned from previous page
	The mixed-integer optimizer terminated as the maximum number of
	feasible solutions was reached.
3101	MSK_RES_ERR_IDENTICAL_TASKS
	Some tasks related to this function call were identical. Unique tasks
	were expected.
1020	MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE
	The license system cannot allocate the memory required.
904	MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS
	This warning is issued by the problem analyzer if a constraint is bound
	nearly integral.
1402	MSK_RES_ERR_INV_QOBJ_SUBJ
	Invalid value in qosubj.
1302	MSK_RES_ERR_CONE_OVERLAP
	A new cone which variables overlap with an existing cone has been
	specified.
807	MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG
	The intial value for one or more of the integer variables is not feasible.
1401	MSK_RES_ERR_INV_QOBJ_SUBI
	Invalid value in qosubi.
1153	MSK_RES_ERR_WRITE_MPS_INVALID_NAME
	An invalid name is created while writing an MPS file. Usually this
	will make the MPS file unreadable.
1553	MSK_RES_ERR_MIO_NOT_LOADED
	The mixed-integer optimizer is not loaded.
1061	MSK_RES_ERR_NULL_TASK
	task is a NULL pointer.
1070	MSK_RES_ERR_BLANK_NAME
	An all blank name has been specified.
1252	MSK_RES_ERR_TOO_SMALL_MAXNUMANZ
	The maximum number of non-zeros specified for A is smaller than
	the number of non-zeros in the current A .
1197	MSK_RES_ERR_ARGUMENT_LENNEQ
	Incorrect length of arguments.
500	MSK_RES_WRN_LICENSE_EXPIRE
	The license expires.
1200	MSK_RES_ERR_IN_ARGUMENT
	A function argument is incorrect.
1051	MSK_RES_ERR_SPACE
	Out of space.
	continued on next page
	<u> </u>

The maximum number of variables specified is smaller than the number of variables in the task. 1800 MSK_RES_ERR_INVALID_COMPRESSION Invalid compression type. 1101 MSK_RES_ERR_MPS_INV_FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK_RES_ERR_NULL_ENV env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_ERR_OPF_SOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1117 MSK_RES_ERR_MPS_MUL_CSEC Multiple_CSECTIONs are given the same name. 1118 MSK_RES_ERR_MPS_MUL_CSEC Multiple_CSECTIONs are given the same name. 1119 MSK_RES_ERR_MPS_MUL_CSEC Multiple_CSECTIONS are given the same name. 1110 MSK_RES_ERR_NOPEN_PARAM_FILE The parameter file could not be opened. 1120 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1011 MSK_RES_ERR_BASIS_SINGULAR	continu	ned from previous page
The maximum number of variables specified is smaller than the number of variables in the task. 1800 MSK RES ERR INVALID.COMPRESSION Invalid compression type. 1101 MSK RES ERR MPS INV FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK RES ERR NULL ENV env is a NULL pointer. 3500 MSK RES ERR INTERNAL TEST FAILED An internal unit test function failed. 501 MSK RES ERR INTERNAL TEST FAILED An invalid objective sense is specified. 1122 MSK RES ERR MPS INVALID.OBJSENSE An invalid objective sense is specified. 1168 MSK RES ERR MPS INVALID.OBJSENSE An invalid objective sense is specified. 1169 MSK RES ERR OPF FORMAT Syntax error in an OPF file 900 MSK RES WRN ANA LARGE BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK RES ERR DUP NAME The same name was used multiple times for the same problem item type. 1116 MSK RES ERR MPS MUL CSEC Multiple CSECTIONs are given the same name. 51 MSK RES WRN LARGE BOUND A numerically large bound value is specified. 50 MSK RES WRN LARGE BOUND A numerically large bound value is specified. 51 MSK RES ERR NONCONVEX The optimization problem is nonconvex. 11291 MSK RES ERR LUNB STEP SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.		
ber of variables in the task. 1800 MSK.RES.ERR. INVALID.COMPRESSION Invalid compression type. 1101 MSK.RES.ERR.MPS_INV.FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK.RES.ERR.NULL.ENV env is a NUILL pointer. 3500 MSK.RES.ERR.INTERNAL.TEST.FAILED An internal unit test function failed. 501 MSK.RES.ERR.MPS_INVALID.OBJSENSE The license server is not responding. 1122 MSK.RES.ERR.MPS_INVALID.OBJSENSE An invalid objective sense is specified. 1168 MSK.RES.ERR.OPF.FORMAT Syntax error in an OPF file 900 MSK.RES.WN.ANA.LARGE.BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK.RES.ERR.MPS.MUL.CSEC Multiple CSECTIONs are given the same name. 51 MSK.RES.ERR.MPS.MUL.CSEC Multiple CSECTIONs are given the same name. 52 MSK.RES.WRN.LARGE.BOUND A numerically large bound value is specified. 53 MSK.RES.WRN.LARGE.BOUND The parameter file could not be opened. 1291 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3100 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3101 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3102 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3103 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3104 MSK.RES.ERR.NONCONVEX The optimization problem is nonconvex. 3105 MSK.RES.ERR.NONCONVEX Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.		
1800 MSK_RES_ERR_INVALID_COMPRESSION Invalid compression type. 1101 MSK_RES_ERR_MPS_INV_FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK_RES_ERR_NULL_ENV env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 1000 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The parameter file could not be opened. 1291 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 13100 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 13101 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.		
Invalid compression type. 1101 MSK_RES_ERR_MPS_INV_FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK_RES_ERR_NULL_ENV env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_large bound A numerically large bound value is specified. 50 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 51 MSK_RES_WRN_DPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 13100 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 13101 MSK_RES_ERR_DIP_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.	1800	
1101 MSK_RES_ERR_MPS_INV_FIELD A field in the MPS file is invalid. Probably it is too wide. 1060 MSK_RES_ERR_NULL_ENV env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_DUP_NAME The parameter file could not be opened. 50 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 51 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3101 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_DUB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.	1000	
A field in the MPS file is invalid. Probably it is too wide. MSK_RES_ERR_NULL_ENV env is a NULL pointer. S500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WNN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WNN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_NONCSNVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_IND_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.	1101	* * * * * * * * * * * * * * * * * * *
1060 MSK_RES_ERR_NULL_ENV env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_IND_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.	1101	
env is a NULL pointer. 3500 MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple_CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.	1060	· ·
MSK_RES_ERR_INTERNAL_TEST_FAILED An internal unit test function failed. 501 MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1000	
An internal unit test function failed. MSK_RES_WRN_LICENSE_SERVER The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	3500	-
The license server is not responding. 1122 MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	3300	
The license server is not responding. MSK_RES_ERR_MPS_INVALID_OBJSENSE An invalid objective sense is specified. MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. MSK_RES_ERR_BASIS_SINGULAR	501	
1122 MSK_RES_ERR_MPS_INVALID_DBJSENSE An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONS are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	001	
An invalid objective sense is specified. 1168 MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1122	
MSK_RES_ERR_OPF_FORMAT Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1122	
Syntax error in an OPF file 900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1168	-
900 MSK_RES_WRN_ANA_LARGE_BOUNDS This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1100	
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	900	·
straint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf. 1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	000	
ting these bounds entirely by setting them to +inf or -inf. MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
1071 MSK_RES_ERR_DUP_NAME The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		· · ·
The same name was used multiple times for the same problem item type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1071	v v
type. 1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
1116 MSK_RES_ERR_MPS_MUL_CSEC Multiple CSECTIONs are given the same name. 51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
Multiple CSECTIONs are given the same name. MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. The optimization problem is nonconvex. MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. MSK_RES_ERR_BASIS_SINGULAR	1116	
51 MSK_RES_WRN_LARGE_BOUND A numerically large bound value is specified. 50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	51	
50 MSK_RES_WRN_OPEN_PARAM_FILE The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
The parameter file could not be opened. 1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	50	v C
1291 MSK_RES_ERR_NONCONVEX The optimization problem is nonconvex. 3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		The parameter file could not be opened.
3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR	1291	•
3100 MSK_RES_ERR_UNB_STEP_SIZE A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		The optimization problem is nonconvex.
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. MSK_RES_ERR_BASIS_SINGULAR	3100	
stance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
problem is badly formulated. Please contact MOSEK support if this error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
error occurs. 1615 MSK_RES_ERR_BASIS_SINGULAR		
1615 MSK_RES_ERR_BASIS_SINGULAR		
	1615	

continu	ted from previous page
	The basis is singular and hence cannot be factored.
1155	MSK_RES_ERR_LP_FREE_CONSTRAINT
	Free constraints cannot be written in LP file format.
1445	MSK_RES_ERR_INVALID_OBJECTIVE_SENSE
	An invalid objective sense is specified.
0	MSK_RES_OK
	No error occurred.
3002	MSK_RES_ERR_API_CB_CONNECT
	Failed to connect a callback object.
1253	MSK_RES_ERR_INV_APTRE
	aptre[j] is strictly smaller than aptrb[j] for some j.
1013	MSK_RES_ERR_OPTIMIZER_LICENSE
	The optimizer required is not licensed.
1007	MSK_RES_ERR_FILE_LICENSE
	Invalid license file.
1160	MSK_RES_ERR_LP_FORMAT
	Syntax error in an LP file.
1237	MSK_RES_ERR_SOLITEM
	The solution item number solitem is invalid. Please note that
	MSK_SOL_ITEM_SNX is invalid for the basic solution.
1010	MSK_RES_ERR_SIZE_LICENSE_CON
	The problem has too many constraints to be solved with the available
	license.
1118	MSK_RES_ERR_MPS_CONE_OVERLAP
	A variable is specified to be a member of several cones.
1090	MSK_RES_ERR_READ_FORMAT
	The specified format cannot be read.
1408	MSK_RES_ERR_QCON_SUBI_TOO_SMALL
	Invalid value in qcsubi.
4006	MSK_RES_TRM_STALL
	continued on next page

continued from previous page

The optimizer terminated due to slow progress. The most likely reason causing slow progress is that the problem is badly formulated e.g. badly scaly scaled of near infeasible. Sometimes a few dense columns in the constraint matrix can also lead to numerical problems that causes a stall.

The solution returned may or may not be of acceptable quality. Therefore, the solution status should be examined to determine the status of the solution. If the solution is near optimal, then for most practical purposes the solution will be good enough.

In particular, if a linear optimization problem is solved with the interior-point optimizer with basis identification turned on, the returned solution may be of acceptable quality, even in the optimizer stalled.

1580 MSK_RES_ERR_POSTSOLVE

An error occurred during the postsolve. Please contact MOSEK support.

- 1215 MSK_RES_ERR_PARAM_IS_TOO_LARGE
 - The parameter value is too large.
- 1164 MSK_RES_ERR_LP_WRITE_GECO_PROBLEM

 The problem contains general convex terms that cannot be written to an LP formatted file.
- 1281 MSK_RES_ERR_PRO_ITEM
 - An invalid problem is used.
- 1057 MSK_RES_ERR_INVALID_SOL_FILE_NAME
 - An invalid file name has been specified.

 MSK_RES_ERR_INV_CONE_TYPE_STR
 - Invalid cone type string encountered.
- 1283 MSK_RES_ERR_INVALID_FORMAT_TYPE Invalid format type.
- 57 MSK_RES_WRN_LARGE_CJ

1271

A numerically large value is specified for one c_i .

- 1035 MSK_RES_ERR_OLDER_DLL
 - The dynamic link library is older than the specified version.
- 1019 MSK_RES_ERR_PLATFORM_NOT_LICENSED

A requested license feature is not available for the required platform.

- 1119 MSK_RES_ERR_MPS_CONE_REPEAT
 - A variable is repeated within the CSECTION.
- 3051 MSK_RES_ERR_SEN_UNDEF_NAME

An undefined name was encountered in the sensitivity analysis file.

continued on next page

continu	ed from previous page
1380	MSK_RES_ERR_HUGE_AIJ
	A numerically huge value is specified for an $a_{i,j}$ element in A. The
	parameter MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an $a_{i,j}$ is con-
	sidered huge.
71	MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR
	A RANGE vector is split into several nonadjacent parts in an MPS
	file.
3054	MSK_RES_ERR_SEN_BOUND_INVALID_LO
	Analysis of lower bound requested for an index, where no lower bound
	exists.
3105	MSK_RES_ERR_AD_MISSING_OPERAND
	The code list data was invalid. Missing operand for operator.
1111	MSK_RES_ERR_MPS_SPLITTED_VAR
	All elements in a column of the A matrix must be specified consecu-
	tively. Hence, it is illegal to specify non-zero elements in A for variable
	1, then for variable 2 and then variable 1 again.
1080	MSK_RES_ERR_SPACE_LEAKING
	MOSEK is leaking memory. This can be due to either an incorrect
	use of MOSEK or a bug.
1201	MSK_RES_ERR_ARGUMENT_DIMENSION
	A function argument is of incorrect dimension.
1159	MSK_RES_ERR_READ_LP_MISSING_END_TAG
	Missing End tag in LP file.
4001	MSK_RES_TRM_MAX_TIME
	The optimizer terminated at the maximum amount of time.
810	MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG
	The construct solution requires an integer solution.
3700	MSK_RES_ERR_INVALID_AMPL_STUB
	Invalid AMPL stub.
1260	MSK_RES_ERR_OBJECTIVE_RANGE
	Empty objective range.
1238	MSK_RES_ERR_WHICHITEM_NOT_ALLOWED
	whichitem is unacceptable.
1471	MSK_RES_ERR_NAN_IN_BLX
	l^x contains an invalid floating point value, i.e. a NaN.
1236	MSK_RES_ERR_WHICHSOL
	The solution defined by compwhichsol does not exists.
801	MSK_RES_WRN_ELIMINATOR_SPACE
	The eliminator is skipped at least once due to lack of space.
	continued on next page

aontini	ned from previous page
1049	MSK_RES_ERR_THREAD_COND_INIT
1049	Could not initialize a condition.
1269	MSK_RES_ERR_INV_SK_STR
1209	
1026	Invalid status key string encountered.
1036	MSK_RES_ERR_NEWER_DLL The dynamic link library is never than the gracified version
1951	The dynamic link library is newer than the specified version. MSK_RES_ERR_NUMVARLIM
1251	Maximum number of variables limit is exceeded.
1113	
1113	MSK_RES_ERR_MPS_MUL_QSEC Multiple_OSECTIONs_are specified for a constraint in the MPS_data
	Multiple QSECTIONs are specified for a constraint in the MPS data file.
502	MSK_RES_WRN_EMPTY_NAME
302	A variable or constraint name is empty. The output file may be
	invalid.
4003	MSK_RES_TRM_MIO_NEAR_REL_GAP
4000	The mixed-integer optimizer terminated because the near optimal
	relative gap tolerance was satisfied.
80	MSK_RES_WRN_LP_OLD_QUAD_FORMAT
00	Missing '/2' after quadratic expressions in bound or objective.
1272	MSK_RES_ERR_INV_CONE_TYPE
1212	Invalid cone type code is encountered.
1102	MSK_RES_ERR_MPS_INV_MARKER
1102	An invalid marker has been specified in the MPS file.
1230	MSK_RES_ERR_INF_DOU_NAME
1200	A double information name is invalid.
1264	MSK_RES_ERR_NEGATIVE_APPEND
	Cannot append a negative number.
1270	MSK_RES_ERR_INV_SK
	Invalid status key code.
1006	MSK_RES_ERR_PROB_LICENSE
	The software is not licensed to solve the problem.
3104	MSK_RES_ERR_AD_INVALID_OPERAND
	The code list data was invalid. An unknown operand was used.
1015	MSK_RES_ERR_LICENSE_SERVER
	The license server is not responding.
400	MSK_RES_WRN_TOO_FEW_BASIS_VARS
	An incomplete basis has been specified. Too few basis variables are
	specified.
1161	MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME
	continued on next page

