FISEVIER

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Research paper

Synthesis, biological evaluation and structure-activity relationship studies of hederacolchiside E and its derivatives as potential anti-Alzheimer agents

Hui-ning Li ^a, Yang Liu ^{a, *}, Zuo-peng Zhang ^a, Zhi-peng Wang ^a, Jing-zheng Hao ^a, Feng-ran Li ^a, Zhan-fang Fan ^a, Li-bo Zou ^b, Mao-sheng Cheng ^{a, **}

ARTICLE INFO

Article history: Received 8 August 2017 Received in revised form 16 November 2017 Accepted 17 November 2017 Available online 21 November 2017

Keywords: Hederacolchiside E Alzheimer's disease Neuroprotective effects Antioxidation Structure-activity relationship

ABSTRACT

Inspired by the previously reported neuroprotective activity of hederacolchiside E (1), we synthesized hederacolchiside E for the first time along with eleven of its derivatives. The neuroprotective effects of these compounds were further evaluated against H_2O_2 - and $A\beta_{1-42}$ -induced injury using cell-based assays. The derivatives showed obvious differences in activity due to structural variations, and two of them exhibited better neuroprotective effects than 1 in the $A\beta_{1-42}$ -induced injury model. Compound 7 was the most active derivative and had a relatively simple chemical structure. Moreover, 1 and 7 can significantly reduce the release of lactate dehydrogenase (LDH), level of intracellular reactive oxygen species (ROS) and extent of malondialdehyde (MDA) increase resulting from $A\beta_{1-42}$ treatment, which demonstrated that these kinds of compounds show neuroprotective effects in Alzheimer's disease (AD) models via modulating oxidative stress. Compound 7 could be used as promising lead for the development of a new type of neuroprotective agent against AD.

 $\ensuremath{\text{@}}$ 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Alzheimer's disease (AD), characterized by progressive loss of memory and cognitive function, dementia and eventually death, is the most common neurodegenerative disorder of this era that substantially lowers the life quality of patients [1]. According to Alzheimer's Disease International (ADI) [2], there were 46.8 million people worldwide living with dementia in 2015; a number that is estimated to reach 131.5 million by 2050. However, existing drug treatments are insufficient in preventing or reversing its inexorable neurodegenerative progress [3] and show only marginal symptomatic improvement in moderately to severely affected patients [4]. Although the mechanism of this dementia has not been thoroughly elucidated, the abnormal accumulation of β -amyloid ($A\beta$) in the hippocampal and cortical regions is hypothesized to be a major

E-mail addresses: y.liu@syphu.edu.cn (Y. Liu), mscheng@syphu.edu.cn (M.-s. Cheng).

pathological hallmark of AD [5–7]. In addition, some studies have reported evidence that $A\beta$ -induced oxidative stress and mitochondrial dysfunctions also play roles in this kind of neuronal cytotoxicity [8,9]. Therefore, searching for antioxidants or free radical scavengers is one strategy for the treatment of AD.

For centuries, natural products and natural product-related structures have played a significant role in the drug discovery and development process. Triterpenoid saponins are a large family of natural products with diverse structures and bioactivities [10]. Many of them have been shown to cause improvements against neurotic atrophy and memory defect in dementia research [11]. For example, uncarinic acid C, extracted from U. thynchophylla [12], could effectively inhibit $A\beta$ aggregation, and a large number of oleanane triterpenes from the root of Bupleurum chinese [13] and the leaves of Eleutherococcus Senticosus [14] also showed potent neuroprotective activities. However, the isolation of pure saponins from crude plant extracts, especially in suitable amounts, is relatively tedious and difficult because of the microheterogeneity of these complex structures [15]. Chemical synthesis would therefore provide us a feasible route to homogeneous saponins, as well as

^a Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China

^b School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China

^{*} Corresponding author.

^{**} Corresponding author.

their derivatives, in sufficient amounts for elucidating the structure activity relationships (SARs), the biological mechanisms and for potential commercial applications.

Hederacolchiside E (1), namely 3-O-(α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[β -D-glucopyranosyl- $(1 \rightarrow 4)$]- α -L-arabinopyranosyl) acid α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl ester, is a bidesmosidic oleanane saponin first isolated in 1970 from the leaves of Hedera colchica (Fig. 1) [16]. Previously, Han's group reported that hederacolchiside E, the main bioactive component in the root extract of Pulsatilla koreana, had prominent cognition-enhancing abilities and neuroprotective effects in preliminary vitro and vivo activity-guided fractionation studies [17]. In the subsequent study, researchers found that the oleanolic-glycoside saponins enriched fraction SK-PC-B70M, which contained hederacolchiside E as the most active ingredient, could attenuate AD-like pathology in the brain of Tg2576 mice [18]. The antioxidative activity of hederacolchiside E demonstrated in previous reports may play an important role in the mechanism of its neuroprotective effect against A β [19].

Because of the unique biological activity in combination with isolation and purification difficulties, herein we report the chemical synthesis and biological evaluation of hederacolchiside E and its derivatives. Since the α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl moiety at 3-OH usually appears in oleanane-type triterpenoid saponins, we replaced the glucopyranosyl on the 4-OH of the arabinose by other monosaccharide moieties: thus, compounds **2-6** were designed. To elucidate the contribution of each sugar moiety in the biological activity, we removed one, two or three sugar moieties to give compounds 7-12 (Fig. 2). The SAR study of these natural and non-natural saponins against H2O2-induced oxidative damage, as well as $A\beta$ -mediated neuronal cytotoxicity, is discussed. Further investigation of compounds 1 and 7 on related neuroprotective indicators demonstrated that the neuroprotective activities of this kind of compound are highly correlated with their antioxidative activities.

2. Chemistry

The synthesis of the naturally occurring saponin hederacolchiside E and its glycosylate-replaced and deglycosylated derivatives is described herein. Intermediates **18-23** were synthesized by routes analogous to the efficient synthetic route to **9** reported previously by our group (Scheme 1) [20]. Deprotection of the benzoyl groups of **13** generated intermediate **14**. The 3- and 4-OH groups of **14** were selectively protected as an isopropylidene acetal, and the 2-OH group was then glycosylated with a peracetylated rhamnopyranosyl donor to afford compound **16**. The isopropylidene group was hydrolyzed using *p*-TsOH, producing **18** with an abnormal ${}^{1}C_{4}$ conformation of the arabinopyranosyl residue (3-O- α -Ara H-1 J_{1} -

Fig. 1. The structure of hederacolchiside E (1).

2 = 3.0) [21]. The conformation changing did not influence the subsequent selective glycosylation of 4-OH of the arabinopyranosyl residue by different trichloroacetimidate donors [22] under the promotion of trimethylsilyl triflate (TMSOTf) to provide intermediates **18-23**.

As shown in Scheme 2, trichloroacetimidate donors linked with the carboxyl group of C-28 were synthesized in a straightforward manner from known 1-thio- β -p-glucopyranoside **24**. Regioselective silylation of the 6-OH of 24 by tert-butyldimethylsilyl chloride (TBSCI) in pyridine was followed by acetylation with acetic anhydride in one pot to afford 25 in excellent yield. The Lewis acid BF₃·Et₂O was used to remove the TBS group from 25 to efficiently generate 26 with no observable acetyl migration [23]. Glycosylation of 26 with perbenzoylated glucopyranosyl trichloroacetimidate afforded **27**. Hydrolyzation of the thioglycoside using the efficient green reagent trichloroisocyanuric acid (TCCA) [24] followed by trichloroacetimidation with CCl₃CN catalyzed with 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) furnished the disaccharide building block 28. To prepared trisaccharide donor 36, the 4- and 6-OH groups of 24 were first protected using benzaldehyde dimethyl acetal to provide 29. Acetylation of the two remaining hydroxyl groups followed by removal of the benzylidene group by p-TsOH afforded 31. Regioselective benzoylation of 31 on the 6-OH with benzoyl chloride in pyridine at 0 °C generated 32 in 85% yield. Coupling 32 with a peracetylated rhamnopyranosyl donor provided 33, which was followed by trichloroacetimidation to generate 34. Glycosylation of 26 and 34 using catalytic amounts of TMSOTf successfully gave the trisaccharide 35. The final trisaccharide donor **36** was prepared via hydrolysis and trichloroacetimidation of **35** in the same manner as above.

With key trisaccharide trichloroacetimidate donor **36** in hand, we started to formally assemble target saponins **1-8**. As shown in Scheme 3, ready removal of the benzyl group through catalytic hydrogenation provided intermediates **37-42**. Esterification of **37-42** with trichloroacetimidate donor **36** promoted by TMSOTf in dry CH_2Cl_2 under an atmosphere of N_2 , followed by global deprotection of the benzoyl and acetyl groups by 1 M NaOMe in the presence of the C-28 ester glycosidic linkage, afforded target compound **1** and its derivatives **2-6**. The conformation of the arabinopyranosyl moiety returned to the normal 4C_1 form $(3-O-\alpha-Ara\,H-1\,J_{1-2}=6.0)\,[20,21,25]$ after deprotection due to the attenuated steric hindrance of the rhamnopyranosyl moiety and led to the correct final products.

The preparation of target compounds **7** and **8** were similar to the synthetic route described above (Scheme 3). Catalytic hydrogenation of **13** afforded intermediate **49**, which was converted to compound **7** by esterification and global deprotection via the general procedure. Deprotecting the carboxyl group of compound **15** followed by esterification with **36** furnished compound **52**. Deprotection of the isopropylidene by *p*-TsOH and benzoyl and acetyl groups by NaOMe afforded compound **8**. Changing substituent groups on the carboxyl group of **37** led to compounds **9-12**. Direct removal of the benzoyl and acetyl groups of **37** furnished compound **9**. Coupling **37** with perbenzoylated glucopyranosyl trichloroacetimidate (or **28**, **34**) followed by global deprotection of the benzoyl and acetyl groups to provide compounds **10-12** (Scheme **4**).

3. Results and discussion

3.1. Neuroprotective effects on H₂O₂-induced apoptosis in PC12 cells

It has been demonstrated that neurodegenerative disorders are a class of disease that induce cellular injury by oxidative stress. H_2O_2 can generate exogenous free radicals and simulate damage caused by oxidative stress in nerve cells [26]. High concentrations of H_2O_2 can help us investigate neuroprotective activities of

Fig. 2. Chemical structures of target compounds 1-12.

Scheme 1. Synthesis of intermediates **18-23**. Reagents and conditions: (a) NaOMe, MeOH-CH₂Cl₂ 2:1, v/v, rt, 10 min; (b) Me₂C(OMe)₂, p-TsOH, CH₂Cl₂, rt, 5 h; (c) peracetylated rhamnopyranosyl trichloroacetimidate, TMSOTf, CH₂Cl₂, 4 Å MS, 0 °C, 30 min; (d) p-TsOH, MeOH-CH₂Cl₂ 2:1, v/v, rt, 2 h; (e) perbenzoylated sugar trichloroacetimidates, TMSOTf, CH₂Cl₂, 4 Å MS, 0 °C, 30 min.

compounds in an economical way. The neuroprotective effects of compounds 1-12 on the H₂O₂-induced decrease in cell viability in rat pheochromocytoma (PC12) cells were assessed in preliminary using screenings a 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) assay, and the results are expressed as a percentage of untreated control. As shown in Fig. 3, the cell viabilities decreased to approximately 58% when treated with H₂O₂ alone. Natural saponin 1 exhibited a significant and dose-dependent effect on protecting PC12 cells from H₂O₂ damage, and derivatives **2-6**, which kept the six-sugar skeleton, also showed dose-dependent activities. The antioxidant activities of these compounds were equivalent to Edaravone, the positive control. Compound 7 displayed a moderate activity and compound 8 showed potent neuroprotective effects at 1 and 10 μ M, however as the concentration of the compounds increased to 50 μ M, some toxicity appeared. Compound **9**, with no substituent on carboxyl group of C-28, is another natural product, hederacolchiside A₁, and it showed potent cytotoxicity against PC12 cells which is consistent with previous reports [27]. Derivatives **10** and **11** showed cytotoxicity at high concentration; however, compound **12** showed moderate neuroprotective effects in this model test.

