Гурская К.А., Ивин В.В., Семёнов С.М.

Решение задач математической логики в ЕГЭ по информатике

Гурская К.А., Ивин В.В., Семёнов С.М.

Учебное пособие «Решение задач математической логики в ЕГЭ по информатике» предназначено для учащихся выпускных классов и учителей «Информатики и ИКТ» общеобразовательных учебных заведений и посвящено разбору логических задач, вынесенных в контрольно-измерительные материалы Единого государственного экзамена по информатике и информационно-коммуникационным технологиям.

Основной акцент делается на решение задач с системами логических уравнений, которые являются наиболее трудоёмкими в ЕГЭ по информатике и ИКТ. Авторы предлагают способы решения систем логических уравнений, которые понятны школьникам 9-11 классов и позволяют им достичь положительного результата, следуя по определенному алгоритму.

Так же учебное пособие может быть рекомендовано студентов ВУЗов и колледжей всех форм и направлений подготовки, изучающих «Информатику».

Оглавление

Введение	4
Основы алгебры логики	
Интервальный метод	
Системы логических уравнений	
Литература	

Введение

На практике системы логических уравнений [1] полезны при разработке цифровых логических устройств [3]. Решению систем логических уравнений посвящена одна из задач ЕГЭ по информатике. К сожалению, различные известные способы решения этой задачи не позволяют сформировать какой-то один подход к решению этой задачи. В результате, решение задачи вызывает большие затруднения у выпускников. В данном пособии предлагается способ решения систем логических уравнений, который позволяет выпускнику следовать вполне определенному алгоритму. Идея этого способа изложена в [3]. Мы применили и развили эту идею – построение дерева решений – почти не используя таблицы истинности для всего дерева. При решении различных задач выяснилось, что количество решений многих систем логических уравнений подчиняется рекуррентным соотношениям, таким как числа Фибоначчи и другим.

Основы алгебры логики

Для анализа и синтеза схем в ЭВМ при алгоритмизации и программировании решения задач широко используется математический аппарат алгебры логики или булевой алгебры * .

Алгебра логики — это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание — это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. Высказывание может принимать только два значения — «истина» (обозначается «1») и «ложь» (обозначается «0»). При этом считается, что высказывание удовлетворяет *закону исключенного третьего*, т.е. каждое высказывание или истинно, или ложно и не может быть одновременно и истинным, и ложным.

В алгебре логики все высказывания обозначают буквами «А», «В», «С» и т.д. Содержание высказываний учитывается только при введении их буквенных обозначений, и в дальнейшем над ними можно производить любые действия, предусмотренные данной алгеброй. Причем если над исходными элементами алгебры выполнены некоторые разрешенные в алгебре логики операции, то результаты операций также будут элементами этой алгебры.

Логические выражения

Логические выражения могут быть простыми и сложными.

Простое погическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата – или «истина», или «ложь».

Сложное логическое выражение содержит высказывания, объединённые логическими операциями. Высказывания, являющиеся исходными для логической операции, называются аргументами.

Логические операции

Все операции алгебры логики определяются *таблицами истинности* значений. Таблица истинности определяет результат выполнения операций для всех возможных логических значений исходных высказываний.

1. Операция «НЕ» – логическое отрицание (инверсия)

Логическая операция «НЕ» применяется к одному аргументу, в качестве которого может и простое, и сложное логическое выражение.

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Для операции отрицания приняты следующие условные обозначения: $\neg A$; \bar{A} или **not** A. Результат операции отрицания определяется следующей таблицей истинности:

A	Ā	
истина	ложь	И
ложь	истина	

или

A	Ā
1	0
0	1

2. Операция «ИЛИ» – логическое сложение (дизьюнкция, объединение)

Логическая операция «ИЛИ» выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение.

^{*} алгебра логики названа «булевой» в честь британского математика Джорджа Буля (1815-1864) – одного из основателей математической логики.

Результат операции дизьюнкции истинен, тогда и только тогда, когда истинно хотя бы одно из исходных высказываний.

Для операции дизъюнкции приняты следующие условные обозначения: **A** или **B**; $\mathbf{A} \vee \mathbf{B}$ или **A** ог **B**. При выполнении сложных логических преобразований для наглядности иногда используют обозначение $\mathbf{A} + \mathbf{B}$, где **A** и \mathbf{B} – аргументы (исходные высказывания). Результат операции дизъюнкции определяется следующей таблицей истинности:

A	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

3. Операция «И» – логическое умножение (конъюнкция)

Логическая операция «И» выполняет функцию пересечения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение.

Результат операции конъюнкции истинен, тогда и только тогда, когда истинно оба исходных высказывания.

Для операции дизъюнкции приняты следующие условные обозначения: **A и B**; **A & B** или **A and B**. При выполнении сложных логических преобразований для наглядности иногда используют обозначение $\mathbf{A} \cdot \mathbf{B}$, где \mathbf{A} и \mathbf{B} – аргументы (исходные высказывания). Результат операции дизъюнкции определяется следующей таблицей истинности:

A	В	$\mathbf{A} \wedge \mathbf{B}$
0	0	0
0	1	0
1	0	0
1	1	1

4. Операция «ЕСЛИ-ТО» – логическое следование (импликация)

Операция импликации связывает два простых логических выражения, из которых первое является условием или предпосылкой, а второе – следствием или заключением.

Результат операции импликации ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Для операции импликации приняты следующие условные обозначения: **если A,** то B; A влечёт B; *if* A *then* B; A \iff B или A \implies B. Результат операции импликации определяется следующей таблицей истинности:

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

5. Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Операция импликации связывает два простых логических выражения, из которых первое является условием или предпосылкой, а второе – следствием или заключением.

Результат операции эквивалентности истинен только тогда, когда предпосылка A и B одновременно истинны или одновременно ложны.

Для операции эквивалентности приняты следующие условные обозначения: $\mathbf{A} \sim \mathbf{B}$ или $\mathbf{A} \equiv \mathbf{B}$. Результат операции эквивалентности определяется следующей таблицей истинности:

A	В	$A \rightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий.

В частности, для алгебры логики выполняются законы (табл. 1):

Таблица 1

Основные законы булевой алгебры

Закон	Пояснение	Для дизъюнкции	Для конъюнкции
1 A 222444274747474	Независимость от порядка вы-	$A + (B + C) = \P = (A + B) + C = \P =$	$A \cdot (B \cdot C) = \P = (A \cdot B) \cdot C = \P = A \cdot$
1. Ассоциативность	полнения однотипных действий	A + B + C	B·C
2. Коммутативность	Независимость от перестановки	A + B = B + A	$A \cdot B = B \cdot A$
3. Дистрибутивность	Правила раскрытия скобок и вы-	$A + (B \cdot C) = (A + B) \cdot (A + C)$	$(A+B)\cdot C = A\cdot C + B\cdot C$
3. дистриоутивность	несения за скобки	$(A+B)\cdot (B+C) = (A\cdot C) + A$	$A \cdot B + B \cdot C = B \cdot (A + C)$
4. Идемпотентность	Отсутствие степеней и коэффи-	A + A = A	$A \cdot A = A$
підеміотеннюєть	циентов		11 11 11
5. Инволюция Двойная инверсия		$\overline{\overline{A}} = A$	
6. Действия с абсолютно-		A + 1 = 1	$A \cdot 1 = A$
истинными высказываниями		A+1-1	A 1-A
7. Действия с абсолютно-		A + 0 = A	$A \cdot 0 = 0$
ложными высказываниями		11 10 11	11 0 0
8. Законы де Моргана	Отрицание одновременной ¶истинности	$\overline{A+B} = \overline{A} \cdot \overline{B}$	
_	Отрицание вариантов		$\overline{A \cdot B} = \overline{A} + \overline{B}$
9. Закон исключения третьего ¶и		$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
закон противоречия		A + A = 1	$A \cdot A = 0$
10. Поглощение		$A + A \cdot B = A$	$A \cdot (A + B) = A$
11. Поглощение отрицания		$A + \bar{A} \cdot B = A + B$	$A \cdot (\bar{A} + B) = A \cdot B$

Интервальный метод

Задания АЗ и А10 относятся к первой части экзаменационной работы с выбором одного правильного ответа из четырех предложенных. Задание АЗ базового уровня сложности, проверяет умение строить таблицы истинности и логические схемы. Задание А10 повышенного уровня сложности, проверяет знание основных понятий и законов математической логики. Рассмотрим несколько примеров этих задач.

