Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Мухин Тимофей Владимирович (НБИбд-01-23)

Содержание

1	. Цель работы	4
2	Выполнение лабораторной работы	5
3	В Выводы	9
4	Контрольные вопросы	10
	4.1 1. Информация в учётной записи пользователя	 10
	4.2 2. Команды терминала	 10
	4.3 3. Файловая система	 11
	4.4 4. Просмотр подмонтированных файловых систем	 11
	4.5 5. Удаление зависшего процесса	 11

Список иллюстраций

2.1	Установка VirtualBox и создание новой виртуальной машины	5
2.2	Настройка виртуальной машины	5
2.3	Добавление привода оптических дисков	6
2.4	Настройки установки Rocky Linux	6
2.5	Выбор необходимого ПО	7
2.6	Создание пользователя	7
2.7	Подключение образа диска с дополнениями	8
2.8	Анализ последовательности загрузки системы	8

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

1. Устанавливаем VirtualBox. Создаем новую виртуальную машину.

Рис. 2.1: Установка VirtualBox и создание новой виртуальной машины

2. Настраиваем виртуальную машину (название, тип ОС, объем оперативной памяти, параметры виртуального диска)

Рис. 2.2: Настройка виртуальной машины

3. Добавляем новый привод оптических дисков и выбираем iso образ дистрибутива Rocky Linux.

Рис. 2.3: Добавление привода оптических дисков

4. Настройки установки Rocky Linux

Рис. 2.4: Настройки установки Rocky Linux

5. Выбор необходимого ПО

Рис. 2.5: Выбор необходимого ПО

6. Создание пользователя

Рис. 2.6: Создание пользователя

7. Подключение образа диска с дополнениями от VirtualBox

Рис. 2.7: Подключение образа диска с дополнениями

8. Проанализируем последовательность загрузки системы и другие параметры, выполнив команду dmesg

Рис. 2.8: Анализ последовательности загрузки системы

3 Выводы

Дистрибутив Rocky Linux был установлен на виртуальную машину VirtualBox для выполнения последующих лабораторных работ.

4 Контрольные вопросы

4.1 1. Информация в учётной записи пользователя

- Имя пользователя
- Пароль
- Уровень доступа (права)
- Настройки профиля
- Персональные данные (например, email)

4.2 2. Команды терминала

- Получение справки по команде:
 - man <команда> (например, man ls)
- Перемещение по файловой системе:
 - cd <путь> (например, cd /home/user)
- Просмотр содержимого каталога:
 - ls (например, ls -1)
- Определение объёма каталога:
 - du -sh <каталог> (например, du -sh /home/user)
- Создание / удаление каталогов / файлов:

- Создание: mkdir <каталог> (например, mkdir new_folder)
- Удаление: rm <файл> (например, rm file.txt)

• Задание прав на файл / каталог:

- chmod <права> <файл> (например, chmod 755 script.sh)
- Просмотр истории команд:
 - history

4.3 3. Файловая система

Файловая система — это способ организации и хранения файлов на носителе. Примеры: - NTFS: Используется в Windows, поддерживает большие файлы и права доступа. - ext4: Широко используется в Linux, обеспечивает высокую производительность и надежность. - FAT32: Поддерживается многими ОС, но имеет ограничения по размеру файлов. - Btrfs: Современная файловая система для Linux, поддерживает снимки, сжатие и управление объемом.

4.4 4. Просмотр подмонтированных файловых систем

 df -h (показывает список подмонтированных файловых систем и их использование)

4.5 5. Удаление зависшего процесса

- kill <PID> (например, kill 1234)
- Если процесс не pearupyeт: kill -9 <PID> (например, kill -9 1234)