Slow passage outer soln

Given $\dot{x} = -\mu + 2|x| - X|x|$, $\dot{\mu} = -\xi$ we will perform an analysis on $X \ge 0$, $\mu > 0$.

=> $\dot{\chi} = -\mu - 2X + x^2$, $\dot{\mu} = -\xi$ -> $\mu = -2X + x^2$ $L > X_0 = 1 - \sqrt{1 + \mu^2}$

Next, introduce slowtime $t = \xi T \rightarrow \hat{x} = \xi x_T$, $\hat{\mu} = \xi \mu_T$ $\Rightarrow \xi X_T = -\mu - 2x + x^2$, $\mu_T = -1$

Let X1 X0 + EX, + E 2X2+....

 $O(\xi)$: $X_{op} = -2X_1 + 2X_1 X_o \rightarrow X_1 = \frac{X_{op}}{2V_1 + \mu} = \frac{1}{4(1+\mu)}$

O(E2): XIT = -2XZ + 2XOXZ + X,2 -> XZ = -37(1+M)5/2

-> X~ 1-VI+h + \(\frac{\xi}{4(1+\mu)} - \frac{3\xi}{32(1+\mu)}\frac{\xi}{1} + ---

Since the dynamics of the problem change at x=0, this solution is Valid only for x<0, m>0.

We have a critical point at (M. (M, x) = (0,0) and hence a local analysis is needed.

Local analysis

X3M

Slow

We've established X=0 is a Critical point, so allow $X \downarrow 0$, $X \downarrow \downarrow 1 \Rightarrow \dot{x} = -\mu - 2x \rightarrow x_0 = -\frac{\mu}{2}$ Hyain, rescaling time, $\xi x_{\pi} = -\mu - 2x$, $\mu_{\pi} = -1$ Let $X \sim X_0 + \xi X_1 + \xi^2 X_2 + \dots$ $\Rightarrow \delta(\xi)$; $X_0 = -2X_1 \rightarrow X_1 = -\frac{1}{4}$ $h \ge 2$, $o(\xi^n)$; $o = -2X_n \rightarrow X_n = 0$ $\Rightarrow x \sim -\frac{\mu}{2} - \frac{\xi}{4} \rightarrow x = 0$ when $\mu = -\frac{\xi}{2}$

Thus, we have extended our region of validity for m.

[Scaling Factor]

Entering the (X>0, MLO) region will require a rescaled equation. Here we perform a systematic search for the appropriate scaling:

Let $X = S(\xi)Z - > \dot{x} = S\dot{z}$ (X>0, μ 40) -> $\dot{x} = -\mu + 2x - x^2 - > S\dot{z} = -\mu + 2SZ - S^2Z^2$

This Suggests μ must also be rescaled to assure it communicates between the other terms;

Let $\mu = \delta(\varepsilon) m \rightarrow \mu = \delta m = -\varepsilon$ $-\sum \dot{z} = -\delta m + 28z - g^2 z^2$

Since we have just entered $(X>0, \mu \ge 0)$, $Z \le 1$ and thus we seek communication between the farameter and linear term; $\Rightarrow Y = 8$.

$$> 8 \dot{z} = -8m + 28 \dot{z} - 8 \dot{z}^2$$

Next, allow a Change in Valiables to shift focus onto the Slowly varying aspect of m,

$$\dot{Z} = Z_{m} \cdot \dot{m} = -\frac{\varepsilon}{8} Z_{m} \times S_{m} = -4 Z_{m} \times S_{m} = -4 Z_{m} \times S_{m} \times S_{m} = -2 Z_{m} \times S_{m} \times S_{m$$

$$Z = Z_{m} \cdot m = -\bar{s}^{T} m$$

 $- > - E Z_{m} = - S_{m} + 2S_{m} - S_{m}^{2} Z_{m}^{2}$

Now the Scale choice becomes clear, 8=8=8

Inner Solution

With X=EZ, H=EM, (X>0, MLO), Picking up from the Previous equation:

which has solution, 7 ~ (e + m - 1

In our original coordinates,

$$\frac{X}{\xi} \sim (e^{-2\mu/\xi} + \frac{\mu}{2\xi} - \frac{1}{4}) \approx 10^{-3} \times 10^{-3} \times$$

Where tiffing Will occur when the exponential becomes large

3896.

ecomes large
$$e^{-2\mu/\epsilon} \sim O(\frac{1}{\epsilon}) \Longrightarrow 2\mu_{tip} \sim \epsilon \ln(\epsilon)$$