

Zara, J.
09896692

09/896692

FILE 'REGISTRY' ENTERED AT 10:05:38 ON 30 MAY 2003

L1 300 S TCGCACCCATCTCTCCTCT/SQSN
L2 291 S L1 AND SQL=<100

FILE 'HCAPLUS' ENTERED AT 10:06:56 ON 30 MAY 2003

L3 109 S L2

L5 24 SEA ABB=ON PLU=ON L3(L) (HIV OR HUMAN(3W)VIRUS OR HTLV#
OR AIDS OR ACQUIRED(2W)SYNDROM?)

L5 ANSWER 1 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2001:723747 HCAPLUS

DOCUMENT NUMBER: 136:406717

TITLE: Inhibition of HIV-1 in cell culture by
oligonucleotide-loaded nanoparticles

AUTHOR(S): Berton, Myriam; Turelli, Priscilla; Trono,
Didier; Stein, Cy A.; Allemand, Eric; Gurny,
Robert

CORPORATE SOURCE: School of Pharmacy, University of Geneva,
Geneva, CH-1211, Switz.

SOURCE: Pharmaceutical Research (2001), 18(8), 1096-1101
CODEN: PHREEB; ISSN: 0724-8741

PUBLISHER: Kluwer Academic/Plenum Publishers

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The potential use of polymeric nanoparticles for the delivery of antisense oligonucleotides in HIV-1-infected cell cultures was investigated. Phosphorothioate oligonucleotides were encapsulated into poly (D,L-lactic acid) nanoparticles. Two models of infected cells were used to test the ability of nanoparticles to deliver them. HeLa P4-2 CD4+ cells, stably transfected with the .beta.-galactosidase reporter gene, were first used to evaluate the activity of the oligonucleotides on a single-round infection cycle. The acutely infected lymphoid CEM cells were then used to evaluate the inhibition of the viral prodn. of HIV-1 by the oligonucleotides. The addn. to infected CEM cells of nanoparticles contg. gag antisense oligonucleotides in the nanomolar range led to strong inhibition of the viral prodn. in a concn.-dependent manner. Similar results were previously obsd. in HeLa P4-2 CD4+ cells. Nanoparticle-entrapped random-order gag oligonucleotides had similar effects on reverse transcription. However, the reverse transcriptase activity of infected cells treated with nanomolar concns. of free antisense and random oligonucleotides was not affected. These results suggest that poly (D,L-lactic acid) nanoparticles may have great potential as an efficient delivery system for oligonucleotides in HIV natural target cells; i.e., lymphocytic cells.

IT 153021-75-1, GEM91

RL: BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(inhibition of HIV-1 in cell culture by
oligonucleotide-loaded nanoparticles)

REFERENCE COUNT: 30 THERE ARE 30 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 2 OF 24 HCAPLUS COPYRIGHT 2003 ACS

Searcher : Shears 308-4994

09/896692

ACCESSION NUMBER: 2000:605304 HCPLUS
DOCUMENT NUMBER: 134:25093
TITLE: Evaluation of the binding between potential anti-HIV DNA-based drugs and viral envelope glycoprotein gp120 by capillary electrophoresis with laser-induced fluorescence detection
AUTHOR(S): Zhou, Wei; Tomer, Kenneth B.; Khaledi, Morteza G.
CORPORATE SOURCE: Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
SOURCE: Analytical Biochemistry (2000), 284(2), 334-341
CODEN: ANBCA2; ISSN: 0003-2697
PUBLISHER: Academic Press
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The fusion of the human immunodeficiency virus (HIV) with the target cell was assisted by the interaction between the viral envelope glycoprotein HIV-1 gp120 and a chemokine receptor. Studies have shown that the efficiency of the binding depends on the presence of the V3 loop of the gp120 which is known to interact with polyanions, such as phosphorothioate oligodeoxynucleotides (Sd, potential anti-HIV drugs). In this study, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to systematically evaluate binding between Sd and HIV-1 gp120. A 25-mer fluorescently tagged phosphorothioate oligodeoxynucleotide (GEM) was employed as a probe to study this interaction. The dissocn. const. (Kd) between GEM and gp120 was detd. to be 0.98 nM by Scatchard anal. The competition consts. (Kc) of a set of Sd that compete with GEM for binding to gp120 were also detd. The results showed that the interaction had a strong dependence on the sulfur phosphorothioate backbone. Chain length and the sequence of Sd also affect the ability of binding to gp120. The ability to study the protein-drug binding in the soln. with minimal sample consumption makes CE-LIF very attractive for biol. studies. (c) 2000 Academic Press.
IT 153021-75-1D, 5'-fluorescein-labeled
RL: BPR (Biological process); BSU (Biological study, unclassified);
BIOL (Biological study); PROC (Process)
(binding between potential anti-HIV DNA-based drugs and
viral envelope glycoprotein gp120)
REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 3 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 2000:9417 HCPLUS
DOCUMENT NUMBER: 132:160829
TITLE: Cell binding, uptake and cytosolic partition of HIV anti-gag phosphodiester oligonucleotides 3'-linked to cholesterol derivatives in macrophages
AUTHOR(S): LeDoan, Trung; Etore, Florence; Tenu, Jean-Pierre; Letourneux, Yves; Agrawal, Sudhir
CORPORATE SOURCE: Laboratoire de Biochimie des Transports Cellulaires, CNRSUMR8619, Universite de Paris XI, Orsay, 91405, Fr.
SOURCE: Bioorganic & Medicinal Chemistry (1999), 7(11), 2263-2269

09/896692

CODEN: BMECEP; ISSN: 0968-0896
PUBLISHER: Elsevier Science Ltd.

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The purpose of this study is to evaluate the cell interactions of a new class of compds. composed of phosphodiester oligonucleotides linked to the cholesterol group at position 3, 7, or 22 of the steroid structure. The resulting conjugates were assessed for their capacity to bind, penetrate and partition in the cytoplasmic compartment of murine macrophages. The results showed that lipophilic conjugates bind to cells much faster ($t_{1/2} \leq 10$ min) than do underivatized oligomers. Oligomers tethered to the cholesterol at positions 3 and 7 (PO-GEM-3-Chol and PO-GEM-7-Chol) interacted more efficiently with cell membranes and were better internalized than oligomers attached to the cholesterol moiety at position 22 (PO-GEM-22-Chol). The cytosolic fraction of internalized oligomers was studied by a digitonin-based membrane permeabilization method. The recovered fraction of oligomers that can freely diffuse from the cytosol was comparable for GEM-91, a phosphorothioate congener, and for PO-GEM-7-Chol (50-60% of the internalized oligomers), while that of PO-GEM-3-Chol was less (30% of the internalized oligomers) indicating a higher membrane affinity of the latter deriv. as compared to the other investigated compds. Membrane binding and cell internalization correlated well with the hydrophobicity of the conjugates as characterized by their partition coeffs. in a water-octanol system. Due to their capacity of rapid binding and cytosolic partition in cells, cholesterol-derivatized oligonucleotides at position 3 or 7 of the steroid mol. appeared as good candidates for systemic delivery of anti-HIV antisense compds.

IT 153021-75-1, GEM-91 259075-60-0

259075-61-1 259075-62-2 259075-63-3

RL: BPR (Biological process); BSU (Biological study, unclassified);

PRP (Properties); BIOL (Biological study); PROC (Process)

(cell binding, uptake and cytosolic partition of HIV

anti-gag phosphodiester oligonucleotides 3'-linked to cholesterol derivs. in macrophages)

REFERENCE COUNT: 26 THERE ARE 26 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 4 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1999:189236 HCPLUS

DOCUMENT NUMBER: 130:233230

TITLE: Compositions and methods for the identification
and quantitation of deletion sequence
oligonucleotides in synthetic oligonucleotide
preparations

INVENTOR(S): Chen, Danhua; Srivatsa, G. Susan

PATENT ASSIGNEE(S): Isis Pharmaceuticals, Inc., USA

SOURCE: PCT Int. Appl., 163 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

Searcher : Shears 308-4994

09/896692

WO 9911820 A1 19990311 WO 1998-US18084 19980901
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

AU 9891278 A1 19990322 AU 1998-91278 19980901

PRIORITY APPLN. INFO.: US 1997-923771 19970902
WO 1998-US18084 19980901

AB The invention provides compns. and methods for the identification and quantitation of a mixt. of various deletion sequence oligonucleotides present in a prepn. of a synthetic oligonucleotide. In a synthetic prepn. of oligonucleotides, yield of full-length products is less than 100% and decreases as n (the no. of nucleobases in the full-length oligonucleotide) increases. Oligonucleotides shorter than the desired full-length oligonucleotide are possibly undesirable impurities. (n-1) type impurities can be classified as terminal deletion or internal deletion sequences, depending upon the position of the missing base. In the methods of the invention, a soln. comprising a mixt. of various deletion sequence oligonucleotides that have been detectably labeled is contacted to a compn. comprising a series of immobilized probes, each probe having a nucleobase sequence that is the reverse complement of a given (n-1) deletion sequence oligonucleotide and wherein a probe is present for every possible (n-1)-mer that can be present in a prepn. of a synthetic oligonucleotide of length n. Unbound oligonucleotides (full-length and other deletion sequences) can be removed from the hybridization reaction by washing, and the (n-1)-mers can be further identified and quantified.

IT 148267-87-2 153021-75-1, GEM 91
156718-18-2 156718-19-3 156718-20-6
156718-21-7 156718-22-8 156718-23-9
156718-24-0

RL: ARU (Analytical role, unclassified); BUU (Biological use, unclassified); ANST (Analytical study); BIOL (Biological study);
USES (Uses)

(oligonucleotide targeted to HIV-1 gag gene;
identification and quantitation of deletion sequence
oligonucleotides in synthetic oligonucleotide preps.)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN
THE RE FORMAT

L5 ANSWER 5 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1999:139949 HCPLUS
DOCUMENT NUMBER: 130:191877
TITLE: Novel HIV-specific synthetic antisense
oligonucleotides and methods of their use
INVENTOR(S): Agrawal, Sudhir
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 64 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English

09/896692

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9909154	A2	19990225	WO 1998-US16345	19980805
WO 9909154	A3	19990506		
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
CA 2300352	AA	19990225	CA 1998-2300352	19980805
AU 9887713	A1	19990308	AU 1998-87713	19980805
EP 1007657	A2	20000614	EP 1998-939243	19980805
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 2001514884	T2	20010918	JP 2000-509820	19980805
US 2002168340	A1	20021114	US 2001-837806	20010418
US 2003100521	A1	20030529	US 2001-896692	20010629
PRIORITY APPLN. INFO.:			US 1997-914827	A 19970819
			WO 1998-US16345	W 19980805

AB Disclosed are synthetic oligonucleotides having a nucleotide sequence specifically complementary to nucleotides 324-345 of a conserved gag region of the HIV-1 genome, the oligonucleotide consisting of 21 nucleotides which are linked via phosphorothioate internucleotide linkages and optionally contg. 5'- and 3'-terminal 2'-O-methylribonucleotide residues. Also disclosed are methods for inhibiting and treating HIV-1 and HIV-2 infection. To det. the preclin. range of anti-HIV activity of various oligonucleotides, evaluations were performed against a variety of wild-type and drug-resistant strains of HIV-1, including both lab. derived and low passage, clin. strains of virus and T-lymphocyte-tropic and monocyte-macrophage-tropic viruses. The oligonucleotides remained active against viruses resistant to nevirapine, 3TC and protease inhibitors, but were less active against viruses with mutations conferring resistance to AZT. High test concns. exhibited no toxicity even after 14 days, and the oligonucleotides are i.v. and orally bioavailable to rats and monkeys after a single dose. The phosphorothioated oligonucleotide 5'-ucgcacccatctctctccuuc-3' (with the four 5' and the four 3' residues comprising 2'-O-methylribonucleotides) inhibits viral infection or post-viral adsorption with IC50 = 410 nM and IC90 = 1737 nM.

IT 197831-53-1, GenBank I49132

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(gag region target; HIV-specific synthetic antisense oligonucleotides and methods of their use)

L5 ANSWER 6 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1999:26511 HCAPLUS

DOCUMENT NUMBER: 130:231953

TITLE: Sequence-specific RNase H cleavage of gag mRNA from HIV-1 infected cells by an antisense

09/896692

AUTHOR(S): oligonucleotide in vitro
Veal, Gareth J.; Agrawal, Sudhir; Byrn, Randal A.
CORPORATE SOURCE: Divisions of Hematology, Oncology and Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
SOURCE: Nucleic Acids Research (1998), 26(24), 5670-5675
CODEN: NARHAD; ISSN: 0305-1048
PUBLISHER: Oxford University Press
DOCUMENT TYPE: Journal
LANGUAGE: English

AB We have used a RNase protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate expts. in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain the target gag region. RNase H cleavage products were detected at oligonucleotide concns. as low as 0.01 .mu.M and the RNase H activity was seen to be concn. dependent. Similar expts. with 1-, 3- and 5-mismatch oligonucleotides demonstrated sequence specificity at low concns., with cleavage of gag mRNA correlating with the predicted activities of the parent and mismatch oligonucleotides based on their hybridization melting temps. Expts. in living cells suggested that RNase H-specific antisense activity was largely detd. by the amt. of oligonucleotide taken up by the different cell lines studied. RNase H cleavage products were detected in antisense oligonucleotide treated MT-4 cells acutely infected with HIV-1 IIIB, but not in infected H9 cells treated with oligonucleotide under the same conditions. The data presented demonstrate potent and specific RNase H cleavage of HIV-1 mRNA mediated by an antisense oligonucleotide targeted to HIV-1 gag mRNA, and are in agreement with previous reports that the major obstacle to demonstrating antisense activity in living cells remains the lack of penetration of these agents into the desired cellular compartment.

IT 153021-75-1
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (sequence-specific RNase H cleavage of gag mRNA from HIV-1 infected cells by an antisense oligonucleotide in vitro)
REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 7 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1998:409757 HCPLUS
DOCUMENT NUMBER: 129:144469
TITLE: Antisense oligonucleotide-based therapy for HIV-1 infection from laboratory to clinical trials
AUTHOR(S): Agrawal, Sudhir
CORPORATE SOURCE: Hybridon, Inc., Cambridge, MA, 02142, USA
SOURCE: Clinical Trials of Genetic Therapy with Antisense DNA and DNA Vectors (1998), 331-352. Editor(s): Wickstrom, Eric. Dekker: New York, N. Y.
CODEN: 66HPAS

09/896692

DOCUMENT TYPE: Conference; General Review
LANGUAGE: English

AB A review with 39 refs. This chapter discusses GEM 91, a 25-mer oligodeoxynucleoside phosphorothioate designed to bind to the initiation sit of gag mRNA of HIV-1. Targets of GEM 91 during the HIV replication cycle, its antiviral activity in vitro, and experience from administration to rats and monkeys and in human clin. trials are discussed.

IT 153021-75-1, GEM 91

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(antisense oligonucleotide-based therapy for HIV-1 infection in lab. animals and humans)

REFERENCE COUNT: 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 8 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:292803 HCPLUS

DOCUMENT NUMBER: 129:75818

TITLE: Early clinical trials with GEM 91, a systemic oligodeoxynucleotide

AUTHOR(S): Martin, R. Russell

CORPORATE SOURCE: Hybridon, Inc., Cambridge, MA, 02139, USA

SOURCE: Applied Antisense Oligonucleotide Technology (1998), 387-393. Editor(s): Stein, C. A.; Kreig, Arthur M. Wiley-Liss: New York, N. Y.
CODEN: 65ZQAC

DOCUMENT TYPE: Conference; General Review

LANGUAGE: English

AB A review with 9 refs. on the design and safety and pharmacokinetic trials of the anti-HIV-1 drug GEM 91.

