

1. Simplify the following expressions using Boolean algebra:

a. $(B + \overline{C})(\overline{B} + C) + \overline{\overline{A} + B + \overline{C}}$

Solution #1:

$$= B\bar{B} + BC + \bar{B}\bar{C} + C\bar{C} + \bar{A}\bar{B}\bar{C}$$

$$= 0 + BC + \bar{B}\bar{C} + 0 + A\bar{B}C$$

$$= BC + \bar{B}(\bar{C} + AC)$$

$$= BC + \bar{B}(\bar{C} + A)$$

$$= BC + \bar{B}\bar{C} + A\bar{B}$$
[R1]
[Dist.]

Solution #2:

$$= B\bar{B} + BC + \bar{B}\bar{C} + C\bar{C} + \bar{A}\bar{B}\bar{C}$$

$$= 0 + BC + \bar{B}\bar{C} + 0 + A\bar{B}C$$

$$= \bar{B}\bar{C} + C(B + A\bar{B})$$

$$= \bar{B}\bar{C} + C(B + A)$$

$$= \bar{B}\bar{C} + BC + AC$$
[R1]
[R11]
[Dist.]

b. $(\overline{A} + B + \overline{C})(A + B + \overline{C})(\overline{A} + B + C)(\overline{BC + \overline{A}\overline{B}\overline{C}})$

$$= (\overline{A} + B + \overline{C}) + (\overline{A} + B + \overline{C}) + (\overline{A} + B + C) + (\overline{BC} + \overline{A}\overline{B}\overline{C})$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}C + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}\overline{C} + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}C + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}(C + \overline{C}) + \overline{A}\overline{B}(C + \overline{C}) + BC$$

$$= A\overline{B} + \overline{A}\overline{B} + BC$$

$$= B(A + \overline{A}) + BC$$

$$= B(A + \overline{A}) + BC$$

$$= B + BC$$

$$= B$$

- 2. Suppose a Boolean variable Z is described by the following Karnaugh map
 - a. Construct a minimum SOP expression for Z.

AB CI	D 00	01	11	10
00	X	X	X	0
01	0	X	1	1
11	0	1	1	X
10	0	X	X	0

$$Z = D + BC$$

b. Construct a minimum POS expression for Z.

AB CL	00	01	11	10
00	X	X	X	0
01	0	X	1	1
11	0	1	1	X
10	0	X	X	0
•				

$$Z = B(C + D)$$

c. Implement Z using NAND gates.

d. Implement Z using NOR gates.

3. For the following logic circuit, draw the output waveform ...

4. Design a logic circuit whose output Z is HIGH only when a majority of its inputs A, B, and C are LOW.

Inputs			Output
A	B	C	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

