Gradual Intersection Types

Pedro Ângelo, Mário Florido March 8, 2018

1 Language Definition

Syntax

$$Types \ T ::= \ Int \mid Bool \mid T \rightarrow T \mid T \cap \ldots \cap T$$

$$Expressions \ e \ ::= x \mid \lambda x : T \ . \ e \mid e \ e \mid n \mid true \mid false$$

$$\begin{array}{c} \overline{\Gamma \vdash_{\cap S} e : T} \ \, \text{Typing} \\ \\ \frac{x : T \in \Gamma}{\Gamma \vdash_{\cap S} x : T} \ \, \text{T-Var} & \frac{\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} \ \, e : T}{\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \ \, \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T} \ \, \text{T-Abs} \\ \\ \frac{\Gamma, x : T_i \vdash_{\cap S} e : T}{\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \ \, \cdot e : T_i \rightarrow T} \ \, \text{T-Abs}, \\ \\ \frac{\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \rightarrow T \quad \Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n}{\Gamma \vdash_{\cap S} e_1 : E_2 : T} \ \, \text{T-App} \\ \\ \frac{\Gamma \vdash_{\cap S} e : T_1 \ \, \ldots \ \, \Gamma \vdash_{\cap S} e : T_n}{\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n} \ \, \text{T-App} \\ \\ \frac{\Gamma \vdash_{\cap S} e : T_1 \dots \Gamma \vdash_{\cap S} e : T_n}{\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n} \ \, \text{T-Inst} \\ \hline \Gamma \vdash_{\cap S} true : Bool \ \, \text{T-TRUE} \\ \hline \end{array}$$

Figure 1: Static Intersection Type System $(\vdash_{\cap S})$

Syntax

$$Types \ T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T \mid T \cap \ldots \cap T$$

$$Expressions \ e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false$$

$$\boxed{\Gamma \vdash_{\cap G} e : T} \ \text{Typing}$$

$$\frac{x : T \in \Gamma}{\Gamma \vdash_{\cap G} x : T} \ \text{T-Var}$$

$$\frac{\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T}{\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T} \ \text{T-Abs}$$

$$\frac{\Gamma, x : T_i \vdash_{\cap G} e : T}{\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \rightarrow T} \ \text{T-Abs}$$

$$\frac{\Gamma \vdash_{\cap G} e_1 : PM}{\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n \cdot e : T_i \rightarrow T} \ \text{T-App}$$

$$\frac{\Gamma \vdash_{\cap G} e_1 : PM}{\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n \cap T_n \cap T_n \cap T_n} \ \text{T-App}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \dots \Gamma \vdash_{\cap G} e : T_n}{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n} \ \text{T-Gen}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n}{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n} \ \text{T-Inst}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n}{\Gamma \vdash_{\cap G} true : Bool} \ \text{T-TRUE}$$

$$\frac{\Gamma \vdash_{\cap G} false : Bool}{\Gamma \vdash_{\cap G} false : Bool} \ \text{T-False}$$

$$\boxed{T \sim T} \ \text{Consistency}$$

$$\frac{T_1 \sim T_1}{T_1 \rightarrow T_2 \sim T_3 \rightarrow T_4} \qquad \frac{T_1 \sim T_1' \dots T_n \sim T_n'}{T_1 \cap \ldots \cap T_n \sim T_1' \cap \ldots \cap T_n'}$$

$$\boxed{T \rhd T} \ \text{Pattern Matching}$$

$$T_1 \rightarrow T_2 \rhd T_1 \rightarrow T_2 \qquad Dyn \rhd Dyn \rightarrow Dyn$$

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

$T \sqsubseteq T$ Type Precision

$$Dyn \sqsubseteq T \qquad \qquad \frac{T_1 \sqsubseteq T_3 \qquad T_2 \sqsubseteq T_4}{T_1 \to T_2 \sqsubseteq T_3 \to T_4} \qquad \frac{T_1 \sqsubseteq T_1' \dots T_n \sqsubseteq T_n'}{T_1 \cap \dots \cap T_n \sqsubseteq T_1' \cap \dots \cap T_n'}$$
$$\frac{T \sqsubseteq T_1 \dots T \sqsubseteq T_n}{T \sqsubseteq T_1 \cap \dots \cap T_n} \qquad \frac{T_1 \sqsubseteq T \dots T_n \sqsubseteq T}{T_1 \cap \dots \cap T_n \sqsubseteq T}$$

$c \sqsubseteq c$ Cast Precision

$$\frac{c \sqsubseteq c' \qquad T_1 \sqsubseteq T_1' \qquad T_2 \sqsubseteq T_2'}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{\sqsubseteq} c': T_1' \Rightarrow^{l'} T_2' \stackrel{cl'}{=}'} \qquad \frac{c \sqsubseteq c' \qquad \vdash_{\cap IC} c': T \qquad T_1 \sqsubseteq T \qquad T_2 \sqsubseteq T}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{\sqsubseteq} c'}$$

$$\frac{c \sqsubseteq c' \qquad \vdash_{\cap IC} c: T \qquad T \sqsubseteq T_1 \qquad T \sqsubseteq T_2}{c \sqsubseteq c': T_1 \Rightarrow^l T_2 \stackrel{cl}{=}} \qquad \frac{T_I \sqsubseteq T_I' \qquad T_F \sqsubseteq T_F'}{blame \ T_I \ T_F \ l \stackrel{cl}{\subseteq} blame \ T_I' \ T_F' \ l' \stackrel{cl'}{=}}$$

$$\frac{T \sqsubseteq T'}{\varnothing \ T \stackrel{cl}{\subseteq} \Box \varnothing \ T' \stackrel{cl'}{=}}$$

$e \sqsubseteq e$ Expression Precision

$$x \sqsubseteq x \qquad \frac{T \sqsubseteq T' \quad e \sqsubseteq e'}{\lambda x : T \cdot e \sqsubseteq \lambda x : T' \cdot e'} \qquad \frac{e_1 \sqsubseteq e'_1 \quad e_2 \sqsubseteq e'_2}{e_1 e_2 \sqsubseteq e'_1 e'_2} \qquad n \sqsubseteq n \qquad true \sqsubseteq true$$

$$\frac{e \sqsubseteq e' \quad c_1 \sqsubseteq c'_1 \dots c_n \sqsubseteq c'_n}{e : c_1 \cap \dots \cap c_n \sqsubseteq e' : c'_1 \cap \dots \cap c'_n}$$

$$\frac{e \sqsubseteq e' \quad \Gamma \vdash_{\cap CC} e' : T \quad \vdash_{\cap IC} c_1 : T_1 \dots \vdash_{\cap IC} c_n : T_n \quad T_1 \cap \dots \cap T_n \sqsubseteq T}{e : c_1 \cap \dots \cap c_n \sqsubseteq e'}$$

$$\frac{e \sqsubseteq e' \quad \Gamma \vdash_{\cap CC} e : T \quad \vdash_{\cap IC} c_1 : T_1 \dots \vdash_{\cap IC} c_n : T_n \quad T \sqsubseteq T_1 \cap \dots \cap T_n}{e \sqsubseteq e' : c_1 \cap \dots \cap c_n}$$

$$\frac{\Gamma \vdash_{\cap CC} e : T \quad T \sqsubseteq T'}{e \sqsubseteq blame_{T'} l}$$

Figure 3: Precision (\sqsubseteq)

Syntax

$$\begin{split} Types \ T &::= \ Int \mid Bool \mid Dyn \mid T \rightarrow T \\ Casts \ c &::= c : T \Rightarrow^{l} T \stackrel{cl}{=} \mid blame \ T \ l \stackrel{cl}{=} \mid \varnothing \ T \stackrel{cl}{=} \end{split}$$

 $\vdash_{\cap IC} c:T$ Typing

$$\frac{\vdash_{\cap IC} c: T_1 \quad T_1 \sim T_2}{\vdash_{\cap IC} (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:}): T_2} \text{ T-SingleIC} \qquad \frac{}{\vdash_{\cap IC} blame \ T_I \ T_F \ l \stackrel{cl}{:}: T_F} \text{ T-BlameIC}$$

$$\frac{}{\vdash_{\cap IC} \varnothing \ T \stackrel{cl}{:}: T} \text{ T-EmptyIC}$$

Figure 4: Intersection Casts Type System $(\vdash_{\cap IC})$

Syntax

Types
$$T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T \mid T \cap ... \cap T$$

Expressions $e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false \mid e : c \cap ... \cap c \mid blame_T \mid l$

$$\Gamma \vdash_{\cap CC} e : T$$
 Typing

Static Intersection Type System $(\vdash_{\cap S})$ rules and

$$\frac{\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \qquad \Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}}{\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}} \text{ T-App'}$$

$$\frac{\Gamma \vdash_{\cap CC} e : T_1' \cap \ldots \cap T_n' \qquad \vdash_{\cap IC} c_1 : T_1 \ \ldots \ \vdash_{\cap IC} c_n : T_n}{T_1' \cap \ldots \cap T_n' = initial Type(c_1) \cap \ldots \cap initial Type(c_n)} }{\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n}$$
 T-Intersection Cast

$$\frac{}{\Gamma \vdash_{\cap CC} blame_T \ l:T} \text{ T-Blame}$$

$$initialType(c) = T$$

$$finalType(c) = T$$

$$\begin{split} initial Type(c:T_1\Rightarrow^l T_2 \ ^{cl}) &= initial Type(c) & final Type(c:T_1\Rightarrow^l T_2 \ ^{cl}) = T_2 \\ \\ initial Type(\varnothing \ T \ ^{cl}) &= T & final Type(\varnothing \ T \ ^{cl}) = T \\ \\ initial Type(blame \ T_I \ T_F \ l \ ^{cl}) &= T_F & final Type(blame \ T_I \ T_F \ l \ ^{cl}) = T_F \end{split}$$

