ANÀLISI I DISSENY D'ALGORISMES (CODI: 102783) SEGON PARCIAL: 14/01/2016

NOM I COGNOMS:	 NIU:	

IMPORTANT: Responeu en l'espai disponible a sota de cada pregunta

- 1. (5 punts) Són certes o falses, les següents afirmacions? Cada afirmació val 0.25 punts.
 - 1) El Branch & Bound s'aplica exclusivament a problemes d'optimització.
 - 2) Un algorisme de Las Vegas és preferible a un algorisme de Monte Carlo per resoldre un problema.
 - 3) La Programació Dinàmica no analitza tots els possibles casos, només aquells que intervenen en la solució òptima.
 - 4) El Branch & Bound està dissenyat per trobar totes les solucions factibles.
 - 5) Un algorisme Probabilístic és determinista.
 - 6) La finalització de l'algorisme de Branch & Bound sempre està garantida.
 - 7) A les funcions, les precondicions es solen referir als paràmetres de la funció.
 - 8) La recursivitat és la forma natural d'implementar la Programació Dinàmica.
 - 9) El Branch & Bound utilitza una llista de nodes vius per decidir el següent node a obrir.
 - 10) Les postcondicions permeten detectar més errors de programació que les precondicions.
 - 11) La Programació Dinàmica té una complexitat base polinòmica.
 - 12) Una precondició, postcondició o invariant és una condició que sempre s'ha de complir quan el programa l'executa.
 - 13) Una invariant de classe s'ha de complir al mig de l'execució d'un mètode de la classe.
 - 14) La Programació Dinàmica evita calcular subproblemes iguals més d'un cop.
 - 15) Branch & Bound i backtracking construeixen les solucions de la mateixa manera.
 - 16) Combinar algorismes probabilístics amb algorismes no probabilístics pot reduir el temps de càlcul en el cas mig.
 - 17) En Programació Dinàmica l'espai de solucions dels diferents subproblemes ha de ser disjunt.
 - 18) La Programació Dinàmica necessita que els problemes es puguin dividir en subproblemes del mateix tipus i de mida més petita.
 - 19) El Branch & Bound selecciona el següent node a obrir a partir d'acotacions aproximades del cost de la solució.
 - 20) Un algorisme probabilístic sempre ha de donar una solució.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
V		X	X				X		X		X	X		X		X		X	X	
F	X			Х	X	X		X		X			X		X		X			X

- 2. (1 punt) Quins són els punts clau per desenvolupar un bon algorisme de Branch and Bound? Justifica la resposta.
 - Trobar un bon ordre de recorregut o ramificació dels nodes, és a dir, definir una bona funció de prioritat dels nodes vius per tal que les solucions bones es trobin ràpidament.
 - Trobar una bona funció d'acotació o poda perquè es produeixi el retrocés el més aviat possible.

3. (2 punts) Suposem que volem invertir exactament 1000 euros, que podem repartir en 4 fons d'inversió diferents en quantitats múltiples de 100. Els interessos que ens donen cadascun dels fons, en funció de la quantitat invertida, es resumeixen a la següent taula:

	0	100	200	300	400	500	600	700	800	900	1000
fons 1	0	0.01	0.01	0.01	0.01	0.04	0.05	0.06	0.10	0.11	0.11
fons 2	0	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.06
fons 3	0	0.01	0.01	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.05
fons 4	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10

Volem maximitzar el rendiment de la inversió dels nostres diners mitjançant la programació dinàmica. Per aquest motiu:

(a) Verifica que aquest problema compleix el principi d'optimalitat de Bellman.

Si $I_4(1000) = f_1(x_1) + \cdots + f_4(x_4)$ és el resultat d'una seqüència de decisions i és òptima per invertir 1000 euros en 4 bancs, aleshores $I_3(1000 - x_4) = f_1(x_1) + \cdots + f_3(x_3)$ és òptima per invertir $1000 - x_4$ euros en 3 bancs.

(b) Crea la funció recursiva de la solució.

$$I_n(x) = \begin{cases} f_1(x), & \text{n=1;} \\ Max_{\{t=0,100,\cdots,x\}} \{I_{n-1}(x-t) + f_n(t)\}, & n > 1. \end{cases}$$

(c) Omple la taula de resultats parcials.

