Základy počítačové grafiky Křivky v počítačové grafice

Michal Španěl

Ústav počítačové grafiky a multimédií Fakulta informačních technologií Vysoké učení technické v Brně

Brno 2016

Proč potřebujeme umět popsat křivé tvary?

Rovnost přímek a kulatost kružnic je ideál, který se ve skutečnosti příliš nevyskytuje!

Cíl přednášky

Seznámit se s jednotlivými typy křivek ve 2D, metodami jejich reprezentace a základními principy vykreslování.

Definice objektů (modelování)

[www.3drender.com]

Video ukázka

Požadováné vlastnosti křivek

Invariance k affiním transformacím a projekci

 Rotace řídících bodů nemá vliv na tvar křivky.

Interpolace krajních bodů

 Křivka prochází krajními body.

Konvexní obálka

 Křivka leží v konvexní obálce svých řídících bodů.

Lokalita změn

Základní druhy křivek

Interpolační křivka

 Křivka přímo prochází body ("proložení"bodů křivkou).

Aproximační křivka

- Neprochází body.
- Tzv. řídící body).

Základní druhy křivek, pokr.

Racionální křivka

- Váhové koeficienty w_i řídících bodů.
- Invariantní vůči perspektivní projekci.

Neracionální křivka

- Tvar křivky ovlivňujeme pouze změnou polohy řídících bodů.
- Speciální případ racionální křivky, kdy w_i = 1.
- Nejsou invariantní vůči perspektivní projekci!

Reprezentace křivek v počítačové grafice

Jak můžeme reprezentovat křivku?

Parametrické vyjádření křivky

• Klasické matematické vyjádření, y = F(x), není pro počítačovou grafiku vhodné!

Parametrizovaná 2D křivka

$$Q(t) = [x(t), y(t)]; \quad t \in \langle 0, 1 \rangle$$

Polynomiální křivka

Kubické polynomy

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_V t^3 + b_V t^2 + c_V t + d_V$$

Maticový zápis

Základní tvar

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$Q(t) = T.C = [t^3 t^2 t \, 1]. \begin{bmatrix} a_x & a_y \\ b_y & b_y \\ c_x & c_y \\ d_x & d_y \end{bmatrix}$$

Konstantní matici C můžeme rozepsat do součinu C = MP

$$Q(t) = T.MP = \begin{bmatrix} t^3 t^2 t 1 \end{bmatrix}. \begin{bmatrix} \frac{m_{11} - m_{12} - m_{13} - m_{14}}{m_{21} - m_{22} - m_{23} - m_{24}} \\ m_{31} - m_{32} - m_{33} - m_{34} \\ m_{41} - m_{42} - m_{43} - m_{44} \end{bmatrix}. \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix}$$

- M ... bázová matice (dána použitou metodou).
- $P \dots$ geometrický vektor (*řídící body, řídící vektory*), $P_i = [x_i, y_i]$.

Jiný zápis

$$Q(t) = P_0.F_0(t) + P_1.F_1(t) + P_2.F_2(t) + P_3.F_3(t)$$

- $P \dots \check{r}$ ídící body, $P_i = [x_i, y_i]$.
- F_i ... polynomiální funkce ("váhují příspěvky řídících bodů").

Spline křivka

 Křivky spojované ze segmentů po částech polynomiální křivky.

Spojitost křivek spojovaných ze segmentů

Možnosti parametrické spojitosti Cⁿ

- C⁰ totožnost navazujících koncových bodů.
- C¹ totožnost tečných vektorů v navazujících bodech.
- C² totožnost vektorů 2. derivace v navazujících bodech.

 Čím vyšší spojitost, tím déle se oba segmenty k sobě přimykají.

Spojitost křivek, pokr.

Oslabená podmínka spojitosti (též. *geometrická spojitost G*ⁿ)

- G⁰ totožnost navazujících koncových bodů.
- G^1 tečné vektory v navazujících bodech jsou lineárně závislé.
- G² shoda první křivosti v navazujících bodech.

