10.29.2018

HOMEWORK 3

* due friday!

OFFICE HOURS TODAY MOVED TO TOMORROW

- * i'm moving my office hour from monday (today) 1:30-3pm to TUESDAY 4-5:30pm
- * my office hours wednesday (1:30-3pm) will stay the same

RECAP

* statistical power: how often a test says "significant" when there actually is an effect

* effect size

RECAP

- * permutation test
 - * "if these two samples were actually the same, it shouldn't matter if we scramble them up and then re-divide them into two new samples..."

RELATIONSHIPS BETWEEN SAMPLES

* you record fMRI responses while someone listens to a podcast and plot the response of one voxel in auditory cortex (orange)

* you also measure how loud
the sound is at every
timepoint, and plot that
(blue)

RELATIONSHIPS BETWEEN SAMPLES

- * you can also plot loudness vs. fMRI response in a scatter plot (bottom)
- * these two seem related. how related? how do we measure?

Karl Pearson

* "are these two sets of numbers (linearly)
related?"

* the (Pearson) correlation between two variables is their covariance divided by the produce of their standard deviations

$$r_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

WHAT THE HECK IS COVARIANCE

* recall:

$$var(X) = \sigma_X^2 = \frac{1}{n} \sum_{i=1}^{N} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})$$

 $var(X) = \sigma^2_X = \frac{1}{n} \\ \sum_i^N (X_i-\bar{X})^2 = \frac{1}{n} \\ \sum_i^N (X_i-\bar{X}) (X_i-\bar{X})$

WHAT THE HECK IS COVARIANCE

* in covariance we replace one of the terms
with Y:

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

 $cov(X,Y) = \frac{1}{n}\sum_i^N (X_i-bar\{X\}) (Y_i-bar\{Y\})$

- * is covariance, but normalized by the product of the standard deviations
- * and thus is always in the range -1...1
 - * which is nice

* tells you how **linearly related** two variables are

- * incidentally, another way to think of correlation:
- * z-score X and Y to get z(X) and z(Y),
 then fit a line: z(Y) = m*z(X) + b
- * corr(X,Y) = m (the slope of the line)

DANGERS OF CORRELATION

* just computing correlation can be dangerous when your variables are related in weird non-linear ways

DANGERS OF CORRELATION

ANSCOMBE'S QUARTET

Frank

- * all datasets have identical:
 - * correlation
 - * mean
 - * variance
 - * slope
 - * R²

COMPUTING CORRELATION

- * np.corrcoef(arr1, arr2)
 - * computes the correlation between two arrays
 - * but weirdly, gives you a 2x2 array back, e.g.:
 - * [[1., 0.76], [0.76, 1.]]

COMPUTING CORRELATION

- * np.corrcoef([arr1, arr2, arr3, ...])
 - * computes the correlation between many arrays
 - * for N arrays, gives you back an NxN matrix of correlations

- * suppose the correlation between X and Y
 is 0.15
- * is this "real", or is it something you'd see by chance?
- * how do we figure this out?

- * permutation test:
 - * correlation depends on X and Y being ordered the same way. but if they are actually uncorrelated, then it shouldn't matter if we re-order them randomly

- * bootstrap test:
 - * bootstrap X and Y (simultaneously, to preserve ordering!) and compute correlation to find a confidence interval & standard error of the correlation measure
 - * does the confidence interval include zero? no? then it's significant!

- * exact test:
 - * if we assume that X and Y are gaussian RVs, then there is an exact formula for what the distribution of correlations look like assuming they are unrelated
 - * this can be used to find a p-value
 - * implemented in scipy.stats.pearsonr

NEXT TIME

* we're gonna start something totally new: timeseries!

END