Devoir à la maison n°04 : corrigé

Problème 1 — Étude d'une fonction

- **1. a.** Pour tout $x \in I$, $\cos x \le 1$ et donc $5 4\cos x \ge 1 > 0$. f est donc bien définie sur I (et même sur \mathbb{R}).
 - **b.** On peut utiliser la quantité conjuguée. Pour tout $x \in I$,

$$\begin{split} f(x) - \sin x &= \sin x \left(\frac{1}{\sqrt{5 - 4\cos x}} - 1 \right) = \frac{\sin x}{\sqrt{5 - 4\cos x}} \left(1 - \sqrt{5 - 4\cos x} \right) \\ &= \frac{\sin x}{\sqrt{5 - 4\cos x}} \frac{1 - (5 - 4\cos x)}{1 + \sqrt{5 - 4\cos x}} = -\frac{4\sin x}{\sqrt{5 - 4\cos x}} \frac{1 - \cos x}{1 + \sqrt{5 - 4\cos x}} \end{split}$$

Comme $1 - \cos x \ge 0$ et $\sin x \ge 0$ pour tout $x \in I$, $f(x) \le \sin x$ i.e. $f(x) - \sin x \le 0$ pour tout $x \in I$.

- c. On étudie la fonction $\varphi: x \mapsto \sin x x$ sur I. On a $\varphi'(x) = \cos x 1 \leqslant 0$ pour tout $x \in I$ et φ' ne s'annule qu'en 0 sur $[0,\pi]$. Ainsi φ est strictement décroissante sur $[0,\pi]$. Puisque $\varphi(0)=0, \varphi(x)<0$ pour tout $x \in]0,\pi]$.
 - f(0) = 0 et pour tout $x \in]0,\pi]$, $f(x) \le \sin x < x$. Donc l'unique solution de l'équation f(x) = x sur I est x = 0.
- 2. Pour tout $x \in I$, $5-4\cos x > 0$ donc $x \mapsto \sqrt{5-4\cos x}$ est dérivable sur I et ne s'y annule pas. Comme sin est également dérivable sur I, f est dérivable sur I comme quotient de fonctions dérivables sur I et pour $x \in I$:

$$f'(x) = \frac{\cos x}{\sqrt{5 - 4\cos x}} - \frac{4\sin^2 x}{2(5 - 4\cos x)^{\frac{3}{2}}} = \frac{\cos x(5 - 4\cos x) - 2\sin^2 x}{(5 - 4\cos x)^{\frac{3}{2}}}$$
$$= \frac{-2\cos^2 x + 5\cos x - 2}{(5 - 4\cos x)^{\frac{3}{2}}} = \frac{(2 - \cos x)(2\cos x - 1)}{(5 - 4\cos x)^{\frac{3}{2}}}$$

En effet, $-2X^2 + 5X - 2$ se factorise sous la forme (2 - X)(2X - 1). Comme $2 - \cos x > 0$ pour tout $x \in I$, le signe de f(x) ne dépend que du signe de $2\cos x - 1$. On en déduit le tableau de variations et le graphe suivants.

x	0	$\frac{\pi}{2}$	π
f'(x)		- o	+
f	0	$\frac{1}{2}$	0

On a notamment f'(0) = 1 et $f'(\pi) = -\frac{1}{3}$.

