ISA Specification

James Fletcher

December 13, 2020

Contents

1	Summary	1
2	Instruction Formats 2.1 Field Key 2.2 Instruction Format 1 - A 2.3 Instruction Format 2 - B 2.4 Instruction Format 3 - C	2
3	Instruction List	2
4	Memory	4

Abstract

1 Summary

A fictitious RISC Store-Load 32-bit CPU architecture specification for an out-of-order, speculative and superscalar CPU simulator. The CPU has 16 general-purpose 32-bit registers. The instruction set is based upon RISC-V and MIPS. Register 0 is wired to zero value and any writes to register 0 will be silently ignored.

2 Instruction Formats

There are 3 different formats of instructions, all 32 bits in size, as outlined below. All have a 7 bit opcode field placed at the MSB 1 . A key is also provided to describe field names.

 $^{^1 \}mathrm{MSB}$ - Most Significant Byte

2.1 Field Key

Field Name	Description
Op	6 Operation
Src1	Source 1 Register
Src2	Source 2 Register
Dst	Destination Register
Variable	Depends on operation
Constant	A constant value

2.2 Instruction Format 1 - A

31 30 29 28 27 26 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Op	0	0	0	0	0	0	0	0	0	0	0	0	0		D	st		:	Sr	c1	L	:	Sr	c2	?

2.3 Instruction Format 2 - B

$31\ 30\ 29\ 28\ 27\ 26\ 25$	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7	6	5	4	3	2	1	0
Op	Variable		Sr	c1	-	9	Sr	c2	

2.4 Instruction Format 3 - C

$31\ 30\ 29\ 28\ 27\ 26\ 25$	$24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ \ 9\ \ 8\ \ 7\ \ 6\ \ 5\ \ 4$	3	2	1	0
Op	Constant		D	st	

3 Instruction List

The table below gives an overview of the instructions supported by the processor as well as an example of what the instruction would look like. Further on, each instruction's pseudo-code implementation is provided to help aid understanding.

Op	Instruction	I Form	Example	Description						
	Load Inst	ructions	s - "Var" is men	mory offset constant						
0h	lw Src1, Src2, Var	В	lw r1, r2, 0	Load Word						
1h	lwu Src1, Src2, Var	В	lwu r1, r2, 8	Load Word Unsigned						
2h	lb Src1, Src2, Var	В	lb r1, r2, -4	Load Byte						
3h	lbu Src1, Src2, Var	В	lbu r3, r2, 4	Load Byte Unsigned						
4h	lh Src1, Src2, Var	В	lh r1, r15, 2	Load Half-Word						
5h	lhu Src1, Src2, Var	В	lhu r5, r8, 0	Load Half-Word Unsigned						
	Store Inst	ructions	s - "Var" is men	mory offset constant						
6h	sw Src1, Src2, Var	В	sw r2, r1, -4	Store Word						
7h	sb Src1, Src2, Var	В	sb r2, r1, 2	Store Byte						
8h	sh Src1, Src2, Var	В	sh r2, r1, 0	Load Half-Word						
	Load Immediate Instructions									
9h	ldi Src1, Const	С	ldi r1, 1024	Load const to reg						
Ah	ldhi Src1, Const	С	ldhi r3, 0	Load const to upper 11-bits of reg						

Compa	rison In	structions - Va	r is a const value							
Bh slt Dst, Src1, Src2	A		Set Dst if Src1 < Src2							
Ch sltu Dst, Src1, Src2	A		Set Dst if Src1 < Src2							
Dh slti Src1, Src2, Var	В	slti r5, r8, -2	Set Src1 if Src2 < Var							
Eh sltiu Src1, Src2, Var	В		Set Src1 if Src2 < Var							
, , ,		trol Flow Instru	I							
Fh beq Src1, Src2, Var	В	beq r5, r8, -2	Branch if $Src1 = Src2$ to $PC += Var$							
10h bne Src1, Src2, Var	В	bne r5, r8, -2	Branch if $Src1 != Src2$ to $PC += Var$							
11h blt Src1, Src2, Var	В	blt r5, r8, -2	Branch if $Src1 < Src2$ to $PC += Var$							
12h bge Src1, Src2, Var	В	bge r5, r8, -2	Branch if $Src1 > Src2$ to $PC += Var$							
13h bltu Src1, Src2, Var	В	bltu r5, r8, -2	Branch if $Src1 < Src2$ to $PC += Var$							
14h bgeu Src1, Src2, Var	В	bgeu r5, r8, -2	Branch if $Src1 > Src2$ to $PC += Var$							
15h jal Dst, Var	С	jal r5, r8, -2	Dst = PC + 4, PC += Var							
16h jalr Src1, Src2, Var	В	jalr r5, r8, -2	Src1 = PC + 4, $PC = Src2 + Var$							
17h j Const	С	j label	PC += Const							
18h jr Dst, Var	В	jr r2, 0	PC = Dst + Const							
	Ari	ithmetic Instruc								
19h add Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
1Ah addi Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
1Bh sub Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
1Ch subi Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
1Dh mul Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
1Eh mulh Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
1Fh mulhsu Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
20h mulhu Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
21h div Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
22h divu Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
23h rem Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
24h remu Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
		Logic Instruction								
25h and Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
26h or Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
27h xor Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
28h andi Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
29h ori Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
2Ah xori Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
2Bh srl Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
2Ch srli Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
2Dh sll Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
2Eh slli Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
2Fh srai Dst, Src1, Const	В	jr r2, 0	PC = Dst + Const							
30h sra Dst, Src1, Src2	A	jr r2, 0	PC = Dst + Const							
	Experimental Instructions									

XXh pushb Dst, Src1	A	cpy r1, r2, r3	mem[Dst] = Src1[0:7], Dst+=1
XXh pushh Dst, Src1	A	cpy r1, r2, r3	mem[Dst] = Src1[0:15], Dst+=2
XXh push Dst, Src1	A	cpy r1, r2, r3	mem[Dst] = Src1, Dst+=4
XXh popb Dst, Src1	A	cpy r1, r2, r3	Dst=1, Src1[0:7]=mem[Dst]
XXh poph Dst, Src1	A	cpy r1, r2, r3	Dst=2, Src1[0:15]=mem[Dst]
XXh pop Dst, Src1	A	cpy r1, r2, r3	Dst-=4, Src1=mem[Dst]

4 Memory

This defines how memory is interacted with and is currently not decided on. Total Store Ordering? Weak Memory Model? Strong Memory Model?