ATLAS

Cloud Native Deployments of Bare-Metal High-Performance Al Workflows

George | Hao | Jing | Shawn | Shubham

MENTOR Chris | Mike | Ravi

Outline

- Quick Recap
- Architecture
- Last Sprint Progress
- Current Sprint & Burndown
- Performance Metrics
- OpenShift BuildConfig
- Deploy CPU-only Image on OpenShift
- Reflection (What we learned and what we didn't do well so far)

Quick Recap

High-speed

network

Power9 cpu

NVidia

V100 32GB

Brainstorming energy-saving hacks on Satori, MIT's new supercomputer

Three-day hackathon explores methods for making artificial intelligence faster and more sustainable.

Kim Martineau | MIT Quest for Intelligence February 11, 2020

Press Inquiries

RELATED

Admins

Admins & Researchers

Bare-metal env.

Cloud env.

Architecture latest

Last Sprint Progress

Last Sprint Progress

- Environment setup and logistics
 - X86-based OpenShift cluster
 - Blocked PowerPC-based OpenShift cluster
- Successfully ran the workflow in bare-metal env (Satori).
- Successfully containerized the Big-GAN workflow in local env.
 - Generated Dockerfile
 - Cpu-only, non-gpu

Current Sprint & Burndown

Sprint (2/12 ~ 2/26)

- Survey Performance metrics
- Implement script to measure Performance on Satori (In progress)
- Get familiar with OpenShift
- Run BigGAN with CPU on OpenShift
- Run BigGAN with GPU on OpenShift Were blocked until a week ago

Burndown Chart

Performance Metric

Performance Metrics

- CPU usage
- GPU usage
- Cost
- Time to completion

Fig: Comparison between bare metal and cloud

Performance Metrics: How do we measure?

- Linux utilities like 'top' give real time CPU stats, 'PBench' on OpenShift
- nvidia-smi NVIDIA System Management Interface program (GPU stats)
- Script these utilities, to check usage periodically

							_				No.
										3.56, 3.57	
										3 zombi	
											si, 0.0 st
										82201+buf	
K1B Swa	ap: 335543	68 T	ota	l, 335543	68 free	,		• used	. 364	182566+ avai	il Mem
PTD	USER	PR	NT	VIRT	RES	SHR	5	%CPU	%MFM	TTMF+	COMMAND
	evand		19					100.0		170:56.73	
	evand	39	19		2944			100.0		132:35.48	
	root									3540:37	
	addanki		0					7.5			
	cclin			113536				3.3		15:47.50	
115432	haft	20	0	0	0			3.3		0:00.10	nvidia-smi
115436	haft	20	0	0	0	0	Z	3.3	0.0	0:00.10	nvidia-smi
115345	aroras	20	0	121472	11136	4608	R	1.6	0.0	0:00.48	top
154282	haft	20	0	1250496	73472	22464	S	1.6	0.0	155:34.64	python
40703	zhwu	20	0	118272	8704	4672	S	0.7	0.0	18:47.72	watch
48003	cclin	20	0	10496	9408	3072	S	0.7	0.0	4:58.72	tmux
57303	branlesh	20	0	90752	7616	3520	S	0.7	0.0	302:47.81	nvidia-smi
88006		20	0	90752	7616	3520	S	0.7	0.0	305:45.71	nvidia-smi
	cheungb			8095360		137472					tensorboard
	haft			1333760		24512			0.0		
35826		20		1333952	77568			0.3	0.0		
	branlesh			48.5g					1.1		
46202		20		397056							wazuh-modulesd
	addanki	20		118144						61:46.43	
	addanki	20	0						0.0	27:57.86	
63643		20	0		0						gpfsSwapdKproc
109317		20	0			0			0.0		kworker/u321:2
109503	root	20	0	0	0	0	1	0.3	0.0	0:00.10	kworker/60:1

Fig: 'top' command to show process usage of computers resources

Computer	Storage	Network	Staff	Electricity	•
Cooling	Facility costs	Security	Time (!)	Resilience	
Measurement & Reporting	Financing effects	Insurance	Irrecoverable taxes	Procurement project	•
Application porting	Software licenses	User training & support	Documentation	Commissioning	
Warranty, support, maintenance	Decommissioning	Availability / throughput	Data migration	and more	

- Total Cost of Ownership (TCO):
 - Costs owning/operating HPC
 - Important to HPC owners/managers
 - o Always costs something
- Total Cost of Solution (TCS):
 - Costs incurred using HPC service for project
 - o Important to HPC users
 - May cost nothing

Fig: Common Costs to Measure in an HPC

NVID	IA-SMI	418. 8	37. 00	Driver	Version:	418. 87. 00	CUDA Versio	on: 10.1
GPU Fan	Name Temp	Perf				Disp. <i>H</i> Memory-Usage		
0 N/A	Tesla 40C	V100- P0	-SXM2 40W	On / 300W		:04:00.0 Off B / 32480MiF		E. Process
1 N/A	Tesla 42C			On / 300W		:03:00.0 Off B / 32480MiF		E. Process
Proc GPU	esses:	PID	Туре	Process	 name			GPU Memory Usage
GPU ==== 1		PID ===== 2034	Туре С	Process python	name ======			Usage ======= 31301M

Requesting exclusive node

Nodes are not fully utilized

Universal baseline (MIPS, CPU,

GPU)

Deploy AI workflows with

BuildConfig

ON

OpenShift

WHAT IS BuildConfig

AUTOMATIC

IMAGE BUILD DEPLOY UPDATE

YAML File

Similar

Docker Compose

ONLY for

OpenShift

CAN DO MORE

VARIOUS SOURCE SUPPORT

Normally want sources contain a **Dockerfile**

Workflow

OpenShift Power 9 UPLOAD

YAML File

Git Repo Image Inline **Dockerfile** Dockerfile Dockerfile **BUILD** BASE **IMAGE**

Docker Hub

New Image DEPLOY Al **CONTAINER**

Deploy CPU-only Image on OpenShift

Deploy CPU-only Image on OpenShift

Wrote Dockerfile that builds the image

```
# Install yum dependencies

# UN yum -y update; yum clean all

RUN yum -y install epel-release gcc openssl-devel bzip2-devel git python3:

# Add python requirements & install

# Utilize docker cache to prevent pip installing every time

ADD ./requirements.txt /python/requirements.txt

RUN pip3 install --upgrade pip && pip install -r /python/requirements.txt

# Add working directory

ADD ./ /BigGAN

WORKDIR /BigGAN

CMD cd /BigGAN

CMD /bin/sh run.sh
```

Pushed image to team DockerHub

Deploy CPU-only Image on OpenShift


```
sh-4.2$ cat /proc/cpuinfo | grep name
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
model name
                : Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
```

^ Cpu info for k-openshift platform

[^] Workflow runs successfully on k-openshift (x86) platform

Reflection

Reflection

- What we've learned in this sprint:
 - More about OpenShift (BuildConfig, Containerization ..etc)
 - Resource profiling tools on Linux system (pbench, top, nvidia-smi ..etc)
 - Backfill scheduling concept
- What can be improved:
 - Estimation/Overstretching (Assigned too much tasks)
 - Practice to break down task into smaller granularity
 - General cloud infrastructure knowledge
 - OpenShift documentation.... :((((

Demo (if time allows)