

ARTIFICIAL INTELLIGENCE

Image Processing and Computer Vision

Aims

- Introduction to Image Processing
- Introduction to Computer Vision

Image Processing

- Image Processing is any form of signal processing for which the input is an image, such as photographs or frames of video;
- the output of image processing can be either an image or a set of characteristics or parameters related to the image.
- Most image-processing techniques involve treating the image as a 2D signal and applying standard signal-processing techniques to it.

Computer Vision

 Computer Vision is a field that includes methods for acquiring, processing, analyzing, and understanding images / video.

Applications

Those people on the right aren't real; they're the product of machine learning

By James Vincent | @jjvincent | Dec 17, 2018, 11:49am EST

Digital Image Representation

f (0,0)

f(x,y) is proportional to the brightness (or gray level) of the image at that point

Digital Image Representation

- \Box A digital image is an image f(x,y) that has been discretized both in spatial coordinates and brightness.
- A digital image can be considered as a matrix whose row and column indices identify a point in the image and the corresponding matrix element value identifies the gray level at that point.
- The elements of such a digital array called picture elements or pixels.

Do you know what "pixel" stands for?

Properties of Images

Spatial Resolution

Width pixels/ width cm and height pixels / height cm

The number of independent pixels values per inch

Intensity Resolution

Intensity bits / intensity range (per channel)

Number of channels

- RGB is 3 channels
- Grayscale is 1 channel

4 gray levels

What is a Digital Image?

□Pixel values typically represent gray levels, colours, opacities etc

Grayscale VS Color Images

An image has a vector at each pixel. For colour images, these vectors each have 3 components (RGB) while Grayscale images have only 1 component.

$$f(x, y) \to \{0, 1, ..., N\}$$

$$f(x, y) \rightarrow [\{0,...,N\}, \{0,...,N\}, \{0,...,N\}]$$

Fundamental Steps in Image Processing

Fruit Recognition

Image Acquisition

- Requires imaging sensor and capability to digitize the signal produced by the sensor.
- Example of imaging sensor: digital camera, scanner

Preprocessing

□ To improve the image (to increase chance for success of other processes)

Enhancing Contrast

Original Image

Contrast Enhanced Image

Examples

Removing noise

Morphological Operation

Isolating Regions

Preprocessing

- Beforehand, you need to understand how image filtering (Correlation & Convolution) works.
- Typically linear combinations of pixel values.
 - e.g., weight pixel values and add them together.
- Different results can be obtained using different weights.
 - e.g., smoothing, sharpening,edge detection).

Correlation

Correlation

244	255	246
255	240	183
255	250	12

*

1	2	3
4	5	6
7	8	9

Filter

244	255	246
255	240	183
255	250	12

	8703	

Correlation – Example

Average filter

30				
	30	20	10	
60	60	40	20	
90	90	60	30	
80	90	60	30	
80	90	60	30	
50	60	40	20	
30	30	20	10	
0	0	0	0	
	90 80 80 50	90 90 80 90 80 90 50 60 30 30	90 90 60 80 90 60 80 90 60 50 60 40 30 30 20	90 90 60 30 80 90 60 30 80 90 60 30 50 60 40 20 30 30 20 10

Filtering-move filter over the image

i_{11}	i_{12}	i_{13}	i_{14}	i_{15}	i_{16}
w_1	w_2	w_3	i_{24}	i_{25}	i_{26}
w_4	w_5	w_6	i_{34}	i_{35}	i_{36}
w_7	w_8	w_9	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

Correlation – Examples

Convolution

Same as correlation except that the mask is <u>flipped</u>,
both horizontally and vertically.

1	2	3	Н	7	8	9	V	9	8	7
4	5	6		4	5	6		6	5	4
7	8	9		1	2	3		3	2	1

For symmetric masks, convolution is equivalent to correlation.

0	1	0
1	6	1
0	1	0

Convolution Example

22

Correlation

244	255	246
255	240	183
255	250	12

- 1	Filter				
1	2	3			
4	5	6			
7	8	9			

244	510	738
1020	1200	1098
1785	2000	108

Convolution

244	255	246
255	240	183
255	250	12

9	8	7
6	5	4
3	2	1

Filter Rotated 180°

2196	
1530	
765	

10697

244	255	246
255	240	183
255	250	12

10697	

Correlation/Convolution Example

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

Symmetric kernel

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

Original image

Output

Preprocessing - Image Noise Remover

- Image Noise Remover
 - Remove unwanted signal in the image
- Importance of Image Noise Remover:
 - To recover from the Image noise that might caused by different intrinsic (i.e., sensor) and extrinsic (i.e., environment) conditions which are often not possible to avoid in practical situations.
 - To ensure the smoothness and the best performance of the later processing steps.
 - To eliminate unintended information during feature extraction.

Image noise

- Image processing is useful for noise reduction...
- Common types of noise:
 - Salt and pepper noise: contains random occurrences of black and white pixels
 - Impulse noise: contains random occurrences of white pixels
 - Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Image noise

Original image

White Gaussian noise

Salt and pepper noise (each pixel has some chance of being switched to zero or one)

Can be recovered by filtering with different filters such as Gaussian filter, Median filter, and average filter.

Gaussian noise – Gaussian Filtering

Filter with Gaussian Filter with different standard deviation value.

