Lisp Introduction

Dr. Neil T. Dantam

CSCI-498/598 RPM, Colorado School of Mines

Spring 2018

Outline

Lisp

Common Lisp by Example

Implementation Details

Typing

Memory Management

Functional Programming

Closures

Recursion

Functional Operators

Programming Environment

Appendix

Outline

Lisp

Common Lisp by Example

Implementation Detail

Typing

Memory Management

Functional Programmir

Recursion

Functional Operators

Programming Environment

Appendi

3 / 88

What is Lisp?

Definition: Lisp

A family of programming languages that are based on s-expressions.

Major Lisp Dialects

Scheme

- ▶ IEEE Standard
- ► Simple and clean

Common Lisp

- ANSI Standard
- Featureful
- Good compilers
- ► Efficient C interop.

Clojure

- JVM-based
- ► Good Java interop.
- ► CLR and Javascript also
- ► Concurrency features

5 / 88

Outline

Lisp

Common Lisp by Example

Implementation Deta

Typing

Memory Management

Functional Programmin

Ciosures

Recursion

Functional Operators

Programming Environment

Appendi

6 / 88

Booleans and Equality

"Math"	Lisp	Notes
False	nil	equivalent to the empty list ()
True	t	or any non-mil value
$\neg a$	(not a)	
a = b	(= a b)	numerical comparison
a = b	(eq a b)	same object
a = b	(eql a b)	same object, same number and type, or same character
a = b	(equal a b)	eql objects, or lists/arrays with equal elements
a = b	(equalp a b)	= numbers, or same character (case-insensitive),
		or recursively-equalp cons cells, arrays, structures, hash tables
a eq b	(not (= a b))	similarly for other equality functions

Example: Lisp Equality Operators

► (= 1 1) ~> t integer float ▶ (= 1 1.0) ~~ t integer float \blacktriangleright (eq 1 1.0) \rightsquigarrow nil integer float ▶ (eal 1 1.0) ~ integer float \blacktriangleright (equal 1 1.0) \rightsquigarrow nil integer float • (equalp 1 1.0)

```
► (= "a" "a") --> error
► (not t) \rightsquigarrow nil
```


Exercise: Lisp Equality Operators

► (eq nil (not 1)) ~~

▶ (eq t 1) ~

► (eq nil (not "a")) ~

```
► (eq (list "a" "b") (list "a" "b")) ~~
```

```
▶ (equal (list "a" "b") (list "a" "b")) \leadsto
```

```
► (eq (list "a" "b") (list "a" "B")) ~>
```


Inequality

"Math"	Lisp
a < b	(< a b)
$a \leq b$	(<= a b)
a > b	(> a b)
$a \geq b$	(>= a b)

Function Definition

Procedure increment(n)

1 return n+1;

(defun increment (n) (+ n 1))

result

Exercise: Function Definition

$$\operatorname{sinc} \theta = \frac{\sin \theta}{\theta}$$

Pseudocode

Common Lisp

Procedure $sinc(\theta)$

1 return $\sin(\theta)/\theta$;

12 / 88

Limit of sinc θ

Conditional

IF

```
Procedure even?(n)

1 if 0 = mod(n, 2) then

2 | return true;

3 else

4 | return false;
```

```
(defun even? (n)
test

(if (= 0 \pmod{n 2}))
then clause

t

nil
))
else clause
```


Exercise: Conditionals

IF

$$extstyle extstyle ext$$

Pseudocode

Common Lisp

Procedure $sinc(\theta)$

- 1 if $0 = \theta$ then
- 2 return 1;
- 3 else
- 4 return $\sin(\theta)/\theta$;

Taylor Series

Represent function f(x) as infinite sum of derivatives around point a:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a) + \frac{f'''(a)}{3!}(x-a) + \dots$$
$$= \sum_{n=0}^{\infty} \left(\frac{f^{(n)}(a)}{n!}(x-a)^n\right)$$

Polynomial approximation of functions

 Dantam (Mines CSCI, RPM)
 Lisp
 Spring 2018
 16 / 88

Sinc Taylor Series

$$\frac{\sin \theta}{\theta} = 1 - \frac{\theta^2}{6} + \frac{\theta^4}{120} - \frac{\theta^6}{5040} + \frac{\theta^8}{362880} - \frac{\theta^{10}}{39916800} + \dots$$

Conditional

COND

Procedure sign(n)

