

Master Degree course in Data Science and Engineering

Master Degree Thesis

Deploying Deep Learning on FPGA: an assessment of ConvNets performance on Xilinx Zynq MPSoC using Vitis-AI development platform

Supervisors
Prof. Andrea Calimera
Dr. Roberto Giorgio Rizzo

CandidateGabriele Cuni

OBJECTIVE

The aim of my thesis was the deployment of deep neural network algorithms on a Field-Programmable Gate Array also known as FPGA

Making a deployment flow by using Xilinx Vitis AI and PYNQ and assess the capability of the tools.

To assess the accuracy and inference throughput of the models deployed on the Zynq UltraScale+ MPSoc

OUTLINE

- Introduction
- Background & Assessment
 - State-of-the-art CNN MobileNet
 - Xillinx Vitis Al
 - HW Setup: Zynq UltraScale+ MPSoc
 - CNN Deployment Flow
- Experimental Results

OUTLINE

- Introduction
- Background & Assessment
 - State-of-the-art CNN MobileNet
 - Xillinx Vitis Al
 - HW Setup: Zynq UltraScale+ MPSoc
 - CNN Deployment Flow
- Experimental Results

INTRODUCTION - Context

EDGE

Intelligence

Nowadays **Edge Intelligence** has received significant research attention for a wide range of application scenarios, such as **smart cities** and **Internet of Vehicles**

Deep Neural Networks integrated in **embedded** devices are the enabling software to bring intelligence to the edge.

Field-Programmable Gate Arrays are an excellent hardware component for the implementation of **DNNs** on the edge, thanks to their high **parallelism**, energy **efficiency** and **flexibility**.

FPGAs are more energy efficient than GPUs.

Energy consumption is a fundamental constraint in embedded systems.

FPGAs have high customization potential as they are a configurable hardware accelerator cable to satisfy very different design constraints.

ASICs are also energy efficient with high performances, but they are complex to design and they have high access costs.

INTRODUCTION - Challenges

QUANTIZATION

DNN needs to be quantized in order to be deploy on the FPGA that works with fixed-point 8-Bit values.

Quantization techniques can lead to accuracy loss.

The greatest challenge is due to the lack of widespread tools for implementing deep learning on FPGAs.

Major deep learning frameworks do not offer standard deployment flow for FPGAs.

There is not an extensive literature available that directly concerns the analysis and creation of a stable flow for the implementation of deep neural networks on FPGAs.

OUTLINE

- Introduction
- Background & Assessment
 - State-of-the-art CNN MobileNet
 - Xillinx Vitis Al
 - HW Setup: Zynq UltraScale+ MPSoc
 - CNN Deployment Flow
- Experimental Results

Depthwise convolution

Pointwise convolution

Computational cost

$$D_K \cdot D_K \cdot \alpha M \cdot \rho D_F \cdot \rho D_F + \alpha M \cdot \alpha N \cdot \rho D_F \cdot \rho D_F$$

The MobileNet is an efficient CNN, which is designed for the image recognition task.

The main purpose of the model is to be flexible, small and fast.

Width Multiplier: The role of the width multiplier is to thin a network uniformly at each layer by varying the number of input and output channel.

Resolution Multiplier: It is the input image size, therefore the internal representation of every layer is subsequently reduced accordingly.

BACKGROUND - Xilinx Vitis Al

Data Science and Data Engineering layers.

Models can be made or imported from any standard frameworks.

Ready to be used models can also be taken from the Vitis AI model Zoo

BACKGROUND - Xilinx Vitis Al

The Vitis AI development kit is the set of **tools** and **libraries** given by Xilinx in order to deploy **DNN** on the Xilinx devices.

BACKGROUND - Xilinx Vitis Al

The overlay is the hardware representation of the DNN that in Xilinx is called DPU.

CPU Arm Cortex-A53

Pre-processing

CNN Inference

Operating System

Jupyter

PYNQ

Linux Kernel

HW Components

2 GB DDR4 RAM
16nm FinFET+ FPGA
Arm Cortex-A53
Arm Cortex-R5

DisplayPort v1.2a

USB 3.0

SATA 3.1

PCIe 1.0/2.0

ASSESSMENT - DNN Deployment Flow

The proposed deployment flow

OUTLINE

- Introduction
- Background & Assessment
 - State-of-the-art CNN MobileNet
 - Xillinx Vitis Al
 - HW Setup: Zynq UltraScale+ MPSoc
 - CNN Deployment Flow
- Experimental Results

EXPERIMENTAL RESULTS - DPU conf. B4096

The B4096 is the DPU with the most hardware resources

Fastest Topology:

MobileNet (0.25, 128)

FPS: 61

Acc: 39.5 %

Most Accurate Topology:

MobileNet (1.0, 224)

FPS: 38

Acc: 70.1 %

EXPERIMENTAL RESULTS - DPU conf. B512

The B512 is the DPU with the fewest hardware resources

Fastest Topology:

MobileNet (0.25, 128)

FPS: 60

Acc: 39.5 %

Most Accurate Topology:

MobileNet (1.0, 224)

FPS: 26

Acc: 70.1 %

EXPERIMENTAL RESULTS - Lookup Table Analysis

FPS in relation to the number of lookup tables available to each DPU

LUT

B4096: 102319

B3136: 87435

B2304: 78380

B1600: 70699

B1152: 61818

B1024: 63380

B800: 56357

B512: 51371

- the least accurate
- the most accurate

CONCLUSIONS

The accelerated implementation of the MobileNets on the FPGA has got excellent performance on all the DPU configurations.

The results has shown a high throughput, which is compatible with real-time edge applications, even on the smallest available FPGA architecture.

Therefore, it can be said that the deployment of deep neural networks on FPGA is an excellent design choice, although it is necessary to be very careful in the quantization phase to avoid excessive accuracy reduction of the models.

Future works

Pre-processing

Pre-processing FPGA

Classification

Thankyou

	LUT	LUTasMem	REG	BRAM	URAM	DSP
B4096	102319	11355	195936	168	92	1380
B3136	87435	7676	157763	146	84	1096
B2304	78380	6663	136841	124	76	844
B1600	70699	5744	116418	102	68	624
B1152	61818	5108	92833	36	76	424
B1024	63380	4832	94259	90	30	436
B800	56357	4428	80137	30	68	314
B512	51371	3740	67278	26	30	220

FPS

