Lab Final Question CSE 314 Spring 2020

Instructions:

- i. Write two programmes (one from each sets using the given procedure in instruction ii) in MATLAB/Octave.
- ii. Match the serial number (S.N.) of questions from set A and set B with the last digit of your Roll number (UAP) after adding 5 with it (roll no.). For example, if your roll number is 102, you have to add 5 with it, i.e. 102 + 5 = 107. Then you have to answer question no. 7 from both the sets (A and B).
- iii. Do not copy equations from questions. Some mathematical signs may not work well.

 Use forward divided difference approximation of the first derivative of f(x) = to calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (x_i), and y_value (y_i). Use forward divided difference approximation of the first derivative of f(x) = to calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (x_i), and y_value (y_i). Use forward divided difference approximation of the first derivative of f(x) = calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i), and y_value (y_i). Use backward divided difference approximation of the first derivative of f(x). Use backward divided difference approximation of the first derivative of f(x). 	OD result erial No., $= 6e^{-3x} + 3$ OD result erial No., $= x^{3} \ln(x) \text{ to}$ e result and
 and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (xi), and y_value (yi). Use forward divided difference approximation of the first derivative of f(x) = to calculate the derivative at xo=2.12, x1, x2 with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (xi), and y_value (yi). Use forward divided difference approximation of the first derivative of f(x) = calculate the derivative at xo=2.12, x1, x2 with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (xi), and y_value (yi). 	erial No., $= 6e^{-3x} + 3$ DD result erial No., $= x^{3} \ln(x) \text{ to}$ eresult and
 x_value (x_i), and y_value (y_i). Use forward divided difference approximation of the first derivative of f(x) = to calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (x_i), and y_value (y_i). Use forward divided difference approximation of the first derivative of f(x) = calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i), and y_value (y_i). 	$= 6e^{-3x} + 3$ DD result erial No., $= x^{3} \ln(x) \text{ to}$ result and
 Use forward divided difference approximation of the first derivative of f(x) = to calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (x_i), and y_value (y_i). Use forward divided difference approximation of the first derivative of f(x) = calculate the derivative at x₀=2.12, x₁, x₂ with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i), and y_value (y_i). 	OD result erial No., $= x^3 \ln(x) \text{ to}$ e result and
to calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the FD and also show the results in a 3×3 matrix that contains 3 columns such as: So x _value (x_i), and y _value (y_i). 3 Use forward divided difference approximation of the first derivative of $f(x)$ = calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x _value (x_i), and y _value (y_i).	OD result erial No., $= x^3 \ln(x) \text{ to}$ e result and
and also show the results in a 3×3 matrix that contains 3 columns such as: So x_value (x _i), and y_value (y _i). Use forward divided difference approximation of the first derivative of f(x) = calculate the derivative at x ₀ =2.12, x ₁ , x ₂ with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x _i), and y_value (y _i).	erial No., $= x^3 \ln(x) \text{ to}$ eresult and
$x_value(x_i)$, and $y_value(y_i)$. 3 Use forward divided difference approximation of the first derivative of $f(x) = 0$ calculate the derivative at $x_0=2.12$, x_1 , x_2 with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial $x_value(x_i)$, and $y_value(y_i)$.	$= x^3 \ln(x) \text{ to}$ result and
Use forward divided difference approximation of the first derivative of $f(x)$ = calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i), and y_value (y_i).	result and
calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the FDD also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i), and y_value (y_i).	result and
also show the results in a 3×3 matrix that contains 3 columns such as: Serial x_value (x_i) , and y_value (y_i) .	
$x_{value}(x_i)$, and $y_{value}(y_i)$.	No.,
1 A Use heekword divided difference enproximation of the first derivetive of $f(x)$. 2
calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the BDD	
also show the results in a 3×3 matrix that contains 3 columns such as: Serial	No.,
$x_{\text{value}}(x_i)$, and $y_{\text{value}}(y_i)$.	2 2 5r
Use backward divided difference approximation of the first derivative of $f(x)$	
x^2 to calculate the derivative at $x_0=2.12$, x_1 , x_2 with a step size of 2. Print the	
and also show the results in a 3×3 matrix that contains 3 columns such as: So	eriai No.,
x_value (x _i), and y_value (y _i). Use backward divided difference approximation of the first derivative of f(x).	$1 - 2a^{2.5x}$
sinx to calculate the derivative at $x_0=2.12$, x_1 , x_2 with a step size of 2. Print the	
result and also show the results in a 3×3 matrix that contains 3 columns such	
No., x_i value (x_i), and y_i value (y_i).	i as. Scriai
7 Use Central divided difference approximation of the first derivative of $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{x^2} dx dx$	$= 3e^{2.5x} + 2 \text{ to}$
calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the CDD	
also show the results in a 3×3 matrix that contains 3 columns such as: Serial	
$x_{\text{value}}(x_i)$, and $y_{\text{value}}(y_i)$.	,
8 Use Central divided difference approximation of the first derivative of $f(x) =$	$= x^3 \ln(x)$ to
calculate the derivative at $x_0=2.12$, x_1 , x_2 with a step size of 2. Print the CDD	
also show the results in a 3×3 matrix that contains 3 columns such as: Serial	
$x_{value}(x_i)$, and $y_{value}(y_i)$.	