3.2. Neuroprotective effects on $A\beta_{1-42}$ -induced apoptosis in PC12 cells

To further examine the neuroprotective effects of these

Scheme 2. Synthesis of intermediates 28, 34 and 36. Reagents and conditions: (a) TBSCl, DMAP, pyridine, rt, 24 h; (b) Ac₂O, pyridine, 0 °C to rt, 5 h; (c) BF₃·Et₂O, CH₂Cl₂, rt, 1 h; (d) sugar trichloroacetimidates, TMSOTf, CH₂Cl₂, 4 Å MS, 0 °C, 30 min; (e) TCCA, acetone-H₂O 9:1, v/v, 0 °C to rt, 1 h; (f) CCl₃CN, DBU, CH₂Cl₂, rt, 1 h; (g) PhCH(OMe)₂, p-TsOH, CH₃CN, 50 °C, 1 h; (h) p-TsOH, MeOH-CH₂Cl₂ 2:1, v/v, rt, 2 h; (i) BzCl, pyridine, 0 °C to rt, 6 h.

compounds, a model of $A\beta_{1-42}$ -induced damage was chosen. $A\beta$ is widely used to generate AD-like models to analyze the protective effects and mechanisms of action of new pharmacotherapies for AD. H_2O_2 -mediated toxicity to neurons in this system occurs through covalent cross-linking of $A\beta$ [28]. The results showed that the neuroprotective effects of these compounds against $A\beta_{1-42}$ -induced damage had obvious structure-based activity differences that were not exactly in line with H_2O_2 -induced damage (Table 1). Based on the data, the preliminary SARs were analyzed and were found to be the following:

- a) The glycosyl residue on 4-OH of arabinose is crucial for the activity since the six-sugar skeleton compounds **1-6** showed different effects against $A\beta_{1-42}$ -induced damage. Natural product **1** showed remarkable activity at 50 and 100 μ M. However, when the glucopyranosyl moiety was substituted with a rhamnopyranosyl moiety, compound **3** showed more potent anti- $A\beta_{1-42}$ activity than **1**. Compounds **2**, **4**, **5** and **6** that had alternative sugar substituents showed diminished neuroprotective activity in this model test.
- b) For the substituent group on C-3 position, the situation was mixed. Compound **7**, bearing only an arabinopyranosyl moiety on C-3, displayed more potent activity against $A\beta_{1-42}$ -induced damage than compound **1** did at 50 and 100 μ M. Compound **8**, with the α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl moiety, was less potent than **1** and showed only feeble activity at 50 μ M.
- c) The activities of compounds **10-12**, which were designed by changing the substituent group on C-28, were consistent in both H_2O_2 and $A\beta_{1-42}$ -induced models. Only substitution by one or two glucopyranosyl moieties (**10**, and **11**) lead to cytotoxicity, and substitution with glucopyranosyl and rhamnopyranosyl (**12**) afforded comparable neuroprotective activity to that of **1**. The results indicated that the presence of the rhamnopyranosyl residue at the C-28 position is of vital importance for the neuroprotective activity.

3.3. Effects on A $\beta_{1\text{--}42}$ -induced lactate dehydrogenase (LDH) leakage in PC12 cells

LDH is a soluble enzyme present in most eukaryotic cells, it

released from damaged cells into the culture medium because of damage to the plasma membrane [29]. Measuring the activity of LDH can quantitatively assess cytotoxicity. As shown in Fig. 4, when PC12 cells were exposed to 40 μ M A β_{1-42} for 24 h, the LDH leakage was substantially increase to 153% compared with the control group (100%). Pretreatment of the cells with various concentrations (10, 50, and 100 μ M) of compounds 1 and 7 led to significantly decreases in LDH. The LDH leakage percentages of samples treated with compound 1 were 147.4%, 138.5%, and 126.7%, respectively, and similar levels were found with compound 7 (143.7%, 134.4% and 126.3%, respectively). The results indicated that the two compounds can prevent A β_{1-42} -induced damage by reducing the permeability of the plasma membrane.

3.4. Effects on $A\beta_{1-42}$ -induced intracellular reactive oxygen species (ROS) in PC12 cells

Overproduction of ROS can lead to severe impairment of cellular functions. Once ROS cannot be cleared by the antioxidant system, oxidative stress may occur. For instance, it can peroxidize membrane lipids, oxidize proteins and attack mitochondrial DNA [30]. The effect of hederacolchiside E and compound 7 on the intracellular ROS level of PC12 cells was measured using a ROS-sensitive fluorescent probe (DCFH-DA). DCFH-DA can passively enter the cell and react with ROS to produce highly fluorescent dichlorofluorescein (DCF), which is readily detected by flow cytometry. As shown in Fig. 5, after treatment with 40 μ M A β_{1-42} for 24 h, the intracellular ROS level of PC12 cells substantially increased to 51.4% relative to the control value (1.12%). When the cells were preconditioned with 10, 50, and 100 μ M of **1** or **7**, the A β_{1-42} -induced ROS levels were reduced in a dose-dependent manner. The experiments demonstrated that compound 7 significantly reduced ROS levels to 45.0%, 30.7%, and 20.6%, respectively, and showed better ROS-lowering activity than 1 (43.0%, 35.0%, and 29.2%, respectively) in high-dose groups.

3.5. Effects on $A\beta_{1-42}$ -induced malondialdehyde (MDA) in PC12 cells

Lipid peroxidation is one of the earliest recognized effects of

Scheme 3. Synthesis of target compounds 1-8. Reagents and conditions: (a) 10% Pd-C, H_2 , EtOAc, reflux, 2.5 h; (b) TMSOTf, CH_2CI_2 , 4 Å MS, N_2 , 0 °C, 30 min; (c) NaOMe, MeOH- CH_2CI_2 2:1, v/v, rt, 5 h; (d) p-TsOH, MeOH- CH_2CI_2 2:1, v/v, rt, 5 h; (d) p-TsOH, MeOH- CH_2CI_2 2:1, v/v, 40 °C.

oxygen toxicity in the cell membranes that can lead to various degradation products such as MDA. This effect has been studied widely as an indicator of lipid peroxidation and a marker of oxidative stress [31]. The *in vitro* MDA expression levels in samples treated with compounds 1 and 7 are displayed in Fig. 6. The results showed that these two compounds significantly decreased the MDA levels in a dose-dependent manner, and compound 7 possessed more potent activity (2.0, 1.6 and 1.2 nmol/mL) than 1 (2.5, 1.9 and 1.3 nmol/mL) at all test concentrations.

4. Conclusions

Natural saponin hederacolchiside E was first synthesized in a concise and practical way, and its analogs **2-12** were designed and synthesized based on the structure-guided SAR. The neuroprotective effects of these compounds against H_2O_2 - and $A\beta_{1-42}$ -induced injury in PC12 cells and the SAR were evaluated and discussed. The twelve compounds showed activity difference in the test and some of them possessed potent neuroprotective effects. Among them, compound **7** showed the best activity against $A\beta_{1-42}$ -induced cell damage, which was noticeably superior to the natural compound **1**. The *in vitro* detection of related indicators in terms of neuroprotection showed that natural saponin **1** and compound **7** could significantly decrease the levels of LDH, ROS and MDA in a

concentration-depended manner, indicating that the anti-A β activities of these compounds were highly related to their antioxidant activities. In particular, compound **7**, which exhibited a relatively simple chemical structure and potent neuroprotection, could be used as a promising lead for the development of a new series of neuroprotective agents against AD. The pharmacokinetics of these kinds of saponins require further study.

5. Experimental

5.1. Chemistry

All the commercial reagents were used without further purification unless otherwise specified. Solvents were dried and redistilled prior to use in the usual manner. Analytical thin-layer chromatography (TLC) was performed with silica gel HF254. Preparative column chromatography was performed with silica gel H (200-300 mesh). Melting points were measured with a BÜCHI Melting Point B-540. Optical rotations were recorded on an Anton Paar MCP 200 digital polarimeter. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX 600 MHz spectrometer, using Me₄Si as the internal standard if not otherwise mentioned. *J* values are given in hertz. HR-MS spectra were obtained on a Bruker micro-TOF-Q spectrometer.

Scheme 4. Synthesis of target compound 9-12. Reagents and conditions: (a) NaOMe, MeOH-CH₂Cl₂ 2:1, v/v, rt, 5 h; (b) sugar trichloroacetimidates, TMSOTf, CH₂Cl₂, 4 Å MS, N₂, 0 °C, 30 min.

Fig. 3. The neuroprotective effects of compounds **1–12** on the H2O2-induced decrease in cell viability in PC12 cells. The cell viability in control was taken as 100%, and the average value of cell viability under H_2O_2 (200 μ M) exposure was 57.9 \pm 2.9%. Data are expressed as mean \pm the standard deviation (SD), n=3. Edaravone (Eda) was used as positive control. ###p < 0.001 vs the control group. *p < 0.05, **p < 0.01, ***p < 0.001 vs the H_2O_2 -treated group.

5.1.1. Benzyl Oleanolate 3-O-2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranoside (17)

A solution of compound **16** (5.03 g, 5.08 mmol) in CH_2Cl_2 – MeOH (1:2, v/v, 50 mL) was added *p*-TsOH (2.62 g, 15.24 mmol), and

stirred at rt for 4 h. When TLC (2:1, petroleum ether—EtOAc) showed the deprotection was complete, Et₃N (2 mL) was added to quench the reaction and the mixture was concentrated and purified by a silica gel column chromatography (1.2:1, petroleum

Table 1 The neuroprotective effects of compounds **1-8, 10-12** on the $A\beta_{1-42}$ -induced decrease in cell viability in PC12 cells.

Compd.	Cell Viability (% of Control)		
	10 μΜ	50 μΜ	100 μΜ
1	57.0 ± 2.5	65.8 ± 1.6^{b}	70.4 ± 3.0^{b}
2	58.3 ± 2.2	59.7 ± 2.6	_ c
3	61.4 ± 2.1^a	68.4 ± 3.7^{b}	74.6 ± 2.1^{b}
4	52.6 ± 1.2	58.6 ± 0.5	_
5	52.7 ± 1.2	55.7 ± 2.1	_
6	58.5 ± 1.1	57.9 ± 1.5	_
7	55.9 ± 2.7	69.9 ± 3.3^{b}	79.1 ± 4.2^{b}
8	54.3 ± 1.0	60.3 ± 2.4^a	_
10	14.5 ± 0.3	10.3 ± 1.0	_
11	29.5 ± 0.4	19.8 ± 2.6	_
12	59.3 ± 0.7^a	63.3 ± 2.0^{b}	_
model	55.3 ± 1.5		

The cell viability in control was taken as 100%, and the average value of cell viability under A β_{1-42} (40 μ M) exposure was 55.3 \pm 1.5%. Data are expressed as mean \pm SD, n=3

ether-EtOAc) to give compound 17 (4.20 g, 87%) as a white amorphous solid. $R_f = 0.36$ (1:1, petroleum ether – EtOAc); Mp 141–143 °C; $[\alpha]$ 20 D +9.62 (c 2.08, CH₃OH); ¹H NMR (600 MHz, $CDCl_3$) δ 7.36–7.28 (m, 5H, Ar–H), 5.30–5.24 (m, 3H), 5.06 (m, 4H), 4.70 (d, I = 3.0 Hz, 1H, H-1¹), 4.03–3.98 (m, 1H), 3.90 (dt, I = 7.9, 4.0 Hz, 1H), 3.88-3.85 (m, 1H), 3.85-3.83 (m, 1H), 3.74 (dd, I=11.7. 8.3 Hz, 1H), 3.59 (dd, I = 11.7, 4.3 Hz, 1H), 3.11 (dd, I = 11.8, 4.4 Hz, 1H), 2.90 (dd, *J* = 13.7, 4.0 Hz, 1H), 2.14, 2.03, 1.98 (s each, 3H each, $3 \times CH_3CO$), 1.87–1.20 (m, 18H), 1.18 (d, J = 6.3 Hz, 3H, H-6^{II}), 1.10, 0.96, 0.91, 0.89, 0.87, 0.79, 0.59 (s each, 3H each, $7 \times \text{CH}_3$); ¹³C NMR (150 MHz, CDCl₃) δ 177.55, 170.19, 170.13, 170.10, 143.83, 136.54, 128.53, 128.51, 128.11, 128.03, 122.55, 102.02, 98.22, 90.40, 76.00, 71.00, 70.60, 69.83, 69.02, 67.09, 66.06, 65.43, 61.07, 55.60, 47.73, 46.85, 46.01, 41.79, 41.49, 39.41, 39.21, 38.64, 36.82, 33.98, 33.22, 32.77, 32.48, 30.82, 28.22, 27.73, 25.97, 25.85, 23.77, 23.52, 23.16, 21.01, 20.91, 20.83, 18.35, 17.45, 16.97, 16.50, 15.44; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{54}H_{78}O_{14}Na$: 973.5284, found 973.5291.

5.1.2. General procedure for the preparation of intermediates **18-23**

A mixture of 17 (0.70 g, 0.74 mmol), trichloroacetimidate donors (0.89 mmol) and 4 Å molecular sieves in dry CH_2Cl_2 (50 mL) wad stirred at 0 °C for 20 min. A solution of TMSOTf (0.22 mL,

0.34 mmol/mL) in dry CH_2Cl_2 was injected to the reaction mixture. The mixture was stirred under these conditions for 30 min, then quenched with Et_3N (0.1 mL). The mixture was the diluted with CH_2Cl_2 and filtered. The filtrate was concentrated and purified by a silica gel column chromatography (2:1 petroleum ether – EtOAc) to afford 18-23. The 1H -NMR and ^{13}C -NMR data of intermediates 19-23 was shown in supplementary data.

