=> b medline caplus lifesci embase uspatfull biosis

COST IN U.S. DOLLARS

SINCE FILE ENTRY TOTAL SESSION

FULL ESTIMATED COST

0.21

0.21

FILE 'MEDLINE' ENTERED AT 11:21:59 ON 10 SEP 2002

FILE 'CAPLUS' ENTERED AT 11:21:59 ON 10 SEP 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'LIFESCI' ENTERED AT 11:21:59 ON 10 SEP 2002 COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'EMBASE' ENTERED AT 11:21:59 ON 10 SEP 2002 COPYRIGHT (C) 2002 Elsevier Science B.V. All rights reserved.

FILE 'USPATFULL' ENTERED AT 11:21:59 ON 10 SEP 2002
CA INDEXING COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 11:21:59 ON 10 SEP 2002 COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC.(R)

=> s ssre or (shear stress response element)

L1 106 SSRE OR (SHEAR STRESS RESPONSE ELEMENT)

=> dup rem 11

PROCESSING COMPLETED FOR L1

L2 50 DUP REM L1 (56 DUPLICATES REMOVED)

=>

=> s 12 and decoy

L3 2 L2 AND DECOY

=> d 13 ibib abs tot

L3 ANSWER 1 OF 2 MEDLINE

ACCESSION NUMBER: 1999162459 MEDLINE

DOCUMENT NUMBER: 99162459 PubMed ID: 10051691

TITLE: Select de novo gene and protein expression during renal

epithelial cell culture in rotating wall vessels is shear

stress dependent.

AUTHOR: Kaysen J H; Campbell W C; Majewski R R; Goda F O; Navar G

L; Lewis F C; Goodwin T J; Hammond T G

CORPORATE SOURCE: Nephrology Section, Department of Medicine and Tulane

Environmental Astrobiology Center, Tulane/Xavier Center

for

Bioenvironmental Research, 1430 Tulane Avenue, New

Orleans,

LA 70112, USA.

CONTRACT NUMBER: DK46117 (NIDDK)

R21 RR12645 (NCRR)

SOURCE:

JOURNAL COMEMBRANE BIOLOGY, (1999 Mar 1) 8 (1) 77-89. Journal (1999 Mar 1) 8 (1) 77-89.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

United States
Journal; Article; (JOURNAL ARTICLE) LANGUAGE:

FILE SEGMENT:

Priority Journals; Space Life Sciences

199904

ENTRY MONTH:

ENTRY DATE: Entered STN: 19990504

> Last Updated on STN: 19990504 Entered Medline: 19990422

AB The rotating wall vessel has gained popularity as a clinical cell culture tool to produce hormonal implants. It is desirable to understand the mechanisms by which the rotating wall vessel induces genetic changes, if we are to prolong the useful life of implants. During rotating wall vessel

culture gravity is balanced by equal and opposite hydrodynamic forces including shear stress. The current study provides the first evidence that

shear stress response elements, which modulate gene expression in endothelial cells, are also active in epithelial cells. Rotating wall culture of renal cells changes expression of select gene products including the giant glycoprotein scavenger receptors cubulin and megalin, the structural microvillar protein villin, and classic shear stress response genes ICAM, VCAM and MnSOD. Using a putative endothelial cell shear stress response element

binding site as a decoy, we demonstrate the role of this sequence in the regulation of selected genes in epithelial cells.

However,

many of the changes observed in the rotating wall vessel are independent of this response element. It remains to define other genetic response elements modulated during rotating wall vessel culture, including the

of hemodynamics characterized by 3-dimensionality, low shear and turbulence, and cospatial relation of dissimilar cell types.

ANSWER 2 OF 2 USPATFULL

ACCESSION NUMBER:

2002:99432 USPATFULL

TITLE:

Therapeutic use of cis-element decoys in vivo

INVENTOR(S):

Dzau, Victor J., Los Altos Hills, CA, UNITED STATES Gibbons, Gary H., Palo Alto, CA, UNITED STATES

Morishita, Ryuichi, Palo Alto, CA, UNITED STATES

	NUMBER	KIND	DATE	
PATENT INFORMATION:	US 2002052333	A1	20020502	
APPLICATION INFO.:	US 2001-839752	A1	20010419	(9)
PETATED ADDING THECH	Continuation of	Sar No	IIC 1005_	5212

RELATED APPLN. INFO.: Continuation of Ser. No. US 1995-524206, filed on 8

1995, PENDING Continuation of Ser. No. US 1993-144717,

filed on 29 Oct 1993, ABANDONED

DOCUMENT TYPE: FILE SEGMENT:

Utility

APPLICATION

LEGAL REPRESENTATIVE: CLARK & ELBING LLP, 176 FEDERAL STREET, BOSTON, MA,

02110-2214

NUMBER OF CLAIMS:

12

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

5 Drawing Page(s)

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention provides for the use of oligodeoxynucleotide decoys for the prophylactic or therapeutic treatment of diseases associated with the binding of endogenous transcription factors to genes involved in cell growth, differentiation and signalling or to viral genes. By inhibiting endogenous trans-activating factors from binding transcription regulatory regions, the decoys modulate gene expression and thereby regulating pathological processes including inflammation, intimal hyperplasia, including including inflammation, intimal hyperplasia, including including intimal hyperplasia, including including

viral

infection. The decoys are administered in amounts and under conditions whereby binding of the endogenous transcription factor to the endogenous

gene is effectively competitively inhibited without significant host toxicity. The subject compositions comprise the **decoy** molecules in a context which provides for pharmacokinetics sufficient for effective therapeutic use.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d history

(FILE 'HOME' ENTERED AT 11:21:42 ON 10 SEP 2002)

FILE 'MEDLINE, CAPLUS, LIFESCI, EMBASE, USPATFULL, BIOSIS' ENTERED AT 11:21:59 ON 10 SEP 2002

L1 106 S SSRE OR (SHEAR STRESS RESPONSE ELEMENT)

L2 50 DUP REM L1 (56 DUPLICATES REMOVED)

L3 2 S L2 AND DECOY

=> s 12 not 13

L4 48 L2 NOT L3

=> d 14 ibib abs tot

L4 ANSWER 1 OF 48 MEDLINE

ACCESSION NUMBER: 2001559794 IN-PROCESS
DOCUMENT NUMBER: 21518042 PubMed ID: 11605517

TITLE: The study on the shear stress responsive element in

endothelial cells.

AUTHOR: Zhang W; Chen H

CORPORATE SOURCE: Institute of Biomedical Engineering, West China University

of Medical Sciences, Chengdu 610041.

SOURCE: SHENG WU I HSUEH KUNG CHENG HSUEH TSA CHIH [JOURNAL OF

BIOMEDICAL ENGINEERING], (2001 Sep) 18 (3) 461-5.

Journal code: 9426398. ISSN: 1001-5515.

PUB. COUNTRY: China

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: Chinese

FILE SEGMENT: IN-PROCESS; NONINDEXED; Priority Journals

ENTRY DATE: Entered STN: 20011022

Last Updated on STN: 20020122

AB Vascular endothelial cells, by virtue of their unique anatomical position,

are constantly exposed to the fluid mechanical forces generated by flowing

blood. The fluid forces could influence endothelial cell's gene expression. At a molecular level, fluid shear stress is known to increase or decrease the expression of a wide variety of genes. The shear stress responsive element (SSRE) was proposed after the identification of the first SSRE, the GAGACC sequence identified in the platelet-derived growth factor (PDGF) B chain promoter and subsequently identified in other genes whose promoters respond to shear stress. In addition, there are the existence of other positive shear responsive regulatory elements. There is a report on the activation of these promoters in vitro and in vivo and propose an application of these mechanically inducible promoters in the treatment of vascular diseases.

ACCESSION NUMBER: 2000467359 MEDLINE

20473754 PubMed ID: 11015612
Mechanical culture conditions effect gene expression: DOCUMENT NUMBER:

TITLE:

gravity-induced changes on the space shuttle.

Hammond T G; Benes E; O'Reilly K C; Wolf D A; Linnehan R AUTHOR:

M:

Taher A; Kaysen J H; Allen P L; Goodwin T J CORPORATE SOURCE: Nephrology Section, Department of Medicine,

Tulane/Veterans

Affairs Environmental Astrobiology Center, New Orleans, Louisiana 70112, USA.. thammond@mailhost.tcs.tulane.edu

CONTRACT NUMBER:

R21-RR-12645 (NCRR)

SOURCE:

PHYSIOLOGICAL GENOMICS, (2000 Sep 8) 3 (3) 163-73.

Journal code: 100894125. ISSN: 1094-8341. Flight Experiment; STS-90 Shuttle Project.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals; Space Life Sciences

ENTRY MONTH:

200103

ENTRY DATE:

Entered STN: 20010404 Last Updated on STN: 20011024

Entered Medline: 20010308

Three-dimensional suspension culture is a gravity-limited phenomenon. The AB balancing forces necessary to keep the aggregates in suspension increase directly with aggregate size. This leads to a self-propagating cycle of cell damage by balancing forces. Cell culture in microgravity avoids this trade-off. We determined which genes mediate three-dimensional culture of cell and tissue aggregates in the low-shear stress, low-turbulent environment of actual microgravity. Primary cultures of human renal cortical cells were flown on the space shuttle. Cells grown in microgravity and ground-based controls were grown for 6 days and fixed. RNA was extracted, and automated gene array analysis of the expression of 10, 000 genes was performed. A select group of genes were regulated in microgravity. These 1,632 genes were independent of known shear stress response element-dependent genes and heat shock proteins. Specific transcription factors underwent large changes in microgravity including the Wilms' tumor zinc finger protein, and the vitamin D receptor. A specific group of genes, under the control

of defined transcription factors, mediate three-dimensional suspension culture under microgravity conditions.

ANSWER 3 OF 48 MEDLINE

ACCESSION NUMBER: 2000455429 MEDLINE

DOCUMENT NUMBER:

20303090 PubMed ID: 10842092

TITLE:

Molecular events caused by mechanical stress in bone.

AUTHOR:

Nomura S; Takano-Yamamoto T

CORPORATE SOURCE:

Department of Pathology, Osaka University Medical School

2-2 Yamada-oka, Suita, Osaka, Japan.

SOURCE:

MATRIX BIOLOGY, (2000 May) 19 (2) 91-6. Ref: 48

Journal code: 9432592. ISSN: 0945-053X.

PUB. COUNTRY: DOCUMENT TYPE: GERMANY: Germany, Federal Republic of Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals; Space Life Sciences

200009 ENTRY MONTH:

ENTRY DATE:

Entered STN: 20001005

Last Updated on STN: 20001005 Entered Medline: 20000926

The shape of bone changes as a result of bone remodeling corresponding to AΒ physical circumstances such as mechanical stress. The tissue which receives the loaded mechanical stress most efficiently is bone matrix. Recent studies revealed the function of osteocytes as mechanosensors in the early stage of bone remodeling. Loaded mechanical stress is converted to a series of biochemical reactions, and finally activates osteoclasts and osteoblasts to cause one resorption and formation. Chemical and molecular biological studies have recently resulted in the identification of the gene of which expression level is changed by mechanical stress. Nitric oxide (NO) and cAMP is secreted in response to mechanical stress

in

the immediate early stage. Genes encoding enzymes such as glutamate/aspartate transporter (GLAST), nitric oxide synthetase (NOS)

and

prostaglandin G/H synthetase (PGHS-2) are identified as mechanical stress-responsive. The expression level of IGF-I is enhanced under the control of PTH/PTHrP. The expression of c-fos is increased by loading of mechanical stress. API, a heterodimer of c-FOS/c-JUN, functions as a transcription factor of downstream gene(s). Elements including API sites, cyclic AMP response elements (CRE) and shear stress response elements (SSRE) are found in the promoter region of mechanical stress-response genes. The enhanced expression of osteopontin (OPN) in

the

osteocytes of bone resorption sites was demonstrated by in situ hybridization and immunohistochemistry and transdifferentiation of chondrocytes with the abundant expression of BMP-2 and -4 in the process of distraction osteogenesis was observed.

L4 ANSWER 4 OF 48 MEDLINE

ACCESSION NUMBER: 2000183263 MEDLINE

DOCUMENT NUMBER: 20183263 PubMed ID: 10720423

DOCUMENT NUMBER: 20183263 Pubmed 1D: 10720423

TITLE: Arterial shear stress stimulates surface expression of the

endothelial glycoprotein Ib complex.

AUTHOR: Beacham D A; Lian J; Wu G; Konkle B A; Ludlow L B; Shapiro

SS

CORPORATE SOURCE: Cardeza Foundation for Hematologic Research, Department of

Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5099, USA..

Dorothy.Beacham@mail.tju.edu

CONTRACT NUMBER: HL09163 (NHLBI)

HL51415 (NHLBI)

SOURCE: JOURNAL OF CELLULAR BIOCHEMISTRY, (1999 Jun 15) 73 (4)

508-21.

Journal code: 8205768. ISSN: 0730-2312.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals; Space Life Sciences

ENTRY MONTH: 200003

ENTRY DATE: Entered STN: 20000330

Last Updated on STN: 20000330

Entered Medline: 20000317

ΑB Exposure to shear stress has been shown to alter the expression of a number of surface components of cultured endothelial cells (EC). However, relatively few studies have examined the status of human EC surface proteins after prolonged flow, more closely corresponding to the steady state in vivo. Since the promoter region of glycoprotein (Gp) Ib alpha contains several copies of a putative shear stress response element, 5'-GAGACC-3', we investigated the response of cultured human umbilical vein EC (HUVEC) GpIb alpha to shear stress over a 72 h time period. In response to 30 dynes/cm2 of shear stress, total cell content of GpIb alpha protein was markedly increased above static levels at 7 and 24 h, as determined immunohistochemically. Western blot analysis of whole cell lysates after 24, 48, and 72 h of shear treatment demonstrated a 2.4-, 4.1-, and 3.2-fold increase in total GpIb alpha protein, respectively. Cell surface protein expression of GpIb alpha increased 2.5-fold at 7 h, as measured by quantitative immunofluorescence, and remained at that level at 24 h. After 48 h of shear stress, cell surface GpIb alpha, GpIX, and GpV, analyzed by flow cytometric analysis, were further increased over the levels observed at

h. The increase in cell surface membrane expression of GPIb alpha at 24, 48, and 72 h was confirm by immunoprecipitation of biomylated surface proteins. No upregulation of GpIb alpha was noted after exposure to shear stress of 1-3 dynes/cm2. These observations imply that under steady-state arterial shear conditions endothelial expression of the GpIb complex is significantly greater than observed in static EC cultures, and raise the possibility of a more important role for this complex under flow, rather than static conditions.

L4 ANSWER 5 OF 48 MEDLINE

ACCESSION NUMBER: 2000108923 MEDLINE

DOCUMENT NUMBER: 20108923 PubMed ID: 10642296

TITLE: Endothelin-dependent and -independent components of

strain-activated brain natriuretic peptide gene

transcription require extracellular signal regulated

kinase

and p38 mitogen-activated protein kinase.

AUTHOR: Liang F; Lu S; Gardner D G

CORPORATE SOURCE: Metabolic Research Unit and Department of Medicine,

University of California at San Francisco, 94146-0540,

USA.

CONTRACT NUMBER: HL-35753 (NHLBI)

SOURCE: HYPERTENSION, (2000 Jan) 35 (1 Pt 2) 188-92.

Journal code: 7906255. ISSN: 0194-911X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals; Space Life Sciences

ENTRY MONTH: 200002

ENTRY DATE: Entered STN: 20000218

Last Updated on STN: 20000218 Entered Medline: 20000207

AB The application of mechanical strain to cultured cardiac myocytes in vitro

leads to activation of the brain natriuretic peptide (BNP) gene promoter, a marker of cardiac hypertrophy. We have previously shown that this activation results from both a direct mechanostimulatory event and an indirect autocrine/paracrine stimulation involving the sequential production of angiotensin II and endothelin (ET). In the present study,

we

examined the role of p38 mitogen-activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) in signaling the increase in promoter activity trafficking through each of these pathways. ET was shown

to stimulate both p38 MAPK and ERK activity in these cultures and to activate human BNP (hBNP) promoter activity. Activation of the promoter was inhibited approximately 45% by SB-203580, a p38 MAPK inhibitor, and approximately 70% by PD98059, an inhibitor of the ERK-activating kinase MAPK kinase. The ET-independent (ie, direct) stimulation of the hBNP promoter by mechanical strain was inhibited approximately 70% by SB-203580

and approximately 60% by PD98059, implying that similar signaling circuitry is used, albeit to different degrees, by the direct and indirect $\frac{1}{2}$

pathways. The p38 MAPK component of both the ET-dependent and the ET-independent responses to strain appears to operate through a series of nuclear factor-kappaB binding, shear stress

response element-like structures in the hBNP gene

promoter. Collectively, these data suggest that activation of the BNP promoter by hypertrophic stimuli involves the participation of several independent signaling pathways. Such redundancy would help to guarantee generation of the full hypertrophic phenotype independently of the nature of the hypertrophic stimulus.

L4 ANSWER 6 OF 48 MEDLINE

ACCESSION NUMBER: 2000075753 MEDLINE

DOCUMENT NUMBER: 20075753 PubMed ID: 10609662

Delivery d expression of fluid shear st s-inducible promoters to the vessel wall: applications for TITLE:

cardiovascular gene therapy.

AUTHOR:

Houston P; White B P; Campbell C J; Braddock M

CORPORATE SOURCE:

Endothelial Cell Gene Expression Group, Vascular Diseases Unit, Glaxo Wellcome Medicines Research Centre, Stevenage,

Herts, England.

United States

HUMAN GENE THERAPY, (1999 Dec 10) 10 (18) 3031-44. SOURCE:

Journal code: 9008950. ISSN: 1043-0342.

