操作系统期末考试样卷

一、単	项选择题(30pts total, 2pts each)							
1.	() The operating system is <i>not</i>	responsible fo	or the following activities in					
	connection with process manageme	nt?						
	A. Suspending and resuming process	esses						
	B. Providing mechanism for proce	ess synchroniza	ation					
	C. Handling deadlock							
	D. Keeping track of free memory							
2.	() Which of the following	process sched	dule algorithm can lead to					
	starvation?							
	A. FCFS B. Round Robin	C. SJF	D. Guaranteed					
Sch	eduling							
3.	() register contains th	e size of a pro	cess.					
	A. Base B. Limit		D. Stack pointer					
4.	() Deadlock can arise if four	conditions hol	d simultaneously. Which of					
	the following is not one of these for		•					
	A. mutual exclusion B. busy v							
	D. no preemption E. circula							
5.	() Let graph represent "resou	rce allocation	graph". Which statement is					
	wrong?	. 1	• ,					
	A. If graph contains cycle, and the then there is deadlock.	ere is only one	instance per resource type,					
	B. If graph contains cycle, and the	ere can he seve	ral instances ner resource					
	type, then there may or may no		•					
	C. If graph contains no cycle, then		ı					
	D. If no deadlock, then graph cont							
6.	() The ability of a computer s	system to swite	ch execution among severa					
	jobs that are in memory at the same		_					
	A. time slicing		multiprocessing					
	B. multiprogramming	D	. multitasking					
7.	() In the readers-writers pro	blem, processe	p and q are allowed to					
	simultaneously access the shared resource if and only if							
	A. p and q are both reading.	C. Eitl	her p or q or both is reading					
	B. p and q are both writing	D. Eit	her p or q or both is writing					
8.	() Suppose that a machine has	48-bit virtual	address and 32-bit physica					

addres	ss. If pages are 4K	B, how many	entries	are in the	e page tal	ble if it has			
only a	only a single level?								
A. 2^{27}	•	C. 2 ²	4	D. 2^{36}					
9. "Com	puting the track, s	ector, and head	d for a	disk read	d" is don	ne in which			
layers	?								
A. In	terrupt handlers	(C. Devi	ce-indepe	ndent OS	software			
B. D	evice drivers	Ι). User-	-level I/O	software				
10. () If there are no na	ame collisions i	n a file	system, t	the easies	st method is			
to use	<u>.</u>								
	<mark>ngle-level directory</mark>	<mark>/ system</mark> (C. sing	gle-level	or	two-level			
	ory system	, ,	. 1.	1 . 1 .	·· ,	,			
B. tw	vo-level directory s	ystem 1). hiei	archical d	irectory s	system			
11. () A computer has	four page fram	es. The	e time of	loading,	time of last			
access	, and the R and M	bits for each pa	ige are	as shown	below (tl	ne times are			
in clo	ck ticks):								
Pa	ge Loaded	Last ref.	R	M					
0	126	280	1	0					
1	230	265	0	1					
2	140	270	0	0					
3	110	285	1	1					
	page will NRU, LR			_	_	y?			
A. 2,	2,1 B. 2,3	<mark>,1</mark> C. 2	2,1,2	D.	3,1,2				
12. () A computer has s	ix tape drives,	with n	processes	competin	ng for them.			
•	Each process may need two drives. For which values of n is the system								
deadlo	ock free?								
A. 8	B. 7	C. 6		D. 5					
13. () The beginning of a free space bitmap looks like this after the disk									
partition is first formatted: 1000 0000 0000 (the first block is used by the root									
directory). The system always searches for free blocks starting at the									
lowest-numbered block, so after writing file A, which uses six blocks, the									
bitmaj	bitmap looks like this: 1111 1110 0000 0000. Show the bitmap after the								
follow	following additional action: file B is written, using five blocks.								
A. 1000 0001 1111 0000 C. 1111 1111 1110									
B. 111	B. 1111 1111 1111 0000 D. 1111 1110 0000 1100								
14. (14. () In which of the four I/O software layers is "Writing commands to the								
device	device registers" is done?								

