Bacanje atomske bombe (B-2) Seminarski rad u okviru kursa Osnove matematičkog modeliranja

Matematički fakultet

Babić Marko, Marjanović Stefan, Nićković Teodora mi17077@alas.matf.bg.ac.rs mi17141@alas.matf.bg.ac.rs mi16057@alas.matf.bg.ac.rs

Maj 2021.

Sadržaj

1	Deo I - Opis problema					
2	Deo II - Modeliranje	4				
	2.1 Kretanje aviona	4				
	2.2 Kretanje projektila	4				
	2.3 Određivanje trenutka eksplozije	6				
	2.4 Određivanje vremena susreta i poluprečnika udarnog talasa	6				
3	Deo III - Implementacija i diskusija rezultata	6				
	3.1 Naša implementacija	7				
	3.1.1 Kretanje aviona	7				
	3.1.2 Kretanje projektila	8				
	3.1.3 Određivanje $t_{eksplozije}$ i $t_{susreta}$	8				
	3.1.4 Određivanje optimalnog $t_1 \dots \dots \dots \dots$	8				
	3.1.5 Tabela sa prikazanim vrednostima za neke od odabranih t_1	8				

1 Deo I - Opis problema

Bombarder B-2 leti na visini od 10000m brzinom od 900km/h i u trenutku t=0 kreće u vertikalni zaokret prečnika 1000m, nakon kojeg se vraća u suprotnom smeru istom brzinom. U nekom trenutku $t_1>0$ on izbacuje atomsku bombu koja slobodno pada i eksplodira na zemlji praveći udarni talas brzine 350m/s. Potrebno je izračunati u kom trenutku i na kojoj daljini od cilja udarni talas stiže avion i odrediti optimalno t_1 tako da ta daljina bude što veća.

Prikažimo sada na grafiku kako bi izgledale putanje aviona i ispaljenih atomskih bombi za nekoliko različitih trenutaka t1.

Slika 1: Prikaz putanja atomske bombe za razne t_1 (s)

Obeležićemo trenutak u kom avion završava zaokret sa t_2 . Odmah primećujemo da se ovde radi o modelu u kome se projektil ispaljuje pod nekim uglom, što je model kosog hitca. Takođe, kako se u zadatku traži da poluprečnik udarnog talasa eksplozije bude najveći, ima smisla za t_1 razmatrati samo slučajeve u intervalu $[t_0,t_2/2]$, jer nakon toga avion ulazi u drugu polovinu zaokreta, i projektil bi išao u nepovoljnom smeru za taj ishod. Takođe je zanimljivo primetiti i dva ekstremna slučaja - u trenutku izbacivanja $t_1=0$ radi se o horizontalnom hitcu, a u trenutku ispaljivanja $t_1=t_2/2$ (polovina zaokreta) radi se o vertikalnom hitcu naviše.

Slika 2: Levo: horizontalni hitac, desno: vertikalni hitac naviše

Trenutak ekplozije, tačnije trenutak pada bombe, zavisiće od trenutka ispa-

ljivanja t_1 , i njega ćemo označiti sa t_{eksp} . Od trenutka ispaljivanja zavisi i ugao pod kojim se projektil izbacuje (sa x-osom), kao i ugao koji avion zaklapa sa y-osom u trenutku izbacivanja. Ta dva ugla su jednaka, i označićemo ih sa $\theta(t)$. Potrebno je odrediti i trenutak susreta $t_{susreta}$ udarnog talasa i aviona, po tome odrediti poluprečnik udarnog talasa, a onda i optimalan trenutak t_1 tako da taj poluprečnik bude najveći.

