为函数的变形(164)
三、导数的两大特性
a. 条数无第一类间断点(168) b. 复合函数的极限(168) c. 提示见例 3.2.22.(169) d. 导数的介值性(169)
四、Cauchy 中值定理及 L'Hospital 法则
a. 推导中值公式(170) b. 作为函数与导数的关系(172) c. 附: 导数的推广一 广义导数(178)
五、单元练习 3.2
a. 关于函数零值点 (方程根) 的存在唯一性(179) b. 推导新的中值形式(181) c. 提示参考例 3.2.8.(181) d. 微分中值定理的灵活应用(183)
§ 3.3 Taylor 公式
一、证明中值公式
二、用 Taylor 公式证明不等式
三、用 Taylor 公式作导数的中值估计
四、关于界的估计
五、求无穷远处的极限
六、中值点的极限
七、函数方程中的应用
八、Taylor 展开的唯一性问题
九、符号 "O" 与 "o" 的含义和应用
十、单元练习 3.3
a. Taylor 公式及其应用(203) b. 提示参考例 3.3.5.(204) c. 提示参考例 3.3.7.(204)
§ 3.4 不等式与凸函数
一、不等式
a. 利用单调性证明不等式(206) b. 利用微分中值定理证明不等式(207) c. 利用 Taylor 公式证明不等式(208) d. 用求极值的方法证明不等式(208) e. (吉
林大学)(209) f. 利用单调极限证明不等式(209)
二、凸函数
a. 凸函数的几种定义以及它们的关系(211) b. 凸函数的等价描述(213) c. 凸 函数的性质及应用(217)
三、单元练习 3.4
a. 凸函数(224)
§ 3.5 导数的综合应用
一、极值问题