COMBINATIONAL CIRCUITS

LAB 04 REPORT

Task Assigned:

- 1. Analyze the functionality of decoder and multiplexer.
- 2. Design and develop a 2 to 4 decoder in VHDL using Vivado software.
- 3. Design and develop 3 to 8 decoder using 2 of above 2 to 4 decoders.
- 4. Design and develop 8 to 1 multiplexer using the 3 to 8 decoder.
- **5.** Verify the functionality of each of above 3 circuits via a simulation using input combinations as per the numbers in the index number

VHDL Source Codes

01.VHDL Code for 2 to 4 decoder

02.VHDL Code for 3 to 8 decoder

03.VHDL Code for 8 to 1 multiplexer

RTL Analysis Elaborated Design Schematics

01.RTL Schematic for 2 to 4 Decoder

02.RTL Schematic for 3 to 8 Decoder

03.RTL Schematic for 8 to 1 Multiplexer

Timing Diagrams

01. Timing Diagram for 2 to 4 decoder

02.Timing Diagram for 3 to 8 decoder

03. Timing Diagram for 8 to 1 multiplexer

Test Bench Codes

01. Test Bench code for 2 to 4 decoder's simulation

02. Test Bench code for 3 to 8 decoder's simulation

03. Test Bench code for 8 to 1 Multiplexer

Conclusions:

- A decoder converts binary data from n coded inputs to a maximum of 2ⁿ unique outputs. [In this lab 2 to 4 decoder (2²) & a 3 to 8 decoder (2³) is created]
- A multiplexer receives binary data from 2^n lines and connect them to a single output line based on a given n bit selection. [In this lab 8 to 1 multiplexer is created $(2^3 \rightarrow 1)$]
- 3 to 8 decoders can be designed using two 2 to 4 decoders.
- 8 to 1 multiplexer can be designed using a 3 to 8 decoder.
- Functionality of circuits can be verified with a clear visualization using Vivado's simulation process.