Report

111061590 林學謙

1. A comparison table like the following one, and an explanation of the result

create clock [get ports clk] -name CLK -period 10 -waveform {0 5}

CLK -period 10 -waveform {0 5}

floorPlan -coreMarginsBy die -site FreePDK45_38x28_10R_NP_162NW_340 -r 1.0 0.7 4.0 4.0 4.0

Fixed core utilization = 0.7

	Congestion Driven and Timing Driven table					
	(L, off)	(L, on)	(M, off)	(M, on)	(H, off)	(H, on)
Slack	0.205	0.457	0.400	0.286	0.4	0.286
Total wire	112861.	103990.5	108667.4	103115.8	108667.4	103115.8
length	7750 um	650 um	100 um	600 um	100 um	600 um

2. The difference(s) between the congestion-driven placement and timing-driven placement

Congestion-driven placement 目的:

讓 chip 的資源利用不會造成堵塞,但並不會著重在訊號延遲

Timing-driven placement 目的:

讓整體訊號延遲降低,但不會管 chip 位置是否造成訊號堵塞,所以必須按照設計目的來決定哪一個 placement 佔的比例比較重。

簡而言之,如果著重在 timing-driven placement, 會有較好的 timing dealy, 但會造成 routing problem 和 timing violation 在壅塞區域(chip)

反之,可以減少 congestion 的問題,進而分散 logical cell,但可能會無法達到 想要的 timing delay

- 3. An explanation of why we insert filler cells
- 如果不放入填料,晶片會是不平整的,而現代晶片通常都是好幾層相疊,所以 需要填料將中空的部分進行填充,除此之外,根據網路上的資料,填料是可以 增加整個晶片的承受壓力,有利於增加其強健性。
- 4. Show your best result (including clock period, total area of chip, total wire length, slack, congestion-driven effort and timing-driven on/off setting, and their snapshots) to maintain a non-negative slack and no DRC violation.

Clock period:

```
set sdc_version 2.0
set_units -time ns -resistance MOhm -capacitance fF -voltage V -current mA
create_clock [get_ports clk] -name CLK -period 8 -waveform {0 4}
```

Total area of chip

Total area of Chip: 13787.525 um^2

Total wire length

Total wire length: 106909.2700 um

Slack time

= Slack Time

0.111

Congestion-driven and timing-driven setting

setPlaceMode -congEffort auto -timingDriven 1 -clkGateAware 1 -powerDriven 0 -ignoreScan 1 -reorderScan 1 -ignoreSpare 0 -placeIOPins 1 -moduleAwareSpare 1 -preserveRouting 1 -rmAffectedRouting 0 -checkRoute 0 -swapEEQ 0

從我的 apr.tcl file 中的結果

Congestion-dirven placement 是選取 auto, timing-driven placement 則是選擇開啟。

floorPlan -coreMarginsBy die -site FreePDK45 38x28 10R NP 162NW 340 -r 1.0 0.75 4.0 4.0 4.0 4.0

Core utilization = 0.75

經過幾次測試後,得出最好的結果為 0.75。

Check the DRC

```
#*** Starting Verify DRC (MEM: 2996.5) ***

VERIFY DRC ..... Starting Verification

VERIFY DRC .... Initializing

VERIFY DRC .... Initializing

VERIFY DRC .... Deleting Existing Violations

VERIFY DRC .... Creating Sub-Areas

***MARNI: (IMPVFG-1198): The number of CPUs requested 8 is larger than that verify_drc used 4. In Multithreading mode, the number of CPUs verify_drc used is not larger.

***MARNI: (IMPVFG-1198): The number of Sub-case.

Use 'setMultiCpuUsage -localCpu' to specify the less cup number if the verify area is not large.

VERIFY DRC .... Using new threading

VERIFY DRC .... Sub-Area: (0.400 0.600 60.400 58.320) 1 of 4 Thread: 3

VERIFY DRC .... Sub-Area: (0.400 0.58.320 60.400 115.940 58.320) 2 of 4 Thread: 3

VERIFY DRC .... Sub-Area: (0.400 58.320 60.400 115.920) 3 of 4 Thread: 3

VERIFY DRC .... Thread: 1 finished.

VERIFY DRC .... Thread: 1 finished.

Verification Complete: 0 Viols.

*** End Verify DRC (CPU: 0:00:01.0 ELAPSED TIME: 1.00 MEM: 288.1M) ****
```

No violation

最後的 layout 會放在問題五

5. Show the final chip layout of your best result generated by Innovus (use print screen to save the final layout and paste on the report)

