Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ ΔΕΥΤΕΡΗ ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

Έτος 2017-2018

<u>Σπουδαστής</u>

Παπασκαρλάτος Αλέξανδρος (Α.Μ.: 03111097)

<u>Εξάμηνο</u>

10+

<u>Ημερομηνία Υποβολής Αναφοράς</u> 10 Μαΐου 2018

<u>Άσκηση 1</u>

Έστω απλό γράφημα G με $n \ge 3$ κορυφές τ.ω. για κάθε ζεύγος μη γειτονικών κορυφών u, v να ισχύει $d(u)+d(v) \ge n$.

Θα αποδείξουμε ότι το G είναι 2-συνεκτικό.

Διακρίνουμε 2 περιπτώσεις.

α. Το G είναι πλήρες.

Τότε το G είναι προφανώς 2-συνεκτικό.

β. Το G δεν είναι πλήρες.

Τότε για κάθε ζεύγος μη γειτνιάζοντων κορυφών, ισχύει d(u)+d(v)≥n.

Θα αποδείξουμε πως για κάθε ζεύγος κορυφών $u,v \in V(G)$ υπάρχουν δύο εσωτερικώς διακεκριμένα μονοπάτια που συνδέουν τις u,v.

βί. Έστω u, v μη γειτνιάζοντες. Η καθεμία από τις κορυφές u, v μπορεί να έχει το πολύ n-2 ακμές προς τις υπόλοιπες κορυφές του γραφήματος.

Όμως, d(u)+d(v) ≥ n (από υπόθεση) που σημαίνει πως οι u,v αθροιστικά έχουν τουλάχιστον n ακμές προς τις υπόλοιπες κορυφές.

Εφαρμόζοντας την αρχή του περιστερώνα, προκύπτει πως οι u, v έχουν τουλάχιστον 2 κοινούς γείτονες, έστω $x,y \in V(G)$.

Συνεπώς, οι u, v συνδέονται με τα μονοπάτια P1=(u,x,v) και P2=(u,y,v).

βii. Έστω u,ν γειτνιάζοντες. Τουλάχιστον μία εκ των κορυφών u,ν έχει ένα ακόμη γείτονα.

(Διαφορετικά, αν d(u)=1 και d(v)=1 και (u,v) ϵ E(G), δε θα υπήρχε μονοπάτι από τις κορυφές αυτές προς τις υπόλοιπες κορυφές του γραφήματος. Όμως, τότε οι u,v δε γειτνιάζουν με τις υπόλοιπες κορυφές και αποδείξαμε ήδη πως υπάρχουν 2 μονοπάτια ανάμεσα σε οποιεσδήποτε μη γειτνιάζοντες κορυφές του G. Καταλήγουμε σε άτοπο.)

Έστω $x \in V(G)$ και $(u,x) \in E(G)$, δηλαδή η x είναι γείτονας της u.

Τότε, είτε $(v,x) \in E(G)$, δηλαδή η x είναι γείτονας της v, οπότε έχουμε τα μονοπάτια P1=(u,v) και P2=(u,x,v)

ή η x δε γειτνιάζει με τη v, οπότε υπάρχουν 2 μονοπάτια από τη x στη v (όπως αποδείξαμε παραπάνω) ένα εκ των οποίων σίγουρα δεν περνάει από τη u. Οπότε έχουμε τα μονοπάτια P1=(u,v) και P2=(u,x,...,v).

Βλέπουμε πως σε κάθε περίπτωση υπάρχουν 2 εσωτερικώς διακεκριμένα μονοπάτια ανάμεσα σε 2 τυχαίες κορυφές του G, άρα το G είναι 2-συνεκτικό.

Έστω υπερκύβος Q_n με $n \ge 2$.

Ορίζουμε ορθοκανονικό σύστημα συντεταγμένων η διαστάσεων.

Τότε, κάθε κορυφή $u ∈ Q_n$ έχει συντεταγμένες $(u_1, u_2, ..., u_n)$, όπου $u_i = 0$ ή $u_i = 1$, 1 ≤ i ≤ n.

Κάθε κορυφή υ ενώνεται με μια κορυφή ν ανν διαφέρουν σε ακριβώς μία από τις συντεταγμένες τους.

Προκύπτει πως για κάθε κορυφή $u \in Q_n$, ισχύει d(u) = n, οπότε προφανώς $\delta(Q_n) = n$. Επίσης, ισχύει πως $k(Q_n) \le \delta(Q_n)$.

