Importing all necessary libraries

```
from IPython.display import Audio, display
In [ ]:
        import IPython.display as ipd
        import librosa
        from librosa import display
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import tensorflow as tf
        from tensorflow.keras.callbacks import EarlyStopping
        from sklearn.preprocessing import LabelEncoder
        from sklearn.linear_model import LogisticRegression
        from sklearn.model selection import train test split
        from sklearn.metrics import confusion matrix, accuracy score
        from sklearn.preprocessing import StandardScaler
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
        from tensorflow.keras.utils import to_categorical
        from tensorflow.keras.models import load model
```

Function for loading dataset

```
In [ ]: def load_dataset(path):
    """Loads dataset from path provided and return pandas object"""
    ds_path= path
    ds= pd.read_csv(ds_path)
    return ds
```

Function for loading audios using librosa

```
def audio_signals(path, sample_rate=16000, duration=3):
In [ ]:
            """Loading audio using librosa library"""
            audio, sr= librosa.load(path, sr=sample_rate, duration=duration, mono=True)
            if sr!=sample rate:
                 audio = librosa.resample(audio, sr, sample rate)
            return audio
        def load_audio_signals(ds, num_of_samples):
             """Returns numpya array of all audio signals"""
            all_audio_signals=[]
            for path in ds['file path']:
                audio= audio signals("./Dataset-2/"+path)
                all_audio_signals.append(audio)
                if(len(all_audio_signals)==num_of_samples):
                    break
            all_audio_signals= np.array(all_audio_signals, dtype=object)
            return all_audio_signals
```

Data augmentation (Data Pre-processing)

```
In [ ]: import numpy as np
        import librosa
        import random
        def add_noise(audio, noise_factor=0.005):
            """Add random noise to the audio signal"""
            noise = np.random.randn(len(audio))
            augmented audio = audio + noise factor * noise
            return augmented audio
        def time_stretch(audio, rate=1.2):
            """Stretch or compress the audio in time without changing pitch"""
            augmented_audio = librosa.effects.time_stretch(y=audio, rate=rate)
            return augmented_audio
        def pitch_shift(audio, sr, n_steps=2):
             """Shift the pitch of the audio signal"""
            augmented audio = librosa.effects.pitch shift(audio, sr=sr, n steps=n steps)
            return augmented audio
        def time_shift(audio, sr, shift_factor=0.2):
            """Shift the audio signal in time"""
            shift_samples = int(shift_factor * len(audio))
            augmented_audio = np.roll(audio, shift_samples)
            return augmented audio
        def apply augmentation(audio, sr=16000):
             """Apply random augmentation to the audio signal"""
            # augmentation_functions = [add_noise, time_stretch, pitch_shift, time_shift]
            # augmentation_functions = [add_noise, time_stretch, pitch_shift, lambda x: tim
            augmentation_functions = [add_noise, time_stretch, lambda x, sr=sr: pitch_shift
            augmentation_function = random.choice(augmentation_functions)
            augmented_audio = augmentation_function(audio)
            return augmented_audio
        def augment audios(audios):
             """Apply augmentation to a list of audio signals"""
            augmented_audios = []
            for audio in audios:
                augmented_audio = apply_augmentation(audio)
                 augmented_audios.append(augmented_audio)
            return np.array(augmented_audios, dtype= object)
```

Label encoding for speakers

```
In [ ]:
    def label_encoding(ds, num_of_samples):
        """Label encoding of speakers for classification"""
        labels=[]
        for label in ds['speaker']:
            labels.append(label)

# Initialize the LabelEncoder
        label_encoder = LabelEncoder()

# Fit and transform the Labels
        y_encoded = label_encoder.fit_transform(labels)

# Print the mapping between original Labels and encoded values
        label_mapping = dict(zip(label_encoder.classes_, label_encoder.transform(label_print("Label Mapping:", label_mapping)
```

```
y_encoded=y_encoded[0:num_of_samples]
return y_encoded
```

Fourier Magnitude Spectra- Feature Extraction

```
def feature_extraction(all_audio_signals, num_of_samples):
In [ ]:
             """Returns the fourier magnitude spectrum as feature vector"""
            fourier magnitude=[]
            fixed_num_freq_samples = 24001
            for audio in all_audio_signals[0:num_of_samples]:
                 fourier = np.fft.rfft(audio)
                 sampling rate = 16000.0
                num freq samples = len(fourier)
                 resampled_fourier = np.interp(np.linspace(0, num_freq_samples - 1, fixed_nu
                N = len(audio)
                normalize = N/2
                norm amplitude = np.abs(resampled fourier)/normalize
                fourier_magnitude.append(norm_amplitude)
            fourier_magnitude= np.array(fourier_magnitude, dtype=float)
             return fourier magnitude
```

