§5 陰関数定理とその応用

- 定理 6.9 (陰関数定理) ——

 $O \subset \mathbb{R}^2$ を開集合, f を O で C^1 級, $(a,b) \in O$ とする. f(a,b) = 0, $f_u(a,b) \neq 0$ ならば, ある $\delta_1 > 0$, $\delta_2 > 0$ が存在して, 次が成り立つ.

- (1) $|x-a|<\delta_1$ を満たす任意の x に対して, $|y-b|<\delta_2$ かつ f(x,y)=0 を満たす y が一意に存在する.
- (2) (1) において, x に対して一意に存在する y を対応させる関数 φ が定まり, φ は定義域 $(a-\delta_1,a+\delta_1)$ で C^1 級で

$$\begin{cases} f(x,\varphi(x)) = 0\\ \varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_y(x,\varphi(x))} & \cdots (*) \end{cases}$$

を満たす.

 $x = \varphi(x)$ を (a,b) の近傍で f(x,y) = 0 が定める<mark>陰関数</mark>という。また,f が C^2 級ならば, f_x, f_y, φ は C^1 級なので (*) の右辺も C^1 級である。よって, φ' は C^1 級となるから, φ は C^2 級である。同様に, $x \ge y$ の役割を交換した主張も成り立つ。

※陰関数のイメージ

※結局は φ は微分可能であるから、応用上は $f(x,\varphi(x))=0$ の両辺を x で微分した

$$f_x(x, \varphi(x)) \cdot 1 + f_y(x, \varphi(x)) \cdot \varphi'(x) = 0$$
 ……(**)
$$f(x,y) = 0 \ (y = \varphi(x))$$
 より (*) を得ればよい。また,(**) は
$$\begin{pmatrix} f_x \\ f_y \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \varphi' \end{pmatrix} = 0$$
 となるから, $\begin{pmatrix} f_x \\ f_y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ のとき
$$\begin{pmatrix} f_x \\ f_y \end{pmatrix} \perp \begin{pmatrix} 1 \\ \varphi' \end{pmatrix}$$

である. $f(a,b)=0,\ f_x(a,b)=0,\ f_y(a,b)=0$ を満たす点 (a,b) を図形 f(x,y)=0 の特異点というので

「図形 f(x,y) = 0 に特異点がなければ、普通の曲線になっている」

ということがわかる。また, $\begin{pmatrix} f_x \\ f_y \end{pmatrix}$ を f の勾配といい $\operatorname{grad} f$ で表すが, $\operatorname{grad} f$ が零ベクトルでなければ, $\operatorname{grad} f$ は曲線 f(x,y)=0 の各点において法線方向を向いている。 $\operatorname{grad} f$ の曲面 z=f(x,y) に対しての図形的意味についてはここでは省略するが

微分積分学 II

宮島静雄 著 (共立出版)

の 50 ページから 57 ページに詳しい解説があるので、興味があれば読んでみるとよい.

定理 6.9 の証明

定理の仮定が成り立つとする.

 $f_y(a,b) \neq 0$ より $f_y(a,b)>0$ または $f_y(a,b)<0$ であるが、どちらでも同じであるから $f_y(a,b)>0$ であるとして示す.

(Step 1) 関数 φ の存在

f は C^1 級より f_y は連続であるから、ある $\delta_2>0$ が存在して

$$I = \{(x, y) \mid |x - a| \le \delta_2, |y - b| \le \delta_2\}$$

とすると

$$\begin{cases} I \subset O \\ (x,y) \in I \implies f_y(x,y) \ge \frac{1}{2} f_y(a,b) > 0 & \cdots \end{cases}$$

