Teduáska 2 - algebraické rovnice

-> vidéli joue, že implicitui R-K metody podrebují resit Sonstavu rovnic:

Soustavu rovnic:

$$\begin{pmatrix}
k_1 \\
\vdots \\
k_5
\end{pmatrix} = \begin{pmatrix}
f(t+c_iT_i,y(t)+T\sum_{i=1}^{j}a_{ij}k_i) \\
f(t+c_sT_i,y(t)+T\sum_{i=1}^{j}a_{sij}k_i)
\end{pmatrix}$$

$$\begin{pmatrix}
k_1 \\
\vdots \\
k_2 \\
\vdots \\
k_3 \\
\vdots \\
k_4 \\
\vdots \\
k_5 \\
\vdots \\
k_5$$

$$\Leftrightarrow \vec{k} = G(\vec{k}) \Leftrightarrow F(\vec{k}) = \vec{b}$$

.... tev. soustava algebraich d'or rounic.

Fje nelinearni (tj. neplati, že F(xv+Bw) = xF(v)+BF(w)) => nelinearm alg. rce

Fje linearn' (j. taptviw: F(xv+Bw) = xF(v) + BF(w))

=) linearmalg. rce

Napor:

linearm:
$$ax - b = 0$$
 ... ne bo $8y8 + em$ $\begin{cases} a_4 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{cases} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_4 \\ b_2 \\ b_3 \end{pmatrix}$

m) pro znamé aij & bi

Melinearm: $x^5 - 2x^4 + 3x^2 - 4x = 12$ webo 8ystem $\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} x_n^2 - 5 + x_2 \\ sin(x_1 \cdot x_2) \\ x_n^2 - e^{x_3} \end{cases}$

Jake systémy rovnic « vime" jak résit?

- · linearni mo viz Lingebra I vine co 8 jak délat
- · polynomia lui -> v R/C ¿vlaidneme kvadratické à kubické
- · Abel-Galois: neexistrije explicitur formulka pro koreny polynomi stupne 25 «V radikalech".
- Umeruma: † polynom J expl. vyjádrení koření skrze funkce
 me konečných rad maticových
 exponenciál
 Obecné: formule co existují "storo mitaly nejsou použitelné"

Costin ? aproximujene más systém linearman?

Dobrá idea, ale linearm'aproximace (j. aprox. funkce pomocí porímby) je vetsimon dost nepresna. Napri. u Taylora vnime, že je presna jem lokálně.

Tudíž ne lze očekávat, že takto získaná aproximace je dobrá/přesná, pokud jsem tu nelineární rovnici neaproximoval (náhodou" nž blízko přesného řesemí F(x)=0.

=) idea č. 2: budene postupovat iterativné.

f: αργοχίνημης $F(\cdot)$ okolo nějakého bodu xo jako $a_0 \cdot x + b_0$ (= linearm' aprox.) α majdu aprox, ko fere $F(\cdot)$ jako $χ_1 := \frac{-5_0}{a_0}$. Pak aproxίνημης $F(\cdot)$ okolo $χ_1$ jako $a_1 x + b_1$ α majdu 2. aprox ko fere $F(\cdot)$ jako $x_2 := \frac{-5_1}{a_1}$. A takhle po kračujene.

m) Xo, X1, X2, X3, --- konvergujl & jednomn z Fesen F(x) = D

Hatematideé odvozem o srazku výše: $F(\vec{x}) = F(\vec{x_0}) + \left(\frac{d}{d\vec{x}}F\right)(\vec{x_0}) \cdot (\vec{x} - \vec{x_0}) + O(\|\vec{x_0} - \vec{x}\|^2)_{\kappa \rightarrow 7\kappa_0}$ --- Taylorus vozvoj $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \times F(\vec{x}) = \begin{bmatrix} f_{1}(\vec{x}) \\ f_{1}(\vec{x}) \\ \vdots \\ f_{d}(\vec{x}) \end{bmatrix} \quad \text{mm} > \begin{pmatrix} \frac{d}{d\vec{x}} F \end{pmatrix}(\vec{x}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\vec{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{1}}(\vec{x}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\vec{x}) & \cdots & \frac{\partial f_{d}}{\partial x_{d}}(\vec{x}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{d}}{\partial x_{1}}(\vec{x}) & \cdots & \frac{\partial f_{d}}{\partial x_{d}}(\vec{x}) \end{bmatrix} \quad \text{matrix of } F$ Jakobiánská matrice F=> místo $\vec{F}(\vec{x}) = 0$ budeme resit: =: $\vec{J}(\vec{x}) = \vec{J}_x$ $\widehat{f}(\widehat{x_0}) + \widehat{J}_{x_0}(\widehat{x} - \widehat{x_0}) = 0 \quad (\rightarrow) \quad \widehat{J}_{x_0}\widehat{x} = \widehat{J}_{x_0}\widehat{x_0} - \widehat{f}(\widehat{x_0}) \quad (\rightarrow)$ C-) $\vec{J}_{k_0} \times = \vec{J}_0$ (-) $\vec{J}_{k_0} \times = \vec{J}_0 \times \vec{J}_0 \vec{$ • \vec{x}_{z} rezentent jako resent soustavy $\vec{J}_{x_{1}}\vec{x}=\vec{b}_{1}$ (-) $\vec{z}_{2}=\vec{x}_{1}+\vec{v}$ & \vec{v} je resent $\vec{J}_{x_{1}}\vec{v}=-\vec{F}(\vec{x}_{1})$ Jak analyzovat konvergenci? mejme koren x*, tj. F(x*) = O. Pak v k-tem kroku Newtonovy metody platí: Z definice xen: Jx xen - Jx = -F(xe) (xe xen = Jx F(xe) (-) $\vec{X}_{\underline{k}} - \vec{X}^* = \vec{X}_{\underline{k}} - \vec{X}_{\underline{k}+1} + O(||x^* - x_{\underline{k}}||^2)$ (-> ||x*-xk1| = (||x*-xx1|2)xk->x* (-) 3(+0: lim ||x*-x_1||2 = (m, tw. kvadratické konvergence -> 1 iterace zmensi chybu kvadraticky (mpr. 0.1-> 0.01-> (0.000) Kely to muite selhat? · kdye Jxx je singulární -) pak xxxx nemes existovat · mirže se stat, že dostanene poslouprost x6, x1, x2, ... Etera ue konverguje jak & skat J_{xk}?

jak vyresit ten linearmi system J_{xx}x = b_k?

co katy z nekonvergu jeme?