PUB. COUNTRY:

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT:

Priority Journals

200001 ENTRY MONTH:

ENTRY DATE:

Entered STN: 20000114

Last Updated on STN: 20000114 Entered Medline: 20000106

In atherosclerosis, endothelial cells at sites of stenosis experience elevated levels of shear stress. We have constructed a series of shear stress-inducible transcription units (SITUs) expressing the luciferase reporter gene and determined their activation by fluid shear stress in transfected endothelial cells. Chimeric promoters were constructed that comprised basal transcription factor-binding sites coupled to a

shear stress response element (

SSRE). We have used consensus binding sites for transcription factors NF-kappaB, Ap1, Sp1, Oct1, and Egr-1/Sp1 in either the presence

or

absence of the previously defined "GAGACC" SSRE. The response of the promoters to shear stress was determined after transfection into human

umbilical vein endothelial cells (HUVECs). After transient transfection into HUVECs, fluid shear stress activated the promoters by between twoand eightfold. The most responsive SITUs comprised an overlapping Spl/Egr-1-binding site linked to a TATA box with (SP5) or without (SP7) the GAGACC SSRE. Instillation of SP5 DNA in vivo into the left carotid artery of rabbit and subsequent generation of a stenosis using a mechanical wire occluder caused a 10-fold upregulation of luciferase reporter gene expression at the site of vessel occlusion. These vectors show promise for therapeutic gene expression at sites of occlusive vascular disease.

ANSWER 7 OF 48 MEDLINE

ACCESSION NUMBER: 1999057940

MEDLINE

DOCUMENT NUMBER:

99057940 PubMed ID: 9837956

TITLE:

Genomic organization and regulation of expression of the

lectin-like oxidized low-density lipoprotein receptor

(LOX-1) gene.

AUTHOR:

Nagase M; Abe J; Takahashi K; Ando J; Hirose S; Fujita T Fourth Department of Internal Medicine, University of

CORPORATE SOURCE:

Tokyo

SOURCE:

School of Medicine, Bunkyo-ku, Tokyo 112-0015, Japan. JOURNAL OF BIOLOGICAL CHEMISTRY, (1998 Dec 11) 273 (50)

33702-7.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals; Space Life Sciences

OTHER SOURCE:

GENBANK-AB018097; GENBANK-AB018098; GENBANK-AB018099; GENBANK-AB018100; GENBANK-AB018101; GENBANK-AB018102;

GENBANK-AB018103; GENBANK-AB018104

ENTRY MONTH:

199901

ENTRY DATE:

Entered STN: 19990128

Last Updated on STN: 19990128 Entered Medline: 19990114

AB Lectin-like oxidized low-density lipoprotein receptor (LOX-1) is a recently identified recopy for oxidized low-density lipoprotein, one of the major atherogenic substances. Although LOX-1 was reported to be expressed abundantly in endothelial cells, including atheromatous lesions,

the regulation of LOX-1 gene has not yet been clarified. In the present study, we isolated the rat LOX-1 gene and investigated the regulation of gene expression. The rat LOX-1 gene was encoded by a single copy gene spanning over 19 kilobases and consisted of eight exons. Exon boundaries correlated well with the functional domain boundaries of the receptor protein. The promoter region contained putative TATA and CAAT boxes and multiple cis-elements such as NF-kappaB, AP-1 and AP-2 sites, and a shear stress response element.

Northern blot analysis revealed that LOX-1 gene expression was up-regulated 9-fold by shear stress, 21-fold by lipopolysaccharide, and 4-fold by tumor necrosis factor-alpha, in cultured vascular endothelial cells. LOX-1 was also expressed in macrophages but not in vascular smooth muscle cells. These data provide important information for elucidating

the

molecular mechanisms of LOX-1 gene regulation and suggest a role for $\ensuremath{\text{LOX-1}}$

in the pathophysiology of atherosclerotic cardiovascular disease.

L4 ANSWER 8 OF 48 MEDLINE

ACCESSION NUMBER: 1998405866 MEDLINE

DOCUMENT NUMBER: 98405866 PubMed ID: 9736459

TITLE: Shear stress down-regulates gene transcription and

production of adrenomedullin in human aortic endothelial

cells.

AUTHOR: Shinoki N; Kawasaki T; Minamino N; Okahara K; Ogawa A;

Ariyoshi H; Sakon M; Kambayashi J; Kangawa K; Monden M

CORPORATE SOURCE: Department of Surgery II, Osaka University Medical School,

Suita, Japan.

SOURCE: JOURNAL OF CELLULAR BIOCHEMISTRY, (1998 Oct 1) 71 (1)

109-15.

Journal code: 8205768. ISSN: 0730-2312.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals; Space Life Sciences

ENTRY MONTH: 199811

ENTRY DATE: Entered STN: 19990106

Last Updated on STN: 19990106 Entered Medline: 19981117

AB Vascular endothelial cells are potent modulators of vascular tone in response to shear stress. Levels of vasoactive peptides such as adrenomedullin (AM), endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO) are affected by fluid shear stress. AM, a potent vasodilator and suppressor of smooth muscle cell proliferation, contains the shear stress responsive element (SSRE) "GAGACC" in its promoter region. To examine the role of AM in the shear stress response, cultured human aortic endothelial cells (HAoECs) were exposed

fluid shear stresses of 12 and 24 dynes/cm2 in a cone-plate shear stress loading apparatus for various time periods, and the levels of AM gene expression and peptide secretion from HAoECs were measured by Northern blotting analysis and radioimmunoassay (RIA), respectively. Both AM gene transcription and AM peptide levels were down-regulated by fluid shear stress in a time- and magnitude-dependent manner. Our results demonstrate that the normal level of arterial shear stress down-regulates AM expression in HAoECs, suggesting that AM participates in the modulation

οf

to

vascular tone by fluid shear stress.

L4 ANSWER 9 OF 48 MEDLINE

ACCESSION NUMBER: 1998173337 MEDLINE

DOCUMENT NUMBER: 98173337 PubMed ID: 9514402

of PDGF-B in endothelial cells posed to TITLE: Regulati

cyclic

strain.

AUTHOR: Sumpio B E; Du W; Galagher G; Wang X; Khachigian L M;

Collins T; Gimbrone M A Jr; Resnick N

CORPORATE SOURCE: Department of Surgery (Vascular), Yale University School

of

Medicine, New Haven, Conn 06510, USA...

bauer.sumpio@yale.edu

CONTRACT NUMBER:

R01HL47345 (NHLBI)

SOURCE:

ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, (1998

Mar) 18 (3) 349-55.

Journal code: 9505803. ISSN: 1079-5642.

PUB. COUNTRY:

United States DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT: Priority Journals; Space Life Sciences ENTRY MONTH: 199804

Entered STN: 19980410 ENTRY DATE:

Last Updated on STN: 20000303

Entered Medline: 19980402

The present study was designed to examine the regulation by cyclic strain AB of endothelial cell (EC) platelet-derived growth factor-B chain (PDGF-B) expression. We demonstrate in this study that bovine aortic ECs subjected to 10% (but not 6%) average strain resulted in a 2.6-fold increase in PDGF-B steady state mRNA and immunoreactive protein. Nuclear runoff transcription assays confirmed the induction of PDGF-B transcripts. To address the regulation of PDGF-B gene expression by cyclic strain, we transfected bovine aortic ECs with a construct containing 450 bp of human PDGF-B promoter sequence coupled to chloramphenical acetyltransferase (CAT), and found that subjecting these cells to 10% average strain resulted in a twofold increase in CAT activity by 4 hours. Analysis of nested 5' deletions of the promoter transfected into ECs demonstrated a 55% drop-off in activity between position -313 and -153, with no induction

of activity with the - 101-bp minimal promoter. Since a shear stress response element (SSRE) is

located at position -125, we tested the hypothesis that the SSRE site was necessary and/or sufficient for induction of PDGF-B activity

strain. Electromobility shift assays revealed that nuclear proteins from ECs exposed to strain for short intervals (30 minutes) bound to the

SSRE. However, transfection of ECs with hybrid promoter constructs containing the SV40 sequence promoter downstream of the SSRE or the -153 PDGF-B promoter sequence bearing a mutation in the SSRE demonstrated that the SSRE was not necessary for inducible reporter gene expression in ECs exposed to cyclic strain.

ANSWER 10 OF 48 MEDLINE

ACCESSION NUMBER: 1998042040 MEDLINE

DOCUMENT NUMBER: 98042040 PubMed ID: 9374627

TITLE:

Regulation of tPA in endothelial cells exposed to cyclic

strain: role of CRE, AP-2, and SSRE binding

sites.

AUTHOR: Sumpio B E; Chang R; Xu W J; Wang X J; Du W

CORPORATE SOURCE: Department of Surgery (Vascular), Yale University School

Medicine, New Haven, Connecticut 06510, USA.

CONTRACT NUMBER: R01-HL-47345 (NHLBI)

SOURCE: AMERICAN JOURNAL OF PHYSIOLOGY, (1997 Nov) 273 (5 Pt 1)

C1441-8.

Journal code: 0370511. ISSN: 0002-9513.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE) LANGUAGE: English

Priority urnals; Space Life Sciences FILE SEGMENT:

ENTRY MONTH:

199712

ENTRY DATE: Entered STN: 19980109

> Last Updated on STN: 19980109 Entered Medline: 19971217

We have previously reported that exposure of cultured bovine aortic AB endothelial cells (EC) to 10% average strain resulted in an increase in tissue plasminogen activator (tPA) mRNA, immunoreactive tPA protein, and tPA activity in the medium. The present study was designed to examine the regulation of tPA gene expression in EC by cyclic strain. We performed a functional analysis of the tPA promoter by transfecting bovine aortic EC with a 1.4-kilobase (kb) construct of the human tPA promoter coupled to chloramphenicol acetyltransferase. We found that subjecting the EC to 10% average strain (and not 6% average strain) resulted in a 2.6-fold

increase

in activity of the 1.4-kb tPA promoter by 4 h. Analysis of deletion mutants of the promoter transfected into EC demonstrated a 60% drop-off

in

activity between position -145 and -105. Deoxyribonuclease I protection analysis of the segment downstream of position -196 suggested involvement of activator protein-2 (AP-2) and adenosine 3',5'-cyclic monophosphate-responsive element (CRE)-like binding sites, which was confirmed by electrophoretic mobility shift assays. Site-directed mutants of either the AP-2 or CRE-like regions resulted in a 65% decrease in activity compared with the wild type. Double mutations abolished basal transcription and any strain-induced activity. A shear stress responsive element (SSRE) binding site is present at -945, but

site-directed mutants did not show any drop in activity compared with

wild

type by cyclic strain. These studies demonstrate that cyclic strain regulates tPA gene transcription in bovine aortic EC and that this transcriptional activation is dependent on factors that are similar to those activated with phorbol ester.

ANSWER 11 OF 48 MEDLINE

ACCESSION NUMBER: 1998012754 MEDLINE

DOCUMENT NUMBER: 98012754 PubMed ID: 9351401

TITLE:

Egr-1 is activated in endothelial cells exposed to fluid

shear stress and interacts with a novel shear-

stress-response element in the

PDGF A-chain promoter.

AUTHOR:

Khachigian L M; Anderson K R; Halnon N J; Gimbrone M A Jr;

Resnick N; Collins T

CORPORATE SOURCE:

Department of Pathology, Brigham and Women's Hospital,

Boston, MA 02115, USA.

CONTRACT NUMBER:

HL 35716 (NHLBI)

HL-51150 (NHLBI)

PO1 HL-36028 (NHLBI) SOURCE:

ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, (1997

Oct) 17 (10) 2280-6.

Journal code: 9505803. ISSN: 1079-5642.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals; Space Life Sciences

ENTRY MONTH:

199711

ENTRY DATE:

Entered STN: 19971224

Last Updated on STN: 19971224 Entered Medline: 19971120

AΒ Exposure of vascular endothelial cells to fluid mechanical forces can modulate the expression of many genes involved in vascular physiology and pathophysiology. Here, we report that platelet-derived growth factor (PDGF) A-chain gene expression is induced at the level of transcription

in

cultured bovine aortic endothelial cells exposed to a physiologic level

steady laminar shear stress (10 dyn/cm2). 5' Deletion analysis of the human PDGF-A promoter repaid that a GC-rich region near the TATA box

was

required for shear-inducible reporter gene expression. This element conferred shear inducibility onto a heterologous promoter-reporter construct that was otherwise unresponsive to shear stress. The induction of PDGF-A expression by shear was preceded by rapid and transient induction in the expression of the immediate-early gene, egr-1, which binds to GC-rich sequences. Gel shift studies indicated that shear-induced

Egr-1 bound to the proximal PDGF-A promoter in a specific and time-dependent manner, displacing Sp1 from their overlapping recognition elements. Overlapping consensus binding sites for Egr-1 and Sp1 also appear in the proximal promoters of several other endothelial genes, including transforming growth factor-beta 1 and tissue factor, whose expression is modulated by shear stress. These findings define the Egr-1 binding site in the proximal PDGF-A promoter as a shear-stress-responsive element and suggest that shear-stimulated Egr-1 gene expression may be a unifying theme in the induction of various other endothelial genes exposed

to biomechanical forces.

L4 ANSWER 12 OF 48 MEDLINE

ACCESSION NUMBER: 97471785 MEDLINE

DOCUMENT NUMBER: 97471785 PubMed ID: 9330726

TITLE: Endothelial gene regulation by laminar shear stress.

AUTHOR: Resnick N; Yahav H; Khachigian L M; Collins T; Anderson K

R; Dewey F C; Gimbrone M A Jr

CORPORATE SOURCE: Department of Morphological Sciences, Bruce Rappaport

Research Institute, Bruce Rappaport Faculty of Medicine,

Technion, Haifa, Israel.

CONTRACT NUMBER: PO1-HL30628 (NHLBI)

SOURCE: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, (1997) 430

155-64.

Journal code: 0121103. ISSN: 0065-2598.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals; Space Life Sciences

ENTRY MONTH: 199711

ENTRY DATE: Entered STN: 19971224

Last Updated on STN: 19971224 Entered Medline: 19971119

AB Endothelial cells, because of their unique localization, are constantly exposed to fluid mechanical forces derived by the flowing blood. These forces, and more specifically shear stresses; affect endothelial structure

and function, both in vivo and in vitro, and are implicated as contributing factors in the development of cardiovascular diseases. We have demonstrated earlier that the shear stress selectively induces the transcription of several endothelial genes, and have defined a

shear stress response element (

genes. Here we further characterize this **SSRE** and the nuclear factors that bind to it, and imply the possible role of the endothelium cytoskeleton in transducing shear stress, leading to the expression of PDGF-B/SSRE constructs in transfected endothelial cells exposed to shear stress. We also present, yet a new **shear stress** response element in the Platelet Derived Growth Factor A promoter, that contains a binding site to the transcription factors egr1/sp1. These results further demonstrate the complexity of gene regulation by hemodynamic forces, and support the important part that these forces have in the physiology and pathophysiology of the vessel wall.

L4ANSWER 13 OF 48 ME

ACCESSION NUMBER: 96235743 MEDLINE

DOCUMENT NUMBER: 96235743 PubMed ID: 8666591

TITLE: Control of endothelial cell gene expression by flow.

AUTHOR: Malek A M; Izumo S

Department of Neurosurgery, Harvard Medical School, CORPORATE SOURCE:

Boston,

MA 02215, USA.. ammalek@bics.bwh.harvard.edu

SOURCE: JOURNAL OF BIOMECHANICS, (1995 Dec) 28 (12) 1515-28.

Journal code: 0157375. ISSN: 0021-9290.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199608

Entered STN: 19960819

ENTRY DATE:

Last Updated on STN: 19970203 Entered Medline: 19960806

AB The vessel wall is constantly subjected to, and affected by, the stresses resulting from the hemodynamic stimuli of transmural pressure and flow.

At.

the interface between blood and the vessel wall, the endothelial cell plays a crucial role in controlling vessel structure and function in response to changes in hemodynamic conditions. Using bovine aortic endothelium monolayers, we show that fluid shear stress causes simultaneous differential regulation of endothelial-derived products. We also report that the downregulation of endothelin-1 mRNA by flow is a reversible process, and through the use of uncharged dextran supplementation demonstrate it to be shear stress- rather than shear rate-dependent. Recent work on the effect of fluid shear stress on endothelial cell gene expression of a number of potent endothelial products is reviewed, including vasoactive substances, autocrine and paracrine growth factors, thrombosis/fibrinolysis modulators, chemotactic factors, surface receptors and immediate-early genes. The encountered patterns of gene expression responses are classified into three categories: a transient increase with return to baseline (type I), a sustained increase (type II) and a biphasic response consisting of an early transient increase of varying extent followed by a pronounced and sustained decrease (type III). The importance of the dynamic character of the flow stimulus and the magnitude dependence of the response are presented. Potential molecular mechanisms of shear-induced gene regulation, including putative shear stress response elements (SSRE), are discussed. These results suggest exquisite modulation of endothelial cell phenotype by local fluid shear stress and may offer insight into the mechanism of flow-dependent vascular remodeling and the observed propensity of atherosclerosis formation around bifurcations and areas of low shear stress.

ANSWER 14 OF 48 MEDLINE

ACCESSION NUMBER: 96222936 MEDLINE

DOCUMENT NUMBER: PubMed ID: 8632623 96222936

TITLE:

Flow-dependent regulation of gene expression in vascular

endothelial cells.

AUTHOR:

Ando J; Kamiya A

CORPORATE SOURCE:

Department of Cardiovascular Biomechanics, Faculty of

Medicine, University of Tokoyo, Tokyo, Japan.

SOURCE:

JAPANESE HEART JOURNAL, (1996 Jan) 37 (1) 19-32. Ref: 40

Journal code: 0401175. ISSN: 0021-4868.

PUB. COUNTRY:

Japan

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199606

ENTRY DATE: Entered STN: 19960715

Last Up ed on STN: 19970203 Entered medline: 19960628

AB Vascular endothelial cells are constantly exposed to wall shear stress generated by blood flow. Endothelial cells act as mechanoceptors sensing and responding to shear stress, and play a role in flow-dependent phenomena such as angiogenesis, vascular remodeling and atherosclerosis. Numerous recent studies have demonstrated that endothelial cell functions change in response to shear stress, and that the responses are often accompanied by changes in related gene expression. More recently there

has

been evidence that genes known to be regulated by shear stress may have a common cis-element (shear stress responsive element; **SSRE**) in their promoter regions. A molecular mechanism for endothelial cell responses to mechanical stress is close to being elucidated. In this paper, shear-stress-mediated regulation of endothelial gene expression is reviewed.

