1

Gate Assignment - 4

Chirag Mehta - AI20BTECH11006

Download all latex-tikz codes from

https://github.com/cmaspi/EE3900/blob/main/ GateAssignment-4/main.tex

1 Problem

(GATE EC 1999 Q1.3) If [f(t)] = F(s), then [f(t-T)] is equal to

- 1) $e^{sT}F(s)$
- 2) $e^{-sT}F(s)$
- 3) $\frac{F(s)}{1 + e^{s/3}}$
- 4) $\frac{F(s)}{1 + e^{-sT}}$

2 Solution

Definition 1.

$$[f(t)] = \mathcal{L}\{u(t)f(t)\}$$
 (2.0.1)

Definition 2 (Laplace Transform). It is an integral transform that converts a function of a real variable t to a function of a complex variable s. The Laplace transform of f(t) is denoted by $\mathcal{L}\{f(t)\}$ or F(s).

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt \qquad (2.0.2)$$

Lemma 2.1. Time Shift Property of Laplace transformation

$$f(t-T)u(t-T) \stackrel{\mathcal{L}}{\rightleftharpoons} e^{-sT} F(s)$$
 (2.0.3)

Proof.

$$\mathcal{L}\left\{f(t-T)u(t-T)\right\}$$

$$= \int_0^\infty e^{-st} f(t-T)u(t-T)dt$$
(2.0.4)

This can be written as

$$= e^{-sT} \int_{-T}^{\infty} e^{-s(t-T)} f(t-T) u(t-T) d(t-T)$$
(2.0.5)

$$= e^{-sT} \int_0^\infty e^{-s(t-T)} f(t-T) d(t-T)$$
 (2.0.6)

$$=e^{-sT}F(s) ag{2.0.7}$$

Using (2.1), the correct answer is **Option(2)**