IT 153021-75-1, GEM 91

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(clin. trials of the anti-HIV-1 oligodeoxynucleotide GEM 91)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 9 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:230586 HCPLUS

DOCUMENT NUMBER: 129:12318

TITLE: Synergistic inhibition of HIV-1 by an antisense oligonucleotide and nucleoside analog reverse transcriptase inhibitors

AUTHOR(S): Veal, Gareth J.; Agrawal, Sudhir; Byrn, Randal A.

CORPORATE SOURCE: Beth Israel Deaconess Medical Center, Divisions of Hematology/Oncology and Experimental Medicine, Harvard Medical School, Boston, MA, 02215, USA

SOURCE: Antiviral Research (1998), 38(1), 63-73

09/896692

CODEN: ARSRDR; ISSN: 0166-3542

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB We have studied the effects of the gag antisense phosphorothioate oligonucleotide GEM 91 and mismatch antisense controls on the antiviral activities of ddC and other nucleoside analogs in HIV-infected MT-4 cells using a cytoprotection based assay. Under std. assay conditions, i.e. simultaneous incubation of drugs, HIV-1 IIIB and MT-4 cells, both GEM 91 and mismatch controls interacted synergistically with ddC resulting in an approx. 40-fold decrease in the IC50 value of ddC; this suggests a potent but sequence non-specific effect of GEM 91. Under post-adsorption assay conditions, i.e. pre-incubation of virus and cells and removal of excess HIV before drug addn., GEM 91 exhibited synergism with ddC, with an approx. 5-fold decrease in ddC IC50 value. This favorable interaction was not seen with any of the mismatch oligonucleotides, suggesting the involvement of a sequence-specific mechanism of action. Similar results were seen with the thymidine analogs AZT and d4T in combination with GEM 91. These data suggest a potential role for GEM 91 and future sequence-specific antisense drugs in combination with nucleoside analogs for the treatment of HIV infection. It is essential that potential interactions between new and existing classes of anti-HIV drugs are studied extensively as antiretroviral drug combinations become increasingly more complex.

IT 153021-75-1, GEM 91

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(synergistic inhibition of HIV-1 by an antisense phosphorothioate oligonucleotide and nucleoside analog reverse transcriptase inhibitors)

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 10 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:89349 HCPLUS

DOCUMENT NUMBER: 128:162876

TITLE: Antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans

INVENTOR(S): Schechter, Paul J.; Martin, B. Russel; Tournerie, Christophe; Agrawal, Sudhir

PATENT ASSIGNEE(S): Hybridon, Inc., USA

SOURCE: PCT Int. Appl., 93 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9803646	A1	19980129	WO 1996-US12056	19960722
W:	AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO,			

09/896692

RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM

RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB,
GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE, SN, TD, TG

AU 9665924 A1 19980210 AU 1996-65924 19960722

PRIORITY APPLN. INFO.: WO 1996-US12056 19960722

AB The present invention provides therapeutic compns. and methods for treating humans suffering from diseases or disorders caused by cellular expression of aberrant exogenous genes or aberrant endogenous genes comprising administering to the human a therapeutically effective amt. of an oligonucleotide capable of specifically down-regulating the expression of such a gene. Thus, oligodeoxyribonucleotides are provided which are antisense to residues 324-348 of the conserved gag gene region of human immunodeficiency virus type 1 (HIV-1). These antisense oligonucleotides are more specific, less toxic, and have greater nuclease resistance than many other chemotherapeutic agents designed to inhibit HIV-1 replication. In addn., they are more active in inhibiting viral replication than other known antisense oligonucleotides contg. less than the 324-348 HIV-1 gag sequence. The efficacy and pharmacokinetics profile of phosphorothioated 5'-ctctcgacccatctctccttct-3' in the treatment of HIV-1-infected human cell lines are described.

IT 156718-23-9

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 321-350 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-21-7

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-349 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-22-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-350 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 202833-93-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-351 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-18-2

RL: BAC (Biological activity or effector, except adverse); BSU

09/896692

(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(oligo antisense to residues 323-348 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 156718-20-6

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(oligo antisense to residues 323-349 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 148267-87-2

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(oligo antisense to residues 323-350 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 151285-76-6

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(oligo antisense to residues 324-348 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 156718-19-3

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(oligo antisense to residues 324-349 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

REFERENCE COUNT:

10 THERE ARE 10 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 11 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1998:31391 HCAPLUS
DOCUMENT NUMBER: 128:84382
TITLE: Antisense oligonucleotides down-regulating gene
expression and their use in the treatment of
disease
INVENTOR(S): Schechter, Paul J.; Martin, R. Russell;
Tournerie, Christophe; Agrawal, Sudhir; Coombs,
Robert W.
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 85 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

09/896692

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9748795	A2	19971224	WO 1997-US10143	19970611
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9733096	A1	19980107	AU 1997-33096	19970611
PRIORITY APPLN. INFO.:				
			US 1996-20417P	P 19960618
			WO 1997-US10143	W 19970611
AB	Methods of using antisense oligonucleotides to down-regulate gene expression in the control of infection or other diseases are described. A specific example is given for the treatment of HIV infections. Phosphorothioate oligonucleotides directed against the gag gene of HIV-1 were prep'd. by std. chem. and their effectiveness tested using std. assays of HIV-1 growth and replication. In an in vitro syncytia inhibition assay, two of these oligonucleotides had EC50's of 1.81 and 1.41 .mu.g/mL. In cytopathic assays, EC50's of 2.54 and 7.75 .mu.g/mL were obsd. Human subject studies are described.			
IT	151285-76-6D, phosphorothioate bond-contg., RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (antisense DNA to HIV-1 gag gene; antisense oligonucleotides down-regulating gene expression and their use in treatment of disease)			

L5 ANSWER 12 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1997:337929 HCPLUS
DOCUMENT NUMBER: 127:13045
TITLE: The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1
AUTHOR(S): Yamaguchi, Koushi; Papp, Bela; Zhang, Dezhen; Ali, Ahmad N.; Agrawal, Sudhir; Byrn, Randal A.
CORPORATE SOURCE: Divisions of Hematology/Oncology and Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
SOURCE: AIDS Research and Human Retroviruses (1997), 13(7), 545-554
CODEN: ARHRE7; ISSN: 0889-2229
PUBLISHER: Liebert
DOCUMENT TYPE: Journal
LANGUAGE: English
AB GEM 91 (gene expression modulator) is a 25-mer oligonucleotide phosphorothioate complementary to the gag initiation site of HIV-1. GEM 91 has been studied in various in vitro cell culture models to examine inhibitory effects on different stages of HIV-1 replication. Expts. were focused on the binding of virions to the cell surface, inhibition of virus entry, reverse transcription (HIV DNA prodn.), inhibition of steady state viral mRNA levels, inhibition of virus

prodn. from chronically infected cells, and inhibition of HIV genome packaging within virions. Expts. were also performed in vitro to generate strains of HIV with reduced sensitivity to GEM 91. The authors obsd. sequence-dependent inhibition of virus entry/reverse transcription and a redn. in steady state viral RNA levels. The authors also obsd. sequence-independent inhibition of virion binding to cells and inhibition of virus prodn. by chronically infected cells. Using in vitro methods that were successful in generating HIV strains with reduced sensitivity to AZT, the authors were unable to generate strains with reduced sensitivity to GEM 91.

IT 153021-75-1, GEM 91

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(multiple inhibitory mechanisms of gag antisense phosphorothioate oligonucleotide GEM 91 for **human** immunodeficiency **virus** type 1 in relation to resistance)

L5 ANSWER 13 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1997:253988 HCPLUS

DOCUMENT NUMBER: 126:235005

TITLE: Method of modifying phosphorothioate oligodeoxyribonucleotides to reduce immunogenicity

INVENTOR(S): Agrawal, Sudhir; Temsamani, Jamal; Zhao, Qiuyan

PATENT ASSIGNEE(S): Hybridon, Inc., USA

SOURCE: PCT Int. Appl., 41 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9706253	A1	19970220	WO 1996-US11439	19960709
W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML				
US 5968909	A	19991019	US 1995-511536	19950804
CA 2229171	AA	19970220	CA 1996-2229171	19960709
AU 9664559	A1	19970305	AU 1996-64559	19960709
EP 850300	A1	19980701	EP 1996-923709	19960709
EP 850300	B1	19991013		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 11511014	T2	19990928	JP 1996-508432	19960709
AT 185597	E	19991015	AT 1996-923709	19960709
ES 2141516	T3	20000316	ES 1996-923709	19960709
PRIORITY APPLN. INFO.:			US 1995-511536	19950804
			WO 1996-US11439	19960709

AB The present invention provides a method of reducing the immunostimulatory effects of certain phosphorothioate

oligonucleotides used to treat pathogen-mediated disease states and other medical conditions. Immunostimulatory effects of phosphorothioate oligonucleotides are reduced by altering, in the 5'- and/or 3'-terminus, the phosphorothioate linkage to a methylphosphonate linkage, or by substituting a ribonucleotide for a deoxyribonucleotide. Phosphorothioate oligonucleotides contg. terminal methylphosphonate linkages or terminal 2'-O-methylribonucleotides induced significantly less splenic cell proliferation and antibody prodn. than did the oligonucleotides contg. only phosphorothioate linkages and no ribonucleotides.

IT 188420-47-5

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(anti-sense oligonucleotide to **HIV-1 gag** gene; method of modifying phosphorothioate oligodeoxyribonucleotides to reduce immunogenicity)

L5 ANSWER 14 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1997:166407 HCPLUS
DOCUMENT NUMBER: 126:311756
TITLE: Anti-HIV activities and mechanisms of antisense oligonucleotides
AUTHOR(S): Hatta, Toshifumi; Inagawa, Takabumi; Kuwasaki, Tomoyuki; Kinzuka, Yasuhiro; Takai, Kazuyuki; Yokoyama, Shigeyuki; Nakashima, Hideki; Yamamoto, Naoki; Takaku, Hiroshi
CORPORATE SOURCE: Dep. Industrial Chem., Chiba Inst. Technol., Chiba, Japan
SOURCE: Biotechnologia (1996), (4), 116-131, 1 plate
CODEN: BIECEV; ISSN: 0860-7796
PUBLISHER: Instytut Chemii Bioorganicznej PAN
DOCUMENT TYPE: Journal
LANGUAGE: English

AB We demonstrated that unmodified and modified (phosphorothioate) oligonucleotides prevent cDNA synthesis by the AMV, MMLV, and HIV reverse transcriptases. Antisense oligonucleotide/RNA hybrids specifically arrest primer extension. The blockage involves the degrdn. of the RNA fragment bound to the antisense oligonucleotide by the reverse transcriptase assocd. RNase H activity. However, the phosphorothioate oligomer inhibited polymn. by binding to the AMV and MMLV RTs, rather than to the template RNA, whereas there was no competitive binding of the phosphorothioate oligomer on the HIV RT during reverse transcription. Observation of FITC-S-ODN-rev-treated MOLT-4 cells with a confocal laser scanning microscope, revealed diffuse fluorescence, apparently within the cytoplasm. Interestingly, fluorescent signals were accumulated in the nuclear region of chronically infected MOLT-4/HIV-1 after a 60 min incubation. We also describe the long-term treatment of human immunodeficiency virus-infected cells with antisense phosphorothioate oligonucleotides.

IT 146318-97-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(anti-**HIV** activities and mechanisms of antisense oligonucleotides)

09/896692

L5 ANSWER 15 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1996:751517 HCAPLUS
DOCUMENT NUMBER: 126:14743
TITLE: Antisense cooperative oligonucleotides for improved inhibition of gene expression
INVENTOR(S): Kandimalla, Ekambar R.; Agrawal, Sudhir
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 84 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9632474	A1	19961017	WO 1996-US4605	19960404
W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK				
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR				
US 6372427	B1	20020416	US 1995-420672	19950412
AU 9654418	A1	19961030	AU 1996-54418	19960404
US 2003099959	A1	20030529	US 2002-54429	20020122
PRIORITY APPLN. INFO.:			US 1995-420672	A 19950412
			WO 1996-US4605	W 19960404

AB Disclosed is a compn. comprising at least 2 synthetic, cooperative oligonucleotides, each comprising a region complementary to one of tandem, non-overlapping regions of a target single-stranded nucleic acid, and each further comprising a dimerization domain at a terminus of each of the oligonucleotides, the dimerization domains of the oligonucleotides being complementary to each other. Also disclosed are duplex structures, ternary complexes, pharmaceutical formulations, and methods utilizing the cooperative oligonucleotides of the invention. The antisense oligonucleotides are optimized for therapeutic and diagnostic use and have improved sequence specificity for a single-stranded target, reduced toxicity, and improved biol. activity as antisense mols. The cooperative nature of the described oligonucleotides was demonstrated from (1) thermal melting studies, (2) their ability to activate RNase H, and (3) their ability to inhibit HIV-1 viral gag mRNA expression or influenza gene expression in cell culture. Modified (phosphorothioate internucleotide-linked) oligonucleotide combinations with an extended dimerization domain have an enhanced ability to inhibit the expression of the target gene.

IT 151285-76-6
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(antisense for HIV gag gene; antisense cooperative oligonucleotides for improved inhibition of gene expression)

L5 ANSWER 16 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1996:683875 HCAPLUS
DOCUMENT NUMBER: 126:70079

Searcher : Shears 308-4994

TITLE: Mixed backbone antisense oligonucleotides containing 2'-5'-ribo- and 3'-5'-deoxyribonucleosides: synthesis, biochemical and biological properties
 AUTHOR(S): Kandimalla, Ekambar R.; Agrawal, Sudhir
 CORPORATE SOURCE: Hybridon, Inc., Worcester, MA, 01605, USA
 SOURCE: Nucleic Acids Symposium Series (1996), 35(Twentythird Symposium on Nucleic Acids Chemistry, 1996), 125-126
 CODEN: NACSD8; ISSN: 0261-3166
 PUBLISHER: Oxford University Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The authors designed and synthesized mixed backbone oligonucleotides (MBOs) contg. 2'-5'-ribo- and 3'-5'-deoxyribonucleosides. Thermal melting studies of the duplexes of MBOs with complementary DNA and RNA target strands suggested that the introduction of 2'-5'-linkages destabilizes the complex with the RNA strand less than the duplex with the DNA strand. The new oligonucleotides were more stable against snake venom phosphodiesterase, S1 nuclease, and fetal calf serum. Phoshorothioate (PS) analogs of MBOs showed activity against HIV-1 in cell cultures comparable to that of a control PS-oligonucleotide.

IT 151285-76-6P 153021-75-1P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (synthesis of mixed backbone antisense oligonucleotides contg. 2'-5'-ribo- and 3'-5'-deoxyribonucleosides, their biochem. properties, and their inhibition of HIV-1 replication)

L5 ANSWER 17 OF 24 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1995:736756 HCAPLUS
 DOCUMENT NUMBER: 123:132062
 TITLE: Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects
 AUTHOR(S): Zhang, Ruiwen; Yan, Jieming; Shahinian, Harout; Amin, Girish; Lu, Zhihong; Liu, Tiepu; Saag, Michael S.; Jiang, Zhiwei; Temsamani, Jamal; et al.
 CORPORATE SOURCE: Department Pharmacology Toxicology, University Alabama, Birmingham, AL, USA
 SOURCE: Clinical Pharmacology and Therapeutics (St. Louis) (1995), 58(1), 44-53
 CODEN: CLPTAT; ISSN: 0009-9236
 PUBLISHER: Mosby-Year Book
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Human pharmacokinetics of an antisense oligodeoxynucleotide phosphorothioate (GEM 91) developed as an antihuman immunodeficiency virus (HIV) agent was carried out in this study. 35S-labeled GEM 91 was administered to 6 HIV-infected individuals by means of 2-h i.v. infusions at a dose of 0.1 mg/kg. Plasma disappearance curves for GEM 91-derived radioactivity could be described by the sum of 2 exponentials, with half-life values of 0.18 .+-. 0.04 and 26.71 .+-. 1.67 h. The radioactivity in plasma was further evaluated by

polyacrylamide gel electrophoresis, showing the presence of both intact GEM 91 and lower mol. wt. metabolites. Urinary excretion represented the major pathway of elimination, with 49.15% .+- . 6.80% of the administered dose excreted within 24 h and 70.37% .+- . 6.72% over 96 h after dosing. The radioactivity in urine was assocd. with lower mol. wt. metabolites. No drug-related toxicity was obsd.

