IPSO Smart Objects and related IoT Standards

Jaime Jiménez

jaime.jimenez@ericsson.com

Table of Contents

- 1. IETF protocols: Short background on IETF work on various layers and current state.
- **2. CoAP:** What is CoAP and what does it bring to IoT.
- **3.** LwM2M: Overview on LwM2M and its device management features.
- **4. IPSO:** Overview of the IPSO Objects, usage and registry.

Internet Engineering Task Force (IETF)

IETF: dozen+ years of IoT standards

| RFC |
|------|------|------|------|------|------|----------|
| 2689 | 3485 | 3544 | 3819 | 3940 | 3941 | 4629 |
| RFC |
| 4919 | 4944 | 5049 | 5401 | 5740 | 5856 | 5857 |
| RFC |
| 5858 | 6282 | 6469 | 6568 | 6606 | 6775 | 6690 |
| RFC |
| 7049 | 7228 | 7252 | 7388 | 7390 | 7400 | 7641 |
| RFC |
7668	7744	7925	7959	8075	8132	8152
RFC	RFC	RFC	RFC	RFC	RFC	and more
8307	8323	8376	8392	8424	8516	

Connectivity WGs

Application WGs

Security WGs

Standards Device Stack

Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP)

- CoAP (RFC7252) implements HTTP's REST model
 - Simple devices: 100 to 250 KiB code and 10 to 50 KiB RAM
 - Each device can be client and server exposing resources
 - CoAP defines methods to access those resources (GET, POST, PUT,...)
 - Same key concepts borrowed from HTTP (Media types, URL, URN...)
- Has a compact 4-byte header, with simple options encoding
- Simple protocol, datagram (UDP, DTLS)
 - Reliability through header message type "CON/NON"
 - With TCP/TLS (RFC8323) support for NAT-ed environments
- The Resource Directory provides a directory service

The Constrained Application Protocol (CoAP)

- CoRELink (RFC6690) provides a link format
 - Reuses Web Linking RFC5988 for IoT.
 - Enables query parameters for discovery (lt, gt...)
 - Enables attribute and relation types (rt, if, sz).

```
<3303/0/5700>;rt="oma:lwm2m:temp";ct="0"
```

- Notifications available through observe option (RFC7641)
 - Can observe and add query parameters to the observation <3303/0/5700>?1t=0
- The "/.well-known/core" URI provides discovery
- Multiple serialization formats used with CoAP
 - SenML (RFC8428): Minimalistic JSON
 - o CBOR (RFC7049): Binary serialization
- Multiple implementations available at <u>coap.technology</u>

Lightweight M2M Protocol (LwM2M)

The LightWeight M2M Protocol (LwM2M)

- Used for REST type of Device Management
 - Runs on top of CoAP, on top of IP
 - Device = LwM2M Client = at least CoAP Server
 - LwM2M Server is the Manager entity
- Supports Resource Registration on LwM2M Server
- Provides a set of interfaces for managing of constrained devices.
 - Bootstrap: provisions device, configures keying
 - Client Registration: RFC6690 and RD
 - Information Reporting: enables event subscription
 - Device Management & Service Enablement: management operations

The LightWeight M2M Protocol (LwM2M)

- Mapping of CoAP methods (GET,POST, PUT...) to CRUD operations
- Interaction with device through simple "Objects"
 - o RWX, Access Control, Observation, Notification
 - Independent from underlying protocol stack (CoAP today)
 - Simple resource structure
 - Objects' resources are accessed with simple URIs:
 /{Object ID}/{Object Instance}/{Resource ID}
 - Multiple serializations:
 For example JSON, CBOR and raw values.
- Common repository for all Objects (OMNA)
 - Enables interoperability and reusability

The LightWeight M2M Protocol (LwM2M)

Object Name	ID	Description
LwM2M Security	0	Keying material of a LwM2M Client to access a LwM2M server.
LwM2M Server	1	Data related to a LwM2M server.
Access Control	2	Information used to check whether a LwM2M Server has access to object.
Device	3	Device related information, including device reboot and factory reset function.
Connectivity Monitoring	4	Parameters related to network connectivity.
Firmware	5	Capability to update firmware
Location	6	Device location information
Connectivity Statistics	7	Information like transmit and receive counters
OSCORE	21	Provides security at the application layer