continu	ted from previous page
	An auto-generated name is not unique.
1108	MSK_RES_ERR_MPS_INV_BOUND_KEY
	An invalid bound key occurred in an MPS file.
1472	MSK_RES_ERR_NAN_IN_BUX
	u^x contains an invalid floating point value, i.e. a NaN.
1450	MSK_RES_ERR_NAN_IN_DOUBLE_DATA
	An invalid floating point value was used in some double data.
1109	MSK_RES_ERR_MPS_INV_SEC_NAME
	An invalid section name occurred in an MPS file.
1266	MSK_RES_ERR_BASIS
	An invalid basis is specified. Either too many or too few basis vari-
	ables are specified.
1257	MSK_RES_ERR_INV_BKX
	An invalid bound key is specified for a variable.
351	MSK_RES_WRN_SOL_FILE_IGNORED_CON
	One or more lines in the constraint section were ignored when reading
	a solution file.
902	MSK_RES_WRN_ANA_EMPTY_COLS
	This warning is issued by the problem analyzer, if columns, in which
	all coefficients are zero, are found.
1128	MSK_RES_ERR_MPS_INVALID_OBJ_NAME
	An invalid objective name is specified.
1217	MSK_RES_ERR_PARAM_VALUE_STR
	The parameter value string is incorrect.
1222	MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE
	An index in an array argument is too large.
1306	MSK_RES_ERR_CONE_TYPE_STR
	Invalid cone type specified.
1405	MSK_RES_ERR_INV_QCON_SUBI
	Invalid value in qcsubi.
1760	MSK_RES_ERR_NAME_IS_NULL
	The name buffer is a NULL pointer.
1258	MSK_RES_ERR_INV_VAR_TYPE
	An invalid variable type is specified for a variable.
1157	MSK_RES_ERR_LP_FILE_FORMAT
	Syntax error in an LP file.
1021	MSK_RES_ERR_LICENSE_CANNOT_CONNECT
	MOSEK cannot connect to the license server. Most likely the license
	server is not up and running.
	continued on next page

continu	ned from previous page
4002	MSK_RES_TRM_OBJECTIVE_RANGE
	The optimizer terminated on the bound of the objective range.
1126	MSK_RES_ERR_MPS_TAB_IN_FIELD3
	A tab char occurred in field 3.
350	MSK_RES_WRN_UNDEF_SOL_FILE_NAME
	Undefined name occurred in a solution.
1255	MSK_RES_ERR_INV_BK
	Invalid bound key.
1169	MSK_RES_ERR_OPF_NEW_VARIABLE
	Introducing new variables is now allowed. When a [variables] sec-
	tion is present, it is not allowed to introduce new variables later in
	the problem.
1014	MSK_RES_ERR_FLEXLM
	The FLEXIm license manager reported an error.
1275	MSK_RES_ERR_INVALID_SURPLUS
	Invalid surplus.
65	MSK_RES_WRN_NAME_MAX_LEN
	A name is longer than the buffer that is supposed to hold it.
1301	MSK_RES_ERR_CONE_SIZE
	A cone with too few members is specified.
1261	MSK_RES_ERR_FIRST
4.150	Invalid first.
1473	MSK_RES_ERR_NAN_IN_AIJ
4001	$a_{i,j}$ contains an invalid floating point value, i.e. a NaN.
4031	MSK_RES_TRM_INTERNAL_STOP
	The optimizer terminated for internal reasons. Please contact MO-
1117	SEK support.
1117	MSK_RES_ERR_MPS_CONE_TYPE
1005	Invalid cone type specified in a CSECTION. MSK_RES_ERR_SIZE_LICENSE
1005	The problem is bigger than the license.
1409	MSK_RES_ERR_QCON_SUBI_TOO_LARGE
1403	Invalid value in qcsubi.
1375	MSK_RES_ERR_HUGE_C
1010	A huge value in absolute size is specified for one c_i .
1446	MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE
1110	The objective sense has not been specified before the optimization.
4000	MSK_RES_TRM_MAX_ITERATIONS
	The optimizer terminated at the maximum number of iterations.
	continued on next page

continued from previous page	
802	MSK_RES_WRN_PRESOLVE_OUTOFSPACE
	The presolve is incomplete due to lack of space.
1130	MSK_RES_ERR_ORD_INVALID_BRANCH_DIR
	An invalid branch direction key is specified.
3103	MSK_RES_ERR_AD_INVALID_OPERATOR
	The code list data was invalid. An unknown operator was used.
1166	MSK_RES_ERR_WRITING_FILE
	An error occurred while writing file
2502	MSK_RES_ERR_INV_MARKJ
	Invalid value in markj.
2500	MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK
	The required solution is not available.
2900	MSK_RES_ERR_INVALID_UTF8
	An invalid UTF8 string is encountered.
1105	MSK_RES_ERR_MPS_UNDEF_CON_NAME
	An undefined constraint name occurred in an MPS file.
1012	MSK_RES_ERR_SIZE_LICENSE_INTVAR
	The problem contains too many integer variables to be solved with
	the available license.
3800	MSK_RES_ERR_INT64_TO_INT32_CAST
	An 32 bit integer could not cast to a 64 bit integer.
1552	MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE
	No optimizer is available for this class of optimization problems.

F.41 Response code type

Value	Name
	Description
1	MSK_RESPONSE_WRN
	The response code is a warning.
2	MSK_RESPONSE_TRM
	The response code is an optimizer termination status.
4	MSK_RESPONSE_UNK
	The response code does not belong to any class.
0	MSK_RESPONSE_OK
	The response code is OK.
3	MSK_RESPONSE_ERR
	The response code is an error.

F.42 Scaling type

Value	Name
	Description
0	MSK_SCALING_METHOD_POW2
	Scales only with power of 2 leaving the mantissa untouched.
1	MSK_SCALING_METHOD_FREE
	The optimizer chooses the scaling heuristic.

F.43 Scaling type

Value	Name
	Description
1	MSK_SCALING_NONE
	No scaling is performed.
2	MSK_SCALING_MODERATE
	A conservative scaling is performed.
3	MSK_SCALING_AGGRESSIVE
	A very aggressive scaling is performed.
0	MSK_SCALING_FREE
	The optimizer chooses the scaling heuristic.

F.44 Sensitivity types

Value	Name
	Description
1	MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION
	Optimal partition sensitivity analysis is performed.
0	MSK_SENSITIVITY_TYPE_BASIS
	Basis sensitivity analysis is performed.

F.45 Degeneracy strategies

Value	Name
	Description
0	MSK_SIM_DEGEN_NONE
	continued on next page

continued from previous page	
	The simplex optimizer should use no degeneration strategy.
3	MSK_SIM_DEGEN_MODERATE
	The simplex optimizer should use a moderate degeneration strategy.
4	MSK_SIM_DEGEN_MINIMUM
	The simplex optimizer should use a minimum degeneration strategy.
2	MSK_SIM_DEGEN_AGGRESSIVE
	The simplex optimizer should use an aggressive degeneration strategy.
1	MSK_SIM_DEGEN_FREE
	The simplex optimizer chooses the degeneration strategy.

F.46 Exploit duplicate columns.

Value	Name
	Description
1	MSK_SIM_EXPLOIT_DUPVEC_ON
	Allow the simplex optimizer to exploit duplicated columns.
0	MSK_SIM_EXPLOIT_DUPVEC_OFF
	Disallow the simplex optimizer to exploit duplicated columns.
2	MSK_SIM_EXPLOIT_DUPVEC_FREE
	The simplex optimizer can choose freely.

F.47 Hot-start type employed by the simplex optimizer

Value	Name
	Description
0	MSK_SIM_HOTSTART_NONE
	The simplex optimizer performs a coldstart.
2	MSK_SIM_HOTSTART_STATUS_KEYS
	Only the status keys of the constraints and variables are used to
	choose the type of hot-start.
1	MSK_SIM_HOTSTART_FREE
	The simplex optimize chooses the hot-start type.

F.48 Problem reformulation.

Value	Name
	Description
1	MSK_SIM_REFORMULATION_ON
	Allow the simplex optimizer to reformulate the problem.
3	MSK_SIM_REFORMULATION_AGGRESSIVE
	The simplex optimizer should use an aggressive reformulation strat-
	egy.
0	MSK_SIM_REFORMULATION_OFF
	Disallow the simplex optimizer to reformulate the problem.
2	MSK_SIM_REFORMULATION_FREE
	The simplex optimizer can choose freely.

F.49 Simplex selection strategy

Value	Name
	Description
1	MSK_SIM_SELECTION_FULL
	The optimizer uses full pricing.
5	MSK_SIM_SELECTION_PARTIAL
	The optimizer uses a partial selection approach. The approach is
	usually beneficial if the number of variables is much larger than the
	number of constraints.
0	MSK_SIM_SELECTION_FREE
	The optimizer chooses the pricing strategy.
2	MSK_SIM_SELECTION_ASE
	The optimizer uses approximate steepest-edge pricing.
3	MSK_SIM_SELECTION_DEVEX
	The optimizer uses devex steepest-edge pricing (or if it is not available
	an approximate steep-edge selection).
4	MSK_SIM_SELECTION_SE
	The optimizer uses steepest-edge selection (or if it is not available an
	approximate steep-edge selection).

F.50 Solution items

Value	Name
	Description
4	MSK_SOL_ITEM_SUC
	continued on next page

conti	continued from previous page	
	Lagrange multipliers for upper bounds on the constraints.	
0	MSK_SOL_ITEM_XC	
	Solution for the constraints.	
1	MSK_SOL_ITEM_XX	
	Variable solution.	
2	MSK_SOL_ITEM_Y	
	Lagrange multipliers for equations.	
5	MSK_SOL_ITEM_SLX	
	Lagrange multipliers for lower bounds on the variables.	
6	MSK_SOL_ITEM_SUX	
	Lagrange multipliers for upper bounds on the variables.	
7	MSK_SOL_ITEM_SNX	
	Lagrange multipliers corresponding to the conic constraints on the	
	variables.	
3	MSK_SOL_ITEM_SLC	
	Lagrange multipliers for lower bounds on the constraints.	

F.51 Solution status keys

Value	Name
	Description
6	MSK_SOL_STA_DUAL_INFEAS_CER
	The solution is a certificate of dual infeasibility.
5	MSK_SOL_STA_PRIM_INFEAS_CER
	The solution is a certificate of primal infeasibility.
0	MSK_SOL_STA_UNKNOWN
	Status of the solution is unknown.
8	MSK_SOL_STA_NEAR_OPTIMAL
	The solution is nearly optimal.
12	MSK_SOL_STA_NEAR_PRIM_INFEAS_CER
	The solution is almost a certificate of primal infeasibility.
2	MSK_SOL_STA_PRIM_FEAS
	The solution is primal feasible.
15	MSK_SOL_STA_NEAR_INTEGER_OPTIMAL
	The primal solution is near integer optimal.
10	MSK_SOL_STA_NEAR_DUAL_FEAS
	The solution is nearly dual feasible.
14	MSK_SOL_STA_INTEGER_OPTIMAL
	continued on next page

continued from previous page	
	The primal solution is integer optimal.
13	MSK_SOL_STA_NEAR_DUAL_INFEAS_CER
	The solution is almost a certificate of dual infeasibility.
11	MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS
	The solution is nearly both primal and dual feasible.
1	MSK_SOL_STA_OPTIMAL
	The solution is optimal.
4	MSK_SOL_STA_PRIM_AND_DUAL_FEAS
	The solution is both primal and dual feasible.
9	MSK_SOL_STA_NEAR_PRIM_FEAS
	The solution is nearly primal feasible.
3	MSK_SOL_STA_DUAL_FEAS
	The solution is dual feasible.

F.52 Solution types

Value	Name
	Description
2	MSK_SOL_ITG
	The integer solution.
0	MSK_SOL_ITR
	The interior solution.
1	MSK_SOL_BAS
	The basic solution.

F.53 Solve primal or dual form

Value	Name
	Description
1	MSK_SOLVE_PRIMAL
	The optimizer should solve the primal problem.
2	MSK_SOLVE_DUAL
	The optimizer should solve the dual problem.
0	MSK_SOLVE_FREE
	The optimizer is free to solve either the primal or the dual problem.

F.54 String parameter types

Value	Name
	Description
8	MSK_SPAR_PARAM_COMMENT_SIGN
	Only the first character in this string is used. It is considered as
	a start of comment sign in the MOSEK parameter file. Spaces are
	ignored in the string.
3	MSK_SPAR_FEASREPAIR_NAME_PREFIX
	Not applicable.
0	MSK_SPAR_BAS_SOL_FILE_NAME
	Name of the bas solution file.
12	MSK_SPAR_READ_MPS_OBJ_NAME
	Name of the free constraint used as objective function. An empty
	name means that the first constraint is used as objective function.
5	MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL
	The constraint and variable associated with the total weighted sum
	of violations are each given the name of this parameter postfixed with
	CON and VAR respectively.
4	MSK_SPAR_FEASREPAIR_NAME_SEPARATOR
	Not applicable.
10	MSK_SPAR_PARAM_WRITE_FILE_NAME
	The parameter database is written to this file.
6	MSK_SPAR_INT_SOL_FILE_NAME
	Name of the int solution file.
14	MSK_SPAR_READ_MPS_RHS_NAME
	Name of the RHS used. An empty name means that the first RHS
	vector is used.
21	MSK_SPAR_STAT_FILE_NAME
2.4	Statistics file name.
24	MSK_SPAR_WRITE_LP_GEN_VAR_NAME
	Sometimes when an LP file is written additional variables must be
1	inserted. They will have the prefix denoted by this parameter.
1	MSK_SPAR_DATA_FILE_NAME
10	Data are read and written to this file.
13	MSK_SPAR_READ_MPS_RAN_NAME
	continued on next page

continued from previous page

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

17 MSK_SPAR_SOL_FILTER_XC_LOW

A filter used to determine which constraints should be listed in the solution file. A value of "0.5" means that all constraints having xc[i]>0.5 should be listed, whereas "+0.5" means that all constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

18 MSK_SPAR_SOL_FILTER_XC_UPR

A filter used to determine which constraints should be listed in the solution file. A value of "0.5" means that all constraints having xc[i]<0.5 should be listed, whereas "-0.5" means all constraints having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

11 MSK_SPAR_READ_MPS_BOU_NAME

Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

20 MSK_SPAR_SOL_FILTER_XX_UPR

A filter used to determine which variables should be listed in the solution file. A value of "0.5" means that all constraints having xx[j]<0.5 should be printed, whereas "-0.5" means all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

23 MSK_SPAR_STAT_NAME

Name used when writing the statistics file.

9 MSK_SPAR_PARAM_READ_FILE_NAME

Modifications to the parameter database is read from this file.

- 7 MSK_SPAR_ITR_SOL_FILE_NAME
 - Name of the itr solution file.

15 MSK_SPAR_SENSITIVITY_FILE_NAME

Not applicable.

2 MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

22 MSK_SPAR_STAT_KEY

Key used when writing the summary file.

16 MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Not applicable.

continued on next page

contin	nued from previous page				
19	MSK_SPAR_SOL_FILTER_XX_LOW				
	A filter used to determine which variables should be listed in t				
	solution file. A value of "0.5" means that all constraints having				
	xx[j] >= 0.5 should be listed, whereas " $+0.5$ " means that all con-				
	straints having xx[j]>=blx[j]+0.5 should be listed. An empty filter				
	means no filter is applied.				

F.55 Status keys

Value	Name
	Description
2	MSK_SK_SUPBAS
	The constraint or variable is super basic.
1	MSK_SK_BAS
	The constraint or variable is in the basis.
5	MSK_SK_FIX
	The constraint or variable is fixed.
3	MSK_SK_LOW
	The constraint or variable is at its lower bound.
6	MSK_SK_INF
	The constraint or variable is infeasible in the bounds.
0	MSK_SK_UNK
	The status for the constraint or variable is unknown.
4	MSK_SK_UPR
	The constraint or variable is at its upper bound.

F.56 Starting point types

Value	Name
	Description
1	MSK_STARTING_POINT_GUESS
	The optimizer guesses a starting point.
3	MSK_STARTING_POINT_SATISFY_BOUNDS
	The starting point is choosen to satisfy all the simple bounds on non-
	linear variables. If this starting point is employed, then more care
	than usual should employed when choosing the bounds on the non-
	linear variables. In particular very tight bounds should be avoided.
	continued on next page

conti	nued from previous page
2	MSK_STARTING_POINT_CONSTANT
	The optimizer constructs a starting point by assigning a constant
	value to all primal and dual variables. This starting point is normally
	robust.
0	MSK_STARTING_POINT_FREE
	The starting point is chosen automatically.

