목차

- CIFAR10: Hyper parameter의 영향 파악
 - 。 기존 세팅
 - 。 Loss function 변경
 - categorical_crossentropy
 - o Optimizer 변경
 - adam
 - rmsprop
 - Batch
 - Full batch batch size == 50000
 - Batch size == 10000
 - Batch size == 1000
 - Batch size == 100
 - Batch size == 20
 - 。 Epoch 변경
 - Epoch == 100

CIFAR10: Hyper parameter의 영향 파악

기존 세팅

- activation function
 - softmax
- Loss function
 - sparse_categorical_crossentropy
 - 다중 클래스 분류에 적합한 손실함수
- Optimizer
 - sgd: Stochastic Gradient Descent
 - 。 일반적인 optimizer 사용
- 학습 횟수(epoch)
 - 。 30회
- batch size
 - o 64
 - 。 batch size 크기 별 장단점
 - Size가 크면
 - 경사가 안정적
 - 경사 정확도가 안정적
 - 학습시간 단축 --> 컴퓨터 자원 많이 사용
 - 경사가 완만해 지역 최적점 문제 발생
 - Size가 작으면
 - 경사가 가파름
 - 지역 최적점에 덜 빠짐
 - 전역 최적점을 잘 찾을 가능성이 올라감
 - 전체 데이터셋을 사용하는 것보다 연산 속도가 빠름

- 경사 정확도가 떨어짐
- 노이즈 민감
- Validation_split
 - o 0.2
 - 。 값이 크면
 - 훈련 데이터양이 줄어듦
 - 학습을 덜 하니 최종 성능이 줄어듦
 - 。 값이 작으면
 - 훈련 데이터 양이 늘어남
 - 최종 성능이 증가
 - 검증 데이터가 줄어 정확도의 변동성이 커질 수 있음

Loss function 변경

categorical_crossentropy

- accuracy가 기존 0.389에서 0.4036으로 증가함
- 사실 기존 손실함수와 바꾼 함수는 큰 차이가 없어야함
- 랜덤 값이 영향을 준 듯함

Optimizer 변경

adam

• 정확도가 0.365로 낮아짐

гтвргор

• 0.352정도로 낮아짐

Batch

Full batch - batch size == 50000

Test Loss: 2.1770,

• 정확도가 0.22 수준으로 떨어짐

• 정확도가 0.28수준으로 크게 떨어짐

• 정확도가 0.37 정도로 기존과 0.01정도 차이남

• 정확도가 0.40수준으로 향상됨

- 정확도 0.35 수준으로 떨어짐
- 그리고 batch size가 줄수록 학습시간이 오래 걸림

Epoch 변경

지금까지 각 파라미터들 중 가장 정확도가 높았던 것만 뽑아 epoch값만 바꿔줌

Epoch == 100

- epoch를 64 --> 100으로 증가시키니 정확도가 0.40정도 향상되었다
- 다만, 기존 batch size = 100일 때 0.40정도의 정확도를 보여줬는데
 - 해당 조건을 유지한 채, 학습횟수를 늘리면 정확도가 상승할 것이라는 예측과 달리 오히려 유지되는 모습을 보인다