SEQUENCE LISTING

<110>	AMGEN INC. Aldrich, Teri Shen, Wenyan Jacobsen, Frederick W. Morris, Arvia E. (Allen, Martin J.			
<120>	Monkey Immunoglobulin Sequences			
<130>	A-951 (WO)			
<140> <141>	to be assigned 2004-11-04			
<150> <151>	US 60/517,970 2003-11-07			
<160>	86			
<170>	PatentIn version 3.2			
<210> <211> <212> <213>	1 999 DNA Macaca fascicularis			
<400>	1 acca agggcccatc ggtcttcccc ctggcgccct co	ctccaggag	cacctccgag	60
				120
	gegg ceetgggetg cetggteaag gaetaettee et			180
	tcag gctccctgac cagcggcgtg cacaccttcc co			
	tact ccctcagcag cgtggtgacc gtgccctcca go			240
tacgtc	tgca acgtaaacca caagcccagc aacaccaagg tg	ggacaagag	agttgagata	300
aaaaca	tgtg gtggtggcag caaacctccc acgtgcccac co	gtgcccagc	acctgaactc	360
ctgggg	ggac cgtcagtctt cctcttcccc ccaaaaccca ag	ggacaccct	catgatctcc	420
cggacc	cctg aggtcacgtg cgtggtggta gacgtgagcc ag	ggaagaccc	cgatgtcaag	480
ttcaac	tggt acgtaaatgg cgcggaggtg catcatgccc ag	gacgaagcc	acgggagacg	540
cagtac	aaca gcacatatcg tgtggtcagc gtcctcaccg to	cacgcacca	ggactggctg	600
aacggc	aagg agtacacgtg caaggtctcc aacaaagccc to	.cccggcccc	catccagaaa	660
accatc	tcca aagacaaagg gcagccccga gagcctcagg t	gtacaccct	gccccgtcc	720
cgggag	gage tgaccaagaa ccaggtcage etgacetgee t	ggtcaaagg	cttctacccc	780
agcgac	atcg tcgtggagtg ggagagcagc gggcagccgg ag	igaacaccta	caagaccacc	840
ccgccc	gtgc tggactccga cggctcctac ttcctctaca g	caagctcac	cgtggacaag	900
agcagg	tggc agcaggggaa cgtcttctca tgctccgtga t	gcatgaggc	tctgcacaac	960

cactacaccc agaagagcct ctccctgtct ccgggtaaa

999

<210> 2

<211> 333

<212> PRT

<213> Macaca fascicularis

<400> 2

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ser Leu Thr Ser

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 55

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 70

Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys . 95

Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys 100

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 125

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 . 140

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Asp Val Lys 145 · 155 160

Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys 165 170

Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190

Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265 270

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330

<210> 3

<211> 1581

<212> DNA

<213> Macaca fascicularis

<400> 3 gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60 agcacagegg ccctgggctg cctggtcaag gactacttcc ccgaacccgt gaccgtgtcg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cactcagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagac agttggtgag 300 aggccagcga gggaaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca 360 aactotggot gtgcagcccc agcccagggc agcagggcag gccccgtctg tottctcacc 420 cagaggeete tgeecacece acteatgete agggageeag tettetgget ttttecacea 480 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgccctga cctaagccca 600 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt 660

PCT/US2004/037241 WO 2005/047325

aactcccaat	cttctctctg	cagggctccc	atgtcgttcc	acgtgcccac	cgtgcccagg	720
taagccagcc	caggcctcac	cctccagctc	aaggtgggac	aagcgcccta	gagtggcctg	780
tgtccaggga	caggccctgc	ccgggtgctg	acacgtccac	ctccatctct	tcctcagctg	840
aactcctggg	gggaccgtca	gtcttcctct	tcccccaaa	acccaaggac	accctcatga	. 900
tttcccggac	ccctgaggtc	acgtgcgtgg	tggtagacgt	gagccaggaa	gaacccgatg	960
tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	1080
ggctgaacgg	caaggagtac	acgtgcaagg	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca	gcccaccctc	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc	gagagccaca	ggtgtacacc	ctgccccgc	cccgggagga	gctgaccaag	1320
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag	.1380
tgggcgagca	acgggcagcc	ggagaacacc	tacaagacca	ccccgcccgt	gctggactcc	1440
gacggctcct	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt	ctccgggtaa	a	·			1581

<210> 4 <211> 326 <212> PRT <213> Macaca fascicularis

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Çys Ser Arg 1 5

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 25 . 30 20

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 40

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 55 50

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 75 70

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85

Thr Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly 145 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205

Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220

Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 230 235 240

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255

Val Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

Ser Val Ser Pro Gly Lys 325

<210> 5 <211> 1579 <212> DNA <213> Macaca fascicularis

<400> 5 gcctccacca agggcccatc ggtcttcccc ctggcgtcct cctccaggag cacctccgag 60 agcacagegg ecctgggetg cetggteaag gactacttee eegaaceegt gactgtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300 aggccagcga gggaggggga gtgtctgctg gaagccatgc tcggccctcc tgcctggaca 360 aaccctggct gtgcagcccc agcccagggc agcagggcag gcccggtctg tctcctcacc 420 cagaggeete tgeecacece acteatgete agggagacag tettetgget ttttecacea 480 gactccgagc aggcacaggc tggatgcccc taccccaggc tctgcacaca taggggctgg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc 600 accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag 660 taactcccaa tcttctctct gcagagttca cacccccatg cccaccatgc ccaggtaagc 720 cageceagge etegeeetee ageteaaggt gggacaagtg eectagagtg geetgtgtee 780 agggacagge ecegeetggg tgetgacatg eceaecteca tetetteete ageaectgaa 840 ctcctggggg gaccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc 900 teceggacee etgaggteae atgegtggtg gtggaegtga geeaggaaga eeeegaggte 960 cagttcaact ggtacgtgga cggcgtggag gtgcatcatg cccagacgaa gccacgggag 1020 aggcagttca acagcacgta ccgcgtggtc agcgtcctca ccgtcacaca ccaggactgg 1080 ctgaacggca aggagtacac gtgcaaggtc tccaacaaag gcctcccggc ccccatcgag 1140 aaaaccatct ccaaagccaa aggtgggacc cgcggggccc gagggccacg tggacagagg 1200 ceggeteage ceacectetg ceetgggagt gacegetgtg ceaacetetg teectacagg 1260 gcagccccga gagccgcagg tgtacatcct gccccgccc caggaggagc tgaccaagaa 1320 ccaggtcagc ctgacctgcc tggtcacagg cttctacccc agcgacatcg ccgtggagtg 1380 ggagagcaac gggcagccgg agaacaccta caagaccacc ccgcccgtgc tggactccga 1440 cggctcctac ttcctctaca gcaagctcat cgtggacaag agcaggtggc agcaggggaa 1500 caccttctca tgctccgtga tgcatgaggc tctgcacaac cactacaccc agaagagcct 1560

ctccctgtct ccgggtaaa

1579

<210> 6

<211> 325

<212> PRT

<213> Macaca fascicularis

<400> 6

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Ser Ser Arg
1 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu
100 105 110

