MA211 - LISTA 13

ROTACIONAL, DIVERGENTE, SUPERFÍCIES PARAMETRIZADAS E SUAS ÁREAS

30 de novembro de 2016

EXERCÍCIOS RESOLVIDOS

1. ([1], seção 16.5) Existe um campo vetorial \mathbf{G} em \mathbb{R}^3 tal que rot $\mathbf{G}=(x\sin y,\cos y,z-xy)$? Justifique.

Solução: Suponha que existe um campo vetorial G tal que rot $G = (x \operatorname{sen} y, \cos y, z - xy)$. Vamos calcular div rot G. Temos que

$$\operatorname{div}\operatorname{rot}\mathbf{G} = \frac{\partial(x\,\operatorname{sen}y)}{\partial x} + \frac{\partial(\cos y)}{\partial y} + \frac{\partial(z-xy)}{\partial z}$$
$$= \operatorname{sen}y - \operatorname{sen}y + 1 = 1. \tag{1}$$

Sabemos que se $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ é um campo vetorial sobre \mathbb{R}^3 e P, Q e R têm derivadas parciais de segunda ordem contínuas, então div rot $\mathbf{F} = 0$. Como de (1) div rot $\mathbf{G} \neq 0$, pela contrapositiva do resultado acima, temos que \mathbf{G} não é um campo vetorial do \mathbb{R}^3 .

2. ([1], seção 16.5) Demonstre as identidades, admitindo que as derivadas parciais apropriadas existem e são contínuas. Se f for um campo escalar e \mathbf{F} , \mathbf{G} foram campos vetoriais, então $f\mathbf{F}$, $\mathbf{F} \cdot \mathbf{G}$ e $\mathbf{F} \times \mathbf{G}$ serão definidos por

$$(f\mathbf{F})(x,y,z) = f(x,y,z)\mathbf{F}(x,y,z)$$
$$(\mathbf{F} \cdot \mathbf{G})(x,y,z) = \mathbf{F}(x,y,z) \cdot \mathbf{G}(x,y,z)$$
$$(\mathbf{F} \times \mathbf{G})(x,y,z) = \mathbf{F}(x,y,z) \times \mathbf{G}(x,y,z).$$

- a) $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$
- **b)** div $(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$
- c) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{rot} \mathbf{F} \mathbf{F} \cdot \operatorname{rot} \mathbf{G}$
- **d)** div $(\nabla f \times \nabla g) = 0$

Solução: Suponhamos que $\mathbf{F} = P_1 \mathbf{i} + Q_1 \mathbf{j} + R_1 \mathbf{k} \in \mathbf{G} = P_2 \mathbf{i} + Q_2 \mathbf{j} + R_2 \mathbf{k}$.

a) Temos que $F + G = (P_1 + P_2)\mathbf{i} + (Q_1 + Q_2)\mathbf{j} + (R_1 + R_2)\mathbf{k}$. Então,

$$\operatorname{div}(\mathbf{F} + \mathbf{G}) = \frac{\partial (P_1 + P_2)}{\partial x} + \frac{\partial (Q_1 + Q_2)}{\partial y} + \frac{\partial (R_1 + R_2)}{\partial z}$$

$$= \frac{\partial P_1}{\partial x} + \frac{\partial P_2}{\partial x} + \frac{\partial Q_1}{\partial y} + \frac{\partial Q_2}{\partial y} + \frac{\partial R_1}{\partial z} + \frac{\partial R_2}{\partial z}$$

$$= \underbrace{\frac{\partial P_1}{\partial x} + \frac{\partial Q_1}{\partial y} + \frac{\partial R_1}{\partial z}}_{\operatorname{div} \mathbf{F}} + \underbrace{\frac{\partial P_2}{\partial x} + \frac{\partial Q_2}{\partial y} + \frac{\partial R_2}{\partial z}}_{\operatorname{div} \mathbf{G}}.$$

b) Temos que $f\mathbf{F} = (fP_1)\mathbf{i} + (fQ_1)\mathbf{j} + (fR_1)\mathbf{k}$. Então,

$$\operatorname{div}(f\mathbf{F}) = \frac{\partial (fP_1)}{\partial x} + \frac{\partial (fQ_1)}{\partial y} + \frac{\partial (fR_1)}{\partial z}$$

$$= \frac{\partial f}{\partial x} \cdot P_1 + f \cdot \frac{\partial P_1}{\partial x} + \frac{\partial f}{\partial y} \cdot Q_1 + f \cdot \frac{\partial Q_1}{\partial y} + \frac{\partial f}{\partial z} \cdot R_1 + f \cdot \frac{\partial R_1}{\partial z}$$

$$= f \cdot \left(\underbrace{\frac{\partial P_1}{\partial x} + \frac{\partial Q_1}{\partial y} + \frac{\partial R_1}{\partial z}}_{f \cdot \operatorname{div} \mathbf{F}}\right) + \underbrace{\frac{\partial f}{\partial x} P_1 + \frac{\partial f}{\partial y} Q_1 + \frac{\partial f}{\partial z} R_1}_{\nabla f \cdot \mathbf{F}}$$

c) Temos que $\mathbf{F} \times \mathbf{G} = (Q_1 R_2 - Q_2 R_1) \mathbf{i} + (P_2 R_1 - P_1 R_2) \mathbf{j} + (P_1 Q_2 - Q_1 R_2) \mathbf{k}$. Então,

$$\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \frac{\partial (Q_1 R_2 - Q_2 R_1)}{\partial x} + \frac{\partial (P_2 R_1 - P_1 R_2)}{\partial y} + \frac{\partial (P_1 Q_2 - P_2 Q_1)}{\partial z}$$

$$= \frac{\partial (Q_1 R_2)}{\partial x} - \frac{\partial (Q_2 R_1)}{\partial x} + \frac{\partial (P_2 R_1)}{\partial y} - \frac{\partial (P_1 R_2)}{\partial y} + \frac{\partial (P_1 Q_2)}{\partial z} - \frac{\partial (Q_1 R_2)}{\partial z}$$

$$= \frac{\partial Q_1}{\partial x} \cdot R_2 + Q_1 \cdot \frac{\partial R_2}{\partial x} - \frac{\partial Q_2}{\partial x} \cdot R_1 - Q_2 \cdot \frac{\partial R_1}{\partial x} + \frac{\partial P_2}{\partial y} \cdot R_1 + P_2 \cdot \frac{\partial R_1}{\partial y}$$

