Wiederholung - Zahlendarstellung

- Alle Zahlen durch andere Basen darstellbar
 - Computer benutzt Basis 2
- Stelle der Ziffer bestimmt Wert
- Konvertierung: Wie funktioniert das Horner-Schema? (Dezimal -> Binär)
- Addition, Subtraktion, Multi., Division
- Vorzeichen: VZB, 1K, 2K
- Umrechnung von VZL -> 2K?
- Rechnen mit 2K: Wann gibt es einen Overflow?

Gleitkommazahlen

IEEE 754, Arithmetik

Gleitkommazahlen

Zahlen mit Stellen vor und nach dem Komma

$$a_{n-1}a_{n-2} \dots a_1 a_0$$
, $a_{-1}a_{-2} \dots a_{-m}$
= $a_{n-1}B^{n-1} + \dots + a_1B^1 + a_0B^0 + a_{-1}B^{-1} + a_{-2}B^{-2} + \dots + a_{-m}B^{-m} =$

$$= \sum_{i=0}^{n-1} a_i B^i + \sum_{i=-m}^{-1} a_i B^i$$

- Nicht alle rationale Zahlen darstellbar auf Computer
 - Begrenzte Ressourcen

Umrechnung

• Dezimal -> Binär (Horner-Schema):

Minifloat-Format

• Es gibt verschiedene Minifloat-Formate

1	5	10 Bit
s	E	f

- half precision (16Bit)
- s: sign bit
- E: transformierter Exp. E = e + bias (bias = 15 für 16Bit)
- f: Fraction (Bruch nach Normalisierung)
 - 1 vorm Komma wird weggelassen

- Warum? Nur begrenzte Nachkommastellen
- Wir behandeln Runden nicht

Runden

ROrg:

- round towards zero (Rundungsregel)
- Hintere Bits abschneiden
- In Realität meist anders

Addition

- 1. Normalisieren
- 2. Kleineren Exponenten an größeren anpassen
- 3. Mantissen addieren

 Nach jedem Schritt an 16Bit-Format anpassen (10 Nachkommastellen)

Multiplikation

- 1. Exponenten nicht anpassen
- 2. Mantisse multiplizieren
- 3. Exponenten addieren
- 4. Normalisieren