Al-Powered 6G Beam Management Demo

Edmund Gunn Jr.

ECE 6023

Final Project

NYU Tandon School of Engineering

Introduction

- 6G beam management challenge
 - Exhaustive sweeping too slow
 - ML can predict beams from partial CSI

Carrier Frequency Selection

- 28 GHz practicality vs. 100 GHz potential
 - Debated 100 GHz for THz potential
 - Chose 28 GHz for built-in profiles
 - 100 GHz exploration for future work

DFT Codebook & Array Setup

- Arrays & Codebook
 - BS: 4×4 URA (16 antennas)
 - UE: 4×2 URA (8 antennas)
 - 64 beams from 8×8 az/el grid ±60°

Dataset Generation

- 10,000 i.i.d. Gaussian CSI samples
 - Flatten to 256-d feature vectors
 - Label by exhaustive beam sweep

MLP Architecture

- Two hidden layers
 - 128 units each, ReLU
 - Softmax output for 64 classes

Training Results

- Test Accuracy: 2.07%
 - Training up to ~70% (overfit)
 - Validation ~2% (chance)

Glossary

Key Terms

- URA: Uniform Rectangular Array
- Beamforming: Directing signal energy with antenna arrays
- DFT Codebook: Predefined set of beamforming vectors using Discrete Fourier Transform
- CSI: Channel State Information: complex channel matrix measurements
- MLP: Multi-Layer Perceptron: a feedforward neural network
- ReLU: Rectified Linear Unit activation function
- Adam: Adaptive Moment Estimation optimizer
- Confusion Matrix: Table showing true vs. predicted classes

Conclusion

- Summary & Next Steps
 - Baseline set at chance level
 - Framework ready for enhancements