

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano < jmorale@ethz.ch>

Assignment 2 Due date: Thursday, 3 October 2024, 23:59

Exercise 2.3, Simplifying a Formula (*)

(8 Points)

Consider the propositional formula

$$F = ((B \lor C) \to ((A \lor \neg B) \land C)) \lor (A \land \neg C)$$

Give a formula G that is equivalent to F, but in which each atomic formula A, B, and C appears at most once. Prove that $F \equiv G$ by providing a sequence of equivalence transformations with at most 12 steps.

Expectation. Your proof should be in the form of a sequence of steps, where each step consists of applying the definition of \rightarrow (that is $F \rightarrow G \equiv \neg F \lor G$), one of the rules given in Lemma 2.1 of the lecture notes ¹, or one of the following rules: $F \wedge \neg F \equiv \bot$, $F \wedge \bot \equiv \bot$, $F \vee \bot \equiv F$, $F \vee \neg F \equiv \top$, $F \wedge \top \equiv F$, and $F \vee \top \equiv \top$. For this exercise, associativity is to be applied as in Lemma 2.1.3. Each step of your proof should apply a single rule once and state which rule was applied.

The formula G equivalent to F is given by $G = A \vee \neg B$, where each propositional symbol appears at most once with C not comparing at all. The proof is presented below: it is 12-steps long as requested and follows a sequence of equivalence transformations.

$$F = ((B \lor C) \to ((A \lor \neg B) \land C)) \lor (A \land \neg C)$$

$$\equiv \left(\neg (B \lor C) \lor ((A \lor \neg B) \land C) \right) \lor (A \land \neg C)$$

$$\equiv \left(\left(\neg B \land \neg C \right) \lor ((A \lor \neg B) \land C) \right) \lor (A \land \neg C)$$

$$\equiv \left(\left((A \lor \neg B) \land C \right) \lor ((A \lor \neg B) \land C) \right) \lor (A \land \neg C)$$

$$\equiv \left(((A \lor \neg B) \land C) \lor ((\neg B \land \neg C)) \lor (A \land \neg C) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((\neg B \land \neg C) \lor (A \land \neg C) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((\neg B \land \neg C) \lor (\neg C \land A) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((\neg C \land \neg B) \lor (\neg C \land A) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((\neg C \land \neg B) \lor (\neg C \land A) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((\neg C \land (\neg B \lor A) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((A \lor \neg B) \land \neg C \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((A \lor \neg B) \land \neg C \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((A \lor \neg C) \lor (A \lor \neg C) \lor (A \lor \neg C) \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((A \lor \neg B) \land \neg C \right)$$

$$\equiv ((A \lor \neg B) \land C) \lor \left((A \lor \neg C) \lor (A \lor \neg C) \lor$$

¹Lemma 2.1 states rules involving propositional symbols, but you may apply those rules at the level of formulas (see Section 2.3.5 of the lecture notes).