Ohv50: Behavioral Research Methods 2

Dealing with data

Multiple regression (1)

(canvas.tue.nl)

Chris Snijders

c.c.p.snijders@gmail.com

Today's program

We went through

- · Stata, Oncourse
- $\cdot \quad X \rightarrow Y$
- The general logic behind hypothesis testing $(H_0, alpha, ...)$
- CAT X CAT: chi2 + Fisher's exact
- CAT(2) X INT: ttest, ranksum, median
- INTERVAL x INTERVAL: pwcorr, reg
- (sample size determination)

And continue with...

Multiple regression (1Y, more X's)

Stata commands

reg
predict
i.[var]
tab [var], gen(...)
test

To Do (deadline: 2016)

Assignment

re-take the test (check the separate module), the separate module) and score at least 31 out of 36

(unlimited attempts)

Wiki data: wine prices

Orley Ashenfelter, Princeton

Y = wine price

X1 = rainfall during the Oct-March

X2 = average summer temperature (Apr/Sept)

X3 = rainfall during the harvest time (Aug/Sept)

(X4 = the wine is a red wine)

(X5 = the type of grape: Pinot Noir / Syrah /
 Cabernet)

http://www.liquidasset.com/

THIS WEEK's WIKI:

Predict the value of a bottle of wine from rainfall and temperature data: multiple regression.

Multiple regression: what it is

Y is an interval variable("the thing you are trying to predict")

- X's can be basically anything:
 - Interval variable
 - (Ordinal variable)
 - Categorical (2 categories)
 - Categorical (>2 categories)

("the things you use to predict Y with")

But: you have to know how to include them in the model!

AFTER TODAY YOU SHOULD BE ABLE TO:

 RUN (SEQUENCES OF) MULTIPLE REGRESSION ANALYSIS

- ... INCLUDING THOSE WITH CATEGORICAL VARIABLES

- ... AND BEING ABLE TO INTERPRET
 THE OUTPUT

Main data file: traffic.dta

	dangerous	female	age	kmyear	RELIGION
1	0	1	51	2500	overig chri
2	0	0	45	5000	geen
3	0	0	36	12000	boeddhistis
4	0	0	46	15000	geen
5	0	1	41	2000	geen
6	1	0	23	20000	rooms-katho
7	0	0	54	11000	samen-op-we
8	0	0	53	6000	geen
9	6	0	25	45000	geen
10	1	0	23	6000	geen
11	0	0	22	2100	geen
12	1	0	22	5000	geen
13	0	0	35	12000	rooms-katho.
14	•0	1	35	20000	geen
15	0	1	52	20000	rooms-katho
16	1	0	61	15000	rooms-katho
17	2	0	53	15000	rooms-katho.
18	2	0	52	40000	anders, nl.
19	5	0	28	10000	islamitisch
20	1	0	34	15000	geen
21	0	0	51	3000	geen
22	6	0	37	35000	geen
23	4	1	26	40000	geen
24	2	0	43	15000	geen
25	3	1	29	15000	geen
26	4		32	30000	geen
	φ ₋		6.00-06		
	Density -	_	Density 4.0e-05		

Ó

2 4 Many traffic violations

Multiple regression: predict Y from a set of X's

You have a target variable (Y) that you want to predict using predictor variables X_1 through X_n using:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_n X_n$$

where the b_i's have to be found in such a way that the estimated Y is close to the real Y.

Usually there are two reasons to want this:

- Predicting (example: weather / stock market)
- Understanding (example: see traffic-data)

Using this model is usually called

- Multiple regression analyses
- "Ordinary Least Squares" (OLS)

Some typical target variables ...

Y = creditworthiness

Y = likelihood to buy stuff / willingness to pay

Y = likelihood of (e.g., tax) fraud

Y = expected number of hamburgers

Y = "value" of job candidates

Y = social status

Y = voltage as administered to other

Y = score on IQ test

Y = ...

Reminder

Simple regression:

Y is interval, and X is interval

Simple regression: Y and one X. Behind the scenes ...

"Ordinary least squares":

We define a concept of "wrongness", or deviation: it is the distance of the prediction to the real value, squared.

deviation = \sum (observed – model)²

Choose the b's so that the deviance is minimized.

