Teoria do Risco Aula 11-Parte 1

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

$$X_i$$
 Independentes

$$S_{ind} = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} B_i I_i$$

$$E(S_{ind}) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

$$S_{ind}, X_i, B_i, I_i$$

$$M_{S_{ind}}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)q_i$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + \sum_{i=1}^{n} E(B_i)^2 q_i (1 - q_i)$$

X_i Independentes e identicamente distribuídas

$$S_{col} = \sum_{i=1}^{N} X_i$$

$$E(S_{col}) = E\left(\sum_{i=1}^{N} X_i\right)$$

$$S_{col}, X_i, N$$

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$

$$E(S_{col}) = E(N)E(X)$$

$$var(S_{col}) = E(X)^2 var(N) + E(N)var(X)$$

Modelos de risco Coletivo- A distribuição de S_{col} , os sinistros coletivos.

O método da convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) P(N = k)$$

$$P^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

$$f_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P(N=k)$$
 $p^{*k}(s) = p(X_1 + X_2 + ... + X_k = s)$

Modelos de risco Coletivo

O processo de convolução no modelo de risco coletivo leva em consideração a convolução entre os sinistros ocorridos dado que a quantidade ocorrida também é uma variável aleatória.

Modelo de risco individual	Modelo de risco coletivo
$F^{(k)} = F_k * F^{(k-1)}$	$P^{(k)} = P_k * P^{(k-1)}$
$F_{S_{ind}}^{(2)}(s) = \sum_{j=0}^{s} F_X(s - y_j) P_Y(y_j)$	$F_{S_{col}}^{(2)}(s) = \sum_{k=0}^{2} P^{*k}(s) P_{N}(k)$

$$X (discreto) \rightarrow S_{col} (discreto)$$

$$X(continuo) \rightarrow S_{col}(continuo)$$

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) P_N(k)$$

$$P^{*k}(s) = P(X_1 + X_2 + ... + X_k \le s)$$

$$f_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_N(k)$$

$$P^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s) \qquad p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

X continuo.

$$P^{*k}(s) = \int_0^s P^{*k-1}(s-h)f(h)dh$$

$$p^{*k}(s) = \int_0^s p^{*k-1}(s-h)f(h)dh$$

EXEMPLO 1: Calcular $F_{S_{col}}(s)$, quando $X \sim Exp(\alpha)$ e $N \sim Po(\lambda)$.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) P(N = k)$$

$$P^{*k}(s) = \int_{0}^{s} P^{*k-1}(s - h) f(h) dh$$

Assim: $F_{S_{col}}(s) = \sum_{s=0}^{\infty} P^{*k}(s) \frac{e^{-\lambda} \lambda^k}{k!}$

Unifall Unifall Unifall Unifall
$$k=0$$

$$f(x) = \alpha e^{-\alpha x}$$
 $P^{*1}(x) = F(x) = 1 - e^{-\alpha x}$; $x > 0$

$$P^{*k}(s) = \int_{h} P^{*k-1}(s-h) f(h) dh$$

$$P^{*(2)}(s) = \int_0^s P^{*2-1}(s-h)f(h)dh = \int_0^s P^{*1}(s-h)f(h)dh$$
$$P^{*(2)}(s) = \int_0^s \left[1 - e^{-\alpha(s-h)}\right]\alpha e^{-\alpha h}dh$$

$$P^{*(2)}(s) = 1 - e^{-\alpha s}(1 + \alpha s)$$

$$P^{*3}(s) = \int_0^s P^{*3-1}(s-h)f(h)dh = \int_0^s P^{*2}(s-h)f(h)dh$$

$$P^{*3}(s) = \int_0^s \{1 - e^{-\alpha(s-h)}[1 + \alpha(s-h)]\} \alpha e^{-\alpha h} dh$$

...

$$P^{*3}(s) = 1 - e^{-\alpha s} \left[1 + \alpha s + \frac{(\alpha s)^2}{2!} \right]$$

Desta forma, então, chega-se à seguinte formula de P^{*k} $P^{*1}(s) = 1 - e^{-\alpha s}$

$$P^{*2}(s) = 1 - e^{-\alpha s}(1 + \alpha s)$$

$$P^{*3}(s) = 1 - e^{-\alpha s} \left[1 + \alpha s + \frac{(\alpha s)^2}{2!} \right]$$

. . .

$$P^{*k}(s) = 1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^i}{i!}$$

$$\lim_{k \to \infty} P^{*k}(s) = 1 - e^{-\alpha s} e^{\alpha s} = \lim_{k \to \infty} P^{*k}(S \le s) = 0$$

Como:

$$F_{S_{col}}(s) = \sum_{k=0}^{\infty} P^{*k}(s) \frac{e^{-\lambda} \lambda^k}{k!}$$

Tem-se que:

$$F_{S_{col}}(s) = \sum_{k=0}^{\infty} \left[1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^i}{i!} \right] \frac{e^{-\lambda} \lambda^k}{k!}$$

$$F_{S_{col}}(s) = \sum_{k=1}^{n \to \infty} \left[1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^i}{i!} \right] \frac{e^{-\lambda} \lambda^k}{k!}$$

Comportamento de $F_{s_{col}}(S)$ com $\alpha=0,2,\lambda=10$ para diferentes quantidade de apólices n.

EXEMPLO 2: Adicionalmente pode-se calcular $p^{*k}(s)$ e $f_{S_{col}}(s)$, quando $X \sim Exp(\alpha)$ e $N \sim Po(\lambda)$.

$$f_{S_{col}}(s) = \sum_{k=0}^{\infty} p^{*k}(s) \frac{e^{-\lambda} \lambda^k}{k!}$$

