

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

AD-A154 501

TAUNTON RIVER BASIN BROCKTON, MASSACHUSETTS

LOWER PORTER POND DAM

MA 00424

PHASE I INSPECTION REPORT NÁTIONAL DAM INSPECTION PROGRAM

FILE COPY

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

This document has been approved for public ralease and sale; the distribution is unlimited.

JANUARY 1980

plotes: 11 Dric regroduesfone will be in block and white LINCLASSIELED

THIS PAGE (When Doin Foresed) ADA 154 501

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER MA 00424	2. GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
4 TITLE rand Substitle) Lower Porter Pond Dam		5 TYPE OF REPORT & PERIOD COVERED INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS		6 PERFORMING ORG. REPORT NUMBER
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		B CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
DEPT. OF THE ARMY, CORPS OF ENGINEER NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254		January 1980 13. NUMBER OF PAGES 48
14 MONITORING AGENCY NAME & ADDRESS(II ditterent		UNCLASSIFIED
		SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from Report)

**Criginal contains color

plates: All DTIC reproduct—

ions will be in black and

white**

IS. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Taunton River Basin Brockton, Massachusetts Beaver Brook

20 ABSTRACT (Continue on reverse side II necessary and identify by block number)

Lower Porter Dam is an ill- defined earth embankment about 200 ft. long with a maximum height of about 12 ft. and a top width averageing 15 ft. The dam appears to be in fair condition. With a classification size of small and a hazard potential of significant, the recommended range for test flood is $^{\rm I}_2$ og the Probable Maximum Flood. The owner should implement various operatinal and maintenance procedures.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION. CORPS OF ENGINEERS
424 TRAPELO ROAD
WALTHAM. MASSACHUSETTS 02154

REPLACTO ATTENTION OF S NEDED

MAY 1 9 1980

Honorable Edward J. King Governor of the Commonwealth of Massachusetts State House Boston, Massachusetts 02133

Dear Governor King:

Inclosed is a copy of the Lower Porter Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. In addition, a copy of the report has also been furnished the owner, the city of Brockton.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for your cooperation in carrying out this program.

Sincerely,

Incl
As stated

Colonel, Corps of Engineers

Division Engineer

LOWER PORTER POND DAM MA 00424

TAUNTON RIVER BASIN BROCKTON, MASSACHUSETTS

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

Indentification No.:

MA 00424

Name of Dam:

Lower Porter Pond Dam

Town:

Brockton

County and State:

Plymouth, Massachusetts

Stream:

Beaver Brook

Date of Inspection:

October 17, 1979

BRIEF ASSESSMENT

Lower Porter Pond Dam is an ill-defined earth embankment approximately 200 feet long with a maximum height of about 12 feet and a top width averaging 15 feet. The upstream slope, which is capped with a 2-foot high parapet wall, is unknown and the downstream slope is about 2H:1V. The broad-crested stone masonry service spillway is located near the right abutment. The broad-crested stone masonry auxiliary spillway is situated about 60 feet to the right of the service spillway. The dam was constructed in 1940 for the City of Brockton park development program and is currently used for recreational purposes.

The dam appears to be in fair condition. Roots of large trees growing on the dam crest may increase the seepage potential and high winds may dislodge the trees removing significant portions of embankment material. The absence of grass cover on a portion of the dam crest exposes the embankment to undesirable surface erosion.

Lower Porter Pond Dam has a maximum storage capacity of approximately 54 acre-feet and a maximum height of about 12 feet. Therefore, the dam is classified in the "Small" size category. Approximately 35 inhabitable structures are located downstream of Thirty Acre Pond, which is located immediately downstream of Lower Porter Pond. A densely populated urban neighborhood is located further downstream. A failure of Lower Porter Pond dam could cause appreciable property damage but little or no loss of life in the downstream communities. Therefore, the dam is classified in the "Significant" hazard category. The recommended range for the test flood for a "Small size, "Significant" hazard dam is from the 100-year flood to one-half of the Probable Maximum Flood (PMF). The selected test flood for this structure is one-half of the PMF.

The test flood peak inflow to Lower Porter Pond was computed as 2,510 cfs. The routed test flood outflow of 2,505 cfs overtops the embankment by 1.2 feet. The spillway system is capable of discharging 488 cfs prior to overtopping of the embankment, which is about 19 percent of the routed test flood outflow.

Within one year after receipt of the Phase I inspection report, the Owner, the City of Brockton, should retain the services of a registered professional engineer, experienced in the design and construction of dams, for the following purposes: (1) detailed hydrologic and hydraulic analyses should be performed to assess the need for increasing the project discharge capacity; and (2) a study should be made to examine the possibility of Waldo Lake (upstream of Lower and Upper Porter Pond) overflowing the area along the D.W. Field East Parkway and to evaluate the consequences of such an occurrence; (3) the trees and their root systems should be removed from the embankment to the extent possible and the voids in the embankment backfilled with appropriate compacted embankment materials; and (4) the seismic stability of the dam should be investiaged.

In addition, the Owner should implement the following operational and maintenance procedures: (1) the bare spots on the embankment crest should be covered with suitable vegetation and protected from pedestrian traffic; (2) erosion protection should be provided for the upstream slope of the embankment; (3) the operating condition of the pond drain sluice gate should be determined and the gate should be repaired if necessary; (4) a program of annual periodic technical inspection should be instituted; and (5) a formal surveillance and flood warning plan, including round-the-clock monitoring during heavy precipitation, should be developed.

O'BRIEN & GERE ENGINEERS, INC.

John J.

Vice Provident
New York Regis

Registration No. 95/794

Date 22 FEB 1980

This Phase I Inspection Report on Lower Porter Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

RICHARD DIBUONO, MEMBER

RICHARD DIBUONO, MEMBER Water Control Branch Engineering Division

aum totalam

ARAMAST MAHTESIAN, MEMBER Foundation & Materials Branch Engineering Division

Carney H. Vergian

CARNEY M. TERZIAN, CHAIRMAN Design Branch Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of theses guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation: however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

(

SECTIO	NC	PAGE
Brief A Review Preface Table o	of Contents ew Photo	i ii-iv v vi
	REPORT	
1. PR	ROJECT INFORMATION	
1.3	Generala. Authorityb. Purpose of Inspection	1-1 1-1 1-1
1.2	Description a. Location b. Description of Dam and Appurtenances c. Size Classification d. Hazard Classification e. Ownership f. Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedure	1-1 1-1 1-2 1-2 1-2 1-2 1-3 1-3
1.3	Pertinent Data a. Drainage Area b. Discharge at Damsite c. Elevation d. Reservoir e. Storage f. Reservoir Surface g. Dam h. Diversion and Regulating Tunnel i. Spillway j. Regulating Outlets	1-3 1-3 1-4 1-4 1-4 1-4 1-5 1-5

TABLE OF CONTENTS (Con't)

SE	CTION	<u>1</u>	PAGE		
2.	ENC	SINEERING DATA			
	2.1	Design Data	2-1		
	2.2	Construction	2-1		
	2.3	Operation	2-1		
	2.4	Evaluation a. Availability b. Adequacy c. Validity	2-1 2-1 2-1 2-1		
3.	VISU	VISUAL INSPECTION			
	3.1	Findings a. General b. Dam c. Appurtenant Structures d. Reservoir Area e. Downstream Channel	3-1 3-1 3-1 3-1 3-2 3-2		
	3.2	Evaluation	3-2		
4.	OPE	PERATIONAL AND MAINTENANCE PROCEDURES			
	4.1	Operational Procedures a. General b. Description of Any Warning System in Effect	4-1 4-1 4-1		
	4.2	Maintenance Procedures a. General b. Operating Facilities	4-1 4-1 4-1		
	4.3	Evaluation	4-1		
5.	EVA	LUATION OF HYDRAULIC/HYDROLOGIC FEATURES			
	5.1	General	5-1		
	5.2	Design Data	5-1		
	5.3	Experience Data	5-1		
	5.4	Test Flood Analysis	5-1		
	55	Dam Failure Analysis	5-2		

TABLE OF CONTENTS (Con't)

<u>5E(</u>	CHON	<u>\</u> -	PAGE
6.	EVΑ	LUATION OF STRUCTURAL STABILITY	
	6.1	Visual Observations	6-1
	6.2	Design and Construction Data	6-1
	6.3	Post-Construction Changes	6-1
	6.4	Seismic Stability	6-1
7.	ASS	ESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
	7.1	Dam Assessment a. Condition b. Adequacy of Information c. Urgency	7-1 7-1 7-1 7-1
	7.2	Recommendations	7-1
	7.3	Remedial Measures	7-2
	7.4	Alternatives	7-2
		APPENDICES	
AP	PEND	IX A - INSPECTION CHECKLIST	A-1 to A-8
AP	PEND	IX B - ENGINEERING DATA	B-1 to B-5
ΑP	PEND	IX C - PHOTOGRAPHS	C-1 to C-6
ΑP	PEND	IX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1 to D-31
ΑP	PEND	IXE - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	

LY THEAT CLEAVIEW OF THE LOWER PORTER POND DAM. (10/17/79)

TOTAL AM OVERVIEW OF THE LOWER FORTER POND DAM. (10/1//79)

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. The visual observations and review of the available information indicate that Lower Porter Pond Dam is in fair condition. The roots of trees growing on the dam crest may increase the seepage potential and high winds may dislodge the trees removing significant portions of embankment material. The absence of grass cover on a portion of the dam crest exposes the embankment to undesirable surface erosion.

The test flood peak inflow to Lower Porter Pond was computed as 2,510 cfs. The routed test flood outflow of 2,505 cfs overtops the embankment by 1.2 feet. The spillway system is capable of discharging 488 cfs prior to overtopping of the embankment, which is about 19 percernt of the routed test flood outflow. A failure of the dam would cause a rise in stream elevation of approximately 1.1 feet at the downstream damage area which could result in appreciable property damage but little or no loss of life.

- b. Adequacy of Information. The available information together with the visual inspection data are adequate for a Phase I assessment of Lower Porter Pond Dam.
- c. Urgency. Further investigations and remedial measures should be implemented within one year of receipt of this Phase I Inspection Report.

7.2 Recommendations

The following recommendations should be implemented by a registered professional engineer experienced in the design and construction of dams.

- 1) Detailed hydrologic and hydraulic analyses should be performed to assess the necessity for increasing the project discharge capacity.
- 2) It appears that Waldo Lake, upstream of Lower and Upper Porter Pond, could overflow in the area along the D. W. Field East Parkway prior to overtopping the dam crest. A study should be made to examine this possibility and to evaluate the consequences of such an occurrence.
- 3) The trees and their root systems should be removed from the embankment to the extent possible and the voids in the embankment replaced with appropriate compacted embankment materials.
- 4) The seismic stability of the dam should be investigated utilizing conventional equivalent static load methods.

SECTION 6

STRUCTURAL STABILITY

6.1 Visual Observations

The roots of trees growing on the dam crest could provide increased seepage potential through the embankment. High winds could dislodge the trees and their root systems causing significant losses of embankment material. The roots of the deciduous tree growing within two feet of the eastern service spillway training wall may destroy the masonry joint material and cause dislocation of individual stones. The loss of grass cover on the dam crest exposes the embankment to surface erosion which might lead to a reduction of the effective top of dam elevation.

6.2 Design and Construction Data

No information was available concerning stability analyses, seepage computations, or embankment and foundation material properties.

6.3 Post Construction Changes

No post construction changes have been performed at this site.

