Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

S P e a g

Client

CCS_CN

Certificate No:

Z16-97077

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 817

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 31, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Lu Bingsong

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	Power Meter NRP2 101919 01-Jul-15 (CTTL, No.J15X04256)		Jun-16	
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16	
Reference Probe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17	
DAE4 SN 771		02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17	
Network Analyzer E5071C MY46110673		26-Jan-16 (CTTL, No.J16X00894)	Jan-17	

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Deputy Director of the laboratory

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z16-97077

Approved by:

Page 1 of 8

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

S D C A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97077

Page 2 of 8

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

S D E A Q CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.0 mW/g	
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	6.15 mW/g	
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 20.4 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.07 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW /g ± 20.4 % (k=2)

Certificate No: Z16-97077

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

S D E A G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.en

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0Ω+ 4.41jΩ		
Return Loss	- 27.0dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7Ω+ 4.00jΩ		
Return Loss	- 26.6dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.269 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SDEAG
	OFEAG

Certificate No: Z16-97077

Page 4 of 8

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Date: 05.31.2016

In Collaboration with

S D E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.814$ S/m; $\epsilon r = 38.78$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.8 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.15 W/kgMaximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Certificate No: Z16-97077

Page 5 of 8

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

p e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z16-97077

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Date: 05.31.2016

In Collaboration with

S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.936$ S/m; $\varepsilon_r = 53.17$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.64 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

Certificate No: Z16-97077

Page 7 of 8

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

In Collaboration with

p e a CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z16-97077

D2450V2, Serial No.817 Extended Dipole Calibrations

Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

	D2450V2 Serial No.817					
	2450 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
5.31.2016	-26.988		50.995	-	4.4109	
5.30.2017	-27.037	0.18	51.424	0.469	3.8285	0.5824

D2450V2 Serial No.817						
	2450 Body					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
5.31.2016	-26.560	-	47.743		4.0044	
5.30.2017	-26.006	2.09	49.534	1.791	5.1394	1.135

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Dipole Verification Data D2450V2 Serial No.817 2450 MHz-Head

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

2450 MHz-Body

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.en

lac MRA C

Client

CCS_CN

Certificate No:

Z16-97078

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1095

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 25, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
ReferenceProbe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
NetworkAnalyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Function

Signatu

Calibrated by:

Name Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: May 31 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97078

Page 1 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97078

Page 2 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.8 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.9 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078 Page 3 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.71 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.0 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	82.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.4 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

N	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	5.01 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.4 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5800 MHz

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	5.17 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.83 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.1 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078 Page 5 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.39 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

·	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.58 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		Acres to

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.1 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.36 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.97 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.8 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078 Page 7 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Body TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.71 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 8 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.2Ω - 5.46jΩ
Return Loss	- 25.1dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2Ω - 3.86jΩ
Return Loss	- 26.2dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	53.4Ω - 5.61jΩ			
Return Loss	- 23.9dB			

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.6Ω - 1.04jΩ			
Return Loss	- 24.0dB			

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.0Ω - 6.28jΩ		
Return Loss	- 23.4dB		

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.5Ω - 3.51jΩ
Return Loss	- 29.0dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.7Ω - 1.89jΩ			
Return Loss	- 30.4dB			

Certificate No: Z16-97078 Page 9 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.0Ω - 3.83jΩ
Return Loss	- 25.5dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.3Ω + 0.88jΩ
Return Loss	- 21.4dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.1Ω - 6.15jΩ
Return Loss	- 22.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.308 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z16-97078 Page 10 of 16

Date of Issue: August 28, 2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 05.23.2016

Report No .: C170825S01-SF

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz; σ = 4.614 mho/m; ϵ r = 36.82; ρ = 1000 kg/m3, Medium parameters used: f = 5300 MHz; σ = 4.713 mho/m; ϵ r = 36.71; ρ = 1000 kg/m3, Medium parameters used: f = 5500 MHz; σ = 4.911 mho/m; ϵ r = 36.41; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.006 mho/m; ϵ r = 36.27; ρ = 1000 kg/m3, Medium parameters used: f = 5800 MHz; σ = 5.171 mho/m; ϵ r = 36.05; ρ = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(5.32,5.32,5.32); Calibrated: 2016/2/19, ConvF(5.02,5.02,5.02); Calibrated: 2016/2/19, ConvF(4.85,4.85,4.85); Calibrated: 2016/2/19, ConvF(4.52,4.52); Calibrated: 2016/2/19, ConvF(4.45,4.45,4.45); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.75 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.42 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Certificate No: Z16-97078

