

(1) Publication number:

0 320 576 B1

(12)

EUROPEAN PATENT SPECIFICATION

© Date of publication of patent specification: 02.12.92 ⑤ Int. CI.5: F02B 63/02

(1) Application number: 88115042.9

2 Date of filing: 14.09.88

(54) Portable rotary power tool.

- Priority: 17.12.87 US 134245
- Date of publication of application:21.06.89 Bulletin 89/25
- Publication of the grant of the patent: 02.12.92 Bulletin 92/49
- ② Designated Contracting States:
 AT BE DE ES FR GB IT NL SE
- References cited: EP-A- 0 197 487 FR-A- 2 475 625 GB-A- 2 054 035 US-A- 4 391 041

- Proprietor: White Consolidated Industries, Inc. 11770 Berea Road
- Cleveland Ohio 44111(US)

 ② Inventor: Tuggle, Lloyd H.
- 2004 Pepper Ridge Drive
 Shreveport Louisiana 71115(US)
 Inventor: Sadler, Jefferey G.
 6505 Lago Circle
 Shreveport Louisiana 71115(US)
- Representative: Patentanwälte Kirschner & Grosse
 Forstenrieder Allee 59
 W-8000 München 71(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

30

35

40

50

55

Description

The present invention relates generally to power tools, and more particularly provides a substantially improved power head assembly for a portable rotary power tool such as a flexible line trimmer.

1

Portable, gasoline engine driven rotary power tools such as brush cutters, lawn edgers, flexible line trimmers and the like typically comprise an elongated hollow shaft to one end of which a rotary cutting assembly is operatively mounted. A power head assembly, including the engine, is mounted on the opposite end of the shaft and typically comprises a protective shroud structure which envelops all or part of the engine, a gas tank, and a recoil starting mechanism incorporating the usual starter rope and pull handle components. The engine drives the cutting assembly, either directly or through a clutch mechanism, via a flexible drive shaft structure extending through the hollow shaft. To assist in properly guiding the cutting element during tool use, a pair of operator handle elements are typically secured to the tool in appropriate locations thereon. Additionally, a shoulder strap is often used to support the weight of the tool, the strap having an outer end portion which is releasably connectable to a small rigid clamp member or the like secured to the shaft.

While gasoline driven tools of this general type and configuration have proven to be quite useful, and immensely popular, a variety of problems, limitations and disadvantages may still be found in many of them relating to, among other things, structure, operation, safety, fabrication cost effectiveness, operating comfort, and maintenance and service accessability.

For example, because of the need to design the power head assembly to be at the same time light in weight, compact, and cost effective from material and fabrication standpoint, the resulting power head assembly can be frustratingly difficult and laborious for the average consumer to work on. Even minor engine adjustments, such as resetting the carburetor idle and operating speed adjustment screws, is often annoyingly hindered by the need to disassemble and remove various other power head components to even reach the carburetor. At the other end of the maintenance spectrum, major engine teardown and removal is often simply beyond the capabilities of the average tool user due to the sheer complexity and intricacy with which many conventional power heads of this general type are of necessity assembled.

Conventional attempts to alleviate to some degree this component access problem have, in many instances, left certain engine components exposed in a manner, though increasing their accessability, increasing the likelihood that such ex-

posed components will be accidentally bumped and damaged during tool use, and giving the overall power head a somewhat ungainly and "jury rigged" exterior appearance. As but one example of this problem, the engine's carburetor and associated air filter structure are often allowed to protrude outwardly of the engine's shroud structure for accessability purposes, thereby rendering these components highly vulnerable to damage.

2

Another example, relating both the component accessability and safety, arises in conjunction with the recoil starter mechanism which is typically difficult to remove and, when the need arises to replace its starter rope, difficult, awkward and sometimes unsafe to work on. As is well known, the problem here lies with the conventional necessity of hand winding the starter pulley against the biasing force of its associated torsion spring, and then holding the wound-up pulley with one hand, to keep the torsion spring from flying off, while attempting to rethread and knot a new starter rope onto the pulley with the other hand.

From the state of the art several power tools are known. For example EP-A-0 197 487 shows a power tool where the engine and all accessory units are enveloped by a casing. Further, the power tools known from GB-A 2 054 035, FR-A-24 75 625 and US-A-4 391 041 include housing means which do not allow access to the combustion engine.

In view of the foregoing, it is accordingly an object of the present invention to provide improvements which eliminate or minimize above-mentioned and other problems, limitations and disadvantages commonly associated with conventional portable rotary power tools of this general type.

SUMMARY OF THE INVENTION

In carrying out principles of the present invention, in accordance with preferred embodiments thereof, a representative internal combustion engine driven portable rotary power tool, in the form of a flexible line trimmer, is provided with a modular power head assembly mounted on one end of the hollow trimmer shaft and utilized to rotationally drive a cutting head assembly mounted on the opposite end of the shaft.

In one embodiment thereof, the power head assembly is formed, proceeding from back to front along the assembly, from four releasably interconnected modules - an engine module, a fan housing module, a starter module, and a coupling module.

The engine module comprises a specially designed shroud having an open front end, a top wall, a bottom wall, a pair of opposite side walls, a thickened upper rear support wall section which is forwardly inset and extends downwardly from a central portion of the top wall, and a vertically

intermediate wall which extends rearwardly from the bottom of the support wall and defines with rear portions of the bottom and side walls a muffler chamber having an open back end over which a suitable muffler guard may be connected.

The top wall of the shroud is downwardly inset to form a top well portion of the shroud, and the open bottom end of a shell member is sealingly secured to the periphery of the well portion to define therewith a fuel tank portion of the engine module.

A rear portion of the top wall defines with the intermediate wall and the support wall a back end recess in the shroud. A carburetor and an associated air filter housing are disposed within this recess to protect these components from damage, while at the same time providing easy access thereto. The carburetor is secured to the outer surface of the support wall over a fuel-air mixture passage extending inwardly therethrough, a reed valve member being operatively mounted on the interior surface of the support wall over the inner end of the fuel-air mixture passage.

The engine module also comprises a small single cylinder, air cooled, two stroke cycle gasoline engine having a crankcase with an open rear end portion, a piston and cylinder assembly secured to and depending from the crankcase, and a muffler operatively supported on the cylinder and projecting rearwardly therefrom. The crankcase, cylinder and muffler portions of the engine are disposed within the shroud and are removable through its open front end. The open rear end of the crankcase is bolted to the interior surface of the thickened support wall, over the reed valve thereon, so that such support wall supports the engine and defines a rear closure wall of the crankcase. The cylinder extends below the intermediate shroud wall, with the muffler projecting rearwardly into the muffler chamber. The engine's crankshaft projects forwardly through and beyond the open front end of the shroud, and is provided at its forward outer end with a centrifugal clutch assembly captively retained on the crankshaft by a nut threaded onto the outer crankshaft end.

The fan housing module comprises a fan housing section removably secured to the shroud around its open front end and enclosing the engine's flywheel which coaxially circumscribes and is rotationally locked to the crankshaft forwardly of the crankcase. The flywheel is provided with a circumferentially spaced series of axially extending cooling impeller blades which, during engine operation, flows a supply of ambient cooling air rear wardly across the cylinder and outwardly through the muffler chamber, the ambient cooling air mixing with exhaust gas discharged from the muffler to cool the exhaust gas. The exhaust gas-cooling air mix-

ture being discharged rearwardly through perforations in the muffler guard.

4

The starter module comprises a starter housing having a front wall, a side wall section extending rearwardly from the periphery of the front wall, and an open back end portion, the starter housing being releasably connected to the open front end of the fan housing. A tubular support post projects rearwardly from the front wall of the starter housing and circumscribes a portion of the engine's crankshaft between the clutch assembly and the flywheel. Carried within the starter housing is a manual, recoil type starting system which includes a starter pulley rotatably carried on the support post and having front and rear flanges between which a starter rope is wound, an outer end portion of the starter rope extending outwardly through a grommeted opening in the starter housing and being operatively connected to a starter pull handle.

A hollow cylindrical drive hub projects rearwardly from a central portion of the rear flange and is provided with drive teeth operatively engageable with spring biased starter dogs mounted on a forward portion of the flywheel. An annular torsion spring circumscribes the support post, is operatively connected to the starter pulley, and is retained between the starter housing front wall and the front pulley flange. The starter pulley is received within a generally annular guide channel defined by guide members projecting rearwardly from the front starter housing wall. The pulley is captively retained on the support post by a small retaining tab member secured to a thickened portion of the starter housing by a small screw member. Accordingly, when the starter module is removed from the balance of the power head assembly, both the starter pulley and its associated torsion spring are retained within the starter housing.

The installation of a starter rope on the starter pulley is made significantly easier and safer by the pulley and spring retaining operation of the tab member in conjunction with circumferentially alignable notches formed in the periphery of the rear pulley flange and one of the pulley guide members. To install a starter rope on the pulley, the pulley is wound up against the biasing force of the torsion spring and then backed off approximately one turn until these two notches are brought into alignment. A small pin member or the like may then be inserted between the aligned notches to lock the pulley against rotation caused by the wound up spring. Both of the operator's hands are then freed to easily and safely install the starter rope. After the rope has been installed, the locking pin member may be removed to allow the spring to unwind and automatically wind the new rope onto the starter pulley.

The coupling module, which is releasably con-

30

35

40

45

5

nectable to the front side of the starter module, comprises a clutch housing which envelops the engine's centrifugal clutch assembly and is provided at its front end with an internal, rearwardly projecting support shaft portion into which is molded a bearing structure including an annular bearing and an annular bearing spacer. This bearing structure coaxially receives and rotatably supports a cylindrical coupling member which is rotationally locked at a front end thereof disposed within the support shaft portion to an end of the flexible drive shaft which extends through the tubular trimmer shaft and is used to drive the trimmer's cutting head assembly. A clutch drum is fixedly secured to the rear end of the coupling member and outwardly circumscribes the centrifugal clutch assembly. When the rotational speed of the engine reaches a predetermined level, friction portions of the clutch assembly are moved radially outwardly therefrom to frictionally engage the interior surface of the clutch drum to thereby rotate the flexible drive shaft

This modular power head assembly greatly simplifies, in a very cost effective manner, the access to and servicability of the internal power head components. For example, simply by removing the coupling module, the centrifugal clutch assembly is readily accessible, yet is conveniently held on the balance of the power head assembly by the retaining nub on the outer end of the crankshaft. The exposed clutch assembly also captively retains the starter and fan housing modules on the shroud. By removing the clutch assembly, the starter assembly may simply be pulled outwardly off the front end of the crankshaft. Additionally, by then removing the fan housing screws and the fan housing, both the flywheel and its associated ignition module are exposed for inspection and service. The entire engine may then be removed simply by disconnecting it from the shroud support wall and pulling it outwardly through the open front end of the shroud. The carburetor and its associated air filter structure, which are disposed in the protective shroud recess and accessible therethrough, may also be simply disconnected from the shroud's specially designed supporting wall.

In a direct drive embodiment of the power head assembly, the centrifugal clutch assembly is eliminated, and a single fan housing and starter module is removably secured to the open front end of the shroud. This single, forwardly disposed module comprises a unitary housing section in which the recoil starter system is captively retained, and a coupling member is carried to drivingly interconnect the inner end of the flexible drive shaft and the outer end of the crankshaft.

