Lista de Exercícios

Capítulo 4

- 1) [P1] Nesta questão, consideramos alguns dos prós e dos contras de redes de circuitos virtuais e redes de datagramas.
 - a) Suponha que roteadores foram submetidos a condições que poderiam levá-los a falhar com muita frequência. Isso seria um argumento em favor de um CV ou arquitetura de datagrama? Por quê?
 - b) Suponha que um nó de origem e um de destino solicitem que uma quantidade fixa de capacidade esteja sempre disponível em todos os roteadores no caminho entre o nó de origem e de destino, para o uso exclusivo de fluxo de tráfego entre esse nós. Essas ações favorecem uma arquitetura de circuitos virtuais ou de datagramas? Por quê?
 - c) Suponha que os enlaces e os roteadores da rede nunca falhem e que os caminhos de roteamento usados entre as duplas de origem/destino permaneçam constantes. Nesse cenário, a arquitetura de circuitos virtuais ou de datagramas possui mais sobrecarga de tráfego de controle? Por quê?

2) [P4] Considere a rede a seguir.

- a) Suponha que seja uma rede de datagramas. Mostre a tabela de repasse no roteador A, de modo que todo o tráfego destinado ao hospedeiro H3 seja encaminhado pela interface 3.
- b) Suponha que esta rede seja uma rede de datagramas. Você consegue compor uma tabela de repasse no roteador A, de modo que todo o tráfego de H1 destinado ao hospedeiro H3 seja encaminhado pela interface 3, enquanto todo o tráfego de H2 destinado ao hospedeiro H3 seja encaminhado pela interface 4? (Dica: esta é uma pergunta capciosa.)
- c) Suponha, agora, que esta rede seja uma rede de circuitos virtuais e que haja uma chamada em andamento entre H1 e H3, e outra chamada em andamento entre H2 e H3. Elabore uma tabela de repasse no roteador A, de modo que todo o tráfego de H1 destinado ao hospedeiro H3 seja encaminhado pela interface 3, enquanto todo o tráfego de H2 destinado ao hospedeiro H3 seja encaminhado pela interface 4.
- d) Admitindo o mesmo cenário de (c), elabore tabelas de repasse nos nós B, C e D.

3) [P10] Considere uma rede de datagramas que usa endereços de hospedeiro de 32 bits. Suponha que um roteador tenha quatro enlaces, numerados de 0 a 3, e que os pacotes têm de ser repassados para as interfaces de enlaces desta forma:

Faixa do endereço de destino	Interface de enlace
11100000 00000000 00000000 00000000 até 11100000 00111111 11111111 11111111	0
11100000 01000000 00000000 00000000 até 11100000 01000000 11111111 11111111	1
11100000 01000001 00000000 00000000 até 11100001 01111111 11111111 11111111	2
senão	3

- a) Elabore uma tabela de repasse que tenha cinco registros, use correspondência do prefixo mais longo e repasse pacotes para as interfaces de enlace corretas.
- b) Descreva como sua tabela de repasse determina a interface de enlace apropriada para datagramas com os seguintes endereços:

- 4) [P13] Considere um roteador que interconecta três sub-redes: 1, 2 e 3. Suponha que todas as interfaces de cada uma dessas três sub-redes tenha de ter o prefixo 223.1.17/24. Suponha também que a sub-rede 1 tenha de suportar até 60 interfaces, a sub-rede 2 tenha de suportar até 90 interfaces e a sub-rede 3, 12 interfaces. Dê três endereços de rede (da forma a.b.c.d/x) que satisfaçam essas limitações.
- 5) [P15] No Problema P10, solicitamos que você elaborasse uma tabela de repasse (usando a correspondência de prefixo mais longo). Reescreva a tabela usando a notação a.b.c.d/x em vez da notação de cadeia binária.
- 6) [P19] Considere enviar um datagrama de 2.400 bytes por um enlace que tem uma MTU de 700 bytes. Suponha que o datagrama original esteja marcado com o número de identificação 422. Quantos fragmentos são gerados? Quais são os valores em vários campos dos datagramas IP gerados em relação à fragmentação?
- 7) [P20] Suponha que entre o hospedeiro de origem A e o hospedeiro destinatário B os datagramas estejam limitados a 1.500 bytes (incluindo cabeçalho). Admitindo um cabeçalho IP de 20 bytes, quantos datagramas seriam necessários para enviar um arquivo MP3 de 5 milhões de bytes? Explique como você obteve a resposta.

