

Probabilistic Context Extraction For Extractive Highlights Extraction

"NLLP" Group

Villani Luca s304992 Marcellino Luca s292950 Cagnasso Pietro s300801 Vergaro Nicolò s295633

DNLP A.Y. 2022/2023

Summarization

Expressing the most important facts or ideas about something in a short and clear form

- Goals:
 - Minimize redundancy
 - Maximize relevance
 - Maximize accessibility
- In this project:
 - Single document
 - Single language
 - Weakly structured documents
 - Both abstractive and extractive

Models - BART [1]

Bidirectional AutoRegressive Transformers

- Transformer-based encoder-decoder structure
 - Bidirectional encoder
 - Autoregressive decoder
- Pre-trained with denoising objective
 - Several input corruption strategies
- Fine-tuned with uncorrupted documents
- Used in Seq2Seq tasks like summarization and translation

Models - BERT [2]

Bidirectional Encoder Representations from Transformers

- Encoder layer almost identical to original Transformer [3]
- Given an input sequence, produces an embedding for each token in the sequence
- Easy to fine-tune
- Pre-trained on a large corpus with:
 - Masked LM
 - Next sentence prediction
 - Joint of two above

Models - THExt [4]

- SOTA model for highlights extraction
 - o extractive summarization approach
- Input:
 - Sentence + context (Abstract, Introduction, ...)
- Processing:
 - BERT-based embedding [2]
 - Fully-connected regression layer
- Output:
 - Estimation of Rouge-2 F1 score
- Rank sentences based on the regression output
 - o Top-3 are the highlights

Experimental settings

1. Datasets:

- CSPubSumm [5]
- O BIOPubSumm [6]
- O AlPubSumm [6]
- 2. Use one seed to make results reproducible

3. Evaluation metrics:

- o ROUGE [7]
- o BERTScore [8]

4. Hardware:

- o Intel Xeon (limited to 2 cores)
- 2x Nvidia T4
- 13 GB of RAM
- Ubuntu 20.04 LTS

^[5] Ed Collins, Isabelle Augenstein, and Sebastian Riedel "A supervised approach to extractive summarisation of scientific papers", 2017

^[6] Luca Cagliero, Moreno La Quatra "Extracting highlights of scientific articles: A supervised summarization approach", 2020

^[7] Chin-Yew Lin "ROUGE: A package for automatic evaluation of summaries", 2004

^[8] Tianyi Zhang et al. "Bertscore: Evaluating text generation with BERT", 2019.

Methods - Headline Generation 1/2

- Intuition: the title is per se an highlight
- Model: BART → abstractive generation
- Ablation study (10% MiscPubSumm):
 - Highlights only
 - Abstract only
 - Highlights + Abstract
- Concatenation using model's separation token

Input	ROUGE-1	ROUGE-2	BERTScore
HL only	0.3528	0.1617	0.879
Abs only	0.4031	0.2141	0.886
HL+Abs	0.4287	0.2287	0.894

Results - Headline Generation 2/2

• 2 fine-tuning steps:

- 1 epoch on MiscPubSumm → general view
- \circ 1 epoch on each dataset \rightarrow specialize the model

Hyperparameters:

- Learning rate=1e-5, weight decay=1e-2
- o 10% warm-up steps
- total batch size=8

Example:

- Generated: A Transformer-based Highlights Extractor (THExt)
- o Original: Transformer-based highlights extraction from scientific papers
- The title of this presentation and our paper was generated with this model

Model	R-1	R-2	R-L	BERTScore
Al	0.4332	0.2240	0.3607	0.9064
BIO	0.4580	0.2541	0.3961	0.9027
CS	0.5584	0.3818	0.5012	0.9233

Methods - Probabilistic Context Extraction 1/3

- Intuition: existence of an underlying distribution of important sentences across topics and sections
- Compute the empirical approximation
 - o Top-20 sentences per paper
 - o ROUGE-2 F1 of each sentence wrt highlights
 - Associate to the corresponding section
 - Discretize in 20 bins
- Sections contribution table
- Example on CSPubSumm

Section	CS
Abstract	0.1438
Introduction	0.5461
Methods	0.0730
Results	0.0898
Discussion	0.1473

Methods - Probabilistic Context Extraction 2/3

- Creation of the new context
 - Take N=15 bins according to the distribution, with replacement
 - Concatenate sentences with [SEP]
 - Choose sentence inside bin using "picking strategy"
 - Random
 - ROUGE-2
 - Best
- Feed into pre-trained THExt
- Rank
- Take the first K=3 as highlights

Results - Probabilistic Context Extraction 3/3

- 1 epoch on each topic's dataset
- Hyperparameters:
 - Learning rate=1e-5, weight decay=1e-2
 - o 10% warm-up steps
 - o total batch size=32
- Can incorporate prior knowledge or other methods (e.g., get original THExt)

	CS		BIO		Al	
Model	R-1	R-2	R-1	R-2	R-1	R-2
THExt+Abstract	0.3138	0.1204	0.3002	0.1017	0.3350	0.1253
THExt+PCE random	0.3647	0.1585	0.3308	0.1195	0.3353	0.1213
THExt + PCE-ROUGE2	0.3676	0.1510	0.3326	0.1196	0.3372	0.1178
THExt + PCE-best	0.3738	0.1613	0.3335	0.1222	0.3415	0.1250

Methods - Direct extraction 1/2

- Further proves existence of distributions
- Select N=15 sentences across sections using the contribution table
 - Choose the bins according to the distribution
 - o Randomly select a sentence from the bin
- Rank by ROUGE-2 of each sentence with abstract
- Take top-K
 - K=2 for CS
 - K=3 for BIO, AI

Results - Direct extraction 2/2

- Impressive results considering
 - No training
 - No inference
- Comparable results with previous methods
- Results on BioPubSumm

Method	R-1	R-2
Liu and Lapata [8]	0.249	0.059
Collins et al. [4]	0.287	0.087
THExt + Abstract	0.3002	0.1017
Direct extraction (K=3)	0.2738	0.0805

Discussion - Headline Generation

- The model learnt that different topics have different titles strategies:
 - Al titles may include the methods name
 - O BIO titles may include molecules names
- Titles generated using THExt's highlights maintain high results
- Limitations when dealing with multi-topic papers
 - Focuses on just one, probably the main one (e.g., in our case focused just on PCE)

Discussion - Probabilistic Context Extraction

- The model outperforms the reference results
 - An even better context is feasible
 - o BUT we performed an additional epoch wrt THExt
- A deeper hyper-parameter tuning could possibly achieve even better results.
- A deeper text cleaning is possible
 - Substitute citations, figure and table with a standardized version
 - Convert Unicode characters

Discussion - Direct extraction

- Performs surprisingly well
- Further improvements may be reached:
 - Using "best" picking strategy
 - Tune the number of sentences

Thanks for your attention