In The Name of God. The Merciful, The Compassionate.

Eigenvalues, Eigenvectors, Diagonalization, and Powers of A

notes on Gilbert Strang videos, Lecture 21,22

1 Eigenvalues and eigenvectors

- $Ax = \lambda x$, eigenvectors parallel to x
 - If A is singular, then $\lambda = 0$ is an eigenvalue.
 - What are the x's, and λ 's of projection matrix $P? \longrightarrow \lambda = 0, 1$
 - * Any x in the projection plane : Px = x, $\lambda = 1$
 - * Any $x \perp$ to the plane: Px = 0, $\lambda = 0$
 - How about permutation matrix?

$$* A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

* swap rows!

$$* x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda = 1, Ax = x$$

*
$$x = \begin{bmatrix} -1\\1 \end{bmatrix}$$
, $\lambda = -1$, $Ax = -x$

- FACT: sum of λ 's = $a_{11} + a_{22} + ... + a_{nn}$
- Solve $Ax = \lambda x$: $(A \lambda I)x = 0$
 - $* \Rightarrow det(A \lambda I) = 0$. Find λ 's first.
 - * For 2×2 matrices *trace* is the linear coefficient, and *det* is constant of degree 2 equation for eigenvalues.
 - * For degenerate equations (e.g., when A is upper triangular), the eigenvalues, and eigenvectors are repeated. A double or higher order degeneracy will cause a lost in one(or more) equations. We have infinite number of ways to choose eigenvectors. The most traditional way (almost in 2^{nd} order degeneracy) is to choose the first one to be the trivial normalized one. and the other vector to be orthogonal to the first one.