Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

SOLUZIONI TUTORATO 5 (28 APRILE 2011) CONNESSIONE E CONNESSIONE PER ARCHI

1. Dimostrare che una funzione continua $f:X\to Y,$ con $X\neq\varnothing$ connesso e Y discreto è costante.

Solutione:

Essendo f continua e X connesso, f(X) è connesso. Innanzitutto essendo $X \neq \emptyset$ si ha $f(X) \neq \emptyset$. Se per assurdo esistessero $y_1, y_2 \in Y, y_1 \neq y_2$ tali che $y_1, y_2 \in f(X)$ allora f(X) sarebbe sconnesso poichè $\emptyset \subsetneq \{y_1\} \subsetneq f(X)$ sarebbe contemporaneamente aperto e chiuso in f(X) (f(X) eredita da Y la topologia discreta).

- 2. Siano $Z_1=\{\mathbf{x}\in\mathbb{R}^2:\|\mathbf{x}-(1,0)\|<1\}, Z_{-1}=\{\mathbf{x}\in\mathbb{R}^2:\|\mathbf{x}-(-1,0)\|<1\};$ dire quali dei seguenti sottoinsiemi di \mathbb{R}^2 sono connessi:
 - $A = Z_1 \cup Z_{-1}$;
 - $B = A \cup \{(0,0)\};$
 - $C = A \cup \{(-2,0), (2,0)\};$
 - $D = A \cup \{ \mathbf{x} \in \mathbb{R}^2 : x_2 = 1 \};$
 - $E = A \cup \{ \mathbf{x} \in \mathbb{R}^2 : x_2 = 0 \}.$

Solutione:

Osserviamo innanzitutto che Z_1 e Z_{-1} sono connessi; infatti essendo insiemi convessi sono connessi per archi.

- $A = Z_1 \cup Z_{-1}$ è sconnesso. Mostriamo che $\emptyset \subsetneq Z_1 \subsetneq A$ è contemporaneamente aperto e chiuso in A. Si ha infatti:

$$Z_1 = A \cap \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1 > 0\} = A \cap \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}.$$

- $B = A \cup \{(0,0)\}$ è connesso. Osserviamo che $B = (Z_1 \cup \{(0,0)\}) \cup (Z_{-1} \cup \{(0,0)\})$. Poichè $(Z_1 \cup \{(0,0)\}) \cap (Z_{-1} \cup \{(0,0)\}) = \{(0,0)\} \neq \emptyset$, basta mostrare che $Z_1 \cup \{(0,0)\}$ e $Z_{-1} \cup \{(0,0)\}$ sono entrambi connessi. Questo segue direttamente dal fatto che $Z_1 \subseteq (Z_1 \cup \{(0,0)\}) \subseteq \overline{Z_1} = \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x} - (1,0)\| \le 1\}$ e Z_1 è connesso; analogamente per $(Z_{-1} \cup \{(0,0)\})$.
- $C = A \cup \{(-2,0), (2,0)\}$ è sconnesso. Osserviamo che $C = (Z_1 \cup \{(2,0)\}) \cup (Z_{-1} \cup \{(-2,0)\})$, dove $Z_1 \cup \{(2,0)\}$ e $Z_{-1} \cup \{(-2,0)\}$ sono non vuoti e disgiunti. Basterà quindi mostrare che sono aperti in C; ciò segue notando che $Z_1 \cup \{(2,0)\} = C \cap \{\mathbf{x} = (x_1,x_2) \in \mathbb{R}^2 : x_1 > 0\}$ e $Z_{-1} \cup \{(-2,0)\} = C \cap \{\mathbf{x} = (x_1,x_2) \in \mathbb{R}^2 : x_1 < 0\}$.
- $D = A \cup \{\mathbf{x} \in \mathbb{R}^2 : x_2 = 1\}$ è connesso. Poniamo $S := \{\mathbf{x} \in \mathbb{R}^2 : x_2 = 1\}$; $S \cong \mathbb{R}$ è chiaramente connesso. Osserviamo che $D = (Z_1 \cup S) \cup (Z_{-1} \cup S)$. Poichè $(Z_1 \cup S) \cap (Z_{-1} \cup S) = S \neq \emptyset$ basta mostrare che $Z_1 \cup S$ e $Z_{-1} \cup S$ sono entrambi connessi. Verifichiamo che $Z_1 \cup S$ è connesso (si procederà analogamente per $Z_{-1} \cup S$). Si ha infatti:

 $Z_1 \cup S = (Z_1 \cup \{(1,1)\}) \cup S$, dove $S \in Z_1 \cup \{(1,1)\}$ sono connessi $(Z_1 \subseteq (Z_1 \cup \{(1,1)\}) \subseteq \overline{Z_1})$ e hanno un punto in comune.

