# 02610 Optimization and Data Fitting

Week 11: Conjugate Gradient Methods & Large-Scale Unconstrained Optimization

Yiqiu Dong

DTU Compute Technical University of Denmark

# Unconstrained quadratic problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x}$$
 f'(x) = Ax - b  
Optimizer: Ax = b

where A is an  $n \times n$  symmetric positive definite matrix.

- It is equivalent to solve the linear system of equations: Ax = b.
- The **residual** r = b Ax is the negative gradient:  $r = -\nabla f(x)$ .

- Steepest descent method: 1 or  $\infty$  iterations.
- Newton's method: 1 iteration. f(x) here is already quadratic, so this is exact, and therefore only 1 iteration
- Coordinate search method: n or  $\infty$  iterations.  $\frac{n}{problem}$ , and A is diagonal
- Conjugate gradient method: *n* iterations.

# Conjugate gradient (CG) method

- It was proposed by Hestenes and Stiefel in the 1950s.
- It is the most widely used iterative method for solving  $A\mathbf{x} = \mathbf{b}$  with  $A \succ 0$
- It was extended to solve nonlinear unconstrained minimization problems in 1960s.

#### Main advantages of CG:

- It takes at most n iterations to the solution (theoretically).
- It does not alter A.
- At each iteration, it only need one computation of the matrix-vector product  $(O(n^2))$  and a few vector product and sum (O(n)).
- For storage, it only need store a few vectors.
- CG is only used for solving large-scale problems.
- CG is proved with linear convergence rate, but generally much faster than the steepest descent method.

# Conjugate directions

#### Idea:

• If A is diagonal, then the coordinate search method can find the minimizer of f(x) in n iterations.





• If A is **NOT** diagonal, we can diagonalize A, that is, accordingly transform the coordinate directions.

## Conjugate directions

Suppose that a  $n \times n$  matrix  $S = [\mathbf{p}_0, \mathbf{p}_1, \cdots, \mathbf{p}_{n-1}]$  diagonalizes A, i.e.,  $S^TAS$  is diagonal. Then, we have

$$\mathbf{p}_i^T A \mathbf{p}_j = 0,$$
 for all  $i \neq j$ ,

and we call  $\{\boldsymbol{p}_0, \cdots, \boldsymbol{p}_{n-1}\}$  to be **conjugate** with respect to spd. A.

- $\{ \boldsymbol{p}_0, \cdots, \boldsymbol{p}_{n-1} \}$  are conjugate, if and only if they are orthogonal for the inner product  $\langle \boldsymbol{u}, \boldsymbol{v} \rangle_A = \boldsymbol{u}^T A \boldsymbol{v}$ . = 0
- If  $p_i \neq 0$  for all i, they are also linearly independent.

If  $\{ \boldsymbol{p}_0, \cdots, \boldsymbol{p}_{n-1} \}$  are conjugate (conjugate directions) and  $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$ , then the exact line search has a closed-form and gives

$$\alpha_k = \frac{\boldsymbol{r}_k^T \boldsymbol{p}_k}{\boldsymbol{p}_k^T A \boldsymbol{p}_k}.$$



# Conjugate direction methods

initial guess for conjugate direction:

- eigenvalues

use exact line search to find alpha

- choose linearly independent basis

They are very expensive, so NOT USED

Instead use Conjugate gradient directions (slide8)

#### Algorithm

Given  $\mathbf{x}_0$  and a set of conjugate directions  $\{\mathbf{p}_0,\cdots,\mathbf{p}_{n-1}\}$ .

## loop

Compute  $\alpha_k = \frac{\mathbf{r}_k^T \mathbf{p}_k}{\mathbf{p}_k^T A \mathbf{p}_k}$ ; Update  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ ;

end loop

#### Theorem

For any  $x_0 \in \mathbb{R}^n$  the sequence  $\{x_n\}$  generated by the above conjugate direction method converges to the solution  $x^*$  of the linear system Ax = b in at most n iterations.

