题目概况

中文题目名称	集合统计	无形的博弈	奶酪
英文题目与子目录名	count	game	cheese
可执行文件名	count	game	cheese
输入文件名	count.in	game.in	cheese.in
输出文件名	count.out	game.out	cheese.out
每个测试点时限	1s	1s	1s
测试点数目	10	10	10
每个测试点分数	10	10	10
附加样例文件	有	无	无
题目类型	传统	传统	传统
运行内存上限	256MB	512MB	256MB

一、集合统计 (count.cpp/c/pas)

题目描述

定义一个集合 S 的 f 函数为 $f(s) = max(a) - min(a), a \in S$

给定一个集合 S , 求该集合所有非空子集的 f 函数之和。对 10^9+7 取模。

输入描述

第一行一个数 $[\mathbf{n}]$, 表示 |S|

第二行 n 个数表示集合中的元素。保证没有重复元素。

输出描述

输出共 1 行,即该集合所有非空子集的 f 函数对 $10^9 + 7$ 取模的和。

输入样例1

4 1 5 2 7

输出样例1

48

数据规模与约定

对于 40% 的数据 , $1 \le n \le 20$ 。

对于 100% 的数据, $1 < n < 10^6, 0 < a_i < 10^9$ 。

二、无形的博弈 (game.cpp/c/pas)

题目描述

神树大人造了一个长为 n的 01 序列,并邀请无所事事的神!来和他博弈。

每一轮里,若这个序列的第1项是0,那么神树大人可以选择让它不变或者变成1;若这个序列的第1项是1,那么神可以选择让它不变或者变成0。接着对这个序列进行**旋转操作**:即将第1项放到第n项的后面,其他项依次替补。如果这个序列变为全0,那么神胜利;如果存在一种方法让神脉远不能胜利,那么神树大人胜利。

一个可能的游戏如下:

初始状态 01

第一项是 0 , 神树大人让他变成 1 。序列变为: 11

第一项是 1,神1让他变成 0。序列变为:10

第一项是 1,神 让他变成 0。序列变为:00

神」胜利

现在,你作为神)的信徒,打算计算有多少种长为 n 的 01 序列使得神)胜利。

输入描述

第一行输入一个n。

输出描述

输出答案对 998244353 取模。

输入样例1

1

输出样例1

2

输入样例2

2

输出样例2

4

数据规模与约定

对于 30% 的数据 , $n \leq 5$ 。

对于 60% 的数据 , $n \leq 20$ 。

对于 100% 的数据 , $n < 10^5$ 。

三、奶酪 (cheese.cpp/c/pas)

题目描述

现有一块大奶酪,它的高度为 h,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z=0,奶酪的上表面为 z=h。

现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry则可以从空洞跑到奶酪上表面。

位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑到奶酪的上表面去?

空间内两点 $P_1(x_1, y_1, z_1)$ 、 $P_2(x_2, y_2, z_2)$ 的距离公式如下:

$$dist(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

输入描述

每个输入文件包含多组数据。

的第一行,包含一个正整数 7,代表该输入文件中所含的数据组数。

接下来是 T 组数据,每组数据的格式如下:第一行包含三个正整数 n,h 和 r ,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。

接下来的 n 行,每行包含三个整数 x,y,z,两个数之间以一个空格分开,表示空 洞球心坐标为 (x,y,z)。

输出描述

T 行,分别对应 T 组数据的答案,如果在第 i 组数据中, Jerry 能从下表面跑到上表面,则输出 Yes,如果不能,则输出 No (均不包含引号)。。

输入样例1

3
2 4 1
0 0 1
0 0 3
2 5 1
0 0 1
0 0 4
2 5 2
0 0 2
2 0 4

输出样例1

Yes

No

Yes

【输入输出样例 1说明】

第一组数据,由奶酪的剖面图可见: 第

一个空洞在(0,0,0)与下表面相切第

二个空洞在(0,0,4)与上表面相切两

个空洞在(0,0,2)相切

输出 Yes

第二组数据,由奶酪的剖面图可见:

两个空洞既不相交也不相切

输出 No

第三组数据,由奶酪的剖面图可见:

两个空洞相交

且与上下表面相切或相交

输出 Yes

数据规模与约定

对于 20% 的数据 , n = 1 , 1 \leq h , r \leq 10,000 , 坐标的绝对值不超过 10,000。

对于 40% 的数据 , 1 ≤ n ≤ 8 , 1 ≤ h , r ≤ 10,000 , 坐标的绝对值不超过 10,000。

对于 80% 的数据,1≤n≤1,000,1≤h,r≤10,000,坐标的绝对值不超过10,000。

对于 100% 的数据 , 1 ≤ n ≤ 1,000 , 1 ≤ h , r ≤ 1,000,000,000 , T ≤ 20 , 坐标的绝对值不超过 1,000,000,000。