Lógica

Mauro Polenta Mora

Ejercicio 4

Consigna

Demuestre los siguientes teoremas del cálculo de predicados:

- 1. $\vdash \exists x \ \varphi \leftrightarrow \varphi \ (\text{con } x \notin FV(\varphi))$
- 2. $\vdash \forall x (\varphi \land \psi) \leftrightarrow (\forall x \ \varphi \land \forall x \ \psi)$
- 3. $\vdash \forall x(\varphi \to \psi) \leftrightarrow (\varphi \to \forall x \ \psi)$, con $x \notin FV(\varphi)$
- $4. \vdash \exists x (\varphi \land \psi) \leftrightarrow (\exists x \ \varphi \land \psi), \ \text{con} \ x \notin FV(\psi)$
- 5. $\vdash \forall x \ \varphi \leftrightarrow \neg \exists x (\neg \varphi)$
- 6. $\vdash \neg \exists x \ \varphi \leftrightarrow \forall x(\neg \varphi)$

Resolución

Parte 2

$$\frac{ \frac{ \left[\forall x \varphi \wedge \forall x \psi \right]^1}{\varphi} \frac{E \wedge_1}{\varphi} \frac{ \left[\forall x \varphi \wedge \forall x \psi \right]^1}{\psi} \frac{E \wedge_1}{\psi} \frac{ \left[\forall x (\varphi \wedge \psi) \right]^1}{E \vee (*_3)} \frac{E \vee (*_6)}{\varphi} \frac{ \left[\forall x (\varphi \wedge \psi) \right]^1}{E \vee (*_6)} \frac{E \vee (*_7)}{\varphi} \frac{\left[\forall x (\varphi \wedge \psi) \right]^1}{\varphi \wedge \psi} \frac{E \wedge_1}{\varphi \wedge \psi} \frac{E$$

Figure 1: Figura 1

Donde:

- 1. $(*_1)$ es correcto pues $x \notin FV(\forall x \varphi \land \forall x \psi)$ que es la única hipótesis abierta en este momento.
- 2. $(*_2)$ es correcto pues x está libre para x en φ
- 3. $(*_3)$ es correcto pues x está libre para x en ψ

- 4. $(*_4)$ es correcto pues $x \notin FV(\forall x \varphi \land \forall x \psi)$ que es la única hipótesis abierta en este momento.
- 5. $(*_5)$ es correcto pues $x \notin FV(\forall x \varphi \land \forall x \psi)$ que es la única hipótesis abierta en este momento.
- 6. $(*_6)$ es correcto pues x está libre para x en $(\varphi \wedge \psi)$
- 7. $(*_7)$ es correcto pues x está libre para x en $(\varphi \wedge \psi)$

Parte 5

$$\frac{ \begin{bmatrix} \neg \exists x (\neg \varphi) \end{bmatrix}^{1} \qquad \frac{[\neg \varphi]^{2}}{\exists x (\neg \varphi)}}{\underbrace{\frac{\bot}{\varphi} RAA^{(2)}}{\exists x (\varphi)}} E^{-1} \qquad \underbrace{ \begin{bmatrix} \exists x (\neg \varphi) \end{bmatrix}^{3} \qquad \frac{[\neg \varphi]^{4} \qquad \frac{[\forall x \varphi]^{1}}{\varphi} E^{\vee} (*_{4})}{\bot} }_{E \exists^{(4)} (*_{3})} E^{\vee} (*_{4}) \qquad \underbrace{\frac{\bot}{\neg \exists x (\neg \varphi)}}_{E \exists^{(4)} (*_{3})} E^{\vee} (*_{4})$$

Figure 2: Figure 2

Donde:

- 1. $(*_1)$ es correcto pues $x \notin FV(\neg \exists x(\neg \varphi))$ que es la única hipótesis abierta en este punto.
- 2. $(*_2)$ es correcto pues x está libre para x en $\neg \varphi$
- 3. $(*_3)$ es correcto pues $x \notin C(D) := FV(\bot)$ y también $x \notin FV(\forall x\varphi)$ que es la única hipótesis abierta en este punto.
- 4. $(*_4)$ es correcto pues x está libre para x en φ