Geometrical Intuitions

KochiTechGroup

Dimensions!

Square (Rhombus), Cube, Tesseract

Platonic Solids

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
V				

V - E + F = 2

Polyhedron	Vertices +	Edges -	Faces +	
Regular tetrahedron		4	6	4
cube		8	12	6
Regular octahedron		6	12	8
dodecahedron		20	30	12
icosahedron		12	30	20

Cartesian and Polar Coordinates

All Students Take Calculus or All Silver Tea Cups

3D Cartesian Co-odinates

Spherical Coordinates

Cylindrical Co-ordinates

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$ and $z = z$ $x = r \cos \theta$, $y = r \sin \theta$ and $z = z$

Maxima, Minima and Saddle Point

Parabolic Curve, Maxima and Minima

Function of two variables and Extremum

Argand Diagram (for Complex Numbers)

Rotation by 90 degree by multiplying with i

Pythagoras Theorem extends to 3D

The distance from (0,0,0) to the point P(a,b,c) is given by:

$$\mathrm{distance}\ OP = \sqrt{a^2 + b^2 + c^2}$$

Distance Between Two points (origin, included)

If we have point A $(x_1,\,y_1,\,z_1)$ and another point B $(x_2,\,y_2,\,z_2)$ then the distance AB between them is given by the formula:

$$ext{distance } AB = \sqrt{\left(x_2 - x_1
ight)^2 + \left(y_2 - y_1
ight)^2 + \left(z_2 - z_1
ight)^2}$$

Using the formula, we have:

distance
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

= $\sqrt{(2 - 4)^2 + (3 - (-2))^2 + (5 - 3)^2}$
= 5.74 units

Dot Product

$$c = |A| \cdot cos(a)$$
 (projection of A on B)

$$A \cdot B = |A| |B| \cos(a)$$

$$A \cdot B = \sum_{i=1}^{N} a_i b_i$$

for unit vectors;

Dot Product revisited

Considering the two 2D vectors:

$$a = a_x i + a_y j$$
 and $b = b_x i + b_y j$

The scalar product:

$$a \cdot b = a_x b_x + a_y b_y$$

Angle between two vectors

$$\mathbf{u} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} = 2(-1) + 6(5) = 28$$

$$\|\mathbf{u}\| = \sqrt{2^2 + 6^2} = \sqrt{40}, \quad \|\mathbf{v}\| = \sqrt{(-1)^2 + 5^2} = \sqrt{26}$$

$$\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|} = \frac{28}{\sqrt{40} \cdot \sqrt{26}} = \frac{28}{\sqrt{1,040}} \approx 0.8682$$

Computing Sine and Cosine in Vectors

Dot-product:

$$a \cdot b = \|a\| \|b\| \cos \theta \implies \cos \theta = \frac{a \cdot b}{\|a\| \|b\|}.$$

Cross-product magnitude:

$$||a \times b|| = ||a|| \, ||b|| \sin \theta \quad \Rightarrow \quad \sin \theta = \frac{||a \times b||}{||a|| \, ||b||}.$$

1. Compute norms:
$$||a|| = \sqrt{a_x^2 + a_y^2 + a_z^2}, \quad ||b|| = \sqrt{b_x^2 + b_y^2 + b_z^2}.$$

- **2.** Compute dot: $a \cdot b = a_x b_x + a_y b_y + a_z b_z$.
- 3. Compute cross:

$$a \times b = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x).$$

4. Extract cosine & sine:

$$\cos\theta = \frac{a \cdot b}{\|a\| \|b\|}, \quad \sin\theta = \frac{\|a \times b\|}{\|a\| \|b\|}.$$

Computing Cosine and Sine of Force vectors

Problem. Two forces act at a point:

$$F_1 = (2, 1, 2), \quad F_2 = (1, 3, 4).$$

Find the cosine and sine of the angle between them.

Solution.

1.
$$||F_1|| = \sqrt{2^2 + 1^2 + 2^2} = 3$$
, $||F_2|| = \sqrt{1^2 + 3^2 + 4^2} = \sqrt{26}$.

2. Dot:
$$d = 2 \cdot 1 + 1 \cdot 3 + 2 \cdot 4 = 13$$
. $\Rightarrow \cos \theta = 13/(3\sqrt{26}) \approx 0.850$.

3. Cross:

$$F_1 \times F_2 = (-2, -6, 5), \quad ||F_1 \times F_2|| = \sqrt{(-2)^2 + (-6)^2 + 5^2} = \sqrt{65}.$$

$$\Rightarrow \sin\theta = \sqrt{65}/(3\sqrt{26}) \approx 0.527.$$

Computing Angles and Trig values

Problem. A parallelogram has adjacent edges u = (4, 2, 0) and v = (1, 3, 2). Compute the angle's cosine and sine.

Solution.

1.
$$||u|| = \sqrt{4^2 + 2^2} = \sqrt{20}$$
, $||v|| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}$.

2. Dot:
$$d = 4 \cdot 1 + 2 \cdot 3 + 0 \cdot 2 = 10$$
. $\Rightarrow \cos \theta = 10/(\sqrt{20} \sqrt{14}) \approx 0.598$.

3. Cross:
$$u \times v = (4, -8, 10), \|u \times v\| = \sqrt{4^2 + (-8)^2 + 10^2} = \sqrt{180}. \Rightarrow \sin\theta = \sqrt{180}/(\sqrt{20}\sqrt{14}) \approx 0.802.$$

Triangle Taxonomy – By Side

Triangle Taxonomy by Angle

Questions

• If, any