- 1 if n > 0 then
- return 1;
- 3 else if n < 0 then
- return -1;

- 5 else return 0;

Exercise: Conditionals

COND

$$\frac{\sin\theta}{\theta} = 1 - \frac{\theta^2}{6} + \frac{\theta^4}{120} + \dots$$

Pseudocode

Common Lisp

Procedure $sinc(\theta)$

- 1 if $0 = \theta$ then return 1;
- 2 else if $\theta^{2} < .00001$ then
- 3 | return $1 \theta^2/6 + \theta^4/120$;
- 4 else return $\sin(\theta)/\theta$;

Example: Factorial

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n * (n-1)! & \text{if } n \neq 0 \end{cases}$$

Pseudocode

Procedure factorial(x)

- 1 if 0 = x then
- return 1;
- 3 else
- return x * factorial(x 1);

Common Lisp

(**defun** factorial (n) (if
$$(= n \ 0)$$

$$(\mathsf{If} (= \mathsf{h} \mathsf{U})$$

Exercise: Fibonacci Sequence

$$(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots)$$

$$fib(n) = \begin{cases} 1 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ fib(n-1) + fib(n-2) & \text{if } n \ge 2 \end{cases}$$

 Dantam (Mines CSCI, RPM)
 Lisp
 Spring 2018
 21 / 88

Exercise: Fibonacci Sequence

continued

Pseudocode

Common Lisp

Numerical Integration

Runge-Kutta Methods

Given: ightharpoonup Derivative: $\frac{d}{dt}x(t) = f(x,t)$

► Initial time: t₀

ightharpoonup Final time: t_n

▶ Initial value: $x(t_0)$

Find: $x(t_n)$

Solution: Follow derivative along discrete time intervals Δt from t_0 to t_n

Example: Runge-Kutta 1 (Euler's Method)

Dantam (Mines CSCI, RPM)

Example: Runge-Kutta 1 (Euler's Method)

continued

$$x_{i+1} \approx x_i + \Delta t * f(x_i, t_i)$$

Procedure euler-step(dx, dt, x_0) return $x_0 + dx * dt$;

 Dantam (Mines CSCI, RPM)
 Lisp
 Spring 2018
 25 / 88

Example: Runge-Kutta 2 (Midpoint Method)

$$x_{i+1} \approx x_i + \Delta t * f(x_i + \frac{\Delta t}{2} f(x_i, t_i), \ t + \frac{\Delta t}{2})$$

$$\frac{\text{Procedure rk2-mid}(f, t_0, x_0, dt)}{\text{function } ks(c, k) \text{ is}} \qquad \text{(defun rk2-mid-step (f t0 x0 dt))}$$

$$1 \text{ function } ks(c, k) \text{ is} \qquad \text{(labels ((ks (c k)))}$$

$$2 \quad x \leftarrow \text{euler-step}(k, c * dt, x_0); \qquad \text{(funcall)}$$

$$3 \quad \text{return } f(x, \ t + c * dt); \qquad \text{(euler-step k (* c dt) x0)}$$

$$4 \quad k_0 \leftarrow f(x_0, t_0); \qquad \text{(euler-step k (* c dt))))}$$

$$5 \quad k_1 \leftarrow \text{ks}(1/2, k_0); \qquad \text{(let * ((k0 (funcall f x0 t0)))}$$

$$\text{(k1 (ks (/ 1 2) k0)))} \qquad \text{(k1 (ks (/ 1 2) k0)))}$$

$$\text{(+ x0 (* dt k1))))}$$

1 function ks(c, k) is

4 $k_0 \leftarrow f(x_0, t_0)$;

5 $k_1 \leftarrow \text{ks}(1/2, k_0)$;

6 return $x_0 + dt * k_1$:

Exercise: Runge-Kutta 2 (Heun's Method)

$$x_{i+1} \approx x_i + \frac{\Delta t}{2} * \overbrace{f(x_i, t_i)}^{\dot{x}(t_i)} + \frac{\Delta t}{2} * \overbrace{f(x_i + (\Delta t)f(x_i, t_i), t + \Delta t)}^{\dot{x}(t + \Delta t)}$$

$$\approx x_i + \frac{\Delta t}{2} k_0 + \frac{\Delta t}{2} k_1$$

 Dantam (Mines CSCI, RPM)
 Lisp
 Spring 2018
 27 / 88

Exercise: Runge-Kutta 2 (Heun's Method)

```
Procedure rk2-heun(f, t_0, x_0, dt)
```

```
1 function ks(c, k) is

2 x \leftarrow \text{euler-step}(k, c * dt, x_0);

3 return f(x, t + c * dt);
```

