

AD-A040 945

INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA PROGRAM --ETC F/G 15/4
DOCUMENTATION OF CURRENT IDA COMPUTER MATERIAL DEVELOPED FOR DC--ETC(U)
JAN 77 L A SCHMIDT DCPA01-76-C-0213

UNCLASSIFIED

1 OF 3
AD
A040 945

IDA/HQ-77-19225

NL

ADA 040945

(4)
B.S.

DOCUMENTATION OF CURRENT IDA COMPUTER MATERIAL
DEVELOPED FOR DCPA

Volume I

COPY AVAILABLE TO DDC DOES NOT
PERMIT FULLY LEGIBLE PRODUCTION

Leo A. Schmidt

January 1977

COPY AVAILABLE TO DDC DOES NOT
PERMIT FULLY LEGIBLE PRODUCTION

INSTITUTE FOR DEFENSE ANALYSES
Program Analysis Division
Contract No. DCPA01-76-C-0213
Work Unit 4126G

AD No.
DDC FILE COPY

IDA Log No. HQ 77-19225
Copy 3 of 14 copies

The work reported in this document was conducted under Contract No. DCPA01-76-C-0213 for the Defense Civil Preparedness Agency. The publication of this document does not indicate endorsement by the Defense Civil Preparedness Agency, nor should the contents be construed as reflecting the official position of that agency.

Approved for public release; distribution unlimited.

DOCUMENTATION OF CURRENT IDA COMPUTER MATERIAL
DEVELOPED FOR DCPA

Volume I

by

Leo A. Schmidt

for

Defense Civil Preparedness Agency
Washington, D.C. 20301

DCPA REVIEW NOTICE

This report has been reviewed in the Defense Civil Preparedness Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Defense Civil Preparedness Agency.

INSTITUTE FOR DEFENSE ANALYSES
Program Analysis Division
400 Army-Navy Drive, Arlington, Virginia 22202

Contract No. DCPA01-76-C-0213
Work Unit 4126G

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NA	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Documentation of Current IDA Computer Material Developed for DCPA Volume I,		5. TYPE OF REPORT & PERIOD COVERED NA
6. AUTHOR(s) Leo A. Schmidt	7. PERFORMING ORGANIZATION NAME AND ADDRESS INSTITUTE FOR DEFENSE ANALYSES Program Analysis Division 400 Army-Navy Drive, Arlington, VA	8. CONTRACT OR GRANT NUMBER(s) DCPA/01-76-C-0213
9. CONTROLLING OFFICE NAME AND ADDRESS DEFENSE CIVIL PREPAREDNESS AGENCY Washington, D.C. 20301	10. PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS Work Unit 4126G 4114G	11. REPORT DATE January 1977
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES Vol. I--283 pages	14. SECURITY CLASS. (of this report) UNCLASSIFIED
15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	16. DECLASSIFICATION DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. IDA/HQ 77-19225		
19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Damage Assessment		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and		next page

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. continued

documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

ABSTRACT	vi
--------------------	----

Volume I

I. INTRODUCTION	I-1
II. COMPUTER PROGRAMS	I-5
DISCRN	I-6
SWOOSH	I-7
DWNFIT	I-8
WINDST	I-9
LASH	I-10
LASHCO	I-31
COLPLT	I-32
RUBATO	I-33
AGZSEL	I-83
LANCET	I-84
AIP/ANCET	I-85
ALLEGRO	I-86
ANDANTE	I-87
GEM/PADECION	I-135
TOGEM	I-136
GEMLET	I-137
MARATHON	I-138
RESVAL	I-139
ADAGIO	I-151
TSTGD	I-152
JLAM	I-153
TEST	I-154
POPPOP	I-155
FIRESM	I-163
MESHFL	I-173
A. Introduction	I-174
B. Subroutine MEET	I-176
C. Subroutine MERGE	I-176
D. Subroutine EDIT	I-179

SNORT	I-229
BOX	I-235
MOVEUB	I-247
SHUFFL	I-251
CRDATK	I-255
TOGRID	I-259
LLIST	I-273
WPGRID	I-277

Volume II

SUBPROGRAMS	II-1
Subroutine CTYDAM	II-3
Subroutine NEWCTY	II-19
Subroutine OPTWPN	II-25
Subroutine ONEPAS	II-35
Subroutine FLPKA	II-39
Subroutine FLPKHU	II-49
Function PZZ	II-57
Function SSKP	II-61
Function G	II-65
Function XLRAD	II-69
Function ROOTF	II-73
Subroutine CALRN	II-79
Function CUMNOR	II-89
Subroutine FORD	II-93
Subroutine PROJCT	II-97
Subroutine BIMOM	I-130
Subroutine TELFAR	II-153
Subroutines FALLYB, FALLWB, FALLDB, FALLCB . .	II-161
Subroutines FALLYQ, FALLWQ, FALLDQ, FALLCQ . .	II-181
Subroutine CFALLY	II-203
Subroutine CFALWD	II-207
Subroutine LSCRN	II-211
Subroutine RSCRN	II-219
Subroutine QKINR	II-223
Subroutine PDIST (NTYPE, LOGV, PRES, DIST) . .	II-237

Subroutine PROMPT	II-241
Subroutine RADKL	II-249
Subroutine TRDCL	II-259
Subroutine RDCNTY	II-265

Volume III

DATA FILES	III-1
A. Introduction	III-1
B. File and Documentation Formats	III-2
1. File Formats	III-2
2. Documentation Formats	III-4
C. Standard Format Record Definitions	III-14
D. Standard Format File Descriptions	III-26
E. Standard Format File Run Identifications .	III-56
F. Standard Format File Data Tapes	III-109
G. Standard Format File Card Decks	III-143

ABSTRACT

This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.

Volume I

Chapter 1

I. INTRODUCTION

For over a decade the Institute for Defense Analyses has been conducting studies for the Defense Civil Preparedness Agency (or the Office of Civil Defense). Many of these studies have involved the development and use of computer programs. A legacy of such efforts is a substantial body of data processing materials collected over a number of years. During the last year IDA has engaged in an effort to identify these materials, to discard that no longer useful, to modify the remainder when appropriate to reflect present or possible future needs, and to document the resultant product. This paper presents the documentation.

Much of the material identified was considered no longer useful and was discarded. For example, data files based on the 1960 census were considered no longer useful and mostly discarded. (A few exceptions were made since the geographical basis of the 1970 census files is different than the National Shelter Survey, which used the 1960 Census RSAC codes.) In July 1970 IDA switched from a Control Data Corporation 1604 computer to a Control Data Corporation 6400 computer, with the result that many of the 1604 programs were unusable on the 6400 without extensive revision. The general criterion for selecting computer programs for retention was that the effort in understanding, modifying, and adapting an old program for possible future use be less than that of writing a new program. The general criteria for retaining old data files is that (1) the source of such data files (audit trail) is sufficiently well documented that the information is not unwittingly misused, and (2) new data files

are not readily available covering the same subject but with more recent information. The result of applying these criteria resulted in many files discarded, with remaining files in a variety of formats, and led to the conclusion that the prime data effort should be in developing methodology for retaining data files, and put the most essential files in the format of this methodology.

It seems apparent that as this documentation becomes too voluminous that its utility is correspondingly decreased. Accordingly a conscious effort was made to only include in the documentation information which might be of substantial help.¹ Many previous IDA reports have contained descriptions and documentation of computer programs on data files. In such cases a reference to this information is given, and the information is not repeated here. The number of computer listings was kept to the minimum consistent with adequate documentation of pertinent materials.

For many years IDA has had a frequent and fruitful relationship with the DCPA Computer Center. A number of major programs have been originally developed at IDA but subsequently used (often with substantial modifications and improvements) at the DCPACC. Where such programs are maintained and available at the DCPACC, the documentation in this note of such programs will be restricted to that which might supplement that information already available at DCPACC. It is thus hoped that this note might be of help to the DCPACC when they use IDA originated programs by attempting to

¹Material not specifically described is still available at IDA for use. In particular, catalogues and files of data tapes, IBM card decks, and computer produced listings of programs and results of runs are available in the Civil Defense Data Processing Library.

clarify obscure points, without needlessly replicating information already available.

A codification of many existing subprograms at IDA was conducted in 1972 under the acronym "NEVUNS." This material is the basis of Chapter 3 on subprograms. It was the hope at that time, and still appears as an appropriate goal, that many major programs could be rapidly constructed by assembling and selecting from a well tested and documented set of subprograms, each of which accomplishes a specific task. Many of these subprograms have, in fact, been utilized in programs developed since then and have resulted in substantial savings in effort. It is strongly hoped that in future activities this type of capability can be continued and expanded.

In the environment of development of programs intended to be run on more than one computer, a conscious effort should be continuously made to write code which is as machine independent as possible. It is thus hoped that much of the data processing material presented here will still be useful for advanced computer systems, and will not have to be discarded when the original machines they were developed on are discarded. In particular, the subprograms could be readily translatable to new machines as long as a reasonably complete version of FORTRAN is retained as a machine capability.

Chapter II

COMPUTER PROGRAMS

This chapter describes IDA computer programs. The selection of programs to be included followed the criteria of Chapter I. Most of the programs not included are either of a very temporary nature to test the correctness of a particular subprogram, are programs to accomplish small data file manipulation tasks, or are for obsolete machines. An exception to the exclusion of direct file manipulation routines are a set of special purpose, single use programs at the end of the chapter included to illustrate the development of standard files and document more fully the resultant files.

Where programs have been documented in previous references, the documentation is not given here. When programs are documented, the documentation consists of descriptive text followed by annotated listings. The form of the documentation varies considerably from program to program simply because different programs need different documentation techniques. In some cases, input requirements are transparent from the program listing, in others not. The program annotation describes the tasks performed by various sections and points out particular calculations where needed. When subprograms are NEVUNS Standard, the documentation is given in Chapter IV. The meanings of the critical variables are either described in the program header or in the preceding descriptive materials.

COMPUTER PROGRAM DESCRIPTION

NAME: DISCRN

SYNOPSIS: Fallout Dose Calculation

TYPE: Single Use

USE: To Calculate Hot Line Doses and Crosswind Standard Deviation in Fallout Risk Development

BACKGROUND: Developed to find First Approximations to WSEG-10

DESCRIPTION: Many Calls to WSEG-10 Model Followed by Printout of Appropriate Parameters

INPUT: In Program

OUTPUT: IDA Run #62

STORAGE: IDA Card Deck #40

DOCUMENTATION:

LANGUAGE/SYSTEM: RUN (FORTRAN)/6400 Scope

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: SWOOSH

SYNOPSIS: WSEG-10 Fallout Dose for Many Conditions

TYPE: Single Use

USE: To Present Fallout Dose Values for Many Combinations of Yield, Wind Speed, Wind Shear, Downwind Distance and Crosswind Distance

BACKGROUND: Developed to Produce a Reference Catalog of Fallout Dose Values

DESCRIPTION: The WSEG-10 Model is Repeatedly Called for a Variety of Conditions Controlled by Do Loop. Dose Rates at Various Times and Crosswise Distances to Various Dose Levels Also Given

INPUT:

Parameters in Program

OUTPUT: IDA Listing #59-62

STORAGE: IDA Card Deck #208

DOCUMENTATION:

LANGUAGE/SYSTEM: Run (FORTRAN)/6400 SCOPE

COMMENTS: Copy of Catalog Supplied to DCPA

COMPUTER PROGRAM DESCRIPTION

NAME: DWNFIT

SYNOPSIS: Fit Fallout Crosswind Dose

TYPE: Single Use

USE: Determine shape of fallout doses crosswind as a function of downwind dose and attack pattern

BACKGROUND: Used as part of analysis in paper.

DESCRIPTION: Doses as a function of crosswind distance are computed with the WSEG-10 model and are presented for various parametric combinations of weapon yield, attack pattern, downwind distance, and wind

INPUT: Parameters in program.

OUTPUT: Printouts.

STORAGE: IDA Card Deck #50

DOCUMENTATION: IDA Paper P-1065, "Methodology of Fallout Risk Assessment," Leo A. Schmidt, January 1975

LANGUAGE/SYSTEM: FTN/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: WINDST

SYNOPSIS: Determine wind direction probabilities

TYPE: Single Use

USE: Used to compute probability wind has a direction θ as a function of θ with wind vector sum of a mean wind and circular Gaussian random component.

BACKGROUND: Written to obtain charts used in the risk paper.

DESCRIPTION: The probability is computed by using an expression which gives all possible random wind components with resultant direction θ and summing these probabilities.

INPUT: In program, cycles through various parameter values

OUTPUT: Printout

STORAGE: IDA Card Deck #35

DOCUMENTATION: IDA Paper P-1065, "Methodology of Fallout Risk Assessment," Leo A. Schmidt, January 1975

LANGUAGE/SYSTEM: FTN/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: LASH

SYNOPSIS: MONTE CARLO Fallout Dose Distributions

TYPE: Production

USE: Study Effect of Wind Statistics, Weapon Pattern on
Fallout Doses

BACKGROUND: Developed as Exploratory Program in 1972
Used in Fallout Risk Studies--Bases of Other
Applied Programs--RUBATO, TFPLT COLPLT

DESCRIPTION: Has MONTE CARLO Simulation of Wind Statistics and
Weapon Arrival to Compute Fallout Doses with
WSEG-10 Fallout Model

INPUT: Parameter Cards-see IDA Card Decks 41, 97

OUTPUT: IDA Run 44, 51, 52, 74, 107

STORAGE: IDA Card Decks # 96, 97

DOCUMENTATION: IDA Paper P1065, "Methodology of Fallout-Risk
Assessment" Leo A. Schmidt, Jr., Jan. 1975

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE
FTN/3200 SCOPE

6400 Version is ANSI Standard FORTRAN

COMMENTS:

3200 Version Experimental Interactive Program.
Long Running on This Machine. For Other Machines
Run Time Depends Upon Number of Trails, Number of
Weapons, and Number of Monitor Points.

This program is described in technical details in a previous paper. This description will thus restrict itself to the computer implementation of the algorithms. The first part of the listing for the program RUBATO contains the definitions of program parameters.

The program reads a set of data cards in three subroutines PARIN, WPNIN, and TGTIN. The meaning of the input variables read in these routines will be described along with the implications on the resulting programs.

The following parameters are read in subroutine PARIN:

DMOST--For each monitor point the number of occurrences of doses in three types of intervals--even intervals, equal logarithmic intervals, and dose intervals specified in a data statement in the array BV are output. For the even intervals DMOST is the dose for the highest interval.

NDSEV--For the even interval doses, the variable gives the number of intervals.

SMLDOS--Since the dose distribution is highly skewed with a large number of small doses, dose statistics are presented for the full distribution and also only for those doses over the value SMLDOS.

WIND--Speed of the mean wind, mph.

SGWP--Standard deviation of random wind as a fraction of the mean wind speed.

SHR--Wind shear for WSEG-10 model use, mph/kft.

SGSHRP--Standard deviation of wind shear as a fraction of mean shear. The wind shear is assumed to be normally distributed.

MDCAL--Type of dose used. 0--Usual WSEG-10 biological dose, 1 is biological dose at 800 hrs., 2 is maximum biological dose.

NSAMP--Number of wind samples to be used

ISTRAT--If 1, do stratified wind samples. Take wind speed from each of ten equal probability intervals and wind direction from each of ten intervals. Number of samples should be an even multiple of 100.

MQCK--If 1, use rapid approximation to WSEG-10, if 0, use regular WSEG-10.

SEED--Random number generator seed. If this value is 0, use a computer clock reading to obtain a random seed.

IDEGI--If 1, input weapon coordinate by latitude and longitude. If 0, input target and weapon coordinate by miles, downwind and crosswind from some arbitrarily chosen origin.

WMNDR--Mean wind direction, degrees clockwise from north, only needed when IDEGI=1.

XCLAT--Center latitude weapon of target system. On input target location is converted to a rectangular coordinate system centered at XCLAT, YCLAT. This variable allows control of the origin of the rectangular system.

YCLON--Center longitude of target system.

IDEGC--As IDEGI but for target system. The following variables are input in the subroutine WPIN for each weapon used.

YLDA(I)--Weapon yield in MT.

FISSA(I)--Weapon Fission Fraction.

HORA(I)--Weapon Height of Burst in feet.

TWPNA(I)--Time of weapon detonation, hrs. Not needed if MDCAL=0.

DCLA(I)--Weapon reliability

{ XWA(I)--Crosswind weapon distance
XWLAT(I)--Weapon latitude

YWA(I)--Crosswind weapon distance.

YWLN(I)--Weapon longitude.

If all yields are the same, the flag MONOY is set to 1, otherwise 0. If all yields are the same, yield and wind dependent WSEG-10 fallout calculations are done only once, if not, they are done for each weapon separately.

The following variables are read by the subroutine TGTIN.

For IDEGC=0

XTL(I)--downwind target location

YTL(I)--crosswind target location

For IDEGC=1

XCTLT(I)--target latitude

YCTL0(I)--target longitude

NAMEC(I,J,J=1,2)--target name

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 001

PROGRAM LASH(INPUT,OUTPUT)

C DOES A MONTE CARLO CALCULATION OF THE DISTRIBUTION OF DOSES FOR
C CIRCULAR NORMAL RANDOM WIND VECTORS
C L. SCHMIDT EXT. 346

```
COMMON/WPNPR/ YLDA(200),FISSA(200),CEPA(200),H0BA(200),TWPNA(200),  
1 DELA(200), XWA(200), YWA(200), XWLAT(200), YWLON(200), IMAX,  
2 XCLAT,YCLON,ARRYA(200,40),ARRYT(200)  
COMMON/STAPP/ XLBV(51),NR(50,50),NBL(50,50),NBE(101,50),  
1 RE(102), NMAX(50), SD(50), SOS(50),  
2 SDC(50), SUF(50), RV(51), NBOXA,NBOXL,NBOXE,UMOST,NDSEV  
3 ,DTOT+SMLDOS,SSD(50),SSDS(50),SSDC(50),SSDF(50),NSML(50)  
COMMON/TOPR/IN,NI,IRUG  
COMMON/TARPR/XTL(50),YTL(50),JTGTS,XCTLT(50),YCTL0(50),NAMEC(50,2)  
COMMON/WNDR/WIND,SGWP,SHRP,SGSHRP,SGW,SIGSHB,SHRST,  
1 MDCAL, NSAMP, MONOV, NRPT ,XNSAMP ,ISTRAT,TDEGI,WMNDR,IDEGC  
2 ,SAL,CAL,V,MONCK  
COMMON/LAZY/SEED ,TTA,TTB,TTC,TTD,KTA,KTB,KTC,KTD
```

IN = 5LINPUT
NI = 6LOUTPUT

```
2 CONTINUE  
READ( IN,4)IOVER  
FORMAT(110)  
CALL PARIN } Read 1 set of devars  
CALL WPNIN }  
CALL TGtin  
CALL INIT  
NRPTS = NSAMP/100  
DELTH = 0.62831853
```

*Read Data file
Initialize*

```
30 CONTINUE  
IF (ISTRAT .EQ.1) GO TO 53  
NRPT = NRPT + 1  
THETA = 6.28318530* RANF(0)  
TMZ = RANF(0)  
GO TO 54  
CONTINUE  
POLD = 0.  
DO 31 IS= 1,10  
THOLD = 0.  
DO 32 J= 1,10  
DO 33 K= 1,NRPTS  
THETA = THOLU + DELTH*RANF(0) Angle of Random Wind  
TMZ = POLD + 0.1*RANF(0)
```

*Read Data to end
Initialize*

Set previous set

```
34 CONTINUE  
VWR = SQRT( 2.0*SGW* SGW * ALOG(1.0/(1.0+ TMZ))) Speed of Random Wind  
CALL WNDCAL(VWR,THETA)  
DO 100 KT = 1, JTGTS  
DTOT = 0.  
DO 40 K = 1,IMAX  
COMI = RANF(0)  
IF(DELA(K).LT. COMI) GO TO 40 for Don't let it be Palealt  
**** UNCLASSIFIED **** I-15 12/14/76 PAGE NO. 00
```

Don't let it be

Don't let it be

Preceding Page BLANK - NOT FILMED

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

40 CALL DSCL(K,K)
CONTINUE
CALL BXFL(KT)
CONTINUE
100 IF(ISTRAT .EQ. 1) GO TO 55
IF(NRPT .LT. NSAMP) GO TO 3n
GO TO 55
55 CONTINUE
33 CONTINUE
THOLD = THOLU + DELTH
32 CONTINUE
POLD = POLD + 5.1
31 CONTINUE
NSAMP = 100*NHPTS
XNSAMP = NSAMP
56 CONTINUE

End Doses + Aids
Record Statistics

1st through 4th 2

1st through 4th

1st through 4th
1st through 4th
1st through 4th

Increment stratified
Word Collection
1st through 4th

CALL WRTLST

Report Results

IF(IOVER .LT. 0) GO TO 2 another set of data?
STOP 6400
END

Run Program

BLOCK DATA

COMMON/STAPR/ XLBV(51),NR(50,50),NBL(50,50),NRE(101,50),
1 BE(102), DMAX(50), SD(50), SDS(50),
2 SDC(50), SUF(50),AV(51),NBOXA,NBOXL,NBOXE,DMOST,NDSEV
3 ,DTOT,SMLDOS,SSD(50),SSDS(50),SSDC(50),SSDF(50),NSML(50)

DATA BY/

20.0,10.0,20.0,50.0,100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0,
3900.0, 1000.0, 2000.0, 3000.0, 4000.0, 5000.0, 8000.0, 10000.0, 20000.0,
4 40000.0, 60000.0, 80000.0, 100000.0, 200000.0, 400000.0, 1000000.0
END

SUBROUTINE INIT

C INITIALIZES THE CALCULATION

COMMON/STAPP/ XLBV(51),NR(50,50),NBL(50,50),NRE(101,50),
1 BE(102), DMAX(50), SD(50), SDS(50),
2 SDC(50), SUF(50),AV(51),NBOXA,NBOXL,NBOXE,DMOST,NDSEV
3 ,DTOT,SMLDOS,SSD(50),SSDS(50),SSDC(50),SSDF(50),NSML(50)
COMMON/TOPR/I,N,I,IRUG
COMMON/WPNPR/YLDA(200),FISSA(200),CEPA(200),HOBA(200),TWPNA(200),
1 DELA(200), XWA(200), YWA(200), XWLAT(200),YWLN(200),IMAX,
2 XCLAT,YCLON,AQYAA(200,40),ARHYT(200)
COMMON/WNDPR/WTRD,SGWP,SHR,SGSHRP,SGW,SIGSHR,SHRST,
1MDCAL,NSAMP,MONDY,NKPT,XNSAMP,ISTRAT,TUEGI,WMNDR,IDEGC
2 ,SAL,CAL,V,MOCK
COMMON/TARPP/XTL(50),YTL(50),JTGTS,XCTLT(50),YCTLO(50),NAMEC(50,2)
COMMON/LAZY/SEED,TTA,TTB,TTC,TTD,KTA,KTB,KTC,KTD

IBUG = ?

I-16

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

3

```
IBUG = 1
IRUG = 0
NBOXA = 28
NBOXL = 37
NBOXE = NDSEV + 1
XLBV(1) = 0.
XLG = 0.
DO 3 J = 2,NBOXL
XLBV(J) = 10.*XLG
XLG = XLG + 0.2
3 CONTINUE
DELD = DMOST/NDSEV
DO = v.
DO 5 J = 1,NBOXE
BE(J) = DD
DD = DD + DELD
5 CONTINUE
BV(NBOXA + 1)      = 99999999.
XLBV(NBOXL + 1)    = 99999999.
BE(NBOXE + 1)       = 99999999.

DO 54 K = 1,JTGTS
DO 51 J = 1,NBOXA
NB(J,K) = 0
51 CONTINUE
DO 52 J = 1,NBOXL
NBL(J,K) = 0
52 CONTINUE
DO 53 J = 1,NBOXE
NBE(J,K) = 0
53 CONTINUE
NB(NBOXA + 1,K) = 0
NBL(NBOXL + 1,K) = 0
NBE(NBOXE + 1,K) = 0
DMAX(K) = 0.
SD(K) = 0.
SDS(K) = 0.
SDC(K) = 0.
SDF(K) = 0.
SSD(K) = 0.
SSDS(K) = 0.
SSDC(K) = 0.
SSDF(K) = 0.
NSML(K) = 0
54 CONTINUE
NRPT = 0

IF( SEED .NE. 0.) GO TO 32
CALL TIME(CLTIM)
CLTIM = ABS(CLTIM)
CALL RANSET(CLTIM)
GO TO 33
32 CONTINUE
CALL RANSET(SEED)
CONTINUE
33 IF(MON0Y .EQ.1) GO TO 27
DO 25 I = 1,IMAX
IF(MQCK .EQ. 1) GO TO 35
{  
Initials, Lector north Generator  
I-17  
12/14/76  
PAGE NO. 000
```

Initials, Lector north Generator
I-17
12/14/76
PAGE NO. 000

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 00
 CALL FALLY(YLDA(I), FISSA(I), HOB(A(I)), ARRYT)
 GO TO 37
 35 CONTINUF
 CALLQFALLY(YLDA(I), FISSA(I), HOB(A(I)), ARRYT)
 CONTINUF
 DO 26 J = 1,6
 ARRYA(I,J) = ARRYT(J)
 26 CONTINUE
 25 CONTINUE
 GO TO 28
 27 CONTINUF
 IF(MOCK .EQ. 1) GO TO 36
 CALL FALLY(YLDA(1), FISSA(1), HOB(A(1)), ARRYT)
 GO TO 38
 36 CONTINUF
 CALLQFALLY(YLDA(1), FISSA(1), HOB(A(1)), ARRYT)
 CONTINUF
 DO 29 I = 1,IMAX
 DO 23 J = 1,6
 ARRYA(I,J) = ARRYT(J)
 23 CONTINUF
 29 CONTINUE
 28 CONTINUE
 RETURN
 END

*yields dependent values
to calculation*

SUBROUTINE PARTN

C INPUTS PARAMETRIC VARIABLES INCLUDING WIND AND CONTROL VALUES

```
COMMON/WNDPR/WIND,SGWP,SHR,SGSHRP,SGW,SIGSHR, SHRST,  

1MOCAL, NSAMP, MONOY, NRPT ,XNSAMP ,ISTRAT,IDEGI,WMNDR,IDEGR  

2 ,SAL,CAL,V,MOCK  

COMMON/STAPR/ XLBV(51),WA(50,50) ,NBL(50,50), NBE(101,50),  

1 BE(102), DMAX(50), SD(50), SDS(50),  

2 SDC(50), SUF(50),RV(51),NBOXA,NBOXL,NBOXE,DMOST,NDSEV  

3 ,DTOT,SMLDOS,SSD(50),SSDS(50),SSDC(50),SSDF(50), NSML(50)  

COMMON/WPNPR/ YLDA(200),FISSA(200),CEPA(200),HOB(A(200),TWPNRA(200),  

1 DELA(200), XWA(200), YWA(200), XWLAT(200),YWLN(200), IMAX,  

2 XCLAT,YCLUN,ARRYA(200,40),ARRYT(200)  

COMMON/TOPR/IN*,I,IRUG  

COMMON/LAZY/SEED ,TTA,TTB,TTC,TTD,KTA,KTB,KTC,KTD
```

```
READ(IN,4) DMOST, NDSEV, SMLDOS  

4 FORMAT( F10.0, I10, F10.0 )  

READ(IN,12) WIND, SGWP ,SHR ,SGSHRP  

12 FORMAT(4F10.0)  

SGW = SGWP * WIND  

SIGSHR = SHR*SGSHRP  

SHRST = SHR  

WRITE(NI,77)  

77 FORMAT(1H1)  

WRITE(NI,9) WIND,SGWP,SHR  

9 FORMAT(1H0, * FOR THIS RUN AVERAGE WIND SPEED = *,F10.4, * M.P.H.  

1 -- STANDARD DEVIATION = **F10.4, * TIMES AVG-- WIND SHEAR =**F10.  

24, * MPH/KFT.* )
```

**** UNCLASSIFIED **** I-18

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

7 WRITE(NI,7) SGSHRP
FORMAT(1H, *STD DEV OF SHEAR =*, F10.5, * TIMES AVG SHR. IF STD D
1EV IS ZFRO DU NOT MONTE CARLO SHEAR*)
13 READ(IN,13) MDCAL,NSAMP, ISTRAT ,MQCK
FORMAT(4I10)
C MDCAL 0 WSEG BIO DOSE ONLY, 1 NMCSSC BIO, 2 ALSO DMAX
C MONOY =0 SEVERAL YIELDS, 1 ONLY ONE YIELD
XNSAMP = NSAMP
WRITE(NI,8) NSAMP
8 FORMAT(1H0, * THE SAMPLE SIZE = *, I6)
IF(MDCAL .NE. 0) GO TO 91
WRITE(NI,95)
95 FORMAT(1H0, *USE WSEG BIOLOGICAL DOSE*)
GO TO 94
91 CONTINUE
IF(MDCAL .NE.1) GO TO 92
WRITE(NI,96)
96 FORMAT(1H0, *USE NMCSSC BIOLOGICAL DOSE*)
Go TO 94
92 CONTINUE
IF(MDCAL .NE.2) GO TO 93
WRITE(NI,97)
97 FORMAT(1H0, * USE NMCSSC MAXIMUM DOSE*)
Go TO 94
93 CONTINUE
STOP666
94 CONTINUE
IF(ISTRAT .EQ. 1) GO TO 15
WRITE(NI,11)
17 FORMAT(1H0, * USE NON-STRATIFIED SAMPLES *)
Go TO 16
15 CONTINUE
WRITE(NI,18)
18 CONTINUE
FORMAT(1H0, * USE SAMPLES STRATIFIED BY RADIUS AND ANGLE INTO 100
1 EQUAL PROBABILITY AREAS*)
IF(MQCK .EQ. 1) GO TO 41
WRITE(NI ,43)
43 FORMAT (1H0, * USE REGULAR WSEG 10 CALCULATION*)
Go TO 42
41 CONTINUE
WRITE(NI ,44)
44 FORMAT(1H0, * USE QUICK APPROXIMATION TO REGULAR WSEG 10 CALCUL
ATION*)
42 CONTINUE
READ(IN,32) SEED
32 FORMAT(F10.0)
IF(SEED .NE. 0) GO TO 33
WRITE(NI,35)
35 FORMAT(1H0, * USE CLOCK TO GIVE AUTOMATIC RANDOM NUMBER SEED*)
Go TO 34
33 CONTINUE
WRITE(NI,36) SEED
36 FORMAT(1H0,*USE RANDOM NUMBER SEED OF*, F14.6)
34 CONTINUE
READ(IN,21) IDEGI, WMNDR, XCLAT, YCLON, IDEGC
21 FORMAT(I10,3F10.0, I10)
IF(IDEGI .NE.1) GO TO 25

**** UNCLASSIFIED **** I-19

12/14/76

PAGE NO. 000

***** UNCLASSIFIED ***** 12/14/76 PAGE NO. 00

```

26      WRITE(NI,26) XCLAT,YCLON
26      FORMAT(1H0, *USE LAT LON FOR WEAPON INPUT, CENTER TARGET AT LAT =
1 *, F10.2, * DEGREES AND LON = *, F10.2 * DEGREES* )
27      WRITE(NI,27) WMNDR
27      FORMAT (1H *, THE MEAN WIND DIRECTION IS *, F10.4, * DEGREES CLO-
ICKWISE FROM THE NORTH *)
28      CONTINUE
28      RETURN
28      END

```

SUBROUTINE WPNTR

C READS WEAPON PARAMETERS AND LOCATIONS

```

COMMON/TOPR/IN,NI,TRUG
COMMON/WPNPR/YLDA(200),FISSA(200),CEPA(200),HOBA(200),TWPNA(200),
1 DELA(200), XWA(200), YWA(200), XWLAT(200),YWLON(200), IMAX,
2 XCLAT,YCLON,APPYA(200,40),APPYT(200)
COMMON/WNDPR/WTKD,SGWP,SHR,SGSHRP,SGW,SIGSHP, SHRST,
1 MDCAL, NSAMP, MONY, NKPT ,XNSAMP ,ISTHAT,THEGI,WMNDR,IDEGL
2 ,SAL,CAL,V,MUCK

WRITE(NI,74)
74      FORMAT(1H0)
74      IF (IDEGL .EQ. 1 ) GO TO 31
74      WRITE(NI,78)
78      FORMAT( 1H0, * INPUT WEAPON PARAMETERS *,//,10X,1H WPN. NU. ,10H
1 YIELD ,10HFTSS. FRAC ,10H HT. BURST ,10H TIME DET. ,
2 10HDEI. PRUB.
3 10H OWN. LOC. ,10H CRS. LOC. * // )
3     I = 1
3     MONY = 1
21     CONTINUE
21     READ(IN,22) YLDA(I), FISSA(I), HOBA(I),TWPNA(I),DELA(I),
1 XWA(I),YWA(I)
22     FORMAT( 7F 10.0)
22     IF( YLDA(I) .LT. 0.) GO TO 24
22     IF( I .NE. 1) GO TO 14
22     YELDO = YLDA(I)
22     GO TO 13
13     CONTINUE
13     IF(YLDA(I) .NE. YELDO) MONY = 0
13     CONTINUE
13     WRITE(NI,19) I,YLDA(I) ,FISSA(I), HOBA(I), TWPNA(I), DELA(I),
1 XWA(I),YWA(I)
14     FORMAT(1H ,10X, 1H(, I2, 1H), 3x, 7E10.3)
14     I = I + 1
14     GO TO 21
24     CONTINUE
24     IMAX = I - 1
24     RETURN

31     CONTINUE
31     WEAPON INPUT BY LATITUDE AND LONGITUDE
31     CONV = 60.*PI/3.2780.
31     TPIAD = 3.14159265/180.
31     WRITE(NI,32)

```

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

*** UNCLASSIFIED *** 12/14/76 PAGE NO. 000

```

32   FORMAT( 1H0, * INPUT WEAPON PARAMETERS *, //, 10X, 1H WPN. NU., 10H
      1 YIELD , 10HFTSS. FRAC , 10H MT. BURST , 10H TIME DET. ,
      2 10HDEL. PRB. ,
      3 10H OWN. LOC. , 10H CRS. LOC. , 10H WPN. LAT. , 10H WPN. LON.
      4 '///'
      I = 1
      MONY = 1
      THT = (WMNDR - 270.1*3.14159265/180.
      SNTHT = SIN(THT)
      COSTHT = COS(THT)
      CONTINUE
      READ(IN,22) YLDA(I), FISSA(I), HOBA(I), TWPNA(I), DELA(I),
      1 XWLAT(I), YWLON(I)
      IF(YLDA(I) .LT. 0.) GO TO 36
      IF(I .NE. 1) GO TO 37
      YELDO = YLDA(I)
      GO TO 36
      37  CONTINUE
      IF(YLDA(I) .NE. YELDO) MONY = 0
      CONTINUE
      38  CFAC = 0.5*TURAD*(XWLAT(I) + XCLAT )
      CCFAC = COS(CFAC)
      DELLAT = (XWLAT(I) - XCLAT ) * CONV
      DELLON = (YWLN(I) - YCLON ) * CONV*CCFAC
      XWA(I) = -DELLON*COSTHT - DELLAT*SNTHT
      YWA(I) = DELLAT*COSTHT - DELLON*SNTHT
      WRITE(NT,39) I,YLDA(I),FISSA(I),HOBA(I),TWPNA(I),DELA(I),
      1 XWA(I),YWA(I),XWLAT(I),YWLN(I)
      39  FORMAT(1H,10X,1H,I2,1H), 3X, 9F10.3)
      I = I + 1
      GO TO 35
      36  CONTINUE
      IMAX = I - 1
      RETURN
      END

```

SURROUNTING TGTIN

C READS TARGET LOCATIONS

```

COMMON/TARPP/XTL(50),YTL(50),JTGTS,XCTLT(50),YCTL0(50),NAMEC(50,2)
COMMON/WNDPR/WND,SGWP,SHR,SGHRP,SGW,SIGSHP,SHRST,
1 MDCAL, NSAMP, MONY, NRPT ,XNSAMP ,ISTRAT,TDEGI,WMNDR,IDEGC
2 ,SAL,CAL,V,MQCK
COMMON/WPNPR/ YLDA(200),FISSA(200),CEPA(200),HOBA(200),TWPNA(200),
1 DELA(200), XWA(200), YWA(200), XWLAT(200),YWLN(200), IMAX,
2 XCLAT,YCLON,ARRYA(200,40),ARRYT(200)
COMMON/IOPR/IN,NI,IRUG

IF( IDEGC .EQ. 1) GO TO 31
J = 0
CONTINUE
J = J + 1
READ(IN,14) XTL(J),YTL(J)
FORMAT( 2F10.0)
IF(XTL(J) .LT. 1000000.) GO TO 15
JTGTS = J - 1
RETURN

```

I-21
*** UNCLASSIFIED ***

12/14/76

PAGE NO. 00

***** UNCLASSIFIED *****

12/14/78

PAGE NO. 60

31 CONTINUE
C CITY INPUT BY LAT LON
TOPAD = 3.14159265/180.
CONV = A0.*6080.2/5280.
J = 0
THT = (WMNUR - 270., +3.14159265/180.
SNHT = SIN(THT)
COSTHT = COS(THT)
CONTINUE
J = J + 1
READ(IN,41) XCLLT(J), YCLL0(J), NAMEC(J+1), NAMEC(J+2)
FORMAT(2F10.0, 2A)
*1 IF(XCLLT(J) .GT. 1000000.) GO TO 32
CFAC = 0.5*THTAD*(XCLLT(J) + XCLAT)
CCFAC = COS(CFAC)
DELLAT = (XCLLT(J) + XCLAT) *CONV
DELLON = (YCLL0(J) - YCLON) *CONV* CCFAC
XTL(J) = -DELLON*COSTHT - DELLAT* SNHT
YTL(J) = DELLAT*COSTHT - DELLON*SNHT
GO TO 21
32 CONTINUE
JGTS = J - 1
RETURN
END

SUBROUTINE WNDCAL (VWR,THETA)

C FOR A GIVEN RANDOM WIND VECTOR CALCULATES RESULTANT WIND VECTOR

COMMON/TOPR/IN,NI,IRUG
COMMON/WNDPP/WTND,SGWP,SHR,SGSHRP,SGW,SIGSHP, SHRKST,
IMDCAL, NSAMP, MCNOY, NRPT, XNSAMP, ISTRAT, DEGI, WMNDR, IDEGC
? , SAL, CAL, V, MNCK
? COMMON/WPNPR/ YLDA(200), FISSA(200), CEPAA(200), HORA(200), TWPNA(200),
1 DELA(200), XWA(200), YWA(200), XWLAT(200), YWLON(200), IMAX,
? XCLAT, YCLON, ARRYA(200*40), ARRYT(200)

VSG = VWR*VWR + VWR*VWR - 2.0*VWR*VWR* COS(THETA)
V = SORT(VSG) *magnitude of resultant wind*
SAL = VWR* SIN(THETA)/V *unit + cosine of resultant wind angle w/ true wind direction*
CAL = SORT(1. - SAL*SAL)
TEMP = VWR*VWR - (V*V + WIND*WTND)
IF(TEMP .GT. 0.) CAL = -CAL
IF(SGSHRP .EQ. 0) GO TO 42
SUM = 0.
DO 43 J = 1*12
SUM = SUM + RANF(0) } *to generate random transverse*
*3 CONTINUE *normal distribution of wind direction*
SHR = SHRKST + SIGSHP*(SUM - 4.0/12.)
IF(SHR .LT. 0.) SHR = 0.
*2 CONTINUE
IF(IRUG .EQ. 0) GO TO 45
*4 WRITE(NI,45) THETA,VWR,V,SAL,CAL, SHR
FORMAT(1H0,*,1D12.4) } *to log file*
*5 CONTINUE

***** UNCLASSIFIED *****

12/14/78

PAGE NO. 60

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

IF(MONOY .EQ. 1) GO TO 31
DO 32 I = 1,IMAX
DO 33 J = 1,b
ARRYT(J) = ARRYA(I,J)
CONTINUE
33 IF(MQCK .EQ. 1) GO TO 51
CALL FAILFW(V, SHR, ARRYT)
GO TO 53
51 CONTINUE
CALL QFALFW (V, SHR, ARRYT)
53 CONTINUE
DO 34 J = 1,19
ARRYA(I,J) = ARRYT(J)
34 CONTINUE
32 CONTINUE
GO TO 35
31 CONTINUE
DO 36 J = 1,b
ARRYT(J) = ARRYA(1,J)
36 CONTINUE
IF(MQCK .EQ. 1, GO TO 52
CALL FAILFW(V, SHR, ARRYT)
GO TO 54
52 CONTINUE
CALL QFALFW (V, SHR, ARRYT)
54 CONTINUE
DO 37 I = 1,IMAX
DO 38 J = 1,19
ARRYA(I,J) = ARRYT(J)
38 CONTINUE
37 CONTINUE
35 CONTINUE
RETURN
END

*Tell arrays for
W56G10 files and
Wind Scatter Subroutine*

*Tell arrays for
W56G10 files and
Wind Scatter Subroutine*

SUBROUTINE DSTCL(K,KT)

C COMPUTES DOWNWIND AND CROSSWIND DISTANCES AND CALL FALLOUT ROUTS.

COMMON/WPNPR/ YLDA(200),FISSA(200),CEPA(200),H0BA(200),TWPNA(200),
1 DELA(200), XWA(200), YWA(200), XWLAT(200), YWLON(200), IMAX,
2 XCLAT,YCLON,ARRYA(200,40),ARRYT(200)
COMMON/TAPPR/XTL(50),YTL(50),JTGT2,XCTLT(50),YCTL0(50),NAMEC(50,2)
COMMON/WNDPR/WIND,SGWP,SHR,SGSHRP,SGW,SIGSHP,SHRST,
1MDCAL, NSAMP, MONOY, NRPT ,XNSAMP ,ISTRAT,TUEGI,WMNDR,IDEGR
2 ,SAL,CAL,V,MQCK
COMMON/STAPR/ XLBV(51),NR(50,50) ,NBL(50,50), NBE(101,50),
1 BE(102), DMAX(50), SD(50), SDS(50),
2 SDC(50), SUF(50),BV(51),NBOXA,NBOXL,NBOXE,DMOST,NDSEV
3 ,DTOT,SMLOOS,SSD(50),SSDS(50),SSOC(50),SSDF(50), NSML(50)
COMMON/TOPR/IN,NI,IRUG

XX = XTL(KT) - XWA(K)
YY = YTL(KT) - YWA(K)
XDW = XX*CAL + YY*SAL
YCW = -XX*SAL + YY*CAL

Get Downwind and Crosswind Wind Distances

**** UNCLASSIFIED *** I-23

12/14/76

PAGE NO. 000

***** UNCLASSIFIED ***** 12/14/76 PAGE NO. 00

```

IF(IBUG .EQ. 0) GO TO 55
WRITE(NT,59) XTL(KT),YTL(KT),XWA(K),YWA(K),XX,YY,XDW,YCW
56 FORMAT(1H * DEBUG FOR XTL(KT),YTL(KT),XWA(K),YWA(K),XX,YY,
1 AF12.4,/, * AND XDW,YCW *, 2F12.4)
55 CONTINUE
DO 41 J = 1,19
ARRYT(J) = ARRYT(K,J)
41 CONTINUE
IF(MOCAL .EQ. 1) GO TO 42
CALL FALLOW(XDW,MDCAL,TWPNA(K),ARRYT)
CALL FALLOW(YCW,MDCAL,ARRYT)
GO TO 43
42 CONTINUE
CALL QFALLOW(XDW,ARRYT)
CALL QFALLOW(YCW,ARRYT)
DTOT = DTOT + ARRYT(13)
GO TO 49
43 CONTINUE
IF(MDCAL .NE.0) GO TO 47
DTOT = DTOT + ARRYT(33)
GO TO 49
47 CONTINUE
IF(MDCAL .NE. 1) GO TO 48
DTOT = DTOT + ARRYT(38)
GO TO 49
48 CONTINUE
DTOT = DTOT + ARRYT(39)
49 CONTINUE
IF(IBUG .EQ. 0) GO TO 65
WRITE(NT,56) ARRYT(33),ARRYT(38),ARRYT(39),DTOT
55 FORMAT( 1H * DEBUG FOR ARRYS 33* 38* 39* AND DTOT*, 4F12.4)
IF(IBUG .EQ.1) GO TO 57
DO 58 IX = 1,40
58 WRITE(NT,59) IX,ARRYT(IX)
FORMAT( 1H * T10, F20.9)
59 CONTINUE
57 CONTINUE
55 CONTINUE
RETURN
END

```

{ Set Delta D_{xx}

{ Sum D_{xx}

SUBROUTINE RUXFL(KT)

C DOES THE CHOKE OF ACCUMULATING THE VARIOUS STATISTICS

```

COMMON//TAPR/      XLBV(51),NH(50,50),NHL(50,50),NRF(101,50),
1 RE(102),          NMAX(50),SU(50),SDS(50),
2 SDC(50),SUF(50),RV(51),NB0XA,NB0XL,NB0XE,DMOST,NDSEV
3 ,DTOT,SMUUN,SED(50),SSDS(50),SSDC(50),SSDF(50),NSML(50)
COMMON//WPNA/ VLLA(200),FISSA(200),CEPA(200),HOHA(200),TWPNA(200),
1 DELA(200),XWA(200),YWA(200),XLAT(200),YLON(200),IMAX,
2 XCLAT,YCLUN,ARRYT(200),ARRYT(200)
COMMON//TAPR//XTL(50),YTL(50),UTG,XTLT(50),YCTL(50),NAMEC(50,2),
COMMON//NDPR//WTD,SGWP,SHR,SGHRP,SGW,SIGSHR,SHRT,
1 MDCAL,NSAMP,MCNOX,NHPT,NSAMP,ISTRAT,YEGI,WNDR,IDEBC
2 ,SALVAL,V,MUCK
COMMON//TOPR//IN,NI,TRUS

```

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

SD(KT) = SD(KT) + DTOT
TMA = DTOT*DTOT
SDS(KT) = SDS(KT) + TMA
TMB = TMA*DTOT
SDC(KT) = SDC(KT) + TMB
TMC = TMB*DTOT
SDF(KT) = SDF(KT) + TMC
IF(DTOT .LT. SMLDOS) GO TO 72
SSD(KT) = SSU(KT) + DTOT
SSDS(KT) = SSUS(KT) + TMA
SSDC(KT) = SSDC(KT) + TMB
SSDF(KT) = SSDF(KT) + TMC
GO TO 73
72 CONTINUE
NSML(KT) = NSML(KT) + 1
73 CONTINUE
IF(DMAX(KT) .LT. DTOT) DMAX(KT) = DTOT
DO 61 J = 1,NR0XL
IF(DTOT .GE. XLBV(J)) GO TO 61
NRL(J-1,KT) = NRL(J-1,KT) + 1
GO TO 62
61 CONTINUE
NBL(NR0XL,KT) = NBL(NR0XL,KT) + 1
62 CONTINUE
DO 63 J = 1, NR0XA
IF(DTOT .GE. RV(J)) GO TO 63
NB(J-1,KT) = NB(J-1,KT) + 1
GO TO 64
63 CONTINUE
NB(NR0XA,KT) = NB(NR0XA,KT) + 1
64 CONTINUE
DO 65 J = 1, NR0XE
IF(DTOT .GE. RE(J)) GO TO 65
NRE(J-1,KT) = NRE(J-1,KT) + 1
GO TO 66
65 CONTINUE
NBE(NR0XE,KT) = NBE(NR0XE,KT) + 1
66 CONTINUE
RETURN
END

SUBROUTINE WHTLST

C PERFORMS THE FINAL OUTPUT OF DOSE STATISTICS FOR EACH TARGET

COMMON/STAPP/ XLBV(51),NR(50,50) ,NBL(50,50), NRE(101,50),
1 BE(102),
2 SDC(50), SUF(50),PV(51),NR0XA,NR0XL,NR0XE,DMOST,NDSEV
3 ,DTOT,SMLDOS,SSD(50),SSDS(50),SSDC(50),SSDF(50), NSML(50)
COMMON/TAPP/XTL(50),YTL(50),JTGTS,XCTLT(50),YCTL0(50),NAMEC(50,2)
COMMON/IOPR/IN,NI,IARG
COMMON/WNDPR/WTD,SGWP,SHR,SGSHRP,SGW,SIGSHR, SHRST,
1MDCAL, NSAMP, MCNDY, NRPT ,XNSAMP ,ISTRAT,TUEGI,WMNDR,IDEGC
2 ,SAL,CAL,V,MQCK

DO 101 KT = 1,JTGTS

I-25

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

} sum for moment of dose statistics

Add dose statistics to several types of fractions

Add dose statistics to several types of sources

*** UNCLASSIFIED ***

12/14/75

PAGE NO. 09

```

NSUM = 0
N1SUM = 0
NESUM = 0
WRITE(NTI, 77)
FORMAT(1H1)
WRITE( NI,74)
FORMAT(1H0)
IF(IODEG .EQ. 1) GO TO 91
WRITE(NTI,75) KT, XTL(KT), YTL(KT),
FORMAT(1H0, *DISTIBUTIONS FOR TARGET NO.*, I2, * LOCATED*, F10.2,
1 * STATUTE MILES DOWN AND*, F10.2, * STATUTE MILES ACROSS FROM THE
2E CENTRAL AXIS*)
GO TO 92
CONTINUE
WRITE(NTI,93) NAMEC(KT+1), NAMEC(KT+2), KT, XCTLT(KT),YCTLT(KT),
1 XTL(KT), YTL(KT)
FORMAT(1H0, *DISTIBUTIONS FOR THE TARGET *, 2A1, * NUMBERED *
1 ,I3,/* * AT LATITUDE *, F10.4,* DEGREES NORTH AND LONGITUDE *,
2 F10.4,* DEGREES WEST*,/* * LOCATED*, F10.2,* STATUTE MILES DO
3WN AND *, F10.2,* STATUTE MILES ACROSS FROM THE CENTRAL AXIS*)
CONTINUE
WRITE(NTI,78) DMAX(KT)
FORMAT( 1H0, * THE MAXIMUM DOSE == F13.4 )
XMN = SD(KT)/XNSAMP
XMNS = XMN*XMN
XNUIS = SDS(KT)/XNSAMP
VAR = XNUIS - XMNS
STD = SORT(VAR)
XNUC = SDC(KT)/XNSAMP
SKW = (XNUIS - 2.*XNUF*XMN + 2.*XMNS*XMN)/(2.*VAR*STD)
XNUF = SDF(KT)/XNSAMP
XKUR=( YNUF - 4.*XNUC*XMN + 4.*XNUIS*XMNS - 4.*XMNS*XMN)/(VAR*VAR)
WRITE(NTI,76) XMN,STD,SKW,XKUR
FORMAT(1H0,*DOSE STATISTICS -- MEAN = *, F10.4,* STANDARD DEVIATION
IN = *, F10.4,* SKEWNESS =*,F10.4,* KURTOSIS =*,F10.4 *)
IF( NSML(KT) .GT. 0) GO TO 41
WRITE( NI,42) SMLOOS
FORMAT( 1H0, * NO DOSES LESS THAN *, F10.1 )
GO TO 42
CONTINUE
IF(NSML(KT) .GT. 1) GO TO 43
TEMP = SD(KT) - SSN(KT)
WRITE(NTI,44) TEMP,SMLOOS
FORMAT( 1H0, * ONE DOSE OF*, F10.2 * * IS LESS THAN DOSE OF *,
1 F10.2)
GO TO 44
CONTINUE
XNSML = NSML(KT)
XNSML = XNSAMP - XNSML
XUN = SSN(KT)/XNSML
XMNS = XMN*XMN
XNUIS = SDS(KT)/XNSML
VAR = XNUIS - XMNS
STD = SORT(VAR)
XNUC = SDC(KT)/XNSML
SKW = (YNUF - 2.*XNUC*XMN + 2.*XMNS*XMN)/(2.*VAR*STD)
XNUF = SDF(KT)/XNSML
XKUR=( YNUF - 4.*XNUC*XMN + 4.*XNUIS*XMNS - 4.*XMNS*XMN)/(VAR*VAR)
WRITE(NTI,47) NSML(KT),SMLOOS, XMN,STD,SKW,XKUR
FORMAT( 1H0, * DOSE STATISTICS EXCLUDING * * IF * * DOSES UNDER * *
1 F10.0, * RADS --*, 10X, *MFAN = *,F10.4,* STANDARD DEVIATION =

```

*** UNCLASSIFIED ***

12/14/75

PAGE NO. 60

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 000
 2 *, F10.4, * SKEWNESS = *, F10.4, * KURTOSIS = *, F10.4) 13
 46 CONTINUF

```

    WRITE( NI,74)
    WRITE( NI, 71)
    71 FORMAT( 1H0, * SPECIFIED BOXES*//10X, 6H NO. 10X, 10HMIN. VALU
    1E .10X, 10HMAX. VALUE .10X, 10H NUMBER .10X,
    2 10H CUML. NO. )
    DO 72 J = 1,NB0XA
    JJ = J + 1
    NSSUM = NSSUM + NB(J,KT)
    WRITE(NI,73) J, BV(J), BV(JJ), NB(J,KT), NSSUM
    73 FORMAT( 1H .10X, 1H(.12, 1H), 10X, F10.0,10X, F10.0, 10X,
    1 I10 .10X,I10 )
    72 CONTINUF
    WRITE(NI,81)
    81 FORMAT( 1H1, * EQUAL LOGARITHMIC INTERVALS *//,
    1 10X, 6H NO. , 10X, 10HMIN. VALUE , 12X. 10HMAX. VALUE,
    2 12X, 10H NUMBER .10X, 10H CUML. NO. )
    DO 83 J = 1,NB0XL
    JJ = J + 1
    NLSUM = NLSUM + NBL(J,KT)
    WRITE(NI,84) J, XLAV(J), XLAV(JJ), NBL(J,KT), NLSUM
    84 FORMAT( 1H .10X, 1H(.12, 1H), 10X, F12.2, 10X, F12.2,10X,I10,
    1 .10X, I10 )
    83 CONTINUF
    WRITE(NI,85)
    85 FORMAT(1H1// * EQUAL INTERVALS*, //,
    1, 10X, 6H NO. , 10X, 10HMIN. VALUE , 10X, 10HMAX. VALUE ,
    2 10X, 10H NUMBER .10X, 10H CUML. NO. )
    DO 86 J = 1,NB0XE
    JJ = J + 1
    NESUM = NESUM + NBE(J,KT)
    WRITE(NI,87) J, BE(J),BE(JJ), NBE(J,KT), NESUM
    87 FORMAT( 1H .10X, 2H (.12, 2H) .10X, F10.0,10X, F10.0,10X, I10,
    1 10X, I10 )
    86 CONTINUF
    101 CONTINUE
    RETURN
    END
    SUBROUTINE QFALLY( YIELD,FISS,HOB,QARRY)
  
```

NUVMS STANDARD

C A RAPID VERSION OF THE WSEG 10 FALLOUT MODEL BASED UPON FITS
 C TO CALCULATE DOSES RESULTS ARE STORED IN THE ARRAY QARRY . THE
 C BASIC ARRAY VARTABLES ARE
 C 1...YIELD DEPENDENT ALPHA FACTOR IN FD
 C 2...YIELD DEPENDENT BETA FACTOR IN FD
 C 3...A IN SIGC CALCULATION
 C 4...B IN SIGC CALCULATION
 C 5...FINAL HOB FACTOR
 C 6...IF A VARIARLES IN INTERPOLATION RANGE, IF 1 THEY ARE NOT.
 C 7...VALUE OF WTAD
 C 8...ALPHA FACTOR IN FD
 C 9...SHEAR/WTNU
 C 10...2.SIGC.SIGC
 C 11...FD
 C 12...1/(SQRT(2,PI)*SIGC) .FD
 C 13...WSEG BIOLOGICAL DOSE
 C 14 - 19 .. USED IN SMALL WIND OR DISTANCE CALCULATIONS

**** UNCLASSIFIED **** I-27 12/14/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

C CALLING SEQUENCE IS SAME AS WITH THE REGULAR MODEL EXCEPT FOR
C NMOSC ROSE OPTION

C YIELD DEPENDENT CALCULATIONS

```
DIMENSION QARRY(1)
QARRY(14) = YIELD
QARRY(6) = 0.
IF( YIELD .LT. .1 ) YIELD = .1
XLNY = ALOG10(YIELD)
TMP = XLNY*XLNY
QARRY(1) = 5.445 - 0.1099*XLNY + 0.018*TMP
QARRY(2) = -0.0641 + 0.0139*XLNY - 0.0033*TMP
QARRY(3) = 2. + 1.7709*XLNY + 1.2691*TMP
QARRY(4) = 7.55 + 1.8714*XLNY - 0.3314*TMP
QARRY(5) = FISS
IF(HOB .GT. 0) GO TO 5
RETURN
CONTINUE
XMHB=18*.0*(YIELD*1000.)**0.4
IF(HOB.LE.XMHB) GO TO 40
QARRY(5) = 0.
RETURN
10 CONTINUE
TEMP=HOB/XMHB
AF=0.5*(1.-TEMP)*(1.-TEMP)*(2.+TEMP)+0.001*TEMP
QARRY(5) = FISS * AF
RETURN
END
```

REVISIONS STANDARD

SUBROUTINE QHALFW(EFW,SC,QARRY)

C WIND DEPENDENT CALCULATIONS

```
DIMENSION QARRY(1)
QARRY(7) = EFW
IF(EFW.LT. .1) GO TO 5
QARRY(9) = SC/EFW
QARRY(8) = QARRY(1) - 0.995*ALOG10(EFW)
RETURN
CONTINUE
QARRY(9) = SC
QARRY(6) = 2.
WHS = 1. - 0.5*EFW
QARRY(14) = (4.545 - 0.0745*QARRY(14)) + (0.1222 + 0.0078*
1. QARRY(14) )*WHS - (1.2222 + 0.0278*QARRY(14) ) *SC
QARRY(14) = -0.26484 + 0.00316*QARRY(14)
QARRY(17) = (0.2444 - 0.02444*QARRY(14) ) - (0.4977 + 0.1323*QARRY(14))
1. *WHS +0.001
QARRY(19) = 3.74 + 0.51*QARRY(14) - (0.33 + 0.03*QARRY(14))*EFW
1. + (42.75 + (-10.0975 + 0.9225*QARRY(14))*EFW)*SC
3. + 69. + (-27.25 + 1.15 *QARRY(14))*EFW)*C*SC
QARRY(19) = (3.611 + 0.039*QARRY(14) )*SC
RETURN
END
```

REVISIONS STANDARD

SUBROUTINE QFSLOW(DWD,QARRY)

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

15

C DOWNWIND DISTANCE DEPENDENT CALCULATIONS

```
DIMENSION QARRY(1)
IF( QARRY(7) .LT. 3.) GO TO 20
XSCL = DWD/QARRY(7)
SIGC = QARRY(3) + QARRY(4)*QARRY(9)*DWD
IF(XSCL .LT. 1.) GO TO 5
XLGFD = QARRY(8) + QARRY(2)*XSCL
TUSE = 2.5066*SIGC
IF(XSCL .GT. 15.6) GO TO 10
TMP = XSCL - 15.6
XLGFD = XLGFU + 0.0015*TMP*TMP
10 CONTINUE
QARRY(1n) = 2.*SIGC*SIGC
IF( XLGFD .LT. -8.) XLGFD = -8.
QARRY(1,) = QARRY(5) + 10.*XLGFD*QARRY(14)
QARRY(12) = QARRY(11)/TUSE
RETURN
5 CONTINUE
XLW = ALOG10(QARRY(7)/20.)
DELTN = 3. + 5.6*XLW
FACT = 2. - ALOG10(QARRY(14))
DELTA = DELTN*FACT
XLDMXN = 3.355 - 0.386*XLW - 0.275*QARRY(9)/QARRY(7)
XLDMX = XLDMAN + 0.448*(FACT - 1.)
DWDS = DWD*FACT
IF( DWDS .LT. DELTA) GO TO 6
XLGFD = XLDMX
TUSE = 1.
GO TO 1n
6 CONTINUE
XLGFD = XLDMX - (DWDS-DELTA)*(DWDS-DELTA)*0.0169
GO TO 1n
20 CONTINUE
IF( DWD .GT. 0.) GO TO 21
XLY = ALOG10(QARRY(14))
XLDMX = 4.35 - 2.56*XLY - 0.12*QARRY(7)-0.15*QARRY(9)
BOT = 67. + 257.*ALOG10(QARRY(14))
DUSE = 0.5*QARRY(7) - DWD
XLGFD = XLDMA - DUSE*DUSE/BOT
GO TO 22
21 CONTINUE
XLGFD = QARRY(15) + QARRY(16)*DWD + QARRY(17)*DWU*DWD
IF( QARRY(17) .LT. 1.E-8) GO TO 22
BETA = -1.*QARRY(16)/(2.*QARRY(17))
IF( DWD .GT. BETA) XLGFD = -8.
22 CONTINUE
SIGC = QARRY(18) + QARRY(19)*DWD
TUSE = 1.
GO TO 1n
END
```

SUBROUTINE QFALCW(CWD,QARRY)

INCLUDE STANDARD

C CROSSWIND DISTANCE DEPENDENT CALCULATIONS

```
DIMENSION QARRY(1)
TMP = CWD*CWD/QARRY(10)
IF(TMP .GT. 1.0) TMP = 1.0
QARRY(12) = QARRY(12)*EXP(-TMP)
```

**** UNCLASSIFIED **** I-29

12/14/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

RETURN
END

1. OVER IF POS DO NOT REPEAT CALCULATION

50000. 50 10. VALUES OF DMOST MDS EV AND SMDOS
20. 0.3 .2 0. VALUES OF WIND SIGN PHR SIGSH
0.0 10000 0 1 MDCL NSAMP ISTRAT MACK
0.0 SEED IF 0 USE CLOCK
0 270. 60. 90. ~ DEGW MNWND LATC LONG CITYDEG
1. 1. 0. 0. 1.0 0.0 0.0 YFHTOXY
-1.
20.0 0. XTAR YTAR
40.0 0. XTAR YTAR
60.0 0. XTAR YTAR
100. 0. XTAR YTAR
150.0 0. XTAR YTAR
+0.0 10. XTAR YTAR
40.0 20. XTAR YTAR
40.0 40. XTAR YTAR
9999999. END TARGET READ

***** UNCLASSIFIED *****

END WP Rn

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

COMPUTER PROGRAM DESCRIPTION

NAME: LASHCO

SYNOPSIS: Produces Grid Fallout Risk Output

TYPE: Semi-Production

USE: Version of Lash to Plot Contours on a Grid

BACKGROUND: Dervied (in 1973 & 1975) from Program LASHTX
Which in Turn was Derived from LASH. Used for
Contour Plots in Colorado and near San Antonio,
Texas

DESCRIPTION: Modification of LASH to put Monitor Points on a
Grid and Produce Magnetic Tapes

INPUT: LASH Data Plus Weapon Locations
Card Deck #115

OUTPUT: IDA Runs #53, 54, 78, 79.
Tape Input to Program COLPLT

STORAGE: IDA Card Deck 113

DOCUMENTATION:

LANGUAGE/SYSTEM: Run(FORTRAN)/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: COLPLT

SYNOPSIS: Plot Grid Fallout Risk Data with Calcomp Plotter

TYPE: Semi-Production

USE: Uses LASHCO Tape Output to Plot Data

BACKGROUND: Supplementary Program to Program LASHCO

DESCRIPTION: Produces Fallout Plots Using IDA Calcomp Plot Package

INPUT: LASHCO Tape

OUTPUT: Calcomp Plot Tape, IDA Listing #50, 53, 54

STORAGE: IDA Card Deck 116

DOCUMENTATION:

LANGUAGE/SYSTEM: Run(FORTRAN)/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: RUBATO

SYNOPSIS: Nationwide Fallout Risk Calculation

TYPE: Production

USE: Computes Fallout Risk Statistics Both for Exploratory Purposes and as Input to ADAGIO Evacuation Calculations

BACKGROUND: First Developed in October 1973 on a Crises Basis to Provide ADAGIO Input for CRP Calculations. Used LASH Program as Basis.

DESCRIPTION: MONTE CARLO Simulation of Wind Statistics. Uses County Population Centroids as Monitor Points. Several Bookkeeping Features Including Distributions of Casualties & Fatalities from Fallout.

INPUT:

OUTPUT: IDA Listings 37-44, 103,109

STORAGE: IDA Card Deck 92

DOCUMENTATION: IDA Paper P1065, "Methodology of Fallout-Risk Assessment" Leo A. Schmidt, Jr., Jan. 1975
Attached Description

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE

COMMENTS: CDC 3600 Version Used Extensively at DCPACC. This Version Somewhat Different than Current IDA Version Due to Different Modification Requirements.

The program RUBATO was derived from the program LASH and is identical in many of the basic portions. Many of the variables have the same names and meanings. The first portion of the program RUBATO contains definitions of all significant variables.

The program was structured so that it could be expanded in several directions--primarily a better handling of relations between WSEG-10 model and cluster models to give better geographic resolution of the results, the capability of handling more realistic wind streamlines, and the capability of appending a blast fatality calculation. Unfortunately, time was never available to include these various refinements. The program is thus, partially completed, but has been used extensively for production calculations. The version presented is the current IDA version. This differs slightly from the DCPACC version.

The program has separate parameter input with the subroutine INVAL and descriptions of parameters in the subroutine PAROUT, as compared to LASH where the two are combined in PARIN. The input variable meaning is clear from the variable descriptions in the start of the program and the program LASH, except for the following remarks.

The switch IWNDST is only implemented for options 0, common statistics, or 1, use of the nearest monitor point as input in the wind statistics input at the end of subroutine INVAL.

The switch IWLVSW is only implemented for option 1, linear winds relative to the target.

The switch ICLSA is only implemented for option 1, weapons in clusters. These three switches allow for the types of calculations described in P-1065.

Activating the switch IFRCRS allows fallout fatality statistics to be developed. With each wind sample, the numbers of fatalities at the monitor point is calculated and statistics concerning fatalities are accumulated. It should be emphasized that without a blast fatality model, the fallout fatality calculations may be biased. For attacks in urban areas, where blast fatalities may occur, the effects of wind variations are less severe than in rural areas, where no blast fatalities generally occur.

The basic control of the calculation is in the subroutine MONTE. In particular, this subroutine generates individual winds, does the weapon screening, and calls the fallout dose subroutines.

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

PROGRAM RIBATU (INPUT, OUTPUT, PUNCH, TAPEA, TAPEB, TAPEC, TAPEU)
***** 3000/6900 COMPATABILITY CHANGE *****

C PROGRAM RIBATU

C TEMPORARY VERSION OF OCT. 5, 1973.
C SLIGHTLY REVISED IN SEPT. 1974

C A PROGRAM WHICH CONSIDERS TARGETS ONE AT A TIME IN A VARIETY OF
C WAYS AND THEN PRODUCES NATIONWIDE SUMMARIES.
C DOES A MONTE CARLO CALCULATION OF THE DISTRIBUTION OF DOSES FOR
C CIRCULAR NORMAL RANDOM VECTORS

DIMENSION ILAB(2)
COMMON/RUNSH/ICTYCB,IBINT,ICLUST,ISIN,W,LBL(20,2),ISPWSW,ILGNSW,
IEVWSW,MOST,NOSEV,THSMSA,ILVS,DOSELV(5),IPROS,PHOLV(3),ICATS,
> MOSTP,MLVTP,MMPTP,ICLAJ,RESTN,JKESTA,JRESTD,JRESTE,JRESTF,
> IFRSK,IUMAS,NSAMP,ISTHAT,INDIST,ISHRSW,ILVSW,MUCK,ISEED,SEED,
> MDSW,SEED,IFLCAS,NFLV,PFLVU(7),PFLVR(7),FDSEM,FDSESG,CDSEM,
> CUSES,GDCAL,ICLYLD,ICLYLU,FRPFU(7),FRPFH(7),
> ILSTCI,ISTIN(50),ICTIN(100),ISEAS,INSTIN,NATIN

C RUNSH CONTAINS CONTROL PARAMETERS DEFINED BY INPUT DATA

C INPUT CONTROL PARAMETERS

C ICTYCB-- USE NNNN COUNTY DATA, CB AND CT RECORDS FOR TARGETS.
C 1 IF NO EOF'S AFTER EACH STATE, 2 IF THERE IS
C IBINT-- 0 BCD INPUT OF TARGET DATA, 1 BINARY INPUT.
C ICLUST-- EXERCISE CLUSTER WEAPON INPUT
C ISINGW-- EXERCISE SINGLE WEAPON INPUT
C ICLYLU-- IF 1 USE AVERAGE YIELD AS INPUT FOR USE IN CLSEG.
C IF 1 USE A SINGLE YIELD FOR ENTIRE CALCULATION, FIRST VALUE
C INPUT, IF 2 SELECT FROM ONE OF SEVEN CLASSES AS STANDARD,
C IF 3 SELECT CLASSES AS WEAPONS AS INPUT
C ICLYLD-- AS ICLYLU BUT FOR USE WITH QUICK & SEG ROUTINES
C ILSTCI-- IF 1 INCLUDE STATES IN ISTIN, 2 ONLY CTY'S IN ICTIN
C PLUS ALL OF ANY STATES IN ISTIN
C ISTIN(50)-- LIST OF STATES TO BE USED IN A2 FORMAT
C INSTIN-- NUMBER OF STATES FOR USE
C ICTIN(100)-- LIST OF STATES AND CNTYS. TO BE USED IN A2+A3
C NCTIN-- NUMBER OF STATE COUNTY COMBINATIONS TO DO

C OUTPUT CONTROL PARAMETERS

C LABEL-- TWO 80 CHARACTER LINES CENTERED ON TITLE PAGE.
C ISPWSW-- WRITE DOSE LEVEL SPECIFIED IN ARRAY DV.
C ILGNSW-- WRITE DOSES AT LOGARITHMIC INTERVALS.
C IEVWSW-- WRITE DOSES AT EVEN INTERVALS.
C UMOST-- DOSE LEVEL AT HIGHEST OF EVEN INTERVALS.
C NOSEV-- NUMBER OF EVEN INTERVALS, DIMENSION LIMIT OF 500.
C IHSSW-- WRITE HISTOGRAMS OF DOSE DISTRIBUTION.
C ILSEFW-- IF ONE OUTPUT FATALITIES, CASUALTIES AND DOSES FOR
C INDIVIDUAL SAMPLES
C ILVS-- WRITE PROBABILITY OF DOSE AT SPECIFIED LEVELS.
C DOSELV(5)-- SPECIFIED LEVELS FOR DOSES
C IPROS-- WRITE DOSE AT SPECIFIED PHOB LEVELS, 10, 50, 90 IF 1
C PHOLV(5)-- IF IPROS = 2 USE THESE INPUT PROBABILITY LEVELS
C ICATS-- WRITE IN FORMAT FOR CATALOGUE LEVEL OUTPUT
C MOSTP-- WRITE TAPE ON NO WITH DOSE IN SPECIFIED RAU BOXES
C MLVTP-- WRITE EACH DOSE COMPUTED ON LINE

**** UNCLASSIFIED ****

I-37

12/14/76

PAGE NO. 00

Preceding Page BLANK - NOT
FILMED

***** UNCLASSIFIED ***** 12/14/76 PAGE NO. 00-
 2

C ISGN-- IF SENSE SWITCH 1 SET DUMP ON DUMP TAPE NG
 C JSGN-- IF SENSE SWITCH 2 SET RESTART FROM DUMP TAPE NG.
 C KSGN-- IF SENSE SWITCH 3 SET DISPLAY CURRENT COUNTY ON CONSOLE
 C JREST-- CONTROLS POSITIONS OF TAPES ON RESTART, 0 ALL TAPES
 C AT 0, 1 ADV. TO JHESIN, ETC., 2 ADV TO DUMP TAPE VALUE.
 C POSITIVE INPUT TAPE ONLY, NEG. INPUT AND DOSE TAPES
 C ADVANCE DOSE TAPES TO EOF IF JREST = 2
 C JRESTN-- NUMBER OF TARGET (INUTR) TO RESTART WITH NEW TAPES.
 C JRESTA-- RECORD COUNT ON NA
 C JRESTD-- RECORD COUNT ON ND
 C JRESTE-- RECORD COUNT ON NE
 C JRESTF-- RECORD COUNT ON NF

C RUN CONTROL OPTIONS.
 C IFRSK-- PERFORM FALLOUT RISK CALCULATIONS.
 C IDMAS-- PERFORM DAMAGE ASSESSMENT CALCULATIONS.
 C NSAMP-- NUMBER OF SAMPLES FOR EACH TARGET
 C ISTRAT-- IF 0 USE REGULAR SAMPLING, IF 1 USE STRATIFIED
 C SAMPLING.
 C ININST-- 0 USE INPUT VALUES WMNR, WIND, SGMP FOR ENTIRE
 C CALCULATION, IF 1 USE MONITOR DATA POINTS AT FLATMO, ETC.
 C FOR AVERAGE WIND DATA AT TARGETS, IF 2 USE ALGORITHM
 C TO COMPUTE VALUES AT EACH TARGET.
 C ISEAS-- SEASON FOR WIM STATISTICS, 1-WINTER, 2-SPRING,
 C 3-SUMMER, 4-FALL, 5-AVERAGE ANNUAL.
 C ISHRSW-- IF 0 USE CONSTANT SHEAR, IF 1 USE 1/2 NORMAL
 C DISTRIBUTION WITH MEAN ZERO AND STD DEV = SHRST*SGSHRP,
 C IF 2 USE FULL NORMAL WITH MEAN SHRST AND STD. DEV. =
 C SHRST*SGSHRP.
 C INVWS-- IF 0 USE ALL HORIZONTAL WIND, IF 1 USE LINEAR WINDS
 C RELATIVE TO TARGET, IF 2 USE PARABOLIC WINDS, IF 3 USE WIND
 C COORDINATE SYSTEM. 2 AND 3 NOT IMPLEMENTED YET.
 C ICLSA-- IF 0 USE INDIVIDUAL WEAPONS IN ANALYSIS, IF 1 USE
 C ONLY WEAPONS IN CLUSTERS, IF 2 USE COMBINATION.
 C MUCK-- IF 0 USE REGULAR WSEG IN CALCULATIONS, 2F 1 USE QUICK
 C APPROXIMATION
 C MUCAL-- IF 0 USE WSEG BIO DOSE ONLY, 1 NMCSSC BIO, IF 2
 C ALSO COMPUTE D MAX. FOR REGULAR WSEG & FALLOUT CALC.
 C ISEED-- IF 0 USE CLOCK FOR SEED, IF 1 USE INPUT VALUE FOR SEED
 C FOR RANDU NUMBER GENERATOR.
 C SEED-- INPUT SEED IF ISEED = 1
 C MSDSW-- USE SAME SEED FOR EACH TARGET
 C CSEED-- VALUE OF SEED TO USE FOR TARGETS IF MSDSW = 1
 C IFRCAS-- IF 0 DO FALLOUT RISK CASUALTY CALCULATIONS.
 C NPFLV-- NUMBER OF PROJECTION FACTOR LEVELS TO ASSUME
 C PFLVU(7)-- PF VALUES FOR URBANIZED AREAS.
 C PFLVN(7)-- PF VALUES FOR NON URBANIZED AREAS.
 C FRPFR-- FRACTION WITH RURAL PF LEVEL
 C FRPFU-- FRACTION WITH URBAN PF LEVEL
 C FUSEM-- MEAN FATALITY FALLOUT DOSE
 C FUSESG-- STD. DEV. OF MEAN FATALITY FALLOUT DOSE.
 C COSEM-- MEAN INJURY FALLOUT DOSE.
 C COSESG-- STD. DEV. OF MEAN INJURY FALLOUT DOSE.

COMMON/RUNPR/ XNSAMP,NNHTS,NSMPCT,ILAST,ISTNO,ISTL0,JSTCU,JSTNM,
 1,ISTC(51),ISTNM(51),ICARRY(100),DSEPLT,DSERPT,APLT,YPLT
 2,DSEPLA,DSEPLB,DSEPLC,IS*ING,JS*ING,FFATU,FRCASU,FRCATR,FRCASR

C RUNPR CARRIES VARIOUS PARAMETERS NEEDED NOT INPUT DATA.

***** UNCLASSIFIED ***** I-38 2/14/76 PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 004

3

C ANSAMP-- FLOATING POINT NUMBER OF SAMPLES.
C NRPTS-- NUMBER OF TIMES AT EACH LEVEL IN STRATIFIED SAMPLES.
C NSMPCT-- CURRENT NUMBER OF TRIALS IN NONE STRATIFIED SAMPLES.
C ILAST-- FLAG TO INDICATE LAST TARGET HAS BEEN PROCESSED.
C ISTAU-- NUMBER IN ORDER OF CURRENT STATE BEING PROCESSED.
C ISTLU-- NUMBER IN LOOKUP ARRAY OF CURRENT STATE
C JSTCU-- CODE NUMBER OF CURRENT STATE FROM LOOKUP ARRAY
C JSTNM-- NAME OF CURRENT STATE FROM LOOKUP ARRAY.
C ISTC(51)-- LOOKUP ARRAY OF STATE CODES IN 70 CENSUS.
C ISTNM(51)-- LOOKUP ARRAY OF STATE NAMES.
C ICARRY(100)-- POINTERS GIVING ORDER IN WHICH STATES ARE
C PROCESSED. VALUE IN 1TH ENTRY IS PLACE IN 1STNM OF 1TH ST.
C DSEPLT-- VALUE OF DOSE TO USE FOR MAP PLOTTING
C ISEPT-- INDEX OF DOSE LEVEL TO USE FOR MAP PLOTTING.
C APLT-- X VALUE IN INCHES FROM MAP CENTER.
C YPLT-- Y VALUE IN INCHES FROM MAP CENTER.
C FRAT-- FRACTION WITH FATALITIES FOR CURRENT DOSE
C FCAS-- FRACTION WITH CASUALTIES WITH CURRENT DOSE

COMMON/CLSPR/ YLDC(500)*FISSC(500)*XWC(500)*YWC(500)*SIGAC(500)*
SIGYC(500)*NCLS*SARY(500)*YLDI(7)*YLDI(6)*ARYL(7,19),
ARRY(7,40)

C CLSPR USED TO STORE DATA RELATED TO WEAPON CLUSTERS

C FISSC-- FISSION FRACTION FOR CLUSTER = TOTAL CLUSTER
FISSION YIELD / CLUSTER YIELD VALUE USED
YLDC--WEAPON YIELD,MT. THIS IS THE AVERAGE WEAPON YIELD USED
FOR A TYPICAL YIELD VALUE IN WEAPON EFFECTS CALCULATIONS.
XWC-- EAST WEST COORDINATE OF CENTER OF CLUSTER
YWC-- NORTH SOUTH COORDINATE OF CENTER OF CLUSTER
SIGAC-- EAST WEST STANDARD DEVIATION OF CLUSTER.
SIGYC-- NORTH SOUTH STANDARD DEVIATION OF CLUSTER
NCLS-- NUMBER OF CLUSTERS
SARY-- USED TO STORE YIELD DEPENDENT VALUES FOR CLUSTERED
*SEG - 10 FALLOUT MODEL
YLDI-- MEAN VALUE OF YIELD FOR GROUPED YIELD CALCULATIONS.
YLDI-- SEPARATING VALUES FOR YIELD INTERVALS
ARYL-- TO STORE YIELD DEPENDENT VALUE OF YIELD INTERVALS
USED IN QUICK *SEG TO FALLOUT CALCULATIONS.