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal Suniversidade Federal de Alfenas Universidade Federal de Alfenas Universidade Federal de Alfena

$$p^{*1}(s) = f(s) = \alpha e^{-\alpha s}$$
, $s > 0$

$$p^{*k}(s) = \int_{h} p^{*k-1}(s-h) f(h) dh$$

$$p^{*(2)}(s) = \int_0^s p^{*2-1}(s-h)f(h)dh = \int_0^s p^{*1}(s-h)f(h)dh$$

$$p^{*(2)}(s) = \int_0^s [\alpha e^{-\alpha(s-h)}] \alpha e^{-\alpha h} dh = \alpha^2 s \ e^{-\alpha s}$$

$$p^{*1}(s) = f(s) = \alpha e^{-\alpha s}$$
, $s > 0$

$$p^{*k}(s) = \int_{h} p^{*k-1}(s-h) f(h) dh$$

$$p^{*2}(s) = \alpha^2 s e^{-\alpha s}$$

$$p^{*3}(s) = \int_0^s p^{*3-1}(s-h)f(h)dh = \int_0^x p^{*2}(s-h)f(h)dh$$

$$p^{*3}(s) = \int_0^s \alpha^2(s-h) e^{-\alpha(s-h)} \alpha e^{-\alpha h} dh = \frac{\alpha^3 s^2 e^{-\alpha s}}{2}$$

$$p^{*1}(s) = \alpha e^{-\alpha s}, s > 0$$

$$p^{*2}(s) = \alpha^2 s \ e^{-\alpha s}$$

$$p^{*3}(s) = \frac{\alpha^3 s^2 e^{-\alpha s}}{2}$$

...

$$p^{*k}(s) = \frac{\alpha^k s^{k-1} e^{-\alpha s}}{(k-1)!}$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®]

$$f_{S_{col}}(s) = \sum_{k=1}^{n \to \infty} \left[\frac{\alpha^k s^{k-1} e^{-\alpha s}}{(k-1)!} \right] \frac{e^{-\lambda} \lambda^k}{k!}$$

Comportamento de $f_{s_{col}}(S)$ com $\alpha=0,2,\lambda=10$ para diferentes quantidade de apólices n.

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) P_N(k)$$

$$P^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

$$P_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_N(k)$$

$$P^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$
 $p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$P_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_N(k)$$

$$p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

Quando X é discreto tem-se

$$p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$$

$$p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h) p_X(h)$$

Considere h como um dos valores possíveis para X.

EXEMPLO 3: Uma carteira de seguros produz 0, 1 ou 2 sinistros com as respetivas probabilidades: 20%, 50% e 30%. Um sinistro dessa carteira assume os valores R\$100, R\$200 ou R\$300, com as respectivas probabilidades: 20%, 70% e 10%.

Construa a distribuição convoluta dos sinistros agregados $S_{col}.$

			e Alfenas Universidade	X_i	R\$100	R\$200	R\$300
				$P_{X_i}(x_i)$	0,2	0,7	0,1
N		P(N)	S_{col}	ifal!	211	rifal	(QIII
0	835	0,2	$S_{col} = 0$	federal de Alfer	nas Universida	de Federal de A	lfenas Univers
1		0,5	$S_{col} = X_1$	{ <i>R</i> \$100,	R\$200, R	\$300}	
2		0,3	$S_{col} = X_1 + X_2$	{ <i>R</i> \$200,	R\$300, R	\$400, <i>R</i> \$5	00 <i>, R</i> \$600

Em primeiro lugar, computemos todas as combinações possíveis de frequência e severidades e assim obtemos os valores possíveis de sinistros agregados e associados as probabilidades de ocorrência

Por definição tem-se que
$$p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$$

• Logo para k = 0:

$$p^{*0}(0) = 1$$

$$p^{*0}(100) = 0$$

$$p^{*0}(200) = 0$$

$$p^{*0}(300) = 0$$

$$p^{*0}(400) = 0$$

$$p^{*0}(500) = 0$$

$$p^{*0}(600) = 0$$

Para k = 1:

Usando $p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h)p_X(h)$ sendo k os possíveis valores assumidos por N.

$$\mathbf{p}^{*1}(\mathbf{0}) = \sum_{h=0}^{0} p^{*1-1}(0-h)p_X(h)$$

$$p^{*1}(100) = \sum_{h=0}^{100} p^{*1-1}(100 - h)p_X(h)$$

$$p^{*1}(200) = \sum_{h=0}^{200} p^{*1-1} (200 - h) p_X(h)$$

$$- \sum_{n=0}^{300} n^{*1-1} (200 \quad h) n \quad (h)$$

$$\boldsymbol{p}^{*1}(300) = \sum_{h=0}^{300} p^{*1-1} (300 - h) p_X(h)$$

$$\boldsymbol{p}^{*1}(400) = \sum_{h=0}^{400} p^{*1-1} (400 - h) p_X(h)$$

$$p^{*1}(500) = \sum_{h=0}^{500} p^{*1-1} (500 - h) p_X(h)$$

$$\mathbf{p}^{*1}(\mathbf{500}) = \sum_{h=0}^{600} p^{*1} (500 - h) p_X(h)$$
$$\mathbf{p}^{*1}(\mathbf{600}) = \sum_{h=0}^{600} p^{*1-1} (600 - h) p_X(h)$$

$$p^{*1}(\mathbf{0}) = p^{*0}(0)p_X(0) = 0$$

$$p^{*1}(100) = p^{*0}(100)p_X(0) + p^{*0}(0)p_X(100) = 0,2$$

$$p^{*1}(200) = p^{*0}(200)p_X(0) + p^{*0}(100)p_X(100) + p^{*0}(0)p_X(200) = 0,7$$

$$p^{*1}(300) = p^{*0}(300)p_X(0) + p^{*0}(200)p_X(100) + p^{*0}(100)p_X(200) + p^{*0}(0)p_X(300) = 0,1$$

$$\boldsymbol{p}^{*1}(\boldsymbol{400}) = p^{*0}(400)p_X(0) + p^{*0}(300)p_X(100) + p^{*0}(200)p_X(200) + p^{*0}(100)p_X(300) + p^{*0}(0)p_X(400) = \boldsymbol{0}$$

$$\boldsymbol{p}^{*1}(\mathbf{500}) = p^{*0}(500)p_X(0) + p^{*0}(400)p_X(100) + p^{*0}(300)p_X(200) + p^{*0}(200)p_X(300) + p^{*0}(100)p_X(400) + p^{*0}(0)p_X(500) = \mathbf{0}$$

$$p^{*1}(\mathbf{600}) = p^{*0}(600)p_X(0) + p^{*0}(500)p_X(100) + p^{*0}(400)p_X(200) + p^{*0}(300)p_X(300) + p^{*0}(200)p_X(400) + p^{*0}(100)p_X(500) + p^{*0}(0)p_X(600) = \mathbf{0}$$