In another version of the power head assembly, the shroud is modified by eliminating the upper shroud well portion and a rear portion of the shroud's upper wall. A separate fuel tank is suitably secured atop a front upper portion of the shroud and has a rear portion which extends rearwardly of the shroud support wall and is spaced upwardly from the intermediate shroud wall to define therewith the protective recess within which the carburetor and its associated air filter structure are disposed. In yet another version of the power head assembly, the shroud is modified in essentially this same manner, and an operator handle is secured to and positioned above the power head assembly. The operator handle has a front end portion which is connected to the housing structure disposed forwardly of the shroud, and a rear portion defined by a fuel tank which is suitably secured to an upper portion of the shroud and overhangs the carburetor and its associated air filter structure.

6

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of a gasoline engine powered flexible line trimmer that incorporates a variety of structural, operational, maintenance and service accessibility, cost reducing, and other improvements embodying principles of the present invention;

Fig. 2 is an enlarged scale perspective view of the power head section of the trimmer;

Fig. 3 is an enlarged scale, partially cross-sectional, and partially elevational view taken through the power head section along line 3-3 of Fig. 2, with certain engine components within the power head being schematically depicted;

Fig. 4 is a somewhat simplified exploded side elevational view of the power head section, with certain portions thereof being omitted for illustrative purposes;

Fig. 5 is a fragmentary side elevational view of a rear portion of the power head section taken generally along line 5-5 of Fig. 2;

Figs. 6A and 6B are rear side elevational views of the starter housing portion of the power head section, taken along line 6-6 of Fig. 4, illustrating certain structural and operational features of the recoil starting mechanism disposed therein;

Fig. 7 is an enlarged scale perspective view of a choke plate and air filter subassembly portion of the power head section;

Fig. 8 is an exploded perspective view of the subassembly of Fig. 7;

Fig. 9 is an enlarged scale fragmentary crosssectional view through the subassembly of Fig. 7, taken along line 9-9 thereof;

Fig. 10 is an enlarged scale perspective view of a vibration isolating shoulder strap connecting member secured to a portion of the trimmer shaft which is illustrated in phantom;

Fig. 11 is a cross-sectional view through the connecting member taken along line 11-11 of Fig. 10;

Fig. 12 is a side elevational view of an alternate embodiment of the power head section;

Fig. 13 is a side elevational view of a further alternate embodiment of the power head section; and

Fig. 14 is an enlarged scale partial cross-sectional view through a front end portion of the power head section of Fig. 13.

DETAILED DESCRIPTION

In a preferred embodiment thereof, the present invention provides a portable rotary power tool, in the form of a flexible line trimmer 10 perspectively illustrated in Fig. 1, in which a variety of unique structural, operational, maintenance and service accessibility, cost reducing, and other improvements are provided. Trimmer 10 has an elongated hollow shaft 12 which has operatively mounted on its left or forward end a rotationally drivable cutting head assembly 14 which is rotated at a high speed to spin an outwardly projecting flexible trimming line segment 16 in a cutting plane which is essentially transverse to the rotational axis of the head 14, and is utilized to trim various types of vegetation into which the cutting plane is moved. To protect the trimmer operator from the rapidly whirling line segment 16, a protective shield member 18 is also secured to the outer end of shaft 12, the shield member 18 being positioned generally above the cutting plane and projecting rearwardly toward the operator. To transmit rotational power to the cutting head assembly 14, a uniquely configured and operative power head assembly 20 is mounted on the right or inner end of the shaft 12. A small, single cylinder internal combustion engine 22 (Fig. 3) is disposed within a multi-section molded plastic shroud and housing structure which, as also illustrated in Fig. 2, comprises a main shroud 24, positioned at the rear of the powerhead assembly 20; a fan housing 26 removably secured to a front side portion of the shroud 24 by mounting screws 28; a starter housing 30 positioned at the front side of the fan housing; and a clutch housing 32 projecting forwardly from the starter housing and secured to an inner end portion of the shaft 12 in a manner subsequently described. Elongated mounting screws 34 are extended through a rear portion of the clutch housing 32, through the starter housing 30 and into a front portion of the fan housing 26 to thereby removably mount the housings 30, 32 on the fan housing 26.

Coaxially circumscribing the shaft 12 immediately adjacent the outer end of the clutch housing 32 is a hollow cylindrical rear operator handgrip 36

which is formed from a suitable resilient material. At the forward end of the handgrip 36 a molded plastic throttle lever housing 38 which is removably clamped to the shaft 12, and is provided with a pivotally mounted throttle lever 40 operatively connected, via a cable element 42, to the pivotally mounted throttle arm portion 44 (Fig. 5) of the engine's externally mounted carburetor 46. The cable 42, as best illustrated in Fig. 1, is extended through an axial passage (not illustrated) formed in the handgrip 36, and then enters the fan housing 26 at location 48. As best illustrated in Fig. 5, the cable 42 exits the rear shroud 24, adjacent the carburetor 46, and is connected at an end portion thereof to the throttle arm 44.

8

Clamped to the shaft forwardly of the throttle lever housing 38 is a forward operator handle 50 which is used by the trimmer operator in conjunction with the rear handgrip 36 to precisely control the movement of the trimmer cutting plane. Also clamped to the shaft 12, between the housing 38 and the control handle 50, is a specially designed, vibration reducing shoulder strap connector assembly 52 which, in a manner subsequently described is connectable to an operator shoulder strap 54, the strap 54 being used by the operator in a conventional manner to assist in comfortably supporting the weight of the trimmer 10.

Referring now to Figs. 2-4, it can be seen that the shroud and housing portions 24, 26, 30 and 32 are "stacked" in a front-to-rear direction along the rear end of the shaft 12 and, as previously mentioned, are easily separable from one another by removing the mounting screws or bolts 28 and 34. In side elevation, the main shroud 24 has a generally rectangular configuration, while an upper portion of the fan housing 26 combines with the fan and clutch housings 30, 32 to provide the overall housing structure with a generally frustroconically-shaped forward nose portion that gives the multi-section housing structure a pleasing, streamlined configuration.

The main shroud 24 has an open front end 56, and a vertically elongated, generally rectangular cross-section defined by an upper wall 58, a lower wall 60, and a pair of side walls 62 and 64. Extending downwardly from the upper shroud wall 58 is a substantially thickened upper rear wall section 68 that is connected at its lower side to a rearwardly extending vertically intermediate wall 70.

The interior of the main shroud 24 opens outwardly through the open front end 56 thereof, and additionally opens outwardly through a lower rear end opening 72 defined by lower side portions of the side walls 62 and 64, the intermediate wall 70, and a rear portion of the lower wall 60, these particular wall portions defining in the shroud 28 a lower rear internal cavity 74. Additionally, an upper

20

10

rear recess 76 is formed in the shroud 24 by the wall section 68, the vertically spaced walls 58 and 70, and sloping rear tab portions 78 of the side walls which are spaced vertically apart from one another and project inwardly beyond the walls 58 and 70. As illustrated, the upper rear recess 76 is accessible from the back of the shroud 24, and from the opposite sides thereof between opposed pairs of the side wall tab portions, and is bounded at it inner end by the thickened upper rear wall section 68.

The fan housing 26 which is secured as previously described to the front end 56 of the main shroud 24, has an open front end 80, and an open rear end 82. The starter housing 30 has an open rear end 84 and a front wall 86 from a central portion of which a hollow cylindrical support post member 88 rearwardly extends. The forwardly and laterally inwardly tapered clutch housing 32 has an open rear end 90, and an open front end 92 from which a hollow cylindrical support shaft portion 94 rearwardly extends.

Referring now primarily to Figs. 3 and 4, the engine 22 is a single cylinder, air cooled, two stroke cycle engine, which, with the exception of certain components subsequently described is disposed within the multi-section shroud and housing structure described above. The primary components of the engine 22 comprise a finned cylinder 100; a piston 102 received in the cylinder for reciprocation therein along a vertical axis as viewed in Figs. 3 and 4; a crankshaft assembly 104; a crankcase 106; a flywheel 108 having a circumferentially spaced series of axially extending cooling impeller blades 110 thereon; a centrifugal clutch assembly 112; an ignition module 114; a spark plug 116; a muffler 118; the carburetor 46; and an air filter housing and choke plate assembly 120. Crankcase 106 has a hollow rear portion 122 with an open back end 124, an open lower side 126, and a forwardly projecting, hollow cylindrical bearing support portion 128.

As will be seen, the main shroud 24, in addition to enveloping and protecting a rear portion of the engine 22, uniquely performs a variety of functions in the powerhead assembly 20. One of these important functions, performed by the shroud's thickened wall section 68 is to mount and support the engine 22 as will now be described. The open back end portion 124 of the crankcase 106 is bolted, over a gasket 130, to the inner side surface of the thickened wall section 68, around an inwardly projecting boss portion 132 thereof, by means of four mounting bolts 134 (only two of which are visible in Fig. 4) which are positioned in the rear shroud notched area 76 and are extended forwardly through the wall section 68 and fastened into the crankcase end portion 124.

The thickened wall section 68 also serves to externally mount, within the notched area 76, the carburetor 46 and the filter and choke plate assembly 120, in a manner subsequently described, the carburetor 46 abutting a rearwardly projecting end portion 135 of boss 132 as best illustrated in Fig. 3. It can be seen in Fig. 3 that this thickened wall section 68 defines a rear closure wall of the rear portion 122 of crankcase 106, while a suitably configured boss opening 136 also defines a fuel-air mixture passage which interconnects the carburetor outlet with the interior of the rear crankcase portion 122. The boss 132 also is conveniently used to mount, over the inner end of the passage 136 a schematically depicted crankcase reed valve 138. Before describing various other functions performed and advantages provided by the main shroud 24, a detailed description of the interconnection and relative positioning of the previously mentioned engine components will now be given.

The upper end of the finned cylinder 100 is suitably bolted, over a sealing gasket 140, to the open lower side 126 of the crankcase 106, with the bottom-mounted spark plug 116 projecting downwardly through a suitable opening 142 formed in the lower shroud wall 60. Spark plug 116 is operatively connected to the ignition module 114 by suitable wiring 144, the ignition module being positioned generally within a lower portion of the fan housing 26, and being secured to a forwardly projecting connecting block portion 146 of the cylinder 100 by an elongated mounting screw 148.

Cylinder 100 is provided in a right side portion thereof with a suitably configured exhaust gas discharge opening 150 which receives the inlet end 152 of the muffler 118. Exhaust gas discharged from the cylinder 100 is flowed through the outlet opening 150 into a perforated cylindrical muffler liner 154 into the interior of the muffler body. The muffler body is formed from two partially nested horizontal sections 118, and 118, the section 118, having outwardly deformed portions which define side outlets 156 in the muffler body. Exhaust gas entering the interior of the muffler body through the liner 154 is discharged rearwardly through these side outlets 156 and then flowed rearwardly through rear wall perforations 158 formed in a hollow molded plastic muffler guard 160 secured to the shroud 24 over its lower rear end opening 72.