5.1.3. Benzyl Oleanolate 3-O-2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 4)$]- α -L-arabinopyranoside (**18**)

Following the general procedure mentioned above to get compound **18** (0.97 g, 86%) as a white foam. $R_f = 0.32$ (2:1, petroleum ether – EtOAc); Mp 119–121 °C; $[\alpha]20 D - 92.04 (c 2.26, CH_3OH)$; ¹H NMR (600 MHz, CDCl₃) δ 8.03-7.27 (m, 25H, Ar-H), 5.92 (t, J = 9.7 Hz, 1H), 5.69 (t, J = 9.7 Hz, 1H), 5.56 (dd, J = 9.8, 7.9 Hz, 1H), 5.30-5.25 (m, 2H), 5.23 (dd, J = 3.4, 1.6 Hz, 1H), 5.11-5.00 (m, 4H, PhCH₂), 4.97 (d, J = 0.9 Hz, 1H, H-1^{II}), 4.68 (dd, J = 12.1, 3.2 Hz, 1H), $4.56 (d, J = 3.6 Hz, 1H, H-1^{1}), 4.50 (dd, J = 12.1, 5.0 Hz, 1H), 4.21 (ddd, J = 12.1, 5.0 Hz, 1H), 4.21$ I = 9.6, 4.7, 3.5 Hz, 1H, 4.06 - 4.02 (m, 1H), 4.00 (dd, <math>I = 10.0, 6.4 Hz,1H), 3.96 (dt, J = 7.2, 3.5 Hz, 1H), 3.80-3.76 (m, 1H), 3.74 (dd, J = 5.6, 3.8 Hz, 1H), 3.63 (dd, J = 11.9, 3.5 Hz, 1H), 3.03 (dd, J = 11.8, 4.4 Hz, 1H), 2.90 (dd, *J* = 13.5, 3.9 Hz, 1H, H-18), 2.13, 2.04, 1.98 (s each, 3H each, $3 \times CH_3CO$), 1.16 (d, J = 6.2 Hz, 3H, H-6^{II}), 1.10, 0.93, 0.92, 0.89, 0.84, 0.74, 0.58 (s each, 3H each, 7 \times CH₃); ^{13}C NMR (150 MHz, CDCl₃) δ 177.57, 170.12, 166.20, 165.90, 165.44, 165.28, 143.79, 136.56, 133.56, 133.36, 133.32, 129.98, 129.90, 129.74, 129.27, 128.93, 128.54, 128.51, 128.42, 128.12, 128.04, 122.65, 102.40, 101.90, 97.89, 90.24, 75.95, 75.92, 72.92, 72.43, 72.21, 71.08, 70.41, 69.83, 69.70, 69.11, 66.83, 66.07, 65.46, 63.12, 60.42, 55.72, 47.74, 46.87, 46.02, 42.12, 41.78, 41.50, 39.42, 39.17, 38.70, 36.80, 33.99, 33.24, 32.78, 32.51, 30.84, 30.27, 29.83, 29.26, 28.22, 27.73, 25.99, 25.85, 23.78, 23.53, 23.49, 23.22, 23.18, 21.03, 20.93, 20.86, 18.35, 17.42, 16.98, 16.49, 15.44, 14.22; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{88}H_{104}O_{23}Na$: 1551.6861, found 1551.6864.

5.1.4. Phenyl 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl-1-thio- β -D-glucopyranoside (**27**)

A mixture of compound **26** (0.30 g, 0.75 mmol), perbenzoylated glucopyranosyl trichloroacetimidate (0.67 g, 0.90 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (30 mL) was stirred for 20 min at 0 °C. A solution of TMSOTf (0.22 mL, 0.34 mmol/mL) in dry CH₂Cl₂ was injected to the reaction mixture. The mixture was stirred under these conditions for 30 min, then quenched with Et₃N (0.1 mL). The

Fig. 4. The effects of compounds **1** (a) and **7** (b) at different concentrations on the LDH leakage in $A\beta_{1-42}$ -treated PC12 cells. PC12 cells were treated with 40 μM $A\beta_{1-42}$ for 24 h in the presence or absence of compounds (10, 50, 100 μM). The results are expressed as mean \pm SD, n = 3. *#p < 0.01 as compared with control group. *p < 0.05 vs the $A\beta_{1-42}$ -treated group. *p < 0.01 vs the $A\beta_{1-42}$ -treated group.

^a p < 0.05 vs the A β_{1-42} -treated group.

^b p < 0.01 vs the A β_{1-42} -treated group.

^c The – means not test.

Fig. 5. The effects of compounds **1** and **7** on $A\beta_{1-42}$ -induced ROS level in PC12 cells as measured by flow cytometry. The figure shows representative flow cytometric histograms. (a) Control; (b) 40 μM $A\beta_{1-42}$ alone; (c) 10 μM compound **1**+40 μM $A\beta_{1-42}$; (d) 50 μM compound **1**+40 μM $A\beta_{1-42}$; (e) 100 μM compound **1**+40 μM $A\beta_{1-42}$; (f) 10 μM compound **7**+40 μM $A\beta_{1-42}$; (g) 50 μM compound **7**+40 μM $A\beta_{1-42}$; (h) 100 μM compound **7**+40 μM $A\beta_{1-42}$.

Fig. 6. The effects of compounds **1** (a) and **7** (b) at different concentrations on the MDA levels in A β_{1-42} -treated PC12 cells. PC12 cells were treated with 40 μM of A β_{1-42} for 24 h in the presence or absence of compounds (10, 50, 100 μM). The results are expressed as mean ± SD, n = 3. ##p < 0.01 as compared with control group. **p < 0.01 vs the A β_{1-42} -treated group.

mixture was the diluted with CH₂Cl₂ and filtered. The residue was purified by a silica gel column chromatography (2.5:1 petroleum ether – EtOAc) to give compound 27 (0.61 g, 83%) as a white foam. $R_f = 0.27$ (2:1, petroleum ether – EtOAc); Mp 100–103 °C; [α]20 D -1.06 (c 1.89, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 7.2 Hz, 2H, 7.92 (d, J = 7.2 Hz, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.83 (d,J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.46-7.42 (m, 5H), 7.38-7.35 (m, 5H), 7.33 (t, J = 7.7 Hz, 2H, 7.29 (t, J = 7.8 Hz, 2H), 5.83 (t, J = 9.6 Hz, 1H), 5.63 (t, J = 9.6 Hz, 1Hz), 5.63 (t, J = 9.6 Hz), 5.63 (t, J = 9.6J = 9.7 Hz, 1H), 5.49 (dd, J = 9.7, 7.9 Hz, 1H), 5.13 (t, J = 9.3 Hz, 1H), 4.92 (d, J = 7.9 Hz, 1H), 4.85 (t, J = 9.7 Hz, 1H), 4.78 (t, J = 9.8 Hz, 1H),4.66-4.59 (m, 2H), 4.46 (dd, J = 12.1, 5.4 Hz, 1H), 4.08-4.03 (m, 1H), 3.83 (dd, J = 11.8, 2.1 Hz, 1H), 3.80-3.75 (m, 1H), 3.69 (ddd, J = 9.6,7.2, 2.1 Hz, 1H), 2.05 (s, 3H), 1.95 (s, 3H), 1.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.05, 169.57, 169.24, 166.11, 165.78, 165.23, 165.16, 133.48, 133.22, 132.91, 131.64, 129.84, 129.84, 129.80, 129.77, 129.58, 129.19, 128.87, 128.82, 128.52, 128.48, 128.45, 128.34, 128.32, 100.86, 85.41, 77.93, 73.83, 72.92, 72.39, 71.80, 70.00, 69.70, 68.84, 68.02, 63.02, 20.74, 20.57, 20.50; HRMS(ESI): calcd. for $[M+Na]^+$ C₅₂H₄₈O₁₇SNa: 999.2504, found 999.2484.

5.1.5. 2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl- β -D-glucopyranosyl trichloroacetimidate (**28**)

A solution of compound 27 (0.54 g, 0.55 mmol) in acetone-H₂O (9:1, 50 mL) was added TCCA (0.13 g, 0.55 mmol) slowly at rt. The solution was stirred for 1 h and then acetone was removed in vacuum. The reaction mixture was dissolved with CH₂Cl₂ and successively washed with saturated NaHCO₃ and followed by brine, then dried over Na₂SO₄. $R_f = 0.35$ (1:1, petroleum ether – EtOAc). A mixture of crude solid, CCl₃CN (0.22 mL, 2.20 mmol) and DBU (0.01 mL, 0.07 mmol) in CH₂Cl₂ (30 mL) was strried at rt for 1 h. After completion of the reaction based on TLC, the solvent was removed in vacuum and the resulting residue was purified by a silica gel column chromatography (2:1 petroleum ether-EtOAc) to give compound 28 (0.47 g, 83% over two steps) as a white foam. $R_f = 0.25$ (2:1, petroleum ether – EtOAc); Mp 107–109 °C; [α]20 D +35.54 (c 1.21, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.43 (s, 1H), 8.02 (d, J = 7.1 Hz, 2H), 7.95 (d, J = 7.2 Hz, 2H), 7.89 (d, J = 7.2 Hz, 2H),7.81 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.52–7.47 (m, 2H), 7.42 (dd, J = 15.0, 7.5 Hz, 4H), 7.37 (t, J = 7.8 Hz, 1H), 7.33 (t, I = 7.7 Hz, 2H), 7.27 (t, I = 7.7, 2H), 6.39 (d, I = 3.6 Hz, 1H), 5.87 (t, J = 9.6 Hz, 1H), 5.65 (t, J = 9.7 Hz, 1H), 5.51–5.46 (m, 2H), 4.96 (t,

J = 4.2, 1H), 4.94–4.91 (m, 2H), 4.63 (dd, J = 12.1, 3.2 Hz, 1H), 4.49 (dd, J = 12.1, 5.2 Hz, 1H), 4.19–4.12 (m, 2H), 3.96 (dd, J = 11.6, 2.0 Hz, 1H), 3.70 (dd, J = 11.6, 6.1 Hz, 1H), 1.97 (s, 6H), 1.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.88, 169.74, 169.53, 166.12, 165.78, 165.20, 165.07, 160.61, 133.44, 133.21, 133.15, 133.13, 129.93, 129.85, 129.76, 129.63, 129.30, 128.83, 128.81, 128.44, 128.41, 128.31, 128.29, 100.78, 92.62, 90.63, 72.87, 72.34, 71.65, 71.38, 69.78, 69.72, 68.49, 67.40, 63.06, 20.64, 20.52, 20.41; HRMS(ESI): calcd. for [M+Na]⁺ C₄₈H₄₄O₁₈NCl₃Na: 1050.1516, found 1050.1492.

5.1.6. 2,3,4-Tri-O-acetyl- α - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl-6-O-benzoyl- β -D- glucopyranosyl trichloroacetimidate (**34**)

Crude **34** was prepared from **33** (1.51 g, 2.06 mmol) by the same procedure as for 28, and purified by a silica gel column chromatography (3:1 petroleum ether-EtOAc) to give compound 34 (1.32 g. 81% over two steps) as a white foam. $R_f = 0.41$ (1:1, petroleum ether – EtOAc): Mp 82–84 °C: $[\alpha]20$ D +23.78 (c 2.08. CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.66 (s, 1H, NH), 8.04 (d, J = 7.4 Hz, 2H, Ph), 7.58 (t, J = 7.4 Hz, 1H, Ph), 7.45 (t, J = 7.7 Hz, 2H, Ph), 6.51 (d, J = 3.7 Hz, 1H, H-1 $^{\lor}$), 5.62 (t, J = 9.7 Hz, 1H), 5.26 (dd, J = 10.1, 3.2 Hz, 1H, 5.19 - 5.15 (m, 1H), 5.09 - 5.00 (m, 2H), 4.92 (d, 1H) $J = 1.5 \text{ Hz}, 1\text{H}, \text{H}-1^{\text{VI}}, 4.80 \text{ (dd}, J = 12.5, 1.4 \text{ Hz}, 1\text{H}), 4.54 \text{ (dd}, J = 12.5, 1.4 \text{ Hz}, 1\text{H})$ 3.7 Hz, 1H), 4.28 (d, J = 8.9 Hz, 1H), 3.99 (t, J = 9.7 Hz, 1H), 3.92 (dq, J = 12.4, 6.1 Hz, 1H), 2.09, 2.08, 2.05, 2.01, 1.99 (s each, 3H each, $5 \times \text{CH}_3\text{CO}$), 1.18 (d, J = 6.2 Hz, 3H, H-6^{VI}). ¹³C NMR (150 MHz, CDCl₃) δ 170.17, 170.06, 170.02, 169.83, 165.90, 161.02, 133.28,129.94, 129.82, 128.51, 99.58, 93.11, 90.87, 76.76, 71.31, 70.90, 70.78, 70.35, 70.15, 68.66, 67.99, 62.02, 21.22, 20.95, 20.91, 20.83, 20.58, 17.39; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{31}H_{36}O_{16}NCl_3Na$: 806.0992, 808.0962, found 806.0954, 808.0943.

