	My research is based on this paper: X. Wu, Y. Zhang, and W. Fan, "Linear Regression based Efficient SVM Learning for Large Scale Classification," IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 12, pp. 3025-3038, Dec. 2014. DOI: 10.1109/TKDE.2014.2308558. MNIST import time import numpy as np from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.sym import SVC. LinearSVC
n [2]:	<pre>from sklearn.svm import SVC, LinearSVC from sklearn.metrics import accuracy_score, f1_score, confusion_matrix # Load the MNIST dataset mnist = fetch_openml('mnist_784') X = mnist['data'] y = mnist['target'] y = y.astype(np.int) C:\Users\Checkout\AppData\Local\Temp\ipykernel_14700\2806148950.py:5: DeprecationWarning: `np.int` is a depreted alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify an ehavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html precations</pre>
n [3]:	
n [5]:	But, for the training and testing sets, we want the images in 1D array, so as to work with ML models. The below result indicates that the images have been flattened to 1D array of size 784. (28x28 = 784). # Print the shape of the training and test sets print("Training Set Shape:", X_train.shape, y_train.shape) print("Test Set Shape:", X_test.shape, y_test.shape) Training Set Shape: (56000, 784) (56000,) Test Set Shape: (14000, 784) (14000,) import matplotlib.pyplot as plt # Visualize a random sample of the images fig, ax = plt.subplots(3, 3, figsize=(10, 10))
	<pre>y_train_reset = y_train.reset_index(drop=True) for i, axi in enumerate(ax.flat): axi.imshow(X_train_images[i], cmap='gray') axi.set_title("Label: {}".format(y_train_reset[i])) plt.show()</pre> Label: 5 Label: 4 Label: 8 0 5 10 10 10 10 15 15 15 16 17 18 18 18 18 18 18 19 10 10 10 10 10 10 10 10 10
	20 - 20 - 25 - 25 - 25 - 25 - 25 - 20 - 20
	20 - 25 - 25 - 25 - 25 - 25 - 25 - 20
	import seaborn as sns # Plot the distribution of the target labels sns.countplot(x=y_train) plt.title("Distribution of Target Labels") plt.xlabel("Label") plt.ylabel("Count") plt.show()
	Distribution of Target Labels 6000 -
[8]:	Above graph shows that almost all the numbers are more or less equally distributed in the dataset. The same can be verified from the below histogram. import matplotlib.pyplot as plt # Plot a histogram of the target variable
	plt.hist(y_train, bins=range(11)) plt.title("Distribution of Digit Labels") plt.xlabel("Digit Label") plt.ylabel("Count") plt.show() Distribution of Digit Labels 6000 - 4000 -
	# Plot some example images from the dataset
	<pre>y_train = y_train.reset_index(drop=True) # reset index fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(10, 4)) for i, ax in enumerate(axes.flat): ax.imshow(X_train_images[i], cmap='gray') ax.set(title=f"Label: {y_train[i]}") plt.tight_layout() plt.show()</pre> Label: 5 Label: 6 Label: 8 Label: 0 Label: 2 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
	<pre># Compute the correlation matrix of pixel values corr_matrix = np.corrcoef(X.T) # Visualize the correlation matrix fig, ax = plt.subplots(figsize=(10, 10)) cax = ax.matshow(corr_matrix, cmap='coolwarm') plt.title('Correlation Matrix of Pixel Values') fig.colorbar(cax) plt.show() C:\Users\Checkout\AppData\Roaming\Python\Python39\site-packages\numpy\lib\function_base.py:2829: RuntimeWar g: invalid value encountered in true_divide</pre>
	C:\Users\Checkout\ApppData\Roaming\Python\Python39\site-packages\numpy\lib\function_base.py:2830: RuntimeWar g: invalid value encountered in true_divide c /= stddev[None, :] Correlation Matrix of Pixel Values 0 100 200 300 400 500 600 700 100 - 0.8
	200 0.6 300 0.4 400 0.2
	600 0.0 700 0.2
	<pre>import seaborn as sns # Compute the correlation matrix between the input features corr_matrix = np.corrcoef(X_train.T) # Visualize the correlation matrix using a heatmap sns.heatmap(corr_matrix, cmap='coolwarm', center=0, square=True) plt.title("Correlation Matrix of Input Features") plt.show()</pre> Correlation Matrix of Input Features 0
