DETECTING PRESENCE OF WATER **USING SAR IMAGES**

08 JUNE 2021

Department of CSE Jyothi Engineering College Thrissur

GROUP MEMBERS

Presented By

Nair Anjali [JEC17CS072]

Shibana [JEC17CS092]

Najeeb VK [JEC17CS068]

San Jose [JEC17CS089]

Guided By

CSE dept, JECC

Mr. Aneesh Chandran

08/06/2021

DEPARTMENT VISION AND MISSION

VISION:

Creating eminent and ethical leaders in the domain of computational sciences through quality professional education with a focus on holistic learning and excellence.

MISSION:

CSE dept, JECC

- 1.To create technically competent and ethically conscious graduates in the field of Computer Science and Engineering by encouraging holistic learning and excellence.
- 2.To prepare students for careers in Industry, Academia and the Government.
- 3.To instill Entrepreneurial orientation and research motivation among the students of the department.
- 4.To emerge as a leader in education in the region by encouraging teaching, learning, industry and societal connect.

0806/2021

CONTENTS

- Abstract
- 2. Introduction
- 3. Objective
- Motivation 4.
- 5. Problem Statement
- 6. Literature Survey
- 7. **Proposed System**
- 8. **Implementation**
- 9. Conclusion
- 10. References

ABSTRACT

- Satellite imagery offers a rich source of information
- There are two types of satellite imageries Optical & radar
- Recently research on SAR has been started
- Novel method for detecting presence of water \triangleright
- Supervised deep learning is applied to map water regions

- Water most important natural resources on the earth
- Observation of surface water- ecological and hydrological processes
- Surface water bodies are dynamic in nature \triangleright
- The retrieved information used for water management tasks
- Overcome shortcoming of traditional ground based surveillance

- Traditionally optical data is used
- But no proper night vision is obtained \triangleright
- SAR measurements are taken regardless of weather conditions \triangleright and lighting conditions
- Active Sensors, successive pulse of MW are transmitted & echo of each pulse is recorded
- Bright areas- high backscatter, Darker areas –low backscatter

Motivation

Implementing the technology of deep learning to efficiently detect the existence of surface water, to extract its extent, to quantify its volume, and to monitor its dynamics

Objective

CSE dept, JECC

Introduce an autonomous water detection system using deep learning.

< □ > <**□** > < Ē > 〈 Ē > 〈 Ē > 〉 돌 · �

Problem Statement

Surface water bodies are dynamic in nature, Variations in this impact other natural resources, human assets & environment. Change usually causes serious consequences. In extreme cases, rapid increase of surface water can result in flooding & Landslides

CSE dept, JECC 08/06/2023

1. <u>Detecting, Extracting, and Monitoring Surface Water</u> <u>From Space Using Optical Sensors</u>

Features

- > Reviews the current status of water
- Techniques pixel unmixing, reconstruction, and spatio-temporal fusion

Advantages

- Provides information for hydrological studies in ungauged areas.
- Increasing demand of monitoring global water dynamics

Disadvantages

Obscuration by clouds and vegetation.

CSE dept, JECC 08/06/202

2. <u>Radar Satellite Imagery and Automatic Detection of Water Bodies</u>

Features

- Detection of water bodies based on histogram analysis and thresholding
- Radar signal wavelength and active satellite sensor is used

Advantages

- ➤ Water bodies on the image are seen as dark regions.
- ➤ The process is fully automatic

Disadvantages

> There is time delay

CSE dept, JECC 08/06/2021

3. Automatic detection of surface-water bodies from Satellite images for effective mosquito larvae control

Features

- \triangleright Regular mapping of surface-water bodies in rice fields and wetlands
- Four methods were adapted and developed for automated application \triangleright

<u>Advantages</u>

- Uninterrupted data supply under any weather conditions
- \triangleright Provide water detection at any time globally

Disadvantages

CSE dept, JECC

 \triangleright The accuracy is lower at rice-growing season

4. Water Detection using Satellite Images Obtained through Remote Sensing

Features

- Single-band and multiband methods used for image processing
- Standard supervised maximum likelihood classification was used for \triangleright the images.

<u>Advantages</u>

- Monitor the global water supply \triangleright
- help in analyzing the changes in the earth areas in more rapid and \triangleright easy manner.

Disadvantages

low accuracy rate

《申》 《御》 《意》 《意》 「意

PROPOSED SYSTEM

- Satellite Images are used to map water areas(Input)
- ➤ U-NET Architecture is used for semantic segmentation
- Corresponding masked image(output)

Deep Learning

Deep learning an AI function, mimics the workings of the human brain

Convolutional Neural Network

CNN is a class of deep neural networks, most commonly applied to analyze visual imagery

Convolution Neural Network (CNN)

Segmentation

Segmentation is the process of separating your data into distinct groups.