IT 170274-79-0, GEM 91

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected humans)

L5 ANSWER 18 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1994:645487 HCPLUS

DOCUMENT NUMBER: 121:245487

TITLE: Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells

AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Weichold, Frank F.; Thierry, Alain R.; Lusso, Paolo; Tang, Jinyan; Gallo, Robert C.; Agrawal, Sudhir

CORPORATE SOURCE: Lab. Tumor Cell Biology, Natl. Cancer Inst., Bethesda, MD, 20892, USA

SOURCE: Proceedings of the National Academy of Sciences of the United States of America (1994), 91(17), 7942-6

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Gene-expression modulator 91 (GEM91) is a 25-nt antisense oligodeoxynucleotide phosphorothioate complementary to the Gag mRNA of human immunodeficiency virus type 1 (HIV-1). Cellular uptake and intracellular distribution of GEM91 within cells suggest that this oligomer is readily available for antisense activity. GEM91 inhibited HIV-1 replication in a dose-dependent and sequence-specific manner. In a comparative study, 2 .mu.M GEM91 was as effective as 5 .mu.M 3'-azido-3'-deoxythymidine in blocking virus replication during the 28-day treatment of an HIV-1-infected T-cell line. GEM91 also completely inhibited (>99%) of the growth of three different HIV-1 isolates in primary lymphocytes and prevented the cytopathic effect of the virus in primary CD4+ T cells. Similarly, treatment with GEM91 for 3 wk of HIV-1/BaL-infected primary macrophages blocked virus replication. Based on GEM91 anti-HIV-activity, safety, and pharmacokinetic profile in animals, a clin. trial was started using this compd. as an antisense oligonucleotide drug for the treatment of the acquired immunodeficiency syndrome.

IT 170274-79-0, GEM 91

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(phosphorothioate-linked antisense oligonucleotide to gag gene of HIV-1, for inhibition of replication)

L5 ANSWER 19 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1994:597667 HCPLUS

DOCUMENT NUMBER: 121:197667

TITLE: Method of conferring resistance to retroviral

09/896692

INVENTOR(S): Greatbatch, Wilson; Sanford, John C.
PATENT ASSIGNEE(S): Greatbatch Gen-Aid, Ltd., USA
SOURCE: U.S., 35 pp. Cont.-in-part of U.S. Ser. No. 156,188, abandoned.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 3
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5324643	A	19940628	US 1991-739718	19910729
AT 208813	E	20011115	AT 1989-102692	19890216
US 5580761	A	19961203	US 1994-217210	19940323
PRIORITY APPLN. INFO.:			US 1988-156188	B2 19880216
			US 1991-739718	A2 19910729

AB A method of conferring resistance to retroviral infection upon a host cell by interfering with one or more of the infection processes including retroviral replication and assembly into infective viral particles is described. The method involves the introduction of a polynucleotide that is transcribed to form a transcript that is complementary or homologous sequence to a viral sequence and interferes with replication or assembly of the retrovirus. Retrovirus resistant cells prep'd. by this method can be used in the treatment of retroviral infection. The method is demonstrated using sequences directed against feline leukemia virus to prevent its growth in cultured mink lung cells. Oligonucleotides interfering with the function of the long terminal repeat, the primer binding site, and translation initiation were all shown to slow the rate of virus multiplication.

IT 157909-44-9

RL: BIOL (Biological study)
(synthetic oligonucleotide interfering with tat transcript splicing and gag gene expression and translation in **human immunodeficiency virus**)

L5 ANSWER 20 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1994:501227 HCAPLUS
DOCUMENT NUMBER: 121:101227
TITLE: Therapeutic anti-HIV oligonucleotide and pharmaceutical
INVENTOR(S): Agrawal, Sudhir; Tang, Jin Yan
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 49 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9408004	A1	19940414	WO 1993-US9392	19931004
W: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, LK, LV, NO, NZ, PL, RO, RU, SD, US				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, PT, SE				

Searcher : Shears 308-4994

09/896692

EP 664833	A1	19950802	EP 1993-924289	19931004
EP 664833	B1	19961227		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
HU 72400	A2	19960429	HU 1995-995	19931004
JP 08504570	T2	19960521	JP 1993-509354	19931004
AT 146819	E	19970115	AT 1993-924289	19931004
ES 2096343	T3	19970301	ES 1993-924289	19931004
AU 678415	B2	19970529	AU 1994-54028	19931004
AU 9454028	A1	19940426		
BR 9307191	A	19990330	BR 1993-7191	19931004
US 5684147	A	19971104	US 1994-319823	19941007
FI 9501600	A	19950510	FI 1995-1600	19950404
NO 9501307	A	19950601	NO 1995-1307	19950404
PRIORITY APPLN. INFO.:				
		US 1992-958135	A 19921005	
		WO 1993-US9392	W 19931004	

AB Disclosed are oligonucleotides having nucleotide sequences that hybridize to at least nucleotides 324 to 348 of a conserved gag region of the HIV-1 genome. These oligonucleotides have about 25 to 30 nucleotides linked by at least one non-phosphodiester internucleotide linkage which render them resistant to nuclease digestion. Also disclosed are therapeutic formulations contg. such oligonucleotides and methods of inhibition HIV-1 proliferation and of treating HIV-1 infection in a mammal. Phosphorothioate-modified oligodeoxynucleotides 25-30 nucleotide in length which hybridize to the specified region of the HIV-1 genome were shown to be more effective than a 20-mer complementary to 327-346 or a 28-mer complementary to only a fragment of the 324-348 region. Syncytia formation, p24 expression, cytopathic effect, and reverse transcriptase activity were monitored to assay the effects of the antisense oligonucleotides.

IT 148267-87-2D, phosphorothioate-contg. 151285-76-6D
, phosphorothioate-contg. 156718-18-2D,
phosphorothioate-contg. 156718-19-3D, phosphorothioate-
contg. 156718-20-6D, phosphorothioate-contg.
156718-21-7D, phosphorothioate-contg. 156718-22-8D
, phosphorothioate-contg. 156718-23-9D,
phosphorothioate-contg. 156718-24-0D, phosphorothioate-
contg.

RL: USES (Uses)
(antisense oligonucleotide complementary to HIV-1 gag
gene sequence for treatment of HIV-1 infection)

L5 ANSWER 21 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1993:573628 HCAPLUS
DOCUMENT NUMBER: 119:173628
TITLE: Long-term treatment of human immunodeficiency
virus-infected cells with antisense
oligonucleotide phosphorothioates
AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Metelev,
Valeri; Zamecnik, Paul; Gallo, Robert C.;
Agrawal, Sudhir
CORPORATE SOURCE: Lab. Tumor Cell Biol., Natl. Cancer Inst.,
Bethesda, MD, 20853, USA
SOURCE: Proceedings of the National Academy of Sciences
of the United States of America (1993), 90(9),
3860-4
CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The antiviral activity of antisense oligodeoxy-nucleotide phosphorothioates complementary to the tat gene, the gag mRNA, and the rev mRNA were studied in a long-term infection model. Three antisense oligonucleotides directed to the splice-acceptor site of the tat gene failed to suppress human immunodeficiency virus type I replication at 1 .mu.M concn. in the long-term culture. In contrast, two oligodeoxynucleotide phosphorothioates (28-mer) complementary to the gag and the rev mRNAs inhibited viral replication for >80 days, and the antiviral activity was sequence- and length-dependent. In addn., after pretreatment of cells, the authors could reduce the concn. of the antisense oligodeoxynucleotides by >10-fold and still maintain the inhibition of viral replication. These results suggest that chemotherapy for human immunodeficiency virus type 1 infection with antisense oligodeoxynucleotide phosphorothioates may be achieved by an initial high-dose treatment followed by a lower maintenance dose.

IT 148267-87-2

RL: BIOL (Biological study)
 (human immunodeficiency virus inhibition by,
 as antisense oligonucleotide)

L5 ANSWER 22 OF 24 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1993:462145 HCAPLUS
 DOCUMENT NUMBER: 119:62145
 TITLE: GEM 91 - an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS
 AUTHOR(S): Agrawal, Sudhir; Tang, Jin Yan
 CORPORATE SOURCE: Hybridon, Inc., Worcester, MA, USA
 SOURCE: Antisense Research and Development (1992), 2(4), 261-6
 CODEN: AREDEI; ISSN: 1050-5261
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: English
 AB A review and discussion with 18 refs.
 IT 170274-79-0, GEM 91
 RL: BIOL (Biological study)
 (as antisense oligonucleotide phosphorothioate, for treatment of AIDS)

L5 ANSWER 23 OF 24 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1993:420486 HCAPLUS
 DOCUMENT NUMBER: 119:20486
 TITLE: Method of inhibiting viral replication, and application to inhibition of human immunodeficiency virus-1 (HIV-1)
 INVENTOR(S): Lisziewicz, Julianna; Sun, Daisy M. S.
 PATENT ASSIGNEE(S): United States Dept. of Health and Human Services, USA
 SOURCE: U. S. Pat. Appl., 31 pp. Avail. NTIS Order No. PAT-APPL-7-906,881.
 CODEN: XAXXAV
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

09/896692

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 906881	A0	19930401	US 1992-906881	19920702
WO 9401551	A1	19940120	WO 1993-US6380	19930702
W: AU, CA, JP				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9346664	A1	19940131	AU 1993-46664	19930702
AU 678980	B2	19970619		
EP 649466	A1	19950426	EP 1993-916997	19930702
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
PRIORITY APPLN. INFO.:			US 1992-906881	19920702
			WO 1993-US6380	19930702

AB A method is disclosed for selection of drugs suitable for use in inhibiting viral replication in vivo. Also disclosed is a method for inhibiting viral replication using oligonucleotides complementary to specific regions of the genome of the target virus. A culture system is provided that simulates in vivo conditions of viral infection, esp. HIV-1 infection. The culture system can be used to evaluate the long-term efficacy of antiviral drug treatment, e.g. antisense oligonucleotide treatment. The invention further relates to a method of reducing the viral burden in an infected individual. The method involves the sequential treatment of virally infected cells with a combination of different antisense oligonucleotides. The method has the advantage that it prevents the formation of escape mutants of the target virus. The culture system of the invention extends the treatment period over weeks rather than days and therefore permits simulation of a treatment schedule that can be given to a virally infected patient. The methodol. of the invention was used to test the effect of antisense nucleotides (sequences included) on HIV-1 replication in a CD4+ cell line (Molt3) infected with a low multiplicity of infection of HIV-1/IIIB.

IT 148267-87-2D, phosphorothioate-derivatized

RL: ANST (Analytical study)
(antisense oligonucleotide, human immunodeficiency virus 1 inhibition with)

L5 ANSWER 24 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1993:116248 HCAPLUS
DOCUMENT NUMBER: 118:116248
TITLE: Specific inhibition of human immunodeficiency virus type 1 replication by antisense oligonucleotides: an in vitro model for treatment
AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Klotman, Mary; Agrawal, Sudhir; Zamecnik, Paul; Gallo, Robert
CORPORATE SOURCE: Lab. Tumor Cell Biol., Natl. Cancer Inst., Bethesda, MD, 20892, USA
SOURCE: Proceedings of the National Academy of Sciences of the United States of America (1992), 89(23), 11209-13
CODEN: PNASA6; ISSN: 0027-8424
DOCUMENT TYPE: Journal
LANGUAGE: English

AB We have developed a culture system, simulating in vivo conditions of human immunodeficiency virus type 1 (HIV-1) infection, to evaluate the long-term efficacy of antisense oligonucleotide treatment. Five

09/896692

oligonucleotide phosphorothioates (28-mers), complementary to different regions of HIV-1 RNA, blocked replication of the virus in a sequence-specific manner at 1 μ M concn. Variations in antiviral activity were seen among the different oligonucleotides, revealing an effect of target selection. Mismatched or random oligonucleotide phosphorothioates delayed, but did not completely inhibit, HIV-1 replication. In the case of inhibition by a splice-acceptor-site antisense oligodeoxynucleotide, a breakthrough phenomenon occurred after 25 days of treatment, suggesting the development of an "escape mutant". This result did not occur when the inhibitory oligodeoxynucleotides were complementary to the primary-sequence areas of the rev-responsive element and rev-1 genes. Sequential treatment of HIV-1-infected cells with a combination of different antisense oligonucleotides, each administered once, also prevented the development of escape mutants. Results suggest that chemotherapy based on specifically targeted antisense-oligonucleotide phosphorothioates may be an effective method for reducing the viral burden in HIV-1-infected individuals at clin. achievable oligonucleotide concns.

IT 146318-97-0

RL: BIOL (Biological study)
(HIV-1 replication inhibition by)

E1 THROUGH E20 ASSIGNED

FILE 'REGISTRY' ENTERED AT 10:09:59 ON 30 MAY 2003

L6 20 SEA FILE=REGISTRY ABB=ON PLU=ON (153021-75-1/BI OR
148267-87-2/BI OR 151285-76-6/BI OR 156718-18-2/BI OR
156718-19-3/BI OR 156718-20-6/BI OR 156718-21-7/BI OR
156718-22-8/BI OR 156718-23-9/BI OR 170274-79-0/BI OR
146318-97-0/BI OR 156718-24-0/BI OR 157909-44-9/BI OR
188420-47-5/BI OR 197831-53-1/BI OR 202833-93-0/BI OR
259075-60-0/BI OR 259075-61-1/BI OR 259075-62-2/BI OR
259075-63-3/BI)

L7 20 L2 AND L6

L7 ANSWER 1 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-63-3 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3. β .)-3-hydroxycholest-5-en-22-yl]amino]-3-
oxopropyl]dithio]propyl hydrogen phosphate] (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 2 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-62-2 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3. β .)-3-hydroxycholest-5-en-7-yl]dithio]propyl hydrogen

09/896692

phosphate] (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 3 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-61-1 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3.beta.)-cholest-5-en-3-yldithio]propyl hydrogen phosphate]
(9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 4 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-60-0 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-(3-(2-pyridinyl)dithio)propyl hydrogen phosphate] (9CI) (CA INDEX
NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 5 OF 20 REGISTRY . COPYRIGHT 2003 ACS
RN 202833-93-0 REGISTRY
CN DNA, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G-
C) (9CI) (CA INDEX NAME)
CI MAN
SQL 31

SEQ 1 acgctctcg acccatctct ctccttctag c
===== ===== =====

HITS AT: 7-28

REFERENCE 1: 128:162876

L7 ANSWER 6 OF 20 REGISTRY COPYRIGHT 2003 ACS

09/896692

RN 197831-53-1 REGISTRY
CN DNA, d(T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T) (9CI) (CA INDEX
NAME)
CI MAN
SQL 22

SEQ 1 tcgcacccat ctcttcctt ct
===== ====== ==
HITS AT: 1-22

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:191877

L7 ANSWER 7 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 188420-47-5 REGISTRY
CN DNA, d(C-P-deoxy-P-methyl-T-P-deoxy-P-methyl-C-P-deoxy-P-methyl-T-P-
deoxy-P-methyl-C-sp-G-sp-C-sp-A-sp-C-sp-C-sp-A-sp-T-sp-C-sp-T-
sp-C-sp-T-sp-C-sp-T-sp-C-sp-C-P-deoxy-P-methyl-T-P-deoxy-P-methyl-T-
P-deoxy-P-methyl-C-P-deoxy-P-methyl-T) (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== ==
HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 126:277696

