Constraint Satisfaction Problems

(Source: https://aimacode.github.io/aima-exercises/, accessed in Nov 2022)

Exercise 01

Give precise formulations for each of the following as constraint satisfaction problems:

- 1. **Rectilinear floor-planning**: find non-overlapping places in a large rectangle for several smaller rectangles.
- 2. **Class scheduling**: There is a fixed number of professors and classrooms, a list of classes to be offered, and a list of possible time slots for classes. Each professor has a set of classes that he or she can teach.
- 3. **Hamiltonian tour**: given a network of cities connected by roads, choose an order to visit all cities in a country without repeating any.

Exercise 02

Solve the cryptarithmetic problem in the Figure by hand, using the strategy of backtracking with **forward checking** and the **MRV** and least-constraining-value heuristics.

Exercise 03

Consider the graph with 8 nodes A_1 , A_2 , A_3 , A_4 , H, T, F_1 , F_2 . A_i is connected to A_{i+1} for all i, each A_i is connected to H, H is connected to T, and T is connected to each F_i . Find a 3-coloring of this graph by hand using the following strategy: backtracking with conflict-directed back jumping, the variable order A_1 , A_4 , A_4 , A_5 , A_5 , A_7 , and the value order A_7 , A_7 , A_8 , A_7 , A_7 , A_8 , A_7 , and the value order A_7 , A_7 , A_8 , A_8 , A_7 , A_8 , A_8 , A_8 , A_8 , A_8 , A_9 ,

Exercise 04

Consider the problem of completely tiling a surface with n dominoes (2×1 rectangles). The surface is an arbitrary edge-connected, i.e., adjacent along an edge, collection of 2n 1×1 squares (e.g., a checkerboard, a checkerboard with some squares missing, a 10×1 row of squares, etc.).

- 1. Formulate this problem precisely as a CSP where the dominoes are the variables.
- 2. Formulate this problem precisely as a CSP where the squares are the variables, keeping the state space as small as possible. (Hint: does it matter which domino goes on a given pair of squares?)