- 4 $k_0 \leftarrow f(x_0, t_0)$;
- 5 $k_1 \leftarrow ks(1, k_0)$;
- 6 return $x_0 + dt/2 * (k_0 + k_1)$;

Exercise: Runge-Kutta 4

$$x_{i+1} \approx x_i + \frac{\Delta t}{6} \underbrace{k_0}^{\dot{x}(t_i)} + \frac{\Delta t}{3} \underbrace{k_1}^{\dot{x}\dot{x}(t_i + \frac{\Delta t}{2})} + \frac{\Delta t}{3} \underbrace{k_2}^{\dot{x}\dot{x}(t_i + \frac{\Delta t}{2})} + \frac{\Delta t}{6} \underbrace{k_3}^{\dot{x}\dot{x}(t_i + \Delta t)}$$

where:

$$k_0 = f(x_i, t_i)$$
 (start)

$$k_1 = f(x_i + \frac{\Delta t}{2}k_0, \ t_i + \frac{\Delta t}{2})$$
 (midpoint)

$$\blacktriangleright k_2 = f(x_i + \frac{\Delta t}{2}k_1, t_i + \frac{\Delta t}{2})$$
 (midpoint)

$$k_3 = f(x_i + (\Delta t)k_2, \ t_i + \Delta t)$$
 (end)

29 / 88

Exercise: Runge-Kutta 4

continued

30 / 88

Dantam (Mines CSCI, RPM) Lisp Spring 2018

Euler Integration

```
Procedure int-euler (f, t_0, t_n, dt, x_0)

1 if t_0 \ge t_n then // Base Case

2 | return x_0;

3 else // Recursive Case

4 | dx \leftarrow f(x_0, t_0);

5 | x \leftarrow \text{euler-step}(dx, dt, x_0);

6 | return int-euler (f, t_0 + dt, t_n, dt, x);

(defun int-euler (f, t_0 + t_0) to t_0)

(if (>= t_0 t_1)

(let * ((dx (funcall | f(x_0 t_0))) dt

(int-euler (f, t_0 t_0)))

(int-euler (f, t_0 t_0)))

(int-euler (f, t_0 t_0)))
```


31 / 88

RK-2 Integration

Multi-method RK Integration

Procedure integrate(s, f, t_0, t_n, dt, x_0)

Dantam (Mines CSCI, RPM) Lisp 33 / 88

Outline

Lisp

Common Lisp by Example

Implementation Details

Typing Memory Management

Functional Programmir

Describ

Functional Operators

Programming Environment

Appendi

Data Types

Definition: Data type

A classification of data/objects based on how the data/object is intended to or able to be use.

The set of values a variable may take.

Examples

- ▶ int
- ▶ float
- List
- String
- Structures:
 - ▶ int × string
 - ▶ float⁴

Data Type Systems

► Type Checking

Static: Check types at compile time (statically)

Dynamic: Check types at run time (dynamically)

► Type Enforcement

Strong: Object types are strictly enforced

Weak: Objects can be treated as different types (casting, "type punning")

Comparison of Language Type Systems

Spring 2018 Dantam (Mines CSCI, RPM) Lisp 37 / 88

Machine Words – Representing Data

Dantam (Mines CSCI, RPM)

Words and Types

 $0xc0490fd0 \stackrel{?}{\leadsto} -1068953648$ (signed) $0xc0490fd0 \stackrel{?}{\sim} 3226013648$ (unsigned) $0xc0490fd0 \stackrel{?}{\leadsto} -3.141590$ (float) $0xc0490fd0 \stackrel{?}{\leadsto} valid pointer$

Dantam (Mines CSCI, RPM) Spring 2018 39 / 88 Lisp

			C	
Туре	Tag	0 x180921FA \times 000b	even fixnum $\stackrel{\longleftrightarrow}{\sim}$	(0x180921FA >> 2
Even Fixnum	000b		~ →	806503412
Odd Fixnum	100b		~~	000505412
Instance Pointer	001b			
List Pointer	011b			
Function Pointer	101h			

data

MINES

Dantam (Mines CSCI, RPM)

tag

Example: Tagged Storage

64-bit SBCL:

Fixnum: (eq 1 1)

Single Float: (eq 1.0s0 1.0s0)

Double Float: (eq 1.0d0 1.0d0) nil

1.0d0

1.0d0

eq

Example: SBCL Arrays

```
(let ((a (make-array 5
                           : element-type 'double-float )))
                        64
                                      64
                                                    64
                  data
                        bit
                               bit
                                      bit
                                             bit
                                                    bit
                      0.0d0
                                    0.0d0
                             0.0d0
                                           0.0d0
                                                  0.0d0
                  type descriptor
                      (SIMPLE-ARRAY DOUBLE-FLOAT (5))
```


Dantam (Mines CSCI, RPM) Lisp Spring 2018 42 / 88

Manual Memory Management

malloc(n)

- 1. Find a free block of at least n bytes
- 2. If no such block, get more memory from the OS
- 3. Return pointer to the block

free(ptr)

1. Add block back to the free list(s)

Garbage Collection

Dantam (Mines CSCI, RPM)

Outline

Lisp

Common Lisp by Example

Implementation Detail

Typing

Memory Management

Functional Programming

Closures

Recursion

Functional Operators

Programming Environment

Appendix

Functional Programming Features

- ► Functions are first class object
- ▶ Prefer immutable state
- ► Garbage collection

46 / 88

Spring 2018

Closure

Definition (Closure)

A function and an associated set of variable definitions. From "closed expression."

```
C Function Pointer
/* Definition */
struct context {
    int val:
int adder(struct context *cx, int x) {
    return cx \rightarrow a + x:
/* Usage */
struct context c:
c.val = 1:
int y = adder(c, 2);
```

```
Java Class
// Definition
class Adder {
    public int a:
    public Adder(int a_) {
        a = a_{-}:
    public int call(int x) {
        return x+a;
// Usage
Adder A = new Adder(1);
int y = A. call(2);
```


47 / 88

Spring 2018

Closure in Lisp

(let ((a 1)) (labels ((adder (x) (+ x a)))

(adder 2)))

Local Function

Lambda Expression

```
(let ((a \ 1))

(funcall \ (lambda \ (x)

(+ \ x \ a))

(2))
```


48 / 88

Example: Recursion

Iterative

Function accumulate(S)

- $1 \ a \leftarrow 0$:
- $i \leftarrow 0$:
- 3 while i < |S| do
- 4 $a \leftarrow a + S_i$;
- 5 return a;

Recursive

Function accumulate(S)

- 1 if S then // Recursive Case
- return car(S) + accumulate(cdr(S));
- 3 else // Base Case
- 4 return 0;

Example: Recursive Accumulate in Lisp

```
Recursive Implementation of Accumulate
(defun accumulate (list)
  (if list
      ;; recursive case
      (+ (car list)
          (accumulate (cdr list)))
      :: base case
      0))
```


Example: Recursive Accumulate Execution Trace

Recursive Implementation of Accumulate

```
(defun accumulate (list)
  (if list
      :: recursive case
      (+ (car list)
         (accumulate (cdr list)))
      ;; base case
      0))
```

```
(accumulate '(1 2 3))
    (+ 1 (accumulate '(2 3)))
  (+ 1 (+ 2 (accumulate '(3))))
(+ 1 (+ 2 (+ 3 (accumulate nil))))
       (+1 (+2 (+3 0)))
```

Dantam (Mines CSCI, RPM) Lisp Spring 2018 51 / 88

$$(a_0 \ a_1 \ \dots \ a_{n-1} \ a_n) \stackrel{\text{reverse}}{\leadsto} (a_n \ a_{n-1} \ \dots \ a_1 \ a_0)$$

Procedure reverse(L)

 Dantam (Mines CSCI, RPM)
 Lisp
 Spring 2018
 52 / 88

Definition (map)

Apply a function to every member of a sequence.

$$\operatorname{map}: \underbrace{\left(\mathbb{D} \mapsto \mathbb{R}\right)}_{\operatorname{function}} \times \underbrace{\mathbb{D}^n}_{\operatorname{sequence}} \mapsto \underbrace{\mathbb{R}^n}_{\operatorname{result}}$$

Function Application

$$(f(s_1), f(s_2), \ldots, f(s_n))$$

Map Pseudocode

Procedural

Function map(f,S)

- 1 foreach $s_i \in S$ do
- $r_i \leftarrow f(s_i);$
- 3 return r;

