

Física Nivel medio Prueba 1

Lunes 9 de noviembre de 2015 (mañana)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

8815-6528

- 1. ¿Cuál de las siguientes es una unidad derivada?
 - A. Mol
 - B. Kelvin
 - C. Culombio
 - D. Amperio
- 2. Un kilogramo de hielo de densidad 1000 kg m⁻³ se ha congelado en forma de cubo. El diámetro de una molécula de agua es 10⁻¹⁰ m. ¿Cuál es la diferencia en el orden de magnitud de la longitud de un lado del cubo de hielo y el diámetro de una molécula de agua?
 - A. 7
 - B. 9
 - C. 11
 - D. 13
- 3. Un objeto se encuentra en reposo en el tiempo t=0. La variación con t de la aceleración a del objeto se muestra desde t=0 hasta t=20 s.

¿Cuál es la rapidez del objeto cuando t=15s?

- A. $25 \,\mathrm{m \, s^{-1}}$
- B. $50 \,\mathrm{m \, s^{-1}}$
- C. $75 \,\mathrm{m \, s^{-1}}$
- D. $100 \,\mathrm{m \, s^{-1}}$

- **4.** ¿Cuál de las siguientes magnitudes es proporcional a la fuerza neta externa que actúa sobre un cuerpo?
 - A. Rapidez
 - B. Velocidad
 - C. Ritmo de cambio de la rapidez
 - D. Ritmo de cambio de la velocidad
- **5.** Una pequeña esfera cargada positivamente está suspendida de un hilo y situada cerca de una varilla cargada negativamente. El sistema se encuentra en equilibrio cuando el hilo forma un ángulo de 45° con la vertical. El peso de la esfera es *W* y el módulo de la fuerza electrostática entre la varilla y la esfera es *F*.

(no a escala)

¿Cuál es el módulo de W en comparación con el módulo de F?

- A. $W = \sqrt{2}F$
- B. $F < W < \sqrt{2}F$
- C. W = F
- D. W > F
- **6.** Un objeto de masa m se encuentra inicialmente en reposo. Cuando un impulso I actúa sobre el objeto, su energía cinética final es E_{κ} . ¿Cuál será la energía cinética final cuando un impulso de 2I actúe sobre un objeto de masa 2m, inicialmente en reposo?
 - A. $\frac{E_{K}}{2}$
 - B. *E*_k
 - C. 2*E*_K
 - D. 4*E*_K

7.	Una máquina térmica realiza 300 J de trabajo durante un ciclo. En dicho ciclo se desaprovecha
	una energía de 900 J. ¿Cuál es el rendimiento de la máquina?

- A. 0,25
- B. 0,33
- C. 0,50
- D. 0,75
- 8. Un recipiente contiene 40 g de argón-40 $\binom{40}{18}$ Ar y 8 g de helio-4 $\binom{4}{2}$ He.

¿Cuál es el cociente $\frac{\text{número de átomos de argon}}{\text{número de átomos de helio}}$ en el recipiente?

- A. $\frac{1}{2}$
- B. $\frac{2}{9}$
- C. $\frac{2}{1}$
- D. $\frac{9}{2}$

9. La capacidad térmica de un cuerpo es la energía necesaria para cambiar la temperatura del cuerpo en

- A. 1K.
- B. 1Km^3 .
- C. $1 \, \text{K kg}^{-1}$.
- D. 1 K s^{-1} .

- **10.** Cuando se suministran 1800 J de energía a una masa m de líquido en un recipiente, la temperatura del líquido y del recipiente cambia en 10 K. Si la masa del líquido se duplica a 2m, se necesitan 3000 J de energía para cambiar la temperatura del líquido y del recipiente en 10 K. ¿Cuál es el calor específico del líquido en J kg⁻¹ K⁻¹?
 - A. $\frac{60}{m}$
 - B. $\frac{120}{m}$
 - C. $\frac{180}{m}$
 - D. $\frac{240}{m}$
- **11.** Dos objetos están en contacto térmico y se encuentran a diferente temperatura. ¿Qué está(n) determinado(s) por las temperaturas de los dos objetos?
 - I. El sentido de la transferencia de energía térmica entre los objetos
 - II. La cantidad de energía interna almacenada por cada objeto
 - III. El proceso mediante el que se transfiere la energía entre los objetos
 - A. Solo I
 - B. Solo II
 - C. Solo I y II
 - D. I, II y III
- **12.** El periodo de una partícula que experimenta un movimiento armónico simple (MAS) es T.

