

Rosario Gennaro

The first public key signature

Let N=pq be the product of two primes.

RSA signatures

PK=(*N*,*e*)

On input a message M, we hash it to obtain $m \in \mathbb{Z}_N$ and compute the signature $s=m^d$

Computes m=H(M) and $m=s^e \mod N$

Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". Communications of the ACM. 21 (2)

Let's start with additive

n-out-of-n RSA signatures

- A dealer generates N,e,d and shares the secret key d among n parties additively
 - Let $[d_1 \dots d_n]$ be the shares chosen at random in $Z_{\omega(N)}$
 - such that $d = d_1 + ... + d_n \mod \varphi(N)$
 - To sign players reveal s_i=m^{di} mod N
 - Then $s = s_1 * ... * s_n \mod N$
- Why is this secure?
 - Same interpolation in the exponent argument as in the case of dlog schemes
 - The simulator gives random d_i to the adversary
 - given s it can compute the partial signatures of the honest players
 - Random d_i to chosen where? The simulator does not know $\varphi(N)$
 - - \circ Since the uniform distributions in $Z_{\alpha(N)}$ and Z_N are indistinguishable
 - \odot When $p \sim q$

Move to threshold

Shamir's over a ring

- The **dealer** can share **d** with Shamir's
 - Choose a random polynomial $F(x) \in \mathbb{Z}_{\varphi(N)}[X]$ of degree t such that F(0) = d
 - Send to player P_i the share $d_i = F(i) \mod \varphi(N)$
- A set S of t+1 players cannot recover the secret by polynomial interpolation
 - To compute the Lagrangians they need to invert elements $mod \varphi(N)$
 - Which is secret and cannot be leaked to the participants
- Remember that d= ∑_{i∈S} λ_{i,S} d_i
 - where $\lambda_{i,S} = [\prod_{j \in S, j \neq i} j] / [\prod_{j \in S, j \neq i} (j-i)] \mod \varphi(N)$
 - which cannot be computed by the players
- What the players can compute is (n!)d by revealing (n!)d_i
 - Since (n!)λ_{i,s} is an integer

Threshold RSA First Attempt

t-out-of-n RSA signatures

- A dealer generates N,e,d and shares the secret key d among n parties with Shamir mod φ(N)
 - \odot Let $[d_1 \dots d_n]$ be the shares
 - To sign players reveal $s_i = m^{di} \mod N$
 - Then $s^{n!} = \prod_{i \in S} s_i^{n! * \lambda i, S} = m^{d*n!} \mod N$
- How do we get s?
 - Assume that GCD(e,n!)=1 (choose e>n)
 - Use Extended Euclidean algorithm to compute a,b such that a*e+b*n!=1
 - Then by the famous Shamir's trick
 - \circ $s = m^d = m^{d(a^*e+b^*n!)} = m^{a *} m^{b^*d^*n!} = m^{a *} s^b \mod N$

Threshold RSA

Let's try to Simulate

Assume the adversary can forge controlling only t players

Simulator gives random d_i to the adversary and plays the role of the honest players

SI

SIMULATOR (forging centralized scheme)

Simulator computes the adversary *t partial signatures*

$$s_i = m^{di}$$
 and knows $s_0 = s = m^{d}$

- But cannot interpolate in the exponent the partial signatures of the honest players
 - Since $d_i = \sum_{i \in S} \lambda_{j,i,S} d_i$ then $s_i = \prod_{i \in S, s_i} \lambda_{j,i,S}$
 - And the Lagrangians are fractions
- He can however interpolate $s_i^{n!} = \prod_{j \in S_i} s_i^{n!} * \lambda j, i, S$

Threshold RSA

t-out-of-n RSA signatures

- A dealer generates N,e,d and shares the secret key d among n parties with Shamir mod φ(N)
 - \odot Let $[d_1 \dots d_n]$ be the shares
 - To sign players reveal s_i=m^{di * n!} mod N
 - Then $s^z = \prod_{i \in S} s_i^{n! * \lambda i, S} = m^{d*z} \mod N$
 - Where $z=(n!)^2$
 - We get s via the GCD trick again assuming that GCD(e,z)=1 (choose e>n)

