Scott Cole

<u>scott.cole0@gmail.com</u>

https://srcole.github.io

Skills

- Python (pandas, sklearn, numpy, scipy, seaborn, matplotlib, dash), SQL, R, MATLAB, Tableau
- Signal processing, machine learning, data processing, data visualization, statistics, simulation
- Technical writing and presentations
- Teaching academic tutor, teaching assistant, and guest lecturer

Work experience

Data science intern - Crime Lab New York

Sep-Dec 2017

- Expanded upon and built a variety of machine learning models to predict future police misconduct
- Designed a highly adaptable workflow to easily compare potential algorithms and baselines
- Mined the database of officer behavior to uncover systematic differences between individual police districts and sergeants

Education

Ph.D. Candidate in Neuroscience	GPA: 3.9	2014 - 2018 (Dec)
University of California, San Diego		La Jolla, CA
B.S. in Bioengineering, signal processing focus, math minor	GPA: 4.0	2010 - 2014
Clemson University		Clemson, SC

Graduate research

- Developed, tested, and applied a novel time series analysis to extract information about brain activity from neural signals
- Presented research at international meetings including several posters, 2 talks, and 1 organized symposium
- Mentored 4 PhD rotation students (3 months each) and 3 undergraduate researchers (1-2 years each)
 - Guided projects, acquired funding, and taught signal processing, programming, and neuroscience

Publications

- 1. Cole SR, Voytek B. (2018) Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns. bioRxiv.
- 2. Cole SR, Voytek B. (2018) Cycle by cycle analysis of neural oscillations. bioRxiv.
- 3. **Cole SR**, van der Meij R, Peterson EJ, de Hemptinne C, Starr P, Voytek B. (2017) Nonsinusoidal oscillations underlie pathological phase-amplitude coupling in the motor cortex in Parkinson's disease. *Journal of Neuroscience*
- 4. Cole SR, Voytek B. (2017) Brain oscillations and the importance of waveform shape. Trends in Cognitive Sciences

Code sharing

- Main developer of 3 open-source python packages for analyzing brain rhythms (bycycle, neurodsp, & pacpy)
 - Collaboratively developed on GitHub, released on PyPI, documented with Sphinx, and gave tutorials
- Released the code necessary to replicate the analysis and figures in all publications
- Wrote a tutorial for supercomputing with Python, which was featured by and and presented to the Open Science Grid

Personal data science projects (see more at https://srcole.github.io/dataprojects/)

- **Burritos**: Developed a system to systematically judge 350+ burritos at 75+ taco shops. Characterized and analyzed patterns in data. Work featured by the San Diego Union-Tribune and the Partially Derivative podcast.
- **Currency exchange**: Scraped historical data, engineered features, implemented machine learning algorithms to predict the Euro-Dollar exchange rate, evaluated efficacy of trading strategies, and met with traders at FXCM.
- **Neuroscience poster popularity**: Designed an efficient data collection system for evaluating the popularity of posters at the Society for Neuroscience 2016 conference. Identified variance in popularity explained by geography and subfield.

Awards

Frontiers of Innovation Scholars Program - University of California, San Diego	2017
National Science Foundation Graduate Research Fellowship	2014-2017
Poly-Med Outstanding Senior Award - Clemson University Bioengineering Department	2014
Barry M. Goldwater Scholarship	2013
1st Place Undergraduate Oral Presentation - Society for Biomaterials Symposium, Clemson University	2012