Tema 9. Моменты k-го порядка

Математическое ожидание и дисперсия в непрерывном случае

Определение. Для случайной величины X с плотностью $f_X(x)$ математическое ожидание $\mathbf{M}X$ определяется формулой

$$MX = \int_{-\infty}^{+\infty} x f_X(x) dx.$$
 (1)

Механическая аналогия. Как вычисляется в механике центр масс, если масса распределена непрерывно? Для примера рассмотрим стержень переменного радиуса, скажем, ствол спиленного дерева без верхушки и сучьев (рис. 1).

Рис. 1

Чтобы найти центр масс, мысленно распилим ствол на очень тонкие слои толщиной Δ . Масса i-го (почти цилиндрического) слоя, расположенного в точке с координатой $x_i = \Delta i$, приближённо равна

$$m_i = \pi R^2(x_i) \rho \Delta$$

где $R(x_i)$ — радиус ствола в точке с координатой x_i , ho — плотность древесины. Вводя обозначение $f(x) = \pi R^2(x)
ho$ и учитывая, что $\Delta = x_i - x_{i-1}$, заметим, что сумма

$$\sum x_i m_i = \sum x_i f(x_i) \Delta$$

служит интегральной суммой для интеграла

$$\int x f(x) dx.$$

Аналогично, сумма масс всех цилиндров (она приближённо равна массе всего ствола)

$$\sum m_i = \sum f(x_i) \Delta$$

представляет собой интегральную сумму для интеграла

$$\int f(x)dx$$
.

Наконец, для координаты центра масс ствола имеем формулу

$$x_{y.m.} = \int x f(x) dx / \int f(x) dx, \tag{2}$$

которая является непрерывным аналогом формулы (2) из темы 6. В теории вероятностей в роли функции f(x) выступает плотность $f_X(x)$, причём $\int f_X(x) dx = 1$.

Отметим, что математическое ожидание может не существовать. Например, для случайной величины R, имеющей распределение Коши 1 с плотностью

$$f_R(x) = \frac{1}{\pi(1+x^2)},$$

интеграл (1) не определён, т. е. $\mathbf{M}R$ не существует. Это вызвано тем, что функция $f_{\scriptscriptstyle R}(x)$ так медленно убывает при $x \to \pm \infty$ (рис. 2), что интегралы $\int\limits_{0}^{\infty} x f_R(x) dx$ и $\int\limits_{0}^{\infty} x f_R(x) dx$ расходятся. Действительно, рассмотрим, например, второй интеграл:

$$\int_{0}^{+\infty} x f_{R}(x) dx = \frac{1}{\pi} \int_{0}^{+\infty} \frac{x}{(1+x^{2})} dx = \frac{1}{2\pi} \left(\lim_{x \to +\infty} \ln(1+x^{2}) - \ln(1+0^{2}) \right) = \infty.$$

Рис. 2

Теперь обобщим на непрерывный случай полезную формулу (1) из темы 7, применяемую для вычисления математического ожидания некоторой функции от случайной величины. Верно

Утверждение. Пусть случайная величина X имеет плотность $f_{X}(x)$. Рассмотрим случайную величину $Y = \varphi(X)$, где $\varphi(X)$ — заданная функция. Тогда

$$\mathsf{M}Y = \mathsf{M}\varphi(X) = \int_{-\infty}^{+\infty} \varphi(x) f_X(x) dx. \tag{3}$$

Применив это утверждение к функции $\varphi(x) = x^2$, получим непрерывный аналог формулы (3) из темы 7, применяемой для вычисления дисперсии:

$$DX = MX^{2} - (MX)^{2} = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx - (MX)^{2}.$$
 (4)

Мерой «типичного разброса» значений случайной величины X относительно $\mathsf{M}\!X$ служит стандартное отклонение $\sqrt{\mathsf{D}X}$. Интервал

$$(MX - \sqrt{DX}, MX + \sqrt{DX})$$

обычно рассматривается в качестве области типичных значений случайной величины X (рис. 3).

