• Question 1:

(a)
$$a=-1, b=1, h=0.5, n=(b-a)/h=4.$$
 $x_0=a=-1, x_1=-0.5, x_2=0, x_3=0.5, x_4=1.$ $f(x_0)=4.5, f(x_1)=0.8125, f(x_2)=0.5, f(x_3)=1.3125, f(x_4)=8.5.$ Use $I\approx \frac{h}{3}\left[f(x_0)+4f(x_1)+f(x_2)\right]+\frac{h}{3}\left[f(x_2)+4f(x_3)+f(x_4)\right]$ or $I\approx (b-a)\frac{f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4)}{6}$ we get $I\approx 3.75.$

(b) Method 1:

$$\int_{-1}^{1} f(x)dx = 90.5x + \frac{x^3}{3} + \frac{1}{2}x^4 + x^5)|_{-1}^{1} = 3.67$$
Truncation error is $3.67 - 3.75 = -0.08$ (or 0.08).

Method 2:

$$n=4$$
, 2-applications of Simpson's 1/3 rule. Total truncation error is $E_t=-2\times\frac{1}{90}h^5f^{(4)}(\xi)$ $f'(x)=2x+6x^2+20x^3, \ f''(x)=2+12x+60x^2, \ f^{(3)}(x)=12+120x, \ \text{and} \ f^{(4)}(x)=120.$ Truncation error $=-2\times\frac{1}{90}0.5^5\times120=-0.08.$

(c) Let n (even) be the total number of segments. Then n/2 be the number of Simpson's 1/3 rules used, and h=(b-a)/n=2/n. Then the truncation error is $E_t=-\frac{n}{2}\times\frac{1}{90}h^5f^{(4)}(\xi)$. Since n=2/h and $f^{(4)}(\xi)=120$, $E_t=-\frac{120}{90}h^4$, and relative error is $\frac{4h^4}{3\times 3.67}<10^{-5}$, then h<0.0724, and n>27.6. Therefore, n=28.

• Question 2:

(a)
$$y_p = Ax + B$$
, $y_p' = A$. From $y_p' = 2 - 3x - 4y$, we have $A = 2 - 3x - 4Ax - 4B$. Then $A = 2 - 4B$, and $0 = -3 - 4A$. Then $A = -0.75$, and $B = 0.6875$ $y_h = Ce^{-4x}$, and $y = y_p + y_h = -0.75x + 0.6875 + Ce^{-4x}$. When $x = 0$, $1 = 0.6875 + C$. Then $C = 0.3125$.

(b)
$$x_0 = 0$$
, $y_0 = 1$, and $h = 0.2$.
 $x_1 = 0.2$, $y_1 = y_0 + f(x_0, y_0)h = 1 + (2 - 4) \times 0.2 = 0.6$
 $x_2 = 0.4$, $y_2 = y_2 + f(x_1, y_1)h = 0.6 + (2 - 3 \times 0.2 - 4 \times 0.6) \times 0.2 = 0.4$

(c) Based on part (a), when x = 0.4, y = 0.4506. Therefore, truncation error is .0505 (or 11.2%)

• Question 3:

(a)
$$f(x) = 3\cos(3x - 2)$$
, $f'(x) = -9\sin(3x - 2)$, and $f''(x) = -27\cos(3x - 2)$. $x_{k+1} = x_k - \frac{-9\sin(3x_k - 2)}{-27\cos(3x_k - 2)} = x_k - \frac{\sin(3x_k - 2)}{3\cos(3x_k - 2)}$. $x_0 = 1$, $x_1 = 0.4809$, $e_a = 108\%$; $x_2 = 0.6886$, $e_a = 30.16\%$; $x_3 = 0.6666$, $e_a = 3\%x_4 = 0.6667$, $e_a = 0.01\%$.

(b) $f''(x) = -27\cos(3x - 2) = -27\cos(3 \times 0.6667 - 2) = -27 < 0$, local maximum.

(c)
$$0.618^n \times (1-0) \le 0.0001, n \ge 20$$
.

• Question 4:

(a)
$$\min S_r = \min \sum_{i=1}^n e_i^2 = \min \sum_{i=1}^n (\alpha \sin(2x_i) - y_i)^2$$
.
$$\frac{dS_r}{d\alpha} = 2 \sum_{i=1}^n (\alpha \sin(2x_i) - y_i) \sin(2x_i) = 0$$
$$\alpha = \frac{\sum_{i=1}^n \sin(2x_i)y_i}{\sum_{i=1}^n (\sin(2x_i))^2}$$

(b)
$$\sum_{i=1}^{3} (\sin(2x_i))^2 = 1.50$$
, $\sum_{i=1}^{3} \sin(2x_i)y_i = 4.4254$, and $\alpha = 2.9503$.

(c) From (b), when
$$x = \pi/5$$
, $y = 2.8059$, $e_a = |(2.8059 - 2.85)/2.85| = 1.55\%$.

• Question 5:

(a)
$$u_{11}u_{21} + u_{12}u_{22} + u_{13}u_{23} = 0$$
, then $u_{11} = -0.6500$. $u_{31}u_{21} + u_{32}u_{22} + u_{33}u_{23} = 0$, then $u_{31} = -0.2171$

• Question 6:

Do pivoting, row 1: $[2 - 3 \ 3/2 \ | \ 31/4]$; row 2: $[0 \ 1/2 \ 2 \ | \ 1/2]$, and row 3: $[1/2 \ 2 \ 1 \ | \ -1/2]$.

Row 3 - row 1 \times 1/4: [0 11/4 5/8 | -39/16].

Row 3 - row 2 $\times 11/2$: [0 0 $-83/8 \mid -83/16$].

From row 3: $x_3 = 1/2$; from row 2: $x_2 = -1$, and from row 3, $x_1 = 2$.

• Question 7:

(a): For chopping, $(0.000001)_2 = 2^{-6}$. For rounding, 2^{-7} .

(b): Minimum number: s=-1, c=0, and e=-15, and f=0. Then $x_{\min}=2^{-15}$.

Maximum number: s = 1, c = 31, and e = 16, and $f = (0.111111)_2$. Then $x_{\text{max}} = 2^{16} \times \sum_{i=0}^{6} 2^{-i}$