$$- \frac{\partial P_1}{\partial y} \cdot R_2 - P_1 \cdot \frac{\partial R_2}{\partial y} + \frac{\partial P_1}{\partial z} \cdot Q_2 + P_1 \cdot \frac{\partial Q_2}{\partial z} - \frac{\partial P_2}{\partial z} - P_2 \cdot \frac{\partial Q_1}{\partial z}$$

$$= P_1 \left(\frac{\partial Q_2}{\partial z} - \frac{\partial R_2}{\partial y} \right) + Q_1 \left(\frac{\partial R_2}{\partial x} - \frac{\partial P_2}{\partial z} \right) + R_1 \left(\frac{\partial P_2}{\partial y} - \frac{\partial Q_2}{\partial x} \right)$$

$$+ P_2 \left(\frac{\partial R_1}{\partial y} - \frac{\partial Q_1}{\partial z} \right) + Q_2 \left(\frac{\partial P_1}{\partial z} - \frac{\partial R_1}{\partial x} \right) + R_2 \left(\frac{\partial Q_1}{\partial x} - \frac{\partial P_1}{\partial y} \right)$$

$$= \left[-P_1 \left(\frac{\partial R_2}{\partial y} - \frac{\partial Q_2}{\partial z} \right) - Q_1 \left(\frac{\partial P_2}{\partial z} - \frac{\partial R_2}{\partial x} \right) - R_1 \left(\frac{\partial Q_2}{\partial x} - \frac{\partial P_2}{\partial y} \right) \right]$$

$$+ \left[P_2 \left(\frac{\partial R_1}{\partial y} - \frac{\partial Q_1}{\partial z} \right) + Q_2 \left(\frac{\partial P_1}{\partial z} - \frac{\partial R_1}{\partial x} \right) + R_2 \left(\frac{\partial Q_1}{\partial x} - \frac{\partial P_1}{\partial y} \right) \right]$$

$$= -\mathbf{F} \cdot \operatorname{rot} \mathbf{G} + \mathbf{G} \cdot \operatorname{rot} \mathbf{F}$$

$$= \mathbf{G} \cdot \operatorname{rot} \mathbf{F} - \mathbf{F} \cdot \operatorname{rot} \mathbf{G}.$$

d) Do item (c) temos que

$$\operatorname{div}(\nabla f \times \nabla g) = \nabla g \cdot \operatorname{rot}(\nabla f) - \nabla f \cdot \operatorname{rot}(\nabla g).$$

Sabemos que, se f é uma função de três variáveis que tem derivadas parciais de segunda ordem contínuas, então $rot(\nabla f) = \mathbf{0}$. Deste resultado, obtemos que

$$\operatorname{div}(\nabla f \times \nabla q) = \nabla q \cdot \mathbf{0} - \nabla f \cdot \mathbf{0} = 0.$$

3. ♦ ([1], seção 16.6) ([3], seção 13.6) Determine a área da superfície.

- a) A parte do paraboloide hiperbólico $z=y^2-x^2$ que está entre os cilindros $x^2+y^2=1$ e $x^2+y^2=4$.
- b) A parte de baixo da esfera $x^2 + y^2 + z^2 = 2$ cortada pelo cone $z = \sqrt{x^2 + y^2}$.

Solução:

a) Temos que $z = f(x, y) = y^2 - x^2 \text{ com } 1 \le x^2 + y^2 \le 4 \text{ Então}$,

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$
$$= \iint\limits_{D} \sqrt{1 + (2y)^2 + (-2x)^2} dA = \iint\limits_{D} \sqrt{1 + 4y^2 + 4x^2} dA.$$

Usando coordenadas polares temos que

$$x = r \cos \theta$$
, $y = r \sin \theta \Rightarrow 0 \le \theta \le \frac{\pi}{2}$ e $1 \le r \le 2$.

Assim,

$$A(S) = \int_0^{2\pi} \int_1^2 \sqrt{1 + 4r^2} \, r \, dr \, d\theta = \int_0^{2\pi} d\theta \cdot \underbrace{\int_1^2 \sqrt{1 + 4r^2} r \, dr}_{\substack{u = 1 + 4r^2 \\ du = 8r \, dr}}$$

$$= \theta \Big|_{0}^{2\pi} \cdot \int_{5}^{17} u^{1/2} \cdot r \cdot \frac{du}{8r} = 2\pi \cdot \frac{1}{8} \int_{5}^{17} u^{1/2} du = \frac{\pi}{4} \cdot \frac{2}{3} u^{3/2} \Big|_{5}^{17}$$
$$= \frac{\pi}{6} \cdot (17^{3/2} - 5^{3/2}).$$

b) Sejam

$$\begin{cases} x = r \sin \phi \cos \theta \\ y = r \sin \phi \sin \theta \Rightarrow r = \sqrt{x^2 + y^2 + z^2} = \sqrt{2}, \text{ na esfera.} \\ z = r \cos \phi \end{cases}$$

Temos que

$$x^2 + y^2 + z^2 = 2$$
 e $z = \sqrt{x^2 + y^2} \Rightarrow z^2 + z^2 = 2 \Rightarrow z^2 = 1 \Rightarrow z = 1 \text{ (pois } z \ge 0).$

Logo, $\phi = \frac{\pi}{4}$. Para a parte inferior da esfera cortado pelo cone, temos que $\phi = \pi$. Então,

$$r(\phi, \theta) = (\sqrt{2} \sin \phi, \cos \theta) \mathbf{i} + (\sqrt{2} \sin \phi \sin \theta) \mathbf{j} + (\sqrt{2} \cos \phi) \mathbf{k},$$
$$\frac{\pi}{4} \le \phi \le \pi \quad \text{e} \quad 0 \le \theta \le 2\pi.$$

Isso implica que

$$r_{\phi}(\phi, \theta) = (\sqrt{2} \cos \phi, \cos \theta) \mathbf{i} + (\sqrt{2} \cos \phi \sin \theta) \mathbf{j} - (\sqrt{2} \sin \phi) \mathbf{k}$$

е

$$r_{\theta}(\phi, \theta) = (-\sqrt{2} \operatorname{sen} \phi, \operatorname{sen} \theta) \mathbf{i} + (\sqrt{2} \operatorname{sen} \phi \cos \theta) \mathbf{j} + 0 \mathbf{k}$$

Logo,

$$r_{\phi} \times r_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \sqrt{2} \cos \phi \cos \theta & \sqrt{2} \cos \phi \sin \theta & -\sqrt{2} \sin \phi \\ -\sqrt{2} \sin \phi \sin \theta & \sqrt{2} \sin \phi \cos \theta & 0 \end{vmatrix}$$
$$= (2 \sin^{2} \phi \cos \theta) \mathbf{i} + (2 \sin^{2} \phi \sin \theta) \mathbf{j} + (2 \sin \phi \cos \phi) \mathbf{k}$$

