

10/797,262 SEQUENCE LISTING

<110>	East Tennessee State University Research Foundation Lampson, Bert Velore, Jashree														
<120>	RNA-DEPENDENT DNA POLYMERASE FROM GEOBACILLUS STEAROTHERMOPHILUS														
<130>	2826067.000002														
<140> <141>	10/797,262 2004-03-10														
<160>	12														
<170>	PatentIn version 3.3														
<210> 1 <211> 1263 <212> DNA <213> Geobacillus stearothermophilus															
<220> <221> <222>	CDS (1)	(126													
<400> atg gc Met Al 1	t tta	ttg Leu	gaa Glu 5	cgc Arg	atc Ile	tta Leu	gcg Ala	aga Arg 10	gac Asp	aac Asn	ctc Leu	atc Ile	acg Thr 15	gcg Ala	48
ctc aa Leu Ly	a cgg s Arg	gtc Val 20	gaa Glu	gcc Ala	aac Asn	caa Gln	gga Gly 25	gca Ala	ccg Pro	gga Gly	atc Ile	gac Asp 30	gga Gly	gta Val	96
tca ac Ser Th	c gat r Asp 35	caa Gln	ctc Leu	cgt Arg	gat Asp	tac Tyr 40	atc Ile	cgc Arg	gct Ala	cac His	tgg Trp 45	agc Ser	acg Thr	atc Ile	144
cgc gc Arg Al 50	a GIN	ctc Leu	ttg Leu	gcg Ala	gga Gly 55	acc Thr	tac Tyr	cgg Arg	ccg Pro	gcg Ala 60	cct Pro	gtc Val	cgc Arg	agg Arg	192
gtc gg Val Gl 65	a atc y Ile	ccg Pro	aaa Lys	ccg Pro 70	ggc Gly	ggc Gly	ggc Gly	aca Thr	cgg Arg 75	cag Gln	cta Leu	ggc Gly	att Ile	ccc Pro 80	240
acc gt Thr Va	g gtg il Val	gac Asp	cgg Arg 85	ctg Leu	atc Ile	caa Gln	caa Gln	gcc Ala 90	att Ile	ctt Leu	caa Gln	gaa Glu	ctc Leu 95	aca Thr	288
ccc at Pro Il	t ttc e Phe	gat Asp 100	cca Pro	gac Asp	ttc Phe	tcc Ser	cct Pro 105	tcc Ser	agc Ser	ttc Phe	gga Gly	ttc Phe 110	cgt Arg	ccg Pro	336
ggc co Gly Ar	gt aac rg Asn 115	gcc Ala	cac His	gat Asp	gcc Ala	gtg Val 120	Arg	caa Gln	gcg Ala	caa Gln	ggc Gly 125	tac Tyr	atc Ile	cag Gln	384

