Manuel Gijón Agudo

Octubre 2018 -

${\bf \acute{I}ndice}$

1.	Tema 0: Introducción a la inferencia estadística	2
	1.1. bla	2
	1.2. bla	2
	1.3. Extension of sources	2
2.	Tema 1: Muestreo	3
	2.1. Definiciones	3
	2.2. Métodos de muestreo	4
	2.2.1. Muestreo aleatorio simple	4
	2.3. Distribuciones de muestreo	4
3.	Tema 2: Estimación de parámetros	5
	3.1. Definiciones	5
	3.2. Propiedades de los estimadores	8
	3.3. Métodos para la obtención de estimadores	8
	3.4. Métodos de remuestreo	8
4.	Tema 3: Intervalos de confianza	8
	4.1. Tema 1	8
	4.1.1. Métodos de muestreo	8
	4.1.2. Distribucinoes de muestreo	8
	4.2. Tema 2	8
	4.2.1. Definiciones	8
	4.2.2. Propiedades de los estimadores	8
	4.2.3. Métodos para la obtención de estimadores	8
	4.2.4. Métodos de remuestreo	15
	4.3. Tema 3	15

1. Tema 0: Introducción a la inferencia estadística

- 1.1. bla
- 1.2. bla
- 1.3. Extension of sources

2. Tema 1: Muestreo

2.1. Definiciones

Definiciones:

 Denominamos población al conjunto que presenta la característica que estamos interesados en estudiar.

- Muestra es un subconjunto de la población. La intención al tomarlo es que sea representativo, esto es que cada individuo sea elegido de manera aleatorio, todo stienen las mismas probabilidades de serlo. Cada subconjunto de k individuos debe tener las mismas probabilidades de ser elegido que cualquier otro conjunto de k individuos. A esta técnica y proceso se le denomina Muestreo aleatorio.
- Muestreo: proceso por el que tomamos una muestra.

Algunas razones para realizar muestreo podían ser las siguientes:

- Económicas.
- Temporales.
- De destrucción de la muestra tras su análisis.

Entre los métodos de muestre se encuentran los siguientes:

- Muestreo aleatorio simple:
- Muestreo sistemático:
- Muestreo estratificado:
- Muestreo de clústering:
- 'Quata sampling'
- 'Panel sampling'

Definición: Decimos que una muestra es aleatoria simple cuando cumple lo siguiente:

- Cada elemento de la población y todos los posibles subconjuntos de la población tienen la misma probabilidad de ser elegidos. Esto nos asegura la representatividad.
- Seleccionar un elemento no condiciona el seleccionar otro. En esto consiste la **independencia**.

Una muestra aleatoria simple $X_1, X_2, ..., X_n$ es una colección de n variables aleatorias tales que:

- Son independientes.
- Siguen la misma distribución de probabilidad.

Obs: las variables aleatorias que conforman una muestra aleatoria simple son idénticas e igualmente distribuidas (iid).

Definición: el conjunto de n observaciones $(x_1,...,x_n)$ provenientes de $(X_1,...,X_n)$ se denomina realización muestral.

Definición: la **distribución conjunta** de una muestra aleatoria viene dada por la siguiente función de densidad:

$$l(\theta; x_1, ..., x_n) = \prod_{i=1}^{n} f(x_i | \theta)$$

que se denomina función de densidad conjunta (likelihood function). Usaremos este término tanto en el caso discreto como en el continuo.

Ejemplo: $X \sim N(\mu, \sigma)$

$$f_X(x|\mu,\sigma) = \frac{1}{\sqrt[2]{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Conocemos la distribución de X pero no los parámetros $\theta=(\mu,\sigma)$. La función de distribución para n variables aleatorias iid será:

$$l(\mu, \sigma; x_1, ..., x_n) = \prod_{i=1}^n f(x_i | \mu, \sigma)$$
$$= \frac{1}{(2\pi\sigma^2)(n/2)} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

Definición: denominamos a una función T que solamente depende de los valores de una muestra aleatoria $X_1, ..., X_n$ un **estadístico**. Destacar que solamente depende de los valores observados pero no de los parámetros que determinan la variable aleatoria que los ha generado. Por supuesto un estadístico es también una variable aleatoria.

Definición: Los estadísticos que utilizamos para estimar el valor de la variable θ son denominados estimadores.

Definición: La distribución que sigue $Y = T(X_1, ..., T_n)$ es denominada distribución muestral.