Today's data:

traffic.dta

Different kinds of X-vars

Y X

dangerous kmsperyear (INT)

dangerous female (CAT-2)

dangerous kmsperyear & female

Example: One Y, one (binary) X

Suppose I want to predict some target Y

For instance:

Y = number of regularly committed traffic violations (out of 7) variable < dangerous>

My first guess: an important predictor is *gender*. Males are more reckless drivers so they will make more traffic violations

So X_1 = female, equal to 1 when the respondent is female and 0 otherwise, and the model with the best fit (this you get from Stata) is:

dangerous = 1.48 - 0.66 female

And this implies ...

dangerous = 1.48 - 0.66 female

So my best estimate for females equals:

dangerous =
$$1.48 - 0.66 * 1 = 0.82$$

and for males we get

dangerous =
$$1.48 - 0.66 * 0 = 1.48$$

NOTE

Gender has two categories and:

- 1/ we do not label the variable <gender>, but choose a name that implies the direction of the coding
- 2/ we need only one variable, even though we have two categories
- 3/ as a prediction, this (obviously) totally sucks

2 categories, 1 dummy

Including both the variables MALE and FEMALE is in fact not only not helping, it is impossible:

ONLY FEMALE:

DANGEROUS

$$= c0 + c1 FEMALE$$

BOTH MALE AND FEMALE:

DANGEROUS

$$= b0 + b1$$
 FEMALE $+ b2$ MALE

$$= b0 + b1 FEMALE + b2 (1 - FEMALE)$$

$$= b0 + b2 + (b1 - b2)$$
 FEMALE

And we end up with an unidentified system: (for instance (1,1,1) and (2,0,0) are the same model).

(continued)

Possible additional argument: "We have an intervening variable here. Males tend to drive more kms per year. So the difference that you find is not because of gender differences, but because men drive more kms per year."

[Solution 1] Split the data in two groups: <high mileage> and <low mileage>. Run simple regression analysis separately for both groups. This is possible, but has serious drawbacks. Why?

[Solution 2] Multiple regression: include < kms per year> as a second predictor.

dangerous = $b_0 + b_1$ male + b_2 kmsperyear

If we find that the b₁ variable is now much closer to zero, we have shown that it is not gender that shows the effect, but instead how often you drive ("explaining away the effect of gender").

(this is one of the reasons why we want MULTIPLE regression: "explaining away")

...and this is what we get

. reg dangerous female										
Source	SS	df	MS		Number of obs	= 720				
Model Residual	79.3955695 1277.79887				F(1, 718) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0585				
Total	1357.19444	719 1.88	761397		Root MSE	= 1.334				
dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
female _cons	6641665 1.482094	.099437 .070019	-6.68 21.17	0.000	8593884 1.344627	4689445 1.61956				

Source	SS	df	M	S		Number of obs	= 7
						F(2, 717)	= 35.
Model	121.844139	2	60.922	0693		Prob > F	= 0.00
Residual	1235.35031	717	1.7229	4324		R-squared	= 0.08
						Adj R-squared	= 0.08
Total	1357.19444	719	1.8876	1397		Root MSE	= 1.31
dangerous	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interva
female	5050933	.1029	546	-4.91	0.000	7072218	30296
kmyear	.0000196	3.94e	-06	4.96	0.000	.0000118	.00002

The original effect of -0.66 diminished to -0.5 After inclusion of the [kmyear] variable.

- MR allows inclusion of more than 1 var
- Estimated coefficients show net effects ("while controlling for other vars")
- Subsequent MR's allow understanding of effects 21 3.

Some background info on multiple regression

Any statistical software can run multiple regression

- Stata
- Alternatives for Stata (MiniTab, GLIM, SPSS, Statistica, Systat...)
- Several freeware packages (for instance *R*, PSPP)
- In Excel, straight away or using plug-ins (for instance *PopTools*, which is also freeware)

(We use Stata)

Why linear?

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_n X_n$$

Especially in the social sciences, you often do not have a more precise equation for the relation between X's and Y. Most of the time, we have an idea of the kind "if X increases, then Y is likely to increase", without any specific idea about the shape of the relation. A linear model is a good start.

Small print: and: even if you have a concrete non-linear equation, often you can find a linear approximation (using Taylor-expansion, for instance) that is good enough for all practical purposes.

Moreover, the equation is linear given the predictors, but the **predictors themselves can be non-linear!** So the linearity is not that restrictive anyway. For instance:

$$dangerous = b_0 + b_1 kmspyear + b_2 kmspyear^2$$

But this can't be estimated with multiple regression ...

$$y = \frac{b_0 + b_1 x_1 + b_2 \frac{\cos(b_3 + b_4 x_4)}{\log(\sqrt{b_5 + b_6 \sin(x_6)})}}{\int \sqrt{\arctan(b_7 + b_8 x_8)}}$$

(although it could be estimated using something called nonlinear regression)

Why is it beautiful ...

- [1] You can test hypotheses about effects of predictors on targets (Xs on Y), while taking into account possibly intervening factors
- [2] It combines several "separate models" into a single analysis.

Y compared between two groups:

 \rightarrow t-test

Y compared between three groups:

→ anova

Y compared between three groups and two treatments

→ (blocked) anova

Y predicted by an interval X

→ correlation

All of these (and more) can be done with multiple regression.

