1. Random Sampling

Random Sample: [11, 6, 56, 8, 45, 1, 10, 76, 3, 22]

Random sampling on dataset

```
In [48]:
              import seaborn as sns
           2 | df=sns.load_dataset('iris')
           3 print(df.shape)
           4 random sample = df.sample(n=10,random state=42)
              print("Random Sample:\n", random_sample)
           6
         (150, 5)
         Random Sample:
               sepal_length sepal_width petal_length petal_width
                                                                          species
         73
                        6.1
                                     2.8
                                                    4.7
                                                                 1.2 versicolor
                        5.7
                                     3.8
         18
                                                    1.7
                                                                 0.3
                                                                          setosa
         118
                        7.7
                                     2.6
                                                   6.9
                                                                 2.3
                                                                       virginica
         78
                                     2.9
                                                   4.5
                                                                 1.5 versicolor
                        6.0
         76
                        6.8
                                     2.8
                                                   4.8
                                                                 1.4 versicolor
                        5.4
         31
                                     3.4
                                                   1.5
                                                                 0.4
                                                                          setosa
         64
                        5.6
                                     2.9
                                                   3.6
                                                                 1.3 versicolor
                                                   5.1
         141
                        6.9
                                     3.1
                                                                 2.3
                                                                       virginica
         68
                        6.2
                                                   4.5
                                                                 1.5
                                                                      versicolor
                                     2.2
         82
                        5.8
                                     2.7
                                                   3.9
                                                                 1.2 versicolor
```

2. Systematic Sampling

```
In [52]:
               import numpy as np
            2
            3
               # Systematic sampling
               population = np.arange(1, 101) # Data from 1 to 100
               population
                                           5,
Out[52]: array([
                    1,
                                                       7,
                                                                  9,
                                                                       10,
                          2,
                                3,
                                      4,
                                                 6,
                                                            8,
                                                                            11,
                                                                                  12,
                                                                                        13,
                    14,
                         15,
                               16,
                                     17,
                                          18,
                                                19,
                                                      20,
                                                           21,
                                                                 22,
                                                                       23,
                                                                             24,
                                                                                  25,
                                                                                        26,
                    27,
                         28,
                               29,
                                          31,
                                                32,
                                                      33,
                                                                             37,
                                                                                  38,
                                                                                        39,
                                     30,
                                                           34,
                                                                 35,
                                                                       36,
                                                           47,
                   40,
                         41,
                               42,
                                     43,
                                          44,
                                                45,
                                                      46,
                                                                 48,
                                                                       49,
                                                                             50,
                                                                                  51,
                                                                                        52,
                         54,
                               55,
                                          57,
                                                58,
                                                      59,
                                                                                        65,
                   53,
                                     56,
                                                           60,
                                                                 61,
                                                                       62,
                                                                            63,
                                                                                  64,
                   66,
                         67,
                               68,
                                     69,
                                          70,
                                                71,
                                                      72,
                                                           73,
                                                                 74,
                                                                       75,
                                                                            76,
                                                                                  77,
                                                                                        78,
                   79,
                         80,
                               81,
                                     82,
                                          83,
                                                84,
                                                      85,
                                                           86,
                                                                 87,
                                                                       88,
                                                                            89,
                                                                                  90,
                                                                                        91,
                   92,
                         93,
                               94,
                                     95,
                                          96,
                                                97,
                                                     98,
                                                           99, 100])
In [53]:
               n = 10 # Sample every 10th element
            1
               systematic sample = population[::n]
               print("Systematic Sample:", systematic_sample)
```

Systematic Sample: [1 11 21 31 41 51 61 71 81 91]

