р-групи

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

16 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

1/9

Лема Коші

Лема (Коші)

Якщо порядок скінченної групи ділиться на просте число p, то в групі ϵ елемент порядку p.

Доведення.

Нехай G — скінченна група, $p \mid |G|$.

Розглянемо множину

$$M = \{(g_1, \ldots, g_p) | g_1 \ldots g_p = e\}, \quad |M| = |G|^{p-1}.$$

Задамо на M дію групи \mathbb{Z}_p :

$$(g_1,\ldots,g_p)^{\overline{k}}=(g_{p-k+1},\ldots,g_p,g_1,\ldots,g_{p-k}).$$

$$|\mathbb{Z}_p| = p \Rightarrow$$
 довжина орбіти 1 або p .

 \in принаймні одна орбіта довжиною 1: $\{(e, \ldots, e)\}$.

Оскільки $p \mid |M|$, то повинні існувати й інші орбіти довжиною 1. Їхній вигляд: $\{(g, \ldots, g)\}$. Отже, $q^p = e$.

p-група

Нехай p — фіксоване просте число.

Означення

Група G називається p-групо ω , якщо порядок кожного її елемента є степенем числа p.

Твердження

Підгрупа та факторгрупи p-групи є p-групами.

Приклад

- \bigcirc \mathbb{Z}_p є p-групою.
- ② Групи Q_8 та D_4 є 2-групами.
- \bigcirc $C_{p^{\infty}}$ є нескінченною p-групою.

Теорема

Скінченна група $G \in p$ -групою $\Leftrightarrow |G| = p^k$ для деякого $k \in \mathbb{N} \cup \{0\}$.

Доведення.

- (\Rightarrow) Припустимо, що порядок групи G ділиться на просте число $q \neq p$.
- Тоді за лемою Коші у групі G ϵ елемент порядку q
- (⇐) Випливає з теореми Лагранжа.

Центр *р*-групи

Теорема

Центр скінченної *p*-групи неодиничний.

Доведення.

Нехай G-p-група. Запишемо формулу класів для цієї групи:

$$|G| = |Z(G)| + \sum_{i=1}^{k} |C_i|,$$

де C_1, \ldots, C_k — всі неодноелементні класи спряженості групи G. Оскільки $|G| = p^k$ та $|C_i| \mid |G|$, то $|C_i| = p^l$ для деякого l < k.

Тоді $|Z(G)| = |G| - \sum_{i=1}^{k} |C_i|$ ділиться на p. Отже, $|Z(G)| \neq \{e\}$.

5/9

Теорема

Група порядку p^2 є абелевою.

Доведення.

$$|G| = p^2 \Rightarrow G - p$$
-група $\Rightarrow Z(G) \neq \{e\}$.

- $|Z(G)| = p^2 \Rightarrow G = Z(G) \Rightarrow G$ абелева.
- \bullet $|Z(G)| = p \Rightarrow |G/Z(G)| = p \Rightarrow G/Z(G)$ циклічна $\Rightarrow G$ абелева.

Твердження

Нехай G — неабелева група порядку p^3 . Тоді Z(G) = [G, G].

Доведення.

$$G$$
 — неабелева \Rightarrow $Z(G) \neq G$, $[G,G] \neq \{e\}$ $G - p$ -група \Rightarrow $Z(G) \neq \{e\}$ \Rightarrow $|Z(G)| = $\begin{bmatrix} p^2; \\ p. \end{bmatrix}$ $|Z(G)| = p^2 \Rightarrow |G/Z(G)| = p \Rightarrow G/Z(G)$ — циклічна 444 $|Z(G)| = p \Rightarrow |G/Z(G)| = p^2 \Rightarrow G/Z(G)$ — абелева \Rightarrow $Z(G) > [G,G] \Rightarrow Z(G) = [G,G]$.$

Розв'язність р-групи

Теорема

Нехай N — нормальна підгрупа групи G. Група G є розв'язною тоді і лише тоді, коли N та G/N є розв'язними.

Розв'язність *p*-групи

Теорема

Скінченна p-група є розв'язною.

Доведення.

```
Нехай G — скінченна p-група порядку p^k. Якщо G — абелева, то все доведено.
```

Нехай G — неабелева.

Індукція за |G|.

База індукції |G| = p. Тоді |G| — циклічна \Rightarrow абелева \Rightarrow все виконується.

$$Z(G) \neq \{e\} \Rightarrow |Z(G)| = p^i, i < k \Rightarrow |G/Z(G)| = p^{k-i}.$$

За припущенням індукції Z(G) та G/Z(G) —розв'язні $\Rightarrow G$ — розв'язна.