Métodos Computacionais I

Instituto de Física Universidade Federal do Rio de Janeiro

Prof. Murilo Rangel

Semestre 2012-1

Aula 10

Equações diferenciais

- Método de Euller
- Método de Heun
- Método do Ponto Central
- Métodos de Runge-Kutta

Ver Cap. 7 da Apostila

Equações diferencias

- Equações Diferenciais são fundamentais na Física:
 - Lei de Newton
 - Segunda lei da Ternodinâmica
 - Equações de Maxwell
 - Equação de Schrædinger
 - Equação de Dirac
- X Elas podem ser classificadas de várias formas
- Ordinárias
 Primeira ordem
 Condições iniciais
- Parciais
 Segunda ordem
 Condições de contorno
 - Sistemas de equações

Equações diferencias

X Equações de primeira ordem:

$$\begin{cases} y'(x) = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

Exemplo: Cálculo da velocidade de uma bolha de ar em um frasco de xampu. U.M. Neves, Rev. Bras. de Ens. de Fís - v28, p1 (2006)

$$m_{ar} rac{d ec{v}}{dt} = (-m_{ar}g + m_{x}g - bv^{r})\hat{k}$$
 $rac{dv}{dt} = Cv^{r} + D$

Aproximando a derivada:

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

Sabemos:

$$y'(x) = f(x, y)$$
 e $y(x_0)$

Aproximando a função por um segmento de reta:

$$y(x_0+h)\approx y(x_0)+hy'(x_0)$$

$$y(x_0+h) \approx y(x_0)+h \ f(x_0,y(x_0))$$

ou

$$y(x_0+h)\approx y_0+h f_0$$

Iteragindo ...

Sabemos:

$$y'(x) = f(x, y)$$
 e $y(x_0)$

Repetindo a operação:

$$y(x_{i+1}) \approx y(x_i) + h f(x_i, y(x_i))$$

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Incerteza do método

$$\Delta_i = |y(x_i) - y_i|$$

Equações de segunda ordem

```
Questão: Encontrar y(x), tal que,
y'' = f(y,y',x)
y(0) = A
y'(0) = B
```

Solução: Reescrevemos

$$y' = z$$
 $z' = y''$

Teremos duas equações diferenciais de primeira ordem

$$z' = g(z,x)$$

 $y' = h(y,x)$

Resolvemos as duas equações simultaneamente

Exemplo

Encontre x(t) usando o método de Euler, tal que:

$$x'' = w^2 * x$$

onde
 $w=23$
 $x(t=0) = 0.1$
 $x'(t=0) = 0$

compare com a solução exata para diferentes passos de discretização h

Método de Heun

$$y(x_{i+1}) = y(x_i) + f(x_i, y_i) * h$$

podemos melhorar o método de Euler, trocando $f(x_i, y_i)$ por $f_M = 0.5*(f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$

Usando a média da derivada, a curvatura de y(x) é melhor representada pelo método numérico.

Note, que um passo adicional é necessário. Primeiro, calculamos $y(x_{i+1})$ pelo método de Euler, depois aplicamos o método de Heun.

Exercício: Use o exemplo da página 8 para provar que o método de Heun encontra valores de y(t) mais precisos que o método de Euler para um dado passo de discretização h.

Método do Ponto Central

Em vez de usarmos a derivada no ponto (x_0, y_0) , usamos a derivada no ponto intermediário

$$x_{med} = x_0 + \Delta x/2$$
.
 $y_{i+1} = y_i + f(x_{med}, y_{med}) \Delta x$
Mas não sabemos y_{med}
 \rightarrow Usamos Euler simples:
 $y_{med} = y_i + f(x_i, y_i) \Delta x/2$

(Usamos Euler simples duas vezes para ir de x_i a x_{i+1})

Exercício: Use o exemplo da página 8 para provar que o método de Ponto Central encontra valores de y(t) mais precisos que o método de Euler para um dado passo de discretização h.

