Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2023

EE3EL03 / EX3EL03 Digital Signal Processing

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. The discrete time function defined as u(n)=n for $n\ge 0$; u(n)=0 for n<0 1 is an-
 - (a) Unit sample signal
- (b) Unit step signal
- (c) Unit ramp signal
- (d) None of these
- ii. Time scaling operation is also known as-

1

- (a) Down-sampling
- (b) Up-sampling

(c) Sampling

- (d) None of these
- iii. The Region of Convergence (ROC) of the Z transform of a Unit ramp 1 function is-
 - (a) |Z| > 1

- (b) |Z| < 1
- (c) Real part of Z > 0
- (d) Real part of Z < 0
- iv. One-sided Z-transform is also known as-
 - (a) Unilateral Z-transform (b) Bilateral Z-transform
 - (c) Trilateral Z-transform
- (d) Multilateral Z-transform
- v. What are the Fourier series coefficients for the signal $x(n)=\cos(\pi n/3)$? 1
 - (a) c1=c2=c3=c4=0, c1=c5=1/2
 - (b) c0=c1=c2=c3=c4=c5=0
 - (c) c0=c1=c2=c3=c4=c5=1/2
 - (d) None of these
- vi. Which technique is used to obtain a discrete-time signal from a 1 continuous-time signal?
 - (a) Differentiating
- (b) Convolution
- (c) Integrating
- (d) Sampling

P.T.O.

[2]

	vii.	Find the complex multiplications required for 16 direct computations of DFT.	1
	viii.	(a) 854 (b) 56 (c) 992 (d) 240 Determine the number of complex additions required for 32 direct computations of DFT.	1
	ix.	(a) 216 (b) 256 (c) 1024 (d) 16 The advantages of FIR filters are- (a) Stable (b) Realized in recursive	1
	х.	 (c) Realized in non-recursive (d) All of these A digital signal processing system is defined by: y(n) = 2x(n) + x(n-1) + 2y(n-1), The system is- (a) A stable IIR filter (b) A stable FIR filter (c) An unstable IIR filter 	1
		(d) An unstable FIR filter	
Q.2	i. ii. iii.	Explain linear shift invariant systems with an example. What are the conditions for stability and causality of an LSI system? Determine the total response $y(n)$, $n \ge 0$ to the difference equation $x(n) = y(n) + a_1 y(n - 1)$. Where $x(n)$ is a unit step sequence $x(n) = u(n)$ and $y(-1)$ is the initial condition.	2 3 5
OR	iv.	Write and explain five properties of the discrete time Fourier transform.	5
Q.3	i. ii.	Explain in detail stability criterion using Z transform. Explain in detail one sided Z transform and its three applications.	4
OR	iii.	Determine the Z transform of the following discrete time signals: (a) $s(n) = \sin(\omega_0 n) u(n)$ (b) $s(n) = nu(n)$	6
Q.4	i.	Write and explain four properties of Fourier transform for discrete time signals.	4
	ii.	Explain frequency analysis of discrete time signals in detail with example.	6
OR	iii.	Explain in detail with example the linear invariant system as frequency selective filter.	6
Q.5	i. ii.	Write four properties of discrete Fourier series. What are inverse systems? Explain de-convolution with an example.	4
			-

OR	iii.	Calculate the eight-point DFT for the following:	6
		x(n) = [1,2,3,4,5,6,7,8]	

[3]

2.6		Attempt any two:	
	i.	Explain IIR filter design using least square method.	5
	ii.	State five comparisons of IIR and FIR filters.	5
	iii.	Explain FIR filter design using windowing method.	5

[4]

[1]

Marking Scheme

EE3EL03-EX3EL03 (T) Digital Signal Processing

Q.1	i)	(c) Unit ramp signal	1
	ii)	(a) Down-sampling	1
	iii)	(a) $ Z > 1$	1
	iv)	(a) Unilateral Z-transform	1
	v)	(a) c1=c2=c3=c4=0,c1=c5=1/2	1
	vi)	(d) Sampling	1
	vii)	(c) 992	1
	viii)	(b) 256	1
	ix)	(d) All of these	1
	x)	(c) An unstable IIR filter	1
Q.2	i.	linear shift invariant systems	2
	ii.	conditions for stability and causality	1.5x2
	iii.	total response with steps	2,2,1
OR	iv.	Write and explain five properties	1x5
Q.3	i.	stability criterion	4
	ii.	Explain in detail one sided z transform and its applications	4,2
OR	iii.	Explain in detail with example	4,2
Q.4	i.	four properties	1x4
	ii.	Explain in detail with example	4,2
OR	iii.	Explain in detail with example	4,2
Q.5	i.	four Properties	1x4
	ii.	What are inverse systems? Explain de-convolution with an example.	2,4
OR	iii.	Calculate the eight point DFT	3,3
Q.6			
	i.	Explain IIR filter design using least square method.	5
	ii.	Five comparisons of IIR and FIR filters	1x5
	iii.	Explain FIR filter design using windowing method	5
