Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 052 723 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 15.11.2000 Bulletin 2000/46

(51) Int Cl.7: **H01Q 9/04**, **H01Q 1/24**, **H01Q 1/44**

(21) Application number: 00660084.5

(22) Date of filing: 08.05.2000

AL LT LV MK RO SI

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States;

(30) Priority: 10.05,1999 FI 991068

(71) Applicant: NOKIA MOBILE PHONES LTD. 02150 Espoo (FI) (72) Inventor: Pankinaho, Ilkka 21530 Palmio (FI)

(74) Representative: Levlin, Jan Markus Berggren Oy Ab, P.O. Box 16 00101 Helsinki (FI)

(54) Antenna construction

(57) An antenna construction according to the invention has a radiator, ground plane and at least one matching element. The matching element is capacitively coupled to a ground potential. By varying the number,

location and strength of the capacitive coupling of the matching elements the characteristics of the antenna construction, such as the number of resonance frequencies, resonance frequencies and radiator impedance at the feed point can be controlled in a versatile manner.

EP 1 052 723 A2

Description

Field of the invention

5 [0001] The invention relates to compact antenna systems, in particular to antenna constructions operating on a plurality of frequency bands. The invention is directed to an antenna construction according to the preamble of claim 1.

Background of the invention

radiator 10 and ground plane 20.

0002] A conventional microstrip antenna comprises a ground plane and a radiator isolated therefrom by a dielectric layer. The resonance frequency of the microstrip antenna depends on the dimensions of the radiator and on the distances between the radiator and ground plane. Microstrip antenna constructions are described in general e.g. in the "Hendbook of Microstrip Antennas" by J.R. James and P.S. Hall (Eds.), Vol 1, Peter Peregrinus Ltd, London 1989 and in "Analysis, Deeign, and Measurement of Small and Low-Profile Antennas" by K. Hirasawa and M. Hanselsh, JArdoch House, Boston 1992. From the prior art it is known microstrip antenna constructions in which one edge of the radiator is short-circuited to the ground plane. Using such an arrangement a given resonance frequency can be achieved with considerably smaller physical dimensions than the simplest microstrip antenna described above. Fig. 1 illustrates such a microstrip antenna in cross section Fig. 1 shows a ground plane 20, radiator 10 and a feed line 30. The radiator 10 is short-circuiting part 11. The second end of the radiator of is sport-circuited at its first end to the ground plane 20 through a short-circuiting part 11. The second end of the radiator of is open. Fig. 1 does not specifically show the dielectric medium which may be air, for example. Microstrip antennas are often implemented on prinded circuit bacress, in which case there is the usual dielectric potentiani between the second of the production of the prod

[0003] A typical problem with planar antenna constructions according to the prior art is their thickness and narrow band. Antennas used in personal mobile communications devices must be small in size. However, making the microstrip antenna thinner makes the usable frequency band of the antenna narrower. Many mobile communications systems require a relatively wide frequency band, e.g. the DCS-1800 system requires a 10% frequency band, approximately, reliably to the center frequency.

[0004] In the GSM system, for example, the transmit and receive bands are spaced at 45 MHz from each other, the transmit band being 990-915 MHz and the receive band 935-960 MHz. With an antenna of a single resonance the requercy band should be considerably wide, at least 990-960 MHz in the case of GSM. Because of manufacturing tolerances and objects near the antenna, such as e.g. the hand of the user, which affect the resonance frequency, the bandwidth must be even which than the vided than in the indeed case.

[0005] A second approach is to realize an antenna with two frequency bands such that the first frequency band corresponds to the transient band and the second frequency beand corresponds to the receive band in that case the frequency bands of the antenna need not be as wide as those of a single-band antenna. Such dual-band antennas may comprise e.g. two heix antennas tuned to different frequencies or a combination of a rod antenna and a heix, where the rod and heitix are tuned to difflerent frequency ranges. Such constructions are described e.g. in Finnish patent application no. 952780. However, such heix antenna constructions are difficult to realize inside the housing of a mobile communications device. Furthermore, these arrangements only operate on two frequency bands. However, frue multimode mobile communications devices operating in more than one mobile communications system require antenna constructions operating in more than two separate frequency bands.

