Задачи по теория — обратимост, граница и непрекъснатост на функции КН, 1 к., I п.

Някои задачи от посочените тук или подобни на тях се падат на изпита по теория. Задачите обозначени със * са по-сложни или имат по-дълги решения. Такива **не** се падат на изпита.

- 1. Докажете, че функцията $\sin \frac{1}{x}$ няма граница в точката 0.
- 2. Нека $f:[a,b]\to\mathbb{R},\, f(x)$ е непрекъсната в точката $c\in(a,b)$ и f(c)>0. Докажете, че f(x)>0 в околност на c.
- 3. Функцията на Дирихле $D: \mathbb{R} \to \mathbb{R}$ се дефинира чрез

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

 $(\mathbb{R}\setminus\mathbb{Q})$ е множеството на ирационалните числа; по-общо, ако A и B са две множества, тяхната разлика $A\setminus B$ се състои точно от онези елементи на A, които не принадлежат на B.) Докажете, че D(x) е прекъсната във всяка точка.

4. * Функцията на Риман $R:\mathbb{R}\to\mathbb{R}$ се дефинира чрез

$$R(x) = egin{cases} rac{1}{q}, & x = rac{p}{q} \ \mathrm{e} \ \mathrm{Hec}$$
ъкратима, $p \in \mathbb{Z}, \ q \in \mathbb{N}_+, \ 0, & x = 0 \ \mathrm{или} \ x \in \mathbb{R} ackslash \mathbb{Q}. \end{cases}$

Докажете, че R(x) е прекъсната във всяка рационална точка и непрекъсната във всяка ирационална.

5. Докажете, че функцията

$$f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ -x, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

е инекция, но не е монотонна върху никой интервал.

- 6. Докажете, че ако $f:[0,\infty)\to\mathbb{R}$ е непрекъсната и има граница при $x\to\infty$, то тя е равномерно непрекъсната в $[0,\infty)$.
- 7. Докажете, че ако $f:\mathbb{R}\to\mathbb{R}$ е непрекъсната и периодична, то тя е равномерно непрекъсната в \mathbb{R} .
- 8. Докажете, че ако $f:\mathbb{R}\to\mathbb{R}$ е ограничена, непрекъсната и монотонна, то тя е равномерно непрекъсната в $\mathbb{R}.$
- 9. * Докажете, че ако $f:[0,\infty)\to\mathbb{R}$ е равномерно непрекъсната, то съществуват положителни числа C_1 и C_2 такива, че $|f(x)|\le C_1x+C_2$ за всяко $x\ge 0$.