

Physik für Infotronik (1)

Gerald Kupris 07.10.2015

Zur Person

Prof. Dr.-Ing. Gerald Kupris geb. 1965

Lehrgebiet: Entwurf eingebetteter Systeme

Start an der THD: 1.10.2009

Büro: Raum E225

Sprechzeit: Mittwoch ab 12:00 Uhr

Tel.: +49 (0)991 – 36 15 270

Fax: +49 (0)991 – 36 15 599

Handy: +49 (0)171 – 46 62 581

Email: gerald.kupris@th-deg.de

Daten: V:\fakultaet-et\Vorlesungen\Kupris

Organisatorisches

Präsenzveranstaltung!

keine Benutzung von Handys etc.!

Aufmerksamkeit gefordert!

intensive Gespräche mit Nachbarn, Lesen von Zeitungen, Büchern etc., Lösen von Kreuzworträtseln, Sudokus etc. nicht zugelassen!

Fragen sehr erwünscht!

Zeitplan beachten!

Pünktlichkeit unbedingt erforderlich!

Physik im Stundenplan des 1. Semesters

VORLESUNGSPLAN ANGEWANDTE INFORMATIK / INFOTRONIK

Wintersemester 2015/16

Block 1: 08:00 - 09:30 Block 2: 09:45 - 11:15 Block 3: 11:30 - 13:00

1. Semester Bachelor AI (Stand: 06.08.2015)

Block 4: 14:00 - 15:30 Block 5: 15:45 - 17:15 Block 6: 17:30 - 19:00

	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
1		Einführung in die Programmierung Vorlesung	Physik 1 Physik	Grundlagen der Elektronik	Mathematik 1
		Bl C 201	Ku E 201	Ku E 001	Ju E 001
2	Grundlagen der Elektronik	Grundlagen der Informatik Vorlesung	Physik 1 Kupris	Mathematik 1	Mathematik 1
	Bö E 006	Bl C 201	Ku E 201	To E 001	Ju E 001
3	Grundlagen der Elektronik	Grundlagen der Inform. Übung Grp. 1	Mathematik 1	Einführung in die Programmierung Übung Grp. 2	
	Bö E 103	BI E 212	To E 001	BI E 214	
4		Grundlagen der Inform. Übung Grp. 2 Bl E 212		Einführung in die Programmierung Übung Grp. 1	
5				BI E 214	

Einordnung Physik

	Bachelor Angewandte Informatik/Infotronik													
			Sem	este	rwoc	hens	tund	en (S	WS)					
Übersicht über die Modul-/KursNr., Modul- und Kursbezeichnung, SWS und ECTS			Modul	1. Sem.	2. Sem.	3. Sem.	4. Sem.	5. Sem.	6. Sem.	7. Sem.	ECTS	Gewich- tung f. Modul- note	Art der Lehrver- anstal- tungen	Zulassungsvoraus-setzungen/ Prüfungsleistungen 1)
Modul Nr.	Kurs Nr.	Modul/Kurs												
0-01		Mathematik	13								13			
-	01101	Mathematik I		8								8	S/SU/Ü	LN /schrP 90-120 Min
	02101	Mathematik II			5								S/SU/Ü	LN /schrP 90-120 Min
0-02		Physik	4								5		S/Ü/Pr	LN / schrP 90 Min
	01102	Physik		4								5		
0-03		Grundlagen der Elektronik	6								7		S/Ü/Pr	TN / schrP 90-120 Min
	01103	Grundlagen der Elektronik		6								7		
0-04		Grundlagen der Informatik	8								10			
	01104	Grundlagen der Informatik		4								5	S/SU/Ü	LN schrP 90 Min
	01105	Einführung in die Programmierung		4								5	S/SU/Ü	LN schrP 90 Min
0-05		Grundlagen der Sensorik	4								5		S/Ü/Pr	TN / schrP 90 Min
	02102	Grundlagen der Sensorik			4							5		
0-06		Objektorientierte Programmierung	4								5		S/Ü/Pr	TN / LN od. PStA

Tutorium und Prüfung

Tutorium:

Zur Übung und Wiederholung werden Aufgabenblätter (ca. 10 Stück im Semester) erstellt. Die Aufgabenblätter können alleine oder während des Tutoriums bearbeitet werden. Der Termin des Tutoriums wird mit dem Tutor vereinbart.

Tutor: Herr Christian Merz, (christian.merz@th-deg.de)

Termin: wahrscheinlich Mittwoch 4. oder 5. Block

Prüfung:

Es findet eine schriftliche Prüfung (90 Minuten) am Ende des Semesters statt (ca. Anfang - Mitte Februar). Hilfsmittel: Formelsammlung und Taschenrechner

Definition Physik

Wikipedia:

Die **Physik** (griechisch φυσική θεωρία, physike theoria "Naturforschung" und lateinisch physica "Naturlehre") ist die grundlegende Naturwissenschaft in dem Sinne, dass die Gesetze der Physik alle Systeme der Natur beschreiben.

Begriffsdefinition: Englische Begriffe

englisch	deutsch
physical	körperlich, physisch, physikalisch
physical education	Sportunterricht
physical contact	auf "Tuchfühlung"
physic	Abführmittel, Arznei, Medikament, Heilkunde
physician	Arzt
physics	Physik
physicist	Physiker(in)

Vorlesungsplan Physik WS2015/16

18.11.2015	erweitertes Tuto	rium
11.11.2015	Vorlesung 12	Wellenausbreitung und Doppler-Effekt
11.11.2015	Vorlesung 11	Harmonische Schwingungen und Resonanz
04.11.2015	Vorlesung 10	Drehimpuls
04.11.2015	Vorlesung 9	Drehbewegungen
28.10.2015	Vorlesung 8	Elastischer und inelastischer Stoß
28.10.2015	Vorlesung 7	Der Impuls
21.10.2015	Vorlesung 6	Arbeit und kinetische Energie, Energieerhaltung
21.10.2015	Vorlesung 5	Anwendung der Newtonschen Axiome
14.10.2015	Vorlesung 4	Die Newtonschen Axiome
14.10.2015	Vorlesung 3	Bewegung in zwei und drei Dimensionen
07.10.2015	Vorlesung 2	Eindimensionale Bewegung
07.10.2015	Vorlesung 1	Messung und Maßeinheiten

Vorlesungsplan Physik WS2015/16

25.11.2015	Vorlesung 13	Das elektrische Feld
25.11.2015	Vorlesung 14	Ladungsverteilung und elektrisches Potenzial
02.12.2015	Vorlesung 15	Die Kapazität
02.12.2015	Vorlesung 16	Das Magnetfeld
09.12.2015	Vorlesung 17	Quellen des Magnetfelds
09.12.2015	Vorlesung 18	Die magnetische Induktion
16.12.2015	Vorlesung 19	Magnetische Induktion und Transformatoren
16.12.2015	Vorlesung 20	Elektromagnetische Wellen
23.12.2015	vorlesungsfrei	
13.01.2016	Vorlesung 21	Aufbau von Festkörpern
13.01.2016	Vorlesung 22	Leiter und Halbleiter
20.01.2016	Vorlesung 23	Wiederholung und Prüfungsvorbereitung
20.01.2016	Vorlesung 24	Wiederholung und Prüfungsvorbereitung

Buchempfehlung

Physik für Wissenschaftler und Ingenieure **Tipler**, Paul A., **Mosca**, Gene

6. Aufl., 2009, XXIV, 1636 S. 625 Abb. in Farbe., Geb. Spektrum Akademischer Verlag ISBN: 978-3-8274-1945-3

Weitere Literatur

Autor	Titel	Verlag
A. Böge, J. Eichler	Physik	Vieweg Verlag
P. Dobrinski, G. Krakau, A. Vogel	Physik für Ingenieure	Teubner Verlag
U. Harten	Physik	Springer Verlag
E. Hering, R. Martin, M. Stohrer	Physik für Ingenieure	VDI-Verlag
F. Heywang, E. Nücke, J. Timm, W. Timm	Physik für Techniker	Verlag Handwerk und Technik
H. Lindner	Physik für Ingenieure	Fachbuchverlag Leipzig
H. Stroppe	Physik für Studenten der Natur- und Technikwissenschaften	Fachbuchverlag Leipzig
H. E. Stuart, G. Klages	Kurzes Lehrbuch der Physik	Springer Verlag
H. Treiber, F. Heywang	Physik für Fachhochschulen und technische Berufe – Schwingungen, Wellen, Optik	Verlag Handwerk und Technik

Weitere Literatur

Autor	Titel	Verlag
P. Deus, W. Stolz	Physik in Übungsaufgaben	Teubner Verlag
J. Eichler, B. Schiewe	Physikaufgaben	Vieweg Verlag
H. Lindner	Physikalische Aufgaben	Fachbuchverlag Leipzig
P. Müller, H. Heinemann, H. Krämer, H. Zimmer	Übungsbuch Physik	Fachbuchverlag Leipzig
W. Stolz	Starthilfe Physik	Teubner Verlag
H. Stroppe	Physik – Beispiele und Aufgaben 1	Fachbuchverlag Leipzig
C. W. Turtur	Prüfungstrainer Physik	Teubner Verlag

Nachbardisziplinen der Physik

Nachbardisziplinen der Physik: Astrophysik

Untersuchung der physikalischen Beschaffenheit, der Entstehung und Entwicklung von kosmischen Objekten

Nachbardisziplinen der Physik: Biophysik

Kommunikation zwischen Nervenzelle und Siliziumchip

Nachbardisziplinen der Physik: Geophysik

Nachbardisziplinen der Physik: Mathematische Physik

Beispiel: Simulationsrechnungen

Gastemperatur eines Brenners

Berechnung der Druckverteilung in einer Flügelradpumpe

Nachbardisziplinen der Physik: Medizintechnik

DIAGNOSE: Ultraschall, Röntgendiagnose, Tomographie, ...

THERAPIE: Stoßwellentherapie, Laser-Augenoperation, ...

Zweiteilung der Physik

Makrophysik	Mikrophysik
unmittelbar erfahrbar, anschaulich	abstrakt, mathematisch
Phänomene und Körper zerlegbar	Phänomene und Körper unzerlegbar
kontinuierliches und stetiges Verhalten physikalischer Größen	unkontinuierliches und unstetiges Verhalten physikalischer Größen
deterministische Abläufe	statistisch deterministische Abläufe
genaue Messungen verschiedener Größen möglich	Messung einer Größe beeinflusst die andere
typische Längen > 10 ⁻⁶ m	typische Längen < 10 ⁻⁶ m

Teilgebiete der Physik: Einzelgebiete

Makrophysik (Klassische Physik):

- Mechanik (d. Punktmassen, d. starren Körper, deformierbarer Körper)
- Thermodynamik
- Elektrizität und Magnetismus
- Wellenlehre (Schallwellen ⇒ Akustik, Lichtwellen ⇒ Optik)

Mikrophysik (Quantenphysik):

- Festkörperphysik
- Kristallphysik
- Molekülphysik
- Atom- und Ionenphysik
- Kernphysik
- Elementarteilchenphysik

Messung und Maßeinheiten

_		
П		
п		
	\neg	

07.10.2015	Vorlesung 1	Messung und Maßeinheiten
07.10.2015	Vorlesung 2	Eindimensionale Bewegung
14.10.2015	Vorlesung 3	Bewegung in zwei und drei Dimensionen
14.10.2015	Vorlesung 4	Die Newtonschen Axiome
21.10.2015	Vorlesung 5	Anwendung der Newtonschen Axiome
21.10.2015	Vorlesung 6	Arbeit und kinetische Energie, Energieerhaltung
28.10.2015	Vorlesung 7	Der Impuls
28.10.2015	Vorlesung 8	Elastischer und inelastischer Stoß
04.11.2015	Vorlesung 9	Drehbewegungen
04.11.2015	Vorlesung 10	Drehimpuls
11.11.2015	Vorlesung 11	Harmonische Schwingungen und Resonanz
11.11.2015	Vorlesung 12	Wellenausbreitung und Doppler-Effekt
18.11.2015	erweitertes Tut	torium

Physikalische Größen: Internationales Einheitensystem

Das Internationale Einheitenystem SI (Système international d'unités) ist ein Kind des metrischen Systems und wurde von der 11. Generalkonferenz für Maß und Gewicht im Jahr 1960 auf eben diesen Namen getauft. Mit diesem System wurden die Einheiten im Messwesen neu geordnet.