El cociente <u>aceleración de la partícula</u> es proporcional a desplazamiento de la partícula desde su posición de equilibrio

- A. T^{-2} .
- B. T^{-1} .
- C. *T.*
- D. T^2 .

- 13. Una partícula de masa m oscila con movimiento armónico simple (MAS) de frecuencia angular ω . La amplitud del MAS es A. ¿Cuál es la energía cinética de la partícula cuando está a medio camino entre la posición de equilibrio y un extremo del movimiento?
 - A. $\frac{mA^2\omega^2}{4}$
 - B. $\frac{3mA^2\omega^2}{8}$
 - C. $\frac{9mA^2\omega^2}{32}$
 - D. $\frac{15mA^2\omega^2}{32}$
- 14. Una onda progresiva transversal tiene una amplitud x_0 y una longitud de onda λ . ¿Cuál es la distancia mínima entre una cresta y un valle, medida en la dirección de propagación de la energía?
 - A. $2x_0$
 - B. x_0
 - C. λ
 - D. $\frac{\lambda}{2}$

15. Una onda en una cuerda viaja hacia la derecha como se muestra en la figura. La frecuencia de la onda es f. En el tiempo t=0, una pequeña marca sobre la cuerda está en la posición mostrada.

¿Cuál será la posición de la marca en $t = \frac{1}{4f}$?

- 16. Las ondas electromagnéticas
 - A. siempre obedecen a una ley de la inversa del cuadrado.
 - B. están compuestas por campos eléctrico y magnético de amplitud constante.
 - C. siempre viajan con la misma rapidez en el vacío.
 - D. están siempre polarizadas.

17. Un pulso ondulatorio viaja a lo largo de una cuerda ligera que está sujeta a un anillo sin rozamiento. El anillo puede moverse libremente hacia arriba o hacia abajo de una varilla vertical.

¿Cuál será la forma del pulso ondulatorio después de la reflexión?

A.

В.

C.

D.

18. Tres resistores de resistencias R, R y 3R están conectados a una pila de resistencia interna despreciable. El diagrama muestra las tres corrientes I_x , I_y e I_z en los resistores.

¿Cuál es una relación correcta entre las corrientes?

- A. $I_x = I_y$
- B. $I_y = 3I_z$
- C. $I_z = 3I_x$
- D. $I_x = I_y + 3I_z$
- 19. Un resistor cilíndrico de longitud l está hecho de un metal de masa m. Tiene una resistencia R. A continuación, y a partir de ese volumen de metal, se construyen dos resistores, cada uno de longitud 2l y masa $\frac{m}{2}$.

¿Cuál es la resistencia de los dos resistores cuando se conectan en paralelo?

- A. *R*
- B. 2R
- C. 4R
- D. 8*R*

- **20.** Tres resistores de resistencia *R* se conectan en paralelo a una pila de fuerza electromotriz (f.e.m.) *V*, que tiene una resistencia interna despreciable. ¿Cuál es el ritmo al que la pila suministra energía?
 - A. $\frac{V^2}{3R}$
 - B. $\frac{V^2}{9R}$
 - C. $\frac{9V^2}{R}$
 - D. $\frac{3V^2}{R}$
- 21. ¿Cuál es la definición correcta de intensidad del campo gravitatorio?
 - A. La masa por unidad de peso
 - B. El peso de una pequeña masa de prueba
 - C. La fuerza que actúa sobre una pequeña masa de prueba
 - D. La fuerza por unidad de masa que actúa sobre una pequeña masa de prueba
- **22.** Una carga de +3 C y otra carga de -4 C están separadas por una distancia x. P se encuentra a una distancia x de la carga +3 C, sobre la recta que une las cargas.