6.4 Seismic Stability

Lower Porter Pond Dam is located in Seismic Zone 3 on the "Seismic Zone Map of Contiguous States." Therefore, according to the Recommended Guidelines for Safety Inspection of Dams, a seismic stability analysis should be performed as recommended in Section 7.

the east of Waldo Lake, noted in paragraph 5.1, were not included in the routing procedures.

The test flood peak inflow to Lower Porter Pond was computed as 2,510 cfs. The routed test flood outflow of 2,505 cfs overtops the embankment by 1.2 feet. The spillway system is capable of discharging 488 cfs prior to overtopping of the embankment, which is about 19 percent of the routed test flood outflow.

5.5 Dam Failure Analysis

A failure of the embankment was simulated by the HEC-1-DB computer program assuming a 20-foot wide and 7-foot deep breach with vertical side slopes developing within one hour. The failure is assumed to occur with the reservoir surface at the top of dam elevation. The resulting outflow was routed to the damage center, which was assumed to be the community of approximately 35 homes downstream of Thirty Acre Pond. The channel cross-section utilized in the computer program for the hazard area was taken at a point 1,200 feet downstream of Thirty Acre Pond and is shown on page D-12. The increase in stream depth at this location was computed to be 1.1 feet. This depth of flow could cause appreciable property damage and little or no loss of life in the downstream damage center.

SECTION 5

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

Lower Porter Pond Dam has an elongated watershed about 4 miles long and 0.9 miles wide. The drainage area is wooded with some residential developments and low-lying marshes in the upper reaches. The topography ranges from Elev. 250 to Elev. 160 at the normal pool surface. There are three impoundments upstream of Lower Porter Pond: Brockton Reservoir, Waldo Lake and Upper Porter Pond. The normal pool storage capacities of these three impoundments are about 190, 180 and 28 acre-feet, respectively. It was noted during the visual inspection that the area east of Waldo Lake may be lower in elevation than the top of the dam, thus forming a saddle about 2,000 feet long. Therefore, large inflows into Waldo Lake might be diverted over this saddle into the adjacent watershed. This would in turn reduce the impact of the selected test flood upon Lower Porter Pond Dam and its downstream hazard area.

5.2 Design Data

Neither hydraulic nor hydrologic design data are available for Lower Porter Pond Dam.

5.3 Experience Data

There are no records of high reservoir pools or dam overtoppings at this site.

5.4 Test Flood Analysis

The recommended test flood range for a "Small" size, "Significant" hazard dam is from the 100-year flood to one-half of the Probable Maximum Flood (PMF). Due to the potential for property damage and the possibility of loss of life (although remote) in the downstream damage center, the selected test flood is one-half of the PMF.

Hydrologic and hydraulic calculations were performed with the assistance of the HEC-1-DB computer program. The flood hydrographs were constructed from the Snyder unit hydrographs using average coefficients, an initial infiltration of zero and a constant loss rate of 0.05 inches per hour. The Hop Brook Adjustment Factor was used to reduce the Probable Maximum Precipitation based on the drainage area. The routing sequence consisted of dividing the watershed into sub basins for each impoundment and routing the inflow hydrographs through each reservoir. Stage vs. discharge and stage vs. storage relationships above the spillway crest and the top of the dam were developed for all five dams in the system to obtain outflow hydrographs. All impoundments were assumed to be at their respective spillway crest elevations at the beginning of the storm event. Possible overflow effects to

SECTION 4

OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

- a. General. Based upon information supplied by the City of Brockton and the Massachusetts DEQE, and that obtained through subsequent conversations with Mr. John Dorgan Sr., Park Commissioner, no formal operating procedures have been established for operation of Lower Porter Pond Dam.
- b. Description of Any Warning System in Effect. According to Mr. Dorgan, no flood warning system is in effect for Lower Porter Pond Dam.

4.2 Maintenance Procedures.

- a. General. According to Mr. Dorgan, the grass on the embankment crest is cut on a regular basis during the growing season.
- b. Operating Facilities. According to Mr. Dorgan, the outlet conduit sluice gate is operable and no formal maintenance program is in effect at this site.

4.3 Evaluation

There are no operational procedures in effect at this site. Recommendations for improving these conditions are given in Section 7.3.

missing at the time of inspection. The outlet end of this pipe appeared to be free of debris and was partially submerged.

- d. Reservoir Area. The area surrounding the pond consists primarily of well-maintained grass areas which slope gradually up from the edge of the pond. Portions of the surrounding area are forested.
- e. <u>Downstream Channel</u>. The stilling basin, which accepts discharge from both spillways and the outlet conduit, is lined with hand-placed riprap and is reported to be about four feet deep. There is no evidence of excessive erosion or displacement of the stone lining around the basin. The pool elevation in the basin was the same as that of Thirty Acre Pond at the time of inspection. The parkway bridge openings were clear of debris and the bridge itself appeared to be in good condition.

3.2 Evaluation.

The dam is considered to be in fair condition. Bare spots on the crest of the dam and lack of erosion protection on the upstream slope could lead to surface erosion of the embankment. The roots of the trees growing from the crest create potential seepage paths through the dam. In the event of severe winds uprooting the trees, portions of the embankment could be dislodged. Both spillways appear to be in satisfactory condition.

SECTION 3

VISUAL INSPECTION

3.1 Findings

a. General. The field inspection of Lower Porter Pond Dam was performed on October 17, 1979. At the time of the inspection, the reservoir water surface was about 2 inches above the spillway crest. No underwater areas were inspected.

The observations and comments of the field inspection team are in the checklist which is Appendix A of this report.

- b. <u>Dam.</u> The dam is considered to be in fair overall condition. The visible portions of the upstream slope below reservoir level appear to grade very gently away from the spillway wingwalls and the vertical stone wall curbing. There is no evidence of riprap on the submerged slope. The masonry wingwalls and parapet wall appear to be in good condition. The embankment crest width varies from 15 to 20 feet and is grass covered. Bare earth is exposed parallel to the eastern service spillway training wall (see overview photo). It was observed that the left abutment area extends to the east of the embankment for a distance of at least 300 feet with the same elevation as the dam crest. A deciduous tree about forty feet tall and two smaller evergreens are growing on the dam crest. The downstream slope supports shrubs and flowers planted as part of a park beautification program. There was no evidence of seepage on the date of the inspection.
- c. Appurtenant Structures. The broad-crested masonry service spillway located at the right abutment appears to be in fair condition. The masonry walls of the approach channel have a slope of 1H:1V and show little evidence of deterioration. The center five feet of the masonry weir crest is depressed about 3 inches below the remaining length of weir. It could not be determined if this section was constructed in this manner or if there is settlement of the spillway headwall.

The broad-crested auxiliary spillway is located about 60 feet northwest of the service spillway. The weir crest is composed of non-mortared loose stone and has a non-uniform surface elevation. The vertical non-mortared training walls are in good condition. It was noted that discharge was flowing between the large cobbles forming the downstream end of the weir crest. The downstream channel invert is less than one foot below the poorly defined weir crest and is composed of the same cobble size material. A low-lying area west of the auxiliary spillway appears to function as a stilling pool during high spillway discharges. The unlined outlet channel downstream of the stilling pool is trapezoidal in section and contains three one foot drops of non-mortared stone construction. Undermining of the left side of the outlet channel has created a vertical side wall about 3 feet high.

A 30-inch diameter pre-cast concrete outlet pipe is located about 10 feet west of the service spillway. The sluice gate is submerged and the operator was

SECTION 2

ENGINEERING DATA

2.1 Design

The following information was made available for review of Lower Porter Pond Dam:

- 1. Report entitled "Master Plan Study for D. W. Field Park," April 1968 prepared by Camp, Dresser and McKee, Boston, Massachusetts.
- 2. Dam inspection report prepared by Commonwealth of Massachusetts, Department of Environmental Quality and Engineering (DEQE), December, 1972.
- 3. Dam inspection report prepared by the County of Plymouth, Engineering Department, February, 1942.
- 4. Drawing entitled "Proposed Location and Design for Permanent Structures at Easton Dam" dated April, 1940.
- Note 1: No design calculations, embankment cross-sections, or record drawings are available for this site.
- Note 2: The principal design features for this dam are shown on the sketches enclosed in Appendix B.

2.2 Construction

No information is available concerning construction of Lower Porter Pond Dam except that it was part of the Works Progress Administration program in 1940.

2.3 Operation

No operational data is available for this site.

2.4 Evaluation

- a. Availability. The information made available was obtained from the City of Brockton and the DEQE.
- b. Adequacy. The drawing and reports together with the visual inspection data are adequate for a Phase I Investigation.
- c. Validity. The data obtained for this site is in general conformance with the field measurements.

h. Diversion and Regulating Tunnel.

Not applicable.

i. Spillway.

Type (Service)	Broad-crested masonry weir
(Auxiliary)	Broad-crested loose stone weir
Length (Service)	12 feet
(Auxiliary)	20 feet
Crest Elevation (Service)	160.0
(Auxiliary)	160.0
Gates	None
Upstream Channel (Service)	11 feet long, masonry invert 12 feet wide, grouted stone side-slopes.
(Auxiliary)	None
Downstream Channel (Service) (Auxiliary)	Stilling basin & Thirty Acre Pond Stilling pool, trapezoidal drop sections, stilling basin & Thirty Acre Pond.

j. Regulating Outlets. A hand-operated sluice gate of unknown dimensions is situated at the upstream end of a 30 inch diameter pre-cast concrete outlet pipe. The gate invert elevation is approximately 154.0 MSL and is considered to be at or near the bottom of Lower Porter Pond.

c.	Elevation. (feet above NGVD)	
	Streambed at Toe of Dam Bottom of Cutoff Maximum Tailwater Normal Pool Full Flood Control Pool Spillway Crest (Service and Auxiliar Design Surcharge (Original Design) Top of Dam Test Flood Pool Design Surcharge	151.0 NA 158+ 160.0 NA 160.0 Unknown 163.0 164.2
d.	Reservoir. (Length in feet)	
	Normal Pool Flood Control Pool Spillway Crest Pool Top of Dam Test Flood Pool	900 NA 900 920 950
e.	Storage. (Acre-feet)	
	Normal Pool Flood Control Pool Spillway Crest Pool Top of Dam Test Flood Pool	24 NA 24 54 69
f.	Reservoir Surface. (Acres)	
	Normal Pool Flood Control Pool Spillway Crest Top of Dam Test Flood Pool	8 NA 8 12 14
g.	Dam.	
	Type Length Height Top Width Side Slopes (upstream) (downstream) Zoning Impervious Core Cutoff Grout Curtain	Earth embankment 200 feet 12 feet 15-20 feet Unknown earth slope below the water capped with a parapet wall. 2H:1V Unknown Unknown Unknown Unknown

- g. Purpose of Dam. The dam was constructed and is presently used for recreational purposes.
- h. <u>Design and Construction History</u>. Lower Porter Pond Dam, originally called Easton Dam, was constructed in 1940 as part of the Works Projects Administration (WPA) program. Further information is unavailable.
- i. Normal Operating Procedures. The reservoir is normally self-regulating with the normal pool slightly above the crest elevation of the service and auxiliary spillways.

1.3 Pertinent Data

a. Drainage Area. The watershed for Lower Porter Pond Dam is approximately 3.4 square miles in area and is wooded with some residential developments and low-lying marshes in the upper reaches. Three reservoirs (Brockton Reservoir, Waldo Lake, and Upper Porter Pond) are located upstream of Lower Porter Pond within the drainage area.

h. Discharge at Damsite.