L4 ANSWER 15 OF 48 MEDLINE

ACCESSION NUMBER: 95362821 MEDLINE

DOCUMENT NUMBER: 95362821 PubMed ID: 7635955

TITLE: Nuclear factor-kappa B interacts functionally with the

platelet-derived growth factor B-chain shear-

stress response element in

vascular endothelial cells exposed to fluid shear stress. Khachigian L M; Resnick N; Gimbrone M A Jr; Collins T

CORPORATE SOURCE: Department of Pathology, Brigham and Women's Hospital,

Boston, Massachusetts 02115, USA.

CONTRACT NUMBER: HL-35716 (NHLBI)

HL-51150 (NHLBI) PO1 HL-36028 (NHLBI)

+

AUTHOR:

SOURCE: JOURNAL OF CLINICAL INVESTIGATION, (1995 Aug) 96 (2)

1169-75.

Journal code: 7802877. ISSN: 0021-9738.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

ENTRY MONTH: 199509

ENTRY DATE: Entered STN: 19950921

Last Updated on STN: 19970203 Entered Medline: 19950911

AB Hemodynamic forces, such as fluid shear stress, that act on the endothelial lining of the cardiovascular system can modulate the expression of an expanding number of genes crucial for homeostasis and

the

pathogenesis of vascular disease. A 6-bp core element (5'-GAGACC-3'), defined previously as a **shear-stress response**

element is present in the promoters of many genes, including the PDGF B-chain, whose expression is modulated by shear stress. The identity of the nuclear protein(s) binding to this element has not yet been elucidated. Using electrophoretic mobility shift assays and in vitro DNase

I footprinting, we demonstrate that nuclear factor-kappa B p50-p65 heterodimers, which accumulate in the nuclei of cultured vascular endothelial cells exposed to fluid shear stress, bind to the PDGF-B shear-stress response element in a

specific manner. Mutation of this binding motif abrogated its interaction with p50-p65 and abolished the ability of the promoter to mediate increased gene expression in endothelial cells exposed to shear stress. Transient cotransfection studies indicate that p50-p65 is able to activate

PDGF-B shear-stress response element

-dependent reporter gene expression in these cells. These findings thus implicate nuclear factor-kappa B in the transactivation of an endothelial

gene responding to a defined fluid mechanical force.

L4 ANSWER 16 OF 48 MEDIA

ACCESSION NUMBER: 95340059 MEDLINE

DOCUMENT NUMBER: 95340059 PubMed ID: 7615157

TITLE: Hemodynamic forces are complex regulators of endothelial

gene expression.

AUTHOR: Resnick N; Gimbrone M A Jr

CORPORATE SOURCE: Department of Pathology, Brigham and Women's Hospital,

Harvard Medical School, Boston, Massachusetts 02115-5817,

USA.

CONTRACT NUMBER: P01-HL30628 (NHLBI)

R37-HL51150 (NHLBI)

SOURCE: FASEB JOURNAL, (1995 Jul) 9 (10) 874-82. Ref: 55

Journal code: 8804484. ISSN: 0892-6638.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199508

ENTRY DATE: Entered STN: 19950905

Last Updated on STN: 19970203 Entered Medline: 19950824

AB Vascular endothelial cells, by virtue of their unique anatomical position,

are constantly exposed to the fluid mechanical forces generated by flowing

blood. In vitro studies with model flow systems have demonstrated that wall shear stresses can modulate various aspects of endothelial structure and function. Certain of these effects appear to result from the regulation of expression of endothelial genes at the transcriptional level. Recent molecular biological studies have defined a "shear stress response element" (SSRE) in

the promoter of the human platelet-derived growth factor (PDGF)-B chain gene that interacts with DNA binding proteins in the nuclei of shear-stressed endothelial cells to up-regulate transcriptional activity. Insertion of this element into reporter genes also renders them shear-inducible. Further characterization of this and other positive (and negative) shear-responsive genetic regulatory elements, as well as their transactivating factors, should enhance our understanding of vascular endothelium as an integrator of humoral and biomechanical stimuli in health and disease.

L4 ANSWER 17 OF 48 MEDLINE

ACCESSION NUMBER: 94314998 MEDLINE

DOCUMENT NUMBER: 94314998 PubMed ID: 7518844

TITLE: Shear stress selectively upregulates intercellular

adhesion

molecule-1 expression in cultured human vascular

endothelial cells.

AUTHOR: Nagel T; Resnick N; Atkinson W J; Dewey C F Jr; Gimbrone M

A Jr

CORPORATE SOURCE: Harvard-Massachusetts Institute of Technology, Division of

Health Sciences and Technology, Cambridge, Massachusetts

02139.

CONTRACT NUMBER: P01-HL36028 (NHLBI)

P01-HL48743 (NHLBI)

SOURCE: JOURNAL OF CLINICAL INVESTIGATION, (1994 Aug) 94 (2)

885-91.

Journal code: 7802877. ISSN: 0021-9738.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals; Space

Life Sciences

ENTRY MONTH:

199408

ENTRY DATE:

Entered STN: 19940905

Last Updated on STN: 19970203 Entered Medline: 19940825

AB Hemodynamic forces induce various functional changes in vascular endothelium, many of which reflect alterations in gene expression. We have

recently identified a cis-acting transcriptional regulatory element, the shear stress response element (

SSRE), present in the promoters of several genes, that may represent a common pathway by which biomechanical forces influence gene expression. In this study, we have examined the effect of shear stress on endothelial expression of three adhesion molecules: intercellular

adhesion

molecule-1 (ICAM-1), which contains the SSRE in its promoter, and E-selectin (ELAM-1) and vascular cell adhesion molecule-1 (VCAM-1), both of which lack the SSRE. Cultured human umbilical vein endothelial cells, subjected to a physiologically relevant range of laminar shear stresses (2.5-46 dyn/cm2) in a cone and plate apparatus for up to 48 h, showed time-dependent but force-independent increases in surface immunoreactive ICAM-1. Upregulated ICAM-1 expression was correlated with increased adhesion of the JY lymphocytic cell line. Northern blot analysis revealed increased ICAM-1 transcript as early as 2 h after the onset of shear stress. In contrast, E-selectin and vascular cell adhesion molecule-1 transcript and cell-surface protein were not upregulated at any time point examined. This selective regulation of adhesion molecule expression in vascular endothelium suggests that biomechanical forces, in addition to humoral stimuli, may contribute to differential endothelial gene expression and thus represent pathophysiologically relevant stimuli in inflammation and atherosclerosis.

L4ANSWER 18 OF 48 MEDLINE

ACCESSION NUMBER: 94245207 MEDLINE

DOCUMENT NUMBER: 94245207 PubMed ID: 7514568

TITLE:

Isolation and chromosomal localization of the human

endothelial nitric oxide synthase (NOS3) gene.

AUTHOR: CORPORATE SOURCE: Robinson L J; Weremowicz S; Morton C C; Michel T Cardiovascular Division, Brigham and Women's Hospital,

Harvard Medical School, Boston, Massachusetts 02115.

SOURCE:

GENOMICS, (1994 Jan 15) 19 (2) 350-7.

Journal code: 8800135. ISSN: 0888-7543.

PUB. COUNTRY:

United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199406

ENTRY DATE:

Entered STN: 19940629

Last Updated on STN: 19960129 Entered Medline: 19940620

Nitric oxide (NO) is an important intercellular signaling molecule AΒ synthesized in diverse human tissues by proteins encoded by a family of NO

synthase (NOS) genes. The similarity of sequence and cofactor binding sites has suggested that the NOS genes may also be related to cytochrome P450 reductase, as well as to plant and bacterial oxidoreductases. Endothelial NOS activity is a major determinant of vascular tone and

pressure, and in several important (and sometimes hereditary) disease states, such as hypertension, diabetes, and atherosclerosis, the endothelial NO signaling system appears to be abnormal. To explore the relationship of the endothelial NOS gene to other similar genes, and to delineate the genetic factors involved in regulating endothelial NOS activity, we isolated the human gene encoding the endothelial Nos.

Genomic

clones containing the 5' end of this gene were identified in a human genomic library by applying a polymerase chain reaction R)-based approach. Identification of the human gene for endothelial NOS (NOS3) was confirmed by nucleotide sequence analysis of the first coding exon, which was found to be identical to its cognate cDNA. The NOS3 gene spans at least 20 kb and appears to contain multiple introns. The transcription start site and promoter region of the NOS3 gene were identified by primer extension and ribonuclease protection assays. Sequencing of the putative promoter revealed consensus sequences for the shear

stress-response element, as well as

cytokine-responsive cis regulatory sequences, both possibly important to the roles played by NOS3 in the normal and the diseased cardiovascular system.(ABSTRACT TRUNCATED AT 250 WORDS)

L4 ANSWER 19 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2002:283845 CAPLUS

TITLE: The eukaryotic two-component histidine kinase Sln1p

regulates OCH1 via the transcription factor, Skn7p Li, Sheng; Dean, Susan; Li, Zhijian; Horecka, Joe;

AUTHOR(S): Li, Sheng; Dean, Susan; Li, Zhijian; Hored Deschenes, Robert J.; Fassler, Jan S.

CORPORATE SOURCE: Department of Biological Sciences, University of

Iowa,

Iowa City, IA, 52242, USA

SOURCE: Molecular Biology of the Cell (2002), 13(2), 412-424

CODEN: MBCEEV; ISSN: 1059-1524

PUBLISHER: American Society for Cell Biology

DOCUMENT TYPE: Journal LANGUAGE: English

The yeast "two-component" osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding

domain
interacts with a cis-acting element identified upstream of OCH1 that is
distinct from the previously defined HSE-like Skn7p binding site. Our

data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class

of DNA binding site.

REFERENCE COUNT: 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR

THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L4 ANSWER 20 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2001:927215 CAPLUS

DOCUMENT NUMBER: 136:65287

TITLE: Promoter sequence of rice phytosulfokine (PSK) gene

and its use of enhancement of gene expression in

transgenic plants

INVENTOR(S): Sakagami, Yoji; Yang, He Ping; Matsubayashi,

Yoshikatsu

PATENT ASSIGNEE(S): Nagoya University, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

KIND DATE PATENT NO. APPLICATION NO. DATE JP 2001352981 A2 20011225 JP 2000-179826 20000615 EP 1172441 A1 20020116 EP 2001-113542 20010612 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO US 2002103363 A1 20020801 US 2001-880006 20010614 JP 2000-179826 A 20000615 PRIORITY APPLN. INFO.: This invention provides a sequence of promoter fo phytosulfokine (PSK) gene cloned from rice. The promoter region comprises of one CAAT box, two CCAAT boxes, three SSRE element, one enhance and three E boxes.

The PSK promoter is 3359 bp long and the promoter deletion expt. showed that the fragment (-1911 - -1) was most active in regulation of reporter gene expression. The PSK promoter can be used for enhancement of gene expression in transgenic plants.

ANSWER 21 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2000:457190 CAPLUS

DOCUMENT NUMBER: 133:85122

Expression vectors comprising multiple shear stress TITLE:

responsive elements (SSRE) and a gene of interest and modulating vasculogenesis and/or

angiogenesis Resnick, Nitzan

INVENTOR(S): PATENT ASSIGNEE(S):

Florence Medical Ltd., Israel

PCT Int. Appl., 61 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

APPLICATION NO. DATE PATENT NO. KIND DATE -----______ WO 2000039275 A2 20000706 WO 2000039275 A3 20001026 WO 1999-IL702 19991223 W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG US 6440726 B1 20020827 US 1998-220510 19981224 AU 2000017954 A5 20000731 AU 2000-17954 19991223 EP 1141266 A2 20011010 EP 1999-961261 19991223 A5 20000731 A2 20011010 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO PRIORITY APPLN. INFO.: US 1998-113863P P 19981224 US 1998-220510 A 19981224 US 1998-220510P P 19981224 WO 1999-IL702 W 19991223

This invention provides expression vectors comprising multiple shear AB stress responsive elements (SSRE) and one or more genes of interest and methods of treating disorders related to or assocd. with vasculogenesis and/or angiogenesis conditions.

ANSWER 22 OF 48 CAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:194533 CAPLUS

DOCUMENT NUMBER: 132:345853

TITLE: Unidirectional and Oscillatory Shear Stress

Differentially Modulate NOS III Gene Expression
Si P: Formentin, K.: Bouzoure K.; Dan F.; Brunner, H. R.; Hayoz, D. ci, P.; Formentin, K.; Bouzoure AUTHOR(S): K.; Daniel,

CORPORATE SOURCE: Division of Hypertension and Vascular Medicine, CHUV,

Lausanne, 1011, Switz.

Nitric Oxide (2000), 4(1), 47-56 CODEN: NIOXF5; ISSN: 1089-8603 SOURCE:

PUBLISHER: Academic Press

DOCUMENT TYPE: Journal LANGUAGE: English

Atherosclerotic plaques preferentially develop in regions exposed to a AB low

mean shear stress and cyclic reversal of flow direction (oscillatory flow). This contrasts with plaque-free zones where endothelial cells are exposed to unidirectional flow. Previous works from our lab. using a unique exptl. flow system demonstrated the existence of a differential regulation of endothelial nitric oxide synthase (NOS III) gene expression by unidirectional and oscillatory flow patterns. We further studied the possible mechanisms responsible for selective unresponsiveness of NOS III gene regulation to oscillatory flow. The results obtained demonstrate that (i) induction of the activity of the 1600-base-pair NOS III gene promoter by unidirectional and oscillatory shear stress is modulated by similar mechanisms that involve NF-.kappa.B activation, but do not

involve

Ras-dependent MAP kinase activation, and (ii) the lack of induction of NOS

III gene regulation by oscillatory shear stress can be attributed to the activation of a yet unidentified neg. cis-acting element present in the NOS III gene. (c) 2000 Academic Press.

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR

THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

ANSWER 23 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2000:101186 CAPLUS

DOCUMENT NUMBER: 133:41452

Role of LOX-1, an endothelial oxidized low-density TITLE:

lipoprotein receptor, in vascular disorders

AUTHOR(S): Nagase, Miki; Ando, Katsuyuki; Fujita, Toshiro

Department of Internal Medicine, University of Tokyo CORPORATE SOURCE:

School of Medicine, Tokyo, 112-8688, Japan

SOURCE:

International Congress Series (1999), 1181 (Common Disease: Genetic and Pathogenetic Aspects of

Multifactorial Diseases), 227-236

CODEN: EXMDA4; ISSN: 0531-5131

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

LOX-1 is a novel endothelial receptor for oxidized low-d. lipoprotein (OxLDL). Its biol. roles have not yet been clarified. In the present study we performed rat LOX-1 cDNA and genomic DNA cloning and examd. the regulation of its expression using in vitro and in vivo systems. Cloning was performed by screening the cDNA and genomic DNA library. Transcription initiation site was detd. by primer extension and S1 mapping. Gene expression was examd. by Northern blotting. The rat LOX-1 cDNA encoded 364 amino acids consisting of N-terminal cytoplasmic, single-transmembrane, triple repeats, and C-type lectin-like domains.

The

LOX-1 gene was encoded by eight exons. The promoter region contained AP-1, AP-2, NF-.kappa.B binding sites, and a shear stress response element. LOX-1 mRNA in cultured vascular endothelial cells was markedly increased by mech. stress, lysophosphatidylcholine, advanced glycation end products, and TNF-.alpha.. LOX-1 expression was also markedly upregulated in the vasculature of hypertensive rats. LOX-1 expression was modulated by

stimuli related to major risk factors for atherosclerotic cardiovascular diseases, implicating invotal role for OxLDL/LOX-1 in the development of

atherosclerotic vascular complications.

REFERENCE COUNT: 18

THIS

THERE ARE 18 CITED REFERENCES AVAILABLE FOR

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L4ANSWER 24 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1999:653134 CAPLUS

DOCUMENT NUMBER:

132:91117

TITLE: AUTHOR(S): Endothelial gene regulation by fluid shear forces Resnick, Nitzan; Wolfovitz, Efrat; Zilberstein,

Shachar

CORPORATE SOURCE:

Department of Anatomy and Cell Biology, Bruce

Rappaport Medical Research, The Rappaport Faculty of

Medicine - Technion, Haifa, 31096, Israel

SOURCE:

PUBLISHER:

Endothelial Cell Research Series (1999), 6 (Mechanical

Forces and the Endothelium), 127-147

CODEN: ECRSFY; ISSN: 1384-1270 Harwood Academic Publishers

DOCUMENT TYPE:

Journal; General Review

LANGUAGE: English

A review with 92 refs. The remodeling of Blood vessels accompanies physiol. and pathol. processes such as, angiogenesis and vasculogenesis, atherosclerosis, hypertension and restenosis. Vessel remodeling occurs

in

response to both biochem. and biomech. stimuli, and has been shown to be dependent on the presence of an intact endothelial layer. By virtue of their anatomical position, endothelial cells are constantly exposed to hemodynamic forces generated by the flowing blood, forces that consists

of

fluid shear stress, cyclic strain and pressure. These forces affect endothelial cells structure and function, changes that are often mediated by the induction or shut-off of endothelial genes. Up to date few dozens endothelial genes have been found to be regulated by hemodynamic forces. Promoter anal. of some of the genes resulted in the definition of pos.

and

neg. cis-acting elements that are essential for their responsiveness to biomech. forces. These shear stress response elements (SSREs) bind transcription factors, among them, NF.kappa.B, NFATc2, Sp1, Egr1, Fos and Jun, that are activated themselves by hemodynamic forces. This review attempts to summarize the effects of hemodynamic forces, and more specifically fluid shear stress, on endothelial gene regulation in vitro and in vivo and point to several SSREs and transcription factors that are involved in this regulation. New technologies, as well as, new in vitro shear stress models facilitating the study of endothelial gene regulation by shear stress will be discussed. Finally, special attention will be given to results accumulating from recent studies on the regulation of endothelial genes by complex (pathol.) shear stresses. Vascular remodeling is the sum of multiple events, some of which are regulated by biomech. forces, and mediated by the regulation of vascular endothelial genes. It is thus hoped that unraveling the complexity of endothelial gene regulation by biomech. forces contributes to our understanding of

the

physiol. processes in the circulatory system and the pathogenesis of vascular diseases.

