SOSC 4300/5500: Prediction Evaluation

Han Zhang

Feb 22, 2022

Outline

Logistics

Evaluation

Bias-Variance Trade-off

Regularization

Train/Test Split

Summary

Logistics

How to compare different predictions?

- "Soviet Union will collapse one day"
 - There is only one prediction; our prediction is ultimately either right or wrong
 - It's nearly always to be true (because there is no time constraint!)
- In computational social sciences/modern data sciences, usually the prediction goals are precise and falsifiable (Hofman, Sharman and Duncan, 2017)
- One way to make falsifiable is to add scope conditions and making the unit to be smaller
- E.g., we make 10 predictions, adding constraint of time
 - Will Societ Union collapse in 1980? Yes or No?

 - Will Societ Union collapse in 1989? Yes or No?

Prediction evaluations for continuous outcomes

- It's common to use \hat{Y} to denote the predicted value of Y
- For continuous outcomes:
- R²: for linear regression
 - The larger the R², the better the model
- MSE (mean squared error): $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
 - The most widely used metric
 - The smaller the MSE, the better the model
 - Sometimes we also use RMSE = \sqrt{MSE}
 - For regression: $R^2 = 1 MSE/var(Y)$
- MAE (mean absolute error): $\sum_{i=1}^{n} |Y_i \hat{Y}_i|$

Prediction evaluations for categorical outcomes

- For categorical outcomes, evaluation is more complex
- Cross-entropy loss is a common choice (used by some decision tree algorithms and some deep learning)
 - Also called log-loss or entropy loss
- For binary classification:

$$-\sum_{i=1}^{N} y_i \cdot \log P(\hat{y}_i = 1) + (1 - y_i) \cdot \log (1 - P(\hat{y}_i = 1))$$

Prediction evaluation for categorical outcomes

- Another set of evaluation is based on tabulating predictions and actual values and is more intuitive
- Let us assume that there are 10,000 students/employees at HKUST, and there are 10 infected cases
- ullet We has an algorithm predicting COVID infection (positive =1 vs. negative =0)
- We found that 99% of our predictions are correct. Yeah!
- But wait, is that good enough?

Prediction evaluations for categorical outcomes

- In fact, for any classification task, one of the simplest baseline is to predict every data point as belonging to the majority class
- Here, we know most people are not affected
- So the simplest baseline just predict that every one is negative
- What's the accuracy for this simplest baseline prediction?
- Accuracy = 9990 / 10000
- If class is imbalanced, it is very easy to achieve a high accuracy by predicting the majority class all the time
 - But it's misleading

Prediction evaluations for categorical outcomes

Actual

		1/positive	0/negative
Prediction	1/positive	True Positive (TP)	False Positive (FP)
	0/ negative	False Negative (FN)	True Negative (TN)

- It's better to use confusion matrix
- Each cell is the number of observations fall into the corresponding category
- accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ precision = $\frac{TP}{TP+FP}$
- - Interpretation: what proportion of predicted positives are actual positive?
- recall = $\frac{TP}{TP+FN}$
 - interpretation: what proportion true positives are identified by predictions?

Evaluation

Simplest baseline: majority class

Actual

		1/positive	0/negative
Prediction	1/positive	True Positive (n = 0)	False Positive (n = 0)
	0/negative	False Negative (n = 10)	True Negative (n = 9900)

- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
 - $\frac{9990}{10000} = 99.9\%$
- precision = $\frac{TP}{TD + FD}$
 - $\frac{0}{0+0}$ = not defined
- recall = $\frac{TP}{TP+FN}$
 - $\frac{0}{0.110} = 0\%$
- From precision/recall, we see that this prediction is very bad, which suggests that precision/recall can recognize this majority guess as a bad prediction

Evaluation

Case 1: high precision/ low recall

Actual

1/positive 0/negative True Positive False Positive 1/positive (n = 5)(n = 0)Prediction False Negative True Negative 0/negative (n = 5)(n = 9990)

- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$ $\frac{5+9990}{10000} = 99.95\%$
- precision = $\frac{TP}{TP+FP}$ • $\frac{5}{5+0} = 100\%$
- recall = $\frac{TP}{TP+FN}$ • $\frac{5}{5.15} = 50\%$
- So every predicted infected case is indeed infected
- But we missed 50% of actual infected cases

