AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for detecting a thermal anomaly in a
2	computer system, comprising:
3	determining correlations between instrumentation signals in the computer
4	system;
5	deriving an estimated signal for a thermal sensor in the computer system
6	from the correlations, wherein the estimated signal is derived from correlations
7	with other instrumentation signals in the computer system;
8	comparing an actual signal from the thermal sensor with the estimated
9	signal to determine whether a thermal anomaly exists in the computer system; and
10	if a thermal anomaly exists, generating an alarm.
1	2. (Original) The method of claim 1, wherein generating the alarm
2	involves communicating the alarm to a system administrator so that the system
3	administrator can take remedial action.
1	3. (Original) The method of claim 2, wherein communicating the alarm to
2	the system administrator involves communicating information specifying the
3	nature of the thermal anomaly to the system administrator.

I	4. (Original) The method of claim 1, wherein comparing the actual signa
2	with the estimated signal involves using sequential detection methods to detect
3	changes in the relationship between the actual signal and the estimated signal.
1	5. (Original) The method of claim 4, wherein the sequential detection
2	methods include the Sequential Probability Ratio Test (SPRT).
1	6 (Canceled).
1	7. (Currently amended) The method of elaim 6claim 1, wherein
2 .	determining the correlations involves using a non-linear, non-parametric
3	regression technique to determine the correlations.
1	8. (Original) The method of claim 7, wherein the non-linear, non-
2	parametric regression technique can include a multivariate state estimation
3	technique.
1	9. (Original) The method of claim 1, wherein the instrumentation signals
2	can include:
3	signals associated with internal performance parameters maintained by
4	software within the computer system;
5	signals associated with physical performance parameters measured
6	through sensors within the computer system; and
7	signals associated with canary performance parameters for synthetic user
8	transactions, which are periodically generated for the purpose of measuring
9	quality of service from and end user's perspective.

10. (Original) The method of claim 1,

1

2	wherein deriving the estimated signal for the thermal sensor involves
3	deriving multiple estimated signals for multiple thermal sensors in the computer
4	system; and
5	wherein comparing the actual signal with the estimated signal involves
6	comparing multiple actual signals with the multiple estimated signals to determine
7	whether a thermal anomaly exists in the computer system.
1	11. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for detecting a thermal anomaly in a computer system, the method
4	comprising:
5	determining correlations between instrumentation signals in the computer
6	system;
7	deriving an estimated signal for a thermal sensor in the computer system
8	from the correlations, wherein the estimated signal is derived from correlations
9	with other instrumentation signals in the computer system;
10	comparing an actual signal from the thermal sensor with the estimated
11	signal to determine whether a thermal anomaly exists in the computer system; and
12	if a thermal anomaly exists, generating an alarm.
1	12. (Original) The computer-readable storage medium of claim 11,
2	wherein generating the alarm involves communicating the alarm to a system
3	administrator so that the system administrator can take remedial action.
1	13. (Original) The computer-readable storage medium of claim 12,
2	wherein communicating the alarm to the system administrator involves
3	communicating information specifying the nature of the thermal anomaly to the
4	system administrator.

1	14. (Original) The computer-readable storage medium of claim 11,
2	wherein comparing the actual signal with the estimated signal involves using
3	sequential detection methods to detect changes in the relationship between the
4	actual signal and the estimated signal.
1	15. (Original) The computer-readable storage medium of claim 14,
2	wherein the sequential detection methods include the Sequential Probability Ratio
3	Test (SPRT).
1	16 (Canceled).
1	17 (Currently amended) The commuter readable stores a medium of alsing
2	17. (Currently amended) The computer-readable storage medium of claim
2	16claim 11, wherein determining the correlations involves using a non-linear,
3	non-parametric regression technique to determine the correlations.
1	18. (Original) The computer-readable storage medium of claim 17,
2	wherein the non-linear, non-parametric regression technique can include a
3	multivariate state estimation technique.
1	19. (Original) The computer-readable storage medium of claim 11,
2	wherein the instrumentation signals can include:
3	signals associated with internal performance parameters maintained by
4	software within the computer system;
5	signals associated with physical performance parameters measured
6	through sensors within the computer system; and
7	signals associated with canary performance parameters for synthetic user
8	transactions, which are periodically generated for the purpose of measuring
9	quality of service from and end user's perspective.

1	20. (Original) The computer-readable storage medium of claim 11,
2	wherein deriving the estimated signal for the thermal sensor involves
3	deriving multiple estimated signals for multiple thermal sensors in the computer
4	system; and
5	wherein comparing the actual signal with the estimated signal involves
6	comparing multiple actual signals with the multiple estimated signals to determine
7	whether a thermal anomaly exists in the computer system.
1	21. (Currently amended) An apparatus that detects a thermal anomaly in a
2	computer system, comprising:
3	a correlation determination mechanism configured to determine
4	correlations between instrumentation signals in the computer system;
5	an estimation mechanism configured to derive an estimated signal for a
6	thermal sensor in the computer system from the correlations, wherein the
7	estimated signal is derived from correlations with other instrumentation signals in
8	the computer system;
9	a comparison mechanism configured to compare an actual signal from the
10	thermal sensor with the estimated signal to determine whether a thermal anomaly
11	exists in the computer system; and
12	an alarm generation mechanism, wherein if a thermal anomaly exists, the
13	alarm generation mechanism is configured to generate an alarm.
1	22. (Original) The apparatus of claim 21, wherein the alarm generation
2	mechanism is configured to communicate the alarm to a system administrator so
3	that the system administrator can take remedial action.

l	23. (Original) The apparatus of claim 22, wherein the alarm generation
2	mechanism is configured to communicate information specifying the nature of the
3	thermal anomaly to the system administrator.
1	24 (O.::
1	24. (Original) The apparatus of claim 21, wherein the comparison
2	mechanism is configured to use sequential detection methods to detect changes in
3	the relationship between the actual signal and the estimated signal.
1	25. (Original) The apparatus of claim 24, wherein the sequential detection
2	methods include the Sequential Probability Ratio Test (SPRT).
1	26 (Canceled).
•	20 (Cancerva).
1	27. (Currently amended) The apparatus of claim 26 claim 21, wherein the
2	correlation determination mechanism is configured to use a non-linear, non-
3	parametric regression technique to determine the correlations.
1	28. (Original) The apparatus of claim 27, wherein the non-linear, non-
2	parametric regression technique can include a multivariate state estimation
3	technique.
1	29. (Original) The apparatus of claim 21, wherein the instrumentation
2	signals can include:
3	signals associated with internal performance parameters maintained by
4	software within the computer system;
5	signals associated with physical performance parameters measured
6	through sensors within the computer system; and

- signals associated with canary performance parameters for synthetic user transactions, which are periodically generated for the purpose of measuring quality of service from and end user's perspective.
- 1 30. (Original) The apparatus of claim 21,
- 2 wherein the estimation mechanism is configured to derive estimated
- 3 signals for multiple thermal sensors in the computer system; and
- 4 wherein the comparison mechanism is configured to compare multiple
- 5 actual signals with the multiple estimated signals to determine whether a thermal
- 6 anomaly exists in the computer system.