BINARNE OPERACIJE

Neka je $A \neq \emptyset$.

Unarna operacija skupa A je svaka funkcija $':A\longrightarrow A$. Binarna operacija skupa A je svaka funkcija $*:A^2\longrightarrow A$.

Uobičajeno je da se za unarne operacije koriste simboli: -, $^{-1}$, ' i slično, a za binarne: +, \cdot , \oplus , \odot , * i slično.

Takođe se umesto *(a,b) piše a*b, na primer, umesto +(1,2)=3 piše se 1+2=3.

Ako je * binarna operacija nepraznog skupa A uređen par $\mathcal{A} = (A, *)$ se naziva **grupoid**.

Uređen par (A, *) je grupoid ako je $A \neq \emptyset$ i operacija * zatvorena u skupu A, tj. važi $\forall x, y \in A \Longrightarrow x * y \in A$.

Primer: Da li su sledeći uređeni parovi grupoidi?

$$(\mathbb{N}, +), (\mathbb{N}, \cdot), (\mathbb{N}, -), (\mathbb{Z}, -), (\mathbb{Z}, \cdot), (\mathbb{Z} \setminus \{0\}, :), (\mathbb{R}, :), (\mathbb{R} \setminus \{0\}, :), (\{-1, 0, 1\}, +), (\{-2, -1, 0, 1, 2\}, \cdot).$$

Binarne operacije se obično zadaju (definišu) korišćenjem:

Kejlijevih tablica.

Pomoću Kejlijevih tablica se mogu zadati unarne i binarne operacije na konačnom skupu A. Na primer, neka je $A = \{0, 1, 2, 3\}$

′		*	0	1	2	3
0	0	0	0	1	2	3
1	3	1	1	2	3	3
2	2	2	2	3	3	3
3	3 2 1	3	3	3	2 3 3 3	3

• Poznatih binarnih operacija.

Pomoću poznatih operacija mogu se zadati nove unarne i binarne operacije. Na primer, na skupu $A = \{0, 1, 2, 3\}$

$$x' = \begin{cases} 0, & x = 0 \\ 4 - x, & x \neq 0 \end{cases}$$
 i $x * y = min\{x + y, 3\}$

definisane iste operacije ' i * koje su definisane Kejlijevim tablicama datim iznad.

Osobine grupoida.

Neka je A neprazan skup.

- Grupoid (A, *) je asocijativan (polugrupa) ako $\forall x, y, z \in A, x * (y * z) = (x * y) * z.$
- Grupoid (A, *) je komutativan ako $\forall x, y \in A, x * y = y * x.$
- Grupoid (A, *) je idempotentan ako $\forall x \in A, x * x = x$.
- Grupoid (A, *) je sa levim neutralnim elementom ako $\exists e \in A, \forall x \in A, e * x = x.$

Grupoid (A, *) je sa desnim neutralnim elementom ako $\exists e \in A, \forall x \in A, x * e = x.$

Elemenat $e \in A$ je neutralni elemenat grupoida (A, *) ako je on istovremeno i levi i desni neutralni elemenat.

• Neka je $e \in A$ levi neutralni element grupoida (A, *). Ako za neki elemenat $x \in A$, $\exists x' \in A$, x' * x = e tada je x' levi inverzni elemenat elementa x.

Neka je $e \in A$ desni neutralni element grupoida (A, *). Ako za neki elemenat $x \in A$, $\exists x' \in A$, x * x' = e tada je x' desni inverzni elemenat elementa x.

Neka je $e \in A$ neutralni element grupoida (A,*). Ako za neki elemenat $x \in A$ postoji elemenat $x' \in A$ koji je istovremeno i levi i desni inverzni elemenat elemenat x, tada je elemenat x' inverzni elemenat, elemenat x.

• Grupoid (A, *) je kancelativan ako $\forall x, y, z \in A, \ x * y = x * z \Longrightarrow y = z \text{ i } y * x = y * x \Longrightarrow y = z \text{ (levi i desni zakon kancelacije)}.$

• Grupoid (A, *) je sa levim nilpotentnim elementom ako $\exists 0 \in A, \forall x \in A, 0 * x = 0.$

Grupoid (A, *) je sa desnim nilpotentnim elementom ako $\exists 0 \in A, \forall x \in A, x * 0 = 0$.