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160

Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165 170 175

Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190

Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 195 200 205

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220

Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 240

Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 255

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270

Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285

Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315 320

Leu Ser Pro Gly Lys 325

<210> 7

<211> 1579

<212> DNA

<213> Macaca fascicularis

<400> 7 gctagcacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctccgag 60 agcacagegg ecetgggetg cetggteaag gactacttee eegaaceegt gactgtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 300 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag aggccagcga gggagggga gtgtctgctg gaagccatgc tcggccctcc tgcctggaca 360 aaccetgget gtgcageece ageceaggge ageagggeag geeeggtetg teteeteace 420 cagaggeete tgeccacce acteatgete agggagaeag tettetgget ttttecacea 480 gactccgagc aggcacaggc tggatgcccc taccccaggc tctgcacaca taggggctgg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc 600 accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag 660

taactcccaa	tcttctctct	gcagagttca	cacccccatg	cccaccatgc	ccaggtaagc	720
cagcccaggc	ctcgccctcc	agctcaaggt	gggacaagtg	ccctagagtg	gcctgtgtcc	780
agggacaggc	ccçgcctggg	tgctgacatg	cccacctcca	tctcttcctc	agcacctgaa	840
ctcctggggg	gaccgtcagt	cttcctcttc	ccccaaaac	ccaaggacac	cctcatgatc	900
tcccggaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	gccaggaaga	ccccgaggtc	960
cagttcaact	ggtacgtgga	cggcgtggag	gtgcatcatg	cccagacgaa	gccacgggag	1020
aggcagttca	açagcacgta	ccgcgtggtc	agcgtcctca	ccgtcacaca	ccaggactgg	1080
ctgaacggca	aggagtacac	gtgcaaggtc	tccaacaaag	gcctcccggc	ccccatcgag	1140
aaaaccatct	ccaaagccaa	aggtgggacc	cgcggggccc	gagggccacg	tggacagagg	1200
ccggctcagc	ccaccctctg	ccctgggagt	gaccgctgtg	ccaacctctg	tccctacagg	1260
gcagccccga	gagccgcagg	tgtacatcct	gccccgccc	caggaggagc	tgaccaagaa	1320
ccaggtcagc	ctgacctgcc	tggtcacagg	cttctacccc	agcgacatcg	ccgtggagtg	1380
ggagagcaac	gggcagccgg	agaacaccta	caagaccacc	ccgcccgtgc	tggactccga	1440
cggctcctac	ttcctctaca	gcaagctcat	cgtggacaag	agcaggtggc	agcaggggaa	1500
caccttctca	tgctccgtga	tgcatgaggc	tctgcacaac	cactacaccc	agaagagcct	1560
ctccgtgtct	ccgggtaaa					1579

<210> 8

<211> 325

<212> PRT

<213> Macaca fascicularis

<400> 8

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 5 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

- Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu 100 . 105 110
- Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125
- Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140
- Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160
- Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165 170 175
- Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190
- Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 195 200 205
- Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220
- Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 240
- Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 255
- Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270
- Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285
- Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300
- Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315

Val Ser Pro Gly Lys 325

<210> 9 <211> 1579 <212> DNA <213> Macaca fascicularis

<400> 9 gctagcacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60 ageacagegg ceetgggetg cetggteaag gactaettee eegaaceegt gacegtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cactcagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tcgacaagag agttggtgag 300 aggccagcga gggaggggga gtgtctgctg gaagccatgc tcggccctcc tgcctggaca 360 aaccetgget gtgcagecce ageccaggge ageagggeag geceggtetg teteetcace 420 cagaggeete tgeccacce acteatgete agggagaeag tettetgget ttttecacea 480 gacteegage aggeaeagge tggatgeece tacceeagge tetgeaeaea taggggetgg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc 600 accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag 660 taactcccaa tettetetet geagagttea cacccccatg eccaccatge ecaggtaage 720 cagcccaggc ctcgccctcc agctcaaggt gggacaagtg ccctagagtg gcctgtgtcc 780 agggacaggc cccgcctggg tgctgacatg cccacctcca tctcttcctc agcacctgaa 840 ctcctggggg gaccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc 900 tcccggaccc ctgaggtcac atgcgtggtg gtggacgtga gccaggaaga ccccgaggtc 960 cagttcaact ggtacgtgga cggcgtggag gtgcatcatg cccagacgaa gccacgggag 1020 aggcagttca acagcacgta ccgcgtggtc agcgtcctca ccgtcacaca ccaggactgg 1080 ctgaacggca aggagtacac gtgcaaggtc tccaacaaag gcctcccggc ccccatcgag 1140 1200 aaaaccatct ccaaagccaa aggtgggacc cgcggggccc gagggccacg tggacagagg ccggctcagc ccaccctctg ccctgggagt gaccgctgtg ccaacctctg tccctacagg 1260 gcagccccga gagccgcagg tgtacatcct gcccccgccc caggaggagc tgaccaagaa 1320 ccaggtcagc ctgacctgcc tggtcacagg cttctacccc agcgacatcg ccgtggagtg 1380 ggagagcaac gggcagccgg agaacaccta caagaccacc ccgcccgtgc tggactccga 1440 eggeteetae tteetetaea geaageteat egtggacaag ageaggtgge ageaggggaa 1500 caccttetca tgctccgtga tgcatgaggc tctgcacaac cactacaccc agaagagcct 1560