- 1) Outlet Works. The outlet works consists of a gated 30-inch diameter pre-cast concrete pipe with an invert elevation of 154.0 MSL. The estimated discharge capacity is about 25 cfs when the reservoir surface is at the top of the dam.
 - 2) Maximum Known Flood at Damsite. Unknown.
- 3) Ungated Spillway Capacity at Top of Dam. The combined discharge capacity of the service and auxiliary spillways with reservoir at top of dam Elev. 163.0 is 488 cfs.
- 4) Ungated Spillway Capacity at Test Flood Elevation. The combined spillway capacity with reservoir at test flood Elev. 164.2 is about 720 cfs.
 - 5) Gated Spillway Capacity at Normal Pool. Not applicable.
 - 6) Gated Spillway capacity at Test Flood Elevation. Not applicable.
 - 7) Total Spillway Capacity at Test Flood Elevation. Same as 4) above.
 - 8) Total Project Discharge at Top of Dam. Same as 3) above.
- 9) Total Project Discharge at Test Flood. The combined discharge capacity of the spillways and the flow over the dam at test flood Elev. 164.2 is 2,500 cfs.

b. Description of Dam and Appurtenances. Lower Porter Pond Dam is an ill-defined earth embankment approximately 200 feet long with a maximum height of about 12 feet. The top width is approximately 15 feet and the downstream slope is about 2H:1V. The upstream slope is unknown and is capped with a two-foot high parapet wall.

The broad-crested stone masonry service spillway is located near the right abutment. The trapezoidal approach apron is eleven feet long and consists of a masonry invert with grouted stone side slopes. The spillway has a 12-foot long weir and a 9-foot high vertical downstream headwall. Discharge over the service spillway is directed into a riprapped stilling basin and then into Thirty Acre Pond through a double arch reinforced concrete highway bridge. Each arch has a clear opening about 10 feet wide and 7 feet high.

The broad-crested stone masonry auxiliary spillway is situated about 60 feet to the right of the service spillway. The spillway is 20 feet long with vertical masonry training walls and a dumped rock invert. The initial outlet channel elevation is about one foot below the weir crest. The channel slopes gently downstream and outlets into a shallow stilling pool. The channel is constructed downstream of the stilling pool as a series of trapezoidal drop sections for a distance of approximately 50 feet where discharges from the auxiliary spillway are conveyed into the service spillway stilling basin.

- c. <u>Size Classification</u>. Lower Porter Pond Dam has a maximum storage capacity of approximately 54 acre-feet and a maximum height of about 12 feet. The criteria for the "Small" size category includes dams which have less than 1,000 acre-feet storage capacity and are less than 40 feet high. Lower Porter Pond Dam is therefore classified as a "Small" size dam.
- d. <u>Hazard Classification</u>. Lower Porter Pond Dam is located approximately 70 feet upstream of Thirty Acre Pond. Approximately 35 single family dwellings and commercial establishments are downstream of Thirty Acre Pond. In addition, the discharge from Thirty Acre Pond passes through two small ponds, a narrow manmade channel approximately one mile long and into a 1,800-foot long underground culvert. The region of potential flooding which borders the man-made channel and which is upstream of the culvert is a densely populated urban neighborhood. The dam is classified as "Significant" hazard since flood waters resulting from failure at Lower Porter Pond Dam could cause appreciable property damage but little or no loss of life. This assessment is based on the breach analysis, which computed a stream depth of 1.1 feet at the initial downstream damage center.
- e. Ownership. The dam is owned by the City of Brockton, Department of Parks and Recreation, City Hall, Brockton, Massachusetts, 02401, Telephone 617-580-1100.
- f. Operator. The dam is operated by the Department of Parks and Recreation. Mr. John Dorgan Sr., Park Commissioner, is in charge of dam operations. Telephone 617-580-1100.

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT LOWER PORTER POND DAM

SECTION 1

PROJECT INFORMATION

1.1 General

- a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspections throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. O'Brien & Gere Engineers, Inc. has been retained by the New England Division to inspect and report on selected dams in the Commonwealth of Massachusetts. Authorization and notice to proceed were issued to O'Brien & Gere Engineers, Inc. by a letter from the Corps of Engineers dated November 6, 1979 and signed by Colonel William E. Hodgson, Jr. Contract No. DACW33-80-C-0014 has been assigned by the Corps of Engineers for this work.
- b. <u>Purpose</u>. The purpose of performing technical inspection and evaluation of non-federal dams is to:
- 1. Identify conditions which threaten public safety and make the Owner aware of any deficiencies to permit him to correct them in a timely manner.
- 2. Encourage and prepare the states to initiate effective dam safety programs for non-federal dams.
 - 3. Update, verify, and complete the National Inventory of Dams.
- 1.2 <u>Description of Project</u> (Information for this dam was obtained from the City of Brockton and the Massachusetts Department of Environmental Quality and Engineering (DEQE).
- a. Location. Lower Porter Pond Dam is located on Beaver Brook within the City of Brockton, Massachusetts. A 35-home community located about 0.5 miles downstream is considered the major damage center. Beaver Brook outlets into Salisbury Brook about 0.75 miles downstream and Salisbury Brook joins Trout Brook to form the Salisbury Plain River about 2 miles downstream of the dam. The dam is shown on the USGS Quadrangle entitled "Brockton, Massachusetts" at coordinates N 42 05.9, W 71 02.6. A regional location plan of Lower Porter Pond Dam is enclosed as Figure 1, pq. vi.

u

7.3 Remedial Measures

- 1) The bare spots on the embankment crest should be covered with suitable vegetation and protected from pedestrian traffic.
- 2) Erosion protection should be provided for the upstream slope of the embankment.
- 3) The operating condition of the pond drain sluice gate should be determined and the gate should be repaired, if necessary. The gate operator should be stored in a convenient location for emergency use.
 - 4) A program of annual periodic technical inspection should be instituted.
- 5) A formal surveillance and flood warning plan, including round-the-clock monitoring during heavy precipitation, should be developed.

7.4 Alternatives

As an alternative to the above recommendations and remedial measures, the dam could be breached and the pond drained.

APPENDIX A

INSPECTION CHECKLIST

VISUAL INSPECTION CHECK LIST

INSPECTION TEAM ORGANIZATION

Project:	LOWER PORTE	R POND DAM
National I.D. #:	MA 00424	,
Location:	Brockton, MA	
Type of Dam:	Earth Embankme	ent
Inspection Date(s):	October 17, 1979	
Weather:	Overcast, 47°	
Pool Elevation:	160.2 M	SL
Inspection Team		
Leonard Beck Steven Snider Alan Hanscom Rodney Georges	O'Brien & Gere O'Brien & Gere O'Brien & Gere Bryant & Associates	Structures Foundations & Materials Structures Hydrology/Hydraulics
	s, Vice-President, O'Brien & ction with the inspection tear	k Gere has visited the site but no n.
Owner's Representati	<u>ve</u>	
Mr. John Dor	gan, Park Commiss.	ioner, D.W. FIELD PARK
Brockton MA	1	

VISUAL INSPECTION CHECK LIST

Project: LOWER PORTER POND DAM

National I.D. #: <u>MA 00424</u>

Date(s): October /7, /979

AREA EVALUATED	CONDITIONS
DAM EMBANKMENT	
Crest Elevation	160.0 MSL
Current Pool Elevation	160.2 MSL
Maximum Impoundment to Date	UKnown.
Surface Cracks	None.
Pavement Condition	N/A
Movement or Settlement of Crest	None.
Lateral Movement	None.
Vertical Alignment	Good.
Horizontal Alignment	Good.
Condition at Abutment and at Concrete Structures	No problems noted.
Indications of Movements of Structural Items on Slopes	None.
Trespassing on Slopes	Bare ground on embankment crest near spillway.
Vegetation on Slopes	Flowers and small shrubs ond/S Slope, part of beautification prog
Sloughing or Erosion of Slopes or Abutments	None.
Rock Slope Protection - Riprap Failures	None.

VISUAL INSPECTI	ION CHECK LIST
Project: LOWER PORTER	POND DAM
National I.D. #: <u>MA 00425</u>	
Date(s): October 17, 1979	
AREA EVALUATED	CONDITIONS
DAM EMBANKMENT (Con't)	
Unusual Movement or Cracking at or near Toes	None.
Unusual Embankment or Downstream Seepage	None.
Piping or Boils	None.
Foundation Drainage Features	None.
Toe Drains	None.
Instrumentation System	None.
	•

u

VISUAL INSPECTION CHECK LIST		
Project: LOWER PORTER POND DAM		
National I.D. #:		
Date(s): October /7, /979		
<u> </u>	T	
AREA EVALUATED	CONDITIONS	
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS SERVICE SPILLWAY		
a. Approach Channel		
General Condition	Fair.	
Loose Rock Overhanging Channel	None.	
Trees Overhanging Channel	None.	
Floor of Approach Channel	Grouted stones in good condition.	
b. Weir and Training Walls		
General Condition of Concrete	Depression in stone masonry	
Rust or Staining	spillway head wall. N/A.	
Spalling	None.	
Any Visible Reinforcing	None.	
Any Seepage or Efflorescence	None.	
Drain Holes	None.	
c. Discharge Channel		
General Condition	Good Ripropped stilling basin & Thirty Acre Pond.	

10

K

VISUAL INSPECTION CHECK LIST		
Project: LOWER PORTER POND DAM		
National I.D. #: MA 00425		
Date(s): Ocfober /7, /979		
AREA EVALUATED	CONDITIONS	
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS (Con't) SERVICE SFILLWAY		
Loose Rock Overhanging Channel	None.	
Trees Overhanging Channel	None.	
Floor of Channel	Unknown. Submerged.	
Other Obstructions	Unknown. Submerged. R/C double arch bridge about 45'd/s of Service Spillway.	

2

VISUAL INSPECTION CHECK LIST Project: LOWER PORTER POND DAM National I.D. #: MA 00425 Date(s): October 17, 1979 CONDITIONS AREA EVALUATED OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS AUXILIARY SPILLWAY Approach Channel Poor. General Condition None. Loose Rock Overhanging Channel Trees Overhanging Channel None. Dumped Stone. Floor of Approach Channel Weir and Training Walls Vertical stone mosonry walls in quad condition. Irregular stone crest. General Condition of Concrete Rust or Staining None. Some loss of mortar Spalling None. Any Visible Reinforcing None. Any Seepage or Efflorescence None. Drain Holes Discharge Channel Fair. Some erosion of left channel General Condition bank.

12

VISUAL INSPECTION CHECK LIST

Project: LOWER PORTER POND DAM

National I.D. #: MA 00425

Date(s): October 17, 1979

AREA	EVAL	.UA1	ED
------	-------------	------	----

CONDITIONS

OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS (Con't)

Loose Rock Overhanging Channel

Trees Overhanging Channel

Floor of Channel

Other Obstructions

Some at bank under mining.

One deciduous tree at location of undermining.
Dumped stone withree stone mosonry steps.
None.

VISUAL INSPECTION CHECK LIST

Project: LOWER PORTER POND DAM

National I.D. #: MA 00425

Date(s): October 17, 1979

AREA EVALUATED	CONDITIONS
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE	
a. Approach Channel	
Slope Conditions	Submerged.
Bottom Conditions	Submerged. Submerged.
Rock Slides or Falls	None.
Log Boom	N/A None.
Debris	None.
Condition of Concrete Lining	Un Known.
Drains or Weep Holes	None
b. Intake Structure - OPEN AIR GATE VALVE	
Condition of Concrete	Masonry headwall in good condition.
Stop Logs and Slots	None.
Sluice Gate	Operator missing. Unknown if operable occording to owner's representative.

