

Міністерство освіти і науки України

Національний технічний університет України

"Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Комп'ютерний практикум №6

Моделювання систем

Тема: Застосування алгоритму стохастичної мережі Петрі для реалізації моделей дискретно-подійних систем

Виконав	Перевірила:
студент групи IП-11:	Дифучина О. Ю

Панченко С. В.

3MICT

Мета	3
2 Завдання	4
В Виконання	
3.1 Завдання 1	
3.2 Завдання 2	
3.3 Завдання 3	
3.4 Задача 4	
3.5 Задача 5	
Зисновок	

1 META

Застосувати алгоритм стохастичної мережі Петрі для реалізації моделей дискретно-подійних систем.

2 ЗАВДАННЯ

- 1. Ознайомитись з бібліотекою класів PetriObjModelPaint моделювання діскретно-подійних сістем на основі стохастичних мереж Петрі та графічним редактором мережі Петрі. 10 балів.
- 2. З використанням алгоритму імітації стохастичної мережі Петрі класу PetriSim реалізувати модель, розроблену за текстом завдання 1 практикуму 5, та виконати її верифікацію. Зробити висновки про функціонування моделі. 25 балів.
- 3. З використанням алгоритму імітації стохастичної мережі Петрі класу PetriSim реалізувати модель, розроблену за текстом завдання 4 практикуму 5, та виконати її верифікацію. Зробити висновки про функціонування моделі. 25 балів.
- 4. Побудувати модель системи, що відтворює обробку потоку запитів головним та допоміжним сервером. Ймовірність звернення до допоміжного сервера 0,3. Часові характеристики обробки запитів задайте самостійно. 20 балів.
- 5. Побудувати математичні рівняння, що описують побудовану за текстом завдання 4 мережу Петрі. 20 балів.

3 ВИКОНАННЯ

3.1 Завдання 1

Побудуємо простий генератор на рисунку 3.1:

Рисунок 3.1 — Простий генератор

3.2 Завдання 2

Побудуємо мережу Петрі на рисунку 3.2.

Рисунок 3.2 — Мережа Петрі

Проведемо верифікацію, результати зображені у таблиці 3.1.

Таблиця 3.1 Результати верифікації

N	$T_{ m enter}$	$T_{ m device}$	$T_{ m trans}$	$T_{ m cancel}$	N_0	N_1	N_2	N_3	N_5
0	0.25	1.0	1.0	5.0	893	851	799	737	674
1	0.5	2.0	2.0	10.0	400	420	405	382	334
2	0.125	2.0	2.0	1.0	508	511	469	464	480
3	0.5	0.6	0.2	3.0	1143	654	180	21	1
4	0.3	0.6	0.5	2.0	1345	1055	609	253	61

3.3 Завдання 3

На рисунку 3.3 зображено мережу Петрі:

Рисунок 3.3 — Мережа Петрі

У таблиці 3.2 проведемо верифікацію моделі:

Таблиця 3.2 Результати верифікації

N	$T_{ m customer}$	$T_{ m check\ vault}$	$T_{ m order}$	$N_{ m sold}$	$N_{ m unsatisfied}$
0	0.2	4.0	3.0	4452	531
1	0.05	4.0	3.0	9190	11098
2	0.7	0.5	3.0	1421	1973
3	0.7	0.02	0.01	1372	0
4	1.0	0.5	0.4	970	0

3.4 Задача 4

На рисунку 3.4 побудовано мережу Петрі, на рисунках 3.5, 3.5 зображені параметри:

Рисунок 3.4 — Мережа Петрі

3.5 Задача 5

Нижче зроблено формальний опис стохастичної мережі Петрі:

кращої зрозумілості замінив математичні символи на повноцінні назви:

 S^+ — state_input;

S⁻ — state_output;

 $Z:T imes\Re o \{0\,;1\}$ — предикат, що визначає для кожного переходу умову виконання запуску — trans_predicate(transition: Transition, time_point: TimePoint) -> bool;

 $M_{\it P}(t)$ — get_position_marker_count(position: Position, time_point: TimePoint) -> MarkerCount;

 $E_T(t)$ — get_transition_state(transition: Transition)

 $D^{\text{-}}(S(t_{\scriptscriptstyle n}))$ — перетворення стану мережі Петрі, пов'язане з входом маркерів в переходи;

 $D^{^{+}}(S(t_{\scriptscriptstyle n}))$ — перетворення стану мережі Петрі, пов'язане з виходом маркерів з переходів;

 $Y: T \times \mathfrak{R} o \{0; 1\}$ — предикат, що визначає для кожного переходу співпадіння моменту найближчої події з поточним моментом часу — is_transition_out;

 $X:T imes\Re o \{0;1\}$ — предикат, що визначає для кожного переходу приналежність до множини переходів, вибраних в результаті вирішення конфлікту — is_in_conflict.

