Chapitre 6 : Capacités thermiques, calorimétrie

I Enthalpie, capacité thermique isobare

A) Enthalpie

Pour un système qui possède une équation d'état, on définit l'enthalpie H par H = U + PV. H est une fonction d'état du système (c'est une fonction des paramètres d'état P, V, T...)

B) Capacité thermique isobare

Rappel:
$$C_V = nC_{m,V} = m \times c_V = \frac{\partial U}{\partial T}\Big|_{V}$$

On définit $C_P = nC_{m,P} = m \times c_P = \frac{\partial H}{\partial T}\Big|_{P}$

C) Transformation isochore

Transformation du système réalisée à V constant. On suppose que le travail des forces extérieures est réduit au travail de la pression extérieure.

Pour une transformation élémentaire : $\delta W = -P_{\text{ext}}dV = 0$ car V est constant.

 $1^{\rm er}$ principe appliqué au système pour la transformation isochore : $dU=\delta\!W+\delta\!Q=\delta\!Q$. Donc $\Delta U=U_{\rm final}-U_{\rm initial}=Q_{\tau}$.

- Si la transformation est quasi-statique (toujours isochore): Pour une transformation élémentaire $dU = \frac{\partial U}{\partial T}\Big|_{V} dT + \frac{\partial U}{\partial V}\Big|_{T} dV = \frac{\partial U}{\partial T}\Big|_{V} dT = C_{V} dT$. Donc, par

$$\text{intégration } \Delta U = U_{\text{final}} - U_{\text{initial}} = \int\limits_{\text{initial}}^{\text{final}} dU = \int\limits_{T_1}^{T_2} C_V(V,T) dT \ \ (T_1 = T_{\text{initial}} \ , T_2 = T_{\text{final}}).$$

- Si la transformation est quelconque (mais toujours isochore) : $\Delta U = U_{\text{final}} - U_{\text{initial}} = \Delta U_{\text{TQS}} = \int_{T_1}^{T_2} C_V(V,T) dT \text{ (ΔU ne dépend que de l'état final et initial,}$ il suffit de prendre une transformation quasi-statique avec ces mêmes états).

Donc, pour une transformation isochore quelconque $\Delta U = \int_{T_1}^{T_2} C_V(V, T) dT = Q_T.$

D) Transformation monobare

Transformation du système réalisée à $P_{\rm ext}$ constante. $P_{\rm l}({\rm intial}) = P_{\rm 2}({\rm final}) = P_{\rm ext}$. On suppose que le travail des forces extérieures est réduit au travail de $P_{\rm ext}$.

Pour une transformation élémentaire, d'après le 1^{er} principe :

$$dU = \delta W + \delta Q = -P_{\text{ext}}dV + \delta Q \iff \delta Q = dU + P_{\text{ext}}dV = d(U + P_{\text{ext}}V)$$

$$\Rightarrow \int_{1}^{2} \delta Q = \int_{1}^{2} d(U + P_{\text{ext}}V) \Leftrightarrow Q = [U + P_{\text{ext}}V]_{1}^{2} \Leftrightarrow Q = (U_{2} + P_{\text{ext}}V_{2}) - (U_{1} + P_{\text{ext}}V_{1})$$

$$\Leftrightarrow Q = (U_2 + P_2V_2) - (U_1 + P_1V_1) = H_2 - H_1 = \Delta H$$

- Si la transformation est quasi-statique et isobare ($P_{\Sigma} = P_{\text{ext}}$, pour tout t):

Pour une transformation élémentaire, $dH = \frac{\partial H}{\partial T}\Big|_{P} dT + \frac{\partial H}{\partial P}\Big|_{T} dP = \frac{\partial H}{\partial T}\Big|_{P} dT = C_{P} dT$

Donc
$$\Delta H = \int_{1}^{2} dH = \int_{1}^{2} C_{P}(P,T)dT$$

- Si la transformation est monobare quelconque : soit une transformation quasistatique isobare telle que les états initial et final soient les mêmes. H est une fonction

d'état, donc
$$\Delta H_{\tau} = \Delta H_{\tau QS} = \int_{1}^{2} C_{P}(P,T)dT = Q$$

E) Généralisation

1) Capacité thermique d'une transformation

On considère une transformation quasi-statique, et on suppose que le travail des forces extérieures est réduit à celui de P_{ext} .

