CS 341

These notes are meant to be supplementary to lecture slides & the textbook, and so may not contain all covered materials. Here I've chosen content which might not be easy to remember and/or is helpful to look at when doing assignments.

Asymptotic Analysis

- Order Notations:
 - $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$
 - \circ f "grows no faster than" g
 - $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n) \ \forall n \ge n_0$
 - \circ f "grows no slower than" g
 - $f(n) \in \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
 - \circ f ang g have the same complexity
 - $f(n) \in o(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le f(n) < cg(n) \ \forall n \ge n_0$
 - \circ f has lower complexity than g
 - $f(n) \in \omega(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le cg(n) < f(n) \ \forall n \ge n_0$
 - \circ f has higher complexity than g
 - $f \in O(g)$ and $f \in \Omega(g) \iff f \in \Theta(g)$
- Limit method: suppose $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - $f \in o(g) \text{ if } L = 0$
 - $f \in \Theta(g) \text{ if } 0 < L < \infty$
 - $f \in \omega(g)$ if $L = \infty$
- Useful facts for first-principles proofs:
 - \bullet log $n \ge 1 \ \forall \ n \ge 2$; i.e. log n grows faster than 1
 - \blacksquare log $n \le n \ \forall \ n \ge 0$; i.e. log n grows slower than n
- Useful limit laws:
 - $\blacksquare \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log(f(n))}{\log(g(n))}$
 - $\blacksquare \lim_{n\to\infty} f(n)^k = (\lim_{n\to\infty} f(n))^k$
- Some math rules:
 - Summing a polynomial: $\sum_{i=1}^{n} i^{k} \in \Theta(n^{k+1})$

■ Summing an exponential (special case of geometric series):

$$\sum_{i=1}^{n} c^{i} \in \begin{cases} \Theta(c^{n+1}) & \text{if } c > 1\\ \Theta(n) & \text{if } c = 1\\ \Theta(1) & \text{if } c < 1 \end{cases}$$

- \bullet $a^{\log_b n} = n^{\log_b a}$ (Useful for recursion trees)
- Geometric series:

$$\sum_{i=0}^{n-1} ar^{i} = \begin{cases} a\frac{r^{n}-1}{r-1} \in \Theta(r^{n}) & \text{if } r > 1\\ na \in \Theta(n) & \text{if } r = 1\\ a\frac{1-r^{n}}{1-r} \in \Theta(1) & \text{if } r < 1 \end{cases}$$

- $a \ge b + c$ if $a \ge 2 \cdot \max(b, c)$ (useful for asymtotic proofs)
- $\blacksquare \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ if it exists (L'Hopital's Rule)}$
- $\log(n!) \in \Theta(n \log n)$ (Stirling's Approximation)

Divide and Conquer

• Recursion-tree method:

- Given the recurrence T(n) = aT(n/b) + f(n), T(1) = c:
 - \circ a is the # of recursive calls made (# of subproblems)
 - \circ b is the # by which the input size n is divided in each recursive call
 - \circ f(n) is the runtime of the "work done outside of the recursive calls"
 - \circ c is the constant-time work done in each recursive call in the base case
- Each node of the recursion tree represents the cost of the work done other than making recursive calls
- Each row represents the total cost of work done in all recursive calls at that recursion "level"
- The height of the tree depends on the factor that the input size is divided by; i.e. $\log_b n$
- E.g.: Picture this as a tree where each node (except for leaves) has a children;

Level 0:
$$f(n)$$
 total = $f(n)$
Level 1: $f(n/b)$... $f(n/b)$ total = $af(n/b)$
Level 2: $f(n/b^2)$... $f(n/b^2)$ total = $a^2f(n/b^2)$
...

Level k : $f(n/b^k)$... $f(n/b^k)$ total = $a^kf(n/b^k)$
...

Level $\log_b n$: c ... c total = $ca^{\log_b n} = cn^{\log_b a}$

• Total runtime of recursion tree is (summing every row total):

$$T(n) \in \Theta\left(\sum_{i=0}^{\log_b n-1} a^i f(n/b^i)\right) + \Theta(n^{\log_b a})$$

• Use geometric series formula to find a simplified value

■ Example: $T(n) = 3T(n/4) + n^2$

$$T(n) \in \Theta\left(\sum_{k=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^k n^2 + n^{\log_4 3}\right) \in \Theta(n^2)$$

• Master method:

■ Given the recurrence T(n) = aT(n/b) + f(n) where $f(n) \in \Theta(n^d)$:

$$T(n) \in \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^d) & \text{if } a < b^d \end{cases}$$

Greedy Algorithms

- Two methods of proving greedy algorithms:
- Greedy stays ahead (induction)
 - Show that S_g is better than S at every step
 - Base case: show $S_g[1] > S[1]$
 - Inductive hypothesis: assume $S_g[k-1] > S[k-1]$; show that $S_g[k] > S[k]$
 - o Often by contradiction; i.e. suppose $\exists S^*$ such that $S_g[k] < S^*[k]$, and derive some contradiction
- Exchange argument (swapping)
 - \blacksquare Let $S_g =$ greedy solution, S = some arbitrary solution
 - Show that (any) S can be transformed into S_g step-by-step without getting worse at any point
 - \circ i.e. compare the cost of before & after swapping 2 elements in S, show that it doesn't change or improves

Intractability

- P: solvable in polynomial time
- NP: verifiable in polynomial time
 - $P \subseteq NP$
- NP-complete: set of problems $X \in NP$ such that all $Y \in NP$ can be reduced to X
 - \blacksquare $NPC \subseteq NP$
- Reducibility:
 - $L_1 \leq_P L_2$ " L_1 is polynomial-time reducible to L_2 "
 - \blacksquare There exists a P-time computable function that maps L_1 to L_2

- If $L_1 \leq_P L_2$, then $L_2 \in P \implies L_1 \in P$
 - \circ i.e., if L_2 is solvable in P-time, then L_1 is as well
 - \circ i.e., L_1 is no harder than L_2
- Contrapositive:
 - \circ i.e., if L_1 is known to be *not* solvable in P-time, then L_2 can't be either
 - \circ i.e. L_2 is as hard as L_1