

ЭКОЛОГИЯ

Расчет выброса загрязняющих веществ от стоянок автомобилей

Практическая работа №2

Студент гр	
номер гр.	ФИО

СПбГЭТУ «ЛЭТИ», 2022 г.

Вариант:

1. Основные теоретические сведения

Стоянка автомобилей – территория или помещение, предназначенные для хранения автомобилей в течение определенного периода времени. Автомобили могут размещаться:

- на обособленных открытых стоянках или в отдельно стоящих зданиях и сооружениях (закрытые стоянки), имеющих непосредственный въезд и выезд на дороги общего пользования;
- на открытых стоянках или в зданиях и сооружениях, не имеющих непосредственного въезда и выезда на дороги общего пользования и расположенных в границах объекта, для которого выполняется расчет.

Выбросы - термин, используемый для описания газов и частиц, которые попадают в атмосферный воздух или выбрасываются различными источниками.

Расчет выбросов загрязняющих веществ от автотранспорта выполняется для шести загрязняющих веществ:

- оксида углерода СО,
- углеводородов СН,
- оксидов азота NO_x, в пересчете на диоксид азота NO₂,
- твердых частиц (сажа) С,
- соединений серы, в пересчете на диоксид серы SO₂,
- соединений свинца Рb.

Для автомобилей с бензиновыми двигателями рассчитывается выброс CO, CH, NO_x , SO_2 и Pb (Pb - только для регионов, где используется этилированный бензин); с газовыми двигателями - CO, CH, NO_x , SO_2 ; с дизелями - CO, CH, NO_x , C, SO_2 .

Расчет валовых и максимально разовых выбросов загрязняющих веществ для стоянки автомобилей проводится с использованием удельных показателей, т.е. количества выделяемых загрязняющих веществ, приведенных к единицам используемого оборудования, времени работ автотранспортных средств и их пробега.

Валовой (массовый) выброс - количество выбрасываемого в атмосферный воздух вредного вещества в течение определенного периода времени (в течение года).

Максимально разовый выброс - максимальное количество выбрасываемого в атмосферный воздух вредного (загрязняющего) вещества, от источника выбросов

осредненное за 20-30-минутный интервал времени.

Выбросы і-го вещества одним автомобилем к-й группы в день при выезде с территории или помещения стоянки \mathbf{M}_{1ik} и возврате \mathbf{M}_{2ik} рассчитываются по формулам:

$$M_{1ik} = m_{nvik} \cdot t_{nv} + m_{Lik} \cdot L_1 + m_{xxik} \cdot t_{xx1}, z$$
 (1)

$$M_{2ik} = m_{Lik} \cdot L_2 + m_{xxik} \cdot t_{xx2}, z$$
 (2)

где m_{npik} - удельный выброс і-го вещества при прогреве двигателя автомобиля к-й группы, г/мин;

 m_{Lik} - пробеговый выброс i-го вещества, автомобилем к-й группы при движении со скоростью 10-20 км/час, г/км;

 m_{xxik} - удельный выброс і-го вещества при работе двигателя автомобиля к-й группы на холостом ходу, г/мин;

 t_{np} - время прогрева двигателя, мин;

 L_1 , L_2 - пробег автомобиля по территории стоянки, км;

 t_{xx1}, t_{xx2} - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё (мин). Продолжительность работы двигателя на холостом ходу при выезде (въезде) автомобиля со стоянки $t_{xx1} = t_{xx2} = 1$ мин.

Значения удельных выбросов загрязняющих веществ m_{npik} , m_{Lik} , и m_{xxik} для различных типов автомобилей определяются по таблицам.

В таблицах применяются следующие обозначения:

тип двигателя: Б — бензиновый, БK — бензиновый с карбюратором, БB — бензиновый с впрыском топлива, Д — дизель;

период года: Т - теплый, Х - холодный;

Холодный период года - период года, характеризуемый среднесуточной температурой наружного воздуха, равной $+10^{\circ}$ С и ниже.

Теплый период года - период года, характеризуемый среднесуточной температурой наружного воздуха выше $+10^{\circ}\mathrm{C}$.

Время прогрева двигателя при температуре воздуха выше -5°C составляет 1 мин., ниже -5°C – 2 мин.

Средний пробег автомобилей по территории стоянки L_1 (при выезде) и L_2 , (при возврате) определяется по формулам:

$$L_{1} = \frac{L_{1E} + L_{1A}}{2}, \kappa M$$
 (3)

$$L_2 = \frac{L_{2E} + L_{2A}}{2}, \kappa M$$
 (4)

где L_{15} , $L_{1Д}$ - пробег автомобиля от ближайшего к выезду и наиболее удаленного от выезда места стоянки до выезда со стоянки, км,

 $L_{2Б}$, $L_{2Д}$ - пробег автомобиля от ближайшего к въезду и наиболее удаленного от въезда места стоянки автомобиля до въезда на стоянку, км.

