ECCS-3631 Networks and Data Communications

Module 2-1 Network Layer, Routing Fundamentals, Link State Routing Algorithm

Dr. Ajmal Khan

Routing Goal

Routing goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

```
path: sequence of routers packets will traverse in going from given initial source host to given final destination host "good": least "cost", "fastest", "least congested"
```

Graph abstraction of the network

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$, $c(u,v) = 2$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Review Question

- ➤ What is the least-cost path between u and z?
- ➤ How to find that least-cost path?

The least-cost path between u and z is 4.

Routing Algorithms are used to find that least-cost path.

Network Routing: Algorithms & Protocols

Routing Algorithms

Link-State (Dijkstra)

- each router knows complete topology
 & link cost information
- Run routing algorithm to calculate shortest path to each destination

Distance-Vector (Bellman-Ford)

- Each router knows direct neighbors
 & link costs to neighbors
- Calculate the shortest path to each destination through an *iterative* process *based on the neighbors distances* to each destination

Routing Protocols

- define the format of routing information exchanges
- define the computation upon receiving routing updates
- network topology changes over time, routing protocol must continuously update the routers with latest changes

Link-State Routing Algorithm

Dijkstra's Algorithm

net topology, link costs known to all nodes

- accomplished via "link state broadcast"
- all nodes have same info
 computes least cost paths from
 one node ('Source') to all other
 nodes
 - Creates forwarding table for that node

iterative: after k iterations, source knows least cost path to k destinations

notation:

c(x,y): link cost from node x to y; (∞ if not direct neighbors)

D(v): current value of cost of path from source to destination v

p(v): predecessor node along
path from source to v (neighbor
of v)

N': set of nodes whose least cost path already known

Dijkstra's Algorithm: Example

Computer the short-path from u to all network nodes using Dijkstra's Algorithm

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2, u	3,y			4,y
3	uxyv 🗸		3,y			4,y
4	uxyvw ←					4,y
5	uxyvwz 🗲					

Dijkstra's Algorithm: Example

resulting shortest-path tree from u:

resulting forwarding table at u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's Algorithm, Discussion

- > Algorithm complexity: n nodes
- right each iteration: need to check all nodes, w, not in N
- >n(n+1)/2 comparisons:
- >more efficient implementations possible, Distance-Vector Algorithm

Dijkstra's Algorithm: another example

Compute the shortest path from **z** to all network nodes,

using Dijkstra Algorithm.

Consider the following network. With the indicated link costs, compute the shortest path from A to all network nodes using Dijkstra Algorithm.