Figure 5: Intersection Cast Calculus $(\vdash_{\cap CC})$

$$\frac{x:T\in\Gamma}{\Gamma\vdash_{\cap CC}x\leadsto x:T}\text{ C-Var}$$

$$\frac{r_{\cdot}r_{\cdot}\cap r_{\cdot}\cap r_{\cdot}\cap r_{\cdot}}{\Gamma\vdash_{\cap CC}(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e)\leadsto(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e'):T_{1}\cap\ldots\cap T_{n}\rightarrow T}\text{ C-Abs}$$

$$\frac{r_{\cdot}x:T_{i}\vdash_{\cap CC}e\leadsto e':T}{\Gamma\vdash_{\cap CC}(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e)\leadsto(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e'):T_{i}\rightarrow T}\text{ C-Abs}$$

$$\frac{r_{\cdot}x:T_{i}\vdash_{\cap CC}e\leadsto e':T}{\Gamma\vdash_{\cap CC}(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e)\leadsto(\lambda x:T_{1}\cap\ldots\cap T_{n}\cdot e'):T_{i}\rightarrow T}\text{ C-Abs}$$

$$\Gamma\vdash_{\cap CC}e_{1}\leadsto e'_{1}:PM \quad PM\rhd T_{1}\cap\ldots\cap T_{n}\rightarrow T \quad \Gamma\vdash_{\cap CC}e_{2}\leadsto e'_{2}:T'_{1}\cap\ldots\cap T'_{n}$$

$$T'_{1}\cap\ldots\cap T'_{n}\sim T_{1}\cap\ldots\cap T_{n}\quad PM\unlhd S_{1}\quad T_{1}\cap\ldots\cap T_{n}\rightarrow T\preceq S_{2}$$

$$T'_{1}\cap\ldots\cap T'_{n}\sim S_{3}\quad T_{1}\cap\ldots\cap T_{n}\quad PM\unlhd S_{1}\quad T_{1}\cap\ldots\cap T_{n}\rightarrow T\preceq S_{2}$$

$$T'_{1}\cap\ldots\cap T'_{n}\simeq S_{3}\quad T_{1}\cap\ldots\cap T_{n}\subseteq S_{4}\quad S_{1}, S_{2}, e'_{1}\hookrightarrow e''_{1}\quad S_{3}, S_{4}, e'_{2}\hookrightarrow e''_{2}\rightarrow C$$

$$T\vdash_{\cap CC}e_{1}=e_{2}\leadsto e''_{1}e''_{2}:T$$

$$\Gamma\vdash_{\cap CC}e_{1}=e_{2}\leadsto e': T_{1}\cap\ldots\cap T_{n}\quad \Gamma\vdash_{\cap CC}e_{2}\leadsto e': T_{1}\cap\ldots\cap T_{n}\quad \Gamma\vdash_{\cap CC}e_{2}\Longleftrightarrow e': T_{1}\cap\ldots\cap T_{n}\quad \Gamma\vdash_{\cap CC}e_{2}\Longrightarrow e': T_{1}\cap\ldots\cap T_{n}\cap T$$

$$\{T_{1}\}, \ \{T_{2}\}, \ e \hookrightarrow e : (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l} T_{2}^{\ 0})$$

$$\{T_{11}, \dots, T_{1n}\}, \ \{T_{21}, \dots, T_{2n}\}, \ e \hookrightarrow e : (\varnothing \ T_{11}^{\ 0} : T_{11} \Rightarrow^{l_{1}} T_{21}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1n}^{\ 0} : T_{1n} \Rightarrow^{l_{n}} T_{2n}^{\ 0})$$

$$\{T_{11}, \dots, T_{1n}\}, \ \{T_{2}\}, \ e \hookrightarrow e : (\varnothing \ T_{11}^{\ 0} : T_{11} \Rightarrow^{l_{1}} T_{2}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1n}^{\ 0} : T_{1n} \Rightarrow^{l_{n}} T_{2}^{\ 0})$$

$$\{T_{1}\}, \ \{T_{21}, \dots, T_{2n}\}, \ e \hookrightarrow e : (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l_{1}} T_{21}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l_{n}} T_{2n}^{\ 0})$$

 $\frac{T_1 \leq \{T_{11}, \dots, T_{1n}\}}{T_1 \to T_2 \leq \{T_{11} \to T_2, \dots, T_{1n} \to T_2\}} \qquad \frac{T_1 \leq \{T_{11}, \dots, T_{1m}\} \dots T_n \leq \{T_{n1}, \dots, T_{nj}\}}{T_1 \cap \dots \cap T_n \leq \{T_{11}, \dots, T_{1m}, \dots, T_{n1}, \dots, T_{nj}\}}$

 $S, S, e \hookrightarrow e$

Figure 6: Compilation to the Cast Calculus

Syntax

$$Types \ T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T$$

$$Ground \ Types \ G ::= Int \mid Bool \mid Dyn \rightarrow Dyn$$

$$Casts \ c ::= c : T \Rightarrow^{l} T^{cl} \mid blame \ T \ T^{cl} \mid \varnothing \ T^{cl}$$

$$Cast \ Values \quad cv ::= cv1 \mid cv2$$

$$cv1 ::= \varnothing \ T^{cl} : G \Rightarrow^{l} Dyn^{cl} \mid \varnothing \ T^{cl} : T_{1} \rightarrow T_{2} \Rightarrow^{l} T_{3} \rightarrow T_{4}^{cl}$$

$$\mid cv1 : G \Rightarrow^{l} Dyn^{cl} \mid cv1 : T_{1} \rightarrow T_{2} \Rightarrow^{l} T_{3} \rightarrow T_{4}^{cl}$$

$$cv2 ::= blame \ T \ T^{cl} \mid \varnothing \ T^{cl}$$

 $c \longrightarrow_{\cap IC} c$ Evaluation

Push blame to top level

$$\overline{blame~T_I~T_F~l_1~^{cl_1}:T_1\Rightarrow^{l_2}T_2~^{cl_2}\longrightarrow_{\cap IC}blame~T_I~T_2~l_1~^{cl_1}}~\text{E-PushBlameIC}$$

Evaluate inside casts

$$\frac{\neg(is\; cast\; value\; c) \qquad c \longrightarrow_{\cap IC} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{}} \; \text{E-evaluateIC}$$

Detect success or failure of casts

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l T \stackrel{cl}{\longrightarrow}_{\cap IC} c} \to \text{E-IdentityIC}$$

$$\frac{is\; cast\; value\; 1\; c \vee is\; empty\; cast\; c}{c:G\Rightarrow^{l_1}Dyn\stackrel{cl_1}{\Rightarrow^{l_2}}Dyn\Rightarrow^{l_2}G\stackrel{cl_2}{\longrightarrow}_{\cap IC}c} \; \text{E-SucceedIC}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: G_1 \Rightarrow^{l_1} Dyn^{\ cl_1}: Dyn \Rightarrow^{l_2} G_2 \xrightarrow{cl_2} \longrightarrow_{\cap IC} blame \ T_I \ G_2 \ l_2 \xrightarrow{cl_1}} \text{ E-FailIC}$$

Mediate the transition between the two disciplines

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l Dyn^{\ cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G^{\ cl}: G \Rightarrow^l Dyn^{\ cl}} \xrightarrow{} \text{E-GroundIC}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: Dyn \Rightarrow^l T^{\ cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G^{\ cl}: G \Rightarrow^l T^{\ cl}} \to_{\cap IC} c: Dyn \Rightarrow^l G^{\ cl}: G \Rightarrow^l T^{\ cl}$$
 E-Expandic

Figure 7: Intersection Casts Operational Semantics $(\longrightarrow_{\cap IC})$

Syntax

Types
$$T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T \mid T \cap ... \cap T$$

Expressions $e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false \mid e : c \cap ... \cap c \mid blame_T \mid t$
Values $v ::= x \mid \lambda x : T \cdot e \mid n \mid true \mid false \mid blame_T \mid v : cv_1 \cap ... \cap cv_n \mid that$
 $\neg(\forall_{i \in 1..n} \cdot cv_i = blame \mid T \mid t \mid^{cl}) \land \neg(\forall_{i \in 1..n} \cdot cv_i = \varnothing \mid T \mid^{cl})$

 $e \longrightarrow_{\cap CC} e$ Evaluation

Push blame to top level

$$\frac{\Gamma \vdash_{\cap CC} (blame_{T_2}\ l)\ e_2 : T_1}{(blame_{T_2}\ l)\ e_2 \longrightarrow_{\cap CC} blame_{T_1}\ l} \ \text{E-PushBlame1}$$

$$\frac{\Gamma \vdash_{\cap CC} e_1\ (blame_{T_2}\ l) : T_1}{e_1\ (blame_{T_2}\ l) \longrightarrow_{\cap CC} blame_{T_1}\ l} \ \text{E-PushBlame2}$$

$$\frac{\vdash_{\cap IC}\ c_1 : T_1 \ldots \vdash_{\cap IC}\ c_n : T_n}{blame_{T}\ l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n}\ l} \ \text{E-PushBlameCast}$$

Evaluate expressions

$$\frac{e_1 \longrightarrow_{\cap CC} e'_1}{(\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \ v \longrightarrow_{\cap CC} [x \mapsto v]e} \text{ E-AppAbs} \qquad \frac{e_1 \longrightarrow_{\cap CC} e'_1}{e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2} \text{ E-App1}$$

$$\frac{e_2 \longrightarrow_{\cap CC} e'_2}{v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e'_2} \text{ E-App2} \qquad \frac{e \longrightarrow_{\cap CC} e'}{e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n} \text{ E-Evaluate}$$

Simulate casts on data types

$$is \ value \ (v_1: cv_1 \cap \ldots \cap cv_n) \qquad \exists i \in 1..n \ . \ is Arrow Compatible (cv_i) \\ \frac{((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulate Arrow (cv_1, \ldots, cv_n)}{(v_1: cv_1 \cap \ldots \cap cv_n) \ v_2 \longrightarrow_{\cap CC} \\ (v_1: c_1^s \cap \ldots \cap c_m^s) \ (v_2: c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$$
 E-SIMULATE ARROW

 $Merge\ casts$

$$\frac{s \ value \ (v: cv_1 \cap \ldots \cap cv_n)}{v: c''_1 \cap \ldots \cap c''_j = mergeCasts(v: cv_1 \cap \ldots \cap cv_n: c'_1 \cap \ldots \cap c'_m)}{v: cv_1 \cap \ldots \cap cv_n: c'_1 \cap \ldots \cap c'_m \longrightarrow_{\cap CC} v: c''_1 \cap \ldots \cap c''_j} \text{ E-MergeCasts}$$

Evaluate intersection casts

$$\frac{\neg(\forall i \in 1..n \ . \ is \ cast \ value \ c_i) \qquad c_1 \longrightarrow_{\cap IC} cv_1 \ \ldots \ c_n \longrightarrow_{\cap IC} cv_n}{v: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n} \text{ E-Evaluate Casts}$$

Transition from cast values to values

$$\frac{1}{v: \mathit{blame}\ I_1\ F_1\ l_1\ ^{\mathit{cl}_1}\cap\ldots\cap\mathit{blame}\ I_n\ F_n\ l_n\ ^{\mathit{cl}_n}}{7} \xrightarrow{\cap\mathit{CC}\ \mathit{blame}_{(F_1\cap\ldots\cap F_n)}\ l_1} \text{E-PropagateBlame}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{\cap\mathit{CC}\ v} \text{E-RemoveEmpty}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{\cap\mathit{CC}\ v} \text{E-RemoveEmpty}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F$$

Figure 8: Cast Calculus Operational Semantics $(\longrightarrow_{\cap CC})$

$$\begin{split} \langle c \rangle^{cl} &= \mathbf{c} \end{split}$$

$$\langle c : T_1 \Rightarrow^l T_2 \ ^{cl} \rangle^{cl'} = \langle c \rangle^{cl'} : T_1 \Rightarrow^l T_2 \ ^{cl'} \end{split}$$

$$\langle blame \ T_I \ T_F \ l \ ^{cl'} \rangle^{cl} = blame \ T_I \ T_F \ l \ ^{cl}$$

$$\langle \varnothing \ T \ ^{cl'} \rangle^{cl} = \varnothing \ T \ ^{cl}$$

$$isArrowCompatible(c) = Bool$$

$$isArrowCompatible(c: T_{11} \rightarrow T_{12} \Rightarrow^{l} T_{21} \rightarrow T_{22} \stackrel{cl}{}) = isArrowCompatible(c)$$

