gote. 7/4/2017

Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

Sixth Semester B. Tech. (CS / IT)

Summer - 2017

Course Code: ITU601

Course Name: Design and Analysis of Algorithms

Time: 2 Hrs. 30 Min.

Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

4) Use of logarithmic table, drawing instruments and nonprogrammable calculators is permitted.

5) Figures to the right indicate full marks.

Solve any two: 1.

Give Asymptotic upper bound for T(n). Make your 6 a) upper bound as tight as possible. You may assume that n is power of 2.

1) T(1) = 1

T(n) = T(n/2) + 1if n>1

2) T(1) = 1

T(n) = 2.T(n/2) + n if n > 1

Let f(n) and g(n) be asymptotically nonnegative 6 **b**) functions. Using the basic definition of Θ notation, prove that $\max(f(n),g(n)) = \Theta(f(n) + g(n)).$

Contd..

- c) What is empirical analysis & theoretical Analys
 - What is empirical analysis & theoretical Analys an algorithm? Explain pros and cons of the empi & theoretical analysis of an algorithm

Expl

shor

Pro

ne

So

M

1)

c)

a)

4.

b)

2. Solve any two

- a) Solve the recurrence : $T(n) = 4 T\left(\frac{n}{2}\right) + n^2$ When n is a power of 2, $n \ge 2$.
- b) What is binomial heap? Explain following opera on binomial heap H & Also find the time ta¹ these operations:
 i)Deleting the largest item of a binomial heap H

ii)Inserting a new item into a binomial heap H

Find the minimum spanning tree for the given grausing Prim's algorithm & draw the correspond weight matrix which shows the updating of weight after each iteration.

3. Solve any two

a) Write algorithm for greedy strategies for the knapsac problem & find optimal solution to the knapsack instance n=3, m=20

$$(p1,p2,p3) = (25,24,15)$$

$$(w1, w2, w3) = (18, 15, 10).$$

nalys

b) Explain the Floyd's algorithm for computing all pairs 6 shortest path. Also find the matrix D that gives

opera tal

H

c) Prove that Quick sort takes a time in O(n log n) to sort n elements on the average.

Solve the following

en gra pondi weigi

psac

a) Multiple Choice question(Each Carry Two Marks)

- 1) Assume that the algorithms considered here sort the input sequences in ascending order. If the input is already in ascending order, which of the following are TRUE?
- I. Quicksort runs in $\Theta(n^2)$ time
- II. Bubblesort runs in $\Theta(n^2)$ time
- III. Mergesort runs in $\Theta(n)$ time
- IV. Insertion sort runs in $\Theta(n)$ time
- a)I and II only b) I and III only
- c) II and IV only d) I and IV only
- 2) Let A1, A2, A3, and A4 be four matrices of dimensions 10 x 5, 5 x 20, 20 x 10, and 10 x 5, respectively. The minimum number of scalar multiplications required to find the product A1A2A3A4 using the basic matrix multiplication method is
- **a)** 1500 **b)** 2000 **c)** 500 **d)** 100
- 3) Suppose we run Dijkstra's single source shortest-

Contd..

path algorithm on the following edge weighted directed graph with vertex P as the source. In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized?

b) Multiple Choice question(Each Carry one Marks)

- 1) Given an unsorted array. The array has this property that every element in array is at most k distance from its position in sorted array where k is a positive integer smaller than size of array. Which sorting algorithm can be easily modified for sorting this array and what is the obtainable time complexity:
- (A) Insertion Sort with time complexity O(kn)
- (B) Heap Sort with time complexity O(nLogk)
- (C) Quick Sort with time complexity O(kLogk)
- (D) Merge Sort with time complexity O(kLogk)
- 2)If every square of the board is visited, then the total number of knight moves of 8-queen problem is
- (A) 64
- (B)62
- (C)61
- (D) 63
- 3)The total running time of knapsack problem for a simple approach

5.

a)

and

So

WI

Ag Ta:

A B

C

D

b) Give

Contd..

ghted what ertices 1?		(A) O(n) (B) O(log n) (C) O(2 ⁿ log n) (D) O(2 ⁿ) 4) Which of the following method is computing total cost of an algorithm in amortized analysis? (A) Aggregate method (B) accounting method (C) potential method (D) both (C) and (B)					
•		5) The runn represente (A) T(n)=1 (B) T(n)=1 (C) T(n)=1 (D) T(n)=1	ed by 2T(n/2) = 3T(n/2) = 4T(n/2) =	+ n + n + n	ge sort ca	n be recur	sively
rks)	6)If a problem Q is known as NP-hard, then which of the following is true? (A) if Q is NP then Q is NP Complete (B) Q is not NP complete (C) Q is not in NP (D)Not all problems in NP reduce to Q						
exity?	5.	Solve the following					
•	a)	What is branch and bound technique? Using branch and bound solve the following assignment problem. Also draw the completely explored tree.					
		Agent/ Task	1	2	3	4	
e total		A	11	12	18	40	
		В	14	15	13	22	
		C	11	17	19	23	
or a		D	17	14	20	28	
Contd	b)	Give the r	elation be	etween P	, NP and 1	NP comple	te. 6
-	118166			1/1/80			-