1/29

FIG. 2

Human G Protein Coupled Receptor Family (Receptors known as of January, 1999)

								_	_,																	
THERAPEUTICS				Acuity, Alzheimer's		Diabetes, Cardiovascular	Cardiovascular Respiratory	Cardiovascular Parkinson's	Anti-inflammatory Illers	Denression Insomnia Analossic	Creston, modimina, margeste	Cardiovascular. Endocrine	Anti-inflammatory. Asthma	Anti-inflammatory	Anti-inflammatory	Anti-inflammatory	Anti-inflammatory	Obesity	Airway Diseases, Anesthetic	_		Anti-inflammatory, Analgesics	Behavior, Memory, Cardiovascular	Cardiovascular, Analgesic	Depression, Analgesic	Oncology, Alzheimer's
PHYSIOLOGY				Neurotransmitter		Gluconeogenesis	Muscle Contraction	Neurotransmitter	Vascular Permeahility	Neurotransmitter		Vasoconstriction	Vasodilation,	Immune System	Chemoattractant	Chemoattractant	Chemoattractant	Fat Metabolism	Bronchodilator, Pain	Motility, Fat Absorption	Muscle Contraction	Metabolic Regulation	Neurotransmitter	CNS	CNS	Neurotransmitter
TISSUE				Brain, Nerves, Heart		Brain, Kidney, Lung	Kidney, Heart	Brain, Kidney, GI	Vascular, Heart, Brain	Most Tissues	-	Vascular, Liver, Kidney	Liver, Blood	Blood	Blood	Blood	Blood	Brain	Brain	Gastrointestinal	Heart, Bronchus, Brain	Kidney, Brain	Nerves, Intestine, Blood	Brain,	Brain,	Brain, Gastrointestinal
NUMBER				2		9	<u>ო</u>	ς.	7	16		7	~		က		9	7		7	7	S	2	1	က	2
CLASS LIGAND NU	•Class I Rhodopsin like	•Amine	 Acetylcholine 	(muscarinic & nicotinic)	Adrenoceptors	 Alpha Adrenoceptors 	Beta Adrenoceptors	•Dopamine	•Histamine	•Serotonin (5-HT)	•Peptide	•Angiotensin	 Bradykinin 	 C5a-anaphylatoxin 	•Fmet-leu-phe	•Interleukin-8	•Chemokine	•Orexin	•Nociceptin	•CCK (Gastrin)	•Endothelin	 Melanocortin 	 Neuropeptide Y 	•Neurotensin	•Opioid	 Somatostatin

FIG. 2 (cont.)

3/29

Depression, Analgesic Anti-coagulant, Anti-inflammatory Anti-diuretic, Diabetic Complications Analgesics, Alzheimer's	Infertility Infertility Thyroidism, Metabolism	Ophthalmic Diseases Olfactory Diseases	Cardiovascular, Analgesic Cancer, Anti-Inflammatory Cancer	Asthma, Rheumatoid Arthritis Cardiovascular Cardiovascular, Respiratory	Cardiovascular, Respiratory Cardiovascular, Respiratory	Anti-inflammatory, Anti-asthmatic	Prostate Cancer, Endometriosis	Metabolic Regulation Oncology, Alzheimer's Regulation of Circadian Cycle
Neurohormone Coagulation Water Balance Neurotransmitter	Endocrine Endocrine Endocrine	Photoreception Smell	Vasodilation, Pain Inflammation Cell proliferation	Inflammation Platelet Regulation Vasoconstriction	Multiple Effects Relaxes Muscle Analgesics, Memory	Inflammation	Reproduction	Thyroid Regulation Neuroendocrine Neuroendocrine
Brain Nerves Platelets, Blood Vessels Arteries, Heart, Bladder Brain, Pancreas	Ovary, Testis Ovary, Testis Thyroid	5 Eye 4(~1000) Nose	Arterial, Gastrointestinal Vessels, Heart, Lung Most Cells White Blood Cells,	Bronchus Arterial, Gastrointestinal Arterial, Bronchus	Vascular, Bronchus Vascular, Platelets Sensory Perception	Most Peripheral Tissues	Reproductive Organs, Pituitary	Pituitary, Brain Gastrointestinal Brain, Eye, Pituitary
e e 4 + +		5 4(~100	1225		4 4 Brain	-	-	
 Tachykinin (Substance P, NKA₁) Thrombin Vasopressin-like Galanin Hormone protein 	•Follicle stimulating hormone •Lutropin-choriogonadotropic •Thyrotropin	•Opsin •Olfactory •Prostanoid	 Prostaglandin Lysophosphatidic Acid Sphingosine-1-phosphate Leukotriene 	ProstacyclinThromboxaneNucleotide-like	•Adenosine •Purinoceptors •Cannabis 2	 Platelet activating factor Gonadotropin-releasing hormone like 	•Gonadotropin-releasing hormone	 Thyrotropin-releasing hormone Growth hormone-inhibiting factor Melatonin

FIG. 2 (cont.)

•Class II Secretin like

4/29

•Secretin	•Calcitonin	•Cortic	tact	• Gastric	Glucagon 1	•Glucag	•Growt	hormone	•Parath	•PACAP	•Vasoa	not	Class III	•Metab	•GABA _B	•Extrac	
. .	ninc	Corticotropin releasing	tactor/urocortin	 Gastric inhibitory peptide (GIP) 	gon 1	•Glucagon-like Peptide 1 (GLP-1)	 Growth hormone-releasing 	one	 Parathyroid hormone 	C y	 Vasoactive intestinal 	nolvnentide (VID)	(w.) andadi	 Metabotropic Glutamate 	87	 Extracellular Calcium Sensing 	
	_		_		Liver, I	_	_		_	Ţ		-	4	7	—	1	
Gastrointestinal, Heart	Bone, Brain	Adrenal, Vascular, Brain		Adrenals, Fat Cells	Liver, Fat Cells, Heart	Pancreas, Stomach, Lung	Brain		Bone, Kidney	Brain, Pancreas, Adrenals		Controlintentinal		Brain	Brain	Parathyroid, Kidney,	GI Tract
Digestion	Calcium Resorption	Neuroendocrine		Sugar/Fat Metabolism	Gluconeogenesis	Gluconeogenesis	Neuroendocrine		Calcium Regulation			B. 6. 42 12.4.	Monney	Sensory Perception	Neurotransmitter	Calcium Regulation	•
Obesity, Gastrointestinal	Osteoporosis	Stress, Mood, Obesity		Diabetes, Obesity	Cardiovascular	Cardiovascular Diahetes Obesity	Growth Regulation	Towns Govern	Osteonorosis	Metaholio Demilotion	TATCHEROTIC TANGENTON	•	Gastrointestinal	Hearing Vision	Mond Disorders	Cataracts, GI Tumors	