Isso resulta que

$$|r_{\phi} \times r_{\theta}| = \sqrt{4 \operatorname{sen}^{2} \phi \operatorname{cos}^{2} \theta + 4 \operatorname{sen}^{4} \operatorname{sen}^{2} \theta + 4 \operatorname{sen}^{2} \phi \operatorname{cos}^{2} \phi}$$
$$= \sqrt{4 \operatorname{sen}^{2} \phi} = 2|\operatorname{sen} \phi| = 2 \operatorname{sen} \phi \quad \left(\operatorname{pois}, \frac{\pi}{4} \le \phi \le \pi\right).$$

Assim,

$$A = \iint_{D} |r_{\phi} \times r_{\theta}| \, dA = \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2\pi} 2 \operatorname{sen} \phi \, d\theta d\phi = 2 \int_{\frac{\pi}{4}}^{\pi} \operatorname{sen} \phi \, d\phi \cdot \int_{0}^{2\pi} d\theta$$
$$= 2 \cdot (-\cos \phi) \Big|_{\frac{\pi}{4}}^{\pi} \cdot \theta \Big|_{0}^{2\pi} = 2 \cdot \left(1 - \frac{\sqrt{2}}{2}\right) \cdot 2\pi = 4\pi \left(1 - \frac{\sqrt{2}}{2}\right) = \pi (4 - 2\sqrt{2})$$

- 4. ♦ ([1], seção 16.6) ([2], seção 9.2) Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado.
 - a) $\star \mathbf{r}(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}; u = 1, v = 0.$
 - **b)** $\mathbf{r}(u, v) = (u v, u^2 + v^2, uv)$, no ponto $\mathbf{r}(1, 1)$.

Solução:

a) Temos que $\mathbf{r}(u,v) = \underbrace{u^2}_{x(u,v)} \mathbf{i} + \underbrace{2u \operatorname{sen} v}_{y(u,v)} \mathbf{j} + \underbrace{u \operatorname{cos} v}_{z(u,v)} \mathbf{k}$ Primeiro, vamos calcular os vetores tangentes:

$$\mathbf{r}_{u} = \frac{\partial x(u, v)}{\partial u} \mathbf{i} + \frac{\partial y(u, v)}{\partial u} \mathbf{j} + \frac{\partial z(u, v)}{\partial u} \mathbf{k}$$
$$= 2u \mathbf{i} + 2 \operatorname{sen} v \mathbf{j} + \cos v \mathbf{k}$$

е

$$\mathbf{r}_{v} = \frac{\partial x(u,v)}{\partial v} \mathbf{i} + \frac{\partial y(u,v)}{\partial v} \mathbf{j} + \frac{\partial z(u,v)}{\partial v} \mathbf{k}$$
$$= 0 \mathbf{i} + 2u \cos v \mathbf{j} - u \sin v \mathbf{k}$$

Assim, o vetor normal ao plano tangente é:

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2u & 2 \operatorname{sen} v & \cos v \\ 0 & 2u \cos v & -u \operatorname{sen} v \end{vmatrix}$$
$$= (-2u \operatorname{sen}^{2} v - 2u \cos^{2} v) \mathbf{i} + (2u^{2} \operatorname{sen} v) \mathbf{j} + (4u^{2} \cos v) \mathbf{k}$$

Como u = 1 e v = 0 temos que o vetor normal é $-2\mathbf{i} + 0\mathbf{j} + 4\mathbf{k}$. Portanto, uma equação do plano tangente no ponto $\mathbf{r}(1,0) = (1,0,1)$ é

$$-2 \cdot (x-1) + 0 \cdot (y-0) + 4 \cdot (z-1) = 0$$
$$-2x + 2 + 4z - 4 = 0$$
$$-2x + 4z - 2 = 0 \quad \text{ou} \quad x - 2z + 1 = 0$$

b) Temos que $\mathbf{r}(u,v) = \underbrace{(u-v)}_{x(u,v)} \mathbf{i} + \underbrace{(u^2+v^2)}_{y(u,v)} \mathbf{j} + \underbrace{uv}_{z(u,v)} \mathbf{k}$ Primeiro, vamos calcular os vetores tangentes:

$$\mathbf{r}_{u} = \frac{\partial x(u,v)}{\partial u} \mathbf{i} + \frac{\partial y(u,v)}{\partial u} \mathbf{j} + \frac{\partial z(u,v)}{\partial u} \mathbf{k}$$
$$= \mathbf{i} + 2u \mathbf{j} + v \mathbf{k}$$

e

$$\mathbf{r}_{v} = \frac{\partial x(u,v)}{\partial v} \mathbf{i} + \frac{\partial y(u,v)}{\partial v} \mathbf{j} + \frac{\partial z(u,v)}{\partial v} \mathbf{k}$$
$$= -\mathbf{i} + 2v \mathbf{j} + u \mathbf{k}$$

Assim, o vetor normal ao plano tangente é:

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2u & v \\ -1 & 2v & u \end{vmatrix}$$
$$= (-2u^{2} - 2v^{2})\mathbf{i} - (u+v)\mathbf{j} + (2u+2v)\mathbf{k}$$

Como u=1 e v=1 temos que o vetor normal é $-4\mathbf{i}-2\mathbf{j}+4\mathbf{k}$. Portanto, uma equação do plano tangente no ponto $\mathbf{r}(1,1)=(0,2,1)$ é

$$-4 \cdot (x-0) - 2 \cdot (y-2) + 4 \cdot (z-1) = 0$$
$$-4x - 2y + 4 + 4z - 4 = 0$$
$$-4x - 2y + 4z = 0 \quad \text{ou} \quad 2x + y - 2z = 0$$

EXERCÍCIOS PROPOSTOS

5. ♦ ([1], seção 16.5) Determine (I) o rotacional e (II) o divergente do campo vetorial.

a)
$$F(x, y, z) = xyz i - x^2y k$$

b)
$$\mathbf{F}(x, y, z) = e^x \operatorname{sen} y \mathbf{i} + e^x \cos y \mathbf{j} + z \mathbf{k}$$

c)
$$\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k})$$

d)
$$\mathbf{F}(x, y, z) = e^{xy} \operatorname{sen} z \mathbf{j} + y \operatorname{tg}^{-1}(x/z) \mathbf{k}$$

e)
$$\star \mathbf{F}(x, y, z) = (\ln x, \ln (xy), \ln (xyz))$$

- 6. ([1], seção 16.5) O campo vetorial \mathbf{F} é mostrado no plano xy e é o mesmo em todos os planos horizontais (em outras palavras, ${\bf F}$ é independente de ze sua componente $z \notin 0$).
 - a) O div F será positivo, negativo ou nulo? Justifique.
 - b) Determine se o rot $\mathbf{F} = 0$. Se não, em que direção rot \mathbf{F} aponta?