- $E = A \cup \{\mathbf{x} \in \mathbb{R}^2 : x_2 = 0\}$ è connesso. Sia $Y := \{\mathbf{x} \in \mathbb{R}^2 : x_2 = 0\}$; $Y \cong \mathbb{R}$ è chiaramente connesso. La conclusione segue allora dal fatto che $E = B \cup Y$, con $B \in Y$ entrambi connessi e $B \cap Y = \{(0,0)\} \neq \emptyset$.
- 3. (a) Siano Y uno spazio topologico connesso ed $f: X \to Y$ un'applicazione continua e suriettiva tale che $f^{-1}(y)$ è connesso per ogni $y \in Y$. Se f è aperta oppure chiusa, allora anche X è connesso.
 - (b) Utilizzare il risultato precedente per dimostrare che il prodotto di due spazi topologici connessi è connesso.

Solutione:

- (a) Supponiamo che f sia aperta e siano A_1, A_2 due aperti non vuoti tali che $X = A_1 \cup A_2$. Mostriamo che $A_1 \cap A_2 \neq \emptyset$. Dalla suriettività di f segue che $Y = f(X) = f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, con $f(A_1), f(A_2)$ aperti in Y (essendo per ipotesi f aperta). Ma allora, dalla connessione di Y, esiste $y \in f(A_1) \cap f(A_2) \Rightarrow f^{-1}(y) \cap A_i \neq \emptyset$ per $i = 1, 2 \Rightarrow$ per i = 1, 2, $f^{-1}(y) \cap A_i$ sono aperti non vuoti in $f^{-1}(y)$ tali che $(f^{-1}(y) \cap A_1) \cup (f^{-1}(y) \cap A_2) = f^{-1}(y) \cap (A_1 \cup A_2) = f^{-1}(y) \cap X = f^{-1}(y)$; essendo $f^{-1}(y)$ connesso per ogni $y \in Y$, deve quindi essere $(f^{-1}(y) \cap A_1) \cap (f^{-1}(y) \cap A_2) = f^{-1}(y) \cap A_1 \cap A_2 \neq \emptyset$. In particolare si avrà quindi $A_1 \cap A_2 \neq \emptyset$. Se invece f è chiusa basta ripetere il ragionamento precedente con A_1 e A_2 chiusi.
- (b) Siano X e Y due spazi topologici connessi. Consideriamo la proiezione $p: X \times Y \to Y$. Per il risultato percedente basta dunque osservare che p è continua, suriettiva e aperta e che $f^{-1}(y) = X \times \{y\} \cong X$ è connesso $\forall y \in Y$.
- 4. Dimostrare che il prodotto di due spazi topologici connessi per archi è connesso per archi.

Soluzione:

Siano X e Y due spazi topologici connessi per archi e siano $p_1=(x_1,y_1)$ e $p_2=(x_2,y_2)$ due punti di $X\times Y$. Mostriamo che esiste un arco $\alpha:I\to X\times Y$ tale che $\alpha(0)=p_1$ e $\alpha(1)=p_2$.

 $x_1, x_2 \in X$; allora, essendo X connesso per archi esiste un'applicazione continua $\alpha_X : I \to X$ tale che $\alpha_X(0) = x_1$ e $\alpha_X(1) = x_2$.

Allo stesso modo esisterà un' applicazione continua $\alpha_Y:I\to Y$ tale che $\alpha_Y(0)=y_1$ e $\alpha_Y(1)=y_2.$

Consideriamo allora $\alpha: I \to X \times Y$ definita nel modo seguente:

$$\alpha(t) = (\alpha_X(t), \alpha_Y(t));$$

 α è chiaramente continua, poichè lo sono α_X , α_Y , e inoltre $\alpha(0) = (\alpha_X(0), \alpha_Y(0)) = (x_1, y_1) = p_1$ e $\alpha(1) = (\alpha_X(1), \alpha_Y(1)) = (x_2, y_2) = p_2$. α è dunque l'arco cercato tra p_1 e p_2 .

