

Kreisler 1092-KGB 001394us/JH/be

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

GERD HOBOM ET AL.

SERIAL NO.

09/909,238

FILED

July 19, 2001

FOR

RECOMBINANT INFLUENZA VIRUSES WITH BICISTRONIC

vRNAs CODING FOR TWO GENES IN TANDEM

ARRANGEMENT

ART UNIT

1614

EXAMINER

TO BE ASSIGNED

February 4, 2002

Hon. Commissioner of Patents Washington, D.C. 20231

TRANSMITTAL OF PRIORITY DOCUMENT

SIR:

Appended hereto is a certified copy of Priority Document 00115626.4 filed July 20, 2000.

Applicants request that this document be made of record in the above identified application.

CONDITIONAL PETITION FOR EXTENSION OF TIME

If any extension of time for this response if required, Applicant requests that this be considered a petition therefor. Please charge the required petition fee to Deposit Account No. 14-1263.

ADDITIONAL FEE

Please charge any insufficiency of fees, or credit any excess, to Deposit Account No. 14-1263.

Respectfully submitted,

NORRIS, McLAUGHLIN & MARCUS, P.A.

By

Kurt G. Briscoe Reg. No. 33/141

KGB/ja 220 East 42nd Street 30th Floor New York, New York 10017

Tel.: (212) 808-0700 Fax: (212) 808-0844

CERTIFICATE OF MAILING

I hereby certify that the foregoing Transmittal of Priority Document is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Hon. Commissioner of Patents, Washington, D.C. 20231, on the date indicated below:

Date: February 4, 2002

Bv

European Patent Office

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

00115626.4

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

09/08/01

EPA/EPO/OEB Form

1014

- 02.91

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n°:

00115626.4

Anmeldetag: Date of filing: Date de dépôt:

20/07/00 4

Applicant(s): Demandeur(s):

ARTEMIS Pharmaceuticals GmbH

51063 Köln **GERMANY**

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Recombinant influenza viruses with bicistronic vRNAs coding for two genes in tandem arrangement

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

Tag: Date Aktenzeichen:

State:

Pays:

Date:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C12N15/86, A61K48/00, C12N7/04, A61K39/145

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

10

15

20

25

EPO - ML 000115626 70 20. Juli 2000

000746ep/JH/ml

Recombinant Influenza Viruses with Bicistronic vRNAs Coding for Two Genes in Tandem Arrangement

1

Field of the Invention

The invention relates to recombinant influenza viruses for high-yield expression of incorporated foreign gene(s), which are genetically stable in the absence of any helper virus and which comprise at least one viral RNA segment being a tandem bicistronic RNA molecule coding for two genes in tandem, in said tandem bicistronic RNA molecule one of the standard viral genes being in covalent junction with a foreign, recombinant gene and having an upstream splice donor and a downstream splice acceptor signal surrounding the proximal coding region. In particular the above tandem bicistronic RNA molecule contains one of the standard viral genes in distal mRNA position behind a foreign, recombinant gene in proximal position, or vice versa, both in antisense orientation with regard to the viral RNA within the virus. For simultaneous expression of both genes the proximal reading frame is flanked by splice donor and acceptor signals which have the quality to allow a partial yield of spliced mRNA only, i.e., resulting in the presence of both, spliced and unspliced mRNA simultaneously.

The invention further provides a method for obtaining attenuated viruses which resist reassortment dependent progeny production in case of chance superinfections by wild-type influenza viruses; a method for the production of said recombinant influenza viruses; pharmaceutical compositions comprising said recombinant influenza viruses; and the use of said recombinant influenza viruses for preparing medicaments for vaccination purposes.

10

15

20

25

30

Technical Background

Redesigning influenza virus into a vector system for expression of foreign genes similar to what has been achieved in several other thoroughly studied viruses such as adenovirus, retrovirus, Semliki Forest virus or Rabies virus has the advantage of an industrially well established mode of cheap propagation for influenza in fertilized chicken eggs leading to rather high titers (above 1010/ml). On the other hand none of the constituent vRNA segments may be deleted from the influenza genome according to our present knowledge, and give room for large-size foreign insertions. Only small fragments of foreign polypeptide chains such as B cell epitopes (10 to 15 amino acids) may be inserted into selected positions within two of the viral proteins, i.e. in exchange for one of the variable antigenic regions located at the surface of hemagglutinin (Muster et al., Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus, J. Virol. 69 (11), 6678-6686 (1995)), or into the stalk sequence of viral neuraminidase (Garcia-Sastre and Palese, The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes, Virus Res. 37, 37-47 (1995)), and be stably maintained as functional fusion proteins. Constructs of this kind turned out to be useful for experimental vaccination in a few cases studied, but only rather few clearly defined epitope sequences (of ten to twelve amino acids each) are known today, and some of them might also be misfolded within such restricted fusion protein positions, or in other cases interfere with formation of the correct tertiary structure and function of their host polypeptide chains.

Incorporation of a full-size foreign protein into influenza virus via reverse genetics, encoded by an independent ninth vRNA molecule in addition to its regular set of eight standard vRNA segments is without special provisions only transiently possible (Luytjes et al., Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59, 1107-1113 (1989); Enami et al., An influenza virus containing nine

10

15

20

7

different RNA segments, Virology 185, 291-298 (1991)). In the absence of a continuous selective pressure any additional recombinant vRNA segment cannot be stably maintained as long as the wildtype promoter sequence is used on that ninth vRNA segment, and it will inadvertently be lost after few steps of viral propagation.

Using a different system of influenza reverse genetics developed in our laboratory (Zobel et al., RNA polymerase I catalysed transcription of insert viral cDNA, Nucleic Acids Res. 21, 3607-3614 (1993); Neumann et al., RNA polymerase I-mediated expression of influenza viral RNA molecules, Virology 202, 477-479 (1994)), which was built around in vivo synthesis of recombinant vRNA molecules by cellular RNA polymerase I transcription of the respective template cDNA constructs, modified terminal viral RNA (hereinafter "promoter-up mutations" sequences or promoter-up variants") have been designed by nucleotide substitutions (Neumann and Hobom, Mutational analysis of influenza virus promoter elements in vivo. J. Gen. Virol. 76, 1709-1717 (1995); WO 96/10641). The above promoter-up variants carry up to five nucleotide substitutions (in promoter-up variant 1920; see Flick and Hobom, J. Gen. Virol. 80, 2565-2572 (1999)). When these promoter-up variants are attached to a recombinant ninth vRNA segment its increased transcription and amplification rate will not only compensate for the losses suffered spontaneously, but even cause accumulation of the foreign vRNA segment during simple viral passaging, in the absence of any selection.

25 However, due to its over-replication relative to all of the regular influenza vRNA segments (which of course are connected to wild-type promoter sequences) after catching up with the others the foreign segment will become over-abundant. This increasingly will result in viral particles that have incorporated several copies of recombinant vRNA, but no longer have a full set of all eight standard segments incorporated among an average of about 12-15 vRNA molecules present within a virion. Such particles are defective and will not result in plaque formation, hence after an initial

increase of recombinant viral particles during the first steps of propagation a dramatic decrease is observed, usually at the third or fourth step of viral passaging, depending on the size of the recombinant vRNA and the level of the promoter-up mutation attached.

A balanced situation with regard to the insert length and the level of promoter activity can be achieved, and has been propagated in a particular case over 11 passages, with essentially stable levels of recombinant viruses among a majority of helper viruses (around 80%) during these steps. If a full-level promoter-up mutation is used (1104 or the variant 1920, see below) a balanced-level propagation is reached in conjunction with a recombinant vRNA size of 4000 nucleotides (Maysa Azzeh, Ph.D. Thesis, Univ. Giessen (2000)).

In all of these preparations, both in transiently achieved increased yields (up to 40% of recombinants after three or four steps of viral passage), and in a balanced propagation of recombinant influenza viruses (10 - 20%) the respective viral progeny inadvertantly constitute mixtures with a majority of non-recombinant helper viruses. These result both from a statistical mode of packaging vRNA molecules into a virion (the ninth segment may not be co-packaged), and from the fraction of cells solely infected by helper virus.

To solve the problems of fractional yields and of instability during viral propagation of recombinant influenza, it was suggested to use a recombinant influenza virus for high-yield expression of incorporated foreign gene(s), which is genetically stable in the absence of any helper virus and which comprises at least one viral RNA segment being an ambisense RNA molecule (designated "ambisense RNA segment") and containing one of the standard viral genes in sense orientation and a foreign, recombinant gene in anti-sense orientation, or vice versa, in overall convergent arrangement (PCT/EP00/01903). The ambisense RNA segment preferably should contain the promoter-up mutations. The PCT/EP00/01903 moreover discloses a method of constructing specific

10

15

20

25

5

influenza carrier (helper) strains carrying one or more ribozyme target sites (of type one) in vRNA flanking positions comprising

- (a) RNA polymerase I synthesis of recombinant vRNAs *in vivo*, carrying two different 3' promoter sequences in tandem (an external promoter-up variant and an internal wild-type promoter), which are separated by a second type of ribozyme target sequence, and which carry the said internal ribozyme target sites of type one;
- (b) followed by infection of an influenza wildtype strain;
- (c) thereafter amplification through simple steps of viral propagation; and
- (d) finally isolation through removal of their external 3' promoter sequence by ribozyme cleavage through infection of cells expressing ribozyme type 2, followed by plaque purification.

The resulting special helper virus strains carrying a vRNA segment with external ribozyme target sites of type 1 in exchange for the equivalent regular vRNA molecule are then used for the rescue of ambisense RNA molecules. These are exclusively maintained in the recombinant viruses after passage of viral propagation through ribozyme (type 1) containing host cells, which will destroy the sensitive vRNA molecules of the specially prepared helper viruses.

However, the above ambisense constructs are susceptible to (intranuclear) mRNA double-strand formation, which will partially reduce the expression rates of both the ambisense genes, in particular the gene driven by the (weaker) cRNA promoter. The fluctuating extent of this effect made it difficult to bring the expression rate of the influenza gene within the ambisense segment into balance with other influenza genes. This was the problem to be solved with the present invention.

30 Summary of the Invention

Starting out from two observations in this laboratory which are discussed above and which concern two hitherto unsuspected properties of influenza

20

25

6

viral RNA polymerase in its interaction with terminally adapted influenzaspecific RNA molecules, stable recombinant influenza viruses were found, which solve the above problems.

