3. Multiple linear regression and Gradient descent

Shabana K M

PhD Research Scholar Computer Science and Engineering

> IIT Palakkad 14 August 2021

■ Regression

- Regression
 - dependent, independent variables

- Regression
 - dependent, independent variables
 - loss functions

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple
 - linear, polynomial, non-linear, logistic
- Linear regression

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple
 - linear, polynomial, non-linear, logistic
- Linear regression
 - intercept, regression coefficients(weights)

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple
 - linear, polynomial, non-linear, logistic
- Linear regression
 - intercept, regression coefficients(weights)
- Simple linear regression

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple
 - linear, polynomial, non-linear, logistic
- Linear regression
 - intercept, regression coefficients(weights)
- Simple linear regression
 - Ordinary least squares

- Regression
 - dependent, independent variables
 - loss functions
- Different regression models
 - simple, multiple
 - linear, polynomial, non-linear, logistic
- Linear regression
 - intercept, regression coefficients(weights)
- Simple linear regression
 - Ordinary least squares
 - Interpreting the regression coefficients

(a) A simple linear regression model

(a) A simple linear regression model

(b) Training dataset

(a) A simple linear regression model

(c) Fitting a linear regression model

(b) Training dataset

(a) A simple linear regression model

(c) Fitting a linear regression model

(b) Training dataset

(d) Loss function for the model

• more than one independent variable: $x_1, x_2, ..., x_D$

- more than one independent variable: $x_1, x_2, ..., x_D$
- the model is of the form

$$\hat{y} = f(w, x) = w_0 + w_1 x_1 + ... + w_D x_D$$

- more than one independent variable: $x_1, x_2, ..., x_D$
- the model is of the form

$$\hat{y} = f(w, x) = w_0 + w_1 x_1 + ... + w_D x_D$$

- when D=2, the model is of the form $\hat{y}=w_0+w_1x_1+w_2x_2$
 - describes a plane in the three dimensional space of \hat{y} , x_1 and x_2 with w_0 as the intercept of the plane

- more than one independent variable: $x_1, x_2, ..., x_D$
- the model is of the form

$$\hat{y} = f(w, x) = w_0 + w_1 x_1 + ... + w_D x_D$$

- when D=2, the model is of the form $\hat{y}=w_0+w_1x_1+w_2x_2$
 - describes a plane in the three dimensional space of \hat{y}, x_1 and x_2 with w_0 as the intercept of the plane
- regression coefficient w_i measures the association between the predictor variable x_i and the outcome y

- more than one independent variable: $x_1, x_2, ..., x_D$
- the model is of the form

$$\hat{y} = f(w, x) = w_0 + w_1 x_1 + ... + w_D x_D$$

- when D=2, the model is of the form $\hat{y}=w_0+w_1x_1+w_2x_2$
 - describes a plane in the three dimensional space of \hat{y}, x_1 and x_2 with w_0 as the intercept of the plane
- regression coefficient w_i measures the association between the predictor variable x_i and the outcome y
 - w_i represents the mean change in y corresponding to a unit increase in x_i when all other predictors are held fixed

Figure: Visualizing the multiple regression model for predicting the response variable Income (y) based on the independent variables Seniority (x1) and Years of Education (x2)

Given: Training data set comprising N observations $(x_n, y_n)_{n=1}^N$, where $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the input and y_n is the corresponding output

Given: Training data set comprising N observations $(x_n, y_n)_{n=1}^N$, where $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the input and y_n is the corresponding output

Goal: Predict the y value for a new value of x

Given: Training data set comprising N observations $(x_n, y_n)_{n=1}^N$, where $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the input and y_n is the corresponding output

Goal: Predict the y value for a new value of x

Estimate: The weights $w = [w_0, w_1, ..., w_D]$

Given: Training data set comprising N observations $(x_n, y_n)_{n=1}^N$, where $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the input and y_n is the corresponding output

Goal: Predict the y value for a new value of x

Estimate: The weights $w = [w_0, w_1, ..., w_D]$

Minimize: Mean-squared error:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 where $\hat{y}_i = f(w, x_i) = w_0 + w_1 x_1 + ... + w_D x_D$

A small mathematics refresher

Scalar: a single number

Vector: an ordered array of numbers can be in a row or a column

an index points to a specific value within the vector

Matrix: two dimensional array of numbers

each element identified by two numbers

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

• x_{ij} - j^{th} feature of the i^{th} observation

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

• x_{ij} - j^{th} feature of the i^{th} observation

$$x_{13} = 75$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$\circ x_{42} =$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$x_{42} = 98$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

o
$$x_{13} = 75$$

$$x_{42} = 98$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$x_{42} = 98$$