Threshold RSA

Simulation

Assume the adversary can forge controlling

Simulator gives random d_i to the adversary and plays the role of the honest players

only t players

SI

So

- It can interpolate in the exponent the partial signatures of the honest players
 - Since $d_i = \sum_{i \in S} \lambda_{i,i,S} d_i$ then $s_i = \prod_{i \in S} s_i \lambda_{i,i,S}$
 - And the Lagrangians are fractions
- $u_i^{n!} = \prod_{i \in S} u_i^{n! * \lambda j, i, S}$

(forging centralized scheme)

What if the identifiers are big

Ad-hoc groups

- In the previous solution the value n is a parameter to the scheme
 - Computation is linear in n (exponentiate to n!)
 - assumes that the identifiers of the players are exactly integers between 1 and n
 - n! grows really large if identifiers are random k-bit strings

reduction ???

To sign players reveal s_i=m^{di*n!} mod N

• Then $s^z = \prod_{i \in S} s_i^{n! * \lambda i, S} = m^{d*z} \mod N$

This one can be replaced with $lcm{(i-j)}$ for $i,j \in S$

Computation of signature <2^k

Ad-Hoc Groups Threshold RSA

Back to the Simulation

Assume the adversary can forge controlling only t players

Simulator gives random d; to the adversary and plays the role of the honest players

Simulator computes the adversary *t partial signatures*

 $s_i = m^{di}$ and knows $s_0 = s = m^{d}$

- To interpolate in the exponent the partial signatures of the honest players it has to compute a z_{Δ} -root of m
 - Where $\mathbf{z}_{\mathbf{A}}$ is the product of all the denominators of the adversary's Lagrangians

Knowledge of s' allows the simulator to complete the simulation

If $GCD(e,z_A)=1$ conjectured not to help find e-roots

Adding robustness

Dealing with bad partial signatures

- Remember that on message M a player outputs $s_i = m^{di} \mod N$
 - How to detect bad partial signatures?
- Message Authentication Codes:
 - \bullet For every share d_i , the dealer chooses n triplets (a_{ii}, b_{ii}, c_{ii}) such that
 - $a_{ii} * d_i + b_{ii} = c_{ii}$ over the integers
 - With a_{ii}∈[0...2^{k1}] and b_{ii}∈[0...2^{k2}] chosen uniformly at random
 - And sends c_{ii} to player i and a_{ii}, b_{ii} to player j
 - When player *i* outputs $s_i = m^{di} \mod N$
 - It sends to player j the value C_{ii} = m^{cij} mod N
 - Player j accepts s_i if $s_i^{aij} * m^{bij} = C_{ij} \mod N$

Adding robustness

Dealing with bad partial signatures

- Remember that on message M a player outputs s_i=m^{di} mod N
- - For every share d_i , the dealer publishes $G_i = g^{di} \mod N$
 - When player i outputs s_i=m^{di} mod N
 - o It also sends a ZK proof that s_i and G_i to have the same discrete log with respect to m and g
 - It requires restricting m,g to a cyclic subgroup of Z_N^*
 - For safe primes the subgroup of quadratic residues

Chaum's prescience

Equality of discrete log ZK Proofs in groups of prime order

$$y=g^x s=m^x$$

Public coin: can be made non-interactive via Fiat-Shamir. Proof of knowledge of x

Private coin (can't be made non-interactive). Two round HVZK (can be turned into 4-round full Zk)

Composite order

Equality of discrete log ZK Proofs in groups of unknown order

G, S.Jarecki, H.Krawczyk, T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)

Wait a minute

DEALER?

- This time removing the dealer is not as easy as in the case of discrete log based schemes
 - The dealer does not just generate a random value
 - It generates an RSA modulus N with its factorization and then the values e,d
- To replace the dealer we need to come up with a protocol to do all of the above distributed with the above secrets (the factorization) in shared form
 - While in principle this is obtainable via MPC protocols it is still a difficult task to perform efficiently
 - The bottleneck would be the repeated computation of modular exponentiations in a distributed Miller-Rabin primality test
 - This has been a very active research area

Distributed RSA Generation

Avoiding Miller-Rabin

- Let's break down the task:
 - a. The *n* parties generate a random number and do a preliminary sieving (to make sure that it is not divided by small primes)
 - b. Given two such numbers p,q the parties compute N=pq
 - c. The parties now distributively test that N is bi-prime (the product of 2 primes)
 - d. If the test succeeds the parties compute e,d

