Techniques fondamentales de calcul différentiel et intégral

Fonctions d'une variable réelle et à valeurs réelles ou complexes

Dérivation, étude d'une fonction

19 septembre 2022

Table des matières

1	Domaine de définition, domaine d'étude 1.1 Domaine de définition	
2	Domaine de continuité 2.1 Limite d'une fonction en un point	2 2 2
3	Domaine de dérivabilité et tableau de variations 3.1 Dérivée d'une fonction en un point	
4	Etude des bornes infinies	4
5	Représentation graphique de la fonction	5

1 Domaine de définition, domaine d'étude

1.1 Domaine de définition

Afin de déterminer un domaine de définition \mathcal{D}_f d'une fonction f, nous écrivons :

 $x \in \mathcal{D}_f \iff \left\{ \begin{array}{ll} \dots \\ \dots \end{array} \right. \iff \dots$

1.2 Domaine d'étude

Remarque:

Avec des considérations de périodicité, parité / imparité

2 Domaine de continuité

2.1 Limite d'une fonction en un point

2.2 Continuité en un point, continuité sur un intervalle

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

On dit que f est **continue en** a si et seulement si :

$$f(x) \xrightarrow[x \to a]{} f(a)$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$.

On dit que f est <u>continue sur \mathbb{I} si et seulement si</u> pour tout $a \in \mathbb{I}$, f est continue en a.

L'ensemble des fonctions continues sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{C}(\mathbb{I},\mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont continues sur $\mathbb R$
- (ii) La fonction \sqrt{x} est continue sur \mathbb{R}_+
- (iii) La fonction \exp est continue sur $\mathbb R$
- (iv) La fonction ln est continue sur \mathbb{R}_+^*
- (v) Les fonctions sin et cos sont continues sur \mathbb{R}

Propriété:

Soit $f, g : \mathbb{I} \to \mathbb{R}$ continues sur \mathbb{I} , $\lambda \in \mathbb{R}$, alors :

- $f+g, \lambda \cdot f, f \times g$ sont continues sur \mathbb{I} en supposant que g ne s'annule pas sur $\mathbb{I}, \frac{f}{g}$ est continue sur \mathbb{I}

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ continue sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ continue sur \mathbb{J} tel que $f(\mathbb{I}) = \mathbb{J}$ Alors $g \circ f$ est continue sur \mathbb{I}

Domaine de dérivabilité et tableau de variations

Dérivée d'une fonction en un point

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

Le taux d'accroissement est donné par :

$$\frac{f(x) - f(a)}{x - a}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} , on dit que f est <u>dérivable en a</u> \underline{si} et seulement \underline{si} l'application à une limite :

$$\tau_q: \mathbb{I} - \{a\} \to \mathbb{R}, \ x \mapsto \frac{f(x) - f(a)}{x - a}$$

Cette limite est appelée <u>nombre dérivé</u> de f en a et se note f'(a)

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} en lequel f est dérivable.

Alors la droite d'équation y = f'(a)(x-a) + f(a) est appelée la **tangante** à \mathcal{C}_f au point d'abscisse a

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, on dit que f est <u>dérivable sur \mathbb{I} si et seulement si</u> fest dérivable en tout point de \mathbb{I} . L'ensemble des fonctions dérivables sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{D}(\mathbb{I}, \mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont dérivables sur $\mathbb R$
- (ii) La fonction \sqrt{x} est dérivable sur \mathbb{R}_+^*
- (iii) La fonction exp est dérivable sur \mathbb{R} (iv) La fonction ln est dérivable sur \mathbb{R}^*_+
- (v) Les fonctions sin et cos sont dérivables sur $\mathbb R$

Propriété:

- (i) f + g est dérivable sur I et (f + g)' = f' + g'
 (ii) λ · f est dérivable sur I et (λ · f)' = λ · f'
 (iii) f × g est dérivable sur I et (f × g)' = f'g + g'f
 (iv) en supposant que g ne s'annule pas sur I, f/g est dérivable sur I et

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ dérivable sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ dérivable sur \mathbb{J} tel que $f(\mathbb{I}) \subset \mathbb{J}$ Alors $g \circ f$ est dérivable sur \mathbb{I} et $(g \circ f)' = (g' \circ f) \times f'$

Domaine de dérivabilité 3.2

Nous avons une fonction f d'une variable réelle et nous avons déterminé son domaine de définition \mathcal{D}_f . Nous voulons maintenant étudier sa dérivabilité.

Remarque:

Etant donnée une fonction f:

(i) Lors de la recherche du domaine de définition :

"
$$x \in \mathcal{D}_f \iff \dots \text{ donc } \mathcal{D}_f = \dots$$
"

" $x\in\mathcal{D}_f\iff\dots$ donc $\mathcal{D}_f=\dots$ " (ii) Lors de la recherche du domaine de continuité ou de dérivabilité :

" f est dérivable sur x tel que ... donc f est dérivable sur ...

Retenons que les propriétés générales donnent des conditions suffisantes de continuité ou de dérivation et non pas des conditions nécéssaires

4 Etude des bornes infinies

Plusieurs situations se présentent :

 $-lim f(x) = \pm \infty, \ a \in \mathbb{R}$

Admet la droite d'équation $\Delta : x = a$ comme asymptote verticale

$$-\lim_{\substack{x\to\pm\infty}}=b,\ b\in\mathbb{R}$$

Admet une droite d'équation y = b comme asymptote horizontale

DÉFINITION

Soit f, g deux fonctions d'une variable réelle

Nous disons que les courbes représentatives de f et g sont asymptotes au voisinage de $\pm \infty$ si et seulement si $f(x) - g(x) \underset{x \to \pm \infty}{\longrightarrow} 0$

$$--f(x) - (ax+b) \underset{x \to \pm \infty}{\longrightarrow} 0$$

Admet une droite d'équation y = ax + b comme asymptote oblique

La recherche d'une asymptote oblique admet que $f(x) \xrightarrow[x \to \infty]{} \pm \infty$ En supposant qu'il existe a,b non nuls tels que :

$$f(x) - (ax + b) \underset{x \to +\infty}{\longrightarrow} 0$$

Soit x variant au voisinage de $\pm \infty$

$$\frac{f(x)}{x} = \frac{f(x) - (ax+b) + ax + b}{x} = \frac{f(x) - (ax+b)}{x} + a + \frac{b}{x} \underset{x \to \infty}{\longrightarrow} a$$

En connaissant a:

$$f(x) - ax = f(x) - (ax + b) + b \underset{x \to \pm \infty}{\longrightarrow} b$$

Completons les différentes situations :

$$-\lim_{x\to\pm\infty}=\pm\infty$$

Nous étudions alors $\lim_{x\to\pm\infty}\frac{f(x)}{x}$:

- (i) $\lim_{x\to +\infty} \frac{f(x)}{x} = \pm \infty$, présence d'une **branche parabolique d'axe** (Oy)
- (ii) $\lim_{x\to\pm\infty}\frac{f(x)}{x}=0$, présence d'une **branche parabolique d'axe** (Ox)
- (iii) $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$

Nous étudions alors $\lim_{x \to \pm \infty} f(x) = ax$:

- (a) $\lim_{x \to +\infty} f(x) ax = \pm \infty$, branche parabolique d'axe $\Delta : y = ax$
- (b) $\lim_{x\to+\infty} f(x)-ax=b\in\mathbb{R}$, présence d'une **droite asymptote d'équation** y=ax+b

5 Représentation graphique de la fonction

La courbe en rouge, les tangantes en vert, les asymptotes en bleu