Валовый выброс і-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле, полученные результаты суммируются:

$$M_{j}^{i} = \sum_{k=1}^{k} \alpha_{B} (M_{1ik} + M_{2ik}) N_{k} D_{p} 10^{-6}, m/cod$$
 (5)

где $\alpha_{\rm B}$ - коэффициент выпуска (выезда);

 N_{K} - количество автомобилей к-й группы на территории стоянки за расчетный период;

 D_{p} - количество дней работы в расчетном периоде (холодном, теплом);

ј - период года (Т - теплый, Х - холодный).

$$\alpha_{B} = \frac{N_{\kappa B}}{N_{\kappa}},\tag{6}$$

где $N_{\mbox{\tiny KB}}$ - среднее за расчетный период количество автомобилей к-й группы, выезжающих в течение суток со стоянки.

Максимально разовый выброс і-го вещества G_i рассчитывается для каждого месяца по формуле:

$$G_{i} = \frac{\sum_{k=1}^{K} \left(m_{npik} t_{np} + m_{Lik} L_{1} + m_{xxik} t_{xx1} \right) N_{k}^{i}}{3600}, \varepsilon/c$$
(7)

где N_k^i - количество автомобилей к-й группы, выезжающих со стоянки за 1 час, характеризующийся максимальной интенсивностью выезда автомобилей.

Из полученных значений G_i выбирается максимальное.

2. Практическая часть

На основе предложенных вариантов, рассчитайте валовые и максимально разовые выбросы загрязняющих веществ для парковки (стоянки) автотранспорта, расположенной во дворе жилого дома.

Известно, что со двора имеется только один выезд, который является и въездом $(L_1 = L_2)$. Расстояние от первого парковочного места до выезда со двора составляет 10 метров, количество парковочных мест соответствует количеству автотранспорта и не закреплены за владельцами, парковка осуществляется параллельно. Под каждое парковочное место отведена площадь 3x6 м.

Выезд и въезд автотранспорта осуществляется один раз в сутки. Все машины покидают парковочные места с 7:00-8:00 и возвращаются с 19:00-20:00.

Задание 1. Характеристика источника негативного воздействия на атмосферный воздух.

Согласно плану и на основе предложенных вариантов, опишите автотранспорт, как источник негативного воздействия на атмосферный воздух:

	Автомобиль 1	Автомобиль 2	Автомобиль 3
1. Марка автомобиля			
2. Рабочий объем двигателя			
3. Тип топлива (Б/Д)			
4. Тип двигателя (БК/БВ/Д)			
5. Средний пробег автомобилей по территории стоянки, м			

Задание 2. Климатическая характеристика региона

Заполните таблицу со среднемесячными температурами воздуха населенного пункта, согласно Вашему варианту. Определите к теплому или холодному периоду года относится каждый месяц, а также время прогрева двигателя при условии, что при температуре воздуха выше -5°C оно составляет 1 мин., ниже -5°C – 2 мин.

TT V		1			V	
Населенный	январь	февраль	март	апрель	май	июнь
пункт						
Среднемесячная						
температура, °С						
Temneparypa, C						
Период года						
(T/X)						
_						
Время прогрева						
двигателя t_{np} ,						
МИН						
Населенный	июль	август	сентябрь	октябрь	ноябрь	декабрь
пушкт						

Населенный	июль	август	сентябрь	октябрь	ноябрь	декабрь
пункт						
Среднемесячная						
температура, °С						
Период года						
(T/X)						
Время прогрева						
двигателя t_{np} ,						
МИН						

Количество дней работы в:	
- холодный период года	дней;
- теплый периол гола	лней:

Задание 3. Расчет валового и максимально разового выброса

Основываясь на данных из предыдущих заданий, рассчитайте значения валового выброса СО (оксид углерода, угарный газ) за год и максимально разового выброса для самого холодного месяца в году по формулам (1), (2), (5), (6). По результатам расчетов, заполните таблицу 1.

Значения удельных выбросов m_{npik} , m_{Lik} , и m_{xxik} определяются по таблице 2.

Таблица 1

Результаты расчетов

	Валовый выброс, т/год	Максимально разовый выброс, г/с
Оксид углерода (СО)		

Таблица 2

Удельные выбросы СО

Рабочий объем	Тип		m _{прік} , г/мин		m_{Lik} , Γ/KM		m_{xxik} , Γ /МИН
двигателя, л	двигателя		T	X	T	X	
до 1,2	Б	БК	2,3	4,5	7,5	9,3	1,5
		БВ	1,2	2,4	5,3	6,6	0,8
	Д		0,14	0,21	0,8	0,9	0,1
свыше 1,2 до 1,8	Б БК		3,0	6,0	9,4	11,8	2,0
		БВ	1,7	3,4	6,6	8,3	1,1
	Д		0,19	0,29	1,0	1,2	0,1
свыше 1,8 до 3,5	Б	БК	4,5	8,8	13,2	16,5	3,5
		БВ	2,9	5,7	9,3	11,7	1,9
	Д		0,35	0,53	1,8	2,2	0,2
Свыше 3,5	Б	БК	9,0	18,0	18,8	23,5	6,0
		БВ	4,8	9,6	13,3	16,6	3,2
	Д		0,60	0,75	3,1	3,7	0,4