Ecuaciones diferenciales SEMANA 1

Henry R. Moncada

Universidad Nacional del Callao Facultad de Ingeniería Mecánica y de Energía

7 de abril de 2025

Contenido

- Espacios Vectoriales
- 2 Subespacios
- Operaciones con Subespacios
- Combinación e Independencia Lineal
- Envolvente Lineal
- Bases y Dimensión
- Matriz de Cambio de Base

Objetivos de la Clase

- Comprender la estructura de los espacios vectoriales y subespacios.
- Identificar operaciones entre subespacios.
- Distinguir combinación lineal, independencia, y dimensión.
- Aplicar teoría mediante ejemplos y ejercicios prácticos.

Definición de Espacio Vectorial

Un espacio vectorial (o espacio lineal) sobre un cuerpo $\mathbb F$ es un conjunto V con dos operaciones:

- Suma de vectores: $+: V \times V \to V$
- Multiplicación escalar: $\cdot : \mathbb{F} \times V \to V$

Satisfacen ocho axiomas fundamentales (asociatividad, conmutatividad, neutro, inverso, etc.). Ejemplos: \mathbb{R}^n , $\mathbb{M}_{m \times n}$, polinomios, funciones continuas.

- **E**jemplo 1: \mathbb{R}^2 es un espacio vectorial
 - Suma: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
 - Escalar: a(x, y) = (ax, ay)
 - Se cumplen todos los axiomas.
- Ejemplo 2: Polinomios de grado menor o igual a 2 El conjunto P_2 de polinomios $p(x) = ax^2 + bx + c$ con $a, b, c \in \mathbb{R}$ es un espacio vectorial.
- Ejemplo 3: Matrices 2 × 2 El conjunto de todas las matrices reales de 2 × 2 con suma usual y multiplicación por escalar es un espacio vectorial.

Definición de Subespacio

Un subespacio W de un espacio vectorial V es un subconjunto no vacío que también es espacio vectorial con las operaciones de V.

- Ejemplo 4: Eje X en \mathbb{R}^2 $W = \{(x,0) \mid x \in \mathbb{R}\} \subset \mathbb{R}^2$ es subespacio.
- Ejemplo 5: Subespacio de matrices simétricas El conjunto de matrices simétricas $A = A^T$ en $M_{2\times 2}(\mathbb{R})$ es un subespacio.
- Ejemplo 6: Polinomios sin término independiente $W = \{p(x) \in P_2 \mid p(0) = 0\}$ es subespacio de P_2 .

Operaciones con Subespacios

Intersección y suma de subespacios: Sean W_1 y W_2 subespacios de V:

- $W_1 \cap W_2$ también es subespacio.
- $W_1 + W_2 = \{v_1 + v_2 \mid v_1 \in W_1, v_2 \in W_2\}$ también es subespacio.

Ejemplos:

- Ejemplo 7: Intersección en \mathbb{R}^3 $W_1 = \{(x, y, 0)\}$ y $W_2 = \{(x, 0, z)\}$. Entonces $W_1 \cap W_2 = \{(x, 0, 0)\}$.
- Ejemplo 8: Suma de subespacios Usando los mismos W_1 y W_2 , $W_1 + W_2 = \{(x, y, z) \mid x, y, z \in \mathbb{R}, z = 0 \text{ o } y = 0\}$
 - en realidad se obtiene $\{(x, y, z) \mid z = 0 \text{ o } y = 0\}$
 - suma no abarca todo \mathbb{R}^3 .
- Ejemplo 9: Subespacios con intersección trivial Sean $W_1 = \text{span}\{(1,0)\},$ $W_2 = \text{span}\{(0,1)\}$ en \mathbb{R}^2
 - $W_1 \cap W_2 = \{(0,0)\}$
 - $W_1 + W_2 = \mathbb{R}^2$
- Ejemplo 10: Subespacio generado por vectores Dados $v_1 = (1, 1, 0)$ y $v_2 = (0, 1, 1)$ en \mathbb{R}^3
 - $W = \operatorname{span}\{v_1, v_2\}$ es un subespacio plano que pasa por el origen.