VISUAL INSPECTION CHECK LIST

Project: LOWER PORTER POND DAM

Date(s): October /7,1979

AREA EVALUATED	CONDITIONS
OUTLET WORKS - TRANSITION AND CONDUIT	
General Condition of Concrete	NA
Rust or Staining on Concrete	N/A
Spalling	N/A
Erosion or Cavitation	None,
Cracking	None.
Alignment of Monoliths	NA
Alignment of Joints	N/A
Numbering of Monoliths	N/A
Condition of Outlet Conduit	PCCP outlet in good condition. Partially submerged by Stilling basin.
	·

APPENDIX B

ENGINEERING DATA

	544.0	Вт	CATE	JUB NO
LOWER PORTER POND DAM				
LUNCH TUNI LA PUNU DAM				

APPENDIX B

ENGINEERING DATA

TABLE OF CONTENTS

	PAGE
SITE PLAN & SPILLWAY SECTIONS	B-1
BROCKTON RESERVOIR DAM SYSTEM	B-2
DESCRIPTION OF DAM (DEGE FILES)	B-3
INSPECTION OF DAM & RESERVOIR, PLYMOUTH CO. (DEQE FILES) B-4
SPILLWAY PICTURES (DEQE FILES)	B-5

11. TYPICAL REACH OF SALISBURY BROOK ABOUT $1\frac{1}{2}$ MILES DOWNSTREAM OF LOWER PORTER POND DAM. (10/17/79)

12. ENTRANCE TO APPROXIMATELY 600 YARD LONG BOX CULVERT FOR SALISBURY BROOK IN BROCKTON ABOUT ONE AND 3/4 MILES DOWNSTREAM OF LOWER PORTER POND DAM. (10/17/79)

9. E. BRETT POND (DRAINED) INLET STRUCTURE ABOUT 1150 YARDS DOWN-STREAM OF LOWER PORTER POND DAM. (10/17/79)

10. CROSS POND SPILLWAY APPROXIMATELY 1450 YARDS DOWNSTREAM OF LOWER PORTER POND DAM. (10/17/79)

7. UPPER PORTER POND DAM SPILLWAY APPROXIMATELY 350 YARDS UPSTREAM OF LOWER PORTER POND DAM. (10/17/79)

8. 30 ACRE POND DAM SPILLWAY ABOUT 700 YARDS DOWNSTREAM OF LOWER PORTER POND DAM. (10/17/79)

5. BROCKTON RESERVOIR DAM SPILLWAY APPROXIMATELY 2100 YARDS UP-STREAM OF LOWER PORTER POND DAM. (10/17/79)

6. WALDO LAKE DAM SPILLWAY ABOUT 1050 YARDS UPSTREAM OF LOWER PORTER POND DAM. (10/17/79)

3. BRIDGE APPROXIMATELY 50 FEET DOWNSTREAM OF THE SERVICE SPILLWAY AND 150 FEET DOWNSTREAM OF THE AUXILARY SPILLWAY. (10/17/79)

4. CHANNEL DOWNSTREAM OF THE BRIDGE WHICH IS DOWNSTREAM OF THE IMPOUNDMENT.(10/17/79)

1. SERVICE SPILLWAY LOOKING UPSTREAM TO ARD THE IMPOUNDMENT. (10/17/79)

2. AUXILARY SPILLWAY OUTLET CHANNEL LOOKING DOWNSTREAM. (10/17/79)

I

.

•

į

•

•

.

Í

APPENDIX C SELECTED PHOTOGRAPHS OF PROJECT

LOCAT	ION PLAN	Page No.
Site	Plan Sketch	Α
Regio	nal Plan	В
РНОТО	GRAPHS	_
No.		Page No.
1.	Service spillway looking upstream toward the impoundment.	1
2.	Auxilary spillway outlet channel looking downstream.	1
3.	Bridge approximately 50 feet downstream of the service spillway and 150 feet downstream of the aux-	2
4.	ilary spillway. Channel downstream of the bridge which is downstream	2
5.	of the impoundment. Brockton Reservoir Dam spillway approximately 2100	3
6.	yards upstream of Lower Porter Pond Dam. Waldo Lake Dam spillway about 1050 yards upstream of Lower Porter Pond Dam.	3
7.	Upper Porter Pond Dam spillway approximately 350 yards upstream of Lower Porter Pond Dam.	4
8.	30 Acre Pond Dam spillway about 700 yards downstream of Lower Porter Pond Dam.	4
9.	E. Brett Pond (drained) inlet structure about 1150 yards downstream of Lower Porter Pond Dam.	5
10.	Cross Pond spillway approximately 1450 yards downstream of Lower Porter Pond Dam.	5
11.	Typical reach of Salisbury Brook about 1½ miles down- stream of Lower Porter Pond Dam.	6
12.	Entrance to approximately 600 yard long box culvert for Salisbury Brook in Brockton about 1 3/4 miles downstream of Lower Porter Pond Dam.	6

APPENDIX C

(

PHOTOGRAPHS

From Commonwealth of Massackeets DEQE Files

B-5

DAM NO.../37...

COUNTY OF PLYMOUTH, MASSACHUSETTS ENGINEERING DEPARTMENT

1	INSPECTION OF DAM AND RESERVOIRS
	Inspector Gfroerer Date Feb. 1942. City or Town Brock ton.
	Location Southerly end of Lower Porter's Fond on Field Fackery
	Owner City of Brockton Use
	Material and Type Grave & Oby Dyke - Stone Spillwag.
	Maximum Head in Feet (Full Pond Level to Bottom of Spillway)
	Length 200 feet Width 40 feet plus
	Area of Watershed 7. Sq. Miles Capacity 12,000,000 36 5 A.F.
	Length of Overflow or Spillway 20 feet and 12 feet Outlets (Pipes or Flumes)
	30 inch diam pipe.
	Dam Constructed by Linder Construction by City-W.P.A. Date Aug 1240
	Recent Repairs
	Evidence of Leakage None
	Condition New and sound.
	Topography of Country Below Slightly irregular - Solisbury Brook - Fonds - City - Mars
"是家	Nature, extent, proximity, etc. of buildings, roads or other property in danger if failure should occur
温表	No buildings near. Would be absorbed in 30 Acre Pond
A.	
	Remarks and Recommendations Spillways smple for all conditions except
· Par	serious failure of dams above.
全 然	Sound & good condition May, 1944. No change Sept. 1946. Good-wahanged 186-1948.
1	Good-no changes Nov. 1950, Sound May 11-1. No change - good July 1952 Sound-March note
	Feb. 1953 Good-planty water Dec. 1954. Good as always Sept 1956. Good at 1752
	Good condition Sept. 1958. Good-no change Oct. 1960. Sound Oct. 1962. Good-no change Oct. 1964. Good-no change Dec. 1966. Good-no change Oct. 1968. Good-no change
	Oct 1969. B-4
	From Commonwealth of Massachusets DEQE Files

DESCRIPTION OF DAM

DISTR	ICT	
Submitted by A. Dugan	Dam No. 7-12-44	/ - 7
Date 12-5-72	City/Pown BROCK	TON
	Name of DamLower	PORTER PO
 1. Location: Topo Sheet No. 32	D	
Provide $8\frac{1}{2}$ " x ll" in clear co clearly indicated.		
 2. Year Built Un KNOWN Year/	s of Subsequent Repairs_	
 3. Purpose of Dam: Water Supply_	Recreationa	lX
	Other	
 4. Drainage Area: 7 S		Acres
 5. Normal Ponding Area:		Ave.Depth
Impoundment: 12,000,00	oo Gals.	Acre Ft.
 6. No. and Type of Dwellings Loca	ted Adjacent to Pond or I	Reservoir
i.e. Summer Homes, etc. Non	•	
 7. Dimensions of Dam: Length Slopes: Upstream Face		
	25' 40'	
 8. Classification of Dam by Mater	ial:	
Earth Conc. Ma		Mason.
Timber Rockfill		

u

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

LOWER PORTER POND DAM

APPENDIX D HYDROLOGIC & HYDRAULIC COMPUTATIONS

TABLE OF CONTENTS

ACOLONIAL MANUTOLAND FLAVOR A CHOMING FLAGO MARKET A	PAGE
REGIONAL VICINITY MAP, FIGURE 1, SHOWING FLOOD IMPACT AN	
Tp COMPUTATIONS	D-2
PMP DATA	D-2
ELEVATION SKETCH OF SPILLWAYS	D-2
STAGE-DISCHARGE & STAGE-STORAGE COMPUTATIONS	D-3
STAGE - DISCHARGE & STAGE - STORAGE GRAPHS	D-4
To COMPS., PMP DATA, ELEV. SKETCH DAM & SPWY (BROCKTON	DAM) D.5
STAGE-DISCHARGE & STAGE-STORAGE COMPS. (BROCKTON DA	n) D-6
TP COMPS., PMP DATA, ELEY. SKETCH DAM & SPWYS. (WALDO LA	KEDAM) D-7
STAGE-DISCHARGE & STAGE-STORAGE COMPS. (WALDO LAKE L	24M) D-B
TP COMPS., PMP DATA, ELEY. SKETCH DAM & SPWY. (UPPER PORT	ER DAM) D-9
STAGE-DISCHARGE & STAGE-STORAGE COMPS. (UPPER PORTER	R DAM) D-10
ELEV. SKETCH DAM & SPWYS., STAGE-DISCHARGE & STAGE-STORA	1GE
COMPS. (THIRTY ACRE POND)	D-11
SECTION @ HAZARD AREA	D-12
HEC-1 DAM SAFETY VERSION, COMPUTER OUTPUT	D-13+D-25
HEC-1 DAM SAFETY VERSION, BREACH ANALYSIS, COMPUTER OUTPUT	0-26 + 0-31

	BRYANT ASSOCIATES, INC. 648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800	JOB NED-COE, LOWER PORTER POND DAM. SHEET NO D-Z OF DATE. CALCULATED BY RG DATE. CHECKED BY SHS DATE
i	LOWER PORTE	EE DAM - H&H 1/
	SUBDRAINAGE AREA	=0.08 sq.Mi
	SNYDER HYDBOGRAPH CO	DEFFICIENTS
	$C_{c} = 2.0$	Cp = 0.5
	TP COMPUTATIONS	
	$L = 0.64 \text{ MILES}$ $T_P = Q \cdot (L \times L_{Ca})^{.3}$	Lca = 0.23 MILES
	$T_p = 2 \times (.64 \times .23)^{-2}$	
2	PMP DATA	
	FLOM HM5#33 THE 24	HOUR 200 SAMI INDEX RAINFALL 16 21.5
	Chr. % OF INDEX FOR T 12hr. % " " " 24hr. % " " "	THIS BASIN = 111 " " = 124 " " = 133
-	DAM ELEVATION & LENGTH .	and SPILLWAY DIMENSIONS SKETCH
	AUX. SPILLWAY TOP OF D	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LOOKING DOWNSTREAM

TOP OF DAM

D-2

JOB NED-COE, LOWER PO	OFTER POND DAM
SHEET NO	. OF
CALCULATED BY RG	DATE:
CHECKED BY SHS	DATE

LOWER PORTER DAM cont.D

STAGE DISCHARGE

H=0 @ SERVICE SPILLWAY CREST (ELEV. 160.0 MSL)

1) SERVICE SPILLWAY:
$$C = 3.1$$
 $L = 12'$ $Z = 1$

$$b_0 = 12'$$
 FOR $H \le 3$ $Q = C(\frac{60 + 6H}{2})H$

$$FOR \ 4 > 3 \ Q = C(\frac{60 + 6H}{2})H$$

FOR
$$H > 3$$
 $Q = C[(\frac{60+6H}{2})3^{1.5} + 18 \times (H-3)^{1.5}]$
2) AUXILIARY SPILLWAY: $C = 2.7$ $L = 20'$ $Q = CL(H-0.25)^{1.5}$

