Analyse complexe

Théorème des résidus

Question 1/8

CNS pour que U soit élémentaire

Réponse 1/8

U est simplement connexe $U = \mathbb{C}$ ou U est biholomorphe à D(0, 1)

Question 2/8

Un ouvert U de \mathbb{C} est élémentaire

Réponse 2/8

U est non vide, connexe et toute fonction holomorphe sur U admet une primitive sur U

Question 3/8

 $I(a,\gamma)$ pour un lacet \mathcal{C}^1 par morceaux

Réponse 3/8

$$\frac{1}{2\mathrm{i}\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-a}$$

Question 4/8

Transfert du caractère élémentaire par un holomorphisme

Réponse 4/8

Si $\varphi: U_1 \to U_2$ est un biholomorphisme et U_1 est élémentaire alors U_2 est élémentaire

Question 5/8

$$\operatorname{Res}(f;z)$$

Réponse 5/8

Coefficient a_{-1} du développement en série de Laurent de f en z

Question 6/8

Indice du lacet $\gamma: [\alpha, \beta] \to \mathbb{C}$ continu par rapport à $z \in \mathbb{C}$

Réponse 6/8

$$\Phi(\beta) - \Phi(\alpha)$$
 où $\Phi(t)$ est continue et vérifie
$$\varphi(t) = \exp(2i\pi\Phi(t))$$

Question 7/8

Stabilité du caractère ouvert par union

Réponse 7/8

Si U_1 et U_2 sont élémentaires et $U_1 \cap U_2$ est connexe alors $U_1 \cup U_2$ est élémentaire Si (U_n) est une suite croissante d'ouverts élémentaires alors $\bigcup_{n \in \mathbb{N}} U_n$ est élémentaire

Question 8/8

Théorème des résidus

Réponse 8/8

Si U est un ouvert élémentaire de \mathbb{C} , F un ensemble fini de points de $U, f \in H(U \setminus F)$ et γ un lacet \mathcal{C}^1 par morceaux dans $U \setminus F$ alors $\int_{\gamma} (f(z)) dz = 2i\pi \sum_{a \in F} I(a\gamma) \operatorname{Res}(\hat{f}; a)$