# 1. Preliminares

### 1.1. Normas

Sea V un espacio vectorial,  $x, y, z \in V, \lambda \in \mathbb{R}$ 

■ Un **producto escalar** es una función  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$  que cumple:

$$\begin{split} \langle \lambda x, y \rangle &= \lambda \langle x, y \rangle & \qquad \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \\ \langle x, y \rangle &= \langle y, x \rangle & \qquad \langle x, x \rangle \geq 0, \ \langle x, x \rangle = 0 \iff x = \vec{0}_V \end{split}$$

 $\blacksquare$  Una **norma** es una función  $\|\cdot\|:V\to R$  que cumple:

$$||x|| \ge 0, \ ||x|| = 0 \iff x = \vec{0}_V$$
  
 $||\lambda v|| = |\lambda| \, ||v|| \qquad ||x + y|| \le ||x|| + ||y||$ 

 $\bullet \ \|\cdot\|$  cumple la identidad del paralelogramo

$$\left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 = \frac{\left\| x \right\|^2 + \left\| y \right\|}{2}$$

si y solo si procede producto escalar dado por la **identidad de polarización** 

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2$$

Se dice que esta es una norma euclídea.

- Un espacio normado es un par  $(V, \|\cdot\|_V)$
- $\blacksquare$  Una **p-norma** es una norma  $\left\|\cdot\right\|_p:\mathbb{R}^n\to R$  definida con

$$\|(x_1,\ldots,x_n)\|_p = \left[\sum_{j=1}^n x_j^p\right]^{\frac{1}{p}}$$

- El **exponente conjugado** de p es p' y cumple  $\frac{1}{p} + \frac{1}{p'} = 1$ . Es único y si p = 1 entonces  $p' = \infty$  y viceversa
- La norma euclidea que procede del producto escalar estándar es la p-norma de orden 2. 2 es el único número que tiene como conjudago a sí mismo
- Las p-normas cumplen las desigualdades de Young, Hölder y Minkowski:

$$\begin{split} a,b > 0 &\implies \frac{a^p}{p} + \frac{b^{p'}}{p'} \\ x,y \in \mathbb{R}^n &\implies \langle x,y \rangle \leq \|x\|_p \, \|y\|_{p'} \\ x,y \in \mathbb{R}^n &\implies \|x+y\|_p \leq \|x\|_p + \|y\|_p \end{split}$$

#### 1.2. Espacios métricos

Sea  $X \neq \emptyset$  conjunto y sean  $x, y, z \in X$ 

■ Un espacio métrico es un par (X, d) donde la función d:  $X \times X \to \mathbb{R}$  es una distancia que cumple:

$$d(x,y) \geq 0, \ d(x,y) = 0 \iff x = y$$
 
$$d(x,y) = d(y,x) \qquad d(x,z) \leq d(x,y) + d(y,z)$$

- Si  $E \subset X$ ,  $E \neq \emptyset$  entonces la restricción  $d_E : E \times E \to \mathbb{R}$  define una distancia
- Si  $E \subset \mathbb{R}^n = X$  no vacío, no necesariamente subespacio, entonces  $\|x-y\|_E$  define una distancia en E

#### 1.3. Sucesiones

- Una sucesión  $\{x_n\} \subset X$  es de Cauchy  $\iff \forall \varepsilon > 0, \exists N_{\varepsilon}$  tal que  $n, m \geq N_{\varepsilon} \implies d(x_n, x_m) < \varepsilon$ 
  - (X, d) completo  $\iff \{x_n\}$  de Cauchy  $\implies \{x_n\}$  convergente
- Una sucessión  $\{x_n\} \subset X$  es convergente a  $L \in X \iff \forall \varepsilon > 0, \exists N_{\varepsilon} \text{ tal que } n \geq N_{\varepsilon} \implies d(x_n, L) < \varepsilon$ 
  - $\{x_n\}$  convergente  $\implies \{x_n\}$  de Cauchy
  - Si el límite lím $_{n\to\infty} x_n = L$  existe entonces es único

# 1.4. Aplicaciones lineales. Normas equivalentes.

- Una aplicación lineal es acotada  $L \in \mathcal{L}(E, F)$  si cumple alguna de
  - L es continua en  $\vec{0}_E$
  - L es continua  $\forall x \in E$
  - $\forall x \in E, \exists M \mid ||x||_E \leq 1 \implies ||L(v)||_F \leq M$
- $\|\cdot\|_A$  domina a  $\|\cdot\|_B$   $\iff$   $\exists 0 < c < \infty$  tal que  $\forall x \in E, \ \|x\|_B \le c \|x\|_A$
- $\|\cdot\|_A$ ,  $\|\cdot\|_B$  son equivalentes  $\iff \exists 0 < c, C < \infty$  tales que  $\forall x \in E, \ c \|x\|_A \le \|x\|_B \le C \|x\|_A$ . Entonces,
  - Definen los mismos abiertos y cerrados.
  - En  $\mathbb{R}^n$  todas las normas son equivalentes.