Recursive

Function map(f,S)

```
1 if S then // Recursive Case
```

```
2 a \leftarrow f(\operatorname{car}(S));
```

$$b \leftarrow \operatorname{map}(f, \operatorname{cdr}(S));$$

4 return
$$cons(a, b)$$

- 5 else // Base Case
- 6 return ();

Map in Lisp

```
Map in Lisp
(map 'list
                      ; result type
    (lambda (x) (+ 1 x)); function
    (list 1 2 3)) ; sequence
;; RESULT: (2 3 4)
```


55 / 88

Example: A Map Implementation

```
Example Implementation of Map
(defun mymap (function list)
 (labels ((helper (list)
             (if list
                  :: Recursive Case:
                  (cons (funcall function (car list))
                        (helper (cdr list)))
                  :: Base Case:
                  nil)))
    (helper list)))
```


Fold-left

Definition (fold-left)

Apply a binary function to every member of a sequence and the result of the previous call, starting from the left-most (initial) element.

$$\text{fold-left}: \underbrace{\left(\mathbb{Y} \times \mathbb{X} \mapsto \mathbb{Y}\right)}_{\text{function}} \times \underbrace{\mathbb{Y}}_{\text{init.}} \times \underbrace{\mathbb{X}^n}_{\text{sequence}} \mapsto \underbrace{\mathbb{Y}}_{\text{result}}$$

Function Application

Fold-left Pseudocode

Procedural

Function fold-left(f.v.X)

- $i \leftarrow 0$:
- 2 while i < |X| do
- $y \leftarrow f(y, X_i)$;
- 4 return *y*;

Recursive

Function fold-left(f,v,X)

- 1 if X then // Recursive Case
- $y' \leftarrow f(y, car(X));$ return fold-left (f, y', cdr(X));
- 4 else // Base Case
- return y;

Fold-left in Lisp

```
Fold-Left in Lisp
(reduce #'+
                            ; function
        '(1 2 3)
                            ; sequence
        :initial-value 0)
;;; Result 6
```


Exercise: Fold-Left Reverse

$$(a_0 \ a_1 \ \dots \ a_{n-1} \ a_n) \stackrel{\text{reverse}}{\leadsto} (a_n \ a_{n-1} \ \dots \ a_1 \ a_0)$$

Procedure reverse(L)

Dantam (Mines CSCI, RPM) Lisp 60 / 88

Fold-right

Definition (fold-right)

Apply a binary function to every member of a sequence and the result of the previous call, starting from the right-most (final) element.

$$\text{fold-right}: \underbrace{\left(\mathbb{X} \times \mathbb{Y} \mapsto \mathbb{Y}\right)}_{\text{function}} \times \underbrace{\mathbb{Y}}_{\text{init.}} \times \underbrace{\mathbb{X}^n}_{\text{sequence}} \mapsto \underbrace{\mathbb{Y}}_{\text{result}}$$

Function Application

Fold-right Pseudocode

Procedural

Function fold-right(f,y,X)

- $1 i \leftarrow |X| 1$:
- 2 while i > 0 do
- $y \leftarrow f(X_i, y)$;
- 4 return *y*;

Recursive

Function fold-right(f,y,X)

- 1 if X then // Recursive Case
- $y' \leftarrow \text{fold-right}(f, y, \text{cdr}(X));$ return f(car(X), y');
- 4 else // Base Case
- return y;

Fold-right in Lisp

```
Fold-Right in Lisp
(reduce #'-
                             : function
         '(2 3)
                             ; sequence
         :initial-value 1
         :from-end t)
;;; Result O
```


MapReduce

- ► (parallel) map
- ► (serial) reduce/fold
- ► Provides scalability, fault-tolerance
- ► Implementations
 - ► Google MapReduce
 - ► Apache Hadoop

Function MapReduce(f,g,X)

- 1 $Y \leftarrow \text{parallel-map}(f, X)$;
- 2 return reduce(g, Y);

Outline

Lisp

Common Lisp by Example

Implementation Detai

Typing

Memory Management

Functional Programmir

Danumian

Functional Operators

Programming Environment

Appendi

Lisp Programming Environment

code compile binary debug

Lisp Programming

edit,compile,debug

Lisp on unix

Demo

- ► SLIME, pstree
- ► Read-Eval-Print-Loop (REPL)
- ► DEFUN
- ► DISASSEMBLE
- ► Re-DEFUN