S_{col}	N = 0	N = 1
0	$p^{*0}(0) = 1$	$p^{*1}(0)=0$
100	$p^{*0}(100) = 0$	$p^{*1}(100) = 0.2$
200	$p^{*0}(200) = 0$	$p^{*1}(200) = 0.7$
300	$p^{*0}(300) = 0$	$p^{*1}(300) = 0,1$
400	$p^{*0}(400) = 0$	$p^{*1}(400) = 0$
500	$p^{*0}(500) = 0$	$p^{*1}(500) = 0$
600	$p^{*0}(600) = 0$	$p^{*1}(600) = 0$

Para k = 2:

$$p^{*2}(\mathbf{0}) = \sum_{h=0}^{0} p^{*2-1}(0-h)p_X(h)$$

$$p^{*2}(100) = \sum_{h=0}^{100} p^{*2-1}(100 - h)p_X(h)$$

$$p^{*2}(200) = \sum_{h=0}^{200} p^{*2-1} (200 - h) p_X(h)$$

$$p^{*2}(300) = \sum_{h=0}^{300} p^{*2-1} (300 - h) p_X(h)$$

$$p^{*2}(400) = \sum_{h=0}^{400} p^{*2-1} (400 - h) p_X(h)$$

$$p^{*2}(500) = \sum_{h=0}^{500} p^{*2-1} (500 - h) p_X(h)$$

$$p^{*2}(600) = \sum_{h=0}^{600} p^{*2-1} (600 - h) p_X(h)$$

Para k=2:

$$p^{*2}(\mathbf{0}) = p^{*1}(0)p_X(0) = 0$$

$$p^{*2}(100) = p^{*1}(100)p_X(0) + p^{*1}(0)p_X(100) = 0$$

$$p^{*2}(200) = p^{*1}(200)p_X(0) + p^{*1}(100)p_X(100) + p^{*1}(0)p_X(200) = 0.04$$

$$p^{*2}(300) = p^{*1}(300)p_X(0) + p^{*1}(200)p_X(100) + p^{*1}(100)p_X(200) + p^{*1}(0)p_X(300) = 0,28$$

$$p^{*2}(400) = p^{*1}(400)p_X(0) + p^{*1}(300)p_X(100) + p^{*1}(200)p_X(200) + p^{*1}(100)p_X(300) + p^{*1}(0)p_X(400) = 0,53$$

$$p^{*2}(500) = p^{*1}(500)p_X(0) + p^{*1}(400)p_X(100) + p^{*1}(300)p_X(200) + p^{*1}(200)p_X(300) + p^{*1}(100)p_X(400) + p^{*1}(0)p_X(500) = 0,14$$

$$p^{*2}(600) = p^{*1}(600)p_X(0) + p^{*1}(500)p_X(100) + p^{*1}(400)p_X(200) + p^{*1}(300)p_X(300) + p^{*1}(200)p_X(400) + p^{*1}(100)p_X(500) + p^{*1}(0)p_X(600) = 0,01$$

	P(N=0)=0,2	P(N=1)=0,5	P(N=2)=0,3	
S_{col}	N = 0	N = 1	N=2	
0	$p^{*0}(0) = 1$	$p^{*1}(0) = 0$	$p^{*2}(0) = 0$	
100	$p^{*0}(100) = 0$	$p^{*1}(100) = 0.2$	$p^{*2}(100) = 0$	
200	$p^{*0}(200) = 0$	$p^{*1}(200) = 0,7$	$p^{*2}(200) = 0,04$	
300	$p^{*0}(300) = 0$	$p^{*1}(300) = 0,1$	$p^{*2}(300) = 0.28$	
400	$p^{*0}(400) = 0$	$p^{*1}(400) = 0$	$p^{*2}(400) = 0,53$	
500	$p^{*0}(500) = 0$	$p^{*1}(500) = 0$	$p^{*2}(500) = 0.14$	
600	$p^{*0}(600) = 0$	$p^{*1}(600) = 0$	$p^{*2}(600) = 0.01$	
	1	1	1	

Agora se faz necessário sumarizar todas as combinações que resultam no mesmo valor de sinistros.

$$P_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_N(k)$$

Logo

$$P_{S_{col}}(0) = p^{*0}(0)P_N(0) + p^{*1}(0)P_N(1) + p^{*2}(0)P_N(2) = 0.2$$

$$P_{S_{col}}(100) = p^{*0}(100)P_N(0) + p^{*1}(100)P_N(1) + p^{*2}(100)P_N(2) = 0,1$$

$$P_{S_{col}}(200) = p^{*0}(200)P_N(0) + p^{*1}(200)P_N(1) + p^{*2}(200)P_N(2) = 0,362$$

$$P_{S_{col}}(300) = p^{*0}(300)P_N(0) + p^{*1}(300)P_N(1) + p^{*2}(300)P_N(2) = 0,134$$

$$P_{S_{CO}}(400) = p^{*0}(400)P_N(0) + p^{*1}(400)P_N(1) + p^{*2}(400)P_N(2) = 0,159$$

$$P_{S_{COI}}(500) = p^{*0}(500)P_N(0) + p^{*1}(500)P_N(1) + p^{*2}(500)P_N(2) = 0,042$$

$$P_{S_{col}}(600) = p^{*0}(600)P_N(0) + p^{*1}(600)P_N(1) + p^{*2}(600)P_N(2) = 0,003$$

$$P_{S_{col}}(s) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,2 & 0 \\ 0 & 0,7 & 0,04 \\ 0 & 0,1 & 0,28 \\ 0 & 0 & 0,53 \\ 0 & 0 & 0,14 \\ 0 & 0 & 0,01 \end{bmatrix} \begin{bmatrix} 0,2 \\ 0,5 \\ 0,3 \end{bmatrix} \Longrightarrow P_{N}(0)$$

$$P_{N}(1)$$

$$P_{N}(2)$$

$$P_{N}(2)$$

$$P_{N}(2)$$

$$P_{S_{col}}(\mathbf{0}) = 1 \times 0.2 + 0 \times 0.5 + 0 \times 0.3 = 0.2$$

$$P_{S_{col}}(100) = 0 \times 0.2 + 0.2 \times 0.5 + 0 \times 0.3 = 0.1$$

• • •

$$P_{S_{col}}(600) = 0 \times 0.2 + 0 \times 0.5 + 0.01 \times 0.3 = 0.003$$

$$P_{Scol}(s) = \begin{cases} 0.2 & s = 0 \\ 0.1 & s = 100 \\ 0.362 & s = 200 \\ 0.134 & s = 300 \\ 0.159 & s = 400 \\ 0.042 & s = 500 \\ 0.003 & s = 600 \end{cases}$$

$$F_{Scol}(s) = \begin{cases} \mathbf{0} & s < 0 \\ \mathbf{0}, \mathbf{2} & 0 \le s < 100 \\ 0,2 + 0,1 = \mathbf{0}, \mathbf{3} & 100 \le s < 200 \\ 0,3 + 0,362 = \mathbf{0}, \mathbf{662} & 200 \le s < 300 \\ 0,662 + 0,134 = \mathbf{0}, \mathbf{796} & 300 \le s < 400 \\ 0,796 + 0,159 = \mathbf{0}, \mathbf{955} & 400 \le s < 500 \\ 0,955 + 0,042 = \mathbf{0}, \mathbf{997} & 500 \le s < 600 \\ \mathbf{1} & s \ge 600 \end{cases}$$