Опишемо початковий стан мережі:

$$state_input(0.0) = \left\{ \begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} \{\infty\}\\\{\infty\}\\\{\infty\} \end{pmatrix} \right\},$$

Опишемо, які з переходів можуть увійти:

request_generator>0 \Rightarrow trans_predicate(generate, 0.0)=1 requests<1, main_server_resource \geq 1 \Rightarrow trans_predicate(main_process, 0.0)=0 requests<1, sub_server_resource \geq 1 \Rightarrow trans_predicate(sub_process, 0.0)=0

Опишемо переходи, які входять: succesful_transitions = {generate}

Опишемо, чи є конфлікти: no conflicts

Опишемо, зміну маркерів:

get_position_marker_count(request_generator, 0.0)=1-1=0
get_position_marker_count(requests, 0.0)=0-0=0
get_position_marker_count(main_server_resource, 0.0)=1-0=1
get_position_marker_count(sub_server_resource, 0.0)=1-0=1

get_position_marker_count(done, 0.0)=0-0=0

Опишемо зміну стану переходів:

get_transition_state(generate)=
$$\{0 + 1\}$$

get_transition_state(main_process)= ∞
get_transition_state(sub_process)= ∞

Опишемо вихідний стан:

$$state_output(0.0) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \{1\} \\ \{\infty\} \\ \{\infty\} \end{pmatrix} \right\}$$

Опишемо, які з переходів виходять в даний момет часу:

Опишемо зміну маркерів позицій:

get_postion_markers_count(request_generator, 1) =
$$0 + 1 = 0$$

get_postion_markers_count(requests, 1) = $0 + 1 = 1$
get_postion_markers_count(main_server_resource, 1) = $1 + 0 = 1$
get_postion_markers_count(sub_server_resource, 1) = $1 + 0 = 1$
get_postion_markers_count(request_generator, 1) = $0 + 0 = 0$

Опишемо зміну стану переходів:

get_transition_state(generate)=
$$\infty$$
get_transition_state(main_process)= ∞
get_transition_state(sub_process)= ∞

Опишемо вихідний стан:

state_output
$$(0.0) = \left\{ \begin{bmatrix} 1\\1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} \{\infty\}\\\{\infty\}\\\{\infty\} \end{bmatrix} \right\}$$

Опишемо, які переходи мають увійти:

```
request_generator>1\Rightarrow trans_predicate(generate, 1)=1
requests\geq1 main_server_resource\geq1\Rightarrow trans_predicate(main_process, 1)=1
requests\geq1, sub_server_resource\geq1\Rightarrow trans_predicate(sub_process, 1)=1
```

Опишемо, які переходи входять:

succesful_transitions = {generate, main_process, sub_process}

Маємо, конфлікт:

is_in_conflict(main_process) = 1

is_in_conflict(sub_process) = 1

Припустимо, що спрацьовав main_process:

Опишемо зміну маркерів позицій:

get_postion_markers_count(request_generator, 1) =
$$1 - 1 = 0$$

get_postion_markers_count(requests, 1) = $1 - 1 = 0$
get_postion_markers_count(main_server_resource, 1) = $1 - 1 = 0$
get_postion_markers_count(sub_server_resource, 1) = $1 - 0 = 1$
get_postion_markers_count(request_generator, 1) = $0 - 0 = 0$

Опишемо зміну стану переходів:

 $get_transition_state(generate)=\{1+1\}$

get_transition_state(main_process)=
$$\{1 + 1\}$$

get_transition_state(sub_process)= ∞

Опишемо вихідний стан:

$$state_output(0.0) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \{2\} \\ \{2\} \\ \{\infty\} \end{pmatrix} \right\}$$

Опишемо, які з переходів виходять в даний момет часу:

Опишемо зміну маркерів позицій:

get_postion_markers_count(request_generator,
$$2$$
) = $0 + 0 = 0$
get_postion_markers_count(requests, 2) = $0 + 0 = 0$
get_postion_markers_count(main_server_resource, 2) = $0 + 1 = 1$
get_postion_markers_count(sub_server_resource, 2) = $1 + 0 = 1$
get_postion_markers_count(request_generator, 2) = $0 + 0 = 0$

Опишемо зміну стану переходів:

get_transition_state(generate)=
$$\infty$$
 get_transition_state(main_process)= ∞ get_transition_state(sub_process)= ∞

$$state_output(0.0) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \{\infty\} \\ \{\infty\} \\ \{\infty\} \end{pmatrix} \right\}$$

ВИСНОВОК

Під час комп'ютерного практикуму я ознайомився з бібліотекою PetriObjModelPaint для моделювання дискретно-подійних систем на основі стохастичних мереж Петрі та вивчив графічний редактор цієї бібліотеки. Це дало змогу краще зрозуміти принципи роботи з мережами Петрі для моделювання реальних систем.

У другому завданні я реалізував модель конвеєрної системи за допомогою алгоритму імітації PetriSim, провів її верифікацію, що підтвердило правильність роботи, та зробив висновки про її динаміку.

У третьому завданні створив модель системи управління запасами холодильників, провів верифікацію та аналіз ефективності роботи системи.

Четверте завдання полягало у моделюванні системи обробки запитів двома серверами з імовірністю звернення до допоміжного сервера 0,3. Я задав часові характеристики, побудував мережу Петрі та провів її верифікацію.

У п'ятому завданні розробив математичні рівняння для аналізу переходів і позицій мережі Петрі з завдання 4, що дозволяють описати поведінку системи та передбачити її реакцію на вхідні дані.