For Training

```
In [ ]:
        ds= load dataset("./Dataset-2/train.csv")
In [ ]: num_of_samples= 3000
        audios= load_audio_signals(ds, num_of_samples)
        encoded y= label encoding(ds,num of samples)
        print(audios)
        print(audios.shape)
        Label Mapping: {'aew': 0, 'ahw': 1, 'aup': 2, 'awb': 3, 'axb': 4, 'bdl': 5, 'clb':
        6, 'eey': 7, 'fem': 8, 'gka': 9, 'jmk': 10, 'ksp': 11, 'ljm': 12, 'lnh': 13, 'rm
        s': 14, 'rxr': 15, 'slp': 16, 'slt': 17}
        [array([0.00521851, 0.0062561, 0.00543213, ..., 0.
                                                                   , 0.
                          ], dtype=float32)
         array([0.00094604, 0.00115967, 0.00067139, ..., 0.01141357, 0.01730347,
                0.00491333], dtype=float32)
         array([-0.00115967, -0.00143433, -0.00137329, ..., -0.00183105,
                -0.00195312, -0.00183105], dtype=float32)
         array([ 0.00012207, 0.00012207, 0.00039673, ..., 0.06216431,
                 0.0015564 , -0.02697754], dtype=float32)
         array([-0.0005188, -0.0005188, -0.00048828, ..., 0.
                       , 0.
                                        ], dtype=float32)
         array([-0.00430298, -0.00424194, -0.00469971, ..., -0.0007019]
                -0.00048828, -0.0007019 ], dtype=float32)
        (3000,)
        augmented audios = augment audios(audios)
In [ ]:
        print(augmented audios)
        print(augmented audios.shape)
```

For Testing

```
In [ ]: test_ds= load_dataset("./Dataset-2/test_full.csv")
    test_audios= load_audio_signals(test_ds,num_of_samples)
    encoded_y_test= label_encoding(test_ds,num_of_samples)
    features_y= feature_extraction(test_audios,num_of_samples)

Label Mapping: {'aew': 0, 'ahw': 1, 'aup': 2, 'awb': 3, 'axb': 4, 'bdl': 5, 'clb': 6, 'eey': 7, 'fem': 8, 'gka': 9, 'jmk': 10, 'ksp': 11, 'ljm': 12, 'lnh': 13, 'rm s': 14, 'rxr': 15, 'slp': 16, 'slt': 17}
```

Plots of augmented audios

```
for i in range(2):
    plt.figure()
    #plot the raw audio signal using librosa
    plt.figure(figsize=(10,4))
    librosa.display.waveshow(augmented_audios[i])
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.title("Waveform")
    plt.grid()
    plt.show()
```

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>


```
In [ ]: for i in range(2):
            print(f"For speaker {i}")
            fourier = np.fft.rfft(augmented_audios[i])
            # Get the frequency components of the spectrum
            sampling_rate = 16000.0 # It's used as a sample spacing
            frequency_axis = np.linspace(0, sampling_rate, len(np.abs(fourier)))
            plt.figure()
            # Plot the result (the spectrum |Xk|)
            plt.plot(frequency_axis,np.abs(fourier))
            plt.show()
            # Calculate N/2 to normalize the FFT output
            N = len(audios[i])
            normalize = N/2
            plt.figure()
            # Plot the normalized FFT (|Xk|)/(N/2)
            plt.plot(frequency_axis,np.abs(fourier)/normalize)
            plt.ylabel('Amplitude')
            plt.xlabel('Samples')
            plt.title('Normalized FFT Spectrum')
            plt.show()
```

For speaker 0

Normalized FFT Spectrum 0.020 - 0.015 - 0.005 - 0.005 - 0.000 - 0.000 | 0.000 | 12000 | 14000 | 16000

For speaker 1

Machine Learning: Logistic Regression

```
classifier = LogisticRegression(random state = 0)
In [ ]:
         classifier.fit(X_train, y_train)
Out[]:
                LogisticRegression
        LogisticRegression(random state=0)
        TESTING
         print(classifier.predict(sc.transform(features_y)))
In [ ]:
         y_pred=classifier.predict(sc.transform(features_y))
         [ 7 7 3 ... 11 7 15]
In [ ]: y_test=encoded_y_test
         print(y_test)
         [ 0 7 3 ... 11 7 15]
In [ ]:
         cm = confusion matrix(y test, y pred)
         print(cm)
         print("Accuracy", accuracy_score(y_pred, y_test))
                             7
                                              5
                                                  0
                                                                   4
                                                                               2
                                                                                    1]
         [[172
                 4
                     2
                         1
                                  3
                                      1
                                          6
                                                               0
          [
            0 106
                     0
                         0
                             0
                                 0
                                      0
                                          0
                                              1
                                                  0
                                                      0
                                                           4
                                                               0
                                                                   0
                                                                       0
                                                                           2
                                                                               0
                                                                                   0]
                         0
                             4
                                                  0
          0
                 0 112
                                 1
                                      0
                                          0
                                              0
                                                      0
                                                           0
                                                              0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
             0
                 0
                     0 213
                             0
                                      0
                                                  0
                                                              0
                                                                                   0]
            0
                 0
                     0
                         0 111
                                 0
                                      0
                                          1
                                              0
                                                  0
                                                           0
                                                              0
                                                                   1
                                                                       0
                                                                           0
                                                                               1
                                                                                   1]
                         7
                             1 195
                                     0
                                          2
                                                                           0
             1
                 1
                     3
                                              1
                                                  0
                                                      2
                                                           1
                                                              0
                                                                   3
                                                                       0
                                                                               0
                                                                                   0]
             0
                 0
                     0
                         0
                             0
                                 1 211
                                          0
                                              0
                                                  0
                                                           0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   8]
            0
                 1
                     0
                         0
                             1
                                 3
                                         90
                                              0
                                                  0
                                                      0
                                                           0
                                                              3
                                                                   2
                                                                       0
                                                                           0
                                                                              12
                                                                                   1]
                                     1
                     0
                                          0 113
                                                  0
                                                                           0
            0
                 0
                         0
                             1
                                 0
                                      0
                                                      0
                                                           0
                                                              0
                                                                   0
                                                                       0
                                                                               0
                                                                                   0]
           16
                 0
                     0
                         0
                             0
                                 0
                                      0
                                          0
                                              0
                                                 91
                                                      2
                                                           5
                                                               0
                                                                           1
                                                                                   0]
                             0
                                                  0 218
                                                           0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                                   0]
            0
                 0
                     0
                         0
                                 0
                                      0
                                          0
                                              0
                                                                               0
                 0
                             0
                                          0
                                                      0 217
                                                               0
                                                                           0
             1
                     0
                         0
                                 0
                                     0
                                              0
                                                  0
                                                                   0
                                                                       0
                                                                               1
                                                                                   0]
            0
                 0
                     0
                         0
                             3
                                 0
                                     2
                                          3
                                              0
                                                  0
                                                      0
                                                           0
                                                              78
                                                                   8
                                                                       0
                                                                           0
                                                                              18
                                                                                    3]
            1
                 0
                     0
                         0
                             0
                                 8
                                     0
                                         0
                                              0
                                                  0
                                                      0
                                                           0
                                                              3 201
                                                                       1
                                                                           0
                                                                                    2]
                 0
                     1
                             0
                                 0
                                     0
                                         1
                                                  0
                                                                           0
          4
                         0
                                              1
                                                           0
                                                              0
                                                                   0 205
                                                                               0
                                                                                   0]
                 6
                     3
                                                  1
                                                              0
                                                                       0 104
                                                                               1
                                                                                   1]
          6
                 0
                     0
                             3
                                 0
                                     2
                                          3
                                              0
                                                  0
                                                           0
                                                                       0
                                                                           0 100
                                                                                   0]
            0
                         0
                                                      0
                                                              6
                                                                   0
            0
                 2
                     0
                         1
                             0
                                 0
                                      2
                                              1
                                                  0
                                                      3
                                                           0
                                                               1
                                                                       0
                                                                           0
                                                                               0 208]]
                                                                   0
        Accuracy 0.915
```