The recombinant viruses of the present invention can be used for cheappropagation in fertilized eggs, either for production of those recombinant
viruses themselves or for production of foreign proteins or glycoproteins
encoded by them, and hence find application in (glyco)protein production
or in providing vector systems for somatic gene therapy or in being used
as vaccination agents.

Thus, the present invention provides

- (1) a recombinant influenza virus for high-yield expression of incorporated foreign gene(s), which is genetically stable in the absence of any helper virus and which comprises at least one viral RNA segment being a bicistronic RNA molecule coding for two genes in tandem arrangement (hereinafter "tandem bicistronic RNA segment" or "tandem RNA segment"), in said tandem RNA segment one of the standard viral genes being in covalent junction with a foreign, recombinant gene and said tandem RNA segment having an upstream splice donor and a downstream splice acceptor signal surrounding the proximal coding region;
- (2) a preferred embodiment of the recombinant influenza virus defined in (1) above, in which the terminal viral RNA sequences of said at least one tandem RNA segment, which are active as the promoter signal, have been modified by nucleotide substitutions in up to five positions, resulting in improved transcription rates of both the vRNA promoter as well as the cRNA promoter as present in the complementary sequence;
- (3) a method for the production of recombinant influenza viruses as defined in (1) and (2) above comprising
- 30 (a) RNA polymerase I synthesis of recombinant vRNAs *in vivo*, in antisense, or in sense tandem design,

- (b) followed by infection with an influenza carrier strain constructed to include flanking ribozyme target sequences in the corresponding viral RNA segment, i.e., coding for the same viral gene as present in the tandem segment distal position, and
- 5 (c) thereafter selective vRNA inactivation through ribozyme cleavage;
 - (4) a pharmaceutical composition comprising a recombinant influenza virus as defined in (1) and (2) above;
 - (5) the use of a recombinant influenza virus as defined in (1) and (2) above for preparing a medicament for vaccination purposes;
- 10 (6) the use of a recombinant influenza virus as defined in (1) and (2) above for preparing agents for somatic gene therapy;
 - (7) the use of a recombinant influenza virus as defined in (1) and (2) above for preparing agents for transfer and expression of foreign genes into cells (abortively) infected by such viruses;
- 15 (8) the use of a recombinant influenza virus as defined in (1) and (2) above for preparing agents for transfer and expression of RNA molecules into cells infected by such viruses;
 - (9) a method for the production of proteins or glycoproteins which comprises utilizing a recombinant influenza virus as defined in (1) and (2) above as expression vector;
 - (10) a method for preventing and/or treating influenza which comprises administering a recombinant influenza virus as defined in (1) and (2) above to the mammal to be treated, i.e., a vaccination method utilizing said recombinant virus;
- 25 (11) a method for somatic gene therapy, which method comprises subjecting the organism to be treated with a recombinant influenza virus as defined in (1) and (2) above;
- (12) a method for transfer and expression of foreign genes into cells, and for transfer and expression of RNA molecules into cells, which method comprises infecting the cells with a recombinant influenza virus as defined in (1) and (2) above;

15

20

25

(14) a method for an immunotherapy which comprises *ex vivo* infection of immune cells with a recombinant influenza virus as defined in (1) and (2) above, and introduction of the transduced cells into the patient; and

(15) a method for the induction of antibodies which comprises utilizing a recombinant influenza virus as defined in (1) and (2) above as an immunogen.

10 The invention is described in more detail below.

Brief Description of the Figures

Fig. 1 shows the basepair substitution analysis according to the vRNA 'corkscrew' structure:

- (A) 'Corkscrew' conformation of the vRNA promoter drawn against a schematic indication of interacting tripartite viral polymerase. Paired positions exchanged in individual experiments are indicated by numbers, nucleotides $\bar{3}$ or $\bar{8}$ are counted from the 3' end. pHL2024 containing promoter-up mutation '1104' is used as the reference construct (=100%) in all of the CAT assays, while pHL2428 represents the wild-type promoter structure.
- (B) CAT analysis of a series of substitution variants in positions 3 and 8 from the 5' end as indicated above the lanes; 50 μ l of cell lysate obtained from 10⁶ MDCK cells infected in the first viral passage with recombinant viral progeny.
- (C) pHL2024 and pHL1920 comparative CAT analysis, in 100 fold dilution relative to (B), i.e., obtained from 0.5 µl of cell lysate in 3 h reaction time.
- Fig. 2: Vector plasmid pHL1920, the excact sequence of the 3888 bps circular DNA is shown in SEQ ID NO: 20

10

15

20

25

Fig. 3 shows the genetic structure and the RNA transcription products of influenza model tandem expression constructs. Heavy lines for the plasmid cDNA constructs refer to double-stranded DNA, while singlestranded RNA molecules are represented by thin lines, and their-5' to 3'directionalities are marked by arrows. Standard modifications at their 5' and 3' ends are indicated by a dot (5' cap structure) and A_n (3' polyadenylation), both are absent in the primary anti-sense transcription product, the viral RNA (vRNA), which is transcribed by cellular RNA polymerase I (RPoI). Full-length mRNA, is synthesized by influenza viral polymerase (virPo), and a partial splice reation results in a functional yield While both of the reporter genes are of shorter mRNA, molecules. indicated on the DNA level, together with the positions of splice donor (D) and acceptor (A) signal sequences as well as the promotor (p_I) and terminator (t_I) elements for RNA polymerase I start and stop, on the RNA level only those genes and splice signals are marked that are actually or actively involved translated into protein in splicing. The chloramphenicol-acetyltransferase gene (CAT) has been inserted in proximal position in pHL3196 and pHL3235, and in distal position in pHL3224 and pHL3236 (see Figs. 5 to 8), while green fluorescent protein (GFP) in each case is located in alternate location. All vRNA molecules and hence, also the cDNA constructs - carry sequence variations at their 3' ends, which together constitute the 1104 promoter-up mutations: G3A, U5C, C8U (nucleotide positions counted from the 3' vRNA end). pHL3235 and pHL3236 vRNAs are extended in size by about 1000 nucleotides of untranslated sequence relative to pHL3196 and pHL3226: 2600 instead of 1600 nucleotides in lengths. For full-size representation of circular plasmid DNAs see Figs. 5-8, for CAT expression data of all infected by recombinant influenza viruses carrying the respective viral RNAs see Fig 4.

30

Fig. 4 shows the CAT assay results for the group of tandem vRNA plasmid constructs as described in the Example. In particular, the ratio between

20

25

30

chloramphenicol (bottom line) and acetylchloramphenicol (upper three lines) in a flash-CAT assay, after the 2^{nd} (A) and 4^{th} (B) passage of recombinant viruses carrying the reportergene CAT, can be determined from said figure. The following constructs were utilized:

5 pHL1844 (control): monocistronic CAT-construct downstream of promoter - variant 1104.

pHL3196: tandem construct, p-CAT-GFP resulting in a vRNA having a total length of 1530 nucleotides (not "extended"), see also Fig. 5.

pHL3235: tandem construct, p-CAT-GFP resulting in a vRNA having a total length of 2550 nucleotides ("extended"), see also Fig. 7.

pHL3224: tandem construct, p-CAT-GFP resulting in a vRNA having a total length of 1700 nucleotides (not "extended"), see also Fig. 6.

pHL3236: tandem construct, p-CAT-GFP resulting in a vRNA having a total length of 2720 nucleotides ("extended"), see also Fig. 8.

pHL2899: ambisense construct, p_v -CAT \rightarrow ←GFP- p_c resulting in an RNA having a total length of 1500 nucleotides.

pHL2960: ambisense construct, p_v -CAT \rightarrow ←GFP- p_c resulting in an RNA having a total length of 1500 nucleotides.

The five constructs on the left side were transfected into the cell DNA without the use of "booster" plasmides, the four constructs on the right side were, however, transfected with the "booster" plasmides, which gives a jump-start of the constructs due to recombinant vRNA amplification prior to helper virus injection, equivalent to an advantage of about two passages. The "booster" plasmides comprise expression constructs for the nucleoprotein as well as the three subunits of influenza viral polymerase, each downstream of an RNA polymerase II promoter and in an mRNA forming cassette.

While the ambisense construct having the CAT-reporter gene in the weaker position, i.e. behind the cRNA promoter (pHL2899), is only expressed moderately, this is not the case in the respective tandem construct having the CAT-reporter gene in the weaker position, viz.

20

25

1

pHL3224 or pHL3236. Further, the "extension" of the vRNA by 1020 non-translated nucleotides (at the 3' end) is tolerated without significant decrease of expression (see pHL3235 versus pHL3196).

- 5 <u>Fig. 5:</u> Vector plasmid pHL3196, the exact sequence of the 4500 bps circular DNA is shown in SEQ ID NO:21.
 - <u>Fig. 6:</u> Vector plasmid pHL3224, the exact sequence of the 4721 bps circular DNA is shown in SEQ ID NO:22.
 - Fig. 7: Vector plasmid pHL3235, the exact sequence of the 5517 bps circular DNA is shown in SEQ ID NO:23.
- Fig. 8: Vector plasmid pHL3236, the exact sequence of the 5699 bps circular DNA is shown in SEQ ID NO:24.

Detailed Description of the Invention

According to the present invention "influenza virus" embraces influenza A virus, influenza B virus and influenza C virus, with influenza A virus being preferred.

"Bicistronic" according to the present invention refers to a viral RNA segment, vRNA, cRNA or mRNA that includes two independent genes in covalent junction; in a preferred version one of these genes is of viral origin, while the other one codes for a foreign, recombinant gene product.

"Proximal" and "proximal position" according to the present invention refers to the 5' portion of one of the genes in the bicistronic viral mRNA, i.e., ahead (upstream) of the second gene in "distal position".

A "mammal" according to the present invention includes humans and animals. "Organism" embraces prokaryotic and eukaryotic systems as well

10

15

20

25

30

12

as multicellular systems such as vertebrates (including mammals) and invertebrates.

"Infected cells" and "infecting cells" according to the present invention also include "abortively infected cells" and "abortively infecting_cells", - respectively.

In a preferred influenza virus according to embodiment (1) at least one of the regular viral RNA segments is replaced by a tandem RNA segment which contains one of the standard viral genes in distal position, and a foreign, recombinant gene in proximal position, both in anti-sense orientation, or vice-versa. It is moreover preferred that in the tandem RNA molecule said foreign recombinant gene is covalently bound to one of the viral genes while the original vRNA segment coding for the same gene is deleted from the recombinant virus by specific ribozyme cleavage.

