Übungsblatt 6 zur Linearen Algebra I

Hinweis: $\mathbb N$ ist die Menge der natürlichen Zahlen, $\mathbb Q$ die der rationalen, $\mathbb R$ die der reellen.

Aufgabe 17. Zum \mathbb{R} -Vektorraum \mathbb{R}^3

Im \mathbb{R}^3 , der \mathbb{R} -Vektorraum ist, sind folgende Mengen gegeben:

```
S_1 = \{x = (\alpha_1, \alpha_2, \alpha_3) | \alpha_1 = \alpha_2 = \alpha_3\}
```

$$S_2 = \{x = (\alpha_1, \alpha_2, \alpha_3) \mid \alpha_3 = 0\}$$

$$S_3 = \{x = (\alpha_1, \alpha_2, \alpha_3) \mid \alpha_1 = \alpha_2 - \alpha_3\}$$

$$S_4 = \{x = (\alpha_1, \alpha_2, \alpha_3) \mid \alpha_1 = 1\}$$

- a) Man skizziere die Mengen S_i innerhalb von \mathbb{R}^3 , i=1,...,4.
- b) Man bestimme die Untervektorräume $U_i = span(S_i), i = 1, ..., 4$.
- c) Man gebe für alle Untervektorräume U_i , i=1,...,4, Basen an.
- d) Man bestimme die Untervektorräume $W_{ij}=U_i+U_j,\ i,j=1,...,4.$ Welche der Summen U_i+U_j sind direkt, d.h. $U_i+U_j=U_i\oplus U_j$?

Ergänzende Bemerkung:

 $\overline{\text{Im }\mathbb{R}^3}$ - jede Basis von $\overline{\mathbb{R}^3}$ besteht aus drei Vektoren - sollte man immer folgende anschauliche Vorstellung haben: (x_1,x_2,x_3) ist genau dann eine Basis von \mathbb{R}^3 , wenn x_1 nicht (0,0,0) ist, x_2 nicht auf der Geraden durch (0,0,0) und x_1 liegt und x_3 nicht in der Ebene durch (0,0,0), x_1 und x_2 liegt.

Aufgabe 18. Zum \mathbb{R} -Vektorraum \mathbb{R}^4

Welche der folgenden Familien von Vektoren im \mathbb{R} -Vektorraum \mathbb{R}^4 sind linear unabhängig, ein Erzeugendensystem oder eine Basis? Man begründe die Antworten.

- a) ((1,1,1,1),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))
- b) ((1,0,0,0),(2,0,0,0))
- c) ((17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0))
- d) $((1, \frac{1}{2}, 0, 0), (0, 0, 1, 1), (0, \frac{1}{2}, \frac{1}{2}, 1), (\frac{1}{4}, 0, 0, \frac{1}{4}))$

Aufgabe 19. *Zum* \mathbb{Q} -*Vektorraum* \mathbb{R}

- a) Man bestätige, dass \mathbb{R} ein \mathbb{Q} -Vektorraum ist.
- b) Ist die Familie $(1,\sqrt{2},\sqrt{3})$ im $\mathbb Q$ -Vektorraum $\mathbb R$ linear abhängig oder linear unabhängig? Man begründe die Antwort.

Aufgabe 20. Zum \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{N}}$

Es ist $\mathbb{R}^{\mathbb{N}}$ – auch die Bezeichnung \mathbb{R}^{∞} ist gebräuchlich – der \mathbb{R} -Vektorraum wie in **Aufgabe 16**; $e_k \in \mathbb{R}^{\mathbb{N}}$ sei wie folgt definiert: $e_k = (0, \dots, 1, 0, \dots)$ mit der 1 an der k-ten Stelle. Es sei $B := (e_1, e_2, \dots)$.

- a) Man zeige, dass die Familie B im \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{N}}$ linear unabhängig ist.
- b) Was ist span(B)? Man begründe die Antwort.