 $isArrowCompatible(\varnothing (T_{1} \rightarrow T_{2}) \stackrel{cl}{}) = True$

$$separateIntersectionCast(c) = (c, c)$$

$$separateIntersectionCast(c:T_1 \Rightarrow^l T_2 \stackrel{cl}{}) = (\varnothing \ T_1 \stackrel{cl}{}: T_1 \Rightarrow^l T_2 \stackrel{cl}{}, c)$$

$$separateIntersectionCast(\varnothing \ T \stackrel{cl}{}) = (\varnothing \ T \stackrel{cl}{}, \varnothing \ T \stackrel{cl}{})$$

$$breakdownArrowType(c) = (c, c)$$

$$breakdownArrowType(\varnothing\ T_{11}\rightarrow T_{12}\ ^{cl}:T_{11}\rightarrow T_{12}\Rightarrow ^{l}T_{21}\rightarrow T_{22}\ ^{cl})=\\ (\varnothing\ T_{21}\ ^{cl}:T_{21}\Rightarrow ^{l}T_{11}\ ^{cl},\varnothing\ T_{12}\ ^{cl}:T_{12}\Rightarrow ^{l}T_{22}\ ^{cl})$$

$$breakdownArrowType(\varnothing\ T_{1}\rightarrow T_{2}\ ^{cl})=(\varnothing\ T_{1}\ ^{cl},\varnothing\ T_{2}\ ^{cl})$$

simulateArrow
$$(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

$$(c_1', \ldots, c_m') = filter \ isArrowCompatible \ (c_1, \ldots, c_n)$$

$$((c_1^f, c_1^s), \ldots, (c_m^f, c_m^s)) = map \ separateIntersectionCast \ (\langle c_1' \rangle^0, \ldots, \langle c_m' \rangle^0)$$

$$\underline{((c_{11}, c_{12}), \ldots, (c_{m1}, c_{m2})) = map \ breakdownArrowType \ (\langle c_1^f \rangle^1, \ldots, \langle c_m^f \rangle^m)}$$

$$simulateArrow(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

Figure 9: Definitions for auxiliary semantic functions

```
\begin{split} \gcd \operatorname{CastLabel}(c) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(c:T_1\Rightarrow^l T_2^{-cl}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(blame\ T_l\ T_F\ l^{-cl}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(\phi\ T^{-cl}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(\phi\ T^{-cl}) &= \operatorname{cl} \\ &= \operatorname{cl} \\ \operatorname{SameCastLabel}(c,c) &= \operatorname{Bool} \\ &= \operatorname{sameCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_1) &= 0 \\ \operatorname{sameCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_2) &= 0 \\ \operatorname{sameCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_1) &= \operatorname{getCastLabel}(c_2) \\ &= \operatorname{getCastLabel}(c_1) &= \operatorname{getCastLabel}(c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_1,c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_2,c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_1,c_2) \\ &= \operatorname{getCastLabel}(c_1,c_2) &= \operatorname{getCastLabel}(c_1,c_2) \\ &= \operatorname{getCastLabel}(c_1
```

Figure 10: Definitions for auxiliary semantic functions

2 Proofs

Lemma 1 (Consistency reduces to equality when comparing static types). If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T_1 .

Base cases:

- $T_1 = Int$.
 - If Int = Int then, by the definition of \sim , $Int \sim Int$.
 - If $Int \sim Int$, then Int = Int.
- $T_1 = Bool$.
 - If Bool = Bool then, by the definition of \sim , $Bool \sim Bool$.
 - If $Bool \sim Bool$, then Bool = Bool.

Induction step:

- $T_1 = T_{11} \to T_{12}$.
 - If $T_{11} \to T_{12} = T_{21} \to T_{22}$, for some T_{21} and T_{22} , then $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. Therefore, by the definition of \sim , $T_{11} \to T_{12} \sim T_{21} \to T_{22}$.
 - If $T_{11} \to T_{12} \sim T_2$, then by the definition of \sim , $T_2 = T_{21} \to T_{22}$ and $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, $T_{11} \to T_{12} = T_{21} \to T_{22}$.
- $T_1 = T_{11} \cap ... \cap T_{1n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} = T_2$, then $\exists T_{21} \ldots T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_{11} \cap \ldots \cap T_{1n} \sim T_{21} \cap \ldots \cap T_{2n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} \sim T_2$, then either:
 - * $\exists T_{21} ... T_{2n} . T_2 = T_{21} \cap ... \cap T_{2n}$ and $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, $T_{11} \cap ... \cap T_{1n} = T_{21} \cap ... \cap T_{2n}$.
 - * $T_{11} \sim T_2$ and ... and $T_{1n} \sim T_2$. By the induction hypothesis, $T_{11} = T_2$ and ... and $T_{1n} = T_2$. As $T_2 \cap \ldots \cap T_2 = T_2$, then $T_{11} \cap \ldots \cap T_{1n} = T_2$.

Theorem 1 (Conservative Extension). Depends on Lemma 1. If e is fully static and T is a static type, then $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$ and $\vdash_{\cap G}$ for the right and left direction of the implication, respectively.

Base cases:

- Rule T-Var.
 - If $\Gamma \vdash_{\cap S} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap G} x : T$.
 - If $\Gamma \vdash_{\cap G} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap S} e : T$.
- Rule T-Int.
 - If $\Gamma \vdash_{\cap S} n : Int$, then $\Gamma \vdash_{\cap G} n : Int$.
 - If $\Gamma \vdash_{\cap G} n : Int$, then $\Gamma \vdash_{\cap S} n : Int$.
- Rule T-True.
 - If $\Gamma \vdash_{\cap S} true : Bool$, then $\Gamma \vdash_{\cap G} true : Bool$.
 - If $\Gamma \vdash_{\cap G} true : Bool$, then $\Gamma \vdash_{\cap S} true : Bool$.
- Rule T-False.
 - If $\Gamma \vdash_{\cap S} false : Bool$, then $\Gamma \vdash_{\cap G} false : Bool$.
 - If $\Gamma \vdash_{\cap G} false : Bool$, then $\Gamma \vdash_{\cap S} false : Bool$.

- Rule T-Abs.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$.
- Rule T-Abs'.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$.
- Rule T-App.
 - If $\Gamma \vdash_{\cap S} e_1 e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T \triangleright T_1 \cap \ldots \cap T_n \to T$. By the definition of \sim , $T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e_1 e_2 : T$.
 - If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.
- Rule T-Gen.

- If $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$.
- If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$.

• Rule T-Inst.

- If $\Gamma \vdash_{\cap S} e : T_i$ then $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, ..., T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, ..., T_n\}$, then $\Gamma \vdash_{\cap G} e : T_i$.
- If $\Gamma \vdash_{\cap G} e : T_i$ then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, \ldots, T_n\}$, then $\Gamma \vdash_{\cap S} e : T_i$.

Theorem 2 (Monotonicity w.r.t. precision). If $\Gamma \vdash_{\cap G} e : T$ and $e' \sqsubseteq e$ then $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$ and $x \sqsubseteq x$, then $\Gamma \vdash_{\cap G} x : T$ and $T \sqsubseteq T$.
- Rule T-Int. If $\Gamma \vdash_{\cap G} n : Int$ and $n \sqsubseteq n$, then $\Gamma \vdash_{\cap G} n : Int$ and $Int \sqsubseteq Int$.
- Rule T-True. If $\Gamma \vdash_{\cap G} true : Bool$ and $true \sqsubseteq true$, then $\Gamma \vdash_{\cap G} true : Bool$ and $Bool \sqsubseteq Bool$.
- Rule T-False. If $\Gamma \vdash_{\cap G} false : Bool$ and $false \sqsubseteq false$, then $\Gamma \vdash_{\cap G} false : Bool$ and $Bool \sqsubseteq Bool$.

- Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then by rule T-Abs, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_1 \cap \ldots \cap T'_n \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. By rule T-Abs, $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \to T'$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \to T' \sqsubseteq T_1 \cap \ldots \cap T_n \to T$.
- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \text{ and } \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then by rule T-Abs', $\Gamma, x : T_i \vdash_{\cap G} e : T$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_i \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. By rule T-Abs', $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_i \to T'$, and by the definition of \sqsubseteq , $T'_i \to T' \sqsubseteq T_i \to T$.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ and $e'_1 e'_2 \sqsubseteq e_1 e_2$ then by rule T-App, $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_{11} \cap \ldots \cap T_{1n} \to T$, $\Gamma \vdash_{\cap G} e_2 : T_{21} \cap \ldots \cap T_{2n}$, and $T_{21} \cap \ldots \cap T_{2n} \sim T_{11} \cap \ldots \cap T_{1n}$, and by the definition of \sqsubseteq , $e'_1 \sqsubseteq e_1$ and $e'_2 \sqsubseteq e_2$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e'_1 : PM'$ and $PM' \sqsubseteq PM$ and $PM' \rhd T'_{11} \cap \ldots \cap T'_{1n} \to T'$ and $\Gamma \vdash_{\cap G} e'_2 : T'_{21} \cap \ldots \cap T'_{2n}$ and $T'_{21} \cap \ldots \cap T'_{2n} \subseteq T_{21} \cap \ldots \cap T'_{2n}$ and $T'_{21} \cap \ldots \cap T'_{2n} \subset T'_{2n} \subseteq T_{2n} \cap \ldots \cap T'_{2n} \subseteq T'_{2n} \cap \ldots \cap T'_{2n} \cap \ldots \cap T'_{2n} \cap \ldots \cap T'_{2n} \subseteq T'_{2n} \cap \ldots \cap T'_{2n} \cap T'_{2n} \cap \ldots \cap T'_{2n} \cap T'_{2n} \cap \ldots \cap T'_{2n} \cap$

- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$, then by rule T-Gen, $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1$ and $T'_1 \sqsubseteq T_1$ and \ldots and $\Gamma \vdash_{\cap G} e' : T'_n$ and $T'_n \sqsubseteq T_n$. Then by rule T-Gen, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ and $e' \sqsubseteq e$, then by rule T-Inst, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$. Therefore, by rule T-Inst, $\Gamma \vdash_{\cap G} e' : T'_i$ and by the definition of \sqsubseteq , $T'_i \sqsubseteq T_i$.

Theorem 3 (Type preservation of cast insertion). If $\Gamma \vdash_{\cap G} e : T$ then $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$, then by rule T-Var, $x : T \in \Gamma$. By rule C-Var, $\Gamma \vdash_{\cap CC} x \leadsto x : T$ and by rule T-Var, $\Gamma \vdash_{\cap CC} x : T$.
- Rule T-Int. As $\Gamma \vdash_{\cap G} n : Int$, then by rule C-Int, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$ and by rule T-Int, $\Gamma \vdash_{\cap CC} n : Int$.
- Rule T-True. As $\Gamma \vdash_{\cap G} true : Bool$, then by rule C-True, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$ and by rule T-True, $\Gamma \vdash_{\cap CC} true : Bool$.
- Rule T-False. As $\Gamma \vdash_{\cap G} false : Bool$, then by rule C-False, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$ and by rule T-False, $\Gamma \vdash_{\cap CC} false : Bool$, it is proved.

- Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ then by rule T-Abs, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e' : T$. By rule C-Abs, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e \leadsto \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$ and by rule T-Abs, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$.
- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n$. $e : T_i \to T$ then by rule T-Abs', $\Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma, x : T_i \vdash_{\cap CC} e' : T$. By rule C-Abs', $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n$. $e \leadsto \lambda x : T_1 \cap \ldots \cap T_n$. $e' : T_i \to T$ and by rule T-Abs', $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n$. $e' : T_i \to T$.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ then by rule T-App, $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM$ and $\Gamma \vdash_{\cap CC} e'_1 : PM$, and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n$ and $\Gamma \vdash_{\cap CC} e'_2 : T'_1 \cap \ldots \cap T'_n$. Therefore, by rule C-App, $\Gamma \vdash_{\cap CC} e_1 e_2 \leadsto e''_1 e''_2 : T$. By the definition of \unlhd and S, S, $e \hookrightarrow e$, by rule T-Intersection Cast, $\Gamma \vdash_{\cap CC} e''_1 : T_1 \to T \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e''_2 : T_1 \cap \ldots \cap T_n$. By rule T-App', $\Gamma \vdash_{\cap CC} e''_1 e''_2 : T \cap \ldots \cap T$ and then by the properties of intersection types (modulo repetitions), $\Gamma \vdash_{\cap CC} e''_1 e''_2 : T$.

- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then by rule T-Gen, $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T_n$, and $\Gamma \vdash_{\cap CC} e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e' : T_n$. By rule C-Gen, $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T_1 \cap \ldots \cap T_n$ and by rule T-Gen, $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ then by rule T-Inst, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$. By rule C-Inst, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_i$ and by rule T-Inst, $\Gamma \vdash_{\cap CC} e' : T_i$.

Theorem 4 (Monotonicity w.r.t precision of cast insertion). If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_2$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$ and $T_1 \sqsubseteq T_2$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T$. Base cases:

- Rule C-Var. If $\Gamma \vdash_{\cap CC} x \leadsto x : T$ and $\Gamma \vdash_{\cap CC} x \leadsto x : T$, and $x \sqsubseteq x$, then $x \sqsubseteq x$ and $T \sqsubseteq T$.
- Rule C-Int. If $\Gamma \vdash_{\cap CC} n \leadsto n : Int$, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$ and $n \sqsubseteq n$, then $n \sqsubseteq n$ and $Int \sqsubseteq Int$.
- Rule C-True. If $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$ and $true \sqsubseteq true$, then $true \sqsubseteq true$ and $Bool \sqsubseteq Bool$.
- Rule C-False. If $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$ and $false \sqsubseteq false$, then $false \sqsubseteq false$ and $Bool \sqsubseteq Bool$.

- Rule C-Abs. If $\Gamma \vdash_{\cap CC} \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \leadsto \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' : T_{11} \cap \ldots \cap T_{1n} \to T_1$ and $\Gamma \vdash_{\cap CC} \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2 \leadsto \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2' : T_{21} \cap \ldots \cap T_{2n} \to T_2$ and $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2$ then by rule C-Abs, $\Gamma, x : T_{11} \cap \ldots \cap T_{1n} \vdash_{\cap CC} e_1 \leadsto e_1' : T_1$ and $\Gamma, x : T_{21} \cap \ldots \cap T_{2n} \vdash_{\cap CC} e_2 \leadsto e_2' : T_2$ and by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$ and $e_1 \sqsubseteq e_2$. By the induction hypothesis, $e_1' \sqsubseteq e_2'$ and $T_1 \sqsubseteq T_2$. Therefore, by the definition of \sqsubseteq , $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2'$ and $T_{11} \cap \ldots \cap T_{1n} \to T_1 \sqsubseteq T_{21} \cap \ldots \cap T_{2n} \to T_2$.
- Rule C-Abs'. If $\Gamma \vdash_{\cap CC} \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \leadsto \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' : T_{1i} \to T_1$, such that $T_{1i} \in \{T_{11}, \ldots, T_{1n}\}$, and $\Gamma \vdash_{\cap CC} \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2 \leadsto \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2' : T_{2i} \to T_2$, such that $T_{2i} \in \{T_{21}, \ldots, T_{2n}\}$, and $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2$ then by the definition of C-Abs', $\Gamma, x : T_{1i} \vdash_{\cap CC} e_1 \leadsto e_1' : T_1$ and $\Gamma, x : T_{2i} \vdash_{\cap CC} e_2 \leadsto e_2' : T_2$ and by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$ and $T_{2n} \cap T_{2n} \cap T_{2n} \cap T_{2n} \cap T_{2n} \cap T_{2n}$. Therefore, by the definition of \sqsubseteq , $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2' \cap T_{2n} \cap T_{2n}$
- Rule C-App. If $\Gamma \vdash_{\cap CC} e_{11} e_{12} \leadsto e''_{11} e''_{12} : T_1 \text{ and } \Gamma \vdash_{\cap CC} e_{21} e_{22} \leadsto e''_{21} e''_{22} : T_2 \text{ and } e_{11} e_{12} \sqsubseteq e_{21} e_{22} \text{ then by rule C-App, } \Gamma \vdash_{\cap CC} e_{11} \leadsto e'_{11} : PM_1 \text{ and } PM_1 \rhd T_{11} \cap \ldots \cap T_{1n} \to T_1 \text{ and } \Gamma \vdash_{\cap CC} e_{12} \leadsto e'_{12} : T'_{11} \cap \ldots \cap T'_{1n} \text{ and } T'_{11} \cap \ldots \cap T'_{1n} \sim T_{11} \cap \ldots \cap T_{1n} \text{ and } PM_1 \unlhd S_{11} \text{ and } T_{11} \cap \ldots \cap T_{1n} \to T_1 \unlhd S_{12} \text{ and } T'_{11} \cap \ldots \cap T'_{1n} \subseteq S_{13} \text{ and } T_{11} \cap \ldots \cap T_{1n} \subseteq S_{14} \text{ and } S_{11}, S_{12}, e'_{11} \hookrightarrow e''_{11} \text{ and } S_{13}, S_{14}, e'_{12} \hookrightarrow e''_{12} \text{ and } \Gamma \vdash_{\cap CC} e_{21} \leadsto e'_{21} : PM_2 \text{ and } PM_2 \rhd T_{21} \cap \ldots \cap T_{2n} \to T_2 \text{ and } \Gamma \vdash_{\cap CC} e_{22} \leadsto e'_{22} : T'_{21} \cap \ldots \cap T'_{2n} \text{ and } T'_{21} \cap \ldots \cap T'_{2n} \simeq T_{21} \cap \ldots \cap T_{2n} \text{ and } PM_2 \unlhd S_{21} \text{ and } T_{21} \cap \ldots \cap T_{2n} \to T_2 \unlhd S_{22} \text{ and } T'_{21} \cap \ldots \cap T'_{2n} \subseteq S_{23} \text{ and } T_{21} \cap \ldots \cap T_{2n} \subseteq S_{24} \text{ and } T_{21} \cap \ldots \cap T_{2n} \subseteq S_{24} \text{ and } T_{21} \cap \ldots \cap T_{2n} \subseteq S_{24} \text{ and } T'_{21} \cap \ldots \cap T'_{2n} \subseteq S_{24} \text{ and$

 $S_{21},\ S_{22},\ e'_{21}\hookrightarrow e''_{21}$ and $S_{23},\ S_{24},\ e'_{22}\hookrightarrow e''_{22}$. As, by the definition of \sqsubseteq , $e_{11}\sqsubseteq e_{21}$ and $e_{12}\sqsubseteq e_{22}$ then by the induction hypothesis, $e'_{11}\sqsubseteq e'_{21}$ and $PM_1\sqsubseteq PM_2$ and $e'_{12}\sqsubseteq e'_{22}$ and $T'_{11}\cap\ldots\cap T'_{1n}\sqsubseteq T'_{21}\cap\ldots\cap T'_{2n}$. By the definition of \triangleright , we have that $PM_1=T_{11}\cap\ldots\cap T_{1n}\to T_1$ and $PM_2=T_{21}\cap\ldots\cap T_{2n}\to T_2$ and so $T_{11}\cap\ldots\cap T_{1n}\to T_1\sqsubseteq T_{21}\cap\ldots\cap T_{2n}\to T_2$ and therefore by the definition of \sqsubseteq , $T_1\sqsubseteq T_2$. As by the definition of \preceq , $T_1\sqsubseteq T_2$, and $T_1\sqsubseteq T_2$, and $T_1\sqsubseteq T_2$, then by the definition of T_1 , T_1 , T_1 , T_2 , T_2 , and T_1 , T_2 , T_3 , and T_4 , T_4 , T_5 , T_7 ,

- Rule C-Gen. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11} \cap \ldots \cap T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21} \cap \ldots \cap T_{2n}$ and $e_1 \sqsubseteq e_2$ then by rule C-Gen, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11}$ and ... and $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21}$ and ... and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{2n}$. By the induction hypothesis, $e'_1 \sqsubseteq e'_2$ and $T_{11} \sqsubseteq T_{21}$ and ... and $T_{1n} \sqsubseteq T_{2n}$, and therefore by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$.
- Rule C-Inst. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{1i}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{2i}$ and $e_1 \sqsubseteq e_2$ then by rule C-Inst, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11} \cap \ldots \cap T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21} \cap \ldots \cap T_{2n}$. By the induction hypothesis, $e'_1 \sqsubseteq e'_2$ and $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$, and therefore, by the definition of \sqsubseteq , $T_{1i} \sqsubseteq T_{2i}$.

Corollary 1 (Monotonicity of cast insertion). Corollary of Theorem 4. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_2$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$.

Theorem 5 (Conservative Extension). If e is fully static, then $e \longrightarrow_{\cap S} e' \iff e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap S}$ and $\longrightarrow_{\cap CC}$ for the right and left direction of the implication, respectively. Base cases:

• Rule E-AppAbs. If $(\lambda x: T_1 \cap \ldots \cap T_n \cdot e) \ v \longrightarrow_{\cap S} [x \mapsto v]e$ and $(\lambda x: T_1 \cap \ldots \cap T_n \cdot e) \ v \longrightarrow_{\cap CC} [x \mapsto v]e$, then it is proved.

Induction step:

- Rule E-App1.
 - If $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$ then by rule E-App1, $e_1 \longrightarrow_{\cap S} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap CC} e'_1$. Therefore, by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$
 - If $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$ then by rule E-App1, $e_1 \longrightarrow_{\cap CC} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap S} e'_1$. Therefore, by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$
- Rule E-App2.
 - If $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$ then by rule E-App2, $e_2 \longrightarrow_{\cap S} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap CC} e_2'$. Therefore, by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$
 - If $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$ then by rule E-App2, $e_2 \longrightarrow_{\cap CC} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap S} e_2'$. Therefore, by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$

Lemma 2 (Type preservation of $\longrightarrow_{\cap IC}$). If $c \longrightarrow_{\cap IC} c$ and

• $\vdash_{\cap IC} c: T \ then \vdash_{\cap IC} c': T.$

• initialType(c) = T then initialType(c') = T.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

• Rule E-PushBlameIC.

- If $\vdash_{\cap IC}$ blame T_I T_F l_1 cl_1 : $T_1 \Rightarrow^{l_2} T_2$ cl_2 : T_2 and by rule E-PushBlameIC, blame T_I T_F l_1 cl_1 : $T_1 \Rightarrow^{l_2} T_2$ $^{cl_2} \longrightarrow_{\cap IC}$ blame T_I T_2 l_1 cl_1 , then by rule T-BlameIC, $\vdash_{\cap IC}$ blame T_I T_2 l_1 cl_1 : T_2 , then it is proved.
- By the definition of initial Type, $initial Type (blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}) = T_I$. By rule E-PushBlameIC, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}$. Since $initial Type (blame\ T_I\ T_2\ l_1\ ^{cl_1}) = T_I$, it is proved.

• Rule E-IdentityIC.

