

Workshop 2

BUSA90542 Machine Learning and AI for Business

Copyright: University of Melbourne

Entropy

 Entropy is a measure of the average information produced by a random process, or contained within a random sample.

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

- The set {A,B,C,A,A,A,A,A} has **low entropy**: low uncertainty and high purity
- The set {A,B,C,D,B,E,A,F} has **high entropy**: high uncertainty and low purity

Entropy

 There are 6 animals, 3 dogs and 3 ducks. Pick one at random, and you can ask a true-false question about it.
 Then you need to identify whether it is a duck or a dog.
 What question will you ask?

	Colour	Num of feet	Category
1	Black	4	Dog
2	Yellow	2	Duck
3	White	2	Duck
4	White	2	Duck
5	Yellow	4	Dog
6	Black	4	Dog

Information gain

- Commonly used split criterion in decision tree
- Based on entropy

$$IG(Y,X)=H(Y)-H(Y|X)$$

$$H(Y|X) = \sum_{x} p(x) H(Y|X=x)$$

White	Dog	Duck	(Dog :3 I	Duck :3
Т	0	2	White=T	White = F
F	3	1	vviiite=1	Wille - F
		(Dog :0 Duck :2	Dog :3 Duck :1
			Jog to Jack II	Jog to Buck 12

Decision Tree

Three most popular decision tree algorithms

Outlier detection	Pruning strategy	Supports missing values	Supported attribute types	Splitting criterion	Algorithm
Susceptible to outliers	None	No	Categorical	Information gain	ID3
Handles outliers	Cost complexity pruning	Yes	Categorical and numeric	Gini or twoing	CART
Susceptible to outliers	Error based pruning	Yes	Categorical and numeric	Gain ratio	C4.5

• In sklearn, the default decision tree is CART, you can change the criterion to "entropy" to get a ID3.

sklearn

Import training algorithm from sklearn

```
from sklearn.dummy import DummyClassifier
```

Define the model, setup the hyper parameters

```
ds_clf = DummyClassifier(strategy="most_frequent")
```

- Fit the model with the training data ds_clf.fit(X, Y)
- Make prediction
 Y_predict = ds_clf.predict(X)
- Evaluate the model ds_clf.score(X, Y)

Bank

- 1. Define the goal, understand the task.
 - The data is related with direct marketing campaigns (phone calls)
 of a Portuguese banking institution. The classification goal is to
 predict if the client will subscribe a term deposit (variable y).[1]
 - Supervised or unsupervised?
 - Classification or Regression?

• [1] https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

Bank

- 2. Understand and preprocess the dataset.
 - How many features in this dataset?
 - How many instances in this dataset?

	age	job	marital	education	default	balance	housing
0	58	management	married	tertiary	no	2143	yes
1	44	technician	single	secondary	no	29	yes
2	33	entrepreneur	married	secondary	no	2	yes
3	47	blue-collar	married	unknown	no	1506	yes
4	33	unknown	single	unknown	no	1	no

- Preprocess
 - We can't directly feed features like job into the model

Bank

	age	job	marital	education	default	balance	housing
0	58	management	married	tertiary	no	2143	yes
1	44	technician	single	secondary	no	29	yes
2	33	entrepreneur	married	secondary	no	2	yes
3	47	blue-collar	married	unknown	no	1506	yes
4	33	unknown	single	unknown	no	1	no

- Preprocess
 - We can't directly feed features like **job** into the model
 - one-hot encode

Size	Colour	Υ
10	Red	1
4	Green	0
2	Blue	0
5	Blue	1

Size	Red	Green	Blue	Υ
10	1	0	0	1
4	0	1	0	0
2	0	0	1	0
5	0	0	1	1