# Conjugate direction methods

## Expanding subspace minimization

Let  $x_0 \in \mathbb{R}^n$  be any starting point and the sequence  $\{x_k\}$  be generated by the conjugate direction method shown in the previous page. Then,

- $\mathbf{r}_{k}^{T}\mathbf{p}_{i}=0$ , for  $i=0,1,\cdots,k-1$ ;
- $\mathbf{x}_k$  is the minimizer of  $f(\mathbf{x})$  over the set  $\{\mathbf{x}|\mathbf{x}=\mathbf{x}_0+\operatorname{span}\{\boldsymbol{p}_0,\cdots,\boldsymbol{p}_{k-1}\}\}.$

- ullet The current residual  $oldsymbol{r}_k$  is orthogonal to all previous search directions.
- The conjugate direction method minimizes f(x) along one conjugate direction at one iteration.

## Conjugate gradient directions

- $p_k$  is generated by using only the previous vector  $p_{k-1}$ .
- $p_k$  is automatically conjugate to  $\{p_0, \cdots, p_{k-1}\}$ .

r0 = negative gradient of f

**Recursion for**  $p_k$ **:** We start with  $p_0 = r_0$  and choose  $p_k$  to be a linear combination of the residual  $r_k$  and the previous direction  $p_{k-1}$ :

$$\boldsymbol{p}_k = \boldsymbol{r}_k + \beta_k \boldsymbol{p}_{k-1}.$$

Since  $\boldsymbol{p}_k$  is conjugate to  $\boldsymbol{p}_{k-1}$  w.r.t. A, then we have

$$\beta_k = -\frac{\boldsymbol{p}_{k-1}^T A \boldsymbol{r}_k}{\boldsymbol{p}_{k-1}^T A \boldsymbol{p}_{k-1}}.$$

# Conjugate gradient method (preliminary version)

## Algorithm

```
Given x_0:
Set \mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0, \mathbf{p}_0 = \mathbf{r}_0;
loop
    Compute \alpha_k = \frac{\mathbf{r}_k^T \mathbf{p}_k}{\mathbf{p}_k^T A \mathbf{p}_k};
     Update \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k;
    Compute r_{k+1} = b - Ax_{k+1};
    Compute \beta_{k+1} = -\frac{\boldsymbol{p}_k^T A \boldsymbol{r}_{k+1}}{\boldsymbol{p}_k^T A \boldsymbol{p}_k};
    Compute p_{k+1} = r_{k+1} + \beta_{k+1} p_k;
     Check for convergence;
end loop
Output x_{k+1}.
```

# Properties of CG method

#### **Theorem**

Suppose that the kth iterate of the CG method is not the solution  $x^*$ . Then,

- **1**  $r_k^T r_i = 0$ , for  $i = 0, 1, \dots, k-1$ ,
- **3**  $p_k^T A p_i = 0$ , for  $i = 0, 1, \dots, k 1$ .

Therefore, the sequence  $\{x_k\}$  converges to  $x^*$  in at most n steps.

- The proof of this theorem relies on the fact that  $\mathbf{p}_0 = \mathbf{r}_0$  (the steepest descent direction).
- The result (1) shows that the residuals/gradients at all iterates are orthogonal to each other.
- The result (3) shows that  $\{p_0, \dots, p_k\}$  are conjugate directions.
- The result (2) shows that the search directions and the residuals from CG method generate the Krylov subspaces.

# Krylov subspaces

**Definition:** A sequence of subspaces generated by a matrix A and a vector  $\mathbf{b}$ :

$$\mathcal{K}_k(A, \boldsymbol{b}) = \operatorname{span}\{\boldsymbol{b}, A\boldsymbol{b}, \cdots, A^{k-1}\boldsymbol{b}\}$$
 for  $k \geq 1$ .

#### **Properties:**

- $\mathcal{K}_k(A, \mathbf{r}_0) = \text{span}\{\mathbf{r}_0, A\mathbf{r}_0, \cdots, A^{k-1}\mathbf{r}_0\}.$
- The Krylov subspaces are nested:  $\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \mathcal{K}_3 \subseteq \cdots$
- The dimensions of the Krylov subspaces increase by at most one:  $\dim \mathcal{K}_{k+1} \dim \mathcal{K}_k$  is zero or one.
- If  $\mathcal{K}_{k+1} = \mathcal{K}_k$ , then  $\mathcal{K}_i = \mathcal{K}_k$  for all  $i \geq k$ :

$$A^{k} \boldsymbol{b} \in \operatorname{span} \{ \boldsymbol{b}, A \boldsymbol{b}, \cdots, A^{k-1} \boldsymbol{b} \}$$

$$\implies A^{i} \boldsymbol{b} \in \operatorname{span} \{ \boldsymbol{b}, A \boldsymbol{b}, \cdots, A^{k-1} \boldsymbol{b} \} \quad \text{for } i > k.$$

