PHYS 2211 Exam 3 Spring 2016

Name(print)	Section #

Greco (K, M) and Schatz(N)			
Day	12-3pm	3-6pm	6-9pm
Monday	N07 M07	K02 K01	
Tuesday	M01 N01	M02 N02	M03 N03
Wednesday	K05 K03	K07 K04	M08 K06
Thursday	M04 N04	M05 N05	M06 N06

Instructions

- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization must be clear.
- You must show all work, including correct vector notation.
- Correct answers without adequate explanation will be counted wrong.
- Incorrect work or explanations mixed in with correct work will be counted wrong. Cross out anything you do not want us to grade
- Make explanations correct but brief. You do not need to write a lot of prose.
- Include diagrams!
- Show what goes into a calculation, not just the final number, e.g.: $\frac{a \cdot b}{c \cdot d} = \frac{(8 \times 10^{-3})(5 \times 10^6)}{(2 \times 10^{-5})(4 \times 10^4)} = 5 \times 10^4$
- Give standard SI units with your numeric results.

Unless specifically asked to derive a result, you may start from the formulas given on the formula sheet, including equations corresponding to the fundamental concepts. If a formula you need is not given, you must derive it.

If you cannot do some portion of a problem, invent a symbol for the quantity you can not calculate (explain that you are doing this), and use it to do the rest of the problem.

Honor Pledge

"In accordance with the Georgia Tech Honor Code, I have neither given nor received unauthorized aid on this test."

Sign your name on the line above

Problem 1 Grader:	Score:	/25	/25
An electron with a speed of $0.95c$ is emitted by a supernova, where	c is the speed of l	ight.	
(a 5pts) What is the total (particle) energy of the electron?			

(b 5pts) What is the kinetic energy of the electron?

Problem 2	Grader:	Score:	/25	/25	/:	25
IIODIOM 2	GIGGGI.	5010:		/ =0	' / ·	_

For each system given below, sketch and label the graphs of kinetic (K), potential (U) and total energy (E=K+U).

(a 8pts) Two electrons start at rest (that is, their initial velocities zero) some finite distance R apart.

(b 9pts) A comet moves away from the Sun, never to return. Very far away from the Sun, the comet has a nonzero speed.

(c 8pts) A spacecraft leaves Mars with an initial velocity that is below the escape speed for Mars.

Two blocks with mass m_1 and m_2 are pulled through a valley by an external force \vec{F} . The center of the top block moves through a radius of curvature R. When the blocks are at the bottom of the valley (as shown in the figure), friction is able to prevent the top block from sliding with respect to the bottom block. There is negligible friction between the bottom block and the valley floor. At the bottom of the valley, both blocks are moving together to the right with speed v.

(a 2pts) Determine the magnitude and direction of $(\frac{d\vec{p}}{dt})_{\parallel}$ for a system that includes both blocks at the instant when both blocks are at the bottom of the valley.

(b 8pts) Determine the magnitude and direction of $(\frac{d\vec{p}}{dt})_{\parallel}$ for the top block at the instant when both blocks are at the bottom of the valley. (Hint: Choose your system to be the top block only, use the result from part (a) and note that $(\frac{d\vec{v}}{dt})_{\parallel}$ is the same for all choices of system.)

(c 5pts) Determine the magnitude and direction of $(\frac{d\vec{p}}{dt})_{\perp}$ for the top block at the instant when both blocks are at the bottom of the valley.

Problem 4 Grader:Score:/25/25/25	$_{-}/25$
----------------------------------	-----------

A spring with stiffness k and relaxed length L_0 stands vertically on a table. A mass M sits on the spring in static equilibrium. The quantities k, L_0 and M are known; the compressed length L, shown in the figure, is unknown.

(a 5pts) Determine the compressed length of the spring L in terms of known quantities and constants.

