Machine Learning Regression

Mayson Ma

Courant Institute of Mathematical Sciences - New York University

June 2021

Machine Learning

Mayson Ma

Linear Regression

. . . .

Solution

Pseudoi

The Least Norm Soluti

Logistic Regression

Introduction

Dolution

Newton's Metho

Table of Contents

Machine Learning Mayson Ma

Linear Regression

C 1 .:

D

The Least Norm Solution

Logistic Regression

C 1 .:

Newton's Meth

Linear Regression

Introduction

Solution

Pseudoinverse

The Least Norm Solution

Logistic Regression

Introduction

Solution

Newton's Method

The Least Norm Solution

Logistic Regression

Colution

Newton's Meth

Symbols

Sample points $x_1, x_2, ... x_n \in \mathbb{R}$ and $X \in \mathbb{R}^{n \times d}$ is the design matrix of sample points. The associated labels are $y_1, y_2, ..., y_n \in \mathbb{R}$, and $y = [y_1 \ \cdots \ y_n]^\top \in \mathbb{R}^n$.

Hypothesis set

Linear functions

$$\left\{ x \mapsto w^{\top} x + \alpha : x \in \mathbb{R}^d, \alpha \in \mathbb{R} \right\}$$

Optimization Problems

Empirical risk minimization

$$\min_{w,\alpha} F(w,\alpha) = ||(Xw + \alpha) - y||^2$$

Introduction

Newton's Methor

Harrier Carrier a Paragraph of the according to the contract of the contract of

Use the fictitious dimension trick, rewrite the objective functions:

$$\min_{w} F(w) = ||Xw - y||^2$$

where
$$X = \begin{bmatrix} x_1^\top & 1 \\ \vdots & \vdots \\ x_n^\top & 1 \end{bmatrix} \in \mathbb{R}^{n \times (d+1)}$$
, $w = \begin{bmatrix} w_1 \\ \vdots \\ w_d \\ \alpha \end{bmatrix} \in \mathbb{R}^{d+1}$

Solve by calculus

The objective is a convex and differentiable function

$$F(w) = w^{\top} X^{\top} X w - 2y^{\top} X w + y^{\top} y$$
$$\Delta_w F = 2X^{\top} X w - 2X^{\top} y$$

Set
$$\Delta_w F = 0 \Leftrightarrow X^T X w = X^T y$$

The normal equation

$X^T X w = X^T v$

Solution to the normal equation

If $X^{\top}X$ is not singular, $w = (X^{T}X)^{-1}X^{T}v$.

If $X^{T}X$ is singular, the problem is underconstrained, $w = (X^T X)^+ X^T y$ in general, where $(X^T X)^+$ is the pseudoinverse of X^TX .

Pseudoinverse

The pseudoinverse of $X = U\Sigma V^{\top}$ is $X^{+} = V\Sigma^{+}U^{\top} \in \mathbb{R}^{(d+1)\times n}$

SVD

Pieces of the SVD: $X = U\Sigma V^{\top} = \sigma_1 u_1 v_1^{\top} + \cdots + \sigma_r u_r v_r^{\top}$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.

The reduced form of the SVD of X is $X = U_r \Sigma_r V_r^{\top}$, where $U_r \in \mathbb{R}^{n \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{r \times d}$.

The columns of U_r is the basis for the column space of X and the columns of V_r is the basis for the row space of X.

Solution

Newton's Methor

One solution to this system is $w^+ = A^+b$. It has two properties:

- $w = w^+$ is a minimizer of $||Xw y||^2$
- ▶ If another \hat{w} achieves that minimum, then $||w^+|| < ||\hat{w}||$

Proof

In other words, w^+ is a minimum norm least squares solution. When X has independent columns (r=d), it is the unique least square solution. If there are nonzero vectors δ in the nullspace of X (r < d), then they can be added to w^+ , the error $||X(w^+ + \delta) - y||^2$ is not affected, since $X\delta = 0$. However, the length $||w^+ + \delta||^2$ will grow to $||w^+||^2 + ||\delta||^2$. Note that $w^+ \perp \delta$ (w^+ is in the rowspace of X and δ is in the null space of X)

Symbols

Sample points $x_1, x_2, ... x_n \in \mathbb{R}$ and $X \in \mathbb{R}^{n \times d}$ is the design matrix of sample points. The associated labels are $y_1, y_2, ..., y_n \in \{0, 1\}$, and $y = [y_1 \quad \cdots \quad y_n]^{\top} \in \{0, 1\}^n$.