Задание 1 Дан фрагмент таблицы истинности выражения F:

	X	Y	Z	F
	0	0	0	0
ĺ	0	0	1	0
	1	1	1	1

Каким выражением может быть F?

1)
$$X \wedge Y \wedge Z$$

$$2) \neg X \lor \neg Y \lor Z \qquad 3) X \lor Y \lor Z$$

3)
$$X \lor Y \lor Z$$

4)
$$\neg X \land \neg Y \land \neg Z$$

Решение:

Перепишем ответы в более удобной форме и проанализируем их.

1)
$$X \cdot Y \cdot Z$$

2)
$$\overline{X} + \overline{Y} + Z$$

3)
$$X + Y + Z$$

4)
$$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$$

Рассмотрим первое выражение $X \cdot Y \cdot Z$. Оно равно 1 только при X = Y = Z = 1, а в остальных случаях равно 0, что совпадает с таблицей истинности.

Второе выражение $\overline{X} + \overline{Y} + Z = 0$ при X = Y = 1, а Z = 0, поэтому это неверный ответ.

Третье выражение X + Y + Z = 0 при X = Y = Z = 0, поэтому вторая строка таблицы не подходит и значит, это неверный ответ.

Рассмотрим последнее выражение $\overline{X}\cdot\overline{Y}\cdot\overline{Z}$. Оно равно 1 только при X=Y=Z=0, поэтому это неверный ответ (первая и третья строки таблицы не подходит)

Следовательно, правильный ответ – 1) $X \land Y \land Z$.

Ответ: 1.

Задание 2 (демонстрационный вариант 2014 года)

Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	x6	x7	x8	F
1	1	0	1	1	1	1	1	0
1	0	1	0	1	1	0	1	1
0	1	0	1	1	0	1	1	1

Каким выражением может быть F?

1)
$$\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7 \land x8$$

2)
$$\neg x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$$

3)
$$x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land x8$$

4)
$$x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8$$

Решение:

Рассмотрим первое выражение $x1 \cdot x2 \cdot x3 \cdot x4 \cdot x5 \cdot x6 \cdot x7 \cdot x8$. Оно равно 1, если x1 = x3 = x6 = 0, а x2 = x4 = x5 = x7 = x8 = 1. Третья строка таблицы не подходит, значит, ответ неверный.

Рассмотрим второе выражение x1+x2+x3+x4+x5+x6+x7+x8, проверив его на ложность. Оно равно 0 только при x3=0, а в остальных случаях 1, что совпадает с таблицей.

Третье выражение $x1 \cdot \overline{x2} \cdot x3 \cdot \overline{x4} \cdot x5 \cdot x6 \cdot \overline{x7} \cdot x8 = 1$, при x2 = x4 = x7 = 0. Третья строка таблицы не подходит - ответ неверный.

Последнее выражение $x1 + \overline{x2} + x3 + \overline{x4} + \overline{x5} + x6 + x7 + \overline{x8}$ равно 0, при $\P x2 = x4 = x5 = x7 = x8 = 1$, остальные 0. Это не соответствует первой строке, следовательно, ответ неверный.

После анализа рассмотренных вариантов, приходим к выводу, что верный ответ:

2)
$$\neg x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$$
.

Ответ: 2.

Задание 3 (демонстрационный вариант 2012 года)

Какое из приведённых имён удовлетворяет логическому выражению: (первая буква согласная \rightarrow вторая буква согласная) \land (предпоследняя буква гласная \rightarrow последняя буква гласная)?

1) КРИСТИНА

2) МАКСИМ

3) СТЕПАН

4) МАРИЯ

Решение:

Разобьём выражение на 2 условия: «первая буква согласная → вторая буква согласная» и «предпоследняя буква гласная → последняя буква гласная». Условия связаны с помощью операции конъюнкция, поэтому должны выполняться одновременно. Оба условия есть не что иное, как импликация. Вспомним, что импликация ложна тогда, когда ее первая часть истинна, а вторая – ложна, поэтому удобнее будет проверить оба условия на ложность и отбросить ложные варианты.

Первое условие ложно, если первая буква согласная, а вторая – гласная, то есть для ответов МАКСИМ и МАРИЯ.

Второе условие ложно тогда, когда предпоследняя буква гласная, а последняя – согласная, то есть, для ответа СТЕПАН.

Значит, для ответа КРИСТИНА оба условия истинны.

Ответ: 1.

Задание 4 (демонстрационный вариант 2013 года)

На числовой прямой даны два отрезка: P = [2, 10] и Q = [6, 14].

Выберите такой отрезок A, что формула ($(x \in A) \to (x \in P)$) $\forall (x \in Q)$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

1) [0, 3]

2) [3, 11]

3) [11, 15]

4) [15, 17]

Решение:

1 способ

Преобразуем логическое выражение, заменив импликацию – дизъюнкцией.

Получим: $\neg(x \in A) \lor (x \in P) \lor (x \in Q) = 1$ или $\neg(x \in A) + (x \in P) + (x \in Q) = 1$. Это выражение истинно для любого x, поэтому область истинности выражения должна занимать всю числовую прямую. Отметим на числовой прямой известные отрезки P и Q.

Оставшуюся (незакрашенную) часть числовой прямой должна занимать область истинности выражения $x \in A$. Но так как у нас $\neg(x \in A)$, значит, решением будет отрезок, находящийся внутри промежутка [2, 14]. Проверив варианты ответа, найдем верный ответ -2) [3, 11].

Ответ: 2).

2 способ

Преобразуем логическое выражение, получим:

$$((x \in A) \rightarrow (x \in [2, 10])) \lor (x \in [6, 14]) = 1.$$

Подставим в выражение концы первого отрезка $x \in [0, 3]$

$$0 1 \rightarrow 0 \forall 0 = 0$$
$$3 1 \rightarrow 1 \forall 0 = 1$$

Подставим в выражение концы второго отрезка $x \in [3, 11]$

Рассмотрим оставшиеся отрезки $x \in [11, 15]$ и $x \in [15, 17]$

$$15 1 \rightarrow 0 \forall 0 = 0$$

0

 $1 \rightarrow$

Таким образом, проверив все варианты, найдем верный ответ – 2) [3, 11].

 \bigvee

1

Ответ: 2).

11

Задание 5 (демонстрационный вариант 2014 года)

На числовой прямой даны два отрезка: P = [1, 39] и Q = [23, 58].

Выберите из предложенных отрезков такой отрезок A, что логическое выражение $((x \in \mathbf{P}) \to \neg (x \in \mathbf{Q})) \to \neg (x \in \mathbf{A})$ тождественно истинно, то есть принимает значение 1 при любом значении переменной x.

Решение:

1 способ.

Преобразуем логическое выражение, используя законы логики.

Получим: $(\neg (x \in \mathbf{P}) \lor \neg (x \in \mathbf{Q})) \rightarrow \neg (x \in \mathbf{A}) = 1$;

$$\neg (\neg (x \in P) \lor \neg (x \in Q)) \lor \neg (x \in A) = 1;$$

$$(x \in \mathbf{P}) \land (x \in \mathbf{Q}) \lor \neg (x \in \mathbf{A}) = 1.$$

Выражение истинно для любого x, поэтому область истинности выражения должна занимать всю числовую прямую. Отметим на числовой прямой отрезки P и Q.

Решением $(x \in P) \land (x \in Q)$ будет являться отрезок [23, 39]. Но так как имеем $\P \neg (x \in A)$, значит, решением будет отрезок, находящийся внутри этого промежутка, то есть отрезок [25, 35].

2 способ

Преобразуем логическое выражение, получим:

$$((x \in [1, 39]) \rightarrow \neg (x \in [23, 58])) \rightarrow \neg (x \in A) = 1.$$

Подставим поочередно концы всех отрезков.