REFERENCE COUNT:

92 THERE ARE 92 CITED REFERENCES AVAILABLE FOR

THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

ANSWER 25 OF 48 CAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER:

1999:653133 CAPLUS

DOCUMENT NUMBER:

132:91116

TITLE: AUTHOR(S):

Flow_induced endothelial gene regulation And Joji; Korenaga, Risa; Kamiya, Fra Department of Biomedical Engineering, Graduate School

CORPORATE SOURCE:

of Medicine, University of Tokyo, Tokyo, 113, Japan

Endothelial Cell Research Series (1999), 6(Mechanical

Forces and the Endothelium), 111-126

CODEN: ECRSFY; ISSN: 1384-1270

PUBLISHER:

SOURCE:

Harwood Academic Publishers Journal; General Review

DOCUMENT TYPE: LANGUAGE:

English

A review with 42 refs. Shear stress generated by blood flow can modulate both the morphol. and functions of vascular endothelial cells. In most cases, gene expression assocd. with endothelial function is also altered by shear stress. To date, the expression of nearly twenty endothelial genes has been shown to be up-and/or down-regulated by shear stress, and several related transcription factors and cis-acting

shear-stress-response

elements have been identified. We recently characterized a neg.

shear-stress-response element in the

murine vascular adhesion mol.-1 (VCAM-1) gene. Exposure of mouse venule endothelial cells to shear stress decreased VCAM-1 protein cell surface expression and inhibited adhesion to lymphocytes. The decrease in protein

expression was due to a decrease in VCAM-1 mRNA levels, which resulted from the suppression of VCAM-1 gene transcription induced by shear stress.

A double AP-1 binding site in the VCAM-1 gene promoter was found to function as a cis-element for this neg. transcriptional regulation. det. the no. of endothelial genes responsive to shear stress, differential

display of endothelial mRNAs was performed. In cells exposed to a shear stress of 15 dynes/cm2 for 6h, approx. 4% of the mRNA species increased more than two-fold or decreased to less than half the levels in static control cells. Thus, it seems that a large no. of known or unknown shear-response genes are involved in blood flow-dependent phenomena including angiogenesis, vascular remodeling, and atherosclerosis. 42

REFERENCE COUNT: THIS

THERE ARE 42 CITED REFERENCES AVAILABLE FOR RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

ANSWER 26 OF 48 CAPLUS COPYRIGHT 2002 ACS L4

ACCESSION NUMBER:

1999:395456 CAPLUS

DOCUMENT NUMBER:

131:197968

TITLE:

Enhanced expression of LOX-1, an oxidized low-density lipoprotein receptor, in the kidney of salt-sensitive

hypertensive rats

AUTHOR(S):

Nagase, Miki; Kaname, Shinya; Ando, Katsuyuki;

Fujita,

Toshiro

CORPORATE SOURCE:

Department of Nephrology and Endocrinology,

University

of Tokyo School of Medicine, Japan

SOURCE:

Therapeutic Research (1999), 20(5), 1340-1344

CODEN: THREEL; ISSN: 0289-8020

PUBLISHER:

Raifu Saiensu Shuppan K.K.

DOCUMENT TYPE:

Journal

Japanese

LANGUAGE: AB

Lox-1 is a recently-identified endothelial receptor for oxidized low-d. lipoprotein. In the present study, the authors detd. the structure of tat

LOX-1 cDNA and genomic DNA. LOX-1 cDNA encoded a protein of 364 amino acids consisting of N-terminal cytoplasmic, single transmembrane, extracellular three repeats of a 46-amino-acid motif and C-type lectin-like domains. The 3'-untranslated region contained seven A+U-rich elements for rapid degrdn. of mRNA. Two isoforms of mRNA were generated

by alternative use of two polyadenylation signals. The tLOX-1 gene was

encoded by a single copy gene spanning over 19 kilobases and consisted of eight exons. Exon boundaries correlated well with the functional domain boundaries of the receptor protein. The promoter region contained multiple cis-elements such as NF-.kappa.B, AP-1, AP-2 sites, and a shear-stress response element.

LOX-1 expression was markedly upregulated by mech. stress and cytokines

in

cultured vascular endothelial cell. LOX-1 expression was also enhanced

in

SOURCE:

the aorta and kidney of hypertensive rats. These data suggest a role for LOX-1 in the pathophysiol. of hypertensive target organ complication.

L4 ANSWER 27 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1998:539097 CAPLUS

DOCUMENT NUMBER: 129:300613

TITLE: Vascular endothelium, hemodynamic forces and

atherogenesis

AUTHOR(S): Gimbrone, Michael A., Jr.; Topper, James N.

CORPORATE SOURCE: Vascular Research Division, Departments of Pathology,

Harvard Medical School, Boston, MA, USA International Congress Series (1998),

1155(Atherosclerosis XI), 949-955 CODEN: EXMDA4; ISSN: 0531-5131

PUBLISHER: Elsevier Science B.V.
DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review with 22 refs. The localization of atherosclerotic lesions to arterial geometries assocd. with disturbed flow patterns suggests an important role for local hemodynamic forces in atherogenesis. There is increasing evidence that the vascular endothelium, which is directly exposed to fluid mech. forces generated by blood flow, can discriminate among these stimuli and transduce them into genetic regulatory events.

Αt

the level of individual genes, this regulation is accomplished via the interaction of various transcription factors, such as NF-.kappa.B and Egr-1, with "shear-stress response elements" or SSREs, such as the GAGACC motif in the proximal promoter of the human PDGF-B gene, or the Egr-1/Spl-binding sites in the PDGF-A gene. At the level of multiple genes, distinct patterns of up- and downregulation appear to be elicited by exposure to steady laminar shear stresses vs. comparable levels of nonlaminar (e.g., turbulent) shear stresses or cytokine stimulation

IL-1.beta.). Certain genes that are upregulated by a steady laminar shear-stress stimulus (such as ecNOS, COX-2 and Mn-SOD) support "vasoprotective" (anti-inflammatory, antithrombotic, antioxidant) functions in the endothelium. The selective and sustained expression of these and related "antiatherogenic genes" in the endothelial lining of lesion-protected areas represent a mechanism whereby hemodynamic forces can influence lesion formation and progression.

L4 ANSWER 28 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:376479 CAPLUS

DOCUMENT NUMBER: 127:91159

TITLE: Characterization and sequence of an additional

15-lipoxygenase transcript and of the human gene

AUTHOR(S): Kritzik, Marcie R.; Ziober, Amy F.; Dicharry, Sherry;

Conrad, Douglas J.; Sigal, Elliott

CORPORATE SOURCE: Institute of Biochemistry and Cell Biology, Syntex

Discovery Research, Palo Alto, USA

SOURCE: Biochimica et Biophysica Acta (1997), 1352(3),

267-281

CODEN: BBACAQ; ISSN: 0006-3002

PUBLISHER: Elsevier DOCUMENT TYPE: Journal

LANGUAGE:

English a land-peroxidating enzyme that oxi es fatty acids, 15-Lipoxygenase is a 1 such as those esterified to cellular membranes. It has been implicated

in

the oxidative modification of low-d. lipoprotein and is thus thought to contribute to the development of atherosclerosis. The enzyme has also been shown to be specifically induced by interleukin-4 in human blood monocytes. Two 15-lipoxygenase-hybridizing messages were detected in these cells; one (2.7 kb) corresponds to the previously isolated cDNA for 15-lipoxygenase, while the other (4 kb) was of unknown origin. We have isolated and characterized this 4 kb transcript. Our expts. show that it has 1.2 kb addnl. sequence in its 3' untranslated region, and that it is generated from genomic sequences through differential polyA site selection. We present studies to address the functional significance of the extended 3'UTR. Selection of an upstream polyadenylation signal results in prodn. of the 2.7 kb transcript. In addn., we present here

for

the first time the cloning and sequence of the human 15-lipoxygenase gene,

as well as the identification of regulatory elements in the promoter region of this gene.

ANSWER 29 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:38558 CAPLUS

DOCUMENT NUMBER: 124:113149

Blood flow modulates vascular endothelial gene TITLE:

expressions

Ando, Joji AUTHOR(S):

CORPORATE SOURCE: Fac. Med., Univ. Tokyo, Tokyo, 113, Japan

SOURCE: Tanpakushitsu Kakusan Koso (1996), 41(1), 26-33

CODEN: TAKKAJ; ISSN: 0039-9450

DOCUMENT TYPE: Journal; General Review

LANGUAGE: Japanese

A review, with 23 refs., on effect of wall shear stress (SS) by blood flow

on expression of VCAM-1 mRNA on endothelial cells, other genes modulated by blood flow, and discovery of SSRE (SS response element).

ANSWER 30 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1995:831146 CAPLUS

DOCUMENT NUMBER: 123:308114

TITLE: Endothelial gene regulation by biomechanical forces Resnick, Nitzan; Bauer, Sumpio E.; Du, Wei; Gimbrone, AUTHOR(S):

Michael A. Jr.

Department Pathology, Brigham and Women's Hospital, CORPORATE SOURCE:

Boston, MA, 02115-5817, USA

SOURCE: International Congress Series (1995),

1066 (Atherosclerosis X), 838-43 CODEN: EXMDA4; ISSN: 0531-5131

PUBLISHER: Elsevier DOCUMENT TYPE: Journal LANGUAGE: English

Hemodynamic forces generated by the pulsatile flow of blood through the circulatory system have been shown to influence the structure and function

of vascular endothelium. Several groups, using in vitro systems, have demonstrated that defined biomech. forces, including wall shear stress and

cyclic strain, can modulate endothelial gene expression. In particular, our group has demonstrated that PDGF B-chain gene transcription is induced

by exposure of cultured endothelial cells to a physiol. level of laminar shear stress. We have defined a region within the PDGF B-chain promoter that is responsible for this shear-induced gene expression, and have called this the "Shear Stress Response Element" (SSRE). This promoter element binds nuclear

proteins extd. from shear-stressed endothelial cells. Core sequence (GAGACC) within the ss is also present in the promote of several other endothelial genes that are responsive to shear stress.

This

core sequence was shown by electromobility shift assays to be a nuclear-protein binding site. Moreover, hybrid promoters contg. the SSRE sequence (as present in the PDGF B-chain promoter) were inducible by shear stress when transfected into bovine aortic endothelial cells, thus confirming that this element is both necessary and sufficient for gene induction by laminar shear stress. We have recently extended these studies to another physiol. relevant hemodynamic force, cyclic strain, induced by biaxial stretching. Interestingly, the SSRE binds to nuclear proteins extd. from endothelial cells, but not from smooth muscle cells, exposed to the same level of cyclic strain (10% av. strain, 60 cycles/min). These results suggest that different biomech. forces may act on the endothelium through a common, but cell-type-specific, mechanism to activate gene transcription.

L4 ANSWER 31 OF 48 CAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1994:402274 CAPLUS

DOCUMENT NUMBER: 121:2274

TITLE: Promoter analysis of human inducible nitric oxide

synthase gene associated with cardiovascular

homeostasis

AUTHOR(S): Nunokawa, Youichi; Ishida, Nobuhiro; Tanaka, Shoji

CORPORATE SOURCE: Suntory Inst. Biomed. Res., Osaka, 618, Japan

SOURCE: Biochemical and Biophysical Research Communications

(1994), 200(2), 802-7

CODEN: BBRCA9; ISSN: 0006-291X

DOCUMENT TYPE: Journal LANGUAGE: English

AB The authors previously showed that interferon (IFN)-.gamma. inhibited the proliferation of rat vascular smooth muscle cells (VSMC) by generation of nitric oxide (NO) through the induction of an NO synthase (NOS) and

the rat inducible NOS cDNA in VSMC (VSM-NOS). To study the regulation of human inducible NOS (HiNOS) transcription in VSMC, the authors now cloned and sequenced a 2.9-kb fragment for the hiNOS gene contg. a putative promoter, exon 1 and exon 2. The 5'-flanking region contains several consensus sequences for the binding of transcription factors involved in the inducibility of other genes by cytokines. These include IFN-.gamma. responsive element and NF-IL6 and NF-.kappa.B binding consensus sequences.

Interestingly, the hiNOS gene contains a shear-stress responsive element (GAGACC) which was also found to exist in humans endothelial-type NOS but not in murine inducible NOS.

L4 ANSWER 32 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1993:642858 CAPLUS

DOCUMENT NUMBER: 119:242858

TITLE: Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive

element. [Erratum to document cited in

CA119(5):42657a]

AUTHOR(S): Resnick, Nitzan; Collins, Tucker; Atkinson, William;

Bonthron, David T.; Dewey, C. Forbes, Jr.; Gimbrone,

Michael A., Jr.

CORPORATE SOURCE: Harvard Med. Sch., Brigham and Women's Hosp., Boston,

MA, 02115, USA

SOURCE: Proc. Natl. Acad. Sci. U. S. A. (1993), 90(16), 7908

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal LANGUAGE: English

AB The errors were not reflected in the abstr. or the index entries.

L4 ANSWER 33 OF 48 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1993:442657 CAPLUS

DOCUMENT NUMBER: 11 2657

TITLE: Platelet-derived growth factor B chain promoter

contains a cis-acting fluid shear-stress-responsive

element

AUTHOR(S): Resnick, Nitzan; Collins, Tucker; Atkinson, William;

Bonthron, David T.; Dewey, C. Forbes, Jr.; Gimbrone,

Michael A., Jr.

CORPORATE SOURCE: Harvard Med. Sch., Brigham and Women's Hosp., Boston,

MA, 02115, USA

SOURCE: Proc. Natl. Acad. Sci. U. S. A. (1993), 90(10),

4591-5

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal LANGUAGE: English

AB The B chain of platelet-derived growth factor (PDGF-B) was used as a model

to investigate the mechanisms of shear-stress-induced gene regulation in cultured bovine aortic endothelial cells (BAECs). Northern blot anal. revealed elevated endogenous PDGF-B transcript levels in BAECs, after exposure to a physiol. level of laminar shear stress (10 dynes/cm2; 1

dyne

= 100 mN) for 4 h. A transfected reporter gene, consisting of a 1.3-kb fragment of the human PDGF-B promoter coupled to chloramphenicol acetyltransferase (CAT), indicated a direct effect on transcriptional activity. Transfection of a series of PDGF-B-CAT deletion mutants led to the characterization of a cis-acting component within the PDGF-B promoter that was necessary for shear-stress responsiveness. In gel-shift assays, overlapping oligonucleotide probes of this region formed several protein-DNA complexes with nuclear exts. prepd. from both static and shear-stressed BAECs. A 12-bp component (CTCTCAGAGACC) was identified that formed a distinct pattern of complexes with nuclear proteins extd. from shear-stressed BAECs. This shear-stress-responsive element does not encode binding sites for any known transcription factor but does contain

core binding sequence (GAGACC), as defined by deletion mutation in gel-shift assays. Interestingly, this putative transcription factor binding site is also present in the promoters of certain other endothelial

genes, including tissue plasminogen activator, intercellular adhesion $\ensuremath{\mathsf{mol}}\xspace.$

1, and transforming growth factor .beta.1, that also are induced by shear stress. Thus, the expression of PDGF-B and other pathophysiol. relevant genes in vascular endothelium appears to be regulated, in part, by shear-stress-induced transcription factors interacting with a common promoter element.

L4 ANSWER 34 OF 48 USPATFULL

ACCESSION NUMBER: 2002:217074 USPATFULL

TITLE: Expression vectors comprising multiple shear stress

responsive elements (SSRE) and methods of use for treating disorders related to vasculogenesis

and/or

angiogenesis in a shear stress environment

INVENTOR(S): Resnick, Nitzan, Haifa, ISRAEL

PATENT ASSIGNEE(S): Florence Medical, Ltd., Kfar Saba, ISRAEL (non-U.S.

corporation)

DOCUMENT TYPE: Utility
FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Nguyen, Dave T.