[3] more complicated methods are usually a logical consequence of multiple regression.

regression vs t-test

. reg dangerou	ıs female						
Source	SS	df	MS		Number of obs	=	720
					F(1, 718)	=	44.61
Model	79.3955695	1	79.3955695		Prob > F	=	0.0000
Residual	1277.79887	718	1.77966417		R-squared	=	0.0585
					Adj R-squared	=	0.0572
Total	1357.19444	719	1.88761397		Root MSE	=	1.334
dangerous	2002	Std.	Err.	P> t	[95% Conf.	In	terval]
female	6641665	.099	431 -6.68	0 000	8593884		4689445
_cons	482094	.070	019 21 17	0.000	1.344627		1.61956
	1						

. ttest dangerous, by(female)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	363 357	1.482094 .8179272	.0800777 .0585151	1.525686 1.10561	1.324618 .7028484	1.63957 .9330059
combined	720	1 150778	.0512024	1.373905	1.052254	1.253302
diff		.6641665	.099437		.4689445	8593884

diff = mean(0) - mean(1) t = 6.6793 Ho: diff = 0 degrees of freed m = 710

Notations / definitions

Notation: the OLS-estimator for Y, "Y hat"

$$\widehat{Y} = \widehat{b_0} + \widehat{b_1} X_1 + \widehat{b_2} X_2 + \ldots + \widehat{b_n} X_n$$

is calculated by choosing values for b_i ("b_i hat") so that

deviance =
$$\sum_{obs} (Y_i - \hat{Y}_i)^2$$

is minimal, as with simple regression. (= SSR sum of squared residuals)

error =
$$Y - \hat{Y}$$

And in principle, other measures of deviance are possible → different kinds of regression

Visually, this is ...

Model fit

How well does the model fit?

Two ways to assess model fit

[1] Through the sum of squared errors (SS_R) :

$$1 - rac{SS_R(ext{full model})}{SS_T(ext{model with just } b_0)}$$

[2] Through correlation

$$(\operatorname{correlation}(y,\hat{y}))^2$$

Note that in both cases $0 \le value \le 1$

And: [1] and [2] are the same, and called

About R² and adjusted R²

Intuitively: it is easier to get higher R² values when you have more predictor variables X.

Moreover, if you only have a handful of cases, your R² can be high just coincidentally.

To compare between different models (and data sets) we use "adjusted R^2 ", which takes into account the number of X's (p) and cases (n) you have used:

$$R_{adj}^2 = 1 - rac{(1-R^2)(n-1)}{n-p-1}$$

$$R_{adj}^2 = R^2 - (1 - R^2) \, rac{p}{n - p - 1}$$

Reminder: R² is *not* an absolute criterion, you can have a high R² but have learned nothing (and even a low R² and have learned something).

Let's check:

. reg dangerous female kmyear Source SS df Number of obs = MS 720 F(2, 717) = 35.36Model 121.844139 2 60.9220693 Prob > F = 0.0000 1235.35031 717 1.72294324 R-squared Residual Adj R-squared = 0.0872 Total 1357.19444 719 1.88761397 Root MSE = 1.3126 [95% Conf. Interval] dangerous Coef. Std. Err. P>|t| female -.5050933 -4.91 0.000 -.7072218 .1029546 -.3029649 kmyear .0000196 3.94e-06 4.96 0.000 .0000118 .0000273 1.072389 .1075154 9.97 0.000 .8613068 1.283472 cons

$$egin{split} R_{adj}^2 &= 1 - rac{(1-R^2)(n-1)}{n-p-1} \ & \ R_{adj}^2 &= 1 - rac{(1-0.0898)(720-1)}{720-2-1} \end{split}$$

$$R_{adj}^2 = 0.0872$$

In comes the statistics...

(and this only happens because we want to say something about the population)

From sample to population

For several reasons, the best fitting values b-hat are not completely equal to their actual values in the population:

(NB only here the statistics comes in!)

- [1] "Measurement error"
- [2] "Sampling error"
- [3] "Uncontrolled variance"

How can we say something about the value of the b_i in the population? We need some more assumptions ...

Multiple regression:

$$y = b_0 + b_1 x_1 + \ldots + b_n x_n + \epsilon$$

with ϵ distributed as $N(0, \sigma^2)$

and ϵ does not depend on any x_i

And this implies that after running your multiple regression, you need to test whether these assumptions are met (more on those later).

For now:

And when this assumption is met...

Given that, you cannot only find best fitting values for b_i

$$\hat{y}=\hat{b}_0+\hat{b}_1x_1+\ldots+\hat{b}_nx_n$$

but also test, for each coefficient H₀: the coefficient in the population equals zero

Statistics programs give you:

- the values "b_i-hat"

and for each estimated coefficient

- a t-value (the "test statistic")
- a p-value (the estimated probability ...)
- a (95%) confidence interval

As always, the p-value represents the probability to end up with the data that you have (or further away from H_0), given that H_0 holds.

