אלגברה ב' (104168) — אביב 2020-2021 תרגול 10 — תכונות של העתקות, פירוק לערכים סינגולריים, פירוק פולארי ותבניות בילינאריות

אלעד צורני

1 ביולי 2021

1 העתקות נורמליות וכו'

1.1

תיקרא $T\in \mathrm{End}_{\mathbb{F}}\left(V\right)$.($\mathbb{F}=\mathbb{C}$) $F=\mathbb{R}$ תיקרא מנימית מעל מרחב מכפלה פנימית מעל

- $T^*T = TT^*$ נורמלית אם •
- $T = T^*$ אם (הרמיטית) אם •
- $T^* = T^{-1}$ אורתוגונלית (יוניטרית) אם •

משפט 1.2 (משפט הפירוק הספקטרלי). $T \in \operatorname{End}_{\mathbb{C}}(V)$ נורמלית אם ורק אם קיים בסיס אורתונורמלי לפיו היא אלכסונית.

1.2 תרגילים

תרגיל 1. בתרגיל זה נראה שכל העתקה היא צירוף לינארי של 4 העתקות יוניטריות. בתרגיל 1. בתרגיל זה נראה שכל העתקה היא צירוף לינארי של 3 בתרגיל זה נראה שכל \mathbb{C} ותהי V מרחב מכפלה פנימית מעל

- ערכים עצמיים $S\in \mathrm{End}_{\mathbb{C}}(V)$ הרמיטית עם ערכים עצמיים אי־שליליים. הראו כי יש $S\in \mathrm{End}_{\mathbb{C}}(V)$ הרמיטית עם ערכים עצמיים . $S^2=T$ אי־שליליים עבורה
 - ביים. T ממשיים. T ממשיים. T ממשיים.
 - ונסמן T את אוסף הערכים העצמיים של $\sigma(T)$ נסמן ב-3.

$$.c(T) := \max\{|\lambda| \mid \lambda \in \sigma(T)\}$$

תהי

$$.\tilde{T} \coloneqq \frac{T}{c\left(T\right)}$$

הרמיטית אי־שליליים. $\operatorname{Id}_V - \tilde{T}$ הראו כי

- . בירוף לינארי של שתי העתקות הרמיטיות. T
- .5 נניח ש־T הרמיטית. הראו ש־T צירוף לינארי של שתי העתקות יוניטריות.
 - הסיקו כי T צירוף לינארי של ארבע העתקות יוניטריות.

 $B = (v_1, \dots, v_n)$ הרמיטית, לכן נורמלית ולכן לפי משפט הפירוק הספקטרלי קיים בסיס אורתונורמלי הולכן לפי משפט הצחיום T .1 בסיס אורתונורמלית עם ערכים עצמיים $\lambda_1, \dots, \lambda_n \geq 0$ על האלכסון. נגדיר

$$S: V \to V$$
$$v_i \mapsto \sqrt{\lambda_i} v_i$$

ואז

$$S(v_i) = \lambda_i v_i$$

. נקבל $\overline{[S]_B}^t = \overline{[S]_B}^t$ וכי $\overline{[S]_B}^t = \overline{[S]_B}$ וכי S = T ולכן ולכן S = T

- לכל לכל $[T]_B=\overline{[T]_B}^t$, לכסינה. אבל, לפיו T לפיו לפיו T לפיו לכסינה. אבל, $B=(v_1,\ldots,v_n)$ ולכן לכל $i\in[n]$ ולכן לכל $i\in[n]$
 - 3. יהי B בסיס אורתונורמלי עבורו $[T]_B$ אלכסונית. אז

$$\left[\tilde{T}\right]_{B} = \frac{1}{c(T)} \left[T\right]_{B}$$

.[0, 1] אלכסונית עם ערכים עצמיים בקטע [0, 1]. אז גם $\left[\mathrm{Id}_V-\tilde{T}^2\right]_B$ אלכסונית עם ערכים עצמיים בקטע ונקבל כי הערכים העצמיים של $\mathrm{Id}_V-\tilde{T}^2$ הרמיטית.

4. נכתוב

$$.T = \frac{T + T^*}{2} + \frac{T - T^*}{2}$$

מתקיים

$$\left(\frac{T+T^*}{2}\right)^* = \frac{T^* + T^{**}}{2} = \frac{T+T^*}{2}$$
$$\left(\frac{T-T^*}{2}\right)^* = \frac{T^* - T^{**}}{2} = \frac{T^* - T}{2}$$

אבל

$$\left(\frac{T - T^*}{2i}\right)^* = i\left(\frac{T - T^*}{2}\right)^* = -i\frac{T - T^*}{2} = \frac{T - T^*}{2i}$$

ולכן

$$T = \frac{T + T^*}{2} + i \left(\frac{T - T^*}{2i} \right)$$

צירוף לינארי של שתי העתקות הרמיטיות.

