Санкт-Петербургский государственный университет Кафедра информационно-аналитических систем Группа 20.Б11-мм

Коробицын Игорь Андреевич

Обзор алгоритма FASTDC

Отчёт по учебной практике в форме «Эксперимент»

Научный руководитель: Ассистент кафедры информационно-аналитических систем Γ .А. Чернышев

> Консультант: М.А. Струтовский

Оглавление

.•	Пос	тановка задачи								
	Обзор									
	2.1.	Основные понятия								
	2.2.	Примеры								
	2.3.	Проблемы с DC								
•	Алгоритм									
	3.1.	Правила вывода DC								
	3.2.	Проблема выводимости								
	3.3.	getClosure()								
	3.4.	Алгоритм FASTDC								
	3.5.	Mетрика Interestingness								
	3.6.	Модификации алгоритма FASTDC								
	Эксперименты									
	4.1.	Условия эксперимента								
	4.2.	Обозначения								
	4.3.	Эффективность распараллеливания построения Evi								
	4.4.	Эффективность динамического порядка предикатов и раз-								
		деления пространства DC								
	4.5.	Тридцатипроцентный порог для объединимых столбцов								
	4.6.	Оптимальное значение a в формуле метрики $Inter()$								
	4.7.	A-FASTDC								
	4.8.	C-FASTDC								
	4.9.	Оценка времени работы								
	4.10.	Итоги								
3a	клю	чение								
Ът	тисон	к литературы								

Введение

Ограничения целостности (Integrity Constraints, IC) являются полезным инструментом для поддержки выполнения определённых правил на массиве данных. Различные языки IC формализуют требования к данным, которые должны быть в массиве данных, что упрощает задачу поддержки качества данных. Однако, существующие языки IC не способны выразить некоторые требования, которые встречаются довольно часто.

С другой стороны, мы не можем использовать слишком общие языки, вроде логики первого порядка: для выявление требований необходима либо экспертиза, которая требует больших затрат, либо автоматизированный поиск, который почти невозможно оптимизировать если язык слишком универсален. Это связано с тем, что количество допустимых комбинаций символов, которые могут считаться уникальными IC, оказывается астрономическим, что делает автоматическую проверку их всех или значительной их части почти невозможной задачей. Также, из-за недостаточно ограниченного синтаксиса, сложно вывести аксиомы, позволяющие как можно раньше отсеивать бесперспективные IC.

Xu Chu и др. [5] предложили алгоритм для поиска DC — нового языка ограничений целостности, который позволяет как выразить требования уже существующих языков, так и те, которые через них выразить невозможно, а именно язык Denial Donstraints (DC).

Целью данной работы является обзор DC и алгоритма их поиска, с целью дальнейшей реализации данного алгоритма.

1. Постановка задачи

Целью данной работы является изучение алгоритма поиска DC, с целью дальнейшей его реализации. Для достижения данной цели были поставлены следующие задачи:

- 1. Рассмотреть язык DC и аксиомы, которые к нему применимы;
- 2. Провести обзор алгоритма FASTDC и его принципа работы;
- 3. Разобрать оптимизации алгоритма, предложенные авторами статьи;
- 4. Привести и проанализировать результаты экспериментов авторов статьи;
- 5. Сделать выводы об эффективности предложенных оптимизаций алгоритма.

ϕ	=	\neq	>	<	2	\leq
$\overline{\phi}$	<i>≠</i>	=	<	>	<	>
$Imp(\phi)$	$=,\geq,\leq$	#	$>, \geq, \neq$	$<, \leq, \neq$	2	<u> </u>

Рис. 1: Операторы $\bar{\phi}$ и $Imp(\phi)$ для каждого оператора [5]

2. Обзор

2.1. Основные понятия

Перед тем, как перейти непосредственно к алгоритму, необходимо упомянуть основные понятия. Пусть у нас есть база данных R. Тогда:

1. Предикат: Выражение P вида $v_1\phi v_2$ или $v_1\phi c$, где v_1,v_2 имеют вид $t_x.A$, где $t_x\in R,A$ — столбец, c — это константа, а оператор $\phi\in\{=,>,<,\geq,\leq,\neq\}.$

Т.е. v_1 и v_2 — это ячейки в некоторой строке t_x и некотором столбце A, и $npe \partial u \kappa a m$ — это сравнение либо двух ячеек, либо ячейки и константы;

2. Denial constraint (DC): Выражение φ вида $\forall t_{\alpha}, t_{\beta}, t_{\gamma}... \in R, \neg (P_1 \land ... \land P_m);$

Т.е. для любого множества строк (авторы статьи сошлись на предикатах с не более чем двумя строками) хотя бы один из $npe-du\kappa amos\ P_1,...P_m$ не выполняется. Чаще всего записывается как $\neg (P_1 \land ... \land P_m)$.

Если в некотором DC все предикаты имеют вид $v_1\phi v_2$, то такой DC называется variable (VDC). Иначе — константным (CDC).

Примеры DC можно найти в следующем разделе;

- 3. Инверсия: Инверсия предиката P $v_1\phi_1v_2$ это предикат \bar{P} $v_1\phi_2v_2$, где $\phi_2=\bar{\phi}_1$ (см. Рис. 1). Если P выполняется, то \bar{P} не выполняется;
- 4. Подразумеваемый (implied) предикат: предикат $Q \ v_1 \phi_2 v_2$ подразумеваемся предикатом $P \ v_1 \phi_1 v_2$, если $\phi_2 \in Imp(\phi_1)$ (см. Рис. 1);

5. Множество подразумеваемых (implied) предикатов предиката P Imp(P), соответственно, это множество $\{Q: Q = v_1\phi_2v_2\}$, где $\phi_2 \in Imp(\phi_1)$. $\forall Q \in Imp(P)$ если P выполняется, то Q выполняется тоже.

Утверждение "DC φ выполняется на массиве данных I" будем записывать так: $I \models \varphi$. Аналогично, для множества DC Σ запись $I \models \Sigma$ означает, что $\forall \varphi \in \Sigma$ $I \models \varphi$.

