

Master Thesis Seminar Talk Progress Upade

Fabrice Beaumont

Department of Information Systems and Artificial Intelligence - Dr. Pascal Welke

11. May 2022

Progress overview

- Task formulation, registration of the thesis:
 "Learning graph similarity measures using the
 Weisfeiler-Lehman label hierarchy"
 Definition of several sub-goals a programming road-map.
- Implementation of a dynamic Dataset Loader (GarKel, OGB, from file).
 - Easily expandable for other frameworks.

Tree metric between the WL-labels:

$$\begin{pmatrix}
4 & 5 & 6 & 7 & 8 \\
 & 2 & 4 & 4 & 4 \\
 & & & 4 & 4 & 4 \\
 & & & & \ddots & 2 & 4 \\
 & & & & & & \ddots & 4
\end{pmatrix}$$

Tree metric:

$$\begin{pmatrix} 4 & 5 & 6 & 7 & 8 \\ \cdot & 2 & 4 & 4 & 4 \\ & \cdot & 4 & 4 & 4 \\ & & \cdot & 2 & 4 \\ & \uparrow \uparrow & & \cdot & 4 \end{pmatrix}$$

Tree metric:

$$\begin{pmatrix} 4 & 5 & 6 & 7 & 8 \\ \cdot & 2 & 4 & 4 & 4 \\ & \cdot & 4 & 4 & 4 \\ & & \cdot & 2 & 4 \\ & \uparrow \uparrow & & \cdot & 4 \end{pmatrix}$$

Tree metric:

Wasserstein Dist.:

$$W_t(A, B) = \frac{4}{3}$$

 $W_t(A, C)$
 $W_t(B, C)$

Tree metric:

Wasserstein Dist.:

$$W_t(A, B) = \frac{4}{3}$$

 $W_t(A, C) = 3$
 $W_t(B, C)$

$$d_{\text{WLLT}}(A, C) = 2 * \frac{8}{12} + 4 * \frac{1}{12} + 4 * \frac{4}{12} = \frac{18}{6} = 3$$

Tree metric:

Wasserstein Dist.:

$$W_t(A, B) = \frac{4}{3}$$

 $W_t(A, C) = 3$
 $W_t(B, C) = 3$

$$d_{WLLT}(B, C) = 2 * \frac{2}{4} + 4 * \frac{1}{4} + 4 * \frac{1}{4} = \frac{12}{4} = 3$$

UNIVERSITÄT BONN LLab

Example of the whole procedure

Current clustering:

Target clustering:

Idea: Reduce distance between B and C, by updating the edge weights.

Local update P_{7,8}:

Local update P_{7,8}:

Weighted path update P_{7.8}:

Update rule:

Value:

- ightharpoonup Constant λ .
- ► Gradient descent.

Location:

- Local: Only update the first and last edge weights of the connecting path.
- Weighted path: Update all edge weights on the path, with less magnitude for edges closer to the root.
- ▶ Path: . . .
- ► Global: ...

Next steps

- Implement the usage of the Wasserstein Distance.
- Implement a "naive" feedback loop to update the WLLT edge weights.
 - (And the more and more complex variations.)

Thank you all for listening.

I will be happy to answer any questions and hear your comments.

Implementation road-map 1/2

- WLLT Construction:
 - ▶ Write to file and read from file. Construct WL-iteration based.
 - ► All weights *equal*.
 - (Random initial weights.)
 - ► (Use *a priori* knowledge.)
- Wasserstein-Distance feedback:
 - "Biggest pile of dirt". ("Smallest", to increase the distance.)
 - Distribution proportional to the pile size.
 - Distribution proportional to the cost of moving the pile size.

Implementation road-map 2/2

- Update rule:
 - Value:
 - ightharpoonup Constant λ .
 - Gradient descent.
 - ▶ Location:
 - Local: Only update the first and last edge weights of the connecting path.
 - Weighted path: Update all edge weights on the path, with less magnitude for edges closer to the root.
 - Path: Update all edges on the path.
 - ► Global: Update all edges, related to all occurring labels.