REKURENCJA

Algorytmy i zależności rekurencyjne

Rekurencja jest jedną z najważniejszych metod konstruowania algorytmów. Polega na tym, że rozwiązanie badanego problemu wyraża się za pomocą tego samego problemu dla danych o mniejszych rozmiarach.

Przykład - problem wież Hanoi

Problem polega na przekładaniu krążków z patyczka A na patyczek C w taki sposób, że pojedynczo przekładane krążki mogą być odkładane bądź to bezpośrednio na podłożu, bądź też na krążek o średnicy większej. Pytanie dotyczy liczby niezbędnych ruchów (przestawień) dla piramidy o n krążkach.

Oznaczmy

ALG(n) - optymalny algorytm w problemie wież Hanoi dla n krążków, lr(n) - liczba ruchów w ALG(n).

Wówczas

k	ALG(k)	lr(k)
0		0
1	K1: przełożyć krążek na C .	1
	K1: mały na B;	
2	K2: duży na C;	3
	K3: mały na C.	
	K1: mały na C;	
	K2: średni na B;	
	K3: mały na B;	
3	K4: duży na C;	7
	K5: mały na A;	
	K6: średni na C;	
	K7: mały na C.	

k		ALG(k)	lr(k)	
	K1:	3górne krążki z A na B		
	111.	za pomocą ALG(3);	lr(3)+	
4	K2:	największy na C;	+1+	
	K3:	3 górne krążki z ${\cal B}$ na ${\cal C}$	+lr(3)	
	110.	za pomocą $ALG(3)$.		
:		:	:	
	K1:	n-1górnych krążków z A na B		
	IXI.	za pomocą $ALG(n-1)$;	lr(n-1)+	
$\mid n \mid$	K2:	największy na C;	+1+	
	K3:	$n-1$ górnych krążków z \boldsymbol{B} na \boldsymbol{C}	+ lr(n-1)	
	110.	za pomocą $ALG(n-1)$.		
:		<u>:</u>	:	

Ogólnie mamy zatem

$$lr(n) = 2lr(n-1) + 1$$
 z warunkiem początkowym $lr(0) = 0$.

Początkowe wyrazy ciągu lr(n) przedstawiają się następująco

n	0	1	2	3	4	5	6	7	8
lr(n)	0	1	3	7	15	31	63	127	255

Nietrudno odgadnąć jawną postać ciągu: $lr(n) = 2^n - 1$. Uzyskamy ją jednak w dalszej częsci wykładu, rozwiązując rekurencję opisującą ciąg lr(n).

Przykład - ciąg Fibonacciego

Liczby Fibonacciego:

1	l .									10	
F_n	1	1	2	3	5	8	13	21	34	55	89

Definicja rekurencyjna:
$$\begin{cases} F_1 &= F_2 = 1, \\ F_n &= F_{n-1} + F_{n-2} \text{ dla } n \geqslant 3. \end{cases}$$

Postać jawną ciągu Fibonacciego wyprowadzimy później na wykładzie.

Przykład

Na płaszczyźnie jest danych n okręgów. Jaka jest maksymalna liczba obszarów (lo(n)), na które dzielą one płaszczyznę? Napisać rozwiązanie w postaci zależności rekurencyjnej i w postaci jawnej.

Rozwiązanie:

Dla początkowych wyrazów ciągu lo(n) mamy

$$lo(0) = 1$$
, $lo(1) = 2$, $lo(2) = 1 + 2 + 1 = 4$ i $lo(3) = 1 + 3 + 4 = 8$.