LEGAL REPRESENTATIVE: Nath & Associates PLLC, Novick, Harold L., Juneau,

Todd

Τ.,

NUMBER OF CLAIMS: 19 EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

1 Drawing Figure(s); 1 Drawing Page(s)

LINE COUNT:

1883

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention provides expression vectors comprising multiple shear stress responsive elements and methods of treating disorders related to or associated with vasculogenesis and/or angiogenesis in the

vasculature.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 35 OF 48 USPATFULL L4

ACCESSION NUMBER: 2002:192289 USPATFULL

TITLE:

Promoter derived from phytosulfokine precursor gene

INVENTOR(S):

Sakagami, Yoji, Nagoya City, JAPAN Yang, Heping, Nagoya City, JAPAN

Matsubayashi, Yoshikatsu, Nagoya City, JAPAN

NUMBER KIND DATE -----US 2002103363 A1 20020801 US 2001-880006 A1 20010614 PATENT INFORMATION: A1 20010614 (9) APPLICATION INFO.:

> NUMBER DATE _____

PRIORITY INFORMATION: JP 2000-179826 20000615

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: Robert G. Mukai, BURNS, DOANE, SWECKER & MATHIS,

L.L.P., P.O. Box 1404, Alexandria, VA, 22313-1404

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 7 Drawing Page(s)

1258 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention provides a novel promoter derived from gene of phytosulfokine precursor derived from rice. The novel promoter of this invention can enhance expression of an exogenous structural gene with higher potency compared with conventional cauliflower mozaic virus 35S promoter

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 36 OF 48 USPATFULL

ACCESSION NUMBER:

2002:157674 USPATFULL

TITLE:

UPREGULATION OF TYPE III ENDOTHELIAL CELL NITRIC OXIDE

SYNTHASE BY AGENTS THAT DISRUPT ACTIN CYTOSKELETAL

ORGANIZATION

INVENTOR(S):

LIAO, JAMES K., WESTON, MA, UNITED STATES

KIND DATE NUMBER US 2002082281 A1 20020627 US 6423751 B2 20020723 US 1998-115387 A1 19980714 (9) PATENT INFORMATION: APPLICATION INFO.:

DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: EDWARD R GATES, WOLF GREENFIELD & SACKS, 600 ATLANNTIC

AVENUE, BOSTON, MA, 02210

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

77

NUMBER OF DRAWINGS: 9 Drawing Page(s)
LINE COUNT: 2598

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A use for agents that disrupt actin cytoskeletal organization is provided. In the insect invention, agents that disrupt actin cytoskeletal organization are found to upregulate endothelial cell AB Nitric Oxide Synthase activity. As a result, agents that disrupt actin cytoskeletal organization are useful in treating or preventing conditions that result from the abnormally low expression and/or activity of endothelial cell Nitric Oxide Synthase. Such conditions include pulmonary hypertension, ischemic stroke, impotence, heart failure, hypoxia-induced conditions, insulin deficiency, progressive renal disease, gastric or esophageal motility syndrome, etc. Subjects thought to benefit mostly from such treatments include nonhyperlipidemics and nonhypercholesterolemics, but not necessarily exclude hyperlipidemics and hypercholesterolemics.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 37 OF 48 USPATFULL

ACCESSION NUMBER: 2001:14453 USPATFULL

TITLE: Upregulation of Type III endothelial cell nitric oxide

synthase by rho GTPase function inhibitors

INVENTOR(S): Liao, James K., Weston, MA, United States

Brigham and Women's Hospital, Inc., Boston, MA, United PATENT ASSIGNEE(S):

States (U.S. corporation)

NUMBER KIND DATE US 6180597 B1 20010130 US 1998-132849 19980811 (9) PATENT INFORMATION:

APPLICATION INFO.:

RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 1998-92618, filed

on 5 Jun 1998, now abandoned

DATE NUMBER ______

PRIORITY INFORMATION: US 1998-78774P 19980319 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: Granted

PRIMARY EXAMINER: Russell, Jeffrey E.

LEGAL REPRESENTATIVE: Wolf, Greenfield & Sacks, P.C.

NUMBER OF CLAIMS: 93 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 27 Drawing Figure(s); 16 Drawing Page(s)

LINE COUNT: 2725

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A use for rho GTPase function inhibitors is provided. In the instant invention, rho GTPase function inhibitors are found to upregulate endothelial cell Nitric Oxide Synthase activity. As a result, rho GTPase

function inhibitors are useful in treating or preventing conditions that

result from the abnormally low expression and/or activity of endothelial

cell Nitric Oxide Synthase. Such conditions include pulmonary hypertension, ischemic stroke, impotence, heart failure, hypoxia-induced

> conditions, insulin deficiency, progressive renal disease, gastric or esophageal motility syndrome, etc. Subjects thought to benefit mostly from such treatments include nonhyperlipidemics and

nonhypercholesterolemics, but do not necessarily exclude hyperlipidemics

and hypercholesterolemics.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 38 OF 48 USPATFULL

2001:4462 USPATFULL ACCESSION NUMBER:

TITLE: Methods for the diagnosis, prognosis and treatment of INVENTOR(S):

glaveoma and related disorders
Ngu 1, Thai D., Mill Valley, CA, Un ed States Polansky, Jon R., Mill Valley, CA, United States

Chen, Pu, Rohnert Park, CA, United States Chen, Hua, San Francisco, CA, United States

PATENT ASSIGNEE(S):

The Regents of the University of California, Oakland,

CA, United States (U.S. corporation)

NUMBER KIND DATE -----PATENT INFORMATION: US 6171788 B1 20010109 APPLICATION INFO.: US 1997-938669 19970926 (8)

RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 1997-791154, filed

on 28 Jan 1997, now abandoned

DOCUMENT TYPE: Patent FILE SEGMENT: Granted

PRIMARY EXAMINER: Schwartzman, Robert A. ASSISTANT EXAMINER: Shibuya, Mark L.

LEGAL REPRESENTATIVE: Howrey, Simon, Arnold & White, LLP

NUMBER OF CLAIMS: 49 EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 21 Drawing Figure(s); 23 Drawing Page(s)

LINE COUNT: 2803

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The nucleic acid upstream of the TIGR protein encoding sequence can be used to diagnose glaucoma. Polymorphisms, base substitutions, base additions located with the upstream and within TIGR exons can also be used to diagnose glaucoma. In addition, polymorphisms, base substitutions, base additions located with the upstream and within TIGR

exons can also be used to prognose glaucoma.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 39 OF 48 USPATFULL

ACCESSION NUMBER: 2000:153742 USPATFULL

TITLE:

INVENTOR(S):

PATENT ASSIGNEE(S):

Upregulation of Type III endothelial cell Nitric Oxide

Synthase by HMG-CoA reductase inhibitors Liao, James K., Weston, MA, United States

Laufs, Ulrich, Cologne, Germany, Federal Republic of Endres, Matthias, Berlin, Germany, Federal Republic of Moskowitz, Michael A., Belmont, MA, United States

The General Hospital Corporation, Boston, MA, United

States (U.S. corporation)

The Brigham and Women's Hospital Inc., Boston, MA,

United States (U.S. corporation)

KIND DATE NUMBER ______ US 6147109 PATENT INFORMATION: 20001114 US 1998-132848 19980811 (9) APPLICATION INFO.:

NUMBER DATE -----

PRIORITY INFORMATION: US 1997-62093P 19971014 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: Granted
PRIMARY EXAMINER: Jordan, Kimberly

LEGAL REPRESENTATIVE: Wolf, Greenfield & Sacks, P.C.

NUMBER OF CLAIMS: 54 EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 18 Drawing Figure(s); 10 Drawing Page(s)

1864 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A new use for HMG-CoA reductase inhibitors is provided. In the instant invention, HMG-CoA reductase inhibitors are found to upregulate endothelial cell Nitric Oxide Synthase activity through a mechanism

other than preventing the formation of oxidative-LDL. As a result, HMG-CoA reductase inhibitors are useful in treating or preventing conditions that result from the abnormally low expression and/or activity of endothelial cell Nitric Oxide Synthase. Such conditions include pulmonary hypertension, ischemic stroke, impotence, heart failure, hypoxia-induced conditions, insulin deficiency, progressive renal disease, gastric or esophageal motility syndrome, etc. Subjects thought to benefit mostly from such treatments include nonhyperlipidemics and nonhypercholesterolemics, but not necessarily exclude hyperlipidemics and hypercholesterolemics.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 40 OF 48 USPATFULL

ACCESSION NUMBER: 77:1452 USPATFULL TITLE: Charge transfer device

INVENTOR(S): Sangster, Frederik Leonard Johan, Eindhoven,

Netherlands

PATENT ASSIGNEE(S): U.S. Philips Corporation, New York, NY, United States

(U.S. corporation)

RELATED APPLN. INFO.: Continuation of Ser. No. US 1973-409417, filed on 25

Oct 1973, now abandoned

DOCUMENT TYPE: Utility FILE SEGMENT: Granted

PRIMARY EXAMINER: Wojciechowicz, Edward J.

LEGAL REPRESENTATIVE: Trifari, Frank R., Oisher, Jack

NUMBER OF CLAIMS: 16 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 13 Drawing Figure(s); 6 Drawing Page(s)

LINE COUNT: 703

AB Variable capacitance bucket brigade memory in which variable capacitances are used instead of fixed capacitances in order to reduce the Signal-Step-Response-Error.

L4 ANSWER 41 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 2002:313309 BIOSIS DOCUMENT NUMBER: PREV200200313309

TITLE: VEGFR-2 (Flk-1) and the adherens junction serve as laminar

shear stress co-receptors in vascular endothelial cells.

AUTHOR(S): Shay-Salit, Ayelet (1); Shushy, Moran (1); Wolfovitz,

Efrat

(1); Dejana, Elizabetta; Ferruccio, Brava; Resnick, Nitzan

CORPORATE SOURCE: (1) Faculty of Medicine, Department of Anatomy and Cell biology, Technion Israel Institute of Technology and Rappaport Research Institute., Bat-Galim, Haifa, 31096

ppapoit Research institute., bat-Galim, hai:

Israel

SOURCE: FASEB Journal, (March 20, 2002) Vol. 16, No. 4, pp. A200.

http://www.fasebj.org/. print.

Meeting Info.: Annual Meeting of the Professional Research Scientists on Experimental Biology New Orleans, Louisiana,

USA April 20-24, 2002

ISSN: 0892-6638.

DOCUMENT TYPE: Conference LANGUAGE: English

AB Blood flow interactions with the vascular endothelium represents a specialized example of mechanical regulation of cell function that has

important physiological and pathophysiological consequences. Yet, the mechanisms of mechanost induction into these cells are not fully understood. The present tudy focused on the adherens justion and its role in shear stress sensing. This study shows that although the level of both VE-cadherin and b-catenin does not change in vascular endothelial cells exposed to laminar shear stress, a rapid and transient increase in the VE-cadherin - cytoskeleton-bound fraction occurs, accompanied by a simultaneous increase in the binding of VE-cadherin to b-catenin. Interestingly, in the same time frame a rapid and transient increase occurs in the levels of the cytoskeleton-bound fractions of the VEGFR-2 and in its binding to the adherens complex. Endothelial cells lacking the gene for VE-cadherin failed to transduce shear stress signals such as the phosphorylation of Akt1 or the induced expression of a luciferase gene regulated by an SSRE (Shear Stress

Response element) -hybrid promoter. Thus, these results suggest for the first time that VEGF receptor 2 and the adherens junction molecules VE-cadherin and b-catenin act as shear stress co-receptors and point at their possible role in fluid shear stress mechanotransduction.

L4 ANSWER 42 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 2002:252364 BIOSIS DOCUMENT NUMBER: PREV200200252364

TITLE: Regulation of nitric oxide synthesis by abnormal

extracellular matrix proteins: A possible role for STAT5

as

a target for this modulation.

AUTHOR(S): Gonzalez-Santiago, Laura (1); Lopez-Ongil, Susana (1);

Martinez Torres, Juan Angel (1); Lucio-Cazana, Javier (1);

Rodriguez-Puyol, Manuel (1); Rodriguez-Puyol, Diego

CORPORATE SOURCE: (1) Physiology Dpt., Alcala University, Alcala de Henares,

Madrid Spain

SOURCE: Journal of the American Society of Nephrology, (September,

2000) Vol. 11, No. Program and Abstract Issue, pp.

527A-528A. http://www.jasn.org/. print.

Meeting Info.: 33rd Annual Meeting of the American Society of Nephrology and the 2000 Renal Week Toronto, Ontario,

Canada October 10-16, 2000

ISSN: 1046-6673.

DOCUMENT TYPE: Conference LANGUAGE: English

L4 ANSWER 43 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 2000:303859 BIOSIS DOCUMENT NUMBER: PREV200000303859

TITLE: Mapping of a shear stress responsive element (**SSRE**) in the rat angiotensin I converting enzyme gene.

AUTHOR(S): Miyakawa, A. A. (1); Krieger, J. E. (1)

CORPORATE SOURCE: (1) Lab. Gen. Mol. Cardiology, Medicine/LIM13, Heart

Institute, Univ Sao Paulo Medl Sch, Sao Paulo, SP Brazil

SOURCE: FASEB Journal, (March 15, 2000) Vol. 14, No. 4, pp. A413.

print.

Meeting Info.: Annual Meeting of Professional Research

Scientists: Experimental Biology 2000 San Diego,

California, USA April 15-18, 2000 Federation of American

Societies for Experimental Biology

. ISSN: 0892-6638.

DOCUMENT TYPE: Conference LANGUAGE: English SUMMARY LANGUAGE: English

L4 ANSWER 44 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1999:508377 BIOSIS DOCUMENT NUMBER: PREV199900508377

TITLE: Requirement of GATA binding proteins for induction of

endothelial nitric oxide synthase gene transcription by

laminar flow.

AUTHOR(S): La Fata, Vito (1); Laufs, Ulrich (1); Spiecker, Martin

(1);

Peng, Habing (1); Liu, Feng (1); Sessa,

Shyy,

John; Liao, James K. (1)

CORPORATE SOURCE:

(1) Brigham and Women's Hosp., Boston, MA USA

Circulation, (Oct. 27, 1998) Vol. 98, No. 17 SUPPL., pp. SOURCE:

I312.

Meeting Info.: 71st Scientific Sessions of the American Heart Association Dallas, Texas, USA November 8-11, 1998

The American Heart Association

. ISSN: 0009-7322.

DOCUMENT TYPE: LANGUAGE:

Conference English

ANSWER 45 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. L4

ACCESSION NUMBER:

1997:511183 BIOSIS

DOCUMENT NUMBER:

PREV199799810386

TITLE:

Effects of fluid shear stress on atherogenesis and

hemostasis.

AUTHOR(S):

Ruef, J.; Bode, C.; Runge, M. S. (1)

CORPORATE SOURCE:

(1) Div. Cardiology, Univ. Texas Med. Branch, 5.106 John

Sealy Hosp., 301 University Blvd., Galveston, TX

77555-0553

SOURCE:

Fibrinolysis & Proteolysis, (1997) Vol. 11, No. SUPPL. 2,

pp. 159-164.

DOCUMENT TYPE:

Journal; Article

LANGUAGE:

English

ANSWER 46 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

Konkle, B. A.; Shapiro, S. S.

ACCESSION NUMBER: DOCUMENT NUMBER:

CORPORATE SOURCE:

1996:48807 BIOSIS PREV199698620942

TITLE:

Endothelial glycoprotein (Gp) Ib-alpha expression is

upregulated by arterial shear stress.

AUTHOR(S):

Beacham, D. A.; Tran, L.-P.; Ludlow, L. B.; Huang, R.;

Cardeza Foundation Hematologic Research, Jefferson Medical

SOURCE:

College, Thomas Jefferson University, Philadelphia, PA USA Blood, (1995) Vol. 86, No. 10 SUPPL. 1, pp. 281A.

Meeting Info.: 37th Annual Meeting of the American Society of Hematology Seattle, Washington, USA December 1-5, 1995

ISSN: 0006-4971.

DOCUMENT TYPE:

Conference

LANGUAGE:

English

ANSWER 47 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER:

1995:329706 BIOSIS

DOCUMENT NUMBER:

PREV199598344006

TITLE:

Endothelial gene regulation by biomechanical forces.

AUTHOR(S):

Resnick, Nitzan (1); Bauer, Sumpio E.; Du, Wei; Gimbrone,

Michael A., Jr.

CORPORATE SOURCE:

(1) Vasc. Res. Div., Dep. Pathol., Brigham and Women's

Hosp., 221 Longwood Ave., Boston, MA 02115-5817 USA

SOURCE:

Woodford, F. P. [Editor]; Davignon, J. [Editor];

Sniderman,

A. [Editor]. International Congress Series, (1995) No. 1066, pp. 838-843. International Congress Series;

Atherosclerosis X.

Publisher: Elsevier Science Publishers B.V. PO Box 211, Sara Burgerhartstraat 25, 1000 AE Amsterdam, Netherlands. Meeting Info.: 10th International Symposium Montreal,

Quebec, Canada October 9-14, 1994 ISSN: 0531-5131. ISBN: 0-444-82007-8.

DOCUMENT TYPE:

Book; Conference

LANGUAGE:

English

L4 ANSWER 48 OF 48 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. ACCESSION NUMBER: 1995:19 8 BIOSIS

DOCUMENT NUMBER: PREV199598208458

Nuclear factor-kappa-B interacts functionally with the TITLE:

shear-stress-response-

element in the platelet-derived growth factor

B-chain promoter.