(b 10pts) Using your hand, you compress the spring so that the spring now has a length of L/2 and you hold the spring motionless at this position. Calculate the work done by your hand. Briefly explain in words why the sign you obtained for this work is reasonable.

(c 10pts) You let go of the block and watch it shoot straight up into the air. reached by the block in terms of known quantities and constants.	Find the maximum height

This page is for extra work, if needed.

Things you must have memorized

The Momentum Principle	The Energy Principle	The Angular Momentum Principle	
Definition of Momentum	Definition of Velocity	Definition of Angular Momentum	
Definitions of angular velocity, particle energy, kinetic energy, and work			

Other potentially useful relationships and quantities

$$\begin{split} \gamma & \equiv \frac{1}{\sqrt{1 - \left(\frac{|\vec{v}|}{c}\right)^2}} \\ \frac{d\vec{p}}{dt} & = \frac{d|\vec{p}|}{dt} \hat{p} + |\vec{p}| \frac{d\hat{p}}{dt} \\ \vec{F}_{grav} & = -G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{grav}| & \approx mg \text{ near Earth's surface} \\ \vec{F}_{grav}| & \approx mg \text{ near Earth's surface} \\ \vec{F}_{grav}| & \approx mg \text{ near Earth's surface} \\ \vec{F}_{elec} & = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{spring}| & = k_s s \\ U_i & \approx \frac{1}{2} k_{si} s^2 - E_M \\ \vec{T}_{im}| & = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots}{m_1 + m_2 + \dots} \\ K_{tot} & = K_{trans} + K_{rel} \\ K_{rot} & = \frac{L_{rot}^2}{2I} \\ \vec{L}_A & = \vec{L}_{trans,A} + \vec{L}_{rot} \\ \omega & = \sqrt{\frac{k_s}{m}} \\ Y & = \frac{K_i}{\Delta L/L} \text{ (macro)} \\ \Omega & = \frac{(q + N - 1)!}{q! (N - 1)!} \\ \frac{1}{T} & \equiv \frac{\partial S}{\partial E} \\ \end{pmatrix} \Delta S & = \frac{Q}{T} \text{ (small } Q) \\ \text{prob}(E) & \propto \Omega(E) e^{-\frac{E}{kT}} \end{split}$$

$$E_N = N\hbar\omega_0 + E_0$$
 where $N = 0, 1, 2...$ and $\omega_0 = \sqrt{\frac{k_{si}}{m_o}}$ (Quantized oscillator energy levels)

Moment of intertia for rotation about indicated axis

The cross product $\vec{A} \times \vec{B} = \langle A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x \rangle$

Constant	Symbol	Approximate Value
Speed of light	c	$3 \times 10^8 \text{ m/s}$
Gravitational constant	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Approx. grav field near Earth's surface	g	$9.8 \mathrm{\ N/kg}$
Electron mass	m_e	$9 \times 10^{-31} \text{ kg}$
Proton mass	m_p	$1.7 \times 10^{-27} \text{ kg}$
Neutron mass	m_n	$1.7 \times 10^{-27} \text{ kg}$
Electric constant	$\frac{1}{4\pi\epsilon_0}$	$9\times 10^9~{\rm N}\cdot {\rm m}^2/{\rm C}^2$
Proton charge	e	$1.6 \times 10^{-19} \text{ C}$
Electron volt	1 eV	$1.6 \times 10^{-19} \text{ J}$
Avogadro's number	N_A	$6.02 \times 10^{23} \text{ atoms/mol}$
Plank's constant	h	6.6×10^{-34} joule · second
$hbar = \frac{h}{2\pi}$	\hbar	1.05×10^{-34} joule · second
specific heat capacity of water	C	$4.2~\mathrm{J/g/K}$
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J/K}$
milli m 1×10^{-3} micro μ 1×10^{-6} nano n 1×10^{-9} pico p 1×10^{-12}	m gi	lo K 1×10^3 lega M 1×10^6 ga G 1×10^9 era T 1×10^{12}