Θα αποδείξουμε πως για κάθε ζέυγος κορυφών $u,v \in V(Q_n)$ υπάρχουν η εσωτερικώς διακεκριμένα μονοπάτια που τις συνδέουν.

Διακρίνω δύο περιπτώσεις:

α. Οι υ, ν δεν έχουν καμία κοινή συντεταγμένη.

$$\Delta \eta \lambda \alpha \delta \dot{\eta} u = (u_1, u_2, ..., u_n) \kappa \alpha v = (v_1, v_2, ..., v_n) = (u_1', u_2', ..., u_n')$$

Τότε κατασκευάζουμε τα αντίστοιχα μονοπάτια ως εξής:

Για κάθε i, $1 \le i \le n$ και $0 \le j \le n-1$ δημιουργούμε μονοπάτι P_i .

Σε κάθε j βήμα του P_i συμπληρώνουμε τη συντεταγμένη u_{i+i} .

Έτσι, στο πρώτο βήμα του P_i συμπληρώνουμε τη συντεταγμένη u_i , στο δεύτερο τη u_{i+1} κοκ. Οπότε προκύπτει P_i : $(u_1,...,u_i',...,u_n)$, $(u_1,...,u_i',...,u_n)$,..., $(u_1',u_2',...,u_n')$.

Τα η μονοπάτια που προκύπτουν είναι εσωτερικώς διακεκριμένα.

β. Οι υ, ν έχουν τουλάχιστον μία κοινή συντεταγμένη.

Θα το αποδείξουμε με επαγωγή στο μέγεθος η του υπερκύβου Q...

<u>Bάση</u>

Για n=2, για τυχαίες κορυφές u, v \in Q₂ υπάρχουν 2 εσωτερικώς διακεκριμένα μονοπάτια που τις συνδέουν. (Το αποδεικνύουμε εξαντλητικά)

Επαγωγική Υπόθεση

Έστω για $|Q_n|$ = n, για τυχαίες κορυφές u,ν υπάρχουν n εσωτερικώς διακεκριμένα μονοπάτια που τις συνδέουν.

Επαγωγικό Βήμα

Έστω δύο κορυφές $u,v \in V(Q_{n+1})$ οι οποίες έχουν τουλάχιστον μια κοινή συντεταγμένη (από υπόθεση).

Έστω υ, μία κοινή τους συντεταγμένη.

Τότε ορίζουμε τα σύνολα W που περιέχει όλες τις κορυφές w του υπερκύβου με $w_x = u_x$ και Z που περιέχει όλες τις κορυφές z του υπερκύβου με $z_x = u_x$.

Προφανώς u,v ε W.

Για τις κορυφές του W, μπορούμε να αγνοήσουμε τη συντεταγμένη w_x καθώς είναι κοινή για όλες τις κορυφές του συνόλου. Έτσι, προκύπτει πεδίο n συντεταγμένων, δηλαδή υπερκύβος τάξης n.

Από επαγωγική υπόθεση, υπάρχουν η εσωτερικώς διακεκριμένα μονοπάτια από το υ στο ν.

Επιπλέον, δημιουργούμε ακόμη ένα μονοπάτι μέσω του συνόλου Ζ.

Συγκεκριμένα, θεωρούμε πρώτη εσωτερική κορυφή του μονοπατιού P_z την κορυφή $z=(u_1,...,u_x',...,u_n)$ και τελευταία την $z'=(v_1,...,u_x',...,v_n)$. (Το μονοπάτι διατηρεί σταθερή τη συντεταγμένη $z_x=u_x'$). Πάλι από επαγωγική υπόθεση υπάρχουν η εσωτερικώς διακεκριμένα μονοπάτια που συνδέουν τις κορυφές αυτές, αλλά μας αρκεί ένα.

Προφανώς, $(u,z) \in E(Q_{n+1})$ και $(z',v) \in E(Q_{n+1})$. Άρα, έχουμε το μονοπάτι P_z : (u,z,...,z',v).

Οπότε, συνολικά ο υπερκύβος Q_{n+1} έχει n+1 εσωτερικώς διακεκριμένα μονοπάτια.

```
---Τέλος επαγωγής---
```

Από τα παραπάνω αποδεικνύεται πως για την τάξη n, ο υπερκύβος Q_n είναι τουλάχιστον n-συνεκτικός, δηλαδή $k(Q_n) \ge n$.

