PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 09

MAT1106 — Introducción al Cálculo Fecha: 2020-09-29

Problema 1:

Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadero demuestre, en caso contrario de contraejemplo.

- (a) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son acotadas, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es acotada.
- (b) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son acotadas, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es acotada.
- (c) Si $\{x_n\}_{n\in\mathbb{N}}$ es acotada y $x_n\neq 0$ para todo n, entonces $\{(\frac{1}{x})_n\}_{n\in\mathbb{N}}$ es acotada.

Solución problema 1:

- (a) V
- (b) V
- (c) F $x_n = \frac{(-1)^n}{n}$

Problema 2:

Demuestre que $x_n = \sqrt{n}$ no está acotada.

Solución problema 2: Si es acotada se tiene que $x_n^2 = n$ es acotada por el problema 1 lo que es una contradicción.

Problema 3:

Demuestre que las siguientes propiedades son equivalentes:

- (a) Para todo $x \in \mathbb{R}$, existe un $n \in \mathbb{N}$ tal que x < n.
- (b) Para todo $\varepsilon > 0$ existe, un $n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$.
- (c) Para todos $\alpha, \varepsilon \in \mathbb{R}$ con $\varepsilon > 0$, existe un $n \in \mathbb{N}$ tal que $\alpha < n\varepsilon$.

Solución problema 3:

Problema 4:

Considere los intervalos de la forma $J_n = [3, 3 + \frac{1}{n}]$ con $n \in \mathbb{N}$. Use la pregunta anterior para demostrar que $\bigcap_{n \in \mathbb{N}} J_n = \{3\}$.

Solución problema 4: Sea $S = \bigcap_{n \in \mathbb{N}} J_n$, si existe $a \in S$ tal que $a \neq 3$, se tiene que a > 3, por lo que $\varepsilon = a - 3$ nos da que existe $n \in \mathbb{N}$ tal que $3 + \frac{1}{n} < 3 + \varepsilon = 3 + a - 3 = a$, lo que es una contradicción.

Problema 5:

Sean $\alpha, \beta \in \mathbb{R}$ tal que $\beta > 0$. Dado $x_0 = a$ tal que $\alpha + \beta \cdot a \ge 0$, se define recursivamente $x_{n+1} = \sqrt{\alpha + \beta x_n}$. Demuestre que es una sucesión monótona y acotada.

Solución problema 5: Inducción nos da monotonía. Si es decreciente es trivialmente acotada. Si es creciente, $x_{n+1} \le \frac{\alpha}{x_n} + \beta \le \frac{\alpha}{x_1} + \beta$.