	,		1	1	
ELEVATION	H	91	92	93	EQ
MSL	F+	CF5	CF5	CF5	CFS
160	0	0	0	0	0
161	1	40	35	0	. 75
162	2	123	125	0	248
163	3	242	246	0	4 88
164.	4	297	392	1,339	2028
165	5	399	559	3,790	4,748
166	6	532	745	6,962	8,239
167	7	688	947	10,718	12,353
168	8	865	1,165	14,979	17,009
			L	I	L

STORAGE

ELEVATION(FI.) AREA (qc.) STORAGE (A FEET) (PLANIMETERED FROM USGS) (COMP. BY HEC-1 PECGRAM 0 151 160 163 170 177

NORMAL POOL

TOP OF DAM

2

JOB NED -C	OE, <u>LOW</u>	ER POR	TER POND DAM	-
SHEET NO	D-5		OF	_
CALCULATED BY.	RG		DATE	_
CHECKED BY	SHS	-	DATE	-

BROCKTON LAKE DAM - H& H

DRAWAGE AREA

= 2.8 54.Mi

SNYDER HYDROGRAPH COEFFICIENTS

Cp = 0.5

TP COMPUTATIONS

Lea = 1.40 MILES

$$T_p = 2.0 \times (2.7 \times 1.4)^{-3} = 3.0.$$

= 3.0. Hours

PMP DATA

FROM HM5 # 33 THE 24 HOUR 200 SAMI INDEX RAINFALL 16 21.5

Ghr. % OF INDEX FOR THIS BASIN = 111

12hr. % "." = 124

24hr. % " " " = 133

DAM ELEVATION & LENGTH and SPILLWAY DIMENSIONS SKETCH

LOOKING DOWNSTREAM

SPILLWAY

SPILLWAY

SPILLWAY

SPILLWAY

SPILLWAY

SPILLWAY

SS'

3.3'

2.5' FLASH BOARDS IN PLACE

LOOKING DOWNSTREAM

C= 5.3 W/BOAZDS C= 2.9 TOP OF DAM

c= 2.9 U/out

198.5 ? Msl

D-5

SHEET NO D- 6 OF CALCULATED BY SHS DATE

SCALE

BROCKTON LAKE DAM - HEH cont'o

STAGE DISCHARGE WITH FLASHBOARDS

(H=0 @ SPILLWAY CREST)

1) SPILLWAY: C= 3.3 L=25' Q5 = CLH 1.5

2) TOP OF DAM: C= 2.9 L= 1800-25=1775 Qdom = CL(H-3.3) 1.5

ELEVATION	Н	Q ₅	Rtop	EQ
ELEVATION	П.	4.5	7 10P	`
M5L	Ft.	CFS	CFS	CFS
201	0	0	0	· O
202	1	83	0	83
203	2	233	0	<i>23</i> 3
204	.3	429		429
204.3	3.3	495	0	435
205	4	660	3,015	3,675
206	5	927	11,410	12,332
207	6	1,213	22,637	24,050
208	7	1,528	36,635	38,163
209	8	1,567	52,450	54,317
210	9	2,728	70,050	72,278

SPILLWAY DISCHARGE WITH NO FLASHBOREDS FOR TOP OF WHI EL

C = 2.8 L = 25 $q = CL(H + 2.5)^{1.5}$ q = 978 GFS

		STORAGE		
		ELEV. (MSL)	AREA (AC.) (PLANIMETERED FROM USGS)	STORAGE (ACRE FEET) (COMPUTED BY HEC-1 PROGRAM)
		194.3	. 0	0
NORMAL	POOL	201	85	190
TOP OF	DAM	204.3		493
	·	210	126	1133

JOB NED-CO	DE, LOWER	PORTER POND DAM
SHEET NO	D-7	OF
CALCULATED BY	RG	DATE
CHECKED BY = =	SHS	DATE

WALDO LAKE DAM - H&H

1/

SUBDRAINAGE AREA

= 0.38 59 Mi

SNYDER HYDROGRAPH COEFFICIENTS

Ct = 2.0

Cp = 0.5

TP COMPUTATIONS

L = 0.85 MILES $L_{ca} = 0.28$ $T_{p} = C_{t} \cdot (L \times L_{ca})^{.3}$ $T_{p} = 2 \times (.85 \times 28)^{.3}$ $T_{p} = 1.25 \text{ Hoves}$

PMP DATA

FROM HMG # 33 THE 84 HOUR 2005 MI INDEX BAINFALL 15 21.5

Chr. % OF INDEX FOR THIS BASIN = 111

12hr " " " " " =124

24hr " " " " " =133

DAM ELEVATION & LENGTH and SPILLWAYS DIMENSIONS SKETCH

LOOKING DOWNSTEERM.

TOP OF DAM ELEV. = 198.1

AUX.

SPILLWAY

7.42'

3.6'

194.57

FEINCIPAL

SPILLWAY

194.57

194.57

C= 3.3 W/BOARDS

C TOP = 2.9

C= 3.1

LOOKING DOWNSTREAM

BRYANT ASSOCIATES, INC.

648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800 SHEET NO. D- 8 OF.

CALCULATED BY RG DATE

CHECKED BY. SHS DATE

SCALE

WALDO LAKE DAM HEH CONT'A

STAGE DISCHARGE

H=0 @ SPILLWAY CREST

1) SERVICE SPILLWAY: C = 3.1 L=16 Q = CLH".5

2) AUXILIALY SPILLWAY: C = 3.3 L = 7.42' Q2 = CLH1.5

FOR H < 3.6

3) HY 3.6 PIPE CONTROL $Q_3 = .65 \text{ A} \sqrt{29} d*$ 4) TOP OF DAM : C = 2.9 L = 300' $Q_A = CL (H-3.6)$

d = depth of wATER TO CENTROLD OF PIPE

ELEVATION	H	9,	92	93	R ₄	€ Q
MSL	FT		CFS	<u> </u>	.	
194.5	0	0	0		0	
195.5	1	5Q	25		. 0	. 75
196.5	2	140	69.	PIPE	.0	209
197.5	3	258	127.	FLOW	. 0	418
1981	3.6	333	160	,	0	499
198.5	4	397	6	173	936	1,500
199.5	5	555	b 41.	188	6,132	6,916
200.5	6	729	3 91	202	13,764	14,786
201.5	7	919	2154	215	23,209	24,497
202.5	8	1,127	225	227	34,168	35,743
			6		_	

SURCHARGE STORAGE

SURCHARGE STORAGE

FROM USAS

BY HEL.1

PROEAN

ELEVATION (MOL)

AREA (AC)

STORAGE (AC. FEET)

NORMAL POOL (FEOM)

194.5

77.

0

TOP OF DAM

(TO)

198.1

200

137

581

JOB NED-COE, LOWER PORTER FOND DAM - D-9 ___ or ._. *R*G ___ CALCULATED BY CHECKED BY SHS DATE

UPPER PORTER DAM

SUBDRAINAGE AREA

= 0.11 sq. Mi

SNYDER HYDROGRAPH COEFFICIENTS

TP COMPUTATIONS

$$L = 0.44$$
 MILES $L_{ca} = 0.22$ MILES $T_{p} = C_{l} \cdot (L \times L_{ca})^{.3}$

PMP DATA

FROM HM5 # 33 THE 24 HOUR 200 SAMI INDEX RAINFALL 16 21.5

DAM ELEVATION & LENGTH and SPILLWAY DIMENSIONS SKETCH

C = 2.B TOP OF DAM

LOOKING DOWNSTREAM

D-9

BRYANT ASSOCIATES, INC.

648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800

JOB NED-CO	OE			
SHEET NO	D-	10	OF	<u> </u>
CALCULATED BY	RG		DATE	
CHECKED BY	SHS		DATE	

SCAL

UPPER PORTER DAM - HEH

STAGE DISCHARGE

(H=0 @ SPILLWAY CREST) ELEVATION = 167.5 MSL 1) SPILLWAY: C = 3.1 L = 25' $Q_s = CLH^{1.5}$

2) TOP OF DAM: C = 2.9 L = 340-25 = 315 $Q_{TOP} = CL(H-3.5)^{1.5}$

		1		
ELEVATION	H	95	PTOP	EQ
MSL	Ft.	CFS	CFS	CFS
167,5	0	0	0	
168.5	/	78	0	18
169,5	2	219	0	219
170.5	3	403	0.	403
171.0	3.5	508	0	508
172.0	4.5	740	913	1,653
173.0	5.5	1,000	2,584	3,584
174.0	6.5	1,284	4,747	6,031
175.0	7.5	1,592	7,308	8,900
176.0	8.5	1,921	10,213	12,134
	1	j]	

STORAGE

i erauturi	ELEV. (MSL)	AREA (AC) (PLANIMETERED FROM USGS)	STORAGE (AC. FEET)
	160	0	. 0
NORMAL POOL	167.5		28
TOP OF DAM	171	19	79

BRYANT ASSOCIATES, INC. 648 Beacon Street

648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800

JOB NED-COE, LONI	ER FORTER	POND	DAM
SHEET NO D-//	OF		
CALCULATED BYRG	DATE		
CHECKED BY SHS	DATE		

THIETY ACRE POND

DAM ELEVATION & LENGTH and SPILLWAYS DIMENSIONS SKETCH

SCALE

	SURCHARGE	_	PLANIMETERED PROM USFS	COMPUTED BY HEC-1 PROGRAM
	ELEVATION	AEEN (AC.J	STOKEAGE (AC Ferry
NORMAL POOL	154	26		0
TOP OF DAM	157			86
	160	37		188

BRYANT ASSOCIATES, INC.

648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800

JOB NED - (COE .	LOWER	PORTER_	13000	DAM
	7)	12			
SHEET NO	\mathcal{D}^{-1}		OF		
CALCULATED BY	_ /	PG	. DATE		
CHICKEDON	S	⊬S	DATE		

SCALE

BROCKTON DOWNSTREAM POUTING

SECTION @ HAZARD AREA

1200 FEET DOWNSTREAM OF THIRTYACAR POND DAM

MANNING'S COEFFICIENTS: CHANNEL -> 0.03

OVERBANKS - 0.08

CHANNEL SLOPE: .008 FT./FT.

