CS2006 Practical 3

This Jupyter notebook provides an analysis of a data sample taken from the 2011 UK census containing 569,741 individuals. Each individual in the dataset has 18 properties, which include age, sex, religion and economic activity.

The dataset and related information are available at www.ons.gov.uk/census/2011census.

The analysis has been conducted in Python, primarily making use of the data processing library pandas and plotting library matplotlib. These libraries have been used to provide a descriptive and graphical analysis of important trends and features of the dataset.

The following requirements have been implemented:

Basic Requirements:

- 1. Refine the dataset, checking for inconsistencies.
- 2. Descriptive analysis of parts of the dataset.
- 3. Frequency plots and pie charts to reveal interesting trends.

Additional Requirements:

- 1. (Easy) Produce two-way frequency tables of specific pairs of variables.
- 2. (Easy) Perform queries on the dataset to extract relevant information.
- 3. (Medium) Represent the tables from 1. as 3D plots.
- 4. (Medium) Use ipywidgets to construct interactive plots that change based on a user-defined selection.
- 5. (Hard) Use a map to interpret and show data.
- 6. (Hard) Conduct an analysis on another large dataset.
- 7. (Hard) Use Binder (www.mybinder.com) to provide a complete environment for reproducing the analysis.

The following import statements are required for the analysis:

In [1]:

```
# Force plots to appear within Jupyter notebook.
%matplotlib inline
%config InlineBackend.figure format = 'retina'
# Data processing libraries.
import pandas as pd
import numpy as np
pd.Series. unicode = pd.Series.to string
# Plotting libraries.
import matplotlib as mpl
import matplotlib.pyplot as plt
# ipywidgets functionality.
from ipywidgets import interact, interactive, fixed, interact manual
import ipywidgets as widgets
from ipykernel.pylab.backend inline import flush figures
# User defined utilities.
import src.utils as utils
import src.refine as refine
import src.descriptive as descriptive
import src.plotting as plotting
import src.plotting 3D as plotting 3D
import src.cricket as cricket
# Check for the presence of mapping capabilities.
mapping installed = True
try:
    import src.mapping as mapping
except ImportError:
    mapping installed = False
# Built-in utilities.
import copy
import inspect
# Set the style for all forthcoming plots.
plt.style.use('ggplot')
```

Basic Requirements

1. Dataset refinement

The dataset was read using a pandas function:

In [2]:

```
df = pd.read_csv("./data/census2011.csv")
df.head()
```

Out[2]:

	Person ID	Region	Residence Type	Family Composition	Population Base	Sex	Age	Marital Status	Stı
0	7394816	E12000001	Н	2	1	2	6	2	2
1	7394745	E12000001	Н	5	1	1	4	1	2
2	7395066	E12000001	Н	3	1	2	4	1	2
3	7395329	E12000001	Н	3	1	2	2	1	2
4	7394712	E12000001	Н	3	1	1	5	4	2

The dataset was then refined using a series of functions that checked for missing values, values that were outside their specified ranges, and duplicate values. This code is contained in the module refine.py, which is reproduced below:

In [3]:

print(inspect.getsource(refine))

```
"""Module containing functions to refine a dataset."""
import pandas as pd
def filter null(df, variable):
    """Return records not containing null values in a specified colum
    return df[pd.notnull(df[variable])]
def filter type(df, variable, type list):
    """Return records where a specified variable is in a specified set
 of values."""
    return df[df[variable].isin(type list)]
def filter digits(df, variable, max digit, no code):
    """Return records where digits are within a range or a specified 'n
o code' value."""
    if no code is not None:
        return df[(df[variable].isin(range(0, max digit + 1))) | (df[va
riable] == no code)]
    else:
        return df[df[variable].isin(range(0, max digit + 1))]
def filter all types(df, all types):
    """Return records where a list of types are filtered on."""
    for type list in all types:
        return filter type(df, *type list)
def filter digit variables(df, digit variables):
    """Return records where a list of digit variables are filtered o
n."""
    for digit variable in digit variables:
        return filter digits(df, *digit variable)
def filter duplicates(df, variable):
    """Return records that are not duplicated in a specified variabl
e."""
    return df.drop duplicates(subset=variable, keep='last')
def refine data(df):
    """Return a refined dataset for the 2011 UK census."""
    # Set up the structures for filtering non-numeric variables.
    regions = [
        "Region",
        ["E12000001", "E12000002", "E12000003", "E12000004", "E1200000
5",
        "E12000006", "E12000007", "E12000008", "E12000009", "W92000004"]
```

```
residence types = ["Residence Type", ["H", "C"]]
   # Define the 'no code' number, and a filler for those variables tha
t
    # require a code.
    no code = -9
    fill = None
    # Set up structures for filtering numeric variables.
    family composition = ["Family Composition", 6, no code]
    population base = ["Population Base", 3, fill]
    sex = ["Sex", 2, fill]
    age = ["Age", 8, fill]
    martial status = ["Marital Status", 5, fill]
    student = ["Student", 2, fill]
    country of birth = ["Country of Birth", 2, no code]
    health = ["Health", 5, no code]
    ethnic group = ["Ethnic Group", 5, no code]
    religion = ["Religion", 9, no code]
    economic activity = ["Economic Activity", 9, no code]
    occupation = ["Occupation", 9, no code]
    hours worked per week = ["Hours worked per week", 4, no code]
    approximated social grade = ["Approximated Social Grade", 4, no cod
e]
    # Combine structures.
    all types = [regions, residence types]
    digit variables = [
        family composition, population base, sex, age, martial status,
 student,
        country of birth, health, ethnic group, religion, economic acti
vity,
        occupation, hours worked per week, approximated social grade
    1
    # Filter out records with any NaN values.
    df = df.dropna()
    # Filter out records with null Personal IDs.
    df = filter null(df, "Person ID")
    # Filter out records with values not in the specified range.
    df = filter all types(df, all types)
    df = filter digit variables(df, digit variables)
    # Remove duplicate Person IDs.
    df = filter duplicates(df, "Person ID")
    return df
```