5.1.7. Phenyl 2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl-6-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl-1-thio- β -D-glucopyranoside (**35**)

Crude **35** was prepared from **34** (1.34 g, 1.71 mmol) with **26** by the same procedure as for 27, and purified by a silica gel column chromatography (3:2 petroleum ether – EtOAc) to give compound **35** (1.52 g, 87%) as a white foam. $R_f = 0.23$ (1.5:1, petroleum ether – EtOAc); Mp 102–104 °C; $[\alpha]$ 20 D –44.34 (c 1.06, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.03 (dd, I = 8.2, 1.1 Hz, 2H, Ph), 7.56 (t, J = 7.4 Hz, 1H, Ph), 7.47–7.40 (m, 4H, Ph), 7.34–7.28 (m, 3H, Ph), 5.24-5.16 (m, 3H), 5.13 (dd, J = 3.1, 2.1 Hz, 1H), 5.04 (t, J = 10.0 Hz, 1H), 4.94-4.90 (m, 1H), 4.89 (d, J = 1.8 Hz, 1H), 4.88-4.79 (m, 3H), 4.69 (d, I = 10.1 Hz, 1H), 4.58 (d, I = 7.9 Hz, 1H), 4.45 (dd, I = 12.3)4.3 Hz, 1H), 3.91 (t, I = 9.3 Hz, 1H), 3.88–3.82 (m, 2H), 3.74–3.69 (m, 1H), 3.66 (ddd, I = 9.7, 4.1, 1.9 Hz, 1H), 3.61 (dd, I = 11.3, 7.3 Hz, 1H), 2.07, 2.06, 2.06, 2.03, 1.97, 1.96, 1.95, 1.95 (s each, 3H each, $8 \times CH_3CO$), 1.16 (d, J = 6.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.30, 170.23, 170.14, 170.04, 169.98, 169.66, 169.40, 165.91, 133.28, 132.27, 132.24, 129.94, 129.83, 129.31, 128.57, 128.30, 100.52, 99.21, 85.71, 77.47, 74.11, 74.03, 73.02, 72.04, 70.78, 70.15, 70.06, 68.82, 68.65, 68.36, 67.93, 62.32, 21.17, 20.94, 20.91, 20.87, 20.83, 20.79, 20.71, 20.65, 17.35; HRMS(ESI): calcd. for [M+Na]⁺ C₄₇H₅₆O₂₃S₁Na: 1043.2825, found 1043.2833.

5.1.8. 2,3,4-Tri-O-acetyl- α - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl-6-O-benzoyl- β - υ -glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl- β - υ -glucopyranosyl trichloroacetimidate (**36**)

Crude **36** was prepared from **35** (1.52 g, 1.50 mmol) by the same procedure as for **34**, and purified by a silica gel column chromatography (1.5:1 petroleum ether – EtOAc) to give compound **36** (1.33 g, 83%) as a white foam. $R_f = 0.47$ (1:1, petroleum ether – EtOAc); Mp 100–102 °C; $[\alpha]$ 20 D +15.43 (c 1.88, CH₃OH); ¹H NMR

(600 MHz, CDCl₃) δ 8.66 (s, 1H, NH), 8.03 (d, J = 7.9 Hz, 2H, Ph), 7.56 (t, J = 7.2 Hz, 1H, Ph), 7.45 (t, J = 7.6 Hz, 2H, Ph), 6.50 (d, J = 3.6 Hz, 1H, H-1^N), 5.51 (t, J = 9.8 Hz, 1H), 5.22–5.18 (m, 2H), 5.11 (s, 1H), 5.06–4.99 (m, 3H), 4.87–4.83 (m, 2H), 4.77 (d, J = 11.3 Hz, 1H), 4.58 (d, J = 7.9 Hz, 1H), 4.47 (dd, J = 12.3, 4.1 Hz, 1H), 4.15–4.11 (m, 1H), 3.91 (t, J = 9.6 Hz, 2H), 3.87–3.82 (m, 1H), 3.73 (d, J = 9.4 Hz, 1H), 3.54 (dd, J = 11.2, 5.2 Hz, 1H), 2.05, 2.05, 2.04, 2.02, 2.00, 1.99, 1.99, 1.96 (s each, 3H each, 8 × CH₃CO), 1.14 (d, J = 6.2 Hz, 3H, H-6^{VI}); 13 C NMR (150 MHz, CDCl₃) δ 170.27, 170.14, 170.12, 170.03, 170.00, 169.90, 169.48, 160.85, 133.26, 129.93, 129.85, 128.53, 100.38, 99.14, 92.89, 90.83, 76.85, 74.01, 73.01, 71.83, 70.78, 70.11, 70.07, 69.84, 68.63, 68.24, 67.87, 67.22, 62.45, 21.13, 20.90, 20.80, 20.68, 20.55, 17.33; HRMS(ESI): calcd. for [M+Na] $^{+}$ C₄₃H₅₂Cl₃NO₂₄Na: 1094.1837, found 1094.1832.

5.1.9. General procedure for the preparation of intermediates **37-42**

A sustention of **18** (or **19-23**) (0.50 mmol) and 10% Pd-C (0.2 g) in EtOAc (50 mL) was refluxed and bubbled up with H_2 (70 mL/min) for 3.5 h. After completion of the reaction based on TLC, Pd-C was removed through filtration and the filtrate was concentrated to dryness and purified by a silica gel column chromatography (1.5:1 petroleum ether — EtOAc) to afford **37-42**. The 1 H-NMR and 13 C-NMR data of intermediates **38-42** was shown in supplementary data.

5.1.10. Oleanolic acid 3-O-2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 4)$]- α -L-arabinopyranoside (**37**)

Following the general procedure mentioned above to get compound **37** (0.65 g, 91%) as a white foam. $R_f = 0.19$ (2:1, petroleum ether – EtOAc); Mp 175–178 °C; $[\alpha]20 D + 27.27 (c 1.98, CH_3OH)$; ¹H NMR (600 MHz, CDCl₃) δ 8.03–7.28 (m, 20H, Ar–H), 5.91 (t, J = 9.7 Hz, 1H), 5.69 (t, J = 9.7 Hz, 1H), 5.56 (dd, J = 9.7, 8.0 Hz, 1H), 5.30-5.25 (m, 2H), 5.23 (dd, J = 3.3, 1.5 Hz, 1H), 5.04 (dd, J = 19.7, 9.0 Hz, 2H), 4.94 (br s, 1H, H-1^{II}), 4.68 (dd, J = 12.1, 3.1 Hz, 1H), 4.59 $(d, J = 3.1 \text{ Hz}, 1H, H-1^{1}), 4.50 (dd, J = 12.1, 4.9 \text{ Hz}, 1H), 4.23-4.18 (m, J)$ 1H), 4.05-3.95 (m, 3H), 3.82-3.77 (m, 1H), 3.77-3.73 (m, 1H), 3.64 (dd, J = 11.5, 3.3 Hz, 1H), 3.04 (dd, J = 11.6, 4.4 Hz, 1H), 2.81 (dd, J = 11.6, 4.4 Hz, 1H)J = 13.6, 3.8 Hz, 1H), 2.13, 2.03, 1.98 (s each, 3H each, 3 × CH₃CO), 1.16 (d, I = 6.2 Hz, 3H, H-6^{II}), 1.12, 0.93, 0.92, 0.90, 0.87, 0.74, 0.74 (s each, 3H each, $7 \times \text{CH}_3$); ¹³C NMR (150 MHz, CDCl₃) δ 183.11, 170.12, 166.21, 165.90, 165.44, 165.29, 143.66, 133.56, 133.34, 133.22, 129.99, 129.91, 129.75, 129.31, 128.99, 128.95, 128.94, 128.54, 128.52, 128.42, 122.75, 102.28, 101.86, 97.99, 90.23, 76.07, 75.75, 72.95, 72.42, 72.20, 71.08, 70.15, 69.85, 69.71, 69.12, 66.89, 63.13, 60.14, 55.71, 47.78, 46.67, 46.05, 41.76, 41.11, 39.41, 39.20, 38.69, 36.86, 33.96, 33.20, 32.74, 32.52, 30.80, 29.84, 28.22, 27.80, 26.01, 25.84, 23.71, 23.54, 23.13, 21.03, 20.93, 20.87, 18.34, 17.43, 17.09, 16.46, 15.46; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{81}H_{98}O_{23}Na$: 1461.6391, found 1461.6398.

5.1.11. General procedure for the preparation of compounds **1-6**

A mixture of compounds **37** (or **38-42**) (0.45 mmol), **36** (0.58 g, 0.54 mmol) and 4 Å molecular sieves in dry CH_2Cl_2 (30 mL) were stirred under an atmosphere of N_2 for 30 min at 0 °C. A solution of TMSOTf (0.13 mL, 0.34 mmol/mL) in dry CH_2Cl_2 was injected. The mixture was stirred under these conditions for 30 min, then quenched with Et_3N (0.1 mL), and concentrated to dryness to afford crude intermediates **42-48**. The resulting residue was dissolved in dry $MeOH-CH_2Cl_2$ (2:1, v/v, 30 mL), to which a freshly prepared solution of NaOMe in MeOH solution (1.0 mol/L, 0.45 mL) was added. The solution was stirred at rt for 5 h and then neutralized with Dowex H^+ resin to pH 7 and filtered. The filtrate was

concentrated and purified on a Sephadex LH-20 column using MeOH as the eluent to afford compound **1-6**.

Following the general procedure mentioned above to get compound 1 (0.52 g, 84% over two steps) as a white foam, $R_f = 0.24$ (4:1:5, *n*-BuOH-AcOH-H₂O); Mp 226–228 °C; $[\alpha]$ 20 D –21.74 (c1.15, CH₃OH); ¹H NMR (600 MHz, C_5D_5N) δ 8.40–6.45 (m, 16H. OH), $6.27 (d, J = 8.1 \text{ Hz}, 1\text{H}, \text{H}-1^{\text{IV}}), 6.20 (\text{br s}, 1\text{H}, \text{H}-1^{\text{II}}), 5.93 (d, J = 9.0 \text{ Hz},$ 1H, OH), 5.88 (br s, 1H, H-1^{VI}), 5.42 (br s, 1H, H-12), 5.16 (d, J = 7.8 Hz, 1H, H-1^{III}), 4.99 (d-like, J = 6.0 Hz, 1H, H-1^V), 4.78 (d, I = 6.0 Hz, 1H, H-1, 4.75 (s, 1H), 4.71–4.62 (m, 4H), 4.57 (dd, I = 9.1, 2.5 Hz, 1H), 4.58-4.52 (m, 2H), 4.47-4.38 (m, 3H), 4.38-4.25 (m, 8H), 4.25-4.20 (m, 3H), 4.19-4.09 (m, 4H), 4.06 (t, J = 8.4 Hz, 1H), 3.96 (t, J = 8.4 Hz, 1H), 3.93-3.90 (m, 1H), 3.82 (d, J = 10.8 Hz, 1H), 3.68 (d, J = 9.4 Hz, 1H), 3.26-3.16 (m, 2H), 2.32 (td, J = 13.6, 2.6 Hz,1H), 2.11-2.00 (m, 2H), 1.99-1.74 (m, 7H), 1.72 (d, J = 6.1 Hz, 3H, H- 6^{VI}), 1.66 (d, J = 6.1 Hz, 3H, H- 6^{II}), 1.25, 1.18, 1.13, 1.11, 0.90, 0.90, 0.89 (s each, 3H each, 7 \times CH₃); ^{13}C NMR (150 MHz, C₅D₅N) δ 176.53 (C-28), 144.13 (C-13), 122.88 (C-12), 106.42 (C-1^{III}), 104.95 (C-1^I), 104.90 (C-1^V), 102.76 (C-1^{VI}), 101.80 (C-1^{II}), 95.67 (C-1^{IV}), 88.69, 79.67, 78.81, 78.76, 78.56, 78.23, 78.08, 77.19, 76.52, 76.35, 75.50, 75.37, 74.09, 74.02, 73.90, 72.79, 72.60, 72.51, 72.32, 71.27, 70.87, 70.32, 69.84, 69.22, 64.53, 62.55, 61.29, 56.00, 48.07, 47.05, 46.24, 42.16, 41.68, 39.90, 39.50, 38.93, 37.03, 34.01, 33.14, 32.56, 30.77, 28.29, 28.07, 26.63, 26.07, 23.81, 23.70, 23.38, 18.67, 18.55, 17.51, 17.04, 15.68; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{65}H_{106}O_{30}Na$: 1389.6661, found 1389.6677.

