

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2012

MEMORANDUM

MARKS: 150

This memorandum consists of 29 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in **ALL** aspects of the marking memorandum unless indicated otherwise

QUESTION 1

1.1	Approximately 121cm (Accept 120 – 122)	✓answer
		(1)
1.2	As the age increases, the height increases	✓ description
		(1)
	OR	
	Every year the height increases by approximately 6,2 cm	
	OR	
	Straight line (linear) with a positive gradient	
	OR	
	Strong positive correlation	
	OR	
	Increase in height: increase in age is a constant	
1.3	Approximate increase in everyone height 169 – 88	✓ reading off
	Approximate increase in average height = $\frac{169 - 88}{15 - 2}$	from graph
	= 6.23	✓ numerator
	Range for numerator $(87 - 89; 167 - 170)$	✓answer
	(Accept any answer between 6 and 6,4 cm)	(3)
1.4	Children stop growing when they reach adulthood.	✓ comment
	OR	(1)
	If the trend continues the boys would reach impossible heights	
	OR The trend will start approaching a constant value	
	The trend will start approaching a constant value. OR	
	People cannot grow indefinitely	
	1 copic cumot grow indefinitely	[6]
		[~]

2.1	Average number of runs		✓ 128	
	$\bar{x} = \frac{\sum x}{n} = \frac{128}{8} = 16$		√ 16	
	n o			(2)
2.2	Standard deviation = 7,55		√ √ 7,55	
		NOTE : Penalty of 1 mark for incorrect		(2)
		rounding off		
2.2	0. 1.11		(0.71	
2.3	Standard deviation = 9,71	2	✓ 9,71 ✓ increases	
	Standard deviation increases	S.	• increases	(2)
	OR			(2)
	2 and 35 are far from the me	ean, namely 16. Since the standard	✓2 and 35 fa	ır
		ar data points are from the mean, the	from mean	
	standard deviation would be	e expected to increase.	✓increase	(2)
2.4	T-4-11	-1:-20 16 220	(220	(2)
2.4	Total number of runs require Total number of runs to be s		✓ 320	
	= 320 - 59 - 128 = 133	scored in last rive games	✓ 133	
	Average number of runs for	last five games is	✓ 26,6	
		č		(3)
	$\frac{133}{5} = 26,6$			
	OR			
	$\frac{128 + 59 + x}{16} = 20$			
	187 + x = 320		✓ 320	
	$\therefore x = 133$		✓ 133	
	133			
	$\therefore \frac{133}{5} = 26,6$		✓ 26,6	(2)
				(3)
	OR			
	$\frac{128 + 59 + 5x}{15} = 20$		✓ 320	
	16			
	5x = 133		✓ 133	
	$\therefore x = 26,6$		✓ 26,6	(2)
				(3) [0]
				[9]

Mathematics/P2 4 DBE/November 2012

QUESTION 3

3.1	Range = $85 - 30 = 55$	√ 55 (1)
3.2	Phy Sc •	(1)
	Maths •	✓ max 85 ✓ $Q_3 = 70$ ✓ $Q_1 = 40$
	25 30 35 40 45 50 55 60 65 70 75 80 85	✓ Median = 55 (4)
3.3	From the information given for Mathematics, the value of the third quartile is 70%. Therefore 75% of learners got below 70%. Number of learners below 70% is expected to $be \frac{75}{100} \times 60 = \frac{3}{4} \times 60 = 45 \text{ learners}$	✓ 75% of learners ✓ 45 learners (2)
3.4	No, Joe's claim is invalid. 50% of the learners scored between 30% and 45% in Physical Sciences. 50% of the learners scored between 30% and 55% in Mathematics. Therefore the numbers will be equal. OR No, Joe's claim is invalid. Same number of learners (between min and	✓ invalid/no ✓ median represents 50% of learners (2)
	median)	[9]

OUESTION 4

QUL	3110114	
4.1	Modal class is $50 \le x < 60$	✓ Correct class
		(1)
	OR	
	$50 < x \le 60$	
	OR	
	50 to 60	
4.2	Median position is 15 learners (grouped data).	✓ 53 kg
	Approximate weight is about 53 kg.	(1)
	(Accept from 52 kg to 54 kg)	
4.3	30 - 23 = 7 learners collected more than 60 kg.	
		✓ ✓ 7 learners
		(2)
		[4]

5.1	Diagonals bisect each other at M:	$\checkmark x_M = 1$
	$x_M = \frac{-3+5}{2} = 1$; $y_M = \frac{8+(-4)}{2} = 2$	$\checkmark y_M = 2$
	M(1; 2)	(2)
5.2	$m_{BC} = \frac{1+4}{6-5}$	✓ substitution into gradient formula
	$m_{BC} = 5$	√ 5
	OR	(2)
	$m_{BC} = \frac{-4 - 1}{5 - 6}$	$\checkmark m_{BC} = \frac{-4 - 1}{5 - 6}$ $\checkmark 5$
	$m_{BC} = 5$	✓ 5 (2)
5.3	$y - y_1 = m(x - x_1)$ $y - 8 = m(x + 3)$ $m_{AD} = m_{BC} = 5$ Lines parallel	✓ substitute (-3; 8) ✓ gradients equal
	y-8 = 5(x+3) y = 5x + 23	✓ equation (3)
	OR	

Copyright reserved

	$m_{AD} = m_{BC}$ $m_{AD} = 5$ Lines parallel	✓ gradients equal
	y = 5x + c	
	8 = 5(-3) + c	✓ substitute (–3; 8)
	c = 23	
	y = 5x + 23	✓ equation (3)
5.4	ABCD is a rhombus, therefore	(3)
	AB = BC	
	$\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$	$\checkmark \theta = B\hat{C}A$
	$= A\hat{R}S - B\hat{S}T$	
	$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$	
		$\checkmark \tan A\hat{R}S = -\frac{3}{2}$
	$\tan A\hat{R}S = -\frac{3}{2}$	$\frac{1}{2}$
	$A\hat{R}S = 180^{\circ} - 56{,}3099$	✓ 123,69°
	$A\hat{R}S = 123,69^{\circ}$	$\checkmark \tan B \hat{S} T = m_{BC} = 5$
	$\tan B\hat{S}T = m_{BC} = 5$	✓ 78,69°
	$B\hat{S}T = 78,69^{\circ}$	
	$\theta = B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$	✓ θ= 45°
	$\theta = 45^{\circ}$	(6)
	OR	
		$\checkmark \tan A \hat{R} S = 3$
	$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$	$\checkmark \tan A\hat{R}S = -\frac{3}{2}$
		✓ 123,69°
	$A\hat{R}S = 123,69^{\circ}$	$\checkmark \tan A\hat{P}R = m_{AD} = 5$
	$\tan A\hat{P}R = m_{AD} = 5$	✓ tall AFK = m _{AD} = 3 ✓ 78,69°
	$A\hat{P}R = 78,69^{\circ}$	
	$P\hat{A}R = A\hat{R}S - A\hat{P}R$ Exterior angle of a	triangle $ \checkmark P \hat{A} R = 45^{\circ} $ $ \checkmark \theta = 45^{\circ} $
	=123,69° - 78,69°	√ Q = 45°
	= 45°	(6)
	$\theta = P\hat{A}R$ Diagonals of the rh	
	$=45^{\circ}$ opposite angles	

Mathematics/P2 DBE/November 2012

$$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

$$A\hat{R}S = 123,69^{\circ}$$

$$\tan A\hat{P}R = 5$$

$$A\hat{P}R = 78,69^{\circ}$$

$$\theta = P\hat{A}R$$

Diagonals of the rhombus bisect opposite angles

$$\theta = A\hat{R}S - A\hat{P}R$$

$$\theta = 123,69^{\circ} - 78,69^{\circ}$$

Exterior angle of a triangle

$$\theta = 45^{\circ}$$

 $\checkmark \theta = 45^{\circ}$

$$\theta = 45^{\circ}$$

✓ 78,69°

 $\checkmark \theta = P\hat{A}R$

 $\checkmark \tan A\hat{R}S = -\frac{3}{2}$

✓ 123.69[®]

✓ 78.69°

 $\checkmark \theta = R\hat{C}S$

 $\checkmark \tan B\hat{S}T = 5$

 $\checkmark \tan A\hat{R}S = -\frac{3}{2}$

 $\checkmark \tan A\hat{P}R = m_{AD} = 5$

(6)

(6)

OR

$$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

$$A\hat{R}S = 123,69^{\circ}$$

$$\tan B\hat{S}T = 5$$

$$B\hat{S}T = 78,69^{\circ}$$

$$\theta = R\hat{C}S$$

BA=BC

$$R\hat{C}S + B\hat{S}T = R\hat{C}S + R\hat{S}C$$
$$= A\hat{R}S$$

$$= AR$$

$$\theta = A\hat{R}S - B\hat{S}T$$

$$= 123,69^{\circ} - 78,69^{\circ}$$

 $\checkmark \theta = 45^{\circ}$

ABCD is a rhombus, therefore

$$AB = BC$$

$$\therefore A\hat{C}B = B\hat{A}C$$

$$\tan \theta = \tan A\hat{C}B$$

$$= \tan(A\hat{R}S - B\hat{S}T)$$

$$= \frac{\tan A\hat{R}S - \tan B\hat{S}T}{1 + \tan A\hat{R}S \cdot \tan B\hat{S}T}$$

$$=\frac{\left(\frac{12}{-8}\right) - \left(\frac{-5}{-1}\right)}{1 + \left(\frac{12}{8}\right)\left(\frac{5}{1}\right)}$$

$$\theta = 45^{\circ}$$

 $\checkmark A\hat{C}B = B\hat{A}C$

 $\checkmark \tan \theta = \tan A\hat{C}B$

✓ formula

✓ substitution

 $\checkmark \tan \theta = 1$ $\checkmark \theta = 45^{\circ}$

(6)

_		_
•	•	1
		к
•		т.

From 5.1, M has coordinates (1; 2)

Join MF

$$m_{ME} = \frac{2-1}{1-6} = -\frac{1}{5}$$

From 5.2,

$$m_{BC} = 5$$

$$\therefore m_{ME} \times .m_{BC} = -1$$

$$\therefore M\hat{E}C = 90^{\circ}$$

$$ME = \sqrt{(1-6)^2 + (2-1)^2} = \sqrt{26}$$

$$EC = \sqrt{(5-6)^2 + (-4-1)^2} = \sqrt{26}$$

∴MEC is a right-angled triangle.

$$E\hat{C}M = 45^{\circ}$$

ABCD is a rhombus, therefore

$$AB = BC$$

$$\therefore \theta = B\hat{C}M = 45^{\circ}$$

OR

$$AM = \sqrt{(-3-1)^2 + (8-2)^2} = 2\sqrt{13}$$

Now to calculate the coordinates of B:

$$m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

$$m_{BD} \times m_{AC} = -1$$

diagonals bisect at right angles

$$m_{BD}=\frac{2}{3}$$

Equation of BD is $y = \frac{2}{3}x + \frac{4}{3}$

Equation of BC is y = 5x - 29

BD and BC intersect at B.

Solve equations simultaneously to get B(7; 6).

$$BM = \sqrt{(7-1)^2 + (6-2)^2} = \sqrt{52} = 2\sqrt{13}$$

 $\therefore BM = AM$

Since $\hat{AMB} = 90^{\circ}$

$$\tan \theta = \frac{BM}{AM}$$

$$\therefore \tan \theta = 1$$

 $\theta = 45^{\circ}$

✓ gradient of ME

✓ gradient of BC

$$\checkmark M\hat{E}C = 90^{\circ}$$

$$\checkmark ME = \sqrt{26}$$

$$\checkmark EC = \sqrt{26}$$

$$\checkmark \hat{ECM} = 45^{\circ}$$

(6)

 $\checkmark AM = 2\sqrt{13}$

 $\checkmark y = \frac{2}{3}x + \frac{4}{3}$ $\checkmark y = 5x - 29$

✓ B(7; 6)

 $\checkmark BM = 2\sqrt{13}$

√ 45°

(6)

[13]

6.1	The radius (NL) of a circle is perpendicular to the tangent (OL)	✓ radius ⊥ tangent
	at the point of contact.	
		(1)
6.2	L(3;0)	✓ (3;0)
		(1)
6.3	Centre N (3; 2) and $r = NL = 2$	$\checkmark r = 2$
	Equation of the circle N:	
	$(x-a)^2 + (y-b)^2 = r^2$	$\checkmark (x-3)^2 + (y-2)^2$
	$(x-3)^2 + (y-2)^2 = 4$	✓ 4
		(3)
6.4	Coordinates of K.	
	K is the <i>x</i> -intercept of the tangent.	
	$y = \frac{4}{3}x + \frac{4}{3}$	
	$0 = \frac{4}{3}x + \frac{4}{3}$	✓ substitute $y = 0$ into equation of tangent
	0 = 4x + 4	equation of tangent
	4x = -4	$\checkmark x = -1$
	x = -1	
	K(-1;0)	$\checkmark KL = 4$
	KL = 3 - (-1) OR $KL = 3 + 1$	(3)
	KL = 4	

$$y = \frac{4}{3}x + \frac{4}{3}$$

$$0 = \frac{4}{3}x + \frac{4}{3}$$

$$0 = 4x + 4$$

$$4x = -4$$

$$x = -1$$

$$K(-1;0)$$

 $KL = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

$$KL = \sqrt{(3+1)^2 + (0-0)^2}$$

$$KL = \sqrt{16}$$

$$KL = 4$$

OR

For AK, $m = \frac{4}{3}$, $c = \frac{4}{3}$

 $\frac{\dot{3}}{OK} = \tan A\hat{K}O = \frac{4}{3}$

$$OK = 1$$

$$\therefore KL = 4$$

OR

$$y = \frac{4}{3}x + \frac{4}{3}$$

$$0 = \frac{4}{3}x + \frac{4}{3}$$

$$0 = 4x + 4$$

$$4x = -4$$

$$x = -1$$

$$K(-1;0)$$

 $KN^2 = NL^2 + KL^2$ $(-1-3)^2 + (0-2)^2 = 4 + KL^2$ $20 = 4 + KL^2$

Theorem of Pythagoras

$$16 = KL^2$$

$$KL = 4$$

✓ substitute y = 0 into equation of tangent

✓
$$x = -1$$

 $\checkmark KL = 4$

(3)

 $\checkmark KL = 4$

 $\checkmark x = -1$

 $\checkmark KN^2 = NL^2 + KL^2$

 $\checkmark KL = 4$

(3)

(3)

6.5

$$m_{AB} \times m_{AK} = -1$$

tangent ⊥ radius

$$m_{AK} = \frac{4}{3}$$

$$\therefore m_{AB} = -\frac{3}{4}$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = -\frac{3}{4}(x - 3)$$

$$y = -\frac{3}{4}x + \frac{9}{4} + \frac{8}{4}$$

$$y = -\frac{3}{4}x + \frac{17}{4}$$

$$\checkmark m_{AK} = \frac{4}{3}$$

$$\checkmark m_{AB} = -\frac{3}{4}$$

✓ substitution of point (3;2) into equation

✓ equation

(4)

OR

$$m_{AB} \times m_{AK} = -1$$

tangent ⊥ radius

$$m_{AK} = \frac{4}{3}$$

$$\therefore m_{AB} = -\frac{3}{4}$$

$$y = -\frac{3}{4}x + c$$

$$2 = \left(-\frac{3}{4}\right)(3) + c$$

$$c = \frac{8}{4} + \frac{9}{4}$$

$$c = \frac{17}{4}$$

$$y = -\frac{3}{4}x + \frac{17}{4}$$

 $\checkmark m_{AK} = \frac{4}{3}$

$$\checkmark m_{AB} = -\frac{3}{4}$$

✓ substitution of point (3;2) into equation

✓ equation

(4)

6.6 Point A lies on PQ and AB. Therefore

$$\frac{4}{3}x + \frac{4}{3} = -\frac{3}{4}x + \frac{17}{4}$$

$$16x+16=-9x+51$$

$$25x = 35$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

$$A\left(\frac{7}{5}\,;\frac{16}{5}\right)$$

✓ equation

$$\checkmark 25x = 35$$

✓ substitution of x

OR

Point A lies on PQ and the circle. Therefore

$$(x-3)^2 + (\frac{4}{3}x + \frac{4}{3} - 2)^2 = 4$$

$$(x-3)^2 + (\frac{4}{3}x - \frac{2}{3})^2 = 4$$

$$25x^2 - 70x + 49 = 0$$

$$(5x-7)^2=0$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

✓ equation

$$\checkmark (5x-7)^2 = 0$$

✓ substitution of x

OR

Point A lies on the circle and line AB

$$(x-3)^2 + (y-2)^2 = 4$$
 ----(1)

$$y = -\frac{3}{4}x + \frac{17}{4}$$
 ----(2)

Subs (2) in (1):
$$x^2 - 6x + 9 + (-\frac{3}{4}x + \frac{17}{4} - 2)^2 = 4$$

$$x^{2} - 6x + 9 + \left(-\frac{3}{4}x + \frac{9}{4}\right)^{2} = 4$$

$$25x^2 - 150x + 161 = 0$$
$$(5x - 23)(5x - 7) = 0$$

$$(5x-23)(5x-7)=0$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

✓ equation

$$\checkmark (5x-23)(5x-7)=0$$

✓ substitution of x

OR

Using rotation:

Let
$$\theta = A\hat{K}N = L\hat{K}N$$

Move diagram 1 unit to the right. Then A' is L' rotated through 2θ .

$$\tan \theta = \frac{AN}{KA} = \frac{2}{4} = \frac{1}{2}$$

$$\therefore \sin 2\theta = 2\sin \theta \cos \theta = 2(\frac{1}{\sqrt{5}})(\frac{2}{\sqrt{5}}) = \frac{4}{5}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = (\frac{2}{\sqrt{5}})^2 - (\frac{1}{\sqrt{5}})^2 = \frac{3}{5}$$

$$\therefore x_{A''} = x_{L'} \cos 2\theta - y_{L'} \sin 2\theta = 4(\frac{3}{5}) - (0)(\frac{4}{5}) = \frac{12}{5}$$

$$y_{A''} = x_{L'} \sin 2\theta + y_{L'} \cos 2\theta = 4(\frac{4}{5}) - (0)(\frac{3}{5}) = \frac{16}{5}$$

$$A'(\frac{12}{5};\frac{16}{5})$$

Now to get back to A, move back 1 unit to the left.

$$\therefore A(\frac{7}{5};\frac{16}{5})$$

✓ values of $\sin 2\theta$ and $\cos 2\theta$

✓ substitution into rotation formulae

$$\checkmark A'(\frac{12}{5}\;;\frac{16}{5})$$

(3)

OR

14 NSC – Memorandum

Let
$$N\hat{K}L = \theta$$
. So, $\tan \theta = \frac{NL}{KN} = \frac{2}{4} = \frac{1}{2}$.

Hence $\sin \theta = \frac{1}{\sqrt{5}}$ and $\cos \theta = \frac{2}{\sqrt{5}}$

Let $AM \perp x$ – axis with M on x - axis

 $\Delta NAK \equiv \Delta NLK$

$$A\hat{K}N = N\hat{K}L = \theta$$

$$\therefore A\hat{K}L = 2\theta$$

 $y_A = AM = AK \sin 2\theta = KL \sin 2\theta = 4 \sin 2\theta$

 $\sin 2\theta = 2\sin \theta \cos \theta = 2\left(\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{5}}\right) = \frac{4}{5}$

$$y_A = 4\left(\frac{4}{5}\right) = \frac{16}{5}$$

$$x_A = OL - NA \sin M\hat{A}N$$

$$= 3 - 2\sin(90^\circ - M\hat{A}K)$$

$$= 3 - 2\sin 2\theta$$

$$= 3 - \frac{8}{5}$$

$$= \frac{7}{5}$$

✓
$$\tan \theta = \frac{1}{2}$$

$$\checkmark \sin 2\theta = \frac{4}{5}$$

 \checkmark solve for x and y

(3)

6.7	$KA = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ distance formula
	$= \sqrt{\left(\frac{7}{5} + 1\right)^2 + \left(\frac{16}{5} - 0\right)^2}$	✓ substitution
		✓ 4
	OR	
	$KN = \sqrt{4^2 + 2^2} = \sqrt{20}$	$\checkmark KN = \sqrt{20}$
	$KA^2 = KN^2 - AN^2$	$\checkmark KA^2 = KN^2 - AN^2$
	= 20 - 4 = 16	✓ 4
	KA = 4	(3)
	OR	✓ KA=KL ✓ reason
	KA = KL Tangents from a common point are equal $KA = 4$	√ 4
6.8	AN = NL Radii are equal KA = KL	$ \begin{array}{c} (3) \\ \checkmark \text{ AN = NL} \\ \checkmark \text{ KA = KL} \end{array} $
	:. KLNA is a kite two pairs of adjacent sides are equal.	(2)
6.9	AB = AN + NB = 2 + 2 = 4 AK = 4 = AB	✓ AB = 4 ✓ AK = AB
	$\hat{KAB} = 90^{\circ}$ tangent \perp radius	$\checkmark K\hat{A}B = 90^{\circ}$
	∴ ∆AKB is a right – angled isosceles triangle	
	$A\hat{K}B + A\hat{B}K = 90^{\circ}$	(3)
	$2A\hat{B}K = 90^{\circ}$ $\therefore A\hat{B}K = 45^{\circ}$	
	OR	

Copyright reserved

16 NSC - Memorandum

N is midpoint of AB

Let B be $(x_B; y_B)$

$$\frac{x_B + \frac{7}{5}}{2} = 3$$

$$\frac{x_B + \frac{7}{5}}{2} = 3 \qquad \frac{y_B + \frac{16}{5}}{2} = 2$$

$$\therefore x_B = \frac{23}{5} \qquad \qquad \therefore y_B = \frac{4}{5}$$

$$\therefore y_B = \frac{4}{5}$$

$$\therefore B\left(\frac{23}{5}; \frac{4}{5}\right)$$

$$\tan \beta = m_{AB} = -\frac{3}{4}$$

$$\beta = 180^{\circ} - 36,87^{\circ}$$

$$\beta = 143,13^{\circ}$$

✓ 143,13°

$$\tan \alpha = m_{KB} = \frac{\frac{4}{5} - 0}{\frac{23}{5} + 1} = \frac{1}{7}$$

$$\alpha = 8.13^{\circ}$$

$$A\hat{B}K = \alpha + (180^{\circ} - \beta)$$

= 8,13° + 36,87°
= 45°

$$\checkmark 8,13^{\circ}$$

$$\checkmark A\hat{B}K = \alpha + (180^{\circ} - \beta)$$

OR

N is midpoint of AB

Let B be $(x_B; y_B)$

$$\frac{x_B + \frac{7}{5}}{2} = 3 \qquad \frac{y_B + \frac{16}{5}}{2} = 2$$

$$\frac{y_B + \frac{16}{5}}{2} = 2$$

$$\therefore x_B = \frac{23}{5} \qquad \qquad \therefore y_B = \frac{4}{5}$$

$$\therefore y_B = \frac{4}{5}$$

$$=\frac{7}{5}$$

$$K \frac{4}{\sqrt{2}}$$

$$\checkmark 4\sqrt{2}$$

 $KB = \sqrt{\left(\frac{23}{5} + 1\right)^2 + \left(\frac{4}{5}\right)^2} = 4\sqrt{2}$

$$4^2 = 4^2 + (\sqrt{32})^2 - 2(4)(\sqrt{32})\cos\theta$$

$$\cos\theta = \frac{\sqrt{2}}{2}$$

$$\therefore \theta = 45^{\circ}$$

✓ substitution into cosine formula

$$\checkmark \cos \theta = \frac{\sqrt{2}}{2}$$

(3)

6.10

N'(3;-2)

 $\checkmark N'(3;-2)$

(1) [24]

Copyright reserved

Please turn over

DBE/November 2012

QUESTION 7

NOTE: CA not applicable in this question

7.1	Rotation about the origin through 90° in a clockwise direction. OR	✓ rotation of 90° ✓ clockwise direction (2) ✓ rotation of 270°
	Rotation about the origin through 270° in an anti-clockwise direction.	✓ anti-clockwise direction (2)
	OR Rotation about the origin through -90°.	(2)
7.2	$(x;y) \rightarrow (y;-x)$	$ \begin{array}{c} \checkmark \\ \text{(both)} \\ (x;y) \to (y;-x) \end{array} $ (2)
7.3	A C 3 B C C 4 B C C 4 B C C 4 B C C 4 B C C 4 C C 4 C C 4 C C C 4 C C C C	✓ one point correct ✓ all points correct and triangle drawn (2)
7.4	$(x;y) \rightarrow (2x;2y)$	\checkmark $(2x;2y)$ (1)
7.5.1	$A(-5;2) \to (-5;-2) \to D(5;-2)$	✓ 5 ✓-2 (2)
7.5.2	$(x;y) \rightarrow (x;-y) \rightarrow (-x;-y)$	$\checkmark (x; -y)$ $\checkmark (-x; -y)$ (2)
7.5.3	Rotation of 180° through the origin in either direction.	✓ rotation ✓ 180° (2)
	OR Reflection about the origin.	✓ reflection ✓ origin (2) [13]

18 NSC – Memorandum

QUESTION 8No calculator allowed in this question

8.1.1	OT = k, $PT = 8$ and $OP = 17$	✓ substitution into
0.1.1	$k^2 + 8^2 = 17^2$	Pythagoras
	$k^2 = 289 - 64$	- 5 6
	$k^2 = 225$	✓ <i>k</i> = 15
	$k = \pm 15$	(2)
	k > 0	
	k = 15	
	OR $k^2 = 17^2 - 8^2$	✓ substitution into
		Pythagoras
	$k^2 = (17 - 8)(17 + 8)$	
	$=25\times9$	
	=225	$\checkmark k = 15$
	$k = \pm 15$	(2)
	k > 0	
8.1.2	k = 15 15	15
0.1.2	$\cos \alpha = \frac{13}{17}$	$\checkmark \frac{15}{17}$
	17	(1)
8.1.3	$\alpha + \beta = 180^{\circ}$	` ,
	$\beta = 180^{\circ} - \alpha$	(a a a (1909 a)
	$\therefore \cos \beta = \cos(180^\circ - \alpha)$	$\sqrt{\cos(180^\circ - \alpha)}$ or $-\cos \alpha$
	$=-\cos\alpha$	or – cos a
	$=-\frac{15}{12}$	₂ 15
	17	$\checkmark -\frac{15}{17}$
	OR	(2)
	8 α β	
	$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$	$\checkmark \cos(180^{\circ} - \alpha)$
	$=-\cos\alpha$	or $-\cos \alpha$
	$=-\frac{15}{17}$	$\checkmark -\frac{15}{17}$
	1 /	(2)
L		(-/

Copyright reserved

Mathematics/P2 19 DBE/November 2012

8.1.4	$\sin(\beta - \alpha)$	
	$= \sin \beta \cos \alpha - \cos \beta \sin \alpha$	✓ expansion
	$=\left(\frac{8}{17}\right)\left(\frac{15}{17}\right) - \left(-\frac{15}{17}\right)\left(\frac{8}{17}\right)$	$\checkmark \sin \beta = \frac{8}{17}$
	$\left(-\left(\frac{17}{17} \right) \left(-\frac{17}{17} \right) \left(\frac{17}{17} \right) \right)$	8
	$=\frac{120}{289} + \frac{120}{289}$	$\checkmark \sin \alpha = \frac{8}{17}$
	$-{289}+{289}$	
	$=\frac{240}{}$	$\checkmark \frac{240}{289}$
	289	
		(4)
	OR	
	$\beta - \alpha = (180^{\circ} - \alpha) - \alpha$	✓ substitute β
	$=180^{\circ}-2\alpha$	
	$\sin(\beta - \alpha) = \sin(180^\circ - 2\alpha)$	
	$=\sin 2\alpha$	✓ 2sinacosa
	$=2\sin\alpha.\cos\alpha$	
	$=2\left(\frac{8}{17}\right)\left(\frac{15}{17}\right)$	8
	$-2\left(\overline{17}\right)\left(\overline{17}\right)$	$\checkmark \sin \alpha = \frac{8}{17}$
	$=\frac{240}{289}$	$\checkmark \frac{240}{289}$
	289	289
9.2.1	1 2 :	(4)
8.2.1	$LHS = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$	
	$\sin 2x - \cos x$	$\checkmark 1 - 2\sin^2 x$
	$= \frac{1 - (1 - 2\sin^2 x) - \sin x}{2\sin x \cos x - \cos x}$	$\checkmark 2\sin x\cos x$
	$2\sin x \cos x - \cos x$ $2\sin^2 x - \sin x$	√
	$= \frac{2\sin x - \sin x}{2\sin x \cos x - \cos x}$	either $\sin x(2\sin x - 1)$
	$\sin x \cos x = \cos x$ $\sin x (2\sin x - 1)$	or
	$=\frac{1}{\cos x(2\sin x-1)}$	$\cos x(2\sin x - 1)$
	$\sin x$	$\checkmark \frac{\sin x}{}$
1	=	, , , , , , , , , , , , , , , , , , , ,

OR

 $\cos x$

 $= \tan x$ = RHS

Copyright reserved Please turn over

 $\cos x$

(4)

$$LHS = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$$

$$= \frac{1 - (2\cos^2 x - 1) - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2 - \cos^2 x - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2(1 - \cos^2 x) - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2\sin^2 x - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{\sin x(2\sin x - 1)}{\cos x(2\sin x - 1)}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x$$

$$= RHS$$

$$(4)$$

OR

$$LHS = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$$

$$= \frac{1 - (\cos^2 x - \sin^2 x) - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{1 - \cos^2 x + \sin^2 x - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{\sin^2 x + \sin^2 x - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{2 \sin^2 x - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{\sin (2 \sin x - 1)}{\cos x (2 \sin x - 1)}$$
or
$$\cos x (2 \sin x - 1)$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x$$

$$= RHS$$

$$(4)$$

 $\checkmark 2\sin x \cos x$ $\cos x = 0$ and $\sin x = \frac{1}{2}$

8.2.2 $\sin 2x - \cos x = 0$ $2\sin x\cos x - \cos x = 0$ $\cos x(2\sin x - 1) = 0$

> $\cos x = 0$ $x = 90^{\circ} + 360^{\circ}k$ or $x = 270^{\circ} + 360^{\circ}k$ $k \in \mathbb{Z}$ or

21

 $\sin x = \frac{1}{2}$ $x = 30^{\circ} + 360^{\circ}k$ or $x = 150^{\circ} + 360^{\circ}k$

 $x = 90^{\circ} \text{ or } x = 270^{\circ} \text{ or } x = 30^{\circ} \text{ or } x = 150^{\circ}$

OR

 $\sin 2x = \cos x$

 $\sin 2x = \sin(90^{\circ} - x)$

 $2x = 90^{\circ} - x + 360^{\circ}k$; $k \in \mathbb{Z}$ or $2x = 180^{\circ} - (90^{\circ} - x) + 360^{\circ}k$ $3x = 90^{\circ} + 360^{\circ}k$ $2x = 90^{\circ} + x + 360^{\circ}k$ $x = 30^{\circ} + 120^{\circ}k$ $x = 90^{\circ} + 360^{\circ}k$

 $x = 30^{\circ}$ or $x = 150^{\circ}$ or $x = 270^{\circ}$ or $x = 90^{\circ}$

✓ for two correct answers ✓ for four correct answers

(4)

 $\checkmark \sin(90^{\circ} - x)$

 $\checkmark x = 30^{\circ} + 120^{\circ}.k$ $x = 90^{\circ} + 360^{\circ}.k$

✓ for two correct answers

✓ for four correct answers

> (4) [17]

DBE/November 2012

QUESTION 9

9.1	$\sin^2 \theta$		
	$\frac{\sin^2 \theta}{\sin(180^\circ - \theta).\cos(90^\circ + \theta) + \tan 45^\circ}$		
	$\sin^2 \theta$		$\checkmark \sin\theta$
	$=\frac{1}{(\sin\theta)(-\sin\theta)+1}$		$\checkmark \sin\theta$ $\checkmark -\sin\theta$
	$\sin^2 \theta$		√ 1
	$=\frac{\sin^2\theta}{-\sin^2\theta+1}$		
	$\sin^2 \theta$		$\sqrt{\cos^2\theta}$
	$=\frac{1}{\cos^2\theta}$		V COS ² O
	$= \tan^2 \theta$		$\checkmark \tan^2 \theta$
			(5)
9.2	$\frac{\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)}{\cos 104^{\circ}(2\cos^2 15^{\circ} - 1)}$		
	$\tan 38^{\circ} \sin^2 412^{\circ}$		✓ sin 76°
	$=\frac{\sin 76^{\circ}.\cos 30^{\circ}}{\cos 30^{\circ}}$	NOTE.	√cos30°
	$\tan 38^{\circ}.(\sin 52^{\circ})^2$	NOTE: • If cos 30° is missing: deduct	$\sqrt{\frac{\sin 38^{\circ}}{}}$
	$2\sin 38^{\circ}\cos 38^{\circ}\left(\frac{\sqrt{3}}{2}\right)$	1 mark	cos 38°
	$\left(\frac{2\sin 36\cos 36}{2}\right)$	• Answer only: 0/8	✓ sin52°
	$= \frac{1}{\left(\frac{\sin 38^{\circ}}{\cos 38^{\circ}}\right)\left(\cos 38^{\circ}\right)^{2}}$		✓2sin38°cos38°
	$\left(\frac{\cos 38^{\circ}}{\cos 38^{\circ}}\right)$		
	$\sqrt{3}\sin 38^{\circ}\cos 38^{\circ}$		$\sqrt{\frac{\sqrt{3}}{2}}$
	$= \frac{\sin 38^{\circ} \cos 38^{\circ}}{\sin 38^{\circ} \cos 38^{\circ}}$		✓ : 500
	$=\sqrt{3}$		$\sin 52^{\circ} = \cos 38^{\circ}$
			$\checkmark \sqrt{3}$
	OR		(8)
	$\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)$		
	$\frac{\sin 104 (2003 13^{\circ} 1)}{\tan 38^{\circ} \sin^2 412^{\circ}}$		(: 2(520)
	$\sin 2(52^\circ).(2\cos^2 15^\circ - 1)$		$\sqrt{\sin 38^{\circ}}$
			$\sqrt{\frac{\sin 38}{\cos 38^{\circ}}}$
	$=\frac{\sin 38^{\circ}}{\cos 38^{\circ}}.(\sin 52^{\circ})^2$		✓ sin52°
	$=\frac{2\sin 52^{\circ}\cos 52^{\circ}.\cos 30^{\circ}}{2\cos 52^{\circ}.\cos 30^{\circ}}$		✓2sin52°cos52°
	$-\frac{\cos 52^{\circ}}{(\sin 52^{\circ})^2}$		✓ cos30°
	$\left(\frac{\cos 52^{\circ}}{\sin 52^{\circ}}\right) (\sin 52^{\circ})^2$		cos52°=sin38°
	$=2\cos 30^{\circ}$		and
	$-2\sqrt{3}$		sin52°=cos38°
	$=2.\frac{\sqrt{3}}{2}$ $=\sqrt{3}$		$\checkmark \frac{\sqrt{3}}{2}$ $\checkmark \sqrt{3}$
	$=\sqrt{3}$		2
			(8)

Mathematics/P2 23 DBE/November 2012

OR	
$\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)$	
$\frac{1}{\tan 38^{\circ} \sin^2 412^{\circ}}$	✓cos30°
sin 104°.cos 30°	$\sqrt{\sin 38^{\circ}}$
	cos 38°
$\left(\frac{\sin 38^{\circ}}{\cos 38^{\circ}}\right) (\sin 52^{\circ})^{2}$	✓ sin52°
$= \frac{(\sin 104^\circ)\left(\frac{\sqrt{3}}{2}\right)}{}$	$\checkmark \cos^2 38^\circ$ $\checkmark \frac{\sqrt{3}}{}$
$-\frac{\sin 38^{\circ}}{\cos 38^{\circ}}\cos 38)$	$\sqrt{\frac{\sqrt{3}}{2}}$
$\sqrt{3}\sin 104^{\circ}$	
$=\frac{2\sin 38^{\circ}\cos 38^{\circ}}{2\sin 38^{\circ}\cos 38^{\circ}}$	
$\sqrt{3}\sin 104^{\circ}$	✓✓ sin76°
$=\frac{\sin 76^{\circ}}{\sin 76^{\circ}}$	V SIII/0
$=\frac{\sqrt{3}\sin 76^{\circ}}{1.760}$ or $\frac{\sqrt{3}\cos 14^{\circ}}{1.40}$	$\checkmark \sqrt{3}$
$=\frac{\sin 76^{\circ}}{\sin 76^{\circ}}$ or $\frac{\cos 14^{\circ}}{\cos 14^{\circ}}$	(8)
$=\sqrt{3}$, ,
OR	
2.10.40/2	
$\frac{\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)}{\cos^2 12^{\circ}}$	
$\frac{1040}{\sin^2 412^\circ}$	✓ cos30°
$= \frac{\sin 104^{\circ} \cdot \cos 30^{\circ}}{\sin 38^{\circ} \cdot (\sin 52^{\circ})^{2}}$	$\sqrt{\sin 38^{\circ}}$
$\frac{\sin 38^{\circ}}{\cos 38^{\circ}}.(\sin 52^{\circ})^{2}$	cos38°
COS 38°	✓ sin52°
$\sin 104^{\circ} \cdot \frac{\sqrt{3}}{2}$	$\sqrt{\frac{\sqrt{3}}{2}}$
	2
$= \frac{1}{\left(\frac{\cos 52^{\circ}}{\sin 52^{\circ}}\right)\left(\sin 52^{\circ}\right)^{2}}$	cos52°=sin38°
	and
$\sin 104^{\circ} \cdot \frac{\sqrt{3}}{2}$	sin52°=cos38°
$=\frac{2}{\cos 52^{\circ}(\sin 52^{\circ})}$	$\cos 52^0 \cdot \sin 52^0$
$\sin 104^{\circ} \cdot \frac{\sqrt{3}}{2}$	$\sqrt{\frac{1}{2}}\sin 104^{\circ}$ $\sqrt{\sqrt{3}}$
	$\sqrt{3}$
$-\frac{1}{2}\sin 104^{\circ}$	(8)
$=\sqrt{3}$	
$-\gamma S$	[13]

Mathematics/P2 24 DBE/November 2012

QUESTION 10

	5110N 10	1 (2 7
10.1	f(0) - g(0) = 0.5 - (-2) = 2.5	√ 2,5 (1)
10.2	$\sin(x+30^\circ) = -2\cos x$	✓ equation
	$\sin x \cdot \cos 30^\circ + \cos x \cdot \sin 30^\circ = -2\cos x$	\checkmark expansion of $\sin(x+30^\circ)$
	$\left(\sqrt{3}\right)$. (1)	$\sin(x+30^{\circ})$
	$\left(\frac{\sqrt{3}}{2}\right)\sin x + \left(\frac{1}{2}\right)\cos x = -2\cos x$	✓ substitution of
		special angles
	$\sqrt{3}\sin x + \cos x = -4\cos x$	
	$\sqrt{3}\sin x = -5\cos x$	✓ simplification
	$\tan x = -\frac{5}{\sqrt{3}}$	5
	$\sqrt{3}$	$\checkmark \tan x = -\frac{1}{\sqrt{3}}$
	$x = 109,11^{\circ} + 180^{\circ}k \; ; k \in \mathbb{Z}$	$\checkmark \tan x = -\frac{5}{\sqrt{3}}$ $\checkmark x_P = -70,89^\circ$ $\checkmark x_Q = 109,11^\circ$
	$x_P = -70,89^{\circ} \text{ and } x_Q = 109,11^{\circ}$	$\sqrt{x} = 10911^{\circ}$
		$\begin{array}{c c} x_{\mathcal{Q}} = 105, 11 \\ \end{array} \tag{7}$
	OR	
	$\sin(x+30^\circ) = -2\cos x$	✓ equation
	$\cos(90^\circ - x - 30^\circ) = -2\cos x$	
	$\cos(60^\circ - x) = -2\cos x$./ avmanaion of
	$\cos 60^{\circ} \cos x + \sin 60^{\circ} \sin x = -2\cos x$	✓ expansion of $cos(60^{\circ} - x)$
	$\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = -2\cos x$, ,
		✓ substitution of
	$\cos x + \sqrt{3}\sin x = -4\cos x$	special angles
	$\sqrt{3}\sin x = -5\cos x$	✓ simplification
	5	5
	$\tan x = -\frac{5}{\sqrt{3}}$	$\checkmark \tan x = -\frac{5}{\sqrt{3}}$
	$x = 109,11^{\circ} + 180^{\circ}.k \; ; \; k \in \mathbb{Z}$	·
	$x_P = -70.89^{\circ}$ and $x_O = 109.11^{\circ}$	$\checkmark x_P = -70,89^{\circ}$
		$\checkmark x_0 = 109,11^{\circ}$
		(7)
10.3	$-70,89^{\circ} \le x \le 109,11^{\circ}$	✓ angles
	OR	✓ correct interval
	[-70,89°; 109,11°]	(2)
	OR	
	$x_P \le x \le x_Q$	
10.4	$h(x) = 2\sin(x + 60^{\circ} + 30^{\circ}) = 2\sin(x + 90^{\circ}) = 2\cos x = -g(x)$	✓✓ reflection
	h is the reflection of g about the x -axis.	about the x-axis or
	O.D.	line $y = 0$
	OR	✓✓ reflection (2)
	f is shifted to the left through 60° and then doubled.	about the <i>x</i> -axis or
	\therefore h is the reflection of g about the x-axis.	line $y = 0$ (2)
	0	[12]

Copyright reserved

	TION II		
11.1	Area parallelogram ABCD = $2 \times \text{Area } \Delta \text{ABC}$ = $2\left[\left(\frac{1}{2}\right)(3)(2)\sin\theta\right]$ = $6\sin\theta$		✓✓ 2area △ABC ✓ substitution into area rule (3)
			(6)
	OR $\frac{h}{2} = \sin \theta$ $h = 2 \sin \theta$ $\therefore \text{ Area } ABCD = \text{base} \times$	height = $3h = 3.2 \sin \theta = 6 \sin \theta$	$\frac{h}{2} = \sin \theta$ $4 = 2 \sin \theta$ $4 = b \cdot h$ (3)
	OR		
	Area of parallelogram ABCD = area of \triangle ABC + area of \triangle ADC = $\left(\frac{1}{2}\right)(3)(2)\sin\theta + \left(\frac{1}{2}\right)(3)(2)\sin\theta$ = $6\sin\theta$		✓ sum of areas ✓ ✓ equal sides and equal angles (3)
	OR $Area = \frac{1}{2} (\text{sum of // sides}) \times h$ $= \frac{1}{2} (3+3) \times 2\sin \theta$ $= 6 \sin \theta$		✓ formula ✓ $h = 2 \sin \theta$ ✓ substitution (3)
11.2	Area of parallelogram A	$ABCD = 3\sqrt{3}$	$\checkmark 6\sin\theta = 3\sqrt{3}$
	$6\sin\theta = 3\sqrt{3}$ $\sin\theta = \frac{\sqrt{3}}{2}$ $\theta = 60^{\circ}$	NOTE: Deduct 1 mark if both 60° and 120° are	$\checkmark \sin \theta = \frac{\sqrt{3}}{2}$ $\checkmark 60^{\circ}$
	OP	given as answers	(3)
	OR $6 \sin 60^{\circ} = 3\sqrt{3}$ $\therefore \theta = 60^{\circ}$		$\checkmark 6\sin\theta = 3\sqrt{3}$ $\checkmark 60^{\circ}$ (3)
11.3	Maximum area of paral when $\theta = 90^{\circ}$	lelogram occurs when $\sin \theta = 1$, that is	$\checkmark \sin \theta = 1$ $\checkmark \theta = 90^{\circ}$ (2) [8]

