Probability Model For A One Predictor Logistic Regression Model

Nan Wu nanw@udel.edu

1 Logistic Regression Model

The logistic regression model is given as

$$y \sim \text{Bernoulli}(p)$$

 $logit(p) = \alpha + x\beta$ (1)

where $y \in \{0,1\}$, $x \in \mathbb{R}^N$, $\alpha \in \mathbb{R}$, and $\beta \in \mathbb{R}$.

In this model, outcome y is binary, x is the predictor, α is the intercept, β is the slope coefficient.

2 Probability Model

Stan allows us to use improper priors if we don't have any prior knowledge about the parameters. We can therefore start with a simple model by assuming improper priors for α and β .

$$\alpha \sim \text{Uniform}(-\infty, \infty)$$

 $\beta \sim \text{Uniform}(-\infty, \infty)$

Putting it all together, the probability model for the single predictor logistic regression model is:

$$y_n \sim \text{Bernoulli}(p_n)$$

$$p_n = logit^{-1}(\alpha + x_n\beta) = \frac{e^{\alpha + x_n\beta}}{1 + e^{\alpha + x_n\beta}}$$

$$\alpha \sim \text{Uniform}(-\infty, \infty)$$

$$\beta \sim \text{Uniform}(-\infty, \infty)$$