Intro to GWAS

BIOL 435/535: Bioinformatics Feb 24th, 2022

Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals

James J. Lee 150, Robbee Wedow 22,24,50, Aysu Okbay 256,50*, Edward Kong⁷, Omeed Maghzian⁷, Meghan Zacher^a, Tuan Anh Nguyen-Viet^a, Peter Bowers^a, Julia Sidorenko^{10,11}, Richard Karlsson Linnér^{5,6,12}, Mark Alan Fontana^{9,12}, Tushar Kundu⁹, Chanwook Lee⁷, Hui Li⁷, Ruoxi Li⁹, Rebecca Royer⁹, Pascal N. Timshel 14,15, Raymond K. Walters 16,17, Emily A. Willoughby Loïc Yengo 10, 23and Me Research Team™, COGENT (Cognitive Genomics Consortium)™, Social Science Genetic Association Consortium¹⁸, Maris Alver¹¹, Yanchun Bao²⁰, David W. Clark²¹, Felix R. Day¹⁰, Nicholas A. Furlotte²², Peter K. Joshi 21,24, Kathryn E. Kemper 010, Aaron Kleinman22, Claudia Langenberg22, Reedik Mägi¹¹, Joey W. Trampush^{©25,26}, Shefali Setia Verma²⁷, Yang Wu^{©10}, Max Lam^{21,29}, Jing Hua Zhao²², Zhili Zheng 10,20, Jason D. Boardman 2,2,4, Harry Campbell 1, Jeremy Freese 1, Kathleen Mullan Harris 22,22, Caroline Hayward (3)24, Pamela Herd20,28, Meena Kumari20, Todd Lencz26,23,28, Jian'an Luan22, Anil K. Malhotra 26, 27, 28, Andres Metspalu 11, 29, Lili Milani (28), Ken K. Ong (222, John R. B. Perry 22, David J. Porteous⁴⁰, Marylyn D. Ritchie^{©27}, Melissa C. Smart²¹, Blair H. Smith^{©41,42}, Joyce Y. Tung²³, Nicholas J. Wareham²², James F. Wilson ^{© 21,24}, Jonathan P. Beauchamp ^{© 42}, Dalton C. Conley⁴⁴, Tonu Esko¹¹, Steven F. Lehrer^{45,46,47}, Patrik K. E. Magnusson^{10,48}, Sven Oskarsson⁴⁹, Tune H. Pers^{14,15}, Matthew R. Robinson 10,500, Kevin Thom 51, Chelsea Watson 9, Christopher F. Chabris 52, Michelle N. Meyer 53, David I. Laibson⁷, Jian Yang^{10,54}, Magnus Johannesson⁵⁵, Philipp D. Koellinger^{5,612}, Patrick Turley 14,17,59, Peter M. Visscher 10 10,54,59*, Daniel J. Benjamin 10,9,47,56,59* and David Cesarini 47,51,57,59

Genome-wide association studies

• Identify SNPs that are associated with phenotype(s) of interest

H_O: Phenotype ⊥ SNP

H_A: Phenotype ~ SNP

ALIGNED SEQUENCE

```
LEFT SNP
                             RIGHT SNP
   CATGCCGACATTTCATAGGCC...
                                                 180
   CATGCCGACATTTCATAAGCC...
                                                 175
   CATGCCGACATTTCATAGGCC...
                                                 170
     ATGCCGACATTTCATAAGCC...
                                                 165
                                                 160
   C A T G C C G A C A T T T C A T A G G C C ...
... A C A T G C C G A C A T T T C A T A A G C C ...
... A C A T G C C G A C A T T T C A T A A G C C ...
   CATGTCGACATTTCATAGGCC...
   CATGTCGACATTTCATAAGCC...
                                                 120
... A C A T G T C G A C A T T T C A T A G G C C ...
                                                 115
... A C A T G T C G A C A T T T C A T A A G C C ...
                                                 110
... A C A T G T C G A C A T T T C A T A G G C C ...
                                                 110
... A C A T G T C G A C A T T T C A T A A G C C ...
                                                 110
... A C A T G T C G A C A T T T C A T A G G C C ...
                                                 105
... A C A T G T C G A C A T T T C A T A A G C C ...
                                                 100
```

Genome-wide association studies

• Identify SNPs that are associated with phenotype(s) of interest

H_O: Phenotype ⊥ SNP

H_A: Phenotype ~ SNP

Genome-wide association studies

Identify SNPs that are associated with phenotype(s) of interest

H_O: Phenotype ⊥ SNP

H_A: Phenotype ~ SNP

SNP associations may not be due to causal effect

Population structure (differential relatedness among individuals) means that SNPs resulting from Isolation by Descent (IBD) will be associated with the phenotype of interest

Population structure causes linkage disequilibrium (LD)

Population structure causes linkage disequilibrium (LD)

Linkage disequilibrium

Recombination can break down LD, but it takes time, secondary contact

SNP associations may not be due to causal effect

Population structure (differential relatedness among individuals) means that SNPs resulting from Isolation by Descent (IBD) will be associated with the phenotype of interest

SNP associations may not be due to causal effect

Population structure (differential relatedness among individuals) means that SNPs resulting from Isolation by Descent (IBD) will be associated with the phenotype of interest

Accounting for population structure can remove spuriously associated SNPs

Doing GWAS with only European populations is a problem

Determining Statistical Significance

False Discovery Rate (Benjamini & Hochberg 1996)

SNP databases

dbSNP (NCBI)

OMIM (Online Mendelian Inheritance in Man)

HapMap Project

1000 Genomes Project

Performing GWAS – Linking Genotype to Phenotype

Case-control studies

Compare SNP frequencies in cases vs. controls

Performing GWAS – Linking Genotype to Phenotype

Case-control studies

Bulk segregant analysis

 Separate phenotypes into bins, compare SNP frequencies across bins

Performing GWAS – Linking Genotype to Phenotype

Case-control studies

Bulk segregant analysis

Natural variation

 Multivariate regression of continuous distributions vs. SNP frequencies

Performing GWAS – Key considerations

Problems with the population:

- Hardy-Weinberg Equilibrium
- Population structure individuals non-randomly related to other individuals
- Linkage Disequilibrium (LD)
- Missing data

Performing GWAS – Key considerations

Problems with the population:

- Hardy-Weinberg Equilibrium
- Population structure
- Linkage Disequilibrium (LD) –

Non-random association of two alleles (i.e., > 0.5 probability)

Missing data

Performing GWAS – Key considerations

- Problems with the population:
- Problems with the sample:
 - Sample size
 - Phenotype selection

Performing GWAS – Key considerations

- Problems with the population:
- Problems with the sample:
- Problems with statistical analyses:
 - Correcting for multiple comparisons
 - False positives
 - P-hacking