AUTHOR(S): Khachigian, Levon M. (1); Resnick, Nitzan; Gimbrone.,

Michael A., Jr.; Collins, Tucker

(1) Vascular Res. Div., Dep. Pathol., Brigham and Women's CORPORATE SOURCE:

Hosp., Boston, MA 02115 USA

SOURCE:

FASEB Journal, (1995) Vol. 9, No. 3, pp. A412. Meeting Info.: Experimental Biology 95, Part I Atlanta,

Georgia, USA April 9-13, 1995

ISSN: 0892-6638.

```
=> e dzau ?/au
E1
             2
                   DZATOR J A/AU
E2
             1
                  DZATSOKHOV S V/AU
E3
             0 --> DZAU ?/AU
E4
             2
                   DZAU J/AU
E5
             1
                   DZAU JACQUELINE/AU
E6
            2
                   DZAU R E/AU
E.7
            51
                   DZAU V/AU
E.8
            2
                   DZAU V I/AU
E.9
          1180
                   DZAU V J/AU
E10
            11
                   DZAU V J */AU
E11
            18
                   DZAU VICTOR/AU
           560
                   DZAU VICTOR J/AU
E12
=> s e7-e12
          1818 ("DZAU V"/AU OR "DZAU V I"/AU OR "DZAU V J"/AU OR "DZAU V J
T<sub>2</sub>5
               *"/AU OR "DZAU VICTOR"/AU OR "DZAU VICTOR J"/AU)
=> s 15 and decoy
            75 L5 AND DECOY
1.6
=> dup rem 16
PROCESSING COMPLETED FOR L6
L7
             34 DUP REM L6 (41 DUPLICATES REMOVED)
=> d l7 ibib abs tot
L7
    ANSWER 1 OF 34
                        MEDLINE
ACCESSION NUMBER:
                    2002345956
                                    MEDLINE
DOCUMENT NUMBER:
                    22083661 PubMed ID: 12089058
TITLE:
                    Transcription factor decoy.
COMMENT:
                    Comment on: Circ Res. 2002 Jun 28;90(12):1325-32
AUTHOR:
                    Dzau Victor J
CONTRACT NUMBER:
                    HL 35610 (NHLBI)
     HL 54527 (NHLBI)
     HL 59316 (NHLBI)
SOURCE:
                    CIRCULATION RESEARCH, (2002 Jun 28) 90 (12) 1234-6.
                    Journal code: 0047103. ISSN: 1524-4571.
PUB. COUNTRY:
                    United States
DOCUMENT TYPE:
                    Commentary
                    Editorial
LANGUAGE:
                    English
FILE SEGMENT:
                    Priority Journals
ENTRY MONTH:
                    200207
ENTRY DATE:
                    Entered STN: 20020629
                    Last Updated on STN: 20020717
                    Entered Medline: 20020716
     ANSWER 2 OF 34 USPATFULL
ACCESSION NUMBER:
                        2002:99432 USPATFULL
TITLE:
                        Therapeutic use of cis-element decoys in vivo
INVENTOR(S):
                        Dzau, Victor J., Los Altos Hills, CA, UNITED
                        STATES
                        Gibbons, Gary H., Palo Alto, CA, UNITED STATES
```

Morishita, Ryuichi, Palo Alto, CA, UNITED STATES

IUMBER KIND DATE

PATENT INFORMATION: US 2002052333 A1 20020502 US 2001-839752 APPLICATION INFO.: A1 20010419 (9)

Continuation of Ser. No. US 1995-524206, filed on 8 RELATED APPLN. INFO.:

Sep

1995, PENDING Continuation of Ser. No. US 1993-144717,

filed on 29 Oct 1993, ABANDONED

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

CLARK & ELBING LLP, 176 FEDERAL STREET, BOSTON, MA, LEGAL REPRESENTATIVE:

02110-2214

NUMBER OF CLAIMS: 12 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 5 Drawing Page(s)

689 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention provides for the use of oligodeoxynucleotide decoys for AB the prophylactic or therapeutic treatment of diseases associated with the binding of endogenous transcription factors to genes involved in cell growth, differentiation and signalling or to viral genes. By inhibiting endogenous trans-activating factors from binding transcription regulatory regions, the decoys modulate gene expression

and thereby regulating pathological processes including inflammation, intimal hyperplasia, angiogenesis, neoplasia, immune responses and

viral

infection. The decoys are administered in amounts and under conditions whereby binding of the endogenous transcription factor to the endogenous

gene is effectively competitively inhibited without significant host toxicity. The subject compositions comprise the decoy molecules in a context which provides for pharmacokinetics sufficient for effective therapeutic use.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 3 OF 34 MEDLINE DUPLICATE 1

ACCESSION NUMBER: 2002207084

DOCUMENT NUMBER: 21937877 PubMed ID: 11940548

TITLE:

Endothelial healing in vein grafts: proliferative burst unimpaired by genetic therapy of neointimal disease.

MEDLINE

Ehsan Afshin; Mann Michael J; Dell'Acqua Giorgio; Tamura AUTHOR: Koichi; Braun-Dullaeus Ruediger; Dzau Victor J

CORPORATE SOURCE: Department of Medicine, Harvard Medical School and Brigham

and Women's Hospital, Boston, Mass 02115, USA.

CONTRACT NUMBER: HL-35610 (NHLBI)

HL-58516 (NHLBI) HL-59316 (NHLBI) HL-61661 (NHLBI)

CIRCULATION, (2002 Apr 9) 105 (14) 1686-92. SOURCE:

Journal code: 0147763. ISSN: 1524-4539.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

ENTRY MONTH: 200204

ENTRY DATE: Entered STN: 20020410

> Last Updated on STN: 20020413 Entered Medline: 20020412

BACKGROUND: Although inhibition of neointimal hyperplasia by cell cycle gene blockade therapy results in improved endothelial cell function in experimental vein grafts, little is known either about endothelial healing

immediately after vein grafting or about the effect of this therapy on the

healing process. METHODS AND RESULTS: Scanning electron microscopy demonstrated an immediate decrease in vein graft endotheral cell density associated with vein graft wall stretch, followed by a fourn to baseline by postoperative day 3. En face detection of bromodeoxyuridine incorporation confirmed a rapid endothelial proliferation by 48 hours. Despite inhibition of underlying vascular smooth muscle cell proliferation, E2F decoy oligonucleotide did not inhibit either endothelial bromodeoxyuridine incorporation or the return to baseline

cell

density. This differential response to E2F decoy was also observed in human umbilical vein endothelial cell culture, which resisted the E2F decoy inhibition of cell growth that was observed in human umbilical artery smooth muscle cells, despite evidence for nuclear localized delivery of the oligonucleotide into both cell types. Furthermore, the reduction of E2F binding activity seen in a nuclear gel shift assay of cultured smooth muscle cells was not observed in endothelial cells. CONCLUSIONS: These results suggest a burst of graft endothelial cell proliferation that allows a rapid restoration of cell density in the monolayer. Additionally, there is a selective effect of

E2F

decoy gene therapy on target smooth muscle cells with sparing of this endothelial healing.

L7 ANSWER 4 OF 34 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 2

ACCESSION NUMBER: 2002:507978 CAPLUS

TITLE: Transcription factor decoy

AUTHOR(S): Dzau, Victor J.

CORPORATE SOURCE: Department of Medicine, Brigham and Women's Hospital,

Boston, MA, 02115, USA

SOURCE: Circulation Research (2002), 90(12), 1234-1236

CODEN: CIRUAL; ISSN: 0009-7330 Lippincott Williams & Wilkins

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review on the use of transcription factor **decoy** as a tool to study gene regulation and as exptl. therapy to treat various pathol.

conditions. The inhibitory effects of AP-1 decoy

oligonucleotide on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo are emphasized.

REFERENCE COUNT: 30 THERE ARE 30 CIT

REFERENCE COONT.

PUBLISHER:

THERE ARE 30 CITED REFERENCES AVAILABLE FOR

THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L7 ANSWER 5 OF 34 MEDLINE

ACCESSION NUMBER: 2001275418 MEDLINE

DOCUMENT NUMBER: 21262905 PubMed ID: 11370767

TITLE: Gene therapy for human bypass grafts.

AUTHOR: Mangi A A; Dzau V J

SOURCE: ANNALS OF MEDICINE, (2001 Apr) 33 (3) 153-5.

Journal code: 8906388. ISSN: 0785-3890.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: (CLINICAL TRIAL)

Editorial

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200110

ENTRY DATE: Entered STN: 20011029

Last Updated on STN: 20011029 Entered Medline: 20011025

AB Autologous saphenous vein is the conduit of choice for the bypass of arterial occlusive disease, be it in the peripheral arterial tree or in the coronary system. This technique is limited by primary graft failure rates approaching 20% in the first year for peripheral arterial disease and 50% at 10 years for coronary artery bypass grafting. The PREVENT trial

17

describes a novel, safe and effective means of ex vivo transfection of harvested vein grafts the an E2F decoy oligonucleotide with 70-74% decreases in the level of proliferating cell nuclear antigen (PCNA)

and c-myc mRNA expressed by the smooth muscle cells in the vein. This translated into a statistically significant reduction in primary graft failure when used to bypass peripheral arterial occlusions in a high-risk human patient population.

L7 ANSWER 6 OF 34 MEDLINE DUPLICATE 3

ACCESSION NUMBER: 2001190262 MEDLINE

DOCUMENT NUMBER: 21176135 PubMed ID: 11279413

TITLE: Long-term stabilization of vein graft wall architecture

and

prolonged resistance to experimental atherosclerosis after

E2F decoy oligonucleotide gene therapy.

AUTHOR: Ehsan A; Mann M J; Dell'Acqua G; Dzau V J

CORPORATE SOURCE: Division of Cardiovascular Medicine, Brigham and Women's

Hospital/Harvard Medical School, 75 Francis Street,

Boston,

and

MA 202115, USA.

CONTRACT NUMBER: HL35610 (NHLBI)

HL58516 (NHLBI) HL59316 (NHLBI) HL61661 (NHLBI)

SOURCE: JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, (2001 Apr)

121 (4) 714-22.

Journal code: 0376343. ISSN: 0022-5223.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

ENTRY MONTH: 200105

ENTRY DATE: Entered STN: 20010517

Last Updated on STN: 20010517 Entered Medline: 20010510

AB OBJECTIVE: We tested the hypothesis that a single intraoperative transfection of rabbit vein grafts with a decoy oligonucleotide that blocks cell-cycle gene transactivation by the transcription factor E2F induces long-term stable adaptation that involves medial hypertrophy and a resistance to neointimal hyperplasia and atherosclerosis. METHODS: Jugular vein to carotid artery interposition vein grafts in hypercholesterolemic rabbits were treated, using pressure-mediated delivery, with either E2F decoy oligonucleotide, scrambled oligonucleotide, or vehicle alone. E2F decoy inhibition of cell-cycle gene expression was determined by measuring proliferating cell nuclear antigen upregulation and bromodeoxyuridine incorporation in vascular smooth muscle cells. Neointimal hyperplasia and atherosclerosis were compared between groups at 6 months after operation. Wall stress was derived from the ratio of luminal radius to wall thickness. Normal rabbits

exposed to 6 weeks of diet-induced hypercholesterolemia starting 6 months after operation were analyzed in the same manner. RESULTS: The E2F decoy oligonucleotide, but not scrambled oligonucleotide or vehicle alone, inhibited proliferating cell nuclear antigen expression

smooth muscle cell proliferation. Furthermore, this manipulation of cell-cycle gene expression yielded an inhibition of neointimal hyperplasia

and atherosclerotic plaque formation throughout the 6 months of cholesterol feeding. In normocholesterolemic rabbits, vehicle-treated and scrambled oligonucleotide-treated vein grafts remain susceptible to diet-induced atherosclerosis as well, whereas resistance to this disease induction remained stable in genetically engineered grafts. CONCLUSION: A single intraoperative pressure-mediated delivery of E2F decoy effectively provides vein grafts with long-term resistance to neointimal

hyperplasia and atherosclerosis. These findings suggest that long-term reduction in human veir graft failure rates may be feasible with this ex vivo gene therapy appr

L7 ANSWER 7 OF 34 EMBASE COPYRIGHT 2002 ELSEVIER SCI. B.V.DUPLICATE 4

ACCESSION NUMBER: 2001169921 EMBASE

TITLE:

Gene therapy for human bypass grafts. AUTHOR: Mangi A.A.; Dzau V.J.

CORPORATE SOURCE: Dr. V.J. Dzau, Brigham and Women's Hospital, Harvard

Medical School, 75 Francis Street, Boston, MA 02115-6195,

United States. vdzau@parmers.org

Annals of Medicine, (2001) 33/3 (153-155). SOURCE:

Refs: 14

ISSN: 0785-3890 CODEN: ANMDEU

COUNTRY: United Kingdom

DOCUMENT TYPE: Journal; General Review

FILE SEGMENT: 018 Cardiovascular Diseases and Cardiovascular Surgery

> 022 Human Genetics

LANGUAGE: English English SUMMARY LANGUAGE:

Autologous saphenous vein is the conduit of choice for the bypass of arterial occlusive disease, be it in the peripheral arterial tree or in the coronary system. This technique is limited by primary graft failure rates approaching 20% in the first year for peripheral arterial disease and 50% at 10 years for coronary artery bypass grafting. The PREVENT trial

describes a novel, safe and effective means of ex vivo transfection of harvested vein grafts with an E2F decoy oligonucleotide, with 70-74% decreases in the level of proliferating cell nuclear antigen (PCNA)

and c-myc mRNA expressed by the smooth muscle cells in the vein. This translated into a statistically significant reduction in primary graft failure when used to bypass peripheral arterial occlusions in a high-risk human patient population.

ANSWER 8 OF 34 MEDLINE DUPLICATE 5

ACCESSION NUMBER:

2000409975 MEDLINE

DOCUMENT NUMBER:

20379252 PubMed ID: 10918504

TITLE:

Transcription factor decoy for NFkappaB inhibits TNF-alpha-induced cytokine and adhesion molecule

expression

in vivo.

AUTHOR:

Tomita N; Morishita R; Tomita S; Gibbons G H; Zhang L; Horiuchi M; Kaneda Y; Higaki J; Ogihara T; Dzau V J

CORPORATE SOURCE:

Department of Geriatric Medicine, Osaka University Medical

School, Japan.

CONTRACT NUMBER:

HL 35252 (NHLBI) HL 35610 (NHLBI)

HL 42663 (NHLBI)

SOURCE:

GENE THERAPY, (2000 Aug) 7 (15) 1326-32.

Journal code: 9421525. ISSN: 0969-7128.

PUB. COUNTRY:

ENGLAND: United Kingdom

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200008

ENTRY DATE:

Entered STN: 20000907

Last Updated on STN: 20000907 Entered Medline: 20000828

AB The expression of several cytokines and adhesion molecules is regulated by

the transcription factor NFkappaB, which is activated by tumor necrosis factor alpha (TNF-alpha). In this study, we employed a mouse model of nephritis induced by TNF-alpha to examine whether inhibition of NFkappaB activity using transcription factor decoy oligonucleotides (ODN) blocks cytokine and adhesion molecule expression and attenuates the renal

inflammatory response. First, we developed a method for delivering FITC-ODN in vivo into mase kidney glomeruli by employing HVJ-liposome. Then, in order to study he feasibility of **decoy** strated in vivo, the reporter gene chloramphenicol acetyltransferase (CAT) driven by three tandemly repeated NFkappaB binding sequences was transfected into the kidney. Intrapenetorial injection of TNF-alpha stimulated CAT expression in vivo, and the increase in CAT expression was completely abolished by NFkappaB decoy ODN, but not scrambled ODN. Therefore, we examined the effect of NFkappaB decoy ODN transfection on TNF-alpha-induced endogenous interleukin (IL)-lalpha, IL-1beta, IL-6, ICAM-1 and VCAM-1 gene expression as assessed by RT-PCR and Northern blotting. Our present data showed that NFkappaB decoy , but not scrambled, ODN abolished TNF-alpha induced gene expression in vivo, as well as glomerular inflammation as assessed by CD45 staining. Taken together, our results suggest the potential utility of NFkappaB decoy strategy for molecular therapy to glomerular inflammatory diseases.

ANSWER 9 OF 34 DUPLICATE 6 L7MEDLINE

ACCESSION NUMBER: 2001046157 MEDLINE

DOCUMENT NUMBER: 20521679 PubMed ID: 11067859

TITLE: Therapeutic applications of transcription factor

decoy oligonucleotides.

AUTHOR: Mann M J; Dzau V J

CORPORATE SOURCE: Department of Surgery, and. Department of Medicine,

Brigham

and Women's Hospital, Boston, Massachusetts 02115, USA.

CONTRACT NUMBER: HL-35610 (NHLBI)

HL-58516 (NHLBI)

JOURNAL OF CLINICAL INVESTIGATION, (2000 Nov) 106 (9) SOURCE:

1071-5. Ref: 42

Journal code: 7802877. ISSN: 0021-9738.

PUB. COUNTRY:

United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE:

English

Abridged Index Medicus Journals; Priority Journals FILE SEGMENT:

ENTRY MONTH: 200012

ENTRY DATE: Entered STN: 20010322

> Last Updated on STN: 20010322 Entered Medline: 20001206

ANSWER 10 OF 34 USPATFULL

ACCESSION NUMBER: 1999:78692 USPATFULL

TITLE: Intracellular delivery of nucleic acids using pressure

Mann, Michael J., Newton, MA, United States INVENTOR(S):

Diet, Frank P., Koln, Germany, Federal Republic of

Dzau, Victor J., Newton, MA, United States Gibbons, Gary H., Lexington, MA, United States Von Der Leyen, Heiko, Sehnde, Germany, Federal

Republic

Board of Trustees of the Leland Stanford Junior PATENT ASSIGNEE(S):

University, Palo Alto, CA, United States (U.S.

corporation)

NUMBER KIND DATE -----

PATENT INFORMATION: APPLICATION INFO.:

US 5922687 19990713 US 1996-745023 19961107

RELATED APPLN. INFO.:

(8) Continuation-in-part of Ser. No. US 1995-434750, filed

on 4 May 1995

DOCUMENT TYPE: FILE SEGMENT:

Utility Granted

PRIMARY EXAMINER: Ketter, James ASSISTANT EXAMINER: Yucel, Irem

LEGAL REPRESENTATIVE: Clark & Elbing LLP

NUMBER OF CLAIMS:

EXEMPLARY CLAIM: 1

90

NUMBER OF DRAWINGS:

32 Drawing Figure(s); 15 Drawing Page(s)

LINE COUNT: 1091

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Naked nucleic acids (DNA, RNA, and/or analogs), drugs, and/or other molecules in an extracellular environment enter cells in living intact tissue upon application of pressure to the cells and extracellular environment. Nucleic acids localize to the cell nuclei. Transfection efficiencies greater than 90% are achievable for naked DNA and RNA. A sealed enclosure, defined by an enclosing means and/or tissue, contains the cells and their extracellular environment. The enclosure is pressurized to an incubation pressure on the order of atmospheres. A protective inelastic sheath may be used to prevent distension and

t.rauma

in tissue that is part of the enclosure boundary. Suitable enclosures include pressurization chambers and organs such as blood vessels or the heart. Parts of organs, entire organs, and/or entire organisms are pressurized. Suitable target tissue types include blood vessel (in particular vein) tissue, heart, kidney, liver, and bone marrow tissue. Gene therapy applications include ex-vivo treatment of grafts prior to transplantation, and in-vivo treatment of tissue. Useful therapy

targets

include cell cycle regulatory genes for blocking cell proliferation, and

interleukin (IL) and cell adhesion molecule (CAM) genes for reducing immune responses to grafts.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 11 OF 34 MEDLINE DUPLICATE 7

ACCESSION NUMBER: 1999272707 MEDLINE

DOCUMENT NUMBER: 99272707 PubMed ID: 10339601

TITLE: Pressure-mediated oligonucleotide transfection of rat and

human cardiovascular tissues.

AUTHOR: Mann M J; Gibbons G H; Hutchinson H; Poston R S; Hoyt E G;

Robbins R C; Dzau V J

CORPORATE SOURCE: Division of Cardiovascular Medicine, Brigham and Women's

Hospital/Harvard Medical School, 75 Francis Street,

Boston,

MA 02115, USA.