REFERENCE 2: 126:235005

L7 ANSWER 8 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 170274-79-0 REGISTRY
CN DNA, d(P-thio)(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
tetracosasodium salt (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(P-thio)(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-
T-C-C-T-T-C-T), tetracosasodium salt
OTHER NAMES:
CN Trecovirsen sodium
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== ==
HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 127:28622

REFERENCE 2: 124:277954

REFERENCE 3: 123:132062

REFERENCE 4: 122:255450

09/896692

REFERENCE 5: 122:95897

REFERENCE 6: 121:245487

REFERENCE 7: 119:62145

L7 ANSWER 9 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 157909-44-9 REGISTRY

CN DNA (synthetic human immunodeficiency virus gene gag/tat expression-inhibiting) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid (synthetic human immunodeficiency provirus gene gag/tat expression-inhibiting)

CI MAN

SQL 70

SEQ 1 tgacgctctc gcacccatct ctctccttct agcctccgct agtcaaaatt
===== ===== =====

51 tttggcgtac tcaccagtcg

HITS AT: 9-30

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 121:197667

L7 ANSWER 10 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 156718-24-0 REGISTRY

CN DNA, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-A-G) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G)

CI MAN

SQL 30

SEQ 1 acgctctcgc acccatctct ctccttctag
===== ===== =====

HITS AT: 7-28

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 121:101227

L7 ANSWER 11 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 156718-23-9 REGISTRY

CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A-G-C) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G-C)

CI MAN

SQL 30

09/896692

SEQ 1 cgctctcgca cccatctctc tccttctagc
===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 12 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-22-8 REGISTRY
CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-A-G)
(9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T-A-G)
CI MAN
SQL 29

SEQ 1 cgctctcgca cccatctctc tccttctagc
===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 13 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-21-7 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-A-G)
(9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T-A-G)
CI MAN
SQL 28

SEQ 1 gctctcgac ccatctctc ccttctagc
===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

09/896692

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 14 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-20-6 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A)
CI MAN
SQL 27

SEQ 1 gctctcgac ccatctctc ccttcta
===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 15 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-19-3 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T)
CI MAN
SQL 26

SEQ 1 gctctcgac ccatctctc ccttcta
===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 16 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-18-2 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-

09/896692

T-C-T-A)
CI MAN
SQL 26

SEQ 1 ctctcgacc catctcttc cttcta
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 17 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 153021-75-1 REGISTRY

CN DNA, d(P-thio) (C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T)
(9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(P-thio) (C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T)

OTHER NAMES:

CN 324-348-Deoxyribonucleic acid (human immunodeficiency virus 1 gene gag)

CN GEM 91

CI MAN

SQL 25

SEQ 1 ctctcgacc catctcttc cttcta
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 136:406717

REFERENCE 2: 135:335066

REFERENCE 3: 134:25093

REFERENCE 4: 133:27336

REFERENCE 5: 132:279454

REFERENCE 6: 132:160829

REFERENCE 7: 130:267702

REFERENCE 8: 130:267697

REFERENCE 9: 130:246352

REFERENCE 10: 130:233230

09/896692

L7 ANSWER 18 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 151285-76-6 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T) (9CI) (CA
INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-
T-C-T)
OTHER NAMES:
CN 6: PN: US6140490 SEQID: 157 unclaimed DNA
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 133:321004

REFERENCE 2: 130:168605

REFERENCE 3: 130:129956

REFERENCE 4: 130:52683

REFERENCE 5: 129:299001

REFERENCE 6: 128:162876

REFERENCE 7: 128:151268

REFERENCE 8: 128:84382

REFERENCE 9: 128:57018

REFERENCE 10: 128:48453

L7 ANSWER 19 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 148267-87-2 REGISTRY
CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A)
(9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-
C-T-T-C-T-A)
CI MAN
SQL 28

SEQ 1 cgctctcgca cccatcttc tccttcta
===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

09/896692

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

REFERENCE 5: 119:173628

REFERENCE 6: 119:20486

L7 ANSWER 20 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 146318-97-0 REGISTRY

CN DNA, d(P-thio) (C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(P-thio) (C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A)

CI MAN

SQL 28

SEQ 1 cgctctcgca cccatctctc tccttcta .

===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 126:311756

REFERENCE 2: 118:116248

FILE 'HOME' ENTERED AT 10:10:35 ON 30 MAY 2003

RECEIVED

MAY 22 2003

SEARCH REQUEST FORM

Scientific and Technical Information Center

13 / C/HEM. ET.

Requester's Full Name: JANE ZARAExaminer #: 77512 Date: 5/22/03Art Unit: 1635Phone Number 305-5820Serial Number: 09/896,692Mail Box and Bldg/Room Location: 11D03 Results Format Preferred (circle): PAPER DISK E-MAIL

L 11E12

If more than one search is submitted, please prioritize searches in order of need

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc. if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Novel HIV Oligo'sInventors (please provide full names): Agarwal et al.Earliest Priority Filing Date: 8/19/97

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please Search Seq ID 1055

Please limit to 100 NT's

There

STAFF USE ONLY

Searcher: Bethany C 4994

Type of Search

Vendors and cost where applicable

Searcher Phone #:

AA Sequence (#)

STN

Searcher Location:

Structure (#)

Questel/Orbit

Date Searcher Picked Up:

Bibliographic

Dr. Link

Date Completed: 05-30-03

Litigation

Lexis/Nexis

Searcher Prep & Review Time: 3

Fulltext

Sequence Systems

Clerical Prep Time:

Patent Family

WWW/Internet

Online Time: 25

Other

Other (specify)

GenCore Version 5.1.4_P5_4578
(c) 1993 - 2003 Compugen Ltd.

score greater than or equal to the score of the result being printed,
and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
OM nucleic - nucleic search, using sw model						
Run on:	May 28, 2003, 14:49:34 ; Search time 869 Seconds					
	(without alignments)					
	736.780 Million cell updates/sec					
Title:	US-09-896-692B-5					
Perfect score:	22					
Sequence:	1 tcggcacccatcttccttccttc 22					
Scoring table:	IDENTITY.NUC					
	Gapop 10.0 , Gapext 1.0					
searched:	2054640 seqs, 14551402878 residues					
Total number of hits satisfying chosen parameters:	995600					
Minimum DB seq length:	0					
Maximum DB seq length:	100					
Post-processing:	Minimum Match 0%					
	Maximum Match 100%					
	Listing first 1000 summaries					
Database :	GenBank:*					
1: gb_ba:*						
2: gb_hhg:*						
3: gb_in:*						
4: gb_om:*						
5: gb_ov:*						
6: gb_pat:*						
7: gb_ph:*						
8: gb_pl:*						
9: gb_pr:*						
10: gb_ri:*						
11: gb_sts:*						
12: gb_sy:*						
13: gb_un:*						
14: gb_vl:*						
15: em_ba:*						
16: em_fun:*						
17: em_hum:*						
18: em_in:*						
19: em_mu:*						
20: em_on:*						
21: em_or:*						
22: em_or:*						
23: em_pat:*						
24: em_ph:*						
25: em_pj:*						
26: em_rj:*						
27: em_stg:*						
28: em_un:*						
29: em_vl:*						
30: em_hhg_hum:*						
31: em_hhg_inv:*						
32: em_hhg_other:*						
33: em_hhg_mus:*						
34: em_hhg_pj:*						
35: em_hhg_rjd:*						
36: em_hhg_main:*						
37: em_hhg_vrt:*						
38: em_hhg_mus:*						
39: em_higo_hum:*						
40: em_higo_mus:*						
41: em_higo_other:*						
65	100.0	25	6	158788	Sequence 3	
64	100.0	25	6	158786	Sequence 2	
63	100.0	25	6	158340	Sequence 1	
62	100.0	25	6	158784	Sequence 1	
61	100.0	25	6	158129	Sequence 3	
60	100.0	25	6	158127	Sequence 3	
59	100.0	25	6	158126	Sequence 3	
58	100.0	25	6	158125	Sequence 3	
57	100.0	25	6	158124	Sequence 3	
56	100.0	25	6	158123	Sequence 3	
55	100.0	25	6	158122	Sequence 3	
54	100.0	25	6	158121	Sequence 3	
53	100.0	25	6	158120	Sequence 3	
52	100.0	25	6	158119	Sequence 3	
51	100.0	25	6	158118	Sequence 3	
50	100.0	25	6	158117	Sequence 3	
49	100.0	25	6	158116	Sequence 3	
48	100.0	25	6	158115	Sequence 3	
47	100.0	25	6	158114	Sequence 3	
46	100.0	25	6	158113	Sequence 3	
45	100.0	25	6	158112	Sequence 3	
44	100.0	25	6	158111	Sequence 3	
43	100.0	25	6	158110	Sequence 3	
42	100.0	25	6	158109	Sequence 3	
41	100.0	25	6	158108	Sequence 3	
40	100.0	25	6	158107	Sequence 3	
39	100.0	25	6	158106	Sequence 3	
38	100.0	25	6	158105	Sequence 3	
37	100.0	25	6	158104	Sequence 3	
36	100.0	25	6	158103	Sequence 3	
35	100.0	25	6	158102	Sequence 3	
34	100.0	25	6	158101	Sequence 3	
33	100.0	25	6	158100	Sequence 3	
32	100.0	25	6	158099	Sequence 3	
31	100.0	25	6	158098	Sequence 3	
30	100.0	25	6	158097	Sequence 3	
29	100.0	25	6	158096	Sequence 3	
28	100.0	25	6	158095	Sequence 3	
27	100.0	25	6	158094	Sequence 3	
26	100.0	25	6	158093	Sequence 3	
25	100.0	25	6	158092	Sequence 3	
24	100.0	25	6	158091	Sequence 3	
23	100.0	25	6	158090	Sequence 3	
22	100.0	25	6	158089	Sequence 3	
21	100.0	25	6	158088	Sequence 3	
20	100.0	25	6	158087	Sequence 3	
19	100.0	25	6	158086	Sequence 3	
18	100.0	25	6	158085	Sequence 3	
17	100.0	25	6	158084	Sequence 3	
16	100.0	25	6	158083	Sequence 3	
15	100.0	25	6	158082	Sequence 3	
14	100.0	25	6	158081	Sequence 3	
13	100.0	25	6	158080	Sequence 3	
12	100.0	25	6	158079	Sequence 3	
11	100.0	25	6	158078	Sequence 3	
10	100.0	25	6	158077	Sequence 3	
9	100.0	25	6	158076	Sequence 3	
8	100.0	25	6	158075	Sequence 3	
7	100.0	25	6	158074	Sequence 3	
6	100.0	25	6	158073	Sequence 3	
5	100.0	25	6	158072	Sequence 3	
4	100.0	25	6	158071	Sequence 3	
3	100.0	25	6	158070	Sequence 3	
2	100.0	25	6	158069	Sequence 3	
1	100.0	25	6	158068	Sequence 3	

Pred. No. is the number of results predicted by chance to have a

66	22	100.0	25	6	158789	158789 Sequence 4	139	19	86.4	20	6	I09442 Sequence 6
67	22	100.0	25	6	158790	158790 Sequence 5	140	19	86.4	20	6	I72636 Sequence 10
68	22	100.0	25	6	158791	158791 Sequence 6	141	19	86.4	20	6	AX363503 Sequence
69	22	100.0	25	6	158792	158792 Sequence 7	142	19	86.4	25	6	I91513 Sequence
70	22	100.0	25	6	158793	158793 Sequence 8	143	19	86.4	46	6	AR051892 Sequence
71	22	100.0	25	6	158794	158794 Sequence 9	144	19	86.4	46	6	EO8866 cDNA encode
72	22	100.0	25	6	158795	158795 Sequence 10	145	19	86.4	46	6	D1315 Human immun
73	22	100.0	25	6	158796	158796 Sequence 11	146	19	86.4	51	6	AX306334 Sequence
74	22	100.0	25	6	158797	158797 Sequence 12	147	18.8	85.4	23	6	AR206327 Sequence
75	22	100.0	25	6	158798	158798 Sequence 13	148	18.8	85.5	32	6	AX306335 Sequence
76	22	100.0	25	6	158799	158799 Sequence 14	149	18.8	85.5	43	6	I78658 Sequence
77	22	100.0	25	6	158800	158800 Sequence 15	150	18.8	85.5	43	6	I78659 Sequence
78	22	100.0	25	6	158801	158801 Sequence 16	151	18.4	83.6	21	6	AR206343 Sequence
79	22	100.0	25	6	158802	158802 Sequence 17	152	17.2	78.2	25	6	AX306334 Sequence
80	22	100.0	25	6	158803	158803 Sequence 18	153	17.2	78.2	25	6	AR036379 Sequence
81	22	100.0	25	6	158804	158804 Sequence 19	154	17.2	78.2	25	6	AR036379 Sequence
82	22	100.0	25	6	158805	158805 Sequence 20	155	17.2	78.2	43	6	I78653 Sequence
83	22	100.0	25	6	158806	158806 Sequence 21	156	17.2	78.2	43	6	I78654 Sequence
84	22	100.0	25	6	158807	158807 Sequence 22	157	17.2	77.3	17	6	AX418589 Sequence
85	22	100.0	25	6	158808	158808 Sequence 23	158	17.2	77.3	17	6	I72628 Sequence
86	22	100.0	25	6	158809	158809 Sequence 24	159	17.2	77.3	17	6	I72629 Sequence
87	22	100.0	25	6	158810	158810 Sequence 25	160	17	77.3	20	6	AR036379 Sequence
88	22	100.0	25	6	158811	158811 Sequence 26	161	17	77.3	20	6	AR206341 Sequence
89	22	100.0	27	6	172127	172127 Sequence 1	162	17	77.3	20	6	AR036379 Sequence
90	22	100.0	27	6	172630	172630 Sequence 2	163	17	77.3	20	6	AR036379 Sequence
91	22	100.0	28	6	172631	172631 Sequence 3	164	17	77.3	31	6	AR036379 Sequence
92	22	100.0	28	6	172632	172632 Sequence 4	165	17	77.3	31	6	AR036379 Sequence
93	22	100.0	28	6	172633	172633 Sequence 5	166	17	77.3	31	6	AR036379 Sequence
94	22	100.0	29	6	172634	172634 Sequence 6	167	17	77.3	31	6	AR036379 Sequence
95	22	100.0	30	6	172635	172635 Sequence 7	168	17	77.3	31	6	AR036379 Sequence
96	22	100.0	30	6	172636	172636 Sequence 8	169	17	77.3	31	6	AR036379 Sequence
97	22	100.0	30	6	172637	172637 Sequence 9	170	17	77.3	31	6	AR036379 Sequence
98	22	100.0	33	6	172638	172638 Sequence 10	171	17	77.3	31	6	AR036379 Sequence
99	22	100.0	33	6	172639	172639 Sequence 11	172	17	77.3	31	6	AR036379 Sequence
100	22	100.0	34	6	172640	172640 Sequence 12	173	16.8	76.4	21	6	AR036379 Sequence
101	22	100.0	35	6	172641	172641 Sequence 13	174	16.8	76.4	25	6	AR036379 Sequence
102	22	100.0	35	6	172642	172642 Sequence 14	175	16.8	76.4	25	6	AR036379 Sequence
103	22	100.0	36	6	172643	172643 Sequence 15	176	16.8	76.4	25	6	AR036379 Sequence
104	22	100.0	36	6	172644	172644 Sequence 16	177	16.4	74.5	62	6	AR036379 Sequence
105	22	100.0	37	6	172645	172645 Sequence 17	178	16	72.7	19	6	AR036379 Sequence
106	22	100.0	39	6	172646	172646 Sequence 18	179	16	72.7	24	6	AR036379 Sequence
107	22	100.0	39	6	172647	172647 Sequence 19	180	16	72.7	24	6	AR036379 Sequence
108	22	100.0	39	6	172648	172648 Sequence 20	181	16	72.7	43	6	AR036379 Sequence
109	22	100.0	40	6	172649	172649 Sequence 21	182	16	72.7	57	6	AR036379 Sequence
110	22	100.0	40	6	172650	172650 Sequence 22	183	15.8	71.8	24	6	AR036379 Sequence
111	22	100.0	41	6	172651	172651 Sequence 23	184	15.8	71.8	43	6	AX210240 Sequence
112	22	100.0	41	6	172652	172652 Sequence 24	185	15.6	70.9	43	6	AR036379 Sequence
113	22	100.0	42	6	172653	172653 Sequence 25	186	15.6	70.9	43	6	AR036379 Sequence
114	22	100.0	43	6	172654	172654 Sequence 26	187	15.6	70.9	43	6	AR036379 Sequence
115	22	100.0	45	6	172655	172655 Sequence 27	188	15.6	70.9	43	6	AR036379 Sequence
116	22	100.0	45	6	172656	172656 Sequence 28	189	15.6	70.9	43	6	AR036379 Sequence
117	22	100.0	46	6	172657	172657 Sequence 29	190	15.6	70.9	43	6	AR036379 Sequence
118	22	100.0	48	6	172658	172658 Sequence 30	191	15.4	70.0	20	6	AR100320 Sequence
119	22	100.0	51	6	172659	172659 Sequence 31	192	15.4	70.0	20	6	AR149975 Sequence
120	22	100.0	57	6	172660	172660 Sequence 32	193	15.4	70.0	50	6	AR036379 Sequence
121	22	100.0	58	6	172661	172661 Sequence 33	194	15.2	69.1	99	6	AR036379 Sequence
122	22	100.0	58	6	172662	172662 Sequence 34	195	15	68.2	18	6	AR036379 Sequence
123	22	100.0	58	6	172663	172663 Sequence 35	196	15	68.2	30	6	AR036379 Sequence
124	22	100.0	62	6	172664	172664 Sequence 36	197	15	68.2	42	6	AR036379 Sequence
125	22	100.0	70	6	172665	172665 Sequence 37	198	15	68.2	49	6	AR036379 Sequence
126	22	100.0	70	6	172666	172666 Sequence 38	199	14.8	67.3	26	6	AR036379 Sequence
127	21	95.5	21	6	172667	172667 Sequence 39	200	14.6	66.4	44	6	AR036379 Sequence
128	21	90.9	33	6	172668	172668 Sequence 40	201	14.6	66.4	44	6	AR036379 Sequence
129	21	95.5	33	6	172669	172669 Sequence 41	202	14.6	66.4	68	6	AR036379 Sequence
130	20	90.9	21	6	172670	172670 Sequence 42	203	14.6	66.4	68	6	AR036379 Sequence
131	20	90.9	21	6	172671	172671 Sequence 43	204	14.6	66.4	68	6	AR036379 Sequence
132	20	90.9	22	6	172672	172672 Sequence 44	205	14.6	65.5	69	6	AR036379 Sequence
133	20	90.9	33	6	172673	172673 Sequence 45	206	14.4	65.5	25	6	AR036379 Sequence
134	20	90.9	39	6	172674	172674 Sequence 46	207	14.2	64.5	19	6	AR036379 Sequence
135	20	90.9	45	6	172675	172675 Sequence 47	208	14.2	64.5	21	6	AR036379 Sequence
136	19.4	88.2	22	6	172676	172676 Sequence 48	209	14.2	64.5	21	6	AR036379 Sequence
137	19.4	88.2	22	6	172677	172677 Sequence 49	210	14.2	64.5	21	6	AR149975 Sequence
138	19.4	86.4	22	6	172678	172678 Sequence 50	211	14.2	64.5	21	6	AR149975 Sequence