La primera taula conté els interessos parcials per cada quantitat invertida (columnes) amb els fons disponibles (files). És a dir, la posició (i,j) ens diu quins interessos obtindrem d'invertir j euros en els i primers fons.

	0	100	200	300	400	500	600	700	800	900	1000
$\overline{I_1}$	0	1	2	3	4	20	30	42	80	99	110
I_2	0	2	4	9	12	20	30	42	80	99	110
I_3	0	2	4	9	20	25	30	42	80	99	110
I_4	0	2	4	9	20	25	36	49	80	99	110 110 110 110

La segona taula conté la quantitat/100 a invertir a cada fons disponible. És a dir, a la posició (i,j) tindrem un vector de i posicions on cada posició conté la quantitat/100 a invertir per obtenir els interessos de la mateixa casella a la taula 1. En cas que tinguem vàries opcions, només n'he escrit una.

	0	100	200	300	400	500	600	700	800	900	1000
$\overline{S_1}$	0	1	1	1	1	1	1	1	1	1	1
S_2	0	0,1	0,2	0,3	0,4	5,0	6,0	7,0	8,0	9,0	10,0
S_3	0	0,1,0	0,2,0	0,3,0	0,0,4	0,0,5	0,0,6	7,0,0	8,0,0	9,0,0	10,0,0
S_4	0	0,1,0,0	0,0,0,2	0,0,0,3	0,0,4,0	0,0,0,5	0,0,0,6	0,0,0,7	8,0,0,0	9,0,0,0	10,0,0,0

(d) Construeix la solució.

En aquest cas, tal i com hem construït les taules, no cal reconstruïr la solució, ja que de la primera taula sabem que l'última casella és l'interès màxim que podem treure i per tant l'última casella de la segona taula ens dóna la solució.

2

4. (1 punt) Afegeix les precondicions i l'invariant de la classe CStack public class CStack {

```
private int m_Stack[];
    private int m_Size;
    private int m_Top;
    public CStack(int size) {
        m_Size=size;
        m_Stack=new int[m_Size];
        m_{\text{Top}}=-1;
    }
    public void Push(int element) {
        m_Stack[++m_Top] = element;
    public int Pop() {
        return m_Stack[m_Top--];
    }
}
public CStack(int size)
                                           assert(Size>0);
public void Push(int element)
                                           assert(m_Top<m_Size-1);</pre>
public int Pop()
                                           assert(m_Top>-1);
Invariant:
m_Stack!=null &&
m_Top>=-1 &&
m_Top<m_Size &&
m_Size>0
```

- 5. (1 punt) ¿Què és i com es pot aprofitar l'avantatge estocàstica en algorismes de Monte Carlo i Las Vegas? Posa la fórmula general pels dos casos per a un algorisme p-correcte. Fes un exemple amb un algorisme de Monte Carlo 0.7-correcte i un algorisme de Las Vegas 0.7-correcte.
 - Avantatge estocàstica: Suposem un algorisme p-correcte, amb p > 1/2. Es defineix com a avantatge de l'algorisme a p-1/2. Qualsevol algorisme de Monte Carlo/Las Vegas amb un avantatge positiu es pot transformar en un altre amb una probabilitat d'error tan petita com vulguem.
 - Donat un algoritme de Monte Carlo p-correcte, podem millorar la probabilitat d'obtenir un resultat correcte si l'executem n vegades. La probabilitat d'encertar puja a 1-(1-p)n. Com no sabem quin dels resultats és correcte, utilitzarem la moda (resultat més repetit) com a resultat de les n execucions. La probabilitat de que la moda coincideixi amb el resultat es calcula amb la següent formula de la resposta correcta majoritària: $\sum_{i=\lfloor \frac{n}{2} \rfloor+1}^{n} p^{i} (1-p)^{n-i} \binom{n}{i}$
 - Exemple: Monte Carlo per n=5 i p=0,7, probabilitat de resposta correcta majoritària: 0,836920
 - Donat un algoritme de Las Vegas p-correcte, podem millorar la probabilitat d'obtenir un resultat correcte si l'executem n vegades. La probabilitat d'encertar puja a 1-(1-p)n i, a diferència dels algoritmes de Monte Carlo, els de las Vegas ens diuen si el seu resultat és correcte. Per tant, La probabilitat d'obtenir el resultat correcte per n execucions serà: 1-(1-p)n
 - Exemple: Las Vegas per n=5 i p=0,7, probabilitat de resposta correcta: 0,997570