2. RSA

a. Encrypt the message m = 12 with the public key, showing your work.

Computes the encrypted message: $c = m^{(e)} \mod n$

$$c = 12^3 \mod 55 = 23$$

b. Find the unique value $0 \le d < 40$ such that $d * e = 1 \mod 40$

We know that:

$$\phi(n) = (5-1)(11-1) = 40$$

e = 3
Compute d such that ed = 1 mod $\phi(n)$
We can easily compute that d = 27
Check:

ed = 1 mod $\varphi(n)$

3*27 = 81 = 1 mod 40

c. Decrypt the message m = 3 using the private key pair (d, n) as calculated in the previous step, using the modulo trick, showing your work

Decrypted_message =
$$m^(d) \mod n$$

= $3^27 \mod 55 = 27^9 \mod 55$

Using the trick $(a*b) \mod n = [(a \mod n)*(b \mod n)] \mod n$ We can easily calculate the following without calculator

```
27<sup>2</sup> mod 55 = 27 * 27 mod 55 = 14
27<sup>4</sup> mod 55 = (27<sup>2</sup> mod 55 * 27<sup>2</sup> mod 55) mod 55 = 14<sup>2</sup> mod 55 = 31
27<sup>8</sup> mod 55 = (27<sup>4</sup> mod 55 * 27<sup>4</sup> mod 55) mod 55 = 31<sup>2</sup> mod 55 = 26
```

Now we know that: (by plugging 27⁸ mod 55) 27⁹ mod 55 = (27⁸ mod 55 * 27 mod 55) mod 55 = 26*27 mod 55 = 42 Using this method, we avoid to do complicated computations and avoid to store large numbers.