Stars and Galaxies

week 1

PHYS 1061

Dr. Jason Pinkney

Course Objectives By the end of this course students will ...

1) Obtain knowledge of astronomy.

- History the heliocentric revolution
- The Sun and stars you will be assigned a star
- **Galaxies** − the Milky Way and galaxies far, far away

2) Recognize some of the laws of physics inherent in astronomy

- Conservation of mass-energy (nuclear fusion in stars)
- Conservation of angular momentum in the formation of stars and galaxies
- Universal gravitation in orbits of planets, stars and galaxies

3) Develop scientific skills related to astronomy

- Critical thinking (asking "how do you know that?"),
- Problem solving (homework problems)
- Visual observing and object identification (observing forms)
- Pattern recognition (constellation sheets)

4) Expand your personal cosmology ("theory of everything")

Be able to quantify the relative sizes of the Earth, the solar system, galaxies, etc.

5) Understand the nature of science in general

- How it differs from pseudosciences and other belief systems
- ·How it uses the scientific method
- How it relies on math and statistics

Week 1 of Stellar and Galactic Astronomy

View the film "Powers of 10 A Film About the Relative Sizes of Things 1977 by Charles and Ray Eames Narrated by Phillip Morrison

Pre-Questions

- 1) Note the largest scale achieved.
- 2) Note the smallest scale achieved.
- 3) In which powers of 10 do we find great "voids" where nothing new enters the view?

Possible post-questions:

4) In every 10 seconds, the view expands by a factor of 10. Could this entire journey be experienced while flying in a rocket ship?

Many quantities have a vast range of values in Astronomy ...

- 1) *Distances*. 10⁻¹⁵ to 10²⁴ meters (actually >10²⁶) for the scale of an atomic nucleus compared to the scale of largest structures in the universe.
- 2) *Time.* 10⁻⁴⁶ second to 10¹⁸ seconds (10¹⁰ yrs) for the Planck time to the age of the universe.
- 3) *Masses:* 10⁻³¹ kg (electrons) to 10⁴⁵ kg (clusters of galaxies)
- 4) *Energies:* and 10⁻¹⁹ Joules for H-alpha photon to 10⁺³⁹ Joules for Gamma-Ray Bursts.
- 5) Speeds: continental drift (cm/yr) to the speed of light 300,000,000 m/s.

And that's why we use "powers of 10" -- to make them more manageable!

<u>Understanding Scientific Notation, Powers of 10, and Orders of Magnitude</u>

Scientific Notation: a way of writing a number in which the decimal point Is placed to the right of the most significant digit, and this is multiplied by 10^P where P=an integer (the exponent, or "power of 10")

Scientific Notation Format: Coefficient X Base exponent

(where Base=10)

Example: $58400 = 5.84X10^4$ Example: $0.01093 = 1.093x10^{-2}$

Example: The average Earth-Sun distance is 93,000,000 miles or 9.3×10^7 miles.

Power of 10: the exponent of a number expressed in scientific notation, usually rounded up or down to the nearest integer

Example: $5.84 \times 10^4 = 10^{4.7664} \sim 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100,000$.

Example of usage: The distance to the Sun from the Earth is about 10⁸ miles.

Thus, the Earth-Sun distance is 8 powers of 10 greater than a mile.

Order of magnitude: the "order of magnitude" of a number is the same thing as a number's integer "power of ten", it is just used differently in sentences.

Example: "The Earth-Sun distance is 8 <u>orders of magnitude</u> larger than a mile.")

Example: "If you thought the US population was 3 million, you were off by 2 orders of magnitude."

<u>Understanding Scientific Notation, Powers of 10, and Order of Magnitude</u>

Rounding to the nearest integer power of 10.

```
Previous example: 5.84 \times 10^4 = 10^{4.7664} \sim 10^5. But what if we had ... Example: 4.84 \times 10^4 = 10^{4.6848} \sim 10^5. Example: 3.84 \times 10^4 = 10^{4.5843} \sim 10^5. Perhaps if the exponent dropped below 4.5 ...
```

Example: $2.84 \times 10^4 = 10^{4.4533} \sim 10^4$. Finally, we don't round up!

For which coefficient will the exponent be exactly 4.5? Answer: 3.162278 (= $\sqrt{10}$)

```
Example: 3.16230 \times 10^4 \sim 10^5. Example: 3.16220 \times 10^4 \sim 10^4.
```

Try these:

Example: 9.99x10²	~ 10 ³
Example: 9.9x10 ⁻²	~ 10 ⁻¹ .
Example: 5.1x10 ⁻⁴	~ 10 ⁻³ .
Example: 3.10x10⁶	~ 10 ⁶ .
Example: 3.20x10 ⁹	~ 10 ¹⁰ .

```
Example: 401,000 ~ 10^6.
Example: 301,000 ~ 10^5.
Example: 73,162,055,319 ~ 10^{11}.
```

Why do we need these new ways of expressing numbers?

1) To compress long numbers.

Example: mass of the Sun in kilograms:

1
$$M_{\odot}$$
 = 2.0×10³⁰ kg (sci notation)

1 M_{\odot} ~10³⁰ kg (nearest integer power of 10)

(Now try writing this number as a 2 with 30 zeros!)

2) To simplify multiplication and division.

Example: if the Earth's mass is 10²⁵ kg, how many Earth masses go into the Sun?

$$M_{\odot}/M_{\oplus} = 10^{30} \div 10^{25} = 10^{30-25} = 10^{5}$$
 (more precisely: $3.3 \times 10^{5} \sim 10^{6}$)

Example: if there are 86400 seconds per day, and 365 days in a year, roughly how many seconds are in a year?

$$10^5 * 10^2 = 10^{5+2} = 10^7$$

Simplified multiplication and division allows easy rough estimates called "order of magnitude calculations" or "back of the envelope calculations".