Systematic sampling on dataset

```
In [54]:
              interval = 10
            1
              systematic sample = df.iloc[::interval]
              print("Systematic Sample:\n", systematic_sample)
          Systematic Sample:
                               sepal width
                                             petal length
                                                            petal width
                sepal length
                                                                              species
          0
                         5.1
                                       3.5
                                                      1.4
                                                                    0.2
                                                                              setosa
          10
                         5.4
                                       3.7
                                                      1.5
                                                                    0.2
                                                                              setosa
          20
                         5.4
                                       3.4
                                                      1.7
                                                                    0.2
                                                                              setosa
                                                                    0.2
          30
                         4.8
                                       3.1
                                                      1.6
                                                                              setosa
          40
                         5.0
                                       3.5
                                                      1.3
                                                                    0.3
                                                                              setosa
                         7.0
                                       3.2
                                                      4.7
          50
                                                                    1.4
                                                                         versicolor
          60
                         5.0
                                       2.0
                                                      3.5
                                                                    1.0
                                                                         versicolor
          70
                                       3.2
                         5.9
                                                      4.8
                                                                    1.8
                                                                         versicolor
          80
                         5.5
                                       2.4
                                                      3.8
                                                                    1.1
                                                                         versicolor
          90
                         5.5
                                       2.6
                                                      4.4
                                                                    1.2
                                                                         versicolor
          100
                         6.3
                                       3.3
                                                      6.0
                                                                    2.5
                                                                          virginica
          110
                         6.5
                                       3.2
                                                      5.1
                                                                    2.0
                                                                          virginica
                                       3.2
                                                                    2.3
          120
                         6.9
                                                      5.7
                                                                          virginica
          130
                         7.4
                                       2.8
                                                      6.1
                                                                    1.9
                                                                          virginica
          140
                         6.7
                                       3.1
                                                      5.6
                                                                    2.4
                                                                          virginica
```

3. Stratified Sampling

```
In [25]:
             from sklearn.model_selection import train_test_split
           2
             import pandas as pd
           3
             # Stratified sampling using scikit-learn
           4
             data = pd.DataFrame({
                  'Category': ['A', 'A', 'B', 'B', 'C', 'C', 'C'],
           6
           7
                  'Values': [1, 2, 3, 4, 5, 6, 7, 8]
           8
             })
             train, test = train_test_split(data, test_size=0.5, stratify=data['Category'
           9
             print("Train Sample:\n", train)
          10
             print("Test Sample:\n", test)
```

Train Sample:

	Category	Values
2	Α	3
5	C	6
3	В	4
0	Α	1
To	st Sample:	
163	sc Jampie.	
163	Category	Values
7	•	Values 8
	Category	
7	Category C	8
7 4	Category C B	8 5

Starified Sampling on Dataset

Train Sample:					
	sepal_length	sepal_width	<pre>petal_length</pre>	petal_width	
98	5.1	2.5	3.0	1.1	
68	6.2	2.2	4.5	1.5	
19	5.1	3.8	1.5	0.3	
143	6.8	3.2	5.9	2.3	
99	5.7	2.8	4.1	1.3	
• •	• • •	• • •	• • •	• • •	
37	4.9	3.6	1.4	0.1	
79	5.7	2.6	3.5	1.0	
33	5.5	4.2	1.4	0.2	
94	5.6	2.7	4.2	1.3	
3	4.6	3.1	1.5	0.2	
_	_	_			

[105 rows x 4 columns]

_	5 rows x 4 columns]					
Test	Sample:					
	sepal_length	sepal_width	petal_length	petal_width		
107	7.3	2.9	6.3	1.8		
63	6.1	2.9	4.7	1.4		
133	6.3	2.8	5.1	1.5		
56	6.3	3.3	4.7	1.6		
127	6.1	3.0	4.9	1.8		
140	6.7	3.1	5.6	2.4		
53	5.5	2.3	4.0	1.3		
69	5.6	2.5	3.9	1.1		
20	5.4	3.4	1.7	0.2		
141	6.9	3.1	5.1	2.3		
14	5.8	4.0	1.2	0.2		
38	4.4	3.0	1.3	0.2		
108	6.7	2.5	5.8	1.8		
116	6.5	3.0	5.5	1.8		
28	5.2	3.4	1.4	0.2		
148	6.2	3.4	5.4	2.3		
57	4.9	2.4	3.3	1.0		
10	5.4	3.7	1.5	0.2		
23	5.1	3.3	1.7	0.5		
18	5.7	3.8	1.7	0.3		
97	6.2	2.9	4.3	1.3		
7	5.0	3.4	1.5	0.2		
75	6.6	3.0	4.4	1.4		
104	6.5	3.0	5.8	2.2		
138	6.0	3.0	4.8	1.8		
51	6.4	3.2	4.5	1.5		
84	5.4	3.0	4.5	1.5		
93	5.0	2.3	3.3	1.0		
66	5.6	3.0	4.5	1.5		
35	5.0	3.2	1.2	0.2		
134	6.1	2.6	5.6	1.4		
132	6.4	2.8	5.6	2.2		
85	6.0	3.4	4.5	1.6		
49	5.0	3.3	1.4	0.2		
111	6.4	2.7	5.3	1.9		
40	5.0	3.5	1.3	0.3		
42	4.4	3.2	1.3	0.2		
2	4.7	3.2	1.3	0.2		
43	5.0	3.5	1.6	0.6		
77	6.7	3.0	5.0	1.7		