# Simplified CG method

• Using  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$  and  $\mathbf{r}_{k+1} = \mathbf{b} - A\mathbf{x}_{k+1}$ , we obtain

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A \mathbf{p}_k. \tag{1}$$

• Using  $\boldsymbol{p}_k = \boldsymbol{r}_k + \beta_k \boldsymbol{p}_{k-1}$  and  $\boldsymbol{r}_k^T \boldsymbol{p}_{k-1} = 0$ , we obtain  $\boldsymbol{r}_k^T \boldsymbol{p}_k = \boldsymbol{r}_k^T \boldsymbol{r}_k$ , then

$$\alpha_k = \frac{\mathbf{r}_k^T \mathbf{p}_k}{\mathbf{p}_k^T A \mathbf{p}_k} = \frac{\|\mathbf{r}_k\|_2^2}{\mathbf{p}_k^T A \mathbf{p}_k}.$$
 (2)

• Using (1), (2) and  $r_{k+1}^T r_k = 0$ , we obtain

$$\beta_{k+1} = -\frac{\boldsymbol{p}_k^T A \boldsymbol{r}_{k+1}}{\boldsymbol{p}_k^T A \boldsymbol{p}_k} = \frac{\|\boldsymbol{r}_{k+1}\|_2^2}{\|\boldsymbol{r}_k\|_2^2}.$$
 (3)



# Conjugate gradient method

## Algorithm

```
Given x_0:
Set r_0 = b - Ax_0, p_0 = r_0;
loop
   Compute \alpha_k = \frac{\|\mathbf{r}_k\|_2^2}{\mathbf{p}_L^T A \mathbf{p}_k};
    Update \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k;
    Compute \mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A \mathbf{p}_k;
    Compute \beta_{k+1} = \frac{\|\mathbf{r}_{k+1}\|_2^2}{\|\mathbf{r}_k\|_2^2};
    Compute p_{k+1} = r_{k+1} + \beta_{k+1} p_k;
    Check for convergence;
end loop
Output x_{k+1}.
```

Main computation per iteration is matrix-vector product  $A\mathbf{p}_k$ .

## Rate of convergence

- If *A* has only *r* distinct eigenvalues, then the CG method will terminate at the solution in at most *r* iterations.
- If A has eigenvalues  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ , we have that

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_A^2 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 \|\mathbf{x}_0 - \mathbf{x}^*\|_A^2.$$

**Example:** We apply the CG method to solve Ax = b.

if frac close to 1: sub-linear convergence (slower) if frac close to 0: super-linear convergence (faster)





# Preconditioning

• Idea: Make change of variables  $\hat{\mathbf{x}} = C\mathbf{x}$  with C nonsingular, and apply CG to

-T = inverse and then transpose

$$C^{-T}AC^{-1}\hat{\boldsymbol{x}}=C^{-T}\boldsymbol{b}.$$

- The spectrum of the new matrix  $C^{-T}AC^{-1}$  should be clustered, then PCG converges fast.
- We need consider the trade-off between enhanced convergence and cost of extra computation.
- The matrix  $M = C^T C$  is called the preconditioner.
- Python implementation: scipy.optimize.minimize(method='CG')
- Matlab implementation: pcg

#### **Example:**

- diagonal  $C = \operatorname{diag}(\sqrt{a_{11}}, \sqrt{a_{22}}, \cdots, \sqrt{a_{nn}})$
- incomplete or approximate Cholesky factorization of A
- Good preconditioners are often application-dependent.

# Nonlinear conjugate gradient method

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \qquad f \text{ is convex and differentiable.}$$

#### Nonlinear CG methods

- Extend linear CG method to nonquadratic functions.
- Limited global convergence theory.