The foreign gene(s) in tandem covalent junction with the viral gene(s) preferably code for proteins and/or glycoproteins which are secreted from cells infected with the recombinant virus, such as lymphokines, or code for glycoproteins that are incorporated into the virion as well as the plasma membrane of the infected cell. In another preferred embodiment the foreign gene(s) in tandem covalent junction with the viral gene(s) code for proteins or artificial polypeptides designed to support an efficient presentation of inherent epitopes at the surface of infected cells, for stimulation of B cell and/or T cell response. Such proteins or artificial polypeptides constitute for instance a tumor antigen or an artificial oligomeric series of T cell epitopes that have been identified within a polypeptide chain. Finally, the foreign gene(s) may be suitable for transfer and expression of RNA molecules, including antisense RNA's and ribozymes, into cells. Such recombinant influenza viruses are suitable for sequence specific gene silencing, for example by antisense or RNA interference mechanisms.

10

15

20

13

A preferred recombinant virus of the invention is where in the regular viral RNA segments one or both of the standard glycoproteins hemagglutinin and neuraminidase have been exchanged, preferably into fusion glycoproteins consisting of an anchor segment derived from hemagglutinin and an ectodomain obtained from the foreign source, viral or cellular, or in which such recombinant glycoprotein has been inserted as a third molecular species in addition to the remaining standard components.

As set forth in embodiment (2) above, a preferred recombinant virus of the invention is where the terminal viral RNA sequences, which are active as promoter signal, have been modified by nucleotide substitution in up to 5 positions, resulting in improved transcription rates (of both the vRNA promoter and in the cRNA promoter as present in the complentary sequence) as well as enhanced replication and/or expression rates relative to the wild-type sequence. Said modified terminal viral RNA sequences differ from the wild-type sequence in that in said tandem vRNA segment the 12 nucleotide conserved influenza 3' terminal sequence has been modified by replacement of one to three nucleotides occurring in said sequence at positions 3, 5 and 8 relative to the 3' end by other nucleotides provided that the nucleotides introduced in positions 3 and 8 are forming a base pair (i.e., if the nucleotide position 3 is G, than that in position 8 is C; if the nucleotide in position 3 is C, than that in position 8 is G; etc.).

25

The 3' conserved regions of the wild-type influenza virus have the following sequences:

Influenza A: (5')-CCUGCUUUUGCU-3'

Influenza B: (5')-NN(C/U)GCUÜCUGCU-3'

30 Influenza C: (5')-CCUGCUUCUGCU-3'.

Moreover, the 13 nucleotide conserved influenza 5'-terminal sequence may be modified by replacement of one or two nucleotides occurring in said sequence as positions 3 and 8 by other nucleotides, again provided that the introduced nucleotides are forming a base pair. The 5' conserved regions of the wild-type influenza virus have the following sequences:

14

Influenza A: 5'-AGUAGAAACAAGG

Influenza B: 5'-AGUAG(A/U)AACA(A/G)NN

Influenza C: 5'-AGCAGUAGCAAG(G/A):

Preferred influenza viruses of the invention are those wherein in the 3' 10 conserved region the replacements G3A and C8U have been performed, more preferred are those where also the replacement U5C has been performed (the above mutations are annotated relative to the 3' end; such counting from the 3' end is also indicated by a line on top of the digit, e.g., G 3A). Another preferred influenza virus mutant comprises the 3'-terminal 15 nucleotide sequence G3C, U5C and C8G (relative to the 3' end) resulting in the following 3' terminal nucleotide sequence (5')-CCUGGUUCUCCU-3'. Among the influenza viruses defined hereinbefore those having a 3'terminal nucleotide sequence of (5')-CCUGUUUCUACU-3' are most preferred. In case of an influenza A virus the segment may further have 20 the modifications U3A and A8U in its 5' terminal sequence, in case of influenza C it may have the modifications C3U and G8A in its 5' terminal sequence. The most preferred influenza viruses of the present invention comprise the following general structures:

25 Influenza A (mutant pHL1104):

5'-AGUAGAAACAAGGNNNU₅₋₆..(880-2300 ntds)..N'N'N'CCUG<u>U</u>UU<u>C</u>U<u>A</u>CU-3' Influenza A (mutant pHL1920):

5'-AGAAGAAUCAAGGNNNU₅₋₆...(880-2300 ntds)..N'N'N'CCUGUUUCUACU-3'
Influenza A (mutant pHL1948):

30 5'-AGUAGAAACAAGGNNNU₅₋₆..(880-2300 ntds)..N'N'N'CCUG<u>G</u>UU<u>C</u>U<u>C</u>CU-3'

20

25

30

Influenza B:

5'-AGUAG(A/U)AACA(A/G)NNNNNU₅₋₆..(880-2300 ntds)..N'N'N'N'N'N'(C/U)G \underline{U} UU \underline{C} U \underline{A} CU-3' Influenza \underline{C} :

 $5'-AG\underline{U}AGUA\underline{A}CAAG(G/A)GU_{5-6}..(880-2300 \text{ ntds})..CCCCUG\underline{U}UU\underline{C}U\underline{A}CU-3'$

In the above structures the variables are defined as follows:

- (1) Underlined and enlarged letters show the required mutations relative to the wild-type sequence for preparing a promoter mutant with enhanced properties;
- (2) enlarged A in position 10 in the 5'-part of the sequence: unpaired A residue, bulge-forming;
 - (3) (A/G) in one position: different isolates or single segments with variable sequence at the respective position, which are functionally interchangeable;
- (4) N and N': positions undefined, but base-paired relative to each other because of complementarity between the 5' and 3' termini, different among the 8 segments, but constant for each segment throughout all viral isolates;
 - (5) (880-2300 ntds): the lengths of the viral RNA segments, in case of segments with foreign genes increased up to 4,000 nucleotides.

According to embodiments (1) to (3) the invention provides

- a stable recombinant influenza virus containing (up to) seven regular vRNA segments plus one (or more) additional bicistronic segment(s) coding for a foreign gene in covalent conjunction with one of the influenza genes, in tandem arrangement, and
- a method for the construction of stable recombinant influenza viruses through tandem arrangement of bicistronic vRNA segments, which is also applicable as a method for attenuation and for prevention of reassortment between co-infecting influenza viruses.

Expression of both gene products in these constructions is made possible by way of an upstream splice donor and a downstream splice acceptor signal surrounding the proximal coding region of such a quality that splicing does occur in part of the mRNA molecules only, i.e., both mRNAs spliced and unspliced are present in the infected cell. For compensation with regard to the vRNA length the bicistronic segment is connected to a promoter variant of enhanced replication and transcription rates as defined herein before.

The splice donor and the splice acceptor signals are selected from authentic sequences as present in influenza segments 7 and 8 or other partially effective splice reaction substrates, preferably those of influenza virus WSN segment 7, i.e., 5'-AG*GTACGTTC-3' (donor) and 5'-GCTGAAAATGATCTTCTTGAAAATTGCAG*GC-3' (acceptor).

15

20

25

30

5

In a particular application of embodiments (1) to (3) the tandem bicistronic mRNA codes for one of the viral genes, such as hemagglutinin, in conjunction with all or part of the viral neuraminidase coding sequence, in antisense orientation, while the authentic neuraminidase vRNA segment is missing in these recombinant viruses. In another variation of these constructs an anti-neuraminidase ribozyme sequence is also provided together with the (partial) neuraminidase antisense sequence, in the proximal position of these bicistronic recombinant segments. Recombinant viruses of this character are propagated in culture media with addition of exogenous neuraminidase.

The absence of a functional neuraminidase gene serves as a strong attenuation mechanism resulting in single-step infections of such recombinant viruses only. While a functional neuraminidase gene could be provided through another (wildtype) influenza virus superinfecting the same cell, expression of that gene is very much reduced through antisense RNA interaction and/or destruction of the corresponding vRNA

10

15

20

17

through ribozyme cleavage, designed to interfere with production of infectious progeny even from co-infected cells; as a barrier against reassortment in double infected cells.

Recombinant viral RNAs coding simultaneously for two genes in tandem in a construct in which one of the viral genes is in covalent junction with a foreign coding sequence, are constructed via E. coli plasmid vector DNAs designed for an *in vivo* transcription of minus-strand vRNAs by cellular RNA polymerase I. In these constructs the gene in plus-strand proximal (upstream) position is surrounded by splice signals of limited activity such that both mRNAs, spliced and unspliced are present in the infected cell. Either the foreign gene or the viral gene may be in that upstream position. In the majority of applications the higher rates of expression will be reserved for the foreign coding sequence, while the lower expression rate of the viral gene is adapted to be approximately in balance with expression of the other viral genes encoded by the regular viral segments.

To achieve such a balanced rate of expression, the splice signals and the promoter have to be chosen properly (Flick and Hobom, Interaction of influenza virus, polymerase with viral RNA in the 'corkscrew' conformation, J. Gen. Virol. 80, 2565-2572 (1999)). At an increased overall transcription rate, the resulting mRNAs shall be spliced inefficiently if the viral gene is in the distal (downstream) position. Vice-versa, if the foreign gene is in the distal position, splicing to obtain the foreign mRNA shall be achieved efficiently. Both designs serve to reach an over-expression of the foreign gene relative to the viral gene, of which the expression shall be in balance with the expression of the other viral genes. Further, the promoter variant attached to the bicistronic segment has the function to compensate for the increased gene length by way of an increased replication rate.

The influenza vRNA segments preferably used for construction of bicistronic segments include the neuraminidase (No. 6), hemagglutinin

30

25

10

15

20

25

(No. 4) and NS segment (No. 8). In the NS segment the foreign gene may also substitute for the NS1 gene leaving the viral NS2 gene in its place. These recombinant viruses can, as an example, be made by the following procedure: A recombinant virus population can be selected by repeated ribozyme-mediated cleavage of helper-virus segments carrying ribozymecleavage sites that flank the same viral gene in the monocistronic segment as is present in the bicistronic construct (PCT/EP00/01903). By serial viral passaging and relying on the ouptut of reporter genes in equivalently constructed bicistronic segments, a balanced mode of expression can be achieved in choosing the right set of elements: promoter, splice signals plus a limited variation in segment length. The construct that gives rise to the balanced, stable expression is then used as a basis for a multiple cDNA transfection procedure in a helper-virus free design according to Neumann et al., Proc. Natl. Acad. Sci. USA, Vol 96, 9345-9350 (August 1999). The resulting recombinant influenza virus, obtained via single plaques in pure helper-free state is subjected to another series of propagation steps to finally evaluate its properties.

