# Google Play App

Predict the rating on Google
Play Store Apps for the Android
market with machine learning

Xiongfeng Wang, Brown DSI, 10/16/2020 https://github.com/XiongfengWang/1030project



### **Introduction**



- Predict the rating for Google Play Store Apps:
- Rating affect App's success and visibility.
- Good prediction on new Apps is beneficial.
- Regression: rating scales from 1 to 5 with decile level between each integer.
- Dataset: Kaggle
   https://www.kaggle.com/lav
   a18/google-play-store-apps

## **Dataset Over View**

- 10,358 samples, 13 columns
- Drop duplicate samples
- Drop samples missing rating
- Drop 'almost duplicate'
- 8,211 samples, 10 features (exclude App, Current Version, Ratings)
- missing values
- Group structure
- Imbalance



## **EDA**

| Features | Reviews      | Numerical | 'Varies with device'<br>kB, MB to Byte |
|----------|--------------|-----------|----------------------------------------|
|          | Price        | Numerical | Remove \$ sign                         |
|          | Last Updated | Numerical | Transfer to Days                       |

## Group Structure: Category and Genres



## Preprocessing

Group Structure: not I.I.D.

Not time series

**Imbalance** 

GroupShuffleSplit



## How to split



## Missing Data

Scatter Matrix for float & int variables

4 in Android Ver:

Assign 'None'

1171 in Size (MAR):

Iterative imputation



## **Encoding**

|          | Variable       | Classification | Encoder        |  |
|----------|----------------|----------------|----------------|--|
| Key      | Арр            |                |                |  |
| Features | Category       | Categorical    | OneHotEncoder  |  |
|          | Reviews        | Numerical      | StandardScaler |  |
|          | Size           | Numerical      | StandardScaler |  |
|          | Installs       | Categorical    | OrdinalEncoder |  |
|          | Туре           | Categorical    | OneHotEncoder  |  |
|          | Price          | Numerical      | StandardScaler |  |
|          | Content Rating | Categorical    | OneHotEncoder  |  |

| Features | Genres       | Categorical | OneHotEncoder  |
|----------|--------------|-------------|----------------|
|          | Last Updated | Numerical   |                |
|          | Current Ver  | Categorical |                |
|          | Android Ver  | Categorical | OneHotEncoder  |
|          | Subcategory  | Categorical |                |
|          | Days         | Numerical   | StandardScaler |
| Target   | Rating       | Numerical   |                |

Classification

Encoder

Variable

## **Cross Validate**

| Model         | Hyperparameter(s) | Values to try                                |
|---------------|-------------------|----------------------------------------------|
| Lasso         | alpha             | [1e-6, <b>1e-5</b> , 1e-4, 1e-3, 1e-2, 1e-1] |
| Ridge         | alpha             | [1e-6, <b>1e-5</b> , 1e-4, 1e-3, 1e-2, 1e-1] |
| Electic Not   | alpha             | [1e-10, 1e-5, 1e-3, 1e-1]                    |
| Elastic Net   | l1_ratio          | [0.1, 0.3, <mark>0.5</mark> ]                |
| Random Forest | max_features      | [1, 5, 10, 30, 50, 100]                      |
| Random Forest | max_depth         | [0.1, 0.2, 0.3, 0.4, <b>0.5</b> , 0.6]       |
| SVM           | gamma             | np.logspace(-5, 5, 11)                       |
| SVIVI         | С                 | np.logspace(-5, 5, 11)                       |
| VNoighbor     | n_neighbors       | np.linspace(10, <b>200</b> , 20)             |
| KNeighbor     | weights           | [ˈ <mark>uniform</mark> ', ˈdistanceˈ]       |

## Returns

Baseline model: linear regression MSE = 2.65686 RMSE = 1.63



#### Returns

Random Forest Regression gives the best model with diverse hyperparameters.

np.mean(test\_scores) = 0.28, rooted = 0.53 [RandomForestRegressor(max\_depth=50, max\_features=0.2), RandomForestRegressor(max\_depth=10, max\_features=0.6), RandomForestRegressor(max\_depth=50, max\_features=0.5), RandomForestRegressor(max\_depth=10, max\_features=0.6), RandomForestRegressor(max\_depth=10, max\_features=0.6), RandomForestRegressor(max\_depth=50, max\_features=0.2), RandomForestRegressor(max\_depth=10, max\_features=0.5), RandomForestRegressor(max\_depth=30, max\_features=0.3), RandomForestRegressor(max\_depth=30, max\_features=0.2), RandomForestRegressor(max\_depth=10, max\_features=0.5)]

## **Returns**



#### Outlooks

Remove samples with missing value (14%) instead of imputation

Try XGBoost

One App may have several samples with different name ('Basket Manager 2016 Free)', we can even the weight for these samples.

Try different Group Structure

# Q&A





## Thanks!







CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.