Detection of shared network bottleneck using passive WiFi traffic analysis

Oskar Haukebøe

December 14, 2023

▶ Part of earlier master thesis

- Part of earlier master thesis
- Determine whether network congestion is located on local WiFi or not

- ▶ Part of earlier master thesis
- Determine whether network congestion is located on local WiFi or not
- Know whether you can blame your family for slow internet

- ▶ Part of earlier master thesis
- Determine whether network congestion is located on local WiFi or not
- Know whether you can blame your family for slow internet
- Only uses passive measurements

TEACUP

TEACUP

▶ Server 2 → Client 2: Always the same VoIP traffic

- ► Server 2 → Client 2: Always the same VoIP traffic
- ightharpoonup Server 1 ightharpoonup Client 1:

- ► Server 2 → Client 2: Always the same VoIP traffic
- ▶ Server $1 \rightarrow$ Client 1:
 - ► Three Reno flows

- ► Server 2 → Client 2: Always the same VoIP traffic
- Server 1 → Client 1:
 - ► Three Reno flows
 - ► Three Cubic flows

- Server 2 → Client 2: Always the same VoIP traffic
- Server 1 → Client 1:
 - ► Three Reno flows
 - ► Three Cubic flows
 - ► Three BBR flows

- Server 2 → Client 2: Always the same VoIP traffic
- Server 1 → Client 1:
 - ► Three Reno flows
 - ► Three Cubic flows
 - Three BBR flows
 - One of each

- Server 2 → Client 2: Always the same VoIP traffic
- ightharpoonup Server 1 ightharpoonup Client 1:
 - ▶ Three Reno flows
 - ► Three Cubic flows
 - ► Three BBR flows
 - One of each
 - TI I
 - The above, but also with VoIP

Router settings

Buffer lengths at Router 1

- ▶ 0.5 BDP
- ▶ 1 BDP
- ▶ 1.5 BDP
- ► 2 BDP

Delay

- ▶ 10ms
- ▶ 50ms

▶ 64 different BDP + delay + capacity configurations

- ▶ 64 different BDP + delay + capacity configurations
- ▶ 192 total tests

- ► 64 different BDP + delay + capacity configurations
- ▶ 192 total tests
- ▶ 16 Hours of test time

- ▶ 64 different BDP + delay + capacity configurations
- ▶ 192 total tests
- ▶ 16 Hours of test time
- >20 hours of TEACUP run time

- ▶ 64 different BDP + delay + capacity configurations
- ▶ 192 total tests
- ▶ 16 Hours of test time
- >20 hours of TEACUP run time
- ightharpoonup ~85 000 000 datapoints in total

See if the OWD of packets traveling towards Client 1 and Client 2 are correlated

Figure: No common bottleneck

Figure: No common bottleneck

Figure: Common bottleneck

Figure: No common bottleneck

Correlation: 0.20

Figure: Common bottleneck

Correlation: 0.93

CDF graph

Traffic types

- Server 2 → Client 2: Always the same VoIP traffic
- ightharpoonup Server 1 ightharpoonup Client 1:
 - ► Three Reno flows
 - ► Three Cubic flows
 - ► Three BBR flows
 - One of each
 - ► The above, but also with VoIP

Without VoIP

Correlation of CDF I

Figure: No common bottleneck

Correlation: 0.20

Figure: Common bottleneck

Correlation: 0.93

Correlation of CDF II

Figure: No common bottleneck

► Correlation: 0.4

Figure: Common bottleneck

► Correlation: 0.9967

Correlation of CDF III