5.1.13. 3-O- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\alpha$ - ι -arabinopyranosyl- $(1 \rightarrow 4)$]- α - ι -arabinopyranosyl]oleanolic acid 28-O- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl] ester (2)

Following the general procedure mentioned above to get compound 2 (0.49 g, 82% over two steps) as a white foam. $R_f = 0.24$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 230–233 °C; $[\alpha]$ 20 D –51.49 (c1.34, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 8.09 (s, 1H, OH), 7.54-7.52 (m, 2H, OH), 7.44 (d, J = 4.3 Hz, 1H, OH), 7.36 (d, I = 4.8 Hz, 1H, OH), 6.86 (d, I = 3.0 Hz, 2H, OH), 6.83 (d, I = 4.4 Hz, 1H, OH), 6.81-6.77 (m, 1H, OH), 6.76 (d, J = 4.1 Hz, 1H, OH), 6.71 (d, J = 4.5 Hz, 1H, OH), 6.67 (d, J = 3.6 Hz, 1H, OH), 6.54–6.51 (m, 3H, OH), 6.27 (d, J = 8.1 Hz, 1H, H-1^{IV}), 6.16 (br s, 1H, H-1^{II}), 5.90 (br s, 1H, $H-1^{VI}$), 5.73 (d, J = 8.8 Hz, 1H, OH), 5.41 (s, 1H, H-12), 5.04–5.00 (m, $2H, H-1^{V}$), $4.93 (d, J = 7.4 Hz, 1H, H-1^{III}), <math>4.81 (d, J = 5.8 Hz, 1H, H-1^{I})$, 4.75 (br s, 1H), 4.71–4.69 (m, 2H), 4.67–4.63 (m, 2H), 4.60–4.57 (m, 1H), 4.53-4.43 (m, 4H), 4.40-4.31 (m, 4H), 4.31-4.25 (m, 4H), 4.25-4.20 (m, 2H), 4.20-4.14 (m, 2H), 4.14-4.08 (m, 3H), 3.99-3.95 (m, 8.4 Hz, 1H), 3.87 (d, J = 11.0 Hz, 1H), 3.72-3.67 (m, 2H), 3.25-3.18 (m, 2H), 2.32 (t, J = 12.6 Hz, 1H), 1.73 (d, J = 6.1 Hz, 3H, H-6^{VI}), 1.65 (d, J = 6.0 Hz, 3H, H-6^{II}), 1.25, 1.19, 1.13, 1.10, 0.90, 0.90, 0.88 (s each, 3H each, $7 \times \text{CH}_3$); ¹³C NMR (150 MHz, C₅D₅N) δ 176.53 (C-28), 144.08 (C-13), 122.88 (C-12), 106.91 (C-1), 104.93 (C-1^I), 104.88 (C-1^V), 102.74 (C-1^{VI}), 101.74 (C-1^{II}), 95.66 (C-1^{IV}), 88.70, 79.13, 78.74, 78.18, 78.06, 77.17, 76.50, 76.33, 75.36, 74.78, 74.05, 74.01, 73.95, 73.88, 72.78, 72.58, 72.50, 72.31, 70.82, 70.31, 69.82, 69.79, 69.18, 67.47, 64.53, 61.25, 55.99, 49.68, 48.06, 47.03, 46.21, 42.13, 41.66, 39.88, 39.50, 38.92, 37.02, 33.99, 33.14, 32.53, 30.76, 29.98, 28.27, 28.06, 26.63, 26.06, 23.79, 23.68, 23.36, 18.65, 18.55, 17.50, 17.02, 15.67; HRMS(ESI): calcd. for [M+Na]⁺ C₆₄H₁₀₄O₂₉Na: 1359.6555, found 1359.6563.

5.1.14. 3-O- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 4)$]- α - ι -arabinopyranosyl]oleanolic acid 28-O- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl] ester (3)

Following the general procedure mentioned above to get compound **3** (0.51 g, 84% over for two steps) as a white foam, $R_f = 0.24$ (4:1:5, *n*-BuOH-AcOH-H₂O); Mp 211–214 °C; $[\alpha]$ 20 D –36.76 (*c* 1.36, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 7.54–7.36 (m, 4H, OH), 6.89-6.29 (m, 12H, OH), 6.27 (d, I = 8.1 Hz, 1H, H-1^N), 6.03 (br s, 1H, H-1^{II}), 5.90 (br s, 1H, H-1^{VI}), 5.77 (br s, 1H, H-1^{III}), 5.41 (s, 1H, H-12), 5.03-5.00 (m, 2H, H-1^V), 4.92 (d, J = 4.3 Hz, 1H, H-1^I), 4.76 (s, 1H), 4.71-4.69 (m, 2H), 4.65 (d, I = 4.3 Hz, 1H), 4.63-4.56 (m, 3H), 4.55-4.50 (m, 2H), 4.48-4.45 (m, 2H), 4.43-4.37 (m, 3H), 4.37-4.32 (m, 4H), 4.31-4.20 (m, 3H), 4.20-4.05 (m, 5H), 3.97 (t, I = 6.9 Hz, 1H), 3.89 (d, I = 10.1 Hz, 1H), 3.68 (d, I = 9.4 Hz, 1H), 3.62 (d, I = 4.2 Hz, 1H), 3.20 (t, I = 16.7 Hz, 2H), 2.32 (t, I = 12.5 Hz, 1H), $1.73 \text{ (d, } J = 6.1 \text{ Hz, } 3\text{H, H-6}^{\text{VI}} \text{), } 1.69 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{H, H-6}^{\text{II}} \text{), } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{ Hz, } 3\text{ Hz, } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{ Hz, } 3\text{ Hz, } 1.64 \text{ (d, } J = 6.0 \text{ Hz, } 3\text{ Hz, } 1.64 \text{ (d, } J = 6.$ *J* = 6.1 Hz, 3H), 1.26, 1.17, 1.11, 1.09, 0.90, 0.90, 0.87 (s each, 3H each, $7 \times \text{CH}_3$); $^{13}\text{C NMR}$ (150 MHz, $C_5D_5\text{N}$) δ 176.52 (C-28), 144.09 (C-13), 122.85 (C-12), 104.85 (C-1^I), 104.81 (C-1^V), 102.73 (C-1^{VI}), 102.52 (C-1^{III}), 101.98 (C-1^{II}), 95.63 (C-1^{IV}), 89.01, 78.72, 78.17, 78.04, 77.16, 76.49, 76.32, 75.34, 74.94, 74.02, 73.86, 72.76, 72.57, 72.29, 72.16, 72.01, 70.80, 70.30, 70.27, 70.12, 69.16, 62.90, 61.24, 55.88, 49.68, 48.04, 47.03, 46.21, 42.13, 41.65, 39.87, 39.48, 38.86, 37.00, 33.98, 33.14, 32.52, 30.75, 29.97, 28.26, 28.03, 26.50, 26.05, 23.78, 23.68, 23.36, 18.71, 18.56, 18.54, 17.47, 16.90, 15.62; HRMS(ESI): calcd. for [M+Na]⁺ C₆₅H₁₀₆O₂₉Na: 1373.6712, found 1373.6672.

5.1.15. $3-O-[\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-[\beta-D-galactopyranosyl-(1\rightarrow 4)]-\alpha-L-arabinopyranosyl]oleanolic acid 28-O-[\alpha-L-rhamnopyranosyl-(1\rightarrow 4)-\beta-D-glucopyranosyl-(1\rightarrow 6)-\beta-D-glucopyranosyl] ester (4)$

Following the general procedure mentioned above to get compound 4 (0.52 g, 84% over two steps) as a white foam. $R_f = 0.24$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 228–231 °C; $[\alpha]$ 20 D –43.52 (c 2.16, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 8.18 (d, J = 3.0 Hz, 1H, OH), 7.55-7.32 (m, 4H, OH), 6.88-6.66 (m, 8H, OH), 6.54-6.51 (m, 3H, OH), 6.27 (d, J = 8.1 Hz, 1H, H-1^{IV}), 6.17 (br s, 1H, H-1^{II}), 5.90 (br s, 1H, H-1^{VI}), 5.81 (d, J = 8.9 Hz, 1H, OH), 5.42 (s, 1H, H-12), 5.08 (dlike, J = 8.9 Hz, 1H, H-1^{III}), 5.03-5.01 (m, 2H, H-1^V), 4.78 (d, $J = 5.9 \text{ Hz}, 1\text{H}, \text{H}-1^{1}, 4.74 \text{ (s, 1H)}, 4.71-4.69 \text{ (m, 2H)}, 4.68-4.61 \text{ (m, 1H)}$ 2H), 4.61-4.52 (m, 3H), 4.51-4.48 (m, 2H), 4.47-4.43 (m, 3H), 4.39-4.31 (m, 4H), 4.30-4.28 (m, 2H), 4.26-4.18 (m, 3H), 4.18-4.10 (m, 5H), 4.07 (t, I = 5.8 Hz, 1H), 3.97 (td, I = 8.4, 4.6 Hz, 1H), 3.83 (d, I)J = 11.1 Hz, 1H), 3.68 (d, J = 9.5 Hz, 1H), 3.25–3.16 (m, 2H), 2.32 (t, $J = 11.7 \text{ Hz}, 1\text{H}, 1.73 (d, J = 6.2 \text{ Hz}, 3\text{H}, H-6^{VI}), 1.65 (d, J = 6.1 \text{ Hz}, 3\text{H},$ $H-6^{II}$), 1.25, 1.18, 1.14, 1.11, 0.90, 0.90, 0.89 (s each, 3H each, $7 \times CH_3$); ¹³C NMR (150 MHz, C_5D_5N) δ 176.53 (C-28), 144.11 (C-13), 122.89 (C-12), 107.06 (C-1^{III}), 104.92 (C-1^I, C-1^V), 102.77 (C-1^{VI}), 101.74 (C-1^{II}), 95.68 (C-1^{IV}), 88.68, 79.56, 78.78, 78.21, 78.09, 77.24, 77.20, 76.53, 76.36, 75.45, 75.38, 74.09, 74.04, 73.90, 73.05, 72.80, 72.61, 72.52, 72.33, 70.87, 70.36, 70.33, 69.81, 69.23, 64.62, 62.36, 61.28, 56.00, 49.69, 48.06, 47.05, 46.23, 42.15, 41.68, 39.89, 39.50, 38.92, 37.03, 34.01, 33.15, 32.56, 30.77, 30.00, 28.29, 28.07, 26.64, 26.07, 23.81, 23.70, 23.38, 18.67, 18.56, 17.52, 17.04, 15.68; HRMS(ESI): calcd. for $[M+Na]^+$ C₆₅H₁₀₆O₃₀Na: 1389.6661, found 1389.6717.

5.1.16. 3-O-[α - ι -rhamnopyranosyl-($1 \rightarrow 2$)-[β - ι - ι -xylopyranosyl-($1 \rightarrow 4$)]- α - ι -arabinopyranosyl]oleanolic acid 28-O-[α - ι -rhamnopyranosyl-($1 \rightarrow 4$)- β -D-glucopyranosyl-($1 \rightarrow 6$)- β -D-glucopyranosyl] ester ($\mathbf{5}$)

Following the general procedure mentioned above to get compound **5** (0.51 g, 84% over two steps) as a white foam. R_f = 0.24 (4:1:5, n-BuOH-AcOH-H₂O); Mp 228–232 °C; [α]20 D -33.55 (c 1.52, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 8.34 (d, J = 3.8 Hz, 1H,

OH), 7.54-7.34 (m, 5H, OH), 7.20 (d, I = 4.5 Hz, 1H, OH), 6.85-6.54 $(m, 8H, OH), 6.27 (d, I = 8.1 Hz, 1H, H-1^{IV}), 6.19 (br s, 1H, H-1^{II}), 5.89$ (br s, 1H, H-1^{VI}), 5.80 (d, J = 9.0 Hz, 1H, OH), 5.41 (s, 1H, H-12), 5.03-4.99 (m, 3H, H-1^{III}, H-1^V), 4.81 (d, J = 5.8 Hz, 1H, H-1^I), 4.76 (s, 1H), 4.72-4.68 (m, 2H), 4.68-4.62 (m, 2H), 4.61-4.56 (m, 1H), 4.54-4.51 (m, 1H), 4.50-4.44 (m, 2H), 4.38-4.31 (m, 6H), 4.30-4.28 (m, 1H), 4.25-4.20 (m, 3H), 4.20-4.15 (m, 2H), 4.15-4.08 (m, 4H), 4.03 (td, I = 8.4, 4.1 Hz, 1H), 3.97 (td, I = 8.1, 4.4 Hz, 1H),3.89 (d, I = 10.7 Hz, 1H), 3.69 - 3.63 (m, 2H), 3.21 (ddd, I = 16.2, 12.3, 12.3)3.3 Hz, 2H), 2.32 (t, I = 11.5 Hz, 1H), 1.73 (d, I = 6.2 Hz, 3H, H-6^{VI}), $1.66 \text{ (d, } J = 6.1 \text{ Hz, 3H, H-6}^{\text{II}}), 1.25, 1.18, 1.12, 1.10, 0.90, 0.89, 0.88 \text{ (s)}$ each, 3H each, $7 \times \text{CH}_3$); $^{13}\text{C NMR}$ (150 MHz, C_5D_5N) δ 176.56 (C-28), 144.13 (C-13), 122.92 (C-12), 106.96 (C-1^{III}), 104.94 (C-1^I, C-1^V), 102.80 (C-1^{VI}), 101.84 (C-1^{II}), 95.70 (C-1^{IV}), 88.73, 79.33, 78.80, 78.66, 78.23, 78.11, 77.23, 76.55, 76.37, 75.41, 75.24, 74.11, 74.06, 73.93, 72.83, 72.64, 72.55, 72.37, 71.01, 70.89, 70.36, 69.90, 69.25, 67.47, 64.55, 61.31, 56.02, 49.72, 48.09, 47.08, 46.25, 42.18, 41.71, 39.92, 39.53, 38.96, 37.05, 34.03, 33.18, 32.58, 30.80, 28.32, 28.11, 26.64, 26.10, 23.83, 23.72, 23.41, 18.70, 18.59, 17.54, 17.07, 15.69; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{64}H_{104}O_{29}Na$: 1359.6555, found 1359.6449.

