Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Algebra Lineal

Unidad 0

Autor del resumen:

Charles Chaplin

Septiembre 2020

Contents

1	Introduccion a vectores
	1.1 Preguntas importantes
	1.2 Ideas importantes
2	Módulos y producto punto
	2.1 Producto punto o producto interno
	2.2 Módulos y vectores unitarios
	2.3 Ángulo entre vectores
	2.4 Ideas importantes
3	Matrices
	3.1 Ecuaciones lineales

1 Introducción a vectores

El corazón del álgebra lineal está en dos operaciones, ambas con vectores. Sumamos vectores para obtener v+w. Los multiplicamos con números c y d para obtener cv y dw. Combinando estas dos operaciones (sumar $cv \ a \ dw$) obtenemos la **combinación lineal** cv + dw

$$cv + dw = c \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} c + 2d \\ c + 3d \end{bmatrix}$$

$$(1.1)$$

Los vectores cy se encuentran sobre una linea. Cuando w no se encuentra sobre esa linea, con las combinaciones cv+dw podemos obtener cualquier vector dentro del plano 2 dimensional. Si planteamos lo mismo con cuatro vectores, v,w,u,z, en un espacio de 4 dimensiones, sus combinaciones cu +dv + ew + fz podrían completar el espacio, pero no siempre. Estos vectores y sus combinaciones podrían encontrarse sobre una linea o un plano.

Ejemplos de vectores y combinaciones lineales. p.13¹

Vector columna

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

 v_1 : primera componente de v v_2 : segunda componente de v

Suma de vectores

Sea
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 y $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$; entonces, $v + w = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$

Multiplicación por escalar

Sea
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
; entonces, $cv = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}^2$

Combinación lineal

Ahora al combinar la suma de vectores con la multiplicación por escalar obtenemos la combinación lineal de v y w.

La suma +dw es una combinación lineal cv+dw

Ejemplos de combinaciones lineales y representación grafica, 2 y 3 dimensiones. p. 114-116

¹idea: "No se pueden sumar peras con naranjas"

²El numero c es llamado **escalar**

1.1 Preguntas importantes

Para un vector u, las unicas combinaciones lineales son los multiplos cu. Para dos vectores, las combinaciones son cu+dv. Para tres vectores, las combinaciones son cu+dv+ew. Ahora... podriamos imaginar todas las combinaciones?. Para toda c,d,e y sean u,v,w vectores tridimensionales:

- 1. Qué se obtiene de todas las combinaciones de cu?
- 2. Qué se obtiene de todas las combinaciones de cu+dv?
- 3. Qué se obtiene de todas las combinaciones de cu+dv+ew?

Las respuestas dependen de los vectores u,d y w. Si estos fuesen vectores nulos, entonces toda combinación sería nula. Si estos son típicos vectores no nulos, aquí hay tres respuestas:

- 1. Las combinaciones cu dan como resultado una recta que pasa por (0,0,0)
- 2. Las combinaciones de cu+dv dan como resultado un plano que pasa por (0,0,0)
- 3. Las combinaciones de cu+dv+ew dan como resultado el espacio tridimensional

El vector nulo esta en la recta que pasa por u porque c puede ser 0. El vector nulo esta en el plano que conforman u y v porque c y d pueden ser 0. Cuando incluimos un tercer vector, las combinaciones ew dan como resultado una recta. Si esta tercer recta no esta en el plano conformado por u y v entonces las combinaciones cu+dv+ew recrean el espacio tridimensional.

Esta es la situación típica, **linea**, después **plano**, luego **espacio**. Otras posibilidades también existen; cuando w se puede recrear a partir de una combinación lineal cv+du, este tercer vector se encuentra en el plano de los dos primeros. Por lo tanto las combinaciones lineales entre los tres vectores no salen del plano uv y asi es como no se llega a obtener el espacio tridimensional.

1.2 Ideas importantes

- 1. Un vector en un espacio bidimensional tiene 2 componentes v_1 y v_2 .
- 2. $v+w=(v_1+w_1,v_2+w_2)$ y $cw=(cw_1,cw_2)$ son hallados una componente a la vez.
- 3. Una combinación lineal de tres vectores u,v,w es cu+dv+ew
- 4. Al pensar en todas las combinaciones posibles de u, u y v; y de u,v y w. En tres dimensiones estas combinaciones comunmente conforman una linea, luego un plano y luego el espacio tridimensional.

Ejemplos p. 17-22

2 Módulos y producto punto

2.1 Producto punto o producto interno

El producto punto 1 de $v=(v_1,v_2)$ con $w=(w_1,w_2)$ es el número $v\cdot w$:

$$v = v_1 w_1 + v_2 w_2$$

Ejemplos p. 21-22

Punto principal. Para $v \cdot w$, multiplicar cada v_i por w_i . Luego $v \cdot w = v_1 w_1 + ... + v_n w_n$

2.2 Módulos y vectores unitarios

Un caso importante es el producto punto de un vector consigo mismo.