2.2. Métodos de muestreo

2.2.1. Muestreo aleatorio simple

2.3. Distribuciones de muestreo

3. Tema 2: Estimación de parámetros

3.1. Definiciones y propiedades de los estimadores

Definiciones:

- Sean $X_1, ..., X_n$ una secuencia de variables aleatorias independientes idénticamente distribuidas tales que $X \sim f(x; \theta)$ $\theta \in \Theta$.
- Definimos la **estimación puntual** el parámetro θ como el proceso de seleccionar un estadístico¹ T que mejor estima el valor del parámetro para esa población.
- Llamaremos a este estadístico $T = T(X_1, ..., X_n)$ que utilizamos para estimar θ un **estimador**.

Observaciones:

- Los estimadores son variables aleatorias.
- Usaremos sus propiedades estadísticas para estudiar su calidad y comparar entre ellos varios estimadores.
- Siempre tendremos un error en la estimación, nuestro objetivo será minimizarlo.

Definición: Decimos que un estimador $T_n = T(X_1, ..., X_n)$ para el parámetro θ es **consistente** cuando $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|T_n - \theta| \ge \epsilon) = 0$$

Ejemplo de la media aritmética como estimador, usando chebychev's

Teorema: si T_n es una secuencia de estimadores tales que $E(T_n) \longleftrightarrow \theta$ y $V(T_n) \longleftrightarrow 0$ cuando $n \to \infty$ entonces T_n es consistente para el parámetro θ .

Definiciones:

■ Definimos la **desviación** de un estimador *T* como:

$$bias(T) = E(T) - \theta$$

■ Sea T un estimador para θ . Decimos que el estimador es **no desviado** si $\forall \theta \in \Theta$:

$$E(T) = \theta$$

En caso contrario decimos que es **desviado**. Es obvio que en este caso $bias(T) \neq 0$.a

Para introducir el siguiente concepto usaremos un ejemplo concreto. Sean $X_1, ..., X_n$ una muestra aleatoria de una variable tal que $E(X) = \mu$ y $V(X) = \sigma^2$. Probar que:

$$E(\overline{X_n}) = \mu$$

¹Estadístico: es una función medible que tiene como espacio de salida $(X_1,...,X_n)$ una muestra estadística de valores.

$$E(S^2) = \frac{n-1}{n}\sigma^2$$

ENCONTRAR ESTA MIERDA Y CONTINUAR A PARTIR DE AQUÍ, MUHAHH-HAHHHAHHHA

Corrección de la desviación:

$$\widehat{S}^2 = \frac{n}{n-1} S^2 \Rightarrow E(\widehat{S}^2) = \sigma^2$$

Definición: Sea T_n un estimador, decimos que es un estimador de θ asintóticamente no desviado si, para $n \to \infty$:

$$E(T_n) \to \theta$$

Sea $X \sim Unif(0,\theta)$ y sea el estimador para θ $T = \max X_1,...,X_n = X_{(n)}$. Verificar que es no desviado, ξ es consistente?

Es fácil comprobar los siguiente:

$$F_{X_{(n)}} = P(X_{(n)} \le x) = P(X_1 \le x, ..., X_n \le x)$$
$$= \prod_{i=1}^{n} P(X_i \le x) = \frac{x^n}{\theta^n}$$

Para $0 < x < \theta$:

$$f_{X_{(n)}} = n \frac{x^{n-1}}{\theta^n}$$

$$E(X_{(n)}) = \int_0^\theta x n \frac{x^{n-1}}{\theta^n} dx = \theta \frac{n}{n+1} < \theta$$

$$\begin{split} E(X_{(n)}^2) &= \int_0^\theta x^2 n \frac{x^{n-1}}{\theta^n} dx = \theta^2 \frac{n}{n+2} \\ &\Rightarrow Var(X_{(n)}) = \frac{\theta^2 n}{(n+1)^2 (n+2)} \end{split}$$

DESDE AQUÍ CONTINUAMOS EXPLICÁNDO EL RESULTADO DETALLADAMEN-

TE

Observaciones:

■ En general, si el momento poblacional k-ésimo m_k existe, entonces el momento muestral k-ésimo es no desviado para m_k .

• Si T es no desviado para θ , g(T) no lo es, en general, el estimador $g(\theta)$ REPASARLO POR QUE NO ENTIENDO QUE DICE

- Los estimadores no desviados no siempre existen.
- En ocasiones el uso de estimadores no desviados puede ser absurdo.

Definición: Decimos que el estimador T_1 es más **eficiente** que el estimador T_2 (ambos no desviados) si:

$$Var(T_1) < Var(T_2)$$

Definición: Definimos la **eficiencia** del estimador T_1 relativa al edstimador T_2 (ambos no desviados) como:

$$eff(T_1|T_2) = \frac{Var(T_1)}{Var(T_2)}$$

Observemos que T_1 es más eficiente que T_2 si $eff(T_1|T_2) < 1$.

