Construção de Códigos Esféricos Usando a Fibração de Hopf

Henrique Koji Miyamoto *
Graduação em Engenharia Elétrica - Unicamp

miyamotohk@gmail.com

Prof. Henrique Sá Earp e prof.^a Sueli Costa (Orientadores) Instituto de Matemática, Estatística e Computação Científica - Unicamp

henrique.saearp@ime.unicamp.br e sueli@ime.unicamp.br

Palavras-chave: códigos esféricos, fibração de Hopf, álgebras de divisão.

Resumo:

Um código esférico C(M,n) é um conjunto de M pontos na superfície da esfera unitária $S^{n-1}\subset\mathbb{R}^n$. Apresentamos uma nova construção de códigos esféricos, baseada nas propriedades topológicas da fibração de Hopf e inspirados por uma construção anterior em camadas de toros planares [1][2]. O problema tratado é o do *empacotamento esférico*, na seguinte versão: dada uma distância mínima d, buscamos o maior número de pontos M em S^{n-1} de forma que a distância euclidiana entre dois deles seja no mínimo d. Uma das principais aplicações desse problema está na transmissão de sinais por canais gaussianos [1].

Para isso, usamos as propriedades da fibração de Hopf [3]:

$$h: S^{2n-1} \to S^n$$

 $(z_0, z_1) \mapsto (2z_0\overline{z_1}, |z_0|^2 - |z_1|^2)$

em que z_0, z_1 são elementos de uma das álgebras de divisão normadas: \mathbb{R} , \mathbb{C} , \mathbb{H} ou \mathbb{O} (n=1,2,4,8). Para a construção em \mathbb{R}^4 (n=2), exploramos a folheação da esfera S^3 por toros T^2 através de uma parametrização natural dada pela fibração de Hopf:

$$(\eta, \xi_1, \xi_2) \mapsto (e^{i\xi_1} \sin \eta, e^{i\xi_2} \cos \eta)$$

em que $\eta \in [0, \frac{\pi}{2}]$ e $\xi_i \in [0, 2\pi[, \ i=1, 2.$

O procedimento de distribuição de pontos ocorre em duas etapas:

1. Variando η , escolhemos toros $T_\eta\cong S^1_{\sin\eta}\times S^1_{\cos\eta}$ mutuamente distantes (na métrica euclidiana em \mathbb{R}^4) de no mínimo d. Para isso, usamos o fato de que a distância mínima entre T_η e $T_{\eta'}$ em S^3 coincide com a distância entre os pontos $e^{i\eta}$ e $e^{i\eta'}$ no primeiro quadrante de S^1 .

^{*}Bolsista de Iniciação Científica FAPESP 16/05126-0.

Figura 1: Fibração de Hopf e distância entre toros.

2. Para cada toro, escolhemos n círculos internos, cada um com m pontos equidistantemente distribuídos, de forma que círculos subsequentes tenham uma defasagem de ângulo $\psi_m=\frac{\pi}{m}$ na distribuição dos pontos.

A distribuição em \mathbb{R}^4 , baseada na fibração de Hopf $h:S^3\to S^2$, é usada como caso base para a distribuição nas dimensões \mathbb{R}^8 e \mathbb{R}^{16} . Nestas, usamos um procedimento iterativo em que a esfera S^{2n-1} é folheada por variedades $S^{n-1}_{\sin\eta}\times S^{n-1}_{\cos\eta}$ (n=4,8). Em cada esfera S^{n-1} , é feita a distribuição da dimensão anterior, a menos de escala.

Em \mathbb{R}^4 , verificamos que a constução desenvolvida coincide com a de camadas de toros planares (TLSC) e que as duas têm desempenho semelhante e superior ao de outros métodos conhecidos [1][2]. Em \mathbb{R}^8 e \mathbb{R}^{16} , foi feito um comparativo com a implementação do método TLSC apresentada em [4]. Nosso desempenho é superior para um certo intervalo de d, notadamente para distâncias muito pequenas. Um aspecto importante é a construtibilidade dos códigos apresentados para uma distância mínima fixada. A etapa atual do trabalho consiste em melhorar o procedimento, de forma a ultrapassar o desempenho comparativo em todas as distâncias avaliadas.

Tabela 1: Códigos esféricos em $\mathbb{R}^4, \mathbb{R}^8, \mathbb{R}^{16}$ para algumas distâncias mínimas [1][4]

Dimensão	d	Hopf	TLSC
\mathbb{R}^4	0, 4	280	308
	0, 2	2.656	2.718
	0, 1	22.016	22.406
\mathbb{R}^8	0, 4	8.608	14.336
	0, 2	$2,28 \times 10^6$	$4,16 \times 10^5$
	0, 1	$3,76 \times 10^{8}$	$7,11 \times 10^6$
\mathbb{R}^{16}	0, 4	$1,25 \times 10^{6}$	$1,23 \times 10^7$
	0, 2	$6,95 \times 10^{10}$	$8,43 \times 10^9$
	0, 1	$4,17 \times 10^{15}$	$3,14 \times 10^{12}$

Referências:

[1] TOREZZAN, C.; COSTA, S. I. R.; VAISHAMPAYAN, V. Constructive spherical codes on layers of flat tori. **IEEE Transactions on Information Theory**, v. 59, n. 10, p. 6655-6663, out. 2013.

- [2] TOREZZAN, C. **Códigos esféricos em toros planares**. 115 p. Tese (Doutorado em Matemática Aplicada) Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, 2009.
- [3] LYONS, D. W. An elementary introduction to Hopf fibration. **Mathematics Magazine**, v. 76, n. 2, p. 87-98, abr. 2003.
- [4] NAVES, L. R. B. **Códigos esféricos em canais grampeados**. 147 p. Tese (Doutorado em Matemática Aplicada) Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, 2016.