Resampling Techniques and their Application

-Class 9-

Frank Konietschke

Institut für Biometrie und Klinische Epidemiologie Charité - Universitätsmedizin Berlin, Berlin frank.konietschke@charite.de

Before and after measures

- Before and after measures
- E.g. blood pressure before and after surgery

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages
 - Every subject (patient) is his/her own control

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages
 - Every subject (patient) is his/her own control
 - Reducation of subjects

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages
 - Every subject (patient) is his/her own control
 - Reducation of subjects
 - Less costs (potentially)

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages
 - Every subject (patient) is his/her own control
 - Reducation of subjects
 - Less costs (potentially)
- Measurements from the same subject are not necessarily independent

• Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)

- Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)
- Response: Absorption of the drug in the blood

- Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)
- Response: Absorption of the drug in the blood

- Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)
- Response: Absorption of the drug in the blood

ID Brand Generic 4108 1755 2526 1138 2779 1613 3852 2254 1833 1310 2463 2120 2059 1851 1709 1878 1829 1682 10 2594 2613

- Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)
- Response: Absorption of the drug in the blood

ID	Brand	Generic
1	4108	1755
2	2526	1138
3	2779	1613
4	3852	2254
5	1833	1310
6	2463	2120
7	2059	1851
8	1709	1878
9	1829	1682
10	2594	2613

• Aim: H_0 : $\mu_1 = \mu_2$ and confidence interval

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$\mathbf{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

• σ : Covariance of X_k and Y_k

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

- σ : Covariance of X_k and Y_k
- $\sigma = E((X_k \mu_1)(Y_k \mu_2))$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

- σ : Covariance of X_k and Y_k
- $\sigma = E((X_k \mu_1)(Y_k \mu_2))$
- Measures the degree of the (linear) relationship between X_k and Y_k

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$\mathbf{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

- σ : Covariance of X_k and Y_k
- $\sigma = E((X_k \mu_1)(Y_k \mu_2))$
- Measures the degree of the (linear) relationship between X_k and Y_k
- On average, $(\underbrace{(X_k \mu_1)}_{\leq 0} \underbrace{(Y_k \mu_2)}_{\leq 0}) \leq 0$

• $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$
- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$
- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $\bullet \ D_k = X_k Y_k$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$
- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $\bullet \ D_k = X_k Y_k$
 - \bullet \overline{D} . mean of the differences

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$
- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $\bullet \ D_k = X_k Y_k$
 - \bullet \overline{D} . mean of the differences
 - $\hat{\sigma}_D^2$ empirical variance of the differences

$$T = \sqrt{n} \cdot \frac{\overline{D}}{\widehat{\sigma}_D}$$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

•
$$E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(X_k) = \Sigma$$

- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $\bullet \ D_k = X_k Y_k$
 - \bullet \overline{D} . mean of the differences
 - $\hat{\sigma}_D^2$ empirical variance of the differences

$$T = \sqrt{n} \cdot \frac{\overline{D}}{\widehat{\sigma}_D}$$

• $T \stackrel{\mathcal{D}}{\rightarrow} N(0,1)$ or $T \approx T_{n-1}$ (under H_0)

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

•
$$E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(X_k) = \Sigma$$

- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $\bullet \ D_k = X_k Y_k$
 - \bullet \overline{D} . mean of the differences
 - $\hat{\sigma}_D^2$ empirical variance of the differences

$$T = \sqrt{n} \cdot \frac{\overline{D}}{\widehat{\sigma}_D}$$

- $T \stackrel{\mathcal{D}}{\rightarrow} N(0,1)$ or $T \approx T_{n-1}$ (under H_0)
- Reject H_0 , if $|T| \ge t_{1-\alpha/2}(n-1)$

Example Evaluation

```
brand=c(4108,2526,2779,3852,1833, 2463,2059,1709,1829,2594)
generic=c(1755,1138,1613,2254,1310,2120,1851,1878,1682,2613)
plot(brand, generic, pch=19, cex=1.3)
n=length(brand)
x=cbind(brand,generic)
var(x)
diff=brand-generic
mD=mean(diff)
vd=var(diff)
T=sqrt(n)*mD/sqrt(vd)
pvalue=2*min(pt(T,n-1), 1-pt(T,n-1))
t.test(brand,generic,paired=TRUE)
```