212	14.2	64.5	21	6	173330	Sequence 26	285	13	59.1	51	6	AX203981		
213	14.2	64.5	24	6	178655	Sequence 10	286	13	59.1	65	6	AX463292		
C	214	64.5	25	6	AR03182	Sequence	C	287	13	59.1	73	6	AX08404	
C	215	14.2	64.5	25	6	I17357	Sequence 7	288	13	59.1	73	9	AB03820	
C	216	14.2	64.5	29	6	AX461477	Sequence	289	13	59.1	78	10	S6930455	
C	217	14	63.6	18	6	AR03090	Sequence	C	290	13	59.1	88	5	AF3250451
C	218	14	63.6	18	6	AR098575	Sequence	C	291	13	59.1	100	11	AF3460_WIAF-2192-S
C	219	14	63.6	22	6	AX061328	Sequence	C	292	12.8	58.2	16	6	AR205331
C	220	14	63.6	36	6	AR036340	Sequence	C	293	12.8	58.2	17	6	AR205332
C	221	14	63.6	36	6	I72088	Sequence 3	C	294	12.8	58.2	19	6	I78653
C	222	14	63.6	39	6	AR001559	Sequence	C	295	12.8	58.2	19	6	I78664
C	223	14	63.6	43	6	178646	Sequence 1	C	296	12.8	58.2	19	6	I78666
C	224	14	63.6	43	6	I78647	Sequence 2	C	297	12.8	58.2	20	6	AX298392
C	225	14	63.6	43	6	178648	Sequence 3	C	298	12.8	58.2	23	6	AR149393
C	226	14	63.6	53	6	AR098682	Sequence	C	299	12.8	58.2	34	6	AX000999
C	227	14	63.6	53	6	AR098683	Sequence	C	300	12.8	58.2	45	6	I09495
C	228	14	63.6	53	6	AR204756	Sequence	C	301	12.8	58.2	49	6	AX279639
C	229	14	63.6	53	6	AR204757	Sequence	C	302	12.8	58.2	51	6	AX207956
C	230	14	63.6	69	6	AX283688	Sequence	C	303	12.8	58.2	84	11	HUMTR568A
C	231	14	63.6	71	6	AR012490	Sequence	C	304	12.8	58.2	87	5	AF035554
C	232	14	63.6	71	6	AR020318	Sequence	C	305	12.8	58.2	97	6	HSMW4B1
C	233	14	63.6	71	6	AR103339	Sequence	C	306	12.6	57.3	19	6	AR03024
C	234	14	63.6	71	6	182664	Sequence 10	C	307	12.6	57.3	24	6	AX487607
C	235	14	63.6	72	5	AF420582	Salmo sal	C	308	12.6	57.3	26	6	AR146060
C	236	14	63.6	80	11	HS068R	Sequence	C	309	12.6	57.3	26	6	AR194993
C	237	14	63.6	91	14	AR047262S2	Sequence	C	310	12.6	57.3	26	6	I17360
C	238	14	63.6	91	9	178662	Human sapi	C	311	12.6	57.3	26	6	128230
C	239	13.8	62.7	97	9	AF010484	Homo sapi	C	312	12.6	57.3	27	6	A30368
C	240	13.6	61.8	21	6	BD012580	Human cyt	C	313	12.6	57.3	32	6	AX355241
C	241	13.6	61.8	21	23	BD008148	Human cyt	C	314	12.6	57.3	35	6	AR091420
C	242	13.6	61.8	37	6	AR079383	Sequence	C	315	12.6	57.3	35	6	AR12625
C	243	13.6	61.8	80	3	AF127338	Euphragma	C	316	12.6	57.3	35	6	AX07741
C	244	13.6	61.8	84	3	AF318495	Scutigera	C	317	12.6	57.3	36	6	AR056803
C	245	13.6	61.8	94	4	MME309054	Meles mel	C	318	12.6	57.3	36	6	AR066068
C	246	13.4	60.9	69	11	AL823984	Arabidopsis	C	319	12.6	57.3	37	6	I13783
C	247	13.4	60.9	73	6	AR012430	Sequence	C	320	12.6	57.3	37	6	168753
C	248	13.4	60.9	73	6	AR020558	Sequence	C	321	12.6	57.3	46	12	SYNPWMP
C	249	13.4	60.9	73	6	AR19279	Sequence	C	322	12.6	57.3	50	6	AR02985
C	250	13.4	60.9	73	6	182604	Sequence 45	C	323	12.6	57.3	50	6	AR209649
C	251	13.4	60.9	82	11	HUMS971496	Sequence	C	324	12.6	57.3	50	6	I29725
C	252	13.4	60.9	100	1	AR411993	Formica e	C	325	12.6	57.3	50	6	I91399
C	253	13.4	60.9	24	6	A41490	Sequence 5	C	326	12.6	57.3	51	6	AX11717
C	254	13.2	60.0	50	8	AX158892	Sequence	C	327	12.6	57.3	51	6	AX160433
C	255	13.2	60.0	50	8	AF247740	Zea mays	C	328	12.6	57.3	51	6	AX160986
C	256	13.2	60.0	51	6	AX162063	Sequence	C	329	12.6	57.3	51	6	AX199439
C	257	13.2	60.0	71	9	HSU384SNR	H. sapiens	C	330	12.6	57.3	54	6	AR05807
C	258	13.2	60.0	88	13	E05713	Black pine	C	331	12.6	57.3	54	6	AR056072
C	259	13.2	60.0	88	8	MPOCPPTSA	M20964	C	332	12.6	57.3	60	6	AR01122
C	260	13.2	60.0	96	6	E00720	Sequence	C	333	12.6	57.3	60	6	I17866
C	261	13.2	60.0	99	6	E010147	DNA sequenc	C	334	12.6	57.3	63	6	AX18237
C	262	13.2	60.0	99	6	E01048	DNA encodin	C	335	12.6	57.3	63	6	BD004821
C	263	13.2	60.0	100	6	AR010129	Sequence	C	336	12.6	57.3	65	6	AX486053
C	264	13.2	60.0	13	6	AR018132	Sequence	C	337	12.6	57.3	69	3	AG2H20
C	265	13.2	60.0	13	6	AR018133	Sequence	C	338	12.6	57.3	71	6	AR054796
C	266	13.2	60.0	13	6	AR018134	Sequence	C	339	12.6	57.3	71	6	AR066061
C	267	13	59.1	27	6	AR064541	Sequence	C	340	12.6	57.3	71	6	AR066061
C	268	13	59.1	13	6	AR104786	Sequence	C	341	12.6	57.3	83	9	F295390507
C	269	13	59.1	13	6	AR18238	Sequence	C	342	12.6	57.3	83	9	D78291
C	270	13	59.1	13	6	I45567	Sequence 2	C	343	12.6	57.3	88	8	MPOCPPTSA
C	271	13	59.1	20	6	AR10336	Sequence	C	344	12.6	57.3	96	8	AF317968
C	272	13	59.1	20	6	AR149991	Sequence	C	345	12.4	56.4	71	6	AR012215
C	273	13	59.1	27	6	AR030170	Sequence	C	346	12.4	56.4	77	6	AR090209
C	274	13	59.1	27	6	AR140599	Sequence	C	347	12.4	56.4	27	6	AF205396
C	275	13	59.1	29	6	AR104786	Sequence	C	348	12.4	56.4	30	6	AR050289
C	276	13	59.1	30	6	AX148786	Sequence	C	349	12.4	56.4	30	6	AX474209
C	277	13	59.1	33	6	A45279	Sequence 10	C	350	12.4	56.4	31	6	E14828
C	278	13	59.1	33	6	A45280	Sequence 11	C	351	12.4	56.4	35	6	E17165
C	279	13	59.1	33	6	AR16259	Sequence	C	352	12.4	56.4	41	6	AR20829
C	280	13	59.1	33	6	AR116260	Sequence	C	353	12.4	56.4	41	6	AX040137
C	281	13	59.1	35	6	AR141975	Sequence	C	354	12.4	56.4	43	6	AR20693
C	282	13	59.1	35	6	AR202544	Sequence	C	355	12.4	56.4	48	6	A17170
C	283	13	59.1	42	6	AX080391	Sequence	C	356	12.4	56.4	48	6	AR027553
C	284	13	59.1	51	6	AX203980	Sequence	C	357	12.4	56.4	50	6	S471768

