Section in	Corresponding	Probed	Parameters of	Functional assumptions			nptions	Example: $gg \to H \to \gamma \gamma$	
this paper	table in [11]	couplings	interest	κ_V	κ_F	$\kappa_{\rm g}$	κγ	κ_{H}	
5.2.1	43.1	Couplings to fermions and bosons	κ_V,κ_F	✓	✓	✓	✓	✓	$ \begin{vmatrix} \kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V) / \kappa_H^2(\kappa_F, \kappa_V) \\ \kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_\gamma^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1) \end{vmatrix} $
5.2.2	43.3		λ_{FV},κ_{VV}	✓	✓	✓	✓	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$
5.3.1	48.1	Vertex loops + H →invisible/undetected decays	$\kappa_{ m g}^{}, \kappa_{\gamma}^{}, \ \kappa_{ m Z\gamma}^{}$	=1	=1	_	_	✓	$\kappa_g^2 \cdot \kappa_\gamma^2/\kappa_H^2(\kappa_g^{},\kappa_\gamma^{})$
5.3.2	48.2	ir /invisiolo/ undotteeted decays	$egin{aligned} \kappa_{ m g} , \kappa_{\gamma}, \ \kappa_{ m Z\gamma}, { m BR}_{ m i.,u.} \end{aligned}$	=1	=1	_	_	✓	$\kappa_{g}^{2} \cdot \kappa_{\gamma}^{2}/\kappa_{H}^{2}(\kappa_{g},\kappa_{\gamma}) \cdot (1-\mathrm{BR}_{\mathrm{i.,u.}})$
5.4.1	43.2		$\kappa_F, \kappa_V, \mathrm{BR}_{\mathrm{i.,u.}}$	≤ 1	_ _	√ ✓	√ ✓	$\sqrt{\mu_{ m off}}$	$\frac{\kappa_F^2 \cdot \kappa_{\gamma}(\kappa_F, \kappa_V)}{\kappa_H^2 \left(\kappa_F, \kappa_V\right)} \cdot (1 - BR_{i.,u.})$
5.4.2	49		$\kappa_F, \kappa_V, \kappa_{ m g}, \kappa_{ m \gamma}, \ \kappa_{ m Z\gamma}, { m BR}_{ m i.,u.}$	≤ 1	_ _	_ _	_	$\sqrt{\mu_{ m off}}$	$\frac{\kappa_F^2 \cdot \kappa_{\gamma}(\kappa_F, \kappa_V)^2}{\kappa_H^2 (\kappa_F, \kappa_V, \kappa_g, \kappa_{\gamma})} \cdot (1 - BR_{i.,u.})$
5.5.1	46	Up-/down-type fermions	$\lambda_{du}, \lambda_{Vu}, \kappa_{uu}$	✓	κ_u, κ_d	✓	✓	_	$\kappa_{uu}^2 \cdot \kappa_{\mathrm{g}}^2(\lambda_{du}, 1) \cdot \kappa_{\gamma}^2(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$
5.5.2	47	Leptons/quarks	$\lambda_{lq},\lambda_{Vq},\kappa_{qq}$	✓	κ_l, κ_q	✓	✓	_	$\kappa_{qq}^2 \cdot \kappa_{\gamma}^2(1,1,\lambda_{lq},\lambda_{Vq})$
5.6.1	51	Generic models with and without assumptions on vertex loops and $\Gamma_{\rm H}$	$\kappa_{\mathrm{W}},\kappa_{\mathrm{Z}},\kappa_{\mathrm{t}},\kappa_{\mathrm{b}},\kappa_{\tau},\kappa_{\mu}$	_	_	✓	√	✓	$\frac{\kappa_g^2(\kappa_b,\kappa_t) \cdot \kappa_\gamma^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W)}{\kappa_H^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W,\kappa_Z)}$
5.6.2	50.2		$\begin{array}{c} \kappa_{W}, \kappa_{Z}, \kappa_{t}, \kappa_{b}, \\ \kappa_{\tau}, \kappa_{\mu}, \kappa_{g}, \kappa_{\gamma}, \\ \kappa_{Z\gamma}, BR_{i.,u.} \end{array}$	≤ 1 - -	_ _ _	_ _ _	_ _ _	\checkmark \checkmark $\mu_{ m off}$	$\frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_\mu, \kappa_W, \kappa_Z)} \cdot (1 - \mathrm{BR}_{\mathrm{i.,u.}})$
5.6.3	50.3		$\begin{matrix} \lambda_{\mathrm{Z}\gamma}, \mathrm{Br_{i.,u.}} \\ \lambda_{\mathrm{WZ}}, \lambda_{\mathrm{tg}}, \lambda_{\mathrm{bZ}}, \lambda_{\tau\mathrm{Z}}, \\ \lambda_{\mathrm{gZ}}, \lambda_{\gamma\mathrm{Z}}, \lambda_{\mathrm{Z}\gamma\mathrm{Z}}, \kappa_{\mathrm{gZ}} \\ \kappa_{\mathrm{gZ}}, \lambda_{\mathrm{Z}\gamma\mathrm{Z}} \end{matrix}$	_	_	_	_	#off —	$\kappa_{ m gZ}^2 \cdot \lambda_{ m \gamma Z}^2$