Теперь можно определить *тривиальные*, *симметричные* и *минимальные* DC, ровно как и *замыкание* множества npedukamoe т.к. эти понятия необходимы для алгоритма:

- 1. Тривиальные DC: $DC \varphi$ называется тривиальным, если оно всегда выполняется: $\forall I, I \models \varphi$. Далее мы будем рассматривать только нетривиальные DC;
- 2. Симметричные DC: DC φ_1 и φ_2 называются симметричными, если φ_2 получается из φ_1 заменой t_{α} на t_{β} и наоборот. Если φ_1 и φ_2 симметричны, то $\varphi_1 \models \varphi_2$ и $\varphi_2 \models \varphi_1$ (здесь это означает, что $I \models \varphi_1 \Rightarrow I \models \varphi_2$ и наоборот);
- 3. Минимальные DC: $DC \varphi_1$ называется минимальным, если не существует φ_2 такого, что $I \models \varphi_1$ и $I \models \varphi_2$, и при этом $\varphi_2.Pres \subset \varphi_1.Pres$, где $\varphi.Pres$ это множество предикатов в $DC \varphi$;
- 4. Замыкание (Closure): Замыкание $Clo_{\Sigma}(\mathbf{W})$ множества предикатов \mathbf{W} под множеством DC Σ это множество предикатов P таких, что $\forall P \in Clo_{\Sigma}(\mathbf{W}), \Sigma \models \neg(\mathbf{W} \land \bar{P}), \text{ T.e. } \neg(\mathbf{W} \land \bar{P})$ подразумевается множеством Σ (подробнее в разделе 3.1. "Правила вывода DC").

2.2. Примеры

Пусть у нас есть следующая таблица (см. Рис. 2). Допустим, у нас есть 5 ограничений:

TID	FN	LN	GD	AC	PH	CT	ST	ZIP	MS	СН	SAL	TR	STX	MTX	CTX
t_1	Mark	Ballin	M	304	232-7667	Anthony	WV	25813	S	Y	5000	3	2000	0	2000
t_2	Chunho	Black	M	719	154-4816	Denver	CO	80290	M	N	60000	4.63	0	0	0
t_3	Annja	Rebizant	F	636	604-2692	Cyrene	MO	64739	M	N	40000	6	0	4200	0
t_4	Annie	Puerta	F	501	378-7304	West Crossett	AR	72045	M	N	85000	7.22	0	40	0
t_5	Anthony	Landram	M	319	150-3642	Gifford	IA	52404	S	Y	15000	2.48	40	0	40
t_6	Mark	Murro	M	970	190-3324	Denver	CO	80251	S	Y	60000	4.63	0	0	0
t_7	Ruby	Billinghurst	F	501	154-4816	Kremlin	AR	72045	M	Y	70000	7	0	35	1000
t_8	Marcelino	Nuth	F	304	540-4707	Kyle	WV	25813	M	N	10000	4	0	0	0

Рис. 2: Данные о налогообложении [5]

- 1. area code (AC) и номер телефона (PH) однозначно определают человека;
- 2. два человека с одним и тем же ZIP-кодом (американская система почтовых индексов) будут жить в одном и том же umame (ST);
- 3. если кто-то живёт в городе (СТ) Денвер, то он живёт в umame Колорадо;
- 4. если два человека живут в одном и том же *штате*, то у того, у кого *зарплата* (SAL) меньше, и *налоговая ставка* (TR) будет меньше;
- 5. *налоговая льгота для неженатых и бездетных* (STX) не может быть больше, чем зарплата.

Первые три ограничения могут быть выражены уже существующими языками ограничений целостности: κ лючом (Key), ϕ ункциональными зависимости (FD), и условными ϕ ункциональными зависимостями (CFD) соответственно:

- 1. $Key\{AC, PH\}$
- 2. $ZIP \rightarrow ST$
- 3. $[CT = `Denver'] \rightarrow [ST = `CO']$

Однако с четвёртым и пятым ограничениями возникают проблемы. Впрочем, их можно выразить с помощью языка DC. Например, так будет выглядит запись четвёртого ограничения:

$$\forall t_{\alpha}, t_{\beta} \in R, \ \neg(t_{\alpha}.ST = t_{\beta}.ST \land t_{\alpha}.SAL < t_{\beta}.SAL \land t_{\alpha}.TR > t_{\beta}.TR)$$

Этот DC означает, что какие бы строчки t_{α} и t_{β} мы ни взяли, npe- дикаты $t_{\alpha}.ST = t_{\beta}.ST, \ t_{\alpha}.SAL < t_{\beta}.SAL$ и $t_{\alpha}.TR > t_{\beta}.TR$ не будут выполняться для них одновременно.

А так выглядит DC для пятого ограничения:

$$\forall t_{\alpha} \in R, \ \neg(t_{\alpha}.SAL < t_{\alpha}.STX)$$

Также, DC могут использоваться для того, чтобы выразить другие языки ограничений целостности, например, язык функциональных зависимостей (FD). Так будет выглядеть второе ограничение, записанное языком DC:

$$\forall t_{\alpha}, t_{\beta} \in R, \ \neg(t_{\alpha}.ZIP = t_{\beta}.ZIP \land t_{\alpha}.ST \neq t_{\beta}.ST)$$

2.3. Проблемы с DC

Необходимо решить ряд проблем с языком DC:

- 1. **Аксиомы**: работа с функциональными зависимостями (FD) возможна благодаря наличию правил вывода, известных как аксиомы Армстронга [4]. Было бы удобно иметь что-то похожее для DC. Аналог аксиом Армстронга для DC, предложенный авторами, будет приведён в начале следующей главы;
- 2. Количество возможных DC: каждый DC может включать или не включать любой из допустимых $npe \partial u \kappa amo a$. Таким образом, если P множество всех $npe \partial u \kappa amo a$, то общее количество допустимых DC будет $2^{|P|}$. Мощность же множества всех $npe \partial u \kappa amo a$, если допустить, что каждый DC работает с двумя строками, будет 6*2m*(2m-1), где m это количество столбцов (каждый $npe \partial u \kappa am$ это одна из 6 операций $\{=,\neq,<,>,\leq,\geq\}$, и две уникальные ячейки). Из-за этого требуется создать алгоритм, который будет как можно раньше отсекать те DC, которые рассматривать не обязательно;

3. Верификация: алгоритмы поиска ограничений целостности часто страдают от проблемы overfitting'а [3], т.е. те закономерности, которые работают на одном массиве данных, не обязательно выполняются в общем случае. Эта проблема может быть решена консультациями с экспертами, но это требует времени и денег. Авторы статьи предлагают параметр interestingness, чтобы отранжировать обнаруженные DC, и таким образом отсеять те из них, которые слишком громоздкие или слабо подтверждаются конкретными строками.

