3.5.1 Изучение плазмы газового разряда в неоне

Анна Назарчук Б02-109

1. Аннотация

В работе изучается плазма газового разряда в неоне с помощью двойного зонда. Снимается ВАХ разряда в режиме поднормального тлеющего разряда. Получаются зондовые характеристики, рассчитываются параметры плазмы (например, ω_p , r_D).

2. Введение

Как известно, вещество может находиться в трёх агрегатных состояниях — твёрдом, жидком и газообразном, причём эти состояния последовательно сменяются по мере возрастания температуры. Если и дальше нагревать газ, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Если степень ионизации газа (отношение числа ионизованных атомов к их полному числу) оказывается достаточно велика, то поведение заряженных частиц приобретает коллективный характер, так что описание свойств среды не может быть сведено к описанию обычного газа, содержащего некоторое количество отдельных заряженных частиц. Такое состояние ионизованного газа и называется плазмой. Первое описание плазмы было дано в 1923 г. И. Ленгмюром. Современная физика термин "газовый разряд"трактует как не только процесс протекания тока через газ, но и любой процесс возникновения ионизации газа под действием внешнего поля. Это и планируется пронаблюдать в данной работе.

3. Поставка задачи

Получить вольт-амперную характеристику газового разряда, определить тип разряда. Рассчитать основные характеристики плазмы методом зондовых характеристик.

4. Теоретические сведения

Определяющими свойствами плазмы являются коллективный характер её движения и квазинейтральность (равенство нулю средней плотности заряда). Рассмотрим простейший вид коллективных плазменных колебаний.

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{1}$$

 ω_p - плазменная частота (частота коллективных колебаний электронов относительно квазинейтрального состояния, так называемых ленгиюровских колебаний, определяет временной масштаб для плазмы)

Плазменный масштаб плазменных явлений задается дебаевским радиусом - амплитудой ленгмюровских колебаний, возбуждаемых тепловыми колебаниями

$$r_D = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}} \tag{2}$$

Рассмотрим плазменное экранирование. В равновесную плазму ($T=T_e=T_i$) помещена массивная пробная частица заряда +q, с радиусом, большим r_D . Для электронов из закона Больцмана:

$$n_e = n_{e0} \cdot \exp(\frac{e\varphi}{k_{\rm E}T}) \tag{3}$$

Аналогичное соотношение можно написать и для ионов (однозарядных). Температура электронов достаточно высока, поэтому:

$$\rho = -en_e + en_i \approx -en \cdot \frac{e\varphi}{k_{\rm B}T} \tag{4}$$

Уравнение Пуассона для одномерного случая:

$$\frac{d^2\varphi}{dx^2} = -4\pi\rho\tag{5}$$

Объединив два уравнения, получим аналогичное выражение:

$$r_D = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}} \tag{6}$$

Теперь рассмотрим неравновесную плазму $(T_e \neq T_i)$:

$$r_{De} = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}}, \ r_{Di} = \sqrt{\frac{k_{\rm B}T_i}{4\pi n_i e^2}}$$
 (7)

Поэтому в общем случае:

$$r_D = (r_{De}^2 + r_{Di}^2)^{-1/2} = \sqrt{\frac{k_{\rm B}}{4\pi n_e e^2} \frac{T_e T_i}{T_e + T_i}} =$$
 (8)

Плазма - ионизированный газ, $r_D \ll a$, размера области, занимаемой газом. Плазма идеальна, если кулоновская энергия мала по сравнению с тепловой:

$$\omega_{\text{кул}} = -\frac{1}{2} n_i \frac{q^2}{r_D}, \quad \omega_{\text{тепл}} = n_i k_{\text{B}} T \tag{9}$$

Отношение энергий есть число заряженных частиц в сфере с дебаевским радиусом:

$$N_D = \frac{4}{3}\pi n_i r_D^3 \tag{10}$$

Плазма идеальна при $N_D\gg 1$.

5. Методика измерений

5.1. Плавающий потенциал

Измерение электрических потенциалов с помощью "зондов небольших проводников, вводимых в плазму. При внесении проводника в плазму, он подвергается "бомбардировке" со стороны её заряженных частиц. Из-за различий в скорости частиц проводник зарядится отрицательно с потенциалов (отн. плазмы) $-U_f$ - плавающий потенциал. Если бы $U_f=0$:

$$I_{e0} = \frac{n\bar{v_e}}{4}eS, \ I_{i0} = \frac{n\bar{v_i}}{4}eS,$$
 (11)

Теперь $U_f \neq 0$: $I_i \approx I_{i0}$, согласно распределению Больцмана:

$$I_e = I_{e0} \exp(\frac{eU_f}{k_{\rm B}T_e}) \tag{12}$$

5.2. Одиночный зонд

Схема измерений приведена на рис. 1.

