In [1]:

```
# Import Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
from scipy.ndimage.filters import gaussian_filter1d
import pandasql as ps
import warnings
warnings.filterwarnings('ignore')
from pylab import rcParams
import scipy.stats as stats
from scipy import spatial
from sklearn.neighbors import NearestNeighbors
import statistics
```

In [2]:

```
# Import dataset
file = r'C:\Users\Joel\Dropbox\Vitrual Internships\Quantium\Task 2\Data\QVI_clean_data.
csv'
data = pd.read_csv(file, index_col= 0)
data
```

Out[2]:

	real_date	STORE_NBR	TXN_ID	PROD_NAME	BRAND_NAME	PACKET_SIZE	PR
0	2018-07- 01	9	8808	Smiths Thinly Cut Roast Chicken 175g	Smiths	175	
1	2018-07- 01	86	84237	Red Rock Deli Sp Salt & Truffle 150G	RRD	150	
2	2018-07- 01	129	132474	Smith Crinkle Cut Mac N Cheese 150g	Smiths	150	
3	2018-07- 01	58	53145	Pringles Sthrn FriedChicken 134g	Pringles	134	
4	2018-07- 01	97	97311	WW Crinkle Cut Chicken 175g	Woolworths	175	
					•••		
246735	2019-06- 30	91	89519	Thins Chips Seasonedchicken 175g	Thins	175	
246736	2019-06- 30	84	83704	Doritos Corn Chips Nacho Cheese 170g	Doritos	170	
246737	2019-06- 30	24	20917	Smiths Crinkle Cut Chips Chs&Onion170g	Smiths	170	
246738	2019-06- 30	199	198068	Doritos Corn Chips Nacho Cheese 170g	Doritos	170	
246739	2019-06- 30	220	219497	Dorito Corn Chp Supreme 380g	Doritos	380	

246738 rows × 12 columns

→

```
In [3]:
```

```
data['real_date'] = pd.to_datetime(data['real_date'])
```

In [4]:

```
print(data['real_date'].dtypes)
```

datetime64[ns]

• First Task will be to establish a control store. The trial stores are 77, 86, and 88, so we must find potential stores which have similar performance to the trial stores before the trial period.

Metrics we will be looking at will be:

- · Monthly sales revenue
- Monthly number of customers

1(a) Selecting a Control Store

In [5]:

```
# Isolate stores which have been active throughout trial
data_active_feb = data[(data['real_date'] >= '2019-02-01') & (data['real_date'] < '2019</pre>
-05-01')]
data active feb['STORE NBR'].value counts()
active_stores = data_active_feb['STORE_NBR'].unique()
active_store_records = data[data.STORE_NBR.isin(active_stores)]
# Select all stores outside of trial stores BEFORE trial
data prior feb = active store records[active store records['real date'] < '2019-02-01']
query = """
        SELECT *
        FROM data_prior_feb
        WHERE STORE_NBR NOT IN (77, 86, 88)
control_rec = ps.sqldf(query, locals())
# Create df of all stores outside of trial stores
# Create df of all stores active in febuary
stores = control_rec.STORE_NBR.unique()
control_stores = pd.DataFrame(stores, columns = ['STORE_NBR'])
# Add metrics to active stores
# Monthly Sales Rev
rev = []
for store in control stores['STORE NBR']:
    df = control rec[control rec['STORE NBR'] == store]
    rev.append(round(np.sum(df['TOT_SALES']), 2))
control_stores['TOT_SALES'] = rev
# Monthly Number of Customers
cust = []
for store in control stores['STORE NBR']:
    df = control_rec[control_rec['STORE_NBR'] == store]
    cust.append(len(df.index))
control stores['NBR OF CUST'] = cust
# Monthly number of transactions per customer
avg qty = []
for store in control_stores['STORE_NBR']:
    df = control_rec[control_rec['STORE_NBR'] == store]
    avg qty.append(round(np.mean(df['PROD QTY']), 2))
control_stores['AVG_QTY'] = avg_qty
# Average Unit price
avg_unit = []
for store in control stores['STORE NBR']:
    df = control_rec[control_rec['STORE_NBR'] == store]
    avg unit.append(round(np.mean(df['AVG CHIP PRICE']), 2))
control_stores['AVG_UNIT_PRICE'] = avg_unit
control stores
```

Out[5]:

	STORE_NBR	TOT_SALES	NBR_OF_CUST	AVG_QTY	AVG_UNIT_PRICE
0	9	2297.40	373	1.76	3.51
1	129	5227.60	748	1.99	3.52
2	58	8576.95	994	1.99	4.35
3	97	5793.35	836	1.98	3.50
4	199	8200.50	943	1.98	4.39
258	206	3.00	1	1.00	3.00
259	258	156.20	23	1.96	3.50
260	117	91.80	27	1.04	3.29
261	252	3.70	1	1.00	3.70
262	193	1.80	1	1.00	1.80

263 rows × 5 columns

In [6]:

```
# Create df for only trial stores BEFORE FEB
# Get only trial stores 77, 86, 88
query = """
        SELECT *
        FROM data_prior_feb
        WHERE STORE_NBR IN (77, 86, 88)
trial_rec = ps.sqldf(query, locals())
# Create df of all trial stores
stores = trial_rec.STORE_NBR.unique()
trial_stores = pd.DataFrame(stores, columns = ['STORE_NBR'])
# Add metrics to trial stores
# Monthly Sales Rev
rev = []
for store in trial_stores['STORE_NBR']:
    df = trial_rec[trial_rec['STORE_NBR'] == store]
    rev.append(round(np.sum(df['TOT_SALES']), 2))
trial_stores['TOT_SALES'] = rev
# Monthly Number of Customers
cust = []
for store in trial_stores['STORE_NBR']:
    df = trial_rec[trial_rec['STORE_NBR'] == store]
    cust.append(len(df.index))
trial_stores['NBR_OF_CUST'] = cust
# Monthly number of transactions per customer
avg qty = []
for store in trial_stores['STORE_NBR']:
    df = trial rec[trial rec['STORE NBR'] == store]
    avg_qty.append(round(np.mean(df['PROD_QTY']), 2))
trial_stores['AVG_QTY'] = avg_qty
# Average Unit price
avg_unit = []
for store in trial stores['STORE NBR']:
    df = trial_rec[trial_rec['STORE_NBR'] == store]
    avg_unit.append(round(np.mean(df['AVG_CHIP_PRICE']), 2))
trial stores['AVG UNIT PRICE' ] = avg unit
trial stores
```

Out[6]:

STORE_NBR TOT_SALES NBR_OF_CUST AVG_QTY AVG_UNIT_PRICE

0	86	5795.65	832	1.99	3.51
1	88	8832.80	1028	1.98	4.33
2	77	1595.50	298	1.52	3.56

Before writing the function to choose comparable control stores, we must first define what metric we will use. Our test metric will be euclidian distance of each store's vector.

```
In [7]:
```

```
control_rec['transactions'] = 1
```

In [8]:

```
trial_rec['transactions'] = 1
```

In [12]:

```
# Prepare data
new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Januar
y']
x = control_rec[control_rec['STORE_NBR'] == 233]
x['real_date'] = pd.to_datetime(x['real_date'])
x_sales = x.groupby(x['real_date'].dt.strftime('%B'))['TOT_SALES'].sum().sort_values()
x_sales = x_sales.reindex(new_order, axis = 0)
x sales = pd.DataFrame(x sales)
x sales
x_cust = x.groupby(x['real_date'].dt.strftime('%B'))['transactions'].sum().sort_values
x_cust = x_cust.reindex(new_order, axis = 0)
x cust = pd.DataFrame(x cust)
df = x_sales
df['customers'] = x cust['transactions']
x_qty = x.groupby(x['real_date'].dt.strftime('%B'))['PROD_QTY'].sum().sort_values()
x_qty = x_qty.reindex(new_order, axis = 0)
x qty = pd.DataFrame(x qty)
df['PROD_QTY'] = x_qty['PROD_QTY']
df1=df.stack().swaplevel()
df1.index=df1.index.map('{0[0]}_{0[1]}'.format)
df1 = df1.to frame().T
store nbr = pd.DataFrame([233])
df1.insert(0, 'store_nbr', store_nbr)
df1
```

Out[12]:

	store_nbr	TOT_SALES_July	customers_July	PROD_QTY_July	TOT_SALES_August	custo
0	233	271.2	49.0	79.0	260.7	
1 r	ows × 22 co	olumns				
4						>

Store store data into format which descibes monthly performance.