[0006] Microstrip constructions can be used to realize many different antenna solutions, say, constructions with more than one operating band. Fig. 2 shows an example of such a construction. Fig. 2 shows a ground plane 20, radiator 10 and a feed line 30. A gap 15 divides the radiator 10 in two parts having different resonance frequencies. The radiator may also have more gaps and more parts in which case there are several resonance frequencies as well.

[0007] Planar dual-band antenna constructions are disclosed e.g. in US patent publication no. 5,124,733. Said patent publication discloses a microstrip antenna construction which has in addition to a ground plane one active radiating element and second passive element. The elements are quarter-wave elements short-direculted to the ground plane through one edge. The elements have differing resonance frequencies so that the antenna construction has two separate operating frequency bands. A diseavorantage of such a solution is the thickness of the two stacked antenna elements. Furthermore, this solution, to, allows for operation on two frequency bands only.

[0008] Fig. 2 shows only one feed line 30. It is also known to use more than one feed point and feed line so that the properties of the antenna, such as the resonance frequency, directivity and diversity characteristics, for instance, can be influenced by choosing the feed point used. The characteristics of the antenna construction can also be influenced by the shape and size of the radiator in the antenna construction and by the size difference and distance between the

radiator and ground plane, for example,

Summary of the invention

[0009] An object of the invention is to provide an antenna construction which is adaptable and modifiable in many ways. Another object of the invention is provide said antenna construction which is also simple to manufacture. A further object of the invention is to provide an antenna construction the characteristics of which can be electronically controlled during operation.

[0010] The objects of the invention are achieved by realizing a microstrip antenna construction having a matching element capacitively coupled to the ground plane. The characteristics of the antenna construction can be controlled in a very versatile manner by controlling the strength of the capacitive coupling of the matching element and the location of the matching element.

[0011] The antenna construction according to the invention is characterized by what is expressed in the characterizing part of the independent claim directed to the antenna construction. The mobile communications device according to the invention is characterized by what is expressed in the characterizing part of the independent claim directed to the mobile communications device. Other preferred embodiments of the invention are disclosed in the dependent claims. [0012] The antenna construction according to the invention has a radiator, ground plane and at least one matching element. The matching element is capacitively coupled to a ground potential. The characteristics of the antenna construction, such as the number of resonance frequencies, resonance frequencies and the radiator impedance at the feed point, can be controlled in a very versatile manner by controlling the number and location and the strength of the capacitive coupling of the matching elements.

Brief description of the drawings

20

30

35

Fig. 1

[0013] The invention is below described in more detail with reference to the preferred embodiments presented by way of example and to the accompanying drawings in which

Fig. 1	shows a microstrip antenna according to the prior art.
Fig. 2	shows a second microstrip antenna according to the prior art,
Fig. 3	shows an antenna construction according to a preferred embodiment of the invention.
Fig. 4	shows an antenna construction according to a second preferred embodiment of the in-
	vention,
Circ. Co. and Ch.	

Figs. 5a and 5b	illustrate preferred embodiments of the invention where a matching element is capaci-
	tively coupled to the ground plane through a separate conductive patch,

	rig. o	illustrates a preferred embodiment of the invention that employs matching lines,
	Fig. 7	illustrates a second preferred embodiment of the invention that employs matching lines,
5	Fig. 8	illustrates a preferred embodiment of the invention in which the matching element com-
		prises multiple parts.

Fig. 9 illustrates the structure of a matching element according to a preferred embodiment of

Fig. 10 illustrates other matching element structures according to different embodiments of the Fig. 11

illustrates other matching element structures according to different embodiments of the Figs. 12a, 12b and 12c

illustrate different embodiments of the invention in which at least part of the antenna construction according to the invention is fitted in the battery module of the mobile communications device.

[0014] Like elements in the drawings are denoted by like reference designators. Figs. 1 and 2 were already discussed in connection with the description of the prior art.

Detailed description of the preferred embodiments of the invention

[0015] Fig. 3 illustrates the antenna construction according to a preferred embodiment of the invention. Fig. 3 shows a ground plane 20, radiator 10, short-circuiting part 11 that short-circuits the radiator to the ground plane, and a feed line 30. In the embodiment according to Fig. 3 there is a matching element 100 at the free end of the radiator. The matching element may be produced e.g. by bending a portion of the radiator 10, in this case the open end, towards the ground plane, whereby the capacitive coupling between the matching element and ground plane is stronger than in other parts of the radiator. In this kind of an embodiment the capacitive coupling between the matching element and ground plane can be adjusted e.g. by varying the distance between the matching element and ground plane and by

varying the matching element area. Using this kind of a matching element the characteristics of the radiator and thus the whole anterna construction can be varied in many different ways. The expactations of the matching element can be chosen e.g. through experimentation such that the resonance frequency or bandwidth or some other property of the antenna construction, such as the radiator impedance at the fleed point, for example, are as desired.