With powers of 10, <u>division becomes subtraction</u> and <u>multiplication becomes addition</u>.

Get some Practice on Powers of 10! (See worksheet)

Other ways to make large numbers manageable

1) Use prefixes

small: deci, centi, milli, micro, nano, pico, femto

10 to the: -1 -2 -3 -6 -9 -12 -15

large: kilo, mega, giga, tera, peta, exa 10 to the: 3 6 9 12 15 18

Example) What is a convenient unit for 10^{-6} seconds? Ans: a microsecond (1 μ s).

2) Invent new units

In astronomy we have ... (red ones are new units)

- a) The "solar mass", $1 \text{ M}_{\odot} = 2x10^30 \text{ kg}$
- b) The "astronomical unit", 1 AU = 1.5x10^8 km, 93,000,000 miles. The average distance between the Earth and Sun.
- c) The Light year, 1 LY = 9.5 x 10¹² km
 The distance light travels through space in a year.
 Good for distances between stars.
- d) The parsec, 1 pc = $3.1 \times 10^{13} \, \text{km}$.

The distance one must be from the Solar system so that the Earth-Sun separation appears to be 1 arcsecond.

Good for distances between stars.

- e) The kiloparsec, 1 kpc = 1000 pc Good for distances inside a galaxy
- f) The megaparsec, 1 Mpc = 1000,000 pc Good for distances between galaxies, clusters, superclusters.

```
GROUP EXERCISE - "Answers"
rank
      size#
        3x10<sup>3</sup> m A. Black Hole, 1 solar mass, (Schwarzschild radius)
2
      1.2x10<sup>26</sup>m B. Cosmic Microwave Background (distance)
 20
      4.1x10^16m C. Distance between stars in Sun's neighborhood
 12
       1.3x10^7m D. Earth (diam)
 5
       3x10^19 m E. Galaxies, Dwarf Ellipticals (diam) <1/30 MW>
 14
       4x10^22 m F. Galaxies, Giant Ellipticals (diam) <40 MW>
 17
      1x10<sup>21</sup> m G. Galaxies, Milky Way (diam)
15
       1.7x10<sup>0</sup> m H. Human (height)
      1.5x10^8 m I. Jupiter (diam)
       3x10<sup>22</sup> m J. Local Group (diam)
 16
      3.5x10<sup>6</sup> m K. Moon (diam)
4
      3.8x10<sup>8</sup> m L. Moon (distance)
 8
      6.x10<sup>12</sup> m M. Neptune (dist from Sun) <40 AU>
 11
      1.5x10<sup>4</sup> m N. neutron star (diam)
 3
      1x10^23 m O. Rich clusters of galaxies (diam) <5 Mpc>
 18
      3x10^17m P. Star Clusters, globular (diam) <10pc>
 13
      1.3x10^9 m Q. Sun (diam)
9
      1.5x10<sup>1</sup>1m R. Sun (distance)
 10
      3x10<sup>24</sup> m S. Superclusters of galaxies (length) <100 Mpc>
 19
      1.3x10<sup>^</sup>7m T. white dwarf (diam) <=Earth>
 6
```

Side notes on astronomical distances / sizes

1) The magic number, 110.

110 (roughly) comes up many times in distance ratios.

110 = DiamSun/DiamE = distSun/DiamSun = distMoon/DiamMoon

- 2) The AU and Light Year.

 There are 63,000 AU in 1 LY.

 Coincidentally, there are 63,000 inches in a mile!
- 3) The distance to the Moon is 240,000 miles. A good car might last about 240,000 miles. So you *might* be able to drive to the Moon if there were a direct route from Earth!
- 4) The ratio 400.

 400 = DistSun/distMoon = DiamSun/diamMoon

 Because of this coincidence the Sun and Moon subtend about the same angle in the sky (½ degree) and we can observe both total and annular solar eclipses.

The Naked – Eye Universe

Astronomical things that we can see with the naked eye

- 1. Sun
- 2. Moon
- 3. 5 planets (+Uranus, just visible)
- 4. 6500 stars (down to +6.0 mag)
- 5. 3 galaxies (M31,LMC,SMC. Some can see M33)
- 6. Comets
- 7. Supernovae, novae
- 8. Meteors (in our atmosphere)
- 9. Aurora (in our atmosphere)

The Naked – Eye Universe

The Top Ten Brightest Objects in the Sky

- 1. Sun
- 2. Moon
- 3. Venus
- 4. Mars
- 5. Jupiter
- 6. Mercury
- 7. Sirius
- 8. Saturn
- 9. Canopus (in Carina, Southern Hem)
- 10. Arcturus (Bootes)

Rigil Kent (Alpha Cen), Vega, and Capella are almost a tie for 11th!

The Naked – Eye Universe

Constellations and Asterisms

Constellation: a designated region in the sky containing one or more historical star patterns.

Examples) Orion, Taurus, Ursa Major (see next slides)

Asterism: a recognizable pattern of stars.

Ex) Orion: a hunter

Ex) Taurus: a bull; the Pleiades; the Hyades

Ex) Ursa Major: a great bear; the Big Dipper; plow, wagon, La Cassarole

Ex) The Summer Triangle (span's 3 constellations)

Ex) The Coathanger (or Brocchi's cluster in Vulpecula)

- * There are 88 total constellations.
- * Many more than 88 asterisms
- * Northern constellations named after Greek Mythological characters

Example: Orion.

An easily recognized constellation!

(b)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Try a planetarium program like "Stellarium" or "Celestia" to see the sky in motion.