3. Алгоритм

$3.1.\$ Правила вывода DC

Как понятно из раздела 2 ("Обзор"), язык DC достаточно выразителен (он не только позволяет выражать другие языки *ограничений целостности*, но и добавляет новую семантику), но при этом имеет формализованный и простой синтакс. Это позволяет составить систему правил вывода DC, которые напоминают таковую для функциональных зависимостей [1]:

1. **Тривиальность**: $\forall P_i, P_j : \bar{P}_i \in Imp(P_j), \neg (P_i \land P_j)$ является mpu- виальным DC.

Т.е если в DC есть два $npe \partial u \kappa ama$, которые не могут быть верны одновременно $(\bar{P}_i \in Imp(P_j))$, то DC mpuвиален, т.е. всегда выполняется;

2. **Аугментация**: Если $\neg (P_1 \wedge ... \wedge P_n)$ выполняется, то $\forall Q, \neg (P_1 \wedge ... \wedge P_m \wedge Q)$ выполняется тоже.

Другими словами, если DC уже выполняется, то, добавив к нему любые другие $npe \partial u \kappa am u$, мы получим DC, который тоже выполняется;

3. **Транзитивность**: Если $\neg (P_1 \wedge ... \wedge P_n \wedge Q_1)$ и $\neg (R_1 \wedge ... \wedge R_m \wedge Q_2)$ выполняются, и при этом $Q_2 \in Imp(\bar{Q_1})$, то $\neg (P_1 \wedge ... \wedge P_n \wedge R_1 \wedge ... \wedge R_m)$ тоже выполняется.

Или, если есть два DC которые выполняются, и два npedukama, которые не могут быть ложными одновременно $(Q_2 \in Imp(\bar{Q}_1))$ по одному в каждом DC, то, если объединить эти два DC и убрать эти два npedukama, мы получим DC, который выполняется.

Обозначим эту систему правил вывода как \mathcal{I} . \mathcal{I} позволяет определить, подразумевает ли множество DC Σ некий DC φ , т.е. $\Sigma \models \varphi$.

Задача определения для неких Σ и φ того, верно ли что $\Sigma \models \varphi$, называется **проблемой выводимости** (**Implication Problem**), и установлено, что она принадлежит классу сложности соNP-Complete [2]. По этой причине, авторы статьи остановились на неполном алгоритме.

3.2. Проблема выводимости

Алгоритм 1 [5] проверяет, верно ли, что $\Sigma \models \varphi$. В нём упоминается функция getClosure(), которая берёт на вход множество $npedukamos \mathbf{W}$ и множество $DC \Sigma$, и возвращает замыкание $Clo_{\Sigma}(\mathbf{W})$. Мы вернёмся к ней в следующем разделе.

Algorithm 1 Проверка на выводимость

Ввод: Множество $DC \Sigma$ и $DC \varphi$.

Вывод: Булевское значение: DC Σ подразумевает φ или нет.

```
1: if \varphi — тривиальный DC then
```

2: **return** true

3: end if

4: $\Gamma \leftarrow \Sigma$

5: for $\phi \in \Sigma$ do

6: $\Gamma \leftarrow \Sigma + DC$, который симметричен ϕ

7: end for

8: $Clo_{\Gamma}(\varphi.Pres) \leftarrow getClosure(\varphi.Pres, \Gamma)$

9: **if** $\exists \phi \in \Gamma : \phi.Pres \subseteq Clo_{\Gamma}(\varphi.Pres)$ **then**

10: **return** true

11: end if

12: **return** false

3.3. getClosure()

Алгоритм 2 [5] вычисляет частичное *замыкание* $Clo_{\Sigma}(\mathbf{W})$, получив на вход множество $npe \partial u \kappa amo \kappa \mathbf{W}$ и множество $DC \Sigma$.

Algorithm 2 getClosure()

Ввод: множество npedukamoe **W** и множество DC Σ .

Вывод: $Clo_{\Sigma}(\mathbf{W})$.

```
1: 1. Инициализируем Clo_{\Sigma}(\mathbf{W}):
 2: for P \in \mathbf{W} do
         Clo_{\Sigma}(\mathbf{W}) \leftarrow Clo_{\Sigma}(\mathbf{W}) + Imp(P)
         Clo_{\Sigma}(\mathbf{W}) \leftarrow Clo_{\Sigma}(\mathbf{W}) + Imp(Clo_{\Sigma}(\mathbf{W}))
 4:
 5: end for
 6: 2. Для каждого npedukama\ P составим список L_P из DC,
    содержащих P. Также, для каждого DC \varphi составим список L_{\varphi} из
    его npe \partial u \kappa amoe, которых ещё нет в Clo_{\Sigma}(\mathbf{W}). Также, создадим
    очередь J из DC, все npe \partial u \kappa am \omega которых содержатся в
    замыкании, кроме одного:
 7: for \varphi \in \Sigma do
         for P \in \varphi.Pres do
 8:
              L_P \leftarrow L_P + \varphi
 9:
         end for
10:
11: end for
12: for all P \notin Clo_{\Sigma}(\mathbf{W}) do
         for \varphi \in L_P do
13:
              L_{\varphi} \leftarrow L_{\varphi} + P
14:
         end for
15:
16: end for
17: for \varphi \in \Sigma do
         if |L_{\varphi}| = 1 then
18:
              J \leftarrow J + \varphi
19:
         end if
20:
21: end for
22: 3. Теперь, используя очередь J, дополним Clo_{\Sigma}(\mathbf{W}):
23: while |J| > 1 do
         \varphi \leftarrow J.pop()
24:
        P \leftarrow L_{\varphi}.pop()
25:
         for Q \in Imp(\bar{P}) do
26:
              for \varphi \in L_O do
27:
                   L_{\varphi} \leftarrow L_{\varphi} - Q
28:
                   if |L_{\varphi}| = 1 then
29:
```

```
30: J \leftarrow J + \varphi
31: end if
32: end for
33: end for
34: Clo_{\Sigma}(\mathbf{W}) \leftarrow Clo_{\Sigma}(\mathbf{W}) + Imp(\bar{P})
35: Clo_{\Sigma}(\mathbf{W}) \leftarrow Clo_{\Sigma}(\mathbf{W}) + Imp(Clo_{\Sigma}(\mathbf{W}))
36: end while
return Clo_{\Sigma}(\mathbf{W})
```

Пройдёмся по стадиям алгоритма:

- 1. $\forall P \in \mathbf{W}, Imp(P) \subset Clo_{\Sigma}(\mathbf{W})$ согласно *тривиальности*. То же самое верно и для $P \in Clo_{\Sigma}(\mathbf{W})$ ввиду транзитивности Imp(P);
- 2. Эти списки понадобятся нам на следующей стадии;
- 3. Для очередного $\varphi \in J$ берём тот его npedukam, которого нет в замыкании. Добавив к \mathbf{W} тот $P \in \varphi.Pres$, которого ещё нет в замыкании, мы получим DC, содержащий все предикаты из φ , а т.к. $\Sigma \models \varphi$, то, по aysmenmauuu, $\bar{P} \in Clo_{\Sigma}(\mathbf{W})$.

