

2023 级代数与几何 期中考试(回忆版) 参考答案

编写&排版:一块肥皂

答案速查:

$$1. -112$$

$$2. \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

3.
$$x-y-4=0$$

$$4. -34560$$

$$5. \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

11.
$$\begin{cases} x + y + 2z - 6 = 0 \\ x + y - z + 4 = 0 \end{cases}$$

$$12. \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

13.(1)略

$$(2) \mathbf{M}^{-1} = \frac{1}{\lambda} \mathbf{E}_n - \frac{1}{\lambda^2} \alpha \boldsymbol{\beta}^{\mathrm{T}}$$

$$14. (1) \begin{bmatrix} 2 & 0 & & & & \\ 0 & 2 & & & & \\ & & 33 & -320 & 0 \\ & & 0 & 33 & 0 \\ & & 0 & 0 & 33 \end{bmatrix}$$

$$(2) \operatorname{rank}[(\mathbf{A}\mathbf{B})^*] = 5$$

详解:

1.
$$\det(2\boldsymbol{E}_5 - \boldsymbol{A}^2) = \det(2\boldsymbol{E}_5 - \boldsymbol{\alpha}^T\boldsymbol{\alpha}\boldsymbol{\alpha}^T\boldsymbol{\alpha}) = \det[2\boldsymbol{E}_5 - \boldsymbol{\alpha}^T(\boldsymbol{\alpha}\boldsymbol{\alpha}^T)\boldsymbol{\alpha}] = \det[2\boldsymbol{E}_5 - (\boldsymbol{\alpha}\boldsymbol{\alpha}^T)\boldsymbol{\alpha}^T\boldsymbol{\alpha}] = \det[2\boldsymbol{E}_5 - 3\boldsymbol{\alpha}^T\boldsymbol{\alpha}],$$
 由降阶公式,原式 = $2^{5-1}\det[2\boldsymbol{E}_1 - 3\boldsymbol{\alpha}\boldsymbol{\alpha}^T] = 16\det([-7]) = 16 \times (-7) = -112.$

2.
$$(A|E_4) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 2 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = (E_4|A^{-1}).$$

3. 沿 z 轴的方向向量可取 s = (0,0,1), $\overrightarrow{AB} = (1,1,8)$. 由于平面 π 与 z 轴平行,所以平面 π 的法向量 n 与 s 垂直;且 A,B 在平面 π 上,所以 n 与 \overrightarrow{AB} 垂直.则可取 $n = s \times \overrightarrow{AB} = (1,-1,0)$,则平面 π 的点法式方程为 (x-4)-y=0. 故平面 π 的方程为 x-y-4=0

5. 对于第一个操作,取
$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,则 $B = AP_1$;

对于第二个操作,取 $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,则 $C = BP_2$.

则 $C = AP_1P_2 = AP_2P_3$,易知 $P = P_1P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 即为所求.

6. 由于行列式的初等变换不改变行列式结果为0或不为0这一特征,故只要初等变换后出现零行或零列,利用 Laplace 展开(拉普拉斯展开即利用余子式展开)就可以得到 $\det(A) = 0$. 故选 B.

7. 对于选项 A, 取 r=0 即有 A 为零矩阵, 错误, 故选 A;

对于选项 B,C,D,考查秩的定义,设子式的阶数为 k, 当 k > r 时,子式均为 0;

当0 < k ≤ r时,子式不全为0.

8. 熟知结论
$$\operatorname{rank}(A^*) = \begin{cases} n, & \operatorname{rank}(A) = n \\ 1, & \operatorname{rank}(A) = n - 1, 则对于选项 A, 有 \operatorname{rank}(A^*) = n, 故 A^* 可逆; \\ 0, & \operatorname{rank}(A) < n - 1 \end{cases}$$

对于选项 C,D,由于 $AA^* = A^*A = \det(A)E_n$,两边取行列式,则有 $\det(A)\det(A^*) = \det^n(A)$,

当 $\operatorname{rank}(A^*) = n$ 时,可由上式化简得 $\det(A^*) = \det^{n-1}(A)$,当 $\operatorname{rank}(A^*) < n$ 时, $\det(A^*) = 0 = \det^{n-1}(A)$ 仍 成立,故C,D正确:

对于选项B, 当n=2时, 取 $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$, 有 $A^*=\begin{bmatrix}0&0\\0&1\end{bmatrix}\neq \boldsymbol{O}$, 故B错误.

9. 对矩阵
$$\mathbf{M} = \begin{bmatrix} A & C \\ C & B \end{bmatrix}$$
进行变换 $\rightarrow \begin{bmatrix} A & C \\ C - CA^{-1}A & B - CA^{-1}C \end{bmatrix} = \begin{bmatrix} A & C \\ O & B - CA^{-1}C \end{bmatrix}$,此过程不改变 $\det(\mathbf{M})$ 的值,故 $\det(\mathbf{M}) = \det(\mathbf{A})\det(\mathbf{B} - \mathbf{C}A^{-1}C) = \det[A(\mathbf{B} - \mathbf{C}A^{-1}C)]$,故选 C.

10. 对于选项 A, 若 a, b 均不为零向量,则显然成立,若有一个或多个为零向量,由于零向量与任意向量都垂 直,故正确;

对于选项B, c与a,b共面, 故错误:

对于选项 C, 若 a, b 均不为零向量,则二者夹角为 0 或 π , 是平行关系; 若有一个或多个为零向量,由于零 向量与任意向量都平行,故正确;

对于选项D,若a,b均不为零向量,则二者互为相反向量,是平行关系;若有一个或多个为零向量,由于零 向量与任意向量都平行,故正确;

故选B.

11. 设L在一平面 π_0 内,则平面 π_0 的法向量 n_0 与直线L的方向向量s垂直;

且平面 π_0 与平面 π 垂直,则平面 π_0 的法向量 n_0 与平面 π 的法向量n垂直;

由直线
$$L$$
的方向向量 $\mathbf{s} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 2 & 2 & 1 \end{vmatrix} = (1, -1, 0)$,平面 π 的法向量 $\mathbf{n} = (1, 1, -1)$,

由直线
$$L$$
 的方向向量 $s = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 2 & 1 \end{vmatrix} = (1, -1, 0)$,平面 π 的法向量 $n = (1, 1, -1)$,
则可取 $n_0 = n \times s = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{vmatrix} = (-1, -1, -2)$,且直线 L 上点 $M(-4, -4, 5)$ 在平面 π_0 上,

则平面 π_0 的点法式方程为 -(x+4)-(y+4)-2(z-5)=0 即 x+y+2z-6=0.

综上,直线
$$L$$
 在平面 π上的投影方程为
$$\begin{cases} x+y+2z-6=0\\ x+y-z+4=0 \end{cases}$$
.

12. 在 $A^*X = 2X + A^{-1}Y$ 两端同时左乘 A 得: $AA^*X = 2AX + AA^{-1}Y$ 即 det(A)X = 2AX + Y,

又
$$\det(\mathbf{A}) = 4$$
,故 $(4\mathbf{E}_3 - 2\mathbf{A})\mathbf{X} = \mathbf{Y}$.

$$\rightarrow \begin{bmatrix} 2 & -2 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 4 & 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 4 & 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix} = [\mathbf{E}_3|(4\mathbf{E}_3 - 2\mathbf{A})^{-1}]$$

知 4
$$\mathbf{E}_3$$
 - 2 \mathbf{A} 可逆,且 (4 \mathbf{E}_3 - 2 \mathbf{A})⁻¹ =
$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}$$
,

故
$$X = (4E_3 - 2A)^{-1}Y = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}.$$

13. (1) 由于 $(sE_n + A)(sE_n - A)$ $= sE_n sE_n - sE_n A + AsE_n - A^2$ $= s^2 E_n - sA + sA - O$ $= s^2 E_n,$ 证毕;

(2)由
$$\det(\mathbf{M}) = \det(\lambda \mathbf{E}_n + \alpha \boldsymbol{\beta}^T)$$
,利用降阶公式,原式 = $\lambda^{n-1} \det(\lambda \mathbf{E}_1 + \boldsymbol{\beta}^T \boldsymbol{\alpha})$,

又因为 $\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\beta} = 0$,两边取转置,便有 $\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha} = 0^{\mathrm{T}} = 0$,则原式 = $\lambda^{n-1} \det(\lambda \boldsymbol{E}_1 + 0) = \lambda^n$,

则 $det(\mathbf{M}) = \lambda^n \neq 0$,故 \mathbf{M} 可逆;

在(1)中,式(
$$s\mathbf{E}_n + \mathbf{A}$$
)($s\mathbf{E}_n - \mathbf{A}$) = $s^2\mathbf{E}_n$ 中若 $s \neq 0$,则可变形为($s\mathbf{E}_n + \mathbf{A}$)($\frac{1}{s}\mathbf{E}_n - \frac{1}{s^2}\mathbf{A}$) = \mathbf{E}_n ,

不难看出
$$sE_n + A 与 \frac{1}{s}E_n - \frac{1}{s^2}A$$
 互逆,即 $(sE_n + A)^{-1} = \frac{1}{s}E_n - \frac{1}{s^2}A$.

取
$$s = \lambda$$
, $A = \alpha \beta^T$; 则 $s = \lambda \neq 0$, $A^2 = \alpha \beta^T \alpha \beta^T = \alpha (\beta^T \alpha) \beta^T = (\beta^T \alpha) \alpha \beta^T = 0 \cdot \alpha \beta^T = 0$ 均符合要求,

故
$$\mathbf{M}^{-1} = (\lambda \mathbf{E}_n + \boldsymbol{a}\boldsymbol{\beta}^{\mathrm{T}})^{-1} = \frac{1}{\lambda} \mathbf{E}_n - \frac{1}{\lambda^2} \boldsymbol{a}\boldsymbol{\beta}^{\mathrm{T}}.$$

14. (1) 先令
$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
, $\mathbf{Q} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 则矩阵 \mathbf{A} 可分块为 $\begin{bmatrix} \mathbf{P} & \mathbf{O} \\ \mathbf{O} & \mathbf{Q} \end{bmatrix}$, 则 $\mathbf{A}^{10} = \begin{bmatrix} \mathbf{P}^{10} & \mathbf{O} \\ \mathbf{O} & \mathbf{Q}^{10} \end{bmatrix}$.
$$\mathbf{Z} \mathbf{P}^{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2\mathbf{E}_{2}$$
, 故 $\mathbf{P}^{10} = (2\mathbf{E}_{2})^{5} = 32\mathbf{E}_{2}$, $(\mathbf{P}^{10})^{-1} = \frac{1}{32}\mathbf{E}_{2}$;
$$\mathbf{Q}^{2} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{Q}^{3} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,, $\mathbf{Q}^{10} = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $(\mathbf{Q}^{10})^{-1} = \begin{bmatrix} 1 & -10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
$$\mathbf{M} (\mathbf{A}^{10})^{-1} = \begin{bmatrix} (\mathbf{P}^{10})^{-1} & \mathbf{O} \\ \mathbf{O} & (\mathbf{Q}^{10})^{-1} \end{bmatrix}$$
.

在 A^{10} **B** = A^{10} + 32 E_5 两边同时左乘 $(A^{10})^{-1}$,

(2)由于 $\operatorname{rank}(A) = \operatorname{rank}(P) + \operatorname{rank}(Q) = 2 + 3 = 5$,故A列满秩,则 $\operatorname{rank}(AB) = \operatorname{rank}(B)$;

同理:
$$\operatorname{rank}(\mathbf{B}) = \operatorname{rank}(\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}) + \operatorname{rank}(\begin{bmatrix} 33 & -320 & 0 \\ 0 & 33 & 0 \\ 0 & 0 & 33 \end{bmatrix}) = 2 + 3 = 5$$
,故 $\operatorname{rank}(\mathbf{AB}) = \operatorname{rank}(\mathbf{B}) = 5$.

即 AB 满秩,则 $\det(AB) \neq 0$,又由于 $(AB)(AB)^* = \det(AB)E_5$,

两边取行列式有: $\det(\mathbf{AB})\det[(\mathbf{AB})^*] = \det^n(\mathbf{AB}) \neq 0$,

故 $\det[(\mathbf{AB})^*] \neq 0$,则 $(\mathbf{AB})^*$ 满秩,即 $\operatorname{rank}[(\mathbf{AB})^*] = 5$.