General Aviation Tracking Protocol (GATP)

Sylwester Barański, Dariusz Żbik

Version 0.1 draft 1

_					
Ρ	ш	n	\cap	9	_
	uı	v	v	۰	_

Selected standard - CBOR (Concise Binary Object Representation)

GATP message format.

GAT Object ID

GAT Object ID to OGN APRS mappings

GATP message types

Message types for object type 0 - local messages.

Message types for object type 1 - GAT Core Server.

Message types for object type 2 - OGN Station.

Message types for object type 3 - OGN Object.

Message bodies

Message bodies for object type 0 - local messages

- 0 Keep Alive message message body
- 1 Login request message body
- 2 Login response message body

Message bodies for object type 1 - GAT Core Server

1 - GAT Core Server reporting status

Message bodies for object type 2 - OGN Station

- 1 OGN station status
- 2 OGN station position
- 3 OGN station timeout event

Message bodies for object type 3 - OGN Object

- 1 OGN Object position data
- 2 OGN Object timeout data

Complete message examples

Message examples for object type 0 - local messages

- 0 Keep Alive message example
- 1 Login request message example
- 2 Login response message example

GATP message transport

TCP/IP

Logging process

MQTT

Purpose

The purpose of this document is to document a new generic messaging standard to be used for general aviation tracking. Proposed name of the standard is General Aviation Tracking Protocol (GATP).

The goal of GATP is to be a common language for various systems dedicated to aviation monitoring. It could also be a replacement for the APRS standard used by Open Glider Network. For that reason, it should preserve all existing APRS messaging functionality used by OGN, extending it with options dedicated to the aviation community.

Selected standard - CBOR (Concise Binary Object Representation)

To keep messages short, binary representation is required (in contrast to text representation used by APRS). It is possible to propose a custom format of data packing, but selecting an existing standard is good long-term practice.

There are plenty of binary messaging standards on the market - one of them should be selected.

Following requirements were taken into account during selection of standard:

- short messaging (but not at the cost of complexity),
- simple implementation for embedded devices,
- extensibility,
- recognized standard (RFC and IANA standardization),
- support for cryptography.

CBOR standard $\frac{\text{RFC }7049}{\text{CBOR}}$ meets all requirements and was proposed for GATP, with the idea to extend it with COSE ($\frac{\text{RFC }8152}{\text{CBOR}}$) cryptography extensions (if required) in future.

Web page: http://cbor.io/

2. GATP message format.

Message format proposed is similar to APRS messaging with extendability in mind and minimizing message size.

GATP message format is a five element CBOR Array (type 4 message).

[source, destination, type, body, path]

Following fields are defined:

source GAT address - object ID, destination GAT address - object ID,

type Integer identifier describing type of body massage,

body payload (can be array or map),

path object ID or object ID list - current path of the message.

GAT Object ID

Object ID is a universal identifier for all GAT objects. It could be:

- object_type [integer] when the whole range of object type is considered,
- CBOR Array with two fields: when particular device is addressed:

[object_type, object_identifier]

There are following names used for types, which corresponds to CBOR values:

Integer - CBOR Type 0 unsigned integer, Signed Integer - CBOR Type 1 signed integer,

Binary - CBOR Type 2 unstructured byte string.

String - CBOR Type 3 UTF-8 text string,

Object type (integer)	Object description	Object identifier for the type:
0	Local object ID - local message exchanged between parties on selected link: - system login messages, - keep-alive messages.	Integer 0 - currently connected server,
1	GAT Core Server Messages targeted to this entity will be presented on tracking pages, stored on databases etc.	Options: • Integer 1 - currently connected server, • Array of: [1, String] - selected Core server. Example: [1, "Core1"]
2	OGN Station	Array of: [2, String] Example: [1, "EPKA"]
3	OGN Object	Array of: [3, [addr_type, binary] addr_types: 0 - Random, 1 - ICAO, 2 - Flarm, 3 - OGN

	Example:
	[3, [2, 0x112233]

GAT Object ID to OGN APRS mappings

OGN APRS message addr. part	GAT Object ID	Comment
TEST>OGNSDR,TCPIP*,qAC,GLIDERN4:	[2, "TEST]	OGN Station recognized by: - qAC type, - no id in APRS comment
FLRAABBCC>APRS,qAS,TEST: . id06AABBCC .	[3, [2, AABBCC]]	OGN Object type: - qAS type, - id found in APRS comment OGN addr. type used.

GATP message types

Following list presents all message types handled by GATP with example Object IDs. Message body will be presented in plain text, as it is not relevant for this part. Message body format is described in other chapters. Message types should be interpreted with a source id of the message.

Message types for object type 0 - local messages.

Those messages are marked with local id for both source and destination.

Туре	Description	Source	Destination	Path	Body
0	Link keep alive message	0	0		Keep alive data
1	Login request	0	0		Login parameters
2	Login response	0	0		<u>Login response</u>

Message types for object type 1 - GAT Core Server.

Туре	Description	Source	Destination	Path	Body
1	Status data	[1, "Core1"]	[1, "Core2"]	0	Server status data

Message types for object type 2 - OGN Station.

Туре	Description	Source	Destination	Path	Body
1	Status data	[2, "EPKA]	1	[1, "Core1"]	Station status data
2	Station position	[2, "EPKA]	1	[1, "Core1"]	Station position data
3	Station timeout event	[2, "EPKA"]	1	[1, "Core1]	Station timeout data

Message types for object type 3 - OGN Object.

