UNIVERSITÉ DE MONTRÉAL

Rapport : Devoir2

Pierre Gérard Mathieu Bouchard

IFT3395-6390 Fondements de l'apprentissage machine

Pascal Vincent, Alexandre de Brébisson et César Laurent

Table des matières

1	Par	artie théorique : Calcul du gradient pour l'optimisation des paramètres d'un réseau																							
	de neurones																2								
	1.1	Exercice a)																							2
	1.2	Exercice b)																							2
	1.3	Exercice c)																							2
	1.4	Exercice d)																							2

Partie théorique : Calcul du gradient pour l'optimisation des paramètres d'un réseau de neurones

1.1 Exercice a)

b est de dimension d_h Le vecteur d'activation est : $h_a = W^{(1)}x + b$ Avec $h_{a_i} = W^{(1)}_{i1}x_1W^{(1)}_{i2}x_2 + ... + W^{(1)}_{id}x_db_i$ Et $h_{s_i} = h_{a_i} * I_{\{h_{a_i}>0\}} = \max(h_{a_i}, 0)$

Exercice b)

 $W^{(2)}$ est de dimension mxd_h $b^{(2)}$ est de dimension mLe vecteur d'activation est : $o^a = W^{(2)}h_s + b^{(2)}$ Avec $o_k^a = W_{k1}^{(2)}h_{s_1} + W_{k2}^{(2)}h_{s_2} + \dots + W_{kn}^{(2)}h_{s_n} + b_k^{(2)}$

1.3 Exercice c)

$$o^{s} = softmax(o^{a}) = \frac{1}{\sum_{i=1}^{n} e^{o_{i}^{a}}} (e^{o_{1}^{a}}, e^{o_{2}^{a}}, ..., e^{o_{n}^{a}})$$

Donc $o_{k}^{s} = \frac{e^{o_{k}^{a}}}{\sum_{i=1}^{n} e^{o_{i}^{a}}}$

Donc $o_k^s = \frac{e^{o_k^a}}{\sum_{i=1}^n e^{o_i^a}}$ $e^x : \mathbb{R} \to \mathbb{R}^+$ donc la somme au numérateur de la fonction ci-dessus sera positive et la somme au numérateur aussi. Une fraction de deux nombres positifs sera toujours positif donc o_k^s est toujours positif.

$$\sum_{i=1}^{n} o_{i}^{s} = \sum_{i=1}^{n} \frac{e^{o_{i}^{a}}}{\sum_{j=1}^{n} e^{o_{j}^{a}}}$$

$$= \frac{1}{\sum_{j=1}^{n} e^{o_{j}^{a}}} \sum_{i=1}^{n} e^{o_{i}^{a}}$$

$$= \frac{\sum_{i=1}^{n} e^{o_{i}^{a}}}{\sum_{j=1}^{n} e^{o_{j}^{a}}}$$

$$= 1$$

C'est important car cela signifie que les sorties sont les probabilité pour l'entrée d'être une classe et ces classes sont mutuellement exclusives.

Exercice d)

$$\begin{split} L(x,y) &= -logo_y^s(x) \\ &= -log\frac{e^{o_y^a(x)}}{\sum_{i=1}^n e^{o_i^a(x)}} \\ &= -log(e^{o_y^a(x)}) + log(\sum_{i=1}^n e^{o_o^a(x)}) \\ &= -o_y^a(x) + log(\sum_{i=1}^n e^{o_i^a(x)}) \end{split}$$