[0016] The matching element can be dimensioned such that the radiator will have a voitage maximum at the matching element whereby the matching element corresponds to an open end or edge of the radiator. Such an embodiment is illustrated by Fig. 3. A matching element 100 at the open end of the radiator increases the capacitance at the open end of the antenna, thus decreasing the resonance frequency of the antenna. The capacitance of the matching element 100 plexed at the open end of the radiator strongly influences the resonance frequency of the antenna so that the resonance frequency of the antenna may be advantageously controlled using, in addition to the matching element, a capacitive element, such as e.g. a capacitance didde, coupled to the matching element, which capacitive element has a narrow capacitance adjustment range, yet achieves a considerable resonance frequency citizether trange, and the capacitance adjustment range.

[0017] Fig. 4 illustrates a second preferred embodiment of the invention. Fig. 4 shows a ground plane 20, radiator to and a feed line 30, in the embodiment according to Fig. 4 a metaining element 100 la placed at the closed end of the radiator. In this embodiment the part 11 that connects the closed end of the radiator to the ground plane is connected to the ground plane through the matching element 100. As illustrated by Fig. 4, the matching element 100 facilitates at paping-like coupling to the ground plane, i.e. a current maximum can be created the matching element A matching element 100 placed at the closed end of the radiator increases the inductiveness of the radiator so that the radiator so that the radiator will rescende at 43 wavelength instead of 5 wavelength.

20 [0018] The antenna construction may have more than one matching element 100. Matching elements may be located at all sides of the radiator. A given side may also have more than one matching element.

[0019] Fig. Saillustrates a preferred embodiment of the invention in which a radiator 10 is coupled through a matching element to a separate conductive patch 5% which is expectively coupled to the ground plane 20 prose; The coupling of the separate conductive patch to the ground plane can be realized using a fixed capacitance element or variable capacitance element 28 such as a variable capacitance element 28 such as a variable capacitive element, such as e.g., a fixed capacitor and a variable. The separate conductive patch may be realized e.g. as an electrically conductive pattern on a printed circuit board. Such a separate conductive patch may be realized e.g. as an electrically conductive matching element to the ground plane in a versatile manner. In this kind of an embodiment the strength of the coupling of the matching element to the ground and ground plane is a laffected by both the capacitive coupling between the matching element.

conductive patch 25 and the capacitance of the capacitance element 25. Fig. 5a also shows a feed line 30 [0020] In a second preferred embodiment of the invention the ground piane 20 and the separate conductive patch 25 may be coupled to each other by means of a switching element, such as e.g. a PIN diods or FET transistor, in addition to or instead of capacitance elements. This way II is possible to relatively strongly affect the outgoing between

the matching element 100 and ground plane 20 by means of the switch.

[0021] Fig. 5b illustrates a preferred embodiment of the invention in which a radiator 10 is coupled through a matching element 100 to both the ground plane 20 and separate conductive patch 25, which in turn is capacitively coupled to the ground pane 20 through a capacitiance element 26. One and the seame matching element may thus be coupled to both the ground plane and the separate conductive patch. In different embodiments of the invention one and the same matching element may be coupled to more than one separate conductive patch. Fig. 5b also shows a feed line 30.

[0022] Fig. 6 shows a preferred embodiment of the invention that utilizes matching lines 120. In this embodiment, matching lines 120 are used to galvanically connect a matching element 100 to a separate conductive patch 25 which in turn is connected through a capacitive element 25 to the ground plane. In this example the matching element 100 also extends in between the radiator 10 and ground plane 20 whereby the matching element 100 is coupled to the ground plane 20 twine: capacitively directly from the matching lenement to the ground plane and via the matching lines 120, separate conductive patch 25 and capacitive element 26. In such a construction the characteristics of the anienna construction are influenced e.g. by the dimensions of the matching lines 120 and capacitive element 26 as well as by the distance between the matching element 100 and ground plane. Fig. 6 also shows a feed line 30.