Bibliografia

- FERREIRA, P. P. Modelos de precificação e ruína para seguros de curto prazo. Rio de Janeiro: Funenseg, 2002.
- CENTENO, M. L. Teoria do risco na actividade seguradora. Oeiras: Celta, 2003.
- PACHECO, R. Matemática Atuarial de Seguros de Danos. Editora Atlas, 2014.
- RODRIGUES, J. A. Gestão de risco atuarial. São Paulo: Saraiva, 2008.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Teoria do risco atuarial: Fundamentos e conceitos. Curitiba: CRV 2020.

Teoria do Risco Aula 11-Parte 2

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Modelos de risco Coletivo-Convolução

$$F_{S_{col}}(s) = \sum_{k=0}^{\infty} P^{*k}(s) P_N(k)$$

$$P^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

Quando X é discreto tem-se

$$P^{*0}(s) = \begin{cases} 0 \text{ se } s \le 0\\ 1 \text{ se } s > 0 \end{cases}$$

$$P^{*k}(s) = \sum_{h \le s} P^{*k-1}(s-h)p_X(h)$$

Considere h como um dos valores possíveis para X.

Exemplo 1: Uma carteira de seguros produz 0,1 ou 2 sinistros com as respetivas probabilidades: 20%,50% e 30%. Um sinistro dessa carteira assume os valores R\$100, R\$200 ou R\$300, com as respectivas probabilidades: 20%,70% e 10%.

Construa a distribuição convoluta dos sinistros agregados $S_{col}.$

X_i	R\$100	R\$200	R\$300	Univ
$\begin{vmatrix} X_i \\ P_{X_i}(x_i) \end{vmatrix}$	0,2	0,7	0,1	

U	N	P(N)	S_{col}	fal Unifal Unifal
niv	0	0,2	$S_{col} = 0$	ederal de Alfenas Universidade Federal de Alfenas Universidade Federal de Alfenas
	1	0,5	$S_{col} = X_1$	$\{R\$100, R\$200, R\$300\}$
	2	0,3	$S_{col} = X_1 + X_2$	{ <i>R</i> \$200, <i>R</i> \$300, <i>R</i> \$400, <i>R</i> \$500, <i>R</i> \$600}

Por definição tem-se que
$$P^{*0}(s) = \begin{cases} 0 \text{ se } s \leq 0 \\ 1 \text{ se } s > 0 \end{cases}$$

Logo para k = 0:

$$P^{*0}(0) = 0$$

$$P^{*0}(100) = 1$$

$$P^{*0}(200) = 1$$

$$P^{*0}(300) = 1$$

$$P^{*0}(400) = 1$$

$$P^{*0}(500) = 1$$

$$P^{*0}(600) = 1$$

Para k = 1:

Usando $P^{*k}(s) = \sum_{h \le s} P^{*k-1}(s-h)p_X(h)$ sendo k os possíveis valores assumidos por N.

$$P^{*1}(0) = \sum_{h=0}^{0} P^{*1-1}(0-h)p_X(h)$$

$$P^{*1}(100) = \sum_{h=0}^{100} P^{*1-1}(100 - h)p_X(h)$$

$$P^{*1}(200) = \sum_{h=0}^{200} P^{*1-1} (200 - h) p_X(h)$$

$$P^{*1}(300) = \sum_{h=0}^{300} P^{*1-1} (300 - h) p_X(h)$$

$$P^{*1}(400) = \sum_{h=0}^{400} P^{*1-1} (400 - h) p_X(h)$$

$$P^{*1}(F00)$$
 $\nabla 500 P^{*1} - 1 (F00 I) (I)$

$$P^{*1}(500) = \sum_{h=0}^{500} P^{*1-1} (500 - h) p_X(h)$$

$$P^{*1}(600) = \sum_{h=0}^{600} P^{*1-1} (600 - h) p_X(h)$$

$$P^{*1}(\mathbf{0}) = P^{*0}(0)p_X(0) = 0$$

$$P^{*1}(100) = P^{*0}(100)p_X(0) + P^{*0}(0)p_X(100) = 0$$

$$P^{*1}(200) = P^{*0}(200)p_X(0) + P^{*0}(100)p_X(100) + P^{*0}(0)p_X(200) = 0,2$$

$$P^{*1}(300) = P^{*0}(300)p_X(0) + P^{*0}(200)p_X(100) + P^{*0}(100)p_X(200) + P^{*0}(0)p_X(300) = 0,9$$

$$P^{*1}(400) = P^{*0}(400)p_X(0) + P^{*0}(300)p_X(100) + P^{*0}(200)p_X(200) + P^{*0}(100)p_X(300) + P^{*0}(0)p_X(400) = 1$$

$$P^{*1}(500) = P^{*0}(500)p_X(0) + P^{*0}(400)p_X(100) + P^{*0}(300)p_X(200) + P^{*0}(200)p_X(300) + P^{*0}(100)p_X(400) + P^{*0}(0)p_X(500) = 1$$

$$P^{*1}(600) = P^{*0}(600)p_X(0) + P^{*0}(500)p_X(100) + P^{*0}(400)p_X(200) + P^{*0}(300)p_X(300) + P^{*0}(200)p_X(400) + P^{*0}(100)p_X(500) + P^{*0}(0)p_X(600) = 1$$

alë i ini		
S_{col}	N = 0	N = 1
0	$P^{*0}(0)=0$	$P^{*1}(0)=0$
100	$P^{*0}(100) = 1$	$P^{*1}(100) = 0$
200	$P^{*0}(200) = 1$	$P^{*1}(200) = 0.2$
300	$P^{*0}(300) = 1$	$P^{*1}(300) = 0.9$
400	$P^{*0}(400) = 1$	$P^{*1}(400) = 1$
500	$P^{*0}(500) = 1$	$P^{*1}(500) = 1$
600	$P^{*0}(600) = 1$	$P^{*1}(600) = 1$