5/29

Figure 3

G protein-coupled receptors:

(Division into Class A Or Class B)

1. A1 adenosine receptor [Homo sapiens]. ACCESSION AAB25533 NPIVYAF RIQKFRVTFL KIWNDHFRCQ PAPPIDEDLP EERPDD Class A (SEQ ID NO: 1)

2. adrenergic, alpha -1B-, receptor [Homo sapiens]. ACCESSION NP_000670 npiiypc sskefkrafv rilgcqcrgr grrrrrrrr lggcaytyrp wtrggslers qsrkdsldds gsclsgsqrt lpsaspspgy lgrgapppve lcafpewkap gallslpape ppgrrgrhds gplftfkllt epespgtdgg asnggceaaa dvangqpgfk snmplapgqf

Class A (SEQ ID NO: 2)

3. adrenergic receptor alpha-2A [Homo sapiens]. ACCESSION AAG00447 npviytifn hdfrrafkki lergdrkriv

Class A (SEQ ID NO: 3)

4. alpha-2B-adrenergic receptor - human. ACCESSION A37223 npviytifn qdfirafiri lcrpwtqtaw

Class A (SEQ ID NO: 4)

5. alpha-2C-adrenergic receptor - human. ACCESSION A31237 npviytvín qdfrpsfkhi lfrrrrgfr q Class A (SEQ ID NO: 5)

6. beta-1-adrenergic receptor [Homo sapiens]. ACCESSION NP_000675 npiiyers pdfrkafqgl lecarraarr rhathgdrpr asgelarpgp ppspgaasdd ddddvygatp parllepwag cnggaaadsd ssldepcrpg faseskv

Class A (SEQ ID NO: 6)

7. beta-2 adrenergic receptor. ACCESSION P07550 npliyersp dfriafqell chrsslkay gngyssngnt 361 geqsgyhveq ekenklleed lpgtedfvgh qgtvpsdnid sagmestnd sll

Class A (SEQ ID NO: 7)

8. dopamine receptor D1 [Homo sapiens]. ACCESSION NP 000785 npii yafnadfrka fstllgcyrl cpatmaiet vsinnngaam fsshheprgs iskecnlvyl iphavgssed lkkeeaagia rpleklspal svildydtdv slekiqpitq ngqhpt

Class A (SEQ ID NO: 8)

9. D(2) dopamine receptor. ACCESSION P14416 npiiyttin iefrkaflki lhe

Class A (SEQ ID NO: 9)

6/29

Figure 3 (cont.)

d3 dopamine receptor - human. ACCESSION G01977
 np viyttfnief rkaflkilsc

Class A (SEQ ID NO: 10)

11. dopamine receptor D4 - human. ACCESSION DYHUD4 npviytv fnaefmvfr kalracc

Class A (SEQ ID NO: 11)

- dopamine receptor D5 human. ACCESSION DYHUD5

 npviya finadfqkvfa qllgcshfcs rtpvetvnis nelisynqdi vfhkeiaaay ihmmpnavtp gnrevdndee egpfdrmfqi yqtspdgdpv aesvweldce geisldkitp ftpngfh

 Class A (SEQ ID NO: 12)
- 13. muscarinic acetylcholine receptor M1 [Homo sapiens]. ACCESSION NP_000729 npmcyal cnkafrdtfr llllcrwdkr rwrkipkrpg svhrtpsrqc

 Class A (SEQ ID NO: 13)
- 14. muscarinic acetylcholine receptor M2 [Homo sapiens]. ACCESSION NP_000730 npacy alcnatfkkt fkhllmchyk nigatr
 Class A (SEQ ID NO: 14)
- 15. muscarinic acetylcholine receptor M3 [Homo sapiens]. ACCESSION NP_000731
 n pvcyalcnkt frttfkmlll cqcdkkkrk qqyqqrqsvi fhkrapeqal
 Class A (SEQ ID NO: 15)
- 16. muscarinic acetylcholine receptor M4 [Homo sapiens]. ACCESSION NP_000732 npa cyalcnatfk ktfrhlllcq yrnigtar
 Class A (SEQ ID NO: 16)
- 17. m5 muscarinic receptor. locus HUMACHRM ACCESSION AAA51569 npicyalcnr tfiktfikmll lcrwkkkkve eklywqgnsk lp
 Class A (SEQ ID NO: 17)
- 18. 5-hydroxytryptamine (serotonin) receptor 1A [Homo sapiens]. ACCESSION BAA90449 npviy ayfinkdfqna fkkiikckf

Class A (SEQ ID NO: 18)

19. 5-hydroxytryptamine (serotonin) receptor 1B [Homo sapiens]. ACCESSION BAA94455 npiiyt msnedfkqaf hklirfkcts

Class A (SEQ ID NO: 19)

20. 5-hydroxytryptamine (serotonin) receptor 1E [Homo sapiens]. ACCESSION BAA94458 n pllytsfned fklafkklir cre

Class A (SEQ ID NO: 20)

7/29.

Figure 3 (cont.)

