PROBABILITY DISTRIBUTION

1. Random Variable:

A variable used to denote the numerical value of the outcome of an experiment is called the random variable, abbreviated as r.v. A random variable is denoted by capital letters X, Y, Z, and its values are denoted by $x_1, x_2, ... y_1, y_2, ... z_1, z_2, ...$ etc.

2. Discrete Random Variable:

Definition : A random variable is called a **discrete random variable** if it takes discrete (distinct) values $x_1, x_2, ... x_n ... in (a, b)$.

3. Probability Distribution Of A discrete Random Variable:

Definition: Let X be a **discrete random variable**. Let $x_1, x_2, ... x_n$... be the possible values of X. with each possible outcome x_i we associate a number $p(x_i) = p(X = x_i) = p_i$ called the Probability of x_i . The numbers $p(x_i)$, i = 1, 2, ... n ... must satisfy the following conditions:

1.
$$p(x_i) \ge 0$$
 for all i

2.
$$\sum_{i=1}^{n} p(x_i) = 1.$$

The function p is called the **probability function** or **probability mass function (p.m.f.)** or **probability density function (p.d.f.)** of the random variable X and the set of pairs (x_i, p_i) is called the probability distribution of X.

The probability distribution of a discrete random variable X taking values $x_1, x_2, x_3 \dots x_n$ with probabilities $p_1, p_2, p_3 \dots p_n \dots where p_1 \ge 0$ and $\sum p_i = 1$ can be given in tabular form as.

Х	x_1	x_2	<i>x</i> ₃	<i>x</i> _n
$P(X=x_i)$	p_1	p_2	<i>p</i> ₃	p_n

4. Probability Distribution of a Function Of A Random Variable X:

Let X be a r.v. taking values $x_1, x_2, ... x_n$ with probabilities $p_1, p_2 ... p_n$.

Let Y = g(X) be a function of X. Then when X take values $x_1, x_2 \dots x_n$ with probabilities $p_1, p_2 \dots p_n$. Y will take value $g(x_1), g(x_2), \dots g(x_n)$ with probabilities $p_1, p_2 \dots p_n$. Hence, we get the probabilities of y_i , $p(Y = y_i) = p_i$ for i= 1,2, ... n where $p_i = p(X = x_i)$

However, it may happen that the function Y = g(X) is such that several values of X lead to the same value of Y. Suppose $X = x_1, x_2, x_3$ lead the same value of $Y = y_k$ say i.e. $y_k = g(x_1) = g(x_2) = g(x_3) =$ Then, by the theorem of addition of probabilities we have

$$p(Y = y_k) = p(X = x_1) + p(X = x_2) + p(X = x_3)...$$

5. Distribution Function of A Discrete Random Variable X:

Suppose, X is a random variable taking values $x_1, x_2 \dots x_n$ with probabilities $p(x_i), i = 1, 2, \dots n \dots$ such that

(i)
$$p(x_i) \ge 0$$
 for all i,

(ii)
$$\sum p(x_i) = 1$$

and consider the following table.

X	x_1	x_2	<i>x</i> ₃	<i>x</i> _n
$F(x_i) = F(X = x_i)$	$P(x_1)$	$\sum_{1}^{2} P(x_i)$	$\sum_{i=1}^{3} P(x_i)$	$\sum_{i=1}^{n} P(x_i)$

The function F is called the distribution function.

Definition: Let X be a discrete random variable taking values x_1, x_2, \dots such that $x_1 < x_2 < x_3 \dots$ with probabilities $P(x_1), P(x_2), \dots$ such that $P(x_i) \ge 0$ for all i and $\sum P(x_i) = 1$.

Consider F defined by $F(x_i) = P(X \le x_i)$, i = 1,2,3,...

i.e.
$$F(x_i) = P(x_1) + P(x_2) + \dots + P(x_i)$$

then the function F is called the **cumulative distribution function or simply distribution function** and the set of pairs $\{x_i, F(x_i)\}$ is called the **cumulative probability distribution.**

Properties of Distribution function:

The distribution function F of a random variable X has the following properties.

- **1.** $0 \le F(x) \le 1$
- **2.** F(x) = 0 for x < a and F(x) = 1 for x > b where $a < x_1 < x_2 < \cdots < x_n < b$.
- **3.** F(x) is a step function

6. Continuous Random Variable:

Definition: A random variable is called a **continuous random variable** if it takes all values between an interval (a, b).

For example, age, height, weight are continuous random variables.

