VK analysis Network visualization

Konstantinov D.N.

M05-015a

Part 1. Network Summary

Part 2. Structural Analysis

Part 1. **Network Summary**

Part 2. Structural Analysis

Network Summary

Statistics:

- Nodes 227 (30 deleted)
- Edges 1960
- Average node degree 17.27
- Average clustering coefficient 0.55
- Components 2

Largest:

- Nodes 151
- Edges 1093
- Diameter 8
- Average path length - 3

Smallest:

- Nodes 76
- Edges 867
- Diameter 4
- Average path length – 1.8

Attributes of nodes:

- name
- sex
- city

Network Summary

Degree distribution

- min degree 1
- max degree 55
- not similar to power law

VK graph

MIPT DAFE

Part 1. Network Summary

Part 2. Structural Analysis

Degree/Closeness/Betweenness centralities

Structural Analysis

Top nodes interpretation

Degree centrality	Closeness centrality Betweenness centrality		Pagerank
Паша Чубко	Дима Слесаренко	Дима Слесаренко	Дима Слесаренко
Ольга Борисова	Влад Рыбинцев	Антон Гром	Паша Чубко
Арина Ядринкина	Денис Паршутин	Сергей Шрамов	Арина Ядринкина
Антон Рыбьянов	Александра Верютина	Влад Рыбинцев	Ольга Борисова
Андрей Волков	Антон Гром	Валерия Олинович	Влад Рыбинцев

Node structural similarity

- Used the reverse Cuthill-McKee heuristic
- 3 metrics reveal ~3 clusters

Closest random graph model similar to our network

Assumptions:

- same number of nodes and edges
- $p \approx \langle k \rangle / n$ for random graph (RG)
- $m = \langle k \rangle / 2$ for Barabase-Albert (BA)
- probability parameter for small world preferential attachment is optimized

	ВА	RG	SW	real
nodes	227	227	227	227
edges	1962	1898	2041	1960
<c></c>	0.16	0.08	0.55	0.55
<l></l>	2.16	2.19	2.62	3; 1.8
<k></k>	17.3	16.7	17.9	17.3
D	3	3	5	8; 4

Small world has the best metrics, but still bad...

Probability density function

Barabási-Albert Random graph "Small world"

Part 1. Network Summary

Part 2. Structural Analysis

igraph.community_label_propagation()

modularity = 0.35

k-Clique search

#k-clique

Best results of various community detection algorithms

Thank you for attention