#### Modifications needed to extend linear CG method

- Replace  $\mathbf{r}_k = \mathbf{b} A\mathbf{x}_k$  with  $-\nabla f(\mathbf{x}_k)$ .
- Determine the step length  $\alpha$  by line search.

## Fletcher-Reeves method

## Algorithm

```
Given x_0;
Compute f_0 = f(\mathbf{x}_0) and \nabla f_0 = \nabla f(\mathbf{x}_0);
Set \mathbf{p}_0 = -\nabla f_0;
loop
    Compute \alpha_k by line search method;
    Update \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k;
    Evaluate \nabla f_{k+1};
    Compute \beta_{k+1}^{FR} = \frac{\|\nabla f_{k+1}\|_2^2}{\|\nabla f_k\|_2^2};
    Compute \boldsymbol{p}_{k+1} = -\nabla f_{k+1} + \beta_{k+1}^{FR} \boldsymbol{p}_k;
    Check for convergence;
end loop
Output x_{k+1}.
```

## Some observations

#### Interpretation

- First iteration is a steepest descent step.
- General update is a steepest descent step with momentum term

$$\mathbf{x}_{x+1} = \mathbf{x}_k - \alpha_k \nabla f_k + \frac{\alpha_k \beta_k}{\alpha_{k-1}} (\mathbf{x}_k - \mathbf{x}_{k-1}).$$

• It is common to restart the algorithm every *n* iterations by taking a steepest descent step to periodically refresh the algorithm.

#### Line search

- With exact line search, it reduces to linear CG for quadratic f.
- Exact line search in computation of  $\alpha_k$  implies that  $\alpha_k$  is a local minimizer along  $\boldsymbol{p}_k$ , i.e.,  $\nabla f_{k+1}^T \boldsymbol{p}_k = 0$ . Therefore,  $\boldsymbol{p}_{k+1}$  is a descent direction at  $\boldsymbol{x}_{k+1}$ :

$$\nabla f_{k+1}^T \boldsymbol{p}_{k+1} = -\|\nabla f_{k+1}\|^2 + \beta_{k+1}^{FR} \nabla f_{k+1}^T \boldsymbol{p}_k = -\|\nabla f_{k+1}\|^2 < 0.$$

• For inexact line search, if  $\alpha_k$  satisfies the strong Wolfe conditions, then  $\boldsymbol{p}_{k+1}$  is descent.

## **Variations**

**Polak-Ribière method:** Compute  $\beta_{k+1}$  from

$$\beta_{k+1} = \frac{\nabla f_{k+1}^{\mathsf{T}} (\nabla f_{k+1} - \nabla f_k)}{\|\nabla f_k\|_2^2}.$$

**Hestenes-Stiefel method:** Compute  $\beta_{k+1}$  from

$$\beta_{k+1} = \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{(\nabla f_{k+1} - \nabla f_k)^T \boldsymbol{\rho}_k}.$$

- All these formulas are equivalent for quadratic f and exact line search.
- With restarts and the strong Wolfe conditions, all three methods have global convergence.
- Without restarts, FR has global convergence with the strong Wolfe conditions, but PR not.
- In practice, PR is more robust and efficient than FR.

# Large-scale unconstrained optimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \qquad f \in \mathcal{C}^2(\mathbb{R}^n)$$

- Large-scale problems (today):  $10^3 \sim 10^6$  variables.
- When solving large-scale problems, we have to take the storage and computational costs of the optimization algorithm into account.
- In large problems, the following can have a prohibitive cost:
  - computing the Hessian or multiplying it
  - ► factorizing the Hessian (solving for the Newton step)
  - storing a dense approximate Hessian like in quasi-Newton methods
- Linear/nonlinear conjugate gradient methods can be applied directly to large-scale problems without modification, but not fast.

#### Inexact Newton methods

**Ideas:** Use some inexpensive iterative algorithm to *very approximately* solve either

$$\nabla^2 f_k \boldsymbol{p}_k = -\nabla f_k \qquad \qquad \text{(line search)}$$

or

$$\begin{split} \min_{\boldsymbol{p} \in \mathbb{R}^n} \ m_k(\boldsymbol{p}) &= f_k + \nabla f_k^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T \nabla^2 f_k \boldsymbol{p}, \\ \text{s. t. } \|\boldsymbol{p}\|_2 &\leq \Delta_k, \end{split} \tag{trust region}$$

without ruining global and fast local convergence of exact LS/TR Newton methods.