12.1	CB = CD	/ TT
	sin BDC sin CBD	✓ Using the sine rule in triangle CBD
	CB = k	In thangle CDD ✓
	$\sin 2x \sin(90^{\circ} - x)$	CB = k
	$CB = \frac{k \cdot \sin 2x}{}$	$\sin 2x \sin(90^{\circ} - x)$
	$\sin(90^{\circ}-x)$	$\sqrt{-k \cdot \sin 2x}$
	$CB = \frac{k \cdot 2\sin x \cos x}{x}$	$\sin(90^{\circ} - x)$
	$\cos x$	$\checkmark 2\sin x.\cos x$ $\checkmark \cos x$
	$=2k\sin x$	$\sqrt{\cos x}$ (5)
	OR	(- /
		√
	$D\hat{C}B = 180^{\circ} - (90^{\circ} - x + 2x) = 90^{\circ} - x$	$D\hat{C}B = D\hat{B}C = 90^{\circ} - x$
	$\therefore DC = DB = k$	$\checkmark DC = DB = k$
	D	
	$x \times x$	
	k k	
	$\sqrt{90^{\circ}-x}$ $\sqrt{90^{\circ}-x}$	
	B F C	
	Draw DF ⊥ BC	$\checkmark \hat{CDF} = x$
	$\frac{CF}{\cos x} = \sin x$	
	$\frac{CF}{CD} = \sin x$	$\checkmark CF = k \sin x$
	$CF = k \sin x$	
	CB = 2CF	✓ CB=2 CF
	$CB = 2k \sin x$	(5)
	OR	✓
	$D\hat{C}B = 180^{\circ} - (90^{\circ} - x + 2x) = 90^{\circ} - x$	$D\hat{C}B = D\hat{B}C = 90^{\circ} - x$
	$\therefore DC = DB = k$ $CB^{2} = CD^{2} + BD^{2} - 2.CD.BD.cos2x$	$\checkmark DC = DB = k$
	$CB^2 = k^2 + k^2 - 2k^2 \cos 2x$	
	$=2k^2(1-\cos 2x)$	✓ using cosine rule in triangle CDB
	$= 2k^{2}(1 - (1 - 2\sin^{2}x))$	_
	$= 2k^2 (2\sin^2 x)$	✓ factors
	$= 4k^2 \sin^2 x$	✓ simplification
	$= (2k\sin x)^2$	
	$CB = 2k \sin x$	(5)
	$CD - 2K SIII \lambda$	(5)

12.2	$\cos x = \frac{BC}{HC}$	$\checkmark \cos x = \frac{BC}{HC}$
	$HC = \frac{BC}{\cos x}$	
	$= \frac{2k\sin x}{1 + 2k\sin x}$	$\checkmark HC = \frac{BC}{\cos x}$
	$=\frac{2k\sin x}{\cos x}$	
	$=2k \tan x$	✓ substitution of BC (3)
	OR	
	HC BC	. BC
	$\frac{HC}{\sin 90^{\circ}} = \frac{BC}{\sin(90^{\circ} - x)}$	$\checkmark HC = \frac{BC}{\sin(90^\circ - x)}$
	$HC = \frac{BC}{\sin(90^\circ - x)}$	
		✓ substitution of BC
	$=\frac{2k\sin x}{\cos x}$	$\checkmark \sin(90^\circ - x) = \cos x$
	$=2k\tan x$	(3)
12.3	$HC = 2k \tan x = 2(40).\tan(23^\circ) = 33,9579$	✓ value of HC
	In ΔHCD:	
	$CD^2 = HC^2 + HD^2 - 2HC.HD.\cos\theta$	
	$\cos\theta = \frac{HC^2 + HD^2 - CD^2}{2HC.HD}$	
	$(33.9579)^2 + 31.8^2 - 40^2$	✓ substitution into cos
	$=\frac{(33,9579)^2 + 31,8^2 - 40^2}{2(33,9579)(31,8)}$	formula
	$\cos\theta = 0.2613$	\checkmark cos θ = 0,2613
	$\therefore \theta = 74,85^{\circ}$	✓ 74,85°
		(4) [12]

Angle that minute hand moves is: 13.1

 $\frac{37}{60} \times 360^{\circ}$ 60 min : 360° 1 min : 6° = 222° $37 \text{ min} : 37 \times 6 = 222^{\circ}$ OR

P is rotated by 360° - 222° = 138° in an **anti-clockwise** direction: $b = 4\cos 138^{\circ} + 2\sin 138^{\circ}$ $a = 2\cos 138^{\circ} - 4\sin 138^{\circ}$ and

28

= -4.16

=-1.63

 $\checkmark\checkmark \frac{37}{60} \times 360^{\circ}$

✓ substitution of 138⁰ into formula for x and y

√ -4,16

√ -1,63

OR

Angle that minute hand moves is:

 $\frac{37}{}$ × 360° = 222°

P is rotated by 222° in a **clockwise** direction:

 $a = 2\cos 222^{\circ} + 4\sin 222^{\circ}$ $b = 4\cos 222^{\circ} - 2\sin 222^{\circ}$ = -4.16=-1.63

 $\checkmark\checkmark \frac{37}{60} \times 360^{\circ}$

✓ substitution of 2220 into formula for x and y

√ -4.16

√ -1,63

(6)

(6)

(6)

OR

 $\tan \alpha = 2$

 $\alpha = 63,43^{\circ}$

 $\alpha + 180^{\circ} - \beta = 222^{\circ}$ $\beta = 63,43^{\circ} + 180^{\circ} - 222^{\circ}$ $=21.43^{\circ}$

 $\therefore a = -\sqrt{20}\cos 21,43^{\circ} = -4,16$

 $b = -\sqrt{20} \sin 21.43^{\circ} = -1.63$

 $\checkmark \tan \alpha = 2$

 $< \alpha = 63,43^{\circ}$

 $\checkmark \alpha + 180^{\circ} - \beta = 222^{\circ}$

✓ $\beta = 21,43^{\circ}$

√ -4,16

√ −1,63

NSC – Memorandum

13.2	The minute hand moves through 360° in 60 minutes.	✓ 360°	
	The hour hand moves through 30° in 60 minutes, that is, $\frac{1}{12}$ that of	✓ 360° ✓ 30°	
	the minute hand. So when the minute hand moves through 222°,	✓ 1/12 ✓ 18,5°	
	the hour hand moves through $\frac{222^{\circ}}{12} = 18,5^{\circ}$	✓ 18,5°	(4)
	OR		(1)
	The hour hand moves through $\frac{360^{\circ}}{12} = 30^{\circ}$ in 60 minutes \therefore it moves through $\frac{37}{60} \times 30^{\circ} = 18,5^{\circ}$ in 37 minutes	✓ 360° ✓ 30° ✓ $\frac{37}{60} \times 30^{\circ}$ ✓ 18,5°	
			(4)
			[10]

TOTAL: 150