Lepší definice spline křivky

- Spline pružné křivítko, kovový pásek proložený body.
- Po částech polynomiální křivka.
- Spline křivka stupně n má spojitost C^{n-1} .

Cíl použití spline křivek

- Minimalizovat křivost křivky (délku, energii).
- Efektivní řízení tvaru křivky (modelování).

Přirozený spline

 Spline, který interpoluje své řídící body.

Fergusonova kubika

- Nejčastější interpolační křivka.

Maticový zápis

$$Q(t) = T.M.P = \begin{bmatrix} t^3 t^2 t 1 \end{bmatrix}. \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_0 \\ P_1 \\ \vec{P_0'} \\ \vec{P_1'} \end{bmatrix}$$

$$Q(t) = P_0.F_1(t) + P_1.F_2(t) + \vec{P_0'}.F_3(t) + \vec{P_1'}.F_4(t)$$

Fergusonova kubika, pokr.

Hermitovy polynomy

$$F_1(t) = 2t^3 - 3t^2 + 1$$

$$F_2(t) = -2t^3 + 3t^2$$

$$F_3(t) = t^3 - 2t^2 + t$$

$$F_4(t) = t^3 - t^2$$

+/-

- Neinteraktivní a neintuitivní řízení tvaru.
- Nelokální změna tvaru posunem jednoho bodu.
- Navazování segmentů totožnost koncových bodů (C_0) a shodnost tečných vektorů (C_1).
- Mezi dvěma body jeden segment.
- Přirozený spline maticové řešení celé křivky pro nulové koncové tečné vektory.

Kochanek-Bartels spline

- Interpolační spline křivka.
- Pro interpolaci využívá Fergusonových kubik.
- Určeno množinou N interpolovaných bodů P_i a odpovídajícími koeficienty a_i, b_i a c_i.
- Koeficienty určují chování křivky v daném bodě.

Výpočet tečných vektorů

$$\begin{array}{lcl} \vec{P_i'} & = & \frac{(1-a_i)(1+b_i)(1+c_i)}{2}(P_i-P_{i-1}) + \frac{(1-a_i)(1-b_i)(1-c_i)}{2}(P_{i+1}-P_i) \\ \\ \vec{P_{i+1}''} & = & \frac{(1-a_{i+1})(1+b_{i+1})(1-c_{i+1})}{2}(P_i-P_{i-1}) + \frac{(1-a_{i+1})(1-b_{i+1})(1+c_{i+1})}{2}(P_{i+1}-P_i) \end{array}$$

Kochanek-Bartels spline, pokr.

Význam koeficientů

- a_i ... tenze (jak ostře přiléhá křivka v bodě P_i).
- b_i ... šikmost křivky.
- c_i ... spojitost křivky.

Použití v animaci

- Definice dráhy pohybu objektů.
- Konstantní rychlost bodu.

Catmull-Rom spline

- Interpolační spline křivka určená množinou N bodů P₀,..., P_{N-1}.
- Tečný vektor v P_i je rovnoběžný s vektorem P_{i-1} - P_{i+1}.
- Kochanek-Bartels s nulovými koeficienty.

Maticový zápis

$$Q(t) = \frac{1}{2}[t^3t^2t^1]. \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{bmatrix}$$

Catmull-Rom spline, pokr.

- Křivka vychází z bodu P_1 a končí v bodu P_{N-2} .
- Interpolaci koncových bodů zajistí jejich opakování.

Beziérovy křivky

- Aproximační křivky (2D grafika, fonty, šablonování) 1960.
- Bernsteinových polynomů B_i^n .

Polynomiální křivka s použitím

- Křivka stupně n určena n+1 body.
- Prochází koncovými body.

Definice křivky

$$Q(t) = \sum_{i=0}^{n} P_i.B_i^n(t); i = 0, 1, ..., n$$

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}; \ t \in <0,1>$$

Tečné vektory v koncových bodech

$$P'(0) = 3(P_1 - P_0)$$

 $P'(1) = 3(P_3 - P_2)$

Beziérovy křivky, pokr.

