PCT/KR2005/000234

IAP5 Rec'd PCT/PTO 31 JUL 2006

[Sequence Listing]

Lifenza Co., Ltd. <110> PROTEIN WITH ACTIVITY OF HYDROLYZING DEXTRAN, STARCH, MUTAN, <120> INULIN AND LEVANN, GENE ENCODING THE SAME, CELL EXPRESSING THE 5 SAME, AND PRODUCTION METHOD THEREOF <150> KR2004-0006185 <151> _ 2004-01-30 10 <160> <170> Kopatent In 1.71 15 **210 <211>** 608 **<212>** PRT <213> Artificial Sequence 20 <220> <223> S. cerevisiae/pYES2-LSD1 <400> Met Thr Leu lie Tyr Val Pro Ser lie Phe Thr Met Val Pro Ser lie 25 5 15 1 10 Thr Arg IIe Val Leu Val Asn IIe Leu Leu Ala Thr Leu Val Leu Gly 20 25 30 30 Ala Ala Val Leu Pro Arg Asp Asn Arg Thr Val Cys Gly Ser Gin Leu 35 40 Cys Thr Trp Trp His Asp Ser Gly Glu Ile Asn Thr Gly Thr Pro Val 60 50 55 . 35

GIn Ala Gly Asn Val Arg GIn Ser Arg Lys Tyr Ser Val His Val Ser

WO 2005/073368 PCT/KR2005/000234 2/7

65 70 75 80

Leu Ala Asp Arg Asn Gln Phe Tyr Asp Ser Phe Val Tyr Glu Ser Ile 85 90 95

Pro Arg Asn Gly Asn Gly Arg I le Tyr Ser Pro Thr Asp Pro Pro Asn

100 105 110

5

20

35

.5

Ser Asn_Thr Leu Asn Ser Ser I le Asp Asp Gly I le Ser I le Glu Pro 10 115 120 125

Ser Leu Gly 11e Asn Met Ala Trp Ser Gln Phe Glu Tyr Arg Arg Asp 130 135 140

Val Asp IIe Lys IIe Thr Thr IIe Asp Gly Ser IIe Leu Asp Gly Pro 145 150 155 160

Leu Asp IIe Val IIe Arg Pro Thr Ser Val Lys Tyr Ser Val Lys Arg 165 170 175

Cys Val Gly Gly He He He Arg Val Pro Tyr Asp Pro Asn Gly Arg

Lys Phe Ser Val Glu Leu Lys Ser Asp Leu Tyr Ser Tyr Leu Ser Asp 25 195 200 205

Gly Ser Gln Tyr Val Thr Ser Gly Gly Ser Val Val Gly Val Glu Pro 210 215 220

Lys Asn Ala Leu Val IIe Phe Ala Ser Pro Phe Leu Pro Arg Asp Met225230235240

Val Pro His Met Thr Pro His Asp Thr Gln Thr Met Lys Pro Gly Pro 245 250 255

lle Asn Asn Gly Asp Trp Gly Ser Lys Pro lle Leu Tyr Phe Pro Pro
260 265 270

	Gly Val	Tyr 275	Trp	Met	Asn	Glu	Asp 280	Thr	Ser	Gly	Asn	Pro 285	Gly	Lys	Leu
5	Gly Ser 290	Asn	His	Met	Arg	Leu 295	Asp	Pro	Asn	Thr	Tyr 300	Trp	Val	His	Leu
10	Ala Pro 305 .	Gly _	Ala	Tyr	Val 310	Lys	Gly	Ala	He	Glu 315	Tyr	Phe	Thr	Lys	GIn 320
-	Asn Phe	Tyr	Ala	Thr 325	Gly	His	Gly	Val	Leu 330	Ser	Gly	Glu	Asn	Tyr 335	Val .
15	Tyr`Gin	Ala	Asn 340	Ala	Ala	Asp	Asn	Tyr 345	Tyr	Ala	Vai	Lys ·	Ser 350	Asp	Gly
	Thr Ser	Leu 355	Arg	Met	Trp	Trp	His 360	Asn	Asn	Leu	Gly	Gly 365	Gly	GIn	Tḥr
20	Trp Phe 370	Cys	Met	Gly	Pro	Thr 375	He	Asn	Ala	Pro	Pro 380	Phe	Asn	Thr	Met
25	Asp Phe 385	Asn	Gly	Asn	Ser 390	Asn	He	Ser		Arg 395	He	Ser	Asp	Tyr	Lys 400
23	Gin Vai	Gly	Ala	Tyr 405	Phe	Phe	GIn	Thr	Asp 410	Gly	Pro	Glu	He	Tyr 415	Glu
30	Asp Ser	Val	Va1 420	His	Asp	Val ·	Phe	Trp 425	His	Val	Asn	Asp	Asp 430	Ala	He
	Lys Thr	Tyr 435	Tyr	Ser	Gly	Ala	Ser 440	He	Ser	Arg	Ala	Thr 445	He	Trp ,	Lys
35	Cys His 450	Asn	Asp	Pro	He	11e 455	GIn	Met	Gly	Trp	Thr 460	Ser	Arg	Asn	Leu