	A		HYDMUL041E	ANALTS15 UF	15 ch	SE PUNTER	Post							
∾ ന .			NATIONAL DAM SAFETY PHOGRAM NEM ENGLAND DIVISION - COMPS OF ENGINEERS	NATIONAL DAM SAFETY PROGRAM NGLAND DIVISION - COMPS OF ENGINFERS	SAFETY PE	OF ENG	WEERS							
· · · · ·	81		3	₽	 		Φ	6	•	•				HARTI
***	, x x ,	I LPOHT ROUTED OUTFL	JFLOW FHUM		LOWEN POHIER POND	ONG	-							-ानामा
12 12 13	Y1 1 Y4 160 Y5	1 161	162		164	165	-163 166 8239	167	168					
4 ib 4	SA 0	9 1 1 P	170				1							
7		3 0.01	156		163.0	163.0	-			,				ASINE:
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T F	LOWER POHIER	Unon	ни еа сн тявоивн 1		THIPTYACUE POND	Powo							
\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	155	155	157 285	158 1951	159	160 18775	-	!		1	; ; ;		
26					 	 								
30	× ×,	1 HAZARD CHANNEL ROUT		ING TO HAZAHO CENTER	SENTER		-							
32	71 1 7 0 0 3 3 4	1 3 0.03	90.0	138	150	1200	0.008							
35	77 1100 X 999	1	1700	145	2300	150	466	138		0 + 1				
						,				1			į	
											<u> </u>			
	!	1	1			!	-							1

# 17124 - 201.0 \$10446 - 201.0 00151.04	PALLO PLANTSON PARLIPOR PARLIP	505.9	204.47		DH**CN	. 10 202 11.00 10.1	1 1	INITIAL	STÜRÄĞE	RATIO MAILMUM MAXIMUM		0 60.40;		198,67	198.90	199,20	LESULTS AT UPPER SUM	INITIAL INITIAL INITIAL	STUTAGE	PATTO HARIMUM MAKIMUM OF THE OFF THE O	154.44	22. 42.171 °E.	172.00	11.5.11
190. 190. 190. 190. 190. 190. 190. 190.	MAXIMUM MAX STUKASE OUT			Ì		575.	MAN OF DAM SAFE	ALUE SP		MAX [MU4 MAX		i	356.				SUMMANY OF DAM SAFE	ň	2A.			65.		
201.00 190.	MAXIMUM DUMATION OUTFLOW OVER TOP CFS HUU45					3694 12.17	EFY ANALYSIS	AY CREST T	0.0	MAXIMUM BURATION BUTFLOW BVER TOP	-100H		804. 4.33					71LL#AY CHEST 7	28. 0.	MAKIMUM OUGATION OUTFLOW OVER TOP CFS HUURS		367. 0.00 79H. 3.83		
0P 0F 04H 204,30 493.	TIME OF HOUTELOW HOUTS	~	19.57	18,43	18.83	18.67		OP OF DAM	342.	N TIME OF MAX OUTFLOW	HOURS	29.67	22,33 20,50	19,50	19.00	19.83		0P OF DAM	79. 508.	N TIME OF MAX OUTFLOW HOURS		28.83		
	TIME OF FAILURE HOURS	٠.	00.000000000000000000000000000000000000		಼					TIME OF FALURE		00.00	00.00	0.00	0.00	0.0				TIME DF FAILURE HOURS	0.00	00*0	0.00	0.00

	מס ואצו מס	BROWN OUTFLOW	WALDO LOCAL RUNDER	WALDO TOTAL INFLOW	0077660	PORTER LOCAL RUNOFF	PORTER TUTAL INFLAW	- A UPPER PORTER OUTFLOW	TOURSE LOCAL RUNDER	15561.7 LOUBE PORTER TOTAL INHOW	PORTER OUTFLOW			
60000	8k dina-		7. VV	¥¥ S		UPPER.	4.00 P	4 P	19 19 19 19 19 19 19 19 19 19 19 19 19 1	toteni TR	ALMERICA ACMERICA) 		
PATTO 9	1		28.931	5334.7	5285.]	- \$. 431.7 - \$. 431.7		5441.7	242. Z	5561.7	5558.7	OUTFLOW		
24TIU 8	3723.	3694.	23.151	119.44)	4179. 118.32) (7.541	121.6717	121.6611	194.	124.1117	4381.	בריסט סיי		
RATIO 7	3254.	3226.	20.25) (3691	3644.	5.5017	106.121	3738. 105.86) (170.	3414.	3809.	TE 5.7		
RATIO 6 F	2792.	2765.	17,361 (3164.	3081.	5.661	3160.	3144.	145.	3195.	3195. 90.4A) (ROUTED		
2 01	2327.	2302.	511.	2631.	69.245	166.	70.721	70.101	3.43) (2510.	1350.01			
RATIUS APPLIED TO FLUMS RATIO 3 RATIO 4 RAT	1862.	1,826.	409.	59.691	1674.	3.717	1695.	1653.	2.7417	1667:	1663.	30		
RATIUS APPL RATIO 3 R	1396.	1285.	307.	1418.	32.775	100.	22.9511	794.	73.	802.	799.	PEAK INFLOW		
RATIU 2 H	931.	13.5317	5.7411	14.2117	351.	1.891	351.	347.	1,37)!	347.	346.	FL000 P		
RATIU 1 B	465.	204.	102. Z.8917	6.147	142.	33.	1.62.	141. 3.98)	.6911	141.	3.977(TEST		
PLAN R	-	-	-	-	1	-	-	-	-	-				
4 4 5 4	2.80 7.251	7.25	. 38	3.14	3.14	-111	3.29	3,29	112.	3.37	3.37		!	
STATION	HOCK	0 4 0	4AU30	TAL.	WALOU	ا ا	TUTAL	UPONT	LPONT	13.4	Pear			
00EHA1104	TA LLARBOHOTH	AGUTES TO	IN HORDSCHOAL	2 COMBINED	PO. 180 TO	TATA THEBOT AT	OBATHACO E	MADTER TO	HYOHOGRAPH AT	COMPINED 2	4. UTED TO		C) -

		JED	1AUTO 0	STORA ISPRAT	166.00	6239.00 12353.00 17009.00		TOTAL		리 성 시시 최		ALCETS			A A PA PA	
15140 10046 15140 10046 15.00 0.000 0.00 15.00 162.00 15.00 162.00 15.00 160.00 15.00 160.00 175.00 24.00 176. SP410 176. SP410 1746. 25.55 HOURS 1746. 15.50 HOURS	HYDMOGRAPH MOJITING	TEX PORTER POND	1ECON 1TAPE JPLT 0 0 0 ROUTING DATA	LAG AMSKK K	164.00		STACK-STORAKE DATA FOR		0.0 0.0	04M DATA C000 EXPO 0.0 0.0			LOWER PORTER POND DAM	TEST FLOOD		
			15180 1 19041	NSTPS A		75.00	2 177.	170.] CREL SP#10	160.0 0.0	OF DAM ELEWITION -	 \$ F	;			2	

LOCAL RUNDEF TO LOLLER PORTER POND

•	COMPUTATION
	AUNOFF
	SUB-AREA

HAPHS ICUMD IECON ITAPE UPLT UPHF INAME ISTAGE	HTOHOGHAPHS ISTAU ICUMP IECON ITAPE JPLT JPHT INAME ISTAGE IAUTO	HTDHOUMAPHS
15 TAU ICUMP IECON ITAPE UPLT UPHT INAME ISTAGE TAUTO	ISTAU ICOMP IECON ITAPE UPLT UPHT INAME ISTAGE IAUTO	
		ICUMP IECON ITAPE JPLT JPHT INAME ISTAGE

176.307 STREET - DISCHARGE DATA FOR 12134.00 | UPPER PORTER POND BAM រាស់ត្រូវត្រាស់ក្រានទៅឡើននៃស្ថាតាតាមមាស់តាតាតាតាសម្មេស ក្រាស់សំខាន់ ស្រាក់ក្រាមតែនាគារការការការបានប 8900.00 6031,00 I AUTO ISTAGE STOWA ISPWAT 3584.00 EXPL 0.0 INAME CAHEA 0.0 172.00 1653.00 STAGE-STORAGE DATA FOR UPPER POLITIES PAIN 0.000 CIPMEO ROUTED ONTELOWS FROM UPPER POLITER POLID 0.0 TOPI 00000 171.00 508.00 DAM DATA HYDROGRAPH MGUTING 6.0 6.0 0.0 THES ISANE 4. SKK 0.000 ROUTED GUTFLOW FROM UPPEN PORTER POND JECON LIAPE 403.00 170.50 9 TOP OF MM ELEVATION -> 171.0 0.00 90.0 NSTUL .61 30.83 HUUMS 347. AT TIME 28.83 HUUHS 798. AT TIME 22.67 HOUNS 1653. AT TIME 20.67 HOUMS 2476. AT TIME 19.57 HOUMS 19.33 HOURS 3734. AT TIME 19.00 HUUHS 4297, AT TIME 14.00 HUUHS 6. 169.50 219.00 171 SP 10 000.0 ISTA: NSTPS CHELLINAY CREST REEVATION - 107.5 <u>:</u> 28: 168. 78.00 141. AT TIME 3144. AT TIME 168.50 2E036 160. 0.00 DATE OUTFLOW IS PERK OUTFLUN IS PEAN OUTFLOW IS

2 PMF
PEAN OUTFLOW IS S PMF PEAR OUTFLUE IS ELFV&T 10N= PEAK BUTFLO - 15 PEAK OUTFLOW 15 TPMF DEAK OUTFLOS IS SUPFACE AMEAS CAPACITY .8 PMF ¥9. F. 19 STAGE

Porto dapuden en

INFLOW TO UPPER PUNTEY POND LESS WALDD LAKE	EA SNAP TRSDA TRSPC RATIO ISNUM ISAME LOCAL	PRECIP DATA SPFE PMS R6 R1Z R48 R72 R95 0.00 21.50 111.00 124.00 133.00 0.00 0.00	LROP! SINKH OLTKH RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSHX RTIMP 0 0:00 0:00 1:00 0:00 1:00 0:00 0:00 0:	UNIT HYDROGRAPH DATA 0	RECESSION DATA STATUS -1.70 RECESSION DATA	UNIT HYDHUGRAPH 46 END-OF-PERIOD ORDINATES. LAG= 1.00 HOURS, CP= .50 VOL=	2. 8. 16. 24. 31. 35. 32. 28. 25		0 40.04 HR.MN PERIOD RAIN EXCS LOSS COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q	SUM 22.89 21.68 1.20 9280. (581.)(551.)(30.)(262.78)	PORTER (COMMINE HTDHOGHAPHS	ISTAG ICOMP TECOM TIME OF THE ISTAGE TAUTO
---	---	---	--	------------------------	--	---	----------------------------------	--	--	---	----------	---------------------	--

-	वस्य	CIETENA	IA IA IA IA	202.50 STACK - DUCHARGE DATA	35743.00 FORESTWARD LAKE D	 33355	- SINE	থে মুলানা	वाद्याद्याद्	् 	् श्रीमाना 			- - - - - - - - - - - - - - - - - - -	- चाहाबाह्य -	बाग्रहार	-	
				201.50	24497.00													
	TAUTO	0		200.50	14786.00													
	INAMF ISTAGE	1 i	STORA ISPRAT	199.50	6916.00			EXPL 0.0										
	E E E		TSK S		1500.00			COOL CAMEA	DAM410						v 4			
	TIAPE JALT		AMSKK 0.000	198.10	00.664	* \$	-	ELEVL C	COUD EXPO						FROM WALDO LAKE	, i		
		1 = 1	LAG	197.50	418.00	STAGE-STORAGE DATA		COOM EXPW 0.0 0.0	TOPEL C						FROM L			
	140 100MP		1	196.50	509.00	STA6E-57		0°0	ELEVATION -	·	27.67 HUUMS	22.33 HUURS	20.50 HUUKS	19.50 HUURS	19.17 HOURS	19.00 HUURS	2400H 00.45	
	KOUTED UUTF	aLOSS CLOSS	5N	195.50	75.00	581.	5. 200.	CREL - 2	1 V		351. AT TIME 2	BOA. AT TIME &	1674. AT TIME &	2445. AT TIME	3091. AT THE	AT TIME	4179, AT TIME 19,00 MUUHS	
				194.50	00.0	7.8	161 =N	RLEVATIO.	15°	51	\$1			1.5	Bu£ 51	15 3644.	2	
				STAGE	FLO	SURFACE ARE CAPACITY	ELEVATION	SOLUMNY CREST RELEVATION -		PEAK OUTFLO	2	PEAK SUTFLOW	PEAR OUTFLOW IS	PEAR OUTFLOW	PEAK SUTFLO.		PEAN OUTLOW IS	アプア