Rekurentní definice Bernsteinových polynomů

$$B_i^n(t) = (1-t).B_i^{n-1}(t) + t.B_{i-1}^{n-1}(t)$$

 Využívá ji algoritmus de Casteljau pro vykreslení křivky (viz. dále).

Další vlastnosti polynomů

- Mají nezápornou hodnotu.
- Mají jednotkový součet křivka leží v konvexní obálce.
- Rekurentní definice.

Algoritmus de Casteljau

- Rekurzivní algoritmus vykreslování Beziérových křivek.
- Plyne z rekurentní definice pro Bernsteinovy polynomy.
- Úseky řídícího polynomu jsou děleny v poměru hodnot t a 1 – t.

Vykreslení křivky algoritmem de Casteljau

- Opakovaný výpočet pro různé hodnoty t se zvoleným krokem.
- Spojování vypočtených bodů úsečkami.

+/-

- Jakou optimální velikost kroku zvolit?
- Rovnoměrně rozprostřené body (stejný počet na rovné i křivé části křivky)!

Beziérovy kubiky

- Segment popsán čtyřmi řídícímy body P₀, P₁, P₂ a P₃.
- Nelokální změna tvaru posunem jednoho bodu.
- Invariantní k lineárním transformacím.

Maticový zápis

$$Q(t) = T. \begin{bmatrix} -1 & 3 & -3 & | & 1 \\ 3 & -6 & | & 3 & | & 0 \\ -3 & 3 & | & 0 & | & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

Zápis pomocí Bernsteinových polynomů stupně 3

$$P(t) = P_0 B_0(t) + P_1 B_1(t) + P_2 B_2(t) + P_3 B_3(t) = \sum_{i=0}^{3} P_i B_i(t)$$

$$B_0(t) = (1-t)^3$$

$$B_1(t) = 3t(1-t)^2$$

$$B_2(t) = 3t^2(1-t) \bullet$$

$$B_3(t) = t^3 \bullet$$

Navazování segmentů Beziérových kubik

Tečné vektory v koncových bodech

$$P'(0) = 3(P_1 - P_0)$$

 $P'(1) = 3(P_3 - P_2)$

Podmínky spojitosti C¹

- Totožnost koncových bodů.
- Shodné tečné vektory koncový bod úseku Q_i je středem úsečky předposledního bodu Q_i a druhého bodu Q_{i+1}.

Algoritmus de Casteljau a Beziérovy kubiky

- "Divide and Conquer"

 rekurzivní dělení na dvě podkřivky, volíme t = 0.5.
- Dostatečně rovná křivka není dále dělena, ale rovnou vykreslena.
- Minimální vzdálenost bodů na úrovni uhlopříčky pixelu.

Racionální Beziérovy křivky

- Místo neracionálních Bernsteinových polynomů B_iⁿ jsou použity racionální polynomy R_iⁿ.
- w_i váhový koeficient i-tého řídícího bodu.
- Pro w_i = 1 jsou racionální polynomy Rⁿ_i rovny neracionálním Bⁿ_i.

Definice křivky

$$Q(t) = \sum_{i=0}^{n} P_i.R_i^n(t) = \frac{\sum_{i=0}^{n} w_i.P_i.B_i^n(t)}{\sum_{i=0}^{n} w_i.B_i^n(t)}$$

$$R_{i}^{n}(t) = \frac{w_{i}.B_{i}^{n}(t)}{\sum_{i=0}^{n} w_{i}.B_{i}^{n}(t)}$$

Racionální Beziérovy křivky, pokr.

Vlastnosti polynomů

- Mají nezápornou hodnotu.
- Mají jednotkový součet křivka leží v konvexní obálce.
- Nemají rekurentní definici!

+/-

• Pro vykreslení nelze použít algoritmus de Casteljau!