 $x \in [5, 20]$

$$5 \qquad (1 \rightarrow \neg 0) \rightarrow \neg 1 = (1 \rightarrow 1) \rightarrow 0 = 1 \rightarrow 0 = 0$$

$$20 \qquad (1 \rightarrow \neg 1) \rightarrow \neg 1 = (1 \rightarrow 0) \rightarrow 0 = 0 \rightarrow 0 = 1$$

 $x \in [25, 35]$

$$25 \qquad (1 \rightarrow \neg 1) \rightarrow \neg 1 = (1 \rightarrow 0) \rightarrow 0 = 0 \rightarrow 0 = 1$$

$$35 \qquad \qquad (1 \rightarrow \neg 1) \rightarrow \neg 1 \qquad = \qquad (1 \rightarrow 0) \qquad \rightarrow \qquad 0 \ = \ 0 \qquad \rightarrow \qquad 0 \ = \ 1$$

 $x \in [40, 55]$

$$40 \qquad (0 \rightarrow \neg 1) \rightarrow \neg 1 = (0 \rightarrow 0) \rightarrow 0 = 1 \rightarrow 0 = 0$$

$$55 \qquad (0 \rightarrow \neg 1) \rightarrow \neg 1 = (0 \rightarrow 0) \rightarrow 0 = 1 \rightarrow 0 = 0$$

 $x \in [20, 40]$

$$20 \hspace{1cm} (1 \hspace{1cm} \rightarrow \hspace{1cm} \neg 0) \hspace{1cm} \rightarrow \hspace{1cm} \neg 1 \hspace{1cm} = \hspace{1cm} (1 \hspace{1cm} \rightarrow \hspace{1cm} 1) \hspace{1cm} \rightarrow \hspace{1cm} 0 \hspace{1cm} = \hspace{1cm} 0$$

$$40 \qquad (0 \rightarrow \neg 1) \rightarrow \neg 1 = (0 \rightarrow 0) \rightarrow 0 = 1 \rightarrow 0 = 0$$

Таким образом, проверив все варианты, найдем верный ответ – 2) [25, 35].

Ответ: 2).

Задание 6

Для какого из значений числа A высказывание $(A < 5) \land ((A > 1) \rightarrow (A > 5))$ будет истинным?

1) 1

2) 2

3) 3

4) 4

Решение:

1 способ (подстановка)

Выполним операции для всех чисел:

A	A < 5	A > 1	A > 5	$(A > 1) \rightarrow (A > 5)$	$(A \le 5) \land ((A \ge 1) \rightarrow (A \ge 5))$
1	1	0	0		
2	1	1	0		
3	1	1	0		
4	1	1	0		

По таблице истинности импликация ложна только в случае $1 \to 0$, в остальных случаях импликация истинна.

A	A < 5	A > 1	A > 5	$(A > 1) \rightarrow (A > 5)$	$(A \le 5) \land ((A \ge 1) \rightarrow (A \ge 5))$
1	1	0	0	1	
2	1	1	0	0	
3	1	1	0	0	
4	1	1	0	0	

Второе выражение $(A > 1) \rightarrow (A > 5)$ истинно для A = 1 и ложно при остальных значениях A.

A	A < 5	A > 1	A > 5	$(A > 1) \rightarrow (A > 5)$	$(A \le 5) \land ((A \ge 1) \rightarrow (A \ge 5))$
1	1	0	0	1	1
2	1	1	0	0	0
3	1	1	0	0	0
4	1	1	0	0	0

Первое выражение A < 5 истинно при A = 1 и ложно при остальных трех значениях A . Следовательно, выражение $(A < 5) \land ((A > 1) \rightarrow (A > 5))$ истинно при A = 1.

2способ

Преобразуем выражение (A < 5) \wedge ((A > 1) \rightarrow (A > 5)), используя законы логики. (A < 5) \wedge ((A <=1) \vee (A > 5)). Условия связаны с помощью операции конъюнкция, поэтому должны выполняться одновременно. Отметим их на числовой прямой

Пересечением является (A \leq =1), значит, ответ – 1)

Ответ: 1).

Задание 7

Для какого числа Y истинно высказывание
$$(Y > 1) \lor (Y > 4) \rightarrow (Y < 2)$$
?

1) 1 2) 2 3) 3 4) 4

Решение:

1 способ (подстановка)

Вспомним, что импликация ложна, только если первое выражение истинно, а второе ложно. Во всех остальных случаях импликация истинна. Заполним таблицу и проанализируем.

Y	Y > 1	Y > 4	Y<2	$(Y>1) \lor (Y>4)$	$(Y > 1) \lor (Y > 4) \rightarrow (Y < 2)$	
1	0	0	1	0	1	
2	1	0	0	1	0	
3	1	0	0	1	0	
4	1	0	0	1	0	

Первое выражение Y > 1 ложно для Y = 1 и истинно при остальных значениях Y. Второе выражение $(Y > 1) \lor (Y > 4)$ истинно при Y = 1 и ложно при остальных трех значениях Y. Следовательно, импликация истинна при Y = 1.

2способ

Преобразуем выражение $(Y>1) \lor (Y>4) \rightarrow (Y<2)$, заменив импликацию дизъюнкцией. Получим ¬ $((Y>1) \lor (Y>4)) \lor (Y<2)$.

Используем законы де Моргана (Y<=1) \land (Y<=4) \lor (Y<2).

Решением выражения (Y<=1) \land (Y<=4) будет (Y<=1). Следовательно, получаем выражение (Y<=1) \lor (Y<2). Условия связаны с помощью операции дизъюнкция, поэтому должно выполняться хотя бы одно из них. Правильный ответ Y = 1.

Ответ: 1.

Задание 6

Для какого символьного набора истинно высказывание, приведенное ниже? Вторая буква согласная / (в слове 3 гласных буквы ∨ первая буква согласная).

1) УББОШТ

2) ТУИОШШ

3) ШУБВОИ

4) ИТТРАО

Решение:

Разобьём выражение на 2 условия: «вторая буква согласная» и «в слове 3 гласных буквы ∨ первая буква согласная». Условия связаны с помощью операции конъюнкция, поэтому должны выполняться одновременно. Первое условие «вторая буква согласная» выполняется всегда, поэтому после анализа ответов можно отбросить 2) ТУИОШШ и 3) ШУБВОИ. Второе условие «в слове 3 гласных буквы ∨ первая буква согласная» удобнее проверить на ложность. Оно будет ложно, если в слове не 3 гласные буквы и первая буква гласная, то есть для ответа 1) УББОШТ. Значит, правильным ответом будет 4) ИТТРАО.

Ответ: 4.

Задание 8

На числовой прямой даны два отрезка: P = [6, 24] и Q = [20, 28]. Выберите такой отрезок A, что формула (($x \notin A$) \to ($x \notin P$)) \V ($x \in E$) тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

4) [20, 24]

Решение:

Преобразуем логическое выражение, заменив импликацию.

$$(\neg (\neg (x \in A)) \lor \neg (x \in P)) \lor (x \in Q) = 1;$$

$$(x \in A) \lor \neg (x \in P) \lor (x \in Q) = 1.$$

Условия связаны с помощью операции дизъюнкция, поэтому должно выполняться хотя бы одно из них. Отметим на числовой прямой отрезки $\neg P$ и Q.

Таким образом, область истинности выражения $x \in A$ должна содержать незакрашенную часть — отрезок [6, 20]. Проанализировав все ответы, приходим к выводу, что решением будет отрезок 1) [4, 20].

Ответ: 1.

Задание 9

Для какого из приведенных чисел X истинно логическое условие: $\P \neg ((X \text{ кратно 5}) \rightarrow (X \text{ кратно 25}))$?

1) 37

2) 59

3) 65

4) 125

Решение:

Выражение $\neg((X \ \kappa pатно \ 5) \rightarrow (X \ \kappa pатно \ 25)) = 1$ равносильно выражению $\P(X \ \kappa pатно \ 5) \rightarrow (X \ \kappa paтно \ 25) = 0$. Вспомним, что импликация равна 0 только в одном случае, когда первое выражение истинно, а второе ложно. Значит, искомое число кратно 5 и не кратно 25. Проанализировав варианты ответов, приходим к выводу, что это число 65.

Задача 1. На числовой прямой даны два отрезка P=[2, 10] и Q=[6, 14]. Выберите такой отрезок A, что формула $((x \in A) \to (x \in P)) \lor (x \in Q)$ тождественно истина, то есть принимает значение 1 при любом значении переменной x.

1) [0, 3] 2) [3, 11] 3) [11, 15] 4) [15, 17]

Решение. Введем обозначения $x \in A - A$, $x \in P - P$, $x \in Q - Q$. Тогда $((x \in A) \rightarrow (x \in P)) \lor (x \in Q) = (A \rightarrow P) \lor Q = ¬A \lor P \lor Q = ¬A \lor P \lor Q$.