CSE dept, JECC 8/06/2021

U-Net

DATASET

Source: Copernicus Open Access Hub at EU

Training DataSet:

1. 66 training images(along with corresponding mask image) from this- 90% training 10% validation

Testing DataSet:

5 test images

Libraries used:

tensorflow, tqdm, numpy, scikit-learn, matplotlib

06/2021

Architectural Diagram

Steps Of Implementation/Code Overview:

- 1. Import Modules
- 2. Declared image dimension: 128*128*3
- 3. Load & Store data
- 4. Resize every image to predefined value(both train & test)
- 5. Perform random check
- 6. Built the model

Steps Of Implementation/Code Overview:

7. U-NET

Contraction

- 1.convolution layer
- 2.dropout
- 3.2nd conv layer
- 4.Max pooling

Decoder

- 1.conv Transpose
- 2 concatenate
- 3.Conv2D
- 4.Dropout
- 5.conv2d

Steps Of Implementation/Code Overview:

- 8. Create Output Layer
- 9. Model Summary
- 10. Save best model
- 11. Sanitary Check
- 12. Prediction
- 13. Obtain result

Steps Of Implementation/ code Overview:

Verify the images feeded:

Testing & Results: Model Summary:

Model: "model"

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 128, 128, 3)	0	
lambda (Lambda)	(None, 128, 128, 3)	0	input_1[0][0]
conv2d_19 (Conv2D)	(None, 128, 128, 16)	448	lambda[0][0]
dropout_9 (Dropout)	(None, 128, 128, 16)	0	conv2d_19[0][0]
conv2d_20 (Conv2D)	(None, 128, 128, 16)	2320	dropout_9[0][0]
max_pooling2d_4 (MaxPooling2D)	(None, 64, 64, 16)	0	conv2d_20[0][0]
conv2d_21 (Conv2D)	(None, 64, 64, 32)	4640	max_pooling2d_4[0][0]
dropout_10 (Dropout)	(None, 64, 64, 32)	0	conv2d_21[0][0]

Testing & Results: Training:

```
Epoch 1/25
Epoch 2/25
4/4 [===========] - 45s 11s/step - loss: 0.6904 - accuracy: 0.5547 - val loss: 0.6908 - val accuracy: 0.6072
Epoch 3/25
4/4 [==========] - 44s 11s/step - loss: 0.6916 - accuracy: 0.5504 - val loss: 0.6909 - val accuracy: 0.5845
Epoch 4/25
4/4 [===========] - 44s 11s/step - loss: 0.6896 - accuracy: 0.5693 - val loss: 0.6896 - val accuracy: 0.5523
Epoch 5/25
4/4 [==============] - 44s 11s/step - loss: 0.6868 - accuracy: 0.5783 - val loss: 0.6871 - val accuracy: 0.4983
Epoch 6/25
Epoch 7/25
Epoch 8/25
4/4 [===========] - 52s 13s/step - loss: 0.6647 - accuracy: 0.5719 - val loss: 0.6677 - val accuracy: 0.4862
Fnoch 9/25
4/4 [===========] - 52s 13s/step - loss: 0.6443 - accuracy: 0.5855 - val loss: 0.6132 - val accuracy: 0.6091
Epoch 10/25
Epoch 11/25
Epoch 12/25
4/4 [=============] - 54s 13s/step - loss: 0.5459 - accuracy: 0.6864 - val loss: 0.4735 - val accuracy: 0.8001
Epoch 13/25
4/4 [=============] - 49s 12s/step - loss: 0.5693 - accuracy: 0.6664 - val loss: 0.5487 - val accuracy: 0.7221
Epoch 14/25
4/4 [==========] - 51s 13s/step - loss: 0.5522 - accuracy: 0.6807 - val loss: 0.4816 - val accuracy: 0.7842
```

 $\binom{2}{7}$

Testing & Results: Random test of Validation:

Testing & Results:

Prediction:

Testing & Results:Loss & Accuracy Graph:

Testing & Results: Saved Model:

Conclusion

- Presented a model for detecting the presence of water
- ➤ U-net architecture is used for segmentation
- The purpose is to make fast algorithms for water detection using Radar satellite images.

Future Enhancement

- detect flood/water inundation using the obtained dynamic of water areas.
- detect various model like military vehicles etc

06/2021

REFERENCES

- Huang, Chang, et al. "Detecting, extracting, and monitoring surface water from space using optical sensors: A review." Reviews of Geophysics 56.2 (2018): 333-360.
- . Čotar, Klemen, Krištof Oštir, and Žiga Kokalj. "Radar satellite imagery and automatic detection of water bodies." *Geodetski glasnik* 50.47 (2016): 5-15.
- Rana, Himanshu, and Nirvair Neeru. "Water detection using satellite images obtained through remote sensing." Adv. Comput. Sci. Technol 10 (2017): 1923-1940.
- Ovakoglou, Georgios, et al. "Automatic detection of surface-water bodies from Sentinel-1 images for effective mosquito larvae control." *Journal of Applied Remote Sensing* 15.1 (2021): 014507.
- Kreiser, Zachary, Brian Killough, and Syed R. Rizvi. "Water across synthetic aperture radar data (wasard): Sar water body classification for the open data cube." *IGARSS 2018-2018 IEEE International Geoscience* and Remote Sensing Symposium. IEEE, 2018.
- 6. Bartsch, A., et al. "Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes." *Biogeosciences* 9.2 (2012): 703-714.

08/06/2021

THANKYOU