c	358	12.4	56.4	51	6	AX165573	AX165573 Sequence	c	431	12.2	55.5	25	6	AR197993	AR197993 Sequence
c	359	12.4	56.4	54	6	AX074089	AX074089 Sequence	c	432	12.2	55.5	27	6	AX03574	AX03574 Sequence
c	360	12.4	56.4	54	6	AX074132	AX074132 Sequence	c	433	12.2	55.5	27	6	AX29886	AX29886 Sequence
c	361	12.4	56.4	55	6	AX397798	AX397798 Sequence	c	434	12.2	55.5	31	6	AX248885	AX248885 Sequence
c	362	12.4	56.4	57	6	EL15743	EL15743 Primer for	c	435	12.2	55.5	31	6	EO015	EO015 Primer: 9/1
c	363	12.4	56.4	57	9	SS7598	SS7598 T-cell-rece	c	436	12.2	55.5	33	6	AX128309	AX128309 Sequence
c	364	12.4	56.4	63	9	SS7600	SS7600 T-cell-rece	c	437	12.2	55.5	38	6	AX060471	AX060471 Sequence
c	365	12.4	56.4	63	9	SS7602	SS7602 Homo sapien	c	438	12.2	55.5	40	6	AR05496	AR05496 Sequence
c	366	12.4	56.4	65	6	AX485443	AX485443 Sequence	c	439	12.2	55.5	40	6	AX05070	AX05070 Sequence
c	367	12.4	56.4	69	6	AR012251	AR012251 Sequence	c	440	12.2	55.5	50	6	AX164811	AX164811 Sequence
c	368	12.4	56.4	69	6	AR020349	AR020349 Sequence	c	441	12.2	55.5	51	6	AX15761	AX15761 Sequence
c	369	12.4	56.4	69	6	AR109370	AR109370 Sequence	c	442	12.2	55.5	51	6	AX160434	AX160434 Sequence
c	370	12.4	56.4	69	6	AR12695	AR12695 Sequence	c	443	12.2	55.5	51	6	AX162677	AX162677 Sequence
c	371	12.4	56.4	71	10	ANU403546	ANU403546 M.musculus	c	444	12.2	55.5	51	6	E22400	E22400 Antisense n
c	372	12.4	56.4	72	10	ANU75537	ANU75537 Mus musculus	c	445	12.2	55.5	65	6	AR09770	AR09770 Sequence
c	373	12.4	56.4	75	9	HSA30429	HSA30429 Homo sapien	c	446	12.2	55.5	65	6	AX48227	AX48227 Sequence
c	374	12.4	56.4	75	9	AR098407	AR098407 Mus musculus	c	447	12.2	55.5	65	6	AX85312	AX85312 Sequence
c	375	12.4	56.4	78	9	HSA305430	HSA305430 Homo sapien	c	448	12.2	55.5	71	6	AR051777	AR051777 Sequence
c	376	12.4	56.4	84	10	RNU20303	Rattus norvegicus	c	449	12.2	55.5	71	6	AR06042	AR06042 Sequence
c	377	12.4	56.4	84	11	ANU73196	ANU73196 Arabidopsis	c	450	12.2	55.5	72	9	S60877	S60877 LCK-protein
c	378	12.4	56.4	84	11	AL1773197	AL1773197 Arabidopsis	c	451	12.2	55.5	73	9	S60859	S60859 TCRB (t17.7
c	379	12.4	56.4	85	9	AY006234	AY006234 Homo sapius	c	452	12.2	55.5	77	6	AR00156	AR00156 Sequence
c	380	12.4	56.4	86	10	NM_008016	NM_008016 M.musculus	c	453	12.2	55.5	77	6	I33422	I33422 Sequence 4
c	381	12.4	56.4	86	10	AY006232	AY006232 Homo sapius	c	454	12.2	55.5	81	5	AF033555	AF033555 Fringilla
c	382	12.4	56.4	87	9	AY006232	AY006227 Homo sapius	c	455	12.2	55.5	83	9	S65933	S65933 19H (CDR3 r
c	383	12.4	56.4	90	9	AY006227	AY006227 Homo sapius	c	456	12.2	55.5	90	10	SYNPRWH	SYNPRWH Sequence
c	384	12.4	56.4	90	9	AY006228	AY006228 Homo sapius	c	457	12.2	55.5	91	10	MUSQ01PS03	MUSQ01PS03 Sequence
c	385	12.4	56.4	90	9	AY006233	AY006233 Homo sapius	c	458	12	54.5	12	6	AR206322	AR206322 Sequence
c	386	12.4	56.4	90	9	AY006302	AY006302 Homo sapius	c	459	12	54.5	12	6	AR206323	AR206323 Sequence
c	387	12.4	56.4	90	9	HSA405800	HSA405800 Homo sapius	c	460	12	54.5	12	6	AR205324	AR205324 Sequence
c	388	12.4	56.4	91	9	AY006110	AY006110 Homo sapius	c	461	12	54.5	15	6	AR205325	AR205325 Sequence
c	389	12.4	56.4	91	9	AY006230	AY006230 Homo sapius	c	462	12	54.5	15	6	AR205330	AR205330 Sequence
c	390	12.4	56.4	91	10	AY041821	AY041821 Oryctomys	c	463	12	54.5	20	6	AR09520	AR09520 Sequence
c	391	12.4	56.4	91	14	AY0726452	AY0726452 HIV-1	c	464	12	54.5	20	6	AR17801	AR17801 Sequence
c	392	12.4	56.4	91	14	AY04726852	AY04726852 HIV-1	c	465	12	54.5	21	6	AR00861	AR00861 Sequence
c	393	12.4	56.4	91	14	AY0472782	AY0472782 HIV-1	c	466	12	54.5	21	6	AR080899	AR080899 Sequence
c	394	12.4	56.4	91	14	AY0472852	AY0472852 HIV-1	c	467	12	54.5	21	6	AR173729	AR173729 Sequence
c	395	12.4	56.4	91	14	AY047285	AY047285 HIV-1	c	468	12	54.5	22	6	AX074088	AX074088 Sequence
c	396	12.4	56.4	92	9	AY006236	AY006236 Homo sapius	c	469	12	54.5	22	6	AX071144	AX071144 Sequence
c	397	12.4	56.4	92	9	AY006224	AY006224 Homo sapius	c	470	12	54.5	22	6	AX116474	AX116474 Sequence
c	398	12.4	56.4	93	9	AY006305	AY006305 Homo sapius	c	471	12	54.5	22	6	AX418160	AX418160 Sequence
c	399	12.4	56.4	94	9	AY006226	AY006226 Homo sapius	c	472	12	54.5	23	6	AX11716	AX11716 Sequence 14
c	400	12.4	56.4	94	9	AY006231	AY006231 Homo sapius	c	473	12	54.5	24	6	AX291073	AX291073 Sequence
c	401	12.4	56.4	94	9	AY006235	AY006235 Homo sapius	c	474	12	54.5	24	6	AX071444	AX071444 Sequence
c	402	12.4	56.4	94	9	AY006236	AY006236 Homo sapius	c	475	12	54.5	24	6	AX392029	AX392029 Sequence
c	403	12.4	56.4	95	3	AY299136	AY299136 Erychthrus	c	476	12	54.5	27	6	AX067979	AX067979 Sequence
c	404	12.4	56.4	95	10	MNV8IN24	MNV8IN24 M.musculus	c	477	12	54.5	27	6	AX42618	AX42618 Sequence 8
c	405	12.4	56.4	95	10	MNV8IN38	MNV8IN38 Homo sapiens	c	478	12	54.5	27	6	AR14665	AR14665 Sequence 55
c	406	12.4	56.4	96	9	AY006107	AY006107 Homo sapiens	c	479	12	54.5	28	6	AR15761	AR15761 Sequence
c	407	12.4	56.4	97	3	AR454676	AR454676 Lasioglossum	c	480	12	54.5	28	6	AR178564	AR178564 Sequence
c	408	12.4	56.4	97	9	AY006223	AY006223 Homo sapiens	c	481	12	54.5	28	6	AR178564	AR178564 Sequence
c	409	12.4	56.4	97	9	AY006229	AY006229 Homo sapiens	c	482	12	54.5	28	6	AR146171	AR146171 Sequence 7
c	410	12.4	56.4	97	9	AY006229	AY006229 Homo sapiens	c	483	12	54.5	35	6	AR001398	AR001398 Sequence
c	411	12.4	56.4	97	10	MNV8IN014	MNV8IN014 M.musculus	c	484	12	54.5	35	6	AR078378	AR078378 Sequence
c	412	12.4	56.4	98	10	MNV8IN35	MNV8IN35 M.musculus	c	485	12	54.5	35	6	AR081529	AR081529 Sequence
c	413	12.4	56.4	98	10	MNV8IN26	MNV8IN26 M.musculus	c	486	12	54.5	35	6	AR13149	AR13149 Sequence
c	414	12.4	56.4	98	10	MNV8IN28	MNV8IN28 M.musculus	c	487	12	54.5	35	6	AR194276	AR194276 Sequence
c	415	12.4	56.4	98	10	MNV8IN95	MNV8IN95 M.musculus	c	488	12	54.5	37	6	AR06854	AR06854 Sequence
c	416	12.4	56.4	99	10	AY006225	AY006225 Homo sapiens	c	489	12	54.5	37	6	AR080892	AR080892 Sequence
c	417	12.4	56.4	100	9	AY006300	AY006300 Homo sapiens	c	490	12	54.5	37	6	AR11930	AR11930 Sequence
c	418	12.4	56.4	100	14	MNV8IN33	MNV8IN33 Homo sapiens	c	491	12	54.5	37	6	AR173722	AR173722 Sequence
c	419	12.2	55.5	101	6	AR029833	AR029833 Sequence	c	492	12	54.5	38	6	AR245254	AR245254 Sequence
c	420	12.2	55.5	102	6	AX453152	AX453152 Sequence	c	493	12	54.5	39	6	AR051682	AR051682 Sequence
c	421	12.2	55.5	102	6	E15161	E15161 Phosphorothioate	c	494	12	54.5	40	6	AR203059	AR203059 Sequence
c	422	12.2	55.5	102	6	E22407	E22407 Antisense n	c	495	12	54.5	40	6	AX454040	AX454040 Sequence
c	423	12.2	55.5	102	6	E22408	E22408 Antisense n	c	496	12	54.5	45	6	AR080900	AR080900 Sequence
c	424	12.2	55.5	102	6	AX09799	AX09799 Sequence	c	497	12	54.5	45	6	AR173730	AR173730 Sequence
c	425	12.2	55.5	102	6	BD008043	BD008043 Method of	c	498	12	54.5	46	6	AR032675	AR032675 Sequence
c	426	12.2	55.5	102	6	AR0202019	AR0202019 Sequence	c	499	12	54.5	46	6	AR2030339	AR2030339 Sequence
c	427	12.2	55.5	102	6	AR112154	AR112154 Sequence	c	500	12	54.5	46	6	I29415	I29415 Sequence 28
c	428	12.2	55.5	102	6	AR149196	AR149196 Sequence	c	501	12	54.5	46	6	191089	191089 Sequence 28
c	429	12.2	55.5	102	6	AR173315	AR173315 Sequence	c	502	12	54.5	47	6	AR121449	AR121449 Sequence
c	430	12.2	55.5	102	6	AR090958	AR090958 Sequence	c	503	12	54.5	47	6	AR121450	AR121450 Sequence

c 504	12	54.5	47	6	AX195002	577	11.8	53.6	36	10	MMU299486
c 505	12	54.5	47	6	156041 Sequence 22	c 578	11.8	53.6	40	6	AR064974
c 506	12	54.5	47	6	156042 Sequence 23	c 579	11.8	53.6	60	6	AR177471
c 507	12	54.5	47	6	195912 Sequence 22	c 580	11.8	53.6	60	6	AR177472
c 508	12	54.5	47	6	195913 Sequence 23	c 581	11.8	53.6	63	3	U098802
c 509	12	54.5	50	6	AR032859	c 582	11.8	53.6	65	1	S7467552
c 510	12	54.5	50	6	AR209523	c 583	11.8	53.6	72	9	HUMGBLYMC
c 511	12	54.5	50	6	129599 Sequence 47	c 584	11.8	53.6	75	9	S63942 1GH fCDR3 r
c 512	12	54.5	50	6	191273 Sequence 47	c 585	11.8	53.6	76	8	NEUTRIV
c 513	12	54.5	51	6	AX156929	c 586	11.8	53.6	80	9	S57152
c 514	12	54.5	51	6	AX156930	c 587	11.8	53.6	81	3	AF015943
c 515	12	54.5	51	6	AX158531	c 588	11.8	53.6	81	14	AF207080
c 516	12	54.5	52	6	AR122336	c 589	11.8	53.6	81	14	AF207081
c 517	12	54.5	52	6	AR160234	c 590	11.8	53.6	81	14	AF207082
c 518	12	54.5	52	6	AR160239 Sequence	c 591	11.8	53.6	81	14	AF207083
c 519	12	54.5	52	6	AX156929 Sequence	c 592	11.8	53.6	81	14	AF207084
c 520	12	54.5	52	6	AR118282	c 593	11.8	53.6	81	14	AF207085
c 521	12	54.5	62	10	AF265758	c 594	11.8	53.6	81	14	AF207086
c 522	12	54.5	64	9	S81084520	c 595	11.8	53.6	81	14	AF207087
c 523	12	54.5	65	6	AX480190	c 596	11.8	53.6	81	14	AF207088
c 524	12	54.5	65	6	AX480197	c 597	11.8	53.6	81	14	AF207089
c 525	12	54.5	70	6	AR02474	c 598	11.8	53.6	81	14	AF207090
c 526	12	54.5	70	6	AR20302	c 599	11.8	53.6	81	14	AF207091
c 527	12	54.5	70	6	AR10323	c 600	11.8	53.6	81	14	AF207092
c 528	12	54.5	70	6	182648	c 601	11.8	53.6	81	14	AF207093
c 529	12	54.5	76	6	AR042693	c 602	11.8	53.6	81	14	AF207095
c 530	12	54.5	76	6	AR054826	c 603	11.8	53.6	81	14	AF207096
c 531	12	54.5	79	4	PCU46759	c 604	11.8	53.6	81	14	AF207097
c 532	12	54.5	80	6	AR110376	c 605	11.8	53.6	81	14	AF207098
c 533	12	54.5	80	6	BD003936	c 606	11.8	53.6	81	14	AF207099
c 534	12	54.5	81	3	AF015945	c 607	11.8	53.6	82	3	AF020959
c 535	12	54.5	81	3	AF148884	c 608	11.8	53.6	83	10	MMVIVN30
c 536	12	54.5	81	6	AR056176	c 609	11.8	53.6	88	9	U00823
c 537	12	54.5	81	6	AR210575	c 610	11.8	53.6	92	9	HUMP30
c 538	12	54.5	81	9	HSU136	c 611	11.8	53.6	94	6	AX381879
c 539	12	54.5	81	14	D87736	c 612	11.8	53.6	100	9	HUMD127
c 540	12	54.5	81	14	HPC1090C11	c 613	11.6	53.6	100	9	AX317621
c 541	12	54.5	82	11	HUMT1789B	c 614	11.6	52.7	108	6	AX031341
c 542	12	54.5	87	3	PFE27193	c 615	11.6	52.7	20	6	AR046624
c 543	12	54.5	87	3	A42839	c 616	11.6	52.7	20	6	E1109
c 544	12	54.5	87	6	I87345	c 617	11.6	52.7	20	6	1196335
c 545	12	54.5	87	14	AF050506	c 618	11.6	52.7	20	6	188645
c 546	12	54.5	87	14	AF050515	c 619	11.6	52.7	21	6	AX191810
c 547	12	54.5	88	6	A42834	c 620	11.6	52.7	22	9	HS3CF1L
c 548	12	54.5	88	6	187340 Sequence 16	c 621	11.6	52.7	24	6	AX39670
c 549	12	54.5	89	9	S63934	c 622	11.6	52.7	24	6	AX45884
c 550	12	54.5	90	6	AF087830	c 623	11.6	52.7	25	6	A65298
c 551	12	54.5	90	6	A42845	c 624	11.6	52.7	25	6	AR150446
c 552	12	54.5	90	6	187351 Sequence 17	c 625	11.6	52.7	25	6	AX317618
c 553	12	54.5	91	14	AB034436	c 626	11.6	52.7	25	11	C75924
c 554	12	54.5	91	14	AB034433	c 627	11.6	52.7	26	6	A65299
c 555	12	54.5	93	6	A42846	c 628	11.6	52.7	26	6	AR150447
c 556	12	54.5	93	6	187352 Sequence 17	c 629	11.6	52.7	26	6	AR211783
c 557	12	54.5	99	6	165773 Sequence 9	c 630	11.6	52.7	26	6	BD009910
c 558	12	54.5	99	10	MUSAQPI504	c 631	11.6	52.7	27	6	AX090069
c 559	12	54.5	100	10	MMDNDS21	c 632	11.6	52.7	27	6	AR039142
c 560	12	54.5	100	11	HSPF11F3	c 633	11.6	52.7	29	6	AR065272
c 561	11.8	53.6	18	6	AR098334	c 634	11.6	52.7	33	6	AX15955
c 562	11.8	53.6	18	6	AR174188	c 635	11.6	52.7	34	6	A92573
c 563	11.8	53.6	19	6	AR202163	c 636	11.6	52.7	34	6	AR212448
c 564	11.8	53.6	21	6	AR198750 Sequence	c 637	11.6	52.7	34	6	BD003669
c 565	11.8	53.6	21	6	AX177559 Sequence	c 638	11.6	52.7	40	6	AR135225
c 566	11.8	53.6	24	6	AX288614 Sequence	c 639	11.6	52.7	40	6	AR146721
c 567	11.8	53.6	25	6	AR9250 Sequence	c 640	11.6	52.7	40	6	AR152292
c 568	11.8	53.6	30	6	AR18765 Sequence	c 641	11.6	52.7	40	6	AR158330
c 569	11.8	53.6	30	6	106397 Sequence 17	c 642	11.6	52.7	40	6	AX456445
c 570	11.8	53.6	30	6	132178 Sequence 17	c 643	11.6	52.7	42	6	AR141022
c 571	11.8	53.6	30	6	134269 Sequence 54	c 644	11.6	52.7	43	6	AX207948
c 572	11.8	53.6	30	6	182474 Sequence 54	c 645	11.6	52.7	43	6	AX207950
c 573	11.8	53.6	31	6	AX107904 Sequence	c 646	11.6	52.7	43	6	AX466471
c 574	11.8	53.6	31	6	AX248858 Sequence	c 647	11.6	52.7	43	6	AX194951
c 575	11.8	53.6	31	6	AX249138 Sequence	c 648	11.6	52.7	47	12	SYNPRA
	33	6	6	AX151706 Sequence	c 649	11.6	52.7	48	6	A93514	

