

Linear Regression

and are both
real numbers, to be
estimated from the data

are the random

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Matrix Notation

is the data matrix with all entries in the the first column equal

and

vectors

are all

Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- β_0 and β_1 are both real numbers, to be estimated from the data
- ϵ_i are the random errors

Matrix Notation

$$y = X\beta + \epsilon$$

 $m{y}$, $m{\beta}$ and $m{\mathcal{E}}$ are all vectors

• X = (1, x) is the data matrix with all entries in the the first column equal to 1

Minimisation Of Errors