# 1.5. Topología

Sea (X,d) un espacio métrico,  $E \subset Y \subset X, \ a,x,y \in X, \ r \in \mathbb{R}$ 

- La **bola abierta** de radio r y centro a es el conjunto  $B_r(a) = B(a;r) = \{x \in X \mid d(x,a) < r\}$
- La **bola cerrada** de radio r y centro a es el conjunto  $\overline{B}_r(a) = \overline{B}(a;r) = \{x \in X \mid d(x,a) \le r\}$
- E es abierto  $\iff \forall e \in E, \exists r > 0 \mid B_r(e) \subset E$ 
  - La unión arbitrara de abiertos es un abierto
  - La intersección finita de abiertos es un abierto
  - Dado  $x \in X$ , un **entorno abierto** de x es cualquier abierto  $U \mid x \in U$ .
  - U es abierto  $\iff U = \bigcup B_r(x)$
- E es **cerrado** si  $E^{\complement} = X \setminus E$  es un abierto
  - La intersección arbitraria de cerrados es un cerrado
  - La unión finita de cerrados es un cerrado
- E abierto relativo de  $Y \iff \exists E' \mid E = Y \cap E'$  y E' es abierto en X (análogo para cerrados)
  - E abierto relativo en  $Y \implies E$  abierto en  $(Y, d_Y)$
- El interior int  $E = \{x \in X \mid \exists r > 0, B_r(x) \subset E\}$
- El exterior ext  $E = \{x \in X \mid \exists r > 0, B_r(x) \cap E = \emptyset\}$
- El cierre, clausura o adherencia  $\overline{E} = \{x \in X \mid \forall r > 0, B_r(x) \cap E \neq \emptyset\} = \{L \in X \mid \{a_n\} \subset E \text{ converge a } L\}$ 
  - $E \text{ cerrado} \iff E = \overline{E}$

- E denso  $\iff \overline{E} = X$ . Tanto  $\mathbb{Q}$  como  $\mathbb{R} \setminus \mathbb{Q}$  son **1.6.** densos en  $\mathbb{R}$
- La frontera  $\partial E = \{x \in X \mid \forall r > 0, B_r(x) \cap E \neq \emptyset \land B_r(x) \cap E^{\complement} \neq \emptyset\} = \{x \in X \mid x \notin \text{ int } E \land x \notin \text{ ext } E\}$
- Los puntos de acumulación  $E' = \{x \in X \mid \forall r > 0, B_r(x) \cap E \setminus \{x\} \neq \emptyset\}$ 
  - $\overline{E} = E \cup E'$
- Un punto  $x \in E$  es aislado  $\iff \exists r > 0 \mid B_r(x) \cap E = \{x\}$ 
  - si  $\forall x, x \in E \implies x$  aislado entonces E es **discreto** y  $\{x\}$  abierto relativo de E
- (X,d) de **Banach**  $\iff$  X es e.v., d es una norma y X completo
- E es compacto en  $(X, d) \iff$ 
  - $\{x_n\} \subset E \implies \exists \{x_{n_k}\} \subset \{x_n\}$  subsucesión convergente con límite en K
  - Todo recubrimiento  $\{U_i\}$  por abiertos de K tiene una subfamilia finita que también recubre a K
- Propiedades de compactos
  - $\bullet$  E compacto  $\implies$  K es cerrado y acotado
  - $\bullet$  en (X,d), X compacto  $\implies$  (X,d) completo
  - $E \subset X$  compacto, f continua en  $E \implies f$  alcanza máximo y mínimo en E
- Un camino es una aplicación continua  $\alpha:I\subset\mathbb{R}\to X$  con I un intervalo
- E es **conexo** (por abiertos)  $\iff \nexists A, B \subset X \mid A \cap B = \emptyset \land (E \cap A) \cup (B \cap E) = E$
- E es **conexo** (por abiertos relativos)  $\iff \forall A, B$  abiertos en E con  $A \cap B = \emptyset \land A \cup B = E \implies (A = \emptyset \land B = E) \lor B = \emptyset \land A = E)$ 
  - Equivalentemente, E conexo  $\iff \nexists A, B$  abiertos en E con  $A \cap B = \emptyset \land E = A \cup B$
  - E conexo y  $p \in \overline{E} \implies E \cup p$  conexo
  - $E_1, E_2$  conexos y  $E_1 \cap E_2 \neq \emptyset \implies E_1 \cap E_2$  conexo
- E es conexo por caminos o arco-conexo  $\iff \forall p,q \in E, \exists \alpha(t): [0,1] \to E$  un camino tal que  $\alpha(0) = p \land \alpha(1) = q$
- Dado  $x \in E$ , la **componente conexa** que contiene a e es el conjunto  $\{y \in E \mid \exists A \text{ conexo}, \text{ con } x \in A \land y \in A\}$ 
  - La relación de equivalencia  $x \sim y \iff \exists C$  conexo con  $x,y \in C$  define una partición cuyas clases de equivalencia son las componentes conexas de cada punto.
  - $\bullet$  Si  $A\subset X$  conexo, A está contenido en una única componente conexa.
- E es **convexo**  $\iff \forall x, y \in E \implies [x, y] = \{tx + (1-t)y \mid t \in [0, 1]\} \subset E$