The filter and choke plate assembly 120 includes a metal choke plate 162 positioned rearwardly of the carburetor 46, and an air filter housing 164 positioned rearwardly of the choke plate. The plate 162 is secured to the thickened shroud wall section 68 by a pair of elongated mounting screws 166 which draw the plate 162 against the back end of the carburetor 46 to clamp it into operative engagement with the rearwardly projecting boss

portion 134 so that the fuel-air mixture produced by the carburetor flows into the crankcase via the boss opening 136 and across the reed valve 138. The filter housing 164 is secured to the choke plate 162 by means of a pair of mounting screws 168 extended through the filter housing 164 and fastened into the choke plate 162. Fuel is supplied to the carburetor 46, in a manner subsequently described, through a flexible fuel line 170. Crankshaft assembly 104 has a relatively large diameter inner longitudinal shaft section 172, which extends coaxially through the crankcase bearing support portion 128 and is rotatably supported therein by a bearing structure that includes an inner crank bearing 174 carried by the shaft section 172, and an outer crank bearing 176 retained within an outer end portion of the bearing support portion 128 which projects forwardly into the fan housing 26. The left end of the inner shaft section 172 tapers, as at 178, to a smaller diameter outer longitudinal shaft section 180 which extends centrally through the starter housing 30 and into the clutch housing 32, and is provided with an externally threaded outer end portion 182.

The flywheel 108 is positioned within the fan housing 26 and coaxially circumscribes a longitudinally central portion of the crankshaft including its tapered portion 178. The flywheel is keyed or otherwise rotationally locked to the crankshaft for rotation therewith, and its impeller blades 110 function during flywheel rotation by the crankshaft to draw ambient cooling air 184 into the interior of the power head assembly 20 through a series of side wall slots 186 formed in the starter housing 30. The air 184 entering the powerhead assembly interior is forced rightwardly across the finned cylinder 100 and the muffler 118, through the lower rear shroud cavity 74, to cool the same. Cooling air 184 rightwardly traversing the muffler 118 mixes with exhaust gas 186 being discharged therefrom to cool such exhaust gas. The cooling air-exhaust gas mixture 184, 186 is then discharged rearwardly from the muffler guard 160, through the rear end wall perforations 158 therein, as illustrated in Fig. 3. This conveniently directs the cooled exhaust gascooling air mixture rearwardly away from the trimmer operator.

Affixed to the inner end of the crankshaft section 172 is a crankshaft counterweight member 188 which is disposed within the rear portion 122 of the crankcase 106. This counterweight section of the crankshaft assembly 104 is provided with a crank pin 190 which is operatively interconnected with the piston 102 by a connecting rod 192.

The clutch assembly 112 is coaxially mounted on an outer end portion of the crankshaft section 180 and is retained thereon by a nut 194 fastened onto the threaded crankshaft end portion 182. An annular clutch washer 196 is also coaxially mounted on the shaft section 180 and bears against the rear side surface of the clutch assembly 112. An inner end portion of an elongated flywheel counterweight member 198 is slidably retained on the shaft section 180 and bears against a central from side surface portion 200 of the flywheel 108. Counterweight 198 is captively retained on the shaft section 180, and held in abutment with the flywheel surface 200, by a tubular retainer sleeve 203 mounted on the shaft section 180 and bearing at its opposite ends against the clutch washer 196 and the counterweight 198.

12

The counterweight member 198 functions to substantially reduce engine vibration attributable to linear inertia and reactive forces of the piston 102, the connecting rod 192, and their associated connecting structure, imposed upon the right end of the crankshaft when the piston 102 is adjacent its top dead center and bottom dead center positions. Counterweight 198 is aligned on the flywheel 108 in a manner such that when the piston is adjacent these positions, the longitudinal axis of the counterweight is swung through a parallel relationship with the piston axis and exerts an appropriately directed counterforce on the crankshaft to offset the rocking torque imposed on the right crankshaft end by these linear inertial and reactive forces. To maintain the counterweight member 198 in appropriate alignment with the flywheel 108, an outer end portion of the counterweight 198 is received and retained between an appropriate adjacent pair of the flywheel impeller blades 110.

In a conventional fashion, the flywheel 108 has a magnet (not illustrated) imbedded in a circumferential portion thereof which is rapidly driven past the ignition module 114 to transmit an electrical spark, via the wiring 144, to the spark plug 116. A snap-action electrical kill switch 201 (Figs. 1 and 2) is mounted on the top of the fan housing 26 and is suitably interconnected to the wiring 144 (in a manner not illustrated) to selectively and rapidly terminate engine operation. As illustrated in Fig. 3, the downwardly projecting spark plug 116 is rearwardly adjacent a downwardly projecting front guard and support section 202 of the main shroud 24. The section 202 functions both as a support for the powerhead assembly 20 when it is rested upon the ground, and further shields the outwardly projecting spark plug from damage.

The starter housing 30 defines a portion of a manual starter assembly 204 which includes a starter pulley 206 rotatably mounted on the starter housing support post 88. Pulley 206 is operatively connected to a schematically depicted annular torsion spring element 208 which circumscribes the starter housing post 88 and is captively retained between the inner pulley flange 210 and the front

Page 8 of

wall 86 of the starter housing 30. Extending rearwardly from the outer pulley flange 212 is a central cylindrical drive hub 214 having formed around its periphery a series of ratchet drive teeth 216.

A starter rope 218 is operatively wrapped around the pulley 206 and has an outer end portion 220 which is passed outwardly through a grommeted opening 222 in the starter housing 30 and secured to a generally T-shaped starter pull handle. An inner end portion 226 of the rope is extended outwardly through a pulley threading opening 228 formed in the flange 212 and is knotted around or otherwise secured to the pulley drive hub 214.

In a conventional manner, as the handle 224 is pulled upwardly as viewed in Fig. 3, the resulting extension of the starter rope 218 rapidly rotates the pulley 206, thereby winding up the torsion spring 208. The drive hub teeth 216 simultaneously engage spring-loaded starter dogs 230 on the flywheel 108 to rotationally drive the flywheel, and thus the crankshaft, to start the engine. Upon engine startup, the dogs 230 are centrifugally swung out of engagement with the starter teeth 216 to thereby disconnect the starter assembly from the balance of the engine. When the handle 224 is released, the tightened torsion spring 208 operates to rewind the starter rope 218 on the pulley 206 as illustrated in Fig. 3.

The clutch housing 32 defines a portion of a drive and coupling assembly 232 which functions in cooperation with the clutch assembly 112 to transmit rotational power from the engine 22 to the trimmer cutting head 14 (Fig. 1) through a flexible drive shaft 234 disposed within the trimmer shaft 12 within a liner structure 238. This flexible drive system, which forms no part of the present invention, is similar to that illustrated and described in U.S. Patent 4.451,983.

Drive and coupling assembly 232 includes a clutch drum 240 which, as illustrated in Fig. 3, is disposed within a rear portion of the clutch housing 32, has an open rear end, and outwardly circumscribes the clutch assembly 112. A radially reduced front side wall 242 of the clutch drum 240 is rotationally locked to a flanged portion 244 of a hollow tubular connector member 246 which projects axially inwardly into the support shaft 94 and into an inner end portion 12a of the trimmer shaft 12 which is also received within such support shaft 94. The connector member 246 is rotatably supported within the hollow support shaft portion 94 of the clutch housing 32 by means of an annular bearing 248 which, like an adjacent annular bearing washer 250 is conveniently molded-in with an inner end portion of the support shaft 94. The molded-in bearing and washer 248, 250 are captively retained within an inner end portion of the support section

94 by a pair of annular lip flanges 252, 254 formed therein.

The tubular connector member 246 is captively retained on the support element 94 by means of the shoulder portion 244 positioned on one side of the bearing 248, and a suitable snap ring member 256 secured to the member 246 and positioned on the opposite side of such bearing. The inner end portion 256 of the flexible drive shaft 234 is slidably received within a complementarily configured axial opening within the forward end of the connector member 246 to thereby rotationally lock the shaft 234 and the connector member 246.

An inner end portion 12, of the trimmer shaft 12 is keyed or otherwise rotationally locked within the cylindrical support portion 94 of the clutch housing 32 to prevent relative rotation therebetween. As best illustrated in Fig. 2, the outer end of the clutch housing 32, which removably receives the inner end portion 12a of the trimmer shaft 12, is axially slit, as at 258, along a central portion thereof. The inner trimmer shaft end portion 12, is releasably clamped within the outer end portion of the clutch housing 32 by means of two clamp screws 260 which are extended through upper and lower front portions 262 and 264 of the clutch housing 32, disposed on opposite sides of the slit 258, to draw such portions together around the trimmer shaft end portion 12a.

The clutch assembly 112 is of a generally conventional construction and includes a central hub portion 266 and a pair of friction elements 268 which are normally biased to their radially inwardly retracted positions depicted in Fig. 3 by clutch spring means 270 which circumscribe the hub 266 and operatively engage the friction elements 268. When the engine 22 reaches a predetermined rotational speed, the friction elements 268 are forced centrifugally outwardly from the hub 266 into frictional engagement with the interior surface of the clutch drum 240 to rotate the drum and, via the locked interconnection between the connector member 246 and the flexible shaft end portion 256, to transmit rotational power from the engine 22 through the flexible drive shaft 234 to the trimmer head 214. When the engine speed falls below this predetermined level, the clutch spring means 270 overcome the centrifugal force on the friction elements 268 to thereby withdraw them from frictional engagement with the clutch drum 240 and decouple the flexible drive shaft 234 from the engine

Returning now to the discussion of the various advantages provided by the uniquely configured shroud 24, it can be seen in Figs. 1, 2 and 5 that the carburetor 46 and its associated filter and choke plate assembly 120 are conveniently disposed and protected within the rear shroud recess

76 defined by vertically opposed rear sections of the shroud. Disposed in recess 76 in this manner, these components are quite well protected by outer surface portions of the shroud 24 from damage. They remain, however, quickly and easily accessible for service and maintenance. For example, as previously described, both the carburetor 46 and the filter and choke assembly 120 may be quickly removed from the shroud simply by removing the two screws 166 and the two screws 168 (see Figs. 4 and 8) which are easily accessible from the rear of the shroud. Additionally, while the carburetor 46 is securely protected within the shroud recess 76, its idle, high speed and low speed adjustment screws 272, 274 and 276 (Fig. 5) may be easily screwdriver-adjusted from the side of the shroud 24 without the necessity of removing any associated components, cover plates or the like.

The shroud 24, as best illustrated in Fig. 3, also conveniently forms a bottom portion of a topmounted gas tank 278 which holds a supply of gasoline for delivery to the carburetor 46 via the flexible fuel line 170. The upper shroud wall 58 is provided around its periphery with an upstanding flange portion 280 which defines with the wall 58 a downwardly inset well portion 282 positioned at the top 284 of the shroud 24. To form with the well 282 the balance of the top-mounted gas tank 278, a molded plastic tank cover element 286, provided with a screwed on gas cap 288, is vibratory welded at its open lower end 290 to the upper end of the well flange portion 280. The flexible fuel line 170 is passed upwardly through a suitably sealed opening (not shown) formed in the lower tank wall 58, and is provided at its upper end with a weighted fuel inlet filter element 292.

It can be seen from the foregoing that the uniquely configured main shroud portion 24 of the power head assembly 20 forms a convenient and multi-functional "base" to which the other power head assembly components, including the "stacked" housing sections 26, 30 and 32, are connected and supported from. These stacked housing structure elements uniquely cooperate with the main shroud 24 to provide substantially improved maintenance, service and replacement access to the engine 22 disposed within and supported on the shroud in a manner which will now be described.

