Unit-III: Part 2 Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Sub groups

Algebraic systems

- $N = \{1,2,3,4,....\infty\}$ = Set of all natural numbers.
 - $Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \infty\} = \text{Set of all integers.}$
 - **Q** = Set of all rational numbers.
 - R = Set of all real numbers.
- **Binary Operation:** The binary operator * is said to be a binary operation (closed operation) on a non empty set A, if
 - $a * b \in A$ for all $a, b \in A$ (Closure property).
 - Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.
- Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.
 - Ex: (N, +), (Z, +, -), (R, +, ., -) are algebraic systems.

Properties

Commutative: Let * be a binary operation on a set A.

The operation * is said to be commutative in A if

- a * b= b * a for all a, b in A
- **Associativity:** Let * be a binary operation on a set A.

The operation * is said to be associative in A if

$$(a * b) * c = a * (b * c)$$
 for all a, b, c in A

■ **Identity:** For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if

$$a * e = e * a = a$$
 for all $a \in A$.

- Note: For an algebraic system (A, *), the identity element, if exists, is unique.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

$$a * b = b * a = e$$

Semi group

- Semi Group: An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- \blacksquare Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- \blacksquare Ex. (N,) is not a semi group.
- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- Ex. Show that the set 'N' is a monoid with respect to multiplication.
- **Solution**: Here, $N = \{1, 2, 3, 4, \dots \}$
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.
- : Multiplication is a closed operation.
 - 2. Associativity: Multiplication of natural numbers is associative.

i.e.,
$$(a.b).c = a.(b.c)$$
 for all $a,b,c \in N$

3. <u>Identity</u>: We have, $1 \in \mathbb{N}$ such that

$$a.1 = 1.a = a$$
 for all $a \in N$.

: Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid

Subsemigroup: Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation *, then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid: Let (S, *) be a monoid with identity e, and let T be a non- empty subset of S. If T is closed under the operation * and $e \in T$, then (T, *) is called a submonoid of (S, *).

Group

- **Group:** An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be *abelian* (or *commutative*) if a * b = b * a for all $a, b \in G$.

Algebraic systems

Abelian groups

Groups

Monoids

Semi groups

Algebraic systems

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

$$a * b = a * c \implies b = c$$
 (left cancellation law)
 $a * c = b * c \implies a = b$ (Right cancellation law)

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

Ex. Show that, the set of all integers is a group with respect to addition.

Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. <u>Closure property</u>: We know that, Sum of two integers is again an integer.

i.e., $a + b \in Z$ for all $a,b \in Z$

2. <u>Associativity</u>: We know that addition of integers is associative.

i.e., (a+b)+c = a+(b+c) for all $a,b,c \in Z$.

3. <u>Identity</u>: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.

:. Identity element exists, and '0' is the identity element.

4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that

$$a + (-a) = 0$$

Each element in Z has an inverse.

■ 5. <u>Commutativity</u>: We know that addition of integers is commutative.

i.e.,
$$a + b = b + a$$
 for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

Ex. Show that set of all non zero real numbers is a group with respect to multiplication.

- Solution: Let $R^* = \text{set of all non zero real numbers}$. Let a, b, c are any three elements of R^* .
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.

i.e., $a \cdot b \in R^*$ for all $a,b \in R^*$.

2. <u>Associativity</u>: We know that multiplication of real numbers is associative.

i.e., (a.b).c = a.(b.c) for all $a,b,c \in R^*$.

- 3. <u>Identity</u>: We have $1 \in R^*$ and $a \cdot 1 = a$ for all $a \in R^*$.
 - :. Identity element exists, and '1' is the identity element.
- 4. <u>Inverse</u>: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

5. Commutativity: We know that multiplication of real numbers is commutative.

i.e., $a \cdot b = b \cdot a$ for all $a,b \in R^*$. Hence, $(R^*, .)$ is an abelian group.

- Ex: Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in \mathbb{R}$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example

- Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m). Show that (Z, *) is a semi group.
 - Is (Z, *) a monoid?. Justify your answer.
- Solution: Let a, b and c are any three integers.