9	Use Central divided difference approximation of the first derivative of $f(x) = 3e^{2.5x} + x^2$
	to calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the CDD result
	and also show the results in a 3×3 matrix that contains 3 columns such as: Serial No.,
	$x_{value}(x_i)$, and $y_{value}(y_i)$.
0	Use Central divided difference approximation of the first derivative of $f(x) = 3e^{2.5x} +$
	sinx to calculate the derivative at x_0 =2.12, x_1 , x_2 with a step size of 2. Print the CDD
	results and also show the results in a 3×3 matrix that contains 3 columns such as: Serial
	No., $x_value(x_i)$, and $y_value(y_i)$.

S.N.	Set - B
1	Use Newton-Raphson method to estimate the root of $x^4 - 4x^{3/2} + 5x + 2 = 0$. Conduct 10
	iterations assuming that the root exists in the interval of [4, 6]. Print the result of Root
	(x_i) , Absolute relative approximate error ($ \mathcal{E}_a $), and No. of significant digits after each
	Iteration. Use plot function to display the values of x (i.e. x_0 , x_1 , $x_{2,}$ X_9) and their
	corresponding values of y by x-axis and y-axis, respectively.
2	Use Newton-Raphson method to estimate the root of $4x^3+7x+3=e^x$. Conduct 10
	iterations with an initial guess 3. Print the result of Root (x_i) , Absolute relative
	approximate error ($ \mathcal{E}_a $), and No. of significant digits after each Iteration. Use plot
	function to display the values of x (i.e. x_0 , x_1 , x_2 , X_9) and their corresponding values of
	y by x-axis and y-axis, respectively.
3	Use Newton-Raphson method to estimate the root of $x^4 - 9x^{3/2} + 7x + 2 = 0$. Conduct 10
	iterations assuming that the root exists in the interval of [3, 4]. Print the result of Root
	(x_i) , Absolute relative approximate error (E_a) , and No. of significant digits after each
	Iteration. Use plot function to display the values of x (i.e. x_0 , x_1 , x_2 , x_9) and their
	corresponding values of y by x-axis and y-axis, respectively.
4	Use Newton-Raphson method to estimate the root of $e^x - 2x - 5 = 0$. Conduct 10
	iterations with an initial guess -2. Print the result of Root (x _i), Absolute relative
	approximate error ($ \mathcal{E}_a $), and No. of significant digits after each Iteration. Use plot
	function to display the values of x (i.e. x_0 , x_1 , x_2 , X_9) and their corresponding values of
	y by x-axis and y-axis, respectively.
5	Use Newton-Raphson method to estimate the root of $f(x) = x^{4/3} + x - 1$. Conduct 10
	iterations assuming that the root exists in the interval of [0.5, 1.0]. Print the result of
	Root (x_i) , Absolute relative approximate error (\mathcal{E}_a) , and No. of significant digits after
	each Iteration. Use plot function to display the values of x (i.e. $x_0, x_1, x_{2,}, x_9$) and their
	corresponding values of y by x-axis and y-axis, respectively.
6	Use Newton-Raphson method to estimate the root of $f(x) = 2x^{0.5} + x^{0.5} - 5$. Conduct 10
	iterations assuming that the root exists in the interval of [4.5, 5.5]. Print the result of
	Root (x_i) , Absolute relative approximate error (\mathcal{E}_a) , and No. of significant digits after
	each Iteration. Use plot function to display the values of x (i.e. $x_0, x_1, x_2,, x_9$) and their
	corresponding values of y by x-axis and y-axis, respectively.
7	Use Newton-Raphson method to estimate the root of $f(x) = x^3 - 7/(x+2)$. Conduct 10
	iterations assuming that the root exists in the interval of [1.4, 1.5]. Print the result of
	Root (x_i) , Absolute relative approximate error (\mathcal{E}_a) , and No. of significant digits after

	each Iteration. Use plot function to display the values of x (i.e. x_0 , x_1 , x_2 , X_9) and their corresponding values of y by x-axis and y-axis, respectively.
8	Use Newton-Raphson method to estimate the root of $f(x) = 5sin^2(x) - 8cos^5(x)$. Conduct 10 iterations assuming that the root exists in the interval of [0.5, 1.5]. Print the result of Root (x_i), Absolute relative approximate error ($ E_a $), and No. of significant digits after each Iteration. Use plot function to display the values of x (i.e. x_0 , x_1 , x_2 , x_9) and their corresponding values of y by x-axis and y-axis, respectively.
9	Use Newton-Raphson method to estimate the root of $e^x - 3x^2 = 0$. Conduct 10 iterations assuming that the root exists in the interval of [3, 5]. Print the result of Root (x_i) , Absolute relative approximate error (\mathcal{E}_a) , and No. of significant digits after each Iteration. Use plot function to display the values of x (i.e. x_0, x_1, x_2, X_9) and their corresponding values of y by x-axis and y-axis, respectively.
0	Use Newton-Raphson method to estimate the root of $sin(x) - e^{-x} = 0$. Conduct 10 iterations assuming that the root exists in the interval of [3, 4]. Print the result of Root (x_i) , Absolute relative approximate error (\mathcal{E}_a) , and No. of significant digits after each Iteration. Use plot function to display the values of x (i.e. $x_0, x_1, x_2,, X_9$) and their corresponding values of y by x-axis and y-axis, respectively.