RUNDER TO WALDO LAKE	COMPUTATION		TAPE JPLT JPRF INAME ISTAGE TAUTO	(III	ionari Local	PRECIP DATA R12 R24 R46 W72 R96 4.00 133.00 0.00 0.00		0.00 0.05 0.00 0.00	HYDROGHAPH DATA CPE .50 NIAE 0	0 RTIOM= 2.00	1.26 HOUMS; CP# .50 VOL= 1.00 95, 99, 95, 86, 43, 39, 36, 37,	13. 12.	1, 1, 1,	END-OF-PERIOD FLOW COMP O HO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q	SUM 22.88 21.68 1.20 31985.		COMBINE HYDROGHAPHS - DEXICTAN RESERVOIL ROUTE OUT - DUA		ודאף לארן לאבאר ואבאר ואבינה ואניים מארן מאבר ואבינה מארן מאבר ואבינה מארן מאבר מאבר מאבר מאבר מאבר מאבר מאבר מ	그
LOCAL	SUB-AREA RUNOFF	INFLOW TO WALUD LAKE LESS BROCKTON	ISTAU ICOMP	AF A	-	SPFE PMS R6 0.00 21.50 111.00 RSPF TAMBUTTER LY THE BURGERM C MAN		0.00 0.00 1.00	TP= UNIT	STRTUE	UNIT HYDRUGRAPH 59 ENU-UF-P 16. 32. 71. 64.	24, 27, 26, 22, 11, 10, 9, 9, 9,		0 но.34 нч.ни РЕЯІОО RAIN EXCS LOSS			J	3	15743 160AP	
	2747.	.,			. Yz ts		1310	\$ 177	43472	utat.	·· •	- 1- 4:	771	D.	97	e e e e e e e e e e e e e e e e e e e	D-17		كس المستونية	

121		нуонося	SALPH ROUTING	146						ी हो है
	ROUTED OUTFLOW FHOM BRUCKTON LAKE DAN	JCKTON L	IKE DAM							
	ISTAU ICOMP DAM 0 1	1ECON 0	ITAPE 0	JPLT	JPRT 0	INAME ISTAGE	6E IAUTO 0 0			चडाडाड
	01.05 CLUSS AVG		ROUTING DATA IRES ISAME 1 1	1001	0 dwdI	23	LSTR 0			ele el el
	1	0	0.000 0.000	× 000°0	TSK 0.000	STORA ISPHAT	AT -1			ই বিভাগ
STAGE	201.00 202.00 203.00	204.00		204.30	205.00	200.00	201.00	208.00	209.00	STABLE DISCHARGE WIN
FL0#	0.00 83.00 233.00	429.00		495.00	3675.00	12332.00	24050.00	38163.00	54317.00	RESERVOIR DAM
SUNFACE AREAS	0. 85. 126.	STAGE	TOLAKE	OMTA						निनि
CAPACITYS	0. 190. 1133.	F0 A07	OR BROCKTON RESERVOIR	ESERVOI	ď					न्द्रोड़ी इ
ELEVATIONS 194.	CREL SPW	3000	EXPW ELEVL		COUL CAREA	EA EXPL				121-12
יייין איייין איייין דיי		TOPE	ĺ	DAM DATA	DAMWID					គេគេគេគ <u></u>
- 1	OAM ELEVATION	¥ 204.3		0.0	•					171212
<u>a</u>	208, 41 IME 22,33 HUUNS									<u>ार्थ वीस्त</u> ्र
										शक्तां
PEAK OUTFLOW	1									Platric I
	2302, AT TIME 18.83 HOUMS									
		- Ros-	UTED OUTFOUS	F Coust						ſ
, v		- A	·							-
PEAK OUTFLOW IS	2765, AT TIME 18.83 HUUHS									-
	3226. AT TIME 18.33 HOURS	-								3333
T PEAK GUTFLOST TS	3696. AT THE THEM HOURS									10.20
יייי פניא מטודנים וז	SHUDH. 18:81 18:57 18:57									-(888
		1		•	! !					<u> </u>

																		196. 132. 187.	58.	3A. 25. 117. [
⁷ uci			STAN	0			RESERVOIR		IAUT		LOCAL			00.00			85		• 0 •	
growt.			IPRT NS	•		.80 1.00	FOR BROCKTON RES		INAME ISTAGE	-	I SAME 0 1	896 0.00		•05 0•00		2.00	င	215. 143. 95.	63.	20. 20. 18.
		SHTEM POND AM ENGINEERS	FHC IPLE	TRACE	≥FORMED	.60 .70	i I	NOI	۲ A		0.000 0.000 0.000	R46 R72	STRT	00.0	TA = 0	A110H= 2.	66.5	224. 149. 99.		7 6 5 M
		LOWER PORTER Y PROGRAM ONPS OF ENGIN	<u>.</u>	LAOPT TAA	FS TO HE PEG	10= 9 LM110= 1 .50 .60	4 DEVELOPM	DFF COMPUTATION	ITAPE UPL	0 0 0 1 0	2.00	0ATA R24 33.00	LOSS DATA STRKS RTIOK	0.00 1.00	CPs.50 NI	STON DATA	1	734. 2. 155. 7. 103.		31. 30. 21. 20. 14. 13.
gazete T		INOLOGIC ANELYSIS OF LOWER PO NATIONAL DAM SAFETY PROGNA ENGLAND DIVISION - CORPS OF	40C	JOPEH NWT	I-PLAN ANALYS	.20 .30 .40	INFLOW HYDROGRAPH DEVELOPMENT	SUB-AREA RUNDFF	IECO	HYDROGR	SNAP 18504 0.00 3.37	H6 A12 1.00 124.00 1	ERAIN	00.0	3.00	-1.70 GRCSN=	Þ	254. 244. 166. 162. 112. 107.		32. 32. 32. 14.
		HYDROLOGIC NATION NEW ENGLAND)I NIWN	j	MULT	.19 .20	INFLOW		TO BRUCKTON LAKE ISTAG ICOMP	ž	16 TAMEA 1 2.80	PMS 111.	. 800 TKA	0.00 1.00	-	1	0 END-OF 30. 63.	265. 175. 116.	".	51. 34. 22. 15.
AAGE '-1) JULY 1978 26 FEH 79			NO NHR	ם מפ		#RT105=			TWFLOGT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPFE	1	00.0			UNIT HYDROGRAPHIO 14. 243.	276. 183. 121.	.08	53. 35. 23. 15.
Lond Safe I's MASION CAST HOUSE I'S MONTH ION CAST HOUSE I'M CAST	AUN DATEU 02/11/80. TIMEO 14.45.16.				i i	PERCENTAGES OF PAR USED							TASEC COMPUTED AY THE PAGGRAN				220	287. 190. 126.	• •	55. 37. 24.

											19:21 19:15								
		176 1213•																	
		175 8900		-				168											
!	7	174 6031			0.05			-1 167 12353				SN							
	-167.5	173 3584		EH PONU	0.0	-	-	-150 166 8239				PHEVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS							
C		1653		TO LOMEN PURTER POND LESS UPPER PORTEM POND 1 0.08 0 3.37			NO NO	165				TWORK CA	HHOCK	A LOC		L		T TOTAL LPURT	
2 AL E HYDHOUNAPHS E HYDHOUNAPHS HI O SUIFFLUAT FROM UPPER PONTEH POND		171 504		1 LFSS UP	133		LOWER PORTER POND	164		<u> </u>		TREAM NE	L C F	_ ¥	GRAPHS AT	H AT	T0 A T	COMBINE Z HYDROGRAPHS AT ROUTE HYDROGRAPH TO END OF NETWORK	
1 dd d	-	470.5 403		TER POND	121		LOWER P	163				NCE OF S	YOMOGMAP	TOROGRAP	2 HYDKO DHOGHAPH	Z HYDRA	OROGHAPH YDHOGHAP	Z HYDAG DROGRAPH ETWCRK	
0.5 0.1 17al 2 17al 4 1041 1041 105 3UTF[03] FROM UB				0*EH PUH 0.08	E	ROGRAPHS	OUTFLOW FROM	162 248	170			OF SEQUE	RUNUFF HYOROGRAPH AT	HUNUEF HYDROGRAPH AT	CUMMINE 2 HYDROGRAPHS HOUTE HYDROGRAPH TO	COMMINE!	RUNUFF HYDROGHAPH TO	COMBINE 2 HYD ROUTE MYDHOGRA END OF NETWORK	
0.5 -0.1 FOTAL FOTAL UPOH: HGUTES SUT		. .	167.5	5 1	21.5	FOTAL COMBINE HYDROGRAPHS	KOUTED OUTE	161	160			PHEVIE#							
-1.1 2 COM 1	- 1		167.5	INF	0:1	2 2 400	10 M	160	151	163									
* 4 4 4 4 4	, -	5 4	# \$ \$	~ ¥ z	2 - 3	4 2 2	* 2 >	1 4 5	2 2 2	0 ¥									
7 % 7 % 5 %	~ 0	7 0 -	v ~ •	. • ·	80	25	* 5. 40	- 20	D ~	7									
232.25	in in	3 3	000	0 o c	10 3° C				96 96										D-

1	LAST MODIFICATION	z :		INPUT						
1 30 0 10 0 0 0 0 0 0 0	→ № ~		MYDHULUGIC NATIUN NEW ENGLANU	ANALYSIS OF IAL DAM SAFE DIVISIO"	ETY PROGRA	KIEN POND M ENGINEERS				
INFLUE 0 980CK 1	→ ທ &	, in		Þ	0	P		*	0	
	200	0 9	CK TU SKUCKTUN	. AKE	5		x .	1.0		
N	10 11 12	10	111 5.		133	•	50.	-		
V	+1	3.0	ا ا ا			-				
1	16	(10 K		F BEDCKTON 1	AKE DAM					
Ye 210 83 233 429 495 3675 12332 24050 38163 SE 194.3	61	7				1	102	802	502	
\$\$ 126 126	20 21	210 0					24050	38163	54317	
\$5 201 K	22	7027R 0 194.3								
Maria Mari	52	201								
Marting 10 10 10 10 10 10 10 1	27	9	2			-				
1.25	3 6 6 3 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ - v	12. 12. 3.	37 133	i		1		
COMMINE HYDRUGHAPHS 1 COMMINE HYDRUGHAPHS 1 COMMINE HYDRUGHAPHS 1 COMMINE HYDRUGHAPHS 1 COMMINE HALL LAKE 1 1 1 1 1 1 1 1 1	32 32 33	03				0.0	0.05			
KI ROUTED GUIFLUW FRUM WALL LAKE 194.5 194.1 1	36	~	LE HYDRUGHAPHS							
Y4 194.5 195.5 196.5 197.5 198.1 198.5 199.5 200.5 201.5 Y5 0 75 209 418 499 1500 6916 14786 24497 \$4 194.5 200 194.5 200 194.5 200 194.5 200 194.5 200 194.5 200 194.5 200 194.5 200 194.5 200 200 200 200 200 200 200 200 200 20	39	מפאריייין		TWALL TLAKE	-		1			
SE 194.5 194.5 194.5 194.5 101.94.1 101.0	0.4	20.2	2.5.5	6	Γ	1	1	24497	202.5 35743	
К 0 UPDINT 1 UPPEM PUNTER PUND LESS #ALUO LAKE 1 1 0 11 0 3.37 р р 0 21.5 111 124 133 0.0	IM + 0		00							
0.0	0 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	O UPC INFLO		TER PUND LE	ESS #AL00	LAKE		-		
D	05	12 0 1			661	0.0	İ			
	D.									

