- 2.6 Let G be a group. Define an opposite group G^o with law of composition a*b as follows: The underlying set is the same as G, but the law of composition is a*b = ba. Prove that G^o is a group.
 - Associativity: For all $a, b, c \in G^o$

$$a * (b * c) = a * (cb) = cba = c(ba) = (ba) * c = (a * b) * c$$

• Identity: For all $a \in G^o$

$$a * e = ea = a = ae = e * a$$

• Inverses: For all $a \in G^o$

$$a * a^{-1} = a^{1}a = e = aa^{-1} = a^{-1} * a$$

- 4.9 How many elements of order 2 does the symmetric group S_4 contain? There are 6 elements of order 2 in S_4 , they are all of the transpositions, which is equivalent to $\binom{4}{2} = 6$. Note that for $a, b \in [4]$ if $a \neq b$, then (ab)(ab), when evaluated on a yields (ab)(ab)a = (ab)b = a and on b becomes (ab)(ab)b = (ab)a = b. Therefore (ab)(ab) = 1.
- 6.1 Let G' be the group of real matrices of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$. Is the map $\mathbb{R}^+ \to G'$ that sends x to this matrix an isomorphism? Let $f: \mathbb{R}^+ \to G'$ be given by $x \mapsto \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$.
 - f is a homomorphism: $f(x)f(y) = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & x+y \\ 0 & 1 \end{bmatrix} = f(x+y)$
 - f is injective: Suppose $x, y \in \mathbb{R}^+, f(x) = f(y)$. Then

$$\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}$$
$$x = y.$$

- f is surjective: Suppose $A \in G'$. Then $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, where $a \in \mathbb{R}$. Therefore $f(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$.
- 6.4 Prove that in a group, the products ab and ba are conjugate elements. Note that $(ba^{-1})ab(b^{-1}a) = b(a^{-1}a)(bb^{-1})a = ba$ Therefore ab and ba are conjugates of each other by the element ba^{-1} .

- 7.1 Let G be a group. Prove that the relation $a \sim b$ if $b = gag^{-1}$ for some g in G is an equivalence relation on G
 - Reflexivity: Suppose $a \in G$. Note that $eae^{-1} = a$. Therefore $a \sim a$.
 - Symmetry: Suppose $a \sim b$. Then there exists $g \in G$ such that $gag^{-1} = b$. Then $g^{-1}bg = g^{-1}gag^{-1}g = a$
 - Transitivity: Suppose $a, b, c \in G, a \sim b, b \sim c$. Then there exists $g, h \in G$ such that $gag^{-1} = b, hbh^{-1} = c$. Then $hgag^{-1}h^{-1} = hbh^{-1} = c$. Thus $a \ c$ by the element gh.
- 8.1 Let H be the cyclic subgroup of the alternating group A_4 generated by the permutation (123). Exhibit the left and the right cosets of H explicitly.
 - Right cosets:
 - H acting upon the identity operation (123) or (132): $\{e, (123), (132)\}$
 - -H acting upon (12)(34), (234) or (134): $\{(12)(34), (234), (134)\}$
 - -H acting upon (13)(24), (124) or (243): $\{(13)(24), (124), (243)\}$
 - -H acting upon (14)(23), (142) or (143): $\{(14)(23), (142), (143)\}$
 - Left cosets:
 - The identity operation, (123), or (132) acting upon $H: \{e, (123), (132)\}$
 - -(12)(34),(243) or (143) acting upon $H: \{(12)(34),(243),(143)\}$
 - -(13)(24),(142) or (234) acting upon $H: \{(13)(24),(142),(234)\}$
 - -(14)(23),(124) or (134) acting upon $H: \{(14)(23),(124),(134)\}$
- 8.12 Let S be a subset of a group G that contains the identity element 1, and such that the left cosets aS, with a in G, partition G. Prove that S is a subgroup of G
 - Identity: We assume this.
 - Closure: Suppose $a, b \in S$. We want to show that $ab \in S$. Note that $ab \in aS$. Since the cosets of S partition G, then $a \in aS$ implies that aS = S. Therefore $ab \in S$.
 - Inverses: Suppose $a \in S$. We want to show that $a^{-1} \in S$. Note that $a^{-1}S$ contains the identity. Since the cosets of S partition G, and $e \in S$, $a^{-1}S$ then that implies $S = a^{-1}S$. Therefore $a^{-1} \in S$.
- 9.7 Determine the order of each of the matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
 - A has order 3

$$A^{3} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{3} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Alex Valentino

\bullet B has order 8

$$B^{8} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{7}$$

$$= \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{6}$$

$$= \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{5}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{4}$$

$$= \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{3}$$

$$= \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{2}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$