- 21. OLFACTORY RECEPTOR 6A1. ACCESSION 095222
 npiiyclrnq evkralccil hlyqhqdpdp kkgsrnv
 Class A (SEQ ID NO: 21)
- 22. OLFACTORY RECEPTOR 2C1. ACCESSION 095371
 npliy tlrnmevkga lrrllgkgre vg
 Class A (SEQ ID NO: 22)
- angiotensin receptor 1 [Homo sapiens]. ACCESSION NP_033611
 npl fygflgkkfk ryflqllkyi ppkakshsnl sfkmsflsyr psdnyssstk kpapcfeve
 Class B (SEQ ID NO: 23)
- 24. angiotensin receptor 2 [Homo sapiens]. ACCESSION NP_000677 npflycf vgnrfqqklr svfrvpitwl qgkresmscr kssslremet fvs Class B (SEQ ID NO: 24)
- interleukin 8 receptor beta (CXCR2) [Homo sapiens]. ACCESSION NM_001557 NPLIYAFIGQKFRHGLLKILAIHGLISKDSLPKDSRPSFVGSSSGHTSTTL Class B (SEQ ID NO: 25)
- 26. cx3c chemokine receptor 1 (cx3cr1) (fractalkine receptor)
 ACCESSION P49238
 np liyafagekf rrylyhlygk clavlcgrsv hvdfsssesq rsrhgsvlss nftyhtsdgd allll
 Class B (SEQ ID NO: 26)
- 27. neurotensin receptor human. ACCESSION S29506
 n pilynlvsan frhiflatla clcpvwmm krpafsrkad svssnhflss natretly
 Class B (SEQ ID NO: 27)
- 28. SUBSTANCE-P RECEPTOR (SPR) (NK-1 RECEPTOR) (NK-1R). ACCESSION P25103 npiiyeelnd rfrlgfkhaf reepfisagd yeglemkstr ylqtqgsvyk vsrlettistvvgaheeepe dgpkatpssl dltsnessrs dsktmtesfs fssnvls

 Class B (SEQ ID NO: 28)
- vasopressin receptor type 2 [Homo sapiens]. ACCESSION AAD16444 npwiyasfss sysselrsll ccargripps lgpqdesctt assslakdts s
 Class B (SEQ ID NO: 29)
- 30. thyrotropin-releasing hormone receptor human. ACCESSION JN0708
 npviy nlmsqkfraa fiklcnckqk ptekpanysv alnysvikes dhfstelddi tvtdtylsat kvsfddtcla sevsfsqs
 Class B (SEQ ID NO: 30)

8/29

Figure 3 (cont.)

- 31. oxytocin receptor human. ACCESSION A55493
 npwiym lftghlfhel vqrflccsas ylkgrrlget saskksnsss fvlshrsssq rscsqpsta
 Class B (SEQ ID NO: 31)
- 32. neuromedin U receptor [Homo sapiens]. ACCESSION AAG24793
 npvlyslmssrfretfqealclgacchrlrprhsshslsrmttgstlcdvgslgswvhplagndgpeaqqetdps
 Class B (SEQ ID NO: 32)
- 33. gastrin receptor. ACCESSION AAC37528

 nplvy cfmhrrfiqa cletcarccp rpprarpral pdedpptpsi aslsrlsytt istlgpg

 Class B (SEQ ID NO: 33)
- 34. galanin receptor 3 [Homo sapiens]. ACCESSION 10879541
 nplv yalasihira riirilwpcgr riirhrairal rivrpassgp pgcpgdarps grllagggqg pepregpvhg geaargpe
 Class A (SEQ ID NO: 34)
- 35. edg-1 human, ACCESSION A35300
 npiiy tltnkemrra firimsceke psgdsagkfk rpiiagmefs rskådnsshp 361 qkdegdnpet imssgnvnss s
 Class A (SEQ ID NO: 35)
- 36. central cannabinoid receptor [Homo sapiens]. ACCESSION NP_057167 npiiyalr skdlrhafrs mfpscegtaq pldnsmgdsd clhkhannaa svhraaesci kstvkiakvt msvstdtsae al Class A (SEQ ID NO: 36)
- 37. delta opioid receptor human. ACCESSION I38532
 npvlyaf ldenfkrcfr qlcrkpcgrp dpssfsrpre atarervtac tpsdgpgggr aa
 Class A (SEQ ID NO: 37)
- 38. proteinase activated receptor 2 (PAR-2) human. ACCESSION P55085 dpfvyyfvshdfrdhaknallcrsvrtvkqmqvsltskkhsrksssyssssttvktsy
 Class A (SEQ ID NO: 38)
- 39. vasopressive intestinal peptide receptor (VIPR) rat. ACCESSION NM_012685
 NGEVQAELRRKWRRWHLQGVLGWSSKSQHPWGGSNGATCSTQVSMLTRVSPSARR
 SSSFQAEVSLV

Class B (SEQ ID NO: 39)

9/29

Figure 4A Amino Acid sequence of the hGPR3- Enhanced Receptor

MMWGAGSPLAWLSAGSGNVNVSSVGPAEGPTGPAAPLPSPKAWDVVLCISGTLVSCE
NALVVAIIVGTPAFRAPMFLLVGSLAVADLLAGLGLVLHFAAVFCIGSAEMSLVLVG
VLAMAFTASIGSLLAITVDRYLSLYNALTYYSETTVTRTYVMLALVWGGALGLGLLP
VLAWNCLDGLTTCGVVYPLSKNHLVVLAIAFFMVFGIMLQLYAQICRIVCRHAQQIA
LQRHLLPASHYVATRKGIATLAVVLGAFAACWLPFTVYCLLGDAHSPPLYTYLTLLP
ATYNSMINPIIYAFRNQDVQKVLWAVCCCCAAARGRTPPSLGPQDESCTTASSSLAK
DTSS

(SEQ ID No: 40)

Figure 4B Nucleotide sequence of the hGPR3- Enhanced Receptor

ATGATGTGGGGTGCAGGCAGCCCTCTGGCCTGGCTCTCAGCTGGCTCAGGCAACGTG AATGTAAGCAGCGTGGGCCCAGCAGAGGGGCCCACAGGTCCAGCCGCACCACTGCCC TCGCCTAAGGCCTGGGATGTGGTGCTCTGCATCTCAGGCACCCTGGTGTCCTGCGAG AATGCGCTAGTGGTCGCCATCATCGTGGGCACTCCTGCCTTCCGTGCCCCCATGTTC CTGCTGGTGGCAGCCTGGCCGTGGCAGACCTGCTGGCAGGCCTGGCCCTGGTCCTG CACTTTGCTGCTGTCTTCTGCATCGGCTCAGCGGAGATGAGCCTGGTGCTTGGC GTGCTGGCAATGGCCTTTACYGCCAGCATCGGCAGTCTACTGGCCATCACTGTCGAC CGCTACCTTTCTCTGTACAATGCCCTCACCTACTATTCAGAGACAACAGTGACACGG ACCTATGTGATGCTGGCCTTAGTGTGGGGAGGTGCCCTGGGCCTGGGGCTGCTGCCT GTGCTGGCCTGGAACTGCCTGGATGGCCTGACCACATGTGGCGTGGTTTATCCACTC TCCAAGAACCATCTGGTAGTTCTGGCCATTGCCTTCTTCATGGTGTTTTGGCATCATG CTGCAGCTCTACGCCCAAATCTGCCGCATCGTCTGCCGCCATGCCCAGCAGATTGCC CTTCAGCGGCACCTGCTGCCTCCCACTATGTGGCCACCCGCAAGGGCATTGCC ACACTGGCCGTGGTGCTTGGAGCCTTTGCCGCCTGCTGGTTGCCCTTCACTGTCTAC TGCCTGCTGGGTGATGCCCACTCTCCACCTCTCTACACCTATCTTACCTTGCTCCCT GCCACCTACAACTCCATGATCAACCCTATCATCTACGCCTTCCGCAACCAGGATGTG CAGAAAGTGCTGTGGGGCTGTCTGCTGCTGCTGCGGCCGCACGGGGACGCACCCCA CCCAGCCTGGGTCCCCAAGATGAGTCCTGCACCACCGCCAGcTCCTCCCTGGCCAAG GACACTTCATCGTGA

