Building Queries: An Exploration

\$ echo "Data Sciences Institute"

Building Queries:

→ Fundamental Three Commands

Two More Commands

Putting Things Together with JOIN

- Our first three commands (SELECT, FROM, WHERE) are essential to nearly every SQL query
- The template for our initial SQL statement is as such:

```
SELECT: the columns we want to retrieve

FROM: the table we are querying

WHERE: filters/conditions (optional)
```

ORDER BY : column sorting: ascending ASC or descending DESC (optional)

LIMIT: how many rows we want to return (optional)

- Always specified in this order:
 - SELECT will come first
 - FR0M will come after SELECT
 - when we are querying more than one table at a time, each will come after
 FROM but before WHERE (more on this later)
 - WHERE will come after FROM
 - ORDER BY will come after WHERE clauses

- We'll sometimes use the LIMIT clause to look at data
 - This comes at the very end of a query
 - LIMIT shouldn't be used for analytics unless you have a specific reason
 - ORDER BY often impacts the usefulness of LIMIT
- Remember:
 - In SQL, we use two dashes to comment out lines, rather than #

SELECT Command

- At its simplest SELECT specifies column names we are retrieving
 - commas come between each column name
 - SELECT student, course, grade ...
 - column names with a space need to be enclosed in square brackets
 - SELECT [poorly named column], better_column_name,AnotherColumnName

SELECT Command

- Within SELECT statements we can perform manipulations on columns
 - o e.g. rename a column
 - SELECT [poorly named column] AS better_col
 - combine two text columns
 - perform math on a numeric column
 - ...and many more things

SELECT Command

- We can use SELECT to perform math without a FROM statement
 - SELECT 1 + 1
 - SELECT 10*5, cos(2), pi()
- And we can use SELECT to specify constant values
 - SELECT 2024 AS this_year, 'May' AS this_month
- When selecting columns, they need to exist in the table!

FROM Command

- FROM statements indicate which table the data is from and where the table is located
 - in more complicated RDBMs, you will often have multiple databases on the same server and multiple schema within those databases
 - a fully qualified location of a table would thus be database.schema.table
- SELECT * FROM table_name indicates everything in the table
- Best practice suggests that we should explicitly call each column, even if we want all of them
 - Why do we think this is the case?
 Think, Pair, Share

SELECT & FROM

(SELECT & FROM live coding)

- WHERE clauses are conditions that the query will follow
- When we want to have multiple conditions, we use a single WHERE and then additional logical operations
- WHERE clauses always return rows evaluating to TRUE
 - Follows Boolean rules if more than one condition is present

```
SELECT *
FROM students
WHERE first_name = 'Thomas'
AND last_name = 'Rosenthal'
```

- Notice we put string values in single quotes
 - SQLite also allows double quotes, with a few minor caveats

Logical Operators

- AND
- 0R
- NOT
- NOT IN
- equals: =
- does not equal: <> !=
 - (flavour dependent)

Logical Operators (continued...)

- greater than (equal to): > >=
- less than (equal to): < <=
- BETWEEN
- EXISTS
 - table specific
- IS
 - NULL specific

- NULL is not a value (it's the absence of a value)
 - o to check null values, we use IS NULL or IS NOT NULL
 - = NULL will not work

- LIKE allows for string wildcards
- % specifies the wildcard placement
 - country_name LIKE 'and%'
 - Andorra
 - country_name LIKE '%and'
 - Finland, Iceland ...more
 - country_name LIKE '%and%'
 - all of the above, plus Antigua and Barbuda, Netherlands, Rwanda ...more!
 - country_name LIKE '%an%d%'
 - Canada ...surely more!

(WHERE live coding)

What questions do you have about **SELECT**, **FROM**, WHERE?

Building Queries:

Fundamental Three Commands

→ Two More Commands

Putting Things Together with JOIN

Two More Commands

- **CASE**: Implements conditional logic.
- **DISTINCT**: Returns unique values.

• CASE statements allow us to introduce conditional logic into our SELECT statements

- They are generally similar to if or if else statements in python, R, and other languages
 - When a condition is introduced, we check whether it evaluates to TRUE
 - If it is true, we proceed with a desired command, calculation, value, etc
 - If it is not true, we move to the next condition
 - If it is true, we proceed with another desired command, calculation, value, etc
 - ...all the way until we run out of conditions
 - o For all FALSE conditions, we can use an ELSE statement if we want to

- The results of a CASE statement will be a new column
- Best practice is to name the new column using AS new_column_name

```
CASE
WHEN [something is true]
THEN [value or calculation]
WHEN [something else is true]
THEN [value or calcuation]
ELSE [value or calcuation]
END
```

(CASE live coding)

DISTINCT Command

- Not all queries will result in unique rows (i.e. duplicates are present)
 - Can we think of why this is? Write your thoughts in the etherpad!