Επίσης, δείξαμε στην αρχή πως $k(Q_n) ≤ λ(Q_n) ≤ δ(Q_n) = n$.

Τελικά, $k(Q_n) = \lambda(Q_n) = n$ για κάθε n ≥ 2.

Άσκηση 3

Θα αποδείξουμε το ζητούμενο με απαγωγή σε άτοπο.

- Έστω ένα απλό 3-συνεκτικό γράφημα G, τέτοιο ώστε για κάποιο ζεύγος κορυφών $u,v \in V(G)$ να μην υπάρχουν δύο εσωτερικώς διακεκριμένα μονοπάτια από τη u στη v με διαφορετικό μήκος.
- Έστω $P_1(u,v)$, $P_2(u,v)$, $P_3(u,v)$ 3 εσωτερικώς διακεκριμένα μονοπάτια από τη u στη v.
- Τα P_1 , P_2 , P_3 έχουν όλα k ενδιάμεσες κορυφές από υπόθεση. Είναι k > 0 καθώς δε γίνεται σε απλό γράφημα τα u, v να συνδέονται άμεσα με 3 ακμές.
- Για οποιοδήποτε ζεύγος κορυφών $w,z \in V(G)$ υπάρχει μονοπάτι από τη w στη z το οποίο δεν περνάει ούτε από την u, ούτε από τη v. Αυτό συμβαίνει γιατί υπάρχουν z εσωτερικώς διακεκριμένα μονοπάτια από την z στη z.
- Επιλέγουμε τυχαία κορυφή $x \in P_1$ και φτιάχνουμε μονοπάτι P(x,y) προς τυχαία κορυφή $y \in P_2$ τέτοιο ώστε να μην περνάει από τη u ή τη v.
- Ακολουθούμε τη διαδρομή από την x στην y μέσω του P(x,y). Έστω w η τελευταία κορυφή στο P_1 πριν βρούμε την πρώτη κορυφή z ϵ P_2 ή z ϵ P_3 . Χωρίς βλάβη της γενικότητας, θεωρούμε πως z ϵ P_2 .

Τότε, υπάρχει μονοπάτι P(w,z) το οποίο δεν περιέχει στο ενδιάμεσο καμία κορυφή που να ανήκει στα P_1 , P_2 , P_3 (ούτε και τις κορυφές u,v). Έστω ότι το P(w,z) περιέχει c ενδιάμεσες κορυφές (οι οποίες ανήκουν μεν στο G, αλλά σε κανένα από τα P_1 , P_2 , P_3).

- Έστω ότι το μονοπάτι $P_1(u,w)$ περιέχει α ενδιάμεσες κορυφές. Τότε, το μονοπάτι $P_1(w,v)$ θα περιέχει k-a-1 ενδιάμεσες κορυφές (δε μετράμε την w καθώς θεωρείται άκρο στα μονοπάτια αυτής της πρότασης).
- Όμοια, έστω ότι το μονοπάτι $P_2(u,z)$ περιέχει $P_2(u,z)$ περιέχει $P_2(z,v)$ θα P_2
- Το μονοπάτι $P_4(u,v) = P_1(u,w)$ $P_2(u,v) = P_2(z,v)$ θα περιέχει (a) + (c) + (k b 1) + 2 = a+c+k-b+1 ενδιάμεσες κορυφές (το "+2" προέκυψε γιατί μετράμε και τις κορυφές w,z).
- Το μονοπάτι $P_4(u,v)$ είναι εσωτερικώς διακεκριμένο με το $P_3(u,v)$ συνεπώς, από υπόθεση, έχουν ίσο πλήθος ενδιάμεσων κορυφών, δηλαδή a+c+k-b+1 = k ⇔ a+c-b+1 = 0 (1).
- Όμοια, το μονοπάτι $P_5(u,v) = P_2(u,z)$ 。 P(z,w) 。 $P_1(w,v)$ θα περιέχει (b) + (c) + (k a 1) + 2 = b+c+k-a+1 ενδιάμεσες κορυφές.
- Το μονοπάτι $P_5(u,v)$ είναι εσωτερικώς διακεκριμένο με το $P_3(u,v)$ συνεπώς, από υπόθεση, έχουν ίσο πλήθος ενδιάμεσων κορυφών, δηλαδή b+c+k-a+1 = k ⇔ b+c-a+1=0 (2).
- Αθροίζοντας κατά μέλη τις (1),(2) προκύπτει (a+c-b+1) + (b+c-a+1) = 0 \Leftrightarrow c + 1 = 0, που είναι αδύνατο καθώς c ≥ 0.
- Καταλήξαμε σε άτοπο.