Теперь можно проверить, не появились ли у нас новые DC φ , у которых все предикаты кроме одного в замыкании. Для этого пройдёмся по DC, содержащим $npe \partial u \kappa am u$, которые $\in Imp(\bar{P})$. Если какой-то DC нас устраивает, мы добавляем его в J.

Наконец, т.к. $\bar{P} \in Clo_{\Sigma}(\mathbf{W})$, повторяем для него действия из стадии 1.

3.4. Алгоритм FASTDC

Алгоритм 3 [5] занимается непосредственно поиском минимальных DC.

Algorithm 3 FASTDC

Ввод: Таблица I и схема этой таблицы R.

Вывод: Множество всех минимальных $DC \Sigma$.

```
1: \mathbf{P} \leftarrow buildPredicateSpace(I,R)

2: Evi_I \leftarrow buildEvidenceSet(I,\mathbf{P})

3: \mathbf{MC} \leftarrow searchMinimalCovers(Evi_I,Evi_I,\emptyset,>_{init},\emptyset)

4: \mathbf{for} \ \mathbf{X} \in \mathbf{MC} \ \mathbf{do}

5: \Sigma \leftarrow \Sigma + \neg(\bar{\mathbf{X}})

6: \mathbf{end} \ \mathbf{for}

7: \mathbf{for} \ \varphi \in \Sigma \ \mathbf{do}

8: \mathbf{if} \ (\Sigma - \varphi) \models \varphi \ \mathbf{then}

9: \Sigma \leftarrow \Sigma - \varphi

10: \mathbf{end} \ \mathbf{if}

11: \mathbf{end} \ \mathbf{for}

12: \mathbf{return} \ \Sigma
```

Функция buildPredicateSpace(), принцип работы которой подробнее описан в подразделе 3.4.1), возвращает множество возможных предикатов, buildEvidenceSet() — множество, обозначаемое как Evi_I , состоящее из множеств верных предикатов для каждой пары строк, которые обозначаются как $SAT(\langle t_x, t_y \rangle)$ (подробнее в подразделе 3.4.1), а searchMinimalCovers() находит минимальные покрытия для Evi_I : такие множества $\mathbf{X} \subseteq \mathbf{P}$, что $\forall E \in Evi_I, \mathbf{X} \cap E \neq \varnothing$ и $\nexists \mathbf{Y} \subset \mathbf{X}$ такого, что $\forall E \in Evi_I, \mathbf{Y} \cap E \neq \varnothing$ (подробнее в подразделе 3.4.3).

Теорема: $\neg(\overline{X_1} \wedge ... \wedge \overline{X_n})$ — валидный минимальный DC тогда и только тогда когда $\mathbf{X} = \{X_1, ..., X_n\}$ — минимальное покрытие для Evi_I [5].

Таким образом, получив *минимальные покрытия*, мы также получаем *минимальные DC*.

$\textbf{3.4.1.} \ buildPredicateSpace()$

Для каждого столбца между двумя строками на нём создаются предикаты с операциями $\{=, \neq\}$, и, если тип данных в столбце числовой, то ещё и с операциями $\{>, <, \geq, \leq\}$.

Столбцы считаются *объединимыми*, если значения в них одного типа, а также некоторые из значений одного столбца также присутствуют

в другом (на основании данных экспериментов [5], приведённых в разделе 4.5, авторы статьи пришли к выводу, что необходимо требовать как минимум тридцатипроцентного совпадения). Для них создаются предикаты с операциями $\{=,\neq\}$.

Сравнимыми столбцы считаются, если они оба числового типа, и их среднее арифметическое отличается не более чем на порядок. Для них создаются предикаты с операциями $\{>,<,\geq,\geq\}$.

Для поиска *объединимых* и *сравнимых* столбцов могут быть использованы алгоритмы профайлинга [6].

3.4.2. buildEvidenceSet()

 Evi_I вычисляется ровно так, как написано в определении: для каждой возможной пары строк перебираются предикаты, чтобы найти те, которые на ней выполняются. Сложость, таким образом, $O(|\mathbf{P}| \times |I|^2)$, однако для каждой пары строк проверку можно проводить независимо, что позволяет распараллелить алгоритм.

Авторы статьи предлагают разделить массив данных на B блоков, а процесс поиска Evi_I разбить на подзадачи, каждая из которых заключается в сравнении строк двух из этих блоков. Общее число подзадач, таким образом, $\frac{B^2}{2}$, и если имеется M машин, то необходимо, чтобы выполнялось уравнение $\frac{B^2}{2} = w \times M$, где w — число задач для каждой из машин. Таким образом, $B = \sqrt{2wM}$. Помимо этого, т.к. в любой момент времени в памяти должно находиться два блока, необходимо убедиться, что два блока помещаются в оперативную память каждой машины.