Model

Let $\sigma(z) = \frac{1}{1+e^{-z}}$ be the sigmoid function. Then,

$$p_1 = \Pr(y = 1|x) = \sigma(w^{\top}x) = \frac{1}{1 + e^{-w^{\top}x}}$$

$$p_0 = \Pr(y = 0|x) = 1 - \sigma(w^{\top}x) = \frac{e^{-w^{\top}x}}{1 + e^{-w^{\top}x}}$$

Combine p_0 and p_1 gives $Pr(y|x) = p_1^y \cdot p_0^{(1-y)}$.

MLE

$$\begin{split} \hat{w} &= \operatorname*{argmax} \ln \prod_{i=1}^{n} \Pr(y_i|x_i) \\ &= \operatorname*{argmax} \ln \prod_{i=1}^{n} \Pr(y_i=1|x_i)^{y_i} \cdot \Pr(y_i=0|x_i)^{(1-y_i)} \\ &= \operatorname*{argmax} \sum_{i=1}^{n} y_i \ln \sigma(w^\top x_i) + (1-y_i) \ln (1-\sigma(w^\top x_i)) \end{split}$$

Optimization Problem

$$\min_{w} F(w) = -\sum_{i=1}^{n} y_i \ln \sigma(w^{\top} x_i) + (1 - y_i) \ln(1 - \sigma(w^{\top} x_i))$$

Solution

Machine Learning

Note that $\sigma'(z) = \sigma(z)(1 - \sigma(z))$. Let $z_i = \sigma(w^\top x_i)$

$$\Delta_w F = -\sum_{i=1}^n \left(\frac{y_i}{z_i} - \frac{1 - y_i}{1 - z_i} \right) z_i (1 - z_i) x_i$$
$$= -\sum_{i=1}^n (y_i - z_i) x_i$$
$$= -X^\top (y - \sigma(Xw))$$

Solve by gradient descent

 $w \leftarrow w + \epsilon \cdot X^{\top}(y - \sigma(Xw))$, where ϵ is the learning rate.

Newton's Method

Idea

You are at point v. Approximate F(w) near v by a quadratic function. Jump to its unique critical point. Repeat until bored.

Math

Taylor series at v:

$$F(v+d) \approx F(v) + \Delta F(v)^{\mathsf{T}} d + \frac{1}{2} d^{\mathsf{T}} \Delta^2 F(v) d$$

where $\Delta^2 F(v)$ is the **Hessian matrix** of F at point v.

Take derivative w.r.t d, set it to 0 and solve for d, i.e. find the critical point:

$$\Delta F(v) + \Delta^2 F(v) d = 0 \Rightarrow d = -(\Delta^2 F(v))^{-1} \Delta F(v)$$

Newton's Method

Algorithm

pick starting point w

repeat

 $e \leftarrow \text{solution to linear system } (\Delta^2 F(w))^{-1} e = -\Delta F(w)$ $w \leftarrow w + e$ until convergence

Comments

- lterative optimization method for smooth F(w)
- Often much faster than gradient descent
- Does not know the difference between minima, maxima or saddle points
- Starting point must be "close enough" to desired solution

Solve by Newton's method

- ▶ Recall that $\Delta_w F = X^\intercal (z y)$, where $z \in \mathbb{R}^n$ and $z_i = \sigma(w^{\mathsf{T}}x_i)$
- ightharpoonup So $\Delta_W^2 F$ resolves to $X^{\mathsf{T}}(\Delta_w z)$
- Note that the *i*-th row of $\Delta_w z$ will be $z_i(1-z_i)x_i^{\mathsf{T}}$. So we can rewrite this term as

$$\Delta_w z = \Omega X$$

where
$$\Omega=egin{bmatrix} z_1(1-z_1) & & & & & & \\ & z_2(1-z_2) & & & & & \\ & & & \ddots & & & \\ & & & z_n(1-z_n) \end{bmatrix}$$

Finally, $\Delta_{W}^{2}F = X^{\mathsf{T}}\Omega X$

Newton's Method

Algorithm

 $w \leftarrow 0$ repeat $e \leftarrow \text{solution to normal equations } (X^{\mathsf{T}}\Omega X)e = X^{\mathsf{T}}(y-z)$ $w \leftarrow w + e$ until convergence

An example of iteratively reweighted least squares

- $ightharpoonup \Omega$ is positive definite $\Rightarrow X^{\mathsf{T}}\Omega X$ is positive semidefinite $\Rightarrow F(w)$ is convex
- \triangleright Ω prioritizes points with z near 0.5; tunes out points near 0 or 1.
- If n very large, save time by using a random subsample of the points per iteration. Increase sample size as you go.