COMMON/TARPR/ NAMETR(1),TRPT,TRPU,TRPR,TRPUA,IRSTCO*IRCUCO,
INUAC,IREAC,ISMSAC,NUTH,IACGLA,THCGLO,YIL,XIL,SIGTRH,SIGTHL,
CALTR,NPLCS,NMCUS,NTT(52),FUTT(52),PTT(52),PATT(52)

C TARPR USED FOR TARGET DATA

C NAMETR-- TARGET NAME ARRAY. NORMAL USE IS 3AB#A6
C TRPT-- TOTAL TARGET POPULATION.
C TRPH-- RURAL TARGET POPULATION.
C TRPU-- URBAN TARGET POPULATION.
C TRPUA-- URBANIZED AREA TARGET POPULATION.
C IRSTCO-- STATE CODE FROM 70 CENSUS. A2
C IACUCO-- COUNTY CODE FROM 70 CENSUS. A3
C INUAC-- URBANIZED AREA CODE. A4
C IREAC-- ECONOMIC AREA CODE. A5
C ISMSAC-- SMSA CODE. A4
C NUTH-- NUMBER OF CURRENT TARGET IN A SEQUENTIAL COUNT.
C IACGLA-- LATITUDE OF TARGET POPULATION CENTROID.

**** UNCLASSIFIED **** I-39 12/14/76

PAGE NO. 004

**** UNCLASSIFIED **** 12/14/76

PAGE NO. 00-

H

C THCGLO-- LONGITUDE OF TARGET CENTROID.
C YTL-- TARGET CENTROID IN NORTH-SOUTH COORDINATES.
C XTL-- TARGET CENTROID IN EAST-WEST COORDINATES.
C SIGTRB-- STANDARD DEVIATION OF TARGET POPULATION ALONG BIG AXIS
C SIGTHL-- STD. DEV. OF TARGET POPULATION ALONG SMALL AXIS.
C ALTH-- ROTATION OF TARGET MAJOR (LARGE) AXIS IN DEGREES
C CLOCKWISE FROM THE NORTH.
C NPLCS-- NUMBER OF PLACES IN TARGET AREA
C NMCUS-- NUMBER OF MINOR CIVIL DIVISIONS IN TARGET AREA.
C NFT-- TOTAL NUMBER OF COUNTIES IN A STATE
C PTTT-- TOTAL URBAN POPULATION IN A STATE
C PTIT-- TOTAL POPULATION IN A STATE
C PRIT-- TOTAL RURAL POPULATION IN A STATE.
C PATT-- TOTAL URBANIZED AREA POPULATION IN A STATE.

COMMON/WINPR/WIND,V,SGWP,SUM,SHRST,SHR,SGSHRP,SGSHR,WMDNR,ALWNU,
CAL,FLATMO(100),FLONMO(100),DEGM(100),SPDMO(100),VSMO(100),
NUMO

C WINPR CONTAINS WIND RELATED PARAMETERS.

C WIND-- CURRENT VALUE OF MEAN WIND, MPH.
C V-- CURRENT VALUE OF SAMPLE WIND VELOCITY
C SGWP-- WIND VECTOR STANDARD DEVIATION AS FRACTION OF MEAN WIND
C SGW-- VECTOR STANDARD DEVIATION OF WIND MPH.
C SHRST-- MEAN VALUE OF WIND SHEAR MPH/KFT.
C SHR-- CURRENT VALUE OF WIND SHEAR FOR THIS SAMPLE
C SGSHRP-- STANDARD DEVIATION OF WIND SHEAR AS A FRACTION OF MEAN
C SGSHR-- STANDARD DEVIATION OF WIND SHEAR.
C WMDNR-- MEAN WIND DIRECTION IN DEGREES CLOCKWISE FROM THE NO.
I.E. A VALUE OF 270 MEANS A WIND BLOWING FROM WEST TO EAST
C ALWNU-- VALUE OF WIND DIRECTION FOR THIS SAMPLE.
C CAL-- COSINE OF ALWNU
C SAL-- SINE OF ALWNU.
C FLATMO-- THESE ARRAYS REFER TO WIND MONITORING STATION VALUES
USED TO GIVE WIND STATISTICS DATA VARYING WITH LOCATION.
C LATITUDE OF MONITORING STATION
C FLONMO-- LONGITUDE OF STATION
C DEGMU-- ANGLE OF MEAN WIND AT STATION IN DEGREES CLOCKWISE
FROM NORTH, AS WITH WMDNR
C SPDMU-- MEAN WIND SPEED AT MONITORING STATION
C VSMU-- VECTOR WIND STANDARD DEVIATION AS A FRACTION OF MEAN
WIND SPEED.
C NUMO-- NUMBER OF MONITORING STATIONS.

COMMON/STAPR/DTOT,DMAX,HV(51),BE(502),XLHV(51),NB(51),NBE(501),
INRL(50),NBXA,NBXA,NEOXL,NBXE,SMLDUS,SD,SS,SDL,SDF,SSD,SSDC,SSDF
2,NSML,NBXST(50,52),FBXST(100,52),CBXST(100,52),PROFT(50),PROCS(50)
3,SFT,SFTC,SFTF,SCA,SCAS,SCAC,SCAF,TPUPLV(50,52)
*OSEIND(100)

C STAPR USED TO CARRY STATISTICS ON MONTE CARLO TRIALS.

C NXST-- NUMBER OF TRIALS IN SPECIFIED BOXES BY STATE
C UTOT-- CURRENT VALUE OF TOTAL DOSE
C DMAX-- CURRENT VALUE OF MAXIMUM DOSE.
C HV(51)-- DOSE LEVEL CUTOFFS FOR SPECIFIED INTERVALS.
C BE(502)-- DOSE LEVEL CUTOFFS FOR EVEN INTERVALS.
C XLHV(51)-- DOSE LEVEL CUTOFFS FOR LOGARITHMIC INTERVALS

**** UNCLASSIFIED **** I-40

12/14/76

PAGE NO. 00-

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 000

C NR(51)-- TRIAL COUNT FOR SPECIFIED INTERVALS.
C NRE(501)-- TRIAL COUNTS FOR EVEN INTERVALS.
C NRL(50)-- TRIAL COUNTS FOR LOGARITHMIC INTERVALS.
C NROXA-- NUMBER OF BOXES FOR SPECIFIED INTERVALS.
C NROAL-- NUMBER OF BOXES FOR LOGARITHMIC INTERVALS.
C NROXE-- NUMBER OF BOXES FOR EVEN INTERVALS.
C SMLDOS-- CUTOFF FOR STATISTICS WITHOUT DOSES UNDER SMLDOS
C SU-- FOR THIS TARGET SUM OF UTOT
C SUD-- SUM OF DTOT*DTOT
C SUC-- SUM OF DTOT*DTOT*UTOT
C SUF-- SUM OF DTOT*UTOT*UTOT*DTOT
C SSD-- FOR DOSES OVER SMLDOS, SUM OF DTOT
C SSDS-- FOR DOSES OVER SMLDOS, SUM OF DTOT*NTOT
C SSDC-- FOR DOSES OVER SMLDOS, SUM OF DTOT*NTOT*DTOT
C SSDF-- FOR DOSES OVER SMLDOS, SUM OF DTOT*NTOT*DTUT*UTOT
C NSML-- NUMBER OF TRIALS LESS THAN SMLDOS FOR THIS TARGET.
C NXST-- USED FOR STATE ENTRIES IN SPECIFIED BOXES
C FXST-- USED FOR FRACTION FATALITIES FOR STATES.
C CXST-- USED FOR FRACTION CASUALTIES FOR STATES.
C PHOT-- PROBABILITY OF A FATALITY AT A GIVEN DOSE LEVEL.
C PHCS-- PROBABILITY OF A CASUALTY AT A GIVEN DOSE LEVEL.
C SFT-- FOR EACH TRIAL SUM OF NUMBER OF FAITALITIES.
C SFTS-- SFT*SFT
C SFTC-- SFT*SFT*SFT
C SFTF-- SFT*SFT*SFT*SFT
C SCA-- FOR EACH TRIAL SUM OF NUMBER OF CASUALTIES.
C SCAS--SCA*SCA
C SCAC-- SCA*SCA*SCA
C SCAF-- SCA*SCA*SCA*SCA
C TPOPLV-- TOTAL POPULATION AT SPECIFIED FATALITY LEVELS.
C USEINU(+00)-- INDEX TO ORDERED LIST OF USES

COMMON/IOPR/ MP,MQ,MS,NA,NC,ND,NE,NF,NG,NH,NI,NJ,NK,NL,NM

C IOPR CONTAINS INPUT OUTPUT MEDIUM DEFINITIONS.

C MP-- STANDARD INPUT - CARD READER.
C MU-- STANDARD OUTPUT - PRINTER.
C MS-- OUTPUT OF BCD PUNCHED CARDS.
C NA-- TARGET INPUT DATA.
C NC-- WEAPON CLUSTER INPUT.
C ND-- OUTPUT OF TARGET TRIAL NUMBERS IN SPECIFIED BOXES BY MOSTP
C NE--OUTPUT OF DATA AT PERCENTILE LEVELS BY MLVTP.
C NF-- OUTPUT OF INDIVIDUAL DOSES BY MMPTP
C NG-- DUMP TAPE BY ISGN AND JSGN

COMMON/LAZY/TTA,TTB,TIC,ITD,TTE,KTA,KTB,KTC,KTD,KTE,KTF,KTG,KTH

C LAZY USED FOR TEMPORARY VARIABLE TRANSMITTAL.

C*****TEMPORARY*****

C KTA USED TO TRANSMIT ILSFSW

COMMON/LAZYA/TTAA(200),KTA(200)

C LAZYA USED FOR TEMPORARY ARRAY TRANSMITTAL.

I-41-

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

6

DATA (BV(1) = 0.0), (BV(2) = 100.), (BV(3) = 200.), (BV(4) = 450.),
1 (BV(5) = 1000.), (BV(6) = 2000.), (BV(7) = 4000.), (BV(8) = 10000.).
2 (BV(9) = 30000.)
DATA (YLDM(1) = 1.4), (YLDM(2) = 2.5), (YLDM(3) = 4.0), (YLDM(4) =
1.7.), (YLDM(5) = 14.), (YLDM(6) = 25.)
DATA (YLDI(1) = 1.), (YLDI(2) = 2.), (YLDI(3) = 3.), (YLDI(4) = 5.),
(YLDI(5) = 10.), (YLDI(6) = 20.), (YLDI(7) = 30.)
DATA ((ISTNM(J), J=1,51)=2HAL, 2HAK, 2HAZ, 2HAR, 2HCA, 2HCO, 2HCT, 2HDE, 2H
1DC, 2HFL, 2HGA, 2HMI, 2HID, 2HIL, 2HIN, 2HIA, 2HKS, 2HKY, 2HLA, 2HME, 2HMD, 2HM
2A, 2HMI, 2HNN, 2HMS, 2HNU, 2HNT, 2HN8, 2HNV, 2HNM, 2HNJ, 2HMM, 2HNT, 2HNC, 2HNU
3, 2HOM, 2HOK, 2HUR, 2HPA, 2HH1, 2HSC, 2HSD, 2HTN, 2HTX, 2HUT, 2HVT, 2HVA, 2HWA,
42HWV, 2HWI, 2HWY)

C CURRENTLY NC IS FROM CARDS
C *****3600/6400 COMPATABILITY CHANGE *****
C 0400 CARDS
MP = 5LINPUT
MQ = 6LOUTPUT
MS = 5LPUNCH
NA = 5LTapeA
NC = 5LINPUT
ND = 5LTapeC
NE = 5LTapeB
NG = 5LTapeD
C 3600 CARDS
C MP=60
C MQ=61
C NA=20
C NC=60
C NE=30
C ND=40
C NG = 35

ISTNO = 0
NUTH = 0
IOTCD = 2H
C *****3600/6400 COMPATABILITY CHANGE *****
C CALL SSWTC(2, JSGN)
C IF(SENSE SWITC 2) H, 9
IF(JSGN .EQ. 1) GO TO 8
GO TO 9
8 CONTINUE
C RESTART FROM DUMP TAPE. REPOSITION PREVIOUS OUTPUT TAPES BY END
OF FILE MARKS. ASSUME PRINT OUTPUT FROM BEFORE SAVED ELSEWHERE.
READ(MP,35) JREST, JRESTN, JRESTA, JRESTD, JRESTE, JRESTF
35 FORMAT(1,6I10)
INUT = -
CALL IJUMP(INUUT, IJSTCD, ISILU)
WRITE(MU,11)

Restart
only tested on 6400.

Restart

**** UNCLASSIFIED **** I-42

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 001

CALL INVAL
CALL PAROUT
GO TO 10
9 CONTINUE

CALL INVAL
CALL PAROUT
IF(IFRSK .NE. 1) GO TO 10U
IF(ICLUST .NE. 1) GO TO 1U
CALL INIT
CALL CLSIN
10 CONTINUE
CALL TGTIN
C *****3600/6400 COMPATIBILITY CHANGE*****
CALL SSWICH(2,RSGN)
IF(KSGN .EQ. 1) GO TO 31
C IF(SENSE SWI(CH 3) 31,32
GO TO 32
31 CONTINUE
ITM = 9HST CTY =
ENCODE(14,34, ILAB) ITM=1HS[CU,IRCOCO
34 FORMAT(A9,A2,A3)
ILAB(3) = 0
CALL REMARK(ILAB)
32 CONTINUE
IF(ILAST .NE. 0) GO TO 20
C *****3600/6400 COMPATIBILITY CHANGE*****
C IF(SENSE SWITCH 1) 25,24
CALL SSWITCH(1,ISGN)
IF(ISGN .EQ. 1) GO TO 25
GO TO 24
25 CONTINUE
INOUT = 1
CALL IDUMP(INOUT,IOSTCD,ISTLU)
GO TO 27
27 CONTINUE
NUTH = NUTH + 1
IF(IHSTCO .EQ. IOSTCD) GO TO 12
IOSTCD = IHSTCO
ISTNO = ISTNO + 1
IF(ISTNO .GT. 51) GO TO 27
DO 17 J = 1,51
JJ = J
IF(IHSTCO .EQ. ISTC(J)) GO TO 18
17 CONTINUE
ISTLU = 1
GO TO 19
18 CONTINUE
ISTLU = JJ
19 CONTINUE
ICARRY(ISTNO) = ISTLU
JSTCD = ISTC(ISTLU)
JSINM = ISINM(ISTLU)
WRITE(MG,1)
11 FORMAT(1H1)
WRITE(MG,21) ISINM(ISTLU),ISTC(ISTLU)
21 FORMAT(//11//, 20X, *RESULTS FOR THE STATE OF *, A2,
, * ITM CODE *, A2, //11//)
ISWING = 1

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 001

I-43

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

8

12 CONTINUE
NTT(ISTNO) = NTT(ISTNO) + 1
PUTT(ISTNO) = PUTT(ISTNO) + TRPU
PTT(ISTNO) = PTT(ISTNO) + TRPT
PRIT(ISTNO) = PRIT(ISTNO) + TRPR
PATT(ISTNO) = PATT(ISTNO) + TRPUA
CALL PREPAK
CALL MUNIE
CALL WHITONE
IF (MLVTP .NE. 1) GO TO 16
WRITE (NE, 15) THGLA, TRGGLB, DSEPLA, DSEPLB, DSEPLC, IRSTCO, IMCOCO
15 FORMAT (F10.4, 5X, F10.4, 5X, F10.4, 5X, A3, 1X, A2)
16 CONTINUE
GO TO 10

20 CONTINUE
CALL WHITLST
IF (MUSTP .NE. 1) GO TO 22
ENDFILE ND
REWIND ND
22 CONTINUE
IF (MLVTP .NE. 1) GO TO 26
ENDFILE NE
REWIND NE
26 CONTINUE
IF (MMPTP .NE. 1) GO TO 27
ENDFILE NF
REWIND NF
27 CONTINUE
100 CONTINUE
STOP 6+00
ENU

Start tape backup

End summary
+ close file

Final Summary

SUBROUTINE INIT

C INITIALIZES THE CALCULATION

COMMON/MUNSW/ICITYCH, IININ, ICLUST, ISINSW, LABEL(2), ISPMWSW, ILGWWSW,
IIEWWSW, MOST, USEEV, IHSWSW, ILVSW, DOSELV(5), IPROM, PHOLV(3), ICATSW,
MUSTP, MLVTP, MMPTP, TCLS4, JREST, JRESTN, JRESTA, JRESTD, JRESTE, JRESTF,
IFRSK, IUNAS, NSAMP, ISTRT, IWNDST, ISHRSW, IWLSW, IMUCK, ISEED, SEED,
WSUS, CSEED, IF4CAS, PFLV, PFLVU(7), PFLVR(7), FDSEM, FUSESG, COSEM,
CUSES, MDCAL, ICLTYL, FRPFU(7), FRPFH(7),
ILSTCT, ISTIN(50), ICTIN(100), ISEN, NSTIN, NCTIN
COMMON/MUNPR/ XNSAMP, NMPTIS, NSMPCT, ILAST, ISTNO, ISFL0, JSTCU, JSTNM,
ISTC(51), ISTNM(51), ICARRY(100), USEPLT, IDSEPT, XPLT, YPLT
DSEPLA, DSEPLB, DSEPLC, ISWING, JSWING, FRFATU, FRCASU, FRCATR, FRCASR
COMMON/CLSPP/ YLDC(500), FISSC(500), XWC(500), YWC(500), SIGAC(500),
SIGYC(500), NCLS, SARY(500, 5), YLDI(7), YLDU(6), OAHYL(7, 19),
ZARRY(7, 40)
COMMON/TAPR/ NAMETR(10), THPT, TRPU, TRPR, TRPUA, IRSTCO, IRCCUCO,
IPUAC, IMEAC, ISMSAC, NUTR, TRGLA, TRGGLD, YTL, XTL, SIGTH, SIGTL,
ALTIR, NPLCS, NMCS, NTT(52), PUTT(52), PTT(52), PRIT(52), PATT(52)
COMMON/STAPR/ DTCT, DMXPHV(51), DE(502), XLHV(51), ND(51), NB(501),
INPL(50), NB0XA, NB0XL, NB0AE, SMLDUS, SD, SUS, SDU, SSD, SS0S, SS0U, SSDF
NSML, NBAST(50*52), FMXST(100*52), CRXST(100*52), PROFT(50), PROCS(50)

***** UNCLASSIFIED *****

I-44 12/14/76

PAGE NO. 00

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 004
 2, SFT, SFIS, SFTC, SFTF, SCA, SCAS, SCAC, SCAF, TPOPLV(50,52)
 4 DSEIN(100) 9
 COMMUN/UWSEG/YIELN,FISN,FOB,Z,SHZ,XDW,YCW,XTRA,WARRY(19)
 COMMON/LAZY,TTA,TTB,TTC,TTD,TTE,KTA,KTB,KTC,KTD,KTE,KTF,KTG,KTH
 COMMON/LAZY/TTAA(200),KIAA(200)

```

    NBOXA = 9
    NBOXL = 37
    NBOXE = NDSEV + 1
    XLBV(1) = 0.
    XLG = 0.
    DO 3 J = 2,NBOXL
    XLBV(J) = 10**XLG
    XLG = XLG + 0.2
  3 CONTINUE
    XNUSEV = NDSEV
    DELO = UMOST/XNUSEV
    DO = 0.
    DO 5 J = 1,NBOXE
    DE(J) = DO
    DO = DO + DELO
  5 CONTINUE
    BV(NBOXA + 1) = 999999999.
    XLBV(NBOXL + 1) = 999999999.
    BE(NBOXE + 1) = 999999999.
    DO 11 I = 1,50
    DO 12 J = 1,52
    NXST(I,J) = 0
    TPOPLV(I,J) = 0.
  12 CONTINUE
  11 CONTINUE
    DO 16 I = 1,100
    DO 17 J = 1,52
    F+AST(I,J) = 0.
    CHAST(I,J) = J.
  17 CONTINUE
  16 CONTINUE
    DO 14 J = 1,52
    PTI(J) = 0.
    PUTT(J) = 0.
    PTIT(J) = 0.
    PRIT(J) = 0.
    PAIT(J) = 0.
  14 CONTINUE
    IF (ISEEU .NE. 0) GO TO 32
    C *****3600/6400 COMPATABILITY CHANGE *****
    CALL TIME(CLTIM)
    CLIM = ABS(CLTIM)
    CALL RANSET(CLTIM)
    C CLTIM = TIMEF(DUMMY)
    C CLIM = ABS(CLTIM)
    C CALL RANFSET(CLTIM)
    GO TO 33
  32 CONTINUE
    C *****3600/6400 COMPATABILITY CHANGE *****
    CALL RANSET(SEED)
    CALL RANFSET(SEED)
  33 CONTINUE
  
```

**** UNCLASSIFIED *** I-45 12/14/76

PAGE NO. 004

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 001

/o

FISN = 1.
MOB = J.
DO 38 I = 1,7
YIELN = YLDI(I)
CALL QFALLY
DO 39 J = 1,19
QARYL(I,J) = QARRY(J)
39 CONTINUE
38 CONTINUE
RETURN
END

Wheat Ballot Yield Calculator

SUBROUTINE INVAL

C INPUTS PARAMETRIC VARIABLES INCLUDING WIND AND CONTROL VALUES

COMMON/RUNSW/ICTYCB,IBINT,ICLUST,ISINGW,LABEL(20,2),ISPWSW,ILGWSW,
1 IEWSW,DOST,NDSEV,ISHNSM,ILVSW,DSELV(5),IPROSW,PROLV(3),ICATSW,
2 MUSTP,MVTP,MNTP,ICLSA,JHEST,JHESTN,JRESTD,JRESTE,JRESTF,
3 IFNSK,IMAS,NSAMP,ISTRAT,TWIDST,ISHRSW,ILVSW,MCK,ISEED,SEED,
4 MDSW,CSEED,IFCAS,NPFLV,PFLVU(7),PFLVK(7),FDSEM,FDSESG,CDSEM,
5 CUSES,GMDCAL,ICLYLD,ICLYLW,FRPFU(7),FRPFH(7)
6 ,ILSTCT,ISTIN(50),ICTIN(100),ISEAS,INSTIN,INSTIN
COMMON/RUNPR/NSAMP,NSPIS,NSMPCT,ILAST,ISTNO,ISTLO,JSTCD,JSTNM,
1 ISTC(51),ISTNM(51),JCARRY(100),DSEPLT,IDEPT,XPLT,YPLT
2 ,DSEPLA,DSEPLB,DSEPLC,ISWING,JSWING,FRFATU,FRCASU,FRFATH,FRCASH
COMMON/WNUPR/WNU,V,SGWP,SGW,SHMS!,SHR,SGSHRP,SGSHR,WNNUR,ALWNU,
1 CAL,SAL,FLATHO(100),FLUNHO(100),DEGHO(100),SPDMO(100),VSMO(100),
2 NNUO
COMMON/STAPR/DTGT,DMAX,HV(51),BE(502),XLHV(51),NB(51),NB(E(501),
1 NAL(50),NBOXA,NBXA,NSMLDUS,SD,SUS,SDC,SDF,SSD,SSDS,SSDC,SSDF
2 ,NSML,NEAST(50,52),FBXST(100,52),CBXST(100,52),PROFT(50),PROCS(50)
3 ,SFT,SFTS,SFTC,SFTF,SCA,PCAS,SCAC,SCAF,TPOPLV(50,52),
4 ,DSEIND(100)
COMMON/IOPH/ MP,MQ,MS,NA,NE,COND,NE,NF,NG,NH,NI,NJ,NK,IN,NM
COMMON/LAZY/TIA,TIB,ITC,ITD,TT,EKIA,KTB,KTC,KTD,KTE,KTF,KIG,KTH
COMMON/LAZYA/TTA(200),KIA(200)

READ(MP*6)(LABEL(1,1),I=1,20)
READ(MP*6)(LABEL(1,2),I=1,20)
6 FORMAT(2~A4)
READ(MP*1) IFRSK,IMAS
1 FORMAT(1,2)I0
READ(MP*21) ICTYCB,IBINT
21 FORMAT(1,2)I0
READ(MP*21) ICLUST,ISINGW
READ(MP*21) ICLYLD,ICLYLW
C
READ(MP*6) ILSTCT
41 FORMAT(1,2)I0
IF(ILSTCT .EQ. 0) GO TO "C"
C
READ STATES TO USE FIRST, STOP ON SP, THE COUNTIES STOP
C
ON SP, IF ILSTCT IS ONE ONLY ONE SP
JJ = 0

I-46

***** UNCLASSIFIED ***

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76 PAGE NO. 00

```

44 CONTINUE
JJ = JJ + 1
READ(MP,13) NSTIN(JJ)
43 FORMAT(A2)
IF( NSTIN(JJ) .NE. 2HSP ) GO TO 44
NSTIN = JJ - 1
IF( ILSTCT .EQ. 1) GO TO 42
JJ = 0
46 CONTINUE
JJ = JJ + 1
READ(MP,45) ICTIN(JJ)
45 FORMAT(A5)
IF( ICTIN(JJ) .NE. 5HSP ) GO TO 46
NCTIN = JJ - 1
42 CONTINUE

READ(MP,26) ISPWSW,ILGWSW,IEVWSW,IMSWSW,ILSFSW
26 FORMAT(1,5I10)
C***TEMPORARY***  

RTA = ILSFSW
READ(MP,16) ICATSW
READ(MP,4) DMUST, NDSEV, SMLDUS
4 FORMAT(1,F10.0, I10, F10.0 )
READ(MP,27) ILVS*, (DSELV(I), I= 1,5)
27 FORMAT(1,I10*5F10.0)
READ(MP,28) IPROS*, (PROLV(I), I= 1,3)
28 FORMAT(1,I10*3F10.0)
READ(MP,34) MDSTP,MLVTP,MMPTP
34 FORMAT(1,3I10)
READ(MP,22) JREST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF
22 FORMAT(1,6I10)

READ(MP,21) NSAMP,ISTRAT
NSAMP = NSAMP
NRPTS = NSAMP/100
READ(MP,12) IWNDST,WIND,SGRP,WMNDR,ISEAS
12 FORMAT(1,I10*3F10.0*I10)

READ(MP,14) ISMHSA,SHRST,SGSHRP
14 FORMAT(1,I10, 2F10.0)
SGW = SGWP*WIND
SGSHRP = SHRST*S;SHRP
READ(MP,16) ILVS*
16 FORMAT(1,I10)
READ(MP,16) ICLSA
READ(MP,21) MUCK,MDCAL
READ(MP,23) ISEEU,SEED,MSDSW,CSEED
23 FORMAT(1,I10,F10.0,I10,F10.0)
READ(MP,21) IFCA5,NPFLV
READ(MP,24) (PFLVU(I), I=1,7)
READ(MP,24) (FRLFU(I), I=1,7)
READ(MP,24) (PFLVR(I), I=1,7)
READ(MP,24) (FRPFR(I), I=1,7)
24 FORMAT(1,7F10.0)
READ(MP,35) FUSEM,FDSESG,CUSEM,CDSESG
35 FORMAT(1,4F10.0)

IF(I=MIST .NE. 1 ) GO TO 75
NUMO = 0
CO = 6000*2/5240.

```

Read Wind Data

**** UNCLASSIFIED ****

I-47

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

70 CONTINUE
READ(MP,71) LAT,LON,IWD,IWS,IWD,ISUD,ISUS,ISUSD,ISPD,ISPS,ISPSD,
! IFU,IFS,IFSD
71 FORMAT(I7,5X, I3, 5X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,
I3,1X,I3,1X,I3,1X,I3,1X,I3,1X)
IF ('LAT' .EQ. 0) GO TO 75
NUMO = NUMO + 1
FLATMO(NUMO) = LAT
FLONMO(NUMO) = LON
IF (ISEAS .NE. 1) GO TO 81
ZD = IWD
ZS = IWS
ZSU = IWSU
GO TO 86
CONTINUE
IF (ISEAS .NE. 2) GO TO 82
ZD = ISPD
ZS = ISPS
ZSU = ISPSD
GO TO 86
CONTINUE
IF (ISEAS .NE. 3) GO TO 83
ZD = ISUD
ZS = ISUS
ZSU = ISUSD
GO TO 86
CONTINUE
IF (ISEAS .NE. 4) GO TO 84
ZS = IFS
ZD = IFD
ZSU = IFSD
GO TO 86
CONTINUE
ZD = IWD + ISPD + ISUD + IFD
ZD = 0.25*ZD
ZS = IWS + ISPS + ISUS + IFS
ZS = 0.25*ZS
ZSU = IWSU + ISUSD + ISUS + IFSD
ZSU = 0.25*ZSU
86 CONTINUE
UEGMD(NUMO) = ZD
SPUMO(NUMO) = ZS*CO
VSMO(NUMO) = ZSU*CO
GO TO 70
CONTINUE
RETURN
END

Your Work Data

not ready if General
deckpart/Restart
carbons available

SUBROUTINE IDUMP(INOUT,IUSTCD,ISTLU)
C INOUT = 1 WRITE ON DUMP TAPE
C INOUT = 2 READ FROM DUMP TAPE
COMMON/HUNS/W/IARH(274)
COMMON/HINPRH/IARH(223)
COMMON/CLSPRH/IARH(5927)
COMMON/TARPH/IARH(289)
COMMON/WNDPR/IARH(513)
COMMON/STAPRH/IARH(1712)
COMMON/IDPRH/ MP,MQ,MSS,NH,NC,ND,NE,INF,G,NH,NI,NJ,NK,NL,NM
COMMON/LMZT/IARH(13)
COMMON/LAZYA/IARH(400)

I-48

**** UNCLASSIFIED ***

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 06

13

```
IF(INOUT .EQ. 2) GO TO 20

WRITE(NG) IOSTCD,ISTLU
WRITE(NG ) (IAKA(I) , I = 1, 274)
WRITE(NG ) (IAFB(I) , I = 1, 223)
WRITE(NG ) (IAFC(I) , I = 1, 5927)
WRITE(NG ) (IAFD(I) , I = 1, 289)
WRITE(NG ) (IAFE(I) , I = 1, 513)
WRITE(NG ) (IAFF(I) , I = 1, 17029)
WRITE(NG ) (IAFG(I) , I = 1, 13)
WRITE(NG ) (IAFH(I) , I = 1, 400)
ENDFILE NG
REWIND NG
REWIND NA
M0STP = IARA(62)
MLVTP = IARA(63)
MMPTP = IARA(64)
IF(MUSTP .NE. 1) GO TO 34
ENFILE ND
REWIND ND
34 CONTINUE
IF(MLVTP .NE. 1) GO TO 36
ENFILE NE
REWIND NE
32 CONTINUE
IF(MMPTP .NE. 1) GO TO 33
ENFILE NF
REWIND NF
33 CONTINUE
RETURN

20 CONTINUE
REWIND NG
REWIND NA
READ(NG) IOSTCD,ISTLU
READ(NG ) (IAKA(I) , I = 1, 274)
READ(NG ) (IAFB(I) , I = 1, 223)
READ(NG ) (IAFC(I) , I = 1, 5927)
READ(NG ) (IAFD(I) , I = 1, 289)
READ(NG ) (IAFE(I) , I = 1, 513)
READ(NG ) (IAFF(I) , I = 1, 17029)
READ(NG ) (IAFG(I) , I = 1, 13)
READ(NG ) (IAFH(I) , I = 1, 400)

JREST = IARA(66)
IF(JREST .EQ. 0) GO TO 43
JTM = IABS(JREST)
IF(JTM .EQ.2) GO TO 51
JRESTN = IARA(67)
ITM = JRESTN
ITM = ITM
GO TO 52
51 CONTINUE
ITM = IAHD(26)
52 CONTINUE
NUTRA = ITM + 1
WRITE(MW,15)NUTRA
FORMAT(1W1,/,1,30X,*RESTART FROM TARGET NO. *,15,/,1,1)
NUTRT = 2*ITM
DO 22 J = 1*NUTR
READ(NA,12)
```

I-49

**** UNCLASSIFIED ***

12/14/76

PAGE NO. 006

***** UNCLASSIFIED *****

12/14/70

PAGE NO. 001

14

12 FORMAT(1X)
22 CONTINUE
IF(JRESI .GT. 0) GO TO 43
MDSTP = IARA(62)
MLVTP = IARA(63)
MMPTP = IARA(64)
IF(JREST .NE. -2) GO TO 45
JRESTA = IARA(62)
JRESTD = IARA(69)
JRESTE = IARA(70)
JRESTF = IARA(71)
IF(MDSTP .NE. 1) GO TO 46
DO 47 JJ = 1, JRESTU
READ(NU,12)
47 CONTINUE
46 CONTINUE
IF(MLVTP .NE. 1) GO TO 48
DO 49 JJ = 1, JRESTE
READ(NE,12)
49 CONTINUE
48 CONTINUE
IF(MMPTP .NE. 1) GO TO 53
NSAMP = IAR8(1)
KTM = NSAMP/10
KKTM = KTM+10
IF(KKTM .NE. NSAMP) KTM = KTM + 1
KKTM = JRESTF*(KTM+1)
DO 54 JJ = 1, KKTM
READ(NF,12)
54 CONTINUE
53 CONTINUE
45 CONTINUE
IF(MLVTP .NE. 1) GO TO 42
23 CONTINUE
READ(NE,12)
C *****3600/6400 COMPATABILITY CHANGE *****
IFL = EUF(NE)
IF(IFL .NE. 0) GO TO 24
IF(EOF,NE) 24,25
25 CONTINUE
GO TO 23
24 CONTINUE
BACKSPACE NE
42 CONTINUE
IF(MDSTP .NE. 1) GO TO 41
28 CONTINUE
READ(NU,12)
C *****3600/6400 COMPATABILITY CHANGE *****
IFL = EUF(NU)
IF(IFL .NE. 0) GO TO 26
C IF(EOF,NU) 26,27
27 CONTINUE
GO TO 28
26 CONTINUE
BACKSPACE NU
41 CONTINUE
IF(MMPTP .NE. 1) GO TO 43
29 CONTINUE
READ(NF,12)
C *****3600/6400 COMPATABILITY CHANGE *****
IFL = EUF(NF)

I-50

***** UNCLASSIFIED *****

12/14/70

PAGE NO. 001

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

C IF(IFL .NE. 0) GO TO 30
C 31 IF(EOF,NF)30,31
C CONTINUE
C GO TO 24
C 30 CONTINUE
C BACKSPACE NF
C 43 CONTINUE
C RETURN
C END

end of current routine

SUBROUTINE PAROUT

DIMENSION ITELL(2)
DIMENSION JSEA(5)
DIMENSION LINEP(130),CSPTX(50),CSPTY(50),SSPTA(50),SSPTL(50),
ISALS(50),CALS(50),IPNT(50),KST(4)
COMMON/MUNSW/ICTYCB,IRIN!,ICLUST,ISINGW,LABEL(20+2),ISPWSW,ILGWSW,
IEVWSW,UMOST,NUSEV,IHS+SW,ILVSW,NUSELV(5),IPROS+PROLV(3)+ICATS+,
MUSTP,MLVTP,MMPTP,ICSA,JREST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF,
IFRSK,IDMAS,NSAMP,ISTRAT,WNDS,T,SHRSW,ILVSW,MCK,ISEED,SEED,
MSDSW,CSEED,IFHCAS,NPFLV,PFLVU(7)+PFLVR(7)+FNSEM,FDSSESG+CDSSEM+
CUSES,GMDCAL,ICLYLD,ICLYLG,FRPFU(7)+FRPFH(7)
ISTCT,ISTIN(50),CTIN(100),ISEAS,INSTIN,NTIN
COMMON/MUNPR/XNSAMP,NRPTIS,NSMPCT,ILAST,ISTNO,ISTLO,JSTCU,JSTNM,
ISTC(51)+ISTNM(51),ICAHY(100)+DSEPLT,DSEPT,XPLTYPLT
DSEPLA+USEPLB+USEPLC,ISWING,JSWING,FMFATU+FRCASU+FRCATR+FRCASH
COMMON/WNDPR,WIND,V,SGW,SGW,SHRSI,SHR,SGSHRP,SGSHR,WNDRH,ALWNU,
CAL,SLA,FLA(MC(100)+FLUMO(100)+DEGMO(100)+SPDMO(100)+VSMO(100))
NUMO
COMMON/IOPH/ MP,MQ,MS,N,NC,NOND,NE,NF,NH,NI,NJ,NK,NL,NM
COMMON/LAZY/ITA+TTB,TTG,TTD+TTE+KIA,KIA+KTC+KTD+KTE+KTF+KFG+KTH
COMMON/LAZYA/TTA(200)+KIAA(200)

DATA (ITELL(1) = 6HDO NOT),(ITELL(2) = 0H DO)
DATA (JSEA(1) = 6HINTER)*(JSEA(2) = 6HSPRING)*(JSEA(3) =
1 6HSUMMER)*(JSEA(4) = 6HFALL)*(JSEA(5) = 6HANNUAL)

WRITE(MU,77)
C *****3500/6400 COMPATABILITY CHANGE *****
C IZL = -1
C IZL = 0
CALL TIME(CLTIM)
CLTIM = ABS(CLTIM)
CALL RANSET(CLTIM)
TEM = RANF(I4L)
LNCV = 29. + 10.*TEM
TEM = RANF(IZL)
NSPOT = 4. + 45.*TEM*TEM
IJ = 0
DO 14 I = 1,NSPOT
TEM = RANF(IZL)
CCPTA = E. + I* 10.*TEM
TEM = RANF(IZL)
CCPTY = 5. + 46.*TEM
TEM = RANF(IZL)

**** UNCLASSIFIED ****

I-51

12/14/76

PAGE NO. 00

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 00

SCPTA = 2. + 14.*TEM
 TEM = RANF(I2L)
 SCPTY = SCPTX*(1.3 + 0.7*TEM)
 IF(I.EQ.1) GO TO 13
 DO IJ = 1,1J
 IF(CCPTA .GT. CSPTX(J)) GO TO 12
 IF(CCPTX + SCPTA + 1.0.LT. CSPTA(J) - SSPTB(J)) GO TO 11
 GO TO 15
 12 CONTINUE
 IF(CCPTA = SCPTA = 1. .GT. CSPTA(J) + SSPTB(J)) GO TO 11
 15 CONTINUE
 IF(CCPTY .GT. CSPTY(J)) GO TO 16
 IF(CCPTY + SCPTY + 1. .GT. CSPTY(J) - SSPTL(J)) GO TO 14
 GO TO 11
 16 CONTINUE
 IF(CCPTY = SCPTY = 1. .LT. CSPTY(J) + SSPTL(J)) GO TO 14
 11 CONTINUE
 13 CONTINUE
 IJ = IJ + 1
 CSPTA(IJ) = CCPTA
 CSPTY(IJ) = CCPTY
 SSPTD(IJ) = SCPTX
 SSPTL(IJ) = SCPTY
 TEM = RANF(I2L)
 ALPH = 3.14159265*TEM
 SALS(IJ) = SIN(ALPH)
 CALS(IJ) = COS(ALPH)
 14 CONTINUE
 NSPOT = IJ
 TEM = RANF(I2L)
 ACN = 14. + 0.*TEM
 ACNS = ACN*ACN
 DO 21 K = 1,60
 XK = K
 IFL = 0
 DO 22 I = 1,NSPOT
 IF(ABS(CSPTY(I)-XK) .GT. SSPTB(I)) GO TO 22
 IFL = IFL + 1
 IPNT(IFL) = I
 22 CONTINUE
 DO 26 J = 1,129
 AJ = J
 SUM = 0.
 IF(IEL .EQ. 0) GO TO 23
 DO 27 I = 1,IFL
 M = IPNT(I)
 IF(ABS(CSPTX(M)-AJ) .GT. SSPTB(M)) GO TO 27
 UX = CSPTX(M) - AJ
 DY = CSPTY(M) - XK
 UXP = UX*CALS(M) + DY*SALS(M)
 UYP = -UX*SALS(M) + DY*CALS(M)
 TWD = SSPTB(M)*SSPTD(M) + 0.001
 TWL = SSPTL(M)*SSPTL(M) + 0.001
 ALS = UXP*UXP/TWD + UYP*UYP/TWL
 ALS = 1. - ALS
 IF(ALS .LE. 0.) GO TO 27
 SUM = SUM + ALS
 27 CONTINUE
 IF(SUM .GT. 0.1) GO TO 24
 LINEP(J) = 1H
 GO TO 20

I-52

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

16

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

/7

```
29    CONTINUE
      TFM = RANF(IZL)
      VAL = 10.*SUM + 2.*(ITEM - 0.5)
      IF(VAL > 1.) GO TO 31
28    CONTINUE
      LINEP(J) = 1H
      GO TO 26
31    CONTINUE
      IF(VAL > 3.) GO TO 32
      LINEP(J) = 1H0
      GO TO 26
32    CONTINUE
      IF(VAL > 5.) GO TO 33
      LINEP(J) = 1H0
      GO TO 26
33    CONTINUE
      IF(VAL > 7.) GO TO 34
      LINEP(J) = 1H0
      GO TO 26
34    CONTINUE
      IF(VAL > 9.) GO TO 35
      LINEP(J) = 1H0
      GO TO 26
35    CONTINUE
      LINEP(J) = 1H0
26    CONTINUE
      ITM = LNCV - 1
      IF(K < ITM) GO TO 40
      ITM = LNCV + 22
      IF(K >= ITM) GO TO 40
      YY = LNCV + 1 - K
      DO 41 I = 30,107
      XX = 1.65
      ALS = XX*XA/ACNS + YY*YY/30.
      IF(ALS >= 1.) GO TO 42
      LINEP(I) = 1H
      GOTO 41
42    CONTINUE
      IF(ALS <= 2.77) GO TO 43
      IF(ALS >= 4.) GO TO 41
      LINEP(I) = 1H
      GO TO 41
43    CONTINUE
      TEM = RANF(IZL)
      VAL = (ALS - 1.)/1.7777 + .2*(ITEM - 0.5)
      IF(VAL > 0.1) GO TO 44
      LINEP(I) = 1H0
      GO TO 41
44    CONTINUE
      IF(VAL > 3) GO TO 45
      LINEP(I) = 1H0
      GO TO 41
45    CONTINUE
      IF(VAL > 5) GO TO 46
      LINEP(I) = 1H0
      GO TO 41
46    CONTINUE
      IF(VAL > 7) GO TO 47
      LINEP(I) = 1H0
      GO TO 41
47    CONTINUE
```

I-53

**** UNCLASSIFIED ***

12/14/76

PAGE NO. 001

**** UNCLASSIFIED ****

12/14/70

PAGE NO. 001

18

41 LINEP(1) = 1H0
CONTINUE
ITM = LNCV + 7
IF(K .NE. ITM) GO TO 51
LINEP(5) = 1HG
GO TO 40
CONTINUE
ITM = LNCV + 3
IF(K .NE. ITM) GO TO 52
LINEP(6) = 1HO
LINEP(69) = 1HR
GO TO 40
52 CONTINUE
ITM = LNCV + 9
IF(K .NE. ITM) GO TO 53
LINEP(57) = 1HH
LINEP(73) = 1HA
GO TO 40
53 CONTINUE
ITM = LNCV + 10
IF(K .NE. ITM) GO TO 54
LINEP(54) = 1HP
LINEP(70) = 1HM
GO TO 40
54 CONTINUE
ITM = LNCV + 11
IF(K .NE. ITM) GO TO 55
LINEP(23) = 1H
LINEP(24) = 1H
LINEP(106) = 1H
LINEP(107) = 1H
DO 63 JJ = 1,20
JJJ = 4*JJ + 20
DECODE(4*64, LABEL(JJ,1)) KST(1)*KST(2)*KST(3)*KST(4)
64 FORMAT(+A1)
DO 65 JK = 1,4
JJK = JJJ + JK
LINEP(JJK) = KST(JK)
65 CONTINUE
66 CONTINUE
GO TO 40
55 CONTINUE
ITM = LNCV + 12
IF(K .NE. ITM) GO TO 56
LINEP(23) = 1H
LINEP(24) = 1H
LINEP(107) = 1H
DO 66 JJ = 1,20
JJJ = 4*JJ + 20
DECODE(4*64, LABEL(JJ,2)) KST(1)*KST(2)*KST(3)*KST(4)
DO 67 JK = 1,4
JJK = JJJ + JK
LINEP(JJK) = KST(JK)
67 CONTINUE
68 CONTINUE
GO TO 40
56 CONTINUE
ITM = LNCV + 13
IF(K .NE. ITM) GO TO 57
LINEP(56) = 1HR
LINEP(74) = 1HO

I-54

**** UNCLASSIFIED ****

12/14/70

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/70

PAGE NO. 004

19

```
57    GO TO 40
      CONTINUE
      ITM = LNCV + 14
      IF(K .NE. ITM) GO TO 58
      LINEP(59) = 1HU
      LINEP(71) = 1HR
      GO TO 40
58    CONTINUE
      ITM = LNCV + 15
      IF(K .NE. ITM) GO TO 59
      LINEP(63) = 1MB
      LINEP(67) = 1HA
      GO TO 40
59    CONTINUE
40    CONTINUE
      WRITE(MU,37)(LINEP(I),I= 1+129)
37    FORMAT(LM,129A1)
21    CONTINUE

      WRITE(MU,77)
      IF(IFRSK .NE. 1) GO TO 121
      WRITE(MU,123)
      WRITE(MG,123)
123    FORMAT(1//1//1)
      WRITE(MG,122)
122    FORMAT(1//1LM,30X, * --- IN THIS RUN FALLOUT RISK CALCULATIONS
      ' WILL BE PERFORMED --- *)
121    CONTINUE

      WRITE(MU,77)
      FORMAT(LM)
      ICTYI = ICTYC3 + 1
      WRITE(MU,140) ITELL(ICTYI)
140    FORMAT(1H0,10X,A6, * USE NNNN COUNTY CH AND CT RECORDS
      IS FOR TARGET INPUT *)
      IRINTI = IBINI + 1
      WRITE(MU,141) ITELL(IRINTI)
141    FORMAT(1H0,10X,A6, * USE BINARY TAPE FOR TARGET INPUT *)
      IF(ILSTCT .GT. 0) GO TO 177
      WRITE(MU,179)
179    FORMAT(1HU,10X, *DO CALCULATIONS FOR ALL RECORDS ON INPUT TAPE*)
      GO TO 178
177    CONTINUE
      WRITE(MU,180) NSTIN,NCTIN
180    FORMAT(1HU, 10X, *DO CALCULATIONS FOR ALL OF *, 12, * STATES AND
      1*, 13, * STATE COUNTY COMBINATIONS AS INPUT*)
178    CONTINUE
      ICCLUS1=ICCLUS1+1
      WRITE(MU,110) ITELL(ICCLUS1)
110    FORMAT(1HU,10X,A6, * USE WEAPONS IN CLUSTERS AS INPUT*)
      ISINIEISING+1
      WRITE(MU,111) ITELL(ISINIE)
111    FORMAT(1HU,10X,A6, * USE INDIVIDUAL WEAPONS AS INPUT DATA*)
      IF(ICLYLD .NE. 0) GO TO 151
      WRITE(MU,152)
152    FORMAT(1HU, * USE AVERAGED YIELDS AS INPUT FOR USE IN CL
      USTER FALLOUT CALCULATIONS*)
      GO TO 150
```

I-55

**** UNCLASSIFIED ****

12/14/70

PAGE NO. 004

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00.

20

151 CONTINUE
IF(ICLYLD .NE. 1) GO TO 153
WRITE(MW,154)
FORMAT(1HU, 10X, * USE FIRST YIELD INPUT AS ONLY YIELD FOR CL
USTER FALLOUT CALCULATIONS*)
GO TO 160
153 CONTINUE
IF(ICLYLD .NE. 2) GO TO 155
WRITE(MW,156)
FORMAT(1HU, 10X, * SELECT YIELD FROM CLOSEST OF SEVEN STANDARD C
LASSES FOR USE IN CLUSTER FALLOUT CALCULATIONS*)
GO TO 160
155 CONTINUE
WRITE(MW,157)
FORMAT(1HU, 10X, * PLACE INPUT YIELDS INTO CLASSES AS INPUT FOR
USE IN CLUSTER FALLOUT CALCULATIONS*)
160 CONTINUE
IF(MCK .NE. 1) GO TO 170
IF(ICLYLW .NE. 0) GO TO 161
WRITE(MW,162)
FORMAT(1HU, 10X, * USE AVERAGED YIELDS AS INPUT FOR USE IN QU
ICK WSEG FALLOUT CALCULATIONS*)
GO TO 170
161 CONTINUE
IF(ICLYLW .NE. 1) GO TO 163
WRITE(MW,164)
FORMAT(1HU, 10X, * USE FIRST YIELD INPUT AS ONLY YIELD FOR QU
ICK WSEG FALLOUT CALCULATIONS*)
GO TO 170
163 CONTINUE
IF(ICLYLW .NE. 2) GO TO 165
WRITE(MW,166)
FORMAT(1HU, 10X, * SELECT YIELD FROM CLOSEST OF SEVEN STANDARD C
LASSES FOR USE QUICK WSEG FALLOUT CALCULATIONS*)
GO TO 170
165 CONTINUE
WRITE(MW,167)
FORMAT(1HU, 10X, * PLACE INPUT YIELDS INTO CLASSES AS INPUT FOR
USE IN QUICK WSEG FALLOUT CALCULATIONS*)
170 CONTINUE

WRITE(MW,88)NSAWP
IF(ISTRAT .EQ. 1) GO TO 89
FORMAT(1HU, * THE SAMPLE SIZE = *, I0)
WRITE(MW,89)
FORMAT(1HU, * USE NON-STRATIFIED SAMPLES *)
GO TO 80
85 CONTINUE
WRITE(MW,84)
FORMAT(1HU, * USE SAMPLES STRATIFIED BY RADIUS AND ANGLE INTO 100
EQUAL PROBABILITY AREAS*)
86 CONTINUE

IF(INRUST .EQ. 1) GO TO 120
IF(INRUST .EQ. 2) GO TO 142
WRITE(MW,125) WINDSGWP
125 FORMAT(1HU, 10X, * FOR THIS RUN UNIFORM WIND STATISTICS WILL BE USED FOR THE ENTIRE COUNTRY, /, 10X, * AVERAGE WIND SPEED = *,
2 F8.3, * M. P. H. STANDARD DEVIATION OF WIND = * *F8.3*
3 * TIMES AVERAGE WIND SPEED*)

I-86

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00.

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

87 WRITE(10,87) ANNU
FORMAT(1H,* THE MEAN WIND DIRECTION IS *,F10.4, * DEGREES CLW
ICKWISE FROM THE NORTH *)
GO TO 127
120 CONTINUE
88 WRITE(MQ,143) NUMO
FORMAT(1HU,10A, * USE WIND DATA FROM*, I3, * MONITOR POINTS
! FOR WIND STATISTICS *)
144 WRITE(MQ,144) JSEA(ISEA)
FORMAT(1H,10A, * USE *,A6, * FOR SEASONAL WIND STATISTICS*)
GO TO 127
142 CONTINUE
128 WRITE(MQ,128)
FORMAT(1H,10A, * USE AN ALGORITHM TO CALCULATE WIND SPEED
! AS A FUNCTION OF POSITION FOR THE ENTIRE COUNTRY*)
127 CONTINUE
IF(IWLSW.NE.0) GO TO 131
89 WRITE(MQ,132) SHRST
FORMAT(1H,10A, * USE A CONSTANT SHEAR = *,F8.3, * M.P.H./KFT
*)
GO TO 133
131 CONTINUE
IF(IWLSW.NE.1) GO TO 134
90 WRITE(MQ,135) SHRST
FORMAT(1H,10A, * USE SHEAR DISTRIBUTED AS A POSITIVE NORMAL
! DISTRIBUTION WITH MEAN SHEAR = *,F8.3, * M.P.H./KFT*)
GO TO 133
134 CONTINUE
91 WRITE(MQ,136) SHRST,SGSHRF
FORMAT(1H,10A, * USE NORMAL DISTRIBUTION FOR SHEAR WITH MEAN
! = *, F8.4, * AND STANDARD DEV. = *, F8.4, * TIMES THE MEAN*)
133 CONTINUE
IF(IWLSW.NE.0) GO TO 137
92 WRITE(MQ,138)
FORMAT(1H,10A, * FOR THIS CALCULATION USE ALL HORIZONTAL WINDS*)
GO TO 139
137 CONTINUE
IF(IWLSW.NE.1) GO TO 147
93 WRITE(MQ,148)
FORMAT(1H,10A, * USE WINDS LINEAR RELATIVE TO THE TARGET*)
GO TO 139
147 CONTINUE
IF(IWLSW.NE.2) GO TO 149
94 WRITE(MQ,150)
FORMAT(1H,10A, * USE RANDOM WIND CURVATURE RELATIVE TO THE TAR
GET *)
GO TO 139
149 CONTINUE
95 WRITE(MQ,158)
FORMAT(1H,10A, * USE WIND COORDINATE SYSTEM FOR VARIATION WITH
! POSITION *)
139 CONTINUE
IF(MUCK.EQ.1) GO TO 81
96 WRITE(MQ,83)
FORMAT(1HU, * USE REGULAR WSEG IN CALCULATION*)
IF(MUCAL.NE.0) GO TO 91
97 WRITE(MQ,95)
FORMAT(1H, * USE WSEG BIOLOGICAL DOSE*)
GO TO 94
91 CONTINUE

**** UNCLASSIFIED **** I-57

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00-

2

```
IF(MUCAL .NE.1) GO TO 72
WRITE(MW,90)
90 FORMAT(1H0, * USE NMSSC RADILOGICAL DOSE*)
GO TO 94
92 CONTINUE
IF(MUCAL .NE.2) GO TO 93
WRITE(MW,97)
97 FORMAT(1H0, * USE NMSSC MAXIMUM DOSE*)
GO TO 94
93 CONTINUE
C STOP666
94 CONTINUE
GO TO 82
81 CONTINUE
WRITE(MW,74)
74 FORMAT(1H0, * USE QUICK APPROXIMATION TO REGULAR *SEG 10 CALCUL
ATION*)
82 CONTINUE
IF (ISEED .NE. 1) GO TO 73
WRITE(MW,75)
75 FORMAT(1H0, * USE CLOCK TO GIVE AUTOMATIC RANDOM NUMBER SEED*)
GO TO 80
73 CONTINUE
WRITE(MW,70) SEED
70 FORMAT( 1H0,*USE RANDOM NUMBER SEED OF*, F16.6)
80 CONTINUE
IF(MSDSW .NE.1)GO TO 145
WRITE(MW,146) CSEED
146 FORMAT(1H0, 1X, * USE THE SAME STRING OF RANDOM NUMBERS FOR E
ACH TARGET INITIATED BY A SEED OF*,F15.4)
145 CONTINUE
IF(IFRCAS .EQ.1) GO TO 171
WRITE(MW,172)
172 FORMAT(1H0, 1X, * DO NOT DETERMINE FALLOUT FATALITIES IN RISK CA
LCULATIONS *)
GO TO 173
171 CONTINUE
WRITE(MW,174)
174 FORMAT( 1H0, 1X *DO FATALITY AND CASUALTY CALCULATIONS IN RISK CA
LCULATIONS AT THE FOLLOWING PROTECTION FACTOR LEVELS *.*.
< 1H0, 2UX*14MHU-RIALIZED AREA * 23A* 1.MHURAL AREA */*/
3 1H .5A, 4H0. .5A, 1 MPHOT. FAC. ,5A, 10H FRACTION .
* 1UX* 1UMPHOT. FAC. ,5A, 1UH FRACTION )
DO 176 I = 1,MPFLV
176 I = 1,MPFLV
WRITE(MW,175) 1* PFLVU(I)* FRPFU(I)*PFLVH(I)*FRPFH(I)
175 FORMAT(1H * 5A*1H(*12*1H), 5A, F10.2*5A*F10.4*10A,F10.2*5A,F10.4)
176 CONTINUE
173 CONTINUE
WRITE(MW,77)
RETURN
END
```

SUBROUTINE CLSIN

```
COMMON/RUNSW/ICTYCB,IHINI,ICLUSN,ISPLABEL(2,2)*ISPWSW,ILGWSW,
IEVWSW,IMOST,NUSEV,IMSWSW,ILVSN,DOSELV(5),IPROS*,PKOLV(3),ICATSN,
MOSTP,MLVTP,MNPTP,TCLSA,JEST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF,
IFPSK,IUMAS,NSAMP,ISTRAT,IWNST,ISHMSW,ILVSN,MUCK,ISEED,SEED,
NSUSW,CSEED,IFRCAS,MPFLV,PFLVU(7),PFLVH(7),FISEM,FDSSEG,CDSEM,
```

**** UNCLASSIFIED **** I-58

12/14/76

PAGE 10. 00.

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 004
 ~
 S COUSESG,MDCAL,ICLYL0,ICLYLG,FRPFU(7),FRPFH(7)
 &ILSTCF,ISTIN(50),ICTIN(100),ISEAS,INSTI,NCTIN
 COMMUN/CLSPR/YLDC(500)*FISSC(500)*XWC(500)*Y-C(500)*SIGAC(500).
 1 SIGYC(500),NCLS,SARY(500,5),YLDI(7),YLDI(7,19),
 2ARRY(7,40)
 COMMON/CLFLPR/YIELD,FISS=WINN,SHN=XL,SIGN=UNN,CRS=DOSE,STR(5)
 COMMON/CARTOG/IC=JC,KC,FLATP,FLONP,Y=XL,RHO=THETA,FLATC,FLONC,
 1SCALE,STCHUM,STCHAR,MILATH,ROLATH,XGUSTH,YGUSTH,XMPUFH,YMPUFH,
 >CMPLA,CRMPL0
 COMMON/IOPR/MP,MQ,MSPN,CONDNSE,INF,NGN,NGN,NGN,NGN,NGN,NGN,NGN,NGN
 COMMON/LAZY/TTA,ITB,TTC,ITC,ITD,TTE,KIA,KTB,KTC,KID,KTE,KTF,KTG,KTH
 COMMON/LAZYA/TTA(200),KIA(200)
 DATA(TOSMI=69.171339),(ICMAD=0.01745329)

C INITIALIZE FOR HECTANGLE PROJECTION
 IC = 3
 KC = 1
 JC = 2
 CALL PROJCT
 JC = 1
 NCLCT = 1

I = 0
 SUMYF = 0.
 SUMYLA = 0.
 SUMYLO = 0.
 SUMNWP = 0.
 10 CONTINUE
 I = I + 1
 READ (NC,11) YLDC(I), XWLN, YWLAT, SIGYS, SIGYS.
 1 XWLN, YWLAT, SIGYS, SIGYS.
 11 FORMAT(10F7.3,1,F4.0)
 IF(YLDC(I) .LT. 0) GO TO 15
 FLATP = YWLAT
 FLUNP = XWLN
 CALL PROJCT

To set a rectangular coordinate system

XWC(I) = X
 YWC(I) = Y
 SIGAC(I) = SIGAS*TOSMI*COS(TORAD*YWLAT)
 SIGYC(I) = SIGYS*TOSMI
 TEMP = YLDC(I)*FISSC(I)
 SUMYF = SUMYF + TEMP
 SUMYLA = SUMYLA + Y*TEMP
 SUMYLO = SUMYLO + X*TEMP
 SUMNWP = SUMNWP + XWPN

C CALCULATE YIELD DEPENDENT PARAMETERS FOR CLYSEER NSEG 1.
 IF(ICLYL0 .NE. 1) GO TO 21
 YIELD = YLDC(I)
 FISS = FISSC(I)
 CALL CFALLY
 DO 12 J = 1,5
 SARY(I,J) = SFH(J)
 12 CONTINUE

GO TO 10
 21 CONTINUE
 IF(ICLYL0 .NE. 1) GO TO 22
 IF(I .NE. 1) GO TO 10

**** UNCLASSIFIED **** I-59

12/14/76

PAGE NO. 004

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 00

24

```
YIELD = YLDC(1)
FISS = FISSC(1)
CALL CFALLY
DO 23 J = 1,5
SARY(1,J) = STH(J)
23 CONTINUE
GO TO 10
22 CONTINUE
IF (ICLYLD .NE. 3) GO TO 10
DO 24 K = 1,NCLCT
IF (YLDI(1) .EQ. YLDI(K)) GO TO 10
24 CONTINUE
YLDI(NCLCT) = YLDC(1)
YIELD = YLDC(1)
FISS = FISSC(1)
CALL CFALLY
DO 27 L = 1,5
SARY(NCLCT+L) = STH(L)
27 CONTINUE
NCLCT = NCLCT + 1
IF (NCLCT .LE. 7) GO TO 10
STOP 4563
15 CONTINUE
NCLS = I - 1
ITM = SUMNWP
TLA = SUMYLA/SUMYF
TLO = SUMYLO/SUMYF
WRITE(MU,31) ITM, NCLS, SUMYF, TLA, TLO
31 FORMAT(//, 10X, *THE WEAPON CLUSTER LIST HAS ,I5, * WEAPONS IN *
1, I4, * CLUSTERS WITH A TOTAL FISSION YIELD = *, F10.2, * MT. *
2, *'15X' *THE WEIGHTED C.G. HAS NURTHING = *, F10.4, * AND EASTING
3, * , F10.4)
RETURN
END
```

Grab yield
into # of 7 down

SUBROUTINE TGTR

C READS TARGET LOCATIONS

```
DIMENSION IZL(14)
COMMON/RUNSW/IC1YCH,IBINT,ICLUSST,ISINGW,LABEL(20,2),ISDWSW,ILGWSW,
IEVWSW,DUMOST,NUSEV,THSWSW,ILVSW,OSELV(5),IPROSW,PROLV(3),ICATSW,
NMUSTP,LVTPT,MMFTH,ICLS,JREST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF
IFRSK,IUMAS,NS,MP,ISTRAT,IWNDS,TISHRSW,ILVLS,MUCK,ISEED,SEED,
4,SDSW,CSEED,IF-CAS,NPFLV,PFLV(7),PFLVR(7),FSEEM,FUSESU,COSEM,
C USESG,MDCAL,ICLYLD,ICLYL4,FRPFU(7),FRFR(7)
5,ILSTCT,IISTIN(5),ICTIN(100),ISEMS,INSTIN,INSTIN
COMMON/MUNPR/,NSAMP,NRPIS,NSMPCT,ILAST,ISTNO,ISTLO,JSTCD,JSTM,
1,ISTC(5),ISINM(5),ICARRY(100),DSEPLT,INSEPT,APLT,YPLT
2,DSEPLB,CSEPLC,ISWING,JSWING,FRATU,RCASU,FRFATH,FRCAH
COMMON/TPRPR/,NAMETR(10),TRPT,TRPU,TRPR,TRPV4,IRSTCO,IRCUCO,
IRUAC,IREAC,ISMSAC,NUTH,TRCGLO,YIL,XTL,SIGTRB,SIGTRL,
2,ALTR,NPLCS,NMCUS,NT(52),PITT(52),PTT(52),PHTT(52),PAT(52)
COMMON/MINPR/,INUV,V,SGP,SGW,SHST,SHR,SGSHRP,SGSHR,MNDH,ALWND,
1,CMDSAL,FLATMO(100),FLUMO(100),DEG=0(100),SPDMO(100),VSMO(100),
2,NUMO
COMMON/CARTOG/IC,JC,KC,FLATP,FLONP,Y,A,RHO,THETA,FLATC,FLONC,
1,SCALE,STCHUR,STCHAR,HLATH,XG,STR,YG,STR,XMPUFR,YMPUFR*
```

***** UNCLASSIFIED ***** I-60

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

26

2 CRMPLA+CMLPLD
COMMON/TOPR/ MP,MQMS,NA,NC,NONE,NF,NG,NH,NI,NJ,NK,NL,NM
COMMON/LAZY/ITA,TTB,TTC,ITU,TE,KIA,KIB,KTC,KTD,KTE,KTF,KIG,KTH
COMMON/LAZYA/TTAA(200),KTAAT200)

ILAST = 0
IF(ICYCH .NE. 1 .AND. ICTYCH .NE. 2) GO TO 50
IF(ILSTCT .NE. 1) GO TO 40

C INPUT FROM NNNN
C NATIONWIDE DATA WITH EOF'S ON IDA TAPE 1818
C NATIONWIDE DATA WITHOUT EOF'S AFTER EACH STATE ON IDA TAPE 1853
C TEAMS ONLY DATA ON IDA TAPE NO. 1189
10 CONTINUE
READ(NA,12) LETCH,IRSTCO,TRCCOC,NAMETR(1),NMETR(2),NAMETR(3),
1 NAMETR(4),TRCCLU,TRCGLM,SIGTRD,SIGTRP,ALTR,TRPT,ANSEG,LINAT
12 FORMAT(A4,A2,A3,4X,3AD,AD, 5F8.4,F10.0, F8.4,3A,A4)
C *****3600/6400 COMPATABILITY CHANGE *****
IFL = EOF(NA)
IF(IFL .EQ. 0) GO TO 15
C IF(EOF,NA) 16,15
16 CONTINUE
IF(ICYCH .EQ. 2) GO TO 17
ILAST = 1
RETURN
17 CONTINUE
IF(IRSTCO .NE. 2M56) GO TO 18
ILAST =
RETURN
18 CONTINUE
IF(LNXT .EQ. 2) GO TO 15
IF(ILSTCT .NE. 1) GO TO 44
GO TO 10
15 CONTINUE
READ(NA,13) LTHGT,TRPU,TRPR,TRPLA,NURED5,NURED6,
1 HSERU,HSERU,HSEUA,VPLCS,NMCUS,IS,SAC,HEAC,THUAC,LINAT
13 FORMAT(A4,9A,3F10.0,3I0, 3F8.0,14,I4,A4,A5,4X,A4,21X,A4)
C *****3600/6400 COMPATABILITY CHANGE *****
IFL = EOF(NA)
IF(IFL .NE. 0) GO TO 19
GO TO 20
C IF(EOF,NA) 19,20
19 CONTINUE
LNAT = 2
GO TO 10
C 40 CONTINUE
READ(NA,41) LETCH,IRSTCO,INCCOCU,(IZL(J),J = 1,9)
C*****3600/6400 COMPATIBILITY*****
41 FORMAT(A4,A2,A3,4X,8A10,AD)
C41 FORMAT(A4,A2,A3,4X,11AD)
IFL = EOF(NA)
IF(IFL .NE. 0) GO TO 16
C46 IF(EOF,NA) 16,46
46 CONTINUE
C
IF(INSTIN .EQ. 1) GO TO 33
DO 32 JJ = 1*INSTIN

I-61

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 0000

```

32 IF(IHSTCO .EQ. 1) GO TO 31
33 CONTINUE
33 CONTINUE
33 IF(ILSTCT .EQ. 1 .OR. NCTIN .EQ. 0) GO TO 44
33 ENQUE(5,36,ITEVP) IHSTCO,IHCOCO
36 FORMAT(A2,A3)
36 DO 34 JJ = 1,NCTIN
34 IF(ITEMP .EQ. ICTIN(JJ)) GO TO 31
34 CONTINUE
44 CONTINUE
44 NUTR = NUTR + 1
44 REMD(NA#42)
42 FORMAT(1X)
42 GO TO 40
31 CONTINUE
31 DECODE(88*43*1ZL) NAMEIR(1),NAMEIR(2),NAMEIR(3),
31 NAMEIR(4),THCGLO,TRCGLA,SIGIRR,SIGTRL,ALTR,TRPT,ANSEG,LNAT
33 READ(NA#13) LTHC1,TRPU,T-PR+TRPUA,NUREDS,NUUEDS,NUADES,
33 HSEUR,HSERU,VPLCS,NMCD5,IS-SAC,IREAC,IRUAC,LTNAT
33
30 CONTINUE
30 IC = 3
30 JC = 2
30 KC = 1
30 CALL PRJCT
30 JC = 1
30 FLATP = THCGLO
30 FLONP = TRCGLO
30 CALL PRJCT
30 ATL = X
30 YTL = Y
30 IF(INWIND .NE. 1) GO TO 21
30 CUSLA=CSC(TRCGLO*3.14159265/180.0)
30 XMIN=999999999.
30 DO 22 J=1,NUMO
30 DELA=THCGLO-FLATMO(J)
30 UELOM=(THCGLO-FLUNHO(J))*CUSLA
30 USQ=DELA*DELA+DELOM*DELOM
30 IF(USQ.GT.XMIN) GO TO 22
30 JJ=J
30 XMIN = USQ
22 CONTINUE
22 WINU=SP-MO(JJ)
22 WMNR=DEAMO(JJ)
22 SCW = VSMO(JJ)
21 CONTINUE
20 CONTINUE
20 RETURN
20 END

```

Read Target Data

Put target statistics in control system

target coordinate

target wind statistics for target

control statistics

SUBROUTINE BXFL

C DOES THE CHORE OF ACCUMULATING THE VARIOUS STATISTICS

*****TEMPORARY*****

DIMENSION FTIND(100),CSIN(100)
 COMMUN,RUNSW,ICTYCB,101,1,ICLUST,1SIN,*LABEL(20,2),ISPSW,ILGWSW,

**** UNCLASSIFIED **** I-62 12/14/76 PAGE NO. 0

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 0

27

1 IEVNSW+UMOST+NUSEV, IHSNSW+ILVSN+DUSEL+(5), IPHS+PHOLV(3)+ICATS+
2 MUSTP,MLVTP,MLFTP,ICLSA,JREST,JRESTR,JRESTA,JRESTD,JRFSTE,JRESTF,
3 IFRSK,JUMAS+NSAMP,TSTRAT,ILNOST,ISHRSW+ILVSA+MUCK+ISEED+SEED,
4 MSUSA+CSEED+IFHCAS,IPFLV,PFLVU(7),PFLVH(7)+FISEM+FDSES+CDSE+
5 COSESG+MUCAL,ICLYLD,ICLTG,FRPFLV(7),FRPFLH(7)
6 *ILSITC,ISTIV(50),ICTI,(100),ISEAS+NSTIN+NATIN
COMMON/RUNPH,XNSAMP,NMSCT,ILAST,ISTNO,ISTL0,JSTCD,JSTM,
1 ISTC(51)+ISTNM(51)+ICARRY(100)+OSEPLT+I+SEPLT+XPLT+YPLT
2 +OSEPLA+OSEPLB,USEPLC,ISWING,JSWING,FRCASU+FRCATH+FRCASH
COMMON/TAPP,WMETR(11)+TRPT,THOU,THOU,THOU,IRSTCD+TCOCU,
1 IRUAC,IMEAC,ISMASC,NUTN,IMCGLA,TRCGL0,VTL,ATL,SIGTH8,SIGTHL,
2 ZALTH+NPCLCS+NMCLUS,NTT(52)+PUTT(52)+PTTT(52)+PATT(52)+PATT(52)
COMMON/STAPP/UTCT,DMAX,AV(51),DE(502),XLGV(51),ND(51),ME(501),
INBL(50),NBUXA,NBUXL,NBUXE,2MLDUS,SD,SDS,SUC,SUF,SSD,SSDS,SSDC,SSDF
2 +NSML,NBAST(50+52),NBAST(50+52),CHXST(100+52),PROFT(50)+PRUCS(50)
3 +SFT,SFTS,SFTF,SCA,SCAS,SCAC,SCAF,TPUPLV(50+52)
4 +SEINU(100)
COMMON/IOPR/ MP+MU+MS+IA+NC+ND+NE+NF+IG+NH+NI+NJ+NK+NL+NM
COMMON/LAZY/ITA+ITB+TIC+TII,TEPKIA,KIB+KTC+KTD+KIE+KTF+KTG+KTH
COMMON/LAZYA/TTAA(200)+KTAH(200)
TEMPORARY*****
EQUIVALENCE(FTIND(1)+TTAA(1)),(CSIND(1)+TTAA(1))

last program last

SD = SU + UTOT

TMA = UTOT+DTOT

SDS = SSU + TMA

TMD = TMA+DTOT

SOC = SOC + TMH

TMC = TMA+DTOT

SOF = SOF + TMH

IF(UTOT .LT. SHLDOS) GO TO 72

SSU = SSU + UTOT

SSDS = SSDS + TMA

SSDC = SSDC + TMH

SSUF = SSUF + TMH

GO TO 73

72 CONTINUE

NSML = NSML + 1

73 CONTINUE

IF(DMAX .LT. UTCT) DMRA = UTOT

DO 61 J = 1,NBUXL

IF(UTOT .GE. XLBV(J)) GO TO 61

NBL(J-1) = NBL(J-1) + 1

GO TO 62

61 CONTINUE

NBL(NBUXL) = NBL(NBUXL) + 1

62 CONTINUE

DO 63 J = 1, NBUXA

IF(UTCT .GE. NY(J)) GO TO 63

NR(J-1) = NR(J-1) + 1

NBAST(J-1,ISTNO) = NBAST(J-1,ISTNO) + 1

TPULV(J-1,ISTNO) = TPULV(J-1,ISTNO) + TRPT

TPULV(J-1+52) = TPULV(J-1+52) + TRPT

GO TO 64

63 CONTINUE

NR(NBUXA) = NR(NBUXA) + 1

NBAST(NBUXA,ISTNO) = NBAST(NBUXA,ISTNO) + 1

NBAST(NBUXA,52) = NBAST(NBUXA,52) + 1

TPULV(NBUXA,ISTNO) = TPULV(NBUXA,ISTNO) + TRPT

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/14/70

PAGE NO. 0000

28

TPOLV(NBXA,52) = TPOLV(NBXA,52) + TRPT
64 CONTINUE
DO 65 J = 1,NBXE
IF(IUTOT .GE. BE(J)) GO TO 65
NBE(J-1) = NBE(J-1) + 1
GO TO 66
65 CONTINUE
NBE(NBXE) = NBE(NBXE) + 1
66 CONTINUE
IF(NSMPCT .GT.100) GO TO 51
OSEIND(NSMPCT) = DTOT
IF(IFRCAS .NE.1) GO TO 51
FRFATU = 0.
FRFAIR = 0.
FRCASU = 0.
FRCASH = 0.
DO 52 J = 1,NPFLV
DSEFU = DTOT/PFL_VU(J)
DSEFR = DTOT/PFL_VR(J)
Z = (USEFU - FDSEU)/FDSESG
FRFATU = FRFATU + CUMNUH(Z)*FRPFU(J)
Z = (USEFR - FUSEU)/FDSESG
FRFAIR = FRFAIR + CUMNUH(Z)*FRFFR(J)
Z = (DSEFU - CDSEM)/CDSESG
FRCASU = FRCASU + CUMNUH(Z)*FRPFU(J)
Z = (OSEFR - CUSEM)/CUSESG
FRCASH = FMCAZR + CUMNUH(Z)*FRFFR(J)
52 CONTINUE
TEMPA = (TRPT - TRPUA)*FRFATR + TRPUA*FRFATU
TEMPI = (TRPT - TRPUA)*FRCASH + TRPUA*FRCASU
PHAST(NSMPCT,ISTNO) = PHAST(NSMPCT,ISTNO)+TEMPA
FXAST(NSMPCT, 52) = FXASI(NSMPCT, 52)+TEMPA
CHAST(NSMPCT,ISTNO) = CHAST(NSMPCT,ISTNO) + TE-PO
CHXST(NSMPCT, 52) = CHAST(NSMPCT, 52) + TE-PO
C*****TEMPORARY*****
ILSFSW = KTA
IF(ILSFSW .NE.1) GO TO 21
FTIND(NSMPCT) = TEMPA
CSIND(NSMPCT) = TEMPI
21 CONTINUE
51 CONTINUE
RETURN
END

Accumulate Target
Fatality Statistics

SUBROUTINE WRTONE

Similar to Subroutine
WATLST of Program LASH

C PERFORMS THE FINAL OUTPUT OF DOSE STATISTICS FOR EACH TARGET

DIMENSION LOHDUST(100)
C*****TEMPORARY*****
DIMENSION FTIND(100),CSIND(100)

DIMENSION TDXK(10)
COMMON/RUNSW/ICTYCB,IBINT,ICLUST,ISINGW,LBLAL(20*2),ISP*SW,ILGWSW,
IEVWSW,LMOST,NOSEV,ISNSW,ILVS*,NOSEL,(5)*IHRDSW,PROLV(3)*ICATS*,
2,MUSTP,MLVTP,MRP1P,ICLS*,JREST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF,
3,IFHSK,IUMAS,ISAMP,ISTY*,INSD*,ISHRW,ILVSY,MCK,ISEEU,SEED,

**** UNCLASSIFIED *** I-64 12/14/70 PAGE NO.

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 6

29

* MSUSH+CSEED+IFHCAS,NPFLV,PFUV(7),PFUV(7)+FDSEM+FDSESG+CDSEM+
5 CDSESG+MDCAL+ICLYLU+ICLYLU,FHPU(7)+FDSESG+CDSEM+
5+ILSTCF,ISTIN(50)+ICLIN(100)+ISEAS,INSTI+NCTIN
COMMON/MUNPH/XNSAMP,NRHTS+NSMPCT+ILAST,(STNO,1STLO,JSTCU+JSTNM,
1 ISTC(51),ISTNM(51),ICAHY(100)+DSEPLT+DSEPT+APLT+YPLT
2,DSEPLA,USEPLB,USEPLC,ISWING,JSWING,FFATU,FRCAASU,FRCAATR,FRCAASR
COMMON/TARPR/NAMETR(1),TRPT,TRPU,TRPR,TRPUA,IRSTCO+IRCCOCO,
TRUAC,IREAC,ISMESAC+NUTH+THCGLA+THCGLU+YTL,XTL,SIGTH+SIGTHL,
2ALTRNPLCS+MCUS,NTT(52),PUTT(52),PHTT(52),PATI(52)
COMMON/WNDPR/WIND,V,SGWP,SGW,SHST,SHR,SGSHRP,SGSHR,WINDR,ALWND,
1 CAL+SLA,FLATMC(100)+FLURMO(100)+DEGM10(100)+SPDMO(100)+VSMO(100),
2 NUMO
COMMON/STAPR/UTOT,DMAX+EV(51),BE(502)+XLAV(51)+NB(51)+NHE(501),
INHL(50)+NBUXA+NHUXL,NHUXE+MLDUS+S0,SMS+SUC+SDF+SBU,SSDS+SUC,SSUF
2+NSML,NBAST(50,52),FBAT(100,52),CHXSI(100,52),PMUFT(50),PROCS(50)
3+SFT+SFTS,SFTC+SFTF,SCA+SCAS+SLAC+SCAF+TPOLV(50,52)
2+DSEIND(100)
COMMON/CATOG/IC,JG,RC,FLATP,FLUM+,Y,X,RHU+THETA+FLATC+FLONC,
1SCALE,STCHUR,STCHAR,PHILATH+POLATH,XGOSTR+YGOSTR+XMPUF+YMPUF+
2 CRMLA,CRMLP
COMMON/IOPKA,MP,MQ,MN,MS,NA,NC,CONDNE+INF+NG+NM+NI,NJ+NK+NL+NM
COMMON/LAZY/TIA,TB,TIC,TID+TTERTIA,KTBK+IC+KTDR+KTE,KTF+KIG+KTH
COMMON/LAZY/TTAA(200)+K1AM(200)
*****TEMPORARY*****
EQUIVALENCE(FINU(1)+TTAA(1))+(CSINU(1)+TTAA(1))

NSSUM = 0
NSUM = 0
NESUM = 0
77 FORMAT(1H1)
IF(ICATSW+NE+1) GO TO 34
IF(ISWING+EW+2) GO TO 37
IF(ILG+SW+EG+1+OK+IEVWSW+EW+1) GO TO 37
ISWING = 2
WRITE(MG+74)
74 FORMAT(1H0)
GO TO 38
37 CONTINUE
WRITE(MG+77)
ISWING = 1
CONTINUE
75 WRITE(MG+75) (NAMETR(I), I = 1,4), JSTM + IRSTCO+IRCCOCO,
1TRPT,TRPU,TRPR+THCGLA+THCGLU+YTL,XTL,UT3
FORMAT(1H0,+ FALLOUT DOSE DISTRIBUTIONS FOR +,
1 3AB/A6+ * IN THE STATE +,A2,+ WITH CODE +,A2,+ WITH CTY CODE +,
1 A3/+,* TARGET POPULATION-- TOTAL = *, F10.0, * URMAN = *,
3F10.0, * MURAL = *, F10.0,
4F9.2,+ LATITUDE = *, F9.4,+ LONGITUDE = *, F9.4,+ NORTHING = *,
2F9.2,+ EASTING = *, F9.2,+ TARGET NO. = *, I4)
IF(ITRPUA.EQ.0.) GO TO 89
WRITE('4,68) IMAC,TRPUA
68 FORMAT(1H+ THIS COUNTY HAS AN URBANIZED AREA WITH CODE +, A4,
1 + AND URBANIZED AREA POPULATION = *, F10.0)
69 CONTINUE
IF(IWMUST.EQ.0) GO TO 83
#WRITE(MG+54) WMINC+WIND+SGW
54 FORMAT(1H+ FOR THIS TARGET MEAN WLD DIRECTION = *, F7.3,
1 + DEGREES, SPEED = *, F7.3,+ MPH, VECTOR STD. DEV. = *, F7.3,
2 + MPH+*)

Heath

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

I-65

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

30

Max Dose Statistics

53 CONTINUE
39 CONTINUE
78 WRITE(MQ,78) DMAX
FORMAT(78, * THE MAXIMUM DOSE =* F13.4*)
AMN = SU/XNSAMP
XMNS = AMN*XMN
XNUC = SOS/XNSAMP
VAR = XNUC - XMNS
STU = SQRT(ABS(VAR))
IF(STD .GT. 0.00001) GO TO 31
ANUC = 0.
AKUR = 0.
GO TO 32
31 CONTINUE
ANUC = SUC/XNSAMP
SKW = (ANUC - 3.*XNUC*AMN + 2.*XMNS*XIN)/(2.*VAR*STD)
XNUF = SUF/XNSAMP
AKUR=(XNUF - 4.*XNUC*AMN + 6.*XNUC*XINS - 3.*AMNS*XMNS)/(VARR*VAR)
32 CONTINUE
WRITE(MQ,76) AMN,STD,SKW,AKUR
FORMAT(1H,*DOSE STATISTICS -- MEAN = * F10.4,* STANDARD DEVIATIU
LN = *, F10.4, * SKENNESS =*, F10.4, * KURTOSIS =*, F10.4)
IF(NSML.NE.NSAMP) GO TO 48
WRITE(MQ,49) SMLDOS
9 FORMAT(1H, ALL DOSES LESS THAN *, F10.1)
GO TO 46
48 CONTINUE
IF(NSML .GT.0) GO TO 41
WRITE(MQ,42) SMLDOS
FORMAT(1H,* NO DOSES LESS THAN *, F10.1)
GO TO 46
41 CONTINUE
IF(NSML .GT. 1) GO TO 43
TEMP = SU - SSU
WRITE(MQ,44) TEMP,SMLDOS
FORMAT(1H,* ONE DOSE OF*, F10.2, * IS LESS THAN DOSE OF*,
1 F10.2)
GO TO 46
43 CONTINUE
XNSML = NSML
ANSM = ANSAMP - XNSML
AMN = SSU/XNSML
XMNS = AMN*XMN
XNUC = SSU/XNSML
VAR = XNUC - AMN
STU = SQRT(VAR)
IF(STD .GT. 0.00001) GO TO 33
ANUC = 0.
AKUR = 0.
GO TO 34
33 CONTINUE
XNUC = SSUC/XNSML
SKW = (ANUC - 3.*XNUC*AMN + 2.*XMNS*XIN)/(2.*VAR*STD)
XNUF = SSUF/XNSML
AKUR=(XNUF - 4.*XNUC*AMN + 6.*XNUC*XINS - 3.*XMNS*XMNS)/(VARR*VAR)
34 CONTINUE
*47 WRITE(MQ,47) NSML , SMLDOS, AMN,STD,SKW,AKUR
FORMAT(1H,* DOSE STATISTICS EXCLUDING * 1* * * DOSES UNDER *,
1 F8.0, * N. --- * / * 1A. * MEAN = *, F10.4, * STANDARD DEVIATIU =
2 * F10.4, * SKENNESS = *, F10.4, * KURTOSIS = *, F10.4)

**** UNCLASSIFIED **** I-66 12/14/76

PAGE 10.

