Введем обозначения:

- \bullet $\{R\}$ игрок B вытянул красную карту
- $\{T\}$ выпал орел
- {*H*} выпала решка
- R_1 число красных карт в первой стопке
- N_1 число карт в первой стопке

1.

$$P(R) = P(R|T)P(T) + P(R|H)P(H) = \frac{R_1}{N_1} \cdot \frac{1}{2} + \frac{26 - R_1}{52 - N_1} \cdot \frac{1}{2}$$

Покажем сначала, что игроку A нужно сделать одну из стопок полностью красной. Предположим, что размеры стопок зафиксированы — в первой N_1 карт, во второй — $52-N_1$. Будем менять одну красную карту из второй стопки на черную из первой. Изменение вероятности достать красную карту из первой стопки при этом составит $\frac{R_1+1}{N_1}-\frac{R_1}{N_1}=\frac{1}{N_1}$, а из второй $\frac{26-R_1-1}{52-N_1}-\frac{26-R_1}{52-N_1}=-\frac{1}{52-N_1}$. Таким образом, увеличение вероятности достать красную карту из первой стопки больше, чем уменьшение вероятности достать ее из второй для всех N_1 вплоть до 26, то есть пока все красные карты не перейдут в первую стопку.

Обозначим за x число красных карт в первой стопке. Тогда

$$P(R) = \frac{x}{x} \cdot \frac{1}{2} + \frac{26 - x}{52 - x} \cdot \frac{1}{2} = \frac{1}{2} \left(1 + \frac{26 - x}{52 - x} \right) = \frac{1}{2} \left(1 + 1 - \frac{26}{52 - x} \right)$$

P(R) будет максимальной, когда дробь $\frac{26}{52-x}$ будет минимальной, то есть когда x примет минимальное из возможных значений -1.

При x=1

$$P(R) = \frac{1}{2} \left(2 - \frac{26}{51} \right) = \frac{1}{2} \cdot \frac{102 - 26}{51} = \frac{76}{102}$$

2.

Для минимизации вероятности своего выигрыша, игрок A должен действовать наоборот - сделать так, чтобы в одной из стопок была одна черная карта. Тогда

$$P(R) = \frac{1}{2} \left(\frac{0}{1} + \frac{26}{51} \right) = \frac{26}{102}$$