Case 2: high recall/low precision

Actual

		1/positive	0/negative
Prediction	1/positive	True Positive (n = 9)	False Positive (n = 4)
	0/negative	False Negative (n = 1)	True Negative (n = 9986)

- We lower the threshold to be considered as infection case
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
 - $\frac{9+9986}{10000} = 99.95\%$; the same
- precision = $\frac{TP}{TP+FP}$
 - $\frac{9}{9+4} = 69.23\%$
- recall = $\frac{TP}{TP+FN}$

Evaluation

- $\frac{9}{911} = 90\%$
- Our prediction captures 90% of actual infected cases
- But less than 70% predicted cases are actually infected

Precision-recall trade-off

- In evaluting perdiction performances for categorical outcome, do not use accuracy
- Instead, use precision and recall
- Depending on tasks, we may emphasize one or the other
- An ideal algorithm will have both high precision and recall
- In real life, one always comes at the cost at the other
- This is called precision-recall trade-off
- [in class activities]: can you think of cases when high precision is more important? Cases when high recall is more important?

- Many ML algorithms give you predicted probability, and then transform this probability into a binary prediction
- If $P(Y=1) > \phi$; predicted probability is larger than a threshold
 - Predicted value $\hat{Y} = 1$
- If $P(Y = 1) <= \phi$;
 - $\hat{Y} = 0$

Evaluation

- Large threshold ϕ -> high precision
- Small threshold ϕ -> high recall
- Often software will choose threshold to be 0.5, but you can generate new predictions based on whether you want high precision or high recall

Precision-recall curve

- Precision-recall curve is a way to visualize the trade-off
- Imagine you choose many different thresholds
- For each thresholds, obtain binary predictions, and calculate precision/recall
- Then plot the precision against recall

Algorithm 2 is better than 1

- If you do not have a specific reason preferring one or the other
- F1 score is a single-number measure of how good your predictions are
 - 2 * precision*recall precision+recall

Evaluation

False positive and false negative rates

Actual

		1/positive	0/negative
Prediction	1/positive	True Positive (TP)	False Positive (FP)
	0/ negative	False Negative (FN)	True Negative (TN)

- True positive rate = recall: $\frac{TP}{TP+FN}$
- False negative rate: 1 true positive rate = $\frac{FN}{TP+FN}$
 - For COVID example, what percentage of people were infected but predicted as not
- False positive rate: $\frac{FP}{FP+TN}$
 - For COVID example: what percentage of people were not infected but predicted as infected

Evaluation

ROC curve

- Similar to precision-recall curve case, vary decision thresholds and obtain false positive and false negative rates
- Then plot TPR = 1 FNR against FPR

- Similar to F1 score is a single-number measure based on precision-recall curve
- Area under the curve (AUC) is a single-number measure based on ROC curve
- Larger AUC -> better prediction performance

ROC vs Precision/Recall

- Precision-recall curve and ROC curve are much better depiction of algorithm performances than ROC curve
- Use ROC curve, if you care both positive and negatives
- Use precision/recall curve, if you care one class more than the other
 - e.g., you care about positive class more than negative class
- Use precision/recall curve, if your data is highly imbalanced

Evaluation

From binary to categorical

- If you have more than 2 categories
- Calculate precision/recall; FPR/FPR for each category
- Macro-average: treat each category as the same; take the average precision of each category
 - can be problematic if you have imbalanced data.
- Micro-average: take into consideration of the size of each category

Summary of evaluation characteristics

 Jake M. Hofman, Amit Sharma, and Duncan J. Watts, Prediction and explanation in social systems, Science 355 (2017), no. 6324, 486–488

Bias Variance Trade-Off

 Typically, more complex prediction algorithm gives less biased predictions, but their variance is also huge

- One implication of high prediction algorithm variance is that it does not generalize well on new data that have not been seen by the ML algorithm
 - When this occurs, people call this overfitting
 - It means that your algorithm learn training data very well, but it is highly unstable on new data and can make a lot of errors
 - Intuition: you remember every thing taught in a class so well, but professor gives you some new exercises you have not seen and your knowledge does not handle new questions

- We used Y = sin(X) (the green curve) to generate some data (in blue dots)
- We use a polynomial regression with only one variable X for prediction:
 - Polynomial regression: keep adding higher order terms to independent variables
- When M is larger, we get models that fit the data better and better

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + X^M$$

Bias Variance Trade-off (cont'd)