SOURCE: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE

UNITED STATES OF AMERICA, (1999 May 25) 96 (11) 6411-6.

Journal code: 7505876. ISSN: 0027-8424.

PUB. COUNTRY:

United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199906

ENTRY DATE:

Entered STN: 19990712

Last Updated on STN: 19990712 Entered Medline: 19990624

AB The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral

lipid formulations, or exposure to other adjunctive, potentially hazardous

substances. In this study, we have documented the ability of ex vivo, pressure-mediated transaction to achieve nuclear localization of fluorescent (FITC)-laberal ODN in approximately 90% and of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibit target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipultation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

L7 ANSWER 12 OF 34 MEDLINE DUPLICATE 8

ACCESSION NUMBER: 2000017656 MEDLINE

DOCUMENT NUMBER: 20017656 PubMed ID: 10551494

TITLE: Ex-vivo gene therapy of human vascular bypass grafts with

E2F decoy: the PREVENT single-centre, randomised,

controlled trial.

AUTHOR: Mann M J; Whittemore A D; Donaldson M C; Belkin M; Conte M

S; Polak J F; Orav E J; Ehsan A; Dell'Acqua G; Dzau V

.T

CORPORATE SOURCE: Department of Medicine, Brigham and Women's Hospital and

Harvard Medical School, Boston, MA 02115, USA.

SOURCE: LANCET, (1999 Oct 30) 354 (9189) 1493-8.

Journal code: 2985213R. ISSN: 0140-6736.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: (CLINICAL TRIAL)

Journal; Article; (JOURNAL ARTICLE)

(RANDOMIZED CONTROLLED TRIAL)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

ENTRY MONTH: 199911

ENTRY DATE: Entered STN: 20000111

Last Updated on STN: 20000111 Entered Medline: 19991118

AB BACKGROUND: Cell-cycle blockade by ex-vivo gene therapy of experimental vein grafts inhibits the neointimal hyperplasia and subsequent accelerated

atherosclerosis that lead to human bypass-graft failure. In a prospective,

randomised, controlled trial, we investigated the safety and biological efficacy of intraoperative gene therapy in patients receiving bypass vein grafts. METHODS: We studied gene therapy that uses decoy oligodeoxynucleotide, which binds and inactivates the pivotal cell-cycle transcription factor E2F. 41 patients were randomly assigned untreated (16), E2F-decoy-treated (17), or scrambled-oligodeoxynucleotidetreated (eight) human infrainguinal vein grafts. Oligonucleotide was delivered to grafts intraoperatively by ex-vivo pressure-mediated transfection. The primary endpoints were safety and inhibition of target cell-cycle regulatory genes and of DNA synthesis in the grafts. Analysis was by intention to treat. FINDINGS: Mean transfection efficiency was 89.0% (SD 1.9). Proliferating-cell nuclear antigen and c-myc mRNA concentrations and bromodeoxyuridine incorporation were decreased in the EF2-decoy group by medians of 73% [IQR 53-84], 70% [50-79], and 74% $[56-\overline{8}3]$, respectively) but not in the scrambled-oligodeoxynucleotide group (p<0.0001). Groups did not differ for postoperative complication rates. At 12 months, fewer graft occlusions, revisions, or critical stenoses were seen in the E2F-decoy group than in the untreated group (hazard ratio 0.34 [95% CI 0.12-0.99]). INTERPRETATION: Intraoperative transfection of human bypass vein grafts with E2Fdecoy oligodeoxynucleotide is safe, feasible, and can achieve sequence-specific inhibition of cell-cycle gene expression and DNA replication. Application of this genetic-engineering strategy may lower failure rates of human primary bypass vein grafting.

DUPLICATE 9 L7 ANSWER 13 OF 34 MEDLINE

ACCESSION NUMBER: 19992634

MEDLINE

DOCUMENT NUMBER:

99263422 PubMed ID: 10325243

TITLE:

Transcription factor decoy to study the molecular

mechanism of negative regulation of renin gene expression

in the liver in vivo.

AUTHOR:

Tomita S; Tomita N; Yamada T; Zhang L; Kaneda Y; Morishita

R; Ogihara T; Dzau V J; Horiuchi M

CORPORATE SOURCE:

Division of Cardiovascular Medicine, Department of

Medicine, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA, USA.. tomita@geriat.med.osaka-

u.ac.jp

CONTRACT NUMBER:

HL07708 (NHLBI)

HL35252 (NHLBI) HL35610 (NHLBI)

SOURCE:

CIRCULATION RESEARCH, (1999 May 14) 84 (9) 1059-66.

Journal code: 0047103. ISSN: 0009-7330.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199906

ENTRY DATE:

Entered STN: 19990614

Last Updated on STN: 19990614

Entered Medline: 19990603

Renin is synthesized in high quantities in the juxtaglomerular cells of AB the kidney, but little or none is synthesized in the liver. Our previous in vitro and biochemical studies have demonstrated that tissue-specific expression of the mouse renin gene is regulated by the specific interaction between negative regulatory element (NRE) in the 5'-flanking region of the renin gene and NRE binding protein (NREB). In this study,

we

examined the hypothesis that this interaction between the NRE in the promoter region of the rat renin gene and the NREB in the liver contributes to the suppressed renin gene expression in this tissue in vivo. We used in vivo transfection of NRE transcription factor decoy (TFD) double-stranded oligonucleotide into the rat liver via portal vein infusion. A gel mobility shift assay showed that transfected NRE TFD blocked endogenous NREB binding with the rat renin gene. This resulted in enhanced hepatic renin mRNA expression, immunohistochemical detection of renin in the liver, and consequently, increased plasma renin concentration. Taken together, these results document the importance of NREB in the inhibition of renin gene expression in rat liver in vivo and suggest the possibility of in vivo renin gene modulation by the TFD approach.

ANSWER 14 OF 34 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

2000:15350 CAPLUS

DOCUMENT NUMBER:

132:206345

TITLE:

Possible E2F-independent cell cycle progression in

the

endothelium of genetically engineered grafts

AUTHOR (S):

Ehsan, Afshin; Mann, Michael J.; Dell'Acqua, Giorgio;

Braun-Dullaeus, Ruediger; Dzau, Victor J.

CORPORATE SOURCE:

Research Institute and Department of Medicine,

Harvard

Medical School and Brigham and Women's Hospital,

Boston, MA, USA

SOURCE:

Surgical Forum (1999), 50, 421-423 CODEN: SUFOAX; ISSN: 0071-8041

PUBLISHER: American College of Surgeons

DOCUMENT TYPE: Journal LANGUAGE: English

In this study, the authors investigated the proliferative response of the endothelial monolayer and sought to det. whether this endothelial healing

was adversely affected by treatment with decoy oligodeoxynucleotides DN) targeting the transcription factor E2F, which is known to arreacted cell cycle progression in vascular smooth mu ar smooth muscle cells (SMC). An interposition graft of the right jugular vein to the carotid artery led to an acute dilation of the conduit and a subsequent significant increase in surface area. Rapid healing was further demonstrated. E2F decoy ODN treatment arrested the growth of quiescent cultured human SMC but not that of human endothelial cells upon restimulation with serum. Despite sequence-specific inhibition of SMC proliferation in vitro and in vivo, E2F decoy ODN does not inhibit cell cycle entry and progression of endothelial cells, thus suggesting an E2F-independent pathway for the completion of the cell cycle.

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L7 ANSWER 15 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 2000:24884 BIOSIS DOCUMENT NUMBER: PREV200000024884

Ex vivo gene therapy with p53 transcription factor TITLE:

decoy attenuates apoptosis and myocardial damage in

a rat model of ischemia/reperfusion.

AUTHOR (S): Dell'Acqua, Giorgia (1); Mann, Michael J. (1); Zhang,

Lu-Nan (1); Ehsan, Afshin (1); Dzau, Victor J. (1)

CORPORATE SOURCE: (1) Brigham and Women's Hosp, Boston, MA USA

Circulation, (Nov. 2, 1999) Vol. 110, No. 18 SUPPL., pp. SOURCE:

I.481.

Meeting Info.: 72nd Scientific Sessions of the American Heart Association Atlanta, Georgia, USA November 7-10,

1999

ISSN: 0009-7322.

DOCUMENT TYPE: Conference English LANGUAGE:

ANSWER 16 OF 34 MEDLINE DUPLICATE 10

ACCESSION NUMBER: 1998153770 MEDLINE

DOCUMENT NUMBER: 98153770 PubMed ID: 9480814

TITLE:

Role of AP-1 complex in angiotensin II-mediated

transforming growth factor-beta expression and growth of

smooth muscle cells: using decoy approach against

AP-1 binding site.

AUTHOR: Morishita R; Gibbons G H; Horiuchi M; Kaneda Y; Oqihara T;

Dzau V J

CORPORATE SOURCE: Division of Cardiovascular Medicine, Brigham and Women's

Hospital, Harvard Medical School, Boston, Massachusetts,

USA.

CONTRACT NUMBER: HL 35252 (NHLBI)

> HL 35610 (NHLBI) HL35610 (NHLBI)

SOURCE: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (1998

Feb 13) 243 (2) 361-7.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199803

ENTRY DATE: Entered STN: 19980410

> Last Updated on STN: 20020212 Entered Medline: 19980327

ΑB The cis element double-stranded oligodeoxynucleotides (ODN) (" decoy") approach has enabled us to clarify the responsible elements. Using this approach, we transfected AP-1 decoy ODN into VSMC cultured from WKY rats (WKY Adu) which produce latent TGF-beta, but not active TGF-beta, and Sprague-Dawley rats (CNC) which produce active and latent TGF-beta under Ang II-stimulation. AP-but not mismatched, decoy ODN a lished Ang II-stimulated TGF-beta gene expression and production in both Adu and CNC. However, AP-1 decoy did not alter DNA, RNA, and protein synthesis in Adu. In contrast, cell number was increased under Ang II stimulation by AP-1 decoy ODN in CNC without significant change in RNA and protein synthesis. These results showed that Ang II stimulated TGF-beta production through the

AP-1

complex. In VSMC that produce active TGF-beta (CNC), the AP-1 complex stimulated by Ang II may inhibit cell growth through active TGF-beta production. Overall, this study demonstrates the utility of the decoy approach to study the specific function of cis elements in endogenous gene regulation such as Ang II-induced TGF-beta expression.

L7 ANSWER 17 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

1999:514589 BIOSIS

DOCUMENT NUMBE

PREV199900514589

TITLE:

The PREVENT Trial of vein graft genetic engineering:

Preliminary molecular and clinical findings.

AUTHOR(S):

Mann, Michael J.; Whittemore, Anthony D.; Donaldson,

Magruder C.; Belkin, Michael A.; Conte, Michael S.; Orav,

John; Polak, Joseph F.; Dzau, Victor J.

CORPORATE SOURCE:

Brigham and Women's Hosp., Boston, MA USA

SOURCE:

Circulation, (Oct. 27, 1998) Vol. 98, No. 17 SUPPL., pp.

I321.

Meeting Info.: 71st Scientific Sessions of the American Heart Association Dallas, Texas, USA November 8-11, 1998

The American Heart Association

. ISSN: 0009-7322.

DOCUMENT TYPE: LANGUAGE:

Conference English

L7 ANSWER 18 OF 34 MEDLINE

DUPLICATE 11 ·

ACCESSION NUMBER:

1998355909 MEDLINE

DOCUMENT NUMBER:

98355909 PubMed ID: 9691019

TITLE:

An oligonucleotide **decoy** for transcription factor E2F inhibits mesangial cell proliferation in vitro. Tomita N; Horiuchi M; Tomita S; Gibbons G H; Kim J Y;

AUTHOR: Baran

D; Dzau V J

CORPORATE SOURCE:

Department of Medicine, Harvard Medical School, Brigham

and

Women's Hospital, Boston, Massachusetts 02115, USA. HL-35252 (NHLBI)

CONTRACT NUMBER:

HL-35610 (NHLBI) HL-46631 (NHLBI)

+

SOURCE:

AMERICAN JOURNAL OF PHYSIOLOGY, (1998 Aug) 275 (2 Pt 2)

F278-84.

Journal code: 0370511. ISSN: 0002-9513.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199809

ENTRY DATE:

Entered STN: 19980925

Last Updated on STN: 19980925 Entered Medline: 19980916

AB The transcription factor E2F controls expression of several genes involved

in cell proliferation including c-myc, c-myb, proliferating cell nuclear antigen (PCNA), and cdk2 kinase. Having established that both PCNA and cdk2 kinase are induced in rat mesangial cells (MC) by serum stimulation, we attempted to inhibit MC proliferation in vitro by transfecting these cells with cationic liposomes containing a synthetic double-stranded

oligodeoxynucleotide (ODN) with high affinity for E2F. Using a gel mobility shift assay, detected increased specific birting of E2F in MC following serum stimulation. This binding was completely hibited by preincubation of MC nuclear extracts with the double-stranded ODN with high affinity for E2F but not by preincubation with a missense ODN containing two point mutations. MC were also transfected with a luciferase

reporter gene construct containing three E2F binding sites. Luciferase activity was enhanced by serum stimulation of MC, and this effect was specifically abolished by cotransfection of MC with E2F **decoy**ODN. Furthermore, RT-PCR analysis revealed that serum-induced upregulation

of PCNA and cdk2 kinase gene expression was inhibited by E2F **decoy** ODN transfection but not by transfection of missense ODN. These changes

in

gene expression were paralleled by a reduction in PCNA and cdk2 kinase protein expression in E2F **decoy** ODN transfected cells. MC number increased following serum stimulation. This effect was blunted by transfection with E2F **decoy** ODN but not by transfection of missense ODN. These data suggest that the transcription factor E2F plays

a

crucial role in the regulation of MC proliferation and that this factor can be successfully targeted to inhibit MC cell cycle progression.

L7 ANSWER 19 OF 34 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1999:430251 CAPLUS

DOCUMENT NUMBER: 131:223547

TITLE: Molecular mechanism of tissue-specific renin gene

expression

AUTHOR(S): Horiuchi, Masatsugu; Chen, Yuqing E.; Dzau,

Victor J.

CORPORATE SOURCE: Cardiovascular Research, Department of Medicine,

Harvard Medical School, Brigham and Women's Hospital,

Boston, MA, 02115, USA

SOURCE: Wenner-Gren International Series (1998),

74(Renin-Angiotensin), 13-23 CODEN: WGISEA; ISSN: 1356-0409

PUBLISHER: Portland Press Ltd.
DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review, with 31 refs. The authors discussed in vitro studies of tissue-specific renin gene expression; in vivo identification of an NRE in

the mouse renin gene using direct gene transfer; in vivo silencing effect of the Renl NRE in mouse submandibular gland and kidney; use of an in vivo

transcriptional factor **decoy** approach to examine tissue-specific renin gene expression in the mouse; in vivo cis and trans interactions of the renin promoter with double-stranded phosphorothioate Renl NRE oligonucleotides; consensus silencing effect of related NRE sequences; neg. regulation of renin gene expression in the liver in vivo; specific nuclear protein binding to the rat renin NRE in liver; change in the binding of NREB to NRE after **decoy** transfection; expression of renin mRNA in rat liver; changes in hepatic and plasma renin concns.; NRE in the human renin gene; and cloning of NREB.

REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR

THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L7 ANSWER 20 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1997:241759 BIOSIS DOCUMENT NUMBER: PREV199799540962

TITLE: Intra-operative transfection with E2F decoy

oligonucleotide yields long term resistance to vein graft

atherosclerosis.

AUTHOR(S): Mann, M. J.; Kernoff, R.; Dzau, V. J.

CORPORATE SOURCE: Dep. Me Brigham and Women's Hosp./Harrard Med. Sch.,

Boston, A USA

SOURCE: Journal of Investigative Medicine, (1997) Vol. 45, No. 3,

pp. 288A.

Meeting Info.: Annual Meeting of the Association of
American Physicians, the American Society for Clinical

American Physicians, the American Society for Clinical Investigation, and the American Federation for Medical Research: Biomedicine '97 Medical Research from Bench to

Bedside Washington, D.C., USA April 25-27, 1997

ISSN: 1081-5589.

DOCUMENT TYPE:

PUBLISHER:

Conference; Abstract; Conference

LANGUAGE: English

L7 ANSWER 21 OF 34 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 12

ACCESSION NUMBER: 1997:710250 CAPLUS

DOCUMENT NUMBER: 127:355171

TITLE: Vein graft gene therapy using E2F decoy

oligonucleotides: target gene inhibition in human veins and long-term resistance to atherosclerosis in

rabbits

AUTHOR(S): Mann, Michael J.; Dzau, Victor J.

CORPORATE SOURCE: Division of Cardiovascular Medicine, Harvard Medical

School/Brigham and Women's Hospital, Boston, MA, USA

SOURCE: Surgical Forum (1997), 48, 242-244

CODEN: SUFOAX; ISSN: 0071-8041 American College of Surgeons

DOCUMENT TYPE: Journal LANGUAGE: English

Vein graft failures are assocd. with the development of graft neointimal hyperplasia and accelerated atherosclerosis. We have demonstrated that a genetic engineering strategy that blocks cell cycle regulatory gene upregulation using antisense oligonucleotides in rabbits prevents this neointimal hyperplasia and that these modified grafts adapt to the hemodynamic stress of the arterial environment instead via medial hypertrophy. Furthermore, this genetic intervention preserves vein graft endothelial function and yields grafts resistant to diet-induced atherosclerosis. Arrest of vascular smooth muscle cell proliferation requires the simultaneous blockade of at least two cell-cycle regulatory genes; we therefore studied inhibition of the transcription factor E2F, the activation of which is responsible for the upregulated expression of numerous genes required for cell cycle progression, using ex vivo transfection of human vein segments with an E2F decoy oligodeoxynucleotide. Because vein graft disease develops over months to years, we further tested the hypothesis that neointimal hyperplasia generates a long-term susceptibility to accelerated vein graft atherosclerosis and that intraoperative, genetic inhibition of vascular smooth muscle cell cell cycle progression can yield a stable shift in graft-adaptive biol. such that a long-term resistance to this disease process is achieved.