	76 - 114 - 152 - 190 - 228 - 266 - 304 - 342 - 380 - 418 - 418 - 456 - 494 - 532 - 570 - 608 - 646 - 646 - 646 - 646 - 684 - 722 - 760 - 7
	<pre>from sklearn.decomposition import PCA # Compute the first 20 principal components of the input features pca = PCA(n_components=20) X_train_pca = pca.fit_transform(X_train) # Visualize the explained variance ratio of the principal components plt.plot(range(1, 21), pca.explained_variance_ratio_, 'bo-') plt.title("Explained Variance Ratio of Principal Components")</pre>
	plt.xlabel("Principal Component") plt.ylabel("Explained Variance Ratio") plt.show() Explained Variance Ratio of Principal Components 0.10 0.08 0.04
	# Visualize the distribution of pixel intensities plt.hist(X_train.values.flatten(), bins=range(257)) plt.xlabel("Pixel intensity") plt.ylabel("Count")
	plt.show() 3.5 3.0 2.5 1.5 1.0
	<pre>import numpy as np import matplotlib.pyplot as plt # choose a random sample of images sample = np.random.choice(X_train.shape[0], 16, replace=False)</pre>
	<pre># plot the sample fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(8,8)) for i, ax in enumerate(axes.flat): img = X_train.iloc[sample[i]].values.reshape(28, 28) # reshape the image data to 28x28 ax.imshow(img, cmap='gray') ax.set_xticks([]) ax.set_yticks([]) ax.set_title(y_train.iloc[sample[i]]) plt.show()</pre> 3 7 2 8
	3 7 2 8 1 3 2 0 1 3 9 5
	5 4 9 5 0 3 0 /
	<pre>#plotting average image of each class fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(10, 4)) for i, ax in enumerate(axes.flat): # get the mean image of the i-th class mean_image = np.mean(X_train[np.array(y_train) == i].values, axis=0) mean_image = mean_image.reshape(28, 28) ax.imshow(mean_image, cmap='gray') ax.set_xticks([]) ax.set_yticks([]) ax.set_title(i) plt.show()</pre>
	0 1 2 3 4 0 1 3 3 4 5 6 7 8 9
	# Check the number of unique labels num_classes = len(np.unique(y_train)) print("Number of classes:", num_classes) Number of classes: 10 Label encoding is a common preprocessing step used to convert categorical labels into numeric representations suitable for machine learning algorithms. It assigns a unique integer value to each unique label, essentially mapping each label to a corresponding numeric
[23]:	code. By performing label encoding, the original categorical labels are transformed into a format that can be easily processed and used for training a machine learning model. from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_test = le.fit_transform(y_test) Standardizing the variables in the dataset by subtracting the mean and dividing by the standard deviation of each feature, which transforms the data to have zero mean and unit variance.
	# Standardize the data scaler = StandardScaler() X_train_std = scaler.fit_transform(X_train) X_test_std = scaler.transform(X_test) Below is the function I wrote to recreate the algorithm that the authors are talking about in their paper. Linear regression algorithm is used to estimate the weights of the SVM algorithm and also helps it take a lead in deciding what the support vectors should be, thereby helping it reach the optimal hyperplane faster for classification. import numpy as np
	<pre>class LinearRegressionSVM: definit(self, learning_rate=0.001, C=1.0, subset_size=50000, max_iterations=100): self.learning_rate = learning_rate self.C = C self.subset_size = subset_size self.max_iterations = max_iterations def fit(self, X, y): n_samples, n_features = X.shape self.coef_ = np.zeros(n_features) self.intercept_ = 0.0 for iteration in range(self.max_iterations):</pre>
	<pre>subset_indices = np.random.choice(range(n_samples), self.subset_size, replace=False) X_subset = X[subset_indices] y_subset = np.array(y[subset_indices]) # convert y_subset to numpy array margin = y_subset * (np.dot(X_subset, self.coef_) + self.intercept_) if np.any(margin <= 0): misclassified_indices = np.where(margin <= 0)[0] random_misclassified_index = np.random.choice(misclassified_indices) self.coef_ += self.learning_rate * (np.dot(X_subset[random_misclassified_index], y_subset[random_misclassified_index]) def predict(self, X): y_pred = np.sign(np.dot(X, self.coef_) + self.intercept_) return y_pred</pre>