(SEQ ID No: 41)

10/29

Figure 4C Amino Acid sequence of the hGPR6- Enhanced Receptor

MNASAASLNDSQVVVVAAEGAAAAATAAGGPDTGEWGPPAAAALGAGGGANGSLELS SQLSAGPPGLLLPAVNPWDVLLCVSGTVIAGENALVVALIASTPALRTPMFVLVGSL ATADLLAGCGLILHFVFQYLVPSETVSLLTVGFLVASFAASVSSLLAITVDRYLSLY NALTYYSRRTLLGVHLLLAATWTVSLGLGLLPVLGWNCLAERAACSVVRPLARSHVA LLSAAFFMVFGIMLHLYVRICQVVWRHAHQIALQQHCLAPPHLAATRKGVGTLAVVL GTFGASWLPFAIYCVVGSHEDPAVYTYATLLPATYNSMINPIIYAFRNQEIQRALWL LLCGCAAARGRTPPSLGPQDESCTTASSSLAKDTSS (SEO ID No: 42)

Figure 4D Nucleotide sequence of the hGPR6- Enhanced Receptor

ATGAACGCGAGCGCCCCCCCCCAACGACTCCCAGGTGGTGGTAGTGGCGGCCGAA GGAGCGGCGGCGGCCACAGCAGCAGGGGGCCGGACACGGGCGAATGGGGACCC CCTGCTGCGGCGGCTCTAGGAGCCGGCGGAGCTAATGGGTCTCTGGAGCTGTCC TCGCAGCTGTCGGCTGGGCCACCGGGACTCCTGCTGCCAGCGGTGAATCCGTGGGAC GTGCTCCTGTGCGTGTCGGGGACAGTGATCGCTGGAGAAAACGCGCTGGTGGTGGCG CTCATCGCGTCCACTCCGGCGCTGCGCACGCCCATGTTCGTGCTGGTAGGCAGCCTG GCCACCGCTGACCTGTTGGCGGGCTGTGGCCTCATCTTGCACTTTGTGTTCCAGTAC TTGGTGCCCTCGGAGACTGTGAGTCTGCTCACGGTGGGCTTCCTCGTGGCCTCCTTC GCCGCCTCTGTCAGCAGCCTGCTGGCCATTACGGTGGACCGCTACCTGTCCCTGTAT AACGCGCTCACCTATTACTCGCGCCGGACCCTGTTGGGCGTGCACCTCCTGCTTGCC GCCACTTGGACCGTGTCCCTAGGCCTGGGGCTGCTGCCCGTGCTGGGCTGGAACTGC CTGGCAGAGCGCGCCTGCAGCGTGGTGCCCCCGCTGGCGCGCAGCCACGTGGCT CTGCTCTCCGCCGCCTTCTTCATGGTCTTCGGCATCATGCTGCACCTGTACGTGCGC ATCTGCCAGGTGGTCTGGCGCCACGCGCACCAGATCGCGCTGCAGCAGCACTGCCTG GCGCCACCCCATCTCGCTGCCACCAGAAAGGGTGTGGGTACACTGGCTGTGGTGCTG GGCACTTTCGGCGCCAGCTGGCTGCCCTTCGCCATCTATTGCGTGGTGGGCAGCCAT GAGGACCCGGCGGTCTACACTTACGCCACCCTGCTGCCCGCCACCTACAACTCCATG ATCAATCCCATCATCTATGCCTTCCGCAACCAGGAGATCCAGCGCGCCCTGTGGCTC GATGAGTCCTGCACCACCGCCAGCTCCTCCCTGGCCAAGGACACTTCATCGTGA (SEQ ID No: 43)

11/29

Figure 4E Amino Acid sequence of the hGPR12- Enhanced Receptor

MNEDLKVNLSGLPRDYLDAAAAENISAAVSSRVPAVEPEPELVVNPWDIVLCTSGTL ISCENAIVVLIIFHNPSLRAPMFLLIGSLALADLLAGIGLITNFVFAYLLQSEATKL VTIGLIVASFSASVCSLLAITVDRYLSLYYALTYHSERTVTFTYVMLVMLWGTSICL GLLPVMGWNCLRDESTCSVVRPLTKNNAAILSVSFLFMFALMLQLYIQICKIVMRHA HQIALQHHFLATSHYVTTRKGVSTLAIILGTFAACWMPFTLYSLIADYTYPSIYTYA TLLPATYNSIINPVIYAFRNQEIQKALCLICCGCAAARGRTPPSLGPQDESCTTASS SLAKDTSS

(SEQ ID No: 44)