が成り立つ. これから特に I 上では f は y について狭義単調増加となるので

$$f(a, b - \delta_2) < 0 < f(a, b + \delta_2)$$

となるが、f は連続であるから、ある $\delta_1 > 0$ ($\delta_1 \le \delta_2$) が存在して

$$|x-a| < \delta_1 \implies f(x,b-\delta_2) < 0$$
 ליל $f(x,b+\delta_2) > 0$

が成り立つ. このとき, $x \in (a-\delta_1,a+\delta_1)$ を満たす x を任意にとり固定すると, y の関数 f(x,y) は連続で狭義単調増加であるから, f(x,y)=0 を満たす $y \in (b-\delta_2,b+\delta_2)$ が一意に存在する. よって, $x \in (a-\delta_1,a+\delta_1)$ に対して一意に存在する $y \in (b-\delta_2,b+\delta_2)$ を対応させる関数 φ が定まり

$$f(x, \varphi(x)) = 0 \quad (x \in (a - \delta_1, a + \delta_1))$$

が成り立つ.

(Step 2) φ の連続性

f は C^1 級より f_x は連続であるから、Weierstrass の最大値定理より

$$|f_x(x,y)| \leq M$$
 $((x,y) \in I)$ ······②

を満たす定数 M > 0 が存在する.

さて, $x \in (a - \delta_1, a + \delta_1)$ を任意にとり, $h \neq 0$ を $x + h \in (a - \delta_1, a + \delta_1)$ となるようにとる. また, $k = \varphi(x + h) - \varphi(x)$ とおき

$$F(t) = f(x + th, \varphi(x) + tk) \qquad (0 \le t \le 1)$$

とおくと

$$F'(t) = f_x(x + th, \varphi(x) + tk) \cdot h + f_y(x + th, \varphi(x) + tk) \cdot k$$

であるから、M-V-T より

$$F(1) - F(0) = F'(\theta)(1-0)$$
 すなわち

$$f(x+h,\varphi(x)+k) - f(x,\varphi(x)) = (hf_x + kf_y)(x+\theta h,\varphi(x)+\theta k)$$

を満たす θ (0 < θ < 1) が存在する. そして, φ の定め方から

$$f(x,\varphi(x)) = 0$$
, $f(x+h,\varphi(x)+k) = f(x+h,\varphi(x+h)) = 0$

であるから

$$(hf_x + kf_y)(x + \theta h, \varphi(x) + \theta k) = 0 \quad \cdots \quad \Im$$

である. よって、 $① \sim ③$ より

$$|\varphi(x+h) - \varphi(x)| = |k| = \left| -\frac{f_x(x+\theta h, \varphi(x) + \theta k)}{f_y(x+\theta h, \varphi(x) + \theta k)} h \right| \le \frac{M}{\frac{1}{2} f_y(a,b)} |h| \to 0 \quad (h \to 0)$$

となるから、 φ は $(a - \delta_1, a + \delta_1)$ で連続である.

(Step 3) φ' の存在と連続性

 $h\to 0$ のとき $x+\theta h\to x$ で、Step 2 の過程より $k\to 0$ であるから $\varphi(x)+\theta k\to \varphi(x)$ である. よって、③ と f_x,f_y の連続性より

$$\frac{\varphi(x+h) - \varphi(x)}{h} = -\frac{f_x(x+\theta h, \varphi(x) + \theta k)}{f_y(x+\theta h, \varphi(x) + \theta k)} \to -\frac{f_x(x, \varphi(x))}{f_y(x, \varphi(x))} \quad (h \to 0)$$

$$\therefore \quad \varphi'(x) = -\frac{f_x(x, \varphi(x))}{f_y(x, \varphi(x))}$$

また,右辺は連続であるから,左辺の arphi' も連続である.