ာ	1 7 -1-1		ি বিচাহ	PER S	হ ৰাহাহ	a san	12855	্ৰা <u>য়</u> হ	हि हिडिहा	্বাক্তার ্	- SISISISI	STAGE - DISCHARGE DATA FOR	LOWER PORTER POND	- - - -		ज ा जा व	HARD.	
												168.00 7 57	07 (00.60011					
							•		IAUTO			167,00	12353.00					
			IPRT NSTAN						INAME ISTAUE	LSTR	STORA ISPHAT	166.00	8239.00			0.0		
		UND	IPLT		RMED		•		NI IND	dHdI	15K SI	165.00	4748.00	7R	W.	COOL CAREA	DAMW ID	
		-HYDMUL YUSEC-ANALYSES-OF-EQWER-PORFER-PUND NATIONAL DAM SAFETY PHUGHAM NEW ENGLAND UTVISION - CORPS OF ENGINEERS	ICATION IMIN METRC	LROPT FRACE	-PLAN ANALYSES TO HE PERFORMED	T-CHILDS-I-		ROUTING	, a	NG UATA	AMSKK	164.00	2024.00	STALE - STORAGE DATA FOR	Lower Porter Pand Dam	0.0	COUD EAPO	DAM BEFACH DATA
		DAM SAFETY P TISTON + COMP	JOB SPECIF	Z Z	AN ANALYSES		•	HYDROGRAPH ROUTING	AGUTED UUTFLOW-FYUM LUNEW-PORTER-PONY- ISTAQ ICOMP IECON ITAPE	ROUTING DATA		163,00	488.00	TAGE- STORY	JUNEA PORT	0.0 0.0	10PEL CC	MAC
		(OH)LUBEC-ANI NATIONAL ENGLAND DIV	YMIN IDAY	JOPER	MUL [I -PLAN		•		O4-FHUM LUWE	35 AvG		162.00	248.00	ر لہ	170.7	0.0		1
6 FEH 79	-	7 BU		>		RTIOS= 0.00	•		AOUTEO- OUTFLO⇔- ISTAQ	aloss cluss		161.00	75.00		160.	CHEL 160.0	TOP OF CAM ELEVATION	
~	12789. 36.59.		C Z	and the second s		1						150.00	60.0		. 151.	FLEVATION	1	
LAST MUDIFICATION	HUN DATED 02/12/85.					NO INFLOW						STASE	FLOM	SUMFACE-APEA	ELEVATIONS ELEVATIONS	JAY CRES'I E		

- PEAK BREACH DISCHARGE PEAK PARTICULE AT 0.00 HOUSES PEAK

НТОВООВАРЬ НОUTING LOWER PONTER POND BHEACH ГНООИСИ ТНІГТАСЯЕ РОМО 15 10 10 10 10 10 10 10 10 10 10 10 10 10						MATH FOR							T					
######################################			ļ			STACK - DISCHARGE -	THIRTYACKE POND DAN						LER PORTER POND DA			1		
НТОВООВАРН НОИТИО 19180]	LSTA	ł					EXPL 0.0			9 6			Í .	LSTR	i
### ### ##############################				O		59.00	34.00		,	CAREA 0.0	410 94		TO BREAC]	Q 1 2	
НУВОВОВЯДЬН НООИТЕ LOWER POHTER POND BHEACH ГИВОВОН ТИГРГГАС 15100 1600 1600 1700 0.00 0.00 0.00 0.000 5186E 15000 155.00 122.00 285.00 1951 15100 0.00 23.00 122.00 285.00 1951 15100 150 0.00 0.00 0.00 0.00 0.00 15100 0.00 0.00 0.00 0.00 0.00 15100 0.00 0.00 0.00 0.00 15100 15100 15100 0.00 0.00 15100 15100 0.00 0.00 15100 15100 15100 0.00 15100 15100 15100 0.00 15100 15100 15100 0.00 15100 15100 15100 0.00 15100 0.00 1000 1000 15100 0.00 1000 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000 15100 0.00 1000	9 NG	RE POND							-		60		AM OUE		MG			_
### PROBER HONE FEATON BHEACH FHROUGH 151 au	APH ROUTE	THIPTYAC	ING DATA	-154ME				0474	9000		0.40		E poud 6	•	APH ROUT	I TAPE	ING-DATA SAME I	APESKK
STAGE	HYDROGR	TH THROUGH	ROUT	T	C B C		285.00	STORAGE	174CRE P		TOPEL 157.8		THIRTY4CP		APO CENTER	1ECON 0	=	(A)
FLOW 0.00 23.00 FLOW 0.00 23.00 FLOW 0.00 23.00 ELEVATION= 154. 160. Y CREST ELEVATION -> 154.0 HAZANI HAZANI HAZANI HAZANI HAZANI HAZANI HAZANI HAZANI		ONU BHEAC			(H 54)	156,00	122.00	STABE -	50 THIP		SEVATION	HOURS	TA MO	•	MG TO HAZ	Ì		J.: JSN J
		ER POHTEN F	ISTAN TPONE				23.00	31.	\sim				THE CHA	•		ISTA HAZAH	ರ•	47.75
FLOW CAPACITY ELEVATIONS W CAEST EL		LOW		3				26.	154.		401	171: AT	و	• • • • • • • • • • • • • • • • • • • •	CHA		10	
and the contract of the contra							FLOW	SURFACE AMEAS	ELEVATION=	AY CORST EL		PEAS OUTFLOW IS		•				

		140.00] CHANNEL CROSS-SECTION AT DOUNSTREAM DAMAGE AREA	318.56 355.70 394.77 STAGE STURAGE	122218.70 139430.39 25212.25 STAGE-	142.42 143.05 143.68 STR	12147.89 14133.02 25212.25 122214.70 139430.39 158281.17		••••	elejais					
CHARACTERISTICS AT		140.00 CH ANI	36.11	7268.17 106025.57	141.79	7268.17								-
HEL CHARACTEM ON		00 558.00	21.90	3526.43 91030.89	141.16	3526.43	CENTER	•						
SEL CHANNEL CHARACTERISTICS	NVERT ELEVATION	555.00 138.00	9.61 218.54	1004.34	140.53	1004.34	CAMAGE CEN	*******					•	
HLNTH 12000	JEL WVERT	TA.ELEVETC. .00 138.00 .00 150.00	11.	161.54	139,89	161,54	ATION AT	•						
ELNVT ELMAX 138.0 150.0	1 SALL	-STA.ELEV.ST 1.0.00 543. 1.5.00 2300.	161.49	80.84 53045.26	139,26	80.84 53046.66	STREAM ELEV	• • • • • • •						
08(3) EL		CHOSS SECTION COOMDINATESSTA:ELEV.ST 0.00 150.00 540.00 140.00 543. 1100.00 140.00 1700.00 145.00 2300.	135.41	42664.04	134.61	25.09	139.1. SI							
1) QN(2)		SS SECTION (0.00 150.0	0.00	33345.64	138.00	0.00 33385.64	118	• • • • • • • • • • • • • • • • • • • •					•	
(1) NO		CH0!	STURAGE	OUTFLOW	STAGE	FL0#	MAXIMUM STAGE							

δα · · · · · · · · · · · · · · · · · · ·		CKEYCH I		- N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		AND YANGINGS		D & M		
PATTO MAXIMUM	_		ELEVATION STURAGE	163		160.00	!	63.00		
RESERVOIR DEFIN STRAGE OUTE, OVER TOP MAXIMUM FALLUE RESERVOIR DEFIN STRAGE OUTE, OVER TOP MAXIMUM FALLUE FALLUE OF STRAGE OUTE, OVER TOP MAXIMUM FALLUE FALLUE OVER TOM STRAGE OUTE, OVER TOP MAXIMUM BACACHING BACACHI		•	0017104	ē	•	•		• 88•		
162.93 0.00 54. 189. 0.00 0.00 0.00 FRAK OUTFLOW DURING BREACHING	1 1	RATIO OF	MAX [MUM RESEAVOIN	MAXINUM DEPTH DVER DAR	MAXIMUM STORAGE	MAXIMUM OUTFLOW	1 1	TIME OF MAX OUTFLOW HOUMS	TIME OF FAILURE MODRS	
FOR OUTFLOW BURING BREACHING		00.0	162.93	00.0	. *5	48A.		00.0	0.00	
	1					6	EAK OUTFE	DURING	REACHING	
	ł									
	İ									
	1									
	1									
	1									
	1									
	1									
	1									
	1.									
	1									
	1									
	1									
	1									}
	1									

								43						
		TIME OF	HOURS	00.0				- STREAM ELEVATION AT DAMAGE APER						
OF DAM	86. 285.	TIME OF	HEA DOIFEDE HOURS	1.83				ELEVATION A.	STREAM FLOW AT DAMAGE AREA					
ST 10P		DURATION	HOURS	00.0	PARO.	i	1.83	* STREAM	1000 AT 6					
SPILLWAY CREST	• • •	MAKIMUM	CFS	- 71.	STAFIUM HAZARU	MAXIMUM		נו	STREAM F			,		
	!	MONIXEM	AC-FI	. 0.	PLAN	MAXIMUM	71.		•					
INITIAL VALUE		MAXIMUM	UVEN DAM	9.00	1	0.1.0	00.00							
	STURAGE OUTFLOW	HOM! MAM	W.S.ELEV	155,49	DAMACE MAER									
PLAN 1			JHd D	0880	\$									
۵														D

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

									A VERZOATE																		
									PHV/FED 8C8		•		•	H WIDTH													
DAY MO YR	OFJANBO				•	POPULATION	00006		2 2 3 3 4	z			© ©	MAN							w.						_
(WEST)	7102.				•	F POW DAM (ML)	0		DIST DAN	NED			(1)	NAVIGATION LOCKS		0	CTION BY	TS ADMIN.	9		MAINTENANCE	DEGE		NSPECTION			
MORTH)	4205	3	NAME OF IMPOUNDMENT	٥		3 W		3		7			(a)	N.P.T.P.W.		(•)	CONSTRUCTION BY	K PROJECTS			1	¥	9	AUTHORITY FOR INSPECTION			
٠			NAME 0	PORTER POND	(m)	NEAREST DOWNSTREAM CITY - TOWN - VILLAGE		(1)	UNDING	5.			(4)	9	·			N D R K	3		OPERATION	DEGE		AUT	PL 92-367		
NAME	140	-		LOWER		MEAR	BROCKTON		HYDRAU HEIGHT TAA	1.2			(R)	VER CAPAC		(a)	ENGINEERING BY			REGULATORY AGENCY	-	ĭ	3	INSPECTION DATE	1700179	S	
	PORTER POND							1	1667	12	(6)	NEWARKS		37	150		ENGINE	UNKNOWN		REGULAT	UCTION			NSA DAV		REMARKS	
	LOWER PO		AME		6	STREAM		(R)	PURPOSES	OX.			(#)	HOE OF DAM	£ 3			•	(a)		CONSTRUCTION	NONE			SINC		
COUNTY DIST.		(t)	POPULAR NAME		(i)	NIVER OR STRE	ER BROOK	(g)	YEAR COMPLETED	1932			(H)	WIQTH DISCHARGE	32	2.	IER	BROCKTON DEPT.PARKS+REC			+		•	INSPECTION BY	GERE ENGINEER		
STATE COUNTY DIET STATE	023 11				0	35	06 BEAVER	(H)	TYPE OF DAM	4.5			(a) (a)	SPILLWA	200	•	OWNER	KTON DEP	•		DESIGN			_	•		
	1			į	(E)	PECIONBASN	6		TYR	REPG			- 1	D/S HAS	N			9800				NONE			0'6R1EN		
STATE NUMBER ON 150N	MA 426 NED																										

INVENTORY OF DAMS IN THE UNITED STATES

END

FILMED

7-85

DTIC

REPRODUCED AT GOVERNMENT EXPENSE