2 Deo II - Modeliranje

Model ćemo podeliti na nekoliko delova. Prvo je potrebno modelirati kretanje aviona, to jest poziciju aviona u zavisnosti od trenutka t, $(x_{aviona}(t), y_{aviona}(t))$. Nakon toga, potrebno je modelirati kretanje projektila u zavisnosti od trenutka ispaljivanja t_1 , kao i od t, $(x_{projektila}(t_1,t), y_{projektila}(t_1,t))$. Na kraju, potrebno je odrediti trenutak eksplozije t_{eksp} u zavisnosti od t_1 , i tada imamo sve potrebne informacije za model. Potrebno je još samo odrediti trenutak susreta, $t_{susreta}$ i koliki će biti poluprečnik udarnog talasa tad, pa naći t_1 za koje je on najveći.

2.1 Kretanje aviona

Kretanje aviona podelićemo na dva dela - na deo koji provede u zaokretu, $[t_0,t_2]$, i na deo koji provede u horizontalnom letu u negativnom smeru x-ose, $[t_2,t_{susreta}]$. Prvo treba odrediti t_2 . To dobijamo kao $t_2=l/v_0$, gde je l dužina luka koji avion pravi tim zaokretom (pređeni put), a v_0 brzina aviona. Dobijamo da je $t_2=12.56$, pa se možemo vratiti na grafik iz prvog dela i uveriti se da je specijalan slučaj za vertikalni hitac naviše baš na sredini toga.

U prvom delu kretanja, pozicija aviona se u datom trenutku može opisati sa

$$(x(t), y(t)) = (r\sin(\theta), (1000 - r\cos(\theta)) + 10000)$$

gde je r poluprečnik zaokreta, a θ ugao koji avion trenutno zaklapa sa y-osom. Međutim, znamo da ugao zavisi od vremena, kao i da avion zaustavlja zaokretanje kada je ugao koji gradi sa y-osom π . Zato ugao možemo predstaviti kao

$$\theta(t) = \frac{t\pi}{t_2}$$

a to uvrstiti u gornju formulu za poziciju aviona.

U drugom delu kretanja, avion se kreće konstantnom brzinom horizontalno po x-osi, na visini od 12000m. Trivijalno dobijamo formulu za njegovu poziciju, i to je

$$(x(t), y(t)) = (v_0(t - t_2), 12000m)$$

•

2.2 Kretanje projektila

Potrebno je izvesti formule za kretanje projektila po modelu kosog hitca. Znamo da je t_1 trenutak ispaljivanja. Od početnih uslova imamo da je

$$(x_0, y_0) = (x_{aviona}(t_1), y_{aviona}(t_1)),$$

što je zapravo

$$(x_0, y_0) = (r\sin(\theta(t_1)), (1000 - r\cos(\theta(t_1))) + 10000),$$

kao i

$$(v_{x0}, v_{y0}) = (v_0 \cos(\theta(t_1)), v_0 \sin(\theta(t_1)))$$
$$(a_{x0}, a_{y0}) = (0, -g).$$

Znamo da je ubrzanje drugi izvod pozicije po vremenu, pa integraljenjem toga dobijamo brzinu, koja je prvi izvod pozicije po vremenu.

$$\frac{d^2x}{dt^2} = 0,$$

$$\frac{d^2y}{dt^2} = -g$$

postaje

$$\frac{dx}{dt} = c_1,$$

$$\frac{dy}{dt} = -gt + c_2.$$

Ubacivanjem početnih uslova dobijamo da su konstante $c_1 = v_0 \cos(\theta(t_1))$ i $c_2 = v_0 \sin(\theta(t_1))$, pa je konačna formula za brzinu

$$(v_x, v_y) = (v_0 \cos(\theta(t_1)), -gt + v_0 \sin(\theta(t_1))).$$

Sada imamo konačnu formulu za brzinu i znamo da je brzina prvi izvod pozicije po vrmenu, stoga vršimo integraljenje i na taj način dobijamo formulu za poziciju projektila.