Same rule: when p<0.05, we reject H_0 .

Going through a regression table

Sums of squares: How far of with the model, compared to a base model

test-ing different H₀'s

. reg dangerous female Source SS df Number of obs = 720 F(1, 718) = 44.61Model 79.3955695 1 79.3955695 Prob > F = 0.0000 1277.79887 718 1.77966417 Residual R-squared = 0.0585 Adj R-squared = 0.0572 Total 1357.19444 719 1.88761397 Root MSE 1.334 dangerous Coef. Std. Err. P>|t| [95% Conf. Interval] female -.6641665 .099437 -6.68 0.000 -.8593884 -.4689445 1.482094 .070019 21.17 0.000 1.344627 cons 1.61956

You could test for different H0's if you want:

```
. test female = -0.5

( 1) female = -.5

F( 1, 718) = 2.73
    Prob > F = 0.0992
```

Or, another form of test

Source	SS	df	MS	Number of obs	=	720
	-			F(2, 717)	=	35.36
Model	121.844139	2	60.9220693	Prob > F	=	0.0000
Residual	1235.35031	717	1.72294324	R-squared	=	0.0898
		1 424		Adj R-squared	=	0.0872
Total	1357.19444	719	1.88761397	Root MSE	=	1.3126
dangerous	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
	*	1 21212 222	4 01	0.00070722	18	3029649
female	5050933	.1029546	-4.91	0.000		
female kmyear	5050933 .0000196	.1029546 3.94e-06		0.000 .00001	131X	.0000273

You could test for different H0's if you want:

```
. test female = kmyear

( 1) female - kmyear = 0

F( 1, 717) = 24.07
    Prob > F = 0.0000
```

Confidence intervals for the estimated coefficients

. reg dangerous female kmyear

	Source	SS	df	MS	Number of obs =	
-	Model	121 044120	2	60 0220602	F(2, 717) = Prob > F =	35.36
		121.844139 1235.35031				
	Residual	1235.35031	/1/	1./2294324	R-squared =	
_	T1	1057 10444	710	4 00764007	Adj R-squared =	
	Total	1357.19444	/19	1.88/6139/	Root MSE =	1.3126

dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	5050933	.1029546	-4.91	0.000	7072218	3029649
kmyear	.0000196	3.94e-06	4.96	0.000	.0000118	.0000273
_cons	1.072389	.1075154	9.97	0.000	.8613068	1.283472

 Confidence interval for coefficient of [female] is (-0.707, - 0.303)

$$-0.707 = -0.505 - 1.96 * 0.103$$

$$-0.303 = -0.505 + 1.96 * 0.103$$

... and the 1.96 is coming from the normal distribution.

Including different kinds of variables

(just categorical variables are a nuisance, the rest is easy)

So, once more ...

$$y = b_0 + b_1 x_1 + \ldots + b_n x_n$$

- Y has to be an interval variable

- X can be basically anything:
 - Interval
 - (Ordinal)
 - Categorical (2 categories)
 - Categorical (>2 categories)

But: you have to know how to include a categorical variable in the model!

Including a categorical variable with more than 2 categories

Suppose you want to add [religion] as a predictor for the traffic violations.

Religion has 9 categories in the data.

. fre religion

religion - Which religion?

		Freq.	Percent
Valid	1 geen	477	57.68
	2 rooms-katholiek	164	19.83
	<pre>3 samen-op-weg (of protestantse kerk in nederland)</pre>	64	7.74
	4 overig christelijk	74	8.95
	5 islamitisch	9	1.09
	6 hindoeistisch	1	0.12
	7 boeddhistisch	3	0.36
	8 joods	2	0.24
	9 anders, nl.	33	3.99
	Total	827	100.00

Let's reduce it to just the 5 largest categories:

- 1 none
- 2 roman catholics
- 3 protestant
- 4 other Christians
- 5 all others

. recode religion (1=1)(2=2)(3=3)(4=4)(5 6 7 8 9=5), gen(reliL5)
(39 differences between religion and reliL5)

RECODE of religion (Which religion?)	Freq.	Percent	Cum.
1	477	57.68	57.68
2	164	19.83	77.51
3	64	7.74	85.25
4	7.4	8.95	94.20
5	48	5.80	100.00
Total	827	100.00	

. label var reliL5 "1=none/2=romancath/3=prot/4=othChris/5=allothers"

. tab reliL5

1=none/2=ro mancath/3=p rot/4=othCh ris/5=allot hers	Freq.	Percent	Cum.
1	477	57.68	57.68
2	164	19.83	77.51
3	64	7.74	85.25
4	74	8.95	94.20
5	48	5.80	100.00
Total	827	100.00	

Including a categorical variable with more than 2 categories

Suppose you want to add [religion] as a predictor for the traffic violations.

Religion has **5** categories in our data.