- 5. (a) Siano X e Y spazi topologici e sia $f: X \to Y$ un omeomorfismo. Dimostrare che f manda componenti connese in componenti connesse. Dedurne che due spazi topologici omeomorfi hanno lo stesso numero di componenti connesse.
 - (b) Sia X uno spazio topologico e sia E un sottoinsieme non vuoto di X. Verificare che, se E è connesso, aperto e chiuso, allora E è una componente connessa di X.

- (c) Sia $Y := \{(x, y) \in \mathbb{R}^2 : xy = 0\}$; dopo aver verificato che Y è connesso, dimostrare che Y non è omeomorfo alla retta euclidea $(\mathbb{R}, \varepsilon)$.
- (d) Dimostrare che il cilindro e il cono non sono omeomorfi.
- (e) Dire quali delle seguenti lettere sono tra loro omeomorfe (come figure piane): O, T, D, U, X, V.

Solutione:

(a) Sia \mathcal{C} una componente connessa di X e sia $p \in \mathcal{C}$. Mostriamo che $f(\mathcal{C}) \subseteq Y$ è la componente connessa di f(p).

Innanzitutto essendo f continua e \mathcal{C} connessa segue che $f(\mathcal{C})$ è connessa. Supponiamo per assurdo che esista un sottoinsieme connesso \mathcal{C}' di Y tale che $f(\mathcal{C}) \subsetneq \mathcal{C}' \Rightarrow f^{-1}(\mathcal{C}')$ è connesso e tale che, per la biunivocità di $f, \mathcal{C} \subsetneq f^{-1}(\mathcal{C}')$: assurdo. Ne segue che $f(\mathcal{C})$ è il più grande sottoinsieme connesso di Y contenente f(p), ovvero la componente connessa di f(p).

Deduciamo da questo fatto che se indichiamo con n il numero di componenti connesse di X e con m il numero di componenti connesse di Y si ha $m \ge n$. In modo analogo, ragionando con f^{-1} troviamo che $n \ge m$, da cui l'uguaglianza.

- (b) Sia $x \in E$ e sia C_x la componente connessa di x. Poichè E è connesso segue che $E \subseteq C_x$. Ma E è aperto e chiuso in X e conseguentemente in C_x . Pertanto, essendo C_x connesso e $E \neq \emptyset$ si ha $E = C_x$.
- (c) Y è unione dei due assi cartesiani x=0 e y=0; ciascun asse è connesso (in quanto omeomorfo ad \mathbb{R}) e i due assi si intersecano nel punto $\mathbf{0}:=(0,0)$. Ne segue che Y è connesso.

Mostriamo che $Y \in \mathbb{R}$ non sono omeomorfi. Sia per assurdo $f: Y \to \mathbb{R}$ un omeomorfismo $\Rightarrow f|_{Y \setminus \{\mathbf{0}\}}: Y \setminus \{\mathbf{0}\} \to \mathbb{R} \setminus \{f(\mathbf{0})\}$ è un omeomorfismo, ma questo è un assurdo poichè $Y \setminus \{\mathbf{0}\}$ ha 4 componenti connesse, mentre $\mathbb{R} \setminus \{f(\mathbf{0})\}$ ne ha 2.

Mostriamo che ad esempio $Y \setminus \{0\}$ ha 4 componenti connesse. Osserviamo che $Y \setminus \{0\}$ è unione dei 4 insiemi:

$$A_1 = \{(x,0) : x > 0\}, \qquad A_2 = \{(0,y) : y > 0\}, A_3 = \{(x,0) : x < 0\}, \qquad A_4 = \{(0,y) : y < 0\}.$$

Tali insiemi sono omeomorfi a intervalli di \mathbb{R} e dunque sono connessi.

Per dimostrare che A_1, A_2, A_3, A_4 sono le 4 componenti connesse di $Y \setminus \{0\}$ basterà verificare, per quanto dimostrato nel punto precedente, che tali insiemi sono aperti e chiusi in $Y \setminus \{0\}$.

Infatti considerando l'aperto $B_1 := \{(x,y) \in \mathbb{R}^2 : x > |y|\}$ di \mathbb{R}^2 , risulta $A_1 = Y \setminus \{\mathbf{0}\} \cap B_1 = Y \setminus \{\mathbf{0}\} \cap \overline{B_1}$. Dunque A_1 è aperto e chiuso in $Y \setminus \{\mathbf{0}\}$. Analogamente si procede per A_2, A_3, A_4 .

