Pochodne cząstkowe. Pochodna kierunkowa. Różniczka funkcji wielu zmiennych.

Anna Bahyrycz

Pochodne cząstkowe

Definicja 1

Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x_0,y_0) .

Pochodną cząstkową pierwszego rzędu funkcji f względem zmiennej x w punkcie (x_0,y_0) nazywamy granicę

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

o ile istnieje i oznaczamy symbolem $\frac{\partial f}{\partial x}(x_0,y_0)$ lub $f_x'(x_0,y_0)$.

Pochodną cząstkową pierwszego rzędu funkcji f względem zmiennej y w punkcie (x_0, y_0) nazywamy granicę

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

o ile istnieje i oznaczamy symbolem $\frac{\partial f}{\partial y}(x_0,y_0)$ lub $f_y'(x_0,y_0).$

Uwaga 1

Jeżeli granica określająca pochodną jest właściwa (niewłaściwa) to, mówimy, że pochodna jest właściwa (niewłaściwa).

Uwaga 2

Nie ma żadnego związku między ciągłością funkcji a istnieniem pochodnych cząstkowych pierwszego rzędu funkcji w punkcie.

Przykład 1

Zbadać istnienie pochodnych cząstkowych pierwszego rzędu i ciągłość funkcji

$$f(x,y) = \begin{cases} 1 & dla & xy = 0 \\ 0 & dla & xy \neq 0 \end{cases} \quad \text{w punkcie } (x_0,y_0) = (0,0).$$

$$\lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1-1}{\Delta x} = 0 = \frac{\partial f}{\partial x}(0,0)$$

$$\lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{1-1}{\Delta y} = 0 = \frac{\partial f}{\partial y}(0,0)$$

Niech
$$(x_n,y_n)=\left(\frac{1}{n},0\right)$$
 oraz $(x'_n,y'_n)=\left(\frac{1}{n},\frac{1}{n}\right)$, oczywiście

$$\lim_{n\to +\infty} \left(x_n,y_n\right) = \lim_{n\to +\infty} \; \left(\frac{1}{n},0\right) = \left(0,0\right) \; \; i \; \left(\frac{1}{n},0\right) \neq \left(0,0\right) \; \; \textit{dla} \; \; n \in \mathbb{N},$$

$$\lim_{n\to +\infty} (x_n',y_n') = \lim_{n\to +\infty} \left(\frac{1}{n},\frac{1}{n}\right) = (0,0) \ \ i\left(\frac{1}{n},\frac{1}{n}\right) \neq (0,0) \ \ \textit{dla} \ \ n\in \mathbb{N}.$$

Wówczas $\lim_{n\to+\infty} f\left(\frac{1}{n},0\right) = 1$, $\lim_{n\to+\infty} f\left(\frac{1}{n},\frac{1}{n}\right) = 0$ - badana granica nie istnieje.

Funkcja f ma obie pochodne cząstkowe pierwszego rzędu w (0,0) i nie jest ciągła w tym punkcie.

Definicja 2

Jeżeli funkcja f ma pochodne cząstkowe pierwszego rzędu w każdym punkcie zbioru otwartego $U \subset \mathbb{R}^2$, to funkcje

$$\frac{\partial f}{\partial x}(x,y), \ \frac{\partial f}{\partial y}(x,y) \ \ \text{gdzie} \ \ (x,y) \in U$$

 ${\it nazywamy}$ pochodnymi cząstkowymi pierwszego rzędu funkcji f na zbiorze U

i oznaczmy $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ lub f_x' , f_y' .

Uwaga 3

W praktyce do liczenia pochodnych cząstkowych można stosować reguły różniczkowania funkcji jednej zmiennej.

Przykład 2

Zbadać istnienie pochodnych cząstkowych pierwszego rzędu i ciągłość funkcji

$$f(x,y) = \sqrt{x^2 + y^2}$$
 w punkcie $(x_0, y_0) = (0,0)$.

Badamy istnienie pochodnych cząstkowych pierwszego rzędu

$$\lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{(\Delta x)^2} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} - \text{granica nie istnieje,}$$

$$\lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{(\Delta y)^2} - 0}{\Delta y} = \lim_{\Delta y \to 0} \frac{|\Delta y|}{\Delta y} \text{ - granica nie istnieje,}$$

czyli funkcja f nie ma pochodnych cząstkowych pierwszego rzędu w (0,0). Badamy ciągłość

$$\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} = 0 = f(0,0).$$

Funkcja f jest ciągła w (0,0). Z ciągłości funkcji w punkcie nie wynika istnienie pochodnych cząstkowych pierwszego rzedu w tym punkcie.

