John A-Henuation Coefficients 80 keV M/s (cm2/g) µ(m²) Mp (cm3/g) M (cm-1) f (g/cm3) 0.1 823 0.1933 0.3790 0.4018 1.060 Tissue 0.2229 0,4279 2.5555 1.331 1.920 At 80keV $I_1 = I_0.exp - \int_0^a dx \mu(x)$ = Io. exp [- (MT. 21 + MB X2 + MT. X8)] = 0.196 To I2= Io, exp - M 24 - 0.313 Io The bone added an extra $\frac{I_2-I_1}{I_2}$ (0.313 - 0.196) $\frac{I_2}{I_3}$ (0.37% attenuation Compared to having the tissue only. b) A+ 30 keV

I, -1.2 K103 Io

I2 = 89.7 × 103 To

TFor Copper(Cu):

En ~ 8.98 keV

FL ~ 0.95 keV

En-k = 8,86 keV

Em2 = 0.07 keV

EM_ K = 8,91 keV

We obtain the unfiltered spectrum due to the combination of Bremsstruhlung effect & characteristic X-rays (caused by the L-K & M-K shall electron transitions).

With the Cu filter we have the attenuation coefficient Ma as above, where we have a low-attenuation window right before the k-edge energy.

Thus, we obtain a fillered spectrum that mainly contenances at Cu L-K energy, and the majority of law & high energy X-rags are eliminated.

3. The *effective dose* is proportional to the *weighting factors* for different organs, and the *dose equivalent*. The effective dose is also proportional to the *dose*, thus the X-Ray *exposure*. So based on the table below, given the same *exposure*, greater *weighting factors* for organs in the abdomen

Weighting factors for different tissues^[12]

		Tissue weighting factors		
	Organs	ICRP26 1977	ICRP60 1990 ^[13]	ICRP103 2007 ^[14]
	Gonads	0.25	0.20	0.08
	Red Bone Marrow	0.12	0.12	0.12
	Colon	-	0.12	0.12
	Lung	0.12	0.12	0.12
	Stomach	_	0.12	0.12
	Breasts	0.15	0.05	0.12
	Bladder	_	0.05	0.04
	Liver	-	0.05	0.04
	Oesophagus	-	0.05	0.04
	Thyroid	0.03	0.05	0.04
	Skin	_	0.01	0.01
	Bone surface	0.03	0.01	0.01
	Salivary glands	_	-	0.01
	Brain	_	_	0.01
	Remainder of body	0.30	0.05	0.12
	Total	1.00	1.00	1.00

2. The intensifying screen exists to improve the absorption efficiency compared to having only the film, where only 2% of incoming Xray will contribute to the output image. However, X-ray photons going through the intensifier will be scattered in all directions. Thus the **thicker** the intensifier, the smoother the light spot we receive on the film, and consequently **more** image **blurring**.