Extending Distributed Functionality in Phylanx

Master's Defense

Maxwell Reeser

March 24, 2020

Division of Computer Science and Engineering School of Electrical Engineering and Computer Science Louisiana State University

Previous Publications/Presentations

• This presentation was delivered at the SCALA 2020 conference

Outline

Introduction to Phylanx and Background

Algorithms

Results & Future Work

Introduction to Phylanx and

Background

Phylanx: An Asynchronous Distributed C++ Array Processing Toolkit

- Write Python code, run it in distributed
- Targeting machine learning mainly
 - Focus on linear algebra
 - Lower barrier to entry for ML Practitioners
 - NumPy API
- Heavy use of HPX
 - Standard's compliant distributed C++ runtime
 - Product of Stellar Group
- Blaze data structures
 - Parallel linear algebra

Distributed Phylanx Roadmap

- Map operations
 - No Data Dependencies
- Distributed Data Structures
 - distributed_object
 - UPC++
 - distributed_vector/matrix
 - Annotations
- Distributed Primitives
 - Previously implemented:
 - Matrix transpose
 - Vector-vector product
 - Matrix-vector product
 - Implemented in this project:
 - Matrix-matrix product

Tiling in Phylanx

- Distributed computation means distributed data
 - Distributed data structures have local (single node) tiles
 - These can be tiles of vectors, matrices, or other data structures
 - Splitting up of data must be intentional
 - We mostly focus on tiling of matrices
- Different tilings can have different costs
 - Eventually we want to minimize the cost

Tiling Example: A = B + C

Figure 1: Tiling Mismatch

6

distributed_matrix

- Object-oriented distributed data organization
- Enabled by HPX's Active Global Address Space (AGAS)
- Maintains a list of participating nodes
- Allows one local tile to "fetch" a non-local tile over the network

distributed_matrix Example

```
util::distributed_matrix<T> lhs_data(lhs_localities.annotation_.name_,
    lhs.matrix(), lhs_localities.locality_.num_localities_,
    lhs_localities.locality_.locality_id_);

std::size_t remote_id = 2;
std::size_t row_start = 0;
std::size_t row_stop = 100;
std::size_t col_start = 0;
std::size_t col_start = 0;
std::size_t col_start = 0;
std::size_t col_stop = 100;
hpx::lcos::future<blaze::DynamicMatrix<T>> lhs_tmpl =
    lhs_data.fetch(remote_id, row_start, row_stop, col_start, col_stop);
```

Figure 2: Tiling Mismatch

Algorithms

dot_d 2d2d & Cannon Product

- dot_d 2d2d
 - Supports rectangular, non-overlapping tiling on an arbitrary number of nodes
 - Designed by Hartmut Kaiser
- Cannon Product
 - Requires uniform tiling on a perfect square number of nodes
 - Chosen for its simplicity and space efficiency

dot_d 2d2d

- Very flexible matrix multiplication algorithm
- Iterates through all tiles of RHS operand
 - Performs multiplication if intersection detected
- Local partial result matrices may be large
- May require partial result row-aggregation in order to compute final result

dot_d Example: $A = B \cdot C$

Figure 3: Calculating Intermediate Result

dot_d Example: $A = B \cdot C$

Figure 4: Calculating Final Tiled Result

dot_d Example: $A = B \cdot C$

Figure 5: Row Major LHS

Cannon's Algorithm

- Space efficient matrix multiplication algorithm
- Moves both input matrix tiles at every step
 - \sqrt{P} number of iterations (on P processors)
- End result does not require row-aggregation

Figure 6: Alignment

Figure 7: Multiply Local Values

Figure 8: Shift Data & multiply

Figure 9: Shift Data & multiply

Futurizing Cannon's Algorithm

- No permanent data moving
 - Pulling instead
 - Doubles memory cost
- Allows pulling to be done one cycle ahead
 - Computation runs while data is being fetched

Results & Future Work

Preliminary Results

- Both distributed algorithms outperformed the pure serial version
- Cannon performed substantially better than dot_d

Matrix Size	dot_d	cannon	dot (serial)
500	5351.08	3131.345	8538.37
1000	36946.15	25889.2	67425.2
2000	282916.5	170091.5	539491

Speedup

Figure 10: Speedup Plot

Contributions of this work

- Explored performance and implementation differences between two different matrix multiplication algorithms
- Learned more about how tiling structure impacts performance
 - In how it is derived from the algorithm
 - In how we might choose algorithms for their tiling benefits or constraints
- Learned more about our requirements for distributed primitives in Phylanx going forward
- Highlighted known deficiencies in HPX that, if resolved, would improve distributed functionality

Future Work

- Confirm results in a cluster environment
- Tiling testing
- Tiling optimizer

Complexity

- In an operation, A = B ⋅ C, B ∈ M_{NxL}, C ∈ M_{LxM}, with B, C containing doubles (8 bytes)
- Cannon's algorithm always transfers $8*(\sqrt{P}*(N*L/P)+\sqrt{P}*(L*M/P))$ bytes of data at a speed of α bytes/sec, with latency β , meaning it takes $\sqrt{P}*\beta$ time in latency, due to the futurization, with a total maximum memory footprint of (N*M)+2*(N*L)+2*(L*M).
- dot_d transfers up to 8*P*(P-1)*(L*M) bytes of data in the main multiplication step, and up to 8*N*log(L)*M bytes in the row-aggregation step, with total latency $P*(P-1)*\beta+N*log(L)*\beta$ in the worst case. The memory footprint in the worst case is P*(N*M)+(N*L)+2*(L*M)