	<pre># Convert y_train to numpy array y_train = y_train.astype(np.int) C:\Users\Checkout\AppData\Local\Temp\ipykernel_14700\2855365193.py:2: DeprecationWarning: `np.int` is a dep ted alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify a ehavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.htm precations y_train = y_train.astype(np.int)</pre> Trying to fit RBF Kernel SVM to the data and compare it with the performance of the LinearRegression SVM that the authors are talking
[23]:	about. Tried to evaluate the performance of all the models on three parameters - accuracy, f1 score and training time. # Train and evaluate SVM with RBF kernel svm_rbf = SVC(kernel='rbf', C=1) start_time = time.time() svm_rbf.fit(X_train_std, y_train) training_time_rbf = time.time() - start_time y_pred_rbf = svm_rbf.predict(X_test_std) accuracy_rbf = accuracy_score(y_test, y_pred_rbf) f1_rbf = f1_score(y_test, y_pred_rbf, average='macro') confusion_rbf = confusion_matrix(y_test, y_pred_rbf)
	F1 score is a measure of model's accuracy that combines precision and recall into a single metric. Precision is the ability of a model to identify relevant instances correctly among the total predicted instances. Recall is the ability of a model to identify all relevant instances correctly among the total actual instances. F1 score = 2 (precision recall) / (precision + recall) Accuracy is the proportion of correctly classified instances out of the total number of instances in the dataset. Accuracy = (Number of correctly predicted instances) / (Total number of instances) Training time is the amount of time the model took to train on the dataset. This is to check how much computation resources the model
	<pre>would consume to predict correctly. print('Accuracy_RBF: ', accuracy_rbf) print('F1 score_RBF: ', f1_rbf) print('Training time_RBF: ', training_time_rbf) print(confusion_rbf)</pre>
	Accuracy_RBF: 0.963 F1 score_RBF: 0.9629116662632391 Training time_RBF: 556.1538064479828 [[1310
	F1 score_RBF: 0.9629116662632391 Training time_RBF: 556.1538064479828 [[1310
[32]:	F1 score_RBF: 0.9629116662632391 Training time_RBF: 556.1538064479828 [[1310
[32]:	F1 score_RBF: 0,9629116662632391 Training time_RBF: 556.1538064479828 [[1310
[32]:	File score_RBF: 0.962911662832291 Training time_RBF: 5.51.538166479288 [[1110 1 5 1 0 5 11 5 5 0] [0.1580 8 2 1 0 0 5 11 5 5 0] [1 3 8 1323 8 8 7 5 11 9 2] [1 3 8 1323 8 8 7 5 12 48 8 3] [1 1 1 9 0.1247 2 5 6 3 21] [1 2 3 18 12 1219 13 8 5 0] [1 3 0 3 0 7 5 1365 10 3 0] [1 3 0 3 0 7 5 1365 10 3 0] [2 4 10 1 6 1 0 1499 1 19] [2 7 11 11 6 10 4 12 1290 4] [3 6 6 12 20 0 0 3 8 6 127] From the above results, we see that RBF kernel has got an accuracy of 0.963, an f1 score of 0.962 and it took 556 seconds to train on the dataset. These are very good scores for a model. Now let's see how other models fare. I tried to plot the above obtained confusion matrix in a graphical format below. import matplot lib.pyglot as plt confusion matrix = np.array([[1310, 1, 5, 1, 6, 5, 11, 5, 5, 0]),
[32]:	Training Lines 2017 2018
[32]:	
[25]:	### Contained tells ### Section (1997) Contained tells ### Section (1997) Contai
[25]:	### Comparison of the Comparis
[25]:	### Section 19 West 19
[32]: [25]:	### Comparison of Comparison
[32]: [25]:	La money, and in control contr
[32]:	1
[25]: [26]:	The content of the co
[25]: [26]: [27]:	The control of the co
[25]: [27]: [37]:	For control of the co
[32]: [34]: [37]: [37]:	Express of the control of the contro
[32]: [[34]: [[36]: [[37]: [The control of the co
[32]: [[34]: [[34]: [[34]: [Company Comp
[32]: [32]: [33]:	The control of the co
[32]: [32]: [33]:	
[32]: [32]: [33]: [33]: [33]: [33]: [34]: [34]: [35]: [34]: [35]:	Company Comp
[34]: [32]: [33]: [33]: [33]: [34]:	