 $y_i - y$ value of the i^{th} observation

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$x_{42} = 98$$

• y_i - y value of the i^{th} observation

$$v_1 =$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$x_{42} = 98$$

 y_i - y value of the i^{th} observation

$$v_1 = 152$$

$$v_4 =$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Consider the problem of predicting the Final exam score (y) based on the scores obtained in the first three exams (x_1, x_2, x_3)

Using a linear regression model for this problem, we have:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

x_{ij} - jth feature of the ith observation

$$x_{13} = 75$$

$$x_{42} = 98$$

 y_i - y value of the i^{th} observation

$$v_1 = 152$$

$$y_4 = 196$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Our model:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Our model:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

We can write:

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + e$$

where
$$e = y - \hat{y}$$

EXAM1	EXAM2	EXAM3	FINAL
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142
53	46	55	101
69	74	77	149
47	56	60	115
87	79	90	175
79	70	88	164
69	70	73	141
70	65	74	141
93	95	91	184
79	80	73	152
70	73	78	148

Our model:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

We can write:

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + e$$

where
$$e = y - \hat{y}$$

Now we have:

$$y_1 = w_0 + w_1 x_{11} + w_2 x_{12} + w_3 x_{13} + e_1$$

 $y_2 = w_0 + w_1 x_{21} + w_2 x_{22} + w_3 x_{23} + e_2$
:

$$y_N = w_0 + w_1 x_{N1} + w_2 x_{N2} + w_3 x_{N3} + e_N$$

Matrix Representation

$$y_1 = w_0 + w_1 x_{11} + w_2 x_{12} + w_3 x_{13} + e_1$$

$$y_2 = w_0 + w_1 x_{21} + w_2 x_{22} + w_3 x_{23} + e_2$$

$$\vdots$$

$$y_N = w_0 + w_1 x_{N1} + w_2 x_{N2} + w_3 x_{N3} + e_N$$

Matrix Representation

$$y_{N} = w_{0} + w_{1}x_{N1} + w_{2}x_{N2} + w_{3}x_{N3} + e_{N}$$

$$y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix} X = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} \\ 1 & x_{21} & x_{22} & x_{23} \\ \vdots & & & \\ 1 & x_{N1} & x_{N2} & x_{N3} \end{bmatrix} w = \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \\ w_{3} \end{bmatrix} e = \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$

 $y_1 = w_0 + w_1 x_{11} + w_2 x_{12} + w_3 x_{13} + e_1$ $y_2 = w_0 + w_1 x_{21} + w_2 x_{22} + w_3 x_{23} + e_2$

Matrix Representation

$$y_1 = w_0 + w_1 x_{11} + w_2 x_{12} + w_3 x_{13} + e_1$$

$$y_2 = w_0 + w_1 x_{21} + w_2 x_{22} + w_3 x_{23} + e_2$$

$$\vdots$$

$$y_N = w_0 + w_1 x_{N1} + w_2 x_{N2} + w_3 x_{N3} + e_N$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} X = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} \\ 1 & x_{21} & x_{22} & x_{23} \\ \vdots & & & & \\ 1 & x_{N1} & x_{N2} & x_{N3} \end{bmatrix} w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} e = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_N \end{bmatrix}$$

The N equations can be written as:

$$y = Xw + e$$

$$y = Xw + e$$

$$y = Xw + e$$

Rearranging the terms, we get

$$e = y - Xw$$

$$y = Xw + e$$

Rearranging the terms, we get

$$e = y - Xw$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N}$$

$$v = Xw + e$$

Rearranging the terms, we get

$$e = y - Xw$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N}$$

$$\sum_{i}^{N} e^{2} = e_{1}^{2} + e_{2}^{2} + \dots + e_{N}^{2}$$

$$= \begin{bmatrix} e_1 & e_2 & \dots & e_N \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_N \end{bmatrix} = e^T e = (y - Xw)^T (y - Xw)$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N} = \frac{(y - Xw)^{T} (y - Xw)}{N}$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N} = \frac{(y - Xw)^{T} (y - Xw)}{N}$$
$$= \frac{1}{N} (y^{T} y - y^{T} Xw - w^{T} X^{T} y + w^{T} X^{T} Xw)$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N} = \frac{(y - Xw)^{T}(y - Xw)}{N}$$
$$= \frac{1}{N} (y^{T}y - y^{T}Xw - w^{T}X^{T}y + w^{T}X^{T}Xw)$$
Now $y^{T}Xw = (w^{T}X^{T}y)^{T}$ is a scalar, so we have

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N} = \frac{(y - Xw)^{T}(y - Xw)}{N}$$

$$= \frac{1}{N} (y^{T}y - y^{T}Xw - w^{T}X^{T}y + w^{T}X^{T}Xw)$$
Now $y^{T}Xw = (w^{T}X^{T}y)^{T}$ is a scalar, so we have
$$MSE = \frac{1}{N} (y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw)$$

$$MSE = \frac{\sum_{i}^{N} e_{i}^{2}}{N} = \frac{(y - Xw)^{T} (y - Xw)}{N}$$
$$= \frac{1}{N} (y^{T} y - y^{T} Xw - w^{T} X^{T} y + w^{T} X^{T} Xw)$$