Туре	Description	Source	Destination	Path	Body
1	Object position	[3, [2, 0x112233]	1	[2, "EPKA"]	Object position data

2	Object timeout event	[3, [2, 0x112233]]	1	[2, "EPKA"]	Object timeout data
---	----------------------	--------------------	---	-------------	---------------------

Message bodies

Message body data is a CBOR map (type 5) encapsulated in CBOR binary. Each field name should be a small integer number for compactness. Those fields are later named "parameters". Some parameters are mandatory, they are marked with "*".

Message bodies for object type 0 - local messages

0 - Keep Alive message message body

Message body is empty for KA messages.

1 - Login request message body

Parameter id	Description	Format	Description
1*	Login name	GAT Object ID	GAT identifier
			Example: [2, "EPKA"]

2 - Login response message body

Parameter id	Description	Format	Description
1*	Server name	GAT Object ID	GAT identifier
			Example: [1, "Core1"]
2*	Response	Integer	Numeric value of response: 0 - server full, 1 - access granted, 2 - access denied.

Message bodies for object type 1 - GAT Core Server

1 - GAT Core Server reporting status

Parameter id	Description	Format	Description

Message bodies for object type 2 - OGN Station

1 - OGN station status

Parameter id	Description	Format	Description
1*	Receive time	Integer	Unix time
23	Comment	String	APRS comment (not recognized part)

2 - OGN station position

Parameter id	Description	Format	Description
1*	Receive time	Integer	Unix time
2*	Latitude/Longitude	[Signed Integer, Signed Integer]	Degrees multiplied by 2^23. Positive: N, E.
3	Altitude	Signed Integer	Unit: feet

3 - OGN station timeout event

Parameter id	Description	Format	Description
1	Receive time	Integer	Unix time
2	Last reception time	Integer	Unix time
3	Last latitude/longitude	[Signed Integer, Signed Integer]	Degrees multiplied by 2^23. Positive: N, E.
4	Last altitude	Signed Integer	Unit: feet
23	Last comment	String	APRS comment

Message bodies for object type 3 - OGN Object

1 - OGN Object position data

Parameter id	Description	Format	Description
1*	Receiving time	Integer	Unix time stamp.
2*	Latitude/Longitude	[Signed Integer, Signed Integer]	Degrees multiplied by 2^23 to fill 4 bytes. positive - N, E.
3	GPS altitude	Integer	Unit: feet
4	Baro altitude	Integer	Using std. pressure. Note: both altitude types could be sent in the same packet.
5	Track	Integer	deg
6	Speed	Integer	knots
23	Comment	String	APRS comment (not recognized)
100	Delay	Integer	Packet delayed, unit: seconds

2 - OGN Object timeout data

Parameter id	Description	Format	Description
1*	Receiving time	Integer	Unix time stamp.
2	Last reception time	Integer	Unix time
3	Last latitude/longitude	[Signed Integer, Signed Integer]	Degrees multiplied by 2^23. Positive: N, E.
4	Last altitude	Signed Integer	Unit: feet
23	Last comment	String	APRS comment

Complete message examples

Messages presented here could be decoded online using https://cbor.me/

Message examples for object type 0 - local messages

0 - Keep Alive message example

Message is not accepting any parameters:

CBOR format:

 $[0, 0, 0, \{\}, []]$

Hex:

85 00 00 00 a0 80

1 - Login request message example

EPKA station logging:

CBOR format:

[0, 0, 1, {1: [2, "EPKA"]}, []]

Hex:

85 00 00 01 a1 01 82 02 64 45 50 4b 41 80

2 - Login response message example

GAT Core1 server response to login (access granted):

CBOR format:

[0, 0, 2, {1: [1, "Core1"], 2: 1}, []]

Hex:

85 00 00 02 a2 01 82 01 65 43 6f 72 65 31 02 01 80

GATP message transport

GATP format is designed with the idea to use different transport types at the same time.

TCP/IP

Default TCP port number is 8701.

Each message is prefixed with a length of CBOR packet encoded as 2-byte big-endian.

Logging process

- 1. Client connects to GATCore TCP port.
- 2. Within 10 seconds client sends "Login request message" (type: 0/1),
- 3. Client receives "Login response message" (0/2) with login request status:
 - 0 server full,
 - 1 access granted,
 - 2 access denied.

When the response is other than 1, TCP connection is closed by the server.

- 4. After successful connection, the server sends "Keep Alive" message after each 20 seconds.
- 5. Server expects "Keep Alive" or other valid messages from the client at least every 10 minutes.

MQTT

MQTT transport - e.g. topics arrangement, user access rights are currently designed.

MQTT brokers access method

Because of minimal security, completely anonymous access to GATCore MQTT brokers is disabled. However, usernames and passwords used by GAT users are publicly known.

There is one user defined that should be used to access GAT packet stream data:

MQTT user name: gat MQTT user password: glidernet

MQTT topics

Currently, it is possible to subscribe to "glidernet" and "events" topics:

- "glidernet" topic's purpose is similar to full-feed OGN APRS connection: all data gathered by OGN stations are published there,
- "events" topic is used for publishing timeout events.

The same CBOR format is used but without the prefix used in TCP transport.