1579

WO 2005/047325

ctccgtgtct ccgggtaaa

<210> 10

<211> 325 <212> PRT

<213> Macaca fascicularis

<400> 10

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys

Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 120 115

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 135 130

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 150 145

Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165

Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 185 180

Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 205 200 195

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220

Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 240

Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 255

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270

Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285

Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315 320

Val Ser Pro Gly Lys 325

<210> 11

<211> 1019

<212> DNA

<213> Macaca fascicularis

<400> 11

cgtctctagt gcctccacca agggcccatc ggtcttcccc ctggtgtcct gctccaggag 60 120 cacctccgag agcacagegg ccctgggctg cctggtcaag gactacttcc ccgaacccgt 180 gaccgtgtcg tggaactcag gcgcctgac cagcggcgtg cacaccttcc cggctgtcct acagtectea gggetetaet ceeteageag egtggtgaee gtgeeeteea geagettggg 240 300 cacccagacc tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag 360 agttgagttc acacgcccat gtgatgacac aactccccca tgcccaccgt gcccagcacc 420 tgaactcctg gggggaccgt cagtcttcgt cttccccca aaacccaagg acaccctcat gatctcccgg acccctgagg tcacgtgcgt ggtggtggac gtgagccagg aagaccccga 480 ggtccagttc aactggtacg tggacggcgt ggaggtgcac aatgcccaga cgaagccgcg 540 ggagaggcag ttcaacagca catatcgtgt ggtcagcgtc ctcaccgtca cgcaccagga 600 ctggctgaac ggcaaggagt acacgtgcaa ggtctccaac aaagccctcc cggcccccat 660

ccagaaaacc	atctccaaag	acaaagggca	gccccgagag	cctcaggtgt	acaccctgcc	720
cccgtcccgg	gaggagctga	ccaagaacca	ggtcagcctg	acctgcctgg	tcaaaggctt	780
ctaccccagc	gacatcgtcg	tggagtggga	gagcagcggg	cagccggaga	acacctacaa	840
gaccacgccg	cccgtgctgg	actccgacgg	ctcctacttc	ctctacagca	agctcaccgt	900
ggacaagagc	aggtggcagc	aggggaacgt	cttctcatgc	teegtgatge	atgaggctct	960
gcacaaccac	tacacccaga	agagcctctc	cctgtctccg	ggtaaatgag	tcgacatgc	1019

<210> 12

<211> 335

<212> PRT

<213> Macaca fascicularis

<400> 12

Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Val Ser 1 5 10 15

Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val 20 25 30

Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 35 40 45

Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 50 55 60

Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 65 70 75 80

Thr Gln Thr Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys 85 90 95

Val Asp Lys Arg Val Glu Phe Thr Arg Pro Cys Asp Asp Thr Thr Pro 100 105 110

Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val 115 120 125

Phe Val Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 130 135 140

Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 145 150 155 160

Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Gln 165 170 175

Thr	Lys	Pro	Arg 180	Glu	Arg	Gln	Phe	Asn 185	Ser	Thr	Tyr	Arg	Val 190	Val	Ser	
Val	Leu	Thr 195	Val	Thr	His	Gln	Asp 200	Trp	Leu	Asn	Gly	Lys 205	Glu	Tyr	Thr	
Cys	Lys 210	Val		Asn	Lys	Ala 215	Leu	Pro	Ala	Pro	Ile 220	Gln	Lys	Thr	Ile	
Ser 225	Lys	Asp	Lys	Gly	Gln 230	Pro	Arg	Glu	Pro	Gln 235	Val	Tyr	Thr	Leu	Pro 240	
Pro	Ser	Arg	Glu	Glu 245		Thr	Lys	Asn	Gln 250	Val	Ser	Leu	Thr	Cys 255	Leu	
Val	Lys	Gly	Phe 260		Pro	\Ser	Asp	11e 265	Val	Val	Glu	Trp	Glu 270	Ser	Ser	
Gly	Gln	Pro 275		Asn	Thr	Тух	Lys 280	Thr	Thr	Pro	Pro	Val 285	. Leu	. Asp	Ser	
Asp	Gly 290		туг	Phe	e Leu	Tyr 295	: Ser	. Lys	s Lev	Thr	7a]	L Asg) Lys	s Ser	Arg	
Trg 305		ı Glr	ı Gly	, Asr	1 Val 310	. Phe	e Sei	c Cys	s Sei	7 Val	. Met	: His	s Glu	ı Ala	1 Leu 320	
His	s Asr	ı His	з Туі	325		ı Lys	s Se:	r Lei	330	r Lev	ı Se:	r Pro	o Gly	7 Lys 335	5	
<2: <2:	10> 11> 12> 13>	13 101! DNA Mac	5 aca :	fasc	icul	aris		•								
<4	00>	13 tagt	cca	ccaa	agg (ccca	tcgg	tc t	tccc	cctg	g tg	tcct	gctc	cag	gagcacc	60
															cgtgacc	120
															cctacag	180
tc	ctca	gggc	tct	actc	cct	cagc	agcg	tg g	tgac	cgtg	c cc	tcca	gcag	ctt	gggcacc	240
ca	gacc	tacg	tct	gcaa	cgt	cgtt	catg	ag c	ccag	caac	a cc	aagg	rtgga	caa	gagagtt	300
ga	gttc	acac	gcc	catg	tga	tgac	acaa	ct c	cccc	atgo	c ca	ccgt	gccc	ago	acctgaa	360
										15						

PCT/US2004/037241 WO 2005/047325

ctcctggggg	gaccgtcagt	cttcgtcttc	ccccaaaac	ccaaggacac	cctcatgatc	420
tcccggaccc	ctgaggtcac	gtgcgtggtg	gtggacgtga	gccaggaaga	ccccgaggtc	480
cagttcaact	ggtacgtgga	cggcgcggag	gtgcatcatg	cccagacgaa	gccacgggag	540
acgcagtaca	acagcacata	tcgtgtggtc	agcgtcctca	ccgtcacgca	ccaggactgg	600
ctgaacggca	aggagtacac	gtgcaaggtc	tccaacaaag	ccctcccggc	ccccatccag	660
aaaaccatct	ccaaagacaa	agggcagccc	cgagagcctc	aggtgtacac	cctgccccg	720
tcccgggagg	agctgaccaa	gaaccaggtc	agcctgacct	gcctggtcaa	aggcttctac	780
cccagcgaca	tcgtcgtgga	gtgggagagc	agcgggcagc	cggagaacac	ctacaagacc	840
acgccgcccg	tgctggactc	cgacggctcc	tacttcctct	acagcaagct	caccgtggac	900
aagagcaggt	ggcagcaggg	gaacgtcttc	tcatgctccg	tgatgcatga	ggctctgcac	960
aaccactaca	cccagaagag	cctctccctg	tctccgggta	aatgagtcga	catgc	1015

<210> 14

<211> 333 <212> PRT <213> Macaca fascicularis

<400> 14

Arg Leu Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Val Ser Cys Ser 10

Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 20

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 40

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 55 60 50

Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 75 70 65

Thr Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp 90

Lys Arg Val Glu Phe Thr Arg Pro Cys Asp Asp Thr Thr Pro Pro Cys 100 105

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Val 125 115

PCT/US2004/037241 WO 2005/047325

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150

Phe Asn Trp Tyr Val Asp Gly Ala Glu Val His His Ala Gln Thr Lys 165

Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180

Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys . 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 315 320 305 310