3.4.3. searchMinimalCovers()

Алгоритм 4 [5] проводит поиск *минимальных покрытий* поиском в глубину. Псевдокод приведён ниже. Алгоритм дополнительно оптимизирован отсеиванием веток, которые не ведут ни к каким DC, которые бы не следовали напрямую из других DC, а также динамическим порядком перебора предикатов, к которому мы вернёмся в той части

алгоритма, которая отвечает непосредственно за поиск в глубину. Отсеивание бесперспективных веток поиска:

- 1. Если перебирать эту ветку дальше, то получатся DC вида $\neg(\overline{\mathbf{X}} P \land \overline{P} \land \mathbf{W})$, и, если $\exists Q \in \overline{\mathbf{X}} P$, такой, что предикат P им подразумевается, то все эти DC тривиальные;
- 2. Если $\mathbf{Y} \in \mathbf{MC}$, то $\neg(\overline{\mathbf{Y}})$ валидный DC. Любой DC, который мы получим при дальнейшем переборе, будет иметь вид $\neg(\overline{\mathbf{X}} \wedge \mathbf{W})$, и, если $\mathbf{X} \subseteq \mathbf{Y}$, такой DC подразумевается $DC \neg(\overline{\mathbf{Y}})$ согласно аугментации;
- 3. Если $\mathbf{X} \supseteq ((\mathbf{Y} Y_i) \cup \overline{Q})$, то любой DC, который мы получим, будет иметь вид $\neg (\overline{\mathbf{Y} Y_i} \wedge Q \wedge \mathbf{W})$. Также, из того, что $\mathbf{Y} \in \mathbf{MC}$ следует, что $\neg (\overline{\mathbf{Y} Y_i} \wedge \overline{Y_i})$ валидный DC. По акисиоме транзитивности, $\neg (\overline{\mathbf{Y} Y_i} \wedge \mathbf{W})$ тоже валидный DC, и по аксиоме аугментации он подразумевает $\neg (\overline{\mathbf{Y} Y_i} \wedge Q \wedge \mathbf{W})$;

К остальным двум методам отсеивания мы вернёмся чуть позже. Если вкратце, то четвёртый іf (строки 12-14) работает засчёт разделения пространства DC с целью минимизировать повторную проверку уже учтённых DC, а пятый (строки 15-17) — за счёт свойств метрики Interestingness, предложенной авторами статьи (позже будет показано, что для того, чтобы проверить это условие, не необходимо перебирать все DC вида $\neg(\overline{\mathbf{X}} \wedge \mathbf{W})$)

Algorithm 4 searchMinimalCovers()

Ввод:

- 1. Evi_I
- 2. Evi_{curr} пока не покрытые множества из Evi_I
- 3. текущий путь дерева поиска $\mathbf{X} \subseteq \mathbf{P}$
- 4. текущий порядок предикатов $>_{curr}$
- 5. Σ множество DC, обнаруженных на данный момент

Вывод: Множество *минимальных покрытий* для Evi_I , обозначаемое как **МС**

```
1: P \leftarrow \mathbf{X}.last // последний добавленный предикат
 2: Отсеивание бесперспективных веток поиска:
 3: if \exists Q \in \overline{\mathbf{X} - P} такой, что P \in Imp(Q) then
 4:
         return
 5: end if
 6: \mathbf{if}\ \exists \mathbf{Y} \in \mathbf{MC} такой, что \mathbf{X} \supseteq \mathbf{Y} then
         return
 8: end if
 9: if \exists \mathbf{Y} = \{Y_1,...Y_n\} \in \mathbf{MC} и \exists i \in [1,n] и \exists Q \in Imp(Y_i) такой, что
    \mathbf{X} \supset ((\mathbf{Y} - Y_i) \cup \overline{Q}) then
10:
         return
11: end if
12: if \exists \varphi \in \Sigma такой, что \overline{\mathbf{X}} \supseteq \varphi.Pres then
         return
13:
14: end if
15: if Inter(\varphi) < t, \forall \varphi вида \neg(\overline{\mathbf{X}} \wedge \mathbf{W}) then
16:
         return
17: end if
18: Завершение поиска с позитивным или негативным результатом:
19: if >_{curr} = \emptyset и Evi_{curr} \neq \emptyset then
         return
20:
21: end if
22: if Evi_{curr} = \emptyset then
         if нет подмножества размера |\mathbf{X}| - 1, которое бы покрывало
    Evi_{curr} then
              MC \leftarrow MC + X
24:
         end if
25:
         return
26:
27: end if
28: Рекурсивный поиск в глубину:
29: for all P \in >_{curr} \mathbf{do}
```

- 30: $\mathbf{X} \leftarrow \mathbf{X} + P$
- $Evi_{next} \leftarrow$ множества в Evi_{curr} , ещё не покрытые P
- 32: $>_{next} \leftarrow$ новый порядок предикатов P' таких, что $\{P'|P>_{curr}P'\}$ с учётом Evi_{next}
- 33: $searchMinimalCovers(Evi_I, Evi_{next}, \mathbf{X}, >_{next}, \Sigma)$
- 34: $\mathbf{X} \leftarrow \mathbf{X} P$
- 35: end for

Завершение поиска с негативным либо позитивным результатом:

- 1. Если ещё есть необработанные предикаты, но при этом ещё есть непокрытые множества в Evi_{curr} , значит, данная ветка поиска в глубину ни к чему не привела;
- 2. Если все множества в Evi_{curr} покрыты, то если **X** минимальное покрытие, то мы добавляем его в **MC**.

Для того, чтобы произвести рекурсивный поиск в глубину, для каждого $npe \partial u \kappa ama~P$ в текущем динамическом порядке:

- 1. Добавляем в \mathbf{X} предикат P;
- 2. Составляем Evi_{next} из множеств из Evi_{curr} , которые ещё не покрыты $npe\partial u\kappa amom\ P$;
- 3. Определяем порядок новый порядок предикатов с учётом Evi_{next} . Динамический порядок определяется следующим образом: $P >_{next} Q$ если $Cov(P, Evi_{next}) > Cov(Q, Evi_{next})$, где $Cov(P, Evi_{next}) = |\{E \in Evi_{next}|P \in E\}|$. Если же $Cov(P, Evi_{next}) = Cov(Q, Evi_{next})$, то $P >_{next} Q$ если $P >_{curr} Q$;
- 4. Рекурсивно вызываем searchMinimalCovers()
- 5. Убираем из \mathbf{X} предикат P;

Рис. 3: Таксономия DC для базы данных с тремя npedukamamu [5]

3.4.4. Разделение пространства DC

Определим $Evidence\ set$ от I по модулю P как $Evi_I^P=\{E-\{P\}|E\in Evi_I, P\in E\}$

Заметим, что $\neg(\overline{X_1} \wedge ... \wedge \overline{X_n} \wedge P)$ — валидный минимальный DC, содержащий предикат P, тогда и только тогда, когда $\{X_1 \wedge ... \wedge X_n\}$ — минимальное покрытие Evi_I^P .

