2 Unit Bridging Course - Day 3 Quadratics

Emi Tanaka

A quadratic expression is an expression where it takes a standard form of:

$$ax^2 + bx + c$$

where a, b, c are constants, $a \neq 0$.

For example, the following are quadratics.

- $x^2 + 4x + 4$ (in this case a = 1, b = 4, c = 4)
- ► $2x^2 3x + 1$ (in this case a = 2, b = -3, c = 1) Notice -3x = +(-3)x
- ► $4x^2 9$ (in this case a = 4, b = 0, c = -9)

Notice that in all of them the highest power of x is 2.

Factorising Quadratics

Factorising a quadratic means to find 2 factors that will give you the quadratic when multiplied.

Note: not all quadratic expressions can be factorised.

For example when you factorise

$$x^2 + 2x + 1$$

you get

$$(x+1)(x+1)$$

Factorising Quadratics

To factorise the quadratic, $ax^2 + bx + c$, use the following method:

- 1. Write down $a \times c$ and b taking care to get the signs correct.
- 2. Write down all the factors of $a \times c$.
- 3. Find factors of $a \times c$, r_1 and r_2 which when added together equal b, ie $r_1 + r_2 = b$.
- 4. Replace bx with $r_1x + r_2x$.
- 5. Factorise the first 2 terms and the last 2 terms separately.
- 6. Take out the common factor to finish factorising.

Example

Factorise
$$2x^2 - 3x + 1$$

First find $a \times c$ and b.

$$a \times c = 2 \times 1 = 2$$
 and $b = -3$

The factors of $a \times c$ are

- 2 and 1
- ▶ -2 and -1

Now -2 + (-1) = -3 = b, therefore we will use -2 and -1.

Example continued

Replacing -3x with -2x - x.

$$2x^{2}-3x+1 = 2x^{2}-2x-1x+1$$

$$= 2x(x-1)-(x-1)$$

$$= (x-1)(2x-1)$$

Check by expanding (x-1)(2x-1).

$$(x-1)(2x-1) = 2x^2 - x - 2x + 1$$

= $2x^2 - 3x + 1$

Example

Factorise
$$x^2 + 6x + 9$$
.

Find $a \times c$ and b.

$$a \times c = 1 \times 9 = 9$$
 and $b = 6$

The factors of $a \times c$ are

- ▶ 1 and 9
- ▶ -1 and -9
- ▶ 3 and 3
- ► -3 and -3

Now 3 + 3 = 6 = b, therefore we will use 3 and 3.

Example 2 continued

Replace 6x with 3x + 3x.

$$x^{2} + 6x + 9 = x^{2} + 3x + 3x + 9$$

$$= x(x+3) + 3(x+3)$$

$$= (x+3)(x+3)$$

$$= (x+3)^{2}$$

Check by expanding $(x + 3)^2$.

$$(x+3)(x+3) = x^2 + 3x + 3x + 9$$

= $x^2 + 6x + 9$

Practice Questions

Factorise the following.

1.
$$x^2 + 6x + 8$$

2.
$$n^2 + 3n - 4$$

3.
$$x^2 - 2x - 8$$

4.
$$x^2 - 5x + 6$$

5.
$$x^2 + 6x + 9$$

6.
$$a^2 + 5a + 4$$

7.
$$x^2 - 2x - 24$$

8.
$$2x^2 + 3x + 1$$

9.
$$2n^2-4n+2$$

10.
$$3x^2 - 2x - 1$$

Answers to the practice questions.

1.
$$(x+2)(x+4)$$

2.
$$(n+4)(n-1)$$

3.
$$(x-4)(x+2)$$

4.
$$(x-2)(x-3)$$

5.
$$(x+3)^2$$

6.
$$(a+4)(a+1)$$

7.
$$(x-6)(x+4)$$

8.
$$(2x+1)(x+1)$$

9.
$$2(n-1)(n-1)$$

10.
$$(3x+1)(x-1)$$

Difference of two squares

Notice that

$$(a+b)(a-b) = a^2 - b^2$$
.

From this we can derive a special case of factorisation.

If the quadratic is a square minus a square, such that:

$$a^{2}-b^{2}$$

then we can factorise as follows:

$$a^2 - b^2 = (a+b)(a-b).$$

This is called the difference of two squares method.

Example

Factorise $9x^2 - 16$.

$$9x^2 - 16 = (3x)^2 - 4^2$$

= $(3x + 4)(3x - 4)$

Example

Factorise $4x^2 - 4$.

$$4x^2 - 4 = 4(x^2 - 1)$$

= $4(x + 1)(x - 1)$

Practice Questions

Practice Questions

Factorise the following.

1.
$$x^2 - 4$$

2.
$$4n^2 - 9$$

3.
$$9x^2 - 16$$

4.
$$x^2 - a^2$$

5.
$$a^2b^2-4$$

6.
$$4p^2q^2 - 16$$

Answers to the practice questions.

1.
$$(x+2)(x-2)$$

2.
$$(2n+3)(2n-3)$$

3.
$$(3x+4)(3x-4)$$

4.
$$(x + a)(x - a)$$

5.
$$(ab + 2)(ab - 2)$$

6.
$$4(pq+2)(pq-2)$$