APPENDIX C

CHEBYSHEV POLYNOMIALS

This appendix reviews basic properties of the Chebyshev polynomials, which find a variety of applications in classical numerical analysis.

DEFINITION. The **Chebyshev polynomials** are the functions generated by the following recursion:

$$T_0(z) = 1,$$

 $T_1(z) = z,$
 $T_{n+1}(z) = 2zT_n(z) - T_{n-1}(z).$

This recursion gives rise to several equivalent representations. For example,

$$T_n(z) = \frac{1}{2} \left[\left(z + \sqrt{z^2 - 1} \right)^n + \left(z - \sqrt{z^2 - 1} \right)^n \right], \quad n = 0, 1, 2, \dots;$$

$$T_n(z) = \cos \left(n \cos^{-1} z \right), \quad -1 \leqslant z \leqslant 1.$$

The first few Chebyshev polynomials are as follows:

$$T_0(z) = 1,$$

$$T_1(z) = z,$$

$$T_2(z) = 2z^2 - 1,$$

$$T_3(z) = 4z^3 - 3z,$$

$$T_4(z) = 8z^4 - 8z^2 + 1,$$

$$T_5(z) = 16z^5 - 20z^3 + 5z.$$

In general, the *n*th Chebyshev polynomial has leading coefficient 2^{n-1} .

The nth Chebyshev polynomial T_n has n real zeros. The next proposition gives more specific information.

THEOREM C.1 (ZEROS OF CHEBYSHEV POLYNOMIALS). The Chebyshev polynomial T_n has n zeros in the interval (-1,1) and n+1 local extrema in the interval [-1,1]. At the local extrema, $|T_n(z)| = 1$.

PROOF: We use the representation $T_n(z) = \cos(n\cos^{-1}z)$. Notice that $\cos(n\theta)$ vanishes for

$$\theta = \frac{(2N+1)}{n} \frac{\pi}{2},$$

where N ranges over the integers. Letting $\theta = \cos^{-1} z$ shows that $T_n(z) = 0$ for

$$z = \cos\left(\frac{2N+1}{n}\frac{\pi}{2}\right), \quad N = 0, 1, 2, \dots, n-1.$$

These are the n zeros lying in the interval [-1,1]. Also, $\cos(n\theta)$ has local extrema at the points $\theta = N\pi/n$, so setting $\theta = \cos^{-1}z$ shows that $T'_n(z) = 0$ for $z = \cos(N\pi/n)$, $N = 0, 1, 2, \ldots, n$. At these points $T_n(z) = (-1)^N$.

Figure C.1 depicts the graph of

$$T_8 = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1.$$

Notice that the polynomial is relatively well behaved in the interval [-1,1], the function values being confined to the range [-1,1]. Intuitively, this controlled behavior inside [-1,1] occurs at the expense of the behavior outside the interval, where the polynomial rapidly shoots off toward infinity.

The next theorem asserts that, in a sense, the controlled behavior inside [-1,1] is the best that we can expect for a polynomial of specified degree.

Figure C.1 The Chebyshev polynomial $T_8(z)$.

THEOREM C.2 (MINIMAX PROPERTY OF CHEBYSHEV POLYNOMIALS). Of all polynomials p having degree exactly n and leading coefficient 2^{n-1} , T_n possesses the smallest value of $||p||_{\infty} := \sup_{z \in [-1,1]} |p(z)|$.

(As we have seen, $||T_n||_{\infty} = 1$.)

PROOF: We argue by contradiction. Assume that $p \neq T_n$ is a polynomial having degree exactly n and leading coefficient 2^{n-1} and that $||p||_{\infty} < ||T_n||_{\infty}$. Let z_0, z_1, \ldots, z_n denote the extrema of T_n , ordered so that the points z_0, z_2, z_4, \ldots are local maxima and z_1, z_3, z_5, \ldots are local minima. We have

$$p(z_0) < T_n(z_0), \quad p(z_1) > T_n(z_1), \quad p(z_2) < T_n(z_2), \quad \dots$$

Thus the nonzero polynomial $p-T_n$ changes signs n times in the interval (-1,1), which implies that $p-T_n$ has n roots in (-1,1). It follows that $p-T_n$ has degree at least n. But p and T_n both have degree n and possess the same leading coefficient, so $p-T_n$ has degree at most n-1. This is a contradiction.