Fracture mechanics

Seminar 2

Luc St-Pierre May 3, 2023

Learning outcomes

After this week, you should be able to:

Use the energy release rate to predict fracture.

Evaluate if crack growth will be stable or unstable.

Calculate the amount of stable crack growth using an R-curve.

Energy release rate

Griffith (1920) studied fracture using an energy approach:

Change in work done by external forces $\delta W = \delta U + G \delta A \qquad \text{Change in crack area (m²)}$ Change in strain energy $\delta W = \delta U + G \delta A \qquad \text{Change in crack area (m²)}$

Energy release rate

Griffith (1920) studied fracture using an energy approach:

Change in work done by external forces

$$\delta W = \delta U + G \delta A$$
 Change in crack area (m²)

Change in strain energy Energy release rate (J/m²)

Rearranging gives:

$$G = \frac{\delta W - \delta U}{\delta A}$$

And in differential form:

$$G = -\frac{\partial \Pi}{\partial A} = -\frac{\partial}{\partial A} (U - W)$$

Introducing the compliance

Constant applied load *P*

The compliance is:

$$C = \frac{\Delta}{P}$$

If *P* is constant, this becomes:

$$d\Delta = PdC$$

Energy release rate – Load control

We found: $d\Delta = PdC$

$$-1 u\Delta$$

The energy release rate is:

$$G = \frac{\delta W - \delta U}{\delta A}$$
$$= \frac{1}{Bda} \left(\frac{1}{2} P d\Delta \right)$$
$$= \frac{P^2}{2B} \frac{dC}{da}$$

Energy release rate

The energy release rate is:

$$G = -\frac{\partial}{\partial A}(U - W) = \frac{P^2}{2B}\frac{dC}{da}$$
Practical and easier to use

Most general definition, suitable to all cases.

Fracture will occur when:

$$G = G_c$$

Where G_c is a material property called toughness or critical energy release rate, with units of J/m².

Relation between K and G

For an isotropic linear elastic material, the energy release rate G for a mode I crack is related to the stress intensity factor K_I according to:

$$K_I^2 = \frac{E}{1 - v^2} G$$

$$K_I^2 = EG$$

For plane strain

For plane stress

Resistance curve

For tough materials, the fracture toughness increases with crack growth.

A plot of K_{Ic} versus Δa is called a resistance curve (R-curve).

A R-curve is a material property.

Stable or unstable crack growth

$$G = \frac{K_I^2}{E} = \frac{\sigma_{\infty}^2 \pi a}{E} = \frac{\sigma_{\infty}^2 \pi (a_0 + \Delta a)}{E}$$

Stable or unstable crack growth

Crack growth becomes unstable

$$G = \frac{K_I^2}{E} = \frac{\sigma_\infty^2 \pi a}{E} = \frac{\sigma_\infty^2 \pi (a_0 + \Delta a)}{E}$$

Stable or unstable crack growth

Crack growth will be stable when:

$$G = R$$
 and $\frac{dG}{da} \le \frac{dR}{da}$

Otherwise, crack growth will be unstable when:

$$G \ge R$$
 and $\frac{dG}{da} > \frac{dR}{da}$

Note: the denominator can be da or $d\Delta a$ since: $da = d(a_0 + \Delta a) = d\Delta a$

In summary

We covered how to:

- Find the energy release rate and use it to predict fracture,
- Evaluate if crack growth will be stable or unstable,
- Calculate the amount of stable crack growth using a R-curve.

Next week, we will study fracture under mixed-mode loading.