In [15]:

```
# Create dataframe for pre-trial trial stores
new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Januar
y']
x = trial rec[trial rec['STORE NBR'] == 86]
x['real_date'] = pd.to_datetime(x['real_date'])
x_sales = x.groupby(x['real_date'].dt.strftime('%B'))['TOT_SALES'].sum().sort_values()
x_sales = x_sales.reindex(new_order, axis = 0)
x_sales = pd.DataFrame(x_sales)
x_sales
x_cust = x.groupby(x['real_date'].dt.strftime('%B'))['transactions'].sum().sort_values
()
x_cust = x_cust.reindex(new_order, axis = 0)
x_cust = pd.DataFrame(x_cust)
df = x_sales
df['customers'] = x cust['transactions']
x_qty = x.groupby(x['real_date'].dt.strftime('%B'))['PROD_QTY'].sum().sort_values()
x_qty = x_qty.reindex(new_order, axis = 0)
x_qty = pd.DataFrame(x_qty)
df['PROD_QTY'] = x_qty['PROD_QTY']
# Condense to 1 row
df1=df.stack().swaplevel()
df1.index=df1.index.map('{0[0]}_{0[1]}'.format)
df1 = df1.to_frame().T
# Create df
store_nbr = pd.DataFrame([86])
df1.insert(0, 'store_nbr', store_nbr)
for store in trial_stores['STORE_NBR'].iloc[1:]:
    new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Jan
uary']
    x = trial_rec[trial_rec['STORE_NBR'] == store]
    x['real date'] = pd.to datetime(x['real date'])
    x_sales = x.groupby(x['real_date'].dt.strftime('%B'))['TOT_SALES'].sum().sort_value
s()
    x_sales = x_sales.reindex(new_order, axis = 0)
    x sales = pd.DataFrame(x sales)
    x cust = x.groupby(x['real date'].dt.strftime('%B'))['transactions'].sum().sort val
ues()
    x cust = x cust.reindex(new order, axis = 0)
    x_cust = pd.DataFrame(x_cust)
    df = x sales
    df['customers'] = x cust['transactions']
    x qty = x.groupby(x['real date'].dt.strftime('%B'))['PROD QTY'].sum().sort values()
    x_qty = x_qty.reindex(new_order, axis = 0)
    x qty = pd.DataFrame(x qty)
    df['PROD_QTY'] = x_qty['PROD_QTY']
    # Condense to 1 row
    df2=df.stack().swaplevel()
    df2.index=df2.index.map('{0[0]} {0[1]}'.format)
    df2 = df2.to_frame().T
    # append to df
    store nbr = pd.DataFrame([store])
    df2.insert(0, 'store_nbr', store_nbr)
```

```
df1 = df1.append(df2, sort = False)

trial_store_pre_trial_data = df1
trial_store_pre_trial_data
```

Out[15]:

	store_nbr	TOT_SALES_July	customers_July	PROD_QTY_July	TOT_SALES_August	custo
0	86	851.0	120.0	239.0	726.85	
0	88	1218.2	144.0	288.0	1242.20	
0	77	268.4	51.0	77.0	247.50	

3 rows × 22 columns

In [16]:

```
# Create dataframe for pre-trial control stores
new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Januar
y']
x = control_rec[control_rec['STORE_NBR'] == 9]
x['real_date'] = pd.to_datetime(x['real_date'])
x_sales = x.groupby(x['real_date'].dt.strftime('%B'))['TOT_SALES'].sum().sort_values()
x_sales = x_sales.reindex(new_order, axis = 0)
x_sales = pd.DataFrame(x_sales)
x sales
x cust = x.groupby(x['real_date'].dt.strftime('%B'))['transactions'].sum().sort_values
x_cust = x_cust.reindex(new_order, axis = 0)
x_cust = pd.DataFrame(x_cust)
df = x sales
df['customers'] = x_cust['transactions']
x_qty = x.groupby(x['real_date'].dt.strftime('%B'))['PROD_QTY'].sum().sort_values()
x_qty = x_qty.reindex(new_order, axis = 0)
x_qty = pd.DataFrame(x_qty)
df['PROD_QTY'] = x_qty['PROD_QTY']
# Condense to 1 row
df1=df.stack().swaplevel()
df1.index=df1.index.map('{0[0]}_{0[1]}'.format)
df1 = df1.to_frame().T
# Create df
store_nbr = pd.DataFrame([9])
df1.insert(0, 'store_nbr', store_nbr)
for store in control_stores['STORE_NBR'].iloc[1:]:
    new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Jan
uary', 'February']
    x = control_rec[control_rec['STORE_NBR'] == store]
    x['real_date'] = pd.to_datetime(x['real_date'])
    x_sales = x.groupby(x['real_date'].dt.strftime('%B'))['TOT_SALES'].sum().sort_value
s()
    x_sales = x_sales.reindex(new_order, axis = 0)
    x sales = pd.DataFrame(x sales)
    x_cust = x.groupby(x['real_date'].dt.strftime('%B'))['transactions'].sum().sort_val
    x_cust = x_cust.reindex(new_order, axis = 0)
    x_cust = pd.DataFrame(x_cust)
    df = x sales
    df['customers'] = x cust['transactions']
    x_qty = x.groupby(x['real_date'].dt.strftime('%B'))['PROD_QTY'].sum().sort_values()
    x_qty = x_qty.reindex(new_order, axis = 0)
    x_qty = pd.DataFrame(x_qty)
    df['PROD_QTY'] = x_qty['PROD_QTY']
    # Condense to 1 row
    df2=df.stack().swaplevel()
    df2.index=df2.index.map('{0[0]}_{0[1]}'.format)
    df2 = df2.to_frame().T
    # append to df
    store_nbr = pd.DataFrame([store])
```

```
df2.insert(0, 'store_nbr', store_nbr)
df1 = df1.append(df2, sort = False)

control_store_pre_trial_data = df1
control_store_pre_trial_data.fillna(0, inplace = True)
control_store_pre_trial_data
```

Out[16]:

	store_nbr	TOT_SALES_July	customers_July	PROD_QTY_July	TOT_SALES_August	cust
0	9	271.1	46.0	77.0	323.40	
0	129	644.6	93.0	186.0	815.60	
0	58	1515.0	175.0	349.0	962.15	
0	97	805.8	108.0	216.0	865.55	
0	199	1238.4	141.0	281.0	1182.30	
0	206	3.0	1.0	1.0	0.00	
0	258	6.0	1.0	2.0	21.00	
0	117	0.0	0.0	0.0	14.40	
0	252	0.0	0.0	0.0	3.70	
0	193	0.0	0.0	0.0	0.00	
262		aalumana				

263 rows × 22 columns

In [14]:

trial_store_pre_trial_data

Out[14]:

	store_nbr	TOT_SALES_July	customers_July	PROD_QTY_July	TOT_SALES_August	custo
0	86	851.0	120.0	239.0	726.85	_
0	88	1218.2	144.0	288.0	1242.20	
0	77	268.4	51.0	77.0	247.50	
3 rows x 25 columns						

Now that we have prepared our pre-trial data for both trial stores and potential control stores, we can find the best fitting control store for each trial store by finding the store with the closest euclidean distance (closest vector). We can do this by using SKlearn's Nearest Neighbors package.

1(b) Control Store Selection Function

In [17]:

```
def find_control_store(store_index, store_number):
    samples = control_store_pre_trial_data.iloc[:, 1:]
    neigh = NearestNeighbors(n_neighbors = 1)
    X = np.array(trial_store_pre_trial_data.iloc[store_index, 1:]).reshape(1, -1)
    neigh.fit(samples)
    store = neigh.kneighbors(X, return_distance = False)
    print(f'Store with closest euclidean distance to trial store {store_number}: Store
{int(control_store_pre_trial_data.iloc[store[0][0], 0])} ')
    print('------')
```

2 (a)(i) Analysis - Store 77

Let's find a control store for store 77.

In [18]:

```
find_control_store(2, 77)
```

```
Store with closest euclidean distance to trial store 77: Store 233
```

Now that we have a control store, let's check visually if the drivers are indeed similar in the period before the trial. We can check total sales first.

In [19]:

```
def pre_trial_analysis(store_records, store_nbr):
    new_order = ['July', 'August', 'September', 'October', 'November', 'December', 'Jan
uary']
    x = store_records[store_records['STORE_NBR'] == store_nbr]
    x['real_date'] = pd.to_datetime(x['real_date'])
    x sales = x.groupby(x['real date'].dt.strftime('%B'))['TOT SALES'].sum().sort value
s()
    x sales = x sales.reindex(new order, axis = 0)
    x_sales = pd.DataFrame(x_sales)
    x_sales
   x cust = x.groupby(x['real date'].dt.strftime('%B'))['transactions'].sum().sort val
ues()
    x_cust = x_cust.reindex(new_order, axis = 0)
    x cust = pd.DataFrame(x cust)
    df = x_sales
    df['customers'] = x cust['transactions']
    x qty = x.groupby(x['real date'].dt.strftime('%B'))['PROD QTY'].sum().sort values()
    x_qty = x_qty.reindex(new_order, axis = 0)
    x_qty = pd.DataFrame(x_qty)
    df['PROD_QTY'] = x_qty['PROD_QTY']
    return df
```

In [20]:

```
store_77_pre_trial = pre_trial_analysis(trial_rec, 77)
store_233_pre_trial = pre_trial_analysis(control_rec, 233)
```

In [21]:

store_77_pre_trial

Out[21]:

TOT_SALES customers PROD_QTY

real_date			
July	268.4	51	77
August	247.5	46	71
September	216.8	42	66
October	194.3	37	50
November	224.9	42	63
December	255.2	45	67
January	188.4	35	58

In [22]:

store_233_pre_trial

Out[22]:

TOT_SALES	customers	PROD_	_QTY
-----------	-----------	-------	------

real_date			
July	271.2	49	79
August	260.7	45	72
September	220.9	43	68
October	159.3	32	48
November	206.5	40	61
December	265.4	45	70
January	150.5	31	41

In [23]:

```
def plot_comparison(trial_store, control_store, metric, title_metric, trial_store_numbe
r, control_store_number):
    plt.figure(figsize = (10,6))
    sns.set_style('darkgrid')
    sns.lineplot(data = trial_store[metric], legend = 'auto')
    sns.lineplot(data = control_store[metric], legend = 'auto')
    plt.title(f'{title_metric} Comparison: Store {trial_store_number} vs Store {control_store_number}', fontsize = 15)
    labels = ['Trial Store', 'Control Store']
    plt.xlabel('Month', fontsize = 12)
    plt.ylabel(title_metric, fontsize = 12)
    plt.legend(labels, loc = 'best')
    plt.show()
```

In [24]:

```
plot_comparison(store_77_pre_trial, store_233_pre_trial, 'TOT_SALES', 'Pre-Trial Revenu
e', 77, 233)
```


We see that the performance of store 233 closely resembles the trends for store 77 prior to the trial in terms of total sales. Let's have a look at number of customers and product quantities.

In [25]:

```
plot_comparison(store_77_pre_trial, store_233_pre_trial, 'customers', 'Number of Customers', 77, 233)
plot_comparison(store_77_pre_trial, store_233_pre_trial, 'PROD_QTY', 'Quantity Sold', 7, 233)
```


Again we see a closely resemblence of performance for both number of customers and quantity sold.

2 (a)(ii) Assessment of Trial - Store 77

Now that we have our control store, let's reprepare out data so it's easier to analyze. We will only have to do this once since the resulting df can be used for the other trial stores.

In [31]:

```
# Re-prepare data for analysis

# Create copy of original df
analysis_df = data

# Format date columns
analysis_df['real_date'] = pd.to_datetime(analysis_df['real_date'], format = "%Y-%m-%d")

# Add new month ID column with easier to read format
analysis_df['MONTH_ID'] = analysis_df['real_date'].dt.strftime("%Y%m").astype('int')
analysis_df.MONTH_ID.head()
```

Out[31]:

0 201807
1 201807
2 201807
3 201807
4 201807
Name: MONTH_ID, dtype: int32

Now we should create our measures to use during the analysis.

In [32]:

```
# Monthly sales
mSales = analysis_df.groupby(['STORE_NBR', 'MONTH_ID'])['TOT_SALES'].sum()

# Monthly number of customers
mCustomers = analysis_df.groupby(['STORE_NBR', 'MONTH_ID'])['LYLTY_CARD_NBR'].nunique()

# Average Unit Price
mAvgUnitPrice = mSales / analysis_df.groupby(['STORE_NBR', 'MONTH_ID'])['PROD_QTY'].sum
()

# Merge together
measuresOverTime = pd.concat([mSales, mCustomers, mAvgUnitPrice], axis = 1)
measuresOverTime.columns = ['totSales', 'nCustomers', 'avgUnitPrice']
measuresOverTime = measuresOverTime.reset_index()
measuresOverTime
```

Out[32]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice
0	1	201807	188.9	47	3.256897
1	1	201808	168.4	41	3.238462
2	1	201809	268.1	57	3.776056
3	1	201810	175.4	39	3.439216
4	1	201811	184.8	44	3.360000
3160	272	201902	385.3	44	4.329213
3161	272	201903	421.9	48	4.349485
3162	272	201904	445.1	54	4.239048
3163	272	201905	314.6	34	4.430986
3164	272	201906	301.9	33	4.439706

3165 rows × 5 columns

Our next step is to group into observation periods of pre-trial and full periods (whole FY).

In [35]:

```
# Filter stores with full obs periods
obs_full = measuresOverTime['STORE_NBR'].value_counts()
active_idx = obs_full[obs_full == 12].index
fullActiveStores = measuresOverTime[measuresOverTime['STORE_NBR'].isin(active_idx)]
# Grab pre_trial_measures
preTrialMeasures = fullActiveStores[fullActiveStores['MONTH_ID'] < 201902]
preTrialMeasures.head(10)</pre>
```

Out[35]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice
0	1	201807	188.9	47	3.256897
1	1	201808	168.4	41	3.238462
2	1	201809	268.1	57	3.776056
3	1	201810	175.4	39	3.439216
4	1	201811	184.8	44	3.360000
5	1	201812	160.6	37	3.345833
6	1	201901	149.7	35	3.651220
12	2	201807	140.5	36	3.267442
13	2	201808	180.9	35	3.618000
14	2	201809	133.9	32	3.719444

The trial period goes from the start of Febuary 2019 through April 2019. We now want to see if there has been an uplift in overall chip sales. We'll start with scaling the control store's sales to a similar level to control for any differences between the two stores outside of the trial period.

In [37]:

```
# Scale pre-trial control sales to match pre-trial stores sales
scalingFactorControlSales77 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 77]['t
otSales'].sum()) / (measuresOverTime[measuresOverTime['STORE_NBR'] == 233]['totSales'].
sum())
print(f'Scaling Factor store 77: {scalingFactorControlSales77}')
```

Scaling Factor store 77: 1.0965972731837317

In [39]:

```
# apply scaling factor
scaledControlSales233 = measuresOverTime[measuresOverTime['STORE_NBR'] == 233]
scaledControlSales233['controlSales'] = scaledControlSales233['totSales'] * scalingFact
orControlSales77
scaledControlSales233
```

Out[39]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlSales
2695	233	201807	271.2	47	3.432911	297.397180
2696	233	201808	260.7	44	3.620833	285.882909
2697	233	201809	220.9	40	3.248529	242.238338
2698	233	201810	159.3	32	3.318750	174.687946
2699	233	201811	206.5	39	3.385246	226.447337
2700	233	201812	265.4	43	3.791429	291.036916
2701	233	201901	150.5	31	3.670732	165.037890
2702	233	201902	220.7	42	3.448438	242.019018
2703	233	201903	180.6	35	3.473077	198.045468
2704	233	201904	144.2	27	3.517073	158.129327
2705	233	201905	312.1	54	3.760241	342.248009
2706	233	201906	197.0	34	3.788462	216.029663

Now that we have comparable sales figures, we can calculate the percentage difference between the scaled control sales and the trial store's sales during the trial period.

In [46]:

```
# Get percentage difference between scaled control sales and trial sales
trialSales77 = measuresOverTime[measuresOverTime['STORE_NBR'] == 77].reset_index(drop = True)
scaledControlSales233 = scaledControlSales233.reset_index(drop = True)
percentageDiffSales77 = pd.concat([trialSales77['MONTH_ID'], trialSales77['totSales'],
scaledControlSales233['controlSales']], axis = 1)
percentageDiffSales77.columns = ['MONTH_ID', 'trialSales', 'controlSales']
percentageDiffSales77['PercentageDiff'] = (abs(percentageDiffSales77['trialSales'] - pe
rcentageDiffSales77['controlSales']))/percentageDiffSales77['controlSales']
months = ["July '18", "Aug '18", "Sept '18", "Oct '18", "Nov '18", "Dec '18", "Jan '19", "Feb
'19", "Mar '19", "Apr '19", "May '19", "June '19"]
percentageDiffSales77['MonthYear'] = months
percentageDiffSales77
```

Out[46]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear
0	201807	268.4	297.397180	0.097503	July '18
1	201808	247.5	285.882909	0.134261	Aug '18
2	201809	216.8	242.238338	0.105014	Sept '18
3	201810	194.3	174.687946	0.112269	Oct '18
4	201811	224.9	226.447337	0.006833	Nov '18
5	201812	255.2	291.036916	0.123135	Dec '18
6	201901	188.4	165.037890	0.141556	Jan '19
7	201902	211.6	242.019018	0.125689	Feb '19
8	201903	255.1	198.045468	0.288088	Mar '19
9	201904	258.1	158.129327	0.632208	Apr '19
10	201905	272.3	342.248009	0.204378	May '19
11	201906	246.6	216.029663	0.141510	June '19

In [169]:

```
def plot_statistics(df, trial_metric, control_metric, title_metric, trial_store_number,
control_store_number):
    plt.figure(figsize = (10,6))
    sns.set style('darkgrid')
    sns.lineplot(data = df, x = df['MonthYear'], y = trial_metric, legend = 'auto')
    sns.lineplot(data = df, x = df['MonthYear'], y = control_metric, legend = 'auto')
    plt.title(f'{title_metric} Comparison: Store {trial_store_number} vs Store {control
_store_number}', fontsize = 15)
    labels = ['Trial Store', 'Control Store']
    plt.xlabel('Month', fontsize = 12)
    plt.ylabel(title_metric, fontsize = 12)
    plt.legend(labels, loc = 'best')
    plt.axvline(7, linestyle = '--', color = 'g', linewidth = 1.1)
plt.axvline(9, linestyle = '--', color = 'g', linewidth = 1.1)
    limit = df[control_metric].max()
    plt.text(5.8, 0.92 * limit, 'Begin Trial')
    plt.text(9.1, 0.95 * limit, 'End Trial')
    plt.show()
```

In [76]:

plot_statistics(percentageDiffSales77, 'trialSales', 'controlSales', 'Revenue During Tr
ial', 77, 233)

2 (a)(iii) Insights - Store 77 Sales

SALES:

- Store 77 had a dramatic increase of sales over its control store in 2/3 months.
- In month 1 of the trial, the control store was ahead of store 77 by 12.6%.
- However, for month 2 and 3 (Mar & Apr), sales appeared to have higher by 28.9% & 63.2% respectively.
- We can see that once the trial begins, the control store increases, but sharply decreases towards march through to April.