Das SI fußt auf sieben Basiseinheiten und zahlreichen "abgeleiteten Einheiten", die durch reine Multiplikation und Division aus den Basiseinheiten gebildet werden.

Das SI entstammt den Bedürfnissen der Wissenschaft, ist aber mittlerweile auch das vorherrschende Maßsystem der internationalen Wirtschaft. In Deutschland sind die SI-Einheiten als gesetzliche Einheiten für den amtlichen und geschäftlichen Verkehr eingeführt. Um die nationale und internationale Einheitlichkeit der Maße zu sichern, sind die Aufgaben der Darstellung, Bewahrung und Weitergabe der Einheiten im Messwesen der Physikalisch-Technischen Bundesanstalt (PTB), dem nationalen Metrologieinstitut Deutschlands, übertragen worden. Einzelheiten hierzu sind im Einheitengesetz formuliert.

Physikalische Größen: Internationales Einheitensystem

SI-Einheiten (SI = Système Internationale d'Unités) MKSA-System (Meter-Kilogramm-Sekunde-Ampere)

Basisgrößen

Physikalische Größe	SI-Einheit	Definition	Unsicher heit
Länge	Meter (m)	Strecke, die Licht im Vakuum in 1/299.792.458 Sekunden durchläuft (ab 1983; vorher: Krypton-Wellenlänge 1960; vorher: Pariser Urmeter 1795/1799/1889)	10 ⁻¹⁴
Masse	Kilogramm (kg)	Platin-Iridium-Referenzzylinder in Paris (Internationaler Kilogramm-Prototyp) (seit 1879)	10 ⁻⁹
Zeit	Sekunde (s)	9.192.631.770fache Periodendauer des Übergangs zwischen den beiden Hyperfeinstrukturniveaus des Nuklids ¹³³ Cs (seit 1967; vorher: mittlerer Sonnentag)	10 ⁻¹⁴

Ursprüngliche Definition des Meters

Das Meter war ursprünglich so gewählt, dass der Abstand vom Äquator zum Nordpol entlang des Meridians durch Paris genau 10⁷ m (10 000 km) beträgt.

Prototypen des Meters

Bis 1960 war das Meter als die Länge eines konkreten Gegenstands festgesetzt – zuerst des Urmeters, seit 1889 dann des Internationalen Meterprototyps

Alle späteren Definitionen hatten das Ziel, dieser Länge möglichst genau zu entsprechen.

Der Norddeutsche Bund beschloss am 17. August 1868 die Einführung des französischen Metersystems zum 1. Januar 1872. Deutschland gehörte 1875 zu den zwölf Gründungsmitgliedern der Meterkonvention.

Im Jahr 1889 führte das Internationale Büro für Maß und Gewicht (BIPM) den Internationalen Meterprototyp als Prototyp für die Einheit Meter ein. Es wurden 30 Kopien dieses Prototyps hergestellt und an nationale Eichinstitute übergeben.

Neue Definition des Meters

1960 wurde eine Definition des Meters über die Wellenlänge eingeführt: Ein Meter ist das 1 650 763,73-fache der Wellenlänge der von Atomen des Nuklids 86Kr beim Übergang vom Zustand 5d5 zum Zustand 2p10 ausgesandten, sich im Vakuum ausbreitenden Strahlung.

Statt auf der aufzubewahrenden Maßverkörperung, dem Urmeter, beruht die Definition des Meters seitdem auf einer Messvorschrift für Naturkonstanten, die unabhängig von Maßverkörperungen gemessen werden können.

1973 wurde auf der 15. Generalkonferenz für Maße und Gewichte beschlossen, den Zahlenwert der Vakuumlichtgeschwindigkeit als konstant zu betrachten. Im Gegenzug wurde vorgeschlagen, die Länge eines Meters als diejenige Strecke zu definieren, die Licht im Vakuum innerhalb des Zeitintervalls von 1/299 792 458 Sekunden durchläuft.