[25]: [[32]: [[34]: [[34]: [[34]: [A
[25]: [25]: [32]: [33]: [34]: [35]:	The content of the
[34]: [36]: [37]:	The content of the co
[32]: [32]: [33]: [34]: [37]:	The content of the
[32]: [32]: [33]: [34]: [37]:	The content of the

In [39]: import numpy as np import matplotlib.pyplot as plt # Define the confusion matrix confusion_matrix = np.array([[1313, 1, 3, 0, 1, 3, 8, 3, 8, 3],[0, 1588, 1, 1, 1, 0, 0, 6, 3, 0], [0, 5, 1326, 3, 2, 2, 4, 24, 12, 2], [0, 0, 7, 1384, 0, 19, 0, 7, 7, 9], [0, 0, 3, 0, 1266, 0, 0, 5, 1, 20],[0, 0, 0, 5, 2, 1251, 7, 1, 6, 1], [2, 1, 0, 0, 5, 7, 1379, 0, 2, 0], [1, 1, 4, 0, 2, 1, 0, 1490, 0, 4], [2, 4, 3, 3, 4, 5, 3, 5, 1322, 6], [2, 3, 1, 2, 9, 3, 0, 13, 6, 1381]]) # Plot the confusion matrix plt.imshow(confusion matrix, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix of FFNN') plt.colorbar() tick_marks = np.arange(10) plt.xticks(tick_marks, tick_marks) plt.yticks(tick marks, tick marks) plt.xlabel('Predicted Label') plt.ylabel('True Label') # Display the value inside each cell thresh = confusion matrix.max() / 2.0 for i in range(10): for j in range(10): plt.text(j, i, format(confusion matrix[i, j], 'd'), horizontalalignment="center", color="white" if confusion matrix[i, j] > thresh else "black") plt.show() Confusion Matrix of FFNN 1 1400 1 1 0 0 6 3 0 1588 1 1 5 326 3 2 2 4 24 12 2 1200 1384 0 19 0 7 3 1000 5 3 0 0 0 800 0 7 1 0 0 5 6 1 5 1 0 0 5 0 2 2 0 400 3 5 8 200 3 1 2 9 3 0 13 6 5 3 4 6 Predicted Label MLPRegressor is a type of Feedforward neural network, but it is mostly used for regression tasks. It implements backpropagation, where the weights are adjusted based on the errors between predicted and true target values. This iterative process of forward pass, error calculation and backward pass is repeated until the model converges to optimal weights. $y = f(w_1x_1 + w_2x_2 + ... + w_nx_n + b)$ where y is the output, $x_1, x_2, ..., x_n$ are the inputs, $w_1, w_2, ..., w_n$ are the corresponding weights, b is the bias term, and f() represents the activation function. The gradient descent formula is typically used to update the weight in backpropagation: $\Delta w = \eta \delta x$, where Δw is the change in weights, η is the learning rate, δ is the error gradient, and x is the input. In [39]: from sklearn.neural network import MLPRegressor # Initialize MLPRegressor with hidden layer sizes=(100,), learning rate init=0.01, max iter=500 mlp = MLPRegressor(hidden layer sizes=(100,), learning rate init=0.01, max iter=500) In [40]: # Train MLPRegressor start time = time.time() mlp.fit(X_train_std, y_train) training_time_mlp = time.time() - start time In [41]: # Predict using MLPRegressor y pred mlp = mlp.predict(X test std) In [42]: # Convert predicted labels to integer type y pred mlp = np.around(y pred mlp).astype(np.int) C:\Users\Checkout\AppData\Local\Temp\ipykernel 10028\3062492246.py:2: DeprecationWarning: `np.int` is a depreca ted alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any b ehavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#de precations y pred mlp = np.around(y pred mlp).astype(np.int) In [43]: # Calculate accuracy metrics accuracy_mlp = accuracy_score(y_test, y_pred_mlp) f1_mlp = f1_score(y_test, y_pred_mlp, average='macro') confusion mlp = confusion matrix(y test, y pred mlp) In [40]: | #print performance metrics print('Accuracy MLP: ', accuracy mlp) print('F1 Score MLP: ', f1 mlp) print('Training Time MLP: ', training time mlp, ' seconds') Accuracy MLP: 0.3395 F1 Score MLP: 0.09934170762503548 Training Time MLP: 39.84637975692749 seconds For the MLPRegressor, we got very poor results - accuracy of just 0.34, and an f1 score of 0.09. May be, the algorithm is simply not suited for classification tasks, since it is designed for regression. Since the authors in their paper considered linear regression, I thought, MLPRegressor might work. But it did not. Or may be, more work on the hyperparameter tuning could help us achieve good results. I will work