COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

Math Foundations

LI Bo
Department of Computing
The Hong Kong Polytechnic University

MATH FOUNDATIONS

STATEMENTS AND THEIR USE

Statement: a mathematical expression which is either true or false

Examples:
$$2 \in \{x \in R | x \le 5\}$$
 (true) or $3^2 + 5^2 = 82$ (false)

Note: The domain of the variables matters!

- > $1.5 \in \{x \in R \mid x \le 5\}$ (true)
- $> 1.5 \in \{x \in N | x \le 5\} \text{ (false)}$

R: real numbersQ: rational numbers*N*: natural numbers

- > Theorem: to state an important result.
- > Lemma: for smaller results that are intermediate steps to show a theorem.
- > Claim: for even smaller results that are intermediate steps to show a lemma.
- > Conjecture: for statements that you believe are true, but you can't prove them.
- > Fact/Observation: for mathematical facts that are general knowledge (Example: 2 > 1).

FORMAL MATHEMATICAL PROOFS

A *formal mathematical proof* of a statement S consists of an ordered (maybe even numbered) sequence of statements.

A implies B, B implies C, \cdots , X implies the claim

Each *statement* in a proof is

- an assumption or
- it follows from previous statements or from the assumptions in S by a rule of inference

Note:

- > Expressions whose truth cannot be determined cannot occur in proofs.
- > For each expression, all involved variables must be defined.

Proof by *Example*: give an example and show that it satisfies the statement.

- right for proving existential statements ("There exists...") E.g. There exists a rational number being an integer
- > for disproving universal statements ("For all...") E.g. All rational numbers e integers

Proof by *Exhaustive Enumeration*: list all elements (satisfying the assumption) and show that they all satisfy the statement.

- ➤ for proving universal statements ("For all...") E.g. All integers are rational numbers
- > for disproving existential statements ("There exists...") E.g. There exists a ratio number being irrational

Proof by *Contradiction*: assume the negation of the statement and derive a contradiction.

5

EXAMPLE: PROOF BY EXAMPLE

Prove statement: there exists a prime number between 80 and 90

Proof.
$$p = 83.$$

Incomplete Proof!

Proof.

- p = 83
- > 83>80 and 83<90
- > show that 83 is a prime number by exhaustive enumeration:

2, 3, 4,
$$\cdots$$
, $\sqrt{83}$ does not divide 83.

PROOF BY EXAMPLE

Disprove statement: for all prime number n > 1, $2^n - 1$ is prime.

Proof:

- > n = 11.
- > n > 1 and n is a prime number (2, 3 do not divide 11).
- $> 2^n 1 = 2047 = 23*89$ is not a prime number.

MATHEMATICAL INDUCTION

- > Summation formulas like $\sum_{i=1}^{n} 2i + 1 = n^2$ for all integer $n \ge 1$.
- \triangleright Inequalities like $2^n < n!$ for every integer $n \ge 4$.
- \triangleright Divisibility results like $n^3 n$ is divisible by 3 for every integer $n \ge 1$.

Statement: P(n) for $n \ge n_0$.

- > Base Case: prove statement P(1).
- > Induction Step: Assume the statement is true for some integer $k \ge n_0$, i.e., P(k).

(This is the Induction Hypothesis.)

Prove statement P(k+1).

> Conclusion: the statement P(n) holds for all integer $n \ge n_0$.

Variation

- \triangleright Assume true for all $n_0 \le n \le k$.
- \triangleright Prove for P(k+1).

PROVING AND USING STATEMENTS

- ➤ Existential Statements (∀)
- ➤ Universal Statements (∃)
- ➤ Disjunction Statements (V)
- ➤ Conjunction Statements (Λ)
- ➤ Implication Statements ("if... then...")
- > Equivalence Statements ("iff")

EXISTENTIAL STATEMENTS

There exists x such that A(x) (assumption), P(x) (property).

Example: there exists x s.t. $x \ge 0$, and $x \ge 10$.

Proof:

- \triangleright Give an example x satisfying the assumption A(x).
- \triangleright Show that P(x) holds.

Example: pick $x = 11 \ge 0$, and $x \ge 10$.

UNIVERSAL STATEMENTS

For all x such that A(x) (assumption), then P(x) (property).

- \triangleright In general, x can be a set of elements. E.g., $\forall a, b, c$ s.t. A(a, b, c), P(a, b, c).
- ightharpoonup **Example**: for all sets A, B, C s.t. $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof:

- \triangleright Let x be an arbitrarily chosen element satisfying the assumption A(x).
- \triangleright Show that P(x) holds.

Example: let x be an arbitrary element in A

- $\triangleright A \subseteq B$ implies for all $t \in A, t \in B$; thus $x \in B$
- $\triangleright B \subseteq C$ implies for all $t \in B$, $t \in C$; thus $x \in C$
- \triangleright Thus $A \subseteq C$.

For all $x \in A, x \in B$;

NEGATION, DISJUNCTION, CONJUNCTION

> The negation of

for all x s.t. A(x), P(x)

is

for some x s.t. A(x), $\neg P(x)$

- > Disjunction: To prove P1 or P2 or . . . or Pn is true
 - ➤ show one of P1, P2, . . . , Pn is true
 - > often done by case analysis
- > Conjunction: P1 and P2 and . . . and Pn is true
 - ➤ show all of P1, P2, . . . , Pn are true

For all number x such that x is rational, x is an integer.

negation

For some number x such that x is rational, x is not an integer.

IMPLICATION AND EQUIVALENCE STATEMENTS

If P, then Q

Proof:

- > assume P is true and show Q, or
- \triangleright assume $\neg Q$ is true and show $\neg P$ (proof by contradiction)

P if and only if Q $(P \leftrightarrow Q)$

Proof:

- > show "if P then Q" and
- > show "if Q then P"

EXAMPLE

Prove statement: for all sets $A, B, A \cup B = A$ if and only if $B \subseteq A$.

Proof.

- \triangleright Proving if $A \cup B = A$, then $B \subseteq A$.
 - \triangleright Pick any $x \in B$
 - \triangleright Since $A \cup B = A$, $x \in A$, then $B \subseteq A$
- \triangleright Proving if $B \subseteq A$, then $A \cup B = A$.
 - \triangleright It is obvious $A \subseteq A \cup B$
 - To show $A \cup B \subseteq A$, pick any $x \in A \cup B$
 - \triangleright We need to show $x \in A$

- $\triangleright x \in A \cup B$
- \triangleright If $x \in A$, we are done
- ightharpoonup If $x \in B$, we know $B \subseteq A$ and thus $x \in A$

Thank you!