

Copyright © 2013 Huyi Chen

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

-1	Part One	
1	Text Chapter	7
1.1	Paragraphs of Text	7
1.2	Citation	8
1.3	Lists	8
1.3.1	Numbered List	
1.3.2	Bullet Points	
1.3.3	Descriptions and Definitions	8
2	In-text Elements	9
2.1	Theorems	9
2.1.1	Several equations	9
2.1.2	Single Line	9
2.2	Definitions	9
2.3	Notations	10
2.4	Remarks	10
2.5	Corollaries	10
2.6	Propositions	10
2.6.1	Several equations	10
2.6.2	Single Line	10
2.7	Examples	10
2.7.1	Equation and Text	10
2.7.2	Paragraph of Text	11

2.8	Exercises	11
2.9	Problems	11
2.10	Vocabulary	11
3	Presenting Information	13
3.1	Table	13
3.2	Figure	13
Ш	Part Two	
4	Limit Of Sequence	17
4.1	Cauchy proposition	17
4.2	Stolz–Cesàro theorem	18
5	Limit of function	21
5.1	Equivalent Infinitesimal	21
Ш	Part N	
	Bibliography	25
	Books	25
	Articles	25
	Index	27

Part One

1.1 1.2 1.3	Text Chapter 7 Paragraphs of Text Citation Lists
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	In-text Elements Theorems Definitions Notations Remarks Corollaries Propositions Examples Exercises Problems Vocabulary
3 3.1 3.2	Presenting Information 13 Table Figure

1.1 Paragraphs of Text

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.

Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

1.2 Citation

This statement requires citation [2]; this one is more specific [1, page 122].

1.3 Lists

Lists are useful to present information in a concise and/or ordered way¹.

1.3.1 Numbered List

- 1. The first item
- 2. The second item
- 3. The third item

1.3.2 Bullet Points

- The first item
- The second item
- The third item

1.3.3 Descriptions and Definitions

Name Description Word Definition Comment Elaboration

¹Footnote example...

2.1 Theorems

This is an example of theorems.

2.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 2.1.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$
 (2.1)

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.2)

2.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 2.1.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

2.2 Definitions

This is an example of a definition. A definition could be mathematical or it could define a concept.

Definition 2.2.1 — Definition name. Given a vector space E, a norm on E is an application, denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{2.3}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}|| \tag{2.4}$$

$$||x + y|| \le ||x|| + ||y|| \tag{2.5}$$

2.3 Notations

Notation 2.1. Given an open subset G of \mathbb{R}^n , the set of functions φ are:

- 1. Bounded support G;
- 2. Infinitely differentiable;

a vector space is denoted by $\mathcal{D}(G)$.

2.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.

2.5 Corollaries

This is an example of a corollary.

Corollary 2.5.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

2.6 Propositions

This is an example of propositions.

2.6.1 Several equations

Proposition 2.6.1 — Proposition name. It has the properties:

$$\left| ||\mathbf{x}|| - ||\mathbf{y}|| \right| \le ||\mathbf{x} - \mathbf{y}|| \tag{2.6}$$

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.7)

2.6.2 Single Line

Proposition 2.6.2 Let $f, g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G), (f, \varphi)_0 = (g, \varphi)_0$ then f = g.

2.7 Examples

This is an example of examples.

2.7.1 Equation and Text

■ Example 2.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (2.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \varepsilon\}$ for all $\varepsilon \in]0; 5/2 - \sqrt{2}[$.

2.8 Exercises

2.7.2 Paragraph of Text

■ Example 2.2 — Example name. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.8 Exercises

This is an example of an exercise.

Exercise 2.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

2.9 Problems

Problem 2.1 What is the average airspeed velocity of an unladen swallow?

2.10 Vocabulary

Define a word to improve a students' vocabulary. **Vocabulary 2.1 — Word.** Definition of word.