Now $y^T X w = (w^T X^T y)^T$ is a scalar, so we have

$$MSE = \frac{1}{N}(y^T y - 2w^T X^T y + w^T X^T X w)$$

Using OLS, the regression coefficients w are estimated by solving the following minimization problem:

$$\min_{w} \frac{1}{N} (y^T y - 2w^T X^T y + w^T X^T X w)$$

$$I(w) = \frac{1}{N}(y^T y - 2w^T X^T y + w^T X^T X w)$$

$$I(w) = \frac{1}{N}(y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw)$$

The error is minimized for the value of w such that $\frac{\partial I(w)}{\partial w} = 0$

$$I(w) = \frac{1}{N}(y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw)$$

The error is minimized for the value of w such that $\frac{\partial I(w)}{\partial w}=0$

$$-2 * X^T y + 2 * X^T X w = 0$$

$$I(w) = \frac{1}{N}(y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw)$$

The error is minimized for the value of w such that $\frac{\partial I(w)}{\partial w}=0$

$$-2*X^Ty + 2*X^TXw = 0$$

$$w = (X^T X)^{-1} (X^T y)$$

$$I(w) = \frac{1}{N}(y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw)$$

The error is minimized for the value of w such that $\frac{\partial I(w)}{\partial w} = 0$

$$-2*X^Ty + 2*X^TXw = 0$$

$$w = (X^T X)^{-1} (X^T y)$$

Normal equation

$$w = (X^T X)^{-1} (X^T y)$$

$$w = (X^T X)^{-1} (X^T y)$$

gives the solution in one go

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

- numerical complexity
 - need to compute $(X^TX)^{-1}$ can be very slow

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

- numerical complexity
 - need to compute $(X^TX)^{-1}$ can be very slow
- X^TX may not be always invertible

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

- numerical complexity
 - need to compute $(X^TX)^{-1}$ can be very slow
- X^TX may not be always invertible
 - too many features (eg:- N < D)

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

- numerical complexity
 - need to compute $(X^TX)^{-1}$ can be very slow
- X^TX may not be always invertible
 - too many features (eg:- N < D)
 - some columns are linearly dependent (redundant features)

$$w = (X^T X)^{-1} (X^T y)$$

- gives the solution in one go
- works well when using small feature sets

- numerical complexity
 - need to compute $(X^TX)^{-1}$ can be very slow
- X^TX may not be always invertible
 - too many features (eg:- N < D)
 - some columns are linearly dependent (redundant features)
- cannot be easily parallelized

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

Convex problems have only one minimum; i.e., only one place where the slope is exactly 0

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

■ Convex problems have only one minimum; i.e., only one place where the slope is exactly 0 - convergence point

Loss function for simple linear regression

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

- Convex problems have only one minimum; i.e., only one place where the slope is exactly 0 convergence point
- Compute the loss function for all possible values of w_1 over the entire data set and then find the minimum

Loss function for simple linear regression

Consider a simple linear regression problem. If we compute the cost/error function for all possible values of w_1 , the resulting plot will always be convex, or kind of bowl-shaped

- Convex problems have only one minimum; i.e., only one place where the slope is exactly 0 convergence point
- Compute the loss function for all possible values of w_1 over the entire data set and then find the minimum inefficient!

Multiple regression

Gradient Descent

Gradient Descent

Gradient descent

• iterative optimization algorithm to find the minimum of a function

Gradient descent

iterative optimization algorithm to find the minimum of a function loss function in our case!!

Gradient descent

- iterative optimization algorithm to find the minimum of a function loss function in our case!!
- idea: follow the gradients of the loss function

Gradient descent

- iterative optimization algorithm to find the minimum of a function loss function in our case!!
- idea: follow the gradients of the loss function

Multiple regression

Gradient Descent

Gradient

used for functions with several inputs and a single output

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function
- is zero at a local maximum or local minimum

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function
- is zero at a local maximum or local minimum

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function
- is zero at a local maximum or local minimum

Let
$$f(x,y) = ax^2 + by^2$$
,

then
$$\nabla f =$$

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function
- is zero at a local maximum or local minimum

Let
$$f(x,y) = ax^2 + by^2$$
,

then
$$\nabla f = \begin{bmatrix} 2ax \\ 2by \end{bmatrix}$$

- used for functions with several inputs and a single output
- vector of partial derivatives with respect to each of its inputs
- points in the direction of greatest increase of a function
- is zero at a local maximum or local minimum