on this further to see how it goes. In [84]: import matplotlib.pyplot as plt # Create the plots fig, ax = plt.subplots(figsize=(8, 6)) rects = ax.bar(['RBF Kernel SVM', 'Linear Kernel SVM', 'Linear Regression SVM', 'Feedforward Neural Network', ' [accuracy_rbf, accuracy_linear, accuracy_lrsvm, accuracy_nn, accuracy_mlp], color = 'orange') # Display the number on top of the bar for rect in rects: height = rect.get_height() ax.annotate('{}'.format(round(height, 3)), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3),textcoords="offset points", ha='center', va='bottom') plt.title('Accuracy Comparison for MNIST') plt.xlabel('Classifier') plt.ylabel('Accuracy') plt.ylim(0, 1.1) plt.xticks(rotation=45, ha='right') plt.show() Accuracy Comparison for MNIST 0.979 1.0 0.963 0.921 0.907 0.8 0.6 Accuracy 0.34 0.2 0.0 MDREGIESSO Classifier From the above graph of accuracy, we can clearly see FF Neural network achieved the highest accuracy, followed by RBF kernel SVM and Linear kernel SVM. The Linear regression SVM did not get better accuracy than the other two traditional SVMs, as the authors claimed in their paper. In [85]: # Create the plots plt.figure(figsize=(8, 6)) x = ['RBF Kernel SVM', 'Linear Kernel SVM', 'Linear Regression SVM', 'Feedforward Neural Network', 'MLPRegresso y = [f1_rbf, f1_linear, f1_score_lrsvm, f1_nn, f1_mlp] plt.bar(x, y) plt.title('F1 Score Comparison for MNIST') plt.xlabel('Classifier') plt.ylabel('F1 Score') plt.ylim(0, 1.1) # Add value labels on top of bars for i, v in enumerate(y): plt.text(i, v, "{:.3f}".format(v), color='black', ha='center') # Rotate x-axis labels to avoid overlapping plt.xticks(rotation=45, ha='right') plt.show() F1 Score Comparison for MNIST 1.0 0.978 0.963 0.920 0.906 0.8 0.6 F1 Score 0.4 0.2 0.099 Feedforward Meutal Metwork 0.0 MPRegressor Classifier For the F1 scores too, FF Neural network achieved the highest followed by RBF Kernel. Linear regression-svm again did not get better F1 scores than the traditional SVM algorithms. unlike what the authors had claimed. MLPRegressor sadly faired the worst compared to all the models. In [79]: # Create the plots fig, ax = plt.subplots(figsize=(8, 6)) rects = ax.bar(['RBF Kernel SVM', 'Linear Kernel SVM', 'Linear Regression SVM', 'Feedforward Neural Network', 'M [training_time_rbf, training_time_linear, training_time_lrsvm, training_time_nn, training_time_mlp], color= 'purple') # Add labels on top of the bars for rect in rects: height = rect.get height() ax.annotate(f'{height:.2f}', xy=(rect.get x() + rect.get width() / 2, height), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom', fontsize=10) plt.title('Training Time Comparison for MNIST') plt.xlabel('Classifier') plt.ylabel('Training Time (seconds)') # Tilt the x-axis labels plt.xticks(rotation=45, ha='right') plt.show() Training Time Comparison for MNIST 1000 967.63 800 Fraining Time (seconds) 587.73 600 556.15 400 200 71.62 39.85 Linear Kernel Syn MPRegressor Classifier Linear regression-svm surprisingly took the longest time to train, followed by Linear kernel SVM and RBF kernel svm. FF Neural network took very less time to train, while having the highest accuracy of all. MLPRegressor took the least time to train, but given its poor accuracy, we cannot consider it. **USPS** In [4]: # Load the USPS dataset usps = fetch_openml('usps', version=1) # Preprocess the data X = usps['data'] y = usps['target'] X = X / 255.0 # scale the pixel values to [0, 1] y = y.astype(int)C:\ProgramData\Anaconda3\lib\site-packages\sklearn\datasets_openml.py:879: UserWarning: Version 1 of dataset U SPS is inactive, meaning that issues have been found in the dataset. Try using a newer version from this URL: h ttps://api.openml.org/data/v1/download/18805612/USPS.arff warn(In [5]: # Convert the feature matrix into a DataFrame df = pd.DataFrame(X) # Add the target variable as a new column df['target'] = y In [6]: # Calculate the distribution of target variable target counts = df['target'].value counts() # Plot the distribution of target variable plt.figure(figsize=(10, 5)) sns.barplot(x=target counts.index, y=target counts.values, palette='Set3') plt.title('Distribution of target variable') plt.xlabel('Digit') plt.ylabel('Count') plt.show() Distribution of target variable 1600 1400 1200 1000 800 600 400 200 0 6 Digit # Calculate the correlation matrix In [7]: corr matrix = df.corr() # Plot the correlation matrix plt.figure(figsize=(10, 10)) sns.heatmap(corr matrix, cmap='coolwarm', center=0) plt.title('Correlation Matrix') plt.show() Correlation Matrix double1 1.0 double6 double11 double16 double21 double26 double31 double36 - 0.8 double41 double46 double51 double56 double61 double66 - 0.6 double76 double81 double86 double91 double96 - 0.4 double101 double106 double111 double116 double121 double126 double131 - 0.2 double136 double141 double146 double151 double156 double161 double166 - 0.0 double176 double181 double186 double191 -0.2double196 double201 double206 double216 double221 double226 -0.4double231 double236 double241 double246 double251 double256 -In [16]: plt.figure(figsize=(10, 5)) sns.boxplot(x='target', y='target', data=df) # Replace 'y' with the desired column name plt.title('Pixel Value Distribution by Digit') plt.xlabel('Digit') plt.ylabel('Pixel Value') plt.show() Pixel Value Distribution by Digit 10 8 Pixel Value 6 4 2 з 10 Digit In [10]: from sklearn.decomposition import PCA from sklearn.manifold import TSNE # Apply PCA for dimensionality reduction pca = PCA(n components=2) pca result = pca.fit transform(X) # Apply t-SNE for dimensionality reduction tsne = TSNE(n components=2) tsne_result = tsne.fit transform(X) # Plot PCA and t-SNE results plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.scatter(pca_result[:, 0], pca_result[:, 1], c=y, cmap='Set3') plt.title('PCA Visualization') plt.xlabel('Component 1') plt.ylabel('Component 2') plt.subplot(1, 2, 2) plt.scatter(tsne_result[:, 0], tsne_result[:, 1], c=y, cmap='Set3') plt.title('t-SNE Visualization') plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.tight layout() plt.show() C:\ProgramData\Anaconda3\lib\site-packages\sklearn\manifold_t_sne.py:780: FutureWarning: The default initializ ation in TSNE will change from 'random' to 'pca' in 1.2. warnings.warn(rate in TSNE will change from 200.0 to 'auto' in 1.2. warnings.warn(PCA Visualization t-SNE Visualization 0.05 75 0.04 50 0.03 25 0.02 Component 2 Dimension 0 0.01 0.00 -25 -0.01-50 -0.02-75-0.034 -2 0 2 -80 -60 -40 20 60 Component 1 Dimension 1 In [20]: from sklearn.neural_network import MLPClassifier, MLPRegressor In [21]: # Load the USPS dataset usps = fetch_openml('usps', version=1) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\datasets_openml.py:879: UserWarning: Version 1 of dataset U SPS is inactive, meaning that issues have been found in the dataset. Try using a newer version from this URL: h ttps://api.openml.org/data/v1/download/18805612/USPS.arff In [22]: # Preprocess the data X = usps['data'] y = usps['target'] X = X / 255.0 # scale the pixel values to [0, 1] y = y.astype(int)In [23]: # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) In [24]: class LinearRegressionSVM: def __init__(self, learning_rate=0.001, C=1.0, subset_size=50000, max_iterations=100): self.learning_rate = learning_rate self.C = Cself.subset size = subset size self.max iterations = max iterations def fit(self, X, y): n_samples, n_features = X.shape self.coef_ = np.zeros(n_features) $self.intercept_ = 0.0$ for iteration in range(self.max_iterations): subset_indices = np.random.choice(range(n_samples), self.subset_size, replace=False) X subset = X[subset indices] y_subset = np.array(y[subset_indices]) # convert y_subset to numpy array margin = y_subset * (np.dot(X_subset, self.coef_) + self.intercept_) if np.any(margin <= 0):</pre> misclassified_indices = np.where(margin <= 0)[0]</pre> random misclassified index = np.random.choice(misclassified indices) self.coef_ += self.learning_rate * (np.dot(X_subset[random_misclassified_index], y_subset[random_misclassified_index], self.intercept_ += self.learning_rate * y_subset[random_misclassified_index] def predict(self, X): y_pred = np.sign(np.dot(X, self.coef_) + self.intercept_) return y_pred In [25]: clf_lsvc = LinearSVC(random state=42) start time = time.time() clf_lsvc.fit(X_train, y_train) train time lsvc = time.time() - start time In [26]: y_pred_lsvc = clf_lsvc.predict(X test) accuracy lsvc = accuracy score(y test, y pred lsvc) f1 lsvc = f1 score(y test, y pred lsvc, average='weighted') confusion lsvc = confusion matrix(y test, y pred lsvc) In [28]: # RBF kernel SVM classifier clf_rbf_svm = SVC(kernel='rbf', random_state=42) start time = time.time() clf_rbf_svm.fit(X_train, y_train) train time rbf svm = time.time() - start time In [29]: y_pred_rbf_svm = clf_rbf_svm.predict(X test) accuracy_rbf_svm = accuracy_score(y_test, y_pred_rbf_svm) f1_rbf_svm = f1_score(y_test, y_pred_rbf_svm, average='weighted') confusion_rbf_svm = confusion_matrix(y_test, y_pred_rbf_svm) In [27]: print("Linear Regression SVM: ") print("Accuracy: ", accuracy lsvc) print("F1 score: ", f1_lsvc) print("Training time: ", train time lsvc) Linear Regression SVM: Accuracy: 0.7951612903225806 F1 score: 0.7855664377675992 Training time: 3.8985209465026855 For the linear regression SVM algorithm on the USPS dataset, we got an accuracy of 0.795, f1 score of 0.785 and it took 3.89 seconds to train on the USPS dataset. Now let's try to implement other traditional SVM algorithms on the dataset and see how they fair. In [30]: print("SVM RBF: ") print("Accuracy: ", accuracy_rbf_svm) print("F1 score: ", f1 rbf svm) print("Training time: ", train_time_rbf_svm) SVM RBF: Accuracy: 0.9741935483870968 F1 score: 0.9741777385617408 Training time: 3.099534034729004 For the RBF SVM, we got an impressive accuracy of 0.974, f1 score of 0.974 and it took 3.09 seconds to train on the dataset. This traditional SVM model performed far better than the linear regression-svm model that the authors proposed. Now let's try to implement the Linear kernel SVM and see how it goes. In [33]: # Linear kernel SVM classifier clf lin svm = SVC(kernel='linear', random state=42) start time = time.time() clf_lin_svm.fit(X_train, y_train) train_time_lin_svm = time.time() - start_time In [34]: y_pred_lin_svm = clf_lin_svm.predict(X test) accuracy_lin_svm = accuracy_score(y_test, y_pred_lin_svm) f1 lin svm = f1 score(y test, y pred lin svm, average='weighted') confusion_lin_svm = confusion_matrix(y_test, y_pred_lin_svm) In [35]: print("Linear SVM: ") print("Accuracy: ", accuracy_lin_svm) print("F1 score: ", f1_lin_svm) print("Training time: ", train time lin svm) Linear SVM: Accuracy: 0.30483870967741933 F1 score: 0.1485371329226645 Training time: 24.030107021331787 For the linear SVM, we got an accuracy of just 0.30, f1 score of 0.14 and it took 24 seconds to train on the dataset. This model performed poorer than the linear regression-sym model that the authors are talking about. Now let's try to implement FF neural network and MLPRegressor and see how it goes. In [36]: # Feedforward neural network classifier clf ffnn = MLPClassifier(hidden layer sizes=(64, 32), activation='relu', solver='adam', random state=42) start time = time.time() clf_ffnn.fit(X_train, y_train) train_time_ffnn = time.time() - start_time C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural network\ multilayer perceptron.py:692: ConvergenceWar ning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet. warnings.warn(Used ReLU activation for the FF neural network and adam solver with a random state number of 42. In [37]: y_pred_ffnn = clf_ffnn.predict(X test) accuracy_ffnn = accuracy_score(y_test, y_pred_ffnn) f1_ffnn = f1_score(y_test, y_pred_ffnn, average='weighted') confusion ffnn = confusion_matrix(y_test, y_pred_ffnn) In [38]: print("Feedforward Neural network: ") print("Accuracy: ", accuracy