

Widar2.0

Passive Human Tracking with a Single Wi-Fi Link

Kun Qian¹, Chenshu Wu², Yi Zhang¹, Guidong Zhang¹, Zheng Yang¹, Yunhao Liu^{1,3}

¹Tsinghua University ²University of Maryland, College Park ³Michigan State University

Motivation

Need for passive localization.

Smart Home

Health Monitoring

Intruder Detection

- RF radios VS. Cameras
 - Less privacy concern.
 - Larger surveillance area.
 - More ubiquitous deployment.

Motivation

• RF-based tracking thrives with prevail RF devices.

mmWave

RFID

FMCW Radar

Our Early Effort

Widar – Tracking with Doppler Frequency Shifts.

- Widar requires,
 - DFS from Multiple links to compute velocity.
 - Trial and error to resolve direction ambiguity.
 - Costly search to spot the initial location.

MobiHoc '17

State of the Arts

	WiTrack[1]	WiDeo[2]	Widar[3]	D. Music[4]	IndTrack[5]	LiFS[6]
Technique	FMCW	FD Wi-Fi	Wi-Fi	Wi-Fi	Wi-Fi	Wi-Fi
Parameter	ToF	ToF, AoA	DFS	AoA	AoA, DFS	Attenuation
#Link	(1,1)/2	(1,1)/1	(1,2)/6	(2,2)/4	(1,2)/2	(4,7)/40
#Rx Ant.	1 x 2	4 x 1	6 x 1	3 x 2	3 x 2	-
Range	9 m	10 m	4 m	8 m	6 m	12 m
Accuracy	0.3 m	0.7 m	0.35 m	0.6 m	0.48 m	0.7 m

- Existing approaches either requires,
 - Single link but specialized hardware → less ubiquitous
 - Commercial devices but multiple links → less practical

Key Idea

- Can we achieve both ubiquity and practicality?
 - Yes! Using a single commercial Wi-Fi link.

Widar2.0 – Tracking with ToF, AoA and DFS.

System Overview

CSI Model

Due to multipath effect, CSI is modelled as:

$$H(t,f,s) = \sum_{l=1}^{L} P_{l}(t,f,s) + N(t,f,s) = \sum_{l=1}^{L} \alpha_{l}(t,f,s)e^{-j2\pi f \tau_{l}(t,f,s)} + N(t,f,s)$$

• The delay of the l-th path $\tau_l(i,j,k)$ is a combination of ToF τ_l , DFS f_{D_l} and AoA $\phi_l = (\cos\phi_l,\sin\phi_l)^{\mathrm{T}}$:

Parameter Estimation

• The MLE of $\theta_l = (\alpha_l, \tau_l, \phi_l, f_{D_l})$ for all paths, $\mathbf{\Theta} = (\theta_l)_{l=1}^L$ is formulated as:

$$\Lambda(\Theta; H) = -\sum_{i,j,k} \left| H(i,j,k) - \sum_{l=1}^{L} P_l(i,j,k;\theta_l) \right|^2$$

- L # of multi path.
 - L should be larger than # of principle multi path.
 - L = 5, for sake of computation cost.
- Practical data input.
 - 3 antennas; 30 Subcarriers; 100 Packets (~0.1 s).

SAGE Algorithm

- SAGE algorithm is a general version of EM algorithm.
 - Re-estimate only a subset of parameters in each iteration.
- E Step.

$$\hat{p}_l(i,j,k;\widehat{\Theta}') = P_l(i,j,k;\widehat{\theta}'_l) + \beta_l \left(H(i,j,k) - \sum_{l'=1}^L P_l(i,j,k;\widehat{\theta}'_{l'}) \right)$$

• M - Step.

$$\begin{split} \hat{\tau}_{l}'' &= argmax_{\tau}\{|z(\tau, \hat{\phi}_{l}', \hat{f}_{D_{l}}'; \hat{p}_{l}(i, j, k; \hat{\Theta}')|\} \\ \hat{\phi}_{l}'' &= argmax_{\phi}\{|z(\hat{\tau}_{l}'', \phi, \hat{f}_{D_{l}}'; \hat{p}_{l}(i, j, k; \hat{\Theta}')|\} \\ \hat{f}_{D_{l}}'' &= argmax_{f_{D}}\{|z(\hat{\tau}_{l}'', \hat{\phi}_{l}'', f_{D}; \hat{p}_{l}(i, j, k; \hat{\Theta}')|\} \\ \hat{\alpha}_{l}'' &= \frac{z(\hat{\tau}_{l}'', \hat{\phi}_{l}'', \hat{f}_{D_{l}}''; \hat{p}_{l}(i, j, k; \hat{\Theta}')}{TFA} \\ z(\tau, \phi, f_{D}; P_{l}) &= \sum_{i, j, k} e^{2\pi\Delta f_{j}\tau_{l}} e^{2\pi f_{c}\Delta s_{k} \cdot \phi_{l}} e^{-2\pi f_{D}l\Delta t_{i}} P_{l}(i, j, k) \end{split}$$