#### Stopping criterion for iterative solver:

$$\|\mathbf{r}_k\|_2^2 = \|\nabla^2 f_k \mathbf{p}_k + \nabla f_k\|_2^2 \le \eta_k \|\nabla f_k\|_2^2,$$

where the sequence  $\{\eta_k\}$  with  $0 \le \eta_k \le 1$  for all k is called the **forcing** sequence.

## Local convergence

## Convergence theorem

Inexact Newton with unit steps:

- $\bullet \ \mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}_k$
- $\|\mathbf{r}_k\|_2^2 \le \eta_k \|\nabla f_k\|_2^2$
- $0 < \eta_k \le \eta < 1$

Then, if the starting point  $x_0$  is sufficiently near  $x^*$ ,

- the sequence  $\{x_k\}$  converges to  $x^*$ ,
- and

$$\|\nabla^2 f(\mathbf{x}^*)(\mathbf{x}_{k+1} - \mathbf{x}^*)\|_2 \le \hat{\eta} \|\nabla^2 f(\mathbf{x}^*)(\mathbf{x}_k - \mathbf{x}^*)\|_2$$

for some constant  $\hat{\eta}$  with  $\eta<\hat{\eta}<1$  (linear convergence).

# Local convergence

## Convergence rate

Inexact Newton with unit steps:

- $x_{k+1} = x_k + p_k$
- $\|\mathbf{r}_k\|_2^2 \le \eta_k \|\nabla f_k\|_2^2$
- $0 < \eta_k \le \eta < 1$

Then,

- if  $\eta_k \to 0$ , the sequence  $\{x_k\}$  converges to  $x^*$  superlinearly;
- if  $\nabla^2 f(\mathbf{x})$  is Lipschitz continuous for  $\mathbf{x}$  near  $\mathbf{x}^*$  and  $\eta_k = O(\|\nabla f_k\|_2)$ , then the convergence is quadratic.

#### **Example:**

- $\eta_k = \min(0.5, \sqrt{\|\nabla f_k\|_2})$  would yield superlinear convergence;
- $\eta_k = \min(0.5, \|\nabla f_k\|_2)$  would yield quadratic convergence.

## Line search Newton-CG method

## Algorithm

```
Given x_0;
```

## loop

Define the forcing sequence  $\eta_k = \min(0.5, \sqrt{\|\nabla f_k\|_2})$ 

Use CG to solve  $\nabla^2 f_k \mathbf{p}_k = -\nabla f_k$  approximately with accuracy  $\eta_k$  Compute  $\alpha_k$  by line search method;

Compute  $\alpha_k$  by the scarch me

Update  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ ;

#### end loop

**Remark:**  $\nabla^2 f_k$  is not necessarily positive definite, but the CG method is designed to solve positive definite systems. So we need to modify CG loop:

- If  $\boldsymbol{d}_j^T \nabla^2 f_k \boldsymbol{d}_j \leq 0$ , where  $\boldsymbol{d}_j$  is current conjugate direction,
  - if j = 0, then we stop CG and return steepest descent direction:  $\boldsymbol{p}_k = \boldsymbol{d}_0$ ;
  - otherwise, we stop CG and return the current iterate in CG:  $p_k = z_j$ .

## Line search Newton-CG method

- Inner CG loop always produces a descent direction for f.
- When the Hessian  $\nabla^2 f_k$  is nearly singular, the line search Newton-CG direction can take long and of poor quality.
- It does not require explicit knowledge of the Hessian, and it requires only the Hessian-vector products. Finite differencing and automatic differentiation techniques can be used.
- Preconditioning can be introduced to speed up CG.
- Python implementation: scipy.optimize.minimize(method='Newton-CG')

# Limited-memory quasi-Newton methods

**Idea:** They save only a few vectors that represent the approximation of the Hessian implicitly.

- Useful for solving large problems with costly or nonsparse Hessian.
- Linear convergence but fast rate.

## Limited-memory BFGS (L-BFGS):

- It uses curvature information from only the most recent *m* iterations to construct the Hessian approximation.
- Modest values of  $m (\sim 3-20)$  work fine in practice, but the best m depends on the problem.
- Slow convergence in ill-conditioned problems.