Para k = 2:

$$P^{*2}(0) = \sum_{h=0}^{0} P^{*2-1}(0-h)p_X(h)$$

$$P^{*2}(100) = \sum_{h=0}^{100} P^{*2-1}(100 - h)p_X(h)$$

$$P^{*2}(200) = \sum_{h=0}^{200} P^{*2-1} (200 - h) p_X(h)$$

$$= \sum_{h=0}^{200} P^{*2-1} (200 - h) p_X(h)$$

$$P^{*2}(300) = \sum_{h=0}^{300} P^{*2-1} (300 - h) p_X(h)$$

$$P^{*2}(400) = \sum_{h=0}^{400} P^{*2-1} (400 - h) p_X(h)$$

$$= \sum_{h=0}^{100} P^{12} + (400 - h)p_X(h)$$

$$500) - \Sigma^{500} p^{*2-1} (500 - h)n (h)$$

$$P^{*2}(500) = \sum_{h=0}^{500} P^{*2-1} (500 - h) p_X(h)$$

Para k = 2:

$$P^{*2}(0) = P^{*1}(0)p_X(0) = 0$$

$$P^{*2}(100) = P^{*1}(100)p_X(0) + P^{*1}(0)p_X(100) = 0$$

$$P^{*2}(200) = P^{*1}(200)p_X(0) + P^{*1}(100)p_X(100) + P^{*1}(0)p_X(200) = 0$$

$$P^{*2}(300) = P^{*1}(300)p_X(0) + P^{*1}(200)p_X(100) + P^{*1}(100)p_X(200) + P^{*1}(0)p_X(300) = 0,04$$

$$P^{*2}(400) = P^{*1}(400)p_X(0) + P^{*1}(300)p_X(100) + P^{*1}(200)p_X(200) + P^{*1}(100)p_X(300) + P^{*1}(0)p_X(400) = 0,32$$

$$P^{*2}(500) = P^{*1}(500)p_X(0) + P^{*1}(400)p_X(100) + P^{*1}(300)p_X(200) + P^{*1}(200)p_X(300) + P^{*1}(100)p_X(400) + P^{*1}(0)p_X(500) = 0,85$$

$$P^{*2}(600) = P^{*1}(600)p_X(0) + P^{*1}(500)p_X(100) + P^{*1}(400)p_X(200) + P^{*1}(300)p_X(300) + P^{*1}(200)p_X(400) + P^{*1}(100)p_X(500) + P^{*1}(0)p_X(600) = 0,99$$

		P(N=0)=0,2	P(N=1)=0,5	P(N=2)=0,3
	S_{col}	N = 0	N = 1	N=2
	0	$P^{*0}(0)=0$	$P^{*1}(0) = 0$	$P^{*2}(0)=0$
	100	$P^{*0}(100) = 1$	$P^{*1}(100) = 0$	$P^{*2}(100) = 0$
	200	$P^{*0}(200) = 1$	$P^{*1}(200) = 0.2$	$P^{*2}(200) = 0$
	300	$P^{*0}(300) = 1$	$P^{*1}(300) = 0.9$	$P^{*2}(300) = 0.04$
	400	$P^{*0}(400) = 1$	$P^{*1}(400) = 1$	$P^{*2}(400) = 0.32$
	500	$P^{*0}(500) = 1$	$P^{*1}(500) = 1$	$P^{*2}(500) = 0,85$
rers	600	$P^{*0}(600) = 1$	$P^{*1}(600) = 1$	$P^{*2}(600) = 0,99$

$$P_{S_{col}}(s) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0.2 & 0 \\ 1 & 0.9 & 0.04 \\ 1 & 1 & 0.32 \\ 1 & 1 & 0.85 \\ 1 & 1 & 0.99 \end{bmatrix} \begin{bmatrix} 0.2 & \Rightarrow P_N(0) \\ 0.5 & \Rightarrow P_N(1) \\ 0.3 & \Rightarrow P_N(2) \end{bmatrix}$$

$$P^{*0}(s)$$

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) P_{N}(k)$$

$$F_{Scol}(s) = \begin{cases} 0 & s < 0 \\ 0.2 & 0 \le s < 100 \\ 0.3 & 100 \le s < 200 \\ 0.662 & 200 \le s < 300 \\ 0.796 & 300 \le s < 400 \\ 0.955 & 400 \le s < 500 \\ 0.997 & 500 \le s < 600 \\ 1 & s \ge 600 \end{cases}$$

Jnifais Unifais Unifais Unifais

$$P_{Scol}(s) = \begin{cases} 0.2 & s = 0 \\ 0.1 & s = 100 \\ 0.362 & s = 200 \\ 0.134 & s = 300 \\ 0.159 & s = 400 \\ 0.042 & s = 500 \\ 0.003 & s = 600 \end{cases} \qquad F_{Scol}(s) = \begin{cases} \mathbf{0} & s < 0 \\ \mathbf{0.2} & 0 \le s < 100 \\ 0.2 + 0.1 = \mathbf{0.3} & 100 \le s < 200 \\ 0.3 + 0.362 = \mathbf{0.662} & 200 \le s < 300 \\ 0.662 + 0.134 = \mathbf{0.796} & 300 \le s < 400 \\ 0.796 + 0.159 = \mathbf{0.955} & 400 \le s < 500 \\ 0.955 + 0.042 = \mathbf{0.997} & 500 \le s < 600 \\ \mathbf{1} & s \ge 600 \end{cases}$$

Inifal[®] Unifal[®] Unifal[®] Unifal[®]

EXEMPLO 2: Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes.

$\overline{X_i}$	R\$0,00	R\$1000,00	R\$2000,00	R\$3000,00
$P(X_i)$	0,6	0,02	0,06	0,32

Modelando essa carteira de acordo com modelo de **risco individual**. Obtenha a função de probabilidade de S_{ind} .

