

Non-Intrusive Migration of MPI Processes in OS-bypass Networks

Simon Pickartz¹, Carsten Clauss², Stefan Lankes¹, Stephan Krempel², Thomas Moschny², and Antonello Monti¹

¹RWTH Aachen University, Aachen, Germany

²ParTec Cluster Competence Center GmbH, Munich, Germany

Why do we need Migration?

Resiliency

- Increasing hard- and software failures with growing cluster sizes
- Evacuation of faulty nodes instead of whole job aborts

Load balancing

- Applications' scalability is usually limited by a single resource
- Co-scheduling can help to improve the overall cluster utilization
 - **■** Revocation of an exclusive node assignment
 - Necessity for dynamic schedules

What about Checkpoint / Restart?

- Can be regarded as heavyweight counterpart of migration
- All processes of a job are affected
- Unnecessary synchronization overhead
- local vs. global consistency
 - Node evacuation only affects processes running on the particular node
 - **■** Load balancing by moving only a subset of processes

Agenda

- Goals
- Background
 - **■** The pscom Library
 - OS-bypass Networks
- Migration of MPI Processes
- Evaluation
 - Overhead
 - **■** Migration Time
- Conclusion

- 1. Avoidance of any runtime overhead
- 2. Minimization of the additional migration costs
- 3. Application transparency
- 4. Platform / hardware independence

- 1. Avoidance of any runtime overhead
 - ightarrow No influence on the application's performance without migrations
- 2. Minimization of the additional migration costs
- 3. Application transparency
- 4. Platform / hardware independence

- 1. Avoidance of any runtime overhead
 - $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ No influence on the application's performance without migrations
- 2. Minimization of the additional migration costs
 - ightarrow Minimal influence on the migration performance itself
- 3. Application transparency
- 4. Platform / hardware independence

- 1. Avoidance of any runtime overhead
 - ightarrow No influence on the application's performance without migrations
- 2. Minimization of the additional migration costs
 - ightarrow Minimal influence on the migration performance itself
- 3. Application transparency
 - → Migrations without adaption to the application's code
- 4. Platform / hardware independence

- 1. Avoidance of any runtime overhead
 - $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ No influence on the application's performance without migrations
- 2. Minimization of the additional migration costs
 - ightarrow Minimal influence on the migration performance itself
- 3. Application transparency
 - → Migrations without adaption to the application's code
- 4. Platform / hardware independence
 - → No tailored solution to one interconnect

The pscom Library

- Communication layer of ParaStation MPI
- MPICH derivate with full MPI-3 support
- Plugins for different interconnects
 - Chosen based on a priority / fall-back scheme
 - Point-to-point channels
- Internal message queueing facility
- On-demand connection establishment

OS-bypass Networks

- Direct access to the hardware from the user application
- Connection state information managed within the hardware
- Employment in virtualized environments via
 - **■** PCle pass-through
 - Single-root I / O virtualization
- Location-dependent resources exacerbate migrations

Application Transparent Migration

- Shutdown / Reconnect instead of Checkpoint/Restart
 - **■** Local consistency is sufficient
 - Distinguish between migratable and non-migratable connections
- Requirements for the protocol
 - **■** Point-to-point communication Channels
 - **■** Reliable channels
- Employed in virtualization context
 - 1. Tear-down of all non-migratable connections
 - 2. Detach the HCA via ACPI hot-plug
 - 3. Migrate the VM to the target host
 - 4. Attach the new HCA on the target host to the VM
 - 5. Re-establish the connection on-demand

Application Transparent Migration (contd.)

- Add migration states to pscom
- Trigger cycle by external request
- Only affects non-migratable connections

Application Transparent Migration (contd.)

What about "Ungracious" Applications?

Lazy / Cooperative

- Set flag in callback function
- Delay Shutdown / Reconnect until process enters pscom
 - → Asynchronous Shutdown / Reconnect
- Pro
 - No further communication channel
 - Minimal overhead during migration
- Contra
 - Migrated process has to enter pscom
 - **■** Peer processes have to enter pscom
 - → Delays in long computation phases

What about "Ungracious" Applications? (contd.)

Instantaneous / Threaded

- Trigger Shutdown / Reconnect protocol within callback
- Start progress thread on receipt of remote migration request
- Pro
 - Instantaneous migration
 - No dependencies to the application's communication behavior
- Contra
 - Little overhead during migration (i.e., caused by progress thread)
 - Out-of-band channel with multi-cast required

Test Environment

- 4-node Cluster
 - **■** 2 Sandy-bridge Systems
 - **■** 2 Ivy-bridge Systems
- InfiniBand FDR Mellanox Fabric
 - Up to 56 GiB/s
 - **■** Support for SR-IOV
- Software stack
 - **■** CentOS 7.1
 - Mellanox OFED stack (v 3.0-1.0.1)
 - **■** QEMU / KVM 2.3.0

Runtime Overhead

Latency

- No influence on the critical path
- In case of permanently enabled thread function
 - Period 1 ms
 - More contention on internal locks

	Disabled	S/R	S/R (threaded)	
			Norm	Perm
Ø	1.10	1.10	1.10	1.17
σ	0.11	0.11	0.11	0.83

Scalability

Time to S / R per Connection

Migrating mpiBLAST

Conclusion

- Protocol for application transparent migration
 - **≡** Establishes local consistency
 - **≡** Executed on a per-connection basis
- Working prototype
 - No runtime overhead
 - Minimal migration cost
 - Successfully evaluated for InfiniBand
- Future work
 - User container-based migration
 - **■** Try mechanism with load balancer to proove benefits at a larger scale
 - Comparison to Checkpoint / Restart mechanisms
- Open source: https://github.com/fast-project/pscom

Thank you for your kind attention!

Simon Pickartz et al. - spickartz@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems E.ON Energy Research Center, RWTH Aachen University Mathieustraße 10 52074 Aachen

www.eonerc.rwth-aachen.de

Migrating mpiBLAST