7. ([1], seção 16.5) Seja f um campo escalar e \mathbf{F} um campo vetorial. Diga se cada expressão tem significado. Em caso negativo, explique por quê. Em caso afirmativo, diga se é um campo vetorial ou escalar.

a) rot f

b) grad f

c) div F

d) rot $(\operatorname{grad} f)$

e) grad F

 \mathbf{f}) grad (div \mathbf{F})

 \mathbf{g}) div (grad f)

h) grad (div f)

i) rot (rot F)

 \mathbf{j}) div (div \mathbf{F})

k) (grad f) × (div **F**)

1) $\operatorname{div} (\operatorname{rot} (\operatorname{grad} f))$

8. \blacklozenge ([1], seção 16.5) Determine se o campo vetorial é conservativo ou não. Se for conservativo, determine uma função f tal que $\mathbf{F} = \nabla f$.

a)
$$\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$$

b)
$$\mathbf{F}(x, y, z) = 2xy \,\mathbf{i} + (x^2 + 2yz) \,\mathbf{j} + y^2 \,\mathbf{k}$$

c)
$$\mathbf{F}(x, y, z) = ye^{-x} \mathbf{i} + e^{-x} \mathbf{j} + 2z \mathbf{k}$$

d)
$$\star \mathbf{F}(x, y, z) = y \cos xy \mathbf{i} + x \cos xy \mathbf{j} - \sin z \mathbf{k}$$

9. ([1], seção 16.5) Mostre que qualquer campo vetorial da forma

$$\mathbf{F}(x, y, z) = f(x)\,\mathbf{i} + g(y)\,\mathbf{j} + h(z)\,\mathbf{k},$$

em que f,g e h são diferenciáveis, é irrotacional.

10. ([1], seção 16.5) Mostre que qualquer campo vetorial da forma

$$\mathbf{F}(x, y, z) = f(y, z) \mathbf{i} + g(x, z) \mathbf{j} + h(x, y) \mathbf{k}$$

é incompressível.

11. ([1], seção 16.5) Seja $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ e $r = |\mathbf{r}|$. Verifique as identidades

a)
$$\nabla \cdot \mathbf{r} = 3$$

b) $\nabla \cdot (r\mathbf{r}) = 4r$

c)
$$\nabla^2 r^3 = 12r$$

 $\mathbf{d)} \ \nabla r = \frac{\mathbf{r}}{r}$

e)
$$\nabla \times \mathbf{r} = \mathbf{0}$$

 $\mathbf{f)} \ \nabla \left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}$

$$\mathbf{g)} \ \nabla \ln r = \frac{\mathbf{r}}{r^2}$$

12. ([4], seção 16.4) Mostre que $f(x,y) = \ln(x^2 + y^2)$ satisfaz a equação de Laplace $\nabla^2 f = 0$, exceto no ponto (0,0).

13. ([1], seção 16.5) Use o Teorema de Green na forma $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \, dA$ para demonstrar a **primeira identidade de Green**:

$$\iint\limits_D f \nabla^2 g \, dA = \oint_C f(\nabla g) \cdot \mathbf{n} \, ds - \iint\limits_D \nabla f \cdot \nabla g \, dA,$$

em que D e C satisfazem as hipóteses do Teorema de Green e as derivadas parciais apropriadas de f e g existem e são contínuas. (A quantidade $\nabla g \cdot \mathbf{n} = D_{\mathbf{n}} g$ aparece na integral de linha. Essa é a derivada direcional na direção do vetor normal \mathbf{n} e é chamada **derivada normal** de g.)

14. ([1], seção 16.5) Use a primeira identidade de Green (exercício anterior) para demonstrar a **segunda identidade de Green**:

$$\iint\limits_{D} (f \nabla^2 g - g \nabla^2 f) \, dA = \oint\limits_{C} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, ds,$$

em que D e C satisfazem as hipóteses do Teorema de Green e as derivadas parciais apropriadas de f e q existem e são contínuas.

15. ♦ ([1], seção 16.5) As equações de Maxwell relacionam o campo elétrico **E** e o campo magnético **H**, quando eles variam com o tempo em uma região que não contenha carga nem corrente, como segue:

$$\operatorname{div} \mathbf{E} = 0 \qquad \operatorname{div} \mathbf{H} = 0$$

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} \qquad \operatorname{rot} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},$$

em que c é a velocidade da luz. Use essas equações para demonstrar o seguinte:

$$\mathbf{a)} \ \nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \qquad \qquad \mathbf{b)} \ \nabla \times (\nabla \times \mathbf{H}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

c)
$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 d) $\nabla^2 \mathbf{H} = \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$

- 16. \blacklozenge ([2], seção 8.4) Calcule $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$, sendo dados (para evitar repetição, ficará subentendido que \mathbf{n} é unitário):
 - a) $\mathbf{F}(x,y) = x\mathbf{i} + y\mathbf{j}$, C dada por $\mathbf{r}(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$ e **n** a normal exterior.
 - **b)** \bigstar $\mathbf{F}(x,y) = y\mathbf{j}$, C a fronteira do quadrado de vértices (0,0), (1,0), (1,1), (0,1) e \mathbf{n} a normal que aponta para fora do quadrado, sendo C orientada no sentido anti-horário.
 - c) $\mathbf{F}(x,y) = x^2 \mathbf{i}$, C dada por $\mathbf{r}(t) = (2\cos t, \sin t)$, $0 \le t \le 2\pi$ e **n** a normal que aponta para fora da região $x^2/4 + y^2 \le 1$.
 - d) $\mathbf{F}(x,y) = x^2 \mathbf{i}$, C dada por $\mathbf{r}(t) = (2\cos t, \sin t)$, $0 \le t \le \pi$ e **n** a normal componente $y \ge 0$.
 - e) $\mathbf{F}(x,y) = x \mathbf{i} + y \mathbf{j}$, C dada por $\mathbf{r}(t) = (t,t^2)$, $0 \le t \le 1$ e **n** a normal componente y < 0.
- 17. ([2], seção 8.4) Prove que se $\mathbf{F} \cdot \mathbf{n}$ for constante sobre $Im \mathbf{r}$, então o fluxo de \mathbf{F} sobre \mathbf{r} é o produto de $\mathbf{F} \cdot \mathbf{n}$ pelo comprimento de \mathbf{r} , em que \mathbf{n} é normal a \mathbf{r} .
- 18. ([2], seção 8.4) Seja

$$\mathbf{F}(x,y) = \frac{x}{(x^2 + y^2)^5} \,\mathbf{i} + \frac{y}{(x^2 + y^2)^5} \,\mathbf{j}$$

e **n** a normal unitária exterior ao círculo $x^2 + y^2 \le 1$. Calcule $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$, em que C é dada por $\mathbf{r}(t) = (\cos t, \sin t)$, $0 \le t \le \pi$. (Sugestão: Verifique que $\mathbf{F} \cdot \mathbf{n}$ é constante.)