Definición: Decimos que T es el estimador de mínima varianza no desviado para θ si $E(T) = \theta$ y para cualquier otro estimador T' tal que $E(T') = \theta$ ocurre:

$$Var(T) \le Var(T')$$

Podemos encontrar una cota inferiro para la varianza de un estimador no desviado:

Teorema, Cota de Cramer-Rao (CRB): bajo ciertas condiciones de regularidad y siendo $X_1, ..., X_n$ variables aleatorias idénticamente distribuidas que siguen la función de densidad $f(x; \theta)$, si T_n es un estimador no desviado para , entonces:

$$Var(T_n) \ge \frac{1}{nE\left(\left(\frac{d}{d\theta}\ln f(x;\theta)\right)^2\right)}$$

Obs: Podemos devinir la eddiciencia absoluta de un estimador no desviado T_n como:

$$eff(T_n) = \frac{CRB}{Var(T_n)}$$

Definición: Denominamos a la siguiente cantidad información de Fisher, $\mathcal{I}_X(\theta)$:

$$E\left(\left(\frac{d}{d\theta}\ln f(x;\theta)\right)^2\right) = -E\left(\frac{d^2}{d\theta^2}\ln f(x;\theta)\right)$$

Esta es una medida de la cantidad de información que la variable X contiene del parámetro θ . Cuanto mayor sea la cantidad de Fisher menor será la varianza y en consecuencia, la estimación será más precisa.

Si $\mathcal{X} = (X_1, ..., X_n)$ es una muestra aleatoria entonces $\mathcal{I}_{\mathcal{X}}(\theta = n\mathcal{I}_X(\theta))$ es la información de Fisher que la muestra aporta sobre el parámetro.

Una forma más general de límite puede ser obtenida considerando un estimador no desviado $T(\mathcal{X})$ de una función $\psi(\theta)$ del parámetro θ .

$$Var(T_n) \ge \frac{(\psi'(\theta))^2}{n\mathcal{I}_{\mathcal{X}}(\theta)}$$

3.2. Métodos para la obtención de estimadores

Método de los momentos

Método de la máxima verosimilitud

3.3. Métodos de remuestreo

4. Tema 3: Intervalos de confianza

Apéndice

- 4.1. Tema 1
- 4.1.1. Métodos de muestreo
- 4.1.2. Distribucinoes de muestreo
- 4.2. Tema 2
- 4.2.1. Definiciones
- 4.2.2. Propiedades de los estimadores

Demostrar que la media aritmética es un estimador consistente para el parámetro μ en una distribución $N(\mu, \sigma)$. Nota: usar la desigualdad de Chevychev: $P(|X - E(X)| > \ge \epsilon) \le \frac{\sigma^2 x}{\epsilon^2}$

4.2.3. Métodos para la obtención de estimadores

Mostrar que el estadístico $T = \sum_{i=0}^{n} x_i$ es suficiente para el parámetro p perteneciente a una muestra $x_1, ..., x_n$ que sigue una distribución B(1, p).

AQUÍ IRÁ SU SOLUCIÓN MUHHAHHHHAHHA

Dada una muestra aleatoria simple de una distribución $N(\mu, 2)$, verificar que la media muestral es un estimador suficiente para el parámetro μ .

AQUÍ IRÁ SU SOLUCIÓN MUHHAHHHHAHHA

Encontrar un estadístico suficiente por el método de la máxima verosimilitud para θ para la distribución con la siguiente función de densidad bajo las condiciones $\theta > 0$ y 0 < x < 1:

$$f_{\theta}(x) = \theta x^{\theta-1}$$

Primero calculamos la función de densidad conjunta (función de verosimilitud) que, asumiendo independencia, es el producto de las funciones de densidad para cada x_i .

$$l(\theta; x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

$$= \prod_{i=1}^n \theta x_i^{\theta - 1}$$

$$= \theta^n \prod_{i=1}^n x_i^{\theta - 1}$$
(1)

Calculamos la el logaritmo de la función de verosimilitud para hacernos más sencillo calcular el estimador de máxima verosimilitud (MLE) $\widehat{\theta}$:

$$L(\theta; x_1, ..., x_n) = \ln(l)(\theta; x_1, ..., x_n)$$

$$= \ln\left(\theta^n \prod_{i=1}^n x_i^{\theta-1}\right)$$

$$= n \ln(\theta) + (\theta - 1) \sum_{i=1}^n \ln(x_i)$$
(2)

Hallamos el mínimo de la función para encontrar el MLE y comprobamos que es mínimo (pasos obviados aquí).