Das Urkilo

Im Pariser Vorort Sèvres hält das Internationale Büro für Maße und Gewichte das 1889 geschaffene Urkilo sicher unter Verschluss. Es besteht aus einer Platin/Iridium-Legierung (90%/10%) und misst jeweils 39,17 mm in der Höhe und im Durchmesser.

Regelmäßige Nachprüfungen und Vergleiche mit anerkannten Kopien brachten die Erkenntnis: Das Urkilo wird leichter. Und zwar um 50 Millionstel Gramm in den vergangenen 100 Jahren.

Bisher ist die Ursache unbekannt und unverständlich, sind die Kopien doch aus gleichem Material.

Physikalische Größen: Internationales Einheitensystem

Physikalische Größe	SI-Einheit	Definition	Unsicher heit
Stromstärke	Ampere (A)	Stärke eines zeitlich unveränderlichen elektrischen Stromes, der, durch zwei im Vakuum parallel im Abstand 1 Meter voneinander angeordnete, geradlinige, unendlich lange Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern je 1 Meter Leiterlänge die Kraft von 2×10 ⁻⁷ Newton pro Meter hervorrufen würde (seit 1946; vorher: elektrolytische Abscheidung)	10 ⁻⁶
Temperatur	Kelvin (K)	273,16-ter Teil der thermodynamischen Tempera- tur des Tripelpunktes von Wasser (seit 1967)	10 ⁻⁶
Stoffmenge	Mol (mol)	Anzahl der Atome in 0,012 kg des Nuklids ¹² C (seit 1971)	10 ⁻⁶
Lichtstärke	Candela (cd)	Monochromatische Strahlung von 540×10 ¹² Hz mit einer Strahlstärke von 1/683 W/sr (seit 1979)	0.5%

Die gesetzlichen Einheiten in Deutschland

Physikalisch-Technische Bundesanstalt

Bundesallee 100

D-38116 Braunschweig

Telefon: (05 31) 592-30 06

Telefax: (05 31) 592-30 08

Internet: http://www.ptb.de/

Signifikante Stellen

Das Ergebnis einer Messung sollte immer der Messwert x und der Messfehler Δx mit der Einheit [x] sein, wobei der Messfehler in Bezug auf einen statistisch ermittelten mittleren Messwert \overline{x} bezogen wird:

$$X = \overline{X} \pm \Delta X$$

Die Anzahl der signifikanten Stellen im Ergebnis einer Multiplikation oder Division ist nie größer als die der Größe mit den wenigsten signifikanten Stellen.

Die Anzahl der Dezimalstellen bei der Addition oder Subtraktion mehrerer Größen entspricht der des Terms mit der kleinsten Anzahl von Dezimalstellen.

Beim Rechnen mit Zahlen, die mit einer Unsicherheit behaftet sind, ist darauf zu achten, dass nicht mehr Stellen mitgeführt werden, als durch die Messung sichergestellt sind.

Abgeleitete Einheiten (Elektrotechnik)

Physikalische Größe	Abgeleitete Einheit	Zusammenhang mit SI-Einheiten	Abweichungen amerikanisch
Frequenz	Hertz (Hz)	s ⁻¹	c (= cycles)
Energie	Joule (J)	$VAs = Ws = Nm = m^2kgs^{-2}$	
Leistung	Watt (W)	$VA = Js^{-1} = m^2 kgs^{-3}$	
Ladung	Coulomb (C)	As	
Spannung	Volt (V)	$WA^{-1} = JC^{-1} = m^2 kgs^{-3}A^{-1}$	
Widerstand	Ohm (Ω)	$VA^{-1} = m^2 kgs^{-3}A^{-2}$	ohm
Leitwert	Siemens (S)	$AV^{-1} = m^{-2}kg^{-1}s^3A^2$	mho
Kapazität	Farad (F)	$AsV^{-1} = m^{-2}kg^{-1}s^4A^2$	
Induktivität	Henry (H)	$VsA^{-1} = m^2kgs^{-2}A^{-2}$	(Hy)
Magn. Fluss	Weber (Wb)	$Vs = m^2 kg s^{-2} A^{-1}$	
M.Flussdichte	Tesla (T)	$Vsm^{-2} = Wbm^{-2} = kgs^{-2}A^{-1}$	