5.1.17. 3-O-[α - ι -rhamnopyranosyl-($1 \rightarrow 2$)-[β -D-ribofuranosyl-($1 \rightarrow 4$)]- α - ι -arabinopyranosyl]oleanolic acid 28-O-[α -L-rhamnopyranosyl-($1 \rightarrow 4$)- β -D-glucopyranosyl] ester ($\mathbf{6}$)

Following the general procedure mentioned above to get compound **6** (0.47 g, 79% over two steps) as a white foam. $R_f = 0.24$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 220–223 °C; [α]20 D –72.32 (c1.12, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 7.53–7.30 (m, 4H, OH), 7.00-6.47 (m, 11H), 6.27 (d, I = 7.9 Hz, 1H, $H-1^{\text{IV}}$), 6.17 (s, 1H, OH), 6.09 (s, 1H, H-1^{II}), 5.90 (s, 1H, H-1^{VI}), 5.65 (d, J = 2.4 Hz, 1H, H-1^{III}), 5.41 (s, 1H, H-12), 5.01 (d, J = 7.6 Hz, 2H, H-1 $^{\circ}$), 4.87 (d, J = 3.4 Hz, $1H, H-1^{1}$, 4.74 (s, 1H), 4.71-4.68 (m, 2H), 4.67-4.60 (m, 2H), 4.59 (d, J = 9.1 Hz, 1H, 4.54 - 4.51 (m, 1H), 4.50 - 4.43 (m, 3H), 4.41 - 4.28 (m, 3H)7H), 4.27-4.06 (m, 11H), 3.99-3.95 (m, 1H), 3.88 (d, J = 10.2 Hz, 1H), 3.68 (d, J = 8.6 Hz, 1H), 3.22 (ddd, J = 15.3, 11.5, 1.9 Hz, 2H), 2.32 (t, J = 15.3, 11.5, 1.9 Hz, 2H) $J = 13.7 \text{ Hz}, 1\text{H}, 1.73 \text{ (d, } J = 5.6 \text{ Hz}, 3\text{H}, \text{H-6}^{\text{VI}}, 1.67 \text{ (d, } J = 5.5 \text{ Hz}, 3\text{H},$ $H-6^{II}$), 1.25, 1.19, 1.11, 1.11, 0.90, 0.90, 0.89 (s each, 3H each, $7 \times CH_3$); ¹³C NMR (150 MHz, C_5D_5N) δ 176.53 (C-28), 144.11 (C-13), 122.87 (C-12), 104.91 (C-1^I, C-1^V), 103.57 (C-1^{III}), 102.77 (C-1^{VI}), 101.97 (C-1^{II}), 95.67 (C-1^{IV}), 88.85, 78.77, 78.19, 78.08, 77.20, 77.02, 76.52, 76.36, 75.38, 74.04, 73.90, 72.88, 72.81, 72.61, 72.55, 72.52, 72.30, 70.87, 70.33, 70.08, 70.03, 69.22, 65.33, 61.28, 55.95, 48.07, 47.05, 46.23, 42.15, 41.68, 39.89, 39.51, 38.92, 37.03, 34.00, 33.15, 32.55, 30.77, 30.00, 28.29, 28.07, 26.60, 26.07, 23.80, 23.69, 23.38, 18.68, 18.57, 17.50, 16.96, 15.66; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{64}H_{104}O_{29}Na$: 1359.6555, found 1359.6423.

5.1.18. $3-O-\alpha-L$ -arabinopyranosyl-oleanolic acid $28-O-[\alpha-L]$ -rhamnopyranosyl- $(1\rightarrow 4)-\beta-D$ -glucopyranosyl- $(1\rightarrow 6)-\beta-D$ -glucopyranosyl] ester (7)

Compound **7** was synthesized from **49** (0.41 g, 0.45 mmol) by the same procedure as for compound **1-6** and purified on a Sephadex LH-20 column using MeOH as the eluent. (0.42 g, 89% over two steps), white foam; $R_f = 0.36$ (4:1:5, n-BuOH-AcOH- H_2O); Mp 186–189 °C; [α]20 D –27.50 (c 1.12, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 7.51 (d, J = 5.6 Hz, 1H, OH), 7.49 (d, J = 4.5 Hz, 1H, OH), 7.39 (d, J = 4.5 Hz, 1H, OH), 7.33 (d, J = 5.0 Hz, 1H, OH), 6.97 (d, J = 4.9 Hz, 1H, OH), 6.82 (d, J = 4.3 Hz, 1H, OH), 6.79 (d, J = 5.0 Hz, 1H, OH), 6.58 (d, J = 5.7 Hz, 1H, OH), 6.50 (d, J = 6.4 Hz, 1H, OH), 6.31 (d, J = 4.0 Hz, 1H, OH), 6.27 (d, J = 8.1 Hz, 1H, H-1^{IV}), 5.89 (s, 1H, H-1^{VI}), 5.42 (s, 1H, H-12), 5.00 (d, J = 5.4 Hz, 1H, H-1^V), 4.78 (d, J = 7.1 Hz, 1H, H-1^I), 4.70–4.68 (m, 2H), 4.60–4.55 (m, 1H), 4.47–4.44 (m, 2H),

4.38—4.31 (m, 5H), 4.26—4.20 (m, 2H), 4.19—4.14 (m, 3H), 4.13—4.09 (m, 2H), 3.96 (td, J = 8.5, 4.5 Hz, 1H), 3.85 (d, J = 10.9 Hz, 1H), 3.68 (d, J = 9.5 Hz, 1H), 3.35 (dd, J = 11.7, 4.2 Hz, 1H), 3.20 (dd, J = 13.6, 3.8 Hz, 1H), 1.72 (d, J = 6.1 Hz, 3H, H-6^{VI}), 1.28, 1.25, 1.11, 0.98, 0.90, 0.90, 0.90 (s each, 3H each, T × CH₃); T NMR (150 MHz, T Color, T NMR (150 MHz, T N

5.1.19. Oleanolic acid 3-O-2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-O-isopropylidene- α -L-arabinopyranoside (**51**)

A suspension of **16** (0.60 g, 0.61 mmol) and 10% Pd-C (0.18 g) in EtOAc (30 mL) was refluxed and bubbled up with H₂ (70 mL/min) for 1.5 h. Pd-C was removed through filtration and the filtrate was concentrated to dryness and purified by a silica gel column chromatography (2:1 petroleum ether – EtOAc) to afford 51 (0.47 g, 87%) as a white foam. $R_f = 0.34$ (2:1, petroleum ether – EtOAc); Mp 144–148 °C; $[\alpha]$ 20 D –24.75 (*c* 1.01, CH₃OH); ¹H NMR (600 MHz, $CDCl_3$) δ 7.27 (s, 1H), 5.36–5.31 (m, 3H), 5.29–5.27 (m, 2H), 5.05 (t, J = 9.9 Hz, 1H), 4.36 (d, J = 7.5 Hz, 1H), 4.22–4.18 (m, 2H), 4.17–4.14 (m, 1H), 4.11 (dd, J = 10.4, 2.7 Hz, 1H), 3.78-3.73 (m, 2H), 3.10 (dd, J)J = 11.8, 4.3 Hz, 1H), 2.82 (dd, J = 13.7, 3.9 Hz, 1H), 2.15 (s, 3H), 2.02 (s, 3H), 1.96 (s, 3H), 1.93–1.54 (m, 14H), 1.53 (s, 3H), 1.33 (s, 3H), 1.20 (d, I = 6.2 Hz, 3H), 1.13 (s, 3H), 1.06 (s, 3H), 0.93 (s, 3H), 0.91 (s, 3H),0.90 (s, 3H), 0.82 (s, 3H), 0.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 183.11, 170.17, 169.99, 169.94, 143.55, 122.66, 110.38, 103.14, 95.25, 89.05, 79.11, 75.20, 73.35, 71.28, 69.63, 69.09, 66.23, 62.61, 55.88, 47.67, 46.55, 45.88, 41.67, 41.09, 39.33, 39.08, 38.74, 36.77, 33.83, 33.07, 32.66, 32.46, 30.68, 28.05, 27.78, 27.64, 26.10, 25.92, 23.58, 23.42, 22.95, 20.97, 20.81, 20.72, 18.23, 17.36, 16.92, 16.35, 15.40; HRMS(ESI): calcd. for $[M+Na]^+$ $C_{50}H_{76}O_{14}Na$: 923.5127, found 923.5116.

5.1.20. 3-O-[2,3,4-tri-O-acetyl- α - ι -rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-O-isopropylidene- α - ι -raabinopyranoside]oleanolic acid 28-O-2,3,4-Tri-O-acetyl- α - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl-6-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl- β -D-glucopyranosyl ester (52)

A mixture of compounds **51** (0.47 g, 0.53 mmol), **36** (0.68 g, 0.64 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (30 mL) were stirred under an atmosphere of N2 for 30 min at 0 °C. A solution of TMSOTf (0.16 mL, 0.34 mmol/mL) in dry CH₂Cl₂ was injected. The mixture was stirred under these conditions for 30 min, then quenched with Et₃N (0.1 mL), and concentrated to dryness to afford crude intermediates 52. The residue was purified by a silica gel column chromatography (5:2 petroleum ether – EtOAc) to give compound **52** (0.83 g, 87%) as a white foam. $R_f = 0.3$ (3:2, petroleum ether – EtOAc); Mp 154–156 °C; $[\alpha]20 D - 21.67 (c 2.18, CH_3OH);$ ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 5.54 (d, J = 8.3 Hz, 1H), 5.36–5.34 (m, 2H), 5.31 (dd, J = 3.5, 1.7 Hz, 1H), 5.30–5.29 (m, 1H), 5.22–5.17 (m, 3H), 5.13-5.09 (m, 2H), 5.05 (t, J = 8.1 Hz, 1H), 5.02 (t, J = 8.0 Hz, 1H), 4.95 (t, J = 9.7 Hz, 1H), 4.87 - 4.82 (m, 2H), 4.77 (d, J = 10.6 Hz, 1H), 4.55 (d, J = 7.9 Hz, 1H), 4.48 (dd, J = 12.3, 4.3 Hz, 1H), 4.36 (d, J = 7.5 Hz, 1H), 4.22–4.18 (m, 2H), 4.18–4.14 (m, 1H), 4.14–4.10 (m, 1H), 3.90 (t, J = 9.3 Hz, 1H), 3.87 - 3.82 (m, 2H), 3.79 - 3.73 (m, 3H), $3.69 \, (ddd, J = 9.7, 4.0, 1.9 \, Hz, 1H), 3.56 \, (dd, J = 11.5, 5.6 \, Hz, 1H), 3.09$ (dd, J = 11.7, 4.3 Hz, 1H), 2.78 (dd, J = 13.5, 3.8 Hz, 1H), 2.15 (s, 3H),2.09 (s, 3H), 2.06 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H), 1.97 (s, 6H), 1.96 (s, 3H), 1.92–1.56 (m, 11H), 1.53

(s, 3H), 1.51–1.35 (m, 4H), 1.33 (s, 3H), 1.32–1.24 (m, 5H), 1.20 (d, J=6.3 Hz, 3H), 1.15 (d, J=6.2 Hz, 3H), 1.11 (s, 3H), 1.05 (s, 3H), 0.92 (s, 3H), 0.89 (s, 3H), 0.88 (s, 3H), 0.83 (s, 3H), 0.73 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 175.27, 170.16, 170.13, 170.07, 169.99, 169.92, 169.85, 169.38, 168.90, 165.79, 142.86, 133.13, 132.33, 130.91, 129.81, 129.77, 128.85, 128.44, 122.85, 110.36, 103.18, 100.28, 99.08, 95.15, 91.47, 88.99, 79.15, 75.02, 73.99, 73.83, 73.39, 72.91, 72.87, 71.80, 71.27, 70.70, 69.99, 69.60, 69.07, 68.80, 68.52, 67.76, 67.60, 66.19, 65.56, 62.66, 62.36, 55.84, 53.43, 47.62, 46.72, 45.81, 41.72, 41.06, 39.30, 39.07, 38.75, 36.76, 33.72, 32.95, 31.69, 30.56, 29.70, 28.01, 27.85, 27.78, 25.57, 23.49, 23.41, 22.83, 21.03, 20.98, 20.79, 20.72, 20.69, 20.65, 20.59, 20.54, 19.19, 18.19, 17.35, 17.21, 16.99, 16.40, 15.47, 13.73; HRMS(ESI): calcd. for [M+H]+ C₉₁H₁₂₇O₃₇: 1811.8051, found 1811.8015.