IPSO Smart Objects (IPSO)

The IP for Smart Objects (IPSO) device stack (recap)

IPSO Object Structure

• Same URIs as LwM2M: /{Object ID}/{Object Instance}/{Resource ID}

/3300/0/5700 - 3300 Temperature Sensor - 0 Instance 0 of a Temperature Sensor - 5700 Resource having the current value

- Data Types (String, Integer, ...) as LwM2M
- Operations (Read, Write, Create...) as LwM2M
- Object Linking and Core Link
 - Object Linking is used to refer to Objects within the device.
 - Allows composition without nasty large nested structures
 - Allows for complex objects (i.e. appliance made of several sensors)
 - o CoRE Link enables query parameters: rt="urn:oma:lwm2m:temp"
- Extensible data model
 - Only few "Mandatory" Resources to enable interoperability
 - Use of versioning for model updates

IPSO Example Temperature Object

Object definition

Name	Object ID	Instances	Mandatory	Object URN
Temperature	3303	Multiple	Mandatory	urn:oma:lwm2m:3303

Resource definitions

ID	Name	Operations	Instances	Mandatory	Туре	Units	Description		
5700	Sensor Value	R	Single	Mandatory	Float				
5601	Min Measured Value	R	Single	Optional	Float				Data
5602	Max Measured Value	R	Single	Optional	Float				
5603	Min Range Value	R	Single	Optional	Float				
5604	Max Range Value	R	Single	Optional	Float				Metadata
5701	Sensor Units	R	Single	Optional	String				
5605	Reset Min and Max	X	Single	Optional	Opaque			}	Actions

Example new Object – Company X Thermostat

Object info:

Object	Object	Object URN	Multiple	Description
	ID		Instances?	
Smart	12300	urn:oma:lwm2m:x:12300	Yes	Smart Thermostat with multiple settings
Thermostat				

Resource Info:

Resource Name	Resou rce ID	Access Type	Multiple Instances ?	Mandatory	Туре	Range or Enumeration	Units	Descriptions
Sensor	5700	R	No	Mandatory	Float		Per	Temperature
Value							Units resource	measurement
Units	5500	R,W	No	Mandatory	String	ucum:degF, ucum:degC		Units for 5700
Application Type	5750	R,W	No	Optional	String			Name, e.g. "Hall Thermostat"
Cooling	5200	R	No	Optional	Boolean			1=cooling
Heating	5201	R	No	Optional	Boolean			1=heating
Heat Source	5203	R	No	Optional	String	"Emergency", "Normal"		Indicates heat source

Fan Timer Active	5204	R,W	No	Optional	Boolean			1=running
Fan Timeout	5205	R,W	No	Optional	String		UTS	Time for fan to stop
Energy Save Mode	5206	R,W	No	Optional	Boolean			1= Energy Save mode
Away Mode	5207	R,W	No	Optional	Boolean			0=Home, 1=Away
Setpoint	5208	R	No	Optional	Float			Desired Temperature
HVAC Mode	5209	R,W	No	Optional	String	"Heat", "Cool", "Heat-Cool"		System Mode
High Setpoint	5210	R,W	No	Optional	Float			Highest desired temperature
Low Setpoint	5211	R,W	No	Optional	Float			Lowest desired temperature
High Away Setpoint	5212	R,W	No	Optional	Float			Highest away mode temperature
Low Away Setpoint	5213	R,W	No	Optional	Float			Lowest away mode temperature