Métodos de Runge-Kutta

Vimos que o método de Euler pode ser melhorado quando usamos a informação sobre a derivada em pontos intermediários do intervalo, isto é, levamos em conta a curvatura de y(x). Vamos generalizar o método tomando um ponto intermediário qualquer entre x_i e x_{i+1} e que usa a média ponderada das derivadas, de forma que:

$$y_{i+1} = y_i + \bar{f}\Delta x$$

onde $\bar{f} = af_i + bf_{i'}$ a e b são os pesos, f_i é a tangente no ponto (x_i, y_i) , $f_{i'}$ é a tangente num ponto intermediário $f_{i'} = f(x_i + \alpha \Delta x, y_i + \beta f_i \Delta x)$ onde α e β especificam a posição do ponto intermediário

Métodos de Runge-Kutta

Estes parâmetros não são totalmente livres. Se compararmos este método com a expansão em série de Taylor da solução real y(x) obteremos as relações entre eles.

Uma escolha possível é a=0 b=1 $\alpha=\beta=\frac{1}{2}$ \rightarrow Método do ponto central

Outra escolha: $a = b = \frac{1}{2}$ $\alpha = \beta = 1 \rightarrow Método de Euler aperfeiçoado$

Ambos os algoritmos são conhecidos como métodos de Runge-Kutta de segunda ordem porque o cálculo de y_{i+1} inclui termos $\mathcal{O}(\Delta x^2)$.

Tarefa 10

Para entregar em aula:

1) Escreva uma função que calcule y(x) dado N equações diferencais de primeira ordem acopladas usando o método de Runge-Kutta generalizado (rungekutta.h).

A função deve obedecer o protótipo abaixo:

void rungekutta(double *rk, int N, double *y, double x0, double h, void (*dydx) (double x, double *y, double *f))

onde

rk são os parâmetros do método de runge-kutta N é o número de funções acopladas y são os valores iniciais, os quais devem ser atualizados dentro da função x0 é o valor inicial de x h é o passo de discretização dydx é uma função que contém as equações diferencias acopladas

Tarefa 10

Para semana que vem:

❖ Considere a força central de atração gravitacional entre a Terra e o Sol. Considere a posição do Sol na origem de um eixo de coordenadas e escreva a equação diferencial dada pela segunda lei de Newton para o movimento da Terra. Escreva essa equação como um sistema de equações diferenciais de primeira ordem em coordenadas cartesianas. Dados: $G = 6.67 \times 10^{-11} Nm^2/kg^2$, $M_{sol} = 1.98 \times 10^{30} kg$, $M_{Terra} = 5.98 \times 10^{24} kg$, $R_{sol} = 6.96 \times 10^8 m$, $R_{Terra} = 6.37 \times 10^6 m$.

$$\vec{F} = -\frac{G \, M_{sol} \, M_{Terra}}{r^2} \hat{r}$$

Tarefa 10

escreva um programa kepler.c que calcule a trajetória da Terra, dado que, em um momento inicial t=0, a Terra encontra-se a uma distância $x=1.496\times 10^{11} m$ do Sol, ou seja, na posição (x,0,0), com uma velocidade inicial igual a $2.97\times 10^4 m/s$ (aproximadamente igual à velocidade orbital média da Terra) na direção positiva do eixo y. O programa deve ler do teclado o valor do passo e as condições iniciais (componentes x,y,z do vetor posição e velocidade, nessa ordem) e imprimir na tela os valores de x, y, z e v_x , v_y v_z para valores de t de 0 até 1 ano, com o seguinte formato:

t (s)
$$x(m)$$
 $y(m)$ $z(m)$ $v_x(m/s)$ $v_y(m/s)$ v_z (m/s) 0 1.496 \times 10¹¹ 0 0 0 2.97 \times 10⁴ 0 ...

Usando a saída do programa, faça um gráfico da trajetória da Terra no plano xy ao decorrer de 1 ano, em passos iguais a 1 hora, usando o método de Euler (euler.gif), o método do ponto central (pontocentral.gif) e o de método de Heun (heun.gif).