Program Representation for General Intelligence

The Reduct Toolkit for Program Normalization

Nil Geisweiller

Novamente LLC

Xiamen University
AGI Summer School 2009

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Introduction

- Program learning is a very useful skill
- But program space is complex
- Understanding and exploiting its properties
- ⇒ Reducing programs in normal form

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Program space is:

Vast ⇒ grows exponentially with program size

Program space is:

Vast ⇒ grows exponentially with program size

 Chaotic ⇒ small syntactic variations can lead to huge semantic variations

Program space is:

Vast ⇒ grows exponentially with program size

 Chaotic ⇒ small syntactic variations can lead to huge semantic variations

Over-represented ⇒ many programs with same semantics

$$x \wedge y \equiv x \wedge y \wedge x \equiv \neg(\neg(x) \vee \neg(y)) \equiv \dots$$

less diversity packed into the program space

X	У	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

X	У	$x \wedge y$	$\neg(\neg y \lor \neg x)$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

X	У	$x \wedge y$	$\neg(\neg y \lor \neg x)$	$X \wedge X \wedge Y$
0	0	0	0	0
0	1	0	0	0
1	0	0	0	0
1	1	1	1	1

X	У	$x \wedge y$	$\neg(\neg y \lor \neg x)$	$X \wedge X \wedge Y$	$X \wedge y \wedge (\neg z \vee z)$
0	0	0	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0
1	1	1	1	1	1

X	У	$x \wedge y$	$\neg(\neg y \lor \neg x)$	$X \wedge X \wedge Y$	$X \wedge y \wedge (\neg z \vee z)$	
0	0	0	0	0	0	
0	1	0	0	0	0	
1	0	0	0	0	0	
1	1	1	1	1	1	

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	<i>f</i> ₁
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

Χ	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

• Syntactic distance between f_1 and f_2 :

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f ₁
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Syntactic distance between f₁ and f₂: 1

$$f_1 = x \wedge (y \vee z)$$

_			
X	У	<i>Z</i>	<i>f</i> ₁
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

Χ	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 :

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 1

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	<i>f</i> ₁
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 2

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 3

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 4

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 5

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 6

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 7

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f_1 and f_2 : 1
- Semantic distance between f_1 and f_2 : 8

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

X	У	Z	g_2
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

	Χ	У	Z	<i>g</i> ₂
ĺ	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

		_	
X	У	<i>Z</i>	<i>g</i> ₂
0	0	0	<i>g</i> ₂
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = X \wedge Y \wedge Z$$

X	У	Z	<i>g</i> ₂
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$g_1 = false$$

Χ	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $g_2 = x \wedge y \wedge z$

	Χ	У	Z	<i>g</i> ₂
ĺ	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $g_2 = X \wedge V \wedge Z$

	Χ	У	Z	g_2
ſ	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

	Χ	У	Z	g_2
ſ	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

$$g_1 = false$$

Х	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

X	У	Z	<i>g</i> ₂
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$g_1 = false$$

Χ	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

X	У	Z	g_2
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- Syntactic distance: 6
- Semantic distance:

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

_				
	Χ	У	Z	<i>g</i> ₂
Γ	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

Syntactic distance: 6

Semantic distance: 1

Syntactic vs Semantic De-correlation

Figure: Syntactic vs semantic distance for random formulae with arities five (left) and ten (right). Extracted from Moshe Looks PhD thesis.

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Programs in Normal Forms

unique representation (possibly the shortest)

$$x \wedge y \equiv x \wedge y \wedge x \equiv \neg(\neg(x) \vee \neg(y)) \equiv \dots$$

② interesting properties ⇒ program space more regular

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Avoiding over-representation

Before reduction:

Program space

$$\begin{array}{l}
x \wedge y \equiv x \wedge y \wedge x \equiv \neg(\neg(x) \vee \neg(y)) \equiv \dots \\
x \vee y \equiv x \vee y \vee x \equiv \neg(\neg(x) \wedge \neg(y)) \equiv \dots \\
x \wedge y \wedge z \equiv x \wedge y \wedge z \wedge x \wedge y \wedge z \equiv \dots \\
x \wedge y \wedge \neg(z) \equiv x \wedge y \wedge \neg(z) \wedge x \wedge y \wedge \neg(z) \equiv \dots
\end{array}$$

. . .

