This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類は下記の出願書類の謄本に相違ないことを証明する。 This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1996年2月20日

出 願 番 号 Application Number:

PCT/JP96/374号

出 願 人 Applicant (s):

雪印乳業株式会社

後藤雅昭

津田英資

望月伸一

矢野和樹

小林文枝

島 伸行

保田尚孝

中川信明

森永伴法

上田正次

東尾侃二

RECEIVED

JUL 1 4 1998

MA....CE CENTER

1998年 4 月 2 4 日

特許庁長官 Commissioner, Patent Office 式サ 寿 濃肥

■特許協力条約に基づく国際出願

願

国際出網番号	官庁記入欄 ————
国際出順日	05.30
(母付受)	18/18
出題人又は代理人の書簿記号	SNOW-105

出願人は、この国際出願が特許協力条		
約に従って処理されることを請求する。	出題人又は代理人の書簿配号 (希望する場合は最大12字)	SNOW-105
第1欄 発明の名称		
新規蛋白質及びその製造方法		
第11欄 出願人		
氏名(名称) 及びあて名: (姓・名の順に記載: 法人は公式の完全な名称を記載: 雪印乳業株式会社	あて名は郵便番号及び国名も記載)	この個に記載した者は、 発明者でもある。
SNOW BRAND MILK PRODUCTS CO., LTD.		-contract 2
〒065 日本国北海道札幌市東区苗穂町 6	丁目1番1号	ファクシミリ番号:
1-1, Naebocho 6-chome, Higashi-ku, Sa	apporo-shi,	
Hokkaido 065 Japan		加入電信番号:
国第(国名): 日本国 JAPAN	断(图名): 日本国 、	JAPAN
この欄に記載した者は、次の すべての指定国 ※国を解析を国についての出類人である:	くすべての指定国 無国のみ	道記憶に記載した指定国
第III欄 その他の出順人又は発明者		
氏名(名称)及びあて名:(姓・名の順に記載;法人は公式の完全な名称を記載;	あて名は郵便番号及び国名も記載)	この権に記載した者は 次に該当する:
後藤雅昭 GOTO Masaa	·	出願人である。
〒329-05 日本国栃木県下都賀郡石橋町下		── 出願人及び発明者である。
456-1, Shimokoyama, Ishibashimachi, Si	himotsuga-gun,	発明者である。
Tochigi 329-05 Japan	. •	正员子上里实代表示之意,
BEG (BA): 日本国 JAPAN	th (国名): 日本国	JAPAN
この種に記載した者は、次の すべての指定国 米国を除	くすべての指定国 「▼無回のみ	道記据に記載した指定国
全の他の出題人又は発明者が被棄に記載されている。		
第12個 代理人又は共通の代表者、通知の	かるて名	
次に記載された者は、国際機関において出願人のために行動する:	V REAL	共通の代表者
氏名(名称)及びあて名:(姓・名の順に記載:法人は公式の完全な名称を記載:	あて名は郵便番号及び四名も記載)	03一
9094 弁理士 藤 野 清 也 FUJIN		3226-6671
10506 弁理士 児 玉 喜 博 KODAM		ファクシミリ番号:
〒160 日本国東京都新宿区四谷1丁目2番1号		03-
三浜ビル8階		3226-6673
Mitsuhama Bldg., 8F, 2-1, Yotsuya 1-chome, Shinjuku-ku, Tokyo 160 Japan		加入電信番号:
oninjuku-ku, lokyo 100 Japan		
(代理人又は共通の代表者が選任されていないときに、通知が送付されるあて名	名を記載する場合はレ印を付す	

						٤	<u>ر</u>								A	
-	٠	•	٠	٠	•		-	٠	•	•	•	•	•	•	_	

	この観賞を使用しないときは、この			•
	の順に記載:近人は公式の完全な名称を記載: 資 TSUDA Eist		2載)	この個に記載した者は、 次に該当する:
〒329-05 日	本国栃木県下都賀郡石橋町石	5橋622		出題人である。
7	ロニエハイツ201			✓ 出職人及び発明者である。
Maronie Heigh	nts 201, 622, Ishibashi,	Ishibashimachi,		発明者である。 (こうにと思を付えたとき)
Shimotsuga-gu	un, Tochigi 329-05 Japan			
国第 (国名): 日本国	JAPAN			APAN
この欄に記載した者は、次の 指定国についての出類人である:			米国のみ	道記憶に記載した指定国
氏名(名称)及びあて名:(姓・名	の順に記載;法人は公式の完全な名称を記載;	あて名は郵便番号及び国名も記	截)	この欄に記載した者は、次に該当する:
至 / 1	- MOCHIZUKI		i	出題人である。
	本国栃木県河内郡南河内町線			──出願人及び発明者である。
5-22-6, Midor	ri, Minamikawachimachi, K	awachi-gun,		発明者である。
Tochigi 329-0	04 Japan			に以下と思えせなたとき)
國 (與2): 日本国	JAPAN	住所(図名): 日	本国 J	APAN
この欄に記載した者は、次の	すべての指定国 米国を除	くすべての指定国	米国のみ	道記憶に記載した指定国
指定国についての出類人である: 氏名(名称)及びあて名:(姓・名の	の顔に記載;法人は公式の完全な名称を記載;	あて名は郵便番号及び国名も記	裁)	この個に記載した者は、
矢 野 和	樹 YANO Kazul	ζi		次に該当する:
〒329-05 日	本国栃木県下都賀郡石橋町石	5橋578-15		出願人である。
			•	│ ◇ │ 出顧人及び発明者である。
	浦ハイツ3-1			V IMBOOKO KAMILI CIDIO
Nishiura Heig	ghts 3-1, 578-15, Ishibas	hi, Ishibashimach	li,	発明者である。 (ここにレロを付したとき) は、以下に記入しないこと)
Nishiura Heig	-	hi, Ishibashimach	ıi,	発明者である。
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan			発明者である。
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国 この福に記載した者は、次の	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN	住所(国名): 日にくすべての指定国 💟 🤄	本国 JA	発明者である。 (こ以下と思え付えたとき) 上、以下と思えてなたこと) APAN
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国 この福に記載した者は、次の	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN	住所(国名): 日にくすべての指定国 💟 🤄	本国 JA	APAN
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国 この標に記載した者は、次の 指定国についての出願人である: 日名(名称)及びあて名:(姓・名の	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN	住所(国名): 日 ス くすべての指定国	本国 JA	発明者である。 (こ以下と思え付したとき) 上、以下と思えておこと) APAN 一 定配権に記載した指定国 この種に記載した者は、
Nishiura Heig Shimotsuga-gu 国第(国名): 日本国 この相に記載した者は、次の 指定国についての世頭人である: E名(名称)及びあて名: (姓・名の	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN 	世所 (国名): 日 : 日 : (すべての指定国	本国 JA	発明者である。 (こようと思え付したとき) は、以下と思えてはたこと) APAN 一 定配権に記載した指定国 この種に記載した者は、 次に該当する:
Nishiura Heig Shimotsuga-gu 国第(国名): 日本国 この福に記載した者は、次の 指定国についての世頭人である: 臣名(名称)及びあて名:(姓・名の 小 林 文 セ 〒329-11 日本	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN □ すべての指定回 □ 米国を除 連口後:法人上の子の完全な名称を記載:	世所 (国名): 日 マテベアの指定国 ▽ デ あて名は最後番号及び国名も記 Fumie 本 3 7 7 7 — 4	本国 JA	一発明者である。 (ことにとき) APAN 一定を指に記載した指定国 の種に記載した者は、 大に該当する: 一出個人である。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国 この福に記載した者は、次の 指定国についての世間人である: E名(名称)及びあて名:(姓・名の 小 林 文 セ 〒329-11 日本	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN	世所 (国名): 日 マテベアの指定国 ▽ デ あて名は最後番号及び国名も記 Fumie 本 3 7 7 7 — 4	本国 JA	発明者である。 (ここにレ印を付したとき) APAN 一 追記機に記載した指定国 この種に記載した者は、 大に該当する: 一 出題人である。
Nishiura Heig Shimotsuga-gu 国第(国名): 日本国 この欄に記載した者は、次の 指定国についての世頭人である: E名(名称)及びあて名: (姓・名の 小 林 文 セ 〒329-11 日本 3777-4, Shimo	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN 「すべての程定団 ※国を除る を記録: 法人は公式の完全など称を記載: 法 技 KOBAYASHI に国栃木県河内郡河内町下岡 okamoto, Kawachimachi, Ka	世所 (国名): 日 マテベアの指定国 ▽ デ あて名は最後番号及び国名も記 Fumie 本 3 7 7 7 — 4	本国 JA	一発明者である。 (ことにとき) APAN 一定を指定型である。 「正式にとき) APAN 一定を指定型である。 「出題人である。 「出題人なび発明者である。
Nishiura Heig Shimotsuga-gu 国籍(国名): 日本国 この福に記載した者は、次の 指定国についての出願人である: 区名(名称)及びあて名:(姓・名の 小 林 文 セ 〒329-11 日本 3777-4, Shimo Tochigi 329-1	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN 「すべての指定国 ※国を除 の KOBAYASHI に国防木県河内郡河内町下岡 okamoto, Kawachimachi, Ka 1 Japan JAPAN	世所 (国名): 日本 マチベアの指定国 (グラックでの指定国 (グラックでの指定国 (グラックで)) Fumie 本3777-4 awachi-gun, 生所 (国名): 日本	本国 JA	一発明者である。(に以下に記入しないこと) APAN 一造監備に記載した指定国 この種に記載した者は、 大に該当する: 一出国人である。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Nishiura Heig Shimotsuga-gu 国第(国名): 日本国 この相に記載した者は、次の 指定国についての世頭人である: 区名(名称) 及びあて名: (姓・名の 小 林 文 セ 〒329-11 日本 3777-4, Shimo Tochigi 329-1	ghts 3-1, 578-15, Ishibas un, Tochigi 329-05 Japan JAPAN 「すべての指定国 米国を除 を取る。 大田佐木県河内郡河内町下岡 okamoto, Kawachimachi, Ka 1 Japan JAPAN 「すべての指定国 米国を除く	世所 (国名): 日本 マサベアの指定国	本国 JA	一発明者である。 (上以下上記入しないこと) APAN 一定を描に記載した指定国 の確に記載した者は、 大に該当する: 一出個人である。 ・ と聞人及び発明者である。 「上別下上記入しないこと) PAN PAN

第川欄の続き その他の出願人又は発明者		
この経験を使用しないときは、この用紙を類書に返付する必	要はない。	
氏名(名称)及びあて名:(姓・名の順に記載;法人は公式の完全な名称を記載;あて名は郵便番号及び国	名も記載) この機に記載した 次に該当する:	者は、
島 伸 行 SHIMA Nobuyuki	出類人であ	3.
〒329-04 日本国栃木県河内郡南河内町緑4-17-5	✓ 出頭人及び	発明者である。
4-17-5, Midori, Minamikawachimachi, Kawachi-gun,	発明者であ	5.
Tochigi 329-04 Japan		記を付よたとき) 記をしないとき)
国政(国名): 日本国 JAPAN 住所(国名):	日本国 JAPAN	
この福に記載した者は、次のすべての指定国・大国を除くすべての指定国	✓ 米国のみ	載した指定国
指定国についての出類人である: 民名(名称)及びあて名:(姓・名の顧に記載;法人は公式の完全な名称を記載;あて名に郵便番号及び国会	らも記載) この欄に記載した 次に該当する:	者は、
保田尚孝 YASUDA Hisataka	出題人であ	ā.
〒329-04 日本国栃木県河内郡南河内町緑2-3293-	一 4 6	発明者である。
2-3293-46, Midori, Minamikawachimachi, Kawachi-gun,	発明者である	
Tochigi 329-04 Japan	上京 下日	置き付えたときり
国語 (国名): 日本国 JAPAN 住所 (国名):	日本国 JAPAN	
この欄に記載した者は、次の すべての指定国 米国を除くすべての指定国 指定国についての出頭人である:	✓ 米国のみ	おした指定策
氏名(名称)及びあて名:(姓・名の顧に記載;法人は公式の完全な名称を記載;あて名は野便番号及び国名	・も記載) この欄に記載したす 次に該当する:	
中川信明 NAKAGAWA Nobuaki	次に該当する:	5位、
氏名(名称)及びあて名:(姓・名の顧に記載;法人は公式の完全な名称を記載;あて名は野便番号及び国名	次に該当する:	5.
中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15	次に該当する: 出題人である ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	では、 5。 2明者で ある。
世 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4	次に該当する: 出題人である ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	では、 5。 2明者であ る。
中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan	次に該当する: 出題人である ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	では、 5。 2明者で ある。
中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan 国務(国名): 日本国 JAPAN (国名): 日本国 JAPAN (国名): 大会工の特定国 (国名): 大会工の特定国 「大会工の特定国」「大会工の特定国」「大会工の特定国」「大会工の保証国」「大会工の特定国」「大会工会工会工会工会工会工会工会工会工会工会工会工会工会工会工会工会工会工会工	次に該当する: 出題人である ・ 出題人及び achi, ・ 発明者である	では、 の を明者である。 の を付したとき は入しないこと)
中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan	大に該当する: 出願人である ・ 出願人である ・ 出願人をびら ・ おいっとは、	を明者である。 を明者である。 た付したとき 入しないこと)
中 川 信 明 NAKAGAWA Nobuaki 中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan 国際(国名): 日本国 JAPAN 正の側に記載した者は、次の 「古本国 JAPAN 住所(国名):	大に該当する:	のでは、 のである。 のでは、 のでは
大名(名称)及びあて名:(姓・名の順に報:法人は公式の完全な名称を記載:あて名は影響等を及び記述中	大に該当する:	を明者である。 さいことを はいことと はした指定国
中 川 信 明 NAKAGAWA Nobuaki 中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan 国際 (国名): 日本国 JAPAN ロボ (国名): この側に記載した者は、次の 指定国についての出頭人である: 氏名(名称)及びあて名: (姓・名の側に載:法人は公主の完全な名称を記載:あて名は最後書号及び国名 森 永 伴 法 MORINAGA Tomonor	大に該当する:	のである。 のである。 のである。 はした相定国 はは、
中 川 信 明 NAKAGAWA Nobuaki 〒329-05 日本国栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Nishiura Heights 2-4, 578-15, Ishibashi, Ishibashim Shimotsuga-gun, Tochigi 329-05 Japan 国路(国名): 日本国 JAPAN ロ海に関係した者は、次の 「すべての指定国 「米国を除くすべての指定国 「 この欄に関係してある: 日本 「サベての指定国 「 この欄に関係してある: 日本 「日本 「日本 「日本 「日本 「日本 「日本 「日本 「日本 「日本	大に該当する:	は、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 の

※国を除くすべての指定国

✓ *国のみ

道記欄に記載した指定図

____ すべての指定国

この欄に記載した者は、次の

指定国についての出頭人である:

				Λ							
	_	_	_	7	:	_		_		٤	

第川欄の続き そ	の他の出順人又は	绝叫者		
•		は、この用紙を顕著に添付す		
氏名(名称) 及びあて名: (姓·名) 上 田 正		称を記載;あて名は郵便番号及 satsugu	び国名も記載)	この機に記載した者は、 次に該当する:
〒350-11 日:	本国埼玉県川越市今福	1672-1		出版人である。
, y	プンむさし野719			── 出頭人及び発明者である。
	nino 719, 1672-1, In	mafuku, Kawagoe-s	hi,	無明者である。 (こ)以下と記念付点できま)
Saitama 350-				<u> </u>
国題(国名): 日本国 この個に記載した者は、次の	JAPAN	住所(国名):		APAN
指定国についての出頭人である:		米国を除くすべての指定国	✓ 米国のみ	道記機に記載した指定国
氏名(名称) 及びあて名: (姓·名の			(国名も記載)	この福に記載した者は、次に該当する:
	T HIGASHI	_		出題人である。
	国埼玉県川越市山田 1			✓ 出題人及び発明者である。
	ada, Kawagoe-shi, S	aitama -		発明者である。
350 Japan				(正)以下と型を付与たらき)
	JAPAN	住所(国名):	日本国 J	APAN
この欄に記載した者は、次の 指定国についての出頭人である:		米国を除くすべての指定国	✓ 米国のみ	道記憶に記載した指定国
氏名(名称)及びあて名: (姓・名の	順に記載;法人は公式の完全な名称	を記載;あて名は郵便番号及び	国名も記載)	この福に記載した者は、 次に該当する:
				出願人である。
				出題人及び発明者である。
				発明者である。 (ここにと思を付したとき) は、以下と記入したいこと)
国籍(国名):		住所(国名):		
この欄に記載した者は、次の 指定国についての出願人である:		代国を除くすべての指定国	※国のみ	道記機に記載した指定国
氏名(名称)及びあて名:(姓・名の)	頃に記載;法人は公式の完全な名称な	を記載;あて名は郵便答号及び	型名も配載)	この機に記載した者は、 次に該当する:
, ,				出題人である。
				出題人及び発明者である。
				発明者である。 (こ 以下と記を付したとき)
				hababa ii hadii/Curasi ii Cij
国籍(国名):		住所(四名):		
この欄に記載した者は、次の 指定国についての出願人である:	」すべての指定国 #	道を除くすべての指定項	米国のみ	道記欄に記載した指定図
一 その他の出職人又は発明者が続張	に記載されている。			*

	野び村間	国の指定	
	規則 4.9(a)	の規定に基づき次の国を指定する(該当する口内にレ印を付すこと	、及び少なくとも1四を指定すること)。
7	<i>[2</i> , 2, 2, 4, 5, 5]	F	
		·	
	AP	ARIP 〇年78年: KE ケニア Kenya、 N と特許協力条約の維約国である他の国	AW マラウイ Salawi、 S D スーダン Sudan、 及びハラレブロトコル
	V E P	テンシュタイン Switzerland and Liechtenstein, DEド FR フランス France, GB 英国 United Kingdom, エ T イタリア Italy, T、LJ ルクセンブルグ Luxembou	ria, BEベルギー Belgium, CH and LI スイス及びリヒイツ Germany, DK デンマーク Demmark, ES スペイン Spain, GR ギリシャ Greece, IE アイルランド Ireland, rg, MC モナコ Monaco, NL オランダ Metherlands, n, 及びヨーロッパ福子条約と特許協力条約の細約国である他の国
	_OA	OAP I 特部 : BF ブルキナ・ファソ Burki Republic, CG コンゴー Congo, CI 象牙海岸 Cote GN ギニア Guinea, ML マリ Sali, MR モ SN セネガル Senegal, TD チャード Chad, TC 所有機関係と特許協力条件の無い固である他の国(他のOAP I	G-トーゴー Togo, 及びアフリカ知的
	国内特殊	F (他の種類の保護又は取扱いを求める場合には点線上に記載する)	
•			MG マダガスカル Madagascar
	=		MN モンゴル Mongolia
		オーストリア Austria	S CTAT - The Malant
-	_	オーストラリア Australia	
		パルパドス Barbados	N L オランダ Netherlands
-		ブルガリア Bulgaria	▼ N O ノールウェー Norway
	BR	ブラジル Brazil	▼ N Z ニュー・ジーランド New Zealand
	BY	ペラルーシ Belarus	□ P L ポーランド Poland
1		カナダ Canada	PT ボルトガル Portugal
	Сн	and L I スイス及びリヒテンシュタイン Switzerland and Liechtenstein	RON-7=P Romania
	V C N	中国 China	RUロシア連邦 Bussian Federation
	$\Box cz$	チェッコ Czech Republic	SD スーダン Sudan
- }	DE	ドイツ Germany	SE スウェーデン Sweden
	DK	デンマーク Denmark	SI ZE~E7 Slovenia
-		スペイン Spain	SK ZUTT+7 Slovakia
1	VFI	フィンランド 『inland	T J タジキスタン Tajikistan
	_	United Kingdom	TTトリニダード・トバゴ Trinidad and Tobago
1	GE	グルジア Georgia	□ UA ウクライナ Ukraine
1	V HU	ハンガリー Bungary	▽ US 米型 United States of America
		日本 Japan	***************************************
		アニア Kenya	□ U Z ウズベキスタン lizbekistan
	KG:	キルギスタン 【yrgyzstan	✓ N ヴィエトナム Viet Nam
	V KR.	Republic of Korea	The second secon
	Kz;	ロザフスタン Kazakhstan	下の概は、この様式の施行後に特許協力条約の維約国となった関を指定(国内 特許のために)するためのものである
	_	スリ・ランカ Sri Lanka	✓ MX メキシコ Hexico
	LT!	リトアニア Lithmania	
	<u></u> тил	レクセンブルグ Luxembourg	
	LV	ラトヴィア Latvia	
	MD	ルドバ Republic Moldova	
		•	
-			の指定を除き、特許協力条約の規定
	出版人は、上記の		UNBLE CPRC、TIST IDD/JACK JU/MAC
H	より起のられた。 関人は、これらの	すべての純粋国を規則 4.9(b)の規定に基づき指定する。 が指定が保た日から15月が発達する前に確認されない指定はこの 1000年に対象しません。	時間は空間するときに出類人によって取り下げられたものとすることを重要する ガネカス はやけ 優先日から15月以内に受理官庁に提出されなければならな

·	6								
第4個 優先權主張	他の優先性の	三張が道記憶に記載されている							
下記の先の出願に基づく優先権を主張す	* 5		·						
国 名 (その国において又はその 国について出版がされた)	先の出願の日(日.月.年)	先の出観の委号	先の出類がされた官庁名 (広域出顧又は国際出願のみ)						
(1) 日本国 JAPAN	20.02.95	平成7年特許願 第54977号							
(2) 日本国 JAPAN	21.07.95	平成7年特許願 第207508号							
(3)									
上記の先の出類のうち次の番号の 第2VII本図 国際祭司社会技機	出題は現の認定をを作成し国際事項局へは	は、比較人は、手数料の納付を条件に以下を と付することを特許庁長官に譲求している。 ISA/ <u>JP</u> なしており、可能な現り当該調査の結果を国							
合に記入する。関連する出題(若しくは 国名(又は広域官庁)	学にの可能性に 国際副音機関による調査 国際 国際型文はその他)を既に請求しており、可能な限り当該調査の結果を国際調査の基礎とすることを請求する場合に記入する。関連する出類(若しくはその相訳)文は関連する調査請求を表示することにより当該調査文は請求を特定する: 国名(文は広域官庁)								
第VII相 照合欄		· · · · · · · · · · · · · · · · · · ·	·-· _ · · · · · · · · · · · · · · · · ·						
3. 讀求の範囲 · · · · · · · · · · · · · · · · · · ·	6 枚 1. 別園の配名押印さ 61 枚 2. 図括委任状の写し 6 枚 3. 配名押印(著名)	の説明書 国際事項局のほ された優先複画類 8. 図 新託した後生!	の時付 科に相当する特許印紙を貼付した書面 口座への振込みを証明する書面 物に関する書面 及び/又はアミノ酸を列リスト ディスク)						
要的者とともに公表する団として 第 _	図 を提示する (図面がある場合)							
第以欄 提出者の記	2.14年7								
各人の氏名を記載し、その次に押印する。 藤野清	地ではり資格が明白に表示されてない場	出 表 喜 博							
 1. 国際出願として提出された書類の実際 3. 国際出願として提出された書類を補完 その後期間内に提出されたものの実際 	する書類又は図面であって の受理の日(訂正日)	記入機	2. SD面						
4. 特許協力条約第11条(2)に基づく必	特許協力条約第11条(2)に基づく必要な補完の期間内の受理の日								

1. 国際出類として提出された書類の実際の受理の日	2. 200
3. 国際出願として提出された書類を補完する書類又は図面であって	受理された
その後期間内に提出されたものの実際の受理の日(訂正日)	一 不足図面がある
4. 補作協力条約第11条(2)に基づく必要な補完の期間内の受理の日	
5. 出版人により特定された エ S A ノ J P 8. 図音手数料未込いにつき、回り調査機関に 図表面を選択	
国際事務局記入欄 ————	

記録原本の受理の日 提式PCT/RO/101 (最終用紙) (1994年1月, P版1994年7月5日)

P C T	受理官庁記入欄
手一数 料 計 算 用 紙 顯 書 附 属 書	国際出願者号
出願人又は代理人の書類記号 SNOW-105	受理官庁の日付印
雪印乳業株式会社	
所定の手数料の計算	
1.2. 法第18条第1項第1号の規定による手数料	95,000 FI T+S
3. 国際手数料	
基本手数料 国際出頭に含まれる用紙の枚数 186 枚	
最初の30枚まで 67	,400 д р г
156 × 1,300 = 202 30夜を越える用紙の枚数 用紙1枚の手数料	,800 F b 2
b1及びb2に記入した金額を加算し合計額をBに記入・・	270,200 円 B
指定手数料	
13 × 16,400 = 指定子数料	180,400 F D
(合計が指定手数料の10倍に相当する金額を越えるときは、 Dの中にはその10倍の金額を記入する。)	
B及びDに記入した金額を加算し合計額をIに記入・・・・・・・	450,600 Ħ I
·	
4. 納付すべき手数料の合計 T+S及びIに記入した金額を加算し、合計額を合計に記入	545,600 FI
	숨 計
·	
(注意1) 法第18条第1項第1号の規定による手数料については、特許 (注意2) 国際手数料については、特許庁長官が告示する国際事務局の口 ことにより納付しなければならない。	

送付手数料·調査手数料 95,000円

特許手続上の微生物の寄託の国際的承認 に関するプダペスト条約

下記国際寄託当局によって規則7.1に従い 発行される

原寄託についての受託証

BUDAPEST TREATY ON THE INTERNATIO-NAL RECOGNITION OF THE DEPOSIT OF MICROORCANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

殿

氏名 (名称)

雪印乳業株式会社 生物科学研究所 所長 竹下 保義

寄託者

あて名 ⑦ 329-05

栃木県下都賀郡石橋町大字下石橋字花林

519妥册

0 1 3 HAC	,
. [. 微生物の表示	
(寄託者が付した識別のための表示) pBK/01F10	(受託番号) FERM BP- 5267
[1. 科学的性質及び分類学上の位置	
「	
Ⅲ.受領及び受託	
本国際寄託当局は、平成 7年 6月21日(原寄託日)に受領した	た「闇の敬生物を受託する。
IV. 移管請求の 受 領	
本国際寄託当局は、平成 7年 6月21日(原寄託日)に「閥の歳 そして、平成 7年 10月25日に原寄託よりブダベスト条約に基づく 平成 7年 6月21日に寄託された設工研密寄第 P- 14998	客託への移管請求を受領した。
V. 国際寄託当局	
通商産業省工業技術院生命工学工業	業 技 術 研 究 所
National Institute of Bioscience an 名称: Agency of Industrial Science a 所長大石道夫	
Michio Oiste Ph. D. DIREC あて名: 日本国茨城県つてば東東 丁目1番 1-3. Higashi 1 chome Tsukuba-shi Ibar 305. JAPAN	
	平成 7年 (1995) 10月 25日

明 細 書

新規蛋白質及びその製造方法

技術分野

本発明は、破骨細胞の分化及び/又は成熟を抑制する活性を示す新規な蛋白質、即ち破骨細胞形成抑制因子 (Osteoclastogenesis Inhibitory Factor; OCIF)及びその製造方法に関する。

