Zadania 1 - Rachunek prawdopodobieństwa

Uwaga. W zdaniach dystrybuantę definiujemy jako funkcję $F(x) = P(X \le x)$.

1. Rzucamy jeden raz kostką, której rozkład prawdopodobieństwa liczby wypadniętych oczek podany jest w tabeli.

ω_i	1	2	3	4	5	6
p_i	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$

a) Zapisz w tabeli rozkład prawdopodobieństwa zmiennych losowych X i Y

$$X(\omega) = \begin{cases} -50 & \text{dla } \omega \in \{1, 2\} \\ 40 & \text{dla } \omega \in \{3, 4\} \\ 50 & \text{dla } \omega \in \{5, 6\}. \end{cases} \qquad Y(\omega) = \begin{cases} -200 & \text{dla } \omega \in \{1\} \\ 50 & \text{dla } \omega \in \{2, 3, 4, 5\} \\ 500 & \text{dla } \omega \in \{6\}. \end{cases}$$

- b) Wyznacz dystrybuanty zmiennych losowych X i Y oraz narysuj ich wykresy.
- 2. Rzucamy dwa raz monetą dla której prawdopodobieństwo wypadnięcia orła jest równe $\frac{2}{3}$. Zmienna losowa X przyjmuje wartość 500 jeżeli wypadną dwa orły, 100 jeżeli wypadnie jeden orzeł oraz -100 w pozostałych przypadkach. Podaj rozkład zmiennej losowej X i narysuj wykres dystrybuanty.
- 3. W tabeli podany jest rozkład prawdopodobieństwa zmiennej losowej X. Wyznacz dystrybuantę zmiennej losowej X i narysuj jej wykres.

ω_i	-2	0	2	4
p_i	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

4. W tabeli podany jest rozkład prawdopodobieństwa zmiennej losowej X.

x_i	-3	1	3	5	7
p_i	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	<u>3</u> 8

Wyznacz dystrybuantę zmiennej losowej X i narysuj jej wykres.

5. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < -5\\ 1/5 & \text{dla } x \in [-5, 2)\\ 4/5 & \text{dla } x \in [2, 7)\\ 1 & \text{dla } x \ge 7. \end{cases}$$

Podaj, jakie wartości przyjmuje zmienna losowa X z niezerowym prawdopodobieństwem.

6. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < -3\\ 1/3 & \text{dla } x \in [-3, 1)\\ 2/3 & \text{dla } x \in [1, 5)\\ 1 & \text{dla } x \in [5, \infty). \end{cases}$$

Podaj, jakie wartości przyjmuje zmienna losowa X z niezerowym prawdopodobieństwem.

7. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < 0\\ 1 - 1/2^n & \text{dla } x \in [n, n+1), \ n = 0, 1, 2, \dots \end{cases}$$

Narysuj wykres dystrybuanty, jakie wartości przyjmuje zmienna losowa X z niezerowym prawdopodobieństwem?

8. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < 1\\ 1 - 1/n & \text{dla } x \in [n, n+1), \ n = 1, 2, \dots \end{cases}$$

Narysuj wykres dystrybu
anty, jakie wartości przyjmuje zmienna losowa X z niezerowym
 prawdopodobieństwem?

- 9. Oblicz EX i VarX zmiennej losowej z Zadania 1.
- 10. Oblicz EX i VarX zmiennej losowej z Zadania 2.
- 11. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < -2\\ 1/3 & \text{dla } x \in [-2, 2)\\ 1 & \text{dla } x \ge 2. \end{cases}$$

Oblicz P(X < -2), $P(X \le -2)$, $P(X \ge 2)$ i $P(X > \frac{3}{2})$.

12. Dystrybuanta zmiennej losowej X dana jest wzorem:

$$F(x) = \begin{cases} 0 & \text{dla } x < 4\\ 1 & \text{dla } x \geqslant 4. \end{cases}$$

Oblicz P(X < 0), $P(X \le 0)$, $P(X \ge 4)$ i P(X = 5).

- 13. Zmienna losowa X ma rozkład Poissona z parametrem $\lambda=1$. Oblicz E(5X-3) i Var(5X-100).
- **14.** Zmienna losowa X ma rozkład Poissona z parametrem $\lambda=2$. Oblicz E(3X+5) i Var(2X-1).
- 15. Oblicz prawdopodobieństwo, że zmienna lodowa X o rozkładzie dwumianowym B(100,1/2) przyjmuje wartość 50. Oblicz to samo prawdopodobieństwo dla zmiennej losowej Y o rozkładzie Poissona z parametrem $\lambda=50$. Porównaj prawdopodobieństwa, że zmienne losowe X i odpowiednio Y przyjmują wartości ze zbioru $A=\{20,40,60,80\}$, $B=(-\infty,50]$, $C=(50,\infty)$.
- **16.** Oblicz prawdopodobieństwo, że zmienna lodowa X o rozkładzie dwumianowym B(100,1/4) przyjmuje wartość 25. Oblicz to samo prawdopodobieństwo dla zmiennej losowej Y o rozkładzie Poissona z parametrem $\lambda=25$. Porównaj prawdopodobieństwa, że zmienne losowe X i odpowiednio Y przyjmują wartości ze zbioru $A=\{10,30,50,70\}$. $B=(-\infty,30), C=[30,\infty)$.

Co potrafisz po tych zajęciach?

- Obliczasz wartość oczekiwaną, wariancję i odchylenie standardowe dla rozkładów dyskretnych, wyznaczasz dystrybuantę. Mając dystrybuantę potrafisz obliczyć prawdopodobieństa zadanych zdarzeń.
- \bullet Znasz rozkład dwumianowy, Poissona. Wiesz o asymptotycznej zależności między rozkładem dwumianowym, a rozkładem Poissona. Obliczasz dla zmiennej losowej Xo tych rozkładach prawdopodobieństwa typu

$$P(X \in \{2, 8, 10\}), P(X \in [2, 10)), P(X \le 5), P(X > 20).$$