7. Probability Density Function Of A Continuous Random Variable:

Let y=f(x) be a continuous function of x such that the area f(x) δx represents the probability that X will lie in the interval $\left(x-\frac{\delta x}{2},x+\frac{\delta x}{2}\right)$. Symbolically, $P\left(x-\frac{\delta x}{2}\leq X\leq x+\frac{\delta x}{2}\right)=f_x(x)\delta x$

Where, $f_x(x)$ denotes the value of f (x) at x.

The adjoining figure denotes the curve y=f(x) and the area under the curve in the interval $\left(x-\frac{\delta x}{2},x+\frac{\delta x}{2}\right)$

The function satisfying certain conditions giving the probability that X will lie between certain limits is called **Probability density function**, or simply density function of a continuous random variable X and is abbreviated as p.d.f.

The curve given by y = f(x) is called the **probability density curve** or simply **probability curve**. The expression f(x)dx is usually denoted by df(x) and is known as **probability differential** **Definition:** A continuous function y = f(x) such that

- (i) f(x) is integrable. (ii) $f(x) \ge 0$ (iii) $\int_a^b f(x) dx = 1$ if X lies in [a, b] and
- (iv) $\int_{\alpha}^{\beta} f(x) dx = P(\alpha \le X \le \beta)$ where $\alpha < \alpha < \beta < b$ is called **probability desnity function** of a continuous random variable X.

Properties Of Probability Density Function:

The probability density function f(x) has the following properties

- (i) $f(x) \ge 0, -\infty < x < \infty$ (i.e. the curve y = f(x) lies above the x – axis in the first and second quadrants only)
- (ii) $\int_{-\infty}^{\infty} f(x) dx = 1$ (i.e. the total area under the curve and the x axis is one).
- (iii) The probability that $\alpha \le X \le \beta$ is given by $P(\alpha \le X \le \beta) = \int_{\alpha}^{\beta} f(x) dx$

Remark: You know that for discrete random variable the probability at X=C may not be zero. But, in a continuous random variable P(X=C) is always zero because $P(X=C)=\int_{C}^{C}f(x)dx$ and this definite integral is zero. Hence, for a continuous random variable X $P(\alpha \leq X \leq \beta) = P(\alpha < X < \beta) = P(\alpha < X \leq \beta) = P(\alpha \leq X \leq \beta)$

In other words we may include or may not include the end points in the interval.

8. Continuous Distribution Function:

Probability distribution of X or the probability density function of X helps us to find the probability that X will be within a given interval [a,b] i. e. $P(a \le X \le b) = \int_a^b f(x) dx$, other conditions being satisfied. However, sometimes we need to know that probability that X will be less that a given value x. For a continuous random variable X, this probability is obtained by integrating f(x) from $-\infty$ (or the lower limit of the interval) to x. The function so obtained is called distribution function.

Definition : If X is a continuous random variable X, having the probability density function f(x) then the function $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt, -\infty < x < \infty$ is called **distribution function** or **cumulative distribution function** of the random variable X.

Properties of Distribution Function F(x) of a Continuous Random Variable

- **1.** The function F(x) is defined for every real number x.
- **2.** Since F(x) denotes probability and probability of X lies between 0 and 1, $0 \le F(x) \le 1$.
- **3.** F(x) is a non decreasing function which means if $x_1 \le x_2$, $F(x_1) \le F(x_2)$.
- **4.** The derivative of F(x) is equal to the probability density function f(x) $F'(x) = \frac{d}{dx}F(x) = f(x) \ge 0$ provided the derivative exists.

5. If F (x) is a distribution function of a continuous random variable then $P(a \le X \le b) = F(b) - F(a)$.

9. Expectation of a Random Variable:

Definition: If a discrete random variable X assumes values $x_1, x_2 \dots x_n \dots$ with probability $P_1, P_2 \dots P_n \dots$ respectively then the mathematical expectation of X denoted by E (x) (if it exists) is defined by

$$E(X) = P_1 X_1 + P_2 X_2 + \dots + P_n X_n \dots \dots = \sum P_i X_i$$
 where $\sum P_i = 1$.

if $\sum P_i X_I$ is absolutely convergent. This value is also referred to as **mean** value of X.

Definition: Let X be a continuous random variable with probability density function f(x). Then the mathematical expectation of X, denoted by E(X) (if it exists), is defined by

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
 where, $\int_{-\infty}^{\infty} f(x) dx = 1$

if the integral is absolutely convergent.