Coonsovy křivky (kubiky)

- Aproximační křivka (význam hlavně pro teorii spline křivek).
- Polynomiální křivka stupně n, určena n + 1 řídícími body.
- Neprochází koncovými řídícími body.

Maticový zápis

$$Q(t) = \frac{1}{6}.T. \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

Tečné vektory

$$q'(0) = \frac{P_2 - P_0}{2}$$

 $q'(1) = \frac{P_1 - P_3}{2}$

Coonsovy křivky (kubiky), pokr.

Koncové body

$$Q(0) = \frac{P_0 + 4.P_1 + P_2}{6}$$
$$Q(1) = \frac{P_1 + 4.P_2 + P_3}{6}$$

Násobnost řídících bodů

- Jednonásobný \rightarrow běžný bod P_n .
- Dvojnásobný $\rightarrow P_0 = P_1 \rightarrow Q(0)$ leží v 1/6 úsečky P_0P_1 .
- Trojnásobný $\rightarrow P_0 = P_1 = P_2 \rightarrow Q(0)$ leží v P_0 .

Coonsovy křivky (kubiky), pokr.

Navazování segmentů C2

• Zopakováním posledních tří řídících bodů sousedního segmentu.

+/-

- S křivkou pracujeme po segmentech.
- Nelze přidat jeden bod, jedině celý segment.

B-spline křivky

- Zobecnění Coonsových křivek.
- Křivka určena n+1 body.
- Křivka stupně k \rightarrow spojitost k + 1.
- Nejde o obyčejné navázání segmentů (nemusí platit t ∈< 0,1 >).
- Uzlový vektor U_t hodnoty parametru t v uzlech.

Definice křivky

$$Q(t) = \sum_{i=0}^{n} P_{i}.N_{i}^{k}(t); \ t \in <0, t_{m}>$$

Rekurentní definice polynomu B-spline křivky

$$N_i^k(t) = \frac{(t - t_i)}{(t_{i+k} - t_i)} N_i^{k-1}(t) + \frac{(t_{i+k+1} - t)}{(t_{i+k+1} - t_{i+1})} N_{i+1}^{k-1}(t)$$

$$N_i^0(t) = 1$$
, pro $t \in \langle t_i, t_{i+1} \rangle$
 $N_i^0(t) = 0$, jinak

- Polynomy mají nezápornou hodnotu.
- Jednotkový součet

 křivka leží v
 konvexní obálce.
- Při dělení 0 je výsledek = 0.
- Vykreslování algoritmem de Boor (ala de Casteljau).

Uzlový vektor Ut

- Představuje hodnoty parametru t v uzlech.
- Délka m + 1, kde m = n + k + 1.
- Uniformní $\rightarrow t_{i+1} t_i = \text{konst.}$
- Násobné uzly (zdegenerování segmentu do jediného bodu).
- Lokální změna tvaru křivky.

Příklad uzlového vektoru (k = 2)

$$U_t = (0, 0, 0, t_{k+1}, \dots, t_{m-k-1}, 1, 1, 1)$$

NURBS (Non Uniform Rational B-Spline) křivky

- Zobecnění B-spline křivek.
- Racionální křivka → váhové koeficienty w_i
 i-tého řídícího bodu.
- Neuniformní uzlový vektor
 → t_{i+1} t_i ≠ konst.
- Umožňuje vkládání řídícího bodu při zachování tvaru!
- Přesné vyjádření kuželoseček apod.
- Invariantní vůči lineárním transformacím.

Definice křivky

$$Q(t) = \sum_{i=0}^{n} P_{i}.R_{i}^{k}(t) = \frac{\sum_{i=0}^{n} w_{i}.P_{i}.N_{i}^{k}(t)}{\sum_{i=0}^{n} w_{i}.N_{i}^{k}(t)}$$

$$R_i^k(t) = \frac{w_i.N_i^k(t)}{\sum_{i=0}^n w_i.N_i^k(t)}$$

Příklady NURBS křivek