Refining the dataset in this way produced an almost identical dataset:

In [4]:

```
df = refine.refine_data(df)
df.head()
```

Out[4]:

	Person ID	Region	Residence Type	Family Composition	Population Base	Sex	Age	Marital Status	Stı
0	7394816	E12000001	Н	2	1	2	6	2	2
1	7394745	E12000001	Н	5	1	1	4	1	2
2	7395066	E12000001	Н	3	1	2	4	1	2
3	7395329	E12000001	Н	3	1	2	2	1	2
4	7394712	E12000001	Н	3	1	1	5	4	2

All codes in the dataset were then translated ino their corresponding values, as defined by the census parameters. This translation step was conducted early in the analysis to ensure that future output was easily readable. It must be noted that this choice represents a tradeoff between convenience and speed/memory usage.

In [5]:

```
df_translated = utils.translate(df)
df_translated.head()
```

Out[5]:

	Person ID	Region	Residence Type	Family Composition	Population Base	Sex	Age	Marital Status
0	7394816	North East	Not Resident	Married/Civil Partnership	Usual Resident	remale to 64		Married/Civil Partnership
1	7394745	North East	Not Resident	Lone Parent Family (Female)	Usual Resident Male		35 to 44	Single (Never Married/Civil Partnership)
2	7395066	North East	Not Resident	Cohabiting Couple Family	Usual Resident	Female	35 to 44	Single (Never Married/Civil Partnership)
3	7395329	North East	Not Resident	Cohabiting Couple Family	Usual Resident	Female to 24		Single (Never Married/Civil Partnership)
4	7394712	North East	Not Resident	Cohabiting Couple Family	Usual Resident	Male	45 to 54	Divorced or Formerly in a Civil Partnership

2. Descriptive analysis

A descriptive analysis of the dataset was then conducted using a number of modular functions:

In [6]:

```
print(inspect.getsource(descriptive))
"""Module with functions for a descriptive analyses of a dataset."""
import pandas as pd
def total records(df):
    """Return message for total number of records in dataframe."""
    return "The total number of records in the dataframe is " + str(len
(df)) + '.'
def all data types(df):
    """Return message for all data types in a dataframe."""
    return "All data types:\n" + str(df.dtypes)
def count occurrences(df, ignore variables):
    """Strip PersonID column, count values, and return message."""
    result = ""
    for column in df:
        if column not in ignore variables:
            result += str(column) + " counts:\n" + str(df[column].value
_{counts())} + "\n" * 2
    return result
```

The descriptive analyses found the number of records in the dataset, the data types of each variable, and the number of observations of each unque value:

In [7]:

```
print(descriptive.total_records(df_translated) + "\n")
print(descriptive.all_data_types(df_translated) + "\n")
print(descriptive.count_occurrences(df_translated, ["Person ID"]))
```

The total number of records in the dataframe is 569740.

All data	types:
----------	--------

Person ID int64 Region object Residence Type object Family Composition object Population Base object Sex object Aae object Marital Status object Student bool Country of Birth object Health object Ethnic Group object Religion object Economic Activity object Occupation object Industry obiect Hours worked per week object Approximated Social Grade object

Region counts:

South East 88083 London 83582 North West 71436 East of England 59411 West Midlands 56875 South West 53774 Yorkshire and the Humber 53471 East Midlands 45782 Wales 30977 North East 26349

Residence Type counts: Not Resident 559086 Resident 10654

Family Composition counts:

Married/Civil Partnership 300961
Not in Family 96690
Cohabiting Couple Family 72641
Lone Parent Family (Female) 64519
No Code Required 18851
Lone Parent Family (Male) 9848
Other Related Family 6230

Population Base counts:

Usual Resident 561039 Student Living Away From Home 6730 Short-term Resident 1971

Sex counts:

Female 289172 Male 280568

Age counts:

0 to 15 106832 35 to 44 78641 45 to 54 77388 25 to 34 75948

16 to 24 72785 55 to 64 65665 65 to 74 48777 75 and Over 43704

Marital Status counts:

Single (Never Married/Civil Partnership) 270999
Married/Civil Partnership 214179
Divorced or Formerly in a Civil Partnership 40713
Widowed 31898
Separated but Still Legally Married/Civil Partnership 11951

Student counts: False 443203

True 126537

Country of Birth counts:

UK 485645 Non-UK 77291 No Code Required 6804

Health counts:

Very Good Health 264971
Good Health 191743
Fair Health 74480
Bad Health 24558
Very Bad Health 7184
No Code Requried 6804

Ethnic Group counts:

White 483477
Asian or Asian British 42711
Black or Black British 18786
Mixed 12209
No Code Requried 6804
Chinese or Other 5753

Religion counts:

Christian 333481 No Religion 141658 Not Stated 40613 Muslim 27240 Hindu 8213 No Code Required 6804 Sikh 4215 Jewish 2572 2538 Buddhist Other Religion 2406

Economic Activity counts:

Employee 216024 No Code Required 112618 Retired 97480 Self-employed 40632 Student 24756 18109 Unemployed Long-term Sick or Disabled 17991 Looking After Home or Family 17945 Full-time Student 14117 0ther 10068

18/04/2017	index
Occupation counts: No Code Required Professional Elementary Administrative and Secretarial Skilled Trades Associate Professional and Technical Managers, Directors and Senior Officials Sales and Customer Service Caring, Leisure and Other Service	149984 64111 58483 53254 48546 44937 39788 38523 37297
Process, Plant and Machine Operatives	34817

Industry counts: No Code Required 149984 Wholesale and Retail Trade 68878 Mining and Quarrying 53433 Real Estate 49960 Human Health and Social Work 49345 Education 40560 Transport and Storage 35240 Construction 30707 Accommodation and Food Service 25736 Public Adminstration and Defence 24908 Other Community, Social and Personal Service 20256 Financial and Insurance 16776 Agriculture, Forestry and Fishing 3957

Hours worked per week counts:
No Code Required 302321
31 to 48 Hours 153937
16 to 30 Hours 52133
49 or More Hours 35573
15 or Less Hours 25776

Approximated Social Grade counts:

C1 159642 No Code Required 124103 DE 123739 AB 82320 C2 79936

3. Plotting

For plotting frequency counts and pie charts of a single variable, modular functions were written:

In [8]:

```
print(inspect.getsource(plotting))
"""Module for plotting basic frequency counts and pie charts grouped by
one factor."""
import matplotlib.pyplot as plt
import textwrap
def plot bar group count(
        data, field, title, title pad=1.05, label pad=15, wrap chars=10
):
    """Plot a bar chart of frequencies, grouped by one factor."""
   # Get the frequencies.
    sizes = data.groupby(field).size()
   # Create axes and labels.
    axes = sizes.plot.barh()
    axes.set title(title, y=title pad)
    axes.set_xlabel("Frequency", labelpad=label_pad)
    axes.set ylabel(field, labelpad=label pad)
   # Create axes tick mark labels, with text wrapping.
    labels = ['\n'.join(textwrap.wrap(str(label), wrap chars, break lon
g words=False)) for label in sizes.keys()]
    axes.set yticklabels(labels)
    return axes
def plot pie group count(
        data, field, title, percent format="%1.1f%%", title pad=1.1
):
    """Plot a pie chart of frequencies, grouped by one factor."""
   # Get the frequencies.
    sizes = data.groupby(field).size()
   # Create axes and labels.
    axes = sizes.plot.pie(autopct=percent format)
    axes.set title(title, y=title pad)
    axes.set vlabel('')
    axes.axis("equal")
    return axes
```

According to the sample data, the South East of England and London have the highest populations (shown in the plot below). Wales and the North East of England have the smallest populations in the UK.

In [9]:

```
plt.figure(figsize=(12, 9))
plotting.plot_bar_group_count(
    df_translated,
    'Region',
    'Frequencies of Resident Regions in 2011 Census Sample',
);
```


The largest employment group corresponds to the one with no code required, meaning that the largest group of people is the one containing those under 16, those who have never worked, and students or schoolchildren living away during the term-time. Within the rest of the data, The largest groups are elementary occupations or professional groups. The smallest group is the process, plant, and machine operatives.

In [10]:

```
plt.figure(figsize=(12, 9))
plotting.plot_bar_group_count(
    df_translated,
    'Occupation',
    'Frequencies of Resident Occupations in 2011 Census Sample',
);
```


With respect to age, the largest group is the one containing children under the age of 15. The smallest group contains those people over the age of 75. An interesting point to note is that for groups within the bounds of 16 and 64 years, the frequency counts are very similar.

In [11]:

```
plt.figure(figsize=(12, 9))
plotting.plot_pie_group_count(
    df_translated,
    'Age',
    'Proportions of Resident Ages in 2011 Census Sample',
);
```

Proportions of Resident Ages in 2011 Census Sample

Examining the proportions of the sample by their economic activity, the largest group is the group of people by far is those who are employed. The second largest group is the group for which there is no code, which means that they are children under the age of 16, full time students, or schoolchildren who live elsewhere during term-time. There is also a large group of those who are retired, which captures the nature of the aging population in the UK. Aside from these observations, the group sizes are fairly similar -- and range from around 2% of the total to 7% of the total.

In [12]:

```
plt.figure(figsize=(12, 9))
plotting.plot_pie_group_count(
    df_translated,
    'Economic Activity',
    'Proportions of Resident Economic Activity in 2011 Census Sample',
);
```

Proportions of Resident Economic Activity in 2011 Census Sample

Additional Requirements

1. Two-way frequency tables

For producing the following two-way frequency tables, the pandas function crosstab was used.

For all industries aside from agriculture, London has a far higher number of the working population than the rest of the regions -- especially the North East of England, which has a significantly lower number of people working in all industries than the rest of the country. In addition, agriculture is the industry with the fewest workers.

In [13]:

pd.crosstab(df_translated['Region'], df_translated['Industry'])

Out[13]:

Industry	Accommodation and Food Service	Agriculture, Forestry and Fishing	Construction	Education	Financial and Insurance	Hum Heal and Soci Wor
Region						
East Midlands	1936	429	2500	3280	844	3952
East of England	2336	616	3508	4291	2199	4977
London	4054	55	3700	5373	4016	6109
North East	1300	132	1574	1836	524	2524
North West	3355	357	3778	4890	1597	6764
South East	3566	510	4895	6593	3059	7344
South West	2712	697	3033	4039	1510	5085
Wales	1641	403	1731	2313	594	2887
West Midlands	2281	396	2960	3984	1149	4848
Yorkshire and the Humber	2555	362	3028	3961	1284	4855

Examining a two-way frequency table of approximated social grade and occuption, by far the most frequent combination is where no code is required for either. As the social grades change, the most frequent occupation in that group also changes. For example: in the social group AB (the highest social code) the largest numbers of people are employed in managerial/professional occupations (generally high paying jobs), whereas in the social code DE (the lowest social code) the highest numbers of people seen to be employed in elementary/process operatives occupations (which tends to be lower paid).

