Approximation Methods Numerical Analysis

Adam Wilson

Salt Lake Community College

Graphical Example

Reducing the step size improves our approximation.

Graphical Example

Reducing the step size improves our approximation.

Graphical Example

Reducing the step size improves our approximation.

Formal Approach

Consider the IVP

$$y' = f(t, y), \ y(t_0) = y_0$$

We want to compute approximate values for $y(t_n)$ at the (finite) set of points $t_1, t_2, t_3, \ldots, t_k$.

We can calculate the *t*-values, for k = 1, 2, 3, ..., k, with

$$t_n = t_0 + n \cdot h$$

Where h, called the **step size**, is the common difference between successive points.

Formal Approach

Starting at (t_0, y_0) we want to follow the tangent line determined by

$$y - y_0 = (t - t_0)f(t_0, y_0)$$

to find the approximate solution $(t_1, y(t_1))$:

$$y_1 = y_0 + h \cdot f(t_0, y_0)$$

(Remember that $h = t_1 - t_0$.)

We can extend this process to find all k points.

$$y_{1} = y_{0} + h \cdot f(t_{0}, y_{0})$$

$$y_{2} = y_{1} + h \cdot f(t_{1}, y_{1})$$

$$y_{3} = y_{2} + h \cdot f(t_{2}, y_{2})$$

$$\vdots$$

$$y_{k} = y_{k-1} + h \cdot f(t_{k-1}, y_{k-1})$$

The resulting piecewise-linear function (i.e. play connect-the-dots) is called the **Euler-approximate** solution.

Formal Approach

Euler's Method

For the Initial-value problem

$$y' = f(t, y), y(t_0) = y_0$$

use the formulas

$$t_{n+1} = t_n + h$$

$$y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

to iteratively compute the points, using step size h,

$$(t_1, y_1), (t_2, y_2), \ldots, (t_k, y_k).$$

The piecewise-linear function connecting these points is the Euler approximation to the solution y(t) of the IVP for $t_0 \le t \le t_k$.

Example 1

Obtain the Euler-approximate solution of the IVP

$$y' = -2ty + t, \ y(0) = -1$$

with step size 0.1 on [0, 0.4].

Example 1

Obtain the Euler-approximate solution of the IVP

$$y' = -2ty + t, \ y(0) = -1$$

with step size 0.1 on [0, 0.4].

In other words:

$$f(t,y) = -2ty + t = t(1-2y)$$

$$t_0 = 0$$

$$y_0 = -1$$

$$h = 0.1$$

$$k = 1, 2, 3, 4$$

$$t_1 = t_0 + h = 0 + 0.1 = 0.1$$

 $y_1 = y_0 + h \cdot f(t_0, y_0) = -1 + (0.1)(0)(1 - 2(-1)) = -1$

$$t_1 = t_0 + h = 0 + 0.1 = 0.1$$

$$y_1 = y_0 + h \cdot f(t_0, y_0) = -1 + (0.1)(0)(1 - 2(-1)) = -1$$

$$t_2 = t_1 + h = 0.1 + 0.1 = 0.2$$

$$y_2 = y_1 + h \cdot f(t_1, y_1) = -1 + (0.1)(0.1)(1 - 2(-1)) = -0.97$$

$$t_1 = t_0 + h = 0 + 0.1 = 0.1$$

$$y_1 = y_0 + h \cdot f(t_0, y_0) = -1 + (0.1)(0)(1 - 2(-1)) = -1$$

$$t_2 = t_1 + h = 0.1 + 0.1 = 0.2$$

$$y_2 = y_1 + h \cdot f(t_1, y_1) = -1 + (0.1)(0.1)(1 - 2(-1)) = -0.97$$

$$t_3 = t_2 + h = 0.2 + 0.1 = 0.3$$

$$y_3 = y_0 + h \cdot f(t_2, y_2) = -0.97 + (0.1)(0.2)(1 - 2(-0.97)) = -0.9112$$

$$t_1 = t_0 + h = 0 + 0.1 = 0.1$$

$$y_1 = y_0 + h \cdot f(t_0, y_0) = -1 + (0.1)(0)(1 - 2(-1)) = -1$$

$$t_2 = t_1 + h = 0.1 + 0.1 = 0.2$$

$$y_2 = y_1 + h \cdot f(t_1, y_1) = -1 + (0.1)(0.1)(1 - 2(-1)) = -0.97$$

$$t_3 = t_2 + h = 0.2 + 0.1 = 0.3$$

$$y_3 = y_0 + h \cdot f(t_2, y_2) = -0.97 + (0.1)(0.2)(1 - 2(-0.97)) = -0.9112$$

$$t_4 = t_3 + h = 0.3 + 0.1 = 0.4$$

$$y_4 = y_3 + h \cdot f(t_3, y_3)$$

$$= -0.9112 + (0.1)(0.3)(1 - 2(-0.9112)) = -0.82652$$

Example 1

How does this compare to the exact solution $y(t) = 0.5 - 1.5e^{-t^2}$?