Ένα παράδειγμα των παραπάνω είναι το κάτωθι γράφημα.

Το P_1 παρουσιάζεται με κόκκινο χρώμα, το P_2 με μπλε, το P_3 με πράσινο και το P(w,z) με μαύρο.

Στο συγκεκριμένο παράδειγμα, είναι k = 4, a = 1, b = 3, c = 1.

Βλέπουμε πως το μονοπάτι $P_4(u,v) = P_1(u,w)$ 。 P(w,z) 。 $P_2(z,v)$ έχει 4 ενδιάμεσες κορυφές, το $P_5(u,v) = P_2(u,z)$ 。 P(z,w) 。 $P_1(w,v)$ έχει 8 ενδιάμεσες κορυφές και το P_3 4 ενδιάμεσες κορυφές.

Μπορούμε να κατασκευάσουμε ένα τέτοιο συνεκτικό γράφημα πληρώντας δύο προϋποθέσεις.

- 1. Το γράφημα G να περιέχει κύκλο (ώστε να μην είναι δέντρο).
- 2. Να υπάρχουν κορυφές $u,v \in V(G)$ με $(u,v) \in E(G)$ και d(v)=1, δηλαδή η κορυφή v να έχει μοναδικό γείτονα τη u.

Τότε για κάθε άλλη κορυφή $w \in V(G)$ θα ισχύει dist(v,w) = dist(u,w) + 1, καθώς κάθε μονοπάτι από τη v στην w θα περνάει αναγκαία από τη u. Αυτή η σχέση θα ισχύει και σε κάθε σκελετικό δέντρο του G καθώς αυτά παράγονται απλά διαγράφοντας ακμές κατάλληλα. Συνεπώς, ακολουθώντας αυτούς τους κανόνες κάθε σκελετικό δέντρο του G που διατηρεί τις αποστάσεις του από την u, θα διατηρεί τις αποστάσεις του και από τη v.

Εάν θέλουμε συγκεκριμένη κατασκευή για γράφημα G με n κορυφές, μπορούμε να ακολουθήσουμε τα εξής βήματα:

- Φτιάχνουμε κύκλο με 3 κορυφές.
- ii. Σε μία (u) εκ των κορυφών συνδέουμε μια επιπλέον κορυφή (v).
- iii. Σε μία άλλη εκ των κορυφών του κύκλου συνδέουμε το ένα άκρο μονοπατιού P_{n-4} .

Πχ για n=8, έχουμε το κάτωθι γράφημα

<u>Άσκηση 5</u>

Κατασκευάζουμε γράφημα ακολουθώντας τα εξής βήματα.

- i. Φτιάχνουμε κύκλο με t+2-r κορυφές. Σημειώνουμε πως πρέπει t+2- $r \ge 3 \Leftrightarrow t \ge r+1$. (Εάν τυχόν t=r, απλά φτιάχνουμε ένα δέντρο με t=r φύλλα).
- ii. Προσθέτουμε κορυφή c και τη συνδέουμε με όλες τις κορυφές του κύκλου.
- iii. Σε μία από τις κορυφές του κύκλου, συνδέουμε μία νέα κορυφή u.
- iv. Σε μία άλλη από τις κορυφές του κύκλου συνδέουμε r-1 νέες κορυφές.

Το διάγραμμα που προκύπτει είναι το ζητούμενο.

Πχ για r=5, t=10

Σημειώσεις για την κατασκευή:

- Το αρχικό γράφημα έχει r κορυφές με μοναδιαίο βαθμό, συνεπώς κάθε σκελετικό δένδρο θα έχει τουλάχιστον r φύλλα.
- Από γράφημα που κατασκευάστηκε όπως περιγράψαμε, δεν μπορεί να προκύψει σκελετικό δένδρο με περισσότερα από t φύλλα. Συγκεκριμένα, στο σκελετικό με το μέγιστο αριθμό φύλλων, όλες οι κορυφές εκτός από 3 είναι φύλλα. Οι δύο δεν μπορούν να γίνουν φύλλα γιατί στο αρχικό G συνδέονται με κορυφές μοναδιαίου βαθμού και η κορυφή c στο "κέντρο" του αρχικού κύκλου συνεχίζει να συνδέεται με τις άλλες του κύκλου προκειμένου να τους επιτρέψει να γίνουν φύλλα (διατηρώντας πάντα τη συνεκτικότητα).