In [14]:

pd.crosstab(df_translated['Occupation'], df_translated['Approximated Social Grade'])

Out[14]:

Approximated Social Grade	AB	C1	C2	DE	No Code Required
Occupation					
Administrative and Secretarial	3000	44922	2353	2252	727
Associate Professional and Technical	7050	35435	647	986	819
Caring, Leisure and Other Service	1061	6343	15555	13860	478
Elementary	902	7010	6500	42433	1638
Managers, Directors and Senior Officials	19190	18555	584	967	492
No Code Required	1051	17787	2062	12169	116915
Process, Plant and Machine Operatives	413	1719	11157	21087	441
Professional	48104	13223	891	1009	884
Sales and Customer Service	964	12184	2997	21347	1031
Skilled Trades	585	2464	37190	7629	678

2. Dataset queries

This requirement revolved around filtering through data and returning insightful information.

Analysing the number of economically active people by region, we find that that the largest number of people live in the South East and London. These locations both have the highest populations, and so this is the expected effect.

In [15]:

```
# Filter the dataset to only contain economically active individuals.
economic_activity = df[df["Economic Activity"].isin(range(1, 5))]
economic_activity = utils.translate(economic_activity)

pd.crosstab(index=economic_activity['Region'], columns='count')
```

Out[15]:

col_0	count
Region	
East Midlands	23106
East of England	30568
London	44454
North East	12897
North West	35204
South East	45550
South West	27453
Wales	14877
West Midlands	27930
Yorkshire and the Humber	26843

In [16]:

```
plt.figure(figsize=(12, 9))
plotting.plot_bar_group_count(
    economic_activity,
    'Region',
    'Frequencies of Economically Active Resident Regions in 2011 Census Sample',
);
```


Examining the number of economically active people by age, the largest groups are those within the range of 25 to 64. This is as would be expected, due to the largest total number of people being in those categories. Furthermore, the number of economically people over the age of 65 is significantly lower -- again, as would be expected due to the proportion of these people who are retired.

In [17]:

```
pd.crosstab(index=economic_activity['Age'], columns='count')
```

Out[17]:

col_0	count
Age	
16 to 24	41663
25 to 34	64326
35 to 44	67050
45 to 54	65736
55 to 64	40583
65 to 74	8022
75 and Over	1502

In [18]:

```
plt.figure(figsize=(12, 9))
plotting.plot_bar_group_count(
    economic_activity,
    'Age',
    'Frequencies of Economically Active Resident Ages in 2011 Census Sample',
);
```

Frequencies of Economically Active Resident Ages in 2011 Census Sample

The next piece of analysis checks whether there are any discrepancies between the student status of an individual and their economic activity. It would be illegal for a student to be anything other than an economically active (code 4) or economically inactive (code 6) student. The analysis confirms that there are no conflicts, by filtering the dataset based on this query and checking the length of the resulting list of records.

In [19]:

```
def digit_discrepancies_query_filter(df, variable_a, values_a, variable_b,
values_b):
    """Return records where two specified variables are in two specified sets."""
    return df[(df[variable_a].isin(values_a)) & (df[variable_b].isin(values_b))]
num_conflicting = len(digit_discrepancies_query_filter(df, "Student", [1], "Economic Activity", [1, 2, 3, 5, 7, 8, 9]))
print("There are " + str(num_conflicting) + " conflicting records.")
```

There are 0 conflicting records.

Additional analysis was conducted to calculate statistics relating to the hours worked by students. The following analysis finds the average number of hours per week worked by all students, and the average number of hours worked by economically active students only.

In [20]:

```
def hours categories(df):
    """Return a list of counts for the number of records in each working hours categ
ory."""
    codes = range(1, 5)
    return list(map(lambda i: len((df[df["Hours worked per week"] == i])), codes))
def elemwise product(a, b):
    """Return the elementwise product of two arrays."""
    def product(t):
        x, y = t
        return x * y
    return sum(map(product, zip(a, b)))
# Extract dataframes for different classes of students.
df students = df[df["Student"] == 1]
df full students = digit discrepancies query filter(df students, "Student", [1], "Ec
onomic Activity", [4])
# Retrieve the number of hours worked in each category by both datasets.
categories students = hours categories(df students)
categories full students = hours categories(df full students)
# Define the centre point of the hours categories.
num hours list = [7.5, 23, 39.5, 56.5]
# Calculate the total number of hours worked per student per week.
hours students = elemwise product(num hours list, categories students) / len(df stud
ents)
hours full students = elemwise product(num hours list, categories full students) / l
en(df full students)
print("%.2f" % hours students + " hours worked per week on average by all
students.")
print("%.2f" % hours full students + " hours worked per week on average by economica
lly active students.")
```

- 1.46 hours worked per week on average by all students.
- 13.07 hours worked per week on average by economically active students.

3. 3D plots

This section of analysis was conducted to represent the tables in additional requirement 1 as three dimensional plots. The code used for this purpose is provided below. The raw dataset (with codes instead of translated data values) was used to reduce clutter on the plot and make the labels easily visible.

