Unit 2 Message-oriented and peer to peer systems

Unit Outcomes. Here you will learn

- to program messaging among Java applications using the JMS standard
- to program a simple P2P system using JMS
- describe characteristics and benefits of P2P DS
- explain why peers need to implement a routing facility, giving at least two reasons
- explain how prefix routing works giving a simplified example

Further Reading: Sun JMS tutorial, CDK2005 10

Contents

Java Messaging Service (JMS)

Purpose and design

Direct messaging

Mini JMS example

2 Peer to peer systems

Characteristics

Routing overlay

Broadcast routing

Prefix routing

Prefix routing to objects

Distributed hash table

(DHT)

Java Messaging Service (JMS) Purpose and design

JMS facilitates asynchronous messaging among JVMs:

- sending always asynchronous
- receiving can be synchronous or asynchronous
- J2EE application servers are supposed to manage the queues
- Manaray, ActiveMQ implement JMS but not the rest of J2EE

Direct messaging

Mantaray lets the peers manage the queue:

- no need for any central server except for bootstrapping:
 - on LAN automatic discovery of remote queues using broadcast
 - on WAN need WAN Bridge a lightweight server to help establish connection between peers' queues

Mini JMS example — synchronous receiver

Mini JMS example — synchronous receiver

Mini JMS example — asynchronous receiver

as before except Receiver object serves as message listener:

Mini JMS example — asynchronous receiver

as before except Receiver object serves as message listener:

Mini JMS example — sender

Mini JMS example — sender

Peer to peer systems Characteristics

- in a P2P system:
 - all peers contribute resources
 - all peers functionally equivalent but may hold different data
 - each item of data is placed in multiple nodes
- benefits:
 - high scalability
 - peer failure transparency
 - potential for anonymity (why?)

eg freenet, tor

Routing overlay

- peers must include routing functionality why?
 - messages often addressed to resources, not peers
 - peers can change their IP:
 - relocated to different computer
 - computer physically moves in a network
- peers and objects have logical addresses
- addressing and routing provided by P2P middleware

Broadcast routing

- each peer knows IDs of several neighbour peers
- peer forwards all messages to all neighbours

only practical for broadcasting to all peers

Broadcast routing

- each peer knows IDs of several neighbour peers
- peer forwards all messages to all neighbours

only practical for broadcasting to all peers

Broadcast routing

- each peer knows IDs of several neighbour peers
- peer forwards all messages to all neighbours

only practical for broadcasting to all peers

Prefix routing (1/2)

- peers have routing tables:
 - \bullet logical name \to Internet name of neighbour to forward to
- table must cover all possible names
- names usually Globally Unique Identifiers (GUIDs)
 - 128 bits long (16 bytes)
 - when randomly generated, only rarely not unique

Prefix routing (2/2)

Routing table at peer with address 65A:

level 1		level 2	level 3
651	pc0 4. dom1	62 _ pc03.dom2 68 _ pc03.dom2	4 pc02.dom5
			9 pc07.dom3
657	pc02.dom 2	6B_ pc11.dom6	:
	pc04.dom1 pc08.dom1	:	
	:		4 D > 4 A > 4 B > 4 B 1

Prefix routing to objects

Distributed hash table (DHT)

- a very common pattern for P2P systems:
 a very large map: key → value
 - key = resource name can route to a peer that has the value
 - often key = resource name = hash of the value
- eg recent versions of BitTorrent use DHT for tracking peers who participate in the distribution of some file
 - value = a block of a shared file
 - key = its hash value as shown in the torrent descriptor

Learning Outcomes

Learning Outcomes. You should now be able to

- describe the characteristics and benefits of a P2P DS
- explain why peers need to implement a routing facility, giving at least two reasons
- explain how prefix routing works giving a simplified example
- explain and modify a simple P2P system programmed using JMS