SLIME Basics

- ► C: control
- ► M: Meta / Alt
- ► Frequently used:
 - C-c C-k Compile and load file
 - C-x C-e Evaluate expression before the point
 - C-M-x Evaluate defun surround the point
- ► See SLIME drop-down in menu bar for more
- ► https://common-lisp.net/project/slime/doc/html/

Lisp

Summary

Lisp

Common Lisp by Example

Implementation Details

Typing

Memory Management

Functional Programming Closures

Recursion

Functional Operators

Programming Environment

Appendix

69 / 88

Outline

Lisp

Common Lisp by Example

Implementation Detail

Typing

Memory Management

Functional Programmir

Recursion

Functional Operators

Programming Environment

Appendix

L'Hôpital's Rule

Evaluate limits using derivatives when $\frac{f(a)}{g(a)} \rightsquigarrow \frac{0}{0}$ (similarly for ∞):

$$\left(\left(\lim_{x\to a} f(x) = 0\right) \land \left(\lim_{x\to a} g(x) = 0\right)\right) \implies \left(\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}\right)$$

LET

► Creates a new scope and variable bindings

72 / 88

Example: LET

C Block Scope

Lisp

Output

(1 2)

Example: LET

Scope Nesting

```
int a = 1:
printf("%d\n", a);
    int a = 2:
    printf("%d\n", a);
printf("%d\n", a);
```

Lisp

```
(let ((a 1))
  (print a)
  (let ((a 2))
        (print a))
  (print a))
```

Output

1

Example: LET

"Parallel" assignments

Lisp

Output

(3 1)

Example: LET*

"Consecutive" assignments

Lisp

Output

(3 3)

DOTIMES

▶ Iterate a for *n* steps

Example: DOTIMES

```
for( int i = 0; i < 5; i ++ ) {
    printf("%d",i);
}</pre>
```

Lisp

(dotimes (i 5) (print i))

Output

```
0
```

2 3

DOLIST

► Iterate over a list

Example: DOLIST

Lisp

(dolist (x '(a b c)) (print x))

Output

A

В

С

Example: LOOP

counting

Lisp

(loop for i below 5 do (print i))

Output

Example: LOOP

list iteration

Lisp

(loop for x in '(a b c) do (print x))

Output

A B

С

Example: LOOP

collecting

Lisp

```
(let ((x (loop for i below 5
             when (evenp i)
             collect i)))
  (print \times))
```


83 / 88

Example: REDUCE

collecting

Output

(0 2 4)

 $(print \times)$

Case

- ► Control structure
- ▶ Selects clause that matches the test argument

85 / 88

Example: CASE

```
switch('B') {
case 'A':
    puts("Got_A");
    break:
case 'B':
    puts ("Got_B");
    break:
case 'C':
    puts("Got_C");
    break:
   Dantam (Mines CSCI, RPM)
```

Lisp (case 'b (a (print "Got_A")) (b (print "Got_B")) (c (print "Got_C"))

Output

Got B

Example: S-Expression to XML

Lisp

```
(labels ((visit (e i)
           (if (listp e)
                (progn
                  ;; opening tag
                  (format t "~&<~A>" (car e) )
                  ;; Recurse on arguments
                  (dolist (e (cdr e))
                    (visit e (+ i 2))
                  ;; Closing tag
                  (format t "^{*}</^{*}A>" (car e)))
                ;; Else, print the element
                (format t "~&~A" e))))
 (visit '(and \times (or \vee z)) 0))
```

Output

```
<AND>
X
<OR>
Y
Z
</OR>
</AND>
```


Example: S-Expression to XML w/ indentation

Lisp

```
(labels ((visit (e i)
            (let ((indent (make-string i
                                          :initial-element #\Space)))
              (if (listp e)
                   (progn
                    ;; opening tag
                    (format t "~&~A<~A>" indent (car e) )
                    ;; Recurse on arguments
                    (dolist (e (cdr e))
                      (visit e (+ i 2))
                    :: Closing tag
                    (format t "^{^{\sim}}A</^{^{\sim}}A>" indent (car e)))
               ;; Else, print the element
              (format t "~&~A~A" indent e)))))
  (visit '(and \times (or \vee z)) 0))
```

Output

```
<AND>
    X
    <OR>
    Y
    Z
    </OR>
</AND>
```