Elemenat $\mathbf{0} \in A$ je nilpotentni elemenat grupoida (A, *) ako je on istovremeno i levi i desni nilpotentni elemenat.

Ako postoji neutralni element, on je jedinstven.

Ako postoji inverzni element, on je jedinstven.

Ako je grupoid komutativan, levi neutralni element mora biti i desni, levi inverzni element mora biti i desni, levi nilpotentni element mora biti i desni, tj. pri ispitivanju neutralnog, nilpotentnog i inverznih elemenata dovoljno je ispitivati samo leve, odnosno samo desne.

Ako u asocijativnom grupoidu postoji i neutralni i inverzni elementi on je kancelativan.

Ako je neka operacija zadata preko poznatih binarnih i unarnih operacija, tada se pri ispitivanju njenih osobina koriste poznate osobine operacija preko kojih je definisana.

Neka je $\mathcal{A} = (A, *)$ grupoid, i neka je B neprazan podskup skupa A. Ukoliko je $\mathcal{B} = (B, *)$ grupoid, tj. ako je operacija * zatvorena u skupu B, tada je \mathcal{B} **podgrupoid** grupoida \mathcal{A} .

Operacija * grupoida \mathcal{B} je ustvari restrikcija operacije * grupoida \mathcal{A} , ali je uobičajeno da se one isto označavaju.

Zakonitosti u kojima od kvantifikatora figuriše samo \forall (na primer komutativnost i asocijativnost) prenose se sa grupoida na svaki njegov podgrupoid.

Primer: Neka je A = [0,1] i $B = \{0,1\}$. Ispitati da li su uređeni parovi (A, min) i (B, min) grupoidi i ako jesu ispitati njihove osobine.

(A, min) jeste grupoid jer:

- $A \neq \emptyset$;
- zatvorenost: važi jer za $\forall x, y \in A, \min(x, y) \in [x, y] \subseteq A,$

Za grupoid (A, min):

- asocijativnost: važi jer za $\forall x, y, z \in A, \min(x, \min(y, z)) = \min(x, y, z) = \min(\min(x, y), z);$
- komutativnost: važi jer za $\forall x, y \in A, \min(x, y) = \min(y, x)$;
- idempotentnost: važi jer za $\forall x \in A, \min(x, x) = x;$
- neutralni elemenat: je 1 jer je za $\forall x \in A, \min(1, x) = x;$
- inverzni elementi: samo elemenat 1 ima inverzni i to je sam sebi inverzan, tj. važi min(1,1) = 1, ostali elementi nemaju inverzne;
- nilpotentni elemenat: je 0 jer je za $\forall x \in A, \min(0, x) = 0$;
- kancelativnost: ne važi jer je na primer $\min\left(0,1\right)=\min\left(0,0\right)$ a $0\neq1.$

Skup B je neprazan podskup skupa A, i on je zatvoren za operaciju min jer $\forall x,y \in B, min(x,y) \in \{x,y\} \subseteq B$, pa je (B,min) grupoid, što znači da je (B,min) podgrupoid grupoida (A,min). Kako je operacija min u skupu B restrikcija operacije min u skupu A, i kako 1 i 0 pripadaju skupu B, u grupoidu (B,min) važe potpuno iste osobine kao i u grupoidu (A,min).

Primer: Ispitati da li su uređeni parovi (\mathbb{R},\cdot) , $(\mathbb{R}\setminus\{0\},\cdot)$, $((0,\infty),\cdot)$, $((0,1],\cdot)$, $((0,1],\cdot)$, $(\{0,1\},\cdot)$, (A,\cdot) gde je $A=\{x\in\mathbb{Q}\mid 0< x<1\}$ i (\mathbb{I},\cdot) grupoidi i ako jesu ispitati njihove osobine. Odrediti koji su grupoidi podgrupoidi nekih drugih ovde posmatranih grupoida.

Svi navedeni skupovi su neprazni.