- 19. ([1], seção 16.6) Determine se os pontos P e Q estão na superfície dada.
 - a) $\mathbf{r}(u,v) = (2u + 3v, 1 + 5u v, 2 + u + v), P(7,10,4) \in Q(5,22,5).$
 - **b)** $\mathbf{r}(u,v) = (u+v, u^2-v, u+v^2), P(3,-1,5) \in Q(-1,3,4).$
- 20. ♦ ([1], seção 16.6) Identifique a superfície que tem a equação paramétrica dada.
 - a) $\mathbf{r}(u,v) = (u+v)\mathbf{i} + (3-v)\mathbf{j} + (1+4u+5v)\mathbf{k}$.
 - **b)** $\mathbf{r}(u, v) = 2 \operatorname{sen} u \mathbf{i} + 3 \cos u \mathbf{j} + v \mathbf{k}, \ 0 \le v \le 2.$
- 21. ♦ ([1], seção 16.6) ([3], seção 13.6) Determine uma representação paramétrica para a superfície.
 - a) O plano que passa pelo ponto (1, 2, -3) e contém os vetores $\mathbf{i} + \mathbf{j} \mathbf{k}$ e $\mathbf{i} \mathbf{j} + \mathbf{k}$.
 - **b)** A parte do hiperboloide $x^2 + y^2 z^2 = 1$ que está à direita do plano xz.
 - c) \bigstar A parte do paraboloide elíptico $x+y^2+2z^2=4$ que está em frente ao plano x=0.
 - d) A parte da esfera $x^2 + y^2 + z^2 = 4$ que está acima do cone $z = \sqrt{x^2 + y^2}$.
 - e) A parte do cilindro $y^2 + z^2 = 16$ que está entre os planos x = 0 e x = 5.
 - f) A parte do plano z=x+3 que está dentro do cilindro $x^2+y^2=1$.
 - g) O paraboloide $z = x^2 + y^2$, $z \le 4$.
 - h) O paraboloide $z = 9 x^2 y^2$, $z \ge 0$.
 - i) A porção no primeiro octante do cone $z=\sqrt{x^2+y^2}/2$ entre os planos z=0 e z=3.
 - j) A porção da esfera $x^2+y^2+z^2=3$ entre os planos $z=\sqrt{3}/2$ e $z=-\sqrt{3}/2$.
 - l) A superfície cortada do cilindro parabólico $z=4-y^2$ pelos planos x=0, x=2 e z=0.
 - m) A porção do cilindro $(x-2)^2+z^2=4$ entre os planos y=0 e y=3.
- 22. ♦ ([2], seção 9.1) Desenhe a imagem da superfície parametrizada dada.
 - a) $\mathbf{r}(u,v) = (u,v,u^2 + v^2), (u,v) \in \mathbb{R}^2.$
 - **b)** $\mathbf{r}(u, v) = (1, u, v), \quad 0 \le u \le 1, \ 0 \le v \le 1.$
 - c) $\mathbf{r}(u,v) = (u,v,1-u-v), u \ge 0, v \ge 0 \text{ e } u+v \le 1.$

- **d)** $\mathbf{r}(u,v) = (u,\sqrt{1-u^2-v^2},v), \quad u^2+v^2 \le 1.$
- e) $\mathbf{r}(u,v) = (v \cos u, v \sin u, v), \quad 0 \le u \le 2\pi, \ 0 \le v \le h, \text{ onde } h > 0 \text{ \'e um real dado.}$
- **f)** $\mathbf{r}(u,v) = \left(v \cos u, v \sin u, \frac{1}{v^2}\right), \ \ 0 \le u \le 2\pi, \ v > 0.$
- g) $\mathbf{r}(u,v) = (u,v,1-u^2), u \ge 0, v \ge 0 e u + v \le 1.$
- 23. \blacklozenge ([1], seção 16.6) Faça uma correspondência entre as equações e os gráficos identificados por I-VI e justifique sua resposta. Determine quais famílias de curvas da grade têm u constante e quais têm v constante.
 - a) $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}$.
 - **b)** $\mathbf{r}(u, v) = u \cos v \, \mathbf{i} + u \, \sin v \, \mathbf{j} + \sin u \, \mathbf{k}, \, -\pi \le u \le \pi.$
 - c) $\mathbf{r}(u, v) = \operatorname{sen} v \mathbf{i} + \cos u \operatorname{sen} 2v \mathbf{j} + \operatorname{sen} u \operatorname{sen} 2v \mathbf{k}$.
 - d) $x = (1 u)(3 + \cos v) \cos 4\pi u$, $y = (1 u)(3 + \cos v) \sin 4\pi u$, $z = 3u + (1 u) \sin v$.
 - e) $x = \cos^3 u \cos^3 v$, $y = \sin^3 u \cos^3 v$, $z = \sin^3 v$.
 - f) $x = (1 |u|) \cos v$, $y = (1 |u|) \sin v$, z = u.