46 CONTINUE

C

THIS ASSUMES ONLY 100 DOSES IN SAMPLE*****
 IF(INSAMP .GT. 100) GO TO 51
 IF(IPROSW .NE. 1) GO TO 51
 M1NU = NSAMP /2
 L1NU = NSAMP /1
 N1NU = NSAMP - L1NU

*2nd Percentile
Levels*

XLOW = 0.1
 XMIU = 0.5
 XHIGH = 0.9

GO TO 52

51 CONTINUE

IF(IPROSW .NE. 2) GO TO 51
 TEMP = PPOLV(1)*ANSAMP

L1NU = TEMP

TEMP = PPOLV(2)*ANSAMP

M1NU = TEMP

TEMP = PPOLV(3)*ANSAMP

N1NU = TEMP

XLOW = PPOLV(1)

XMIU = PPOLV(2)

XHIGH = PPOLV(3)

CONTINUE

CALL FORD(USEIND,LURUST+100)

JTEM = L1NU + 1

ITM = LURUST(JTEM)

DSEL = USEINU(ITM)

JTEM = L1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = USEINU(ITM)

JTEM = M1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = " .5*(USEL + TTM)

JTEM = M1NU + 1

ITM = LURUST(JTEM)

DSEM = USEINU(ITM)

JTEM = N1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = " .5*(USEL + TTM)

JTEM = N1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = " .5*(USEL + TTM)

JTEM = N1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = " .5*(USEL + TTM)

JTEM = N1NU

ITM = LURUST(JTEM)

ITM = USEINU(ITM)

DSEM = " .5*(USEL + TTM)

JTEM = N1NU

CONTINUE

C

IF(MMPTP .NE. 1) GO TO 52

C ASSUMES NO MORE THAN 100 SAMPLES

IF(INSAMP .GT. 100) GO TO 52

I-67

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 0000

*Detailed output of
each dose*

**** UNCLASSIFIED **** 12/14/70

PAGE NO. 0000

63 WRITE(NF,63) INSTCO,IRCCC,NUTH,TRCGLA,THCGLO,TRPT,TRPU,TRPA
FORMAT(A2,1X,A3,1D+2F10.0+3F10.0)
ITM = NSMP/LU
ITM = ITM*10
IF(ITM .NE. ITM) ITM = ITM + 1
JJA = -10
DO 64 JJ = 1,ITM
JJA = JJA + 10
DO 65 JJB = 1,10
JJC = JJA + JJB
JTM = LURST(JJC)
TDX(JJB) = USEIND(JTM)
65 CONTINUE
WRITE(NF,67) (TDX(J)+J = 1010)
67 FORMAT(10F11.3)
64 CONTINUE
62 CONTINUE

71 IF(ISPWSW .NE. 1) GO TO 79
WRITE(MG,71)
FORMAT(1H0, *INTERVAL VALUES *//,10X, 6H NO., 10X, 10HMIN, V-LU
1E, 10A, 10HMIN, VALUE, 10X, 10H NUMBER, 10X,
DO 72 J = 1,NSUXA
JJ = J + 1
NSSUM = NSSUM + NH(J)
WRITE(MG,73) J, BV(J), BV(JJ), NB(J), NSSUM
73 FORMAT(1H, 10X, 1H(, 1C, 1H), 10X, F10.0, 10X, F10.0, 10X,
1 10, 10X, 10X)
72 CONTINUE
79 CONTINUE
IF(MUSTSW .NE. 1) GO TO 35
WRITE(NU,36) INSTCO,IRCCC,NUTH,TRCGLA,THCGLO,TRPT,
1 (NB(J), J = 1,NSUXA)
36 FORMAT(A2,1X,A3,1D+2F10.0+3F10.0,916)
35 CONTINUE
IF(ILGNSW .NE. 1) GO TO 82
WRITE(MG,81)
FORMAT(1H1, * EQUAL LOGARITHMIC INTERVALS *//,,
1 10X, 6H NO., 10X, 10HMIN, VALUE, 10X, 10HMAX, VALUE,
2 10X, 10H NUMBER, 10X, 10H CUML. NO., 10X,
DO 83 J = 1,NSUL
JJ = J + 1
NLSUM = NLSUM + NBL(J)
WRITE(MG,84) J, XLBV(J), XLBV(JJ), NBL(J), NLSUM
84 FORMAT(1H, 10X, 1H(, 1C, 1H), 10X, F12.2, 10X, F12.2, 10X, 10X,
1 10X, 10X)
83 CONTINUE
82 CONTINUE
IF(IEVWSW .NE. 1) GO TO 89
WRITE(MG,85)
FORMAT(1H1, * EQUAL INTERVALS *//,,
1 10X, 6H NO., 10X, 10HMIN, VALUE, 10X, 10HMAX, VALUE,
2 10X, 10H NUMBER, 10X, 10H CUML. NO., 10X,
DO 86 J = 1,NSUE
JJ = J + 1
NESUM = NESUM + NME(J)
WRITE(MG,87) J, BE(J), BE(JJ), NBF(J), NESUM
87 FORMAT(1H, 10X, 2H(, 10X, 2H), 10X, F10.0, 10X, F10.0, 10X, 10X,
1 10X, 10X)

I-68

**** UNCLASSIFIED ****

12/14/70

PAGE NO. 6

With number of doses

in brackets.

***** UNCLASSIFIED *****

12/14/70

PAGE NO. 0

86 IF(NESUM .EQ. NSAMP) GO TO 88
87 CONTINUE
88 CONTINUE

89 CONTINUE
IF(IHSWSW .NE. 1) GO TO 97
C INSERT HISTORY WRITING ROUTINE HERE available space
KYZZ = 1.
97 CONTINUE
C*****TEMPORARY*****
ILSFSW = KTA
IF(ILSFSW .NE. 1) GO TO 98
WRITE(MU+91)
91 FORMAT(1H, //, 10X, *FATALITIES, CASUALTIES AND INJURIES FROM INDIVIDUAL SAMPLES, //, 1H, *, NU, * , 5X, *FATALITIES*, 5A,
2 *CASUALTIES*, 5X, * INJURIES * , 5X*, 5DSE * , 1)
NU 93 J = 1, NDAMP
TEMP = CSIND(J) - FTIND(J)
WRITE(MU+92) J, FTIND(J), CSIND(J), TEMP, DSEIND(J)
92 FORMAT(1H, 2A, 1H, (*13+1H)*8A, F10.0, 3X, F10.0, 5A, F10.0)
93 CONTINUE
94 CONTINUE
101 CONTINUE
RETURN
END

*Details, casualty
output*

Final Summary output

DIMENSION TFAT(100), LFA1(100), TCAS(100), LCAS(100)
COMMON/RUNSH/ICTYCB, IRIN, ICLUST, ISIND, PLABEL(20+2), ISPNSW, ILGNSW,
IEVWSW, UMOST, NUSEV, IHSWSW, ILVSW, DSELV(5), IPNSW, PHOLV(3), ICATSX,
MUDSP, MLVTP, MMHTP, ICLS, JRESTN, JRESTA, JRESTD, JRESTE, JRESTF,
YFRSK, TOMAS, NSIMP, ISTRA1, IWNST, ISHRSW, ILVSW, MUCK, ISFEU, SEED,
MSUSH, LSEED, IFHCAS, NPFLV, PFLVH(7), PFLVU(7), FDSSEM, FDSESG, COSEM,
CUSESG, MDCAL, ICLYLD, FFLYU, FFPFU(7), FRPFH(7),
ILSTC1, ISTIN(=1), ITCIN(100), ISEAS, NSTIN, NFTIN
COMMON/MUNPH, ANSAMP, NMHS, NSMPCT, ILAST, ISIND, ISTLU, JSTCU, JSTNH,
ISTC(S1), ISTNM(S1), ICARRY(100), DSEPL1, ISEPT, APL1, YPLT
DSEPLA, USEPLA, USEPLC, ISWING, JSWING, FFAUT, FRCASU, FRFAUTH, FRCASH
COMMON/TZRPP/ IZMETR(1), IZPT, TRPU, TRPR, TRPUA, IRSTCO, IACUCO,
IRUAC, IMAC, ISAC, NUTP, IFCGLA, TRCGLU, YTL, XTL, SIGTRH, SIGTRL,
ZALTR, NPLCS, NMCS, INTT(S2), PTTT(S2), PRTT(S2), PATT(S2)
COMMON/STAPR/DTOT, DMAX, RV(51), BE(502), XL, V(51), NBE(501),
INBL(50), KBUXA, NBUA, NBUAE, SMLDUS, SD, SXS, SGD, SDF, SSD, SSDS, SSOC, SSDF
NSML, NBAST(50, -2), FBXJ(100, 52), CRXSF(100, 52), PNOFT(51), PROCS(50)
SFT, SFIS, SFTC, SFTF, SCA, SCAS, SCAC, SCAF, TPUPLV(50+52)
DSEIND(100)
COMMON/IOPH/ MP, MU, MS, NM, CONDNE, NF, G, NH, NI, NJ, NK, NL, NM
COMMON/LAZY/TTA, TTB, TTC, TTU, TTE, KTA, KTB, KTC, KTD, KTE, KTF, KIG, KTH
COMMON/LAZYA/TTSA(200), KIAA(200)

15 WRITE(MU+15)
FORMAT(1H1)
16 WRITE(MU+16)
FORMAT(1H, 30X, *SUMMARY OUTPUT BY STATE* , 1)
DO 31 I = 1, ISTU
WRITE(MU+15)
IREP = ICARRY(1)

by state

***** UNCLASSIFIED *** I-69

12/14/70

PAGE NO. 000

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 0000

```

      WRITE(MU,35) I$INM(IHEP),I$TC(IHEP)
35   FORMAT(1H0,*SUMMARY FOR THE STATE OF ** A4F * WITH STATE CODE
           1 * ,42)
           WRITE(MU,36) NTT(I)*PTT(I)*PUTT(I)*PRTT(I)*PATT(I)
36   FORMAT(1H0, * IN *, 13, * COUNTIES POPULATION IS --- TOTAL = *,
           1 F10.0, * URBAN = *, F10.0, * RURAL = *, F10.0, * URBANIZED
           2 AREA = *, F10.0)
           IF(IFRCAS .NE. 1) GO TO 50
           IGD = 1
48   CONTINUE
           SUMF = 0.
           SUMFS = 0.
           SUMI = 0.
           SUMIS = 0.
           DO 41 K = 1,100
           TFAT(K) = FDAST(K+1)
           TCAS(K) = CBAST(K+1) - FOXST(K+1)
           SUMF = SUMF + TFAT(K)
           SUMFS = SUMFS + TFAT(K)*IFAT(K)
           SUMI = SUMI + TCAS(K)
           SUMIS = SUMIS + TCAS(K)*TCAS(K)
41   CONTINUE
           CALL FUND(TFAT,LFAT,100)
           CALL FUND(TCAS,LCAS,100)
           XMNF = 0.01*SUMF
           XMNI = 0.01*SUMI
           VARF = 0.01*SUMFS - XMNF*XMNF
           VARI = 0.01*SUMIS - XMNI*XMNI
           SGF = SGRT(ABS(VARF))
           SGI = SGRT(ABS(VARI))
           ITM = LFAT(1)
           SMLF = TFAT(ITM)
           ITM = LCAS(1)
           SMLI = LCAS(ITM)
           ITM = LFAT(10)
           BIGF = TFAT(ITM)
           ITM = LCAS(10)
           DIGI = LCAS(ITM)
           WRITE(MU,43)
43   FORMAT(1H0, * 20A, * FATALITY STATISTICS FROM SHELTERED POPULA
           TION UNDER FALLOUT PISK *)
           WRITE(MU,42) XMNF*SGF*SMLF*BIGF
42   FORMAT(1H0, * MEAN NUMBER OF FATALITIES = *, F10.0, * WITH STO
           1. DEV. = *, F10.0, * MINIMUM NUMBER = *, F10.0, * MAXIMUM NUMBER =
           2 *, F10.0)
           WRITE(MU,44) XMNI*SGI*SMLI*DIDI
44   FORMAT(1H0, * MEAN NUMBER OF INJURIES = *, F10.0, * WITH STD. DEV.
           1 = *, F10.0, * MINIMUM NUMBER = *, F10.0, * MAXIMUM NUMBER = *,
           2 F10.0)
           WRITE(MU,47)
47   FORMAT(1H0, 10A, *PERCENTILE*, 10A, *FATALITIES*, 10X*, INJURIES *)
           ! //!
           DO 45 J = 1, 9
           JJ = 1J*J
           ITM = LFAT(JJ)
           TMP = TFAT(ITM)
           ITM = LCAS(JJ)
           TNPP = LCAS(ITM)
           WRITE(MU,46) JJ,TMP,TNPP
46   FORMAT(1H0, *10X*110,10A, F10.0,10X,F10.0)

```

*Fatality
Statistics*

**** UNCLASSIFIED **** I-70

12/14/76

PAGE NO. 0

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 0

35

45 CONTINUE
WRITE(MU,66)
66 FORMAT(//, 3UX,*USE STATISTICS FOR SPECIFIED RANGES*,//)
IF(IGO.EQ.2) GO TO 49
50 CONTINUE
NSSUM = 0
WRITE(MU,71)
71 FORMAT(1H0,
1E 9, 4X, 1CHMAX, VALUE , 4X, 1H NUMBER , 4X,
2 1H CUML. NO. *4X* 1H PER CENT *4X* 1H CUML. PCT. *4X* 1H TOTAL
210HTOT, POPN.)
ANTOT = NT(I)*NSAMP
DO 72 J = 1,NB0XA
JJ = J + 1
NSSUM = NSSUM + NBXST(J,I)
TEM = NBXST(J,I)
ITEM = TEM*100./ANTOT
TITEM = NSSUM
ITEM = TITEM*100./ANTOT
TTOT = TBOPLV(J,I)/NSAMP
WRITE(MU,73) J, BV(J) + DV(JJ) + NBXST(J,I), NSSUM, ITEM, TTOT
73 FORMAT(1H 9, 4X* 1H(9, 12* 1H) * 4X* F10.0, 4X* F10.0, 4X*
1 I10.4A, I10.4X, F10.3, 4A, F10.3, 4X, F10.0)
72 CONTINUE
31 CONTINUE
WRITE(MU,40)
40 FORMAT(1H19//, 50X,*NATIONWIDE SUMMARY*,//)
NSSUM = 0
TTOT = 0.
NTOT = 0.
RTOT = 0.
UTOT = 0.
ATOT = 0.
DO 61 I = 1,ISTNO
NTOT = NTOT + NT(I)
TTOT = TTOT + TT(I)
RTOT = RTOT + R-IT(I)
UTOT = UTOT + U-IT(I)
ATOT = ATOT + A-IT(I)
61 CONTINUE
ANT = NTOT*NSAMP
WRITE(MU,62) TT,I,UTOT, RTOT,ATOT
62 FORMAT(1H0, *NATIONWIDE TOTAL POPULATION = **F12.0,/* 1UX,
1 *URBAN POPULATION = **F12.0,/* 1UX,*RURAL POPULATION = **F12.0,/
2 1UX, *URBANIZED AREA POPULATION = **F12.0 */)
IF(IFRCAS.NE.1) GO TO 64
ISINO = 52
IGU = 2
I = 52
GO TO 48
49 CONTINUE
64 CONTINUE
WRITE(MU,71)
DO 75 J = 1,NB0XA
JJ = J + 1
NSSUM = NSSUM + NBXST(J,52)
TEM = NBXST(J,52)
ITEM = TEM*100./INT
TITEM = NSSUM
ITEM = ITEM*100./ANT

Sub Calculations
Nationwide
Calculation

I-71

***** UNCLASSIFIED ***** 12/14/76

PAGE NO. 0000

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 0000

TTTM = TPOPPLV(J,52)/AN34MF
WRITE(NG,73) J, BV(J), BV(JJ), NBAST(J,52), NSSUM *TEM+TTM,
, TTTM

36

75 CONTINUE
RETURN
END

SUBROUTINE MUNTE

DIMENSION XWR(500),YWR(500)

COMMUN/MUNSW/ICTYCB,IBINT,ICLUSIT,ISINGW,LBL(20*2),ISPWSW,ILGWSW,
IEVWSW,DMOST,NUSEV,IMSWW,ILVSW,DUSELV(5),IPROSW,PROLV(3),ICATS,,
MDSTP,MIVTP,MMPPTP,ICLSA,JREST,JRESTN,JRESTA,JRESTD,JRESTE,JRESTF,
IFHSK,IMASNS,AMP,ISTKA,INNDST,ISHHSW,ILVLSH,MUCK,ISEED,SEED,
MSDSW,CSEED,IFWCAS,NPFLV,PFLVU(7),PFLVR(7),FDSEM,FDSESG,FDSEM,
CUSES,G,MDCAL,ICLYLD,ICLYLG,FRPFU(7),FRPFH(7),
ILSTCT,ISTIN(50),ICTIN(TT00),ISEAS,INSTIN,NLTIN
COMMUN/MUNPR,ANAMP,NP(S,NSMPCT,ILAST,ISTNO,ISTL0,JSTCU,JSTNM,
ISTC(51),ISTNM(51),ICAHRY(100),OSEPLT,OSEPLT,OSEPLT,OSEPLT,OSEPLT,
OSEPLB,OSEPLC,ISWING,JSWING,FRFATU,FRCASU,FRFATH,FRCASH
COMMUN/CLSPR/YLUC(500),FTSSC(500),XWC(500),YC(500),SIGXC(500),
SIGYC(500),NCLS,SARY(500,5),YLDI(7),YLDI(6),DARYL(7,19),
CARRY(7*40)
COMMON/TARPR/NAMETR(1),TRPT,TRPU,TRPR,TRPUA,IRSTCO,IRCCO,
IRUAC,IREAC,ISMSAC,NUTR,THCGLA,THCGLU,YTL,ATL,SIGTRH,SIGTRL,
ZALTR,NPLCS,NMCUS,NTT(52),PUTT(52),PTT(52),PTI(52),PAT(52)
COMMON/WNDPR/WIND,W,SGW,SGW,SHRST,SH,SGSHRP,SGSHR,WMNDR,ALNU.
CAL,SL,FLATMO(100),FLUMO(100),UEG-O(100),SPUMO(100),VSMO(100),
NUMO
COMMUN/STAPP/DTOT,DMAX,HV(51),DE(502),XLBV(51),NB(51),NHE(501),
NAL(50),NHUXA,NHUXL,NHUXE,SMLOUS,SD,SDS,SDC,SDF,SSD,SSDS,SSDC,SSDF
NSML,NFAST(50,52),FBXST(100,52),CX5,(100,52),PMOFT(50),PRUCS(50)
SF1,SFTC,SFTF,SCA,PCAS,SCAC,SCAF,TPOPPLV(50,52)
OSEINU(100)
COMMON/CLFLPR/YIELD,FISS,V,SHR,AL,SIGN,XUW,YC,USSE,STR(5)
COMMON/QWSEG,YELN,FISS,PHOB,Z,SHZ,XU,YCN,XT,A,QHRT(14)
COMMON/LAZY,TIA,TB,TIC,ITD,TIE,KTA,KTB,KTC,KTO,KJE,KTF,KTG,KTH
COMMON/LAZYA/TIA(200),KAM(200)
DATA (DEPTH = .62631559), (TORAD = 0.01745320)

C *****3600/6400 COMPATABILITY CHANGE *****

C IPAN = -1

C IRAN = 0

C NSMPCT = 0

30 CONTINUE

C COMPUTE RELATIVE WEAPON LOCATIONS

DO 12 I = 1,NCLS

XWR(I) = ATL - XWC(I)

YWR(I) = YTL - YWC(I)

12 CONTINUE

IF(MSWW .NE. 1) GO TO 15

C *****3600/6400 COMPATABILITY CHANGE *****

C CALL RANFSET(CSEED)

CALL RANSET(CSEED)

15 CONTINUE

travel wave stabilizer

***** UNCLASSIFIED *** I-72

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0

37

C PICK A WIND
IF (ISTRAT .EQ. 1) GO TO 52
NSMPCT = NSMPCT + 1
TEMP = RANF(IHAN)
THETA=6.2831853 * TEMP
TEMP = RANF(IHAN)
TMZ = TEMP
GO TO 54
53 CONTINUE
POLD = 1.
DO 31 JS = 1,10
THOLD = 0.
DO 32 JS = 1,10
DO 33 KS = 1,NRPTS
NSMPCT = NSMPCT + 1
TEMP = RANF(IHAN)
THETA=THOLD+DELTH*TEMP
TEMP = RANF(IHAN)
TUL=POLD+0.1*TEMP
CONTINUE
VWRS = 2.*SGR*SGW* ALOG(1./(1.-IMZ))
VWR = SQRT(VWRS)
WINUS = WIND*WIND
VSQ = WINUS + VWRS - 2.*WIND*VWR*COS(THETA)
V = SQRT(VSQ)
SAL = VWR* SIN(THETA)/V
C *****3600/8400 COMPUTABILITY CHANGE *****
ALPHASIN(SAL)
C ALPHASIN(SAL)
C THETA IS IN RADIANS CLOCKWISE FROM WEST. ANGLE BETWEEN WIND & VWR
C ALPHA IS ANGLE BETWEEN V AND WIND
C AL IS IN RADIANS COUNTERCLOCKWISE FROM EAST
C WMNDR IS IN DEGREES CLOCKWISE FROM NORTH.
C EQ. A WIND FROM WEST TO EAST HAS AL = 0 AND WMNDR = 270
CALSG = VSQ + WINDS - VWRS
IF(CALSG .LT. 0.) GO TO 44
ALPH = 3.14159265 - ALPH
GO TO 45
44 CONTINUE
IF(SAL .LT. 0.) ALPH = 6.2831850 + ALPH
45 CONTINUE
AL = ALPH + 4.71238847 - WMNDR*TOMAD
SALS=SIN(AL)
SALS = SAL * SAL
CAL = COS(AL)
CAL = SALS * CAL

C NOW PICK A SHEAR
IF(SGSHRP .EQ. 1.) GO TO 42
SUM = 0.
DO 43 J = 1,12
TEMP = RANF(IHAN)
SUM = SUM + TEMP
43 CONTINUE
SHR = SHRST + SGSHRP*(SUM - 6.)/12.
IF(SHR .LT. 0.) SHR = - SHR
42 CONTINUE

C SET UP SCREENING FOR THIS WIND
IF(V .LT. 10.) GO TO 51

Wind Statistics

I-73

12/14/76

PAGE NO. 0

**** UNCLASSIFIED ****

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 000

38

ISLOW = 0
IF(SHR = GT. 0.3) GO TO 62
CSCHN = 175.
GO TO 66
62 CONTINUE
CSCHN = 250.
GO TO 66
61 CONTINUE
IF(V = LT.50.) GO TO 64
ISLOW =
CSCHN = 250.
GO TO 66
64 CONTINUE
ISLOW = 1
CSCHN = 300.
DSCRN = 300.
66 CONTINUE
MQ = 6LOUTPUT
ALD = AL/TORAU
THU = THETA/TORAU
#WRITE(MQ,630) NSMPCT,AL,V,SHR,TMZ,VWR,THETA,ALPH,THD,ALD
630 FORMAT(IH0,*N=AL-V=SHR-TMZ=VWR=TH=ALPH=TH=ALD =*,15,9F8.3)

DTOT = 0.
C NOW COMPUTE USES FOR EACH WEAPON

DO 71 K = 1,NCLS
C SCREENING CHECK
IF((ISLOW .NE. 0)) GO TO 72
YCW = -XWR(K)*SAL + YWR(K)*CAL
IF(ABS(YCW) .GT. CSCRN) GO TO 71
ADW = XWR(K)*CAL + YWR(K)*SAL
IF(XDW .LT. -Bn.) GO TO 71
XL = 2.* (SIGAC(K)*SALS + SIGYC(K)*SALS) + 5.
IF(XDW .LT.-XL) GO TO 71
SIGW = I.*414*(SIGYC(K)*SALS + SIGAC(K)*SALS) + 5.
U0 74 J = 1,
STR(J) = SARY(K+J)

*Bob thought
clever*

74 CONTINUE

CALL CFALNU
DTOT = DTOT + DSSS
#WRITE(MQ,640) K ,XWC(K),YWC(K),XWR(K),YWR(K),YLDC(K),FISSC(K),
1 XDW,YCW,XL,SIGW,DSSS

640 FORMAT(IH , I , II,I1.3)
GO TO 71

Screening Test passed

72 CONTINUE
IF(ADS(XWR(K)) .GT. DSCRN) GO TO 71
IF(ADS(YWR(K)) .GT. CSCRN) GO TO 71
ADW = XWR(K)*CAL + YWR(K)*SAL
YCW = -XWR(K)*SAL + YWR(K)*CAL

C CHOOSE SIZE CLASS HERE

DO 75 I = 1,6

II = 1

IF(YLCM(K) .LT. YLCM(I)) GO TO 76

75 CONTINUE

II = II + 1

76 CONTINUE

DO 73 I = 1,19

WARRY(I) = QARRYL(II,I)

73 CONTINUE

ATHA = ABS(SIGAC(K)*SIGYC(K))

I-74

*Temporary
from attack
states*

***** UNCLASSIFIED *****

12/14/76

PAGE 0. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

39

M08 = 0
Z = V
SHZ = SHR
ADN = AOW
YCN = YCW
CALL QFALFW
CALL QFALDW
CALL QFALCW
DTUT = DTOT + QARRY(13)*FISSC(K)
C ASSUMING FALLYQ ORIGINALLY CALLED WITH FISS OF 1
TTMP = QARRY(13)*FISSC(N)
WRITE(MW,640) K *XWC(K) *YWC(K) *XWH(K) *YWH(K) *YLDC(K) *FISSC(K) *
1 XDW,YCM,XL,SIGN, TTMP] Detailed
71 CONTINUE temporary output
IF(UTOT.LT.0.001) U1) DTUT=0.0
CALL BOXFL
IF(ISHAT .EQ. 1) GO TO 35
IF(NSHFT .LT. NSAMP) GO TO 30
GO TO 56
55 CONTINUE
33 CONTINUE
32 THULD = THOLD + DELTH
CONTINUE
POLU = POLD + 0.1
31 CONTINUE
56 CONTINUE
RETURN
END

SUBROUTINE PREPAR

Initiation for each Target

COMMON/STAPR/UTOT,DMAX,RV(51),RE(502),XLBV(51),NR(51),NHE(501),
INHL(50),NBOKA,NBOKL,NBUKE,SMLDUS,SD,SSS,SSC,SSF,SSU,SSDS,SSDC,SSUF,
2,NSML,NBXST(50,-2),FBXST(100,52),CBXST(100,52),PROFT(50),PROCS(50)
2,SFT,SFTS,SFTC,SFTF, SCA, PCAS,SCAC,SCAF,TPUPLV(50,52)
1,DSEINU(100)

DO 51 J = 1,NBOKA
NR(J) = 0
51 CONTINUE
DO 52 J = 1,NBOKL
NBL(J) = 0
52 CONTINUE
DO 53 J = 1,NBUKE
NHE(J) = 0
53 CONTINUE
NR(NBOKA+1) = 0
NBL(NBOKL+1) = 0
NHE(NBUKE+1) = 0
DMAX = 0.
SD = 0.
SSS = 0.
SOC = 0.
SSF = 0.
SSU = 0.
SSDS = 0.
SSDC = 0.
SSUF = 0.

I-75

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00-0

40

NSML = 0

RETURN
END

L

C FUNCTION CUMNOR(TA)
APPROX HASTINGS P.187 FOR CUM NOR.
IF (TA.LT.0.) GO TO 14
CUMNOR = 1.0
RETURN
14 CONTINUE
IF (TA.GT.-5.) GO TO 16
CUMNOR = 0.0
RETURN
CONTINUE
TN = ABS(TA/1.414213562)
TNP = 1. + TMP*(0.0705230784 + TM*(0.042282 - 123 + TMP*(0.0092705272 + TM*
1(0.0001520143 + TN*(0.0002765672 + TM*0.000430638))))
TMP=TMP*TMP
TNP=TMP*TMP
TNP=TMP*TMP
CUP = 1. - 1./TMP
IF (TA.LT.0.) GO TO 21
CUMNOR = 0.5*(1. + CUP)
RETURN
21 CONTINUE
CUMNOR = 0.5*(1. - CUP)
RETURN
END

Never Standard

SUBROUTINE FORD(ARR,LARR,NITM)
DIMENSION ARR(1:1),LARR(1:1)
IT = 1
LARR(IT) = 1
VAL = ARR(IT)
CONTINUE
IT = IT + 1
IF (IT.GT. NITM) GO TO 140
IF (ARR(IT).LT. VAL) GO TO 12
LARR(IT) = IT
VAL = ARR(IT)
GO TO 10
12 CONTINUE
JK = IT - 1
DO 13 J = 1,JK
JJ = J
ITM = LARR(J)
IF (ARR(ITM).LT. ARR(IT)) GO TO 13
GO TO 14
13 CONTINUE
14 CONTINUE
IK = IT - JJ
DO 15 K = 1,IK
KK = IT - K
KKK = KK + 1
LARR(KKK) = LARR(KK)

Never Standard

I-76

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00-0

***** UNCLASSIFIED ***** 12/14/76 PAGE NO. 00
 15 CONTINUE H1
 LARR(JJ) = IT
 GO TO 10
 100 CONTINUE
 RETURN
 END

SUBROUTINE CFALLY

C CALCULATES FALLOUT DOSES FROM CLUSTERS OF WEAPONS USING A
 C SIMPLIFIED WSEG 10 FALLOUT MODEL.
 C AL IS THE HALF LENGTH OF THE CLUSTER IN THE DOWNWIND DIRECTION.
 C SIGW IS STD. DEV. OF CLUSTER IN THE CROSSWIND DIRECTION.
 C UWN DOWNWIND DIRECTION, CRW CROSSWIND DIRECTION.
 C STR IS USED TO STORE YIELD DEPENDENT PARAMETERS.
 C STR(1) IS CHARACTERISTIC TIME T.
 C STR(2) IS $2.71/T^{0.382}$
 C STR(3) IS A USED TO CALCULATE SHEAR SIGMA
 C STR(4) IS B USED TO CALCULATE SHEAR SIGMA
 C STR(5) IS PRODUCT OF YIELD TIMES FISSION FRACTION TIMES K.
 C ASSUMES 0 HEIGHT OF BURST SO ANY CORRECTION MUST BE EXTERNAL.

COMMON/CLFLPH/YIELD,FISS,WIND,SHR,AL,SIGW,UWN,CRS,DOSE,STR(5)

ALT = ALOG10(YIELD)
 STR(1) = $7.5 + T^{0.66} \cdot ALT$
 STR(2) = $2.71 / (STR(1)^{0.382})$
 STR(3) = $2.0 + 3 \cdot ALT$
 STR(4) = $7.5 + T^{0.5} \cdot ALT$
 STR(5) = $200000^{0.001} \cdot YIELD \cdot FISS$
 RETURN
 END

SUBROUTINE CFLAD

C FOR WEAPONS IN CLUSTERS
 C DOES BOTH WIND DEPENDENT AND DISTANCE DEPENDENT CALCULATIONS.
 C ASSUMES CFALLY HAS BEEN CALLED TO FILL STR
 C CLUMSY WRITING USED TO SPEED CALCULATION.

COMMON/CLFLPR/YIELD,FISS,WIND,SHR,XL,SIGW,UWN,CRS,DOSE,STR(5)

SIGC = STR(3) + STR(4)*(UWN + AL)*SHR/WIND
 IF(UWN .LT. XL) GO TO 21
 C HERE WE ARE BEYOND THE CLUSTER
 RAT = UWN/(WIND*STR(1))
 IF(RAT .LT. 0.5) GO TO 11
 IF(RAT .GT. 8.) GO TO 23
 C USE POLYNOMIAL APPROXIMATION HERE.
 FAC = $0.85419 + RAT(0.421 + RAT(-0.7019286 + RAT(0.001929)))$
 FACS = FAC*FAC
 FD = STR(2)/(WIND*FACS*FACS)
 12 CONTINUE
 IF(UWN .LT. 5.*SIGW) GO TO 15
 C SOMETHING LIKE UWN .LT. 1% COULD ALSO BE USED HERE
 SIGUS = SIGC*SIGC + SIGW*SIGW
 C SIGUS IS SHR SIGMA MODIFIED FOR CLUSTER SIZE FOR DOWNWIND APPROX.

***** UNCLASSIFIED ***** I-77 12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

4

SIGU = SQR(T(SIGUS))
TMP = 0.5*CRS*C-S/SIGUS
IF(TMP .GT. 6.) GO TO 23
FC = 0.39894228*EXP(-TMP) / SIGU
18 CONTINUE
DOSE = STR(S)*FD*FC
RETURN

15 CONTINUE

C COMPUTE CROSSWIND FACTOR HERE BY DIFFERENCE OF TWO CUMULATIVE
C NORMALS. CUMMUN APPROXIMATION DIRECT FROM HASTINGS.
H = 1.414*SIGW
TMP1 = ABS(CRS)/SIGC
TMP2 = H/SIGC
X = TMP1 + TMP2
XX = TMP1 - TMP2
IF(XX .GT. 6.) GO TO 23
IF(XX .LT. 4.0) GO TO 31
IF(XX .LT. 4.4) GO TO 32
FC=0.0
GO TO 18
32 CONTINUE
IF(XX.GT.-4.0) GO TO 33
FC=0.5/H
GO TO 18
33 CONTINUE
CMN 1=1.0
31 CONTINUE
FAC = 1. + X*(0.278393+X*(0.230384+X*(0.00972+X* 0.07818)))
FACS = FAC * FAC
CMN1 = 1. - 0.5/(FACS*FACS)
IF(XX.LT.-4.0) GO TO 35
CMN2=1.
GO TO 17
35 CONTINUE
IF(XX.GT.-4.0) GO TO 36
CMN2=0.
GO TO 17
36 CONTINUE
X = ABS(XX)
FAC = 1. + X*(0.278393+X*(0.230384+X*(0.00972+X* 0.07818)))
FACS = FAC * FAC
IF(XX.LT. 0.) GO TO 16
CMN2 = 1. - 0.5/(FACS*FACS)
GO TO 17
16 CONTINUE
CMN2 = 0.5/(FACS*FACS)
17 CONTINUE
FC = 0.5*(CMN1 - CMN2)/H
GO TO 18

11 CONTINUE
C USE EXPLICIT CALCULATION RATHER THAN APPROXIMATION BELOW
FD = STR(2) * EXP(-RAT)/(WIND*RAT**0.352)
GO TO 12

21 CONTINUE
C HERE WE ARE IN THE CLUSTER AND USE LINEAR VARIATION OF FD ALONG IT

**** UNCLASSIFIED **** I-78

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

43

```
C IF (UNW .GT. -AL) GO TO 22
C UPWIND OF CLUSTER
23 CONTINUE
DOSE = .
RETURN
22 CONTINUE
RA1 = XL/(WINW*STR(1))
IF (HAT.GT.8.0) GO TO 23
FD = STR(2)*(UN^ + XL)*EXP(-HAT)/(WINW*2.*XL*PAT**0.382)
GO TO 15
END
```

SUBROUTINE QFALLY

Normal Standard

```
C A RAPID VERSION OF THE WSEG IC FALLOUT MODEL BASED UPON FITS
C TO CALCULATED DOSES RESULTS ARE STORED IN THE ARRAY QARRY . THE
C BASIC ARRAYS VARTABLES ARE
C 1...YIELD DEPENDENT ALPHA FACTOR IN FD
C 2...YIELD DEPENDENT BETA FACTOR IN FD
C 3...A IN SIGC CALCULATION
C 4...B IN SIGC CALCULATION
C 5...FINAL MOH FACTOR
C 6...IF 0 VARIABLES IN INTERPOLATION RANGE, IF 1 THEY ARE NOT.
C 7...VALUE OF UNW
C 8...ALPHA FACTOR IN FD
C 9...SHEAR/WIND
C 10...2.SIGC.SIGC
C 11...FD
C 12...((1/(SQRT(2.PI))SIGC)) .FD
C 13...WSEG BIOLOGICAL DOSE
C 14 = 19 . USED IN SMALL WIND OR DISTANCE CALCULATIONS
C CALLING SEQUENCE IS SAME AS WITH THE REGULAR MODEL EXCEPT FOR
C NMSSC DOSE OPTION
```

C YIELD DEPENDENT CALCULATIONS

```
COMMON/WNSEG/YIELD,FISS,HOB,EFW,SC,D,DC,CD,ATRA,QARRY(19)
QARRY(14) = YIELD
QARRY(6) = 0.
IF (YIELD .LT. -1.0 .OR. YIELD .GT. 30.) QARRY(6) = 1.
ALNY = ALOG10(YIELD)
TMP = ALNY*ALNY
QARRY(1) = 5.405 - 0.1079*ALNY + 0.0108*TMP
QARRY(2) = -0.0041 + 0.1134*ALNY - 0.0133*TMP
QARRY(3) = 2.0 + 1.7309*ALNY + 1.2691*TMP
QARRY(4) = 7.55 + 1.8714*ALNY - 0.3314*TMP
QARRY(5) = FISS
IF (HOB .GT. 0.) GO TO 5
RETURN
5 CONTINUE
XMHD=180.*(YIELD*1000.)**L+4
IF (HOB.LE.XMHD) GO TO 10
QARRY(5) = 0.
RETURN
10 CONTINUE
TEMP=HOB/XMHD
AF=0.5*(1.-TEMP)*(1.-TEMP)*(2.+TEMP)+0.001*TEMP
QARRY(5) = FISS * AF
RETURN
```

I-79

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/14/76

PAGE NO. 000

44

Never Standard

END

SUBROUTINE QFALFW

C WIND DEPENDENT CALCULATIONS

COMMON/QWSEG/YIELD,FISS,FOR,EFW,SC,DWD,CWD,XTRA,QARRY(19)

QARRY(7) = EFW

IF(EFW < 3.) GO TO 5

QARRY(9) = SC/EFW

QARRY(8) = QARRY(1) - 0.955* ALOG10(EFW)

RETURN

5 CONTINUE

QARRY(5) = SC

QARRY(3) = 2.

WHS = 1. - 0.5*EFW

IF(WHS < LT. 0.) WHS = 0.

QARRY(15) = (9.545 - 0.1745*QARRY(14)) + (0.1222 + 0.0078*

1 * QARRY(14) * WHS - (1.2222 + 0.0278*QARRY(14)) * SC

QARRY(16) = -0.0486 + 1.9316*QARRY(14)

QARRY(17) = (0.2444 - 0.2444*QARRY(14)) - (0.8977 + 0.1323*QARRY(14))

1 * WHS) * 0.001

QARRY(18) = 3.14 + 0.516*QARRY(14) - (0.33 + 0.03*QARRY(14)) * EFW

1 + (42.35 + (-19.0975 + 0.4225*QARRY(14)) * EFW) * SC

2 + (69. + (-27.35 + 1.15 * QARRY(14)) * EFW) * 2C * SC

QARRY(19) = (3.11 + 0.05*QARRY(14)) * SC

RETURN

END

SUBROUTINE QFALW

C DOWNWIND DISTANCE DEPENDENT CALCULATIONS

Never Standard

COMMON/QWSEG/YIELD,FISS,FOR,EFW,SC,DWD,CWD,XTRA,QARRY(19)

IF(QARRY(7) > T. 3.) GO TO 20

XSCL = DWD/QARRY(7)

STGC = QARRY(3) + QARRY(4)*QARRY(9)*DWD

SIGC = SHT(SIGC*SIGC + ATMA)

IF(XSCL < LT. 1.) GO TO 5

XLGFU = QARRY(5) + QARRY(7)*XSCL

TUSE = 2.5060*SIGC

IF(XSCL > GT. 15.) GO TO 10

TMP = XSCL - 15.0

XLGFD = XLGFU + 0.0015*TMP*TMP

CONTINUE

QARRY(10) = 2.0*SIGC*SIGC

IF(ALGFD < LT. -8.) XLGFD = -8.

IF(XLGFU > GT. 1.) XLGFD = 1..

QARRY(11) = QARRY(5) + (1.0.*XLGFD)*QARRY(14)

QARRY(12) = QARRY(11)/TUSE

RETURN

5 CONTINUE

ALW = ALOG10(QARRY(7)/2**4)

DELTIN = 3. + 5.5*XLW

FACT = 2. - ALOG10(QARRY(14))

DELTIA = DELTIN*FACT

XLMXN = 3.355 - 0.306*XLW - 0.275*QARRY(9)/QARRY(7)

ALUMA = XLMXN + 0.444*(FACT - 1..)

DWDIS = DWD*FACT

***** UNCLASSIFIED *****

I-80 12/14/76

PAGE NO. 000

9999 UNCLASSIFIED 9999 12/14/76 PAGE 100. 000
 45

```

IF (DUS-DELTA) GT 0 TO 5
ALGFD = ALUMA
TUSE = 1.
GO TO 10
10
6 CONTINUE
ALGFD = ALUMA - (DUS-DELTA)*((DUS-DELTA)+0.0179
TUSE = 1.
GO TO 10
10
20 CONTINUE
IF (DUO .GT. 1.) GO TO 21
XLY = ALUG10(WARRY(14))
ALUMA = 4.35 - 0.56*XLY - 0.12*WARRY(7) - 0.15*WARRY(9)
B0T = 67. + 277.84LOG10(WARRY(14))
DUSE = 0.5*WARRY(7) - 0.7D
ALGFD = XLYMA - DUSE*DUSE/BOT
GO TO 22
21 CONTINUE
ALGFD = WARRY(15) + WARRY(16)*DUO + WARRY(17)*DUO*DUO
IF (WARRY(17) .LT. 1.E-2) GO TO 22
DETA = -1.*WARRY(16)/(2.*WARRY(17))
IF (DUO .GT. DETA) ALGFD = -E.
22 CONTINUE
SIGC = WARRY(14) + WARRY(15)*DUO
SIGC = SIGT(SIGC*SIGC + ATRA)
TUSE = 1.
GO TO 10.
END

```

measured standard

SUBROUTINE QHALCON

C CROSSING DISTANCE DEPENDENT CALCULATIONS

```

COMMON/DSEGM/ YIELD, FISS, P05, EFX, SC, D, DND, XTRA, WARRY(19)
TOP = CWD*CWU+WARRY(10)
IF (TMP .GT. 10.) TMP = 1.
WARRY(13) = WARRY(12)*EXP(-TMP)
RETURN
END

```

9999 UNCLASSIFIED 9999 I-81 12/14/76 PAGE 101. 000

COMPUTER PROGRAM DESCRIPTION

NAME: AGZSEL

SYNOPSIS: Detailed Urban Tract Damage Assessment

TYPE: Semi-Production

USE: Urban Damage Assessment Under a Variety of Conditions.
Prime Data Source for Computer.

BACKGROUND: Developed from IDA Program DGZSEL. Variations added to Study Varying Blast Shelter Options and Compare MONTE CARLO with expected Damage Results.

DESCRIPTION: Performs Weapon Optimization and Detailed Damage Assessment. Allows for Several Assessment Functions Reflecting Various Weapons.

INPUT: Parameter Cards in Source Program.
Tract Locations.

OUTPUT: Separate set of Printouts, Printout Maps, etc.
300 Runs
IDA Run 77

STORAGE: IDA Card Deck #84

DOCUMENTATION: IDA Paper P-752, "A Sensitivity Analysis of Urban Blast Fatality Calculations,"
Leo A. Schmidt, Jan. 1971.

LANGUAGE/SYSTEM: FTN/1604 Operating System

COMMENTS: 1604 Implementation Only. Contains Many 1604 Unique Instructions.

NOT
Preceding Page BLANK - FILMED

COMPUTER PROGRAM DESCRIPTION

NAME: LANCET

SYNOPSIS: Convert ADAGIO Output to ANCET Input

TYPE: PRODUCTION

USE: To Use ANCET Damage Assessment Calculations on Evacuated Population Data Base

BACKGROUND: Developed as an auxiliary program for MEVUNS system

DESCRIPTION: Converts ADAGIO output data to format needed by ANCET

INPUT: ADAGIO output tape (RSAC ADAGIO)

OUTPUT: ANCET input tape

STORAGE: IDA Card Deck 109

DOCUMENTATION: IDA Study S-394, "Methodology for Evaluating the Vulnerability of National Systems," Vol. I, Part I, Description of Methodology.

LANGUAGE/SYSTEM: Run (FORTRAN)/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: AIP/ANCET

SYNOPSIS: Nationwide Damage Assessment Calculation

TYPE: PRODUCTION

USE: Nationwide Damage Assessment for Blast and Fallout
Given on Attack and Fallout Shelter Assumptions

BACKGROUND: Originally developed at Research Triangle Institute and sent to NCDCF. The version was modified at IDA to increase allowable attack size from 1000 to 3600 weapons. It was used in IDA MEVUNS Study and sent to DCPACC.

DESCRIPTION: Analytic calculation of blast damage to Gaussian distributed population nodes. WSEG10 fallout calculations.

INPUT: Population Data
Attack data
Shelter assumptions

OUTPUT: See IDA Card Deck #175
IDA Run 81, 82, 101, 115

STORAGE: IDA Card Deck #106

DOCUMENTATION: "An Analytical Technique for Urban Casualty Estimation from Multiple Nuclear Weapons," Jeffrey J. Hunter, Operations Research, 15, 1967, pp. 1096-1108:
(continued below)

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE

COMMENTS: Central Program of the MEVUNS system. Related programs are GCM, ALLEGRO, TOGUM. No modifications to IDA program made since deck sent to DCPACC in 1972. Current IDA deck if of archival interest only since extensive improvements have since been made at DCPACC.

DOCUMENTATION (continued)

"ANCET Improvements, Final Report, Vol. I," Mary B. Woodside, Research Triangle Institute, November 1968 (includes a comprehensive bibliography of Relevant RTI documents); IDA Report S-394, "Methodologies for Evaluating the Vulnerabilities of National Systems," Vol. I, Part I, Description of Methodologies, November 1, 1971

COMPUTER PROGRAM DESCRIPTION

NAME: ALLEGRO

SYNOPSIS: ATTACK GENERATOR

TYPE: PRODUCTION

USE: Nationwide Attack Generator

BACKGROUND: Developed as a rapid attack generator and blast damage assessment routine, later modified to include attack on an economic data base and with ABM defenses, and incorporated with the MEVUNS system.

DESCRIPTION: Blast only optimization based on LaGrange Multipliers and Square Root Damage Low Economic Optimization based on County Resolution data. Attack weight for population and each economic sector are input.

INPUT: Population Data Base
Economic Data Base

OUTPUT: Punched Cards for GEM input
Separate set of 100 runs used for MEVUNS Vol I, Part II
Study

IDA Run #71, 75, 83

STORAGE: IDA Card Deck #91

DOCUMENTATION: IDA Study S-394, "Methodologies for Evaluating the Vulnerability of National Systems," Vol. I, Part I
Description of Methodologies, J. McGill, et.al.,
November 1, 1971.

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE

COMMENTS: Available population input tapes based on 1960 census.

COMPUTER PROGRAM DESCRIPTION

NAME: ANDANTE

SYNOPSIS: Detailed Urban Tract Damage Assessment

TYPE: PRODUCTION

USE: Study Combined Blast-INR Effects

BACKGROUND: Developed from Program AGZSEL to include INR inputs and to give output emphasizing combined effects.

DESCRIPTION: Tract population and location data is input. The blast over pressure, INR dose and fatalities and casualties on each tract are computed and summarized. Attack optimization option available.

INPUT: Parameters
Tract Location

OUTPUT: Separate set of printouts
IDA Printout #96, 119

STORAGE: IDA Card Deck 99

DOCUMENTATION: Attached sheets

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE
FTN/IBM COS

COMMENTS: The version has old blast and INR input routine.
Current DCPACC version has same basic bookkeeping but new blast and INR routine.

The majority of subroutines in the program ANDANTE are NEVUNS Standard and are described in Chapter III. The parameter input stream is spread somewhat in the program and so will be described below.

Card #	Subroutine	Format	Variable	Use
1	RUNPAR	20A4	LABEL(I), I=1,20	Label for run printed on output.
2		I10	JRAD	0 - Do weapon optimization 1 - Do Blast-INR evaluation.
3		A4,6X,I10	NNEND	Name of last city evaluated- stop flag.
			IPUNCH	If 1, punch card as output from optimization.
4		I10,F10.5	JPKTP	1, use subroutine FLPKHU for probability distance 0, use subroutine FLPKA for probability distance
			ADJSTF	Fraction change of mean lethal radius (see FLPKA descriptive)
5		I10	LSTAPE	If 1, write output summary as Magnetic Tape in addition to standard output.
6	RADCAL	I10	LSTC	This parameter controls addi- tional reading for the next case to be run. Values are 0 - Read new city and weapon locations 1 - Don't read city or weapo locations 2 - Read new weapon locations only 3 - Do not read new paramete ; change parameters by sub- routine CHANGE as described below.
7		unused		Describe input on following card.
8		4F10.5,F10.0,F10.5	YIELD	Weapon Yield--MT
			CEP	Weapon CEP, n.m. if negative 10 psi optimized burst altitude
			PSI	Mean lethal overpressure, if negative surface burst. If both PSI and CEP positive, everywhere optimum airburst pressures

Card #	Calling Subroutine	Format	Variable	Use
			DEL	Weapon Reliability
			DESMX	Return per weapon end for optimization
			FMAXWP	Number of weapon end for optimization. Either return for weapon less than DESMX or number of weapons greater than FMAXWP will terminate the optimization.
9		I10	NSP	Number of tracts output in TRDCL
10		unused		Describes input on following card
11		8F10.4	D50	Mean lethal dose, rads
			SIG50	Standard deviation of mean lethal dose, rads
			PF	Initial nuclear radiation protection factor
			C50	Mean casualty dose, rads
			SIGC50	Standard deviation of mean casualty dose
			PSINJ	Mean casualty overpressure
			SIGBC	Standard deviation of PSIINJ as a fraction of RSINJ
			SIGBL	Standard deviation of PSI as a fraction of PSI
12		3F20.6	AR BR CR}	INR radiation constants in expression $\ln R = A+B\ln P+C(\ln P)^2$
				If a city is to be read:
1N	NEWCTY	15A4	NAMEC(I), I=1,15	City name; if the same as NNEND terminate run
2N		2F10.3, F10.0	Y(I)	Tract latitude (if < 0 terminate read)
.			X(I)	Tract longitude
.			POP(I)	Tract population
				If a set of weapon cards is to be read:
1W	PAYIN	55X,I5	IWP	Number of weapons to be read
2W		I5,4F15.6	J	Weapon number
.			PAYZT(J)	Cumulative fatalities computed during optimization to the weapon
.			PAY(Z)	Fatalities computed for the weapon
.			XZ(J)	Weapon Longitude
.			YZ(J)	Weapon Latitude

After this input the read process returns to card 6.

The subroutine change is used to change one or two variables as part of a string of runs. For each change a card is read, under format F10.0,2I2, which defines the variables VARB, IBLK, ILST. VARB is the new value of the variable to be changed. The common block containing this variable is specified by the variable IBLK, and the location of the variable in the common block by the variable ILST. The values of IBLK and ILST to change a particular variable are readily found by reading the subroutine.

The flow of calculations is clear from the program. The first step is reading and documenting of input data. Then the subroutines FLPKHU or FLPKA are used to obtain probability of kill as a function of distance squared. The results of these calculations are placed in the common block /PKPR/. For optimization the calculation is done by the subroutine OPTWPN. For evaluation the calculations for a single tract are accomplished by the subroutine TRDCL and for the entire city by the subroutine RADKL. The input output subroutines and control subroutines are quite transparent. The other subroutines are all described in Chapter IV.

The current source deck for the program at IDA includes a number of changes to individual subroutines which have not been correlated. This program is not currently operational at IDA. Operating versions of the program exist at DCPACC and CCTC which are similar to this program but have more recent blast overpressure and INR distance algorithms.

0000 UNCLASSIFIED 0000 12/15/76 PAGE NO. 000
 PROGRAM AND STATE (INPUT, OUTPUT, PUNCH, TAPE)
 COMMON/RUNVAL/VALEND, LABEL(51), JRAD, IPUNCH, NTYPE, JPKTP
 1•LSAPE, NT2, NT3, NT4, NT5, ADJUST, T2, T3, T4, T5
 RUNVAL USED IN NTITOUT, RFACTY, MP, OUT, CTYOUT, RADCALC, RUNPAR
 COMMON/RPNPAR/XRD, RZER, SIG, RMAX, PTG, YIELD, CER, PSI, DEL, DUMAX, DMAX
 1•NUS, EMAX, MAX#P, QESX
 XRD, ZER IN RFACTY, FLPKHU, Z, NOUT, ONEPASS, OPTVNP, RADCAL
 AND TRCL, RANKI
 COMMON/RKARCRH(110), DS(110), PKC(110), PSE(110),
 1DELNS(110), DELPS(110)
 RMAX USED IN ONEPASS, OPTVNP, FLPKHU, TRDCL, RADCAL
 COMMON/PAYARY PAYZ(100), Z(100), YZ(100), PAYZT(100), TWP
 PAYARR USED IN CTYOUT, OPTVNP, PAYIN, TRCL, RADKL
 COMMON/CTYPAR/NAMEC(20), FLATO, FLONGC, FIFCT, TUTPOP, TPX, XSU, YSD,
 ISGYT, EGTY, MRCSTS
 CTYPART USED IN RFACTY, CTYOUT, OPTVNP, PAYIN, ONEPASS, TRCL
 AND TRCTIN, RADKL
 COMMON/TRCTARX X(4000), Y(4000), POP(4000), V(4000)
 TRCTAR USED IN RFACTY, OPTVNP, ONEPASS, TRDCL, TRCTIN, RNPTRIN, RADKL
 COMMON/RTSH/XP(200), YSP(200), NSP, PMSP(200), LVL(200)
 COMMON/TNJAP/USRI(110), PKCI(110), DSOK(110), PKCK(110),
 1DELNS(110), DELPS(110), DELSK(110), DELBSK(110)
 COMMON/RADPAR/DS, SIGD, PF, CSB, SIGCSO, AR, BP, CR, PSINJ, SIGBC, SIGRL
 COMMON/TOARY MP, MN, MS, MT, ITA, ITH, ITC

 MP = BLTINPUT
 MO = BLOUTPUT
 MS = BLUNCH
 MT = BLTAPEO

 CALL RUNPAR
 IF(JRAD .NE. 1) GO TO 5
 CONTINUE
 CALL RADCAL
 GO TO 1
 5 CONTINUE
 CALL DGZSEL
 GO TO 1
 1 CONTINUE
 STOP 6400
 END

SUBROUTINE RUNPAR
 0 REWS VALUES ASSOCIATED WITH DEFINING THIS RUN
 COMMON/RUNVAL/VALEND, LABEL(50), JRAD, IPUNCH, NTYPE, JPKTP
 1•LSAPE, NT4, NT3, NT4, NT5, ADJUST, T2, T3, T4, T5
 COMMON/TOARY MP, MN, MS, MT, ITA, ITH, ITC
 READ(MP,11) LABEL(I), I = 1, 20
 1 READ(MP,11)
 READ(MP,2) JRAD
 2 READ(MP,11)
 3 JRAD = A DGZCALC, EQUAL + 00 SPECIAL RADIATION CALC
 CONTINUE
 READ(MP,7) NEND, IPUNCH
 7 FORMAT(A4, A5, I1)
 IPUNCH EQ 0 PUNCH, NFF EQ 1 PUNCH, 0

 READ(I,8) JPKTP, ADJUST

0000 UNCLASSIFIED 0000 12/15/76 PAGE NO. 000

AD-A040 945

INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA PROGRAM --ETC F/G 15/4
DOCUMENTATION OF CURRENT IDA COMPUTER MATERIAL DEVELOPED FOR DC--ETC(U)
JAN 77 L A SCHMIDT

DCPA01-76-C-0213

IDA/HQ-77-19225

NL

UNCLASSIFIED

2 OF 3

AD
A040945

REF ID:
A040945

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

2

8 FORMAT(110,F10.2)
C IF JPKTP = 1 REGULAR OLD DGZSEL PK DIST CURVE, IF0 DIRECT PK
C DISTANCE CALCULATION
READ(MP,9) LSTAPE
9 FORMAT(110)
C LSTAPE = 1 WRITE SUMMARY RESULTS ON TAPE 0 DONT
RETURN
4 CONTINUE
RETURN
END

SUBROUTINE DGZSEL

C DOES THE REGULAR DGZSEL CALCULATION

COMMON/DUNVAL/NKEND,LABEL(50), JRAD,IPUNCH,NTYPE ,JPKTP
1,LSTAPE,NT2,NT3,NT4,NT5,T1,T2,T3,T4,T5

CALL WPNIN
CALL FLPHU
CALL INITOU
CALL WPNOIT
READ (MP,5) NMESH,NWOPT
5 FORMAT(5I10)
C NMESH NO OF MESHES IN DGZSEL OPT NWOPT 1 PUNCH AS OPT 0 DONT
C NMESH = 6 USUALLY 12 FOR SMALL LETH RADIUS
10 CONTINUE
CALL NEWCTY (IPASS)
IF(IPASS .EQ. 1) GO TO 300
CALL OPTWPN(NMESH,NWOPT)
CALL CTYOUT
GO TO 10
300 CONTINUE
RETURN
END

SUBROUTINE RADCAL

COMMON/DUNVAL/NKEND,LABEL(50), JRAD,IPUNCH,NTYPE ,JPKTP
1,LSTAPE,NT2,NT3,NT4,NT5,T1,T2,T3,T4,T5
COMMON/PKARR/PK1(110),DSQ(110),PKC(110),PSE(110),
1,DELOS(110),DELPS(110)
COMMON/TRTSP/XSP(200),YSP(200),NSP, POPSP(200),IVL(200)
COMMON/WPNPR/MON,DZFR,SIGD,PMAX,PTG, YIELD,CEP,PSI,DEL,DDMAX,DMAX
1,NDS, FMAXWP,MAXWP,DESMX
COMMON/DAUPAR/DE0,STG50,PF, C50+SIGC50,AR,BR,CR,PSINJ,SIGRC,SIGRL
COMMON/INJAR/USCI(110),PKC1(110),DSQK(110),PKCK(110),
1,DELPSI(110),DELPSI(110),DELOSK(110),DELPSK(110)
COMMON/IQAR/ MP,MQ,MS,MT,ITA,ITB,ITC

CEPSV = 123456.789

PSISV = 0.

PSINJV = 0.

YIELDV = 0.

NTYPEV = 0

LSTC = 15

29 CONTINUE
READ(MP,25)LSTC

25 FORMAT (I10)

I-92

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 100

3

45 IF (LSTC .NE. 3) GO TO 46
CALL CHANGE
GO TO 46
CONTINUE
46 IF LSTC = 0 READ IN NEW CITY AND VPN LOGS.1 DONT -1 EXIT
C IF LSTC = -1 READ IN NEW VPN LOGS ONLY
C IF LSTC EQUAL 3 USE CHANGE TO BRING IN A FEW NEW VARIABLES
IF (LSTC .NE. -1) GO TO 25
CALL VPNIN
READ(1P,7)NSH
FORMAT(1I0)
4 READ(1D,4)USE,STG51,PF,C50, STGCS0,PSINU,SIGDC,SIGNAL
4 FORMAT(1,D10.4)
READ(1P,5) AR,BR,CR
FORMAT(2F20.0)
48 CONTINUE
CALL INIT00
CALL VPOUT
WRITE(10,6)
6 FORMAT(1H0, 5PHSLANT RANGE INIT. RADIATION CALCULATION FOR AIR DEN
15ITY OF *F4.1)
GO TO 57
51 CONTINUE
WRITE(10,54) AR,BR,CR
FORMAT(1H0, 5HORESURE INIT. RADIATION CALCULATION FOR VALUES OF
TAO = ,F12.5, TH, B2 = ,F12.5,11H, AND CR = ,F12.5)
53 CONTINUE
IF (LSTAPE .NE. 1) GO TO 49
WRITE(10,65)SIGS0,PF,C50, STGCS0,PSINU
WRITE(1T,5) AR,BR,CR
CONTINUE
IF (JPKTP .NE. 1) GO TO 31
CALL FPKRD
WRITE(10,66) PSI,DZER, PMAX
FORMAT(1 4H VALUES OF LETHAL PSI DZER PMAX ARE *F12.4)
DO 12 I = 1,30
PKC(I) = PKC(I),
DSK(I) = DSK(I)
DELSK(T) = DELS(T)
DELPST(T) = DELS(T)
12 CONTINUE
PSI = PSI
PSI = PSINU
CALL FPKRD
WRITE(10,69) PSI,DZER, PMAX
FORMAT(1 3H VALUES OF INJURY PSI DZER PMAX ARE *F12.4)
DO 13 I = 1,30
PKC(I) = PKC(I)
DSK(I) = DSK(I)
DELSK(T) = DELS(T)
DELPST(T) = DELS(T)
13 CONTINUE
PSI = PSI
GO TO 32
31 CONTINUE
IF (YIELDV .NE. YIELD) GO TO 32

I-93

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 001

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

IF(NTYPE .NE. NTYPESV) GO TO 38
IF(CEPGV.NE.CEP) GO TO 38
IF(PSISV .NE. PSI) GO TO 38
IF(PSINJV .EQ. PSINJ) GO TO 39
CONTINUE
CALL FLPKA
YIELDV = YIELD
NTYPESV = NTYPE
CEPGV = CEP
PSISV = PSI
PSINJV = PSINJ
CONTINUE
IF(LSTC .EQ. 0) GO TO 27
GO TO 28
CONTINUE
CALL NEWCTY(IPASS)
IF(IPASS .EQ. 1) GO TO 26
CALL PAYIN
CONTINUE
IF(LSTC .EQ. -2) GO TO 41
GO TO 42
CONTINUE
CALL PAYIN
CONTINUE
JKL = 0
IF(JKL .EQ. 0) GO TO 6
CALL RGTRIN
CALL TRCTIN
CONTINUE
CALL RNTRIN
CALL TRDCL
CALL RADKL
IF(LSTAPE .NE. 1) GO TO 90
ENDFILE MT
CONTINUE
GO TO 29
CONTINUE
IF(LSTAPE .NE. 1) GO TO 91
ENDFILE MT
ENDFILE MT
CONTINUE
RETURN
END

SUBROUTINE CHANGE(LSTC)

C TO SIMPLIFY THE INPUT OF VARTABLES FOR A STRING OF RUNS

```
COMMON//UNVAL/NKEND,LABEL(50),JRAD,IPUNCH,NTYPE ,JPKTP
1,LSTAPE,NT2,NT3,NT4,NT5,ADJSTF,T2,T3,T4,T5
COMMON/WPNPR/MOC,DZFR,SIGD,PMAX,PTG, YIELD,CEP,PSI,DEL,DMAX,DMAX
1+ND5 ,FMAXWP,MAXWD ,DESMX
COMMON/TRTSP/XSP(200),YSP(200),NSP, PNPSP(200),IVL(200)
COMMON/DADPAK/DEO,SIG50,PF, C50,SIGC50,AR,BP,CR,PSINJ,SIGBC,SIGBL
COMMON/TOAK/ MP,MQ,MS,MT,ITA,ITH,ITC
INTEGER LSTC
1 CONTINUE
READ( MP+10) YARR,IBLK,ILST
10 FORMAT(F 10.0,I2,I2 )
GO TO (20,30,40,60,70,80,90 ) IBLK
I-94
```

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

60 CONTINUE
TERMITATE CHANGES IN THLR = 1
RETURN

60 CONTINUE
XPMRR VARIABLES
GO TO (21,32+33,34+35)+ILST
YIELD = VARB
GOTO1
32 CER = VARB
GOTO1
33 PST = VARB
GOTO1
34 DEL = VARB
GOTO1
35 FMAX2D = VARB
TAXIP = VARB
GOTO1

40 CONTINUE
RADPAR VARIAHLES
GO TO (41+42+43,44+45+46+47,48+49+50+51)+ILST
41 DEC = VARB
GOTO1
42 SIGE0 = VARB
GOTO1
43 PE = VARB
GOTO1
44 CS0 = VARB
GOTO1
45 SIGCS0 = VARB
GOTO1
46 AR = VARB
GOTO1
47 DR = VARB
GOTO1
48 CR = VARB
GOTO1
49 PSTDU = VARB
GOTO1
50 SIGHC = VARB
GOTO1
51 SIGEL = VARB
GOTO1

60 CONTINUE
RUNPAR VARIABLES
GO TO (61,62+63,64+65+66+67)+ILST
61 JRAE = VARB
GOTO1
62 IPUNCH = VARB
GOTO1
63 ITYPE = VARB
GOTO1
64 JKTP2 = VARB
GOTO1
65 LISTAPE = VARB
GO TO 1
66 JUSTP = VARB
GO TO 1
67 READ(10,58) (LABEL(1),1 = 1,20)

I-95

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

6

08 FORMAT(20A4)
GOTO1

70 CONTINUE
C TRCSP VARIABLES
NSP = VARB
GO TO 1

80 CONTINUE
C SET LSTC
LSTC = VARB
GOTO1

90 CONTINUE
C SPECIAL CASES
GO TO (91,92,93,97,98), IF ST
C TO READ ALL THREE ARC VARIABLES
91 READ(MP,94)AH,PR,CD
94 FORMAT(,F20.6)
GOTO1
C TO READ PSI AND PSINJ AND RETURN
92 CONTINUE
READ(MP,95)PSI,PSINJ
95 FORMAT(,F10.0)
RETURN
93 CONTINUE
C TO USE PF VALUE AND RETURN
PF = VARB
RETURN
97 CONTINUE
C READ PSI AND PSINJ AND THEN BLOCK 1 CARD
READ(MP,95)PSI,PSINJ
GOTO1
98 CONTINUE
C SET PSI TO VALUE READ IN AND PSINJ TO 1/3 AND GO TO 1
PSI = VARB
PSINJ = VARB/3
GOTO1
END

newer compatible

SUBROUTINE THRM

C NEVINS COMPATIBLE
C LAST REVISED NOV. 17, 1972

C TO CALCULATE PSI THRM RAD ON A TRACT FROM PRELOCATED WEAPONS
C ASSUME WEAPON LOCATIONS ARE IN NAUT. MILES ABOUT CITY CG

COMMON/TMPANU/JPAD,NINEND,IPNCHA,IPUNCH,JPKTD,ADJSTF,LSTAPE,LSTC
1 ,NSA,DESMX,FMAX#R
COMMON/WPNPRM/LWP,X7(150),YZ(150),BLT(300)
COMMON/ST44TA/X(4000),Y(4000),BUP(4000),V(4000)
COMMON/CITYPRM/NAMEC(20),BLD(21),TOTPOP,BLE(30),NTRCTS
COMMON/VULPR/BLAC(2),PSINJ,BLAH(5),US0,SIG50,C50,SIGC50,
1 RLA(44),NL,FL,PF, BLAF(19),RLAG(30)
COMMON/WPNPR/BLP(2),DEL,BLQ(7),NTYPE,BLR(13),YLDNA,BLS
COMMON/PKPR/BLX,PKCK(30),DEI,PSK(30),DSW(30),DEDSK(30),
1 PKCI(30),DELIST(30),DSQI(30),DELDSI(30),BLY
COMMON/FFFCAL/BLI,YLDNU,BLJ,ONG,NTYPE,DIST,BLK,PSI,BLL,THRM,
1 THRPVS,RAD,RLM(13)

I-96

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/15/76

PAGE NO. 000

COMMON/XTRANSR/IC+RNG
COMMON/TOPK/RNG,NO+RNGA(16)

7

RNO = 4.5
YLUNA = YLUNA
NTYPE = NTYPB
C ASSUME INFINITE VISIBILITY
THROWS = 1.
LONG = 1
NSP = IARS(NSA)
XNSP = NSP
XNTRT = XTRCTS
DEL = XNTRT/NSP
NDEL = DEL
ITRN = LDEL + 4
DO 100 ICL = 1, NSP
SIHTOT = 1.
UZTBJ = 1.
PSIXX = 0.
RADCUM = 0.
RADNX = 0.
THMX = 0.
THCM = 0.
PSYI = 0.
IF (NSA .LT. 0) GO TO 32
ITRN = ITRN + NDEL
GO TO 32
CONTINUE
CALL CALRN
TRN = XNTRT*RNK
ITRN = TRN
CONTINUE
XPT = X(ITRN)
YPT = Y(ITRN)
POPSP = POP(ITRN)
WRITE(10,20) NAMEC(I), [= 1,20], TOTPOP,NTRCTS
20 FOR AT(1H) //,43H TQUINDIVIDUAL TRACT CALCULATIONS FOR CITY OF
1.2114.//,15H WITH POPN. OF ,FH0.0 , 0H HAVING , 15,
2. 7TRACTS //)
WRITE(10,10) ICL,XPT, YPT,POPSP, ITRN
10 FORMAT(1H0, SH 1D. 14.34, 7HEAST = ,FH.4,BX, AH4BD = FH.4,
1.3X, SHDOP = FH.1, BX+SUBTRACT NO. ,15)
WRITE(10,25)
25 FORMAT(1H0, 3HMPN,4H DIST , 0H PSI , 0H MAX PST + AH PK ,
1.64 TOTPK, SH PTKJ , 0H TOTPT , 7H RAD , 7H IXGAD , 7H CUMRAD ,
0H PRDRK , 0H PRADI ,
2. 7H THRM, 7H RATHM, 7H CUMTHM,
0H 110 TPN = 1.14P
TX = XPT - Y/(1.0D.)
TY = YPT - YZ(1.0D.)
SIEST = TX*TA + TY*TY
DIST = SQRT(SDIST)
CALL PROMPT
IF(PST .GT. PSIMX) PSIMX = PST
DD = SDIST
J = 1
CONTINUE
J = J + 1
IF(USK(J).GT. 0D) GO TO 154
P = PRDN(J) + 100 - USK(J)*DELPBK(J)/DELUUSK(J)
154

***** UNCLASSIFIED ***** I-97 12/15/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

8

```
PKW = P
P = P*DFL
J =
166 CONTINUE
J = J + 1
IF(USQI(J).GT. 0D) GO TO 166
P = PKCI(J) + (DD - USQI(J))*DELPSI(J)/DELUSI(J)
PIW = P
SURTOT = SURTOT*(1. - PKW)
PKTOT = 1. - SURTOT
UNINJ = UNINJ*(1. - PIW)
PITOT = 1. - UNINJ
IF( RAD .GT. HACMX) RADMX = RAD
RADCUM = RADCUM + RAD
TVAL = RADCUM/PE
TVL = (TVAL - D=0)/SIG50
PRAD = CUMNUR(TVL)
TINJ = (TVAL - C50)/SIGC50
PRADI = CUMNUR(TINJ)
IF(THRM .GT. THMX) THMX = THRM
THCM = THCM + THRM
RADP = RAD
IF(RAD .GT. 99999.) RADP = 99999.
RADMXP = RADMX
IF( RADMXP .GT. 99999.) RADMXP = 99999.
RADCUP = RADCUM
IF( RADCUP .GT. 99999.) RADCUP = 99999.
THRMP = THRM
IF(THRM .GT. 99999.) THRMP = 99999.
THMXP = THMX
IF( THMX .GT. 99999.) THMXP = 99999.
THCMP = THCM
IF( THCM .GT. 99999.) THCMP = 99999.
IF( PSIMX .GT. 1.25*PSINJ .AND. RADCUM.GT.(C50 + SIGC50)) PSYN =1.
WRITE(MO=20)LWPA,DIST,PSI,PSIMX,PKW,PKTOT,PIW,PITOT,RADP,
1RAD,XP=ADCUP,PRAD,PRADI,THWMP,THMXP,THCMP,PSYN
20 FORMAT(1H , I3, F6.2, 2F9.2, 4F6.3, 3F7.1, 2F6.3, 3F7.1, F6.3)
110 CONTINUE
100 CONTINUE
RETURN
END
```

Never Complete

SUBROUTINE RAIDL

```
C NEVERS COMPATABLE
C LAST REVISED NOV. 16, 1972
C COMPUTES AVERAGE KILL BY PARTITION
C LETHAL AGENTS ARE BLAST AND THERMAL RADIATION
```

```
DIMENSION RAIDL(1000) ,WEILBAR(1000)
DIMENSION PTAB(13,100)
DIMENSION QAH(14+100), EA(15) , EAI( 15)
COMMON/TMPAND/JRAD,NEND,IPIUNCH,IPKTB,ADJUSTF,LSTAPE,LSTC
1 ,NSP,PSMX,PMAYWP
COMMON/WPNPRB/IWP,XZ(150),YZ(150),BLT(100)
COMMON/CT44TA/X(4000),Y(4000),PUP(4000),V(4000)
COMMON/CITYPH/NAMEC(20),BLD(2),TUTPOP,BLE(30),NTRCTS
COMMON/VULPP/BLAC(8),D50,SIG50,C50,BLAD(46),NIPFL,PF,
1,B,AF(19),BLAG(30)
```

**** UNCLASSIFIED ****

I-98

12/16/76

PAGE NO. 000

***** UNCLASSIFIED ***** 12/16/76
COMMON/VRPNH/ RLP(2),DEL,HLI(7),NTYPE,BLR(13),YLDNA,RLS
COMMON/PKPR/HLX,PKCK(30),DELPSK(30),DSHK(30),DELDISK(30),
1,PKCT(30),DELST(30),PSOI(30),DELSSI(30),CHY
COMMON/FFFCALZRI,L,YLDNU,RLJ,LONG,NTYPE,DIST,BLK,PST,BLL,THRM,
THERVS,RAU,RLM(13)
COMMON/TOPK/HLH,10,RLAA(7),MT,RLAB(3)

PAGE NO. 000

9

YLDNU = YLDNU
NTYPE = NTYP4
C ASSUME INFINITE VISIBILITY TO GET MAX THERMAL DOSEAGE
THERVS = 1.
LONG = 1
PSYARG = 1.
PCORL = .5
WITTE(M0,3)
3 FORMAT(1H1,/,5X, 18HTOTAL CITY EFFECTS)
4 WITTE(M0,4) (AMFC(I),I = 1,20)
5 FORMAT(1H0, 20X, 13HCITY NAME IS +20A4)
6 WITTE(M0,20)
7 FORMAT(1H0)
8 WITTE(M0,30)
9 FORMAT(1H * 15X,10HFATALITIES 13X,16X, 8HINJURIES
1 17X, 18H CAMP FATALITIES *18H SYNERGISTIC FATL)
10 WITTE(M0,31)
11 FORMAT(1H * 4X,9HRADIATION .4X, 7X, 5HBLAST, 6X ,
1 4X,9HRADIATION .4X, 7X, 5HBLAST, 4X ,
2 18H RAU, AND BLAST *18H RAU, AND BLAST)
12 WITTE(M0,32)
13 FORMAT(1H * 3X, 18H LST WPN TOTAL *18H TOTAL LST WPN
1 *3X, 18H LST WPN TOTAL *18H TOTAL LST WPN
2 *3X, 18H LST WPN TOTAL *18H LST WPN TOTAL)
IF (LSTAPE .NE.1) GO TO 90
WITTE(MT,3)
WITTE(MT,35)
WITTE(MT,30)
WITTE(MT,31)
WITTE(MT,32)
CONTINUE
NO S I = 1,MTOTS
V(I) = DDP(I)
VCLHAR(I) = HDP(I)
5 RADAR(I) = .0.
RADYL = .0.
RTL = .0.
SKRL = .0.
SKHSL = .0.
SKTOT = .0.
SKTOT = .0.
EKRSTO = .0.
DO 10 IT = 1,TRP
RADY = .0.
RTDAY = .0.
BDAY = .0.
HTDAY = .0.
SKRADY = .0.
SKRSRY = .0.
VKEKB = .0.
DIPKA = .0.
WORK3 = .0.

