优达学城机器学习(进阶)毕业项目

Kaggle: Dog Breed Identification

邓勇

2017年11月2日

目录

— ,	定义	1
	1.1 项目概述	
1. 1. 1. 二、2. 2. 2. 2. 3. 3. 3. 3. 3. 3.	1.2 问题陈述	
	1.3 评估指标	1
Ξ,	分析	2
	2.1 数据	
	2.2 算法	
	2.3 开发环境	
	2.4 基准模型	3
三、	方法	4
	3.1 数据预处理	4
	3.2 特征提取	5
	3.3 全链接神经网络分类	8
	3.4 完善过程	8
四、	结果	8
五、	项目结论	8
	5.1 结果可视化	8
	5.2 对项目的思考	9
	5.3 需要做出的改进	9
参考	文献	9

一、定义

1.1 项目概述

项目是 Kaggle 近期上线的一个 PlayGround 项目。训练数据来自于 ImageNet 关于狗品种的子集。通过这个项目可以让参与者了解图像识别算法,找到自己正在开发或者学习的算法中的问题^[1]。

本项目属于图像识别领域新出现的一个研究方向,细粒度视觉分类(Fine-Grained Visual Categorization, FGVC),其目的是将某一大类事物的子类进行分类。本项目中将狗这一大类事物,识别图片中的狗属于 80 个品种中的哪一种。

研究中,细粒度视觉分类常用的数据集还有:

- 1. CUB-200-2011(200类,共11788张鸟的图片);
- 2. FGVC-aircraft (100 类, 共 10000 张飞机的图片)
- 3. Stanford cars (196 类, 共 16185 张汽车的图片)
- 4. NA birds (555 类, 48562 张鸟的图片)

研究中,常用的方法主要有两大类:局部识别和整体识别。局部识别,基于局部的图像特征,提取特征,然后进行特征分类。但是,局部特征提取一般都需要有标记的图片,所以,实际应用比较困难。整体识别除了本项目中使用的常规的 CNN 提取特征外,一般还有提取视觉词袋,然后进行分类^[2]。

1.2 问题陈述

本项目将识别 10357 张狗的图片,识别出每张图片中的狗是属于 120 个品种的哪一个品种。

本项目中,将使用已经给出预训练权重的特点,主要将会使用 Xception、VGG16、VGG19、ResNet50 和 InceptionV3 这 5 个模型提取特征。然后,将这些特征输入一个多层神经网络训练,得到模型。[3][4][5][6][7][8][9]

使用 InceptionV3 Fine-Tune 作为基准模型^[10],代表最基本的图片分类方法,并以此模型获得的 Score 作为基准模型的 benchmark,约为 0.56999。将 InceptionV3 的最上面的全连接层进行重新训练,与本项目中使用多个预训练权重的迁 Fine-Tune 做对比。

本项目最终提交 Kaggle 获得 Score 是 0. 46859。

1.3 评估指标

选用 Kaggle 官方的 Multi Class Log Loss 作为最终评价指标^[11]。在模型训练过程中,以 keras 输出的每个迭代的历史准确度为主要的评判依据。

二、分析

2.1 数据

本项目的输入数据包括三个部分:

1) Keras 预训练模型的权重,计划使用 VGG16、VGG19、ResNet50、Xception 和 InceptionV3 这 5 个模型。这 5 个模型的预训练结果表 1 所示^[12]。实际使用中,以上模型的参数从网上(https://github.com/fchollet/deep-learning-models/releases)直接下载。

模型	尺寸	Top-1 准确率	Top-5 准确率	参数	深度
Xception	88 MB	0. 79	0. 945	22, 910, 480	126
VGG16	528 MB	0.715	0. 901	138, 357, 544	23
VGG19	549 MB	0. 727	0.91	143, 667, 240	26
ResNet50	99 MB	0.759	0. 929	25, 636, 712	168
InceptionV3	92 MB	0. 788	0.944	23, 851, 784	159