Άσκηση 6

Στο γράφημα G με n κορυφές υπάρχει περίπατος Euler από την κορυφή u στη v, οπότε ισχύει πως d(u) περιττός και d(v) περιττός.

Aπό υπόθεση d(u) - d(v) ≥ n - 2 \Leftrightarrow d(u) ≥ n - 2 + d(v).

Όμως, όπως σε όλα τα απλά γραφήματα, ισχύει $d(u) \le n - 1$. Άρα $n - 1 \ge n - 2 + d(v) \Leftrightarrow 1 \ge d(v)$ (και προφανώς $d(v) \ge 1$, αφού υπάρχει μονοπάτι προς τη v, δηλαδή δεν είναι απομονωμένη με d(u) = 0). Συνεπώς, d(v) = 1

 Λ oi π óv, $n-1 \ge d(u) \ge n-2+d(v) \Leftrightarrow n-1 \ge d(u) \ge n-1 \Leftrightarrow d(u) = n-1$

Όμως, όπως προαναφέραμε d(u) = n -1 περιττός, οπότε n άρτιος.

Καθ' υπόδειξη του διδάσκοντα, ασχολούμαστε μόνο με συνεκτικά γραφήματα σε ασκήσεις με Euler περιηγήσεις, δηλαδή δεν επιτρέπουμε απομονωμένες κορυφές (κορυφές με μηδενικό βαθμό).

7i. Έστω G γράφημα Euler με 2k+1 κορυφές.

Για καθεμία από τις 2k+1 κορυφή u ∈ V(G) ισχύει πως d(u) ≤ 2k και d(u) άρτιος.

Προφανώς, υπάρχουν k αριθμοί i με $0 < i \le 2k$, άρα k "επιλογές" για το βαθμό κάθε κορυφής και 2k+1 κορυφές.

Εφαρμόζοντας δύο φορές την αρχή του περιστερώνα βλέπουμε πως θα υπάρχει τουλάχιστον ένας βαθμός που θα επαναλαμβάνεται 3 φορές, δηλαδή το γράφημα θα περιέχει τουλάχιστον 3 κορυφές ίδιου βαθμού.

(Σημειώνουμε πως ακόμα και αν επιτρέψουμε απομονωμένες κορυφές, προκύπτει το ίδιο συμπέρασμα, καθώς αν υπάρχει κορυφή u με d(u) = 0, δεν μπορεί να υπάρχει κορυφή v με d(v) = 2k)

7ii. Καταρχάς, θα αποδείξουμε την ύπαρξη του ζητούμενου γραφήματος G κατασκευάζοντας το επαγωγικά ως προς το n = |V(G)|.

Βάση

Βάση 1: n = 3 γραφική ακολουθία s=(2,2,2) Βάση 2: n = 5 γραφική ακολουθία s=(4,4,2,2,2)

Εάν αγνοήσουμε γραφήματα με κορυφές μηδενικού βαθμού, τα παραπάνω γραφήματα είναι μοναδικά.

Επαγωγική Υπόθεση

Έστω πως για $n \ge 3$ υπάρχει γράφημα με τις ζητούμενες προδιαγραφές.

Επαγωγικό Βήμα

Θα κατασκευάσουμε τέτοιο γράφημα Η με n+4 κορυφές.

- i. Αρχικά, κατασκευάζουμε τέτοιο γράφημα G με n κορυφές (μπορούμε από επαγωγική υπόθεση).
- ii. Στη συνέχεια προσθέτουμε 2 κορυφές u_1 , u_2 στο γράφημα, αλλά δεν τις συνδέουμε με καμία κορυφή (για την ώρα $d(u_1) = d(u_2) = 0$)
- iii. Τέλος προσθέτουμε 2 κορυφές v_1 , v_2 στο γράφημα και τις συνδέουμε μεταξύ τους καθώς και καθεμία από αυτές με όλες τις υπόλοιπες κορυφές του γραφήματος (συμπεριλαβανομένων των u_1 , u_2).