In [21]:

```
print(inspect.getsource(plotting 3D))
"""Module for plotting two-way frequency tables as a 3D plot."""
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
import numpy as np
import pandas as pd
import textwrap
def plot 3d table count(
        data, field 1, field 2, title, xlabel, ylabel, title pad=1.05,
        label pad=20, alpha=0.8, wrap chars=15, rotation=(30, 150)
):
   # Get frequency table.
    freq = pd.crosstab(data[field 1], data[field 2])
    \# Create the grids giving the x and y values for each datapoint.
    x grid, y grid = np.meshgrid(range(len(freq.index)), range(len(fre
q.columns)))
   # Plot on 3D axes.
    axes = plt.axes(projection="3d")
    for x, y, z in zip(x_grid, y_grid, np.array(freq).T):
        axes.bar(x, z, zs=y, zdir='y', alpha=alpha)
   # Set relevant annotations.
    axes.set title(title, y=title pad)
    axes.set_xlabel(xlabel, labelpad=label_pad)
    axes.set ylabel(ylabel, labelpad=label pad)
    axes.set zlabel("Frequency", labelpad=label pad)
    axes.set xticks(range(len(freq.index)))
    axes.set yticks(range(len(freg.columns)))
    # Choose the labels.
    x labels = ['\n'.join(textwrap.wrap(str(label), wrap chars, break l
ong words=False)) for label in freq.index]
    y labels = ['\n'.join(textwrap.wrap(str(label), wrap chars, break l
ong words=False)) for label in freq.columns]
    # Set labels and viewing angle.
    axes.set xticklabels(x labels)
    axes.set yticklabels(y labels)
    axes.view init(*rotation)
    return axes
```

First, we show a plot for the direct frequency comparison of region and industry.

In [22]:

In [23]:

4. ipywidgets

This section required the use of ipywidgets to analyse the number of people working in industry for different regions and ages. Both age range and industry are listed in the drop down boxes below, and their selection will update the plot shown.

In [24]:

```
def industry func(region, age):
    """Plot a frequency bar chart broken down by region, for a given age group."""
    # Filter the data.
    filtered = df translated[(df translated['Region'] == region) & (df translated['A
ge'] == age)
    # Plot.
    name = "Industry count of ages " + age +" in " + region
    plt.figure(figsize=(10, 10))
    plotting.plot bar group count(
        filtered,
        'Industry',
        name,
        wrap chars = 20
    )
    # Flush existing figures to avoid build up.
    flush figures()
# Set up the ipywidget.
region values = df translated.Region.unique().tolist()
age values = df translated.Age.unique().tolist()
interact(industry_func, region=region_values, age=age values);
```

5. Plotting data on a map

This extension required data relating to different regions to be displayed on a map. The matplotlib extension library named basemap was used for this purpose.

basemap provides standard functionality that allows maps to be drawn with features that include coastlines and country borders. For producing choropleth maps that communicate information about individual regions, shapefiles had to be used. These are files that represent polygons (corresponding to some geographic body of interest) as a series of points with latitudes and longitudes, which can be manipulated according to values contained in specified datasets.

For this investigation, shapefiles of the government office regions (GORs) for English census regions were obtained from datashare.is.ed.ac.uk/handle/10283/2404. Unfortunately, this dataset did not include Wales - so the analysis was focused only on regions in England.

The following function was written to plot the populations of each region on a map of England:

In [25]:

```
if mapping_installed:
    print(inspect.getsource(mapping))
else:
    print("Mapping capabilities are not installed.")
```

Mapping capabilities are not installed.

The map was then generated by running the function:

In [26]:

```
if mapping_installed:
    mapping.plot_population_map(df_translated, "../data/regions")
    plt.show()
else:
    print("Mapping capabilities are not installed.")
```

Mapping capabilities are not installed.

6. Analysis of alternate dataset

The dataset chosen to analyse as an extension contained all balls bowled in the group stages of the 2016 Indian Premier League T20 cricket league. The data was obtained from cricsheet.org/downloads/ipl.zip. All .csv files not from the group stages were filtered out, and then the remaining files were read into the program.

In [27]:

```
IPLData = cricket_get_data("./data/cricket_data")
IPLData.head()
```

Out[27]:

2183 1 Rising Pune Supergiants Stadium Stadium Stadium Rising Pune Mumbai RG Sharm Rising Pune Sharm Rising Rising Pune Sharm Rising Risi		Match Number	Winner	Venue	Innings	Bowling Team	Ball No.	Batting Team	Striker	
2184 1 Supergiants Stadium 1 Supergiants 0.2 Indians Sharm 2184 1 Rising Pune Supergiants Stadium 1 Rising Pune Mumbai RG Rising Pune Wankhede Rising Pune Mumbai RG	2182	1			1	_	0.1		LMP Simmons] ;
2184 1 Supergiants Stadium 1 Supergiants 0.3 Indians Sharm 2185 1 Rising Pune Stadium 1 Rising Pune Supergiants Stadium 1 Rising Pune Supergiants Stadium 1 Rising Pune Mumbai RG Rising Pune Wankhede Rising Pune Mumbai RG	2183	1	l		1	"	0.2		RG Sharma	[
Supergiants Stadium 1 Supergiants 0.4 Indians Sharm Rising Pune Wankhede Rising Pune Mumbai RG	2184	1	l		1		0.3		RG Sharma	T
Rising Pune Wankhede Rising Pune Mumbai RG	2185	1			1	_	().4		RG Sharma	T:
1 2186 1	2186	1	Rising Pune Supergiants	Wankhede Stadium	1	Rising Pune Supergiants	0.5		RG Sharma] - -

When analysing each stadium, the data had to be processed to account of the fact that different numbers of matches were played at each. To make the comparisons fair, all values were normalised to be per match.

