

Lecture 10

Fourier Transform (Lathi 7.1-7.3)

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

PYKC 10-Feb-08 E2.5 Signals & Linear Systems Lecture 10 Slide 1

Definition of Fourier Transform

• The forward and inverse Fourier Transform are defined for aperiodic signal as: $\int_{-\infty}^{\infty}$

$$X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$X(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

- Already covered in Year 1 Communication course (Lecture 5).
- Fourier series is used for periodic signal:

$$x_{T_0}(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}$$

$$\frac{1}{1} \int_{0}^{T_0/2} dt e^{jn\omega_0 t} dt$$

$$D_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x_{T_0}(t) e^{-jn\omega_0 t} dt$$

$$\omega_0 = \frac{2\pi}{T_0}$$

L7.1 p678

Connection between Fourier Transform and Laplace Transform

Compare Fourier Transform:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

With Laplace Transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$

Setting $s = j\omega$ in this equation yield:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 where $X(j\omega) = X(s)|_{s=j\omega}$

- Is it true that: $X(j\omega) = X(\omega)$?
- Yes only if x(t) is absolutely integrable, i.e. has finite energy:

$$\int_{-\infty}^{\infty} |x(t)| \, dt < \infty$$

L7.2-1 p697

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 3

Define three useful functions

A unit rectangular window (also called a unit gate) function rect(x):

$$\operatorname{rect}(x) = \begin{cases} 0 & |x| > \frac{1}{2} \\ \frac{1}{2} & |x| = \frac{1}{2} \\ 1 & |x| < \frac{1}{2} \end{cases} \xrightarrow{\begin{array}{c} 1 & \operatorname{rect}(x) \\ \hline \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{array}}$$

• A unit triangle function $\Delta(x)$:

$$\Delta(x) = \begin{cases} 0 & |x| \ge \frac{1}{2} \\ 1 - 2|x| & |x| < \frac{1}{2} \end{cases}$$

Interpolation function sinc(x):

$$\mathrm{sinc}\,(x) = \frac{\sin x}{x}$$

or

$$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$$

L7.2-1 p687

More about sinc(x) function

- sinc(x) is an even function of x.
- sinc(x) = 0 when sin(x) = 0except when x=0, i.e. $x = \pm \pi$, $\pm 2\pi$, $\pm 3\pi$
- sinc(0) = 1 (derived with L'Hôpital's rule)
- sinc(x) is the product of an oscillating signal sin(x) and a monotonically decreasing function 1/x. Therefore it is a damping oscillation with period of 2π with amplitude decreasing as 1/x.

PYKC 10-Feb-08 E2.5 Signals & Linear Systems Lecture 10 Slide 5

Fourier Transform of $x(t) = rect(t/\tau)$

Evaluation:

$$X(\omega) = \int_{-\infty}^{\infty} \text{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt$$

• Since rect(t/τ) = 1 for $-\tau/2 < t < \tau/2$ and 0 otherwise

$$X(\omega) = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt = -\frac{1}{j\omega} (e^{-j\omega\tau/2} - e^{j\omega\tau/2}) = \frac{2\sin\left(\frac{\omega\tau}{2}\right)}{\omega} = \tau \frac{\sin\left(\frac{\omega\tau}{2}\right)}{\left(\frac{\omega\tau}{2}\right)} = \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$$

PYKC 10-Feb-08 E2.5 Signals & Linear Systems Lecture 10 Slide 6

Fourier Transform of unit impulse $x(t) = \delta(t)$

Using the sampling property of the impulse, we get:

$$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = 1$$

IMPORTANT – Unit impulse contains COMPONENT AT EVERY FREQUENCY.

L7.2 p691

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 7

Inverse Fourier Transform of $\delta(\omega)$

Using the sampling property of the impulse, we get:

$$\mathcal{F}^{-1}[\delta(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi}$$

• Spectrum of a constant (i.e. d.c.) signal x(t)=1 is an impulse $2\pi\delta(\omega)$.

$$\frac{1}{2\pi} \iff \delta(\omega)$$
 or $1 \iff 2\pi\delta(\omega)$

L7.2 p691

Inverse Fourier Transform of $\delta(\omega - \omega_0)$

Using the sampling property of the impulse, we get:

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t}$$

• Spectrum of an everlasting exponential $e^{j\omega_0 t}$ is a single impulse at $\omega = \omega_0$.

$$\frac{1}{2\pi}e^{j\omega_0t} \iff \delta(\omega - \omega_0)$$
or
$$e^{j\omega_0t} \iff 2\pi\delta(\omega - \omega_0)$$
and
$$e^{-j\omega_0t} \iff 2\pi\delta(\omega + \omega_0)$$

L7.2 p692

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 9

Fourier Transform of everlasting sinusoid $\cos \omega_0 t$

- Remember Euler formula: $\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$
- Use results from slide 9, we get:

$$\cos \omega_0 t \iff \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

 Spectrum of cosine signal has two impulses at positive and negative frequencies.

L7.2 p693

Fourier Transform of any periodic signal

Fourier series of a periodic signal x(t) with period T₀ is given by:

$$x(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} \qquad \omega_0 = \frac{2\pi}{T_0}$$

Take Fourier transform of both sides, we get:

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} D_n \delta(\omega - n\omega_0)$$

This is rather obvious!

L7.2 p693

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 11

Fourier Transform of a unit impulse train

• Consider an impulse train $\delta_{T_0}(t) = \sum_{n=0}^{\infty} \delta(t - nT_0)$

The Fourier series of this impulse train can be shown to be:

$$\delta_{T_0}(t) = \sum_{-\infty}^{\infty} D_n e^{jn\omega_0 t}$$
 where $\omega_0 = \frac{2\pi}{T_0}$ and $D_n = \frac{1}{T_0}$

Therefore using results from the last slide (slide 11), we get:

$$X(\omega) = \frac{2\pi}{T_0} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$
 $\omega_0 = \frac{2\pi}{T_0}$

L7.2 p694

Fourier Transform Table (1)

No.	x(t)	$X(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	<i>a</i> > 0
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	<i>a</i> > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	

L7.3 p702

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 13

Fourier Transform Table (2)

No.	x(t)	$X(\omega)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0

L7.3 p702

Fourier Transform Table (3)

No.	x(t)	$X(\omega)$	
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

PYKC 10-Feb-08

E2.5 Signals & Linear Systems

Lecture 10 Slide 15