- (d) Possiamo assumere, a meno di omeomorfismi, che $X=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=1\}$ sia il cilidro e che $Y=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=z^2\}$ sia il cono. Supponiamo per assurdo che $f:Y\to X$ sia un omeomorfismo; sia $\mathbf{0}:=(0,0,0)\Rightarrow f|_{Y\setminus\{\mathbf{0}\}}:Y\setminus\{\mathbf{0}\}\to X\setminus\{f(\mathbf{0})\}$ è un omeomorfismo, ma questo è un assurdo poichè $Y\setminus\{\mathbf{0}\}$ ha 2 componenti connesse, mentre $X\setminus\{f(\mathbf{0})\}$ è connesso.
- (e) Ragionando in modo analogo agli esempi precedenti si trova che le classi di omeomorfismi delle lettere indicate sono:

$${O, D}, {U, V}, {X}, {T}.$$

6. Dire se il sottoinsieme di \mathbb{R}^2 $B := \{(x,y) \in \mathbb{R}^2 : x \notin \mathbb{Q} \text{ oppure } y \notin \mathbb{Q} \}$ è connesso per archi.

Solutione:

Verifichiamo che B è connesso per poligonali (denoteremo con $\prod (P_1, \ldots, P_n)$ la poligonale di vertici P_1, \ldots, P_n).

Siano $P = (x, y), Q = (x', y') \in B.$

Supponiamo che $x \notin \mathbb{Q}$; consideriamo allora due casi:

- $y' \notin \mathbb{Q}$. Posto M := (x, y') si ha che $\prod (P, M, Q) \subseteq B$
- $y' \in \mathbb{Q} \Rightarrow x' \notin \mathbb{Q}$. Sia $\beta \in \mathbb{R} \setminus \mathbb{Q}$; ponendo $M := (x, \beta), N(x', \beta)$ si ha $\prod (P, M, N, Q) \subseteq B$.

Si ragiona analogamente se $x \in \mathbb{Q} \ (\Rightarrow y \notin \mathbb{Q}).$

In ogni caso esiste una poligonale che congiunge P e Q, da cui segue che B è connesso per archi.

7. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione continua e biunivoca tale che $f(S^{n-1}) = S^{n-1}$. Dimostrare che $f(D_1(0)) = D_1(0)$.

Solutione:

Consideriamo $(S^{n-1})^c = D_1(0) \cup A$, con $A = \{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| > 1\}$. Essendo f biunivoca e tale che $f(S^{n-1}) = S^{n-1}$ si ha $f((S^{n-1})^c) = (S^{n-1})^c$ o equivalentemente $f(D_1(0) \cup A) = f(D_1(0)) \cup f(A) = D_1(0) \cup A$. Inoltre poichè f è continua e $D_1(0)$ e f sono le due componenti connesse di $(S^{n-1})^c$, si deve avere che $f(D_1(0)) = D_1(0)$ e f(A) = A, oppure $f(D_1(0)) = A$ e $f(A) = D_1(0)$.

Supponiamo per assurdo che sia $f(D_1(0)) = A$ e $f(A) = D_1(0)$. Allora si ha:

$$f(\overline{D_1(0)}) = f(D_1(0) \cup S^{n-1}) = f(D_1(0)) \cup f(S^{n-1}) = A \cup S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| \ge 1 \}$$

ma questo è assurdo in quando $\overline{D_1(0)}$ è compatto (perchè chiuso e limitato), mentre la sua immagine attraverso l'applicazione continua f è illimitata e pertanto non compatta.

8. Verificare che gli insiemi $GL_n(\mathbb{R})$ e $O_n(\mathbb{R})$ sono sconnessi.

Solutione:

Consideriamo l'applicazione determinante:

$$det: M_n(\mathbb{R}) \to \mathbb{R}.$$

Siano $U^- := det^{-1}((-\infty,0)) = \{A \in M_n(\mathbb{R}) : \det(A) < 0\}$ e sia $U^+ := det^{-1}((0,+\infty)) = \{A \in M_n(\mathbb{R}) : \det(A) > 0\}$. Dalla continuità di det segue che gli insiemi U^- e U^+ sono aperti; essi sono inoltre non vuoti e disgiunti. Poichè ovviamente $U^- \cup U^+ = \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\} = \mathbf{GL}_n(\mathbb{R})$ si conclude che $\mathbf{GL}_n(\mathbb{R})$ è sconnesso.