従来の技術

人の骨は絶えず吸収と再形成を繰り返しているが、この過程で中心的な働きをしている細胞が、骨形成を担当する骨芽細胞と骨吸収を担当する破骨細胞である。これらの細胞が担当している、骨代謝の異常により発生する疾患の代表として、骨粗鬆症が挙げられる。この疾患は、骨芽細胞による骨形成を、破骨細胞による骨吸収が上回ることにより発生する疾患である。この疾患の発生メカニズムについては未だ完全には解明されていないが、この疾患は骨の疼痛を発生し、骨の脆弱化による骨折の原因となる疾患である。高齢人口の増加に伴い、骨折による寝たきり老人の発生の原因となるこの疾患は社会問題にもなっており、その治療薬の開発が急務となっている。このような骨代謝異常による骨量減少症は骨吸収の抑制、骨形成の促進、或いはこれらのバランスの改善により治療することが期待される。

骨形成は、骨形成を担当する細胞の増殖、分化、活性化を促進すること、或いは骨吸収を担当する細胞の増殖、分化、活性化を抑制することにより促進することが期待される。近年、このような活性を有する生理活性蛋白質(サイトカイン)への関心が高まり、精力的な研究が行われている。骨芽細胞の増殖或いは分化を促進するサイトカインとして、線維芽細胞増殖因子ファミリー(fibroblast growth factor; FGF: Rodan S.B. et al., Endocrinology vol. 121, p1917, 1987)、インシュリン様増殖因子ーI(insulin like growth factor-I; IGF-I: Hock J.M.

et al., Endocrinology vol. 122, p254, 1988)、インシュリン様増殖因子-II (IGF-II: McCarthy T. et al., Endocrinology vol.124, p301, 1989)、アクチピンA (Activin A; Centrella M. et al., Mol. Cell. Biol. vol. 11, p250, 1991)、トランスフォーミング増殖因子-β (transforming growth factor-β; Noda M., The Bone, vol. 2, p29, 1988)、バスキュロトロピン (Vasculot ropin; Varonique M. et al., Biochem. Biophys. Res. Commun. vol.199, p380, 1994)、及び異所骨形成因子ファミリー(bone morphogenetic protein; BMP: BMP-2; Yamaguchi, A et al., J. Cell Biol. vol. 113, p682, 1991, 0P-1; Sampath T. K. et al., J. Biol. Chem. vol. 267, p20532, 1992、Knutsen R. et al., Biochem. Biophys. Res. Commun. vol.194, p1352, 1993) 等のサイトカインが報告されている。

一方、破骨細胞形成、即ち破骨細胞の分化及び/又は成熟を抑制するサイトカインとしては、トランスフォーミング増殖因子一β(transforming growth fact or-β; Chenu C. et al., Proc. Natl. Acad. Sci. USA, vol.85, p5683, 1988) やインターロイキンー4(interleukin-4; Kasano K. et al., Bone-Miner., vol. 21, p179, 1993) 等が報告されている。又、破骨細胞による骨吸収を抑制するサイトカインとしては、カルシトニン(calcitonin; Bone-Miner., vol.17, p347, 1992)、マクロファージコロニー刺激因子(macrophage colony-stimulating factor; Hattersley G. et al. J.Cell. Physiol. vol.137, p199, 1988)、インターロイキンー4(Watanabe, K. et al., Biochem. Biophys. Res.Commun.vol. 172, p1035, 1990)、及びインターフェロン-γ(interferon-γ; Gowen M. et al., J. Bone Miner. Res., vol. 1, p469, 1986)等が報告されている。

これらのサイトカインは、その骨形成の促進や骨吸収の抑制作用による骨量減少症の改善剤となることが期待され、インシュリン様増殖因子-I や異所骨形成因子ファミリーのサイトカイン等、上記のサイトカインの一部については骨代謝改善剤として臨床試験が実施されている。又、カルシトニンは、骨粗鬆症の治療薬、疼痛軽減薬として既に市販されている。

現在、骨に関わる疾患の治療及び治療期間の短縮を図る医薬品として、臨床で

は活性型ビタミンD。、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、イプリフラボン、ビタミンK2(メナテトレノン)又はカルシウム製剤等が使用されている。しかし、これらの薬剤を用いた治療法はその効果並びに治療結果において必ずしも満足できるものではなく、これらに代わる新しい治療薬の開発が望まれていた。前述したように、骨代謝は骨形成と骨吸収のバランスによって調節されており、破骨細胞の分化・成熟を抑制するサイトカインは、骨粗鬆症等の骨量減少症の治療薬となることが期待される。

発明の開示

本発明はこのような観点からなされたものであって、新規な破骨細胞形成抑制 因子(OCIF)及びその効率的な製造方法を提供することを課題とする。

本発明者らは、このような現状に鑑み鋭意探索の結果、ヒト胎児肺線維芽細胞 IMR-90 (ATCC寄託-受託番号CCL186)の培養液に破骨細胞形成抑制活性、即ち破骨細胞の分化・成熟を抑制する活性を有する蛋白質OCIFを見出すに至った。

又、細胞培養の担体としてアルミナセラミック片を使用すると本発明の破骨細胞形成抑制因子OCIFを培地中に高濃度に蓄積せしめ、効率よく精製できることを見出した。

さらに、本発明者らは、前記培養液をイオン交換カラム、アフィニティーカラム及び逆相カラムで順次処理して吸着及び溶出をくり返すことによって前記蛋白質OCIFを効率よく精製する方法を確立した。

次に本発明者らは、得られた天然型OCIF蛋白質のアミノ酸配列の情報に基づき、この蛋白質をコードするcDNAのクローニングに成功した。さらに本発明者らは、このcDNAを用いて遺伝子工学的手法により破骨細胞の分化及び/又は成熟抑制活性のある蛋白質を生産する方法を確立するに至った。

本発明は、ヒト胎児肺線維芽細胞に由来し、還元条件下SDS-PAGEにおける分子量が約60kD、非還元条件下SDS-PAGEにおける分子量が約60kD及び約 120kDであり、陽イオン交換体及びヘパリンカラムに親和性を有し、70℃、

10分間又は56℃、30分間の加熱処理により破骨細胞の分化・成熟を抑制する活性が低下し、90℃、10分間の加熱処理により破骨細胞の分化・成熟抑制活性が失われることを特徴とする蛋白質に関する。本発明の蛋白質 O C I F のアミノ酸配列は、既知の破骨細胞形成抑制因子とは明確に相違する。

また、本発明は、ヒト線維芽細胞を培養し、培養液をヘパリンカラム処理し、吸着画分を溶出し、この画分を陽イオン交換カラムにかけ吸着・溶出し、さらにアフィニティーカラム、逆相カラムによって精製して前記蛋白質を採取する、蛋白質OCIFの製造方法に関する。本発明におけるカラム処理は、単に培養液等をヘパリンセファロースカラム等に流下させるものばかりではなく、バッチ法で培養液をヘパリンセファロース等と混合し、カラム処理した場合と同等の効果を奏するものも包含する。本発明で使用されるアフィニティーカラムは、ヘパリンカラム及びブルーカラムが挙げられる。ブルーカラムは、特に好ましくはシバクロンブルーカラムが挙げられる。このシバクロンブルーカラムの充填剤としては、親水性合成高分子を担体とし色素シバクロンブルーF3GAを結合させたものが例示され、このカラムは通常ブルーカラムと呼ばれる。

さらに、本発明は、アルミナセラミック片を担体として使用して細胞培養を行なって効率よく前記蛋白質を製造する方法に関する。

本発明の蛋白質OCIFは、ヒト線維芽細胞の培養液から効率良く且つ高収率で単離精製することができる。この原料からの本発明蛋白質OCIFの単離、精製は、生物試料からの蛋白性物質の精製に汎用される通常の方法を用いて、目的とする蛋白質OCIFの物理的、化学的性質を利用した各種の精製操作に従い実施することができる。この濃縮手段として限外濾過、凍結乾燥、及び塩析等の通常の生化学的処理手段が挙げられる。又、精製手段としては、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、疎水クロマトグラフィー、逆相クロマトグラフィー、調製用電気泳動等を用いた通常の蛋白性物質の精製に利用される各種の手法を組み合わせて用いることができる。特に好ましくは、原料として用いるヒト線維芽細胞としてヒト胎児肺線維芽細胞IMR-90(ATCC-CCL 186)を用いることが望ましい。そして原料とな

るヒト胎児肺線維芽細胞 IMR-90の培養は、ヒト胎児肺線維芽細胞 IMR-90をアルミナセラミック片に付着させ、5%ウシ新生児血清を添加した DMEM培地を培養液として用い、ローラーボトル中で一週間から10日程度静置培養することにより得たものを使用するとよい。又、精製処理を実施する際に界面活性剤として0.1%CHAPS(3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate)を添加して精製を行うのが望ましい。

本発明の蛋白質OCIFは、先ず培養液をヘパリンカラム(ヘパリンーセファロースCL-6B、ファルマシア社)にかけ、2M NaCl を含む10mM Tris-HCl 緩衝液、pH7.5 で溶出させ、ヘパリン吸着性のOCIF画分を得、この画分をQ・陰イオン交換カラム(HiLoad-Q/FF、ファルマシア社)にかけ、その非吸着画分を集めることにより、ヘパリン吸着性で塩基性のOCIF画分として得ることができる。得られたOCIF活性画分はS・陽イオン交換カラム(HiLoad-S/HP、ファルマシア社)、ヘパリンカラム(ヘパリン-5PW、トーソー社)、シバクロンブルーカラム(ブルー-5PW、トーソー社)、逆相カラム(BU-300 C4、パーキンエルマー社)にかけることにより単離・精製することができ、この物質は前述した性質によって特定される。

さらに、本発明は、このようにして得られた天然型OCIF蛋白質のアミノ酸配列に基づいてこの蛋白質をコードするcDNAをクローニングし、このcDNAを用いて遺伝子工学的手法で破骨細胞の分化及び/又は成熟抑制活性のある蛋白質OCIFを得る方法に関する。

即ち、本発明の方法に従って精製したOCIF蛋白質をエンドプロテアーゼ (例えばリシルエンドペプチダーゼ)で処理後、生ずるペプチドのアミノ酸配列 を決定し、得られた内部アミノ酸配列をコードし得るオリゴヌクレオチドの混合 物を作製する。

次に、作製したオリゴヌクレオチド混合物をプライマーとし、PCR法(好ましくはRT-PCR法)を利用してOCIFcDNA断片を取得する。このOCIFcDNA断片をプローブとして、cDNAライブラリーよりOCIFの全長cDNA をクローニングする。得られたOCIFcDNAを発現ベクターに挿入してOCIF発現プラス

ミドを作製し、これを各種の細胞又は菌株に導入して発現させることにより、組換え型OCIFを製造することができる。

本発明はまた、上述の活性を有する本発明OCIF蛋白質の類縁体(バリアント)である新規蛋白質 OCIF2, OCIF3, OCIF4, OCIF5 に関する。

これらの類縁体は、IMR-90細胞のポリ(A)・RNAを用いて作成したcDNAライブラリーをOCIFcDNA断片をプローブとしてハイブリダイズすることによって得られる。これらのOCIF類縁体のcDNAを発現ベクターに挿入し、そのOCIF類縁体発現ベクターを通常の宿主で発現し、常法で精製することにより、目的とする類縁体蛋白質を得ることができる。

又、本発明はOCIF変異体に関する。

これらの変異体はOCIFの二量体形成に関与する可能性のあるCys 残基をSer 残基に置換したもの、又は天然型OCIFに欠失変異を導入したものである。PCR法或いは制限酵素による切断により、OCIFcDNAに置換或いは欠失変異を導入する。このcDNAを適当な発現プロモーターを有したベクターに挿入し、哺乳動物細胞等の真核細胞にトランスフェクトし、この細胞を培養してその培養液から常法により精製することにより、目的とするOCIF変異体が得られる。

又、本発明は抗OCIFポリクローナル抗体、及びそれを用いたOCIFの測定方法に関する。

抗OCIFポリクローナル抗体は、OCIFを免疫原として常法により作製される。この時用いる抗原(免疫原)としては、IMR-90培養液より得られる天然型OCIF、及びOCIFCDNAを用いて微生物や真核細胞を宿主として生産された遺伝子組み換え型OCIF、あるいはOCIFのアミノ酸配列に基づいて設計した合成ペプチドや、OCIFの加水分解部分ペプチドを用いることができる。これらの抗原を用いて、また必要ならば免疫アジュバントを併用して、適当な哺乳動物を免疫し、その血清から常法により精製することにより、抗OCIFポリクローナル抗体を得ることができる。得られた抗OCIFポリクローナル抗体をアイソトープや酵素で標識することにより、ラジオイムノアッセイ(RIA) やエンザイムイムノアッセイ(EIA) の測定系に使用することができる。この測定系を用い

ることにより、血液や腹水などの生体試料や細胞培養液などのOCIF濃度を容易に測定することができる。

又、本発明は抗OCIFモノクローナル抗体、及びそれを用いたOCIFの測定方法に関する。

抗OCIFモノクローナル抗体は、OCIFを免疫原として、常法により作成される。抗原としては、IMR-90培養液より得られる天然型OCIF、及びOCIFCDNAを用いて微生物や真核細胞を宿主として生産された遺伝子組み換え型OCIF、或いはOCIFのアミノ酸配列に基づいて設計した合成ペプチドや、OCIFの加水分解部分ペプチドでもよい。これらの抗原を用いて哺乳動物を免疫するか、或いはインビトロ法により免疫した細胞を、哺乳動物の骨髄腫細胞(ミエローマ)などと融合させハイブリドーマを作製し、このハイブリドーマよりOCIFを認識する抗体を産生するクローンを選択し、このクローンを培養することにより目的とする抗体が得られる。ハイブリドーマの作製にあたっては、哺乳動物を使用する場合、マウスやラットなどの小動物を使用した例が一般的である。免疫は、OCIFを生理食塩水などにより適当な濃度に希釈し、この溶液を静脈内や腹腔内に投与し、これに必要に応じて免疫アジュバントを併用投与し、動物に2-20日毎に2-5 回投与する。このようにして免疫された動物を、解剖し、脾臓を摘出し脾細胞を免疫細胞として使用する。

免疫細胞と細胞融合させるマウス由来のミエローマとしては、例えばP3/x63-Ag8, p3-U1, NS-1, MPC-11, SP-2/0, F0, P3x63Ag8. 653, S194などが例示できる。また、ラット由来の細胞としてはR-210 などの細胞株を例示できる。ヒト型の抗体を生産する場合にはヒトBリンパ球をインビトロ法により免疫し、ヒトミエローマ細胞やEBウイルスにより形質転換した細胞株を親株として使用することによりヒト型の抗体を生産するハイブリドーマを得ることができる。

免疫細胞とミエローマ細胞株の融合は公知の方法、例えばKoehler とMilstein らの方法 (Koehler, G. et al. Nature vol. 256, 495-497, 1975)、或いは電気パルス法などが挙げられる。免疫細胞とミエローマ細胞株は、細胞培養に用いられている培地 (FBS不含) に、通常行われている細胞数の比に混合し、ポリエ

チレングリコールを添加して融合処理を行い、HAT選択培地で培養を行い融合 細胞を選択することができる。

抗OCIF抗体生産株を選別するには、ELISA法、プラーク法、オクタロニー法、凝集法など、通常の抗体検出に使用されている方法を用いて選択することができる。このようにして選別されたハイブリドーマは、通常の培養方法により継代培養可能であり、必要に応じて凍結保存できる。ハイブリドーマを常法により培養するか、または哺乳動物の腹腔内に移植することにより、抗体を生産することができる。抗体は塩析、ゲル濾過やアフィニティークロマトグラフィーなどの通常の方法により精製できる。

得られた抗体はOCIFに特異的に反応し、OCIFの測定や精製に使用できる。OCIFの測定に使用する場合は、抗体をアイソトープや酵素によりラベルすることにより、ラジオイムノアッセイ(RIA) やエンザイムイムノアッセイ(EIA) の測定系に使用することができる。特に本発明により得られる抗体は、その抗原認識部位がそれぞれ異なっているので、サンドイッチイムノアッセイに使用することができるという特徴を有する。この測定系を用いることにより、血液や腹水などの生体試料や細胞培養液などのOCIF濃度を容易に測定することができる。

OCIF活性は、久米川正好らの方法(蛋白質・核酸・酵素, Vol.34, p999 (1989))及びTakahashi N. et al. の方法 (Endocrinology, Vol.122, p1373 (1988))に従い測定することができる。即ち、生後約17日のマウス骨髄細胞を標的細胞として用い、活性型ビタミンD₃(Calcitriol)存在下での破骨細胞の形成抑制を、酒石酸耐性酸性ホスファターゼ活性の誘導の抑制で試験することができる。

本発明の蛋白質である破骨細胞形成抑制因子OCIFは、骨粗鬆症等の骨量減少症、リウマチ又は変形性関節症等の骨代謝異常疾患、或いは多発性骨髄腫等の骨代謝異常疾患の治療及び改善を目的とした医薬組成物として、或いはこのような疾患の免疫学的診断を確立するための抗原として有用である。本発明の蛋白質は、製剤化して経口或いは非経口的に投与することができる。即ち、本発明の蛋

白質を含む製剤は、破骨細胞形成抑制因子OCIFを有効成分として含む医薬組成物としてヒト及び動物に対して安全に投与されるものである。

医薬組成物の形態としては、注射用組成物、点滴用組成物、坐剤、経鼻剤、舌下剤、経皮吸収剤等が挙げられる。注射用組成物の場合は、本発明の破骨細胞形成抑制因子の薬理学的有効量及び製薬学的に許容しうる担体の混合物であり、その中にはアミノ酸、糖類、セルロース誘導体、及びその他の有機/無機化合物等の一般的に注射用組成物に添加される賦形剤/賦活剤を用いることもできる。又、本発明の破骨細胞形成抑制因子OCIFとこれらの賦形剤/賦活剤を用い注射剤を調製する場合は、必要に応じてpH調整剤、緩衝剤、安定化剤、可溶化剤等を添加して常法によって各種注射剤とすることができる。

図面の簡単な説明

第1図は、 HiLoad-Q/FF 非吸着画分粗精製製品(試料3)をHiLoad-S/HP カラムにかけた時の溶出プロファイルを示す。

第2図は、ヘパリン-5PW粗精製製品(試料5)をブルー-5PWカラムにかけた時の溶出プロファイルを示す。

第3図は、ブルー-5PW溶出フラクション49~50を逆相カラムにかけた時の溶出 プロファイルを示す。

第4図は、最終精製品の還元条件下と非還元条件下におけるSDS-PAGE の結果を示す。

符号の説明

レーン1、4;分子量マーカー

レーン2、5;ピーク6

レーン3、6;ピーク7

第5図は、還元ピリジルエチル化後、リシルエンドプロテアーゼ処理したピーク7を逆相カラムにかけた時の溶出プロファイルを示す。

第6図は、天然(n)及び組み換え型(r)OCIFの、非還元条件下におけるSDS-PAGEの結果を示す。又、(E)は293/EBNA細胞で生産したものを、

(C) はCHO細胞で生産したものをそれぞれ示す。

符号の説明

レーン1;分子量マーカー

レーン2;モノマー型nOCIF

レーン3;ダイマー型nOCIF

レーン4;モノマー型rOCIF(E)

レーン5;ダイマー型 r O C I F (E)

レーン6;モノマー型rOCIF(C)

レーン7;ダイマー型rOCIF(C)

第7図は、天然型 (n) 及び組み換え型 (r) OCIFの、還元条件下におけるSDS-PAGEの結果を示す。又、(E) は293/EBNA細胞で生産したものを、(C) CHO細胞で生産したものをそれぞれ示す。

符号の説明

レーン8;分子量マーカー

レーン9;モノマー型nOCIF

レーン10;ダイマー型nOCIF

レーン11;モノマー型rOCIF(E)

レーン12;ダイマー型 r O C I F (E)

レーン13;モノマー型rOCIF(C)

レーン14;ダイマー型rOCIF(C)

第8図は、N-結合型糖鎖を除去した天然型(n) 及び組み換え型(r) OCIFの、還元条件下におけるSDS-PAGEの結果を示す。又、(E) は293/EBNA細胞で生産したものを、(C) はCHO細胞で生産したものをそれぞれ示す。

符号の説明

レーン15;分子量マーカー

レーン16;モノマー型nOCIF

レーン17;ダイマー型nOCIF

レーン18;モノマー型rOCIF(E)

レーン19;ダイマー型rOCIF(E)

レーン20;モノマー型rOCIF(C)

レーン21;ダイマー型rOCIF(C)

第9図は、OCIFとOCIF2の、アミノ酸配列の比較を示す。

第10図は、OCIFとOCIF3の、アミノ酸配列の比較を示す。

第11図は、OCIFとOCIF4の、アミノ酸配列の比較を示す。

第12図は、OCIFとOCIF5の、アミノ酸配列の比較を示す。

第13図は、抗OCIFポリクローナル抗体を用いた時の、OCIFの検量線を示す。

第14図は、抗OCIFモノクローナル抗体を用いた時の、OCIFの検量線を示す。

第15図は、OCIFの骨粗鬆症に対する治療効果を示す。

発明を実施するための最良の形態

以下に実施例を挙げて本発明をさらに詳しく説明する。しかしこれらは単に例 示するのみであり、本発明はこれらにより限定されるものではない。

〔実施例1〕

ヒト線維芽細胞IMR-90培養液の調製

ヒト胎児肺線維芽細胞 I M R - 90 (ATCC-CCL186) は、ローラーボトル(490cm²、110 ×171mm、コーニング社)中で80gのアルミナセラミック片(アルミナ99.5%、東芝セラミック社)に付着させ培養した。培養には60個のローラーボトルを使用し、ローラーボトル1個当たり5%子牛血清を添加した10mMHEPES緩衝液添加DMEM培地(ギブコBRL社)500mlを用い、37℃、5%C0₂存在下で7~10日間静置培養した。培養後培養液を回収し、新たな培地を添加することにより1回の培養で301のIMR-90培養液を得た。得られた培養液を試料1とした。

〔実施例2〕

破骨細胞形成抑制活性の測定法

本発明の蛋白性破骨細胞形成抑制因子の活性測定は久米川正好らの方法(蛋白 質・核酸・酵素 Vol.34 p999(1989)) 及びTakahashi N. et al. の方法(Endocri nology vol.122 p1373 (1988))に従い測定した。即ち、生後約17日のマウスより 分離した骨髄細胞を用い、活性型ビタミンD。存在下での破骨細胞形成を酒石酸 耐性酸性ホスファターゼ活性の誘導を指標として試験し、その抑制活性を測定す ることによって行った。即ち、96ウェルマイクロプレートに2×10-8M活性型ビ タミンD。及び10%牛胎児血清を含むα-MEM培地(ギブコΒRL社)で希釈 したサンプル 100 µ 1を入れ、生後約17日のマウスから得た骨髄細胞 3 × 105 個を 100 μ1 の10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5%CO2、 37℃、湿度 100%にて一週間培養した。培養3日目と5日目に、培養液 160 μ l を廃棄し、 $1 \times 10^{-8} M$ 活性型ビタミンD₃及び10%牛胎児血清を含む $\alpha - MEM$ 培地で希釈したサンプル 160 μ 1 を添加した。培養7日後にリン酸塩緩衝生理食 塩水で洗浄した後エタノール/アセトン(1:1)溶液で細胞を室温にて1分間 固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte 、カタログNo.387-A、シグマ社)を用いた染色で検出した。酒石酸存 在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。

〔実施例3〕

OCIFの精製

i) ヘパリン・セファロースCL-6Bによる精製

約901のIMR-90培養液(試料1)を、 $0.22 \mu m$ のフィルター(親水性ミリディスク、 $2,000 cm^2$ 、ミリポア社)で濾過した後、3回に分けて 0.3 M NaClを含む10mM Tris-HC1 緩衝液(以下、Tris-HClという)、pH7.5 で平衡化させたヘパリン・セファロースCL-6B カラム($5 \times 4.1 cm$ 、ゲル容量80ml)にかけた。流速500 ml/hrにて、10 mM Tris-HCl、pH7.5 で洗浄した後、2 M NaCl を含む10 mM Tris-HCl、pH7.5で溶出を行い、ヘパリン・セファロースCL-6B 吸着画分900 ml を得、得られた画分を試料2 とした。

ii) Hi Load-Q/FFによる精製

ヘパリン・セファロース吸着画分(試料2)を 10mM Tris-HC1、pH7.5 に対し

て透析した後、0.1 %になるようにCHAPSを加え 4 C で一晩放置したものを、2 回に分けて0.1 % CHAPSを含む 50 mM Tris-HCl、pH7.5 で平衡化した陰イオン交換カラム(HiLoad-Q/FF、2.6 $\times 10$ cm、ファルマシア社)にかけ、非吸着 画分1000 mlを得た。得られた画分を試料 3 とした。

iii) HiLoad-S/HPによる精製

HiLoad - Q非吸着画分(試料 3)を、0.1 % C H A P S を含む 50 mM Tris-HCl, pH7.5 で平衡化した陽イオン交換カラム (HiLoad-S/HP、 2.6×10 cm、ファルマシア社)にかけた。0.1 % C H A P S を含む 50 mM Tris-HCl, pH7.5 で洗浄した後、100 分間でNaClを 1 M にする直線勾配、流速8m1/分にて溶出を行い、12 m1/フラクションにて分取を行った。フラクション $1\sim 40$ を 10 フラクション つつ の 回分にまとめ、それぞれ 100 μ 1 を用いて 0 C 1 F 活性を測定した。0 C 1 F 活性はフラクション $11\sim 30$ に認められた(図 1 : 図中、++ は破骨細胞形成が 80 %以上抑制される活性を、+ は破骨細胞形成が $30\sim 80$ % 抑制される活性を、- は活性が検出されないことをそれぞれ示す)。より比活性の高いフラクション $21\sim 30$ を試料 4 とした。

iv) アフィニティーカラム (ヘパリン-5 PW) による精製

120ml の試料 4 を 240ml の 0.1 % C H A P S を 6 む 50mM Tris-HCl, pH7.5で希釈した後、0.1 % C H A P S を 6 む 50mM Tris-HCl, pH7.5で平衡化したアフィニティーカラム(へパリン-5 PW、0.8 × 7.5 cm、h-y-社)にかけた。0.1 % C H A P S を 6 む 50mM Tris-HCl, pH7.5で洗浄した後、60 分間でNaClを 2 Mにする直線勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。各フラクション 50μ lを用いて O C I F 活性を測定し、約0.7 ~1.3M NaClで溶出される O C I F 活性画分10mlを得、試料 5 とした。

<u>v) アフィニティーカラム (ブルー-5 P W) による精製</u>

10m1の試料 5 を 190m1の0.1 % C H A P Sを含む50mM Tris-HCl, pH7.5で希釈した後、0.1 % C H A P Sを含む50mM Tris-HCl, pH7.5で平衡化したアフィニティーカラム (ブルー-5PW、0.5 ×5.0cm、トーソー社) にかけた。0.1 % C H A P Sを含む50mM Tris-HCl, pH7.5で洗浄した後、60分間でNaClを 2 M にする直線

勾配、流速0.5m1/分にて溶出を行い、0.5m1/フラクションにて分取を行った。各フラクション 25μ 1を用いてOCIF活性を測定し、約 $1.0 \sim 1.6m$ NaC1で溶出されるOCIF活性フラクション $49\sim70$ を得た(図 2 図中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が $30\sim80\%$ 抑制される活性を示す)。

vi) 逆相カラムによる精製

得られたフラクション49~50m1に、 $10 \mu 1$ の25%TFA(トリフルオロ酢酸)を加えた後、0.1 %TFAを含む25%アセトニトリルで平衡化した逆相カラム(BU-300 、C4、2.1 ×220mm 、パーキンエルマー社)にかけ、60分間でアセトニトリルを55%にする直線勾配、流速0.2m1/分にて溶出を行い、各ピークを分取した(図3)。各ピークフラクションの $100 \mu 1$ を用いてOCIF活性を測定し、ピーク6及びピーク7に濃度依存的に活性を検出した。結果を表1に示す。

