DS 215: Assignment 1

Full Marks: 100

1. Let $X_1, X_2, \dots X_n$ be n independent random variables each having density function:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{2} & \text{for } -1 \leq x \leq 1 \\ 0 & \text{otherwise} \end{array} \right.$$

If $S_n = X_1 + X_2 + \cdots + X_n$, show that

$$\Pr\left[\left|\frac{S_n}{n}\right| \ge \epsilon\right] \le \frac{1}{3n\epsilon^2}$$

10

2. Let $X_1, X_2, \dots X_n$ be random variables with the same mean μ and with the following covariance function

$$COV(X_i, X_j) = \sigma^2 \rho^{|i-j|},$$

where $|\rho| < 1$.

- **a.** Find the mean and variance of $S_n = X_1 + \cdots + X_n$.
- **b.** Does the weak law of large numbers hold for the sample mean?

$$8+7 = 15$$

3. Let $X_1, X_2, \dots X_n$ be iid random variables having density function

$$f(x) = \begin{cases} \frac{1}{2a} & \text{for } |x| \le a \\ 0 & \text{otherwise} \end{cases}$$

a. Find the characteristic function of

$$\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}$$

b. Prove that as $n \to \infty$, the characteristic function approaches $e^{-\omega^2/2}$.

$$10+6=16$$

4. Let U_0, U_1, \cdots be a sequence of iid zero-mean, unit-variance Gaussian random variables. A 'low-pass filter' takes the sequence U_i and produces the output sequence $X_n = (U_n + U_{n-1})/2$, and a 'high-pass filter' produces the output sequence $Y_n = (U_n - U_{n-1})/2$.

- **a.** Find the joint pdf of X_n and X_{n-1} .
- **b.** Find the joint pdf of Y_n and Y_{n+m} , m > 1.
- **c.** Find the joint pdf of X_n and Y_m .
- **d.** Does the sequence X_n converge in the mean square sense?
- **e.** Does the sequence X_n converge in distribution?

$$6+6+6+6+4=28$$

5. Let M_n be the discrete-time process defined as the sequence of sample means of an iid sequence:

$$M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- **a.** Find the mean, variance, and covariance of M_n .
- **b.** Does M_n have independent increments?
- **c.** Does M_n have stationary increments?

$$6+5+5=16$$

6. A discrete-time random process X_n is defined as follows. A fair coin is tossed; if the out- come is heads then $X_n = 1$ for all n. Otherwise, $X_n = -1$ for all n.

- **a.** Is X_n a WSS random process?
- **b.** Is X_n a stationary random process?
- **c.** Does the answers in parts **a** and **b** change if the coin is biased, i.e., probability of heads $p \neq \frac{1}{2}$?

$$6+5+4=15$$