# L-BFGS update

**Review:** BFGS inverse Hessian update:

$$H_{k+1} = V_k^T H_k V_k + \rho_k \boldsymbol{s}_k \boldsymbol{s}_k^T$$

where 
$$V_k = I - \rho_k \mathbf{s}_k \mathbf{y}_k^T$$
,  $\rho_k = 1/(\mathbf{y}_k^T \mathbf{s}_k)$ ,  $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$  and  $\mathbf{y}_k = \nabla f_{k+1} - \nabla f_k$ .

- Since  $H_k$  is generally dense, the cost of storing and manipulating it is prohibitive when n is large.
- We store a modified version of  $H_{k+1}$  implicitly, by storing  $m \ll n$  of the vector pairs  $\{s_k, y_k\}$ .
- The product  $H_{k+1}\nabla f_{k+1}$  can be obtained by performing a sequence of inner products and vector summations.
- After the new iterate is computed, we replace the oldest pair with the new pair.

# L-BFGS update

## Update algorithm: Compute $H_k \nabla f_k$

```
Given H_k^0; Set \mathbf{q} = \nabla f_k;
for i = k - 1, k - 2, \dots, k - m do
    \alpha_i = \rho_i \mathbf{s}_i^T \mathbf{q};
    \mathbf{q} = \mathbf{q} - \alpha_i \mathbf{y}_i;
end for
\mathbf{r} = H_{\nu}^{0} \mathbf{q};
for i = k - m, k - m + 1, \dots, k - 1 do
    \beta = \rho_i \mathbf{y}_i^T \mathbf{r};
    \mathbf{r} = \mathbf{r} + \mathbf{s}_i(\alpha_i - \beta):
end for
Output r.
```

- It recursively expands the update with m pairs  $\{s_k, y_k\}$ .
- $H_k^0$  is allowed to vary from iteration to iteration.
- It requires 4mn multiplications and calculation of  $H_k^0 \mathbf{q}$ .

## L-BFGS method

```
Given \mathbf{x}_0 and m:
loop
   Choose H_{\nu}^{0};
   Compute \mathbf{p}_k = -H_k \nabla f_k by update algorithm;
   Compute \alpha_k by line search method;
   Update \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k;
   if k > m then
       Discard \{s_{k-m}, y_{k-m}\} from storage;
   end if
   Store \mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k and \mathbf{y}_k = \nabla f_{k+1} - \nabla f_k;
end loop
```

- A good choice for  $H_k^0$  in practice:  $H_k^0 = \gamma_k I$  with  $\gamma_k = (\mathbf{s}_{k-1}^T \mathbf{y}_{k-1})/(\mathbf{y}_{k-1}^T \mathbf{y}_{k-1})$ .
- The line search based on the (strong) Wolfe conditions makes BFGS stable.
- The first m-1 iterates are the same as in BFGS.

# Relationship with CG methods

- Limited-memory methods historically evolved as improvements of nonlinear CG methods.
- The Hestenes-Stiefel form of nonlinear CG method:

$$\boldsymbol{\rho}_{k+1} = -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \boldsymbol{y}_k}{\boldsymbol{y}_k^T \boldsymbol{\rho}_k} \boldsymbol{\rho}_k = -\hat{H}_{k+1} \nabla f_{k+1} \quad \text{with } \hat{H}_{k+1} = I - \frac{\boldsymbol{s}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k},$$

which resembles quasi-Newton iterates, but  $\hat{H}_{k+1}$  is neither symmetric nor positive definite.

 A symmetric positive definite modification, which also satisfies the secant equation, is

$$H_{k+1} = \left(I - \frac{\mathbf{s}_k \mathbf{y}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}\right) \left(I - \frac{\mathbf{y}_k \mathbf{s}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}\right) + \frac{\mathbf{s}_k^T \mathbf{s}_k}{\mathbf{y}_k^T \mathbf{s}_k},$$

which is exactly the L-BGFS method with m=1 and  $H_{\nu}^0=I$ (memoryless BFGS).

## Final evaluation

Final evaluation in DTUinside from 18. Nov. to 29. Nov.