F.57 Stream types

Value	Name
	Description
1	MSK_STREAM_MSG
	Message stream. Log information relating to performance and
	progress of the optimization is written to this stream.
3	MSK_STREAM_WRN
	Warning stream. Warning messages are written to this stream.
0	MSK_STREAM_LOG
	Log stream. Contains the aggregated contents of all other streams.
	This means that a message written to any other stream will also be
	written to this stream.
2	MSK_STREAM_ERR
	Error stream. Error messages are written to this stream.

F.58 Integer values

Value	Name
	Description
1024	MSK_MAX_STR_LEN
	Maximum string length allowed in MOSEK.
20	MSK_LICENSE_BUFFER_LENGTH
	The length of a license key buffer.

F.59 Variable types

Value	Name
	Description
1	MSK_VAR_TYPE_INT
	Is an integer variable.
0	MSK_VAR_TYPE_CONT
	Is a continuous variable.

F.60 XML writer output mode

Value	Name
	Description
1	MSK_WRITE_XML_MODE_COL
	Write in column order.
0	MSK_WRITE_XML_MODE_ROW
	Write in row order.

Appendix G

Problem analyzer examples

This appendix presents a few examples of the output produced by the problem analyzer described in Section 13.1. The first two problems are taken from the MIPLIB 2003 collection, http://miplib.zib.de/.

G.1 air04

Analyzing the problem

```
Variables
Constraints
                            Bounds
 fixed : all
                           ranged : all
                                                        bin : all
Objective, min cx
   range: min |c|: 31.0000 max |c|: 2258.00
 distrib: |c| vars

[31, 100) 176

[100, 1e+03) 8084

[1e+03, 2.26e+03] 644
Constraint matrix A has
       823 rows (constraints)
      8904 columns (variables)
     72965 (0.995703%) nonzero entries (coefficients)
Row nonzeros, A_i
   range: min A_i: 2 (0.0224618%) max A_i: 368 (4.13297%)
 distrib: A_i rows rows% acc%
2 2 0.24 0.24
[3, 7] 4 0.49 0.73
```

[8, 15]	19	2.31	3.04
[16, 31]	80	9.72	12.76
[32, 63]	236	28.68	41.43
[64, 127]	289	35.12	76.55
[128, 255]	186	22.60	99.15
[256, 368]	7	0.85	100.00
Column nonzeros, A j			

range:	min A j: 2	(0.243013%)	max A j:	15 (1.8226%)
distrib:	Alj	cols	cols%	acc%
	2	118	1.33	1.33
	[3, 7]	2853	32.04	33.37
	[8, 15]	5933	66.63	100.00

A nonzeros, A(ij)

range: all |A(ij)| = 1.00000

ubs

823

Constraint bounds, lb <= Ax <= ub |b| lbs distrib: [1, 10] 823

Variable bounds, lb <= x <= ub distrib: |b| lbs ubs 0

8904 [1, 10] 8904

G.2arki001

Analyzing the problem

Constraints		Bounds		Variables	
lower bd:	82	lower bd:	38	cont:	850
upper bd:	946	fixed :	353	bin :	415
fixed :	20	free :	1	<pre>int :</pre>	123
		ranged :	996		

Objective, min cx

range: all |c| in {0.00000, 1.00000}

distrib: |c| vars 1387 0 1 1

G.2. ARKI001 479

```
Constraint matrix A has
     1048 rows (constraints)
     1388 columns (variables)
    20439 (1.40511%) nonzero entries (coefficients)
Row nonzeros, A_i
  range: min A_i: 1 (0.0720461%)
                               max A_i: 1046 (75.3602%)
distrib: A_i rows
                                 rows% acc%
               1
                         29
                                  2.77
                                              2.77
                2
                        476
                                 45.42
                                             48.19
            [3, 7]
                         49
                                  4.68
                                             52.86
           [8, 15]
                                  5.34
                         56
                                             58.21
           [16, 31]
                         64
                                  6.11
                                             64.31
           [32, 63]
                        373
                                 35.59
                                            99.90
       [1024, 1046]
                                  0.10
                                            100.00
                         1
Column nonzeros, A|j
                               max A|j: 29 (2.76718%)
  range: min A|j: 1 (0.0954198%)
                               cols%
 distrib:
             Αlj
                     cols
                                              acc%
                         381
                                   27.45
                                             27.45
                1
                                 1.37
                2
                         19
                                             28.82
                         38
            [3, 7]
                                  2.74
                                            31.56
           [8, 15]
                         233
                                 16.79
                                             48.34
           [16, 29]
                        717
                                 51.66
                                            100.00
A nonzeros, A(ij)
  range: min |A(ij)|: 0.000200000
                                  max |A(ij)|: 2.33067e+07
 distrib: A(ij)
                     coeffs
    [0.0002, 0.001)
                        167
      [0.001, 0.01)
                        1049
        [0.01, 0.1)
                        4553
          [0.1, 1)
                         8840
           [1, 10)
                        3822
          [10, 100)
                         630
       [100, 1e+03)
                         267
     [1e+03, 1e+04)
                         699
     [1e+04, 1e+05)
                         291
     [1e+05, 1e+06)
                         83
     [1e+06, 1e+07)
                         19
  [1e+07, 2.33e+07]
                          19
Constraint bounds, lb <= Ax <= ub
distrib:
          |b|
                            lbs
                                            ubs
          [0.1, 1)
                                            386
          [1, 10)
                                            74
          [10, 100)
                            101
                                            456
        [100, 1000)
                                            34
```

[1000, 10000)		15	
[100000, 1e+06]	1	1	
Variable bounds, lb <= x <= ub			
distrib: b	lbs	ubs	
0	974	323	
[0.001, 0.01)		19	
[0.1, 1)	370	57	
[1, 10)	41	704	
[10, 100]	2	246	

G.3 Problem with both linear and quadratic constraints

Analyzing the problem

Constraints		Bounds		Variables	
lower bd:	40	upper bd:	1	cont: all	
upper bd:	121	fixed :	204		
fixed :	5480	free :	5600		
ranged :	161	ranged :	40		
Objective, ma	aximize cx				
range: all	c in {0.	00000, 15.4737}			
distrib:	c	vars			
	0	5844			

```
Constraint matrix A has
5802 rows (constraints)
5845 columns (variables)
6480 (0.0191079%) nonzero entries (coefficients)

Row nonzeros, A_i
```

15.4737 1

```
range: min A_i: 0 (0%) max A_i: 3 (0.0513259%)
distrib: A_i rows rows% acc%
0 80 1.38 1.38
1 5003 86.23 87.61
2 680 11.72 99.33
3 39 0.67 100.00
```

0/80 empty rows have quadratic terms

Column nonzeros, A|j

range: min A|j: 0 (0%) max A|j: 15 (0.258532%)

```
distrib:
                               cols%
             Alj
                      cols
                                           acc%
               0
                       204
                                3.49
                                           3.49
               1
                      5521
                                94.46
                                           97.95
               2
                       40
                                0.68
                                           98.63
                       40
           [3, 7]
                                0.68
                                          99.32
                       40
          [8, 15]
                                 0.68
                                         100.00
```

0/204 empty columns correspond to variables used in conic and/or quadratic expressions only

```
A nonzeros, A(ij)
```

```
Constraint bounds, lb <= Ax <= ub
```

distrib:	b	lbs	ubs
	0	5481	5600
[1000	, 10000)		1
[10000,	100000)	2	1
[1e+06	, 1e+07)	78	40
[1e+08	, 1e+09]	120	120

Variable bounds, lb <= x <= ub

distrib:	b	lbs	ubs
	0	243	203
	[0.1, 1)	1	1
[1e+06	s, 1e+07)		40
[1e+11	., 1e+12]		1

Quadratic constraints: 121

 ${\tt Gradient\ nonzeros,\ Qx}$

range:	min Qx: 1 (0	0.0171086%)	max Qx: 2720	(46.5355%)
distrib:	$\mathbf{Q}\mathbf{x}$	cons	cons%	acc%
	1	40	33.06	33.06
	[64, 127]	80	66.12	99.17
[2	2048, 2720]	1	0.83	100.00

G.4 Problem with both linear and conic constraints

```
Analyzing the problem
```

[0.1, 1]

36000

```
Constraints
                        Bounds
                                                Variables
 upper bd:
              3600
                        fixed :
                                     3601
                                                cont: all
             21760
                                     28802
 fixed :
                        free
Objective, minimize cx
  range: all |c| in {0.00000, 1.00000}
 distrib:
               |c|
                         vars
                 0
                        32402
                 1
                            1
Constraint matrix A has
    25360 rows (constraints)
    32403 columns (variables)
    93339 (0.0113587%) nonzero entries (coefficients)
Row nonzeros, A_i
  range: min A_i: 1 (0.00308613%)
                                  max A_i: 8 (0.0246891%)
             A_i
 distrib:
                                  rows%
                                               acc%
                      rows
                         3600
                                  14.20
                                              14.20
                1
                 2
                         10803
                                  42.60
                                              56.79
                                  15.75
             [3, 7]
                        3995
                                              72.55
                         6962
                                  27.45
                                              100.00
Column nonzeros, A|j
  range: min A|j: 0 (0%)
                        max A|j: 61 (0.240536%)
               Alj
 distrib:
                         cols cols% acc%
                 0
                         3602
                                  11.12
                                              11.12
                 1
                        10800
                                  33.33
                                              44.45
                 2
                         7200
                                  22.22
                                              66.67
             [3, 7]
                         7279
                                  22.46
                                              89.13
            [8, 15]
                         3521
                                  10.87
                                             100.00
           [32, 61]
                          1
                                    0.00
                                             100.00
3600/3602 empty columns correspond to variables used in conic
 and/or quadratic constraints only
A nonzeros, A(ij)
  range: min |A(ij)|: 0.00833333
                                  max |A(ij)|: 1.00000
 distrib:
          A(ij) coeffs
    [0.00833, 0.01)
                        57280
        [0.01, 0.1)
                           59
```

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs 0 21760 21760 [0.1, 1] 3600

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs [1, 10] 3601 3601

Rotated quadratic cones: 3600

dim RQCs 4 3600

Bibliography

- [1] Richard C. Grinold abd Ronald N. Kahn. *Active portfolio management*. McGraw-Hill, New York, 2 edition, 2000.
- [2] F. Alizadeh and D. Goldfarb. Second-order cone programming. *Math. Programming*, 95(1):3–51, 2003.
- [3] E. D. Andersen and K. D. Andersen. Presolving in linear programming. *Math. Programming*, 71(2):221–245, 1995.
- [4] E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In J. B. G. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, *High Performance Optimization Techniques*, *Proceedings of the HPOPT-II conference*, 1997. forthcoming.
- [5] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, *Interior-point methods of mathematical programming*, pages 189–252. Kluwer Academic Publishers, 1996.
- [6] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for conic quadratic optimization. *Math. Programming*, 95(2), February 2003.
- [7] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. *Management Sci.*, 42(12):1719–1731, December 1996.
- [8] E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for large-scale convex optimization. *Computational Optimization and Applications*, 10:243– 269, 1998.
- [9] E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity problem. *Math. Programming*, 84(2):375–399, February 1999.
- [10] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimization. Technical Report TR-1-2009, MOSEK ApS, 2009. http://www.mosek.com/fileadmin/reports/tech/homolo.pdf.

486 BIBLIOGRAPHY

[11] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. *Nonlinear programming: Theory and algorithms*. John Wiley and Sons, New York, 2 edition, 1993.

- [12] C. Beightler and D. T. Phillips. *Applied geometric programming*. John Wiley and Sons, New York, 1976.
- [13] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. *Math. Programming*, 88(3):411–424, 2000.
- [14] A. Ben-Tal and A Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, 2001.
- [15] S.P. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming. Technical report, ISL, Electrical Engineering Department, Stanford University, Stanford, CA, 2004. Available at http://www.stanford.edu/~boyd/gp_tutorial.html.
- [16] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.
- [17] N. Gould and P. L. Toint. Preprocessing for quadratic programming. *Math. Programming*, 100(1):95–132, 2004.
- [18] J. L. Kenningon and K. R. Lewis. Generalized networks: The theory of preprocessing and an emperical analysis. *INFORMS Journal on Computing*, 16(2):162–173, 2004.
- [19] M. S. Lobo, L. Vanderberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. *Linear Algebra Appl.*, 284:193–228, November 1998.
- [20] M. S. Lobo and M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs. Technical report, CDS, California Institute of Technology, 2005. To appear in Annals of Operations Research. http://www.cds.caltech.edu/~maryam/portfolio.html.
- [21] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York, 1987.
- [22] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and algorithms for linear optimization: an interior point approach. John Wiley and Sons, New York, 1997.
- [23] Bernd Scherer. Portfolio construction and risk budgeting. Risk Books, 2 edition, 2004.
- [24] S. W. Wallace. Decision making under uncertainty: Is sensitivity of any use. *Oper. Res.*, 48(1):20–25, January 2000.

BIBLIOGRAPHY 487

[25] H. P. Williams. *Model building in mathematical programming*. John Wiley and Sons, 3 edition, 1993.

[26] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

Index

MOSEK / Matlab integration, 21	concurrent_num_optimizers (parameter), 310
absolute value, 141	<pre>concurrent_priority_dual_simplex (parameter), 311</pre>
alloc_add_qnz (parameter), 305	${\tt concurrent_priority_free_simplex} \ ({\tt parameter}),$
ana_sol_basis (parameter), 305	311
ana_sol_infeas_tol (parameter), 270 ana_sol_print_violated (parameter), 306	concurrent_priority_intpnt (parameter), 311
auto_sort_a_before_opt (parameter), 306	concurrent_priority_primal_simplex (parame-
auto_update_sol_info (parameter), 306	ter), 312 conic, 30
(1))	optimization, 127
bas_sol_file_name (parameter), 378	problem, 127
basis identification, 153	conic modelling, 129
basis_rel_tol_s (parameter), 271	minimizing norms, example, 130
basis_solve_use_plus_one (parameter), 307	pitfalls, 136
basis_tol_s (parameter), 271	quadratic objective, example, 129
basis_tol_x (parameter), 271	risk and market impact, example
bi_clean_optimizer (parameter), 307 bi_ignore_max_iter (parameter), 308	Markowitz model, example, 142
bi_ignore_num_error (parameter), 308	conic optimization, 30
bi_max_iterations (parameter), 308	conic quadratic optimization, 30
bounds, infinite, 122	constraint
Sources, Immios, 122	matrix, 121, 138, 199
cache_license (parameter), 309	quadratic, 125
cache_size_l1 (parameter), 309	constraints
cache_size_12 (parameter), 309	lower limit, 122, 139, 199
call-back, 71	upper limit, 122, 139, 199
iteration, 72	continuous relaxation, 165
$\log, 71$	cpu_type (parameter), 312
callback_freq (parameter), 272	
certificate	data structures, 75
dual, 124	callback, 83
primal, 124	cones, 80
check_convexity (parameter), 310	duasen, 82
check_convexity_rel_tol (parameter), 272	$info, \frac{83}{2}$
check_task_data (parameter), 310	names, 80
complementarity conditions, 123	prisen, 81
concurrent optimization, 161	prob, 75
concurrent solution, 160	sol, 81