- If $\vdash_{\cap IC} c: T \Rightarrow^l T^{cl}: T$, then by rule T-SingleIC, $\vdash_{\cap IC} c: T$. By rule E-IdentityIC, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c$.
- By the definitions of initial Type, $initial Type(c:T\Rightarrow^l T^{cl})=initial Type(c)$. By rule E-IdentityIC, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap IC} c$.

• Rule E-SucceedIC.

- If $\vdash_{\cap IC} c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:} G$, then by rule T-SingleIC, $\vdash_{\cap IC} c: G$. By rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:} \longrightarrow_{\cap IC} c$.
- Rule E-SucceedIC. By the definition of initialType, $initialType(c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow^{l_2}} G \stackrel{cl_2}{\Rightarrow^{l_1}} = initialType(c)$. By rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow^{l_2}} : Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{\xrightarrow{}} \longrightarrow_{\cap IC} c$. Therefore it is proved.

• Rule E-FailIC.

- If $\vdash_{\cap IC} c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow} : Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{\Rightarrow} : G_2$, and by rule E-FailIC, $c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow} : Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{\longleftrightarrow} \longrightarrow_{\cap IC} blame T_I G_2 \ l_2 \stackrel{cl_1}{\longleftrightarrow} : G_2$.
- By the definition of initial Type, $initial Type(c:G_1 \Rightarrow^{l_1} Dyn^{cl_1}:Dyn \Rightarrow^{l_2} G_2^{cl_2}) = T_I$. By rule E-FailIC, $c:G_1 \Rightarrow^{l_1} Dyn^{cl_1}:Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{cl_1}$, then $initial Type(blame\ T_I\ G_2\ l_2^{cl_1}) = T_I$.

• Rule E-GroundIC.

- $\text{ If } \vdash_{\cap IC} c: T \Rightarrow^l Dyn \stackrel{cl}{} : Dyn \text{ then by rule T-SingleIC}, \vdash_{\cap IC} c: T. \text{ By rule E-GroundIC}, \\ c: T \Rightarrow^l Dyn \stackrel{cl}{} \longrightarrow_{\cap IC} c: T \Rightarrow^l G \stackrel{cl}{} : G \Rightarrow^l Dyn \stackrel{cl}{} \text{, then by rule T-SingleIC}, \\ \vdash_{\cap IC} c: T \Rightarrow^l G \stackrel{cl}{} : G \Rightarrow^l Dyn \stackrel{cl}{} : Dyn.$
- By the definition of initialType, $initialType(c:T\Rightarrow^l Dyn^{cl})=initialType(c)$. By rule E-GroundIC, $c:T\Rightarrow^l Dyn^{cl}\longrightarrow_{\cap IC} c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl}$, then $initialType(c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl})=initialType(c)$.

• Rule E-ExpandIC.

- If $\vdash_{\cap IC} c: Dyn \Rightarrow^l T^{cl}: T$ then by rule T-SingleIC, $\vdash_{\cap IC} c: Dyn$. By rule E-ExpandIC, $c: Dyn \Rightarrow^l T^{cl} \xrightarrow{}_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$, then by rule T-SingleIC, $\vdash_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}: T$.
- By the definition of initialType, $initialType(c:Dyn\Rightarrow^l T^{cl})=initialType(c)$. By rule E-ExpandIC, $c:Dyn\Rightarrow^l T^{cl}\longrightarrow_{\cap IC} c:Dyn\Rightarrow^l G^{cl}:G\Rightarrow^l T^{cl}$. Since $initialType(c:Dyn\Rightarrow^l G^{cl}:G\Rightarrow^l T^{cl})=initialType(c)$, it is proved.

Induction step:

- Rule E-EvaluateIC.
 - If $\vdash_{\cap IC} c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2$ then by rule T-SingleIC, $\vdash_{\cap IC} c: T_1$. By rule E-EvaluateIC, $c \xrightarrow{}_{\cap IC} c'$. By the induction hypothesis, $\vdash_{\cap IC} c': T_1$. By rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} t_1 \Rightarrow^l T_2 \stackrel{cl}{:} t_2$.
 - By the definition of initialType, $initialType(c: T_1 \Rightarrow^l T_2 \stackrel{cl}{}) = initialType(c)$. By rule E-EvaluateIC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, initialType(c') = initialType(c). By rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2 \stackrel{cl}{} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{}$. Since $initialType(c': T_1 \Rightarrow^l T_2 \stackrel{cl}{}) = initialType(c')$, it is proved.

П

Lemma 3 (Progress of $\longrightarrow_{\cap IC}$). If $\Gamma \vdash_{\cap IC} c : T$ and $initialType(c) = T_I$ then either c is a cast value or there exists a c' such that $c \longrightarrow_{\cap IC} c'$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap IC} c:T$.

Base cases:

- Rule T-BlameIC. As $\vdash_{\cap IC}$ blame T_I T_F l cl : T_F , initialType(blame T_I T_F l cl) = T_I and blame T_I T_F l cl is a cast value, it is proved.
- Rule T-EmptyIC. As $\vdash_{\cap IC} \varnothing \ T^{\ cl}: T, \ initial Type(\varnothing \ T^{\ cl}) = T \ \text{and} \ \varnothing \ T^{\ cl}$ is a cast value, it is proved.

- Rule T-SingleIC. If $\vdash_{\cap IC} c: T_1 \Rightarrow^l T_2 \ ^c l: T_2$ and $initialType(c: T_1 \Rightarrow^l T_2 \ ^c l) = T_I$ then by rule T-SingleIC, $\vdash_{\cap IC} c: T_1$ and $initialType(c) = T_I$. By the induction hypothesis, either c is a cast value or there is a c' such that $c \longrightarrow_{\cap IC} c'$. If c is a cast value, then c can either be of the form $blame\ T_I\ T_F\ l^{\ cl}$, in which case by rule E-PushBlameIC, $blame\ T_I\ T_F\ l^{\ cl}: T_1 \Rightarrow^{l_2} T_2 \ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l^{\ cl}$ or c is a cast value 1 or is an empty cast. If c is a cast value 1 or is an empty cast then $c: T_1 \Rightarrow^l T_2 \ ^{cl}$ can be of one of the following forms:
 - $-c:T\Rightarrow^l T^{cl}$. Then by rule E-IdentityIC, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap IC} c$.
 - $-c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$. Then by rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{OIC} c$.
 - $-c:G_1\Rightarrow^{l_1}Dyn^{cl_1}:Dyn\Rightarrow^{l_2}G_2^{cl_2}.$ Then by rule E-FailIC, $c:G_1\Rightarrow^{l_1}Dyn^{cl_1}:Dyn\Rightarrow^{l_2}G_2^{cl_2}\longrightarrow_{\cap IC}blame\ T_I\ G_2\ l_2^{cl_1}.$
 - $-c:T\Rightarrow^{l} Dyn^{cl}.$ Then by rule E-GroundIC, $c:T\Rightarrow^{l} Dyn^{cl}\longrightarrow_{\cap IC}c:T\Rightarrow^{l} G^{cl}:G\Rightarrow^{l} Dyn^{cl}.$

 $-c: Dyn \Rightarrow^l T^{cl}$. Then by rule E-ExpandIC, $c: Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$.

If there is a c' such that $c \longrightarrow_{\cap IC} c'$, then by rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2 \ ^c l \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \ ^c l$.

Lemma 4 (Type preservation of $\longrightarrow_{\cap CC}$). Depends on Lemmas 2 and 3. If $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$ and $e \longrightarrow_{\cap CC} e'$ then $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_m$ such that $m \leq n$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base cases:

- Rule E-PushBlame1. If $\Gamma \vdash_{\cap CC} blame_{T_2} l \ e_2 : T_1 \text{ and } blame_{T_2} \ l \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l \text{ then by rule T-Blame, } \Gamma \vdash_{\cap CC} blame_{T_1} \ l : T_1.$
- Rule E-PushBlame2. If $\Gamma \vdash_{\cap CC} e_1 \ blame_{T_2} \ l : T_1 \ and \ e_1 \ blame_{T_2} \ l \longrightarrow_{\cap CC} blame_{T_1} \ l \ then by rule T-Blame, <math>\Gamma \vdash_{\cap CC} blame_{T_1} \ l : T_1$.
- Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} blame_T \ l : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $blame_T \ l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} \ l$ then by rule T-Blame, $\Gamma \vdash_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} \ l : T_1 \cap \ldots \cap T_n$.
- Rule E-AppAbs. There exists a type $T_1 \cap \ldots \cap T_n$ such that we can deduce $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v : T$ from $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$ (x does not occur in Γ). Moreover, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ only if $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$. By rule E-AppAbs, $(\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v \longrightarrow_{\cap CC} [x \mapsto v]e$. To obtain $\Gamma \vdash_{\cap CC} [x \mapsto v]e : T$, it is sufficient to replace, in the proof of $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$, the statements $x : T_i$ (introduzed by the rules T-Var and T-Inst) by the deductions of $\Gamma \vdash_{\cap CC} v : T_i$ for $1 \le i \le n$. (Proof adapted from [1])
- Rule E-SimulateArrow. If $\Gamma \vdash_{\cap CC} (v_1: cv_1 \cap \ldots \cap cv_n) \ v_2: T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1: cv_1 \cap \ldots \cap cv_n: T_1 \cap \ldots \cap T_n$ such that $\exists i \in 1...n \ T_i = T_{i1} \to T_{i2}$ and $\Gamma \vdash_{\cap CC} v_2: T_{11} \cap \ldots \cap T_{n1}$. As $\Gamma \vdash_{\cap CC} v_1: cv_1 \cap \ldots \cap cv_n: T_1 \cap \ldots \cap T_n$, then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v_1: T_1'' \cap \ldots \cap T_1''$ and $\vdash_{\cap IC} cv_1: T_1$ and \ldots and $\vdash_{\cap IC} cv_n: T_n$ and $I_1 = initialType(cv_1)$ and \ldots and $I_n = initialType(cv_n)$ such that $\{I_1, \ldots, I_n\} \subseteq \{T_1'', \ldots, T_1''\}$ and $I_1 \cap \ldots \cap I_n = T_1'' \cap \ldots \cap T_n''$ and $n \leq l$. For the sake of simplicity lets elide cast labels and blame labels. By the definition of SimulateArrow, we have that $c'_1 = c''_1: T'_{11} \to T'_{12} \Rightarrow T_{11} \to T_{12}$ and \ldots and $c'_m = c''_m: T'_{m1} \to T'_{m2} \Rightarrow T_{m1} \to T_{m2}$, for some $m \leq n$. Also, $c_{11} = \varnothing T_{11}: T_{11} \Rightarrow T'_{11}$ and \ldots and $c_{m1} = \varnothing T_{m1}: T_{m1} \Rightarrow T'_{m1}$ and $c_{12}: \varnothing T'_{12}: T'_{12} \Rightarrow T_{12}$ and \ldots and $c_{m2} = \varnothing T'_{m2}: T'_{m2} \Rightarrow T_{m2}$ and $initialType(c_1^s) = I_1$ and \ldots and $initialType(c_m^s) = I_m$ and $\vdash_{\cap IC} c_1^s: T'_{11} \to T'_{12}$ and \ldots and $\vdash_{\cap IC} c_1^s: T'_{m1} \to T'_{m2}$. As by rule T-Gen and T-Inst $\Gamma \vdash_{\cap CC} v_1: T''_1 \cap \ldots \cap T''_m$ and $I_1 \cap \ldots \cap I_m = T''_1 \cap \ldots \cap T''_m$, then by rule T-Gen and T-Inst $\Gamma \vdash_{\cap CC} v_1: c_1^s \cap \ldots \cap c_m^s: T'_{11} \to T'_{12} \cap \ldots \cap T'_{m1}$, then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v_2: t_{11} \cap \ldots \cap t_{m1} = t_{11} \cap t_{12} \cap t_{13} \cap t_{14} \cap t_{15} \cap t_{1$