#### 1.6. Continuidad

Sean  $(X, d_X), (Y, d_Y)$  espacios métricos,  $f: X \to Y$  una función

- f es **continua** en  $a \in X \iff \forall \varepsilon > 0, \exists \delta > 0$  tal que  $f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$ . Equivalentemente, f continua en  $a \iff \forall \varepsilon > 0, \exists \delta > 0$  tal que  $d_X(x,a) < \delta \implies d_Y(f(x), f(a)) < \varepsilon$ .
- f continua en  $X \iff$ 
  - f continua en x,  $\forall x \in X$
  - $\forall V \subseteq Y, \ V$  abierto de  $Y \implies f^{-1}(V)$  abierto de X
  - $\forall V \subseteq Y, \ V \text{ cerrado de } Y \implies f^{-1}(V) \text{ cerrado de } X$
  - $\forall \{x_n\} \subset X, \{x_n\} \to x_0 \implies \{f(x_n)\} \to f(x_0)$
- f uniformemente continua  $\iff \forall \varepsilon > 0, \exists \delta > 0$  tal que  $d_X(x,x') \leq \delta \implies d_Y(f(x),f(x')) \leq \varepsilon$ 
  - Si (X, d) es compacto entonces f continua en  $X \implies f$  uniformemente continua
  - Si f es uniformemente continua entonces se pueden intercambiar límite y derivada
- Si f es composición de funciones continuas entonces es continuas. Las fórmulas elementales son continuas.

## 2. Diferenciabilidad

Sean E, F espacios normados,  $x_0 \in E, U \subset E$  entorno abierto de  $x_0$ .  $f: U \to F$  es **diferenciable** en  $x_0 \iff \exists T \in \mathcal{L}(E, F)$  tal que

$$\lim_{h \to \vec{0}_E} \frac{f(x_0 + h) - f(x_0) - Th}{\|h\|} = \vec{0}_F$$

- T existe  $\implies T$  única y la llamamos **diferencial** de f en  $x_0$  y se denota  $(df)_{x_0}$
- f diferenciable en  $x_0 \implies f$  continua en  $x_0$
- toda  $T \in \mathcal{L}(E, F)$  es diferenciable en todo punto y coincide con sus diferenciales
- f constante  $\implies$  f es diferenciable en todo punto y su diferencial  $(df)_{x_0}$  es nula
- La linealidad:  $(f+g)_{x_0} = (df)_{x_0} + (dg)_{x_0}$
- La regla del producto:  $(d(f \cdot g))_{x_0} = (df)_{x_0}g(x_0) + f(x_0)(dg)_{x_0}$
- La regla de la cadena:  $(d(g \circ f))_{x_0} = (dg)_{f(x_0)}(df)_{x_0}$
- La derivada respecto de un vector  $v \in E$  en el punto  $x_0 \in E$  es  $D_v f(x_0) = \frac{d}{dt} \Big|_{t=0} f(x_0 + tv)$ 
  - Si ||v|| = 1 entonces la derivada se llama direccional
  - Si  $v = e_j \in \{e_1, \dots, e_n\}$  la base estándar de  $\mathbb{R}^n$ , entonces  $D_{e_j} f(x_0) = \frac{\partial}{\partial x_j}\Big|_{x_0} f = D_j f(x_0)$  es la j-ésima derivada parcial
- La composición de funciones diferenciables es diferenciable. Ojo con aplicar las reglas de derivación a cosas que no son números reales (p.e. en matrices no funcionan).
- Condiciones de diferenciabilidad de  $f: \mathbb{R}^n \to \mathbb{R}^m$  en  $x_0$ :
  - 1. Las derivadas parciales  $\partial_{x_i} f(x_0)$  existen

