### 15-884: Machine Learning Systems

TinyML

Instructor: Tianqi Chen



### Machine Learning is Getting into Tiny Devices









### Discussions: Why TinyML

 What kinds of machine learning models makes sense on tiny embedded devices

What are the potential challenges

# TinyML System Challenges

### Limited Amount of Resources



Extremely limited memory resources

 Limited instruction set support(e.g. no floating point units)

A Typical Tiny Device

### Limited System Support



- No standard OS support: no files, dlls
- No virtual memory and malloc
- Limited programming languages(usually C)

### Discussions

- How would these challenges impact ML applications
- What are possible ways to resolve these challenges

# Model Quantization

### Why Quantization

- Convert floating point operations to integer operations(usually int8)
- Reduce weight size
- Make use of integer arithmetic

### Symmetric Quantized Representation

Use a pair  $\left(d,s\right)$  to represent the value



### Quantized Arithmetic

#### Effective value bits

Quantize(s): convert to Integer

$$x \to (\text{round}(\text{clip}(x/s, 2^b - 1)), s)$$

**Requantize(s1, s2)**: convert between different scales

$$(d, s_1) \to (\text{round}(\text{clip}(d * s1/s2), 2^b - 1), s_2)$$

**Dequantize(s)**: convert back to floating point

$$(d,s) \to d * s$$

### Multiplications in Symmetric Quantization

usually need higher

amounts of bits to store



# Representing Quantized Model

Attach the scale on the output of each layer



Convert to the integer representation

Full integer pipeline if restricting s to be power of 2



### Discussions

- How can we decide the scale in each layer?
- How to handle re-quantize in a full integer setting

# Calibration: Deciding the Scale of Each Layer

Quantize(s): 
$$x \to (\operatorname{round}(\operatorname{clip}(x/s, 2^b - 1)), s)$$

Two source of errors:

- Rounding error
- Clip by maximum number of bits

Compare and minimize difference between x and Dequantize(Quantize(x, s)) according to data distribution

# Mixed Precision in Integer Inference



### Quantization Aware Training

Fix a global scale, insert simulated quantization into the pipeline to simulate the error obtained due to quantization



simQ(x, s) = Dequantize(Quantize(x, s), s)

### Discussions

- What are other possible integer number representations other than the scale-based quantization?
- How to implement them effectively in embedded settings?
- How to support other neural network operators in full integer setting?

## Beyond 8bit Integer

Change accumulator bits (use i16 instead of i32)

Smaller amount of input bits (use i4, i1)

# Direct Model Compilation Approach

### Ahead of Time Compiler based Approach





- Store weight on flash
- Use SRAM to store intermediate activations

# **AOT Compiler**



**Runtime Execution** 

### Discussion

What are the complications when building a AOT compiler

How to handle memory allocations

### Solving Automation Infra Challenges: uTVM





### Summary

- Tiny ML brings new challenges
- Algorithm approaches to model pruning and quantization
- System approaches to reduce the memory footprint

### Logistics

Informal mid-term check-in (required, deadline April 18)

- Come to one of the office hours to talk about your current progress in the project
- Alternative: send a short email note about your current progress

Guest Lecture next week, separate zoom link, see piazza on thursday