Отчет по лабораторной работе №8

Савинов Егор ИУ7-74Б

Задача 1.

Назначить адреса подсетей. На примере первой подсети.

	Global Settings	
Display Name	PC0	
Interfaces	FastEthernet0	,
Gateway/DN OHCP	S IPv4	
Static		
Default Gate	way 192.168.18.2	
DNS Server		

Рис 1. Настройка шлюза хоста.

IP Configuration DHCP		
Static		
IPv4 Address	192.168.19.1	
Subnet Mask	255.255.255.0	

Рис 2 Настройка ір хоста.

IP Configuration		
IPv4 Address	192.168.19.2	
Subnet Mask	255.255.255.0	

Рис 3. Настройка ір роутера 1.

Далее таким же образом назначаются адреса для остальных подсетей.

Задача 2.

Настройка динамической маршрутизации через протокол RIPv2.

На примере первого маршрутизатора:

```
Router(config) #router rip
Router(config-router) # version 2
Router(config-router) # network 192.168.19.0
Router(config-router) # network 192.168.20.0
```

Рис 4. Команды для первого маршрутизатора

С помощью команды sh ip route можно увидеть таблицу маршрутов(рис 5). Для каждого роутера должно быть две сети, к которым он подключен напрямую и две сети, к которым он подключается через другие маршрутизаторы.

```
sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.19.0/24 is variably subnetted, 2 subnets, 2 masks
       192.168.19.0/24 is directly connected, GigabitEthernet0/0/0
L
        192.168.19.2/32 is directly connected, GigabitEthernet0/0/0
    192.168.20.0/24 is variably subnetted, 2 subnets, 2 masks
      192.168.20.0/24 is directly connected, Serial0/1/0
L
        192.168.20.1/32 is directly connected, Serial0/1/0
     192.168.21.0/24 [120/1] via 192.168.20.2, 00:00:12, Serial0/1/0
    192.168.22.0/24 [120/2] via 192.168.20.2, 00:00:12, Serial0/1/0
```

Рис 5. Таблица маршрутов.

Устройства из разных подсетей можно пинговать, значит маршрутизация работает.

```
C:\> ping 192.168.22.2

Pinging 192.168.22.2 with 32 bytes of data:

Reply from 192.168.22.2: bytes=32 time=2ms TTL=125
Reply from 192.168.22.2: bytes=32 time=5ms TTL=125
Reply from 192.168.22.2: bytes=32 time=18ms TTL=125
Reply from 192.168.22.2: bytes=32 time=2ms TTL=125
Ping statistics for 192.168.22.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 18ms, Average = 6ms
```

Рис 6. Пинг хоста 192.168.22.2 с устройства 192.168.19.1

Задача 3.

Настройка OSPF

Подсеть 5 выделяется как область backbone, все остальные подсети представляют собой отдельные области.

На примере роутера из третей подсети:

```
Router(config) #router ospf 1
Router(config-router) #network 192.168.21.0 0.0.0.255 area 3
Router(config-router) #network 192.168.29.0 0.0.0.255 area 0
```

Рис 7. Команды настройки роутера третей подсети.

После установки всех маршрутов можно увидеть таблицу маршрутизации.

```
192.168.19.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.19.0/24 is directly connected, GigabitEthernet0/0/0
L 192.168.19.2/32 is directly connected, GigabitEthernet0/0/0
O IA 192.168.20.0/24 [110/2] via 192.168.29.2, 00:07:18, GigabitEthernet0/0/1
O IA 192.168.21.0/24 [110/2] via 192.168.29.3, 00:03:18, GigabitEthernet0/0/1
O IA 192.168.22.0/24 [110/2] via 192.168.29.4, 00:00:38, GigabitEthernet0/0/1
192.168.29.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.29.0/24 is directly connected, GigabitEthernet0/0/1
L 192.168.29.1/32 is directly connected, GigabitEthernet0/0/1
```

Рис 8. Таблица маршрутизации для роутера первой подсети

После настройки всех роутеров они видят соседей:

```
      Router#sh ip ospf neighbor

      Neighbor ID
      Pri
      State
      Dead Time
      Address
      Interface

      192.168.20.2
      1
      FULL/DR
      00:00:38
      192.168.29.2
      GigabitEthernet0/0/1

      192.168.29.3
      1
      FULL/DROTHER
      00:00:38
      192.168.29.3
      GigabitEthernet0/0/1

      192.168.22.2
      1
      FULL/DROTHER
      00:00:33
      192.168.29.4
      GigabitEthernet0/0/1
```

Рис 9. Таблица соседей для роутера первой подсети.

Router#sh ip ospf neighbor

```
        Neighbor ID
        Pri
        State
        Dead Time
        Address
        Interface

        192.168.19.2
        1
        FULL/BDR
        00:00:30
        192.168.29.1
        GigabitEthernet0/0/1

        192.168.29.3
        1
        FULL/DROTHER
        00:00:35
        192.168.29.3
        GigabitEthernet0/0/1

        192.168.22.2
        1
        FULL/DROTHER
        00:00:30
        192.168.29.4
        GigabitEthernet0/0/1
```

Рис 10. Таблица соседей для роутера второй подсети

DR - 192.168.20.2

BDR - 192.168.19.2

Устройства из разных сетей можно пинговать, маршрутизация работает.

```
C:\> ping 192.168.22.1
Pinging 192.168.22.1 with 32 bytes of data:
Reply from 192.168.22.1: bytes=32 time=1ms TTL=126
Reply from 192.168.22.1: bytes=32 time<1ms TTL=126
Reply from 192.168.22.1: bytes=32 time=11ms TTL=126
Reply from 192.168.22.1: bytes=32 time=11ms TTL=126
Ping statistics for 192.168.22.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 11ms, Average = 5ms
C:\>ipconfig
FastEthernet0 Connection: (default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address.....: FE80::20D:BDFF:FEC8:CACA
  IPv6 Address....: ::
  IPv4 Address..... 192.168.19.1
  Subnet Mask..... 255.255.255.0
  Default Gateway....::::
                                    192.168.19.2
```

Рис 11. Пинг хоста 192.168.22.1 с устройства 192.168.29.1

A1

192.168.x+1.0

2960-24TT

Switch3

A2

ISR4/33

JER4331

192.168.x+3.0

2960-24TT

Switch6

A4

960-241

Α0