יוניטריות לכן נניח נרצה (T), g (T) וניטריות לכן נניח לכן שתי העתקות של שתי שלי שתי מספיק להראות כי T צירוף של שתי העתקות יוניטריות, לכן נניח בירון

$$.T = \frac{f(T) + g(T)}{2}$$

כמו מקודם, נכתוב $g\left(T\right)=A-iB$ עבור A,B עבור $f\left(T\right)=A+iB$ נקבל

$$.T = \frac{A + iB + A - iB}{2} = A$$

אז T אוניטריות עם B. מיוניטריות עם T. לכן היא מתחלפת של נורמלית ולכן נורמלית ולכן נורמלית אז T. לכן היא

$$Id_V = f(T) f(T)^*$$

$$= (T + iB)(T - iB)$$

$$= T^2 + B^2$$

ואז

$$.B^2 = \mathrm{Id}_V - T^2$$

 $B = \sqrt{\operatorname{Id}_V - T^2}$ הרמיטית עם ערכים עצמיים אי־שליליים ולכן קיים לה שורש. ניקח $\operatorname{Id}_V - T^2$ הרמיטית עם ערכים עצמיים אי־שליליים ולכן קיים לה $\operatorname{Id}_V - T^2 = f(T)$ ולכן גם $\operatorname{Id}_V = f(T) = f(T)^*$ יוניטרית. נשים לב כי $\operatorname{Id}_V = T^2 + B^2 = f(T) = f(T)$ ולכן גם $\operatorname{Id}_V = T^2 + B^2 = f(T)$ ולכן גם $\operatorname{Id}_V = T^2 + B^2 = f(T)$ יוניטרית.

העתקות של שתי צירוף של שתי העתקות וכי H_1, H_2 כל אחת צירוף של שתי העתקות הרמיטיות וכי $T = \alpha H_1 + \beta H_2$ כל אחת צירוף של שתי העתקות הניטרות, לכן

$$T = \alpha \left(aU_1 + bU_2\right) + \beta \left(cU_3 + dU_4\right)$$

צירוף לינארי של ארבע העתקות יוניטריות.

2 פירוק לערכים סינגולריים

2.1

, $\sqrt{T^*T}$ הערכים העצמיים של T הם הערכים הסינגולריים של . $T \in \operatorname{End}_{\mathbb{F}}(V)$. תהי תהי עמיים של .T הם הערכים העצמיים של .T הטינגולריים של .T הם הערכים העצמיים של .T הערכים הגיאומטרי שלו.

משפט 2.2 (פירוק לערכים סינגולריים). $T \in \operatorname{End}_{\mathbb{F}}(V)$ תהי $T \in \operatorname{End}_{\mathbb{F}}(V)$ של $T \in \operatorname{End}_{\mathbb{F}}(V)$ של $T \in \operatorname{Col}_{\mathcal{F}}(V)$ של $T \in \operatorname{Col}_{\mathcal{F}}(V)$

 $V \in M_m\left(\mathbb{F}\right)$ ו'ע $U \in M_n\left(\mathbb{F}\right)$ קיימות (פירוק לערכים סינגולריים של מטריצה). תהי $A \in M_{n imes m}$ תהי עבורן $U \in M_n\left(\mathbb{F}\right)$ ויניטריות) וקיימת מטריצה מלבנית אלכסונית Σ עבורן

$$A = U\Sigma V^*$$

2.2 חישוב

אלגוריתם 2.4 (מציאת SVD). כאשר נרצה למצוא פירוק לערכים סינגולריים נבצע את השלבים הבאים.

- 1. נמצא בסיס אורתונורמלי של וקטורים עצמיים עבור $T^{st}T$. אפשר לעשות את זה למשל לפי גרם־שמידט. נסדר אותו לפי סדר יורד של הערכים העצמיים. זה יהיה הבסיס B.
- נקבל $B=(v_1,\ldots,v_n)$ בור כל וקטור σ הערך הסינגולרי כאשר ל σ באשר על נסתכל על נסתכל על $B=(v_1,\ldots,v_n)$ בור כל וקטור אורתונורמלית קבוצה סדורה אורתונורמלית

$$\tilde{C} = \left(\frac{1}{\sigma_1}T(v_1), \dots, \frac{1}{\sigma_n}T(v_n)\right)$$

 $C = \tilde{C}$ אחרת ניקח של C של C אורתונורמלי לבסיס אורתונות, נשלים את מטריצות, נשלים את 3.

דוגמה 2.5. תהי

$$.A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \in M_{3,2} (\mathbb{C})$$

 e_1-e_2 . $\sqrt{3},1$ הם A הם A הם A ולכן הערכים הסינגולריים של $AA^*=\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ מתקיים $B=\begin{pmatrix} \frac{e_1-e_2}{\sqrt{2}},\frac{e_1+e_2}{\sqrt{2}} \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ וקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ ווקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$ ווקטור עצמי של 3 ו $AA^*=\begin{pmatrix} e_1-e_2 & e_1+e_2 \\ \sqrt{2} & e_1 \end{pmatrix}$

$$\tilde{C} = \left(\frac{1}{\sqrt{3}}A\left(\frac{e_1 - e_2}{\sqrt{2}}\right), A\left(\frac{e_1 + e_2}{\sqrt{2}}\right)\right)$$
$$= \left(\frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}\right)$$