Przykład 3

Wyznaczyć pochodne cząstkowe pierwszego rzędu funkcji

$$f(x,y) = x^y$$
, na zbiorze $U = \{(x,y) \in \mathbb{R}^2 : x > 0 \land y > 0\}.$

$$\frac{\partial f}{\partial x}(x,y) = yx^{y-1}$$
 i $\frac{\partial f}{\partial y}(x,y) = x^y \ln x$, gdzie $(x,y) \in U$.

Definicja 3

Niech funkcja f ma pochodne cząstkowe pierwszego rzędu $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ przynajmniej na otoczeniu punktu (x_0,y_0) . Pochodne cząstkowe drugiego rzędu funkcji f

w punkcie (x_0, y_0) określamy wzorami

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) \coloneqq \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right)(x_0, y_0), \quad \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \coloneqq \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(x_0, y_0),$$

$$\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \coloneqq \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(x_0, y_0), \quad \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \coloneqq \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right)(x_0, y_0).$$

Powyższe pochodne oznacza się również odpowiednio przez

$$f''_{xx}(x_0,y_0), f''_{xy}(x_0,y_0), f''_{yx}(x_0,y_0), f''_{yy}(x_0,y_0).$$

Twierdzenie 1 (Schwarza o pochodnych mieszanych)

Jeżeli pochodne cząstkowe

$$\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$$

są ciągłe w punkcie (x_0, y_0) , to są równe, tj.

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0).$$

Uwaga 4

Prawdziwe są także analogiczne równości dla pochodnych mieszanych drugiego rzędu funkcji trzech zmiennych, a także dla pochodnych mieszanych wyższych rzędów.

Definicja 4

Jeżeli funkcja f ma pochodne cząstkowe drugiego rzędu w każdym punkcie zbioru otwartego $U \subset \mathbb{R}^2$, to funkcje

$$\frac{\partial^2 f}{\partial x^2}(x,y),\; \frac{\partial^2 f}{\partial x \partial y}(x,y),\; \frac{\partial^2 f}{\partial y \partial x}(x,y),\;\; \frac{\partial^2 f}{\partial y^2}(x,y) \quad \text{gdzie} \quad (x,y) \in U$$

 ${\it nazywamy}$ pochodnymi cząstkowymi drugiego rzędu funkcji f na zbiorze U

$$i$$
 oznaczmy $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$ lub f''_{xx} , f''_{xy} , f''_{yx} , f''_{yy} .

Przykład 4

Wyznaczyć wszystkie pochodne cząstkowe drugiego rzędu funkcji

$$f(x,y) = x^y$$
, na zbiorze $U = \{(x,y) \in \mathbb{R}^2 : x > 0 \land y > 0\}.$

Sprawdzić, że pochodne mieszane są równe.

Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = yx^{y-1} \quad i \quad \frac{\partial f}{\partial y}(x,y) = x^y \ln x, \quad \textit{gdzie} \quad (x,y) \in U.$$

Wyznaczamy pochodne cząstkowe drugiego rzędu funkcji

$$\frac{\partial^2 f}{\partial x^2}(x,y) = y(y-1)x^{y-2}, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = x^y(\ln x)^2,$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = x^{y-1} + y x^{y-1} \ln x = \frac{\partial^2 f}{\partial x \partial y}(x,y), \quad \textit{gdzie} \quad (x,y) \in U.$$

Definicja 5

Niech funkcja f ma pochodne cząstkowe rzędu $n \geq 2$ przynajmniej na otoczeniu punktu (x_0,y_0) . Pochodne cząstkowe pierwszego rzędu w punkcie (x_0,y_0) pochodnych cząstkowych rzędu n funkcji f nazywamy pochodnymi cząstkowymi rzędu n+1 funkcji f w punkcie (x_0,y_0) .

Jeżeli funkcja f ma pochodne cząstkowe rzędu n w każdym punkcie zbioru otwartego, to mówimy, że na tym zbiorze określone są pochodne cząstkowe rzędu n funkcji f.

Pochodną cząstkową n-tego rzędu funkcji f w punkcie (x_0,y_0) , powstałą w wyniku k-krotnego różniczkowania względem zmiennej x i następnie l-krotnego różniczkowania względem zmiennej y gdzie k+l=n, oznaczamy przez

$$\frac{\partial^n f}{\partial y^l \partial x^k}(x_0, y_0).$$

Definicja 6 (Pochodna kierunkowa funkcji)

Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x_0,y_0) oraz $\vec{v}=(v_x,v_y)$ będzie wersorem. Pochodną kierunkową funkcji f w punkcie (x_0,y_0) w kierunku \vec{v} określamy wzorem:

$$\frac{\partial f}{\partial \vec{v}}(x_0, y_0) := \lim_{t \to 0^+} \frac{f(x_0 + tv_x, y_0 + tv_y) - f(x_0, y_0)}{t}.$$

