命题演算公式,定理,性质合集

公理:

(L1)
$$p \to (q \to p)$$

(L2)
$$(p \to (q \to r)) \to ((p \to q) \to (p \to q))$$

(L3)
$$(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$$

定理:

$$\vdash p \to p$$
 (同一律)

$$\vdash p \to p$$
 (P)—(F)

$$\vdash \neg q \rightarrow (q \rightarrow p)$$
 (否定前件律)
 $\vdash (\neg p \rightarrow p) \rightarrow p$ (否定肯定律)

$$\vdash (p \to q) \to ((q \to r) \to (p \to r))$$
 (HS, 假设三段论)

$$\vdash \neg \neg p \rightarrow p$$
 (双重否定律)

$$\vdash p \to \neg \neg p$$
 (第二双重否定律)

$$\vdash (p \to q) \to (\neg q \to \neg p) \tag{换位律}$$

演绎定理
$$\Gamma \cup \{p\} \vdash q$$
 \Leftrightarrow $\Gamma \vdash p \rightarrow q$

假设三段论
$$\{p \to q, q \to r\} \vdash p \to r$$

反证律

$$\left. \begin{array}{c} \Gamma \cup \{\neg p\} \vdash q \\ \Gamma \cup \{\neg p\} \vdash \neg q \end{array} \right\} \implies \Gamma \vdash p$$

归谬律

$$\left. \begin{array}{c} \Gamma \cup \{p\} \vdash q \\ \Gamma \cup \{p\} \vdash \neg \ q \end{array} \right\} \implies \Gamma \vdash \neg \ p$$

L的简单性质:

性质 1 (单调性)

1° 若 $\Gamma \subset \Gamma'$, 且 $\Gamma \vdash p$, 则 $\Gamma' \vdash p$;

2° 若 $\vdash p$,则对任何 Γ , $\Gamma \vdash p$ 。

性质 2 (紧致性)

若 Γ ⊢ p,则存在有穷子集 Δ ⊆ Γ ,使 Δ ⊢ p.

性质 3 (平凡性)

定义: 一致性/相容性/无矛盾性

若存在公式p使 $\Gamma \vdash p$ 且 $\Gamma \vdash \neg p$,则称 Γ 是不一致的(不相容的,矛盾的); 否 则, 称其为一致的

平凡性: 若 Γ 不相容,则对 $\forall p$ 有 $\Gamma \vdash p$.

性质 4 (可证等价替换规则)

若p是q的子公式,q'是任意公式,p'是用q'替换p中的q所得公式

若 $\vdash q \rightarrow q'$ 且 $\vdash q' \rightarrow q$;

则 $\vdash p \to p'$,且 $\vdash p' \to p$.

性质 5 (语义后承/逻辑推论/语义推论性质)

$$1^{\circ}$$
 若 $\Gamma \subseteq \Gamma'$ 且 $\Gamma \vDash p$,则 $\Gamma' \vDash p$ (语义的单调性)

$$2^{\circ}$$
 若 $\Gamma \vDash p$ 且 $\Gamma \vDash p \to q$,则 $\Gamma \vDash q$ (语义的 MP 规则)

$$3^{\circ} \Gamma \models p \rightarrow q \Leftrightarrow \Gamma \cup \{p\} \models q$$
 (语义的演绎定理)

 4° p是重言式⇔ $\phi \models p$ (记 $\phi \models p$ 为 $\models p$)

 $5^{\circ} p \in \Gamma \Rightarrow \Gamma \models p$

 6° ⊨ $p \Rightarrow \Gamma$ ⊨ p, 即永真式是任何公式集的语义推论

性质 6 (L的可靠性与完全性)

$$\begin{array}{ll} L \text{的可靠性} & \Gamma \vdash p \Rightarrow \vdash p \\ L \text{的完全性} & \Gamma \vdash p \Rightarrow \vdash p \end{array} \Longrightarrow \Gamma \vdash p \Leftrightarrow \vdash p$$

性质 7 (等值公式)

p与q等值,是指 $p \leftrightarrow q$ 为永真式 判断两公式是否等值的方法: 真值表

2 一阶逻辑(一阶谓词逻辑)/谓词演算

公理:

(K1)
$$p \to (q \to p)$$

(K2)
$$(p \to (q \to r)) \to ((p \to q) \to (p \to q))$$

(K3)
$$(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$$

 $\int (K4) \ \forall x p(x) \rightarrow p(t)$,其中项t对p(x)中的x是自由的

$$(K5) \forall x(p \to q) \to (p \to \forall q)$$
,其中项x不在p中自由出现 (*Gen)

定理 1 (From L)

$$\neg \neg p \rightarrow p$$
 (双重否定律)

$$\vdash \neg \neg p \rightarrow p$$
 (双重否定律)

定理 2 (平凡性)

 Γ 有矛盾⇒ K的任一公式从 Γ 可证

★ 定理 3 (∃₁规则)

设项t对p(x)中的x自由,则有 $\vdash p(t) \rightarrow \exists x p(x)$

定理 4 (∃₂规则)

设 Γ ∪ {p} \vdash q, 其证明中Gen变元不在p中自由出现,且x不在q中自由出现, 那么有 $\Gamma \cup \{\exists xp\} \vdash q$,且除了x不增加其它Gen 变元

定理 5 (演绎定理)

 1° 若 $\Gamma \vdash p \rightarrow q$,则 $\Gamma \cup \{p\} \vdash q$

 2° 若 Γ ∪ {p} \vdash q,且证明中所用的Gen变元不在p中自由出现,则不增加新

的Gen变元就可得 $\Gamma \vdash p \rightarrow q$

推论: 当p是闭式时,有

$$\Gamma \cup \{p\} \vdash q \Leftrightarrow \Gamma \vdash p \to q$$

定理 6 (不知道叫什么(-.-))

$$\vdash \forall x(p \to q) \to (\exists xp \to \exists q)$$

定理7(反证律)

所用Gen变元不在p中自由出现,则不增加新的Gen变元就可以得到结论

$$\left. \begin{array}{c}
\Gamma \cup \{\neg p\} \vdash q \\
\Gamma \cup \{\neg p\} \vdash \neg q
\end{array} \right\} \implies \Gamma \vdash p$$

定理8(归谬律)

所用Gen变元不在p中自由出现,则不增加新的Gen变元就可以得到结论

$$\left. \begin{array}{c}
\Gamma \cup \{p\} \vdash q \\
\Gamma \cup \{p\} \vdash \neg q
\end{array} \right\} \implies \Gamma \vdash \neg p$$

定理 9

 $1^{\circ} \vdash \forall x p(x) \leftrightarrow \forall y p(y)$

 $2^{\circ} \vdash \exists x p(x) \leftrightarrow \exists y p(y)$

其中y不在p(x)中出现

定理 10

 $1^\circ \vdash \neg \ \forall xp \leftrightarrow \exists x \neg \ p$ $2^{\circ} \vdash \neg \exists xp \leftrightarrow \forall x \neg p$

定理 11

 $1^{\circ} \ |p|_{M} = 1 \Leftrightarrow |\forall xp|_{M} = 1$

 2° 设p' 是p的全称闭式,则 $|p|_M = 1 \Leftrightarrow |p'|_M = 1$

 $3^{\circ} |p|_{M} = 0 \Leftrightarrow |\forall xp|_{M} = 0$

 4° 设p' 是p的全称闭式,则 $|p|_{M}=0\Rightarrow |p'|_{M}=0$

 $5^{\circ} |p|_M = 1 \ \mathbb{E}|p \to q|_M = 1 \Rightarrow |q|_M = 1$

定理 12

$$1^\circ \; \Gamma \vDash p \, \underline{\sqcap} \, \Gamma \vDash p \to q \Rightarrow \Gamma \vDash q$$

 $2^{\circ}\ \Gamma \vDash p \Leftrightarrow \Gamma \vDash \forall xp$

 3° 若p' 是p的全称闭式,则: $\Gamma \vDash p \Leftrightarrow \Gamma \vDash p'$

定理 13 (K的可靠性)

 $\Gamma \vdash p \Rightarrow \Gamma \vDash p$

定理 14 (K的完全性)

 $\Gamma \vDash p \Rightarrow \Gamma \vdash p$