Rapid access to the clutch assembly 112 is achieved simply by removing the four mounting screws 34 (Fig. 2) and pulling the drive and coupling assembly 232 leftwardly away from the balance of the power head assembly, thereby exposing the clutch assembly 112 which is conveniently held in place by the nut 194. The friction elements 268 of the clutch may then be inspected, and serviced or replaced as necessary. At the same

time, the clutch drum 240 may be easily inspected. If it is necessary to remove the drive and coupling assembly 232 from the trimmer shaft to which it is still clamped, the clamping screws 260 (Fig. 2) may be simply loosened to permit the drive and coupling assembly 232 to be simply pulled rightwardly off the trimmer shaft end portion 12_a.

It will be noted that when the drive and coupling assembly 232 has been removed from the starter housing 30, the exposed clutch assembly 112 conveniently retains the starter assembly 204 on the crankshaft. If it is required to inspect the interior of the assembly 204, all that is necessary is to remove the crankshaft end nut 194, slide the clutch assembly leftwardly off the crankshaft, and then similarly slide the starter assembly 204 leftwardly off the crankshaft.

Access to the entire flywheel 108, and the ignition module 114, may then be provided simply by removing the screws 28 (Fig. 2) and then removing the fan housing 26. After the fan housing 26 has been removed in this manner, the entire assembled balance of the engine 22 may be removed simply by removing the four engine mounting bolts 134 (Fig. 4), and the spark plug 116, and then pulling the disconnected engine outwardly through the open front end 56 of the shroud 24. In a similarly rapid fashion, the carburetor 46 and the filter and choke plate assembly 120 may also be removed by removing the screws 166 and 168 (Fig. 4). Reassembly of the power head 20 is easily achieved simply by essentially reversing these steps.

Referring now to Figs. 6A and 6B, the previously described starter assembly 204 is of a unique design which substantially facilitates and renders a great deal safer the initial or subsequent repair installation of a starter rope 218. The starter rope pulley 206 coaxially mounted on the pulley drive hub 214 is received within arcuate guide structure defined in part by axially extending, curved guide moldings 294, 296 which are positioned radially inwardly of four circumferentially spaced molded boss sections 298, each of the bosses 298 having a circular opening 34a formed axially therethrough for receiving one of the four mounting screws 34 (Fig. 2).

Formed on a left end portion of the guide molding 296 is a radially outwardly projecting, generally V-shaped groove 100, the right end of the molding 296 being used to retain the radially outermost end of the torsion spring 208. A thickened portion 302 (Fig. 3) of the starter housing 30 is positioned radially outwardly of the guide molding 296 and has secured thereto, by means of a small screw 304, an elongated pulley retaining tab member 306. As illustrated in Figs. 6A and 6B, a radially inner end portion of the tab 306 overlies a radially

outer surface portion of the outer pulley flange 212, thereby precluding axial dislodgment of the pulley 206 from the drive hub 214. For purposes later described, a small semicircular notch 308 is formed in the outer periphery of the outer pulley flange 212.

With the manual starter assembly 204 removed from the power head assembly 20 as previously described, the starter rope 218 may be replaced in the following safe, rapid and convenient manner. For purposes of describing this procedure, it will be assumed that the starter rope 218 depicted in Fig. 6A has become worn and needs to be replaced. To accomplish this replacement, the worn rope 218 is first removed from the pulley and discarded. Next, the pulley 206 is hand wound to fully tighten the torsion spring 208 and then backed off approximately one turn until the pulley flange edge notch 308 is brought into alignment with the guide molded V-groove 300 as illustrated in Fig. 6B. During this manual winding of the pulley 208, and thereafter, the tab 306 functions to hold the pulley 206 on the hub 214 to prevent the spring 208, when under torsion from flying off and injuring the installer of the new starter rope.

When the groove 300 and the notch 308 are brought into alignment as depicted in Fig. 6B, a suitable pin element 310 is axially inserted into the space between the groove and notch 300 and 308 to thereby lock the pulley against rotation caused by the wound up torsion spring 208. With the pin element 310 inserted in this manner, the pulley may be released, thereby freeing both hands of the rope installer to install a new starter rope.

When the pulley is temporarily locked in this manner, the pulley threading hole 228 is brought into circumferential alignment with the grommeted rope opening 222. The outer end of a new starter rope is then secured to the starter pull handle 224, and the inner end of the rope is threaded inwardly through the grommeted opening 222, into the space between the pulley flanges, outwardly through the threading opening 228 and then secured around the drive hub 214 as depicted in Fig. 6A. It is important to note that during this threading and attachment procedure, both of the operator's hands are free due to the locking action of the pin element 310, and the wound up spring 208 is safely prevented from escape by the action of the retaining tab 306.

All that is necessary now is to hold a section of the new rope, and a portion of the housing 30 adjacent the grommeted opening 222 with one hand while removing the pin elements 310 with the outer. The section of the new rope disposed outwardly of the housing may then be allowed to slide through the fingers while the torsion spring 208 unwinds to automatically rewind the new rope 218

onto the pulley 206 and pull the handle 224 back against the housing 30 as illustrated in Fig. 6A. It can readily be seen that the significant safety and maintenance improvement achieved in the improved starter assembly 204 is provided by the present invention at a very low cost - namely, the cost of providing the groove 300, the notch 308, the screw 304 and the retainer tab 306.

18

Another of the various improvements incorporated in the trimmer 10 by the present invention relates to the structure and operation of the filter and choke plate assembly 120 depicted in Figs. 7-9. The filter housing 164 has an elongated, generally rectangular configuration; an open front end; a back wall 312; a side wall portion 314 having a series of air inlet openings 316 formed therein; a peripheral, forwardly projecting flange 318 bordering the open front end; and a rearwardly inset peripheral ledge 320 inwardly adjacent the flange 318. Projecting forwardly from the back wall 312 is an arcuately disposed series of spaced apart support pins 322 around which a strip of foam type air filter material 324, disposed within the filter housing 164, is bent. A forward right end portion of the housing 164 has a notch 326 formed therein, the notch extending rearwardly of the ledge 320.

The choke plate 162 is closely received within the flange 318 and drawn into abutment with the ledge 320 by the screws 168, an end tab portion 328 of the plate 162 being received in a forward side portion of the notch 326. A central portion of an elongated, plate-like choke lever 330 is pivoted to the rear surface of the choke plate 162 by one of the mounting screws 166 so that an inner end portion 332 of the lever 330 can be selectively pivoted over all or a portion of a central circular choke opening 334, formed through the plate 162, to selectively choke the engine 22.

The choke lever 330 has an outer end portion 336 which projects outwardly beyond the end tab portion 328 of the plate, and is provided at its outer end with a forwardly bent end tab portion 338 which may be easily manipulated by a finger to selectively pivot the lever 330. The pivotal motion of the lever 330 is limited by rearwardly projecting stop pin portions 340 and 342 on the plate 162, while suitable detent depressions 344, 346 and 348 are formed in the rear surface of the plate 162. These detent depressions cooperate with a complementarily configured detent projection 350 on the outer choke lever end portion 336 to conveniently hold the lever in one of three selected choke positions.

With the choke plate 162 firmly secured to the filter housing 164 as previously described, a front side edge portion 324_a of the foam filter strip 324, adjacent the filter housing notch 326, is pressed against the inner side surface 162_a of the plate 162

55

Page 11 of

and is also pressed around the outwardly projecting end portion 336 of the choke lever 330 (see Fig. 9) to maintain a movable dust seal 352 around the outwardly projecting choke lever portion 336. As illustrated in Fig. 9, when the lever portion 336 is moved downwardly from its solid line position to its dotted line position, the seal 352 moves with the lever portion, so that the portion of the filter element side surface 324a previously depressed by the lever portion 336 in its solid line position moves back into engagement with the inner side surface 162a of the plate 162. The cooperation in this manner between the foam filter element 324 and the lever 330 substantially reduces the amount of unfiltered air which eventually reaches the carburetor 46.

Yet another aspect of the present invention resides in the structure and operation of the shoulder strap connector assembly 52 which will now be described with reference to Figs. 10 and 11. While it might be assumed that, due to the inherent flexibility of the shoulder strap 54, that shaft vibration transmitted to the trimmer user therethrough would be rather minimal, a surprisingly high amount of shaft vibration is actually transmitted to the user through such strap 54 when it is connected to the conventional rigid clamp member typically used to connect an outer end portion of the strap to the shaft. A substantial amount of this annoying and sometimes tiring shaft vibration transmitted through the strap 54 is, however, eliminated by the resilient connector assembly 52 which comprises a generally U-shaped molded plastic clamp portion 354 whose depending arms 356, 358 project below the trimmer shaft 12 and are drawn together by a clamp screw and locking nut assembly 360, 362 to draw the curved base portion 364 of the clamp member 354 tightly against the shaft 12. The projecting base portion 366 of a molded plastic connector member 368 is anchored to the closed top of base portion 364 by means of a radially extending screw 370 which extends upwardly through aligned bores formed in the base portions 364 and 366, has a head 372 received in a radially inner surface depression 374 in the base portion 364, and is threaded into a lock nut 376 which is positioned along a longitudinally intermediate portion of the screw 376 and is received in a recess 378 formed in the base portion 366 as illustrated. Alternatively, of course, the clamp portion 354 and the connector member 368 could be molded integrally with one another if desired.

The connector member 368 has an annular upper end portion 380 having a radially inner portion captively retained in an annular, exterior surface channel 382 formed around the side surface of a hollow, generally barrel shaped vibration isolator member 384. Isolator member 384 is formed

from a suitable resilient elastomeric material and has tapered opposite ends 386, 388 which are respectively received in generally dish-shaped isolator support members 390 and 392 that are inwardly adjacent the lower ends 394, 396 of a U-shaped metal snap connector member 398.

20

Member 398 is secured to the resilient isolator member 384 by means of a connecting bolt 400 which extends through the connector member ends 394 and 396, the dish-shaped members 390 and 392, the tapered ends 386 and 388 of the isolator 384, and axially through the interior of the isolator. The outer end of the bolt 400 is threaded into a suitable retaining nut 402. Instead of the bolt 400, another suitable type of fastening member, such as a rivet, could be utilized if desired.

A tubular metal spacer member 404 is positioned within the interior of the isolator 384, co-axially circumscribes a longitudinally central portion of the bolt 400, and bears at its opposite ends against the interior surfaces of the outer ends 386, 388 of the isolator 384. The illustrated looped outer end portion of the shoulder strap 54 is passed through the rectangular slide loop end portion 406 of a small clip member 408 which may be clipped directly onto the snap connector member 398 or, as illustrated, be clipped onto a split ring adapter member 410 which is in turn connected to the member 398.

It can be seen that the snap connector member 398 is completely isolated from the base portion 366 of the connector member 368 by means of the hollow vibration isolator member 384 which, due to its hollow configuration, may be flexed axially and/or radially. Accordingly, a substantial portion of the shaft vibration which would otherwise be transmitted from the clamp member 354 through the connecting structure to the shoulder strap 54 is absorbed and damped by the isolator member 384.