$$L_{\theta}(\theta; x_1, ..., x_n) = \frac{d}{d\theta} L(\theta; x_1, ..., x_n) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i$$

$$L_{\theta}(\theta; x_1, ..., x_n) = \frac{d}{d\theta} L(\theta; x_1, ..., x_n) = 0$$

$$\Rightarrow \hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \ln x_i}$$
(3)

Por el Teorema de Fisher–Neyman sabemos que nuestro estimador será suficiente sí y solo sí:

$$f_{\theta}(x) = h(x)g_{\theta}(T(x)) = h(x_1, ..., x_n)g(T, \theta) = f(x_1, ..., x_n; \theta)$$

Donde T es el estimador. Observemos que aquí tenemos como estimador (3) y todo se reduce por el teorema a conseguir escribir la función dfe densidad como una combinación de otras dos, una que solo dependa de la muestra y otra que dependa de la muestra y del parámetro θ .

Sea $x_1,....,x_n$ una muestra de una distribución normal $N(\mu,\sigma)$. Encontrar el método de los momentos para μ y para σ .

solución

Encontrar el estimador por momentos del parámetro b de una distribución uniforme U(0,b).

solución

Encontrar el estimador por el método de los momentos en los siguientes casos:

- lacksquare Parámetro p en una distribución de Bernulli B(1,p).
- Parámetro α en una distribución Exponencial $Exp(\alpha)$.
- Parámetros μ y σ en una Distribución Normal $N(\mu, \sigma)$.
- Parámetro b en una Distribución Uniforme U(0,b).
- Parámetro p en una distribución de Bernulli B(1,p). solución
- Parámetro α en una distribución Exponencial $Exp(\alpha)$. solución

■ Parámetros μ y σ en una Distribución Normal $N(\mu, \sigma)$. Sabemos que $\mu = E(X)$ y que $Var(X) = \sigma^2$ por la definición de distribución normal. Pero por definición de varianza también sabemos que $Var(X) = E(X^2) - E(X) = m_2 - m_1$.

$$\begin{split} &\Rightarrow \widehat{\mu} = \overline{X}_n \\ &\Rightarrow \widehat{\sigma}^2 = \frac{\sum_{i=1}^n X_i^2}{n} - (\overline{X}_n)^2 = S^2 \end{split}$$

■ Parámetro b en una Distribución Uniforme U(0,b). Sabemos por la definición de la distribución normal que $E(X) = \frac{b}{2} \rightarrow b = 2E(X) = 2m_1$, entonces:

$$\Rightarrow \widehat{b} = 2\overline{X}_n$$

Encontrar el estimador por el método de los momentos en los siguientes casos:

- lacksquare Parámetro p en una distribución de Bernulli B(1,p).
- Parámetro α en una distribución Exponencial $Exp(\alpha)$.
- Parámetros μ y σ en una Distribución Normal $N(\mu, \sigma)$.
- lacktriangle Parámetro b en una Distribución Uniforme U(0,b).
- Parámetro p en una distribución de Bernulli B(1,p). MLE para le parámetro p en una distribución de Bernulli $X \sim B(1,p)$. Sabemos que su función de densidad, para $x \in \{0,1\}$ y $0 \le p \le 1$ es:

$$f(x) = p^x (1 - p)^{1 - x}$$

Tenemos una muestra de tamaño $n: x_1, ..., x_n$.

Calculamos la función de verosimilitud:

$$l(p; x_1, ..., x_n) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

Tomamos logaritmos:

$$L(; x_1, ..., x_n) = \ln(l)(; x_1, ..., x_n)$$

$$= (\sum x_i) \ln(p) + (n - \sum x_i) \ln(1 - p)$$
(4)

Ahora buscaremos el máximo de la función L de la manera habitual, derivamos para hallar un candidato a máximo, que será nuestro estimador \hat{p}

$$\frac{dL}{dp} = \frac{\sum x_i}{p} - \frac{n - \sum x_i}{1 - p} = 0$$

$$\Rightarrow \sum x_i - p \sum x_i - np + p \sum x_i \Rightarrow p^* = \frac{\sum x_i}{n}$$

Comprobamos ahora que se trata de un mínimo:

$$\frac{d^2L}{dp^2} = \frac{-\sum x_i}{p^2} - \frac{(n-\sum x_i)}{(1-p)^2} < 0$$

Podemos concluir pues que $\hat{p} = p^*$

■ Parámetro α en una distribución Exponencial $Exp(\alpha)$. Sabemos que su función de densidad es $f(x) = \frac{1}{\alpha}e^{-\frac{x}{\alpha}}$

$$l(\alpha; x_1, ..., x_n) = \frac{1}{\alpha^n} e^{\frac{-\sum_{i=1}^n x_i}{n}}$$

$$L(\alpha; x_1, ..., x_n) = \ln(l)(\alpha; x_1, ..., x_n) = -n \ln(\alpha) - \frac{\sum_{i=1}^n x_i}{\alpha}$$

$$\frac{dL}{d\alpha} = \frac{-n}{\alpha} + \frac{\sum_{i=1}^{n} x_i}{\alpha^n} = 0$$

- Parámetros μ y σ en una Distribución Normal $N(\mu, \sigma)$.
- Parámetro b en una Distribución Uniforme U(0,b).