Closure property: Now, $a * b = maximum of (a, b) \in Z$ for all $a,b \in Z$

Associativity: $(a * b) * c = maximum of \{a,b,c\} = a * (b * c)$ \therefore (Z, *) is a semi group.

<u>Identity</u>: There is no integer x such that

a * x = maximum of (a, x) = a for all $a \in Z$

 \therefore Identity element does not exist. Hence, (Z, *) is not a monoid.

Example

Ex. Show that the set of all strings 'S' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation

'concatenation of strings' by +.

Let s_1 , s_2 , s_3 are three arbitrary strings in S.

Closure property: Concatenation of two strings is again a string.

i.e.,
$$s_1 + s_2 \in S$$

Associativity: Concatenation of strings is associative.

$$(s_1 + s_2) + s_3 = s_1 + (s_2 + s_3)$$

- Identity: We have null string, $\lambda \in S$ such that $s_1 + \lambda = S$.
- ∴ S is a monoid.
- Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

Example

Ex. Let S be a finite set, and let F(S) be the collection of all functions $f: S \to S$ under the operation of composition of functions, then show that F(S) is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution:

Let f_1 , f_2 , f_3 are three arbitrary functions on S.

<u>Closure property</u>: Composition of two functions on S is again a function on S.

i.e.,
$$f_1 o f_2 \in F(S)$$

Associativity: Composition of functions is associative.

i.e.,
$$(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$$

- Identity: We have identity function I : S→S such that f₁ o I = f₁.
 ∴ F(S) is a monoid.
- Note: F(S) is not a group, because the inverse of a non bijective function on S does not exist.

- Ex. If M is set of all non singular matrices of order 'n x n'. then show that M is a group w.r.t. matrix multiplication. Is (M, *) an abelian group?. Justify your answer.
- Solution: Let $A,B,C \in M$.
- 1.Closure property: Product of two non singular matrices is again a non singular matrix, because

 $|AB| = |A| \cdot |B| \neq 0$ (Since, A and B are nonsingular) i.e., $AB \in M$ for all $A,B \in M$.

2. Associativity: Marix multiplication is associative.

i.e., (AB)C = A(BC) for all $A,B,C \in M$.

- 3. <u>Identity</u>: We have $I_n \in M$ and $AI_n = A$ for all $A \in M$.
 - \therefore Identity element exists, and 'I_n' is the identity element.
- 4. <u>Inverse</u>: To each $A \in M$, we have $A^{-1} \in M$ such that $AA^{-1} = I_n$ i.e., Each element in M has an inverse.

■ ∴ M is a group w.r.t. matrix multiplication.

We know that, matrix multiplication is not commutative.

Hence, M is not an abelian group.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

- Solution: Let A = set of all positive rational numbers.
 Let a,b,c be any three elements of A.
- 1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., $a * b \in A$ for all $a,b \in A$.

- 2. Associativity: (a*b)*c = (ab/2)*c = (abc)/4a*(b*c) = a*(bc/2) = (abc)/4
- 3. <u>Identity</u>: Let e be the identity element.

We have a*e = (a e)/2 ...(1), By the definition of * again, a*e = a(2), Since e is the identity.

From (1) and (2), (a e)/2 = a \Rightarrow e = 2 and 2 \in A.

:. Identity element exists, and '2' is the identity element in A.

4. <u>Inverse</u>: Let a ∈ Alet us suppose b is inverse of a.

Now, $a * b = (a b)/2 \dots (1)$ (By definition of inverse.)

Again, a * b = e = 2(2) (By definition of inverse)

From (1) and (2), it follows that

$$(a b)/2 = 2$$

$$\Rightarrow b = (4 / a) \in A$$

- \therefore (A,*) is a group.
- Commutativity: a * b = (ab/2) = (ba/2) = b * a
- \blacksquare Hence, (A,*) is an abelian group.

