

Learning Macroscopic Brain Connectomes via Group-Sparse Factorization

Farzane Aminmansour¹, Andrew Patterson¹, Lei Le², Yisu Peng³, Daniel Mitchell¹, Franco Pestilli², Cesar Caiafa⁴, Russell Greiner¹, Martha White¹ University of Alberta¹, Indiana University², Northeastern University³, Instituto Argentino de Radioastronom⁴

BACKGROUND & SETTING

Applications:

Investigating white matter health and disease

2. Encoding Brain Connectomes as Tensors

ENCODE:

- Represents brain structure by a 3D sparse tensor
- \triangleright N_a : #orientations, fascicles orientation at each position
- $\triangleright N_{y}$: #voxels, fascicles spatial position
- \triangleright N_f : #fascicles, indices of each fascicle

B. Discretizing space

fascicle f_2

non-zero entry 🏓

C. Natural brain space and tensor encoding

- $ightharpoonup D \in R^{N\theta \times Na}$
- ▶ $Y \approx \Phi \times_{I} D \times_{3} W$, where $W \in R^{Nf}$

THEORY & ALGORITHMS

3. A Tractography Objective for Extracting Brain Connectomes

- Unconstrained objective to extract Φ $\blacktriangleright \Phi = \operatorname{argmin}_{\Phi} \|Y - \Phi \times_{1} D \times_{3} 1\|^{2}$, where $1 \in \mathbb{R}^{Nf}$
- Regularizer smooth, continuous, sparse
- ightharpoonup Constrained objective to learn Φ

Block regularization: Voxels by directions vicinity continuity

Model formulation and block regularizer

A Pipeline for Extracting Brain Connectomes

EMPIRICAL RESULTS