Combinación e Independencia Lineal

 ξ Qué es una combinación lineal? Sea un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Una combinación lineal de estos vectores es cualquier expresión de la forma:

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_n\mathbf{v}_n,$$

donde c_1, c_2, \ldots, c_n son escalares.

 $\mathbf{\mathcal{U}}$ Qué es independencia lineal? Los vectores $\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ son linealmente independientes si:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_n = 0.$$

De lo contrario, son linealmente dependientes.

■ Ejemplo 1: ¿Son linealmente independientes los vectores $\mathbf{v}_1 = (1,2)$ y $\mathbf{v}_2 = (2,4)$?

■ **Ejemplo 1:** ¿Son linealmente independientes los vectores $\mathbf{v}_1 = (1,2)$ y $\mathbf{v}_2 = (2,4)$?

Solución

Consideramos $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$

$$c_1(1,2) + c_2(2,4) = (0,0) \Rightarrow (c_1 + 2c_2, 2c_1 + 4c_2) = (0,0)$$

Resolviendo:

$$c_1 + 2c_2 = 0$$

 $2c_1 + 4c_2 = 0 \Rightarrow \text{Infinitas soluciones} \Rightarrow \textbf{Dependientes}$

■ **Ejemplo 2:** Verificar si los vectores (1,0,-1), (2,1,3), (1,1,2) son linealmente independientes.

■ Ejemplo 1: ¿Son linealmente independientes los vectores $\mathbf{v}_1 = (1,2)$ y $\mathbf{v}_2 = (2,4)$?

Solución

Consideramos $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$

$$c_1(1,2) + c_2(2,4) = (0,0) \Rightarrow (c_1 + 2c_2, 2c_1 + 4c_2) = (0,0)$$

Resolviendo:

$$c_1 + 2c_2 = 0$$

 $2c_1 + 4c_2 = 0 \Rightarrow \text{Infinitas soluciones} \Rightarrow \textbf{Dependientes}$

■ **Ejemplo 2:** Verificar si los vectores (1,0,-1), (2,1,3), (1,1,2) son linealmente independientes.

Solución

Planteamos:

$$c_1(1,0,-1) + c_2(2,1,3) + c_3(1,1,2) = (0,0,0)$$

Sistema:

$$c_1 + 2c_2 + c_3 = 0$$
$$0 + c_2 + c_3 = 0$$
$$-c_1 + 3c_2 + 2c_3 = 0$$

■ Ejemplo 3: Determina si las funciones $f_1(t) = e^t$, $f_2(t) = te^t$, $f_3(t) = t^2 e^t$ son linealmente independientes.

■ Ejemplo 3: Determina si las funciones $f_1(t) = e^t$, $f_2(t) = te^t$, $f_3(t) = t^2 e^t$ son linealmente independientes.

Solución

Estas funciones forman un conjunto conocido del método de variación de parámetros y son:

Linealmente independientes en $(-\infty, \infty)$

Se puede demostrar con el Wronskiano:

$$W(f_1, f_2, f_3)(t) \neq 0 \Rightarrow$$
 Independencia lineal

■ Ejemplo 4: Determina si $y_1(t) = \cos t$, $y_2(t) = \sin t$, $y_3(t) = 1$ son linealmente independientes en $[0, 2\pi]$.

■ Ejemplo 3: Determina si las funciones $f_1(t) = e^t$, $f_2(t) = te^t$, $f_3(t) = t^2 e^t$ son linealmente independientes.

Solución

Estas funciones forman un conjunto conocido del método de variación de parámetros y son:

Linealmente independientes en $(-\infty, \infty)$

Se puede demostrar con el Wronskiano:

$$W(f_1, f_2, f_3)(t) \neq 0 \Rightarrow$$
 Independencia lineal

■ Ejemplo 4: Determina si $y_1(t) = \cos t$, $y_2(t) = \sin t$, $y_3(t) = 1$ son linealmente independientes en $[0, 2\pi]$.

Solución:

Consideramos la combinación:

$$c_1 \cos t + c_2 \sin t + c_3 = 0, \quad \forall t \in [0, 2\pi]$$

Derivando y evaluando:

$$\Rightarrow c_1 = c_2 = c_3 = 0 \Rightarrow$$
 Independientes

Envolvente Lineal

¿Qué es la Envolvente Lineal?