$$\frac{dx}{dt} = c_1,$$

$$\frac{dy}{dt} = -gt + c_2$$

postaje

$$x(t) = c_1 t + x_0,$$

$$y(t) = \frac{-gt^2}{2} + c_2t + y_0.$$

Znamo da su $x_0=x_{aviona}(t_1)$ i $y_0=y_{aviona}(t_1)$ što je zapravo $x_0=r\sin(\theta(t_1))$ i $y_0=(1000-r\cos(\theta(t_1)))+10000$ Pa je formula za poziciju projektila

$$x(t) = v_0 \cos(\theta(t_1))t + r\sin(\theta(t_1))$$

$$y(t) = \frac{-gt^2}{2} + v_0 \sin(\theta(t_1))t + (1000 - r\cos(\theta(t_1))) + 10000.$$

2.3 Određivanje trenutka eksplozije

Nakon što smo izmodelirali kretanje aviona i projektila, potrebno je odrediti i trenutak eksplozije u zavisnosti od trenutka ispaljivanja. On se dešava baš u trenutku kada projektil pada na zemlju, tj. kada je njegova y-koordinata jednaka nuli, y(t) = 0.

$$\frac{-gt^2}{2} + v_0 \sin(\theta(t_1))t + (1000 - r\cos(\theta(t_1))) + 10000) = 0.$$

$$t_{1/2} = \frac{-v_0 \sin(\theta(t_1)) \pm \sqrt{(v_0 \sin(\theta(t_1)))^2 + 2g(1100 - r\cos(\theta(t_1)))}}{-g}$$

Ova jednačina će imati dva rešenja, ali nama je relevantno samo pozitivno. Tako dobijamo t_{eksp} .

2.4 Određivanje vremena susreta i poluprečnika udarnog talasa

Brzina širenja udarnog talasa je 350m/s. Susret aviona i udarnog talasa dešava se u trenutku kada je poluprečnik udarnog talasa jednak distanci između pozicije aviona i mesta pada bombe na zemlji. Poluprečnik lopte udarnog talasa može se opisati u zavisnosti od vremena kao

$$R(t) = v_{eksp}(t - t_{eksp})$$

a distanca između posmatranih pozicija kao

$$D(t) = \sqrt{(-x_{aviona}(t) + x_{eksplozije}(t_1))^2 + 12000^2}.$$

Trenutak susreta je ono t za koje je razlika R(t) - D(t) = 0, i baš to R(t) je traženi poluprečnik.

Traženje trenutka ispaljivanja t_1 odredićemo nekom numeričkom metodom.

3 Deo III - Implementacija i diskusija rezultata

Implementacija modela urađena je u MATLAB-u i celokupan model može se naći u repozitorijumu projekta pod nazivom model.m. Određen je optimalan trenutak t1 sa greškom $\epsilon=0.001$, što smatramo da je dovoljno precizno u odnosu na druge parametre modela. Dobijeno je da je optimalno $t_1=3.135$ i da je poluprečnik udarnog talasa u trenutku sustizanja aviona R=94600m. Vreme susreta je $t_{susreta}=337.49$. Prikazujemo i grafik sa završnom pozicijom aviona u trenutku susreta.

Slika 3: Prikaz putanje atomske bombe za optimalni t1 (s)

3.1 Naša implementacija

Kao što smo već napomenuli naša implementacija modela je urađena u MATLAB-u.

- $\bullet \ t_0$ početni trenutak (početak zaokreta)
- $\bullet \ t_1$ trenutak izbacivanja projektila
- t_2 trenutak završavanja zaokreta $(\frac{pre\bar{d}eniput(l)}{brzina(v_0)})$
- $t_{eksplozije}$ trenutak eksplozije (pad projektila)
- t_{kraj} trenutak susreta oblaka eksplozije sa avionom
- $\bullet \ r_{eksplozije}$ poluprečnik udarnog talasa