from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.88	0.79	0.83	219
1	0.88	0.94	0.91	113
2	0.93	0.96	0.94	117
3	0.96	1.00	0.98	213
4	0.84	0.97	0.90	115
5	0.92	0.90	0.91	217
6	0.96	0.96	0.96	220
7	0.85	0.79	0.82	114
8	0.92	0.99	0.95	114
9	0.99	0.79	0.88	115
10	0.96	1.00	0.98	218
11	0.92	0.99	0.96	219
12	0.86	0.68	0.76	115
13	0.90	0.92	0.91	218
14	0.98	0.97	0.97	212
15	0.94	0.81	0.87	129
16	0.73	0.88	0.80	114
17	0.92	0.95	0.94	218
accuracy			0.92	3000
macro avg	0.91	0.90	0.90	3000
weighted avg	0.92	0.92	0.91	3000
14 15 16 17 accuracy macro avg	0.98 0.94 0.73 0.92	0.97 0.81 0.88 0.95	0.97 0.87 0.80 0.94 0.92 0.90	212 129 114 218 3000 3000

Out[]:		class	specificity	sensitivity
	0	0	0.991370	0.785388
	1	1	0.995151	0.938053
	2	2	0.996878	0.957265
	3	3	0.996771	1.000000
	4	4	0.992721	0.965217
	5	5	0.994251	0.898618
	6	6	0.997122	0.959091
	7	7	0.994456	0.789474
	8	8	0.996535	0.991228
	9	9	0.999653	0.791304
	10	10	0.997124	1.000000
	11	11	0.993528	0.990868
	12	12	0.995494	0.678261
	13	13	0.992092	0.922018
	14	14	0.998207	0.966981
	15	15	0.997562	0.806202
	16	16	0.987179	0.877193
	17	17	0.993889	0.954128

1D CNN without Windowing

Test Data Shape: (450, 24001) Training y Data Shape: (2100,) Validation y Data Shape: (450,) Test y Data Shape: (450,)

```
In [ ]: X_train, X_temp, y_train, y_temp = train_test_split(features, encoded_y, test_size
        X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, rand)
        X_train = X_train.astype('float32')
        y_train = y_train.astype('int32')
        X_val = X_val.astype('float32')
        y_val = y_val.astype('int32')
        X_test = X_test.astype('float32')
        y_test = y_test.astype('int32')
        # Print the shapes of training and validation data
        print("Training Data Shape:", X_train.shape)
        print("Validation Data Shape:", X_val.shape)
        print("Test Data Shape:", X_test.shape)
        print("Training y Data Shape:", y_train.shape)
        print("Validation y Data Shape:", y_val.shape)
        print("Test y Data Shape:", y_test.shape)
        Training Data Shape: (2100, 24001)
        Validation Data Shape: (450, 24001)
```

```
In [ ]: # Reshape the input data for compatibility with Conv1D
                          X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
                          X_val_reshaped = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
                           # Convert labels to one-hot encoded format
                           num_classes = len(np.unique(y_train))
                           y_train_encoded = to_categorical(y_train, num_classes=num_classes)
                          y_val_encoded = to_categorical(y_val, num_classes=num_classes)
                           # Defining the CNN model
                           model = Sequential([
                                      Conv1D(64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1))
                                      MaxPooling1D(pool_size=2),
                                      Conv1D(128, kernel_size=3, activation='relu'),
                                      MaxPooling1D(pool_size=2),
                                      Flatten(),
                                      Dense(64, activation='relu'),
                                      Dense(num_classes, activation='softmax')
                           ])
                           model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy
                          model.summary()
                          history = model.fit(X_train_reshaped, y_train_encoded, validation_data=(X_val_reshaped, y_train_encoded, y_train_encoded
                          model.save("1d_cnn_model_without_window_new.h5")
```

