

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 06.11.2020

VIDEOEMPFEHLUNG

Prof. Dr. Markus Krötzsch hat im vergangenen Wintersemester 2020/21 die Vorlesung "Formale Systeme" (3. Semester) in Form von YouTube-Videos gehalten. Diese Vorlesung beschäftigt sich vertieft mit formalen Sprachen.

Die Einleitung entspricht ungefähr dem Inhalt der ersten Übung:

► https://youtu.be/Lma6jaPnD-I

Syntaxdiagramme

SYNTAXDIAGRAMME

Beispiel eines Syntaxdiagrammsystems mit Startdiagramm *S*:

- A... Nichtterminalsymbol = syntaktische Variable
- ② ... Terminalsymbol

RÜCKSPRUNGALGORITHMUS

Rücksprungalgorithmus

- Ziel: Nachweis von Zugehörigkeit eines Wortes zu einer Sprache
- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt

Hauptaugenmerk:

Protokollierung von Wortentstehung & Markenkeller

- jede Zeile entspricht dem Aufenthalt in einem Syntaxdiagramm
- ▶ jede Zeile führt eine Operation auf dem Markenkeller durch

AUFGABE 1

Gegeben sei das folgende Syntax-diagrammsystem $\,\mathcal{U}\,$ mit Startdiagramm \mathcal{S} :

AUFGABE 1

Gegeben sei das folgende Syntax-diagrammsystem \mathcal{U} mit Startdiagramm \mathcal{S} :

Beispiele für Wörter, die das System \mathcal{U} erzeugt:

- ► a accb b
- ► a a accb b b
- ► a a accb d b
- ► a a a accb d d b
- ► a a a accb b d b

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
a	1

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
a	1
а	31

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
а	1
a	31
aa	131

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
a	1
a	31
aa	131
aaa	2131
aaa	32131

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
a	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131
aaaaccb	2 131

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	32131
aaaaccb	2131
aaaaccbd	1/31
	•

	Wort	Markenkeller
Wort: aaaaccbdbb	а	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm	aaa	32131
entspricht einer Zeile	aaaaccb	32131
▶ jede Zeile führt eine	aaaaccb	2131
Operation auf dem	aaaaccbd	1/31
Markenkeller aus	aaaaccbdb	31

► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb	Wort	Markenkeller
	а	1
	a	31
Protokollierungszeitpunkte:	aa	131
▶ jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm	aaa	32131
entspricht einer Zeile	aaaaccb	<i>3</i> 2131
► jede Zeile führt eine	aaaaccb	2 131
Operation auf dem	aaaaccbd	1/31
Markenkeller aus	aaaaccbdb	31
► 3 = Rücksprung zu Marke 3	aaaaccbdb	1

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
a	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	32131
aaaaccb	2131
aaaaccbd	1 /31
aaaaccbdb	31
aaaaccbdb	1
aaaaccbdbb	_

$$L = L_A \cdot L_B$$

 $L = L_A \cdot L_B$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n \ge 0\}$$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n > 0\}$$

$$L = L_A \cdot L_B$$
 S: $A \longrightarrow B$

$$L = L_A \cdot L_B$$
 s:

kleine Tricks:

$$ightharpoonup a^{2n} = (a^2)^n = (aa)^n$$

$$ightharpoonup a^{2n+1} = a a^{2n} = a (aa)^n$$

$$L = \left\{ a^{2i}cb^{3i}c^kd^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$
S:
$$A = \begin{bmatrix} A & B \end{bmatrix}$$

$$A: \begin{bmatrix} A & B \end{bmatrix}$$

$$B: \begin{bmatrix} C & B \end{bmatrix} = \begin{bmatrix} A & D \end{bmatrix}$$

Extended Backus-Naur-Form

EBNF-DEFINITION

► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.

$$\mathcal{E} = (V, \Sigma, S, R)$$

► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

EBNF-DEFINITION

► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.

$$\mathcal{E} = (V, \Sigma, S, R)$$

► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition (EBNF-Terme): Seien V (syntaktische Variablen) und Σ (Terminalsymbole) endliche Mengen mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma, V)$), ist die *kleinste* Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{}, \hat{\}}, \hat{[}, \hat{]}, \hat{(}, \hat{)}, \hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$.

ÜBERSETZUNG EBNF ↔ SYNTAXDIAGRAMME

Sei $v \in V$ und $w \in \Sigma$. trans(v) = -v; trans(w) = -w. Sei $\alpha \in T(\Sigma, V)$ ein EBNF-Term.

- $\blacktriangleright \ trans(\hat{[\alpha]}) = \underbrace{-trans(\alpha)}$
- $\blacktriangleright trans(\hat{(\alpha)}) = trans(\alpha)$

Seien $\alpha_1, \alpha_2 \in T(\Sigma, V)$ zwei EBNF-Terme.

- ightharpoonup trans($lpha_1lpha_2$) = ----(trans($lpha_1$)--(trans($lpha_2$))------

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, A, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{A, B, C\} \quad \text{und} \quad R = \Big\{A ::= BC,$$

$$B ::= \hat{(} aBc \hat{|} \hat{(} b \hat{)} \hat{)},$$

$$C ::= d \hat{[} C \hat{]} c \qquad \Big\}$$

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, A, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{A, B, C\} \quad \text{und} \quad R = \Big\{A ::= BC, \\ B ::= (aBc \mid \hat{i} \mid b \mid \hat{j}), \\ C ::= d \mid C \mid c \quad \Big\}$$

Übersetzung in ein Syntaxdiagrammsystem:

Startdiagramm: A

Wir wollen die von \mathcal{E} beschriebene Sprache L_A beschreiben und wenden dafür die Grundkonstruktionen "rückwärts" an.

Wir wollen die von \mathcal{E} beschriebene Sprache L_A beschreiben und wenden dafür die Grundkonstruktionen "rückwärts" an.

$$L_A = L_B \cdot L_C$$

= $\{a^n \ w \ c^n : w \in \{b\}^* : n \ge 0\} \cdot \{d^m c^m : m \ge 1\}$

Der Teil $w \in \{b\}^*$ beschreibt dabei, dass wir ein beliebiges Wort aus $\{b\}^*$ schreiben. Diese Sprache $\{b\}^*$ wird durch

beschrieben.

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ a^{\ell} a^{n} c b^{n} (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ a^{\ell} a^{n} c b^{n} (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Lösungsweg: via Syntaxdiagrammsystem & Übersetzung

EBNF-Definition:
$$\mathcal{E}' = (V, \Sigma, S, R) \text{ mit } \Sigma = \{a, b, c, d\},$$

$$V = \{S, A\}$$
 und $R = \{S ::= (aScd | A),$
 $A ::= a(A | c) b$