[0023] Fig. 7 shows a second example of a preferred embodiment of the invention that utilizes matching lines 120. In this embodiment the matching lines 120 gelvanically connect a matching element 100 to a separate conductive patch 25 which in turn is connected through a capacitive element 26 to the ground plane. In this example the matching element 100 is coupled to the ground plane 20 twice: via the matching lines 120, separate conductive patch 25 and capacitive element 26b in this kind of an embodiment the characteristics of the antenna construction are influenced e.g. by the dimensions of the matching is lines 120 and capacitive element 25b, 26b as well as by the distance between the matching element 100 and the second separate conductive patch 25b. Fig. 7 also shows a feed line 30 and radiation 10. As illustrated by the example

of Fig. 7, different embodiments of the invention may use more than one separate conductive patch 25, 25b, say, two

or more separate conductive patches.

[0024] In some preferred embodiments of the invention the matching element 100 may also comprise a plurality of parts. Fig. 8 illustrates such an embodiment. In the embodiment of Fig. 8 the matching element 100, 100b is comprised of two parts connected by a switching element parts 100, 100b may also be realized e.g. by means of a spring, friction or crimp coupling instead of a separate switching element 130. Matching element part 100, which is separate from the antenna 100, 10 proper, may be placed in various locations at the mobile communications device, say, on the body, printed circuit board or battery module of the mobile communications device. Such an embodiment allows tor various structural solutions as the different parts of the antenna construction may be attached to different structural entities.

[0025] A matching element may also comprise more than two parts connected to each other through a switching element. In such an embodiment the strength of the capacitive coupling between the matching element and ground plane is also influenced by the quantity of matching element parts connected together at any one time. Such an embodiment advantageously uses an electronic switching element, but has a FET translate, or swarped, sea the switching element 130, whereby the characteristics of the antenna construction can be controlled by software, say, by the control unit of the mobile communications device.

[0028] Fig. 9 illustrates the structure of a matching element 100 according to a preferred embodiment of the invention in this embodiment the matching element 100 faces the separate conductive patch 28 only at a certain point so that the capacitive coupling between the matching element and conductive patch 28 is realized only at that point. In a different embodiment of the invention the matching element may also be above the ground plane 20 at a certain point Fig. 9 slice illustrates a design of the matching element 100 parallel to the ground plane and a design perpendicular to the ground plane, Fig. 9 also shows a radiator 10, ground plane 20, teed line 30 and a capacitive element 26 that couples the separate conductive patch to the ground plane.

[0027] The matching element 100 may also be designed in many other ways than those described in the examples above. Fig. 10 listrates examples of matching element shapes according to various embodiments of the invention. The matching element may be e.g. rectangular or squere, as in examples A and B in Fig. 10, or curved or semicircular as in examples C and D. The matching element may also be triangular as in example. E. Also more complex combinations of differently shaped strips, rectangles and curves are adventageous, as shown in examples F. G and H in Fig. 10. Example F in Fig. 10 is well suited e.g. to an embodiment in which one and the same matching element is used for coupling to two different targets such as e.g. two separate conductive patches or ground plane and a separate conductive patches. Some examples of Fig. 10 show in broken lines sides of the matching element that are particularly suitable for attaching he matching element the radiator.

[0028] Fig. 11 illustrates, perpendicular to the ground plane, cross sections of matching elements according to preferred embodiments of the invention. The matching element 100 may be parallel to the ground plane 20 or separate conductive patch 25 according to example A in Fig. 11, or divergent, as in example B. The matching element 100 may also be designed curved, the convex side facing the ground plane 20 or separate conductive patch 25 as in example C. Combinations of the basic chapes are also possible, as illustrated by example E. Examples F and G in Fig. 11 illustrate a situation where the matching element is galvanically connected to the ground plane 20 or separate conductive patch 25. The connection may be realized using a matching line, as depicted by example F, or the matching element 100 may extend without a separate matching line to the ground plane 20 or separate conductive patch 25, as illustrated by example G. The matching element 100 may also be comprised of several parts in accordance with example H. Dy means of the exemplany alternatives shown in Fig. 11 it is possible to control the characteristics of the matching element and hence the whole antenna construction in many different ways.