- 定理 6.10(陰関数の極値判定法)—

 $O \subset \mathbb{R}^2$ を開集合,f を O で C^2 級, $(a,b) \in O$ とし,f(a,b) = 0, $f_y(a,b) \neq 0$ をみたすとする.このとき,(a,b) の近傍で f(x,y) = 0 が定める陰関数を $y = \varphi(x)$ とすると,次が成り立つ.

$$(1) \varphi(a) (=b)$$
が(広義の)極値 \Longrightarrow $f_x(a,b)=0$

(2)
$$f_x(a,b) = 0$$
 のとき

(i)
$$\frac{f_{xx}(a,b)}{f_y(a,b)}>0$$
 \Longrightarrow $\varphi(a)(=b)$ は(狭義の)極大値

(ii)
$$\frac{f_{xx}(a,b)}{f_y(a,b)} < 0 \implies \varphi(a)(=b)$$
 は(狭義の)極小値

証明

陰関数定理より,(a,b) の近傍で

$$f(x,\varphi(x)) = 0$$
 ·····①

であり、a の近傍で φ は C^2 級である.

(1) ① の両辺を x で微分すると

$$f_x(x,\varphi(x)) \cdot 1 + f_y(x,\varphi(x)) \cdot \varphi'(x) = 0$$
 ·····2

$$\therefore f_x(a,b) + f_y(a,b)\varphi'(a) = 0$$

よって、 $\varphi(a)(=b)$ が(広義の)極値であるとき、 $\varphi'(a)=0$ より $f_x(a,b)=0$

(2) ② の両辺を x で微分すると

$$\{f_{xx}(x,\varphi(x))\cdot 1 + f_{xy}(x,\varphi(x))\cdot \varphi'(x)\}$$

$$+\{f_{yx}(x,\varphi(x))\cdot 1 + f_{yy}(x,\varphi(x))\cdot \varphi'(x)\}\cdot \varphi'(x) + f_{y}(x,\varphi(x))\cdot \varphi''(x) = 0$$

$$f_{xx}(a,b) + 2f_{xy}(a,b)\varphi'(a) + f_{yy}(a,b)\varphi'(a)^{2} + f_{y}(a,b)\varphi''(a) = 0$$

 $f_x(a,b) = 0$ のとき $\varphi'(a) = 0$ であるから

$$f_{xx}(a,b) + f_y(a,b)\varphi''(a) = 0$$

$$\therefore \quad \varphi''(a) = -\frac{f_{xx}(a,b)}{f_y(a,b)}$$

よって

(i)
$$\frac{f_{xx}(a,b)}{f_y(a,b)}>0$$
 ならば $\varphi''(a)<0$ であるから, $\varphi(a)(=b)$ は(狭義の)極大値である.

(ii)
$$\frac{f_{xx}(a,b)}{f_{y}(a,b)} < 0$$
 ならば $\varphi''(a) > 0$ であるから, $\varphi(a) (=b)$ は(狭義の)極小値である.

 $% \varphi$ が a の近傍で C^2 級であるから, $\varphi''(a)<0$ より a の近傍で $\varphi''<0$ となる.よって,a の近傍で φ は上に凸であり,さらに $\varphi'(a)=0$ であるから, $\varphi(a)$ は(狭義の)極大値である. $\varphi''(a)>0$ のときも同様.

☆陰関数の極値の求め方

$$f(x,y)=0, \ f_x(x,y)=0$$
 をみたす (x,y) を求め、 $\frac{f_{xx}(x,y)}{f_y(x,y)}$ の符号で判定する.

例 6.6

$$3x^2 + 2y^2 + 2xy - 14x - 8y + 3 = 0$$
 が定める陰関数の極値を求めよ.