• Valid if differences D_k are normally distributed (small samples)

- Valid if differences D_k are normally distributed (small samples)
- Valid for large sample sizes

- Valid if differences D_k are normally distributed (small samples)
- Valid for large sample sizes
- Test is liberal/ conservative under non-normality

- Valid if differences D_k are normally distributed (small samples)
- Valid for large sample sizes
- Test is liberal/ conservative under non-normality
- Idea: Resample the distribution of T

- Valid if differences D_k are normally distributed (small samples)
- Valid for large sample sizes
- Test is liberal/ conservative under non-normality
- Idea: Resample the distribution of T
- But how? Differences?

• Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1
 - $X_{21}^*, \dots, X_{2n}^*$: condition 2

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \ldots, X_{1n}^*$: condition 1
 - $X_{21}^*, \dots, X_{2n}^*$: condition 2
 - $D_k^* = X_{1k}^* X_{2k}^*$; \overline{D}_{\cdot}^* : mean

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1
 - $X_{21}^*, \ldots, X_{2n}^*$: condition 2
 - $D_k^* = X_{1k}^* X_{2k}^*$; \overline{D}_{\cdot}^* : mean
 - $\widehat{\sigma}_D^{2*}$ empirical variances

$$T^* = \sqrt{n} \cdot \frac{\overline{D}_{\cdot}^*}{\widehat{\sigma}_D^*}$$

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1
 - $X_{21}^*, \dots, X_{2n}^*$: condition 2
 - $D_k^* = X_{1k}^* X_{2k}^*$; \overline{D}_{\cdot}^* : mean
 - $\hat{\sigma}_D^{2*}$ empirical variances

$$T^* = \sqrt{n} \cdot \frac{\overline{D}_{\cdot}^*}{\widehat{\sigma}_D^*}$$

Repeat these steps n_{boot}-times

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1
 - $X_{21}^*, \dots, X_{2n}^*$: condition 2
 - $D_k^* = X_{1k}^* X_{2k}^*$; \overline{D}_{\cdot}^* : mean
 - $\hat{\sigma}_D^{2*}$ empirical variances

$$T^* = \sqrt{n} \cdot \frac{\overline{D}_{\cdot}^*}{\widehat{\sigma}_D^*}$$

- Repeat these steps n_{boot}-times
- Reject H_0 , if $T < c^*_{lpha/2}$ or $T > c^*_{1-lpha/2}$

• Observations on the same subject are not necessarily independent

- Observations on the same subject are not necessarily independent
- Can we resample despite the dependencies?

- Observations on the same subject are not necessarily independent
- Can we resample despite the dependencies?
 - We will study methods that keep and ignore the dependencies

- Observations on the same subject are not necessarily independent
- Can we resample despite the dependencies?
 - We will study methods that keep and ignore the dependencies
 - Resampling the differences

- Observations on the same subject are not necessarily independent
- Can we resample despite the dependencies?
 - We will study methods that keep and ignore the dependencies
 - Resampling the differences
 - Resampling from all data and thus ignoring dependencies

• Differences $D = (D_1, \dots, D_n)$ (fixed values)

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

• Example $X = (1, 2, 3, 4, 5) \Rightarrow$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

• Example $X = (1, 2, 3, 4, 5) \Rightarrow X^* = (2, 2, 4, 3, 2)$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

• Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow \mathbf{X}^* = (2, 2, 4, 3, 2) \\ \mathbf{X}^* = (1, 1, 2, 3, 3)$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (2, 2, 4, 3, 2)$
 - $\mathbf{X}^* = (1, 1, 2, 3, 3)$
 - $\mathbf{X}^* = (2, 5, 5, 3, 3)$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

• Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (2, 2, 4, 3, 2)$
 - $\mathbf{X}^* = (1, 1, 2, 3, 3)$
 - $\mathbf{X}^* = (2, 5, 5, 3, 3)$

...

In R: sample(x,replace=TRUE)

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (2, 2, 4, 3, 2)$
 - $\mathbf{X}^* = (1, 1, 2, 3, 3)$
 - $\mathbf{X}^* = (2, 5, 5, 3, 3)$

...

- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap

• Differences $D = (D_1, \dots, D_n)$ (fixed values)

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Resampling** randomly draw n observations D_k^* from

$$N(0,\widehat{\sigma}^2)$$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Resampling** randomly draw n observations D_k^* from

$$N(0,\widehat{\sigma}^2)$$

• In R: rnorm(n, 0, sd(x))

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Resampling** randomly draw n observations D_k^* from

$$N(0,\widehat{\sigma}^2)$$

- In R: rnorm(n, 0, sd(x))
- Also known as Parametric Bootstrap (Useful?)

• Differences $D = (D_1, \dots, D_n)$ (fixed values)

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$
 - Random signs $P(W_1 = 1) = P(W_1 = -1) = 1/2$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$
 - Random signs $P(W_1 = 1) = P(W_1 = -1) = 1/2$
 - Asymmetric signs $P(W_1=\frac{1+\sqrt{5}}{2})=\frac{\sqrt{5}-1}{2\sqrt{5}}$ and $P(W_1=\frac{1-\sqrt{5}}{2})=\frac{\sqrt{5}+1}{2\sqrt{5}}$

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$
 - Random signs $P(W_1 = 1) = P(W_1 = -1) = 1/2$
 - Asymmetric signs $P(W_1 = \frac{1+\sqrt{5}}{2}) = \frac{\sqrt{5}-1}{2\sqrt{5}}$ and $P(W_1 = \frac{1-\sqrt{5}}{2}) = \frac{\sqrt{5}+1}{2\sqrt{5}}$
- Wild-Bootstrap Method

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$
 - Random signs $P(W_1 = 1) = P(W_1 = -1) = 1/2$
 - Asymmetric signs $P(W_1=\frac{1+\sqrt{5}}{2})=\frac{\sqrt{5}-1}{2\sqrt{5}}$ and $P(W_1=\frac{1-\sqrt{5}}{2})=\frac{\sqrt{5}+1}{2\sqrt{5}}$
- Wild-Bootstrap Method
- Note that centering is not necessary (why?)

• Data $X_k = (X_{1k}, X_{2k})'$ (fixed values)

- Data $X_k = (X_{1k}, X_{2k})'$ (fixed values)
- Randomly permute the data within each pair: $\mathbf{X}_{k}^{*} = (X_{1k}^{*}, X_{2k}^{*})'$

- Data $X_k = (X_{1k}, X_{2k})'$ (fixed values)
- Randomly permute the data within each pair: $\mathbf{X}_{k}^{*} = (X_{1k}^{*}, X_{2k}^{*})'$
- This method is equivalent to....

Resampling Using Original Data

• Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)

Resampling Using Original Data

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow \mathbf{X}^* = (2, 2, 4, 3, 2)$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (2, 2, 4, 3, 2)$
 - $\mathbf{X}^* = (1, 1, 2, 3, 3)$
 - $\mathbf{X}^* = (2, 5, 5, 3, 3)$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow$ $\mathbf{X}^* = (2, 2, 4, 3, 2)$ $\mathbf{X}^* = (1, 1, 2, 3, 3)$ $\mathbf{X}^* = (2, 5, 5, 3, 3)$...
- In R: sample(x)

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2*n* observations X_{ik}^* in **X**
- Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow$ $\mathbf{X}^* = (2, 2, 4, 3, 2)$ $\mathbf{X}^* = (1, 1, 2, 3, 3)$ $\mathbf{X}^* = (2, 5, 5, 3, 3)$...
- In R: sample(x)
- Ignoring the dependency

• Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from **X**
- Example $X = (1, 2, 3, 4, 5) \Rightarrow X^* = (2, 2, 4, 3, 2)$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

In R: sample(x,replace=TRUE)

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap II

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap II
- Ignoring the dependency

• Permuting (or drawing with replacement) all data is not intuitive

- Permuting (or drawing with replacement) all data is not intuitive
- Observations on same subject might be dependent

- Permuting (or drawing with replacement) all data is not intuitive
- Observations on same subject might be dependent
- Reason: The permutation distribution mimics the distribution of T

- Permuting (or drawing with replacement) all data is not intuitive
- Observations on same subject might be dependent
- Reason: The permutation distribution mimics the distribution of T
- Reference: Konietschke and Pauly (2015)

