Department of Computer Science IV, University of Bonn apl. Prof. Dr. Frank Kurth Summer Term 2022

Pattern Matching and Machine Learning for Audio Signal Processing Exercise sheet 2

To be uploaded in eCampus till: 23-04-2022 22:00 (strict deadline)

Exercise 2.1 [4 points]

Let $1 \neq q \in \mathbb{C}$. Prove that for all positive integers N

$$\sum_{n=0}^{N-1} q^n = \frac{1 - q^N}{1 - q}.$$

Exercise 2.2 [9+3=12 points]

For a fixed positive integer N, we consider two particular bases in the space \mathbb{C}^N of length N signals:

- the ON-basis e_0, \ldots, e_{N-1} of unit vectors (representing an extremely local view) and
- the unnormalized Fourier basis u_0, \ldots, u_{N-1} (representing an extremely global view).

Let $\rho := \exp(2\pi i/N)$ and $\omega := \exp(-2\pi i/N)$ denote two primitive Nth roots of unity. Recall that $\boldsymbol{u}_k(n) := \exp(2\pi ikn/N) = \rho^{kn}$, for $k, n \in [0:N-1]$. Furthermore, the $N \times N$ DFT matrix DFT_N is defined by DFT_N $(k,n) := \omega^{kn}$, for $k,n \in [0:N-1]$.

- (a) Prove that for $k \in [0: N-1]$ the following holds:
 - (i) $\overline{\boldsymbol{u}_k} = \boldsymbol{u}_{N-k}$.
 - (ii) DFT_N $e_k = u_{N-k} = \overline{u_k}$.
 - (iii) DFT_N $u_k = N \cdot e_k$.
- (b) Calculate explicitly DFT₃ explaining all the steps you use to obtain the result.

Exercise 2.3 [5 points]

Let $\boldsymbol{b}_0, \ldots, \boldsymbol{b}_{N-1}$ denote an ON-basis of \mathbb{C}^N . Prove that every $\boldsymbol{x} \in \mathbb{C}^N$ has the following Fourier representation (with respect to this ON-basis):

$$oldsymbol{x} = \sum_{k=0}^{N-1} \langle oldsymbol{x} | oldsymbol{b}_k
angle oldsymbol{b}_k.$$

 $(\langle \boldsymbol{x}|\boldsymbol{b}_0\rangle,\ldots,\langle \boldsymbol{x}|\boldsymbol{b}_{N-1}\rangle)^{\top}$ is the vector of **Fourier coefficients** (w.r.t. this ON-basis).