4/7

Thr Gly IIe Ser IIe Asp Asn Leu His Val IIe His Thr Arg Tyr Phe Lys Ser Glu Thr Val Val Pro Ser Ala IIe IIe Gly Ala Ser Pro Phe Tyr Ala Ser Gly Met Thr Val Asp Pro Ser Glu Ser lle Ser Met Thr lle Ser Asn Val Val Cys Glu Gly Leu Cys Pro Ser Leu Phe Arg lle Thr Pro Leu Gin Ser Tyr Asn Asn Leu Vai Val Lys Asn Vai Ala Phe ·530 Pro Asp Gly Leu Gln Thr Asn Pro Ile Gly Ile Gly Glu Ser Ile Ile Pro Ala Ala Ser Gly Cys Thr Met Asp Leu Glu lle Thr Asn Trp Thr Val Lys Gly Gln Lys Val Thr Met Gln Asn Phe Gln Ser Gly Ser Leu Gly Gln Phe Asp lle Asp Gly Ser Tyr Trp Gly Gln Trp Ser lle Asn

<210> 2

<211> 2052

212> DNA

≪213 Artificial Sequence

<220>

<223> S. cerevisiae/pYLSD1

<400> 2 60 tgggtgtgtc ccttgctctg ccaacgttgt tgattgtttt catgacatta atctacgtgc 5 cttcaatatt tacaatggtc ccctcaatca cacggattgt actggttaac attctgttgg 120 180 cgacgttggt titgggagct gcagtccttc cacgagacaa cagaactgtt tgcgggagtc 240 aactotgoac atggtggcac gactooggcg agataaacac oggtactoot gtacaggcag 10 300 gaaacgttcg acaatcccga aagtactctg tccatgtgag cctggcagac cgtaaccaat tctacgactc tttcgtatat gaatcgatac ctaggaacgg caatggcaga atttattctc 360 15 420 ccaccgaccc acctaacagc aatacattga atagtagcat tgacgacggt atatcaatcg aaccatctct oggcatcaac atggcttggt occagttoga atatagacga gatgtogaca 480 540 20 ttaagattac tacaatcgat ggctcaatat tggatggccc tttggacatt gttattcggc cgacttctgt taagtactca gtcaaaagat gtgtgggtgg tatcattatt agagtccctt 600 atgateceaa tggtegaaaa ttetetgttg agttaaagag tgaeetttae agttaeetet 660 25 ccgacggttc gcaatatgtg acctctggag ggagcgtggt tggtgtggag ccaaaaaatg 720 780 ccctggtgat ctttgccagc cctttcttgc cacgggatat ggttcctcat atgacaccac 30 acgacaccca gacaatgaag ccgggcccaa tcaataatgg ggactggggt tcaaagccta 840 900 tactctactt cccgcctggc gtatactgga tgaacgagga tacctctggt aaccccggga ageteggete aaateatatg eggetggate eeaataceta etgggteeat etageeecag 960 35 gagcctatgt gaaaggagcc attgagtatt tcacgaagca aaatttctat gcaacgggtc 1020

atggcgttct	ctcaggtgag	aactatgttt	atcaggccaa	tgcagctgat	aactactatg	1080
ccgtcaagag	tgatggcaca	agct tgagaa	tgtggtggca	caacaacctt	ggaggcggtc	1140
aaacatggtt	ttgcatgggg	cccaccatta	atgcaccgcc	gtttaatacg	atggacttca	1200
acggaaactc	taatatttcc	agccggatta	gtgactataa	gcaggttggc	gcttattttt	1260
tccaaacaga	cggaccggag	atctacgagg	acagtgttgt	ccatgacgtc	ttctggcatg	1320
ttaatgatga	tgccatcaag	acatattatt	ccggagcttc	aatttcacga	gcaaccatct	1380
ggaagtgtca	caatgacccg	atcatacaga	tgggctggac	gtcacgaaat	ctcaccggaa	1440
	taacctgcac	gtcatccaca	cgagatattt	caaatctgaa	acagtggttc	1500
cttcagcaat	cattggagcg	tctccattct	acgcaagtgg	aatgactgtt	gatcccagcg	1560
agtccatcag	catgaccatc	tctaacgtgg	tgtgtgaggg	tctatgcccc	tcactgttcc	1620
gtatcactcc	gcttcagagc	tacaacaacc	ttgttgtcaa	gaacgtggcc	tttcccgatg	1680
gactgcagac	aaatccaatc	ggaataggag	agagcattat	accagcagct	tccggctgta	1740
caatggactt	ggaaatcaca	aactggaccg	tcaaaggaca	aaaagtcacc	atgcaaaact	1800
ttcagtccgg	gtcacttggc	cagttcgata	tcgatggttc	atactggggt	caatggtcca	1860
taaactaaag	ctattcccat	tcacctgagt	attttcgtgg	gttcaatgag	ttcttgttac	1920
tgatggggcc	cttgctagtg	gtaaaagtag	agggacttgt	cctcgccggg	cgccaaggaa	1980
gttcatgtct	tctagttgaa	tagtatttgt	ttcttctctc	tcgttaaaaa	aaaaaaaaaa	2040
aaaaaaaaaa	aa					2052

WO 2005/073368 PCT/KR2005/000234

<210> 3

<211> 18

<212> DNA

<213> Artificial Sequence

5

<220>

<223> L. starkeyi DX-F primer(sense)

10 <400> 3

gtcccttgag ctcccaac · 18

<210> 4

15 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

20 <223> L. starkeyi DX-R primer(antisense)

<400> 4

25

tcaactagaa ttcatgaact tcc

23