8) [P23] Neste problema estudaremos o impacto das NATs sobre aplicações P2P. Suponha que um parceiro com nome de usuário Arnold descubra, por meio de consulta, que um parceiro com nome de hospedeiro Bernard tem um arquivo que ele, Arnold, quer descarregar. Suponha também que Bernard e Arnold estejam por trás de uma NAT. Tente elaborar uma técnica que permita a Arnold estabelecer uma conexão TCP com Bernard sem a configuração da NAT específica da aplicação. Se você tiver dificuldade na elaboração dessa técnica, discuta o motivo.

9) [P26] Considere a seguinte rede. Com os custos de enlace indicados, use o algoritmo do caminho mais curto de Dijkstra para calcular o caminho mais curto de x até todos os nós da rede. Mostre como o algoritmo funciona calculando uma tabela semelhante à Tabela 4.3.

10) [P28] Considere a rede mostrada a seguir e admita que cada nó inicialmente conheça os custos até cada um de seus vizinhos. Considere o algoritmo de vetor de distâncias e mostre os registros na tabela de distâncias para o nó z.

11) [P31] Considere a topologia de três nós mostrada na Figura 4.30. Em vez de ter os custos de enlace da Figura 4.30, os custos de enlace são: c(x, y) = 3, c(y, z) = 6, c(z, x) = 4. Calcule as tabelas de distâncias após a etapa de inicialização e após cada iteração de uma versão síncrona do algoritmo de vetor de distâncias (como fizemos em nossa discussão anterior da Figura 4.30).

Capítulo 5

- 12) [P14] Considere três LANs interconectadas por dois roteadores, como mostrado na Figura 5.33.
 - a) Atribua endereços IP a todas as interfaces. Para a Sub-rede 1, use endereços do tipo 192.168.1.xxx; para a Sub-rede 2, use endereços do tipo 192.168.2.xxx, e para a Sub-rede 3 use endereços do tipo 192.168.3.xxx.
 - b) Atribua endereços MAC a todos os adaptadores.
 - c) Considere o envio de um datagrama IP do hospedeiro A ao hospedeiro F. Suponha que todas as tabelas ARP estejam atualizadas. Enumere todas as etapas, como foi feito no exemplo de um único roteador na Seção 5.4.1.
 - d) Repita (c), admitindo agora que a tabela ARP do hospedeiro remetente esteja vazia (e que as outras tabelas estejam atualizadas).

FIGURA 5.33 TRÊS SUB-REDES INTERCONECTADAS POR ROTEADORES

- 13) [P17] Lembre-se de que, com o protocolo CSMA/CD, o adaptador espera $K \cdot 512$ tempos de bits após uma colisão, onde K é escolhido aleatoriamente. Para K = 100, quanto tempo o adaptador espera até voltar à etapa 2 para uma Ethernet de 10 Mbits/s? E para canal de difusão de 100 Mbits/s?
- 14) [P31]. Neste problema, você juntará tudo o que aprendeu sobre protocolos de Internet. Suponha que você entre em uma sala, conecte-se à Ethernet e queira fazer o download de uma página. Quais são as etapas de protocolo utilizadas, desde ligar o computador até receber a página? Suponha que não tenha nada no seu DNS ou nos caches do seu navegador quando você ligar seu computador. (Dica: as etapas incluem o uso de protocolos da Ethernet, DHCP, ARP, DNS, TCP e HTTP.) Indique explicitamente em suas etapas como obter os endereços IP e MAC de um roteador de borda.