- La envolvente lineal de un conjunto de funciones es el conjunto de todas las combinaciones lineales posibles de esas funciones.
- Es un concepto fundamental en el estudio de espacios vectoriales de soluciones de ecuaciones diferenciales lineales.

Propiedades

• Si $f_1(x), f_2(x), \ldots, f_n(x)$ son funciones, su envolvente lineal está dada por:

$$\operatorname{Env}(f_1, f_2, \dots, f_n) = \left\{ \sum_{i=1}^n c_i f_i(x) \middle| c_i \in \mathbb{R} \right\}$$

■ El conjunto es un subespacio del espacio de funciones definidas en un intervalo común.

Ejemplo 1: Determinar la envolvente lineal de las funciones $f_1(x) = e^x$, $f_2(x) = e^{2x}$.

■ Ejemplo 1: Determinar la envolvente lineal de las funciones $f_1(x) = e^x$, $f_2(x) = e^{2x}$.

Solución

La envolvente lineal está formada por todas las combinaciones lineales:

$$y(x) = c_1 e^x + c_2 e^{2x}, \quad c_1, c_2 \in \mathbb{R}$$

Ejemplo 2: Determinar la envolvente lineal de $\sin x$ y $\cos x$.

■ Ejemplo 1: Determinar la envolvente lineal de las funciones $f_1(x) = e^x$, $f_2(x) = e^{2x}$.

Solución

La envolvente lineal está formada por todas las combinaciones lineales:

$$y(x) = c_1 e^x + c_2 e^{2x}, \quad c_1, c_2 \in \mathbb{R}$$

Ejemplo 2: Determinar la envolvente lineal de $\sin x$ y $\cos x$.

Solución

La envolvente lineal es:

$$y(x) = a \sin x + b \cos x, \quad a, b \in \mathbb{R}$$

Este conjunto es el espacio solución de la ecuación:

$$y'' + y = 0$$

■ Ejemplo 3: Determinar si las funciones $x, x^2, y x^3$ forman una envolvente lineal en \mathbb{R} .

■ Ejemplo 3: Determinar si las funciones x, x^2 , y x^3 forman una envolvente lineal en \mathbb{R} .

Solución

Sí, ya que cualquier combinación $ax + bx^2 + cx^3$ pertenece a la envolvente lineal. Este conjunto corresponde al espacio de polinomios de grado ≤ 3 .

Ejemplo 4: Determinar la envolvente lineal de e^x , xe^x , y x^2e^x .

■ Ejemplo 3: Determinar si las funciones x, x^2 , y x^3 forman una envolvente lineal en \mathbb{R} .

Solución

Sí, ya que cualquier combinación $ax+bx^2+cx^3$ pertenece a la envolvente lineal. Este conjunto corresponde al espacio de polinomios de grado ≤ 3 .

Ejemplo 4: Determinar la envolvente lineal de e^x , xe^x , y x^2e^x .

Solución

El conjunto:

$$y(x) = ae^x + bxe^x + cx^2e^x$$

corresponde al espacio solución de una ecuación diferencial de tercer orden con raíces reales iguales.

- La envolvente lineal es clave para describir espacios de soluciones de ecuaciones diferenciales lineales homogéneas.
- Los ejemplos mostraron cómo identificarla, construirla, y relacionarla con ecuaciones diferenciales.

Bases y Dimensión

- ¿Qué es una base? Una base de un espacio vectorial es un conjunto de vectores linealmente independientes que generan todo el espacio.
 - Cada vector del espacio se puede expresar como combinación lineal de los vectores de la base.
 - Ejemplo: en \mathbb{R}^3 , una base típica es $\{(1,0,0),(0,1,0),(0,0,1)\}.$
- ¿Qué es la dimensión? La dimensión de un espacio vectorial es el número de vectores en una base de ese espacio.
 - Si un espacio tiene una base con n vectores, se dice que su dimensión es n.
 - La dimensión de \mathbb{R}^n es n.

■ Ejemplo 1 Determina si el conjunto $\{(1,0,-1),(0,1,2),(2,1,0)\}$ es una base de \mathbb{R}^3 .

