1 Wichtige Begriffe

- $\Omega :=$ Ergebnisraum
- $\mathcal{A} := \text{Ereignis-Algebra}$
- P := W-Maß
- $\omega \in \Omega :=$ Ergebnis (Element von Omega)
- $A \in \mathcal{A} := \text{Ereignis}$ (Teilmenge von Omega; diskreter Fall)
- (Ω, \mathcal{A}) heißt Ereignisraum/Messraum
- (Ω, \mathcal{A}, P) heißt W-Raum

2 σ -Algebren

Definition σ -Algebra:

- 1. Das sichere Ereignis gehört zu $\mathcal{A}: \Omega \in \mathcal{A}$
- 2. Das Gegenereignis eines Ereignisses aus \mathcal{A} gehört wieder zu $\mathcal{A}: A \in \mathcal{A} \Rightarrow A^c := \Omega \setminus A \in \mathcal{A}$
- 3. \mathcal{A} ist unter abzählbarer unendlicher Vereinigungsbildung abgeschlossen: $A_1, A_2 \cdots \in \mathcal{A} \Rightarrow \bigcup_{i \geq 1} A_i \in \mathcal{A}$

Eigenschaften:

- 1. $\emptyset \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \Rightarrow A \cup B, A \cap B, A \setminus B \in \mathcal{A}$
- 3. \mathcal{A} ist unter abzählbar unendlicher Durchschnittsbildung abgeschlossen

Beweis der Eigenschaften:

- 1. Folgt aus (1) + (2): Gegenereignis von Omega
- 2. Folgt aus (2) + (3) + DeMorgan Regeln: $A \cup B \cup \emptyset \cdots \in \mathcal{A}, A \cap B = (A^c \cup B^c)^c \in \mathcal{A}, A \setminus B = A \cap B^c \in \mathcal{A}$

2.1 System aller σ -Algebren

Definition: System aller σ -Algebren: $\Sigma(\Omega) := \{A | A \text{ ist eine } \sigma\text{-Algebra "uber } \Omega\}$

Eigenschaften:

- 1. $\sum(\Omega)$ ist bezüglich Mengeninklusion halbgeordnet (Äquivalenzrelation auf den Elementen)
- 2. $\{\emptyset, \Omega\}$ ist die kleinste Sigma Algebra über Ω
- 3. 2^{Ω} ist die größte Sigma Algebra über Ω
- 4. Der Schnitt beliebig vieler Sigma Algebren ist auch wieder eine Sigma Algebra

5. zu jedem System \mathcal{G} von Teilmengen von Ω gibt es eine kleinste \mathcal{G} enthaltene Sigma Algebra. Diese von \mathcal{G} erzeugte Sigma Algebra ist der Schnitt aller G enthaltenden Sigma Algebra: $\sigma(\mathcal{G}) = \bigcap_{\mathcal{G} \subseteq \mathcal{A} \in \sum(\Omega)} \mathcal{A}$

Beweis der Eigenschaften:

- 1. ist bezüglich Mengeninklusion halbgeordnet, daraus folgt ist reflexiv, transitiv, antisymetrisch und somit Äquivalent
- 2. Jede Sigma Algebra besitzt \emptyset und Ω , und $\{\emptyset, \Omega\}$ ist eine Sigma Algebra
- 3. Potenzmenge ist die Menge aller Teilmengen
- 4. Ist $(A_i)_{i\in I}$ eine Familie von σ -Algebren über Ω , so ist $\mathcal{A} := \bigcap_{i\in I} A_i$ wieder eine Sigma Algebra, da:
 - $\Omega \in A_i \forall i \in I \Rightarrow \Omega \in \mathcal{A}$
 - Liegt A in \mathcal{A} so liegt A auch in allen A_i , was wiederum heißt, dass $A^c \in A_i$ liegt, woraus folgt, dass auch $A^c \in \mathcal{A}$ liegt
 - Ist $A_1, A_2...$ eine abzählbar unendliche Folge von Elementen in A_i so liegt auch die Vereinigung aller Teile in jedem A_i und folglich auch in A