- a. Comme $t\mapsto 5-4t$ ne s'annule pas sur [-1,1], φ est dérivable sur [-1,1] et $\varphi'(t)=-\frac{9}{(4t-5)^2}<0$ 3. pour $t \in [-1, 1]$. ϕ est donc strictement décroissante sur [-1, 1]. Comme ϕ est continue et strictement décroissante sur [-1, 1], $\phi([-1, 1]) = [\phi(1), \phi(-1)] = [-1, 1]$.
 - **b.** cos est définie sur I à valeurs dans [-1, 1], ϕ est définie sur [-1, 1] à valeurs dans [-1, 1] et arccos est définie sur [-1, 1] donc $q = \arccos \circ \phi \circ \cos$ est définie sur I.
 - c. cos est strictement décroissante sur I à valeurs dans [-1, 1], ϕ est strictement décroissante sur [-1, 1] à valeurs dans [-1, 1] et arccos est strictement décroissante sur [-1, 1]. On en déduit que $g = \arccos \circ \phi \circ \cos$ est strictement décroissante sur I. Comme q est également continue sur I comme composée de fonctions continues, $g(I) = [g(\pi), g(0)] = [0, \pi] = I$.
- **a.** Les variations de f montrent que $f(x) \in [0, \frac{1}{2}]$. Comme f est strictement décroissante et continue sur $\left[\frac{\pi}{3}, \pi\right]$, f induit une bijection de $\left[\frac{\pi}{3}, \pi\right]$ sur $\left[0, \frac{1}{2}\right]$. Il existe donc un unique $z \in \left[\frac{\pi}{3}, \pi\right]$ tel que f(z) = f(x).
 - **b.** $\cos(g(x)) = \cos(\arccos(\varphi(\cos x))) = \varphi(\cos x)$. Ainsi $\cos(g(x)) = \varphi(\cos x) = \frac{4 5\cos x}{5 4\cos x}$ $\sin(g(x)) = \sqrt{1 - \cos^2(g(x))}. \text{ On obtient } \sin(g(x)) = \sqrt{\frac{9\sin^2 x}{(5 - 4\cos x)^2}} = \frac{3\sin x}{5 - 4\cos x} \text{ car } \sin x \geqslant 0 \text{ et }$ $5 - 4\cos x \geqslant 0.$
 - **c.** $f(g(x)) = \frac{\sin(g(x))}{\sqrt{5 4\cos(g(x))}}$. En remplaçant $\cos(g(x))$ et $\sin(g(x))$ par les expressions trouvées à la question précédente, on obtient bien f(g(x)) = f(x). De plus, $x \in \left[0, \frac{\pi}{3}\right]$ et g est strictement décroissante sur $\left[0, \frac{\pi}{3}\right]$ donc $g(x) \in \left[g(\frac{\pi}{3}), g(0)\right] = \left[\frac{\pi}{3}, \pi\right]$. Enfin, z est l'unique réel appartenant à $\left[\frac{\pi}{3},\pi\right]$ tel que f(z)=f(x) donc z=g(x).
- $\textbf{a.} \ \ \text{On a } \cos\theta=2\cos^2\frac{\theta}{2}-1=1-2\sin^2\frac{\theta}{2}. \ \text{Or } \theta\in[0,\pi] \ \text{donc} \ \frac{\theta}{2}\in\left[0,\frac{\pi}{2}\right]. \ \text{Ainsi } \cos\frac{\theta}{2} \ \text{et } \sin\frac{\theta}{2} \ \text{sont positifs}.$ On en déduit les résultats annoncés
 - **b.** On a $\cos\left(\frac{x+z}{2}\right) = \cos\frac{x}{2}\cos\frac{z}{2} \sin\frac{x}{2}\sin\frac{z}{2}$ et $\cos\left(\frac{z-x}{2}\right) = \cos\frac{x}{2}\cos\frac{z}{2} + \sin\frac{x}{2}\sin\frac{z}{2}$. De plus, $x, z \in \mathbb{R}$ $[0,\pi]$ done

$$\cos\frac{x}{2}\cos\frac{z}{2} = \sqrt{\frac{1+\cos x}{2}}\sqrt{\frac{1+\cos z}{2}}$$

$$\sin\frac{x}{2}\sin\frac{z}{2} = \sqrt{\frac{1-\cos x}{2}}\sqrt{\frac{1-\cos z}{2}}$$