Pokażemy, że ciąg lo(n) spełnia rekurencję

$$lo(n) = lo(n-1) + 2n - 2.$$

Załóżmy, że danych jest n-1 okręgów dzielących płaszczyznę na maksymalnie $\log(n-1)$ obszarów. Niech n-ty okrąg C będzie położony tak, aby wszystkie n okręgów dzieliły płaszczyznę na maksymalną liczbę obszarów, tj. na $\log(n)$ obszarów. Wtedy wszystkie okręgi przecinają się parami, w szczególności okrąg C przecina każdy z wcześniejszych n-1 okręgów w dwóch punktach. Wszystkie te 2(n-1)=2n-2 punkty dzielą C na 2n-2 łuków. Każdy taki łuk rozcina dokładnie jeden z $\log(n-1)$ uprzednio wyznaczonych obszarów. Innymi słowy liczba obszarów zwiększa się o 2n-2, c.b.d.o.

Zauważmy, że powyższy argument działa, gdy dodajemy okrąg C do przynajmniej jednego okręgu, czyli gdy $n-1\geqslant 1$. Zatem ciąg lo(n) spełnia rekurencję

$$\begin{cases} lo(1) = 2, \\ lo(n) = lo(n-1) + 2n - 2 dla \ n \ge 2. \end{cases}$$

Aby znaleźć jawną postać ciągu lo(n), wystarczy przypomnieć sobie wzór na sumę postępu arytmetycznego, wykonując poniższe rachunki:

$$lo(n) - lo(1) = (lo(n) - lo(n-1)) + \dots + (lo(2) - lo(1)) =
= 2((n-1) + \dots + 2 + 1) = 2 \cdot \frac{(n-1)((n-1)+1)}{2}.$$

Zatem dla n okręgów maksymalna liczba obszarów jest równa

$$lo(n) = lo(1) + (n-1)n = n^2 - n + 2.$$

Rozwiązywanie równań rekurencyjnych

Ciągi spotykane w matematyce są często definiowane w sposób rekurencyjny (zależność rekurencyjna), a nie za pomocą wzoru algebraicznego np. (ciąg Fibonacciego). Istnieje wiele metod wyznaczania jawnych wzorów algebraicznych na wyrazy takich ciągów, tj. rozwiązywania równań rekurencyjnych.

Metoda podstawiania

Przykład - problem wież Hanoi c.d.

Należy znaleźć postać jawną ciągu lr(n) zdefiniowanego rekurencją

$$\begin{cases} lr(0) = 0, \\ lr(n) = 2lr(n-1) + 1 dla \ n \ge 1. \end{cases}$$

Metoda podstawiania polega ona na tym, że wielkość stojącą po prawej stronie zależności rekurencyjnej wyrażamy przez tę samą zależność. Zatem dla n-1 otrzymujemy:

$$lr(n-1) = 2lr(n-2) + 1,$$

co podstawiamy do wzoru opisującego zależność rekurencyjną.

Takie podstawianie kontynuujemy aż do otrzymania lr(0):

gdzie w ostatniej równości korzystamy ze wzoru $a_1 \cdot \frac{1-q^n}{1-q}$ na sumę postępu geometrycznego o pierwszym wyrazie $a_1 = 1$ i ilorazie $q = \frac{a_{i+1}}{a_i} = 2$.

Dla pewności jawną postać ciągu lr(n) sprawdzamy dla kilku wyrazów:

n	lr(n)	$2^{n}-1$
0	0	$2^0 - 1 = 0$
1	$2 \cdot 0 + 1 = 1$	$2^1 - 1 = 1$
2	$2 \cdot 1 + 1 = 3$	$2^2 - 1 = 3$
3	$2 \cdot 3 + 1 = 7$	$2^3 - 1 = 7$
4	$2 \cdot 7 + 1 = 15$	$2^4 - 1 = 15$
5	$2 \cdot 15 + 1 = 31$	$2^5 - 1 = 31$

Równanie $s_n = as_{n-1} + bs_{n-2}$

Dane jest równanie rekurencyjne

$$s_n = as_{n-1} + bs_{n-2}$$

z wartościami początkowymi s_0 i s_1 oraz ustalonymi liczbami a i b.

