CS 444 - Compiler Construction

Winter 2020

Lecture 5: January 20th, 2020

Lecturer: Ondřej Lhoták Notes By: Harsh Mistry

5.1 Analysis Continued

5.1.1 Parsing Continued

Example 5.1 LL(1) grammar.

- $S \to E$ \$ (Added after augmentation)
- $E \rightarrow aE^{|}$
- \bullet $E^{|} \rightarrow +a$
- \bullet $E^{|} \rightarrow \epsilon$

input "a+a" yeids the parsed derivation of $E \to aE^{||} \to a+a$

Definition 5.2 Augment a grammer by adding new production rules or terminal characters.

- Use a stack to represent α
- $\alpha = ywA\gamma$
 - Pop w off stack, compute with actual input
 - Pop A off stack, use A and next input symbol to chose $A \to \beta$, push β

5.1.1.1 LL(1) Parsing Algorithm

- Parse =
 - Push S\$ on stack
 - for a in x\$
 - * While top of stack is a non-terminal
 - · Pop A
 - · Let $A \to \beta = predict(A, a)$
 - · Push β
 - * Pop b (Pop top of stack and result is assigned to b)
 - * if $b \neq a$, then throw ERROR
 - $\operatorname{Predict}(A, a) =$
 - * $A \to \beta \in R \mid \exists_{\gamma}, \beta \to^* a\gamma$

* OR
$$\begin{array}{c} \cdot \ (\beta \to^* \epsilon) \\ \cdot \ (\text{AND} \ (\exists \gamma \delta \ , \, S \to^* \gamma A a \delta) \end{array}$$

Definition 5.3 If $|Predict(A, a)| \le 1$ for all A, a, then grammar is LL(1)