Per dimostrare che anche $\mathbf{O}_n(\mathbb{R})$ è sconnesso, basta verificare che $\mathbf{O}_n(\mathbb{R}) \cap U^-$ e $\mathbf{O}_n(\mathbb{R}) \cap U^+$ realizzano una sconnessione di $\mathbf{O}_n(\mathbb{R})$.

Infatti si ha $\mathbf{O}_n(\mathbb{R}) \cap U^- = \{A \in \mathbf{O}_n(\mathbb{R}) : \det(A) = -1\}$ mentre $\mathbf{O}_n(\mathbb{R}) \cap U^+ = \{A \in \mathbf{O}_n(\mathbb{R}) : \det(A) = 1\}$. Tali insiemi sono ovviamente non vuoti, disgiunti, aperti in $\mathbf{O}_n(\mathbb{R})$ e la loro unione coincide con $\mathbf{O}_n(\mathbb{R})$.

- 9. Si consideri il sottospazio X di \mathbb{R}^2 costituito dalle circonferenze C_n di centro (0,0) e raggio $\frac{1}{n}$ con $n \in \mathbb{N} \{0\}$.
 - (a) E' connesso?
 - (b) E' connesso per archi?

- (c) E' compatto?
- (d) Si risponda alle domande (a) e (b) e (c) per $X' = \{(x,0) \in \mathbb{R}^2 : 0 \le x < 1\} \cup X$.
- (e) Sia $S := \{(x,0) \in \mathbb{R}^2 : 0 \le x \le 1\}$; si risponda alle domande (a) e (b) e (c) per $X'' = X' / \sim_S$. Si dica inoltre se X'' è di Hausdorff.

Solutione:

- (a) X non è connesso; vediamo infatti che $\varnothing \subsetneq C_1 \subsetneq X$ è aperto e chiuso in X. C_1 è chiuso perchè $C_1 = S^1 \cap X$ e S^1 è chiuso in \mathbb{R}^2 . C_1 è aperto poichè $C_1 = A \cap X$, dove $A = \{(x,y) \in \mathbb{R}^2 : \frac{1}{2} < x^2 + y^2 < \frac{3}{2}\}$ è la corona circolare aperta di raggi $\frac{1}{2}$ e $\frac{3}{2}$.
- (b) X non è connesso per archi perchè non è connesso.
- (c) X non è compatto perchè non è chiuso (in \mathbb{R}^2 un insieme è compatto se e solo se è chiuso e limitato). Mostriamo infatti che $(0,0) \notin X$, mentre $(0,0) \in \overline{X}$. Chiaramente $(0,0) \notin X$; per vedere che $(0,0) \in \overline{X}$ notiamo che (0,0) è un punto di accumulazione per X; infatti ogni palla aperta centrata in (0,0), sia $B_{\varepsilon}((0,0))$, interseca X, in quanto contiene elementi di C_n con $n > \frac{1}{\varepsilon}$.
- (d) X' è connesso per archi: infatti $X' = \bigcup_{j \in \mathbb{N} \setminus \{0\}} Y_j$, dove $Y_j := \{(x,0) \in \mathbb{R}^2 : 0 \le x \le 1\} \cup C_j$ è connesso per archi e $\bigcap_{j \in \mathbb{N} \setminus \{0\}} Y_j = \{(x,0) \in \mathbb{R}^2 : 0 \le x \le 1\}$. X' è connesso perchè è connesso per archi. X' è compatto perchè è chiuso (il complementare è aperto) e limitato $(X' \subseteq D_2(0))$.
- (e) X" è connesso, connesso per archi e compatto perchè è quoziente di X' che è connesso, connesso per archi e compatto.
 Mostriamo ora che X" è di Hausdorff; a tal fine dimostriamo il seguente risultato:

Lemma: Siano X uno spazio topologico di Hausdorff e $K \subset X$ un compatto allora $X/\sim_K \grave{e}$ di Hausdorff.

 \underline{dim}

Osserviamo innanzitutto che poichè K è compatto in un Hausdorff è chiuso. Sia $\pi: X \to X/\sim_K$ la mappa quoziente. Siano $[p]:=[p]_{\sim_K}, [q]:=[q]_{\sim_K} \in X/\sim_K, [p] \neq [q]$. Consideriamo i due casi:

