Aufgabenblatt 3

Operations Research - Wirtschaftsinformatik - Online

Sommersemester 2023

Prof. Dr. Tim Downie

Naiver Algorithmus und LP in Normalform

Aufgabe 1 ★ LP Optimierung: Naiver Algorithmus

maximiere

Gegeben ist die folgende LP.

 $Z(x_1, x_2) = 2x_1 + 3x_2$

unter den Nebenbedingungen

2.6.2. ×2=0

 $x_1 + 2x_2 \leqslant 6$

 $2x_1 + x_2 \leq 8$

 $x_1 \geqslant 0$

 $x_2 \geqslant 0$

R1

R2

R3

R4

Verwenden Sie den naiven Algorithmus durch die folgenden Schritte. Am jeden Schritt ergänzen Sie die Tabelle unten.

- (a) Für jede Kombination zweier Nebenbedingungen R1, ..., R4. Bestimmen Sie den Schnittpunkt K1 X1+2X5= der entsprechenden Gleichungen.
- (b) Bestimmen, ob der Eckpunkt zulässig ist.
- (c) Rechnen Sie den Zielfunktionswert für die zulässigen Eckpunkte.

(d) Bestimmen Sie die optimale Lösung.

	Bedingungen	Schnittpunkt (x_1, x_2)	Zulässig?	Z(x,y)
Zulaissig?	R3, R4	(00)	12	0
Chan:	R2, R4	(4,0)	ig	8
Xn-1K2-Verk	R1, R4	(6,0)	nin	_
iraller R-circette	4 R2, R3	(0,8)	Will	8
0 1 01	S R1, R3	(0,3)	ga	9
BSP. RA, RG	R1, R2	(31, 4.)	10	10=
V. 1. R. = 6		9/6	A	3

1. 16=0 Auigabe 2 * LP in Normalform Die ophiunde Lissury ist

(a) Zur LP in Aufgabe 1 fügen Sie die Schlupfvariablen y_1 und y_2 hinzu um die LP in Normalform zu stellen.

(b) Für jede Punkt aus der obigen Tabelle (sowohl zulässig als auch unzulässig) bestimmen Sie y_1 und y_2 und ergänzen Sie die folgende Tabelle. Stellen Sie sicher, dass genau zwei Werte von x_1, x_2, y_1 und y_1 gleich Null sind, und die nicht zulässige Punkte haben negativen Schlupf.

X1 1. R1 = 6

12) 8 dater ist Schrift puelets 6,0 niet zu lessig

41 = 6-X1+2X2 42=8-2×1+X2

4=6-4+0=2 4=8-2-4+0=0	
y=6-0+16=-10 y=8-0+8=0	

Bedingungen	Eckpunkt	Schlupf	Zulässig?
	(x_1, x_2)	y_1 , y_2	/
R3, R4	(0,0)	618	X
R2, R4	(4,0)	20	X
R1, R4	(6,0)	04	-
R2, R3	(0,8)	-10,0	-
R1, R3	(0,5)	0.5	X
R1, R2	3/14)	燈煙	21
	3/3	03	3

y==0, y==0 São des option listos

Aufgabe 3 Anwendungsbeispiel: Damen- und Herrenstiefel

Eine Stiefelfabrik herstellt Damen- und Herrenstiefel. Für die nächste Produktionsperiode sind 10 000 Arbeitsstunden der Mitarbeiter und 2000 Arbeitsstunden der Maschinen geplant. Dabei braucht ein Damenstiefel 25 Std Verarbeitung und 6 Std Maschinenarbeit, und ein Herrenstiefel 18 Std Verarbeitung und 3 Std Maschinenlaufzeit. Zur Verfügung steht insgesamt 200 000 cm² Leder. Ein Damenstiefel benötigt 400 cm² und ein Herrenstiefel 450 cm² Leder. Der Gewinn pro Damenstiefel betragt € 25 und pro Herrenstiefel € 20.

(a) Fassen Sie die Produktionsdaten in der Tabelle zusammen.

- (b) Geben Sie das LP in Grundform an.
- (c) Geben Sie das LP in Normalform an.

Es ist nicht nötig die optimale Lösung zu finden. Diese werden Sie später im Kurs lösen.

	X1	12	
	Damenstiefel	Herrenstiefel	Verfugbarkeit
Produktionszeit (Std)	25	A8	10000
Maschinenelaufzeit (Std)	.6	3	2000
Lederbedarf (cm ³)	400	400	200 000
Gewinn (€)	25	720	

and lose mex 2 (x, x2) = 25x, + 20x2 RA $25X_{1} + 18X_{2} \leq 10.000$ | 4 code 4 hours 26.4

RZ $6X_{1} + 3X_{2} \leq 2.000$ | 4 code 4 hours 26.4

RZ $6X_{1} + 3X_{2} \leq 2.000$ | 4 code 4 hours 26.4

RZ $6X_{1} + 3X_{2} \leq 2.000$ | 4 code 4 hours 26.4 R3 400 X1 + 450 X2 & 200 000 boles bedon is con X1, K2 = 0

Nosma / Josm max 2 (x1, x2) = 25x1+20x2 25XA+18X2+81= 10.600 ine Stol RA 6 XA + 3x2 + 42 = 2000 the strack? R 2 GOO XA + GSOX2 +43 = 200.000 lades Sal. R3 in cul X1, X2, X3, Y1, Y2, Y3 = 0 Unlessied zwischer Grundform und Vormalform Normalform Grand form lineare Eleicherg lineare Ungleicher enthald Scalup/Varsiable yn