LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg

LÖSNINGAR SANNOLIKHETSTEORI OCH DISKRET MATEMATIK 2020-10-30

- **1.** a) 30 element och 2^{30} delmängder,
 - b) Antalet udda tal =3, antalet vokaler =2, antalet element med bara jämna tal eller bara konsonanter blir 30-6=24, antalet delmängder är 2^{24} .

Alt: Antalet jämna tal i $A \times B = 15$,

Antalet $A \times \text{konsonanter i } B = 21$

Antalet element jämna tal i $A \times$ konsonanter iB = 9.

Detta ger att antalet bara jämna tal i A eller bara konsonanter i B blir $2^{15+18-9} = 2^{24}$.

$$P\left(\xi \ge 10\right) = \int_{10}^{\infty} 0.125e^{-0.125x} dx = 1 - \int_{0}^{10} 0.125e^{-0.125x} dx = 1 - \left[-e^{-0.125x}\right]_{0}^{10} = 1 - \left(-e^{-1.25} + 1\right) = 0.286.$$

b)
$$\xi \in Bin\left(10, \frac{2}{3}\right)$$
, $P(\xi \ge 9) = P(\xi = 9) + P(\xi = 10) = 0.10405$

3. a)
$$S(7,4) \cdot 4! = 8400$$
. b) $S(7,4) + S(7,3) + S(7,2) + S(7,1) = 715$

4. a)

X	0	1	3	10
$P(\xi = x)$	0.5	0.25	0.125	0.125

b)
$$E(\xi) = 0.0.5 + 1.0.25 + 3.0.125 + 10.0.125 = 1.875$$
\$

Han spelar 100 gånger och satsar 100\$ så vinsten kan bli

$$100 \cdot E(\xi) - 100 = 187.5 - 100 = 87.5$$
\$

5. p: John körde bil så

q: Henry är oskyldig.

r: Carter avfyrade revolvern

Detta kan skrivas som

$$p \to q$$

$$r \to \neg q$$

$$\vdots \quad r \to \neg p$$

Med sanningsvärdestabellen för
$$((p \rightarrow q) \land (r \rightarrow \neg q)) \rightarrow (r \rightarrow \neg p)$$
 kan du visa att detta är tautologi, alltså argumentet är giltigt.

6. f(x) är en frekvensfunktion vi vet att f(x) = F'(x). Vi får

$$f(x) = \begin{cases} 0, & x < -1 \\ k(1 - x^2), & -1 \le x \le 1 \\ 0, & x > 1 \end{cases}, \text{ eftersom } \left(kx \left(1 - \frac{x^2}{3} \right) \right)' = k \left(x - \frac{x^3}{3} \right)' = k(1 - x^2)$$

Vi bestämmer k: $\int_{-\infty}^{\infty} k(1-x^2)dx = 1 \Leftrightarrow \int_{-1}^{1} k(1-x^2)dx = 1 \Leftrightarrow k = \frac{3}{4}.$

Svar:
$$f(x) = \begin{cases} 0, & x < -1 \\ \frac{3}{4}(1 - x^2), & -1 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

- 7. $A = Z_{+}$ och definiera relationen R på A genom $xRy \iff x \le 3y$.
 - a) R är reflexiv, ty $xRx \Leftrightarrow x \le 3x$ för alla x.
 - b) *R* är inte symmetrisk . Symmetrisk om $xRy \Rightarrow yRx$. Motexempel: x = 1, y = 4 ger $1 \le 3 \cdot 4$ men $4 \ge 3 \cdot 1$
 - c) *R* är inte transitiv. Transitiv om xRy och $yRz \Rightarrow xRz$ Motexempel: x = 13, y = 5, z = 4 ger $13 \le 3.5$ och $5 \le 3.4$ men $13 \ge 3.4$
- **8**. B = bagaget är borta, M = En missnöjd passagerare.

$$P(B|M) = \frac{P(B) \cdot P(M|B)}{P(M)} = \frac{0.05 \cdot 0.9}{0.08} = 0.5625.$$

9. Bassteg: n = 1 är sant.

Antag att för
$$n = k$$
: $\binom{2k}{k} = \frac{(2k)!}{k! \cdot k!} < 2^{2k}$ är sant.

Visa att det är sant även för n = k+1: $\binom{2(k+1)}{k+1} < 2^{2k+2}$.

Bevis:

$$\binom{2(k+1)}{k+1} = \frac{(2(k+1))!}{(k+1)! \cdot (k+1)!} = \frac{(2k)! \cdot (2k+1) \cdot (2k+2)}{k! \cdot (k+1) \cdot k! \cdot (k+1)} = \frac{(2k)!}{k! \cdot k!} \cdot \frac{(2k+1)2(k+1)}{(k+1)(k+1)} < 2^{2k} \cdot \frac{2(2k+1)}{k+1} < 2^{2k}$$

$$<2^{2k} \cdot \frac{2(2k+2)}{k+1} = 2^{2k} \cdot 2 \cdot 2 = 2^{2k+2}$$
. D.v.s. påståendet är sant för alla n .

10. ξ_i = CO-mängd per km hos en slumpmässigt vald bil, $\xi_i \in N(7.8,3.5)$.

= 0.02275

SLUT!