FTAN image

Let d_r^o be the observed waveform at receiver r for all times. FTAN first computes an image I in the (t,f) domain and then computes group velocity using the source-receiver distance to achieve an image in the (f,v_g) domain. Let I be the matrix in the (t,f) plane, then for a fixed frequency f_o the row $I(f_o,:)$ is,

$$I(f_o,:) = \mathcal{F}^{-1} \{ \mathcal{F} \{ \mathcal{H}(d_r^o) \} \odot g(\alpha, f_o) \}$$

where $\mathcal F$ is the Fourier transform, $\mathcal H$ is the hilbert transform and g is a gaussian filter with width parameter α .

MASW image

Let $d_{f_o}^{\tilde{o}}$ be the observed waveform for a fixed frequency f_o on all (linearly arranged) receivers r_x and s_p be the phase slowness. MASW first computes an image I on the (f,s_p) plane and then computes an image on (f,v_p) . Let I be the matrix in the (f,s_p) plane, then for a fixed frequency f_o the column $I(:,f_o)$ is,

$$I(:, f_o) = L_{f_o}^* \tilde{d}_{f_o}^o, \qquad L_{f_o} = \exp(2\pi i f_o \cdot r_x \otimes s_p).$$

Phase and group velocities

Let v_g,v_p,ω and k denote group velocity, phase velocity, angular frequency and wavenumber respectively. We have,

$$v_g = \partial_k \, \omega,$$
$$v_p = \frac{\omega}{k}.$$

Let s denote slowness,

$$v_g = \partial_k (k \, v_p)$$
 or $s_g = \partial_\omega (\omega \, s_p)$

and so

$$v_g = k\partial_k v_p + v_p$$
 or $s_g = \omega \partial_\omega s_p + s_p$.

Solving these differential equations we have,

$$v_p(\omega) = \frac{1}{k} \left(k_o v_p^o + \int_{k_o}^k v_g(k) \, dk \right)$$
 or $s_p(\omega) = \frac{1}{\omega} \left(\omega_o s_p^o + \int_{\omega_o}^\omega s_g(\omega) \, d\omega \right)$.