希釈率	1/40	120	1/360	1/1080
ピーク 6	++	++	+	— ,
ピーク7	++	+	_	_

第1表 逆相カラムから溶出されたOCIF活性

(表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30~80%抑制される活性を、-は活性が検出されないことを示す。)

〔実施例 4 〕

OCIFの分子量測定

OCIF活性の認められたピーク 6 及びピーク 7 各 40μ 1 を用い、還元条件下と非還元条件下でSDSーポリアクリルアミドゲル電気泳動を行った。即ち、各ピークフラクション 20μ 1 づつを 2 本のチューブに分取し減圧濃縮した後、 1 mM EDTA、 2.5 %SDS、及び0.01%プロモフェノールブルーを含む10 mM TrisHC1, pH8 1.5μ 1 で溶解し、それぞれを非還元条件下及び還元条件下(5% $2-4 \mu$ 2 アントエタノール存在下)で37 %で一晩放置後、それぞれの 1μ 1 を SDS

ーポリアクリルアミドゲル電気泳動に負荷した。電気泳動は10-15%アクリルアミドのグラジェントゲル(ファルマシア社)を使用し、電気泳動装置 $Phast\ System\ (ファルマシア社)$ を用いて行った。分子量マーカーとして、ホスホリラーゼ b (94kD)、ウシ血清アルブミン(67kD)、オボアルブミン(43kD)、カルボニックアンヒドラーゼ(30kD)、トリプシンインヒビター(20.0kD)、 α ーラクトアルブミン(14.4kD)を用いた。電気泳動終了後、 $Phast\ Gel\ Silver\ Stain\ Kit (ファルマシア社)を用いて銀染色を行った。結果を図 <math>4$ に示す。

その結果、ピーク6については還元条件下、非還元条件下で約60kDの蛋白質のバンドが検出された。又、ピーク7については、還元条件下で約60kD、非還元条件下で約120kDaの蛋白質のバンドが検出された。従って、ピーク7はピーク6の蛋白質のホモダイマーであると考えられる。

〔実施例5〕

OCIFの熱安定性試験

ブルー5 PWフラクション51~52を混合したサンプルから20μ1ずつを取り、10mMリン酸塩緩衝生理食塩水、pH7.2 30μ1を加えた後、70℃及び90℃にて10分間、又は56℃にて30分間熱処理を行った。このサンプルを用い、実施例2記載の方法に従いOCIF活性を測定した。結果を表2に示す。

希 釈 率	1/300	1/900	1/2700	
未処理	++	+	 ,	
70℃10分	+	. _		
56℃30分	+	_		
90℃10分	_	-	_	
	•			

第2表 OCIFの熱安定性

(表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30~80%抑制される活性を、-は活性が検出されないことを示す。)

〔実施例6〕

内部アミノ酸配列の決定

ブルー-5 PWフラクション51~70について、2フラクションづつを混合して 1 mlとし、それぞれの試料に10 u l の25%TFAを加えた後、1 mlずつ10回にわ けて0.1 %TFAを含む25%アセトニトリルで平衡化した逆相カラム (BU-300、 C4、2.1×220mm 、パーキンエルマー社)にかけ、60分間でアセトニトリルを55% にする直線勾配、流速 0.2 m1/分にて溶出を行い、ピーク6とピーク7を集めた。 得られたピーク6とピーク7の一部について、それぞれプロテインシーケンサー (プロサイス、494 型、パーキンエルマー社)を用い、N末端アミノ酸配列分析 を行ったが、分析不能でありこれらの蛋白質のN末端はブロックされている可能 性が示唆された。そこで、これらの蛋白質の内部アミノ酸配列を解析した。即ち、 ピーク6とピーク7のそれぞれを遠心濃縮した後、それぞれに 100 µg ジチオス レイトール、10mM EDTA、7M塩酸グアニジン、及び1%CHAPSを含む 0.5M Tris-HC1, pH8.5 50μ1 を加えて室温で4時間放置し還元した後、0.2μ1 の4-ビニルピリジンを加え、室温暗所で一晩放置しピリジルエチル化した。こ れらのサンプルに1µ1の25%TFAを加え、0.1%TFAを含む20%アセト ニトリルで平衡化した逆相カラム(BU-300, C4, 2.1×30mm, パーキンエルマー社) にかけ、30分間でアセトニトリル濃度を50%にする直線勾配、流速0.3 ml/分で 溶出を行い、還元ピリジルエチル化OCIFサンプルを得た。還元ピリジルエチ ル化したサンプルのそれぞれを遠心濃縮し、8M尿素及び0.1% Tween80を含む0.1M Tris-HCl, pH9 25 μ1 で溶解した後、73μ1 の0.1M Tris-HCl, pH9 で希釈し、 0.02 µg のAP1 (リシルエンドプロテアーゼ、和光純薬社)を加え、37℃で15 時間反応させた。反応液に 1 µ 1 の 25% T F A を加え、 0.1 % T F A で平衡化し た逆相カラム(RP-300, C8, 2.1×220mm 、パーキンエルマー社)にかけ、70分間 でアセトニトリル濃度を50%にする直線勾配、流速0.2 m1/分で溶出を行い、ペ プチドフラグメントを得た(図5)。得られたペプチドフラグメント(P1~P3) について、プロテインシーケンサーを用いアミノ酸配列分析を行った。結果を配 列表 配列番号1~3に示す。

〔実施例7〕

c DNA配列の決定

i) IMR-90細胞からのポリ(A) * RNA の単離

IMR-90細胞のポリ(A) † RNA は、ファストトラックmRNAアイソレーションキット(インヴィトロージェン社) を用い、そのマニュアルに準じて単離した。この方法により1X10[®] 個のIMR-90細胞より約10μg のポリ(A) † RNA を取得した。

ii)ミックスプライマーの作製

先に得られたペプチド(配列表 配列番号 2 及び 3)のアミノ酸配列をもとに、次の 2 種のミックスプライマーを合成した。即ち、ペプチド P 2 (配列番号 2 のペプチド)の 6 番目 (Gln) から 1 2 番目 (Leu) までのアミノ酸配列をコードしうるすべての塩基配列を持つオリゴヌクレオチドの混合物(ミックスプライマー, No.2F)を合成した。又、ペプチド P 3 (配列番号 3 のペプチド)の 6 番目 (His) から 1 2 番目 (Lys) までのアミノ酸配列をコードしうるすべての塩基配列に対する相補的オリゴヌクレオチドの混合物(ミックスプライマー, No.3R)を合成した。用いたミックスプライマーの塩基配列を、表 3 に示す。

第3表

iii) OCIFcDNA断片のPCR による増幅

実施例7-i)で得たポリ(A) * RNA、1 μg を鋳型としてスーパースクリプト IIcDNA合成キット(ギブコBRL社)を用いて、同社のプロトコールに従っ

て一本鎖 c D N A を合成し、この c D N A と実施例 7 - ii) で示したプライマーを用いて、P C R を行い、OCIFc DNA断片を取得した。以下に条件を示す。

10X Ex Taqバッファー (宝酒造社)) 5	μ 1
2.5 mM dNTP	4	µ 1
cDNA溶液	1	µ 1
Ex Taq (宝酒造社)	0.25	μI
蒸留水	29.75	μ1
40μM プライマーNo.2F	5	# 1
40μM プライマーNo.3R	5	μ1

上記の溶液を微量遠心チューブ中で混合後、以下の条件でPCRを行った。95 \mathbb{C} で3 分前処理後、95 \mathbb{C} 30秒、50 \mathbb{C} 30秒、70 \mathbb{C} 2 分の3 段階の反応を30回繰り返したのち、70 \mathbb{C} 5 分保温した。反応液の一部をアガロース電気泳動し約400 \mathbb{D} の均一な \mathbb{D} N A 断片が得られたことを確認した。

〔実施例8〕

PCR により増幅されたOCIFcDNA断片のクローニング及び塩基配列決定

実施例 7-iii)で得られたOCIFcDNA断片を、Marchuk、Dらの方法(Nucleic Acid Res., Vol.19, pl154, 1991) によってプラスミドpBluescript II SK^- (ストラタジーン社) にDNAライゲーションキット Ver.2 (宝酒造社) を用いて挿入し、大腸菌 DH5 α (ギブコBRL社) の形質転換を行った。得られた形質転換株を増殖させ、約 400bpのOCIFcDNA断片が挿入されたプラスミドを常法に従い精製した。このプラスミドをpBSOCIF と名付け、このプラスミドに挿入されているOCIFcDNAの塩基配列をタックダイデオキシターミネーターサイクルシークエンシングキット(Taq Dye Deoxy Terminator Cycle Sequencing kit; パーキンエルマー社)を用いて決定した。このOCIFcDNAの大きさは、397 bpであった。この塩基配列から予測される132 個のアミノ酸からなるアミノ酸配列(配列表配列番号 2及び3)をそれぞれN末側、C末側に見出すことができた。又、OCIFの内部アミノ酸配列(配列番号 1)を、この 132個のアミノ酸からなるアミノ酸配列中に

見出すことができた。以上の結果より、クローニングした397 bpの c D N A は、OCIFcDNA断片であることが確認された。

〔実施例9〕

DNAプローブの作製

実施例 8 で作成された397bp のOCIFcDNA断片が挿入されたプラスミドを鋳型にして実施例 7 - iii)の条件で P C R を行なうことにより、このOCIFcDNA断片を増幅した。アガロース電気泳動により397bp のOCIFcDNA断片を分離後、Q I A E X ゲルエクストラクションキット (キアゲン社)を用いて精製した。この D N A をメガプライム D N A ラベリングキット (アマシャム社)を用いて [α ³²P]dCT P で標識し、全長のOCIFcDNAをスクリーニングするためのプローブとして用いた。 [実施例 1 0]

cDNAライプラリーの作成

実施例7-i)で得られたポリ(A) * RNA 、 $2.5~\mu$ g を鋳型としてグレートレングス c D N A 合成キット (クロンテック社) を用いて同社のプロトコールに従い、oligo(dT)primer を用いて c D N A の合成、EcoRI-SaII-Not-Iアダプター付加、 c D N A サイズフラクショネーションを行いエタノール沈殿の後 $10~\mu$ l の $10~\mu$ l がったるらかじめ $10~\mu$ l で切断した $1~\mu$ g の $10~\mu$ l を $10~\mu$ l で切断した $1~\mu$ g の $10~\mu$ l を $10~\mu$ l に挿入した。このようにして得られた c D N A 組み換えファージDNA 溶液をギガパックゴールドII (ストラタジーン社) を用いてインヴィトロパッケージング反応に供し、 $10~\mu$ l なるアエクスプレス組み換えファージを作成した。

〔実施例11〕

組み換えファージのスクリーニング

実施例10で得られた組み換えファージを37℃で15分間大腸菌 XL1-Blue MRF' (ストラタジーン社) に感染させたのち、50℃に加温した0.7 %の寒天を含むNZ Y 培地に添加し、NZY 寒天培地プレートに流しこんだ。37℃で一晩培養後、プラークの生じたプレート上にハイボンドN (アマシャム社) を約30秒密着させた。

このフィルターを常法に従いアルカリ変性の後、中和し、2XSSC 溶液に浸したの ちUVクロスリンク(ストラタジーン社)によりDNA をフィルターに固定化した。 得られたフィルターを100 μg/mlのサケ精子DNA を含むハイブリダイゼーション バッファー(アマシャム社)に浸漬し65℃で4時間前処理した後、熱変性した上 記DNA プローブ(2X105cpm/m1) を添加した上記バッファーに移し替え65℃で一晩 ハイブリダイゼーションを行った。反応後フィルターを2XSSC で2 回、0.1XSSC, 0.1% SDS溶液で2回それぞれ65℃で10分間洗浄した。得られたいくつかの陽性ク ローンを、さらに2回スクリーニングを行うことにより純化した。それらの中か ら約1.6kb のインサートを持つものを以下に用いた。この純化したファージを λ OCIFと名付けた。純化した AOCIFを AZAP エクスプレスクローニングキット (ス トラタジーン社)のプロトコールに従い、大腸菌XL1-Blue MRF'に感染させたの ち、ヘルパーファージExAssist(ストラタジーン社)で多重感染を行い、その培 養上清を大腸菌XLOLR(ストラタジーン社) に感染させたのちカナマイシン耐性株 を拾うことによりpBKCMV(ストラタジーン社)に上述の1.6kb のインサートが挿 入されたプラスミドpBKOCIF をもつ形質転換株を得た。この形質転換株はpBK/01 F10 として、通商産業省工業技術院生命工学工業技術研究所に受託番号FERM BP-5267(平成7年10月25日にFERM P-14998の原寄託よりプタペスト条約に基づく寄 託に移管)として寄託してある。このプラスミドをもつ形質転換株を増殖させ、 常法によりプラスミドを精製した。

〔実施例12〕

OCIFの全アミノ酸配列をコードするcDNAの塩基配列の決定

実施例11で得られたOCIFcDNAの塩基配列をタックダイデオキシターミネーターサイクルシークエンシングキット(パーキンエルマー社)を用いて決定した。用いたプライマーはT3, T7 プライマー(ストラタジーン社)及びOCIFcDNAの塩基配列に基づいて設計された合成プライマーであり、その配列を配列表配列番号16~29に示す。

決定されたOCIFの塩基配列を配列番号6に、その配列から推定されるアミノ酸配列を配列番号5にそれぞれ示す。

[実施例13]

293/EBNA細胞による組み換え型OCIFの生産

i) OCIFcDNAの発現プラスミドの作製

実施例11で得られた約1.6kb のOCIFCDNAが挿入されたプラスミドpBKOCIF を制限酵素BamHI 及びXhoIで消化し、OCIFCDNAを切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。このOCIFCDNAを、あらかじめ制限酵素BamHI 及びXhoIで消化しておいた発現プラスミドpCEP4 (インヴィトロージェン社) に、ライゲーションキット Ver.2 (宝酒造社) を用いて挿入し、大腸菌DH5 α (ギブコBRL社) の形質転換を行った。得られた形質転換株を増殖させ、OCIFCDNAが挿入された発現プラスミドpCEPOCIFをキアゲンカラム(キアゲン社)を用いて精製した。OCIF 発現プラスミドpCEPOCIFをエタノールによって沈澱させた後、無菌蒸留水に溶解し以下の操作に用いた。

ii) OCIFcDNAのトランジエントな発現及びその活性の測定

実施例 $1 \ 3 - i$) で得られた O C I F 発現プラスミド pCEPOCIFを用いて、以下に述べる方法で組み換え O C I F を発現させ、その活性を測定した。 8×10^5 個の 293/EBNA 細胞(インヴィトロージェン社)を 6 ウェルプレートの各ウェルに 10% 牛胎児血清(ギブコ B R L 社)を含む I M D M 培地(ギブコ B R L 社)を用いて植え込み、翌日、培地を除いた後、無血清 I M D M 培地で細胞を洗った。トランスフェクション用試薬リポフェクタミン(ギブコ B R L 社) 添付のプロトコールに従い、あらかじめ O P T I - M E M 培地(ギブコ B R L 社)を用いて希釈しておいた pCEPOCIF とリポフェクタミンを混合した後、この混合液を各ウェルの細胞に加えた。 用いた pCEPOCIF 及びリポフェクタミンの量はそれぞれ $3 \mu g$ 及び $12 \mu I$ であった。 3 8 時間後、培地を除き $1 \mu I$ の新しい O P T I - M E M 培地を加え、さらに 3 0 時間後、培地を除き $1 \mu I$ の新しい O P T I - M E M 培地を加え、さらに $3 \mu I$ の活性測定は以下のようにして行った。生後約 $1 \mu I$ での活性測定は以下のようにして行った。生後約 $1 \mu I$ のマウス 骨髄細胞からの活性型ビタミン D。存在下での破骨細胞形成を酒石酸耐性酸性ホスファターゼ活性の誘導で試験し、その抑制活性を測定し、O C I F の活性とした。すなわ

ち、96ウェルマイクロプレートに 2×10-8M活性型ビタミン D。及び10%牛胎児血清を含むα-MEM培地(ギブコBRL社)で希釈したサンプル 100μ1 を入れ、生後約17日のマウス骨髄細胞 3×10⁵ 個を 100μ1 の10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5% CO₂、37℃、湿度 100%にて一週間培養した。培養3日目と5日目に、培養液 160μ1 を廃棄し、1×10-8M活性型ビタミン D。及び10%牛胎児血清を含むα-MEM培地で希釈したサンプル 160μ1を添加した。培養7日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール/アセトン(1:1)溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログ No.387-A、シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。その結果、表4に示すように、先にIMR-90の培養液から得られた天然型OCIFと同様の活性をこの培養液が有することが確認された。

第4表 293/EBNA細胞で発現させた培養液中のOCIF活性

1/20	1/40	1/80	1/160	1/320	1/640	1/1280
					İ	
++	++	++	++	++	+	_
_	_		_	_		_
_	_	_		-		
						1720 1740 1750 2720

(表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30~80%抑制される活性を、-は活性が検出されないことを示す。)

iii) 293/EBNA細胞由来組み換え型OCIFの精製

実施例13-ii)に記載した293/EBNA細胞を大量培養して得た培養液1.81 に0.1%になるようにCHAPSを加え、 $0.22\,\mu$ mのフィルター(ステリベックスGS、ミリポア社)で濾過した後、10mM Tris-HCl, pH7.5で平衡化させた50mlのヘパリン・セファロースCL-6Bカラム(2.6×10 cm、ファルマシア社)にか

けた。0.1~% C H A P S を含む10mMTris-HCl, pH7.5 で洗浄した後、100~%間で NaClを2Mにする直線勾配、流速4ml/分にて溶出を行い、8ml/フラクションにて分取を行った。各フラクション $150~\mu$ l を用いて実施例2の方法に従ってO C I F 活性を測定し、約 $0.6\sim1.2$ M NaCl で溶出されるO C I F 活性画分112mlを得た。

得られたOCIF活性画分 112mlを0.1 %CHAPSを含む 10mM Tris-HC1, pH7.5 で1000mlに希釈した後、0.1 %CHAPSを含む 10mM Tris-HC1, pH7.5 で平衡化させたアフィニティカラム(ヘパリン -5PW, 0.8×7.5 cm、トーソー社)にかけた。0.1 %CHAPSを含む 10mM Tris-HC1, pH7.5 で洗浄した後、60分間でNaClを2Mにする直線勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。

得られたフラクション各 $4 \mu 1$ を用いて実施例 4 の方法に従って還元及び非還元条件下でSDSーポリアクリルアミドゲル電気泳動を行った。その結果、フラクション $30\sim32$ には還元条件下で約60kD、非還元条件下で約60kDと約 120kDのOCIFバンドのみが検出されたので、フラクション $30\sim32$ を集め純化293/EBNA細胞由来組み換え型OCIF(rocif(E)) 画分とした。BSAをスタンダードとして用いたローリー法による蛋白定量の結果、 $535 \mu g/m1$ のrocif(E)1.5m1が得られたことが明らかになった。

〔実施例14〕

CHO細胞による組み換え型OCIFの生産

i) OCIFの発現プラスミドの作製

実施例 1 1 で得られた約1.6kb の0CIFcDNAが挿入されたプラスミドpBKOCIF を制限酵素SaII及びEcoRV で消化し、約1.4kb の0CIFcDNA断片を切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。又、発現ベクターpcDL-SR α 296 (Molecular and Cellular Biology, Vol.8, pp466-472, 1988) を制限酵素PstI及びKpnIで消化し、約3.4kb の発現ベクターDNA 断片をアガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。IAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。IAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。IAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。IAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。IAEX

NAプランティングキット(宝酒造社)を用いて、これらの精製したOCIFcDNA断片と発現ベクターDNA断片の末端を平滑化した。次に、ライゲーションキット Ver.2 (宝酒造社)を用いて、平滑化された発現ベクターDNA断片にOCIFcDNA 断片を挿入し、大腸菌DH5 α (ギプコBRL社)の形質転換を行い、OCIF 発現プラスミドpSR α OCIFをもつ形質転換株を得た。

ii) 発現プラスミドの調製

実施例 $1 \ 3 - i$) で得られたOCIF発現プラスミドpSR α OCIFをもつ形質 転換株及びWO92/01053号公報に示されるマウスDHFR遺伝子発現プラスミド pBAdDSV をもつ形質転換株をそれぞれ常法を用いて増殖させ、Maniatisら(Mole cular cloning, 2nd edition)の方法に従いアルカリ法及びポリエチレングリコール法で処理し、塩化セシウム密度勾配遠心法により精製した。

iii) CHOdhFr⁻ 細胞の蛋白質不含培地への馴化

10%牛胎児血清(ギブコBRL社)を含むIMDM培地(ギブコBRL社)で継代されていたCHOdhFr⁻ 細胞(ATCC-CRL9096)は、無血清培地 EX-CELL301 (JRHバイオサイエンス社)で馴化後、さらに蛋白質不含培地EX-CELL PF CHO (JRHバイオサイエンス社)で馴化させた。

<u>iv)OCIF発現プラスミド及びDHFR発現プラスミドのCHOdhFr⁻ 細胞</u>への導入

養した。EX-CELL PF CHO培地を用いて5000cells/wellの濃度で96ウェルマイクロプレートにまき、約2週間培養した。EX-CELL PF CHO培地を核酸は含まず、この培地では親株のCHOdhFr⁻ は増殖できないので、DHFRを発現する細胞株だけが選択されてくる。OCIF発現プラスミドをDHFR発現プラスミドの10倍量用いているので、DHFRを発現する細胞株の大部分はOCIFを発現する。得られたDHFRを発現する細胞株から培養上清中のOCIF活性の高い細胞株を、実施例2で示した測定法によってスクリーニングした。得られたOCIF高生産株につきEX-CELL PF CHO培地を用いて限界希釈法により細胞のクローニングを行い、得られたクローンについて培養上清中のOCIF活性の高い細胞株をスクリーニングし、OCIF高生産クローン5561を得た。

v) 組み換え型OCIFの生産

組み換えOCIF(rOCIF) の生産するため、EX-CELL 301 培地31に形質転換CHO細胞(5561)を 1×10^5 cells/ml となるように接種し、スピナーフラスコを用いて37℃で4、5日培養した。細胞の濃度が約 1×10^6 cells/ml になったところで、約2.71の培地を回収した。約2.71のEX-CELL 301 培地を加え、培養を繰り返した。3基のスピナーフラスコを用い、約201 の培養液を採取した。

vi)CHO細胞由来組み換え型OCIFの精製

実施例 14-(v) で得られた培養液 11 に 0.1 %になるように C HAPSを加え、 $0.22\,\mu$ m のフィルター(ステリベックス G S、ミリポア社)で濾過した後、 $10\,m$ M Tris-HCl, pH7.5で平衡化させた $50\,m$ lのヘパリン・セファロース F F カラム($2.6\times10\,c$ m、ファルマシア社)にかけた。0.1% C HAPSを含む $10\,m$ M Tris-HCl, pH7.5 で洗浄した後、100 分間で $10\,m$ Clを $10\,m$ Cle $10\,m$

得られたOCIF活性画分 112mlを0.1 %CHAPSを含む 10mM Tris-HCl, pH7.5 で1200mlに希釈した後、0.1 %CHAPSを含む 10mM Tris-HCl, pH7.5 で平衡化させたアフィニティカラム(ブルー -5PW, 0.5×5cm 、トーソー社)に

かけた。0.1~% C H A P S を含む 10 mM Tris-HCl, pH7.5 で洗浄した後、90 分間 でNaClを3Mにする直線勾配、流速0.5 ml/分にて溶出を行い、0.5 ml/フラクションにて分取を行った。

得られたフラクション各 $4 \mu 1$ を用いて実施例 4 の方法に従って還元及び非還元条件下でSDSーポリアクリルアミドゲル電気泳動を行った。その結果、フラクション30~38には還元条件下で約60kD、非還元条件下で約60kDと約 120kDのOCIFバンドのみが検出されたので、フラクション30~38を集め精製CHO細胞由来組み換え型OCIF(rOCIF(C)〕画分とした。BSAをスタンダードとしたローリー法による蛋白定量の結果、 $113 \mu g/m1$ のrOCIF(C)4.5 m1が得られたことが明らかになった。

[実施例15]

組み換え型OCIFのN末端構造解析

3μgの精製rOCIF(E)及びrOCIF(C)を、プロスピン (ProSpin,パーキンエルマー社)を用いてポリビニリデンジフルオリド (PVDF)膜に固定し、20%メタノールで洗浄した後、プロテインシーケンサー (プロサイス、492型、パーキンエルマー社)を用いてN末端アミノ酸配列分析を行った。結果を配列表配列番号7に示す。

rOCIF(B)と rOCIF(C) のN末端アミノ酸は、配列表配列番号5に記載したアミノ酸配列の翻訳開始点 Metから22番目の Gluで、Met から Glnまでの21アミノ酸はシグナルペプチドであることが明らかになった。又、IMR-90培養液から精製し得られた天然型OCIFのN末端アミノ酸配列が分析不能であったのは、N末端のGlu が培養中又は精製中にピログルタミン酸に変換したためと考えられた。〔実施例16〕

組み換え型(r)OCIF及び天然型(n)OCIFの生物活性

マウス骨髄細胞 3×10^5 個を $100 \, \mu \, 1$ の10% 牛胎児血清を含む α - M E M 培地に 懸濁させて播種し、5% CO $_2$ 、37%、湿度 100%にて一週間培養した。培養 7 日後に、実施例 2 の方法に従って酸性ホスファターゼ活性測定キット(Acid Phospha tase, Leucocyte 、カタログNo.387-A, シグマ社)を用いた染色を行い破骨細胞 形成を検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少を O C I F 活性とした。酸性ホスファターゼ活性陽性細胞の減少率は、染色した細胞 の色素を可溶化し、その吸光度を測定することにより算出した。即ち、細胞を固定し染色した各ウェルに0.1N 水酸化ナトリウムージメチルスルフォキシド混合液 (1:1) $100\,\mu\, 1$ を加えよく振盪した。色素を十分に溶解させた後、マイクロプレートリーダー(イムノリーダーN J -2000、インターメッド社)を用い、測定波長 $590\,\mathrm{nm}$ 、対照波長 $490\,\mathrm{nm}$ にて吸光度を測定した。又、吸光度を測定する際のプランクウェルとして、ビタミンD。未添加のウェルを用いた。結果は、O C I F 未添加のウェルでの吸光度値を $100\,\mathrm{c}$ した百分率値で表し、表 $5\,\mathrm{cc}$ に示す。

第5表 マウス骨髄細胞系でのOCIFによる 破骨細胞形成抑制(ビタミンD₃)

OCIF濃度(ng/ml)	250	125	63	31	16	0
rOCIF(E)	0	0	3	62	80	100
nOCIF	0	0	27	27	75	100

nOCIFと同様にrOCIF(E)にも、16ng/ml以上の濃度で用量依存的な破骨細胞形成抑制活性が見られた。

ii) ストローマ細胞とマウス脾臓細胞の共培養系でのビタミンD3で誘導される破骨細胞形成の抑制

ビタミンD。で誘導されるストローマ細胞とマウス脾臓細胞の共培養系での破骨細胞形成の試験は、宇田川らの方法 (Endocrinology, Vol. 125, p1805-1813, 1989) に従って行った。即ち、96ウェルマイクロプレートに 2×10^{-8} M活性型ビタミンD。、 2×10^{-7} Mデキサメサゾン及び10%牛胎児血清を含む $\alpha - M$ E M培地(ギブコBRL社)で、連続的に希釈した精製 r0CIF(E)、r0CIF(C) 及びn0CIF

