Table of Contents

Introduction	1.:
Let's Go!	1.3
S: Single Responsibility	1.3
O: Open/Closed	1.4
L: Liskov Substitution	1.5
I: Interface Segregation	1.0
D: Dependency Inversion	1.7

SOLID Design Principles In Common Lisp

Learn how to apply SOLID design principles with Common Lisp and the powerful CLOS system.

This book is released under the Creative Commons Attribution-ShareAlike 4.0 International License by Momozor.

If you find any problem, want to suggest an improvement or commit changes to this book, please visit this Github repository https://github.com/common-lisp-reserve/solid-design-principles-in-common-lisp

Let's Go!

What is SOLID?

- Single Responsibility Principle
- Open/Closed Principle
- Liskov Substitution Principle
- Interface Segregation Principle
- Dependency Inversion Principle

S: Single Responsibility

A class should have one, and only one, reason to change.

Bad

```
(defclass truck ()
  ((brand
    :initarg :brand
    :accessor brand)))

(defmethod get-brand ((self truck))
    (brand self))

(defmethod set-brand ((self truck) new-brand)
    (setf (brand self) new-brand))

(defmethod send-detail ((self truck) customer-id)
    "send truck's brand detail to customer..")
```

Good

```
(defclass truck ()
  :initarg :brand
  :accessor brand)))
(defmethod get-brand ((self truck))
 (brand self))
(defmethod set-brand ((self truck) new-brand)
 (setf (brand self) new-brand))
(defclass detail-sender ()
 ((customer-id
   :initarg :customer-id
   :accessor customer-id)))
(defmethod get-customer-id ((self detail-sender))
 (customer-id self))
(defmethod set-customer-id ((self detail-sender) new-customer-id)
   (setf (customer-id self) new-customer-id))
(defmethod send-detail ((self detail-sender))
 (send (customer-id self)))
```

O: Open/Closed

 $Software\ entities\ (classes,\ modules,\ functions,\ etc)\ should\ be\ open\ for\ extension,\ but\ closed\ for\ modification.$

L: Liskov Substitution

Let $\Phi(x)$ be a property provable about objects x of type T. Then $\Phi(y)$ should be true for objects y of type S where S is a subtype of T.

L: Interface Segregation

Clients should not be forced to depend upon interfaces that they do not use.

D: Dependency Inversion

- High level modules should not depend upon low level modules. Both should depend upon abstractions.
- Abstractions should not depend upon details. Details should depend upon asbtractions.