

Lunar Reconnaissance Orbiter (LRO) Navigation Overview

May 21, 2008

Rivers Lamb

Who am I?

- Guy with the weird name
- Born and raised in North Carolina
- Grew up with Star Wars and Star Trek
- Really wanted to be a professional goalkeeper, but...
- Graduated from Virginia Tech in Aerospace Engineering in 2003
- Started as a co-op in Flight Dynamics Analysis Branch in 2001
- Primary experience in mission design and maneuver planning
 - Mission design for Solar Dynamics Observatory (SDO)
 - Re-entry planning for Tropical Rainfall Measurement Mission (TRMM)
 - Launch and early operations support for Aura
 - Mission design and maneuver planning for Space Technology 5 (ST5)
- Currently Flight Dynamics Ground System Lead for LRO
 - Responsible for the maneuver planning and navigation support
- Please ask questions!

Vision for Space Exploration

Exploration Roadmap

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25...

Mars
Expedition
2030(?)

LRO Objectives

Objective: The Lunar Reconnaissance Orbiter (LRO) mission objective is to conduct investigations that will be specifically targeted to prepare for and support future human exploration of the Moon.

Locate Potential Resources

- Hydrogen/water at the lunar poles
- Continuous solar energy
- Mineralogy

Safe Landing Sites

- High resolution imagery
- Global geodetic grid
- Topography
- Rock abundances

Space Environment

- Energetic particles
- Neutrons

Science Instruments

INSTRUMENT	SPONSORSHIP	MEASUREMENT	LVL 1 RQMTS TRACEABILITY
CRaTER Cosmic Ray Telescope for the Effects of Radiation	 PI: Harlan Spence, BU IM: Rick Foster, MIT ISE: Bob Goeke, MIT	<i>Tissue equivalent response to radiation LET energetic particle spectra 200 keV – 1 GeV/nuc</i>	M10 - Radiation Environment M20 - Radiation on Human-equivalent tissue
DLRE Diviner Lunar Radiometer Experiment	 PI: David Paige, UCLA IM: Wayne Hartford, JPL ISE: Marc Foote, JPL	<i>Better than 500m scale maps of temperature, rock abundances, mineralogy</i>	M50 - Surface Temperatures M80 - Surface Features and Hazards M90 - Polar Illumination M100 - Regolith Resources
LAMP Lyman-Alpha Mapping Project	 PI: Alan Stern, SwRI IM: Ron Black, SwRI ISE: Dave Slater, SwRI	<i>UV Albedo maps of the permanently shadowed areas Maps of frosts in permanently shadowed areas, 3km resolution</i>	M60 - Images of PSRs M70 - Subsurface Ice
LEND Lunar Exploration Neutron Detector	 PI: Igor Mitrofanov, IKI Deputy PI: Roald Sagdeev, UMD IM: Anton Sanin, IKI ISE: Maxim Litvak, IKI	<i>Maps of hydrogen in upper 2m of Moon at 10km scales Global distribution of neutrons around the Moon</i>	M10 - Radiation Environment M70 - Subsurface Ice M110 - Hydrogen Mapping
LOLA Lunar Orbiter Laser Altimeter	 PI: David Smith, GSFC Co-PI: Maria Zuber, MIT IM: Glenn Jackson, GSFC ISE: John Cavanaugh, GSFC	<i>~50m scale polar topography at <10cm vertical, and roughness and slope data</i>	M30 - Topography Grid M40 - Topography Resolution M60 - Images of PSRs M80 - Surface Features and Hazards M90 - Polar Illumination
LROC Lunar Reconnaissance Orbiter Camera	 PI: Mark Robinson, ASU IM: Scott Brylow, MSSS ISE: Mike Caplinger, MSSS	<i>1000s² of 50cm/pixel images (125km), and entire Moon at 100m visible, 400m UV</i>	M40 - Topography Resolution M80 - Surface Features and Hazards M90 - Polar Illumination M100 - Regolith Sources
Mini-RF Technology Demonstration	 POC: Keith Raney, JHU/APL PM: Bill Marinelli, NAWC DPM: Dean Huebert, NAWC	<i>X&S-band Radar imaging and radiometry</i>	P160 - Demonstrate new lightweight SAR Technologies

