Class 10: Structural Bioinformatics pt 1

Destiny (A16340362)

```
#The PDB Database
```

First lets see what's in the PDB database- the main resposity of protein structures

Downloaded composition stats from: https://www.rcsb.org/

For context: Release 2023_04 of 12-Sept-2023

```
stats <- read.csv("PDBstats.csv", row.name=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158,844	11,759	12,296	197	73	32
Protein/Oligosaccharide	9,260	2,054	34	8	1	0
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

```
x <- stats$X.ray
x
[1] "158,844" "9,260" "8,307" "2,730" "164" "11"
```

gsub() is for pattern replacement, first thing is what you want to replace

```
as.numeric(gsub(",", "", x))
[1] 158844
              9260
                             2730
                                      164
                     8307
                                              11
  rm.comma <- function(x) {</pre>
      as.numeric(gsub(",", "", x))
  }
  rm.comma(stats$EM)
[1] 11759
           2054 3667
                          113
                                         0
I can use the apply() to fix the whole table
  pdbstats <- apply(stats, 2, rm.comma)</pre>
  rownames(pdbstats) <- rownames(stats)</pre>
  head(pdbstats)
                                          NMR Multiple.methods Neutron Other
                           X.ray
                                     EM
Protein (only)
                                                             197
                                                                      73
                                                                             32
                          158844 11759 12296
Protein/Oligosaccharide
                                  2054
                                                                              0
                            9260
                                           34
                                                               8
                                                                       1
Protein/NA
                            8307
                                  3667
                                          284
                                                               7
                                                                       0
                                                                              0
Nucleic acid (only)
                            2730
                                    113
                                         1467
                                                              13
                                                                       3
                                                                              1
Other
                             164
                                      9
                                           32
                                                               0
                                                                       0
                                                                              0
Oligosaccharide (only)
                                      0
                                                               1
                                                                       0
                                                                              4
                              11
                                            6
                           Total
Protein (only)
                          183201
Protein/Oligosaccharide
                           11357
Protein/NA
                           12265
```

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
totals <- apply(pdbstats, 2, sum)
totals</pre>
```

Nucleic acid (only)

Oligosaccharide (only)

Other

X.ray	EM	NMR	${\tt Multiple.methods}$
179316	17602	14119	226
Neutron	Other	Total	
77	37	211377	

round(totals/totals["Total"]* 100, 2)

X.ray	EM	NMR	${\tt Multiple.methods}$
84.83	8.33	6.68	0.11
Neutron	Other	Total	
0.04	0.02	100.00	

Q2: What proportion of structures in the PDB are protein?

```
round(pdbstats[, "Total"] / sum(pdbstats[, "Total"]) *100, 2)
```

Protein/NA	Protein/Oligosaccharide	Protein (only)
5.80	5.37	86.67
Oligosaccharide (only)	Other	Nucleic acid (only)
0.01	0.10	2.05

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB? SKIPPED

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

There is a 2 Angstrom structure and hydrogen is not visible at this resolution, You need 1 Angstrom or better to see such a small atoms

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

water HOH 308

Here is a lovely figure of HIP-Pr with the catalytic ASP residues, the MK1 compound and the all important water 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

##The bio3d package for structueral bioinformatics

```
library(bio3d)
pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)</pre>
```

```
Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]

Protein sequence:
    PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
    QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
    ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
    VNIIGRNLLTQIGCTLNF

+ attr: atom, xyz, seqres, helix, sheet,
    calpha, remark, call

head(pdb$atom)
```

```
type eleno elety alt resid chain resno insert
                                                                     z o
                                                       X
                                                              у
1 ATOM
           1
                 N < NA >
                          PRO
                                   Α
                                             <NA> 29.361 39.686 5.862 1 38.10
                                         1
2 ATOM
           2
                CA <NA>
                          PRO
                                             <NA> 30.307 38.663 5.319 1 40.62
                                   Α
                                         1
3 ATOM
           3
                 C <NA>
                          PRO
                                   Α
                                         1 <NA> 29.760 38.071 4.022 1 42.64
                                         1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
                          PRO
           4
                 O <NA>
                                  Α
                                         1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
           5
                CB <NA>
                          PRO
                                   Α
6 ATOM
           6
                CG <NA>
                          PRO
                                   Α
                                         1 <NA> 29.296 37.591 7.162 1 38.40
  segid elesy charge
1 <NA>
            N
                <NA>
2 <NA>
            С
                <NA>
3 <NA>
            С
                <NA>
4 <NA>
            0
                <NA>
            С
                <NA>
5 <NA>
```

#Predicting functional motions of a single structure

<NA>

6 <NA>

Lets finish today with a bioinformatics calculation to predict the functional motions of a PDK structure

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

m <- nma(adk)</pre>
```

Building Hessian... Done in 0.016 seconds. Diagonalizing Hessian... Done in 0.286 seconds.

plot(m)

mktrj(m, file="adk_m7.pdb")