•	\mathbb{R}	$\mathbb{R}\setminus\{0\}$	$(0,\infty)$	[0,1]	(0,1)	$\{0,1\}$	A	\mathbb{I}
grupoid	+	+	+	+	+	+	+	$-, \sqrt{2} \cdot \sqrt{2} = 2 \notin \mathbb{I}$
asocijativnost	+	+	+	+	+	+	+	/
komutativnost	+	+	+	+	+	+	+	/
idempotentnost	_	_	_	_	_	+	_	/
neutralni element	1	1	1	1	_	1	_	/
inverzni elementi	0 nema, ostali +	+	+	1 ima, ostali -	_	1 ima, 0 nema	_	/
nilpotentni element	0	_	_	_	_	0	_	/
kancelacija	_	+	+	+	+	_	+	/

Svaki od posmatranih grupoida je sam sedi podgrupoid i osim toga:

- $(\mathbb{R} \setminus \{0\}, \cdot)$ je podgrupoid od (\mathbb{R}, \cdot) ;
- $((0,\infty),\cdot)$ je podgrupoid od (\mathbb{R},\cdot) i $(\mathbb{R}\setminus\{0\},\cdot)$;
- $((0,1],\cdot)$ je podgrupoid od (\mathbb{R},\cdot) , $(\mathbb{R}\setminus\{0\},\cdot)$ i $((0,\infty),\cdot)$;
- $((0,1),\cdot)$ je podgrupoid od (\mathbb{R},\cdot) , $(\mathbb{R}\setminus\{0\},\cdot)$, $((0,\infty),\cdot)$ i $((0,1],\cdot)$;
- $(\{0,1\},\cdot)$ je podgrupoid od (\mathbb{R},\cdot) ;
- (A, \cdot) je podgrupoid od (\mathbb{R}, \cdot) , $(\mathbb{R} \setminus \{0\}, \cdot)$, $((0, \infty), \cdot)$, $((0, 1], \cdot)$ i $((0, 1), \cdot)$.

Ako je operacija * na nepraznom skupu A zadata Kejlijevom tablicom, neke od osobina se mogu proveriti "vizuelno" uočavanjem određenog, specifičnog, rasporeda u tablici.

- \bullet zatvorenost: u tablici se javljaju samo elementi skupa A;
- komutativnost: tablica je simetrična u odnosu na glavnu dijagonalu;
- ullet idempotentnost: na glavnoj dijagonali su poređani elementi skupa A onako kako su poređani u graničnoj vrsti i kolonič
- neutralni elemenat: $e \in A$ je levi neutralni elemenat ako je vrsta elementa e jednaka graničnoj vrsti, a $e \in A$ je desni neutralni elemenat ako je kolona elementa e jednaka graničnoj koloni;
- inverzni elemenat: ako je e levi neutralni elemenat, tada postoji levi inverzni elemenat x' elementa x ukoliko se u koloni elementa x pojavljuje bar jednom neutralni elemenat e, a ako je e desni neutralni elemenat, tada postoji desni inverzni elemenat x' elementa x ukoliko se u koloni elementa x pojavljuje bar jednom neutralni elemenat e. Svaki elemenat ima svoj inverzni akko se elemenat e pojavljuje tačno jednom u svakoj vrsti i koloni i simetrično je raspoređen odnosu na glavnu dijaginalu.
- nilpotentni element: element 0 je nilpotentni element ako su cela njegova vrsta i kolona popunjeni sa njim samim;
- asocijativnost i kancelacija se ne mogu ispitivati pomoću tablice.

 $Primer^*$: Neka je $A = \{a, b, c, d\}$, i neka je operacija * skupa A zadata Kejlijevom tablicom

- zatvorenost: u tablici se javljaju samo elementi skupa $A \neq \emptyset$, pa (A, *) jeste grupoid;
- \bullet komutativnost: tablica je simetrična u odnosu na glavnu dijagonalu pa grupoid (A, *) jeste komutativan;
- idempotentnost: na glavnoj dijagonali su poređani elementi skupa A baš onako kako su poređani u graničnoj vrsti i koloni pa grupoid (A, *) jeste idempotentan;

