Crypto 1 646

17.) Theorem 4.13.

"=>" with Lemma 4.12.a.) $|M_{+}| \leq |C_{+}| \leq |C| = |M| = |M_{+}|$ $P(M=M) > 0 \forall M \in M$ => $|C_{+}| = |C| => C_{+} = C => P(\hat{c} = C) > 0 \forall C \in C$ Let $M \in M$, $C \in C$ $P(\hat{C} = C) = P(\hat{c} = C|\hat{M} = M) = M(\hat{c} = M)$ $P(M, \hat{c} = C) = P(\hat{c} = C|\hat{M} = M) = M(\hat{c} = M)$ $P(M, \hat{c} = C) = P(\hat{c} = C|\hat{M} = M) = M(\hat{c} = M)$

A, k, s. u. $= \rho(e(n,k) = c) = \sum_{k \in \mathcal{K}} \rho(k=k) \neq 0 \quad \Theta$ $k \in \mathcal{K}: e(n,k) = c$

=> $\forall M \in \mathcal{U}, c \in C \exists k \in K : e(M, k) = c$ (not unique)

Fix M: 1C, 1=1C1= [e(M,4)] KEK, = K] = 1K1 = 1C1 Assumption

It follows that K is unique K = K(M,C)Let $M \in \mathcal{U}$, $C \in C \Rightarrow P(C = C) = P(K = K(M,C))$

Couse of perf. secr. that is radependent of M

FIX COEC => {K(M,Co)|MEM}=K, cause of injectivity of e(., K) and the sets have same orde (1111=101) = SP(C=c)= P(K=4) YCEC, KE K => P(K=K)= 1/K) E19.) For an aghine cipher in Z26: e(i, (a,b)) = a.i+b mod 76 15, 17, 19, 21, 23, => |K|= | Z26 × Z26 |= 12.26 Let Mell, CE C $P(\hat{c} = c \mid \hat{n} = \mu) = P(e(\hat{n}, k) = c \mid \hat{n} = \mu)$ Kill st. Indep. = P(e(M, K) = c) = 1/K1/ { KEK/e(M,4)=0}/ $=\frac{12}{12.26}=\frac{1}{26}$ (x): e(M, (a, b)) = < <=> M.a+b=c (mod 26) <=> b= C-a/4 mod 26 => all keys { a, c-a/ mod 76), a & Z26 sakisfy this equation => P(= c| M=M) = 76 YM & Mx

=>
$$P(\hat{c}=c) = \Xi P(\hat{c}=c|\hat{A}=M) \cdot P(\hat{A}=M)$$
 $A \in \mathcal{M}_{+}$
 $\frac{1}{16}$

$$=\frac{1}{26}=P(\tilde{c}=c|\tilde{M}=M)$$

$$=\frac{E18.}{Recall}$$
: $H(x) = -\frac{2}{5}P_i \log(P_i)$

a.)
$$H(A) = -\frac{7}{4} (\log_2(\frac{7}{4}) - \frac{3}{4} (\log_2(\frac{3}{4})) = \frac{7}{4} + \frac{3}{4} - \frac{3}{4} (\log_2(3))$$

$$\approx 0.811$$

$$H(R) = -\frac{1}{2} (\log_2(\frac{1}{2}) - 2 \cdot \frac{1}{4} (\log_2(\frac{1}{4})) = \frac{1}{2} + 1 = \frac{3}{2} = 7.5$$

(=e(1/4)	\mathcal{U}_{1}	Kz	43	
M= a	1	2	3	1/4
M= b	2	3	Y	3/4
	1/2	1/4	1/4	

$$P(\hat{c}=1) = P(\hat{A}=a) \cdot P(\hat{K}=K_1) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$

$$P(\hat{c}=2) = P(\hat{A}=a) \cdot P(\hat{K}=K_2) + P(\hat{A}=b) \cdot P(K=K_1)$$

$$= \frac{1}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{2} = \frac{7}{16}$$

$$P(\vec{c}=4) = P(\vec{A}=b) \cdot P(\vec{K}=K_3) = \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{16}$$

$$P(\vec{c}=3) = 1 - P(\vec{c}=1) - P(\vec{c}=2) - P(\vec{c}=3) = 1/4$$

$$H(\vec{c}) = -\frac{1}{8} (\log(\frac{1}{8}) - \frac{7}{16} (\log(\frac{7}{16}) - \frac{3}{16} (\log(\frac{3}{16}) - \frac{1}{4} (\log(\frac{1}{4})) - \frac{1}{16} \log(\frac{1}{16}) - \frac{1}{16} \log(\frac{1}{16}) = \frac{1}{16} \log(\frac{1}{16})$$

$$\approx 1.85$$

Vorlant?.)

e(14,4)	Un	\mathcal{U}_{7}	N ₃	144
œ	1	7	3	4
6	7	3	c/	1
	1/4	1/4	1/4	1/4

$$P(\hat{c}=c) = 1/q$$

 $P(\hat{A}=M|\hat{c}=c) = P(\hat{M}=M) = \sum_{i=1}^{n} \hat{A}_{i}$ are st. indep.
(or. 4.11.)
=> perf. secr.