Einheiten der Länge

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen
Länge	Meter	m	SI-Basiseinheit
	Astronomische Einheit* Parsec Lichtjahr Ångström typograph. Punkt inch**	AE pc Lj Å p	1 AE = $149,597 870 \cdot 10^9 \text{m}$ 1 pc = 206265AE = $30,857 \cdot 10^{15} \text{m}$ 1 Lj = $9,460 530 \cdot 10^{15} \text{m}$ = $63240 \text{AE} = 0,306 59 \text{pc}$ 1 Å = 10^{-10}m 1 p = $0,376 065 \text{mm}$ • im Druckereigewerbe 1 in = $2,54 \cdot 10^{-2} \text{m} = 25,4 \text{mm}^{***}$
	foot yard mile Internat. Seemeile Fathom	ft yd mile sm fm	1 ft = 0,3048 m = 30,48 cm 1 yd = 0,9144 m 1 mile = 1609,344 m 1 sm = 1852 m 1 fm = 1,829 m • in der Seeschifffahrt

Beispiel historischer Längeneinheiten

Historische Längeneinheit	SI- Einheit
1 Bayrischer Lachter	1,94 m
1 Preußischer Lachter	2,092 m
1 Bayrischer Fuß	0,29 m
1 Österreichischer Fuß	0,32 m
1 Wiener Klafter	1,90 m
1 Böhmischer Klafter	1,78 m
1 Salzburger Stabl	1,19 m
1 Französischer Faden	1,62 m
1 Holländischer Faden	1,88 m

Wieviel PS hat ein Pferd?

- a) 1 PS
- b) 15 PS
- c) 24 PS

Antwort

Ein Pferd leistet über längere Zeit hinweg ungefähr ein PS.

Erklärung:

Die Pferdestärke als Maß für die Leistung einer Maschine geht auf James Watt (1736-1819) zurück, dem man seine Dampfmaschinen natürlich nur abkaufen wollte, wenn sie dem Pferd eindeutig überlegen sind.

Angeblich bestimmte James Watt die Leistung eines Pferdes in einem Kohlebergwerk, wo die Tiere in einem fort über eine Umlenkrolle Kohle aus der Tiefe an die Oberfläche zogen. Dabei fand Watt, dass die Pferde im Mittel während einer zehnstündigen Schicht pro Minute 330 britische Pfund (pounds) Kohle 100 Fuß (ft) in die Höhe zu heben vermochten. Sie setzten somit pro Minute eine Energie von 33 000 foot-pounds (ft.lbs.) um, was 44 741 Joule entspricht.

James Watt definierte diese Leistung als Pferdestärke (horse power), eine Einheit mit der es sich bis heute viel besser protzen lässt als mit der Angabe von Kilowatt (ein PS entspricht eben nur 0,74 Kilowatt).

Nur ein PS?

1925 hatten Forscher dann übrigens bei einem Pferderennen gemessen, dass Pferde durchaus bis zu 15 PS leisten können, und theoretische Überlegungen auf der Basis der Leistungsfähigkeit von Pferdemuskeln ergaben sogar eine Höchstleistung von rund 24 PS. Doch diese Leistung können die Tiere allenfalls kurzzeitig erbringen. Ein pfleglich behandeltes Pferd leistet dauerhaft tatsächlich nur ungefähr ein PS.

Quelle: Spektrum der Wissenschaft Verlagsgesellschaft mbH

Vorsätze > 1

Faktor Vorsatz		Vorsatz- zeichen	Beispiele	
10 ¹	Deka	da		
10 ²	Hekto	h	Durchschnittlicher jährlicher Bierkonsum pro Kopf in Bayern = 1,55 hl	
10 ³	Kilo	k	Gesamtlänge der deutschen Autobahn = 12044 km	
10 ⁶	Mega	М	Nettoleistung KKW Isar 2 = 1400 MW	
10 ⁹	Giga	G	durchschnittliche Energie eines Blitzes = 1,5 GJ	
10 ¹²	Tera	Т	Abstand Sonne - Saturn = 1,4 Tm	
10 ¹⁵	Peta	Р	Jährlicher Primärenergieverbrauch in Bayern = 2000 PJ	
10 ¹⁸	Exa	E	Jährlicher Primärenergieverbrauch in Deutschland = 13,842 EJ	