5.1.21. $3-O-[\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\alpha-L-arabinopyranosyl]$ oleanolic acid $28-O-[\alpha-L-rhamnopyranosyl-(1\rightarrow 4)-\beta-D-glucopyranosyl-(1\rightarrow 6)-\beta-D-glucopyranosyl] ester (8)$

P-TsOH (0.15 g, 0.90 mmol) was added to a solution of **52** (0.81 g, 0.45 mmol) in MeOH-CH₂Cl₂ (2:1, v/v, 30 mL). The mixture was stirred at 40 $^{\circ}\text{C}$ for 6 h followed by addition of NaOMe in MeOH solution (1.0 mol/L, 1.35 mL). The mixture was stirred at rt for 5 h and then neutralized with Dowex H⁺ resin to pH 7 and filtered. The filtrate was concentrated and purified on a Sephadex LH-20 column using MeOH as the eluent to afford compound 8 (0.43 g, 79% over two steps) as a white foam. $R_f = 0.34$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 168–172 °C; $[\alpha]20 D - 21.37$ (c 1.17, CH₃OH); ¹H NMR (600 MHz, C_5D_5N) δ 6.28 (d, J = 8.2 Hz, 1H, H-1^{IV}), 6.20 (s, 1H, H-1^{II}), 5.91 (s, 1H, $H-1^{VI}$), 5.42 (s, 1H, H-12), 5.04–5.01 (m, 3H, H-1 V), 4.91 (d, $I = 5.4 \text{ Hz}, 1\text{H}, \text{H-1}^{1}, 4.79 \text{ (d, } I = 1.8 \text{ Hz}, 1\text{H}), 4.73-4.65 \text{ (m, 3H)},$ 4.65-4.57 (m, 3H), 4.47 (t, I = 9.3 Hz, 1H), 4.40-4.27 (m, 7H), 4.26-4.10 (m, 6H), 3.97 (t, I = 8.4 Hz, 1H), 3.85 (d, I = 9.9 Hz, 1H), 3.68 (d, J = 9.4 Hz, 1H), 3.26 (dd, J = 11.6, 4.1 Hz, 1H), 3.19 (dd, J = 13.9, 3.8 Hz, 1H), 2.33 (t, J = 12.6 Hz, 1H), 1.73 (d, J = 6.2 Hz, 3H, $H-6^{VI}$), 1.65 (d, J=6.1 Hz, 3H, $H-6^{II}$), 1.26, 1.18, 1.11, 1.10, 0.91, 0.90, 0.89 (s each, 3H each, $7 \times \text{CH}_3$); ¹³C NMR (150 MHz, C_5D_5N) δ 176.53 (C-28), 144.12 (C-13), 122.85 (C-12), 104.83 (C-1^V), 104.76 (C-1^I), 102.73 (C-1^{VI}), 101.73 (C-1^{II}), 95.65 (C-1^{IV}), 88.78, 78.72, 78.30, 78.05, 77.14, 76.51, 75.94, 75.33, 74.05, 73.98, 73.87, 73.68, 72.74, 72.57, 72.55, 72.36, 70.89, 70.30, 69.89, 69.23, 68.59, 64.58, 61.31, 55.93, 48.07, 47.06, 46.24, 42.16, 41.68, 39.90, 39.49, 38.93, 37.04, 34.01, 33.13, 32.55, 30.76, 28.27, 28.11, 26.51, 26.06, 23.80, 23.70, 23.38, 18.56, 18.51, 17.51, 16.98, 15.64; HRMS(ESI): calcd. for $[M+Na]^+$ C₅₉H₉₆O₂₅Na: 1227.6133, found 1227.6101.

5.1.22. General procedure for the preparation of compounds ${f 10-12}$

A mixture of compounds 37 (0.6 g, 0.41 mmol), tri-(perbenzoylated glucosyl chloroacetimidate donors chloroacetimidate, **28** or **34**), (0.49 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (30 mL) were stirred under an atmosphere of N₂ for 30 min at 0 °C. A solution of TMSOTf (0.12 mL, 0.34 mmol/mL) in dry CH₂Cl₂ was injected. The mixture was stirred under these conditions for 30 min, then quenched with Et₃N (0.1 mL), and concentrated to dryness to afford crude intermediates 53-55. The resulting residue was dissolved in dry MeOH-CH₂Cl₂ (2:1, v/v, 30 mL), and a newly prepared solution of NaOMe in MeOH (1.0 mol/L, 0.41 mL) was added. The solution was stirred at rt for 5 h and then neutralized with Dowex H⁺ resin to pH 7 and filtered. The filtrate was concentrated and purified on a Sephadex LH-20 column using MeOH as the eluent to afford compound **10-12**.

5.1.23. 3-0- $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)]$ - α -L-arabinopyranosyl]oleanolic acid 28-O- β -D-glucopyranosyl] ester (**10**)

Following the general procedure mentioned above to get

compound **10** (0.38 g, 88% over two steps) as a white foam, $R_f = 0.36$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 217—220 °C; $[\alpha]$ 20 D —5.16 (c 1.55, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 8.50 (s, 1H, OH), 7.57–7.29 (m, 5H, OH), 6.84–6.48 (m, 5H, OH), 6.37 (d, I = 8.2 Hz, 1H, H-1^{IV}), 6.23 (s, 1H, H-1^{II}), 5.99 (d, I = 9.0 Hz, 1H, OH), 5.45 (s, 1H, H-12), 5.18 $(d, J = 7.8 \text{ Hz}, 1H, H-1^{III}), 4.80-4.72 (m, 2H, H-1^{I}), 4.70-4.61 (m, 2H),$ 4.58-4.48 (m, 3H), 4.46-4.41 (m, 4H), 4.37-4.19 (m, 7H). 4.08-4.06 (m, 2H), 3.96-3.89 (m, 1H), 3.82 (d, I = 11.1 Hz, 1H), 3.26-3.14 (m, 2H), 2.37 (t, I = 12.8 Hz, 1H), 1.67 (d, I = 6.1 Hz, 3H, H- 6^{II}), 1.27, 1.19, 1.13, 1.12, 0.93, 0.90, 0.87 (s each, 3H each, $7 \times CH_3$); 13 C NMR (150 MHz, C₅D₅N) δ 176.45 (C-28), 144.12 (C-13), 122.88 (C-12), 106.47 (C-1^{III}), 104.98 (C-1^I), 101.82 (C-1^{II}), 95.78 (C-1^{IV}), 88.64, 79.78, 79.40, 78.95, 78.84, 78.58, 76.36, 75.51, 74.18, 74.09, 72.52, 72.33, 71.23, 71.06, 69.84, 64.61, 62.52, 62.17, 55.97, 48.05, 47.01, 46.19, 42.15, 41.75, 39.90, 39.49, 38.91, 37.01, 34.00, 33.16, 32.55, 30.79, 28.25, 28.06, 26.64, 26.09, 23.81, 23.67, 23.42, 18.69, 18.53, 17.48, 17.04, 15.65; HRMS(ESI): calcd. for [M+H]⁺ C₅₃H₈₇O₂₁: 1059.5734, found 1059.5739.

5.1.24. 3-0- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ - υ -glucopyranosyl- $(1 \rightarrow 4)]$ - α - ι -arabinopyranosyl]oleanolic acid 28-O- $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl] ester (11)

Following the general procedure mentioned above to get compound 11 (0.43 g, 86% over two steps) as a white foam. $R_f = 0.32$ (4:1:5, *n*-BuOH-AcOH-H₂O); Mp 215–217 °C; $[\alpha]$ 20 D –16.67 (*c* 1.50, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 8.48 (s, 1H, OH), 7.56-7.29 (m, 5H, OH), 6.83-6.45 (m, 4H, OH), 6.30 (d, I=8.1 Hz, 1H, H-1^{IV}), 6.22 (s, 1H, H-1^{II}), 5.98 (d, J = 8.0 Hz, 1H, OH), 5.43 (s, 1H, H-12), 5.18 (d, I = 7.9 Hz, 1H, H-1^{III}), 5.06 (d, I = 7.8 Hz, 1H, H-1^V), 4.78 (d, I = 5.9 Hz, 1H, H-1¹), 4.76-4.74 (m, 2H), 4.70-4.60 (m, 2H), 4.57-4.47 (m, 3H), 4.45-4.37 (m, 5H), 4.34 (t, I = 9.5 Hz, 1H), 4.32-4.20 (m, 7H), 4.18-4.13 (m, 2H), 4.09-4.02 (m, 2H), 3.94-3.90 (m, 2H), 3.83 (d, J = 11.0 Hz, 1H), 3.27-3.17 (m, 2H), 2.33 $(t, J = 11.9 \text{ Hz}, 1\text{H}), 1.67 (d, J = 6.1 \text{ Hz}, 3\text{H}, \text{H-6}^{\text{II}}), 1.26, 1.18, 1.13, 1.12,$ 0.90, 0.89, 0.89 (s each, 3H each, $7 \times \text{CH}_3$); ¹³C NMR (150 MHz, $C_5D_5N)$ δ 176.55 (C-28), 144.15 (C-13), 122.87 (C-12), 106.44 (C-1^{III}), 105.35 (C-1^V), 104.96 (C-1^I), 101.83 (C-1^{II}), 95.71 (C-1^{IV}), 88.67, 79.72, 78.84, 78.79, 78.58, 78.52, 78.42, 78.02, 76.37, 75.51, 75.19, 74.09, 73.92, 72.52, 72.33, 71.48, 71.24, 70.90, 69.85, 69.38, 64.54, 62.60, 62.52, 55.98, 48.06, 47.05, 46.24, 42.16, 41.69, 39.89, 39.49, 38.90, 37.02, 33.98, 33.14, 32.54, 30.78, 30.00, 28.28, 28.06, 26.63, 26.08, 23.81, 23.68, 23.39, 18.69, 18.54, 17.51, 17.04, 15.70; HRMS(ESI): calcd. for [M+H]⁺ C₅₉H₉₇O₂₆: 1221.6263, found 1221.6290.