表 1 Keras 预训练权重模型在 ImageNet 数据集上 Top-1 和 Top-5 准确率

2) 训练数据包括,10222 张已标记的 jpg 格式彩色图片,共 344MB。各张图片的大小并不统一,实际使用前需要调整图片大小。图片样例如图 1。

图 1 训练数据图片样例,以上图片的实际大小从左到右分别为 500x375、200x280 和 500x375

3) 测试数据包括,10357 张未标记的 jpg 格式彩色图片,共 345MB。各张图片的大小并不统一,实际使用前需要调整图片大小。图片样例如图 2。这些图片对应的分类的结果将作为输出,提交 Kaggle,验证最终算法的正确率。

图 2 测试数据图片样例,以上图片的实际大小从左到右分别为 500x375、500x347 和 375x500

2.2 算法

本项目中,提取特征使用的预训练模型中使用的算法主要包括 VGG16、VGG19、ResNet50、Xception 和 InceptionV3。特征分类主要使用全链接神经网络。

VGG16 和 VGG19 的模型依据 Simonyan 等人关于深度卷积神经网络在大规模图像识别中的应用实现,并使用 ImageNet 的数据集调参。

2.3 开发环境

硬件环境: ucloud GPU 主机 G2 系列(NVidia P40, 8 核, 32GB 内存)。

操作系统: Windows server 2012 64 位 EN。

Python 开发环境: Anaconda3-4.4.0、python 3.5。

主要 Python 开发包: Jupyter 1.0.1、Notebook 5.0.0、Tensorflow-gpu 1.1.0、Keras 2.0.8。 各大云计算厂商都提供了 GPU 系列的计算平台,价格不一。但是,ucloud 属于其中比较贵的。搭建这个开发环境主要考虑一下两个方面:

- 1. 系统运行难度。对于新手,除了算法本身,搭建开发环境其实是一个重大的挑战。
- ucloud 相对于 AWS、Google、Azure、阿里云这样的大厂商,ucould 的售后服务比较好,能提供一些关于开发环境使用的基本的支持。
- 因为在个人电脑上,计算能力遇到瓶颈,所以决定购买具有更强计算能力的 GPU 主机进行开发。在云端搭建与本地基本类似的开发环境,可以减少很多因为开发环境变换导致的问题。本人个人电脑使用 Windows 10 professional 操作系统,NVidia GeFocre 920MX。然后使用 Anaconda 作为主要开发环境。所以,云主机选用 NVidia 显卡的主机,并使用与 Windows 10 相似的 Windows server 2012。
- 2. 运行成本。个人用云 GPU 主机作为开发环境,基本都是使用按小时付费的模式。

2.4 基准模型

将使用 InceptionV3 Fine-Tune 作为基准模型^[10],代表最基本的图片分类方法,并以此模型获得的 Score 作为基准模型的 benchmark,约为 0.56999。将 InceptionV3 的最下面的全连接层进行重新训练,与本项目中使用多个预训练权重的迁 Fine-Tune 做对比。Inception 的 Fine-Tune 结构如图 3。

图 3 Inception V3 Fine-Tune 结构图

三、方法

3.1 数据预处理

1)解压原始数据。Kaggle 提供的原始数据是 zip 文件,在使用之前,首先需要解压文件。主要使用以下代码:

```
def Unzip(data_path, zip_name):
    extract_name = zip_name[0:-4]
    extract_path = os.path.join(data_path, extract_name)
    zip_path = os.path.join(data_path, zip_name)
    if not (os.path.isdir(extract_path) or os.path.isfile(extract_path)):
        with zipfile.ZipFile(zip_path) as file:
            for name in file.namelist():
                 file.extract(name, data_path)

cwd = os.getcwd()

data_path = os.path.join(cwd, 'input')

Unzip(data_path, os.path.join(data_path, 'labels.csv.zip'))

Unzip(data_path, os.path.join(data_path, 'sample_submission.csv.zip'))

Unzip(data_path, os.path.join(data_path, 'test.zip'))

Unzip(data_path, os.path.join(data_path, 'train.zip'))
```

2)整理图片文件夹。在提取特征的时候,使用 Keras 的 ImageDataGenerator 获取数据。ImageDataGenerator 需要以下的文件结构(图 4):