Теперь мы можем построить таксономию всех возможных DC. Для начала как-то упорядочим npedukamu. Теперь возьмём первый npedukamu, и рассмотрим те DC, в которых он есть, что мы можем сделать, пользуясь определением Evi_I^P . Теперь перейдём к тем DC, в которых нет первого npedukama, и сделаем ту же саму развилку уже со вторым, и так далее. На примере массива данных, в котором только три $npedukama - R_1, R_2, R_3$ — такая таксономия будет выглядеть как на рисунке 3, где "+" означает присутствие npedukama в DC, а "—" — его отсутствие.

Теперь, чтобы исключить повторный перебор уже рассмотренных DC, авторы статьи предлагают искать DC поднимаясь по дереву снизу вверх. На примере с тремя npe dukamamu, сперва мы рассматриваем DC, содержащие R_3 и больше никакие другие предикаты. Потом — содержащие R_2 , но не R_1 . Если какое-то из обнаруженных покрытий $Evi_I^{R_2}$ дублирует какие-то из DC, обнаруженных на предыдущей итерации, значит, это покрытие не приведёт к глобально минимальному DC, что и проверяется в строчках 12-14 алгоритма 4.

3.5. Метрика Interestingness

Метрика Interestingness для DC φ вычисляется по формуле $Inter(\varphi) = a \times Coverage(\varphi) + (1-a) \times Succinctness(\varphi)$. $Coverage(\varphi)$ измеряет насколько φ подтверждается массивом данных, а $Succinctness(\varphi)$ — краткость, лаконичность φ . Таким образом, $Inter(\varphi)$ учитывает и то, и другое. И $Succinctness(\varphi)$, и $Coverage(\varphi)$ лежат в интервале от 0 до 1. На основании экспериментов, данные которых приведены в разделе 4.6, авторы статьи пришли к выводу [5], что оптимальное значение a=0.6.

3.5.1. Coverage

Метрика Coverage вычисляется по формуле:

$$Coverage(\varphi) = \frac{\sum_{k=0}^{|\varphi.Pres|-1} |kE| \times w(k)}{\sum_{k=0}^{|\varphi.Pres|-1} |kE|}$$

Где |kE| — количество пар строк в массиве данных, для которых выполняется k из $npe \partial u \kappa amo s$ DC. Сами же такие строки по отдельности обозначаются как kE. w(k) — это вес kE, который вычисляется по формуле $w(k) = \frac{k+1}{|\varphi.Pres|}$. Нетрудно заметить, что т.к. w(k) всегда на интервале от 0 до 1, то и про $Coverage(\varphi)$ можно сказать то же самое.

3.5.2. Succinctness

Метрика Succinctness вычисляется по формуле:

$$Succinctness(\varphi) = \frac{Min(\{Len(\phi)|\forall \phi\})}{Len(\varphi)}$$

Иначе говоря, $Succinctness(\varphi)$ — это частное от деления минимального возможного размера DC на размер φ . Это обеспечивает, что результат будет в диапазоне от 0 до 1.

В качестве функции размера $DC\ Len(\varphi)$ авторы статьи предлагают использовать количество уникальных символов в DC, принадлежащих

алфавиту $\mathbb{A} = \{t_{\alpha}, t_{\beta}, \mathbb{U}, \mathbb{B}, Cons\}$, где \mathbb{U} — названия столбцов, \mathbb{B} — операторы, а Cons — это константы.

3.5.3. Отсеивание на основе *Interestingness*

Функция $Succinctness(\varphi)$ является антимонотонной, т.е. при добавлении новых npedukamoe она становится меньше. Если бы то же самое можно было сказать про $Coverage(\varphi)$, проблема необходимости перебора всех DC вида $\neg(\overline{\mathbf{X}} \wedge \mathbf{W})$ решилась бы сразу (вместо φ подставляем $\neg(\overline{\mathbf{X}})$), но это не так.

Впрочем, можно заметить, что если мы найдём предельное верхнее значение w(k) (которое обозначим как W), то его можно вынести из под суммы и обнаружить, что:

$$Coverage(\varphi) = \frac{\sum_{k=0}^{|\varphi.Pres|-1} |kE| \times w(k)}{\sum_{k=0}^{|\varphi.Pres|-1} |kE|} < \frac{\sum_{k=0}^{|\varphi.Pres|-1} |kE|}{\sum_{k=0}^{|\varphi.Pres|-1} |kE|} \times W = W$$

Рассмотрим $w(k)=\frac{k+1}{|\varphi.Pres|}=1-\frac{l}{|\varphi.Pres|},$ где l — число $npe\partial u\kappa amoe$ в φ , которые не удовлетворяются данным kE. Заметим, что [5]:

- 1. l больше или равно числу предикатов в $\overline{\mathbf{X}}$, которые не удовлетворяются данным kE;
- 2. $|\varphi.Pres|$ меньше, чем $\frac{|\mathbf{P}|}{2}$.

Таким образом, $\exists Z: \frac{l}{|\varphi.Pres|} \geq Z \implies 1 - \frac{l}{|\varphi.Pres|}$ ограничен сверху. Однако, чтобы найти W, всё ещё необходимо перебрать kE. К счастью, можно перебрать не все: если верить авторам [5], 1000 должно хватить.

Таким образом, мы решили проблему с $Coverage(\varphi)$.

3.6. Модификации алгоритма FASTDC

3.6.1. A-FASTDC

 $A ext{-}FASTDC$ — это алгоритм приближённого поиска DC. Он полезен на массивах данных, в которых могут быть ошибки, а также позволя-

ет уменьшить проблему оверфиттинга. В нём мы будем считать, что DC валиден, если доля пар строк, которые ему противоречат, не выше определённого порога ϵ . Для этого общее число нарушений надо разделить на количество возможных пар строк, т.е. |I|(|I|-1), и сравнить получившееся число с ϵ .

Чтобы всё работало, необходимо переопределить минимальные покрытия. Для этого для каждого множества E в Evi_I введём значение count(E) — количество пар строк $\langle t_x, t_y \rangle$ таких, что $SAT(\langle t_x, t_y \rangle)$.

Теперь можно определить ϵ -минимальное покрытие для Evi_I как $\mathbf{X} \subseteq \mathbf{P}$ такое, что $\sum (count(E)) \leq \epsilon |I|(|I|-1)$ для таких $E \in Evi_I$, что $\mathbf{X} \cap E = \emptyset$, и при у \mathbf{X} нет подмножества, обладающего теми же свойствами.