In a particular application this design is used for a controlled mode of viral attenuation. Attenuation of influenza viruses so far has been achieved in cold-sensitive mutants (Edwards et al., J. Infect. Dis. 169, 68-76(1994)), by deletion of the NS1 gene (partial attenuation, Egorov et al., J. Virol. 72, 6437-6441 (August 1998) and Palese et al., Proc. Natl. Acad. Sci USA, 4309-4314 (April 2000)), or through deletion of the neuraminidase gene (full attenuation, Kawaoka et al., J. Virol. 74, 5206-5212 (June 2000)). The latter approach is adapted here using a novel technique for the attenuation, which for the first time is also able to interfere with (chance) superinfection by wild-type viruses.

In this embodiment of the invention a bicistronic cDNA construct is achieved, which instead of a foreign gene is coding either for part of or for the entire viral neuraminidase gene in antisense orientation, with or

without being surrounded both by splice donor and acceptor elements. In another version of that design a 2 x 50 nucleotide antisense segment complementary to the 5'-terminal neuraminidase sequence has been cloned in flanking positions relative to a ribozyme construct according to the hammerhead design and oriented against a common GUC—triplett within the neuraminidase sequence. In a preferred design this antisense expression construct has been attached to the hemagglutinin vRNA segment, while another gene or reporter gene is encoded in a second bicistronic vRNA, in conjunction with NS2.

Propagation of recombinant viruses deleted for the neuraminidase (NA) gene requires an addition of external neuraminidase to the medium. In the absence of neuraminidase, infection by the NA deletion viruses is abortive: no infectious progeny is produced. Upon co-infection (3:3) of recombinant viruses together with wildtype viruses no progeny virus or plaque is observed, which is attributed to antisense-blocked expression or (partial) destruction of the neuraminidase segment originating from the wild-type virus. Therefore, the recombinant viruses described are not only attenuated in single infections, but simultaneously interfere with wildtype virus superinfection, and therefore, no re-assortment between the two viruses will occur.

The pharmaceutical composition according to embodiment (4) above and the medicament of embodiment (5) above contain the recombinant influenza virus in a pharmaceutically effective amount. Besides said recombinant influenza virus, the pharmaceutical composition and the medicament may contain further pharmaceutically acceptable carrier substances well-known to a person skilled in the art, such as binders, desintegrants, diluents, buffers, preservatives, etc. The pharmaceutical composition and medicaments are solid or liquid preparations and are suitable to be administered orally, intravenously or subcutaneously.

The medicament according to embodiment (5) above is preferably suitable as a medicament against influenza and/or against other infections. The recombinant influenza virus may be present in form of inactivated preparations or may be present in form of live recombinant viruses, preferably as attenuated viruses.

Live recombinant viral vaccines, live but attenuated recombinant viral vaccines or inactivated recombinant viral vaccine can be formulated. Inactivated vaccines are "dead" in the sense that their infectivity has been destroyed. Ideally, the infectivity is destroyed without affecting its immunogenicity. To prepare inactivated vaccines, the recombinant virus may be grown in cell cultures or in embryonated chicken eggs, purified, and inactivated by formaldehyde or β -propiolactone. The resulting vaccine is usually administered intramuscularly.

15

20

25

30

10

5

Inactivated viruses may be formulated with suitable adjuvants to enhance the immunological response. Such adjuvants include, but are not limited to, mineral gels, e.g., aluminum hydroxide, surface-active substances such as pluronic polyols, lysolecithin, peptides, oil emulsions, and potentially useful human adjuvants such as BCG.

Many methods may be used to introduce the vaccine formulations above, for example the oral, intradermal, intramuscular, intraperitoneal, subcutaneous, or intranasal routes. Where a live recombinant virus vaccine is used, it is preferred to introduce the formulation via the natural route of infection for influenza virus.

The medicament according to embodiment (5) above is preferably suitable for prophylactic or therapeutic vaccination, or both, against influenza and other infections. For example, recombinant viruses can be made for use in vaccines against HIV, hepatitis B virus, hepatitis C virus, herpes viruses, papilloma viruses, to name but a few. In one embodiment the

recombinant virus contains the genes for surface proteins of the viruses, in another the genes for non-structural or regulatory genes. The recombinant viruses may be present in form of inactivated preparations or may be present in form of live recombinant viruses, or as live, but attenuated viruses. In an attenuated virus the recombinant virus would go through a single or at most very few propagation cycle(s) and induce a sufficient level of immune response, but would not cause disease. Such viruses lack one of the essential influenza genes or contain mutations to introduce temperature sensitivity.

The agents of embodiments (6)-(8) of the invention are applicable in *ex vivo* and *in vivo* application schemes. The RNA molecule to be expressed by means of the agent of the embodiment (8) is of an antisense sequence or double strand sequence (in ambisense bidirectional transcription) relative to a target cellular mRNA molecule. In embodiment (8) the agent is preferably suitable for sequence-specific gene silencing, preferably by antisense RNA or RNA interference mechanisms.

The method for the production of proteins or glycoproteins is preferably performed in cell culture cells or in fertilized chicken cells in accordance with standard techniques within the general knowledge of a person skilled in the art. The proteins or glycoproteins to be expressed are those incorporated into the ambisense construct as defined hereinbefore.

The methods according to embodiments (9) to (12), (14) and (15) of the invention include the administration of an effective amount to the mammal or the administration of a sufficient infective dose of the recombinant virus to the cell system that is used for ex vivo therapy or for in vitro investigations, whereby the amount and dose will be determined by a person skilled in the respective arts or knowledgeable of the desired treatments.

The agent of embodiment (14) of the invention is preferably utilized to infect, transfect or transduce patient-derived immune cells. The agent is suitable for treatment of cancer or chronic viral infections. For this purpose, patient derived immune cells, preferably dendritic cells, are *ex vivo* infected with recombinant influenza viruses expressing, e.g., tumor antigens or viral antigens. The transduced cells are then reintroduced into the patient.

The preferred method for immunotherapy of embodiment (14) of the invention is an autologous immunotherapy, wherein the cells which are *ex vivo* infected are patient-derived and the transduced cells are reintroduced into the patient. The diseases to be treated by this method include cancer and chronic viral infections. For details regarding such treatment see discussion of embodiment (13) above.

15

20

25

30

10

5

The method for inducing antibodies according to embodiment (15) of the invention is suitable for inducing antibodies to foreign proteins including glycoproteins, following the administration of protein or glycoprotein antigens as part of a recombinant influenza virus in an authentic conformation, whereby the virus is purified by gentle procedures based on hemagglutination, and the gene is expressed at high rates in the infected cells.

As influenza viruses have a wide host range, recombinant influenza viruses can be used to obtain strong immune responses in, and isolate antibodies from, a wide range of animals, including, but not limited to, fowl, pigs, horses, and mice. Further, influenza viruses adapted to the mouse can be used for the infection of mice by several routes including the intranasal route. This results in infection of the pharyngeal mucosal cells and results in an additional type of B cell response (e.g., as recognized in the ratio of IgG to IgA). Mice are of particular utility in the induction of immune responses in transgenic mice that have been

15

20

25

30

23

engineered to express human antibodies. As gentle procedures based on hemadsorption are used to purify influenza viruses, antibodies to antigens in native conformation can be isolated from the infected mammals.

The preset invention further illustrated by the following, non-limiting Example:

Example

Model tandem bicistronic expression constructs using reporter genes CAT and GFP.

Objective: Measurements of relative expression rates for CAT in proximal and distal position, with live observation of GFP fluorescence in alternate position during propagation of recombinant influenza viruses.

a) Construction of bicistronic expression plasmid DNAs:

Starting out with vector plasmid pHH10 (Hoffmann, Ph.D. Thesis, Univ. Giessen (1997)), i.e. an ampicillin resistant plasmid including in between a human rDNA promoter segment and a murine rDNA terminator segment precisely inserted cDNA sequence elements representing the 5' and 3' vRNA sequence of influenza rRNA segment 5, and finally a central multiple cloning site sequence as obtained from plasmid PBSK, both reporter genes have been inserted in a stepwise manner. After that, to the proximal reading frame, i.e. CAT in pHL3196, and GFP in pHL3224, has been added an upstream splice donor sequence element and a downstream splice acceptor element, both inserted as double-strand oligonucleotides, in between particular restriction cleavage sites available in the respective positions. The signal sequences used in that pair of plasmids indicated above have been derived from influenza vRNA segment 7, which is known for its partial splice reactions yielding both gene products, M1 and M2, simultaneously. By insertion of a non-transcribed DNA fragment (representing an internal segment of the influenza PB1 coding region) in a distal position relative to both reading frames, pHL3196 has been converted into pHL3235, and pHL3224 into pHL3236. For the resulting plasmid constructs see Figs 5-8 and SEQ ID NOs: 21-24.

10

15

20

25

30

b) Transfection of plasmid DNAs and isolation of recombinant influenza viruses:

Semi-confluent 293-T cells, a human renal cacinoma cell line carrying an artificially integrated tumor virus SV40 T-antigen gene, were DNA-transfected using lipofectamine: 5-10 μg of DNA mixed with 30 μ l Lipofectamine® (GIBCO/BRL) were added to 370 μ l of DMEM medium and were incubated with 5×10^6 to 10^7 cells, washed and maintained serumfree for 5 to 8 hours, before serum was added for another 12 to 15 hours. Finally influenza helper virus FPV_{Bratislava} was used for infection of the DNA-transfected cells. The supernatant containing a mixture of helper viruses and recombinant viruses was collected for further propagation after 8 to 12 hours of infection, while the sedimented cells were used for preparation of a cell lysate, fractions of which were inserted in the CAT assay procedure.