[0029] The antenna construction according to the invention finds particular utility in mobile communications devices. The antenna construction can be placed in a mobile communications device in many different ways. Below are described some examples of the placement of the antenna construction according to the invention in a mobile communications device. It should be noted that these embodiments are just illustrative examples and do not in any way limit the different implementations of the antenna construction according to the invention.

[0030] A problem with mobile communications devices is the lack of space available. This affects particularly the design of antenna constructions in mobile communications devices. The antenna of a mobile communications device is typically placed at the rear of the device, away from the user. Typically, the battery of the mobile communications device is also pieced at the rear side of the device because the front side is needed to realize a user interface, i.e. a keypad and a display. The battery is typically realized as a removable battery module so that the user can easily replace the battery. The battery module limits the rear area available to the antenna of the mobile communications device in some preferred embodiments of the invention at least part of the antenna construction of the mobile communications device is placed in the battery module of the mobile communications device is placed in the battery module of the mobile communications device. Such an embodiment makes possible better optimization of the specie usage. The embodiment is particularly advantageous in connection with antenna construction.

4

[0031] Fig. 12a illustrates the structure of a battery module \$50 according to a preferred embodment of the invention. The battery module comprises battery cells \$60 and components, such as electronic centrol elements and connectors. 355, related to the battery module functions. In this embodment the battery module also comprises a radiator 10 and matching element 100. The plassment of the parts of the artenanc construction in the battery module makes it possible to utilize the openimization possibilities achieved by means of changes in the internal siturcture of the bettery module. The battery cells which space can be utilized for the placement of other components \$60 and the tell produced in the internal structure of the battery module. The internal structure of the battery module the laterial structure of the battery module thus facilitates many different modifications. The structure of \$12 as is just one example of a possible structure and does not limit the different impolementations of the invention in any way.

[0032] Fig. 12b illustrates a second proferred embodiment of the invention where part of the antenna construction is in the better module. Fig. 12b shows a mobile communications device 300 comprising a user inferface, in this example a display 306 and keypad 307, on the front side of the mobile communications device. The mobile communications device also comprises a printed circuit board 330 which has a ground plane 20 and a separate conductive patch 25 realized by means of electrically conductive patterns. Typically the mobile communications device on properties as well, but for simplicity these are not shown in Fig. 12b. In Fig. 12b the mobile communications device includes a battery module 350 which in this example comprises a battery of 380, radiator 10 and a matching element 100 attached to the adiator. Antenna feed is realized through a connector 351 from the mobile communications device to the battery module and turrher to the radiator. In this modelinent the ground plane 20 of the antenna construction is located at the mobile communications device side, on its printed circuit board 330. The matching element 100 is realized in such a manner that its distance from the separate conductive patch 25 is smaller than the distance between the radiator 10 and ground plane 20, whereby the capacitive coupling between the matching element and separate conductive patch is swelf with that the stance of the separate conductive patch as welf with the third the separate conductive patch is swelf with that the stance.

[0033] Fig. 12c illustrates a third preferred embodiment of the invention where part of the antenna construction is located in the battery module 250. In the example of Fig. 12c the ground plane 20, radiator 10 and separate conductive patch 25 of the antenna construction are located on the side of the mobile communications device and the matching element 100 on the side of the battery module 350. In the embodiment of Fig. 12c the radiator 10 and matching element are galvarically connected to each other through contact 101. Fig. 12c also shows a printed circuit board 330 and battery cell 350 in the mobile communications device.

[0034] The antenna construction according to the invention finds utility in mobile stations of many different cellular or systems and in small base stations. In particular the antenna construction according to the invention is applicable in mobile communications devices of the GSM and UMTS systems. The antenna construction according to the invention finds particular utility in applications where the mobile communications device must be able to monitor more than one frequency range, such as e.g. mobile communications devices operating in both the GSM 900 and GSM 1500 systems. The antenna construction according to the invention is also applicable to other compact radio apparatus, such as base stations of viveless inferom eystems and mobile communication systems based on micro- and piococal networks. The controllability of the antenna construction according to the invention as well as the great number of frequency range options provided by the antenna construction according to the invention particularly advantageous also in forthcoming software radio systems, where the frequency ranges and radio interface functions such as modulations used, are selected by software so that the mobile station can be adapted to another or mobile communication system uset by changing the software at the mobile station.

