Rappels de chimie organique

La chimie organique est la chimie des composés du carbone, d'origine naturelle ou produits par synthèse.

I. Nomenclature:

Une molécule organique comporte 2 parties : un squelette carboné et un groupe caractéristique.

On appelle chaîne carbonée ou **squelette carboné** l'enchaînement des atomes de carbone constituant une molécule organique. Il peut être linéaire, cyclique ou ramifié.

Ex:

Les atomes de carbone sont ensuite liés à d'autres atomes, soit il n'y a que des atomes H, soit ce sont des groupes d'atomes appelés groupes caractéristiques (cf tableau).

1.1 Les alcanes :

• Ce sont les hydrocarbures à chaîne ouverte de formule C_nH_{2n+2} :

Pour les nommer, on utilise un préfixe qui donne le nombre (n) d'atomes de carbone de la chaîne principale, suivi de la terminaison -ane caractéristique des alcanes.

Nom	Méthane	Ethane	Propane	Butane	Pentane	Hexane
Formule brute	CH₄	C₂H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₄

• Nom des groupes caractéristiques alkyle :

Nom du groupe	Méthyle	Ethyle	Propyle
Formule brute	CH ₃ -	СН3-СН2-	CH ₃ -CH ₂ -CH ₂ -

1.2 Les alcènes :

Les alcènes comportent une double liaison C=C et ont pour formule brute C_nH_{2n+2} .

Le nom d'un alcène dérive de celui de l'alcane de même chaîne carbonée en remplaçant la terminaison -ane par -**ène** précédée de l'indice de position de la double liaison C=C dans la chaine principale.

Exemple: pent-2-ène

II. Groupes caractéristiques:

Un groupe caractéristique d'atomes confère des propriétés particulières aux molécules. Ils sont présentés sous forme de tableau ci-dessous :

Nom de la famille (ou fonction)	Formule et nom du groupe caractéristique	Terminaison	Exemples		
Alcool	-OH Hydroxyle	-ol	CH3-CH2-CH2-OH Propan-1-ol	2-méthylbutan-1-ol	
Aldéhyde	-C=O H Carbonyle	-al	CH3-CH2- C=O H Propanal	3-méthylbutanal	
Cétone	-C=O Carbonyle	-one	Butan-2-one	3-méthylpentan-2-one	
Acide carboxylique	-C=O OH Carboxyle	Acide -oïque	Acide méthanoïque	Acide propanoïque	
Ester	-C O- Ester	-oate d'alkyle	Ethanoate d'éthyle	Propanoate de méthyle	
A mine	-N < Amine	-amine	Propanamine	N-méthylpropan-1- amine	
Amide	mide —C — N amide		Ethanamide	N-méthyl-éthanamide	