Clase 8

COMUNICACIÓN SERIALY

GRÁFICAS

Suscríbete

COMUNICACIÓN SERIAL

La comunicación serial, conocida como protocolo UART, es un canal de comunicación que nos permite conectar nuestras placas arduino con otros dispositivos, generando una comunicación bidireccional. Cuenta con 2 pines de conexión los cuales son:

TX y RX.

Todas las placas arduino cuenta por lo menos con 1 puerto serie para trabajar a través de este protocolo.

TABLA DE PLACAS POR CANTIDAD DE PS

PLACA	PINES SERIALES	PINES SERIE1	PINES SERIE2	PINES SERIES
Uno, nano, mini	RX=0 - TX=1			
Mega	RX=0 - TX=1	RX=19 – TX=18	RX=17 – TX=16	RX=15 – TX=14
Leonardo, micro, Yun		RX=0 - TX=1		
Uno WiFi	Conectado por usb	RX=0 - TX=1	Conectado a niña	
Familia MKR		RX=13 - TX=14		
Zero	Conectado al port prog	RX=0-TX=1		
Due	RX=0 - TX=1	RX=19 – TX=18	RX=17 – TX=16	RX=15 – TX=14
101		RX=0 - TX=1		

En arduino uno, nano, mega y mini los pines 0 y 1 se utilizan para comunicarse con la computadora

MONITOR SERIE

Es una interfaz visual con la que cuenta arduino, a través del monitor serie se puede imprimir valores de diferentes variables y señales, también podemos ingresar datos desde el teclado y visualizarlos

Para poder trabajar con el monitor serie se lo inicializa con la función:

Serial.begin(tasa de baudios);

```
oo sketch feb10a Arduino 1.8.5
Archivo Editar Programa Herramientas Ayuda
                                            Iniciamos el
 sketch feb10a
                                               monitor
  void setup() {
                                                 serie
     // put your setup code here, to rus
 6 void loop() {
     // put your main code here, to run repeatedly:
```

FUNCIONES ESENCIALES

Serial.print(): Permite imprimir datos de manera continua.

Serial.println(): Permite imprimir datos acompañados de un salto de línea.

Serial.write(): Permite enviar datos a través del monitor serie a otros entornos.

Serial.read(): Permite leer datos que llegan a través del monitor serie.

Serial.end()

```
oo sketch feb10a Arduino 1.8.5
Archivo Editar Programa Herramientas Ayuda
                                             Iniciamos el
 sketch feb10a
                                               monitor
   void setup() {
                                                  serie
     // put your setup code here, to rus
 6 void loop() {
     // put your main code here, to run repeatedly:
```


Imprimir el mensaje "HolaMundo" empleando Serial.print() y Serial.println() a razón de un segundo.

```
1 void setup() {
   Serial.begin (9600);
                                  COM33 (Arduino Leonardo)
4 void loop() {
   Serial.print("Hola");
                                 HolaMundo
   delay(1000);
                                 HolaMundo
   Serial.println("Mundo");
                                 HolaMundo
   delay(1000);
                                 HolaMundo
                                 HolaMundo
                                 HolaMundo
```

EJEMPLO 2

Imprimir su nombre completo empleando el siguiente formato, a razón de un segundo por impresión

```
S8-E2
 1 void setup() {
     Serial.begin (9600);
                                           COM33 (Arduino Leonardo)
 4 void loop() {
     Serial.println("Nagib");
                                           Nagib
     delay(1000);
                                           Luis
     Serial.println("Luis");
                                           Vallejos
     delay(1000);
                                           Mamani
     Serial.println("Vallejos");
10
     delay(1000);
                                           Nagib
11
     Serial.println("Mamani");
                                           Luis
     delay(1000);
     Serial.println("");
13
                                           Vallejos
14
     delay(1000);
                                           Mamani
15|}
```

TOTOK: NAGIB LOIS VALLEJOS M.

EJEMPLO 3 – CIRCUITO

na,

Programar un pulsador en modo Switch para encender y apagar un sistema, imprimir "Encendido" cuando el sistema se ponga en funcionamiento e imprimir "Apagado" cuando el sistema se apague.