 $100 \mu 1$ を入れた。このウェルにマウス骨髄由来ストローマ細胞株ST2細胞 (RIKEN Cell Bank-RCB0224) 5×10^3 個と生後約8週間の ddyマウス脾臓細胞1 $\times 10^5$ 個を $100 \mu 1$ の10%牛胎児血清を含む α -MEM培地に懸濁させて播種し、 $5\%CO_2$ 、37℃、湿度 <math>100%にて5日間培養した。培養5日後にリン酸塩緩衝生理食塩水で洗浄した後、エタノール/アセトン(1:1)溶液で細胞を室温にて 1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosph atase, Leucocyte、カタログNo.387-A, シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。又、酸性ホスファターゼ活性陽性細胞数の減少率は実施例16-i)に記載した方法に従って染色された細胞の色素を溶解させて算出した。rOCIF(E)とrOCIF(C)を用いて試験した結果を表6に、rOCIF(E)とrOCIFを用いて試験した結果を表7に、それぞれ示す。

第6表 ストローマ細胞とマウス脾臓細胞の共培養系でのOCIFによる破骨細胞形成抑制

OCIF濃度(ng/ml)	50	25	13	6	0
rOCIF(E)	3	22	83	80	100
rOCIF(C)	13	19	70	96	100

第7表 ストローマ細胞とマウス脾臓細胞の共培養系でのOCIFによる破骨細胞形成抑制

		•		
OCIF濃度(ng/ml)	250	63	16	0
rOCIF(E)	7	27	37	100
nOCIF	13	23	40	100

nOCIF と同様c rOCIF(E)及びrOCIF(C)についても、 $6 \sim 16$ ng/m1 以上の濃度で容量依存的な破骨細胞形成抑制活性が見られた。

iii) PTHで誘導される破骨細胞形成の抑制

PTHで誘導される破骨細胞形成の試験は、高橋らの方法(Endocrinology, Vol.122、p1373-1382、1988)に従って行った。即ち、6ウェルマイクロプレートに2×10-8MPTH及び10%牛胎児血清を含むα-MEM培地(ギブコBRL社)で、125ng/mlから連続的に希釈したnOCIF及び精製rOCIF(E) 100μlを入れた。このウェルに生後約17日のマウス骨髄細胞3×10⁵個を 100μlの10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5% CO2、37℃、湿度100%にて5日間培養した。培養5日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール/アセトン(1:1)溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase、Leucocyte、カタログNo.387-A、シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。又、酸性ホスファターゼ活性 陽性細胞数の減少率は実施例16-i)に記載した方法に従って染色された細胞の色素を溶解させて算出した。結果を表8に示す。

第8表 マウス骨髄細胞系でのOCIFによる破骨細胞形成抑制(PTH)

OCIF 濃度(ng/ml)	125	63	31	16	8	0
rOCIF(E)	6	58	58	53	88	100
nOCIF	18	47	53	56	91	100

nOCIF と同様にrOCIF(E)についても、16ng/m1 以上の濃度で容量依存的な破骨細胞形成抑制活性が見られた。

iv) IL-11で誘導される破骨細胞形成の抑制

IL-11 で誘導される破骨細胞形成の試験は、田村らの方法 (Proc. Natl. Acad. Sci.USA, Vol.90, p11924-11928, 1993)に従って行った。即ち、96ウェルマイクロプレートに 20ng/ml IL-11及び10%牛胎児血清を含むαーMEM培地(ギブコBRL社製)で希釈したnOCIF 及び精製rOCIF(E) 100μl を入れた。このウェルにマウス新生児頭蓋骨由来前脂肪細胞株 MC3T3-G2/PA6 細胞(RIKEN Cell Bank-

RCB1127) 5×10^3 個と生後約 8 週間の ddyマウス 脾臓細胞 1×10^5 個を $100 \, \mu$ I の10% 中胎児血清を含む $\alpha-M$ E M 培地に懸濁させて播種し、5% CO $_2$ 、37%、湿度100%にて5 日間培養した。培養5 日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール/アセトン(1:1)溶液で細胞を室温にて1 分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログ No.387-A, シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞数を計測し、その減少をOCIF活性とした。結果を表 9 に示す。

7.8 2.0 0.50 濃度(ng/ml) 500 125 31 31 nOCIF 0 0 1 4 13 49 31 rOCIF(E) 0 1 3 10 37 0

第9表 IL-11で誘導される酒石酸存在下での 酸性ホスファターゼ活性陽性細胞数

nOCIF 及びrOCIF(E)とも、2ng/m1以上の濃度で容量依存的にIL-11 で誘導される破骨細胞形成を抑制する活性が見られた。

このように種々の標的細胞を用いた破骨細胞形成の試験系において、OCIFはビタミンD3、PTH、及びIL-11 等の破骨細胞形成誘導因子による破骨細胞の形成をほぼ同じ濃度で抑制することが明らかになった。従って、OCIFはこのような様々な骨吸収促進物質で誘導される異なるタイプの骨量減少症の治療に、効果的に使用出来る可能性が示唆された。

〔実施例17〕

モノマー型及びダイマー型OCIFサンプルの調製

rOCIF(E)及びrOCIF(C) それぞれ 100μ g を含むサンプルに、 1/100容量の25% T F A (トリフルオロ酢酸) を加えた後、0.1 % T F A を含む30% アセトニトリルで平衡化した逆相カラム (PROTEIN-RP 、 2.0×250 mm 、 ワイエムシー社)にかけ、50% 間でアセトニトリルを55%にする直線勾配、流速0.2m1/分にて溶出を行い、40 C I F ピークを分取した。得られたピーク画分を凍結乾燥すること

により、モノマー型OCIF及びダイマー型OCIFを得た。

〔実施例18〕

組み換え型OCIFの分子量測定

実施例3-vi)の方法で逆相カラムを用いて精製したモノマー型及びダイマー型 nOCIFと実施例17記載の方法で精製したモノマー型及びダイマー型 rOCIF約1μgを含むサンプルを減圧濃縮した。これらのサンプルにつき、実施例4の方法でSDS処理、SDS-ポリアクリルアミド電気泳動、及び銀染色を行った。非還元条件下及び還元条件下で電気泳動した結果を、図6及び図7にそれぞれ示す。

その結果、非還元条件下では、何れのモノマー型サンプルでも60kDの蛋白質バンドが検出され、又、何れのダイマー型サンプルでも 120kDの蛋白質バンドが検出された。又、還元条件下では何れのサンプルでも約60kDの蛋白質バンドのみが検出された。従って、IMR-90細胞由来 nOCIF、293/EBNA細胞由来組み換え型OCIF、及びCHO細胞由来組み換え型OCIFの各々のモノマー型とダイマー型の分子量はほぼ同一であることが示された。

[実施例19]

IMR-90細胞由来天然型OCIFと組み換え型OCIFのN-結合型糖鎖の除去と分子量測定

実施例 3-vi)の方法で逆相カラムを用いて精製したモノマー型及びダイマー型n O C I F と実施例 1 7 記載の方法で精製したモノマー型及びダイマー型r O C I F の各々を約 5 μ g 含むサンプルを減圧濃縮した。これらのサンプルに100 m M 2-メルカプトエタノールを加えた<math>50m Mリン塩緩衝液、pH8.6, 9.5 μ 1 を加えて溶解させ、更に250U/m 1 N-グリカナーゼ溶液(生化学工業社)0.5 μ 1 を加え37℃で一日放置した。これらのサンプルに2m M MEDTA、5 %SDS、及び0.02%プロモフェノールブルーを含む 20m M Tris-HC1,pH8.0,10 μ 1 を加え、100 ℃で5 分間加熱した。これらのサンプルの1 μ 1 を実施例 4 の方法でSDSーポリアクリルアミド電気泳動した後、銀染色した。結果を図8 に示す。

その結果、N-グリカナーゼ処理によりN-結合糖鎖を除去したOCIF蛋白

質の還元条件下での分子量は、いずれも約40kDであることが示された。糖鎖除去の処理を行っていないIMR-90細胞由来nOCIF, 293/EBNA細胞由来rOCIF、及びCHO細胞由来rOCIFの各々の還元条件下での分子量はいずれも約60kDであることから、これらのOCIFはその分子内にN-結合糖鎖を含有する糖蛋白質であることが明らかになった。

[実施例20]

OCIF類縁体 (バリアント) c DNAのクローニング及び塩基配列の決定

実施例10及び11で示したように、純化したいくつかの陽性ファージのひと つからpBKCMV(ストラタジーン社)にOCIFcDNA が挿入されたプラスミドpBKOCIF を持つ形質転換株を得たが、その際、他のいくつかの陽性ファージからも長さの 異なるインサートが挿入されたプラスミドを持つ形質転換株が得られた。これら のプラスミドを持つ形質転換株を増殖させ、常法によりプラスミドを精製した。 これらのインサートDNA の塩基配列をタックダイデオキシターミネーターサイク ルシークエンシングキット(パーキンエルマー社)を用いて決定した。用いたプ ライマーはT3,T7プライマー(ストラタジーン社)及びOCIFcDNAの塩基配列 に基づいて設計された合成プライマーを用いた。オリジナルタイプのOCIF以 外に、OCIFバリアントは全部で4種類(OCIF2, 3, 4, 5) 存在した。決 定された OCIF2cDNAの塩基配列を配列番号8にその配列から推定されるアミノ酸 配列を配列番号9に示す。決定されたOCIF3 cDNAの塩基配列を配列番号10にその 配列から推定されるアミノ酸配列を配列番号11に示す。決定されたOCIF4 cDNA の塩基配列を配列番号12にその配列から推定されるアミノ酸配列を配列番号13に 示す。決定されたOCIF5 cDNAの塩基配列を配列番号14にその配列から推定され るアミノ酸配列を配列番号15に示す。これらのOCIFバリアントの構造の特徴 を、図9~12及び以下の記載をもって、簡単に説明する。

OCIF2

OCIFcDNAの塩基配列(配列番号 6) の 265番目のグアニンから285 番目のグアニンまでの21bpの欠失があり、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号 5) の68番目のグルタミン酸(Glu)から74番目のグルタミン(G

1 n)までの7アミノ酸の欠失がある。

OCIF3

0CIFcDNAの塩基配列(配列番号 6)の 9 番目のシチジンがグアニンに変換していて、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号 5)の-19番目のアスパラギン (Asn) がリジン (Lys) に変わっている。但し、これはシグナル配列の中のアミノ酸置換であり、分泌されるOCIF 3 には影響しないと思われる。

OCIFcDNAの塩基配列(配列番号6)の872番目のグアニンから989番目のグアニンまでの 117bpの欠失があり、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の 270番目のスレオニン(Thr)から308 番目のロイシン(Leu)までの39アミノ酸の欠失がある。

OCIF4

OCIFCDNAの塩基配列(配列番号6)の9番目のシチジンがグアニンに変換していて、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の-19番目のアスパラギン(Asn)がリジン(Lys)に変わっている。又、22番目のグアニンがチミジンに変換していて、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の-14番目のアラニン(Ala)がセリン(Ser)に変わっている。但し、これらはシグナル配列の中のアミノ酸置換であり、分泌されるOCIF4には影響しないと思われる。

OCIFCDNAの塩基配列(配列番号6)の 400番目と 401番目の間に約 4kbのイントロン2の挿入があり、オープンリーリングフレームがその中で止まる。アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の 112番目のアラニン(Ala)の後に21アミノ酸からなる新規なアミノ酸配列が付加されている。

OCIF5

OCIFCDNAの塩基配列(配列番号6)の9番目のシチジンがグアニンに変換していて、アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の-19番目のアスパラギン(Asn)がリジン(Lys)に変わっている。但し、これはシグナル配列の中のアミノ酸置換であり、分泌されるOCIF5には影響しない

と思われる。

OCIFcDNAの塩基配列(配列番号6)の 400番目と 401番目の間に約1.8 kbのイントロン2の後半部分の挿入があり、オープンリーリングフレームがその中で止まる。アミノ酸配列ではOCIFのアミノ酸配列(配列表配列番号5)の 112番目のアラニン(Ala)の後に12アミノ酸からなる新規なアミノ酸配列が付加されている。

[実施例21]

OCIF類縁体(バリアント)の生産

i) OCIFバリアントcDNAの発現プラスミドの作製

実施例20で得られたOCIFバリアント c DNAのうち、OCIF 2,3 の c DNAがそれぞれ挿入されたプラスミドpBKOCIF2、pBKOCIF3を制限酵素XhoI及び BamHI (宝酒造社) で消化し、OCIF 2及び3 のcDNAをそれぞれ切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット (キアゲン社) を用いて精製した。これらのOCIF 2及び3 のcDNAを、あらかじめ制限酵素XhoI及びBamHI (宝酒造社)で消化しておいた発現プラスミドpCEP4(インヴィトロージェン社) に、ライゲーションキット Ver.2 (宝酒造社) を用いて挿入し、大腸菌 DH5 α (ギブコBRL社) の形質転換を行った。

又、実施例20で得られたOCIFバリアント c D N A のうち、OCIF4 のcDNAを が挿入されたプラスミドpBKOCIF4を制限酵素SpeI及びXhoI (宝酒造社)で消化し、アガロース電気泳動によって分離後、Q I A E X ゲルエクストラクションキット (キアゲン社)を用いて精製した。この OCIF4のcDNAを、あらかじめ制限酵素 NheI及びXhoI (宝酒造社)で消化しておいた発現プラスミドpCEP4(インヴィトロージェン社)に、ライゲーションキット Ver.2 (宝酒造社)を用いて挿入し、大腸菌 D H 5 α (ギブコ B R L 社)の形質転換を行った。

又、実施例20で得られたOCIFバリアントcDNAのうち、OCIF5のcDNAをが挿入されたプラスミドpBKOCIF5を制限酵素Hind III(宝酒造社)で消化し、OCIF5cDNAのコーディング領域の5、領域を切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット(キアゲン社)を用いて精

得られた形質転換株を増殖させ、OCIF2,3,4,5のcDNAが挿入された 発現プラスミドpCEPOCIF2,3,4,5を、キアゲンカラム(キアゲン社)を用い て精製した。OCIFバリアント発現プラスミドをエタノールによって沈澱させ た後、無菌蒸留水に溶解し以下の操作に用いた。

ii) OCIFバリアントcDNAのトランジエントな発現及びその活性の測定 実施例21-i)で得られたOCIFバリアント発現プラスミドpCEPOCIF 2, 3, 4, 5 を用いて、実施例13-ii)で述べた方法でOCIFバリアントをトランジエントに発現させ、それらの活性を調べた。その結果、これらのOCIFバリアントに弱い活性を認めた。

[実施例22]

OCIF変異体の作製

i) OCIF変異体 c DNAサブクローニング用プラスミドベクターの作製

実施例 1 1 記載のプラスミドベクター 5 μ g を、制限酵素BamHI 及びXhoI(宝酒造社)で切断した。切断した DNAを調製用アガロースゲル電気泳動に供した。 0CIFcDNA全長を含む約 1.6キロベースペア(kb)のDNA断片を単離し、QIAE X ゲルエクストラクションキット(キアゲン社)により精製し、20 μ 1 の滅菌蒸留水に溶解した DNA溶液 1 を得た。次に、pBluescript IISK (ストラータジーン社) 3 μ g を制限酵素BamHI 及びXhoI(宝酒造社)で切断した。切断した DNAを調製用アガロースゲル電気泳動に供した。約3.0 kbのDNA断片を単離し、QIAEX ゲルエクストラクションキット(キアゲン社)により精製し、20 μ 1 の滅菌蒸留水に溶解した DNA溶液 2 を得た。 1 μ 1 のDNA溶液 2 と 4

μ1 のDNA溶液1を混合し、5 μ1 のDNAライゲーションキットver.2 I液 (宝酒造社)を添加し混合後、16℃で30分間保温し、ライゲーション反応を行っ た。尚、以下のライゲーション反応は全て16℃30分の保温条件で行った。

このライゲーション反応液を用い、以下の条件で大腸菌の形質転換を行った。 尚、以後大腸菌の形質転換は以下の条件で行った。このライゲーション反応液 5 μ1 と大腸菌 D H 5 αコンピテント細胞(ギブコ B R L 社)100 μ1 とを15m1用 滅菌チューブ(岩城ガラス社)中で混合し、氷水中30分放置した。42℃45秒保温 後、250 μ1 の L 培地(1 %トリプトン、0.5 %イーストエキストラクト、1 % NaC1)を添加し攪拌しながら37℃で培養した。50 μ1 の菌液を50 μg/m1アンピシ リンを含む 2 m1の L 寒天培地上にスプレッドした。37℃で一晩培養し、生育して きたコロニー 6 種を 2 m1の L アンピシリン液体培地でさらに一晩培養し、各株が 持つプラスミドの構造を調べた。pBluescript IISK* のBamHI XhoI切断部位に00 IFcDNA全長を含む約1.6kb の D N A 断片が挿入された構造を持つプラスミド(以 後 pSK*-0CIF と呼ぶ)を得た。

ii) CysをSerに置換した変異体の作製

(1) 変異の導入

配列表配列番号 4 に記載のアミノ酸配列中、174, 181, 256, 298及び379 番の Cys残基を Ser残基に置換した変異体を作製した。174CysをSer に置換した変異体を0CIF-C19S 、181CysをSer に置換した変異体を0CIF-C20S 、256Cysを Serに 置換した変異体を0CIF-C21S 、298CysをSer に置換した変異体を0CIF-C22S、379 Cysを Serに置換した変異体を0CIF-C23S2と、それぞれ名付けた。変異体作製のためにまず、各Cys 残基をコードする塩基配列をSer 残基をコードする塩基配列に置換した。変異導入は二段階のPCR(polymerase chain reaction) により行った。以後、二段階PCR反応と呼ぶ。第一段階は2つのPCR反応より成る(PCR1及びPCR2)。

(Helphan)

P C R 1 反応液

10X Ex Taq バッファー(宝酒造社)	1 0	μ 1
2.5 mM dNTP 溶液	8	µ 1
実施例11記載のプラスミドベクター (8ng/ml)	2	μ1
滅菌蒸留水	73.5	µ 1
20μM プライマー1	5	µ 1
1 0 0 μM プライマー2 (変異導入用)	. 1	μ1
Ex Taq (宝酒造社)	0.5	µ 1
PCR2反応液		
10X Ex Taqバッファー (宝酒造社)	1 0	μ 1
2.5 mM dNTP 溶液	8	μl
実施例11記載のプラスミドベクター (8ng/ml)	2	μ 1
滅菌蒸留水	73.5	µ 1
2 0 μΜ プライマー 3	5	μ 1

100 μ M プライマー 4 (変異導入用)

(宝酒造社)

Ex Tag

各変異導入時には、プライマーの種類だけを変え、他の反応組成は同一とした。各反応で用いたプライマーを表10に、その配列を配列表配列番号20、23、27、30 ~40に示す。 P C R 1 反応液及び P C R 2 反応液をそれぞれ別の微量遠心チューブに入れ混合後、以下の条件で P C R を行った。97 $\mathbb C$ で 3 分処理後、95 $\mathbb C$ 1 分、55 $\mathbb C$ 1 分、72 $\mathbb C$ 3 分の 3 段階の反応を25 回繰り返したのち、70 $\mathbb C$ 5 分保温した。反応液の一部をアガロース電気泳動に供し、目的の長さの D N A 断片が合成されていることを確認した。第一段階 P C R 反応終了後、アミコンマイクロコン(アミコン社)により反応液からプライマーを除去し、滅菌蒸留水により最終液量を50 $\mu1$ に調製し、得られた D N A 断片を用いさらに第2 段階 P C R 反応(P C R 3)を行った。

1

0.5

 μ 1

 $\mu 1$

PCR3反応液

10X Ex Taqバッファー(宝酒造社)	1 0	# 1
2.5 mM dNTP 溶液	8	μ1
PCR1により得られたDNA断片	5	μ1
PCR2により得られたDNA断片	5	µ 1
滅菌蒸留水	61.5	. <i>µ</i> 1
20 µ M プライマー 1	5	µ 1
20 µ M プライマー 3	5	# 1
Ex Taq (宝酒造社)	0.5	µ 1

第10表

変異体名	プライマー1	プライマー2	プライマー3	プライマー4
OCIF-C19S	IF 10	C19SR	IF 3	C19SF
OCIF-C20S	IF 10	C20SR	IF 3	C20SF
OCIF-C21S	IF 10	C21SR	IF 3	C21SF
OCIF-C22S	IF 10	C22SR	IF 14	C22SF
OCIF-C23S	IF 6	C23SR	IF 14	C23SF

上記の溶液を微量遠心チューブに入れ混合後、PCR1、PCR2と同一の条件でPCRを行った。反応液の一部をアガロース(1%或いは1.5%)電気泳動に供し、目的の長さのDNA断片が合成されていることを確認した。PCRにより得られたDNAをエタノールにより沈殿させ、真空中で乾燥させ、40μ1の滅菌蒸留水に溶解した。C19S変異DNA断片を含む溶液を溶液A、C20S変異DNA断片を含む溶液を溶液C、C22S変異DNA断片を含む溶液を溶液C、C22S変異DNA断片を含む溶液を溶液C、C22S変異DNA断片を含む溶液を溶液C、C22S変異DNA断片を含む溶液を溶液Eと名付けた。

溶液A20μ1中のDNA断片を制限酵素NdeI及びSphI(宝酒造社)により切断した。調製用電気泳動により約400bpのDNA断片を分離・精製し20μ1の蒸留

水に溶解した(DNA溶液 3)。次に、 $2\mu g$ のpSK $^+$ -0CIF を制限酵素NdeI及 $^+$ びSphI(宝酒造社)により切断し、調製用電気泳動により約4.2kb のDNA断片を分離・精製し $20\mu 1$ の滅菌蒸留水に溶解した(DNA溶液 4)。 $2\mu 1$ のDNA溶液 4 を混合し、さらにDNAライゲーションキット ver.2 I液 $5\mu 1$ を添加しライゲーション反応を行った。反応後のライゲーション溶液 $5\mu 1$ を用い、大腸菌DH 5α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及 で塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-0CIF -C19S と名付けた。

溶液 B 20 μ 1 中のC20S変異 D N A 断片を制限酵素Nde I 及びSph I (宝酒造社) により切断した。調製用電気泳動により約400bp の D N A 断片を分離・精製し20 μ 1 の蒸留水に溶解した(D N A 溶液 5)。 2 μ 1 の D N A 溶液 5 と 3 μ 1 の D N A 溶液 4 を混合し、さらに D N A ライゲーションキット ver. 2 I 液 5 μ 1 を添加しライゲーション反応を行った。反応後のライゲーション溶液 5 μ 1 を用い、大腸菌 D H 5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、D N A 構造の解析により目的のプラスミド D N A を持つ株を選びだした。 D N A 構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド D N A をp SK-OCIF-C20S と名付けた。

溶液 $C20 \mu 1$ 中の DNA 断片を制限酵素Nde I及び Sph I(宝酒造社)により切断した。調製用電気泳動により約 400 bpの DNA 断片を分離・精製し $20 \mu 1$ の蒸留水に溶解した(DNA溶液 6)。 $2 \mu 1$ の DNA溶液 6 と $3 \mu 1$ の DNA溶液 4を混合し、さらに DNA ライゲーションキット ver. 2 I液 $5 \mu 1$ を添加しライゲーション反応を行った。反応後のライゲーション溶液 $5 \mu 1$ を用い、大腸菌 DH 5α を形質転換した。得られたアンピシリン耐性形質転換細胞から、 DNA構造の解析により目的のプラスミド DNAを持つ株を選びだした。 DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNAをpSK-OCIF-C21S と名付けた。

溶液 $D20 \mu 1$ 中の DNA断片を制限酵素NdeI及びBstPI (宝酒造社)により切断した。調製用電気泳動により約600bp の DNA断片を分離・精製し $20 \mu 1$ の蒸留水に溶解した(DNA溶液 7)。次に、 $2 \mu g$ のpSK *-OCIF を制限酵素NdeI及びBstPI (宝酒造社)により切断し、調製用電気泳動により約4.0kb の DNA断片を分離・精製し $20 \mu 1$ の蒸留水に溶解した(DNA溶液 8)。 $2 \mu 1$ の DNA が $2 \mu 1$ の $2 \mu 1$ を添加し $2 \mu 1$ を形置を行った。反応後の $2 \mu 1$ を $2 \mu 1$ を

溶液 $E20 \mu 1$ 中の DNA 断片を制限酵素 BstPI 及び EcoRV (宝酒造社)により 切断した。調製用電気泳動により約120 bp の DNA 断片を分離・精製し $20 \mu 1$ の 滅菌蒸留水に溶解した(DNA 溶液 9)。次に、 $2 \mu g$ の pSK $^+$ - 0CIF を制限酵素 BstEII 及び EcoRV (宝酒造社)により切断し、調製用電気泳動により約4.5 kb の DNA 断片を分離・精製し $20 \mu 1$ の蒸留水に溶解した(DNA 溶液 10)。 $2 \mu 1$ の DNA 溶液 $9 \ge 3 \mu 1$ の DNA 溶液 10 を混合し、 さらに DNA ライゲーション キット ver.2 I 液 $5 \mu 1$ を添加し precent を形質 転換した。 得られた precent の precent が precent を形質 転換した。 得られた precent が precent の precent を形質 転換した。 precent の precent が precent の precent の precent の precent を形質 precent の precent

(2) 変異体発現ベクターの構築

得られた目的のプラスミドDNA (pSK-OCIF-C19S, pSK-OCIF-C20S pSK-OCIF-C21S,pSK-OCIF-C22S,pSK-OCIF-C23S) を制限酵素BamHI 及びXhoI(宝酒造社)で切断し、OCIFcDNA全長を含む約1.6kb のDNA断片(目的の変異も含む)を分離・