Рис. 1: Исследование плазмы методом одиночного зонда

Зависимость тока через зонд от потенциала зонда - зондовая характеристика (рис. 2). Токи можно оценить из формулы 11:

Рис. 2: Зондовая характеристика

$$I_{\rm eH} \approx I_{e0} = \frac{1}{4} n_e S \sqrt{\frac{8k_{\rm B}T_e}{\pi m_e}} \tag{13}$$

Полуэмпирическая формула Д. Бома:

$$I_{iH} \approx 0.4 n_i S \sqrt{\frac{2k_{\rm B}T_e}{m_i}} \tag{14}$$

5.3. Двойной зонд

Двойной зонд - система, состоящая из двух одинаковых зондов на небольшом растоянии друг от друга, между которыми создается небольшая (по сравнению с U_f) разность потенциалов U. При малых токах через зонд:

$$U_1 = U_f + \Delta U_1, \ \ U_2 = U_f + \Delta U_2$$
 (15)

$$U = U_2 - U_1 = \Delta U_2 - \Delta U_1 \tag{16}$$

Токи, приходящие на электроды:

$$I_1 = I_{i_{\rm H}} (1 - \exp(\frac{e\Delta U_1}{k_{\rm B}T_e})), \quad I_2 = I_{i_{\rm H}} (1 - \exp(\frac{e\Delta U_2}{k_{\rm B}T_e}))$$
 (17)

Из последовательного соединения зондов:

$$I = I_{i\pi} t h \frac{eU}{2k_{\rm B} T_e} \tag{18}$$

Вблизи U = 0:

$$k_{\rm B}T_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}|_{U=0}}$$
 (19)

5.4. Установка

Схема экспериментальной установки приведена на рисунке 3. Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — вольтметром V_1 . При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Рис. 3: Схема установки

6. Измерения и обработка данных

6.1. Вольт-амперная характеристика разряда

С помощью вольтметра V_1 и амперметра A_1 измерили вольт-амперную характеристику разряда $I_p(U_p)$ (рис. 4)

По наклону кривой определили максимальное $R_{\text{диф}} = \frac{dU}{dI} = -68000 \pm 11000$ Ом. Полученный участок BAX соответствует поднормальному тлеющему разряду.

Рис. 4: ВАХ разряда

6.2. Зондовые характеристики

При фиксированном токе разряда измерили вольт-амперную характеристику двойного зонда. (рис. 5). Для каждой зондовой характеристики определили ионный ток и наклон характеристики в начале координат по графику. Из полученных результатов рассчитаны T_e (ф-ла 19), n_i (ф-ла 14), ω_p (ф-ла 1), r_{De} (ф-ла 7), r_D (ф-ла 8), N_D (ф-ла 10), α - степень ионизации плазмы. Результаты приведены в таблице 1, также построены графики зависимости электронной температуры и концентрации электронов от тока разряда (рис. 6).

Таблица 1: Характеристики плазмы для разных токов разряда I_p

I_p , MA	1.5	3	3.4
T_e , $\ni B$	3.1 ± 0.2	4.2 ± 0.1	3.7 ± 0.4
$n_i, 10^{10} \text{ 1/cm}^3$	2.1 ± 0.1	4.6 ± 0.1	4.8 ± 0.3
$\omega_p, 10^9 \text{ рад/с}$	8.2 ± 0.2	12.0 ± 0.1	12.4 ± 0.4
$r_{De}, 10^{-3} \text{ cm}$	9.0 ± 0.8	7.2 ± 0.2	6.5 ± 0.7
$r_D, 10^{-3} \text{ cm}$	0.82 ± 0.03	0.56 ± 0.01	0.54 ± 0.03
N_D	49 ± 6	34 ± 1	33 ± 6
$\alpha, 10^{-5}$	3.9 ± 0.4	11.6 ± 0.3	10.7 ± 1.2

7. Обсуждение результатов

1. При сравнении вольт-амперной характеристики разряда (рис. 4) и графика вольт-амперной характеристики газового разряда из приложения к лабораторной работе (рис.

Рис. 5: ВАХ двойного зонда

Рис. 6: Зависимость электронной температуры и концентрации электронов от тока разряда

7) видно, что рассматривался участок $\Gamma Д$, соответствующий поднормальному тлеющему разряду.

Рис. 7: Вольт-амперная характеристика разряда в неоне (из приложения)

- 2. По определению поляризационной длины r_{De} плазму можно считать квазинейтральной, так как именно электронная дебаевская длина определяет масштаб, на котором нарушается квазинейтральность из-за тепловых флуктуаций электронов относительно ионов, а $r_{De} \sim 10^{-2}$ см, что много меньше размеров области.
- 3. Оценив число ионов в дебаевской сфере $N_D \sim 40$, видно, что число частиц много больше 1, что позволяет называть плазму идеальной.
- 4. Определить зависимость электронной температуры от тока разряда с помощью полученных данных (рис. 6) невозможно из-за малого числа точек и достаточной погрешности результатов. Однако можно качественно оценить зависимость концентрации электронов от тока разряда: график напоминает линейную или степенную зависимость, что достаточно ожидаемо, при увеличении тока разряда увеличивается и число электронов в газе.

8. Выводы

Из ВАХ разряда подтверждено, что исследуется тлеющий газовый разряд. Экспериментальная зондовая характеристика подтверждает теоретическую зависимость: $I=I_{i\mathrm{H}}th\frac{eU}{2k_\mathrm{B}T_e}$, количество ионов в дебаевской сфере $N_D\sim 40$ показывает идеальность плазмы. Остальные характеристики плазмы получились схожими по порядку с примерами в инструкции к работе, что подтверждает справедливость метода измерений. Однако не удалось оценить зависимость температуры электронов от тока разряда из-за неточных измерений и малого их числа.