Viral propagation was achieved by infection of MDCK cells (Madin-Darby canine kidney cell line) again in semi-confluent state $(5x10^6 \text{ to } 10^7 \text{ cells})$ per plate), generally using 1ml of the previous supernatant for infection. Serial propagations were done in the same way, with preparation of cell lysates for CAT assays at the end of each step. Infected cells were also used for observation of GFP fluorescence.

c) CAT assay:

Bacterial chloramphenicol-acetyltransferase (CAT) is accumulated in eukaryotic cells without degradation and can be used for representative gene expression measurements. The substrate used here is fluorescent boron-dipyrromethane-chloramphenicol diflouride (FLASH CAT-KIT®; Stratagene). 50 μ l of cell lysate or reduced/diluted samples thereof were used for incubation with 7.5 μ l of fluorescent substrate and 10 μ l acetyl-CoA (4mM) co-substrate in 19 mM Tris/HCl, pH: 7.5 at 37°C for 3 hours. For extraction of reaction products 1ml of ethylacetate ins added, the

10

mixture is vortexed, and separated by centrifugation. After solvent evaporation and dissolution again in 20ml ethylacetate, the reaction products are separated on a silica thin-layer chramatography plate using chloroform/methanol 87:13% (vol.) and the results are documented by photography under UV light.

25

d) Results

CAT in proximal or in distal position of this pair of recombinant plasmids is expressed about equally (Fig.4), and the same is true for GFP (not shown). The expression rates are increasing during the initial steps of viral propagation and stay about constant afterwards during further steps of recombinant viral passages, different from expression rates in ambisense bicistronic constructs (pHL2899 and pHL2960) (Fig. 4B). Cotransfection of booster plasmids in the initial 293-T cells increase the yields of recombinant viruses within the progeny population, which are maintained during consecutive steps of propagation. Addition of 1000 nucleotides of untranslated vRNA sequence will not reduce the expression rates substantially (pHL3235 versus pHL3196, and pHL3236 versus pHL3224).

15

26 SEQUENCE LISTING

<110> ARTEMIS PHARMACEUTICALS GmbH

5 <120> Recombinant Influenza Viruses with Bicistronic vRNAs Coding for Two Genes in Tandem Arrangement

<130> 000746ep/JH/ml

10 <140>

<141>

<160> 24

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 12

<212> RNA

20 <213> Influenza A virus

<400> 1

ccugcuuuug cu

12

25

<210> 2

<211> 12

<212> RNA

<213> Influenza B virus

30

<400> 2

nnygcuucug cu

12

35 <210> 3

<211> 12

<212> RNA

<213> Influenza C virus

40 <400> 3

ccugcuucug cu

12

<210> 4

45 <211> 12

<212> RNA

<213> Artificial Sequence

<220>

50 <223> Description of Artificial Sequence: Modified influenza A 5'-sequence (pHL1104 and pHL1920)

	<400> 4 ccuguuucua cu	12
5	<210 > 5 <211 > 12 <212 > RNA <213 > Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: Modified influenza A 3'-sequence (pHL1948)	
15	<400> 5 ccugguicuc cu	12
20	<210> 6 <211> 13 <212> FNA <213> Influenza A virus	
25	<220> <223> Description of Artificial Sequence: Modified influenza A 3'-sequence (pHL1948)	
	<400> 6 aguagaaaca agg	13
30	<210> 7 <211> 13 <212> RNA <213> Influenza B virus	
35	<400> 7 aguagwaaca rnn	13
40	<210> 8 <211> 13 <212> RNA <213> Influenza C virus	
45	<400> 8 agcaguagca agr	13
50	<210> 9 <211> 13 <212> RNA <213> Artificial Sequence	

	<220>		
	<223>	Description of Artificial Sequence: Modified influenza A 5'-sequence (pHL1920)	
5	<400>		
3		aauca agg	13
	agaag	adda agg	13
	<210>		
10	<211>		
	<212>		
	<213>	Influenza A virus	
	<400>	10	
15		aaaca aggnnnuuuu u	21
	<210>		
20	<211><212>		
20		Artificial Sequence	
	(213)	tilloral bequence	
	<220>		
	<223>	Description of Artificial Sequence: Modified	
25		influenza A 5'-sequence (pHL1920)	
	<400>	11	
		aauca aggnnnuuuu u	21
30			
	<210>		
	<211><212>		
		Influenza B virus	•
35	12.20		
	<400>	12	
	aguag	waaca rnnnnuuuu u	21
40	<210>	13	
. •	<211>	— 	
	<212>	RNA	
	<213>	Artificial Sequence	
15	222		
45	<220>		
	<223>	Description of Artificial Sequence: Modified influenza C 5'-sequence	
		Intruenza e o Bequence	
	<400>	13	
50	aguag	uaaca agrguuuuu	19

	<210> 14	
	<211> 1.5	
	<212> RNA	
_	<213> Artificial Sequence	
5		
	<220>	
	<223> Description of Artificial Sequence: Modified	
	influenza A 3'-sequence (pHL1104 and pHL1920)	
10	<400> 1.4	
	nnnccuguuu cuacu	1 -
		15
	<210> 1.5	
15	<211> 1.5	
	<212> RNA	
	<213> Artificial Sequence	
	Tara in the second of the seco	
	<220>	
20		
20	<223> Description of Artificial Sequence: Modified	
	influenza A 3'-sequence (pHL1948)	
	<400> 1.5	
	nnnccugguu cuccu	15
25		15
20		
	<210> 1.6	
	<211> 15	
	<212> RNA	
30	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Modified	
	influenza B 3' sequence	
35		
	<400> 1.6	
	nnnnnyguuu cuacu	15
40	<210> 17	
	<211> 14	
,		
	<212> RNA	
	<213> Artificial Sequence	
45	<220>	
	<223> Description of Artificial Sequence: Modified	
	influenza C 3'-sequence	
	""" reductive	
	-400- 17	
50	<400> 17	
50	cccuguuuc uacu	14

```
<210> 18
    <211> 10
    <212> DNA
    <213> Influenza A virus
5
    <400> 18
                                                                        10
    aggtacgttc
10
    <210> 1.9
    <211> 32
    <212> DNA
    <213> Influenza A virus
15
    <400> 19
                                                                        32
    gctgaaaaat gatcttcttg aaaattgcag gc
    <210> 20
20
    <211> 3888
    <212> DNA
    <213> Artificial Sequence
    <220>
25
    <223> Description of Artificial Sequence: pHL1920
    <400> 20
    cccaaaaaaa aaaaaaaaaa aaaaaaaaaa agtccagagt ggccccgccg ttccgcgccg 60
    ggggggggg gggggggga cactttcgga catctggtcg acctccagca tcgggggaaa 120
30
    aaaaaaaaac aaagtttcgc ccggagtact ggtcgacctc cgaagttggg ggggagtaga 180
    aacagggtag ataatcactc actgagtgac atccacatcg cgagcgcgcg taatacgact 240
    cactataggg cgaattgggt accgggccc ccctcgaggt cgacggtatc gataagcttc 300
    gacgagattt tcaggagcta aggaagctaa aatggagaaa aaaatcactg gatataccac 360
     cgttgatata tcccaatggc atcgtaaaga acattttgag gcatttcagt cagttgctca 420
35
     atgtacctat aaccagaccg ttcagctgga tattacggcc tttttaaaga ccgtaaagaa 480
     aaataagcac aagttttatc cggcctttat tcacattctt gcccgcctga tgaatgctca 540
     tccggaattc cgtatggcaa tgaaagacgg tgagctggtg atatgggata gtgttcaccc 600
     ttgttacacc gttttccatg agcaaactga aacgttttca tcgctctgga gtgaatacca 660
     cgacgatttc cggcagtttc tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa 720
40
     cctggcctat ttccctaaag ggtttattga gaatatgttt ttcgtctcag ccaatccctg 780
     ggtgagtttc accagttttg atttaaacgt ggccaatatg gacaacttct tcgccccgt 840
     tttcaccatg ggcaaatatt atacgcaagg cgacaaggtg ctgatgccgc tggcgattca 900
     ggttcatcat gccgtttgtg atggcttcca tgtcggcaga atgcttaatg aattacaaca 960
     gtactgcgat gagtggcagg gcggggcgta atttttttaa ggcagttatt ggtgccctta 1020
45
     aacgcctggt gctacgcctg aataagtgat aataagcgga tgaatggcag aaattcgtcg 1080
     aagettgata tegaatteet geageeeggg ggateeacta gttetagage ggeegeeace 1140
     geggtggage tecagetttt gtteeettta gtgagggtta attgegegea ggeetageta 1200
     ggtaaagaaa aataccettg attettetaa taacceggeg geecaaaatg eegaetegga 1260
     gegaaagata taceteece ggggeeggga ggtegegtea cegaecaege cgeeggeeca 1320
50
     ggcgacgcgc gacacggaca cctgtcccca aaaacgccac catcgcagcc acacacggag 1380
     cgcccggggc cctctggtca accccaggac acacgcggga gcagcgccgg gccggggacg 1440
     cectecegge egecegtgee acaegeaggg ggeeggeeeg tgteteeaga gegggageeg 1500
     gaagcatttt eggeeggeee eteetaegae egggacaeae gagggacega aggeeggeea 1560
```



```
ggcgcga.cct ctcgggccgc acgcgcgctc agggagcgct ctccgactcc gcacggggac 1620
    tegecagaaa ggategtgae etgeattaat gaateagggg ataaegeagg aaagaacatg 1680
    tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 1740
    cataggetee geceectga egageateae aaaaategae geteaagtea gaggtggega 1800
5
    aaccegacag gactataaag ataccaggeg tttccccctg gaageteeet cgtgegetet 1860
    cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtq 1920
    gegettt.ctc atageteacg ctgtaggtat ctcagttegg tgtaggtegt tegetecaag 1980
    ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 2040
    cgtcttgagt ccaacceggt aagacacgac ttatcgccac tggcagcagc cactggtaac 2100
10
    aggattagca gagcgaggta tgtaggcggt gctacagagt tettgaagtg gtggcctaac 2160
    tacggct.aca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 2220
    ggaaaaaagag ttggtagete ttgateegge aaacaaacea eegetggtag eggtggtttt 2280
    tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 2340
    ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 2400
15
    agattat.caa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 2460
    atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 2520
    cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtqtaq 2580
    ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 2640
    ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 2700
20
    agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 2760
    agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 2820
    gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 2880 _
    cgagttacat gatcccccat gttgtgcaaa aaagcggtta getccttcgg tcctccgatc 2940
    gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 3000
25
    tetettaetg teatgeeate egtaagatge ttttetgtga etggtgagta eteaaceaag 3060
    tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aacacgggat 3120
    aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 3180
    cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 3240
    cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 3300
30
    aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 3360
    ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 3420
    tttgaatgta tttagaaaaa taaacaaaag agtttgtaga aacgcaaaaa ggccatccgt 3480
    caggatggcc ttctgcttaa tttgatgcct ggcagtttat ggcgggcgtc ctgcccgcca 3540
    ccctccgggc cgttgcttcg caacgttcaa atccgctccc ggcggatttg tcctactcag 3600
35
    gagagegtte acegacaaac aacagataaa acgaaaggee cagtettteg actgageett 3660
    tcgttttatt tgatgcctgg cagttcccta ctctcgcatg gggagacccc acactaccat 3720
     eggegetaeg gegttteact tetgagtteg geatggggte aggtgggaee acegegetae 3780
     tgccgccagg caaattctgt tttatcagac cgcttctgcg ttctgattta atctgtatca 3840
    ggctgaaaat cttctctcat ccgccaaaac agaagctagc ggccgatc
                                                                       3888
40
     <210> 21
     <211> 4500
     <212> DNA
45
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: pHL3196
50
     <400> 21
     agtagaaaca gggtagataa tcactcactg agtgacatcc acatcgcgag cgcgaaggta 60
     cgttctcgag cgcgcgtaat acgactcact atagggcgaa ttgggtacgt tccatcatgg 120
     agaaaaaaat cactggatat accaccgttg atatatccca atggcatcgt aaagaacatt 180
```