I-99

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

10

QKRIB = 0.
QIRIB = 0.
QURIB = 0.
QKRUB = 0.
QIRUB = 0.
QURUB = 0.
SMCOR = 0.
DO 12 JJ = 1,NTFACTS
TX = XZ(JJ) - X(JJ)
TY = YZ(JJ) - Y(JJ)
DISTS = TX*TX + TY*TY
DIST = SQRT(DISTS)
CALL PROMPT
RADAR(JJ) = RADAR(JJ) + RAD
TT = RADAR(JJ)*DEL/PF
TTT = (TT - USQ)/SIG50
PKR = CUMNOR(TTT)
RPAY = POP(JJ) * PKR + RPAY
TTI = (TT - USQ)/SIGC50
PIR = CUMNOR(TTI)
RIPAY = POP(JJ); PIR + RIPAY
PIIP = PIR - PKR
PUR = 1. - PIH
DD = DIST
C TO SPEED UP CALC - NEEDS PKCK(2) = 0.
IF(DSQK(2) .GT. 0D1 GO TO 162
PKB = 0.
GO TO 163
162 CONTINUE
J = 2
164 CONTINUE
J = J + 1
IF(DSQK(J).GT. DD) GO TO 164
P = PKCK(J) + (DD - DSQK(J))*DELPSK(J)/DELDISK(J)
PKB = P*DEL
163 CONTINUE
IF(DSQI(2).GT. DD) GO TO 168
PIR = 0.
GO TO 169
168 CONTINUE
J = 2
166 CONTINUE
J = J + 1
IF(DSQI(J).GT. DD) GO TO 166
P = PKCI(J) + (DD - DSQI(J))*DELPSI(J)/DELDISI(J)
PIH = P*DEL
169 CONTINUE
RPAY = RPAY + V(JJ)*PKB
BIPAY = BIPAY + WELRAH(JJ)*PIR
C REDUCE NUMBER OF BLAST SURVIVORS AND UNINJURED
V(JJ) = V(JJ) * (1. - PIH)
WELRAH(JJ) = WELBAR(JJ)*(1. - PIR)
BKRSAY = BKRSAY + V(JJ)*PKB
BINJO = V(JJ) - WELBAR(JJ)
C ASSUME THAT IF INJURED BY BOTH BLAST AND RADIATION THIS IS FATAL
C FOR SYNERGISTIC EFFECTS CALCULATION. OTHER DATA CAN BE USED HERE
C IF DESIRED
BKRSAY = BKRSAY + BINJO* PIH * PSYNRG
BKL = PAP(JJ) - V(JJ)
QKRKA = QKRKA + BKL*PKR
QIRKA = QIRKA + BKL*PIR
I-100

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

11

QIPKR = QIPRH + RKLPPR
QKHTR = QKTRH + RTIJJQKTR
QIPTR = QIPRH + S1NQDPTIR
QITTR = QIPRH + RTIJJQDTR
QKTRH = QKTRH + WELSH(JJ) QKTR
QTRHS = QIPRH + WELSH(JJ) QDTTR
QURHS = QURRH + WELSH(JJ) QBUR

CONTINUE

URPAY = RPAY - RPAYL
RI = RICAY - RPAY
DRI = RI - RIL
BKTOT = BKFI1 + BRAY
BTRPH = BIPAY - BRAY
BTOT = BITOI + BIWPN
BKRTOT = BTOTU + BKRPAY
BKRT = BKRTUT - BKCL
BKSTO = BKSTOT + BKRSFY
BKRSF = BKRSFO - BKRSL
IF(DRPAY,L6,RPAY) GO TO 16A
FATCO = RPAY + (URPAY-RPAY)*C1,- PCURL
SMOR = SMOK + FATCO

CONTINUE

WRITE(10,48) LI,ERPAY,RPAY,BKTOT,RPAY,DRI,RT,BITOT,RTPNP,DKHT,
,BKRTOT,BKRSF,BKRSFO

48 FORMAT(1H ,13,4F9.0,2X,4F9.0,2X,2F9.0,2X,2F9.0)

IF(LSTAPE .NE.1) GO TO 91

WRITE(11,48) LI,ERPAY,RPAY,BKTOT,RPAY,DRI,RT,BITOT,RTPNP,DKHT,
,BKRTOT,BKRSF,BKRSFO

91 CONTINUE

PTAR(1,1I) = PIRAY
PTAR(2,1I) = BITOT + BKTOT
PTAR(3,1I) = TOTPDR - QURHS
PTAR(4,1I) = QIRIA
PTAR(5,1I) = RPAY - BKRPAY
PTAR(6,1I) = QURHS
PTAR(7,1I) = 100.*PTAR(5,1I)/TOTPDR
PTAR(8,1I) = TOTPDR - BKRTOT
PTAR(9,1I) = 100.*PTAR(8,1I)/TOTPDR
PTAR(10,1I) = TOTPDR - BKTOT
PTAR(11,1I) = 100.*PTAR(10,1I)/TOTPDR
PTAR(12,1I) = TOTPDR - RPAY
PTAR(13,1I) = 100.*PTAR(12,1I)/TOTPDR
QAR(1,1I)= RPAY
QAR(2,1I)= RT
QAR(3,1I)= TOTPDR - RPAY - RI
QAR(4,1I)= BKTOT
QAR(5,1I)= HITOT
QAR(6,1I)= TOTPDR - BKTOT - HITOT
QAR(7,1I)= QKSH
QAR(8,1I)= QKIR
QAR(9,1I)= QKUR
QAR(10,1I)= QIRIA
QAR(11,1I)= QIRIA
QAR(12,1I)= QIRIA
QAR(13,1I)= QURHS
QAR(14,1I)= QURIA
QAR(15,1I)= QURIA
QAR(16,1I)= SMOR
RPAYL = RPAY
RTE = RT
RKTL = BKTOT

I-101

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

1✓

10 BKRSL = BKRSIO
CONTINUF
WRITE(M0,52)
52 FORMAT(1H1,//,5GX,2H MORE TOTAL CITY EFFECTS)
WRITE(M0,54)
54 FORMAT(1H0,11X,10HCASUALTIES ,13X,9HINJURIFS ,10HFATALITIES
1 ,7X,9HUNINJURED,7X ,
2 22H * * * * ,9HSURVIVORS ,
3 21H * * * *)
WRITE (M0,56)
56 FORMAT(1H ,5X, 4HRAD. , 5X, 5HBLAST ,4X, 5HCOMA. ,6X,
1 9H BOTH R B ,9HBOTH R R ,10X, RHCOMBINEU, 12X,8HCOMBINEU, 11X,
2 5HBLAST, 11X, 9HRADIATION)
WRITE (M0,58)
58 FORMAT(1H , 22X, 8H(R OR B) ,4X,
1 9H(R AND B) ,9H(R AND B) , 6X, 5HTOTAL ,3X, 7HPERCENT ,
2 5X,5HTOTAL ,3X, 7HPERCENT ,3X, 5HTOTAL ,3X,7HPERCENT,3X,
3 5HTOTAL ,3X,7HPERCENT)
IF (LSTAPE .NE.1) GO TO 92
WRITE(MT, 52)
WRITE(MT, 54)
WRITE(MT, 56)
WRITE(MT, 58)
CONTINUF
92 DO 61 IJ = 1,IMP
WRITE(M0, 62) IJ,PTAR(1,IJ), PTAR(2,IJ), PTAR(3,IJ), PTAR(4,IJ),
1PTAR(5,IJ), PTAR(6,IJ), PTAR(7,IJ), PTAR(8,IJ), PTAR(9,IJ),
2PTAR(10,IJ), PTAR(11,IJ), PTAR(12,IJ), PTAR(13,IJ),
FORMAT(1H ,13, 3F9.0, 4X, 2F9.0,4X,F9.0, F7.3,4X,F9.0,
1F7.3 ,9X, F9.0,F7.3, 2X, F9.0,0,F7.3)
IF (LSTAPE .NE.1) GO TO 93
WRITE(MT, 62) IJ,PTAR(1,IJ), PTAR(2,IJ), PTAR(3,IJ), PTAR(4,IJ),
1PTAR(5,IJ), PTAR(6,IJ), PTAR(7,IJ), PTAR(8,IJ), PTAR(9,IJ),
2PTAR(10,IJ), PTAR(11,IJ), PTAR(12,IJ), PTAR(13,IJ)
CONTINUF
61 CONTINUF
WRITE(M0,79)
79 FORMAT(1H1, //, 5GX, 2HSTILL MORE TOTAL CITY EFFECTS)
WRITE(M0,75)
75 FORMAT(1H ,3GX,55HSINGLE EFFFECTS (A B) APE PERCENT AND 1 - PERC
1ENT)
WRITE (.0,74)
74 FORMAT(1H0 ,11X, 15H * * * * , 9HRADIATION
1, 15H * * * * 10X, 17H * * * * ,5HBLAST,
217H * * * * 10X,10HCORRELATED)
WRITE (M0,73)
73 FORMAT(1H ,5X,6X, 10HFATALITIES ,6X, 8HINJURIES, 6X,
19HUNINJURED ,11X, 10HFATALITIES ,6X,8HINJURIES ,6X,
2 9HUNINJURED, 10X, 10HFATALITIES)
IF (LSTAPE .NE.1) GO TO 94
WRITE(MT, 72)
WRITE(MT, 75)
WRITE(MT, 74)
WRITE(MT, 73)
94 CONTINUE
DO 71 K = 1,1WP
WRITE(M0,72) K,(QAR(I,K),I = 1,6), QAR(16,K)
72 FORMAT(1H0 ,13,2X,3F15.0,5X,3F15.0,10X,F10.0)
IF (LSTAPE .NE.1) GO TO 95
WRITE(MT,72) K,(QAR(I,K),I = 1,6), QAR(16,K)
CONTINUE

I-102

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

```

    77 I = 110
    EA(I) = 100.*QAR(I,K)/TOTROP
    EA(I) = 100. - EA(I)
    CONTINUE
    WRITE(MO,78) (EA(I),EA(I),I = 1,6)
    FORMAT(1H ,1Y, 2F5.1, 4X,2F5.1,5X, 2F5.1, 9X, 2F5.1,5X,
    1,2F5.1, 5X, 2F5.1 )
    IF (LSTAPE .NE. 1) GO TO 96
    WRITE(MT,79) (EA(I),EA(I),I = 1,6)
    CONTINUE
    CONTINUE
    WRITE(MO,80)
    FORMAT(1H1, //, 50X,32HADD EVEN MORE TOTAL CITY EFFECTS      )
    WRITE(MO,80)
    FORMAT(1H ,2CY, 7HCOMBINED EFFECTS. NUMBERS HAVING INDICATED T
    YPE OF BOTH EFFECTS      )
    WRITE( 1N,83)
    FORMAT(IH0, 1H, 1A8, SHFATAL, 32X,7HINJURED,
    1,3X, 9HUNINJURED      )
    WRITE(MO,82)
    FORMAT(1H0, 1AH , BLAST EFFECT,5X, SHFATAL, 7X, 7HINJURED,
    13X,9HUNINJURED , 7X, SHFATAL , 7X, 7HINJURED, 3X, 9HUNINJURED,
    27X, SHFATAL ,7X, 7HINJURED, 3X,9HUNINJURED      )
    IF (LSTAPE .NE. 1) GO TO 97
    WRITE (MT, 85)
    WRITE (MT, 85)
    WRITE (MT, 83)
    WRITE (MT, 84)
    CONTINUE
    DO 81 K = 1,14P
    WRITE(MO,82) K,(* QAR(I,K) ,I = 7,15)
    FORMAT(IH0,1X,*9H0000000000 , 1,13,1H ,2X,3F12.0,2X,3F12.0,
    12X, 3F12.0)
    DO 87 I = 7,14
    EA(I) = 100.*QAR(I,K)/TOTROP
    EA(I) = 100. - EA(I)
    CONTINUE
    WRITE(MO,86) (EA(I),EA(I),I = 7,15)
    FORMAT(1H ,18X, 1,2F5.1,2X,2F5.1,1X,
    1,2F5.1,2X,2F5.1,2X,2F5.1,1X,
    1,3X,2F5.1,2X,2F5.1,2X,2F5.1 )
    IF (LSTAPE .NE. 1) GO TO 98
    WRITE(MT,86) (* QAR(I,K) ,I = 7,15)
    WRITE(MT,86) (EA(I),EA(I),I = 7,15)
    CONTINUE
    CONTINUE
    RETURN
    END

```

SUBROUTINE WPNIN

C INPUTS VALUES ASSOCIATED WITH THE WEAPONS

```

COMMON/WPNIN/MOD,DTEN,STGD,PMAX,PTG, YTELD,REP,PST,DEL,DMAX,DMAX
1+RIS ,EMAXWP,MAXWP ,UESMX
COMMON/IDARY MP,MQ,MS,MT,ITB,ITB,ITC
COMMON/VAL/ENR,LABEL(40), JRAD,IPUNCH,NTYPE ,JPKTP
1+LSTADE,ATZ,ATB,ATB,T1,T2,T3,T4+TS
  REND(2) YTELD,REP,PSI,DEL,UESMX,EMAXWP
FORMAT(1*,4F10.5,F10.5,F10.5)
FORMAT(1*,4F10.5,F10.5,F10.5)

```

I-103

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 0000

```
MAXWP=FMAXWP  
IF ( PST .LT. 0.) GO TO 5  
NTYPE = -1  
GO TO 4  
5 NTYPE = 1  
4 CONTINUE  
IF ( CEP .GE. 0.) GO TO 6  
CEP = -CEP  
NTYPE = 0  
6 CONTINUE  
RETURN  
END
```

$$\left\{ \begin{array}{l} \text{NTYPE} = \begin{cases} -1 & \text{option about (less than 100 m)} \\ 0 & \text{10 sec offset about} \\ 1 & \text{surface band} \end{cases} \end{array} \right.$$

SUBROUTINE NEWCITY (IPASS)

```
C NEVINS STANDARD  
C LAST REVISED NOV. 9, 1972  
C READS TRACT DATA FROM INPUT MEDIUM MA WHERE DATA IS IN SHORT  
C FORM WITH ONLY LAT,LONG,POPN FOR EACH TRACT. ASSUMES HEADER CARD  
C HAS CITY NAME AND A NEGATIVE LATITUDE IS AFTER THE LAST TRACT.  
C THE SUBROUTINE ALSO COMPUTES CENTER OF GRAVITY AND NS EW SIGMAS
```

```
COMMON/CITYPR/NAMEC(20),BLA(2),TOTPUP,BLB,FLATC,FLONGC,FLFCT,  
1 BLC(3),SGTX,SGTY,BLD(21),NTRCTS  
COMMON/ST44TA/X(4000),Y(4000),POP(4000),V(4000)  
COMMON/TMPANU/JREAD,NNEND,IPNCHA,IPUNCH,JPKTP,ADJSTF,LSTAPE,LSTC  
1 NSP,DESMX,FMAXWP  
COMMON/TOPR/HLE,MQ,MP,BLG(14)
```

```
XSO = 0.  
YSO = 0.  
FLATC = 0.  
FLONGC = 0.  
TOTPOP = 0.  
READ(MP,31)NAMEC(I),I = 1:20  
FORMAT(20A4)  
3 IF THIS IS THE LAST CITY AND CITY NAME IS NNEND RETURN WITH  
C IPASS = 1. OTHERWISE IPASS = 0  
IPASS = 0  
IF( NAMEC(1) = NNEND)803,300,H03  
300 CONTINUE  
IPASS = 1  
RETURN  
803 CONTINUE  
I = 1
```

```
11 CONTINUE  
READ (MP,4) Y(I),X(I), POP(I)  
4 FORMAT(2F10.2,F10.0)  
C TERMINATE CITY READ BY NEGATIVE LATITUDE  
IF(Y(I)) 6,5,5  
5 CONTINUE  
FLATC = FLATC + Y(I)*POP(I)  
FLONGC = FLONGC + X(I) * POP(I)  
TOTPOP = TOTPOP + POP(I)  
I = I + 1  
GO TO 11
```

```
C READING COMPLETED NOW COMPUTE STATISTICS AND FILL ARRAYS
```

**** UNCLASSIFIED **** I-104 12/16/76

PAGE NO. 0000

12/16/76

PAGE NO. 000

15

```

0 CONTINUE
NTRACTS = I - 1
FLATC = FLATC/TOTPOP
FLONGC = FLONGC/TOTPOP
FLFACT=COS (FLATC*3.14159/180.)
DO 15 T=1,NTRACTS
V(I)=POP(I)
X(T)=(X(I)-FLONGC)*ADP.*FLFACT
Y(I)=(Y(I)-FLATC)*ADP.
XSQ=XSQ+X(I)*X(T)*POP(I)
YSQ=YSQ+Y(I)*Y(T)*POP(I)
15 CONTINUE
XSD = XSQ / TOTPOP
YSQ = YSQ / TOTPOP
SGTX=SGT(XSQ)
SGTY=SGT(YSQ)

C OUTPUT TRACT STATISTICS ON STANDARD OUTPUT MEDIUM
WRITE(10,21)
27 FORMAT(1H, //)
27 FORMAT(1H,21)(NAMEC(I), I = 1,15)
21 FORMAT(1H, 34H15 TRACT DATA FOR THE CITY NAMED      .1544)
21 FORMAT(1H, 12H LATITUDE IS ,F9.5*4X,12H LONGITUDE IS , F9.5*4X,
12H TOTAL POPULATION IS ,F9.0*4X*13HNO. TRACTS IS ,I5)
22 FORMAT(1H, 32H STD. DEV. IN E - N DIRECTION IS ,F9.5*4X,
13HSTD. DEV. IN N - S DIRECTION IS ,F9.5 )
23 RETURN
END

SUBROUTINE PAYIN
C USED TO REFILE PAYROLL FROM A PREVIOUS CALCULATION
COMMON/PAYARY/PAYZ(100),XZ(100),YZ(100),PAYZT(100) *IWP
COMMON/CTYPAR/NAMEC(21),FLATC,FLONGC,FLFACT,TOTPOP,TPX,XSH,YSD
1SGTX,SGTY,NTRACTS
COMMON/TOARV/MP,40,*SHT,ITA,IH,IIC

READ(10,201) IWP
202 FORMAT(5X,I5)
10 214 K = 1*IWP
READ(10,203) J,64YZT(J)+PAYZ(J), XZ(J)+YZ(J)
FORMAT(1H,4E15.5)
203 CONTINUE
215 FLFACT=COS (FLATC*3.14159/180.)
DO 214 T = 1*IWP
XZ(T) = (YZ(T) - FLONGC)* 50.*FLFACT
YZ(T) = (YZ(T) - FLATC)* 50.
214 CONTINUE
RETURN
END

```

*first population
central and standard
deviation*

SUBROUTINE PRTRN

for use with TRACT

```

C RANDOMLY SELECTS TRACTS FOR SPECIAL ARRAY
COMMON/THCTR/ X(4100),Y(4100),POP(4000),V(4000)

```

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

16

```
COMMON/TRTSP/XSP(200),YSP(200),NSP, POPSP(200),IVL(200)
RNO = 4.6
CALL CALRN(RNO,RNW)
DO 10 J = 1,NSP
15 CONTINUE
RNO = 0.
CALL CALRN(RNO,RNW)
TRN = 745.*RNW
ITRN = TRN
DO 12 K = 1,NSP
IF (IVL(K)) .EQ. ITRN) GO TO 16
12 CONTINUE
XSP(J) = X(ITRN)
YSP(J) = Y(ITRN)
IVL(J) = ITRN
POPSP(J) = PUP(ITRN)
10 CONTINUE
RETURN
END
```

SUBROUTINE RGTRIN

for use with TRCOL

C SELECTS TRACTS AT REGULAR INTERVALS FOR INPUT

```
COMMON/TRCTAR/X(4000),Y(4000),POP(4000),V(4000)
COMMON/TRISP/XSP(200),YSP(200),NSP, POPSP(200),IVL(200)
XNSP = NSP
DEL = 745./XNSP
NDEL = DEL
ITRN = NDEL + 1
DO 20 J = 1,NSP
ITRN = ITRN + NDEL
XSP(J) = X(ITRN)
YSP(J) = Y(ITRN)
IVL(J) = ITRN
POPSP(J) = PUP(ITRN)
20 CONTINUE
RETURN
END
```

SUBROUTINE TRCTIN

for use with TRCOL

C TO READ INPUT VALUES OF TRACTS FOR SPECIAL ANALYSIS

```
COMMON/TRTSP/XSP(200),YSP(200),NSP, POPSP(200),IVL(200)
COMMON/CTYPAR/NAMEC(20),FLATC,FLONGC,FLFCT,TUTPOP,TPX,XSQ,YSQ,
SGTX, SGTY,NTRCTS
COMMON/TOAR/ MP,MQ,MS,MT,ITA,ITB,ITC
I =
11 CONTINUE
READ(MP,4) YSP(I), XSP(I), POPSP(I)
4 FORMAT( 2F10.4,F10.0)
C TERMINATE CITY READ BY NEGATIVE LATITUDE
IF(YSP(I)) 6,5,5
5 CONTINUE
I = I + 1
GO TO 1;
6 CONTINUE
NSP = I - 1
```

*** UNCLASSIFIED *** I-106

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

17

150 T = 1.0E-0
XSP(I) = (XSP(I) - FLONGC) * 6.0*EFFECT
YSP(I) = (YSP(I) - FLATC)*6.0
CONTINUE
RETURN
END

SUBROUTINE INTT0U

6 INITIAL PRINTOUT

DIMENSION I0X(128)

COMMON/NUNVAL/NUEND/LABEL(50), JRAD,IPUNCH,NTYPE,IPKTP
1,LTAPE,NT2,NT3,NT4,NT5,ADJUST,T2,T3,T4,T5
CNAME/T0AR/ M0, I0X,NSP,I77A,I7B,I7C

CALL TIME(CLTTM)

CLTTM = ABS(CLTTM)

RHO = CLTTM * 1.2

CALL CALRN(RHO,RNG)

WRITE(M0+1)

18 FORMAT(1H1)

IF(IPUNCH .NE. 0) GO TO 1.

WRITE(M0+1) (LABEL(I) , I = 1,20)

1 FORMAT(20A2)

19 CONTINUE

RHO = 0.

CALL CALRN(RHO,RNG)

YLO = 1.0E-10*E999

YHI = YLO

ALO = 6.0*(4.0-EYLO)*(4.0-EYHI)

RHO = 0.

CALL CALRN(RHO,RNG)

YTH = 1.0*E999

YTP = YTH

ATH = 6.0*(YTH-YTP)*(YI-YTP)

DO 21 JDN = TTP+60

YDN = JDN

IF(YDN .NE. 31) GO TO 21

WRITE(M0+1)

19 FORMAT(1H+, 3X, 1E-0E4 ADJUST RDN)

20 CONTINUE

IF(JRN .LT. JMI) GO TO 62

XI1 = 0.

GO TO 62

62 CONTINUE

XI1 = ATPA*(YR - YRN)*(YH - YRN)

CONTINUE

XI1 = XI1

XI2 = 1.0E- KTI

XI2 = XI2

XI1 = ALO*(YR - YRN)*(YH - YRN)

XI1 = XI1

XI2 = 1.0E- KTI

XI2 = XI2

DLX = 1.5*(XI1-XI2) + 0.0001

I-107

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

18

MDX1 = 0.5*(AL1+XT1)
MDX2 = 0.5*(AL2+ XT2)
GO TO 22 KPN = 1.120
XPN = KPN
IF(KRN .GE. KT1) GO TO 23
IOA(KRN1) = 1L
GO TO 22
23 CONTINUE
IF(JRN .GT. JLC) GO TO 27
IF(KRN .LE. KT2) GO TO 65
IOA(KRL1) = 1L
GO TO 22
24 CONTINUE
IF(KRN .GT. 0n) GO TO 65
XOFF = ABS(XHN-MDX1)
GO TO 3n
25 CONTINUE
XOFF = ABS(XHN-MDX2)
GO TO 3n
26 CONTINUE
IF(KRN .GT. KLL) GO TO 24
XOFF = ABS(XHN - MDX1)
GO TO 3n
27 CONTINUE
IF(KRN .GE. KL2) GO TO 25
IOA(KRN) = 1L
GO TO 22
28 CONTINUE
IF(KRN .GT. KT2) GO TO 26
XOFF = ABS(XHN - MDX2)
GO TO 3n
29 CONTINUE
IOA(KRN) = 1L
GO TO 22
30 CONTINUE
RNO = 0.
CALL CALRN(RNO,RNW)
XVL = 1. - ((XOFF-DLX)/DLX)*((XOFF-DLX)/DLX) + 0.2*RNW
IF(XVL .LE. 1) GO TO 31
IOA(KRN) = 1L
GO TO 22
31 CONTINUE
IF (XVL .LE. 0.9) GO TO 32
IOA(KRN) = 1Lx
GO TO 22
32 CONTINUE
IF(XVL .LE. 0.7) GO TO 33
IOA(KRN) = 1L0
GO TO 22
33 CONTINUE
IF(XVL .LE. 0.5) GO TO 34
IOA(KRN) = 1L+
GO TO 22
34 CONTINUE
IF(XVL .LE. 0.2) GO TO 35
IOA(KRN) = 1L.
GO TO 22
35 CONTINUE
IOA(KRN) = 1L
CONTINUE
22 WRITE(MD,38)(IOA(I),I = 1,120)

**** UNCLASSIFIED **** I-108

12/16/76

PAGE NO. 000

***** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

19

38 FORMAT(1H *4X,12I1)
21 CONTINUE
WRITE(M0+1L) (LABEL(I)+ I = 1,21)
FORMAT(1H0,25X,20I4)
WRITE(M0+4L)
41 FORMAT(//)
IF(LPKTP .NE. 1) GO TO 45
WRITE(M0+4L)
43 FORMAT(1H *48X, 34HCALCULATE OPTIMIZED WEAPON LAYDOWN)
Go TO 46
45 CONTINUE
IF(LPKTP .NE. 1) GO TO 46
WRITE(M0+4L)
44 FORMAT(1H *27X, 65HASSSESS RESULTS OF BLAST AND RADITION FROM A G
TIME, WEAPON LAYDOWN)
46 CONTINUE
WRITE(M0+4L)
KNO = 1.
CALL CALRN(RN1,RN2)
DO 51 JDN = 1,6
YRN = JDN
YML = RN1*0.2+ 1.0-SORT(YRN)/5.
D0 52 KDN = 1*120
XRN = KDN
RNO = 0.
CALL CALRN(RN3,RN4)
XVL = ABS(60.-XRN)/120. + 0.4*RN4 + 0.5
VAL = XVL + YML
IF(VAL .LE. 1.7) GO TO 53
IOA(KRN) = 1**
GO TO 53
53 CONTINUE
IF(VAL .LE. 1.5) GO TO 54
IOA(KRN) = 1**
GO TO 53
54 CONTINUE
IF(VAL .LE. 1.2) GO TO 55
IOA(KRN) = 1**
GO TO 53
55 CONTINUE
IF(VAL .LE. 1.1) GO TO 56
IOA(KRN) = 1**
GO TO 53
56 CONTINUE
IF(VAL .LE. 0.6) GO TO 57
IOA(KRN) = 1**
GO TO 53
57 CONTINUE
IOA(KRN) = 1H
CONTINUE
WRITE(M0+38) (IOA(I)+ I = 1,120)
51 CONTINUE
WRITE(...,101)
WRITE(...,71)
FORMAT(/////////
71 IF(LPKTP .NE.1) GO TO 72
WRITE(M0+73)
FORMAT(1H *25H, FOR THIS CALCULATION THE FITTED PK DISTANCE CURVE
1 AS IN THE ALO MODEL CALCULATION IS USED)
72 CONTINUE

I-109

***** UNCLASSIFIED ***

12/16/76

PAGE NO. 00

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 001

74 WRITE(MQ+74)ADJSTF
74 FORMAT(1H , /,9HDIRECT PK DISTANCE CALCULATION USING PK VS. PRESSURE
74 AND ASSUME VS. DISTANCE , /,27H NORMALIZING ADJUSTMENT IS
74 2 , F6.4 , 42M OF DIFFERENCE FROM AREA OF LETHAL RADIUS)
75 CONTINUE
75 IF (IPUNCH .NE. 1) GO TO 76
76 WRITE (MQ,77)
77 FORMAT(1HO , 42HTHERE IS PUNCH CARD OUTPUT WITH THIS RUN)
77 Go To 78
78 CONTINUE
78 WRITE(MQ+79)
79 FORMAT(1HO , 46HTHERE IS NO PUNCHED CARD OUTPUT WITH THIS RUN)
79 CONTINUE
79 IF (LSTAPE .NE. 1, GO TO 81
80 WRITE(MQ+82)
82 FORMAT (1HO , 78HA MAGNETIC TAPE OF SOME OUTPUT IS WRITTEN TO PRESE
82 RVE IT IN MACHINEABLE FORM)
81 CONTINUE
81 WRITE(MQ+84) NNEND
84 FORMAT(1HO , 65HTHE SYMBOLS USED AS A CITY NAME TO FLAG THE END OF
84 1THE CITIES IS *A4)
84 RETURN
84 END

SUBROUTINE WPNOUT

C OUTPUTS VALUES OF WEAPON PARAMETERS

COMMON/RUNVAL/NKEND,LABEL(501, JRAD,IPUNCH,NTYPE ,JPKTP
1+LSTAPE,NT2,NT3,NT4,NT5,T1,T2,T3,T4,T5
COMMON/WPNPR/MOD,DZER,SIGD,PMAX,PTG, YIELD,CEP,PSI,DEL,DDMAX,DMAX
1+ND5 ,FMAXWP,FMAXHP ,DESMX
COMMON/IOAR/ MP,MQ,MS,MT,ITA,ITB,ITC
WRITE(MQ+6)
5 FORMAT(1HO , 10HVALUES OF +60H YIELD CEP PSI
1DEL MAX HET MAX WONS)
5 WRITE(MQ,12)YIELD,CEP,PSI,DEL,DESMX,FMAXWP
12 FORMAT(1H , 4X+4F1+0+5+F10+0+F10+5)
12 IF (IPUNCH .EQ. 0) GO TO 10
12 WRITE(MQ+2) YIELD,CEP,PSI,DEL,DESMX,FMAXWP
2 FORMAT(4F10.5,F10.0,F10.5)
10 CONTINUE
10 RETURN
10 END

SUBROUTINE CTYOUT

C PROVIDE OUTPUT OF RESULTS OF OPT FOR ONE CITY

COMMON/PAYAR/ PAYZ(100),XZ(100),YZ(100)+PAYZT(100) ,IWP
COMMON/CTYPAR/NAMEC(20),FLATC,FLONGC,FLFCT,TOTPOP,TPX,XSQ,YSQ,
1SGTX, CGTY ,NTRCTS
COMMON/RUNVAL/NKEND,LABEL(501, JRAD,IPUNCH,NTYPE ,JPKTP
1+LSTAPE,NT2,NT3,NT4,NT5,T1,T2,T3,T4,T5
COMMON/IOAR/ MP,MQ,MS,TA1,TA2,TA3,TA4
C REC NV EOT AIM TO LAT=LONG
200 DO 201 T=1,IWP
XZ(T)=XZ(I)/(FLFCT*FA+.)+FLONGC
YZ(T)=YZ(I)/50+FLATC

*** UNCLASSIFIED *** I-110

12/16/76

PAGE NO. 000

12/16/76

PAGE NO. 000

201 CONTINUE
 IF (I10,1CH .EQ. 0) GO TO 10
 WRITE (*,202) (NAMEC(I), I=1,2), TOTPOP,FLATC,FLONGC,IWP,NTRCTS
 202 FORMAT(2A4,2A,2F15.5,15, 1B1)
 WRITE (*,203) (J,PAYZT(J), PAYZ(J), XZ(J), YZ(J), J = 1,IWP)
 203 FORMAT(15,4F15.5)
 10 CONTINUE
 WRITE (*,204) (NAMEC(I), I=1,5), TOTPOP,FLATC,FLONGC,IWP,NTRCTS
 204 FORMAT(1H , 5A4, 3F15.5, 1B1)
 WRITE (*,205) (J,PAYZT(J), PAYZ(J), XZ(J), YZ(J), J = 1,IWP)
 205 FORMAT(1H , 15,4F15.5)
 RETURN
 EXIT

SUBROUTINE OPTKRN(MESH,NWORT)

REVUNS STANDARD

C REVUNS STANDARD
 C LAST REVISED NOV. 15, 1972
 C GIVEN VALUE THAT'S FOR A CITY AND KILL PROBABILITY TABLE FOR
 C WEAPONS. THIS SUBROUTINE OPTIMIZES THE WEAPON LAYDOWN.
 C THIS SUBROUTINE IS BASED UPON THE PROGRAM OGZSEL DEVELOPED BY
 C H. EVERETT III AND LONG USED BY TDA AND WSEG.
 C MESH IS THE NUMBER OF MESH POINTS. NWORT = 1 LISTS EACH WEAPON
 C AS LAID DOWN.

COMMON/TMPAMU/JFA0,MEND,IPNCHA,TPUNCH,JPKTR,AJUSTF,LSTAPE,LSTC
 1,NSP,PSMA,FMAXRP
 COMMON/RKPR/NDS,PK(20),DELPSP(20),DS4(30),DELD5(30),BLA(120),OMAX
 C "M" /CT4+TA/X(4000),Y(4000),P(4000),V(4000)
 COMMON/VPNPRB/IWP,XZ(150),YZ(150),PAYZ(150),
 COMMON/CITYPR/NAMEC(20),BLD(20),TOTPOP,RLC,FLATC,FLONGC,FLFCF,RLF(3)
 1,SGTX,SCTY,RLG(21),NTRCTS
 COMMON/TPR/BLN(21), DEL,RLN(23)
 COMMON/TOPR/HLR,40,WS,BLC(15)

 MAXRP = FMAXRP
 IWP=1
 PAYZT=0.
 IF (I10,1CH .EQ. 0) GO TO 41
 WRITE (*,42) (NAMEC(I), I = 1,20)
 42 FORMAT(1H1,15,1B1)
 *//10+11A8 SUBROUTIN BY WEAPON LAYDOWN IN BLAST OPTIM
 *IZATION FOR CITY OF //10+30X, 2004+//11)
 WRITE (*,43)
 43 FORMAT(1H , 5H RP. , 15H TOTAL VALUE , 15H VALUE THIS RPN.
 1 , 15H XPT. LATITUDE , 15H XPT. LATITUDE , //)
 41 CONTINUE

 C FIND SMALL DISTANCE
 PKTAR = PK(25)/2.
 DO 21 J = 1,NDS
 JJ = NDS - J +
 IF (PK(J,J) >= PKTAR) GO TO 21
 JUSE = JJ
 GO TO 22
 21 CONTINUE
 JUSE = 1
 22 CONTINUE
 DZER = SQR((RS*(JUSE)))
 STMTN = DZER/2.

12/16/76

PAGE NO. 00

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

C ADJUST NUMBER OF MESHES TO GIVE MESH SPACING ABOUT EQUAL TO
C WEAPON RADIUS.
IF(NMSH .NE. 0) GO TO 23
TEMP = SQRT(SGTX*SGTY)/DZER
NMSH = 3.*TEMP
23 CONTINUE

C SETUP INITIAL MESH
TMP = NMSH/3
194 XS = SGTX/TMP
YS = SGTY/TMP
XC=..
YC=..
NX = NMCH
NY = NMCH
IF(XS-STMIN) 360,360,362
360 IF(YS-STMIN) 361,361,362
361 XS=2.*XC
YS=2.*YC
NX = NX/2
NY = NY /2

362 CONTINUE
PAYMAX=.
C EVALUATE GRTU XC,XS,NX,YC,YS,NY
C AND SAVE REST IF BETTER PAYMAX IN XMAX,TMAX
170 FNY=NY
FNX=X
NNX=2*NY+1
XAIM=XC-(FNX+1.+1)*XS
DO 177 KX=1,NNX
XAIM=XAIM+XS
NNY=2*NY+1
YAIM=YC-(FNY+1.+1)*YS
DO 177 KY=1,NNY
YAIM=YAIM+YS
JSW=1
ASSIGN 175 TU NEXT
GO TO 170
175 IF(PAY=PAYMAX) 177,177,176
176 PAYMAX=PAY
XMAX=XAIM
YMAX=YAIM
177 CONTINUE
IF(XS-STMIN) 178,178,179
178 IF(YS-STMIN) 180,180,179
179 XS=XS/3.
YS=YS/3.
NX=2
NY=2
XC=XMAX
YC=YMAX
GO TO 180
180 PAYZ(IWP)=PAYMAX
XZ(IWP)=XMAX
YZ(IWP)=YMAX
IF(IWP=1) 412,412,410
410 IF(PAYZ(IWP)=PAYZ(IWP-1)) 412,412,410

I-112

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

***** CLASSIFIED *****

12/15/76

PAGE NO. 702

23

*** UNCLASSIFIED *** I-113 12/15/76

PAGE NO. 88

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

50 FORMAT(1H , I5+4F15.6)
54 CONTINUE
52 CONTINUE
RETURN

C EVALUATE OR UPDATE AS JSW=1, OR 2
C REMOVE IF JSW IS 3 RECOVERED PAY TO PAYR
C EXIT TO NEXT
170 PAY=0.
PAYR=0.
DO 161 I=1,NTRCTS
TEMPX = ABS(XAIM - X(I))
IF(TEMPX .GT. DMAX) GO TO 161
TEMPY = ABS(YAIM - Y(I))
IF(TEMPY .GT. DMAX) GO TO 161
DD = TEMPX*TEMPX + TEMPY*TEMPY
J = 1
164 CONTINUE
J = J + 1
IF(DSQ(J) .GT. DD) GO TO 164
P = PK(J) + (UD - DSQ(J))*DELPS(J)/DELDs(J)
P = P*DEL
PAY=PAY+V(I)*P
GO TO (161,160,400),JSW
400 VOR=V(I)/(1.-P)
PAYR=PAYR+VOR-V,I,
V(I)=VOR
GO TO 161
160 V(I)=V(I)*(1.-P)
161 CONTINUE
GO TO NEXT,(175,411,191)
END

SUBROUTINE ONEPAS (JSW, XAIM,YAIM)

NEVUNS Standard

C NEVUNS STANDARD
C LAST REVISED NOV. 15, 1972
C DOES A SINGLE UPDATE TRACT BY TRACT FOR BLAST KILL BY ADDING OR
C REMOVING A WEAPON

COMMON/DKPR/MLK,PK(30),DELPS(30),DSQ(30),DELDs(30),BLA(120)+DMAX
COMMON/ST44TA/X(4000),Y(4000),PUP(4000),V(4000)
COMMON/CITYPR/ RLD(55),NTRCTS
COMMON/WPNPP/HLM(2), UEL,BLV(73)

C EVALUATE OR UPDATE AS JSW=1, OR 2
C REMOVE IF JSW IS 3 RECOVERED PAY TO PAYR
170 PAY=0.
PAYR=0.
DO 161 I=1,NTRCTS
TEMPX = ABS(XAIM - X(I))
IF(TEMPX .GT. DMAX) GO TO 161
TEMPY = ABS(YAIM - Y(I))
IF(TEMPY .GT. DMAX) GO TO 161
DD = TEMPX*TEMPX + TEMPY*TEMPY
J = 1
164 CONTINUE

I-114

**** UNCLASSIFIED ****

12/15/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 00

J = J + 1
IF(PSQ(J) .GT. P0) GO TO 154
P = PK(J) + (UB - DSQ(J)) * DELPS(J) / DELQS(J)
P = P + PEL
PAY = PAY * V(I) * P
GO TO (161,780,400),JSW
400 VRH = V(I) / (1. - P)
PAY = PAY * VRH * V(I)
V(I) = VRH
GO TO 161
140 V(I) = V(I) * (1. - P)
141 CONTINUE
RETURN
END

Never Standard

SUBROUTINE FLRKEU

C NEVERS STANDARD
C LAST REVISED NOV. 8, 1972
C FILES PK TABLE ACCORDING TO EVERETT FASHION IN ORIGINAL DGZSEL
C TABLES FILLED FOR BOTH BLAST AND INJURY

DIMENSION PKC(30),PSU(30),DELQS(30),DELPS(30)
COMMON/PKPR/ NDC,PKI(30),PKL(30),PSQL(30),PSQNL(30),
1 PKI(30),PKL(30),PSI(30),PSNI(30),UMAX
COMMON/PRDPP/HLA(3),CEP,BLB(4),NTYPE ,RLC(17),YLDNU,BLD
COMMON/VULPD/ PSIL,PLR,PSINU,HLL(3),XMOD,BLF(102)
COMMON/TRANSFR/ NUD,PZR,SIGD,PTG,PMAX,RLF(16)
COMMON/TOPIC/ RLG,MG,RLH(16)
EXTERNAL PZ7

MODE=6

ZTLCN = SSKP(0.0,1.0,0.0,0.0)
ISTOT = 1
PST = PSL
GO TO 24
23 CONTINUE
PST = PSTNU
CONTINUE
IF(NTYP = 0) PST = - PST
ZER = XLOAD(PST)*YLDNU
SIGD=CEP/1.774
PMAX = SSKP(1.0, ZER+STGN,STGN,0.0,0.0)
DMAXES = (ZER+CEP)

DSQ(1)=1.05
PKC(1)=**
PTG=**
DSQ(2) = ROUTE(0.,0.0MAX*,0.01,PZ7)
PKC(2)=**
PTG=**
DSQ(3) = ROUTE(0.,0.0MAX*,0.01,PZ7)
PTG=**
DSQ(4) = ROUTE(0.,0.0MAX*,0.01,PZ7)
PTG=**
DSQ(5) = ROUTE(0.,0.0MAX*,0.01,PZ7)
PTG=**
DSQ(6) = ROUTE(0.,0.0MAX*,0.01,PZ7)

I-115

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 00

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

PTG=PTG+.05
700 CONTINUE
PTG=.98
DSQ(24) = ROUTF(0..DUMAX*.001,PZZ)
PTG=.99
DSQ(25) = ROUTF(0..DUMAX*.001,PZZ)
DSQ(26)=0.
PKC(26)=1.
DO 701 I=3,25
XXXX = DSQ(I)
PKC(I) = SSKM(MOD,USER,SIGN,SIG0,XXXX,0.)
DSQ(I)=DSQ(I)*DSQ(I)
701 CONTINUE
DSQ(2)=DSQ(2)*DSQ(2)
NDS=26
DMAX=SQRT(DSQ(2))
DO 710 I = 2,26
DELDS(I) = DSQ(I) - DSQ(I-1)
DELPS(I) = PKC(I) - PKC(I-1)
710 CONTINUE
IF (ISTRAT .NE. 1) GO TO 21
DO 22 J = 1,NDS
PKL(J) = PKC(J)
DPKL(J) = DELPS(J)
DSQL(J) = DSQ(J)
DDSQL(J) = DELDS(J)
22 CONTINUE
ISTRAT = 2
GO TO 23
21 CONTINUE
DO 26 J = 1,NDS
PKI(J) = PKC(J)
DPKI(J) = DELPS(J)
DSQI(J) = DSQ(J)
DDSQI(J) = DELDS(J)
26 CONTINUE
WRITE(MO,48)
48 FORMAT(////)
WRITE(MO,8)
8 FORMAT(1H0, 4HVALUES OF PK - DIST BY DGZSEL TYPE CALCULATION)
WRITE(MO,43)
43 FORMAT(1H0, 4H NO. ,9H PROR L ,2X, 8H DIST L ,2X,
19H PROR I ,2X, 8H DIST I ,12X,4H NO. ,9H PROR L ,
2 2X, 8H DIST L ,2X, 9H PROR I ,2X, 8H DIST I)
DO 41 I = 1,13
II = 2*I
IM = II - 1
TL1 = SORT(DSQL(IM))
TL2 = SORT(DSQL(II))
TI1 = SORT(DSQI(IM))
TI2 = SORT(DSQI(II))
WRITE(MO,42) IM,PKL(IM), TL1,PKI(IM),TI1,
1,II,PKL(II),TL2,PKI(II),TI2
42 FORMAT(1H , 1H ,1H ,1H , F9.6, F12.6,F9.6, F12.6,10X,
1H ,1H ,1H ,1H , F9.6, F12.6, F9.6, F12.6)
41 CONTINUE
RETURN
END

I-116

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

FUNCTION PZZ(XXX)

Never used

C NEVERS STANDARD
 C LAST REVISED NOV. 7, 1972
 C USED IN CONJUNCTION WITH RROUTE TO FILL A SPECIAL ROLE IN FLPKHO.
 C THERE IS NO GENERAL USE FOR THIS FUNCTION.

COMMON/TRANSF/MOD,DZER,SIG0,PTG,PMAX,RLA(15)
 EXTERNAL SSKR
 TEMP = SSKR(MOD,DZER,SIG0,SIG0,XXXX,0)
 PZZ = TEMP - PTG*PMAX
 RETURN
 END

Never used

FUNCTION SSKR (MOD, SX, SY, XMU, YMU)

C NEVERS STANDARD
 C LAST REVISED NOV. 7, 1972

C COMPUTES SINGLE SHOT KILL PROBABILITY FOR ELLIPTICAL NORMAL
 C DISTRIBUTION WITH AIMING ERROR SX AND SY. THE AIMING OFFSET IS
 C XMU AND YMU. A IS THE WEAPON LETHAL RADIUS. MOD IS A SHAPE FACTOR
 C MOD = 1 IS GAUSSIAN IN PK VS ACTUAL DISTANCE FROM THE WEAPON
 C MOD = 3 IS SIG 20, MOD = 6 IS SIG 30 + MOD = INF IS COOKIE CUTTER
 C FOR A DESCRIPTION OF EQUATIONS SEE LAMDA PAPER 6 BY HUGH EVERETT
 C ITT AND R. GALTAND.
 C THE FUNCTION MUST BE INITIALIZED BY AN INITIAL CALL WITH MOD = 0
 C ZERO VALUE OF SSKR IS RETURNED. AFTERWARDS NORMAL CALLS CAN BE
 C MADE FOR THE DURATION OF THE PROGRAM.

```

DIMENSION BIN(25)
DIMENSION X(11)
IF(MOD)50,11,1
      11
CONTINUE
INITIALIZATION
BIN(1)=1.0
BIN(2)=1.0
DO 20 J=2,20
  L=J*(J+1)/2+2
  RT=(L-1)=1.0
  RTN(L-2)=1.0
  RTN(J-1)=1.0
  L=J*(J-1)/2+1
  L=J-1
  DO 20 K=1,L
    BIN(K)=RT*(LN)+RTN(KM+1)
  L=L+1
  RTN=L
CONTINUE
Y(1)=2.506028474
Y(2)=2.5446028474
Y(3)=7.519875422
Y(4)=7.59946711
Y(5)=2.52201764693
Y(6)=2.3480783429
Y(7)=2.085040299
Y(8)=3.39733023382

```

I-117

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

28

W(9)=5080943.592
W(10)=86376975.90
W(11)=1641162542.
SSKP = 0.
RETURN

C NORMAL CALL
10 C=6.283185*SX*SY
XMOD=MOD
B=XMOD/(4*4)
N=MOD=1
XJ=1.0
TSUM=0.
LL=n
L(X=L, * :
NX = N+1
DO 7 JX= LLX+NX
J = JX - 1
SUM=0.
NN=J*(J+1)/2+1
K=a
KX = K + 1
JY = J + 1
DO 9 LX = KX,JY
L = LX = 1
NNN=NN+1
Y1=G(2*L,SX,XMU,B,BIN,W)
Y2=G(2*(J-L)+SY,YMU,B,BIN,W)
TERM=BIN(NNN)*Y1*Y2
SUM=SUM+TERM
3 CONTINUE
TTERM=H*J*SUM
IF (J)5:0:5
6 TTERM=TTERM/XJ
XJJ=J
XJ=XJ*(XJJ+1+n)
4 TSUM=TSUM+TERM
7 CONTINUE
SSKP = TSUM/C
RETURN
END

FUNCTION G(M+SIG*XN,BB,BIN,W)

C NEWUNS STANDARD
C LAST REVISED NOV. 7, 1972
C ONLY USED FOR SPECIAL CALCULATIONS FOR THE FUNCTION SSKP.
C SEE LAMBDA PAPER 6.

DIMENSION BIN(1),W(11)
ALPHA=SORT (1.+2.*BB*SIG*SIG)
SA=SIG/ALPHA
IF (XM)11,*10*11
7, BETA=XM/ALPHA
SR=SIG/BETA
BA=BETA/ALPHA
L=a
SUM=0.
NN=M*(M+1)/2+1

Never Standard

I-118

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/15/76

PAGE NO. 000

29

```
LX = L + 1
LY = M + 1
DO 1 KX= LX+MAX
K = KX - 1
XMINN+K
L=K/2+1
Z = K
T=H*EXP((X-KX)*S2*Z*Z*(L))
SUM=SUM+TERM
1 REEXP ((HETA*HETA-X**2)/((2.0*STG*STG)))
V = 1
G=H*V*SA*Z*SUM
RETURN
1 G=SA*(M+1)
L=Z/2
G=G*(L+1)
RETURN
END
```

FUNCTION XLPBD(C)

C DEVINS STANDARD
C LAST REVISED NOV. 7, 1972
C RETURNS PRESSURE GIVEN DISTANCE, BASED ON OLD NSER FITS.

Never Standard
our recent version
available

```
DIMENSION T(13),X(13)*Y(26)
DATA T( 1) /2000.0/
DATA T( 2) /1000.0/
DATA T( 3) /500.0/
DATA T( 4) /250.0/
DATA T( 5) /125.0/
DATA T( 6) /62.5/
DATA T( 7) /31.25/
DATA T( 8) /15.625/
DATA T( 9) /7.8125/
DATA T(10) /3.90625/
DATA T(11) /1.953125/
DATA T(12) /0.9765625/
DATA T(13) /0.48828125/
DATA X( 1) /5.600774/
DATA X( 2) /5.21461/
DATA X( 3) /5.79375/
DATA X( 4) /4.64517/
DATA X( 5) /3.21250/
DATA X( 6) /3.43125/
DATA X( 7) /2.34575/
DATA X( 8) /2.70935/
DATA X( 9) /2.030350/
DATA X(10) /1.79175/
DATA X(11) /1.09861/
DATA X(12) /0.0/
DATA Y( 1) /-2.659/
DATA Y( 2) /-1.561/
DATA Y( 3) /-1.273/
DATA Y( 4) /-1.05/
DATA Y( 5) /-0.416/
DATA Y( 6) /-0.317/
DATA Y( 7) /-0.062/
```

I-119

***** UNCLASSIFIED *****

12/15/76

PAGE NO. 000

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

30

```
DATA Y ( 8) /0.1222/
DATA Y ( 9) /0.44469/
DATA Y (10) /-0.77011/
DATA Y (11) /-0.15699/
DATA Y (12) /1.71919/
DATA Y (13) /2.2213/
DATA Y (14) /-2.659/
DATA Y (15) /-1.561/
DATA Y (16) /-1.273/
DATA Y (17) /-1.05/
DATA Y (18) /-0.616/
DATA Y (19) /-0.301/
DATA Y (20) /-0.062/
DATA Y (21) /-0.222/
DATA Y (22) /-0.001/
DATA Y (23) /-0.49471/
DATA Y (24) /-0.8978/
DATA Y (25) /-0.25276/
DATA Y (26) /-0.88403/
B2=0
XX=0
C 0 GT ZERO IS SURFACE BURST, LESS THAN ZERO OPT. AIR BURST.
IF (XX.GE.0.) GO TO 1
B2=13
XX=-3
1 TEMP1= XX
IF (1..GE.XX) TEMP1=1.001
DO 2 II=1,13
I=1,I=1
IF (T(I).GT.TEMP1) GO TO 3
2 CONTINUE
I=12
3 TEMP2= X(I+1)-X(I)
XX1 = I
B2 = B2 + XX1
IR = IR
IRP = B2 + 1.
S=(Y(1B0)-Y(IR))/TEMP2
B=(S*X(I+1))+Y(IRP)
Z=ALOG(TEMP1)*S*B
XLRAD = EXP(Z)
RETURN
END
```

Never Standard

FUNCTION ROOTF(Y0,XF,ERR,DUMMY)

```
C NEVERS STANDARD
C LAST REVISED NOV. 7, 1972
C A FUNCTION WHICH RETURNS AS A FUNCTION VALUE THE FIRST ROOT,
C USUALLY OF THE FUNCTION DUMMY.
C USUALLY OF THE FUNCTION DUMMY.
```

```
C INITITALIZE AMINUS
ISW=0
XMIN=XA
FMIN=DUMMY(XMIN)
ROOTF=XMIN
IF (FMIN.EQ.0.) RETURN
XPLUS=XF
```

I-120

*** UNCLASSIFIED *** 12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****
DELTAT = (XF-XA)/2.
TCP4000DELTAT=0.015

12/15/76

PAGE NO. 000

31

STEP THROUGH UNTIL STRADDLE ROOT.
 IF(XPLUS>XMIN) (XPLUS)
 ROOTF(XPLUS)
 IF(XPLUS>XMAX) RETURN
 IF(XPLUS<XMIN) GO TO 2
 FMINS=XPLUS
 XPLUS=XPLUS + DELTA
 IF(XPLUS>XMAX) GO TO 1
 DECREASE DELTA AND START OVER LOOKING FOR ROOT.
 DELTA=DELTA*.5
 XPLUS=DELTA*.5*X0
 IF(DELTA>TCRIT.GE.0.0) GO TO 1
 ERROR EXIT
 ROOTF_XF=1
 RETURN
 IF(XPLUS .GE. 0.) GO TO 11
 TEMP=XPLUS
 XPLUS=XMIN
 XMIN=TEMP
 TEMP=XPLUS
 FMINS=XMIN
 F(XMIN)=TEMP
 IF(TSY .EQ. 0) GO TO 12
 TSY=1
 T1=MPLINEAR INTERPOLATION
 T2=XPLUS+FMINS
 X0=(X1*INS-XPLUS)*FMINS/T1+XMIN
 GO TO 13
 C
 13 BINARY DIVIDE
 X0=(XPLUS+XMIN)*.5
 TSY=1
 FPREV=FRV(XP)
 ROOTF=X0
 IF(FP .EQ. 0.) RETURN
 IF(FP .LT. 0.) GO TO 14
 FMINS=FP
 XPLUS = XP
 GO TO 14
 14 FMINS=FP
 XPLUS=XP
 15 IF(Y1*INS+XPLUS .EQ. 0.) GO TO 11
 T1=MPLINEAR+XPLUS
 TEMP = (XMIN-XPLUS)/T1
 IF(TEMP .GE. 0.) GO TO 15
 TEMP = - TEMP
 16 IF(TEMP-ERR .GE. 0) GO TO 11
 ROOTF=(XMIN+XPLUS)*.5
 RETURN
 END

www.1stdome

SUBROUTINE CALR8

C NEWINS STANDARD
C LAST REVISED NOV. 2, 1972

I-121

***** UNCLASSIFIED *****

12/15/75

PAGE NO. 806

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

C... THE PURPOSE OF THIS SUBROUTINE IS TO PUT RANDOM NUMBER
C GENERATOR CALLS IN ONE PLACE
C THIS WILL ALLOW CONVERTING TO OTHER SYSTEMS WITH A MINIMUM OF PAIN
C... IF RNO = ZERO GET A NEW RANDOM NUMBER. -INSERT INTO RNW
C IF RNO IS POSITIVE OBTAIN SEED FOR RANDOM NUMBERS. THIS MUST
C BE DONE BEFORE THE FIRST RANDOM NUMBER IS GENERATED.
C IF RNO = 1. OBTAIN SEED (RANDOMLY) BY READING CLOCK, OTHERWISE
C USE RNO AS VALUE OF SEED.
C IF RNO IS -1 DRAW NUMBER FROM EXPONENTIAL DISTRIBUTION, ANY OTHER
C NEGATIVE NUMBER DRAW FROM NORMAL DISTRIBUTION, N(0,1)

COMMON /TRAN/RNO,RNW

IF(RNO .NE. 0.) GO TO 10

C GET A RANDOM NUMBER UNIFORMLY DISTRIBUTED FROM 0 TO 1, FLOATING PT.
C RANF(0) IS UNIQUE TO CDC 6400 FTM
RNW = RANF(0)
RETURN

10 CONTINUE
IF (RNO .LT. 0.) GO TO 20
IF (RNO .EQ. 1.) GO TO 15

C INITIALIZE RANDOM NUMBER GENERATOR WITH RNO AS SEED
C RANSET IS UNIQUE TO CDC 6400 FTM
CALL RANSET(RNO)
RETURN

C READ THE SOFTWARE CLOCK TO OBTAIN SEED HOPEFULLY AT RANDOM.
C THE FUNCTION TIME IS CDC 6400 FTM UNIQUE.
15 CONTINUE
CALL TIME(CLTIM)
CLTIM = ABS(CLTIM)
RNI = CLTIM * 1.2
CALL RANSET(RNI)
RETURN

20 CONTINUE
IF (RNO .NE. -1.) GO TO 40

C DRAW NUMBER FROM EXPONENTIAL DISTRIBUTION WITH MEAN = 1
U = RANF(0)
RNW = - ALOG(U)
RETURN

40 CONTINUE

C DRAW NUMBER FROM NORMAL DISTRIBUTION WITH MEAN 0 AND STD. DEV. 1
C USE AS METHOD ALGORITHM TR FROM *COMPUTER METHODS FOR SAMPLING
C FROM THE EXPONENTIAL AND NORMAL DISTRIBUTIONS*, J. H. AHRENS
C AND U. DIETER, COMMUNICATIONS OF THE ACM, OCT., 1972, VOL. 15,
C NO. 10, P. 873.

41 CONTINUE

U = RANF(0)
U_n = RANF(1)
IF(U .GE. 0.419E444E5706926 1 GO TO 42
RNW = 2.437576E693742*(U_n + U*0.92532928E536923) -

**** UNCLASSIFIED **** I-122 12/16/76

PAGE NO. 0000

12/16/76

PAGE NO. 000

1.2.11412809333742

33

42 CONTINUE
 IF(U < LT, 0.9656871312138581 GO TO 44

43 CONTINUE
 $U_1 = \text{RANF}(0)$
 $Y = 4.4691473713927 - 2.8\text{ALOG}(U_1)$
 $U_2 = \text{RANF}(0)$
 $IF(Y > U_2, GT, 2.11402809333724) GO TO 43$
 $GO TO 40$

44 CONTINUE
 IF(U < LT, 0.9649907700733123) GO TO 46

45 CONTINUE
 $U_1 = \text{RANF}(0)$
 $Y = 1.04039074799771 + 0.1800273529335939796$
 $U_2 = \text{RANF}(0)$
 $\text{TEMP} = 0.373942236411+32*EXP(-Y*Y/2.) - 0.443299125820220$
 $1 + Y*0.209694057195435$
 $IF(TEMP < LT, 0.9370742531540725) GO TO 45$
 $GO TO 40$

46 CONTINUE
 IF(U < LT, 0.92585233747714) GO TO 48

47 CONTINUE
 $U_1 = \text{RANF}(0)$
 $Y = 0.20972973638000 + 0.1*1.55066917379771$
 $U_2 = \text{RANF}(0)$
 $\text{TEMP} = 0.393442281401493*EXP(-Y*Y/2.) - 0.443299125820220$
 $1 + Y*1.209694057195435$
 $IF(TEMP < LT, 0.929001597522465231) GO TO 47$
 $GO TO 40$

48 CONTINUE
 $U_1 = \text{RANF}(0)$
 $Y = 0.19 + 0.20972957350000$
 $U_2 = \text{RANF}(0)$
 $\text{TEMP} = 0.373942236411+32*EXP(-Y*Y/2.) - 0.392544256042518$
 $IF(TEMP < LT, 0.9370347724258912) GO TO 49$
 $GO TO 40$

49 CONTINUE
 IF(U < LT, 0.5) GO TO 51

50 RETURN

51 CONTINUE
 $RW = Y$
 $RETURN$
 END

FUNCTION COLUMN (X)

- C MEMOIRS STANDARD
 C LAST REVISED NOV. 7, 1972
 C COMPUTER Y = P(X) = PROBABILITY THAT THE RANDOM VARIABLE U,

I-123 12/16/76

PAGE NO. 000

Nevuns Standard

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

C DISTRIBUTED NORMALLY(0,1), IS LESS THAN OR EQUAL TO X.
C IF X IS GREATER THAN 7 P = 1
C IF X IS LESS THAN -7 P = 0
C SEE HASTINGS APPROX FOR DIGITAL COMPUTERS. P. 169
C BETTER IS HASTINGS P. 187 WHICH DOES NOT HAVE TO USE THE EXP
C FUNCTION. SEE FUNCTION CUMNOR

34

AX = ABC(X)
IF (AX = 7=0) 10 10 20
10 CONTINUE
T = 1.0/(1.0+2316419*AX)
D = 0.3989423*EXP(-0.5**X)
P = 1.0 - D*T*((((1.330274*T - 1.821256)*T + 1.781478)*T -
A 0.3665638*T + 0.3193815,
IF (X>1.22
P = 1.0 - R
2 CUMNOR = P
RETURN
20 IF (X) .30,.30,.40
30 CUMNOR=.0
RETURN
40 CUMNOR=1.0
RETURN
END

SUBROUTINE PUIST(NTYPE,LOGV,PRES,DIST)

NEVUNS Standard

C NEVUNS STANDARD
C LAST REVISION OCT. 30, 1972
C COMPUTES DISTANCE GIVEN PRESSURE
C DISTANCE IS IN NAUTICAL MILES. PRESSURE IS PSI. ONE MT. WEAPON
C YIELD IS ASSUMED. BASED ON A FIT TO HEIGHT OF BURST CURVES IN
C EFFECTS OF NEUCLEAR WEAPONS. THE SAME EQUATIONS ARE USED FOR THE
C INVERSE CALCULATION IN THE SUBROUTINE PROMPT.
C FIT TO WITHIN 1% PER CENT FROM 1 TO 200 PSI
C NTYPE = 1 IS SURFACE. EQUAL 0 IS 10PSI OPTIMIZED.=-1 IS OPT
C AIRBURST
C IF LOGV = 0 CALL WITH PRESSURE. IF 1 CALL WITH LOG PRESS

IF (LOGV .EQ. 1) GO TO 5
IF (PRES .GT. 0.00001) GO TO 9
DIST = 99999.
RETURN
6 CONTINUE
IF (PRES .GT. -5.) GO TO 9
DIST = 99999.
RETURN
9 CONTINUE
IF (NTYPE .LE.0) GO TO 20
C SURFACE BURST
IF (LOGV .EQ. 1) GO TO 11
XLRES = ALOG10(PRES)
GO TO 12
11 CONTINUE
XLRES = PRES

I-124

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

35

12 CONTINUE
IF(XLPRES .LE. 1.3110) GO TO 13
SLOPE = -2.255
GO TO 14
13 CONTINUE
SLOPE = -1.425
14 CONTINUE
XLDIST = .00046 + (XLPRES - 1.3110)/SLOPE
DIST = 10.***XLDIST
RETURN
15 CONTINUE
IF(NTYPE .LT. 0) GO TO 50

C 16 PSI OPT ALGORITHM
PDE = PDES
IF(LOGM .EQ. 0) GO TO 21
IF(PDES .GT. 15) GO TO 30
XLPRES = ALOG10(PRES)
GO TO 40
21 CONTINUE
XLPRES = PRES
IF(XLPRES .LT. 1.1761) GO TO 40
PDE = 10.***XLPRES
GO TO 30
30 CONTINUE
C NO ERROR EXIT IF PRESSURE GREATER THAN 38PSI
IF(PRE .LE. 38) GO TO 31
DIST = 0
RETURN
31 CONTINUE
IF(PRE .LT. 20) GO TO 32
DIST = 1/38. - PRE 1/19.5
RETURN
32 CONTINUE
DIST = 3.922 + (2.0 - PRE)/5.1
RETURN

40 CONTINUE
C LOG PRESSURE
XLDIST = .2737 + (1.1761 - XLPRES)/1.75
DIST = 10.***XLDIST
RETURN

C NOT AT REQUEST
CONTINUE
50 IF(LOGM .EQ. 1) GO TO 51
XLPRES = ALOG10(PRES)
GO TO 51
51 CONTINUE
XLPRES = PRES
CONTINUE
55 IF(XLPRES .GT. 1.3110) GO TO 52
SLOPE = -1.052
GO TO 52
52 CONTINUE
SLOPE = -1.230
CONTINUE
53 XLDIST = .1303 + (XLPRES - 1.3110)/SLOPE
DIST = 10.***XLDIST
RETURN
END

I-125

***** UNCLASSIFIED *****

12/16/76

PAGE NO. 000

*** INCLASSIFIED ***

12/16/76

PAGE NO. 000

36

SUBROUTINE PROMPT

C NEVIINS STANDARD
C LAST REVISED OCT. 31, 1972
C TO CALCULATE PRESSURE(PSI), THERMAL RADIATION(CAL/CM2),
C AND INITIAL NUCLEAR RADIATION(RAD) GIVEN DISTANCE(IN MI.)
C NTYPE = 1 SURFACE BURST 0 IS 10PSI OPTIMIZED AIRBURST*
C IF -1 IS A OPTIMUM AIRBURST HEIGHT
C LONG = 1 DO WHOLE CALCULATION, 0 DO PRESSURE ONLY
C LONG = 2 DO SPECIALIZED INR CALCULATION.

*newer standard
more recent version
available*

COMMON/EFFCAL/ YIELD, YLDPCR, YLDPLG, LONG, NTYPE, DSTP, HOB, PRES,
1 XLPRES, THER, THDPVS, RAD, AW, BLANK(12)
DATA PMIN, PMAX, XLMIN, XLMAX/0.001, 99999., -3., 5./
DATA THDPF/ 0.333333/

DIST = DSTP/YLDPCR
IF(DIST .GT. 0.0001) GO TO 4
DIST = 0.0001
* CONTINUE
IF(NTYPE .LE. 0) GO TO 41
C SURFACE BURST
XLDIST = ALOG10(DIST)
IF(LDIST .GE. 1.147) GO TO 2
1 SLOPE = -2.255
GO TO 3
2 CONTINUE
SLOPE = -1.825
3 CONTINUE
XLPRES = 1.3010 + SLOPE*(XLDIST - 0.0596)
PRFS = 10*** XLPRES
GO TO 60
*0 CONTINUE
IF(NTYPE .LT. 1) GO TO 50
C 10 PSI OPTIMIZED BURST
IF(DIST .LT. 1.90) GO TO 41
XLDIST = ALOG10(DIST)
XLPRES = 1.1761 - 1.75*(XLDIST - .2787)
PRES = 10.*XLPRES
GO TO 60
*1 CONTINUE
IF(DIST.LT. 0.922) GO TO 42
PRES = 20. - 5.1*(DIST - .922)
XLPRES = ALOG10(PRES)
GO TO 60
*2 CONTINUE
PRES = 38. - 19.5*DIST
XLPRES = ALOG10(PRES)
GO TO 60
50 CONTINUE
C OPTIMIZED AIRBURST HEIGHT
XLDIST = ALOG10(DIST)
IF(DIST .LT. 1.055) GO TO 52
SLOPE = -1.52

I-126

*** INCLASSIFIED ***

12/16/76

PAGE NO. 0000

50 TA 52
 51 CONTINUE
 52 SLOPE = -1.431
 53 CONTINUE
 54 ALPHES = 1.3918 + SLOPE*(XLDIST = .1903)
 55 PRES = 10.*ALPHES
 56 CONTINUE
 57 IF(PRES .LT. 0.1) PRES = PMIN
 58 IF(PRES .LT. PMIN) ALPHES = XLDMIN
 59 IF(PRES .GT. PMAX) PRES = PMAX
 60 IF(PRES .GT. PMAX) ALPHES = XLDMAX
 61 IF(LONG .NE. 0) GO TO 72
 62 RETURN

C 604 DO 805 KAP
 61 CONTINUE
 62 IF(LONG .EQ. 2) GO TO 80
 C 63 NORMAL INR CALCULATION
 64 IF(NTYPE .EQ. 1) GO TO 70
 C 65 1A PSI OR OPT ATR BURST
 66 CRD = 7.25E+12
 67 CRDM = 7.64E-3
 68 SRS = 5.07E+0 + 3.42E+6*DTP*DTP
 69 SR = S10T(SRS)
 70 GO TO 71
 71 CONTINUE
 C SURFACE BURST
 72 CRD = 3.2E+12
 73 CRDM = 3.35E-3
 74 SR = 1.0E-6*DTP
 75 SRS = SR*SR
 76 CONTINUE
 77 ARD = YIELD*(CRD = 3.2E+12*YIELD)
 78 ABD = CRD = 3.2E-7*YIELD
 79 RAB = ABD*EXP(-ARD*SR) / SRS
 80 IF(RAB .GT. 1.E+9) RAB = 1.E+9
 81 GO TO 11

80 CONTINUE
 C SPECIALIZED INR CALCULATION
 81 TO OBTAIN INR DIRECTLY FROM SHANT RANGE
 C AR IS VALUE OF RHO IN THIS CALCULATION
 82 IF(NTYPE .EQ. 0) GO TO 81
 C SURFACE BURST
 83 THIS CANNOT HANDLE AIR BURSTS OTHER THAN 10 PSI OPT
 84 SLMTR = DIST*DIST + .0029119
 85 SLMTR = SORT(SLMTR)
 86 GO TO 82
 87 CONTINUE
 88 1A PSI OPT
 89 IF(YIELD .EQ. 1.) GO TO 83
 90 IF(YIELD .EQ. .3162) GO TO 84
 C 91 1A
 92 SLMTR = DIST*DIST + 0.173916
 93 SLMTR = SORT(SLMTR)
 94 GO TO 84
 95 CONTINUE
 96 SLMTR = DIST*DIST + 1.4512

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

38

SLNTR = SQRT(SLNTR)
GO TO 89
CONTINUE
84 SLNTR = DIST*DIST + 0.65477
SLNTR = SQRT(SLNTR)
CONTINUE
82 IF(YIELD .EQ. .04) GO TO 91
IF(YIELD .EQ. .3) GO TO 92
C YIELD IS MT NOW
IF(AR .EQ. 1.1) GO TO 93
IF(AR .EQ. 1.2) GO TO 94
SLOPE = -4.0733
SRATE = 0.4924
GO TO 95
93 SLOPE = -3.4638
SRATE = 1.0107
GO TO 95
94 SLOPE = -3.7821
SRATE = .9487
GO TO 95
C YIELD = .3
92 SLOPE = -4.5362
SRATE = 0.7274
CONTINUE
95 XLGRAD = 4. + SLOPE*(SLNTR - SRATE)
GO TO 100
91 CONTINUE
C YIELD = 4.1 KT
IF(AR .EQ. 1.1) GO TO 101
IF(AR .EQ. 1.2) GO TO 102
C RHO = 1.3
IF(SLNTR .GT. 0.29139) GO TO 103
SLOPE = -21.1274
SRVAL = 0.29139
VALLG = 5.14613
GO TO 110
103 CONTINUE
SLOPE = -6.0259
SRVAL = -4.03
VALLG = 4.
GO TO 110
102 CONTINUE
IF(SLNTR .GT. 0.29949) GO TO 105
SLOPE = -1/.9641
SRVAL = 0.29949
VALLG = 5.14613
GO TO 110
105 CONTINUE
SLOPE = -5.5741
SRVAL = .5072
VALLG = 4.
GO TO 110
101 CONTINUE
IF(SLNTR .GT. 0.31298) GO TO 106
SLOPE = -14.0806
SRVAL = 0.31298
VALLG = 5.14613
GO TO 110
106 CONTINUE
SLOPE = -4.7824
SRVAL = 0.5369

I-128

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/15/76

PAGE NO. 800

11 VALG = 4.
CONTINUE
XLGAD = VALG + SLOPE*(SLUT4 - SRVAL)
CONTINUE
12 IF(XLGAD .GT. 8.) GO TO 121
RAD = 10.*XLGAD
GO TO 11
RAD = 1.E+6
11 CONTINUE

C NOV THERMAL RADIATION
THER = 7.4+E+8*THRMF*YIELD * EXP(- THRPVS*SH)/SRS
IF(THER .GT. 1.E+1) THER = 1.E+9
RETURN
END

Subroutine FLRK:

C NEWHS STANDARD
C LAST REVISED ON NOV. 24 1972

C FLRK IS THE ARRAYS DSNU,PKC1,DSOK,PKCK,DELDST,DELPST,DELDK,DELPK
C WITH PRESSURE PK DISTANCE RELATIONSHIPS DIRECTLY CALCULATED
C THE EFFECTS OF CEP ARE INCLUDED BY DIRECT INTEGRATION OF PHRS

DIMENSION PKT(24), RLGP(26),DRL(26),DHC(26)
COMMON/TMPANU/JRAD,NNINE,IPINCH,IPLNCH,IPLTP,ADJUST,LSTAKE,LSTC
1 ,NSP,DSMAX,PMAXP
COMMON/DPH/NSP,PKCK(30),DELUCK(30),DSUK(30),DELDK(30),
1 PKT(30),DELPST(30),DSNT(30),DELDST(30),DMAX
COMMON/MLPP/PST,SIGL,PSINV,SIGMC,BLANK(102)
COMMON/PPNPBL/BLA(3),CER,RLC(13),ITYPE,RLC(13),YLUND,BLD
COMMON/FFCAL/HLE,YLUND,BLF,JTPR,DSTP,HLG,PRESS,PRLP,
1 RLW(13)
COMMON/TOPR/MP,MLJ,MS,SM(16)

DATA PKT/,DC01/-1.02E-05,-1.01E-05,-1.02E-05,-1.03E-05,-1.04E-05,
1 -1.05E-05,-1.06E-05,-1.07E-05,-1.08E-05,-1.09E-05,-1.09999/
DATA RLGP/-4.417E-3,2235E-2,32635E-2,05375E-1,04475E-1,24155E-
1,23543E-2,04152E-1,07449E-1,02440E-1,03152E-1,025335E-1,012566E-
2,0000E-1,2526E-1,025325E-1,034532E-1,02240E-1,07429E-1,04162E-1,03943E-
2,1.2415E-1,04647E-2,0753E-2,0232E-3,01417E-1

C IF(IPLTP .NE. 2) GO TO 1
C READ DATA INTO ARRAYS AND DO NOT CALCULATE IT.
C J=5 K=120
READ(IPLTP,102) J,PSNT(J),PKC1(J),DSVK(J),PKCK(J),J,DELDST(J),
1 DELST(1),DELDK(J),DELPK(J)
CONTINUE
RETURN
1 CONTINUE

C TO USE IN VEFCA
YLUND = YLUND
JTPR = ITYPE
JTPR = 1

I-120

***** UNCLASSIFIED *****

12/15/76

PAGE NO. 800

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

C FIRST FIND VALUES OF PRESSURE AND THEN DISTANCE FOR THAT PRESS.
RLPM = ALOG10(Psi)
RCPM = ALOG10(PSINJ)
SIGPL = RLPM*SIGBL
SIGPC = RCPM*SIGBC
DO 10 J = 1,6
RLL = RLGP(J)*SIGBL*RLPM + RLPM
IF (NTYPE .NE. 0) GO TO 7
IF (RLL.GT. 1.57978) GO TO 6
GO TO 7
6 DIST = 0
GO TO 8
7 CONTINUE
CALL PDIST(NTYPE,1,RLL,DIST)
DIST = DIST*YLDNU
8 CONTINUE
DBL(J) = DIST
DSQK(J) = DIST*DIST
RCL = RLGP(J) *SIGBC* RCPM + RCPM
IF (NTYPE .NE. 0) GO TO 3
IF (RCL.GT. 1.57978) GO TO 2
GO TO 3
2 DIST = 0
GO TO 4
3 CONTINUE
CALL PDIST(NTYPE,1,RCL,DIST)
DIST = DIST*YLDNU
4 CONTINUE
DBC(J) = DIST
DSOI(J) = DIST*DIST
10 CONTINUE

C OUTPUT INITIAL CALCULATIONS.
WRITE(MQ,15)
15 FORMAT(1H1)
WRITE(MQ,16)
16 FORMAT(//11111)
WRITE(MQ,11)
11 FORMAT(1HU, ,6HZERO GEP PK DIST LETHAL AND INJURY)
WRITE(MQ,12)
12 FORMAT(1HU, 4H NO., 8H PROB ,2X, 8H DIST L ,4X, 8H DIST I
1+12Y , 4H NO. , 8H PROB ,2X, 8H DIST L ,4X, 8H DIST I)
DO 14 I = 1,13
II = ?*I
14 = II - 1
WRITE(MQ,13) IM,PKT(IM) , DBL(IM) , DBC(IM) ,II,PKT(II),
1DBL(II) ,DBC(II)
13 FORMAT(1H ,1H, I2,1H), F8.6,2F12.6,10X,1H(+I2,1H),
1F8.6, 2F12.6
14 CONTINUE

C ADJUST DISTANCES TO GET A BETTER INTERPOLATION TABLE.
DSQK(1) = 0.79012344E+10
DBL(1) = 8888.8888
DSOI(1) = 0.79012344E+10
DBC(1) = 8888.8888
DBL(24) = 0.6666667*DBL(23)
DBL(25) = 0.333333*DBL(23)
DBC(24) = 0.6666667*DBC(23)
DBC(25) = 0.333333*DBC(23)
DSQK(24) = DBL(24)*DBL(24)

I-130

*** UNCLASSIFIED ***

12/16/76

PAGE NO. 000

***** INCLASSTEST *****

12/16/75

PAGE NO. 000

41

DSMK(25) = DNL(25)*DNL(25)
DSOT(24) = DRC(24)*DRC(24)
DSOT(25) = DRC(25)*DRC(25)
DNL(26) = 0.
DRC(26) = 0.
DSOK(26) = 0.
DSOT(26) = 0.
SIG = CEP/1.1774
DNL(2) = DNL(2) + 4.*SIG
DRC(2) = DRC(2) + 4.*SIG
DSOK(2) = DNL(2)*DNL(2)
DSOT(2) = DRC(2)*DRC(2)

C SETUP FOR NUMERICAL INTEGRATION FOR CEP EFFECTS.