2 (a)(iv) Significance Testing Store 77 - Sales

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standard deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between trial and control stores.

In [79]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.
"""
dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv77s = percentageDiffSales77[percentageDiffSales77['MONTH_ID'] < 201902]['PercentageDiff'].std()
print(f'Standard Deviation: {stdv77}')</pre>
```

Standard Deviation: 0.045161704066012505

In [80]:

```
# Calculate T values for trial months.
percentageDiffSales77['tValue'] = (percentageDiffSales77['PercentageDiff'] - 0) / stdv7
7s
percentageDiffSales77
```

Out[80]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear	tValue
0	201807	268.4	297.397180	0.097503	July '18	2.158980
1	201808	247.5	285.882909	0.134261	Aug '18	2.972894
2	201809	216.8	242.238338	0.105014	Sept '18	2.325281
3	201810	194.3	174.687946	0.112269	Oct '18	2.485935
4	201811	224.9	226.447337	0.006833	Nov '18	0.151303
5	201812	255.2	291.036916	0.123135	Dec '18	2.726542
6	201901	188.4	165.037890	0.141556	Jan '19	3.134426
7	201902	211.6	242.019018	0.125689	Feb '19	2.783078
8	201903	255.1	198.045468	0.288088	Mar '19	6.379034
9	201904	258.1	158.129327	0.632208	Apr '19	13.998770
10	201905	272.3	342.248009	0.204378	May '19	4.525474
11	201906	246.6	216.029663	0.141510	June '19	3.133405

In [92]:

```
# lineplot the confidence intervals df
ciSales77 = percentageDiffSales77[['MONTH_ID', 'MonthYear', 'trialSales', 'controlSales'
, 'tValue']]
ciSales77['95th%ConfidenceInterv'] = ciSales77['controlSales'] * (1+(stdv77s * 2))
ciSales77['5th%ConfidenceInterv'] = ciSales77['controlSales']* (1-(stdv77s * 2))
ciSales77
```

Out[92]:

	MONTH_ID	MonthYear	trialSales	controlSales	tValue	95th%ConfidenceInterv	5th%C
0	201807	July '18	268.4	297.397180	2.158980	324.259107	
1	201808	Aug '18	247.5	285.882909	2.972894	311.704828	
2	201809	Sept '18	216.8	242.238338	2.325281	264.118130	
3	201810	Oct '18	194.3	174.687946	2.485935	190.466356	
4	201811	Nov '18	224.9	226.447337	0.151303	246.900832	
5	201812	Dec '18	255.2	291.036916	2.726542	317.324362	
6	201901	Jan '19	188.4	165.037890	3.134426	179.944674	
7	201902	Feb '19	211.6	242.019018	2.783078	263.879001	
8	201903	Mar '19	255.1	198.045468	6.379034	215.933609	
9	201904	Apr '19	258.1	158.129327	13.998770	172.412107	
10	201905	May '19	272.3	342.248009	4.525474	373.161016	
11	201906	June '19	246.6	216.029663	3.133405	235.542198	

In [189]:

```
# Plotting function for CI
def plot_confidence_interval(df, measure, trial_metric, control_metric, nthCi, fthCi, t
rial_store, control_store):
    plt.figure(figsize = (10,6))
    sns.set_style('darkgrid')
    sns.lineplot(data = df, x = df['MonthYear'], y = trial_metric, color = 'magenta', a
lpha = 0.6)
    sns.lineplot(data = df, x = df['MonthYear'], y = control_metric, color = 'cyan', al
pha = 0.6)
    sns.lineplot(data = df, x = df['MonthYear'], y = nthCi, color = 'red', alpha = 0.4)
    sns.lineplot(data = df, x = df['MonthYear'], y = fthCi, color = 'blue', alpha = 0.4
)
    plt.axvline(7, linestyle = '--', color = 'g', linewidth = 1.1)
    plt.title(f'{measure} by Month (Trial Store {trial_store} vs Control Store {control
_store})', fontsize = 15)
    labels = ['Trial Store', 'Control Store', 'Control 95th % Confidence Interval', 'Co
ntrol 5th % Confidence Interval']
    plt.xlabel('Month', fontsize = 12)
    plt.ylabel(measure, fontsize = 12)
    plt.legend(labels, loc = 'best')
    plt.axvline(9, linestyle = '--', color = 'g', linewidth = 1.1)
    limit = df[nthCi].max()
    plt.text(5.8, 0.92 * limit, 'Begin Trial')
    plt.text(9.1, 0.95 * limit, 'End Trial')
```

In [120]:

plot_confidence_interval(ciSales77, 'Total Sales', 'trialSales', 'controlSales', '95th%
ConfidenceInterv', '5th%ConfidenceInterv')

In [81]:

Out[81]:

2.3646242510102993

Our results show that the t-values for all 3 months of the trial lay outside the 5% to 95% confidence intervalue value of the t-distribution. This tells us that the changes in sales for store 77 are statistically significant.

We can now do the same with customers.

2 (a)(v) Analysis: Store 77 Customers

In [124]:

```
# Scale pre-trial control customers to match pre-trial trial store customers
scalingFactorControlCust77 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 77]['nC
ustomers'].sum())/ (measuresOverTime[measuresOverTime['STORE_NBR'] == 233]['nCustomers'
].sum())
print(f'Scaling Factor (cust) for store 77: {scalingFactorControlCust77}')
```

Scaling Factor (cust) for store 77: 1.0811965811965811

In [126]:

```
# Apply Scaling Factor
scaledControlCust233 = measuresOverTime[measuresOverTime['STORE_NBR'] == 233]
scaledControlCust233['controlCust'] = scaledControlCust233['nCustomers'] * scalingFacto
rControlCust77
scaledControlCust233
```

Out[126]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlCust
2695	233	201807	271.2	47	3.432911	50.816239
2696	233	201808	260.7	44	3.620833	47.572650
2697	233	201809	220.9	40	3.248529	43.247863
2698	233	201810	159.3	32	3.318750	34.598291
2699	233	201811	206.5	39	3.385246	42.166667
2700	233	201812	265.4	43	3.791429	46.491453
2701	233	201901	150.5	31	3.670732	33.517094
2702	233	201902	220.7	42	3.448438	45.410256
2703	233	201903	180.6	35	3.473077	37.841880
2704	233	201904	144.2	27	3.517073	29.192308
2705	233	201905	312.1	54	3.760241	58.384615
2706	233	201906	197.0	34	3.788462	36.760684

Now that we have comaprable customer figures, we can calculate the percentage difference between the scaled control customers and the trial store's customers during the trial period.

In [128]:

```
# Get percentage difference between scaled control customers and trial customers
trialCust77 = measuresOverTime[measuresOverTime['STORE_NBR'] == 77].reset_index(drop =
True)
scaledControlCust233 = scaledControlCust233.reset_index(drop = True)
percentageDiffCust77 = pd.concat([trialCust77['MONTH_ID'], trialCust77['nCustomers'], s
caledControlCust233['controlCust']], axis = 1)
percentageDiffCust77.columns = ['MONTH_ID', 'trialCust', 'controlCust']
percentageDiffCust77['PercentageDiff'] = (abs(percentageDiffCust77['trialCust'] - perce
ntageDiffCust77['controlCust'])) / percentageDiffCust77['controlCust']
percentageDiffCust77['MonthYear'] = months
percentageDiffCust77
```

Out[128]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear
0	201807	47	50.816239	0.075099	July '18
1	201808	46	47.572650	0.033058	Aug '18
2	201809	40	43.247863	0.075099	Sept '18
3	201810	36	34.598291	0.040514	Oct '18
4	201811	39	42.166667	0.075099	Nov '18
5	201812	43	46.491453	0.075099	Dec '18
6	201901	31	33.517094	0.075099	Jan '19
7	201902	40	45.410256	0.119142	Feb '19
8	201903	46	37.841880	0.215584	Mar '19
9	201904	47	29.192308	0.610013	Apr '19
10	201905	53	58.384615	0.092227	May '19
11	201906	38	36.760684	0.033713	June '19

In [132]:

```
# Plot visual of performance
plot_statistics(percentageDiffCust77, 'trialCust', 'controlCust', 'No. Customers', 77,
233)
```


2(a)(vi) Insights - Store 77 Customers

- Store 77 began the trial with a smaller amount of customers than the control store.
- In March and April, the number of customers far outgrew the amount of the control store in those months.
- In Febuary, the control store 233 had 12% more customers.
- In the following months, store 77 had 21.5% & 61% more customers than the control store.

2(a)(vii) Significance Testing - Customers

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standard deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between the trial and control stores.

In [133]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.
"""

dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv77c = percentageDiffCust77[percentageDiffCust77['MONTH_ID'] < 201902]['PercentageDi
ff'].std()
print(f'Standard Deviation: {stdv77c}')</pre>
```

Standard Deviation: 0.018818309735266672

In [134]:

```
# Calculate T values for trial months.
percentageDiffCust77['tValue'] = (percentageDiffCust77['PercentageDiff'] - 0) / stdv77c
percentageDiffCust77
```

Out[134]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear	tValue
0	201807	47	50.816239	0.075099	July '18	3.990731
1	201808	46	47.572650	0.033058	Aug '18	1.756685
2	201809	40	43.247863	0.075099	Sept '18	3.990731
3	201810	36	34.598291	0.040514	Oct '18	2.152894
4	201811	39	42.166667	0.075099	Nov '18	3.990731
5	201812	43	46.491453	0.075099	Dec '18	3.990731
6	201901	31	33.517094	0.075099	Jan '19	3.990731
7	201902	40	45.410256	0.119142	Feb '19	6.331160
8	201903	46	37.841880	0.215584	Mar '19	11.456099
9	201904	47	29.192308	0.610013	Apr '19	32.415939
10	201905	53	58.384615	0.092227	May '19	4.900898
11	201906	38	36.760684	0.033713	June '19	1.791505

Our t-value will tell allow us to test with a null hypothesis that there is zero difference between trial and control stores.

In [135]:

```
ciCust77 = percentageDiffCust77[['MONTH_ID', 'MonthYear', 'trialCust','controlCust', 't
Value']]
ciCust77['95th%ConfidenceInterv'] = ciCust77['controlCust'] * (1+(stdv77c * 2))
ciCust77['5th%ConfidenceInterv'] = ciCust77['controlCust']* (1-(stdv77c * 2))
ciCust77
```

Out[135]:

	MONTH_ID	MonthYear	trialCust	controlCust	tValue	95th%ConfidenceInterv	5th%Co
0	201807	July '18	47	50.816239	3.990731	52.728791	
1	201808	Aug '18	46	47.572650	1.756685	49.363123	
2	201809	Sept '18	40	43.247863	3.990731	44.875567	
3	201810	Oct '18	36	34.598291	2.152894	35.900453	
4	201811	Nov '18	39	42.166667	3.990731	43.753677	
5	201812	Dec '18	43	46.491453	3.990731	48.241234	
6	201901	Jan '19	31	33.517094	3.990731	34.778564	
7	201902	Feb '19	40	45.410256	6.331160	47.119345	
8	201903	Mar '19	46	37.841880	11.456099	39.266121	
9	201904	Apr '19	47	29.192308	32.415939	30.291007	
10	201905	May '19	53	58.384615	4.900898	60.582015	
11	201906	June '19	38	36.760684	1.791505	38.144232	
4							>

In [190]:

```
# Plot confidence intervals
plot_confidence_interval(ciCust77, 'Total Customers', 'trialCust', 'controlCust', '95t
h%ConfidenceInterv', '5th%ConfidenceInterv', 77, 233)
```


In [139]:

```
# Find the t-value range corresponding to a 95% confidence interval stats.t.ppf(0.975, # quantile to check dof) # Degrees of Freedom (number of samples - 1)
```

Out[139]:

2.3646242510102993

Our results show that the t-values for all 3 months of the trial lay outside the 5% to 95% confidence interval value of the t-distribution. This tells us that the changes in customers for store 77 are statistically significant.

2(b)(i) - Analysis - Store 86

Let's find a control store for store 77.

In [141]:

```
find_control_store(0, 86)
```

```
Store with closest euclidean distance to trial store 86: Store 155
```

Now that we have a control store, let's check visually if the drivers are indeed similar in the period before the trial. We can check total sales first.

In [144]:

```
store_86_pre_trial = pre_trial_analysis(trial_rec, 86)
store_155_pre_trial = pre_trial_analysis(control_rec, 155)
plot_comparison(store_86_pre_trial, store_155_pre_trial, 'TOT_SALES', 'Pre-trial Revenu
e', 86, 155)
plot_comparison(store_86_pre_trial, store_155_pre_trial, 'customers', 'Number of Custom
ers', 86, 155)
plot_comparison(store_86_pre_trial, store_155_pre_trial, 'PROD_QTY', 'Quantity Sold', 8
6, 155)
```


Quantity Sold Comparison: Store 86 vs Store 155

We can see that the performance of store 155 closely resembles the trends for store 86 prior to the trial in terms of sales, customers and product quantity sold.

2(b)(ii) Assessment of Trial - Store 86

Now that we have our control store, we can begin to analyze the data. The trial period goes from the start of Feb 2019 through to Apr 2019. We now want to see if there has been an uplift in overall chip sales. We can start with scaling the control store's sales to a similar level to control for any differences between the two stores outside the trial period.

In [146]:

```
# Scale pre-trial control sales to match pre-trial stores sales
scalingFactorControlSales86 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 86]['t
otSales'].sum()) / (measuresOverTime[measuresOverTime['STORE_NBR'] == 155]['totSales'].
sum())
print(f'Scaling Factor store 86: {scalingFactorControlSales86}')
```

Scaling Factor store 86: 1.0006197180282972

In [147]:

```
# apply scaling factor
scaledControlSales155 = measuresOverTime[measuresOverTime['STORE_NBR'] == 155]
scaledControlSales155['controlSales'] = scaledControlSales155['totSales'] * scalingFact
orControlSales86
scaledControlSales155
```

Out[147]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlSales
1792	155	201807	900.60	98	3.752500	901.158118
1793	155	201808	738.70	88	3.419907	739.157786
1794	155	201809	939.60	96	3.586260	940.182287
1795	155	201810	914.00	105	3.570313	914.566422
1796	155	201811	835.00	96	3.366935	835.517465
1797	155	201812	799.80	91	3.538938	800.295650
1798	155	201901	834.60	92	3.536441	835.117217
1799	155	201902	850.80	92	3.574790	851.327256
1800	155	201903	767.00	91	3.424107	767.475324
1801	155	201904	800.40	93	3.510526	800.896022
1802	155	201905	863.25	101	3.537910	863.784972
1803	155	201906	760.80	87	3.555140	761.271481

Now that we have comparable sales figures, we can calculate the percentage difference between the scaled control sales and the trial store's sales during the trial period.

In [148]:

```
# Get percentage difference between scaled control sales and trial sales
trialSales86 = measuresOverTime[measuresOverTime['STORE_NBR'] == 86].reset_index(drop =
True)
scaledControlSales155 = scaledControlSales155.reset_index(drop = True)
percentageDiffSales86 = pd.concat([trialSales86['MONTH_ID'], trialSales86['totSales'],
scaledControlSales155['controlSales']], axis = 1)
percentageDiffSales86.columns = ['MONTH_ID', 'trialSales', 'controlSales']
percentageDiffSales86['PercentageDiff'] = (abs(percentageDiffSales86['trialSales'] - pe
rcentageDiffSales86['controlSales']))/percentageDiffSales86['controlSales']
percentageDiffSales86['MonthYear'] = months
percentageDiffSales86
```

Out[148]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear
0	201807	851.00	901.158118	0.055660	July '18
1	201808	726.85	739.157786	0.016651	Aug '18
2	201809	855.00	940.182287	0.090602	Sept '18
3	201810	898.80	914.566422	0.017239	Oct '18
4	201811	851.20	835.517465	0.018770	Nov '18
5	201812	812.20	800.295650	0.014875	Dec '18
6	201901	800.60	835.117217	0.041332	Jan '19
7	201902	872.80	851.327256	0.025223	Feb '19
8	201903	945.40	767.475324	0.231831	Mar '19
9	201904	804.00	800.896022	0.003876	Apr '19
10	201905	826.90	863.784972	0.042702	May '19
11	201906	766.00	761.271481	0.006211	June '19

In [170]:

plot_statistics(percentageDiffSales86, 'trialSales', 'controlSales', 'Revenue During Tr
ial', 86, 155)

2(b)(iii) Insights - Store 86 Sales

- Store 86 had an increase in sales over its control store in 2/3 months.
- In Febuary and March, store 86 had 2.5% then a dramatic increase to 23% higher sales respectively over control store 155.
- However, in April, the trial store sales dropped back to match the control store.

2(b)(iv) Significance Testing Store 86 - Sales

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standard deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between trial and control stores.

In [171]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.
"""
dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv86s = percentageDiffSales86[percentageDiffSales86['MONTH_ID'] < 201902]['Percentage
Diff'].std()
print(f'Standard Deviation: {stdv86s}')</pre>
```

Standard Deviation: 0.028473359044104682

In [172]:

```
# Calculate T values for trial months.
percentageDiffSales86['tValue'] = (percentageDiffSales86['PercentageDiff'] - 0) / stdv8
6s
percentageDiffSales86
```

Out[172]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear	tValue
0	201807	851.00	901.158118	0.055660	July '18	1.954796
1	201808	726.85	739.157786	0.016651	Aug '18	0.584796
2	201809	855.00	940.182287	0.090602	Sept '18	3.181988
3	201810	898.80	914.566422	0.017239	Oct '18	0.605451
4	201811	851.20	835.517465	0.018770	Nov '18	0.659207
5	201812	812.20	800.295650	0.014875	Dec '18	0.522416
6	201901	800.60	835.117217	0.041332	Jan '19	1.451609
7	201902	872.80	851.327256	0.025223	Feb '19	0.885834
8	201903	945.40	767.475324	0.231831	Mar '19	8.142037
9	201904	804.00	800.896022	0.003876	Apr '19	0.136114
10	201905	826.90	863.784972	0.042702	May '19	1.499702
11	201906	766.00	761.271481	0.006211	June '19	0.218146

In [173]:

```
# lineplot the confidence intervals df
ciSales86 = percentageDiffSales86[['MONTH_ID', 'MonthYear', 'trialSales','controlSales'
, 'tValue']]
ciSales86['95th%ConfidenceInterv'] = ciSales86['controlSales'] * (1+(stdv86s * 2))
ciSales86['5th%ConfidenceInterv'] = ciSales86['controlSales']* (1-(stdv86s * 2))
ciSales86
```

Out[173]:

	MONTH_ID	MonthYear	trialSales	controlSales	tValue	95th%ConfidenceInterv	5th%Cc
0	201807	July '18	851.00	901.158118	1.954796	952.476115	
1	201808	Aug '18	726.85	739.157786	0.584796	781.250396	
2	201809	Sept '18	855.00	940.182287	3.181988	993.722583	
3	201810	Oct '18	898.80	914.566422	0.605451	966.647979	
4	201811	Nov '18	851.20	835.517465	0.659207	883.097442	
5	201812	Dec '18	812.20	800.295650	0.522416	845.869861	
6	201901	Jan '19	800.60	835.117217	1.451609	882.674401	
7	201902	Feb '19	872.80	851.327256	0.885834	899.807549	
8	201903	Mar '19	945.40	767.475324	8.142037	811.180525	
9	201904	Apr '19	804.00	800.896022	0.136114	846.504422	
10	201905	May '19	826.90	863.784972	1.499702	912.974691	
11	201906	June '19	766.00	761.271481	0.218146	804.623394	
4							>

In [178]:

```
# Plot confidence intervals
plot_confidence_interval(ciSales86, 'Total Sales', 'trialSales', 'controlSales', '95th%
ConfidenceInterv', '5th%ConfidenceInterv', 86, 155)
```


In [179]:

Out[179]:

2.3646242510102993

Our results show that only the month of March lay outside the 5th % and 95th% confidence interval range of the t-distribution. This tells us that only sales in March are statistically greater than the control store.

We will now do the same with customers.

2(b)(v) Analysis: Store 86 Customers

In [180]:

```
# Scale pre-trial control customers to match pre-trial trial store customers
scalingFactorControlCust86 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 86]['nC
ustomers'].sum())/ (measuresOverTime[measuresOverTime['STORE_NBR'] == 155]['nCustomers'
].sum())
print(f'Scaling Factor (cust) for store 86: {scalingFactorControlCust86}')
```

Scaling Factor (cust) for store 86: 1.036283185840708

In [181]:

```
# Apply Scaling Factor
scaledControlCust155 = measuresOverTime[measuresOverTime['STORE_NBR'] == 155]
scaledControlCust155['controlCust'] = scaledControlCust155['nCustomers'] * scalingFacto
rControlCust86
scaledControlCust155
```

Out[181]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlCust
1792	155	201807	900.60	98	3.752500	101.555752
1793	155	201808	738.70	88	3.419907	91.192920
1794	155	201809	939.60	96	3.586260	99.483186
1795	155	201810	914.00	105	3.570313	108.809735
1796	155	201811	835.00	96	3.366935	99.483186
1797	155	201812	799.80	91	3.538938	94.301770
1798	155	201901	834.60	92	3.536441	95.338053
1799	155	201902	850.80	92	3.574790	95.338053
1800	155	201903	767.00	91	3.424107	94.301770
1801	155	201904	800.40	93	3.510526	96.374336
1802	155	201905	863.25	101	3.537910	104.664602
1803	155	201906	760.80	87	3.555140	90.156637

Now that we have comaprable customer figures, we can calculate the percentage difference between the scaled control customers and the trial store's customers during the trial period.

In [182]:

```
# Get percentage difference between scaled control customers and trial customers
trialCust86 = measuresOverTime[measuresOverTime['STORE_NBR'] == 86].reset_index(drop =
True)
scaledControlCust155 = scaledControlCust155.reset_index(drop = True)
percentageDiffCust86 = pd.concat([trialCust86['MONTH_ID'], trialCust86['nCustomers'], s
caledControlCust155['controlCust']], axis = 1)
percentageDiffCust86.columns = ['MONTH_ID', 'trialCust', 'controlCust']
percentageDiffCust86['PercentageDiff'] = (abs(percentageDiffCust86['trialCust'] - perce
ntageDiffCust86['controlCust'])) / percentageDiffCust86['controlCust']
percentageDiffCust86['MonthYear'] = months
percentageDiffCust86
```

Out[182]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear
0	201807	94	101.555752	0.074400	July '18
1	201808	92	91.192920	0.008850	Aug '18
2	201809	100	99.483186	0.005195	Sept '18
3	201810	105	108.809735	0.035013	Oct '18
4	201811	95	99.483186	0.045065	Nov '18
5	201812	93	94.301770	0.013804	Dec '18
6	201901	89	95.338053	0.066480	Jan '19
7	201902	105	95.338053	0.101344	Feb '19
8	201903	108	94.301770	0.145260	Mar '19
9	201904	99	96.374336	0.027244	Apr '19
10	201905	99	104.664602	0.054121	May '19
11	201906	92	90.156637	0.020446	June '19

In [183]:

```
# Plot visual of performance
plot_statistics(percentageDiffCust86, 'trialCust', 'controlCust', 'No. Customers', 86,
155)
```


2(b)(vi) Insights - Store 86 Customers

- Store 86 had a dramatic increase in customers over the first half of the trial period compared to its control store.
- Throughout the trial period, it had 10.1%, 14.5% and 2.7% subsequent higher numbers of customers over store 115.
- Coupled with the sales data, this appears to not match.
- It may suggest a possibility that there were discount specials present in the months which did not achieve higher than the control store, since there was indeed more customers but not moresales.

2(b)(vii) Significance Testing - Customers

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standard deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between trial and control stores.

In [184]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.
"""

dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv86c = percentageDiffCust86[percentageDiffCust86['MONTH_ID'] < 201902]['PercentageDiff'].std()
print(f'Standard Deviation: {stdv86c}')</pre>
```

Standard Deviation: 0.02788062420844365

In [185]:

```
# Calculate T values for trial months.
percentageDiffCust86['tValue'] = (percentageDiffCust86['PercentageDiff'] - 0) / stdv86c
percentageDiffCust86
```

Out[185]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear	tValue
0	201807	94	101.555752	0.074400	July '18	2.668521
1	201808	92	91.192920	0.008850	Aug '18	0.317434
2	201809	100	99.483186	0.005195	Sept '18	0.186330
3	201810	105	108.809735	0.035013	Oct '18	1.255812
4	201811	95	99.483186	0.045065	Nov '18	1.616347
5	201812	93	94.301770	0.013804	Dec '18	0.495122
6	201901	89	95.338053	0.066480	Jan '19	2.384444
7	201902	105	95.338053	0.101344	Feb '19	3.634929
8	201903	108	94.301770	0.145260	Mar '19	5.210053
9	201904	99	96.374336	0.027244	Apr '19	0.977181
10	201905	99	104.664602	0.054121	May '19	1.941186
11	201906	92	90.156637	0.020446	June '19	0.733349

Our t-value will tell allow us to test with a null hypothesis that there is zero difference between trial and control stores.