Page 11 of 16

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 36.1 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.13 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Certificate No: Z16-97078

Page 12 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

Impedance Measurement Plot for Head TSL

Certificate No: Z16-97078

Page 13 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Date: 05.25.2016

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz; $\sigma = 5.391$ mho/m; $\epsilon = 48.36$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5300 MHz; $\sigma = 5.513$ mho/m; $\epsilon = 48.26$; $\epsilon = 1000$ kg/m3, Medium parameters used: $\epsilon = 5500$ MHz; $\epsilon = 5.582$ mho/m; $\epsilon = 49.14$; $\epsilon = 1000$ kg/m3, Medium parameters used: $\epsilon = 5600$ MHz; $\epsilon = 5.703$ mho/m; $\epsilon = 49.04$; $\epsilon = 1000$ kg/m3, Medium parameters used: $\epsilon = 5800$ MHz; $\epsilon = 5.932$ mho/m; $\epsilon = 48.71$; $\epsilon = 1000$ kg/m3,

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(4.48,4.48,4.48); Calibrated: 2016/2/19, ConvF(4.29,4.29,4.29); Calibrated: 2016/2/19, ConvF(3.97,3.97,3.97); Calibrated: 2016/2/19, ConvF(3.72,3.72,3.72); Calibrated: 2016/2/19, ConvF(3.91,3.91,3.91); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.16 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.52 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 17.8 W/kg

Certificate No: Z16-97078 Page 14 of 16

In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.84 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.68 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.24 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: Z16-97078

Page 15 of 16

Date of Issue: August 28, 2017

Report No .: C170825S01-SF

In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z16-97078

Page 16 of 16

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

D5GHzV2, Serial No.1095 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

D5GHzV2 Serial No.1095							
Head							
Date of Measurement		Return Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
F200MH-	5.25.2016	-25.102		49.185		-5.4603	
5200MHz	5.23.2017	-23.827	5.08	48.677	0.508	-5.2048	0.2555
E200MU¬	5.25.2016	-26.188		47.200		-3.8631	
5300MHz	5.23.2017	-27.825	6.25	46.373	0.827	-3.9051	0.042
5500MHz	5.25.2016	-23.945		53.440		-5.6064	
3300WHZ	5.23.2017	-25.614	6.97	51.413	2.027	-5.6890	0.0826
F600MH-	5.25.2016	-24.034		56.621		-1.0375	
5600MHz	5.23.2017	-24.251	0.90	55.234	1.387	-1.4716	0.4341
EQOOMU-	5.25.2016	-23.416		53.000		-6.2849	
5800MHz	5.23.2017	-25.872	10.5	54.861	1.861	-6.7383	0.4534

D5GHzV2 Serial No.1095							
	Body						
Date of Me	asurement	Return Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
5200MHz	5.25.2016	-28.955		49.469		-3.5100	
3200MHZ	5.23.2017	-28.384	1.97	50.314	0.845	-3.5312	0.0212
5300MHz	5.25.2016	-30.378		47.724		-1.8910	
	5.23.2017	-31.358	3.22	46.806	0.918	-1.5284	0.3626
5500MI I-	5.25.2016	-25.463	-	54.013		-3.8327	
5500MHz	5.23.2017	24.064	5.49	52.539	1.474	-3.5216	0.3111
ECONALI-	5.25.2016	-21.389		59.271		0.8789	
5600MHz	5.23.2017	-22.755	6.39	58.225	1.046	0.8415	0.0374
5800MHz	5.25.2016	-22.374		55.140		-6.1476	
	5.23.2017	-23.183	3.62	55.119	0.021	-6.6894	0.5418

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Dipole Verification Data D5GHzV2 Serial No.1095

D5GHzV2-Head

Dipole Verification Data D5GHzV2 Serial No.1095 D5GHzV2-Body

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Date of Issue: August 28, 2017

Schmid & Partner Engineering AG

e a

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fex +41 44 245 9779. info@speng.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over sightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAI: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is

E-Stop Failures: Touch detection may be mallunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and diff accumulated in the Estop. To prevent Estop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc:

11.12.2009

Report No .: C170825S01-SF Date of Issue: August 28, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrause 43, 8004 Zurich, Seitzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taretura Series Calibration Service

Appreciated by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the algostories to the EA Multilateral Agreement for the recognition of calibration certificates