In [28]:

num_games_at_venue = IPLData.drop_duplicates('Match Number')['Venue'].value_counts()
num_games_at_venue

Out[28]:

Punjab Cricket Association IS Bindra Stadium, Mohali	7
Eden Gardens	7
M Chinnaswamy Stadium	7
Rajiv Gandhi International Stadium, Uppal	7
Dr. Y.S. Rajasekhara Reddy ACA-VDCA Cricket Stadium	6
Saurashtra Cricket Association Stadium	5
Feroz Shah Kotla	5
Maharashtra Cricket Association Stadium	4
Wankhede Stadium	4
Shaheed Veer Narayan Singh International Stadium	2
Green Park	2

The two most common numbers of runs scored off any given ball were dot balls and 1s -- which is logical, as they are the type of runs which are easiest to score for the batting team.

In [29]:

```
def get no games(row):
    """Act on crosstab row to normalise the number of runs scored per ball per gam
    # Normalise the row.
    venue count = num games at venue.index == row.name
    venue count = num games at venue[list(venue count).index(True)]
    normalised = row / venue count
    return normalised.astype(int)
# Create crosstab to give frequencies of runs scored per ball.
total runs = IPLData['Runs'] + IPLData['Extras']
total runs = total runs.rename('No. Of Runs on Ball')
total runs stadium = pd.crosstab(IPLData['Venue'], total runs)
# Remove single outlier.
del total runs stadium[7]
# Normalise rows and display.
total runs stadium = total runs stadium.apply(get no games, axis=1)
total runs stadium
```

Out[29]:

No. Of Runs on Ball	0	1	2	3	4	5	6
Venue							
Dr. Y.S. Rajasekhara Reddy ACA-VDCA Cricket Stadium	90	92	12	1	23	0	10
Eden Gardens	76	91	16	0	25	1	10
Feroz Shah Kotla	75	107	17	0	25	0	10
Green Park	82	93	7	0	30	1	10
M Chinnaswamy Stadium	73	100	13	0	30	0	18
Maharashtra Cricket Association Stadium	66	118	21	1	28	0	11
Punjab Cricket Association IS Bindra Stadium, Mohali	67	107	24	0	32	0	7
Rajiv Gandhi International Stadium, Uppal	83	97	18	1	23	0	8
Saurashtra Cricket Association Stadium	70	103	24	1	28	0	6
Shaheed Veer Narayan Singh International Stadium	78	107	23	0	25	1	5
Wankhede Stadium	87	90	16	1	27	0	11

Examining the data, the ground at which there was the most number of sixes was the M Chinnaswamy stadium, a ground which has a reputation for being one of the highest scoring grounds in the country. The first plot powered by ipywidgets allows the venue to be altered and the distribution of runs scored per ball to be observed:

In [30]:

The second plot powered by ipywidgets inverts the selections, so the number of runs per ball can be cycled through to observe the differences between stadiums. Again, the M Chinnaswamy stadium is revealed to be conmfortably the highest scoring ground -- in particular, with the number of sixes hit there dwarfing all other grounds.

In [31]:

Analysing the number of runs scored per ball across different over numbers, it can be seen that the frequency of boundaries increases as the over gets closer to the end of the game. Furthermore -- in the middle overs (between overs 7 and 15), the number of 1s and 2s increases significantly as the batsmen look to try and rotate strike. In the powerplay (the first 6 overs), there is an increased number of dots (0s) and boundaries (4s and 6s) when compared with the middle overs as the batsmen look to try and score when the fielding restrictions are in place.

The following crosstabs show this effect for the first 10 balls and last 10 balls of an innings. In particular, the number of 0s is significantly higher at the start of the innings.

In [32]:

num_runs_by_ball = pd.crosstab(IPLData['Ball No.'], total_runs)
num_runs_by_ball.head(n=10)

Out[32]:

No. Of Runs on Ball	0	1	2	3	4	5	6	7
Ball No.								
0.1	69	26	3	0	12	2	0	0
0.2	64	28	4	0	14	1	1	0
0.3	56	30	8	1	16	0	1	0
0.4	62	26	6	0	16	0	2	0
0.5	56	40	4	2	8	0	2	0
0.6	54	37	6	0	14	0	1	0
0.7	9	6	0	0	1	1	1	0
0.8	3	0	0	0	1	0	0	0
0.9	1	0	0	0	0	0	0	0
1.1	62	32	4	0	13	0	1	0

In [33]:

num_runs_by_ball.tail(n=10)

Out[33]:

No. Of Runs on Ball	0	1	2	3	4	5	6	7
Ball No.								
18.7	2	7	2	0	4	0	5	0
18.8	2	1	2	0	0	0	0	0
18.9	1	0	0	0	0	0	0	0
19.1	13	33	16	0	12	0	4	0
19.2	17	35	10	0	5	0	7	0
19.3	22	28	5	0	9	0	9	0
19.4	22	26	8	0	5	0	10	0
19.5	18	24	16	0	8	0	5	0
19.6	11	27	14	1	10	0	5	0
19.7	1	5	5	0	1	0	1	0

The following plot shows the same effect, but with the option of using a slider ipywidget to change the over being analysed.

