Computer Vision with Embedded Machine Learning

Review of Neural Networks

Supervised Learning

Training data:

$$(x_0, y_0)$$
 (x_1, y_1)
 (x_2, y_2)

Inference: using the trained machine learning model to make predictions with new, unseen data

Goal:

$$f(x_n) = \hat{y_n}$$
 where
$$\hat{y_n} = y_n$$

Features

Feature: individual measurable property or characteristic of a phenomenon

Single 3-axis accelerometer measurement

$$x_{0_x} = -1.02 [m/s^2]$$

 $x_{0_y} = 5.19 [m/s^2]$
 $x_{0_z} = 9.81 [m/s^2]$

Accelerometer measurements over time

Features

Example of sample x₀

x ₀₀	X ₀₁	X ₀₂	X ₀₃	X ₀₄
x ₀₅	X ₀₆	x ₀₇	X ₀₈	X ₀₉
x ₀₁₀	X ₀₁₁	X ₀₁₂	X ₀₁₃	X ₀₁₄
X ₀₁₅	X ₀₁₆	X ₀₁₇	X ₀₁₈	X ₀₁₉

$$x_{00} = 0.22$$

 $x_{01} = 0.23$
 $x_{02} = 0.23$
 $x_{03} = 0.26$
 $x_{04} = 0.32$
 $x_{05} = 0.25$
 $x_{06} = 0.26$

Datasets

Node (Neuron)

Sigmoid function

$$f(w_0 + w_1x_1 + w_2x_2 + \dots)$$

Dense Neural Network (DNN)

Training

- Initialize weights with random values
- 2. Input features from training sample
- 3. Perform forward pass
- 4. Calculate loss
- 5. Perform backpropagation
- 6. Repeat 2-5 until desired/acceptable performance

Terminology

- **Gradient descent:** Algorithm to adjust parameters in a model to minimize loss during backpropagation
- **Epoch:** All training samples have been passed through the model to compute the loss and gradient(s)
- **Batch gradient descent:** Update parameters with gradient descent once after computing the average gradient from all training data (1 iteration of gradient descent for 1 epoch)
- **Stochastic gradient descent (SGD):** Update parameters with gradient descent once after computing the gradient from one training sample (1 iteration of gradient descent for 1 sample)
- Mini-batch gradient descent: Update parameters with gradient descent once per group of training samples (1 iteration of gradient descent for 2..(n-1) samples, where n is the number of training samples.

Spotting Underfitting and Overfitting

Underfit: Model performs poorly on training and validation data

Good fit: Model generalizes well from training to validation data

© 2021 Edgelmpulse, Inc.

Overfit: Model predicts training data well but fails to generalize to validation data

Spotting Underfitting and Overfitting

Underfit: Model performs poorly on training and validation data

Good fit: Model generalizes well from training to validation data

Overfit: Model predicts training data well but fails to generalize to validation data

Predicted Label

Actual Label		Cat	Dog	Bird	Human
	Cat	205	10	1	46
	Dog	6	199	0	32
	Bird	9	17	223	34
	Human	21	8	3	186

True Positive (TP): Predicted positive matches actual positive

True Negative (TN): Predicted negative matches actual negative

False Positive (FP) ("Type I Error"): Predicted positive does not match actual negative

False Negative (FN) ("Type II Error"): Predicted negative does not match actual positive © 2021 EdgeImpulse, Inc.

Predicted Label

Actual Label		Cat	Dog	Bird	Human
	Cat	205	10	1	46
	Dog	6	199	0	32
	Bird	9	17	223	34
	Human	21	8	3	186

Total accuracy:
$$\frac{\sum correct}{\sum all} = \frac{813}{1000} = 0.813$$

Predicted Label

Actual Label		Cat	Dog	Bird	Human
	Cat	205	10	1	46
	Dog	6	199	0	32
	Bird	9	17	223	34
	Human	21	8	3	186

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN} = \frac{199 + 728}{1000} = 0.927$$

$$= \frac{199 + 728}{10000} = 0.927$$

Predicted Label

Actual Label		Cat	Dog	Bird	Human
	Cat	205	10	1	46
	Dog	6	199	0	32
	Bird	9	17	223	34
	Human	21	8	3	186

$$F_1 = \frac{2TP}{2TP + FP + FN} = \frac{2 \times 2}{2 \times 2 + 2}$$

$$F_1 = \frac{2(199)}{2(199) + (35) + (38)} = 0.845$$

Predicted Label

Actual Label		Cat	Dog	Bird	Human
	Cat	205	10	1	46
	Dog	6	199	0	32
	Bird	9	17	223	34
	Human	21	8	3	186

Per-class accuracy 0.907 0.927 0.936 0.856

F1 scores 0.815 0.845 0.875 0.721

Total accuracy: 0.813

F1 average: 0.818 © 2021 EdgeImpulse, Inc.