Tempo: geralmente está diretamente relacionado com a velocidade de operação do processador (nº de operações p/ segundo)

Quantidade de memória: A quantidade de dados que o computador pode guardar na memória RAM

A complexidade pode ser calculada em duas dimensões:

— O(c) 35 - O(log(n))
30 - O(n) © 20 - O(n²) — O(2ⁿ) Figura 3: Crescimento do tempo de execução para diferentes complexidades

A Figura 3 ilustra o crescimento do tempo de execução conforme o tamanho da entrada para cada uma das complexidades listadas.

É possível notar que para a busca em largura

tempo de execução

(BFS), a memória é um problema maior que o

O(n) significa que o tempo de execução cresce linearmente com a entrada.

O(n²) indica que a complexidade é quadrática, isto é, o tempo de execução cresce conforme uma equação do segundo grau com relação ao tamanho da entrada.

O(2ⁿ) é chamada de exponencial, e o tempo de execução cresce exponencialmente em relação ao tamanho da entrada.

O(n!) representa a complexidade fatorial.

A complexidade constante O(1), onde o tempo de execução não depende do tamanho da entrada.

A complexidade logarítmica O(log n), onde o tempo de execução cresce lentamente à medida que a entrada aumenta.

está entre linear e quadrática.

Exemplos de complexidades Em termos de tempo, utiliza-se a notação big-O: O(n), onde n é o tamanho da entrada do algoritmo

Complexidades em relação à memória -

A complexidade alog-linear O(n log n), que

	Profundidade da Árvore	Nós	Tempo	Memória
	2	110	0,11 ms	107 KB
	4	11110	11 ms	10,6 MB
	6	1 milhão	1.1 s	1 GB
	8	100 milhões	2 minutos	103 GB
_	10	10 bilhões	3 horas	10 TB
	12	1 trilhão	13 dias	1 PB
	14	100 trilhões	3,5 anos	99 PB
	16	10 quatrilhões	350 anos	10 EB

Tempo necessário e memória para execução do BFS com diferentes grafos de entrada assumindo 1KB por nó e processamento de 1 milhão de nós por segundo

O desenvolvimento de novos algoritmos são acompanhados por análise de complexidade, uma vez que recursos são finitos

Problema

Complexidade

Computacional

Muitos problemas clássicos são extremamente difíceis de solucionar, e a dificuldade tende a crescer conforme o domínio do problema aumenta

Ex: Resolver este problema é simples comparado a um problema equivalente com 1 milhão de nós

Presented with **xmind**

Complexidade de um Algoritmo