Book of Proof: Part IV, Relations, Functions, and Cardinality

January 17, 2018

Relations

$$5 < 10$$
 $3 < 12$ $99 < 999$
 $5 \nleq 5$ $12 \nleq 3$ $10 \nleq 0$

Relations

$$5 < 10$$
 $3 < 12$ $99 < 999$ $5 \nleq 5$ $12 \nleq 3$ $10 \nleq 0$

$$R = \{(5, 10), (3, 12), (99, 999), \ldots\}$$

 $(5, 10) \in R \quad (3, 12) \in R \quad (99, 999) \in R$
 $(5, 5) \notin R \quad (12, 3) \notin R \quad (10, 0) \notin R$

Relations

Definition 11.1 A **relation** on a set A is a subset $R \subseteq A \times A$. We abbreviate $(x, y) \in R$ as xRy.

Relations in Pictures

Let
$$B=\{0,1,2,3,4,5\}$$
 and
$$U=\{(1,3),(3,3),(5,2),(2,5),(4,2)\}\subseteq B\times B$$

Properties of Relations

Definition 11.2 Suppose R is a relation on set A.

1. *R* is **reflexive** if xRy for every $x \in A$.

$$\forall x \in A, xRx$$

2. *R* is **symmetric** if xRy implies yRx for all $x, y \in A$.

$$\forall x, y \in A, xRy \Rightarrow yRx$$

3. R is **transitive** if xRy and yRz imply xRz.

$$\forall x, y, z \in A, ((xRy) \land (yRz)) \Rightarrow xRz$$

Pictures of Relation Properties

1. A relation is reflexive if for each point x ...

• x ...there is a loop at x:

A relation is symmetric if whenever there is an arrow from x to y ...

Mathematical interpolation is an arrow from y back to x:

where y is also an arrow from y back to y:

A relation is ...there is also transitive if an arrow from whenever there are x to z: arrows from x to yand y to z ... 3. (If x = z, this means ...there is also that if there are a loop from arrows from x to yx back to x.) and from y to x ...

Relations on \mathbb{Z}

Relations on \mathbb{Z} :	<	≤	=	I	ł	¥	
Reflexive Symmetric Transitive	no no yes	yes no yes	yes	yes no yes		no yes no	

Equivalence relations

Definition 11.3 A relation R on a set A is an **equivalence relation** if it is symmetric, reflexive, and transitive.

Equivalence relations

Definition 11.3 A relation R on a set A is an **equivalence relation** if it is symmetric, reflexive, and transitive.

Definition 11.4 Suppose R is an equivalence relation on set A. Given any element $a \in A$, the **equivalence class containing** a is the subset $\{x \in A : xRa\}$ of A consisting of all elements of A that relate to a.

This set is denoted [a]:

$$[a] = \{x \in A : xRa\}$$

Pictures of equivalence relations

Relation R	Diagram	Equivalence classes (see next page)
"is equal to" (=)	<u>_1</u> <u>1</u> <u>2</u>	$\{-1\}, \{1\}, \{2\},$
$R_1 = \{(-1, -1), (1, 1), (2, 2), (3, 3), (4, 4)\}$	₫ ₫	{3}, {4}
"has same parity as" $R_2 = \{(-1,-1),(1,1),(2,2),(3,3),(4,4),\\ (-1,1),(1,-1),(-1,3),(3,-1),\\ (1,3),(3,1),(2,4),(4,2)\}$		{-1,1,3}, {2,4}
"has same sign as" $R_3 = \{(-1,-1),(1,1),(2,2),(3,3),(4,4),\\ (1,2),(2,1),(1,3),(3,1),(1,4),(4,1),\\ (2,3),(3,2),(2,4),(4,2),(1,3),(3,1)\}$		{-1}, {1,2,3,4}
"has same parity and sign as" $R_4 = \{(-1,-1),(1,1),(2,2),(3,3),(4,4),\\ (1,3),(3,1),(2,4),(4,2)\}$	© 0 0	$\{-1\}, \{1,3\}, \{2,4\}$

Congruence as equivalence relations

Example 11.8 proved that $\equiv \pmod{n}$ is an equivalence relation.

$$xRy = \{(x,y) : x \equiv y \pmod{3}\}$$

$$[0] = \{x \in \mathbb{Z} : x \equiv 0 \pmod{3}\}$$

$$= \{x \in \mathbb{Z} : 3 \mid (x-0)\} = \{x \in \mathbb{Z} : 3 \mid x\}$$

$$= \{..., -6, -3, 0, 3, 6, 9, ...\} = [3] = [6]$$

$$[1] = \{x \in \mathbb{Z} : x \equiv 1 \pmod{3}\}$$

$$= \{x \in \mathbb{Z} : 3 \mid (x-1)\}$$

$$= \{..., -5, -2, 1, 4, 7, 10, ...\} = [4] = [7]$$

$$[2] = \{x \in \mathbb{Z} : x \equiv 2 \pmod{3}\}$$

$$= \{x \in \mathbb{Z} : 3 \mid (x-2)\}$$

$$= \{..., -4, -1, 2, 5, 8, 11, ...\} = [5] = [7]$$

Partitions

Definition 11.5 A **partition** of a set A is a set of non-empty subsets of A, such that the union of all the subsets equals A, and the intersection of any two different subsets is \emptyset .

$$\{[0],[1],[2]\}$$
 under the relation $\equiv \pmod{3}$, is a partition of \mathbb{Z} :

$$\left\{ \left[0\right],\left[1\right],\left[2\right]\right\} =\left\{ \left\{ ...,0,3,6,...\right\} ,\left\{ ...,1,4,7,...\right\} ,\left\{ ...,2,5,8,...\right\} \right\}$$

Equivalence Relations and Partitions

Theorem 11.2 Suppose R is an equivalence relation on set A. The the set $\{[a]: a \in A\}$ of equivalence classes of R forms a partition of A.

Conversely, any parition of A describes an equivalence relation R where xRy if and only if x and y belong to the same set in the parition.

The Integers Modulo *n*

$$\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}$$

Relations Between Sets

Definition 11.7 A **relation** from a set A to a set B is a subset $R \subseteq A \times B$.

We abbreviate the statement $(x, y) \in R$ as xRy.

Functions