Mинимальные nриближенные DC переопределяются аналогичным образом.

Для того, чтобы искать *минимальные приближённые DC*, алгоритм 4 надо изменить в двух местах:

- 1. При динамическом перерасчёте порядка $npedu\kappa amoe$ функцию Cov() переопределить как $Cov(P,Evi) = \sum_{E\in\{E\in Evi|P\in E\}} count(E);$
- 2. При проверке того, стоит ли завершать поиск, опираться не на то, пусто ли множество Evi_{curr} , а на то, больше ли в нём элементов, чем $\epsilon |I|(|I|-1)$.

3.6.2. C-FASTDC

 $C ext{-}FASTDC$ — это алгоритм поиска константных DC.

Процесс составления пространства npedukamos в чём-то похож на таковой для обычных DC. Т.к. простанство константных npedukamos гораздо больше, чем пространство обычных, мы не можем просто добавить обнаруженные константные npedukamos в P и выполнить FASTDC для всех npedukamos сразу. Эта проблема решается тем, что алгоритм отсеивает предикаты, которые встречаются реже некоторой частоты τ .

Algorithm 5 C-FASTDC

Ввод: Таблица I, схема этой таблицы R и минимальное требование к частоте τ

Вывод: *Константные* $DC \Gamma$.

```
1: Составление пространства предикатов:
2: Пусть \mathbf{Q} \leftarrow \emptyset будет пространством константных предикатов
3: for all A \in R do
        for all c \in A do
 4:
            \mathbf{Q} \leftarrow \mathbf{Q} + t_{\alpha}.A\theta c где \theta \in \{=, \neq\}
 5:
            if A — численный тип then
 6:
                 \mathbf{Q} \leftarrow \mathbf{Q} + t_{\alpha}.A\theta c где \theta \in \{>, <, \geq, \leq\}
 7:
            end if
 8:
        end for
 9:
10: end for
11: Для каждого предиката составляется список строк, на которых он
    выполняется:
12: for all t \in I do
        if t удовлетворяет Q then
13:
            sup(Q, I) \leftarrow sup(Q, I) + t
14:
        end if
15:
16: end for
17: Составляется список частых предикатов:
18: Пусть L_1 будет множеством частых предикатов
19: for all Q \in \mathbf{Q} do
        if |sup(Q, I)| = 0 then
20:
            \Gamma \leftarrow \Gamma + \neg(Q)
21:
        else if \frac{|sup(Q,I)|}{|I|} \ge \tau then
22:
            L_1 \leftarrow L_1 + \{Q\}
23:
        end if
24:
25: end for
26: Составляются множества предикатов размера > 1:
27: m \leftarrow 2
28: while L_{m-1} \neq \emptyset do
        for all c \in L_{m-1} do
29:
```

```
\Sigma \leftarrow FASTDC(sup(c, I), R)
30:
             for all \varphi \in \Sigma do
31:
                  \Gamma \leftarrow \Gamma + \phi, предикаты которого взяты у c и \varphi
32:
             end for
33:
         end for
34:
        C_m = \{c | c = a \cup b \land a \in L_{m-1} \land b \in \bigcup L_{k-1} \land b \notin a\}
35:
        for all c \in C_m do
36:
             Просканировать массив данных чтобы наполнить sup(c, I)
37:
             if |sup(c,I)| = 0 then
38:
                  \Gamma \leftarrow \Gamma + \phi,предикаты которого взяты у c
39:
             else if \frac{|sup(c,I)|}{|I|} \ge \tau then
40:
                  L_m \leftarrow L_m + c
41:
             end if
42:
         end for
43:
          m \leftarrow m + 1
44: end while
```

Теперь внимательнее разберём стадии алгоритма:

- 1. **Составление пространтсва предикатов:** как уже было сказано, во многом похоже на аналогичный процесс для обычных DC;
- 2. Для каждого предиката составлятся список строк, на которых он выполняется: понадобится при оценке частоты npe-dukamoe;
- 3. Составляется список частых предикатов: если для какого-то из $npe \partial u \kappa amo s \ sup(Q,I) = 0$, значит, этот $npe \partial u \kappa am$ не выполняется ни на одной строке. Следовательно, $\neg(Q)$ валидный DC. Если же $\frac{|sup(Q,I)|}{|I|} \ge \tau$, значит, этот $npe \partial u \kappa am$ прошёл проверку на частоту, и его можно записать в L_1 ;
- 4. Составляются множества предикатов размера > 1: если нашлось множество таких предикатов, которое по частоте преодолело порог τ , то только тогда мы вызываем FASTDC(sup(c,I),R), и

добавляем в Γ найденные DC. Дальше генерируются новые множества npe dukamoe большего размера, после чего они проверяются на частоту (перед этим сканируется массив данных, чтобы наполнить sup(c,I)). Как и с единичными npe dukamamu с шага 3, если sup(c,I)=0, это значит, что мы нашли DC.

4. Эксперименты

4.1. Условия эксперимента

Авторы статьи [5] указали следующие технические данные:

- четырёхъядерный процессор 3.4 GHz;
- 4 GB оперативной памяти;
- Windows 7;
- Java.

Использовался один синтетический массив данных, Tax, и два реальных: Hospital (115 тысяч строк) и $SP\ Stock$ (123 тысячи строк). Tax уже был рассмотрен ранее — из него и были взяты примеры — Hospital содержит 17 строковых атрибутов, а $SP\ Stock$ — информацию о биржевых торгах. В основном в экспериментах используется Tax, т.к. в нём удобнее менять количество строк и столбцов.

4.2. Обозначения

Авторы статьи вводят ряд обозначений:

- \bullet FASTDC+M алгоритм FASTDC, запущенный на M машинах;
- FASTDC-DO алгоритм FASTDC без динамического порядка $npe \partial u \kappa amoe;$
- FASTDC-DS FASTDC без разделения пространства DC как в разделе 3.4.4.;
- $\Sigma_s DC$, найденные алгоритмом;
- $\Sigma_g DC$, обнаруженные экспертами;
- \bullet "золотые" $DC-\Sigma_g$ и те, которые ими подразумеваются;

Рис. 4: Зависимость времени работы от количества машин и числа строк (a), а также зависимость времени работы (b), числа DC (c) и объёма лишней работы (d) от числа $npe \partial u \kappa amo e$ и наличия оптимизаций [5]

- G-Precision процент "золотых" DC среди Σ_s ;
- G-Recall число "золотых" DC среди Σ_s разделить на общее число "золотых" DC;
- G-F-Measure среднее гармоническое G-Precision и G-Recall.