Layer (type)		Param #
conv1d_2 (Conv1D)		
<pre>max_pooling1d_2 (MaxPooling 1D)</pre>	(None, 11999, 64)	0
conv1d_3 (Conv1D)	(None, 11997, 128)	24704
<pre>max_pooling1d_3 (MaxPooling 1D)</pre>	(None, 5998, 128)	0
flatten_1 (Flatten)	(None, 767744)	0
dense_2 (Dense)	(None, 64)	49135680
dense_3 (Dense)	(None, 18)	1170
Total params: 49,161,810 Trainable params: 49,161,810 Non-trainable params: 0		
Layer (type)	Output Shape	Param #
conv1d_2 (Conv1D)		
<pre>max_pooling1d_2 (MaxPooling 1D)</pre>	(None, 11999, 64)	0
conv1d_3 (Conv1D)	(None, 11997, 128)	24704
<pre>max_pooling1d_3 (MaxPooling 1D)</pre>	(None, 5998, 128)	0
flatten_1 (Flatten)	(None, 767744)	0
dense_2 (Dense)	(None, 64)	49135680
dense_3 (Dense)	(None, 18)	1170
Total params: 49,161,810 Trainable params: 49,161,810 Trainable params: 0 Epoch 1/20 56/66 [==================================	======] - 151s 2s/step val_accuracy: 0.2200 =======] - 135s 2s/step	- loss: 2.8230 - accuracy
Epoch 3/20 56/66 [======== 0.6738 - val_loss: 0.8625 - Epoch 4/20	val_accuracy: 0.6644	
56/66 [==================================	val_accuracy: 0.7800 ======] - 145s 2s/step	

0.8471 - val_loss: 0.4657 - val_accuracy: 0.8467

```
66/66 [============ ] - 156s 2s/step - loss: 0.3950 - accuracy:
      0.8700 - val loss: 0.4366 - val accuracy: 0.8422
      Epoch 7/20
      66/66 [============] - 142s 2s/step - loss: 0.2873 - accuracy:
      0.9043 - val loss: 0.3922 - val accuracy: 0.8800
      Epoch 8/20
      66/66 [============ ] - 146s 2s/step - loss: 0.1939 - accuracy:
      0.9424 - val loss: 0.3715 - val accuracy: 0.8889
      Epoch 9/20
      66/66 [=============] - 145s 2s/step - loss: 0.1778 - accuracy:
      0.9424 - val_loss: 0.3822 - val_accuracy: 0.8756
      Epoch 10/20
      66/66 [============] - 143s 2s/step - loss: 0.1463 - accuracy:
      0.9476 - val loss: 0.3227 - val accuracy: 0.9044
      Epoch 11/20
      66/66 [============ ] - 139s 2s/step - loss: 0.1041 - accuracy:
      0.9676 - val loss: 0.4096 - val accuracy: 0.8622
      Epoch 12/20
      0.9752 - val_loss: 0.2775 - val_accuracy: 0.9178
      Epoch 13/20
      66/66 [============ ] - 132s 2s/step - loss: 0.0901 - accuracy:
      0.9719 - val_loss: 0.3343 - val_accuracy: 0.9133
      Epoch 14/20
      66/66 [============ ] - 132s 2s/step - loss: 0.0669 - accuracy:
      0.9805 - val loss: 0.3166 - val accuracy: 0.9222
      Epoch 15/20
      0.9919 - val_loss: 0.2981 - val_accuracy: 0.9222
      Epoch 16/20
      66/66 [============ ] - 154s 2s/step - loss: 0.0160 - accuracy:
      0.9995 - val loss: 0.3055 - val accuracy: 0.9244
      Epoch 17/20
      0.9990 - val_loss: 0.3093 - val_accuracy: 0.9178
      Epoch 18/20
      1.0000 - val_loss: 0.2933 - val_accuracy: 0.9244
      Epoch 19/20
      66/66 [===========] - 142s 2s/step - loss: 0.0062 - accuracy:
      1.0000 - val loss: 0.3050 - val accuracy: 0.9222
      Epoch 20/20
      1.0000 - val_loss: 0.3447 - val_accuracy: 0.9222
In [ ]: # Plot training & validation accuracy values
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.xlabel('Epoch')
      plt.ylabel('Accuracy')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
      # Plot training & validation loss values
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.xlabel('Epoch')
      plt.ylabel('Loss')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```

Epoch 6/20

Model loss

TESTING

```
In [ ]: loaded_model = load_model("1d_cnn_model_without_window_new.h5")

X_test_reshaped = features_y.reshape(features_y.shape[0], features_y.shape[1], 1)
```