Для последнего выражения вся числовая ось будет покрываться в том случае, если отрезок A полностью лежит в объединении отрезков P и Q [2, 14]. Очевидно, что это отрезок [3, 11], то есть вариант 2).

Задача 2. На числовой прямой даны два отрезка P=[2,20] и Q=[15,25]. Выберите такой отрезок A, что формула $((x \notin A) \to (x \notin P)) \lor (x \in Q)$ тождественно истина, то есть принимает значение 1 при любом значении переменной x.

1) [0, 15] 2) [10, 25] 3) [2, 10] 4) [15, 20]

Решение. С учетом обозначений исходное выражение запишется как $(\neg A \rightarrow \neg P) \lor Q = A \lor \neg P \lor Q = \neg P \lor (A \lor Q)$.

Для того чтобы выполнялось последнее выражение, нужно чтобы отрезок Р целиком лежал в объединении отрезков А и Q. Отрезок [0, 15] подходит. Таким образом, вариант 1).

Задача 3. На числовой прямой даны три отрезка P=[10,27], Q=[15,30] и R=[25,40]. Выберите такой отрезок A, что формула $((x \in Q) \to (x \notin R)) \land (x \in A) \land (x \notin P)$ тождественно ложна, то есть принимает значение 0 при любом значении переменной x.

1) [0, 15] 2) [10, 40] 3) [25, 35] 4) [15, 25]

Решение. С учетом обозначений исходное выражение запишется как

 $((Q \rightarrow \neg R) \land A \land \neg P = ((\neg Q \lor \neg R) \land A \land \neg P = A \land \neg P \land \neg (Q \land R) = \neg (\neg A \lor \neg (\neg P \land \neg (Q \land R)) = \neg (\neg A \lor (P \lor (Q \land R))).$

Для того чтобы последнее выражение, было ложно, нужно чтобы выражение в скобке было истинно. Но для этого нужно чтобы отрезок A целиком лежал в объединении отрезков $P \lor (Q \land R)$. Пересечение отрезков отрезок $(Q \land R)$ дает отрезок [25, 30]. Тогда объединение $P \lor (Q \land R)$ даст отрезок [10, 30]. Полностью в этот отрезок попадает отрезок [15, 25], то есть вариант 4).

Задача 4. На числовой прямой даны три отрезка P=[5, 10], Q=[10, 20] и R=[25, 40]. Выберите такой отрезок A, что выражения $(x \in A) \rightarrow (x \in P)$ и $(x \in Q) \rightarrow (x \in R)$ тожде-

ственно равны, то есть принимают одинаковые значения при любом значении переменной х (кроме, возможно, конечного количества точек).

1) [7, 20] 2) [2, 12] 3) [10, 25] 4) [20, 30]

Под конечным количеством точек имеется в виду, что на концах отрезков выражения могут иметь различные значения.

Решение. Преобразуем исходное выражение к следующему \P ¬А ∨ Р и ¬Q ∨ R. Второе выражение истинно во всех точках кроме отрезка [10, 20]. Нужно, чтобы первое выражение имело такую же область истинности. Только отрезок [7, 20] покрывает отрезок [10, 20]. При этом его часть [7, 10] входит в отрезок Р, то есть не влияет на истинность выражения. Таким образом, подходит отрезок [7, 20], то есть вариант 1).

Задача 5. На числовой прямой даны три отрезка P=[10, 15], Q=[5, 20] и R=[15, 25]. Выберите такой отрезок A, что выражения $(x \notin A) \to (x \in P)$ и $(x \in Q) \to (x \in R)$ принимают разные значения при любом значении переменной x (кроме, возможно, конечного количества точек).

1) [7, 20] 2) [2, 15] 3) [5, 12] 4) [20, 25]

Под конечным количеством точек имеется в виду, что на концах отрезков выражения могут иметь различные значения.

Решение. Преобразуем исходное выражение к следующему $A \lor P$ и $\neg Q \lor R$. Второе выражение истинно во всех точках кроме отрезка [5, 15] (часть отрезка Q, которая не входит в отрезок R). Нужно, чтобы первое выражение было истинно на отрезке [5, 15], а вне его ложно. Объединение отрезков [5, 12] и [10, 15] дает отрезок [5, 15]. Таким образом, подходит вариант 3).

Задача 6. На числовой прямой даны три отрезка: P = [10, 40], Q = [5, 15] и R = [35, 50]. Выберите такой отрезок A, что формула $((x \in P) \to (x \in Q)) \lor ((x \in A) \to (x \in R))$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

1) [10, 20] 2) [15, 25] 3) [20, 30] 4) [120, 130]

Решение. Преобразуем исходное выражение к следующему $(\neg P \lor Q) \lor (\neg A \lor R) = (\neg A \lor \neg P) \lor (Q \lor R)$.

Последнее выражение будет эквивалентно (¬ $A \lor ¬P$), если найдется такой отрезок A, который не имеет пересечений с отрезком P. Такой отрезок есть, это [120, 130]. Тогда выражение (¬ $A \lor ¬P$) тождественно истинно независимо от ($Q \lor R$). Таким образом, <u>вариант 4</u>).

Задача 7. На числовой прямой даны три отрезка: P = [20, 50], Q = [15, 20] и R = [40,80]. Выберите такой отрезок A, что формула $((x \in P) \to (x \in Q)) \lor ((x \in A) \to (x \in R))$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

1) [10, 25] 2) [20, 30] 3) [40, 50] 4) [35, 45]

Решение. Преобразуем исходное выражение к следующему $(\neg P \lor Q) \lor (\neg A \lor R) = (\neg A \lor \neg P) \lor (Q \lor R) = \neg (A \land P) \lor (Q \lor R)$.

В отличие от предыдущей задачи в этом примере нет отрезка A, не пересекающегося с отрезком P. Поэтому нужно искать пересечение $(A \wedge P)$, которое будет полностью

входить в Q или в R. Такой отрезок есть, это [40, 50], который полностью входит в отрезок R. Таким образом, вариант 3).

Задача 8. На числовой прямой даны три отрезка: P = [10, 50], Q = [15, 20] и R = [30, 80]. Выберите такой отрезок A, что формула $((x \in P) \to (x \in Q)) \lor ((x \notin A) \to (x \notin R))$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

1) [10, 25] 2) [25, 50] 3) [40, 60] 4) [50, 80]

Решение. Преобразуем исходное выражение к виду $(\neg P \lor Q) \lor (A \lor \neg R) = A \lor Q \lor (\neg P \lor \neg R) = \neg (P \land R) \lor A \lor Q$. Последнее выражение будет истинно, если пересечение $P \land R$ будет целиком лежать в объединении $A \lor Q$ (или только в A). Пересечение $P \land R$ [30, 50] целиком содержится в отрезке [25, 50], то есть подходит вариант 2).

Задача 9. На числовой прямой даны два отрезка: P = [5, 15] и Q = [10, 20]. Выберите такой отрезок A, что формула $(x \in P) \land (x \notin Q) \land (x \in A)$ тождественно ложна, то есть принимает значение 0 при любом значении переменной x.

1) [0, 7] 2) [8, 15] 3) [15, 20] 4) [7, 20]

Решение. Если формула ложна, то ее отрицание истинно, поэтому преобразуем исходное выражение к виду $\neg (P \land \neg Q \land A) = \neg P \lor \neg A \lor Q$. Если найдется отрезок A, который не пересекается с отрезком P, то это и будет решение. Такой отрезок есть - [15, 20]. Правда, есть пересечение в граничной точке отрезка, но, как и в задаче 4, будет считать, что это допустимо. Итак, вариант 3).

Задача 10. На числовой прямой даны два отрезка: P = [10, 20] и Q = [5, 15]. Выберите такой отрезок A, что формула $((x \in Q) \to (x \in P)) \land (x \in A)$ тождественно ложна, то есть принимает значение 0 при любом значении переменной x.

1) [0, 6] 2) [5, 8] 3) [7, 15] 4) [12, 20]

Решение. Если формула ложна, то ее отрицание истинно, поэтому преобразуем исходное выражение к виду $\neg((\neg Q \lor P) \land A) = \neg(\neg Q \lor P) \lor \neg A = (Q \land \neg P) \lor \neg A$. Тогда отрезок A должен целиком лежать внутри пересечения $Q \land \neg P$. Легко видеть, что этим пересечением является отрезок [5, 10]. Целиком внутри него лежит отрезок [5, 8]. Таким образом, получаем вариант 2).

