Teorema del confronto

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (del confronto o dei carabinieri) Siano $\{a_n\},\{b_n\},\{c_n\}$ tali che $a_n \leq b_n \leq c_n$ almeno definitivamente, sia $a_n \to l$, $c_n \to l$. Allora $c_n \to l$.

Dimostrazione:

Per comodità nella dimostrazione si ometterà il termine definitivamente. Ogni equazione successiva sarà sempre intesa come vera definitivamente.

Dalle ipotesi $a_n \to l, c_n \to l$ si deduce che per ogni $\varepsilon > 0$ $l - \varepsilon < a_n < l + \varepsilon,$ $l - \varepsilon < c_n < l + \varepsilon$, e poichè $a_n \le c_n$

$$\forall \varepsilon > 0 \ l - \varepsilon < a_n \le c_n < l + \varepsilon \tag{1}$$

Ora si sfrutta l'ipotesi $a_n \leq b_n \leq c_n$, la (1) diventa:

$$\forall \varepsilon > 0 \ l - \varepsilon < a_n \le b_n \le c_n < l + \varepsilon \tag{2}$$

Ed "eliminando" i membri a_n e b_n

$$\forall \varepsilon > 0 \ l - \varepsilon \le b_n < l + \varepsilon \tag{3}$$

L'equazione (3) è vera definitivamente, quindi per la definizione di limite $b_n \to l$, che è ciò che volevamo dimostrare.

Corollario:

Sia $|a_n| \le b_n$ definitivamente. Allora se $b_n \to 0$ anche $a_n \to 0$.

Riscriviamo la tesi $|a_n| \leq b_n \iff -b_n \leq a_n \leq b_n$. Poichè $b_n \to 0$ anche $-b_n \to 0$, quindi possiamo applicare il teorema del confronto alle successioni $-b_n \leq a_n \leq b_n$, concludendo che anche $a_n \to 0$, ovvero la tesi.