[0035] A matching element according to the invention can be used for controlling many different properties of an antenna construction. The matching element can be used e.g. to influence the directivity of the antenna construction or its diversity characteristics as well as its resonance trequency or trequencies and the quantity of the resonance frequencies, the bendwidth of each resonance band or e.g. the largest continuous bandwidth of the antenna construction. In addition, the matching element can be used to influence the impedance of the feed point.

[0036] The matching element according to the invention can be realized in many different ways according to the application in question. For example, if the recitator is made from a thin matal plate, the matching element can be implemented by having a projection of a desired shape in the radiator and bending said projection in the vicinity of the ground plane or separate conductive patch. The matching element may also be realized in many other ways, say, by soldering, crimping or otherwise attaching the matching element to the radiator. If the radiator is implemented using a conductive pattern are printed circuit board or ordinately according element can be realized on the other eldo of the printed circuit board or by means of a conductive pattern formed on an intermediate layer of a multilayer beard in such an embodiment the matching element may be connected to the radiator using conventional pcb manufacturing techniques, e.g. by means of a ordinate plated through holes.

6 [0037] The antenna construction according to the invention has many advantages. The antenna construction according to the invention is simple to manufacture, yet provides a wide range of control for the characteristics of the antenna construction. Matching elements placed in different locations of the radiator can be used to control a great number of properties of the antenna construction. The antenna construction according to the invention thus facilitates.

25

versatile control options during the manufacture of the antenna construction. Moreover, the antenna construction according to the invention makes of possible to control the characteristics of the antenna construction also during the use of the antenna construction, e.g. by using a variation to vary the strength of the capacitive coupling between the matching element and ground plane. This way, a mobile communications device can control e.g., the resonance frequency of the antenna in accordance with the communications frequency used.

[0038] Furthermore, the entenna construction according to the invention has the advantage of being applicable to reduce the effect of external lossy materials, such as other parts of the mobile communications device own raterials outside the mobile communications device own attentions device used as the hand off the user, on the resonance frequency of the antenna construction. In general it can be said that the resonance frequency of the antenna decreases as a lossy material affects the radiator and antenna goround plane at the same time. This applies to nearly all entenna constructions of mobile communications devices in which the electrical area of the mobile communications device body is greater than the area of the antenna construction. The matching element 100 or matching element 00 of the antenna construction according to the invention strengthen the coupling between the radiator and ground plane, whereby the coupling between the mobile communications device body or materials outside the body and the antenna construction becomes relatively weaker. Thus the effect of the mobile communications device body or materials outside the body and the resonance frequency of the antenna construction is smaller than in antenna constructions according to the prior art. [0038] it is obvious to a porson skilled in the art that the different embodiments of the invention are not limited to the examples described above but they can vary in accordance with the claims appended hereto.

Claims

20

30

- An antenna construction comprising a ground plane and radiator, having at least one resonance frequency, characterized in that

 It also comprises at least one matching alternation and properties with the conflicts with the conflicts with the conflicts with the conflicts.
 - It also comprises at least one matching element in galvanic connection with the radiator such that the capacitive coupling between the matching element and ground plane at said at least one resonance frequency is stronger than the capacitive coupling between the radiator and ground plane.
 - 2. An antenna construction according to claim 1, characterized in that
 - it further comprises a separate conductive natch
 - and that at least one matching element is capacitively coupled to said separate conductive patch.
 - An antenna construction according to claim 2, characterized in that said conductive patch is coupled to the ground plane through a capacitive element.
 - An antenna construction according to claim 2, characterized in that said conductive patch is adapted so as to be coupled to the ground plane through a switching element.
- 40 5. An antenna construction according to claim 1, characterized in that the matching element comprises more than one part, which parts can be coupled to each other through a switching element.
 - A mobile communications device which has an antenna construction comprising at least a ground plane and radiator, characterized in that
 - the antenna construction of the mobile communications device comprises at least one matching element in galvanic connection with the radiation such that the capacitive coupling between the matching element and ground plane at said at least one resonance frequency is stronger than the capacitive coupling between the radiator and ground plane.
- 50 1. A mobile communications device according to claim 6, characterized in that the antenna construction of the mobile communications device further comprises a separate conductive patch to coupled to the ground planet house a capacitive element, and that at least one matching element is capacitively coupled to said separate conductive patch.