精製し、滅菌蒸留水 2 0 μ 1 に溶解した。それぞれC19SDNA 溶液、C20SDNA 溶液、C21SDNA 溶液、C22SDNA 溶液、C23SDNA 溶液と名付けた。次に、発現ベクターpC EP4(インヴィトロージェン社) 5 μ g を制限酵素BamHI 及びXhoI(宝酒造社)で切断し、約10 kb の D N A を分離・精製し滅菌蒸留水40 μ 1 に溶解した(pCEP4DNA 溶液)。pCEP4DNA溶液 1 μ 1 と各 6 μ 1 のC19SDNA 溶液、C20SDNA 溶液、C21SDNA 溶液、C22SDNA 溶液、C23SDNA 溶液を別々に混合し、各混合液に 7 μ 1 の D N A ライゲーションキット Ver.2 I液を添加し、ライゲーション反応を行った。反応終了後、 7 μ 1 の反応液を用い、大腸菌 D H 5 α 1 コンピテント細胞液100ml を形質転換した。得られたアンピシリン耐性形質転換細胞から、pCEP4のXhoI、BamHI 部位に約1.6kb の各 D N A 断片が挿入された目的の構造のプラスミド D N A を持つ株計 5 種を選びだし、それぞれ、pCEP4-0CIF-C19S、pCEP4-0CIF-C20S、pCEP4-OCIF-C21S、pCEP4-OCIF-C22S、pCEP4-OCIF-C23S、b 2名付けた。

ii)ドメイン欠失変異体の作製

(1) ドメイン欠失変異の導入

配列番号 4 に記載したアミノ酸中、 2番のThr から42番のAla まで、43番のProから84番の Cysまで、85番のGlu から 122番のLys まで、123 番のArg から 164番の Cysまで、 177番のAsp から 251番のGln まで、253番のIle から326番のHis までを、それぞれ欠失させた変異体を作製した。 2番のThr から42番のAlaまでを欠失させた変異体を0CIF-DCR1、43番のPro から84番の Cysまでを欠失させた変異体を0CIF-DCR2、85番のGlu から 122番のLys までを欠失させた変異体を0CIF-DCR3、123番のArg から 164番の Cysまでを欠失させた変異体を0CIF-DCR3、123番のArg から 164番の Cysまでを欠失させた変異体を0CIF-DCR4、177番のAsp から251番のGln までを欠失させた変異体を0CIF-DDD1、253番Ile から 326番のHisまでを欠失させた変異体を0CIF-DDD2と、それぞれ名付けた。ドメイン欠失変異の導入も、実施例22-ii)に記載の二段階PCR法によって行った。各変異導入反応時に用いたプライマーを表11に、その配列を配列表配列番号19、25、40~53、及び54に示す。

第11表

プライマー1	プライマー2	プライマー3	プライマー4
XhoI F	DCR1R	IF 2	DCR1F
XhoI F	DCR2R	IF 2	DCR2F
XhoI F	DCR3R	IF 2	DCR3F
XhoI F	DCR4R	IF 16	DCR4F
IF 8	DDD1R	IF 14	DDD1F
IF 8	DDD2R	IF 14	DDD2F
	XhoI F XhoI F XhoI F XhoI F IF 8	XhoI F DCR1R XhoI F DCR2R XhoI F DCR3R XhoI F DCR4R IF 8 DDD1R	XhoI F DCR1R IF 2 XhoI F DCR2R IF 2 XhoI F DCR3R IF 2 XhoI F DCR4R IF 16 IF 8 DDD1R IF 14

PCRにより得られたDNAをエタノールにより沈殿させ真空中で乾燥させ、40μ1の滅菌蒸留水に溶解した。 DCR1変異DNA断片を含む溶液を溶液 F、DCR2変異DNA断片を含む溶液を溶液 G、DCR3変異DNA断片を含む溶液を溶液 H、DCR4変異DNA断片を含む溶液を溶液 I、DDD1変異DNA断片を含む溶液を溶液 J、DDD2変異DNA断片を含む溶液を溶液 Kと名付けた。

溶液 $F20\mu1$ 中の DNA断片を制限酵素Ndel 及びXhoI (宝酒造社)により切断した。調製用電気泳動により約500bp の DNA断片を分離・精製し $20\mu1$ の滅菌蒸留水に溶解した(DNA溶液11)。次に、 $2\mug$ のpSK * -0CIF を制限酵素Ndel El 及びXhoI (宝酒造社)により切断し、調製用電気泳動により約4.0kb の DNA 断片を分離・精製し $20\mu1$ の滅菌蒸留水に溶解した(DNA溶液12)。 $2\mu1$ の DNA溶液11 と3 $\mu1$ の DNA溶液12 を混合し、さらに DNA ライゲーションキットver.2 I 液5 $\mu1$ を添加しライゲーション反応を行った。反応後のライゲーション溶液 $5\mu1$ を用い、大腸菌 DH5 なを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により、0CIFcDNAに目的の変異の導入されたプラスミド DNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNAを持つ株を選びだした。 PNA で液 PNA で表 PNA で PNA で表 PNA で PNA で表 PNA で表 PNA で表 PNA で表 PNA で表 PNA で PNA で表 PNA で表 PNA で表 PNA で表 PNA で PNA であ PNA であ PNA で表 PNA では、PNA では、PNA では、PNA では、PNA であ PNA で表 PNA であ PNA で表 PNA では、PNA では、PNA では、PNA であ PNA であ PNA であ PNA であ PNA であ PNA では、PNA で

NAライゲーションキットver.2 I液を 5μ 1 添加し、ライゲーション反応を行った。反応後のライゲーション溶液 5μ 1 を用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-0CIF-DCR2 と名付けた。

溶液 $H20\mu1$ 中の DNA断片を制限酵素NdeI及びXhoI(宝酒造社)により切断した。調製用電気泳動により約500hp の DNA断片を分離・精製し $20\mu1$ の滅菌蒸留水に溶解した(DNA溶液14)。 $2\mu1$ の DNA溶液14と $3\mu1$ の DNA溶液12を混合し、さらに DNAライゲーションキットver.2 I液を $5\mu1$ 添加し、ライゲーション反応を行った。反応後のライゲーション溶液 $5\mu1$ を用い、大腸菌 DH5 なを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA 構造の解析により、OCIFcDNAに目的の変異の導入されたプラスミド DNA を持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNA を DNA を DNA と DNA を DNA と DNA を DNA と DNA を DNA と DNA と DNA を DNA と DNA と DNA を DNA と DN

溶液 I $20 \mu 1$ 中のDNA断片を制限酵素XhoI及びSphI (宝酒造社)により切断した。調製用電気泳動により約900bp のDNA断片を分離・精製し $20 \mu 1$ の滅菌蒸留水に溶解した(DNA溶液 15)。次に、 $2 \mu g$ のpSK $^+$ -0CIF を制限酵素XhoI及びSphI (宝酒造社)により切断し、調製用電気泳動により約3.6kb のDNA断片を分離・精製し $20 \mu 1$ の滅菌蒸留水に溶解した(DNA溶液16)。 $2 \mu 1$ のDNA溶液15と $3 \mu 1$ のDNA溶液16を混合し、さらにDNAライゲーションキットver.2 I液 $5 \mu 1$ を添加し、ライゲーション反応を行った。反応後のライゲーション溶液 $5 \mu 1$ を用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-0CIF-DCR4 と名付けた。

溶液 $K20\mu1$ 中の DNA 断片を制限酵素 BstPI 及びNdeI(宝酒造社)により切断した。調製用電気泳動により約400 b pの DNA 断片を分離・精製し $20\mu1$ の滅菌蒸留水に溶解した(DNA溶液18)。 $2\mu1$ の DNA溶液 18と $3\mu1$ 0 DNA溶液 8を混合し、さらに DNA ライゲーションキット v e r. 2 I液を $5\mu1$ 添加し、ライゲーション反応を行った。反応後のライゲーション溶液 $5\mu1$ を用い、大腸菌 DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、 DNA 構造の解析により目的のプラスミド DNA を持つ株を選びだした。 DNA 構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNA をpSK-0CIF-DDD2 と名付けた。

(2) 変異体発現ベクターの構築

得られた目的のプラスミドDNA(pSK-OCIF-DCR1, pSK-OCIF-DCR2,pSK-OCIF-XR3,pSK-OCIF-DCR4,pSK-OCIF-DDD1,pSK-OCIF-DDD2)を制限酵素BamHI 及びXhoI(宝酒造社)で切断しOCIFcDNA全長を含む約1.4-1.5 kbのDNA断片(目的の変異も含む)を分離・精製し、滅菌蒸留水20μ1 に溶解した。それぞれをDCR1DNA溶液、DCR2DNA溶液、DCR3DNA溶液、DCR4DNA溶液、DDD1DNA溶液、DDD2DNA溶液と名付けた。実施例22-ii)に記載のpCEP4 DNA溶液、DDD1DNA溶液、DDD2DNA溶液、DCR2DNA溶液、DCR3DNA溶液、DCR4DNA溶液、DDD1DNA溶液、DDD2DNA溶液を別々に混合し、各混合液に7μ1のDNAライゲーションバッファーを添加し、ライゲーション反応を行った。反応終了後、7μ1の反応液を用い、大腸

菌 D H 5 αを形質転換した。得られたアンピシリン耐性形質転換細胞からpCEP4 BamHI XhoI部位に各1.4-1.5kb 断片が挿入された構造のプラスミド D N A を持つ株計 6 種を選びだした。目的の構造を持つプラスミドをそれぞれpCEP4-OCIF-DCR 1、pCEP4-OCIF-DCR2、pCEP4-OCIF-DCR3、pCEP4-OCIF-DCR4、pCEP4-OCIF-DDD 1、pCEP4-OCIF-DDD2 と名付けた。

iii) C末端ドメイン欠失変異体の作製

<u>(1) C末端ドメイン欠失変異の導入</u>

配列番号 4 に記載したアミノ酸中、379 番の Cysと380 番のLeu 、331 番のSer から 380番のLeu まで、252番のAsp から 380番のLeu まで、177 番のAsp から 380番のLeu まで、123 番のArg から 380番のLeu まで、86番の Cysから380 番のLeu までを、それぞれ欠失させた変異体を作製した。379 番の Cysと380 番のLeu を欠失させた変異体を0CIF-CL 、331 番のSer から380 番のLeu までを欠失させた変異体を0CIF-CC 、 252番のAsp から 380番のLeu までを欠失させた変異体を0CIF-CDD2 、 177番のAsp から 380番のLeu までを欠失させた変異体を0CIF-CDD1 、 123番のArg から 380番のLeu までを欠失させた変異体を0CIF-CCR4 、86番の Cysから 380番のLeu までを欠失させた変異体を0CIF-CCR3 と、それぞれ名付けた。

変異体OCIF-CL の作製用の変異導入は、実施例22-ii) に記載の二段階PCR法によって行った。変異導入反応時に用いたプライマーを表12に、その塩基配列を配列表配列番号23、40、55及び56に示す。PCRにより得られたDNAをエタノールにより沈殿させ、真空中で乾燥させ、40μ1の滅菌蒸留水に溶解した(溶液L)。

溶液 $L20 \mu 1$ 中の DNA 断片を制限酵素 BstPI 及び EcoRV (宝酒造社)により 切断した。調製用電気泳動により約 100bp の DNA 断片を分離・精製し $20 \mu 1$ の 滅菌蒸留水に溶解した(DNA 溶液 19)。次に、 $2 \mu 1$ の DNA 溶液 $9 \& 3 \mu 1$ の $extit{ 実施例 } 22-ii$)記載の $extit{ DNA}$ 溶液 10 を混合し、さらに $extit{ DNA}$ ライゲーションキット $extit{ ver. } 2$ 「液を $extit{ 5}$ $\mu 1$ 添加し、 $extit{ 5}$ $\mu 1$ 添加し、 $extit{ 5}$ $\mu 1$ を用い、大腸菌 $extit{ DH5}$ のを形質転換した。得られたアンピシ

リン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-0CIF-CLと名付けた。変異体OCIF-CC 、変異体OCIF-CDD2 、変異体OCIF-CDD1、変異体をOCIF-CCR4、変異体OCIF-CCR3 作製用の変異導入には、一段階のPCR法を用いた。以下に反応条件を示す。

<u>C末端ドメイン欠失変異導入用PCR 反応液</u>

10X Ex Taq バッファー(宝酒造社)	1 0	µ 1
2.5 mM dNTP 溶液	8	µ 1
実施例11記載のプラスミドベクター (8ng/ml)	2 .	µ 1
滅菌蒸留水	73.5	•
20μM プライマー OCIF Xho F	5	<i>µ</i> 1
100μΜ 変異導入用プライマー	1	µ 1
Ex Taq (宝酒造社)	0.5	µ 1

第12表

変異体名	プライマー1	プライマー2	プライマー3	プライマー4
OCIF-CL	IF 6	CL R	IF 14	CL F

各変異導入時には、プライマーの種類だけを変え、他の反応組成は同一とした。各反応での変異導入用プライマーを表13に、その配列を配列表配列番号57~61に示す。PCR反応液を微量遠心チューブに入れ混合後、以下の条件でPCRを行った。97℃で3分処理後、95℃30秒、50℃30秒、70℃3分の3段階の反応を25回繰り返したのち、70℃5分保温した。反応液の一部をアガロース電気泳動に供し、目的の長さのDNA断片が合成されていることを確認した。反応液からアミコン・マイクロコンによりプライマーを除去し、DNAをエタノールにより沈殿させ

真空中で乾燥させ、40 μ1 の滅菌蒸留水に溶解した。各変異DNA断片を含む溶液20 μ1 中のDNA断片を制限酵素XhoI及びBamHI によりDNAを切断した。酵素切断終了後、DNAをエタノールにより沈殿させ真空中で乾燥させ、20 μ1 の滅菌蒸留水に溶解した。溶液をそれぞれCCDNA 溶液、CDD2DNA 溶液、CDD1DNA 溶液、CCR4DNA 溶液、CCR3DNA 溶液と名付けた。

第13表

変異体名	変異導入用プライマー
OCIF-CC	CC R
OCIF-CDD2	CDD2 R
OCIF-CDD1	CDD1 R
OCIF-CCR4	CCR4 R
OCIF-CCR3	CCR3 R

(2) 変異体発現ベクターの構築

pSK-OCIF-CL を制限酵素BamHI 及びXhoI (宝酒造社)で切断し、OCIFcDNAを含む約1.5 kbのDNA断片 (目的の変異も含む)を分離・精製し、滅菌蒸留水20μlに溶解した (CLDNA 溶液)。実施例22-ii) に記載のpCEP4 DNA 溶液1μl と各6μl のCLDNA 溶液、CCDNA 溶液、CDD2DNA 溶液、CDD1DNA 溶液、CCR4DNA 溶液、CCR4DNA 溶液、CCR3DNA 溶液を別々に混合し、7μl のDNAライゲーションキット Ver.2 I液を添加し、ライゲーション反応を行った。反応終了後、7μl の反応液を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から目的の変異を持つOCIFcDNA断片がpCEP4のXhoI-BamHI部位に挿入された構造のプラスミドDNAを持つ株計6種を選びだした。目的の構造を持つプラスミドをそれぞれ、pCEP4-OCIF-CL、pCEP4-OCIF-CC,pCEP4-OCIF-CDD2,pCEP4-OCIF-CDD1,pCEP4-OCIF-CCR4,pCEP4-OCIF-CCR3と名付けた。

iv) C末端欠失変異体の作製

(1) C末端欠失変異の導入

配列番号4に記載したアミノ酸中、371 番Gln から 380番Leu までを欠失させ Leu-Val の2残基を付加した変異体(OCIF-CBst)、 298番 Cysから 380番Leu までを欠失させSer-Leu-Asp の残基を付加した変異体 (OCIF-CSph)、 167番Asn から 380番Leu までを欠失させた変異体 (OCIF-CBsp)、62番 Cysから 380番Leu までを欠失させLeu-Val の2残基を付加した変異体(OCIF-CPst)を作製した。 各2μg のpSK † -OCIF を制限酵素BstPI 、SphI、PstI(宝酒造社)、及びBspE I(ニューイングランドバイオラボ社)で切断し、フェノール処理、エタノール沈 殿によりDNAを精製し、10μ1の滅菌蒸留水に溶解した。各2μ1の溶液を用 いDNAプランティングキット(宝酒造社)により各DNAの末端を平滑化した (最終容量 5 μ1)。この反応液に、アンバーコドンを含むXbaIリンカー (5'-CTA GTCTAGACTAG-3') $1 \mu g(1 \mu 1)$ と、 $6 \mu 1$ のDNAライゲーションキットver.2 Ι液を添加し、ライゲーション反応を行った。反応後のライゲーション溶液 6 μ1 を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細 胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。 DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決 定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-CBst、pSK-OCIF -CSph、pSK-OCIF-CBsp 、pSK-OCIF-CPst と名付けた。

(2) 変異体発現ベクターの構築

得られたプラスミドDNA(pSK-OCIF-CBst、pSK-OCIF-CSph、pSK-OCIF-CBsp、pSK-OCIF-CPst)を制限酵素BamHI 及びXhoI(宝酒造社)で切断し、OCIFcDNA全長を含む約1.5 キロベースペア(kb)のDNA断片(目的の変異も含む)を分離・精製し、滅菌蒸留水20μ1 に溶解した(それぞれCBstDNA 溶液、CSphDNA 溶液、CBspDNA 溶液、CSphDNA 溶液、CBspDNA 溶液、CPstDNA 溶液、CBspDNA 溶液、CPstDNA 溶液、CPstDNA 溶液の1μ1 と各 6μ1 のCBstDNA 溶液、CSphDNA 溶液、CBspDNA 溶液、CPstDNA 溶液を別々に混合し、各混合液に7μ1 のDNAライゲーションキット Ver.2 I液を添加し、ライゲーション反応を行った。反応終了後、7μ1 の反応液を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から目的の変異を持つOCIFcDNA断片がpCEP4 のXhoI BamHI部位間に挿入された構造のプ

ラスミドDNAを持つ株計5種を選びだした。目的の構造を持つプラスミドをそれぞれ、pCEP4-OCIF-CBst, pCEP4-OCIF-CSph,pCEP4-OCIF-CBsp,pCEP4-OCIF-CPst と名付けた。

v) 変異体発現ベクターの調製

変異体発現ベクターを持つ大腸菌(計21種類)を増殖させ、各種変異体発現ベクターをキアゲンカラム(キアゲン社)を用いて精製した。各発現ベクターはエタノールによって沈殿させた後、滅菌蒸留水に溶解し以下の操作に用いた。

vi) 変異体 c D N A の トランジェントな発現及びその活性の測定

実施例22-v)で精製した各種OCIF変異体発現プラスミドを用い、実施例13の方法に従いOCIF変異体を発現させた。以下に変更した点のみを記する。DNA導入には24ウェルプレートを用いた。2×10⁵ 個の 293/EBNA細胞を10%牛胎児血清を含むIMDM培地を用いて各ウェルに植え込んだ。DNA導入の際用いた変異体発現ベクターとリポフェクタミンの量は、それぞれ1μg及び4μ1であった。0PTI-MEM培地(ギブコBRL社)で希釈し最終容量を0.5m1とした。変異体発現ベクターとリポフェクタミンの混合液を細胞に添加し、24時間37℃でで02インキュベーター中で培養した後混合液を除去し、0.5m1のEx-cell 301培地(JSR社)を加え、さらに48時間37℃でで02インキュベーター中で培養した後混合液を除去し、0.5m1のEx-cell 301培地(JSR社)を加え、さらに48時間37℃でで02インキュベーター中で培養した。培地を回収し、これを変異体活性測定用サンプルとした。得られた各変異体の塩基配列を配列表配列番号83~103に、その配列から推定されるアミノ酸配列を配列表配列番号62~82に、それぞれ示す。OCIFの活性測定は実施例13に従った。また、実施例24に記載のEIA法により、OCIFの抗原量を定量した。表14に未改変OCIFと比較した抗原量当たりの活性を示す。

第14表

	変異体の名称	活性	
	未改変OCIF	++	···· <u>-</u> -
	OCIF-C19S	+	
	OCIF-C20S	±	
	OCIF-C21S	, ±	
	OCIF-C22S	+	
	OCIF-C23S	++	
-	OCIF-DCR1	±	
	OCIF-DCR2	±	
	OCIF-DCR3	* ± .	-
	OCIF-DCR4	+ + ± .	
	OCIF-DDD1	+	
	OCIF-DDD2	± ·	
	OCIF-CL	++	
	OCIF-CC	++	
	OCIF-CDD2	++	
	OCIF-CDD1	+	
	OCIF-CCR4	±	
	OCIF-CCR3	±	
	OCIF-CBs t	++	
	OCIF-CSph	++	
	OCIF-CBsp	± ±	
	OCIF-CPst	±	

(表中、++は抗原量当たりの活性が未改変OCIFの活性の50%を超える、+は 10%~50%、±は10%未満又は抗原量が正確に測定できないことをそれ ぞれ示す)

vi) ウェスタンブロッティング解析

活性測定に用いたサンプルの10μ1 をウェスタンブロット解析に供した。サン プル10μ1 に10μ1 のSDS-PAGE用サンプルバッファー(0.5M Tris-HCI、 20%グリセロール、4%SDS、20μg/mlプロムフェノール ブルー(pH 6.8)) を加え、100 ℃で3分煮沸し非還元状態で10%SDSポリアクリルアミド電気泳 動を行った。泳動終了後、セミドライブロッティング装置(バイオラッド社)に よりPVDFメンプレン (ProBlott®、パーキンエルマー社)に蛋白質をブロッ ティングした。そのメンブレンをブロッキング後、実施例24に記載のEIA用西 洋ワサビパーオキシダーゼ標識抗OCIF抗体とともに、37℃で2時間保温した。 洗浄後ECLシステム(アマシャム社)により抗OCIF抗体に結合する蛋白質 を検出した。OCIFでは、約120 キロダルトン(kD)及び60kDのバンドが検出 された。一方、OCIF-C23S 、OCIF-CL 、OCIF-CC では、ほとんど60kDのバンドの みが検出された。また、OCIF-CDD2 及びOCIF-CDD1 ではそれぞれ約40-50 kD 及 び30-40 kD のバンドが主要なバンドとして検出された。以上の結果より、OC IFでは、配列表配列番号4のアミノ酸配列にける 380番目のCys残基が二量 体形成に係わっていること、単量体でも活性を保持していること、及び177 番Asp から 380番Leu までの残基を欠失させても活性を保持してることが明らかとなっ た。

[実施例23]

ヒトOCIFゲノムDNAの分離

I) ヒトゲノムDNAライブラリーのスクリーニング

ヒト肺の染色体 DNAと AFIX IIベクターを用いて作製されたゲノム・ライブラリーをストラタジーン社から購入し、これをOCIFcDNAをプローブとしてスクリーニングした。スクリーニングは、基本的にはゲノム・ライブラリーに添付されているプロトコールに従って実施したが、ファージ、大腸菌、DNAを扱う一般的方法はMolecular Cloning: A Laboratory Manual に従って行った。

購入したゲノムDNAライブラリーのタイターを検定したのち、 1×10^6 pfu のファージを大腸菌XL1-Blue MRAに感染させ、20枚のプレート $(9 \times 13$ cm) にプレ

ート当たり9mlのトップ・アガロースとともに蒔いた。プレートを一夜37℃でイ ンキュベートしたのち、Hybond-Nナイロン膜(アマシャム社)をアガープレート 上に乗せてファージを転写した。ファージの転写したナイロン膜を1.5M NaC1/0.5 M NaOH溶液で湿らせた濾紙上に 1 分間乗せ、その後1M Tris-HC1, (pH7.5)と1.5M NaCl/0.5M Tris-HCl (pH7.5)でそれぞれ1分ずつ処理して中和したのち、最後に 2 XSSCで湿らせた濾紙の上に移した。その後、このナイロン膜にストラタリンカ - (ストラタジーン社)を用いて1200マイクロジュールの UV を照射することに よってファージDNAを膜に固定した。次に、このナイロン膜をラピッドハイブ リダイゼーション・バッファー(アマシャム社)に浸漬してプレハイブリダイゼ ーションを行った。1時間のプレハイブリダイゼーションの後、32P標識したOC IFcDNAを加え、65℃にて一夜ハイプリダイゼーションを行った。このcDNAプ ローブは、実施例11で得られた1.6kb のOCIFcDNAを有するプラスミドpBKOCIF を、制限酵素BamHI 及びXhoIとを用いて切断し、OCIFcDNAをアガロースゲル電気 泳動によって単離したのち、このOCIFcDNAをメガプライムDNAラベリングシス テム (アマシャム社)を用いて32Pで標識することによって作製した。標識は、 ラベリングシステムに添付されたプロトコールに従って行った。ハイブリダイゼ ーションには、ハイプリダイゼーション・バッファー 1 ml 当たりおよそ 5 × 10⁵ cpm のプローブを使用した。ハイブリダイゼーションの後、ナイロン膜を室温に て2 XSSCで5分間洗浄し、その後65℃において0.5 XSSC/0.1%SDSで4回、そ れぞれ20分ずつ洗浄した。4回目の洗浄ののちナイロン膜を乾燥させ、富士フィ ルム社製X腺フィルム、スーパーHR-Hと増感スクリーンとを用いて−80℃にてオ ートラジオグラフィーを行った。オートラジオグラム上に6個のシグナルが検出 されたので、それぞれのシグナルに相当するアガープレート上の位置からトップ ·アガロースを切り出し、1%のクロロホルムを添加した0.5ml のSMバッファ 一にそれぞれ浸漬して一夜放置し、ファージを抽出した。それぞれのファージ抽 出液をSMバッファーで1000倍に希釈し、その中から1 μ1 と20 μ1 を取り、再 び上記大腸菌に感染させ、トップ・アガロースとともに上記の方法でアガープレ ートに蒔いた。ファージをナイロン膜に転写後、上記の方法でプレハイブリダイ

ゼーション、ハイブリダイゼーション、洗浄、乾燥、オートラジオグラフィーを行った。このファージ純化の操作を当初オートラジオグラフィー上で検出された6個のシグナル全部について行い、アガープレート上のすべてのファージプラークがcDNAプローブとハイブリダイズするまで繰り返した。純化されたファージのプラークを切り出し、1%クロロホルムを含むSMバッファー0.5ml に浸漬し、4℃で保存した。こうして得られた6種の純化ファージを、それぞれ λ0IF3, λ0IF8, λ0IF9, λ0IF11,λ0IF12,λ0IF17 と名付けた。

II) 制限酵素消化及びサザンブロット・ハイブリダイゼーションによるヒトO CIFゲノムDNAクローンの分析

純化された6種のファージのDNAを、Molecular Cloning: A Laboratory Man ual に書かれた方法に従ってプレートリシス法によって精製した。これらのDNAを制限酵素によって消化し、得られたフラグメントをアガロース電気泳動によって分離した。またアガロース・ゲルで分離されたフラグメントを、一般的な方法でナイロン膜に転移させたのち、OCIFcDNAをプローブとしてサザンブロット・ハイブリダイゼーションを行った。これらの分析の結果、それぞれ純化された6種のファージは異なったクローンであることが判明した。制限酵素消化によって得られたDNAフラグメントのうち、OCIFcDNAとハイブリダイズするものについては、プラスミドベクターにサブクローンした後に下記の方法で塩基配列の分析を行った。

iii) ゲノムDNAクローンから制限酵素消化によって得られたDNAフラグ メントのプラスミド・ベクターへのサブクローニングと塩基配列の決定

 λ OIF8 DNAを制限酵素EcoRI とNotIによって消化し、生じたフラグメントを0.7 %アガロースゲルに供与して分離した。5.8kb のEcoRI/NotIフラグメントをQIAEX II Gel Extraction Kit(キアゲン社) を用いて添付されたプロトコールに従ってゲルから抽出した。このフラグメントを、前もって<math>EcoRI とNotIによって切断しっておいたpBluescriptII SK+ ベクター(ストラタジーン社)とReady-To-Go T4 Ligase(ファルマシア社)を用いて添付のプロトコールに従ってライゲーションした。得られたリコンビナント・プラスミドを、コンピテントDH5 α 大腸菌