INDEX 489

symbcon, 83	intpnt_basis (parameter), 314
data_check (parameter), 312	<pre>intpnt_co_tol_dfeas (parameter), 275</pre>
data_file_name (parameter), 378	intpnt_co_tol_infeas (parameter), 276
data_tol_aij (parameter), 272	intpnt_co_tol_mu_red (parameter), 276
data_tol_aij_huge (parameter), 273	intpnt_co_tol_near_rel (parameter), 276
data_tol_aij_large (parameter), 273	intpnt_co_tol_pfeas (parameter), 277
data_tol_bound_inf (parameter), 273	intpnt_co_tol_rel_gap (parameter), 277
data_tol_bound_wrn (parameter), 273	intpnt_diff_step (parameter), 315
data_tol_c_huge (parameter), 274	intpnt_factor_debug_lvl (parameter), 315
data_tol_cj_large (parameter), 274	intpnt_factor_method (parameter), 316
data_tol_qij (parameter), 274	intpnt_max_iterations (parameter), 316
data_tol_x (parameter), 275	intpnt_max_num_cor (parameter), 316
debug_file_name (parameter), 378	<pre>intpnt_max_num_refinement_steps (parameter),</pre>
dual certificate, 124	316
dual infeasible, 122, 124	<pre>intpnt_nl_merit_bal (parameter), 277</pre>
duality gap (linear problem), 123	intpnt_nl_tol_dfeas (parameter), 277
dualizer, 149	intpnt_nl_tol_mu_red (parameter), 278
	intpnt_nl_tol_near_rel (parameter), 278
eliminator, 148	intpnt_nl_tol_pfeas (parameter), 278
Embedded network flow problems, 158	<pre>intpnt_nl_tol_rel_gap (parameter), 279</pre>
C '11 ' 1 100	intpnt_nl_tol_rel_step (parameter), 279
feasible, primal, 122	<pre>intpnt_num_threads (parameter), 317</pre>
feasrepair_name_wsumviol (parameter), 379	<pre>intpnt_off_col_trh (parameter), 317</pre>
feasrepair_optimize (parameter), 313	intpnt_order_method (parameter), 317
feasrepair_tol (parameter), 275	<pre>intpnt_regularization_use (parameter), 318</pre>
geometric optimization, 47, 114	intpnt_scaling (parameter), 318
geometric optimization, 47, 114	<pre>intpnt_solve_form (parameter), 319</pre>
help desk, 19	<pre>intpnt_starting_point (parameter), 319</pre>
hot-start, 155	<pre>intpnt_tol_dfeas (parameter), 279</pre>
1100 50010, 100	intpnt_tol_dsafe (parameter), 279
infeas_generic_names (parameter), 313	<pre>intpnt_tol_infeas (parameter), 280</pre>
infeas_prefer_primal (parameter), 313	intpnt_tol_mu_red (parameter), 280
infeas_report_auto (parameter), 314	intpnt_tol_path (parameter), 280
infeas_report_level (parameter), 314	intpnt_tol_pfeas (parameter), 281
infeasible, 175	intpnt_tol_psafe (parameter), 281
dual, 124	intpnt_tol_rel_gap (parameter), 281
primal, 124	<pre>intpnt_tol_rel_step (parameter), 281</pre>
infeasible problems, 175	<pre>intpnt_tol_step_size (parameter), 282</pre>
infeasible, dual, 122	itr_sol_file_name (parameter), 379
infeasible, primal, 122	
infinite bounds, 122	<pre>lic_trh_expiry_wrn (parameter), 319</pre>
<pre>int_sol_file_name (parameter), 379</pre>	license system, 21
integer optimization, 165	license_allow_overuse (parameter), 320
relaxation, 165	license_cache_time (parameter), 320
interior-point optimizer, 150, 158, 159	license_check_time (parameter), 320
interior-point or simplex optimizer, 157	license_debug (parameter), 321

INDEX

license_pause_time (parameter), 321	mio_disable_term_time (parameter), 283
license_suppress_expire_wrns (parameter), 321	mio_feaspump_level (parameter), 333
license_wait (parameter), 322	mio_heuristic_level (parameter), 334
linear dependency check, 148	mio_heuristic_time (parameter), 283
linear problem, 121	mio_hotstart (parameter), 334
linearity interval, 187	mio_keep_basis (parameter), 334
log (parameter), 322	mio_local_branch_number (parameter), 335
log_bi (parameter), 322	mio_max_num_branches (parameter), 335
<pre>log_bi_freq (parameter), 323</pre>	mio_max_num_relaxs (parameter), 335
<pre>log_check_convexity (parameter), 323</pre>	mio_max_num_solutions (parameter), 336
log_concurrent (parameter), 323	mio_max_time (parameter), 284
log_cut_second_opt (parameter), 324	mio_max_time_aprx_opt (parameter), 284
log_factor (parameter), 324	mio_mode (parameter), 336
log_feasrepair (parameter), 324	mio_near_tol_abs_gap (parameter), 284
log_file (parameter), 325	mio_near_tol_rel_gap (parameter), 285
log_head (parameter), 325	mio_node_optimizer (parameter), 337
log_infeas_ana (parameter), 325	mio_node_selection (parameter), 337
log_intpnt (parameter), 326	mio_optimizer_mode (parameter), 338
log_mio (parameter), 326	mio_presolve_aggregate (parameter), 338
log_mio_freq (parameter), 326	mio_presolve_probing (parameter), 338
log_nonconvex (parameter), 326	mio_presolve_use (parameter), 339
log_optimizer (parameter), 327	mio_rel_add_cut_limited (parameter), 285
log_order (parameter), 327	mio_rel_gap_const (parameter), 285
log_param (parameter), 327	mio_root_optimizer (parameter), 339
log_presolve (parameter), 328	mio_strong_branch (parameter), 340
log_response (parameter), 328	mio_tol_abs_gap (parameter), 286
log_sensitivity (parameter), 328	<pre>mio_tol_abs_relax_int (parameter), 286</pre>
log_sensitivity_opt (parameter), 328	mio_tol_feas (parameter), 286
log_sim (parameter), 329	mio_tol_rel_gap (parameter), 287
log_sim_freq (parameter), 329	<pre>mio_tol_rel_relax_int (parameter), 287</pre>
log_sim_minor (parameter), 329	mio_tol_x (parameter), 287
<pre>log_sim_network_freq (parameter), 330</pre>	mixed-integer optimization, 165
log_storage (parameter), 330	modelling
<pre>lower_obj_cut (parameter), 282</pre>	absolute value, 141
<pre>lower_obj_cut_finite_trh (parameter), 282</pre>	in cones, 129
LP format, 213	market impact term, 143
<pre>lp_write_ignore_incompatible_items (parame-</pre>	Markowitz portfolio optimization, 143
ter), 330	minimizing a sum of norms, 130
	portfolio optimization, 142
max_num_warnings (parameter), 331	transaction costs, 143
mio_branch_dir (parameter), 331	monomial, 114
mio_branch_priorities_use (parameter), 331	MPS format, 199
mio_construct_sol (parameter), 332	BOUNDS, 206
mio_cont_sol (parameter), 332	COLUMNS, 203
mio_cut_level_root (parameter), 333	free, 211
mio_cut_level_tree (parameter), 333	NAME, 201

$OBJNAME, \frac{202}{}$	optimizers
OBJSENSE, 202	concurrent, 161
QSECTION, 205	conic interior-point, 158
RANGES, 204	convex interior-point, 159
RHS, 203	linear interior-point, 150
ROWS, 202	parallel, 161
mskenopt	simplex, 155
mskenopt, 46	Optimizing
mskgpopt	network flow problems, 157
mskgpopt, 48	
msklpopt	parallel extensions, 160
msklpopt, 25	parallel interior-point, 150
mskqpopt	parallel optimizers
mskqpopt, 28	interior point, 150
mskscopt	parallel solution, 160
mskscopt, 51	param_comment_sign (parameter), 379
- ·	param_read_case_name (parameter), 344
Network flow problems	<pre>param_read_file_name (parameter), 380</pre>
embedded, 158	param_read_ign_error (parameter), 344
optimizing, 157	<pre>param_write_file_name (parameter), 380</pre>
nonconvex_max_iterations (parameter), 340	positive semi-definite, 28
nonconvex_tol_feas (parameter), 287	posynomial, 114
nonconvex_tol_opt (parameter), 288	posynomial optimization, 114
abjective	presolve, 147
objective	eliminator, 148
quadratic, 125	linear dependency check, 148
vector, 121 objective vector, 138	presolve_elim_fill (parameter), 345
· ·	<pre>presolve_eliminator_max_num_tries (parameter),</pre>
objective_sense (parameter), 340 OPF format, 221	345
opf_max_terms_per_line (parameter), 341	presolve_eliminator_use (parameter), 345
opf_write_header (parameter), 341	presolve_level (parameter), 346
opf_write_hints (parameter), 341	presolve_lindep_use (parameter), 346
opf_write_parameters (parameter), 341	presolve_lindep_work_lim (parameter), 346
opf_write_problem (parameter), 342	presolve_tol_aij (parameter), 288
opf_write_sol_bas (parameter), 342	presolve_tol_lin_dep (parameter), 289
opf_write_sol_itg (parameter), 342	presolve_tol_s (parameter), 289
opf_write_sol_itr (parameter), 343	presolve_tol_x (parameter), 289
opf_write_solutions (parameter), 343	presolve_use (parameter), 346
optimal solution, 123	primal feasible, 122
optimization	primal certificate, 124
conic, 127	primal infeasible, 122, 124
integer, 165	primal-dual solution, 122
mixed-integer, 165	<pre>qcqo_reformulate_rel_drop_tol (parameter), 289</pre>
optimization toolbox for MATLAB, 23	qcqo_reformulate=reformulation (parameter), 347
optimizer (parameter), 343	quadratic constraint, 125
optimizer_max_time (parameter), 288	quadratic constraint, 125 quadratic objective, 125
Torus (Paramicon), 200	quadratic objective, 120

quadratic optimization, 125	sim_hotstart_lu (parameter), 358
	sim_integer (parameter), 359
read_add_anz (parameter), 347	sim_lu_tol_rel_piv (parameter), 290
read_add_con (parameter), 347	sim_max_iterations (parameter), 359
read_add_cone (parameter), 348	sim_max_num_setbacks (parameter), 359
read_add_qnz (parameter), 348	<pre>sim_network_detect (parameter), 360</pre>
read_add_var (parameter), 348	<pre>sim_network_detect_hotstart (parameter), 360</pre>
read_anz (parameter), 348	sim_network_detect_method (parameter), 360
read_con (parameter), 349	sim_non_singular (parameter), 361
read_cone (parameter), 349	sim_primal_crash (parameter), 361
read_data_compressed (parameter), 349	sim_primal_phaseone_method (parameter), 361
read_data_format (parameter), 350	sim_primal_restrict_selection (parameter), 362
read_keep_free_con (parameter), 350	sim_primal_selection (parameter), 362
read_lp_drop_new_vars_in_bou (parameter), 350	sim_refactor_freq (parameter), 363
read_lp_quoted_names (parameter), 351	sim_reformulation (parameter), 363
read_mps_bou_name (parameter), 380	sim_save_lu (parameter), 363
read_mps_format (parameter), 351	sim_scaling (parameter), 364
read_mps_keep_int (parameter), 352	sim_scaling_method (parameter), 364
read_mps_obj_name (parameter), 380	sim_solve_form (parameter), 364
read_mps_obj_sense (parameter), 352	sim_stability_priority (parameter), 365
read_mps_quoted_names (parameter), 352	sim_switch_optimizer (parameter), 365
read_mps_ran_name (parameter), 381	simplex optimizer, 155
read_mps_relax (parameter), 352	simplex_abs_tol_piv (parameter), 290
read_mps_rhs_name (parameter), 381	sol_filter_keep_basic (parameter), 366
read_mps_width (parameter), 353	sol_filter_keep_ranged (parameter), 366
read_q_mode (parameter), 353	sol_filter_xc_low (parameter), 381
read_qnz (parameter), 353	sol_filter_xc_upr (parameter), 382
read_task_ignore_param (parameter), 354	sol_filter_xx_low (parameter), 382
read_var (parameter), 354	sol_filter_xx_upr (parameter), 382
relaxation, continuous, 165	sol_quoted_names (parameter), 366
acoline 140	sol_read_name_width (parameter), 367
scaling, 149	sol_read_width (parameter), 367
sensitivity analysis, 185 basis type, 187	solution, optimal, 123
optimal partition type, 188	solution, primal-dual, 122
sensitivity_optimizer (parameter), 354	solution_callback (parameter), 367
sensitivity_type (parameter), 355	stat_file_name (parameter), 383
/ -	stat_key (parameter), 383
separable convex optimization, 50 shadow price, 187	stat_name (parameter), 383
	symbolic constants
sim_basis_factor_use (parameter), 355	MSK_ACC_CON, 385
sim_degen (parameter), 356	MSK_ACC_VAR, 385
sim_dual_crash (parameter), 356 sim_dual_phaseone_method (parameter), 356	MSK_ADOP_ADD, 385
=	MSK_ADOP_ADD, 386
sim_dual_restrict_selection (parameter), 357	•
sim_dual_selection (parameter), 357	MSK_ADOP_EXP, 385
sim_exploit_dupvec (parameter), 358	MSK_ADOP_LOG, 386
sim_hotstart (parameter), 358	$MSK_ADOP_MUL, 385$

MSK_ADOP_POW, 385	MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY, 394
MSK_ADOP_RET, 385	MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI, 392
MSK_ADOP_SUB, 385	MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX, 392
MSK_ADOPTYPE_CONSTANT, 386	MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI, 391
MSK_ADOPTYPE_NONE, 386	MSK_CALLBACK_BEGIN_QCQO_REFORMULATE, 390
MSK_ADOPTYPE_REFERENCE, 386	MSK_CALLBACK_BEGIN_READ, 393
MSK_ADOPTYPE_VARIABLE, 386	MSK_CALLBACK_BEGIN_SIMPLEX, 393
MSK_BI_ALWAYS, 386	MSK_CALLBACK_BEGIN_SIMPLEX_BI, 394
MSK_BI_IF_FEASIBLE, 386	MSK_CALLBACK_BEGIN_SIMPLEX_NETWORK_DETECT
MSK_BI_NEVER, 386	392
MSK_BI_NO_ERROR, 386	MSK_CALLBACK_BEGIN_WRITE, 393
MSK_BI_OTHER, 386	MSK_CALLBACK_CONIC, 389
MSK_BK_FR, 387	MSK_CALLBACK_DUAL_SIMPLEX, 392
MSK_BK_FX, 387	MSK_CALLBACK_END_BI, 393
MSK_BK_LO, 387	MSK_CALLBACK_END_CONCURRENT, 388
MSK_BK_RA, 387	MSK_CALLBACK_END_CONIC, 390
MSK_BK_UP, 387	MSK_CALLBACK_END_DUAL_BI, 391
MSK_BRANCH_DIR_DOWN, 387	MSK_CALLBACK_END_DUAL_SENSITIVITY, 390
MSK_BRANCH_DIR_FREE, 387	MSK_CALLBACK_END_DUAL_SETUP_BI, 393
MSK_BRANCH_DIR_UP, 387	MSK_CALLBACK_END_DUAL_SIMPLEX, 394
MSK_CALLBACK_BEGIN_BI, 395	MSK_CALLBACK_END_DUAL_SIMPLEX_BI, 390
MSK_CALLBACK_BEGIN_CONCURRENT, 389	MSK_CALLBACK_END_FULL_CONVEXITY_CHECK, 395
MSK_CALLBACK_BEGIN_CONIC, 389	MSK_CALLBACK_END_INFEAS_ANA, 391
MSK_CALLBACK_BEGIN_DUAL_BI, 389	MSK_CALLBACK_END_INTPNT, 387
MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY, 389	MSK_CALLBACK_END_LICENSE_WAIT, 391
MSK_CALLBACK_BEGIN_DUAL_SETUP_BI, 391	
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX, 392	MSK_CALLBACK_END_MIO, 388
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI, 394	MSK_CALLBACK_END_NETWORK_DUAL_SIMPLEX, 388
MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK, 389	MSK_CALLBACK_END_NETWORK_PRIMAL_SIMPLEX, 388
MSK_CALLBACK_BEGIN_INFEAS_ANA, 394	MSK_CALLBACK_END_NETWORK_SIMPLEX, 389
MSK_CALLBACK_BEGIN_INTPNT, 394	MSK_CALLBACK_END_NONCONVEX, 392
MSK_CALLBACK_BEGIN_LICENSE_WAIT, 389	MSK_CALLBACK_END_OPTIMIZER, 390
MSK_CALLBACK_BEGIN_MIO, 396	MSK_CALLBACK_END_PRESOLVE, 393
MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX,	MSK_CALLBACK_END_PRIMAL_BI, 394
388	MSK_CALLBACK_END_PRIMAL_DUAL_SIMPLEX, 395
MSK_CALLBACK_BEGIN_NETWORK_PRIMAL_SIMPLEX,	MSK_CALLBACK_END_PRIMAL_DUAL_SIMPLEX_BI,
396	393
MSK_CALLBACK_BEGIN_NETWORK_SIMPLEX, 390	MSK_CALLBACK_END_PRIMAL_SENSITIVITY, 393
MSK_CALLBACK_BEGIN_NONCONVEX, 392	MSK_CALLBACK_END_PRIMAL_SETUP_BI, 393
MSK_CALLBACK_BEGIN_OPTIMIZER, 393	MSK_CALLBACK_END_PRIMAL_SIMPLEX, 393
MSK_CALLBACK_BEGIN_PRESOLVE, 395	MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI, 390
MSK_CALLBACK_BEGIN_PRIMAL_BI, 389	MSK_CALLBACK_END_QCQO_REFORMULATE, 394
MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX, 394	MSK_CALLBACK_END_READ, 391
MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX_BI,	MSK_CALLBACK_END_SIMPLEX, 394
387	MSK_CALLBACK_END_SIMPLEX_BI. 393