DIL = SIG/2.0
SIGS = SIG*SIG
TPISS = 1. / (2. * 3.14159265 * SIGS)
TSIGS = 1. / (2. * SIGS)

C INTEGRATE FOR EACH DISTANCE

DO 150 JJK = 3,24

SUMDL = 0.

SUMDC = 0.

SUMDP = 0.

CROSS = -DIL

CTRC AND CTDC USED AS WEIGHTS IN SIMPSONS RULE

CTRDC = 1.

DO 20 K = 1,21

CROSS = CROSS + DIL

CTRDC = 1.

DO 30 I = 1,21

DMR = DOJN + CTL

RAD = CROSS*CROSS + DOJN*DMR*DMR

PROD0 = TPISS*EXP(-RAD*TISGS)

T1 = DNL(JK) - DOJN

T2 = T1*T1 + CROSS*CROSS

DSRP = DSOT(T2)

CALL PROMPT

XPLP = PRELP

T2 = DRC(JK) - DOJN

T2 = T1*T1 + CROSS*CROSS

DSRP = DSOT(T2)

CALL PROMPT

XLPC = PRELP

T1 = (XLPL - XLP)/SIGPL

PROI = CUNWHR(T1)

T2 = (XLPC - XCP)/SIGPC

PROD = CUNWHR(T2)

IF (J.EQ. 21) CTRR = 1.

SUMDL = SUMDL + CTDP*PROD*PROD

SUMDC = SUMDC + CTDP*PROD*PROD

SUMDP = SUMDP + CTDP*PROD*PROD

IF (CTRD = 21) 11.31*32

CALL PROMPT

CTRDC = 4.

51

I-131

***** INCLASSTEST *****

12/16/75

PAGE NO. 000

**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

4V

32 GO TO 32
CONTINUE
CTR_C = 2.
33 CONTINUE
CONTINUE
IF(K,EN, 21) CTR_C = 1.
SUMCL = SUMCL + CTR_C*SUMRL
SUMCC = SUMCC + CTR_C*SUMRC
SUMCP = SUMCP + CTR_C*SUMRP
IF(CTR_C = 2) 21,21,22
21 CONTINUE
CTR_C = 4.
GO TO 23
22 CONTINUE
CTR_C = 2.
23 CONTINUE
20 CONTINUE
C PDELN IS USED TO NORMALIZE PROBABILITY INTEGRAL SINCE INTEGRATION
C IS NOT EXACT
PDELN = 2.*SUMCP*DIL*UIL/9.
PKCK(JK) = 2.*SUMCL*DIL*UIL/(9.*PDELN)
PKCI(JK) = 2.*SUMCC*DIL*UIL/(9.*PDELN)
100 CONTINUE
C ADJUSTMENTS FOR INTERPOLATION TABLE SINCE DQL(1) IS LARGE.
PKCI(1) = 0.
PKCK(1) = 0.
PKCI(2) = 0.
PKCK(2) = 0.
C... INTEGRATE OVER LETHAL AREA TO NORMALIZE KILL FUNCTIONS
TPS1 = 3.14159265
TPS2 = 3.14159265
SINTK = 0.
SINTI = 0.
DO 70 I = 3,26
H_{KI} = (PKCK(I) - PKCK(I-1)) / (DSQK(I) - DSQK(I-1))
A_{KI} = PKCK(I-1) - DSQK(I-1)*RKT
B_{II} = (PKCI(I) - PKCI(I-1)) / (DSQI(I) - DSQI(I-1))
A_{II} = PKCI(I-1) - DSQI(I-1)*RIT
SINTK = SINTK - TPS1*A_{KI}*(DSQK(I) - DSQK(I-1))
1 - TPS2*B_{KI}*(DSQK(I)*DSQK(I) - DSQK(I-1)*DSQK(I-1))
SINTI = SINTI - TPS1*A_{II}*(DSQI(I) - DSQI(I-1))
1 - TPS2*B_{II}*(DSQI(I)*DSQI(I) - DSQI(I-1)*DSQI(I-1))
70 CONTINUE
AKN = 3.14159265*DSQK(14)
AIN = 3.14159265*DSQI(14)
RAK = AKN/SINTK
SRAK = SQRT(HAK)
RAI = AIN/SINTI
SRAI = SQRT(HAI)
71 WRITE (MQ,71) SRAK,SRAI,ADJSTF
71 FORMAT(1H0,5SHRATIO OF LETHAL RADIUS AREA TO CEP INTEGRATED AREA IS
1S ,F10.5,21H FOR FATALITIES AND F10.5,13H FOR INJURIES,
2 /,27H DISTANCES ARE ADJUSTED BY ,F5.3, 14H OF THIS RATIO
3* 13H TO NORMALIZE)
DO 72 J = 1,26
DSQK(J) = DSQK(J)*(1. + (RAK-1.)*ADJSTF)
DQL(J) = DQL(J)*(1. + (SRAK-1.)*ADJSTF)
DSQI(J) = DSQI(J)*(1. + (RAI-1.)*ADJSTF)
I-132
**** UNCLASSIFIED ****

12/16/76

PAGE NO. 000

**** UNCLASSIFIED **** 12/16/76 PAGE NO. 000
43

```
DRC(J) = DRC(J)*(1.0 + (SHAI - 1.0)*ADJUST)  
72 CONTINUE  
WRITE(M0,17)  
17 FORMAT(//)  
WRITE(M0,44)  
44 FORMAT(1H0, 42HCEP INTEGRATED PK DIST LETHAL AND INJURY )  
WRITE(M0,43)  
43 FORMAT(1H0, 4H NO. ,9H PROB L ,2X, 8H DIST L ,2X,  
,9H PROB I ,2X, 8H DIST I ,2X, 4H NO. ,9H PROB L ,  
2 2X, 8H DIST L ,2X, 9H PROB I ,2X, 8H DIST I )  
DO 41 I = 1,13  
II = 2**  
IM = II - 1  
WRITE(M0, 42) IM,PKCK(IM), DRL(IM), PKCI(IM), DBC(IM),  
III,PKCK(II),DRL(II), PKCI(II), DRC(II)  
42 FORMAT(1H + 1H,12,1H), F9.6, F12.6,F9.6, F12.6,10X,  
11H,12,1H), F9.6, F12.6, F9.6, F12.6 )  
41 CONTINUE  
C FILL DIFFERENCE TABLE  
DO 51 I = 2,20  
DELSI(I) = DSQI(I) - DSQI(I - 1)  
DELPDI(I) = PKCI(I) - PKCI(I - 1)  
DELDSK(I) = DSQK(I) - DSQK(I - 1)  
DELPDK(I) = PKCK(I) - PKCK(I - 1)  
51 CONTINUE  
DMAX = DBL(2)  
IF (IPNCHA .NE. 1) GO TO 51  
C PUNCHED CARD OUTPUT  
DO 53 J = 1,20  
WRITE( M5+52) DSQI(J),PKCI(J) ,DSQK(J),PKCK(J) ,J,DELSI(J),  
1DELSI(J),DELDSK(J),DELPDK(J)  
52 FORMAT(14,4E15.9,/, 14,4E15.9 )  
53 CONTINUE  
51 CONTINUE  
RETURN  
END
```

**** UNCLASSIFIED *** I-133 12/16/76

PAGE NO. 000

COMPUTER PROGRAM DESCRIPTION

NAME: GEM/PADECON

SYNOPSIS: General Economic Model to Assess Recovery from Nuclear
Attack

TYPE: PRODUCTION

USE: Equilibrium Economic Model--Part of MEVUNS system

BACKGROUND: This program is the result of an extensive economic
modeling effort

DESCRIPTION: A large economic model which includes demand predic-
tion, supply calculations, production functions,
capital accretion, inventory, bottleneck calculations,
etc.

INPUT: IDA Tapes 795 + 691
Cards

OUTPUT: IDA Runs #69
Separate group of runs

STORAGE: IDA Card Deck 102
IDA Tape #767

DOCUMENTATION: IDA Report S-394 "Methodology for Evaluating the
Vulnerabilities of National Systems, Vol. I, Part I,
Description of Methodologies," J. McGill, et al.,
November 1971

LANGUAGE/SYSTEM:
FTN/6400 SCOPE

COMMENTS: A second version of the basic convergence subroutine
(COBWEB) is IDA Card Deck #103.

Preceding Page BLANK - NOT
FILMED

COMPUTER PROGRAM DESCRIPTION

NAME: TOGEM

SYNOPSIS: MEVUNS Auxiliary Program

TYPE: Production

USE: Convert ANCET mortalities to GEM input format

BACKGROUND: Developed as part of GEM

DESCRIPTION: ANCET prompt effects mortalities are converted to GEM input on a countrywide allocation of damage

INPUT: ANCET Output Tape
Geographic Economic Data

OUTPUT: Punched Cards for GEM input

STORAGE: IDA Card Deck #165

DOCUMENTATION: IDA Study S-394, "Methodologies for Evaluating the Vulnerabilities of National Systems," Vol. I, Part I, Description of Methodologies," J. McGill, et al., Nov 1971

LANGUAGE/SYSTEM:
FTN/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: GEMLET

SYNOPSIS: Stripped version of GEM

TYPE: Test

USE: To run parametric variations of the GEM program to attempt to assess the latter's accuracy. Limited to 10 sectors.

BACKGROUND: Developed in 1974 from the basic GEM program. Much faster running and simpler to use version

DESCRIPTION: Contains basic GEM algorithms but a stripped down set of input requirements.

INPUT: Parameter cards

OUTPUT: IDA Runs #55 -- 20 runs
#57 -- 24 runs

STORAGE: IDA Card Deck #100
IDA Tape #733

DOCUMENTATION: "The Economic Recovery Model," R. Michaels,
December 11, 1973

LANGUAGE/SYSTEM: FTN/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: MARATHON

SYNOPSIS: ABM Deployment Analysis

TYPE: Production

USE: Compare optimized ABM and shelter deployments

BACKGROUND: Developed by E. Pearsall to provide a method of analyzing the benefits of an optimized shelter on ABM deployment against an optimized attack.

DESCRIPTION: Double Lagrange multiplier optimization of nationwide blast shelter and ABM deployments.

INPUT:

OUTPUT:

STORAGE: IDA Card Deck #107

DOCUMENTATION: IDA Study S-388, "A Study of Active and Passive Systems for the Defense of Urban Population Centers," Pearsall, Grimm, Pratt (September 1971), "A Lagrange Multiplier Method for Certain Constrained Min-Max LANGUAGE/SYSTEM: Problems," Edward S. Pearsall, Operations Research, Vol. 24, #1, Jan-Feb, 1976, pp. 70-91.

FTN/6400 SCOPE

COMMENTS: Source deck available. Program authors no longer at IDA.

COMPUTER PROGRAM DESCRIPTION

NAME: RESVAL

SYNOPSIS: Resource Risk Evaluation Program

TYPE: Semi-Production

USE: Given an attack and a list of resources, this program determines the overpressure level at each resource point and produces appropriate listings.

BACKGROUND: Developed in 1972 as a means of rapidly matching weapons and attack.

DESCRIPTION: An input resource file and attack file are matched to give weapon target association. Highest overpressure levels are output.

INPUT: Attack file
Resource file

OUTPUT: Reports of risk level
IDA Run #97

STORAGE: IDA Card Deck #89

DOCUMENTATION: Attached description.

LANGUAGE/SYSTEM: FTN/6400 SCOPE
FTN/3600 SCOPE?

COMMENTS: Written to be used with Emergency Broadcast System stations.
Can be adapted to other resources.

For a given attack this program finds weapons within a certain distance, scaled by weapon yield, of each of a set of input resources. For each resource point it prints those weapons affecting the result. The attack used has six subattacks and results are printed for each of the subattacks.

The attack data are read first. Each weapon latitude, longitude, cosine of the latitude, and scaled critical distance are stored. To speed the search procedure the weapons are first ordered in latitude. Then the weapons are separated into five-minute strips in latitude. For each resource the weapon search is over three of these strips. This is accomplished through a dictionary which gives the range of weapon numbers, ordered in latitude, over these strips.

When a weapon association with a resource is found, these pertinent data are output. A summary gives the overall fraction of resources surviving.

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 00001
 PROGRAM RESVAL(INPUT,OUTPUT,TPRES,TPWP)
 DIMENSION WPLAT(3300),WPLON(3300),WPDSS(3300),COSLAT(3300),
 1 LTA(3300),LTB(3300),LTC(3300),LTD(3300),LTE(3300),LTF(3300),
 2 IORDL(3300),LTPT(1500)
 CALL NOPCHKE(0)
 MP = 5 INPUT
 MQ = 6 OUTPUT
 NR = 5 TPRES *Reserve tape*
 NW = 4 TPWP *Attack tape*
 IOEP = 0 } *what slot tape type, 0 is end of engineer, 1 is OPAK* ①
 IOEP = 1 }
 JCLP = 0 } *If not 1 suppress prints Maximum Overpower force attack* ②
 JCLP = 1 }
 RADCON = 3°14'15"9265/180°
 RADCV = RADCON/60.
 IWC = 0
 ISTCT = 0
 ISTOP = 0
 TPSID = 4.1 *Inclusion distance limit for OPAK weapon (in mi.)* ③
 ICTA = 0
 ICTB = 0
 ICTC = 0
 ICTD = 0
 ICTE = 0
 ICTF = 0
 IC12 = 0
 IC123 = 0
 IC14 = 0
 IC15 = 0
 IC16 = 0
 SMLLA = 99999.
 BIGLA = 0.
 BIGRAD = 0°
 LINEXT = 12
 WRITE(MO,6)
 6 FORMAT(1H1, //////////////, 40X, * EBS STATIONS DESTROYED BY SIX OCD ATTACK
 1S# + //)
 READ(NR,7)IZILCH
 7 FORMAT(A10)
 IF(IOEP .EQ. 1) GO TO 13
 WRITE(MO,15)
 15 FORMAT(////////////, 50X, * ENGINEER DATA*)
 GOTO 14
 13 CONTINUE
 WRITE(MO,16)
 16 FORMAT(////////////, 58X, * OEP DATA*)
 14 CONTINUE
 WRITE(MO,72)
 WRITE(MO,73)
 WRITE(MO,75)
 10 CONTINUE
 IWC = IWC + 1
 READ(NW,12)WLD,WLM,WLS,WLD,WLOM,WLOS,WYLD,
 1 LTA(IWC),LTA(IWC),LTC(IWC),LTD(IWC),LTE(IWC),LTF(IWC)
 12 FORMAT(3F3.0,F4.0,2F3.0, 6X, F6.2,23X, 6I1)
 TMP = WLD*WLM/60. + WLS/3600.
 TMA = TMP*60°
 WPLAT(TNC) = TMA
 IF(TMA .LT. SMLLA) SMLLA = TMA

Read attack tape

**** UNCLASSIFIED **** I-141

12/14/76

PAGE NO. 00001

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 0000 2

```

IF( TMA .GT. BTGLA) BIGLA = TMA
TMLP = WLOD + WLOM/60. + WL0S/3600.
TEMP = TMP*RADCON
COSLAT(IWC) = COS(TEMP)*60.
WPLON(IWC) = TMP
DST = TPS10* WYLD000.33333333 (C)
IF(DST .GT. BIGRAD) BIGRAD = DST
WPDS5(IWC) = UST*DST
IF(LTF(IWC) .EQ. 1 .AND. LTE(IWC) .EQ.1) LTF(IWC) = 0
IF(LTE(IWC) .EQ. 1 .AND. LTD(IWC) .EQ.1) LTE(IWC) = 0
IF(LTD(IWC) .EQ. 1 .AND. LTC(IWC) .EQ.1) LTD(IWC) = 0
IF(LTC(IWC) .EQ. 1 .AND. LTB(IWC) .EQ.1) LTC(IWC) = 0
IF(LTB(IWC) .EQ. 1 .AND. LTA(IWC) .EQ.1) LTB(IWC) = 0
IF( EOF(NW) .EQ. 0) GOTO 10

```

Read/Extract tape

CALL ORDER(WPLAT,IORDL,IWC) - Order weapons by increasing latitude
 $WPLAT(10906(1))$ has lowest latitude, $WPLAT(1,0000 (iwc))$ has highest.

SF = SMLLA/12.
ISF = SF
IND = ISF + 1
DO 21 J = 1,ISF
LTPT(J) = 1
CONTINUE
21 DO 22 J = 1,IWC
ILK = IORDL(J)
FAC = WPLAT(ILK)/12.
IFAC = FAC
24 CONTINUE
IF(IFAC,LT,IND) GO TO 22
C LTPT(I) CONTAINES VALUE OF 1ST WPN OF LAT MORE THAN 12°I - Weapons sorted "strip" for one value of LTPT(I)
LTPT(IND) = J
IND = IND + 1
GO TO 24
22 CONTINUE

Find Point-to-point subroutine FOR0

30 CONTINUE
IF(ISTOP .NE. i, GO TO 34
REWIND NR
GO TO 180
C AND SUMMARIZE
34 CONTINUE
IATA = 0
IATB = "
IATC = "
IATD = "
IATE = "
IATF = "
DMA = 99999.
DMB = 99999.
DMC = 99999.
DMD = 99999.
DME = 99999.
DMF = 99999.

Find Point-to-point subroutine

IF(IOEP .EQ. i) GO TO 41 (1)
READ(NR,31) NME1,NME2, IRSAC, ISLA, IAM, IFM
1, IUTM1,IUTM2, ISLD, ISLM,ISLS,ISLOD,ISLOM, ISLOS
31 FORMAT(2A10,2A4, 2A4, A10,A1, 6I3)
IF(IRSAC .NE. 4H855A) GO TO 23

Find Point-to-point subroutine

**** UNCLASSIFIED ****

I-142

12/14/76

PAGE NO. 00001

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

3

IF (ISLA .NE. 4H0035) GO TO 23
ISTOP = 1
CONTINUE
IF (ISLD .NE. 0) GO TO 37
WRITE(MQ,38)NME1,NME2,IAM,IFM
FORMAT(1H0, *FOR *,2A10, * STATION *A4,1X,A4* * NOT USED BECAUSE C
10ORDINATES ARE MISSING*)
GO TO 38
*1 CONTINUE
READ(NR,42) IRSAC,IAM,IFM,ISLOD,ISLOM,ISLOS,ISLD,ISLM,ISLS,
1 NME1,NME2
*2 FORMAT(2X,A4,1X,A4,A4,9X,I3,2I2,2X, 3I2,A10,A7)
IF(IRSAC .EQ. 4H99T2) ISTOP = 1
CONTINUE
ISTCT = ISTCT + 1
ITMP = 3600 *ISLD + 60 *ISLM + ISLS
XTMP = ITMP
SLAT = XTMP/60.
ITEM = 3600 *ISLOD + 60 *ISLOM + ISLOS
XTEM = ITEM
SLON = XTEM/3600.
TEMP = SLAT*HADCV
STCOS = COS(TEMP)*60.
SI_ALO = SLAT - 12.
SFAC = SLAT/12.
ISFAC = SFAC - 13.5^o in location - dictionary & list for weapon number - after
IST = LTPT(ISFAC - 1) Starting point in ordered weapon list
IWN = IST
CONTINUE
IUSE = IORDL(IWN)
IF (IUSE .GT. IWC .OR. IUSE .LT. 1) GO TO 60
IF (WPLAT(IUSE) .GT. SLALO) GO TO 32
IWN = IWN + 1
GO TO 33
*32 CONTINUE
IUSE = IORDL(IWN)
IF (IUSE .GT. IWC .OR. IUSE .LT. 1) GO TO 60
DLAT = WPLAT(IUSE) - SLAT
IF (DLAT .GT. 90GRAD) GOTO 60
DLON = WPOLON(IUSE) - SLON
IF (ABS(DLON) .LE. 0.4) GO TO 35
IWN = IWN + 1
GO TO 32
*35 CONTINUE
DLON = 0.5*DLON*(COSLAT(IUSE) + STCOS)
DSQ = DLAT*DLAT + DLON*DLON
IF (DSQ,LE, WPOSS(IUSE)) GO TO 36
IWN = IWN + 1
GO TO 32
*36 CONTINUE

C WPN HITS RESOURCE
DSO = DSQ *TPSID*TPSID/WPOSS(IUSE)
IF(LTA(I, IUSE) .EQ. 0) GO TO 81
IATA = IATA + 1
IF(DSQ .LT. UMA) DMA = DSO
CONTINUE
IF(LTB(I, IUSE) .EQ. 0) GO TO 82
IATB = IATB + 1
IF(DSQ .LT. UMB) DMB = DSO

Record for each
attack

**** UNCLASSIFIED ****

I-143

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

4

82 CONTINUE
IF(LTC(IUSE) .EQ. 0) GO TO 83
IATC = IATC + 1
IF(DSQ .LT. UMC) DMC = DSQ
83 CONTINUE
IF(LTD(IUSE) .EQ. 0) GO TO 84
IATD = IATD + 1
IF(DSQ .LT. UMD) DMD = DSQ
84 CONTINUE
IF(LTE(IUSE) .EQ. 0) GO TO 85
IATE = IATE + 1
IF(DSQ .LT. UME) DME = DSQ
85 CONTINUE
IF(LTF(IUSE) .EQ. 0) GO TO 86
IATF = IATF + 1
IF(DSQ .LT. UMF) DMF = DSQ
86 CONTINUE
IWN = IWN + 1
GO TO 32

60 CONTINUE
PRESA = 0.
PRESB = 0.
PRESC = 0.
PRESD = 0.
PRESE = 0.
PRESF = 0.
IF(IATA .NE. 0) ICTA = ICTA + 1
IF(IATB .NE. 0) ICTB = ICTB + 1
IF(IATC .NE. 0) ICTC = ICTC + 1
IF(IATD .NE. 0) ICTD = ICTD + 1
IF(IATE .NE. 0) ICTE = ICTE + 1
IF(IATF .NE. 0) ICTF = ICTF + 1
IF(JCLP .NE. 1) GO TO 87
IF (IATA .EQ. 0) GO TO 91
DCALL = DMA
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESA)
91 CONTINUE
IF (IATB .EQ. 0) GO TO 92
DCALL = DMB
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESB)
92 CONTINUE
IF (IATC .EQ. 0) GO TO 93
DCALL = DMC
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESC)
93 CONTINUE
IF (IATD .EQ. 0) GO TO 94
DCALL = DMD
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESD)
94 CONTINUE
IF (IATE .EQ. 0) GO TO 95
DCALL = DME
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESE)
95 CONTINUE

I-144

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

5
Record for next attack
Cut off this information

96 IF (IATF .EQ. 0) GO TO 96
DCALL = DMF
DCALL = SQRT(DCALL)
CALL CLPRES(DCALL,PRESF)
CONTINUE
97 IF(LINECT .LE. 54) GO TO 71
98 WRITE(MQ,72)
72 FORMAT(1H1//, 1H ,5X,9HCITY NAME ,6X, 1X, 4HRSAC, 1X, 4H SLA ,
1 2X, 4H AM ,1X, 4H FM ,1X 11H UTM ,2X,
2 9HLATITUDE ,2X, 9HLONGITUDE ,6X,
3 ,2HATTACK RESULTS ----=KILLED 0=NOT KILLED)
73 WRITE(MQ,73)
FORMAT(1H ,2IX, 4H NO. ,1X, 4H NO. 2X, 4HCALL,1X, 4HCALL,
1 1X,11HCORDINATES ,2X, 9H D M S ,2X, 9H D M S ,
2 6X, 4SHATT.1 ATT.2 ATT.3 ATT.4 ATT.5 ATT.6)
74 WRITE(MQ,74)
FORMAT(1H , 2A10,1X, A4,1X, A4,2X, A4, 1X, A4, 1X,
1 A10, A1, 2X, 3I3, 2X, 3I3, 6X, 6(I5,2X))
GO TO 77
75 CONTINUE
76 IF(JCOP .EQ. 1) GO TO 76②
WRITE(MQ,74) NME1,NME2,IRSA,ISLA,IAM, IFM, IUTM1,IUTM2 ,
1 ISLD,ISLM, ISLS, ISLOD, ISLOM, ISLOS,IATA, IATB,IATC,IATD,IATE,
2 IATF
77 FORMAT(1H , 2A10,1X, A4,1X, A4,2X, A4, 1X, A4, 1X,
1 A10, A1, 2X, 3I3, 2X, 3I3, 6X, 6(I5,2X))
GO TO 77
78 CONTINUE
79 IF(JCLP .NE. 1) GO TO 89③
IF(IATA .EQ. 0 .AND. IATB .EQ.0 .AND. IATC .EQ.0 .AND. IATD
1 .EQ. 0 .AND. IATE .EQ. 0 .AND. IATF .EQ.0) GO TO 97
WRITE(MQ,79) PRESA,PRESB,PRESC,PRESD,PRESF,PRESG
FORMAT(1H , 56X, 23HMAXIMUM OVERPRESSURE = + 6F7.1)
GO TO 98
80 CONTINUE
81 WRITE (MQ, 99)
82 FORMAT(1H)
83 CONTINUE
84 LINECT = LINECT + 1
85 CONTINUE
86 LINECT = LINECT + 1
Output the weapon locator
Take b summary data
IF(IATA .NE.0 .OR. IATB .NE.0) IC12 = IC12 +1
IF(IATA .NE.0 .OR. IATB .NE.0 .OR. IATC .NE.0) IC123 = IC123 +1
IF(IATA .NE. 0 .OR. IATB .NE.0 .OR. IATC .NE.0 .OR. IATD .NE.0)
1 IC14 = IC14 +1
IF(IATA .NE. 0 .OR. IATB .NE. 0 .OR. IATC .NE. 0 .OR. IATD .NE.0
1 .OR. IATE .NE.0) IC15 = IC15 +1
IF(IATA .NE. 0 .OR. IATB .NE. 0 .OR. IATC .NE. 0 .OR. IATD .NE.0
1 .OR. IATE .NE. 0 .OR. IATF .NE. 0) IC16 = IC16 +1
GO TO 30
Add by weapon data
end run Room Record.
Read attack tape
Output Summary
100 CONTINUE
WRITE (MQ, 101) ISTCT

I-145

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 0000

```

101  FORMAT(1H1,/,/* NATIONWIDE SUMMARY ON*,I5,* RESOURCE POINTS*, 6
1  ////)
1  WRITE(MO,102) ICTA,ICTB,ICTC,ICTD, ICTE,ICTF
102  FORMAT( 1H0, *#POINTS DESTROYED BY ATTACK 1 *= ,I5,/ ,
1      1H0, *#POINTS DESTROYED BY ATTACK 2 *= ,I5,/ ,
2      1H0, *#POINTS DESTROYED BY ATTACK 3 *= ,I5,/ ,
3      1H0, *#POINTS DESTROYED BY ATTACK 4 *= ,I5,/ ,
4      1H0, *#POINTS DESTROYED BY ATTACK 5 *= ,I5,/ ,
5      1H0, *#POINTS DESTROYED BY ATTACK 6 *= ,I5,/ )
103  WRITE(MO,103) IC12,IC123, IC14,IC15,IC16
FORMAT( //,1H0, *#POINTS DESTROYED BY ATTACKS 1 OR 2 ==,I5,/,
1      1H0, *#POINTS DESTROYED BY ATTACKS 1 OR 2 OR 3 ==,
2      1H0, *#POINTS DESTROYED BY ATTACKS 1 OR 2 OR 3 OR 4 ==,
3      1H0, *#POINTS DESTROYED BY ATTACKS 1 OR 2 OR 3 OR 4 OR
45 ==,
5      1H0, *#POINTS DESTROYED BY ATTACKS 1 OR 2 OR 3 OR 4 OR
65 OR 6 *= ,I5)
STOP 6400
END

SUBROUTINE CLPRES(DIST,PRES)
C COMPUTES PRESSURE GIVEN DISTANCE FOR A 1 MT SURFACE BURST
C FIT TO VALUE IN ENW
IF( DIST .GT. 0.0001) GO TO 4
DIST = 0.0001
4 CONTINUE
XL DIST = ALOG10(DIST)
IF (DIST .GE. 1.147) GO TO 2
SLOPE = -2.255
GO TO 3
2 CONTINUE
SLOPE = -1.825
3 CONTINUE
XL PRES = 1.301 + SLOPE*(XL DIST - 0.0596)
PRES = 10.**XL PRES
IF(PRES .GT. 9999.) PRES = 9999.
RETURN
END

        IDENT ORDER
ENTRY ORDER
BYTE EQU 10
ACRES EQU 1024
*BYTE EQU A FOR ORDER6
*ACRES EQU 64
USE TALLY
TLLY VFD 40/TALLY
TALLY BSSZ ACRES
USE A
VFD 30/SLORDER,30n/30
UNDER PS
SX6 A0
SA6 =SEXSV
SA1 A1
SB1 X1
SA1 A1*1
SB2 X1
SA1 A1*1
SB3 X1
SB4 ONE
* SETTING B4 TO ADUR OF A WORD WOULD DO ORDER WITHOUT REGARD TO SIGN
NUSTNE SX6 A1
SA6 =SBA

```

Output form

Pressure vs. distance

Subroutine

Ordering Subroutine

Replace by FORTRAN

if straight FORTRAN

calculator

**** UNCLASSIFIED ****

I-146

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

7

SX7 B2
SA7 =S88
SX7 B3
SA7 =S8C
SA3 B3
SB5 X3=1
NE B4,MTONE
SX6 1
SA6 R2
SA2 =SE,XSV
SA0 X2
JP ORDER
MTONE SB6 X3
KEEP LENGTH IN B6
MX0 60-BYTE
SA0 B2 A0 IS INDICES
SB2 R1 B1 IS[DATA]
SA1 1
LT R6=B1,ORDERX EXIT IF NN LE TO ZERO
SB5 =B1
SB3 TALLY
MX5 1 READY PLOOP
SB7 R0
SX3 R1
SA2 R4
SX2 X2+B5
ZR X5**1
MX5 0
SX6 R5+B2
* NOW PRESET INDEX TABLE AND FIX UP DATA
PLOOP SA1 R7+B2 FETCH DATA ITEM
IX6 X6+X3
SA6 B7+A0 STORE DATA ADDRESS IN INDEX
BX7 X1-X5 ON OPTION COMPL. LEFT BIT
SA7 A1 SO NEGATIVE IS > POSITIVE
SB7 B7+B1
LT B7,B6,PLOOP
BX7 X5
SA7 =SCOMPSW
SA8 B0 PRESET SHIFT COUNT
* THROUGH PRELIMINARIES-INDEX WORK VIA B4(SHIFT)
MAIN SB7 R0
SX7 R1 FOR FREQUENCY COUNTING
CTLLOOP SA1 R7+B2 GET A DATA ITEM
SB7 R7+B1
AX5 B4,X1
BX3 -X0*X5
SA4 X3+B3
IX6 X7+A4
SA6 A4
LT B7,B6,CTLLOOP
* CUMULATE FREQUENCY COUNT
SB7 =TALLY=ACRES+1
SA1 TALLY
SX6 X1+B5
SA6 A1
NSLOOP SA1 A1+B1
IX6 X6+X1
SX7 R7+A1
SA6 A1
NZ X7,NSLOOP
* NOW SORT

I-147

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

8

S87 R6-B1
S85 R2 JUST TO HIDE R2
S82 A0 R2 AND A0 ARE BOTH [INDEX]
S80OP S81 R7+A0 FETCH INDICES FROM BOTTOM
S87 R7-B1 BACK POINTER
SA2 X1 FETCH DATA
SX7 A2 SAVE DATA ADDRESS
AX5 X2,B4 SHIFT DATA
BX3 -X0*X5 AND GET CURRENT BYTE
SX2 R7 FOR INDEXING PURPOSES
SA4 X3+B3 FETCH TALLY OF BYTE
LX7 30
SX6 X4+B5 BACK OFF TALLY
SA3 X4+B2 GET INDEX+TALLY+
TX7 X7+X3 PUT IN THIS DATA ADDRESS
SA7 A3 PUTAWAY
SA6 A4
PL B7,S80OP
SB2 A5
SB5 30
• NOW TIDY UP FOR NEXT PASS
S87 R0
XL0OP S81 R7+A0 GET INDEX
AX7 X1,B5 RIGHT 30
SA7 A1
AL S87 R7+B1
LT B7,B6,XL0OP
MX6 0
SX4 ACRES
SX7 R3
SX5 R1+B1
SA7 B3-B1
BX7 X0-X0
ALL SA6 A7+B1 CLEAN OUT COUNT
IX4 X4-X5
SA7 A6+B1
NZ X4+XLL
• MORE REPAIRS FOR NEXT PASS
S85 -B1
S84 B4+BYTE
SX1 R4=60
NG X1,MAIN
• THROUGH--NOW CLEAN UP AND EXIT
SA5 COMPSW
SB4 30
SX4 R2+B5
RX0 X2
S87 R6+B5
WL0OP S81 R7+B2
RX6 X1-X0
SA3 R7+A0
TX7 X3-X4
S87 R7+B5
SA7 A3
SA6 A1
PL B7,WL0OP
SA1 #S8A
S81 X1
SA1 #S8B
S82 X1
SA1 #S8C

I-148

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 0000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00001

9

S83 X1
SA2 ■SEXSV
SA0 X2

EQ ORDER
ENTRY ORDNS
VFD 30D/S1ORDNS,30D/3

ORDNS DATA 0
SA1 ORDNS GET RETURN ADDRESS
BX6 X1 TRANSFER TO MAIN ROUTINE EXIT
SA6 ORDER
SB4 ZERO
JP NOSINE
UNDERX SB1 LEO
RJ ■XABRTJOB
ZERO DATA :
ONE DATA
LEO DIS .#ORDER=NN LE TO 0*
END

Dale L. Hough

**** UNCLASSIFIED ****

I-149

12/14/76

PAGE NO. 00001

COMPUTER PROGRAM DESCRIPTION

NAME: ADAGIO

SYNOPSIS: Nationwide Evacuation Analysis

TYPE: Production

USE: To study nationwide evacuation under a variety of assumptions.

BACKGROUND: Developed over a number of years to study nationwide evacuation. Used as a starting point for Crisis Relocation Planning.

DESCRIPTION: Basic relocation of population from risk areas to reception areas to minimize travel distance. A variety of options and types of printouts available.

INPUT: Blast Risk data, Fallout Risk data,
Population data, Economic data

OUTPUT: IDA printouts 24-26, 30-36, 45-48, 80, 105, 113
relocated population data files

STORAGE: see below

DOCUMENTATION: IDA Paper P-702 "A Study of National Travel Requirements for Strategic Evacuation, Leo A. Schmidt, March 1970;

IDA Paper P-1067, "The Use of the ADAGIO Computer Pro-

gram in Strategic Evacuation Analysis," Leo A. Schmidt

LANGUAGE/SYSTEM: October 1974; IDA Paper P-1183, "Interactive ADAGIO
see below Computer Program as an Aid to Crisis Relocation
Planning," Leo A. Schmidt, November 1975

NAME	STORAGE	LANGUAGE	VARIATION
SCATTER ⁴	IDA Card Deck 90	FTN/1604	Original Evacuation Study Program- 1966
ADAGIO-RSAC	IDA Card Deck 75	FTN/6400SCOPE	Final Version with 1960 Census in RSAC Format
ADAGIO-74	IDA Card Deck 85	FTN/6400SCOPE	IDA Version of CRP Program
ADAGIO-CRP	DCPACC	FTN/3600SCOPE	DCPA Version of CRP Program
ADAGIO-NEPA	DCPACC	FTN/3600SCOPE	DCPA Version of Externally Defined Risk Program
ADAGIO-75	IDA Card Deck 202	FTN/6400SCOP	Current Batch ADAGIO Program
[^] DAGIO-TERM	CDC KRONOS Tape TKW2212	FTN/KRONOS BATCH	Current Interactive ADAGIO Program

*NOT
Preceding Page BLANK - FILMED*

COMPUTER PROGRAM DESCRIPTION

NAME: TSTGD

SYNOPSIS: Contour Printer Plot Routine

TYPE: Development

USE: To obtain printer plots of values of 2-dimensional functions with shading proportional to function value.

BACKGROUND: Developed to display population densities, fallout fields, etc., using only normal printer facilities.

DESCRIPTION: A function of 2 variables is smoothed, based on several smoothing options. Plots can be multipaged with provisions for margin, fiducial marks, etc., automatically provided by the program.

INPUT:

Data files, parameter cards

OUTPUT: IDA runs 68, 108--plots set of population densities in urbanized areas available

STORAGE: IDA Card Decks#59, 46

DOCUMENTATION: Memo Eli Williams to L. Schmidt dated 17 April 1973,
entitled: Subroutine Write-Up

LANGUAGE/SYSTEM: FTN/6400 SCOPE

COMMENTS: Copy of source program and documentation furnished to DCPACC in 1976

COMPUTER PROGRAM DESCRIPTION

NAME: JLAM

SYNOPSIS: Compute Analytic Sums

TYPE: Single Use

USE: Computes values of sums for use in analysis

BACKGROUND:

DESCRIPTION: Computes and prints sums $\sum_{i=1}^N \frac{1}{i}$, $\sum_{i=1}^N \frac{1}{i^{1/2}}$, $\sum_{i=1}^N \ln i^{1/2} / i^{1/2}$

INPUT: IN PROGRAM

OUTPUT:

STORAGE: IDA Card Decks #81, 82

DOCUMENTATION: IDA Paper P-870, "Analytic Models of Nationwide Urban Fatalities from a Nuclear Attack," Leo A. Schmidt, July 1972

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS:

COMPUTER PROGRAM DESCRIPTION

NAME: TEST

SYNOPSIS: Fire Spread Model

TYPE: Development

USE: To study fire spread in urban tracts

BACKGROUND: Developed by F. Miercort as a synopsis of the IITRI Fire Spread Model. Faster running with multiple weapon inputs. Written to be compatible with TELOS program as it existed in 1973.

DESCRIPTION: Fire spread by radiation and firebrands is modeled. Detailed bookkeeping by building type and tract of blast damage and fire histories, ignitions imposed externally. Main coding is in subroutine "FIRE" with main program a temporary driver

Data cards

OUTPUT: Printouts

STORAGE: IDA Card Deck 131, 217

DOCUMENTATION: IDA Paper P-988, "Description of a Fast-Running Fire-Spread Model," Frederic A. Miercort, December 1973

LANGUAGE/SYSTEM: FTN/6400 SCOPE

COMMENTS: Paper contains detailed program description.

COMPUTER PROGRAM DESCRIPTION

NAME: POPPOP

SYNOPSIS: Probabilistic Fire Spread

TYPE: Development

USE: Fire Interactions Analyses

BACKGROUND: Developed as part of Blast Fire Interaction Study as an experimental program to assess various probabilistic effects

DESCRIPTION: In a Monte Carlo simulation, an initial set of ignitions are made at interactions of an $m \times n$ grid. These ignited points can propagate fire in each of the 4 cardinal directions each time period with a certain probability. The resulting fire pattern is printed.

INPUT: Parameters in program.

OUTPUT: Printouts

STORAGE: IDA Card Deck #204

DOCUMENTATION: Forthcoming paper; attached description

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS:

This program is a simulation of probabilistic ignition possibilities during a series of time periods, ICNT. In this program the array ISTATE(I,J) indicates whether a building located at I,J in a grid is burning; ISTATE = 0 means no burning, -1, a burning was just ignited, and +n, the building has been burning for n periods. An unignited building may be ignited if one of its neighbors (at I-1,J; I+1,J; I,J-1, I,J+1) has been burning for NBRN periods or less. This is tested in the section called Search Matrix, in the two DO loops ending at statements 111 and 112. For each neighbor which may ignite a building a random number is drawn and compared with PGO or PVARAR(I,J) to see if the structure is ignited.

In the section called Update Matrix the DO loop terminating in statement 201 tests if any buildings may still ignite others. If so, the matrix ISTATE is updated in the DO loop terminating in statement 202, the time is incremented, and another search is made; if not, this trial is terminated.

There are NTRY trials. Each time a building at I,J is ignited the array ISUM(I,J) is incremented by one as a record of burnings over all the trials.

The contents of ISTATE, ISUM, or PVARAR may be printed by the various report sections. The remainder of the program is initialization or control activities.

***** UNCLASSIFIED *****
PROGRAM POPPOP (INPUT, OUTPUT)

11/30/76

PAGE NO. 001

C
C
C
DIMENSION ISTATE(60,60), ISUM(60,60)
DIMENSION PVARAR(60,60)
DIMENSION PGOAR(20), PSTAR(20)
C
C
IPALL = 0 } Print results after each Trial ①
IPALL = 1
IPPTH = 1 } Print Results after Each TimeStep ②
IPPTH = 0
NTRYP = 200 }
NTRYP = 10 } number of Trials To Print ③
NTRYP = 5
NTRYP = 25
NBRN = 3 } number of Burnin Periods ②
NBRN = 10
NBRN = 1
XNBRN = NBRN
IPVAR = 0 } constant Transition Probabilty ④
IPVAR = 1
PVSIG = 0.1 Range & Variability ②
NTPV = 10
DO 22 I = 1, 20
PGOAR(I) = 0.
PSTAR(I) = 0.
PSTAR(I) = 0.01 initial Ignition Probabilty ⑤
22 CONTINUE
PGOAR(1) = 0.5 Transition Probability ①
MP = 5L INPUT
MQ = 6L OUTPUT
SEED = 3.14159265 }
SEED = 2.7536
SEED = 532.56298
SEED = 9589.5526
SEED = 235.45236
SEED = 58.6665
SEED = 253.444
SEED = 3.456872
SEED = 147.665
SEED = 523.44578
ZLCH = RANF(SEED) } random number generator
initialization
A1 = 24 - 1
A3 = 24 - 3
A5 = 24 - 5
A7 = 24 - 7
A9 = 24 - 9
A10 = 24 - 10
NTRY = 10 } number of repetition ①
NTRY = 1000
NTRY = 100
NR1 = 23 } matrix size ③
NRJ = 23
C
C
ICASE = 0
40 CONTINUE
ICASE = ICASE + 1

Set Parameters

Random number generator
initialization

Set Parameters

Set new Transition
Probabilty

I-157

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 001

*** UNCLASSIFIED ***

11/30/76 PAGE NO. 00C

IF(ISTATE(I=1,J) .GT. NBRN) GO TO 147 ②
 GO TO 146

142 CONTINUE
 IF(KK .NE. 2) GO TO 143
 IF(ISTATE(I=1,J) .LE. 0) GO TO 147
 IF(ISTATE(I=1,J) .GT. NBRN) GO TO 147 ②
 GO TO 146

143 CONTINUE
 IF(KK .NE. 3) GO TO 144
 IF(ISTATE(I,J=1) .LE. 0) GO TO 147
 IF(ISTATE(I,J=1) .GT. NBRN) GO TO 147 ②
 GO TO 146

144 CONTINUE
 IF(KK .NE. 4) GO TO 145
 IF(ISTATE(I,J=1) .LE. 0) GO TO 147
 IF(ISTATE(I,J=1) .GT. NBRN) GO TO 147 ②
 GO TO 146

145 CONTINUE

146 CONTINUE
 IF(IPVAR .EQ.1) GO TO 148 ③
 IF(RANF(0) .GT. PVARAR(I,J)) GO TO 141 ④
 ISTATE(I,J) = -1
 GO TO 150

148 CONTINUE
 IF(RANF(0) .GT. PVARAR(I,J)) GO TO 141 ④
 ISTATE(I,J) = -1 -- This point ignored

149 CONTINUE

150 CONTINUE

C

123 CONTINUE

124 CONTINUE

112 CONTINUE

111 CONTINUE

C

C

IF(IPPTM .NE.1) GO TO 206 ⑤
 IF(ICNT .GT. 1) GO TO 206
 WRITE(MQ,207) ICNT

207 FORMAT(1H1,/,*,/,//RESULTS AFTER STEP NO.:I5,*//,,/)

WRITE(MQ,209) I,J,J = 1,NRJ)
 DO 205 I = 1,NRI

WRITE(MQ,211) I,(ISTATE(I,J),J = 1,NRJ)

205 CONTINUE

206 CONTINUE

C

C

IDONE = 1
 DO 201 I = 1,NRI
 DO 201 J = 1,NRJ
 IF(ISTATE(I,J) .EQ. -1) IDONE = 0
 IF(ISTATE(I,J) .GT. 0 .AND. ISTATE(I,J) .LT. NBRN) IDONE = 0 ⑥
 201 CONTINUE
 IF(IDONE .EQ.1) GO TO 223
 DO 202 I = 1,NRI
 DO 202 J = 1,NRJ
 IF(ISTATE(I,J) .LE.0) GO TO 203
 ISTATE(I,J) = ISTATE(I,J) + 1

203 CONTINUE

Update Matrix

I-159

*** UNCLASSIFIED ***

11/30/76

PAGE NO. 00C

**** UNCLASSIFIED ****

11/30/76 PAGE NO. 001

202 IF(ISTATE(I,J),EQ.,=1) ISTATE(I,J) = 1
 CONTINUE
 GO TO 105

223 CONTINUE
 C
 C

DO 221 I = 1,NRI
 DO 221 J = 1,NRJ
 IF(ISTATE(I,J),EQ.,0) GO TO 221
 ISUM(I,J) = ISHM(I,J) + 1
 IF(I .LT. 1.OR. I .GT. A1) GO TO 251
 IF(J .LT. 1.OR. J .GT. A1) GO TO 251
 ISUMA = ISUMA + 1
 IF(I .LT. 3.OR. I .GT. A3) GO TO 251
 IF(J .LT. 3.OR. J .GT. A3) GO TO 251
 ISUMB = ISUMB + 1
 IF(I .LT. 5.OR. I .GT. A5) GO TO 251
 IF(J .LT. 5.OR. J .GT. A5) GO TO 251
 ISUMC = ISUMC + 1
 IF(I .LT. 7.OR. I .GT. A7) GO TO 251
 IF(J .LT. 7.OR. J .GT. A7) GO TO 251
 ISUMD = ISUMD + 1
 IF(I .LT. 9.OR. I .GT. A9) GO TO 251
 IF(J .LT. 9.OR. J .GT. A9) GO TO 251
 ISUME = ISUME + 1
 IF(I .LT. 10.OR. I .GT. A10) GO TO 251
 IF(J .LT. 10.OR. J .GT. A10) GO TO 251
 ISUMF = ISUMF + 1

251 CONTINUE
 221 CONTINUE
 C

IF(IPALL,NE.,1) GO TO 215 ⑧
 IF(IT .GT. NTRY) GO TO 215 ⑨
 WRITE(MQ,208) IT ,ICNT ,PGO

208 FORMAT(1H1, //11111,20X,*=====RESULTS FOR TRIAL NO.,I5,*=====
 =====*,/,* RESULTS AFTER,I6,* STEPS*, * TRANSITION PROB., *
 2*, F10.4)
 WRITE(MQ,209) (J+J = 1,NRJ)

209 FORMAT(1H0, 4X, * J = *, 5X, 23I5//)

DO 210 I = 1,NRI
 WRITE(MQ,211) I ,(ISTATE(I,J),J = 1,NRJ)

211 FORMAT(1H0, * I = *,I5,5X, 23I5)
 210 CONTINUE
 215 CONTINUE
 IF(IT .LT. NTRY) GO TO 100 ⑩

C
 C

WRITE(MQ,231) IT ,PGO ,PST
 231 FORMAT(1H1, //1, 20X,*=====SUMMARY RESULTS FROM*,I5,*TRIALS
 =====*,/,* TRANS. PROB., * F10.4,* IGNITION PROB., *
 2 *,F10.4,/) ⑪
 WRITE(MQ,209) (J+J = 1,NRJ)
 DO 232 I = 1,NRI
 WRITE(MQ,211) I ,(ISUM(I,J),J = 1,NRJ)

232 CONTINUE
 TMP = ISUMA
 TMA = TMP/529
 TMP = ISUMB
 TMB = TMP/361
 TMP = ISUMC

Set no Trial

Updt Matrix 4
Last Run Period

I-160

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 00

5

TMC = TMP/225
TMP = ISUMD
TMD = TMP/121
TMP = ISUME
TME = TMP/49
TMP = ISUMF
TMF = TMP/25
252 FORMAT(1H0, * SUMS A=B-C=D-E=F = *,6I10)
WRITE(MA+252) ISUMA+ISUMB+ISUMC,ISUMD+ISUME,ISUMF
WRITE(MB+253) TMA,TMB,TMC,TMD,TME,TMF
253 FORMAT(1H0, * FRACTIONS A=B-C=D-E=F = *,6F10.4)
GO TO 40
C
C
500A CONTINUE
STOP 6400
END

Set mean
probability

**** UNCLASSIFIED **** I-161 11/30/76

PAGE NO. 00

COMPUTER PROGRAM DESCRIPTION

NAME: FIRESM

SYNOPSIS: Probabilistic Fire Spread

TYPE: Development

USE: Fire Interaction Analysis

BACKGROUND: Developed from program POPPOP to have a simulation closer in nature to the IITRI fire model

DESCRIPTION: The basic probabilistic model of program POPPOP is preserved. A building burning time is determined probabilistically. Fire spread by firebrands is modeled as well as by radiation.

INPUT: Parameters in program.

OUTPUT: Printouts

STORAGE: IDA Card Deck #205

DOCUMENTATION: Forthcoming paper; attached description

LANGUAGE/SYSTEM: Run(FORTRAN)/6400 SCOPE

COMMENTS:

NOT
Preceding Page BLANK - FILMED

This program is developed from program POPPOP but has random burning times and firebrands. The array TSTATE(I,J) gives the time when the building can transmit ignitions if it is already ignited; if TSTATE(I,J) is zero the building has not yet been ignited. The search procedure is somewhat different than in POPPOP. If the current time period is when a building can transmit burning then the section starting at statement 400 is entered. Each of the four neighbors to the building at I,J is tested to see if it is burning. If a neighbor has not been ignited, then random numbers are drawn to see if it will ignite by radiation. For firebrands a possible firebrand location is found. It is found using the downwind distance probabilities in arrays DISTAR and DELAR. The crosswind distribution is uniform within the limiting angle PHI. The downwind direction is always assumed to the right, i.e., in the direction of increasing I. From the nearest grid point the firebrand susceptibility factor is found. This and the firebrand output factor from the donor building and a random number are used to determine if the structure is ignited.

The reports generated are similar to those in the program POPPOP.

***** UNCLASSIFIED *****
PROGRAM FIRESM, INPUT, OUTPUT,

11/30/76

PAGE NO. 0000

C
C
C
DIMENSION ISTATE(40,40), ISUM(40,40), TSTATE(40,40)
DIMENSION RPAR(40,40), SPAR(40,40), FPAR(40,40), SPFAR(40,40)
DIMENSION DISTAR(10), DELAR(10)
DIMENSION PGAB(20), PSTAR(20)
DIMENSION ING(40,40), JNG(40,40)
DATA DISTAR / 65., 105., 137., 165., 190., 220., 255., 300., 378., 483., /
DATA DELAR / 80., 40., 35., 30., 22., 30., 45., 55., 42., 60., /

C
C
IPALL = 0 } Print results after each Trial @
IPALL = 1 }
IPPTH = 0 } Print results of two steps (B).
IPPTH = 1 }
IPTIG = 1 } Print Tim & input matrix @
IPTIG = 0 }
NPPTH = 100 } Maximum time step for printing @
NPPTH = 200 }
NPPTH = 1000 }
NPPTH = 10 }
NPPS = 1 } Print each NPPS time steps (E)
NPPS = 10 }
NPPS = 8 }
NPPS = 40 }
NTRYP = 200 } Number of Trials to Print (E)
NTRYP = 5 }
NTRYP = 10 }
NBAN = 9 }
NBAN = 10 }
NBAN = 1 } actual
XNBAN = NBAN }
IPVAR = 0 }
IPVAR = 1 }
PVSIG = 0, 3 } Change susceptibility matrix each n trials (E)
NITPV = 10 }

C
TDNN = 0.5 max for gradient spread, hrs. (E)
BDNN = 200. not used
PHI = 70. { angle of incident spread (E)

TNPB = TAN(PHI+3.14159265/360.)
ONLY WANT HALF THE TOTAL ANGLE
DELEX = 50. space between grid points (E)
DSTIG = 5.°DELEX distance for initial signatures (E)
DELT = 0.25 time increment, hrs (E)
WIND = 8. Wind speed, mph (E)
WIND = 4.0
PBI = 0.2 }
PBI = 0.05 } expected turbulent signatures from turning turbines (E)
PBI = 0.02 }
PBI = 0. }
PBI = 0.1 }
PBI = PHI*WIND/8.
RPSG = 1. }
SPSG = 1. }
FPSG = 1. }
SPFSG = 1. }
RPSG = 0.3 }
SPSG = 0.3 }

I-165

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

FPSG = 0.3
SPFSG = 0.3
RPSG = 5.
SPSG = 5.
FPSG = 5.
SPFSG = 5.

} Spent Ignitability and Radiation Factors ⑧

2

C
DO 22 I = 1,20
PGOAR(I) = 0.
PSTAR(I) = 0.
PSTAR(I) = 0.07
CONTINUE
22 PGOAR(1) = 0.5
PSTAR(1) = 0.8
PGOAR(2) = 0.4
PSTAR(2) = 0.5
MP = 6LINPUT
MQ = 6LOUTPUT
SEED = 3.14159265
SEED = 2.7536
SEED = 532.56238
SEED = 58.5665
SEED = 6.45723
SEED = 253.444
SEED = 235.45238
SEED = 9589.5520
SEED = 8.421307
ZILCH = RANF(SEED)

} Initial Ignition and Transition Probabilities ⑨

A1 = 24 - 1
A3 = 24 - 3
A5 = 24 - 5
A7 = 24 - 7
A9 = 24 - 9
A10 = 24 - 10
NTRY = 100
NTRY = 10
NTRY = 1000
NTRY = 2
NTRY = 5
NTRY = 20
NTRY = 10
NRI = 23
NRJ = 23 } matrix size

} Random Number Generator
Initialization

} Number of Trials ⑩

C
ICASE = 0
CONTINUE
ICASE = ICASE + 1
PGO = PGOAR(ICASE)
PST = PSTAR(ICASE)
IF(PGO .EQ. 0.) GO TO 5000
WRITE(MQ,42) ICASE, PGO , NTRY , NBRN
42 FORMAT(1H1, /1/, 20X, *) RESULTS FOR CASE NO. *,I4,* *****
1****, /1/, 20X, * THE VALUE OF TRANSITION PROBABILITY IS *,
2 ,FB,4, * NUMBER OF TRIALS *,I5,* BURNING DURATION IS *,I5,/1/
WRITE(MQ,31) DELX,DELT
31 FORMAT(1H0,* DISTANCE INCREMENT **,F12.4,* TIME INCREMENT **,
1F12.4)
WRITE(MQ,32) WIND,PHI,PBI
32 FORMAT(1H0,* WIND SPEED = *,F12.4,* FIREBRAND ANGLE = *,F12.4,
1*PROB OF BLDG IGNITIN BY FIREBRANDS = *,F0.1)

Set Parameters
Set No. of Ignition
Probability

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 00000

I-166

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 00000

33 WRITE(MQ+33) DSTIG
 FORMAT(1H0 , * DISTANCE FOR INITIAL IGNITION =*,F12.4)
 AL = (L - PGO)*(L./XNBRN)/PGO
 PGO = AL*PGO
 DO 21 I = 1,NRI
 DO 21 J = 1,NRJ
 ISUM(I,J) = 0
 21 CONTINUE
 ISUMA = 0
 ISUMB = 0
 ISUMC = 0
 ISUMD = 0
 ISUME = 0
 ISUMF = 0
 IT = 0
 TIME = .
 C
 C
 100 CONTINUE
 IT = IT + 1
 C
 IF(IPVAR .NE. 1) GO TO 303
 ITEM = IT/NITPV
 ITM = IT - ITEM*NITPV - 1 }@
 IF(ITM .NE. 0) GO TO 303
 DO 302 I = 1,NRI
 DO 302 J = 1,NRJ
 RPAR(I,J) = 1. + RPSG*(RANF(0) - 0.5)
 SPAR(I,J) = 1. + SASG*(RANF(0) - 0.5) @
 FPAR(I,J) = 1. + FPSG*(RANF(0) - 0.5)
 SPFAR(I,J) = 1. + SPFSG*(RANF(0) - 0.5)
 C
 SPFAR(I, 9) = .
 SPFAR(I,10) = .
 SPFAR(I,11) = .
 SPFAR(I,12) = .
 SPAR(I, 9) = .
 SPAR(I,10) = .
 SPAR(I,11) = .
 SPAR(I,12) = .
 302 CONTINUE
 WRITE(MQ+461)
 461 FORMAT(1H1,///20X,* (((((((((RADIATION OUTPUT FACTOR*
 1* FOR NEXT RUNS))))))))))))*)*,//)
 WRITE(MQ+209) (J+J = 1,NRJ)
 DO 465 I = 1,NRI
 WRITE(MQ+305) I,(RPAR(I,J),J=1,NRJ)
 305 FORMAT(1H0 , * I =*,I5,5X, 2#F5.2)
 465 CONTINUE
 WRITE(MQ,462)
 462 FORMAT(1H1,///20X,* (((((((((RADIATION SUSCEPTIBILITY FACTOR*
 1* FOR NEXT RUNS))))))))))))*)*,//)
 WRITE(MQ+209) (J+J = 1,NRJ)
 DO 466 I = 1,NRI
 WRITE(MQ+305) I,(SPAR(I,J),J=1,NRJ)
 466 CONTINUE
 WRITE(MQ+463)
 463 FORMAT(1H1,///20X,* (((((((((FIREBRAND OUTPUT FACTOR*
 1* FOR NEXT RUNS))))))))))))*)*,//)
 WRITE(MQ+209) (J+J = 1,NRJ)
 DO 467 I = 1,NRI
 C
 C
 Start new Trial
 Enter Incident
 ***** UNCLASSIFIED *****

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 0000
 467 WRITE(MQ+305) I, (FPAR(I,J), J=1, NRJ)
 CONTINUE
 WRITE(MQ+464)
 464 FORMAT(1H1, //, 20X, * ((((((((FIREBRAND SUSTIBILITY FACTOR *
 1** FOR NEXT RUNS))))))))))))))))))) *//)
 WRITE(MQ+209) (J, J = 1, NRJ)
 DO 468 I = 1, NRJ
 WRITE(MQ+305) I, (SPFAR(I,J), J=1, NRJ)
 468 CONTINUE
 303 CONTINUE
 C
 C
 DO 101 I = 1, NRJ
 DO 101 J = 1, NRJ
 ISTATE(I,J) = 0
 TSTATE(I,J) = 0
 ING(I,J) = 0
 JNG(I,J) = 0
 101 CONTINUE
 DO 103 I = 1, NRJ
 DO 103 J = 1, NRJ
 TEMP = J
 TEM = PCT4(I,J) - TEMP*DELX/DSTIG) ⑤⑦
 IF(RANF(0) .GT. TEM) GO TO 103
 ISTATE(I,J) = 1
 ING(I,J) = I
 JNG(I,J) = J
 TDELAY = 0.063333 - ALOG(RANF(0))*TDMN ⑥⑧
 TSTATE(I,J) = TDELAY
 IGNIT = 1
 GO TO 400
 431 CONTINUE
 103 CONTINUE
 ICNT = 0
 TIME = -0.5*DELT
 C
 C
 C
 105 CONTINUE
 ICNT = ICNT + 1
 TIME = TIME + DELT ⑨
 DO 111 I = 1, NRJ
 DO 112 J = 1, NRJ
 IF(TSTATE(I,J) .LE. 0.) GO TO 150
 IF(TIME .LT. TSTATE(I,J)) GO TO 150
 C CHECK IGNITIONS
 IGNIT = 2
 GO TO 400
 432 CONTINUE
 TSTATE(I,J) = -TSTATE(I,J)
 ISTATE(I,J) = -1
 150 CONTINUE
 C
 123 CONTINUE
 124 CONTINUE
 112 CONTINUE
 111 CONTINUE
 C
 C
 IF(IPPTH .NE. 1) GO TO 206 ⑩
 IF(IT .GT. NPPTH) GO TO 206 ⑪
 I-168

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 00000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

IF(ICNT .EQ. 1) GO TO 447
ITEM = ICNT /NPPS
ITEMP = ICNT - NPPS*ITEM (E)
IF(ITEMP .NE. 0) GO TO 206
447 CONTINUE
WRITE(MQ,207),ICNT,TIME
207 FORMAT(1H+|||||RESULTS AFTER STEP NO.:15,9/11/76 TIME = *
1 ,F10.4,/) (E)
WRITE(MQ,209) (J,J = 1,NRJ)
DO 205 I = 1,NRJ
WRITE(MQ,211) I,(ISTATE(I,J),J = 1,NRJ)
205 CONTINUE
IF(IFFIG .NE. 1, GO TO 206 (E)
WRITE(MQ,441)
441 FORMAT(1H+/-,T0X,* TIME TO IGNITE MATRIX# *//)
WRITE(MQ,209) (J,J = 1,NRJ)
DO 442 I = 1,NRJ
WRITE(MQ,443) I,(TSTATE(I,J),J = 1,NRJ)
443 FORMAT(1H0+ * I = *,15.5X,23FB,0)
442 CONTINUE
206 CONTINUE
C
C
IDONE = 1 Update Matrix
DO 201 I = 1,NRJ
DO 201 J = 1,NRJ
IF(ISTATE(I,J) .GT. 0) IDONE = 0
IF(ISTATE(I,J) .GT. 0 AND ISTATE(I,J) .LT. NBRN) IDONE = 0
201 CONTINUE
IF(IDONE .EQ. 1) GO TO 223
DO 202 I = 1,NRJ
DO 202 J = 1,NRJ
IF(ISTATE(I,J) .LE. 0) GO TO 203
ISTATE(I,J) = ISTATE(I,J) + 1
203 CONTINUE
IF(ISTATE(I,J) .EQ.-1) ISTATE(I,J) = 1
202 CONTINUE
GO TO 105
223 CONTINUE
C
C
DO 221 I = 1,NRJ Update Matrix
DO 221 J = 1,NRJ Start New Time Period
IF(ISTATE(I,J) .EQ. 0) GO TO 221
ISUM(I,J) = ISUM(I,J) + 1
IF(I .LT. 1.OR. I .GT. A1) GO TO 251
IF(J .LT. 1.OR. J .GT. A1) GO TO 251
ISUMA = ISUMA + 1
IF(I .LT. 3.OR. I .GT. A3) GO TO 251
IF(J .LT. 3.OR. J .GT. A3) GO TO 251
ISUMB = ISUMB + 1
IF(I .LT. 5.OR. I .GT. A5) GO TO 251
IF(J .LT. 5.OR. J .GT. A5) GO TO 251
ISUMC = ISUMC + 1
IF(I .LT. 7.OR. I .GT. A7) GO TO 251
IF(J .LT. 7.OR. J .GT. A7) GO TO 251
ISUMD = ISUMD + 1
IF(I .LT. 9.OR. I .GT. A9) GO TO 251
IF(J .LT. 9.OR. J .GT. A9) GO TO 251
ISUME = ISUME + 1

I-169

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 0000
 IF(I .LT. 10.0R. I .GT. A10) GO TO 251
 IF(J .LT. 10.0R. J .GT. A10) GO TO 251
 ISUMF = ISUMF + 1
 251 CONTINUE
 221 CONTINUE
 C
 IF(IPALL .NE. 1) GO TO 215 (A)
 IF(IT .GT. NTRY) GO TO 215 (B)
 WRITE(MQ+208) IT ,ICNT ,PGO
 208 FORMAT(1H1, //, 20X, *RESULTS FOR TRIAL NO.,I5,*
 1=*****,/ * RESULTS AFTER,I6,* STEP*, * TRANSITION PROB., *
 2*, F10.4)
 WRITE(MQ+209) I,J = 1,NRJ
 209 FORMAT(1H0, 4X, * J = *, 5X, 23I5,/) /
 DO 210 I = 1,NRJ
 WRITE(MQ+211) I,(ISTATE(I,J),J = 1,NRJ)
 211 FORMAT(1H0, * I = *,I5,5X, 23I5)
 210 CONTINUE
 WRITE(MQ+455)
 455 FORMAT(1H1, //, 10X, * * * * * IGNITING MATRIX--NEGATIVE IS FIREB
 1RAND IGNITION * * * * *
 WRITE(MQ+209) I,J = 1,NRJ
 DO 456 I = 1,NRJ
 WRITE(MQ+457) I,(ING(I,J)+JNG(I,J),J = 1,NRJ)
 457 FORMAT(1H0, * I = *,I5,5X+23(I3+I2))
 456 CONTINUE
 215 CONTINUE
 IF(IT .LT. NTRY) GO TO 100 (B)
 C
 C
 WRITE(MQ+231) IT ,PGO ,PST
 231 FORMAT(1H1, //, 20X, *SUMMARY RESULTS FROM,I5,*TRIALS
 1=*****,/ * TRANS. PROB., * F10.4, * IGNITION PROB., *
 2*, F10.4,/) /
 WRITE(MQ+209) I,J = 1,NRJ
 DO 232 I = 1,NRJ
 WRITE(MQ+211) I,(ISUM(I,J),J = 1,NRJ)
 232 CONTINUE
 TMP = ISUMA
 TMA = TMP/529
 TMP = ISUMB
 TMB = TMP/361
 TMP = ISUMC
 TMC = TMP/225
 TMP = ISUMD
 TMD = TMP/121
 TMP = ISUME
 TME = TMP/49
 TMP = ISUMF
 TMF = TMP/25
 252 FORMAT(1H0, * SUMS A-B-C-D-E-F = *,6I10)
 WRITE(MQ+252) ISUMA,ISUMB,ISUMC,ISUMD,ISUME,ISUMF
 WRITE(MQ+253) TMA,TMB,TMC,TMD,TME,TMF
 253 FORMAT(1H0, * FRACTIONS A-B-C-D-E-F = *,6F10.4)
 GO TO 40
 C
 C
 500A CONTINUE
 STOP 6400
 C
 C

*Set by Transfer
Procedure*

I-170

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

C POINT JUST IGNITED. SEE IF IT WILL IGNITE OTHERS

Radiation ignition

400 CONTINUE

C FIRST RADIATION

DO 401 K = 1..4

IF(K .NE. 1) GO TO 402

IM = I-1

JM = J

GO TO 406

402 CONTINUE

IF(K .NE. 2) GO TO 403

IM = I + 1

JM = J

GO TO 406

403 CONTINUE

IF(K .NE. 3) GO TO 404

IM = I

JM = J + 1

GO TO 406

404 CONTINUE

IF(K .NE. 4) GO TO 405

IM = I

JM = J - 1

GO TO 406

405 CONTINUE

406 CONTINUE

IF(IM .LE. 0 .OR. IM .GT. NRJ) GO TO 401

IF(JM .LE. 0 .OR. JM .GT. NRJ) GO TO 401

IF(TSTATE(IM+JM) .LT. 0.) GO TO 401

TEMP = PG0*RPAR(I,J)*SPAR(IM,JM) *(2)*

IF(RANF(0) .GT. TEMP) GO TO 401

TDELAY = 0.063333 * ALOG(RANF(0)) * TDNN(2) *- front boundary 2nd*

front boundary

TST = TIME + TDELAY

IF(TSTATE(IM+JM) .GT. 0.) GO TO 408

TSTATE(IM,JM) = TST

ING(IM+JM) = I

JNG(IM+JM) = J

GO TO 409

408 CONTINUE

IF(TST .GT. TSTATE(IM+JM)) GO TO 409

TSTATE(IM+JM) = TST

ING(IM+JM) = I

JNG(IM+JM) = J

409 CONTINUE

401 CONTINUE

C NEXT FIREBRANDS

Radiation ignition

front boundary

421 CONTINUE

IF(J .EQ. NRJ) GO TO 420

C FIND WHERE A POTENTIAL IGNITION MIGHT OCCUR

ITM = IM+RANF(2) + 1

IF(ITM .EQ. 10) GO TO 422

DIST = DISTAR(ITM) + DELAR(ITM) * (RANF(0) - 0.5)

GO TO 423

422 CONTINUE

DIST = 425. - 84. * ALOG(RANF(0))

423 CONTINUE

DIST = DIST*0.25*WIND *(2)*

DCR = DIST*TNPB *(2)*

DCR = DCR*2.0*(RANF(0) - 0.5)

ITM = DIST/DELX *(2)*

JB = J + ITM

IF(JB.LT. 1 .OR. JB.GT. NRJ) GO TO 424

I-171

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

8

I-M = OCR/DELX ①
IB = I + ITM
IF(IB .LT. I .OR. IB .GT. NR) GO TO 425
IF(TSTATE(I,J) .LT. 0) GO TO 421
TEMP = PBI*FPAR(I,J)*SPFAR(IB,JB) ②
IF(RANF(0) .GT. TEMP) GO TO 420
TDELAY = 0.063333 * ALOG(RANF(0)) * TDMN ③
TST = TIME + TDELAY
IF(TSTATE(IB,JB) .GT. 0) GO TO 428
TSTATE(IB,JB) = TST
ING(IB,JB) = -I
JNG(IB,JB) = J
GO TO 429
428 CONTINUE
IF(TST .GT. TSTATE(IB,JB)) GO TO 425
TSTATE(IB,JB) = TST
ING(IB,JB) = -I
JNG(IB,JB) = J
429 CONTINUE
425 CONTINUE
GO TO 421
420 CONTINUE
GO TO(431,432) IGNIT
C
C
END

***** UNCLASSIFIED *****

I-172

11/30/76

PAGE NO. 0000

COMPUTER PROGRAM DESCRIPTION

NAME: MESHFL

SYNOPSIS: Standard File Format Processing

TYPE: Production

USE: General purpose program for development and maintenance
of Civil Defense data files.

BACKGROUND: Developed to complement and assist Standard File
Format development.

DESCRIPTION: The program has a group of subprograms to do
introduction of data files into standard format,
merging of a set of data files, file editing, etc.

INPUT: Up to 10 data files

OUTPUT: Completed data file

STORAGE: IDA Card Deck #207

DOCUMENTATION: Attached description

LANGUAGE/SYSTEM: FORTRAN/6400 Scope

COMMENTS: Programs operational but not completely up to specification.
Conversion to other machines needs changing
number of BCD characters per machine word from 10 to
the appropriate number.

A. INTRODUCTION

The program MESHFL was developed as a general utility program to manipulate standard format files. Chapter IV contains a description of these files; it is assumed here that the reader is generally familiar with them. It is also assumed in this description that records are identified by FIPS code; however, any other alphanumeric identifiers could be used-- RSAC code, etc. The program has extensive internal documentation including definitions of all significant variables. This section then will only contain a general description of the program and its significant subroutines, and a general description of the mode of using it. Due to the internal documentation in the program, no program annotations will be made. The program has several different functions, each performed by an individual subroutine. The first input card (in /, 6I10 format) reads the following parameters; if any are 1, that subroutine is called. At present only 1 function can be performed with each execution of the program.

- | | |
|---------|---|
| IMRG | Call MERGE to merge several input files into a single output file. |
| INTRO | Call MEET to convert an input file into standard format. |
| IEXTRCT | Calls EXTRCT to extract records from a file (not yet implemented). |
| IPNCH | Calls PUNCH to put records in card image format. |
| IEDIT | Calls EDIT to do editing on an input file. |
| IORDR | Calls ORDER to add next record type and record count to put a file in complete standard format (not yet implemented). |

The other data read in the main program are the variables IBUGA, ..., IBUGH (in /, 8I1 format). These switches turn on various types of debugging printout. They should normally all be turned off by having values 0.

The program requires standard input and output media to be defined. In addition input files MAT, MBT, MCT, etc., may be required for certain runs. Output is on the file TOUT. The program does not care on what physical medium the files are located, it being assumed this is defined by the operating system control. The input records must be BCD characters and no longer than 136 characters long, i.e., readable by standard FORTRAN statements.

This program has been used in the development of the standard files described in Chapter 4, in fact program development and file generation were carried out simultaneously. It was purposely written in standard FORTRAN to simplify transfer between machines. In the absence of a powerful system editing capability, this program has proved to be a very powerful tool in file development. Even with a computer with a powerful general purpose file editing capability, it is felt that the special purpose features of this program will make it more desirable to use in many situations in treating standard format files. There is clearly room for additional file handling capabilities to be included which would further enhance its capabilities. Two such items, clearly, are the use of this program in an interactive mode, and the addition of a random access file capability to the sequential file capability here.

B. SUBROUTINE MEET

This subroutine reads records in any format and places them into the standard format. The listing starts on page 25 and continues to page 33. Since the coding depends upon the format of the input records, no general purpose coding seemed worthwhile and special patches were written for each type of input used. After a file was safely converted, then presumably these special purpose codes should be discarded.

The subroutine first reads the variable INTRN (in/, I10 format) which selects the type of input tape. Control transfers then directly to the section of interest. The three samples here each read into an input buffer, and write from an output buffer. This is done so the next record type can be inserted based on input buffer information before writing from the output buffer. An alternative would be to use the subroutine order to perform this task. These three sections, beginning with statement numbers 211, 251, and 271 are all direct simple special purpose pieces of coding with no special interest to any general reader. They were, in fact, used for generating some of the standard format files described in Chapter 4.

C. SUBROUTINE MERGE

This subroutine merges several input files into a single output file. It is listed on pages 7 to 23. The subroutine assumes all input files are in FIPS code order. In can accommodate various numbers of records (up to 10 types) for each FIPS code in up to 10 input files, and missing records. Several

options allow different ways of handling missing FIPS codes on input files. Once read, the records within a FIPS code may be output in any order.

The merge process is accomplished by using two basic buffers--a "next" buffer which contains data just input, and a "current" buffer which contains data to be output. When an input file is read, data is read into a "read" buffer and then transferred to the "next" buffer until a new FIPS code is encountered. Thus all the records from a single file in the "next" buffer are from a single FIPS code, although "next" buffers from different files may have different FIPS codes. Control parameters select the next FIPS code to be written on the output file, and all records from the "next" buffer are moved to the "current" buffer. They are written from the "current" buffer onto the output files in an order specified by control parameters. Before writing the appropriate next record, indicators, etc., are added. If more than one record of a particular type is present on an input file for a special FIPS code, the additional records are placed in a special buffer. They are saved then until the first of the group of multiple records is written from the "current" buffer, at which time the additional records are taken from the special buffer and output.

The first action of the subroutine is to read the control parameters ILEAD, ILDR, IADVL, IADVX, ISC, IVRY, IWTLSP, ITWLST, IWTMS, IFBGEN (in /, 5I10, /, 5I10, /, I3 format). The meaning and use of these parameters is given on page 2 of the program listing.

Next the number of input files, NMRGT, is read. Following this for each input file the number of records, NMRGA(I), is read. Then for this file and each record type, J, the four BCD characters identifying the record type NTYPA(I,J) are read, followed by the number of data characters in the record NCHRA(I,J) and up to 40 characters of description of the record which will identify it in output file references. The number of characters is required since on the output file only the number of data characters required for a given record type is written, rather than the full 110 possible. This can result in an efficient shortening of some output files. The output order is defined by specifying for the L^{th} record in the output file for any FIPS code the input file number in the array NORD(I), and the record type number for that input file NORD(J). Following this, control arrays for describing missing, INTMSN(I), or not used, IWTBDN(I), records are read. The format for these read statements is clear from the coding on figures 8 and 9.

Following the input parameters, a description of merging order is written. This is given by the code on pages 9 to 12.

The starting procedure is controlled on the bottom of page 12, which reads into the next buffer and finds a new FIPS code. Then the following cyclic procedures is followed:

Statement 120 transfer data from "next" buffer to "current" buffer

Statement 130 read new data into next buffer

Statement 100 find "current" buffer FIPS code

Statement 140 write data from "current" buffer to output

The process is repeated until end of files on all necessary input files are sensed. For more detailed analysis of a section, the variable descriptions at the beginning of the program should first be read from which the fine structure in the coding should be clear.

D. SUBROUTINE EDIT

This subroutine edits records of a file in standard format. It is listed on pages 35 to 45. The following list describes the editing options available.

- 1--Delete a record of given FIPS code and type
- 2--Insert a record at specified FIPS code in proper order of types
- 3--Change a record to data specified
- 4--Insert a record after given FIPS code and type
- 5--Insert a record before given FIPS code and type
- 6--Move a record backwards in file
- 7-20--Change a record from one character to another
- 2X--Change record by code

An option allows the same change to be made for each record in a state. This subroutine has been used for some editing changes, but has not been completely checked for all specified capabilities.

The input of data for the edit subroutine will be described in order of execution of the read statements. The description starts with those on pages 36 of the program printout.

The first read is for number of record types, NTYPT, ISC as in defined in MERGE, and IPEDT=1 sets printing on standard output of the editing corrections. In the next read statement, the record label, the number of data characters in the record, and record description are read for each record in the order types specified for a FIPS code. These data items are the same as in MERGE. This is necessary if items specified in location by read type (change type 2) are to be inserted in the proper place in the file.

The next set of reads are for common change items. ICOMNU of these are read. These are specified by a change reference number, ICOMNU. The first data character to change is ICOMFS(I). All characters are changed to ICOMLS(I). The data inserted is ICOMDA(I,L),L=1,7. Any time a change of type ICOMNU is specified in the change list to be read later, all characters in the specified range have changed to the characters input here.