5.1.25. 3-0- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ - υ -glucopyranosyl- $(1 \rightarrow 4)]$ - α - ι -arabinopyranosyl]oleanolic acid 28-O- $[\alpha$ - ι -rhamnopyranosyl- $(1 \rightarrow 4)$ - β - υ -glucopyranosyl] ester (12)

Following the general procedure mentioned above to get compound 12 (0.42 g, 86% over two steps) as a white foam. $R_f = 0.34$ (4:1:5, n-BuOH-AcOH-H₂O); Mp 162–165 °C; [α]20 D –37.50 (c1.44, CH₃OH); ¹H NMR (600 MHz, C₅D₅N) δ 6.28 (d, I = 8.2 Hz, 1H, $H-1^{\text{IV}}$), 6.22 (s, 1H, $H-1^{\text{II}}$), 5.95 (s, 1H, $H-1^{\text{VI}}$), 5.43 (s, 1H, H-12), 5.18 $(d, J = 7.8 \text{ Hz}, 1H, H-1^{III}), 5.02-4.97 (m, 2H), 4.79 (d, <math>J = 6.0 \text{ Hz}, 1H,$ H-1¹), 4.77 (s, 1H), 4.73–4.64 (m, 4H), 4.60–4.52 (m, 5H), 4.44–4.33 (m, 5H), 4.32-4.20 (m, 7H), 4.20-4.09 (m, 3H), 4.07 (t, J = 8.5 Hz,1H), 3.95-3.91 (m, 1H), 3.84-3.83 (m, 1H), 3.21 (t, J = 12.5 Hz, 2H), 2.32 (t, J = 12.5 Hz, 1H), 1.72 (d, J = 6.2 Hz, 3H, H-6^{VI}), 1.67 (d, J = 6.1 Hz, 3H, H-6^{II}), 1.26, 1.19, 1.13, 1.09, 0.93, 0.90, 0.86 (s each, 3H each, 7 \times CH₃); ¹³C NMR (150 MHz, C₅D₅N) δ 176.40 (C-28), 144.05 (C-13), 122.91 (C-12), 106.29 (C-1^{III}), 104.86 (C-1^I), 102.68 (C-1^{VI}), 101.77 (C-1^{II}), 95.41 (C-1^{IV}), 88.69, 79.45, 78.71, 78.49, 77.89, 77.08, 76.41, 75.46, 74.23, 74.03, 73.94 73.89, 73.83, 72.73, 72.66, 72.54, 72.47, 72.26, 71.31, 70.41, 69.83, 65.64, 64.39, 62.55, 61.02, 55.98, 48.05, 47.01, 46.18, 42.15, 41.74, 39.90, 39.48, 38.93, 37.02, 34.00, 33.12, 32.54, 30.76, 28.24, 28.09, 26.59, 26.07, 23.79, 23.64, 23.37, 18.61, 18.52, 17.44, 17.00, 15.62; HRMS(ESI): calcd. for $[M+H]^+$ $C_{59}H_{97}O_{25}$: 1205.6313, found 1205.6294.

5.2. Biology

5.2.1. Cell culture and treatments

PC12 cells were purchased from Jiangsu Keygen Biotech Company, China, grown in Roswell Park Memorial Institute-1640 (Gibico), supplemented with 15% fetal bovine serum and 1% antibiotic mixture comprising penicilline and streptomycin (100 U/mL of penicillin and 100 μ g/mL of streptomycin), in a humidified atmosphere at 37 °C with 5% CO₂. Cells were sub-cultured every 2 days and in culture for 8 days before being used for experiments.

5.2.2. Cell viability assay

Cells were trypsinized with 0.25% trypsin, counted, and seeded in 96-well culture plates (1 \times 10^4 cells/well). After 12 h of incubation, the cells were pretreated with compounds in different concentrations for 12 h before incubation in medium containing $\rm H_2O_2$ (200 μM) or $A\beta_{1-42}$ (40 μM). After 12 h of treatment, 20 μL of MTT (5 mg/mL) was added. After incubation for 4 h the supernatant was discarded, and DMSO (150 $\mu L/well$) was added. The 96-well plate was vibrated on a microvibrator for 10 min, and the optical density at 490 nm was measured using a microplate reader.

5.2.3. LDH release assay

The amount of LDH release was determined by using an assay kit according to the manufacturer's protocol. At the end of drug treatment, the supernatant and cell lysates were transferred to 96-well plates and incubated with 1 mg/ml NADH in pyruvate substrate solution for 15 min at 37 °C. After additional incubation for 15 min with 2,4-dinitrophenylhydrazine at 37 °C, the reaction was stopped by adding 0.4 mol/L NaOH. The changes in absorbance were determined at 450 nm by using a microplate reader. LDH leakage was expressed as the percentage (%) of the total LDH activity (LDH in the supernatant + LDH in the cell lysate), according to the equation: %LDH released = (LDH activity in the medium/total LDH activity) \times 100%.

5.2.4. Measurement of intracellular ROS level

ROS level was measured by using DCFH-DA method [29]. After the treatment, PC12 cells were washed with PBS and incubated with DCFH-DA at a final concentration of 10 μ mol/L for 20 min at 37 °C in darkness. Then the cells were washed with PBS three times. The fluorescence intensity was measured by using a flow cytometer (BD FACSCallibur 488/530 nm).

5.2.5. Measurement of MDA level

The MDA content was determined using the 2-thiobarbituric acid (TBA) method [32]. After the treatment, two volumes of 2-thiobarbituric acid reagent (0.375% TBA, 15% trichloroacetic acid, and 0.1 mM EDTA) were added to the cell samples and boiled at 95 °C for 40 min. After cooling and centrifugation at 3000 \times g for 10 min, the absorbance of each supernatant was measured at 532 nm by using a microplate reader.

5.2.6. Statistical analysis

All samples were cultured in triplicate. The data are expressed as the means \pm SD of three assays. Statistical analysis was performed using one-way analysis of variance (ANOVA) with Dunnett's test. P < 0.05 was considered significant.

Acknowledgments

This project was financially supported by National Natural Science Foundation of China (No. 81473087 and 81273358). Dr. Y. Liu wishes to express his thanks for the support by Career Development Support Plan for Young and Middle-aged Teachers in Shenyang Pharmaceutical University (ZQN2016005).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ejmech.2017.11.040.

References

- [1] D.M. Holtzman, J.C. Morris, A.M. Goate, Alzheimer's disease: the challenge of the second century, Sci. Transl. Med. 3 (2011), 77sr1.
- [2] Alzheimer Disease International, Improving Healthcare for People Living with Dementia, World Alzheimer Report, 2016.
- [3] M.P. Mattson, Pathways towards and away from Alzheimer's disease, Nature 430 (2004) 631–639.
- [4] N. Herrmann, S.A. Chau, I. Kircanski, K.L. Lanctôt, Current and emerging drug treatment options for Alzheimer's disease, Drugs 71 (2011) 2031–2065.
- [5] K.N. Dahlgern, A.M. Manelli, W.B. Stine Jr., L.K. Baker, G.A. Kraffs, M.J. LaDu, Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability, J. Biol. Chem. 277 (2002) 32046–32053.
- [6] D.J. Selkoe, Toward a comprehensive theory for Alzheimer's disease hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of Amyloid-β protein, Ann. NY. Acad. Sci. 924 (2000) 17–25.
- [7] J.N. Labouze, P.H. Nguyen, F. Sterpone, O. Berthoumieu, N.V. Buchete, S. Coté, A.D. Simone, A.J. Doig, P. Faller, A. Garcia, A. Laio, M.S. Li, S. Melchionna, N. Mousseau, Y. Mu, A. Paravastu, S. Pasquali, D.J. Rosenmn, B. Strodel, B. Tarus, J.H. Viles, T. Zhang, C. Wang, P. Derreumaux, Amyloid β protein and Alzheimer's disease: when computer simulations complement experimental studies, Chem. Rev. 115 (2015) 3518–3563.
- [8] M. Manczak, T.S. Anekonda, E. Henson, B.S. Park, J. Quinn, P.H. Reddy, Mito-chondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression, Hum. Mol. Genet. 15 (2006) 1437–1449.
- [9] D. Sirk, Z. Zhu, J.S. Wadia, N. Shulyakova, N. Phan, J. Fong, L.R. Mills, Chronic exposure to sub-lethal beta-amyloid (Aβ) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells, J. Neurochem. 103 (2007) 1989–2003.
- [10] R.A. Hill, J.D. Connolly, Triterpenoids, Nat. Prod. Rep. 30 (2013) 1028–1065.
- [11] T. Wu, C. Jiang, L. Wang, S.L.M. Natschke, H. Miao, L. Gu, J. Xu, K.H. Lee, Q. Gu, 3,5-Diarylpyrazole derivatives obtained by ammonolysis of the total flavonoids from chrysanthemum indicum extract show potential for the treatment of Alzheimer's disease, J. Nat. Prod. 78 (2015) 1593–1599.
- [12] T. Yoshika, K. Murakami, K. Ido, M. Hanaki, K. Yamaguchi, S. Midorikawa, S. Taniwaki, H. Gunji, K. Irie, Semisynthesis and structure-Activity studies of uncarinic acid C isolated from *Uncaria rhynchophylla* as a specific inhibitor of the nucleation phase in amyloid β42 aggregation, J. Nat. Prod. 79 (2016) 2521–2529.
- [13] D.Q. Li, L. He, D. Wang, J. Wu, L.Z. Li, X.X. Huang, Q.B. Liu, Y.Y. Wu, S. Lin, J.Y. Yang, S.J. Song, C.F. Wu, Neuroprotective oleanane triterpenes from the roots of *Bupleurum chinense*. Bioorg. Med. Chem. Lett. 26 (2016) 1594–1598.
- [14] Y.W. Ge, C. Tohda, S. Zhu, Y.M. He, K. Yoshimatsu, K. Komatsu, Effects of oleanane-type triterpene saponins from the leaves of *Eleutherococcus senticosus* in an axonal outgrowth assay, J. Nat. Prod. 79 (2016) 1834—1841.
- [15] Y. Yang, S. Laval, B. Yu, Chemical synthesis of saponins, Adv. Carbohyd. Chem. Bi 71 (2014) 137–226.
- [16] G.E. Dekanosidze, T.A. Pkheidze, T.T. Gorovits, É.P. Kemertelidze, A triterpenen oligoside, hederacolchiside E, from *Hedera colchica*, Khim, Prir. Soedin. 3 (1970) 484–485.
- [17] C.K. Han, W.R. Choi, K.B. Oh, Cognition-enhancing and neuroprotective effects of hederacolchiside E from *Pulsatilla koreana*, Planta Med. 73 (2007) 665–669.
- [18] J.S. Seo, T.K. Kim, Y.H. Leem, K.W. Lee, S.K. Park, I.S. Baek, K.S. Kim, G.J. Im, S.M. Lee, Y.H. Park, P.L. Han, SK-PC-B70M confers anti-oxidant activity and reduces Aβ levels in the brain of Tg2576 mice, Brain Res. 1261 (2009) 100–108.
- [19] I. Gülçin, V. Mshvildadze, A. Gepdiremen, R. Elias, Antioxidant activity of saponins isolated from ivy: α-hederin, hederasaponin-C, hederacolchiside E and hederacolchiside F, Planta Med. 70 (2004) 561–563.
- [20] M.C. Yan, Y. Liu, W.X. Lu, H. Wang, Y. Sha, M.S. Cheng, Facile synthesis and cytotoxicity of triterpenoid saponins bearing a unique disaccharide moiety: hederacolchiside A₁ and its analogues, Carbohyd. Res. 343 (2008) 780–784.
- [21] Q. Liu, H. Liu, L. Zhang, T. Guo, P. Wang, M. Ge, Y. Li, Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives, Eur. J. Med. Chem. 64 (2013) 1–15.
- [22] R.R. Schmidt, W. Kinzy, Anomeric-oxygen activation for glycoside synthesis:

- the tricholroacetimidate method, Adv. Carbohydr. Chem. Biochem. 50 (1994) 21–125
- [23] F. Yang, Y. Du, A practical synthesis of a $(1 \rightarrow 6)$ -linked β -D-glucosamine nonasaccharide, Carbohyd, Res. 338 (2003) 495–502.
- [24] N. Basu, S.K. Maity, A. Chaudhury, R. Chosh, Trichloroisocyanuric acid (TCCA): an efficient green reagent for activation of thioglycosides toward hydrolysis, Carbohyd. Res. 369 (2013) 10–13.
- [25] C. Gauthier, J. Legault, S. Lávoie, S. Rondeau, S. Tremblay, A. Pichette, Synthesis of two natural betulinic acid saponins containing α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranose and their analogues, Tetrahedron 64 (2008) 7386–7399.
- [26] S. Chakrabarti, S. Munshi, K. Banerjee, I.G. Thakurta, M. Sinha, M.B. Bagh, Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation, Aging Dis. 2 (2011) 242–256.
- [27] C. Barthomeuf, E. Debiton, V. Mshvildadze, E. Kemertelidze, G. Balansard, In vitro activity of hederacolchiside A_1 compared with other saponins from

- *Hedera colchica* against proliferation of human carcinoma and melanoma cells, Planta Med. 68 (2002) 672–675.
- [28] M. Guglielmotto, L. Giliberto, E. Tamagno, M. Tabaton, Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors, Front. Aging Neurosci. 2 (2010) 1–8.
- [29] W.B. Liu, J. Zhou, Y. Qu, X. Li, C.T. Lu, K.L. Xie, X.L. Sun, Z. Fei, Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production, Neurochem. Int. 57 (2010) 206–215.
- [30] M. Ott, V. Gogvadze, S. Orrenius, B. Zhivotovsky, Mitochondria, oxidative stress and cell death, Apoptosis 12 (2007) 913–922.
- [31] J.E. Klaunig, L.M. Kamendulis, The role of oxidative stress in carcinogenesis, Annu. Rev. Pharmacol. Toxicol. 44 (2004) 239–267.
- [32] S. Sakanaka, Y. Ishihara, Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates, Food Chem. 107 (2008) 739–744.