In [34]:

```
def over num func(over number):
   """Return a plot of the number of runs scored per ball, filtered by over numbe
r."""
   # Retrive the relevant data.
   filtered = num runs by ball[np.ceil(num runs by ball.index) == over number]
   # Remove outlier.
   del filtered[7]
   # Create axes and plot.
   axes = filtered.plot(kind="barh", figsize=(12, 12), title="Count of Run Type for
each Ball in Over Number "+ str(over number))
   axes.set xlabel("Totals")
   axes.set ylabel("Balls in over " + str(over number))
   axes.legend(["Dot Ball", "One Run", "Two Runs", "Three Runs", "Four Runs", "Five
Runs", "Six Runs"], loc='center left', bbox to anchor=(1.0, 0.5))
    flush figures()
interact(over num func, over number=(1, 20));
```

In terms of runs per innings, there are significantly more scored in the first innings overall. This is as expected, given the fact that it is only possible for the team batting second to score a limited number of runs more than the team batting first (i.e. the game is over when the chasing team accumulates more runs than the team batting first).

In [35]:

```
# Get runs per innings.
innings_runs = IPLData.groupby(['Innings'])['Runs'].sum()
innings_runs = pd.Series.to_frame(innings_runs)

# Plot runs per innings.
innings_runs_plot = innings_runs.plot(kind="barh", legend=False, figsize=(10, 5), ti
tle="Total Runs per Innings")
innings_runs_plot.set_xlabel("Runs")
innings_runs_plot.set_ylabel("Innings Number")
innings_runs_plot;
```


Analysing extras conceded by innings, it becomes apparent that there are far more extras in the second innings than the first. This makes sense, as there is generally far more pressure on the bowling team in the second innings -- which would lead to more mistakes.

In [36]:

```
# Get extras per innings.
innings_extras = IPLData.groupby(['Innings'])['Extras'].sum()
innings_extras = pd.Series.to_frame(innings_extras)

# Plot extras per innings.
innings_extras_plot = innings_extras.plot(kind="barh", legend=False, figsize=(10, 5), title="Total Extras per Innings")
innings_extras_plot.set_xlabel("Extras")
innings_extras_plot.set_ylabel("Innings Number")
innings_extras_plot;
```


Comparing the types of the runs which were scored by each team revealed some interesting observations. For each team, the most common number of runs scored on any ball were 0s and 1s. This aligns with what would be expected -- the difficulty of scorign runs increases as the number of runs increases, so more runs are scored with lower frequency in general.

Interestingly, very few 3s were scored -- which may have been due to the fact that stadiums in India are quite small in general, and the ground is not big enough to allow the batsmen to run 3 runs.

The majority of teams scored similar amounts of each number of run. However, there are certain anomalies -- for example, Mumbai and Kolkata scored significantly less 2s than the other teams and RCB scored more 4s and 6s than any other team.

In [37]:

```
# Type of Runs by Teams
team_runs = IPLData['Runs'] + IPLData['Extras']
team_runs = team_runs.rename('Count of Run Type')
team_run_types = pd.crosstab(IPLData['Batting Team'], team_runs)
team_run_types
```

Out[37]:

Count of Run Type	0	1	2	3	4	5	6	7
Batting Team								
Delhi Daredevils	561	704	127	2	180	6	65	0
Gujarat Lions	552	693	125	6	208	5	52	0
Kings XI Punjab	544	710	154	5	193	1	54	0
Kolkata Knight Riders	466	741	108	6	189	4	62	0
Mumbai Indians	625	667	92	7	186	4	93	0
Rising Pune Supergiants	521	685	123	9	173	1	68	0
Royal Challengers Bangalore	471	729	129	4	215	6	121	1
Sunrisers Hyderabad	576	691	139	9	181	6	65	0

The following table presents those bowlers who took the most wickest in the competition. It can be seen that both RCB and Sunrisers Hyderabad have two entries in the top five.

In [38]:

```
def getBowlingTeam(row):
    record = allBowlers[allBowlers['Bowler'] == row.name]
    temp = record['Bowling Team']
    temp = temp.values

    return temp

allBowlers = IPLData.drop_duplicates(subset = 'Bowler')
bowlerswickets = IPLData[((IPLData['How Out'] != '-') & (IPLData['How Out'] != 'run out'))]
allwickets = bowlerswickets['Bowler'].value_counts()
allwickets = pd.Series.to_frame(allwickets)
allwickets.insert(1,'Team',None)
allwickets = allwickets.sort_values('Bowler',ascending = 0)
allwickets['Team'] = allwickets.apply(getBowlingTeam, axis=1)
allwickets.head()
```

Out[38]:

	Bowler	Team
YS Chahal	19	Royal Challengers Bangalore
B Kumar	18	Sunrisers Hyderabad
MJ McClenaghan	17	Mumbai Indians
SR Watson	16	Royal Challengers Bangalore
Mustafizur Rahman	16	Sunrisers Hyderabad

The following plot shows the same information but reveals how, interestingly, the best performing bowlers (with more than 15 wickets) are more sparesly represented than those bowlers with 15 and fewer wickets.

In [39]:

```
Top10WicketTakersGraph = allwickets.ix[:10].plot(kind = "Barh",figsize=(10,6),sort_c
olumns = True,title =("Highest Wicket Takers"),legend = False)
Top10WicketTakersGraph.set_xlabel("Number of Wickets Taken")
Top10WicketTakersGraph.set_ylabel("Bowler Name")
Top10WicketTakersGraph;
```


Analysing the dataset split according to each team, we find a surprising trend. For the teams who took the most wickets, these wickets were spread amongst many bowlers -- whereas in teams which did not take as many wickets, the large proportion of those wickets were shared out between 1 or 2 players.

