Higher Order Derivatives Notation: dx dx [f(x)] Dx [y] f (x) y **`** First derivative: dy dx2 [f(x)] Dx [y] $\int (x)$ 4" Second derivative: \(\times \) $\frac{d^3y}{dx^3} = \frac{d^3}{dx^3} [f(x)]$ Third derivative: 4" Dx [y] (4)(x) Fourth deivative: 244 (f(x)) Dx [y] f (x) 2 d (x) nth derivative: $D_{x}[y]$

Ex Find the first 5 derivative of
$$f(x) = 2x^4 - 3x^2$$

Solv $f'(x) = 8x^3 - 6x$
 $f''(x) = 24x^2 - 6$
 $f''(x) = 48x$
 $f''(x) = 48$
For an $n^{+\perp}$ degree polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_n x + a_n$
the $n^{+\perp}$ order derivative is the Constant function.

$$f''(x) = n! \cdot a_n$$

 $n! = n(n-1)(n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$

Ex Find
$$g^{(4)}(x)$$
 for $g(x) = \frac{1}{x}$.
Solo $g(x) = x^{-1}$
 $g'(x) = -1(-2)x^{-3} = 2x^{-3}$
 $g''(x) = 2(-3)x^{-4} = -6x^{-4}$
 $g^{(4)}(x) = -6(-4)x^{-5} = 24x^{-5}$
 $= \frac{24}{x^{5}}$

acceleration = -32 ft/sec2

Acceleration

If
$$S = f(1)$$
 is some position function, then

 $S' = f'(1)$ is the velocity and

 $S'' = f''(1)$ is the acceleration.

Ex A ball is thrown upward from the top of an 80 fool clift.

Ex A ball is thrown upward for the position function and with an initial velocity of 64 ft/sec. Give the position function and find the acceleration at $t = 2$.

Soln $S = -16t^2 + 64t + 80$ position

 $S' = -32t + 64t$
 $S'' = -32$

At $t = 2$,

Velocity $t = -32(2) + 64 = 0$ ft/sec

Ex The velocity of some car,
$$V$$
 (ft/sec), starting from rest is $V = \frac{80t}{t+5}$

Find the velocity and acceleration at t= 60 sec.

Solu
$$V' = \frac{(t+5)(80) - (80t)(1)}{(t+5)^2}$$

$$= \frac{400}{(t+5)^2}$$

At
$$t = 60$$

 $V = \frac{80 \times 60}{65} = 73.8 \text{ ft/sec}$

$$V' = \frac{400}{(65)^2} = 0.09 \text{ ft/s}^2$$