Equações Não Lineares

Prof. Americo Cunha

Universidade do Estado do Rio de Janeiro - UERJ

americo.cunha@uerj.br

www.americocunha.org

$$2x - 4 = 0$$
 $x^2 - 3 = 0$

$$x^2 - 3 = 0$$

$$\sin x = 0$$

$$x - e^{-x} = 0 \qquad x - e^x = 0$$

$$x-e^x=0$$

$$2x-4=0$$
 $x^2-3=0$ $\sin x = 0$ $x-e^{-x}=0$ $x-e^{x}=0$

• © Com algumas temos certo traquejo algébrico

$$2x-4=0$$
 $x^2-3=0$ $\sin x = 0$ $x-e^{-x}=0$ $x-e^{x}=0$

- © Com algumas temos certo traquejo algébrico
- © Para outras, a intuição geométrica ajuda

$$2x - 4 = 0$$
 $x^2 - 3 = 0$ $\sin x = 0$
 $x - e^{-x} = 0$ $x - e^{x} = 0$

- © Com algumas temos certo traquejo algébrico
- © Para outras, a intuição geométrica ajuda
- ② Mas em muitos casos não sabemos sair do lugar

Equação do primeiro grau

$$2x - 4 = 0$$

Equação do primeiro grau

$$2x - 4 = 0$$

Essa equação tem uma única solução: $x^* = 2$

Equação do segundo grau

$$x^2 - 3 = 0$$

Equação do segundo grau

$$x^2 - 3 = 0$$

Essa equação tem duas soluções: $x^* \in \{\pm\sqrt{3}\}$.

Equação trigonométrica c/ domínio finito

$$\sin x = 0, \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2}$$

Equação trigonométrica c/ domínio finito

$$\sin x = 0, \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2}$$

Essa equação tem uma única solução: $x^* = \pi$

Equação trigonométrica c/ outro domínio finito

$$\sin x = 0, \quad 0 \le x \le 4\pi$$

Equação trigonométrica c/ outro domínio finito

$$\sin x = 0, \quad 0 \le x \le 4\pi$$

Essa equação tem cinco soluções: $x^* \in \{0, \pi, 2\pi 3\pi 4\pi\}$

Equação trigonométrica c/ domínio infinito

$$\sin x = 0, \quad -\infty \le x \le +\infty$$

Equação trigonométrica c/ domínio infinito

$$\sin x = 0, \quad -\infty \le x \le +\infty$$

Essa equação tem infintas soluções: $x^* = k\pi, \ k \in \mathbb{Z}$

$$x - e^{-x} = 0$$

$$x - e^{-x} = 0$$

$$x = e^{-x}$$

Essa equação tem uma única solução: $x^* = 0,5671 \cdots$

$$x-e^x=0$$

$$x - e^x = 0$$
 \iff $x = e^x$

Essa equação não tem solução!

O problema de interesse: resolver uma equação escalar

Encontre $x^* \in [a,b] \subset \mathbb{R}$ tal que

$$f(x^*)=0$$

onde $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ é uma função não linear.

Uma função $f:\mathbb{R} \to \mathbb{R}$ é dita *não linear* se

$$f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$$

para qualquer $\alpha, \beta \in \mathbb{R}$.

Nomenclatura:

- x^* é uma solução da equação escalar f(x) = 0
- x^* é um *zero* ou uma *raiz* da função *f*

Alguns fatos sobre equações escalares

- Uma equação escalar não linear pode:
 - ter uma única solução
 - ter um número finito de soluções
 - ter uma infinidade de soluções
 - não ter solução
- Soluções analíticas (exatas) são raras, só em casos especiais:
 - polinomiais de grau menor ou igual a 4
 - trigonométricas simples
 - exponenciais/logarítmicas simples
 - alguns outros casos
- Na prática lidamos com aproximações para uma solução de equação escalar (solução aproximada);
- Essas aproximações são construídas através dos chamados métodos iterativos.

Como citar esse material?

A. Cunha, *Equações Algébricas Não Lineares*, Universidade do Estado do Rio de Janeiro – UERJ, 2020.

Essas notas de aula podem ser compartilhadas nos termos da licença Creative Commons BY-NC-ND 3.0, com propósitos exclusivamente educacionais.

