Lecture 4.2. Functions

Question 1. For the code block on the right, write below the print messages in the order in which they appear when the code block is executed.

Order	Print statement
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Pro tip: If you ever want to see line numbers for your code cell in Jupyter Notebook, go to *View* in the toolbar and select *Toggle Line Numbers*.


```
print('Line 1')
   def csc121 round(float number):
       print('Line 4')
 4
 5
       fractional part = float number % 1
 6
       print('Line 7')
       integer part = float number // 1
 8
 9
       print('Line 10')
10
       to ceil = fractional part >= 0.5
11
12
13
       print('Line 13')
       rounded = integer part + to ceil
14
15
16
       print('Line 16')
17
        return rounded
18
   print('Line 19')
20
   number = 2.9
21
   print('Line 22')
22
23
   number rounded = csc121 round(number)
24
   print('Line 25')
   print(number rounded)
27
   print('Line 28')
```

Question 2. Starting from line 10 in the code block on the right, fill in the table below tracking:

- 1. Flow of execution using the first *Line number* column
- 2. State of variables, for each line number

If the variable is (or becomes) undefined at any line of code, state so in the appropriate row of the table below.

```
def csc121 round(float number):
 2
       fractional part = float number % 1
       integer part = float number // 1
 4
       to ceil = fractional part >= 0.5
       rounded = integer part + to ceil
 6
       return rounded
 8
 9
10
   number = 2.9
11
   number rounded = csc121 round(number)
12
   print(number rounded)
```

Line number	number	<pre>float_number</pre>	fractional_part	integer_part	to_ceil	rounded	number_rounded
10	2.9	undefined	undefined	undefined	undefined	undefined	undefined

Question 3. Implement a function square_root that computes square root of the input. At the bottom are examples of how the function is expected to be called and the output(s) expected for given input(s).

```
num = 4
num_sqrt = square_root(num)
print("num_sqrt") # Should print 2
num = 9
num_sqrt = square_root(num)
print(num_sqrt) # Should print 3
num = 16
num_sqrt = square_root(num)
print(num sqrt) # Should print 4
```

Question 4. Implement a function euclidean that accepts four integers x1, y1, x2, y2 as inputs, representing two points (x1, y1) and (x2, y2). Use square_root from Question 3.

$$euclidean_distance = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

```
x1 = 1
y1 = 5
x2 = 1
y2 = 5
dist = euclidean(x1, y1, x2, y2)
print(dist) # Should print 0

dist = euclidean(0, 25, 0, 16)
print(dist) # Should print 9
```