10/797,262

gaa Glu	ggg Gly 130	tat Tyr	cgg Arg	tac Tyr	gtg Val	gtc Val 135	gac Asp	atg Met	gac Asp	ctg Leu	gaa Glu 140	aag Lys	ttc Phe	ttt Phe	gat Asp	432
cgg Arg 145	gtc Val	aac Asn	cat His	gac Asp	atc Ile 150	ttg Leu	atg Met	agt Ser	cgg Arg	gtg Val 155	gcc Ala	cga Arg	aaa Lys	gtc Val	aag Lys 160	480
gat Asp	aaa Lys	cgc Arg	gtg val	ctg Leu 165	aaa Lys	ctg Leu	atc Ile	cgt Arg	gcc Ala 170	tac Tyr	ctg Leu	caa Gln	gcc Ala	ggc Gly 175	gtt Val	528
atg Met	atc Ile	gaa Glu	ggg Gly 180	gtg Val	aag Lys	gtg Val	cag Gln	acg Thr 185	gag Glu	gaa Glu	ggg Gly	acg Thr	ccg Pro 190	caa Gln	ggc Gly	576
ggc Gly	ccc Pro	ctc Leu 195	agc Ser	ccc Pro	ctg Leu	ctg Leu	gcg Ala 200	aac Asn	atc Ile	ctt Leu	ctc Leu	gac Asp 205	gat Asp	tta Leu	gac Asp	624
aag Lys	gaa Glu 210	ttg Leu	gag Glu	aag Lys	cga Arg	gga Gly 215	ttg Leu	aaa Lys	ttc Phe	tgc Cys	cgt Arg 220	tac Tyr	gca Ala	gat Asp	gac Asp	672
tgc Cys 225	aac Asn	atc Ile	tat Tyr	gtg Val	aaa Lys 230	agt Ser	ctg Leu	cgg Arg	gca Ala	gga Gly 235	caa Gln	cgg Arg	gtg Val	aaa Lys	caa Gln 240	720
agc Ser	atc Ile	caa Gln	cgg Arg	ttc Phe 245	ttg Leu	gag Glu	aaa Lys	acg Thr	ctc Leu 250	aaa Lys	ctc Leu	aaa Lys	gta Val	aac Asn 255	gag Glu	768
gag Glu	aaa Lys	agt Ser	gcg Ala 260	gtg Val	gac Asp	cgc Arg	ccg Pro	tgg Trp 265	aaa Lys	cgg Arg	gcc Ala	ttt Phe	ctg Leu 270	ggg Gly	ttt Phe	816
agc Ser	ttc Phe	aca Thr 275	Pro	gaa Glu	cga Arg	aaa Lys	gcg Ala 280	cga Arg	atc Ile	cgg Arg	ctc Leu	gcc Ala 285	cca Pro	agg Arg	tcg Ser	864
att Ile	caa Gln 290	cgt Arg	ctg Leu	aaa Lys	cag Gln	cgg Arg 295	att Ile	cga Arg	cag Gln	ctg Leu	acc Thr 300	Asn	cca Pro	aac Asn	tgg Trp	912
agc Ser 305	Ile	tcg Ser	atg Met	cca Pro	gaa Glu 310	Arg	att Ile	cat His	cgc Arg	gtc Val 315	Asn	caa Gln	tac Tyr	gtc Val	atg Met 320	960
gga Gly	tgg Trp	atc Ile	ggg Gly	tat Tyr 325	Phe	cgg Arg	ctc Leu	gtc Val	gaa Glu 330	Inr	ccg Pro	tct Ser	gtc Val	ctt Leu 335	cag Gln	1008
acc Thr	atc	gaa Glu	gga Gly 340	Trp	att Ile	cgg Arg	agg Arg	agg Arg 345	Leu	cga Arg	ctc Leu	tgt Cys	caa Gln 350	пгр	ctt Leu	1056
caa Gln	tgg Trp	aaa	cgg Arg	gto Val	aga Arg	acc Thr	aga Arg	ato	cgt	gag	tta Leu	aga Arg	gcg	ctg Leu	ggg Gly	1104

10/797,262 360 365 355 ctg aaa gag aca gcg gtg atg gag atc gcc aat acc cga aaa gga gct Leu Lys Glu Thr Ala Val Met Glu Ile Ala Asn Thr Arg Lys Gly Ala 370 380 1152 tgg cga aca acg aaa acg ccg caa ctc cac cag gcc ctg ggc aaa acc Trp Arg Thr Thr Lys Thr Pro Gln Leu His Gln Ala Leu Gly Lys Thr 1200 390 tac tgg acc gct caa ggg ctc aag agt ttg acg caa cga tat ttc gaa Tyr Trp Thr Ala Gln Gly Leu Lys Ser Leu Thr Gln Arg Tyr Phe Glu 1248 410 405 1263 ctc cgt caa ggt tga Leu Arg Gln Gly <210> <211> 420 <212> PRT Geobacillus stearothermophilus <400> Met Ala Leu Leu Glu Arg Ile Leu Ala Arg Asp Asn Leu Ile Thr Ala 1 10 15 Leu Lys Arg Val Glu Ala Asn Gln Gly Ala Pro Gly Ile Asp Gly Val 20 25 30 Ser Thr Asp Gln Leu Arg Asp Tyr Ile Arg Ala His Trp Ser Thr Ile 35 40 45Arg Ala Gln Leu Leu Ala Gly Thr Tyr Arg Pro Ala Pro Val Arg Arg 50 60 Val Gly Ile Pro Lys Pro Gly Gly Gly Thr Arg Gln Leu Gly Ile Pro 65 70 75 80 Thr Val Val Asp Arg Leu Ile Gln Gln Ala Ile Leu Gln Glu Leu Thr 85 90 95 Pro Ile Phe Asp Pro Asp Phe Ser Pro Ser Ser Phe Gly Phe Arg Pro Gly Arg Asn Ala His Asp Ala Val Arg Gln Ala Gln Gly Tyr Ile Gln 115 120 125

Glu Gly Tyr Arg Tyr Val Val Asp Met Asp Leu Glu Lys Phe Phe Asp

135

Arg Val Asn His Asp Ile Leu Met Ser Arg Val Ala Arg Lys Val Lys 145 150 155 160 Asp Lys Arg Val Leu Lys Leu Ile Arg Ala Tyr Leu Gln Ala Gly Val 165 170 175 Met Ile Glu Gly Val Lys Val Gln Thr Glu Glu Gly Thr Pro Gln Gly 180 185 190 Gly Pro Leu Ser Pro Leu Leu Ala Asn Ile Leu Leu Asp Asp Leu Asp 195 200 205 Lys Glu Leu Glu Lys Arg Gly Leu Lys Phe Cys Arg Tyr Ala Asp Asp 210 215 220 Cys Asn Ile Tyr Val Lys Ser Leu Arg Ala Gly Gln Arg Val Lys Gln 225 235 240 Ser Ile Gln Arg Phe Leu Glu Lys Thr Leu Lys Leu Lys Val Asn Glu 245 250 255 Glu Lys Ser Ala Val Asp Arg Pro Trp Lys Arg Ala Phe Leu Gly Phe 260 265 270 Ser Phe Thr Pro Glu Arg Lys Ala Arg Ile Arg Leu Ala Pro Arg Ser ,275 280 285 Ile Gln Arg Leu Lys Gln Arg Ile Arg Gln Leu Thr Asn Pro Asn Trp 290 295 300 Ser Ile Ser Met Pro Glu Arg Ile His Arg Val Asn Gln Tyr Val Met 305 310 315 320 Gly Trp Ile Gly Tyr Phe Arg Leu Val Glu Thr Pro Ser Val Leu Gln 325 330 335 Thr Ile Glu Gly Trp Ile Arg Arg Leu Arg Leu Cys Gln Trp Leu 340 345 350 Gln Trp Lys Arg Val Arg Thr Arg Ile Arg Glu Leu Arg Ala Leu Gly 355 360 365 10/797,262 Leu Lys Glu Thr Ala Val Met Glu Ile Ala Asn Thr Arg Lys Gly Ala 370 375 380

Trp Arg Thr Thr Lys Thr Pro Gln Leu His Gln Ala Leu Gly Lys Thr 385 390 395 400

Tyr Trp Thr Ala Gln Gly Leu Lys Ser Leu Thr Gln Arg Tyr Phe Glu 405 410 415

Leu Arg Gln Gly 420

<210> 3 <211> 1370 <212> DNA

<213> Artificial

<220> <223> Plasmid construct

<220> <221> misc_feature <222> (1)..(1370)

<400> 60 ccatgggcag cagccatcat catcatcatc acagcagcgg cctggtgccg cgcggcagcc atatgcggca agacctgaat ctcatcccgc ggaaggagaa gatcacgatg gctttgttgg 120 180 aacgcatctt agcgagagac aacctcatca cggcgctcaa acgggtcgaa gccaaccaag 240 gagcaccggg aatcgacgga gtatcaaccg atcaactccg tgattacatc cgcgctcact 300 ggagcacgat ccgcgcccaa ctcttggcgg gaacctaccg gccggcgcct gtccgcaggg tcggaatccc gaaaccgggc ggcggcacac ggcagctagg cattcccacc gtggtggacc 360 420 ggctgatcca acaagccatt cttcaagaac tcacacccat tttcgatcca gacttctccc 480 cttccagctt cggattccgt ccgggccgta acgcccacga tgccgtgcgg caagcgcaag gctacatcca ggaagggtat cggtacgtgg tcgacatgga cctggaaaag ttctttgatc 540 gggtcaacca tgacatcttg atgagtcggg tggcccgaaa agtcaaggat aaacgcgtgc 600 660 tgaaactgat ccgtgcctac ctgcaagccg gcgttatgat cgaaggggtg aaggtgcaga cggaggaagg gacgccgcaa ggcggccccc tcagccccct gctggcgaac atccttctcg 720 780 acgatttaga caaggaattg gagaagcgag gattgaaatt ctgccgttac gcagatgact 840 gcaacatcta tgtgaaaagt ctgcgggcag gacaacgggt gaaacaaagc atccaacggt

10/797,262 tcttggagaa aacgctcaaa ctcaaagtaa acgaggagaa aagtgcggtg gaccgcccgt	900								
ggaaacgggc ctttctgggg tttagcttca caccggaacg aaaagcgcga atccggctcg	960								
ccccaaggtc gattcaacgt ctgaaacagc ggattcgaca gctgaccaac ccaaactgga	1020								
gcatatcgat gccagaacga attcatcgcg tcaatcaata cgtcatggga tggatcgggt	1080								
attttcggct cgtcgaaacc ccgtctgtcc ttcagaccat cgaaggatgg attcggagga	1140								
ggcttcgact ctgtcaatgg cttcaatgga aacgggtcag aaccagaatc cgtgagttaa	1200								
gagcgctggg gctgaaagag acagcggtga tggagatcgc caatacccga aaaggagctt	1260								
ggcgaacaac gaaaacgccg caactccacc aggccctggg caaaacctac tggaccgctc	1320								
aagggctcaa gagtttgacg caacgatatt tcgaactccg tcaaggttga	1370								
<210> 4 <211> 32 <212> DNA <213> Artificial									
<220> <223> Nucleotide primer containing NdeI restriction site									
<220> <221> primer_bind <222> (1)(32)									
<400> 4 agacaacata tgcggcaaga cctgaatctc at 3									
<210> 5 <211> 28 <212> DNA <213> Artificial									
<220> <223> Nucleotide primer containing BamHI restriction site									
<400> 5 aatggatccg ctggcgaaca tccttctc	28								
<210> 6 <211> 29 <212> DNA <213> Artificial									
<220> <223> Nucleotide primer containing PstI restriction site									
<220> <221> primer_bind									

10/797,262

```
<222> (1)..(29)
<400> 6
                                                                          29
attactgcag agcggtccag taggttttg
<210>
<211>
      31
<212>
       DNA
       Artificial
<213>
<220>
       Nucleotide primer containing HindIII restriction site
<223>
<220>
       primer_bind
<221>
<222>
       (1)..(31)
<400> 7
                                                                           31
actcaagctt gagaagggct tgacgttcat g
<210>
<211>
      455
       PRT
<212>
      Artificial
<213>
<220>
       Amino acid sequence of fusion protein
<223>
<220>
<221>
       Plasmid
       (1)..(455)
<222>
<220>
       PEPTIDE
<221>
<222>
       (1)..(455)
<400>
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 \ 5 \ 10 \ 15
Arg Gly Ser His Met Arg Gln Asp Leu Asn Leu Ile Pro Arg Lys Glu 20 25 30
Lys Ile Thr Met Ala Leu Leu Glu Arg Ile Leu Ala Arg Asp Asn Leu
Ile Thr Ala Leu Lys Arg Val Glu Ala Asn Gln Gly Ala Pro Gly Ile
50 60
Asp Gly Val Ser Thr Asp Gln Leu Arg Asp Tyr Ile Arg Ala His Trp
```

7

65

Ser Thr Ile Arg Ala Gln Leu Leu Ala Gly Thr Tyr Arg Pro Ala Pro 85 90 95 Val Arg Arg Val Gly Ile Pro Lys Pro Gly Gly Gly Thr Arg Gln Leu 100 105 110 Gly Ile Pro Thr Val Val Asp Arg Leu Ile Gln Gln Ala Ile Leu Gln 115 120 125 Glu Leu Thr Pro Ile Phe Asp Pro Asp Phe Ser Pro Ser Ser Phe Gly 130 140 Phe Arg Pro Gly Arg Asn Ala His Asp Ala Val Arg Gln Ala Gln Gly 145 150 155 160 Tyr Ile Gln Glu Gly Tyr Arg Tyr Val Val Asp Met Asp Leu Glu Lys 165 170 175 Phe Phe Asp Arg Val Asn His Asp Ile Leu Met Ser Arg Val Ala Arg 180 185 190 Lys Val Lys Asp Lys Arg Val Leu Lys Leu Ile Arg Ala Tyr Leu Gln 195 200 205 Ala Gly Val Met Ile Glu Gly Val Lys Val Gln Thr Glu Glu Gly Thr 210 215 220 Pro Gln Gly Gly Pro Leu Ser Pro Leu Leu Ala Asn Ile Leu Leu Asp 225 . 230 235 240 Asp Leu Asp Lys Glu Leu Glu Lys Arg Gly Leu Lys Phe Cys Arg Tyr 245 250 255 Ala Asp Asp Cys Asn Ile Tyr Val Lys Ser Leu Arg Ala Gly Gln Arg 260 265 270 Val Lys Gln Ser Ile Gln Arg Phe Leu Glu Lys Thr Leu Lys Leu Lys 275 280 285

Val Asn Glu Glu Lys Ser Ala Val Asp Arg Pro Trp Lys Arg Ala Phe 290 295 300

10/797,262 Leu Gly Phe Ser Phe Thr Pro Glu Arg Lys Ala Arg Ile Arg Leu Ala

315 310 305

Pro Arg Ser Ile Gln Arg Leu Lys Gln Arg Ile Arg Gln Leu Thr Asn 325 330 335

Pro Asn Trp Ser Ile Ser Met Pro Glu Arg Ile His Arg Val Asn Gln 340 350 340

Tyr Val Met Gly Trp Ile Gly Tyr Phe Arg Leu Val Glu Thr Pro Ser 355 360 365

Val Leu Gln Thr Ile Glu Gly Trp Ile Arg Arg Leu Arg Leu Cys 370 375 380

Gln Trp Leu Gln Trp Lys Arg Val Arg Thr Arg Ile Arg Glu Leu Arg 385 390 395 400

Ala Leu Gly Leu Lys Glu Thr Ala Val Met Glu Ile Ala Asn Thr Arg 405 410 415

Lys Gly Ala Trp Arg Thr Thr Lys Thr Pro Gln Leu His Gln Ala Leu 420 425 430

Gly Lys Thr Tyr Trp Thr Ala Gln Gly Leu Lys Ser Leu Thr Gln Arg

Tyr Phe Glu Leu Arg Gln Gly 450 455

<210>

25 <211> <212> DNA

Artificial

<220>

<223> Primer sequence

<220>

<221> prim_transcript

<222> (1)..(25)

<400> 9

cgtggttgac acgcagacct cttac

<210> <211> 25 25

		10/797,262	
<212> <213>	DNA Artificial		
<220> <223>	Primer sequence		
<220> <221> <222>	prim_transcript (1)(25)		
<400> tcaaca	10 ctgt acggcacccg cattc		25
<210> <211> <212> <213>	24		
<220> <223>	Primer sequence		
<220> <221> <222>	prim_transcript (1)(24)		
<400> ggtctc	11 tttt agagatttac agtg		24