Temperature Controller Circuit

Requirements / Specifications

The temperature controller circuit is designed to activate specific components based on temperature variations. It utilizes a combination of NAND gate ICs, operational amplifiers, transistors, multiple potentiometers, and diodes. When the temperate exceeds 30°C, the circuit activates the fan and/or corresponding indicator LED, while when the temperature falls below 25°C, it activates the heater and/or its associated LED indicator. The circuit employs NTC 100K thermistor to detect temperature changes, triggering the appropriate responses through the integrated components.

• Operating Temperature: -40°C to 40°C

Components Selection

The Temperature Controller Circuit is overall comprised of:

- 3x LM324 Operational Amplifiers
- 2x 2N3904 Transistors
- 2x 1N4007 Diode
- 1x 74LS00D
- 3x Potentiometers
- 2x Resistors (quantity may change depending on the requirement)
- 2x 3V Relays (JQC-3F T73)

Circuit Design and Working

Figure 1

The circuit operates such that when input voltage is given, with set potentiometer resistances, the thermistor changes its resistance based on the temperature and one of two responses is activated; if the temperature falls below 25°C, the LED corresponding to the decrease in temperature gets activated. If the temperature is above 30°C, the LED corresponding to the increase in temperature gets activated. The potentiometers are tweaked to handle appropriate and optimal responses and two relays are used to channel the output into one of the three required outputs; LED on when temperature is high, LED on when temperature is low or LED off when temperature is normal. Diodes are used to ensure the circuit operates normally with no reverse biasing. The OP-Amp is used as a comparator and the LM7805 Voltage regulator is used to regulate the high voltage level to 5V. The NAND gate requires the voltage to be regulated so it can be used for implementing logic that assists in checking if the temperature is high, low or normal.

Simulation Result

Figure 2: HEAT (31.6 °C)

Figure 3: NORMAL (26°C)

Figure 4: COLD (21°C)

Figures 2, 3 and 4 show how the circuit responds with respect to the difference in thermistor's resistances.

F14 100K Thermistor Output Table

Rev. 01/31/08

	í	100K T	herm	nisto	r Outpu	ut Tal	ole	
°F	°C	Ohms	°F	°C	Ohms	□ °F	°C	Ohms
-39	-39.44	3916295	37	2.78	302466	113	45.00	41303
-37	-38.33	3627711	39	3.89	285206	115	46.11	39434
-35	-37.22	3362274	41	5.00	269035	117	47.22	37660
-33	-36.11	3117987	43	6.11	253877	119	48.33	35976
-31	-35.00	2893035	45	7.22	239664	121	49.44	34376
-29	-33.89	2685770	47	8.33	226331	123	50.56	32843
-27	-32.78	2494694	49	9.44	213819	125	51.67	31399
-25	-31.67	2318444	51	10.56	201971	127	52.78	30027
-23	-30.56	2155781	53	11.67	190946	129	53.89	28722
-21	-29.44	2004274	55	12.78	180588	131	55.00	27481
-19	-28.33	1865595	57	13.89	170853	133	56.11	26300
-17	-27.22	1737397	59	15.00	161700	135	57.22	25177
-15	-26.11	1618827	61	16.11	153092	137	58.33	24107
-13	-25.00	1509102	63	17.22	144992	139	59.44	23089
-11	-23.89	1407512	65	18.33	137367	141	60.56	22111
-9	-22.78	1313405	67	19.44	130189	143	61.67	21188
-7	-21.67	1226184	69	20.56	123368	145	62.78	20308
-5	-20.56	1145306	71	21.67	117000	147	63.89	19469
-3	-19.44	1069620	73	22.78	110998	149	65.00	18670
4	-18.33	1000019	75	23.89	105338	151	66.11	17907
1	-17.22	935383	77	25.00	100000	153	67.22	17180
3	-16.11	875329	79	26.11	94963	155	68.33	16486
5	-15.00	819505	81	27.22	90208	157	69.44	15824
7	-13.89	767589	83	28.33	85719	159	70.56	15187
9	-12.78	719284	85	29.44	81479	161	71.67	14584
11	-11.67	674319	87	30.56	77438	163	72.78	14008
13	-10.56	632442	89	31.67	73654	165	73.89	13458
15	-9.44	593086	91	32.78	70076	167	75.00	12932
17	-8.33	556739	93	33.89	66692	169	76.11	12430
19	-7.22	522842	95	35.00	63491	171	77.22	11949
21	-6.11	491217	97	36.11	60461	173	78.33	11490
23	-5.00	461699	99	37.22	57594	175	79.44	11051
25	-3.89	434134	101	38.33	54878	177	80.56	10627
27	-2.78	408383	103	39.44	52306	179	81.67	10225
29	-1.67	384316	105	40.56	49847	181	82.78	9841
31	-0.56	361813	107	41.67	47538	183	83.89	9473
33	0.56	340581	109	42.78	45349	185	85.00	9121
35	1.67	320895	111	43.89	43273	187	86.11	8783

Building Automation Products, Inc., 750 North Royal Avenue, Gays Mills, WI 54631 USA
Tel: +1-608-735-4800 • Fax: +1-608-735-4804 • E-mail:sales@bapihvac.com • Web:www.bapihvac.com

The thermistor gives different resistances as per different temperatures, as depicted on the table above; taken from a datasheet.

Hardware Implementation

1) Breadboard Implementation

Figure 5

Figure 5 shows the implementation of the circuit from *Figure 1* on a breadboard.

2) Veroboard Implementation

Figure 6

Figure 6 show the implementation of the circuit from *Figure 1* on a Veroboard. The left picture shows the placement of different components on the veroboard and the right picture shows how these components have been connected and soldered for smooth operation.

Result

Figure 7

After the implementation of the circuit on the Veroboard and thorough testing, the Temperature Controller Circuit is ready. In cold temperatures, the blue LED at the bottom side turns on. In hot temperatures, the blue LED at the top turns on. If the thermistor is in a room temperature, none of the LEDs turn on.