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325

<210> 15

<211> 1584

<212> DNA

<213> Macaca fascicularis

<400> 15

gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60

agcacagcgg	ccctgggctg	cctggtcaag	gactacttcc	ccgaacccgt	gaccgtgtcg	120
tggaactcag	gcgccctgac	cagcggcgtg	cacaccttcc	aggctgtcct	acagtcctca	180
gggctctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cactcagacc	240
tacgtctgca	acgtcgttca	tgagcccagc	aacaccaagg	tggacaagac	agttggtgag	300
aggccagcga	gggaaggggg	gtgtctgctg	gaagccaggc	teggeeetee	tgcctggaca	360
aactctggct	gtgcagcccc	agcccagggc	agcagggcag	gccccgtctg	tcttctcacc	420
cagaggcctc	tgcccacccc	actcatgctc	agggagccag	tcttctggct	ttttccacca	480
ggctctgagc	aggcacaggc	tggatgcccc	taccccaggc	cctgcacaca	caggggcagg	540
tgctgggctc	agacctgcca	agagccatat	ctgggaggac	cctgccctga	cctaagccca	600
ccccaaaggc	caaactccac	tccctcagct	cagacacctt	ctctcctccc	acatcccagt	660
aactcccaat	cttctctctg	cagggctccc	atgtcgttcc	acgtgcccac	cgtgcccagg	720
taagccagcc	caggcctcac	cctccagctc	aaggtgggac	aagcgcccta	gagtggcctg	780
tgtccaggga	caggccctgc	ccgggtgctg	acacgtccac	ctccatctct	tcctcagctg	840
aactcctggg	gggaccgtca	gtcttcctct	tcccccaaa	acccaaggac	accctcatga	900
tttcccggac	ccctgaggtc	acgtgcgtgg	tggtagacgt	gagccaggaa	gaacccgatg	960
tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	1080
ggctgaacgg	caaggagtac	acgtgcaagg	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca	gcccaccctc	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc	gagagccaca	ggtgtacacc	ctgccccgc	cccgggagga	gctgaccaag .	1320
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag -	1380
tgggagagca	gcgggcagcc	ggagaacacc	tacaagacca	cccgcccgt	gctggactcc	1440
gacggctcct	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt	ctccgggtaa	atga				1584

<210> 16 <211> 326 <212> PRT <213> Macaca fascicularis

<400> 16

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 5 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr

20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 60 .

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Thr Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly 145 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205

Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220

Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 230 235 240

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255

Val Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

Ser Val Ser Pro Gly Lys 325

<210> 17

<211> 1584

<212> DNA

<213> Macaca fascicularis

<400> 17 gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctccag 60 120 agcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaacccgt gaccgtgtcg tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300 aggccagcga gggaaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca 360 aactctggct gtgcagcccc agcccagggc agcagggcag gccccgtctg tctcctcacc 420 480 cagaggecte tgeccacece acteatgete agggagecag tettetgget ttttccacea 540 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 600 tgctgggctc agacctgcca agagccatat ctgggaggac cctgccctga cctaagccca 660 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt 720 aactcccaat cttctctctg cagggctccc atgtcgttcc acgtgcccac cgtgcccagg taagccagcc caggcctcac cctccagctc aaggtgggac aagcgcccta gagtggcctg 780 tgtccaggga caggccctgc ccgggtgctg acacgtccac ctccatctct tcctcagctg 840 900 aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga tttcccggac ccctgaggtc acgtgcgtgg tggtagacgt gagccaggaa gaacccgatg 960

tcaagttcaa c	etggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt c	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	1080
ggctgaacgg c	caaggagtac	acgtgcaagg	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt c	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca g	geceaceete	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc g	gagagccaca	ggtgtacacc	ctgcccccgc	cccgggagga	gctgaccaag	1320
aaccaggtca g	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag	1380
tgggcgagca a	acgggcagcc	ggagaacacc	tacaagacca	ccccgcccgt	gctggactcc	1440
gacggctcct a	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct c	catgctccgt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt c	ctccgggtaa	atga				1584

<210> 18

<211> 326

<212> PRT

<213> Macaca fascicularis

<400> 18

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 5 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly 145 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn
165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205

Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220

Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 230 235 240

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255

Val Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

Ser Val Ser Pro Gly Lys 325

<210> 19

<211> 978

<212> DNA

<213> Macaca fascicularis

<400> 19

tccaccaagg gcccatcggt cttcccctg gcgtcctgct ccaggagcac ctcccagagc

acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aacccgtgac	cgtgtcgtgg	120
aactcaggcg	ccctgaccag	cggcgtgcac	accttcccgg	ctgtcctaca	gtcctcaggg	180
ctctactccc	tcagcagcgt	ggtgaccgtg	ccctccagca	gcttgggcac	ccagacctac	240
gtctgcaacg	tcgttcatga	gcccagcaac	accaaggtgg	acaagacagt	tgggctccca	300
tgtcgttcca	cgtgcccacc	gtgcccagct	gaactcctgg	ggggaccgtc	agtcttcctc	360
ttccccccaa	aacccaagga	caccctcatg	atttcccgga	cccctgaggt	cacgtgcgtg	420
gtggtggacg	tgagccagga	agaacccgat	gtcaagttca	actggtacgt	ggacggcgtg	480
gaggtgcaca	atgcccagac	aaagccgcgg	gaggagcagt	tcaacagcac	gtatcgcgtg	540
gtcagcgtcc	tcaccgtcac	acaccaggac	tggctgaacg	gcaaggagta	cacgtgcaag	600
gtctccaaca	aagccctccc	ggccccaagg	cagaaaactg	tctccaaaac	caaagggcag	660
ccccgagagc	cgcaggtgta	caccctgccc	ccgcccggg	aggagctgac	caagaaccag	720
gtcagcctga	cctgcctgat	caaaggcttc	taccccagcg	acatcgtcgt	ggagtgggcg	780
agcaacgggc	agccggagaa	cacctacaag	accacgccgc	ccgtgctgga	ctccgacggc	840
tcctacttcc	tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	ggggaacacc	900
ttctcatgct	ccgtgatgca	tgaggctctg	cacaaccact	acacccagaa	gagcctctcc	960
ctgtctccgg	gtaaatga					978