Illustrated in Fig. 12 is an alternate embodiment 20_a of the previously described power head assembly 20. For ease of comparison, components in the assembly 20_a similar to those in the assembly 20 have been given identical reference numerals, but with the subscript "a". The engine and clutch components disposed within the shroud and housing structure 24_a , 26_a , 30_a and 32_a are identical to those in the powerhead assembly 20, and the engine is provided with an externally mounted filter housing and choke plate assembly 120_a and an associated carburetor 46_a mounted to the thickened shroud support wall section 68_a .

However, in the assembly 20_a the protective recess 76_a at the back end of the main shroud 24_a is not defined entirely by the shroud itself. Instead, the shroud 24_a is provided with a forwardly and upwardly sloping upper rear wall portion 412 which extends between the inner end of the intermediate

35

40

Page 12 of

21

wall 70a and an essentially flat, forwardly disposed top wall portion 414 which is immediately adjacent a flat upper top wall portion 416 of the fan housing 26a. Additionally, the modified shroud 24a does not integrally define a portion of the gas tank section of the powerhead assembly. Instead, a separate molded plastic gas tank 418 is provided and sits atop the shroud and fan housing top wall portions 414, 416. Tank 418 has a rear portion 420 which projects rearwardly of and extends downwardly along the shroud wall 412. The rear tank portion 420 has a rearwardly and upwardly sloped rear bottom wall portion 422 which, with the shroud walls 68a 70a defines the protective recess 76a. Tank 418 has a front side portion 424 which is secured to a rear shoulder portion 426 of the fan housing 26, by a suitable connecting bracket structure 428. The rear tank portion 420 may be additionally secured to the sloping shroud wall 412 by suitable interlocking lip means (not illustrated) if desired.

A further alternate embodiment 20_b of the power head assembly 20 is depicted in Fig. 13. The power head assembly 20b is a direct drive (i.e., non-clutch) version of the assembly 20 and has a variety of other modifications made thereto. The shroud 24b is substantially identical to the shroud 24a described in conjunction with Fig. 12, but instead of having separate fan, starter and clutch housings removably secured thereto in a "stacked" fashion, the shroud 24b has forwardly secured thereto a single housing structure 430 having, from front-to-rear, coupling, starter and fan sections 432, 434 and 436 molded integrally with one another. The unitary housing structure 430 is similar in appearance to the stacked separate housings 26a. 30_a and 32_a of Fig. 12, but the coupling section 432 is shorter, in a front-to-rear direction, due to the absence of a clutch in the power head assembly 20_h.

Referring now to Fig. 14, it can be seen that the flywheel 108b is disposed within the fan section 436, and the starter pulley 206b, and its associated torsion spring 208b are disposed within the starter section 434 of the unitary housing structure 430. In this non-clutch version of the power head assembly, the outer end portion 180b of the crankshaft is considerably shortened, and projects outwardly a short distance from the central flywheel surface 200b against which the flywheel counterweight 198b is disposed. The crankshaft end portion 180b is rotationally locked within a right end portion of a hollow tubular coupling member 438 which extends coaxially into the inner end of the support shaft portion 94b of the coupling section 432. The left end of the coupling member 438 nonrotatably receives the square end 256 of the flexible drive shaft 234, the trimmer shaft 12 being clamped within the coupling section 432 as previously described in conjunction with the clutch housing 32 of power head assembly 20. In this embodiment of the power head assembly, the flywheel counterweight 198_b is captively retained against the flywheel surface 200_b by the right end of the coupling member 438.

22

The starter pulley 206b is mounted on a reduced diameter inner end portion 440 of the support shaft 94b (which replaces the support post 88 described in conjunction with Fig. 3) and is held in abutment along its forward end with a shoulder portion 442 of the shaft 94b by a washer 444 or other suitable retaining member fastened to a thickened housing wall portion 446 by a small screw 448. The torsion spring 208b is captively retained between the pulley flange 210b on one side, and the shoulder 442 and an internal housing shoulder 450 on the other side. It can be seen in Fig. 14 that very rapid access to both the starter assembly, the flywheel, and the balance of the engine may be achieved simply by removing the unitary housing structure 430 from the main shroud 24b. Starter rope replacement may be easily and safely accomplished in the manner previously described in conjunction with Figs. 6A and 6B.

Another modification made to the power head assembly 20b is that (as in the case of the assembly 20a) the shroud 24b is not utilized to integrally define a portion of the gas tank section of the powerhead assembly 20b. Instead, a separate molded plastic gas tank 452 is provided and suitably secured to the rear end of a generally L-shaped operator handle 454 which is spaced upwardly from the shroud and housing wall portions 414b and 416b. The tank 452 is suitably secured to the shroud wall portion 412b and overlies the filter and choke plate assembly 120b and the carburetor 46b to thereby partially define the protective recess 76b in which such components are received. A downwardly bent forward end portion 456 of the handle 454 is suitably secured, as at 458, to a support web 460 molded integrally with the housing structure 430, and projecting forwardly and upwardly therefrom at an upper end portion of its starter and fan sections 434 and 436. The handle 454 is provided with a pivotally mounted throttle trigger 460 adjacent the forward handle end 456, the trigger 460 being operatively interconnected (in a manner not illustrated) to the carburetor throttle arm via suitable cable means. It will be appreciated that when this particular embodiment of the power head assembly is utilized, the handle 454 functions as a rear operator control handle so that the cylindrical handgrip 36, and its associated throttle control structure depicted in Fig. 1, could be eliminated when this power head assembly embodiment is incorporated into the trimmer 10.

By comparing the previously described power

25

30

35

45

50

55

23

head assemblies 20, 20_a and 20_b, it can readily be seen that each is constructed in a unique "modular" fashion which is both very cost effective and significantly enhances the ease with which it may be initially fabricated and assembled, and subsequently disassembled, either partially or totally, for maintenance, inspection and repair purposes. Because of this unique modular construction, access to the internal components of the power head is also greatly improved so that the tool purchaser can much more easily perform most of the ordinary maintenance, repair, and component replacement tasks.

Referring again to Figs. 3 and 4, the readily separable "modules" of power head assembly 20 (which, from a modularity standpoint, is identical to the assembly 20_a of Fig. 12) include: an engine module comprising the shroud 24 and the engine 22 secured thereto; a fan housing module comprising the fan housing 26; a starter module defined by the starter assembly 204; and a coupling module defined by the drive and coupling assembly 232.

In the direct drive version 20b of the power head assembly depicted in Fig. 13, there are two readily separable modules - the engine module defined by the somewhat modified shroud 24b and the engine secured thereto, and a combined fan housing, starter and coupling module defined by the integral front housing structure 430 and the previously described starter and coupling structure carried therein and removable therewith. In comparing the power head assemblies 20 and 20b, the fan housing, starter and coupling modules of assembly 20 may be conceptually characterized as submodular counterparts of the single fan housing, starter and coupling module of assembly 20_b provided in part, to accomodate the presence of the clutch assembly 112.

From the foregoing it can be seen that the present invention, in the described illustrative embodiments thereof, provides a portable rotary power tool which is substantially improved in a variety of manners relating to structure, operation, maintenance and service accessibility, cost reduction and overall operating convenience and comfort. It will be appreciated, however, that the power tool depicted herein could be employed in a wide variety of alternate applications.

Claims

 An internal combustion engine driven power tool comprising working means drivable to perform a predetermined work function, the internal combustion engine (22) having a crankcase (106), a cylinder (100), a muffler (118), a carburetor (46), and manually operable starter means (204) for starting said engine, the power tool further comprising power transmitting means for receiving rotational power from the combustion engine (22) and transmitting said power to said working means to drive the same, coupling means (232) for rotationally coupling said engine to said power transmitting means, and a power head assembly (20), characterized in that the power head assembly includes:

24

a shroud member (24) having an open front end (56), an engine support wall section (68) spaced rearwardly from said open front end, a fuel-air mixture passage (136) extending through said support wall section from an exterior portion thereof to an interior surface thereof, a reed valve (138) operatively secured to said inner surface of said support wall section (68) over said fuel-air mixture passage (136), and a chamber (74) extending rearwardly of said support wall section, said chamber communicating with the interior of said shroud member and having a rear end opening,

said internal combustion engine (22), thereby partially enveloped by said shroud member(24), an open rear end portion of the crankcase (106) being interiorly secured to said support wall section (68) over said reed valve (138) so that said support wall section defines a rear closure wall of said crankcase. the balance of said engine being supported from said crankcase, the cylinder (100) of said engine being connected to a side portion of said crankcase within said shroud member, said muffler (118) being secured to said cylinder and positioned within said chamber (74), and said carburetor (46) being externally secured to said support wall section (68) and operatively positioned over said fuel-air mixture passage (136),

housing means removably connectable to said shroud member over said open front end thereof, said coupling means being positioned within said housing means, and

a portion of said housing means carrying said manually operable starter means (204) for removal therewith from said shroud member (24).

A power tool of claim 1, characterized in that said shroud member (24) has an inset exterior wall portion (282), and

said power tool further comprises a shell member (286) having an open end portion secured to and sealed around the periphery of said inset exterior wall portion (282) to define therewith a fuel tank portion (278) of said power head assembly (20).

15

20

25

30

35

45

50

55

Page 14 of .

- 3. A power tool of claim 1 or 2, characterized in that said shroud member (24) has a pair of spaced apart exterior wall portions (58, 70) which, with said support wall section (68), define in said shroud member an exterior recess (76) in which said carburetor (46) is received, said exterior wall portions laterally and rearwardly overhanging said carburetor in a manner protecting it from damage yet permitting access thereto from the exterior of said shroud member (24).
- A power tool of one of the preceding claims, characterized in that it further comprises air filter means (120) carried by said carburetor (46) within said recess (76) for filtering air received by said carburetor.
- A power tool of one of the preceding claims, characterized in that

said engine (22) has a crankshaft having an outer end (180) disposed within said housing member,

said housing member has a tubular support post (88) therein which is axially aligned with said outer crankshaft end (180) for support thereof.

said coupling means (232) include a coupling member rotationally coupling said outer cranksahft end (180) and said power transmitting means, and

said starter means (204) include a starter rope pulley (206) coaxially retained on said support post for rotation relative thereto.

A power tool of one of the preceding claims further characterized in that

said housing means comprise first, second and third housing sections connected to each other and to said front end (56) of said shroud member (24), said first housing section (26) being forwardly contiguous with said front end of said shroud member, said second housing section (30) being forwardly contiguous with said first housing section, said third housing section (32) being forwardly contiguous with said second housing section.

A power tool according to claim 6, characterized in that

said engine (22) has a crankshaft extending forwardly from said crankcase (106) through said first and second housing sections and having an outer end portion (180) disposed in said third housing section (32) and having a centrifugal clutch assembly (112) captively and releasably retained thereon, and a flywheel (108) rotationally locked on said

crankshaft and disposed within said first housing section (26).

8. A power tool according to claim 7 characterized in that

said starter means (204) include said starter rope pulley (206) coaxially circumscribing said crankshaft (180) being rotatably retained within said second housing section (30) for removal therewith, and

said coupling means include clutch drum means (240), rotatably carried within said third housing section (32) for removal therewhich, for being frictionally engaged and rotationally driven by said centrifugal clutch assembly (112) when the rotational speed of said engine reaches a predetermined magnitude.

A power tool of one of the preceding claims 1-5 characterized in that

said housing means, said starter means (204), and said coupling means (232) are associated to define fan housing (26), starter (30) and coupling (32) modules which are releasable connected to one another in a forward-to-rearwardly stacked assembly releasably secured to said open end (56) of said shroud member (24).