What you do is: you create 5 dummy-variables:

etc.

Now you add **4** binary predictors to your regression equation! (one less than you have categories) WHY IS THAT?

This does give rise to some interpretation issues

What NOT to do

Adding a categorical variable "as is"

Source	SS	df	MS	Number of obs	5 =	726
				F(3, 716)	=	23.54
Model	121.85827	3	40.6194234	Prob > F	=	0.0000
Residual	1235.33617	716	1.72532985	R-squared	=	0.0898
				Adj R-squared	=	0.0866
Total	1357.19444	719	1.88761397	Root MSE	=	1.313
				D. +		Interval
dangerous	Coef.	Std. Err.	t	P> t [95% (Lont.	THICE VAL
dangerous female	Coef. 5047758	.1030856		0.00070716		•
			-4.90		519	3023896 .0000273
female	5047758	.1030856	-4.90 4.96	0.00070716	519 118	3023896

. tab reliL5			
1=none/2=ro mancath/3=p rot/4=othCh ris/5=allot	-		6
hers	Freq.	Percent	Cum.
1	477	57.68	57.68
2	164	19.83	77.51
3	64	7.74	85.25
4	74	8.95	94.20
4 5	74 48	8.95 5.80	94.20 100.00

Stata won't tell you, but this is nonsense (try interpreting the coefficient)

Creating "dummy-vars" in Stata (all ok)

```
tab reliL5, gen(r)
gen r1 = (reliL5==1)
gen r2 = (reliL5==2)
gen r3 = (reliL5==3)
gen r4 = (reliL5==4)
gen r5 = (reliL5==5)
forvalues i=1/5 {
      gen r`i' = (reliL5==`i')
xi i.reliL5
      (nb this last one creates only 4 categories)
```

 $danger = b_0 + b_1 female + b_2 kmsperyear + \dots$

 $+c_2\text{reli}_2+\ldots+c_5\text{reli}_5$

reg dange fem km r2 r3 r4 r5

SS	df	MS	Number of obs	=	720
			F(6, 713)	=	12.31
127.349847	6	21.2249746	Prob > F	=	0.0000
1229.8446	713	1.72488723	R-squared	=	0.0938
			Adj R-squared	=	0.0862
1357.19444	719	1.88761397	Root MSE	=	1.3133
	127.349847 1229.8446	127.349847 6 1229.8446 713	127.349847 6 21.2249746 1229.8446 713 1.72488723	F(6, 713) 127.349847 6 21.2249746 Prob > F 1229.8446 713 1.72488723 R-squared Adj R-squared	F(6, 713) = 127.349847

Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	dangerous
3043346	7105733	0.000	-4.90	.1034583	507454	female
.0000273	.0000118	0.000	4.96	3.94e-06	.0000196	kmyear
.1734454	3290812	0.543	-0.61	.1279803	0778179	r2
.1678007	5406292	0.302	-1.03	.1804184	1864143	r3
.5544353	1481391	0.257	1.14	.1789272	.2031481	r4
.371284	5136597	0.752	-0.32	.2253719	0711879	r5
1.320238	.8607305	0.000	9.32	.1170245	1.090484	_cons

(sidenote)

. reg dangerous female kmyear r1 r2 r3 r4 r5 note: r3 omitted because of collinearity Source SS df MS Number of obs 720 F(6, 713) 12.31 = Model Prob > F 127.349847 6 21.2249746 0.0000 = Residual 1229.8446 R-squared 713 1.72488723 0.0938 Adj R-squared 0.0862 = Total 1357.19444 Root MSE 719 1.88761397 1.3133 dangerous Coef. Std. Err. t P>|t| [95% Conf. Interval] female -.507454 .1034583 -4.900.000 -.7105733 -.3043346 kmyear .0000196 3.94e-06 4.96 0.000 .0000118 .0000273 .1804184 0.302 r1 .1864143 1.03 -.1678007 .5406292 r2 .1085964 .2014052 0.54 0.590 -.2868218 .5040145 r3 (omitted) 0 r4 .3895624 .2368902 1.64 0.101 -.0755233 .8546481 .1152264 .2743848 0.42 0.675 -.4234724 r5 .6539252 .9040701 .1910915 4.73 0.000 .5289009 1.279239 _cons

reg dange fem km r2 r3 r4 r5

dangerous	Coef.
female	507454
kmyear	.0000196
r2	0778179
r3	1864143
r4	.2031481
r5	0711879
_cons	1.090484

- Tell me [female], [kmyear] and the [reliL5] category and I will give you a prediction
- If female, then 0.5 lower score on [dangerous]
- If 10.000 km/year more, then 0.196 higher on [dangerous]

reg dange fem km r2 r3 r4 r5

dangerous	Coef.
female	507454
kmyear	.0000196
r2	0778179
r3	1864143
r4	.2031481
r5	0711879
_cons	1.090484

It's different for the dummyvariables ...

