

Correction to "Evaporation Rates and Vapor Pressures of the Even-Numbered C₈-C₁₈ Monocarboxylic Acids"

Christopher D. Cappa,* Edward R. Lovejoy, and A. R. Ravishankara

J. Phys. Chem. A 2008, 112 (17), 3959-3964. DOI: 10.1021/jp710586m

The vapor pressure for solid hexadecanoic (palmitic) acid was incorrectly reported in Table 1 as 1.3 (± 0.4) \times 10⁻⁷ Pa. The correct value is 1.3 (± 0.4) \times 10⁻⁶ Pa.

Table 1. Measured Vapor Pressures, Enthalpies, and Entropies of Sublimation or Vaporization for the Monocarboxylic Acids at 298 K

	$p_{\rm S}^{\ 0} \ (298 \ {\rm K}) \ ({\rm Pa})$	$\Delta H_{\mathrm{sub}}^{0} (\mathrm{kJ/mol})$	$\Delta S_{\text{sub}}^{0} \left[J/(\text{mol-K}) \right]$
octanoic acid a (H ₃ C(CH ₂) ₆ COOH)	$2.5 (\pm 0.9) \times 10^{-1}$	113.3 ± 6	272.5 ± 19
decanoic (capric) acid a (H $_3$ C(CH $_2$) $_8$ COOH)	$5.4 (\pm 1.1) \times 10^{-2}$	129.6 ± 5	314.6 ± 15
dodecanoic (lauric) acid a ($H_3C(CH_2)_{10}COOH$)	$2.28 (\pm 0.5) \times 10^{-3}$	147.2 ± 4	347.2 ± 13
tetradecanoic (myristic) acid ^a ($H_3C(CH_2)_{12}COOH$)	$7.0 \ (\pm 2.7) \times 10^{-5}$	168.6 ± 9	390.0 ± 31
hexadecanoic (palmitic) acid ^{a} (H ₃ C(CH ₂) ₁₄ COOH)	$1.3 \ (\pm 0.4) \times 10^{-6}$	193.8 ± 11	441.7 ± 36
octadecanoic (stearic) acid ^a (H ₃ C(CH ₂) ₁₆ COOH)	$9.5 (\pm 3.5) \times 10^{-8}$	204.1 ± 9	454.2 ± 31
octadecenoic (oleic) $\operatorname{acid}^b(H_3C(CH_2)_8 = (CH_2)_8COOH)$	$1.9 \ (\pm 0.9) \times 10^{-6}$	135.6 ± 3	248.9 ± 8

^aSolid phase. ^bLiquid phase.