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal S

$$X_i$$
 R0,00$ R1000,00$ R2000,00$ R3000,00$ $P(X_i)$ 0,6 0,02 0,06 0,32

$$p_S(s) = p_{X_1} * p_{X_2}(s) = \sum_{x_1 \le s} p_{X_2}(s - x_1) p_{X_1}(x_1)$$

S	$S(X_1, X_2)$	P_S
0	(0,0)	0,36
1000	(1000,0) (0,1000)	0,024
2000	(2000,0)(1000,1000)(0,2000)	0,0724
3000	(3000,0)(2000,1000)(1000,2000)(0,3000)	0,3864
4000	(3000,1000)(2000,2000)(1000,3000)	0,0164
5000	(3000,2000)(2000,3000)	0,0384
6000	(3000,3000)	0,1024

EXEMPLO 3

Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes.

X_i	<i>R</i> \$0,00	R\$1000,00	R\$2000,00	R\$3000,00
$P(X_i)$	0,6	0,02	0,06	0,32

Modelando essa carteira de acordo com modelo de **risco** coletivo. Obtenha a função de probabilidade de S_{col} .

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®]

Solução:

X_{i}	$P(X_i = x_i)$	Ii	$P(I_i = i_i)$	$B_i = (X_i I_i = 1)$	$P(B_i = b_i)$
R\$0,00	0,6	0	0,6	Federal de Alfenas Unive	ersidade Federal de Alfen
R\$1000,00	0,02	1	0,4	R\$1000,00	$\frac{0,02}{0,4} = 0,05$
R\$2000,00	0,06			R\$2000,00	$\frac{0,06}{0,4} = 0,15$
R\$3000,00	0,32		as Universidade	R\$3000,00	$\frac{0,32}{0,4} = 0.8$

N	$P(N) = \binom{2}{n} 0,4^{n} 0,6^{2-n}$	\mathcal{S}_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col} = 0$	ersidade Federal de Alfenas Universidade Federal de Alfena
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	{ <i>R</i> \$1000, <i>R</i> \$2000, <i>R</i> \$3000}
2	0,16	$S_{col} = X_1 + X_2$	$\{R\$2000, R\$3000, R\$4000, R\$5000, R\$6000\}$

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_N(k)$$

$$p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

Quando X é discreto tem-se

$$p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$$

$$p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h) p_X(h)$$

Considere h como um dos valores possíveis para X.

		P(N=0)=0,36	P(N=1)=0,48	P(N=2)=0,16
	S_{col}	N = 0	N = 1	N = 2
	0	$p^{*0}(0) = 1$	$p^{*1}(0) = 0$	$p^{*2}(0) = 0$
1	.000	$p^{*0}(1000) = 0$	$p^{*1}(1000) = 0.05$	$p^{*2}(1000) = 0$
2	2000	$p^{*0}(2000) = 0$	$p^{*1}(2000) = 0,15$	$p^{*2}(2000) = 0,0025$
3	8000	$p^{*0}(3000) = 0$	$p^{*1}(3000) = 0.8$	$p^{*2}(3000) = 0.015$
4	000	$p^{*0}(4000) = 0$	$p^{*1}(4000) = 0$	$p^{*2}(4000) = 0,1025$
5	5000	$p^{*0}(5000) = 0$	$p^{*1}(5000) = 0$	$p^{*2}(5000) = 0,24$
6	000	$p^{*0}(6000) = 0$	$p^{*1}(6000) = 0$	$p^{*2}(6000) = 0,64$
		1	1	1
_				
		altuni		

$$P_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) P_{N}(k)$$

$$P_{S_{col}}(s) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,05 & 0 \\ 0 & 0,15 & 0,0025 \\ 0 & 0,8 & 0,015 \\ 0 & 0 & 0,1025 \\ 0 & 0 & 0,24 \\ 0 & 0 & 0,64 \end{bmatrix} \begin{bmatrix} 0,36 \\ 0,48 \\ 0,16 \end{bmatrix} \xrightarrow{P_N(0)} P_N(1)$$

$$P_N(2)$$

$$P_{Scol}(s) = \begin{cases} 0,0240 & s = 1000 \\ 0,0724 & s = 2000 \\ 0,3864 & s = 3000 \\ 0,0164 & s = 4000 \\ 0,0384 & s = 5000 \\ 0,1024 & s = 6000 \end{cases}$$

0,36

s = 0

$$S \qquad S(X_1, X_2) \qquad P_S$$

$$0 \qquad (0,0) \qquad 0,36$$

$$1000 \qquad (1000,0) (0,1000) \qquad 0,024$$

$$2000 \qquad (2000,0) (1000,1000) (0,2000) \qquad 0,0724$$

$$3000 \qquad (3000,0) (2000,1000) (1000,2000) (0,3000) \qquad 0,3864$$

$$4000 \qquad (3000,1000) (2000,2000) (1000,3000) \qquad 0,0164$$

$$5000 \qquad (3000,2000) (2000,3000) \qquad 0,0384$$

$$6000 \qquad (3000,3000) \qquad 0,1024$$

$$E(S_{ind}) = \sum_{i=1}^{2} E(B_i)q_i$$

$$E(S_{ind}) = 2200$$

$$var(S_{ind}) = \sum_{i=1}^{2} [var(B_i)q_i + E(B_i)^2 var(I_i)]$$

$$var(S_{ind}) = 3860000$$

$$var(S_{col}) = 3860000$$

$$var(S_{col}) = 3860000$$

$$M_{S_{ind}}(t) = M_X(t)M_X(t)$$

$$M_X(t) = 0.6 + 0.02e^{1000t} + 0.06e^{2000t} + 0.32e^{3000t}$$

Logo

$$M_{S_{ind}}(t) = (0,6+0,02e^{1000t}+0,06e^{2000t}+0,32e^{3000t})^2$$

$$M_{S_{col}}(t) = M_N(\ln(M_X(t)))$$

$$M_N(t) = (0.6 + 0.4e^t)^2$$
 $M_X(t) = 0.05e^{1000t} + 0.15e^{2000t} + 0.8e^{3000t}$

$$M_{S_{col}}(t) = [0.6 + 0.4(0.05e^{1000t} + 0.15e^{2000t} + 0.8e^{3000t})]^2$$

Logo

$$M_{S_{col}}(t) = (0,6+0,02e^{1000t}+0,06e^{2000t}+0,32e^{3000t})^2$$

Bibliografia

- FERREIRA, P. P. Modelos de precificação e ruína para seguros de curto prazo. Rio de Janeiro: Funenseg, 2002.
- CENTENO, M. L. Teoria do risco na actividade seguradora. Oeiras: Celta, 2003.
- PACHECO, R. Matemática Atuarial de Seguros de Danos. Editora Atlas, 2014.
- RODRIGUES, J. A. Gestão de risco atuarial. São Paulo: Saraiva, 2008.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Teoria do risco atuarial: Fundamentos e conceitos. Curitiba: CRV 2020.