Wozu macht man die Sigma Algebren und nimmt nicht die Potenzmenge? Borelsche Sigma Algebra:

- Der unendliche Fall! In diesem funktioniert die Potenzmenge nicht, weshalb man die Sigma Algebren benötigt (da diese nur Messbare Flächen darstellen)
- Sei $\Omega = \Re^n$ und $\mathcal{G} :=$ das System aller achsenparallelen kompakten Quader in \Re^n mit rationalen Endpunkten.
- Dann ist $\mathfrak{B}^n := \sigma(\mathcal{G})$ die Borelsche Sigma Algebra und jedes $A \in \mathfrak{B}^n$ eine Borelmenge

3 Wahrscheinlichkeitsmaß

Definition Wahrscheinlichkeitsmaß:

 $P: \mathcal{A} \to [0,1]$ ist ein W-Maß, wenn gilt:

- 1. $P(\Omega) = 1$ Normierung (N)
- 2. σ -Additivität; Für paarweise disjunkte Ereignisse $A_1, A_2, \dots \in \mathcal{A}$ gilt: $P(\sqcup_{i \geq 1} A_i) = \sum_{i \geq 1} P(A_i)$ (A)

Eigenschaften:

- 1. $P(\emptyset) = 0$
- 2. $P(A \cup B) + P(A \cap B) = P(A) + P(B)$
- 3. Monotonie: $A \subseteq B \Rightarrow P(A) \leq P(B)$
- 4. σ -Subadditivität: $P(\bigcup_{i>1} A_i) \leq \sum_{i>1} P(A_i)$
- 5. σ -Stetigkeit: Wenn $A_1 \subseteq A_2 \subseteq \cdots$ und $A = \bigcup_{i>1} A_i$ dann gilt: $\lim_{n \to \inf} P(A_n) = P(A)$

Beweis der Eigenschaften:

1. Folgt aus (A): $P(\emptyset) = P(\emptyset \cup \emptyset \cup \dots) = \sum_{i>1} P(\emptyset) \Rightarrow P(\emptyset) = 0$

- 2. Folgt aus (A) + (1): $P(A \sqcup B) = P(A \sqcup B \sqcup \emptyset ...) = P(A) + P(B) + 0 + ..., P(A \cup B) + P(A \cap B) = P(A \setminus B) + P(B \setminus A) + 2P(A \cap B) = P(A) + P(B), 1 = P(\Omega) = P(A \sqcup A^c) = P(A) + P(A^c)$
- 3. folgt aus (A) + (2): $P(B) = P(B \sqcup (A \setminus B)) = P(B) + P(A \setminus B) \ge P(A)$
- 4. folgt aus (A): $P(\bigcup_{i\geq i}A_i) = P(\bigcup_{i\geq 1}(A_i\setminus\bigcup_{j< i}A_j)) = \sum_{i\geq 1}P(A_i\setminus\bigcap_{j< i}A_j) \leq \sum_{i\geq 1}P(A_i)$

Zähldichte/W-Funktion:

- 1. Jedes W-Maß P auf $(\Omega, 2^{\Omega})$ ist durch die Folge $(P(\{\omega\}))_{\omega \in \Omega}$ bereits eindeutig bestimmt, denn für $A \subseteq \Omega$ ist: $P(A) = \sum_{\omega \in A} P(\{\omega\})$ (W-Funktion)
- 2. Umgekehrt gibt jede Funktion $p:\Omega\to [0,1]$ mit $\sum_{\omega\in\Omega}p(\omega)=1$ vermöge: $P(A):=\sum_{\omega\in\Omega}p(\omega)$ ein W-Maß sein (Zähldichte)

Beweis via. den beiden Eigenschaften eines Wahrscheinlichkeitsmaßes!