الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE

MINISTERE DE L'EDUCATION ET DE LA FORMATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2008

NOUVEAU REGIME

SESSION DE CONTROLE

MATHEMATIQUES

MATHEMATIQUES DUREE: 4 h COEFFICIENT:

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à rendre avec la copie.

Exercice n°1: (3 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte.

Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1) Soit
$$I = \int_{t}^{t} \frac{(\ln x)^3}{x} dx$$
.

Alors I est égale à

b)
$$\frac{1}{4}$$
.

c)
$$-\frac{1}{4}$$
.

2) Soit
$$\ell = \lim_{x \to 1^-} \left[\ln(1-x) + \frac{1}{1-x} \right]$$
, alors

3) Soit n un entier non nul tel que $(5n) \wedge (3^2 \times 5^3 \times 7) = 35$. Alors

a)
$$n \equiv 0 \pmod{3}$$
. b) $n \equiv 0 \pmod{5}$.

b)
$$n \equiv 0 \pmod{5}$$

Exercice 2 : (4 points)

Dans l'ensemble C des nombres complexes, on considère l'équation

$$(E): z^3 + (5+i)z^2 + (10+2i)z + 8 = 0.$$

- a) Montrer que l'équation (E) admet une solution réelle que l'on déterminera.
 - b) Résoudre l'équation (E).
- Dans le plan P muni d'un repère orthonormé direct (O, u, v), on considère l'application f qui à tout point M d'affixe z associe le point M'd'affixe z' tel que z' = (1+i)z.
 - a) Déterminer la nature et les éléments caractéristiques de f.
 - b) Soit M un point du plan distinct de O et soit M' son image par f. Montrer que le triangle OMM'est rectangle isocèle et en déduire un procédé de construction du point M'.
- On considère les points An définis par :

 A_0 le point d'affixe (-1+i) et pour tout entier naturel n, $A_{n+1} = f(A_n)$.

- a) Placer les points A₀, A₁, A₂, A₃ et A₄.
- b) Pour quelles valeurs de n, les points O, A₀ et A_n sont-ils alignés ?

الشبكة التربوية التونسية www.edunet.tn

Exercice 3: (4 points)

Le plan est orienté dans le sens direct. Dans la figure ci-contre, ABCD est un losange de centre O, I est le milieu du segment [AB], J est le milieu du segment [AD]

et
$$(\widehat{AB}, \widehat{AD}) = \frac{\pi}{3} [2\pi]$$
.

- a) Montrer qu'il existe un unique antidéplacement f qui transforme A en B et B en D.
 - b) caractériser f.

- c) Déterminer l'image du triangle ABD par f.
- 2) Soit s un antidéplacement qui transforme l'ensemble $\{A,B,D\}$ en l'ensemble $\{B,C,D\}$ et tel que s(A)=C.
 - a) Déterminer l'image du segment [BD] par \$.
 - b) En déduire que s est la symétrie orthogonale d'axe (BD).
- Soit g un antidéplacement qui transforme l'ensemble {A,B,D} en l'ensemble {B,C,D} et tel que g(A) = D.
 - a) Montrer que g(D) = B.
 - b) Caractériser alors g.

Exercice 4: (5 points)

- 1) Soit f la fonction définie sur [-2, 2] par $\begin{cases} f(x) = (x+2)\ln(x+2) & \text{si} \quad x \neq -2 \\ f(-2) = 0. \end{cases}$
 - et (\mathscr{C}) sa représentation graphique dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - a) Montrer que f est continue à droite en (-2).
 - b) Etudier la dérivabilité de f à droite en (-2).
 - c) Donner le tableau de variation de f.
- 2) Soit g la fonction définie sur [-2, 2] par $g(x) = f(x) x\sqrt{4 x^2}$
 - et (\mathscr{C}') sa courbe représentative dans le repère $(0, \vec{i}, \vec{j})$.
 - a) Déterminer la position relative des courbes (@) et (@').
 - b) Dans l'annexe ci-jointe (page 4), on a tracé la courbe (@') de g. Tracer la courbe (@) dans le même repère.
- Soit α un réel non nul appartenant à [-2, 2].
 - On désigne par \mathcal{A}_{tx} l'aire de la partie du plan limitée par les courbes (\mathscr{C}) et (\mathscr{C} ') et les droites d'équations respectives x = 0 et $x = \alpha$.
 - a) Montrer que $\mathcal{A}_{\alpha} = \int_{0}^{\alpha} x \sqrt{4 x^2} \, dx$. (On distinguera les deux cas $\alpha > 0$ et $\alpha < 0$).
 - b) Calculer A_α.
 - c) Calculer l'aire de la partie du plan limitée par les deux courbes (C) et (C').

الشبكة التربوية التونسية www.edunet.tn

Exercice 5: (4 points)

Pour tout entier naturel non nul n, on considère la fonction f_n définie sur [0,1] par $f_n(x) = e^{-x} - x^{2n+1}$

- Etudier les variations de f_n.
- Montrer que pour tout entier naturel non nul n, l'équation f_n(x) = 0 admet une unique solution u_n et que u_n ∈]0,1[.

On définit ainsi sur IN*, une suite (u,).

- a) Soit n un entier naturel non nul et x un réel de l'intervalle]0,1[. Comparer les réels f_{n+1}(x) et f_n(x).
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $f_n(u_{n+1}) < 0$.
 - c) Montrer que la suite (un) est croissante et en déduire qu'elle est convergente.
- 4) a) Montrer que pour $n \ge 1$, $ln(u_n) = -\frac{u_n}{2n+1}$.
 - b) Calculer la limite de la suite u. .

الشبكة التربوية التونسية www.edunet.tn

Exercice 4