Teoria do Risco Aula 11-Parte 3

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

EXEMPLO 1

Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes.

X_i	<i>R</i> \$0,00	R\$1000,00	R\$2000,00	R\$3000,00
$P(X_i)$	0,6	0,02	0,06	0,32

Modelando essa carteira de acordo com modelo de **risco** coletivo. Obtenha a função de probabilidade de S_{col} .

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®]

Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes. R\$0,00 R\$1000,00 R\$2000,00

R\$3000,00

			$P(X_i)$ 0,6	0,02 0	0,06 0,32
X _i	$P(X_i = x_i)$	I _i	$P(I_i = i_i)$	$B_i = (X_i I_i = 1)$	$P(B_i = b_i)$
R\$0,00	0,6	0	0,6		
R\$1000,00	0,02	1	0,4	R\$1000,00	$\frac{0,02}{0,4} = 0,05$
R\$2000,00	0,06		le Alfenas Univers	R\$2000,00	$\frac{0,06}{0,4} = 0,15$
R\$3000,00	0,32			R\$3000,00	$\frac{0,32}{0,4} = 0.8$

N	$P(N) = {2 \choose n} 0,4^n 0,6^{2-n}$	S_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col} = 0$	
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	{R\$1000, R\$2000, R\$3000}
2	0,16	$S_{col} = X_1 + X_2$	{ <i>R</i> \$2000, <i>R</i> \$3000, <i>R</i> \$4000, <i>R</i> \$5000, <i>R</i> \$6000}

$$\frac{S}{0} = \frac{S(X_1, X_2)}{0} = \frac{P_S}{0}$$

$$\frac{O}{0} = \frac{O}{0,00} = \frac{O}{0,00}$$

$$\frac{O}{0} = \frac{O}{0,00} = \frac{O}{0,00}$$

$$\frac{O}{0} = \frac{O}{0,00} = \frac{O}{0,0240} = \frac{$$

$$M_{S_{ind}}(t) = M_X(t)M_X(t)$$

$$M_X(t) = 0.6 + 0.02e^{1000t} + 0.06e^{2000t} + 0.32e^{3000t}$$

Logo

$$M_{S_{ind}}(t) = (0,6+0,02e^{1000t}+0,06e^{2000t}+0,32e^{3000t})^2$$

$$M_{S_{col}}(t) = M_N(\ln(M_X(t)))$$

$$M_N(t) = (0.6 + 0.4e^t)^2$$
 $M_X(t) = 0.05e^{1000t} + 0.15e^{2000t} + 0.8e^{3000t}$

$$M_{S_{col}}(t) = [0.6 + 0.4(0.05e^{1000t} + 0.15e^{2000t} + 0.8e^{3000t})]^2$$

Logo

$$M_{S_{col}}(t) = (0,6+0,02e^{1000t}+0,06e^{2000t}+0,32e^{3000t})^2$$

Fórmula recursiva de Panjer

Alguns modelos de probabilidade podem ser escritos como

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

Família de distribuição (a, b) de Panjer.

Fórmula recursiva de Panjer

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

• Poisson(λ)

$$P(N=n) = \frac{e^{-\lambda}\lambda^n}{n!}$$

$$P(N = n) = \frac{\lambda}{n} P(N = n - 1)$$

$$a = 0, \qquad b = \lambda \qquad \text{e} \quad P(N = 0) = e^{-\lambda}.$$

• Binomial(k, q)

$$P(N = n) = \binom{k}{n} q^n (1 - q)^{k - n}$$

$$P(N = n) = \frac{(k - n + 1)q}{n(1 - q)} P(N = n - 1)$$

• Binomial Negativa(r, q)

$$P(N = n) = {n+r-1 \choose n} q^r (1-q)^n$$

$$P(N = n) = \frac{r+n-1}{n} P(N = n-1)$$

$$a = 1 - q$$
, $b = \frac{r-1}{1-q}$ e $P(N = 0) = (1 - q)^n$.

$$a = -\frac{q}{1-q}, b = \frac{(k+1)q}{1-q} \in P(N=0) = (1-q)^k.$$

Considere que o número de sinistros N tal que $N \sim Po(5)$, calcule P(N=3)?

$$P(N=3) = \frac{e^{-5}5^3}{3!} \approx 0,140$$

ou

$$P(N = n) = \frac{5}{n}P(N = n - 1)$$
 $a = 0$, $b = \lambda = 5$ e $P(N = 0) = e^{-5}$

$$P(N = 3) = \frac{5}{3}P(N = 2)$$

$$P(N = 2) = \frac{5}{2}P(N = 1)$$

$$P(N = 1) = \frac{5}{1}P(N = 0) = 5e^{-5}$$

$$P(N=3) = \frac{5}{3} \left[\frac{5}{2} \left(\frac{5}{1} \times e^{-5} \right) \right]$$

$$P(N=3) = \frac{e^{-5}5^3}{3!}$$

Fórmula recursiva de Panjer

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

• Poisson(λ)

$$P(N=n) = \frac{e^{-\lambda}\lambda^n}{n!}$$

$$P(N=n) = \frac{\lambda}{n}P(N=n-1)$$

$$a=0,$$
 $b=\lambda$ $e P(N=0)=$

$$e^{-\lambda}$$
.

