Combinatoria

Numero Combinatorio

Cantidad de forma de elegir k elementos de un total de n elementos:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomio de Newton

$$(a+b)^n = \sum_{k=0}^n inom{n}{k} a^k b^{n-k}, orall n \in \mathbb{N}_0$$

Anagramas

La cantidad de anagramas que se pueden formar de una palabra:

 $\frac{cantidadTotalLetras!}{repeticiones!}$

cantidad de anagramas de PALABRA:

$$PA_1LA_2BRA_3$$

 $\frac{7!}{3!}$

cantidad de anagramas de HELICOPTERO:

$$HE_1LICO_1PTE_2RO_2$$

 $\frac{11!}{2!2!}$

Combinatoria de Funciones

Funciones (repaso):

 $\operatorname{sea} f:A\to B$

- Funciones Inyectivas:
 - $\circ \#A \leq \#B$
 - $\circ \ orall a,b\in A, f(a)=f(b)\Rightarrow a=b$
 - $\circ \ orall a,b \in A, f(a)
 eq f(b) \Rightarrow a
 eq b$
- Funciones Sobreyectivas :
 - $\circ \ \#A \geq \#B$
 - $\circ \ orall b \in B, \exists a \in A: f(a) = b \Rightarrow im(f) = orall B$
- Funciones Biyectivas :
 - \circ #A = #B
 - $\circ \ orall a,b\in A, f(a)=f(b)\Rightarrow a=b$
 - $\circ \ \forall b \in B, \exists a \in A: f(a) = b \Rightarrow im(f) = \forall B$

Cantidad de Relaciones

Sea f una funcion $f:A o B,\;\;A=\{a_1,...a_m\}\;y\;B=\{b_1,...a_n\}$ donde $\#A=m\wedge\;\#B=m$

Entonces la **cantidad de relaciones** que hay de $A_n\ en\ B_m$ es: $2^{n.m}$

4

Cantidad de Funciones

La **cantidad total** de funciones $f:A_n o B_m$ que hay: $\#B^{\#A}=m^n$

• Funciones Inyectivas:

Sea $n \leq m$:

La cantidad de **funciones inyectivas** $f:A_n o B_m$ que hay:

$$\binom{m}{n}n! = \frac{m!}{(m-n)!}$$

• Funciones Sobreyectivas:

La cantidad de **funciones biyectivas** $f:A_n o B_m$ que hay:

 $\operatorname{si} m > n$:

$$\sum_{k=0}^{n} (-1)^k (n-k)^m$$

 $\sin m < n$:

$$(n)^m$$

 $\mathrm{si}\, m=n\, \colon$