```
y_pred = loaded_model.predict(X_test_reshaped)
         94/94 [======== ] - 46s 491ms/step
In [ ]: y_pred_classes = np.argmax(y_pred, axis=1)
         print(y_pred_classes)
         [ 0 7 3 ... 11 7 15]
In [ ]: from sklearn.metrics import confusion_matrix, accuracy_score
         cm = confusion_matrix(encoded_y_test, y_pred_classes)
         print(cm)
         accuracy_score(encoded_y_test, y_pred_classes)
         [[193
                                   0
                                                                                       01
                                       0
                                                6
                                                    2
                                                        1
                                                             6
                                                                 0
                                                                     0
                                                                          8
                                                                              0
                                                                                  0
             0 105
                                                             7
                      0
                              0
                                   0
                                       0
                                            0
                                                0
                                                    0
                                                        0
                                                                 0
                                                                     0
                                                                          0
                                                                              0
                                                                                  0
                                                                                       0]
                          1
             1
                  0 113
                          1
                              0
                                   1
                                       0
                                            0
                                                0
                                                    0
                                                        1
                                                             0
                                                                 0
                                                                     0
                                                                          0
                                                                              0
                                                                                       0]
          0
                  0
                      0 213
                              0
                                   0
                                       0
                                           0
                                                0
                                                    0
                                                        0
                                                             0
                                                                 0
                                                                     0
                                                                          0
                                                                              0
                                                                                  0
                                                                                       0]
          [
             0
                  0
                      2
                          0
                             91
                                   0
                                       0
                                           3
                                                0
                                                    0
                                                        0
                                                             0
                                                                 8
                                                                     2
                                                                          0
                                                                              0
                                                                                  6
                                                                                       3]
          1
                     14
                          6
                              0 182
                                       0
                                               12
                                                    0
                                                                                       0]
                 0
                      0
                              0
                                   0 212
                                           0
                                                0
                                                    0
                                                                              0
                                                                                       8]
          0
                          0
                                                        0
                                                             0
                                                                 0
                                                                     0
                                                                          0
                                                                                  0
                                          96
                 0
                      0
                              0
                                   0
                                                0
                                                    0
                                                        0
                                                                 2
                                                                     0
                                                                          0
                                                                              0
                                                                                  8
                                                                                       5]
             0
                          0
                                       3
                                                             0
          Γ
             0
                 0
                      0
                          0
                              0
                                   0
                                       0
                                           0 106
                                                    0
                                                        0
                                                             0
                                                                 0
                                                                     0
                                                                          8
                                                                              0
                                                                                  0
                                                                                       0]
             0
                 0
                      0
                          0
                              0
                                   0
                                       0
                                           0
                                                0 106
                                                        8
                                                             0
                                                                 0
                                                                     0
                                                                              0
                                                                                  0
                                                                                       0]
                                                                          1
             0
                 0
                      0
                          0
                              0
                                           0
                                                0
                                                    0 217
                                                             0
                                                                 0
                                                                     a
                                                                              0
                                                                                  0
                                                                                       0]
          [
                                   0
                                       0
                                                                          1
             3
                10
                      0
                          0
                              0
                                   3
                                       0
                                           0
                                                2
                                                    5
                                                        1 195
                                                                 0
                                                                     0
                                                                                  0
                                                                                       0]
          Γ
             0
                 0
                      0
                          0
                              2
                                   0
                                       0
                                          10
                                                0
                                                    0
                                                        0
                                                             0
                                                                66 14
                                                                          0
                                                                              1
                                                                                 13
                                                                                       9]
             1
                 0
                      3
                          0
                              0
                                   0
                                       0
                                           2
                                                0
                                                    0
                                                        0
                                                             0
                                                                 0 206
                                                                          0
                                                                              3
                                                                                  2
                                                                                       1]
                      0
                              0
                                           0
                                                                     0 211
                                                                              0
                                                                                       0]
             1
                  0
                          0
                                   0
                                       0
                                                0
                                                    0
                                                        0
                                                             0
                                                                 0
             0
                      0
                          0
                              0
                                   0
                                       0
                                           0
                                                0
                                                    1
                                                        0
                                                             4
                                                                 0
                                                                     2
                                                                          0 116
                                                                                  0
                                                                                       0]
                 6
                                                                 9
          [
             0
                 0
                      0
                          0
                              2
                                   0
                                       3
                                          25
                                                0
                                                    0
                                                        0
                                                             0
                                                                     0
                                                                          0
                                                                              0
                                                                                 72
                                                                                       3]
                      2
                          2
                                                0
                                                    0
                                                             6
                                                                 1
                                                                          0
                                                                                  0 203]]
          Γ
             0
                                           1
                                                                              1
         0.901
Out[]:
         from sklearn.metrics import classification_report
         print(classification_report(encoded_y_test,y_pred_classes))
                                      recall f1-score
                        precision
                                                           support
                     0
                             0.97
                                        0.88
                                                   0.92
                                                               219
                     1
                             0.86
                                        0.93
                                                   0.89
                                                               113
                     2
                                        0.97
                                                   0.89
                             0.82
                                                               117
                     3
                             0.96
                                        1.00
                                                   0.98
                                                               213
                     4
                             0.96
                                        0.79
                                                   0.87
                                                               115
                     5
                             0.98
                                        0.84
                                                   0.90
                                                               217
                     6
                             0.96
                                        0.96
                                                   0.96
                                                               220
                     7
                             0.70
                                        0.84
                                                   0.76
                                                               114
                     8
                                        0.93
                                                   0.88
                                                               114
                             0.84
                     9
                             0.93
                                        0.92
                                                   0.93
                                                               115
```

accuracy

macro avg
weighted avg

0.95

0.89

0.77

0.91

0.92

0.96

0.71

0.88

0.89

0.90

1.00

0.89

0.57

0.94

1.00

0.90

0.63

0.93

0.88

0.90

0.97

0.89

0.66

0.93

0.96

0.93

0.67

0.90

0.90

0.88

0.90

ut[]:		class	specificity	sensitivity
	0	0	0.997843	0.881279
	1	1	0.994112	0.929204
	2	2	0.991675	0.965812
	3	3	0.996412	1.000000
	4	4	0.998614	0.791304
	5	5	0.998563	0.838710
	6	6	0.997122	0.963636
	7	7	0.985793	0.842105
	8	8	0.993070	0.929825
	9	9	0.997227	0.921739
	10	10	0.996046	0.995413
	11	11	0.991730	0.890411
	12	12	0.993068	0.573913
	13	13	0.992811	0.944954
	14	14	0.993544	0.995283
	15	15	0.998258	0.899225
	16	16	0.989951	0.631579
	17	17	0.989576	0.931193

1D CNN with hamming window

```
In [ ]: def apply_window(audio, window_type="hamming"):
    if window_type == "hamming":
        window = np.hamming(len(audio))
    else:
        raise ValueError("Invalid window type. Supported type is 'hamming'.")

# Apply the window to the audio signal
    windowed_audio = audio * window
    return windowed_audio
In []: augmented_audios=[apply_window(audio, window_type="hamming") for audio in augmented
features= feature_extraction(augmented_audios,num_of_samples)
```

```
In []:
    for i in range(2):
        plt.figure()
        #plot the raw audio signal using librosa
        plt.figure(figsize=(10,4))
        librosa.display.waveshow(augmented_audios[i])
        plt.xlabel("Time (s)")
        plt.ylabel("Amplitude")
        plt.title("Waveform")
        plt.grid()
        plt.show()
```

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>


```
In []: for i in range(2):
    print(f"For speaker {i}")
    fourier = np.fft.rfft(augmented_audios[i])
    # Get the frequency components of the spectrum
    sampling_rate = 16000.0 # It's used as a sample spacing
    frequency_axis = np.linspace(0, sampling_rate, len(np.abs(fourier)))
    plt.figure()
    # Plot the result (the spectrum |Xk|)
    plt.plot(frequency_axis,np.abs(fourier))
    plt.show()

# Calculate N/2 to normalize the FFT output
    N = len(audios[i])
    normalize = N/2
```

```
plt.figure()
# Plot the normalized FFT (|Xk|)/(N/2)
plt.plot(frequency_axis,np.abs(fourier)/normalize)
plt.ylabel('Amplitude')
plt.xlabel('Samples')
plt.title('Normalized FFT Spectrum')
plt.show()
```

For speaker 0

Normalized FFT Spectrum


```
In []: # Split the data into training, validation, and test sets
    X_train, X_temp, y_train, y_temp = train_test_split(features, encoded_y, test_size=
    X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, rand)

X_train = X_train.astype('float32')
    y_train = y_train.astype('int32')
    X_val = X_val.astype('float32')
    y_val = y_val.astype('int32')
```

```
X test = X test.astype('float32')
                    y_test = y_test.astype('int32')
                    # Print the shapes of training and validation data
                    print("Training Data Shape:", X_train.shape)
                    print("Validation Data Shape:", X_val.shape)
                    print("Test Data Shape:", X_test.shape)
                    print("Training y Data Shape:", y_train.shape)
                    print("Validation y Data Shape:", y_val.shape)
                    print("Test y Data Shape:", y_test.shape)
                   Training Data Shape: (2100, 24001)
                   Validation Data Shape: (450, 24001)
                   Test Data Shape: (450, 24001)
                   Training y Data Shape: (2100,)
                   Validation y Data Shape: (450,)
                   Test y Data Shape: (450,)
In [ ]: # Reshape the input data for compatibility with Conv1D
                    X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
                    X_val_reshaped = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
                    # Convert labels to one-hot encoded format
                    num_classes = len(np.unique(y_train))
                    y_train_encoded = to_categorical(y_train, num_classes=num_classes)
                    y_val_encoded = to_categorical(y_val, num_classes=num_classes)
                    # Defining the CNN model
                    model = Sequential([
                             Conv1D(64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1))
                             MaxPooling1D(pool_size=2),
                             Conv1D(128, kernel_size=3, activation='relu'),
                             MaxPooling1D(pool_size=2),
                             Flatten(),
                             Dense(64, activation='relu'),
                             Dense(num_classes, activation='softmax')
                    ])
                    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy
                    model.summary()
                    history = model.fit(X_train_reshaped, y_train_encoded, validation_data=(X_val_reshaped, y_train_encoded, y_train_encoded,
                    model.save("1d cnn model hamming window new.h5")
```

```
Layer (type)
                       Output Shape
                                            Param #
______
                       (None, 23999, 64)
conv1d 10 (Conv1D)
                                            256
                       Output Shape
Layer (type)
                                            Param #
______
conv1d 10 (Conv1D)
                       (None, 23999, 64)
                                            256
max pooling1d 10 (MaxPoolin (None, 11999, 64)
g1D)
conv1d 11 (Conv1D)
                       (None, 11997, 128)
                                            24704
max pooling1d 11 (MaxPoolin (None, 5998, 128)
g1D)
flatten_5 (Flatten)
                       (None, 767744)
dense 10 (Dense)
                       (None, 64)
                                             49135680
                       (None, 18)
dense 11 (Dense)
                                             1170
______
Total params: 49,161,810
Trainable params: 49,161,810
Non-trainable params: 0
Epoch 1/25
66/66 [============ ] - 190s 3s/step - loss: 2.8711 - accuracy:
0.0700 - val loss: 2.8470 - val accuracy: 0.0689
Epoch 2/25
66/66 [============ ] - 168s 3s/step - loss: 2.8531 - accuracy:
0.0705 - val loss: 2.8466 - val accuracy: 0.0711
Epoch 3/25
66/66 [=============] - 173s 3s/step - loss: 2.8454 - accuracy:
0.0814 - val_loss: 2.8320 - val_accuracy: 0.1444
Epoch 4/25
66/66 [============ ] - 179s 3s/step - loss: 2.6823 - accuracy:
0.1705 - val loss: 2.3973 - val accuracy: 0.2800
Epoch 5/25
66/66 [===========] - 174s 3s/step - loss: 1.7520 - accuracy:
0.4686 - val loss: 1.3742 - val accuracy: 0.5711
Epoch 6/25
66/66 [============= ] - 167s 3s/step - loss: 1.2066 - accuracy:
0.6238 - val_loss: 1.2749 - val_accuracy: 0.5756
Epoch 7/25
66/66 [============ ] - 156s 2s/step - loss: 0.8624 - accuracy:
0.7233 - val loss: 0.9356 - val accuracy: 0.6822
Epoch 8/25
66/66 [============ ] - 141s 2s/step - loss: 0.7111 - accuracy:
0.7762 - val_loss: 0.7188 - val_accuracy: 0.7644
Epoch 9/25
66/66 [============== ] - 141s 2s/step - loss: 0.5716 - accuracy:
0.8162 - val_loss: 0.7168 - val_accuracy: 0.7556
Epoch 10/25
66/66 [============ ] - 139s 2s/step - loss: 0.4749 - accuracy:
0.8524 - val loss: 0.7868 - val accuracy: 0.7333
Epoch 11/25
0.8629 - val loss: 0.5235 - val accuracy: 0.8422
Epoch 12/25
66/66 [============= ] - 141s 2s/step - loss: 0.3372 - accuracy:
```

```
0.8910 - val_loss: 0.5334 - val_accuracy: 0.8089
       Epoch 13/25
       66/66 [============] - 141s 2s/step - loss: 0.2641 - accuracy:
       0.9248 - val loss: 0.4321 - val accuracy: 0.8533
       Epoch 14/25
       66/66 [============] - 141s 2s/step - loss: 0.2650 - accuracy:
       0.9162 - val_loss: 0.5273 - val_accuracy: 0.8289
       Epoch 15/25
       0.9419 - val_loss: 0.4189 - val_accuracy: 0.8689
       Epoch 16/25
       66/66 [============] - 140s 2s/step - loss: 0.1492 - accuracy:
       0.9557 - val_loss: 0.4318 - val_accuracy: 0.8600
       Epoch 17/25
       66/66 [============] - 139s 2s/step - loss: 0.1355 - accuracy:
       0.9576 - val_loss: 0.4981 - val_accuracy: 0.8422
       Epoch 18/25
       0.9681 - val_loss: 0.5594 - val_accuracy: 0.8378
       Epoch 19/25
       66/66 [============ ] - 140s 2s/step - loss: 0.0958 - accuracy:
       0.9743 - val_loss: 0.4734 - val_accuracy: 0.8489
       Epoch 20/25
       66/66 [============ ] - 140s 2s/step - loss: 0.0914 - accuracy:
       0.9748 - val_loss: 0.4158 - val_accuracy: 0.8689
       Epoch 21/25
       66/66 [===========] - 140s 2s/step - loss: 0.0597 - accuracy:
       0.9881 - val_loss: 0.5404 - val_accuracy: 0.8289
       66/66 [============] - 140s 2s/step - loss: 0.0468 - accuracy:
       0.9929 - val loss: 0.4779 - val accuracy: 0.8644
       Epoch 23/25
       66/66 [============] - 141s 2s/step - loss: 0.1601 - accuracy:
       0.9514 - val_loss: 0.5095 - val_accuracy: 0.8444
       Epoch 24/25
       66/66 [===========] - 140s 2s/step - loss: 0.0795 - accuracy:
       0.9805 - val_loss: 0.5467 - val_accuracy: 0.8422
       Epoch 25/25
       66/66 [============ ] - 140s 2s/step - loss: 0.0667 - accuracy:
       0.9819 - val loss: 0.5163 - val accuracy: 0.8444
In [ ]: model.save("1d_cnn_model_hamming_window_new.h5")
In [ ]: # Plot training & validation accuracy values
       plt.plot(history.history['accuracy'])
       plt.plot(history.history['val accuracy'])
       plt.title('Model accuracy')
       plt.xlabel('Epoch')
       plt.ylabel('Accuracy')
       plt.legend(['Train', 'Validation'], loc='upper left')
       plt.show()
       # Plot training & validation loss values
       plt.plot(history.history['loss'])
       plt.plot(history.history['val_loss'])
       plt.title('Model loss')
       plt.xlabel('Epoch')
       plt.ylabel('Loss')
       plt.legend(['Train', 'Validation'], loc='upper left')
       plt.show()
```


TESTING

test_audios=[apply_window(audio, window_type="hamming") for audio in test_audios]
features_y= feature_extraction(test_audios,num_of_samples)