- By rule E-SimulateArrow, $(v_1: cv_1 \cap \ldots \cap cv_n)$ $v_2 \longrightarrow_{\cap CC} (v_1: c_1^s \cap \ldots \cap c_m^s)$ $(v_2: c_{11} \cap \ldots \cap c_{m1}): c_{12} \cap \ldots \cap c_{m2}$, therefore it is proved.
- Rule E-MergeCasts. If $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m : F'_1 \cap \ldots \cap F'_m$ then by rule T-IntersectionCasts, $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ and $\vdash_{\cap IC} c'_1 : F'_1$ and \ldots and $\vdash_{\cap IC} c'_m : F'_m$ and $initialType(c'_1) = I'_1$ and $initialType(c'_m) = I'_m$ such that $\{I'_1, \ldots, I'_m\} \subseteq \{F_1, \ldots, F_n\}$ and $I'_1 \cap \ldots \cap I'_m = F_1 \cap \ldots \cap F_m$ and $m \leq n$. As $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_l$ and $\vdash_{\cap IC} cv_1 : F_1$ and \ldots and $\vdash_{\cap IC} cv_n : F_n$ and $initialType(cv_1) : I_1$ and \ldots and $initialType(cv_n) : I_n$ such that $\{I_1, \ldots, I_n\} \subseteq \{T_1, \ldots, T_l\}$ and $I_1 \cap \ldots \cap I_n = T_1 \cap \ldots \cap T_n$ and $n \leq l$. By the definition of mergeCasts, $\vdash_{\cap IC} c''_1 : F''_1$ and \ldots and $\vdash_{\cap IC} c''_1 : F''_2$ and $initialType(c''_1) = I''_1$ and \ldots and $initialType(c''_1) = I''_1$ and \ldots and $initialType(c''_1) = I''_2$ such that $\{I''_1, \ldots, I''_j\} \subseteq \{T_1, \ldots, T_l\}$ and $I''_1 \cap \ldots \cap I''_j = T_1 \cap \ldots \cap T_j$ and $\{F'''_1, \ldots, F''_j\} \subseteq \{F'_1, \ldots, F'_m\}$ and $F'''_1 \cap \ldots \cap F''_j = F'_1 \cap \ldots \cap F'_j$ and $j \leq l$ and $j \leq m$. By rule T-Gen and T-Inst, $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_j$ and therefore by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v : C''_1 \cap \ldots \cap C''_j : F''_1 \cap \ldots \cap F''_j$. By rule E-MergeCasts, $v : cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m \longrightarrow_{\cap CC} v : c''_1 \cap \ldots \cap c''_j$.
- Rule E-EvaluateCasts. If $\Gamma \vdash_{\cap CC} v : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v : T'_1 \cap \ldots \cap T'_n$ and $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $I_1 = initialType(c_1)$ and \ldots and $I_n = initialType(c_n)$ and $I_1 \cap \ldots \cap I_n = T'_1 \cap \ldots \cap T'_n$. By rule E-EvaluateCasts, $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$. By Lemmas 2 and 3, $\vdash_{\cap IC} cv_1 : T_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$ and $initialType(cv_n) = I_n$. Therefore by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$. By rule E-EvaluateCasts, $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$.
- Rule E-PropagateBlame. If $\Gamma \vdash_{\cap CC} v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n$ and by rule E-PropagateBlame $v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$.
- Rule E-RemoveEmpty. If $\Gamma \vdash_{\cap CC} v : \varnothing \ T_1 \stackrel{m_1}{} \cap \ldots \cap \varnothing \ T_n \stackrel{m_n}{} : T_1 \cap \ldots \cap T_n$, then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$ and $\vdash_{\cap IC} \varnothing \ T_1 \stackrel{m_1}{} : T_1$ and \ldots and $\vdash_{\cap IC} \varnothing \ T_n \stackrel{m_n}{} : T_n$ and $initialType(\varnothing \ T_1 \stackrel{m_1}{}) = T_1$ and \ldots and $initialType(\varnothing \ T_n \stackrel{m_n}{}) = T_n$. Therefore, by rule E-RemoveEmpty, $v : \varnothing \ T_1 \stackrel{m_1}{} \cap \ldots \cap \varnothing \ T_n \stackrel{m_n}{} \longrightarrow_{\cap CC} v$.

- Rule E-App1. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} e_1 e_2 : T$, then by rule T-App, $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App1, $e_1 \longrightarrow_{\cap IC} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_1 \cap \ldots \cap T_n \to T$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap IC} e'_1 e_2$, then by rule T-App, $\Gamma \vdash_{\cap CC} e'_1 e_2 : T$.
 - If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App1, $e_1 \longrightarrow_{\cap IC} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap IC} e'_1 e_2$, then by rule T-App', $\Gamma \vdash_{\cap CC} e'_1 e_2 : T_{12} \cap \cdots \cap T_{n2}$.
- Rule E-App2. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T$, then by rule T-App, $\Gamma \vdash_{\cap CC} v_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App2, $e_2 \longrightarrow_{\cap IC} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_1 \cap \ldots \cap T_n$. As by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap IC} v_1 \ e_2'$, then by rule T-App, $\Gamma \vdash_{\cap CC} v_1 \ e_2' : T$.

- If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App2, $e_2 \longrightarrow_{\cap IC} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_{11} \cap \ldots \cap T_{n1}$. As by rule E-App1, $v_1 \ e_2 \longrightarrow_{\cap IC} v_1 \ e_2'$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1 \ e_2' : T_{12} \cap \cdots \cap T_{n2}$.
- Rule E-Evaluate. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} e : T'_1 \cap \ldots \cap T'_n$, $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $initialType(c_1) \cap \ldots \cap initialType(c_n) = T'_1 \cap \ldots \cap T'_n$. By rule E-Evaluate, $e \longrightarrow_{\cap IC} e'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e' : T$. As by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap IC} e' : c_1 \cap \ldots \cap c_n$, then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$.

Lemma 5 (Progress of $\longrightarrow_{\cap CC}$). If $\Gamma \vdash_{\cap CC} e : T$ then either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap CC} x : T$, then x is a value.
- Rule T-Int. If $\Gamma \vdash_{\cap CC} n : Int$ then n is a value.
- Rule T-True. If $\Gamma \vdash_{\cap CC} true : Bool$ then true is a value.
- Rule T-False. If $\Gamma \vdash_{\cap CC} false : Bool then false$ is a value.

- Rule T-Abs. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ then $\lambda x : T_1 \cap \ldots \cap T_n \cdot e$ is a value.
- Rule T-Abs'. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$ then $\lambda x : T_1 \cap \ldots \cap T_n : e$ is a value.
- Rule T-App. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$ then by rule T-App, $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, e_1 is either a value or there is a e'_1 such that $e_1 \longrightarrow_{\cap CC} e'_1$ and e_2 is either a value or there is a e'_2 such that $e_2 \longrightarrow_{\cap CC} e'_2$. If e_1 is a value, then by rule E-PushBlame1, $(blame_{T_2} \ l) \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_2 is a value, then by rule E-PushBlame2, $e_1 \ (blame_{T_2} \ l) \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e'_2$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e)$, and by rule E-AppAbs $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e) \ v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$.
- Rule T-Gen. If $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$ then by rule T-Gen, $\Gamma \vdash_{\cap CC} e : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.
- Rule T-Inst. If $\Gamma \vdash_{\cap CC} e : T_i$ then by rule T-Inst, $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.

- Rule T-App'. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$ then by rule T-App', $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By the induction hypothesis, e_1 is either a value or there is a e'_1 such that $e_1 \longrightarrow_{\cap CC} e'_1$ and e_2 is either a value or there is a e'_2 such that $e_2 \longrightarrow_{\cap CC} e'_2$. If e_1 is a value, then by rule E-PushBlame1, $(blame_{T_2} \ l) \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} . e)$, and by rule E-AppAbs $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} . e) \ v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$.
- Rule T-IntersectionCast. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then by rule T-IntersectionCast, $\Gamma \vdash_{\cap CC} e : T'_1 \cap \ldots \cap T'_n$. By the induction hypothesis, e is either a value, or there is an e' such that $e \longrightarrow_{\cap CC} e'$. If e is a value, then either by rule E-EvaluateCasts, $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, or by rule E-PushBlameCast, $blame_{T'_1 \cap \ldots \cap T'_n} l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l$. If there is an e' such that $e \longrightarrow_{\cap CC} e'$, then by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n$.
- Rule T-Blame. If $\Gamma \vdash_{\cap CC} blame_T \ l : T$ then $blame_T \ l$ is a value.

Theorem 6 (Type Safety of $\longrightarrow_{\cap CC}$). Depends on Lemmas 4 and 5. Both Type Preservation and Progress hold for $\longrightarrow_{\cap CC}$.

Proof. We have Type Preservation (by Lemma 4) and Progress (by Lemma 5) for $\longrightarrow_{\cap CC}$.

Theorem 7 (Blame Theorem). If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC}^* blame_T l$ then l is not a safe cast of e.

Lemma 6 (Gradual Guarantee for $\longrightarrow_{\cap IC}$). If $\vdash_{\cap IC} c_1 : T_1$ and $\vdash_{\cap IC} c_2 : T_2$ and $c_1 \sqsubseteq c_2$ then:

1. if $c_2 \longrightarrow_{\cap IC} c'_2$ then $c_1 \longrightarrow_{\cap IC}^* c'_1$ and $c'_1 \sqsubseteq c'_2$.

Lemma 7 (Extra Cast on the Left). If $\Gamma \vdash_{\cap CC} v : T$, $\Gamma \vdash_{\cap CC} v' : T'$, $\vdash_{\cap IC} c_1 : T_1$ and ... and $\vdash_{\cap IC} c_n : T_n$, $T_1 \cap \ldots \cap T_n \sqsubseteq T'$, $initialType(c_1) \cap \ldots \cap initialType(c_n) = T$ and $v \sqsubseteq v'$ then $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC}^* v''$ and $v'' \sqsubseteq v'$.

Lemma 8 (Catchup to Value on the Right). If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} v : T'$, $e \sqsubseteq v$, then $e \longrightarrow_{\cap CC}^* e'$ and $e' \sqsubseteq v$.

Lemma 9 (Simulation of Function Application). Depends on Lemma 4. Suppose $\Gamma \vdash_{\cap CC} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \rightarrow T', \ \Gamma \vdash_{\cap CC} v' : T'_1 \cap \ldots \cap T'_n, \ either \ \Gamma \vdash_{\cap CC} v_1 : T_1 \cap \ldots \cap T_n \rightarrow T \ or \ \Gamma \vdash_{\cap CC} v_1 : T_1 \rightarrow T \cap \ldots \cap T_n \rightarrow T \ and \ \Gamma \vdash_{\cap CC} v_2 : T_1 \cap \ldots \cap T_n, \ T_1 \cap \ldots \cap T_n \rightarrow T \ \sqsubseteq T'_1 \cap \ldots \cap T'_n \rightarrow T'.$ If $v_1 \sqsubseteq \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \ and \ v_2 \sqsubseteq v', \ then \ v_1 \ v_2 \longrightarrow_{\cap CC}^* e \ such \ that \ e \sqsubseteq [x \mapsto v']e' \ and \ \Gamma \vdash_{\cap CC} e : T.$

Proof. We proceed by induction on the length of the derivation tree of $v_1 \sqsubseteq \lambda x : T'_1 \cap \ldots \cap T'_n : e'$.