- 24. ♦ ([1], seção 16.6) ([2], seção 9.2) ([3], seção 13.6) Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado.
 - a) x = u + v, $y = 3u^2$, z = u v; (2, 3, 0).
 - **b)** $x = u^2$, $y = v^2$, z = uv; u = 1, v = 1.
 - c) $\star \mathbf{r}(u, v) = (u, v, u^2 + v^2)$, no ponto $\mathbf{r}(1, 1)$.
 - **d)** $\mathbf{r}(u, v) = (\arctan(uv), e^{u^2 v^2}, u v), \text{ no ponto } \mathbf{r}(1, -1).$
 - e) $\mathbf{r}(u, v) = (3 \sec 2u, 6 \sec^2 u, v), 0 \le u \le \pi$, no ponto $\mathbf{r}(\pi/3, 0)$.
- 25. (Prova, 2008)
 - a) Determine uma representação paramétrica $\mathbf{r}:D\subset\mathbb{R}^2\to\mathbb{R}^3$ do paraboloide elíptico $z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$.
 - **b)** Calcule a equação do plano tangente à superfície paramétrica dada no item (a) no ponto $(-a\pi, 0, \pi^2)$.
- 26. ♦ ([2], seção 9.3) Calcule a área. (Sugerimos ao leitor desenhar a imagem da superfície dada.)
 - a) $\mathbf{r}(u,v) = (u,v,1-u-v), u \ge 0, v \ge 0 e u + v \le 1.$
 - **b)** $\mathbf{r}(u, v) = (u, v, 2 u v) e^{u^2 + v^2} < 1.$
 - c) $\mathbf{r}(u,v) = (u,v,u^2+v^2) e u^2 + v^2 \le 4.$
 - d) $\mathbf{r}(u,v)=(u,v,4-u^2-v^2),\ (u,v)\in K,$ onde K é o conjunto no plano uv limitado pelo eixo u e pela curva (em coordenadas polares) $\rho=e^{-\theta},$ $0\leq\theta\leq\pi.$
 - e) $\mathbf{r}(u,v) = \left(u, v, \frac{1}{2}u^2\right), \ 0 \le v \le u \ e \ u \le 2.$
 - f) $\mathbf{r}(u,v) = (\cos u, v, \sin u) e^{2} + 4v^{2} \le 1.$
- 27. \blacklozenge ([1], seção 16.6) ([3], seção 13.6) Determine a área da superfície.
 - a) A parte do plano 3x + 2y + z = 6 que está no primeiro octante.
 - b) \bigstar A parte da superfície z=xy que está dentro do cilindro $x^2+y^2=1.$
 - d) A parte da superfície $y = 4x + z^2$ que está entre os planos x = 0, x = 1, z = 0 e z = 1.
 - e) A superfície $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1$ e $0 \le y \le 1$.
 - f) A superfície com equações paramétricas $x=u^2,\,y=uv,\,z=\frac{1}{2}v^2,\,0\leq u\leq 1,\,0\leq v\leq 2.$
 - g) A parte do plano x + 2y + z = 4 que está dentro do cilindro $x^2 + y^2 = 4$.
 - h) A porção do cone $z=2\sqrt{x^2+y^2}$ entre os planos z=2 e z=6.

- i) A porção do cilindro $x^2 + y^2 = 1$ entre os planos z = 1 e z = 4.
- 28. ([2], seção 9.3) Seja $A = \{(0, y, z) \in \mathbb{R}^3 | z^2 + (y 2)^2 = 1\}$; ache a área da superfície gerada pela rotação em torno do eixo Oz do conjunto A.
- 29. ([1], seção 16.6)
 - a) Determine, mas não calcule, a integral dupla da área da superfície com as equações paramétricas $x=au\cos v,\,y=bu\sin v,\,z=u^2,\,0\leq u\leq 2,\,0\leq v\leq 2\pi.$
 - b) Elimine os parâmetros para mostrar que a superfície é um paraboloide elíptico e escreva outra integral dupla que forneça sua área.
- 30. ([1], seção 16.6) Mostre que as equações paramétricas $x = a \cosh u \cos v$, $y = b \cosh u \sec v$, $z = c \sinh u$, representam um hiperboloide de uma folha.
- 31. ([1], seção 16.6) Encontre a área da parte da esfera $x^2 + y^2 + z^2 = a^2$ que está dentro do cilindro $x^2 + y^2 = ax$.
- 32. ([2], seção 9.3) Seja $f:K\to\mathbb{R}$ de classe C^1 no compacto K com fronteira de conteúdo nulo e interior não-vazio. Mostre que a área da superfície z=f(x,y) (isto é, da superfície \mathbf{r} dada por $x=u,\,y=v$ e z=f(u,v)) é dada pela fórmula

$$\iint\limits_K \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dx \, dy.$$

- 33. ([2], seção 9.3) Calcule a área da parte da superfície cilíndrica $z^2 + x^2 = 4$ que se encontra dentro do cilindro $x^2 + y^2 \le 4$ e acima do plano xy.
- 34. ([2], seção 9.3) Calcule a área da parte da superfície esférica $x^2 + y^2 + z^2 = 1$ que se encontra dentro do cone $z \ge \sqrt{x^2 + y^2}$.
- 35. (Prova, 2008) Seja S a parte do cone $x^2 = y^2 + z^2$ que está dentro do cilindro $x^2 + y^2 = a^2$ e no primeiro octante. Determine a área da superfície S.
- 36. (Prova, 2014) Encontre a área da superfície $z=1+3x+3y^2$ que está acima do triângulo com vértices $(0,0),\,(0,1)$ e (2,1).
- 37. (Prova, 2007) Considere a superfície parametrizada por

$$\mathbf{r}(u,v) = (uv, u+v, u-v).$$

- a) Determine o valor de c de forma que o ponto (c, 1, 0) pertença à superfície.
- b) Calcule a área da parte da superfície correspondente à variação $u^2+v^2\leq 1.$
- 38. ([1], seção 16.6)

- a) Determine a representação paramétrica do toro obtido girando em torno do eixo z o círculo do plano xz com centro em (b,0,0) e raio a < b. [Sugestão: tome como parâmetros os ângulos θ e α mostrados na figura.]
- b) Use a representação paramétrica da parte (a) para achar a área do toro.