<210> 20

<211> 325 <212> PRT

<213> Macaca fascicularis

<400> 20

Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg Ser . 5

Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 20 25

Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 35 40

Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 50 55

Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr 65 70

Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys Thr Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Arg Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Ile Lys Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 285 , Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser

Leu Ser Pro Gly Lys 325

<210> 21 <211> 1584 <212> DNA <213> Macaca fascicularis

<400> 21 gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60 agcacagegg ccetgggetg cetggteaag gactacttee eegaaceegt gacegtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300 360 aggccagcga ggggaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca aactetgget gtgcageece ageceaggge ageagggeag geeegtetg teteeteace 420 cagaggeete tgeecacee acteatgete agggageeag tettetgget ttttecacea 480 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 540 tgctgggctc aggcctgcca agagccatat ctgggaggac cctgccctga cctaagccca 600 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt 660 aacteccaat ettetetetg cagggetece atgtegttee acgtgeccae egtgeccagg 720 taagccagcc caggcctcac cctccagctc aaggtgggac aagcgcccta gagtggcctg 780 840 tgtccaggga caggccctgc ccgggtgctg acacgtccac ctccatctct tcctcagctg 900 aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 960 tttcccggac ccctgaggtc acgtgcgtgg tggtagacgt gagccaggaa gaacccgatg tcaagttcaa ctggtacgtg gacggcgtgg aggtgcacaa tgcccagacg aagccacggg 1020 aggagcagtt caacagcacg taccgcgtgg tcagcgtcct caccgtcaca caccaggact 1080 ggctgaacgg caaggagtac acgtgcaagg tctccaacaa aggcctcccg gcccccatcg 1140 agaaaaccat ctccaaagcc aaaggtggga cccgcggggc ccgagggcca cgtggacaga 1200 ggccggctca gcccaccctc tgccctggga gtgaccgctg tgccaacctc tgtccctaca 1260 gggcagcccc gagagccgca ggtgtacatc ctgcccccgc cccaggagga gctgaccaag 1320 1380 aaccaggtca gcctgacctg cctggtcaca ggcttctacc ccagcgacat cgccgtggag tgggagagca acgggcagcc ggagaacacc tacaagacca ccccgcccgt gctggactcc 1440 gacggctcct acttcctcta cagcaagctc atcgtggaca agagcaggtg gcagcagggg 1500 aacaccttct catgctccgt gatgcatgag gctctgcaca accactacac ccagaagagc 1560

ctctccgtgt	ctccgggtaa	atga
------------	------------	------

1584

<210> 22

<211> 326

<212> PRT

<213> Macaca fascicularis

<400> 22

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg

1 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly 145 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro 195 200 205

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 210 215 220 Pro Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn 235 230 225 Gln Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile 250 245 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 270 260 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 280 275 Leu Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 300 295 290 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 315 310 305 Ser Val Ser Pro Gly Lys 325 <210> 23 <211> 996

<210> 23 <211> 996 <212> DNA <213> Macaca fascicularis

<213> Macaca fascicularis

<400> 60 gcctccacca agggcccatc ggtcttcccc ctggcgccct cctccaggag cacctccgag agcacagegg ceetgggetg cetggteaag gactacttee etgaaceegt gacegtgteg 120 tggaactcag gctccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtaaacca caagcccagc aacaccaagg tggacaagag agttgagata 300 acatgtggtg gtggcagcaa acctcccacg tgcccaccgt gcccagcacc tgaactcctg 360 gggggaccgt cagtetteet ettececca aaacccaagg acacceteat gateteeegg 420 480 acccctgagg tcacgtgcgt ggtggtagac gtgagccagg aagaccccga tgtcaagttc aactggtacg taaatggcgc ggaggtgcat catgcccaga cgaagccacg ggagacgcag 540 tacaacagca catatcgtgt ggtcagcgtc ctcaccgtca cgcaccagga ctggctgaac 600 ggcaaggagt acacgtgcaa ggtctccaac aaagccctcc cggcccccat ccagaaaacc 660

atctco	caaag a	acaaa	aggg	a go	cccc	gagag	g cct	cago	ıtgt	acac	ccto	icc c	ccgt	cccgg	
gaggag	gctga (ccaaç	gaaco	a gg	gtcaç	gcctg	g acc	etgeo	tgg	tcaa	aggo	tt o	ctaco	ccagc	
gacato	gtcg	tggag	gtggg	ga ga	gcaç	geggg	gcaç	gccgg	gaga	acac	ctac	aa g	gacca	rcccca	
cccgtg	gctgg a	actco	gacç	gg ct	ccta	actto	cto	ctaca	agca	agct	caco	gt g	ggaca	agagc	
aggtgg	gcagc a	agggg	gaaco	gt ct	tctc	atgo	tec	gtga	atgc	atga	aggct	ct g	gcaca	accac	
tacaco	ccaga a	agago	cctct	cc cc	ctgto	ctccc	g ggt	aaa							
<210><211><212><213><400>	24 332 PRT Maca	ca fa	ascio	culai	cis										
	er Thr	Lvs	Glv	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Ara	
1		-	5					10					15	J	
Ser Th	nr Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr	
Phe Pi	ro Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ser 45	Leu	Thr	Ser	
Gly Va	al His O	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser	
Leu Se 65	er Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80	
Tyr Va	al Cys	Asn	Val 85	Asn	His	Lys	Pro			Thr		Val	Asp 95	Lys	
Arg V	al Glu	Ile 100	Thr	Cys	Gly	Gly	Gly 105	Ser	Lys	Pro	Pro	Thr 110	Cys	Pro	
Pro Cy	ys Pro 115	Ala	Pro	Glu	Leu	Leu 120	Gly	Gly	Pro	Ser	Val 125	Phe	Leu	Phe	

Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Asp Val Lys Phe 145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