Πχ για n=7 (με το γράφημα για n=3 να φαίνεται παραπάνω)

Το τελικό διάγραμμα θα έχει n+4 κορυφές.

Επίσης, κάθε κορυφή που υπήρχε στο G θα αποκτήσει 2 επιπλέον ακμές (λόγω της σύνδεσής της με τις v_1 , v_2) και

οι νέες κορυφές θα έχουν αντίστοιχους βαθμούς $d(u_1) = d(u_2) = 2$, καθώς η καθεμία εκ των u_1 , u_2 συνδέεται μονάχα με τις v_1 , v_2

και $d(v_1) = d(v_2) = n + 3$, καθώς οι v_1 , v_2 συνδέθηκαν μεταξύ τους (1 ακμή) με τις κορυφές του G (n ακμές) και με τις u_1 , u_2 (n ακμές).

Έτσι, εάν η γραφική ακολουθία του G είναι s_G = (n-1, n-1,..., 2, 2) , το H θα έχει γραφική ακολουθία s_H = (n+3, n+3, n+1, n+1,..., 4, 4, 2, 2)

Το Η τηρεί τις προδιαγραφές.

Συνεπώς με αυτή τη διαδικασία μπορούμε να κατασκευάσουμε τέτοιο γράφημα Η με |V(H)| = 3 + 4k ή |V(H)| = 5 + 4k, δηλαδή η πρόταση ισχύει για όλα τα περιττά $n \ge 3$

---Τέλος επαγωγής---

Αποδείξαμε την ύπαρξη οπότε τώρα θα αποδείξουμε τη μοναδικότητα

Καταρχάς, από αρχή του περιστερώνα (όπως στο ερώτημα 7i) προκύπτει πως σε κάθε τέτοιο γράφημα υπάρχουν ακριβώς 3 κορυφές ίδιου βαθμού και ακριβώς 2 κορυφές κάθε άλλου άρτιου βαθμού (εκτός του μηδενικού).

Θα καταστρώσουμε ένα είδος "ανάστροφης" επαγωγής.

Τα γραφήματα για n=3 και n=5 είναι μοναδικά (προκύπτει με εξαντλητικό έλεγχο).

Έστω γράφημα Η με περιττό n = |V(H)| > 5 .

Το Η θα περιέχει υποχρεωτικά δύο κορυφές v_1 , v_2 βαθμού n-1 και δύο κορυφές u_1 , u_2 βαθμού 2.

Οι κορυφές v_1 , v_2 συνδέονται με όλες τις υπόλοιπες (και μεταξύ τους) και οι κορυφές u_1 , u_2 συνδέονται μονάχα με τις v_1 , v_2 .

Έτσι. λόγω γενικότητας οι κορυφές αυτές θα είναι ίδιες σε όλα τα γραφήματα τάξης η (Εννοώντας πως σε δύο γραφήματα τάξης η, οι κορυφές $\,{\rm v_1}$, ${\rm v_2}$ που συνδέονται με όλες τις υπόλοιπες είναι ισοδύναμες και οι κορυφές ${\rm u_1}$, ${\rm u_2}$ συνδέονται μόνο με ισοδύναμες κορυφές, άρα είναι και αυτές ισοδύναμες, καθώς δε θα υπάρχει κανένα διακριτικό στοιχείο των κορυφών αυτών ανάμεσα στα δύο γραφήματα).

Διαγράφοντας αυτές τις 4 κορυφές, προκύπτει γράφημα G με n-4 κορυφές. Επαναλαμβάνουμε τη διαδικασία μέχρι να φτάσουμε το n=3 ή n=5, όπου όπως έχουμε ήδη πει, προκύπτει μοναδικό γράφημα.

Ουσιαστικά, δείξαμε πως η κατασκευή που περιγράφηκε νωρίτερα είναι μοναδική και άρα το αντίστοιχο γράφημα που προκύπτει κάθε φορά είναι μοναδικό (εννοώντας προφανώς ισόμορφο με όλα τα υπόλοιπα ίδιας τάξης).

Άσκηση 8

8ί. Έστω συνεκτικό γράφημα G με τις προδιαγραφές που δίνονται.

