$NFA-\Lambda$, NFA, DFA dönüşümü \cup ve \cap kümelerinin DFA'sı örnekler

Örnek: Birleşim ve kesişim kümesinin DFA'sının bulunması

L1 ve L2 dilleri aşağıdaki gibi tanımlanmaktadır.

L1=
$$\{xE(0,1)^*|x \text{ katarı }00 \text{ alt katarı içermez}\}$$

L2= $\{xE(0,1)^*|x \text{ katarı }01 \text{ ile biter}\}$

L1∪L2 ve L1∩L2 dillerini tanıtan DFA'yı çiziniz

 $L1=\{xE(0,1)^*|x \text{ katarı } 00 \text{ alt katarı}$

içermez}

L2={ xE(0,1)*|x katarı 01 ile biter}

$$\delta(AP,0) = (\delta_1(A,0), \delta_2(P,0)) = BQ$$

$$\delta(AP,1)=(\delta_1(A,1), \delta_2(P,1))=AP$$

$$\delta(BQ,0) = (\delta_1(B,0), \delta_2(Q,0)) = CQ$$

$$\delta(BQ,1) = (\delta_1(B,1), \delta_2(Q,1)) = AR$$

L1UL2 F={AP,AR,BQ,CR}

a+(ab)⁺ regüler ifadesinin tanımlamış olduğu dili tanıyan NFA'yı çiziniz. Bu NFA'ya eşdeğer DFA'yı çiziniz.

$$\delta(q0,a) = \{q1,q2\}$$

 $\delta(q0,b) = \Phi$
 $\delta(\{q1,q2\},a) = \Phi$
 $\delta(\{q1,q2\},b) = \{q3\}$
 $\delta(\Phi,a) = \delta(\Phi,b) = \Phi$
 $\delta(q3,a) = \{q2\}$
 $\delta(q3,b) = \Phi$
 $\delta(q2,a) = \Phi$

 $\delta(q2,b) = \{q3\}$

Aşağıda verilen boşluk geçişli NFA'ya karşılık gelen NFA yı bulunuz.

$$\Lambda(q_0)=\{q0, q1\}$$

 $\delta(q0,a)=\delta(\{q0, q1\},a)=\delta(q0,a)\cup\delta(q1,a)=\{q3, q4\}$
 $\Lambda(\{q3, q4\})=\{q1, q3, q4, q5\}$

q0'dan b simgesiyle ulaşabileceğim durumları listelemek için aşağıdaki adımlar uygulanır.

$$\Lambda(q_0)=\{q0, q1\}$$

 $\delta(q0,b)=\delta(\{q0, q1\},b)=\delta(q0,b)\cup\delta(q1,b)=\{q2\}$
 $\Lambda(\{q2\})=\{q2\}$

$$L(M_1) = \{10\} *$$

DFA tarafından kabul edilen Diller

Bu yüzden NFA ve DFA aynı hesaplama gücüne sahiptir.

NFA'dan DFA'ya dönüşüm

NFA'dan to DFA'ya dönüşüm işlem sırası

 $oldsymbol{1}$. NFA'nın başlangıç durumu: q_0

FA 'nın başlangıç durumu: $\{q_0\}$

2. FA'nın her durumu için $\{q_i, q_j, ..., q_m\}$

NFA'nın rekürsif geçiş fonksiyonu

$$\delta^*(q_i, a),$$

$$\delta^*(q_j, a),$$

$$= \{q'_i, q'_j, ..., q'_m\}$$
...

geçişleri FA'ya eklenir.

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}$$

FA M'

Adım 2 alfabedeki bütün geçişler (yeni geçişler eklenemeyinceye kadar) için tekrarlanır.

3. Herhangi bir FA durumu $\{q_i,q_j,...,q_m\}$

Eğer q_j NFA'da bir kabul durumu ise FA'da kabul durumu olur.

$$\{q_i, q_j, ..., q_m\}$$

$$q_1 \in F$$

Bir NFA tek kabul durumlu eşdeğer bir NFA'ya dönüştürülebilir.

Örnek a NFA

Tek kabul durumlu eşdeğer NFA?

NFA

Genelleme

NFA

Eşdeğer NFA

Tek kabul durumlu