解答

$$f(x,y)=3x^2+2y^2+2xy-14x-8y+3$$
 とおくと
$$f_x(x,y)=6x+2y-14,\ f_y(x,y)=4y+2x-8,\ f_{xx}(x,y)=6$$
 まず、 $f(x,y)=0$ 、 $f_x(x,y)=0$ をみたす (x,y) を求める.
$$f_x(x,y)=0$$
 より $y=-3x+7$ $f(x,y)=0$ へ代入して

$$3x^{2} + 2(-3x + 7)^{2} + 2x(-3x + 7) - 14x - 8(-3x + 7) + 3 = 0$$

$$3x^{2} + 18x^{2} - 84x + 98 - 6x^{2} + 14x - 14x + 24x - 56 + 3 = 0$$

$$15x^{2} - 60x + 45 = 0$$

$$x^{2} - 4x + 3 = 0$$

$$(x - 1)(x - 3) = 0$$

よって
$$(x,y) = (1,4), (3,-2)$$

• $f_y(1,4) = 10 \neq 0$ より、(1,4) の近傍で f(x,y) = 0 が定める陰関数が存在する.

$$\frac{f_{xx}(1,4)}{f_{y}(1,4)} = \frac{6}{10} > 0$$
 より $x = 1$ のとき $y = 4$ は極大値

• $f_y(3,-2) = -10 \neq 0$ より、(3,-2) の近傍で f(x,y) = 0 が定める陰関数が存在する.

$$rac{f_{xx}(3,-2)}{f_y(3,-2)} = rac{6}{-10} < 0$$
 より $x=3$ のとき $y=-2$ は極小値

% f(x,y) = 0 の概形を太線で示す.斜線部でそれぞれ 陰関数が定まる.

【問題】

f(x,y)=0 が定める陰関数の極値を求め、次の形式で解答欄に記入せよ。ただし、解答欄は多めに作ってある。

(1)
$$f(x,y) = x^2 - xy + y^3 + 9$$

7	1	ウ	工	オ
	- 2	13	13	K

 $f_{n}(x,t) = 2x - y$, $f_{y}(x,y) = -x + 3t^{2}$, $f_{xx}(x,t) = 2$ f(x,t) = 0, $f_{n}(x,t) = 0$ & t $f_{x}(x,y)$ if $f_{x}(x,y)$ is $f_{x}(x,y) = 0$ (a) $f_{x}(x,y) = 0$ (b) $f_{x}(x,y) = 0$ (c) $f_{x}(x,y) = 0$ (c) $f_{x}(x,y) = 0$ (d) $f_{x}(x,y) = 0$ (e) $f_{x}(x,y) = 0$ (for $f_{x}(x,y) = 0$ (fo

$$\chi' - \chi(2x) + (2x)^{3} + 9 = 0$$

$$\xi \chi^{3} - \chi' + 9 = 0$$

$$(x+1)(\xi \chi' - 9\chi + 9) = 0$$

$$\xi.7 \qquad (\chi, \xi) = (-[, -2])$$

fa(-(.-2)= 1+12=13キロの(-1.-2)の近傍でで f(x.分)しをみたり陰関数か存在する.

$$\frac{f_{\chi\chi}(-1,-2)}{f_{\chi}(-1,-2)} = \frac{2}{13} > 0 = 7 \qquad \begin{array}{c} \chi = -10\% \\ \chi = -211 \\ \chi = -211 \end{array}$$

(2)
$$f(x,y) = x^2 - xy + y^2 + 2x - 2y + 1$$

ア	1	ウ	工	オ
_ (D		- 2	/ \
- 3	4		2	大

$$\frac{1}{3} + \frac{\delta}{3} - \lambda$$

$$\frac{7}{3}$$

$$f_{\chi}(\chi, \chi)$$
: $2\chi - \chi + \chi$, $f_{\chi}(\chi, \chi)$: $-\chi + 2\chi - \chi$

$$f_{\chi\chi}(\chi, \chi)$$
: χ

$$f(x,y) = 0$$
. $f_{x}(x,y) = 0$ & $f_{x}(x,y) = 0$

$$\chi^{2} - \chi(2\chi + 2) + (2\chi + 2)^{2} + 2\chi - 2(2\chi + 2) + (=0)$$
 $\chi^{2} - \chi^{2} - \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} - \chi^{2} - \chi^{2} + (=0)$
 $\chi^{2} - \chi^{2} - \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} - \chi^{2} - \chi^{2} + (=0)$
 $\chi^{2} - \chi^{2} - \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} - \chi^{2} + (=0)$
 $\chi^{2} - \chi^{2} - \chi^{2} + \chi^{2$