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

- 5. **a)** (I) $-x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$. (II) yz.
 - **b)** (I) **0**. (II) 1.
 - **c)** (I) **0**. (II) $\frac{2}{\sqrt{x^2+y^2+z^2}}$.
 - **d)** (I) $(\arctan(x/z) e^{xy}\cos(z))\mathbf{i} \frac{yz}{x^2 + z^2}\mathbf{j} + ye^{xy}\sin(z)\mathbf{k}$. (II) $xe^{xy}\sin(z) - \frac{xy}{x^2 + z^2}$.
 - **e)** (I) $\frac{1}{y}$ **i** $-\frac{1}{x}$ **j** $+\frac{1}{x}$ **k**. (II) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.
- 6. I) a) Negativo. b) rot $\mathbf{F} = \mathbf{0}$.
 - II) a) Positivo. b) $rot \mathbf{F} = \mathbf{0}$.
 - III) a) Nulo. b) rot \mathbf{F} aponta na direção negativa do eixo z.
- 7. a) rot f não tem significado, pois f é um campo escalar.
 - b) grad f é um campo gradiente.
 - c) div F é um campo escalar.
 - d) rot $(\operatorname{grad} f)$ é um campo vetorial.
 - e) grad F não tem sifnificado, pois F não é um campo escalar.
 - f) grad (div F) é um campo vetorial.
 - g) $\operatorname{div}(\operatorname{grad} f)$ é um campo escalar.
 - h) grad (div f) não tem significado, pois f é um campo escalar.
 - i) rot (rot F) é um campo vetorial.
 - \mathbf{j}) div (div \mathbf{F}) não tem significado pois div \mathbf{F} é um campo escalar.
 - **k)** $(\operatorname{grad} f) \times (\operatorname{div} \mathbf{F})$ não tem significado pois $\operatorname{div} \mathbf{F}$ é um campo escalar.
 - 1) div (rot (grad f)) é um campo escalar.
- 8. **a)** $f(x, y, z) = xy^2z^3$.
 - **b)** $f(x, y, z) = x^2y + y^2z$.
 - c) F não é conservativo.
 - **d)** f(x, y, z) = sen(xy) + cos(z).
- 9. Note que rot $\mathbf{F} = \mathbf{0}$.
- 10. Note que div $\mathbf{F} = 0$.
- 11. Dica: $r = \sqrt{x^2 + y^2 + z^2}$.
 - a) $\nabla \cdot \mathbf{r} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (x, y, z)$

$$\mathbf{b)} \ \nabla \cdot (r\mathbf{r}) = \left(\frac{x^2}{\sqrt{x^2 + y^2 + z^2}} + \sqrt{x^2 + y^2 + z^2}\right) + \left(\frac{x^2}{\sqrt{y^2 + y^2 + z^2}} + \sqrt{y^2 + y^2 + z^2}\right) + \left(\frac{z^2}{\sqrt{x^2 + y^2 + z^2}} + \sqrt{x^2 + y^2 + z^2}\right)$$

c)
$$\nabla^2 r^3 = \frac{\partial}{\partial x} \left[\frac{3}{2} \sqrt{x^2 + y^2 + z^2} (2x) \right] + \frac{\partial}{\partial y} \left[\frac{3}{2} \sqrt{x^2 + y^2 + z^2} (2y) \right] + \frac{\partial}{\partial z} \left[\frac{3}{2} \sqrt{x^2 + y^2 + z^2} (2z) \right].$$

d)
$$\nabla r = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$
.

$$\mathbf{e)} \ \nabla \times \mathbf{r} = \left[\frac{\partial}{\partial y}(z) - \frac{\partial}{\partial z}(y) \right] \mathbf{i} + \left[\frac{\partial}{\partial z}(x) - \frac{\partial}{\partial x}(z) \right] \mathbf{j} + \left[\frac{\partial}{\partial x}(y) - \frac{\partial}{\partial y}(x) \right] \mathbf{k} \,.$$

$$\mathbf{f)} \ \nabla \left(\frac{1}{r} \right) = -\frac{\frac{1}{2\sqrt{x^2 + y^2 + z^2}}(2x)}{x^2 + y^2 + z^2} \, \mathbf{i} - \frac{-\frac{1}{2\sqrt{x^2 + y^2 + z^2}}(2y)}{x^2 + y^2 + z^2} \, \mathbf{j} - \frac{-\frac{1}{2\sqrt{x^2 + y^2 + z^2}}(2z)}{x^2 + y^2 + z^2} \, \mathbf{k} \, .$$

g)
$$\nabla \ln r = \frac{1}{2} \nabla \ln(x^2 + y^2 + z^2).$$

12. Note que se
$$(x,y) \neq (0,0), \nabla^2 f = \frac{\partial}{\partial x} \left[\frac{2x}{x^2 + y^2} \right] + \frac{\partial}{\partial y} \left[\frac{2y}{x^2 + y^2} \right].$$

13. Note que
$$\oint_C f(\nabla g) \cdot \mathbf{n} \, ds = \iint_D \operatorname{div}(f \nabla g) \, dA = \iint_D f \operatorname{div}(\nabla g) + \nabla f \cdot \nabla g \, dA$$
.

14. Note que pela primeira identidade de Green,

$$\iint\limits_{D} (f\nabla^2 g - g\nabla^2 f) \, dA = \oint\limits_{C} (f\nabla g \cdot \mathbf{n} - g\nabla f \cdot \mathbf{n}) \, ds, + \iint\limits_{D} (\nabla f \cdot \nabla g - \nabla g \cdot \nabla f) \, dA.$$

15. a)
$$\nabla \times (\nabla \times \mathbf{E}) = \nabla \times (\operatorname{rot} \mathbf{E}) = \nabla \times \left(-\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} \right) = -\frac{1}{c} \frac{\partial}{\partial t} \operatorname{rot} \mathbf{H} = -\frac{1}{c} \frac{\partial}{\partial t} \left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \right)$$

- b) Análogo ao item (a).
- c) Note que $\nabla^2 \mathbf{E} = \nabla \operatorname{div} \mathbf{E} \operatorname{rot} \operatorname{rot}(\mathbf{E})$.
- d) Análogo ao item (c).
- 16. **a)** 2π .
 - **b**) 1.
 - **c**) 0.
 - **d**) 0.
 - e) $\frac{1}{3}$.
- 17. Direto da definição do fluxo de ${\bf F}$ através de ${\bf r}$ na direção ${\bf n}$.

- 18. π .
- 19. a) P não está na superfície; Q está na superfície.
 - b) P está na superfície; Q não está na superfície.
- 20. a) 4x y z = -4.

b)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, com $0 \le z \le 2$.

