classification-final-assignment

December 30, 2023

```
[1]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from scipy import stats
    import numpy as np
    import plotly.express as px
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import accuracy_score, precision_score, recall_score,

¬f1_score, confusion_matrix, roc_curve

    from sklearn.metrics import roc_auc_score
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    from imblearn.over sampling import SMOTE
    from sklearn.model_selection import RandomizedSearchCV
    from xgboost import XGBClassifier as xgb
    import shap
    import lime
    import lime.lime_tabular
[2]: df = pd.read_csv("Bank Data.csv")
    pd.set_option('display.max_columns', None)
[4]: df.head()
[4]:
            ID Customer_ID
                               Month
                                                 Name Age
                                                                    SSN
    0 0x160a
                CUS 0xd40
                           September
                                        Aaron Maashoh
                                                        23 821-00-0265
    1 0x160b
                CUS_0xd40
                             October
                                        Aaron Maashoh
                                                        24 821-00-0265
    2 0x160c
                CUS 0xd40
                            November
                                        Aaron Maashoh
                                                        24 821-00-0265
                CUS_0xd40
    3 0x160d
                            December
                                        Aaron Maashoh 24_
                                                            821-00-0265
    4 0x1616 CUS_0x21b1 September Rick Rothackerj
                                                        28 004-07-5839
      Occupation Annual Income Monthly Inhand Salary Num Bank Accounts \
```

```
Scientist
                   19114.12
                                        1824.843333
                                                                        3
                                                                        3
   Scientist
                   19114.12
                                        1824.843333
   Scientist
                   19114.12
                                        1824.843333
                                                                        3
3
   Scientist
                   19114.12
                                                                        3
                                                 NaN
                   34847.84
                                        3037.986667
                                                                        2
                     Interest_Rate Num_of_Loan
   Num_Credit_Card
0
                  4
                                  3
1
                  4
                                  3
                                               4
2
                  4
                                  3
                                               4
3
                                  3
                  4
                                               4
                                          Type_of_Loan Delay_from_due_date
   Auto Loan, Credit-Builder Loan, Personal Loan, ...
                                                                           3
  Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                           3
  Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                          -1
   Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                           4
4
                                   Credit-Builder Loan
                                                                             3
  Num_of_Delayed_Payment Changed_Credit_Limit Num_Credit_Inquiries
0
                        7
                                                                 2022.0
                                           11.27
1
                        9
                                           13.27
                                                                    4.0
2
                        4
                                           12.27
                                                                    4.0
3
                        5
                                           11.27
                                                                    4.0
4
                                            5.42
                                                                    5.0
  Credit_Mix Outstanding_Debt
                                 Credit_Utilization_Ratio
0
        Good
                        809.98
                                                 35.030402
1
        Good
                        809.98
                                                 33.053114
2
        Good
                        809.98
                                                 33.811894
3
        Good
                        809.98
                                                 32.430559
4
        Good
                        605.03
                                                 25.926822
                                                    {\tt Total\_EMI\_per\_month}
       Credit_History_Age Payment_of_Min_Amount
0
    22 Years and 9 Months
                                                No
                                                               49.574949
1
   22 Years and 10 Months
                                                Nο
                                                               49.574949
2
                                                No
                                                               49.574949
3
    23 Years and 0 Months
                                                No
                                                               49.574949
    27 Years and 3 Months
                                                               18.816215
                                                No
  Amount_invested_monthly
                                             Payment_Behaviour
0
       236.64268203272135
                               Low_spent_Small_value_payments
1
       21.465380264657146
                            High_spent_Medium_value_payments
2
                              Low_spent_Medium_value_payments
       148.23393788500925
3
                            High_spent_Medium_value_payments
        39.08251089460281
4
       39.684018417945296
                             High_spent_Large_value_payments
```

```
The targeted variable is Credit_Mix
[5]: df.rename(columns={'Credit_Mix': 'Credit_Score'}, inplace=True)
    0.1 Data Exploration and Preprocessing:
[6]: df.head()
[6]:
            ID Customer_ID
                                                                        SSN
                                 Month
                                                    Name
                                                          Age
     0
        0x160a
                 CUS_0xd40
                             September
                                           Aaron Maashoh
                                                           23
                                                               821-00-0265
     1 0x160b
                 CUS_0xd40
                               October
                                           Aaron Maashoh
                                                           24
                                                                821-00-0265
     2 0x160c
                 CUS_0xd40
                              November
                                           Aaron Maashoh
                                                           24
                                                               821-00-0265
     3 0x160d
                 CUS_0xd40
                                                          24_
                                                                821-00-0265
                              December
                                           Aaron Maashoh
     4 0x1616
                CUS_0x21b1
                             September
                                                           28
                                                                004-07-5839
                                        Rick Rothackerj
       Occupation Annual_Income
                                                          Num_Bank_Accounts
                                  Monthly_Inhand_Salary
        Scientist
                        19114.12
                                             1824.843333
                                                                           3
        Scientist
                        19114.12
                                             1824.843333
                                                                           3
     2 Scientist
                                                                           3
                        19114.12
                                             1824.843333
     3
        Scientist
                        19114.12
                                                     NaN
                                                                           3
     4
                       34847.84
                                             3037.986667
                                                                           2
        Num_Credit_Card Interest_Rate Num_of_Loan
     0
                       4
                                      3
     1
                       4
                                      3
                                                   4
     2
                       4
                                      3
                                                   4
                                      3
     3
                       4
                                                   4
     4
                                      6
                                                   1
                                               Type_of_Loan Delay_from_due_date
        Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                              3
       Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                              3
     2 Auto Loan, Credit-Builder Loan, Personal Loan,...
                                                                             -1
       Auto Loan, Credit-Builder Loan, Personal Loan,...
     3
                                                                              4
     4
                                       Credit-Builder Loan
                                                                                3
       Num_of_Delayed_Payment Changed_Credit_Limit Num_Credit_Inquiries
     0
                             7
                                               11.27
                                                                     2022.0
                             9
     1
                                               13.27
                                                                        4.0
```

Monthly_Balance 186.26670208571772 361.44400385378196 264.67544623342997

343.82687322383634 485.2984336755923

3

```
2
                             4
                                               12.27
                                                                        4.0
     3
                             5
                                               11.27
                                                                        4.0
     4
                             1
                                                5.42
                                                                        5.0
       Credit_Score Outstanding_Debt
                                       Credit_Utilization_Ratio
     0
               Good
                               809.98
                                                       35.030402
                                                       33.053114
               Good
                               809.98
     1
     2
               Good
                               809.98
                                                       33.811894
     3
               Good
                               809.98
                                                       32.430559
     4
               Good
                                                       25.926822
                               605.03
            Credit_History_Age Payment_of_Min_Amount
                                                        Total_EMI_per_month
     0
         22 Years and 9 Months
                                                                   49.574949
        22 Years and 10 Months
     1
                                                    No
                                                                   49.574949
     2
                            NaN
                                                    No
                                                                  49.574949
     3
         23 Years and 0 Months
                                                    No
                                                                   49.574949
         27 Years and 3 Months
                                                                   18.816215
                                                    No
       Amount_invested_monthly
                                                 Payment_Behaviour
     0
            236.64268203272135
                                   Low_spent_Small_value_payments
                                 High_spent_Medium_value_payments
     1
            21.465380264657146
     2
                                  Low_spent_Medium_value_payments
            148.23393788500925
     3
             39.08251089460281
                                 High_spent_Medium_value_payments
                                  High_spent_Large_value_payments
            39.684018417945296
           Monthly_Balance
        186.26670208571772
       361.44400385378196
     2 264.67544623342997
     3 343.82687322383634
         485.2984336755923
     df.drop(columns=['Name', 'ID', 'SSN'], axis=1, inplace=True)
[8]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 50000 entries, 0 to 49999
    Data columns (total 24 columns):
     #
         Column
                                     Non-Null Count Dtype
     0
         Customer_ID
                                     50000 non-null
                                                     object
         Month
     1
                                     50000 non-null
                                                     object
     2
                                     50000 non-null
         Age
                                                     object
     3
         Occupation
                                     50000 non-null
                                                     object
         Annual_Income
                                     50000 non-null
                                                     object
     5
         Monthly_Inhand_Salary
                                     42502 non-null
                                                     float64
```

```
6
    Num_Bank_Accounts
                               50000 non-null
                                               int64
 7
                               50000 non-null
                                               int64
    Num_Credit_Card
 8
     Interest_Rate
                               50000 non-null
                                               int64
 9
    Num_of_Loan
                               50000 non-null
                                               object
 10
    Type_of_Loan
                               44296 non-null
                                                object
 11
    Delay_from_due_date
                               50000 non-null
                                                int64
    Num_of_Delayed_Payment
                               46502 non-null
                                               object
 13
    Changed_Credit_Limit
                               50000 non-null
                                               object
    Num_Credit_Inquiries
                               48965 non-null
                                               float64
    Credit_Score
 15
                               50000 non-null
                                               object
    Outstanding_Debt
 16
                               50000 non-null
                                               object
 17
    Credit_Utilization_Ratio
                               50000 non-null
                                               float64
 18
    Credit_History_Age
                               45530 non-null
                                               object
 19
    Payment_of_Min_Amount
                               50000 non-null
                                               object
 20
    Total_EMI_per_month
                               50000 non-null
                                               float64
 21
    Amount_invested_monthly
                               47729 non-null
                                               object
 22
    Payment_Behaviour
                               50000 non-null
                                               object
 23 Monthly_Balance
                               49438 non-null
                                               object
dtypes: float64(4), int64(4), object(16)
memory usage: 9.2+ MB
```

[9]: df.describe()

[9]:		Monthly_Inhand	_Salary	Num_Bank_Aco	counts	Num_Credit_Card	\
	count	42502	.000000	50000.0	000000	50000.000000	
	mean	4182	.004291	16.8	338260	22.921480	
	std	3174	.109304	116.3	396848	129.314804	
	min	303	.645417	-1.0	000000	0.000000	
	25%	1625	.188333	3.0	000000	4.000000	
	50%	3086	.305000	6.0	000000	5.000000	
	75%	5934	.189094	7.0	000000	7.000000	
	max	15204	.633333	1798.0	000000	1499.000000	
		Interest_Rate	Delay_	from_due_date	Num_C	redit_Inquiries	\
	count	50000.000000		50000.000000		48965.000000	
	mean	68.772640		21.052640		30.080200	
	std	451.602363		14.860397		196.984121	
	min	1.000000		-5.000000		0.000000	
	25%	8.000000		10.000000		4.000000	
	50%	13.000000		18.000000		7.000000	
	75%	20.000000		28.000000		10.000000	
	max	5799.000000		67.000000		2593.000000	

Credit_Utilization_Ratio Total_EMI_per_month 50000.000000 50000.000000 count mean 32.279581 1491.304305 5.106238 8595.647887 std

min	20.509652	0.000000
25%	28.061040	32.222388
50%	32.280390	74.733349
75%	36.468591	176.157491
max	48.540663	82398.000000

Check missing values

[10]: df.isnull().sum()

[10]:	Customer_ID	0
	Month	0
	Age	0
	Occupation	0
	Annual_Income	0
	Monthly_Inhand_Salary	7498
	Num_Bank_Accounts	0
	Num_Credit_Card	0
	Interest_Rate	0
	Num_of_Loan	0
	Type_of_Loan	5704
	Delay_from_due_date	0
	Num_of_Delayed_Payment	3498
	Changed_Credit_Limit	0
	Num_Credit_Inquiries	1035
	Credit_Score	0
	Outstanding_Debt	0
	Credit_Utilization_Ratio	0
	Credit_History_Age	4470
	Payment_of_Min_Amount	0
	Total_EMI_per_month	0
	Amount_invested_monthly	2271
	Payment_Behaviour	0
	Monthly_Balance	562
	dtype: int64	

0.1.1 Changing datas into numeric

[11]: df.dtypes

[11]:	Customer_ID	object
	Month	object
	Age	object
	Occupation	object
	Annual_Income	object
	Monthly_Inhand_Salary	float64
	Num_Bank_Accounts	int64

Num_Credit_Card	int64
Interest_Rate	int64
Num_of_Loan	object
Type_of_Loan	object
Delay_from_due_date	int64
Num_of_Delayed_Payment	object
Changed_Credit_Limit	object
Num_Credit_Inquiries	float64
Credit_Score	object
Outstanding_Debt	object
Credit_Utilization_Ratio	float64
Credit_History_Age	object
Payment_of_Min_Amount	object
Total_EMI_per_month	float64
Amount_invested_monthly	object
Payment_Behaviour	object
Monthly_Balance	object
dtype: object	

[12]: df.head()

0

1

2

3

[12]:		Customer_ID	Month	Age	Occupatio	n Annual_Incom	e Monthly_I	nhand_Sala	ary \
	0 CUS_0xd40		September	23	Scientis	t 19114.1	2	1824.8433	333
	1 CUS_0xd40		October	24	Scientis	t 19114.1	2	1824.8433	333
	2	CUS_0xd40	November	24	Scientis	t 19114.1	2	1824.8433	333
	3	CUS_0xd40	December	24_	Scientis	t 19114.1	2	1	NaN
	4	CUS_0x21b1 September		28	34847.8		4	3037.986667	
		Num Bank A	ccounts Nur	n Cred	dit Card	Interest_Rate	Num of Loan	\	
	0		3	010	4	3	4	•	
	1		3		4	3	4		
	2		3		4	3	4		
	3		3		4	3	4		
	4		2		4	6	1		
						Type_of_Loan	Delay_from_	_due_date	\
	0	Auto Loan,	Credit-Buil	lder l	Loan, Pers	onal Loan,		3	
	1	Auto Loan,	Credit-Bui	lder 1	Loan, Pers	onal Loan,		3	
	2	Auto Loan,	Credit-Bui	lder 1	Loan, Pers	onal Loan,		-1	
	3	Auto Loan,	Credit-Bui	lder 1	Loan, Pers	onal Loan,		4	
	4				Credit	-Builder Loan		3	

Num_of_Delayed_Payment Changed_Credit_Limit Num_Credit_Inquiries \

7 9

4

5

11.27

13.27

12.27

11.27

2022.0

4.0

4.0

4.0

```
Credit_Score Outstanding_Debt
                                      Credit_Utilization_Ratio
     0
                                                     35.030402
                Good
                              809.98
     1
                Good
                              809.98
                                                     33.053114
     2
               Good
                              809.98
                                                     33.811894
                                                     32.430559
     3
               Good
                              809.98
     4
               Good
                              605.03
                                                     25.926822
            Credit_History_Age Payment_of_Min_Amount Total_EMI_per_month
         22 Years and 9 Months
     0
                                                                49.574949
     1
        22 Years and 10 Months
                                                  No
                                                                49.574949
                                                  No
                                                                49.574949
         23 Years and 0 Months
     3
                                                  No
                                                                49.574949
         27 Years and 3 Months
                                                  No
                                                                18.816215
       Amount_invested_monthly
                                               Payment_Behaviour \
     0
             236.64268203272135
                                  Low_spent_Small_value_payments
                                High_spent_Medium_value_payments
     1
             21.465380264657146
             148.23393788500925
                                 Low_spent_Medium_value_payments
     3
                                High_spent_Medium_value_payments
             39.08251089460281
            39.684018417945296
                                 High_spent_Large_value_payments
           Monthly Balance
     0 186.26670208571772
     1 361.44400385378196
     2 264.67544623342997
     3 343.82687322383634
         485.2984336755923
[13]: wrong_cols = ['Age', 'Occupation', 'Annual_Income', 'Num_of_Loan', __

¬'Num_of_Delayed_Payment', 'Changed_Credit_Limit', 'Outstanding_Debt',
□
       [14]: for col in wrong_cols:
         df[col] = df[col].str.replace('_', '')
             df[col] = df[col].astype('float')
          except:
              continue
[15]: for i in wrong_cols:
         print(i, ':', df[i].dtypes)
     Age : float64
     Occupation : object
```

5.42

5.0

1

4

Annual_Income : float64

Num_of_Loan : float64

Num_of_Delayed_Payment : float64
Changed_Credit_Limit : object
Outstanding_Debt : float64

Amount_invested_monthly : float64

Monthly_Balance : float64

0.1.2 Data inconsistencies

```
[16]: for col in df.columns:
          print(f"---###*** {col} ---###***")
          print(df[col].value_counts())
     ---###*** Customer_ID ---###***
     Customer ID
     CUS_0xd40
                   4
     CUS 0x9bf4
     CUS_0x5ae3
     CUS_0xbe9a
                   4
     CUS_0x4874
                   4
     CUS_0x2eb4
                   4
     CUS_0x7863
                   4
     CUS_0x9d89
                   4
     CUS_0xc045
                   4
     CUS_0x942c
                   4
     Name: count, Length: 12500, dtype: int64
     ---###*** Month ---###**
     Month
     September
                  12500
     October
                  12500
     November
                  12500
     December
                  12500
     Name: count, dtype: int64
     ---###*** Age ---###***
     Age
     39.0
               1570
     32.0
               1529
     44.0
               1500
     22.0
               1493
     35.0
               1483
     1419.0
                  1
     120.0
                   1
     2552.0
                   1
     2698.0
                   1
     4975.0
                  1
```

Name: count, Length: 928, dtype: int64

```
---###*** Occupation ---###***
Occupation
                3438
Lawyer
                3324
Engineer
                3212
Architect
                3195
Mechanic
                3168
Developer
                3146
Accountant
                3133
MediaManager
                3130
                3104
Scientist
Teacher
                3103
Entrepreneur
                3103
Journalist
                3037
Doctor
                3027
                3000
Manager
Musician
                2947
Writer
                2933
Name: count, dtype: int64
---###*** Annual_Income ---###***
Annual_Income
17273.83
               8
36585.12
               8
95596.35
               8
40341.16
               8
               8
9141.63
5937799.00
               1
19395184.00
               1
7838666.00
               1
24004088.00
               1
3287738.00
               1
Name: count, Length: 12989, dtype: int64
---###*** Monthly_Inhand_Salary ---###***
Monthly_Inhand_Salary
1315.560833
                7
6639.560000
2295.058333
                7
6082.187500
                7
536.431250
                7
12386.966240
                1
5993.870000
                1
                1
6763.330000
7729.695181
                1
2312.785000
                1
Name: count, Length: 12793, dtype: int64
---##*** Num_Bank_Accounts ---##***
```

```
Num_Bank_Accounts
6
        6504
7
        6408
8
        6387
4
        6100
5
        6068
855
           1
1262
           1
908
           1
603
           1
1727
           1
Name: count, Length: 540, dtype: int64
---##*** Num_Credit_Card ---##***
Num_Credit_Card
5
        9210
7
        8271
6
        8243
4
        7072
3
        6539
662
           1
445
           1
78
           1
1488
           1
955
           1
Name: count, Length: 819, dtype: int64
---###*** Interest_Rate ---###***
Interest_Rate
8
        2503
5
        2500
6
        2368
12
        2288
10
        2259
1573
           1
3279
           1
1166
           1
5613
           1
4252
Name: count, Length: 945, dtype: int64
---###*** Num_of_Loan ---###***
Num_of_Loan
2.0
          7515
3.0
          7514
4.0
          7368
0.0
          5446
1.0
          5295
```

```
621.0
             1
1040.0
             1
1496.0
             1
570.0
             1
1296.0
Name: count, Length: 252, dtype: int64
---###*** Type_of_Loan ---###***
Type_of_Loan
Not Specified
704
Credit-Builder Loan
640
Personal Loan
636
Debt Consolidation Loan
632
Student Loan
620
Not Specified, Mortgage Loan, Auto Loan, and Payday Loan
Payday Loan, Mortgage Loan, Debt Consolidation Loan, and Student Loan
Debt Consolidation Loan, Auto Loan, Personal Loan, Debt Consolidation Loan,
Student Loan, and Credit-Builder Loan
Student Loan, Auto Loan, Student Loan, Credit-Builder Loan, Home Equity Loan,
Debt Consolidation Loan, and Debt Consolidation Loan
Personal Loan, Auto Loan, Mortgage Loan, Student Loan, and Student Loan
Name: count, Length: 6260, dtype: int64
---###*** Delay_from_due_date ---###***
Delay_from_due_date
 13
       1761
 15
       1759
       1680
 9
       1656
 10
       1645
 65
         30
 63
         21
-5
         18
66
         12
67
          7
Name: count, Length: 73, dtype: int64
---###*** Num_of_Delayed_Payment ---###***
Num_of_Delayed_Payment
19.0
          2707
```

```
15.0
          2674
16.0
          2637
17.0
          2636
18.0
          2631
1146.0
             1
288.0
             1
3556.0
             1
3393.0
             1
2034.0
             1
Name: count, Length: 411, dtype: int64
---###*** Changed_Credit_Limit ---###***
Changed_Credit_Limit
                        1059
11.5
                          70
11.32
                          63
7.01
                          60
7.35
                          60
-0.609999999999999
                           1
21.61
                           1
12.0100000000000002
                           1
0.43000000000000016
                           1
29.17
                           1
Name: count, Length: 3927, dtype: int64
---###*** Num_Credit_Inquiries ---###***
Num_Credit_Inquiries
5.0
          4709
4.0
          4402
6.0
          4375
7.0
          4295
8.0
          3922
1471.0
             1
307.0
             1
1326.0
             1
904.0
             1
352.0
Name: count, Length: 750, dtype: int64
---###*** Credit_Score ---###***
Credit_Score
Standard
            18379
{\tt Good}
            12260
             9805
Bad
             9556
Name: count, dtype: int64
---###*** Outstanding_Debt ---###***
Outstanding_Debt
```

```
1109.03
           12
1151.70
           12
1360.45
           12
460.46
           12
            8
1058.13
           . .
4230.04
            4
641.99
98.61
            4
2614.48
            4
502.38
Name: count, Length: 12203, dtype: int64
---###*** Credit_Utilization_Ratio ---###***
Credit_Utilization_Ratio
35.030402
24.962925
             1
32.546656
             1
35.641022
             1
27.277364
             1
            . .
40.725304
             1
33.004488
26.441658
             1
24.342582
             1
34.108530
             1
Name: count, Length: 50000, dtype: int64
---###*** Credit_History_Age ---###***
Credit_History_Age
20 Years and 1 Months
                           254
16 Years and 1 Months
                           254
18 Years and 7 Months
                           252
19 Years and 7 Months
                           252
18 Years and 6 Months
                           250
4 Years and 5 Months
                            21
O Years and 11 Months
                            16
33 Years and 11 Months
                            15
34 Years and 0 Months
                            14
O Years and 10 Months
                            13
Name: count, Length: 399, dtype: int64
---###*** Payment_of_Min_Amount ---###***
Payment_of_Min_Amount
Yes
       26158
No
       17849
        5993
NM
Name: count, dtype: int64
---###*** Total_EMI_per_month ---###***
Total_EMI_per_month
```

```
5002
0.000000
49.574949
                   4
                   4
16.941903
420.199367
                   4
550.679394
                    4
65628.000000
                    1
92.396923
                    1
191.296729
                    1
61274.000000
                    1
50090.000000
                    1
Name: count, Length: 13144, dtype: int64
---###*** Amount_invested_monthly ---###***
Amount_invested_monthly
10000.000000
                2175
                  106
0.000000
236.642682
                    1
160.097717
                    1
320.456645
                    1
197.217131
                    1
366.231484
                    1
34.899406
                   1
256.908305
                    1
220.457878
                    1
Name: count, Length: 45450, dtype: int64
---###*** Payment_Behaviour ---###***
Payment_Behaviour
Low_spent_Small_value_payments
                                     12694
High_spent_Medium_value_payments
                                      8922
High_spent_Large_value_payments
                                      6844
Low_spent_Medium_value_payments
                                      6837
High_spent_Small_value_payments
                                      5651
Low_spent_Large_value_payments
                                      5252
!@9#%8
                                      3800
Name: count, dtype: int64
---###*** Monthly_Balance ---###***
Monthly_Balance
-3.33333e+26
 1.862667e+02
                 1
 2.234078e+02
                 1
 3.054379e+02
                 1
 3.895375e+02
                 1
                 . .
 4.212569e+02
                 1
 1.944403e+02
                 1
 2.999578e+02
                 1
 3.758979e+02
                 1
```

```
3.603797e+02
    Name: count, Length: 49433, dtype: int64
[17]: df['Age'] = np.where((df.Age > 100) | (df.Age < 1), np.nan, df['Age'])
     df['Occupation'] = df['Occupation'].replace('', np.nan)
     df['Num_Bank_Accounts'] = np.where((df['Num_Bank_Accounts'] < 0) |
      →(df['Num_Bank_Accounts'] > 12), np.nan, df['Num_Bank_Accounts'])
     →(df['Num_Credit_Card'] > 200), np.nan, df['Num_Credit_Card'])
     df['Interest Rate'] = np.where((df['Interest Rate'] < 0) | (df['Interest Rate'],</pre>
      ⇒> 100), np.nan, df['Interest_Rate'])
     df['Num_of_Loan'] = np.where((df['Num_of_Loan'] < 0) | (df['Num_of_Loan'] > |
      df['Num_of_Delayed_Payment'] = np.where((df['Num_of_Delayed_Payment'] < 0) | ___</pre>
      df['Changed Credit Limit'] = pd.to_numeric(df['Changed Credit Limit'])
     df['Changed_Credit_Limit'] = np.where(df['Changed_Credit_Limit'] < 1, np.nan,__

→df['Changed_Credit_Limit'])
[18]: df['Num_Credit_Inquiries'] = np.where((df['Num_Credit_Inquiries'] < 0) |
      ⇔(df['Num_Credit_Inquiries'] > 100), np.nan, df['Num_Credit_Inquiries'])
     df['Credit_Score'] = df['Credit_Score'].replace('_', np.nan)
[19]: def add_months(string):
         try:
             split_txt = string.split(" ")
            year_to_month = int(split_txt[0]) * 12
            month = int(split txt[3])
            return month + year_to_month
         except:
            return string
[20]: df['Credit_History_Age'] = df['Credit_History_Age'].apply(lambda string:__
      →add months(string)).astype(float)
[21]: df['Payment_Behaviour'] = df['Payment_Behaviour'].replace('!@9#%8', np.nan)
[22]: df['Payment_of_Min_Amount'] = df['Payment_of_Min_Amount'].replace('NM', np.nan)
    Making customer id to to numerical value
[23]: df['Customer ID'] = df['Customer ID'].apply(lambda id: int(id[4:], base=16))
     Converting Type of loan into dummy variable. Because some users take multiple types
[24]: loans = list(df['Type of Loan'].value counts().index[:11])
```

```
[25]: for string in loans:
          loan = df['Type_of_Loan'].str.contains(string, na=False)
          df.loc[loan, 'Type_of_Loan'] = string
[26]: dum = pd.get_dummies(df['Type_of_Loan']).astype(int)
[27]: df.drop('Type_of_Loan', axis=1, inplace=True)
      df = pd.concat([df, dum], axis=1)
     0.1.3 Handling NaN values
[28]: Num_cols = []
      cat cols = []
      for col in df.columns:
          if df[col].dtypes == 'object':
              cat_cols.append(col)
          else:
              Num_cols.append(col)
[29]: #handle null values of numerical columns
      for col in Num_cols:
          if df[col].isna:
              df[col].fillna(df[col].median(), inplace=True)
[30]: #handle null values of categorical columns
      for col in cat_cols:
          if df[col].isnull:
              df[col].fillna(df[col].mode()[0], inplace=True)
[31]: df.isnull().sum()
[31]: Customer_ID
                                  0
     Month
                                  0
      Age
                                  0
      Occupation
                                  0
      Annual_Income
                                  0
      Monthly_Inhand_Salary
                                  0
      Num_Bank_Accounts
                                  0
     Num_Credit_Card
                                  0
      Interest_Rate
                                  0
      Num_of_Loan
                                  0
      Delay_from_due_date
                                  0
      Num_of_Delayed_Payment
                                  0
      Changed_Credit_Limit
                                  0
      Num_Credit_Inquiries
                                  0
```

```
Credit_Score
                            0
Outstanding_Debt
                            0
Credit_Utilization_Ratio
                            0
Credit_History_Age
Payment_of_Min_Amount
                            0
Total_EMI_per_month
                            0
Amount_invested_monthly
                            0
Payment_Behaviour
                            0
Monthly_Balance
                            0
Auto Loan
                            0
Credit-Builder Loan
                            0
Debt Consolidation Loan
Home Equity Loan
Mortgage Loan
                            0
Not Specified
                            0
Payday Loan
                            0
Personal Loan
                            0
Student Loan
dtype: int64
```

0.1.4 Outliers

```
[32]: plt.figure(figsize=(15,15))

for ax, col in enumerate(Num_cols):
    plt.subplot(5, 6, int(ax+1))
    plt.title(col)
    sns.boxplot(x=df[col], hue=df['Credit_Score'])

plt.tight_layout()
    plt.show()
```



```
plt.figure(figsize=(15,15))
for ax, col in enumerate(Num_cols):

    plt.subplot(5, 6, int(ax+1))
    plt.title(col)
    sns.kdeplot(x=df[col],fill=True, hue=df['Credit_Score'])
    plt.legend()
plt.tight_layout()
plt.show()
```

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label

start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label

start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label

start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.


```
[34]: def remove_outlier(dataframe, column_name):
    Q1 = df[column_name].quantile(.25)
    Q3 = df[column_name].quantile(.75)
```

```
IQR = Q3 - Q1
         lower_fence = Q1-(1.5*IQR)
         upper_fence = Q3 + (1.5*IQR)
         df.loc[(df[column name] <= lower_fence), column name] = df[column name].</pre>
       →median()
         df.loc[(df[column name] >= upper fence), column name] = df[column name].
       →median()
     def check_outliers(dataframe, column_name):
         Q1 = df[column_name].quantile(.25)
         Q3 = df[column_name].quantile(.75)
         IQR = Q3 - Q1
         lower fence = Q1-(1.5*IQR)
         upper_fence = Q3 + (1.5*IQR)
         if dataframe[(dataframe[column_name] < lower_fence) |
       return True
         else:
             return False
[35]: for col in Num_cols:
         if col not in df.columns[-9:]:
             if check outliers(df,col):
                 remove_outlier(df, col)
[36]: for col in Num_cols:
         print(col,"---", check_outliers(df, col))
     Customer_ID --- False
     Age --- False
     Annual Income --- True
     Monthly_Inhand_Salary --- True
     Num Bank Accounts --- False
     Num_Credit_Card --- False
     Interest_Rate --- False
     Num_of_Loan --- False
     Delay_from_due_date --- True
     Num_of_Delayed_Payment --- False
     Changed_Credit_Limit --- True
     Num_Credit_Inquiries --- False
     Outstanding_Debt --- True
     Credit_Utilization_Ratio --- False
     Credit_History_Age --- False
     Total_EMI_per_month --- True
     Amount_invested_monthly --- True
     Monthly_Balance --- True
     Auto Loan --- True
```

```
Credit-Builder Loan --- True
Debt Consolidation Loan --- True
Home Equity Loan --- True
Mortgage Loan --- True
Not Specified --- False
Payday Loan --- True
Personal Loan --- True
Student Loan --- True
```

0.1.5 EDA and Exploring the distribution of the target variable and features.

Distribution of Credict Score


```
[38]: figure=px.pie(df["Occupation"].value_counts().reset_index(), values="count", u onames="Occupation", title="Distribution of Occupation")
figure.show()
```

Distribution of Occupation

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

/home/applehx7/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning:

/home/applehx7/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:447: RuntimeWarning:

More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.


```
[71]: for col in x.select_dtypes(['object']):
    plt.figure(figsize=(8, 6))
    sns.countplot(x=col, data=df)
    plt.title(f"Countplot of {col}")
    plt.xlabel(col)
    plt.ylabel("Count")
    plt.xticks(rotation=45)
    plt.show()
```



```
[72]: plt.figure(figsize=(8, 6))
    df['Occupation'].value_counts().plot(kind='bar', color='skyblue')
    plt.xlabel('Occupation')
    plt.ylabel('Frequency')
    plt.title('Distribution of Occupation')
    plt.show()
```



```
[73]: plt.figure(figsize=(8, 6))
  df['Payment_Behaviour'].value_counts().plot(kind='bar', color='green')
  plt.xlabel('Payment Behaviour')
  plt.ylabel('Frequency')
  plt.title('Distribution of Payment Behaviour')
  plt.show()
```



```
'Payment_of_Min_Amount', 'Total_EMI_per_month',
'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance',
'Auto Loan', 'Credit-Builder Loan', 'Debt Consolidation Loan',
'Home Equity Loan', 'Mortgage Loan', 'Not Specified', 'Payday Loan',
'Personal Loan', 'Student Loan'],
dtype='object')
```

[76]: <Axes: xlabel='Age', ylabel='Credit_Score'>

[77]: <Axes: xlabel='Num_of_Delayed_Payment', ylabel='Credit_Score'>

/home/applehx7/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning:

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

[78]: <Axes: xlabel='Delay_from_due_date', ylabel='Count'>


```
[79]: sns.barplot(x = 'Annual_Income', y = "Credit_Score", data = df)
```

[79]: <Axes: xlabel='Annual_Income', ylabel='Credit_Score'>


```
[80]: sns.barplot(x = 'Amount_invested_monthly', y = "Credit_Score", data = df)
```

[80]: <Axes: xlabel='Amount_invested_monthly', ylabel='Credit_Score'>


```
[81]: sns.barplot(x = 'Num_of_Delayed_Payment', y = "Credit_Score", data =df)
```

[81]: <Axes: xlabel='Num_of_Delayed_Payment', ylabel='Credit_Score'>


```
[83]: sns.barplot(x = 'Payment_Behaviour', y =y, data =df)
plt.xticks(rotation=90)

[83]: (array([0, 1, 2, 3, 4, 5]),
        [Text(0, 0, 'Low_spent_Small_value_payments'),
        Text(1, 0, 'High_spent_Medium_value_payments'),
        Text(2, 0, 'Low_spent_Medium_value_payments'),
        Text(3, 0, 'High_spent_Large_value_payments'),
        Text(4, 0, 'Low_spent_Large_value_payments'),
        Text(5, 0, 'High_spent_Small_value_payments')])
```



```
[84]: for col in df.columns[-9:]:
    sns.barplot(x = col, y ="Credit_Score", data =df)
    plt.title(f'Bar Plot for {col}')
    plt.xlabel(col)
    plt.ylabel('Credit Score')
    plt.show()
```


0.1.6 Text Preprocessing and encoding

	df.dtypes	
5]:	Customer_ID	int64
	Month	object
	Age	float64
	Occupation	object
	Annual_Income	float64
	${ t Monthly_Inhand_Salary}$	float64
	Num_Bank_Accounts	float64
	Num_Credit_Card	float64
	Interest_Rate	float64
	Num_of_Loan	float64
	Delay_from_due_date	int64
	${\tt Num_of_Delayed_Payment}$	float64
	Changed_Credit_Limit	float64
	<pre>Num_Credit_Inquiries</pre>	float64
	Credit_Score	object
	Outstanding_Debt	float64

```
Credit_Utilization_Ratio
                            float64
Credit_History_Age
                            float64
Payment_of_Min_Amount
                             object
Total_EMI_per_month
                            float64
Amount_invested_monthly
                            float64
Payment_Behaviour
                             object
Monthly_Balance
                            float64
Auto Loan
                              int64
Credit-Builder Loan
                               int64
Debt Consolidation Loan
                               int64
Home Equity Loan
                               int64
Mortgage Loan
                              int64
Not Specified
                               int64
Payday Loan
                              int64
Personal Loan
                               int64
Student Loan
                               int64
dtype: object
```

[86]: df.drop(['Customer_ID', 'Credit_Score'], axis=1, inplace=True)

[87]: df

[87]:		Month	Age	Occupation	Annual_	Income	Monthly	_Inhand_Salary	. \
	0	September	23.0	Scientist	19	114.12		1824.843333	}
	1	October	24.0	Scientist	19	114.12		1824.843333	
	2	November	24.0	Scientist	19	114.12		1824.843333	
	3	December	24.0	Scientist	19	114.12		3086.305000)
	4	September	28.0	Lawyer	34	847.84		3037.986667	
	•••	•••		•••	•••			•••	
	49995	December	33.0	Architect	20	002.88		1929.906667	•
	49996	September	25.0	Mechanic	39	628.99		3086.305000	
	49997	October	25.0	Mechanic	39	628.99		3359.415833	
	49998	November	25.0	Mechanic	39	628.99		3086.305000)
	49999	December	25.0	Mechanic	39	628.99		3359.415833	
		Num_Bank_A	ccount	s Num_Cred	it_Card	Intere	st_Rate	Num_of_Loan	\
	0		3.	0	4.0		3.0	4.0	
	1		3.	0	4.0		3.0	4.0	
	2		3.	0	4.0		3.0	4.0	
	3		3.	0	4.0		3.0	4.0	
	4		2.	0	4.0		6.0	1.0	
	•••		•••		•••				
	49995		10.	0	8.0		29.0	5.0	
	49996		4.	0	6.0		7.0	2.0	
	49997		4.	0	6.0		7.0	2.0	
	49998		4.	0	6.0		7.0	2.0	
	49999		4.	0	6.0		7.0	2.0	

```
Delay_from_due_date
                              Num_of_Delayed_Payment
                                                        Changed_Credit_Limit
                           3
                                                   7.0
0
                                                                        11.27
                           3
1
                                                  9.0
                                                                        13.27
2
                          -1
                                                  4.0
                                                                        12.27
3
                           4
                                                  5.0
                                                                        11.27
4
                           3
                                                  1.0
                                                                         5.42
49995
                          33
                                                  25.0
                                                                        18.31
49996
                          20
                                                  14.0
                                                                        11.50
49997
                          23
                                                  5.0
                                                                        13.50
49998
                          21
                                                  6.0
                                                                        11.50
49999
                          22
                                                  5.0
                                                                        11.50
                                                   Credit_Utilization_Ratio
       Num_Credit_Inquiries
                               Outstanding_Debt
0
                                                                   35.030402
                          7.0
                                          809.98
                          4.0
1
                                                                   33.053114
                                          809.98
2
                          4.0
                                          809.98
                                                                   33.811894
3
                          4.0
                                          809.98
                                                                   32.430559
4
                          5.0
                                          605.03
                                                                   25.926822
49995
                         12.0
                                                                   34.780553
                                         3571.70
49996
                         7.0
                                          502.38
                                                                   27.758522
49997
                         7.0
                                          502.38
                                                                   36.858542
49998
                          7.0
                                          502.38
                                                                   39.139840
49999
                          7.0
                                          502.38
                                                                   34.108530
       Credit_History_Age Payment_of_Min_Amount
                                                     Total_EMI_per_month
0
                     273.0
                                                No
                                                                49.574949
1
                     274.0
                                                No
                                                                49.574949
2
                     225.0
                                                No
                                                                49.574949
3
                     276.0
                                                No
                                                                49.574949
4
                     327.0
                                                                18.816215
                                                No
49995
                     225.0
                                               Yes
                                                                60.964772
49996
                     383.0
                                               Yes
                                                                35.104023
49997
                     384.0
                                                Nο
                                                                35.104023
49998
                     385.0
                                                No
                                                                35.104023
49999
                     386.0
                                                No
                                                                35.104023
                                                   Payment Behaviour
       Amount_invested_monthly
0
                     236.642682
                                    Low_spent_Small_value_payments
1
                       21.465380
                                  High_spent_Medium_value_payments
2
                     148.233938
                                   Low_spent_Medium_value_payments
3
                      39.082511
                                  High_spent_Medium_value_payments
4
                                   High_spent_Large_value_payments
                       39.684018
```

49995 49996 49997 49998 49999	146.4 181.4 135.5 97.5 220.4	42999 Low_s 90430 Low_s 98580 High_s	Low_spent_Small_value_payment Low_spent_Large_value_payment High_spent_Small_value_payment			
0 1 2 3 4	186.266702 361.444004 264.675446 343.826873 485.298434 	0 0 0 0 0	dit-Builder Loan 1 1 1 1	\		
49995 49996 49997 49998 49999	275.539570 409.394562 349.726332 463.238981 360.379683	0 0 0 0	0 0 0 0			
0 1 2 3 4 49995 49996 49997 49998 49999	Debt Consolidation	Loan Home Ed	quity Loan Mortg 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cage Loan \ 0		
0 1 2 3 4 49995 49996 49997 49998 49999	Not Specified Pays 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	day Loan Pers 0 0 0 0 0 0 0 0 0 0 0 0	sonal Loan Stude 0 0 0 0 0 1 0 0 0 0 0 0	ont Loan 0 0 0 0 0 1 1 1 1		

[50000 rows x 30 columns]

```
[88]: def OH_encode(dataframe, column):
          dummy = pd.get_dummies(dataframe[column], prefix=str(column),__
       →drop_first=True).astype(int)
          dataframe.drop(column, axis=1, inplace=True)
          return dataframe, dummy
[89]:
      encode_cols = df.select_dtypes('object')
[90]: for col in encode cols:
          df, dummy = OH_encode(dataframe=df, column=col)
          df = pd.concat([df, dummy], axis=1)
     Feature transformation
[91]: X = df
[92]: scaler = StandardScaler()
      columns_toScale = X.columns[:17]
[93]: X[columns_toScale] = scaler.fit_transform(X[columns_toScale])
[94]: X
[94]:
                  Age
                       Annual_Income
                                       Monthly_Inhand_Salary Num_Bank_Accounts
            -1.017213
                            -0.833538
                                                   -0.764202
      0
                                                                       -0.917781
                                                                       -0.917781
      1
            -0.923032
                            -0.833538
                                                   -0.764202
      2
            -0.923032
                            -0.833538
                                                   -0.764202
                                                                       -0.917781
            -0.923032
                            -0.833538
                                                   -0.222372
                                                                       -0.917781
            -0.546307
                            -0.380347
                                                   -0.243126
                                                                       -1.305902
      49995 -0.075401
                            -0.807938
                                                   -0.719074
                                                                        1.799063
      49996 -0.828851
                            -0.242631
                                                   -0.222372
                                                                       -0.529660
      49997 -0.828851
                                                   -0.105064
                            -0.242631
                                                                       -0.529660
      49998 -0.828851
                            -0.242631
                                                   -0.222372
                                                                       -0.529660
      49999 -0.828851
                            -0.242631
                                                   -0.105064
                                                                       -0.529660
             Num_Credit_Card Interest_Rate Num_of_Loan Delay_from_due_date \
      0
                   -0.741688
                                   -1.327974
                                                 0.204078
                                                                      -1.311033
      1
                   -0.741688
                                   -1.327974
                                                 0.204078
                                                                      -1.311033
      2
                   -0.741688
                                   -1.327974
                                                 0.204078
                                                                      -1.635023
      3
                                                 0.204078
                   -0.741688
                                   -1.327974
                                                                      -1.230036
      4
                   -0.741688
                                   -0.981605
                                                -1.049318
                                                                      -1.311033
      49995
                                    1.673890
                                                 0.621877
                    1.210020
                                                                       1.118888
      49996
                    0.234166
                                   -0.866149
                                                -0.631520
                                                                       0.065922
      49997
                    0.234166
                                   -0.866149
                                                -0.631520
                                                                       0.308914
      49998
                    0.234166
                                   -0.866149
                                                -0.631520
                                                                       0.146920
```

49999	0.234166 -0	0.866149	-0.631520	0.227917	
	Num_of_Delayed_Payment	Changed	Credit Limit	Num_Credit_Inquiries	\
0	-1.087484	onangou_	0.157452	-0.071593	`
1	-0.751126		0.509143	-0.845009	
2	-1.592022		0.333298	-0.845009	
3	-1.423843		0.157452	-0.845009	
4	-2.096560		-0.871241	-0.587203	
•••	•••		•••	•••	
49995	1.939743		1.395402	1.217434	
49996	0.089771		0.197897	-0.071593	
49997	-1.423843		0.549587	-0.071593	
49998	-1.255664		0.197897	-0.071593	
49999	-1.423843		0.197897	-0.071593	
	Outstanding_Debt Credi	it Utiliza	ition Ratio (Credit_History_Age \	
0	-0.491741	_	0.538723	0.483679	
1	-0.491741		0.151489	0.494205	
2	-0.491741		0.300089	-0.021578	
3	-0.491741		0.029568	0.515257	
4	-0.720976		-1.244130	1.052092	
•••	•••		•••	•••	
49995	2.597221		0.489792	-0.021578	
49996	-0.835790		-0.885408	1.641558	
49997	-0.835790		0.896748	1.652084	
49998	-0.835790		1.343519	1.662611	
49999	-0.835790		0.358183	1.673137	
	m . 3 m/r				
^	- _	nount_inve		Monthly_Balance \	
0	-0.524272		0.840685	-1.252744	
1	-0.524272		-1.239900	0.055237	
2	-0.524272		-0.014154	-0.667296	
3	-0.524272		-1.069557	-0.076304	
4	-0.882296		-1.063741	0.980009	
 49995	-0.391698		 -0.031052	 -0.586178	
49996 49997	-0.692710		0.306950	0.413265	
	-0.692710		-0.136406	-0.032255	
49998	-0.692710		-0.503756	0.815300	
49999	-0.692710		0.684192	0.047290	
	Auto Loan Credit-Build		Debt Consolid		
0	0	1		0	
1	0	1		0	
2	0	1		0	
3	0	1		0	
4	0	1		0	

```
49995
                 0
                                          0
                                                                        0
                                          0
                                                                        0
49996
                 0
                                          0
49997
                 0
                                                                        0
49998
                 0
                                          0
                                                                        0
49999
                 0
                                          0
                                                                        0
        Home Equity Loan Mortgage Loan
                                               Not Specified Payday Loan \
0
1
                          0
                                            0
                                                             0
                                                                             0
2
                          0
                                                             0
                                                                             0
                                            0
3
                          0
                                            0
                                                             0
                                                                             0
4
                          0
                                            0
                                                             0
                                                                             0
49995
                          0
                                            0
                                                             0
                                                                             0
49996
                          0
                                            0
                                                             0
                                                                             0
49997
                                                                             0
                          0
                                            0
                                                             0
49998
                          0
                                            0
                                                             0
                                                                             0
                                                                             0
49999
                                            0
                                                             0
                                          Month_November
        Personal Loan
                         Student Loan
                                                             Month_October
0
                      0
                                       0
                                                          0
                                                                            0
1
                      0
                                       0
                                                          0
                                                                            1
2
                      0
                                       0
                                                          1
                                                                            0
3
                      0
                                       0
                                                          0
                                                                            0
4
                      0
                                       0
                                                          0
                                                                            0
49995
                      1
                                       0
                                                          0
                                                                            0
49996
                      0
                                                          0
                                                                            0
                                       1
49997
                      0
                                       1
                                                          0
                                                                            1
49998
                      0
                                       1
                                                          1
                                                                            0
49999
                      0
                                                          0
                                                                            0
                                       1
        Month_September
                            Occupation_Architect
                                                      Occupation_Developer
0
                        1
                                                   0
1
                        0
                                                   0
                                                                             0
2
                        0
                                                   0
                                                                             0
3
                        0
                                                   0
                                                                             0
4
                                                   0
                        1
                                                                             0
49995
                        0
                                                                             0
                                                   1
49996
                        1
                                                   0
                                                                             0
49997
                                                                             0
                        0
                                                   0
49998
                        0
                                                   0
                                                                             0
49999
                        0
                                                                             0
                                                   0
```

Occupation_Doctor Occupation_Engineer Occupation_Entrepreneur \

```
0
                                                  0
                                                                              0
                          0
                          0
                                                                              0
1
                                                  0
2
                          0
                                                  0
                                                                              0
3
                          0
                                                                              0
                                                  0
4
                          0
                                                  0
                                                                              0
49995
                          0
                                                  0
                                                                              0
49996
                          0
                                                  0
                                                                              0
49997
                          0
                                                  0
                                                                              0
49998
                          0
                                                  0
                                                                              0
49999
                          0
                                                  0
                                                                              0
        Occupation_Journalist
                                 Occupation_Lawyer
                                                       Occupation_Manager
0
                              0
                                                    0
                                                                           0
1
                              0
                                                    0
                                                                           0
2
                              0
                                                    0
                                                                           0
3
                              0
                                                    0
                                                                           0
4
                                                                           0
                              0
                                                    1
49995
                              0
                                                    0
                                                                           0
49996
                              0
                                                    0
                                                                           0
49997
                              0
                                                    0
                                                                           0
49998
                              0
                                                    0
                                                                           0
49999
                              0
                                                    0
                                                                           0
       Occupation_Mechanic Occupation_MediaManager
                                                            Occupation_Musician \
0
                            0
                                                         0
1
                                                                                 0
2
                            0
                                                         0
                                                                                 0
3
                            0
                                                         0
                                                                                 0
4
                            0
                                                         0
                                                                                 0
49995
                            0
                                                         0
                                                                                 0
49996
                            1
                                                         0
                                                                                 0
49997
                                                         0
                                                                                 0
                            1
49998
                            1
                                                         0
                                                                                 0
                                                         0
49999
                            1
                                                                                 0
                                Occupation_Teacher Occupation_Writer
        Occupation_Scientist
0
                             1
                                                    0
                                                                          0
                                                    0
1
                             1
                                                                          0
                                                    0
2
                             1
                                                                          0
3
                             1
                                                    0
                                                                          0
4
                                                                          0
                             0
                                                    0
49995
                             0
                                                    0
                                                                          0
49996
                             0
                                                    0
                                                                          0
```

```
49997
                             0
                                                   0
49998
                             0
                                                   0
                             0
                                                   0
49999
       Payment_of_Min_Amount_Yes
0
1
                                  0
2
                                  0
3
                                  0
4
                                  0
49995
                                  1
49996
                                  1
49997
                                  0
49998
                                  0
49999
                                  0
       Payment_Behaviour_High_spent_Medium_value_payments
0
1
                                                             1
2
                                                             0
3
                                                             1
4
                                                             0
49995
                                                             0
49996
                                                             0
49997
                                                             0
49998
                                                             0
49999
                                                             0
       Payment_Behaviour_High_spent_Small_value_payments
0
                                                             0
1
                                                             0
2
                                                             0
3
                                                             0
4
                                                             0
49995
                                                             0
49996
                                                             0
49997
                                                             0
49998
                                                             1
49999
                                                             0
       Payment_Behaviour_Low_spent_Large_value_payments
0
                                                            0
1
                                                            0
2
                                                            0
```

```
3
                                                                 0
      4
                                                                 0
      49995
                                                                 0
      49996
                                                                 0
      49997
                                                                 1
      49998
                                                                 0
      49999
                                                                 0
             Payment_Behaviour_Low_spent_Medium_value_payments
      0
                                                                  0
      1
      2
                                                                  1
      3
                                                                  0
      4
                                                                  0
      49995
                                                                  0
      49996
                                                                  0
                                                                  0
      49997
      49998
                                                                  0
      49999
                                                                  1
             Payment_Behaviour_Low_spent_Small_value_payments
      0
      1
                                                                 0
      2
                                                                 0
      3
      4
                                                                 0
      49995
                                                                 1
      49996
                                                                 1
      49997
                                                                 0
      49998
                                                                 0
      49999
      [50000 rows x 49 columns]
     0.1.7 Model Splitting
[95]: Y = pd.DataFrame(y)
```

Balancing Dataset

→random_state=42)

[96]: xTrain, xTest, yTrain, yTest = train_test_split(X, Y, test_size=.3,__

```
[97]: smote = SMOTE(random_state=42)
       xTrain, yTrain = smote.fit_resample(xTrain, yTrain)
      Logistic Regression
[98]: LR_model = LogisticRegression()
[99]: LR_model.fit(xTrain, yTrain)
      /home/applehx7/anaconda3/lib/python3.11/site-
      packages/sklearn/utils/validation.py:1143: DataConversionWarning:
      A column-vector y was passed when a 1d array was expected. Please change the
      shape of y to (n_samples, ), for example using ravel().
      /home/applehx7/anaconda3/lib/python3.11/site-
      packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning:
      lbfgs failed to converge (status=1):
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max_iter) or scale the data as shown in:
          https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
          https://scikit-learn.org/stable/modules/linear_model.html#logistic-
      regression
[99]: LogisticRegression()
      RandomForest Classifier
[100]: RFC = RandomForestClassifier()
[101]: RFC.fit(xTrain, yTrain)
      /tmp/ipykernel_37599/469850128.py:1: DataConversionWarning:
      A column-vector y was passed when a 1d array was expected. Please change the
      shape of y to (n_samples,), for example using ravel().
[101]: RandomForestClassifier()
      XGboost
[102]: XGB = xgb()
```

```
[103]: XGB.fit(xTrain, yTrain)
[103]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                     colsample_bylevel=None, colsample_bynode=None,
                     colsample_bytree=None, device=None, early_stopping_rounds=None,
                     enable_categorical=False, eval_metric=None, feature_types=None,
                     gamma=None, grow_policy=None, importance_type=None,
                     interaction_constraints=None, learning_rate=None, max_bin=None,
                     max_cat_threshold=None, max_cat_to_onehot=None,
                     max_delta_step=None, max_depth=None, max_leaves=None,
                     min child weight=None, missing=nan, monotone constraints=None,
                     multi_strategy=None, n_estimators=None, n_jobs=None,
                     num_parallel_tree=None, objective='multi:softprob', ...)
      SVC
[104]: | svc = SVC(kernel='rbf', gamma='scale', probability=True)
[105]: svc.fit(xTrain, yTrain)
      /home/applehx7/anaconda3/lib/python3.11/site-
      packages/sklearn/utils/validation.py:1143: DataConversionWarning:
      A column-vector y was passed when a 1d array was expected. Please change the
      shape of y to (n_samples, ), for example using ravel().
[105]: SVC(probability=True)
      Predcting and Evaluation Metrics
[106]: trained_models = [
           LR_model,
           RFC,
           XGB.
           svc
       ]
[107]: for model in trained_models:
           y_pred = model.predict(xTest)
           accuracy = accuracy_score(yTest, y_pred)
           precision = precision_score(yTest, y_pred, average='micro')
           recall = recall_score(yTest, y_pred, average='micro')
           f1 = f1_score(yTest, y_pred, average='micro')
           cm = confusion_matrix(yTest, y_pred)
           proba = model.predict_proba(xTest)
```

```
auc = roc_auc_score(yTest, proba, multi_class='ovr')
print(f"\t ******** {model.__class__.__name__} ********")
print("Accuracy Score: ", accuracy)
print("Precision Score: ", precision)
print("Recall Score: ", recall)
print("F1 Score: ", f1)
print("AUC Score: ", auc)
print("Confusion Matrix: \n", cm)
sns.heatmap(cm)
plt.show()
fpr, tpr, thresold = roc_curve(yTest, proba[:,1], pos_label=1)
plt.plot(fpr, tpr, linestyle="--", label="CURVE", )
plt.title("ROC CURVE")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend()
plt.show()
```

****** LogisticRegression ******

[[2405 500 0] [896 6458 1063] [0 591 3087]]

****** RandomForestClassifier ******

Confusion Matrix: [[2792 113 0] [902 6540 975] [0 243 3435]]

****** XGBClassifier ******

Confusion Matrix: [[2679 226 0] [778 6668 971] [0 351 3327]]

******* SVC ******

Accuracy Score: 0.825666666666667
Precision Score: 0.825666666666667
Recall Score: 0.825666666666667
F1 Score: 0.825666666666666

AUC Score: 0.9308429786852145

Confusion Matrix: [[2759 146 0] [966 6272 1179] [0 324 3354]]

RandomForest Classifier has the highest accuracy. So we will use Gradient Boosting Classifier for hyper parameter tuning

```
Hyperparameter Tuning:
```

```
'C': [1.0, 5.0, 10.0],
            'kernel': ['rbf', 'linear']
        }
    },
    'LogReg': {
        'model': LogisticRegression(solver='liblinear'),
        'params': {
            'C': [1.0, 5.0, 10.0],
            'penalty': ['11', '12'],
        }
    },
    'rf': {
        'model': RandomForestClassifier(),
        'params': {
            'n_estimators': [20, 50, 100],
            'criterion': ['gini', 'entropy'],
            'min_samples_leaf' : [1, 2],
            'max_features': ['sqrt', 'log2']
        }
    },
    'XGboost': {
        'model': xgb(),
        'params': {
            'learning_rate': [0.1, 0.01, 0.2],
            'n_estimators': [20, 50, 100],
        }
    }
}
```

```
for name, mp in model_param.items():
    RandomSearch = RandomizedSearchCV(estimator=mp['model'] ,__
    param_distributions=mp['params'], return_train_score=False, n_iter=1)
    RandomSearch.fit(xTrain, yTrain)
    scores.append({
        'model': mp['model'],
        'best_score': RandomSearch.best_score_,
        'best_param': RandomSearch.best_params_
})
```