$$\chi = -1, -\frac{1}{3} \quad \mathcal{P} \quad (\chi, \chi) = (-1, 0) \quad \left(-\frac{1}{3}, \frac{\chi}{3}\right)$$

ty(-1,0)=-1+0切 (x.7):(-1,0) か近傍にt(x.分)=0を 定x3陰関数が存在ね。

$$\sum_{x}$$
 陰関数が存在り。
 $f_{xx}(x,y) = -2 < 0$ より $x = -1$ のとは $4 = 0$ は $4 = 0$

(3)
$$f(x,y) = x^4 + 2x^2 + y^3 - y$$

7	1	ウ	工	オ
0	O	-(~ 4	/ \\
0		2	2	大
0		2	2	K

(4)
$$f(x,y) = (x-y)^3 + y^2 - 3x - 2$$

7	1	ウ	工	オ
\bigcirc	_	~5	-6/5	/ \
5	4	5	5	t
	0	- }	2	X
2	3	3	- 2	/ \

$$f_{x}(x + y) = 3(x - y)^{2} - 3 - f_{x}(x, y) = -3(x - y)^{2} + 2y$$

$$f_{xx}(x, y) = 6(x - y)$$

$$f(xy) = 0 - f_{x}(x, y) = 0 \quad \text{for } (x, y) = 0 \quad \text{for } (x, y) = 0$$

$$f_{x}(x, y) = 0 = 0 \quad \text{for } (x - y)^{2} - 3 = 0 \quad -3$$

$$(x - y)^{2} = 1 \quad -3 + 6$$

$$(x - y) = \pm 1$$

(i)
$$\chi \sim \chi - 1$$
 of ξ
 $f(\chi, \chi) = 0$ 12/t/ χ t7

$$f(x,y) = 0 \quad (x+1)^{2} - 3x - 2^{2} = 0$$

$$f(x,y) = 0 \quad (x+1)^{2} - 3x - 2^{2} = 0$$

$$(x-2) \quad (x+1)^{2} = 0$$

【問題】

T2(2,3) = 3 +0

 $f(x,y) = 8y^3 + 6x^2y - 12xy^2 - 12y^2 + 6xy + 6y - 1$ について、次の問いに答えよ.

- (1) 曲線 f(x,y) = 0 の特異点を求めよ.
- (2) (1) で求めた特異点以外の f(x,y)=0 で定まる陰関数の極値を求めよ.

$$\frac{f_{\chi\chi}(0.-1)}{f_{\chi}(0.-1)} = -5 \neq 0$$

$$\frac{f_{\chi\chi}(0.-1)}{f_{\chi}(0.-1)} = -\frac{6}{-5} < 0 \neq 0$$

$$\frac{f_{\chi\chi}(0.-1)}{f_{\chi}(0.-1)} = -\frac{6}{-5} < 0 \neq 0$$

$$\frac{f_{\chi\chi}(0.-1)}{f_{\chi}(0.-1)} = -\frac{6}{-5} < 0 \neq 0$$

$$\chi : 57^{2} + 40 \neq \frac{5}{5} \neq 0$$

$$f_{\chi}(0.-1) = -3 \neq 0$$

$$f_{\chi}(0.-1) = -3 \neq 0$$

 $\frac{f_{xx}(-1.0)}{f_{x}(-1.0)} = \frac{-6}{-3} = 2 > 0$ $\frac{7:-17}{y:0}$ $\frac{7:-17}{y:0}$

 $\frac{f_{\chi\chi(2.3)}}{f_{2}(2.3)} = \frac{-6}{3} = -2\langle 0P \rangle \qquad \chi \cdot 27$