Figure 4F Nucleotide sequence of the hGPR12-Enhanced Receptor

ATGAATGAAGACCTGAAGGTCAATTTAAGCGGGCTGCCTCGGGATTATTTAGATGCC GCTGCTGCGGAGAACATCTCGGCTGCTGTCTCCCCGGGTTCCTGCCGTAGAGCCA GAGCCTGAGCTCGTAGTCAACCCCTGGGACATTGTCTTGTGTACCTCGGGAACCCTC ATCTCCTGTGAAAATGCCATTGTGGTCCTTATCATCTTCCACAACCCCAGCCTGCGA GCACCCATGTTCCTGCTAATAGGCAGCCTGGCTCTTGCAGACCTGCTGGCCGGCATT ATCACTGTTGACCGCTACCTCTCACTGTACTACGCTCTGACGTACCATTCGGAGAGG ACGGTCACGTTTACCTATGTCATGCTCGTCATGCTCTGGGGGGACCTCCATCTGCCTG GGGCTGCTGCCGTCATGGGCTGGAACTGCCTCCGAGACGAGTCCACCTGCAGCGTG TTTGCGCTCATGCTTCAGCTCTACATCCAGATCTGTAAGATTGTGATGAGGCACGCC CATCAGATAGCCCTGCAGCACCACTTCCTGGCCACGTCGCACTATGTGACCACCCGG TTCACCCTCTATTCCTTGATAGCGGATTACACCTACCCCTCCATCTATACCTACGCC ACCCTCCTGCCGCCACCTACAATTCCATCATCAACCCTGTCATATATGCTTTCAGA **AACCAAGAGATCCAGAAAGCGCTCTGTCTCATTTGCTGCGGCTGCGCGGCCGCACGG** GGACGCACCCACCCAGCCTGGGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCC TCCCTGGCCAAGGACACTTCATCGTGA

(SEQ ID No: 45)

12/29

Figure 4G Amino Acid sequence of the hSREB3- Enhanced Receptor

MANTTGEPEEVSGALSPPSASAYVKLVLLGLIMCVSLAGNAILSLLVLKERALHKAP
YYFLLDLCLADGIRSAVCFPFVLASVRHGSSWTFSALSCKIVAFMAVLFCFHAAFML
FCISVTRYMAIAHHRFYAKRMTLWTCAAVICMAWTLSVAMAFPPVFDVGTYKFIREE
DQCIFEHRYFKANDTLGFMLMLAVLMAATHAVYGKLLLFEYRHRKMKPVQMVPAISQ
NWTFHGPGATGQAAANWIAGFGRGPMPPTLLGIRQNGHAASRRLLGMDEVKGEKQLG
RMFYAITLLFLLLWSPYIVACYWRVFVKACAVPHRYLATAVWMSFAQAAVNPIVCFL
LNKDLKKCLRTHAPCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
(SEO ID No: 46)

Figure 4H Nucleotide sequence of the hSREB3- Enhanced Receptor

ATGGCCAACACTACCGGAGAGCCTGAGGAGGTGAGCGGCGCTCTGTCCCCACCGTCC GCATCAGCTTATGTGAAGCTGGTACTGCTGGGACTGATTATGTGCGTGAGCCTGGCG GGTAACGCCATCTTGTCCCTGCTGCTGCTCAAGGAGCGTGCCCTGCACAAGGCTCCT TACTACTTCCTGCTGGACCTGTGCCTGGCCGATGGCATACGCTCTGCCGTCTGCTTC CCCTTTGTGCTGCCTCTGTGCGCCACGGCTCTTCATGGACCTTCAGTGCACTCAGC TGCAAGATTGTGGCCTTTATGGCCGTGCTCTTTTGCTTCCATGCGGCCTTCATGCTG TTCTGCATCAGCGTCACCCGCTACATGGCCATCGCCCACCACCGCTTCTACGCCAAG GCCATGGCCTTCCCACCTGTCTTTGACGTGGGCACCTACAAGTTTATTCGGGAGGAG , GACCAGTGCATCTTTGAGCATCGCTACTTCAAGGCCAATGACACGCTGGGCTTCATG CTTATGTTGGCTGTGCTCATGGCAGCTACCCATGCTGTCTACGGCAAGCTGCTCCTC AACTGGACATTCCATGGTCCCGGGGCCACCGGCCAGGCTGCCAACTGGATCGCC GGCTTTGGCCGTGGGCCCATGCCACCAACCCTGCTGGGTATCCGGCAGAATGGGCAT GCAGCCAGCCGCCGCTACTGGGCATGGACGAGGTCAAGGGTGAAAAGCAGCTGGGC CGCATGTTCTACGCGATCACACTGCTCTTTCTGCTCCTCTGGTCACCCCTACATCGTG ACTGCTGTTTGGATGAGCTTCGCCCAGGCTGCCGTCAACCCAATTGTCTGCTTCCTG CTCAACAAGGACCTCAAGAAGTGCCTGAGGACTCACGCCCCCTGCGCGGCCGCACGG GGACGCACCCCAGCCTGGGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCC TCCCTGGCCAAGGACACTTCATCGTGA

(SEQ ID No: 47)

13/29

Figure 4I Amino Acid sequence of the hSREB2- Enhanced Receptor

MANYSHAADNILQNLSPLTAFLKLTSLGFIIGVSVVGNLLISILLVKDKTLHRAPYY FLLDLCCSDILRSAICFPFVFNSVKNGSTWTYGTLTCKVIAFLGVLSCFHTAFMLFC ISVTRYLAIAHHRFYTKRLTFWTCLAVICMVWTLSVAMAFPPVLDVGTYSFIREEDQ CTFQHRSFRANDSLGFMLLLALILLATQLVYLKLIFFVHDRRKMKPVQFVAAVSQNW TFHGPGASGQAAANWLAGFGRGPTPPTLLGIRQNANTTGRRRLLVLDEFKMEKRISR MFYIMTFLFLTLWGPYLVACYWRVFARGPVVPGGFLTAAVWMSFAQAGINPFVCIFS NRELRRCFSTTLLYCAAARGRTPPSLGPQDESCTTASSSLAKDTSS (SEQ ID No: 48)