The next set of data items to read are state editing items. Those are NST of these items. The data read fills the arrays ISTLST(I) and LSTTP(I). For state with number ISTLST(I) all records are given the change LSTTP(I). Thus, for example, if the type change for state number I is 1, then all records for the state of Alabama would be deleted from a file.

The next set of input read is similar to the state items but are for places. The number of changes is NPL, the place code to change is IPLLST(I), and the type change is IPLTP(I). If IPLFLG(I) is 1, changes are made for all place records of the type specified, if 0 only for the first.

The next set of data read is the individual editing items. There are a total of NSPNU of these reads, a maximum of 300 is allowed on any single run. For each record change, the card images are read. These contain all information for the record. Place values for the following arrays, which have the listed meaning in

JSPLST(I)--type of action to be taken,
JSPNFA(I)--state county FIPS code for editing action,
JSPNFB(I)--place FIPS code for editing action,
JSPNRT(I)--record type for correction.

The amount of valid data in those items depends upon the action to be taken; for example, if a record is to be inserted as an editorial action, then the entire record must be described; but if a record is to be deleted, no such description is needed.

After the data is read, then individual records from the file to be edited are read. The records progress through three buffers, the M buffer, which contains a record just read, the N buffer which contains a completed record except for the next record type, and the K buffer which contains a record ready to write from the output file. As a general

rule, after a record is read into the M buffer, a search of editing instructions is made to see if editing action is needed associated with the record in the M buffer, if so, this action is specified. If, for example, a record is to be inserted, it is placed into the N buffer. Before this can be done, however, the N buffer must be cleared. This is done by writing from the K buffer and then advancing the record in the N buffer to the K buffer. The general procedure is one of pushing records through. An action is not performed until it is needed to clear a buffer to allow a record from an earlier buffer to advance. The action is always initiated by attempting to clear the M buffer so another record can enter the system from the input file.

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000
PROGRAM MESHFL(INPUT,OUTPUT,MAT,MBT,MCT,MDT,
 TOUT,PUNCH)

C
C
C A PROGRAM TO MESH SEVERAL FILE INTO A SINGLE FILE
C ASSUMES RECORD TYPE AND FIPS CODE ON EACH RECORD
C ADDS NEXT RECORD TYPE TO EACH RECORD
C FEB. 1976, LEO SCHMIDT, I.D.A. 558-7346

C.....BELOW ARE DEFINITIONS OF VARIABLES.....

C...INPUT CONTROL AND FILE DEFINITION VARIABLES

C...CONTROL OF TYPE

C IMRG-- IF 1 MERGE SEVERAL FILES
C INTRO-- IF 1 CONVERT A TAPE FROM SOME FORMAT TO STD. FORMAT
C IEXTRT-- IF 1 EXTRACT RECORDS FROM A FILE
C IEDIT-- IF 1 DO EDITING ON AN INPUT FILE
C IORDR-- PUT FILE IN COMPLETE STANDARD FORM BY ADDING NEXT
C RECORD TYPE AND RECORD COUNT. NO OTHER CHANGES
C IPNCH-- PUNCH ON CARDS RECORDS INDICATED BY CODE TYPE AND FIPS
C CODE.
C IAUGA-- VARIABLE TO CONTROL DEBUG PRINTOUT, CONTROL OF PRINTOUT OF
C WRITTEN OUTPUT TAPE DURING EXECUTION

C...CONTROL OF BASIC FORMAT SETTING

C INTRN-- NUMBER OF TYPE TO CONVERT IN GO TO STATEMENT
C 1 ANCET CITY DATA BASE
C 2 CCOR SELECTIONS
C 3 BLAST AND FALLOUT RISK

C...CONTROL OF EXTRACT

C IGEOG-- EXTRACT RECORDS BASED ON LOCATION
C IPOLIT-- EXTRACT RECORD ON A POLITICAL BASIS
C INELT-- DELETE NAMED RECORD TYPE
C ISAVE-- SAVE NAMED RECORD TYPE

C...CONTROL OF EDITING ROUTINE

C JFBSP(300)-- AND REST OF SPECIAL BUFFER VARIABLES ARE SET OF
C CORRECTIONS INPUT FROM STANDARD INPUT TO CONTROL EDITING OF
C FILE INPUT ON MAT
C JSPLST(300)-- ARRAY FOR CODE ON TYPE OF EDITING
C 1 DELETE A RECORD WITH GIVEN FIPS CODE AND TYPE
C 2 INSERT A RECORD SO CODE AND TYPE ARE IN ORDER
C 3 CHANGE A RECORD TO THAT GIVE IN CORRECTION
C 4 INSERT RECORD AFTER GIVEN FIPS CODE AND TYPE

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

C S INSERT A RECORD BEFORE GIVEN CODE AND TYPE
C FOR 4 AND 5 TYPES JSPNFA, JSPNFB, AND JSPNRT ARE CODE AND TYPE
C OF INSERTED RECORD
C 6 MOVE A RECORD FROM GIVEN CODE AND TYPE LOCATION
C TO FIPS CODE AND TYPE GIVEN BY JSPNFA, JSPNFB, JSPNRT INPUT
C AFTER DATA
C 1X DO STANDARD CHANGE OF TYPE 1X - 10, CHANGES DEFINE BY CODE
C INSERTED BY USER
C NST-- NUMBER OF STATE WITH GROUP TREATMENT IN EDITING
C ISTLST(=0)-- LIST OF STATES WITH SUCH TREATMENT
C ISTTP(20)-- TYPE OF TREATMENT FOR THE STATE
C ISC-- AS WITH MERGE, FIPS CONTROL
C IPEDT-- IF 1 LIST EDITING CORRECTIONS TO MAKE
C ICOMDA(20,10)-- DATA FOR COMMON CHANGES, TO BE INSERTED
C ICOMFS(20)-- FIRST CHARACTER OF COMMON CHANGE
C ICOMLS(2n)-- LAST CHARACTER OF COMMON CHANGES
C ICOMTP(4n)-- INDEX TO LOCATION WITH TYPE OF CHANGE
C ICOMNU-- NUMBER OF COMMON CHANGE TYPES
C
C...CONTROL OF PUNCH
C
C ISC-- CONTROL OF FIPS CODE USE, AS IN MERGE
C IPRT-- IF ONE OUTPUT THE RECORDS PUNCHED
C
C...CONTROL OF MERGE
C
C IWMS-- 1 WRITE ON OUTPUT FILE MISSING FIPS CODE AND RECORD TYPE,
C 2 WRITE ON TAPE, 0 DONT
C IWMSN(20)-- IF RECORD NUMBER IS ONE OF THESE DO NOT RECORD IF
C MISSING EVEN IF IWMS IS 1 OR 2
C NWMS-- NUMBER OF RECORD TYPES NOT TO RECORD
C IWTBDP-- IF ONE WRITE CODE TYPE FILE FOR RECORD WITH TYPE NOT IN
C LIST OF ACCEPTABLE TYPES, IF 2 WRITE DATA, IF 0 DONT DO
C PUT ON FILE OUTPUT
C IWTBDT-- AS AS ABOVE BUT ON FILE POUT
C IWTBDN(20)-- IF BAD RECORD ONE OF THESE TYPES DONT WRITE
C NWTD-- NUMBER OF THESE RECORDS NOT TO WRITE
C IWLSP-- IF 1 WRITE ON OUTPUT RECORDS NOT USED, JUST FIPS CODE,
C TYPE, AND RECORD FOLLOWING, IF 2 WRITE DATA ALSO
C IWLST-- SAME AS IWLSP BUT WRITE ON FILE POUT
C IFGEN-- 1 GENERATE SPACES FOR NEW CNTY, 2 NEW PAGE FOR STATE ALSO
C 3 NO SPACE, 0 LEAVE ALONE.
C ILEAD-- IF 0 USE LOWEST CODE ON NEXT FILES AS NEXT FIPS CODE
C GROUP TO PRINT, IF NOT ZERO USE THE CODE WITH THE ILEAD TH
C FILE. NOTICE ILEAD 0 ASSUMES THE FILE CODES ARE IN INCREASING
C NUMERICAL ORDER. ALSO ALL RECORDS ARE USED.
C IADVL-- IF 1 ADVANCE ILEAD FILE IF THE ILDR RECORD IS NOT PRESENT
C IF 0 DO NOT
C ILDR-- THE RECORD NUMBER FOR FILE ILEAD ADVANCING CONTROL
C IADVX-- IF 1 ASSUME FILES ARE IN NUMERICAL ORDER, IF ILEAD FILE
C HAS LARGER VALUE ADVANCE OTHER FILES TILL THEY MATCH AND
C PASSED OVER RECORDS, IF 2 ADVANCE OTHER FILES TILL MATCH, NO
C NUMERICAL ORDERING ASSUMED. NOTE THIS MAY CAUSE FILE TO ADVANCE
C TILL EOF. IF 3 DO NOT ADVANCE OTHER FILES UNLESS A MATCH IS
C FOUND IN READ BUFFER. ANY OTHER VALUE ACTS LIKE 3
C IVRY-- IF 1 A RECORD TYPE MAY BE REPEATED ON A FILE NEEDING
C SPECIAL HANDLING BY A BUFFER
C ISC-- IF 1 COMBINE ALL STATE AND COUNTY RECORDS TOGETHER IN A
C GROUP, IF 0 PLACE RECORDS TOO DEFINE A GROUP
C
C NMRG-- NUMBER OF EXTERNAL FILES TO MERGE

***** UNCLASSIFIED ***** 1-184

11/30/76

PAGE NO. 000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

C NMRGA(10) -- NUMBER OF TYPES IN FILE I
C NTYPA(10,10) ---- A4 TYPE CODE FOR J TH RECORD IN THE ITH FILE
C NCHRA(10,10) -- I:J NO OF CHARACTERS IN J RECORD OF FILE I
C NDESCR(10,10,4) -- DESCRIPTION OF I J TH FILE

C...DERIVED RECORD/FILE STRUCTURE VARIABLES

C NORDI(100) -- FILE I RECORD J IS THE K TH RECORD TO BE WRITTEN ON
C THE MERGED FILE I3
C NORDJ(100) -- SAME FOR J
C NTYPIJ(100) -- TYPE OF IJ TH RECORD
C NCHRCU(100) -- NO OF CHARACTERS IN L TH FILE.
C NLNKL(10,10) -- TYPE I RECORD J IS NLNKL IN BUFFER
C NTYPT -- TOTAL NUMBER OF TYPES OF RECORDS TO MERGE

C...CURRENT BUFFER VARIABLES

C JFBCU(100) -- FORMAT CONTROL BIT IN CURRENT BUFFER
C JRECTP(100) -- RECORD TYPE OF CURRENT FIPS BUFFER
C JNXTCP(100) -- NEXT RECORD OF CURRENT FIPS BUFFER
C JRCTCU(100) -- READ RECORD COUNT IN CURRENT BUFFER
C JCUFPA(100) -- FIPS CODE IN CURRENT BUFFER, PART A
C JCUFPB(100) -- SAME, PART B
C JCURDA(100,15) -- DATA IN CURRENT BUFFER
C ICF(100) -- FLAG FOR CURRENT BUFFER, 0 INVALID DATA, 1 CURRENT FIPS
C CODE DATA
C ICUFPA -- VALUE OF CURRENT BUFFER, PART A, IE FIPS CODE
C STATE AND COUNTY
C ICUFPB -- VALUE OF CURRENT BUFFER, PART B, PLACE

C...NEXT BUFFER VARIABLES

C JFBNX(100) -- FORMAT CONTROL BIT IN NEXT BUFFER
C JNFCUR(100) -- RECORD TYPE OF NEXT FIPS BUFFER
C JNFNXT(100) -- NEXT RECORD OF NEXT FIPS BUFFER
C JRCTNX(100) -- READ RECORD COUNT IN NEXT BUFFER
C JNBFPA(100) -- FIPS CODE IN NEXT BUFFER, PART A
C JNBFPB(100) -- SAME, PART B
C JNXTDA(100,15) -- DATA IN NEXT BUFFER
C INF(100) -- FLAG FOR NEXT FIPS BUFFER, 0 EMPTY NEEDS DATA,
C 1 VALID DATA FROM FILE READ, 2 END OF DATA ON THIS FILE,
C DO NO MORE READING FROM IT
C KCUFPA -- VALUE OF NEXT BUFFER, PART A, I.E. FIPS CODE
C STATE AND COUNTY
C KCUFPB -- VALUE OF NEXT BUFFER, PART B, PLACE
C KFPNBA(10) -- FIPS CODE, PART A, OF ITH GROUP IN NEXT BUFFER
C KFPNBB(10) -- PART B

C...SPECIAL BUFFER VARIABLES

C JFBSP(300) -- FIRST BIT IN SPECIAL BUFFER
C JSPCUR(300) -- CURRENT RECORD TYPE IN EXTRA BUFFER
C JNFSP(300) -- NEXT RECORD IN EXTRA BUFFER
C JRCTSP(300) -- RECORD COUNT IN SPECIAL BUFFER
C JSPPA(300) -- FIPS CODE PART A IN EXTRA BUFFER
C JSPPB(300) -- PART B
C JSPOA(300,15) -- DATA IN EXTRA BUFFER

I-185

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 006

C NSPNU-- NUMBER OF RECORDS IN SPECIAL BUFFER
C ISPFST(300)-- FIRST RECOD NU OF L TH RECORD IN SPECIAL BUFFER,
C IF 0 NONE PRESENT -- ASSOCIATED WITH CURRENT BUFFER VARIABLES
C ISPLST(3A0)-- LAST RECORD IN SPEC BUFFER FOR L TH TYPE
C FOR CURRENT BUFFER
C JSPLST(300)-- AS I BUT NEXT BUFFER VARIABLES
C JSPLST(300)-- AS I BUT NEXT BUFFER VARIABLES
C ICUB-- IF 1 DRAW DOWN CURRENT BUFFER IF 2 NEXT BUFFER STORES IN
C SPECIAL BUFFER DRAWDOWN
C MXSPBU-- MAXIMUM NUMBER OF ENTRIES IN SPECIAL BUFFER

C...READ BUFFER VARIABLES

C JFBHR(10)-- LIKE SPECIAL BUFFER NAMES. USED TO HOLD DATA FOR A
C NEXT FIPS CODE READ ON FILE I. USED WHEN RECORDS ARE MISSING
C TO TERMINATE NORMAL READS.
C IHR(10)-- THERE IS DATA FOR ITH FILE READ TO BE INSERTED ON
C NEXT READ
C IRDF(10)-- FLAG TO TELL THAT JTH FILE HAS BEEN READ ON CURRENT
C READ
C KFPRDA(10)-- FIPS CODE, PART A, OF ITH GROUP IN READ BUFFER
C KFPROB(10)-- SAME PART B

C...MISCELLANEOUS VARIABLES

C I-- USUALLY INDEX TO INPUT FILE NUMBER
C J-- USUALLY INDEX TO INPUT RECORD NUMBER
C L-- USUALLY INDEX TO RECORDS IN ORDER OF OUTPUT
C JRCDCR-- COUNT OF RECORDS WRITTEN ON OUTPUT FILE
C MRD(10)-- EXTERNAL NAMES OF READ FILE
C MNXDA(15)-- DATA IN READ BUFFER
C MXWRD-- MAXIMUM NO OF DATA WORDS IN ONE READ
C NCCHRW-- NUMBER OF CHARACTERS/WORD
C IFLEF(10)-- END OF FILE S(NSED ON ITH FILE TYPE
C MFBNX,MNRFPA,MNRFPB,MNFCUR,MNFXNXT,MRCTNX,MNXDA(15)-- DATA IN
C TEMPORARY READ BUFFER
C ISTRT-- FLAG TO INDICATE START OF FILE MERGE FOR INITIAL FILL OF
C NEXT BUFFER
C ISTOP-- FLAG TO INDICATE ALL DATA HAS BEEN READ
C NTSTP-- VALUE TO WRITE IN LAST RECORD ON MERGED FILE CURRENT VALUE
C IS STOP
C NTST-- FOR DEBUGGING NUMBER OF RECORDS TO PRODUCE BEFORE ENDING
C RUN. FOR PRODUCTION RUNS SET TO A LARGE NUMBER
C NWRD-- COMPUTED NUMBER OF DATA WORDS TO WRITE ON OUTPUT RECORD
C COMPUTED FROM NCCHRUC
C MP-- STANDARD INPUT FILE, FOR DATA AND CONTROL
C MQ-- STANDARD OUTPUT FILE
C MS-- PUNCH FILE
C MOPT-- PRINTED OUTPUT- EXTRA
C MOT-- OUTPUT TAPE FILE FOR MERGED RECORDS

C...VARIABLES USED IN EDITING FOUTINE

C JSPLST(300)-- IF ONE THIS CORRECTION HAS BEEN USED, DONT SEARCH
C IT ANY MORE
C ISPFST(300)-- IF 1 INSERT LTH CORRECTION AFTER NEXT WRITE,
C IF 2 AFTER SECOND WRITE
C NTYPIJ(100)-- AS IN MERGE IS LTH RECDN TYPE

I-186

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 006

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

C NCHRCU(100)-- AS MERGE, NUMBER OF CHARCTERS OF DATA IN TYPE
C ISPLST(300)-- PLACE OF RECORD IN LIST
C MBUFFL-- IF 1 M BUFFER HAS VALID DATA: IF 0 NOT
C NAUFL-- VALID DATA FLAG FOR N BUFFER
C KAUFFL-- VALID DATA FLAG FOR K BUFFER
C NTST-- NUMBER OF INSERTS AFTER NEXT RECORD WRITE
C NSPNU-- NUMBER OF INDIVIDUAL CORRECTIONS TO MAKE
C JDOC-- IF 1 MAKE CHANGE CORRECTION(TYPE 3)
C JDOG-- IF 1 MAKE COMMON CHANGE TYPE JDOG - 10
C MFBNX-- ETC. M, N, OR K BUFFER VARIALBE AS NEXT BUFFER BUT
C CHANGE FIRST LETTER AND NOT ARRAYS

C COMMON / FILOR/ NMREGA(10), NTYPA(10,10) , NORDI(100), NORDJ(100),
1 NTYPIJ(100), NLNKL(10,10), NDESCR(10,10,4) , NCHRA(10,10),
2 NCHRCU(100), NMRGRT,NTYPT

C COMMON / FNBUF/ JFBCU(100),JRRECTP(100), JNXTP(100), JRCTCU(100),
1 JCUCFPA(100), JCUCFPB(100),JCURDA(100,15),ICF(100),
2 JFBNX(100), JNFCUR(100),JNFNXT(100), JRCTNX(100), JNBFPA(100),
3 JNBFPB(100),JNXTDA(100,15),INF(100)

C COMMON / SPBUF/ JFBSP(300), JSPCUR(300), JNFSP(300),JRCTSP(300),
1 JSPFPB(300), JSPFPB(300), JSPDA(300,15),NSPNU,
2 ISPFST(300), ISPLST(300), JSPFST(300), JSPLST(300)

C COMMON / CONS/ IBUGA,IBUGB,IBUGC,IBUGD,IBUGE,IBUGF,IBUGG,IBUGH
1 ,MSKAR(10), MSKA,MSKB,MSKC,MSKD, MSKE,MSKF, MP,MQ,MS,MOT,MOP,
2 MRD(10),MTA,MTB,MTC,MTD,MTE,MTF,MTG,MTH,MTI,MTJ
3 ,MXWRD,NTSTP,NCHRW ,MXSPBU

C COMMON /MISC/ KNXDA(15), MNXDA(15), NNXDA(15), ICNT,NTST,ISTOP
1,JRCDC

C 6400 UNIQUE
DATA MSKAR / 77B,7700B,770000B,7700000B,77000000B,
1 770000000000B ,7700000000000B ,7700000000000000B,
2 7700000000000000B ,77000000000000000000B/
DATA MSKA / 7777777777777778 /
DATA MSKB / 33000000000000000000B/
DATA MSKC / 77000000000000000000B/
DATA MSKD / 55000000000000000000B/
DATA MSKE / 77770000000000000000B/
DATA MSKF / 778/

C TO CORRESPOND TO INPUT FILES ON PROGRAM CARD
DATA MRD / 3LMAT,3LMBT,3LMCT,3LMDT,3LMET,3LMFT,3LMGT,
1 3LMHT,3LMIT,3LMJT/
DATA MTA / 3LMAT/
DATA MTB / 3LMBT/
DATA MTC / 3LMCT/
DATA MTD / 3LMDT/
DATA MTE / 3LMET/
DATA MTF / 3LMFT/
DATA MTG / 3LMGT/
DATA MTH / 3LMHT/
DATA MTI / 3LMIT/
DATA MTJ / 3LMJT/

***** UNCLASSIFIED *****

I-187 11/30/76

PAGE NO. 000

***** UNCLASSIFIED ***** 11/30/76 PAGE NO. 000

```
DATA MP /SLINPUT/
DATA MQ / 6LOUTPUT/
DATA MS / SLPUNCH/
DATA MOT /4LTOUT/
DATA MOP / 4LPOUT/
C
C
C
C
C.....START EXECUTABLE CODE.....
C
C
C
C
INITIALIZE
NTST = 5
NTST = 10
NTST = 100
NTST = 200
NTST = 9999999
NTST = 50
NTST = 20
ICNT = 0
C
NTSTP = 4HSTOP
ISTOP = 0
JRCDCR = 0
C
C
WRITE(MQ,8)
FORMAT(1H1,///,30X,* DATA FROM RUN OF FILE MERGE PROGRAM*,/////)
C
AGAIN FOR 6400 NCHRW = 10
NCHRW = 10
MXWRD = 11
C
NSPNU = 0
MXSPBU = 300
DO 4 L = 1,300
ISPFST(L) = 0
ISPLST(L) = 0
JSPFST(L) = 0
JSPLST(L) = 0
4
CONTINUE
C
C
C
READ CONTROL PARAMETERS
C
READ(MP,11) IMRG,INTRO,IEXTRT,IPNCH,IEDIT,IORDR
11
FORMAT(/,6I10)
READ(MP,9) IBUGA,IBUGB,IBUGC,IBUGD,IBUGE,IBUGF,IBUGG,IBUGH
9
FORMAT(/,8I1)
IF(IMRG .NE. 1) GO TO 21
CALL MERGE
GO TO 1500
21
CONTINUE
IF(INTRO .NE. 1) GO TO 22
CALL MEET
GO TO 1500
22
CONTINUE
IF(IEXTRT .NE. 1) GO TO 23
CALL EXTRCT
```

1-186

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

7

```

23   GO TO 1500
      CONTINUE
      IF(IPNCH .NE. 1) GO TO 24
      CALL PUNCH
      GO TO 1500
24   CONTINUE
      IF(IEEDIT .NE. 1) GO TO 25
      CALL EDIT
      GO TO 1500
25   CONTINUE
      IF(IORDR .NE. 1) GO TO 26
      CALL ORDER
      GO TO 1500
26   CONTINUE
C
C
1500  CONTINUE
      STOP 6400
      END
      SUBROUTINE MERGE

```

THIS SECTION MERGES SEVERAL FILES.
DATA IS READ INTO THE NEXT BUFFER. DATA IS WRITTEN FROM THE CURRENT BUFFER. USUALLY ALL DATA FROM A STATE/COUNTY IS WRITTEN AT ONCE IN THE ORDER SPECIFIED BY INPUT. AFTER WRITING, DATA IS ADVANCED FROM THE NEXT BUFFER INTO THE CURRENT BUFFER, AND DATA FROM A NEW ST/CNTY IS READ INTO THE NEXT BUFFER. IF MORE THAN 1 RECORD OF A TYPE IS ON A FILE, IVRY MUST BE ONE. THEN THE EXTRA RECORDS ARE READ INTO A SPECIAL BUFFER AND SAVED TO BE WRITTEN AFTER THE FIRST OF THE TYPE IS WRITTEN. ALL RECORDS WITH A PARTICULAR CODE MUST BE ADJACENT ON A FILE. THEY MAY BE IN ANY ORDER WITHIN THE GROUP OF RECORDS WITH THE SAME CODE.

```

DIMENSION      IFLEF(10),IWTMSN(20),IWTBDN(20)
DIMENSION JFBHRC(10),JHRCUR(10),JNFHRA(10),JHRFPA(10),JHRFPB(10),
1 JRCTHR(10), JHRCDA(10,15),IHR(10),IRDF(10)
DIMENSION KFPNBA(10),KFPNBB(10),KFPRDA(10),KFPRDB(10)
COMMON / FILOR/ NMRGA(10), NTYPA(10,10) , NORDI(100), NORDJ(100),
1 NTYPIJ(100), NLNLK(10,10), NDESCR(10,10,4) , NCHRA(10,10),
2 NCHRCU(100),NMRGRT,NTYPT
COMMON / FNAUF/ JFBCU(100),JRRECTP(100),JNXTP(100),JRCTCU(100),

```

**** UNCLASSIFIED **** 1-189 11/30/76

I-199

11/30/76

PAGE NO. 000

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000

```

1 JCUFPA(100), JCUFPB(100), JCURDA(100,15), ICF(100)
2 JFBNX(100), JNFCUR(100), JNFNXT(100), JRCTNX(100), JNBFPB(100),
3 JNBFPB(100), JNXTDA(100,15), INF(100)
  COMMON /SPBUF/ JFRSP(300), JSPCUR(300), JNFSP(300), JRCTSP(300),
1 JSPFPB(300), JSPFPB(300), JSPDA(300,15), NSPNU,
2 ISPFST(300), ISPLST(300), JSPLST(300), JSPLST(300)
  COMMON /CONS/ IBUGA, IBUGB, IBUGC, IBUGD, IBUGE, IBUGF, IBUGG, IBUGH
1 , MSKAR(10), MSKA, MSKB, MSKC, MSKD, MSKE, MSKF, MP, MQ, MS, MOT, MOP,
2 MRD(10), MTA, MTB, MTC, MTD, MTE, MTF, MTG, MTH, MTI, MTJ
3 , MXWRD, NTSTR, NCHRW, MXSPBU
  COMMON /MISC/ KNXDA(15), MNXDA(15), ICNT, NTST, ISTOP
1, JRCDCT
C
C
C
C   INITIALIZE
  KWMS = 1
  ISTART = 1
  ISTO = 2H
  DO 2 L = 1,100
  ICF(L) = 0
  INF(L) = 0
2   CONTINUE
  DO 3 I = 1,10
  IFLEF(I) = 0
  IWR(I) = 0
3   CONTINUE
C
C
C
C   READ MERGE CONTROL PARAMETERS
C
  READ(MP,11) ILEAD, ILDR, IADVL, IADVX, ISC
11  FORMAT(/,5I10)
  READ(MP,11) IVRY, IWTLSP, IWTLST, IWTMS, IFBGEN
  READ(MP,11) IWTHDP, IWTHBT
C
C   READ FILE DEFINITION PARAMETERS
C
  READ(MP,12) NMRGRT
12  FORMAT(/,I10)
  NTYPT = 0
  DO 13 I = 1, NMRGRT
  READ(MP,14) NMNRGA(I)
  FORMAT(I2)
  ITMP = NMNRGA(I)
  NTYPT = NTYPT + ITMP
  READ(MP,15) (NTYPA(I,J), J = 1, ITMP)
15  FORMAT(10(1X,A4))
  READ(MP,16) (NCHRRA(I,J), J = 1, ITMP)
16  FORMAT(10I5)
  DO 26 J = 1, ITMP
  READ(MP,27) (NOESCR(I,J,K), K = 1, 4)
27  FORMAT(4A10) - 6400 ungs
26  CONTINUE
13  CONTINUE
C
  DO 17 L = 1, NTYPT
17  READ(MP,18) NORDI(L), NORDJ(L)
  FORMAT(2I5)
  I = NORDI(L)

```

**** UNCLASSIFIED **** I-190

11/30/76

PAGE NO. 000

AD-A040 945 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA PROGRAM --ETC F/G 15/4
DOCUMENTATION OF CURRENT IDA COMPUTER MATERIAL DEVELOPED FOR DC--ETC(U)
JAN 77 L A SCHMIDT DCPA01-76-C-0213

UNCLASSIFIED

3 OF 3

ADI
A040 945

IDA/HQ-77-19225

NL

END

DATE
FILMED

7-77

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

```
J = NORDJ(L)
NTPIJ(L) = NTYPA(I,J)
NLNKL(I,J) = L
NCHRCU(L) = NCHRA(I,J)
17    CONTINUE
C
NWTMS = 0
IF(IWTMS .EQ.0) GO TO 21
23    CONTINUE
READ(MP,22) ITMP
22    FORMAT(I3)
IF(ITMP .LE.0) GO TO 21
NWTMS = NWTMS + 1
IWTMSN(NWTMS) = ITMP
GO TO 23
21    CONTINUE
C
NWTBD = 0
IF(IWTBDP .EQ.0 .AND. IWTBDT .EQ.0) GO TO 976
977    CONTINUE
READ(MP,978) ITMP
978    FORMAT(A4)
IF(ITMP .EQ. 4HZZZZ) GO TO 976
NWTBD = NWTBD + 1
IWTBDN(NWTBD) = ITMP
GO TO 977
976    CONTINUE
C
C
C    PRINT RUN DESCRIPTION
C
WRITE(MQ,181) NMRGT
181    FORMAT(1H0,20X,*IN THIS CALCULATION MERGE THE DATA FROM*,I3,
1 * SEPERATE INPUT FILES*,/, 30X, *.....*,//)
C
IF(IVRY .NE. 1) GO TO 185
WRITE(MQ,188)
188    FORMAT(1H0, * IF THIS RUN A RECORD TYPE MAY BE REPEATED, UP TO 300
1 REPEATED RECORDS PER SET ARE ALLOWED*)
GOTO 186
185    CONTINUE
WRITE(MQ,189)
189    FORMAT(1H0, *NO REPEATED RECORD TYPES IN A SINGLE SET ARE ALLOWED
1IN THIS RUN*)
186    CONTINUE
C
IF(ILREAD .NE. 0) GO TO 182
WRITE(MQ,184)
184    FORMAT(1H0, *USE LOWEST FIPS CODE IN INPUT FILES AS CODE FOR NEXT
1SET OF RECORDS WRITTEN -- ALL INPUT RECORDS ARE USED*)
GO TO 918
182    CONTINUE
WRITE(MQ,187) ILREAD
187    FORMAT(1H0, * TAKE FIPS CODE FOR NEXT SET OF RECORDS AS THAT ASSOC
1IATED WITH FILE NO., I3 )
183    CONTINUE
C
IF(IADVL .NE. 0) GO TO 911
WRITE(MQ,913) ILREAD
913    FORMAT(1H0,* DO NOT SKIP ANY GROUPS OF RECORDS IN LEAD FILE*,I3)
GO TO 912
```

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

10

911 CONTINUE
914 WRITE(MQ,914) ILDR,ILEAD
FORMAT(1H0,* IF THE *,I3,* RECORD IS MISSING FROM A GROUP IN THE LEAD FILE*,I3,* SKIP THIS GROUP OF RECORDS AND ADVANCE TO THE NEXT*)
2)
912 CONTINUE
C
IF(IADVX .NE.1) GO TO 916
WRITE(MQ,919)
919 FORMAT(1H0,*ASSUME FILES IN NUMERICAL ORDER-- IF LEAD FILE HAS LARGER FIPS CODE ADVANCE OTHERS AND DROP SKIPPED RECORDS*)
GO TO 918
916 CONTINUE
IF(IADVX .NE.2) GO TO 917
WRITE(MQ,920)
920 FORMAT(1H0,* IF LEAD FILE CODE DIFFERENT FROM OTHERS,ADVANCE OTHERS UNTIL MATCH IS FOUND*)
GO TO 918
917 CONTINUE
WRITE(MQ,921)
921 FORMAT(1H0,* DO NOT ADVANCE FILES TO MATCH CODES WITH LEAD FILE UNLESS CODE IS IN READ BUFFER*)
918 CONTINUE
C
IF(IWTMS.EQ. 1) GO TO 801
IF(IWTMS.EQ. 2) GO TO 802
WRITE(MQ,804)
804 FORMAT(1H0,* IF A RECORD TYPE IS MISSING FROM A FIPS CODE GROUPING DO NOT RECORD THIS EVENT*)
GO TO 803
801 CONTINUE
WRITE(MQ,805)
805 FORMAT(1H0,* IF A RECORD TYPE IS MISSING FROM A FIPS CODE GROUPING RECORD THIS ON OUTPUT FILE*)
GO TO 902
802 CONTINUE
WRITE(MQ,806)
806 FORMAT(1H0,* IF A RECORD TYPE IS MISSING FROM A FIPS CODE GROUPING RECORD THIS ON TAPE FILE MOP*)
902 CONTINUE
IF(NWTMS .EQ.0) GO TO 901
WRITE(MQ,903) NWTMS
903 FORMAT(/,1H0,* DO NOT RECORD MISSING RECORDS FOR THE FOLLOWING*,/
1 I2,* TYPES OF RECORDS*,/* NO.,*2X,* POSN TYPE DESCRIPTION*,
2 /)
DO 904 K = 1,NWTMS
L = IWTMSN(K)
I = NORDI(L)
J = NORDJ(L)
WRITE(MQ,905) K,IWTMSN(K),NTYPIJ(L), INDESCR(I+J+KK)*KK= 1,4)
905 FORMAT(1H , I4,2X,I4,2X,A4,2X,*A10)
904 CONTINUE
901 CONTINUE
803 CONTINUE
C
IF(IWTLSP .EQ. 1) GO TO 807
IF(IWTLST .EQ. 1) GO TO 808
IF(IWTLSP .EQ. 2) GO TO 817
IF(IWTLST .EQ. 2) GO TO 818
WRITE(MQ,813)
813 FORMAT(1H0,* IF AN INPUT RECORD IS NOT USED DO NOT RECORD THIS EVE

***** UNCLASSIFIED ***** I-192

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

1NT*)
GO TO 809
807 CONTINUE
WRITE(MQ,812)
812 FORMAT(1H0,* IF AN INPUT RECORD IS NOT USED RECORD CODE AND TYPE 0
IN OUTPUT FILE*)
GO TO 809
808 CONTINUE
WRITE(MQ,811)
811 FORMAT(1H0,* IF AN INPUT RECORD IS NOT USED RECORD CODE AND TYPE 0
IN TAPE FILE POUT*)
GO TO 809
817 CONTINUE
WRITE(MQ,814)
814 FORMAT(1H0, * IF A RECORD IS NOT USED RECORD ALL RECORD INFORMATI
ON ON OUTPUT FILE*)
GO TO 809
818 CONTINUE
WRITE(MQ,815)
815 FORMAT(1H0, * IF A RECORD IS NOT USED RECORD ALL RECORD INFORMATI
ON ON TAPE FILE POUT*)
809 CONTINUE
C
IF(IWTBOP .EQ.1) GO TO 961
IF(IWTBDT .EQ.1) GO TO 962
IF(IWTBOP .EQ.2) GO TO 963
IF(IWTBDT .EQ.2) GO TO 964
WRITE(MQ,967)
967 FORMAT(1H0,* DO NOT DESCRIBE RECORDS WITH INVALID TYPE CODES*)
GO TO 965
961 CONTINUE
WRITE(MQ,968)
968 FORMAT(1H0, * DESCRIBE ALL RECORDS WITH INVALID TYPE CODES BY FILE
1 NO, TYPE CODE, FIPS CODE , AND COUNT ON FILE OUTPUT*)
GO TO 966
962 CONTINUE
WRITE(MQ,969)
969 FORMAT(1H0,*DESCRIBE ALL DATA FOR RECORDS WITH INVALID TYPE CODE -
1 IDENTIFY BY NEXT RECORD SET TO BADT, WRITE ON FILE POUT*)
GO TO 966
963 CONTINUE
WRITE(MQ,970)
970 FORMAT(1H0, * DESCRIBE ALL RECORDS WITH INVALID TYPE CODES BY FILE
1 NO, TYPE CODE, FIPS CODE , AND COUNT ON FILE POUT*)
GO TO 966
964 CONTINUE
WRITE(MQ,971)
971 FORMAT(1H0,*DESCRIBE ALL DATA FOR RECORDS WITH INVALID TYPE CODE -
1 IDENTIFY BY NEXT RECORD SET TO BADT, WRITE ON FILE POUT*)
966 CONTINUE
IF(NWTBD .EQ.0) GO TO 965
WRITE(MQ,972)
972 FORMAT(1H0, * THE FOLLOWING LIST ARE EXCEPTIONS- DO NOT DESCR
IBE INVALID TYPES IN THE FOLLOWING LIST*,/*11X, * NO.,*5X, *TYPE*,
2 /*)
DO 973 K = 1,NWTMS
WRITE(MQ,974) K, IWTBDN(K)
974 FORMAT(1H ,10X, I4,5X,44)
973 CONTINUE
965 CONTINUE
C

I-193

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

/2

C
IF(IFBGEN .EQ. 1) GO TO 819
IF(IFBGEN .EQ. 2) GO TO 820
IF(IFBGEN .EQ. 3) GO TO 826
WRITE(MQ,822)
822 FORMAT(1H0, *DO NOT CHANGE FORMAT CONTROL BITS INPUT*)
GO TO 821
819 CONTINUE
WRITE(MQ,823)
823 FORMAT(1H0, *SET FORMAT CONTROL BIT TO SKIP A LINE FOR EACH NEW CO
UNTY*)
GO TO 821
820 CONTINUE
WRITE(MQ,824)
824 FORMAT(1H0, *SET FORMAT CONTROL BIT TO SKIP A LINE FOR EACH NEW CO
UNTY AND TO A NEW PAGE FOR EACH NEW STATE *)
GO TO 821
826 CONTINUE
WRITE(MQ,825)
825 FORMAT(1H0,* SET FORMAT CONTROL BIT SO NO LINES ARE SKIPPED*)
821 CONTINUE
C
IF(ISC .EQ. 1) GO TO 827
WRITE(MQ,830)
830 FORMAT(1H0,* REQUIRE COMMON PLACE CODE AS WELL AS STATE AND COUNTY
1 CODE TO DEFINE A COMMON GROUP OF RECORDS*,/,
2 * '(I.E. JCUFPA(I) AND JCUFPB(I))*)
GO TO 828
827 CONTINUE
WRITE(MQ,829)
829 FORMAT(1H0, *JUST USE STATE AND COUNTY CODES (JCUFPA(I)) TO DEFIN
1E A COMMON GROUP OF RECORDS, IGNORE PLACE CODE*)
828 CONTINUE
C
WRITE(MQ,837)
837 FORMAT(//,10X,*.....*!/15X,*DESCRIPTION OF INPUT F
1ILES*,/)
WRITE(MQ,835)
835 FORMAT(//,1H0, * FILE RECORD TYPE OUTPUT NO. OF DATA DESCRIPT
ION*)
WRITE(MQ,836)
836 FORMAT(1H , * NO. NO. CODE ORDER CHARACTERS*)
DO 831 I = 1,NMRGT
WRITE(MQ,834)
834 FORMAT(1H0)
ITM = NMRGA(I)
DO 832 J = 1,ITM
WRITE(MQ,833) I,J,NTYPA(I,J), NLNKL(I+J), NCHRA(I+J),
1 (NODESCR(I,J,K),K = 1,4)
833 FORMAT(1H , I5,I8,2X,A4,I8,I10,7X,4A10)
832 CONTINUE
831 CONTINUE
WRITE(MQ,838)
838 FORMAT(/,10X,*.....*//)
C
C
ISTRAT = 1
GO TO 130
19 CONTINUE
ISTRAT = 0
C

***** UNCLASSIFIED *****

I-194

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

/3

C 120 CONTINUE
C NOW TRANSFER DATA FROM NEXT BUFFER TO CURRENT BUFFER FOR
C CURRENT FIPS CODE AND SET FLAGS
C
DO 121 L = 1,NTYPT
IF (INF(L) .NE.1) GO TO 121
IF (JNBFP(A(L)) .NE. KCUFPA) GO TO 121
IF (ISC .EQ.1) GO TO 123
IF (JNBFPB(L) .NE. KCUFPP) GO TO 121
123 CONTINUE
JCUFPA(L) = JNBFP(A(L))
JCUFPB(L) = JNBFPB(L)
JRRECTP(L) = JNFCUR(L)
JNXTPL(L) = JNFNXT(L)
JFBCKU(L) = JFBNX(L)
JRCTCU(L) = JRCTNX(L)
DO 122 LI = 1,15
JCURDA(L,LL) = JNXTDA(L,LL)
122 CONTINUE
ISPFST(L) = JSFPST(L)
ISPLST(L) = JSPLST(L)
JSFPST(L) = 0
JSPLST(L) = 0
ICF(L) = 1
INF(L) = 0
C END OF FILE BUSINESS
I = NORDI(L)
IF(IFLEF(I) .EQ. 2) IFLEF(I) = 1
121 CONTINUE
C CHECK TO SEE IF ALL FILES ARE USED
DO 124 I = 1,NMRGT
IF(IFLEF(I) .EQ. 1) GO TO 124
GO TO 128
124 CONTINUE
ISTOP = 1
C SINCE ENTERING 120 MEANS THERE MUST BE VALID DATA IN NEXT BUFFER.
C AND A VALID FIPS CODE THERE IS NOW SOME DATA IN CURRENT BUFFER.
C PROCESS IT AND EXIT
GO TO 140
128 CONTINUE
ICUFPA = KCUFPA
ICUFPP = KCUFPP
C
C
130 CONTINUE
C NOW READ DATA INTO NEXT BUFFER.
C IF INF(L) FOR ANY RECORD OF FILE I IS ONE DONT READ FROM
C THIS FILE
C
I = 0
IAD8K = 1
136 CONTINUE
I = I + 1
855 CONTINUE
IF(IFLEF(I) .NE.0) GO TO 131
NRD = NMRA(I)
ITMP = NRD(I)
INCT = 0
C DO NOT USE THIS FILE IF ANY INF(I) = ?

I-195

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

14

```
DO 851 J = 1,NRD
L = NLNLK(I,J)
IF(INF(L) .EQ. 1) GO TO 131
851 CONTINUE
DO 101 J = 1,NRD
IRDF(J) = 0
101 CONTINUE
IF(IHR(I) .NE. 1) GO TO 102
C TAKE FIRST RECORD FROM READ BUFFER
MFBNX= JFBHR(I)
MNFCUR = JHRCUR(I)
MNFNXT = JNFRHR(I)
MRCTNX = JRCTRHR(I)
MNBFPA = JHRCFP(I)
MNBFPB = JHRCFPB(I)
DO 103 K = 1,MXWRD
MNXA(K) = JHRDA(I,K)
103 CONTINUE
KFPNBA(I) = KFPRDA(I)
KFPNBB(I) = KFPRDB(I)
IWR(I) = 0
J = 1
L = NLNLK(I,1)
GO TO 135
102 CONTINUE
J = 0
C
132 CONTINUE
IRPT = 0
J = J + 1
L = NLNLK(I,J)
C
137 CONTINUE
READ(ITMP,133) MFBNX,MNFCUR,MNFNXT,MRCTNX,MNBFPA,MNBFPB,
1 (MNXA(LL),LL = 1,MXWRD)
133 FORMAT(A1,A4,I1,X,A4,I5,I1,X,A5,A4,I1,X,11A10)
C
C 6400 UNIQUE IS 10 CHAR/WRD ASSUMPTION IN FORMAT STATEMENT*****
C.....NOTICE THIS READ IS NON-ANSI AND RELIES ON A 6400 FTN READ TO CALL
C FOR MORE INFORMATION THAN IS ON THE RECORD WITHOUT DIRE
C RESULTS AND WITH THE DATA ON THE RECOND ENTERING VALIDLY
C
C END OF FILE CHECK, SET INF = 2 IF EOF
C
C 6400 UNIQUE
IF(EOF(ITMP),EQ.1) 134,135
C 6400 RUN COMPILER BELOW, FTN ABOVE
C IF(EOF,ITMP) 134,135
C
C
135 CONTINUE
C NO END OF FILE
INCT = INCT + 1
C 6400 UNIQUE
C THIS IS TO CONVERT BLANK=1 TO 0=1
ITM = MNBFPA .AND. MSKC
IF(ITM .NE. MSKD) GO TO 147
MNBFPA = MSKB .OR. (MNBFPA .AND. MSKA)
147 CONTINUE
:
```

**** UNCLASSIFIED **** I-196

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

15

C ON FIRST READ PRIME NB CODE ARRAY
IF(ISTRRT .NE. 1) GO TO 854
IF(INCT .NE.1) GO TO 854
KFPNBA(I) = MNBFPA
KFPNBB(I) = MNBFPB
854 CONTINUE
C IF NEW FIPS CODE PREPARE TO EXIT
IF(KFPNBA(I) .NE. MNBFPA) GO TO 852
IF (ISC .EQ. 1) GO TO 853
IF(KFPNBB(I) .NE. MNBFPB) GO TO 852
853 CONTINUE
C TO FIND PROPER J AND L
146 CONTINUE
IF(MNFCUR .EQ. NTYPIJ(L)) GO TO 139
J = J + 1
IF(J .LE. NRD) GO TO 145
C INVALID TYPE CODE SO RECORD NOT USED. RECORD IF NEEDED
IF(IRPT .NE.1) GO TO 951
IF(IWTBDP .EQ. 0 .AND. IWTBDT .EQ.0) GO TO 952
DO 953 K = 1,NWTBD
IF(MNFCUR .EQ. IWTBDN(K)) GO TO 952
953 CONTINUE
IF(IWTBDP .EQ.2) GO TO 954
IF(IWTBDP .NE.1) GO TO 956
WRITE(MQ,955) I,MNFCUR,MNBFPA,MNBFPB,JRCDC
955 FORMAT(1H ,* ON FILE *,I2,* INPUT NOT USED FOR TYPE *,A4*
1 * IS NOT VALID-- AT CODE *,A5,IX,A4, * AFTER RECORD*,I6)
GO TO 956
954 CONTINUE
MNFXNT = 4HBADT
WRITE(MQ ,133)MFBNX,MNFCUR,MNFXNT,MRCTNX,MNBFPA,MNBFPB,
1 (MNXDA(LL) ,LL = 1,MXWRD)
956 CONTINUE
IF(IWTBDT .EQ.2) GO TO 957
IF(IWTBDT .NE.1) GO TO 952
WRITE(MOP , 955) I ,MNFCUR,MNBFPA,MNBFPB,JRCDC
GO TO 952
957 CONTINUE
MNFXNT = 4HBADT
WRITE(MOP ,133)MFBNX,MNFCUR,MNFXNT,MRCTNX,MNBFPA,MNBFPB,
1 (MNXDA(LL) ,LL = 1,MXWRD)
952 CONTINUE
GO TO 132
951 CONTINUE
C TO ALLOW FOR A RECORD OUT OF ORDER
IRPT = 1
J = 1
145 CONTINUE
L = NLNLK(I,J)
GO TO 146
C C J AND L ARE JUST DEFINED
CONTINUE
INF(L) = 1
NWRD = NCHRCU(L)/NCHRW + 1
NEXTRA = NCHRCU(L) -(NWRD - 1)*NCHRW
IF(NEXTRA .EQ.0) NWRD = NWRD - 1

I-197

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

16

C SPECIAL BUFFER OPERATIONS
C IF(IRDF(J) .EQ. 0) GO TO 161
C PUT DATA IN SPECIAL BUFFER SINCE MORE THA ONE OF SAME TYPE
C A SPECIAL BUFFER GROUP HAS THE SAME RECORD TYPE AND FIPS CODE
C NSPNU = NSPNU + 1
C IF(NSPNU .LE. MXSPBU) GO TO 162
C WRITE(MQ,163) MNBFPA,MNBFPB,MNFCUR
163 FORMAT(//,,IHO, *+++***ERROR STOP, TOO MANY ENTRIES FOR SPECIAL BU
1FER*****, 3X, *AT FIPS CODE *,A5,A4, *FOR RECORD TYPE *,A4)
STOP 163
162 CONTINUE
C
C IF(JSPFST(L) .EQ.0) JSPFST(L) = NSPNU
JSPLST(L) = NSPNU
JFBSP(NSPNU) = MFBNX
JSPCUR(NSPNU) = MNFCUR
JNFSR(NSPNU) = MNFNXT
JRCTSP(NSPNU) = MRCTNX
JSFPA(NSPNU) = MNBFPA
JSFPB(NSPNU) = MNBFPB
DO 164 LL = 1,NWRD
JSFDA(NSPNU,LL) = MNXDA(LL)
164 CONTINUE
IRPT = 0
C REFRESH READ BUFFER
GO TO 137
161 CONTINUE
C NORMAL READ OF DATA INTO NEXT BUFFER
IRDF(J) = 1
JFBNX(L) = MFBNX
JNFCUR(L) = MNFCUR
JNFNXT(L) = MNFNXT
JRCTNX(L) = MRCTNX
JNBFP(A)(L) = MNBFPA
JNBFP(B)(L) = MNBFPB
DO 138 LL = 1,NWRD
JNXTDA(L,LL) = MNXDA(LL)
138 CONTINUE
GO TO 137
C
C FILL READ BUFFER AND EXIT TO A NEW FILE
852 CONTINUE
JFBHR(I) = MFBNX
JWRCUR(I) = MNFCUR
JNFHR(I) = MNFNXT
JRCTR(I) = MRCTNX
JWRFP(A)(I) = MNBFPA
JWRFP(B)(I) = MNBFPB
DO 104 K = 1,MXWRD
JWRDA(I,K) = MNXDA(K)
104 CONTINUE
IHR(I) = 1
KFPRDA(I) = MNBFPA
KFPRDB(I) = MNBFPB
GO TO 137
134 CONTINUE
END OF FILE

I-198

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 001

17

C IFLEF(I) = 2
C IF NOTHING IN NEXT BUFFER AND NO MORE DATA IN THIS FILE SET
C THE INDICATOR IFLEF (I) = 1
DO 943 J = 1,NRD
L = NLNKL(I,J)
IF(INF(L) .EQ.1) GO TO 944
943 CONTINUE
IFLEF(I) = 1
C CHECK ALL FILES
DO 945 I = 1,NMRGT
IF(IFLEF(I) .NE.1) GO TO 944
945 CONTINUE
C ALL FILES AT EOF AND NO DATA LEFT IN NEXT BUFFER (NOTICE AT EOF
C THAT THE READ BUFFER MUST BE EMPTY) THEN SET ISTOP = 1, PROCESS
C CURRENT BUFFER AND EXIT
ISTOP = 1
GO TO 140
944 CONTINUE
C
C
131 CONTINUE
C
C GROUP VALID DATA FOUND IN THIS FIPS READ, REDO FOR ANOTHER FIPS
DO 947 J = 1,NRD
L = NLNKL(I,J)
IF(INF(L) .EQ.1) GO TO 948
947 CONTINUE
IF(IFLEF(I) .NE.0) GO TO 948
C NO VALID RECORDS HERE-TRY AGAIN.
GO TO 855
948 CONTINUE
C
GO TO(860,861) ,IRDBK
860 CONTINUE
IF(I .LT. NMRGT) GO TO 136
C
C
C 100 CONTINUE
C BEGIN NEW CYCLE WITH ALL NEXT BUFFERS FILLED, CURRENT BUFFER
C FLAGS = 0 AND CURRENT BUFFERS EMPTY OF VALID DATA
C
C FIND CURRENT FIPS CODE
C
IF(ILREAD .NE.0) GO TO 111
C USE LOWEST FIPS CODE IN NEXT BUFFER
KCUFFPA = 5H99999
KCUFFPB = 4H99999
DO 112 L = 1,NTYPT
IF(INF(L) .NE. 1) GO TO 112
C NOTICE THAT THIS ASSUMES ALPHABETIC ORDERING IMPLIES NUMERICAL
C ORDERING
IF(KCUFFPA .GT. JNBFPAL(L)) GO TO 113
IF(ISC .EQ.1) GO TO 112
IF(KCUFFPA .GT. JNBFPB(L)) GO TO 113
GO TO 112
113 CONTINUE
KCUFFPA = JNBFPAL(L)
KCUFFPB = JNBFPB(L)
112 CONTINUE

I-199

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 001

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

18

C WITH ILEAD 0 NO RECORDS ARE NOT USED
GO TO 115
C
111 CONTINUE
C USE FIPS OF ILEAD FILE
KCUPFA = KFPNBA(ILEAD)
KCUPFB = KFPNBB(ILEAD)
C
IF(IADVL .NE. 1) GO TO 119
C IF NEXT BUFFER DOES NOT HAVE A ILDR RECORD OF FILE ILEAD:
C ADVANCE THIS FILE BY GROUPS UNTIL IT DOES
LL = NLNLK(ILEAD:ILDR)
IF(INF(L) .EQ.1) GO TO 119
IF(I>LEF(ILEAD) .EQ. 0) GO TO 857
C GO TO 1900 AND END IT ALL
GO TO 1500
857 CONTINUE
I = ILEAD
C
863 CONTINUE
C ADVANCE I FILE ONE , RECORD RECORDS BEING DISCARDED
NRD = NMRA(I)
DO 858 J = 1,NRD
L = NLNLK(I,J)
IF(INF(L) .NE.1) GO TO 858
KWTMS = 1
GO TO 198
C TO RECORD A RECORD ABOUT TO BE DROPPED
859 CONTINUE
INF(L) = 0
IF(JSPFST(L) .EQ.0) GO TO 858
INU = JSPLST(L) - JSPFST(L) + 1
DO 869 JJ = 1,INU
ITMP = JSPFST(L) + JJ - 1
JFBCU(L) = JFBSP(ITMP)
JRRECTP(L) = JSPECUR(ITMP)
JNXTP(L) = JNFSP(ITMP)
JRCTCU(L) = JRCTSP(ITMP)
JCUPFA(L) = JSPFPA(ITMP)
JCUPFB(L) = JSPFPA(ITMP)
DO 176 LL = 1,NWRD
JCURDA(L,LL) = JSPOA(ITMP+LL)
176 CONTINUE
KWTMS = 2
GO TO 198
C TO RECORD DROPPED FROM SPECIAL BUFFER
870 CONTINUE
869 CONTINUE
ISTPD = 2
ICUB = 2
GO TO 194
C TO ADJUST BUFFER STORAGE
871 CONTINUE
358 CONTINUE
IRD8K = 2
GO TO 855
C TO READ ONE GROUP FROM I TH FILE
361 CONTINUE
GOTO(111,116) +KWTMS
119 CONTINUE

I-200

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

I = 0
C NOW CHECK POSITIONING OF OTHER FILES
114 CONTINUE
I = I + 1
IF(IFLEF(I) .EQ.1) GO TO 116
IF(I .EQ. ILEAD) GO TO 116
IF (IADVX .NE. 1) GO TO 862
C ASSUME NUMERICAL ORDERING ADVANCE TILL MATCH
IF(KCUFPA .GT. KFPNRA(I)) GO TO 863
IF(ISC .EQ. 1) GO TO 116
IF(KCUFPA .GT. KFPNBB(I)) GO TO 863
GO TO 116
862 CONTINUE
C NO ORDERING USED, ADVANCE TILL MATCH
IF (IADVX .NE. 2) GO TO 864
IF(KCUFPA .NE. KFPNBA(I)) GO TO 863
IF(ISC .EQ. 1) GO TO 116
IF(KCUFPB .NE. KFPNBB(I)) GO TO 863
GO TO 116
864 CONTINUE
C ADVANCE ONLY IF MATCH IN READ BUFFER
IF(KCUFPA .NE. KFPRA(I)) GO TO 116
IF(ISC .EQ. 1) GO TO 863
IF(KCUFPB .NE. KFPDB(I)) GO TO 116
GO TO 116
116 CONTINUE
IF (I .LT. NMRGT) GO TO 114
C 115 CONTINUE
C C
C IF(ISTAT .EQ.1) GO TO 19
C C
C C
140 CONTINUE
C NOW WRITE DATA FROM CURRENT BUFFER ONTO OUTPUT FILE IF BUFFER FLAG
C IS ONE. IF NO NEXT BUFFER FLAGS ARE * END PROGRAM AFTER WRITE.
C FIRST FIND TYPE OF FIRST 1 FLAGGED RECORD IN NEXT BUFFER
C
IF(ISTOP .EQ. 1) GO TO 867
DO 141 L = 1, NTYPT
IF(INF(L) .NE.1) GO TO 141
IF(KCUFPA .NE. JNBFPAL) GO TO 141
IF(ISC .EQ.1) GO TO 148
IF(KCUFPB .NE. JNBFPBL) GO TO 141
148 CONTINUE
NTLST = JNFCUR(L)
GO TO 142
141 CONTINUE
C ISTOP = 1
867 CONTINUE
NTLST = NTSTR
142 CONTINUE
C NOW FILL IN NEXT RECORD VALUES
DO 143 L = 1,NTYPT
IF(ICF(L) .NE. 1) GO TO 143

I-201

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

LST = L
IF(L .EQ. NYPT) GO TO 143
ITMP = L + 1
DO 144 LL = ITMP,NYPT
IF(ICF(LL).NE.1) GO TO 144
JNXTP(L) = JRECTP(LL)
GO TO 143
144 CONTINUE
143 CONTINUE
C NOW FILL IN FOR LAST RECORD TO BE WRITTEN FOR THIS TIME
JNXTP(LST) = NTLST
149 CONTINUE
C
C GENERATION OF FIRST BIT PRINT CONTROL
IF(IFBGEN .EQ. 0) GO TO 931
C AND LEAVE FIRST BIT ALONE
IF(IFBGEN .NE.3) GO TO 932
DO 933 L = 1,NYPT
JFBGU(L) = 1H
C ALSO FILL SPECIAL BUFFER SPOTS WITH NO SKIP LINE
IF(ISPFST(L) .EQ.0) GO TO 933
INU = ISPLST(L) - ISPFST(L) + 1
DO 937 LI = 1,INU
LJ = ISPFST(L) + LL - 1
JFBSP(LJ) = 1H
937 CONTINUE
933 CONTINUE
GO TO 931
932 CONTINUE
C PUT BLANK LINE SKIP INTO FIRST RECORD
IFGO = 0
DO 934 L = 1,NYPT
IF(IFGO .NE.0) GO TO 935
IF(ICF(L) .NE.1) GO TO 934
IFGO = 1
IF(IFBGEN .NE.2) GO TO 936
ITM = JRECTP(L) .AND. MSKE
IF(ITM .NE. ISTO) GO TO 936
ISTO = ITM
JFBGU(L) = 1H1
GO TO 938
936 CONTINUE
JFBGU(L) = 1H0
GO TO 938
935 CONTINUE
JFBGU(L) = 1H
938 CONTINUE
C ALSO FILL SPECIAL BUFFER SPOTS WITH NO SKIP LINE
IF(ISPFST(L) .EQ. 0) GO TO 934
INU = ISPLST(L) - ISPFST(L) + 1
DO 939 LI = 1,INU
LJ = ISPFST(L) + LL - 1
JFBSP(LJ) = 1H
939 CONTINUE
934 CONTINUE
931 CONTINUE
C
150 CONTINUE

I-202

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

2/

NOW WRITE OUTPUT

```
DO 151 L = 1,NTYPT
IF(ICF(L) .NE.1) GO TO 152
NWRD = NCHRCU(L)/NCHRW + 1
NEXTRA = NCHRCU(L) - (NWRD -1)*NCHRW
IF(NEXTRA .EQ.0) NWRD = NWRD - 1
KNXTP = JNXTP(L)
IF(IVRY .NE.1) GO TO 196
IF(ISPFST(L) .EQ.0) GO TO 196
ISTR = JNXTP(L)
KNXTP = JRECTP(L)
196 CONTINUE
JRCDCT = JRCDCT + 1
WRITE(MOT, 156) JFBCU(L), JRECTP(L), KNXTP, JRCDCT, JCUFFPA(L),
1 JCUFPB(L), (JCURDA(L,LL),LL = 1,NWRD)
C 6400 UNIQUE IS 10 CHAR/WRD ASSUMPTION IN FORMAT STATEMENT+++++
156 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,1A10)
C
C NOW CHECK SPECIAL BUFFER
IF(IVRY .NE.1) GO TO 157
IF(ISPFST(L) .EQ.0) GO TO 157
INU = ISPLST(L) - ISPFST(L) + 1
DO 171 JJ = 1,INU
LZ = JJ + ISPFST(L) - 1
IF(JJ .EQ. INU) GO TO 172
KNXTP = JRECTP(L)
GO TO 173
172 CONTINUE
KNXTP = ISTR
173 CONTINUE
JRCDCT = JRCDCT + 1
WRITE(MOT, 156) JFBSP(LZ), JSPCUR(LZ), KNXTP, JRCDCT, JSPFPFA(LZ),
1 JSPFPB(LZ), (JSPODA(LZ,LL),LL = 1,NWRD)
C
171 CONTINUE
C
C NOW FLUSH SPECIAL BUFFER OF JUST WRITTEN RECORDS AND ADJUST
C ACCOUNTS
ICUB = 1
ISTPD = 1
GOTO 194
193 CONTINUE
C
157 CONTINUE
C
ICF(L) = 0
GO TO 151
C
C IF REQUESTED RECORD THAT A RECORD IS MISSING FROM NORMAL GROUP
152 CONTINUE
IF(IWTMS .EQ.0) GO TO 151
IF(NWTMS .EQ. 0) GO TO 158
DO 159 LJ = 1,NWTMS
IF(L .EQ.IWTMSN(LJ))GO TO 151
159 CONTINUE
158 CONTINUE
IF(IWTMS .EQ.2) GO TO 153
WRITE(MQ, 154) ICUFFPA,ICUFPR,NORDI(L),NORDJ(L),L,NTYPIJ(L),JRCDCT
154 FORMAT(1H,*NO DATA AT CODE **, A5,1X,1A4 * FILE*,I3,* RECORD*,I3,
```

I-203

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000
 1 * POSITION*, I3,* TYPE *,A4,* AFTER*, I6,* RECORDS*)
 GO TO 151 22
 153 CONTINUE
 WRITE(MOP, 154) ICUFFA,ICUFPB,NORDI(L),NORDJ(L),L,NTYPTIJ(L),JRCDCT
 C
 C
 151 CONTINUE
 C
 C
 C TEST FOR END OF MERGING
 IF(JRCDCT .GT. NTST) GO TO 1500
 IF(JRCDCT .GT. NTST) GO TO 1500
 IF(ISTOP .NE.1) GO TO 120
 179 CONTINUE
 ENDFILE MOT
 REWIND MOT
 GO TO 1500
 C
 C
 C BEGIN SPECIAL ROUTINE SECTION
 C
 C STEP DOWN STORAGE IN SPECIAL BUFFER
 194 CONTINUE
 IF(ICUB .EQ.2) GO TO 875
 IBFST = ISPFST(L)
 IBLST = ISPLST(L)
 GO TO 879
 875 CONTINUE
 IBFST = JSFPST(L)
 IBLST = JSPLST(L)
 879 CONTINUE
 IDWN = IBLST - IBFST + 1
 IOV = NSPNU - IBLST
 IF(IOV .EQ.0) GO TO 178
 DO 175 JK = 1,IOV
 ITA = IBFST + JK - 1
 ITB = IBLST + JK
 JFBSP(ITA) = JFBSP(ITB)
 JSPCUR(ITA) = JSPCUR(ITB)
 JRCTSP(ITA) = JRCTSP(ITB)
 JNFSP(ITA) = JNFSP(ITB)
 JSPPFA(ITA) = JSPPFA(ITB)
 JSPPFB(ITA) = JSPPFB(ITB)
 DO 177 LL = 1,MXWRD
 JSPDA(ITA,LL) = JSPDA(ITB,LL)
 177 CONTINUE
 175 CONTINUE
 178 CONTINUE
 DO 876 JK = 1,NTYPT
 IF(JK .NE. L) GO TO 877
 IF(ICUB .EQ.2) GO TO 878
 ISPFST(L) = 0
 ISPLST(L) = 0
 GO TO 871
 878 CONTINUE
 JSPFST(L) = 0
 JSPLST(L) = 0
 377 CONTINUE

**** UNCLASSIFIED **** I-204 11/30/76 PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

IF(ISPFST(JK).LT. IBFST) GO TO 874
 ISPFST(JK)= ISPFST(JK)- IDWN
 ISPLST(JK)= ISPLST(JK)- IDWN

874 CONTINUE
 IF(JSPFST(JK).LT. IBFST) GO TO 876
 JSPFST(JK)= JSPFST(JK)- IDWN
 JSPLST(JK)= JSPLST(JK) - IDWN

876 CONTINUE
 NSPNU = NSPNU - IDWN
 GO TO(197,871),ISTPD

C
 C
 C NOW CHECK FOR WRITEING DISCARDED RECORDS

198 CONTINUE
 IF(IWTLSP .EQ. 0) GO TO 126
 IF(IWTLSP.NE.1) GO TO 125
 WRITE(MQ, 118) JNFCUR(L), JNBFP(A(L)), JNBFPB(L), JRCDCT

118 FORMAT(1H , * INPUT NOT USED--- TYPE *,A4, * CODE *,A5,1X,A4,
 1 * LAST RECORD NO WAS *,I5)
 GO TO 126

125 CONTINUE
 ITMP = 4H0DISC
 NWRD = NCHRCU(L)/NCHRW + 1
 NXTRA = NCHRCU(L) - NWRD*NCHRW
 IF(NEXTRA .EQ. 0) NWRD = NWRD - 1
 WRITE(MQ, 156) JFBNX(L), JNFCUR(L), ITMP, JRCDCT, JNBFP(A(L)), JNBFPB(L),
 1 (JNXTDA(L,LL),LL = 1,NWRD)

126 CONTINUE
 IF(IWTLST .EQ. 0) GO TO 117
 IF(IWTLST .NE.1) GO TO 127
 WRITE(MQ, 118) JNFCUR(L), JNBFP(A(L)), JNBFPB(L), JRCDCT
 GO TO 117

127 CONTINUE
 ITMP = 4H0DISC
 NWRD = NCHRCU(L)/NCHRW + 1
 NXTRA = NCHRCU(L) - NWRD*NCHRW
 IF(NEXTRA .EQ. 0) NWRD = NWRD - 1
 WRITE(MQ, 156) JFBNX(L), JNFCUR(L), ITMP, JRCDCT, JNBFP(A(L)), JNBFPB(L),
 1 (JNXTDA(L,LL),LL = 1,NWRD)

117 CONTINUE
 GO TO(859,870) , KWTMS

C
 C
 C END OF FILE MERGE SECTION

C
 C
 C 1500 CONTINUE
 RETURN
 END
 SUBROUTINE PUNCH

C
 C
 C THIS SECTION PUNCHES CARDS

C
 COMMON /SPBUF/ JFBSP(300), JSPCUR(300), JNFSP(300), JRCTSP(300),
 1 JSPFPA(300), JSPFPB(300), JSPDA(300,I5),NSPNU,
 2 ISPFST(300), ISPLST(300), JSPFST(300), JSPLST(300)
 COMMON /CUNS/ IBUGA,IBUGR,IBUGC,IBUGU,IBUGE,IBUGF,IBUGG,IBUGH
 1 * MSKAR(10), MSKA,MSKB,MSKC,MSKD, MSKF,MSKF, MP,MQ,MS,MOT,MOP,

I-205

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED ***** 11/30/76

PAGE NO. 000

2 MRD(10),MTA,MTB,MTC,MTD,MTE,MTF,MTG,MTH,MTI,MTJ
3 ,MXWRD,NTSTP,NCHRW ,MXSPBU
COMMON /MISC/ KNXDA(15), MNXDA(15), NNXDA(15), ICNT,NTST,ISTOP
1,JRCDC

24

C
C
C
INOT = 4HPT,8
NPNCN = 0
ITMP = MTA
READ(MP+714) ISC +IPRT
714 FORMAT(/,3I10)
712 CONTINUE
READ(MP,711) ITA,ITB,ITC
711 FORMAT(A4,A5,A4)
IF(ITB .EQ. 5HSTOP) GO TO 713
NPNCN = NPNCN + 1
IF(NPNCN .GT. 300) STOP666
JSPCUR(NPNCN) = ITA
JSPFFA(NPNCN) = ITB
JSPFPB(NPNCN) = ITC
GO TO 712
713 CONTINUE
C
C
720 CONTINUE
READ(ITMP,729) MFBNX,MNFCUR,MNFNXT,MRCTNX,MNBFP,A,MNBFP,B,
1 (MNXDA(1),LL = 1,MXWRD)
729 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,1IA10)
IF(EOF(ITMP) .EQ.1) 731,732
C 6400 RUN COMPILER BELOW. FTN ABOVE
C IF(EOF(ITMP)) 731:732
732 CONTINUE
DO 721 K = 1,NPNCN
IF(JSPFFA(K) .NE. MNBFP,A) GO TO 721
IF(ISC .EQ.1) GO TO 722
IF(JSPFPB(K) .NE. MNBFP,B) GO TO 721
722 CONTINUE
IF(JSPCUR(K) .NE. MNFCUR) GO TO 721
GO TO 723
721 CONTINUE
GO TO 720
C
723 CONTINUE
C PUNCH THIS RECORD
DECODE(10,724,MNXDA(6)) ITA+ITB
724 FORMAT(A4,A6)
WRITE(MS,726) MFBNX,MNFCUR,MNFNXT,MRCTNX,MNBFP,A,MNBFP,B,
1 (MNXDA(1),I=1,5) ,ITA
726 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,5A10,A4)
WRITE(MS,727) ITB, (MNXDA(I),I=7,11),INOT,MNFCUR,MNBFP,A
727 FORMAT(A6,5A10, 6X, A4+2X,A4+2X,A5)
IF(IPRT .NE. 1) GO TO 728
WRITE(MQ,734) MFBNX,MNFCUR,MNFNXT,MRCTNX,MNBFP,A,MNBFP,B,
1 (MNXDA(1),I=1,5) ,ITA
734 FORMAT(1X,A1,A4,1X,A4,I5,1X,A5,A4,1X,5A10,A4)
WRITE(MQ,735) ITB, (MNXDA(I),I=7,11),INOT,MNFCUR,MNBFP,A
735 FORMAT(1X,A6, 5A10, 6X, A4+2X,A4+2X,A5)
728 CONTINUE
GO TO 720
731 CONTINUE

I-206

***** UNCLASSIFIED ***

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

25

C
C END OF FILE
REWIND ITMP
C
C RETURN
END
SUBROUTINE MEET
C
C THIS SECTION TO INTRODUCE FILES INTO THE SYSTEM AND PUT INTO
STANDARD FORMAT
INCLUDE HERE CODING SPECIFIC TO THE FILE TO BE INTRODUCED
DIMENSION OCMDSE(6*3)
C
COMMON /SPBUF/ JFBSP(300), JSPCUR(300), JNFSP(300), JRCTSP(300),
1 JSPFPA(400), JSPFPB(300), JSPDA(300,45), NSPNU,
2 ISPFST(300), ISPLST(300), JSPFST(300), JSPLST(300)
COMMON / CONS/ IBUGA, IBUGA, IBUGC, IBUGD, IBUGE, IBUGF, IBUGG, IBUGH
1 , MSKAR(10), MSKA, MSKB, MSKC, MSKD, MSKE, MSKF, MP, MQ, MS, MOT, MOP,
2 MRD(10), MTA, MTB, MTC, MTD, MTE, MTF, MTG, MTH, MTI, MTJ
3 , MXWRD, NTSTP, NCHRW, MXSPBU
COMMON /MISC/ KNXDA(15), MNXDA(15), ICNT, NTST, ISTOP
1, JRCDCT
C
C
C
C THIS SECTION TAKES A NEW FILE AND PUTS IT INTO STANDARD FORMAT
C
C VARIOUS TYPES OF INPUT TAPE ARE NUMBERED BY INTRN
INTRN = 1 IS ANCET CITY DATA BASE, 1974 POP, DCPACC TAPE NO 5580
INTRN = 2 CCBD DATA SELECTION FROM IDA TAPE NO. 669
INTRN = 3 F.O. AND MCD BLAST RISK FROM ADAGIO 74 INPUT TAPE
C
C A GO TO STATEMENT ALLOWS FOR THIS
INPUT ON MTA
C
C INITIALIZATION
READ(MP,501) INTRN
201 FORMAT(/,I10)
C
GO TO(211,251,271 ,300),INTRN
211 CONTINUE
C
C ANCET INPUT TAPE FORMAT
SKIP THREE HEADER RECORDS, 1 SYSTEM, 2 ANCET
READ(MTA,213)IZIL
READ(MTA,213)IZIL
READ(MTA,213)IZIL
213 FORMAT(A1)
ISTOP = 0
ISTRRT = 1
IRITF = 1H
IRITFN = 1H
ITPN = 4H

I-207

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

26

IHSE = 0
GO TO 220

C
C
C
C READ INPUT DATA
220 CONTINUE
GO TO (221) ,INTRN
221 CONTINUE
C
C
C ANCET INPUT TAPE FORMAT
C IPOP IS POPULATION PROJECTED TO 1974
C A IS SEMI MAJOR AXIS, MILES
C B IS SEMI MINOR AXIS, MILES
C ALPH IS ANGLE OF ROTATION OF SEMI MAJOR AXIS DEGREES CLOCKWISE
FROM THE NORTH
C IAR IS LAND AREA IN SQ. MILES FROM CCDB
C
C READ(MTA=222) NAMA,NAMB,NAMC,ITP,IST, ICTY,IPLC,FLAD,FLAM,FLAS,
1 FLOD,FLOM,FLOS
222 FORMAT(2A8 ,A2 ,4X,I2, A2,8X, 4X,A3,A4, 7X,3F3.0,F4.0,2F3.0)
C 6400 UNIQUE
IF.EOF(MTA) .EQ.1) 233,234
C 6400 RUN COMPILER BELOW, FTN ABOVE
C IF.EOF,MTA) 233,234
233 CONTINUE
ISTOP = 1
ITPN = 4HSTOP
GO TO 240
234 CONTINUE
READ(MTA,223) IPOP, A,B,ALPH, CRAD2,IAR
FORMAT(I10, 10X ,2F5.2,F5.1,24X,F9.1,I10)
FLAD = FLAD + FLAM/60. + FLAS/3600.
FLOD = FLOD + FLOM/60. + FLOS/3600.
IF(ITP .NE.12) GO TO 226
ITPN = 4HUB
GO TO 225
226 CONTINUE
IF(ITP .NE.11) GO TO 227
ITPN = 4HVB
GO TO 225
227 CONTINUE
IF(ITP .NE.20) GO TO 228
ITPN = 4HPB
GO TO 225
228 CONTINUE
IF(ITP .NE.21) GO TO 229
ITPN = 4MLB
GO TO 225
229 CONTINUE
IF(ITP .NE.30) GO TO 230
ITPN = 4HRB
GO TO 224
230 CONTINUE
ITPN = 4MHELP
225 CONTINUE
IAR = 0
CRAD2 = 0.
224 CONTINUE

I-208

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

27

```
ITPNN = ITPN
IF (ISTRAT .EQ. 0) GO TO 237
ISTRAT = 0
GO TO 231
CONTINUE
237
C
C
240 CONTINUE
C WRITE OUTPUT TAPE
GO TO (241 ) ,INTRN
241 CONTINUE
JRCDCCT = JRCDCCT + 1
C JUST BELOW IS PROPER WRITE, CHANGED TO SUPPRESS 0'S IN WRITE
C WRITE(MOT, 235) IBITFN,ITPC,ITPN ,JRCDCCT,ISTN,ICTYN,IPLCN,NAMAN,
C 1 NAMB8N,NAMCN,IPOPN,FLADN,FLODN,AN,BN,ALPHN,IARN,IHSEN,CRAD2N
235 FORMAT( A1,A4,1X,A4,I5,1X,A2,A3,A4,1X,3A8,I9,2F8.4,2F7.3,F7.2,
1 I6,I9,F7.3)
C THIS PUT IN TO SUPPRESS 0.
IF(ITPC .EQ. 4HRB ) GO TO 242
WRITE(MOT, 244) IBITFN,ITPC,ITPN ,JRCDCCT,ISTN,ICTYN,IPLCN,NAMAN,
1 NAMB8N,NAMCN,IPOPN,FLADN,FLODN,AN,BN,ALPHN,IARN,IHSEN
244 FORMAT( A1,A4,1X,A4,I5,1X,A2,A3,A4,1X,3A8,I9,2F8.4,2F7.3,F7.2,
1 I6,I9,7X)
GO TO 243
242 CONTINUE
WRITE(MOT, 245) IBITFN,ITPC,ITPN ,JRCDCCT,ISTN,ICTYN,IPLCN,NAMAN,
1 NAMB8N,NAMCN,IPOPN,FLADN,FLODN,AN,BN,ALPHN,IARN,IHSEN,CRAD2N
245 FORMAT( A1,A4,1X,A4,I5,1X,A2,A3,A4,1X,3A8,I9,2F8.4,2I1X,
1 I6,I9,F7.3)
243 CONTINUE
C DEBUG HERE()()()()()()()()()()()()
IF(IBUGA .NE.1) GO TO 1510
WRITE(MO ,235) IBITFN,ITPC,ITPN ,JRCDCCT,ISTN,ICTYN,IPLCN,NAMAN,
1 NAMB8N,NAMCN,IPOPN,FLADN,FLODN,AN,BN,ALPHN,IARN,IHSEN,CRAD2N
1510 CONTINUE
C DEBUG HERE()()()()()()()()()()()()
IF(JRCDCCT .GT. NTST) GO TO 1500
IF(ISTOP .NE.1) GO TO 236
ENDFILE MOT
REWIND MOT
GO TO 1500
236
C
C
231 CONTINUE
GO TO ( 232 ),INTRN
C NOW MOVE DATA FROM OLD BUFFER INTO NEW BUFFER
232
IRITFN = IBITFN
ITPC = ITPN
ISTN = IST
ICTYN = ICTY
IPLCN = IPLC
NAMAN = NAMA
NAMB8N = NAMB
NAMCN = NAMC
IPOPN = TPOP
FLADN = FLAD
FLODN = FLOD
AN = A
BN = B
```

I-209

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

22

ALPHN = ALPH
IARN = IAR
IHSEN = IHSE
CRAD2N = CRAD2
GO TO 221

C

C

C

251 CONTINUE
C ECONOMIC DATA FROM CITY COUNTY DATA BOOK

C

C

KC67-- MEDIAN FAMILIY INCCME DOLLARS, I4
KC77-- TOTAL YEAR ROUND HOUSING UNITS, I7
KC108-- LOCAL GOVT. DIRECT GENERAL EXP. MILX 10, I5
KC121 NO. MANUF. EST., I5
KC129-- VALUE ADDED BY MANUFACTURE MILX10, I6
KC132-- NO. OF RETAIL ESTAB., I6
KC135-- RETAIL SALES, THOUSANDS, I8
KC138-- PERCENT RETAIL SALES THAT ARE FOOD SALES, I4
KC160-- WHOLESALE SALES, THOUSANDS, I8
KC189 VALUE OF FARM SALES, THOUSANDS, I8

