Take Home Assignment

Big Data Econometrics

After importing dataset "Gasoline.csv" in Gretl and removing rows which contains NA values we can start to build our model.

First of all, in order to reach the assignment's second goal (elasticity), we want to use the log of cons (lc), price (lp) and gdp (ly).

The first ADL model was builded using 8 lags on lc,lp,ly, the model was quite good it scores 0.947 on Adjusted R-squared and the p-value of the Godfrey test was 0.134 but we knew that the model could be better, presumably the quantity of lags was too large therefore it contains the "true" "p" and "qs" (there's not a TRUE number of lags for the model).

After some shrinking and tests the final model, as can be seen in FIG.1, has: 3 lags on lc, 2 lags on lp and 6 lags on ly, plus the three dummy (to prevent dummy trap) for the quarters (it seems that gasoline consumotion grows from April to September, which is ok, it's hotter and people go out) and the covid features (this one's coefficient is -0.23 and it is in line with what we saw, people in lockdown means less gasoline consumption).

	coeffic				t-ratio	p-value	
const			0.294025		2.145	0.0345	**
1c 1	0.682670		0.0829470		8.230	9.83e-013	**
1c 2	-0.0520	292	0.10	7372	-0.4846	0.6291	
1c 3	0.2237	34	0.07	99096	2.800	0.0062	**
lp	-0.0190	844	0.01	80659	-1.056	0.2935	
lp 1	-0.0186	377	0.02	64564	-0.7045	0.4829	
1p 2	0.0241	374	0.01	80346	1.338	0.1840	
ly	0.8358	47	0.24	2845	3.442	0.0009	**
ly_1	-1.26407		0.322772		-3.916	0.0002	**
ly_2	0.9970	32	0.33	9057	2.941	0.0041	**
ly_3	-0.3936	89	0.26	6314	-1.478	0.1426	
	-0.2378	46	0.14	8737	-1.599	0.1131	
ly_5	-0.0928				-0.6568		
ly 6	0.2277	38	0.11	2039	2.033	0.0449	**
dql	-0.0263				-4.342		**
dq2	0.0370	658	0.00	855078	4.335	3.63e-05	**
dq3	0.0269	369	0.00	736524	3.657	0.0004	**
covid	-0.2321	52	0.02	88383	-8.050	2.36e-012	**
ean depend	dent var	9.074	395	S.D. de	ependent va	ar 0.0697	55
um squared	d resid	0.018	636	S.E. 01	f regression	on 0.0140	06
-squared		0.965	804	Adjuste	ed R-square	ed 0.9596	84
(17, 95)		157.8	282			9.07e-	
og-likelih	nood	331.7	789	Akaike	criterion	-627.55	78
chwarz cr	iterion	-578.4	648			-607.63	
10		0.057	925	Durbin-	-Watson	1.8723	62

FIG.1

The model has a nice adjusted R-squared and the Godfrey test (FIG.2) let us assume that there is no auto-correlation between errors, so they are MDS and we can compute elasticities.

```
Alternative statistic: TR^2 = 8.507686, with p-value = P(Chi-square(4) > 8.50769) = 0.0747
```

Given that our dependent variable has A(0)=1, the impact multiplier d0 is easy to find both for cons to price and cons to gdp, it's just the coefficient of Ip and Iy, since d0=B(0)/A(0); -0.0190844 for cons to price and 0.835847 for cons to gdp, but to be sure we can computer the long run multipliers (FIG.3-FIG.4) and take the first values that are the d0s.

0.0000	-0.019084	-0.019084		0.0000	0.83585	0.83585
1.0000	-0.031666	-0.050750		1.0000	-0.69346	0.14239
2.0000	0.0035129	-0.047238		2.0000	0.48014	0.62253
3.0000	-0.00022413	-0.047462		3.0000	0.15718	0.77970
4.0000	-0.0074205	-0.054882		4.0000	-0.31068	0.46902
5.0000	-0.0042682	-0.059150		5.0000	-0.20571	0.26331
6.0000	-0.0025778	-0.061728		6.0000	0.13863	0.40194
7.0000	-0.0031980	-0.064926		7.0000	0.035834	0.43778
8.0000	-0.0030040	-0.067930		8.0000	-0.028775	0.40900
9.0000	-0.0024611	-0.070391		9.0000	0.0095083	0.41851
10.000	-0.0022393	-0.072630		10.000	0.016006	0.43451
11.000	-0.0020727	-0.074703		11.000	0.0039937	0.43851
12.000	-0.0018491	-0.076552		12.000	0.0040210	0.44253
13.000	-0.0016555	-0.078208		13.000	0.0061182	0.44865
14.000	-0.0014977	-0.079705		14.000	0.0048610	0.45351
15.000	-0.0013500	-0.081055		15.000	0.0038998	0.45741
16.000	-0.0012141	-0.082270		16.000	0.0037782	0.46119
17.000	-0.0010937	-0.083363		17.000	0.0034639	0.46465
18.000	-0.00098548	-0.084349		18.000	0.0030407	0.46769
19.000	-0.00088748	-0.085236		19.000	0.0027409	0.47043
20.000	-0.00079927	-0.086035		20.000	0.0024879	0.47292
RM = -0.0932	852		LRM =	0.495419		

FIG.3 FIG.4

The results make sense, infact they says that:

- If Price goes up by 100% the consumption goes down by ~ 2%, as we know gasoline is primary for our lives so there is almost anaelasticity, so we can't consume THAT less if we want to keep our jobs, goods in supermarkets etc..., BUT, in the long term, we could find other ways such as more public transports, bicycles perhaps or smart working and so it would decrease by ~ 9%, that, considering the good, is quite a lot in my opinion.
- if GDP goes up by 100% the consumption goes up by ~ 84% which is quite understandable because people will spend more maybe for some trip out of town or whatever. The long term multiplier instead is 49% so this trend should continue but people, maybe, will save more money because of marginal propensity to consume that becomes lower at higher incomes.

PS:

In the script i sent there is anther model, more parsiomonious, with "time" feature in order to modelling the trend, said that, the gdp long run multiplier is weird so i preferred the first model even if the are a lot of non-significant lags.