Vorsätze < 1

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele	
10 ⁻¹	Dezi	d	Maximal zugelassene Breite und Tiefe von Fußballtorpfosten = 1,2 dm	
10 ⁻²	Centi	С	Durchmesser der 1-€-Münze = 2,325 cm	
10 ⁻³	Milli	m	Dicke der 1-€-Münze = 2,33 mm	
10 ⁻⁶	Mikro	μ	Größe von Bakterien ~ μm	
10 ⁻⁹	Nano	n	typische Größe von organischen Molekülen = 20 nm	
10 ⁻¹²	Piko	р	Kapazität von Kondensatoren ~ pF	
10 ⁻¹⁵	Femto	f	Pulsdauer von Hochleistungslaser = 100 fs	
10 ⁻¹⁸	Atto	a	Dauer ultrakurzer Lichtpulse = 650 as	

Griechische Buchstaben

Name	Buch- staben	Verwendung	
Alpha	Α,α	Winkel, Winkelbeschleunigung	
Beta	Β,β	Winkel	
Gamma	Γ,γ	Winkel, Wichte	
Delta	Δ,δ	Winkel	
Epsilon	Ε,ε	Influenzkonstante, Dehnung	
Zeta	Z,ζ	Widerstandsbeiwert	
Eta	Η,η	Wirkungsgrad	
Theta	Θ, ϑ	Winkel	
Jota	Ι,ι		
Карра	Κ, κ	Adiabatenexponent	
Lambda	Λ,λ	Wellenlänge	
Му	M, μ	Induktionskonstante	

Name	Buch- staben	Verwendung	
Ny	N,v	Frequenz	
Xi	Ξ,ξ	Schall- auslenkung	
Omikron	0,0		
Pi	Π,π		
Rho	Ρ,ρ	Dichte	
Sigma	Σ,σ	Stefan- Boltzmann- Konstante	
Tau	Τ, τ	Zeit	
Ypsilon	Υ, υ		
Phi	Φ, φ	Winkel	
Chi	Χ,χ	Suszeptibilität	
Psi	Ψ,ψ		
Omega Ω , ω		Kreisfrequenz	

Naturkonstanten

Naturkonstanten sind wesentliche Elemente um die Welt zu beschreiben: Sie tauchen in den physikalischen Theorien auf, ohne dass die Theorien selbst ihre Werte angeben könnten. Diese Konstanten müssen daher experimentell gemessen werden – eine Basisaufgabe der Metrologie.

Beispiele:

Avogadro-Konstante	$N_{\star} = 6.0221415$	10) · 10 ²³ mol ⁻¹
--------------------	-------------------------	--

Boltzmann-Konstante
$$k = 1,380 6505 (24) \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$$

Elementarladung
$$e = 1,602 \ 176 \ 53 \ (14) \cdot 10^{-19} \ C$$

Faraday-Konstante
$$F = 96.485,3383 (83) \cdot \text{C} \cdot \text{mol}^{-1}$$

Feinstrukturkonstante, Inverse
$$\alpha^{-1} = 137,035\,999\,11$$
 (46)

Feldkonstante, Elektrische

$$\varepsilon_0 = 1/(\mu_0 \cdot c^2) = 8,854 187 817 62... \cdot 10^{-12} \text{ F/m (exakt)}$$

Feldkonstante, Magnetische

$$\mu_0 = 4\pi \cdot 10^{-7} \,\mathrm{N} \cdot \mathrm{A}^{-2} = 12,566\,370\,614... \cdot 10^{-7} \,\mathrm{N} \cdot \mathrm{A}^{-2} \,(\mathrm{exakt})$$

Beispiele Englischer Einheiten

Geschwindigkeitslimit: 60 mph = ... km/h

Rohölpreis: 105,83 \$ / bbl = ... € / l

Bildschirmdiagonale: 57 in = ... cm

Rechenfehler kostete 200 Millionen Dollar

Um mehr über das Klima auf dem Mars zu erfahren, schickte die NASA am 11. Dezember 1998 eine Rakete in Richtung Mars. An Bord befand sich der "Climate Orbiter" – ein Satellit, der den Mars auf einer Umlaufbahn umkreisen und seine Atmosphäre mit Spezialsensoren vermessen sollte.