Let
$$f(x,y) = ax^2 + by^2$$
,

then
$$\nabla f = \begin{bmatrix} 2ax \\ 2by \end{bmatrix}$$

Multiple regression

Gradient Descent

Gradient Descent

AIM: Find the value of w_1 corresponding to the minimum value of the loss function

AIM: Find the value of w_1 corresponding to the minimum value of the loss function

BASIC IDEA: Start with an initial parameter value of w_1 and iteratively move towards a new value of w_1 that minimizes the loss function

AIM: Find the value of w_1 corresponding to the minimum value of the loss function

BASIC IDEA: Start with an initial parameter value of w_1 and iteratively move towards a new value of w_1 that minimizes the loss function

 \blacksquare can set w_1 to 0 or some random value

AIM: Find the value of w_1 corresponding to the minimum value of the loss function

BASIC IDEA: Start with an initial parameter value of w_1 and iteratively move towards a new value of w_1 that minimizes the loss function

 \blacksquare can set w_1 to 0 or some random value

- 1. Calculate the gradient of the loss curve at the starting point
 - the gradient ∇f points in the direction of the greatest rate of increase of the function

- the gradient ∇f points in the direction of the greatest rate of increase of the function
 - o its magnitude is the slope of the graph in that direction

- the gradient ∇f points in the direction of the greatest rate of increase of the function
 - o its magnitude is the slope of the graph in that direction
- the negative of the gradient $(-\nabla f)$ points in the direction of maximum decrease in height

- the gradient ∇f points in the direction of the greatest rate of increase of the function
 - o its magnitude is the slope of the graph in that direction
- the negative of the gradient $(-\nabla f)$ points in the direction of maximum decrease in height
- gradient descent algorithm takes a step in the direction of the negative gradient in order to reduce loss as quickly as possible

Gradient Descent

2. Add some fraction of the gradient's magnitude to the starting point

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

This process is repeated until convergence α (learning rate) - controls the step size

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

- α (learning rate) controls the step size
 - o high value might step over the minimum

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

- α (learning rate) controls the step size
 - o high value might step over the minimum
 - o low value slow convergence

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

- α (learning rate) controls the step size
 - o high value might step over the minimum
 - o low value slow convergence

2. Add some fraction of the gradient's magnitude to the starting point

$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$$

- α (learning rate) controls the step size
 - o high value might step over the minimum
 - o low value slow convergence

Choosing the learning rate

Gradient Descent for linear regression

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient Descent for linear regression

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient descent update:
$$w_i^{next} = w_i^{old} - \alpha * \frac{\partial l(w)}{\partial w_i}$$

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient descent update: $w_i^{next} = w_i^{old} - \alpha * \frac{\partial l(w)}{\partial w_i}$ Updates:

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient descent update: $w_i^{next} = w_i^{old} - \alpha * \frac{\partial l(w)}{\partial w_i}$ Updates:

$$w_0 := w_0 - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)$$

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient descent update: $w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$ Updates:

$$w_0 := w_0 - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)$$

$$w_1 := w_1 - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{i1}$$

Loss function:
$$I(w) = \frac{1}{N} \sum_{i=1}^{N} ((\underbrace{w_0 + w_1 x_{i1} + ... + w_D x_{iD}}_{\hat{y}_i}) - y_i)^2$$

Gradient descent update: $w_i^{next} = w_i^{old} - \alpha * \frac{\partial I(w)}{\partial w_i}$ Updates:

$$w_0 := w_0 - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)$$

$$w_1 := w_1 - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{i1}$$

$$w_D := w_D - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{iD}$$

repeat until convergence {

$$w_j = w_j - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{ij}$$
 for $j := 0...D$ }

repeat until convergence {

$$w_j = w_j - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{ij}$$
 for $j := 0...D$ }

Matrix notation: $w := w - \alpha \nabla I(w)$

repeat until convergence {

$$w_j = w_j - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{ij}$$
 for $j := 0...D$ }

Matrix notation: $w := w - \alpha \nabla I(w)$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1D} \\ 1 & x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix} w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}$$

repeat until convergence {

$$w_j = w_j - \alpha * \frac{2}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) * x_{ij}$$
 for $j := 0...D$ }

Matrix notation: $w := w - \alpha \nabla I(w)$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1D} \\ 1 & x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix} w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}$$

The matrix notation of the Gradient Descent rule is:

$$w := w - \frac{2\alpha}{N} X^{T} (Xw - y)$$

Data and Current Line 20 15 h 10 20 5

(b) After one iteration

(a) After 2 iterations

(a) After 2 iterations

References

- https://towardsdatascience.com/
 multiple-linear-regression-with-math-and-code-c1052f3c7446
- https://developers.google.com/machine-learning/crash-course/ reducing-loss/gradient-descent
- 13 https: //www.coursera.org/learn/machine-learning/resources/QQx81

Thanks Google for the pictures!