c 650	11.6	52.7	48	6	I23498	Sequence 3	c 723	11.4	51.8	20	6	IR2530	Sequence 11
c 651	11.6	52.7	50	6	AX165840	Sequence	c 724	11.4	51.8	20	6	I93768	Sequence 11
c 652	11.6	52.7	50	6	AX199420	Sequence	c 725	11.4	51.8	21	6	ARI37433	Sequence
c 653	11.6	52.7	50	6	AX199422	Sequence	c 726	11.4	51.8	21	6	AX097316	Sequence
c 654	11.6	52.7	51	6	AX157005	Sequence	c 727	11.4	51.8	21	6	AX197362	Sequence
c 655	11.6	52.7	51	6	AX157609	Sequence	c 728	11.4	51.8	21	6	AX137780	Sequence
c 656	11.6	52.7	51	6	AX157609	Sequence	c 729	11.4	51.8	21	6	AX370582	Sequence
c 657	11.6	52.7	51	6	AX159419	Sequence	c 730	11.4	51.8	21	6	E54093	Novel gene
c 658	11.6	52.7	51	6	AX159421	Sequence	c 731	11.4	51.8	22	6	AX211675	Sequence
c 659	11.6	52.7	51	6	AX204239	Sequence	c 732	11.4	51.8	22	6	AX427064	Sequence
c 660	11.6	52.7	51	6	AX204348	Sequence	c 733	11.4	51.8	23	6	A14168	vectorette
c 661	11.6	52.7	55	9	AX204348	Sequence	c 734	11.4	51.8	23	6	A45285	Sequence
c 662	11.6	52.7	55	9	HSDDSS	Sequence	c 735	11.4	51.8	23	6	AR099727	Sequence
c 663	11.6	52.7	57	6	AR199607	Sequence	c 736	11.4	51.8	23	6	AR116265	Sequence
c 664	11.6	52.7	62	6	AX366870	Sequence	c 737	11.4	51.8	23	6	AX058583	Sequence
c 665	11.6	52.7	62	10	RATIVS303	Sequence	c 738	11.4	51.8	23	6	AX254776	Sequence
c 666	11.6	52.7	65	9	AX282555	Sequence	c 739	11.4	51.8	23	6	AX300515	Sequence
c 667	11.6	52.7	66	9	HSVAVPOG19	Sequence	c 740	11.4	51.8	23	6	AR099727	Sequence
c 668	11.6	52.7	67	6	A36470	Sequence	c 741	11.4	51.8	24	6	A22615	Sequence
c 669	11.6	52.7	67	6	AR071656	Sequence	c 742	11.4	51.8	24	6	A22615	Sequence
c 670	11.6	52.7	67	6	AR080103	Sequence	c 743	11.4	51.8	25	6	AX254648	Sequence
c 671	11.6	52.7	67	6	AR202436	Sequence	c 744	11.4	51.8	26	6	A01116	Sequence
c 672	11.6	52.7	70	7	AT2523	Sequence 10	c 745	11.4	51.8	26	6	AR01117	Sequence
c 673	11.6	52.7	76	5	AF051705	Sequence	c 746	11.4	51.8	26	6	AR01202	Sequence
c 674	11.6	52.7	76	5	AF051725	Sequence	c 747	11.4	51.8	26	6	AX038114	Sequence
c 675	11.6	52.7	76	9	A36495	Sequence	c 748	11.4	51.8	26	6	A1059	Sequence
c 676	11.6	52.7	78	5	AF051706	Sequence	c 749	11.4	51.8	26	6	A22615	Sequence
c 677	11.6	52.7	80	3	AF01277	Sequence	c 750	11.4	51.8	26	6	AR084536	Sequence
c 678	11.6	52.7	80	9	HP5PE10	Sequence	c 751	11.4	51.8	26	6	AR01117	Sequence
c 679	11.6	52.7	81	3	AY056249	Sequence	c 752	11.4	51.8	26	6	AR01202	Sequence
c 680	11.6	52.7	81	5	GGIGACRS	Sequence	c 753	11.4	51.8	26	6	AX259883	Sequence
c 681	11.6	52.7	82	5	A36495	Sequence	c 754	11.4	51.8	26	6	A01140	Sequence
c 682	11.6	52.7	82	5	AF051722	Progne ch	c 755	11.4	51.8	26	6	A14059	Nucleotide
c 683	11.6	52.7	82	6	AX159313	Sequence	c 756	11.4	51.8	30	6	AR028324	Sequence
c 684	11.6	52.7	84	5	AF051723	Petrochel	c 757	11.4	51.8	30	6	AR028324	Sequence
c 685	11.6	52.7	84	5	AF051714	Sequence	c 758	11.4	51.8	30	6	AR058695	Sequence
c 686	11.6	52.7	84	5	AF051715	Thryothorax	c 759	11.4	51.8	30	6	AX074011	Sequence
c 687	11.6	52.7	84	5	AF051720	Psalidop	c 760	11.4	51.8	30	6	A14059	Sequence
c 688	11.6	52.7	85	5	AF051704	Struthio	c 761	11.4	51.8	31	6	A21166	Sequence
c 689	11.6	52.7	86	5	AF051711	Ficedula	c 762	11.4	51.8	31	6	AR028324	Sequence
c 690	11.6	52.7	86	5	AF051723	Petrochel	c 763	11.4	51.8	31	6	AR04537	Sequence
c 691	11.6	52.7	86	5	AF051724	Cercopis	c 764	11.4	51.8	31	6	AR046280	Sequence
c 692	11.6	52.7	88	5	AF051718	Acrocephala	c 765	11.4	51.8	31	6	AR046280	Sequence
c 693	11.6	52.7	88	8	MPOCPTRSB	Sequence	c 766	11.4	51.8	31	6	AR046280	Sequence
c 694	11.6	52.7	90	3	AF365093	Lithobius	c 767	11.4	51.8	31	6	AR046280	Sequence
c 695	11.6	52.7	90	5	AF051717	Acrocephala	c 768	11.4	51.8	31	6	AR046280	Sequence
c 696	11.6	52.7	90	5	AX376948	Sequence	c 769	11.4	51.8	31	6	AR046280	Sequence
c 697	11.6	52.7	90	6	E05340	listeria mo	c 770	11.4	51.8	31	6	AR046280	Sequence
c 698	11.6	52.7	90	10	MMPTRVJAS	Sequence	c 771	11.4	51.8	31	6	AR046280	Sequence
c 699	11.6	52.7	92	5	AF051719	Acrocephala	c 772	11.4	51.8	31	6	AR046280	Sequence
c 700	11.6	52.7	94	5	AF051710	Oceanodro	c 773	11.4	51.8	31	6	AR046280	Sequence
c 701	11.6	52.7	94	6	AX440115	Sequence	c 774	11.4	51.8	31	6	AR046280	Sequence
c 702	11.6	52.7	94	8	VFSN5L5R	Sequence	c 775	11.4	51.8	31	6	AR046280	Sequence
c 703	11.6	52.7	95	3	AGXH454	Sequence	c 776	11.4	51.8	31	6	AR046280	Sequence
c 704	11.6	52.7	95	6	AR165689	Sequence	c 777	11.4	51.8	31	6	AR046280	Sequence
c 705	11.6	52.7	96	6	A21832	Polyucleot	c 778	11.4	51.8	31	6	AR046280	Sequence
c 706	11.6	52.7	96	6	A33970	Sequence	c 779	11.4	51.8	31	6	AR046280	Sequence
c 707	11.6	52.7	96	6	AR00232	Sequence	c 780	11.4	51.8	31	6	AR046280	Sequence
c 708	11.6	52.7	98	6	AR165688	Sequence	c 781	11.4	51.8	31	6	AR046280	Sequence
c 709	11.6	52.7	98	6	191501	Sequence 35	c 782	11.4	51.8	31	6	AR046280	Sequence
c 710	11.6	52.7	99	10	AR165682	Sequence	c 783	11.4	51.8	31	6	AR046280	Sequence
c 711	11.6	52.7	100	4	AY05524	Panthera	c 784	11.4	51.8	31	6	AR046280	Sequence
c 712	11.6	52.7	105	6	ARI31837	Sequence	c 785	11.4	51.8	31	6	AR046280	Sequence
c 713	11.6	52.7	106	6	AR176148	Sequence	c 786	11.4	51.8	31	6	AR046280	Sequence
c 714	11.6	52.7	107	6	ARI19184	Sequence	c 787	11.4	51.8	31	6	AR046280	Sequence
c 715	11.6	52.7	108	6	ARI05021	Sequence	c 788	11.4	51.8	31	6	AR046280	Sequence
c 716	11.6	52.7	108	6	ARI101655	Sequence	c 789	11.4	51.8	31	6	AR046280	Sequence
c 717	11.6	52.7	108	6	AX101067	Sequence	c 790	11.4	51.8	31	6	AR046280	Sequence
c 718	11.6	52.7	108	6	HSREP18	Sequence	c 791	11.4	51.8	31	6	AR046280	Sequence
c 719	11.6	52.7	108	6	AX203247	Sequence	c 792	11.4	51.8	31	6	AR046280	Sequence
c 720	11.6	52.7	108	6	AX300508	Sequence	c 793	11.4	51.8	31	6	AR046280	Sequence
c 721	11.6	52.7	108	6	AX300510	Sequence	c 794	11.4	51.8	31	6	AR046280	Sequence
c 722	11.6	52.7	108	6	AX402163	Sequence	c 795	11.4	51.8	31	6	AR046280	Sequence

A45286	Sequence 17	c. 869	11.4	51.8	87	6	AR105032	ARL05032 Sequence
A92283	Sequence 2.	c. 870	11.4	51.8	87	8	AF52869	AF52869 Arauvaria
A92334	Sequence 2.	c. 871	11.4	51.8	88	9	AP021855	AJ231855 Schizosaccharomyces pombe
AR116266	Sequence	c. 872	11.4	51.8	88	9	HSPRTDNAC	Z21984 <i>H. sapiens</i> rRNA
AR116267	Sequence	c. 873	11.4	51.8	88	10	RNPFR88	X95094 <i>R. norvegicus</i> rRNA
AX156824	Sequence	c. 874	11.4	51.8	89	8	AF52868	AF52868 Araucaria
AX160074	Sequence	c. 875	11.4	51.8	89	10	MUSCBF14	M60642 Mouse factor
AX162064	Sequence	c. 876	11.4	51.8	90	6	AR19542	AR19542 Sequence
AX190214	Sequence	c. 877	11.4	51.8	90	6	AX230591	AX230591 Sequence
AX204199	Sequence	c. 878	11.4	51.8	91	8	AF262002	AF262002 Bitylum b
BD007224	Lentiviru	c. 879	11.4	51.8	91	10	MMDNDS1	X55201 <i>M. musculus</i> rRNA
AX157737	Sequence	c. 880	11.4	51.8	91	14	AB034435	AB034435 Human immunodeficiency virus
AX157738	Sequence	c. 881	11.4	51.8	93	5	AF035533	AF035533 <i>Acrocepha</i> rRNA
AX157857	Sequence	c. 882	11.4	51.8	93	10	RATNCHRR1	J05232 Rat neurona
AX159061	Sequence	c. 883	11.4	51.8	95	6	AR16724	AR16724 Sequence
AX160073	Sequence	c. 884	11.4	51.8	95	6	AX08070	AX08070 Sequence
AX162233	Sequence	c. 885	11.4	51.8	95	6	HS1PR10	U5061 Human Interferon
AX162475	Sequence	c. 886	11.4	51.8	95	9	HSSTP2505	U72200 Human Pheno
AX162582	Sequence	c. 887	11.4	51.8	95	10	F321780529	AF221803 <i>Mus musculus</i> rRNA
AX162718	Sequence	c. 888	11.4	51.8	95	11	HUMUT301A	L3027 Human STS U
AX190364	Sequence	c. 889	11.4	51.8	96	4	SSU6228	U6228 <i>Sus scrofa</i>
AX190365	Sequence	c. 890	11.4	51.8	96	5	AF420374	AF420374 <i>Salmo salar</i>
AX190372	Sequence	c. 891	11.4	51.8	97	7	A4570	AR061175 Sequence
AX190373	Sequence	c. 892	11.4	51.8	97	6	AR061175	AR061175 Sequence
AX190375	Sequence	c. 893	11.4	51.8	97	9	HSW3598	U32298 Human pre-B cell
AX449473	Sequence	c. 894	11.4	51.8	97	9	HSW2411	AF221803 <i>Mus musculus</i> rRNA
AB013762	Macaca as.	c. 895	11.4	51.8	97	6	AX080697	AR035143 Sequence
AB013763	Macaca as.	c. 896	11.4	51.8	97	6	AX080697	AR035143 Sequence
AB013764	Macaca fa.	c. 897	11.4	51.8	100	6	AR10829	AR10829 Sequence
AB013765	Macaca fasciata	c. 898	11.4	51.8	100	6	AR20247	AR20247 Sequence
A03834	Artificial	c. 899	11.4	51.8	100	6	AR202430	AR202430 Sequence
AX200143	Sequence 23	c. 900	11.4	51.8	100	11	HSPE2G01	AL033905 <i>H. sapiens</i> rRNA
AX255443	Sequence	c. 901	11.2	50.9	101	6	AY316590	AX175690 Sequence
AR083349	Sequence	c. 902	11.2	50.9	101	6	AY316590	AX175690 Sequence
AB013761	Macaca mu	c. 903	11.2	50.9	101	6	AY316590	AX175690 Sequence
AF46486	Hepatitis	c. 904	11.2	50.9	20	6	AR070010	AR070010 Sequence
AF46643	Hepatitis	c. 905	11.2	50.9	20	6	AR104498	AR104498 Sequence
A59482	Sequence 32	c. 906	11.2	50.9	20	6	AY316590	AX175690 Sequence
AJ300080	Drosophil	c. 907	11.2	50.9	21	6	AR06942	AR06942 Sequence
XH8001	<i>H. sapiens</i> D	c. 908	11.2	50.9	21	12	AB069390	AB069390 Synthetic
L29950	Human SRS U	c. 909	11.2	50.9	19	6	AY316590	AY316590 Synthetic
AX482999	Sequence	c. 910	11.2	50.9	20	6	AY316590	AY316590 Synthetic
AX483166	Sequence	c. 911	11.2	50.9	20	6	AY316590	AY316590 Synthetic
AX483167	Sequence	c. 912	11.2	50.9	20	6	AY316590	AY316590 Synthetic
AX483168	Sequence	c. 913	11.2	50.9	22	6	AX35624	AX35624 Sequence
AX483169	Sequence	c. 914	11.2	50.9	22	6	AX35624	AX35624 Sequence
AX483170	Sequence	c. 915	11.2	50.9	22	6	AX486725	AX486725 Sequence
AX483171	Sequence	c. 916	11.2	50.9	23	6	AY316590	AY316590 Sequence
AX483504	Sequence	c. 917	11.2	50.9	24	6	A25725	A25725 C15 P1
AR02290	Sequence	c. 918	11.2	50.9	24	6	AY316590	AY316590 Sequence
AR053141	Sequence	c. 919	11.2	50.9	24	6	AR051397	AR051397 Sequence
AR055670	Sequence	c. 920	11.2	50.9	24	6	AR060243	AR060243 Sequence
AR020257	Sequence	c. 921	11.2	50.9	24	6	AR060257	AR060257 Sequence
AR109228	Sequence	c. 922	11.2	50.9	24	6	AR060273	AR060273 Sequence
AR109229	Sequence	c. 923	11.2	50.9	24	6	AY316590	AY316590 Sequence
AR193222	Sequence 44	c. 924	11.2	50.9	24	6	AY316590	AY316590 Sequence
AY316590	Synthetic G	c. 925	11.2	50.9	25	6	AR070343	AR070343 Sequence
AR014249	Sequence	c. 926	11.2	50.9	25	6	E26697	E26697 Transgenic
AR020257	Sequence	c. 927	11.2	50.9	26	6	AR061819	AR061819 Sequence
AR109228	Sequence	c. 928	11.2	50.9	27	6	AR109691	AR109691 Sequence
AR109229	Sequence	c. 929	11.2	50.9	27	6	AR185217	AR185217 Sequence
AR109230	Sequence	c. 930	11.2	50.9	27	6	AY316590	AY316590 Sequence
AX320476	Sequence	c. 931	11.2	50.9	30	6	AR007475	AR007475 Sequence
AF010173	Ethmoing	c. 932	11.2	50.9	30	6	AR008231	AR008231 Sequence
AF148867	Norwalk-1	c. 933	11.2	50.9	30	6	AR137014	AR137014 Sequence
AJ250452	Trisopter	c. 934	11.2	50.9	30	6	AX012416	AX012416 Sequence
AX080696	Sequence	c. 935	11.2	50.9	30	6	AX304637	AX304637 Sequence
J02554	Rat insulin	c. 936	11.2	50.9	30	6	E512009	E512009 Improved pr
AR193222	Sequence	c. 937	11.2	50.9	30	6	I29838	I29838 Sequence
AR054875	Sequence	c. 938	11.2	50.9	30	6	177015	177015 Sequence
AR054876	Sequence	c. 939	11.2	50.9	30	6	181010	181010 Sequence
AR066140	Sequence	c. 940	11.2	50.9	30	6	181016	181016 Sequence
AR066141	Sequence	c. 941	11.2	50.9	30	6	AX06554	AX06554 Sequence