D'après le premier principe, on a :

$$dU = \delta Q + \delta W$$

$$\Leftrightarrow \delta Q = dU + P_{\text{ext}} dV = \frac{\partial U}{\partial T} \bigg|_{V} dT + \frac{\partial U}{\partial V} \bigg|_{T} dV + P_{\text{ext}} dV$$

$$\Leftrightarrow \delta Q = C_V dT + \left(\frac{\partial U}{\partial V} \Big|_T + P_{\text{ext}} \right) \times \underbrace{\frac{dV}{dT}}_{\text{pour une points}} \times dT$$

On définit $C_{\tau} = \frac{\delta \mathcal{Q}}{dT}\Big|_{\tau}$. C_{τ} est la capacité thermique de la transformation.

(On a alors
$$C_{\tau} = C_V + \left(\frac{\partial U}{\partial V}\Big|_T + P_{\text{ext}}\right) \times \frac{dV}{dT}\Big|_{\tau}$$
, mais inutile à connaître)

Exemples:

Transformation isochore : $C_{\tau} = C_{V}$

Transformation isobare : $C_{\tau} = C_{P}$

Transformation isotherme : $C_{\tau} = \infty$ (car dT = 0)

Transformation adiabatique : $C_{\tau} = 0$ (car $\delta Q = 0$)

2) Cas où $\frac{\delta W}{\text{n'est pas réduit à }} - P_{\text{ext}} dV$

Pour une transformation isochore, $dU = \delta W + \delta Q = -\underbrace{P_{\text{ext}} dV}_{=0} + \delta W_{\text{autres}} + \delta Q$

$$\Delta U = W_{\text{autres}} + Q = \int_{T_1}^{T_2} C_V(P, T) dT$$

Si la transformation est monobare, on a de même :

$$\Delta H = W_{\text{autres}} + Q = \int_{T_1}^{T_2} C_P(P, T) dT$$

II Capacités thermiques

A) Gaz parfaits

Pour un gaz parfait monoatomique, $U = \frac{3}{2}nRT \Rightarrow C_V = \frac{\partial U}{\partial T}\Big|_V = \frac{dU}{dT} = \frac{3}{2}nR$

Pour un gaz parfait diatomique, C_V dépend uniquement de T. Pour des températures usuelles $C_V \approx \frac{3}{2} nR$.

$$H = U + PV = U(T) + nRT = H(T)$$

H=U+PV=U(T)+nRT=H(T)Le gaz parfait satisfait la $2^{\rm ème}$ loi de Joule : l'enthalpie ne dépend que de T.

$$C_P = \frac{\partial H}{\partial T}\Big|_P = \frac{dH}{dT} = \frac{dU}{dT} + nR = C_V(T) + nR$$
.

Le gaz parfait vérifie la relation de Mayer : $C_P - C_V = nR$ ou $C_{m,P} - C_{m,V} = R$

Pour un gaz parfait monoatomique, $C_{m,P} = \frac{3}{2}R + R = \frac{5}{2}R$

Pour un gaz parfait diatomique aux températures usuelles, $C_{m,P} = \frac{5}{2}R + R = \frac{7}{2}R$

On définit $\gamma = \frac{C_P}{C_P}$: rapport des capacités thermiques (moyen mnémotechnique pour se souvenir de l'ordre : $\gamma > 1$ pour un gaz parfait monoatomique). Pour un gaz parfait monoatomique, $\gamma = \frac{5}{3}$. Pour un gaz parfait polyatomique, $\gamma = \frac{C_p(T)}{C_p(T)} = \gamma(T)$.

Pour un gaz parfait diatomique aux températures usuelles, $\gamma \approx \frac{7}{5} = 1,40$.

On a:
$$\begin{cases} C_{m,P} = C_{m,V} + R \\ \frac{C_P}{C_V} = \frac{C_{m,P}}{C_{m,V}} = \gamma \Leftrightarrow \begin{cases} C_{m,V} = \frac{R}{\gamma - 1} \\ C_{m,P} = \frac{\gamma R}{\gamma - 1} \end{cases}$$

Remarque : un gaz réel ne vérifie ni la relation de Mayer, ni les 1ère et 2ème lois de Joule.

