- DRAW: A Recurrent Neural Network For Image Generation
- Karol Gregor

Generation and Inference

Generation. Though implicitly specified, the paper tries to make asssumption on the data generation process:

Here, z_1, \ldots, z_T are sampled **independently** from some prior. After that,

- ullet A delta w_1 is computed from z_1 , and $c_1=c_0+w_1$
- ullet A delta w_2 is computed from z_1,z_2 , and $c_2=c_1+w_2$
- etc...

Here we are basically describing a way of generating an image from several latent variables, iteratively. Intuitively, the ordering of z_i 's should reflect the importance of each variable.

Inference. Now given x, we need to infer z_1, \ldots, z_T . Typically, z_1 should encode the most important information of x, so it is natural to infer that first. After that, given x, z_1 , we infer z_2 , etc.

From the above description, it is natural to design to seperate neural networks to perform generation and inference.

Generation.

For
$$i=1,\ldots,T$$

1.
$$z_t \sim p(z)$$

2.
$$h_t^{dec} = \text{RNN}^{dec}(h_{t-1}^{dec}, z_t)$$

3.
$$c_t = c_{t-1} + write(h_t^{dec})$$

And finally, $x \sim p(x|c_T)$.

Inference

The idea is to infer z_t given x, z_{t-1}, \ldots, z_1 . We will encode this using h_t^{dec} . Since h_{t-1}^{dec} encodes z_1, \ldots, z_{t-1} , we can naturally do this model h_t^{enc} as a function of x and h_{t-1}^{dec} .

In theory that should be suffcient. But nonetheless the author do it the following way

$$egin{aligned} \hat{x}_t &= x - \sigma(c_{t-1}) \ r_t &= read(x_t, \hat{x}_t, h_{t-1}^{dec}) \ h_t^{enc} &= ext{RNN}^{enc}(h_{t-1}^{enc}, [r_t, h_{t-1}^{dec}]) \ z_t \sim q(z_t | h_t^{enc}) \end{aligned}$$

Where \hat{x}_t is called the **error image**. This makes sense since givne z_1, \ldots, z_{t-1} , c_{t-1} has been determined, so conditioned on x is equivalent to be conditioned on \hat{x} .

Loss. The loss is just the variational lower bound.

Read and Write

No attention. In the simplest case, no attention is used. It is then just

$$read(x, \hat{x}, h_{t-1}^{dec}) = [x, \hat{x}] \ write(h_{t-1}^{dec}) = W(h_{t}^{dec})$$

where W is some linear NN.

Figure 3. Left: A 3×3 grid of filters superimposed on an image. The stride (δ) and centre location (g_X, g_Y) are indicated. **Right:** Three $N \times N$ patches extracted from the image (N=12). The green rectangles on the left indicate the boundary and precision (σ) of the patches, while the patches themselves are shown to the right. The top patch has a small δ and high σ , giving a zoomed-in but blurry view of the centre of the digit; the middle patch has large δ and low σ , effectively downsampling the whole image; and the bottom patch has high δ and σ .

Selective attention. The key is the form of attention. Here, we want the output of read and write to be fixed-sized. So it is natural to use a $N \times N$ grid to sample from the input, in read. Specifically, this grid is specified as

- g_X, g_Y : grid center
- δ : stride
- σ^2 : filter size
- γ : response intensity.

And these will be obtained via a linear transformation of h^{dec} . I won't address the details of these process, but finally, the read operation can be written as

$$\operatorname{read} \left(x, \hat{x}_t, h_{t-1}^{dec} \right) = \gamma \left[F_Y x F_X^T, F_Y \hat{x} F_X^T \right]$$

and the write operation will be a inverse process as

$$w_t = W\left(h_t^{dec}
ight) \ ext{write}\left(h_t^{dec}
ight) = rac{1}{\hat{\gamma}}{\hat{F}_Y}^T w_t {\hat{F}_X}$$

Results

The most important thing to note is how the network with and without attention works:

Time →

Figure 7. MNIST generation sequences for DRAW without attention. Notice how the network first generates a very blurry image that is subsequently refined.

Time →

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The author does not given an explanation of this.