Doch als der Climate Orbiter nach dem Abbremsen wieder aus dem Funkschatten des Mars austreten sollte, herrschte Funkstille. Der Kontakt war abgebrochen, die 200 Mio Dollar teure Sonde verloren.

Wie sich später herausstellte, hatte sie sich dem Mars nicht wie geplant bis auf 150 km genähert, sondern bis auf 57 km. In dieser Höhe ist die Atmosphäre bereits relativ dicht und der Orbiter wurde durch die Hitze zerstört. Die Ursache des Navigationsfehlers war bald gefunden – und sie war den Experten ziemlich peinlich: Die NASA hatte in ihren Computern im Kontrollzentrum in Metern, Kilogramm und Sekunde gerechnet, den internationalen Maßeinheiten. Der Hersteller des Climate Orbiters dagegen, der Raumfahrtkonzern Lockheed Martin, hatte die Navigationssoftware der Sonde in Zoll und Fuß programmiert, also in US-amerikanischen Einheiten.

Aufgaben

- 1. Die Waldfläche in Bayern beträgt 2,5 Millionen Hektar (2,5·10⁶ ha). Wie viele Fußballfelder passen in diese Fläche? (Angaben zur Umrechnung: 1 ha = 10⁴ m², Länge eines Fußballfelds = 110 m, Breite eines Fußballfelds = 75 m)
- 2. Ein Computermonitor misst in der Diagonalen 20 Zoll (20 in). Das Verhältnis von Breite zu Höhe sei 16:10. Wie groß ist die Monitorfläche (Angabe in m²)? (Angaben zur Umrechnung: 1 in = 2,54 cm)
- 3. Eine Yacht ist mit zwei Dieselmotoren mit einer Leistung von jeweils 480 PS ausgerüstet und erreicht damit eine Maximalgeschwindigkeit von 25 Knoten (25 kn).
 - a) Wie groß ist die Leistung jeder Maschine in kW?
 - b) Wie groß ist die Maximalgeschwindigkeit in m/s und km/h? (Angaben zur Umrechnung: 1 PS = 0,73549875 kW, 1 kn = 1 sm/h, 1 sm = 1 Seemeile = 1852 m)

Aufgaben

- 4. Welche der genannten physikalischen Größen ist keine Grundgröße im SI Einheitssystem?
 - a) Masse
 - b) Länge
 - c) Zeit
 - d) Energie
- 5. Wie viele signifikante Stellen hat die Dezimalzahl 0,0005130?
 - a) eine
 - b) drei
 - c) vier
 - d) fünf
- 6. Drücken Sie die folgenden Werte mithilfe geeigneter Vorsätze aus:
 - a) 1 000 000 W e) 3·10⁻⁶ m

b) 0,002 g

d) 30 000 s

Aufgaben

- 7. Eine astronomische Einheit (1AE) ist als der mittlere Abstand der Mittelpunkte der Erde und der Sonne definiert. Sie beträgt 1,496 ·10¹¹ m. Ein Parsec (1 pc) ist der Radius eines Kreises, dessen Kreisbogen bei einem Zentrierwinkel von einer Bogensekunde (= 1 / 3600°) genau eine AE lang ist (siehe Abbildung). Ein Lichtjahr ist die Entfernung, die das Licht in einem Jahr zurücklegt.
 - a) Wie viele Parsec bilden eine astronomische Einheit?
 - b) Wie viele Meter entsprechen einem Parsec?
 - c) Wie viele Meter umfasst ein Lichtjahr?
 - d) Wie viele astronomische Einheiten enthält ein Lichtjahr?
 - e) Wie viele Lichtjahre bilden ein Parsec?

Literatur und Quellen

Paul A. Tipler, Gene Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum Akademischer Verlag, August 2009

http://de.wikipedia.org/

TECHNISCHE HOCHSCHULE DEGENDORF

Technische Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf