DM no3 (non noté)

Pour la rentrée des vacances de pâques 2025

Exercice 1 - Étude d'un endomorphisme

On note $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5)$ la base canonique de \mathbb{R}^5 . On considère l'endomorphisme f de \mathbb{R}^5 dont la matrice dans la base \mathcal{B} est :

$$C = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- 1. (a) Déterminer le rang de f, puis montrer que la famille $(e_2 + e_3 + e_4, e_1 + e_5)$ est une base de Im(f)
 - (b) En déduire la dimension r de $\operatorname{Ker}(f)$, puis donner une base de $\operatorname{Ker}(f)$ qu'on notera $\mathcal{B}' = (f_j)_{1 \leq j \leq r}$
- 2. On note $u = e_2 + e_3 + e_4$ et $v = e_1 + e_5$.
 - (a) Écrire f(u) et f(v) comme combinaisons linéaires de e_1, e_2, e_3, e_4, e_5
 - (b) Écrire f(u-v) et f(u+3v) comme combinaisons linéaires de u et v.
 - (c) Montrer que la base $\mathcal{B}'' = (f_1, f_2, f_3, f_4, f_5)$ constitué des vecteurs de la base \mathcal{B}' et des vecteurs $f_4 = u v$ et $f_5 = u + 3v$ constitue une base de \mathbb{R}^5 , et que la matrice de f dans cette base est

- (d) En déduire qu'il existe une matrice inversible $P \in \mathcal{M}_5(\mathbb{R})$ telle que $C = PDP^{-1}$. On ne demandera pas de déterminer P et P^{-1} .
- (e) En déduire pour tout $n \in \mathbb{N}^*$, une expression de \mathbb{C}^n en fonction de \mathbb{P} et \mathbb{P}^{-1} .

Exercice 2 - Relation de Panjer

On dit qu'une variable aléatoire X, à valeurs dans \mathbb{N} , vérifie une relation de Panjer s'il existe un réel a<1 et un réel b tels que

$$\mathbb{P}(X=0) \neq 1 \quad \text{et} \quad \forall k \in \mathbb{N}^*, \quad \mathbb{P}(X=k) = \left(a + \frac{b}{k}\right) \mathbb{P}(X=k-1)$$

Dans ce problème, on étudie une variable aléatoire X qui vérifie une relation de Panjer pour différentes valeurs de a et de b.

- 1. On suppose dans cette question que a=0, et que b est un réel strictement positif.
 - (a) Montrer que

$$\forall k \in \mathbb{N}, \quad \mathbb{P}(X = k) = \frac{b^k}{k!} \mathbb{P}(X = 0)$$

(b) Calculer $\sum_{k=0}^{+\infty} \mathbb{P}(X=k)$. En déduire $\mathbb{P}(X=0)$.

- (c) Reconnaître la loi de X et donner $\mathbb{E}(X)$ et V(X).
- 2. On suppose dans cette question que a < 0 et que b = -2a.
 - (a) Montrer que $\forall k \geq 2, \mathbb{P}(X = k) = 0$
 - (b) En déduire que X suit une loi de Bernoulli dont on précisera le paramètre en fonction de a
 - (c) Donner l'espérance et la variance de X en fonction de a.
- 3. On suppose dans cette question que Z suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in]0;1[$.
 - (a) Montrer que

$$\forall k \in [1, n], \quad \mathbb{P}(Z = k) = \frac{p}{1 - p} \times \frac{n - k + 1}{k} \times \mathbb{P}(Z = k - 1)$$

- (b) En déduire que Z vérifie une relation de Panjer en précisant les valeurs de a et b correspondantes en fonction de n et p.
- 4. On revient dans cette question au cas général : a est un réel vérifiant a < 1, b est un réel, et on suppose que X est une variable aléatoire, à valeurs dans \mathbb{N} , vérifiant la relation de Panjer.
 - (a) Calculer $\mathbb{P}(X=1)$. En déduire que $a+b \ge 0$
 - (b) Montrer que pour tout entier $m \ge 0$:

$$\sum_{k=1}^{m+1} k \mathbb{P}(X=k) = a \sum_{k=0}^{m} (k+1) \mathbb{P}(X=k) + b \sum_{k=0}^{m} \mathbb{P}(X=k)$$

- (c) En déduire que $((1-a)\sum_{k=1}^m k\mathbb{P}(X=k))_{m\geqslant 1}$ est majorée, puis que X admet une espérance. Préciser alors la valeur de $\mathbb{E}[X]$ en fonction de a et b.
- (d) Montrer que X admet un moment d'ordre 2 et que

$$\mathbb{E}[X^2] = \frac{(a+b)(a+b+1)}{(1-a)^2}$$

Indication: montrer que $\sum_{k=1}^{m+1} k^2 \mathbb{P}(X=k) = a \sum_{k=0}^{m} (k+1)^2 \mathbb{P}(X=k) + b \sum_{k=0}^{m} k \mathbb{P}(X=k)$ et s'inspirer de la question 4.c.

(e) En déduire que X admet une variance et préciser la valeur de V(X) en fonction de a et b