- M = 1, OLS gives lots of estimation bias
- M = 9, the model fits the data so well, but it is highly sensitive to small changes in observations
- M = 3, it achieves a good balance between estimator bias and estimator variance

Bias Variance Trade-off

- There are typically two ways to achieve bias variacne trade-off
 - One focus on algorithm side, and the other focus on data side
- Regularization: explicitly make the model less complex to balance bias and variance
 - Note that this is not commonly used in linear regression: people often tell you to add as much variables as possible
- Use train-test split:
 - Test your model's performance on new data.
 - Evidence-based argument:
 - There are many good algorithms to choose from; each of them claims that they have some good properties
 - The ultimate evaluation is how an algorithm performs on new data that the algorithms have never seen before.

•000

Decision Tree: Bias vs Variance

- A decision tree, without any restrictions, can be quite complex
- We can always make a very complex tree by:
 - Try your best to make every single leaf contains only one Y
- Bias-variance trade-off:
 - Complex trees fit the data nearly perfect (low predictor MSE)
- We need to regularize to make tree simpler
 - This is the same principle of LASSO/Ridge
 - To make better predictions, we sometimes have to make the algorithm less complicated

12.37

12.86 12.38

Latitude < 33.725

11.92

Latitude < 34.105

Latitude < 33.59

11.63

Longitude < -117.165

12.38 11.95

Regularization 0000

Random Forest: regularization

- Bagging: simply fit many trees over the entire data
- The key innovation of random forests:
- For each sample from the original training data, randomly select m < p variables, and grow a tree;
 - A common choice: $m = \sqrt{p}$
- In other words, we just force p m predictors to be non-relevant each time

Google Flu Trends Example

- Principle: use new data to evaluate your algorithm
- Training data: CDC counts and search queries from 2003 to 2007
 - Training Procedure:
 - 1. Select a model: e.g., linear regression, CDC counts $\sim \beta \times$ (Google search queries)
 - 2. Training (fitting) model: obtain the value of regression coefficient β
- New data: CDC counts and search queries in 2008
 - Evaluating procedures:
 - 1. calculate predicted CDC counts, based on β and search gueries in 2018
 - 2. compare actual CDC counts in 2008, and predicted CDC counts from the above
- Evidence-based way of choosing the best model:
 - if you have another algorithm, just test it on the exact same new data
 - If the new algorithms gives better performance, then use the new algorithm

Train/test split

- Time-series data allow very natural way to choose new data
- Train/test split is an alternative way if you do not have time-series data
- Typically, you don't use all of your data to train an algorithm
 - Again, very different from running linear regression, where you almost always use all data in your regression
- Instead, you split your data into two parts (typically 80%/20% or 90%/10%)
 - training data
 - (out-of-sample) test data
- Train your model only with training data
- And evaluate your model with test data
 - With precision/recall or ROC curves
- During training, ML algorithm must not see the test data

Train/test split

- Test error (e.g., MSE or FPR/FNR) typically is larger than training error
- When test error begins to increase, overfitting occurs
- Error/performance metrics based on test data gives more faithful evaluation of how the algorithm will perform in real-world, unseen new data

- Sometimes people do a more complex three-way split to choose tuning parameters
- Say how can we choose the regularization parameter λ in LASSO?
- Further split your training data into:
 - Training data (new)
 - Validation data
- Train your data, compare different values of λ , and evaluate which choice of λ gives the best performance on your validation data
- When you have finalized on one particular choice of λ , use the test data to make the final evaluation of your algorithm

Train/validation/test split

Cross-validation

- Imagine you have chosen a particular three-way split:
 - 70% as training
 - 10% as validation
 - 20% as test
- Sometimes the concern is that you the particular 70% may be different from the entire sample
- A more complex and popular approach is to use K-fold cross validation

Cross-validation

• K-fold cross validation (below example shows K = 5)

Summary

- ML algorithm evaluations:
 - Continuous outcome: MSE
 - Binary: precision/recall; false positive/false negative rates; ROC curve
 - No more "this is the best, magic, computer algorithm that does blah blah"
 - Instead, present empirical evidence
- Bias-variance trade-off
 - Definition; overfitting
 - Regularization
 - Train-test split
 - Allows more faithful evaluation of prediction performance
 - Allow you to select tuning parameters
 - Allow you to select the best algorithm