Задача 11. На числовой прямой даны два отрезка: P = [41, 61] и Q = [11, 91]. Выберите такой отрезок A, что формула $((x \in P) \to (x \in A)) \land ((x \in A) \to (x \in Q))$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x. Если таких отрезков несколько, укажите тот, который имеет большую длину.

1) [7, 43] 2) [7, 73] 3) [37, 53] 4) [37, 63]

Решение. Преобразуем исходное выражение к виду ($\neg P \lor A$) \land ($\neg A \lor Q$). Обе части выражения будут истинны, если P целиком находится в A и A целиком находится в Q. Для первого условия подходит отрезок только [37, 63]. Для второго условия он тоже подходит. Таким образом, вариант 4).

Задача 12. На числовой прямой даны два отрезка: P = [10, 30] и Q = [20, 40]. Выберите такой отрезок A, что формула $(x \in A) \rightarrow ((x \in P) \equiv (x \in Q))$ тождественно истинна, то есть принимает значение 1 при любом значении переменной x. Если таких отрезков несколько, укажите тот, который имеет большую длину.

Решение. Преобразуем исходное выражение к виду

$$\neg A \lor (P \equiv Q) = \neg A \lor (P \land Q \lor \neg P \land \neg Q).$$

Попробуем найти такой отрезок A, чтобы он целиком лежал в пересечении $P \wedge Q$, то есть в отрезке [20, 30]. Отрезок [21, 29] подходит, то есть вариант 2).

Системы логических уравнений

Будем придерживаться следующих обозначений: дизъюнкция (+), конъюнкция (·), исключающее ИЛИ (\bigoplus), импликация (\rightarrow), эквивалентность (\equiv), отрицание (\neg). На рисунках темный кружок обозначает 1, а светлый кружок - 0. F_1 — количество решений при X_1 , равном 1. F_0 — количество решений при X_1 , равном 0. N — число переменных в системе уравнений. $F(N) = F_1(N) + F_0(N)$ — общее число решений.

Задание 1. Нужно найти количество решений системы уравнений ([1], тест № 2) $X_1+X_2\cdot X_3=1$ ¶ $X_2+X_3\cdot X_4=1$ ¶....¶ $X_7+X_8\cdot X_9=1$

Вначале полагаем $X_1 = 1$. Тогда для первого уравнения значения X_2 и X_3 могут быть любыми. Таким образом, дерево построено до третьего уровня. Далее с учетом X_2 и X_3 выбираем X_4 . После этого алгоритм повторяется для каждой тройки переменных (см. рис. 1). Начиная с четвертого уровня можно заметить, что $F_1(4)=F_1(3)+F_1(1)$, $F_1(5)=F_1(4)+F_1(2)$. Таким образом, получаем

$$F_1(N) = F_1(N-1) + F_1(N-3)$$
 (1)

Рис. 1. Задание 1

Из уравнения (1) получаем, что

$$F_1(8) = 16 + 7 = 23$$
,

$$F_1(9) = 23 + 11 = 34.$$

Для того чтобы построить дерево из нуля, можно воспользоваться нижней ветвью из Рис. 1. Легко видеть, что она повторяет основное дерево, но со сдвигом вправо на 2. То есть $F_0(9) = F_1(7) = 16$.

Итого, $F(9) = F_1(9) + F_0(9) = 34 + 16 = 50$.

Задание 2. Нужно найти количество решений системы уравнений ([1], 4.16)

 $(X_1 \equiv X_2) + (X_1 \equiv X_3) = 1$

 $(X_2 \equiv X_3) + (X_2 \equiv X_4) = 1$

 $(X_3 \equiv X_4) + (X_3 \equiv X_5) = 1$

 $(X_4 \equiv X_5) + (X_4 \equiv X_6) = 1$

 $(X_5 \equiv X_6) + (X_5 \equiv X_7) = 1$

Рис. 2. Задание 2

Для получения числа решений задания 2 можно было не строить дерево решений полностью (см. рис. 2), так как очевидно, что $F_1(N) = N$. Аналогично, $F_0(N) = N$.

Итого F(7) = 7 + 7 = 14.

Задание 3. Нужно найти количество решений системы уравнений ([1], тест № 1)

 $(X_1 \rightarrow X_2) \cdot (X_2 \rightarrow X_3) \cdot (X_3 \rightarrow X_4) \cdot (X_4 \rightarrow X_5) = 1$

 $(Y_1 \rightarrow Y_2) \cdot (Y_2 \rightarrow Y_3) \cdot (Y_3 \rightarrow Y_4) \cdot (Y_4 \rightarrow Y_5) = 1$

 $(Y_1 \rightarrow X_1) \cdot (Y_2 \rightarrow X_2) \cdot (Y_3 \rightarrow X_3) \cdot (Y_4 \rightarrow X_4) \cdot (Y_5 \rightarrow X_5) = 1$

На рисунке 3 показаны деревья решений для X и Y и приведены соответствующие таблицы истинности.

Рис. 3. Задание 3

Из первых двух уравнений, поскольку X и Y независимы, следует, что общее число решений F(5)=6*6=36. Для того чтобы учесть третье уравнение, нужно для каждой переменной Y подсчитать какое число наборов из таблицы X не удовлетворяет уравнению. Импликация $Y_i \to X_i = 0$, если $Y_i = 1$, а $X_i = 0$. То есть для $Y_1 = 1$ третьему уравнению не удовлетворяют все строки из таблицы X, где $X_1 = 0$. Число таких строк равно пяти. Для $Y_2 = 1$ таких строк -4 и т.д. Общее число строк, которые не удовлетворяют третьему уравнению равно 5+4+3+2+1=15.

Таким образом, общее число допустимых решений равно 36 - 15 = 21.

Задание 4. Нужно найти количество решений системы уравнений ([1], 4.17.а)

 $(X_1 \equiv X_2) + (X_1 \equiv X_3) = 1$ $(X_2 \equiv X_3) + (X_2 \equiv X_4) = 1$ $(X_3 \equiv X_4) + (X_3 \equiv X_5) = 1$ $(X_4 \equiv X_5) + (X_4 \equiv X_6) = 1$ $(X_5 \equiv X_6) + (X_5 \equiv X_7) = 1$ $(X_6 \equiv X_7) + (X_6 \equiv X_8) = 1$ $(X_5 \equiv X_6) = 0$

Рис. 4. Задание 4

Для данного примера сложно определить конечную формулу F(N), проще построить дерево решений до конца (или хотя бы до X6). На рисунке 4 показано построенное дерево решений. В результате получаем $F(8) = F_1(8) + F_0(8) = 5 + 5 = 10$.

Задание 5. Нужно найти количество решений системы уравнений ([1], 4.17.б)

 $(X_1 \equiv X_2) + (X_1 \equiv X_3) = 1$

 $(X_2 \equiv X_3) + (X_2 \equiv X_4) = 1$

 $(X_3 \equiv X_4) + (X_3 \equiv X_5) = 1$

 $(X_4 \equiv X_5) + (X_4 \equiv X_6) = 1$

 $(X_5 \equiv X_6) + (X_5 \equiv X_7) = 1$

 $(X_6 \equiv X_8) = 1$

Рис. 5. Задание 5

Для этого примера, так же как и для предыдущего, проще построить дерево решений до конца (рис. 5).

B результате получаем $F(8) = F_1(8) + F_0(8) = 7 + 7 = 14$.

Задание 6. Нужно найти количество решений системы уравнений ([1], 4.17.в)

 $(X_1 \bigoplus X_2) + (X_2 \equiv X_3) = 1$

 $(X_2 \bigoplus X_3) + (X_3 \equiv X_4) = 1$

 $(X_3 \bigoplus X_4) + (X_4 \equiv X_5) = 1$

 $(X_4 \bigoplus X_5) + (X_5 \equiv X_6) = 1$

 $(X_5 \bigoplus X_6) + (X_6 \equiv X_7) = 1$

 $(X_6 \bigoplus X_7) + (X_7 \equiv X_8) = 1$

Дерево решений показано на рисунке 6.

Рис. 6. Задание 6

Для данной системы уравнений можно было не строить полное дерево решений, так как уже с третьего — четвертого шага понятно, что $F_1(N) = N$. Легко видеть, что $F_0(N)$ можно получить из дерева, начинающегося на втором уровне из нуля. Тогда $F_0(N) = N$.

