

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071. Período Letivo: 2024/2 Turmas: 1, 2, 3 e 4

Professor: Henrique Marra Taira Menegaz e-mail: henriquemenegaz@unb.br

PLANO DE ENSINO

1 Pré-Requisitos

Introdução à Álgebra Linear.

2 EMENTA

Sistemas de Numeração e Códigos Portas Lógicas e Álgebra Booleana Circuitos Lógicos Combinacionais VHDL Aritmética Digital: Operações e Circuitos Lógicos MSI Princípios de Sistemas Sequenciais

3 Objetivos

Os objetivos deste curso são:

- 1. Fazer com que os alunos consigam programar projetar circuitos eletrônicos simples em protoboard.
- 2. Fazer com que os alunos consigam programar em VHDL i) portas lógicas, ii) circuitos lógicos combinacionais, iii) circuitos lógicos aritméticos, e iv) sistemas sequenciais básicos.
- 3. Fazer com que os alunos consigam simular os elementos descritos no item anterior nos programas apropriados.

4 METODOLOGIA E PRESENÇA

O conteúdo deste curso será transmitido aos alunos mediante aulas presenciais e aulas gravadas em vídeo (formato assíncrono), disponibilizadas, preferencialmente, no sítio www.aprender3.unb.br (se este sítio estiver indisponível, outro poderá ser utilizado) na seguinte sala virtual:

Nome da sala: FGA0071 - PRÁTICA DE ELETRÔNICA DIGITAL 1 - Turma 01 | 04 - 2024/1

Nome abreviado: PED_Menegaz_2024.1

Senhas:

-para a turma 1: Ped1_turma1 -para a turma 3: Ped1_turma3 -para a turma 14: Ped1_turma14

-para a turma 2: **Ped1_turma2** -para a turma 4: **Ped1_turma4**

Além disso, o professor ficará disponível para responder questões feitas por e-mail ou pelo fórum de discussão da disciplina.

5 AVALIAÇÕES E CRITÉRIOS DE APROVAÇÃO

Compõem os objetos de avaliação desta disciplina experimentos e testes.

Os experimentos são realizados em grupos de <u>até três integrantes.</u> Para cada experimento, haverá um roteiro explicativo e o grupo obterá nota máxima caso a atividade requisitada esteja completamente de acordo com o pedido no roteiro e, em caso contrário, a nota do grupo será zero.

Os testes são individuais e virtuais. Devem ser realizados pelos alunos por meio da sala de aula do Aprender 3 designada na Seção 4.

A MENÇÃO FINAL (MF) é calculada em função da PONTUAÇÃO FINAL (PF) de acordo com a Tabela 1. Serão **aprovados apenas** os alunos que obtiverem menções finais MM, MS, ou SS.

Tabela 1. Relação entre menções finais e menções numéricas finais

PF	0 ≤ PF < 1	1 ≤ PF < 3	3 ≤ PF < 5	5 ≤ PF< 7	7 ≤ PF < 9	9 ≤ PF < 10
MF	SR	II	MI	MM	MS	SS

A PF, por sua vez, é calculada pela seguinte equação:

$$PF = 0.4 \times Nprot + 0.4 \times Nvhdl + 0.2 \times NT$$

em que NT corresponde à nota dos testes e é calculada pela média aritmética das notas de cada teste. *Nprot* e *Nvhdl* correspondem, respectivamente, às notas dos experimentos de protoboard e de VHDL e são calculadas pela média harmônica seguindo, respectivamente, os pesos das Tabelas 2 e 3.

Tabela 2. Pesos dos experimentos de protoboard.

Experimento	peso
exp-prot 1	1
exp-prot 2	1
exp-prot 3	2
exp-prot 4	2
exp-prot 5	2
TOTAL	8

Tabela 3. Pesos dos experimentos de VHDL.

Experimento	peso	
exp-VHDL 1	1	
exp-VHDL 2	2	
exp-VHDL 3	3	
exp-VHDL 4	3	
exp-VHDL 5	3	
TOTAL	12	

6 BIBLIOGRAFIA BÁSICA

- Roberto d'Amore, VHDL: Descrição e Síntese de Circuitos Digitais, 2ª edição, 2012. ISBN: 978-85-216-2054-9.
- Volnei A. Pedroni, Eletrônica Digital Moderna e VHDL, 1ª edição, Campus Elsevier, 2010. ISBN: 978-8535234657.

7 BIBLIOGRAFIA COMPLEMENTAR

- Thomas L. Floyd, Sistemas Digitais: Fundamentos e Aplicações, 9ª edição, Bookman, 2007. ISBN: 978-85-7780-107-7.
- Ronald J. Tocci, Neal S. Widmer, Greagory L. Moss, Sistemas Digitais: Princípios e Aplicações, 12ª edição, Pearson, 2019. ISBN: 978-8543025018.

- James W. Bignell, Robert Donovan, Eletrônica Digital, 5ª edição, Cengage Learning, 2009. ISBN: 978-8522107452.
- William Kleitz, Digital Electronics: A Practical Approach with VHDL, 9th edition, Pearson, 2014. ISBN: 978-1292025612.
- M. Morris Mano, Michael D. Ciletti, Digital Design With an Introduction to the Verilog HDL, 6th edition, Pearson, 2017. ISBN: 978-0134549897.