(アマシャム社)に導入した後、50μg/mlのアンピシリンを含有するアガロース プレート上に蒔いてプラスミドを有する大腸菌を選択した。以上のようにして作 製された5.8kb EcoRI/NotIフラグメント有するリコンピナント・プラスミドを、 pBSG8-5.8 と命名した。次に、pBSG8-5.8 を制限酵素HindIII で消化して生ずる 0.9 kbのDNAフラグメントをアガロースゲルで分離し、上記の方法にしたがっ て抽出した後、HindIII で前もって切断しておいたpBluescriptII SK-(ストラタ ジーン社)に挿入して、上記の方法に従ってクローニングした。この0.9kbのHind III フラグメントを有するリコンビナント・プラスミドを、pBS8HO.9と命名した。 一方、 λOIF11のDNAをEcoRIを用いて消化して生ずる 6 kb、3.6kb、及び2.6kb のフラグメントをそれぞれ単離したのち、上記と同様の方法に従ってpBluescript II SK+ベクターに挿入してクローニングした。こうして作製した 6 kb、3.6 kb、 及び2.6kb のEcoRI フラグメントを有するリコンビナント・プラスミドを、それ ぞれpBSG11-6、pBSG11-3.6、pBSG11-2.6と命名した。さらに、pBSG11-6を制限酵 素HindIII によって消化することによって生ずる、2.2kb、1.1kb、1.05kbの3種 のフラグメントをアガロースゲル電気泳動によって分離し、それぞれpBluescript II SK-のHindIII サイトに挿入してクローニングした。これら2.2kb 、1.1kb 、 1.05 kb のHindIII フラグメントを有するリコンピナント・プラスミドを、それ ぞれpBS6H2.2、pBS6H1.1、pBS6H1.05 と命名した。ゲノムDNAの塩基配列の分 析には、ABI Dyedeoxy Terminator Cycle Sequencing Ready Reaction Kit (パ ーキンエルマー社)と373 DNA Sequencing System (アプライドバイオシステム ズ社)を使用した。Molecular Cloning:A Laboratory Manual に書かれた方法に 従ってpBSG8-5.8 、pBS8H0.9、pBSG11-6、pBSG11-3.6、pBSG11-2.6、pBS6H2.2、 pBS6H1.1、pBS6H1.05 を調製し、塩基配列決定用の鋳型として用いた。ヒトOC IFゲノムDNAの塩基配列を配列表配列番号104 及び105 に示す。エクソン1 とエクソン2の間に介在する塩基の配列は必ずしも全部は決定されておらず、配 列表配列番号104 及び105 に示された塩基配列の間に、およそ17kbのヌクレオチ ドが介在することが確認されている。

[実施例24]

EIAによるOCIFの定量

i) ウサギ抗OCIF抗体の調製

雄性日本白色ウサギ(体重2.5 ~3.0kg 、北山ラベス社より入手)3羽に、 r OCIF200 μg/mlをフロイント完全アジュバント(DIFCO社)と等量混合してエ マルジョンとしたものを、1回1mlずつ皮下免疫した。免疫は1週間隔で合計6 回行い、最終免疫後10日目に全採血を行った。分離した血清から抗体を以下の様 に精製した。即ち、PBSにて2倍希釈した抗血清に最終濃度40w/v %となるよ うに硫酸アンモニウムを添加して4℃1時間放置後、8000×gで20分間遠心分離 を行い、沈殿を得た。沈殿を少量のPBSに溶解し、PBSに対して4℃で透析 した後、Protein G-Sepharose カラム(ファルマシア社)に負荷した。PBSに て洗浄後、0.1Mグリシン塩酸緩衝液(pH3.0) にて吸着した免疫グロブリンGを溶 出し、直ちに1.5 Mトリス塩酸緩衝液(pH8.7)で中性pHとした。溶出蛋白質画分 をPBSに対して透析後、280nm における吸光度を測定し、その濃度を決定した (E¹ 13.5)。西洋ワサビパーオキシダーゼ標識した抗OCIF抗体は、マレイ ミド活性化パーオキシダーゼキット(ピアス社)を用いて作製した。即ち、1mg の精製抗体に80μgのN-スクシンイミド-S-アセチルチオ酢酸を添加し、室 温で30分間反応させた。これに5mgのヒドロキシルアミンを添加して脱アセチ ル化した後、修飾された抗体をポリアクリルアミド脱塩カラムにて分画した。蛋 白質画分を1mgのマレイミド活性化パーオキシダーゼと混合し、室温で1時間 反応させ酵素標識抗体を得た。

ii) サンドイッチEIAによるOCIFの定量

96ウェルのマイクロタイタープレート(MaxiSorp Immunoplate, Nunc社)の各ウェルに、 $100 \mu 1$ のウサギ抗OCIF抗体 $(2 \mu g/m 1, 50 m M)$ 炭酸緩衝液(pH 9.6))を添加し $4 \, ^{\circ}$ にて一晩静置して、抗体を固相化した。PBSにて調製した25%プロックエース(雪印乳業社)を $300 \, \mu 1$ ずつ各ウェルに添加し、 $37 \, ^{\circ}$ で1時間放置してブロッキングした後、検体 $(100 \, \mu \, 1/$ ウェル)を添加し室温で $2 \,$ 時間反応させた。0.05% Tween20を含むPBS (PBST)にて $3 \,$ 回洗浄した後、 $10000 \,$ 倍

希釈した西洋ワサビパーオキシダーゼ標識抗OCIF抗体を 100μ1 ずつ添加し室温で2時間インキュベートした。PBSTにて3回洗浄した後、100μ1 の酵素基質溶液(TMB、ScyTek社)を加え室温で発色させた後、反応を停止した。 450nmにおける吸光度をマイクロプレートリーダー(イムノリーダー NJ2000、日本インターメッド社)を用いて測定し、精製した組み換えOCIFを標準とした検量線から、検体のOCIF濃度を定量した。OCIFの検量線を図13に示す。 [実施例25]

抗OCIFモノクローナル抗体

i) ヒトOCIF抗体産生ハイブリドーマの調製

ヒト線維芽細胞 I M R - 90を培養し、その培養液から実施例11記載の方法でO C I F を精製した。精製 O C I F を10 μg/100 μ1 の濃度になるように P B S に 溶解し、この溶液を 2 週間おきに B A L B / c マウスに腹腔内投与し免疫した。初回及び 2 回目の免疫においては、等量のフロインド完全アジェバントの混合物を投与した。最終の免疫から 3 日目に脾臓を摘出し、 B リンパ球を分離し、マウスミエローマ細胞P3x63-AG8.653 とを通常用いられているポリエチレングリコール法により細胞融合させた。ついで融合細胞を選択するために H A T 培地で培養を行うことにより、ハイブリドーマ細胞をセレクションした。次に、セレクションされた細胞が O C I F 特異的抗体を産生しているか否かを確認するために、0.1 M 重曹溶液に溶解した O C I F 溶液(10 μg/ml)100 μ1 を、96穴マイクロプレート(Nunc社)に加えて作製したソリッドフェーズ E L I S A を用いて、ハイブリドーマ培養液中の O C I F 特異的抗体の測定を行った。抗体生産が認められたハイブリドーマを限界希釈法によりクローニングを 3 - 5 回繰り返し行い、その都度上記 E L I S A により抗体産生量をチェックした。得られた抗体生産株の中から、抗体生産量の高いクローンを選別した。

<u>ii)モノクローナル抗体の生産</u>

実施例25-i)で得た抗体生産株を、それぞれ1×10°を予めプリスタン(アルドリッチケミカル社)を接種しておいたBALB/c系マウスの腹腔内に移植した。移植2週間後、蓄積した腹水を採取し、本発明のモノクローナル抗体を含む

腹水を得た。この腹水より、アフィゲルプロティンAセファロース(バイオラッド社製)を用いたアフィニティクロマトグラフィーにより精製抗体を得た。即ち、腹水を等量のバインディングバッファー(バイオラッド社)で希釈し、プロティンAカラムに負荷した後、充分量の同バッファーで洗浄した。IgGの溶出は、エリューションバッファー(バイオラッド社)で行った。得られた溶出液を水で透析した後、凍結乾燥を行った。得られた精製抗体をSDS-PAGEにより純度検定を行ったところ、分子量約150,000の位置に均一なバンドを認めた。

iii) OCIFに対して高親和性を有するモノクローナル抗体の選択

実施例25-ii)で得た抗体をPBSに溶解し、ローリー法により蛋白定量を行った。ついで、各抗体を蛋白濃度が一定になるようにPBSに溶解し、この溶液を段階希釈法により希釈した。実施例25-ii)に記載のソリッドフェーズELISAを用いて、高い希釈段階までOCIFと反応するモノクローナル抗体を選別した。その結果、A1G5、E3H8、及びD2F4の3種の抗体が得られた。

iv) 抗体のサブクラスの検定

実施例25-iii)で選択した本発明の抗体のクラス及びサブクラスを、イムノグロブリンクラス及びサブクラス分析キット(アマシャム社)を用いて検定した。 検定は、キットに指示されているプロトコールに従って実施した。結果を表15 に示す。E3H8、A1G5、及びD2F4は、それぞれIgG1、IgG2a、及びIgG2bであった。

抗体名	IgG ₁	IgG _{2a}	IgG _{2b}	IgG ₃	IgA	IgM	к
A 1 G 5		+	· —		_	_	+
ЕЗН8	+		_	_	_		+
D 2 F 4	_	_	+	· —	-		+

第15表

v) OCIFのELISAによる測定方法

実施例25-iv) で得たA1G5、E3H8、及びD2F4の3種のモノクローナル抗体を、それぞれ固相抗体と標識抗体とした。それぞれの組み合わせにより、サンドイッチELISAを構築した。抗体の標識は、マレイミド活性化パーオキシダーゼキ

ット (ピアス社)を用いて行った。各々の抗体を10 μg/mlの濃度になるように0.1 M 重曹溶液に溶解し、96穴イムノプレート(Nunc 社) の各ウエル当たり 100 µ1 づつそれぞれ分注し、室温で一晩放置した。次いで、各々のプレートを1/2 濃度 のブロックエース (雪印乳業社) でブロックし、0.1 %のTween20 を含む P B S (洗浄バッファー)で3回洗浄した。各濃度のOCIFを第一次反応バッファー (1/2.5濃度のブロックエース及び0.1 %Tween20 を含む0.2Mトリス塩酸緩衝液、 pH 7.4) で調製した。調製した各濃度のOCIF溶液 100 μl づつ各ウエルに加 え、37℃で3時間放置し、次いで洗浄バッファーで3回洗浄した。標識抗体の希 釈には、第二次反応バッファー (1/4 濃度のブロックエース及び 0.1%の Tween 20を含む0.1Mトリス塩酸緩衝液、pH 7.4) を用いた。各標識抗体を第2次反応バ ッファーで400 倍に希釈し、その各々 100 µ1 づつを各ウエルにそれぞれ添加し た。各々のプレートを37℃で2時間放置し、次いで3回洗浄した後、基質溶液 (0.4mg/mlのオルトフェニレンジアミン塩酸、0.006 %過酸化水素を含む0.1Mク エン酸-リン酸バッファー、pH 4.5) 100 µ1 を各ウエルに添加した。37℃で15 分間暗室に放置した後、6 N硫酸50 µ1 を各ウエルに添加することにより酵素反 応を停止させ、イムノリーダー (NJ2000, 日本インターメッド社) を用いて 492 nmの吸光度を測定した。3種の抗体をそれぞれ固相抗体或いは標識抗体としたい ずれの組み合わせにおいても良好な測定結果が得られ、3種の抗体はそれぞれ0 CIFの異なるエピトープを認識することを認めた。代表例として、A1G5を固相 抗体としE3H8を標識抗体としたときの検量線を図14に示す。

vi) ヒト血清中のOCIFの測定

健常人 5名の血清中のOCIFを実施例25-(v) の図14のELISA系で測定した。即ち、A1G5を実施例25-(v) と同様にイムノプレートに固相化し、各ウエルに第1次反応バッファーを $50\,\mu 1$ 加え、次いで各ヒト血清 $50\,\mu 1$ を加えて 37° で 3 時間放置した。洗浄バッファーで 3 回洗浄した後、第2次反応バッファーで 400 倍に希釈したE3H8の標識抗体 $100\,\mu 1$ を各ウエルに加えて、 37° で 2 時間放置した。プレートを洗浄バッファーで 3 回洗浄後、上記基質溶液 $100\,\mu 1$ を各ウエルに添加し、 37° で15分間反応させた。各ウエルに 6 N硫酸 $50\,\mu 1$ づつ添加し

て酵素反応を停止させ、イムノリーダーで492nm の吸光度を測定した。既知量のOCIFを含む第1次反応バッファーについても同様に操作し、図14に示すようなOCIFの検量線を作成し、血清試料の吸光度から血清中のOCIF量を求めた。結果を表16に示す。

第16表

	· · · · · · · · · · · · · · · · · · ·
血清サンプル	OCIF量 (ng/ml)
1	5. 0
2	2. 0
3	1. 0
4	3. 0
5	1. 5

〔実施例26〕

骨粗鬆症に対する治療効果

神経切除による不動性の骨萎縮モデルに対する〇CIFの治療効果を確認した。 Fischer 系雄ラットを用い、6週齢(体重約120g)で左上腕神経叢を切除することにより、左前肢の不動化を惹起して骨萎縮モデルを作成した。〇CIFは0.01%Tween80を含むPBS(一)で調整し、翌日から5μg/kg及び50μg/kgの用量で12時間間隔で1日2回、2週間連日静脈内投与した。正常群には偽手術を施し、対照群には0.01%Tween80を含むPBS(一)を同様に投与した。投与終了後、左上腕を摘出し骨強度を測定した。結果を図15に示す。

この結果、正常群に比べ対照群では骨強度の低下が観察されたが、OCIF50 μ g/kg投与群において改善が認められた。

産業上の利用可能性

本発明により、新規な破骨細胞形成抑制活性を有する蛋白質及びその効率的な 製造方法が提供される。本発明の蛋白質は破骨細胞形成抑制活性を有し、骨粗鬆 症等各種の骨量減少性疾患の治療剤として或いはこれらの疾患の免疫学的診断の ための抗原等として利用することができる。

寄託された微生物への言及

寄託機関の名称及びあて名

名 称:通商産業省工業技術院生命工学工業技術研究所

あて名:日本国茨城県つくば市東1丁目1番3号(郵便番号305)

寄託機関に寄託した日

平成7年6月21日 (原寄託日)

(平成7年6月21日に寄託された微工研菌寄第P-14998 号より移管、移管日平成7年10月25日)

受託番号 FERM BP-5267

配列表

配列番号:1

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド (蛋白質の内部アミノ酸)

配列:

Xaa Tyr His Phe Pro Lys

1

5

配列番号:2

配列の長さ:14

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド (蛋白質の内部アミノ酸)

配列:

Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys

1

5

10

配列番号:3

配列の長さ:12

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド (蛋白質の内部アミノ酸)

配列:

Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys

1

5

10

配列の長さ:380

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(OCIF;シグナル無し)

Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	Tyr	Asp	Glu	Glu	Thr	Ser
1				5					10					15
His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr	Tyr	Leu	Lys
				20					25					30
Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro
				35					40					45
Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His	Thr	Ser	Asp	G1u	Cys	Leu
				50					55					60
Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu	G1n	Tyr	Val	Lys	Gln	Glu
				65				•	70					75
Cys	Asn	Arg	Thr	His	Asn	Arg	Va1	Cys	Glu	Cys	Lys	Glu	Gly	Arg
		•		80					85	٠				90
Tyr	Leu	G1u	Ile	G1u	Phe	Cys	Leu	Lys	His	Arg	Ser	Cys	Pro	Pro
				95					100					105
Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr	Pro	Glu	Arg	Asn	Thr	Val
				110					115					120
Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser
				125					130					135
Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn	Cys	Ser	Val	Phe	Gly	Leu
				140					145	·				150
Leu	Leu	Thr	G1n	Lys	G1y	Asn	Ala	Thr	His	Asp	Asn	Ile	Cys	Ser
				155					160					165

Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val

Lys Ile Ser Cys Leu 380

配列番号:5

配列の長さ:401

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(OCIF;シグナル含む)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp IIe Ser -20 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asm Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu

Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr 335 325 330 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 340 350 345 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 365 360 355 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 380 375 370

配列番号:6

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F)

配列:

ATGAACACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660

AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720

AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780

AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840

GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900

AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960

CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020

ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080

GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140

TATCAGAAGT TATTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200

TTATAA

配列番号:7

配列の長さ:15

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド(蛋白質のN末端アミノ酸)

配列:

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser

1 5 10 15

配列番号:8

配列の長さ:1185

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F 2)

配列の長さ:394

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(ОСІГ2)

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -20 -10 -15 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His -5 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro

Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu

配列の長さ:1089

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF3)

ATGAACAAGT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GAACCCCAGA	GCGAAATACA	420
GTTTGCAAAA	GATGTCCAGA	TGGGTTCTTC	TCAAATGAGA	CGTCATCTAA	AGCACCCTGT	480
AGAAAACACA	CAAATTGCAG	TGTCTTTGGT	CTCCTGCTAA	CTCAGAAAGG	AAATGCAACA	540
CACGACAACA	TATGTTCCGG	AAACAGTGAA	TCAACTCAAA	AATGTGGAAT	AGATGTTACC	600
CTGTGTGAGG	AGGCATTCTT	CAGGTTTGCT	GTTCCTACAA	AGTTTACGCC	TAACTGGCTT	660
AGTGTCTTGG	TAGACAATTT	GCCTGGCACC	AAAGTAAACG	CAGAGAGTGT	AGAGAGGATA	720
AAACGGCAAC	ACAGCTCACA	AGAACAGACT	TTCCAGCTGC	TGAAGTTATG	GAAACATCAA	780
AACAAAGACC	AAGATATAGT	CAAGAAGATC	ATCCAAGATA	TTGACCTCTG	TGAAAACAGC	840
GTGCAGCGGC	ACATTGGACA	TGCTAACCTC	AGTTTGTGGC	GAATAAAAA	TGGCGACCAA	900
GACACCTTGA	AGGGCCTAAT	GCACGCACTA	AAGCACTCAA	AGACGTACCA	CTTTCCCAAA	960
ACTGTCACTC	AGAGTCTAAA	GAAGACCATC	AGGTTCCTTC	ACAGCTTCAC	AATGTACAAA	1020
TTGTATCAGA	AGTTATTTTT	AGAAATGATA	GGTAACCAGG	TCCAATCAGT	AAAAATAAGC	1080
TGCTTATAA						1089

配列の長さ:362

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF3)

配列:

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His
-5 5

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe

115 120 125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser

Cys Leu 340

配列番号:12

配列の長さ: 465

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F 4)

配列:

ATGAACAAGT.	TGCTGTGCTG	CTCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GTACGTGTCA	ATGTGCAGCA	420
AAATTAATTA	GGATCATGCA	AAGTCAGATA	GTTGTGACAG	TTTAG		465

配列番号:13

配列の長さ:154

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF4)

Met Asn Lys Leu Leu Cys Cys Ser Leu Val Phe Leu Asp Ile Ser -20 -15 -10 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His - 5 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 10 15 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 30 35 25 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 45 40 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 55 60 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 80 70 75 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 95 85 90 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 110 100 105 Cys Gln Cys Ala Ala Lys Leu Ile Arg Ile Met Gln Ser Gln Ile 125 115 120 Val Val Thr Val 130

配列番号:14

配列の長さ: 438

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF5)

配列:

ATGAACAAGT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GATGCAGGAG	AAGACCCAAG	420
CCACAGATAT	GTATCTGA					438

配列番号:15

配列の長さ:140

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF5)

配列:

Met Asn Lys Leu Ceu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -20 - 15 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 -5 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 15 20 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 25 30

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

50

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Cys

100 105 110

Arg Arg Pro Lys Pro Gln Ile Cys Ile

115 120 125

配列番号:16

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーT3)

配列:

AATTAACCCT CACTAAAGGG

配列番号:17

配列の長さ:22

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

20

配列の種類:合成DNA(プライマーT7)

配列:

GTAATACGAC TCACTATAGG GC

22

配列番号:18

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF1)

配列:

ACATCAAAAC AAAGACCAAG

20

配列番号:19

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF2)

配列:

TCTTGGTCTT TGTTTTGATG

20

配列番号: 20

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF3)

配列:

TTATTCGCCA CAAACTGAGC

20

配列番号: 21

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF4)

配列:

TTGTGAAGCT GTGAAGGAAC

20

配列番号:22

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF5)

配列:

GCTCAGTTTG TGGCGAATAA

20

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF6)

配列:

GTGGGAGCAG AAGACATTGA

20

配列番号: 2 4

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF7)

配列:

AATGAACAAC TTGCTGTGCT

20

配列番号: 25

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF8)

TGACAAATGT CCTCCTGGTA

配列番号: 26

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF9)

配列:

AGGTAGGTAC CAGGAGGACA

20

配列番号: 27

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF10)

配列:

GAGCTGCCCT CCTGGATTTG

20

配列番号: 28

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF11)

配列:

CAAACTGTAT TTCGCTCTGG

20

配列番号: 29

配列の長さ:20

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーIF12)

配列:

GTGTGAGGAG GCATTCTTCA

20

配列番号: 30

配列の長さ:32

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC19SF)

配列:

GAATCAACTC AAAAAAGTGG AATAGATGTT AC

32

配列番号:31

配列の長さ:32

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC19SR)

配列:

GTAACATCTA TTCCACTTTT TTGAGTTGAT TC

32

配列番号: 3 2

配列の長さ:30

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC20SF)

配列:

ATAGATGTTA CCCTGAGTGA GGAGGCATTC

30

配列番号:33

配列の長さ:30

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC20SR)

配列:

GAATGCCTCC TCACTCAGGG TAACATCTAT

30

配列番号: 3 4

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC21SF)

配列:

CAAGATATTG ACCTCAGTGA AAACAGCGTG C

31

配列番号:35

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーC21SR)

配列:

GCACGCTGTT TTCACTGAGG TCAATATCTT G

31

配列番号: 36

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーC22SF)

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーC22SR)

配列:

GGTCACTGGG TTTGCTTGCC TTTATTGTTT T

31

配列番号:38

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーC23SF)

配列:

TCAGTAAAAA TAAGCAGCTT ATAACTGGCC A

31

配列番号:39

配列の長さ:31

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーC23SR)

配列:

TGGCCAGTTA TAAGCTGCTT ATTTTTACTG A

31

配列番号: 40

配列の長さ:22

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーIF 14)

配列:

TTGGGGTTTA TTGGAGGAGA TG

22

配列番号: 41

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR1F)

配列:

ACCACCCAGG AACCTTGCCC TGACCACTAC TACACA

36

配列番号: 42

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR1R)

配列:

GTCAGGGCAA GGTTCCTGGG TGGTCCACTT AATGGA

36

配列番号: 43

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR2F)

配列:

ACCGTGTGCG CCGAATGCAA GGAAGGGCGC TACCTT

36

配列番号: 4 4

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR2R)

配列:

TTCCTTGCAT TCGGCGCACA CGGTCTTCCA CTTTGC

36

配列番号: 45

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR3F)

配列:

AACCGCGTGT GCAGATGTCC AGATGGGTTC TTCTCA

36

配列番号: 46

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR3R)

配列:

ATCTGGACAT CTGCACACGC GGTTGTGGGT GCGATT

36

配列番号: 47

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR4F)

配列:

ACAGTTTGCA AATCCGGAAA CAGTGAATCA ACTCAA

36

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDCR4R)

配列:

ACTGTTTCCG GATTTGCAAA CTGTATTTCG CTCTGG

36

配列番号: 49

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDDD1F)

配列:

AATGTGGAAT AGATATTGAC CTCTGTGAAA ACAGCG

36

配列番号:50

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDDD1R)

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDDD2F)

配列:

AGATCATCCA AGACGCACTA AAGCACTCAA AGACGT

36

配列番号:52

配列の長さ:36

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーDDD2R)

配列:

GCTTTAGTGC GTCTTGGATG ATCTTCTTGA CTATAT

36

配列番号:53

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーXhoIF)

配列:

GGCTCGAGCG CCCAGCCGCC GCCTCCAAG	29
配列番号:54 配列の長さ:20 配列の型:核酸 鎖の数:1	
トポロジー:直鎖状 配列の種類:合成 D N A (プライマーIF 16) 配列:	
TTTGAGTGCT TTAGTGCGTG	20
配列番号:55 配列の長さ:30 配列の型:核酸 鎖の数:1 トポロジー:直鎖状 配列の種類:合成DNA(プライマーCLF) 配列:	
TCAGTAAAAA TAAGCTAACT GGAAATGGCC	30

配列番号:56

配列の長さ:30

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーCL R)

配列:

GGCCATTTCC AGTTAGCTTA TTTTTACTGA

30

配列番号:57

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーCCR)

配列:

CCGGATCCTC AGTGCTTTAG TGCGTGCAT

29

配列番号:58

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーCCD2 R)

配列:

CCGGATCCTC ATTGGATGAT CTTCTTGAC

29

配列番号:59

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA (プライマーCCD1 R)

配列:

CCGGATCCTC ATATTCCACA TTTTTGAGT

29

配列番号:60

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーCCR4 R)

配列:

CCGGATCCTC ATTTGCAAAC TGTATTTCG

29

配列番号:61

配列の長さ:29

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:合成DNA(プライマーCCR3 R)

配列:

CCGGATCCTC ATTCGCACAC GCGGTTGTG

29

配列の長さ:401

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(ОСІF-С195)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -15 -20 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 - 5 - 1 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 30 25 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 40 45 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 60 , 55 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 80 70 75 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 95 85 90 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 105 110 100 Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe 125 115 120

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Ser Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr 335 -

Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe

340 345 350

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly

355 360 365

Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu

370 375 380

配列番号:63

配列の長さ:401

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-C20S)

配列:

70

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -20 -15 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 - 1 1 - - 5 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 25 30 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 40 45 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 60 55 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

75

80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Ser Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr

Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser 295 300 305 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu 310 315 320 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr 335 325 330 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 350 340 345 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 365 355 360 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 380 370 375

配列番号: 6 4

配列の長さ:401

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-C21S)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -15 -10 -20 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His -5 - 1 1 5 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 10 15 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 25 30

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile

Ile Gln Asp Ile Asp Leu Ser Glu Asn Ser Val Gln Arg His Ile 260 250 255 Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu 270 275 265 Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr 290 280 285 Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser 300 305 295 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu 315 320 310 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr 330 335 325 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 350 345 340 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 365 360 355 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 380 375 370

配列番号:65

配列の長さ:401

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-C22S)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
-20 -15 -10

Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
	- 5				-1	1				5			*	
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10					15					20				
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25					30					35				
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40					45					50				
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55					60					65				
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70				•	75					80				
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85					90					95				
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100					105					110				
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	G1y	Phe	Phe
115					120					125				
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130					135					140	,			
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	G 1 y	Asn	Ala	Thr
145	;				150	ı				155				
His	Asp	Asn	lle	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	G1n	Lys	Cys
160)				165	i				170				
G13	/ I1e	Asr	Val	Thr	Leu	ı Cys	G1u	Glu	Ala	Phe	Phe	Arg	Phe	Ala
175	5				180)				185	I			
Va]	Pro	Thi	r Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	ı Val	Asp
190)			• .	195	5	-			200)			

Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu

配列番号:66

配列の長さ:401

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-C23S)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
-20 -15 -10

Lie Lye Tre The Che Che Che Pro Pro Lys Tyr Leu His

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His
-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe

115 120 125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn

130 135 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr

145 150 155

```
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
                    165
                                         170
160
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
                    180
                                         185
175
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
                                         200
190
                    195
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
                                         215
                    210
205
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
                                         230
220
                    225
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
                                         245
                    240
235
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
                                         260
250
                    255
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
                    270
                                         275
265
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
                                         290
                    285
280
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
                                         305
295
                    300
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
                                         320
                    315
310
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
                                         335
325
                    330
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
                                         350
                    345
340
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
                                         365
355
                    360
```