Przypadek a = 0 lub b = 0

• Jeśli b = 0, to $s_n = as_{n-1}$ dla $n \ge 1$. Wówczas

$$s_1 = as_0, \ s_2 = as_1 = a^2s_0, \dots, \ s_n = a^ns_0.$$

• Jeśli a = 0, to $s_n = bs_{n-2}$ dla $n \ge 2$. Wówczas

$$s_2 = bs_0, \ s_4 = bs_2 = b^2s_0, \ \dots, \ s_{2n} = b^ns_0;$$

$$s_3 = bs_1$$
, $s_5 = bs_3 = b^2s_1$, ..., $s_{2n+1} = b^ns_1$.

Przykład (i) $s_n = 3s_{n-1} z s_0 = 5.$

Mamy a = 3 i b = 0, wiệc $s_n = 5 \cdot 3^n$ dla $n \ge 0$.

Przykład (ii) $s_n = 3s_{n-2} z s_0 = 5 i s_1 = 2.$

Mamy
$$a = 0$$
 i $b = 3$, wiệc $\begin{cases} s_{2n} = 5 \cdot 3^n \text{ dla } n \ge 0, \\ s_{2n+1} = 2 \cdot 3^n \text{ dla } n \ge 0. \end{cases}$

Przypadek $a \neq 0$ i $b \neq 0$

W tym przypadku zależność rekurencyjna $s_n = as_{n-1} + bs_{n-2}$ ma równanie charakterystyczne postaci

$$x^2 - ax - b = 0.$$

Wynika to z przypuszczenia, że $s_n = c \cdot r^n$ dla pewnej stałej c. Stąd $r^n = ar^{n-1} + br^{n-2}$. Dzieląc przez r^{n-2} , otrzymujemy

$$r^2 = ar + b = 0,$$

czyli r jest pierwiastkiem równania $x^2 - ax - b = 0$.

• Jeśli równanie $x^2 - ax - b = 0$ ma dwa różne pierwiastki r_1 i r_2 , to $s_n = Ar_1^n + Br_2^n$ dla pewnych stałych A i B, które można wyznaczyć z warunków brzegowych

$$\begin{cases} Ar_1^0 + Br_2^0 = s_0 \\ Ar_1^1 + Br_2^1 = s_1 \end{cases} \Rightarrow \begin{cases} A + B = s_0 \\ Ar_1 + Br_2 = s_1. \end{cases}$$

• Jeśli równanie $x^2 - ax - b = 0$ ma dwa jedno rozwiązanie $r = r_1 = r_2$, to $s_n = (A + Bn)r^n$ dla pewnych stałych A i B, które można wyznaczyć z warunków brzegowych

$$\begin{cases} (A+B\cdot 0)r^0 = s_0 \\ (A+B\cdot 1)r^1 = s_1 \end{cases} \Rightarrow \begin{cases} A = s_0 \\ (A+B)r = s_1. \end{cases}$$

Przykład (i)
$$\begin{cases} a_0 = a_1 = 3, \\ a_n = a_{n-1} + 2a_{n-2} \text{ dla } n \ge 2. \end{cases}$$

Mamy a=1 i b=2. Równanie charakterystyczne ma postać

$$x^2 - x - 2 = 0.$$

Ponieważ
$$\Delta = 1 - 4 \cdot (-2) = 9$$
, $x_1 = \frac{1-3}{2} = -1$, $x_2 = \frac{1+3}{2} = 2$, to

$$a_n = A \cdot 2^n + B \cdot (-1)^n = 2 \cdot 2^n + (-1)^n = 2^{n+1} + (-1)^n$$

gdyż

$$\begin{cases} A \cdot 2^0 + B \cdot (-1)^0 = 3 \\ A \cdot 2^1 + B \cdot (-1)^1 = 3 \end{cases} \Rightarrow \begin{cases} A + B = 3 \\ 2A - B = 3 \end{cases} \Rightarrow \begin{cases} A = 2 \\ B = 1. \end{cases}$$

