第6章 定积分的应用

6.2 定积分在几何学上的应用

1. 曲线 y = x(x-1)(x-2) 以及 x 轴所围图形的面积为 (

A.
$$\int_0^2 x(x-1)(x-2) dx$$

B.
$$\int_0^1 x(x-1)(x-2) dx - \int_1^2 x(x-1)(x-2) dx$$

C.
$$\int_0^1 x(x-1)(x-2) dx$$

D.
$$\int_0^1 x(x-1)(x-2)dx + \int_1^2 x(x-1)(x-2)dx$$

2. 设 f(x) 在闭区间 [a,b] 上连续,则曲线 y = f(x)、直线 x = a、 x = b 及 x 轴所围成的平面图形的面 积为(

A.
$$\int_a^b f(x) dx$$

A.
$$\int_a^b f(x) dx$$
 B. $\left| \int_a^b f(x) dx \right|$ C. $-\int_a^b f(x) dx$ D. $\int_a^b \left| f(x) \right| dx$

C.
$$-\int_a^b f(x) dx$$

D.
$$\int_{a}^{b} \left| f(x) \right| dx$$

3. 平面图形由曲线 $y = \sin x$, $x \in [0, \frac{2\pi}{3}]$ 、直线 $x = \frac{2\pi}{3}$ 及 x 轴所围成,则此平面图形的面积为(

A.
$$\frac{4}{3}$$

B.
$$\frac{3}{2}$$

A.
$$\frac{4}{3}$$
 B. $\frac{3}{2}$ C. $\frac{4}{3}\pi$

D.
$$\frac{2}{3}\pi$$

- 4. 曲线 $y = \frac{2}{3}x^{\frac{3}{2}}$ 上相应于 $0 \le x \le 3$ 的一段弧长 l =______.
- 5. 平面图形由曲线 $y = x^3$, x = 2 及 y = 0 所围成,则此平面图形的面积 $A = ______.$
- 6. 椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 所围成的图形的面积______.
- 7. 计算直线 y = x 与抛物线 $y = \sqrt{x}$ 所围成的图形的面积.

8. 计算由抛物线 $y^2 = x$ 与抛物线 $y = x^2$ 所围成的图形的面积.

9. 计算由直线 y=x-4,曲线 $y=\sqrt{2x}$ 以及 x 轴所围成的图形的面积.

10. 计算抛物线 $y^2 = x$ 由直线 y = 2 - x 所围成的图形的面积.

11. 计算直线 y=e,曲线 $y=e^x$ 及直线 x=0 所围成的图形的面积.

12. 计算直线 y = 2x + 3 与抛物线 $y = x^2$ 所围成的图形的面积.

13. 计算曲线 $y = \frac{1}{x}$,直线 y = x 及直线 x = 3 所围成的图形的面积.

14. 计算由曲线 $y = x^3$,直线 x = 1 及直线 y = 0 所围的图形绕 x 轴旋转一周而成的旋转体的体积.

15. 计算由曲线 $y = x^2 + 1$,直线 x = -1,直线 x = 2 及直线 y = 0 所围的图形绕 x 轴旋转一周而成的旋转体的体积.

16. 计算由曲线 $y = x^3$,直线 x = 2 和直线 y = 0 所围的图形绕 y 轴旋转一周而成的旋转体的体积.

17. 计算由曲线 $y = \sin x (x \in [0, \pi])$ 与 x 轴所围的图形绕 x 轴旋转一周而成的旋转体的体积.

6.3 定积分在物理学上的应用

1.	由实验知道,	弹簧在拉伸过程中,	需要的力 F (单位:	N),	与拉伸量 s (单位:	cm)成正比,	即	
	F = ks(k 是比例常数),							
如果把弹簧由原长拉伸 $6cm$,则所作的功 $W =$								
2. 设一质点距原点 x 米时, 受 $F(x) = x^2 + 2x$ 牛顿力的作用, 则质点在 F 作用, 从 $x = 1$ 米移动到 $x = 3$								
米	,力所作的功	W =	(J).					