MSK_CALLBACK_END_SIMPLEX_NETWORK_DETECT,	${\tt MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX},$
388	395
MSK_CALLBACK_END_WRITE, 394	MSK_CALLBACK_UPDATE_NONCONVEX, 391
MSK_CALLBACK_IM_BI, 393	MSK_CALLBACK_UPDATE_PRESOLVE, 390
MSK_CALLBACK_IM_CONIC, 395	MSK_CALLBACK_UPDATE_PRIMAL_BI, 391
MSK_CALLBACK_IM_DUAL_BI, 388	MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX,
MSK_CALLBACK_IM_DUAL_SENSIVITY, 394	394
MSK_CALLBACK_IM_DUAL_SIMPLEX, 389	MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX_BI,
MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK, 392	391
MSK_CALLBACK_IM_INTPNT, 388	MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX, 392
MSK_CALLBACK_IM_LICENSE_WAIT, 390	MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI, 388
MSK_CALLBACK_IM_LU, 390	MSK_CALLBACK_WRITE_OPF, 395
MSK_CALLBACK_IM_MIO, 395	MSK_CHECK_CONVEXITY_FULL, 396
MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX, 395	MSK_CHECK_CONVEXITY_NONE, 396
MSK_CALLBACK_IM_MIO_INTPNT, 395	MSK_CHECK_CONVEXITY_SIMPLE, 396
MSK_CALLBACK_IM_MIO_PRESOLVE, 395	MSK_COMPRESS_FREE, 396
MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX, 389	MSK_COMPRESS_GZIP, 396
MSK_CALLBACK_IM_NETWORK_DUAL_SIMPLEX, 393	MSK_COMPRESS_NONE, 396
MSK_CALLBACK_IM_NETWORK_PRIMAL_SIMPLEX, 389	MSK_CPU_AMD_ATHLON, 397
MSK_CALLBACK_IM_NONCONVEX, 393	MSK_CPU_AMD_OPTERON, 397
MSK_CALLBACK_IM_ORDER, 395	MSK_CPU_GENERIC, 397
MSK_CALLBACK_IM_PRESOLVE, 391	MSK_CPU_HP_PARISC20, 397
MSK_CALLBACK_IM_PRIMAL_BI, 395	MSK_CPU_INTEL_CORE2, 397
MSK_CALLBACK_IM_PRIMAL_DUAL_SIMPLEX, 392	MSK_CPU_INTEL_ITANIUM2, 397
MSK_CALLBACK_IM_PRIMAL_SENSIVITY, 394	MSK_CPU_INTEL_P3, 397
MSK_CALLBACK_IM_PRIMAL_SIMPLEX, 388	MSK_CPU_INTEL_P4, 397
MSK_CALLBACK_IM_QO_REFORMULATE, 389	MSK_CPU_INTEL_PM, 397
MSK_CALLBACK_IM_SIMPLEX, 390	MSK_CPU_POWERPC_G5, 397
MSK_CALLBACK_IM_SIMPLEX_BI, 392	MSK_CPU_UNKNOWN, 397
MSK_CALLBACK_INTPNT, 391	MSK_CT_QUAD, 396
MSK_CALLBACK_NEW_INT_MIO, 388	MSK_CT_RQUAD, 397
MSK_CALLBACK_NONCOVEX, 391	MSK_DATA_FORMAT_EXTENSION, 398
MSK_CALLBACK_PRIMAL_SIMPLEX, 392	MSK_DATA_FORMAT_FREE_MPS, 398
MSK_CALLBACK_QCONE, 394	MSK_DATA_FORMAT_LP, 398
MSK_CALLBACK_READ_ADD_ANZ, 392	MSK_DATA_FORMAT_MBT, 398
MSK_CALLBACK_READ_ADD_CONES, 391	MSK_DATA_FORMAT_MPS, 398
MSK_CALLBACK_READ_ADD_CONS, 388	MSK_DATA_FORMAT_OP, 398
MSK_CALLBACK_READ_ADD_QNZ, 389	MSK_DATA_FORMAT_XML, 397
MSK_CALLBACK_READ_ADD_VARS, 390	MSK_DINF_BI_CLEAN_DUAL_TIME, 402
MSK_CALLBACK_READ_OPF, 390	MSK_DINF_BI_CLEAN_PRIMAL_DUAL_TIME, 402
MSK_CALLBACK_READ_OPF_SECTION, 390	MSK_DINF_BI_CLEAN_PRIMAL_TIME, 403
MSK_CALLBACK_UPDATE_DUAL_BI, 389	MSK_DINF_BI_CLEAN_TIME, 400
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX, 395	MSK_DINF_BI_DUAL_TIME, 398
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI, 390	MSK_DINF_BI_PRIMAL_TIME, 402
MSK_CALLBACK_UPDATE_NETWORK_DUAL_SIMPLEX,	MSK_DINF_BI_TIME, 402
390	MSK_DINF_CONCURRENT_TIME, 401

MSK_DINF_INTPNT_DUAL_FEAS, 401	MSK_DINF_SOL_ITR_MAX_DBI, 403
MSK_DINF_INTPNT_DUAL_OBJ, 400	MSK_DINF_SOL_ITR_MAX_DCNI, 399
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS, 398	MSK_DINF_SOL_ITR_MAX_DEQI, 400
MSK_DINF_INTPNT_KAP_DIV_TAU, 401	MSK_DINF_SOL_ITR_MAX_PBI, 399
MSK_DINF_INTPNT_ORDER_TIME, 402	MSK_DINF_SOL_ITR_MAX_PCNI, 398
MSK_DINF_INTPNT_PRIMAL_FEAS, 398	MSK_DINF_SOL_ITR_MAX_PEQI, 402
MSK_DINF_INTPNT_PRIMAL_OBJ, 402	MSK_DINF_SOL_ITR_MAX_PINTI, 399
MSK_DINF_INTPNT_TIME, 400	MSK_DINF_SOL_ITR_PRIMAL_OBJ, 401
MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ, 400	MSK_DPAR_ANA_SOL_INFEAS_TOL, 405
MSK_DINF_MIO_HEURISTIC_TIME, 399	MSK_DPAR_BASIS_REL_TOL_S, 407
MSK_DINF_MIO_OBJ_ABS_GAP, 402	MSK_DPAR_BASIS_TOL_S, 403
MSK_DINF_MIO_OBJ_BOUND, 401	MSK_DPAR_BASIS_TOL_X, 408
MSK_DINF_MIO_OBJ_INT, 401	MSK_DPAR_CALLBACK_FREQ, 408
MSK_DINF_MIO_OBJ_REL_GAP, 399	MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 404
MSK_DINF_MIO_OPTIMIZER_TIME, 398	MSK_DPAR_DATA_TOL_AIJ, 405
MSK_DINF_MIO_ROOT_OPTIMIZER_TIME, 403	MSK_DPAR_DATA_TOL_AIJ_HUGE, 408
MSK_DINF_MIO_ROOT_PRESOLVE_TIME, 400	MSK_DPAR_DATA_TOL_AIJ_LARGE, 403
MSK_DINF_MIO_TIME, 398	MSK_DPAR_DATA_TOL_BOUND_INF, 408
MSK_DINF_MIO_USER_OBJ_CUT, 401	MSK_DPAR_DATA_TOL_BOUND_WRN, 408
MSK_DINF_OPTIMIZER_TIME, 399	MSK_DPAR_DATA_TOL_C_HUGE, 406
MSK_DINF_PRESOLVE_ELI_TIME, 398	MSK_DPAR_DATA_TOL_CJ_LARGE, 407
MSK_DINF_PRESOLVE_LINDEP_TIME, 399	MSK_DPAR_DATA_TOL_QIJ, 409
MSK_DINF_PRESOLVE_TIME, 399	MSK_DPAR_DATA_TOL_X, 405
MSK_DINF_QCQO_REFORMULATE_TIME, 400	MSK_DPAR_FEASREPAIR_TOL, 405
MSK_DINF_RD_TIME, 398	MSK_DPAR_INTPNT_CO_TOL_DFEAS, 403
MSK_DINF_SIM_DUAL_TIME, 399	MSK_DPAR_INTPNT_CO_TOL_INFEAS, 407
MSK_DINF_SIM_FEAS, 400	MSK_DPAR_INTPNT_CO_TOL_MU_RED, 406
MSK_DINF_SIM_NETWORK_DUAL_TIME, 401	MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 408
MSK_DINF_SIM_NETWORK_PRIMAL_TIME, 400	MSK_DPAR_INTPNT_CO_TOL_PFEAS, 409
MSK_DINF_SIM_NETWORK_TIME, 399	MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 406
MSK_DINF_SIM_OBJ, 399	MSK_DPAR_INTPNT_NL_MERIT_BAL, 408
MSK_DINF_SIM_PRIMAL_DUAL_TIME, 403	MSK_DPAR_INTPNT_NL_TOL_DFEAS, 409
MSK_DINF_SIM_PRIMAL_TIME, 400	MSK_DPAR_INTPNT_NL_TOL_MU_RED, 404
MSK_DINF_SIM_TIME, 400	MSK_DPAR_INTPNT_NL_TOL_NEAR_REL, 405
MSK_DINF_SOL_BAS_DUAL_OBJ, 402	MSK_DPAR_INTPNT_NL_TOL_PFEAS, 408
MSK_DINF_SOL_BAS_MAX_DBI, 401	MSK_DPAR_INTPNT_NL_TOL_REL_GAP, 409
MSK_DINF_SOL_BAS_MAX_DEQI, 402	MSK_DPAR_INTPNT_NL_TOL_REL_STEP, 407
MSK_DINF_SOL_BAS_MAX_PBI, 399	MSK_DPAR_INTPNT_TOL_DFEAS, 409
MSK_DINF_SOL_BAS_MAX_PEQI, 401	MSK_DPAR_INTPNT_TOL_DSAFE, 405
MSK_DINF_SOL_BAS_MAX_PINTI, 400	MSK_DPAR_INTPNT_TOL_INFEAS, 405
MSK_DINF_SOL_BAS_PRIMAL_OBJ, 399	MSK_DPAR_INTPNT_TOL_MU_RED, 406
MSK_DINF_SOL_INT_MAX_PBI, 401	MSK_DPAR_INTPNT_TOL_PATH, 407
MSK_DINF_SOL_INT_MAX_PEQI, 401	MSK_DPAR_INTPNT_TOL_PFEAS, 407
MSK_DINF_SOL_INT_MAX_PINTI, 400	MSK_DPAR_INTPNT_TOL_PSAFE, 408
MSK_DINF_SOL_INT_PRIMAL_OBJ, 402	MSK_DPAR_INTPNT_TOL_REL_GAP, 408
MSK_DINF_SOL_ITR_DUAL_OBJ, 400	MSK_DPAR_INTPNT_TOL_REL_STEP, 406

MSK_DPAR_INTPNT_TOL_STEP_SIZE, 407	MSK_IINF_ANA_PRO_NUM_VAR_FR, 415
MSK_DPAR_LOWER_OBJ_CUT, 406	MSK_IINF_ANA_PRO_NUM_VAR_INT, 411
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 403	MSK_IINF_ANA_PRO_NUM_VAR_LO, 413
MSK_DPAR_MIO_DISABLE_TERM_TIME, 406	MSK_IINF_ANA_PRO_NUM_VAR_RA, 414
MSK_DPAR_MIO_HEURISTIC_TIME, 404	MSK_IINF_ANA_PRO_NUM_VAR_UP, 415
MSK_DPAR_MIO_MAX_TIME, 403	MSK_IINF_CACHE_SIZE_L1, 413
MSK_DPAR_MIO_MAX_TIME_APRX_OPT, 407	MSK_IINF_CACHE_SIZE_L2, 413
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP, 409	MSK_IINF_CONCURRENT_FASTEST_OPTIMIZER, 415
MSK_DPAR_MIO_NEAR_TOL_REL_GAP, 405	MSK_IINF_CPU_TYPE, 414
MSK_DPAR_MIO_REL_ADD_CUT_LIMITED, 405	MSK_IINF_INTPNT_FACTOR_NUM_OFFCOL, 411
MSK_DPAR_MIO_REL_GAP_CONST, 407	MSK_IINF_INTPNT_ITER, 411
MSK_DPAR_MIO_TOL_ABS_GAP, 404	MSK_IINF_INTPNT_NUM_THREADS, 415
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 404	MSK_IINF_INTPNT_SOLVE_DUAL, 412
MSK_DPAR_MIO_TOL_FEAS, 405	MSK_IINF_MIO_CONSTRUCT_SOLUTION, 413
MSK_DPAR_MIO_TOL_REL_GAP, 409	MSK_IINF_MIO_INITIAL_SOLUTION, 415
MSK_DPAR_MIO_TOL_REL_RELAX_INT, 409	MSK_IINF_MIO_NUM_ACTIVE_NODES, 415
MSK_DPAR_MIO_TOL_X, 406	MSK_IINF_MIO_NUM_BRANCH, 414
MSK_DPAR_NONCONVEX_TOL_FEAS, 404	MSK_IINF_MIO_NUM_CUTS, 412
MSK_DPAR_NONCONVEX_TOL_OPT, 404	MSK_IINF_MIO_NUM_INT_SOLUTIONS, 414
MSK_DPAR_OPTIMIZER_MAX_TIME, 405	MSK_IINF_MIO_NUM_RELAX, 414
MSK_DPAR_PRESOLVE_TOL_AIJ, 407	MSK_IINF_MIO_NUMCON, 410
MSK_DPAR_PRESOLVE_TOL_LIN_DEP, 406	MSK_IINF_MIO_NUMINT, 412
MSK_DPAR_PRESOLVE_TOL_S, 403	MSK_IINF_MIO_NUMVAR, 412
MSK_DPAR_PRESOLVE_TOL_X, 404	MSK_IINF_MIO_TOTAL_NUM_BASIS_CUTS, 411
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 409	MSK_IINF_MIO_TOTAL_NUM_BRANCH, 414
MSK_DPAR_SIM_LU_TOL_REL_PIV, 407	MSK_IINF_MIO_TOTAL_NUM_CARDGUB_CUTS, 412
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 404	MSK_IINF_MIO_TOTAL_NUM_CLIQUE_CUTS, 411
MSK_DPAR_UPPER_OBJ_CUT, 403	MSK_IINF_MIO_TOTAL_NUM_COEF_REDC_CUTS, 416
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 404	MSK_IINF_MIO_TOTAL_NUM_CONTRA_CUTS, 412
MSK_FEASREPAIR_OPTIMIZE_COMBINED, 409	MSK_IINF_MIO_TOTAL_NUM_CUTS, 416
MSK_FEASREPAIR_OPTIMIZE_NONE, 409	MSK_IINF_MIO_TOTAL_NUM_DISAGG_CUTS, 416
MSK_FEASREPAIR_OPTIMIZE_PENALTY, 409	MSK_IINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS, 414
MSK_FEATURE_PTOM, 410	MSK_IINF_MIO_TOTAL_NUM_GCD_CUTS, 414
MSK_FEATURE_PTON, 410	MSK_IINF_MIO_TOTAL_NUM_GOMORY_CUTS, 416
MSK_FEATURE_PTOX, 410	MSK_IINF_MIO_TOTAL_NUM_GUB_COVER_CUTS, 414
MSK_FEATURE_PTS, 410	MSK_IINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS,
MSK_IINF_ANA_PRO_NUM_CON, 411	411
MSK_IINF_ANA_PRO_NUM_CON_EQ, 414	MSK_IINF_MIO_TOTAL_NUM_LATTICE_CUTS, 411
MSK_IINF_ANA_PRO_NUM_CON_FR, 412	MSK_IINF_MIO_TOTAL_NUM_LIFT_CUTS, 413
MSK_IINF_ANA_PRO_NUM_CON_LO, 413	MSK_IINF_MIO_TOTAL_NUM_OBJ_CUTS, 410
MSK_IINF_ANA_PRO_NUM_CON_RA, 416	MSK_IINF_MIO_TOTAL_NUM_PLAN_LOC_CUTS, 412
MSK_IINF_ANA_PRO_NUM_CON_UP, 411	MSK_IINF_MIO_TOTAL_NUM_RELAX, 415
MSK_IINF_ANA_PRO_NUM_VAR, 413	MSK_IINF_MIO_USER_OBJ_CUT, 415
MSK_IINF_ANA_PRO_NUM_VAR_BIN, 415	MSK_IINF_OPT_NUMCON, 416
MSK_IINF_ANA_PRO_NUM_VAR_CONT, 411	MSK_IINF_OPT_NUMVAR, 410
MSK_IINF_ANA_PRO_NUM_VAR_EQ, 415	MSK_IINF_OPTIMIZE_RESPONSE, 412
LIDIT TIME TWATE INCTIONS AND TRACE OF 410	FIGHT THE TOP I THIT TO THE OF ONO P. 417

