${\it MA161Lesson~Plan~MicroTeaching Session}$

Carlos Salinas

October 8, 2015

1 Indeterminate Forms and L'Hospital's Rule

Limit of the form

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

where both $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$ is called an indeterminate form of type $\frac{0}{0}$.

Theorem 1 (L'Hospital's Rule). Suppose f and g are differentiable and $g'(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

$$\lim_{x \to a} f(x) = 0 \qquad and \qquad \lim_{x \to a} g(x) = 0$$

or that

$$\lim_{x \to a} f(x) = \pm \infty \qquad and \qquad \lim_{x \to a} g(x) = \pm \infty.$$

(In other words, we have an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.) Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

if the limit on the right side exists (or is ∞ or $-\infty$).

1.1 Indeterminate Products

Limit of the form

$$\lim_{x \to a} [f(x)g(x)]$$

where $f(x) \to 0$ and $g(x) \to \pm \infty$ as $x \to a$ is called an *indeterminate form of type* $0 \cdot \infty$. We can deal with it by writing the product fg as a quotient:

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$.

1.2 Indeterminate Differences

Limit of the form

$$\lim_{x \to a} [f(x) - g(x)]$$

where $f(x) \to \infty$ and $g(x) \to \infty$ as $x \to a$ is called an *indeterminate form of type* $\infty - \infty$. Try to convert the difference into a quotient (e.g., by using a common denominator, or rationalization, or factoring out a common factor) so that we have an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

1.3 Indeterminate Powers

Several indeterminate forms arise from the limit

$$\lim_{x \to a} [f(x)]^{g(x)}.$$

1. $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ type 0^0 .

- 2. $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ type ∞^0 .
- 3. $\lim_{x\to a} f(x) = 1$ and $\lim_{x\to a} g(x) = \pm \infty$ type 1^{∞} .

Each of these three cases can be treated by taking the natural logarithm: let $y = [f(x)]^{g(x)}$, then

$$ln y = q(x) ln f(x)$$

or by writing the function as an exponential:

$$[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$$

In either method we are led to the indeterminate product $g(x) \ln f(x)$, which is of type $0 \cdot \infty$.

1.4 Exercises

Exercise (§4.4, #11).

$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x}.$$

Solution. Put $f(x) = \cos x$ and $g(x) = 1 - \sin x$ and note that

$$\lim_{x\to(\pi/2)^+}\cos x=0\quad\text{and}\quad \lim_{x\to(\pi/2)^+}1-\sin x=0.$$

So we have

- Classify: type $\frac{0}{0}$.
- Check conditions for using l'Hospital's rules are satisfied: both f' and g' exist and they are

$$f'(x) = -\sin x$$
 and $g'(x) = -\cos x$.

Moreover $g'(x) \neq 0$ on $(0, \pi)$, in particular, g'(0) = -1 and $g'(\pi) = 1$.

• Use l'Hospital's rule:

$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x} = \lim_{x \to (\pi/2)^+} \frac{-\sin x}{-\cos x} = \lim_{x \to (\pi/2)^+} \tan x = 0.$$

Exercise ($\S 4.4, \# 12$).

$$\lim_{x \to 0} \frac{\sin 4x}{\tan 5x}.$$

Solution. Put $f(x) = \sin 4x$ and $g(x) = \tan 5x$ and note that

$$\lim_{x\to 0} f(x) = 0 \quad \text{and} \quad \lim_{x\to 0} g(x) = 0.$$

So we have

• Classify: type $\frac{0}{0}$.

• Check conditions for using l'Hospital's rules are satisfied: both f' and g' exist and they are

$$f'(x) = 4\cos 4x$$
 and $g'(x) = 5\sec^2 5x$.

Moreover $g'(x) \neq 0$ on $(-\pi/2, \pi/2)$.

• Use l'Hospital's rule:

$$\lim_{x \to 0} \frac{\sin 4x}{\tan 5x} = \lim_{x \to 0} \frac{4\cos 4x}{5\sec^2 5x} = \frac{4}{5} \lim_{x \to 0} \frac{\cos 4x}{\sec^2 5x} = \frac{4}{5}$$

Exercise ($\S 4.4, \# 25$).

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.$$

Solution. Put $f(x) = e^x - 1 - x$ and $g(x) = x^2$ and note that

$$\lim_{x\to 0} f(x) = 0 \quad \text{and} \quad \lim_{x\to 0} g(x) = 0.$$

So we have

• Classify: type $\frac{0}{0}$.

• Check conditions for using l'Hospital's rules are satisfied: both f' and g' exist and they are

$$f'(x) = e^x - 1$$
 and $g'(x) = 2x$.

Moreover $g'(x) \neq 0$ on $(-\pi/2, \pi/2)$.

f'(x)/g'(x) is type ⁰/₀ so we apply L'Hospital's Rule again.
Both f" and g" exist and they are

$$f'(x) = e^x$$
 and $g''(x) = 2$

• Use l'Hospital's rule:

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}.$$

Exercise ($\S 4.4, \# 30$).

$$\lim_{x \to \infty} \frac{(\ln x)^2}{x}.$$

Solution. Put $f(x) = (\ln x)^2$ and g(x) = x and note that

$$\lim_{x \to 0} f(x) = \infty \quad \text{and} \quad \lim_{x \to 0} g(x) = \infty.$$

So we have

• Classify: type $\frac{\infty}{\infty}$. • Check conditions for using l'Hospital's rules are satisfied: both f' and g' exist and they are

$$f'(x) = \frac{2}{x} \ln x$$
 and $g'(x) = 1$.

• Quotient form, apply l'Hospital's Rule again:

$$F(x) = 2 \ln x$$
 and $G(x) = x$,

then

$$F'(x) = 2/x$$
 and $G'(x) = 1$.

• Use l'Hospital's rule:

$$\lim_{x\to\infty}\frac{(\ln x)^2}{x}=\lim_{x\to\infty}\frac{2/x}{1}=2\lim_{x\to\infty}\frac{1}{x}=2\cdot 0=0.$$

Exercise ($\S 4.4, \# 33$).

$$\lim_{x \to 1} \frac{x + \sin x}{x + \cos x}.$$

Solution.

Exercise (§4.4, #43).

$$\lim_{x\to 0}$$

Solution.

Exercise (§4.4., #50).

$$\lim_{x\to 0}\csc x\sec 5x.$$

Solution.

D (64.4 (155)

Exercise ($\S 4.4, \# 57$).

$$\lim_{x \to 0} (1 - 2x)^{1/x}.$$

Solution.

Exercise (§4.4, #61).

$$\lim_{x\to\infty} x^{1/x}.$$

 \blacksquare