图 4 ImageDataGenerator 处理需要的文件结构

data_train 文件夹下,各个子类的类名作为子文件夹的名称,ImageDataGenerator 将会以这些子文件夹的名称作为读取数据之后的标签。

在文件夹结构创建完成之后,按照 labels.csv 中的文件名和类名的对应关系,开始从之前解压之后的文件夹中复制图片到对应类名的子文件夹中。test 数据集没有 label,所以,全都复制到 test 子文件夹下。

为了节省磁盘空间,可以使用移动图片,而不是复制图片。因为,开发过程中有一个摸索 ImageDataGenerator 正确工作方式的过程,所以,复制图片减少了,操作出错之后,每次都需要重新解压文件带来的麻烦。或者使用文件链接,移动图片都可以避免了。但是,这个文件链接过程,在 Windows 环境下,需要额外的配置,增加了本项目的复现难度,所以,没有采取这个方式。

3.2 特征提取

本项目使用已经给出预训练权重的特点,主要将会使用 Xception、VGG16、VGG19、ResNet50 和 InceptionV3 这 5 个模型提取特征。然后,将这些特征输入一个多层神经网络训练,得到模型。[3][4][5][6][7][8][9]特征提取结构如图 5 上半部分。主要步骤为:

- 1) 如果是 Xception 或者 InceptionV3,则需要处理输入的层: preprocess input;
- 2) 创建 model (使用 notop 模型);
- 3) 创建 ImageDataGenerator,这里可以同时用于 data_train 和 data_test;
- 4) 使用 model.predict generator 输出结果,即为模型提取的特征;
- 5)使用 h5py 把输出的 train 特征、train 标签和 test 特征存到 h5 文件中。主要函数代码如下[4]:

```
def get_features(MODEL, image_size, date_str, lambda_func=None, batch_size=1):
    print('{0} start.'.format(MODEL. name ))
    start_time = time.time()
    width = image size[0]
    height = image_size[1]
    input tensor = Input((height, width, 3))
    x = input_tensor
    #1) 如果是 Xception 或者 InceptionV3,则需要处理输入的层: preprocess_input
    if lambda func:
         print(lambda func. name )
         x = Lambda(lambda_func)(x)
    #2) 创建 model (使用 notop 模型)
    base_model = MODEL(input_tensor=x, weights='imagenet', input_shape=(height, width, 3),
include_top=False)
    model = Model(base model.input, GlobalAveragePooling2D()(base model.output))
    cwd = os.getcwd()
    data_train_path = os.path.join(cwd, 'input', 'data_train')
    data_test_path = os.path.join(cwd, 'input', 'data_test')
    # 创建 ImageDataGenerator,这里可以同时用于 data train 和 data test
    gen = ImageDataGenerator(zoom_range = 0.1,
                                height shift range = 0.1,
                                width_shift_range = 0.1,
                                rotation range = 10)
    train generator = gen.flow from directory(data train path, image size, shuffle=False,
                                                    batch size=batch size)
    test_generator = gen.flow_from_directory(data_test_path, image_size, shuffle=False,
                                                    batch_size=batch_size)
    print(len(train_generator.filenames))
    print(len(test generator.filenames))
    print('train_generator')
    #4) 使用 model.predict generator 输出结果,即为模型提取的特征
                               model.predict generator(train generator,
    train
                                                                                verbose=1,
steps=len(train_generator.filenames))
    print('test generator')
                               model.predict_generator(test_generator,
                                                                                verbose=1,
    test
steps=len(test_generator.filenames))
    folder path = os.path.join(cwd, 'model')
    if not os.path.exists(folder path):
         os.mkdir(folder_path)
    file_name = os.path.join(cwd, 'model', 'feature_{0}_{1}.h5'.format(MODEL.__name__,
```

```
date_str))

print(file_name)

if os.path.exists(file_name):
    os.remove(file_name)

#5)使用 h5py 把输出的 train 特征、train 标签和 test 特征存到 h5 文件中
with h5py.File(file_name) as h:
    h.create_dataset("train", data=train)
    h.create_dataset("train_labels", data=train_generator.classes)
    h.create_dataset("test", data=test)

print(train.shape)
print(train_generator.classes)
print(test.shape)

end_time = time.time()
print('Spend time: {0} s'.format(end_time-start_time))

调用方法为: get_features(VGG16, (224, 224), date_str)。
```