3.1.1 Kretanje aviona

U intervalu $[t_0, t_2]$, avion se kreće u zaokretu

$$\theta(t) = \frac{\pi * t}{t_2}$$

$$x_1(t) = r * \sin(\theta(t))$$

$$y_1(t) = 11000 - r * \cos(\theta(t))$$

U intervalu $[t_2, \infty]$ avion se kreće po pravoj liniji

$$x_2(t) = -v_0 * (t - t_2)$$

$$y_2(t) = 12000 + t * 0$$

3.1.2 Kretanje projektila

Pozicija projektila zavisiće od trenutka t, ali i od trenutka ispaljivanja projektila, t_1 , jer on određuje ugao pod kojim je projektil ispaljen

$$x_{projektila}(t, t_1) = v_0 * \cos(\theta(t_1)) * t + r * \sin(\theta(t_1))$$
$$y_{projektila} = \frac{-g * t^2}{2} + v_0 * \sin(\theta(t_1)) * t + 11000 - r * \cos(\theta(t_1))$$

3.1.3 Određivanje $t_{eksplozije}$ i $t_{susreta}$

Ispitujemo samo trenutke (t_1) od 0 do $\frac{t_2}{2}$ jer inače avion kreće u zaokret unazad i ispaljuje projektil u nepovoljnom smeru. Računamo za svako t1 sa korakom 0.001, smatramo da je to dovoljno precizno. $t_{eksplozije}$ određujemo kao nulu funkcije $y_{projektila}(t_1,t)$, nju nalazimo funkcijom fzero() u okolini 100, eksperimentalno utvrđujemo da je to okej za sve slučajeve. Lako određujemo $x_{eksplozije}$ kada imamo $t_{eksplozije}$ kao $x_{eksplozije} = x_{projektila}(t_{eksplozije},t_1)$. $t_{susreta}$ eksplozije sa avionom dešava se u trenutku kada je poluprečnik lopte, $R(t) = v_{eksp}(t-t_{eksp})$ jednak distanci aviona od mesta pada projektila. $t-t_{eksplozije}$ je vreme proteklo od eksplozije. $t_{susreta}$ trazićemo kao nulu sledeće funkcije:

$$f(t) = v_{eksp} * (t - t_{eksplozije}) - \sqrt{(-x_2(t) + x_{eksplozije})^2 + 12000^2}$$

i ovde ćemo koristiti funkciju fzero(), ali ovaj put u okolini 300. Na kraju je još potrebno odrediti i poluprečnik udarnog talasa u trenutku $t_{susreta}$:

$$r_{eksplozije} = \sqrt{(-x_2(t_{susreta}) + x_{eksplozije})^2 + 12000^2}$$

Dobijene podatke za svaki od ispitanih t_1 smeštamo u nizove.

3.1.4 Određivanje optimalnog t_1

Iz niza u kom smo čuvali $r_{eksplozije}$ za sve t_1 biramo maksimalni korišćenjem ugrađene funkcije max(). Tako dobijamo najveći mogući poluprečnik lopte eksplozije. Na toj poziciji u nizu u kom čuvamo sve ispitane t_1 se nalazi optimalni t_1 . Isto tako u odgovarajućim nizovima na istoj toj poziciji se nalaze optimalni $t_{eksplozije}$ i $t_{susreta}$.

3.1.5 Tabela sa prikazanim vrednostima za neke od odabranih t_1

Sr. No.	t1	$t_{eksplozije}$	$x_{eksplozije}$	$t_{susreta}$	$r_{eksplozije}$
1	0	45.152	11288	249.63	71567
2	0.009	45.21	11305	249.98	71670
3	0.019	45.274	11323	250.37	71785
4	0.039	45.402	11360	251.15	72013
5	0.079	45.659	11432	252.72	72470
6	0.199	46.44	11645	257.4	73835
7	0.699	49.834	12443	276.56	79353
8	1.099	52.676	12946	291.09	83445
9	1.899	58.521	13469	316.12	90161
10	2.399	62.146	13390	327.77	92968
11	2.899	65.633	12947	335.43	94428
12	3.099	66.967	12663	337.24	94596
13	3.135	67.203	12605	337.49	94600
14	3.299	68.258	12317	338.3	94516
15	4.199	73.382	9999.5	333.37	90994