Asn Gln Val Gln Ser Val Lys Ile Ser Ser Leu 370 375 380

配列番号:67

配列の長さ:360

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-DCR1)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Pro Cys Pro Asp His Tyr Tyr Thr

-5 -1 1 5

Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val

10 15 20

Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His

25 30 35

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu

40 45 50

Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val

55 60 65

Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro

70 75 80

Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg

85 9**0** 95

Lys. His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys

100 105 110

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gin Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu

Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 325 330 335

配列番号:68

配列の長さ:359

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-DCR2)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe

40 45 50

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln

55 60 65

Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp

70 75 80

Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys

85 90 95

His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly

100 105 110

Asn Ala Thr His Asp	Asn Ile Cys Ser Gly	Asn Ser Glu Ser Thr
115	120	125
Gln Lys Cys Gly Ile	Asp Val Thr Leu Cys	Glu Glu Ala Phe Phe
130	135	140
Arg Phe Ala Val Pro	Thr Lys Phe Thr Pro	Asn Trp Leu Ser Val
145	150	155
Leu Val Asp Asn Leu	Pro Gly Thr Lys Val	Asn Ala Glu Ser Val
160	165	170
Glu Arg Ile Lys Arg	Gln His Ser Ser Gln	Glu Gln Thr Phe Gln
175	180	185
Leu Leu Lys Leu Trp	Lys His Gln Asn Lys	Asp Gln Asp Ile Val
190	195	200
Lys Lys Ile Ile Gln	Asp Ile Asp Leu Cys	Glu Asn Ser Val Gln
205	210	215
Arg His Ile Gly His	Ala Asn Leu Thr Phe	
220	225	230
	Pro Gly Lys Lys Val	
235	240	245
	Ala Cys Lys Pro Ser	
250	255	260
	Arg Ile Lys Asn Gly	
265	270	275
	Ala Leu Lys His Ser	
280	285	290
	Gln Ser Leu Lys Lys	
295	300	305
	Tyr Lys Leu Tyr Gln	
310	315	320

Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 325 330 335

配列番号:69

配列の長さ:363

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-DCR3)

配列:

Met Asn Asn Leu Cus Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala

85 90 95

Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu

100 105 110

```
Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn
                                         125
115
                    120
Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu
                                         140
130
                    135
Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn
                                         155
145
                    150
Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn
                    165
                                         170
160
Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu
                    180
                                         185
175
Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp
                                         200
190
                    195
Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu
                                         215
205
                    210
Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu
                                         230
220
                    225
Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly
                    240
                                         245
235
Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp
                                         260
250
                    255
Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp
                                         275
265
                    270
Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys
                                         290
                    285
280
Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
                                         305
295
                    300
Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys
                                         320
310
                    315
```

Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile 325 330 335

Ser Cys Leu

340

配列番号:70

配列の長さ:359

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(ОСІF-DCR4)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -15 -20 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 -5 - 1 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 30 25 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 45 40 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 55 60 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 80 70 75 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 95 90 85

His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100					105					110				
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Ser	Gly	Asn	Ser	Glu	Ser	Thr
115					120					125		•		
G 1 n	Lys	Cys	Gly	Ιle	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala	Phe	Phe
130					135				•	140				
Arg	Phe	Ala	Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val
145					150					155				
Leu	Val	Asp	Asn	Leu	Pro	Gly	Thr	Lys	Va1	Asn	Ala	Glu	Ser	Val
160					165					170				
Glu	Arg	Ile	Lys	Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln
175					180					185				
Leu	Leu	Lys	Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val
190					195					200				
Lys	Lys	Ile	Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln
205					210					215				
Arg	His	Ile	G1y	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser
220					225					230				
Leu	Met	Glu	Ser	Leu	Pro	G1y	Lys	Ĺys	Val	G1y	Ala	Glu	Asp	Ile
235					240					245			_	_
Glu	Lys	Thr	Ile	Lys	Ala	Cys	Lys	Pro	Ser		Gln	Ile	Leu	Lys
250					255					260				
Leu	Leu	Ser	Leu	Trp	Arg	Ile	Lys	Asn	G1y			Asp	Thr	Leu
265					270					275				. .
Lys	Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser			Tyr	His	Phe
280					285					290			n -	•
Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	ı Lys	Lys			Arg	Phe	Leu
295	· .				300)				305				

His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu
310 315 320

Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
325 330 335

配列番号:71

配列の長さ:326

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-DDD1)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -20 -15 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 -5 -1 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15. Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 30 35 25 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 45 40 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 60 55 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 80 75 70 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 90 95 85

His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	G 1 y	Val	Val	Gln	Ala	Gly	Thr
100					105					110				
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115					120					125				
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130	-				135					140				
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	G1y	Asn	Ala	Thr
145					150					155				
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
160					165					170			•	
Gly	Ile	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
175					180					185				
Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
190					195					200				
Ser	Leu	Pro	G1y	Lys	Lys	Val	G 1 y	Ala	Glu	Asp	Ile	Glu	Lys	Thr
205	-				210					215				
Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	Ile	Leu	Lys	Leu	Leu	Ser
220					225					230			,	
Leu	Trp	Arg	Ile	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	G1y	Leu
235					240					245				
Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr
250					255		•			260				
Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
265					270	•				275				
Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	G1u	Met	Ile	Gly
280	•				285					290				•
Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu				
295					300				•	305				

配列の長さ:327

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-DDD2)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe

115 120 125

Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130					135					140				
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
145					150					155				
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
160					165					170				
Gly	Ile	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala
175					180					185				
Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
190					195		•		•	200				
Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
205			٠.		210					215				
Lys	Arg	G 1 n	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
220					225					230				
Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile
235					240					245				
Ile	Gln	Asp	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys
250					255					260				
Thr	Va ₁ 1	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser
265					270					275				
Phe	Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	Ile
280					285	•				290				
Gly	Asn	Gln	Va1	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu			
295					300					305			·-	

配列の長さ:399

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CL)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -15 -20 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 - 5 - 1 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 30 25. Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 40 45 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 55 60 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 80 75 70 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 95 90 85 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 110 100 105 Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe 125 115 120 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 140 130 135 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr 150 155 145

His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly

Asn Gln Val Gln Ser Val Lys Ile Ser 370 375

配列番号:74

配列の長さ:351

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CC)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu

Met His Ala Leu Lys His

325

330

配列番号:75

配列の長さ:272

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CDD2)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20

-15

-10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5

-1 1

5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10

15

20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25

30

35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40

45

50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55

60

65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70

75

80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85

90

95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100

105

110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln

配列番号:76

配列の長さ:197

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CDD1)

配列:

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
	-20					- 15					-10			
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
	- 5				-1	1				5				
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10					15					20				
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25					30				·	35				
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40					45					50				
Thr	Ser	Asp	G1u	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55	-			-	60					65				
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70					75					80				
Glu	Cys	Lys	G1u	Gly	Arg	Tyr	Leu	Glu	Ile	G1u	Phe	Cys	Leu	Lys
85					90					95				
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Va 1	Gln	Ala	Gly	Thr
100	-				105					110				
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115					120					125				
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130					135					140				
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	G1n	Lys	Gly	Asn	Ala	Thr
145					150					155				
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	G1u	Ser	Thr	G1n	Lys	Cys
160					165					170				
Gly	Ile													
175														

配列の長さ:143

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CCR4)

配列:

115

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -20 -15 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 - 5 - 1 1 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 10 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 25 30 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 40 45 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 55 60 65 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 70 75 80 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 105 110 100 Pro Glu Arg Asn Thr Val Cys Lys

120

配列の長さ:106

配列の型:アミノ酸

鎖の数:1

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CCR3)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20

-15

-10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5

-1 1

5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10

15

20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25

30

35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40

45

50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55

60

65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70

75

80

Glu

85

配列の長さ:393

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質 (OCIF-CBst)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe

115 120 125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn

130 135 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
355 360 365

Asn Leu Val

370

配列番号:80

配列の長さ:321

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CSph)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Leu Asp

配列の長さ:202

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(OCIF-CBsp)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 -1 1 5

10 15 20

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

25 30 35

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

40 45 50

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

55 60 65

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

70 75 80

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys

85 90 95

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

100 105 110

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

115 120 125

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe

130 135 140

 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn

 145
 150
 155

 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr

 160
 165
 170

 His Asp Asn Ile Cys Ser Gly
 180

配列番号:82

配列の長さ:84

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質(ОСІF-СР s t)

配列:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -15 -20 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 5 -1 1 -5 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 20 15 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 35 30 25 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 50 45 40

Thr Ser Asp Glu Cys Leu Tyr Leu Val

55 60

配列番号:83

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-C19S)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AAAGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 1206 TTATAA

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-C20S)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGAGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 ARACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 TTATAA 1206

配列番号:85

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-C21S)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCAG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200
TTATAA

配列番号:86

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-C22S)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAAGCAAA 960

CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200
TTATAA

配列番号:87

配列の長さ:1206

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-C23S)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840

GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCAGC 1200
TTATAA

配列番号:88

配列の長さ:1083

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-DCR1)

配列:

ATGAACACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAACCTT GCCCTGACCA CTACTACACA GACAGCTGC ACACCAGTGA CGAGTGTCTA 120
TACTGCAGCC CCGTGTGCAA GGAGCTGCAG TACGTCAAGC AGGAGTGCAA TCGCACCCAC 180
AACCGCGTGT GCGAATGCAA GGAAGGGCGC TACCTTGAGA TAGAGTTCTG CTTGAAACAT 240
AGGAGCTGCC CTCCTGGATT TGGAGTGGTG CAAGCTGGAA CCCCAGAGCG AAATACAGTT 300
TGCAAAAGAT GTCCAGATGG GTTCTTCTCA AATGAGACGT CATCTAAAGC ACCCTGTAGA 360
AAACACACAA ATTGCAGTGT CTTTGGTCTC CTGCTAACTC AGAAAGGAAA TGCAACACAC 420
GACAACATAT GTTCCGGAAA CAGTGAATCA ACTCAAAAAT GTGGAATAGA TGTTACCCTG 480
TGTGAGGAGG CATTCTTCAG GTTTGCTGTT CCTACAAAGT TTACGCCTAA CTGGCTTAGT 540
GTCTTGGTAG ACAATTTGCC TGGCACCAAA GTAAACGCAG AGAGTGTAGA GAGGATAAAA 600
CGGCAACACA GCTCACAAGA ACAGACTTTC CAGCTGCTGA AGTTATGGAA ACATCAAAAC 660
AAAGACCAAG ATATAGTCAA GAAGATCATC CAAGATATTG ACCTCTGTGA AAACAGCGTG 720

CAGCGGCACA TTGGACATGC TAACCTCACC TTCGAGCAGC TTCGTAGCTT GATGGAAAGC 780
TTACCGGGAA AGAAAGTGGG AGCAGAAGAC ATTGAAAAAA CAATAAAGGC ATGCAAACCC 840
AGTGACCAGA TCCTGAAGCT GCTCAGTTTG TGGCGAATAA AAAATGGCGA CCAAGACACC 900
TTGAAGGGCC TAATGCACGC ACTAAAGCAC TCAAAGACGT ACCACTTTCC CAAAACTGTC 960
ACTCAGAGTC TAAAGAAGAC CATCAGGTTC CTTCACAGCT TCACAATGTA CAAATTGTAT 1020
CAGAAGTTAT TTTTAGAAAT GATAGGTAAC CAGGTCCAAT CAGTAAAAAT AAGCTGCTTA 1080
TAA

配列番号:89

配列の長さ:1080

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F - D C R 2)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCG AATGCAAGGA AGGGCGCTAC CTTGAGATAG AGTTCTGCTT GAAACATAGG 240
AGCTGCCCTC CTGGATTTGG AGTGGTGCAA GCTGGAACCC CAGAGCGAAA TACAGTTTGC 300
AAAAGATGTC CAGATGGGTT CTTCTCAAAT GAGACGTCAT CTAAAGCACC CTGTAGAAAA 360
CACACAAATT GCAGTGTCTT TGGTCTCCTG CTAACTCAGA AAGGAAATGC AACACACGAC 420
AACATATGTT CCGGAAACAG TGAATCAACT CAAAAATGTG GAATAGATGT TACCCTGTGT 480
GAGGAGGCAT TCTTCAGGTT TGCTGTTCCT ACAAAGTTTA CGCCTAACTG GCTTAGTGTC 540
TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAAACGG 600
CAACACAGCT CACAAGAACA GACTTTCCAG CTGCTGAAGT TATGGAAACA TCAAAACAAA 660
GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720

CGGCACATTG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780
CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840
GACCAGATCC TGAAGCTGCT CAGTTTGTGG CGAATAAAAA ATGGCGACCA AGACACCTTG 900
AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCAA AACTGTCACT 960
CAGAGTCTAA AGAAGACCAT CAGGTTCCTT CACAGCTTCA CAATGTACAA ATTGTATCAG 1020
AAGTTATTTT TAGAAATGAT AGGTAACCAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

配列番号:90

配列の長さ:1092

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-DCR3)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCAGATG TCCAGATGGG TTCTTCTCAA ATGAGACGTC ATCTAAAGCA 360
CCCTGTAGAA AACACACAAA TTGCAGTGTC TTTGGTCTCC TGCTAACTCA GAAAGGAAAT 420
GCAACACACG ACAACATATG TTCCGGAAAC AGTGAATCAA CTCAAAAATG TGGAATAGAT 480
GTTACCCTGT GTGAGGAGGC ATTCTTCAGG TTTGCTGTTC CTACAAAATG TGGAATAGAT 480
GGCTTAGTG TCTTGGTAGA CAATTTGCCT GGCACCAAAG TAAACGCAGA GAGTGTAGAG 600
AGGATAAAAC GGCAACACAG CTCACAAGAA CAGACTTTCC AGCTGCTGAA GTTATGGAAA 660
CATCAAAACA AAGACCAAGA TATAGTCAAG AAGATCATCC AAGATATTGA CCTCTGTGAA 720
AACAGCGTGC AGCGGCACAT TGGACATGCT AACCTCACCT TCGAGCAGCT TCGTAGCTTG 780

ATGGAAAGCT TACCGGGAAA GAAAGTGGGA GCAGAAGACA TTGAAAAAAC AATAAAGGCA 840
TGCAAACCCA GTGACCAGAT CCTGAAGCTG CTCAGTTTGT GGCGAATAAA AAATGGCGAC 900
CAAGACACCT TGAAGGGCCT AATGCACGCA CTAAAGCACT CAAAGACGTA CCACTTTCCC 960
AAAACTGTCA CTCAGAGTCT AAAGAAGACC ATCAGGTTCC TTCACAGCTT CACAATGTAC 1020
AAATTGTATC AGAAGTTATT TTTAGAAATG ATAGGTAACC AGGTCCAATC AGTAAAAATA 1080
AGCTGCTTAT AA

配列番号:91

配列の長さ:1080

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F - D C R 4)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAT CCGGAAACAG TGAATCAACT CAAAAATGTG GAATAGATGT TACCCTGTGT 480
GAGGAGGCAT TCTTCAGGTT TGCTGTTCCT ACAAAATGTG GAATAGATGT TACCCTGTGT 540
TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAAACGG 600
CAACACAGCT CACAAGAACA GACTTTCCAG CTGCTGAAGT TATGGAAAAC TCAAAAACAAA 660
GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720
CGGCACATTG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780

CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840
GACCAGATCC TGAAGCTGCT CAGTTTGTGG CGAATAAAAA ATGGCGACCA AGACACCTTG 900
AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCAA AACTGTCACT 960
CAGAGTCTAA AGAAGACCAT CAGGTTCCTT CACAGCTTCA CAATGTACAA ATTGTATCAG 1020
AAGTTATTTT TAGAAATGAT AGGTAACCAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

配列番号:92

配列の長さ:981

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-DDD1)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATATTGAC 600
CTCTGTGAAA ACAGCGTGCA GCGGCACATT GGACATGCTA ACCTCACCTT CGAGCAGCTT 660
CGTAGCTTGA TGGAAAGCTT ACCGGGAAAG AAAGTGGGAG CAGAAGACAT TGAAAAAACA 720
ATAAAAGGCAT GCAAACCCAG TGACCAGATC CTGAAGCTGC TCAGTTTGTG GCGAATAAAA 780
AATGGCGACC AAGACCCTT GAAGGGCCTA ATGCACGCAC TAAAGCACTC AAAGACGTAC 840

CACTTTCCCA AAACTGTCAC TCAGAGTCTA AAGAAGACCA TCAGGTTCCT TCACAGCTTC 900
ACAATGTACA AATTGTATCA GAAGTTATTT TTAGAAATGA TAGGTAACCA GGTCCAATCA 960
GTAAAAATAA GCTGCTTATA A 981

配列番号:93

配列の長さ:984

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-DDD2)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGACG CACTAAAGCA CTCAAAGACG 840 TACCACTTTC CCAAAACTGT CACTCAGAGT CTAAAGAAGA CCATCAGGTT CCTTCACAGC 900 TTCACAATGT ACAAATTGTA TCAGAAGTTA TTTTTAGAAA TGATAGGTAA CCAGGTCCAA 960

配列番号: 9 4

配列の長さ:1200

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-CL)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 ANACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTAA 1200

配列番号:95

配列の長さ:1056

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-CC)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 配列番号:96

配列の長さ:819

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-CDD2)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTG 240
CTATACTGCA GCCCCGTGTG CAAGGAGGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAATGA

AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAATGA

819

配列番号:97

配列の長さ:594

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-CDD1)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT ATGA 594

配列番号:98

配列の長さ:432

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA (OCIF-CCR4)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240

CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAT GA 432

配列番号:99

配列の長さ:321

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-CCR3)

配列:

ATGAACACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG A 321

配列番号:100

配列の長さ:1182

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c DNA (OCIF-CBst)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 1182 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCTAGTCT AG

配列番号:101

配列の長さ:966

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類: c D N A (O C I F - C S p h)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCTAGTCTA 960 GACTAG 966

配列番号:102

配列の長さ:564

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-CBsp)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60

CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG CTAG

配列番号:103

配列の長さ:255

配列の型:核酸

鎖の数:1

トポロジー:直鎖状

配列の種類:cDNA(OCIF-CPst)

配列:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACCTAG TCTAG 255

配列番号:104

配列の長さ:1317

配列の型:核酸

鎖の数:2

トポロジー:直鎖状

配列の種類:genomic DNA(ヒトOCIFゲノムDNA-1)

配列:

CTGGAGACAT	ATAACTTGAA	CACTTGGCCC	TGATGGGGAA	GCAGCTCTGC	AGGGACTTTT	60
TCAGCCATCT	GTAAACAATT	TCAGTGGCAA	CCCGCGAACT	GTAATCCATG	AATGGGACCA	120
CACTTTACAA	GTCATCAAGT	CTAACTTCTA	GACCAGGGAA	TTAATGGGGG	AGACAGCGAA	180
CCCTAGAGCA	AAGTGCCAAA	CTTCTGTCGA	TAGCTTGAGG	CTAGTGGAAA	GACCTCGAGG	240
AGGCTACTCC	AGAAGTTCAG	CGCGTAGGAA	GCTCCGATAC	CAATAGCCCT	TTGATGATGG	300
TGGGGTTGGT	GAAGGGAACA	GTGCTCCGCA	AGGTTATCCC	TGCCCCAGGC	AGTCCAATTT	360
TCACTCTGCA	GATTCTCTCT	GGCTCTAACT	ACCCCAGATA	ACAAGGAGTG	AATGCAGAAT	420
AGCACGGGCT	TTAGGGCCAA	TCAGACATTA	GTTAGAAAAA	TTCCTACTAC	ATGGTTTATG	480
TAAACTTGAA	GATGAATGAT	TGCGAACTCC	CCGAAAAGGG	CTCAGACAAT	GCCATGCATA	540
AAGAGGGGCC	CTGTAATTTG	AGGTTTCAGA	ACCCGAAGTG	AAGGGGTCAG	GCAGCCGGGT	600
ACGGCGGAAA	CTCACAGCTT	TCGCCCAGCG	AGAGGACAAA	GGTCTGGGAC	ACACTCCAAC	660
TGCGTCCGGA	TCTTGGCTGG	ATCGGACTCT	CAGGGTGGAG	GAGACACAAG	CACAGCAGCT	720
GCCCAGCGTG	TGCCCAGCCC	TCCCACCGCT	GGTCCCGGCT	GCCAGGAGGC	TGGCCGCTGG	780
CGGGAAGGGG	CCGGGAAACC	TCAGAGCCCC	GCGGAGACAG	CAGCCGCCTT	GTTCCTCAGC	840
CCGGTGGCTT	TTTTTTCCCC	TGCTCTCCCA	GGGGACAGAC	ACCACCGCCC	CACCCCTCAC	900
GCCCCACCTC	CCTGGGGGAT	CCTTTCCGCC	CCAGCCCTGA	AAGCGTTAAT	CCTGGAGCTT	960
TCTGCACACC	CCCCGACCGC	TCCCGCCCAA	GCTTCCTAAA	AAAGAAAGGT	GCAAAGTTTG	1020
GTCCAGGATA	GAAAAATGAC	TGATCAAAGG	CAGGCGATAC	TTCCTGTTGC	CGGGACGCTA	1080
TATATAACGT	GATGAGCGCA	CGGGCTGCGG	AGACGCACCG	GAGCGCTCGC	CCAGCCGCCG	1140
CCTCCAAGCC	CCTGAGGTTT	CCGGGGACCA	CA ATG AAC	AAG TTG CTO	TGC TGC	1193
			Met Asn	Lys Leu Leu	ı Cys Cys	

GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCC GGCGCCTGGG

1242

-15

-20

Ala Leu Val

GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGGAAA AAGGCTCCAC 1302
TCGCTCCCTC CCAAG 1317

配列番号: 105

配列の長さ:

配列の型:核酸

鎖の数:2

トポロジー:直鎖状

配列の種類:genomic DNA(ヒトOCIFゲノムDNA-2)

配列:

GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAC AGGACTTTGA GTCAAATGAT 60

ACTGTTGCAC ATAAGAACAA ACCTATTTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC 120

TCCTTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT 171

Phe Leu Asp IIe Ser IIe Lys Trp Thr Thr Gln Glu Thr Phe

-10 -5 -1 +1

CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG

Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu

5 10 15

TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA

Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala

20 25 30 35

AAG	TGG	AAG	ACC	GTG	TGC	GCC	CCT	TGC	CCT	GAC	CAC	TAC	TAC	ACA	GAC	315
Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	
				40	-				45					50		
AGC	TGG	CAC	ACC	AGT	GAC	GAG	TGT	CTA	TAC	TGC	AGC	CCC	GTG	TGC	AAG	363
Ser	Trp	His	Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	
			55					60					65			
GAG	CTG	CAG	TAC	GTC	AAG	CAG	GAG	TGC	AAT	CGC	ACC	CAC	AAC	CGC	GTG	411
Glu	Leu	Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	
		70					75					80				
				•												
TGC	GAA	TGC	AAG	GAA	GGG	CGC	TAC	CTT	GAG	ATA	GAG	TTC	TGC	TTG	AAA	459
Cys	G1u	Cys	Lys	G1 u	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys	
	85					90			٠,	•	95					
					,											500
													G G	TACG	TGTCA	509
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val		Gln	Ala				
100					105				•	110						
					_ · _				C	C A T A	C T T	ርጥር ል	CAC	ጥጥጥል	CCACAA	569
															GGAGAA	629
															GCCAGG	689
															TGCCAC	749
															TGCATG	809
															TGATCT	869
				*											CAAACA	929
															TGGAGT	
GCT	AACA	ATA	AGCA	GTTA	TA A	TTAA	TTAT	G TA	AAAA	AIGA	6AA	1661	មអម	uuuH	ATTGCA	300

TTTCATTAT	r aaaaacaago	G CTAGTTCTT	C CTTTAGCATO	G GGAGCTGAG1	r gtttgggagg	1049
GTAAGGACTA	A TAGCAGAATO	CTCTTCAATGA	A GCTTATTCT1	TATCTTAGAC	CAAAACAGATT	1109
GTCAAGCCAA	A GAGCAAGCAC	TTGCCTATA	A ACCAAGTGCT	TTCTCTTTT	CATTTTGAAC	1169
AGCATTGGT	AGGGCTCATG	TGTATTGAA1	CTTTTAAACC	AGTAACCCAC	GTTTTTTTC	1229
TGCCACATTI	GCGAAGCTTC	AGTGCAGCCT	ATAACTTTTC	: ATAGCTTGAG	AAAATTAAGA	1289
GTATCCACTT	` ACTTAGATGG	AAGAAGTAAT	CAGTATAGAT	TCTGATGACT	CAGTTTGAAG	1349
CAGTGTTTCT	CAACTGAAGC	CCTGCTGATA	TTTTAAGAAA	TATCTGGATT	CCTAGGCTGG	1409
ACTCCTTTTT	GTGGGCAGCT	GTCCTGCGCA	TTGTAGAATT	TTGGCAGCAC	CCCTGGACTC	1469
TAGCCACTAG	ATACCAATAG	CAGTCCTTCC	CCCATGTGAC	AGCCAAAAAT	GTCTTCAGAC	1529
ACTGTCAAAT	GTCGCCAGGT	GGCAAAATCA	CTCCTGGTTG	AGAACAGGGT	CATCAATGCT	1589
AAGTATCTGT	AACTATTTTA	ACTCTCAAAA	CTTGTGATAT	ACAAAGTCTA	AATTATTAGA	1649
CGACCAATAC	TTTAGGTTTA	AAGGCATACA	AATGAAACAT	TCAAAAATCA	AAATCTATTC	1709
TGTTTCTCAA	ATAGTGAATC	TTATAAAATT	AATCACAGAA	GATGCAAATT	GCATCAGAGT	1769
CCCTTAAAAT	TCCTCTTCGT	ATGAGTATTT	GAGGGAGGAA	TTGGTGATAG	TTCCTACTTT	1829
CTATTGGATG	GTACTTTGAG	ACTCAAAAGC	TAAGCTAAGT	TGTGTGTGTG	TCAGGGTGCG	1889
GGGTGTGGAA	TCCCATCAGA	TAAAAGCAAA	TCCATGTAAT	TCATTCAGTA	AGTTGTATAT	1949
GTAGAAAAAT	GAAAAGTGGG	CTATGCAGCT	TGGAAACTAG	AGAATTTTGA	AAAATAATGG	2009
AAATCACAAG	GATCTTTCTT	AAATAAGTAA	GAAAATCTGT	TTGTAGAATG	AAGCAAGCAG	2069
GCAGCCAGAA	GACTCAGAAC	AAAAGTACAC	ATTTTACTCT	GTGTACACTG	GCAGCACAGT	2129
GGGATTTATT	TACCTCTCCC	TCCCTAAAAA	CCCACACAGC	GGTTCCTCTT	GGGAAATAAG	2189
AGGTTTCCAG	CCCAAAGAGA	AGGAAAGACT	ATGTGGTGTT	ACTCTAAAAA	GTATTTAATA	2249
ACCGTTTTGT	TGTTGCTGTT	GCTGTTTTGA	AATCAGATTG	TCTCCTCTCC	ATATTTTATT	2309
TACTTCATTC	TGTTAATTCC	TGTGGAATTA	CTTAGAGCAA	GCATGGTGAA	TTCTCAACTG	2369
TAAAGCCAAA	TTTCTCCATC	ATTATAATTT	CACATTTTGC	CTGGCAGGTT	ATAATTTTTA	2429
TATTTCCACT	GATAGTAATA	AGGTAAAATC	ATTACTTAGA	TGGATAGATC	TTTTTCATAA	2489
AAAGTACCAT	CAGTTATAGA	GGGAAGTCAT	GTTCATGTTC	AGGAAGGTCA	TTAGATAAAG	2549
CTTCTGAATA	TATTATGAAA	CATTAGTTCT	GTCATTCTTA	GATTCTTTTT	GTTAAATAAC	2609
TTTAAAAGCT	AACTTACCTA	AAAGAAATAT	CTGACACATA	TGAACTTCTC	ATTAGGATGC	2669