In [187]:

```
ciCust86 = percentageDiffCust86[['MONTH_ID', 'MonthYear', 'trialCust','controlCust', 't
Value']]
ciCust86['95th%ConfidenceInterv'] = ciCust86['controlCust'] * (1+(stdv86c * 2))
ciCust86['5th%ConfidenceInterv'] = ciCust86['controlCust']* (1-(stdv86c * 2))
ciCust86
```

Out[187]:

	MONTH_ID	MonthYear	trialCust	controlCust	tValue	95th%ConfidenceInterv	5th%Con
0	201807	July '18	94	101.555752	2.668521	107.218628	
1	201808	Aug '18	92	91.192920	0.317434	96.277951	
2	201809	Sept '18	100	99.483186	0.186330	105.030492	
3	201810	Oct '18	105	108.809735	1.255812	114.877101	
4	201811	Nov '18	95	99.483186	1.616347	105.030492	
5	201812	Dec '18	93	94.301770	0.495122	99.560154	
6	201901	Jan '19	89	95.338053	2.384444	100.654222	
7	201902	Feb '19	105	95.338053	3.634929	100.654222	
8	201903	Mar '19	108	94.301770	5.210053	99.560154	
9	201904	Apr '19	99	96.374336	0.977181	101.748290	
10	201905	May '19	99	104.664602	1.941186	110.500831	
11	201906	June '19	92	90.156637	0.733349	95.183884	
4							+

In [191]:

```
# Plot confidence intervals
plot_confidence_interval(ciCust86, 'Total Customers', 'trialCust', 'controlCust', '95t
h%ConfidenceInterv', '5th%ConfidenceInterv', 86, 155)
```


In [192]:

Out[192]:

2.3646242510102993

Our results show that the t-values for Febuary and March of the trial lay outside the 5% to 95% confidence interval value of the t-distribution. This tells us that the changes in customers for store 86 are statistically significant in 2 of the 3 trial months.

2(c)(i) - Analysis - Store 88

Let's find a control store for store 88.

In [200]:

```
find_control_store(1, 88)
```

Store with closest euclidean distance to trial store 88: Store 237

Now that we have a control store, let's check visually if the drivers are indeed similar in the period before the trial.

In [201]:

```
store_88_pre_trial = pre_trial_analysis(trial_rec, 88)
store_237_pre_trial = pre_trial_analysis(control_rec, 237)
plot_comparison(store_88_pre_trial, store_237_pre_trial, 'TOT_SALES', 'Pre-trial Revenu
e', 88, 237)
plot_comparison(store_88_pre_trial, store_237_pre_trial, 'customers', 'Number of Custom
ers', 88, 237)
plot_comparison(store_88_pre_trial, store_237_pre_trial, 'PROD_QTY', 'Quantity Sold', 8
8, 237)
```


We can see that the performance of store 237 resembles the trends for store 88 prior to the trial in terms of sales, customers and product quantity sold.

2(c)(ii) Assessment of Trial - Store 88

Now that we have our control store, we can begin to analyze the data. The trial period goes from the start of Feb 2019 through to Apr 2019. We now want to see if there has been an uplift in overall chip sales. We can start with scaling the control store's sales to a similar level to control for any differences between the two stores outside the trial period.

In [202]:

```
# Scale pre-trial control sales to match pre-trial stores sales
scalingFactorControlSales88 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 88]['t
otSales'].sum()) / (measuresOverTime[measuresOverTime['STORE_NBR'] == 237]['totSales'].
sum())
print(f'Scaling Factor store 88: {scalingFactorControlSales88}')
```

Scaling Factor store 88: 1.0414851725486496

In [204]:

```
# apply scaling factor
scaledControlSales237 = measuresOverTime[measuresOverTime['STORE_NBR'] == 237]
scaledControlSales237['controlSales'] = scaledControlSales237['totSales'] * scalingFact
orControlSales88
scaledControlSales237
```

Out[204]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlSales
2743	237	201807	1387.2	125	4.446154	1444.748231
2744	237	201808	1321.9	132	4.348355	1376.739250
2745	237	201809	1250.8	120	4.388772	1302.689654
2746	237	201810	1287.1	118	4.484669	1340.495566
2747	237	201811	1316.0	125	4.328947	1370.594487
2748	237	201812	1234.4	121	4.361837	1285.609297
2749	237	201901	1117.7	111	4.349027	1164.067977
2750	237	201902	1313.0	119	4.435811	1367.470032
2751	237	201903	1177.6	116	4.394030	1226.452939
2752	237	201904	1153.6	116	4.403053	1201.457295
2753	237	201905	1127.9	122	4.371705	1174.691126
2754	237	201906	1143.4	118	4.397692	1190.834146

Now that we have comparable sales figures, we can calculate the percentage difference between the scaled control sales and the trial store's sales during the trial period.

In [205]:

```
# Get percentage difference between scaled control sales and trial sales
trialSales88 = measuresOverTime[measuresOverTime['STORE_NBR'] == 88].reset_index(drop =
True)
scaledControlSales237 = scaledControlSales237.reset_index(drop = True)
percentageDiffSales88 = pd.concat([trialSales88['MONTH_ID'], trialSales88['totSales'],
scaledControlSales237['controlSales']], axis = 1)
percentageDiffSales88.columns = ['MONTH_ID', 'trialSales', 'controlSales']
percentageDiffSales88['PercentageDiff'] = (abs(percentageDiffSales88['trialSales'] - pe
rcentageDiffSales88['controlSales']))/percentageDiffSales88['controlSales']
percentageDiffSales88['MonthYear'] = months
percentageDiffSales88
```

Out[205]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear
0	201807	1218.20	1444.748231	0.156808	July '18
1	201808	1242.20	1376.739250	0.097723	Aug '18
2	201809	1361.80	1302.689654	0.045376	Sept '18
3	201810	1270.80	1340.495566	0.051992	Oct '18
4	201811	1311.40	1370.594487	0.043189	Nov '18
5	201812	1213.00	1285.609297	0.056479	Dec '18
6	201901	1215.40	1164.067977	0.044097	Jan '19
7	201902	1339.60	1367.470032	0.020381	Feb '19
8	201903	1467.00	1226.452939	0.196132	Mar '19
9	201904	1317.00	1201.457295	0.096169	Apr '19
10	201905	1236.85	1174.691126	0.052915	May '19
11	201906	1252.60	1190.834146	0.051868	June '19

In [208]:

Visualize Sales during Trial
plot_statistics(percentageDiffSales88, 'trialSales', 'controlSales', 'Revenue During Tr
ial', 88, 237)

2(c)(iii) Insights - Store 88 Sales

- Store 88 had a dramatic increase in sales over the control store in 2/3 trial months.
- In March and April, store 88 had 19.6% and 9.6% more sales than store 237.
- In Febuary however, it had 0.02% less sales.

2(c)(iv) Significance Testing Store 88 - Sales

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standrd deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between trial and control stores.

In [209]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.

"""

dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv88s = percentageDiffSales88[percentageDiffSales88['MONTH_ID'] < 201902]['PercentageDiff'].std()
print(f'Standard Deviation: {stdv88s}')</pre>
```

Standard Deviation: 0.04243209312947482

In [210]:

```
# Calculate T values for trial months.
percentageDiffSales88['tValue'] = (percentageDiffSales88['PercentageDiff'] - 0) / stdv8
8s
percentageDiffSales88
```

Out[210]:

	MONTH_ID	trialSales	controlSales	PercentageDiff	MonthYear	tValue
0	201807	1218.20	1444.748231	0.156808	July '18	3.695507
1	201808	1242.20	1376.739250	0.097723	Aug '18	2.303047
2	201809	1361.80	1302.689654	0.045376	Sept '18	1.069370
3	201810	1270.80	1340.495566	0.051992	Oct '18	1.225308
4	201811	1311.40	1370.594487	0.043189	Nov '18	1.017836
5	201812	1213.00	1285.609297	0.056479	Dec '18	1.331033
6	201901	1215.40	1164.067977	0.044097	Jan '19	1.039239
7	201902	1339.60	1367.470032	0.020381	Feb '19	0.480314
8	201903	1467.00	1226.452939	0.196132	Mar '19	4.622264
9	201904	1317.00	1201.457295	0.096169	Apr '19	2.266417
10	201905	1236.85	1174.691126	0.052915	May '19	1.247053
11	201906	1252.60	1190.834146	0.051868	June '19	1.222370

In [211]:

```
# lineplot the confidence intervals df
ciSales88 = percentageDiffSales88[['MONTH_ID', 'MonthYear', 'trialSales','controlSales'
, 'tValue']]
ciSales88['95th%ConfidenceInterv'] = ciSales88['controlSales'] * (1+(stdv88s * 2))
ciSales88['5th%ConfidenceInterv'] = ciSales88['controlSales']* (1-(stdv88s * 2))
ciSales88
```

Out[211]:

	MONTH_ID	MonthYear	trialSales	controlSales	tValue	95th%ConfidenceInterv	5th%Cc
0	201807	July '18	1218.20	1444.748231	3.695507	1567.355614	
1	201808	Aug '18	1242.20	1376.739250	2.303047	1493.575106	
2	201809	Sept '18	1361.80	1302.689654	1.069370	1413.241351	
3	201810	Oct '18	1270.80	1340.495566	1.225308	1454.255631	
4	201811	Nov '18	1311.40	1370.594487	1.017836	1486.908873	
5	201812	Dec '18	1213.00	1285.609297	1.331033	1394.711484	
6	201901	Jan '19	1215.40	1164.067977	1.039239	1262.855659	
7	201902	Feb '19	1339.60	1367.470032	0.480314	1483.519263	
8	201903	Mar '19	1467.00	1226.452939	4.622264	1330.534870	
9	201904	Apr '19	1317.00	1201.457295	2.266417	1303.417991	
10	201905	May '19	1236.85	1174.691126	1.247053	1274.380333	
11	201906	June '19	1252.60	1190.834146	1.222370	1291.893317	
4							+

In [212]:

```
# Plot confidence intervals
plot_confidence_interval(ciSales88, 'Total Sales', 'trialSales', 'controlSales', '95th%
ConfidenceInterv', '5th%ConfidenceInterv', 88, 237)
```


In [213]:

Out[213]:

2.3646242510102993

Our results show that months March and April lay outside the 5th % and 95th % confidence interval range of the t-distribution. This tells us that the difference in sales in those months are statistically greater than the control store.

We will do the same with customers.

2(c)(v) Analysis: Store 88 Customers

In [214]:

```
# Scale pre-trial control customers to match pre-trial trial store customers
scalingFactorControlCust88 = (measuresOverTime[measuresOverTime['STORE_NBR'] == 88]['nC
ustomers'].sum())/ (measuresOverTime[measuresOverTime['STORE_NBR'] == 237]['nCustomers'
].sum())
print(f'Scaling Factor (cust) for store 88: {scalingFactorControlCust88}')
```

Scaling Factor (cust) for store 88: 1.0103950103950103

In [215]:

```
# Apply Scaling Factor
scaledControlCust237 = measuresOverTime[measuresOverTime['STORE_NBR'] == 237]
scaledControlCust237['controlCust'] = scaledControlCust237['nCustomers'] * scalingFacto
rControlCust88
scaledControlCust237
```

Out[215]:

	STORE_NBR	MONTH_ID	totSales	nCustomers	avgUnitPrice	controlCust
2743	237	201807	1387.2	125	4.446154	126.299376
2744	237	201808	1321.9	132	4.348355	133.372141
2745	237	201809	1250.8	120	4.388772	121.247401
2746	237	201810	1287.1	118	4.484669	119.226611
2747	237	201811	1316.0	125	4.328947	126.299376
2748	237	201812	1234.4	121	4.361837	122.257796
2749	237	201901	1117.7	111	4.349027	112.153846
2750	237	201902	1313.0	119	4.435811	120.237006
2751	237	201903	1177.6	116	4.394030	117.205821
2752	237	201904	1153.6	116	4.403053	117.205821
2753	237	201905	1127.9	122	4.371705	123.268191
2754	237	201906	1143.4	118	4.397692	119.226611

Now that we have comaprable customer figures, we can calculate the percentage difference between the scaled control customers and the trial store's customers during the trial period.

In [216]:

```
# Get percentage difference between scaled control customers and trial customers
trialCust88 = measuresOverTime[measuresOverTime['STORE_NBR'] == 88].reset_index(drop =
True)
scaledControlCust237 = scaledControlCust237.reset_index(drop = True)
percentageDiffCust88 = pd.concat([trialCust88['MONTH_ID'], trialCust88['nCustomers'], s
caledControlCust237['controlCust']], axis = 1)
percentageDiffCust88.columns = ['MONTH_ID', 'trialCust', 'controlCust']
percentageDiffCust88['PercentageDiff'] = (abs(percentageDiffCust88['trialCust'] - perce
ntageDiffCust88['controlCust'])) / percentageDiffCust88['controlCust']
percentageDiffCust88['MonthYear'] = months
percentageDiffCust88
```

Out[216]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear
0	201807	124	126.299376	0.018206	July '18
1	201808	125	133.372141	0.062773	Aug '18
2	201809	121	121.247401	0.002040	Sept '18
3	201810	120	119.226611	0.006487	Oct '18
4	201811	123	126.299376	0.026123	Nov '18
5	201812	120	122.257796	0.018468	Dec '18
6	201901	115	112.153846	0.025377	Jan '19
7	201902	122	120.237006	0.014663	Feb '19
8	201903	133	117.205821	0.134756	Mar '19
9	201904	119	117.205821	0.015308	Apr '19
10	201905	123	123.268191	0.002176	May '19
11	201906	113	119.226611	0.052225	June '19

In [217]:

```
# Plot Visual of performance
plot_statistics(percentageDiffCust88, 'trialCust', 'controlCust', 'No. Customers', 88,
237)
```


2(c)(vi) - Insights - Store 88 Customers

- Store 88 had a dramatic increase in customers throughout March.
- In march, store 88 had 13.5% more customers than store 237.
- Throughout the trial, store 88 maintained a higher number of customers than its control store 237.

2(c)(vii) Significance Testing - Customers

Let's see if the difference in the distributions are significant. We can do this using a t-test. Our first null hypothesis is that the trial period is the same as the pre-trial period. Let's take the standard deviation based on the scaled percentage difference in the pre-trial period.

We will test with a null hypothesis of there being 0 difference between trial and control stores.

In [218]:

```
# degrees of freedom
"""
Since there are 8 months in the pre-trial period, dof = 7.
"""

dof = 7

# Standard deviation of percentage difference in pre-trial period
stdv88c = percentageDiffCust88[percentageDiffCust88['MONTH_ID'] < 201902]['PercentageDiff'].std()
print(f'Standard Deviation: {stdv88c}')</pre>
```

Standard Deviation: 0.01980096062033321

In [219]:

```
# Calculate T values for trial months.
percentageDiffCust88['tValue'] = (percentageDiffCust88['PercentageDiff'] - 0) / stdv88c
percentageDiffCust88
```

Out[219]:

	MONTH_ID	trialCust	controlCust	PercentageDiff	MonthYear	tValue
0	201807	124	126.299376	0.018206	July '18	0.919438
1	201808	125	133.372141	0.062773	Aug '18	3.170189
2	201809	121	121.247401	0.002040	Sept '18	0.103049
3	201810	120	119.226611	0.006487	Oct '18	0.327596
4	201811	123	126.299376	0.026123	Nov '18	1.319302
5	201812	120	122.257796	0.018468	Dec '18	0.932657
6	201901	115	112.153846	0.025377	Jan '19	1.281616
7	201902	122	120.237006	0.014663	Feb '19	0.740502
8	201903	133	117.205821	0.134756	Mar '19	6.805525
9	201904	119	117.205821	0.015308	Apr '19	0.773090
10	201905	123	123.268191	0.002176	May '19	0.109877
11	201906	113	119.226611	0.052225	June '19	2.637499

Our t-value will tell allow us to test with a null hypothesis that there is zero difference between trial and control stores.

In [220]:

```
ciCust88 = percentageDiffCust88[['MONTH_ID', 'MonthYear', 'trialCust','controlCust', 't
Value']]
ciCust88['95th%ConfidenceInterv'] = ciCust88['controlCust'] * (1+(stdv88c * 2))
ciCust88['5th%ConfidenceInterv'] = ciCust88['controlCust']* (1-(stdv88c * 2))
ciCust88
```

Out[220]:

	MONTH_ID	MonthYear	trialCust	controlCust	tValue	95th%ConfidenceInterv	5th%Con
0	201807	July '18	124	126.299376	0.919438	131.301074	
1	201808	Aug '18	125	133.372141	3.170189	138.653934	
2	201809	Sept '18	121	121.247401	0.103049	126.049031	
3	201810	Oct '18	120	119.226611	0.327596	123.948214	
4	201811	Nov '18	123	126.299376	1.319302	131.301074	
5	201812	Dec '18	120	122.257796	0.932657	127.099440	
6	201901	Jan '19	115	112.153846	1.281616	116.595354	
7	201902	Feb '19	122	120.237006	0.740502	124.998623	
8	201903	Mar '19	133	117.205821	6.805525	121.847397	
9	201904	Apr '19	119	117.205821	0.773090	121.847397	
10	201905	May '19	123	123.268191	0.109877	128.149848	
11	201906	June '19	113	119.226611	2.637499	123.948214	
4							•

In [221]:

```
# Plot confidence intervals
plot_confidence_interval(ciCust88, 'Total Customers', 'trialCust', 'controlCust', '95t
h%ConfidenceInterv', '5th%ConfidenceInterv', 88, 237)
```


In [222]:

Out[222]:

2.3646242510102993

Our results show that the t-values for March lay outside the 5% to 95% confidence interval value of the t-distribution. This tells us that the changes in customers for store 88 are statistically significant in March only.

3 - Conclusion

For our trial stores 77, 86 and 88, we found control stores 233, 155 and 237 respectively. The results for trail store 77 show a significant increase in both sales and customers in months March and April. The same can be said for store 88. However, store 86 saw only significant increase in 1 of the 3 months (March). We can check with the client if the implementation of the trial is somehow different in this store, or if there were any specials present in this store during the time which resulted in lower sales, as suggested by the increase in customers but lower sales.

Now that we have finished our analysis, we can prepare our presentation to the Category Manager.