Consideremos el siguiente modelo de regresión, siendo $e \sim N(0, \sigma)$:

$$y_i = \alpha + \beta x_i + e$$

Probar que los estimadores por máxima verosimilitud y por el método de los momentos para los parámetros α y β resultan el mismo.

solución

Sea X una variable aleatoria que sigue una distribución exponencial de parámetro α .

$$f(x) = \frac{1}{\alpha} e^{\frac{-x}{\alpha}}$$

Para $x \ge 0$.

- \blacksquare Hallar el estimador máximo verosímil de α para una muestra aleatoria de tamaño n.
- Referido al estimador anterior:

- ¿Es un estimador insesgado?
- Hallar el error cuadrático medio del estimador.
- ¿Cuál es la eficiencia absoluta del estimador?
- Hay tres tipos de babosas: verdes, púrpuras y rayadas. El tiempo de vida de las babosas verdes sigue una distribución exponencial de parámetro α . El tiempo de vida de las babosas púrpura sigue una distribución exponencial de parámetro 4α . El tiempo de vida de las babosas rayadas sigue una distribución exponencial de parámetro 16α . Hemos observado la siguiente muestra:
 - 1 babosa verde con un tiempo de vida de 39.
 - 2 babosas púrpura con tiempos de vida de 45 y 165.
 - 1 babosa rayada con un tiempo de vida de 900.

Utilizar el método de la máxima verosimilitud para hallar α .

- solución
- solución
 - solución
 - solución
 - solución
- solución
 - solución
 - solución

Sean $X_1, ..., X_n$ variables aleatorias independientes e indénticamente distribuídas con la siguiente función de densidad para cada X_i (con x > 0):

$$f(x;\theta) = \frac{x^2}{2\theta^3} e^{\frac{-x}{\theta}}$$

Como dato sabemos que $E(X) = 3\theta$ y que $Var(X) = 3\theta^2$.

- Hallar el estimador por el método de los momentos de θ .
- Calcular la función de verosimilitud para una muestra aleatoria de tamaño n.
- Hallar el estimador máximo verosímil de θ .
- Demostrar que ambos estimadores son insesgados.
- Demostrar que $\sum_{i=1}^{n} X_i$ es un estimador suficiente para el parámetro θ .
- \blacksquare Halla la cota de Cramer-Rao para la varianza de un estimador insesgado de θ .
- ¿Cuál es el valor de la información de Fisher en una observación individual de esta densidad?

 \blacksquare ¿Es el estimador de máxima verosimilitud el estimador insesgado de la varianza mínima de θ ?

- Hallar el estadístico del test de la razón de verosimilitud para contrastar la hipótesis H_0 : $\theta = \theta_0$ contra la alternativa H_1 : $\theta \neq \theta_0$.
- Supongamos que tenemos una muestra aleatoria de tamaño n=27 produce $\sum_{i=1}^{27} x_i = 108$. Utilizando el contraste obtenido antes, ¿podemos rechazar la hipótesis $H_0: \theta=1$ frente a la alternativa $H_1: \theta \neq 1$ con un nivel de significación de $\alpha=0,1$?
- BONUS: comprobar los valores de la varianza y de l a esperanza.
- solución

Sea $X_1,...,X_n$ una muestra aleatoria de una distribución $X \sim N(\mu,\sigma)$. Dados los siguientes estimadores ?¿cuál es preferible desde el punto de vista de MLE?.

$$T(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$U(X) = \frac{1}{n+1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

solución

Tenemos una muestra aleatoria de la variable definida por la siguiente función de densidad (para $0 < x < \beta$):

$$f(x,\beta) = \frac{2}{\beta^2}(\beta - x)$$

Encontrar los estimadores por el método de máxima verosimilitud y por momentos para β . Encontrar la desviación de cada uno de los estimadores y también la eficiencia relativa del procedente de la máxima verosimilitud respecto al hallado por momentos.

4.2.4. Métodos de remuestreo

4.3. Tema 3