Let's come up with predictions per religious category, say, for males who drive 10.000 kms per year:

```
r1: 1.09+0*-0.5 + 0.196 + 0

r2: 1.09+0*-0.5 + 0.196 - 0.0778

r3: 1.09+0*-0.5 + 0.196 - 0.1864

r4: 1.09+0*-0.5 + 0.196 + 0.2031

r5: 1.09+0*-0.5 + 0.196 - 0.0712
```

reg dange fem km r2 r3 r4 r5

dangerous	Coef.
female	507454
kmyear	.0000196
r2	0778179
r3	1864143
r4	.2031481
r5	0711879
_cons	1.090484

Let's come up with pred religious category, say, drive 10.000 kms per y

You indeed need only 4 (not 5).

The coefficients of the categories represent the difference between the given category and the one that you left out!

```
r1: 1.09+0*-0.5 + 0.196 + 0

r2: 1.09+0*-0.5 + 0.196 - 0.0778

r3: 1.09+0*-0.5 + 0.196 - 0.1864

r4: 1.09+0*-0.5 + 0.196 + 0.2031

r5: 1.09+0*-0.5 + 0.196 - 0.0712
```

. reg dang female kmyear r2 r3 r4 r5

Source	SS	df	MS	Number of obs	=	7
4			PODE-CO.	F(6, 713)	=	12.
Model	127.349847	6	21.2249746	Prob > F	=	0.00
Residual	1229.8446	713	1.72488723	R-squared	=	0.09
200 117 -				Adj R-squared	=	0.08
Total	1357.19444	719	1.88761397	Root MSE	=	1.31

dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	507454	.1034583	-4.90	0.000	7105733	3043346
kmyear	.0000196	3.94e-06	4.96	0.000	.0000118	.0000273
r2	0778179	.1279803	-0.61	0.543	3290812	.1734454
r3	1864143	.1804184	-1.03	0.302	5406292	.1678007
r4	.2031481	.1789272	1.14	0.257	1481391	.5544353
r5	0711879	.2253719	-0.32	0.752	5136597	.371284
_cons	1.090484	.1170245	9.32	0.000	.8607305	1.320238

. reg dang female kmyear r1 r3 r4 r5

Source	22	a i	rı 5	Number of obs	=	120
			50 V2	F(6, 713)	=	12.3
Model	127.349847	6	21.2249746	Prob > F	=	0.000
Residual	1229.8446	713	1.72488723	R-squared	=	0.0938
			1	Adj R-squared	=	0.0862
Total	1357.19444	719	1.88761397	Root MSE	=	1.3133

dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	507454	.1034583	-4.90	0.000	7105733	3043346
kmyear	.0000196	3.94e-06	4.96	0.000	.0000118	.0000273
r1	.0//81/9	.1279803	0.61	0.543	1734454	.3290812
r3	1085964	.2014052	-0.54	0.590	5040145	.2868218
r4	.280966	.2001641	1.40	0.161	1120156	.6739476
r5	.00663	.2429129	0.03	0.978	47028	.4835401
_cons	1.012667	.1450566	6.98	0.000	.7278774	1.297456

. reg dang female kmyear r2 r3 r4 r5

720	s =	er of ob	Numb	MS	df	SS	Source
12.31	=	713)	- F(6	W0000	94,529.5		
0.0000	=) > F	Prot	21.2249746	6	127.349847	Model
0.0938	=	uared	R-so	1.72488723	713	1229.8446	Residual
0.0862	ed =	R-square	- Adj				
1.3133	=	MSE	7 Root	1.88761397	719	1357.19444	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	dangerous
3043346	5733	7105	0.000	-4.90	.1034583	507454	female
.0000273	118	.0000	0.000	4.96	3.94e-06		
.1734454	812	3290	0.543	-0.61	.1279803	0778179	r2
.1678007	5292	5406	0.302	-1.03	.1804184	1864143	r3
.5544353	1391	1481	0.257	1.14	.1789272	.2031481	r4
.371284	5597	5136	0.752	-0.32	.2253719	0711879	r5
1.320238	7305	.8607	0.000	9.32	.1170245	1.090484	cons