3.1 Table

Treatments	Response 1	Response 2					
Treatment 1	0.0003262	0.562					
Treatment 2	0.0015681	0.910					
Treatment 3	0.0009271	0.296					

Table 3.1: Table caption

3.2 Figure

Figure 3.1: Figure caption

Part Two

4	Limit Of Sequence	17
4.1	Cauchy proposition	
4.2	Stolz–Cesàro theorem	
5	Limit of function	21
	Faujvalent Infinitesimal	

4.1 Cauchy proposition

Theorem 4.1.1 If a sequence $\{x_n\}$ converges to l, then its arithmetic mean of the preceding n terms also converges to l, namely

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = \lim_{n \to \infty} x_n = l. \tag{4.1}$$

Proof. According to the condition $\lim_{n\to\infty} x_n = l$, given $\varepsilon > 0$, there is a positive number N such that $|x_n - l| < \varepsilon$ for all n > N. Just assume n > N and we can make an estimation as follows

$$\left| \frac{x_1 + x_2 + \dots + x_n}{n} - l \right| = \frac{|(x_1 - l) + (x_2 - l) + \dots + (x_n - l)|}{n}$$

$$\leq \frac{|(x_1 - l) + \dots + (x_N - l)|}{n} + \frac{|(x_{N+1} - l) + \dots + (x_n - l)|}{n}$$

$$< \frac{M}{n} + \frac{n - N}{n} \varepsilon,$$

where $M = |(x_1 - l) + \cdots + (x_N - l)|$ is a finite number. Thus we can see that if let

$$N_1 = \max\{N, \left\lceil \frac{M}{\varepsilon} \right\rceil\},$$

then for all $n > N_1$ it follows that

$$\left|\frac{x_1+x_2+\cdots+x_n}{n}-l\right|<2\varepsilon.$$

It clearly implies $\lim_{n\to\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = l$.

- 1. If x_n approaches positive(or negative) infinity, Cauchy proposition still holds. In fact, from $x_n \to +\infty (n \to \infty)$ we see x_n can be greater than any given positive number X when n is large enough. Similarly we can separate the arithmetic mean into two parts and show the second part (1 N/n)X greater than X/2 for a sufficiently large n.
- 2. The converse of Cauchy proposition is generally not true. A trivial example is $x_n = (-1)^n$. Then

$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}=0$$

while x_n has no limit.

Corollary 4.1.2 If a positive term sequence $\{x_n\}$ converges to l, then its geometric mean of the preceding n terms also converges to l, namely

$$\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = \lim_{n \to \infty} x_n = l. \tag{4.2}$$

Proof. Applying the mean inequality we have

$$\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}}\leqslant \sqrt[n]{x_1x_2\cdots x_n}\leqslant \frac{x_1+x_2+\cdots+x_n}{n}.$$

Notice that $\lim_{n\to\infty} x_n = l$ implies $\lim_{n\to\infty} \frac{1}{x_n} = \frac{1}{l}$. From Theorem 4.1.1 we can see

$$\lim_{n \to \infty} \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = \lim_{n \to \infty} \left(\frac{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}{n} \right)^{-1} = \left(\lim_{n \to \infty} \frac{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}{n} \right)^{-1} = l.$$

And it has been shown that

$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}=l.$$

According to squeeze theorem, we know the limit $\lim_{n\to\infty} \sqrt[n]{x_1x_2\cdots x_n}$ exists and equals l.

Proposition 4.1.3 If $x_n > 0 (n = 1, 2, \cdots)$ and the limit $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ exists, the limit $\lim_{n \to \infty} \sqrt[n]{x_n}$ also exists and

$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_{n+1}}{x_n}.$$

Proof. Assume $x_0 = 1$ and by Corollary 4.1.2 we immediately get

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \sqrt[n]{\frac{x_1}{x_0} \frac{x_2}{x_1} \cdots \frac{x_n}{x_{n-1}}} = \lim_{n \to \infty} \frac{x_n}{x_{n-1}} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}.$$

■ Example 4.1 Find the limit $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$.

4.2 Stolz-Cesàro theorem

Theorem 4.2.1 — Stolz-Cesàro theorem with form of $\frac{0}{0}$. Assume $\{a_n\}$ and $\{b_n\}$ are two infinitesimal sequences of real numbers and $\{a_n\}$ is a strictly decreasing. If

