Overview

- Assumptions:
 1. Raw files are in correct format. No need to check.
- 2. Use of PostgreSQL database
- Standardized columns along
 And L1 schema.
 Power BI dashboard will be
- set for daily sync for updates

Interesting datasets:

Will create own dataset with dummy values in banking.

Key Questions:

1. What kind of problem are you looking for?

Ans. In the area of social media

s. banking.

2. What kind of models are you looking to apply?
Ans. Online models so it makes

DB. We can try a bunch of ML

3. How does Postgres functions or ops come into play?

Ans. We will store customer info in different tables. PG can be used for joins & computations.

Idea

Data Banking data

- Dashboard
 1. Credit risk analysis
 2. Loan performance
- 3 NPA
- NPA
 Customer Insights
 Executive summary and trends

- Credit risk score distribution
 High Risk customers
- Delinquency rates
 Risk score by industry
 Geographical distribution
 Risk trend MoM

Loan Performance Dashboard 1. Loan by types 2. Loan by amount

- 3. Default rates by loan types
 4. Top borrowers
 5. Return on Assets by loan types

- 6. Loans by tenures

- . NPA by default period . Customers reponsible for NPA

Customer Insights Dashboard 1. Breakdown by demographics 2. Breakdown by income levels

- Breakdown by loan preference
 Enrollemnt/dis-enrollment count
 Credit Utilization ratios

- Customers with potential up-selling

- c. Revenue d. Profit Margins

- . Credit exposure . Capital Adequacy Ratio . Loan breakdown by

- Operating expenses

- . Year . Month
- 2. Month
 3. Regions (States)
 4. Customer ID
 5. Industry
 6. Customer type

- 7. Credit Type 8. Loan Type 9. Loan Tenure

L2 Schema

credit risk

- .. customer_id .. <u>risk_score</u> -> Regression 3. industry

- 3. industry
 4. geography
 5. deliquency status
 6. month
 7. year
 8. customer_type
 9. credit_type

- 1. loan_id

- 1. loan_lo
 2. loan_type
 3. loan_amount
 4. ongoing_interest_rate
 5. borrower_id [<---> customer_id]
 6. loan_tenure
 7. loan_start_date
- 8. loan end date

- 9. month 10. year 11. default_flag 12. risk score

customer

- 1. customer_id 2. age 3. gender
- 4. income level
- 5. geography 6. month
- 7. vear

enrollment_status

- 1. month 2. year

- 2. year
 3. geography
 4. age
 5. gender
 6. income_level
 7. industry
 8. customer_type
- 9. count_of_new_enrollment 10. count_of_diserollment

risk_score -- Regression borrower_id = customer_id cusomer_id, month, year -- PK for *customer* table one cusomer can have one type and industry

Assumptions