

# Latest developments of the airGR rainfall-runoff modelling R package: new calibration procedures and other features

Olivier Delaigue<sup>1</sup>, Guillaume Thirel<sup>1</sup>, François Bourgin<sup>2</sup>, Laurent Coron<sup>3</sup>

<sup>1</sup> IRSTEA – Hydrology Research Group (HYCAR) – Antony, France
 <sup>2</sup> IFSTTAR – GERS, EE – Nantes, France
 <sup>3</sup> EDF – PMC Hydrometeorological Center – Toulouse, France



GR is a family of lumped hydrological models designed for flow simulation at various time steps. The models are freely available in an R package called airGR (Coron et al., 2017a, 2017b). The models can easily be implemented on a set of catchments with limited data requirements.

# **GR** hydrological models

- Designed with the objective to be as efficient as possible for flow simulation at various time steps (from hourly to interannual)
- Warranted complexity structures and limited data requirements
- ➤ Can be applied on a wide range of conditions, including snowy catchments (CemaNeige snow routine included)



#### Plot diagnostics example (GR4J + CemaNeige)



## News since EGU 2017 – airGR 1.0.9.64 vs airGR 1.0.5.12

Plot diagnostics for simulation

- ► The Param\_Sets\_GR4J dataset was added. It contains generalist parameter sets for the GR4J model
  - If the calibration period is too short (< 6 months) and by consequence non representative of the catchment behaviour, a local calibration algorithm can give poor results and we recommend to use the generalist parameter sets instead
- ▶ Vignettes were added. They explain how to perform parameters estimation with:
  - Differential Evolution calibration algorithm
  - Particle Swarm calibration algorithm
  - MA-LS-Chains calibration algorithm
  - Bayesian MCMC framework
- A new airGRteaching package (Delaigue *et al.*, 2018) provides tools to simplify the use of the airGR hydrological package for education, including a 'Shiny' interface

### **Future developments**

- New version of CemaNeige that allows to use satellite snow cover area for calibration (Riboust *et al.*, accepted)
- Parameters maps on France for GR4J, GR5J & GR6J models for ungauged bassins (Poncelet *et al.*, submitted)

# How to use other R packages to perform parameters estimation

- Definition of the necessary function:
  - transformation of parameters to real space (available in airGR)
  - computation of the value of the performance criterion (e.g. RMSE)

 Definition of the lower and upper bounds of the four GR4J parameters in the transformed parameter space

lowerGR4J <- rep(-9.99, times = 4)
upperGR4J <- rep(+9.99, times = 4)

#### Local optimisation

Single-start (here) or multi-start approach to test the consistency of the local optimisation

## Global optimisation

Most often used when facing a complex response surface, with multiple local mimina

Differential Evolution

# Particle Swarm

# MA-LS-Chains

# Results

| Algo  | X1      | X2    | Х3     | X4    | RMSE   | CPU     |
|-------|---------|-------|--------|-------|--------|---------|
| airGR | 257.238 | 1.012 | 88.235 | 2.208 | 0.7852 | 00.53 s |
| PORT  | 256.808 | 1.004 | 88.167 | 2.205 | 0.7852 | 01.79 s |
| DE    | 256.808 | 1.004 | 88.167 | 2.205 | 0.7852 | 75.10 s |
| PSO   | 256.836 | 1.006 | 88.207 | 2.204 | 0.7852 | 29.55 s |
| MA-LS | 256.808 | 1.004 | 88.167 | 2.205 | 0.7852 | 18.42 s |

## Download the airGR package

The airGR package is available on the Comprehensive R Archive Network: <a href="https://CRAN.R-project.org/package=airGR/">https://CRAN.R-project.org/package=airGR/</a>

#### Evolution of 3 Markov chains & posterior density for each parameter



# References

- Coron, L., Thirel, G., Delaigue, O., Perrin, C. & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. *Environmental Modelling & Software* 94, 166–171. DOI: 10.1016/j.envsoft.2017.05.002.
- Coron L., Perrin C., Delaigue, O., Thirel, G. & Michel C. (2017). airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.0.9.64. URL: https://webgr.irstea.fr/en/airGR/.
- Delaigue, O., Coron, L. & Brigode, P. (2018). airGRteaching: Teaching Hydrological Modelling with the GR Rainfall-Runoff Models ('Shiny' Interface Included). R package version 0.2.2.2. URL: https://webgr.irstea.fr/en/airGR/.
- Poncelet, C., Andréassian, V., & Oudin, L. (submitterd). Regionalization of Hydrological Models by Group Calibration. *Water Resources Research*.
- ➤ Riboust, P., Thirel, G., Le Moine, N. & Ribstein, P. (accepted). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydrodynamics, DOI: 10.2478/johh-2018-0004.

National Research Institute of Science and Technology for Environment and Agriculture