Figure 4J Nucleotide sequence of the hSREB2- Enhanced Receptor

ATGGCGAACTATAGCCATGCAGCTGACAACATTTTGCAAAATCTCTCGCCTCTAACA GCCTTTCTGAAACTGACTTCCTTGGGTTTCATAATAGGAGTCAGCGTGGTGGGCAAC CTCCTGATCTCCATTTTGCTAGTGAAAGATAAGACCTTGCATAGAGCACCTTACTAC TTCCTGTTGGATCTTTGCTGTTCAGATATCCTCAGATCTGCAATTTGTTTCCCATTT GTGTTCAACTCTGTCAAAAATGGCTCTACCTGGACTTATGGGACTCTGACTTGCAAA GTGATTGCCTTTCTGGGGGTTTTGTCCTGTTTCCACACTGCTTTCATGCTCTTCTGC ATCAGTGTCACCAGATACTTAGCTATCGCCCATCACCGCTTCTATACAAAGAGGCTG TGCACCTTCCAACACCGCTCCTTCAGGGCTAATGATTCCTTAGGATTTATGCTGCTT CTtGCTCTCATCCTCGTCGCCACACACCTTGTCTACCTCAAGCTGATATTTTTCGTC CACGATCGAAGAAAAATGAAGCCAGTCCAGTTTGTAGCAGCCAGTCAGCCAGAACTGG ACTTTTCATGGTCCTGGAGCCAGTGGCCAGGCAGCTGCCAATTGGCTAGCAGGATTT GGAAGGGGTCCCACACCACCCACCTTGCTGGGCATCAGGCAAAATGCAAACACCACA GGCAGAAGAAGGCTATTGGTCTTAGACGAGTTCAAAATGGAGAAAAGAATCAGCAGA ATGTTCTATATAATGACTTTTCTGTTTCTAACCTTGTGGGGCCCCTACCTGGTGGCC TGTTATTGGAGAGTTTTTGCAAGAGGGCCTGTAGTACCAGGGGGATTTCTAACAGCT GCTGTCTGGATGAGTTTTGCCCAAGCAGGAATCAATCCTTTTGTCTGCATTTTCTCA AACAGGAGCTGAGGCGCTGTTTCAGCACAACCCTTCTTTACTGCGCGGCCGCACGG GGACGCACCCACCCAGCCTGGGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCC TCCCTGGCCAAGGACACTTCATCGTGA

(SEQ ID No: 49)

14/29

Figure 4K Amino Acid sequence of the hGPR8- Enhanced Receptor

MQAAGHPEPLDSRGSFSLPTMGANVSQDNGTGHNATFSEPLPFLYVLLPAVYSGICA VGLTGNTAVILVILRAPKMKTVTNVFILNLAVADGLFTLVLPVNIAEHLLQYWPFGE LLCKLVLAVDHYNIFSSIYFLAVMSVDRYLVVLATVRSRHMPWRTYRGAKVASLCVW LGVTVLVLPFFSFAGVYSNELQVPSCGLSFPWPERVWFKASRVYTLVLGFVLPVCTI CVLYTDLLRRLRAVRLRSGAKALGKARRKVTVLVLVVLAVCLLCWTPFHLASVVALT TDLPQTPLVISMSYVITSLSYANSCLNPFLYAFLDDNFRKNFRSILRCAAARGRTPP SLGPQDESCTTASSSLAKDTSS (SEO ID No: 50)

Figure 4L Nucleotide sequence of the hGPR8- Enhanced Receptor

ACGATGGGTGCCAACGTCTCTCAGGACAATGGCACTGGCCACAATGCCACCTTCTCC GAGCCACTGCCGTTCCTCTATGTGCTCCTGCCCGCCGTGTACTCCGGGATCTGTGCT GTGGGGCTGACTGGCAACACGGCCGTCATCCTTGTAATCCTAAGGGCGCCCCAAGATG AAGACGGTGACCAACGTGTTCATCCTGAACCTGGCCGTCGCCGACGGGCTCTTCACG CTGGTACTGCCCGTCAACATCGCGGAGCACCTGCTGCAGTACTGGCCCTTCGGGGAG CTGCTCTGCAAGCTGGTGCTGGCCGTCGACCACTACAACATCTTCTCCAGCATCTAC TTCCTAGCCGTGATGAGCGTGGACCGATACCTGGTGGTGCTGGCCACCGTGAGGTCC CGCCACATGCCCTGGCGCACCTACCGGGGGGGGGAAGGTCGCCAGCCTGTGTGTCTGG CTGGGCGTCACGGTCCTGGTTCTGCCCTTCTTCTCTTTCGCTGGCGTCTACAGCAAC GAGCTGCAGGTCCCAAGCTGTGGGCTGAGCTTCCCGTGGCCCGAGCGGGTCTGGTTC AAGGCCAGCCGTGTCTACACTTTGGTCCTGGGCTTCGTGCTGCCCGTGTGCACCATC TGTGTGCTCTACACAGACCTCCTGCGCAGGCTGCGGGCCGTGCGGCTCCGCTCTGGA GCCAAGGCTCTAGGCAAGGCCAGGCGGAAGGTGACCGTCCTGGTCCTCGTCGTGCTG GCCGTGTGCCTCTCTGCTGGACGCCCTTCCACCTGGCCTCTGTCGTGGCCCTGACC ACGGACCTGCCCCAGACCCCACTGGTCATCAGTATGTCCTACGTCATCACCAGCCTC AGCTACGCCAACTCGTGCCTGAACCCCTTCCTCTACGCCTTTCTAGATGACAACTTC CGGAAGAACTTCCGCAGCATATTGCGGTGCGCGGCCGCACGGGGACGCACCCCACCC AGCCTGGGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCCTCCCTGGCCAAGGAC ACTTCATCGTGA

(SEQ ID No: 51)

15/29

Figure 4M Amino Acid sequence of the hGPR22-Enhanced Receptor

MCFSPILEINMQSESNITVRDDIDDINTNMYQPLSYPLSFQVSLTGFLMLEIVLGLG SNLTVLVLYCMKSNLINSVSNIITMNLHVLDVIICVGCIPLTIVILLLSLESNTALI CCFHEACVSFASVSTAINVFAITLDRYDISVKPANRILTMGRAVMLMISIWIFSFFS FLIPFIEVNFFSLQSGNTWENKTLLCVSTNEYYTELGMYYHLLVQIPIFFFTVVVML ITYTKILQALNIRIGTRFSTGQKKKARKKKTISLTTQHEATDMSQSSGGRNVVFGVR TSVSVIIALRRAVKRHRERRERQKRVFRMSLLIISTFLLCWTPISVLNTTILCLGPS DLLVKLRLCFLVMAYGTTIFHPLLYAFTRQKFQKVLKSKMKKRVVCAAARGRTPPSL GPODESCTTASSSLAKDTSS

(SEO ID No: 52)

