AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. A method of processing a silver halide photosensitive material comprising:

processing, with a developer in which a solution physical development arises, the silver halide

photosensitive material containing at least one compound selected from the group consisting of

compounds of the following types 1 to 4:

(Type 1)

a compound capable of undergoing a one-electron oxidation to thereby form a one-

electron oxidation product thereof, wherein the one-electron oxidation product is capable of

releasing further two or more electrons accompanying a subsequent bond cleavage reaction;

(Type 2)

a compound capable of undergoing a one-electron oxidation to thereby form a one-

electron oxidation product thereof, wherein the one-electron oxidation product is capable of

releasing further one electron accompanying a subsequent carbon-carbon bond cleavage reaction,

and the compound having, in its molecule, two or more groups adsorptive to silver halide;

(Type 3)

a compound capable of undergoing a one-electron oxidation to thereby form a one-

electron oxidation product thereof, wherein the one-electron oxidation product is capable of

2

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/658,607

releasing further one or more electrons after going through a subsequent bond forming reaction; and

(Type 4)

a compound capable of undergoing a one-electron oxidation to thereby form a oneelectron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further one or more electrons after going through a subsequent intramolecular ring cleavage reaction.

2. (original): The method of processing a silver halide photosensitive material according to claim 1, wherein the compound of type 1 is represented by the allowing general formula (1-1) or (1-2), the compound of type 2 is represented by the following general formula (2), the compound of type 3 is represented by the following general formula (3), and the compound of type 4 is represented by the following general formula (4-1) or (4-2):

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/658,607

RED₃—L₃—Y₃ (3)

$$R_{44}$$
 R_{43} (4-1)

 R_{40} R_{42} R_{41} R_{49} R_{48} R_{45} R_{46} R_{45} R_{46} R_{45} R_{46}

wherein in the general formula (1-1), RED₁₁ represents a reducing group; L_{11} represents a split-off group; R_{112} represents a hydrogen atom or substituent; and R_{111} represents a group of nonmetallic atoms capable of forming a cyclic structure corresponding to a tetrahydro form, hexahydro form or octahydro form of a 5-membered or 6-membered aromatic ring (including an aromatic heterocycle) together with the carbon atom (C) and RED₁₁,

wherein in the general formula (1-2), RED₁₂ and L₁₂ have the same meanings as those of RED₁₁ and L₁₁ of the general formula (1-1), respectively; each of R₁₂₁ and R₁₂₂ represents a hydrogen atom or substituent capable of substituting on the carbon atom; and ED₁₂ represents an electron-donating group, wherein the groups R₁₂₁ and RED₁₂, the groups R₁₂₁ and R₁₂₂, or the groups ED₁₂ and RED₁₂ may be bonded with each other to thereby form a cyclic structure,

wherein in the general formula (2), RED_2 has the same meaning as that of RED_{12} of the general formula (1-2); L_2 represents a split-off group; and each of R_{21} and R_{22} represents a hydrogen atom or substituent, wherein RED_2 and R_{21} may be bonded with each other to thereby

form a cyclic structure, provided that the compound represented by the general formula (2) is a

compound having, in its molecule, two or more groups adsorptive to silver halide,

wherein in the general formula (3), RED₃ has the same meaning as RED₁₂ of the general

formula (1-2); Y₃ represents a reactive group having a carbon-carbon double bond moiety or a

carbon-carbon triple bond moiety, which moiety being capable of forming a new bond by

reacting with a one-electron oxidized RED₃, and L₃ represents a linking group that links between

RED₃ and Y_3 ,

wherein in the general formulae (4-1) and (4-2), each of RED₄₁ and RED₄₂ has the same

meaning as RED₁₂ of the general formula (1-2); each of R₄₀ to R₄₄ and R₄₅ to R₄₉ represents a

hydrogen atom or substituent; and in the general formula (4-2), Z₄₂ represents -CR₄₂₀R₄₂₁-, -

NR₄₂₃- or -O-, wherein each of R₄₂₀ and R₄₂₁ represents a hydrogen atom or substituent; and R₄₂₃

represents a hydrogen atom, alkyl group, aryl group or heterocyclic group.

3. (original): The method of processing a silver halide photosensitive material according

to claim 1, wherein the compound selected from the group consisting of those of types 1 to 4 is

one having, in its molecule, an adsorptive group or a partial structure of sensitizing dye.

Claims 4-8 (Canceled).

5