A. Interrupt handlers

C. Device-independent OS software

B. Device drivers

D. User

- 15. () How much cylinder skew is needed for a 7200-rpm disk with a track-to-track seek time of 1msec? Assuming that the disk has 200 sectors of 512 bytes each on each track.
 - A. 12
- B. 24
- C. 48
- D. 40
- 二、简答题(15pts total, 5pts each)
 - 1. (5pts) List at least three key differences between user-level threads and kernel-level threads.
 - 2. (5pts) In a virtual memory system, does a TLB miss imply a disk operation will follow? Why or why not?
 - 3. (5pts) How many disk operations are needed to open the file /usr/student/lab/test.doc? Why? (Assume that nothing else along the path is in memory. Also assume that all directories fit in one disk block.)

三、综合题(55pts total)

- 1. (10pts) A tunnel, which is very narrow, allows only one passenger to pass once. Please using semaphores to implement the following situations:
 - (1) (4pts) Passengers go through the tunnel one by one alternately(交替地) from two directions.
 - (2) (6pts) The passengers at one direction must pass the tunnel continuously. Another direction's visitors can start to go through tunnel when no passengers want to pass the tunnel from the opposite direction.
- 2. (8pts) Five batch jobs A through E, arrive at a computer center at almost the same time. They have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally determined) priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest priority. For each of the following scheduling algorithms, determine the mean process turnaround time. Ignore process switching overhead.

Job	Arrival time	Execution time	Priority
Α	0	10	3
В	0	6	5
С	0	2	2
D	0	4	1
Е	0	8	4

- (1) Round robin
- (2) Priority scheduling

- (3) First-come, first-served (run order 10, 6, 2, 4, 8).
- (4) Shortest job first
- 3. (10pts) A system has five processes and four allocatable resources. The current allocation and additional needs are as follows:

Duogogg	Allocation			Need			Available					
Process	A	В	C	D	A	В	C	D	A	В	С	D
P1	0	0	3	2	0	0	1	2	1	6	2	2
P2	1	0	0	0	1	7	5	0				
Р3	1	3	5	4	2	3	5	6				
P4	0	3	3	2	0	6	5	2				
P5	0	0	1	4	0	6	5	6				

Please answer the following questions:

- (1) Is this state safe? Why?
- (2) The request (1,2,2,2) of P3 can be granted or not? Why?
- 4. (10 pts) Given a **36-bit** processor with **4 active processes** being executed concurrently. Please answer the following questions. Show all the addresses of your answer in **hex number**. If a translation cannot be found, enter page fault.
 - (1) Assume an inverted page table (IPT) is used by the OS. The IPT is shown below (Only Valid, PID and VPN are shown). Each page size is 4MB. What "virtual address" of which "process" maps to the physical address "0x363055B"?
 - (2) Now we switch to use an **index-based linear page table**, how much memory
 (in KB) is required for **just process A**?
 Assume each page table entry (PTE)
 contains a valid and dirty bit.

V	PID	VPN
1	9	0x0DF0
1	A	0x3630
1	С	0x1B70
1	С	0x37C1
0	F	0x1F04
1	A	0x3640
1	9	0x1FFF
1	A	0x23A4
1	9	0x3004
1	A	0x0D7C
1	C	0x0DF0
0	В	0x1F04
1	A	0x0DF0
1	9	0x020D
1	A	0x31A2
1	С	0x07C1

- 5. (8 pts) A UNIX file system has 1-KB blocks and 32bit disk addresses. What is the maximum file size if i-nodes contain 10 direct entries, and one single, double, and triple indirect entry each?
- 6. (9pts) Suppose that a disk drive has 300 cylinders, numbered 0 to 299. The drive is currently serving a request at cylinder 143. The queue of pending requests, in FIFO order, is

Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests, for each of the following disk-scheduling algorithms?

- (1) First-Come First-Served (FCFS)
- (2) Shortest Seek First (SSF)
- (3) Elevator Algorithm (Assume that initially the arm is moving towards cylinder 0)