Definicion. El modulo ||v|| de un vector v es la raiz cuadrada de $v \cdot v$

$$modulo = ||v|| = \sqrt{v \cdot v} = (v_1^2 + \dots + v_n^2)^{(1/2)}$$

Ejemplos p.24

Definición. Un vector unitario u es un vector cuyo modulo es igual a 1. Luego $u \cdot u = 1$

Ejemplos p.24-25

 $^{^{1}}$ La interpretación geométrica del producto punto v.w es que v.w nos devuelve la longitud de la proyeccion ortogonal de v sobre w.

Vector unitario. $\mathbf{u} = v/||v||$ es un vector unitario en la misma dirección que v.

Figure 2.1: Vector unitario.

2.3 Ángulo entre vectores

Angulos rectos. El producto punto es $v \cdot w = 0$ cuando w es perpendicular a v

Demostracion p.25

Ahora supongamos que $v\cdot w$ es distinto de 0. Puede ser negativo o puede ser positivo. El signo de $v\cdot w$ nos dice inmediatamente si el ángulo entre estos vectores es mayor o menor a 90. El ángulo es menor a 90 cuando $v\cdot w$ es positivo y mayor en el caso restante.

Figure 2.2: Ángulo entre vectores

El producto punto nos revela θ . Para vectores unitarios u y U, el producto punto $u \cdot U$ es el coseno de θ . Esto se mantiene verdadero en n dimensiones.

$$u \cdot U = \cos \theta \Rightarrow |u \cdot U| \le 1$$

Si v y w no son vectores unitarios, obtenemos u = v / ||v|| y U = w / ||w||. Luego con el producto punto entre u y U obtenemos cos θ .

$$\cos \theta = \frac{v \cdot w}{||v|| \ ||w||}$$

Desigualdad del SCHWARZ. $|v \cdot w| \le ||v||||w||$

Desigualdad de triangulo. $|v+w| \le ||v|| + ||w||$

Ejemplos p. 27

2.4 Ideas importantes

- 1. El producto punto $v \cdot w$ multiplica cada componente v_i por w_i y suma todos los $v_i w_i$
- 2. El modulo ||v|| es la raiz cuadrada de $v \cdot v$. Luego u = v/||v|| es un vector unitario
- 3. El producto interno $v \cdot w=0$ cuando los vectores son perpendiculares.
 - 4. Desigualdad del SCHWARZ. $|v \cdot w| \le ||v||||w||$

$$\cos \theta = \frac{v \cdot w}{||v|| \ ||w||}$$

Ejemplos y problemas p. 28-33

3 Matrices

Ejemplos e ideas p. 33

Sean u, v y w tres vectores, en donde:

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \quad w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

Sus combinaciones lineales en un espacio tridimensional son $x_1u + x_2v + x_3w$. Las combinaciones de los vectores serian:

$$x_1 \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + x_2 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + x_3 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} x_1 u_1 + x_2 v_1 + x_3 w_1 \\ x_1 u_2 + x_2 v_2 + x_3 w_2 \\ x_1 u_3 + x_2 v_3 + x_3 w_3 \end{bmatrix}$$

Reescribiendo la combinación usando una matriz obtenemos una matriz multiplicada por un vector columna:

$$Ax = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1u_1 + x_2v_1 + x_3w_1 \\ x_1u_2 + x_2v_2 + x_3w_2 \\ x_1u_3 + x_2v_3 + x_3w_3 \end{bmatrix}$$

Esto es mas que solo una definicion de Ax, ya que reescribir nos trae un cambio en el punto de vista. Al principio, x_1, x_2, x_3 multiplicaban los vectores. Ahora la matriz es multiplicando esos números. La matriz A actua sobre el vector \mathbf{x} . El resultado de Ax es una combinación lineal \mathbf{b} de las columnas de A.

Ejemplo matriz diferencia p.34¹

¹Con números podemos resolver esta ecuacion con producto punto (por filas), con letras lo correcto es trabajarlo por columnas.

3.1 Ecuaciones lineales

Un cambio mas del punto de vista es crucial. Hasta ahora, losánúmeros x_1, x_2, x_3 eran datos. La parte derecha era desconocida. Ahora pensamos b como dato y x como incognita

Ejemplos matriz diferencia y matriz ciclica p.33-37

Dada la matriz:

$$A = \begin{bmatrix} u & v & w \end{bmatrix}$$

Donde u,v y w son vectores columnas, deducimos que A es invertible (no-singular) si estos vectores columnas son **mutuamente independientes**, es decir:

$$0u + 0v + 0w = 0$$

es la unica combinación lineal tal que Ax=0 (x es vector nulo).

En cambio A es singular si sus vectores columnas son dependientes, es decir que existen x_1, x_2, x_3 tal que:

$$x_1 u + x_2 v + x_3 w = 0$$

además del vector nulo.

Por lo tanto

- a) Si Ax=0 tiene unica solución \Rightarrow A es invertible
- b) Si Ax=0 tiene multiples soluciones \Rightarrow A es singular

Ideas importantes:

- 1) La mutliplicación de una matriz por un vector: Ax = combinación lineal de las columnas de A.
- 2) La solución a Ax = b es $x = A^{-1}b$, cuando A es invertible.

Ejemplos y Ejercicios p. 38-42