Report on Function Approximation with Neural Network and Backpropagation

Prepared by: Tanveer Rahman (1905025)

Introduction

In this assignment, I had to implement a Feed-Forward Neural Network (FNN) from scratch and then apply the FNN to classify the 'FashionMNIST' dataset. For the complete implementation of the FNN, I have created several classes. They are:

```
BatchNorm: Batch Normalization

Adam: Optimizer

RelU: Activation function

Dropout: Implementation of Dropout

Loss: Softmax with Cross-Entropy Loss

DenseLayer: Fully connected Layer

Flatten: Flatten the Dataset to 2D array

FNN: Feed forward Neural Network
```

Run the Code

1. From the provided pickle file:

In the provided notebook, I have a section named - 'Load From Pickle'. There is also another section named 'Train FNN'.

Uncomment 'Load From Pickle' and **comment 'Train FNN'** and then run all the sections. Then we can find the Test output of the model in the '**Test FNN'** section.

2. Without the pickle file:

If we want to run and observe the training of the FNN, then **Comment 'Load From Pickle**' and Un**comment 'Train FNN'** and then run all the sections.

Finally **Uncomment 'Store in Pickle'** section, and then store the weights of the model in the pickle file.

Observations

I have prepared Three models, where the number of hidden layers are varied.

- One hidden layer
- Two hidden layers
- three hidden layers

Model 1: One hidden layer

For **iteration = 10** and **batch size = 128 and learning rate = 0.0005**, the model performs the best.

Iteration	Train Loss	Train Accuracy	Val Loss	Val Accuracy	Val F1
1	0.6001	0.7861	0.4901	0.8229	0.8225
2	0.4648	0.8330	0.4579	0.8385	0.8394
3	0.4273	0.8474	0.4378	0.8433	0.8429
4	0.4110	0.8513	0.4227	0.8506	0.8513
5	0.3981	0.8557	0.4194	0.8490	0.8489
6	0.3868	0.8608	0.4129	0.8546	0.8543
7	0.3796	0.8615	0.4004	0.8572	0.8580
8	0.3733	0.8651	0.3995	0.8565	0.8576
9	0.3647	0.8664	0.4001	0.8576	0.8587
10	0.3568	0.8706	0.3981	0.8558	0.8565

Model 2: Two hidden layers

For **iteration = 10** and **batch size = 128**, when **learning rate = 0.0005**, the model performs the best.

Iteration	Train Loss	Train Accuracy	Val Loss	Val Accuracy	Val F1
1	0.6255	0.7762	0.4892	0.8277	0.8266
2	0.4709	0.8304	0.4423	0.8441	0.8424
3	0.4338	0.8437	0.4247	0.8495	0.8488
4	0.4144	0.8508	0.4164	0.8554	0.8532
5	0.3971	0.8561	0.3990	0.8569	0.8563
6	0.3863	0.8586	0.3988	0.8620	0.8610
7	0.3749	0.8630	0.3900	0.8608	0.8601
8	0.3666	0.8679	0.3872	0.8665	0.8663
9	0.3611	0.8700	0.3740	0.8688	0.8690
10	0.3561	0.8704	0.3785	0.8662	0.8654

Model 3: Three hidden layers

For **iteration = 10** and **batch size = 128**, when **learning rate = 0.001**, the model performs the best.

Iteration	Train Loss	Train Accuracy	Val Loss	Val Accuracy	Val F1
1	0.9885	0.6501	0.7223	0.7488	0.7462
2	0.6786	0.7681	0.6292	0.7945	0.7916
3	0.6117	0.7984	0.5948	0.8023	0.8012
4	0.5754	0.8140	0.5614	0.8174	0.8157
5	0.5439	0.8236	0.5406	0.8303	0.8278
6	0.5371	0.8269	0.5312	0.8321	0.8321
7	0.5206	0.8330	0.5154	0.8381	0.8365
8	0.5052	0.8384	0.5128	0.8387	0.8390
9	0.5022	0.8391	0.5113	0.8405	0.8387
10	0.4948	0.8429	0.4896	0.8406	0.8393

Graphs

The graphs are constructed considering learning rates [0.005, 0.001], for each of the three models.

Model 1: One hidden layer

- One hidden layer
- Number of iterations in training = 10
- Batch size = 128

Model 2: Two hidden layers

- Two hidden layers
- Number of iterations in training = 10
- Batch size = 128

Model 3: Three hidden layers

- Two hidden layers
- Number of iterations in training = 10
- Batch size = 128

Confusion Matrix

In the Confusion matrix:

- The diagonal elements represent the number of points for which test_label = true_label
- The mislabelled elements are the off-diagonal elements.

The confusion matrix for all the three models are given below:

Model 1: One hidden Layer

						no a c c				
]]]	976	2	23	47	2	0	88	0	8	1]
[9	1131	2	32	4	0	2	0	1	0]
]	19	4	921	18	171	1	93	0	5	0]
[44	7	6	1051	42	Θ	27	0	6	0]
]	4	2	102	33	986	Θ	78	0	7	0]
[1	1	1	2	1	1155	1	51	7	28]
[204	2	142	40	131	Θ	696	0	15	0]
[0	0	0	0	Θ	40	0	1123	1	26]
[5	1	5	10	5	3	12	10	1167	1]
[0	0	1	0	Θ	7	0	55	1	1094]]

Model 2: Two hidden Layers

```
[1034
           6
                27
                      62
                              4
                                    1
                                        129
                                                 0
                                                      11
                                                             0]
      1157
                 6
                      28
                              4
                                    0
                                          2
                                                 1
                                                       0
                                                       6
                                                             0]
   11
           0
               908
                      11
                           141
                                    0
                                        100
                                                 0
                                                       3
   44
          14
                18 1008
                            51
                                    0
                                         33
                                                 1
                                                             0]
           3
               143
                      26
                           952
                                    0
                                         74
                                                       4
                                                 0
           2
    0
                 0
                       1
                              1 1092
                                          1
                                               59
                                                       7
                                                            28]
           2
  182
               124
                      27
                           109
                                    0
                                        719
                                                 1
                                                             01
           0
    0
                0
                       1
                              0
                                   31
                                          0 1099
                                                       1
                                                            421
    4
           3
                12
                       8
                              4
                                         17
                                                 3 1155
                                                             11
    0
                 1
                       0
                              Θ
                                   13
                                          0
                                               65
                                                       0 1129]]
```

Model 3: Three hidden Layers

Π	904	5	27	83	14	3	164	1	16	4]
[7	1127	2	32	9	1	6	0	8	2]
[25	5	713	12	214	2	186	1	30	0]
[77	37	10	994	49	2	51	4	7	2]
[4	11	149	44	829	4	112	0	17	2]
[4	14	2	4	Θ	1047	0	73	11	68]
[244	5	239	48	165	1	487	1	25	1]
[0	1	0	3	2	60	0	1013	5	107]
[9	10	26	3	9	8	16	6	1077	6]
[4	4	2	1	1	34	1	55	4	1086]]

Conclusion

From the above discussion,

- For **model 1**, when **learning rate = .0005**, at the **8 th iteration** the validation f1-score becomes the highest **.8587**
- For **model 2**, when **learning rate = .0005**, at the **9 th iteration** the validation f1-score becomes the highest **.8690**
- For **model 3**, when **learning rate = .0005**, at the **10 th iteration** the validation f1-score becomes the highest **.8393**

So, I have selected model 2 as my best model and the learning rate is set to .0005.

Test Result for the selected model:

Test loss: 0.4180

Test accuracy: 0.8531

<u>Test f1-score</u> : 0.8523