Θεωρούμε το $S \subset G$ που περιέχει τις k κορυφές που έχουν βαθμό μεγαλύτερο του 2. Προφανώς, είναι |S| = k

Τότε όμως, διαγράφοντας τις προαναφερθείσες κορυφές απομένουν μόνο k+1 κορυφές που δε γειτνιάζουν μεταξύ τους ανά δύο.

Οπότε cc(G-S) = k+1 > k = |S|, άρα το G δεν είναι Hamiltonian.

8ii. Κατασκευάζουμε γράφημα G με n=2k κορυφές και τις υπόλοιπες προδιαγραφές που δίνονται ως εξής.

- i. Φτιάχνουμε κύκλο με 2k κορυφές, έστω $C_{2k} = (u_1, u_2, ... u_{2k})$.
- ii. Συνδέουμε κάθε κορυφή με άρτια ετικέτα με την επόμενη κορυφή με άρτια ετικέτα. Δηλαδή, για κάθε i με $1 \le i \le k$, $(u_{2i}, u_{2i+2}) \in E(G)$. (Ουσιαστικά μας ενδιαφέρει να προσθέσουμε ακμές σε κάθε δεύτερη κορυφή, δε μας νοιάζει ο ακριβής τρόπος).

Έτσι προκύπτει γράφημα με k κορυφές που έχουν βαθμό 2 και δε γειτνιάζουν ανά δύο μεταξύ τους και k κορυφές με βαθμό 4.

Από κατασκευή (από το βήμα i), υπάρχει κύκλος C_{2k} = $(u_1, u_2, \dots u_{2k})$ που περνάει από όλες τις κορυφές, άρα το G είναι προφανώς Hamiltonian.

Πχ για n=12 έχουμε το κάτωθι

Έστω G διμερές με σύνολα διαμέρισης U, W τ.ω. $|U|=|W|=k \ge 2$ και για κάθε u \in V(G) ισχύει d(u) > k/2.

Θα αποδείξουμε πως το G είναι Hamiltonian με απαγωγή σε άτοπο. (Η απόδειξη είναι ίδιας λογικής με την απόδειξη του θεωρήματος 7.2 [Dirac-1952])

- Έστω G ένα μεγιστοτικό μη-Hamiltonian διμερές γράφημα με τις παραπάνω προδιαγραφές.
- Το G δεν είναι πλήρες διμερές. (Αν ήταν πλήρες διμερές θα υπήρχε σίγουρα κύκλος που περνάει από όλες τις κορυφές εφόσον |U|=|W|=k ≥ 2)
- Έστω $u \in U$ και $w \in W$ δύο μη γειτονικές κορυφές του G.
- Το G \cup (u,w) είναι Hamiltonian γιατί το G είναι μεγιστοτικό διμερές μη-Hamiltonian. Θυμίζουμε πως επειδή υπάρχει διμερές γράφημα που είναι Hamiltonian (το πλήρες διμερές), θα υπάρχει σίγουρα μεγιστοτικό μη-Hamiltonian γράφημα που διατηρεί την ιδιότητα του να είναι διμερές.
- Επειδή το G είναι μη-Hamiltonian, κάθε Hamiltonian κύκλος του G \cup (u,w) περιέχει την ακμή (u,w).
- Έστω (u = u₁ , w₁ , u₂ , w₂ ,..., u_k , w_k = w) ένας Hamiltonian κύκλος του $G \cup (u,w)$.
- Τότε το G έχει Hamiltonian μονοπάτι P: (u_1 , w_1 , u_2 , w_2 ,..., u_k , w_k) με άκρα τις κορυφές u_1 και u_2 .
- Όλοι οι γείτονες των u και w ανήκουν στο P. (Πρόκειται για μονοπάτι Hamilton, οπότε όλες οι κορυφές ανήκουν στο P)
- Υπάρχει κορυφή w_i i ≥ 2 τ.ω. (u , w_i) ϵ E(G) και (u_i , w). Θυμίζουμε πως η w_i είναι η επόμενη της u_i στο μονοπάτι P.

Εάν δεν υπήρχε, τότε για κάθε γείτονα w_i του u θα υπήρχε μια διακριτή κορυφή u_i με την οποία o w δεν θα ήταν άμεσα συνδεδεμένος. Όμως d(u) > k/2 (από υπόθεση), οπότε o w έχει βαθμό $d(w) \le k - d(u) < k - k/2 = k/2$.