Or $\cos z = \cos(g(x)) = \frac{4 - 5\cos x}{5 - 4\cos x}$ donc

$$\cos\frac{x}{2}\cos\frac{z}{2} = \frac{1}{2}\sqrt{(1+\cos x)\left(1+\frac{4-5\cos x}{5-4\cos x}\right)} = \frac{1}{2}\frac{\sqrt{(1+\cos x)(9-9\cos x)}}{\sqrt{5-4\cos x}} = \frac{3}{2}\frac{\sqrt{1-\cos^2 x}}{\sqrt{5-4\cos x}} = \frac{3}{2}f(x)$$

$$\sin\frac{x}{2}\sin\frac{z}{2} = \frac{1}{2}\sqrt{(1-\cos x)\left(1-\frac{4-5\cos x}{5-4\cos x}\right)} = \frac{1}{2}\frac{\sqrt{(1+\cos x)(1+\cos x)}}{\sqrt{5-4\cos x}} = \frac{1}{2}\frac{\sqrt{1-\cos^2 x}}{\sqrt{5-4\cos x}} = \frac{1}{2}f(x)$$

car $\sin x \ge 0$. On en déduit que $\cos \left(\frac{x+z}{2} \right) = f(x)$ et $\cos \left(\frac{z-x}{2} \right) = 2f(x)$.

- **a.** f est strictement croissante et continue sur $\left[0,\frac{\pi}{3}\right]$ donc induit une bijection de $\left[0,\frac{\pi}{3}\right]$ sur $\left[f(0),f\left(\frac{\pi}{3}\right)\right]$
 - **b.** Soit $y \in [0, \frac{1}{2}]$ et posons x = h(y) de sorte que y = f(x). Posons également z = g(x). D'après la question précédente, $\cos\left(\frac{x+z}{2}\right) = y$. De plus, $x \in \left[0, \frac{\pi}{3}\right]$ et $z \in \left[\frac{\pi}{3}, \pi\right]$ donc $\frac{x+z}{2} \in \left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ $[0,\pi]$. Ainsi $\frac{x+z}{2} = \arccos y$.

D'après la question précédente, $\cos\left(\frac{z-x}{2}\right) = 2y$. De plus, $x \in \left[0, \frac{\pi}{3}\right]$ et $z \in \left[\frac{\pi}{3}, \pi\right]$ donc $\frac{z-x}{2} \in \left[0, \frac{\pi}{2}\right]$

 $[0,\pi]$. Ainsi $\frac{z-x}{2}=\arccos 2y$. Enfin, $x=\frac{x+z}{2}-\frac{z-x}{2}=\arccos y-\arccos 2y$. On a donc $h(y)=\arccos y-\arccos 2y$.

SOLUTION 1.

1. f(z) est défini si et seulement si $e^z + e^{-z} \neq 0$. Or

$$e^{z}+e^{-z}=0\iff e^{2z}=-1\iff \exists k\in\mathbb{Z},\ 2z=(2k+1)i\pi\iff \exists k\in\mathbb{Z},\ z=i\frac{\pi}{2}+ik\pi$$

Donc f(z) est défini pour $z \notin i\frac{\pi}{2} + i\pi \mathbb{Z}$.

2. f(z) = 0 équivaut à $e^z - e^{-z} = 0$. Or

$$e^z - e^{-z} = 0 \iff e^{2z} = 1 \iff \exists k \in \mathbb{Z}, \, 2z = 2ik\pi \iff \exists k \in \mathbb{Z}, \, z = ik\pi$$

L'ensemble des solutions est donc $i\pi\mathbb{Z}$.