CCS-CN (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1245_Jul17

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BM - SN: 1245 Disject

Calibration procedure(s) **QA CAL-06.v29**

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: July 20, 2017

This calibration certificate documents the traceability to national standards, which realize the shysical units of measurements (St). The measurements and the uncertainties with confidence protostality are given on the following pages and are part of the confidence.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hamility < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D+8	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	00-Sep-16 (No:19065)	Sep-17
Secondary Standards	ID: 1	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	US-Jan-17 (in house check)	In house check: Jan-18
Colibrator Box V2.1	SE UM9 006 AA 1002	05-Jan-17 (in house check)	In house check; Jan-18

Name

Eurotion

Calibrated by:

Dominique Steffen

Laboratory Technician

Signatura

Approved by:

Swam William

Deputy Manager

Issued: July 20, 2017

This calibration contribute shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1245_Jul17

Page 1 of 5

Page 32 of 47

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zeoglessentrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

According by the Swiss Accordination Service (SAS)

The Swiss Accordination Service is one of the signaturies to the EA

Multilisteral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245_Jul17

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

DC Voltage Measurement

A/D - Converter Resolution nominal

High Bange: Low Range:

1L9B = 1LSB = $6.1 \mu V$, 61nW . full range = -100...+300 mV full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	z
High Range	405.976 ± 0.02% (k=2)	404.686 ± 0.02% (k=2)	405.823 ± 0.02% (k=2)
Low Range	4.00366 ± 1.50% (k=2)	3.98422 ± 1.50% (k=2)	4.02584 ± 1.50% (k=2)

Connector Angle

ı	Connector Angle to be used in DASY system	29.5°±1°
п	oversity of the state of the st	Mary A. I.

Certificate No: DAE4-1245_Jul17

Page 3 of 5

Page 34 of 47

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199993.34	-3.72	-0.00
Channel X + Input	20003.85	2.28	0.01
Channel X - Input	-19909.42	1.70	-0.01
Channel Y + Input	199991.78	-5.46	-0.00
Channel Y + Input	20002.02	0.30	0.00
Channel Y - Input	-20000.26	0.73	-0.00
Channel Z + Input	199994.14	-3.09	-0.00
Channel Z + Input	20000.91	-0.57	-0.00
Channel Z - Input	-20000.60	0.62	-0.00

	Difference (µY)	Error (%)
2001.47	0.29	0.01
202.09	0.42	0.21
-197.15	1.05	-0.53
2001.46	0.25	0.01
201.47	-0.31	-0.16
-198.81	-0.64	0.32
2001.57	0.41	0.02
201.30	-0.28	-0.14
-200.23	-1.77	0.89
	202.09 -197.15 2001.46 201.47 -198.81 2001.57 201.30	202.09 0.42 -197.15 1.05 2001.46 0.25 201.47 -0.31 -198.81 -0.64 2001.57 0.41 201.30 -0.28

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-7.70	-8.90
	- 200	9.15	6.20
Channel Y	200	-7.22	-7.45
	- 200	6.67	6.20
Channel Z	200	-6,90	-6.14
	- 200	3.91	4.23

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel ℤ (μV)
Channel X	200	2 3	3.52	-3.41
Channel Y	200	9.08		4.30
Channel Z	200	9.44	7.03	

Certificate No. DAE4-1245_Jul17

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec:

	High Range (LSB)	Low Range (LSB)
Channel X	15881	17340
Channel Y	16455	16613
Channel Z	15938	16783

5. Input Offset Measurement

DASY measurement parameters: Auto Zoro Time: 3 sec; Measuring time: 3 sec Input 10Mg

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.84	-0.23	1.93	0.43
Channel Y	-0.31	-1.54	0.85	0.43
Channel Z	-0.47	-1.92	0.51	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vee)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Voc)	+0.01	+6	+14
Supply (- Vec)	-0.01	-8	-9

Certificate No: DAE4-1245_Jul17

Compliance Certification Services (KunShan) Inc. Report No .: C170825S01-SF

Date of Issue: August 28, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schreiterischer Kalthriertfenst 8 Service subsec d'étalormage Servizio evizzoro di toristura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Series Accorditation Service is one of the eignstories to the EA Multilateral Agreement for the recognition of ealibration certification

CCS-CN (Auden)

Certificate No: EX3-3798_Jul17

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3798

Calibration proordune(t)

Q4 CAL-01:v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Californian date:

July 26, 2017

This calibration certificate documents the tracesolity to sational standards, which realize the physical units of measurements (SQ The resistance ests and the uncertainties with confedence probability are given on the following sages and are part of the certificate.

