Efficient Online Mechanisms for Dynamic Cloud Resource Provisioning

Shi Weijie

Why Auction?

• Fixed price (supermarket)

	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage	
General Purpose - Current Generation						
m3.medium	1	3	3.75	1 x 4 SSD	\$0.113 per Hour	
m3.large	2	6.5	7.5	1 x 32 SSD	\$0.225 per Hour	
m3.xlarge	4	13	15	2 x 40 SSD	\$0.450 per Hour	
m3.2xlarge	8	.26	30	2 x 80 SSD	\$0.900 per Hour	

Why Auction?

- In cloud market:
 - Fluctuating demand
 - Real-time supply

- Fixed pricing
 - requires accurate estimation

Existing Mechanisms

Amazon Spot Instance

- Wang (Infocom 12)
 - When Cloud Meets eBay: Towards Effective Pricing for Cloud Computing

- Zhang (Infocom 13)
 - (COCA) A Framework for Truthful Online Auctions in Cloud Computing with Heterogeneous User Demands

Existing Mechanisms Wang (Infocom 12)

Existing Mechanisms Wang (Infocom 12)

- One round
 - Repeat the one round auction
 - Inconvenient
 - Uncertainty for users

Existing Mechanisms Wang (Infocom 12)

- Pre-determined VMs
 - Provider can dynamically assemble VMs

Existing Mechanisms Zhang (Infocom 13)

Only one VM type

Users must reveal their departure time

Our Work

 (1) An Online Auction Framework for Dynamic Resource Provisioning in Cloud Computing

• (2) RSMOA: A Revenue and Social Welfare Maximizing Online Auction for Dynamic Cloud Resource Provisioning

Model

- Users' bids: still round-by-round
- XOR bids: several optional bundles
- Example, user n has 2 options:

Valuation: \$5 $b_{n,k}^{(t)}$

3 * VM 3

Valuation: \$4

Model

- Budget: Connects different rounds B_n
- Social welfare = Total valuation
- Performance metrics $\sum_{t,n,k} b_{n,k}^{(t)} y_{n,k}^{(t)}$

Online Problem

What's the difficulty about budget?

```
User A Budget $10 User B Budget $10

Round 1 $10 Round 1 $9

Round 2 $8 Round 2 $1
```

```
Greedy: Round 1 A; Round 2 B. Total valuation $11 Optimal: A. Total valuation $17
```

Lesson Learned

- Do not exhaust users' budgets early!
 - Lose all the opportunities on this user

- But... What if this round is the "Best Opportunity"?
- Classical online problem dilemma

Budget Coefficient

- Original valuation * [Coefficient]
- Remaining budget →0, coefficient →0
- At beginning, coefficient = 1 $(1 x_n^{(t)})$

Update each round

The Online Framework

Algorithm 1 The Online Algorithm Framework A_{online}

```
1: x_n^{(0)} \leftarrow 0, \forall n \in [N]
 2: // Loop for each time slot
 3: for all 1 \le t \le T do
      w_{n,k}^{(t)} = \begin{cases} 0 & \text{if } x_n^{(t-1)} \ge 1\\ b_{n,k}^{(t)} (1 - x_n^{(t-1)}) & \text{otherwise} \end{cases}, \forall n \in [N], k \in [K].
             Run \mathcal{A}_{round}. Let \mathcal{N} be the set of winning users, and
       k_n be the index of their corresponding winning bundle,
      for each winning user n \in \mathcal{N}.
             for all n \in \mathcal{N} do
 6:
                     x_n^{(t)} \leftarrow x_n^{(t-1)} \left( 1 + \frac{b_{n,k_n}^{(t)}}{B_n} \right) + \frac{b_{n,k_n}^{(t)}}{B_n(\gamma - 1)}
            end for
 8:
            for all n \notin \mathcal{N}_n \operatorname{do} x_n^{(t)} \leftarrow x_n^{(t-1)}
10:
             end for
11:
12: end for
13: x_n \leftarrow x_n^{(T)}, \forall n \in [N]
```