ונפתור את המשוואות $w=\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ נסמן $w=\begin{pmatrix} a \\ c \end{pmatrix}$ ונפתור את המשוואות ונשלים קבוצה סדורה זאת לבסיס אורתונורמלי של

$$2a - b + c = 0$$
$$b + c = 0$$

ינגדיר
$$v_3=rac{1}{\sqrt{3}}egin{pmatrix}1\\1\\-1\end{pmatrix}$$
 כדי לקבל נקבל נקבל אחר נרמול נקבל $||w||=3$. כעת, $w=\begin{pmatrix}1\\1\\-1\end{pmatrix}$

$$.C \coloneqq \tilde{C} * (v_3)$$

אז

$$A = [\mathrm{Id}_{\mathbb{C}^3}]_E^C \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} [\mathrm{Id}_{\mathbb{C}^2}]_B^E$$

כאשר מתקיים

$$[\operatorname{Id}_{\mathbb{C}^2}]_B^E = \left([\operatorname{Id}_{\mathbb{C}^2}]_E^B\right)^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix}$$

וגם

$$. [\mathrm{Id}_{\mathbb{C}^3}]_E^C = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{pmatrix}$$

2.3 תרגילים

 T^{2} של הסינגולריים או הפריכו: הערכים הסינגולריים של T^{2} הם ריבועי הערכים הסינגולריים של

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 הטענה איננה נכונה, למשל עבור

3 פירוק פולארי

3.1

הגדר אי־שלילית אם (הרמיטי) נקרא מוגדר אי־שלילית). אופרטור מוגדר אי־שלילית) (אופרטור מוגדר אי־שלילית). אופרטור $T\in \mathrm{End}_{\mathbb{F}}(V)$ אי־שלילית אי $T\in \mathrm{End}_{\mathbb{F}}(V)$ אי־שלילית אי־שלילית אי־שלילית אי־שלילית אי־שלילית אי־שלילית). אופרטור מוגדר אי־שלילית אור אי־שלילית אי־שליל

T=S $\sqrt{T^*T}$ עבורה $S\in \operatorname{End}_{\mathbb{F}}(V)$. יש איזומטריה (צירוק פולארי). $T\in \operatorname{End}_{\mathbb{F}}(V)$ משפט 3.2 (פירוק פולארי).

הקודם $v \in V$ לכל $T^*Tv, v = \langle Tv, Tv \rangle \geq 0$ מוגדר אי־שלילית כי T^*T מוגדר אי־שלילית, וכי שורש זה הרמיטי. $\mathbb{F} = \mathbb{C}$ שעבור

P= ניקח ויקח . $A=W\Sigma V^*$ כדי למצוא פירוק פולארי ניעזר בפירוק לערכים סינגולריים. ניתן לכתוב מירוק פולארי ניעזר בפירוק לערכים סינגולריים. ניתן לכתוב ארישטרים פולארי ניעזר בפירוק לערכים סינגולרית (ויניטרית) כהרכבה של כאלה. $U=WV^*$ ו־ $U=WV^*$

3.2 תרגילים

תרגיל 3. מצאו את הפירוק הפולארי עבור

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z \\ 2x \\ 3y \end{pmatrix}$$

פתרון. מתקיים

$$[T]_E = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$
$$[T^*]_E = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$
$$[T^*T]_E = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ולכן הערכים הסינגולריים של $B=(e_2,e_1,e_3)$. יש לנו בסיס אורתונורמלי של $B=(e_2,e_1,e_3)$ של וקטורים עצמיים. כדי לקבל את הבסיס השני, נפעיל את T וננרמל. נקבל

$$.C = \left(\frac{1}{3}T(e_2), \frac{1}{2}T(e_1), T(e_3)\right) = (e_3, e_2, e_1)$$

אז

$$. [T]_E = W\Sigma V^*$$

עבור

$$\Sigma = \begin{bmatrix} \sqrt{T^*T} \end{bmatrix}_B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$V = \begin{bmatrix} \operatorname{Id}_{\mathbb{C}^3} \end{bmatrix}_E^B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$W = \begin{bmatrix} \operatorname{Id}_{\mathbb{C}^3} \end{bmatrix}_E^C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

מתקיים

$$V\Sigma V^* = P_E^B \left[\sqrt{T^*T} \right]_B P_B^E = \left[\sqrt{T^*T} \right]_E$$

ולכן

$$[T]_E = W\Sigma V^*$$

$$= WV^*V\Sigma V^*$$

$$= WV^* \left[\sqrt{T^*T} \right]_E$$

$$= \left[\sqrt{T^*T} \right]_C^E$$

נסמן WV^* , שהינה יוניטרית כי היא מיוצגת על ידי , $S:=\left(
ho_E^E
ight)^{-1}(U)$ נסמן יוניטרית כמכפלת יוניטרית כמכפלת יוניטרית נסמן T=S על ידי נקבל T=S על ידי נקבל אורתונורמלי. נקבל ידי אורתונורמלי.

$$.[S]_E = U = WV^* = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

. באופן כללי ראינו בתרגיל כי $[T]_E = P_E^C P_E^B$ כאשר כאינו בתרגיל לערכים סינגולריים.