EJEMPLO 3 – SOLUCIÓN

Programar un pulsador en modo Switch para encender y apagar un sistema, imprimir "Encendido" cuando el sistema se ponga en funcionamiento e imprimir "Apagado" cuando el sistema se apague.

```
S8-E3
1|int estado=0;
                                      13
                                            salida=1-salida;
2|int estadoAnt=0;
                                      14
                                            delay(20);
3|int salida=0;
 4 int led=3, pulsador=4;
                                            estadoAnt=estado;
                                            if(salida){
 5 void setup() {
                                              digitalWrite(led,1);
    pinMode(led,OUTPUT);
                                              Serial.println("Sistema encendido");
    pinMode (pulsador, INPUT);
                                      20
    Serial.begin (9600);
                                            else{
                                              digitalWrite(led,0);
10 void loop() {
                                              Serial.println("Sistema apagado");
    estado=digitalRead(pulsador);
                                      2.4
    if (estado && estadoAnt==0) {
                                      25 }
                                                    TUTOR: NAGIB LUIS WALLEJOS M.
```

FUNCIÓN RANDOM()

Es una función integrada por defecto en arduino, la cual nos permite obtener números aleatorios.

Su sintaxis es la siguiente:

random(max);

random(min,max);

Cabe mencionar que el valor máximo al que llegará es el valor asignado -1:

random(10); //<= 9

random(0,10); // <10

EJEMPLO 4 – CIRCUITO

Generar un número aleatorio entre 1 y 10, este número se debe imprimir por el monitor serie e indicar la cantidad de veces que se enciende y apaga un led a razón de 2 segundos, el número se activa tras presionar un pulsador.

EJEMPLO 4 – SOLUCIÓN

Generar un número aleatorio entre 1 y 10, este número se debe imprimir por el monitor serie e indicar la cantidad de veces que se enciende y apaga un led a razón de 2 segundos, el número se activa tras presionar un pulsador.

```
S8-E4
1 int led=3, pulsador=4,estado;
                                              if (estado) {
                                                aleatorio=random(1,10);
2 int aleatorio;
                                                Serial.println(aleatorio);
                                          13
3 void setup() {
                                                for(int i=0; i<aleatorio;i++){</pre>
    pinMode(led,OUTPUT);
                                                  digitalWrite(led,1);
    pinMode (pulsador, INPUT);
                                                  delay(250);
    Serial.begin (9600);
                                                  digitalWrite(led,0);
                                                  delay(250);
9 void loop() {
    estado=digitalRead(pulsador);
                                          21|}
```

EJEMPLO 5 – CIRCUITO

Imprimir el valor de lectura de un potenciómetro a razón de 500 ms

EJEMPLO 5 – PRUEBAS

Imprimir el valor de lectura de un potenciómetro a razón de 500 ms

MONITOR SERIAL

SERIAL PLOTTER

EJEMPLO 5 – SOLUCIÓN

Imprimir el valor de lectura de un potenciómetro a razón de 500 ms

```
S8-E5
1 int potenciometro=A0, lectura;
2 void setup() {
   Serial.begin (9600);
5 void loop() {
    lectura=analogRead (potenciometro);
    Serial.println(lectura);
    delay (500);
```

EJEMPLO 6 – CIRCUITO

Graficar el valor de 2 potenciómetros de manera paralela a través del serial plotter a razón de 500 ms

EJEMPLO 6 – PRUEBAS

Graficar el valor de 2 potenciómetros de manera paralela a través del serial plotter a razón de 500 ms

EJEMPLO 6 – SOLUCIÓN

Graficar el valor de 2 potenciómetros de manera paralela a través del serial plotter a razón de 500 ms

```
S8-E6
1 int potenciometro=A0, potenciometro2=A1, lectura, lectura2;
2 void setup() {
   Serial.begin (9600); //inicializa el monitor
6 void loop() {
   lectura=analogRead(potenciometro);
   lectura2=analogRead(potenciometro2);
   Serial.print(lectura);
   Serial.print(",");
   Serial.println(lectura2);
   delay(500);
```

CONTACTOS

(+591) 63096640

fb.me/RoboticsSpaceNV

@NagibVallejos

Robotics Space NV

https://github.com/nagibvalej os/Robotics-Space-NV