MSK_IINF_RD_NUMCON, 415	MSK_INF_LINT_TYPE, 416
MSK_IINF_RD_NUMCONE, 415	MSK_IOMODE_READ, 417
MSK_IINF_RD_NUMINTVAR, 410	MSK_IOMODE_READWRITE, 417
MSK_IINF_RD_NUMQ, 411	MSK_IOMODE_WRITE, 417
MSK_IINF_RD_NUMVAR, 413	MSK_IPAR_ALLOC_ADD_QNZ, 431
MSK_IINF_RD_PROTYPE, 412	MSK_IPAR_ANA_SOL_BASIS, 424
MSK_IINF_SIM_DUAL_DEG_ITER, 411	MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 423
MSK_IINF_SIM_DUAL_HOTSTART, 415	MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 431
MSK_IINF_SIM_DUAL_HOTSTART_LU, 415	MSK_IPAR_AUTO_UPDATE_SOL_INFO, 421
MSK_IINF_SIM_DUAL_INF_ITER, 412	MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 422
MSK_IINF_SIM_DUAL_ITER, 411	MSK_IPAR_BI_CLEAN_OPTIMIZER, 428
MSK_IINF_SIM_NETWORK_DUAL_DEG_ITER, 413	MSK_IPAR_BI_IGNORE_MAX_ITER, 428
MSK_IINF_SIM_NETWORK_DUAL_HOTSTART, 412	MSK_IPAR_BI_IGNORE_NUM_ERROR, 422
MSK_IINF_SIM_NETWORK_DUAL_HOTSTART_LU, 414	MSK_IPAR_BI_MAX_ITERATIONS, 426
MSK_IINF_SIM_NETWORK_DUAL_INF_ITER, 411	MSK_IPAR_CACHE_LICENSE, 427
MSK_IINF_SIM_NETWORK_DUAL_ITER, 415	MSK_IPAR_CACHE_SIZE_L1, 433
MSK_IINF_SIM_NETWORK_PRIMAL_DEG_ITER, 411	MSK_IPAR_CACHE_SIZE_L2, 433
MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART, 416	MSK_IPAR_CHECK_CONVEXITY, 424
MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART_LU,	MSK_IPAR_CHECK_TASK_DATA, 419
415	MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS, 424
MSK_IINF_SIM_NETWORK_PRIMAL_INF_ITER, 414	MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX,
MSK_IINF_SIM_NETWORK_PRIMAL_ITER, 413	420
MSK_IINF_SIM_NUMCON, 411	MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX,
MSK_IINF_SIM_NUMVAR, 410	430
MSK_IINF_SIM_PRIMAL_DEG_ITER, 416	MSK_IPAR_CONCURRENT_PRIORITY_INTPNT, 430
MSK_IINF_SIM_PRIMAL_DUAL_DEG_ITER, 413	MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX
MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART, 412	427
MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART_LU, 412	MSK_IPAR_CPU_TYPE, 423
MSK_IINF_SIM_PRIMAL_DUAL_INF_ITER, 416	MSK_IPAR_DATA_CHECK, 430
MSK_IINF_SIM_PRIMAL_DUAL_ITER, 411	MSK_IPAR_FEASREPAIR_OPTIMIZE, 421
MSK_IINF_SIM_PRIMAL_HOTSTART, 414	MSK_IPAR_INFEAS_GENERIC_NAMES, 433
MSK_IINF_SIM_PRIMAL_HOTSTART_LU, 414	MSK_IPAR_INFEAS_PREFER_PRIMAL, 429
MSK_IINF_SIM_PRIMAL_INF_ITER, 414	MSK_IPAR_INFEAS_REPORT_AUTO, 417
MSK_IINF_SIM_PRIMAL_ITER, 415	MSK_IPAR_INFEAS_REPORT_LEVEL, 433
MSK_IINF_SIM_SOLVE_DUAL, 410	MSK_IPAR_INTPNT_BASIS, 429
MSK_IINF_SOL_BAS_PROSTA, 413	MSK_IPAR_INTPNT_DIFF_STEP, 427
MSK_IINF_SOL_BAS_SOLSTA, 410	MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL, 425
MSK_IINF_SOL_INT_PROSTA, 413	MSK_IPAR_INTPNT_FACTOR_METHOD, 435
MSK_IINF_SOL_INT_SOLSTA, 413	MSK_IPAR_INTPNT_MAX_ITERATIONS, 423
MSK_IINF_SOL_ITR_PROSTA, 412	MSK_IPAR_INTPNT_MAX_NUM_COR, 423
MSK_IINF_SOL_ITR_SOLSTA, 412	MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS,
MSK_IINF_STO_NUM_A_CACHE_FLUSHES, 413	423
MSK_IINF_STO_NUM_A_REALLOC, 414	MSK_IPAR_INTPNT_NUM_THREADS, 431
MSK_IINF_STO_NUM_A_TRANSPOSES, 410	MSK_IPAR_INTPNT_OFF_COL_TRH, 420
MSK_INF_DOU_TYPE, 416	MSK_IPAR_INTPNT_ORDER_METHOD, 418
MSK_INF_INT_TYPE, 416	MSK_IPAR_INTPNT_REGULARIZATION_USE, 428

MSK_IPAR_INTPNT_SCALING, 435	MSK_IPAR_MIO_CUT_LEVEL_TREE, 418
MSK_IPAR_INTPNT_SOLVE_FORM, 428	MSK_IPAR_MIO_FEASPUMP_LEVEL, 432
MSK_IPAR_INTPNT_STARTING_POINT, 427	MSK_IPAR_MIO_HEURISTIC_LEVEL, 435
MSK_IPAR_LIC_TRH_EXPIRY_WRN, 421	MSK_IPAR_MIO_HOTSTART, 431
MSK_IPAR_LICENSE_ALLOW_OVERUSE, 428	MSK_IPAR_MIO_KEEP_BASIS, 435
MSK_IPAR_LICENSE_CACHE_TIME, 426	MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER, 420
MSK_IPAR_LICENSE_CHECK_TIME, 429	MSK_IPAR_MIO_MAX_NUM_BRANCHES, 431
MSK_IPAR_LICENSE_DEBUG, 424	MSK_IPAR_MIO_MAX_NUM_RELAXS, 435
MSK_IPAR_LICENSE_PAUSE_TIME, 425	MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 429
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 432	MSK_IPAR_MIO_MODE, 421
MSK_IPAR_LICENSE_WAIT, 424	MSK_IPAR_MIO_NODE_OPTIMIZER, 417
MSK_IPAR_LOG, 427	MSK_IPAR_MIO_NODE_SELECTION, 422
MSK_IPAR_LOG_BI, 423	MSK_IPAR_MIO_OPTIMIZER_MODE, 425
MSK_IPAR_LOG_BI_FREQ, 420	MSK_IPAR_MIO_PRESOLVE_AGGREGATE, 425
MSK_IPAR_LOG_CHECK_CONVEXITY, 434	MSK_IPAR_MIO_PRESOLVE_PROBING, 428
MSK_IPAR_LOG_CONCURRENT, 423	MSK_IPAR_MIO_PRESOLVE_USE, 429
MSK_IPAR_LOG_CUT_SECOND_OPT, 429	MSK_IPAR_MIO_ROOT_OPTIMIZER, 420
MSK_IPAR_LOG_FACTOR, 421	MSK_IPAR_MIO_STRONG_BRANCH, 432
MSK_IPAR_LOG_FEASREPAIR, 428	MSK_IPAR_NONCONVEX_MAX_ITERATIONS, 420
MSK_IPAR_LOG_FILE, 430	MSK_IPAR_OBJECTIVE_SENSE, 426
MSK_IPAR_LOG_HEAD, 434	MSK_IPAR_OPF_MAX_TERMS_PER_LINE, 428
MSK_IPAR_LOG_INFEAS_ANA, 419	MSK_IPAR_OPF_WRITE_HEADER, 426
MSK_IPAR_LOG_INTPNT, 425	MSK_IPAR_OPF_WRITE_HINTS, 430
MSK_IPAR_LOG_MIO, 425	MSK_IPAR_OPF_WRITE_PARAMETERS, 418
MSK_IPAR_LOG_MIO_FREQ, 419	MSK_IPAR_OPF_WRITE_PROBLEM, 434
MSK_IPAR_LOG_NONCONVEX, 421	MSK_IPAR_OPF_WRITE_SOL_BAS, 419
MSK_IPAR_LOG_OPTIMIZER, 431	MSK_IPAR_OPF_WRITE_SOL_ITG, 418
MSK_IPAR_LOG_ORDER, 422	MSK_IPAR_OPF_WRITE_SOL_ITR, 418
MSK_IPAR_LOG_PARAM, 425	MSK_IPAR_OPF_WRITE_SOLUTIONS, 426
MSK_IPAR_LOG_PRESOLVE, 420	MSK_IPAR_OPTIMIZER, 432
MSK_IPAR_LOG_RESPONSE, 433	MSK_IPAR_PARAM_READ_CASE_NAME, 431
MSK_IPAR_LOG_SENSITIVITY, 418	MSK_IPAR_PARAM_READ_IGN_ERROR, 426
MSK_IPAR_LOG_SENSITIVITY_OPT, 417	MSK_IPAR_PRESOLVE_ELIM_FILL, 420
MSK_IPAR_LOG_SIM, 421	MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
MSK_IPAR_LOG_SIM_FREQ, 421	424
MSK_IPAR_LOG_SIM_MINOR, 423	MSK_IPAR_PRESOLVE_ELIMINATOR_USE, 430
MSK_IPAR_LOG_SIM_NETWORK_FREQ, 427	MSK_IPAR_PRESOLVE_LEVEL, 417
MSK_IPAR_LOG_STORAGE, 429	MSK_IPAR_PRESOLVE_LINDEP_USE, 426
MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS,	MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM, 423
425	MSK_IPAR_PRESOLVE_USE, 417
MSK_IPAR_MAX_NUM_WARNINGS, 432	MSK_IPAR_QO_SEPARABLE_REFORMULATION, 424
MSK_IPAR_MIO_BRANCH_DIR, 425	MSK_IPAR_READ_ADD_ANZ, 418
MSK_IPAR_MIO_BRANCH_PRIORITIES_USE, 418	MSK_IPAR_READ_ADD_CON, 423
MSK_IPAR_MIO_CONSTRUCT_SOL, 431	MSK_IPAR_READ_ADD_CONE, 417
MSK_IPAR_MIO_CONT_SOL, 426	
•	MSK_IPAR_READ_ADD_QNZ, 420
MSK_IPAR_MIO_CUT_LEVEL_ROOT, 422	MSK_IPAR_READ_ADD_VAR, 417

MSK_IPAR_READ_ANZ, 421	MSK_IPAR_SIM_SOLVE_FORM, 424
MSK_IPAR_READ_CON, 418	MSK_IPAR_SIM_STABILITY_PRIORITY, 417
MSK_IPAR_READ_CONE, 432	MSK_IPAR_SIM_SWITCH_OPTIMIZER, 433
MSK_IPAR_READ_DATA_COMPRESSED, 434	MSK_IPAR_SOL_FILTER_KEEP_BASIC, 435
MSK_IPAR_READ_DATA_FORMAT, 434	MSK_IPAR_SOL_FILTER_KEEP_RANGED, 428
MSK_IPAR_READ_KEEP_FREE_CON, 430	MSK_IPAR_SOL_QUOTED_NAMES, 425
MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU, 421	MSK_IPAR_SOL_READ_NAME_WIDTH, 424
MSK_IPAR_READ_LP_QUOTED_NAMES, 429	MSK_IPAR_SOL_READ_WIDTH, 423
MSK_IPAR_READ_MPS_FORMAT, 431	MSK_IPAR_SOLUTION_CALLBACK, 421
MSK_IPAR_READ_MPS_KEEP_INT, 429	MSK_IPAR_TIMING_LEVEL, 422
MSK_IPAR_READ_MPS_OBJ_SENSE, 427	MSK_IPAR_WARNING_LEVEL, 420
MSK_IPAR_READ_MPS_QUOTED_NAMES, 431	MSK_IPAR_WRITE_BAS_CONSTRAINTS, 432
MSK_IPAR_READ_MPS_RELAX, 418	MSK_IPAR_WRITE_BAS_HEAD, 418
MSK_IPAR_READ_MPS_WIDTH, 422	MSK_IPAR_WRITE_BAS_VARIABLES, 429
MSK_IPAR_READ_Q_MODE, 434	MSK_IPAR_WRITE_DATA_COMPRESSED, 418
MSK_IPAR_READ_QNZ, 419	MSK_IPAR_WRITE_DATA_FORMAT, 425
MSK_IPAR_READ_TASK_IGNORE_PARAM, 425	MSK_IPAR_WRITE_DATA_PARAM, 430
MSK_IPAR_READ_VAR, 434	MSK_IPAR_WRITE_FREE_CON, 420
MSK_IPAR_SENSITIVITY_ALL, 428	MSK_IPAR_WRITE_GENERIC_NAMES, 420
MSK_IPAR_SENSITIVITY_OPTIMIZER, 430	MSK_IPAR_WRITE_GENERIC_NAMES_IO, 424
MSK_IPAR_SENSITIVITY_TYPE, 419	MSK_IPAR_WRITE_INT_CONSTRAINTS, 419
MSK_IPAR_SIM_BASIS_FACTOR_USE, 428	MSK_IPAR_WRITE_INT_HEAD, 426
MSK_IPAR_SIM_DEGEN, 430	MSK_IPAR_WRITE_INT_VARIABLES, 418
MSK_IPAR_SIM_DUAL_CRASH, 434	MSK_IPAR_WRITE_LP_LINE_WIDTH, 424
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 432	MSK_IPAR_WRITE_LP_QUOTED_NAMES, 421
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 419	MSK_IPAR_WRITE_LP_STRICT_FORMAT, 419
MSK_IPAR_SIM_DUAL_SELECTION, 424	MSK_IPAR_WRITE_LP_TERMS_PER_LINE, 427
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 425	MSK_IPAR_WRITE_MPS_INT, 430
MSK_IPAR_SIM_HOTSTART, 425	MSK_IPAR_WRITE_MPS_OBJ_SENSE, 431
MSK_IPAR_SIM_HOTSTART_LU, 426	MSK_IPAR_WRITE_MPS_QUOTED_NAMES, 422
MSK_IPAR_SIM_INTEGER, 432	MSK_IPAR_WRITE_MPS_STRICT, 417
MSK_IPAR_SIM_MAX_ITERATIONS, 423	MSK_IPAR_WRITE_PRECISION, 428
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 430	MSK_IPAR_WRITE_SOL_CONSTRAINTS, 420
MSK_IPAR_SIM_NETWORK_DETECT, 433	MSK_IPAR_WRITE_SOL_HEAD, 432
MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART, 426	MSK_IPAR_WRITE_SOL_VARIABLES, 429
MSK_IPAR_SIM_NETWORK_DETECT_METHOD, 434	MSK_IPAR_WRITE_TASK_INC_SOL, 426
MSK_IPAR_SIM_NON_SINGULAR, 430	MSK_IPAR_WRITE_XML_MODE, 428
MSK_IPAR_SIM_PRIMAL_CRASH, 431	MSK_LANG_DAN, 435
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 417	MSK_LANG_ENG, 435
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 432	MSK_LICENSE_BUFFER_LENGTH, 474
MSK_IPAR_SIM_PRIMAL_SELECTION, 419	MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER, 436
MSK_IPAR_SIM_REFACTOR_FREQ, 424	MSK_LIINF_BI_CLEAN_DUAL_ITER, 436
MSK_IPAR_SIM_REFORMULATION, 434	MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER, 436
MSK_IPAR_SIM_SAVE_LU, 434	MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_DEG_ITER,
MSK_IPAR_SIM_SCALING, 427	436
MSK IPAR SIM SCALING METHOD. 421	MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_ITER. 436

MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_SUB_ITER,	MSK_OPTIMIZER_MIXED_INT, 440
436	MSK_OPTIMIZER_NONCONVEX, 440
MSK_LIINF_BI_CLEAN_PRIMAL_ITER, 436	MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX, 440
MSK_LIINF_BI_DUAL_ITER, 436	MSK_OPTIMIZER_PRIMAL_SIMPLEX, 440
MSK_LIINF_BI_PRIMAL_ITER, 436	MSK_OPTIMIZER_QCONE, 440
MSK_LIINF_INTPNT_FACTOR_NUM_NZ, 436	MSK_ORDER_METHOD_APPMINLOC1, 441
MSK_LIINF_MIO_INTPNT_ITER, 436	MSK_ORDER_METHOD_APPMINLOC2, 441
MSK_LIINF_MIO_SIMPLEX_ITER, 436	MSK_ORDER_METHOD_FREE, 441
MSK_LIINF_RD_NUMANZ, 436	MSK_ORDER_METHOD_GRAPHPAR1, 441
MSK_LIINF_RD_NUMQNZ, 436	MSK_ORDER_METHOD_GRAPHPAR2, 441
MSK_MARK_LO, 437	MSK_ORDER_METHOD_NONE, 441
MSK_MARK_UP, 437	MSK_PAR_DOU_TYPE, 441
MSK_MAX_STR_LEN, 474	MSK_PAR_INT_TYPE, 441
MSK_MIO_CONT_SOL_ITG, 437	MSK_PAR_INVALID_TYPE, 441
MSK_MIO_CONT_SOL_ITG_REL, 437	MSK_PAR_STR_TYPE, 441
MSK_MIO_CONT_SOL_NONE, 437	MSK_PI_CON, 442
MSK_MIO_CONT_SOL_ROOT, 437	MSK_PI_CONE, 442
MSK_MIO_MODE_IGNORED, 437	MSK_PI_VAR, 442
MSK_MIO_MODE_LAZY, 437	MSK_PRESOLVE_MODE_FREE, 441
MSK_MIO_MODE_SATISFIED, 438	MSK_PRESOLVE_MODE_OFF, 441
MSK_MIO_NODE_SELECTION_BEST, 438	MSK_PRESOLVE_MODE_ON, 441
MSK_MIO_NODE_SELECTION_FIRST, 438	MSK_PRO_STA_DUAL_FEAS, 443
MSK_MIO_NODE_SELECTION_FREE, 438	MSK_PRO_STA_DUAL_INFEAS, 443
MSK_MIO_NODE_SELECTION_HYBRID, 438	MSK_PRO_STA_ILL_POSED, 443
MSK_MIO_NODE_SELECTION_PSEUDO, 438	MSK_PRO_STA_NEAR_DUAL_FEAS, 443
MSK_MIO_NODE_SELECTION_WORST, 438	MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS, 443
MSK_MPS_FORMAT_FREE, 438	MSK_PRO_STA_NEAR_PRIM_FEAS, 443
MSK_MPS_FORMAT_RELAXED, 438	MSK_PRO_STA_PRIM_AND_DUAL_FEAS, 443
MSK_MPS_FORMAT_STRICT, 438	MSK_PRO_STA_PRIM_AND_DUAL_INFEAS, 443
MSK_MSG_MPS_SELECTED, 439	MSK_PRO_STA_PRIM_FEAS, 443
MSK_MSG_READING_FILE, 439	MSK_PRO_STA_PRIM_INFEAS, 443
MSK_MSG_WRITING_FILE, 439	MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED, 443
MSK_NETWORK_DETECT_ADVANCED, 439	MSK_PRO_STA_UNKNOWN, 443
MSK_NETWORK_DETECT_FREE, 439	MSK_PROBTYPE_CONIC, 442
MSK_NETWORK_DETECT_SIMPLE, 439	MSK_PROBTYPE_GECO, 442
MSK_OBJECTIVE_SENSE_MAXIMIZE, 439	MSK_PROBTYPE_LO, 442
MSK_OBJECTIVE_SENSE_MINIMIZE, 439	MSK_PROBTYPE_MIXED, 442
MSK_OBJECTIVE_SENSE_UNDEFINED, 439	MSK_PROBTYPE_QCQO, 442
MSK_OFF, 440	MSK_PROBTYPE_QO, 442
MSK_ON, 440	MSK_Q_READ_ADD, 443
MSK_OPTIMIZER_CONCURRENT, 440	MSK_Q_READ_DROP_LOWER, 443
MSK_OPTIMIZER_CONIC, 440	MSK_Q_READ_DROP_UPPER, 444
MSK_OPTIMIZER_DUAL_SIMPLEX, 440	MSK_RES_ERR_AD_INVALID_CODELIST, 447
MSK_OPTIMIZER_FREE, 440	MSK_RES_ERR_AD_INVALID_OPERAND, 462
MSK_OPTIMIZER_FREE_SIMPLEX, 440	MSK_RES_ERR_AD_INVALID_OPERATOR, 465
MSK OPTIMIZER INTENT 440	MSK RES ERR AD MISSING OPERAND 461

MSK_RES_ERR_AD_MISSING_RETURN, 455	MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE, 463
MSK_RES_ERR_API_ARRAY_TOO_SMALL, 454	MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL, 453
MSK_RES_ERR_API_CB_CONNECT, 459	MSK_RES_ERR_INDEX_IS_TOO_LARGE, 446
MSK_RES_ERR_API_FATAL_ERROR, 452	MSK_RES_ERR_INDEX_IS_TOO_SMALL, 444
MSK_RES_ERR_API_INTERNAL, 456	MSK_RES_ERR_INF_DOU_INDEX, 448
MSK_RES_ERR_ARGUMENT_DIMENSION, 461	MSK_RES_ERR_INF_DOU_NAME, 462
MSK_RES_ERR_ARGUMENT_LENNEQ, 457	MSK_RES_ERR_INF_INT_INDEX, 453
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 448	MSK_RES_ERR_INF_INT_NAME, 455
MSK_RES_ERR_ARGUMENT_TYPE, 447	MSK_RES_ERR_INF_LINT_INDEX, 447
MSK_RES_ERR_BASIS, 463	MSK_RES_ERR_INF_LINT_NAME, 445
MSK_RES_ERR_BASIS_FACTOR, 446	MSK_RES_ERR_INF_TYPE, 451
MSK_RES_ERR_BASIS_SINGULAR, 458	MSK_RES_ERR_INFEAS_UNDEFINED, 455
MSK_RES_ERR_BLANK_NAME, 457	MSK_RES_ERR_INFINITE_BOUND, 453
MSK_RES_ERR_CANNOT_CLONE_NL, 454	MSK_RES_ERR_INT64_TO_INT32_CAST, 465
MSK_RES_ERR_CANNOT_HANDLE_NL, 452	MSK_RES_ERR_INTERNAL, 446
MSK_RES_ERR_CON_Q_NOT_NSD, 455	MSK_RES_ERR_INTERNAL_TEST_FAILED, 458
MSK_RES_ERR_CON_Q_NOT_PSD, 448	MSK_RES_ERR_INV_APTRE, 459
MSK_RES_ERR_CONCURRENT_OPTIMIZER, 452	MSK_RES_ERR_INV_BK, 464
MSK_RES_ERR_CONE_INDEX, 450	MSK_RES_ERR_INV_BKC, 456
MSK_RES_ERR_CONE_OVERLAP, 457	MSK_RES_ERR_INV_BKX, 463
MSK_RES_ERR_CONE_REP_VAR, 452	MSK_RES_ERR_INV_CONE_TYPE, 462
MSK_RES_ERR_CONE_SIZE, 464	MSK_RES_ERR_INV_CONE_TYPE_STR, 460
MSK_RES_ERR_CONE_TYPE, 456	MSK_RES_ERR_INV_MARKI, 444
MSK_RES_ERR_CONE_TYPE_STR, 463	MSK_RES_ERR_INV_MARKJ, 465
MSK_RES_ERR_DATA_FILE_EXT, 448	MSK_RES_ERR_INV_NAME_ITEM, 455
MSK_RES_ERR_DUP_NAME, 458	MSK_RES_ERR_INV_NUMI, 449
MSK_RES_ERR_END_OF_FILE, 447	MSK_RES_ERR_INV_NUMJ, 449
MSK_RES_ERR_FACTOR, 449	MSK_RES_ERR_INV_OPTIMIZER, 452
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 446	MSK_RES_ERR_INV_PROBLEM, 444
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND,	MSK_RES_ERR_INV_QCON_SUBI, 463
456	MSK_RES_ERR_INV_QCON_SUBJ, 447
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 453	MSK_RES_ERR_INV_QCON_SUBK, 447
MSK_RES_ERR_FILE_LICENSE, 459	MSK_RES_ERR_INV_QCON_VAL, 450
MSK_RES_ERR_FILE_OPEN, 452	MSK_RES_ERR_INV_QOBJ_SUBI, 457
MSK_RES_ERR_FILE_READ, 453	MSK_RES_ERR_INV_QOBJ_SUBJ, 457
MSK_RES_ERR_FILE_WRITE, 451	MSK_RES_ERR_INV_QOBJ_VAL, 453
MSK_RES_ERR_FIRST, 464	MSK_RES_ERR_INV_SK, 462
MSK_RES_ERR_FIRSTI, 448	MSK_RES_ERR_INV_SK_STR, 462
MSK_RES_ERR_FIRSTJ, 448	MSK_RES_ERR_INV_SKC, 446
MSK_RES_ERR_FIXED_BOUND_VALUES, 456	MSK_RES_ERR_INV_SKN, 445
MSK_RES_ERR_FLEXLM, 464	MSK_RES_ERR_INV_SKX, 444
MSK_RES_ERR_HUGE_AIJ, 461	MSK_RES_ERR_INV_VAR_TYPE, 463
MSK_RES_ERR_HUGE_C, 464	MSK_RES_ERR_INVALID_ACCMODE, 454
MSK_RES_ERR_IDENTICAL_TASKS, 457	MSK_RES_ERR_INVALID_AMPL_STUB, 461
MSK_RES_ERR_IN_ARGUMENT, 457	MSK_RES_ERR_INVALID_BRANCH_DIRECTION, 456
MSK_RES_ERR_INDEX, 446	MSK_RES_ERR_INVALID_BRANCH_PRIORITY, 449

MSK_RES_ERR_INVALID_COMPRESSION, 458	MSK_RES_ERR_MBT_INCOMPATIBLE, 454
MSK_RES_ERR_INVALID_FILE_NAME, 451	MSK_RES_ERR_MIO_NO_OPTIMIZER, 444
MSK_RES_ERR_INVALID_FORMAT_TYPE, 460	MSK_RES_ERR_MIO_NOT_LOADED, 457
MSK_RES_ERR_INVALID_IOMODE, 455	MSK_RES_ERR_MISSING_LICENSE_FILE, 445
MSK_RES_ERR_INVALID_MBT_FILE, 455	MSK_RES_ERR_MIXED_PROBLEM, 446
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE, 445	MSK_RES_ERR_MPS_CONE_OVERLAP, 459
MSK_RES_ERR_INVALID_OBJ_NAME, 452	MSK_RES_ERR_MPS_CONE_REPEAT, 460
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE, 459	MSK_RES_ERR_MPS_CONE_TYPE, 464
MSK_RES_ERR_INVALID_SOL_FILE_NAME, 460	MSK_RES_ERR_MPS_FILE, 449
MSK_RES_ERR_INVALID_STREAM, 454	MSK_RES_ERR_MPS_INV_BOUND_KEY, 463
MSK_RES_ERR_INVALID_SURPLUS, 464	MSK_RES_ERR_MPS_INV_CON_KEY, 455
MSK_RES_ERR_INVALID_TASK, 452	MSK_RES_ERR_MPS_INV_FIELD, 458
MSK_RES_ERR_INVALID_UTF8, 465	MSK_RES_ERR_MPS_INV_MARKER, 462
MSK_RES_ERR_INVALID_WCHAR, 447	MSK_RES_ERR_MPS_INV_SEC_NAME, 463
MSK_RES_ERR_LAST, 454	MSK_RES_ERR_MPS_INV_SEC_ORDER, 455
MSK_RES_ERR_LASTI, 448	MSK_RES_ERR_MPS_INVALID_OBJ_NAME, 463
MSK_RES_ERR_LASTJ, 445	MSK_RES_ERR_MPS_INVALID_OBJSENSE, 458
MSK_RES_ERR_LICENSE, 448	MSK_RES_ERR_MPS_MUL_CON_NAME, 455
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 457	MSK_RES_ERR_MPS_MUL_CSEC, 458
MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 463	MSK_RES_ERR_MPS_MUL_QOBJ, 445
MSK_RES_ERR_LICENSE_EXPIRED, 445	MSK_RES_ERR_MPS_MUL_QSEC, 462
MSK_RES_ERR_LICENSE_FEATURE, 453	MSK_RES_ERR_MPS_NO_OBJECTIVE, 453
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 454	MSK_RES_ERR_MPS_NULL_CON_NAME, 451
MSK_RES_ERR_LICENSE_MAX, 455	MSK_RES_ERR_MPS_NULL_VAR_NAME, 454
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 447	MSK_RES_ERR_MPS_SPLITTED_VAR, 461
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT, 450	MSK_RES_ERR_MPS_TAB_IN_FIELD2, 451
MSK_RES_ERR_LICENSE_SERVER, 462	MSK_RES_ERR_MPS_TAB_IN_FIELD3, 464
MSK_RES_ERR_LICENSE_SERVER_VERSION, 454	MSK_RES_ERR_MPS_TAB_IN_FIELD5, 451
MSK_RES_ERR_LICENSE_VERSION, 449	MSK_RES_ERR_MPS_UNDEF_CON_NAME, 465
MSK_RES_ERR_LINK_FILE_DLL, 453	MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 447
MSK_RES_ERR_LIVING_TASKS, 450	MSK_RES_ERR_MUL_A_ELEMENT, 444
MSK_RES_ERR_LP_DUP_SLACK_NAME, 449	MSK_RES_ERR_NAME_IS_NULL, 463
MSK_RES_ERR_LP_EMPTY, 454	MSK_RES_ERR_NAME_MAX_LEN, 456
MSK_RES_ERR_LP_FILE_FORMAT, 463	MSK_RES_ERR_NAN_IN_AIJ, 464
MSK_RES_ERR_LP_FORMAT, 459	MSK_RES_ERR_NAN_IN_BLC, 450
MSK_RES_ERR_LP_FREE_CONSTRAINT, 459	MSK_RES_ERR_NAN_IN_BLX, 461
MSK_RES_ERR_LP_INCOMPATIBLE, 446	MSK_RES_ERR_NAN_IN_BUC, 448
MSK_RES_ERR_LP_INVALID_CON_NAME, 451	MSK_RES_ERR_NAN_IN_BUX, 463
MSK_RES_ERR_LP_INVALID_VAR_NAME, 446	MSK_RES_ERR_NAN_IN_C, 450
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM, 449	MSK_RES_ERR_NAN_IN_DOUBLE_DATA, 463
MSK_RES_ERR_LP_WRITE_GECO_PROBLEM, 460	MSK_RES_ERR_NEGATIVE_APPEND, 462
MSK_RES_ERR_LU_MAX_NUM_TRIES, 446	MSK_RES_ERR_NEGATIVE_SURPLUS, 447
MSK_RES_ERR_MAXNUMCON, 449	
MSK_RES_ERR_MAXNUMCONE, 450	MSK_RES_ERR_NEWER_DLL, 462 MSK_RES_ERR_NO_BASIS_SOL, 452
•	•
MSK_RES_ERR_MAXNUMQNZ, 452	MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 446
MSK_RES_ERR_MAXNUMVAR, 458	MSK_RES_ERR_NO_DUAL_INFEAS_CER, 444