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l,$$

where l is finite or $\pm \infty$, then we have

$$\lim_{n\to\infty}\frac{b_n}{a_n}=l.$$

Proof. We only prove it for a finite number l. According to the assumption, for every positive number ε , there exists another positive number N such that

$$\left|\frac{b_{n+1}-b_n}{a_{n+1}-a_n}-l\right|<\varepsilon$$

for all n > N. Since $a_n > a_{n+1}$ for all $n \in \mathbb{N}^*$, we have

$$(l-\varepsilon)(a_n-a_{n+1}) < b_n-b_{n+1} < (l+\varepsilon)(a_n-a_{n+1}).$$

Given m > n, replace n by $n + 1, n + 2, \dots, m - 1$. Then add up the m - n inequalities and we obtain

$$(l-\varepsilon)(a_n-a_m) < b_n-b_m < (l+\varepsilon)(a_n-a_m),$$

or

$$\left|\frac{b_n-b_m}{a_n-a_m}-l\right|<\varepsilon.$$

Note that $\lim_{m\to\infty} a_m = \lim_{m\to\infty} b_m = 0$. When $m\to\infty$, for all n>N it follows that

$$\left|\frac{b_n}{a_n}-l\right|\leqslant \varepsilon.$$

With the arbitrariness of selection of ε , this implies $\lim_{n\to\infty}\frac{b_n}{a_n}=l$.

Theorem 4.2.2 — Stolz–Cesàro theorem with form of $\frac{*}{\infty}$. Asume $\{a_n\}$ is a strictly increasing sequence such that $\lim a_n = \infty$. If

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n},$$

where l is finite or $\pm \infty$, then we have

$$\lim_{n\to\infty}\frac{b_n}{a_n}=l.$$

Proof. We just consider a finite l. For every positive number ε , there exists $N_1 \in \mathbb{N}^*$ such that

$$\left|\frac{b_{n+1}-b_n}{a_{n+1}-a_n}-l\right|<\varepsilon$$

for all $n > N_1$. Since $a_{n+1} > a_n$ for all $n \in \mathbb{N}^*$, we have

$$(l-\varepsilon)(a_{n+1}-a_n) < b_{n+1}-b_n < (l+\varepsilon)(a_{n+1}-a_n).$$

Given N_1 , replace n by $N_1, N_1 + 1, \dots, n - 1$. Then add up the n - N inequalities and we obtain

$$(l-\varepsilon)(a_n-a_{N_1}) < b_n-b_{N_1} < (l+\varepsilon)(a_n-a_{N_1}),$$

or

$$\left|\frac{b_n-b_{N_1}}{a_n-a_{N_1}}-l\right|<\varepsilon.$$

In order to estimate the value of $\left| \frac{b_n}{a_n} - l \right|$, consider the following identity

$$\frac{b_n}{a_n} - l = \left(1 - \frac{a_{N_1}}{a_n}\right) \left(\frac{b_n - b_{N_1}}{a_n - a_{N_1}} - l\right) + \frac{b_n - la_{N_1}}{a_n}.$$

Since $\lim_{n\to\infty} a_n = +\infty$, there exsits a positive number N_2 such that for all $n > N_2$

$$0 < \left| \frac{a_N}{a_n} \right| < 1 \Leftrightarrow 0 < 1 - \frac{a_N}{a_n} < 2$$

and

$$\left|\frac{b_n-la_{N_1}}{a_n}\right|<\varepsilon.$$

Thus for all $n > \max\{N_1, N_2\}$ we have

$$\left|\frac{b_n}{a_n}-l\right|<3\varepsilon,$$

which indicates $\lim_{n\to\infty} \frac{b_n}{a_n} = l$.

5.1 Equivalent Infinitesimal

Definition 5.1.1 If the relation $f(x) = \gamma(x)g(x)$ holds ultimately over \mathscr{B} where $\lim_{\mathscr{B}} \gamma(x) = 1$, we say that *the function f behaves asymptotically like g over* \mathscr{B} , or, more briefly, that f *is equivalent to g over* \mathscr{B} .

Part N

Bibliography Books Articles									-				2	5
Index													2	7

Books

[Smi12] John Smith. *Book title*. 1st edition. Volume 3. 2. City: Publisher, Jan. 2012, pages 123–200 (cited on page 8).

Articles

[Smi13] James Smith. "Article title". In: 14.6 (Mar. 2013), pages 1–8 (cited on page 8).

Citation, 8 Corollaries, 10 Definitions, 9 Examples, 10 Equation and Text, 10 Paragraph of Text, 11 Exercises, 11 Figure, 13 Lists, 8 **Bullet Points**, 8 Descriptions and Definitions, 8 Numbered List, 8 Notations, 10 Paragraphs of Text, 7 Problems, 11 Propositions, 10 Several Equations, 10 Single Line, 10 Remarks, 10

Table, 13 Theorems, 9

Vocabulary, 11

Several Equations, 9 Single Line, 9