Avoiding over-representation

$$x \wedge y = x \wedge y \wedge x = \neg(\neg(x) \vee \neg(y)) = \dots$$

$$x \vee y = x \vee y \vee x = \neg(\neg(x) \wedge \neg(y)) = \dots$$

$$x \wedge y \wedge z = x \wedge y \wedge z \wedge x \wedge y \wedge z = \dots$$

$$x \wedge y \wedge \neg(z) = x \wedge y \wedge \neg(z) \wedge x \wedge y \wedge \neg(z) = \dots$$

$$\dots$$

Before reduction

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg(x \land (y \lor z))$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂: 1
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

X	У	Z	<i>f</i> ₂
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂: ?
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

Χ	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂: 1
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂:
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂: 3
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂:
- Semantic distance between f₁ and f₂: 8

$$f_1 = x \wedge (y \vee z)$$

X	У	Z	f_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f_2 = \neg x \lor (\neg y \land \neg z)$$

X	У	Z	f_2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- Syntactic distance between f₁ and f₂: 5
- Semantic distance between f₁ and f₂: 8

Before and after reduction

$$g_1 = false$$

X	У	Z	g_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$g_2 = x \wedge y \wedge z$$

Χ	У	Z	<i>g</i> ₂
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Syntactic distance: 6

Semantic distance: 1

Before reduction

Figure: Syntactic vs semantic distance for random formulae with arities five (left) and ten (right). *Extracted from Moshe Looks PhD thesis*.

Figure: Syntactic vs semantic distance for random formulae in normal form with arities five (left) and ten (right). Extracted from Moshe Looks PhD thesis.

Before reduction:

$$\neg(x \lor y) \land (\neg(y) \lor z) = \bigvee_{X = Y} \neg y z = \bigwedge_{f_{L} f_{R}} \land f_{L} f_{R}$$

Before reduction:

$$\neg(x \lor y) \land (\neg(y) \lor z) = \bigvee_{X = Y} \neg y = \bigwedge_{f_{L} = f_{R}} \bigwedge_{f_{R}} \bigvee_{f_{R} = f_{R}} \bigvee_{f_{R} = f_{$$

Before reduction:

$$\neg(x \lor y) \land (\neg(y) \lor z) = \bigvee_{X = Y} \neg y = \bigwedge_{f_{L} = f_{R}} \land$$

Before reduction: f_I and f_B are not independent.

$$\neg(x \lor y) \land (\neg(y) \lor z) = \bigvee_{X} \bigvee_{Y} \Rightarrow X \bigvee_{Z} = \bigwedge_{f_{L} f_{R}} \bigwedge_{f_{R}} \bigvee_{f_{R}} \bigvee_{f_{R}}$$

After reduction: g_I and g_B are independent.

$$\neg x \wedge \neg y \qquad = \qquad \stackrel{\wedge}{\frown_{x} \neg y} \qquad = \qquad \stackrel{\wedge}{\overbrace{g_{L} g_{R}}}$$

After reduction: g_L and g_R are independent.

Benefice

- Easier to understand
- Better hierarchical structure

To sum up

Reduction allows us to:

- Avoid over-representation
- Increase syntactic vs semantic correlation
- Improve structure
- Smaller programs take less memory and usually run faster

Conclusion

Reduction is good!

Reduction to normal form is:

• undecidable for recursive functions

Reduction to normal form is:

• undecidable for recursive functions

• undecidable for primitive recursive functions

Reduction to normal form is:

• undecidable for recursive functions

• undecidable for primitive recursive functions

NP-hard for Boolean functions

Reduction to normal form is:

• undecidable for recursive functions

• undecidable for primitive recursive functions

NP-hard for Boolean functions

Reduction to normal form is:

• undecidable for recursive functions

undecidable for primitive recursive functions

NP-hard for Boolean functions

In practice

incomplete reduction methods

Reduction to normal form is:

• undecidable for recursive functions

undecidable for primitive recursive functions

NP-hard for Boolean functions

In practice

- incomplete reduction methods
- rely on heuristics

Reduction to normal form is:

undecidable for recursive functions

undecidable for primitive recursive functions

NP-hard for Boolean functions

In practice

- incomplete reduction methods
- rely on heuristics
- trade-off between efficiency and completeness

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Recall of Combo How it works Demo... What Remains to Be Implemented

The Reduct Toolkit

Part of the OpenCog framework

- Part of the OpenCog framework
- Coded in C++

- Part of the OpenCog framework
- Coded in C++
- Handles the following domains

- Part of the OpenCog framework
- Coded in C++
- Handles the following domains
 - Boolean

- Part of the OpenCog framework
- Coded in C++
- Handles the following domains
 - Boolean
 - Continuous

The Reduct Toolkit

- Part of the OpenCog framework
- Coded in C++
- Handles the following domains
 - Boolean
 - Continuous
 - numerico-boolean

Recall of Combo How it works Demo... What Remains to Be Implemented

The Reduct Toolkit

- Part of the OpenCog framework
- Coded in C++
- Handles the following domains
 - Boolean
 - Continuous
 - numerico-boolean
 - actions perceptions to control agent in virtual world

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- 2 The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Recall of Combo How it works Demo...

What Remains to Be Implemented

Reduct Operates on Combo

Combo is:

Programmatic language of MOSES

- Programmatic language of MOSES
- Syntactic tree in prefix notation

- Programmatic language of MOSES
- Syntactic tree in prefix notation

Combo is:

- Programmatic language of MOSES
- Syntactic tree in prefix notation

Boolean: and, or, not, true, false

- Programmatic language of MOSES
- Syntactic tree in prefix notation

- Boolean: and, or, not, true, false
- Continuous: +, *, /, exp, log, sin

- Programmatic language of MOSES
- Syntactic tree in prefix notation

- Boolean: and, or, not, true, false
- Continuous: +, *, /, exp, log, sin
- Numerico-Boolean: 0<, impulse, contin_if

- Programmatic language of MOSES
- Syntactic tree in prefix notation

- Boolean: and, or, not, true, false
- Continuous: +, *, /, exp, log, sin
- Numerico-Boolean: 0<, impulse, contin_if
- Action: and_seq, action_if, action_while, ...

- Programmatic language of MOSES
- Syntactic tree in prefix notation

```
\overbrace{x} \quad \forall \qquad \Leftrightarrow \qquad \text{and(#1 or(#2 not(#3)))}
```

- Boolean: and, or, not, true, false
- Continuous: +, *, /, exp, log, sin
- Numerico-Boolean: 0<, impulse, contin_if
- Action: and_seq, action_if, action_while, ...
- Higher order: procedure_name (arity) := body

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Reduction

How it works

Apply series of reduction rules according to a given strategy.

Example of reduction rules in the Boolean domain:

ullet R_4 : and $(X) \to X$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or(X true) \rightarrow true

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or(X true) \rightarrow true

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

•
$$R_{13}$$
: $X/Z+Y/Z \to (X+Y)/Z$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \star \exp(Y) \rightarrow \exp(X+Y)$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \star \exp(Y) \rightarrow \exp(X+Y)$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \star \exp(Y) \rightarrow \exp(X+Y)$

In the action domain:

• R_{43} : action_if $(B \ X \ Y) \rightarrow X$ if B is reducible to true

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\rightarrow X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \cdot \exp(Y) \rightarrow \exp(X+Y)$

In the action domain:

- R_{43} : action_if $(B \ X \ Y) \rightarrow X$ if B is reducible to true
- R_{51} : action_while $(X \ldots X) \rightarrow \text{action_while}(X)$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\rightarrow X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \cdot \exp(Y) \rightarrow \exp(X+Y)$

In the action domain:

- R_{43} : action_if $(B \ X \ Y) \rightarrow X$ if B is reducible to true
- R_{51} : action_while $(X \ldots X) \rightarrow \text{action_while}(X)$

Example of reduction rules in the Boolean domain:

- R_4 : and $(X) \rightarrow X$
- R_5 : not (not (X)) $\to X$
- R_8 : or (X true) \rightarrow true

In the continuous domain:

- R_{13} : $X/Z+Y/Z \to (X+Y)/Z$
- R_{21} : $\exp(X) \star \exp(Y) \rightarrow \exp(X+Y)$

In the action domain:

- R_{43} : action_if $(B \ X \ Y) \rightarrow X$ if B is reducible to true
- R_{51} : action_while $(X \ldots X) \rightarrow \text{action_while}(X)$

about 85 rules in total...

Recall of Combo
How it works
Demo...
What Remains to Be Implemented

Apply R_i from the leaves up to the root.

Apply R_i from the leaves up to the root.

Repeat the strategy wrapped by Iterative until the combo tree no longer changes.

ENF: Elegant Normal Form (Holman, '90). A strategy onto itself.

Efficient

ENF: Elegant Normal Form (Holman, '90). A strategy onto itself.

- Efficient
- Retain the structure (or even improve it)

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Outline

- Introduction
 - Program Space
 - What are Programs in Normal Forms?
 - Effects of Reducing Programs in Normal Forms
- The Reduct Toolkit
 - Recall of Combo
 - How it works
 - Demo...
 - What Remains to Be Implemented

Recall of Combo How it works Demo...

What Remains to Be Implemented

What remains to be implemented

Boolean, continuous, action-perception: virtually complete

What remains to be implemented

- Boolean, continuous, action-perception: virtually complete
- Numerico-Boolean: dealing with non-linear systems like for instance 0 < (* (+ (#1 1) + (#1 1)))

What remains to be implemented

- Boolean, continuous, action-perception: virtually complete
- Numerico-Boolean: dealing with non-linear systems like for instance 0 < (* (+ (#1 1) + (#1 1)))
- Higher order, list, recursion, etc: everything remains to be done.

What remains to be implemented

- Boolean, continuous, action-perception: virtually complete
- Numerico-Boolean: dealing with non-linear systems like for instance 0 < (* (+ (#1 1) + (#1 1)))
- Higher order, list, recursion, etc: everything remains to be done.
- Factorizing the rules, operator properties rather than operators themselves, for instance
 - \bullet + (X 0) \rightarrow X
 - ullet or(X false) o X

2 instances of the *neutral_element* reduction rule.

