Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Trabajo Encargado

Métodos de Optimización Descenso de Gradiente

Docente: Fred Torres Cruz

Autor: heydi pamela manasaya quispe

GITHUBhttps://github.com/PamelaManasayaQ/SHYNI/upload SHYNI: https://pamelamanasaya.shinyapps.io/shyniR/

Problema

Aplicar el algoritmo de descenso de gradiente a la función objetivo:

$$f(x) = (x-3)^2 + 2$$

con una tasa de aprendizaje de $\alpha = 0,1$, valor inicial $x_0 = 2$, y 15 iteraciones.

Solución

La derivada de la función es:

$$f'(x) = 2(x-3)$$

El algoritmo de descenso de gradiente actualiza el valor de x con la siguiente fórmula:

$$x_{k+1} = x_k - \alpha f'(x_k)$$

Donde α es la tasa de aprendizaje. Ahora, procedemos con las iteraciones:

Iteración 1:
$$x_1 = x_0 - \alpha f'(x_0) = 2 - 0.1 \times 2(2 - 3) = 2 - 0.1 \times (-2) = 2 + 0.2 = 2.2$$

Iteración 2:
$$x_2 = x_1 - \alpha f'(x_1) = 2,2 - 0,1 \times 2(2,2-3) = 2,2 - 0,1 \times (-1,6) = 2,2 + 0,16 = 2,36$$

Iteración 3:
$$x_3 = x_2 - \alpha f'(x_2) = 2,36 - 0,1 \times 2(2,36 - 3) = 2,36 - 0,1 \times (-1,28) = 2,36 + 0,128 = 2,49$$

Iteración 4:
$$x_4 = x_3 - \alpha f'(x_3) = 2,49 - 0,1 \times 2(2,49 - 3) = 2,49 - 0,1 \times (-1,02) = 2,49 + 0,102 = 2,59$$

Iteración 5:
$$x_5 = x_4 - \alpha f'(x_4) = 2.59 - 0.1 \times 2(2.59 - 3) = 2.59 - 0.1 \times (-0.82) = 2.59 + 0.082 = 2.67$$

Iteración 6:
$$x_6 = x_5 - \alpha f'(x_5) = 2,67 - 0,1 \times 2(2,67 - 3) = 2,67 - 0,1 \times (-0,66) = 2,67 + 0,066 = 2,74$$

Iteración 7:
$$x_7 = x_6 - \alpha f'(x_6) = 2.74 - 0.1 \times 2(2.74 - 3) = 2.74 - 0.1 \times (-0.52) = 2.74 + 0.052 = 2.79$$

Iteración 8:
$$x_8 = x_7 - \alpha f'(x_7) = 2.79 - 0.1 \times 2(2.79 - 3) = 2.79 - 0.1 \times (-0.42) = 2.79 + 0.042 = 2.83$$

Iteración 9:
$$x_9 = x_8 - \alpha f'(x_8) = 2.83 - 0.1 \times 2(2.83 - 3) = 2.83 - 0.1 \times (-0.34) = 2.83 + 0.034 = 2.87$$

Iteración 10:
$$x_{10} = x_9 - \alpha f'(x_9) = 2.87 - 0.1 \times 2(2.87 - 3) = 2.87 - 0.1 \times (-0.26) = 2.87 + 0.026 = 2.89$$

Iteración 11:
$$x_{11} = x_{10} - \alpha f'(x_{10}) = 2.89 - 0.1 \times 2(2.89 - 3) = 2.89 - 0.1 \times (-0.22) = 2.89 + 0.022 = 2.91$$

Iteración 12:
$$x_{12} = x_{11} - \alpha f'(x_{11}) = 2.91 - 0.1 \times 2(2.91 - 3) = 2.91 - 0.1 \times (-0.18) = 2.91 + 0.018 = 2.93$$

Iteración 13:
$$x_{13} = x_{12} - \alpha f'(x_{12}) = 2.93 - 0.1 \times 2(2.93 - 3) = 2.93 - 0.1 \times (-0.14) = 2.93 + 0.014 = 2.95$$

Iteración 14:
$$x_{14} = x_{13} - \alpha f'(x_{13}) = 2.95 - 0.1 \times 2(2.95 - 3) = 2.95 - 0.1 \times (-0.10) = 2.95 + 0.01 = 2.96$$

Iteración 15:
$$x_{15} = x_{14} - \alpha f'(x_{14}) = 2.96 - 0.1 \times 2(2.96 - 3) = 2.96 - 0.1 \times (-0.08) = 2.96 + 0.008 = 2.97$$

Resultado Final

Después de 15 iteraciones, el valor final de x es aproximadamente $x_{15} = 2,97$, lo cual es una buena aproximación al mínimo de la función $f(x) = (x-3)^2 + 2$, que ocurre en x = 3.

Resultado en Shyni

Tabla de Iteraciones

Iteración	x	f_x
1	2.00	3.00
2	2.20	2.64
3	2.36	2.41
4	2.49	2.26
5	2.59	2.17
6	2.67	2.11
7	2.74	2.07
8	2.79	2.04
9	2.83	2.03
10	2.87	2.02
11	2.89	2.01
12	2.91	2.01
13	2.93	2.00
14	2.95	2.00
15	2.96	2.00

los cálculos manuales y los calculos en el programa concuerdan o son iguales en respuestas.

Resultados

Ecuación trabajada: $f(x) = (x - 3)^2 + 2$

Descenso de Gradiente

Vista general de la ventana en Shyni