Asn	Trp	Tyr	Val	Asn 165	Gly	Ala	Glu	Val	His 170	His	Ala	Gln	Thr	Lys 175	Pro	
Arg	Glu	Thr	Gln 180	Tyr	Asn	Ser	Thr	Туг 185	Arg	Val	Val	Ser	Val 190	Leu	Thr	
Val	Thr	ніs 195	Gln	Asp	Trp	Leu	Asn 200	Gly	Lys	Glu	Tyr	Thr 205	Cys	Lys	Val	
Ser	Asn 210	Lys	Ala	Leu	Pro	Ala 215	Pro	Ile	Gln	Lys	Thr 220	Ile	Ser	Lys	Asp	
Lys 225	Gly	Gln	Pro	Arg	Glu 230	Pro	Gln	Val	Tyr	Thr 235	Leu	Pro	Pro	Ser	Arg 240	
Glu	Glu	Leu	Thr	Lys 245		Gln	Val	Ser	Leu 250	Thr	Cys	Leu	Val	Lys 255 '		
Phe	. Tyr	Pro	Ser 260		Ile	Val	Val	. Glu 265	Trp	Glu	. Ser	Ser	Gly 270	Gln	Pro	
Glu	ı Asn	Thr 275		Lys	Thr	Thr	Pro 280	Pro	Val	. Lev	ı Asp	Ser 285	Asp	Gly	Ser	
Туг	Phe 290		д Туг	r Sei	: Lys	Leu 295	ı Thi	c Val	l As <u>r</u>) Lys	300	r Arg	J Tri	Glr	Gln	·
Gl ₃ 305		ı Va	l Phe	e Sei	Cys 310	s Sei)	va:	l Me	t His	31!	u Ala	a Lei	ı Hi:	s Ası	1 His 320	
Ту	r Thi	c Gl:	n Lys	s Se:		ı Sei	r Le	u Se:	r Pro	o Gl	у Ьу	S				
<2 <2	10> 11> 12> 13>	25 999 DNA Mac		fasc	icul	aris										
<4 gc	00> ctcc	25 acca	agg	gccc	atc ·	ggtc	ttcc	cc c	tggc	gece	t co	tcca	ggag	cac	ctccgag	60
															cgtgtcg	120
															gtcctca	180
gg	gctc	tact	ccc	tcag	cag	cgtg	gtga	icc 6	rtgcc	ctco	a go	agct	tggg	cac	ccagacc	240
ta	cgtc	tgca	a acg	rtaaa	cca	caag	ccca	igc a	acac	caaç	gg to	gaca	agaç	g agt	tgagata	300
aa	aaca	tgtç	g gtg	gtgg	cag	caaa	ccto	cc a	acgto	gecea	ac cg	gtgco	cago	acc	tgaactc	360

PCT/US2004/037241 WO 2005/047325

ctggggggac	cgtcagtctt	cctcttcccc	ccaaaaccca	aggacaccct	catgatctcc	420
cggacccctg	aggtcacatg	cgtggtggtg	gacgtgagcc	aggaagaccc	cgaggtccag	480
ttcaactggt	acgtaaacgg	cgcggaggtg	catcatgccc	agacgaagcc	acgggagacg	540
cagtacaaca						600
aacggcaagg						660
		•			gccccgtcc	720
					cttctacccc	780
					caagaccacc	840
					cgtggacaag	900
					tctgcacaac	960
		ctecetgtet				999

<210> 26 <211> 333 <212> PRT <213> Macaca fascicularis

<400> 26

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 25 20

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 70 65

Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85

Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys 105 100

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 120 115

PCT/US2004/037241 WO 2005/047325

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150 155 Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys 165 170 Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 1.90 Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220 Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 230 235 240 225 Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 250 255 Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 270 Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 280 285 275 Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 3:00 290 295 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 310 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 <210> 27 <211> 999 <212> DNA

<213> Macaca fascicularis

<400> 27

gcctccacca agggcccatc ggtcttcccc ctggcgccct cctccaggag cacctccgag 60

agcacagcgg	ccctgggctg	cctggtcaag	gactacttcc	ctgaacccgt	gaccgtgtcg	120
tggaactcag	gcgccctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtcctca	180
gggctctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	240
tacgtctgca	acgtaaacca	caagcccagc	aacaccaagg	tggacaagag	agttgagata	300
aaaacatgtg	gtggtggcag	caaacctccc	acgtgcccac	cgtgcccagc	acctgaactc	360
ctggggggac	cgtcagtctt	cctcttcccc	ccaaaaccca	aggacaccct	'catgatetee	420
cggacccctg	aggtcacatg	cgtggtggtg	gacgtgagcc	aggaagaccc	cgaggtccag	480
ttcaactggt	acgtaaacgg	cgcggaggtg	catcatgccc	agacgaagcc	acgggagacg	540
cagtacaaca	gcacgtaccg	cgtggtcagc	gtcctcaccg	tcacacacca	ggactggctg	600
aacggcaagg	agtacacgtg	caaggtctcc	aacaaagccc	tcccggcccc	catccagaaa	660
accatctcca	aagacaaagg	gcagccccga	gagcctcagg	tgtacaccct	gcccccgtcc	720
cgggaggagc	tgaccaagaa	ccaggtcagc	ctgacctgcc	tggtcaaagg	cttctacccc	780
agcgacatcg	tcgtggagtg	ggagagcagc	gggcagccgg	agaacaccta	caagaccacc	840
ccgcccgtgc	tggactccga	cggctcctac	ttcctctaca	gcaagctcac	cgtggacaag	900
agcaggtggc	agcaggggaa	cgtcttctca	tgctccgtga	tgcatgaggc	tctgcacaac	960
cactacaccc	agaagagcct	ctccctgtct	ccgggtaaa			999

<210> 28

<211> 333

<212> PRT

<213> Macaca fascicularis

<400> 28

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg
1 5 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

- Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys 100 105 110
- Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 120 125
- Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 140
- Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150 155 160
- Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys 165 170 175
- Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190
- Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205
- Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220
- Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240
- Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255
- Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265 270
- Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285
- Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300
- Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325

<210> 29

<211> 324

<212> DNA

<213> Macaca fascicularis

<400> 29

cgcgctgtgg ctgcaccatc tgtcttcatc ttcccgccat ctgaggatca ggtgaaatct 60 ggaactgtct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc cagcgtaaag 120 tggaaggtgg atggtgtcct caaaacgggt aactcccagg agagtgtcac agagcaggac 180 agcaaggaca acacctacag cctgagcagc accctgacgc tgagcagcac agactaccag 240

agtcacaatg tctatgcctg cgaagtcacc catcagggcc tgagctcgcc cgtcaccaag

agcttcaaca gaggagagtg ttag

324

300

<210> 30

<211> 107

<212> PRT

<213> Macaca fascicularis

<400> 30

Arg Ala Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Glu Asp 5 1

Gln Val Lys Ser Gly Thr Val Ser Val Val Cys Leu Leu Asn Asn Phe 20

Tyr Pro Arg Glu Ala Ser Val Lys Trp Lys Val Asp Gly Val Leu Lys 45 40 35

Thr Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Asn 50 55

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Ser Thr Asp Tyr Gln 70

Ser His Asn Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 105 100

<210> 31

<211> 20 <212> DNA

<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	31	20
gcctcc	acca agggccctcg	20
	·	
<210>	32	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
1220		
<400>	32	21
tttacc	cgga gacagggaga g	21
<210>	33	
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220> <223>	Primer	
\ZZJ/	TTTMOT	
<400>	33	20
gcctcc	eacca agggccctcg	20
<210>	34	
<211>		
<212>		
<213>	Artificial Sequence	
-0005		
<220> <223>	Primer	
74457	f Tanca	
<400>	34	21
tttaco	ccgga gacagggaga g	21
	•	
<210>	35	
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220> <223>		
1225		
<400>	35	21
gtcac	atggc accacctctc t	21
<210>	36	
<211>		
<212>	DNA	
<213>	Artificial Sequence	

