WHAT IS CLAIMED IS:

1

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

- 2 1. An uninterruptible power supply having an input connected to an input power source and an output connected to a critical load, the uninterruptible power supply comprising:
 - a utility disconnect static switch comprising two silicon controlled rectifiers connected in anti-parallel coupled between the input and an input bus;
 - b) a battery bus;
 - c) an inverter coupled between the battery bus and the output; and
 - d) an inverter controller that, upon detection of an input power source fault causing an input voltage magnitude increase, controls the inverter to generate on the input bus a voltage of the same polarity and greater magnitude than the input voltage, thereby commutating the utility disconnect static switch.

2. The uninterruptible power supply of claim 1 further comprising:

- a transformer having first and second windings, the first winding series coupled between the utility disconnect static switch and the output, and the second series winding having a first terminal coupled to ground;
- b) a series inverter coupled between a second terminal of the second winding and the battery bus; and
- c) a series inverter controller that, upon detection of an input power source fault causing an input voltage magnitude increase, controls the series inverter to generate on the input bus a voltage of the same polarity and greater magnitude than the input voltage, thereby commutating the utility disconnect static switch.

1	3.	A method of preventing fault propagation through a utility interactive UPS having		
2	an inv	erter and a utility disconnect static switch with an input terminal supplied with an		
3	input p	input power signal and an output terminal, the method comprising the steps of:		
4		sensing a characteristic of the input power signal;		
5		detecting a change in the sensed characteristic indicating a fault that causes an		
6		increase in the voltage of the input power signal;		
7		controlling the inverter to generate on the output terminal of the utility disconnect		
8		static switch a voltage having a polarity the same as and a magnitude		
9		greater than the faulted input voltage, thereby commutating the static		
10		switch.		
11				
12	4.	The method of claim 3 wherein the UPS comprises a second inverter, the method		
13	furthe	further comprising:		
14		controlling the second inverter to generate on the output terminal of the utility		
15		disconnect static switch a voltage having a polarity the same as and a		
16		magnitude greater than the faulted input voltage, thereby commutating the		
17		static switch.		
18				
19	5.	The method of claim 3 wherein the sensed characteristic is a voltage across the		
20	static	switch.		
21				
22	6.	The method of claim 3 wherein the sensed characteristic is a current through the		
23	static	switch.		
24				
25	7.	The method of claim 4 wherein the sensed characteristic is a voltage polarity		
26	acros	s the static switch.		
27				
28	8.	The method of claim 4 wherein the sensed characteristic is a current direction		
29	throu	gh the static switch.		

30

1	9.	An uninterruptible power supply having an input connected to an input power
2	source	and an output connected to a critical load, the uninterruptible power supply
3	compri	
4	•	a) a utility disconnect static switch coupled between the input and an input
5		bus, the switch two silicon controlled rectifiers connected in anti-
6		parallel;
7		b) a series inverter coupled between the input bus and a battery bus;
8		c) a primary inverter coupled between the battery bus and the output; and
9		d) a series inverter controller that, upon detection of an input power source
10		fault causing an input voltage magnitude increase, controls the series
11		inverter to generate on the input bus a voltage of the same polarity and
12		greater magnitude than the input voltage, thereby commutating the
13		utility disconnect static switch.
14		
15	10.	A method of preventing fault propagation through a utility interactive UPS having
16	a serie	s inverter and a utility disconnect static switch with an input terminal supplied with
17	an inpu	at power signal and an output terminal, the method comprising the steps of:
18		sensing a characteristic of the input power signal;
19		detecting a change in the sensed characteristic indicating a fault that causes an
20		increase in the voltage of the input power signal;
21		controlling the series inverter to generate on the output terminal of the utility
22		disconnect static switch a voltage having a polarity the same as and a
23		magnitude greater than the faulted input voltage, thereby commutating the
24		static switch.
25		
26	11.	An uninterruptible power supply having an input connected to an input power
27	source	and an output connected to a critical load, the uninterruptible power supply
28	compr	ising:
29		a) a utility disconnect static switch comprising two gate commutated
30		switching devices connected in anti-parallel coupled between the input

and an input bus;