In [40]:

```
def bowlingfunc(Team):
    teamNameWickets = bowlerswickets[bowlerswickets['Bowling Team'] == Team]
    name = "Total Wickets in " + Team
    plt.figure(figsize=(10, 7))
    plotting.plot_bar_group_count(
        teamNameWickets,
        'Bowler',
        name,
        wrap_chars = 20
    )
    flush_figures()

wickets = allwickets.Team.unique()
wickets = wickets.tolist()
interact(bowlingfunc, Team=wickets);
```

The top 10 run scorers for the IPL in 2016 were mainly in three categories. The top player was Virat Kohli (an RCB player), who had an excellent IPL season and scored far more runs than any other player. He was followed by 2 players who also had good seasons: AB de Villiers and David Warner. There is a significant gap between these three players and the remainder of the competition.

In [41]:

```
# Find the top run scorers.
allBatsmen = IPLData.drop_duplicates(subset='Striker')

def getBattingTeam(row):
    record = allBatsmen[allBatsmen['Striker'] == row.name]
    teamName = record['Batting Team']
    teamName = teamName.values
    return teamName

allBatsmen = IPLData.drop_duplicates(subset = 'Striker')
allruns = IPLData.groupby(['Striker'])['Runs'].sum()
allruns = pd.Series.to_frame(allruns)
allruns = allruns
allruns.insert(1, 'Team', None)
allruns = allruns.sort_values('Runs', ascending =0)
allruns['Team'] = allruns.apply(getBattingTeam, axis=1)
allruns.head()
```

Out[41]:

	Runs	Team
Striker		
V Kohli	919	Royal Challengers Bangalore
DA Warner	658	Sunrisers Hyderabad
AB de Villiers	603	Royal Challengers Bangalore
RG Sharma	489	Mumbai Indians
AM Rahane	480	Rising Pune Supergiants

The following plot displays the same data, and shows the large gap between the top three scorers and the remainder of the batsmen in the IPL.

In [42]:

Analysing run scoring per team shows a few interesting trends. In teams such as Royal Challangers Bangalore and the Sunrisers Hyderabad, multiple batsmen scored many more runs than any other people in the team. In other teams (which did not make the playoffs), only a single batsmen scored the majority of the runs -- for example the Rising Pune Supergiants and the Mumbai Indians. This suggests that to make more runs and win more games, a number of batsmen need to score many runs for the team.

In [43]:

```
def runscorers(Team):
    teamNameRuns = allruns[allruns['Team'] == Team]
    teamRunsGraph = teamNameRuns.plot(kind = "Barh", figsize=(7,7), sort_columns = Tru
e,title =("Highest Run Scorers for " + Team), legend = False)
    teamRunsGraph.set_xlabel("Number of Runs Scored")
    teamRunsGraph.set_ylabel("Bastmen Name")
    flush_figures()

runs = allruns.Team.unique()
runs = runs.tolist()

interact(runscorers, Team=runs);
```

Looking at the number of runs each team scored, we find that the RCB scored significantly more runs than all of the other teams. This could have been due to the fact that they played all of their home games at the M Chinnaswamy stadium (a significantly smaller ground than others used in the IPL) -- in addition to the RCB having 2 of the best batsmen playing for them. All of the other teams are relatively closer together in terms of runs, which further exaggerates the number of runs which RCB made.

In [44]:

```
# Total Team Runs
teamruns = IPLData.groupby(['Batting Team'])['Runs'].sum()
teamruns = pd.Series.to_frame(teamruns)
teamruns = teamruns.sort_values('Runs',ascending = 0)
teamruns
```

Out[44]:

	Runs
Batting Team	
Royal Challengers Bangalore	2529
Mumbai Indians	2092
Kings XI Punjab	2051
Sunrisers Hyderabad	2038
Gujarat Lions	2014
Kolkata Knight Riders	2002
Delhi Daredevils	1995
Rising Pune Supergiants	1962

The following plot shows the same data, but emphasises just how dominant RCB were in terms of run scoring.

In [45]:

```
teamRunsGraph = teamruns.plot(kind = "barh",legend = False,title = "Total Number of
Runs by Team",figsize=(7,4))
teamRunsGraph.set_xlabel("Number of Runs")
teamRunsGraph.set_ylabel("Team")
teamRunsGraph;
```


The team which had the most extras was the Kolkata Knight Riders, and the other teams were all relatively even -- aside from RCB and Kings XI Punjab, who had the lowest number of extras throughout the season.

In [46]:

```
# Total Team Extras
teamextras = IPLData.groupby(['Batting Team'])['Extras'].sum()
teamextras = pd.Series.to_frame(teamextras)
teamextras = teamextras.sort_values('Extras',ascending = 0)
teamextras
```

Out[46]:

	Extras
Batting Team	
Kolkata Knight Riders	121
Gujarat Lions	116
Delhi Daredevils	109
Mumbai Indians	102
Sunrisers Hyderabad	102
Rising Pune Supergiants	101
Royal Challengers Bangalore	93
Kings XI Punjab	83

The Kolkata Knight Riders took the most wickets throughout the season. They were followed by RCB, and both teams made the playoffs. The teams which took the least number of wickets were Mumbai Indians and the Gujarat Lions, although surprisingly the Gujarat Lions were the team which had the highest number of wins. This shows that they were extremely reliant on their batting to win their games -- something which was furthered by the fact that they only won 1 game batting first, meaning that their bowling lineup was unable to take wickets and win games.