Example

- Ex. Let R be the set of all real numbers and * is a binary operation defined by a * b = a + b + a b. Show that (R, *) is a monoid.
 Is (R, *) a group?. Justify your answer.
- Try for yourself.
 identity = 0

inverse of a = -a/(a+1)

- Ex. In a group (G, *), Prove that the identity element is unique.
- Proof:
- a) Let e_1 and e_2 are two identity elements in G.

Now, $e_1 * e_2 = e_1$...(1) (since e_2 is the identity)

Again, $e_1 * e_2 = e_2$...(2) (since e_1 is the identity)

From (1) and (2), we have $e_1 = e_2$

:. Identity element in a group is unique.

- Ex. In a group (G, *), Prove that the inverse of any element is unique.
- Proof:
- Let a ,b,c \in G and e is the identity in G.
- Let us suppose, Both b and c are inverse elements of a.
- Now, a * b = e ...(1) (Since, b is inverse of a)
- Again, a * c = e ...(2) (Since, c is also inverse of a)
- From (1) and (2), we have
- a * b = a * c
- \Rightarrow b = c (By left cancellation law)
- In a group, the inverse of any element is unique.

- Ex. In a group (G, *), Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a,b \in G$.
- Proof :
- Consider,

$$(a * b) * (b^{-1} * a^{-1})$$

$$= (a * (b * b^{-1}) * a^{-1})$$

$$= (a * e * a^{-1})$$

$$= (a * a^{-1})$$

$$= e$$

Similarly, we can show that

$$(b^{-1} * a^{-1}) * (a * b) = e$$

■ Hence,
$$(a * b)^{-1} = b^{-1} * a^{-1}$$
.

(By associative property).

(By inverse property)

(Since, e is identity)

(By inverse property)

- Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.
- Proof: Given that, a * a = a
- \Rightarrow a * a = a * e (Since, e is identity in G)
- \Rightarrow a = e (By left cancellation law)
- Hence, the result follows.

- Ex. If every element of a group is its own inverse, then show that the group must be abelian.
- Proof: Let (G, *) be a group.
- Let a and b are any two elements of G.
- Consider the identity,
- $(a * b)^{-1} = b^{-1} * a^{-1}$
- \Rightarrow (a * b) = b * a (Since each element of G is its own
- inverse)
- Hence, G is abelian.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

- Ex. In a group (G, *), if $(a * b)^2 = a^2 * b^2 \quad \forall a, b \in G$ then show that G is abelian group.
- Proof: Given that $(a * b)^2 = a^2 * b^2$
- \Rightarrow (a * b) * (a * b) = (a * a)* (b * b)
- \Rightarrow a *(b * a)* b = a * (a * b) * b (By associative law)
- $\Rightarrow (b * a)* b = (a * b) * b$ (By left cancellation law)
- $\Rightarrow (b * a) = (a * b)$ (By right cancellation law)
- Hence, G is abelian group.

Finite groups

- Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.
- Solution: The composition table of G is

- 1. <u>Closure property</u>: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. Inverse: From the composition table, we see that the inverse elements of 1 and -1 are 1 and -1 respectively.

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication...

Ex. Show that $G = \{1, \omega, \omega^2\}$ is an abelian group under multiplication. Where $1, \omega, \omega^2$ are cube roots of unity.

Solution: The composition table of G is

•	•	1	ω	ω^2
1	1	1	ω	ω^2
	α	ω	ω^2	1
	\mathfrak{D}^2	ω ω^2	1	ω

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1ω , ω^2 are $1, \omega^2$, ω respectively.