Итого, $F(8) = F_1(8) + F_0(8) = 8 + 8 = 16$.

Задание 7. Нужно найти количество решений системы уравнений ([1], 4.17.г)

 $(X_1 \bigoplus X_2) + (X_1 \bigoplus X_3) = 1$

 $(X_2 \bigoplus X_3) + (X_2 \bigoplus X_4) = 1$

 $(X_3 \bigoplus X_4) + (X_3 \bigoplus X_5) = 1$

 $(X_4 \bigoplus X_5) + (X_4 \bigoplus X_6) = 1$

 $(X_5 \bigoplus X_6) + (X_5 \bigoplus X_7) = 1$

 $(X_6 \bigoplus X_7) + (X_6 \bigoplus X_8) = 1$

Заметим, что если $X_1 = X_2 = 1$, то первое уравнение выполняется при $X_3 = 0$. Построим сначала дерево для $X_1 = X_2 = 1$ (рис. 7).

Тогда число решений $F_1(N) = F_{11}(N) + F_{10}(N)$.

Рис. 7. Задание 7

Из рисунка 7 видно, что число решений $F_{11}(N) = F_{11}(N-1) + F_{11}(N-2)$. То есть число решений описывается числами Фибоначчи. Вторую ветку дерева для F_{10} можно не строить, так как она получается из рисунка 1, начиная со второго уровня.

Тогда $F_{10}(N) = F_{11}(N+1)$.

Окончательно получаем, что $F_{11}(8) = 13$ и $F_{10}(8) = F_{11}(9) = 13 + 8 = 21$.

Тогда $F_1(8) = F_{11}(8) + F_{10}(8) = 13 + 21 = 34$.

Для того чтобы получить $F_0(N)$, также необязательно строить дерево решений, так как оно получается из рисунка 1, начиная с третьего уровня.

Тогда $F_0(N) = F_{11}(N+2)$. Отсюда получаем, что $F_0(8) = F_{11}(10) = F_{11}(9) + F_{11}(8) = 21 + 13 = 34$.

Таким образом, общее число решений $F(8) = F_1(8) + F_0(8) = 34 + 34 = 68$.

Задание 8. Нужно найти количество решений системы уравнений ([1], Задание 2)

 $(X_1 + X_2) \rightarrow (X_3 + X_4) = 1$

 $(X_3 + X_4) \rightarrow (X_5 + X_6) = 1$

 $(X_5 + X_6) \rightarrow (X_7 + X_8) = 1$

 $(X_7 + X_8) \rightarrow (X_9 + X_{10}) = 1$

Сделаем подстановку $(X_1 + X_2) = Y_1$ и т.д. Получим систему уравнений

 $Y_1 \rightarrow Y_2 = 1$

 $Y_2 \rightarrow Y_3 = 1$

 $Y_3 \rightarrow Y_4 = 1$

 $Y_4 \rightarrow Y_5 = 1$

Дерево решений и таблица истинности для этой системы в точности совпадают с деревом и таблицей, изображенным на рисунке 3. С учетом подстановки отметим, что выражение $(X_1 + X_2)$ равно единице в трех случаях (за исключением варианта, когда обе переменные равны нулю).

Поскольку переменные Y независимы, то для первой строки таблицы истинности, показанной на рисунке 3, число различных комбинаций равно 3^5 , для второй строки -3^4 и т.д. Общее число различных комбинаций равно $3^5 + 3^4 + 3^3 + 3^2 + 3^1 + 3^0 = 364$.

Задание 9. Нужно найти количество решений системы уравнений ([2], Задание 4)

$$(X_1 \rightarrow X_2) \cdot (\neg X_1 \rightarrow X_3) \cdot (X_1 \rightarrow X_4) \cdot (\neg X_1 \rightarrow X_5) = 1$$
$$(\neg Y_1 \rightarrow Y_2) \cdot (Y_1 \rightarrow Y_3) \cdot (\neg Y_1 \rightarrow Y_4) \cdot (Y_1 \rightarrow Y_5) = 1$$

 $(\neg X_1 + Y_1) \cdot (\neg X_1 + Y_5) = 1$

Для X и Y имеем следующие деревья решений

Рис. 8. Задание 8

С учетом третьего уравнения получаем следующие четыре набора комбинаций:

$$A - C$$
: $4 * 4 = 16 ((\neg X_1 + Y_1) \cdot (\neg X_1 + Y_5) = (0 + 1) \cdot (0 + 1) = 1)$

$$B-C: 4*4 = 16((\neg X_1 + Y_1) \cdot (\neg X_1 + Y_5) = (1+1) \cdot (1+1) = 1)$$

$$A - D$$
: = 0 $(0 + 0) \cdot (\neg X_1 + Y_5) = 0$

$$B - D: 4 * 4 = 16 (1 + 0) \cdot (1 + Y_5) = 1$$

Всего получается 48 наборов решений.

Задание 10. Нужно найти количество решений системы уравнений [4]

$$((X_1 \equiv X_2) + (X_3 \equiv X_4)) \cdot (\neg (X_1 \equiv X_2) + \neg (X_3 \equiv X_4)) = 1$$

$$((X_3 \equiv X_4) + (X_5 \equiv X_6)) \cdot (\neg (X_3 \equiv X_4) + \neg (X_5 \equiv X_6)) = 1$$

$$((X_5 \equiv X_6) + (X_7 \equiv X_8)) \cdot (\neg (X_5 \equiv X_6) + \neg (X_7 \equiv X_8)) = 1$$

$$((X_7 \equiv X_8) + (X_9 \equiv X_{10})) \cdot (\neg (X_7 \equiv X_8) + \neg (X_9 \equiv X_{10})) = 1$$

Проведем замену:

$$(X_1 \equiv X_2) = Y_1$$

$$(X_3 \equiv X_4) = Y_2$$

$$(X_5 \equiv X_6) = Y_3$$

$$(X_7 \equiv X_8) = Y_4$$

$$(X_9 \equiv X_{10}) = Y_5$$

Перепишем систему уравнений с учетом замены:

$$(Y_1+Y_2) \cdot (\neg Y_1 + \neg Y_2) = 1$$

$$(Y_2+Y_3) \cdot (\neg Y_2 + \neg Y_3) = 1$$

$$(Y_3+Y_4) \cdot (\neg Y_3 + \neg Y_4) = 1$$

$$(\mathbf{Y}_4 + \mathbf{Y}_5) \cdot (\neg \mathbf{Y}_4 + \neg \mathbf{Y}_5) = 1$$

На рисунке 9 показано дерево решений

Рис. 9. Задание 10

 \P С учетом подстановки отметим, что выражение ($X_1 \equiv X_2$) равно единице (или нулю) в двух случаях (когда значения переменных совпадают). С учетом независимости переменных для каждого дерева получаем, что число наборов решений равно $2^5 = 32$. Общее число наборов решений равно 64.

Задание 11. Нужно найти количество решений системы уравнений ([1], Пример 2)

$$\neg X_1 + X_2 = 1$$

 $\neg X_2 + X_3 = 1$
 \dots
 $\neg X_9 + X_{10} = 1$

На рисунке 10 показано дерево решений. Мы ограничились четырьмя уровнями вместо десяти, так как очевидно, что $F_1(N)=1$ и $F_0(N)=N$. Тогда $F(N)=F_1(N)+F_0(N)=1+N$. В нашем случае F(10)=1+10=11.

Рис. 10. Задание 11

Задание 12. Нужно найти количество решений системы уравнений ([3], Пример 3)

$$(X_1 \equiv X_2) + (X_2 \equiv X_3) = 1$$

$$(X_1 \equiv X_3) + (X_3 \equiv X_4) = 1$$

$$(X_1 \equiv X_4) + (X_4 \equiv X_5) = 1$$

$$(X_1 \equiv X_5) + (X_5 \equiv X_6) = 1$$

$$(X_1 \equiv X_6) + (X_6 \equiv X_7) = 1$$

$$(X_1 \equiv X_7) + (X_7 \equiv X_8) = 1$$

$$(X_1 \equiv X_8) + (X_8 \equiv X_9) = 1$$

$$(X_1 \equiv X_9) + (X_9 \equiv X_{10}) = 1$$

$$(X_1 \equiv X_{10}) = 0$$

¶Рис. 11. Задание 12

Построив дерево решений из «1» (ограничимся пятью уровнями), можно заметить, что $F_1(N)=N$. Причем, значения X_N состоят из N-1 значений «0» и одного значения «1». Однако последнее уравнение в нашей системе запрещает значение «1» для X_{10} . Поэтому число решений $F_1(10)=10$ - 1. Нетрудно заметить, что дерево решений из «0» будет симметричным (вместо нулей будут единицы). Поэтому $F_0=10$ - 1.