 $^{^{1}}$ Огюстен Луи Коши (1789 – 1857) — французский математик и механик. Разработал фундамент математического анализа, внёс огромный вклад в анализ, алгебру, математическую физику. Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Моменты

Напомним, что согласно примеру из темы 7 дисперсия $DX = M(X - MX)^2$ является аналогом момента инерции относительно центра масс механической системы:

$$I(x_{u.m.}) = \sum_{i} (x_i - x_{u.m.})^2 m_i.$$

В теории вероятностей интерес также представляет рассмотрение степеней выше 2.

Определение. Величина $\alpha_k = \mathsf{M} X^k$ называется моментом k-го порядка, величина $\mu_k = \mathsf{M} (X - \mathsf{M} X)^k$ называется центральным моментом k-го порядка, где k — произвольное натуральное число.

В частности, $MX = \alpha_1$ и $DX = \alpha_2 - \alpha_1^2 = \mu_2$.

Согласно формуле (1) из темы 7 в дискретном случае имеем равенства

$$\alpha_k = \sum_i x_i^k p_i \quad \text{if} \quad \mu_k = \sum_i (x_i - MX)^k p_i.$$
 (5)

Согласно приведённой выше формуле (3) в непрерывном случае имеем равенства

$$\alpha_k = \int_{-\infty}^{+\infty} x^k f_X(x) dx \quad \text{if} \quad \mu_k = \int_{-\infty}^{+\infty} (x - MX)^k f_X(x) dx.$$
 (6)

Пример. Вычислим моменты α_k и μ_k для бернуллиевской случайной величины I, принимающей значение 1 с вероятностью p и значение 0 с вероятностью q = 1 - p. Согласно формулам (5) получаем

$$\alpha_k = 0^k \cdot q + 1^k \cdot p = p \quad \text{ if } \quad \mu_k = (0 - p)^k \cdot q + (1 - p)^k \cdot p = (-1)^k p^k q + q^k p.$$

Домашнее задание

Если четвёртой буквой вашей фамилии служит:

А, Б, В, Г, Д, Е, Ё, то «своими» являются задачи 9.1 и 9.5;

Ж, 3, И, Й, К, Л, М, то «своими» являются задачи 9.2 и 9.6;

H, O, П, Р, то «своими» являются задачи 9.3 и 9.7;

С, Т, У, Ф, Х, Ц, Ч, Ш, Щ, Ъ, Ы, Ь, Э, Ю, Я, то «своими» являются задачи 9.4 и 9.8.

- 9.1) Для экспоненциальной случайной величины T с параметром λ вычислить $\mathsf{D}T$.
- 9.2) Для случайной величины X с плотностью $f_{x}(x) = e^{-|x|}/2$ вычислить $\mathsf{D}T$.
- 9.3) Для случайной величины X с плотностью $f_X(x) = (1-|x|)I_{{\scriptscriptstyle [-1,1]}}$ вычислить ${\sf D}T.$
- 9.4) Для пуассоновской случайной величины N с параметром λ найти $\mathsf{M}N(N-1)(N-2)$.

- 9.5) Для случайной величины X, имеющей плотность $f_X(x)$, найти значение параметра a, при котором достигается минимум по a функции $\mathsf{M}|X-a|$. Выразить ответ через функцию распределения $F_X(x)$.
- 9.6) Число X выбирается наугад из чисел 1, 2, ..., n. Вычислить третий момент случайной величины X. (Указание. Используйте математическую индукцию для вывода формулы.)
- 9.7) Для экспоненциальной случайной величины T с параметром λ найти момент k-го порядка. (Указание. Используйте математическую индукцию для вывода формулы.)
- 9.8) Вычислить третий момент (запишите ответ задачи без знака суммы):
- а) случайной величины S_n с биномиальным распределением: $\mathbf{P}(S_n=i)=C_n^i p^i (\mathbf{1}-p)^{n-i},\ i=0,1,\ldots,n;$
- б) случайной величины N с пуассоновским распределением: $\mathbf{P}(N=i) = \lambda^i e^{-\lambda}/i!, \ i=0,1,2,\ldots$
- 9.9)* Найти момент k-го порядка для случайной величины Z с плотностью $f_X(x) = e^{-x^2/2}/\sqrt{2\pi}$. Вычислить числовые значения моментов 4-го, 6-го и 8-го порядка.