Introduction To The Theory Of Computation Michael Sipser

计算理论导论

LABD 实验 D—-两个数的互素判

定

Name 屈德林

Student No. 201808010522

Class 计算机科学与技术 1805

Department CSEE

Email qdl.cs@qq.com

Date 2021年5月15日

目录

1	Problem description							
	1.1	Input	1					
	1.2	Output	1					
	1.3	Sample Input	1					
	1.4	Sample Output	1					
2	Lab	Environment 环境	1					
3	Lab	Steps 步骤	2					
	3.1	分析问题	2					
	3.2	算法思想	2					
		3.2.1 算法伪代码表述:	2					
4	Lab	Results 结果	3					
	4.1	实验结果	3					
5	Lab	Experience 心得	3					
	5.1	实验心得	3					
A	附录	: 1: Solution	4					

1 Problem description

称两个正整数是互素的,当它们没有大于1的公因子的时候。比如,4与9就是互素的,尽管4与9都不是素数,但4与9只有一个公因子:1,所以它们互素。但4与22就不是互素的,因为它们有一个大于1的公因子:2。你的任务,给你2个数,判断它们是否互素。

1.1 Input

有多个测试序列,测试结束于测试文件结束;每个测试序列占一行,每行 2 个用空格隔开的正整数 a,b。a,b < 2^{64}

1.2 Output

对于每对输入的整数,输出"YES",如果它们互素;否则,输出"NO"。

1.3 Sample Input

22 4

49

1.4 Sample Output

NO

YES

2 Lab Environment 环境

- 操作系统: Arch Linux
- 程序运行环境: gcc (GCC) 10.2.0
- 报告编写环境: TeX Live 2020
- 开发工具: VSCode

3 Lab Steps 步骤

3.1 分析问题

样例中2个DFA,第一个是接受所有输入的DFA,第二个是拒绝所有输入的DFA,所以,第一个DFA输出"NO",而第二个是"YES"。

3.2 算法思想

1. 我们先来比较总结一下 GUN 中整形的范围:

```
int :-2147483648 ~ +2147483647 (4 Bytes)
unsigned int :0 ~ 4294967295 (4 Bytes)
long == int
long long :-9223372036854775808 ~ +9223372036854775807
(8 Bytes)
double :1.7 * 10^308 (8 Bytes)
unsigned int :0~4294967295
__int64的最大值:9223372036854775808
__int64的最小值:-9223372036854775808
unsigned __int64的最大值: 18446744073709551615
```

- 2. 从上面的结果可以看到, unsigned int64 可以符合题目的数据要求
- 3. 用辗转相除的方法来计算最大公约数,这里使用辗转相除的递归法

3.2.1 算法伪代码表述:

经过上述分析,算法伪代码可以表述为:

```
unsigned __int64 gcd(unsigned __int64 a, unsigned __int64 b)
{
    if (b > 0)
    {
        return gcd(b, a % b);
    }
    return a;
}
```

4 Lab Results 结果

4.1 实验结果

Solution	idge status	Problem		Judge Result	Mamani	Time Used	Code Length	Submit Time
	User		Language		Memory			
705168	jsll201808010522	13121	GNU C++	Accepted	1120KB	31ms	424B	2021-05-15 22:44:10.0
705132	jsll201808010522	12596	GNU C++	Accepted	5604KB	375ms	2377B	2021-05-15 20:34:20.0
705131	jsll201808010522	12596	GNU C++	Wrong Answer	5280KB	125ms	2399B	2021-05-15 20:33:53.0
697550	jsll201808010522	13120	GNU C++	Accepted	3072KB	0ms	3865B	2021-03-20 22:04:18.0
697525	jsll201808010522	13120	GNU C++	Accepted	1068KB	0ms	2258B	2021-03-19 10:08:00.0
697436	jsll201808010522	12595	GNU C++	Accepted	5056KB	15ms	1035B	2021-03-05 14:10:58.0
697394	jsll201808010522	12595	GNU C++	Accepted	1056KB	0ms	1882B	2021-03-02 08:35:25.0
er Id: jsll20	18080105 Problem		Langua	< <pre><<pre>revious Page</pre></pre>	NextPage>>	ourse Id: 244	Rank?: No ∨	Query(Q)

图 1: http://acm.hnu.cn/online 提交结果

在 http://acm.hnu.cn/online 提交代码,AC 通过. SolutionID 705168,User jsll201808010522, Memory 1120KB Time Used 31ms。因此,实验正确。

5 Lab Experience 心得

5.1 实验心得

这道题虽然是最简单的辗转相处法,但实验时要特别注意题目所给数据的取值范围;对于辗转相除求最大公约数,可以用非递归的或者递归的形式,两者的复杂度相差无几,鉴于递归形式的思路比较明确,而且方便编写(几行代码就可以搞定),所以使用递归形式的辗转相除。

A 附录 1: Solution

```
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;
unsigned __int64 gcd(unsigned __int64 a, unsigned __int64 b)
{
   if (b > 0)
   {
       return gcd(b, a % b);
   }
   return a;
int main(){
   unsigned __int64 a,b;
     while(cin>>a>>b){
       if(gcd(a,b)==1) {
          printf("YES\n");
       }
       else
           printf("NO\n");
   }
   return 0;
}
```