CSI Cleaning

 However, CSI contains not only channel response, but also various unknown phase noises:

$$\widetilde{H}(i,j,k) = H(i,j,k)e^{2\pi(\Delta f_j \epsilon_{t_i} + \Delta t_i \epsilon_f)}$$

- [SpotFi'15]: The linear regression calibration fails.
 - Weak reflection from human body.

Conjugate Multiplication

 Our Solution: Conjugate multiplication between each antenna and chosen reference antenna.

$$C(i,j,k) = \widetilde{H}(i,j,k) * \widetilde{H}^*(i,j,k_0)$$

• By classifying multipath into static signals P_s ($f_D = 0$) and dynamic signals P_d ($f_D \neq 0$), we have:

$$\begin{split} C(i,j,k) &= \sum_{n_1,n_2 \in P_S} P_{n_1}(i,j,k) P_{n_2}^*(i,j,k_0) \\ &+ \sum_{l \in P_d,n \in P_S} \underbrace{P_l(i,j,k) P_n^*(i,j,k_0)}_{\text{Target term}} + P_n(i,j,k) P_l^*(i,j,k_0) \\ &+ \sum_{l_1,l_2 \in P_d} P_{l_1}(i,j,k) P_{l_2}^*(i,j,k_0) \end{split}$$

• Phase structure is preserved:

$$P_l(i,j,k)P_n^*(i,j,k_0) = \alpha_l \alpha_n^* e^{-2\pi\Delta f_j(\tau_l - \tau_n) - 2\pi f_c \Delta s_k \cdot \phi_l + 2\pi f_{D_l} \Delta t_i}$$

Path Matching

Multipath parameters are cluttered together.

Example of parameter estimates.

Our approach: Graph-based Path Matching (GPM).

Range Refinement

- Range estimation with ToF or DFS
 - ToF \rightarrow coarse estimate of absolute range.
 - DFS → fine estimate of change rate of range (WiDar).
- We adopt Kalman smoother to refine range with both ToF and DFS.

Example of range refinement.

Experiment

- Implementation
 - Thinkpad laptops with Intel 5300 NIC.
- Setup
 - 3 scenarios: classroom, corridor, office.

Tracking samples

Overall Performance

Overall Localization Accuracy

Performance Comparison

- Widar2.0 achieves median tracking errors of 0.75 m and 0.63 m, with one and two links respectively.
- Widar2.0 outperforms [Dynamic-Music'16], and has a shorter error tail than [IndoTrack'17].

Impact of Sampling Rate

- Widar2.0 works even with 250 pkts/sec.
 - The minimum rate is 200 pkts/sec, for uniqueness of DFS.
- Corresponding per second processing time is 0.7 s.
 - Real-time tracking with Widar2.0.

Conclusion

- From Widar1.0 to Widar2.0
 - From 2 links to 1 single link.
 - A unified model of ToF, AoA and DFS.
 - CSI calibration for weak reflection path.
 - Robust parameter matching and refinement for localization.

- Decimeter-level passive tracking system.
 - Median location error of 75cm with one single link.
 - In a larger 6 m x 5 m area.

Thanks! Q&A

Kun Qian

Tsinghua University

qiank10@gmail.com http://tns.thss.tsinghua.edu.cn/~qiankun/

Overall Performance

- Contribution of individual modules
 - Path matching 0.09 m
 - Range refinement 0.13 m

Impact of Walking Diversity

Walking Direction

Walking Distance

- Tracking error reduces with more links and larger incident angles between link and walking direction.
- Widar2.0 avoids accumulation error with estimation of absolute ToF.

Impact of Context Diversity

- Tracking error slightly increases with tracking area.
 - Weaker reflection.
 - Smaller DFS.
- Consistent accuracy is achieved with multiple testers.