Окончательно F(N) = 2 * 9 = 18.

Задание 13. Нужно найти количество решений системы уравнений ([3], Пример 4)

$$\neg (X_1 \equiv X_2) + (X_3 \equiv X_4) = 1$$

$$\neg (X_3 \equiv X_4) + (X_5 \equiv X_6) = 1$$

$$\neg (X_5 \equiv X_6) + (X_7 \equiv X_8) = 1$$

$$\neg (X_7 \equiv X_8) + (X_9 \equiv X_{10}) = 1$$

Проведем замену:

$$(X_1 \equiv X_2) = Y_1$$

$$(X_3 \equiv X_4) = Y_2$$

$$(X_5 \equiv X_6) = Y_3$$

$$(X_7 \equiv X_8) = Y_4$$

$$(X_9 \equiv X_{10}) = Y_5$$

Перепишем систему уравнений с учетом замены:

$$\neg Y_1 + Y_2 = 1$$

$$\neg Y_2 + Y_3 = 1$$

$$\neg Y_3 + Y_4 = 1$$

$$\neg Y_4 + Y_5 = 1$$

Из задания 11 видно, что F(5) = 5 + 1 = 6. Таблица истинности представлена на рисунке 12.

Y1	Y2	Y3	Y4	Y5
1	1	1	1	1
0	1	1	1	1
0	0	1	1	1
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

Рис. 12. Задание 13

С учетом подстановки отметим, что выражение ($X_1 \equiv X_2$) равно единице (или нулю) в двух случаях (когда значения переменных совпадают). С учетом независимости переменных для каждой строки таблицы получаем, что число наборов решений равно $2^5 = 32$. Общее число наборов решений равно 6 * 32 = 192.

Задание 14. Нужно найти количество решений системы уравнений ([3], Задание 1) $((X_1 \equiv X_2) \cdot (X_3 \equiv X_4)) + (\neg (X_1 \equiv X_2) \cdot \neg (X_3 \equiv X_4)) = 0$ $((X_3 \equiv X_4) \cdot (X_5 \equiv X_6)) + (\neg (X_3 \equiv X_4) \cdot \neg (X_5 \equiv X_6)) = 0$ $((X_5 \equiv X_6) \cdot (X_7 \equiv X_8)) + (\neg (X_5 \equiv X_6) \cdot \neg (X_7 \equiv X_8)) = 0$ $((X_7 \equiv X_8) \cdot (X_9 \equiv X_{10})) + (\neg (X_7 \equiv X_8) \cdot \neg (X_9 \equiv X_{10})) = 0$ Проведем замену: $(X_1 \equiv X_2) = Y_1$ $(X_3 \equiv X_4) = Y_2$ $(X_5 \equiv X_6) = Y_3$ $(X_7 \equiv X_8) = Y_4$ $(X_9 \equiv X_{10}) = Y_5$ Перепишем систему уравнений с учетом замены: $(\mathbf{Y}_1 \cdot \mathbf{Y}_2) + (\neg \mathbf{Y}_1 \cdot \neg \mathbf{Y}_2) = 0$ $(\mathbf{Y}_2 \cdot \mathbf{Y}_3) + (\neg \mathbf{Y}_2 \cdot \neg \mathbf{Y}_3) = 0$ $(\mathbf{Y}_3 \cdot \mathbf{Y}_4) + (\neg \mathbf{Y}_3 \cdot \neg \mathbf{Y}_4) = 0$ $(\mathbf{Y}_4 \cdot \mathbf{Y}_5) + (\neg \mathbf{Y}_4 \cdot \neg \mathbf{Y}_5) = 0$ $(\mathbf{Y}_1 \equiv \mathbf{Y}_2) = 0$ $(\mathbf{Y}_2 \equiv \mathbf{Y}_3) = 0$ $(\mathbf{Y}_3 \equiv \mathbf{Y}_4) = 0$ $(Y_4 \equiv Y_5) = 0$

На рисунке 13 показано дерево решений

Рис. 13. Задание 14

С учетом подстановки отметим, что выражение ($X_1 \equiv X_2$) равно единице (или нулю) в двух случаях (когда значения переменных совпадают). С учетом независимости переменных для каждого дерева получаем, что число наборов решений равно $2^5 = 32$. Общее число наборов решений равно 64.

Задание 15. Нужно найти количество решений системы уравнений ([3], Задание 2)

$$(X_1 \cdot X_2) + (\neg X_1 \cdot \neg X_2) + (X_1 \equiv X_3) = 1$$

 $(X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) + (X_2 \equiv X_4) = 1$
 $(X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) + (X_3 \equiv X_5) = 1$
 $(X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) + (X_4 \equiv X_6) = 1$
 $(X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) + (X_5 \equiv X_7) = 1$
 $(X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) + (X_6 \equiv X_8) = 1$
 $(X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) + (X_7 \equiv X_9) = 1$
 $(X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) + (X_8 \equiv X_{10}) = 1$
Заметим, что систему уравнений можно переписать в виде $(X_1 \equiv X_2) + (X_1 \equiv X_3) = 1$
 $(X_2 \equiv X_3) + (X_2 \equiv X_4) = 1$

$$(X_3 \equiv X_4) + (X_3 \equiv X_5) = 1$$

 $(X_4 \equiv X_5) + (X_4 \equiv X_6) = 1$
 $(X_5 \equiv X_6) + (X_5 \equiv X_7) = 1$
 $(X_6 \equiv X_7) + (X_6 \equiv X_8) = 1$
 $(X_7 \equiv X_8) + (X_7 \equiv X_9) = 1$
 $(X_8 \equiv X_9) + (X_8 \equiv X_{10}) = 1$

Но эта система повторяет систему из задания 5, только без условия ограничения и для N=10. Тогда число решений равно $F(N)=F_1(N)+F_0(N)=N+N$. При N=10 получаем F(N)=20.

Задание 16. Нужно найти количество решений системы уравнений ([3], Задание 3)

$$(X_1 \cdot X_2) + (\neg X_1 \cdot \neg X_2) + (X_1 \equiv X_3) = 1$$

 $(X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) + (X_2 \equiv X_4) = 1$
 $(X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) + (X_3 \equiv X_5) = 1$
 $(X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) + (X_4 \equiv X_6) = 1$
 $(X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) + (X_5 \equiv X_7) = 1$
 $(X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) + (X_6 \equiv X_8) = 1$
 $(X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) + (X_7 \equiv X_9) = 1$
 $(X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) + (X_8 \equiv X_{10}) = 0$
Эту систему уравнений, как и в предыдущем задании, можно переписать в виде $(X_1 \equiv X_2) + (X_1 \equiv X_3) = 1$
 $(X_2 \equiv X_3) + (X_2 \equiv X_4) = 1$
 $(X_3 \equiv X_4) + (X_3 \equiv X_5) = 1$
 $(X_4 \equiv X_5) + (X_4 \equiv X_6) = 1$
 $(X_5 \equiv X_6) + (X_5 \equiv X_7) = 1$
 $(X_6 \equiv X_7) + (X_6 \equiv X_8) = 1$
 $(X_7 \equiv X_8) + (X_7 \equiv X_9) = 1$
 $(X_8 \equiv X_9) + (X_8 \equiv X_{10}) = 0$

Из последнего уравнения легко проверить, что после N=8 число решений перестает возрастать. Тогда F(10)=F(8)=8+8=16.

