

### Lab 6

## **Objectives:**

At the end of this lab, you should be able to:

- Use Oracle constraints.
- Use oracle data dictionary.

## **Constraints**

The Oracle Server uses *constraints* to prevent invalid data entry into tables.

You can use constraints to do the following:

- Enforce rules at the table level whenever a row is inserted, updated, or deleted from that table. The constraint must be satisfied for the operation to succeed.
- Prevent the deletion of a table if there are dependencies from other tables.

| Constraint  | Description                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------|
| NOT NULL    | Specifies that this column may not contain a null value                                                     |
| UNIQUE      | Specifies a column or combination of columns whose values must be unique for all rows in the table          |
| PRIMARY KEY | Uniquely identifies each row of the table                                                                   |
| FOREIGN KEY | Establishes and enforces a foreign key relationship between the column and a column of the referenced table |
| CHECK       | Specifies a condition that must be true                                                                     |

#### **Create a constraint:**

- At the same time as the table is created
- After the table has been created

#### 1- The NOT NULL Constraint

### **Example**

CREATE TABLE emp5(
empno NUMBER(4),
ename VARCHAR2(10) NOT NULL,
deptno NUMBER(2) NOT NULL);

Try to insert a new record to the table emp5 and make valued of *ename* null.

**NOTE:** because no constraint name is provided, the constraint is named automatically by Oracle server.

# 2- The UNIQUE Key Constraint Example

```
CREATE TABLE dept5(
deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
CONSTRAINT dept dname uk UNIQUE(dname)));
```

Try to insert two records to the table dept5 with the same values for dname field

## **3- The PRIMARY KEY Constraint**

### **Example**

CREATE TABLE dept6(
deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
CONSTRAINT dept\_dname\_uk2 UNIQUE (dname),
CONSTRAINT dept\_deptno\_pk PRIMARY KEY(deptno));

Try to insert two records with the same primary key.



#### Difference between primary key and unique constraints:

- 1- Primary key field cannot have null values, while unique fileds can have null.
- 2- Only one primary key constraint in a table, but you can have multiple unique constraints for a table.

#### Composite primary key:

It is a combination of two or more columns

#### Example:

CREATE TABLE CUSTOMER( YEAR NUMBER(4), ID NUMBER (4), NAME VARCHAR2(20), PHONE NUMBER (7), CONSTRAINT YEAR\_NAME\_PK PRIMARY KEY (YEAR,ID) );

# **4- The FOREIGN KEY Constraint Example**

```
CREATE TABLE emp6(
empno NUMBER(4),
ename VARCHAR2(10) NOT NULL,
deptno number(4),
CONSTRAINT emp_deptno_fk FOREIGN KEY (deptno)
REFERENCES dept (deptno));
```

The foreign key is defined in the child table, and the table containing the referenced column is the parent table. The foreign key is defined using a combination of the following keywords:

- FOREIGN KEY is used to define the column in the child table at the table constraint level.
- REFERENCES identifies the table and column in the parent table.
- ON DELETE CASCADE indicates that when the row in the parent table is deleted, the dependent rows in the child table will also be deleted.
- Without the ON DELETE CASCADE option, the row in the parent table cannot be deleted if it is referenced in the child table.

### **Example**

CREATE TABLE CUSTOMER2 (ID NUMBER(4) PRIMARY KEY, NAME VARCHAR2(20), DEPTNO NUMBER (3), CONSTRAINT DEPTNO\_FK FOREIGN KEY(DEPTNO) REFERENCES DEPT(DEPTNO) ON DELETE CASCADE );

- Insert a new record to dept table as follows Deptno: 88, Dname: HR, Loc: Doha.
- Insert a new record to table customer2 as follows
- Id: 123, name: Ahmed, deptno:88.
- Now delete the dept 88.
- Check if the customer 123 was deleted.

### 5- The CHECK Constraint

### **Example**

Try to insert a new record with the gender 'm'.

**Note**: This type of constraint can be used to add null constraint with a name.

#### Example

```
CREATE TABLE CUSTOMER3 (
ID NUMBER (3),
NAME VARCHAR2(20),
CONSTRAINT NAME_NN CHECK (NAME IS NOT NULL));
```

#### Adding a Constraint after creating the table:

#### **Example**

CREATE TABLE EMP8 AS SELECT \* FROM EMP;

ALTER TABLE emp8
ADD CONSTRAINT empno\_PK primary key (empno);

**Note:** a constraint cannot be added if the data already in that table violates that constraint.

# **Dropping a Constraint Example**

ALTER TABLE emp6
DROP CONSTRAINT emp\_mgr\_fk;

#### **Disabling and Enabling Constraint**

You can disable a constraint without dropping it ore recreating it.

#### Example

ALTER TABLE EMP8 DISABLE CONSTRAINT EMPNO\_PK;

ALTER TABLE EMP8 ENABLE CONSTRAINT EMPNO\_PK

## **Oracle Data Dictionary:**

The *data dictionary* is a **read-only** set of tables that provides information about its associated database. For example the names of Oracle users, privileges and roles each user has been granted ...etc.

The data dictionary has two primary uses:

- Oracle accesses the data dictionary every time that a DDL statement is issued.
- Any Oracle user can use the data dictionary as a <u>read-only</u> reference for information about the database.