C

IATFN = 1H
ITPN = 4HCEAA
ITPNN = 4HCEAA
IPLC = 4H

JRCRCT = 0

256 CONTINUE

READ(MTA, 252) IST, ICTY,IMARK,KC67,KC77

252 FORMAT(A2,A3,I2,113X,I4,I7)

C 6400 UNIQUE

IF(EOF(MTA), .EQ.1) 267,268

C 6400 RUN COMPILER BELOW, FTN ABOVE

C IF(EOF,MTA) 267,268

267 CONTINUE

BACKSPACE MOT
ITPNN = 4HSTOP
IST = IST0

ICTY = ICTY0

KC67 = KC670

KC77 = KC770

WRITE(MOT,262) IATFN,ITPN,ITPNN,JRCRCT,IST,ICTY,IPLC,

1 KC67,KC77,KC108,KC121,KC129,KC132,KC135,KC138,KC160,KC189

ENDFILE MOT

REWIND MOT

GO TO 1500

268 CONTINUE

IST0 = IST

ICTY0 = ICTY

KC670 = KC67

KC770 = KC77

IF(IMARK .NE.1) STOP 252

IF(IST .NE. 2H02 .AND. IST .NE. 2H15) GO TO 257

READ(MTA,213) IZIL

READ(MTA,213) IZIL

READ(MTA,213) IZIL

GO TO 254

257 CONTINUE

IF(IST .EQ. 2H36 .AND. ICTY .EQ. 3H005) GO TO 263

IF(IST .EQ. 2H36 .AND. ICTY .EQ. 3H047) GO TO 265

I-210

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000
25
IF(IST .EQ. 2H36 .AND. ICTY .EQ. 3H08I) GO TO 266
IF(IST .EQ. 2H36 .AND. ICTY .EQ. 3H085) GO TO 269
IF(IST .EQ. 2H51 .AND. ICTY .EQ. 3H513) GO TO 246
IF(IST .EQ. 2H51 .AND. ICTY .EQ. 3H595) GO TO 247
IF(IST .EQ. 2H51 .AND. ICTY .EQ. 3H775) GO TO 248
READ(MTA,253) IMARK,KC108,KC121
253 FORMAT(5X,I2,32X,I5,40X,I5)
IF(IMARK .NE.2) STOP 253
GO TO 264
263 CONTINUE
KC108 = 0
KC121 = 1748
READ(MTA,213) IZIL
GO TO 264
265 CONTINUE
KC108 = 0
KC121 = 6384
READ(MTA,213) IZIL
GO TO 264
266 CONTINUE
KC108 = 0
KC121 = 2792
READ(MTA,213) IZIL
GO TO 264
269 CONTINUE
KC108 = 0
KC121 = 54
READ(MTA,213) IZIL
GO TO 264
246 CONTINUE
KC108 = 0
KC121 = 60
READ(MTA,213) IZIL
GO TO 264
247 CONTINUE
KC108 = 0
KC121 = 31
READ(MTA,213) IZIL
GO TO 264
248 CONTINUE
KC108 = 0
KC121 = 37
READ(MTA,213) IZIL
GO TO 264
264 CONTINUE
READ(MTA, 254) IMARK,KC129,KC132,KC135,KC138,KC160
254 FORMAT(5X,I2,10X,I6,5X,I6,I8,I4,68X,I8)
IF(IMARK .NE.3) STOP 254
IF(IST .EQ. 2H29 .AND. ICTY .EQ. 3H51,) GO TO 258
IF(IST .EQ. 2H24 .AND. ICTY .EQ. 3H510) GO TO 258
READ(MTA, 255) IMARK, KC189
255 FORMAT(5X,I2,24X,I8)
IF(IMARK .NE.4) STOP 255
GO TO 259
258 CONTINUE
KC189 = 0
READ(MTA,213) IZIL
259 CONTINUE
C
C
JRCDCT = JRCDCT + 1

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 000

I-211

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

30

```
      WRITE(MOT,262) IBITFN,ITPN,ITPNN, JRCWCT,IST,ICTY,IPLC,  
      1 KC67,KC77,KC108,KC121,KC149,KC132,KC135,KC138,KC160,KC189  
262  FORMAT(A1,A4,1X,A4,1S,1X,A2,A3,A4,1X,  
      1 I4,I7,I5,I5,2I6,I8,I4,2I8)  
C   DEBUG HERE()()()()()()()()()()()()  
IF(BUGA .NE.1) GO TO 1511  
      WRITE(MQ ,262) IBITFN,ITPN,ITPNN, JRCDCD,IST,ICTY,IPLC,  
      1 KC67,KC77,KC108,KC121,KC149,KC132,KC135,KC138,KC160,KC189  
1511  CONTINUE  
C   DEBUG HERE()()()()()()()()()()()()  
IF(JRCDCD .GT. NTST) GO TO 1500  
GO TO 256  
C  
C  
C  
271  CONTINUE  
C   READ BLAST AND FALLOUT RISK DATA FROM ADAGIO INPUT TAPE  
C   PUT BLAST RISK ON MOT AND FALLOUT ON MTB  
C  
      IAITFN = 1H  
      ITPB = 4HMRAA  
      ITPBN = 4HMRAA  
      ITPF = 4HCF  
      ITPFN = 4HCF  
      IPLC = 4H  
C   **THESE WILL VARY WITH INPUT DATA  
      IPOS1 = 2H50  
      IPOS2 = 2H75  
      IPOS3 = 2H90  
      ICDS1 = 1HS  
      ICDS2 = 1HW  
      JFOCT = 0  
      JBLCT = 0  
      FLATM = 0.  
      FLONM = 0.  
      IPOPMU = V  
C  
273  CONTINUE  
      READ(MTA,272) ITP,LETNX  
272  FORMAT( A4,127X,A4)  
C   6400 UNIQUE  
      IF.EOF(MTA ) .EG.1) 285,286  
C   6400 RUN COMPILER BELOW, FTN ABOVE  
C   IF.EOF,MTA ) 285,286  
285  CONTINUE  
      BACKSPACE MOT  
      WRITE(MOT,281) IBITFN,ITPB,ITPB,JBLCY,IST,ICTY,MCDCC,MNAMA,  
      1 MNAMB,MNAMC,MUACIN,IPOPMU,IPOPMR,IPORMA,FLATM,FLONM,PSIM,  
      2 TCLSM,IUACD,DISTM,YLDM  
      BACKSPACE MTB  
      WRITE(MTA, 277) IBITFN,ITPF,ITPF,JFOCT, IST,ICTY,IPLC,  
      1 ((DCMDSE(IIX,JX),JX=1,3),IX=1,2),ICDS1,ICDS2,IPOS1,IPOS2,IPOS3  
      ENDFILE MOT  
      ENDFILE MTB  
      REWIND MOT  
      REWIND MTB  
      GO TO 1500  
286  CONTINUE  
280  CONTINUE  
      IF(LETNX .EQ.4HCD ) GO TO 274  
      IF(LETNX .EQ.4HBL ) GO TO 275
```

I-212

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

GO TO 273

C
274 CONTINUE
C FALLOUT RISK
READ(MTA,276) ITP,IST,ICTY,((DCMDSE(IX,JX),JX= 1,3),IX= 1,2),LETNX
276 FORMAT(A4,A2,A3,4X,6F10.4,5X,A4)
JFOCT = JFOCT + 1
WRITE(MTB, 277) IBITFN,ITPF,ITPFN,JFOCT, IST,ICTY,IPLC,
1 ((DCMDSE(IX,JX),JX=1,3),IX=1,2),ICDS1,ICDS2,IPOS1,IPOS2,IPOS3
277 FORMAT(A1,A4,1X,A4,I5,1X, A2,A3+A4,1X,6F10.0,40X,2A1,2X,3A2)
C DEBUG HERE()()()()()()()()()()()
IF(IBUGA .NE.1) GO TO 1512
WRITE(MQ , 277) IBITFN,ITPF,ITPFN,JFOCT, IST,ICTY,IPLC,
1 ((DCMDSE(IX,JX),JX=1,3),IX=1,2),ICDS1,ICDS2,IPOS1,IPOS2,IPOS3
1512 CONTINUE
C DEBUG HERE()()()()()()()()()()()()
IF(JFOCT .GT. NTST) GO TO 1500
GO TO 280
C
275 CONTINUE
C BLAST RISK
C
C IPOPMU URBAN MCD POP
C IPOPMR-- RURAL MCD POP
C IPOPMA-- URBANIZED AREA MCD POP
C IPOPMT-- TOTAL MCD POP
C MUACIN-- CODE OF U.A. MCD IS LOCATED IN# IF BLANK NO UA.
C PSIM-- HIGHEST OVERPRESSURE,PSI
C DISTM-- DISTANCE FROM WEAPON GIVING HIGHEST OVERPRESSURE,MI.
C YLDM-- YIELD OF WEAPON GIVING HIGHEST OVERPRESSURE, MT.
C ICLSM-- CLUSTER NUMBER CONTAINING WEAPON GIVING HIGHEST OVP.
C IUACD-- CODE OF U.A WITH CLUSTER FOR HIGHEST OVERPRESSURE
C IF NONE CODE IS BLANKS
C
READ(MTA,279) ITP,IST,ICTY,MCDCD,MNAMA,MNAMB,MNAMC,YLDM,IUACD,
1 ICLSM, PSIM, DISTM,MUACIN, IPOPMA,IPOPMT,LETNX
279 FORMAT(A4,A2,A3,A4, 3A8,11X,2X,F4.0,2X,A4,2X,A4,2F8.3,
1 2X,A4+2X,I7+16X,I8+10X,A4)
C
C IF NO SEPERATE URBAN AND RURAL POP GIVEN PUT ALL INTO RURAL
IPOPMR = IPOPMT = IPOPMA
C
JBLCT = JBLCT + 1
WRITE(MOT,281) IBITFN,ITPR,ITPBIN,JBLCT,IST,ICTY,MCDCD,MNAMA,
1 MNAMB,MNAMC,MUACIN,IPOPMU,IPOPMR,IPORMA,FLATM,FLONM,PSIM,
2 ICLSM,IUACD,DISTM,YLDM
281 FORMAT(A1,A4+1X,A4,I5,1X, A2,A3,A4,1X,3A8,A4,3I7+2F8.3,
1 F7.2,1X,A4,1X,A4,F6.2,F6.3)
C DEBUG HERE()()()()()()()()()()()()
IF(IBUGA .NE.1) GO TO 1513
WRITE(MQ ,281) IBITFN,ITPE,ITPBIN,JBLCT,IST,ICTY,MCDCD,MNAMA,
1 MNAMB,MNAMC,MUACIN,IPOPMU,IPOPMR,IPORMA,FLATM,FLONM,PSIM,
2 ICLSM,IUACD,DISTM,YLDM
1513 CONTINUE
C DEBUG HERE()()()()()()()()()()()()
GO TO 280
C
C
C TO INTRODUCE MEDLIST RECORDS

***** UNCLASSIFIED *****

I-213

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

3L

300 CONTINUE
CALL NOPCHKF(0)
NTST = 400
NTST = 999999
JRCDCCT = 0
ISTOP = 0
ISTRAT = 0
IFB = 1H
NTPA = 4HG8BA
NTPB = 4HG8BB
NNTPA = NTPA
NNTPB = NTPB
NC = 0
WRITE(MG,303)
303 FORMAT(////10X,*LIST OF URBANIZED AREA CODES AND ASSCIATED CODES
1 FOR PRIME COUNTY FOR FUTURE FIPS ORDERING*, //,*, NO. STCNT UAC
2D NAME*)/
302 CONTINUE
NC = NC + 1
READ(MP,305) ICT,ISTCO,IUA,NAMEA,NAMEB,NAMEC
305 FORMAT(I4, 1X,A5,1X,A4,5X,2A8)
ISPFST(NC) = ISTCO
ISPLST(NC) = IUA
WRITE(MG,304) ICT, ISTCO, IUA, NAMEA,NAMEB,NAMEC
304 FORMAT(1H , 14,1X,A5, 1X,A4, 5X,3A8)
IF(IUA .NE. 4H9320) GO TO 302
310 CONTINUE
READ(MTA, 301) ISTCD,ICOCO,ICNCT, MCDCD,IPLCD,IPLDEC,ICDSM,IUACD,
1 ICBDCD,NAMEA,NAMEB,NAMEC,ICDTCT,ICDBLG,IEDCD,IURCD,IHSE,IPOP,
1 ILON,ILAT
301 FORMAT(A2,2X,A3,3X,A1, A3,A4,A1,3X,A4, A4,15X,A1,3A8,6X,A6,
1 A1,A5,A1,4X,I7,I8,I10,I10)
IF.EOF(MTA) .EQ.1) 311-312
311 CONTINUE
ISTOP = 1
312 CONTINUE
ICNT = ICNT + 1
IF(ICNT .GT. NTST) ISTOP = 1
IF(ISTRAT .NE.0) GO TO 313
ISTRAT = 1
GO TO 315
313 CONTINUE
IF(ISTOP .NE.1) GO TO 316
NTPA = 4HSTOP
NTPB = 4HSTOP
316 CONTINUE
IF(JUACD .EQ. 4H) GO TO 317
ICDWT = JUACD
GO TO 319
317 CONTINUE
IF(JPLCD .EQ. 4H) GO TO 318
ICDWT = JPLCD
GO TO 319
318 CONTINUE
ICDWT = 4H
319 CONTINUE
JRCDCCT = JRCDCCT + 1
IF(JRCDCCT .EQ.100000) JRCDCCT = 0
WRITE(MOT, 321) IFB, NNTPA,NTPA, JRCDCCT , JSTCD,JCOCO, ICDWT,
1 JPOP,JHSE, FLAT,FLON, JCUTCT, JCDBLG, JEDCD
321 FORMAT(A1, A4,1X,A4,15,1X, A2,A3,A4,7V, 18,I7, 2F8.4,A6,1X,A1,

**** UNCLASSIFIED **** 1-214 11/30/76 PAGE NO. 0000

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 0000

1 IX,A5)
1 WRITE(MTB, 322) IFB, NNTPB,NTPB, JRCDCT , JSTCD,JCOCO, ICDWT,
1 JAMEA,JAMEB,JAMEC, JMCDOD, JPLCD, JPLDEC, JCDSM,JCNCN,JCBDOD,
2 JURCD,JCOTCT,JCDBLG,JEDCD,JHSE,JPOP,FLAT,FLON ,JCNCN
322 FORMAT(A1' A4*1X*A4*I5*1X' A2*A3*A4*IX' 3A8*1X*A3*1X*A4*1X*A1*1
1X,A4,1X,A1,1X,A1,1X,A6,1X,A1,1X,A5,2I8,2F8.4,1X,A5)
IF(ISTOP .EQ. 1) GO TO 325
315 CONTINUE
ENCODE(5,326)JSTCD,JCOCO
326 FORMAT(A2,A3)
DO 327 I = 1,NC
IF(ISPLST(I) .EQ. IUACD) GO TO 328
327 CONTINUE
JCNCN = 5H99999
GO TO 329
328 CONTINUE
JCNCN = ISPFST(I)
329 CONTINUE
JSTCD = ISTCD
JCOCO = ICOCD
JCNCN = ICNCT
JMCDOD = MCDOD
JPLCD = IPLCD
JPLDEC = IPLDEC
JCDSM = ICDSM
JUACD = IUACD
JCBDOD = ICBODD
JAMEA = NAMEA
JAMEB = NAMEB
JAMEC = NAMEC
JCOTCT = ICDTCT
JCDBLG = ICDBLG
JEDCD = IEDCD
JURCD = IURCD
JHSE = IHSE
JPOP = IPOP
JLAT = ILAT
JLON = ILON
FLAT = JLAT
FLON = JI ON
FLAT = FLAT/10000.
FLON = FLON/10000.
GO TO 310
325 CONTINUE
ENDFILE MOT
ENDFILE MOT
ENDFILE MTB
ENDFILE MTB
RETURN
C
C
1500 CONTINUE
RETURN
END
SUBROUTINE EXTRACT
C
C
C THIS SECTION TO EXTRACT FROM FILES
C IT IS TO BE WRITTEN
C

I-215

**** UNCLASSIFIED ****

11/30/76

PAGE NO. nn00

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

34

C COMMON / CONS/ IBUGA,IBUGB,IBUGC,IBUGD,IBUGE,IBUGF,IBUGG,IBUGH
1 , MSKAR(10), MSKA,MSKB,MSKC,MSKD, MSKE,MSKF, MP,MQ,MS,MOT,MOP,
2 MRD(10),MTA,MTB,MTC,MTD,MTE,MTF,MTG,MTH,MTI,MTJ
3 ,MXWRD,NTSTP,NCHRW ,MXSPRU
COMMON /MISC/ KNXDA(15), MNXDA(15), ICNT,NTST,ISTOP
1,JRCDT

C A = 1

C RETURN

END

SUBROUTINE ORDER

C

C

C COMMON / CONS/ IBUGA,IBUGB,IBUGC,IBUGD,IBUGE,IBUGF,IBUGG,IBUGH
1 , MSKAR(10), MSKA,MSKB,MSKC,MSKD, MSKE,MSKF, MP,MQ,MS,MOT,MOP,
2 MRD(10),MTA,MTB,MTC,MTD,MTE,MTF,MTG,MTH,MTI,MTJ
3 ,MXWRD,NTSTP,NCHRW ,MXSPRU
COMMON /MISC/ KNXDA(15), MNXDA(15), ICNT,NTST,ISTOP
1,JRCUT

C A = 1

C

RETURN

END

***** UNCLASSIFIED ***.

I-216

11/30/76

PAGE NO. 0000

**** UNCLASSIFIED ****
SUBROUTINE EXIT

12/14/76

PAGE NO. 000

35

***** BEGIN EDITING SECTION *****

EDITING IS CONTROLLED BY INPUT EDIT FILE EITHER INDIVIDUALLY
OR WITH COMMON FOR AN ENTIRE STATE(DEFINED BY FIRST 2 CHARACTERS
OF FIRST FIPS CODE). INPUT INTO A READ BUFFER M. CONTROL OF
DEFINED BY JSPLST(L). AFTER INPUTTING A RECORD SEARCH CORRECTION
FILE FOR CORRECTIONS. ADVANCE TO N BUFFER READY TO WRITE EXCEPT
FOR NEXT RECDU TYPE. ADVANCE TO K BUFFER TO WRITE AFTER PUTTING
CURRENT RECDU TYPE IN N BUFFER. WRITE FROM K BUFFER WHEN INPUT
OR INSERTS PUSH FROM N BUFFER.

DIMENSION ICOMDA(20,10),ICOMES(20),ICOMLS(20),ICOMTP(40),
DIMENSION ISTLST(50),ISTTP(50),IPLLST(100),IPLTP(100),IPLFLG(100)
COMMON / FILUR/ NMRAA(10), NTYPA(10,10) , NORDI(100), NORDU(100),
1 NTYPIJ(100), NLNKL(10,10), MDESC(100 *4) , NCHRA(10,10),
2 NCHRCU(100),NMRGT,NTYPT
COMMON / FNAUP/ JFBCU(100),JRFCPT(100), JNXTP(100), JRCTCU(100),
1 JCUFPA(100), JCUFPB(100), JSPNFA(300), JSPNFB(300), JSPNRT(300),
2 JSPXTA(600), TCF(100)
3, JFBNX(100), JNFCUR(100), JNFNXT(100), JRCTNX(100), JNRFPA(100),
4 JNRFPB(100), JNXTDA(100,15), TNF(100)
COMMON /SPBUF/ JFBSP(300), JSPCUR(300), JNFSR(300), JRCTSP(300),
1 JSPFPB(300), JSPFPR(300), JSPDA(300,15), NSPNU,
2 ISPFT(300), ISPLST(300), JSPFST(300), JSPLST(300)
COMMON / CONS/ IBUGA,IBUGB,IRUGC,IBUGD,IBUGF,IBUGF,IBUGH,IBUGH,
1 , MSKTR(10), MSKA,MSKB,MSKC,MSKD, MSKE,MSKF, MP,MQ,MS,MUT,MOP,
2 MRD(10),MTA,MTB,MTC,MTD,MTE,MTF,MTG,MTH,MTT,MTJ
3 ,MXWRD,NTST,NCHRW,MXSPAU
COMMON /MISC/ KNXDA(15), MNXDA(15), NNXDA(15), ICNT,NTST,ISTOP
1,JRCDC

INITIALIZE
NTST = 9999949
JDOC = 0
JDON = 0
JDOF = 0
JDOG = 0
NIST = 0
MBUFFL = 0
NBUFFL = 0
KAUFFL = 0
DO 2 L = 1*100
JNBFPB(L) = 5H99999
JNBFPB(L) = 4H9999
CONTINUF

301 WRITE(M0,301)
FORMAT(1//,30X,*..... EDITING OF INPUT FILE*//)
I-217

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

30

311 READ(MP,311) NTYPT,ISC,IPEDT
311 FORMAT(//,5I10)
C READ ORDER FUM INSERTING
DO 315 T = 1:NTYPT
READ(MP,316) L,ITA,ITB,ITC,ITD,ITE,ITF
316 FORMAT(I3:3X,A4,IS,5X,4A10)
NTYPIJ(L) = ITA
NCHRCU(L) = ITA
MDESCR(L,1) = ITA
MDESCR(L,2) = ITB
MDESCR(L,3) = ITC
MDESCR(L,4) = ITD
MDESCR(L,5) = ITE
MDESCR(L,6) = ITF
315 CONTINUE
WRITE(MQ,312)
312 FORMAT(//,1H0,*ASSUMED RECOND ORDER ON FILE TO EDIT IS AS FOLLOWS
1 *.* NO. TYPE NO. CHAR. DESCRIPTION*,/)
DO 313 L = 1:NTYPT
WRITE(MQ,314) L,NTYPIJ(L),NCHRCU(L),(MDESCR(L,I),I=1,4)
314 FORMAT(1H : I4,2X,A4,6X,I6,2X,4A10)
313 CONTINUE
C
C READ COMMON CHANGE ITEMS
ICOMNU = 0
306 CONTINUE
ICOMNU = ICOMNU + 1
READ(MP,307) ICOMFS(ICOMNU),ICOMLS(ICOMNU),(ICOMDA(ICOMNU,LL),
1 LL = 1,7)
307 FORMAT(I3,2X,I3,2X,7A10)
IF(ICOMFS(ICOMNU) .EQ. 999) GO TO 903
IF(ICOMNU .NE. 1) GO TO 904
WRITE(MQ,905)
905 FORMAT(1H0:20X,*DEFINITION OF COMMON CHANGE TYPES*,/)
1 * NO. START LAST INSERT TEXT*,/)
904 CONTINUE
WRITE(MQ,906) ICOMNU,ICOMFS(ICOMNU),ICOMLS(ICOMNU),(ICOMDA(ICOMNU,
1 LL),LL = 1,7)
906 FORMAT(1H : I4,2I6,4X,7A10)
GO TO 306
903 CONTINUE
ICOMNU = ICOMNU - 1
C
C READ STATE EDITING ITEMS
NST = 0
318 CONTINUE
READ(MP,319) ITA,ITB
319 FORMAT(A2, 6X,I2)
IF(ITA .EQ. 2H99) GO TO 320
ITA = ITA AND. MSKE
NST = NST + 1
IF(NST .NE. 1 .OR. IPEDT .NE. 1) GO TO 908
WRITE(MQ,909)
909 FORMAT(//,1H0,20X,*LIST OF COMMON STATE EDITING ITEMS*,/)
908 CONTINUE
ISTLST(NST) = ITA
ISTTP(NST) = ITB
IF(IPEDT .NE. 1) GO TO 901
WRITE(MQ,902) NST, ISTLST(NST),ISTTP(NST)
882 FORMAT(1H0, * FOR *, I3, * TH ITEM FOR ALL RECORDS WITH STATE NUM
1BER *, A2, * TAKE ACTION NUMBER*,I3)
881 CONTINUE
GO TO 318

I-218

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

320 CONTINUE
C READ PLACE EDITING ITEMS
NPL = 0
MSKG = 77777770000000000000B
*11 CONTINUE
READ(MP,912) ITA,ITB,ITC
*12 FORMAT(A4,I2,I2)
IF(ITA.EQ.4H9999) GO TO 913
ITA = ITA + AND. MSKG
NPL = NPL + 1
IF(NPL.NE.1 .OR. IPEDT.NE.1) GO TO 914
WRITE(MO,915)
*15 FORMAT(//,1H0,20X,*LIST OF COMMON PLACE EDITING ITEMS*,//)
*14 CONTINUE
IPLLST(NPL) = ITA
IPLTP(NPL) = ITB
IPLFLG(NPL) = ITC
IF(IPEDT.NE.1) GO TO 916
WRITE(MO,917) NPL, IPLLST(NPL), IPLTP(NPL), IPLFLG(NPL)
17 FORMAT(1H0, FOR *, I3,* TH ITEM FOR ALL RECORDS WITH PLACE NUM
IBER *, A4,* TAKE ACTION NUMBER*,I3,* WITH REPEAT FLAG =*,I2)
*16 CONTINUE
GO TO 911
*13 CONTINUE
C READ INDIVIDUAL EDITING ITEMS
NSPNU = 0
*21 CONTINUE
READ(MP,322) MNFXDA,MNFCUR,MNFNXT,MRCTNX,MNBFPA,MNBFPB,
1(MNXDA(I),I=1,5),ITA
*22 FORMAT(A1,A4+1X,A4,I5+1X,A5,A4+1X,5A10,A4)
IF(MNFCUR.EQ.4HSTOP) GO TO 324
NSPNU = NSPNU + 1
IF(NSPNU.LE.300) GO TO 880
WRITE(MO,885) MNFCUR, MNBFPA
885 FORMAT(1H0, TOO MANY INPUT CORRECTIONS AT RECORD TYPE *,A4*
1 * AND CODE *,A5,*---STOP---*)
STOP 322
*880 CONTINUE
IF(IPEDT.NE.1) GO TO 883
IF(NSPNU.NE.1) GO TO 883
WRITE(MO,884)
884 FORMAT(//,1H0, ... LIST OF INDIVIDUAL EDIT CHANGES ...*,//)
*883 CONTINUE
READ(MP,323) ITA,(MNFXDA(I),I=7,11),IFLG,ITC,ITD,ITE
*23 FORMAT(A6,5A1X,1X,I3,1X,A5,A4,1X,A4)
ENCODE(10,325,MNXDA(6)) ITA,ITB
*25 FORMAT(A4,A6)
JFRSP(NSPNU) = MNFXN
JSFCUR(NSPNU) = MNFCUR
JNFSP(NSPNU) = MNFNXT
JRCTSP(NSPNU) = MRCTNX
JSFPFA(NSPNU) = MNBFPA
JSFPFB(NSPNU) = MNBFPB
DO 326 LL = 1,5
JSFDA(NSPNU,LL) = MNFXDA(LL)
*326 CONTINUE
JSPLST(NSPNU) = IFLG
JSPNFA(NSPNU) = ITC
JSPNFB(NSPNU) = ITD

I-219

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 00

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 001

JSPNRT(NSPNU) = ITE
DO 329 LL = 1,NTYPT
IF(MNFCIR.EQ.NTYPIJ(LL)) GO TO 892
CONTINUUF
ISPLST(NSPNU) = 99
WRITE(M0,895) NSPNU,MNFCUR,MNBFPA
FORMAT(1H0,*,AT INPUT NO *,I3,* RECORD TYPE **A4,* WITH CODE *
1,A5,* IS INVALID TYPE*)
GO TO 803
CONTINUUF
ISPLST(NSPNU) = LL
CONTINUUF
IF(IPEDT.NE.1) GO TO 327
WRITE(M0,898) TFLG,ITE,ITC,ITD
FORMAT(1H0,*,ACTION TYPE*,I3,* AUXILIARY RECORD TYPE AND CODE ARE *
1,A4,3,V,A5,A4)
WRITE(M0,328) MFBNX,MNFCUR,MNFXNT,MRCTNX,MNBFPA,MNBFPR,
1,(MNXA(LL),LL=1,11)
FORMAT(1H,A1,A4,1X,A4,I5,1X,A5,A4,1X,10A10,A9)
CONTINUUF
GO TO 321
CONTINUUF
C
C
C
C IADJ = 0 INDICATES NO INTERFERENCE WITH SEQUENCE; NEXT RECORD
C TYPE O.K., IF1 MUST BE ADJUSTED BEFORE WRITE
C JSPLST(L) IS ACTION TYPE
C JSPPST(L) IF ONE THIS CORRECTION HAS BEEN USED
C ISPFPST(L) = 1 INSERT AFTER NEXT WRITE(N BUFFER)
C ISPFPST(L) = 2 INSERT AFTER TWO WRITES (AFTER M BUFFER WRITE)
C ISPLST(L) PLACE OF RECORD IN LIST
C M BUFFER JUST READ DATA
C N BUFFER READY TO WRITE EXCEPT FOR NEXR FIPS CODE
C K BUFFER WRITE FROM HERE
C
C
C
330 CONTINUUF
IF(MBUFFL.EQ.1) GO TO 350
ICNT = TCNT + 1
IF(ICNT.GT.NTST) RETURN
READ(MTA,331) MFBNX,MNFCUR,MNFXNT,MRCTNX,MNBFPA,MNBFPR,
1,(MNXA(LL),LL=1,MXWRD)
FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,11A10)
331 6400 UNIQUE
IF.EOF(MTA).EQ.1) 333,332
6400 RUN COMPILER BELOW, FTN ABOVE
C IF.EOF(MTA) 333+332
333 CONTINUE
C END OF FILE
ISTOP = 1
MBUFFL = 0
GO TO 360
332 CONTINUUF
C NO END OF FILE
MBUFFL = 1
C 6400 UNIQUE
C THIS IS TO CONVERT BLANK-1 TO 0-1
ITM = MNBFPA AND MSKC
IF(ITM.NE.MSKD) GO TO 334

I-220

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

MNBFPA = MSKB .CR. (MNBFPA .AND. MSKA)
334 CONTINUF
C
IF(NST, EQ, 0) GO TO 338
6400 UNIQUE
ITMP = MNBFPA .AND. MSKE
DO 339 I = 1:NST
IF(ISTLST(I) .NE. ITMP) GO TO 339
IF(ISTTP(I) .NE. 1) GO TO 887
MBUFFL = 0
GO TO 330
887 CONTINUF
IF(ISTTP(I) .LE. 10) GO TO 886
JDOG = JDOG + 1
ICOMTP(JDOG) = ISTTP(I) - 10
886 CONTINUE
C OTHER ACTIONS DO NOT MAKE SENSE FOR A WHOLE STATE
339 CONTINUF
338 CONTINUF
C
IF(NPL, EQ, 0) GO TO 920
6400 UNIQUE
ITMP = MNBFPA .AND. MSKG
DO 921 I = 1:NPL
IF(IPLLST(I) .NE. ITMP) GO TO 921
IF(IPLFLG(I) .EQ. 2) GO TO 921
C ONLY DO ONCE IF PLACE FLAG IS 0
IF(IPLFLG(I) .EQ. 0) IPLFLG(I) = 2
IF(IPLTP(I) .NE. 1) GO TO 923
MBUFFL = 0
GO TO 330
923 CONTINUF
IF(IPLTP(I) .LE. 10) GO TO 924
JDOG = JDOG + 1
ICOMTP(JDOG) = IPLTP(I) - 10
924 CONTINUF
921 CONTINUF
920 CONTINUF
C
C SEARCH SPECIAL EDITING INSTRUCTIONS
IF(NSPNL, EQ, 0) GO TO 343
DO 335 L = 1:NSPNU
IF(JSPFST(L) .EQ. 1) GO TO 335
IF(JSPFB(A(L) .NE. MNBFPA) GO TO 335
IF(SC, EQ, 1) GO TO 336
IF(JSPFPB(L) .NE. MNBFPB) GO TO 335
336 CONTINUE
IF(JSPCUR(L) .NE. MNFCUR) GO TO 335
IF(JSPLST(L) .NE. 1) GO TO 888
JSPFST(L) = 1
JDOG = 0
MBUFFL = 0
GO TO 330
888 CONTINUE
IF(JSPLST(L) .NE. 4) GO TO 889
JDOU = JDOU + 1
JSPFST(L) = 1
JSPFST(L) = 2
JSPFA(L) = JSPNFA(L)
JSPFPB(L) = JSPNFB(L)
JSPCUR(L) = JSPNRT(L)

**** UNCLASSIFIED ****

I-221

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

40

889 GO TO 335
CONTINUE
IF(JSPLST(L) .NE. 5) GO TO 890
JSPLST(L) = 1
NIST = NIST + 1
ISPFST(L) = 1
JSPFPA(L) = JSNFAL(L)
JSPFPB(L) = JSNFBL(L)
JSPCUR(L) = JSNRNL(L)
GO TO 335
CONTINUE
IF(JSPLST(L) .NE. 6) GO TO 896
C CONVERT MOVE TO INSERT ORDER
JSPLST(L) = 0
JSPLST(L) = 2
JSPFPA(L) = JSNFAL(L)
JSPFPB(L) = JSNFBL(L)
JSPCUR(L) = JSNRNL(L)
JFBSP(L) = MNBNX
JNFSP(L) = MNFNXT
DO 894 LL = 1+1E
JSPLDA(L,LL) = MNXDA(LL)
894 CONTINUE
MBUFFL = 0
GO TO 330
896 CONTINUE
IF(JSPLST(L) .LE. 10) GO TO 891
JSPLST(L) = 1
JDOC = JDOC + 1
ICOMTP(JDOC) = JSPLST(L) - 1n
GO TO 335
891 CONTINUE
IF(JSPLST(L) .EQ. 3) JDOC = L
335 CONTINUE
343 CONTINUE
C
C FIND PLACE OF THIS RECORD TYPE
DO 341 LL = 1+NTYPT
IF(MNFCIR .NE. NTYPIJ(LL)) GO TO 341
LLINM = LL
GO TO 897
341 CONTINUE
897 CONTINUE
C
C LOOK FOR INSERTS
IF(NSPNII .EQ. 0) GO TO 344
DO 337 L = 1+NSPNU
IF(JSPLST(L) .NE. 2) GO TO 337
IF(JSPLST(L) .EQ. 1) GO TO 337
IF(JSPFPA(L) .GT. MNBFPA) GO TO 337
IF(JSPFPA(L) .LT. MNBFPA) GO TO 342
IF(ISC .EQ. 1) GO TO 340
IF(JSPFPB(L) .GT. MNBFPB) GO TO 337
IF(JSPFPB(L) .LT. MNBFPB) GO TO 342
340 CONTINUE
C NOW CHECK RECOND ORDER
IF(ISPLST(L) .GT. LLINM) GO TO 337
342 CONTINUE
NIST = NIST + 1
ISPFST(L) = 1
JSPLST(L) = 1

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

337 CONTINUF
344 CONTINUF
C
C
C
350 CONTINUF
C NOW INTERPET ACTION
C MAKE CHANGES
IF (JDOC .EQ. 0) GO TO 351
MFBNX = JFBSH(JDOC)
MNFCUR = JSFCUR(JDOC)
MNFXNT = JNFSP(JDOC)
MRCTNX = JRCTSP(JDOC)
MNBFPA = JSFPFA(JDOC)
MNBFPB = JSFPFR(JDOC)
DO 352 LL = 1*15
MNXA(LL) = JSPCA(JDOC,LL)
352 CONTINUE
JDOC = 0
351 CONTINUF
C
IF (JDOC .EQ. 0) GO TO 353
C IF THE TYPE IS GREATER THAN 20 THE USER MUST INSERT SPECIAL CODE
C TO MAKE THE DESIRED TYPE OF CHANGES
DO 1001 K = 1,JDOC
IT = ICOMTP(K)
IF (IT .GT. 10) GO TO 1050
IF (IT .LE. 10) GO TO 1002
WRITE(MO,1003) MNFXNT, MNBFPA, MNBFPB, IT
1003 FORMAT(1H0, "TROUBLE AT RECORD TYPE ", A4, " AND CODE ", A5, A4, *
* FOR CHANGE TYPE IS ", I4, * WHICH IS MORE THAN INPUT NO.")
STOP 1002
1002 CONTINUE
ITF = ICOMFS(IT)
ITL = ICOMLS(IT)
IWDF = (ITF - 1)/NCHRW + 1
ITA = ITF -(IWDF - 1)*NCHRW
ITSFH = (NCHRW + 1 - ITA)*6
ICHF = (IWDF - 1)*NCHRW + 1
JWDF = IWDF
JWDDA = 1
JDACT = 1
JFCT = 1
1005 CONTINUE
IAR = NCHRW + 1 - JFCT
IF (ICHF .GE. ITF .AND. ICHF .LE. ITL) GO TO 1006
JWDN = (MNXA(JWDF) .AND. MSKAR(IAR)), OR, (JWDN, AND, .NOT., MSKAR
(IAR))
GO TO 1010
1006 CONTINUE
IARDA = NCHRW + 1 - JDACT
ITMP = TCOMDA(JWDDA).AND. MSKAR(IARDA)
C SHIFT(A,B) IS A 6400 ROUTINE WHICH SHIFTS A LEFT CIRCULARLY B BITS
C CIRCULAR SHIFT IS ESSENTIAL HERE
ITM = SHIFT (ITMP,ITSFH)
JWDN = (ITM .AND. MSKAR(IAR)), OR, (JWDN, AND, .NOT., MSKAR(IAR))
JDACT = JDACT + 1
IF (JDACT .LE. NCHRW) GO TO 1010
JDACT = 1
JWDDA = JWDDA + 1
1010 CONTINUE

I-223

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED **** 12/14/76 PAGE NO. 000

C****BUG START*****
IF(IBUGC .NE.1) GO TO 901
WRITE(Mn,902) ITF,ITL,IWDF,ITSFH,JWDF,JWDDA. JDACT,JFCT,
I IAR,IARDA, ICMDA(JWDDA),ITMP,ITM,JWDCN, ICHF,JRCDCT
902 FORMAT(1H ,* BUG CONSTRUCTING*, 10I4, A10, 3A10, 2I4)
901 CONTINUE
C****BUG END*****
JFCT = JFCT + 1
ICHF = ICHF + 1
IF(JFCT .LE. NCHRW) GO TO 1005
JFCT = 1
MNXDA(JWDF) = JWDCN
JWDF = JWDF + 1
IF(ICHF .LE. ITL) GO TO 1005
CONTINUE
1001 C
105a CONTINUE
C
C USER INSERT SPECIAL CODE HERE FOR UNIQUE COMMON CHANGES
C STATEMENT NUMBERS FROM 1051 TO 1099 MAY BE USED
C
JDOG = 0
353 CONTINUE
C
C
C
360 CONTINUE
C WRITE RECORD FROM K BUFFER
C****BUGG START*****
IF(IBUGA .NE. 1) GO TO 376
WRITE(Mn, 377) KBUFFL,NBUFFL,MBUFFL,NIST,JDOC,JDOO,JDOF,JDOG,LU
377 FORMAT(1H, * BUGG-- A-- K N M BF FL,NIST JNO C D F G LU ==+914,
1/ ,* CONT OF K,N,M BUF =*)
WRITE(Mn,388)KFBNX,KNFCUR,KNFNXT,KRCTNX,KNBFPB,KNBFPB,
1 (KNXDA(LL),LL= 1,11)
388 FORMAT(1H ,* A1+A4+1X,A4+I5+1X,A5+A4+1X,10A10+A9)
WRITE(Mn,388)NFRNX,NNFCUR,NNFNXT,NRCTNX,NNBFPA,NNBFPB,
1 (NNXDA(LL),LL= 1,11)
WRITE(Mn,388)MFRNX,MNFCUR,MNFNXT,MRCTNX,MNBFPA,MNBFPB,
1 (MNXDA(LL),LL= 1,11)
WRITE(Mn,389) LLINK,LLINN,LLINM
389 FORMAT(1H ,* LLINK-LLINN- LLINM = *+3I8)
DO 378 LL = 1,NSPNU
WRITE(Mn,379) LL,ISPFST(LL),ISPLST(LL),JSPFET(LL),JSPLST(LL),
1 JSPCUK(LL),JSPFPB(LL),JSPFPR(LL),JSPNFA(LL),JSPNFB(LL),JSPNRT(LL)
2)
379 FORMAT(1H ,* L=**I3,* I J SP FST LST = *,4I6,* TYPE FIPS SPEC=*,
1 2X,A4,1X,A5,A4+2X,A5+A4,1X,A4)
378 CONTINUE
376 CONTINUE
C****BUG END *****
IF(KBUFFL .NE. 1) GO TO 362
IF(NBUFFL .EQ. 1) GO TO 363
IF(ISTOP .EQ. 1) GO TO 363
GO TO 370
363 CONTINUE
NWRD = NCHRCU(LLINK)/NCHRW + 1
NEXTRA = NCHRLU(LLINK) - (NWRD-1)*NCHRW
IF(NEXTRA .EQ. 0) NWRD = NWRD - 1
JRCDCT = JRCUCT + 1
ITA = NNFCUR

I-224

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

WRITE(MOT, 361) KFBNX, KNFCUR, ITA ,JRCDC,KNBFPA,KNBFPB,
1(KNYDA(LL),LL= 1,NWRD)
361 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,11A10)
C***BUGG STABT*****
IF(IBUGR .NE. 1) GO TO 372
WRITE(MO, 361) KFBNX, KNFCUR, ITA ,JRCDC,KNBFPA,KNBFPB,
1(KNXDA(LL),LL= 1,NWRD)
372 CONTINUE
C***BUG END *****
KAUFFL = 0
362 CONTINUE
IF(KBUFFL .EQ.1) GO TO 360
IF(NBUFFL .NE.1) GO TO 364
KFBNX = NFBNX
KNFCUR = NNFCUR
KNFNXT = NNFNXT
KRCTNX = NRCTNX
KNBFPA = NNBFP
KNBFPB = NNBFPB
DO 365 LL = 1,15
KNXDA(LL) = NNXDA(LL)
365 CONTINUE
LLINK = LLINN
NBUFFL = 0
KAUFFL = 1
364 CONTINUE
C
C
C
370 CONTINUE
C CHECK FOR INSERTS
IF(NIST .EQ.0) GO TO 380
C WRITE INSERTS
C FIND SMALLEST
MFIPVA = SH94999
MFIPVB = 4M9499
LTYP = 9999
DO 373 L = 1, NSPNU
IF((ISPFST(L) .NE.1) GO TO 373
IF(JSPFPA(L) .GT. MFIPVA) GO TO 373
IF(TSC .EQ. 1) GO TO 374
IF(JSPFPPB(L) .GT. MFIPVB) GO TO 373
374 CONTINUE
MFIPVA = JSPFPA(L)
MFIPVR = JSPFPR(L)
IF(ISPLST(L) .GT. LTYP) GO TO 373
LTYP = ISPLST(L)
LU = L
373 CONTINUE
IF(NBUFFL .EQ.1) GO TO 360
NFBNX = JFBSP(LU)
NNFCUR = JSFCUR(LU)
NNFNXT = JNFSP(LU)
NRCTNX = JRCTSP(LU)
NNBFPA = JSFPFA(LU)
NNBFPB = JSFPFB(LU)
DO 375 LL = 1,15
NNXDA(LL) = JSPOA(LU,LL)
375 CONTINUE
LLINN = ISPLST(LU)
JSPFST(LU) = 1

I-225

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

44

ISPFST(LU) = 0
NBUFFL = 1
NIST = NIST - 1
GO TO 360

C
C
C
380 CONTINUF
C ADVANCE FROM M BUFFER TO N BUFFER
IF(ISTOP .NE. 1) GO TO 381
C CHECK FOR INSERTS AFTER LAST INPUT RECORD
C INSERTS PUT IN IN ORDER THEY APPEAR IN THE SPECIAL BUFFER
IF(NSPNU) .EQ. 0) GO TO 387
DO 371 L = 1.NSPNU
IF(JSPFLST(L) .NE. 2) GO TO 371
IF(JSPFST(L) .EQ. 1) GO TO 371
IF(JSPFPAL(L) .LT. KNBFPA) GO TO 371
IF(JSPFPAL(L) .GT. KNBFPA) GO TO 368
IF(ISC .EQ. 7) GO TO 366
IF(JSPFPBL(L) .LT. KNBFPB) GO TO 371
IF(JSPFPBL(L) .GT. KNBFPB) GO TO 368
366 CONTINUF
IF(ISPLST(L) .LT. LLINK) GO TO 371
368 CONTINUF
NFBNX = JFBSP(L)
NNFCUR = JSPCUR(L)
NNFNXT = JNFSM(L)
NRCTNX = JRCTSP(L)
NNBFPA = JSPFPAL(L)
NNRFPB = JSPFPBL(L)
DO 367 LL = 1.15
NNXDA(LL) = JSODA(L,LL)
367 CONTINUF
JSPFST(L) = 1
NBUFFL = 1
GO TO 385
371 CONTINUF
387 CONTINUF
IF(NBUFFL .NE. 0 .OR. KBUFFL .NE. 0) GO TO 385
ENOFILM MOT
ENOFILM MOT
REWIND MOT
RETURN
385 CONTINUF
C TO FINISH SINCE ALL DATA HAS BEEN USED
IF(NBUFFL .EQ. 1) GO TO 360
NNFCUR = 4HSTOP
GO TO 360
381 CONTINUF
IF(NBUFFL .EQ. 1) GO TO 360
IF(MBUFFL .EQ. 0) GO TO 330
NFBNX = MFBNX
NNFCUR = MNFCUR
NNFNXT = MNFNXT
NRCTNX = MRCTNX
NNBFPA = MNBFPA
NNRFPB = MNRFPB
DO 382 LL = 1.15
NNXDA(LL) = MNXDA(LL)
382 CONTINUF
IF(JDOD .EQ. 0) GO TO 383

I-226

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

DO 384 L = 1,NSPNU
IF(ISPFST(L) .NE.2) GO TO 386
ISPFST(L) = 1
NIST = NIST + 1
386 CONTINUE
384 CONTINUE
JDD0 = A
383 CONTINUE
LLINN = LLINM
NRUFFL = 1
MBUFFL = 0
GO TO 330

C
C
C
C
C

END

**** UNCLASSIFIED ****

12/14/76

PAGE NO. 000

I-227

COMPUTER PROGRAM DESCRIPTION

NAME: SNORT

SYNOPSIS: Simple General Sort Program

TYPE: Utility

USE: Alternate procedure for sorting a deck of cards

BACKGROUND: Developed to sort urbanized area tract data. To re-arrange urbanized areas from alphabetical to FIPS code order.

DESCRIPTION: Sort routine reads blocks to disk, saves a key, sorts the key, and reads from disk according to the key.

INPUT: File to be sorted

OUTPUT: Sorted file

STORAGE: IDA Card Deck S-2

DOCUMENTATION: Attached sheets; see Run S-24 for example of use

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS: Direct, simple FORTRAN code, but requires random access storage capacity

NOT
preceding page BLANK - FILMED

This routine sorts blocks of records according to a key. A group of records, here 3000, is read into core storage. Either the whole group is written onto disk, or if the key changes, each key group is written separately. The keys are sorted and records are read from disk to core by the key and then written on the sorted file. This routine is only efficient if the total number of groups is small compared to the total number of records.

To sort different types of records some program statements must be changed. These are flagged in the listing. One position in the array IAR must contain the key and only the key. This position is set by the format statement in the subroutines REED and RITE.

*** UNCLASSIFIED *** 12/17/76
PROGRAM SNURT(TIN=4002, TOUT=4002, TAPE2=1, OUTPUT)

PAGE NO. 000

C SET FOR FILE TO BE SORTED WITH EACH RUN*****
COMMON IAH(13,3001),KEYST(500),KEYNO(500),KEYUR(500),INU(500)
COMMON/SENU/MT,MU
MU = 4LTOUT
MT = 3LTIN
MQ = 6LOUTPUT
C SET FOR FILE TO BE SORTED WITH EACH RUN*****
KEYD = 5H
MAXKEY = 500 }
MAXDIM = 3000 }
IW = 13
IK = 13 }
ILIST = 0 }
ILIST = 1 }
MAXCNT = 2000 }
MAXCNT = 9999999 }
CALL OPENMS(2,TND,501,0)
ICNT = 0
INCNT = 0
IIN = 0
IST = 0
I = 0
K = 1
WRITE(MO,5)
5 FORMAT(1H1, //,1X,*RUN OF GROUP SORT PROGRAM *,//,
1 * LISTED BELOW ARE GROUP NO-FINAL RECORD IN GROUP NO -SUMT KEY
2- NO RECORDS IN GROUP*,//)
C
10 CONTINUE
I = I + 1
IF(I .LE. MAXDIM) GO TO 11
IBIG = 1
GO TO 30 *start group*
11 CONTINUE
CALL REFD(IAH(1,I),IN)
C
12 IF(EOF,MT) 20,23
CONTINUE
IIN = 1
GO TO 30
23 CONTINUE
ICNT = ICNT + 1
IF(ICNT .LT. MAXCNT) GO TO 29
IIN = 1
GO TO 30
29 CONTINUE
IF(KEYD .EQ. IAR(IK,I)) GO TO 10
IF(IST .NE.0) GO TO 29
KEYD = IAR(IIN,I)
IST = 1
GO TO 10
25 CONTINUE
IBIG = 0
C
30 CONTINUE
IWI = IN+1
CALL WRTMS (2,IAR(1,I),IND,K) I-231
start group block

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

KEYST(K) = KEY0
KEYNO(K) = I - 1
IF (ILIST .NE. 1) GO TO 39
WRITE(MO,39) I,ICNT, KEYST(K), KEYNO(K)
FORMAT(1H , 20X, I6.5X,I10,5X,A10,I10)
CONTINUE
IF(IIN.EQ.1) GO TO 50
K = K + 1
IF(K .LE. MAXKEY) GO TO 34
WRITE(MO,35) ICNT
35 FORMAT(//,1H0, * ERROR STOP AFTER READING *,I6, *RECORDS SINCE TO
10 MANY GROUPS FORMED -----)
STOP 34
34 CONTINUE
IF (IHIG .EQ.1) GO TO 32
KEY0 = IAR(IK+1)
DO 31 J = 1,14
IAR(J,1) = IAR(J,I)
31 CONTINUE
I = 1
GO TO 1a
32 CONTINUE
I = 1
GO TO 1a
C
C
50 CONTINUE
CALL ORDNS(KEYST,KEY0R,K)
KK = 0
C
60 CONTINUE
KK = KK + 1
IF (KK .GT. K) GO TO 100
L = KEY0R(KK)
IWD = IW*KEYNO(L)
CALL READMS(2,IAR(1+1),IWD,L)
LL = 0
C
70 CONTINUE
LL = LL + 1
IF (LL .GT. KEYNO(L)) GO TO 60
CALL RITE(IAR(1+LL),IW)
IWCNT = IWCNT + 1
GO TO 7a
100 CONTINUE
C
ENFILE MU
ENFILE MU
WRITE(MO,101) ICNT,IWCNT
101 FORMAT(//,1H0+2X,*TOTAL RECORDS READ ==,I10,* TOTAL RECORDS WR
1ITFH ==I10//)
STOP 6400
END
SUBROUTINE REED(IAR,N)
COMMON/SEND/MT,MU
DIMENSION IAR(N)
READ(MT,21) IAR
21 SET FOR FILE TO BE SORTED WITH EACH RUN*****
FORMAT(12A10*#5)
RETURN
ENTRY RITE

all read now
order keep

Read from storage
and write to
output file.

Input file

Output file

**** UNCLASSIFIED **** I-232

12/17/76

PAGE NO. 000

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 000

WRITE(MU,21) TAB
RETURN
END

3

*** UNCLASSIFIED *** I-233 12/17/76

PAGE NO. 000

COMPUTER PROGRAM DESCRIPTION

NAME: BOX

SYNOPSIS: Produce GBBA, GBBC, GBBD files

TYPE: Single Use

USE: To put Medlist Block Group Records into Standard File format

BACKGROUND: Part of Standard File conversion. This program developed instead of use of MESHFL to save computer time by producing several output files at once.

DESCRIPTION: Direct conversion of file format. Maximum and minimum latitudes for each urbanized area found. Corrections added.

INPUT: Medlist files

OUTPUT: Standard Format Files GBBA, GBBC, GBBD

STORAGE: IDA Card Deck S-3

DOCUMENTATION: Attached sheets; see run S-27

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS: File GBBD contains only header type data; Data are read into K buffer and written from M buffer to allow attaching TYPE of next record, and for corrections.

Preceding Page BLANK - ^{NOT} FILMED

**** UNCLASSIFIED **** 12/17/76
PROGRAM BOX(INP LT,OUT PUT,TIN, TOUTA,TOUTB,TOUTC,TOUTD)

PAGE NO. 000

TO PRODUCE MEDLYST GHAB, GBBB, GHBC AND GHBD RECORDS FIND MIN AND MAX LATITUDES AND ADD CORRECTIONS TO DATA

```

DIMENSION ISICCS(150), IUAC(150), ITRTC(150), IPOPH(150), FLATO(150)
      , FLANO(150), FLATH(150), FLONH(150), ISTCC(150)
DIMENSION IWVC(20), IWVU(20)
      , tentative

MP = SLTINPUT
MQ = SLTOPUT
MT = SLTIN
MA = SLTOUTA
MR = SLTOUTR
MC = SLTOUTC
MD = SLTOUTD
IEMIN = 0
IWVC(1) = 5H54009
IWVC(2) = 5H54059
IWVC(3) = 5H54011
IWVC(4) = 5H54099
IWVC(5) = 5H54099
IWVC(6) = 5H54051
IWVC(7) = 5H54069
IWVC(8) = 5H54079
NWV = 8
DO 5 I = 1,8
IWVU(I) = 0
CONTINUE
IWVMO = 5H54009
MSKA = 77770000000000000000B
MSKR = 40370000000000000000B
SX = 0.
SY = 0.
SXX = 0.
SYY = 0.
SXY = 0.
FLANX = 0.
FLANX = 0.
FLAN = 99999.
FLAMN = 99999.
IPORT = 0
IPOPR = 0
NRCAA = 0
ITPSH = 4HGGRBA
ITPSHF = 4HGGRBA
IFOPCT = 0
JTPFCT = 0
ITPCTR = 4HGGRBC
ITPTRF = 4HGGRBC
JSTCT = 0
ISTPT = 0
IUACO = 4H
IJACO = 4H
KHDT = 4HGGRBU
KHDTN = 4HGGRBD
KTPCT = 0
KTPCR = 4HGGRBH
KTPCN = 4HGGRBH
KHDCT = 0
NPCT = 4

```

I-237

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

KNT = 0
KNTMX = 1000
KNTMX = 2000
KNTMX = 2700
KNTMX = 999994
KNTMN = 1400
KNTMN = 0

C
C

17 WRITE(M0,17)
FORMAT(1H1,////////,10X,* LIST OF CORRECTIONS TO INPUT TAPE GBBB I
IN THIS RUN OF RDX PROGRAM*,////)

*Put corrections
in core*

18 I = 0
J = 0
10 CONTINUE
I = I + 1
READ(MP,12) ISTCC(I),IUAC(I),ITRTC(I),IPOPM(I),FLONO(I),
FLATO(I),FLUNH(I),FLATH(I)
12 FORMAT(A5,dx,A4,12X,A6,7X,A6,6X,F7.4,F6.4,
WRITE(M0,11) ISTCC(I),IUAC(I),ITRTC(I),IPOPM(I),FLONO(I),
FLATO(I),FLUNH(I),FLATH(I)
11 FORMAT(1H,A5,8X,A4,12X,A6,7X,I6,6X,2F8.4,1X,2F8.4)
IF(ISTCC(I) .NE. 5#STUPP) GO TO 13
ILNC = I - 1
IJ = J
WRITE(M0,18)

18 FORMAT(1H1,////////,10X,* NOW BEGIN PROCESSING INPUT TAPE*,////////)

GO TO 20

13 CONTINUE
IF(J .GT. 0) GO TO 14
ISTCS(1) = ISTCC(I)

J = 1
GO TO 15

14 CONTINUE
DO 16 JJ = 1+J
IF(ISTCC(I) .EQ. ISTCS(JJ)) GO TO 15

16 CONTINUE
J = J + 1
ISTCS(J) = ISTCC(I)

15 CONTINUE
GO TO 10

C
C

20 CONTINUE
READ(MT, 21) KFANX,KNFCUR,KNFNXT,KRCTNX,KNBFPA,KNBFPB,

1 KDA,KDB,KDC,KDD,KDE,

2 KTRCT,KBLGP,RED,KHSE,KPOP,XLAT,XLON,KCENT
FORMAT(A1,A4,1X,A4,A5,1X,A4,1X,A1,A7,A6,1X,A1,1X,A5,
1 2I8,2F8.4,1X,A5)

1 IF(EOF,MT) 22,23

22 CONTINUE

IFND = 1

ITPSHF = 4HSTOP

ITPTRF = 4HSTOP

KHDTN = 4HSTOP

KTPCN = 4HSTOP

GO TO 24

CONTINUE

ITM = KNBFPA .AND. MSKA

IF(ITM .NE. MSKA) GO TO 120

IF(KNBFPA .EQ. 5#54A39) GO TO 130

Read in Record

West Virginia agency

I-238

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

126 IF(KNBFPA .EQ. IWVCO) GO TO 125
DO 126 I = 1, H
IF(IWVCO .EQ. IWVC(I)) GO TO 127
CONTINUE
WRITE(MQ,123) KNBFPA,KNBFPA, KTRCT, IWVCO
FORMAT(1H0, *///-IN WVA NO OLD CODE MATCH AT*,A5,A4,1X,A6,A5) one of these
IWVCO = KNBFPA
GO TO 125
127 CONTINUE
IWVU(I) = 1
IWVCO = KNBFPA
GO TO 125
130 CONTINUE
IF(KTRCT .NE. 6H0107 .OR. KED .NE. 5H0055) GO TO 125
IWVU(S) = 1
GO TO 125
125 CONTINUE
DO 121 I = 1, H
IF(KNBFPA .EQ. IWVC(I)) GO TO 122
CONTINUE
WRITE(MQ,123) KRCTNX,KNBFPA,KNBFPA,KTRCT,KBLGP,KED
FORMAT(1H0, *///IN WVA RECORD DOESNT MATCH AT*,A5,A5,A4,1X,A6,A1,
1 A5)
GO TO 120
122 CONTINUE
IF(IWVU(I) .NE. 1) GO TO 61
WRITE(MQ,62) KNBFPA,KNBFPA,KRCTNX,KTRCT,KBLGP,KED,I,IWVU(I)
62 FORMAT(1H0, * W-VA. RECORD DROPPED AT *, A5,A4,2X,A5,2X,A6,A1,
1 A5,* FLAG =*, I3,I3)
GO TO 20
61 CONTINUE
WRITE(MQ,63) KNBFPA,KNBFPA,KRCTNX,KTRCT,KBLGP,KED,I,IWVU(I)
63 FORMAT(1H0, * W-VA. RECORD --KEPT-- AT *, A5,A4,2X,A5,2X,A6,A1,
1 A5,* FLAG =*, I3,I3)
120 CONTINUE
IF(KPOP .EQ. n) GO TO 20 Debt o paper tract
24 CONTINUE
KNT = KNT + 1
IF(KNT .LT. KNTMN) GO TO 20
IF(KNT .LE. KNTMX) GO TO 25
IEND = 1
ITPSHF = 4HSTOP
ITPTRF = 4HSTOP
KHDTN = 4HSTOP
KTPCN = 4HSTOP
25 CONTINUE
IF (ISTRAT .EQ. 1) GO TO 28
ISTRAT = 1
IUACO = KNBFPA
JUACO = KNBFPA
MNRFPA = KNBFPA
MNRFPY = KNBFPA
GO TO 51
C 28 CONTINUE
DO 32 I = 1, IJ
IF(MNRFPA .EQ. ISTCS(I)) GO TO 34
32 CONTINUE
GO TO 33
34 CONTINUE
C POSSIBLE MATCH. NOW TRY TRACT, ETC.

West Virginia records
appear three, Only one
one of these

West Virginia agency

End procedure

Look for corrections

**** UNCLASSIFIED ****

I-239

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

DO 35 I = 1,ILNG
IF(MNBFPA, NE, ISTCC(I)) GO TO 35
IF(MTRCT, NE, ITRTC(I)) GO TO 35
ITM = KTPCT + 1
WRITE(MD,36) IPCP,IPOPH(I), ISTCC(I), IUAC(I)+ITRTC(I), FLAT,FLON,
1 FLATH(I),FLUNH(I) *KNT*ITM
36 FORMAT(1H0,*--- RECORD CORRECTION/OLD=NEW POP =*,2I8,* STCTY-UA
1C-TRACT CODE *, A5,2X,A4,2X,A6, ,/* OLD/NEW(LAT/LON) = *,
2 2F9.4,5X,2F9.4, * ALL AT IN/OUT RECORD COUNT = *,2I9)
IF(IPOP,NE, IPCPH(I)) GO TO 35
FLON = FLONH(I)
FLAT = FLATH(I)
GO TO 37
35 CONTINUF
37 CONTINUE
33 CONTINUF
IF(ICENT,NE,SH36047) GO TO 45
IF(FLAT,LT,42.) GO TO 65
WRITE(MD,60)
66 FORMAT(1H0, * REPLACE LARGE NEW YORK LATITUDE---//----*)
67 FORMAT(1H ,* ---REPLACE FR0M--, A5,A4+2X,A6,A1+A5+2X,A5,
1 2X,19,2X,2F8.4)
WRITE(MD,67) MNBFPA,MNBFPR, MTRCT, MBLGP,MED,ICENT,IPOP,
1 FLAT,FLON
1 FLAT = 40.7504
65 CONTINUF
C KTPCT = KTPCT + 1
WRITE(MD,21) MFBNX,KTPCR,KTPCN, KTPCT, MNBFPA,MNBFPR,
1 MD4,MUR,MUC,MUD,MDE,
2 MTRCT,MBLGP,MED,IHSE,IPOP, FLAT,FLON, ICENT
C JSTCT = JSTCT + 1
WRITE(MD,31) MFRNX,ITPSH,ITPSHF, JSTCT,MNBFPA,MNBFPR,
1 IPOP,IHSE,FLAT,FLON, MTRCT,MBLGP,MED,ICENT
31 FORMAT(A1,A4+1X,A4,15+1X,A5,A4, 1X,I8,I7,2F8.4,1X,A6,1X,A1,1X,
1 A5,1X,A5)
C IF(IEND,EQ,1) GO TO 47
IF(KNAFBP,EQ, JUACO) GO TO 45
47 CONTINUE
IF(IFORCT,NE,3) GO TO 44
NREC = 3
IPOPD = 0
FLATD = 0
FLOND = 0
IPOPC = IPOP
FLATC = FLAT
FLONC = FLON
IF(IFORCT,NE,2) GO TO 46
NREC = 2
IPOPC = 0
FLATC = 0
FLONC = 0
IPOPB = IPOP
FLATB = FLAT
FLONB = FLON
IF(IFORCT,NE,1) GO TO 46
NREC = 1
IPOPB = 0
FLATH = 0

round to output
Feb

I-240

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

FLONB = 0
IPOPA = IPUP
FLATA = FLAT
FLONA = FLON
GO TO 46
45 CONTINUE
IFOPCT = IFORCT + 1
GO TO (41,42,43,44),IFORCT
41 CONTINUE
IPOPA = IPUP
FLATA = FLAT
FLONA = FLON
GO TO 48
42 CONTINUE
IPOPB = IPUP
FLATB = FLAT
FLONB = FLON
GO TO 48
43 CONTINUE
IPOPC = IPUP
FLATC = FLAT
FLONC = FLON
GO TO 48
44 CONTINUE
IPOPD = IPUP
FLATD = FLAT
FLOND = FLON
46 CONTINUE
IFOPCT = 0
JRECT = JRECT + 1
WRITE(MB, 49) MFBNX,ITPTR,ITPTRF,JTHECT,MNRFP,A,MNBFP,R,
INREC,IPOPA,FLATA,FLONA,IPOPA,FLATB,FLONB,IPOPC,FLATC,FLONC,
2,IPOPD,FLATD,FLOND,ICENT
49 FORMAT(A1,A4,1X,A4,15,1X,A5,A4,1X, I1,4(I8,F8.4,F8.4) ,1X,A5)
NREC = 4
JUACO = KNBFPH
CONTINUE
C
C
IF(IEEND .EQ. 1) GO TO 84
IF(MNAFPB .EQ. TUACO) GO TO 81
84 CONTINUE
POP = IPOPH
CGLA = SYY/POH
CGLO = SX/POH
CY = 69.17352282
CX = -69.17352282 *COS(CGLA*3.14159265/180.)
SXX = SXX/POH
SXY = SXY/POH
SYY = SYY/POH
XX = SXX - CGLO*CGLA
YY = SYY - CGLA*CGLO
XY = SXY - CGLA*CGLO
XX = XX*CX*CA
YY = YY*CY*CY
XY = XY*CX*CY
SGXX = SQRT(AHS(XX))
SGYY = SQRT(AHS(YY))
SGXY = SQRT(AHS(XY))
IF(XY .LT. .0) SGXY = - SGXY
IF (ABS(YY - XX) . GT. .0000001) GO TO 52 I-241

Summary statistics
for U-241

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

TTHETA = .5*3.14159265
GO TO 59
CONTINUE
52 TTHETA = ATAN(2.*XY/(YY - XX))
CONTINUE
53 THETA = TTHETA/2.
SINO = SIN(THETA)
COSO = COS(THETA)
SINS = SINO*SINO
COSS = COSO*COSO
VARXX = XX*COSU = 2.*SINO*COSU*XY + YY*SINS
VARYY = YY*COSU = 2.*SINO*COSO *XY + XX*SINS
IF(VARXX .LT. VARYY) GO TO 55
VARBB = VARXX
VARLL = VARYY
ALPHA = .5*3.14159265 + THETA
GO TO 5A
CONTINUE
55 VARLL = VARXX
VARBB = VARYY
IF(THETA .LT. .0) GO TO 56
ALPHA = THETA
GO TO 5A
56 CONTINUE
ALPHA = 3.14159265 + THETA
58 CONTINUE
ALPHAD = ALPHA*180./3.14159265
THN = 0.5*3.14159265 - ALPHA
SGBB = SQRT(AHS(VARBB))
SGLL = SQRT(AHS(VARLL))
IF(VARLL .LT. .0) SGLL = 0.
KHDT = KHDT1 + 1
WRITE(MC183) MFLANX, KHDT, KHDTN, KHDT, MNBFpx, MNBFpy, IPOPT, 1 CGLA,CGLO,FLAMN,FLAMX,FLOMN,FLOMX,NRCUA ,ICENT
2 ,SGBB,SGLL,ALPHAD
83 FORMAT(A1,A4+1X,A4,T5+1X,A5,A4,1X, I9,2F8.4,1X,2F8.4,1X,2F8.4,I5+
1 1X,A5, 1X,2F7.4,F7.2)
WRITE(MC182) MNBFpx,MNBFpy, KHDT, JRECT, JRECT, IPOPT, IPOPR,
1 CGLA,CGLO,FLAMN,FLAMX,FLOMN,FLOMX,NRCUA,ICENT,JRAN,JRUN,JBOX
2 ,KRON, JRAX,KRAX,JROX,KRUX, JRAN,JRUN,JBOX,X,JROX
92 FORMAT(1H0, A5,A4, 3I7, 2I9, 2F9.4, 2X,2F9.4,2X,2F9.4,
1 16+2X,A5,/,8I8,5X, 4(A6,1X))
SX = 0.
SY = 0.
SXX = 0.
SXY = 0.
SYY = 0.
FLAMX = 0.
FLOMX = 0.
FLAMN = 99999.
FLOMN = 99999.
IPOPT = 0
IPOPR = 0
NRCUA = 0
IJACO = MNBFPH
MNBFpx = MNBFPA
MNBFpy = MNBFPB
81 CONTINUE
IPOPT = IPOPT + IPOP
IF(FLAT .LT. 0.001 .OR. FLON .LT. 0.001) GO TO 91
IPOPR = IPOPR + IPOP

I-242

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

*Initials for
new J.A.*

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

7

Collect & Update

POP = IPOP
SX = SX + FLUN*POP
SY = SY + FLAT*POP
SXX = SXX + FLON*FLON*POP
SYY = SYY + FLAT*FLAT*POP
SXY = SXY + FLON*FLAT*POP
IF(FLAT, GE, FLAMN) GO TO 101
FLAMN = FLAT
JRAN = JSTCT
KRAN = JTRECT
JBAN = MTRCT
101 CONTINUE
IF(FLON ,GE, FLCMN) GO TO 102
FLC_N = FLON
JR_N = JSTCT
KR_N = JTRECT
JB_N = MTRCT
102 CONTINUE
IF(FLAT ,LE, FLAMX) GO TO 103
FLAMX = FLAT
JRAX = JSTCT
KRA_X = JTRECT
JBA_X = MTRCT
103 CONTINUE
IF(FLON ,LE, FLCMX) GO TO 104
FLCMX = FLON
JR_X = JSTCT
KRO_X = JTRECT
JR_X = MTRCT
104 CONTINUE
91 CONTINUE
NRCUA = NRCUA + 1
IF(IEND ,EQ,1) GO TO 150
C 51 CONTINUE
MFANX = KFBNA
MNFUR = KNFUR
MNFIXT = KNFXNT
MRCTNX = KRCINX
MNRFPA = KNRFPA
MNRFPB = KNRFPB
MTRCT = KTHCT
MLISP = KALSP
MEO = KED
IHSE = KHSE
IPUP = KPOH
FLAT = XLAT
FLON = XLON
ICENT = KCEN
MDA = KDA
MDB = KDB
MDC = KDC
MDD = KDD
MDE = KDE
GO TO 2a
C C 150 CONTINUE
ENDFILE MA
ENDFILE MA
ENDFILE MA

Advance Buffer

I-243

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

ENDFILE MR
ENDFILE MC
ENDFILE MC
ENDFILE MD
ENDFILE MD
WRITE(MO,151)
151 FORMAT(//,*,
 WRITE(MO,152)
152 FORMAT(1H1)
STOP 6400
END

51049020 79840REMAINDER UF4015 0055 0 006
51049020 79840REMAINDER UF4020 0056 0 1028
51049020 79840REMAINDER UF4023 0057 0 304
51049020 7 REMAINDER UF4023 0057 1 1935
51049020 79840REMAINDER UF4023 005781 11
51049020 7 REMAINDER UF4023 005780 467
51049020 7 REMAINDER UF4028 0051 1 2816
51140005 76800REMAINDER UF0312 005800 646
51740005103534760PICHMOND 100901 020380 361
51740005103534760PICHMOND 100901 020480 24
34077135 76601REMAINDER UF046102 0755 0 2217
34077135 76601REMAINDER UF046102 075580 1306
34073042315550160PENNSVILLE 20216 012280 183
36091005250535601NEW YORK CIT0091 1 0 1957
3609100525053561NEW YORK CIT0091 9 0 2
36091005250535601NEW YORK CIT0099 1 0 14
15003010011039320HONOLULU 0114 0540 0 31
38041015024031720CULORDO SPH0017 0125 0 170
08111025108536560PUERTOLO 0005 0156 0 59
0401304003535620USUN CITY >A>717 1 0 2327
04013057030546200SCOTTSDALE 2175 9 0 125
0401305803604620JTEMPE 3194 026480 23
0401305803604620JTEMPE 3194 0264C0 106
0401305803604620JTEMPE 3199 026580 6
0401305803604620JTEMPE 3199 0265C0 5
04013058 7 REMAINDER UF3194 0264 1 12
04013058 7 REMAINDER UF3199 0265 1 289
04013058 7 REMAINDER UF3199 0266 1 30
48079035374537240SAN ANTONIO 1521 0091 0 29
48141020132039230HARLINGEN 0105 0045 0 1107
48147015157032919GALVESTON 1250 2 0 1592
48479010150032800FHURTH WORTH 0139 0070 0 0
48479015305042H04NORTH RICHLAND3202 0043 0 0
42049125 723601LLCREEK TH0106 0190 0 891
42077010016530240LILENTOWN 0021 3 0 1381
42077010016530240LILENTOWN 0021 4 0 890
42077010016530240LILENTOWN 0021 5 0 761
42077010016530240LILENTOWN 0023 6 0 1320
42077010016530240LILENTOWN 0023 7 0 1287
42077010016530240LILENTOWN 0023 8 0 912
42113265 79280SHRINKGETTSHU0101021 0 10
42113265 79280SHRINKGETTSHU0101022 0 676
19041040121532010HUCUE 000299 9900 0 23
01099025003533440HUNTSVILLE 0010 0099 0 445
2009103619054760M15STON HILL0509 3** 0 1
2009103619054760M15STON HILL0509 3** 0 5
25009035 7 GEORGETOWN T2551 2572 1 703
25009035 74160GEORGETOWN T2551 2572 0 260
25009095 7 METHIEN TOWN2521 2554 1 116d
25009095 74160METHIEN TOWN2521 2554 0 578 I-244 712307427000 712207427000

Corrector Data

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

**** UNCLASSIFIED **** 12/17/76 PAGE NO. 000
 170211145150541601FULTON 8263 1* 0 181 825819410105 875194161A5
 170211145150541601FULTON 8263 1* 0 209 825819410105 875194161A5
 170211145150541601FULTON 8264 1 0 1357 825804410338 875804416338
 170211145150541601FULTON 8264 2 0 1445 82585410281 87585416281
 170211145150541601FULTON 8264 3 0 2834 825877410336 875877416336
 1/147120 77880REMAINTDER UF0001 9* 0 629 82587394957 896527398325
 171-7010552041601STEGER 8283 3 0 38 876286444102 876286416402
 18059020480480480CUMBERLAND 4102 1 0 224 869519397810 869519397810
 180590400580478480CUMBERLAND 4108 1 0 255 869537397781 869537397781
 06013020 7 REMAINTDER UF3031 0022 1 789 12262953800021216275380032
 06071115200514480ONTARIO 0021 0364 0 9 11756753407311175875340731
 06071115200514480ONTARIO 0022 0365 0 0 11755693406631175869340663
 060711150245037279SAN PERNARUI0045 H* 0 6 11740663423441174066341344
 060711024753732USAN DIEGO 0085101 0 1898 11715723244511171572325861
 0607311024753732USAN DIEGO 0085102 0 1874 11716013249811171601325981
 0607311024753732USAN DIEGO 0085103 0 1579 11716543248681171654325868
 0607311024753732USAN DIEGO 0085104 0 34 11716093249001171609325980
 061110953043600VENTURA >SAN 0092 0 684 11931043427981191304342798
 214701011603428LEXINGTON 0003 0039 0 1230 847566380189 844506380189
 214701011603428LEXINGTON 0018 0093 0 906 84698380213 845098380213
 440750450870371605ALT LAKE CI0002 1 0 366 111053341279011119533407790
 440750450870371605ALT LAKE CI0003011 0 1038 111053341279011119533407790
 32030320006534210ULAS VEGAS 000102 0096 0 1061 11562533625171152253361517
 3203101500934720VENDO 0018 0070 0 1338 1190410396509110410395509
 32071020010046720SHARKS 0019 0032 0 909 11975653930071197565393507
 3301111017703535WASHIA 95010H 0283 0 331 714667427048 714667427408
 33015160 74160SALEM TOWN 0003 0144 0 2259 712335427748 712275427748
 24005075 70720REMAINTDER UF451802 0174 0 713 763813393160 763913393160
 24005075 70720REMAINTDER UF451802 017480 1630 763813393160 763913393160
 24007701000255072UFLICOTT CIT6023 9 0 1677 768607392436 76857392436
 24005040 7 REMAINTDER UF4089 9* 1 523 766335394853 766335394753
 24005040 70720REMAINTDER UF4089 9* 0 263 766335394853 766335394753
 240033070 70840REMAINTDER UF99004049 0 621 767571389451 7477513894851
 130210200172534680ACDA 0127 0131 0 633 83467331035 83467328035
 130299010 70520REMAINTDER UF0229 1 0 383 842727357760 842727337760
 130099020 70520REMAINTDER UF0212042 0 79 843066358777 843066338777
 131212025064060250JEA POINT 0112028 0 869 844285340543 844285336543
 13245005016530600000AUGUSTA 0012 0087 0 927 916201334499 916201334499
 1321500506603180COLUMBUS 0012 0059 0 959 940400328172 940400325172
 1321500506603180COLUMBUS 0030 0135 0 755 940226320026 940226324626
 13215005 71800REMAINTDER UF0004 0141 0 199 940909328013 940909325013
 13205005 71560REMAINTDER UF0201 0008 0 953 857730340409 857730340409
 22073025143045200WEST MONROE 0051 0006 0 813 921429326468 921429326468
 22073025143045200WEST MONROE 0052 0007 0 019 921500327031 921500325031
 55025030 74720PLUMMING GR00026029* 0 4 9292019431892 9292019431092
 55025055 74720RUFKE TOWN 0026029 044760 5 993000432500 993000431500
 55025055 7 RUFKE TOWN 0026029 044761 312 993000432500 993000431500
 55025055 7 RUFKE TOWN 0026029* 1 6 992919431892 992919431092
 55110802804600JND POINT 0015 1* 0 1251 8800160431255 877069428255
 1201101004204260CUOPER CITY 0704 9 0 1973 802686265639 802686265639
 1201101004204260CUOPER CITY 0704 9 0 562 802686265639 802686265639
 12019020 / REMAINTDER UF9501 180181 238 817601261480 817601301480
 12019020 73600REMAINTDER UF9501 180140 556 817601261480 817601301480
 12113025053047060UNECIN 0269011* 0 22 827524290442 827524290442
 12113025053047060UNECIN 0269011** 0 172 827526290442 827526290442
 12113025053047060UNECIN 0269019* 0 6 827535290421 827535290421
 12113025053047060UNECIN 0269019** 0 272 827535290421 827535290421
 12113025053047060UNECIN 0271021* 0 1874 827722290420 827722290420
 12113025053047060UNECIN 0271021** 0 18 827722290420 827722290420
 12113025053047060UNECIN 027103 0015 0 194 829119290451 829119290451
 12113025053047060UNECIN 0272 0014 0 330 827324290533 827324290533

*** HINT SYSTEM ***

12/17/75

PAGE NO. 000

***** UNCLASSIFIED *****

121-3025-53047060UNEFIN 0272 4* 0 4
121-3025-53047060UNEFIN 0272 4** 0 219
121-3025 7706UFEMAINDEF UF026901** 0 17
2601701501653080URAY CITY 0010 7 0 884
26143035068032160CETRCIT 0007 1 0 355
39013005 7 CULERAIN TWP0103 0913 1 750
39013005 79000CULERAIN TWP0103 9 0 59
40047036 7856UFEMATNDEF UF0201 1 0 261
401n903618153ERBOKLAHOMA CLT106903 0844 0 324
34013 5601NEW YORK 0147 377
26077 3720KALAMAZOO 0022011 2
421-1 6160PHILADELPHIA018399 2165 0
36091 5601NEWYORK 0595 66
36091 5601NEWYORK 0564 16520
36091 5601NEWYORK 0178 38
121-3 7060 ST PETE 026901 2
STOPP

12/17/76

PAGE NO. 000

82766029v/23 827660280723 70
82766029v/23 827660280723
827535290421 827535280421
8393KA434035 8393KA436035
8380R242J245 830882423245
809469401358 807869401358
809869401358 807869401358
981637345240 961637360240
956575354988 976575354988
841798407789 741798407789
84515n423549 855150423549
751288409897 751288399897
738675447290 738675407290
737325447210 737325407210
738n95446172 738n95406772
827665285328 827665280328

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

I-246

COMPUTER PROGRAM DESCRIPTION

NAME: MOVEUB

SYNOPSIS: Standard File XBΔΔ editing

TYPE: Single Use

USE: Rearrange records

BACKGROUND: The XBΔΔ file has nodal data. When several urbanized areas are in a single county they are listed together. In six cases the order is different on this file than in Medlist. This rearranges the order.