AGGAGAAGAC CCAAGCCACA GATATGTATC TGAAGAATGA ACAAGATTCT TAGGCCCGGC 2729 ACGGTGGCTC ACATCTGTAA TCTCAAGAGT TTGAGAGGTC AAGGCGGGCA GATCACCTGA 2789 GGTCAGGAGT TCAAGACCAG CCTGGCCAAC ATGATGAAAC CCTGCCTCTA CTAAAAATAC 2849 AAAAATTAGC AGGGCATGGT GGTGCATGCC TGCAACCCTA GCTACTCAGG AGGCTGAGAC 2909 AGGAGAATCT CTTGAACCCT CGAGGCGGAG GTTGTGGTGA GCTGAGATCC CTCTACTGCA 2969 CTCCAGCCTG GGTGACAGAG ATGAGACTCC GTCCCTGCCG CCGCCCCCGC CTTCCCCCCC 3029 AAAAAGATTC TTCTTCATGC AGAACATACG GCAGTCAACA AAGGGAGACC TGGGTCCAGG 3089 TGTCCAAGTC ACTTATTTCG AGTAAATTAG CAATGAAAGA ATGCCATGGA ATCCCTGCCC 3149 AAATACCTCT GCTTATGATA TTGTAGAATT TGATATAGAG TTGTATCCCA TTTAAGGAGT 3209 AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACA GAAAACCCTC TTTGCTTTGT 3269 AAGGTGGTTC CTAAGATAAT GTCAGTGCAA TGCTGGAAAT AATATTTAAT ATGTGAAGGT 3329 TTTAGGCTGT GTTTTCCCCT CCTGTTCTTT TTTTCTGCCA GCCCTTTGTC ATTTTTGCAG 3389 GTCAATGAAT CATGTAGAAA GAGACAGGAG ATGAAACTAG AACCAGTCCA TTTTGCCCCT 3449 TTTTTTATTT TCTGGTTTTG GTAAAAGATA CAATGAGGTA GGAGGTTGAG ATTTATAAAT 3509 GAAGTTTAAT AAGTTTCTGT AGCTTTGATT TTTCTCTTTC ATATTTGTTA TCTTGCATAA 3569 GCCAGAATTG GCCTGTAAAA TCTACATATG GATATTGAAG TCTAAATCTG TTCAACTAGC 3629 TTACACTAGA TGGAGATATT TTCATATTCA GATACACTGG AATGTATGAT CTAGCCATGC 3689 3749 GTAATATAGT CAAGTGTTTG AAGGTATTTA TTTTTAATAG CGTCTTTAGT TGTGGACTGG TTCAAGTTTT TCTGCCAATG ATTTCTTCAA ATTTATCAAA TATTTTTCCA TCATGAAGTA 3809 3869 AAATGCCCTT GCAGTCACCC TTCCTGAAGT TTGAACGACT CTGCTGTTTT AAACAGTTTA AGCAAATGGT ATATCATCTT CCGTTTACTA TGTAGCTTAA CTGCAGGCTT ACGCTTTTGA 3929 GTCAGCGGCC AACTTTATTG CCACCTTCAA AAGTTTATTA TAATGTTGTA AATTTTTACT 3989 TCTCAAGGTT AGCATACTTA GGAGTTGCTT CACAATTAGG ATTCAGGAAA GAAAGAACTT 4049 4109 CAGTAGGAAC TGATTGGAAT TTAATGATGC AGCATTCAAT GGGTACTAAT TTCAAAGAAT GATATTACAG CAGACACACA GCAGTTATCT TGATTTTCTA GGAATAATTG TATGAAGAAT 4169 ATGGCTGACA ACACGCCCTT ACTGCCACTC AGCGGAGGCT GGACTAATGA ACACCCTACC 4229 CTTCTTTCCT TTCCTCTCAC ATTTCATGAG CGTTTTGTAG GTAACGAGAA AATTGACTTG 4289 CATTTGCATT ACAAGGAGGA GAAACTGGCA AAGGGGATGA TGGTGGAAGT TTTGTTCTGT 4349

CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGTGCAA CATAATAGTA GCAGTAAAAA	4409
CCAAGTGAAA AGTCTTTCCA AAACTGTGTT AAGAGGGCAT CTGCTGGGAA ACGATTTGAG	4469
GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA ACC CCA GAG CGA AAT ACA	4523
Gly Thr Pro Glu Arg Asn Thr	
115	
GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT	4571
Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser	
120 125 130 135	
	•
AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG	4619
Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu	
140 145 150	
CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC	4667
Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn	
155 160 165	
95 ACM CAA TOA ACM CAA AAA TOT OCA ATA C CTAATTACAT TCCAAAATAC	4715
AGT GAA TCA ACT CAA AAA TGT GGA ATA/G GTAATTACAT TCCAAAATAC	4110
Ser Glu Ser Thr Gln Lys Cys Gly Ile 170 175	
110	
GTCTTTGTAC GATTTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC	4775
ACATTCTTGG TCAAACTTAC ATTTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT	4835
CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT	4895
AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA	4955

AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA

CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC

5015

5075

TAAGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCCT 5135 ATAATCCCAA CATTTTGGGG GGCCAAGGTA GGCAGATCAC TTGAGGTCAG GATTTCAAGA 5195 CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA ATACAAAAAT TAGCTGGGCA 5255 TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC 5315 CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG 5375 AGCAAGATTT CATCACACAC ACACACACA ACACACAC ACACATTAGA AATGTGTACT 5435 TGGCTTTGTT ACCTATGGTA TTAGTGCATC TATTGCATGG AACTTCCAAG CTACTCTGGT 5495 TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA 5555 TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCCAC 5615 CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5675 5735 TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5795 TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT ATATATGAGA TTCTAACCCA GTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5855 TCTTATCTAA AAAAAAAAA AAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5915 5975 TTTAACATTC TCTTTAATTA ATTCATTTTT AATTTTACTT TTTTTCATTT ATTGTGCACT TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA AAAACACTGT GAAAGTTGCT 6035 TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC AAAGCCAGGT CTGATGAATC 6095 CAAAAACAAA CACCCATTAC TCCCATTTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155 GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6215 GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6275 AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335 ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 6395 TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6455 ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6515 ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6575 TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGGA AAATTCAATT GTGTTGGTTT 6635 6695 TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG GTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 180 185

TTT	GCT	GTT	CCT	ACA	AAG	TTT	ACG	CCT	AAC	TGG	CTT	AGT	GTC	TTG	GTA		6795
Phe	Ala	Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val		
		190					195	•				200					
GAC	AAT	TTG	CCT	GGC	ACC	AAA	GTA	AAC	GCA	GAG	AGT	GTA	GAG	AGG	ATA		6843
Asp	Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile		
	205					210					215						
AAA	CGG	CAA	CAC	AGC	TCA	CAA	GAA	CAG	ACT	TTC	CAG	CTG	CTG	AAG	TTA		6891
Lys	Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys	Leu		
220					225					230					235		
TGG	AAA	CAT	CAA	AAC	AAA	GAC	CAA	GAT	ATA	GTC	AAG	AAG	ATC	ATC	CAA	G	6940
Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile	Ile	Gln		
				240					245					250			
GTA	ATTA	CAT	TCCA	AAAT	AC G	rctt'	rgta(C GA'	TTTT	GTAG	TAT	CATC	TCT	CTCT	CTGA	iT	7000

GTAATTACAT	TCCAAAATAC	GTCTTTGTAC	GATTTTGTAG	TATCATCTCT	CTCTCTGAGT	7000
TGAACACAAG	GCCTCCAGCC	ACATTCTTGG	TCAAACTTAC	ATTTTCCCTT	TCTTGAATCT	7060
TAACCAGCTA	AGGCTACTCT	CGATGCATTA	CTGCTAAAGC	TACCACTCAG	AATCTCTCAA	7120
AAACTCATCT	TCTCACAGAT	AACACCTCAA	AGCTTGATTT	TCTCTCCTTT	CACACTGAAA	7180
TCAAATCTTG	CCCATAGGCA	AAGGGCAGTG	TCAAGTTTGC	CACTGAGATG	AAATTAGGAG	7240
AGTCCAAACT	GTAGAATTCA	CGTTGTGTGT	TATTACTTTC	ACGAATGTCT	GTATTATTAA	7300
CTAAAGTATA	TATTGGCAAC	TAAGAAGCAA	AGTGATATAA	ACATGATGAC	AAATTAGGCC	7360
AGGCATGGTG	GCTTACTCCT	ATAATCCCAA	CATTTTGGGG	GGCCAAGGTA	GGCAGATCAC	7420
TTGAGGTCAG	GATTTCAAGA	CCAGCCTGAC	CAACATGGTG	AAACCTTGTC	TCTACTAAAA	7480

ATACAAAAAT TAGCTGGGCA TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG 7540 GCAGGAGAAT CGCTTGAACC CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG 7600 CACTCCAGTC TGGGCAACAG AGCAAGATTT CATCACACAC ACACACACA ACACACACAC 7660 ACACATTAGA AATGTGTACT TGGCTTTGTT ACCTATGGTA TTAGTGCATC TATTGCATGG 7720 AACTTCCAAG CTACTCTGGT TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA 7780 GTTCAGGTTA TTCGGATGCA TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT 7840 GTTCACCTTG TCACTCCCAC CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC 7900 ACTAAAGATG ATTTGCTTTT TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT 7960 CCCCAAACAG TTTTTCGTAC TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT 8020 ATATATGAGA TTCTAACCCA GTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA 8080 AGCCATTTTA GCCTTTGCTT TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT 8140 ATTAAAAGGA GTGATCAAAT TTTAACATTC TCTTTAATTA ATTCATTTTT AATTTTACTT 8200 TTTTTCATTT ATTGTGCACT TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA 8260 AAAACACTGT GAAAGTTGCT TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC 8320 AAAGCCAGGT CTGATGAATC CAAAAACAAA CACCCATTAC TCCCATTTTC TGGGACATAC 8380 TTACTCTACC CAGATGCTCT GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT 8440 TGGTTATTTT CCTATGTAAT GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC 8500 AAAGGTAAAC TATGTGTCTA AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT 8560 CAAATTCCTT TAAGTCAGTG ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG 8620 GGTACTAGGT AAACCTTTAA TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC 8680 TGTTACTTAT TTACAACAAT ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA 8740 AACAATGCCC AAAAAAGAAC ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG 8800 ACCAGCCAAC AGAAGCTTGA TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGGA 8860 AAATTCAATT GTGTTGGTTT TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA 8920 TTGTTGAGTA AATCTTCTGG GTTTTCTAAC CTTTCTTTAG AT ATT GAC CTC TGT 8974 Asp Ile Asp Leu Cys

255

GAA	AAC	AGC	GTG	CAG	CGG	CAC	ATT	GGA	CAT	GCT	AAC	CTC	ACC	TTC	GAG	9022
Glu	Asn	Ser	Val	G 1 n	Arg	His	Ile	Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	
			260					265					270			
							•									
CAG	CTT	CGT	AGC	TTG	ATG	GAA	AGC	TTA	CCG	GGA	AAG	AAA	GTG	GGA	GCA	9070
Gln	Leu	Arg	Ser	Leu	Met	Glu	Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	
		275					280					285				
GAA	GAC	ATT	GAA	AAA	ACA	ATA	AAG	GCA	TGC	AAA	ССС	AGT	GAC	CAG	ATC	9118
Glu	Asp	I1e	Glu	Lys	Thr	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	G1n	Ile	
	290					295					300					
													-			
CTG	AAG	CTG	CTC	AGT	TTG	TGG	CGA	ATA	AAA	AAT	GGC	GAC	CAA	GAC	ACC	9166
Leu	Lys	Leu	Leu	Ser	Leu	Trp	Arg	I1e	Lys	Asn	Gly	Asp	Gln	Asp	Thr	
305					310					315					320	
TTG	AAG	GGC	CTA	ATG	CAC	GCA	CTA	AAG	CAC	TCA	AAG	ACG	TAC	CAC	TTT	9214
Leu	Lys	G1 y	Leu	Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	
				325					330				-	335		
CCC	AAA	ACT	GTC	ACT	CAG	AGT	CTA	AAG	AAG	ACC	ATC	AGG	TTC	CTT	CAC	9262
Pro	Lys	Thr	Val	Thr	G1n	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	
			340					345					350			
AGC	TTC	ACA	ATG	TAC	AAA	TTG	TAT	CAG	AAG	TTA	TTT	TTA	GAA	ATG	ATA	9310
Ser	Phe	Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	G 1 u	Met	Ile	
		355					360					365				

GGT	AAC	CAG	GTC	CAA	TCA	GTA	AAA	ATA	AGC	TGC	TTA	TAACTGGAAA	
Gly	Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu		
	370					375					380		

9356

TGGCCATTGA GCTGTTTCCT CACAATTGGC GAGATCCCAT GGATGAGTAA ACTGTTTCTC 9416 AGGCACTTGA GGCTTTCAGT GATATCTTTC TCATTACCAG TGACTAATTT TGCCACAGGG 9476 TACTAAAAGA AACTATGATG TGGAGAAAGG ACTAACATCT CCTCCAATAA ACCCCAAATG 9536 GTTAATCCAA CTGTCAGATC TGGATCGTTA TCTACTGACT ATATTTTCCC TTATTACTGC 9596 TTGCAGTAAT TCAACTGGAA ATTAAAAAAA AAAAACTAGA CTCCACTGGG CCTTACTAAA 9656 TATGGGAATG TCTAACTTAA ATAGCTTTGG GATTCCAGCT ATGCTAGAGG CTTTTATTAG 9716 9776 AAAGCCATAT TTTTTCTGT AAAAGTTACT AATATATCTG TAACACTATT ACAGTATTGC 9836 TATTTATATT CATTCAGATA TAAGATTTGG ACATATTATC ATCCTATAAA GAAACGGTAT GACTTAATTT TAGAAAGAAA ATTATATTCT GTTTATTATG ACAAATGAAA GAGAAAATAT 9896 ATATTTTTAA TGGAAAGTTT GTAGCATTTT TCTAATAGGT ACTGCCATAT TTTTCTGTGT 9956 GGAGTATTTT TATAATTTTA TCTGTATAAG CTGTAATATC ATTTTATAGA AAATGCATTA 10016 TTTAGTCAAT TGTTTAATGT TGGAAAACAT ATGAAATATA AATTATCTGA ATATTAGATG 10076 CTCTGAGAAA TTGAATGTAC CTTATTTAAA AGATTTTATG GTTTTATAAC TATATAAATG 10136 ACATTATTAA AGTTTTCAAA TTATTTTTTA TTGCTTTCTC TGTTGCTTTT ATTT 10190

請求の範囲

- 1. 次の物理化学的性質をもち、破骨細胞の分化及び/又は成熟抑制活性のある (蛋白質。
 - (a) 分子量(SDS-PAGEによる);約60kD(還元条件下)、約60kD及び 約120 kD(非還元条件下)
 - (b) 親和性;陽イオン交換体及びへパリンに親和性を有する。
 - (c) 熱安定性;70℃、10分間又は56℃、30分間の加熱処理により破骨細胞の分化・成熟抑制活性が低下し、90℃、10分間の加熱処理により破骨細胞の分化・成熟抑制活性が失なわれる。
 - (d) アミノ酸配列;内部アミノ酸配列として配列表 配列番号1~3のアミノ酸配列をもつ。
- 2. N末端配列が配列表 配列番号7のアミノ酸配列で示される、請求項1記載 の蛋白質。
- 3. ヒト線維芽細胞が産生する、請求項1記載の蛋白質。
- 4. ヒト線維芽細胞を細胞培養し、培養液をイオン交換カラム、アフィニティーカラム及び逆相カラムへの吸着及び溶出を行なって精製することを特徴とする 請求項1~3のいずれかに記載の蛋白質の製造方法。
- 5. アルミナセラミック片を担体として使用して細胞培養を行なう請求項4記載の蛋白質の製造方法。
- 6. 配列表 配列番号4のアミノ酸配列で示される蛋白質。
- 7. 配列表 配列番号4で示されるアミノ酸配列をコードする c D N A。
- 8. 配列表 配列番号6の塩基配列で示される c D N A。
- 9. 配列表 配列番号6の塩基配列で示されるcDNAと比較的温和な条件下で ハイブリダイズするDNA。
- 10. 配列表 配列番号 4 で示されるアミノ酸配列をコードする c D N A が発現された蛋白質。
- 11. 配列表 配列番号4で示されるアミノ酸配列と80%以上の相同性を有するア

ミノ酸配列をコードする c D N A が発現されることにより得られる、破骨細分化及び/又は成熟抑制活性のある蛋白質。

- 12. 配列表 配列番号 4 で示されるアミノ酸配列をコードする c D N A を遺伝子 として用いて、次の物理化学的性質をもち、破骨細胞の分化及び/又は成熟抑制活性のある蛋白質を遺伝子工学的に製造する方法。
 - (a) 分子量(SDS-PAGEによる);約60kD(還元条件下)、約60kD及び 約120 kD(非還元条件下)
 - (b) 親和性;陽イオン交換体及びへパリンに親和性を有する。
 - (c) 熱安定性;70℃、10分間又は56℃、30分間の加熱処理により破骨細胞の分化・成熟抑制活性が低下し、90℃、10分間の加熱処理により破骨細胞の分化・成熟抑制活性が失なわれる。
 - (d) アミノ酸配列;内部アミノ酸配列として配列表 配列番号1~3のアミノ酸配列をもつ。
- 13. 宿主細胞として哺乳動物細胞を用いて請求項10記載の蛋白質を遺伝子工学的に製造する方法。
- 14. 宿主細胞が293/EBNA細胞又はCHO細胞である、請求項13記載の蛋白質 を遺伝子工学的に製造する方法。
- 15. 配列表 配列番号8の塩基配列で示されるcDNA。
- 16. 配列表 配列番号8の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 17. 配列表 配列番号9で示されるアミノ酸配列をコードする c D N A。
- 18. 配列表 配列番号10の塩基配列で示されるcDNA。
- 19. 配列表 配列番号 1 0 の塩基配列で示される c D N A を発現することにより得られる蛋白質。
- 20. 配列表 配列番号11で示されるアミノ酸配列をコードするcDNA。
- 21. 配列表 配列番号12の塩基配列で示されるcDNA。
- 22. 配列表 配列番号12の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。

- 23. 配列表 配列番号13で示されるアミノ酸配列をコードするcDNA。
- 24. 配列表 配列番号14の塩基配列で示されるcDNA。
- 25. 配列表 配列番号14の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 26. 配列表 配列番号15で示されるアミノ酸配列をコードするcDNA。
- 27. 配列表 配列番号83の塩基配列で示されるcDNA。
- 28. 配列表 配列番号83の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 29. 配列表 配列番号62で示されるアミノ酸配列をコードするcDNA。
- 30. 配列表 配列番号84の塩基配列で示されるcDNA。
- 31. 配列表 配列番号84の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 32. 配列表 配列番号63で示されるアミノ酸配列をコードするcDNA。
- 33. 配列表 配列番号85の塩基配列で示されるcDNA。
- 34. 配列表 配列番号85の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 35. 配列表 配列番号64で示されるアミノ酸配列をコードするcDNA。
- 36. 配列表 配列番号86の塩基配列で示されるcDNA。
- 37. 配列表 配列番号86の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 38. 配列表 配列番号65で示されるアミノ酸配列をコードするcDNA。
- 39. 配列表 配列番号87の塩基配列で示されるcDNA。
- 40. 配列表 配列番号87の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 41. 配列表 配列番号66で示されるアミノ酸配列をコードするcDNA。
- 42. 配列表 配列番号88の塩基配列で示されるcDNA。
- 43. 配列表 配列番号88の塩基配列で示されるcDNAを発現することにより得られる蛋白質。

- 44. 配列表 配列番号67で示されるアミノ酸配列をコードするcDNA。
- 45. 配列表 配列番号89の塩基配列で示されるcDNA。
- 46. 配列表 配列番号89の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 47. 配列表 配列番号68で示されるアミノ酸配列をコードするcDNA。
- 48. 配列表 配列番号90の塩基配列で示されるcDNA。
- 49. 配列表 配列番号 9 0 の塩基配列で示される c D N A を発現することにより 得られる蛋白質。
- 50. 配列表 配列番号69で示されるアミノ酸配列をコードするcDNA。
- 51. 配列表 配列番号91の塩基配列で示されるcDNA。
- 52. 配列表 配列番号 9 1 の塩基配列で示される c D N A を発現することにより 得られる蛋白質。
- 53. 配列表 配列番号70で示されるアミノ酸配列をコードするcDNA。
- 54. 配列表 配列番号92の塩基配列で示されるcDNA。
- 55. 配列表 配列番号92の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 56. 配列表 配列番号71で示されるアミノ酸配列をコードするcDNA。
- 57. 配列表 配列番号93の塩基配列で示されるcDNA。
- 58. 配列表 配列番号93の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 59. 配列表 配列番号72で示されるアミノ酸配列をコードするcDNA。
- 60. 配列表 配列番号94の塩基配列で示されるcDNA。
- 61. 配列表 配列番号94の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 62. 配列表 配列番号73で示されるアミノ酸配列をコードするcDNA。
- 63. 配列表 配列番号95の塩基配列で示されるcDNA。
- 64. 配列表 配列番号 9 5 の塩基配列で示される c D N A を発現することにより 得られる蛋白質。

- 65. 配列表 配列番号74で示されるアミノ酸配列をコードするcDNA。
- 66. 配列表 配列番号96の塩基配列で示されるcDNA。
- 67. 配列表 配列番号96の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 68. 配列表 配列番号75で示されるアミノ酸配列をコードするcDNA。
- 69. 配列表 配列番号 9 7 の塩基配列で示される c D N A。
- 70. 配列表 配列番号 9 7 の塩基配列で示される c D N A を発現することにより 得られる蛋白質。
- 71. 配列表 配列番号76で示されるアミノ酸配列をコードする c D N A。
- 72. 配列表 配列番号98の塩基配列で示されるcDNA。
- 73. 配列表 配列番号98の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 74. 配列表 配列番号 77で示されるアミノ酸配列をコードする c D N A。
- 75. 配列表 配列番号99の塩基配列で示されるcDNA。
- 76. 配列表 配列番号99の塩基配列で示されるcDNAを発現することにより 得られる蛋白質。
- 77. 配列表 配列番号78で示されるアミノ酸配列をコードするcDNA。
- 78. 配列表 配列番号100の塩基配列で示されるcDNA。
- 79. 配列表 配列番号100の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 80. 配列表 配列番号79で示されるアミノ酸配列をコードするcDNA。
- 81. 配列表 配列番号101の塩基配列で示されるcDNA。
- 82. 配列表 配列番号101の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 83. 配列表 配列番号80で示されるアミノ酸配列をコードするcDNA。
- 84. 配列表 配列番号102の塩基配列で示される c D N A。
- 85. 配列表 配列番号102の塩基配列で示されるcDNAを発現することにより得られる蛋白質。

- 86. 配列表 配列番号81で示されるアミノ酸配列をコードする c D N A。
- 87. 配列表 配列番号103の塩基配列で示されるcDNA。
- 88. 配列表 配列番号103の塩基配列で示されるcDNAを発現することにより得られる蛋白質。
- 89. 配列表 配列番号82で示されるアミノ酸配列をコードするcDNA。
- 90. 配列表 配列番号4のアミノ酸配列をコードするゲノムDNA。
- 91. 配列表 配列番号104及び105の塩基配列で示される、請求項90記載の ゲノムDNA。
- 92. ヒト破骨細胞形成抑制因子に対し、特異的親和性を示す抗体。
- 93. 抗体がポリクローナル抗体である、請求項92記載の抗体。
- 94. 抗体がモノクローナル抗体である、請求項92記載の抗体。
- 95. 分子量約150,000 、サブクラスIgG₁、IgG₂a 或いは IgG₂bである、請求項94 記載のモノクローナル抗体。
- 96. 請求項92~96のいずれかに記載の抗体を用いることを特徴とする、ヒト破骨細胞形成抑制因子の測定方法。

要 約 書

破骨細胞の分化及び/又は成熟抑制活性のある蛋白質及びその製造法。

この蛋白質は、ヒト胎児肺線維芽細胞より産生され、還元条件下約60KD、非還元条件下約120KD の分子量をもつ。この蛋白質は該細胞の培養液から単離精製することができる。また、遺伝子工学的に製造することができる。

本発明では、遺伝子工学的に製造するための c D N A 、あるいはこの蛋白質と 特異的親和性を示す抗体、この抗体を用いる蛋白質の測定方法も含まれる。

OCIF活性 +: --- , ++: ---

第 3 図

第 4 図

レーン

非還元

4 5 6
(k D)

94
67
43
30
20.1
14.4

還元

第 6 図

レーン

2至7 127

第8図

第 9 図

1	
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPC	GTYLKQHCTAKWKT (OCIF1
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPC	GTYLKQHCTAKWKT (OCIF2)
61	
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCEC	****
VCAPCPDHYYTDSWHTSDECLYCSPVCKECNRTHNRVCEC	CKEGRYLEIEFCLK (OCIF2)
121	
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCS ************************************	SVFGLLLTQKGNAT (OCIF1)
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCS 114	SVFGLLLTQKGNAT (OCIF2)
181	
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLSVLVDNL ************************************	
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLSVLVDNL 174	PGTKVNAESVERI (OCIF2)
241	
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGH	ANLTFEQLRSLME (OCIF1)
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGH 234	ANLTFEQLRSLME (OCIF2)
301	
SLPGKKVGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQDTLKGLMH	ALKHSKTYHFPKT (OCIF1)
SLPGKKVGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQDTLKGLMH 294	
361	
/TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCI	F1)
TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCI	F2)

第10区

1	
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT	(OCIF1)
MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT 1	(OCIF3)
61	
VCAPCPDHYYTDS\HTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK ************************************	(OCIF1)
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK 51	(OCIF3)
121	
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT	(OCIF1)
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT	(OCIF3)
181	
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLSVLVDNLPGTKVNAESVERI	(OCIF1)
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLSVLVDNLPGTKVNAESVERI 181	(OCIF3)
241	
RQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGHANLTFEQLRSLME	(OCIF1)
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGHANLS	(OCIF3)
301	
SLPGKKVGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQDTLKGLMHALKHSKTYHFPKT	(OCIF1)
LWRIKNGDQDTLKGLMHALKHSKTYHFPKT 292	(OCIF3)
361	
TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF1)	
TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF3)	

第11図

1	
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT	(OCIF1)
MNKLLCCSLVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT 1	(OCIF4)
61	
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK ************************************	(OCIF1)
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK 61	(OCIF4)
121	
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT	(OCIF1)
HRSCPPGFGVVQAGTCQCAAKLIRIMQSQIVVTV 121	(OCIF4)

第12図

1	-
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT	
MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT 1	(OCIF5)
61	
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK	(OCIF1)
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK 61	(OCIF5)
121	
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT	(OCIF1)
HRSCPPGFGVVQAGCRRRPKPQICI 121	(OCIF5)

第13図

A:正常 B:神経切除+溶納

C: 神経切除+00 10μg/kg/day

C: 神経切除+00 100µg/kg/day