110AH Section Worksheet 5

Warm-up. Describe the correspondence between subgroups of G/N and subgroups of G that contain N. Use this to classify the subgroups of $\mathbb{Z}/n\mathbb{Z}$ and in particular the group $\mathbb{Z}/p^n\mathbb{Z}$ from last week's warm-up.

Universal property of quotients. The following diagram illustrates the universal property for group quotients. State it precisely, and prove it.

Group presentations. Last week we defined the dihedral group of order 2n using the *group presentation*

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle.$$

In general, given a set of symbols S and a set of relations R which are words in these symbols, the group $\langle S \mid R \rangle$ is the quotient of the free group generated by S by the normal subgroup generated by R. Find a presentation of the groups \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z}$. Complete the recipe (from two weeks ago) for the pushout of $f: A \to C$ and $g: B \to C$.

Quotients of D_8 . Recall that the subgroups of D_8 are as follows:

For each normal subgroup $N \subseteq D_8$, compute D_8/N .

Group operation on cosets.

- Review the argument that for $N \leq G$, the operation (aN)(bN) = (ab)N on G/N is well-defined.
- For each nonnormal subgroup $H \leq D_8$, explain why the operation on D_8/H is not well-defined. *Hint*: Recall that K fixes L_0 whereas rK swaps L_0 and L_1 (ditto with primes).

Solution. Letting $q: G \to G/N$ denote the quotient map, the correspondence is $\overline{H} \mapsto q^{-1}(\overline{H})$ and $q(H) \leftrightarrow H$ The subgroups of $\mathbb{Z}/n\mathbb{Z}$ are therefore the image under q of the subgroups containing $n\mathbb{Z}$, which are just $d\mathbb{Z}$ for $d \mid n$, i.e. they are the subgroups that are generated by a divisor of n.

Solution. Let $N \subseteq G$ be a normal subgroup of a group G, and denote by $q \colon G \to G/N$ the quotient map. The universal property of G/N is that for every homomorphism $f \colon G \to X$ that is trivial on N, there exists a unique homomorphism $\overline{f} \colon G/N \to X$ such that $\overline{f}q = f$. Indeed, the definition $\overline{f}(gN) = f(g)$ is forced, and this is well-defined because if gN = g'N, then $f(g) = f(gg^{-1}g') = f(g')$. \square

Solution. Certainly $\mathbb{Z} = \langle a \mid \varnothing \rangle$ via the isomorphism $1 \mapsto a$. Thus

$$\mathbb{Z}/n\mathbb{Z} = \langle a \mid \varnothing \rangle / \langle a^n \rangle = \langle a \mid a^n = 1 \rangle.$$

Finally, noting that $\mathbb{Z} \times \mathbb{Z}$ is generated by (1,0) and (0,1) but that (1,0) and (0,1) commute, the best guess for a presentation is $\langle a,b \mid aba^{-1}b^{-1}\rangle$. Indeed

$$\mathbb{Z} \times \mathbb{Z} \iff \langle a, b \mid aba^{-1}b^{-1} \rangle$$
$$(n, m) \iff a^{n}b^{m}$$

exhibit inverse homomorphisms, where the reverse map exists by the universal property of quotients. \Box

Solution. Obviously D_8/K , D_k/C_4 , and D_8/K' are all C_2 since they have order two. Now D_8/C_2 has order four, hence is either Klein-four or C_4 . It is the former because the elements sC_2 , rC_2 , srC_2 all have order two.

Solution. The operation (aN)(bN) = (ab)N is well-defined by the following argument. Let $n, m \in N$. By normality $b^{-1}Nb = N$, so nb = bn' for some $n' \in N$. Therefore

$$((an)N)((bm)N) = (anbm)N = (abn'm)N = (ab)N.$$

Concretely, if $b^{-1}Hb \neq H$, then picking $b^{-1}hb \notin H$ shows that

$$((ah)H)(bH) = (ahb)H = ab(b^{-1}hb)H \neq (ab)H = (aH)(bH).$$

Thus for example for L_0 , we have $r^{-1}sr \notin L_0$, so

$$(sL_0)(rL_0) = (sr)L_0 \neq rL_0 = (L_0)(rL_0).$$