- 21. a) x = 1 + u + v, y = 2 + u v, z = 3 u + v.
 - **b)** $x = u, z = v, y = \sqrt{1 u^2 + v^2}$
 - c) y = u, z = v, $x = 4 u^2 2v^2$, onde $u^2 + 2v^2 < 4$.
 - d) $x = 2\operatorname{sen}(\phi)\cos(\theta)$, $y = 2\operatorname{sen}(\phi)\operatorname{sen}(\theta)$, $z = 2\cos(\phi)$, onde $0 \le \phi \le \frac{\pi}{4}$ e $0 < \theta < 2\pi$.
 - e) $x = u, y = 4\cos(\theta), z = 4\sin(\theta), \text{ onde } 0 \le u \le 5, 0 \le \theta \le 2\pi.$
 - f) $x = r\cos(\theta), y = r\sin(\theta), z = 3 + r\cos(\theta), \text{ onde } 0 \le r \le 1 \text{ e } 0 \le \theta \le 2\pi.$
 - g) $x = r\cos(\theta)$, $y = r\sin(\theta)$, $z = r^2$, onde $0 \le r \le 2$ e $0 \le \theta \le 2\pi$.
 - **h)** $x = r\cos(\theta), y = r\sin(\theta), z = 9 r^2, \text{ onde } 0 \le r \le 3 \text{ e } 0 \le \theta \le 2\pi.$
 - i) $x = r\cos(\theta), y = r\sin(\theta), z = \frac{r}{2}, \text{ onde } 0 \le r \le 6 \text{ e } 0 \le \theta \le \frac{\pi}{2}.$
 - j) $x = \sqrt{3}\operatorname{sen}(\phi)\cos(\theta), y = \sqrt{3}\operatorname{sen}(\phi)\operatorname{sen}(\theta), z = \sqrt{3}\cos(\phi),$ onde $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$ e $0 \le \theta \le 2\pi$.
 - 1) $x = u, y = v, z = 4 v^2$, onde $0 \le u \le 2$ e $-2 \le v \le 2$.
 - **m)** $x = 4\cos^2(v), y = u, z = 4\cos(v)\sin(v), \text{ onde } -\frac{\pi}{2} \le v \le \frac{\pi}{2} \text{ e } 0 \le u \le 3.$
- 22. a) Parabolóide de rotação $z = x^2 + y^2$.
 - b) Região quadrada do plano $x=1:0\leq y\leq 1$ e $0\leq z\leq 1.$
 - c) Região triangular do plano $x+y+z=1:0\leq x\leq 1,\,0\leq y\leq 1,\,0\leq z\leq 1.$
 - d) Semi superfície esférica $x^2 + y^2 + z^2 = 1, y \ge 0.$
 - e) Face lateral do cone $\sqrt{x^2 + y^2} \le z \le h$.
 - **f)** Gráfico de $f(x,y) = \frac{1}{x^2 + y^2}$.
 - g) $\mathbf{r}(u,v) = (u,v,1-u^2), u \ge 0, v \ge 0 \text{ e } u+v \le 1.$
- 23. a) IV.
 - b) I.
 - c) II.
 - d) V.

- e) III.
- 24. a) 3x y + 3z = 3.
 - **b)** x + y 2z = 0.
 - c) $(x, y, z) = (1, 1, 2) + s(1, 0, 2) + t(0, 1, 2), s, t \in \mathbb{R}.$
 - **d)** $(x, y, z) = \left(-\frac{\pi}{4}, 1, 2\right) + s\left(-\frac{1}{2}, 2, 1\right) + t\left(\frac{1}{2}, 2, -1\right), s, t \in \mathbb{R}.$
 - e) $x^2 + (y-3)^2 = 9$.
- 25. **a)** $x = u, y = v, z = \frac{u^2}{a^2} + \frac{v^2}{b^2}$, onde $u, v \in \mathbb{R}$.
 - **b)** $2\pi(x+a\pi)+a(z-\pi^2)=0.$
- 26. **a)** $\frac{\sqrt{3}}{2}$.
 - **b**) $\pi\sqrt{3}$.
 - c) $\frac{\pi}{6}(17\sqrt{17}-1)$.
 - d) $\frac{1}{72} \left(\ln \left(3 \frac{\sqrt{e^{2\pi} + 4} + e^{\pi}}{\sqrt{e^{2\pi} + 4} e^{\pi}} \right) + 3 \ln \left(\frac{\sqrt{5} 1}{\sqrt{5} + 1} \right) 8e^{3\pi} \sqrt{e^{2\pi} + 4} (e^{2\pi} + 1) + 16\sqrt{5} 6\pi \right).$
 - e) $\frac{1}{3} (5\sqrt{5} 1)$.
 - $\mathbf{f)} \ \frac{\pi}{2}.$
- 27. **a)** $3\sqrt{14}$.
 - **b)** $\frac{2\pi}{3}(2\sqrt{2}-1).$
 - d) $\frac{\sqrt{21}}{2} + \frac{17}{4} \left(\ln(2 + \sqrt{21}) \ln(\sqrt{17}) \right)$.
 - e) $\frac{4}{15}(3^{5/2}-2^{7/2}+1)$.
 - **f**) 4.
 - **g**) $4\sqrt{6}\pi$.
 - h) $8\sqrt{5}\pi$.
 - i) 6π .
- 28. $8\pi^2$.
- 29. a) $\int_0^{2\pi} \int_0^2 \sqrt{4b^2 u^4 \cos^2 v + 4a^2 u^4 \sin^2 v + a^2 b^2 u^2} \ du dv.$

b)
$$\int_{-2a}^{2a} \int_{-b\sqrt{4-\frac{x^2}{a^2}}}^{b\sqrt{4-\frac{x^2}{a^2}}} \sqrt{1+\left(2\frac{x}{a^2}\right)^2+\left(2\frac{y}{b^2}\right)^2} \ dy dx.$$

- 30. Note que $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$
- 31. $2a^2(\pi-2)$.
- 32. Veja a subseção "Área de Superfície do Gráfico de uma função" da seção 16.6 do livro do Stewart.
- 33. 16.
- 34. $\pi(2-\sqrt{2})$.
- 35. $\frac{\pi a^2}{4}$
- 36. $\frac{1}{54} \left(46\sqrt{46} 10\sqrt{10} \right)$.
- 37. **a**) $\frac{1}{4}$.
 - **b)** $\left(\sqrt{6} \frac{4}{3}\right) 2\pi.$
- 38. a) $x = b\cos(\theta) + a\cos(\alpha)\cos(\theta), y = b\sin(\theta) + a\cos(\alpha)\sin(\theta), z = a\sin(\alpha),$ onde $0 \le \alpha \le 2\pi, \ 0 \le \theta \le 2\pi.$
 - **b)** $4\pi^2 ab$.

Referências

- [1] J. Stewart. *Cálculo*, Volume 2, 6^a Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. Um~Curso~de~C'alculo, Volume 3, 5^a Edição, 2002, Rio de Janeiro.
- [3] G. B. Thomas. *Cálculo*, Volume 2, 10^a edição, São Paulo, Addison-Wesley/Pearson,2002.
- [4] C. H. Edwards Jr; D. E. Penney. Cálculo com Geometria Analítica, Volumes 2 e 3, Prentice Hall do Brasil, 1997.
- [5] E. W. Swokowski. *Cálculo com Geometria Analítica*, Volume 2, 2^a Edição, Markron Books, 1995.