Solución

Verificamos si los vectores son linealmente independientes resolviendo si:

$$a(1,0,-1) + b(0,1,2) + c(2,1,0) = (0,0,0)$$

El sistema homogéneo solo tiene solución trivial \Rightarrow los vectores son L.I. y forman base.

■ Ejemplo 2 ¿Cuál es la dimensión del espacio de soluciones de la ecuación diferencial homogénea

$$y'' + y = 0?$$

Solución

La solución general es:

$$y(x) = c_1 \cos x + c_2 \sin x$$

Los vectores $\{\cos x, \sin x\}$ son L.I., por tanto la dimensión es 2.

■ Ejemplo 3 Encuentra una base para el subespacio de \mathbb{R}^3 generado por $\{(1,2,3),(2,4,6),(1,0,1)\}.$

Solución

Notamos que (2,4,6)=2(1,2,3). Son L.D. Entonces una base es $\{(1,2,3),(1,0,1)\}$. Dimensión =2.

■ Ejemplo 4 Determina si $\{e^x, xe^x, x^2e^x\}$ es una base del espacio solución de:

$$y''' - 3y'' + 3y' - y = 0$$

Solución

La ecuación tiene raíces repetidas: r=1 con multiplicidad 3. Solución general:

$$y(x) = c_1 e^x + c_2 x e^x + c_3 x^2 e^x$$

 \Rightarrow Los vectores dados son L.I. y forman una base.

- Una base permite representar todo el espacio vectorial.
- La dimensión nos dice cuántos vectores se necesitan para ello.
- Comprender estos conceptos es clave para resolver ecuaciones diferenciales.

Matriz de Cambio de Base

• ¿Qué es la Matriz de Cambio de Base?

- $\bullet\,$ Dado un espacio vectorial V, un vector puede representarse en distintas bases.
- La matriz de cambio de base permite transformar las coordenadas de un vector desde una base B a otra base B'.
- Si P es la matriz de cambio de base de B a B', entonces:

$$[v]_{B'} = P^{-1}[v]_B$$

 El cambio de base es fundamental para resolver sistemas de ecuaciones y simplificar matrices.

Construcción de la Matriz de Cambio de Base

- Sean $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ y $B' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ bases de V.
- La matriz de cambio de base de B a B' se construye como:

$$P = \begin{bmatrix} [\mathbf{w}_1]_B & [\mathbf{w}_2]_B & \cdots & [\mathbf{w}_n]_B \end{bmatrix}$$

• Entonces, para un vector $\mathbf{v} \in V$:

$$[\mathbf{v}]_{B'} = P^{-1}[\mathbf{v}]_B$$

- Ejemplo 1: Cambio de base en \mathbb{R}^2
 - Sea $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ y $B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$.
 - Construimos $P = [[\mathbf{w}_1]_B [\mathbf{w}_2]_B] = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
 - Para $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, calculamos:

$$[\mathbf{v}]_{B'} = P^{-1} \begin{bmatrix} 2\\3 \end{bmatrix}$$

- Ejemplo 2: Cambio de base y diagonalización
 - Sea $A = \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix}$, queremos diagonalizarla.
 - Base de vectores propios: $B' = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}$
 - Matriz de cambio de base $P = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$
 - Entonces: $P^{-1}AP = D = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$

- Ejemplo 3: Representación de vectores en nueva base
 - Sea $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ y la base $B' = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$
 - Hallamos la matriz P y su inversa.
 - Calculamos $[\mathbf{v}]_{B'} = P^{-1}[\mathbf{v}]_B$
- Ejemplo 4: Cambio de base en \mathbb{R}^3
 - Sean $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ y $B' = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$
 - Para $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, buscamos su representación en B'
 - Construimos P, luego:

$$[\mathbf{v}]_{B'} = P^{-1}[\mathbf{v}]_B$$

- El cambio de base es una herramienta poderosa para simplificar problemas en álgebra lineal y ecuaciones diferenciales.
- Permite transformar representaciones, diagonalizar matrices y facilitar el análisis de sistemas lineales.
- Dominar la matriz de cambio de base es clave para cursos avanzados en matemáticas aplicadas.

Gracias por su atención

¿Preguntas?