

UNISONIC TECHNOLOGIES CO., LTD

50N06 **MOSFET**

50 Amps, 60 Volts N-CHANNEL POWER MOSFET

DESCRIPTION

The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast switching speed. Low on-state resistance, breakdown voltage rating of 60V, and max threshold voltages of 4 volt.

It is mainly suitable electronic ballast, and low power switching mode power appliances.

FEATURES

- * $R_{DS(ON)}$ = 23m Ω @ V_{GS} = 10 V
- * Ultra low gate charge (typical 30 nC)
- * Low reverse transfer Capacitance (C_{RSS} = typical 80 pF)
- * Fast switching capability
- * 100% avalanche energy specified
- * Improved dv/dt capability

SYMBOL

ORDERING INFORMATION

Order Number		Dookogo	Pin Assignment			Dooking	
Normal	Lead Free Plating	Package	1	2	3	Packing	
50N06-TA3-T	50N06L-x-TA3-T	TO-220	G	D	S	Tube	
50N06-TF3-T	50N06L-x-TF3-T	TO-220F	G	D	S	Tube	

*Pb-free plating product number: 50N06L

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	60	V
Gate to Source Voltage	V_{GSS}	±20	V
Continuous Drain Current		50	Α
$T_{\rm C} = 100$	I _D	35	Α
Drain Current Pulsed (Note 1)	I_{DM}	200	Α
Single Pulsed Avalanche Energy (Note 2)	E _{AS}	480	mJ
Repetitive Avalanche Energy (Note 1)	E _{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 3)	dv/dt	7	V/ns
Total Power Dissipation (T _C = 25)	В	130	W
Derating Factor above 25	P_{D}	0.9	W/
Operation Junction Temperature	T_J	-55 ~ + 150	
Storage Temperature	T _{STG}	-55 ~ + 150	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Thermal Resistance, Junction-to-Case	θ_{JC}			1.15	°C/W
Thermal Resistance, Case-to-Sink	θ_{CS}		0.5		°C/W
Thermal Resistance, Junction-to-Ambient	θ_{JA}			62.5	°C/W

■ ELECTRICAL CHARACTERISTICS T_C = 25 unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Off Characteristics								
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			٧		
Breakdown Voltage Temperature Coefficient	BV _{DSS} / T _J	I_D = 250 μ A, Referenced to 25		0.07		V/		
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 48 \text{ V}, T_{C} = 125$			1	μA μA		
Gate-Source Leakage Current	1	V _{GS} = 20V, V _{DS} = 0 V			100	nA		
Gate-Source Leakage Reverse	I_{GSS}	$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA		
On Characteristics								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 25 A		18	23	mΩ		
Dynamic Characteristics								
Input Capacitance	C _{ISS}	V - 0 V V - 25 V		900	1220	pF		
Output Capacitance	Coss	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}$ f = 1MHz		430	550	pF		
Reverse Transfer Capacitance	C_{RSS}	-		80	100	pF		
Dynamic Characteristics								
Turn-On Delay Time	$t_{D(ON)}$			40	60	ns		
Rise Time	t_R	$V_{DD} = 30V, I_D = 25 A,$		100	200	ns		
Turn-Off Delay Time	t _{D(OFF)}	$R_G = 50\Omega$ (Note 4, 5)		90	180	ns		
Fall Time	t_{F}			80	160	ns		
Total Gate Charge	Q_G	\/ - 49\/ \/ - 10\/		30	40	nC		
Gate-Source Charge	Q_GS	$V_{DS} = 48V, V_{GS} = 10 V$ $I_{D} = 50A, (Note 4, 5)$		9.6		nC		
Gate-Drain Charge (Miller Charge)	Q_GD	- Joh, (Note 4, 5)		10		nC		

50N06 MOSFET

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Source-Drain Diode Ratings and Characteristics						
Diode Forward Voltage	V_{SD}	$I_{\rm S} = 50 {\rm A}, {\rm V}_{\rm GS} = 0 {\rm V}$			1.5	V
Continuous Source Current	Is	Integral Reverse p-n Junction Diode in the MOSFET			50	
Pulsed Source Current	I _{SM}	Go			200	A
Reverse Recovery Time	t _{RR}	I _S = 50A, V _{GS} = 0 V		54		ns
Reverse Recovery Charge	Q_{RR}	$dI_F / dt = 100 A/\mu s$		81		μC

Note 1. Repeativity rating: pulse width limited by junction temperature

- 2. L=5.6mH, I_{AS} =50A, V_{DD} =25V, R_{G} =0 Ω , Starting T_{J} =25
- 3. $I_{SD} \le 50A$, di/dt $\le 300A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$
- 4. Pulse Test: Pulse Width≤300µs,Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS

Fig. 1A Peak Diode Recovery dv/dt Test Circuit

Fig. 1B Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

Fig. 4A Unclamped Inductive Switching Test Circuit

Fig. 4B Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.