. reg dang female kmyear r1 r3 r4 r5

	Source	SS	df	MS	Number of obs	=	720
3				27	F(6, 713)	=	12.31
	Model	127.349847	6	21.2249746	Prob > F	=	0.0000
	Residual	1229.8446	713	1.72488723	R-squared	=	0.0938
					Adj R-squared	=	0.0862
	Total	1357.19444	719	1.88761397	Root MSE	=	1.3133

dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	507454	.1034583	-4.90	0.000	7105733	3043346
кшуеаг	.00100190	3.94e-06	4.96	0.000	.0000118	.0000273
r1	.0778179	.1279803	0.61	0.543	1734454	.3290812
r3	1085964	.2014052	-0.54	0.590	5040145	.2868218
r4	.280966	.2001641	1.40	0.161	1120156	.6739476
r5	.00663	.2429129	0.03	0.978	47028	.4835401
cons	1.012667	.1450566	6.98	0.000	.7278774	1.297456

dangerous	Coef.
female	507454
kmyear	0000196
r2	0778179
r3	1864143
r4	.2031481
r5	0711879
_cons	1.090484

dangerous	Coef.
female	507454
kmyear	0000106
r1	.0778179
r3	1085964
r4	.280966
r5	.00663
_cons	1.012667

Difference between

r2 and r1 = -0.0778

r3 and r2 = -0.0778 - (-0.1864) = 0.1086

r4 and r3 = -0.186 - 0.203 = 0.3896 (left side)

r4 and r3 = -0.1086 - 0.281 = 0.3896 (right side)

Answer:

da

For the model: NO

But you do see different values for the estimated coefficients of the dummy-variables.

This is because each coefficient says something about the difference between two categories.

r4

r4 and r3 = -0.1086 - 0.281 = 0.3896 (right side)

. reg dang female kmyear r2 r3 r4 r5

Source	SS	df	MS	Numb	er of ob	s =	720
		51065		- F(6,	713)	=	12.31
Model	127.349847	6	21.2249746	Prob	> F	=	0.0000
Residual	1229.8446	713	1.72488723	R-sq	uared	=	0.0938
				Adj	R-square	d =	0.0862
Total	1357.19444	719	1.88761397	Root	MSE	=	1.3133
	,						
dangerous	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
dangerous female	Coef.	Std. Err.	t -4.90	P> t 0.000	[95% 7105	CLEROSCO	
dangerous female kmyear				48 MAZ-47	47.505555	733	3043346
female	507454	.1034583	-4.90	0.000	7105	733 118	3043346 .0000273
female kmyear	507454 .0000196	.1034583 3.94e-06	-4.90 4.96	0.000	7105 .0000	733 118 812	3043346 .0000273
female kmyear r2	507454 .0000196 0778179	.1034583 3.94e-06 .1279803	-4.90 4.96 -0.61	0.000 0.000 0.543	7105 .0000 3290	733 118 812 292	3043346 .0000273 .1734454

9.32

0.000

.8607305

1.320238

. reg dangerous female kmyear i.reliL5

1.090484 .1170245

_cons

SS	df	MS	Number	of ob	s =	720
			- F(6, 7	13)	=	12.31
127.349847	6	21.2249746	Prob >	·F	=	0.0000
1229.8446	713	1.72488723	R-squa	red	=	0.0938
).			– Adj R-	square	d =	0.0862
1357.19444	719	1.88761397	7 Root M	ISE	2:=	1.3133
Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
507454	.1034583	-4.90	0.000	7105	733	3043346
.0000196	3.94e-06	4.96	0.000	.0000	118	.0000273
0778179	.1279803	-0.61	0.543	3290	812	.1734454
1864143	.1804184	-1.03	0.302	5406	292	.1678007
.2031481	.1789272	1.14	0.257	1481	391	.5544353
0711879	.2253719	-0.32	0.752	5136	597	.371284
1.090484	.1170245	9.32	0.000	.8607	305	1.320238
	127.349847 1229.8446 1357.19444 Coef. 507454 .0000196 0778179 1864143 .2031481 0711879	127.349847 6 1229.8446 713 1357.19444 719 Coef. Std. Err. 507454 .1034583 .0000196 3.94e-06 0778179 .12798031864143 .1804184 .2031481 .17892720711879 .2253719	127.349847 6 21.2249746 1229.8446 713 1.72488723 1357.19444 719 1.88761393 Coef. Std. Err. t 507454 .1034583 -4.90 .0000196 3.94e-06 4.96 0778179 .1279803 -0.611864143 .1804184 -1.03 .2031481 .1789272 1.140711879 .2253719 -0.32	F(6, 7) 127.349847 6 21.2249746 Prob > 1229.8446 713 1.72488723 R-squa Adj R- 1357.19444 719 1.88761397 Root M Coef. Std. Err. t P> t 507454 .1034583 -4.90 0.000 .0000196 3.94e-06 4.96 0.000 0778179 .1279803 -0.61 0.5431864143 .1804184 -1.03 0.302 .2031481 .1789272 1.14 0.2570711879 .2253719 -0.32 0.752	F(6, 713)	F(6, 713) =