Figure 4N Nucleotide sequence of the hGPR22-Enhanced Receptor

ATGTGTTTTTCTCCcaTTCTGGAAATCAACATGCAGTCTGAATCTAACATTACAGTG AGCTTTCAAGTGTCTCTCACCGGATTTCTTATGTTAGAAATTGTGTTGGGACTTGGC AGCAACCTCACTGTATTGGTACTTTACTGCATGAAATCCAACTTAATCAACTCTGTC AGTAACATTATTACAATGAATCTTCATGTACTTGATGTAATAATTTGTGTGGGATGT ATTCCTCTAACTATAGTTATCCTTCTGCTTTCACTGGAGAGTAACACTGCTCTCATT TGCTGTTTCCATGAGGCTTGTGTATCTTTTGCAAGTGTCTCAACAGCAATCAACGTT TTTGCTATCACTTTGGACAGATATGACATCTCTGTAAAACCTGCAAACCGAATTCTG ACAATGGGCAGAGCTGTAATGTTAATGATATCCATTTGGATTTTTTTCTTTTTCTCT TTCCTGATTCCTTTTATTGAGGTAAATTTTTTCAGTCTTCAAAGTGGAAATACCTGG GAAAACAAGACACTTTTATGTGTCAGTACAAATGAATACTACACTGAACTGGGAATG TATTATCACCTGTTAGTACAGATCCCAATATTCTTTTTCACTGTTGTAGTAATGTTA ATCACATACACCAAAATACTTCAGGCTCTTAATATTCGAATAGGCACAAGATTTTCA GAGGCTACAGACATGTCACAAAGCAGTGGTGGGAGAAATGTAGTCTTTGGTGTAAGA ACTTCAGTTTCTGTAATAATTGCCCTCCGGCGAGCTGTGAAACGACACCGTGAACGA CGAGAAAGACAAAAGAGAGTCTTCAGGATGTCTTTATTGATTATTTCTACATTTCTT CTCTGCTGGACACCAATTTCTGTTTTAAATACCACCATTTTATGTTTAGGCCCAAGT GACCTTTTAGTAAAATTAAGATTGTGTTTTTTAGTCATGGCTTATGGAACAACTATA TTTCACCCTCTATTATATGCATTCACTAGACAAAAATTTCAAAAGGTCTTGAAAAGT GGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCCTCCCTGGCCAAGGACACTTCA TCGTGA

(SEQ ID No: 53)

16/29

Figure 5A

Amino acid sequence of the β_2 AR-V2R chimera

MGQPGNGSAFLLAPNRSHAPDHDVTQQRDEVWVVGMGIVMSLIVLAIVFGNVLVITAI AKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLC VTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRAT HQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSE GRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHV IQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCARGRTPPSLGPQDESCTT ASSSLAKDTSS (Seq. ID No. 54)

Figure 5B

Amino acid sequence of the MOR-V2R chimera

MDSSTGPGNTSDCSDPLAQASCSPAPGSWLNLSHVDGNQSDPCGLNRTGLGGNDSLCP QTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIVRYTKMKTATNIYIFNLALADALAT STLPFQSVNYLMGTWPFGTILCKIVISIDYYNMFTSIFTLCTMSVDRYIAVCHPVKALDFR TPRNAKIVNVCNWILSSAIGLPVMFMATTKYRQGSIDCTLTFSHPTWYWENLLKICVFIF AFIMPILIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVFIVCWTPIHIYVI IKALITIPETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENFKRCFREFCAAARGRTPPSL GPQDESCTTASSSLAKDTSS (Seq. ID No. 55)

Figure 5C

Amino acid sequence of the D1AR-V2R chimera

MAPNTSTMDEAGLPAERDFSFRILTACFLSLLILSTLLGNTLVCAAVIRFRHLRSKVTNFF VISLAVSDLLVAVLVMPWKAVAEIAGFWPFGSFCNIWVAFDIMCSTASILNLCVISVDRY WAISSPFQYERKMTPKAAFILISVAWTLSVLISFIPVQLSWHKAKPTWPLDGNFTSLEDTE DDNCDTRLSRTYAISSSLISFYIPVAIMIVTYTSIYRIAQKQIRRISALERAAVHAKNCQTT AGNGNPVECAQSESSFKMSFKRETKVLKTLSVIMGVFVCCWLPFFISNCMVPFCGSEET QPFCIDSITFDVFVWFGWANSSLNPIIYAFNADFQKAFSTLLGCYRLCAAARGRTPPSLGP QDESCTTASSSLAKDTSS (Seq. ID No. 56)

17/29

Figure 5D

Amino acid sequence of the 5HT1AR-V2R chimera

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVAA IALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRRAAALISLTWLIGFLISIPPMLGWRTPED RSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTGADT RHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVHR VGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFILC WLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKIIKCN FCAAARGRTPPSLGPQDESCTTASSSLAKDTSS (Seq. ID No. 57)

Figure 5E

Amino acid sequence of the \(\beta 3AR-V2R \) chimera

MAPWPHENSSLAPWPDLPTLAPNTANTSGLPGVPWEAALAGALLALAVLATVGGNLLV IVAIAWTPRLQTMTNVFVTSLAAADLVMGLLVVPPAATLALTGHWPLGATGCELWTSV DVLCVTASIETLCALAVDRYLAVTNPLRYGALVTKRCARTAVVLVWVVSAAVSFAPIM SQWWRVGADAEAQRCHSNPRCCAFASNMPYVLLSSSVSFYLPLLVMLFVYARVFVVA TRQLRLLRGELGRFPPEESPPAPSRSLAPAPVGTCAPPEGVPACGRRPARLLPLREHRALC TLGLIMGTFTLCWLPFFLANVLRALGGPSLVPGPAFLALNWLGYANSAFNPLIYCRSPDF RSAFRRLLCRCAAARGRTPPSLGPQDESCTTASSSLAKDTSS (Seq. ID No. 58)

Figure 5F

Amino acid sequence of the Edg1R-V2R chimera

MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKENSIKLTSVVFILICCFIILE NIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYTANLLLSGATTYKLTPAQWFLRE GSMFVALSASVFSLLAIAIERYITMLKMKLHNGSNNFRLFLLISACWVISLILGGLPIMGW NCISALSSCSTVLPLYHKHYILFCTTVFTLLLLSIVILYCRIYSLVRTRSRRLTFRKNISKAS RSSEKSLALLKTVIIVLSVFIACWAPLFILLLLDVGCKVKTCDILFRAEYFLVLAVLNSGT NPIIYTLTNKEMRRAFIRIMSCCKCAAARGRTPPSLGPQDESCTTASSSLAKDTSS (Seq. ID No. 59)

