	Lecture 7: Bias, Var, Model Complexity
To	precisely discuss evalvation need to keep track of what is random and what is fixed. ter traing data (Xn, Yn) ~ p et T = {(Xn, Yn)}_{n-1} be traing data
We	this is random on this traing data to build a model $\widehat{q} = \widehat{q}_{T}$ also random
let	Xo, To be indep (from training) sample from p
17	M'is some perf. metric (like L) T is fixed
what	her let Err = [E[M(Yo, f(Xo))] T] we to how dust know dust kn
• •	= given specific T what is expected err. if we predict using & con independent sample X., To = gen. perf. using this traing data T

This	s is goite difficult in practice to estimate.
Inst	ead, typically easier to estimate
	Err = ET[Err]
	$= \mathbb{E}[M(Y_0, \hat{f}(X_0))]$
	= exp. gch. perf. over new samples
	over all possible training data
	= exp. perf. of my model building process
let	err = training error = 1 = M(yn, f(kn))
Ty	picelly err < Err T b/c we everfit both calc. w/ fixed training
Parts	So new to may not be exactly the some as this.
	So new Xa man not be exactly the
	some as zus_
	2) Your rondom so might not match Yns.
	YnS.

To simplify analysis, consider only yo being nandom and define the in-sample error Errin Try (Yo, f(Xn)) [T]

Pixed at

trainy

but fixing Xn at trainy pts rendem (deps on Y.) optimism be Op = Errin - err op >0 as err underestmates Errin Typicely and if w= E[OP]

Generally
$$\omega = \frac{2}{N} \sum_{n} Cov(\hat{Y}_n, Y_n)$$

So ω is rel. to the aug. amt that Y_n affects Y_n . ω train

The same cases one can directly estimate ω as ω in which care

est. of $Errin = err + \omega$

Lestimate

est. of $Errin = err + \omega$

Lestimate

 $A_n = errin = err + \omega$
 $A_n = errin = errin = err + \omega$
 $A_n = errin = e$