Source	SS	df	MS	*1		72 12,3
Model	127.349847	6	21.22497			0.000
Residual	1229.8446	713	1.724887	You	need t	and the second second
Total	1357.19444	719	1.887613		create	.313
				dι	ımmy–	
dangerous	Coef.	Std. Err.	t	varia	ıbles fir	St erval
female	507454	.1034583	-4.90)4334
kmyear	.0000196	3.94e-06	4.96			0027
r2	0778179	.1279803	-0.61			/3445
r3	1864143	. 1804184	-1.03			7800
r4	.2031481	1789272	1.14	0.257	1481391	.554435
r5	0711879	. 2253719	-0.32	0.752	5136597	.37128
cons	1 000/18/	1170245	9.32	0.000	.8607305	1.32023

Source	SS	df	MS	No need to		12.
Model	127.349847	6	21.2249		roato	0.00
Residual	1229.8446	713	1.72488	C	reate	0.09
Total	1357.19444	719	1.88761	dummies		0.086 1.313
				first,	, but yo	u
dangerous	Coef.	Std. Err.	t	will	not hav	e erva
female	507454	.1034583	-4.90	du	ımmy–	0433
kmyear	.0000196	3.94e-06	4.96		ables in	0002
reliL5						
2	0778179	1279803	-0.61	yo	ur data	7344
3	1864143	1804184	-1.03		15 100252	6780
4	.2031481	1789272	1.14	0.257	1481391	.55443
5	0711879	2253719	-0.32	0.752	5136597	.3712
_cons	1.090484	.1170245	9.32	0.000	.8607305	1.3202

The test-command (revisited)

. reg dang female kmyear r2 r3 r4 r5

Source	SS	df	MS
Model	127.349847	6	21.2249746
Residual	1229.8446	713	1.72488723
Total	1357.19444	719	1.88761397

Number of obs	=	720
F(6, 713)	=	12.31
Prob > F	=	0.0000
R-squared	=	0.0938
Adj R-squared	=	0.0862
Root MSE	=	1.3133

dangerous	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	507454	.1034583	-4.90	0.000	7105733	3043346
kmyear	.0000196	3.94e-06	4.96	0.000	.0000118	.0000273
r2	0778179	.1279803	-0.61	0.543	3290812	.1734454
r3	1864143	.1804184	-1.03	0.302	5406292	.1678007
r4	.2031481	.1789272	1.14	0.257	1481391	.5544353
r5	0711879	.2253719	-0.32	0.752	5136597	.371284
_cons	1.090484	.1170245	9.32	0.000	.8607305	1.320238

. test r3=r4

$$(1)$$
 r3 - r4 = 0

$$F(1, 713) = 2.70$$

 $Prob > F = 0.1005$

I made a mistake here; I should have added "=0"

. test
$$r2=r3=r4=r5 = 0$$

$$(1)$$
 $r2 - r3 = 0$

$$(2)$$
 $r2 - r4 = 0$

$$(3)$$
 $r2 - r5 = 0$

$$F(3, 713) = 1.01$$

 $Prob > F = 0.3891$

The do-file

```
clear
                               // clear system
      set more off
                               // Scroll until end of output automatically
      use traffic
                               // Read in the data
      // We need a convenience command that is not standard Stata here.
      // type:
3
145
      net install renvarlab
      // This will install the command 'renvarlab'
135
14
      renvarlab, lower
                               // creates lowercase variables, I prefer this
15.
16
      recode
                religion (1=1)(2=2)(3=3)(4=4)(5 6 7 8 9=5), gen(reliL5)
      label var reliL5 "1=none/2=romancath/3=prot/4=othChris/5=allothers"
28
19
      tab reliL5, gen(r)
200
21
      reg dang female kmyear r2 r3 r4 r5
      test r2=r3=r4=r5
23
24
      reg dang female kmyear r1 r3 r4 r5
25
      test r3=r4
26
      test r1=r3=r4=r5
200
      reg dang female kmyear i.reliL5
30
3.3
```

Introducing WIKI data: airport passengers

Predict the number of passengers at an airport terminal ...

Number of passengers

day (as of May 2005) hour, minutes, passenge, weekday, quarts

Predict passenge from the rest of the data.

Passengers by time of day

Red line shows the linear trend, but how can we improve over this?

What's up next?

- Outliers
- Interaction effects and transformations of variables
- Multicollinearity
- Assumptions and their violations

Recap

- Simple regression can be run with non– INTERVAL X-variables as well
- Understanding what is going on can be based on a single regression OR on a succession of models
- Categorical variables need to be included as separate dummy-variables. You add as many dummy-variables to the model as there are categories, MINUS 1
- Measures of fit: R² and adjusted R²
- Besides estimates for the coefficients, MR gives you a test of the base hypothesis that the coefficient equals zero
- You can get an overview of the differences between the categories of a categorical variable, by considering the different dummies

To Do

- Understand multiple regression
- PRACTICE! running regression analyses!
- Check out and add to the WIKIs
- Use other online material, for instance http://www.ats.ucla.edu/stat/Stata/output/reg_Stata(long).htm
 - gives you annotated regression output

VS