Рис. 5: Зависимость числа предикатов от минимума совпадающих значений для объединимых столбцов (e), времени поиска в глубину от значения a и порога Inter() (f), а также зависимость G-Presision и G-Recall от значения a (g и h) [5]

Рис. 6: G-F-Меаsure в зависимости от a (i), G-Presision, G-Recall и G-F-Меasure для k наиболее "интересных" DC на массиве данных Hospital (j), время работы A-FASTDC (k), G-Recall для A-FASTDC в зависимости от уровня точности (l) [5]

Рис. 7: G-Recall для A-FASTDC в зависимости от уровня шума (m), от распределения шума по столбцам и по строкам (n и о), а также зависимость времени работы C-FASTDC от τ (p) [5]

4.3. Эффективность распараллеливания построения Evi

Как видно на графике 4 (а), на котором шкала времени логорифмическая, ускорение при распараллеливании алгоритма почти линейное: на одном миллионе строк FASTDC+7 работал 3257 минут, а FASTDC+20—1228. В этом эксперименте **P** зафиксирован и имеет размер 50.

4.4. Эффективность динамического порядка npedu- $\kappa amos$ и разделения пространства DC

Как видно на графике 4 (d), и динамический порядок, и разделение пространства уменьшают количество "потраченной работы", которая здесь озачает количество раз, которые алгоритму пришлось прервать поиск не из-за того, что все множества в Evi на данной ветке оказались покрыты, а потому, что больше не было npedukamoe, которые бы можно было добавить в покрытие. График 4 (b) показывает, что выигрыш по времени есть тоже. На графике 4 (c) видно, что эти оптимизации не влияют на число DC, которые найдёт алгоритм.

4.5. Тридцатипроцентный порог для объединимых столбцов

Как видно на графике 5 (e), при необходимом проценте общих значений больше 30% $npe \partial u \kappa am \omega$ почти перестают отсеиваться.

4.6. Оптимальное значение a в формуле метрики Inter()

Как видно на графике 5 (g, h) и графике 6 (i), примерно при значении в 0.6 достигается максимальная близость к "золотым" DC, если судить по G-Precision, G-Recall и G-F-Measure.

4.7. A-FASTDC

Как видно на графике 6 (l), по началу при росте ϵ растёт и G-Recall, однако после определённого значения начинается обратный тренд. Связано это скорее всего с тем, что в какой-то момент начинают "обнаруживаться" DC, npedukamu которых являются подмножеством $\varphi.Pres$ для какого-то $\Sigma_q \models \varphi$, и из-за этого сам φ отсекается.

График 7 (m) показывает, что хоть при фиксированном ϵ и возрастающем шуме точность и падает, A-FASTDC всё ещё способен находить "золотые" DC.

График 7 (n) показывает, что если зафиксировать шум на определённом значении, но распределять его по столбцам неравномерно, то он имеет меньше влияния на точность. Аналогичный эффект со строками (график 7 (o)) не наблюдается.

4.8. C-FASTDC

На графике 7 (р) видно, что при увеличении τ падает и время работы, что не удивительно, но не равномерно на всех массивах данных. Можно заметить, что время работы C-FASTDC $SP\ Stock$ не меняется в завимости от τ , и что сильнее всего разница видна на Tax.

4.9. Оценка времени работы

На графике 4 (а) время растёт квадратично с ростом числа строк, что логично: перебор всех пар имеет сложность $O(|\mathbf{P}| \times |I|^2)$. Как видно по графику 4 (b и c), и число *минимальных DC*, и время работы растут экспоненциально с ростом числа $npe\partial ukamob$.

4.10. Итоги

• Способ распараллеливания генерации Evi_I , предложенный авторами статьи, действительно даёт линейный выигрыш по времени;

- Динамический порядок npedukamoe действительно позволяет выиграть время и вычисления, как и разделение пространства DC;
- $\bullet\,$ A-FASTDC может обнаруживать DC даже при наличии шума;
- Время работы FASTDC квадратично зависимо от числа строк в экпоненциально от числа *предикатов*.

Заключение

Целью данной работы являлось изучение алгоритма поиска DC с целью дальнейшей его реализации. Для достижения данной цели были выполнены следующие задачи:

- 1. Рассмотрен язык DC и аксиомы, которые к нему применимы;
- 2. Проведён обзор алгоритма FASTDC и его принципа работы;
- 3. Разобраны оптимизации алгоритма, предложенные авторами статьи;
- 4. Приведены и проанализированы результаты экспериментов авторов статьи;
- 5. Сделаны выводы об эффективности предложенных оптимизаций алгоритма.

Список литературы

- [1] Abiteboul S., Hull R., Vianu V. Foundations of Databases.—
 1995.— URL: https://wiki.epfl.ch/provenance2011/documents/
 foundations+of+databases-abiteboul-1995.pdf (online; accessed: 2023-06-02).
- [2] Baudinet M., Chomicki J., Wolper P. Constraint-Generating Dependencies.—1999.—URL: https://www.sciencedirect.com/science/article/pii/S002200009991632X (online; accessed: 2023-06-03).
- [3] Bishop C. M. Pattern Recognition and Machine Learning (Information Science and Statistics).— 2006.— URL: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf (online; accessed: 2023-10-29).
- [4] Bleifuß Tobias, al. Approximate Discovery of et Functional Dependencies for Large Datasets.— 2016. -URL: https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/ publications/PDFs/2016_bleifuß_approximate.pdf (online: accessed: 2021-12-11).
- [5] Chu Xu, Ilyas Ihab F., Papotti Paolo. Discovering Denial Constraints.— 2013.— URL: http://www.vldb.org/pvldb/vol6/p1498-papotti. pdf (online; accessed: 2023-05-31).
- [6] Mining Database Structure; Or, How to Build a Data Quality Browser / T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk.— 2002.— P. 240–251.— URL: https://www.academia.edu/6168918/Mining_Database_Structure_Or_How_to_Build_a_Data_Quality_Browser (online; accessed: 2023-11-07).