				32			
	ttgaggcatt	tcagtcagtt	gctcaatgta	cctataacca	gaccgttcag	ctggatatta	240
						tttattcaca	
						gacggtgagc	
						actgaaacgt	
5						atatattcgc	
						attgagaata	
						aacgtggcca	
						caaggcgaca	-
						ttccatgtcg	
10						gcgcgttaac	
10						ccgggccccc	
	-					tggagttgtc	
						cagtggagag	
						tactggaaaa	
15						atgcttttca	
13						cgaaggttat	
						tgctgaagtc	
	_					ttttaaagaa	
20						tgtatacatc caacatcgag	
20							
						cgatggccct	
						agatcccaac	
						tacacatggc	
25						atggtctaga	
23						acceggegge	
						tcgcgtcacc	
						aacgccacca	
						acgcgggagc ccggcccgtg	
30						ggacacacga	
30						ggagcgctct	
						atcaggggat	
						taaaaaggcc aaatcgacgc	
35	_					tcccctgga	
22						gtccgccttt	
						cagttcggtg	
						cgaccgctgc	
						atcgccactg	
40						tacagagttc	
10						ctgcgctctg	
						acaaaccacc	
						aaaaggatct	
						aaactcacgt	
45						tttaaattaa	
45						cagttaccaa	
						catagttgcc	
						ccccagtgct	
50						aaaccagcca	
50						ccagtctatt	
						caacgttgtt attcagctcc	
						agcggttagc	
	330000caac	gaccaaggeg	agecacacya	coccoacyc	cycycuaada	~5~55ccage	2200


```
33
    teetteggte etcegategt tgteagaagt aagttggeeg eagtgttate acteatggtt 3420
    atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact 3480
    ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc 3540
    ccggcgt:caa cacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt 3600
    ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg 3660
5
    atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct 3720
    gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa 3780
    tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt 3840
    ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaaagag tttgtagaaa 3900
    cgcaaaaagg ccatccgtca ggatggcctt ctgcttaatt tgatgcctgg cagtttatgg 3960
10
    egggegt.cet gecegecace eteegggeeg ttgettegea aegtteaaat eegeteeegg 4020
    cggatttgtc ctactcagga gagcgttcac cgacaaacaa cagataaaac gaaaggccca 4080
    gtetttegae tgageettte gttttatttg atgeetggea gtteeetaet etegeatggg 4140
    gagaccccac actaccateg gegetaegge gttteaette tgagttegge atggggteag 4200
    gtgggaccac cgcgctactg ccgccaggca aattctgttt tatcagaccg cttctgcgtt 4260
15
    ctgattt.aat ctgtatcagg ctgaaaatct tctctcatcc gccaaaacag aagctagcgg 4320
    ccgatcccca aaaaaaaaaa aaaaaaaaa aaaaagagtc cagagtggcc ccgccgttcc 4380
    gcgccggggg ggggggggggacact ttcggacatc tggtcgacct ccagcatcgg 4440
    gggaaaaaaa aaaaacaaag tttcgcccgg agtactggtc gacctccgaa gttggggggg 4500
20
     <210> 22
     <211> 4721
     <212> DNA
     <213> Artificial Sequence
25
     <220>
     <223> Description of Artificial Sequence: pHL3224
30
     <400> 22
     atctagacca tggagcttag tgatggtgat ggtgatggga tcccttgtat agttcatcca 60
     tgccatgtgt aatcccagca gctgttacaa actcaagaag gaccatgtgg tctctctttt 120
     cgttgggatc tttcgaaagg gcagattgtg tggacaggta atggttgtct ggtaaaagga 180
     cagggcdatc gccaattggg gtgttctgct ggtagtggtc ggccagctgc acgccgccgt 240
     cctcgatgtt gtggcgggtc ttgaagttgg ccttgattcc gttcttctgc ttgtcagcca 300
35
     tgatgtatac attgtgtgag ttatagttgt attccaattt gtgtccaaga atgtttccat 360
     cttctttaaa atcaatacct tttaactcga ttctattaac aagggtatca ccttcaaact 420
     tgacttcagc acgtgtcttg tagttcccgt catctttgaa aaatatagtt ctttcctgta 480
     cataaccttc gggcatggca ctcttgaaaa agtcatgctg tttcatatga tctgggtatc 540
     ttgaaaagca ttgaacacca taagtgaaag tagtgacaag tgttggccat ggaacaggta 600
 40
     gttttccagt agtgcaaata aatttaaggg taagttttcc gtatgttgca tcaccttcac 660
     cetetecaet gacagaaaat ttgtgcccat taacatcacc atctaattca acaagaattg 720
     ggacaactcc agtgaaaagt tetteteett taeteatggt ggaeteette gegagtegag 780
     ggggggcccg gtacacgtac gcgctcgaga acgtaccttc gcgctcgcga tgtggatgtc 840
     actcagtgag tgattatcta ccctgtttct actcccccc aacttcggag gtcgaccagt 900
 45
     actecgggeg aaactttgtt ttttttttt ceeeegatge tggaggtega eeagatgtee 960
      gaaagtgtee eeceeecee eeceeeegg egeggaaegg eggggeeaet etggaetett 1020
      ttttttttt tttttttt ttttggggat cggccgctag cttctgtttt ggcggatgag 1080
      agaagatttt cagcctgata cagattaaat cagaacgcag aagcggtctg ataaaacaga 1140
      atttgcctgg cggcagtagc gcggtggtcc cacctgaccc catgccgaac tcagaagtga 1200
 50
      aacgccgtag cgccgatggt agtgtggggt ctccccatgc gagagtaggg aactgccagg 1260
```

catcaaataa aacgaaaggc tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg 1320 tcggtgaacg ctctcctgag taggacaaat ccgccgggag cggatttgaa cgttgcgaag 1380

					ctgccaggca		
					aaactctttt		
					ccctgataaa		
	atattgaaaa	aggaagagta	tgagtattca	acatttccgt	gtcgccctta	ttcccttttt	1620
5	tgcggcattt	tgccttcctg	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	1680
					gatctcaaca		
					agcactttta		
					caactcggtc		
					gaaaagcatc		
10					agtgataaca		
					gcttttttgc		
					aatgaagcca		
					ttgcgcaaac		
					tggatggagg		
15					tttattgctg	-	
					gggccagatg		
					atggatgaac		
					ctgtcagacc		
					aaaaggatct		
20					ttttcgttcc		
20					ttttttctgc		
					tgtttgccgg		
					cagataccaa		
25					gtagcaccgc		
23					gataagtcgt		
					tcgggctgaa		
					ctgagatacc		
					gacaggtatc		
30					ggaaacgcct		
30					tttttgtgat		
					ttacggttcc		
					gattcattaa		
					tccctgagcg		
25					tcccggtcgt		
35					cggccccctg		
					cgtgtgtcct		
					gtttttgggg		
					cgacctcccg		
40					ggttattagt		
40					ctcactaaag		
					gatcccccgg		
					ttattatcac		
					aaaattacgc		
4-					cgacatggaa		
45					tgtcgccttg		
					tggccacgtt		
					tattctcaat		
					gcgaatatat		
					acgtttcagt		
50					gctcaccgtc		
					tgtgaataaa		
					taatatccag		
					aatgttcttt		


```
tgggatatat caacggtggt atatccagtg atttttttct ccattttagc ttccttagct 4620
    cctgaaaatc tcgtcgaagc ttatcgatac cgtcgacctc gagggggggc ccggtacggc 4680
    ctgcaaattt tcaagaagat catttttcag ctgatctcgt t
                                                                       4721
5
    <210> 23
    <211> 5517
    <212> DNA
    <213> Artificial Sequence
10
    <220>
    <223> Description of Artificial Sequence: pHL3235
    <400> 23
15
    agtagaaaca gggtagataa tcactcactg agtgacatcc acatcgcgag cgcgaaggta 60
    cgttctcgag cgcgcgtaat acgactcact atagggcgaa ttgggtacgt tccatcatgg 120
    agaaaaaaaat cactggatat accaccgttg atatatccca atggcatcgt aaagaacatt 180
    ttgaggcatt tcagtcagtt gctcaatgta cctataacca gaccgttcag ctggatatta 240
    cggccttttt aaagaccgta aagaaaaata agcacaagtt ttatccggcc tttattcaca 300
20
    ttcttgcccg cctgatgaat gctcatccgg aattccgtat ggcaatgaaa gacggtgagc 360
    tggtgatatg ggatagtgtt caccettgtt acacegtttt ccatgagcaa actgaaacgt 420
    tttcatcgct ctggagtgaa taccacgacg atttccggca gtttctacac atatattcgc 480
    aagatgtggc gtgttacggt gaaaacctgg cctatttccc taaagggttt attgagaata 540
    tgttttt:cgt ctcagccaat ccctgggtga gtttcaccag ttttgattta aacgtggcca 600
25
    atatggacaa cttcttcgcc cccgttttca ccatgggcaa atattatacg caaggcgaca 660
    aggtgetgat geogetggeg atteaggtte ateatgeegt etgtgatgge tteeatgteg 720
    gcagaatgct taatgaatta caacagtact gcgatgagtg gcagggcggg gcgcgttaac 780
    qaqatcaqct qaaaaatgat cttcttgaaa atttgcaggc cgtacgtgta ccgggccccc 840
    cctcgactcg cgaaggagtc caccatgagt aaaggagaag aacttttcac tggagttgtc 900
30
    ccaattcttg ttgaattaga tggtgatgtt aatgggcaca aattttctgt cagtggagag 960
    ggtgaaggtg atgcaacata cggaaaactt acccttaaat ttatttgcac tactggaaaa 1020
     ctacctgttc catggccaac acttgtcact actttcactt atggtgttca atgcttttca 1080
     agatacccag atcatatgaa acagcatgac tttttcaaga gtgccatgcc cgaaggttat 1140
    gtacaggaaa gaactatatt tttcaaagat gacgggaact acaagacacg tgctgaagtc 1200
35
     aagtttgaag gtgataccct tgttaataga atcgagttaa aaggtattga ttttaaagaa 1260
     gatggaaaca ttcttggaca caaattggaa tacaactata actcacacaa tgtatacatc 1320
     atggctgaca agcagaagaa cggaatcaag gccaacttca agacccgcca caacatcgag 1380
     gacggcggcg tgcagctggc cgaccactac cagcagaaca ccccaattgg cgatggccct 1440
     gtccttttac cagacaacca ttacctgtcc acacaatctg ccctttcgaa agatcccaac 1500
     gaaaagagag accacatggt ccttcttgag tttgtaacag ctgctgggat tacacatggc 1560
40
     atggatgaac tatacaaggg atcttcatga tctcagcaaa ctcttccttc ttaatccttc 1620
     cagactegaa gtcaattegt geateaatee gggeeetaga caecatggee tecaccatae 1680
     tggaaattcc aactggtctt ctgtatgagc tgctagggaa gaatttctcg aataggttgc 1740
     aacacttctg gtacatttgt tcatcctcaa ggattcccct ttgactcgta ttgagaatgg 1800
45
     aacggtttct cttagggatc caagagtgtg tagttgccac agcatcatat tccatgcttt 1860
     tggctggacc atgggctggc attaccgcag cattgtttac agattcaatt tccttatgac 1920
     tgacaaacgg gttcatggga ttacaaagtc ttccctgata gtcttcatcc attagttccc 1980
     atttcaggca aacttccggg atgtggagat tccgaatgtt gtacaggttt ggtccgccat 2040
     ctgaaaccaa cagtcctgcc tttgagcggg tctgctccca cagcttcttt agctcgaatg 2100
50
     acctcctcgt ttggatttgt gtgtctcccc tgtgacaccg gtatgtatat ctgtagtcct 2160
     tgatgaataa ttggagagcc atttgggctg ttgccggtcc aagatcattg tttatcatgt 2220
     tattctttat cactgttact ccaatgctca tatcagccga ttcattaatt cctgatactc 2280
     caaagctggg caactccata ctaaaattgg ctacaaatcc atagcggtag aaaaagcttg 2340
```