2. El único candidato posible a diferencial  $(df)_{x_0}$  es la aplicación lineal dada por la **matriz jacobiana** de  $m \times n$ 

$$Df_{x_0} := \left( \begin{array}{c|c} \partial_{x_1} f(x_0) & \dots & \partial_{x_n} f(x_0) \end{array} \right)$$

$$Df_{x_0} := \left( \begin{array}{c|c} Df_1(x_0) \\ \hline \vdots \\ \hline Df_m(x_0) \end{array} \right)$$

$$Df_(x_0) := \left( \begin{array}{c|c} \partial_{x_1} f_1(x_0) & \dots & \partial_{x_n} f_1(x_0) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m(x_0) & \dots & \partial_{x_n} f_m(x_0) \end{array} \right)$$

- 3.  $Df_{x_0}$  cumple la definición de diferenciabilidad
- El **gradiente**  $\nabla f$  es el jacobiano de una función escalar  $(f: \mathbb{R}^n \to \mathbb{R})$ . Es un vector fila.
- lacktriangle El **Jacobiano** es det Df
- Una función vectorial es diferenciable ⇔ son diferenciables todas sus funciones componentes
- El **Hessiano** es la matriz simétrica de las derivadas se segundas

$$\operatorname{Hess} f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2}{\partial x_n \partial x_n} \end{pmatrix}$$

■ El Laplaciano  $\Delta f = \text{traza Hess } f$ 

## 2.1. Tipos de aplicaciones

Sean E, V e.v, sea  $f: E \to F$ 

- f es convexa  $\iff \forall x, y \in E, t \in [0,1], f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$
- Sean  $x_1, \ldots, x_n$ . Un punto x es **combinación convexa** de  $x_1, \ldots, x_n \iff x = t_1 x_1 + \cdots + t_n x_n \text{ con } \sum t_i = 1 \land t_i \ge 0$ .

Sean  $(X, d_X), (Y, d_Y)$  espacios métricos, sea  $f: X \to Y$ 

• f es de Lipschitz  $\iff \exists K > 0$  tal que

$$d_Y(f(x), f(x')) \le K d_X(x, x'), \quad \forall x, x' \in X$$

- Toda aplicación de Lipschitz es continua.
- f es contractiva  $\iff$  f es de Lipschitz con  $K < 1 \land$  dominio y codomino coinciden, distancias incluidas  $(f : (X, d_X) \to (X, d_X))$
- f es inyectiva  $\iff \forall x, x' \in X, f(x) \neq f(x') \implies x \neq x'$
- f es coerciva  $\iff \exists \lambda > 0$  tal que

$$d_Y(f(x), f(x')) \ge \lambda d_X(x, x'), \quad \forall x, x' \in X$$

 $\bullet$  f coerciva  $\Longrightarrow$  f inyectiva

# 3. Teoremas gordos

**Teorema** (de la función inversa). Sea  $(\mathbb{V}, \|\cdot\|)$  un espacio de Banach. Sean  $U_0 \in \mathbb{V}$  un abierto  $y \ f : U_0 \to V$  una función de clase  $C^1$ . Si en  $x_0 \in U_0$  la diferencial  $L = (df)_{x_0}$  es invertible (e.d. L es lineal acototada, biyectiva y con inversa  $L^{-1}$  también acotada) entonces existen abiertos U, V con  $x_0 \in U, y_0 \in V, f(x_0) = y_0$  tales que f es biyectiva de U a V. Además, en ese caso la inversa  $f^{-1}: V \to U$  es diferenciable en  $y_0 \ y \ (df^{-1})_{y_0} = [(df)_{x_0}]^{-1}$ .

**Teorema** (de la función inversa de Balodis). Sea E un espacio de Banach,  $U \subset E$  un abierto  $y \ f : U \to E$  con  $f \in C^1$ . Entonces si en  $x_0 \in U$  se tiene que  $Df(x_0)$  es invertible entonces f es localmente invertible.

E. Hernandis, 28 de noviembre de 2018 a las 18:45