ffnn) print("F1 score: ", f1 ffnn) print("Training time: ", train time ffnn) Feedforward Neural network: Accuracy: 0.9370967741935484 F1 score: 0.9372480545259878 Training time: 39.62293195724487 For the Feedforward NN, we got an impressive accuracy of 0.93, f1 score of 0.93 and it took 39 seconds to train on the data. This is much better than the linear regression-svm model. In []: | # MLP regressor reg bpnn = MLPRegressor(hidden layer sizes=(64, 32), activation='relu', solver='adam', random state=42) start time = time.time() reg_bpnn.fit(X_train, y_train) train_time_bpnn = time.time() - start_time In [40]: y_pred_bpnn = np.round(reg_bpnn.predict(X_test)).astype(int) accuracy_bpnn = accuracy_score(y_test, y_pred_bpnn) f1_bpnn = f1_score(y_test, y_pred_bpnn, average='weighted') confusion_bpnn = confusion_matrix(y_test, y_pred_bpnn) In [41]: print("MLPRegressor: ") print("Accuracy: ", accuracy bpnn) print("F1 score: ", f1 bpnn) print("Training time: ", train time bpnn) MLPRegressor: Accuracy: 0.560752688172043 F1 score: 0.5715679057551382 Training time: 35.36492156982422 For the MLPRegressor, we got an accuracy of 0.56, f1 score of 0.57 and it took 35 seconds to train on the dataset. This is not as good as the linear regression-svm algorithm, but certainly better than the linear kernel SVM. In [42]: import matplotlib.pyplot as plt # Accuracy plot plt.bar(["Linear Regression SVM", "RBF kernel SVM", "Linear kernel SVM", "Feedforward NN", "MLPRegressor"], [accuracy lsvc, accuracy rbf svm, accuracy lin svm, accuracy ffnn, accuracy bpnn], color = 'orange') for i, v in enumerate([accuracy lsvc, accuracy rbf svm, accuracy lin svm, accuracy ffnn, accuracy bpnn]): plt.text(i, v, str(round(v, 2)), color='black', ha='center') plt.xticks(rotation=45, ha='right') plt.title("Accuracy of classifiers for USPS") plt.ylabel("Accuracy") plt.xlabel('Classifiers') plt.show() Accuracy of classifiers for USPS 1.0 -0.94 0.8 0.6 0.56 0.2 RBF WEITER SUM Feedforward MA MPREDIESO Classifiers From the above graph, we can clearly see that RBF kernel SVM achieved the highest accuracy on the USPS dataset, followed by FF Neural network. Linear regression-sym model did well by getting an accuracy of 0.8, but still less than the traditional RBF kernel sym model. In [43]: # F1 score plot plt.bar(["Linear Regression SVM", "RBF kernel SVM", "Linear kernel SVM", "Feedforward NN", "MLPRegressor"], [f1 lsvc, f1 rbf svm, f1 lin svm, f1 ffnn, f1 bpnn]) for i, v in enumerate([f1 lsvc, f1 rbf svm, f1 lin svm, f1 ffnn, f1 bpnn]): plt.text(i, v, str(round(v, 2)), color='black', ha='center') plt.xticks(rotation=45, ha='right') plt.title("F1 score of classifiers for USPS") plt.ylabel("F1 score") plt.xlabel('Classifiers') plt.show() F1 score of classifiers for USPS 1.0 0.97 0.94 0.79 0.8 0.6 0.4 0.2 MPREGESSON Classifiers This graph looks similar to the one for the accuracy. RBF kernel got the highest with 0.97 followed by FF Neural network with 0.94 and linear regression-svm with 0.79. # Training time plot In [44]: plt.bar(["Linear Regression SVM", "RBF kernel SVM", "Linear kernel SVM", "Feedforward NN", "MLPRegressor"], [train_time_lsvc, train_time_rbf_svm, train_time_lin_svm, train_time_ffnn, train_time_bpnn], color = 'purple') for i, v in enumerate([train time lsvc, train time_rbf_svm, train_time_lin_svm, train_time_ffnn, train_time_bpn plt.text(i, v, str(round(v, 2)), color='black', ha='center') plt.xticks(rotation=45, ha='right') plt.title("Training time of classifiers for USPS") plt.ylabel("Time (seconds)") plt.xlabel('Classifiers') plt.show() Training time of classifiers for USPS 40 35 30 Time (seconds) 25 24.03 20 15 10 5 Feedforward MM MDREDIESSO Classifiers FF Neural network took more time (39 seconds) than the linear regression-svm model (3.9 seconds). But given the accuracies and f1scores of the two models, I guess this is a reasonable tradeoff. RBF kernel SVM performed the best by getting the highest accuracym while training for the least time.