Interactivity and competition in language production LING 611 Spring 2021

Brian Dillon Shota Momma (Negishi)

University of Massachusetts, Amherst Department of Linguistics

3/3/2021

Top-down connection (excitatory)

TRACE model

What are the *functions* and *origin* of those connections?

Top-down connection (excitatory)

TRACE model

What are the *functions* and *origin* of those connections?

Lateral inhibition

Mach-band illusion

Lateral inhibition

Mach-band illusion

Lateral inhibition in word recognition?

How do you ensure that 'CAT' wins the competition?

Lateral inhibition in word recognition?

Inhibitory connection between CAT and CAN

Lateral inhibition in word recognition?

Inhibitory connection between CAT and CAN

Discussion: behavioral prediction??

Form-based competition in comprehension?

Table 1
Examples of Target Stimuli and Their Corresponding Word Primes Used in Experiments 1A and 1B

	Primes					
Target	Identical	3 Phonemes	2 Phonemes	1 Phoneme	Unrelated	
still plague	still plague	stiff played	steep plead	smoke pants	dream dance	
green	green	grief	grope	goals	clump	

Table 2
Mean Shadowing Times (in Milliseconds) and Error Rates
for the Primed Session as a Function of Number of
Phonemes in Common Between the Word Prime
and Word Target in Experiments 1A and 1B

Number of	Experiment 1A: auditory prime		Experiment 1B: visual prime	
shared phonemes	RT	Error	RT	Error
0	916	.01	866	.06
1	888	.01	840	.03
2	895	.01	848	.06
3	918	.02	884	.03
All	901	.02	843	.04

Note. RT = reaction time.

Lateral inhibition in word production?

How do you ensure that 'CAT' wins the competition?

Lateral inhibition in word production?

Inhibitory connection between DOG and CAT

Lateral inhibition in word production?

Inhibitory connection between DOG and CAT

Discussion: behavioral prediction??

Meaning-based competition in production

PICTURE NAMING: distractor words in response set

Mean latency difference (in ms) between REL and UNR per SOA: real and simulated data (real data are from Glaser & Düngelhoff, 1984, Experiment 1). A positive difference denotes semantic inhibition.

Meaning-based competition in production

Distractor effective only when it is in the response set?

Discuss: Is it right to capture the semantic Interference effect using lateral inhibition?

Mean latency difference (in ms) between REL and UNR per SOA: real and simulated data (real data are from Glaser & Düngelhoff, 1984, Experiment 1). A positive difference denotes semantic inhibition.

PICTURE NAMING: distractor words not in response set

Separate (lateral connections not shared)

Integrated

Feedforward

Feedback

Prediction of this model?

Form-based inhibition in production?

Meaning-based inhibition in production?

Prediction of this model?

Top-down connection (excitatory)

Top-down connection (excitatory)

INTERACTIVE

Activation **feeds back** to the higher level to lower level (or lower level to higher level in production)

Two components of interactivity (in production)

- Cascading
 - Stages are overlapping (i.e., NOT discrete)
- Feedback
 - Lower level affects higher level stages

Evidence for cascading

Background picture whose name is phonologically related to the target facilitate target naming (Morsella & Miozzo, 2003).

■ Target: bed

Related: bell

Unrelated: hat

Figure 1. Sample stimulus of a phonologically related composite, BEDbell (with the lighter drawing [BED] being the green target and the darker drawing [BELL] being the red distractor), and an unrelated composite (BED-hat).

Table 1
Picture Naming Latencies (M and SEM) and Percentage Errors
Observed in English and Italian

	Related pairs			Unrelated pairs		
	Respo	onse lat.		Respo	nse lat.	
Language	M	SEM	% errors	M	SEM	% errors
English	672	11	1.50	694	12	0.70
Italian	700	12	0.18	707	12	0.54

Note. lat. = latencies.

Evidence for cascading

2	Speaker hears	150 ms	Speaker sees	Speaker names picture
Hor	nophone Pict	ures:		•
i	ppropriate: nappropriate: inrelated:	game dance hammer	\$500 B	"ball"
Non	a-homophone	Pictures:		
S	phonological: emantic: inrelated:	frost turtle piano		"frog"
Homop	hone targets	(round ball)		
Appr	opriate (gan	ie)	925	-11
Inappropriate (dance)			881	+33*/†
Unrelated (hammer)			914	
	nophone targ			
Phonological (frost)			834	+4
Sema	antic (turtle)		902	-64*/*
Unre	lated (<i>piano</i>)	838	_

Evidence for feedback

Mixed errors as the evidence for feedback from sound-level to word-level

stop and start are both semantically AND phonologically similar.
When they substitute/exchange, the resulting error can be classified as mixed errors.

Mixed errors are even more likely than errors involving just semantically similar words or just phonologically similar words.