- neutralni elemenat: elemenat $c \in A$ je neutralni elemenat grupoida (A, *) jer je njegova vrsta jednaka graničnoj vrsti, a njegova kolona jednaka graničnoj koloni;
- inverzni elemenat: osim elementa c koji je sam sebi inverzan (c*c=c) ostali elementi nemaju inverzne;
- nilpotentni elemenat: elemenat $b \in A$ je nilpotentni elemenat jer se cela njegova vrsta i kolona popunjeni sa njim samim;
- grupoid (A, *) nije kancelativan jer je recimo ba = bd a $a \neq d$ (što se vidi iz tablice ali se nije moglo zaključiti na osnovu nje);
- da bi se ispitala asocijativnost grupoida (A, *) potrebno je proveriti jednakost x*(y*z) = (x*y)*z za sve $x, y, z \in A$, što bi bilo $4^3 = 64$ slučaja. Kako je c neutralni elemenat, ako bar jedna promenljiva (x, y ili z) ima vrednost c, jednakost x*(y*z) = (x*y)*z će biti zadovoljena jer c kao neutralni elemenat ne utiče na rezultat operacije. Sad ostaje da se proveri još $3^3 = 27$ slučajeva. Kako je b nilpotentni elemenat, ako bar jedna promenljiva (x, y ili z) ima vrednost b, jednakost x*(y*z) = (x*y)*z će biti zadovoljena jer će izrazi na levoj i desnoj strani jednakosti imati vrednost b. Ostaje da se proveri još $2^3 = 8$ slučajeva. Ovo se može proveriti direktno očitavanjem iz tablice

$$\begin{array}{lll} a*(a*a)=a=(a*a)*a, & a*(a*d)=b=(a*a)*d, \\ a*(d*a)=b=(a*d)*a, & a*(d*d)=b=(a*d)*d, \\ d*(a*a)=b=(d*a)*a, & d*(a*d)=b=(d*a)*d, \\ d*(d*a)=b=(d*d)*d, & d*(d*d)=d=(d*d)*d, \end{array}$$

pa grupoid (A, *) jeste asocijativan.

Neka su (G, *) i (H, \circ) grupoidi kod kojih je $G = \{a, b\}$ i $H = \{A, B\}$, a operacije * i \circ su definisane sledećim Kejlijevim tablicama

Može se uočiti da se grupoidi (G,*) i (H,\circ) razlikuju samo po simbolu operacije i po "veličini slova", tj. može se reći da je grupoid (H,\circ) dobijen od grupoida (G,*) tako što su u grupoidu (G,*) preoznačeni elementi i operacija. Pri tome je struktura preoznačenog grupoida (H,\circ) ostala ista kao i struktura polaznog grupoida (G,*). U ovom slučaju kaže se da su ta dva grupoida ista (jednaka) do na izomorfizam, što se definiše na sledeći način.

Neka su $\mathcal{G} = (G, *)$ i $\mathcal{H} = (H, \circ)$ grupoidi, i neka je $h : G \longrightarrow H$. Funkcija h je **homomorfizam** grupoida \mathcal{G} u grupoid \mathcal{H} ako

$$\forall x, y \in G, h(x * y) = h(x) \circ h(y).$$

Ako je homomorfizam h bijektivna funkcija tada se funkcija h naziva **izomorfizam**, i kaže se da je grupoid \mathcal{G} izomorfan sa grupoidom \mathcal{H} , što se zapisuje sa $\mathcal{G} \simeq \mathcal{H}$.

Primer: Funkcija $\ln : \mathbb{R}^+ \longrightarrow \mathbb{R}$ je izomorfizam grupoida (\mathbb{R}^+,\cdot) u $(\mathbb{R},+)$ jer je funkcija in bijekcija i važi

$$\forall x, y \in \mathbb{R}^+, \quad \ln(x \cdot y) = \ln x + \ln y.$$

Izomorfizam "prenosi" osobine sa jednog grupoida na drugi. Ako je $h: G \longrightarrow H$ izomorfizam grupoida $\mathcal{G} = (G, *)$ u grupoid $\mathcal{H} = (H, \circ)$, tada svaka "zakonitost" koja važi u \mathcal{G} važi i u \mathcal{H} , tj.