Best Local Similarity	100.0%	Pred.	NO. 2.8;	Matches 22;	Conservative	0;	Mismatches 0;	Indels 0;	Gaps 0;	VERSION AR080761.1	GI:10007491
Qy	1	TCGCACCCATCTCTCTCT	22	LOCUS	AR072068	25 bp	DNA	linear	PAT 18-FEB-2000	KEYWORD	Unknown.
Db	4	TCGCACCCATCTCTCTCT	25	DEFINITION	Sequence 4 from patent US 5912332.					ORGANISM	Unknown.
REFERENCE	1	(bases 1 to 25)		ACCESSION	AR072068					TITLE	Unclassified.
AUTHORS	Agrawal,S., Remsahani,J. and Zhao,Q.			VERSION	AR072068.1	GI:7222956				FEATURES	Method of modulating gene expression with reduced immunostimulatory response
JOURNAL	Patent: US 5968909-A 2 19-OCT-1999;			SOURCE	1. 25					BASE COUNT	2 a 13 c 1 g 9 t
FEATURES	Location/Qualifiers			SOURCE	1. .25					ORIGIN	/organism="unknown"
SOURCE	Unknown.			SOURCE	2 a	13 c	1 g	9 t		RESULT	12
ORGANISM	Unclassified.			DEFINITION	Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. NO. 2.8; Mismatches 0; Indels 0; Gaps 0;	25 bp	DNA	linear	PAT 31-AUG-2000	LOCUS	AR080762
REFERENCE	1 (bases 1 to 25)			ACCESSION	AR080762	Sequence 3 from patent US 5968909.				KEYWORD	Matches 22; Conservative
AUTHORS	Agrawal,S., Habus,I. and Kandimalla,E.R.			VERSION	AR080762.1	GI:10007492				FEATURES	0; Mismatches 0; Indels 0; Gaps 0;
TITLE	Affinity-based purification of oligonucleotides using soluble multimeric oligonucleotides			SOURCE	1. 25					BASE COUNT	2 a 13 c 1 g 9 t
JOURNAL	Patent: US 5912332-A 4 15-JUN-1999;			SOURCE	1. .25					ORIGIN	/organism="unknown"
FEATURES	Location/Qualifiers			SOURCE	1. .25					RESULT	13
SOURCE	/organism="unknown"			DEFINITION	Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. NO. 2.8; Mismatches 0; Indels 0; Gaps 0;	25 bp	DNA	linear	PAT 31-AUG-2000	LOCUS	AR082591
ORGANISM	Unclassified.			ACCESSION	AR082591	Sequence 1 from patent US 5973136.				KEYWORD	Matches 22; Conservative
REFERENCE	1 (bases 1 to 25)			VERSION	AR082591.1	GI:10009311				FEATURES	0; Mismatches 0; Indels 0; Gaps 0;
AUTHORS	Agrawal,S., Tensamani,J. and Zhao,Q.			SOURCE	1. 25					BASE COUNT	2 a 13 c 1 g 9 t
TITLE	Method of modulating gene expression with reduced immunostimulatory response			SOURCE	1. .25					ORIGIN	/organism="unknown"
JOURNAL	Patent: US 5968909-A 3 19-OCT-1999;			SOURCE	1. .25					RESULT	14
FEATURES	Location/Qualifiers			DEFINITION	Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. NO. 2.8; Mismatches 0; Indels 0; Gaps 0;	25 bp	DNA	linear	PAT 31-AUG-2000	LOCUS	AR082591
SOURCE	/organism="unknown"			ACCESSION	AR082591	Sequence 1 from patent US 5973136.				KEYWORD	Matches 22; Conservative
ORGANISM	Unknown.			VERSION	AR082591.1	GI:10009311				FEATURES	0; Mismatches 0; Indels 0; Gaps 0;
REFERENCE	1 (bases 1 to 25)			SOURCE	1. 25					BASE COUNT	2 a 13 c 1 g 9 t
AUTHORS	Agrawal,S.			SOURCE	1. .25					ORIGIN	/organism="unknown"
TITLE	Inverted chimeric oligonucleotides			SOURCE	1. .25					RESULT	15
JOURNAL	Patent: US 5973136-A 1 26-OCT-1999;			SOURCE	1. .25					LOCUS	AR080761
FEATURES	Location/Qualifiers			SOURCE	1. .25					DEFINITION	Sequence 2 from patent US 5968909.
SOURCE	/organism="unknown"			SOURCE	1. .25					ACCESSION	AR080761
BASE COUNT	2 a 13 c 1 g 9 t			SOURCE	1. .25					VERSION	AR080761.1
RESULT	11			SOURCE	1. .25					KEYWORD	Unknown.
LOCUS	AR080761			SOURCE	1. .25					ORGANISM	Unknown.
DEFINITION	Sequence 2 from patent US 5968909.			SOURCE	1. .25					TITLE	Unclassified.
ACCESSION	AR080761			SOURCE	1. .25					FEATURES	1 (bases 1 to 25)
VERSION	AR080761.1			SOURCE	1. .25					REFERENCE	Agrawal,S.
SOURCE	Unknown.			SOURCE	1. .25					AUTHORS	
ORGANISM	Unclassified.			SOURCE	1. .25					TITLE	
REFERENCE	1 (bases 1 to 25)			SOURCE	1. .25					JOURNAL	
AUTHORS	Agrawal,S.			SOURCE	1. .25					FEATURES	
TITLE	Inverted chimeric oligonucleotides			SOURCE	1. .25					SOURCE	
JOURNAL	Patent: US 5973136-A 1 26-OCT-1999;			SOURCE	1. .25					BASE COUNT	2 a 13 c 1 g 9 t

Query Match 100.0%; Score 22; DB 6; Length 25;
 Best Local Similarity 100.0%; Pred. No. 2.8;
 Matches 22; Conservative 0; Mismatches 0;
 Indels 0; Gaps 0;

QY 1 TCGCACCCATCTCTCTCTCT 22
 LOCUS 4 TCGCACCCATCTCTCTCTCT 25
 DB

RESULT 24
 AR082602 AR082602 Sequence 12 from patent US 5973136. 25 bp DNA linear PAT 31-AUG-2000
 DEFINITION AR082602 AR082602.1 GI:10009322
 ACCESSION VERSION
 KEYWORDS
 SOURCE Unknown.
 ORGANISM Unclassified.
 REFERENCE 1 (bases 1 to 25)
 AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 12 26-OCT-1999;
 FEATURES Location/Qualifiers
 Source 1. .25 /organism="unknown"

BASE COUNT 2 a 13 C 1 g 9 t
 ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25;
 Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0;
 Matches 22; Conservative 0; Indels 0; Gaps 0;

QY 1 TCGCACCCATCTCTCTCTCT 22
 LOCUS 4 TCGCACCCATCTCTCTCTCT 25
 DB

RESULT 25
 AR082603 AR082603 Sequence 13 from patent US 5973136. 25 bp DNA linear PAT 31-AUG-2000
 DEFINITION AR082603 AR082603.1 GI:10009323
 ACCESSION VERSION
 KEYWORDS SOURCE Unknown.
 ORGANISM Unclassified.
 REFERENCE 1 (bases 1 to 25)
 AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 13 26-OCT-1999;
 FEATURES Location/Qualifiers
 Source 1. .25 /organism="unknown"

BASE COUNT 2 a 13 C 1 g 9 t
 ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25;
 Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0;
 Matches 22; Conservative 0; Indels 0; Gaps 0;

QY 1 TCGCACCCATCTCTCTCTCT 22
 LOCUS 4 TCGCACCCATCTCTCTCTCT 25
 DB

RESULT 26
 AR082604 AR082604 Sequence 14 from patent US 5973136. 25 bp DNA linear PAT 31-AUG-2000
 DEFINITION AR082604 AR082604.1 GI:10009324
 ACCESSION VERSION

KEYWORDS SOURCE Unknown.
 ORGANISM Unclassified.
 REFERENCE 1 (bases 1 to 25)
 AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 16 26-OCT-1999;
 FEATURES Location/Qualifiers
 Source 1. .25 /organism="unknown"

BASE COUNT 2 a 13 C 1 g 9 t
 ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25;

Best Local Similarity 100.0%; Pred. No. 2.8; Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCTCCCTCT 22
Locus AR082607
Definition Sequence 17 from patent US 5973136.
Accession AR082607
Version AR082607.1 GI:10009327
Keywords
Source Unknown.
Organism Unclassified.
Reference 1 (bases 1 to 25)
Authors Agrawal,S.
Title Inverted chimeric oligonucleotides
Journal Patent: US 5973136-A 19 26-OCT-1999;
Features Location/Qualifiers

RESULT 29
AR082607 AR082607 25 bp DNA linear PAT 31-AUG-2000
LOCUS Sequence 17 from patent US 5973136.
DEFINITION Sequence 17 from patent US 5973136.
VERSION AR082607
KEYWORDS
AUTHORS Unknown.
TITLE Unknown.
JOURNAL Patent: US 5973136-A 17 26-OCT-1999;
FEATURES source /organism="unknown"
REFERENCE 1 (bases 1 to 25)
BASE COUNT 2 a /organism="unknown"
ORIGIN 2 a 13 c 1 g 9 t
Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCTCCCTCT 22
Locus AR082608
Definition Sequence 18 from patent US 5973136.
Accession AR082608
Version AR082608.1 GI:10009328
Keywords
Source Unknown.
Organism Unclassified.
Reference 1 (bases 1 to 25)
Authors Agrawal,S.
Title Inverted chimeric oligonucleotides
Journal Patent: US 5973136-A 18 26-OCT-1999;
Features Location/Qualifiers

RESULT 30
AR082608 AR082608 25 bp DNA linear PAT 31-AUG-2000
LOCUS Sequence 18 from patent US 5973136.
DEFINITION Sequence 18 from patent US 5973136.
VERSION AR082608
KEYWORDS
Source Unknown.
Organism Unclassified.
Reference 1 (bases 1 to 25)
Authors Biesecker,G. and Gold,L.
Title High affinity nucleic acid ligands of complement system proteins
Journal Patent: US 6140490-A 157 31-OCT-2000;
Features source /organism="unknown"
REFERENCE 1 (bases 1 to 25)
BASE COUNT 2 a /organism="unknown"
ORIGIN 2 a 13 c 1 g 9 t
Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCTCCCTCT 22
Locus AR082609
Definition Sequence 19 from patent US 5973136.
Accession AR082609
Version AR082609.1 GI:10009329
Keywords

RESULT 31
AR082609 AR082609 25 bp DNA linear PAT 31-AUG-2000
LOCUS Sequence 19 from patent US 5973136.
DEFINITION Sequence 19 from patent US 5973136.
VERSION AR082609
KEYWORDS

Source Unknown.
Organism Unclassified.
Reference 1 (bases 1 to 25)
Authors Kandimalla,E.R. and Agrawal,S.
Title Cooperative oligonucleotides
Journal Patent: US 6372427-A 20 16-APR-2002;
Features Location/Qualifiers

REFERENCE 1 (bases 1 to 25)
BASE COUNT 2 a /organism="unknown"
ORIGIN 2 a 13 c 1 g 9 t
Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCTCCCTCT 22
Locus AR082610
Definition Sequence 20 from patent US 6372427.
Accession AR206340
Version AR206340.1 GI:21504912
Keywords
Source Unknown.
Organism Unclassified.
Reference 1 (bases 1 to 25)
Authors Kandimalla,E.R. and Agrawal,S.
Title Cooperative oligonucleotides
Journal Patent: US 6372427-A 20 16-APR-2002;
Features Location/Qualifiers

REFERENCE 1 (bases 1 to 25)
BASE COUNT 2 a /organism="unknown"
ORIGIN 2 a 13 c 1 g 9 t
Query Match 100.0%; Score 22; DB 6; Length 25;

AUTHORS	Agrawal, S.; Diasio, R.B. and Zhang, Z.	BASE COUNT	2 a	13 c	1 q	9 t			
TITLE	A method of down-regulating gene expression	ORIGIN							
JOURNAL	Patent: WO 0208420-A 5 31-JAN-2002;	Query Match	100.0%	Score 22;	DB 6;	Length 25;			
FEATURES	HYBRIDON, INC. (US)	Best Local Similarity	100.0%	Pred No. 2.8;	Length 25;				
source		Matches	22;	Indels	0;	Gaps			
		Qy	1 TCGCACCCACCTCTCTCTCT 22	0;	0;	0;			
		Db	4 TCGCACCCACCTCTCTCTCT 25						
BASE COUNT	2 a	13 c	1 q	9 t					
ORIGIN									
RESULT 39									
LOCUS	AX363490	LOCUS	AX363490	DEFINITION	Sequence 6 from Patent WO2008420.	VERSION	AX363490.1	LINEAR	PAT 15-FEB-2002
ACCESSION	AX363490	ACCESSION	AX363490	DEFINITION	Sequence 6 from Patent WO2008420.	VERSION	AX363490.1	LINEAR	PAT 15-FEB-2002
KEYWORDS		KEYWORDS							
SOURCE		SOURCE							
ORGANISM		ORGANISM							
REFERENCE		REFERENCE							
AUTHORS	Agrawal, S., Diasio, R.B. and Zhang, Z.	TITLE	A method of down-regulating gene expression	JOURNAL	Patent: WO 0208420-A 6 31-JAN-2002;	HYBRIDON, INC. (US)	Location/Qualifiers		
SOURCES									
FEATURES									
ORIGIN									
BASE COUNT	2 a	13 c	1 q	9 t					
RESULT 40									
LOCUS	AX363491	LOCUS	AX363491	DEFINITION	Sequence 7 from Patent WO2008420.	VERSION	AX363491.1	LINEAR	PAT 15-FEB-2002
ACCESSION	AX363491	ACCESSION	AX363491	DEFINITION	Sequence 7 from Patent WO2008420.	VERSION	AX363491.1	LINEAR	PAT 15-FEB-2002
KEYWORDS		KEYWORDS							
SOURCE		SOURCE							
ORGANISM		ORGANISM							
REFERENCE		REFERENCE							
AUTHORS	Agrawal, S., Diasio, R.B. and Zhang, Z.	TITLE	A method of down-regulating gene expression	JOURNAL	Patent: WO 0208420-A 7 31-JAN-2002;	HYBRIDON, INC. (US)	Location/Qualifiers		
SOURCES									
FEATURES									
source									
		1. 25							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"							
		1.							
		/organism="synthetic construct"							
		/db_xref="taxon:32630"							
		/note="Oligonucleotide"					</td		