Base cases:

• $\lambda x: T_1 \cap \ldots \cap T_n \cdot e \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$. As $\Gamma \vdash_{\cap CC} \lambda x: T_1 \cap \ldots \cap T_n \cdot e: T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v_2: T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap CC} (\lambda x: T_1 \cap \ldots \cap T_n \cdot e) v_2: T$. As $\lambda x: T_1 \cap \ldots \cap T_n \cdot e \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$, then $e \sqsubseteq e'$. By Rule E-AppAbs, $(\lambda x: T_1 \cap \ldots \cap T_n \cdot e) v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$. By the definition of \sqsubseteq , $[x \mapsto v_2]e \sqsubseteq [x \mapsto v']e'$ and by Lemma 4, $\Gamma \vdash_{\cap CC} [x \mapsto v_2]e: T$.

Induction step:

- $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$. As $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_1 \to T \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v_2: T_1 \cap \ldots \cap T_n$ and $T_1 \to T \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T'$ then $T \sqsubseteq T'$. As $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$, then $v \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$. By rule E-SimulateArrow, $(v: cv_1 \cap \ldots \cap cv_n) v_2 \longrightarrow_{\cap CC} (v: c_1^s \cap \ldots \cap c_m^s) (v_2: c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$, with $((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulateArrow(cv_1, \ldots, cv_n)$. There are 3 possibilities, where $(v: c_1^s \cap \ldots \cap c_m^s)$ is of the form:
 - $\begin{array}{l} \ (\lambda x \, : \, T_1'' \cap \ldots \cap T_n'' \, : \, e'') \, : \, \varnothing \, T_1'' \, \to \, T'' \, \stackrel{cl_1}{}\cap \ldots \cap \varnothing \, T_m'' \, \to \, T'' \, \stackrel{cl_m}{} \text{ such that } \, T_1'' \cap \ldots \cap T_n'' \, \sqsubseteq \, T_1' \cap \ldots \cap T_n'' \, \text{ and } \, e'' \, \sqsubseteq \, e'. \quad \text{Then by rule E-RemoveEmpty and E-AppAbs,} \\ (\lambda x \, : \, T_1'' \cap \ldots \cap T_n'' \, : \, e'' \, : \, \varnothing \, T_1'' \, \stackrel{cl_1}{}\cap \ldots \cap \varnothing \, T_m'' \, \stackrel{cl_m}{}) \, (v_2 \, : \, c_{11} \cap \ldots \cap c_{m1}) \, : \, c_{12} \cap \ldots \cap c_{m2} \, \to \, \cap_{CC} \\ ([x \mapsto v_2 \, : \, c_{11} \cap \ldots \cap c_{m1}]e'') \, : \, c_{12} \cap \ldots \cap c_{m2}. \quad \text{As } v_2 \, \sqsubseteq \, v' \, \text{ and } \, \vdash_{\cap IC} c_{11} \, : \, T_1'' \, \text{ and } \ldots \, \text{ and} \\ \vdash_{\cap IC} c_{m1} \, : \, T_m'' \, \text{ and } \, T_1'' \cap \ldots \cap T_m' \, \sqsubseteq \, T_1' \cap \ldots \cap T_m' \, \text{ then } v_2 \, : \, c_{11} \cap \ldots \cap c_{m1} \, \sqsubseteq \, v'. \quad \text{As} \\ (\lambda x \, : \, T_1' \cap \ldots \cap T_n' \, . \, e') \, v' \, : \, T' \, \text{ and } \, (\lambda x \, : \, T_1' \cap \ldots \cap T_n' \, . \, e') \, v' \, \longrightarrow_{\cap CC} \, [x \mapsto v_2]e', \, \text{ then by} \\ \text{Lemma } 4, \, \Gamma \vdash_{\cap CC} \, [x \mapsto v_2]e' \, : \, T'. \, \text{As} \, \vdash_{\cap IC} c_{12} \, : \, T \, \text{ and } \ldots \, \text{ and} \, \vdash_{\cap IC} c_{m2} \, : \, T \, \text{ and } \, T \, \sqsubseteq \, T' \\ \text{and } \, e'' \, \sqsubseteq \, e' \, \text{ then } \, ([x \mapsto v_2 \, : \, c_{11} \cap \ldots \cap c_{m1}]e'') \, : \, c_{12} \cap \ldots \cap c_{m2} \, \sqsubseteq \, [x \mapsto v_2]e'. \end{array}$

Lemma 10 (Simulation of Unwrapping). Suppose $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$ and $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$ and $\Gamma \vdash_{\cap CC} v_2 : T'_{11} \cap \ldots \cap T'_{n1}$ and $T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \sqsubseteq T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$. If $e_1 \sqsubseteq v_1 : cv_1 \cap \ldots \cap cv_n$ and $e_2 \sqsubseteq v_2$, then $e_1 e_2 \to_{\cap CC}^* e$ and $e \sqsubseteq (v_1 : c_1^e \cap \ldots \cap c_m^e)$ $(v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$, with $((c_{11}, c_{12}, c_1^e), \ldots, (c_{m1}, c_{m2}, c_m^e)) = simulateArrow(cv_1, \ldots, cv_n)$.

Theorem 8 (Gradual Guarantee). Depends on Theorem 6 and Lemmas 2, 3, 4, 6, 9 and 10. If $\Gamma \vdash_{\cap CC} e_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 : T_2$ and $e_1 \sqsubseteq e_2$ then:

- 1. if $e_2 \longrightarrow_{\cap CC} e'_2$ then $e_1 \longrightarrow_{\cap CC}^* e'_1$ and $e'_1 \sqsubseteq e'_2$.
- 2. if $e_1 \longrightarrow_{\cap CC} e'_1$ then either $e_2 \longrightarrow_{\cap CC}^* e'_2$ and $e'_1 \sqsubseteq e'_2$ or $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$.

Proof. (1) We proceed by induction on the length of the derivation tree of $e \sqsubseteq e$.

Base cases:

- Rule for $x \sqsubseteq x$. As $x \longrightarrow_{\cap CC} x$ and $x \sqsubseteq x$, it is proved.
- Rule for $n \sqsubseteq n$. As $n \longrightarrow_{\cap CC} n$ and $n \sqsubseteq n$, it is proved.
- Rule for $true \sqsubseteq true$. As $true \longrightarrow_{\cap CC} true$ and $true \sqsubseteq true$, it is proved.
- Rule for $false \sqsubseteq false$. As $false \longrightarrow_{\cap CC} false$ and $false \sqsubseteq false$, it is proved.
- Rule for $e \sqsubseteq blame_{T'} \ l$. If $e \sqsubseteq blame_{T'} \ l$ then $\Gamma \vdash_{\cap CC} e : T$ and $T \sqsubseteq T'$. If $blame_{T'} \ l \longrightarrow_{\cap CC} blame_{T'} \ l$ then $e \longrightarrow_{\cap CC}^* e'$. By Theorem 6, $\Gamma \vdash_{\cap CC} e' : T$, therefore $e' \sqsubseteq blame_{T'} \ l$.

Induction step:

• Rule for $\lambda x:T$. $e \sqsubseteq \lambda x:T'$. e'. If $\lambda x:T$. $e \sqsubseteq \lambda x:T'$. e', then $T \sqsubseteq T'$ and $e \sqsubseteq e'$. As $\lambda x:T$. $e \longrightarrow_{\cap CC} \lambda x:T$. e and $\lambda x:T'$. $e' \longrightarrow_{\cap CC} \lambda x:T'$. e' and $\lambda x:T$. $e \sqsubseteq \lambda x:T'$. e', it is proved.