	<220> <223>	Primer		
	<400>	36		
		gcc aagcațecte g	21	
		·		
	<210>			
	<211> <212>	27		
		Artificial Sequence		
	<220>			
		Primer		
	<400>	37		
		cct gctccaggag c	21	
	<210>	38		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Primer		
	<400>	38		
	gctcct	ggag caggacgcca g	21	
	<210>			
	<211>	·		
	<212>	Artificial Sequence		
	\Z13 /	ALCITICIAL DOGACIOC		
	<220>			
	<223>	Primer		
	<400>		26	
gctagcacca agggcccatc ggtctt 26				
	<210>			
	<211>	25		
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Primer		
	<400>		~ -	
	aactgt	cttg tcgaccttgg tgttg	25	
	<210>	41		
		25		
	<212> <213>			
	- L L J -			

<220> <223>	Primer	
<400>	41	
	aag gtcgacaaga gagtt	25
	42	
<211> <212>		
	Artificial Sequence	
<220> <223>	Primer	
1220		
	42	30
geggee	gete atttaccegg agacaeggag	50
<210>	43	
<210> <211>	30 .	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	43	2.0
cgtctc	tagt gcctccacca agggcccatc	30
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	44	
	cgac tcatttaccc ggagacaggg agag	34
<210>		
<211>		
<212> <213>	Artificial Sequence	
.000		
<220> <223>	Primer	
<400> atcaaa	45 .cgag ctgtggctgc acca	24
<210>	46	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		

<223>	Primer	
<400> caggtgg	46 gggg cacttetece t	21
<210> <211> <212> <213>	47 345 · DNA Artificial Sequence	
<220> <223>	Antibody variable domain sequences that recognize anti IL-4R	
<400> gaggtto	47 cagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
tcctgtg	gcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaa	aaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aaactatgca	180
gactcc	gtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatga	aaca geetgagage egaggacatg getgtgtatt aetgtgeaag agggaggtae	300
tacttt	gact actggggcca gggaaccctg gtcaccgtct cctca	345
<210> <211> <212> <213> <223>	48 345 DNA Artificial Sequence Antibody variable domain sequences that recognize anti IL-4R	
<400> gaggtte	48 cagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
tcctgt	gcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccagga	aaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactcc	gtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatg	aaca gcctgagtgc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tacttc	accc actggggcca gggaaccctg gtcaccgtct cctca	345
<210><211><211><212><213>		
<220> <223>	Antibody variable domain sequences that recognize anti IL-4R	
<400> gaggtt	49 cagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60

		aatataaatt	ascattasat	agaaatggta	tattataaat	tagagagagt	120
				agaaatgcta			
ccaggaa	aag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aagctatgca	180
gactccg	tga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatga	aca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggtaca	aca	actggggcca	gggaaccctg	gtcaccgtct	cctcaca		347
<211> <212> <213>		ificial Sequ lbody varia		sequences tl	hat recogni	ze anti IL-4R	
<400>	50					aataaaata	60
				ttggtacatc			
tcctgtg	cag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tegecagget	120
ccaggaa	aag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aaactatgca	180
gactccc	gtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatga	aca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tacttco	ccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345
<210> <211> <212> <213> <223>		ificial Seq		sequences t	, .hat recogni	.ze anti IL-4R	
<400> gaggtto	51 cagc	tggtgcagtc	: tgggggaggc	: ttggtacato	: ctggggggtc	cctgagactc	60
tcctgt	gcag	gctctggatt	caccttcagt	: agaaatgcta	tgttctgggt	tegecagget	120
ccagga	aaag	gtctggagtg	ggtatcaggt	: attggtactg	gtggtgccac	aaactatgca	180
gactcc	gtga	. agggccgatt	caccatctcc	agagacaatg	g ccaagaacto	cttgtatctt	240
caaatg	aaca	gcctgagago	c cgaggacatg	g gctgtgtatt	: actgtgcaag	g agggaggtac	300
tacttc	acga	ggtggggcc	a gggaaccctg	g gtcaccgtct	cctca		345

<220>

<210> 52 <211> 345 <212> DNA <213> Artificial Sequence

<223> Antibody variable domain sequences that recognize	anti IL-4R	
<400> 52 gaggttcagt tggtgcagtc tgggggaggc ttggtacatc ctggggggtc c	ctgagactc	60
teetgtgeag getetggatt eacetteagt agaaatgeta tgttetgggt t	cgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac a	aactatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc c	ttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag a	gggaggtac	300
tggtacccgt ggtggggcca gggaaccctg gtcaccgtct cctca		345
<210> 53 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize	e anti IL-4R	
<400> 53		
gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc c	cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt t	cgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac a	aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc c	cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag a	agggaggtac	300
tggtacccgt ggtggggcca gggaaccctg gtcaccgtct cctca		345
<210> 54 <211> 345 <212> DNA <213> Artificial Sequence;		
<220> <223> Antibody variable domain sequences that recognize	e anti IL-4R	
<400> 54 gaggttcagt tggtgcagtc tgggggaggc ttggtacatc ctggggggtc c	cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt	tegecagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac	aaactatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc	cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag	agggaggtac	300
tggttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca		345

<210> 55

<211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 55 gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
teetgtgeag getetggatt eacetteagt agaaatgeta tgttetgggt tegeeagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tggttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 56 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 56 gaggttcagt tggtgcagtc tgggggggc ttggtacatc ctggggggtc cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aaactatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tggtacccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 57 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 57 gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300

tggtacccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 58 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 58 gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctgggggggtc cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 59 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti $IL-4R$	
<400> 59 gaggttcagc tggtgcagtc ttggtacatc ctggggggtc cctgagactc	60
tectgtgeag getetggatt eacetteagt agaaatgeta tgttetgggt tegecagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
	300
caaatgaaca gcctgagtgc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	345
tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	
<210> 60 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-41	R
<400> 60 gaggttcagt tggtggaggc ttggtacagc ctggggggtc cctgagactc	60
tactatacaa cototagatt cacottoagt agaaatgota tgttotgggt togocaggot	120