¿Cuál es el módulo de la intensidad del campo eléctrico en P?

- A. $\frac{1}{\pi \varepsilon_0 x^2}$
- B. $\frac{1}{2\pi\varepsilon_0 x^2}$
- C. $\frac{1}{4\pi\varepsilon_0 x^2}$
- D. $\frac{1}{7\pi\varepsilon_0 x^2}$

23. Un electrón está moviéndose en paralelo a un cable recto que conduce una corriente. El sentido convencional de la corriente en el cable y el sentido del movimiento del electrón son los mismos. ¿En qué dirección y sentido actúa la fuerza magnética sobre el electrón?

- **24.** Un modelo sencillo del átomo de hidrógeno sugiere que el electrón está en órbita alrededor del protón. ¿Cuál es la fuerza que mantiene al electrón en órbita?
 - A. Electrostática
 - B. Gravitatoria
 - C. Nuclear fuerte
 - D. Centrípeta
- **25.** El bismuto-210 $\binom{210}{83}$ Bi) es un isótopo radiactivo que se desintegra de la siguiente forma.

$$^{210}_{83}$$
Bi $\xrightarrow{\beta^-}$ X $\xrightarrow{\alpha}$ Y

¿Cuáles son el número de nucleones y el número de protones de Y?

	Número de nucleones	Número de protones
A.	206	86
B.	206	82
C.	210	82
D.	214	83

- **26.** Para material fisible, el enriquecimiento de combustible consiste en
 - A. el aumento en la relación $\frac{\text{uranio-235}}{\text{uranio-238}}$.
 - B. la conversión de uranio-235 en uranio-238.
 - C. la conversión de uranio-238 en plutonio-239.
 - D. el aumento en la relación $\frac{\text{uranio-238}}{\text{uranio-235}}$
- 27. Se sugiere que la energía solar incidente en un punto de la superficie terrestre depende de
 - I. las variaciones diarias en la producción de energía en el Sol
 - II. la ubicación del punto
 - III. la nubosidad en el punto.

¿Qué sugerencia(s) es (son) la(s) correcta(s)?

- A. Solo III
- B. Solo I y II
- C. Solo II y III
- D. I, II y III
- **28.** Las olas inciden en un convertidor de energía de las olas oceánicas, de columna de agua oscilante, con una potencia disponible *P*. ¿Cuál es la potencia disponible para este convertidor cuando la amplitud de onda se reduce a la mitad y la rapidez de la onda se duplica?
 - A. $\frac{P}{4}$
 - B. $\frac{P}{2}$
 - C. P
 - D. 4*P*

29. La temperatura superficial media de Marte es aproximadamente 200 K. La temperatura superficial media de la Tierra es aproximadamente 300 K. Ambos pueden considerarse como cuerpos negros.

 ${}_{\dot{c}}$ Cuál es la relación $\frac{\text{energía radiada por segundo y por unidad de área en Marte}}{\text{energía radiada por segundo y por unidad de área en la Tierra}}?$

- A. 0,7
- B. 0,4
- C. 0,3
- D. 0,2
- **30.** En un modelo climático de equilibrio energético la potencia de la radiación entrante sobre un área A es P_i y la potencia de la radiación saliente en la misma área es P_o . La capacidad calorífica superficial es C_s . ¿Cuál es el tiempo necesario para incrementar en θ la temperatura del área?
 - A. $\frac{(P_i P_o)}{C_s \theta}$
 - B. $\frac{C_s \theta}{(P_i P_o)}$
 - C. $\frac{AC_{s}\theta}{(P_{i}-P_{o})}$
 - D. $\frac{A(P_{i}-P_{o})}{C_{s}\theta}$