MSK_RES_ERR_NO_INIT_ENV, 445	MSK_RES_ERR_SEN_BOUND_INVALID_LO, 461
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 465	MSK_RES_ERR_SEN_BOUND_INVALID_UP, 456
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER, 449	MSK_RES_ERR_SEN_FORMAT, 450
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 465	MSK_RES_ERR_SEN_INDEX_INVALID, 445
MSK_RES_ERR_NONCONVEX, 458	MSK_RES_ERR_SEN_INDEX_RANGE, 450
MSK_RES_ERR_NONLINEAR_EQUALITY, 448	MSK_RES_ERR_SEN_INVALID_REGEXP, 456
MSK_RES_ERR_NONLINEAR_RANGED, 449	MSK_RES_ERR_SEN_NUMERICAL, 450
MSK_RES_ERR_NR_ARGUMENTS, 448	MSK_RES_ERR_SEN_SOLUTION_STATUS, 446
MSK_RES_ERR_NULL_ENV, 458	MSK_RES_ERR_SEN_UNDEF_NAME, 460
MSK_RES_ERR_NULL_POINTER, 452	MSK_RES_ERR_SIZE_LICENSE, 464
MSK_RES_ERR_NULL_TASK, 457	MSK_RES_ERR_SIZE_LICENSE_CON, 459
MSK_RES_ERR_NUMCONLIM, 454	MSK_RES_ERR_SIZE_LICENSE_INTVAR, 465
MSK_RES_ERR_NUMVARLIM, 462	MSK_RES_ERR_SIZE_LICENSE_NUMCORES, 448
MSK_RES_ERR_OBJ_Q_NOT_NSD, 452	MSK_RES_ERR_SIZE_LICENSE_VAR, 454
MSK_RES_ERR_OBJ_Q_NOT_PSD, 445	MSK_RES_ERR_SOL_FILE_INVALID_NUMBER, 446
MSK_RES_ERR_OBJECTIVE_RANGE, 461	MSK_RES_ERR_SOLITEM, 459
MSK_RES_ERR_OLDER_DLL, 460	MSK_RES_ERR_SOLVER_PROBTYPE, 453
MSK_RES_ERR_OPEN_DL, 454	MSK_RES_ERR_SPACE, 457
MSK_RES_ERR_OPF_FORMAT, 458	MSK_RES_ERR_SPACE_LEAKING, 461
MSK_RES_ERR_OPF_NEW_VARIABLE, 464	MSK_RES_ERR_SPACE_NO_INFO, 447
MSK_RES_ERR_OPF_PREMATURE_EOF, 450	MSK_RES_ERR_THREAD_COND_INIT, 462
MSK_RES_ERR_OPTIMIZER_LICENSE, 459	MSK_RES_ERR_THREAD_CREATE, 451
MSK_RES_ERR_ORD_INVALID, 452	MSK_RES_ERR_THREAD_MUTEX_INIT, 454
MSK_RES_ERR_ORD_INVALID_BRANCH_DIR, 465	MSK_RES_ERR_THREAD_MUTEX_LOCK, 454
MSK_RES_ERR_OVERFLOW, 446	MSK_RES_ERR_THREAD_MUTEX_UNLOCK, 449
MSK_RES_ERR_PARAM_INDEX, 448	MSK_RES_ERR_TOO_SMALL_MAXNUMANZ, 457
MSK_RES_ERR_PARAM_IS_TOO_LARGE, 460	MSK_RES_ERR_UNB_STEP_SIZE, 458
MSK_RES_ERR_PARAM_IS_TOO_SMALL, 449	MSK_RES_ERR_UNDEF_SOLUTION, 445
MSK_RES_ERR_PARAM_NAME, 447	MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 464
MSK_RES_ERR_PARAM_NAME_DOU, 450	MSK_RES_ERR_UNKNOWN, 449
MSK_RES_ERR_PARAM_NAME_INT, 446	MSK_RES_ERR_USER_FUNC_RET, 456
MSK_RES_ERR_PARAM_NAME_STR, 453	MSK_RES_ERR_USER_FUNC_RET_DATA, 448
MSK_RES_ERR_PARAM_TYPE, 444	MSK_RES_ERR_USER_NLO_EVAL, 451
MSK_RES_ERR_PARAM_VALUE_STR, 463	MSK_RES_ERR_USER_NLO_EVAL_HESSUBI, 453
MSK_RES_ERR_PLATFORM_NOT_LICENSED, 460	MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ, 453
MSK_RES_ERR_POSTSOLVE, 460	MSK_RES_ERR_USER_NLO_FUNC, 448
MSK_RES_ERR_PRO_ITEM, 460	MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 461
MSK_RES_ERR_PROB_LICENSE, 462	MSK_RES_ERR_WHICHSOL, 461
MSK_RES_ERR_QCON_SUBI_TOO_LARGE, 464	MSK_RES_ERR_WRITE_LP_FORMAT, 449
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 459	MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME, 462
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 451	MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 457
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 451	MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 449
MSK_RES_ERR_READ_FORMAT, 459	MSK_RES_ERR_WRITING_FILE, 465
MSK_RES_ERR_READ_LP_MISSING_END_TAG, 461	MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE, 455
MSK_RES_ERR_READ_LP_NONEXISTING_NAME, 449	MSK_RES_ERR_Y_IS_UNDEFINED, 456
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 452	MSK_RES_OK , 459

MSK_RES_TRM_INTERNAL, 453	MSK_RES_WRN_NZ_IN_UPR_TRI, 447
MSK_RES_TRM_INTERNAL_STOP, 464	MSK_RES_WRN_OPEN_PARAM_FILE, 458
MSK_RES_TRM_MAX_ITERATIONS, 464	MSK_RES_WRN_PRESOLVE_BAD_PRECISION, 444
MSK_RES_TRM_MAX_NUM_SETBACKS, 456	MSK_RES_WRN_PRESOLVE_OUTOFSPACE, 465
MSK_RES_TRM_MAX_TIME, 461	MSK_RES_WRN_SOL_FILE_IGNORED_CON, 463
MSK_RES_TRM_MIO_NEAR_ABS_GAP, 444	MSK_RES_WRN_SOL_FILE_IGNORED_VAR, 444
MSK_RES_TRM_MIO_NEAR_REL_GAP, 462	MSK_RES_WRN_SOL_FILTER, 453
MSK_RES_TRM_MIO_NUM_BRANCHES, 444	MSK_RES_WRN_SPAR_MAX_LEN, 450
MSK_RES_TRM_MIO_NUM_RELAXS, 447	MSK_RES_WRN_TOO_FEW_BASIS_VARS, 462
MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 456	MSK_RES_WRN_TOO_MANY_BASIS_VARS, 447
MSK_RES_TRM_NUMERICAL_PROBLEM, 456	MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 464
MSK_RES_TRM_OBJECTIVE_RANGE, 464	MSK_RES_WRN_USING_GENERIC_NAMES, 451
MSK_RES_TRM_STALL, 459	MSK_RES_WRN_WRITE_DISCARDED_CFIX, 451
MSK_RES_TRM_USER_BREAK, 456	MSK_RES_WRN_ZERO_AIJ, 448
MSK_RES_TRM_USER_CALLBACK, 455	MSK_RES_WRN_ZEROS_IN_SPARSE_COL, 451
MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS, 457	MSK_RES_WRN_ZEROS_IN_SPARSE_ROW, 447
MSK_RES_WRN_ANA_C_ZERO, 455	MSK_RESPONSE_ERR, 465
MSK_RES_WRN_ANA_CLOSE_BOUNDS, 445	MSK_RESPONSE_OK, 465
MSK_RES_WRN_ANA_EMPTY_COLS, 463	MSK_RESPONSE_TRM, 465
MSK_RES_WRN_ANA_LARGE_BOUNDS, 458	MSK_RESPONSE_UNK, 465
MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG, 457	MSK_RESPONSE_WRN, 465
MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG, 461	MSK_SCALING_AGGRESSIVE, 466
MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS, 455	MSK_SCALING_FREE, 466
MSK_RES_WRN_DROPPED_NZ_QOBJ, 446	MSK_SCALING_METHOD_FREE, 466
MSK_RES_WRN_ELIMINATOR_SPACE, 461	MSK_SCALING_METHOD_POW2, 466
MSK_RES_WRN_EMPTY_NAME, 462	MSK_SCALING_MODERATE, 466
MSK_RES_WRN_IGNORE_INTEGER, 452	MSK_SCALING_NONE, 466
MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHE	
451	MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION, 466
MSK_RES_WRN_LARGE_AIJ, 452	MSK_SIM_DEGEN_AGGRESSIVE, 467
MSK_RES_WRN_LARGE_BOUND, 458	MSK_SIM_DEGEN_FREE, 467
MSK_RES_WRN_LARGE_CJ, 460	MSK_SIM_DEGEN_MINIMUM, 467
MSK_RES_WRN_LARGE_CON_FX, 454	MSK_SIM_DEGEN_MODERATE, 467
MSK_RES_WRN_LARGE_LO_BOUND, 456	MSK_SIM_DEGEN_NONE, 466
MSK_RES_WRN_LARGE_UP_BOUND, 455	MSK_SIM_EXPLOIT_DUPVEC_FREE, 467
MSK_RES_WRN_LICENSE_EXPIRE, 457	MSK_SIM_EXPLOIT_DUPVEC_OFF, 467
MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 447	MSK_SIM_EXPLOIT_DUPVEC_ON, 467
MSK_RES_WRN_LICENSE_SERVER, 458	MSK_SIM_HOTSTART_FREE, 467
MSK_RES_WRN_LP_DROP_VARIABLE, 448	MSK_SIM_HOTSTART_NONE, 467
MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 462	MSK_SIM_HOTSTART_STATUS_KEYS, 467
MSK_RES_WRN_MIO_INFEASIBLE_FINAL, 451	MSK_SIM_REFORMULATION_AGGRESSIVE, 468
MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 454	MSK_SIM_REFORMULATION_FREE, 468
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 461	MSK_SIM_REFORMULATION_OFF, 468
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR, 456	MSK_SIM_REFORMULATION_ON, 468
MSK_RES_WRN_NAME_MAX_LEN, 464	MSK_SIM_SELECTION_ASE, 468
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 453	MSK_SIM_SELECTION_DEVEX, 468
TIGHT WILL THO GLODAL OF LITTLE 11, 400	TOTAL DELICOTED TOTAL DELVEN, 400

MSK_SIM_SELECTION_FREE, 468	MSK_SPAR_INT_SOL_FILE_NAME, 471
MSK_SIM_SELECTION_FULL, 468	MSK_SPAR_ITR_SOL_FILE_NAME, 472
MSK_SIM_SELECTION_PARTIAL, 468	MSK_SPAR_PARAM_COMMENT_SIGN, 471
MSK_SIM_SELECTION_SE, 468	MSK_SPAR_PARAM_READ_FILE_NAME, 472
MSK_SK_BAS, 473	MSK_SPAR_PARAM_WRITE_FILE_NAME, 471
MSK_SK_FIX, 473	MSK_SPAR_READ_MPS_BOU_NAME, 472
MSK_SK_INF, 473	MSK_SPAR_READ_MPS_OBJ_NAME, 471
MSK_SK_LOW, 473	MSK_SPAR_READ_MPS_RAN_NAME, 471
MSK_SK_SUPBAS, 473	MSK_SPAR_READ_MPS_RHS_NAME, 471
MSK_SK_UNK, 473	MSK_SPAR_SENSITIVITY_FILE_NAME, 472
MSK_SK_UPR, 473	MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 472
MSK_SOL_BAS, 470	MSK_SPAR_SOL_FILTER_XC_LOW, 472
MSK_SOL_ITEM_SLC, 469	MSK_SPAR_SOL_FILTER_XC_UPR, 472
MSK_SOL_ITEM_SLX, 469	MSK_SPAR_SOL_FILTER_XX_LOW, 473
MSK_SOL_ITEM_SNX, 469	MSK_SPAR_SOL_FILTER_XX_UPR, 472
MSK_SOL_ITEM_SUC, 468	MSK_SPAR_STAT_FILE_NAME, 471
MSK_SOL_ITEM_SUX, 469	MSK_SPAR_STAT_KEY, 472
MSK_SOL_ITEM_XC, 469	MSK_SPAR_STAT_NAME, 472
MSK_SOL_ITEM_XX, 469	MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 471
MSK_SOL_ITEM_Y, 469	MSK_STARTING_POINT_CONSTANT, 474
MSK_SOL_ITG, 470	MSK_STARTING_POINT_FREE, 474
MSK_SOL_ITR, 470	MSK_STARTING_POINT_GUESS, 473
MSK_SOL_STA_DUAL_FEAS, 470	MSK_STARTING_POINT_SATISFY_BOUNDS, 473
MSK_SOL_STA_DUAL_INFEAS_CER, 469	MSK_STREAM_ERR, 474
MSK_SOL_STA_INTEGER_OPTIMAL, 469	MSK_STREAM_LOG, 474
MSK_SOL_STA_NEAR_DUAL_FEAS, 469	MSK_STREAM_MSG, 474
MSK_SOL_STA_NEAR_DUAL_INFEAS_CER, 470	MSK_STREAM_WRN, 474
MSK_SOL_STA_NEAR_INTEGER_OPTIMAL, 469	MSK_VAR_TYPE_CONT, 475
MSK_SOL_STA_NEAR_OPTIMAL, 469	MSK_VAR_TYPE_INT, 475
MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS, 470	MSK_WRITE_XML_MODE_COL, 475
MSK_SOL_STA_NEAR_PRIM_FEAS, 470	MSK_WRITE_XML_MODE_ROW, 475
MSK_SOL_STA_NEAR_PRIM_INFEAS_CER, 469	timin m land (nanamatan) 260
MSK_SOL_STA_OPTIMAL, 470	timing_level (parameter), 368
MSK_SOL_STA_PRIM_AND_DUAL_FEAS, 470	upper_obj_cut (parameter), 290
MSK_SOL_STA_PRIM_FEAS, 469	upper_obj_cut_finite_trh (parameter), 291
MSK_SOL_STA_PRIM_INFEAS_CER, 469	apper 100 J 5 at 0 1 m 100 20 m (parameter), 201
MSK_SOL_STA_UNKNOWN, 469	variables
MSK_SOLVE_DUAL, 470	decision, 121, 138, 199
MSK_SOLVE_FREE, 470	lower limit, 122, 139, 199
MSK_SOLVE_PRIMAL, 470	upper limit, 122, 139, 199
MSK_SPAR_BAS_SOL_FILE_NAME, 471	
MSK_SPAR_DATA_FILE_NAME, 471	warning_level (parameter), 368
MSK_SPAR_DEBUG_FILE_NAME, 472	write_bas_constraints (parameter), 368
MSK_SPAR_FEASREPAIR_NAME_PREFIX, 471	write_bas_head (parameter), 368
MSK_SPAR_FEASREPAIR_NAME_SEPARATOR, 471	write_bas_variables (parameter), 369
MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL, 471	write_data_compressed (parameter), 369

```
write_data_format (parameter), 369
write_data_param (parameter), 370
write_free_con (parameter), 370
write_generic_names (parameter), 370
write_generic_names_io (parameter), 371
write_int_constraints (parameter), 371
write_int_head (parameter), 371
write_int_variables (parameter), 372
write_lp_gen_var_name (parameter), 383
write_lp_line_width (parameter), 372
write_lp_quoted_names (parameter), 372
write_lp_strict_format (parameter), 373
write_lp_terms_per_line (parameter), 373
write_mps_int (parameter), 373
write_mps_obj_sense (parameter), 373
write_mps_quoted_names (parameter), 374
write_mps_strict (parameter), 374
write_precision (parameter), 374
write_sol_constraints (parameter), 375
write_sol_head (parameter), 375
write_sol_variables (parameter), 375
write_task_inc_sol (parameter), 376
write_xml_mode (parameter), 376
```

xml format, 233