-	-
ા	ь

	tgaattcgaa	tgttcctgtc	ctatttatat	aggacttttt	cttgctcata	ttgatcccaa	2400
	ctagcttgca	ggttctgtag	aatctatcca	ctcccgcttg	tattccctca	tgatttggtg	2460
					atcccaccag		
					caacactgta		
5					gccgtctatt		
					actaataacc		
					cgggaggtcg		
					ccccaaaaac		
					aggacacacg		
10					cagggggccg		
					acgaccggga		
					cgctcaggga		
					ttaatgaatc	_	
					ggaaccgtaa		
15					atcacaaaaa		
13					aggcgtttcc		
					gatacctgtc		
					ggtatctcag		
					ttcagcccga		
20					acgacttatc		
20					gcggtgctac	· -	
					ttggtatctg		
					ccggcaaaca		
					gcagaaaaaa		
25					ggaacgaaaa		
					agateetttt		
					ggtctgacag		
					gttcatccat		
					catctggccc		
30					cagcaataaa		
					cctccatcca		
					gtttgcgcaa		
					tggcttcatt		
	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	4380
35					tgttatcact		
					gatgcttttc		
					gaccgagttg		
					taaaagtgct		
					tgttgagatc		
40					ctttcaccag		
					taagggcgac		
	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	4860
					aaaagagttt		
					tgcctggcag		
45					ttcaaatccg		
					ataaaacgaa		
	tttcgactga	gcctttcgtt	ttatttgatg	cctggcagtt	ccctactctc	gcatggggag	5160
					gttcggcatg	_	
					cagaccgctt		
50					aaaacagaag		
					agtggccccg		
					tcgacctcca		
					ctccgaagtt		5517

<210> 24

```
37
```

```
<211> 5699
5
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence: pHL3236
10
    <400> 24
    cctctcataa tagacggcac agcctcatta agcccgggaa tgatgatggg tatgttcaac 60
    atgctgagta cagtgttggg agtctcaatc ctgaatcttg ggcaaaagag atacaccaaa 120
    accacatact ggtgggatgg acttcagtcc tctgatgatt ttgctctcat cgtgaatgca 180
    ccaaatcatg agggaataca agcgggagtg gatagattct acagaacctg caagctagtt 240
15
    gggatcaata tgagcaagaa aaagtcctat ataaatagga caggaacatt cgaattcaca 300
    agetttttet accgetatgg atttgtagee aattttagta tggagttgee cagetttgga 360
    gtatcaggaa ttaatgaatc ggctgatatg agcattggag taacagtgat aaagaataac 420
    atgataaaca atgatettgg accggcaaca gcccaaatgg ctctccaatt attcatcaag 480
    gactacagat atacataccg gtgtcacagg ggagacacac aaatccaaac gaggaggtca 540
20
    ttcgagctaa agaagctgtg ggagcagacc cgctcaaagg caggactgtt ggtttcagat 600
    ggcggaccaa acctgtacaa cattcggaat ctccacatcc cggaagtttg cctgaaatgg 660
    gaactaatgg atgaagacta tcagggaaga ctttgtaatc ccatgaaccc gtttgtcagt 720
     cataaggaaa ttgaatctgt aaacaatgct gcggtaatgc cagcccatgg tccagccaaa 780
     agcatggaat atgatgctgt ggcaactaca cactcttgga tccctaagag aaaccgttcc 840
25
     attotoaata ogagtoaaag gggaatoott gaggatgaac aaatgtacca gaagtgttgc 900
     aacctattcg agaaattctt ccctagcagc tcatacagaa gaccagttgg aatttccagt 960
     atggtggagg ccatggtgtc tagggcccgg attgatgcac gaattgactt cgagtctgga 1020
     aggattaaga aggaagagtt tgctgagatc atgaagatcc cccgggctgc aggaattcga 1080
     tatcaagett cgacgaattt ctgccattca tccgcttatt atcacttatt caggcgtage 1140
30
     accaggogtt taagggcacc aataactgcc ttaaaaaaat tacgccccgc cctgccactc 1200
     atcgcagtac tgttgtaatt cattaagcat tctgccgaca tggaagccat cacaaacggc 1260
     atgatgaacc tgaatcgcca gcggcatcag caccttgtcg ccttgcgtat aatatttgcc 1320
     catggtgaaa acgggggcga agaagttgtc catattggcc acgtttaaat caaaactggt 1380
     gaaactcacc cagggattgg ctgagacgaa aaacatattc tcaataaacc ctttagggaa 1440
35
     ataggedagg ttttcaccgt aacacgecac atcttgcgaa tatatgtgta gaaactgccg 1500
     gaaatcgtcg tggtattcac tccagagcga tgaaaacgtt tcagtttgct catggaaaac 1560
     ggtgtaacaa gggtgaacac tatcccatat caccagctca ccgtctttca ttgccatacg 1620
     gaattccgga tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt 1680
     gtgcttattt ttctttacgg tctttaaaaa ggccgtaata tccagctgaa cggtctggtt 1740
40
     ataggtacat tgagcaactg actgaaatgc ctcaaaatgt tctttacgat gccattggga 1800
     tatatcaacg gtggtatatc cagtgatttt tttctccatt ttagcttcct tagctcctga 1860
     aaatctcgtc gaagcttatc gataccgtcg acctcgaggg ggggcccggt acggcctgca 1920
     aattttcaag aagatcattt ttcagctgat ctcgttatct agaccatgga gcttagtgat 1980
     ggtgatggtg atgggatccc ttgtatagtt catccatgcc atgtgtaatc ccagcagctg 2040
 45
     ttacaaactc aagaaggacc atgtggtctc tcttttcgtt gggatctttc gaaagggcag 2100
     attgtgtgga caggtaatgg ttgtctggta aaaggacagg gccatcgcca attggggtgt 2160
     tctgctggta gtggtcggcc agctgcacgc cgccgtcctc gatgttgtgg cgggtcttga 2220
     agttggcctt gattccgttc ttctgcttgt cagccatgat gtatacattg tgtgagttat 2280
     agttgtattc caatttgtgt ccaagaatgt ttccatcttc tttaaaatca atacctttta 2340
 50
     actcgattct attaacaagg gtatcacctt caaacttgac ttcagcacgt gtcttgtagt 2400
      tcccgtcatc tttgaaaaat atagttcttt cctgtacata accttcgggc atggcactct 2460
      tgaaaaagte atgetgttte atatgatetg ggtatettga aaageattga acaccataag 2520
```

	tgaaagtagt	gacaagtgtt	ggccatggaa	caggtagttt	tccagtagtg	caaataaatt	2580
	taagggtaag	ttttccgtat	gttgcatcac	cttcaccctc	tccactgaca	gaaaatttgt	2640
	gcccattaac	atcaccatct	aattcaacaa	gaattgggac	aactccagtg	aaaagttctt	2700
	ctcctttact	catggtggac	tccttcgcga	gtcgaggggg	ggcccggtac	acgtacgcgc	2760
5	tcgagaacgt	accttcgcgc	tcgcgatgtg	gatgtcactc	agtgagtgat	tatctaccct	2820
	gtttctactc	cccccaact	tcggaggtcg	accagtactc	cgggcgaaac	tttgttttt	2880
		cgatgctgga					
		gaacggcggg					
		cgctagcttc					
10		acgcagaagc					
		tgaccccatg					
		ccatgcgaga					
		gggcctttcg					
		cgggagcgga					
15		cataaactgc					
15		ttctacaaac					
		caataaccct					
		ttccgtgtcg					
		gaaacgctgg					
20		gaactggatc					
20		atgatgagca					
		caagagcaac					
		gtcacagaaa					
25		accatgagtg					
23		ctaaccgctt					
		gagetgaatg					
		acaacgttgc					
		atagactgga					
30		ggctggttta					
30		gcactggggc					
		gcaactatgg					
		tggtaactgt					
		taatttaaaa					
35		cgtgagtttt					
33		gatccttttt					
		gtggtttgtt					
		agagcgcaga					
		aactctgtag					
40		agtggcgata					
40		cagcggtcgg					
		accgaactga					
		aaggcggaca					
		ccagggggaa					
15		cgtcgatttt					
45		gcctttttac					
		tcccctgatt					
		gagcgctccc					
		cgtgtgtccc					
50		acgggccggc					
50		ctcccgcgtg					
		ggtggcgttt					
		gtgacgcgac					
	gcattttggg	ccgccgggtt	attagtagaa	acaagggtat	ttttctttac	ctagctagg	5699