 σ = 1 pixel

 σ = 2 pixels

 σ = 5 pixels

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Salt & pepper noise – Gaussian Filtering

Filter with Gaussian Filter with different standard deviation value.

p = 10%

 σ = 1 pixel

 σ = 2 pixels

 σ = 5 pixels

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

Source: K. Grauman

Salt & pepper noise – median filtering

30

 σ = 1 pixel

 σ = 2 pixels

 σ = 5 pixels

3x3 window

5x5 window

7x7 window

Common types of noise

Impulse noise

Gaussian noise

Filtering methods

Filter

Filtered with the median_filter 50 200 250 300 50 100 150 200 250 300 0

Additive Gaussian Noise

Mean Filter

Preprocessing - Morphological operation

- □ To simplify the objects by
 - □ Filling in small holes
 - Eliminating small protrusions from their boundaries
- Boundary pixels
 - Object pixels that have background neighbors
 - Various definition of neighbor
- Support by structuring element

Morphology Operations

Erosion

- Elimination of boundary pixels from objects in binary images
- \square R' = (R Θ A)
- Making objects smaller, also called shrinking

Dilation

- Each background pixel that has a neighbor in the object is relabeled as an object pixel
- \square R' = (R \oplus A)
- Making object bigger, also called growing

Morphology Operations

Opening

- A single erosion followed by a single dilation by the same operator
- \square R' = (R Θ A) \oplus A

Closing

- A single dilation followed by a single erosion by the same operator
- \square R' = (R \oplus A) Θ A

Morphological Operations

Originalimage

Eroded image

Erosion

Dilated image

Dilation

Closing (Dilation-> Closing)

Opening (Erosion -> Dilation)

Dilation - Example

$$\square$$
 R' = R \oplus A

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
(a)										

(b)

Dilation - Example

\square R' = R \oplus A

Good in remove the hole and bridging the gaps.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Erosion - Example

\square R' = R Θ A

Erosion - Example

Good in removing irrelevant details.

Opening

Closing

Segmentation

- Image segmentation is the process of <u>partitioning</u> a digital image into a set of non-overlapping regions that together cover the entire image.
- All pixels in a region are similar with respect to some characteristics, such as color, intensity, or texture.
- Adjacent regions are significantly different with respect to the same characteristics.
- Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images.

Segmentation (Examples)

☐ The output of segmentation stage usually is raw pixel data, constituting either the boundary of a region, or all the points in the region itself.

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Edge detection - Origin of Edges

- Edges are caused by a variety of factors
- An edge is a place of rapid change in the image intensity function

Source: D. Hoiem

Source: Hays, Brown

Source: Hays, Brown

 So, at each point convolve with 1st derivative filter / mask

$$G_x = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \qquad G_y = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

Edge detection algorithms:

- ★1) Canny
- 2) Prewitts
- 3) Sobel

Corner detection

 Shifting the window in any direction should yield a large change in appearance.

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Of course, Harris corner detector gives a mathematical approach for determining which case holds.

Corner detection

At each point convolve with

Representation and Description

- Representation is to transform raw data into a form suitable for subsequent computer processing.
- Description (feature selection) extracting features that result in some quantitative information, to differentiate one class/object from another.
- E.g. descriptor for size and shape of boat will differentiate it from ship

Representation & Description

Representation of letter "a"

A rasterized form of the letter 'a' magnified 16 times using pixel doubling

```
Descriptor in vector = [1.0 1.0 0.9 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 .... 1.0]
```

Vectors

Represented by bold lower case letters, such as x, y, and z and take the form:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ M \\ x_n \end{bmatrix} \qquad \mathbf{OR} \qquad \mathbf{x} = [x_1, x_2, \dots, x_n]$$

Where each component x_i, represents ith descriptor and n is the number of descriptor.

Recognition

- determining whether or not the image data contains some specific object, feature, or activity
 - **Object recognition** to recognize one or several prespecified objects or object classes, usually together with their 2D positions in the image or 3D poses in the scene.
 - Identification an individual instance of an object is recognized. Examples include identification of a specific person's face or fingerprint
 - **Detection** the image data are scanned for a specific condition. Examples include detection of a vehicle in an automatic road toll system.

Interpretation

 Interpretation involves assigning meaning to an ensemble of recognized image. E.g. a string of five numbers can be interpreted as ZIP code.

Classification

- classification is the problem of identifying which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.
- Each segmented object can be classified to one of a set of meaningful classes.
- For example, an image of ocean may contain classes such as ships, small boats, water body, etc.
- Expert systems, semantic networks, neural-networkbased system can perform such task quite efficiently.

Recap – Image Recognition Process

0 - boundary

1 – unwanted background

0<x<1 other regions

recognized as a human Interpreted as a man

Representation & Description

Recognition & Interpretation (these usually involve classification as well)

Recap – Image Recognition Process

Classification – abnormality detection

Challenges of Image Processing

- The ability to extract pertinent information from a background of irrelevant details.
- The capability to learn from examples and to generalize this knowledge so that it will apply in new and different circumstances.
- Ability to make inferences from incomplete information

- Dealing with video
- Video is visual multimedia source that combines a sequence of images/frames to form a moving picture.
- Temporal information is available. A single image only provide spatial information.

[J. K. Aggarwal and M. S. Ryoo]

- Background subtraction
 - also known as Foreground Detection, is a technique in the fields of image processing and computer vision wherein an image's foreground is extracted for further processing (object recognition etc.).
 - Generally an image's regions of interest are objects (humans, cars, text etc.) in its foreground.

Motion tracking

is the process of locating a moving object (or multiple objects) over time using a camera. It has a variety of uses, some of which are: human-computer interaction, security and surveillance, video communication and compression, augmented reality, traffic control, medical imaging and video editing.

Frame t

Frame t + dt

Techniques:

- 1) Optical Flow
- 2) Kalman Filter
- 3) Particle Filter

- Example of steps involved in Computer Vision:
 - Video acquisition
 - Video slicing
 - Preprocessing (E.g. background subtraction, image enhancement, etc.)
 - Feature extraction (E.g. motion features, edge, corner, etc.)
 - Perform Machine Learning (Training)
 - Perform classification / recognition / interpretation