- ako je grupoid \mathcal{G} asocijativan tada je i grupoid \mathcal{H} asocijativan;
- ako je grupoid \mathcal{G} komutativan tada je i grupoid \mathcal{H} komutativan;
- ako postoji neutralni element $e_1 \in G$ u grupoidu \mathcal{G} tada je $e_2 = h(e_1) \in H$ neutralni elemenat grupoida \mathcal{H} ;
- ako su $x \in G$ i $y \in G$ međusobno inverzni elementi u grupoidu \mathcal{G} tada su $h(x) \in H$ i $h(y) \in H$ međusobno inverzni elementi u grupoidu \mathcal{H} .

Kako izomorfizam "prenosi" sve osobine iz jednog grupoida u drugi najčešće se koristi na sledeći način: Ako je potrebno ispitati osobine grupoida (H, \circ) , dovoljno je pronaći izomorfizam između njega i nekog grupoida čije osobine su već poznate pa će zbog izomorfizma one važiti i u (H, \circ) .

Ako su grupoidi $\mathcal{G}=(G,*)$ i $\mathcal{H}=(H,\circ)$ definisani Kejlijevim tablicama i ako je $h:G\longrightarrow H$ izomorfizam grupoida \mathcal{G} u grupoid \mathcal{H} tada, ako se u tablici grupoida \mathcal{G} svaki elemenat $x\in G$ zameni elementom $h(x)\in H$ dobija se tablica grupoida \mathcal{H} ,

a važi i obrnuto, ako je $h: G \longrightarrow H$ bijekcija i ako se tablica grupoida \mathcal{H} može dobiti tako što se u tablici grupoida \mathcal{G} svaki elemenat $x \in G$ zameni elementom $h(x) \in H$ onda je h izomorfizam.

Primer: Neka je $B = \{1, 2, 3, 6\}$ i na skupu B neka je deta operacija "najmanji zajednički sadržalac" (NZS(x, y) je najmanji elemenat skupa B koji je deljiv i sa x i sa y).

Na osnovu Kejlijeve tablice

može se zaključiti

- zatvorenost: u tablici se javljaju samo elementi skupa $B \neq \emptyset$, pa (B, NZS) jeste grupoid;
- komutativnost: tablica je simetrična u odnosu na glavnu dijagonalu pa grupoid (B, NZS) jeste komutativan;
- ullet idempotentnost: na glavnoj dijagonali su poređani elementi skupa A baš onako kako su poređani u graničnoj vrsti i koloni pa grupoid (B, NZS) jeste idempotentan;
- neutralni elemenat: elemenat $1 \in B$ je neutralni elemenat grupoida (B, NZS) jer je njegova vrsta jednaka graničnoj vrsti, a njegova kolona jednaka graničnoj koloni;
- inverzni elemenat: osim elementa 1 koji je sam sebi inverzan (1*1=1) ostali elementi nemaju inverzne;
- nilpotentni elemenat: elemenat $6 \in B$ je nilpotentni elemenat jer se cela njegova vrsta i kolona popunjeni sa njim samim;
- grupoid (B, *) nije kancelativan jer je recimo NZS(6, 1) = NZS(6, 2) a $1 \neq 2$;
- asocijativnost je ovde veoma teško pokazati i zbog toga će biti iskorišćen izomorfizam. Ako se pogleda Primer* može se uočiti da se do sad ispitane osobine grupoida (B, NZS) poklapaju sa osobinama grupoida (A, *) iz Primera*. Funkcija $f: A \longrightarrow B$ data sa

$$f = \left(\begin{array}{ccc} a & b & c & d \\ 3 & 6 & 1 & 2 \end{array}\right)$$

je očigledno bijekcija.

Kada se u tablici

zameni svako pojavljivanje slova a brojem 3, slova b brojem 6, slova c brojem 1 i slova d brojem 2 dobija se

Kada se zatim preslažu kolone i vrste dobija se baš

što znači da je funkcija f izomorfizam grupoida (A, *) u grupoid (B, NZS).

Kako je u Primeru* dokazano da je (A,*) asocijativan grupoid zbog ovog izomorfizma sledi da je i grupoid (B,NZS) asocijativan. Sve ostale osobine grupoida (B,NZS) takođe slede iz izomorfizma i nisu morale biti posebno ispitivane.