- Rule for e_1 $e_2 \sqsubseteq e_1'$ e_2' . There are 6 possibilities:
 - Rule E-PushBlame1. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$ and $\Gamma \vdash_{\cap CC} (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2 : T'$ and $e_1 \ e_2 \sqsubseteq (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2$ then $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l : T'_1 \cap \ldots \cap T'_n \to T'$ and $\Gamma \vdash_{\cap CC} e'_2 : T'_1 \cap \ldots \cap T'_n$ and $e_1 \sqsubseteq blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l$ and $e_2 \sqsubseteq e'_2$. Therefore, $T_1 \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T'$ and $T \sqsubseteq T'$. If $(blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2 \longrightarrow_{\cap CC} blame_{T'} \ l$ then $e_1 \ e_2 \longrightarrow_{\cap CC}^* e$. By Theorem $e_1 \cap e_2 \cap e_3 \cap e_4 \cap e_5 \cap e_5 \cap e_5$.
 - Rule E-PushBlame2. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T \ \text{and} \ \Gamma \vdash_{\cap CC} e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n} \ l) : T' \ \text{and} \ e_1 \ e_2 \sqsubseteq e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ \text{then} \ \Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T \ \text{and} \ \Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n \ \text{and} \ \Gamma \vdash_{\cap CC} e'_1 : T'_1 \cap \ldots \cap T'_n \to T' \ \text{and} \ \Gamma \vdash_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n} \ l : T'_1 \cap \ldots \cap T'_n \ \text{and} \ e_1 \sqsubseteq e'_1 \ \text{and} \ e_2 \sqsubseteq blame_{T'_1 \cap \ldots \cap T'_n} \ l. \ \text{By Theorem Monotonicity w.r.t.} \ \text{precision} \ \text{of} \ \vdash_{\cap CC}, \ \text{as} \ e_1 \sqsubseteq e'_1 \ \text{then} \ T_1 \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T' \ \text{and} \ \text{therefore} \ T \sqsubseteq T'. \ \text{If} \ e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n} \ l) \longrightarrow_{\cap CC} blame_{T'} \ l \ \text{then} \ e_1 \ e_2 \longrightarrow^*_{\cap CC} e. \ \text{By Theorem 6}, \ \Gamma \vdash_{\cap CC} e : T. \ \text{Therefore}, \ e \sqsubseteq blame_{T'} \ l.$
 - Rule E-App1. If $e_{11} e_{12} \sqsubseteq e_{21} e_{22}$ and $e_{21} e_{22} \longrightarrow_{\cap CC} e'_{21} e_{22}$ then $e_{11} \sqsubseteq e_{21}$ and $e_{12} \sqsubseteq e_{22}$ and $e_{21} \longrightarrow_{\cap CC} e'_{21}$. By the induction hypothesis, $e_{11} \longrightarrow_{\cap CC} e'_{11}$ and $e'_{11} \sqsubseteq e'_{21}$. Therefore $e_{11} e_{12} \longrightarrow_{\cap CC} e'_{11} e_{12}$. As $e'_{11} e_{12} \sqsubseteq e'_{21} e_{22}$, it is proved.
 - Rule E-App2. If $v_{11} e_{12} \sqsubseteq v_{21} e_{22}$ and $v_{21} e_{22} \longrightarrow_{\cap CC} v_{21} e'_{22}$ then $v_{11} \sqsubseteq v_{21}$ and $e_{12} \sqsubseteq e_{22}$ and $e_{22} \longrightarrow_{\cap CC} e'_{22}$. By the induction hypothesis, $e_{12} \longrightarrow_{\cap CC} e'_{12}$ and $e'_{12} \sqsubseteq e'_{22}$. Therefore $v_{11} e_{12} \longrightarrow_{\cap CC} v_{11} e'_{12}$. As $v_{11} e'_{12} \sqsubseteq v_{21} e'_{22}$, it is proved.
 - Rule E-AppAbs. If v_{11} $v_{12} \sqsubseteq (\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ v_2 and $(\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ $v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e_2$ then $v_{11} \sqsubseteq (\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ and $v_{12} \sqsubseteq v_2$. By Lemma 9, v_{11} $v_{12} \longrightarrow_{\cap CC}^* e$, such that $e \sqsubseteq [x \mapsto v_2]e_2$.
 - Rule E-SimulateArrow. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$ and $\Gamma \vdash_{\cap CC} (v_1 : c_1 \cap \ldots \cap c_n) v_2 : T'_{12} \cap \ldots \cap T'_{n2}$ and $e_1 e_2 \sqsubseteq (v_1 : c_1 \cap \ldots \cap c_n) v_2$ then $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$ and $\Gamma \vdash_{\cap CC} v_1 : c_1 \cap \ldots \cap c_n : T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$ and $\Gamma \vdash_{\cap CC} v_2 : T'_{11} \cap \ldots \cap T'_{n1}$ and $e_1 \sqsubseteq v_1 : c_1 \cap \ldots \cap c_n$ and $e_2 \sqsubseteq v_2$. Therefore, $\vdash_{\cap IC} c_1 : T'_{11} \to T'_{12}$ and \ldots and $\vdash_{\cap IC} c_n : T'_{n1} \to T'_{n2}$ and as $e_1 \sqsubseteq v_1 : c_1 \cap \ldots \cap c_n$, then $T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \sqsubseteq T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$. By Lemma 10, $e_1 e_2 \longrightarrow_{\cap CC}^* e$ and $e \sqsubseteq (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$. As $(v_1 : c_1 \cap \ldots \cap c_n) v_2 \longrightarrow_{\cap CC} (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$, it is proved.
- Rule for $e: c_1 \cap \ldots \cap c_n \sqsubseteq e': c'_1 \cap \ldots \cap c'_n$. There are 5 possibilities:
 - Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} blame_{T'} l : c'_1 \cap \ldots \cap c'_n : T'_1 \cap \ldots \cap T'_n$ and $e : c_1 \cap \ldots \cap c_n \sqsubseteq blame_{T'} l : c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq blame_{T'} l$ and $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $\vdash_{\cap IC} c'_1 : T'_1$ and \ldots and $\vdash_{\cap IC} c'_n : T'_n$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. By Lemma Monotonicity w.r.t precision of IC, $T_1 \sqsubseteq T'_1$ and \ldots and $T_n \sqsubseteq T'_n$. If $blame_{T'} l : c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n} l$ then $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e'$ By Theorem 6, $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$. As $\Gamma \vdash_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n} l : T'_1 \cap \ldots \cap T'_n$ then $e' \sqsubseteq blame_{T'_1 \cap \ldots \cap T'_n} l$.
 - Rule E-Evaluate. If $e: c_1 \cap \ldots \cap c_n \sqsubseteq e': c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq e'$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. If $e': c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} e'_1: c'_1 \cap \ldots \cap c'_n$, then $e' \longrightarrow_{\cap CC} e'_1$. By the induction hypothesis, $e \longrightarrow_{\cap CC} e_1$ and $e_1 \sqsubseteq e'_1$. Therefore, by rule E-Evaluate, $e: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e_1: c_1 \cap \ldots \cap c_n$. Then $e_1: c_1 \cap \ldots \cap c_n \sqsubseteq e'_1: c'_1 \cap \ldots \cap c'_n$.

- Rule E-EvaluateCasts. If $v: c_1 \cap \ldots \cap c_n \sqsubseteq v': c'_1 \cap \ldots \cap c'_n$, then $v \sqsubseteq v'$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. If $v': c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} v': cv'_1 \cap \ldots \cap cv'_n$ then $c'_1 \longrightarrow_{\cap IC} cv'_1$ and \ldots and $c'_n \longrightarrow_{\cap IC} cv'_n$. By Lemma 6, $c_1 \longrightarrow_{\cap IC} cv_1$ and $cv_1 \sqsubseteq cv'_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$ and $cv_n \sqsubseteq cv'_n$ Therefore, $v: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n$. As $v \sqsubseteq v'$ and $cv_1 \sqsubseteq cv'_1$ and \ldots and $cv_n \sqsubseteq cv'_n$, then $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq v': cv'_1 \cap \ldots \cap cv'_n$.
- Rule E-PropagateBlame. If $v: blame\ I_1\ F_1\ l_1\ ^{cl_1}\cap\ldots\cap blame\ I_n\ F_n\ l_n\ ^{cl_n}\sqsubseteq v': blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\cap\ldots\cap blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}\ then\ v\sqsubseteq v'\ and\ blame\ I_1\ F_1\ l_1\ ^{cl_1}\sqsubseteq blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\ and\ \ldots\ and\ blame\ I_n\ F_n\ l_n\ ^{cl_n}\sqsubseteq blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}\ .$ Therefore, $F_1\sqsubseteq F'_1\ and\ \ldots\ and\ F_n\sqsubseteq F'_n\ .$ If $v':blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\cap\ldots\cap blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}\longrightarrow\cap CC\ blame\ F'_1\cap\ldots\cap F'_n\ l'_1\ ,$ then $v:blame\ I_1\ F_1\ l_1\ ^{cl_1}\cap\ldots\cap blame\ I_n\ F_n\ l_n\ ^{cl_n}\longrightarrow\cap CC\ blame\ F_1\cap\ldots\cap F_n\ l'_1\ .$ As $F_1\cap\ldots\cap F_n\sqsubseteq F'_1\cap\ldots\cap F'_n\ ,$ then $blame\ F_1\cap\ldots\cap F_n\ l_1\sqsubseteq blame\ F'_1\cap\ldots\cap F'_n\ l'_1\ .$
- Rule E-RemoveEmpty. If $v: \varnothing T_1^{\ cl_1} \cap \ldots \cap \varnothing T_n^{\ cl_n} \sqsubseteq v': \varnothing T_1'^{\ cl_1'} \cap \ldots \cap \varnothing T_n'^{\ cl_n'}$ then $v \sqsubseteq v'$. If $v': \varnothing T_1'^{\ cl_1'} \cap \ldots \cap \varnothing T_n'^{\ cl_n'} \longrightarrow_{\cap CC} v'$ then $v: \varnothing T_1^{\ cl_1} \cap \ldots \cap \varnothing T_n^{\ cl_n} \longrightarrow_{\cap CC} v$. As $v \sqsubseteq v'$, it is proved.
- Rule for $e: c_1 \cap \ldots \cap c_n \sqsubseteq e'$.
- Rule for $e \sqsubseteq e' : c'_1 \cap \ldots \cap c'_n$. There are 5 possibilities:
 - Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} blame_{T'} l : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $e \sqsubseteq blame_{T'} l : c_1 \cap \ldots \cap c_n$ then $e \sqsubseteq blame_{T'} l$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. If $blame_{T'} l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l_1$ then $e \longrightarrow_{\cap CC}^* e'$. By Theorem 6, $\Gamma \vdash_{\cap CC} e' : T$. As $\Gamma \vdash_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l_1 : T_1 \cap \ldots \cap T_n$, then $e' \sqsubseteq blame_{T_1 \cap \ldots \cap T_n} l_1$.
 - Rule E-Evaluate. If $e \sqsubseteq e' : c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq e'$, $\Gamma \vdash_{\cap CC} e : T$, $\vdash_{\cap IC} c'_1 : T_1$ and \ldots and $\vdash_{\cap IC} c'_n : T_n$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. By rule E-Evaluate, $e' \longrightarrow_{\cap CC} e'_1$, therefore, by the induction hypothesis, $e \longrightarrow_{\cap CC} e_1$ and $e_1 \sqsubseteq e'_1$. By rule E-Evaluate, $e' : c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} e'_1 : c'_1 \cap \ldots \cap c'_n$. By Lemma 4, $\Gamma \vdash_{\cap CC} e_1 : T$, therefore $e_1 \sqsubseteq e'_1 : c'_1 \cap \ldots \cap c'_n$.
 - Rule E-EvaluateCasts. If $e \sqsubseteq v : c_1 \cap \ldots \cap c_n$, then $e \sqsubseteq v$, $\Gamma \vdash_{\cap CC} e : T$, $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. If $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$ then, by rule E-EvaluateCasts, $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$, and by Lemmas 2 and 3, $\vdash_{\cap IC} cv_1 : T_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$. If $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$ then $e \longrightarrow_{\cap CC}^* e_1$. By Theorem 6, $\Gamma \vdash_{\cap CC} e_1 : T$, therefore $e_1 \sqsubseteq v : cv_1 \cap \ldots \cap cv_n$.
 - Rule E-PropagateBlame. If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} v : blame I_1 F_1 l_1 \stackrel{cl_1}{\cap} \cap \dots \cap blame I_n F_n l_n \stackrel{cl_n}{\cap} : F_1 \cap \dots \cap F_n$ and $e \sqsubseteq v : blame I_1 F_1 l_1 \stackrel{cl_1}{\cap} \cap \dots \cap blame I_n F_n l_n \stackrel{cl_n}{\cap} + blame I_n F_n l_n \stackrel{cl_n}{\cap} \mapsto_{\cap CC} blame_{F_1 \cap \dots \cap F_n} l_1$ then $e \longrightarrow_{\cap CC}^* e'$. By Theorem 6, $\Gamma \vdash_{\cap CC} e' : T$. As $\Gamma \vdash_{\cap CC} blame_{F_1 \cap \dots \cap F_n} l_1 : F_1 \cap \dots \cap F_n$, then $e' \sqsubseteq blame_{F_1 \cap \dots \cap F_n} l_1$.
 - Rule E-RemoveEmpty. If $e \sqsubseteq v : \varnothing T_1 \stackrel{cl_1}{\cap} \ldots \cap \varnothing T_n \stackrel{cl_n}{\cap}$ then $e \sqsubseteq v$. By Lemma 8, $e \longrightarrow_{\cap CC}^* e'$ and $e' \sqsubseteq v$. If $v : \varnothing T_1 \stackrel{cl_1}{\cap} \ldots \cap \varnothing T_n \stackrel{cl_n}{\cap} \longrightarrow_{\cap CC} v$, then it is proved.
- (2) Let's assume that $e_1 \longrightarrow_{\cap CC} e'_1$. Because e_2 is well typed, then either $e_2 \longrightarrow_{\cap CC}^* e'_2$ or $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$. If $e_2 \longrightarrow_{\cap CC}^* e'_2$ then, by part 1, $e'_1 \sqsubseteq e'_2$. If $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$, we are done.

References

[1] Mario Coppo, Mariangiola Dezani-Ciancaglini, et al. An extension of the basic functionality theory for the λ -calculus. Notre Dame journal of formal logic, 21(4):685–693, 1980.