LRO Mission Timeline

Minimum Energy
Lunar Transfer ~ 4 Days

Lunar Orbit Insertion
Sequence, 4-6 Days

Commissioning Phase,
30 x 216 km Altitude
Quasi-Frozen Orbit,
Up to 60 Days

Polar Mapping Phase,
50 km Altitude Circular Orbit,
At least 1 Year

Trajectory Overview – Launch and Cruise

- LRO is scheduled to launch in late 2008 on Atlas V with LCROSS
- Direct transfer to moon is 4-5 days
- Two planned maneuvers correct for launch dispersions
 - MCC-E at Separation + 22 hours
 - MCC-1 at Separation + 24 hours

Trajectory Overview – Lunar Orbit Insertion

- Lunar Orbit Insertion (LOI) maneuver sequence (over 4-5 days)
 - LOI-1 captures into polar lunar orbit with 5 hour period
 - Total of 5 LOI maneuvers achieves Commissioning Orbit (26 x 216 km)
- Commissioning Orbit (up to sixty days)
 - No orbit maintenance maneuvers needed

Trajectory Overview – Mission Orbit Insertion

- Mission Orbit Insertion (MOI) maneuver sequence
 - Total of 3 maneuvers achieves Mission Orbit ($50 \text{ km} \pm 20 \text{ km}$ altitude)
- Mission Orbit (one year)
 - One pair of stationkeeping (SK) maneuvers every 27 days km
 - Momentum management maneuvers executed once every two weeks

Communications Overview

- Tracking, Telemetry, and Command functions are provided through ground-based S-band communication
- Range requirement of 10 m; Doppler requirement of 1 or 3 mm/s

Ground Stations

Flight Dynamics Facility

- Range and Doppler measurements are sent to the Flight Dynamics Facility (FDF)
- FDF is an institutional GSFC facility
- Secured operational control center
- Supports ELVs, ISS, STS, other spacecraft
- Primary navigation and mission design for past two US lunar missions: Clementine and Lunar Prospector
- Primary support for LRO:
 - Tracking Data Evaluation
 - Orbit Determination
 - Mission Product Generation
 - Mission Design
 - Maneuver Planning
- The Goddard Trajectory Determination System (GTDS) is used for LRO orbit determination

Daily Navigation Support for LRO

- Requirements on S-band Tracking Data Provided to FDF
 - SCN required to provide 30 minutes of tracking data every lunar orbit
 - Coherent Doppler and range measurements
 - Range accuracy 10 meters (1 sigma)
 - WS1 and DSN Doppler accuracy 1 mm/s (1 sigma)
 - Other S-band stations Doppler accuracy 3 mm/s (1 sigma)
- Orbit Determination Requirements
 - Daily OD using S-band tracking data
 - Predictive ephemeris requirement in lunar orbit is 800 m after 84 hours
 - Definitive ephemeris is 500 m RSS and 18 m radial
 - Post-maneuver OD using S-band tracking data
 - No predictive or definitive accuracy requirements
 - Primary goal is to update station acquisition data and MOC products

Lunar Prospector Results

- Reprocessed LP data shows overlap compares to 60 m RSS (1-sigma) and 6 m radial (1-sigma) – meets requirement!

One-Way Laser Ranging

- Transmit 532nm laser pulses at 28 Hz to LRO
- Time stamp Departure and Arrival times

Greenbelt, MD

Receiver telescope on High Gain Antenna System (HGAS) routes LR signal to LOLA

LOLA channel 1
Detects LR signal

Fiber Optic Bundle

LR Receiver Telescope

OD Reprocessing Using Laser Data

- Goal: Orbit accuracy of 50 m RSS and 1 m radial
- Reprocessing of definitive OD using S-band and laser tracking data
 - Performed twice during mission: at L+3 months, end of nominal mission
 - Uses updated lunar gravity model provided by LR team
- Key force model upgrades to improve accuracy
 - Gravity modeling (biggest error source)
 - Solar and lunar radiation modeling
 - Lunar solid tide accelerations due to the Earth and Sun on the Moon

Accelerations due to Lunar Gravity

NASA's Goddard Space Flight Center

Institute of Navigation (ION) Presentation

Slide - 18

Lunar Gravity Impact on Mission Orbit

Conclusion

- LRO will provide the most accurate map of the Moon yet!