Przykład 6

Korzystając z definicji obliczyć pochodną kierunkowa funkcji

$$f(x,y) = 2x^2 + y^2, \quad \text{w punkcie} \quad (1,1) \quad \text{w kierunku wersora} \quad \vec{v} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

$$\frac{\partial f}{\partial \vec{v}}(1,1) = \lim_{t \to 0^+} \frac{f\left(1 + t\frac{\sqrt{2}}{2}, 1 + t\frac{\sqrt{2}}{2}\right) - f(1,1)}{t} = \lim_{t \to 0^+} \frac{2\left(1 + t\frac{\sqrt{2}}{2}\right)^2 + \left(1 + t\frac{\sqrt{2}}{2}\right)^2 - 3}{t}$$
$$= \lim_{t \to 0^+} \frac{3\left(1 + t\sqrt{2} + \frac{1}{2}t^2\right) - 3}{t} = \lim_{t \to 0^+} \left(3\sqrt{2} + \frac{3}{2}t\right) = 3\sqrt{2}.$$

Przykład 5

Dla funkcji

$$f(x,y) = e^{xy}$$
 obliczyć $\frac{\partial^3 f}{\partial x^2 \partial y}(x,y)$.

Wyznaczamy

$$\frac{\partial f}{\partial y}(x,y) = xe^{xy},$$

następnie

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} (xe^{xy}) = e^{xy} + xye^{xy}$$

i na koniec

$$\frac{\partial^3 f}{\partial x^2 \partial y}(x,y) = \frac{\partial}{\partial x} \left(e^{xy} (1+xy) \right) = y(1+xy)e^{xy} + ye^{xy} = e^{xy} y(2+xy).$$

Przykład 7

Obliczyć pochodną kierunkowa funkcji $f(x,y) = \sqrt{x^2 + y^2} \ w$ punkcie (0,0) w kierunku

(a) wersora
$$\vec{v} = \left(-\frac{3}{5}, \frac{4}{5}\right)$$
; (b) downlnego wersora $\vec{v} = (v_x, v_y)$.

(a)
$$\frac{\partial f}{\partial \vec{v}}(0,0) = \lim_{t \to 0^+} \frac{f\left(0 - \frac{3}{5}t, 0 + \frac{4}{5}t\right) - f(0,0)}{t} = \lim_{t \to 0^+} \frac{\sqrt{\frac{9}{25}t^2 + \frac{16}{25}t^2} - 0}{t}$$
$$= \lim_{t \to 0^+} \frac{|t|}{t} = 1.$$

(b)
$$\frac{\partial f}{\partial \vec{v}}(0,0) = \lim_{t \to 0^+} \frac{f(0 - tv_x, 0 + tv_y) - f(0,0)}{t} = \lim_{t \to 0^+} \frac{\sqrt{v_x^2 t^2 + v_y^2 t^2} - 0}{t}$$

$$= \lim_{t \to 0^+} \frac{\sqrt{(v_x^2 + v_y^2)t^2} - 0}{t} = \lim_{t \to 0^+} \frac{\sqrt{(v_x^2 + v_y^2)|t|}}{t} = \lim_{t \to 0^+} \frac{|t|}{t} = 1.$$

Pochodna kierunkowa funkcji $f(x,y) = \sqrt{x^2 + y^2}$ w punkcie (0,0) w kierunku dowolnego wersora istnieje i wynosi 1.

Interpretacja geometryczna

Wróćmy do Przykładu 6.

Przykład 8

Obliczyć pochodną kierunkowa funkcji

$$f(x,y) = 2x^2 + y^2$$
 w punkcie $(1,1)$ w kierunku wersora $\vec{v} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Pochodne cząstkowe $\frac{\partial f}{\partial x}(x,y)$ = 4x, $\frac{\partial f}{\partial y}(x,y)$ = 2y są funkcjami ciągłymi,zatem

$$\frac{\partial f}{\partial \vec{v}}(1,1) = \mathbf{grad}f(1,1) \circ \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right) = (4,2) \circ \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right) = 2\sqrt{2} + \sqrt{2} = 3\sqrt{2}.$$

Do Przykładu 7 nie możemy zastosować Twierdzenia 2, ponieważ pochodne cząstkowe pierwszego rzędu funkcji f w punkcie (0,0) nie istnieją.