3. Posons z = x + iy avec $(x, y) \in \mathbb{R}^2$.

$$\begin{split} |f(z)| < 1 &\iff \left| e^z - e^{-z} \right|^2 < \left| e^z + e^{-z} \right|^2 \\ &\iff \left(e^z - e^{-z} \right) \overline{\left(e^z - e^{-z} \right)} < \left(e^z + e^{-z} \right) \overline{\left(e^z + e^{-z} \right)} \\ &\iff \left(e^z - e^{-z} \right) \left(e^{\overline{z}} - e^{-\overline{z}} \right) < \left(e^z + e^{-z} \right) \left(e^{\overline{z}} + e^{-\overline{z}} \right) \\ &\iff -e^{z - \overline{z}} - e^{\overline{z} - z} < e^{z - \overline{z}} + e^{\overline{z} - z} \\ &\iff e^{2iy} + e^{-2iy} > 0 \\ &\iff \cos(2y) > 0 \end{split}$$

$$\operatorname{Donc} \left\{ \begin{aligned} |\operatorname{Im} z| &< \frac{\pi}{2} \\ |f(z)| &< 1 \end{aligned} \right. \iff \left\{ \begin{aligned} |y| &< \frac{\pi}{2} \\ \cos(2y) &> 0 \end{aligned} \right. \iff |y| &< \frac{\pi}{4}.$$

- **4.** Soit $z \in \Delta$. D'après la question précédente, |f(z)| < 1 i.e. $f(z) \in \mathcal{D}$. Ainsi tout élément de Δ a pour image par f un élément de \mathcal{D} , c'est-à-dire que $f(\Delta) \subset \mathcal{D}$.
- 5. **Existence**: Puisque Z est non nul, Z possède des arguments. De plus, les arguments de Z étant égaux à un multiple de 2π près, il existe un argument θ de Z appartenant à $]-\pi,\pi]$. On ne peut avoir $\theta=\pi$ sans quoi Z serait un réel négatif. Considérons également le module r de Z, qui est strictement positif puisque Z est non nul. On peut alors poser $z=\ln r+i\theta$ de sorte que $e^z=Z$ et $\mathrm{Im}(z)=\theta\in]-\pi,\pi[$. Unicité: Supposons qu'il existe deux complexes z et z' tels que $e^z=e^{z'}=Z$ et les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$. Puisque $e^z=e^{z'}$, il existe $k\in\mathbb{Z}$ tel que $z'=z+2ik\pi$. En partiulier, $\mathrm{Im}(z')-\mathrm{Im}(z)=2k\pi$. Mais comme les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$, $-2\pi<\mathrm{Im}(z')-\mathrm{Im}(z)<2\pi$, de sorte que -1< k<1. Puisque k est entier k est nul puis z'=z.
- 6. Remarquons que

$$\frac{1+u}{1-u} = \frac{(1+u)(1-\overline{u})}{|1-u|^2} = \frac{1-|u|^2+2i\operatorname{Im}(u)}{|1-u|^2}$$

On en déduit que si $\frac{1+u}{1-u}\in\mathbb{R}_-$, alors $1-|u|^2\leqslant 0$ i.e. $|u|\geqslant 1$. Par contraposition, si $u\in\mathcal{D},\,\frac{1+u}{1-u}\notin\mathbb{R}_-$.

7. Montrons que tout élément de \mathcal{D} admet un unique antécédent dans Δ . Soit $\mathfrak{u}\in\mathcal{D}$ et $z\in\mathbb{C}$. On a facilement $f(z)=\mathfrak{u}\iff e^{2z}=\frac{1+\mathfrak{u}}{1-\mathfrak{u}}$. D'après la question $\mathbf{6}$, $\frac{1+\mathfrak{u}}{1-\mathfrak{u}}\notin\mathbb{R}_-$. D'après la question $\mathbf{5}$, cette équation admet une unique solution telle que $\mathrm{Im}(2z)\in]-\pi,\pi[$ i.e. $\mathrm{Im}(z)\in]-\frac{\pi}{2},\frac{\pi}{2}[$. Notons encore z cette solution. Comme on a également |f(z)|<1, la question $\mathbf{3}$ montre que $|\mathrm{Im}\,z|<\frac{\pi}{4}$ i.e. $z\in\Delta$. L'équation $f(z)=\mathfrak{u}$ admet donc une unique solution dans Δ .

Puisqu'on a également montré que $f(\Delta) \subset \mathcal{D}$, f réalise bien une bijection de Δ sur \mathcal{D} .