Illustration

```
x=brand
y=generic
plot(x,y,pch=19,cex=1.3)
n = 10
d=x-y
T=sqrt(n)*mean(d)/sd(d)
pvalue=2*min(pt(T,n-1),1-pt(T,n-1))
pvalue
Tstar=c()
xy=c(x,y)
for(i in 1:100000){
xstar=sample(xy) #permutation overall
dstar=xstar[1:n]-xstar[(n+1):(2*n)]
Tstar[i] = sqrt(n)*mean(dstar)/sd(dstar)
pstar= 2*min(mean(Tstar<=T),mean(Tstar>=T))
pstar
```


• Data generation

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \; E(\mathbf{Z}_{k}) = \mathbf{0}, \; Var(\mathbf{Z}_{k}) = \mathbf{I} \text{ or } \\ \mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \; \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \text{ (quantile method), or } \\ X_{0k} \sim E(X_{0k}) = 0 \text{ and } Var(X_{0k}) = 1 \\ X_{1k} \sim E(X_{1k}) = 0 \text{ and } Var(X_{1k}) = 1 \\ X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$$

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \; E(\mathbf{Z}_{k}) = \mathbf{0}, \; Var(\mathbf{Z}_{k}) = \mathbf{I} \text{ or } \\ \mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \; \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \text{ (quantile method), or } \\ X_{0k} \sim E(X_{0k}) = 0 \text{ and } Var(X_{0k}) = 1 \\ X_{1k} \sim E(X_{1k}) = 0 \text{ and } Var(X_{1k}) = 1 \\ X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$$

Elegant way: Copula (not covered in this class)

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \ E(\mathbf{Z}_{k}) = \mathbf{0}, \ Var(\mathbf{Z}_{k}) = \mathbf{I} \text{ or } \\ \mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \ \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \text{ (quantile method), or } \\ X_{0k} \sim E(X_{0k}) = 0 \text{ and } Var(X_{0k}) = 1 \\ X_{1k} \sim E(X_{1k}) = 0 \text{ and } Var(X_{1k}) = 1 \\ X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$$

- Elegant way: Copula (not covered in this class)
- Note: Most distributions cannot have a perfect correlation and most have bounded possible correlations within [-1,1].

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \ E(\mathbf{Z}_{k}) = \mathbf{0}, \ Var(\mathbf{Z}_{k}) = \mathbf{I} \text{ or } \\ \mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \ \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \text{ (quantile method), or } \\ X_{0k} \sim E(X_{0k}) = 0 \text{ and } Var(X_{0k}) = 1 \\ X_{1k} \sim E(X_{1k}) = 0 \text{ and } Var(X_{1k}) = 1 \\ X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$$

- Elegant way: Copula (not covered in this class)
- Note: Most distributions cannot have a perfect correlation and most have bounded possible correlations within [-1, 1].
- Multivariate normal distribution in R: packages mvtnorm or multcomp

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \ E(\mathbf{Z}_{k}) = \mathbf{0}, \ Var(\mathbf{Z}_{k}) = \mathbf{I} \text{ or } \\ \mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \ \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \text{ (quantile method), or } \\ X_{0k} \sim E(X_{0k}) = 0 \text{ and } Var(X_{0k}) = 1 \\ X_{1k} \sim E(X_{1k}) = 0 \text{ and } Var(X_{1k}) = 1 \\ X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$$

- Elegant way: Copula (not covered in this class)
- Note: Most distributions cannot have a perfect correlation and most have bounded possible correlations within [-1, 1].
- Multivariate normal distribution in R: packages mvtnorm or multcomp
- $\Phi(x)$: CDF of N(0, 1)

Project

• In a paired data setting, permuting data overall and thus ignoring the dependency is somewhat counter intuitive. Verify the validity of the method for the paired t-test in a simulation study at 5% level of significance. Use $n_{sim} = 10,000$ and $n_{perm} = 10,000$ permutation runs. Generate bivariate normal data with variance $\sigma_i^2 = 1$ and different covariances $\sigma \in \{-0.95, -0.5, 0, 0.5, 0.95\}$ and sample sizes $n \in 10,20$.