Sieving and Multiplication

- a. The n parties generate a random number and do a preliminary sieving (to make sure that it is not divided by small primes)
 - Each party generate random numbers p_i∈[0...B] and r_i∈[0...B']
 - Reconstruct pr
 - Multiplication of additively shared values
 - And reject p if pr=0 mod a
 - Where a is the small prime
- a. Given two such numbers p,q the parties compute N=pq
 - Again this is the multiplication of additively shared values

Bi-primality testing

- c. The parties now distributively test that N is bi-prime (the product of 2 primes)
 - A very simplified version
 - \circ Remember that N=pq and the parties have additive sharings of p,q
 - If N is bi-prime then $\varphi(N)$ is the order of Z_N^*
 - The parties have an additive sharing $\varphi_1 \dots \varphi_N$ of $\varphi(N)=N-p-q+1$
 - Repeat many times:
 - The parties choose a random value g and test if $g^{\varphi(N)}=1$
 - Locally compute $g_i = g^{\varphi i}$
 - Use a distributed computation to check that $g_1^*...*g_n = 1$
 - \odot Can't reveal the g_i
 - An additional GCD test is also required

Distributed RSA Generation

Inversion over a shared secret

- d. The parties now choose e and compute $d=e^{-1} \mod \varphi(N)$
 - This is the "dual" problem of the one we saw yesterday
 - In the DSA scheme we had a public modulus and we had to invert the secret
 - Here we have a public value to invert but a secret modulus
 - The parties have an additive sharing $\varphi_1 \dots \varphi_N$ of $\varphi(N)$
 - Choose a random value $r_i \in [0...B]$ and let $r = r_1 + ... + r_n$
 - \bullet Reveal $a_i = \varphi_i + er_i$
 - \odot $a = a_1 + ... + a_n = \varphi(N) + re$
 - If GCD(a,e)=1 then there exists b,c such that ab+ce=1
 - \odot 1=ab+ce = b φ (N) + (br+c)e
 - \odot br+c=e⁻¹ mod $\varphi(N)$
 - Shares of d can be easily obtained by setting d_i=br_i
 - With one party adding c as well

A little detour

Signatures based on Strong-RSA

We have been looking at the basic "hash and sign" RSA signature

- Which are proven in the random oracle model
- There are provably secure schemes based on the Strong-RSA assumption
 - Given (N,g) find (e,s) such that se=g mod N
- These schemes work as follows:
 - The public key is (N,g) and the secret key is $\varphi(N)$
 - o a message M is mapped into an exponent m and the signature is $s=g^d \mod N$ where $d=m^{-1} \mod φ(N)$
 - The pair (M,s) is valid if $s^m = g \mod N$
 - o G, S.Halevi, T.Rabin: Secure Hash-and-Sign Signatures Without the Random Oracle. EUROCRYPT 1999: 123-139
 - R.Cramer, V.Shoup: Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)
- To make these schemes into threshold ones we need exactly the protocol we showed before
 - Given m compute a sharing of $d=m^{-1} \mod \varphi(N)$
 - Over a distributed φ(N)

Back to Distributed RSA generation

The two-party case

The Boneh-Franklin protocol required honest majority and was proven only for the honest but curious adversary setting

- Gilboa showed how to extend it for the 2-party case
- In particular introducing the MtA protocols we discussed yesterday

More Distributed RSA Generation

M.Chen, C.Hazay, Y.Ishai, Y.Kashnikov, D.Micciancio, T.Riviere, a.shelat, M.Venkitasubramaniam, R.Wang:Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Majority. IEEE Symposium on Security and Privacy 2021: 590-607

Many follow up works

There are several applications beyond threshold RSA signatures that could use a distributed generation of RSA moduli

- Many protocols have been presented following the Boneh-Franklin approach with improvements focused on
 - Increasing the rate of sieving to avoid running the bi-primality test too often
 - Reducing communication complexity
 - E.g. use a distributed version of the MtA protocol using a threshold additively homomorphic encryption
 - Since one cannot use Paillier, use lattice-based one instead
 - Adding security against malicious adversary via ZK proofs
 - Using recent advances in SNARKs (sublinear size proofs)
 - We can now generate distributed RSA moduli for 1000's of parties in a matter of minutes.