55	5.7	2.8	4.5	1.3
22	4.6	3.6	1.0	0.2
106	4.9	2.5	4.5	1.7
147	6.5	3.0	5.2	2.0
58	6.6	2.9	4.6	1.3

4. Cluster Sampling

```
In [29]:
              import numpy as np
             # Cluster sampling: Select clusters randomly
           3
             data = {
           4
           5
                  'Cluster1': [1, 2, 3,7,8,9,0],
           6
                  'Cluster2': [4, 5, 6,6,5],
           7
                  'Cluster3': [7, 8, 9,8,9],
                  'Cluster4':[6,8,9,11,22]
           8
           9
             selected clusters = np.random.choice(list(data.keys()), 2, replace=False)
          10
          11 | cluster_sample = [data[cluster] for cluster in selected_clusters]
             print("selected clusters:", selected_clusters)
             print("Cluster sample:",cluster_sample)
```

selected clusters: ['Cluster2' 'Cluster1']
Cluster sample: [[4, 5, 6, 6, 5], [1, 2, 3, 7, 8, 9, 0]]

Cluster sampling on dataset

```
In [57]:
           1
             import random
           2
             # Cluster sampling: divide dataset into clusters based on target labels
             clusters = [df[df["species"] == label]
                         for label in df["species"].unique()]
           5
           6
           7
             # Select one cluster randomly
             selected_cluster = random.choice(clusters)
             print("Cluster Sample:\n", selected_cluster)
           9
          10 #clusters
          11 #df["species"].unique()
```

Cluster Sample:

Clust	er Sampie:				
	sepal_length	sepal_width	petal_length	petal_width	species
100	6.3	3.3	6.0	2.5	virginica
101	5.8	2.7	5.1	1.9	virginica
102	7.1	3.0	5.9	2.1	virginica
103	6.3	2.9	5.6	1.8	virginica
104	6.5	3.0	5.8	2.2	virginica
105	7.6	3.0	6.6	2.1	virginica
106	4.9	2.5	4.5	1.7	virginica
107	7.3	2.9	6.3	1.8	virginica
108	6.7	2.5	5.8	1.8	virginica
109	7.2	3.6	6.1	2.5	virginica
110	6.5	3.2	5.1	2.0	virginica
111	6.4	2.7	5.3	1.9	virginica
112	6.8	3.0	5.5	2.1	virginica
113	5.7	2.5	5.0	2.0	virginica
114	5.8	2.8	5.1	2.4	virginica
115	6.4	3.2	5.3	2.3	virginica
116	6.5	3.0	5.5	1.8	virginica
117	7.7	3.8	6.7	2.2	virginica
118	7.7	2.6	6.9	2.3	virginica
119					
	6.0	2.2	5.0	1.5	virginica
120	6.9	3.2	5.7	2.3	virginica
121	5.6	2.8	4.9	2.0	virginica
122	7.7	2.8	6.7	2.0	virginica
123	6.3	2.7	4.9	1.8	virginica
124	6.7	3.3	5.7	2.1	virginica
125	7.2	3.2	6.0	1.8	virginica · · ·
126	6.2	2.8	4.8	1.8	virginica
127	6.1	3.0	4.9	1.8	virginica
128	6.4	2.8	5.6	2.1	virginica
129	7.2	3.0	5.8	1.6	virginica
130	7.4	2.8	6.1	1.9	virginica
131	7.9	3.8	6.4	2.0	virginica
132	6.4	2.8	5.6	2.2	virginica
133	6.3	2.8	5.1		virginica
134	6.1	2.6	5.6	1.4	virginica
135	7.7	3.0	6.1	2.3	virginica
136	6.3	3.4	5.6	2.4	virginica
137	6.4	3.1	5.5	1.8	virginica
138	6.0	3.0	4.8	1.8	virginica
139	6.9	3.1	5.4	2.1	virginica
140	6.7	3.1	5.6	2.4	virginica
141	6.9	3.1	5.1	2.3	virginica
142	5.8	2.7	5.1	1.9	virginica
143	6.8	3.2	5.9	2.3	virginica
144	6.7	3.3	5.7	2.5	virginica
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

```
In [30]: 1 df["species"].unique()
Out[30]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
In [ ]: 1
In [ ]: 1
```