31

1		b) an utility disconnect static switch controller that, upon detection of an
2		input power source fault causing an input voltage magnitude increase,
3		opens the gate commutated switching devices.
4		c) a clamping circuit coupled to the gate commutated switching devices to
5		minimize the transient voltage caused by opening the fast utility
6		disconnect static switch.
7		
8	12.	The uninterruptible power supply of claim 11 wherein the gate commutated
9	switch	ing devices are power transistors.
10		
11	13.	The uninterruptible power supply of claim 11 wherein the gate commutated
12	switch	ing devices are gate turn off thyristors.
13		
14	14.	The uninterruptible power supply of claim 11 wherein the clamping circuit further
15	compri	ises:
16		a first diode having a cathode coupled to an input side of the fast utility
17		disconnect static switch and an anode coupled to a negative battery bus;
18		a second diode having an anode coupled to the input side of the fast utility
19		disconnect static switch and a cathode coupled to the positive battery bus;
20		a third diode having an anode coupled to an output side of the fast utility
21		disconnect static switch and a cathode coupled to the positive battery bus;
22		and
23		a fourth diode having a cathode coupled to the output side of the fast utility
24		disconnect switch and an anode coupled to the negative battery bus.
25		
26	15.	The uninterruptible power supply of claim 11 wherein the clamping circuit further
27	compr	ises:
28		a first diode having a cathode coupled to an input side of the fast utility
29		disconnect static switch and an anode coupled to a negative terminal of a
30		capacitor;

30

1	a second diode having an anode coupled to the input side of the last utility
2	disconnect static switch and a positive terminal of the capacitor;
3	a third diode having an anode coupled to an output side of the fast utility
4	disconnect static switch and a cathode coupled to the positive terminal of
5	the capacitor; and
6	a fourth diode having a cathode coupled to the output side of the fast utility
7	disconnect switch and an anode coupled to the negative terminal of the
8	capacitor.
9	
10	16. The uninterruptible power supply of claim 11 wherein the clamping circuit further
11	comprises:
12	a first diode having an anode coupled to an input side of the fast utility disconnect
13	static switch and a cathode coupled to a first terminal of a capacitor;
14	a second diode having a cathode coupled to the input side of the fast utility
15	disconnect static switch and an anode coupled to a second terminal of the
16	capacitor;
17	a third diode having a cathode coupled to the first terminal of the capacitor and an
18	anode coupled to ground; and
19	a fourth diode having an anode coupled to the second terminal of the capacitor
20	and a cathode coupled to ground.
21	
22	17. The uninterruptible power supply of claim 11, wherein the clamping circuit
23	further comprises:
24	a first diode having an anode coupled to an input side of the fast utility disconnect
25	static switch and a cathode coupled to a first terminal of a first capacitor
26	and
27	a second diode having a cathode coupled to the input side of the fast utility
28	disconnect static switch and a cathode coupled to a second terminal of a
29	second capacitor;
30	wherein the second terminal of the first capacitor and the first terminal of the
31	second capacitor are coupled to ground.

í			
2	18.	The uninterruptible power supply of claim 11, wherein the clamping circuit	
3	further comprises:		
4		a first voltage limiting diode having a cathode coupled to an input side of the fast	
5		utility disconnect static switch; and	
6		a second voltage limiting diode having an anode coupled to an anode of the first	
7		voltage limiting diode and a cathode coupled to ground.	
8			
9	19.	A method of preventing fault propagation through a utility interactive UPS having	
10	a utility disconnect static switch comprising two gate commutated switching devices		
11	coupled in anti-parallel, the static switch having an input terminal supplied with an input		
12	power signal, the method comprising the steps of:		
13		sensing a characteristic of the input power signal;	
14		detecting a change in the sensed characteristic indicating a fault that causes an	
15		increase in the voltage of the input power signal;	
16		opening the static switch to disconnect the input power signal from the UPS.	
17			
18	20.	The method of claim 19 wherein the sensed characteristic is a voltage across the	
19	static	switch.	
20			
21	21.	The method of claim 19 wherein the sensed characteristic is a current through the	
22	static switch.		