Main text Table 2

Estimates of SAUC with CR when $c_1^2=1, c_2^2=0$ for scenario 1-4

Yi

2021-04-05

Print table

s.rdt <- "scenario/18rows/set-0.5b-all-c10.RData"
dt <- "res/DT-pkg-0.5b-all-c10/"</pre>

Table 1: Estimates of sAUC when $c_1^2 = 1; c_2^2 = 0$

		$S_P = 25$		$S_P = 50$		$S_P = 200$	
	SAUC	Median $(Q1, Q3)$	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	$0.617\ (0.503,\ 0.719)$	99.3	$0.626\ (0.543,\ 0.690)$	99.5	$0.632\ (0.591,\ 0.667)$	99.2
Proposed $(c_1^2 = 1)$		$0.641\ (0.521,\ 0.731)$	99.8	$0.634\ (0.548,\ 0.696)$	99.7	$0.624 \ (0.585, \ 0.660)$	99.6
Proposed $(c_1^2 = c_2^2)$		$0.623 \ (0.511, \ 0.714)$	99.8	$0.634\ (0.561,\ 0.699)$	99.9	$0.656 \ (0.626, \ 0.683)$	99.7
$Reistma_O$		$0.665 \ (0.560, \ 0.738)$	100.0	$0.664 \ (0.607, \ 0.713)$	100.0	$0.662 \ (0.635, \ 0.688)$	100.0
$Reistma_{P}$		$0.630\ (0.537,\ 0.701)$	100.0	$0.622 \ (0.563, \ 0.674)$	100.0	$0.620\ (0.591,\ 0.646)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.702	$0.703\ (0.621,\ 0.757)$	99.6	$0.700\ (0.645,\ 0.740)$	99.7	$0.705 \ (0.685, \ 0.726)$	100.0
Proposed $(c_1^2 = 1)$		$0.721\ (0.643,\ 0.766)$	99.6	$0.708 \ (0.657, \ 0.747)$	99.7	$0.705 \ (0.685, \ 0.724)$	99.0
Proposed $(c_1^2 = c_2^2)$		$0.702\ (0.609,\ 0.759)$	99.8	$0.705 \ (0.654, \ 0.744)$	99.6	$0.713\ (0.693,\ 0.732)$	99.6
$Reistma_{O}$		$0.725\ (0.657,\ 0.770)$	100.0	$0.717 \ (0.676, \ 0.752)$	100.0	$0.717 \ (0.701, \ 0.734)$	100.0
$Reistma_{P}$		$0.708 \ (0.651, \ 0.751)$	100.0	$0.703\ (0.668,\ 0.735)$	100.0	$0.703\ (0.687,\ 0.719)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.564	$0.589\ (0.524,\ 0.654)$	99.9	$0.582\ (0.521,\ 0.637)$	99.5	$0.570\ (0.537,\ 0.610)$	98.7
Proposed $(c_1^2 = 1)$		$0.581\ (0.507,\ 0.648)$	99.9	$0.573\ (0.518,\ 0.620)$	100.0	$0.566 \ (0.539, \ 0.591)$	99.7
Proposed $(c_1^2 = c_2^2)$		$0.616 \ (0.560, \ 0.665)$	100.0	$0.627\ (0.589,\ 0.662)$	99.8	$0.641\ (0.623,\ 0.660)$	99.1
$Reistma_{O}$		$0.649\ (0.598,\ 0.695)$	100.0	$0.649\ (0.620,\ 0.678)$	100.0	$0.649\ (0.634,\ 0.665)$	100.0
$Reistma_{P}$		$0.567 \ (0.513, \ 0.611)$	100.0	$0.564 \ (0.529, \ 0.597)$	100.0	$0.563 \ (0.547, \ 0.582)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	$0.633\ (0.575,\ 0.679)$	99.9	$0.636\ (0.584,\ 0.673)$	99.4	$0.641\ (0.609,\ 0.666)$	98.6
Proposed $(c_1^2 = 1)$		$0.631\ (0.577,\ 0.679)$	99.8	$0.626 \ (0.589, \ 0.662)$	100.0	$0.620\ (0.602,\ 0.637)$	99.8
Proposed $(c_1^2 = c_2^2)$		$0.641\ (0.601,\ 0.685)$	100.0	$0.655 \ (0.621, \ 0.681)$	99.6	$0.666 \ (0.651, \ 0.680)$	99.0
$Reistma_O$		$0.670 \ (0.635, \ 0.707)$	100.0	$0.674\ (0.647,\ 0.698)$	100.0	$0.673\ (0.660,\ 0.684)$	100.0
Reistma $_P$		$0.620\ (0.579,\ 0.657)$	100.0	$0.619\ (0.589,\ 0.646)$	100.0	$0.618 \ (0.605, \ 0.632)$	99.9

Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model estimating $(c_1^2, c_2^2)^T$; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model specified $c_1^2 = c_2^2 = 0.5$; Reitsma_O is Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.