19/29

β2-AR

27/29

Figure 11

rigure 11												
α1bAR	β 2AR	DOR	multi	Name								
132	172	48	243	Terfenadine								
125	189	85	213	Indatraline								
101	152	83	208	Trifluoperazine								
118	45	-4	111	(-)-Epinephrine								
6	2	-3	110	Haloperidol								
141	96	5	108	N-Methyldopamine								
20	116	-4	99	p-lodocionidine								
17	35	-4	83	S(+)-Isoproterenol								
55	91_	-1	77	R(-)-Isoproterenol								
62	19	4	75	Clonidine								
-3	3	2	72	GABApentin								
147	129	-4	68	(-)-a-Methylnorepinephrine								
54	102	-1	66	(±)-Isoproterenol								
-2	8	-2	63	Cyclosporin A								
128	52	-7	61	L(-)-Norepinephrine								
-2	-1	126	57	GR-89696 fumarate								
41	83	45	54	Calcimycin								
-4	-16	1	53	5'-N-Methyl carboxamidoadenosine								
21	-9	3	52	R(-)-2,10,11-Trihydroxyaporphine								
131	-8	-5	49	6-Fluoronorepinephrine								
25	-6	7	47	WB-4101								
5	5 ·	-1	46	(±)-gamma-Vinyl GABA								
8	-1	0	42	R(-)-SCH-12679								
-11	0	-8	42	(±)-Vaniilylmandelic acid								
-6	-17	-4	40	Nimodipine								
55	-5	-2	39	(±)-Octopamine								
16	-11	2	38	(±)-SKF 38393								
44	129	37	29	U-73122								
53	0	-2	29	6,7-ADTN								
7	5	44	28	SB 242084								
9	61	5	26	NPC-15437								
102	8	-4	26	Dopamine								
-22	76	7	25	Sanguinarine								
99	-1	-9	25	1-Methylhistamine								
64	-6	-4	24	Methoxamine								
71	140	0	20	Thioridazine								
4	98	4	10	(±)-SKF-38393								
4	2	64	9	ICI 204,448								
74	10	-4	7	Phenylephrine								
- 43	-9	2	4	R(-)-Apomorphine								
8	-1	51	0	Nialamide								
-7	46	_3_	-3	(±)-CGP-12177A								
18	40	-5	-6	(±)-6-Chloro-PB								
85	-14	-4	<u>-6</u>	Cirazoline								
11	125	<u>-7</u>	-7	SB 224289 HCI								
23	68	-7	<i>-</i> 9	GBR-12909 di								
60	-12 57	-7	-10	R(-)-N-Allylnorapomorphine								
4	57	1	-14	Tranylcypromine								
-5	46	-3	-25	S(+)-alpha-Fluoromethylhistidine								
130	6	1	-27	S(+)-Raclopride L-tartrate								
-8	49	-4	-31	Thiothixene								
5	219	8	-31	Bethanechol								

28/29

Figure 12

α1bAR β2AR DOR		multi	Name	Selectivity			
118.1	45.4	-3.6	110.6	(-)-Epinephrine			
64.3	-5.7	-4.0	23.8	Methoxamine	alpha1		
11.6	8.9	-3.1	10.0	Oxymetazoline	alpha2A		
73.5	10.4	-3.6	7.2	Phenylephrine	alpha1		
-6.9	46.1	-3.2	-2.6	(±)-CGP-12177A	beta		
55.4	91.1	-1.1	77.0	R(-)-Isoproterenol	beta		
17.1	35.1	-4.0	82.6	S(+)-isoproterenol	beta		
54.4	101.8	-0.9	65.7	(±)-isoproterenol	beta'		
127.6	52.2	-7.0	61.4	L(-)-Norepinephrine	alpha, beta1		
130.6	-7.5	-5.1	49.1	6-Fluoronorepinephrine	alpha		
84.6	-13.6	-3.9	-6.5	Cirazoline	alpha1a		
24.0	-3.2	-2.3	-35.2	Guanabenz acetate	alpha2		
20.2	115.8	-4.3	99.2	p-lodoclonidine	alpha2		
34.2	6.9	-1.0	11.6	UK 14,304	alpha2		
62.3	18.9	-3.6	75.5	Clonidine	alpha2		
-2.0	-7.8	-6.7	-19.8	BRL 37344 sodium	beta3		
23.4	5.1	-1.8	-1.0	Nylidrin	beta		
20.1	-1.8	-10.9	-18.3	Xylazine	alpha2		
23.9	9.7	-1.7	-5.7	p-Aminocionidine	alpha2		
7.2	9.1	6.4	9.3	Dobutamine	beta1		
147.4	129.3	-4.1	68.0	(-)-alpha-Methyl NorEpi	•		
		39.2	(±)-Octopamine	alpha			

Figure 13

								29	9/2	9
L	J			59			_			
65	82	65	52	57	39	•66	57	63	71	52
09	52	19	20	214	09	24	<i>L</i> 9	63	65	091
	62	-2	20	62	99	20		20		57
71	58	52		84			99	48	259	71
62	64	195	72	48	59	199**	75	49	68	76
63	47	70	14	73	53	72	2	73	. 69	75
65	109	57	145	204"	11	70	80	09	87	62
09	239	56	206	65	65	19	84	74	09	02
98	26	. 65	186	63	179	19	87	09	169***	73
				197	_	1				, 1
197	9/	80	229	62	69	62	118	99	82	28
49	29	26	232	103	94	53 .	156	78	72	117
59	71	75	240	102	56	62	143	2	69	143
123	74	98	242	62	59	99	203	79	65	11
19	99	20	214	83	78	203	159	84	70	73
62	107	69	213	81	89	74	175	75	58	13
98	157	29	210	83	81	98	171	99	28	99
98	08	82	214	09	216	11	277	20	62	95
99	78	82	198	29	<i>L</i> 9	102	239	122***	88	255
20	17.	28	115		72	62	573	85	93	87
257	19	220	219	1 81	96	72	309	120	106	76
E.	ບໍ	#·	I	r	¥.	7	M	Z	 	م ۵

indicates wells into which agonist was added = isoproterenol = angiotensin = norepinephrine :

: