Vietoris endofunctor for closed relations and its de Vries dual

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Based on a homonymous paper with G. Bezhanishvili and L. Carai (*Topology Proceedings*, to appear. Available on arXiv.)

TACL 2024 4 July 2024 Kripke semantics connects modal logic with the Vietoris endofunctor.

Algebras for $\mathbb{K} = \text{modal algebras}$.

Coalgebras for V = descriptive frames.

This is the coalgebraic approach to modal logic.

- 1. Stone duality has a natural extension to closed relations [Celani, 2018].
- 2. Vietoris has a natural extension to closed relations [Goy, Petrişan, Aiguier, 2021]! Which arised in studies of the usual Vietoris on functions.
- 3. We provide a description of the dual of \mathbb{V}^{R} .

Natural notions \rightarrow hope for applications! Our application: a resolution of an open problem on de Vries duality [Bezhanishvili, Bezhanishvili, Harding, 2015], concerning the usual Vietoris on compact Hausdorff spaces and continuous functions.

Extended by Celani (2018) (see also Kurz, Moshier, Jung, 2023):

closed relations

subordinations

Closed relation $R: X \hookrightarrow Y$ is a subset $R \subseteq X \times Y$ that is closed; equivalently, such that

- ► *R*[closed] is closed,
- $ightharpoonup R^{-1}$ [closed] is closed.

Why we got into closed relations:

Every compact Hausdorff space X is a continuous image of a Stone space (e.g., its Gleason cover). So it can be presented via

Stone space + closed equivalence relation.

Dual of a closed relation:

$$\begin{array}{ccc}
X & & \operatorname{Clop}(X) \\
\uparrow_R & & & \downarrow_S \\
Y & & \operatorname{Clop}(Y)
\end{array}$$

For
$$V \in \mathsf{Clop}(Y)$$
 and $U \in \mathsf{Clop}(X)$:
$$VS \ U \iff R^{-1}[V] \subseteq U$$

Example:

Subordination := a relation $S: A \hookrightarrow B$ such that

$$\left(\bigvee_{i=1}^n a_i\right) S\left(\bigwedge_{j=1}^m b_j\right) \iff \forall i,j \ a_i \ S \ b_j.$$

Theorem (Celani, 2018)

Stone^R (closed relations) is dual to BA^S (subordinations).

Definition (Vietoris hyperspace)

The Vietoris hyperspace $\mathbb{V}(X)$ of a Stone space X is the set of closed subsets of X, equipped with the topology generated by the following subsets of $\mathbb{V}(X)$, for U clopen of X:

Vietoris functor on Stone:

Stone
$$\stackrel{\mathbb{V}}{\longrightarrow}$$
 Stone

$$\begin{array}{ccc}
X & & \mathbb{V}(X) \\
\downarrow^f & & \downarrow^{f[-]} \\
Y & & \mathbb{V}(Y)
\end{array}$$

Extension of V from Stone to Stone (Goy, Petrisan, Aiguier, 2021):

Stone
$$\stackrel{\mathbb{V}^R}{\longrightarrow}$$
 Stone

It restricts to the usual Vietoris functor on continuous functions.

What is the dual of \mathbb{V}^R ?

$$\mathbb{V}^R \colon \mathsf{Stone}^R \to \mathsf{Stone}^R$$

On objects: the same as for the dual of \mathbb{V} on Stone (Abramsky, Johnstone, Kupke, Kurz, Venema, Vosmaer):

$$X$$
 $\mathbb{V}(X)$ Stone duality A $\mathbb{K}(A)$

$$\mathbb{K}(A) = \frac{\operatorname{Free}_{\mathsf{BA}}(\{\Box_a, \diamondsuit_a \mid a \in A\})}{\{\Box \text{ preserves finite meets, } \diamondsuit = \neg\Box_\neg\}}$$

On morphisms:

$$X$$
 $\mathbb{V}(X)$
 \uparrow_{R}
 $\mathbb{V}^{\mathbb{R}}(R)$
 $\mathbb{V}(Y)$
 $\mathbb{V}(Y)$
 $\mathbb{E}(B) = \operatorname{Free}_{BA}(\{\Box_{b}, \diamondsuit_{b} \mid b \in B\})/\sim$
 \uparrow_{S}
 $\uparrow_{K}^{S}(S)$?

 \downarrow_{A}
 $\mathbb{K}(A) = \operatorname{Free}_{BA}(\{\Box_{a}, \diamondsuit_{a} \mid a \in A\})/\sim$

We shall describe when an element α of $\mathbb{K}(A)$ is $\mathbb{K}^{\mathsf{S}}(S)$ -related with an element β of $\mathbb{K}(B)$.

Proposition

Given a Boolean algebra A. Every $\gamma \in \mathbb{K}(A)$ is (effectively) equal to

▶ (DNF) a finite join of elements of the form

$$\Diamond_{a_1} \wedge \cdots \wedge \Diamond_{a_n} \wedge \Box_b$$

with each $a_i \leq b$;

► (CNF) a finite meet of elements of the form

$$\Diamond_c \vee \Box_{d_1} \vee \cdots \vee \Box_{d_m}$$

with each $c \leq d_j$.

$$\begin{array}{ccc}
A & & \mathbb{K}(A) \\
\int S & & \int \mathbb{K}^{S}(S)? \\
B & & \mathbb{K}(B)
\end{array}$$

Enough to describe when

$$(\diamondsuit_{a_1} \wedge \cdots \wedge \diamondsuit_{a_n} \wedge \square_b) \mathbb{K}^{\mathsf{S}}(S) (\diamondsuit_c \vee \square_{d_1} \vee \cdots \vee \square_{d_m})$$

with $a_i \leq b$ and $c \leq d_i$.

(With $a_i \leq b$ and $c \leq d_i$:)

$$(\diamondsuit_{a_1} \wedge \dots \wedge \diamondsuit_{a_n} \wedge \square_b) \le (\diamondsuit_c \vee \square_{d_1} \vee \dots \vee \square_{d_m})$$

$$\updownarrow$$

$$(\exists i : a_i \le c) \text{ or } (\exists j : b \le d_i).$$

Key idea: \diamondsuit -with- \diamondsuit or \Box -with- \Box .

E.g.: if A, B, C, D are clopens of a Stone space X with $A \subseteq C$ and $B \subseteq D$, then

$$\Diamond A \cap \Box B \subset \Diamond C \cup \Box D \iff A \subseteq C \text{ or } B \subseteq D.$$

$$\begin{array}{ccc}
A & \mathbb{K}(A) \\
\downarrow^S & & \downarrow^{\mathbb{K}^S(S)} \\
B & \mathbb{K}(B)
\end{array}$$

(With
$$a_i \leq b$$
 and $c \leq d_i$:)

$$(\diamondsuit_{a_1} \wedge \cdots \wedge \diamondsuit_{a_n} \wedge \square_b) \mathbb{K}^{\mathsf{S}}(S) (\diamondsuit_c \vee \square_{d_1} \vee \cdots \vee \square_{d_m})$$

$$\updownarrow$$

$$(\exists i: a_i \ S \ c) \text{ or } (\exists j: b \ S \ d_j).$$

Key idea: \diamondsuit -with- \diamondsuit or \Box -with- \Box .

Theorem (A., Bezhanishvili, Carai, 2024)

The dual of the Vietoris endofunctor \mathbb{V}^R : Stone^R \to Stone^R is the following endofunctor \mathbb{K}^S : BA^S \to BA^S:

On objects: it maps A to

$$\mathbb{K}(A) \coloneqq \frac{\operatorname{Free}_{\mathsf{BA}}(\{\Box_a, \diamondsuit_a \mid a \in A\})}{\{\Box \text{ preserves finite meets, } \diamondsuit = \neg \Box_\neg\}}$$

▶ On morphisms: it maps a subordination $S: A \hookrightarrow B$ to the unique subordination $\mathbb{K}^{S}(S): \mathbb{K}(A) \hookrightarrow \mathbb{K}(B)$ satisfying " \diamond -with- \diamond or \Box -with- \Box ".

"
$$\diamond$$
-with- \diamond or \square -with- \square ": (With $a_i \leq b$ and $c \leq d_j$:)
$$(\diamond_{a_1} \wedge \dots \wedge \diamond_{a_n} \wedge \square_b) \ \mathbb{K}^{\mathsf{S}}(S) \ (\diamond_c \vee \square_{d_1} \vee \dots \vee \square_{d_m})$$

$$\updownarrow$$

$$(\exists i: a_i \ S \ c) \ \text{or} \ (\exists j: b \ S \ d_j).$$

An application

De Vries duality is a duality for compact Hausdorff spaces, which associates to a compact Hausdorff space X the Boolean algebra of regular opens, together with the binary relation \prec of well-insideness: $U \prec V \iff \operatorname{cl}(U) \subseteq V$.

Question (Bezhanishvili, Bezhanishvili, Harding, 2015)

What is the De Vries dual of the Vietoris endofunctor on compact Hausdorff spaces?

We piggyback on the duality between $\mathbb{V}^R\colon Stone^R\to Stone^R$ and $\mathbb{K}^S\colon BA^S\to BA^S.$

Theorem (A., Bezhanishvili, Carai, 2024)

The de Vries dual of the Vietoris endofunctor on KHaus is obtained by applying \mathbb{K}^S (= the dual of \mathbb{V}^R : Stone^R \rightarrow Stone^R), followed by a(n appropriate) MacNeille completion.

$$X \hookrightarrow \stackrel{R}{\longrightarrow} Y \qquad (B, \prec_B) \longleftarrow \stackrel{S}{\longleftarrow} (A, \prec_A)$$

$$(\mathbb{K}(B), \mathbb{K}^{\mathsf{S}}(\prec_{B})) \xleftarrow{\mathbb{K}^{\mathsf{S}}(S)} (\mathbb{K}(A), \mathbb{K}^{\mathsf{S}}(\prec_{A}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{V}(X) \overset{\mathbb{V}^{\mathsf{R}}(R)}{\longleftrightarrow} \mathbb{V}(Y) \qquad \qquad \mathbf{M}(\mathbb{K}(B), \mathbb{K}^{\mathsf{S}}(\prec_{B})) \overset{\mathbf{M}(\mathbb{K}^{\mathsf{S}}(S))}{\longleftrightarrow} \mathbf{M}(\mathbb{K}(A), \mathbb{K}^{\mathsf{S}}(\prec_{A}))$$

where \mathbf{M} is an appropriate MacNeille completion functor.

Conclusions

Key ideas

 Beyond functions; closed relations between Stone spaces (↔ subordinations between Boolean algebras).
 Especially: in dualities between "KHaus"-like and "lattice+proximity"-like structures.

2. "♦-with-♦ or □-with-□":

$$\left(\bigwedge_{i}\diamondsuit_{a_{i}}\right)\wedge\Box_{b}\leq\diamondsuit_{c}\vee\left(\bigvee_{j}\Box_{d_{j}}\right)\Leftrightarrow\left(\exists i:a_{i}\leq c\right)\text{ or }(\exists j:b\leq d_{j}).$$

- 3. Our packaging of these ideas:
 - ▶ Stone dual description of \mathbb{V}^R : Stone R → Stone R ;
 - **b** de Vries dual description of $V: KHaus \rightarrow KHaus$ and for relations.

M. Abbadini, G. Bezhanishvili, L. Carai.

Vietoris endofunctor for closed relations and its de Vries dual. Topology Proceedings, to appear. Available on arxiv:2308.16823.