Transmission Lines

Michael Brodskiy

Professor: E. Marengo Fuentes

September 18, 2023

- Transmission lines connect inputs to loads
 - -l is the length of the transmission lines
 - If l is not much smaller than λ , we need detailed analysis
 - If l is comparable to λ , then we can not use the lumped parameter model
 - We can, however, partition the transmission lines into segments where $l \ll \lambda$, then we can apply Kirchoff's circuit laws to each subdivided segment
 - For an imperfect dielectric, there is some loss
 - Some per unit-length properties:
 - 1. Resistance per unit length: R' (ohm per meter)

$$R = R' \Delta z$$

2. Inductance per unit length: L' (Henry per meter)

$$L = L'\Delta z$$

3. Capacitance per unit length: C' (Farad per meter)

$$C = C'\Delta z$$

4. Conductance per unit length: G' (Siemens per meter)

$$G = G'\Delta z$$

• Using this, we obtain the Helmholtz Equation:

$$\frac{d^2\tilde{V}(z)}{dz^2} - \gamma^2\tilde{V}(z) = 0$$

– Where
$$\gamma = \sqrt{(j\omega C' + G')(j\omega L' + R')}$$

- For a Unidimensional Wave Equation:
 - The characteristic equation becomes: $m^2 \gamma^2 = 0 \rightarrow m = \pm \gamma$
 - The solutions to the above differential equation are superpositions of $\{e^{\gamma z}, e^{-\gamma z}\}$
 - $\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')}$, where:
 - * R' is the resistance per unit length
 - * L' is the impedance per unit length
 - * $i = \sqrt{-1}$
 - $* \gamma = R_e \gamma + I_m \gamma$
 - * $R_e \gamma = \alpha$, the attenuation constant
 - * $I_m \gamma = \beta$, the phase constant (sometimes, notation used is $k = \beta$, like the wave number)

$$\widetilde{V}(z) = V_o^+ e^{-\gamma z} + V_o^- e^{\gamma z}$$

- We know from the definitions above that $\gamma = \alpha + j\beta$
- For $\alpha > 0$, we are dealing with a (passive) lossy material ($\alpha = 0$) is a loss less material
- For $\alpha < 0$, we are dealing with a gainy material
- The wave coming from the source is known as the "incident" wave, and the wave combing from the load is known as "reflected"

$$-\frac{dV}{dz} = (R' + j\omega L')\widetilde{I}(z)$$

– Solving this by incorporation the equation for \widetilde{V} above, we obtain:

$$\widetilde{I} = \left(V_o^+ e^{-\gamma z} - V_o^- e^{\gamma z}\right) \left(\frac{\gamma}{R' + j\omega L'}\right)$$

– We then define $z_o = \frac{R' + j\omega L}{\gamma}$ as our characteristic impedance:

$$\widetilde{I} = \frac{1}{z_o} \left(V_o^+ e^{-\gamma z} - V_o^- e^{\gamma z} \right)$$

- There are thus two unknowns: V_o^+ , which depends on source, and V_o^- , which is the reflected wave amplitude (depends on load)
 - * The incident wave (in phase domain): $\widetilde{V} = V_o^+ e^{-\alpha z} e^{-j\beta z}$
 - * In time domain, this becomes: $v(z,t) = |V_o^+|e^{-\alpha z}\cos(\omega t \beta z + \phi_+)^1$

 $^{^{1}\}beta$ represents the wave number

- For a lossless line (R' = 0, G' = 0, and a pure inductor and capacitor)

$$\gamma = \sqrt{(jC'\omega)(jL'\omega)} \to \beta = \omega\sqrt{L'C'} = \frac{\omega}{U_{ph}}$$

$$U_{ph} = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\mu\varepsilon}} = c$$
 in dielectric

– The reflection coefficient (Γ) is given by:

$$\Gamma = \frac{V_o^-}{V_o^+}$$

$$V_{load} = V_o^+(1+\Gamma)$$

$$I_{load} = \frac{V_o^+}{z_o}(1-\Gamma)$$

– The normalized load impedance: $\hat{z_L} = \frac{z_L}{z_o}$

$$\Gamma = \frac{z_l - z_o}{z_l + z_o} \to \Gamma = \frac{\hat{z_L} - 1}{\hat{z_L} + 1}$$

- Special Cases:
 - * Short Circuit:

$$\Gamma_{sc} = -1$$

* Open Circuit:

$$\Gamma_{oc} = 1$$

- · Reactive load, no real absorption
- A Phase-Shifted Γ would look as follows:

$$\Gamma_l = \left(\frac{z_L - z_o}{z_L + z_o}\right) e^{-j(2\beta l)}$$

- Standing Waves
 - $\tilde{V}(d) = V_o^+ e^{-j\beta d} + V_o^+ \Gamma e^{j\beta d}$

$$|\tilde{V}(d)| = |V_o^+| [1 + |\Gamma|^2 + 2|\Gamma|\cos(2\beta d - \theta_r)]^{\frac{1}{2}}$$

- * This fluctuates between a minimum (V_{min}) and maximum (V_{max}) value
- * Maximum/minimum possible value is determined by the cos term and is $\pm 2|\Gamma$
- From the formula for Γ , we see that $\Gamma=0$ when the load impedance matches the internal impedance
 - * This is known as load matching

- Thus, when $\Gamma=0,$ we know $|\tilde{V}(d)|=|V_0^+|$
- The standing wave ratio is defined as follows:

$$SWR = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

- This measures the matching level of load to the line; ideally, $\Gamma=0$, and SWR=1; worst case, $|\Gamma|=1$, and $SWR=\infty$
- In reference to the maximums and minimums, these occur when $2\beta d \theta_r = 2n\pi$ and $2\beta d \theta_r = (2n+1)\pi$, respectively. This results in:

$$\begin{cases} d_{max} = \frac{2n\pi + \theta_r}{2\beta} \\ d_{min} = \frac{(2n+1)\pi + \theta_r}{\beta} \end{cases}$$