

Want to buy a house in Melbourne?

Contents

- 1. Introduction
- 2. Methodology
- 3. Process Workflow
- 4. Results
- 5. Conclusions
- 6. Future Opportunities

Introduction

I am a data analyst working for a real estate company. I have a personal interest in this Melbourne dataset as both my kids are studying there

Skills

Representing Organization

Target Audience

- Real Estate investors
- Mortgage lenders and Home insurers
- Prospective buyers

Data Collection

Context

Description

Data Collection

The data set consists 13378 records and 21 features. Some of the major features with descriptions are: Rooms: Number of rooms

Price: Price in dollars

•Type: h – house/cottage/villa u - unit,/duplex; t - townhouse.

Distance: Distance from CBD

•Regionname: (West, North -West, North, North- east ...etc)

Bedroom2 : Number of BedroomsBathroom: Number of Bathrooms

Car: Number of car spots

·Landsize: Land Size

BuildingArea: Building Size

CouncilArea: Governing council for the area

Methodology

Model

Baseline Model: Linear Regression

Alternative Model: Random Forest, Decision

tree, Gradient Boosting regressor

Metrics

Root Mean Squared Error (RMSE) (R-squared) metric

Tools

Data Cleaning

Drop/Fill up N.A

Car	62
Landsize	9
BuildingArea	6450
YearBuilt	5375
CouncilArea	1369
Lattitude	9
Longtitude	9
Regionname	0

Bathroom 0
Car 0
Landsize 0
BuildingArea 0
YearBuilt 0
CouncilArea 0
Lattitude 0
Longtitude 0
Regionname 0

13378 Records

6196 Records

Data preparation

- Features which are insignificant to the business objective of this project are dropped.eg('Method', 'Seller G',' Property count', "Address")
- Postcode, Latitude, and Longitude: Dropped these features, because it is highly correlated to Suburb

21 Features

14 Features

EDA/Outlier Removal

EDA/Outlier Removal

EDA/Outlier removal

EDA / Data visualization

To check the relationship between the categorical feature 'Type' and the target value

^{&#}x27;h'(houses/villa/ cottage) is most expensive then comes 't'(town house)

EDA / Data visualization

Southern Metropolitan region has the most expensive properties and is the most expensive region on average. Eastern Victoria, Northern Victoria, and Western Victoria, are the most affordable regions

Data Analysis & Feature Engineering

Only one feature from the highly correlated group will be selected to avoid bias

Features which shows weak correlation with the target value are dropped.

Encoding Categorical data/Feature Engineering

One Hot Encoding is used to transform the categorical feature 'Regionname' into binary form of representation. This is then used to rank each Region based on its property value.

One Hot Encoding is used to transform the categorical feature "Type" into binary form. This is then ranked based on house value

Data transformation

 Split the data into training and testing datasets test_size=0.2

Data Normalization

max min normalization: Linear Regression, Decision
 Tree, Random Forest & Gradient Boosting Regressor

Machine Learning Model

MODEL

Baseline Model: Linear Regression

Alternative Model: Random Forest, Decision tree, Gradient Boosting Regressor

Baseline Model: Linear Regression

Hyperparameter: (copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Cross Validation Scores:

[0.6934026 0.66191834 0.74435393 0.7126399 0.64433696 0.58308386 0.61434027 0.71637971 0.65266804 0.6337499 0.66169052 0.58030251]

Mean Score:

0.6582388783557784

RMSE:

0.1102766810170264

Observation:

According to the R-squared score only 65.48% of the variance in the dependent variable is explained by the model.

Solution:

Alternative Model

Alternative Model: Decision Tree model

Hyperparameter: ((criterion='friedman_mse',splitter="best"))

Cross Validation Scores:

[0.53733655 0.55859217 0.60627891 0.63453898 0.51005072 0.41926062 0.57324694 0.61162811 0.61901889 0.55627301 0.55654188 0.58687296]

Mean Score:

0.5641366449273874

RMSE:

0.1246543123611106

Observation:

According to the R-squared score only 56.4% of the variance in the dependent variable is explained by the model.

Solution:

Alternative Model

Alternative Model: Random Forest Regressor

Hyperparameter: (bootstrap= True,max_depth= 20,min_samples_split= 5)

Cross Validation Scores:

[0.7754547 0.72324277 0.80829213 0.81362842 0.69111208 0.71922525 0.7023033 0.79045465 0.77881318 0.75823634 0.75801469 0.78237441]

Mean Score:

0.7584293257270006

RMSE:

0.08891334851303938

Observation:

According to the R-squared score only 75.8% of the variance in the dependent variable is explained by the model.

Solution:

Alternative Model

Alternative Model: Gradient Boosting Regressor

Hyperparameter: (loss ='ls', max_depth=7)

Cross Validation Scores:

[0.77709918 0.73223902 0.81561186 0.83208297 0.7097644 0.69098729 0.71625484 0.79752736 0.79519812 0.78003969 0.78768496 0.79722856]

Mean Score:

0.7693098544116702

RMSE:

0.08757514756619188

Observation:

According to the R-squared score 76.8% of the variance in the dependent variable is explained by the model .Which is the best score so far

Finding the best model and Hyperparameter tuning

We will use GridSearchCV to find the best model and the best hyperparameter

	model	best_score	best_params
0	linear_regression	0.688468	{'normalize': True}
1	random_forest_regression	0.798249	{'bootstrap': True, 'max_depth': 20, 'min_samp
2	GradientBoostingRegressor	0.808952	{'loss': 'ls', 'max_depth': 5}
3	decision_tree	0.629313	{'criterion': 'mse', 'splitter': 'best'}

Results

Actual vs predictions and Error terms:

Interesting insights

- Median prices for houses are over \$1M, townhomes are \$800k \$900k and units are \$500k.
- Median prices in the Metropolitan Region are higher than that of Victoria Region with Southern Metro being the area with the highest median home price (~\$1.3M).
- With an average price of \$1M, historic homes (older than 50 years) are valued much higher than newer homes in the area, but have more variation in price
- Most homes in the dataset have 4 or 5 rooms.
- There is a negative correlation between Distance from Melbourne's Central Business District (CBD) and Price. The most expensive homes (\$2M or more) tend to be within 20km of the CBD..

Conclusion

Gradient Boosting regressor is the best model with an accuracy of 80% to build this house prediction model and Root mean square error is .0875..

Best Hyper Parameter is ('loss': 'ls', 'max_depth': 5)

Future Opportunities

In future I will try to get some more additional information on neighbourhood like:

- Schools in neighbourhood
- Access to shops
- Transport
- Details about traffic around the area

Also, another model can be created to give best split percentages to get maximum price by the zip code of the land.

