Self-Attention Generative Adversarial Networks (SAGAN)

(a.k.a. Finally, Here Are Some Dogs with Separated Legs)

Han Zhang*	Ian Goodfellow	Dimitris Metaxas	Augustus Odena	
Rutgers University	Google Brain	Rutgers University	Google Brain	

Overview

- Introduces self-attention mechanism into convolutional GAN's
- For image generation tasks
- With spectral normalization
- Achieves state-of-the-art results
 - Frechet Inception distance on ImageNet: from 27.62 to 18.65
 - o Inception score: from 36.8 to **52.52**

Problems

- Existing ImageNet GAN models
 - Good at generating images with few structural constraints (ocean, sky & landscape)
 - Fails at capturing geometric or structural patterns
 - Dogs with good fur, but without two distinct legs

ConvNets & long-range dependencies

- Convolution operator has a local receptive field
- Long range dependencies can only be processed after passing through several conv layers
- Possible reasons for failure to capture:
 - Model is small
 - Optimization algorithms may not be good at capturing cross-layer dependencies
 - o Parameterization may be statistically brittle and prone to failure when applied to unseen inputs

Remedies

- Increase the size of convolution kernels
 - But it's slower

GAN

From Prof. Antonio Torralba course slides.

https://github.com/IISourcell/Pokemon GAN/blob/master/Generative%20Adversarial%20Networks.ipynb

Self-Attention

- Achieves state-of-the-art results in machine translation
- A better balance between long-range dependency modeling and efficiency
 - Response at a position = weighted sum of features at all positions
 - Weights ⇔ attention vectors
 - Small calculation cost
- Could yield more interpretable models
 - Attention heads clearly learn to perform different tasks
- Could be complementary to convolutions

Visualization of most attended-regions

$$V = \alpha(m) - W$$

 $oldsymbol{x} \in \mathbb{R}^{C imes N}$

 $\bar{C} = C/8$

$$f(x) = W_f x, \ g(x) = W_g x$$

 $oldsymbol{W_g} \in \mathbb{R}^{ar{C} imes C}, \, oldsymbol{W_f} \in \mathbb{R}^{ar{C} imes C}, \, oldsymbol{W_h} \, \in \, \mathbb{R}^{C imes C}$

$$eta_{j,i} = rac{\exp(s_{ij})}{\sum_{i=1}^N \exp(s_{ij})}, ext{where } s_{ij} = m{f}(m{x_i})^T m{g}(m{x_j})$$

 $oldsymbol{o} = (oldsymbol{o_1}, oldsymbol{o_2}, ..., oldsymbol{o_j}, ..., oldsymbol{o_j}, ..., oldsymbol{o_N}) \in \mathbb{R}^{C imes N}$

$$m{o_j} = \sum_{i=1}^N eta_{j,i} m{h}(m{x_i}), ext{where } m{h}(m{x_i}) = m{W_h} m{x_i}$$

Final output:

$$y_i = \gamma o_i + x_i,$$

 γ is initialized as 0.

The loss

$$L_{D} = -\mathbb{E}_{(x,y)\sim p_{data}}[\min(0, -1 + D(x,y))] - \mathbb{E}_{z\sim p_{z},y\sim p_{data}}[\min(0, -1 - D(G(z),y))],$$

$$L_{G} = -\mathbb{E}_{z\sim p_{z},y\sim p_{data}}D(G(z),y),$$

Spectral Normalization

- Applied to both generator and discriminator
- Advantage: does not require extra hyper-parameter tuning

Imbalanced Learning Rate

- Regularized discriminator
 - Requires multiple discriminator update steps per generator update step
 - slow
- Mitigation: separate learning rates
 - Two-timescale learning rate (TTUR) by Heusel et al.
 - Better results given the same wall-clock time

Measurement: Inception Score (IS) & Fréchet Inception distance(FID)

Inception score

- Computes KL divergence between conditional class distribution and marginal class dist.
- Higher IS ⇔ better image quality
- Widely used, thus making the work comparable
- The higher the better

$$IS(G) = \exp \left(\mathbb{E}_{\mathbf{x} \sim p_g} D_{KL}(p(y|\mathbf{x}) \parallel p(y)) \right)$$

FID

- More principled and comprehensive metric
- Wasserstein-2 distance between generated and real images in feature space of Inception-v3
- More consistent with human evaluation
- The lower the better

Experiment

- Generate 128 x 128 images
- Spectral normalization used for both generator and discriminator
- Adam optimizer
 - Learning rate for discriminator is 0.00004
 - Learning rate for generator is 0.0001

SN on *G/D* (10k, FID=93.52)

SN on *G/D* (160k, FID=33.39)

SN on *G/D* (260k, FID=72.41)

Baseline: SN on D (10k, FID=181.84)

Note: Using 1:1 balanced updates on G & D.

SN on *G/D*+TTUR (10k, FID=99.04)

SN on *G/D*+TTUR (160k, FID=40.96)

SN on *G/D*+TTUR (260k, FID=34.62)

SN on *G/D*+TTUR (1M, FID=22.96)

Model no attention	SAGAN			Residual					
	attention	$feat_8$	$feat_{16}$	$feat_{32}$	$feat_{64}$	$feat_8$	$feat_{16}$	$feat_{32}$	$feat_{64}$
FID	22.96	22.98	22.14	18.28	18.65	42.13	22.40	27.33	28.82
IS	42.87	43.15	45.94	51.43	52.52	23.17	44.49	38.50	38.96

- All models have been trained over one million iterations
- Self-attention added to different stages of the g and d.
- Attention put onto middle-to-high levels yields better results

Comparison with state-of-the-art

Model	Inception Score	FID	
AC-GAN [31]	28.5	/	
SNGAN-projection [17]	36.8	27.62*	
SAGAN	52.52	18.65	

Takeru Miyato, Masanori Koyama.
 cGANs with Projection
 Discriminator. ICLR2018.

Previous State-of-the-art (Miyato, et al.)

See more at https://github.com/pfnet-research/sngan_projection/#other-materials

Previous State-of-the-art (Miyato, et al.)

Attention map visualization

References

- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
 Generative adversarial nets. In NIPS, 2014
- I.J. Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
 A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv:1706.03762, 2017
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida. Spectral Normalization for Generative Adversarial Networks. ICLR2018.
- M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, pages 6629–6640, 2017.
- X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In CVPR, 2018
- Takeru Miyato, Masanori Koyama. cGANs with Projection Discriminator. ICLR2018.

