LABORATORIUM UKŁADÓW ANALOGOWYCH III

Układy z przełączanymi pojemnościami (SC)

Grupa AE1 Sekcja 7 <u>M. P. (obliczenia)</u> F. P. (wnioski)

0) Opis ćwiczenia

Ćwiczenie to miało na celu zapoznanie sekcji z podstawowymi układami w technice przełączanych pojemności. Badane były 3 typy rezystorów SC, źródło prądowe oraz prosty filtr "RC" (w cudzysłowie, gdyż nie występuje w nim rzeczywista rezystancja).

1) Badanie rezystorów

a) Schematy poszczególnych rezystorów:

rezystor SC szeregowy:

rezystor SC równoległy:

rezystor SC biliniowy:

- b) Obliczenie rezystancji
 - dla rezystora równoległego: $R = 1/(f_cC_R)$

(przy czym $C_R = 3.3 \text{ nF}$)

- dla rezystora biliniowego: $R = 1/(4f_cC_R)$

(przy czym $C_R = 3.3 \text{ nF}$)

Poniższa tabela zestawia wyniki obliczone na podstawie charakterystyk oraz wzorów.

fc [Hz]	$R_{r ext{ownoleg} ext{fy}}\left[\Omega ight] \ (ze\ wzoru)$	$R_{równolegly} [\Omega]$ (z charakterystyki)	$R_{biliniowy} [\Omega]$ (ze wzoru)	R _{biliniowy} [Ω] (z charakterystyki)
500	606k	666k	151,5k	166k
1k	303k	285k	75,7k	80k
2k	151,5k	125k	37,8k	40k
5k	60,6k	47k	15,1k	15,6k
10k	30,3k	23k	7,5k	7,7k
20k	15,1k	11,7k	3788	4k
50k	6k	4,7k	1515	1,568
100k	3k	2,3k	758	696

Porównanie rezystancji teoretycznej z praktyczną zostało przedstawione na wykresach poniżej charakterystyk.

c) Charakterystyki *Charakterystyka I=f(U)*

Rezystor równoległy dla f=10kHz

Wniosek:

- nachylenie charakterystyki wynosi ok. $29k\Omega$, co zgadza się z obliczeniami
- przeskok wynika prawdopodobnie ze zmiany zakresu amperomierza

Rezystor biliniowy dla f=10kHz

Wniosek:

- nachylenie charakterystyki wynosi ok. 4k Ω , ten wynik odbiega nieco od obliczeń bo z obliczeń wyszło 7k Ω
- d) Wykresy zestawiające rezystancję teoretyczną z praktyczną w funkcji częstotliwości

Rezystor równoległy

Rezystor biliniowy

Wnioski:

- porównanie pokazało rozbieżności widoczne bardziej dla niższych częstotliwości, wynikające z błędu ustawienia częstotliwości oraz przyjęcia idealnych elementów: kluczy i pojemności

Pomimo rozbieżności wyniki pomiarów i obliczeń pokrywają się, zwłaszcza dla wyższych częstotliwości. Można stąd wywnioskować, że rezystory SC działają zgodnie z założeniami.

2) Badanie źródła prądowego sterowanego napięciem:

Schemat badanego układu

Podczas ćwiczenia zostały wyznaczone charakterystyki $I_{wy} = f(U_{we})$, $I_{wy} = f(R_L)$ oraz $I_{wy} = f(f_c)$:

a) $I_{wy} = f(U_{we})$ dla częstotliwości 10kHz.

Wniosek:

- prąd źródła zależy liniowo od napięcia sterującego

b)
$$I_{wy} = f(f) dla U_{we} = 2V$$

Wnioski:

- zależność prądu wyjściowego od częstotliwości kluczowania jest również liniowa
- istnieje możliwość łatwego sterowania prądem wyjściowym tego źródła za pomocą częstotliwości przełączania kluczy.

c) Iwy = f (R_L) dla częstotliwości kluczy10kHz i napięcia U=2V

Wniosek: zmiana R_L wpływa liniowo na zmianę prądu wydawanego przez źródło. Źródło prądowe SC zachowuje się więc tak samo, jak źródło wykonane w technice ciągłej.

3) Filtr dolnoprzepustowy:

Do realizacji FDP został wybrany następujący układ:

Jest to filtr SC pierwszego rzędu. Dla takiego układu można wyznaczyć 3dB częstotliwość graniczną na podstawie wzoru: $fg=1/2\pi RC_{FDP}$.

Podstawiając za R wartość 1/f_c*C_R otrzymujemy:

$$C_R = 3.3 \text{nF}$$

$$C_2 = 4.7 \text{nF}$$

$$C_2 = 4.7 \text{nF}$$

$$f_c = 10kHz$$

$$f_G \!=\! 1/2\pi R C_2 = f_c^* C_R/2\pi C_2 = 1,12 kHz$$

Dla porównania - częstotliwość graniczna zmierzona wyniosła 1,8kHz

Wnioski:

- na szerokość pasma przepuszczania tego filtru ma wpływ nie tylko stosunek C_R/C_2 ale również częstotliwość kluczowania stąd wynika możliwość przestrajania filtrów SC za pomocą f_c , co jest największą zaletą tego typu układów
- przy konstrukcji tego typu filtrów należy liczyć się z możliwością wystąpienia zjawiska aliasingu w sytuacji gdy częstotliwości sygnału wejściowego są zbliżone do wielokrotności f_c (niespełniony jest warunek Nyquista-Shannona o próbkowaniu, który mówi że $f_s < (f_c/2)$).