

Self-learning of Neuroimaging Theory

—based on the book: Adaptive Spatial Filters for Electromagnetic

Brain Imaging

Author: Jie Li

Institute: University of Kent

Date: 2021-06-29

Version: 1.0

Bio: Ph.D. Candidate in Statistics

School of Mathematics, Statistics and Actuarial Science

Contents

1	Introduction		
	1.1	Functional brain mapping	1
Bibliography			1

1.1 Functional brain mapping

What is functional brain mapping? According to Wikipedia, *Brain mapping* is a set of neuroscience techniques predicated on the mapping of (biological) quantities or properties onto spatial representations of the (human or non-human) brain resulting in maps.

What can it be used to do?

- study the neural mechanisms underlying human behavior
- brain clinical diagnosis

Techniques for functional brain mapping

- positron emission tomography (PET, 正电子发射计算机断层显像)
- functional magnetic resonance imaging (fMRI, 功能磁共振成像)

The disadvantage: do not directly measure neuronal activities. Electrophysiological activity of neurons can generate both electric potentials as well as magnetic fields. At sub-millisecond time scale, the neurons' activities can be measured by

- magnetoencephalography (MEG, 脑磁图), 300 channels
- electroencephalography (EEG, 脑电图), 512 electrodes MEG/EEG is very importan because:
- 1. provide spatio-temporal brain activation profiles
- 2. algorithms that enable high-fidelity reconstruction of neuronal activities from MEG and EEG data.