Definicja 7 (Gradient funkcji)

Gradientem funkcji f w punkcie (x_0, y_0) nazywamy wektor określony wzorem:

$$\operatorname{\mathbf{grad}} f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Twierdzenie 2

Jeżeli pochodne cząstkowe $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ są funkcjami ciągłymi w punkcie (x_0,y_0) oraz \vec{v} jest dowolnym wersorem na płaszczyźnie, to

$$\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = \mathbf{grad} f(x_0, y_0) \circ \vec{v}.$$

Definicja 8 (Różniczkowalność funkcji)

Niech funkcja f ma pochodne cząstkowe pierwszego rzędu w punkcie (x_0,y_0) . Mówimy, że funkcja f jest różniczkowalna w (x_0,y_0) , gdy

$$\lim_{(h,k)\to(0,0)}\frac{f\big(x_0+h,y_0+k\big)-f\big(x_0,y_0\big)-h\frac{\partial f}{\partial x}\big(x_0,y_0\big)-k\frac{\partial f}{\partial y}\big(x_0,y_0\big)}{\sqrt{h^2+k^2}}=0.$$

Przvkład 9

Korzystając z definicji zbadać różniczkowalność funkcji

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & dla & (x,y) \neq (0,0) \\ 0 & dla & (x,y) = (0,0) \end{cases}$$
 w punkcie $(x_0, y_0) = (0,0)$.

Zaczniemy od policzenia pochodnych cząstkowych pierwszego rzędu funkcji f punkcie (0,0):

$$\lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0 = \frac{\partial f}{\partial x}(0, 0),$$

$$\lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0 = \frac{\partial f}{\partial y}(0, 0).$$

Zatem $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ i pozostaje zbadać czy istnieje i ile wynosi

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - h\frac{\partial f}{\partial x}(x_0,y_0) - k\frac{\partial f}{\partial y}(x_0,y_0)}{\sqrt{h^2+k^2}}$$

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k)-f(0,0)-h\frac{\partial f}{\partial x}(0,0)-k\frac{\partial f}{\partial y}(0,0)}{\sqrt{h^2+k^2}}$$

$$= \lim_{(h,k)\to(0,0)} \frac{\frac{hk}{\sqrt{h^2+k^2}} - 0 - h \cdot 0 - k \cdot 0}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{hk}{h^2+k^2} = ? \quad (*)$$

Interpretacja geometryczna funkcji różniczkowalnej w punkcie

Różniczkowalność funkcji f w punkcie (x_0,y_0) oznacza, że istnieje płaszczyzna styczna (niepionowa) do wykresu tej funkcji w punkcie $(x_0,y_0,f(x_0,y_0))$.

Twierdzenie 5

Niech funkcja f ma ciągłe pochodne cząstkowe $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ w punkcie (x_0, y_0) . Wówczas płaszczyzna styczna do wykresu funkcji f w punkcie $(x_0, y_0, f(x_0, y_0))$ ma postać:

$$z-f(x_0,y_0)=\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Twierdzenie 3 (Warunek konieczny różniczkowalności funkcji)

Jeżeli funkcja jest różniczkowalna w punkcie to jest ciągła w tym punkcie.

Uwaga 5

Funkcja z Przykładu 1 nie jest różniczkowalna w punkcie (0,0), bo nie jest ciągła w tym punkcie.

Uwaga 6

Twierdzenie odwrotne do Twierdzenia 3 nie jest prawdziwe. Funkcja z Przykładu 2 jest ciągła w punkcie (0,0) a nie jest jest w tym punkcie różniczkowalna, bo nie istnieją pochodne cząstkowe pierwszego rzędu funkcji f w punkcie (0,0).

Twierdzenie 4 (Warunek wystarczający różniczkowalności funkcji)

Jeżeli pochodne cząstkowe $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ są funkcjami ciągłymi w punkcie (x_0,y_0) , to funkcja f jest różniczkowalna w tym punkcie.

Uwaga 7

Funkcje z Przykładów 5 i 6 są różniczkowalne w każdym punkcie \mathbb{R}^2 .

Przykład 10

Napisać równanie płaszczyzny stycznej do wykresu funkcji

$$f(x,y) = \frac{\arctan x}{1+y^2} \quad \text{w punkcie } P = \left(1,0,\frac{\pi}{4}\right).$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{1+x^2} \cdot \frac{1}{1+y^2} \quad \Rightarrow \quad \frac{\partial f}{\partial x}(1,0) = \frac{1}{2} \cdot 1 = \frac{1}{2};$$

$$\frac{\partial f}{\partial y}(x,y) = -\arctan x \cdot \frac{2y}{(1+y^2)^2} \quad \Rightarrow \quad \frac{\partial f}{\partial y}(1,0) = 0.$$

$$z - f(x_0,y_0) = \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)$$

$$z - \frac{\pi}{4} = \frac{1}{2}(x-1) + 0 \cdot (y-0)$$

Zatem

$$z = \frac{1}{2}x + \frac{\pi}{4} - \frac{1}{2}$$

jest równaniem płaszczyzny stycznej do wykresu funkcji f w punkcie P.

Interpretacja geometryczna

Interpretacja geometryczna