Weryfikacja numeryczna:

n	a_n	$2^{n+1} + (-1)^n$
0	3	$2^1 + (-1)^0 = 3$
1	3	$2^2 + (-1)^1 = 3$
2	$3 + 2 \cdot 3 = 9$	$2^3 + (-1)^2 = 9$
3	$9 + 2 \cdot 3 = 15$	$2^4 + (-1)^3 = 15$

Przykład (ii)
$$\begin{cases} s_0 = 1, \\ s_1 = 8, \\ s_n = 4s_{n-1} - 4s_{n-2} \text{ dla } n \geqslant 2. \end{cases}$$

Mamy a=4 i b=-4. Równanie charakterystyczne ma postać

$$x^2 - 4x + 4 = 0.$$

Ponieważ
$$\Delta = 4^2 - 4 \cdot 4 = 0, r_1 = r_2 = \frac{4}{2} = 2$$
, to

$$s_n = (A + Bn) \cdot 2^n = (1 + 3n) \cdot 2^n = (3n + 1)2^n,$$

gdyż

$$\left\{ \begin{array}{ll} (A+B\cdot 0)2^0 & = & 1 \\ (A+B\cdot 1)2^1 & = & 8 \end{array} \right. \Rightarrow \left. \left\{ \begin{array}{ll} A & = & 1 \\ 2(A+B) & = & 8. \end{array} \right. \right. \Rightarrow \left. \left\{ \begin{array}{ll} A & = & 1 \\ B & = & 3. \end{array} \right. \right.$$

Weryfikacja numeryczna:

n	s_n	$(3n+1)2^n$
0	1	$(3 \cdot 0 + 1)2^0 = 1$
1	8	$(3 \cdot 1 + 1)2^1 = 8$
2	$4 \cdot 8 - 4 \cdot 1 = 28$	$(3 \cdot 2 + 1)2^2 = 28$
3	$4 \cdot 28 - 4 \cdot 8 = 80$	$(3 \cdot 3 + 1)2^3 = 80$

Postać jawna ciągu Fibonacciego

$$\begin{cases} F_0 = 0, F_1 = 1, \\ F_n = F_{n-1} + F_{n-2} \text{ dla } n \ge 2. \end{cases}$$

Mamy a=b=1. Równanie charakterystyczne o postaci

$$x^2 - x - 1 = 0.$$

posiada dwa pierwiastki

$$x_1 = \frac{1+\sqrt{5}}{2}$$
 oraz $x_2 = \frac{1-\sqrt{5}}{2}$.

Rozwiązanie rekurencji ma postać $F_n = A \cdot x_1^n + B \cdot x_2^n$ dla stałych A i B wyznaczanych następująco:

$$\begin{cases} A \cdot x_1^0 + B \cdot x_2^0 &= 0 \\ A \cdot x_1^1 + B \cdot x_2^1 &= 1 \end{cases} \Rightarrow \begin{cases} A + B &= 0 \\ A(1 + \sqrt{5}) + B(1 - \sqrt{5}) &= 2 \end{cases} \Rightarrow$$

$$\begin{cases} A+B &= 0 \\ (A+B)+(A-B)\sqrt{5} &= 2 \end{cases} \Rightarrow \begin{cases} A+B &= 0 \\ A-B &= \frac{2}{\sqrt{5}} \end{cases} \Rightarrow \begin{cases} A &= \frac{1}{\sqrt{5}} \\ B &= -\frac{1}{\sqrt{5}}. \end{cases}$$

Ostatecznie

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

Liczby Catalana

					4			7	8
c_n	1	1	2	5	14	42	132	429	1430

Definicja rekurencyjna:

$$\begin{cases} c_0 = 1, \\ c_n = c_0 \cdot c_{n-1} + c_1 \cdot c_{n-2} + \dots + c_{n-1} c_0 \text{ dla } n \geqslant 1. \end{cases}$$

Postać jawna

$$c_n = \frac{1}{n+1} \binom{2n}{n}.$$