DISTINCT Command

- DISTINCT has two possible spots within a query:
 - One comes immediately after SELECT, before column names are specified
 - e.g. SELECT DISTINCT songs, albums, artists...
 - This DISTINCT will govern the entire query
 - The other comes within aggregation (we'll get to this later)
 - e.g. COUNT(DISTINCT products)
 - This DISTINCT will only affect this specific aggregation

DISTINCT Command

(DISTINCT live coding)

Building Queries:

Fundamental Three Commands

Two More Commands

→ Putting Things Together with JOIN

• Joins are used to combine data stored in different tables into a single table

- Joins are the "Cartesian product" of two tables with conditional selection(s) of specific rows
 - A Cartesian product combines all possible row values with another
 - An easy example is a deck of cards:

combining four suits:

with thirteen ranks:

produces 52 cards (4 * 13)

To create a Cartesian Product in SQL we use CR0SS J0IN (rare, but not unheard of)

- Joins require relationships (with one exception, CROSS JOIN) between tables
- Different joins create different results
 - Join names specify which conditional selection is desired

- There are three join types in SQL but different joining criteria can further limit results
- The most permitting join is a FULL OUTER JOIN and the least permitting is an INNER JOIN
 - Let's explore what this means by looking at each of them

JOIN Syntax

Syntax for a join is as follows:

```
SELECT [columns]
FROM [left table]
JOIN [right table]
ON [left table.matching column] = [right table.matching column]
```

A couple of notes:

- You will need to specify which join type is desired:
 - e.g. INNER JOIN
- Matching columns do not need to have the same name, just the same value
 - e.g. ON table1.LetterGrade = table2.Alphabet will work because A=A, B=B,
 C=C, etc
- You can specify more than one column to be joined
 - o e.g. ON table1.FirstName = table2.FirstName AND table1.LastName =
 table2.LastName

INNER JOIN

- INNER JOIN filters both tables to rows present in both tables
- INNER JOIN does not produce
 NULL values
- INNER JOIN is the "default" join
 - i.e. queries do not need to specify "INNER", though it's good practice to write INNER

Source: Image: Teate, Chapter 5

Inner Join

Only rows from the "right table" and "left table" where values in the specified fields have matches in both tables

Colour	Quantity	Colour	Quantity
Pink	1	 Pink	1
Blue	1	Teal	3
Green	2	 Green	2
Yellow	2	Gold	2
Black	6	 Black	6
Orange	3	 Orange	3
Red	1	Crimson	2
Purple	1	Purple	2

INNER JOIN

A quick note on table aliasing:

- It is very common practice to alias table names
 - It makes join criteria much more concise
 - o It simplifies SELECT statements when column names are the same
 - This is a common error: "ambiguous column name"
 - SQL requires you to specify which table you are returning the result from
- Generally, tables are aliased with the first letter (or first few letters) of the table so they
 can be easily referenced
 - o product AS p
 - product_category AS pc

INNER JOIN

(INNER JOIN live coding)

LEFT (OUTER) JOIN

- LEFT JOIN filters the "right" table to rows present in the "left" table
- LEFT JOIN will most often
 produce NULL values
- The "OUTER" in LEFT OUTER

 JOIN is optional
 - Generally, OUTER seems to be excluded, but both are correct
- LEFT is not optional; there is no "OUTER JOIN"

Left Join
All rows from the "left table", and only rows from the "right table" with matching values in the specified fields

Colour	Quantity	Colour	Quantity
Pink	1	 Pink	1
Blue	1	Teal	3
Green	2	 Green	2
Yellow	2	Gold	2
Black	6	 Black	6
Orange	3	 Orange	3
Red	1	Crimson	2
Purple	1	Purple	2

LEFT (OUTER) JOIN

(LEFT JOIN live coding)

RIGHT (OUTER) JOIN

- RIGHT JOIN filters the "left" table to rows present in the "right" table
- RIGHT JOIN will most often produce NULL values
- The "OUTER" in RIGHT OUTER JOIN is optional
 - Generally, OUTER seems to be excluded, but both are correct

Source: Image: Teate, Chapter 5

Right Join

All rows from the "right table", and only rows from the "left table" with matching values in the specified fields

Colour	Quantity	Colour	Quantity
Pink	1	 Pink	1
Blue	1	Teal	3
Green	2	 Green	2
Yellow	2	Gold	2
Black	6	 Black	6
Orange	3	 Orange	3
Red	1	Crimson	2
Purple	1	Purple	2

RIGHT (OUTER) JOIN

- RIGHT JOIN is somewhat frowned upon, but sometimes they make sense
 - Often your query can be reorganized to use a LEFT JOIN instead
 - SQLite does not currently support
 RIGHT JOIN

Source: Image: Teate, Chapter 5

Right Join
All rows from the "right table", and only rows from the "left table" with matching values in the specified fields

Colour	Quantity	l	Colour	Quantity
Pink	1		Pink	1
Blue	1		Teal	3
Green	2		Green	2
Yellow	2]	Gold	2
Black	6	<u> </u>	Black	6
Orange	3	<u> </u>	Orange	3
Red	1		Crimson	2
Purple	1		Purple	2

FULL (OUTER) JOIN

- FULL OUTER JOIN does not filter either "left" or "right" table
- Expect NULL values to be produced from a FULL OUTER JOIN
- My experience has been to write FULL OUTER JOIN rather than FULL JOIN but this is personal preference
- Annoyingly, DB Browser for SQLite does not support FULL OUTER JOIN (it really should), but there is a workaround to produce the results

Filtering a FULL (OUTER) JOIN

- All OUTER JOIN syntax can be filtered to exclude the matching criteria
 - Often called an ANTI JOIN, i.e. what's not in the other table

Multiple Table Joins

More than one table can be joined at a time

```
SELECT *
FROM table_1
{INNER | LEFT | FULL JOIN table_2
   ON table_1.key = table_2.key
{INNER | LEFT | FULL JOIN table_3
   ON {table_1 | table_2}.key = table_3.key
{INNER | LEFT | FULL JOIN table_n
   ON {table_1 | table_2 | table_3}.key = table_n.key
```

Multiple Table Joins

- The order and type of joins will have significant effect on the final table
- It's important to determine which table should be the FROM table
- Sometimes you have to experiment a bit to get things right
- Can you imagine scenarios based on your knowledge of different JOIN types that result in significantly different outputs?

Multiple Table Joins

(Multiple Table Joins live coding)

What questions do you have about anything from today?