A power tool of one of the preceding claims, characterized in that

said power transmitting means include an elongated tubular shaft (12) connected at its opposite ends to said working means and said powerhead means (20), and a flexible drive shaft (234) extending through said tubular shaft and interconnecting said working means and said coupling means.

40 11. A power tool of one of the preceding claims, characterized in that

said support shaft portion (94) is of molded material, and

said bearing means (248) are molded into a portion of said support shaft portion.

12. A power tool of claim 11, characterized in that said support shaft portion (94) has a rear end portion with a pair of axially spaced, radially inwardly directed annular flanges (252, 254) thereon, and

said bearing means are captively retained between said flanges and comprise an annular bearing and an annular bearing spacer.

A power tool according to claims 7 or 8, characterized in that

said flywheel (108) has spring biased cen-

15

20

40

45

Page 15 of :

trifugal starter dogs (230) operatively mounted on a forwardly disposed portion thereof,

said second housing section (30) has a front wall (86) circumscribing said crankshaft, said tubular support post (88) circumscribing said crankshaft and projecting rearwardly form a central portion of said front wall, and a generally annular support section outwardly circumscribing said crankshaft and said support post and projecting rearwardly from said front wall, and

said starter pulley (206) being coaxially and rotatably carried on said support post (88) within said support section and having front and rear flanges (210, 212) between which a starter rope (218) may be wound, a torsion spring (208) circumscribing said support post, operatively connected to said pulley and disposed between said front wall and said front flange, and a drive hub (214) projecting rearwardly from said rear flange and having drive teeth (216) to operatively engage said flywheel starter dogs (230), and a retaining member (306) removable secured to said second housing section portion (30) and rearwardly overlying said rear flange (212) in a manner captively retaining said pulley (206) and said spring (208) on said support post (88).

 A power tool of claim 13, characterized in that it further comprises

alignable first and second depressions respectively formed in a peripheral portion of said rear pulley flange (212) and in said support section, said depressions being relatively configured so that, when they are brought into circumferential alignment, a pin member (310) or the like may be inserted therebetween to rotationally lock said pulley against the biasing force of said torsion spring to thereby facilitate the installation of a starter rope (218) on said pulley.

 A power tool of one of the preceding claims, characterized in that

said power head means (20) further include an operator handle structure (454) positioned above and interconnected between said shroud member (24b) and said housing section (430).

16. A power tool of claim 15, characterized in that said operator handle structure (454) has a front end portion (456) connected to said housing section (430), and a rear end portion defined by a fuel tank (452) secured to said shroud member (24b). A power tool according to claim 9 characterized in that

said engine (22) has a crankshaft extending forwardly from said crankcase (106) through said fan housing (26), and starter (30) modules and having an outer end portion disposed in said coupling module (32) and having a centrifugal clutch assembly (112) captively and releasably retained thereon, and a flywheel (108) rotationally locked on said crankshaft and disposed in said fan housing module (26).

A power tool according to claim 17 characterized in that

said starter means (204) include said starter rope pulley (206) coaxially circumscribing said crankshaft (180) being rotatably retained within said starter module (30) for removal therewith, and

said coupling means (232) include clutch drum means (240), rotatably carried within said coupling module (32) for removal therewith, for being frictionally engaged and rotationally driven by said centrifugal clutch assembly (112) when the rotational speed of said engine reaches a predetermined magnitude.

 A power tool according to one of claims 17 or 18 characterized in that

said flywheel (108) has spring biased centrifugal starter dogs (230) operatively mounted on a forwardly disposed portion thereof,

said starter module (30) has a front wall (86) circumscribing said crankshaft, said tubular support post (88) circumscribing said crankshaft and projecting rearwardly from a central portion of said front wall, and a generally annular support section outwardly circumscribing said crankshaft and said support post and projecting rearwardly from said front wall, and

said starter pulley (206) being coaxially and rotatably carried on said support post (88) within said support section and having front and rear flanges (210, 212) between which a starter rope (218) may be wound, a torsion spring (208) circumscribing said support post, operatively connected to said pulley and disposed between said front wall and said front flange, and a drive hub (214) projecting rearwardly from said rear flange and having drive teeth (216) to operatively engage said flywheel starter dogs (230) and a retaining member (306) removably secured to said starter module (30) and rearwardly overlying said rear flange (212) in a manner captively retaining said pulley (206) and said spring (208) on said support post (88).

15

20

25

30

35

40

45

Page 16 of

29

 A power tool of claim 19 characterized in that it further comprises

alignable first and second depressions respectively formed in a peripheral portion of said rear pulley flange (212) and in said support section, said depressions being relatively configured so that, when they are brought into circumferential alignment, a pin member (310) or the like may be inserted therebetween to rotationally lock said pulley against the biasing force of said torsion spring to thereby facilitate the installation of a starter rope (218) on said pulley.

Patentansprüche

Von einem Verbrennungsmotor betriebenes Gerät, das antreibbare Arbeitsmittel enthält, um eine vorbestimmte Arbeitsfunktion auszuführen, wobei der Verbrennungsmotor (22) ein Motorgehäuse (106), einen Zylinder (100), einen Schalldämpfer (118), einen Vergaser (46) und manuell betriebene Startvorrichtungen (204) zum Starten des Motors umfaßt, das Gerät weiterhin Kraftübertragungsmittel zum Empfang der Rotationsenergie vom Verbrennungsmotor (22) und zur Übertragung dieser Energie an die Arbeitsmittel umfaßt, um diese anzutreiben, sowie Kupplungsmittel (232) zum Kuppeln der Rotationsbewegung des Motors mit den Kraftübertragungsmitteln, und einem Antriebskopf (20), dadurch gekennzeichnet, daß der Antriebskopf folgendes umfaßt: ein Abdeckteil (24) mit einer offenen Vorderseite (56), einen Stützwandabschnitt (68) für den Motor, der nach hinten von der offenen Vorderseite beabstandet ist, einem Kanal (136) für das Kraftstoff-Luft-Gemisch, der durch den Stützwandabschnitt von dessen Außenseite zu dessen Innenseite führt, ein Rohrventil (138), das funktionell an der Innenseite des Stützwandabschnittes (68) über dem Kanal (136) für das Kraftstoff-Luft-Gemisch befestigt ist, und einer Kammer (74), die sich auf der Rückseite des Stützwandabschnittes befindet und die Kammer mit dem Inneren des Abdeckteiles verbindet und eine Öffnung am hinteren Ende besitzt; der Verbrennungsmotor (22) wird dabei teilweise durch das Abdeckteil (24) verdeckt, ein offenes hinteres Endteil des Motorgehäuses (106) ist innen am Stützwandabschnitt (68) über dem Rohrventil (138) befestigt, so daß der Stützwandabschnitt eine hintere Verschlußwand des Motorgehäuses bildet, wobei die Ausgleichsvorrichtung des Motors von dem Motorgehäuse gestützt wird, der Zylinder (100) des Motors ist mit einem Seitenteil des Motorgehäuses innerhalb des Abdeckteiles verbunden, der Schalldämpfer (118) ist am Zylinder befestigt und innerhalb der Kammer (74) positioniert, und der Vergaser (46) ist außerhalb am Stützwandabschnitt (68) befestigt und funktionell über dem Kanal für das Treibstoff-Luft-Gemisch (136) positioniert, die Gehäuseteile sind abnehmbar am Abdeckteil über dem offenen vorderen Ende befestigbar, die Kupplungsteile sind innerhalb der Gehäuseteile positioniert und ein Teil der Gehäuseteile tragen die manuell bedienbaren Startvorrichtungen (204), um sie so vom Abdeckteil (24) fernzuhalten.

30

- 2. Gerät nach Anspruch 1, dadurch gekennzeichnet, daß das Abdeckteil (24) ein eingesetztes äußeres Wandteil (282) besitzt und das Gerät weiterhin eine Ummantelung (286) besitzt, die ein offenes Endteil hat, das an der Außenkante des eingesetzten äußeren Wandteiles (282) mit diesem dicht verbunden ist und damit einen Treibstofftank (278) des Antriebskopfes (20) bildet.
- 3. Gerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Abdeckteil (24) ein Paar voneinander beabstandeter äußerer Wandteile (58, 70) besitzt, welche mit dem Stützwandabschnitt (68) am Abdeckteil eine äußere Vertiefung (76) bilden, in der der Vergaser (46) aufgenommen ist, wobei die äußeren Wandteile seitlich und nach hinten in solcher Weise über den Vergaser ragen, daß er vor Beschädigungen geschützt, andererseits jedoch von der Außenseite des Abdeckteiles (24) zugänglich ist.
- Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dieses weiterhin Luftfiltereinrichtungen (120) besitzt, die sich am Vergaser (46) innerhalb der Vertiefung (76) befinden, um die Luft, die der Vergaser empfängt, zu filtern.
- 5. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Motor (22) eine Kurbelwelle mit einem äußeren Ende (180) besitzt, das sich in einem Gehäuse befindet, in diesem Gehäuse ein röhrenförmiges Stützteil (88) angeordnet ist, welches axial zu dem äußeren Ende der Kurbelwelle (180) ausgerichtet ist und dieses stützt, die Kupplung (232) ein Kupplungsteil, zur rotierenden Ankupplung des äußeren Kurbelwellenendes (180) an die Kraftübertragungsmittel besitzt und die Starteinrichtung (204) eine Rillenscheibe (206) für das Starterseil trägt, die am röhrenförmigen Stützteil koaxial gelagert ist und sich relativ zu diesem dreht.

25

35

Page 17 of

- 6. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse erste, zweite und dritte Gehäuseabschnitte umfaßt, die miteinander und mit einem vorderen Ende (56) des Abdeckteiles (24) verbunden sind, wobei der erste Gehäuseabschnitt (26) nach vorn an das vordere Ende des Abdeckteiles angrenzt, ein zweiter Gehäuseabschnitt (30) nach vorn mit dem ersten Gehäuseabschnitt und ein dritter Gehäuseabschnitt (32) nach vorn an den zweiten Gehäuseabschnitt angrenzt.
- 7. Gerät nach Anspruch 6, dadurch gekennzeichnet, daß der Motor (22) eine Kurbelwelle besitzt, die nach vorn aus dem Motorgehäuse (106) durch die ersten und zweiten Gehäuseabschnitte hindurchragt und ein äußeres Endteil (180) besitzt, das sich im dritten Gehäuseabschnitt (32) befindet und eine Fliehkraftkupplung (112) einrastbar und lösbar daran angeordnet ist und ein Schwungrad (108) drehbar mit der Kurbelwelle fest verbunden und innerhalb des ersten Gehäuseabschnittes (26) angeordnet ist.
- 8. Gerät nach Anspruch 7, dadurch gekennzeichnet, daß die Startvorrichtung (204) die Rillenscheibe (206) für das Starterseil einschließt, welche koaxial die Kurbelwelle (180) umschließt und drehbar innerhalb des zweiten Gehäuseabschnittes (30) untergebracht ist und daß die Kupplungsmittel Kupplungstrommelteile (240) beinhalten, die drehbar innerhalb des dritten Gehäuseabschnittes (32) untergebracht sind und reibschlüssig durch die Fliehkraftkupplung (112) rotierend angetrieben werden, wenn die Drehgeschwindigkeit des Motors eine festgesetzte Größe überschreitet.
- 9. Gerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gehäuse, die Startvorrichtung (204) und die Kupplungsmittel (232) zusammengefaßt sind, um einen Lüftergehäusemodul (26), einen Startermodul (30) und einen Kupplungsmodul (32) zu bilden, die lösbar miteinander von vorn nach hinten übereinander angeordnet und ebenfalls lösbar am offenen Ende (56) des Abdeckteiles (24) angebracht sind.
- 10. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kraftübertragungsmittel eine verlängerte röhrenförmige Welle (12) beinhalten, die an ihren entgegengesetzten Enden mit den Arbeitsmitteln und dem Antriebskopf (20) verbunden ist, und daß eine flexible Antriebswelle (234) durch

- die röhrenförmige Welle geführt ist und die Arbeitsmittel mit den Kupplungsmitteln verbindet.
- 11. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzelchnet, daß ein Stützwellenteil (94) aus geformtem Material besteht und daß Stützteile (248) in ein Teil des Stützwellenteiles umgeformt werden.
 - 12. Gerät nach Anspruch 11, dadurch gekennzeichnet, daß das Stützwellenteil (94) ein hinteres Endteil mit einem Paar daran befindlicher, axial beabstandeter, radial einwärts gerichteter ringförmiger Flansche (252, 254) besitzt und daß die Tragteile unverlierbar zwischen den Flanschen gehalten werden und aus einer ringförmigen Auflagerung und einem ringförmigen Distanzstück für die Auflagerung bestehen.
 - 13. Gerät nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß eine Schwungscheibe (108) durch Federn vorgespannte, am Umfang befindliche Startmitnehmer (230) besitzt, die an einem nach vorn gerichteten Teil der Scheibe funktionell montiert sind; daß der zweite Gehäuseabschnitt (30) eine Vorderwand (86) besitzt, die die Kurbelwelle umschließt, und der röhrenförmige Stützpfeiler (88) die Kurbelwelle ebenfalls umschließt, nach hinten vorsteht und ein zentrales Teil der Vorderwand bildet und ein im wesentlichen ringförmiger Stützabschnitt die Kurbelwelle und den Stützpfeiler nach außen umfaßt und von der Vorderwand nach hinten absteht, und daß die Rillenscheibe (206) koaxial und drehbar um den Stützpfeiler (88) innerhalb des Stützbereiches gelagert ist und diese an ihren vorderen und hinteren Stirnseiten Flansche (210, 212) besitzt, zwischen denen ein Starterseil (218) aufgewunden werden kann, wobei eine Torsionsfeder (208), die funktionell mit der Rillenscheibe verbunden und zwischen der vorderen Wand und dem vorderen Flansch angeordnet ist, die Stützpfeiler umschließt und eine Antriebsbuchse (214) von dem hinteren Flansch nach hinten vorsteht und Antriebszähne (216) besitzt, die mit den Startmitnehmern (230) zusammenwirken, und daß ein Gesperr (306), das lösbar mit dem zweiten Gehäuseabschnitt (30) verbunden ist und welches in rückwärtiger Richtung den hinteren Flansch (212) in einer Weise überlagert, daß die Rillenscheibe (206) und die Feder (208) festgehalten und auf dem Stützpfeiler (88) zurückgeführt werden.
 - 14. Gerät nach Anspruch 13, dadurch gekenn-

15

20

30

35

45

50

55

34

zeichnet, daß weiterhin ausrichtbare erste und zweite Einsenkungen, die im peripheren Bereich des Flansches (212) der Rillenscheibe und im Stützbereich entsprechend eingebracht sind, vorhanden sind, wobei die Einsenkungen so zueinander geformt sind, daß, wenn sie umfangsmäßig in Übereinstimmung gebracht werden, ein Stift (310) oder ähnliches zwischen diesen eingefügt werden kann, um die Rillenscheibe gegenüber der Vorspannungskraft der Torsionsfeder in der Drehbewegung zu sperren, und so das Aufbringen eines Starterseils (218) auf der Rillenscheibe zu ermöglichen.

- 15. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Antriebskopf (20) einen Bedienelementeteil (454) beinhaltet, der oberhalb angeordnet ist und eine Verbindung zwischen dem Abdeckteil (24b) und dem Gehäuseteil (430) schafft.
- 16. Gerät nach Anspruch 15, dadurch gekennzeichnet, daß der Bedienelementeteil (454) ein vorderes Endteil, welches mit dem Gehäuseteil (430) verbunden ist, und ein hinteres Endteil, das durch einen Kraftstofftank (452) gebildet ist und mit dem Abdeckteil (24b) verbunden ist, besitzt.
- 17. Gerät nach Anspruch 9, dadurch gekennzeichnet, daß der Motor (22) eine Kurbelwelle besitzt, die sich nach vorn vom Motorgehäuse (106) durch das Lüftergehäuse (26) und die Startermodule (30) erstreckt und ein äußeres Endteil trägt, das sich am Kupplungsmodul (32) befindet und eine Fliehkraftkupplung (112) fest aber lösbar daran befestigt ist und die Schwungscheibe (108) drehbar mit der Kurbelwelle gekoppelt und im Lüftergehäusemodul (26) angeordnet ist.
- 18. Gerät nach Anspruch 17, dadurch gekennzeichnet, daß die Startvorrichtung (204) eine Rillenscheibe für das Starterseil (206), die koaxial die Kurbelwelle (180) umschließt und drehbar innerhalb des Startermoduls (30) untergebracht ist, umfaßt, und daß die Kupplungsmittel (232) die Kupplungstrommel-Aggregate (240) einschließen, die drehbar innerhalb des Kupplungsmoduls (32) untergebracht sind, um durch Reibübertragung über die Fliehkraftkupplung (112) kreisförmig angetrieben zu werden, wenn die Umfangsgeschwindigkeit des Motors eine vorgesehene Größe erreicht.
- Gerät nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß die Schwungscheibe (108) unter Federvorspannung stehende Mit-

nehmer (230) für einen Fliehkraftanlasser besitzt, der funktionell an einem nach vorn weisenden Abschnitt befestigt ist, daß weiterhin der Startermodul (30) ein vorderes Wandteil (86) besitzt, das die Kurbelwelle umschließt, und der röhrenförmige Stützpfeiler (88) die Kurbelwelle umschließt und nach hinten von einem zentralen Abschnitt des vorderen Wandteiles vorsteht und ein im wesentlichen kreisförmiger Stützabschnitt die Kurbelwelle und den Stützpfeiler nach außen umschließt und vom Vorderwandabschnitt nach hinten vorsteht und daß die Rillenscheibe (206) der Startvorrichtung koaxial und drehbar am Stützpfeiler (88) innerhalb des Stützabschnittes gelagert ist und vordere und hintere Flansche (210, 212) besitzt zwischen denen ein Starterseil (218) aufgewunden ist; eine Torsionsfeder (208) umschließt den Stützpfeiler und ist funktionell mit der Schwungscheibe verbunden und zwischen dem vorderen Wandteil und dem vorderen Flasch angeordnet und eine Antriebsnabe (214), die nach hinten von dem rückwärtigen Flansch absteht und Antriebszähne (216) besitzt, um funktionell mit den Startmitnehmern (230) der Schwungscheibe zusammenzuwirken, und einem Gesperr (306), das lösbar am Startermodul (30) angeordnet ist und den hinteren Flansch (212) in einer solchen Weise überlagert, daß es die Rillenscheibe (206) und die Feder (208) am Stützpfeiler (88) umschlossen hält.

20. Gerät nach Anspruch 19, dadurch gekennzeichnet, daß ausrichtbare erste und zweite Vertiefungen, die in einem Randteil des hinteren Rillenscheiben-Flansches (212) und in dem Stützbereich entsprechend angeordnet sind, wobei die Vertiefungen im Verhältnis so geformt sind, daß, wenn sie umfangsmäßig in Übereinstimmung gebracht werden, ein Stift (310) oder ähnliches dazwischen eingefügt werden kann, um die Drehung der Rillenscheibe gegenüber der Vorspannungskraft der Drehfeder zu blockieren, so daß das Aufwinden des Starterseiles (218) auf der Rillenscheibe ermöglicht wird.

Revendications

 Outil mécanique, entraîné par moteur à combustion interne, comprenant un moyen de travail pouvant être entraîné pour remplir une fonction de travail prédéterminée, le moteur à combustion interne (22) comportant : un carter-moteur (106), un cylindre (100), un pot d'échappement (118), un carburateur (46), et un moyen de démarrage manoeuvrable à la

15

35

45

36

main (204) pour démarrer ledit moteur, l'outil mécanique comprenant de plus un moyen de transmission de force motrice pour recevoir le couple moteur provenant du moteur à combustion (22) et pour transmettre ladite force motrice audit moyen de travail pour entraîner celuici, un moyen d'accouplement (232) pour accoupler en rotation ledit moteur audit moyen de transmission de force motrice, et un ensemble tête motrice (20), caractérisé en ce que l'ensemble tête motrice comprend :

un élément enveloppe (24) ayant une extrémité avant ouverte (56), une partie paroi support (68) de moteur espacée vers l'arrière par rapport à ladite extrémité avant ouverte, un passage pour le mélange air-carburant (136) traversant ladite partie paroi support, à partir d'une partie extérieure à celle-ci vers une surface intérieure de celle-ci, un clapet battant (138) fixé de manière fonctionnelle à ladite surface intérieure de ladite partie paroi support (68) sur ledit passage pour le mélange air-carburant (136), et une chambre (74) s'étendant vers l'arrière de ladite partie paroi support, ladite chambre communiquant avec l'intérieur dudit élément enveloppe et comportant une ouverture d'extrémité arrière.

ledit moteur à combustion interne (22), étant ainsi partiellement enveloppé par ledit élément enveloppe (24), une partie d'extrémité arrière ouverte du carter-moteur (106) étant fixée intérieurement à ladite partie paroi support (68) sur ledit clapet battant (138) de sorte que ladite partie paroi support définit une paroi de fermeture arrière dudit carter-moteur, la réaction dudit moteur étant supportée par ledit carter-moteur, le cylindre (100) dudit moteur étant relié à une partie latérale dudit cartermoteur à l'intérieur dudit élément enveloppe, ledit pot d'échappement (118) étant fixé audit cylindre et placé à l'intérieur de ladite chambre (74), et ledit carburateur (46) étant fixé à l'extérieur de ladite partie paroi support (68) et placé de manière fonctionnelle sur ledit passage air-carburant (136),

un moyen de carter pouvant être fixé de manière amovible audit élément enveloppe sur sa dite extrémité avant ouverte, ledit moyen d'accouplement étant placé dans ledit moyen de carter, et

une partie dudit moyen de carter portant ledit moyen de démarrage manoeuvrable manuellement (204), démontable avec elle dudit élément enveloppe (24).

Outil motorisé selon la revendication 1, caractérisé en ce que : ledit élément enveloppe
 (24) comporte une partie paroi extérieure en

creux (282), et en ce que :

ledit outil motorisé comprend de plus un élément coquille (286) comportant une partie extrémité ouverte fixée à la périphérie de ladite partie paroi extérieure en creux (282) et rendue étanche autour de ladite périphérie pour définir avec elle une partie réservoir à carburant (278) dudit ensemble tête motrice (20).

- 3. Outil motorisé selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit élément enveloppe (24) possède une paire de parties parois extérieures écartées (58, 70) qui, avec ladite partie paroi support (68), définissent dans ledit élément enveloppe un évidement extérieur (76) dans lequel ledit carburateur (46) est logé, lesdites parties parois extérieures suspendant latéralement et vers l'arrière ledit carburateur d'une manière qui le protège de tout dommage, en permettant cependant d'y accéder à partir de l'extérieur dudit élément enveloppe (24).
- 4. Outil motorisé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, en outre, un moyen de filtre à air (120) porté par ledit carburateur (46) à l'intérieur dudit évidement (76) pour filtrer l'air reçu par ledit carburateur.
- 5. Outil motorisé selon l'une des revendications précédentes, caractérisé en ce que : ledit moteur (22) comporte un vilebrequin ayant une extrémité extérieure (180) placée dans ledit élément carter, ledit élément carter possède un pilier support tubulaire (88) à l'intérieur, qui est aligné axialement avec ladite extrémité extérieure de vilebrequin (180) pour la supporter,
- ledit moyen d'accouplement (232) comprend un élément d'accouplement accouplant, en rotation, ladite extrémité extérieure de vilebrequin (180) et ledit moyen de transmission de force motrice, et en ce que :
 - ledit moyen de démarrage (204) comprend une poulie de démarreur (206) maintenue coaxialement sur ledit pilier support pour rotation par rapport à celui-ci.
- Outil motorisé selon l'une des revendications précédentes, caractérisé de plus en ce que : ledit moyen de carter comprend une première, une deuxième et une troisième parties de carter reliées les unes aux autres et à ladite extrémité avant (56) dudit élément enveloppe (24), ladite première partie de carter (26) étant contiguë vers l'avant à ladite extrémité avant dudit élément enveloppe, ladite deuxième par-

30

35

40

45

50

55

Page 20 of :

37

tie de carter (30) étant contiguë vers l'avant à ladite première partie de carter, ladite troisième partie de carter (32) étant contiguë vers l'avant à ladite deuxième partie de carter.

- 7. Outil motorisé selon la revendication 6, caractérisé en ce que : ledit moteur (22) comporte un vilebrequin s'étendant vers l'avant à partir dudit carter-moteur (106) à travers lesdites première et deuxième parties de carter et comportant : une partie d'extrémité extérieure (180), située dans ladite troisième partie de carter (32) et portant un ensemble embrayage centrifuge (112), retenu prisonnier sur elle et démontable et un volant (108) verrouillé en rotation sur ledit vilebrequin et situé à l'intérieur de ladite première partie de carter (26).
- 8. Outil motorisé selon la revendication 7, caractérisé en ce que : ledit moyen de démarrage (204) comprend ladite poulie de démarreur (206) entourant

coaxialement ledit vilebrequin (180) en étant contenue, de manière à pouvoir tourner, à l'intérieur de ladite deuxième partie de carter (30) pour pouvoir être démontée avec elle, et en ce que :

ledit moven d'accouplement comprend un moyen de tambour d'embrayage (240), supporté de manière à pouvoir tourner à l'intérieur de ladite troisième partie de carter (32) pour pouvoir être démonté avec elle, pour être embrayé par friction et être entraîné en rotation par ledit ensemble embrayage centrifuge (112), lorsque la vitesse de rotation dudit moteur atteint une valeur prédéterminée.

- 9. Outil motorisé selon l'une des revendications précédentes 1 à 5, caractérisé en ce que : ledit moyen de carter, ledit moyen de démarrage (204) et ledit moyen d'accouplement (232) sont associés pour définir des modules de carter de ventilateur (26), de démarreur (30) et d'accouplement (32), qui sont reliés de manière démontable les uns aux autres dans un ensemble empilé d'avant en arrière fixé, de manière amovible, à ladite extrémité ouverte (56) dudit élément enveloppe (24).
- 10. Outil motorisé selon l'une des revendications précédentes, caractérisé en ce que : ledit moyen de transmission de force motrice comprend un arbre tubulaire allongé (12) relié, à ses extrémités opposées, audit moyen de travail et audit moyen de tête motrice (20) et un arbre d'entraînement souple (234) s'étendant à l'intérieur dudit arbre tubulaire et reliant ledit moyen de travail et ledit moyen d'accou-

plement.

11. Outil motorisé selon l'une des revendications précédentes, caractérisé en ce que : ladite partie arbre support (94) est faite d'un matériau moulé, et en ce que: lesdits moyens de palier (248) sont moulés dans une partie de ladite partie arbre support.

38

12. Outil motorisé selon l'une des revendications 10 précédentes 11, caractérisé en ce que : ladite partie arbre support (94) comporte une partie d'extrémité arrière ayant une paire de collets annulaires dirigés radialement vers l'intérieur, espacés axialement (252, 254) sur 15 celle-ci, et en ce que : lesdits movens de palier sont retenus prisonniers entre lesdits collets et comprennent un palier annulaire et un écarteur de palier annu-20 laire.

> 13. Outil motorisé selon les revendications 7 ou 8. caractérisé en ce que :

ledit volant (108) comprend des taquets centrifuges de démarreur rappelés par ressort (230), montés de manière fonctionnelle sur une partie de celui-ci, disposée vers l'avant, ladite deuxième partie de carter (30) comporte une paroi avant (86) entourant ledit vilebrequin, ledit pilier support tubulaire (88) entourant ledit vilebrequin et faisant saillie vers l'arrière à partir d'une partie centrale de ladite paroi avant, et une partie support globalement annulaire entourant, à l'extérieur, ledit vilebrequin et ledit pilier support et dépassant vers l'arrière de ladite paroi avant, et en ce que : ladite poulie de démarreur (206) est portée coaxialement et de manière à pouvoir tourner par ledit pilier support (88) à l'intérieur de ladite partie support et comporte des joues avant et arrière (210, 212) entre lesquelles un cordon de démarreur (218) peut être bobiné, un ressort de torsion (208) entourant ledit pilier support, connecté de manière fonctionnelle à ladite poulie et disposé entre ladite paroi avant et ladite joue avant, et un moyeu d'entraînement (214) dépassant vers l'arrière de ladite joue arrière et ayant des dents d'entraînement (216) pour s'enclencher de manière fonctionnelle avec lesdits taquets de démarreur de volant (230), et un élément de retenue (306) fixé de manière amovible à ladite deuxième partie de carter (30) et recouvrant vers l'arrière ladite joue arrière (212) de manière à retenir prisonniers ladite poulie (206) et ledit ressort (208) sur ledit pilier support (88).

14. Outil motorisé selon la revendication 13, carac-

15

20

35

39

térisé en ce qu'il comprend de plus : un premier et un second creux pouvant être alignés, formés respectivement dans une partie périphérique de ladite joue de poulie arrière (212) et dans ladite partie support, lesdits creux étant configurés relativement de manière à ce que, lorsqu'ils sont amenés en alignement dans le sens circonférentiel, un élément ergot (310) ou analogue puisse être introduit entre eux pour verrouiller en rotation ladite poulie contre la force de rappel dudit ressort de torsion pour faciliter par ce moyen la mise en place dudit cordon de démarrage (218) sur ladite poulie.

- 15. Outil motorisé selon l'une des revendications précédentes, caractérisé en ce que : ledit moyen de tête motrice (20) comprend, de plus, une structure de poignée d'opérateur (454) placée au-dessus et reliant ledit élément enveloppe (24b) et ladite partie carter (430).
- 16. Outil motorisé selon la revendication 15, caractérisé en ce que : ladite structure de poignée d'opérateur (454) comporte une partie extrémité avant (456) reliée à ladite partie carter (430), et une partie extrémité arrière définie par un réservoir à carburant (452) fixé audit élément enveloppe (24b).
- 17. Outil motorisé selon la revendication 9, caractérisé en ce que: ledit moteur (22) possède un vilebrequin s'étendant vers l'avant à partir dudit cartermoteur (106) à travers lesdits modules de carter de ventilateur (26) et de démarreur (30), et ayant une partie extrémité extérieure disposée dans ledit module d'accouplement (32) et comportant un ensemble embrayage centrifuge (112) retenu prisonnier sur celui-ci et amovible, et un volant (108) vertouillé en rotation sur ledit vilebrequin et disposé dans ledit module de carter de ventilateur (26).
- 18. Outil motorisé selon la revendication 17, caractérisé en ce que :
 ledit moyen de démarrage (204) comprend ladite poulie de démarreur (206) entourant coaxialement ledit vilebrequin (180) et qui est maintenue de manière à pouvoir tourner dans ledit module de démarreur (30) pour être démontable avec lui, et en ce que :
 ledit moyen d'accouplement (232) comprend un moyen de tambour d'embrayage (240), supporté de manière à pourvoir tourner, à l'intérieur de ladite troisième partie de carter (32), pour pouvoir être démonté avec elle, pour être

embrayé par friction et être entraîné en rotation par ledit ensemble embrayage centrifuge (112), lorsque la vitesse de rotation dudit moteur atteint une valeur prédéterminée.

19. Outil motorisé selon l'une des revendications

17 ou 18, caractérisé en ce que :

- ledit volant (108) comprend des taquets centrifuges de démarreur rappelés par ressort (230), montés de manière fonctionnelle sur une partie de celui-ci disposée vers l'avant. ledit module de démarreur (30) comporte une paroi avant (86) entourant ledit vilebrequin, ledit pilier support tubulaire (88) entourant ledit vilebrequin et faisant saillie vers l'arrière à partir d'une partie centrale de ladite paroi avant, et une partie support globalement annulaire entourant à l'extérieur ledit vilebrequin et ledit pilier support et dépassant vers l'arrière de ladite paroi avant, et en ce que : ladite poulie de démarreur (206) est portée coaxialement et de manière à pouvoir tourner par ledit pilier support (88) à l'intérieur de ladite partie support et comporte des joues avant et arrière (210, 212) entre lesquelles un cordon de démarreur (218) peut être bobiné, un ressort de torsion (208) entourant ledit pilier support, connecté de manière fonctionnelle à ladite poulie et disposé entre ladite paroi avant et ladite joue avant, et un moyeu d'entraînement (214) dépassant vers l'arrière de ladite joue arrière et ayant des dents d'entraînement (216) pour s'enclencher, de manière fonctionnelle, avec lesdits taquets de démarreur de volant (230), et un élément de retenue (306) fixé de manière amovible audit module de démarreur (30) et recouvrant vers l'arrière ladite joue arrière (212) de manière à retenir prisonniers ladite poulie (206) et ledit ressort (208) sur ledit pilier support (88).
- 20. Outil motorisé selon la revendication 19, caractérisé en ce qu'il comprend de plus : un premier et un second creux pouvant être alignés formés, respectivement, dans une par-45 tie périphérique de ladite joue de poulie arrière (212) et dans ladite partie support, lesdits creux étant configurés relativement de manière à ce que, lorsqu'ils sont amenés en alignement dans le sens circonférentiel, un élément ergot (310) ou analogue puisse être introduit entre eux pour verrouiller en rotation ladite poulie contre la force de rappel dudit ressort de torsion pour faciliter par ce moyen la mise en place dudit cordon de démarrage (218) sur 55 ladite poulie.

FIG. 12

FIG. 13