10. Expectation of a Function of a Random Variable X:

Definition: Let X be a discrete random variable taking values $x_1, x_2, ... x_n$ with probabilities $P_1, P_2 ... P_n$ and g(X) be a function of X then mathematical expectation of g(X) (if it exists) is defined by $E[g(X)] = \sum P_i g(x_i)$

Definition: Let X be a continuous random variable with p.d.f. (x),let g(X) be a function such that g(X) is a random variable then E[g(X)] (if it exists) is defined by, $E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$

11. Laws of Expectation:

- **1.** If X is a discrete random variable such that $x_i \ge 0$ for all i, then $E(X) \ge 0$
- 2. If X is a discrete (or continuous) random variable, a and b are constants then E(aX + b) = aE(X) + b
- **3.** Putting a = 0. E(b) = b i.e. expectation of a constant is the constant itself.
- **4.** Putting b = 0. E(ax) = aE(X) i.e. for calculations the constant can be taken out.
- **5.** Putting $a = 1, b = -\bar{X}$, $E(X \bar{X}) = 0$.
- **Theorem of Addition:** The expectation of the sum (or difference) of two (discrete or continuous) variates is equal to the sum (or difference) of their expectations. In symbols, $E(X \pm Y) = E(X) \pm (Y)$
- 7. Theorem of Multiplication: The expectation of the product of two independent variates (discrete or continuous) is equal to the product of their expectations if the expectation exist. In symbols, E(XY) = E(X). E(Y)

Note: It should be noted that the converse of the above theorem is not. If E(XY) = E(X). E(Y) then it does not mean that X, Y are independent.

14. Mean, Variance And Other Measures:

(a) Arithmetic Mean:

$$\begin{array}{ll} \mu_1' = & \text{Mean} = \operatorname{E}(\operatorname{X}) = \sum P_i x_i \ \ \text{or} \ \ \mu_1' = \ \int_{-\infty}^{\infty} x f(x) dx \\ \\ \text{We then find} \qquad \mu_2' = E(X^2) = \sum P_i x_i^2 \ \ \text{or} \ \ \mu_2' = \int_{-\infty}^{\infty} x^2 f(x) dx \end{array}$$

(b) Variance:

$$\begin{aligned} \text{Var (X)} &= E(X - \bar{X})^2 \\ &= E[X - E(X)]^2 = E[X^2 - 2XE(X) + \{E(X)\}^2] \\ &= E(X^2) - 2E(X).E(X) + [E(X)]^2 \\ \text{Var (X)} &= E\big(X^2\big) - [E(X)]^2 \\ \text{But } E(X^2) &= \mu_2' \ \ and \ \ E(X) = \mu_1' \\ &\therefore \text{Var (X)} &= \mu_2' - {\mu_1'}^2 \end{aligned}$$

Properties of Variance:

- **1.** Variance of a constant is zero, V(C) = 0.
- 2. If X is a random variate and a, b are constants then $V(aX + b) = a^2V(X)$
- $3. \qquad V(aX) = a^2V(X)$
- $4. \qquad V(X+b)=V(X)$

Note: Note that although E(aX+b)=aE(X)+b we do not have V(aX+b)=aV(X)+b. Instead, we have $V(aX+b)=a^2V(X)$.

5. $V(a_1X_1 + a_2X_2) = a_1^2V(X_1) + a_2^2V(X_2)$ Where X_1 and X_2 are independent random variates.

6. If
$$a_1=1, a_2=1$$
, we get $V(X_1+X_2)=V(X_1)+V(X_2)$ & If $a_1=1, a_2=-1$, we get $V(X_1-X_2)=V(X_1)+V(X_2)$

(c) Median:

Since the median is the size of the item which lies at the middle, for a continuous distribution the median M divides the area under the curve from x = a to x = b in to two equal parts.

Thus, if M is the median then $\int_a^M f(x) dx = \int_M^b f(x) dx = \frac{1}{2}$

Thus, by solving any one of the equations $\int_a^M f(x) dx = \frac{1}{2}$, $\int_M^b f(x) dx = \frac{1}{2}$ We can get the median M.

(d) Mode:

Since mode is the size of the item having maximum frequency, using the theory of maxima, mode is obtained by solving the equation $\frac{dy}{dx}=0$ i.e. f'(x)=0 with the condition that $\frac{d^2y}{dx^2}<0$ i.e. f''(x)<0 and that x lies in the interval [a,b] of X.

15. Covariance:

Definition: If X and Y are discrete random variates then the covariance between them denoted by cov(X,Y) is defined by $cov(X,Y) = E[\{X - E(X)\}, \{Y - E(Y)\}]$