55

45

Fig. 5a

Fig. 5b

Fig. 6

Fig. 7

Fig. 9

Fig. 11

(12)

Europäisches Patentamt European Patent Office Office européen des brevets

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:

27.03.2002 Bulletin 2002/13

(43) Date of publication A2: 15.11.2000 Bulletin 2000/46

(21) Application number: 00660084.5

(22) Date of filing: 08.05.2000

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI

(30) Priority: 10.05.1999 FI 991068

(71) Applicant: Nokia Corporation 02150 Espoo (FI)

(72) Inventor: Pankinaho, Ilkka 21530 Paimio (FI)

(74) Representative: Levlin, Jan Markus Berggren Oy Ab, P.O. Box 16 00101 Helsinki (FI)

(51) Int Cl.7: H01Q 9/04, H01Q 1/24.

H01Q 1/44

(54)Antenna construction

(57) An antenna construction according to the invention has a radiator, ground plane and at least one matching element. The matching element is capacitively coupled to a ground potential. By varying the number, location and strength of the capacitive coupling of the matching elements the characteristics of the antenna construction, such as the number of resonance frequencies, resonance frequencies and radiator impedance at the feed point can be controlled in a versatile manner.

EUROPEAN SEARCH REPORT EP 00 66 0084

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant passa	dication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
х	US 5 764 190 A (MUR 9 June 1998 (1998-0 * column 3, line 8- * column 4, line 52 figures 2-5 *	1,2,6	H01Q9/04 H01Q1/24 H01Q1/44	
Υ	rigures 2-3		3-5,7	
Y	VIRGA K L ET AL: "ENHANCED-BANDWIDTH WIRELESS COMMUNICAT IEEE TRANSACTIONS OTECHNIQUES, IEEE IN VOI. 45, no. 10, PA 1 October 1997 (1991879-1888, XP060704 ISSN: 0018-9480 * section II.C Diod	3-5,7		
ĸ	WO 97 44856 A (ALLG ENGBLOM GUNNAR (SE) 27 November 1997 (1	ON AB ;WASS BO (SE); ; FILIPSSON GUNNAR (SE)	1,2,6	TECHNICAL FIELDS
	* page 11, line 11-		SEARCHED (Int.Cl.7)	
x	PATENT ABSTRACTS OF vol. 1998, no. 09, 31 July 1998 (1998- -& JP 10 093331 A (KK), 10 April 1998 * abstract; figure	1,6	H01Q	
P,X !	WO 99 57785 A (LECL ROLAND (FR); DIXIML SOCAPE) 11 November * figure 2 *	ERC DANIEL ;VINCENT S FREDERIC (FR); 1999 (1999-11-11)	1,6	
E FR 2 791 815 A (LIGER RENE) 6 October 2000 (2000-10-06) * figure 1 *			1,6	
	The present search report has	been drawn up for all claims		
	Piece of search	Date of completion of the search		Examiner
	THE HAGUE	28 January 2002	Va	n Dooren, G
X:par Y:par doo A:teo O:no	CATEGORY OF CITED DOCUMENTS ricularly relevant if taken alone ricularly relevant if combined with and ament of the same category knotogical background n-written disclosure greedlate document	T : theory or panci E : earlier patent d after the filling of ther D : document ofter L : document of the document	countent, but pub ate In the application for other reasons	lished on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 66 0084

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EIDP file on The European Patent Office is in oway fisable for these particulars which are merely given for the purpose of information.

28-01-2002

	Patent documer cited in search rep	nt port	Publication date		Patent family member(s)	Publication date
US	5764190	Α	09-06-1998	NONE		
WO	9744856	A	27-11-1997	SE AU EP SE WO US	507077 C2 2920597 A 0900457 A1 9601893 A 9744856 A1 6002367 A	23-03-1996 69-12-1997 10-03-1997 18-11-1997 27-11-1997 14-12-1998
JP	10093331	A	10-04-1998	NONE		
WO	9957785	A	11-11-1999	FR FR CN EP WO TW US	2778499 A1 2778500 A1 1266542 T 0995234 A1 9957785 A1 424350 B 6326919 B1	12-11-199 12-11-199 13-09-200 26-04-200 11-11-199 01-03-200 04-12-200
FR	2791815	A	06-10-2000	FR	2791815 A1	06-10-200

To rmore details about this annex : see Official Journal of the European Patent Office, No. 12/82

à