Задание 17. Нужно найти количество решений системы уравнений ([3], Задание 4)

$$(X_1 \cdot X_2) + (\neg X_1 \cdot \neg X_2) + (X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) = 1$$
 $(X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) + (X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) = 1$
 $(X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) + (X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) = 1$
 $(X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) + (X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) = 1$
 $(X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) + (X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) = 1$
 $(X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) + (X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) = 1$
 $(X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) + (X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) = 1$
 $(X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) + (X_9 \cdot X_{10}) + (\neg X_9 \cdot \neg X_{10}) = 1$
Заметим, что систему уравнений можно переписать в виде $(X_1 \equiv X_2) + (X_2 \equiv X_3) = 1$
 $(X_2 \equiv X_3) + (X_3 \equiv X_4) = 1$
 $(X_3 \equiv X_4) + (X_4 \equiv X_5) = 1$
 $(X_4 \equiv X_5) + (X_5 \equiv X_6) = 1$
 $(X_5 \equiv X_6) + (X_6 \equiv X_7) = 1$
 $(X_6 \equiv X_7) + (X_7 \equiv X_8) = 1$
 $(X_7 \equiv X_8) + (X_8 \equiv X_9) = 1$
 $(X_8 \equiv X_9) + (X_9 \equiv X_{10}) = 1$

На рисунке 14 дерево построено до пятого уровня.

Рис. 14. Задание 17

Из рисунка 14 видно, что число решений описывается числами Фибоначчи, то есть $F_1(N) = F_1(N-1) + F_1(N-2)$. Тогда $F_1(10) = 89$. Легко проверить, что для $F_0(N)$ дерево будет симметрично. Поэтому $F_0(10) = 89$. $F(10) = F_1(10) + F_0(10) = 89 + 89 = 178$.

Задание 18. Нужно найти количество решений системы уравнений ([3], Задание 5)

$$(X_1 \cdot X_2) + (\neg X_1 \cdot \neg X_2) + (X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) = 1$$

$$(X_2 \cdot X_3) + (\neg X_2 \cdot \neg X_3) + (X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) = 1$$

$$(X_3 \cdot X_4) + (\neg X_3 \cdot \neg X_4) + (X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) = 1$$

$$(X_4 \cdot X_5) + (\neg X_4 \cdot \neg X_5) + (X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) = 1$$

$$(X_5 \cdot X_6) + (\neg X_5 \cdot \neg X_6) + (X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) = 1$$

$$(X_6 \cdot X_7) + (\neg X_6 \cdot \neg X_7) + (X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) = 1$$

 $(X_7 \cdot X_8) + (\neg X_7 \cdot \neg X_8) + (X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) = 1$

$$(X_8 \cdot X_9) + (\neg X_8 \cdot \neg X_9) + (X_9 \cdot X_{10}) + (\neg X_9 \cdot \neg X_{10}) = 0$$

Заметим, что систему уравнений можно переписать в виде

$$(X_1 \equiv X_2) + (X_2 \equiv X_3) = 1$$

$$(X_2 \equiv X_3) + (X_3 \equiv X_4) = 1$$

$$(X_3 \equiv X_4) + (X_4 \equiv X_5) = 1$$

$$(X_4 \equiv X_5) + (X_5 \equiv X_6) = 1$$

$$(X_5 \equiv X_6) + (X_6 \equiv X_7) = 1$$

$$(X_6 \equiv X_7) + (X_7 \equiv X_8) = 1$$

$$(X_7 \equiv X_8) + (X_8 \equiv X_9) = 1$$

$$(X_8 \equiv X_9) + (X_9 \equiv X_{10}) = 0$$

Задание 18 похоже на задание 17, однако последнее уравнение приводит к тому, что начиная с седьмого уровня число решений не увеличивается.

В результате $F(10) = F_1(10) + F_0(10) = F_1(7) + F_0(7) = 21 + 21 = 42$.

Задание 19. Нужно найти количество решений системы уравнений ([3], Задание 6)

$$(X_1 \equiv X_2) + (X_1 \equiv X_{10}) = 1$$

$$(X_2 \equiv X_3) + (X_2 \equiv X_{10}) = 1$$

$$(X_3 \equiv X_4) + (X_3 \equiv X_{10}) = 1$$

$$(X_4 \equiv X_5) + (X_4 \equiv X_{10}) = 1$$

$$(X_5 \equiv X_6) + (X_5 \equiv X_{10}) = 1$$

 $(X_6 \equiv X_7) + (X_6 \equiv X_{10}) = 1$
 $(X_7 \equiv X_8) + (X_7 \equiv X_{10}) = 1$
 $(X_8 \equiv X_9) + (X_8 \equiv X_{10}) = 1$
 $(X_9 \equiv X_{10}) + (X_9 \equiv X_{10}) = 1$
 $(X_1 \equiv X_{10}) = 0$

Рис. 15. Задание 19

Деревья решений для получения $F_1(N)$ и $F_0(N)$ показаны на рисунке 15. Однако уравнение $(X_9 \equiv X_{10}) = 1$ не может быть выполнено. Поэтому система уравнений не имеет решений.

Задание 20. Нужно найти количество решений системы уравнений ([3], Задание 7)

Задание 20. Нужно наити 1 $(X_1 \rightarrow X_2) + (X_1 \rightarrow X_3) = 1$ $(X_2 \rightarrow X_3) + (X_2 \rightarrow X_4) = 1$ $(X_3 \rightarrow X_4) + (X_3 \rightarrow X_5) = 1$ $(X_4 \rightarrow X_5) + (X_4 \rightarrow X_6) = 1$ $(X_5 \rightarrow X_6) + (X_5 \rightarrow X_7) = 1$ $(X_6 \rightarrow X_7) + (X_6 \rightarrow X_8) = 1$

 $(X_7 \to X_8) + (X_7 \to X_9) = 1$ $(X_8 \to X_9) + (X_8 \to X_{10}) = 1$

На рисунке 16 показано дерево решений из «1».

Рис. 16. Задание 20

Вместо десяти уровней мы ограничились пятью, так как задача схожа с заданием 17. Однако из «0» дерево будет выглядеть иначе (см. рис. 17).

Рис. 17. Задание 20

Заметим, что $F_0(N) = F_1(N+1) - 1$. Тогда $F_1(10) = 89$, а $F_0(10) = F_1(11)$ - 1 = 144 - 1. Итого, $F(10) = F_1(10) + F_0(10) = 89 + 143 = 232$.

Заключение

В заключение данного раздела приведем программу на бейсике VBA, с помощью которой можно решать системы логических уравнений. Программа может понадобиться при составлении новых систем уравнений. На рисунке 18 показана программа, с помощью которой решается система уравнений из задания 7.

```
Sub calc()
    Dim m(8), k, j, n As Integer
    Dim c As String
    vq = 8
    j = 0
    For i = 1 To 2 ^ vg
         For k = 1 To vg
             m(k) = 0
         Next k
         n = i - 1
         k = 1
         Do While n > 0
             m(k) = n \mod 2
              n = n \setminus 2
              k = k + 1
         Loop
         If (m(1) \iff m(2) \text{ Or } m(1) \iff m(3)) And
              (m(2) <> m(3) Or m(2) <> m(4)) And _
              (m(3) <> m(4) Or m(3) <> m(5)) And _
              (m(4) \iff m(5) \text{ Or } m(4) \iff m(6)) \text{ And}
              (m(5) \iff m(6) \text{ Or } m(5) \iff m(7)) \text{ And }
              (m(6) \iff m(7) \text{ Or } m(6) \iff m(8)) \text{ Then}
              c = ""
              For k = 1 To vg
                  c = c + Format(m(k))
              Next k
              j = j + 1
         End If
    Next i
    MsgBox j
End Sub
```

Рис. 18. Программа для задания 7

В программе, показанной на рисунке 18, массив m и переменная с содержат значения переменных, удовлетворяющих системе уравнений из задания 7. Программа выдает ответ 68. В программе используется факт, что число различных наборов значений п логических переменных равно 2^n . Для получения всех наборов нужно выполнить цикл от 0 до 2^n -1. Переменная цикла на каждом шаге переводится в двоичную систему, результат записывается в массив m и затем уже проверяются условия из системы уравнений. Для решения другой системы уравнений достаточно поменять размерность массива m, изменить значение переменной vg (равна размерности) и поменять условия проверки.

Литература

- 1. Крылов С.С. ЕГЭ 2014. Информатика. Тематические тестовые задания / С.С. Крылов, Д.М.Ушаков. М.: Издательство «Экзамен».
- 2. Методический сертифицированный курс фирмы «1С» «Подготовка к ЕГЭ по информатике. Модуль 1». Москва 2013
- 3. Сайт К.Ю. Поляков http://kpolyakov.narod.ru/download/inf-2011-14.pdf
- 4. http://infoegehelp.ru/index.php?Itemid=77&id=103&option=com_content&view=article
- 5. http:/kpolyakov.spb.ru