Occupancy Detection

Created and Presented
By
Cristina Sahoo

Problem Statement

- Identify trends over time and correlation between environment variables and occupancy
- Identify algorithms/models with best accuracy score for predicting occupancy

Applications

- Recent studies and measurements [12-15] report energy savings of 30% to 42% with accurate occupancy determination
- When occupancy data was used as an input for HVAC control algorithms, energy savings were as high as 80% [16]

 A system that could accurately detect the presence of the occupants without using a camera is very interesting due to privacy concerns

 Other applications for occupancy detection include security and determination of building occupant behaviors

Data Source and Collection

Occupancy Detection Dataset - UCI Machine Learning Repository

Data Cleaning

Data Dictionary

Feature Name	Feature Description	Units of Measurement or Format			
date	time the observation was recorded	year-month-day hour:minute:second			
temperature	temperature recorded	Celsius			
humidity	relative humidity recorded	%			
light	light recorded at time of observation	Lux			
co2	CO2 measured at the time of observation	ppm, parts per million			
humidity_ratio	derived quantity from temperature and relative humidity	kgwater-vapor/kg-air			
occupancy	status of room occupancy	0 for not occupied, 1 for occupied status			
weekday	indicates if the timestamp is weekday or weekend	1 for weekday, 0 for weekend			

Statistics and Distributions

Class Value Counts

Light measurements, Thursday vs Saturday

Humidity measurements, Thursday vs Saturday

CO2 measurements, Thursday vs Saturday

Temperature measurements, Thursday vs Saturday

Average measurement values by Class

Light measurements on Saturday 2015-02-07

Light measurements on Thursday 2015-02-12

Light measurements on Saturday 2015-02-07 between 9:35am and 9:52am

Light measurements on Thursday 2015-02-12 9:35am to 10:02am

CO2 measurements Sat 02/14 to Wed 02/18

CO2 measurements Sat 02/07 to Wed 02/11

Number of "Occupied" type Observations, by Day

Number of Total Observations, by Day

Correlation Observed between Occupancy and Measurements

Modeling

- Models were trained on 75% of the combined data, with 25% left for testing.
- 63 models were run on the [temperature, light, co2, humidity, humidity_ratio] features..
- 154 models were run on the [temperature, light, co2, humidity, humidity_ratio, weekday] features.
- A total of 217 models were run.
- The best model was Random Forest. At training time, the model reported 99.60% accuracy on a 75/25 train/test split of combined data, 96.74% accuracy on test data with the door open, and 99.72% accuracy on test data with the door closed.

Abbreviation	Meaning					
RF	Random Forest					
LDA	Linear Discriminant Analysis					
GBM	Gradient Boosting Machine					
AdaBoost	Adaptive Boosting					
KNN	K-Nearest Neighbor					
SVC	Support Vector Classification					

Model Id	Model name	Features	Best score	Train score	Test score	Sensitivity	Specificity	Precision	Accuracy	F1-score
14	rf14	temperature, humidity, light, humidity_ratio, weekday	0.994	0.9996	0.996	0.9905	0.9974	0.9905	0.996	0.9905
12	rf12	temperature, humidity, light, co2, weekday	0.9945	1	0.9958	0.9894	0.9974	0.9905	0.9958	0.9899
11	rf11	temperature, humidity, light, co2, humidity_ratio, weekday	0.9946	1	0.9955	0.9905	0.9969	0.9884	0.9955	0.9894
1	rf1	temperature, humidity, light, co2	0.994	1	0.9955	0.9884	0.9974	0.9905	0.9955	0.9894
0	rf0	temperature, humidity, light, co2, humidity_ratio	0.9938	1	0.9953	0.9873	0.9974	0.9904	0.9953	0.9889
77	gbm11	temperature, humidity, light, co2, humidity_ratio, weekday	0.994	1	0.9951	0.9884	0.9969	0.9884	0.9951	0.9884
67	gbm1	temperature, humidity, light, co2	0.9932	0.9989	0.9949	0.9873	0.9969	0.9883	0.9949	0.9878
18	rf18	humidity, light, weekday	0.992	0.9994	0.9949	0.9884	0.9966	0.9873	0.9949	0.9878
3	rf3	temperature, humidity, light, humidity_ratio	0.9931	0.9996	0.9944	0.9831	0.9974	0.9904	0.9944	0.9867
66	gbm0	temperature, humidity, light, co2, humidity_ratio	0.993	1	0.9944	0.9862	0.9966	0.9873	0.9944	0.9868

Random Forest

temperature, humidity, light, humidity_ratio, weekday

0

Predicted label

0

Predicted label

Conclusions

Recommendations

Next Steps

Resources

- (1) Sensitivity and Specificity
- (2) Accuracy
- (3) Precision
- (4) Executive Summary
- (5) How to Predict Room Occupancy Based on Environmental Factors
- (6) Technical Report and Project
- (7) Improving Prediction of Office Room Occupancy Through Random Sampling
- (8) Occupancy
- (9) Room Occupancy Detection
- (10) Classroom Occupancy Project
- (11) Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Luis M. Candanedo, Véronique Feldheim. Energy and Buildings. Volume 112, 15 January 2016, Pages 28-39.
- (12) Calculate day in the past
- (13) V.L.Erickson, M.Á.Carreira-Perpinán, A.E.Cerpa, OBSERVE:Occupancy-based system for efficient reduction of HVAC energy, in: Proceedings of the 10th International Conference on, IEEE, Information Processing in Sensor Networks (IPSN), Chicago, IL, 2011, pp. 258–269.
- (14) V.L.Erickson, M.Á.Carreira-Perpinán, A.E.Cerpa,Occupancy modeling and prediction for building energy management, ACM Trans. Sensor Netw. (TOSN) 10 (3) (2014) 42.
- (14) Dong B., Andrews B., (2009). Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings. Proceedings of Building Simulation.
- (15) J. Brooks, S. Goyal, R. Subramany, Y. Lin, T. Middelkoop, L. Arpan, L. Carloni, P. Barooah, An experimental investigation of occupancy-based energy-efficient control of commercial building indoor climate, in: Proceeding of the IEEE 53rd Annual Conference on, IEEE, Decision and Control (CDC), Los Angeles, CA, 2014, pp. 5680–5685.
- (16) J. Brooks, S. Kumar, S. Goyal, R. Subramany, P. Barooah, Energy-efficient control of under-actuated HVAC zones in commercial buildings, Energy Build. 93 (2015) 160–168.

ALTERNATIVE RESOURCES

Find more illustrations like these on **Stories by Freepik**

Mon

Tue Wed Thu Fri