图 5 系统整体结构

3.3 全链接神经网络分类

常用的分类方法有很多,比如决策树、支持向量机、随机森林、XGBoost、全连接神经网络等。注意,由于 SVM 不能预测属于各个的概率,而本项目需要计算属于各个分类的概率,所以不能使用。综合特征提取模块和全连接神经网络分类器,系统整体结构如图 5。

3.4 完善过程

本项目中尝试使用 LogisticRegression 和 XGBoost 替换全链接神经网络分类器, 但是效果都不及全连接神经网络分类器。

四、结果

本项目使用全链接神经网络作为分类器每次的结果都会略有不同,提交 Kaggle 的结果 0.46859,结果比较符合预期。

五、项目结论

5.1 结果可视化

本项目证明,获取的更多的特征,对于提高图像识别的准确度至关重要。与单独使用 InceptionV3 Fine-Tune 相比,使用 VGG16、VGG19、ResNet50、Xception 和 InceptionV3 这 5 个模型明显增大了识别准确度。

学习曲线如图 6。由曲线可以看出,虽然 5 个模型的准确率与单个 InceptionV3 相比提升较大,模型对训练数据的拟合比较好,但是泛化能力仍然不够,交叉测试的准确率最终与测试集相差还比较大,说明,模型还有较大的改进空间。

图 6 学习曲线

5.2 对项目的思考

- 1)项目来源。一开始选择这个项目,主要是因为 Kaggle 上面的项目会一直都在,数据也会一直都在,避免项目源代码中还不得不携带数据,或者其他人想测试本项目的代码,而数据却难以获得,也便于以后自己回溯。现在进行的 Challenger.AI 的场景分类其实也是一个不错的项目,但是数据的获取和使用不是很方便。
- 2) 开发成本。这个项目的开发成本比较高,ucloud 的 GPU 主机花了好几百块钱。这个项目之后,花时间切换到其他厂商,即使是 Linux 的系统也可以,关键是要便宜。Kaggle 算是上手了,以后会接着做,对计算能力的需求应该会更大。
- 3)新手难题。对于新手,独自搭建环境是个巨大的挑战,尤其是在不知道一个可以运行的环境需要哪些要素的时候。经过一两个项目,增加的不仅是整体的开发能力,还有信心。
- 4)各种内存溢出。本项目数据量比较大,在调试过程中遇到了各种形式的内存溢出, 算是这方面积累一定的经验。
 - 5)特征提取和特征分类分成两步,会节省很多时间。
- 6)结果不够好。虽然,这个结果符合预期,但是,这个结果不够好,问题是,Leaderboard 上前面的那些人用的方法,他们的方法是从哪里学到的。这个打渔的方法,还值得进一步的 摸索。

5.3 需要做出的改进

本项目的结果证明,更多的特征,会使结果更好。所以,虽然,本项目是以卷积神经网络为主来提取图像特征,但是,其他传统的图像特征提取方法也是可以都用上的,以增加更多的特征。

整个开发的代码比较零散。因为是新开发的流程,很多东西都是一点一点调试出来的, 所以,代码封装不是很好。以后可以逐渐封装一些常用的方法,然后作为 python 包直接从 文件导入。

很多基础处理技术不是很熟。导致开发速度较慢,以后多做 Kaggle 里面的额项目,熟能生巧。

参考文献

- [1] https://www.kaggle.com/c/dog-breed-identification
- [2] https://github.com/fchollet/deep-learning-models/releases
- [3] https://www.kaggle.com/gaborfodor/use-pretrained-keras-models-lb-0-3
- [4] https://github.com/ypwhs/dogs_vs_cats
- [5] Xception: Deep Learning with Depthwise Separable Convolutions, , https://arxiv.org/abs/1610.02357
- [6] Very Deep Convolutional Networks for Large-Scale Image Recognition , https://arxiv.org/abs/1409.1556
- [7] Deep Residual Learning for Image Recognition, https://arxiv.org/abs/1512.03385
- [8] Rethinking the Inception Architecture for Computer Vision, https://arxiv.org/abs/1512.00567
- [9] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , https://arxiv.org/pdf/1704.04861.pdf
- [10] https://keras.io/applications/
- [11] https://www.kaggle.com/wiki/MultiClassLogLoss
- [12] https://keras.io/