All salibrations have been conducted in the closed laboratory facility: environment temperature 62 x 30°C and frankitty < 70%.

Cultivation Equipment used (MATE critical for collination)

Primary Standards	ID .	Cut Data (Certificate No.)	Scheduled Collaration
Power meter NRP	SN: 104778	(H-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-291	BN: 103044	04-Apr-17 (No. 217-02521)	Apr-19
Power serrain NRP-291	SN: 100045	64-Apr-17 (No. 217-02525)	Apt-III
Balarence 20 dB Albertator	SN: 95277 020x4	D7-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DVZ	58: 3013	31-Dec-16 (No. E83-3013 Dec16)	Duc-17
DAE4	55: 990	T-Dec-16 (No. DAE4-640_3ec10)	Dec-17
Secondary Standards	lib.	Check Date (in house)	Boheduled Check
Power meter 544195	SN: GB41293824	06-Apr-16 (in house check Jun-16)	In house check: Jun-58
Power sensor E4412A	SN: MY41499087	05-Apr-16 (in house check.lan-10)	In house check: Jun-18
Power server E4412A	SHL000110210	66-Apr-16 (in house sheck Jun-16)	In house check; Jun-18.
RF generator HP MARC	578 US3642U01700	54-Aug-59 (in house check Am-15)	In house check: Jun-18
Network Analyzer HP 9753E	SHE LIG37200585	18-Oct-01 in house check Oct-981	In house sheds Oct-17

Calibrated by:

elichael Weber

Name

Function

Laboratory Technician

Approved by:

Technical Manager Katja Pstrovio

Susset: July 25, 2017

This calibration certilicate shall not be reproduced enough in full without written approval of the laboratory

Certificate No: EX3-3799 Jul 17

Page 1 of 11

Report No .: C170825S01-SF Date of Issue: August 28, 2017

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8604 Zurich, Switzerland

Schweizertscher Kalibrierdenst Service sulsee d'étalonnage Servicio seizpero di teratura Swiss Calibration Service

Accreditation No.: SCS 0108

Approxitied by the Bwiss Approxitation Service (SAS):

The Serian Accreditation Service in one of the algorithms to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

fissue simulating liquid NORMX,y,z sensitivity in free space Com/F sensitivity in TSL / NORMx,y,z DCP diade apmoression point

crest factor (1/duty_cycle) of the RF signal CE A. B. C. D modulation dependent linearization parameters

Polarization at rotation around probe axis.

Polarization 8 b rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013 IEC 62209-1, ", "Measurement procedure for the assessment of Spediic Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016.
- EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices. used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 965664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMy, y.z. Assessed for E-field polarization 5 = 0 (f s 900 MHz in TEM-call; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E'-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency for media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax.y.z; Bx.y.z; Cx.y.z; Cx.y.z; VRx.y.z. A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the clode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for t > 830 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMs, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent CorwF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMs (no uncertainty required).

Certificate No. EX3-3798, Jul 17

Page 2 of 11

Report No .: C170825S01-SF

EX3DV4 - 8N:3798

July 26, 2017

Probe EX3DV4

SN:3798

Manufactured: April 5, 2011

July 26, 2017

Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3798_Jul17

Page 3 of 11

Page 39 of 47

EX3DV4~SN:3798

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z.	Une (k=2)
Norm (µV/(V/m) ³) ⁴ .	0.53	0.49	0.57	± 10.1 %
DCP (mV) ^B	100.5	90.4	.99.6	

Modulation Calibration Farameters

UID	Communication System Name		A. dB	B dB√μV	G	0 dB	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.9	±2.7 %
		Y	0.0	0.0	1.0	100000	149.9	- 915
		2	0.0	0.0	1.0		140.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Gertificate No: EX3-3796_Jul17

The uncertainties of Norm X,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the risk, deviation from treas response applying rectangular detribution and is expressed for the square of the field value.

