Session35:

TRACING OF POLAR CURVES

The following rules will help in tracing a Polar curve.

Rule 1:Symmetry

- (a) Symmetry about pole: If the equation of the curve remains unchanged by replacing r by -r, then curve is symmetric to the pole.
- (b) Symmetry about initial line: If the equation of the curve remains unchanged by replacing θ by $-\theta$, then curve is symmetric about the initial line.
- (c) Symmetry about $\theta = \frac{\pi}{2}$:
 - **1.** If the equation of the curve remains unchanged by replacing θ by $-\theta$ and r by -r respectively, then curve is symmetric about the line $\theta = \frac{\pi}{2}$.
 - 2. If the equation of the curve remains unchanged by replacing θ by $\pi \theta$ then curve is symmetric about the line $\theta = \frac{\pi}{2}$.
- **Rule 2:** Pole: If for some value of θ , r becomes zero then the pole will lie on the curve.
- **Rule 3:** To find tangents at the pole, put r = 0 in the equation, the values of θ gives the tangent at the pole.

Rule 4: Angle between radius vector and tangent $[\phi]$:

Use the formula $\tan \phi = r \frac{d\theta}{dr}$ and find ϕ and also the points where $\phi = 0$ or ∞ .

Rule 5: Form the table showing values of r for some values of θ

Rule 6: Find the region of absence of the curve.

Q1. Trace the following curve: $r^2 = a^2 \cos 2\theta$

Solution: We check the following points for tracing of the above curve

1. Limit: $-|r| \le a$ i. e. the curve lies between r = -a to r = a.

2. Symmetry:-

(i) About the Pole:-

If we replace r by -r, then the equation of the curve is remains unchanged.

:. The curve is symmetry about pole.

(ii) About initial line $\theta = 0$:-

If we replace θ by $-\theta$, then the equation of the curve is remains unchanged.

 \therefore The curve is symmetry about the initial line $\theta = 0$.

(iii) About the line perpendicular to the initial line at pole or about the line $\theta = \pi/2$:-

If we replace r by -r and θ by $-\theta$, then the equation of the curve is remains unchanged.

 \therefore The curve is symmetry about the line perpendicular to the initial line at pole or about the line $\theta = \pi/2$.

3. Pole:-

(i) For
$$\theta = \frac{\pi}{4}$$
, $r = 0$.

Hence the curve passes through the pole.

(ii) Tangent at Pole:- If we put r = 0, then we get the tangent at pole.

Putting
$$r = 0$$
 in (1), we have $a^2 \cos 2\theta = 0$

$$\Rightarrow \cos 2\theta = 0$$

$$[\because a \neq 0]$$

$$\Rightarrow$$
 $2\theta = \cos^{-1} 0 = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$

$$\Rightarrow \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

4. Tangent:-

$$\tan \phi = r \frac{d\theta}{dr} = \frac{r}{\frac{dr}{d\theta}} = \frac{r}{\frac{\cancel{Z}a^2 \sin 2\theta}{\cancel{Z}r}} = -\frac{r^2}{a^2 \sin 2\theta} = -\frac{\cancel{A}^2 \cos 2\theta}{\cancel{A}^2 \sin 2\theta} = -\cot 2\theta = \tan\left(\frac{\pi}{2} + 2\theta\right)$$

5. Asymptotes:-No asymptotes.

6. Table values:-

θ	0	$\pi/4$	$\pi/2$
r	а	0	Imaginary
$r d\theta/dr = \tan \phi$	∞ i.e. $\phi = \frac{\pi}{2}$	$\phi=\pi$	$\phi = 3\pi/2$

It is clear that at $\theta=0$, r=a, and the tangent is perpendicular to the initial line at (a, 0) and (-a, 0). Again at $\theta=\pi/2$, r is imaginary. Hence there is no part of the curve between $\pi/4$ to $3\pi/4$. Also the curve is symmetry about pole, initial line and the line perpendicular to initial line. Hence the approximate shape of the curve is as follows:

