CSE460 Midterm Fall 2020

Slot: 1

Full Marks: 40

Time: 1 hour 50 minutes (1 hour 35 mins for exam, 15 mins for pdf preparation & google

form submission)

Your Name, ID, Section, Date, Signature should be written at the starting of your script.

Faculty helpline: meet.google.com/hfb-dama-vpg

Answer any 4 questions

1. Design the truth table of an 8 to 3 priority encoder with the following priority: 4>0>1>2>3>7>6>5. Explain the logic behind your answer. [10]

- 2. Design a tristate buffer using CMOS technology with restoring properties. Explain why/why not transmission gates can be used for this particular design. [10]
- 3. Design a CMOS compound gate that implements the following function: Y=A(B+C)D, where A, B, C, D are the inputs and Y is the output. Clearly mark your networks. [10]

4.

Present State	Next State		Output
	w = 0	w = 1	
y2 y1	Y2 Y1	Y2 Y1	Z
А	А	В	0
В	А	С	0
С	А	D	0
D	А	D	1

- 5. An FSM is defined by the state table above. [10]
 - o Prepare a state assigned table using binary encoding
 - Derive the next state and output expressions
 - o Derive the final circuit that realizes this FSM using D flip-flops
- 6. Suppose you are building an electron microscope, for which you need to design the control circuit of the electron gun first. You can activate the electron gun (z=1) by pressing a button (w=1). The electron gun should stay ON (z=1) for exactly 3 cycles, then turn OFF (z=0). Once the gun is activated, pressing the button (w) would not do anything unless the gun has completed its full 3 cycle of staying ON. Opt for moore model for this particular problem. [10]
 - o Draw the state diagram (Clearly mark transitions and Reset)
 - Derive a state assigned table
 - Derive the next state and output expressions
 - Derive the circuit that realizes this FSM using D flip-flops (Bonus question)

CSE460 Midterm Fall 2020

Slot: 2

Full Marks: 40

Time: 1 hour 50 minutes (1 hour 35 mins for exam, 15 mins for pdf preparation & google

form submission)

Your Name, ID, Section, Date, Signature should be written at the starting of your script.

Faculty helpline: https://meet.google.com/hfb-dama-vpg

Answer any 4 questions

1. For the following figure, complete the waveforms Qa, Qb and Qc. Explain your reasoning behind your answer. [10]

- 2. Design a 2x1 non-inverting MUX using CMOS technology that has restoring capabilities. Using your previous design, derive a 4x1 MUX. [10]
- 3. Design a CMOS compound gate that implements the following function: Y=AB+CD+EF, where A, B, C, D, E are the inputs and Y is the output. Clearly mark your networks. [10]

 4.

Present State	Next State		Output
	w = 0	w = 1	
y2 y1	Y2 Y1	Y2 Y1	Z
A	С	D	0
В	В	А	0
С	D	А	0
D	С	В	1

- 5. An FSM is defined by the state table above. [10]
- a) Prepare a state assigned table using binary encoding

- b) Derive the next state and output expressions
- c) Derive the final circuit that realizes this FSM using D flip-flops
- 5. Design a 3-bit FSM binary counter that counts in the following sequence: 7>6>5>7>6>5... **[10]**
 - It has so start its count from 7
 - It should have a 1-bit input w, a clock signal, a reset and a multi-bit output z
 - The machine should increase its count whenever **w** = **1**, and hold its previous count otherwise
 - It should output the binary value of its current count, in binary
- a) Draw the state diagram (Clearly mark transitions & Reset)
- b) Derive a state assigned table
- c) Derive the next state and output expressions
- d) Realize the FSM using D flip-flops (Bonus question)