EX30V4-- 8N:3798 July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Calibration Parameter Determined in Head Tissue Simulating Media

r (MHz) ^c	Relative Permittivity	Conductivity (Bim)	ConvF X	Com# Y	Comf Z	Alpha ^q	Depth ^q (mm)	Unc (k=2)
835	41.5	0.90	9,65	9.65	9,65	0.46	0.86	± 12.0 %
900	41.5	0.97	9.39	9.38	9.39	0.48	0.83	± 12.0 %
1810	40.0	1:40	80160	8.15	8,15	0.36	0.80	±12.0%
1900	40.0	1;40	8.07	8.07	8.07	0.32	0.85	± 12.0 %
2450	39.2	1.80	7.40	7.40	7.40	0.32	0.90	± 12.0 %
5200	36.0	4.66	5.20	5.20	5.21	0.35	1.80	± 13.1 9
5300	35.9	4.76	4,94	4.94	4.94	0.35	1.80	= 13.1 %
5500	35.6	4.96	4,78	4.78	4.71	0.40	1.80	= 13.1 %
5800	35.5	5.07	4.72	4.72	4.72	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.79	4.79	4.79	0.40	1.80	± 13.1 %

Frequency waidity above 300 MHz of a 100 MHz only applies for DASY v4.4 and higher (see Page 2), who it is restricted to a 50 MHz. The uncertainty is the RSS of the Cone* uncertainty of calibration frequency and the uncertainty for the indicated frequency band. Prequency wildsty failow 300 MHz is a 30, 25, 40, 50 and 70 MHz for Cone* assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to a 110 MHz.
At hequencies below 3 GHz, the validity of issue parameters (a and e) can be relocated to a 10% if liquid compensation formula is applied to a 100 MHz.

we requestion detect a transfer or more parameters is and eyour be received to 1 10% it reput compensation torrises at applied to recovered SAR values. At frequencies above 3 GHz, the validity of livius parameters is and it is matricled to 2.5%. The uncertainty is the RSB of the Conf. uncontainty for indicated target fosce parameters.

Application of uncontainty for indicated target fosce parameters.

Application of the determined during safetration. SPEAG exempts that the remaining deviation due to the boundary effect after compensation is always lies than a 1% for frequencies today 3 GHz and below 5.2% for frequencies between 3-0 GHz at any distance ledger than half the poole to diameter from the boundary.

EX3DV4-SN:3798

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^p	Sonductivity (8/m) ^y	Convl [®] X	Convf Y	ConvF Z	Alpha *	Dopth ⁰ (mm)	Unc (k=2)
835	55.2	0.97	9.35	9.35	9.35	0.55	0.80	± 12.0 %
900	55.0	1.05	9,17	9.17	9.17	0.42	0.86	± 12.0 %
1810	53.3	1.52	7.81	7.81	7.81	0.44	0.80	± 12.0 %
1900	53.3	1.52	7.75	7.75	7.75	0.45	0.80	± 12.0 %
2450	52.7	1.95	7.32	7.32	7.32	0,43	0.92	± 12.0 %
5200	49.0	5.30	4.81	4.81	4.81	0.35	1.90	a 13.1 %
5300	48.9	5.42	4.67	4.67	4.67	0.35	1.90	± 13.1 %
5500	48.6	5.65	4.26	4.26	4.26	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.18	4.18	4.18	0.40	1.90	a 13.1 %
5800	48.2	6.00	4.45	4.45	4.45	0.40	1.90	± 13.1 %

⁶ Prequency validity above 300 MHz of ± 800 MHz only applies for CASY v4.4 and higher (see Fage 2), else it is restricted to ± 50 MHz. The uncertainty is the PSS of the ConvF uncertainty is calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 60 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 230 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At Inequancies below 3 GHz, the velidity of tissue parameters (r and d) can be related to ± 10% if liquid compensation formula is applied to resourced SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target/fiscue parameters.

the CorwF uncertainty for indicated targethissus parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below a 2% for frequencies between 3.4 GHz at any distance target than half the probe tip demater from the boundary.

Report No .: C170825S01-SF

EX3DV4- SN:3798 July 26, 2017

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3798_Jul17

Page 7 of 11

Report No .: C170825S01-SF

EX3DV4- 8N 3798 July 26, 2017

Receiving Pattern (\$\phi\$), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

EX3DV4- SN:3798 July 26, 2017

Dynamic Range f(SAR_{head}) (TEM cell , f_{res}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.5% (k=2)

Certificate No: EX3-3791_Aul17

Page 9 of 11

Date of Issue: August 28, 2017 Report No .: C170825S01-SF

EXXXV4- SN:3796 July 26, 2017

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (6, 8), f = 900 MHz

Certificate No: EX3-0796_Jul97

Page 10 of 11

EX30V4-- SN:3798

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (*)	-39.5		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mr		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	1.4 mm		

Certificate No: EX3-3798_Jul17