180 ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca 240 gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcaag agggaggtac 300 345 tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca <210> 61

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 61

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 40

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 55

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 70 65

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90

Arg Gly Arg Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 110 100

Val Ser Ser 115

<210> 62

115 <211>

PRT<212>

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 62

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80,

Gln Met Asn Ser Leu Ser Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Thr His Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 63

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 63

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Asn Asn Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 64

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 64

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 65

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R <400> 65

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly

1 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Thr Arg Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 66

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 66

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser

<210> 67

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 67

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 68 <211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 68

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 69

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 69

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala

Arg Gly Arg Tyr Trp Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 105

Val Ser Ser 115

<210> 70 <211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 70

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 55

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 . 90

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105

Val Ser Ser 115

<210> 71 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R <400> 71 Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 10 Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 25 20 Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 75 65 Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 95 Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 105 · 100 Val Ser Ser 115 <210> 72 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R <400> Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 10 5 Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn

20

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 90

Arg Gly Arg Tyr Tyr Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 105

Val Ser Ser 115

<210> 73

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 73

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 10

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 25 20

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 40

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 75 70 65

Gln Met Asn Ser Leu Ser Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 90 85

Arg Gly Arg Tyr Tyr Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 110 105 100

Val Ser Ser 115 <210> 74 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R <400> 74 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Asn 20 Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 55 50 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 95 85 Arg Gly Arg Tyr Tyr Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 100 Val Ser Ser <210> 75 <211> 327 <212> DNA <213> Artificial Sequence <223> Antibody variable domain sequences that recognize anti IL-4R gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60 120 ctctcctgca gggccagtca gagtgttagc agcagctact tagcctggta ccagcagaaa

cctggccagg ct	cccaggct	cctcatcttt	ggtgcatcca	gcagggccac	tggcatccca	180
gacaggttca gt	ggcagtgg	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt tt	gcagtgta	ttactgtcag	cagtatggta	gctcacctcc	gtggacgttc	300
ggccaaggga cc	aaggtgga	aatcaaa				327
<210> 76 <211> 327 <212> DNA <213> Artifi	.cial Sequ	ience				
<220> <223> Antibo	ody variak	ole domain	sequences tl	hat recogni:	ze anti IL-4R	
<400> 76 gaaattgtgt tg	gacgcagtc	tccaggcacc	ctgtctttgt	ctccagggga	aagagccacc	60
ctctcctgca gg	ggccagtca	gagtgttagc	aacagctact	tagcctggta	ccagcagaaa	120
cctggccagg ct	cccaggct	cctcatctat	ggtgcatcca	gcagggcccc	tggcatccca	180
gacaggttca gt	tggcagtgg	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt t	tgcagtgta	ttactgtcag	cagtatgatc	actcagcagg	gtggacgttc	300
ggccaaggga c	caaggtgga	gatcaaa				327
	icial Seq	; uence				
<220> <223> Antib	ody varia	ble domain	sequences t	hat recogni	ze anti IL-4R	
<400> 77 gaaattgtgt t	gacgcagtc	tccaggcaco	ctgtctttgt	: ctccggggga	aagagccacc	60
ctctcctgca g	ggccagtca	gactgttaad	c agcgactact	: tagcctggta	ccagcagaaa	120
ccgggccagg c	tcccaggct	cctcatctat	ggtgcatcca	gcagggccac	tggcatccca	180
gacaggttca g	tggcagtgg	gtctgggaca	a gacttcacto	tcaccatcag	g cagactggag	240
cctgaagatt t	tgcagtcta	ttactgtca	g cagtatggta	a ggtcacctco	gtggacgttc	300
ggccaaggga c	caaagtgga	tatcaaa				327
<220>	ficial Sec					
<223> Antil	oodv varia	able domain	sequences	that recogn	ize anti IL-4R	

<400> 78 gaaattgtga	tgacgcagtc	tccaggcacc	ctgtctttqt	ctccagggga	aagagccacc	60
				tagcctggta		120
				gcagggcctc		180
				tcaccatcag		240
			cagtatggta	gctcacctcc	gtggaegtte	300
ggccaaggga	ccaaggtgga	aatcaaa				327
<210> 79 <211> 327 <212> DNA <213> Arti	ficial Sequ	ience	1	,		
<220> <223> Anti	body varial	ole domain	sequences t	hat recogni	ze anti IL-4R	
<400> 79 gatattgtgc	tgacccagtc	tccagccacc	ctgtctttgt	ctccagggga	aagagccacc	60
ctctcctgca	gggccagtca	gagtgttaac	agcaactact	tagcctggta	ccagcagaaa	120
cctggccagg	ctcccaggct	cctcatctat	ggtacatcct	acagggccac	tggcatccca	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcactc	tcaccatcac	cagactggag	240
cctgaagatt	ttgcagtgta	ttactgtcag	cagtatggta	gctcaccacc	gtggacgttc	300
ggccaaggga	cacgactgga	gattaaa				327
<210> 80 <211> 327 <212> DNA <213> Arts	ificial Seq	uence				
<220> <223> Ant:	ibody varia	ble domain	sequences t	hat recogni	ze anti IL-4R	
<400> 80 gatattgtgc	tgacgcagac	tccagccacc	: ctgtctttgt	. ctccagggga	aagagccacc	60
ctctcctgca	gggccagtca	gagtgttggc	agcagctact	tagcctggta	ccagcagaga	120
cctggccagg	ctcccaggct	cctcatctat	ggtgcatcca	gcagggccac	tggcatcccg	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcacto	: tcacgatcag	r cagactggag	240
cctgaagatt	ttgcagtgta	ttattgtcag	cagtatggaa	gttcacctco	gtggatgttc	300
ggccaaggga	ccaaggtgga	gatcaaa				327

<210> 81 <211> 109 <212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 81

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Phe Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 82

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 82

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Asn Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Pro Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asp His Ser Ala 85 90 95

Gly Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

<210> 83

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 83

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Thr Val Asn Ser Asp 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Asp Ile Lys
100 105

<210> 84

<211> 109

<212> PRT .

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 84

Glu Ile Val Met Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Asp 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Ser Gly Ile Pro Asp Arg Phe Ser 50 ' 55 60

Gly Ser Gly Phe Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Ile Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 85

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 85

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Asn Ser Asn 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Thr Ser Tyr Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Thr Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
100 105

<210> 86

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 86

Asp Ile Val Leu Thr Gln Thr Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Gly Ser Ser '20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Met Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 . 105