- $p,q \notin K$: poichè X è di Hausdorff e $p \neq q$ (essendo $[p] \neq [q]$) esistono aperti U e V di X tali che $p \in U, q \in V$ e $U \cap V = \varnothing$; ma allora $U' := U \cap (X \setminus K)$ e $V' := V \cap (X \setminus K)$ sono aperti saturi tali che $p \in U', q \in V'$ e $U' \cap V' = \varnothing \Rightarrow \pi(U')$ e $\pi(V')$ sono aperti tali che $[p] \in \pi(U'), [q] \in \pi(V')$ e $\pi(U') \cap \pi(V') = \varnothing$ (se per assurdo esistesse $[x] \in \pi(U') \cap \pi(V') \Rightarrow \exists u \in U' \text{ e } v \in V' \text{ tali che } [x] = \pi(u) = \pi(v) \stackrel{u,v \notin K}{\Rightarrow} u = v \Rightarrow u = v \in U' \cap V' \Rightarrow U' \cap V' \neq \varnothing$).
- Supponiamo che $q \in K$; facciamo vedere che esistono due aperti U e V tali che $p \in U, q \in K \subset V$ e $U \cap V = \emptyset$.

Poichè $p \notin K$ per ogni $x \in K$ si ha $p \neq x$ e conseguentemente, essendo X di Hausdorff, esistono U_x e V_p aperti disgiunti con $x \in U_x$ e $p \in V_p$. Ma allora la famiglia $\{U_x\}_{x \in K}$ costituisce un ricoprimento aperto di K; dalla compattezza di K esistono quindi $x_1, \ldots, x_n \in K$ tali che $K \subset \bigcup_{i=1}^n U_{x_i}$. Per ogni x_i esiste, per quanto osservato sopra, un aperto V_i che contiene p e disgiunto da U_{x_i} . Allora $V := \bigcap_{i=1}^n V_i$ è aperto, perchè intersezione finita di aperti, e contiene p; d'altra parte, per come è stato costruito, è disgiunto da tutti gli U_{x_i} . Quindi V è disgiunto da $U := \bigcap_{i=1}^n U_i$, che è aperta e ricopre K.

Segue allora la tesi in quanto abbiamo trovato un aperto V che contiene p e un aperto U che contiene K tali che $U \cap V = \emptyset$.

Resta allora da verificare le ipotesi del lemma.

X' è di Hausdorff poichè sottospazio di uno spazio di Hausdorff (\mathbb{R}^2 è infatti di Hausdorff in quanto metrizzabile); inoltre $S \subseteq X'$ è compatto perchè è chiuso in \mathbb{R}^2 , e conseguentemente in X', e X' è compatto.

10. Dimostrare che uno spazio topologico X connesso e localmente connesso per archi è connesso per archi.

$\underline{Soluzione}$:

Richiamiamo la seguente definizione:

Definizione: Uno spazio topologico X si dice localmente connesso per archi in un punto $p \in X$ se possiede un sistema fondamentale di intorni connessi per archi di p, o, equivalentemente, se per ogni intorno U di p esiste un intorno $V \subset U$ di p connesso per archi. X si dice localmente connesso per archi se è localmente connesso per archi in ogni suo punto.

Sia p un punto qualsiasi di X e sia $C_a(p)$ la componente connessa per archi di p. Allora, essendo X connesso e $C_a(p) \neq \emptyset$ ($p \in C_a(p)$), sarà sufficiente mostrare che $C_a(p)$ è contemporaneamente aperto e chiuso in X.

- $C_a(p)$ è aperto in X: Sia $q \in C_a(p)$; per la locale connessione di X esiste un intorno U di q connesso per archi $\Rightarrow U \subseteq C_a(q) = C_a(p) \Rightarrow C_a(p)$ è aperto.
- $C_a(p)$ è chiuso in X: Mostriamo che $\overline{C_a(p)} = C_a(p)$: sia $q \in \overline{C_a(p)}$ e sia U un intorno connesso per archi di q (U esiste per l'ipotesi di locale connessione per archi). Chiaramente $C_a(p) \cap U \neq \emptyset$. Sia dunque $s \in C_a(p) \cap U$. Allora, poichè $q, s \in U$, esiste un arco $\alpha : I \to U$ tale che $\alpha(0) = s$ e $\alpha(1) = q$. Introducendo quindi la relazione d'equivalenza ε tale che

$$x \in y \Leftrightarrow \exists \alpha : I \to X$$
 continua tale che $\alpha(0) = x \in \alpha(1) = y$

si ha $q\varepsilon s$. Inoltre, essendo $s\in C_a(p)$, si ha $s\varepsilon p\Rightarrow per la transitività, <math>q\varepsilon p\Leftrightarrow q\in C_a(p)$.