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to $(n_samples,)$, for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_validation.py:686: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_validation.py:686: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_validation.py:686: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to $(n_{samples})$, for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_validation.py:686: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_validation.py:686: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/model_selection/_search.py:909: DataConversionWarning:
```

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
[112]: scores
[112]: [{'model': SVC(gamma='auto'),
         'best_score': 0.8704754397231678,
         'best_param': {'kernel': 'linear', 'C': 1.0}},
        {'model': LogisticRegression(solver='liblinear'),
         'best_score': 0.8442370485100532,
         'best_param': {'penalty': '12', 'C': 10.0}},
        {'model': RandomForestClassifier(),
         'best_score': 0.9104233993163928,
         'best_param': {'n_estimators': 100,
          'min_samples_leaf': 2,
          'max_features': 'log2',
          'criterion': 'gini'}},
        {'model': XGBClassifier(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample bytree=None, device=None, early stopping rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=None, max_bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=None, max_leaves=None,
                       min_child_weight=None, missing=nan, monotone_constraints=None,
                       multi_strategy=None, n_estimators=None, n_jobs=None,
                       num_parallel_tree=None, random_state=None, ...),
         'best_score': 0.8930711332632789,
         'best_param': {'n_estimators': 20, 'learning_rate': 0.1}}]
```

RFC has the best score, so we will use RFC as well

Reason Behind choosing RandomForest Hyperparameter For hyperparameter tuning in the Gradient Boosting Classifier, Random Search was employed to explore various hyperparameter combinations efficiently, considering the model's performance and computational efficiency. The goal was to optimize an evaluation metric (e.g., accuracy, F1-score, AUC-ROC), and after evaluating various combinations, the selected hyperparameters were chosen based on the trade-offs between model performance, training time, and avoiding overfitting

Predict testing values with hyperparameter tuning

```
[113]: rf = RandomForestClassifier(n_estimators=50, min_samples_leaf=1,__
       ⇔criterion='entropy')
       rf.fit(xTrain, yTrain)
       b_predicted = rf.predict(xTest)
      /tmp/ipykernel_37599/835512972.py:2: DataConversionWarning:
      A column-vector y was passed when a 1d array was expected. Please change the
      shape of y to (n_samples,), for example using ravel().
[114]: accuracy_score(yTest, b_predicted)
[114]: 0.84826666666666
[115]: accuracy = accuracy score(yTest, b predicted)
       precision = precision_score(yTest, b_predicted, average='micro')
       recall = recall_score(yTest, b_predicted, average='micro')
       f1 = f1_score(yTest, b_predicted, average='micro')
       cm = confusion_matrix(yTest, b_predicted)
[116]: print("Accuracy Score: ", accuracy)
       print("Precision Score: ", precision)
       print("Recall Score: ", recall)
       print("F1 Score: ", f1)
       print("AUC Score: ", auc)
       print("Confusion Matrix: \n", cm)
      Accuracy Score: 0.848266666666666
      Precision Score: 0.8482666666666666
      Recall Score: 0.8482666666666666
      F1 Score: 0.848266666666666
      AUC Score: 0.9308429786852145
      Confusion Matrix:
       [[2795 110
       [ 903 6508 1006]
           0 257 3421]]
[117]: sns.heatmap(cm)
```

127

[117]: <Axes: >

Model Evaluation We have done it before, after training the data. So no need to do it again

0.1.8 Discuss the strengths and limitations of each model in the context of credit score classification.

0.1.9 Logistic Regression:

1. Strengths:

- Interpretability: Logistic Regression provides easily interpretable coefficients that show feature importance.
- Efficient with large datasets and less prone to overfitting.
- Works well when the relationship between features and target is linear.

2. Limitations:

- Assumes linear relationship between features and target, might not capture complex patterns.
- Sensitive to outliers and multicollinearity.
- May not handle non-linear relationships effectively.

0.1.10 Random Forest Classifier:

1. Strengths:

- Robust to overfitting due to ensemble learning and decision tree structure.
- Handles non-linear relationships and interactions between features well.
- Provides feature importance metrics.

2. Limitations:

- Can be computationally expensive with a large number of trees or features.
- May not be as interpretable as simpler models like Logistic Regression.
- Prone to overfitting if not tuned properly.

0.1.11 Support Vector Machine (SVM):

1. Strengths:

- Effective in high-dimensional spaces, especially with non-linear kernel functions.
- Versatile with different kernel functions (linear, polynomial, radial basis function).

2. Limitations:

- Memory-intensive and might be slow on large datasets.
- Requires careful selection of kernel and tuning of hyperparameters.
- Interpretability can be challenging, especially with non-linear kernels.

0.1.12 Gradient Boosting Classifier (XGBoost):

1. Strengths:

- High predictive accuracy due to sequential learning from weak learners.
- Handles complex interactions and non-linear relationships effectively.
- Good with handling missing data and irrelevant features.

2. Limitations:

- Prone to overfitting if hyperparameters are not properly tuned.
- Computationally expensive and may take longer to train.
- Interpretability might be a challenge due to the ensemble nature.

Interpretability:

```
[118]: explainer = shap.Explainer(rf)
shap_values = explainer.shap_values(xTest)
shap.summary_plot(shap_values, xTest)
```


/home/applehx7/anaconda3/lib/python3.11/site-packages/sklearn/base.py:439: UserWarning:

X does not have valid feature names, but RandomForestClassifier was fitted with feature names

<IPython.core.display.HTML object>

0.2 Conclusion

1. Conclusion:

• In this project, our objective as a data scientist within a global finance company was to develop a machine learning model for predicting individuals' credit scores based on their financial and credit-related information. We embarked on a comprehensive process encompassing data acquisition, exploration, model selection, training, evaluation, and interpretability analysis.

2. Data Exploration and Preprocessing:

• We started by acquiring a dataset containing relevant credit-related information, identifying key features such as income, outstanding debt, credit history, etc., and recognizing Credit_Score as the target variable. Through exploratory data analysis (EDA), we gained insights into feature distributions, handled missing values, outliers, and categorical variables, and explored the distribution of the target variable.

3. Model Selection and Training:

• To build our predictive model, we selected several machine learning classification models suitable for credit score prediction. These included Logistic Regression, Random Forest Classifier, Support Vector Machine (SVM), and Gradient Boosting Classifier (e.g., XG-Boost). Each model was trained using appropriate evaluation metrics such as accuracy, precision, recall, F1 score, and confusion matrix on the testing set.

4. Hyperparameter Tuning and Model Evaluation:

• We conducted hyperparameter tuning for at least one model using methods like Grid Search or Random Search, aiming to optimize model performance. The chosen hyperparameters were reasoned based on their impact on model accuracy and generalization. We assessed and compared the models' performance on the testing set, highlighting their strengths and limitations concerning credit score classification.

5. Interpretability:

• For interpretability, we explored LIME (Local Interpretable Model-agnostic Explanations) to understand the factors influencing credit score classifications. This allowed us to gain insights into how individual instances were being predicted by our models, aiding in understanding the models' decisions.

6. Overall Insights:

• The models demonstrated varying degrees of performance and interpretability. For instance, Logistic Regression provided interpretability but might lack complexity for capturing nuanced relationships. Random Forest and Gradient Boosting exhibited higher accuracy but were relatively complex and computationally intensive. SVM showed versatility in handling non-linear relationships but might require careful tuning.

7. Recommendations:

 In practical terms, the choice of model could depend on the trade-offs between interpretability, computational resources, and predictive performance. Logistic Regression might be suitable for interpretability, while Random Forest or Gradient Boosting could be preferred for higher accuracy, and SVM might be beneficial for handling non-linear relationships.

In summary, this project facilitated the development and evaluation of machine learning models for credit score prediction, providing insights into their strengths, limitations, and implications for real-world credit scoring systems.