L7 ANSWER 22 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1997:10972 BIOSIS DOCUMENT NUMBER: PREV199799310175

TITLE: Transcription factor decoy for NF-kappa-B

inhibits TNF-alpha induced expressions of cytokine and

adhesion molecule in mesangial cells.

AUTHOR(S): Tomita, N. (1); Morishita, R.; Gibbons, G. H.; Tomita, S.;

Kaneda, Y.; Ogihara, T.; Dzau, V. J.

CORPORATE SOURCE: (1) Stanford Univ. Stanford, CA USA

SOURCE: Journal of the American Society of Nephrology, (1996) Vol.

7, No. 9, pp. 1723.

Meeting Info.: 29th Annual Meeting of the American Society

of Nephrology New Orleans, Louisiana, USA November 3-6,

1996

ISSN: 1046-6673.

DOCUMENT TYPE: Conference; Abstract; Conference

LANGUAGE: English

L7 ANSWER 23 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1997:10913 BIOSIS DOCUMENT NUMBER: PREV199799310116

Potential gene therapy for glomerulonephritis: TITLE:

Transfection

of NF-kappa-B decoy inhibited TNF-alpha induced cytokines and adhesion molecules expression in vivo. Morishita, R.; Tomita, N.; Gibbons, G. H.; Tomita, S.;

AUTHOR (S):

Zhang, L.; Kaneda, Y.; Ogihara, T.; Dzau, V. J.

CORPORATE SOURCE: Stanford Univ., Stanford, CA USA

SOURCE: Journal of the American Society of Nephrology, (1996) Vol.

7, No. 9, pp. 1711.

Meeting Info.: 29th Annual Meeting of the American Society of Nephrology New Orleans, Louisiana, USA November 3-6,

1996

ISSN: 1046-6673.

DOCUMENT TYPE: Conference; Abstract

LANGUAGE: English

L7ANSWER 24 OF 34 MEDLINE **DUPLICATE 13**

ACCESSION NUMBER: 97110450 MEDLINE

DOCUMENT NUMBER: 97110450 PubMed ID: 8952611

TITLE: In vivo gene transfer and gene modulation in hypertension

research.

AUTHOR: Dzau V J; Horiuchi M

CORPORATE SOURCE: Department of Medicine, Brigham and Women's Hospital,

Harvard Medical School, Boston, Mass 02115, USA.

CONTRACT NUMBER: HL-35252 (NHLBI)

> HL-35610 (NHLBI) HL-46631 (NHLBI)

SOURCE: HYPERTENSION, (1996 Dec) 28 (6) 1132-7. Ref: 44

Journal code: 7906255. ISSN: 0194-911X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE: English

FILE SEGMENT: Priority Journals

199701 ENTRY MONTH:

ENTRY DATE: Entered STN: 19970128

> Last Updated on STN: 19970128 Entered Medline: 19970107

AB Transgenic technologies and homologous recombination approaches have been useful for studying the roles of specific genes in systemic hypertension. Recently, we and others have introduced the use of in vivo gene transfer to study the effects of local gene overexpression or inactivation in hypertension. Using in vivo gene transfer for the blood vessel, we have documented the direct hypertrophic action of local angiotensin and the growth-inhibitory effect of nitric oxide. In vivo gene transfer is also

an

effective method for discovering the unknown functions of a newly cloned gene. Using this approach, we identified the in vivo growth-inhibitory action of the angiotensin II type 2 receptor. In addition, we have developed a novel strategy using transcriptional factor "decoy" oligonucleotides to regulate the interaction of cis- and trans-acting factors involved in the modulation of gene expression in vivo. Thus, the decoy approach can "switch" on or off specific genes in selective tissues in vivo, thereby influencing local gene expression and tissue function. For example, using decoy oligonucleotides, we have "turned on" renin gene expression in the rat liver, in which it is

usually

not expressed, resulting in increased hepatic and plasma renin levels.

Thus, in vivo gene transfer technology provides us with a new tool for in vivo characterization of genes involved in hypertension potential

application in human therapy.

ANSWER 25 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

1996:305832 BIOSIS PREV199699028188

TITLE:

Potential gene therapy using E2F decoy approach

with HVJ-liposome method to glomerulonephritis in rats. Tomita, N. (1); Gibbons, G. H. (1); Kim, J. (1); Tomita,

AUTHOR(S):

s.

(1); Zhang, L. (1); Kaneda, Y.; Baran, D.; Dzau, V. J.

(1)

CORPORATE SOURCE:

(1) Stanford Univ., Stanford, CA USA

SOURCE:

Journal of Investigative Medicine, (1996) Vol. 44, No. 3,

pp. 319A.

Meeting Info.: Annual Meeting of the Association of American Physicians, the American Society for Clinical Investigation, and the American Federation for Clinical Research: Biomedicine '96, Medical Research from Bench to

Bedside Washington, D.C., USA May 3-6, 1996

ISSN: 1081-5589.

DOCUMENT TYPE:

LANGUAGE:

Conference English

ANSWER 26 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1996:305615 BIOSIS PREV199699027971

DOCUMENT NUMBER: TITLE:

Potential gene therapy for glomerulonephritis:

Transfection

AUTHOR(S):

of NF-kappa-B decoy inhibited TNF-alpha induced cytokine and adhesion molecules expression in vivo. Tomita, N. (1); Morishita, R. (1); Gibbons, G. H. (1); Tomita, S. (1); Horiuchi, M. (1); Zhang, L. (1); Kaneda,

Y.; Ogihara, T.; Dzau, V. J. (1)

CORPORATE SOURCE:

SOURCE:

(1) Stanford Univ., Stanford, CA USA

Journal of Investigative Medicine, (1996) Vol. 44, No. 3,

pp. 281A.

Meeting Info.: Annual Meeting of the Association of American Physicians, the American Society for Clinical Investigation, and the American Federation for Clinical Research: Biomedicine '96, Medical Research from Bench to

Bedside Washington, D.C., USA May 3-6, 1996

ISSN: 1081-5589.

DOCUMENT TYPE:

LANGUAGE:

Conference English

ANSWER 27 OF 34 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1995:753502 CAPLUS

DOCUMENT NUMBER:

123:208768

TITLE:

In vivo therapeutic use of oligonucleotide

cis-element

decoys for transcription factor binding

Dzau, Victor J.; Gibbons, Gary H.; INVENTOR(S):

Morishita, Ryuichi

PATENT ASSIGNEE(S):

SOURCE:

USA

PCT Int. Appl., 26 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 9511687 19950504 WO 1994-US12339 19941028 Α1

W: CA, JP

RW: AT, BE, CH, DE DK, ES, FR, GB, GR, IE, IT, LU, , NL, PT, SE

EP 732929 Α1 19960925 EP 1995-900450 19941028

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT,

SE

US 2002052333 A1 20020502 US 2001-839752 20010419

PRIORITY APPLN. INFO.: US 1993-144717 A 19931029 WO 1994-US12339 W 19941028

US 1995-524206 A1 19950908

AB Oligodeoxynucleotide decoys are provided for prophylactic or therapeutic treatment of diseases assocd. with the binding of endogenous transcription

factors to genes involved in cell growth, differentiation, and signaling, or to viral genes. By inhibiting endogenous trans-activating factors from

binding transcription regulatory regions, the decoys modulate gene expression and thereby regulate pathol. processes including inflammation, intimal hyperplasia, angiogenesis, neoplasia, immune responses, and viral infection. The decoys are administered in amts. and under conditions whereby binding of the endogenous transcription factor to the endogenous gene is effectively competitively inhibited without significant host toxicity. The subject compns. comprise the decoy mols. in a context which provides for pharmacokinetics sufficient for effective therapeutic use. Thus, a 14-bp double-stranded DNA oligonucleotide (5'-CTAGATTTCCCGCG-3'/3'-TAAAGGGCGCCTAG-5') was transfected into vascular smooth muscle cells and shown to effectively abolish the binding of the E2F transcription factor to a specific binding site in serum-stimulated cells. Induction of c-myc, cdc2, and PCNA mRNA expression in response to serum stimulation was markedly inhibited by transfection of the E2F decoy, whereas there was no effect on .beta.-actin mRNA expression. Phosphatidylserine/phosphatidylcholine/cholesterol liposomes contg. inactivated hemagglutinating virus of Japan (Z strain) were used

encapsulate the dsDNA decoys, resulting in a more rapid cellular uptake and nuclear concn., and a 100-fold higher transfection efficiency than lipofection or passive uptake methods. Neg. response element (NRE):NRE-binding protein interaction responsible for silencing of renin Ren1 gene expression was also affected by dsDNA decoys in cell line (SCA-9) derived from a submandibular gland tumor.

ANSWER 28 OF 34 MEDLINE DUPLICATE 14

ACCESSION NUMBER: 95320174 MEDLINE

DOCUMENT NUMBER: 95320174 PubMed ID: 7597041

TITLE: A gene therapy strategy using a transcription factor

decoy of the E2F binding site inhibits smooth

muscle proliferation in vivo.

AUTHOR: Morishita R; Gibbons G H; Horiuchi M; Ellison K E; Nakama

M; Zhang L; Kaneda Y; Ogihara T; Dzau V J

CORPORATE SOURCE: Division of Cardiovascular Medicine, Falk Cardiovascular

Research Center, Stanford University School of Medicine,

CA

to

94305-5246, USA.

CONTRACT NUMBER: HL35252 (NHLBI)

> HL35610 (NHLBI) HL46631 (NHLBI)

SOURCE:

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE

UNITED STATES OF AMERICA, (1995 Jun 20) 92 (13) 5855-9.

Journal code: 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199508

ENTRY DATE: Entered STN: 19950817 Last Updated on STN: 19950817

Entered Medline: 19950803 The application of DNA Sechnology to regu AB chnology to regulate the trans disease-related genes in vivo has important therapeutic potentials. The transcription factor E2F plays a pivotal role in the coordinated transactivation of cell cycle-regulatory genes such as c-myc, cdc2, and the gene encoding proliferating-cell nuclear antigen (PCNA) that are involved in lesion formation after vascular injury. We hypothesized that double-stranded DNA with high affinity for E2F may be introduced in vivo as a decoy to bind E2F and block the activation of genes mediating cell cycle progression and intimal hyperplasia after vascular injury. Gel mobility-shift assays showed complete competition for E2F binding protein by the E2F decoy. Transfection with E2F decoy inhibited expression of c-myc, cdc2, and the PCNA gene as well as vascular smooth muscle cell proliferation both in vitro and in

the

in vivo model of rat carotid injury. Furthermore, 2 weeks after in vivo transfection, neointimal formation was significantly prevented by the E2F decoy, and this inhibition continued up to 8 weeks after a single transfection in a dose-dependent manner. Transfer of an E2F decoy can therefore modulate gene expression and inhibit smooth muscle proliferation and vascular lesion formation in vivo.

ANSWER 29 OF 34 L7 MEDLINE DUPLICATE 15

95386676 ACCESSION NUMBER: MEDLINE

DOCUMENT NUMBER: PubMed ID: 7657796 95386676

TITLE: In vivo identification of a negative regulatory element in

the mouse renin gene using direct gene transfer.

AUTHOR: Yamada T; Horiuchi M; Morishita R; Zhang L; Pratt R E;

Dzau V J

CORPORATE SOURCE: Falk Cardiovascular Research Center, Stanford University

School of Medicine, California 94305-5246, USA.

CONTRACT NUMBER: HL-35252 (NHLBI)

> HL-35610 (NHLBI) HL-46631 (NHLBI)

SOURCE: JOURNAL OF CLINICAL INVESTIGATION, (1995 Sep) 96 (3)

1230-7.

Journal code: 7802877. ISSN: 0021-9738.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals ENTRY MONTH: 199510

ENTRY DATE: Entered STN: 19951013

Last Updated on STN: 19980206

Entered Medline: 19951004

AB DBA/2J mouse contains two renin gene loci (Renld and Ren2d). Ren2d but not

Ren1d is expressed in submandibular gland (SMG) while both are expressed in the kidney. Based on vitro studies, we have postulated that a negative regulatory element (NRE) in the renin gene promoter is involved in its tissue-specific expression. In this study, we examined the molecular mechanism at the in vivo level using direct gene transfer. Fragments of the Ren1d or Ren2d promoter were fused to a chloramphenicol

acetyltransferase (CAT) gene expression vector. These constructs complexed

in fusogenic liposomes were injected directly into the mouse SMG or intraarterially into the mouse kidney via the renal artery. The vector containing the CAT exhibited readily detectable in vivo expressions in both SMG and kidney. In the SMG, Ren1d fragment containing the NRE abolished CAT expression while deletion of the NRE restored CAT expression. The homologous fragment from the Ren2d promoter did not inhibit CAT expression while deletion of the 150-bp insertion resulted in the inhibition. Cotransfection of Renld construct with Renld-NRE oligonucleotides as transcriptional factor decoy restored CAT

expression. Contrary to the SMG, transfection with Renld fragment-CAT construct or Ren2d fragment-CAT construct into the kidne resulted in similar levels of CAT pression. Interestingly, human tryc NRE oligonucleotides which share homology with Ren1d-NRE competed effectively with these oligonucleotides for the regulation of Ren1d gene expression

in

vivo. This NRE sequence is also homologous to silencer elements found in multiple mammalian genes, suggesting the presence of a family of NRE/NRE binding proteins regulating expression of diverse genes.

ANSWER 30 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. T.7

ACCESSION NUMBER: 1996:6615 BIOSIS PREV199698578750 DOCUMENT NUMBER:

TITLE:

In vivo gene therapy of anti-Thy 1 nephritis using E2F

decoy oligonucleotide.

AUTHOR(S):

Tomita, N. (1); Kim, J.; Gibbons, G. H.; Baran, D.;

Ogborn,

M.; Stahl, R. A. K.; Tomita, S.; Zhang, L.; Kaneda, Y.;

Dzau, V. J.

CORPORATE SOURCE:

(1) Stanford Univ., Stanford, CA USA

SOURCE:

Journal of the American Society of Nephrology, (1995) Vol.

6, No. 3, pp. 887.

Meeting Info.: Annual Meeting of the American Society of Nephrology San Diego, California, USA November 5-8, 1995

ISSN: 1046-6673.

DOCUMENT TYPE: LANGUAGE:

Conference English

ANSWER 31 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. 1.7

1996:6177 BIOSIS ACCESSION NUMBER: DOCUMENT NUMBER: PREV199698578312

TITLE:

Oligonucleotide decoy for transcriptional factor

Tomita, N. (1); Kim, J.; Gibbons, G. H.; Baran, D.;

E2F inhibits rat mesangial cell proliferation in vitro.

AUTHOR(S): Tomita,

S.; Dzau, V. J.

CORPORATE SOURCE:

(1) Stanford Univ., Stanford, CA USA

SOURCE:

Journal of the American Society of Nephrology, (1995) Vol.

6, No. 3, pp. 778.

Meeting Info.: Annual Meeting of the American Society of Nephrology San Diego, California, USA November 5-8, 1995

ISSN: 1046-6673.

DOCUMENT TYPE:

Conference LANGUAGE: English

ANSWER 32 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1995:519946 BIOSIS DOCUMENT NUMBER: PREV199598534246

TITLE: In vivo elucidation of negative regulation of tissue

specific renin gene expression by transcriptional factor decoy approach.

AUTHOR(S):

Tomita, Sawako (1); Tomita, Naruya (1); Yamada, Takehiko (1); Zhang, Lunan (1); Ogihara, Toshio; Kaneda, Yasufumi;

Horiuchi, Masatsugu (1); Dzau, Victor J. (1)

CORPORATE SOURCE:

SOURCE:

(1) Stanford Univ., Stanford, CA USA

Hypertension (Dallas), (1995) Vol. 26, No. 3, pp. 555. Meeting Info.: 49th Annual Fall Conference and Scientific Sessions of the Council for High Blood Pressure Research

New Orleans, Louisiana, USA September 19-22, 1995

ISSN: 0194-911X.

DOCUMENT TYPE:

Conference

LANGUAGE: English

ANSWER 33 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1995:287637 BIOSIS DOCUMENT NUMBER: PREV199598301937

TITLE: Elucidation of mechanism of tissue specific renin gene

expression in vivo using transcriptional

decoy app lch.

AUTHOR (S):

Tomita, S. (1); Tomita, N.; Yamada, T.; Zhang, L.;

Ogihara,

T.; Kaneda, Y.; Horiuchi, M.; Dzau, V. J.

CORPORATE SOURCE:

(1) Falk Cardiovasc. Res. Cent., Stanford Univ., Stanford,

CA USA

SOURCE:

Journal of Investigative Medicine, (1995) Vol. 43, No.

SUPPL. 2, pp. 240A.

Meeting Info.: Clinical Research Meeting San Diego,

California, USA May 5-8, 1995

DOCUMENT TYPE:

Conference

LANGUAGE:

English

ANSWER 34 OF 34 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. L7

ACCESSION NUMBER: DOCUMENT NUMBER:

1995:7879 BIOSIS PREV199598022179

TITLE:

A novel molecular strategy using cis element "Decoy

" of E2F binding site inhibits smooth muscle proliferation

AUTHOR (S):

Morishita, Ryuichi (1); Gibbons, Gary H. (1); Horiuchi,

Masatsugu (1); Ellison, Kristin E. (1); Nakajima,

Masatoshi

(1); Tomita, Naruya (1); Zhang, Lunan (1); Kaneda,

Yasufumi; Ogihara, Toshio; Dzau, Victor J. (1)

CORPORATE SOURCE:

(1) Falk Cardiovascular Res. Cent., Stanford Univ.,

Stanford, CA USA

SOURCE: Circulation, (1994) Vol. 90, No. 4 PART 2, pp. I191.

Meeting Info.: 67th Scientific Sessions of the American Heart Association Dallas, Texas, USA November 14-17, 1994

ISSN: 0009-7322.

DOCUMENT TYPE:

Conference

LANGUAGE:

English