Departamento de Engenharia da Computação e Automação - DCA Centro de Tecnologia - CT Universidade Federal do Rio Grande do Norte - UFRN Sistemas Digitais Prof. Sérgio Natan Silva

sergionatan@dca.ufrn.br

Figura 1: Arquitetura física do sistema

A Figura 1 ilustra um esquema em diagrama de blocos da arquitetura física de um carro/robô. O sistema do carro possui um conjunto de sensores ultrassônicos que analisam o perímetro, os sensores possuem N entradas descritas pelo vetor $X=X_{1,\ldots},X_{i,\ldots},X_{N}$, em que X_{i} é o i-ésimo valor de entrada para os sensores.

Os sinais de saída grupo de sensores são descritos pelas variáveis A, B, C e D. São valores digitais de um 1 bit que representam por meio de 4 bits uma codificação específica do dispositivo. A Tabela 1 descreve a codificação dos sinais de saída.

Obstáculo Sinais	Frente	Trás	Direita	Esquerda
А	0	1	1	0
В	0	0	1	1
С	1	0	0	1
	1	1	0	0

Tabela 1: Codificação de entrada dos sinais no uC

Esses sinais são recebidos pelo microcontrolador (uC) ATmega328-p por meio do array de portas B. A sequência de ligação segue a Tabela 2.

Tabela 2: Correspondência de sinais dos sensores e portas E	Tabela 2: Cor	respondência	de sinais dos	sensores e	portas B
---	---------------	--------------	---------------	------------	----------

Sinais de Saída	Pinos de Entrada
dos Sensores	no uC
Α	PB2
В	PB3
С	PB4
D	PB5

Após a computação, os resultados devem ser transmitidos por meio do array de portas C. A codificação de envio é dada pela Tabela 3.

Tabela 3: Correspondência de portas C do uC e atuadores

Sinais de Saída	Pinos de Entrada
dos Sensores	no uC
PC3	E
PC4	F
PC5	G
PC6	Н

A codificação de saída dos sinais dos sinais no uC deve obedecer a Tabela 4.

Tabela 3: Codificação de saída dos sinais no uC

Sinais Andar	E	F	G	Н
Frente	1	0	0	0
Trás	0	1	0	0
Direita	0	0	1	0
Esquerda	0	0	0	1

Os Requisitos funcionais do sistema devem obedecer aos seguintes pontos:

- Sempre que o sistema tiver possibilidade de seguir em frente, esta ação deve ter prioridade.
- Caso seguir em frente não seja uma opção, o sistema deve seguir para a direita.
- Caso existam obstáculos em todas as direções, o sistema de parar.

Com base nestas informações, desenvolva um sistema embarcado em uC para controlar o sistema de controle de um carro robô.