B) Phases condensées

Phases liquides et solides, environ 1000 fois plus denses que la phase gazeuse $H = U + PV \approx U$ car $PV \ll U$ (Assez bonne approximation au moins pour les conditions de pression proches des conditions normales)

Pour une transformation quasi-statique quelconque :

$$dU = \frac{\partial U}{\partial T}\Big|_{V} dT + \underbrace{\frac{\partial U}{\partial V}\Big|_{T}}_{\text{phase condensée}} donc incompressible,} = \frac{\partial U}{\partial T}\Big|_{V} dT = C_{V} dT$$

Pour une transformation quasi-statique isobare :

$$dH = \frac{\partial H}{\partial T}\Big|_{P} dT + \frac{\partial H}{\partial P}\Big|_{T} dP = \frac{\partial H}{\partial T}\Big|_{P} dT = C_{P} dT \text{ Or } dH \approx dU \text{ Donc } C_{V} dT \approx C_{P} dT \text{ .}$$

Donc $C_V \approx C_P$. Plus généralement, pour une transformation quelconque, $C_V = C_P = C_T$, dépendant de T mais indépendant de V (qui est constant).

$$dH = dU = \delta Q = C_V(T)$$

$$Q = \Delta U = \Delta H = \int_{1}^{2} C_{V}(T)dT$$

Définition : 1 calorie = quantité de chaleur nécessaire pour augmenter la température d'un gramme d'eau liquide de $14,5^{\circ}$ C à $15,5^{\circ}$ C sous $P_{Atm} = 1$ Atm = cte .

=
$$4.18 \text{ J.K}^{-1}.\text{g}^{-1}$$

= $C_P(15^{\circ}\text{C,1Atm})$

III Calorimétrie

= ensemble des méthodes expérimentales de mesure des capacités thermiques isobares A) Méthode des mélanges

Définition : masse en eau m_e du calorimètre, grandeur vérifiant $\mu = m_e C'$.

On introduit une masse m_1 d'un solide de capacité thermique C_1 inconnue, à la température T_1 .

Système : calorimètre + eau + solide

La transformation est monobare ($P_{\text{ext}} = \text{cte}$)

La seule force extérieure qui peut avoir un travail non nul est la pression extérieure (si il y a un changement de volume)

D'après le premier principe, pour une transformation monobare : $\Delta H = Q = 0$ (car la transformation est adiabatique donc Q = 0)

$$\Delta H = \Delta H_{\text{calorimètre}} + \Delta H_{\text{eau}} + \Delta H_{\text{solide}}$$

$$= \int_{T_0}^{T_2} \mu dT + \int_{T_0}^{T_2} m' C' dT + \int_{T_1}^{T_2} m_1 C_1 dT$$

$$= \int_{T_0}^{T_2} m_e C' dT + \int_{T_0}^{T_2} m' C' dT + \int_{T_1}^{T_2} m_1 C_1 dT$$

$$= m_e C' (T_2 - T_0) + m' C' (T_2 - T_0) + m_1 C_1 (T_2 - T_1)$$
(en supposant C, C' indépendants de T : phase condensée)
$$= (m_e + m') \times C' \times (T_2 - T_0) + m_1 C_1 (T_2 - T_1) = 0$$

$$\Rightarrow C_1 = \frac{(m_e + m') \times C' \times (T_2 - T_0)}{m_1 (T_1 - T_2)}$$

B) Méthode électrique

Mesure de la capacité thermique d'un liquide.

Calorimètre + résistance + fils : capacité thermique $\mu = m_e C'$ (C' : capacité thermique de l'eau)

Système : calorimètre + résistance + fils + liquide

On fait passer un courant I entre t=0 (Etat initial, $T=T_0$) et $t=\Delta t$ (Etat final, $T=T_1$).

D'après le premier principe (Transformation monobare, adiabatique) :

$$\Delta H = Q + W_{\text{élec}} = RI^2 \Delta t \quad (Q = 0 \text{ car adiabatique, et la résistance appartient au système})$$

$$= \Delta H_{\text{calorimètre}} + \Delta H_{\text{liquide}}$$

$$= \mu(T_1 - T_0) + m_1 C_1 (T_1 - T_0)$$

$$\Rightarrow C_1 = \frac{RI^2 \Delta t - \mu(T_1 - T_0)}{m_1 (T_1 - T_0)}$$