```
loaded model = load model("1d cnn model hamming window new.h5")
In [ ]:
        X_test_reshaped = features_y.reshape(features_y.shape[0], features_y.shape[1], 1)
        y_pred = loaded_model.predict(X_test_reshaped)
        94/94 [======== ] - 40s 422ms/step
In [ ]: y_pred_classes = np.argmax(y_pred, axis=1)
         print(y_pred_classes)
        [ 0 7 3 ... 11 16 15]
In [ ]: from sklearn.metrics import confusion_matrix, accuracy_score
         cm = confusion_matrix(encoded_y_test, y_pred_classes)
         print(cm)
         print("Accuracy:", accuracy_score(encoded_y_test, y_pred_classes))
         [[194
                 0
                     2
                         1
                                 0
                                     0
                                         0
                                              8
                                                  4
                                                      1
                                                          6
                                                                  0
                                                                                   0]
                                                                      3
                                                                          0
                                                                               0
                84
                     0
                             0
                                 0
                                     0
                                         0
                                              1
                                                  0
                                                         21
                                                              0
                                                                  0
                                                                      0
                                                                          3
                                                                               0
                                                                                   0]
            0
                         3
                                                      1
             1
                 0 109
                         5
                             0
                                 2
                                     0
                                         0
                                              0
                                                  0
                                                      0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0]
         Γ
         0
                 0
                     0 209
                             0
                                 2
                                     0
                                         0
                                              2
                                                  0
                                                      0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0]
         0
                 0
                     0
                         0
                            99
                                 0
                                     0
                                         0
                                             0
                                                  0
                                                      0
                                                          0
                                                              1
                                                                  3
                                                                      0
                                                                          0
                                                                               9
                                                                                   3]
                1
                     5
                             0 186
                                     0
                                             19
                                                  0
                                                          0
                                                              0
                                                                      0
                                                                          0
                                                                                   0]
         0
                         6
                 0
                             0
                                 0 209
                                         0
                                              0
                                                      0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                                  10]
            0
                     0
                         0
                                                  1
                                                                              0
            0
                0
                     0
                         0
                             0
                                    13
                                        64
                                              0
                                                  0
                                                      0
                                                          0
                                                              2
                                                                  0
                                                                      0
                                                                          0
                                                                              26
                                                                                   8]
                                 1
            0
                 0
                     0
                         0
                             0
                                 0
                                     0
                                         0 110
                                                  0
                                                      0
                                                          0
                                                              0
                                                                  0
                                                                      4
                                                                          0
                                                                                   0]
                 0
                     0
                             0
                                         0
                                              0 108
                                                      4
                                                          2
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0]
            1
                         0
                                 0
                                     0
                0
                     0
                         0
                             0
                                         0
                                              0
                                                  1 213
                                                          0
                                                              0
                                                                  0
                                                                          0
                                                                               0
                                                                                   0]
            0
                                 0
                                     0
                                                                      4
                 2
                     0
                         1
                             0
                                     0
                                              7
                                                  7
                                                      0 198
                                                              0
                                                                               0
                                                                                   0]
                             7
            0
                 0
                     0
                         0
                                 0
                                     2
                                         5
                                              0
                                                  0
                                                      0
                                                          0
                                                             63
                                                                  5
                                                                      0
                                                                          1
                                                                              25
                                                                                   7]
                0
                     7
                             0
                                         2
                                                                          2
                                                                                   7]
             1
                         0
                                 2
                                     0
                                              0
                                                  0
                                                      0
                                                          0
                                                              3 184
                                                                      0
                                                                              10
            7
                 0
                     1
                         0
                             0
                                 0
                                     0
                                         0
                                              5
                                                  0
                                                          0
                                                              0
                                                                  0 198
                                                                          0
                                                                                   0]
                                                      1
            0
                4
                     0
                         0
                             0
                                 0
                                     0
                                         0
                                             0
                                                 0
                                                     0
                                                              0
                                                                      0 118
                                                                               0
                                                                                   0]
                                                          6
                                                                  1
            0
                 0
                     0
                         0
                             1
                                 0
                                     3
                                         8
                                              1
                                                  0
                                                      0
                                                          0
                                                              3
                                                                  0
                                                                      0
                                                                          1
                                                                              96
                                                                                   1]
                 0
                     0
                         2
                             0
                                     3
                                                  0
                                                          2
                                                                      0
                                                                           2
                                                                               1 208]]
         Γ
            0
                                                              0
                                                                  0
        Accuracy: 0.8833333333333333
        from sklearn.metrics import classification report
         print(classification_report(encoded_y_test,y_pred_classes))
```

	precision	recall	f1-score	support
0	0.93	0.89	0.91	219
1	0.92	0.74	0.82	113
2	0.88	0.93	0.90	117
3	0.92	0.98	0.95	213
4	0.93	0.86	0.89	115
5	0.96	0.86	0.91	217
6	0.91	0.95	0.93	220
7	0.81	0.56	0.66	114
8	0.72	0.96	0.82	114
9	0.89	0.94	0.92	115
10	0.97	0.98	0.97	218
11	0.84	0.90	0.87	219
12	0.88	0.55	0.67	115
13	0.95	0.84	0.90	218
14	0.95	0.93	0.94	212
15	0.93	0.91	0.92	129
16	0.57	0.84	0.68	114
17	0.85	0.95	0.90	218
accuracy			0.88	3000
macro avg	0.88	0.87	0.87	3000
weighted avg	0.89	0.88	0.88	3000

Out[]:		class	specificity	sensitivity
	0	0	0.994966	0.885845
	1	1	0.997575	0.743363
	2	2	0.994797	0.931624
	3	3	0.993541	0.981221
	4	4	0.997227	0.860870
	5	5	0.997485	0.857143
	6	6	0.992446	0.950000
	7	7	0.994802	0.561404
	8	8	0.985100	0.964912
	9	9	0.995494	0.939130
	10	10	0.997484	0.977064
	11	11	0.986695	0.904110
	12	12	0.996880	0.547826
	13	13	0.996765	0.844037
	14	14	0.996055	0.933962
	15	15	0.996865	0.914729
	16	16	0.975398	0.842105

0.987060

17

0.954128