10

15

25

39

70 **20.** Juli 2000

EPO - Munich

Claims

- 1. A recombinant influenza virus for high-yield expression of incorporated foreign gene(s), which is genetically stable in the absence of any helper virus and which comprises at least one viral RNA segment being a bicistronic RNA molecule coding for two genes in tandem arrangement (tandem RNA segment), in said tandem RNA segment one of the standard viral genes being in covalent junction with a foreign, recombinant gene and said tandem RNA segment having an upstream splice donor and a downstream splice acceptor signal surrounding the proximal coding region.
- 2. The recombinant influenza virus of claim 1, wherein the tandem RNA segment contains one of the standard viral genes in distal mRNA position behind a foreign, recombinant gene in proximal position, or vice versa, both in antisense orientation with regard to the viral RNA as present within the virus.
- 3. The recombinant influenza virus of claim 1 or 2, wherein at least one of the regular viral RNA segments is replaced by a tandem RNA segment, preferably the replaced regular viral RNA segment is selected from the neuraminidase segment, hemaglutinin segment and NS segment.
 - 4. The recombinant influenza virus of claims 1 to 3, wherein the splice donor and splice acceptor signals are selected from sequences as present in influenza WSN segment 7 and 8 or other partially effective splice reactin substrates.
- 5. The recombinant influenza virus of claim 4, wherein the splice donor and splice acceptor signals are selected from sequences as present in influenza WSN segment 7.

- 6. The recombinant influenza virus according to claims 1 to 5, wherein one or more of the regular viral RNA segments, differing from said at least one tandem RNA segment, comprises a vRNA encoding a foreign gene which may or may not be in covalent connection to one of the viral genes, and preferably one or more of the regular viral RNA segments has (have) been deleted and replaced by a tandem vRNA encoding in addition a foreign gene.
- 7. The recombinant influenza virus according to claims 1 to 6, in which the terminal viral RNA sequences of one or more of the regular segments and/or of the at least one tandem RNA segment, which are active as the promoter signal, have been modified by nucleotide substitutions in up to five positions, resulting in improved transcription rates of both the vRNA promoter as well as the cRNA promoter as present in the complementary sequence.
 - 8. The recombinant influenza virus of claim 7, wherein the 12 nucleotide conserved influenza 3' terminal sequence has been modified by replacement of one to three nucleotides occurring in said sequence at positions 3, 5 and 8 relative to the 3' end by other nucleotides, and/or wherein the 13 nucleotide conserved influenza 5' terminal sequence has been modified by replacement of one or two nucleotides occurring in said sequence at positions 3 and 8 by other nucleotides.
 - 9. The recombinant influenza virus of claim 8, wherein the replacements in the 3' terminal nucleotide sequence comprises the modifications G3A and C8U.
 - 10. The recombinant influenza virus of claim 9, wherein the replacements in the 3' terminal nucleotide sequence comprises the modifications G3A, U5C and C8U, or G3C, U5C and C8G.

10

15

20

25

11. The recombinant influenza virus of claim 10, which comprises a 3' terminal nucleotide sequence of (5')-CCUGUUUCUACU-3'.

- 12. The rcombinant influenza virus according to claims 7 to 12, wherein the 5' terminal nucleotide sequence comprises the modifications USA and A8U resulting in a 5'-terminal sequence of 5'-AGAAGAAUCAAGG.
 - 13. The recombinant influenza virus according to claims 1 to 12, which is a recombinant influenza A virus.
- 14. The recombinant influenza virus according to claims 1 to 13, in which the foreign gene(s) in the tandem RNA segment code for proteins and/or glycoproteins which are secreted from cells infected with the recombinant virus.
 - 15. The recombinant influenza virus according to claims 1 to 13, in which the foreign gene(s) in the tandem RNA segment code for proteins or artificial polypeptides designed to support an efficient presentation of inherent epitopes at the surface of infected cells, for stimulation of a B cell and/or T cell response.
 - 16. The recombinant influenza virus according to claims 1 to 13, in which the foreign gene(s) in the tandem RNA segment is a nucleotide sequence causing viral attenuation.
 - 17. The recombinant influenza virus of claim 16, wherein the foreign gene is coding for part of or for the entire viral neuraminidase gene in antisense orientation.
- 30 18. The recombinant influenza virus of claim 17, wherein the neraminidase gene in antisense orientation is attached to the hemaglutinin vRNA

10

15

segment, and optionally another gene or reporter gene is encoded in a second tandem vRNA, preferably in conjunction with NS2.

- 19.A method for the production of recombinant influenza viruses as defined in claims 1 to 18 comprising
- (a) RNA polymerase I synthesis of recombinant vRNAs *in vivo*, in antisense or in sense tandem design,
- (b) followed by infection with an influenza carrier strain constructed to include flanking ribozyme target sequences in the corresponding viral RNA segment, and
- (c) thereafter selective vRNA inactivation through ribozyme cleavage.
- 20.A pharmaceutical composition comprising a recombinant influenza virus according to claims 1 to 18, preferably a recombinant influenza virus of claims 16 to 18.
- 21. Use of a recombinant influenza virus according to claims 1 to 18, preferably a recombinant influenza virus of claims 16 to 18, for preparing a medicament for vaccination purposes.

20

- 22. The use according to claim 21, wherein the medicament
- (a) is suitable against influenza and/or against other infections;
- (b) is present in form of inactivated preparations; and/or
- (c) is present in form of live recombinant viruses.

- 23. Use of a recombinant influenza virus according to claims 1 to 18 for preparing agents for somatic gene therapy.
- 24. Use of a recombinant influenza virus according to claims 1 to 18 for preparing agents, for transfer and expression of foreign genes into cells infected by such viruses.

25. Use of a recombinant influenza virus according to claims 1 to 18 for preparing agents for transfer and expression of RNA molecules into cells infected by such viruses.

43

5 26. The use of claim 24, wherein the RNA molecules to be expressed are antisense sequences or double-strand sequences relative to the target cell cellular mRNA molcules, and/or the agent is suitable for sequence-specific gene silencing, preferably by antisense RNA or RNA interference mechanisms.

10

- 27. The use according to claims 23 to 26, wherein the agents are applicable in *ex vivo* and *in vivo* application schemes.
- 28. A method for the production of proteins or glycoproteins which comprises utilizing a recombinant influenza virus according to claims 1 to 19 as expression vector.
 - 29. The method of claim 28, wherein the production is performed in cell culture cells or in fertilized chicken eggs.

20

30. A method for preventing and/or treating influenza which comprises administering an effective amount of a recombinant influenza virus according to claims 1 to 18, preferably of a recombinant influenza virus according to claims 16 to 18, to the mammal to be treated.

- 31. A method for somatic gene therapy, which method comprises subjecting the organism to be treated with a recombinant influenza virus according to claims 1 to 18.
- 30 32. A method for transfer and expression of foreign genes into cells, and for transfer and expression of RNA molecules into cells, which method

comprises infecting the cells with a recombinant influenza virus according to claims 1 to 18.

- 33. Use of a recombinant influenza virus according to claims 1 to 18 for preparing agents for immunotherapy, preferably for autologous immunotherapy.
 - 34. A method for an immunotherapy which comprises *ex vivo* infection of immune cells, preferably dentritic cells, with a recombinant influenza virus according to claims 1 to 18, and introduction of the transduced cells into the patient.
 - 35. A method for the induction of antibodies which comprises utilizing a recombinant influenza virus according to claims 1 to 18 as an immunogen.

EPO - Munich 20. Juli 2000

Abstract

The invention relates to recombinant influenza viruses for high-yield expression of incorporated foreign gene(s), which are genetically stable in the absence of any helper virus and which comprise at least one viral RNA segment being a tandem bicistronic RNA molecule coding for two genes in tandem, in said tandem bicistronic RNA molecule one of the standard viral genes being in covalent junction with a foreign, recombinant gene and having an upstream splice donor and a downstream splice acceptor signal surrounding the proximal coding region.

The invention further provides a method for obtaining attenuated viruses which resist reassortment dependent progeny production in case of chance superinfections by wild-type influenza viruses; a method for the production of said recombinant influenza viruses; pharmaceutical compositions comprising said recombinant influenza viruses; and the use of said recombinant influenza viruses for preparing medicaments for vaccination purposes.

	n , ,	
•		
•		
		;
		1
		9
		•
		•
		- 1
		:
		1
		1
		1
		;
		4
		•
]
		3
		4
		1
•		1
		1
		1
		1
		1
		1
		1
		T.
		1
		1
		4
		1
		1
		- 1
		1
		4
		1
		1
		1
·		
	•	* 1
		4

FIG. 1

bp-variant position	G-C	A-U	C-G	U-A
2 - 9	pl (1.2024	pHI.1921	pHL2003	pH1.2004
	100%	41%	< 3%	< 3%
3-8	pl (1.2002	plff.1920	pHI.1148	pHL2024
	30%	121%	39%	100%
2 - 9	pHI.1945	pl (1.1946	pH1.2024	pHL1923
	11%	30%	100%	28%
3-8	рН1.2428	pF(1,2024	pH.1948	pHL1922
	6%	100%	33%	97%

FIG. 2

FIG. 3

FIG. 4

A

B

FIG. 5

FIG. 6

FIG. 7

FIG. 8

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.