Laboratorium Podstaw Elektroniki						
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	Symbol grupy lab.		
Informatyka	_	I		!3		
Temat Laboratorium	·			Numer lab.		
Elementy RLC						
Skład grupy ćwiczeniowej oraz numery inde	eksów					
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)						
Uwagi			Ocena			

1 Krzywa ładowania pojemności

1.1 Cel zadania

Celem tego zadania jest empiryczne wyznaczenie krzywej ładowania pojemności, przy pomocy pomiaru czasu i woltomierza.

1.2 Przebieg Ćwiczenia

Do przeprowadzenia ćwiczenia użyto rezystorów $1M\Omega$ (rzeczywista wartość 0.986 $M\Omega$), $1k\Omega$ (rzeczywista wartość 0.972 $k\Omega$), oraz kondensatora 35V 47 μF (rzeczywista wartość 45.450 μF).

Rozpoznano konfiguracje przełącznika, a następnie przy pomocy prototypowej płytki stykowej zbudowano obwód zaprezentowany poniżej i przeprowadzono pomiary napięć co 10 sekund.

Rysunek 1: Obwód do wyznaczania czasu ładowania pojemności.

Czas [s]	Napicie[V]
0	0.047
10	1.878
20	3.433
30	4.650
40	5.422
50	6.174
60	6.745
70	7.246
80	7.608
90	7.910
100	8.143
110	8.336
120	8.489

Tablica 1: Tabela przedstawiająca wyniki pomiarów

1.3 Wyznaczenie przebiegu prądu ładowania pojemności w czasie, na podstawie bilansu napięć w oczku oraz wartości rezystancji R_1

$$(E(1 - e^{\frac{-t}{RC}}))' =$$

$$= E'(1 - e^{\frac{-t}{RC}}) + E(1' - \ln e^{\frac{-1}{RC}} \cdot e^{\frac{t}{RC}}) =$$

$$0 + E(\frac{1}{RC})e^{\frac{-t}{RC}} =$$

$$E\frac{1}{RC} \cdot e^{\frac{-t}{RC}}$$

$$I_C(t) = \frac{E}{R}e^{\frac{-t}{RC}}$$

Wykres wyznaczonej zależności

2 Obwód RC zasilany prądem przemiennym

2.1 Badany obwód

2.2 Cel zadania

Obserwacja zmiany skutecznej wartości prądu w obwodzie w funkcji częstotliwości pobudzenia

2.3 tabela

Wzór do obliczeń:

$$E-U_C-U_{R=0}$$

częstotliwość[kHz]	X[V]	Y[V]	X-Y[V]
1	1.690	0.107	1.583
2	1.730	0.209	1.521
4	1.730	0.410	1.320
6	1.730	0.573	1.157
8	1.730	0.744	0.986
10	1.700	0.875	0.825
12	1.680	0.985	0.695
14	1.660	1.080	0.579
16	1.720	1.150	0.570
18	1.650	1.220	0.429
20	1.710	1.280	0.429

Wykres zależności $\underline{U_C} = f(\omega)$

2.4 Relacja między reaktancją pojemnościową, czestotliwością pobudzenia, oraz wartością prądu

Wraz z wrostem częstotliwości pobudzenia wartość reaktnacji maleje, a wartość prądu rośnie.

2.5 Wybrana częstotliwość pobudzenia

Wybrano częstotliwość 20kHz. Wartości skuteczne napięć:

• na źródle: 1.71V

• na rezystorze: 1.28V

 $\triangle x = 4.80 \mu s$

$$2\pi \cdot 20000 \cdot 4.8 \cdot 10^{-6} \approx 34.56$$

przesunięcie fazowe 34.56

$$R = 996\Omega$$

$$Z_C = -j\frac{1}{\omega C}$$

$$\underline{Z} = R - j\frac{1}{2\pi\phi C} = 996 - j795.8\Omega$$

$$I = \frac{V}{\underline{Z}} = \frac{2.5}{996 - j795.8} = 0.00153 + j0.00122I_z = Re[J] = 0.0153 = 1.53mA$$

$$V_R = IR = (0.00153 + j0.00122) \cdot 996 = 1.52 + j1.22$$

$$V_R = 1.52V$$

$$V = 2.5V$$

$$\underline{V} = 2.5V$$

$$\underline{V} = \frac{2.5}{\sqrt{2}} = 1.77V$$

$$V_C = \underline{V} - V_R = 0.49V$$

3 Układ RL

3.1 Badany obwód

3.2 tabela

Wzór do obliczeń: $E-U_C-U_{R=0}$

częstotliwość[kHZ]	X[V]	Y[V]	X - Y[V]
1	1.730	1.600	0.129
2	1.760	1.560	0.199
4	1.750	1.350	0.399
6	1.790	1.150	0.640
8	1.810	0.947	0.863
10	1.780	0.810	0.970
12	1.780	0.718	1.062
14	1.790	0.632	1.158
16	1.820	0.567	1.253
18	1.830	0.501	1.329
20	1.810	0.465	1.345

3.3 Relacja między reaktancją pojemnościową, czestotliwością pobudzenia, oraz wartością prądu

Wraz z wrostem częstotliwości pobudzenia wartość reaktnacji rośnie, a wartość prądu maleje.

3.4 Wybrana częstotliwość pobudzenia

Wybrano częstotliwość 20kHz. Wartości skuteczne napięć:

• na źródle: 1.85V

• na rezystorze: 447mV

$$\triangle x = 11.2\mu s$$

$$2\pi \cdot 20000 \cdot 11.2 \cdot 10^{-6} = 0.448\pi \approx 80.8 = \phi$$

przesunięcie fazowe $\phi = 80.8$

$$Z = R + j\omega L$$

$$|Z| = \sqrt{R^2 + (\omega L)^2}$$

$$I_C = \frac{U_{Vpp}}{|Z|}$$

Literatura

- [1] S. Bolkowski, Teoria obwodów elektrycznych, ser. Elektrotechnika teoretyczna. Wydawnictwa NaukowoTechniczne, 1986, no. t. 1.
- [2] ps) P. Horowitz and W. Hill, Sztuka elektroniki. WKiŁ, 2003, vol. 1.
- [3] D. Halliday, R. Resnick, and J. Walker, Podstawy fizyki. PWN, 2003, vol. 3.
- [4] J. Watson, Elektronika. WKiŁ, 1999.
- [5] Z. Nosal and J. Baranowski, Układy elektroniczne. WNT, 2003.