One-round & Multi-round

• One round auction A_{round}

- Allocation
 - Combinatorial Optimization
- Payment
 - Incentive compatible (truthful)

Combinatorial Optimization

Algorithm 2 A Primal-Dual Algorithm to Solve One-round Allocation Problem (3)

```
1: \mathcal{N} \leftarrow \emptyset, z_{base} \leftarrow QR \cdot e^{(C_{min}^{(t)} - 1)}
 2: y_{n,k}^{(t)} \leftarrow 0, s_n^{(t)} \leftarrow 0, z_{q,r}^{(t)} \leftarrow 1/A_{q,r}^{(t)}, \forall n \in [N], k \in [K], r \in
        [R], q \in [Q]
 3: while \sum_{r \in [R]} \sum_{q \in [O]} A_{q,r}^{(t)} z_{q,r}^{(t)} < z_{base} \text{ AND } |\mathcal{N}| \neq N \text{ do}
  4: for all n \notin \mathcal{N} do
                     k(n) = \arg\max_{k \in [K]} \{w_{n,k}^{(t)}\}
  6: end for
        n^* = \arg\max_{n \in [N]} \left\{ \frac{w_{n,k(n)}^{(t)}}{\sum_{r \in [R]} \sum_{g \in [Q]} c_{n,k(n)}^{(t)} r_{g} z_{g,r}^{(t)}} \right\}
           y_{n^*,k(n^*)}^{(t)} \leftarrow 1, s_{n^*}^{(t)} \leftarrow w_{n^*,k(n^*)}^{(t)}, \mathcal{N} \leftarrow \mathcal{N} \cup \{n^*\}
              for all r \in [R], q \in [Q] do
  9:
                        z_{q,r}^{(t)} \leftarrow z_{q,r}^{(t)} \cdot z_{base}^{c_{n^*,k(n^*),q,r}^{(t)}/(A_{q,r}^{(t)} - C_{q,r}^{(t)})}
10:
               end for
11: end while
```

VCG Auction

- Calculate the optimal allocation
- Payment rule: opportunity cost
- Guarantees truthfulness

But, allocation: NP-Hard

Fractional VCG

- Relax on $y_{n,k}^{(t)}$
- Allocation: Linear Programming
- Payment: the same rule

But, we cannot offer 0.6 instance of VM!

Randomized Decomposition

- User A User B User C Pr
- 0.3 0.8 0.5

- 1 1 0 0.3
- 0 1 1 0.5
- +
- 0
 0
 0

Linear Decomposition

Scale down by c

- Dynamic Provisioning
- Online setting (budgets)
- Truthful, etc.
- Efficient (competitive ratio)

Model

- Time-invariant valuation
- Continuous time interval
- Terminate at any time

Properties

- Efficient Social welfare & Provider Revenue
- Truthful Time & valuation
- Non-decreasing user utility

	Time t₁	t_2
Val	9	12
Pay	6	7
U	3	5

Opposite Approach

- First work:
 - Allocation User A gets bundle #2
 - Payment User A pays \$10 for #2

- This work:
 - Payment If #1, pays \$3
 - #2, pays \$10
 - #3, pays \$6
 - Allocation Gets #2

Payment Function

Independent of his bid

- Depends on (1) other users' bids
- (2) allocation result

```
\pi_n(\boldsymbol{d}_n,t)
```

Payment Function

• Higher demand, higher price

$$\pi_n(\boldsymbol{d}_n,t) = \int_{x_0}^{x_0+x(\boldsymbol{d}_n)} P(y) dy$$

Allocation

- Customer-first principle
 - Maximize utility for the user
 - The only way to achieve truthfulness

- (1) Calculate payment for all options
- (2) Pick the best one as allocation decision
- Repeat (1)(2) for each user

Price Curve

- Threat-based strategy
- Competitive ratio O(In p)

Future Work

- Allocation of bandwidth
- Different structure of problem

