Bromeng 261. Lecture 3. Enzyme regulation: inhibition lactuation (manuly) 'We' (le our bodies, nature etc) don't just want enzymes to be 'always on' -> they are tightly controlled Ladapt to needs & resource How? - Amount Leg via gené expression july (see later) - Actury I Regulatory molecules: actuator: turn 'up'

inhibitor: turn 'down'

Regulation of activity: types - weversible (eg toxins) Lnot usually for control L typically covalent (strong) L typically non-covalent (weaker) Reversible regulation: more terminology: behaviour - non-competitive

- un-competitive

- mixed location { - active site - allosteric site

sout based on more complex models

Competitive inhibition model

Same when as building MM model

simple but larger systems

veduce to smaller but

modified system

Assume

STI

- Inhibitor I divertly competes with substrate s.

=> Two types of complex { G= E:S Cz= E:I

Kineties:

(1)
$$S+E \stackrel{k_1}{=} C_1 \stackrel{k_2}{\longrightarrow} P+E$$

$$(2) \quad \text{I+E} \stackrel{(k-3)}{\rightleftharpoons} C_2$$

Competitive inhibition model coold

1. Conservation [5], [I], [C,7,[C,7,[E],[P]

$$\frac{d[S]}{dt} = -J_1 + J_{-1}$$

$$\frac{d[J]}{dt} = -J_3 + J_{-3}$$

$$\frac{d[C_1]}{dt} = +J_1-J_{-1}-J_2$$

$$\frac{d[c_1]}{dt} = tJ_3 - J_{-3}$$

[E]
$$\begin{array}{c|c} \hline \text{Can} & \text{OLEI} & = (-J_1 + J_{-1} + J_2) + (-J_3 + J_{-3}) \\ \text{always} & \text{At} & = -\text{A[C_1]} - \text{A[C_2]} \\ \hline \hline \text{[E]} & \text{At} & \text{At} \\ \hline & = > \boxed{[E] + [C_1] + [C_2] = E_0} \\ \hline \end{array}$$

gwes

$$\frac{d[c_i]}{dt} = k_i [E][s] - (k_1 + k_2)[c_i]$$

$$\frac{d[G]}{dt} = k_3[E][\overline{1}] - k_{-3}[G]$$

&
$$CET = E_0 - [C_1] - [C_2]$$

N2/6:

(use E=f(C1,C2))

$$\frac{1}{1} \frac{d\Gamma ST}{dt} = f_1(C_1, C_2, S)$$

2.
$$\frac{d[I]}{dt} = f_2(c_1, c_2, I)$$

3.
$$\frac{d[c_1]}{dt} = f_3(c_1, c_2, s)$$

4.
$$\frac{d[c_{1}]}{dt} = f_{4}(c_{1}, c_{2}, I)$$

hoal: eliminate enzyone complex

=> reed two condutums approx.

(a) [
$$c_2$$
] (ass => $[k_3(E_0-[c_1]-[c_2])[I]-k_3[c_2]=0$

two equations => elimenate two variables

Cy 1 Cz.

So
$$N = d[P] = k_2[G]$$

$$= k_2K_1 = k_2$$

EDENTIST

KM(I+CT) + [S]

Le

Vmax [S]

New + [S]

KM

Same Vmax

Vmax

=> Same Vmax (km > km)

Vorax Competitive
Vorax Jecreasing X m
Jecreasing X m
Jecreasing Shopl
Shopl

Next time: nencompetitue whiletons)

A note on the quasi-steady-state approximation.

unat's the difference between a

'quasi' steady state dc'z'o

& a

'true' steady state dc = 0

at

· Easy case: true steady state $\frac{dC}{dt} = 0 \quad \text{exactly zero}.$

o Subtle Cage. 'quasi'

-> 'approximately' zero neans Small relative to something else

-> What is the something else?

Pelatue smallness

- We are using the QSS to approximately eliminate a variable relative to others

 $\frac{dC}{dt} / dS = Small$

- But the relative change on its 'own' Scale might still be significant! dC dt / DCmax ~ 1

> => Key is D Cmax small relative to DS max

Dynamic's tendy state

dc. changes fast on its own

At scale
vapidly reaches steady state

on its own scale

these changes are small (~Eo)
in magnitude relative to long
term changes in other variables

· If the other scale is changing, forces c to readjust

ds: changes on its our, slower dt scale

. these changes are larger (~ So)

· force c to constantly readjust - dynamic steady state

L> c's steady state is 'slaved' to s

& c can be churinated using

Css = f(S) va dc 20

subject of Singular perturbation theory Engsci71

QSS summary: 3 key/typical features

- a variable can be set to

 quasi-steady state when

 it rapidly reaches its own (1)

 steady-state value

 velative to other variables

 of primary interest
- usually the magnitude
 of its changes in reaching SS (2)
 are small relative to the changes
 of other variables in reaching their SS.
- changes in offer venable cause (3) readjustment: dynamic steady state

eg odc /dc/max

But

odc /ds /ds

dc ~ Eo

as C>P 'stonly', StE>C adjusts) de vo amichy' to keep balance { The le more complex is made} How to typical charge:

von-dimensionalish

C = Co C* = Scale x non-dim

t = T t*

 $\frac{dC}{dt} = \frac{d(C C^*)}{d(T L^*)} = \frac{Co}{T} \frac{dC^*}{dt^*}$ Similarly $dS = \frac{So}{dS^*} \frac{dS^*}{dt^*}$

- always a valid non-dumensionalisation

- but, carried well-scaled 1

If Talso | $\frac{dC^*}{dt^*} \approx 1$, red $\frac{dC}{dt} \approx 1$, red $\frac{dC}{dt} \approx 1$, red $\frac{dS}{dt} \approx 1$.

>> determes 'regime' where scaling is 'good'

c rapidly reaches

We work to

The first to the first to