- Hence, G is a group w.r.t multiplication.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.
- Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

•		1	-1	i	-i
•	1	1	-1	i	- i
•	-1	-1	1	-i	i
•	i	i	-i	-1	1
•	-i	-i	i	1	-1

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of
 - 1 -1, i, -i are 1, -1, -i, i respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

- $\blacksquare \quad \underline{\text{Addition modulo m}} \quad (+_{\text{m}})$
- let m is a positive integer. For any two positive integers a and b
- $a +_m b = r$ if $a + b \ge m$ where r is the remainder obtained
- by dividing (a+b) with m.
- $\blacksquare \quad \underline{\text{Multiplication modulo p}} \quad (\times_{p})$
- let p is a positive integer. For any two positive integers a and b
- a $\times_p b = r$ if $a b \ge p$ where r is the remainder obtained
- by dividing (ab) with p.
- Ex. $3 \times_5 4 = 2$, $5 \times_5 4 = 0$, $2 \times_5 2 = 4$

Ex. The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

_	$+_6 \mid 0$	1	2	3	4	5
0	0	1	2	3	4	5
1	1					
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

- 2. <u>Associativity</u>: The binary operation $+_6$ is associative in G. for ex. $(2 +_6 3) +_6 4 = 5 +_6 4 = 3$ and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$
- **3**. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.
- \blacksquare Hence, $(G, +_6)$ is an abelian group.

Ex. The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

•	\times_7	1	2	3	4	5	6
•		1					
•	2	2	4	6	1	3	5
•	3	3	6	2	5	1	4
•	4	4	1	5	2	6	3
•	5	5	3	1	6	4	2
1 Classon	6	6	5	4	3	2	1
_ 1 01			7:	_ 11 41.			C 41

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

- 2. <u>Associativity</u>: The binary operation \times_7 is associative in G. for ex. $(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$ and $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$
- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 1 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 3, 6 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_7 is commutative.
- \blacksquare Hence, (G, \times_7) is an abelian group.

Homomorphism and Isomorphism.

- **Homomorphism :** Consider the groups (G, *) and (G^1, \oplus) A function $f: G \to G^1$ is called a homomorphism if $f(a * b) = f(a) \oplus f(b)$
- **Isomorphism**: If a homomorphism $f: G \to G^1$ is a bijection then f is called isomorphism between G and G^1 .

Then we write $G \equiv G^1$

Example

- Ex. Let R be a group of all real numbers under addition and R⁺ be a group of all positive real numbers under multiplication. Show that the mapping $f: R \to R^+$ defined by $f(x) = 2^x$ for all $x \in R$ is an isomorphism.
- Solution: First, let us show that f is a homomorphism.
- Let $a, b \in R$.
- Now, $f(a+b) = 2^{a+b}$
- $= 2^{a} 2^{b}$
- = f(a).f(b)
- ∴ f is an homomorphism.
- Next, let us prove that f is a Bijection.

For any $a, b \in R$, Let, f(a) = f(b)

$$\Rightarrow 2^a = 2^b$$

$$\Rightarrow a = b$$

- ∴ f is one.to-one.
- Next, take any $c \in R^+$.
- Then $\log_2 c \in R$ and $f(\log_2 c) = 2^{\log_2 c} = c$.
- \Rightarrow Every element in R⁺ has a pre image in R.
- i.e., f is onto.
- ∴ f is a bijection.
- Hence, f is an isomorphism.

Example

- Ex. Let R be a group of all real numbers under addition and R⁺ be a group of all positive real numbers under multiplication. Show that the mapping $f: R^+ \to R$ defined by $f(x) = \log_{10} x$ for all $x \in R$ is an isomorphism.
- Solution: First, let us show that f is a homomorphism.
- Let $a, b \in R^+$.
- Now, $f(a.b) = log_{10} (a.b)$
- $= \log_{10} a + \log_{10} b$
- = f(a) + f(b)
- ∴ f is an homomorphism.
- Next, let us prove that f is a Bijection.

- For any $a, b \in R^+$, Let, f(a) = f(b)
- $\Rightarrow \log_{10} a = \log_{10} b$
- $\Rightarrow a = b$
- ∴ f is one.to-one.
- Next, take any $c \in R$.
- Then $10^{c} \in R$ and $f(10^{c}) = \log_{10} 10^{c} = c$.
- \Rightarrow Every element in R has a pre image in R⁺.
- i.e., f is onto.
- ∴ f is a bijection.
- Hence, f is an isomorphism.