Esercitazione N.5: Transistor JFET.

Gruppo xx Federico Belliardo, Francesco MAzzoncini, Giulia Franchi

November 6, 2016

1 Scopo e strumentazione

Studiare le caratteristiche e realizzare un amplificatore con il JFET a canale N 2N3819.

2 Studio funzionamento del JFET

Montaggio e ossevazioni qualitative. E' stato montato il circuito in figura 1, con $R_1 = \pm$, $R_2 = \pm$, $V_1 = \pm$ e $V_2 = \pm$. Le due sorgenti di tensione DC ono state ottenute dalle due boccole del generatore in dotazione.

Variando la resistenza del potenziometro (partitore di tensione) cambia la tensione di gate (V_{GS}) , dunque il JFET entra in conduzione solamente quando si supera la tensione $V_{GS} > V_P$ (tensione di pinch-off, quando cioò succede si accende il led. Qualitatvamente stimiamo: $V_P = \pm$.

Misura della corrente I_D in funzione di V_GS . Si sono prese misure della tensione V_{GS} e di V_{R1} utilizzando il multimetro digitale, da V_{R1} si è ricavata poi $I_D = \frac{V_{R1}}{R_1}$. [Ne possiamo usare due di multimetri?]. Nella tabella ?? e in figura ?? sono riporati i dati presi.

La retta di carico è: $V_1 - R_1 I_D - V_\gamma - V_{DS} = 0$ quando scorre corrente I_D (cioè sono in zona ohmica o di saturazione), mentre $V_{DS} = V_1$ quando sono in zona di interdizione.

Il grafico 2 riporta un immagine delle curve caratteristiche del JFET nel caso in cui la tensione di pinch-off sia $V_P = -2.0V$, sul quale è riportata la retta di carico. Si vede che per i valori delle tensioni V_{DS} esplorati (calcolati dalla retta di carico e riportati nella tabella ?? siamo semre in zona di saturazione. Dunque è possibile eseguire un fit di una funzione parabolica (togliendo i dati in cui siamo in interdizione) per stimare i parametri della legge empirica: $I_D = K_P(V_{GS} - V_P)^2$. Il punto del grafico per cui $V_{GS} = 0V$ corrisponde alla corrente I_{DSS} , alternativamente si possono utilizzare le informazioni del fit: $I_{DSS} = K_P V_P^2$. I due valori sono compatibili entro l'errore. Il valore di V_P è molto variabile per costruzione, ma il valore misurato è compatibile con il range indicato nel datasheet [dire quale...].

Stima della tensione V_P e della corrente I_DSS

- 3 Montaggio amplificatore
- 4 Misure a frequenza fissa
- 5 Misura impedenza di ingresso
- 6 Aumento del guadagno

Figure 1: Schema di JFET in corrente continua.

Figure 2: Curve caratteristiche del JFET dal datasheet.