Example 1

How does this compare to the exact solution $y(t) = 0.5 - 1.5e^{-t^2}$?

n	tn	Уn	$y(t_n)$	Error
0	0.0	-1.000000	-1.000000	0.000000
1	0.1	-1.000000	-0.985075	-0.014925
2	0.2	-0.970000	-0.941184	-0.028815
3	0.3	-0.911200	-0.870897	-0.040303
4	0.4	-0.826528	-0.778216	-0.048312

Notice how the error grows rapidly.

Example 2

Find the Euler-approximation of

$$y' = -2ty, \ y(0) = 1$$

using a step size of 0.2 over the range of [0, 2].

Compare it against the exact solution

$$y = e^{-t^2}$$

n	t _n	Уn	$y(t_n)$	Error
0	0.0	1.0000000	1.0000000	0.000000
1	0.2	1.0000000	0.9607894	-0.039211
2	0.4	0.9200000	0.8521437	-0.067856
3	0.6	0.7728000	0.6976763	-0.075124
4	8.0	0.5873280	0.5272925	-0.060036
5	1.0	0.3993830	0.3678794	-0.031504
6	1.2	0.2396298	0.2369277	-0.002702
7	1.4	0.1246075	0.1408584	0.016251
8	1.6	0.0548273	0.0773047	0.022477
9	1.8	0.0197378	0.0391639	0.019426
10	2.0	0.0055265	0.0183156	0.012789

Measuring Error

There are two types of error:

Euler's Method Measuring Error

There are two types of error:

Roundoff error is the discrepancy arising from rounding numbers.
 This tends to snowball pretty fast when you have a great many calculations.

Euler's Method Measuring Error

There are two types of error:

- Roundoff error is the discrepancy arising from rounding numbers.
 This tends to snowball pretty fast when you have a great many calculations.
- **Discretization error** is the error that results from the approximation method itself. For Euler's method this is cause by using the linear tangent lines to approximate a nonlinear curve.

Measuring Error

It can be shown, using Taylor series expansions, that the error is proportional to the square of the step size.

$$|y_i - y(t_i)| \leq C \cdot h^2$$

Where the constant *C* depends of the size of the second derivative of the exact solution.

We call this error the **local discretization error** because it estimates the error for a single step only.

Measuring Error

It can be shown, using Taylor series expansions, that the error is proportional to the square of the step size.

$$|y_i - y(t_i)| \leq C \cdot h^2$$

Where the constant *C* depends of the size of the second derivative of the exact solution.

We call this error the **local discretization error** because it estimates the error for a single step only.

After n steps, we have n times the error. Which we call the **global** discretization error.

(Note that the step size is inversely proportional to the step count.)

Measuring Error

Global Discretization Error in Euler's Method

If the solution of the IVP y' = f(t,y), $y(t_0) = y_0$ has a continuous second derivative on the interval $[t_0,t_k]$, and y_n is the value of the Euler approximation at t_n , $t_0 < t_1 < \cdots < t_n \cdots < t_k$, then there exists a constant C such that

$$|y_n-y(t_n)|\leq C\cdot h, \quad n=1,2,\ldots,k.$$

where step size $h = t_n - t_{n-1}$.

Runge-Kutta Methods

Second-Order Runge-Kutta Method

For the IVP y' = f(t, y), $y(t_0) = y_0$, use the following formulas to compute the points $(t_1, y_1), (t_2, y_2), \ldots$ of the approximate solution, using step size h:

$$t_{n+1} = t_n + h$$
$$y_{n+1} = y_n + h \cdot k_{n_1}$$

where

$$k_{n_1} = f(t_n, y_n)$$

 $k_{n_2} = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot k_{n_1}\right)$

Runge-Kutta Methods

Fourth-Order Runge-Kutta Method

For the IVP y' = f(t, y), $y(t_0) = y_0$, use the following formulas to compute the points $(t_1, y_1), (t_2, y_2), \ldots$ of the approximate solution, using step size h:

$$t_{n+1} = t_n + h$$

$$y_{n+1} = y_n + \frac{h}{6}(k_{n_1} + 2k_{n_2} + 2k_{n_3} + k_{n_4})$$

where

$$k_{n_1} = f(t_n, y_n)$$

$$k_{n_2} = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot k_{n_1}\right)$$

$$k_{n_3} = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot k_{n_2}\right)$$

$$k_{n_2} = f\left(t_n + h, y_n + h \cdot k_{n_3}\right)$$