Άτοπο, καθώς από υπόθεση d(w) > k/2

- Συνεπώς, ο κύκλος (u = u₁ , w₁ ,..., u_i , w_k , u_k , w_{k-1} ,...,u_{i+1} w_i , u₁) είναι ένας Hamiltonian κύκλος του G.
- Καταλήγουμε σε άτοπο καθώς το G είναι μη-Hamiltonian από υπόθεση.

<u>Άσκηση 10</u>

10i. Έστω δένδρο T με $n \ge 4$ κορυφές και T' το συμπληρωματικό του γράφημα. Έστω ότι το T περιέχει μια κορυφή με βαθμό 2.

Διακρίνουμε δύο περπτώσεις:

α. η περιττός:

Έστω u ένα φύλλο του T (κάθε δένδρο περιέχει τουλάχιστον δύο φύλλα), δηλαδή $d_T(u) = 1$. Τότε $d_{T'}(u) = (n-1) - 1 = n-2$ και επειδή n περιττός, n-2 περιττός.

Οπότε το Τ' περιέχει τουλάχιστον μια κορυφή με περιττό βαθμό, άρα δεν είναι Eulerian.

β. η άρτιος:

Έστω $v \in V(T)$ με d(v) = 2 (υπάρχει τέτοια κορυφή από υπόθεση).

Τότε $d_{T}(v) = (n - 1) - 2 = n - 3$ και επειδή η άρτιος, η-3 περιττός.

Οπότε το Τ' περιέχει τουλάχιστον μια κορυφή με περιττό βαθμό, άρα δεν είναι Eulerian.

Τελικά, σε κάθε περιπτωση, το Τ' δεν είναι γράφημα Euler.

10ii. Έστω δένδρο T με $n \ge 4$ κορυφές και T' το συμπληρωματικό του γράφημα. Έστω ότι το T δεν είναι το $K_{1,n-1}$.

<u>Θα αποδείξουμε πως το Τ' περιέχει Hamilton μονοπάτι με επαγωγή στο n</u>

Βάση

Για n=4, το μόνο δένδρο που δεν είναι το $K_{1,3}$ είναι το P_4 . Το P_4 είναι αυτοσυμπληρωματικό, δηλαδή P_4 ' = P_4 . Προφανώς το P_4 έχει μονοπάτι Hamilton.

Επαγωγική υπόθεση

Έστω πως για $n \ge 4$, για κάθε δένδρο T τάξης n το οποίο δεν είναι το $K_{1,n-1}$, το T' περιέχει μονοπάτι Hamilton.

Επαγωγικό Βήμα

Έστω δένδρο Η τάξης n+1 το οποίο δεν είναι το K_{1,n}.

Επιλέγουμε φύλλο u του H τέτοιο ώστε αφαιρώντας το να μην προκύπτει το $K_{1,n-1}$. Εάν αφαιρώντας το u προκύπτει το $K_{1,n-1}$, αυτό σημαίνει πως στο γράφημα H, όλα τα φύλλα συνδέονται άμεσα σε κοινό γονιό εκτός από το u (αν συνδέονταν όλα συμπεριλαμβανομένου του u σε κοινό γονιό, το H θα ήταν το $K_{1,n}$, το οποίο δεν επιτρέπεται από υπόθεση). Σε αυτή την περίπτωση, απλώς επιλέγουμε άλλο φύλλο.

Αφαιρούμε το φύλλο u και προκύπτει δένδρο T τάξης n το οποίο δεν ειναι το $K_{1,n-1}$, συνεπώς από επαγωγική υπόθεση το T περιέχει μονοπάτι Hamilton P_T με άκρα έστω w,v.

Στο Η' υπάρχει το ίδιο μονοπάτι P_{τ} : (w,...,ν).

Στο H' η κορυφή $u \theta \alpha$ έχει $\beta \alpha \theta \mu \dot{0} d_{\mu'}(u) = ((n+1) - 1) - d_{\mu}(u) = n - 1$.

Επειδή το H' έχει n+1 κορυφές (άρα n κορυφές αν δε μετρήσουμε το ίδιο το u) και το u έχει n-1 ακμές, από αρχή του περιστερώνα, το u θα γειτνιάζει σίγουρα με ένα εκ των w,ν.

Χωρίς βλάβη της γενικότητας, θεωρούμε πως το u γειτνιάζει με το w, οπότε το H' θα περιέχει Hamilton μονοπάτι το (u,w,...,v).