DESCRIPTION:

INPUT: File XBΔΔ-1

OUTPUT: File XBΔΔ-2; see Run S-30.

STORAGE: IDA Card Deck S-4

DOCUMENTATION: Attached sheet

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS: The separate cases are rearranged individually by use of two supplementary storage arrays.

***** UNCLASSIFIED *****
PROGRAM MOVEUB(IIN,TOUT)

12/17/76

PAGE NO. 001

C TO PUT SEVERAL UB RECORDS FROM LH -1 IN ORDER OF MEDLIST
C ON GHBC-1
C
C DIMENSION IAR(13),IARA(13),IARB(13)
C MT = 3LTIN
C MU = 4LTOUT
10 CONTINUE
READ(MT,21) IAR (1), INU , (IAR (I),I=2,12)
21 FORMAT(A10,I5,1A10,A3)
IF(INU .NE. 503 .AND. INU.NE. 4860.AND. INU .NE.4936) *Range 2*
I .AND. INU .NE. 2294) GO TO 31
DO 41 I = 1,13
IARA(I) = IAR(I) *in IARA*
41 CONTINUE
INUA = INU
READ(MT,21) IAR (1), INU , (IAR (I),I=2,12)
INUST = INU
INU = INUA
INU = INUST
IARSTA = IAR(1)
IAR(1) = IARA(1)
IARA(i) = IARSTA
WRITE(MU,21) IAR (1), INU , (IAR (I),I=2,12) *Write record 1*
WRITE(MU,21) IARA(1), INUA, (IARA(I),I=2,12)
GO TO 10
31 CONTINUE
IF(INU .NE. 616) GO TO 32 *Range 3*
DO 42 I = 1,13
IARA(I) = IAR(I)
42 CONTINUE
INU = INU
READ(MT,21) IAR (1), INU , (IAR (I),I=2,12)
DO 43 I = 1,13
IARB(I) = IAR(I)
43 CONTINUE
INUB = INU
READ(MT,21) IAR (1), INU , (IAR (I),I=2,12)
INUSH = INUB
INUST = INU
INU = INUA
INU = INUSH
INUS = INUST
IARSTB = IAR(1)
IAR(1) = IARB(1)
IARd(1) = IARSTH
WRITE(MU,21) IAR (1), INU , (IAR (I),I=2,12)
WRITE(MU,21) IARA(1), INUA, (IARA(I),I=2,12)
WRITE(MU,21) IARB(1), INUR, (IARB(I),I=2,12)
GO TO 10
32 CONTINUE
IF(INU .NE. 641) GO TO 33
DO 44 I = 1,13
IARA(I) = IAR(I)
44 CONTINUE
INU = INU
READ(MT,21) IAR (1), INU , (IAR (I),I=2,12)
DO 45 I = 1,13
IARB(I) = IAR(I)
45 CONTINUE

I-249

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 001

Preceding Page BLANK - NOT FILMED

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 004

```
INUS = INU
READ(MT,21) IAR(1), INU : (IAR(I), I=2,12)
INUSB = INUB
INUST = INU
INU = INUA
INUAB = INUSB
INUH = INUST
IARSTB = IAR(1)
IAR(1) = IARB(1)
IARB(1) = IARSTB
WRITE(MU,21) IAR(1), INU : (IAR(I), I=2,12)
WRITE(MU,21) IARA(1), INUA : (IARA(I), I=2,12)
WRITE(MU,21) IARB(1), INUH : (IARB(I), I=2,12)
GO TO 10
33 CONTINUE
WRITE(MU,21) IAR(1), INU : (IAR(I), I=2,12)
IF(INU .EQ. 5774) GO TO 60
GO TO 10
60 CONTINUE
ENFILE MU
STOP 6400
END
```

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 0000

I-250

COMPUTER PROGRAM DESCRIPTION

NAME: SHUFFL

SYNOPSIS: Standard File Production

TYPE: Single Use

USE: To correct central county code on lost record for an organized area on GBBD file. Compare population on Medlist and nodal records.

BACKGROUND: Output to assist in correction file codes.

DESCRIPTION: GBBD record is read and then nodal file. Populations are compared.

INPUT: File XBAA-1; Nodal Data; Central County Data

OUTPUT: File GBBD

STORAGE: IDA Card Deck S-5

DOCUMENTATION: Attached sheet; see Run S-31

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS: Used to find problem urbanized areas where populations do not agree or sizes drastically different. Also to correct error from program BOX.

**** UNCLASSIFIED ****

PROGRAM SHUFFL(OUTPUT,TINA,TINB,TOUT)
 MQ= PLOUTPUT
 MA = 4LTINA
 MB = 4LTINB
 MT = 4LIOUT
 C A IS POPN B = GBB0
 ICNT = 0
 SMI = 59.17352242
 WRITE(MQ,5)
 5 FORMAT(1H1,/////////,20X,*+***COMPARE POPN ON XB -1 AND GBB0-1***
 1 *,//*)
 ICENT0 = SH01055
 IEND = 0
 ITPN = 4H
 C
 10 CONTINUE
 ! READ (10,83) MFLNX, KHOT, KHDTN, KHDCT, MNBFPX, MNBFPY, IPOPT,
 ! CGLA,CGLB, FLAMN,FLAMA,FLUMN,FLUMX,NMCUA *ICENT
 ! .SIGB,SIGL,ALPH
 ! IF(KHDCT.EQ.247) IEND = 1
 ! WRITE(10,83) MFLNX, KHOT, KHDTN, KHDCT, MNBFPX, MNBFPY, IPOPT,
 ! CGLA,CGLB, FLAMN,FLAMA,FLUMN,FLUMX,NMCUA *ICENT0
 ! .SIGB,SIGL,ALPH
 83 FORMAT(A1,A4*1X,A4*[5*1X,A5*A4*1X, 19*2F8.4*1X,2F8.4*1X,2F8.4*15*
 ! 1X,A5,1X,2F7.4,F7.2)
 ICENT0 = ICENT
 C
 IF(ITPN .EQ. 4MUH) GO TO 34
 30 CONTINUE
 READ(MA,32) ITPN
 32 FORMAT(5X,A4)
 IF(EOF,MA) 63,62
 64 CONTINUE
 IF(ITPN .NE. 4MUH) GO TO 30
 34 CONTINUE
 READ(MA,31) IPOPC,ITPN,IPPA,IPPB,NAMEA,NAMEB,NAMEC,IPOPP,FLATP,
 ! FLUNP,SIGB,SIGL,ALPH
 31 FORMAT(1X,A4*1X,A4*6X,A5+A4*,1X,3A8+I9.2F8.4,2F7.3,F7.2)
 IF(EOF,MA) 63,62
 65 CONTINUE
 IF(IPPP .NE. MN-BFY) GO TO 36
 GO TO 38
 36 CONTINUE
 WRITE(MQ,37) ICNT,IPPA,IPPB,MNBFPX,MN-BFY
 37 FORMAT(* 0M 0M*,I7*2X,A5*2X,A4*2X,A4*)
 STOP 234
 38 CONTINUE
 POPP = IPOPP
 POPP = POPP/1.0E
 IPUPP = POPP * 1.5
 SIGB = 3.*SIGB
 SIGL = 3.*SIGL
 MAXA = (FLAMA-CGLA)*SMI + .99999
 MINA = (CGLA - FLAMN)*SMI + .99994
 MINB = (FLAMX-FLAMN)*SMI + .99999
 COSLA = COS(CGLA*3.14159265/180.)
 MAXB = (FLOMA - CGL0)*COSLA*SMI + .99999
 MINB = (CGL0 - FLOMN)*COSLA*SMI + .99999
 MINO = (FLOMX - FLUMN)*COSLA*SMI + .99999
 ICNT = ICNT + 1
 CONTINUE
 63

12/17/76

PAGE NO. 00

Read EBD
rec

Read Total file

File DP record

*Set max, min
coordinates*

I-253

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 00

Preceding Page BLANK - NOT FILMED

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 001

1st 2
Computer

41 WRITE(MU, 41)ICNT,IPPA,IPPD,NAMEA,NAMER,IPOUT,IPUPP,FLATP,CGLA,
1 FLUNP,CGL0,SIGR,SIGL,ALPH,MAXA,MINA,DA,MAX0,MIN0,MDO
FORMAT(I5'1X'A5'A4'1X'A8'A4'2I9' 2X'4F9.4'2F7.3'F7.2'5(1X'I4))
C
IF (IEND .EQ.1) GO TO 200
GO TO 10
CONTINUE
ENDFILE MT
STOP 6400
ENU

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 001

I-254

COMPUTER PROGRAM DESCRIPTION

NAME: CRDATK

SYNOPSIS: Produce Standard File

TYPE: Single Use

USE: To punch card images of a sample attack, file

BACKGROUND: Could have been done in MESHFL. Separate program written so core could contain entire attack, for sorting

DESCRIPTION: Attack cards are read. Central county codes are attached and the file is sorted on the resulting FIPS code.

INPUT: Attack Deck

OUTPUT: File IWAD

STORAGE: IDA Card Deck S-8

DOCUMENTATION: Attached sheet; see Run S-32

LANGUAGE/SYSTEM: RUN(FORTRAN)/6400 SCOPE

COMMENTS:

***** UNCLASSIFIED ***** 12/17/76 PAGE NO. 00

```

PROGRAM CHDAWK( INPUT, OUTPUT, PUNCH, TIN, TOUT)
DIMENSION ISTCOA(400), IUAC(400)
DIMENSION ISCUA(1750), JUAA(1750), NAMAA(1750), NAMB(1750), NAMCA(1750),
IOLUCA(1750), FLATA(1750), FLONA(1750), YLDA(1750), IORD(1750)
DIMENSION ICOMT(20)
MP = 5LINPUT
MQ = 6LOUTPUT
MS = 5LPUNCH
MT = 3LTIN
MA = 4LTOUT
ITYP = 1
ITYP = 2
ITYP = 4
ITYP = 3
ITYP = 2
ITYP = 1
IRCT = 0
ITYP = 4MIWAD
ITYPN = 4MIWAD
MSKA = 7777777777777777B
MSKH = 3300000000000000000B
MSKC = 7700000000000000000B
MSKU = 5500000000000000000B
WRITE(MG,6)
6   FORMAT(1H/, //, 10X,* PUNCH CARDS FROM OLD CPR WEAPONS FOR SAMPL
     * IWAD STANDARD FILE*, //)
MFH = 1H
IOC = 0
ICL = 2H
IAT = 4H
IN = 0
10  CONTINUE
IN = IN + 1
READ(MP,51) ISTCO, IUAC
11  FORMAT(5X, *A5, 1X, A4)
ISICOA(N) = ISTCO
IUACA(N) = IUAC
IF(IUAC .NE. 4M9320) GO TO 10
CONTINUE
IRCT = IRCT + 1
IF(ITYP .EQ. 2) GO TO 52
READ(MP,21) JUA, NAMA, NAMB, NAMC, FLOD, FLOM, FLOS, FLAD, FLAM, FLAS,
YLU, IOLDC
21  FORMAT(1X, A4, 5X, 2A10, A4, 2X, 1X, 9X, 1X, 7F4.0, 15)
IF(JUA .NE. 4HSTOP) GO TO 10 + 1
IRCT = IRCT - 1
GO TO 24
41  CONTINUE
GO TO 53
52  CONTINUE
READ(MT,51) JUA, NAMA, NAMB, NAMC, FLOD, FLOM, FLOS, FLAD, FLAM, FLAS,
YLU, IOLDC, ICOD, JCOD, (ICOM(I), I=1,6)
51  FORMAT(1X, A4, 2A10, A4, 6X, F10.0, 7F4.0, 3X, A4, 1X, A1, A1, 5A10, A3)
IF(EOF*MT) 54*55
54  CONTINUE
GO TO 29
55  CONTINUE
C  INSERT HERE WHAT TO DO IF UA CODE IS 0
CONTINUE
53  ITM = JUA * AND. MSKC
IF(ITM .NE. MSKA) GO TO 23

```

Paddi Utterback
Central County Cook
association

Paul's W. Jr.

I-257

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 00

NOT
Preceding Page BLANK - FILMED

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 00

23 JUA = *SK8 .OR. (JUA AND. MSKA)
CONTINUE
FLUN = FLOD + FLUM/60. + FLOS/3600.
FLAT = FLAD + FLAM/60. + FLAS/3600.
UO 25 I = 1,IN
IF(JUA .EQ. IUACA(I)) GO TO 26
25 CONTINUE
ISCC = 5H99999
GO TO 28
26 CONTINUE
ISCC = ISTCOA(I)
28 CONTINUE
ISCCA(IRCT) = ISCC
JUAA(IRCT) = JUA
NAMAA(IRCT) = NAMA
NAMCA(IRCT) = NAMC
NAMB(IRCT) = NAMB
FLATA(IRCT) = FLAT
FLONA(IRCT) = FLON
IOLDCA(IRCT) = IOLDC
YLDA(IRCT) = YLD
C IF(IRCT .GT. 65) GO TO 29
IF(JUA .NE. 4H000 .OR. FLON .NE. 35. .OR. + FLAS .NE. 30.) GO TO
1 29
29 CONTINUE
CALL ORUNS(ISCCA,IORD,IRCT)
UO 35 J = 1,IRCT
K = IORD(J)
IF(J .EQ. IRCT) ITYPN = 4HSTOP
IOC = IOC + 1
WRITE(MS,32) MFB,ITYPN,IOC, ISCCA(K), JUAA(K), NAMAA(K),
1 NAMB(K),NAMCA(K), ICL,IAF,IOLDCA(K),FLATA(K),FLONA(K),YLD(K)
WRITE(MW,32) MFB,ITYPN,IOC, ISCCA(K), JUAA(K), NAMAA(K),
1 NAMB(K),NAMCA(K), ICL,IAF,IOLDCA(K),FLATA(K),FLONA(K),YLD(K)
32 FORMAT(A1 ,A4+1X,A4,I5,1X,A5,A4,1X,2A10,A4,A2,A4,I4,
1 2FB.4,F4.0)
35 CONTINUE
STOP 6400
END

Add central count, code

Sort on PIPS code

Output file

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 00

I-258

COMPUTER PROGRAM DESCRIPTION

NAME: TOGRID

SYNOPSIS: Put Block Group Population on Grids

TYPE: SINGLE USE

USE: To produce standard format files QBAA, QBAB, and QBAC.

BACKGROUND:

DESCRIPTION: Population tract data is read and allocated to the nearest grid point. Three (3) types of output files are written.

INPUT: File GBBD for General Urbanized area description
File GBBC for data

OUTPUT:

STORAGE: IDA Card Deck S-9
See, for example, Runs S-36, S-37

DOCUMENTATION: Attached Sheet

LANGUAGE/SYSTEM: Run (FORTRAN)/6400 Scope

COMMENTS:

File Type	Description
QBAA	Six grid points/record are written each point has grid on (I) value, grid N-S (J) value, and population
QBAB	Up to 14 grid points/record are written grid I, J value for left most point is written first. Then grid population values are written for points moving to the right (east) until a grid point with 0 population is encountered when the record is terminated.
QBAC	A map of grid points in each U. A. is produced. This is not strictly a Standard Format Data file.

***** UNCLASSIFIED ***** 12/17/76
PROGRAM TOGRID(TINT1,TINT2,TOUTA,TOUTB,TOUTC,OUTPUT,INPUT)

PAGE NO. 000

DIMENSION IPNT(20000)
DIMENSION IAHHR(2),JAHHR(6),NPXHR(6),KPOPU(20)
DIMENSION FLATI(4),FLUNI(4),KPOPI(4)
DIMENSION LINVAL(40),LNPRTR(140),INUMB(10)
DIMENSION NAMEA(250),NAMEB(250),IACAR(250)
DATA LINVAL / 14,1H3,1H4,1H5,1H6,1H7,1H8,1H9,
1,1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,
2,1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/
DATA INUMB / 1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9 /
MA = 4LTINA
MR = 4LTIND
MT = 5LTOUTA
MU = 5LTOUTB
MV = 5LTOUTC
MO = 6LOUTPUT
MP = 5LTINPUT
MA IS HEAUER ON GBU, MB IS DATA(4 IN 1) ON GBU
MF1 = 1H
MFHO = 1H0
MFHS = 1H1
IEND = 0
ISTPT = 1
MPCF = 4HQ84A
MRTH = 4HQ84B
MRTY = 4HQ84A
MRTYH = 4HQ84H
MRTYP = 4HQ8CA
MRTYH = 4HQ8CB
IRUGCT = 0
IRUGA = 0
IRUGCT = 9999
IRUGA = 9999
IRUGMX = 3
IRUGMX = 99999
ISKIP = 0
JNITY = 0
JNUTMP = 0
JNUTCT = 0
NSSIK = 14
SMTC = 69.17352282
SPGX = 2.
SPGY = 2.
SPGX = 1.
SPGY = 1.
SPGX = 1.6666666667
SPGX = 0.4
SPGY = 0.4
SPGX = 24./SMTC
SPGY = 24./SMTC
DISTX = 1./SPGX
DISTY = 1./SPGY
DISTX = 0.5*DISTX
DISTY = 0.5*DISTY
WRITE(MO,9) SPGY,SPGX
FORMAT(1H1,1H1,1H1,1H1,1H1)
1 * IN THIS RUN THERE ARE *FH* * GRID POINTS NORTH-SOUTH AND
2*FH* * GRID POINTS EAST-WEST IN EACH MILE**//
IN = 0
CONTINUE

I-261

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 001

NOT
Preceding Page BLANK - FILMED

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 00

17 INN = INN + 1
READ(MP,12) TACAR(INN),NAMEA(TNN),NAMEB(INN)
FORMAT(11X,A4,5X,A10,AD)
IF(TACAR(INN) .NE. 4H9320) GO TO 11
GO TO 30

18 CONTINUE
IBUGCT = IBUGCT + 1
IF(BUGCT .GT. BUGMAX) IEND = 1
DO 14 I = 1,140
LNPRTR(I) = 1M

19 CONTINUE
READ(MA,21) MFBMX,IPGU,TRGDN,ICNT,KNBFPB,KNBFPA,IPOPT
1,FLATCG,FLONCG,FLATMN,FLATMX,FLONMN,FLONMX ,NUPEC,KCENT
2,SIGH,SIGL,ALPH

20 FORMAT(1,A4,1X,A4,1X,A5,1X,A4,1X, 19,2F8.4,1X,2F8.4,1X,
1,2F8.4,1X,45,1,2F7.4,F7.2)
IF(EOF,MA) 22,23

21 CONTINUE
GO TO 20

22 CONTINUE
IF(TRGDN .EQ. 4HSTOP) IEND = 1

23 CONTINUE
JNBFPA = KCENT
JNBFPR = KNBFPA
DO 25 I = 1,140
IF(KNBFPA .EQ. TACAR(I)) GO TO 26

24 CONTINUE
NAMEAP = 1UHUNLTSTD
NAMEBP = 8M
GO TO 27

25 CONTINUE
NAMEAP = NAMEA(T)
NAMEBP = NAMEB(T)

26 CONTINUE
SPECIAL MOUS FOR 2 1/2 MINUTE GRID***** START

27 IFLA = FLATCG*24.
IFLO = FLONCG*24.
IFLA = TFLA + 1
IFLO = TFLO + 1
FLATCG = IFLA
FLONCG = IFLO
FLATCG = FLATCG/24.
FLONCG = FLONCG/24.
SPGX = SPGAC/(COS(FLATCG*3.14159265/180.))
DISTX = 1./SPGX
DISTHX = .5*DISTX
SPECIAL MOUS FOR 2 1/2 MINUTE GRID***** END

28 DY = SMTG
DX = SMTG*COS(FLATCG*3.14159265/180.)
NGY = (FLATCG-FLATMN)*DY/DISTY+ DISTHY
NGX = (FLONCG - FLONMN)*DX/DISTX+ DISTHX
XLX = NGX*DISTX
XLY = NGY*DISTY
ITM = (FLATMX - FLATCG)*DY/DISTY+ DISTHY
MAXY = NGY + ITY + 1
ITM = (FLONCG - FLONMN)*DX/DISTX+ DISTHX
MAXX = NGX + ITX + 1
ISKTP = 1
ITM = MAXX*MAXY
IF(ITM .LT. 0.0001) GO TO 106
WRITE(MD,107) KNBFPB,KNBFPA,MAXX,MAXY

I-262

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 0000

Start new U.A

Bad Header
D.6

Set grid
grid centered on population
ce in header

*** UNCLASSIFIED *** 12/17/76 PAGE NO. 000

107 FORMAT(1H0,*ARRAY TOO SMALL SO SKIP AT*, A5,A4,2X,2I0)
108 ISKTD = 1
109 CONTINUE
C*****HGGGGGGG
110 IF (TBUGCT .GE. 10) GO TO 318
111 WRITE(M0,310) IX, IY, XLX, XLY, NGX, NGY, MAXX, MAXY
310 FORMAT(1H0,* 4T 310*, 4F12.4,4I8)
311 CONTINUE
DO 24 I = 1,MAXX
DO 24 J = 1,MAXY
K = I + MAXX*(J-1)
IPNT(K) = 0
24 CONTINUE
NNZ = 0
GO TO 34
C
30 CONTINUE
IBUGA = IBUGA + 1
READ(MB,31) KFOMX,TRGCN,TRGCN,KCNT,MNBFPA,MNBFPA, NRCH,
1 (KFOP(I),FLATT(I),FLUNI(I)+I=1,+),ICENT
31 FORMAT(A1,A4+1X,A4,1S+1X,A5,A4+1X,I1,4(1B,F8.4,F8.4)+1X,A5)
IF (EOF*MB) 32,33
32 CONTINUE
GO TO 45
33 CONTINUE
IF (ISTRRT .EQ. 0) GO TO 34
ISTRT = 0
IUCO = MNBFPA
GO TO 26
34 CONTINUE
IF (MNBFPA .EQ. IUCO) GO TO 36
IUCO = MNBFPA
GO TO 45
36 CONTINUE
IF (ISKIP.EQ.1) GO TO 39
IF (ICENT .EQ. ICENT) GO TO 37
IF (IBUGA .GT. 3a) GO TO 37
WRITE(M0,38) ICENT,KCENT, MNBFPA,MNBFPA,KNBFPA,KNBFPA
38 FORMAT(1H0,* TROUBLE-- NO MATCH OF CENTRAL COUNTIES AT---,6(2X\$))
1)
C STOP 339
37 CONTINUE
DO 39 I = 1,NRCH
IX = ((FLONG - FLONT(I)) *DX + XLX)/DISTX + DISTMX
IX = IX + 1
IY = ((FLAT(I) - FLATCG)*DY + XLY)/DISTY + DISTMY
IY = IY + 1
IF (IX .LE. MAXX .AND. IY .LE. MAXY) GO TO 41
WRITE(M0,40) KCNT,MNBFPA,MNBFPA, IX,IY,MAXX,MAXY
40 FORMAT(1H0 *---TROUBLE IN SIZE, 4T*,I5, 2X,A5,A4,4I9)
IFI(IX .GT. MAXX) IX = MAXX
IFI(IY .GT. MAXY) IY = MAXY
41 CONTINUE
IFI(IX .GE. 1 .AND. IY .GE. 1) GO TO 101
WRITE(M0,41) KCNT,MNBFPA,MNBFPA,IX,IY,MAXX,MAXY
102 FORMAT(1H0 * GRID POINT TOO SMALL AT *,I5,2X,A5,A4,4I9)
IFI(IX .LT. 1) IX = 1
IFI(IY .LT. 1) IY = 1
CONTINUE
C*****HGGGGGGG
103 IF (TBUGCT .GE.11) GO TO 44

I-263

12/17/76

PAGE NO. 00

*Read Population
Treat Data*

Put in Grid

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 00

315 WRITE(M0,315)KONT,MNBFPA,MNBFPR, IX,IY,MAXX,MAXY
315 FORMAT(1H0 **** AT 315 NOW E. AT*,IS, 2X,A5,A4,A4)
C*****H,GGGGGGG
312 WRITE(1H0 **** AT 312 * 6F12.4)
44 CONTINUE
J = IX +(IY - 1)*MAXX
IF(IPNT(J) .EQ. 0) GO TO 42
IPNT(J) = IPNT(J) + KPOP(I)
GO TO 42
42 CONTINUE
NNZ = NNZ + 1
IPNT(J) = KPOP(I)
43 CONTINUE
44 CONTINUE
GO TO 3A
C
C AT THIS POINT ARRAY IS FILLED NOW START OUTPUT
C FIRST HEADERS FOR THE CITY
C
45 CONTINUE
C*****HGGGGGGGG
342 IF(THUGT .GT. 1) GO TO 343
DO 340 J = 1,MAXY
DO 340 I = 1,MAXX
K = I +(J-1)*MAXX
WRITE(M0,342)I,J,K, IPNT(K)
342 FORMAT(1H0 * ARRAAY PT =*,315,5X,I10)
342 CONTINUE
343 CONTINUE
IF(ISKIP.EQ.1) GO TO 26
JOUTCT = JOUTCT + 1
WRITE(MT,46) MFTD0, MFTH,MPC, JOUTCT,JNBFPA,JNBFPR, IPRT,
1 FLATCG,FLONGC, NGY,NGX,XLY,XLX,MAXY,MAXX
46 FWT AT(A1 ,A4,1X,A4,15,1X,A5,A4,1X, 19,2F8.4,1X,2I4,1X,2F8.4,
1 1X,2I4)
JOUTY = JOUTY + 1
WRITE(MU,47) MFTD0,MFTYH,MFTY, JOUTY, JNBFPA,JNBFPR, IPRT,
1 FLATCG,FLONGC, NGY,NGX,XLY,XLX,MAXY,MAXX
47 FORMAT(A1 ,A4,1X,A4,15,1X,A5,A4,1X, 19,2F8.4,1X,2I4,1X,2F8.4,
1 1X,2I4)
JOUTMP = JOUTMP + 1
WRITE(MV,48) MFTS,MFTMPH,MFTMP, JOUTMP, JNBFPA,JNBFPR,
1 NAMEAP,NAMESPH,
2 JNBFPA,JNBFPR, IPRT, FLATCG,FLONGC, NGY,NGX, XLY,XLX,
3 MAXY MAXX
48 FORMAT(A1, A4,1X,A4,15,1X,A5,A4,1X, //, 20Y, *POPULATION GRID MAP
1 FOR THE CITY OF *,A10,A8 //, * MAP FOR URBANIZED AREA
2 No. **,A4,* WITH STATE COUNTY CODE *,A5,* , AND POPULATION = *,I9,
3 /* LATITUDE/LONGITUDE OF C.G. OF POPULATION = *, F8.4,2X,F8.4,
4 /* GRD STEPS SOUTH /WEST OF C.G. = *,2I6, * AT DISTANCES OF *,
5 2F8.4 /* * N/S GRID STEPS = *, 16*, AND E/W GRID STEPS =*,
6 16, //)
DO 49 I = 1,MAXX
II = I/10
IA = I - II*10
IF(IA .EQ. 0) GO TO 83
LNFT(I) = 1,*
GO TO 82

I-264

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

End Population Pts

With output
headers

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

83 CONTINUE
IF(II .GT. 10) GO TO 84
LNPRIT(I) = INUMB(II)
GO TO 82
84 CONTINUE
II = II - 10
GO TO 82
82 CONTINUE
WRITE(MV,85)(LNPRIT(I),I = 1,MAXX)
FORMAT(1H ,3X, 131A1)
C
C NOW START AT TOP LINE AND WORK DOWN
C
C
55 NINCT = 0
NSSCT = 0
IY = MAXY
CONTINUE
C NEW LINE
IX = 0
54 CONTINUE
IX = IX + 1
IF(IX .LE. MAXX) GO TO 52
IF(IY .EQ. MAXY) GO TO 72
JOUTMP = JOUTMP + 1
ITTM = MAXY - IY
JPK = ITTM / 10
ITM = ITTM - JPK*10
IF(ITM .EQ. 0) GO TO 86
WRITE(MV,86)(LNPRIT(I),I = 1,MAXX)
FORMAT(1H ,2X, 131A1)
GO TO 87
86 CONTINUE
WRITE(MV,73) JPK,(LNPRIT(I), I = 1,MAXX)
FORMAT(1H ,73, 131A1)
87 CONTINUE
12 CONTINUE
IY = IY - 1
IF(IY .LT. 1) GO TO 53
GO TO 55
52 CONTINUE
J = (IY - 1)*MAXX + IX
IF(IPNT(J) .NE. 0) GO TO 74
K = 1
GO TO 71
74 CONTINUE
K = IPNT(J)/1000
*****BUGGGGGGGG*****
IF(K .GE. 0) GO TO 632
WRITE(MV,633) K ,IX,IY,J,IPNT(J)
FORMAT(1H ,*, AT LDI WITH NEG K, 5I10)
K = 0
632 CONTINUE
K = K + 2
IF(K .LE. 12) GO TO 71
K = IPNT(J)/5000
K = K + 11
IF(K .LE. 38) GO TO 71
K = 4
71 CONTINUE

I-265

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 001

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 001

LNRPT(IX) = LINVAL(K)
C
IF(IPNT(J) .EQ. 6) GO TO 54
IF(NSSCT .NE. 6) GO TO 91
NSSCT = 1
KPOPO(NSSCT) = TPNT(J)
IY0 = IY
IX0 = IX
IXL = IX
Go TO 92
91 CONTINUE
ITM = IXL + 1
IF(ITM .EQ. IA) GO TO 93
JOUTY = JOUTY + 1
WRITE(MU,A1) MFR,MRTY,MRTY,JOUTY,JNBFPA,JNBFPB, NSSCT,
I IX0,IY0,(KPOPO(I),T=1,NSSCT)
FORMAT(A1,A4,IX,A4,IS+1X,A5,A4,1X,I2,2I4,14I7)
IY0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = TPNT(J)
Go TO 92
93 CONTINUE
IF(NSSCT .LT. NSMX) GO TO 94
JOUTY = JOUTY + 1
WRITE(MU,A1) MFR,MRTY,MRTY,JOUTY,JNBFPA,JNBFPB, NSSCT,
I IX0,IY0,(KPOPO(I),T=1,NSSCT)
IY0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = TPNT(J)
Go TO 92
94 CONTINUE
IF(IY0 .EQ. TY) GO TO 95
JOUTY = JOUTY + 1
WRITE(MU,A1) MFR,MRTY,MRTY,JOUTY,JNBFPA,JNBFPB, NSSCT,
I IX0,IY0,(KPOPO(I),T=1,NSSCT)
IY0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = TPNT(J)
Go TO 92
95 CONTINUE
NSSCT = NSSCT + 1
KPOPO(NSSCT) = TPNT(J)
IXL = IX
92 CONTINUE
C
IF(NINCT .LT. 6) GO TO 62
60 CONTINUE
JOIJCT = JOIJCT + 1
WRITE(MT+51) MFR, MRCT, MRCT + JOIJCT, JNBFPA,JNBFPB,
I NINCT, (IAPR(I),JAPR(I),NPAPR(I),I=1,6)
51 FORMAT(A1,A4,IX,A4,T5,1X,A5,A4,1X,I1,1X,6(I4,I4,I8,IX))
DO 51 I = 1,6
IAPR(I) = 0
JAPR(I) = 0
NPAPR(I) = 0

I-266

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 0001

Wrt Q8Afb

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

51 CONTINUE
NINCT = 1
IAPI(NINCT) = IX
JAIP(NINCT) = IY
NPARR(NINCT) = TPNT(J)
GO TO 54
52 CONTINUE
NINCT = NINCT + 1
IAPI(NINCT) = IX
JAIP(NINCT) = IY
NPARR(NINCT) = TPNT(J)
GO TO 54
C
53 CONTINUE
C FINISH FOR THIS CITY
IF(IEND .EQ. 1) GO TO 54
ITMA = MRTH
ITMB = MRTYH
GO TO 65
54 CONTINUE
ITMA = 4HSTOP
ITMB = 4HSTOP
55 CONTINUE
JOUTCT = JOUTCT + 1
WRITE(MT,51) MFB, MPCT, ITMA, JOUTCT, JNBFPB, JNBFPB,
1 NINCT, (IAPI(I), JAIP(I), NPARR(I), I=1,6)
JOUTY = JOUTY + 1
WRITE(MU,81) MFB, MRTY, ITMB, JOUTY, JNBFPB, JNBFPB, NSSCT,
1 IXO, IYO, (KPUPO(I)+T1, NSSCT)
IF(IEND .NE. 1) GO TO 20

End of VA.

56 CONTINUE
200 WRITE(MD,201)
201 FORMAT(//,10X,*END OF RUN*,//)

202 FORMAT(1H1)
ENFILE MT
ENFILE MT
ENFILE MU
ENFILE MU
ENFILE MV
ENFILE MV
STOP 6400
ENI

22~ 48441 0040 ABILENE
17~ 39153 00P0 AKRON
54 13095 0120 ALBANY
14~ 36001 0140 ALBANY-SCHENECTADY
13~ 35001 0200 ALBUQUERQUE
18~ 42077 0240 ALLEN TOWN-BETHLEHEM
17~ 42013 0280 ALTOONA
217 48375 0320 AMARILLO
7~ 18095 0400 ANDERSON
114 26151 0440 SAN ANTONIO
245 55087 0459 APPLETON
147 37021 0480 ASHEVILLE
57 13121 0520 ATLANTA
13A 74001 0560 ATLANTIC CITY
50 13245 0580 AUGUSTA

*Non-VA code
association etc*

I-267

12/17/76

PAGE NO. 000

***** UNCLASSIFIED *****

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

8

62 17089 0620
22 48453 0620
14 06024 0680
97 24510 0720
91 22033 0740
109 26017 0800
211 48245 0799
120 30111 0880
121 28047 0920
141 36007 0959
2 01073 1000
64 17113 1040
60 16001 1080
102 25017 1120
29 08013 1130
32 09001 1160
36 09003 1170
105 25023 1200
201 48061 1239
200 48041 1260
142 36029 1290
160 39151 1320
81 19113 1360
61 17014 1400
190 45019 1440
234 54039 1490
153 37119 1520
195 47065 1540
62 17031 1601
162 39061 1639
160 39035 1680
30 08041 1720
123 29014 1740
192 45070 1760
59 13215 1800
161 39049 1840
216 48355 1880
202 48113 1920
33 09001 1970
67 17151 1980
167 39113 2000
65 17115 2040
20 08031 2080
89 19153 2120
117 26163 2160
86 19061 2201
121 27137 2240
142 37063 2280
205 48141 2320
189 42049 2360
174 41039 2400
77 18163 2439
92 25005 2490
156 38017 2520
149 37051 2560
104 25027 2600
103 26049 2640
45 12011 2680
11 05131 2720
71 18003 2760
219 48439 2800

I-268

**** UNCLASSIFIED ****

12/17/76

PAGE NO. 000

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 000

9

13 06019 2840
1 01055 2880
44 12001 2900
204 48167 2919
113 26081 3000
129 30013 3040
240 55099 3080
151 37081 3119
191 45045 3160
159 39017 3199
202 48061 3230
181 42043 3240
37 09003 3280
152 37081 3300
200 48201 3360
237 54011 3400
2 01089 3440
74 18097 3480
111 26075 3520
122 28049 3560
47 12031 3600
180 42021 3680
62 17197 3700
112 26077 3720
124 29095 3760
242 55059 3800
195 47093 3840
242 55062 3871
92 22055 3880
74 18157 3920
90 22019 3940
184 42071 4000
110 26065 4040
223 48479 4080
132 32003 4120
101 25009 4160
171 40031 4200
95 23001 4240
87 21067 4280
157 39003 4320
131 31109 4360
16 05110 4400
164 39093 4440
15 06037 4480
80 21111 4520
104 25017 4561
212 48303 4600
222 51627 4640
54 13021 4680
241 55025 4720
134 33011 4760
168 39130 4800
211 48215 4880
197 47157 4921
39 09009 4960
44 12025 5000
215 48329 5040
244 55079 5080
112 27053 5120
4 01097 5160
25 06099 5170

I-269

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 000

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

10

94 22073 5200
5 01101 5240
72 18035 5200
114 26121 5320
135 33011 5350
194 47037 5360
100 25005 5400
39 09003 5440
40 09009 5480
93 22071 5560
143 36047 5601
220 51700 5680
236 51710 5720
34 09001 5740
204 48135 5800
227 49057 5840
172 40100 5880
130 31055 5920
51 12045 5960
247 55134 5970
84 21054 5980
24 06111 6000
49 12033 6090
66 17143 6120
231 51730 6140
187 42101 6160
7 04013 6200
2 05069 6240
177 42003 6280
99 25003 6320
212 48245 6380
96 23045 6400
174 41051 6440
180 44007 6480
224 49040 6520
31 08101 6560
246 55101 6600
156 37143 6640
170 42011 6680
132 22031 6720
232 51750 6760
232 51770 6800
110 27100 6820
144 36055 6840
7 17201 6880
18 06067 6920
115 26145 6940
124 29021 7001
127 29189 7040
52 12103 7060
175 41047 7080
16 06053 7119
225 49035 7140
221 48451 7200
199 48029 7240
10 06071 7279
21 06073 7320
17 06001 7340
22 06045 7400
22 06043 7480
24 06047 7500
MONROE
MONTGOMERY
MUNCIE
MUSKEGON-MUSKEGON
NASHUA
NASHVILLE-DAVIDSON
NEW BEDFORD
NEW BRITAIN
NEW HAVEN
NEW ORLEANS
NEW YORK-N E NEW J
NEWPORT NEWS-HAMPT
NORFOLK-PORTSMOUTH
NORWALK
OCESSA
OGDEN
OKLAHOMA CITY
OMAHA
ORLANDO
OSHKOSH
OWENSBORO
OXNARD-VENTURA-100
PENSACOLA
PEORIA
PETERSBURG-COLONIA
PHILADELPHIA
PHOENIX
PINE RUFF
PITTSBURGH
PITTSFIELD
PORT ARTHUR
PORTLAND
PORTLAND
PROVIDENCE-PAWTU
PROVO-OREM
PUEBLO
PACINE
RALEIGH
READING
RENO
RICHMOND
ROANOKE
ROCHESTER
ROCHESTER
ROCKFORD
SACRAMENTO
SAGINAW
ST JOSEPH
ST LOUIS
ST PETERSBURG
SALEM
SALINAS
SALT LAKE CITY
SAN ANGELO
SAN ANTONIO
SAN BENITO-RIV
SAN DIEGO
SAN FRANCISCO-OAKL
SAN JOSE
SANTA BARBARA
SANTA ROSA

I-270

***** UNCLASSIFIED *****

12/17/76

PAGE NO. 000

*** UNCLASSIFIED ***

12/17/76

PAGE NO. 000

/1

5c 13051 7550 SAVANNAH
187 42063 7560 SCRANTON
17 06053 7580 SEASIDE-MONTEREY
234 53033 7600 SEATTLE-EVERETT
209 48181 7640 SHERMAN-DENISON
89 22n17 7680 SHREVEPORT
27 06111 7700 SIMI VALLEY
83 19193 7721 SIOUX CITY
193 46099 7760 SIOUX FALLS
75 18141 78n1 SOUTH BEND
236 53063 7840 SPOKANE
6a 17167 7880 SPRINGFIELD
12c 29077 7920 SPRINGFIELD
159 39023 7960 SPRINGFIELD
107 25013 8000 SPRINGFIELD-CHICAGO
3c 09001 8040 STAMFORD
167 39n81 8080 STEUBENVILLE-WIFT
21 06077 8120 STOCKTON
146 36067 8160 SYRACUSE
235 53n53 8200 TACOMA
5n 12073 8240 TALLAHASSEE
49 12n57 8279 TAMPA
79 18167 8320 TERRE HAUTE
190 48n37 8360 TEXARKANA
207 48157 8380 TEXAS CITY-LA MARQUE
16c 39n95 84n0 TOLEDO
85 20177 8440 TOPEKA
139 34021 8481 TRENTON
9 04n19 8520 TUCSON
173 40143 8560 TULSA
6 01125 8600 TUSCALOOSA
218 48423 8640 TYLER
145 36n65 8680 UTICA-ROME
137 34n11 8760 VINELAND-MILLVILLE
214 483n9 8800 WACO
47 11n61 8840 WASHINGTON
41 09059 8880 WATERBURY
79 19n13 8920 WATERLOO
59 12n99 8960 WFST PALM BEACH
230 54n63 9000 WHEELING
34 20173 9040 WICHITA
224 484n5 9080 WICHITA FALLS
186 42079 9119 WILKES-BARRE
42 10003 9160 WILMINGTTON
154 37129 9200 WILMINGTON
15n 37067 9220 WINSTON-SALEM
107 25n27 9240 WORCESTER
189 42133 9280 YORK
164 39099 9320 YOUNGSTOWN-WARNEN

*** UNCLASSIFIED ***

I-271 12/17/76

PAGE NO. 000

COMPUTER PROGRAM DESCRIPTION

NAME: LLIST

SYNOPSIS: Special Purpose Listing

TYPE: SINGLE USE

USE: To list towns (urban nodes not urbanized areas) in order of decreasing standard deviation of population to assess nationwide distribution.

BACKGROUND:

DESCRIPTION: The input model file is read and urban records are stored in core. A sort on semi major axis is made and the output printed.

INPUT: Standard File XBAA-2

OUTPUT: Listing

STORAGE: IDA Card Deck S-10

DOCUMENTATION: Attached Listing
See Run S-49

LANGUAGE/SYSTEM: Run (FORTRAN)/6400 Scope

COMMENTS:

*NOT
Preceding Page BLANK - FILMED*

**** UNCLASSIFIED ****
PROGRAM LLIST(TIN,OUTPUT)

12/17/76

PAGE NO. 0001

C TO LIST TOWNS IN ORDER OF DECREASING SIGB
C
DIMENSION IFPA(2500),IFPB(2500),NAMA(2500), NAMB(2500),
1 NAMC(2500), IPOP(2500), FLAT(2500), FLON(2500), SIGB(2500),
2 SIGL(2500), ALPH(2500), IND(2500)
MT = 3LTIN
MQ = 6LUOUTPUT
IDON = 0
WRITE(MQ, 12)
12 FORMAT(1H1, //////////////, 20X,*LIST OF TOWNS FROM XB -1 (3675) ORDERED BY
1Y DECREASING SEMI MAJOR AXIS*, //////////////)
I = 0
C
10 CONTINUE
I = I + 1
READ(MT,21) IREC,IRECN,IFPA(I),IFPB(I),NAMA(I),NAMB(I),
1 NAMC(I), IPOP(I),FLAT(I),FLON(I), SIGB(I),SIGL(I),ALPH(I)
21 FORMAT(1X,A4,1X,A4,6X,A5,A4, 1X,2A10,A4, I9,2F8.4,2F7.3,F7.2)
20 CONTINUE
IF(IRECN .EQ. 4HSTOP) GO TO 50
IF(IRECN .EQ. 4HLB) GO TO 10
READ(MT, 22) IRECN
22 FORMAT(2X,A4)
GO TO 20
C
50 CONTINUE
INN = I
CALL ORDER (SIGB,IND,INN)
C
58 CONTINUE
DO 60 J = 1,INN
JK = INN - J + 1
I = IND(JK)
WRITE(MQ, 62) J,IFPA(I),IFPB(I),NAMA(I),NAMB(I),NAMC(I),
1 IPOP(I),FLAT(I),FLON(I), SIGB(I),SIGL(I),ALPH(I)
62 FORMAT(1H ,15,3X,A5,1X,A4,4X,2A10,A4,5X,I9, F8.4,1X,F8.4,
1,6X,F7.3,2X,F7.3,3X,F7.2)
60 CONTINUE
IF(IDON .EQ.1) GO TO 7
WRITE(MQ,12)
IDON = 1
GO TO 58
70 CONTINUE
C
STUP 6400
ENU

Reorder a few
records

Sort on semi major
axis of population distribution.

Print ordered
records.

**** UNCLASSIFIED **** I-275 12/17/76

PAGE NO. 0001

NOT
Preceding Page BLANK - FILMED

COMPUTER PROGRAM DESCRIPTION

NAME: WPGRID

SYNOPSIS: Map Weapons on an Urbanized Area

TYPE: SINGLE USE

USE: To produce maps to assist visualizing the location of weapons in attack on urbanized areas.

BACKGROUND: Modification of the program TOGRID to plot weapons.

DESCRIPTION: An attack file is input and stored. In each urbanized area the maximum population range is increased by 20 points. All weapons in the enlarged grid are associated with a grid point.

INPUT: Standard File GBBD
Attack Weapon File

OUTPUT: Plots of Weapons

STORAGE: IDA Card Deck 209

DOCUMENTATION: Attached Listing

LANGUAGE/SYSTEM: Run (FORTRAN)/6400 Scope

COMMENTS: Also outputs files of QBAA and QBAB format.

Preceding Page BLANK - ^{NOT} FILMED

***** UNCLASSIFIED ***** 11/30/76
PROGRAM WPGRID(TINA,TINB,TOUTA,TOUTC,OUTPUT,INPUT,INPUT,TOUTR)

PAGE NO. 00

```

DIMENSION IPNT(20000)
DIMENSION IARR(6),JARR(6),NPARR(6),KPOPO(20)
DIMENSION FLATI(4),FLONI(4),KPOPI(4)
DIMENSION LVAL(40),LNPAT(40),INUMB(10)
DIMENSION NAMEA(250),NAMEB(250),IACAR(250)
DIMENSION IUACW(2000),FLATW(2000),FLONW(2000),YLD(2000),
1 ICWL(2000),IWAT(2000)
DATA LVAL / 1H,1H,,1H1, 1H2,1H3,1H4,1H5, 1H6,1H7,1H8,1H9,
1 1H0,1H9,1HB,1HC,1HD,1HE, 1HF,1HG,1HM,1HI,1HJ,1HK,1HL,1HM,
2 1HN,1HO, 1HP,1HQ,1HR,1HS,1HT,1HU,1HV,1HW,1HX,1HY,1HZ,1H*,1H*/ 
DATA INUMB / 1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,1H0 /
MA = 4LTINA
MR = 4LTINB
MT = 5LTOUTA
MU = 5LTOUTB
MV = 5LTOUTC
MQ = 6LOUTPUT
MP = 5LINPUT
MA IS HEADER ON GBBD, MB IS DATA(4 IN 1) ON GBBC
MFB = 1H
MFBO = 1H0
MFBS = 1H1
IEND = 0
ISTRAT = 1
MRCT = 4HQWAA
MRTH = 4HQWAB
MRTY = 4HQWBA
MRTYH = 4HQWB8
MRTMP = 4HQWCA
MRTMPH = 4HQWCB
MSKA = 7777777777777777777777778
MSKB = 3300000000000000000000000B
MSKC = 7700000000000000000000000B
MSKD = 5500000000000000000000000B
IAO = 1
IAO = 0
ITOH = 1
ITOH = 0
IHUGCT = 0
IAUGA = 0
IAUGCT = 9999
IAUGA = 9999
IAUGMX = 3
IAUGMX = IBUGCT + 20
IAUGMX = 99999
ISKIP = 0
JOUTY = 0
JOUTMP = 0
JOUTCT = 0
NSSMX = 14
SMIC = 69.17352282
SPGX = 2.
SPGY = 2.
SPGX = 1.66666666667
SPGX0 = 24./SMIC
SPGY = 24./SMIC
SPGX = 1.
SPGY = 1.
SPGX = 0.4

```

I-279

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 008

PRECEDING PAGE BLANK - FILMED ^{NOT}

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 00

SPGY = 0.4
DISTX = 1./SPGX
DISTY = 1./SPGY
DISTHX = 0.5*DISTX
DISTHY = 0.5*DISTY
WRITE(MQ,9) SPGY,SPGX
9 FORMAT(1H1,1//1//)
1 * IN THIS RUN THERE ARE *,F8.4, * GRID POINTS NORTH SOUTH AND
2*,F8.4,* GRID POINTS EAST WEST IN EACH MILE*,//1)
INN = 0
11 CONTINUE
INN = INN + 1
READ(MP,12) IACAR(INN),NAMEA(INN),NAMEB(INN)
12 FORMAT(1X,A4,5X,A10,A8)
IF(IACAR(INN) .NE. 4H9320) GO TO 11
J = 0
401 CONTINUE
J = J + 1
READ(MB,402) ITTM ,FL0D,FL0M,FLO5,FLAD,FLAM,FLAS,YLD(J),ICLW(J)
1 ,IWAT(J)
402 FORMAT(1X,A4,40X,6F4.0, F4.0,3X,I4,1X,A2)
FL0NW(J) = FL0D + FL0M/60. + FLO5/3600.
FLATW(J) = FLAD + FLAM/60. + FLAS/3600.
ITM = ITTM .AND. MSKC
IF(ITM .NE. MSK0) GO TO 404
ITTM = MSKB .OR. (ITTM .AND. MSKA)
404 CONTINUE
IACW(J) = ITTM
IF(ICLW(J) .NE. 5602) GO TO 401
INW = J
C 20 CONTINUE
IRUGCT = IBUGCT + 1
IF(BUGCT .GT. BUGMX) IEND = 1
DO 14 I = 1,140
LNPT(I) = 1H
14 CONTINUE
READ(MA,21) MFBNX,IRGD,IRGDN,ICNT,KNBFP,A,KNBFPB, IPOPT
1 ,FLATCG,FLONCG,FLATMN,FLATMX,FLONMN,FLONMX ,NUREC,KCENT
2,SIGH,SIGL,ALPH
21 FORMAT(A1,A4,1X,A4, A5,1X,A5,A4,1X, 19,2F8.4,1X,2F8.4,1X,
1 2F8.4 15,1X,A5, 1X,2F7.4,F7.2)
IF.EOF,MA) 22,23
22 CONTINUE
GO TO 200
23 CONTINUE
IF(IRGDN .EQ.4HSTOP) IEND = 1
JNBFP = KCENT
JNBFPB = KNBFPA
DO 25 I = 1,INN
IF(KNBFPB .EQ. IACAR(I)) GO TO 26
25 CONTINUE
NAMEAP = 10HUNLISTED
NAMEBP = BH
GO TO 27
26 CONTINUE
NAMEAP = NAMEA(I)
NAMEBP = NAMEB(I)
27 CONTINUE
C SPECIAL MODS FOR 2 1/2 MINUTE GRID***** START
IF(ITOH .NE.1) GO TO 475

I-280

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 0000

Start U.A. names

Read Weapons

Bad non urbanized area

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 001

3

IFLA = FLATCG*24.
IFLO = FLONCG*24.
IFLA = IFLA + 1
IFLO = IFLO + 1
FLATCG = IFLA
FLONCG = IFLO
FLATCG = FLATCG/24.
FLONCG = FLONCG/24.
SPGX = SPGX/(COS(IFLATCG*3.14159265/180.))
DISTX = 1./SPGX
DISTHX = .5*DISTX
CONTINUE
475 C SPECIAL MODS FOR 2 1/2 MINUTE GRID***** END
DY = SMIC
DX = SMIC*COS(IFLATCG*3.14159265/180.)
NGY = (FLATCG-FLATMN)*DY/DISTY+ DISTHY
NGX = (FLONMX - FLONCG) *DX/DISTX+ DISTHX
NGX = NGX + 20
NGY = NGY + 20
XLX = NGX*DISTX
XLY = NGY*DISTY
ITM = (FLATMX - FLATCG)*DY/DISTY+ DISTHY
MAXY = NGY + ITM + 1
ITM = (FLONCG - FLONMN)*DX/DISTX+ DISTHX
MAXX = NGX + ITM + 1
MAXX = MAXX + 20
MAXY = MAXY + 20
IF(MAXX .GT. 131) MAXX = 131
IF(IY .GT. 150) IY = 150
ISKIP = 0
ITM = MAXX*MAXY
IF(ITM .LT. 20000) GO TO 106
WRITE(MQ,107) KNBFPA,KNBFPA,MAXX,MAXY
107 FORMAT(1H0,*ARRAY TOO SMALL SO SKIP AT*, A5,A4,2X,2I8)
ISKIP = 1
106 CONTINUE
C*****BUGGGGGGG
IF(IBUGCT .GT. 10) GO TO 318
WRITE(MQ,310) DX,DY,XLX,XLY, NGX,NGY,MAXX,MAXY
310 FORMAT(1H0,* AT 310* 4F12.4,4I8)
318 CONTINUE
NWPC = 0
XMTSM = 0.
EMTSM = 0.
DO 24 I = 1,MAXX
DO 24 J = 1,MAXY
K = I + MAXX*(J-1)
IPNT(K) = 0
24 CONTINUE
NNZ = 0
C
30 CONTINUE
DO 39 I = 1,INW
IF(IUACW(I) .NE. KNBFPA) GO TO 39
IRUGA = IRUGA + 1
IX = ((FLONCG- FLONW(I)) *DX + XLX)/DISTX + DISTHX
IX = IX + 1
IY = ((FLATW(I) - FLATCG)*DY + XLY)/DISTY + DISTHY
IY = IY + 1
ITROB = 0
IF(IX .LE. MAXX .AND. IY .LE. MAXY) GO TO 41
**** UNCLASSIFIED ****

I-261 11/30/76 PAGE NO. 001

Search Weapons
and weapons
area U.A. code

Put weapon grid

Put weapon inside
U.A. grid.

**** UNCLASSIFIED **** 11/30/76 PAGE NO. 00
 * WRITE(MQ,40) KNBFPA,KNBFPB, IX,IY,YLD(I),ICLW(I),IWAT(I),FLATW(I),
 1 FLATW(I)
 40 FORMAT(1H,* TOO LARGE AT *,A5,IX,A4,* AT GRID X/Y = *,2I4,
 1 * WPN YLD/CL NO./TYPE = *, F6.1, I5,1X,A2,* AT LAT/LON = *,
 2 2F9.4)
 IF(IX .GT. MAXX) IX = MAXX
 IF(IY.GT.MAXY) IY = MAXY
 ITROB =
 41 CONTINUE
 IF(IX .GE.1.AND. IY.GE.1) GO TO 101
 WRITE(MQ,102)KNBFPA,KNBFPB, IX,IY,YLD(I),ICLW(I),IWAT(I),FLATW(I),
 1 FLATW(I)
 102 FORMAT(1H,* TOO SMALL AT *,A5,IX,A4,* AT GRID X/Y = *,2I4,
 1 * WPN YLD/CL NO./TYPE = *, F6.1, I5,1X,A2,* AT LAT/LON = *,
 2 2F9.4)
 IF(IX .LT. 1) IX = 1
 IF(IY .LT. 1) IY = 1
 ITROB = 1
 101 CONTINUE
 C*****BUGGGGGGG
 IF(IBUGCT .GT.1) GO TO 44
 WRITE(MQ,315)KCNT,MNBFPB,MNBFPB, IX,IY,MAXX,MAXY
 315 FORMAT(1H0 *--- AT 315 NOW E, AT*,I5, 2X,A5,A4,4I9)
 C*****BUGGGGGGG
 WRITE(MQ, 312) FLONCG,FLONI(I),FLATI(I),FLATCG, XLX,XLY
 312 FORMAT(1H,* AT 312 *, 6F12.4)
 44 CONTINUE
 NWPC = NWPC + 1
 XMTSM = XMTSM + YLD(I)
 EMT = YLD(I)**0.666666667
 EMTSM = EMTSM + EMT
 J = IX +(IY - 1)*MAXX
 IF(IPNT(J) .EQ.0) GO TO 42
 IPNT(J) = IPNT(J) + EMT
 GO TO 43
 42 CONTINUE
 NNZ = NNZ + 1
 IPNT(J) = EMT
 43 CONTINUE
 IF(ITROB .EQ.1) IPNT(J) = 99
 39 CONTINUE
 C
 C
 C AT THI S POINT ARRAY S FILLED NOW START OUTPUT
 C
 C FIRST HEADERS FOR THE CITY
 C
 45 CONTINUE
 C*****BUGGGGGGG
 IF(IBUGCT .GT. 1) GO TO 343
 DO 340 J = 1,MAXY
 DO 340 I = 1,MAXX
 K = I +(J-1)*MAXX
 WRITE(MQ,342)I,J,K, IPNT(K)
 342 FORMAT(1H,* ARRAAY PT **,3I5,5X,I10)
 340 CONTINUE
 343 CONTINUE
 IF(ISKIP.EQ.1) GO TO 20
 JOUTCT = JOUTCT + 1
 WRITE(MT,46) MFB0, MRTH,MRCT , JOUTCT,JNBFPA,JNBFPB, IPOPT,
 1 FLATCG,FLONCG, NGY,NGX,XLY,XLX,MAXY,MAXX

**** UNCLASSIFIED ****

I-282

11/30/76

PAGE NO. 000

*Read 4k form
out of range
and just short
edge of grid*

*for equivalent MT
association*

*on the map
please.*

***** UNCLASSIFIED *****

11/30/76 PAGE NO. 001

5

```

46   FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X, I9,2F8.4,1X,2I4,1X,2F8.4,
1 IX,2I4)
IF(IB0 .NE. 1 ) GO TO 431
JOUTY = JOUTY + 1
WRITE(MU,47) MFBO,MRTYH,MRTY, JOUTY, JNBFPA,JNBFPB, IPOPT ,
1 FLATCG,FLONCG, NGY,NGX,XLY,XLX,MAXY,MAXX
47   FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X, I9,2F8.4,1X,2I4,1X,2F7.4,
1 IX,2I4)
431  CONTINUE
JOUTMP = JOUTMP + 1
WRITE( MV,48) MFBS,MRTMPH,MRTMP, JOUTMP, JNBFPA,JNBFPB,
1 NAMEAP,NAMEBP,
2 JNBFPB,JNBFPA, IPOPT, FLATCG,FLONCG, NGY,NGX, XLY,XLX,
3 MAXY,MAXX
48   FORMAT( A1, A4,1X,A4,I5,1X,A5,A4,1X,///, 20X, *POPULATION GRID MAP
1 FOR THE CITY OF *,A10,A8 ,//, * MAP FOR URBANIZED AREA
2 NO. *,A4,* WITH STATE COUNTY CODE *,45,* , AND POPULATION = *,I9*
3 /* LATITUDE/LONGITUDE OF C.G. OF POPULATION = *, F8.4,2X,F8.4,
4 /* GRID STEPS SOUTH /WEST OF C.G. = *,216, * AT DISTANCES OF *,
5 2F9.4 /* N/S GRID STEPS = *, I6,* AND E/W GRID STEPS =*
6 I6)
WRITE(MV,442)NWPC, NNZ,XMTSM,EMTS
442  FORMAT(1H0, * FCR THIS CITY NUMBER OF WEAPONS = *,I4, * AT *,I4,
1 * GRID POINTS, TOTAL MEGATONS =*, F9.2,* AND EQUIVALENT MEGATONS
2 =*,F9.2 //)
DO 82 I = 1,MAXX
II = I/10
IA = I - II*10
IF(IA .EQ. 0) GO TO 83
LNPR(I) = 1H+
GO TO 82
83  CONTINUE
IF(II .GT. 10) GO TO 84
LNPR(I) = INUMB(II)
GO TO 82
84  CONTINUE
II = II - 10
GO TO 83
82  CONTINUE
LNPR(NGX + 1) = 1H+
WRITE(MV,85)(LNPR(I),I = 1,MAXX )
85  FORMAT( 1H ,3X, 131A1)
C
C
C NOW START AT TOP LINE AND WORK DOWN
C
C
NINCT = 0
NSSCT = 0
IY = MAXY + 1
55  CONTINUE
C
NEW LINE
IX = 0
54  CONTINUE
IX = IX + 1
IF(IX .LE. MAXX) GO TO 52
ITM = MAXY + 1
IF(IY .EQ. ITM) GO TO 72
JOUTMP = JOUTMP + 1
ITM = NGY + 1
IF(IY .NE. ITM) GO TO 406

```

Output Map

I-283

***** UNCLASSIFIED *****

11/30/76 PAGE NO. 001

```

***** UNCLASSIFIED *****
407 WRITE(MV,407)(LNPRTR(I),I = 1,MAXX)
FORMAT(1H ,2X,1H** 131A1)
GO TO 87
406 CONTINUE
ITM = MAXY - IY
JPR = ITM /10
ITM = ITM - JPR*10
IF(ITM .EQ. 0) GO TO 86
WRITE(MV,88)(LNPRTR(I),I = 1,MAXX)
88 FORMAT(1H ,2X,1H** 131A1)
GO TO 87
86 CONTINUE
WRITE(MV,73) JPR*(LNPRTR(I), I = 1,MAXX)
73 FORMAT(1H ,I3, 131A1)
87 CONTINUE
72 CONTINUE
IY = IY - 1
IF(IY .LT. 1) GO TO 53
GO TO 55
52 CONTINUE
J = (IY - 1)*MAXX + IX
IF(IPNT(J) .NE. 0) GO TO 74
JTM = MAXX - 19
JTM = MAXY - 19
IF(IY .NE. 20 .AND. IY .NE. JTM) GO TO 411
IF(IX .LT. 20 .OR. IX .GT. JTM) GO TO 411
LNPRTR(IX) = 1H
GO TO 412
411 CONTINUE
IF(IX .NE. 20 .AND. IX .NE. JTM) GO TO 413
IF(IY .LT. 20 .OR. IY .GT. JTM) GO TO 413
LNPRTR(IX) = 1H
GO TO 412
413 CONTINUE
LNPRTR(IX) = 1H
412 CONTINUE
GO TO 408
74 CONTINUE
K = IPNT(J)*2
C*****BUGGGGGG-G
IF(K .GE. 0) GO TO 632
WRITE(MG,633) K ,IX,IY,J,IPNT(J),
633 FORMAT(1H ,* AT LOI WITH NEG K*, 5I10)
K = 0
632 CONTINUE
K = K + 2
IF(K .LE. 38) GO TO 71
K = 40
71 CONTINUE
LNPRTR(IX) = LINVAL(K)
408 CONTINUE
C
IF(IPNT(J) .EQ. 0) GO TO 54
IF(IX0 .NE. 1 ) GO TO 430
IF(NSSCT .NE. 0) GO TO 91
NSSCT = 1
KPOPO(NSSCT) = IPNT(J)
IX0 = IY
IX0 = IX
IXL = IX
GO TO 42

```

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****
11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

7

91 CONTINUE
ITM = IXL + 1
IF(ITM .EQ. IX) GO TO 93
JOUTY = JOUTY + 1
WRITE(MU,81) MFB,MRTY,MRTY,JOUTY,JNBFPB,JNBFPB, NSSCT,
1 IX0IYO,(KPOPO(I),I=1,NSSCT)
81 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,I2,2I4,14I7)
IX0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = IPNT(J)
GO TO 92
93 CONTINUE
IF(NSSCT .LT. NSSMX) GO TO 94
JOUTY = JOUTY + 1
WRITE(MU,81) MFB,MRTY,MRTY,JOUTY,JNBFPB,JNBFPB, NSSCT,
1 IX0IYO,(KPOPO(I),I=1,NSSCT)
IX0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = IPNT(J)
GO TO 92
94 CONTINUE
IF(IY0 .EQ. IY) GO TO 95
JOUTY = JOUTY + 1
WRITE(MU,81) MFB,MRTY,MRTY,JOUTY,JNBFPB,JNBFPB, NSSCT,
1 IX0IYO,(KPOPO(I),I=1,NSSCT)
IX0 = IY
IX0 = IX
IXL = IX
NSSCT = 1
KPOPO(NSSCT) = IPNT(J)
GO TO 92
95 CONTINUE
NSSCT = NSSCT + 1
KPOPO(NSSCT) = IPNT(J)
IXL = IX
92 CONTINUE
430 CONTINUE
C IF(NINCT .LT. 6) GO TO 62
60 CONTINUE
JOUTCT = JOUTCT + 1
WRITE(MT,51) MFB, MRCT,MRCT , JOUTCT, JNBFPB,JNBFPB,
1 NINCT, (IARR(I),JARR(I),NPARR(I),I=1,6)
51 FORMAT(A1,A4,1X,A4,I5,1X,A5,A4,1X,I1,IX,6(I4,I4,I8,1X))
DO 61 I = 1,6
IARR(I) = 0
JARR(I) = 0
NPARR(I) = 0
61 CONTINUE
NINCT = 1
IARR(NINCT) = IX
JARR(NINCT) = IY
NPARR(NINCT) = IPNT(J)
GO TO 54
62 CONTINUE
NINCT = NINCT + 1
IARR(NINCT) = IX

I-285

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

Draft & RAB
Form 16

Outfit 385
13-10-10

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 000

JARR(NINCT) = IY
NPARR(NINCT) = IPNT(J)
GO TO 54

C
53 CONTINUE

C FINISH FOR THIS CITY
IF(IEND .EQ.1) GO TO 64
ITMA = MRTH
ITMB = MRTYH
GO TO 65

64 CONTINUE
ITMA = 4HSTOP
ITMB = 4HSTOP

65 CONTINUE
JOUTCT = JOUTCT + 1
WRITE(MT,51) MFB, MRCT, ITMA , JOUTCT, JNBFPB, JNBFPB,
1 NINCT, (IARR(I),JARR(I),NPARR(I),I=1,6)
IF(IB0 .NE. 1) GO TO 432
JOUTY = JOUTY + 1
WRITE(MU,81) MFB,MRTY,ITMA,JOUTY,JNBFPB,JNBFPB, NSSCT,
1 IX0,IY0,(KPOPO(I),I=1,NSCT)

432 CONTINUE
IF(IEND .NE. 1) GO TO 20

C
C
200 CONTINUE
WRITE(MQ,201)
201 FORMAT(//,,20X,*END OF RUN*,//)

202 FORMAT(1H1)
ENDFILE MT
ENDFILE MU
IF(IB0 .NE. 1) GO TO 433
ENDFILE MU
ENDFILE MU
433 CONTINUE
ENDFILE MV
ENDFILE MV
STOP 6400
END

220 48441 0040 ABILENE
170 39153 0080 AKRON
56 13095 0120 ALBANY
140 36001 0160 ALBANY-SCHENECTADY
139 35001 0200 ALBUQUERQUE
185 42077 0240 ALLENTOWN-BETHLEHEM
179 42013 0280 ALTOONA
217 48375 0320 AMARILLO
73 18095 0400 ANDERSON
116 20161 0440 ANN ARBOR
245 55087 0459 APPLETON
147 37021 0480 ASHEVILLE
57 13121 0520 ATLANTA
136 34001 0560 ATLANTIC CITY
59 13245 0600 AUGUSTA
63 17089 0620 AURORA-ELGIN
222 48453 0640 AUSTIN
14 06029 0680 BAKERSFIELD
97 24510 0720 BALTIMORE
91 22033 0760 BATON ROUGE

*U. A Code U. A name
data file.*

**** UNCLASSIFIED ****

I-286

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

108 26017 0800 BAY CITY
211 48245 0839 BEAUMONT
129 30111 0880 BILLINGS
121 28047 0920 BILOXI-GULFPORT
141 36007 0959 BINGHAMTON
2 01073 1000 BIRMINGHAM
64 17113 1040 BLOOMINGTON-NORMAL
60 16001 1080 BOISE CITY
103 25017 1120 BOSTON
28 08013 1130 BOULDER
32 09001 1160 BRIDGEPORT
36 09003 1170 BRISTOL
105 25023 1200 BROCKTON
201 48061 1239 BROWNSVILLE
200 48041 1260 BRYAN-COLLEGE STAT
142 36029 1280 BUFFALO
169 39151 1320 CANTON
81 19113 1360 CEDAR RAPIDS
61 17019 1400 CHAMPAIGN-URBANA
190 45019 1440 CHARLESTON
238 54039 1480 CHARLESTON
153 37119 1520 CHARLOTTE
195 47065 1560 CHATTANOOGA
62 17031 1601 CHICAGO ILL-NORTHW
162 39061 1639 CINCINNATI
160 39035 1680 CLEVELAND
30 08041 1720 COLORADO SPRINGS
123 29019 1740 COLUMBIA
192 45079 1760 COLUMBIA
58 13215 1800 COLUMBUS
161 39049 1840 COLUMBUS
216 48355 1880 CORPUS CHRISTI
203 48113 1920 DALLAS
33 09001 1930 DANBURY
67 17161 1960 DAVENPORT-ROCK ISL
167 39113 2000 DAYTON
65 17115 2040 DECATUR
29 08031 2080 DENVER
82 19153 2120 DES MOINES
117 26163 2160 DETROIT
82 19153 2120 DES MOINES
117 26163 2160 DETROIT
80 19061 2201 DUBUQUE
120 27137 2240 DULUTH-SUPERIOR
149 37063 2280 DURHAM
205 48141 2320 EL PASO
182 42049 2360 ERIE
174 41039 2400 EUGENE
77 18163 2439 EVANSVILLE
99 25005 2480 FALL RIVER
156 38017 2520 FARGO-MOORHEAD
148 37051 2560 FAYETTEVILLE
106 25027 2600 FITCHBURG-LEOMINST
109 26049 2640 FLINT
45 12011 2680 FCRT LAUDERDALE-HO
11 05131 2720 FCRT SMITH
71 18003 2760 FCRT WAYNE
219 48439 2800 FCRT WORTH
13 06019 2840 FRESNO
1 01055 2880 GADSDEN
44 12001 2900 GAINESVILLE

I-287

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 000

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 004

10

206	48167	2919	GALVESTON
113	26081	3000	GRAND RAPIDS
128	30013	3040	GREAT FALLS
240	55009	3080	GREEN BAY
151	37081	3119	GREENSBORO
191	45045	3160	GREENVILLE
158	39017	3199	HAMILTON
202	48061	3230	HARLINGEN-SAN BENI
181	42043	3240	HARRISBURG
37	09003	3280	HARTFORD
152	37081	3300	HIGHPOINT
209	48201	3360	HOUSTON
237	54011	3400	HUNTINGTON-ASHLAND
3	01089	3440	HUNTSVILLE
74	18097	3480	INDIANAPOLIS
111	26075	3520	JACKSON
122	28049	3560	JACKSON
47	12031	3600	JACKSONVILLE
180	42021	3680	JOHNSTOWN
69	17197	3700	JOLIET
112	26077	3720	KALAMAZOO
126	29095	3760	KANSAS CITY
242	55059	3800	KENOSHA
196	47093	3840	KNOXVILLE
243	55063	3871	LACROSSE
92	22055	3880	LAFAYETTE
76	18157	3920	LAFAYETTE-WEST LAF
90	22019	3960	LAKE CHARLES
184	42071	4000	LANCASTER
110	26065	4040	LANSING
223	48479	4080	LAREDO
132	32003	4120	LAS VEGAS
101	25009	4160	LAWRENCE-HAVERHILL
171	40031	4200	LAWTON
95	23001	4240	LEWISTON-AUBURN
87	21067	4280	LEXINGTON
157	39003	4320	LIMA
131	31109	4360	LINCOLN
10	05119	4400	LITTLE ROCK-NORTH
164	39093	4440	LORAIN-ELYRIA
15	06037	4480	L.A.-LONG BEACH
88	21111	4520	LOUISVILLE
104	25017	4561	LOWELL
213	48303	4600	LUBBOCK
228	51680	4640	LYNCHBURG
54	13021	4680	MACON
241	55025	4720	MADISON
134	33011	4760	MANCHESTER
168	39139	4800	MANSFIELD
210	48215	4880	MCALLEN-PHARR-EDIN
197	47157	4921	MEMPHIS
39	09009	4960	MERIDEN
46	12025	5000	MIAMI
215	48329	5040	MIDLAND
244	55079	5080	MILWAUKEE
118	27053	5120	MINNEAPOLIS-ST PAU
4	01097	5160	MOBILE
25	06099	5170	MODESTO
94	22073	5200	MCNROE
5	01101	5240	MONTGOMERY
72	18035	5280	MUNCIE

I-288

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 004

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 001

//

114 26121 5320 MUSKEGON-MUSKEGON
135 33011 5350 NASHUA
194 47037 5360 NASHVILLE-DAVIDSON
100 25005 5400 NEW BEDFORD
38 09003 5440 NEW BRITAIN
40 09009 5480 NEW HAVEN
93 22071 5560 NEW ORLEANS
143 36047 5601 NEW YORK-N E NEW J
229 51700 5680 NEWPORT NEWS-HAMPT
230 51710 5720 NORFOLK-PORTSMOUTH
34 09001 5760 NORWALK
204 48135 5800 ODESSA
227 49057 5840 OGDEN
172 40109 5880 OKLAHOMA CITY
130 31055 5920 OMAHA
51 12095 5960 ORLANDO
247 55139 5970 OSHKOSH
86 21059 5990 OWENSBORO
26 06111 6000 OXNARD-VENTURA-100
48 12033 6080 PENSACOLA
66 17143 6120 PEORIA
231 51730 6140 PETERSBURG-COLONIA
187 42101 6160 PHILADELPHIA
7 04013 6200 PHOENIX
9 05069 6240 PINE BLUFF
177 42003 6280 PITTSBURGH
98 25003 6320 PITTSFIELD
212 48245 6380 PORT ARTHUR
96 23005 6400 PORTLAND
176 41051 6440 PORTLAND
189 44007 6480 PROVIDENCE-PAWTUCK
226 49049 6520 PROVO-OREM
31 08101 6560 PUEBLO
246 55101 6600 RACINE
155 37183 6640 RALEIGH
178 42011 6680 READING
133 32031 6720 RENO
232 51760 6760 RICHMOND
233 51770 6800 ROANOKE
119 27109 6820 ROCHESTER
144 36055 6840 ROCHESTER
70 17201 6880 ROCKFORD
18 06067 6920 SACRAMENTO
115 26145 6960 SAGINAW
124 29021 7001 ST JOSEPH
127 29189 7040 ST LOUIS
53 12103 7060 ST PETERSBURG
175 41047 7080 SALEM
16 06053 7119 SALINAS
225 49035 7160 SALT LAKE CITY
221 48451 7200 SAN ANGELO
198 48029 7240 SAN ANTONIO
19 06071 7279 SAN BERNARINO-RIV
20 06073 7320 SAN DIEGO
12 06001 7360 SAN FRANCISCO-OAKL
23 06085 7400 SAN JOSE
22 06083 7480 SANTA BARBARA
24 06097 7500 SANTA ROSA
55 13051 7520 SAVANNAH
183 42069 7560 SCRANTON
17 06053 7580 SEASIDE-MONTEREY

I-289

**** UNCLASSIFIED ****

11/30/76

PAGE NO. 001

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 006

114 26121 5320 MUSKEGON-MUSKEGON
135 33011 5350 NASHUA
194 47037 5360 NASHVILLE-DAVIDSON
100 25005 5400 NEW BEDFORD
38 09003 5440 NEW BRITAIN
40 09009 5480 NEW HAVEN
93 22071 5560 NEW ORLEANS
143 36047 5601 NEW YORK-N E NEW J
229 51700 5680 NEWPORT NEWS-HAMPT
230 51710 5720 NORFOLK-PORTSMOUTH
34 09001 5760 NORWALK
204 48135 5800 ODESSA
227 49057 5840 OGDEN
172 40109 5880 OKLAHOMA CITY
130 31055 5920 OMAHA
51 12095 5960 ORLANDO
247 55139 5970 OSHKOSH
86 21059 5990 OWENSBORO
26 06111 6000 OXNARD-VENTURA-100
48 12033 6080 PENSACOLA
66 17143 6120 PEORIA
231 51730 6140 PETERSBURG-COLONIA
187 42101 6160 PHILADELPHIA
7 04013 6200 PHOENIX
9 05069 6240 PINE BLUFF
177 42003 6280 PITTSBURGH
98 25003 6320 PITTSFIELD
212 48245 6380 PORT ARTHUR
96 23005 6400 PORTLAND
176 41051 6440 PORTLAND
189 44007 6480 PROVIDENCE-PAWTUCK
226 49049 6520 PROVO-OREM
31 08101 6560 PUEBLO
246 55101 6600 RACINE
155 37183 6640 RALEIGH
178 42011 6680 READING
133 32031 6720 RENO
232 51760 6760 RICHMOND
233 51770 6800 ROANOKE
119 27109 6820 ROCHESTER
144 36055 6840 ROCHESTER
70 17201 6880 ROCKFORD
18 06067 6920 SACRAMENTO
115 26145 6960 SAGINAW
124 29021 7001 ST JOSEPH
127 29189 7040 ST LOUIS
53 12103 7060 ST PETERSBURG
175 41047 7080 SALEM
16 06053 7119 SALINAS
225 49035 7160 SALT LAKE CITY
221 48451 7200 SAN ANGELO
198 48029 7240 SAN ANTONIO
19 06071 7279 SAN BERNARDINO-RIV
20 06073 7320 SAN DIEGO
12 06001 7360 SAN FRANCISCO-OAKL
23 06085 7400 SAN JOSE
22 06083 7480 SANTA BARBARA
24 06097 7500 SANTA ROSA
55 13051 7520 SAVANNAH
183 42069 7560 SCRANTON
17 06053 7580 SEASIDE-MONTEREY

I-290

***** UNCLASSIFIED *****

11/30/76

PAGE NO. 006

Documentation of Current IDA Computer Material Developed for DCPA,
by Leo A. Schmidt, Unclassified, Institute for Defense Analyses,
January 1977, Vol. 1--283 pages, (Contract DCPA01-76-C-0213, Work
Unit 41266)

Abstract

This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.

Documentation of Current IDA Computer Material Developed for DCPA,
by Leo A. Schmidt, Unclassified, Institute for Defense Analyses,
January 1977, Vol. 1--283 pages, (Contract DCPA01-76-C-0213, Work
Unit 41266)

Abstract

This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.

Documentation of Current IDA Computer Material Developed for DCPA,
by Leo A. Schmidt, Unclassified, Institute for Defense Analyses,
January 1977, Vol. 1--283 pages, (Contract DCPA01-76-C-0213, Work
Unit 41266)

Abstract

This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.

Documentation of Current IDA Computer Material Developed for DCPA,
by Leo A. Schmidt, Unclassified, Institute for Defense Analyses,
January 1977, Vol. 1--283 pages, (Contract DCPA01-76-C-0213, Work
Unit 41266)

Abstract

This paper is a documentation of computer materials developed by the Institute for Defense Analyses (IDA) for use by the Defense Civil Preparedness Agency (DCPA). All IDA physical data processing materials (IBM cards, magnetic tape, computer printouts) have been surveyed and catalogued. All computer programs are written in FORTRAN (a general knowledge of this language is assumed in the detailed descriptions contained herein). Computer programs considered useful by IDA have been included and documented. A group of general purpose subprograms are described, along with their interfaces with the using programs. Data file formats also have been developed, along with programs for managing these files. Such programs and resulting files are described in detail.