Oracle divides data dictionary views into the three families, as indicated by the following prefixes:

#### • <u>USER</u> :

USER views return information about objects owned by the currently-logged-on database user. Here some of those views :

- a. USER\_TABLES all tables with their name, number of columns, storage
- b. USER CONSTRAINTS constraint definitions for tables
- c. **USER\_INDEXES** all information about indexes created for tables (IND)
- d. USER\_OBJECTS all database objects owned by the user (OBJ)
- e. **USER\_TRIGGERS** triggers defined by the user
- f. USER\_USERS information about the current user
- g. USER\_VIEWS views defined by the user

For example, a query to USER\_TABLES returns a list of all of the relational tables that you own.

## SELECT TABLE\_NAME, TABLESPACE\_NAME FROM USER\_TABLES;

|    | ↑ TABLE_NAME | ↑ TABLESPACE_NAME |
|----|--------------|-------------------|
| 1  | BONUS        | USERS             |
| 2  | CUSTOMER     | USERS             |
| 3  | DEPT         | USERS             |
| 4  | DEPT5        | USERS             |
| 5  | DEPT6        | USERS             |
| 6  | DUMMY        | USERS             |
| 7  | EMP          | USERS             |
| 8  | EMP5         | USERS             |
| 9  | EMP6         | USERS             |
| .0 | EMP7         | USERS             |
| 1  | EMP8         | USERS             |
| .2 | SALGRADE     | USERS             |

# SELECT CONSTRAINT\_NAME, CONSTRAINT\_TYPE, STATUS FROM USER\_CONSTRAINTS;

| CONSTRAINT_NAME                                |   |          |
|------------------------------------------------|---|----------|
| <sup>1</sup> EMPLOYEE DNO FK                   | R | ENABLED  |
| <sup>2</sup> FK DEPTNO                         | R | ENABLED  |
| 3 CUSTOMER1 NAME CK1                           | C | DISABLED |
| 4BIN\$13u2vN91KvDqUxVFPAoCRw==\$0              | P | ENABLED  |
| 5 BIN\$13u2vN9oKvDqUxVFPAoCRw==\$0             | P | ENABLED  |
| 6BIN\$13zqWGK/MMrqUxVFPAqP+w==\$0              | P | ENABLED  |
| <sup>7</sup> BIN\$13zqWGK8MMrqUxVFPAqP+w==\$0  | P | ENABLED  |
| 8 BIN\$15S3tFDIStnqUxVFPAoxZA==\$0             |   | ENABLED  |
| 9BIN\$15S3tFDLStnqUxVFPAoxZA==\$0              | P | ENABLED  |
| DBIN\$15YzCMaFVHfaUxVFPAaRPa==\$0              |   | ENABLED  |
| <sup>11</sup> BIN\$15YzCMqIVHfqUxVFPAqRPq==\$0 |   | ENABLED  |
| <sup>12</sup> BIN\$16hTQA6qSjXqUxVFPAolJq==\$0 |   | ENABLED  |
| <sup>13</sup> BIN\$16hTQA6tSjXqUxVFPAolJq==\$0 | P | ENABLED  |

# SELECT TABLESPACE\_NAME,STATUS,BLOCK\_SIZE FROM USER\_TABLESPACES;

|   | ↑ TABLESPACE_NAME |        |      |
|---|-------------------|--------|------|
| 1 | SYSTEM            | ONLINE | 8192 |
| 2 | SYSAUX            | ONLINE | 8192 |
| 3 | UNDOTBS1          | ONLINE | 8192 |
| 4 | TEMP              | ONLINE | 8192 |
| 5 | USERS             | ONLINE | 8192 |
| 6 | EXAMPLE           | ONLINE | 8192 |
| 7 | COELAB            | ONLINE | 8192 |

#### • ALL:

ALL views return information about all objects to which you have access, regardless of who owns them. For example, a query to ALL\_TABLES returns a list not only of all of the relational tables that you own, but also of all relational tables to which their owners have specifically granted you access (using the GRANT command).

#### SELECT TABLE\_NAME, TABLESPACE\_NAME FROM ALL\_TABLES;

| TABLE_NAME                        | ↑ TABLESPACE_NAME |
|-----------------------------------|-------------------|
| <sup>1</sup> DUAL                 | SYSTEM            |
| <sup>2</sup> SYSTEM PRIVILEGE MAP | SYSTEM            |
| 3 TABLE PRIVILEGE MAP             | SYSTEM            |
| ⁴USER PRIVILEGE MAP               | SYSTEM            |
| 5 STMT AUDIT OPTION MAP           | SYSTEM            |
| 6 AUDIT ACTIONS                   | SYSTEM            |
| WRR\$ REPLAY CALL FILTER          | SYSAUX            |
| 8 HS BULKLOAD VIEW OBJ            | SYSTEM            |
| 9 HS\$ PARALLEL METADATA          | SYSTEM            |
| 10 HS PARTITION COL NAME          | SYSTEM            |
| 11 HS PARTITION COL TYPE          | SYSTEM            |
| 12 XDB\$IMPORT TT INFO            | SYSAUX            |

### • <u>DBA</u>:

DBA views are generally accessible only to database administrators, and return information about all objects in the database, regardless of ownership or access privileges. For example, a query to DBA\_TABLES will return a list of all relational tables in the database, whether or not you own them or have been granted access to them.

## SELECT TABLE\_NAME, TABLESPACE\_NAMEFROM DBA\_TABLES;

| ↑ TABLE_NAME           | ↑ TABLESPACE_NAME |
|------------------------|-------------------|
| 1 TYPE MISC\$          | SYSTEM            |
| <sup>2</sup> ATTRCOL\$ | SYSTEM            |
| 3 ASSEMBLY\$           | SYSTEM            |
| 4 LIBRARY\$            | SYSTEM            |
| 5 VIEWTRCOL\$          | SYSTEM            |