• Binomial
$$(k, q)$$

$$P(N = n) = \binom{k}{n} q^n (1 - q)^{k - n}$$

$$P(N = n) = \frac{(k - n + 1)q}{n(1 - q)}P(N = n - 1)$$

$$a = -\frac{q}{1-q}, \ b = \frac{(k+1)q}{1-q} \in P(N=0) = (1-q)^k$$

$$egin{aligned} & ext{poi} < - ext{function}(n,\lambda) \{ & ext{if}(n==0) \{ & ext{poi} < - ext{exp}(-\lambda) \\ & ext{poi} < - ext{exp}(-\lambda) \\ & ext{poi} < -(\lambda/n)^* ext{poi}(n-1,\lambda) \\ & ext{poi} < - ext{turn}(ext{poi}) \end{aligned}$$

$$egin{aligned} & \operatorname{Bin} < \operatorname{-function}(n,k,q) \{ \\ & \operatorname{if}(n == 0) \{ \\ & \operatorname{Bin} < \operatorname{-}(1 - q) \operatorname{^{\smallfrown}k} \\ \} & \operatorname{else} \{ \end{aligned}$$

Fórmula recursiva de Panjer para $P(S_{col})$

Sendo
$$S_{col} = \sum_{i=1}^{N} X_i$$
, então:

$$P(S=s) = \frac{1}{1 - aP(X=0)} \sum_{i=1}^{s} \left[\left(a + \frac{bx_i}{s} \right) P(X=x_i) P(S=s-x_i) \right]$$

em que a e b vem da distribuição de N e P(S=0)=P(N=0)

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal S

N	$P(N) = \binom{2}{n} 0,4^n 0,6^{2-n}$	S_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col}=0$	0,05 0,15 0,8
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	{ <i>R</i> \$1000, <i>R</i> \$2000, <i>R</i> \$3000}
2	0,16	$S_{col} = X_1 + X_2$	{R\$2000, R\$3000, R\$4000, R\$5000, R\$6000}

$$P(S = s) = \frac{1}{1 - aP(X = 0)} \sum_{i=1}^{S} \left[\left(a + \frac{bx_i}{s} \right) P(X = x_i) P(S = s - x_i) \right]$$

$$P(S=s) = \frac{1}{1 + \frac{q}{1-q}P(X=0)} \sum_{i}^{s} \left[\left(-\frac{q}{1-q} + \frac{(k+1)qx_{i}}{(1-q)s} \right) P(X=x_{i}) P(S=s-x_{i}) \right]$$

$$P(S = s) = \sum_{i}^{s} \left[\left(-\frac{0.4}{0.6} + \frac{2x_i}{s} \right) P(X = x_i) P(S = s - x_i) \right]$$

$$P(S = s) = \sum_{i}^{S} \left[\left(-\frac{0.4}{0.6} + \frac{2x_i}{s} \right) P(X = x_i) P(S = s - x_i) \right]$$

•
$$P(S=0) = P(N=0) = 0.36$$

•
$$P(S = 1000) = \left(-\frac{0.4}{0.6} + \frac{2 \times 1000}{1000}\right) P(X = 1000) P(S = 0) = \mathbf{0}, \mathbf{024}$$

•
$$P(S = 2000) = \left(-\frac{0.4}{0.6} + \frac{2 \times 1000}{2000}\right) P(X = 1000) P(S = 1000) + \left(-\frac{0.4}{0.6} + \frac{2 \times 2000}{2000}\right) P(X = 2000) P(S = 0) = \mathbf{0}, \mathbf{0724}$$

• • • •

Distribuição de S_{col}

Aproximação pela normal

$$S_{col} \sim N(\mu_{S_{col}}, \sigma_{S_{col}}^2)$$

$$Z = \frac{S_{col} - E(S_{col})}{\sqrt{var(S_{col})}} \sim N(0,1)$$

Aproximação Gama (transladada)

$$E(S_{col}) = \alpha \beta + k \qquad var(S_{col}) = \alpha \beta^{2} \qquad \gamma = E\left[\left(\frac{S_{col} - E(S_{col})}{\sigma_{S_{col}}}\right)^{3}\right] = \frac{2}{\sqrt{\alpha}}$$

$$f_{S}(s) = \frac{(s - k)^{\alpha - 1} e^{-\frac{s - k}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}$$

Calcule o valor do prêmio puro d**o exemplo 1** (utilizando o princípio do percentil) de modo que a probabilidade do sinistro o superar não exceda a 5% (utilizando aproximação pela distribuição normal).

$$P(S_{col} \le \Pi_S) = 0.95$$

$$P\left(Z \le \frac{\Pi_S - E(S_{col})}{\sigma_{S_{col}}}\right) = 0.95$$

$$\frac{\Pi_S - E(S_{col})}{\sigma_{S_{col}}} = z_{0,95}$$

$$\Pi_S = E(S_{col}) + \sigma_{S_{col}} z_{0,95}$$

$$\Pi_S = 2200 + 1964,688 (1,645) = R$5431,91$$

$$P_{Scol}(s) = \begin{cases} 0,36 & s = 0\\ 0,0240 & s = 1000\\ 0,0724 & s = 2000\\ 0,3864 & s = 3000\\ 0,0164 & s = 4000\\ 0,0384 & s = 5000\\ 0,1024 & s = 6000 \end{cases}$$

Calcule o prêmio puro de risco considerando que o limite de indenização para essa carteira seja de R\$4000,00.

Unifal[®] Unifal[®] Unifal[®] Unifal[®]

$$P_{Scol}(s) = \begin{cases} 0,36 & s = 0 \\ 0,0240 & s = 1000 \\ 0,0724 & s = 2000 \\ 0,3864 & s = 3000 \\ 0,0164 & s = 4000 \\ 0,0384 & s = 5000 \\ 0,1024 & s = 6000 \end{cases}$$

Calcule o prêmio puro de risco considerando que o limite de indenização para essa carteira seja de R\$4000,00.

$$Y = \begin{cases} S_{col}, & S_{col} < 4000 \\ 4000, & S_{col} \ge 4000 \end{cases}$$

$$\Pi_Y = E(Y) = E(S_{col}; 4000)$$

$$\Pi_Y = \sum_{s=0}^{3000} s \, p(s) + \sum_{s=4000}^{6000} 4000 \, p(s) = R\$1956,8$$

Modelo de Risco Coletivo

Vantagens

Danos agregados em dada posição no tempo (Evolução temporal por meio de processo

estocástico).

Fórmulas simplificadas,

...

Desvantagem

Precisão

Premissa de que as variáveis sejam iid.

• • •

Bibliografia

- FERREIRA, P. P. Modelos de precificação e ruína para seguros de curto prazo. Rio de Janeiro: Funenseg, 2002.
- CENTENO, M. L. Teoria do risco na actividade seguradora.
 Oeiras: Celta, 2003.
- PACHECO, R. Matemática Atuarial de Seguros de Danos. Editora Atlas, 2014.
- RODRIGUES, J. A. Gestão de risco atuarial. São Paulo: Saraiva, 2008.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Teoria do risco atuarial: Fundamentos e conceitos. Curitiba: CRV 2020.