IPSO Smart Objects

<u>Object</u>	Object ID	<u>Object</u>	Object ID	<u>Object</u>	Object ID
Digital Input	3200	Current	<u>3317</u>	Gyrometer	<u>3334</u>
Digital Output	<u>3201</u>	Frequency	<u>3318</u>	Color	<u>3335</u>
Analogue Input	<u>3202</u>	Depth	<u>3319</u>	GPS Location	3336
Analogue Output	<u>3203</u>	Percentage	<u>3320</u>	Positioner	<u>3337</u>
Generic Sensor	<u>3300</u>	Altitude	<u>3321</u>	Buzzer	3338
Illuminance Sensor	<u>3301</u>	Load	<u>3322</u>	Audio Clip	<u>3339</u>
Presence sensor	<u>3302</u>	Pressure	<u>3323</u>	Timer	3340
Temperature Sensor	<u>3303</u>	Loudness	<u>3324</u>	Addressable Text Display	3341
Humidity Sensor	<u>3304</u>	Concentration	<u>3325</u>	On/Off Switch	3342
Power Measurement	<u>3305</u>	Acidity	<u>3326</u>	Dimmer	<u>3343</u>
Actuation	<u>3306</u>	Conductivity	<u>3327</u>		
Set Point	<u>3308</u>	Power	3328	Up/Down Control	<u>3344</u>
Load Control	<u>3310</u>	Power Factor	<u>3329</u>	Multiple Axis Joystick	<u>3345</u>
Light Control	<u>3311</u>	Distance	3330	Rate	<u>3346</u>
Power Control	<u>3312</u>	Energy	<u>3331</u>	Push Button	3347
Accelerometer	<u>3313</u>	Direction		Multi-state Selector	<u>3348</u>
Magnetometer	<u>3314</u>		3332	Bitmap	3349
Barometer	<u>3315</u>	Time	<u>3333</u>	Stopwatch	<u>3350</u>
Voltage	<u>3316</u>				

IPSO Reusable Resources

<u>Resource</u>	Resource ID	<u>Resource</u>	Resource ID	<u>Resource</u>	Resource ID	<u>Resource</u>	Resource_ID
Digital Input State	5500	X Coordinate	5528	Reset Min and Max Measured Values	5605	Reactive Power Calibration	5816
Digital Input Counter	5501	Y Coordinate	5529	Analog Output Current	5650	Power Factor	5820
Digital Input Polarity	5502	Clear Display	5530	Value Sensor Value	5700	Current Calibration	5821
Digital Input Debounce	5503	Contrast	5531	Sensor Units	5701	Reset Cumulative energy	5822
Digital Input Edge Selection	5504	Increase Input State	5532	X Value	5702	Event Identifier	5823
Digital Input Counter	5505	Decrease Input State	5533	Y Value	5703	Start Time	5824
Reset Current Time	5506	Counter	5534	Z Value	5704	Duration In Min	5825
Fractional Time	5507	Current Position	5536	Compass Direction	5705	Criticality Level	5826
Min X Value	5508	Transition Time	5537	Colour	5706	Avg Load Adj Pct	5827
Max X Value	5509	Remaining Time	5538	Application Type	5750	Duty Cycle	5828
Min Y Value	5510	Up Counter	5541	Sensor Type	5751	On/Off	5850
Max Y Value	5511	Down Counter	5542	Instantaneous active	5800	Dimmer	5851
		Digital State	5543	power Min Measured active		On Time	5852
Min Z Value	5512	Cumulative Time	5544	power	5801	Muti-state Output	5853
Max Z Value	5513	Max X Coordinate	5545	Max Measured active power	5802	Off Time	5854
Latitude	5514	Max Y Coordinate	5546	Cumulative active power	5805	Set Point Value	5900
Longitude	5515	Multi-state Input	5547	Active Power Calibration	5806	Busy to Clear delay	5903
Uncertainty	5516	Level	5548	Instantaneous reactive		Clear to Busy delay	5904
Velocity	5517			power	5810	, ,	
Timestamp	5518	Digital Output State	5550	Min Measured reactive power	5811	Bitmap Input	5910
Min Limit	5519	Digital Output Polarity	5551	Max Measured reactive	5812	Bitmap Input Reset	5911
Max Limit	5520	Analog Input State	5600	power		Element Description	5912
Delay Duration	5521	Min Measured Value	5601	Min Range reactive power	5813	UUID	5913

Example Actuation

- Actuation is handled with executionable (E) resources as well as readable and writeable ones (RW).
 - Parameters needed for actuation are passed along on resources.
 - Type and range of values are known to client based on the schema.
 - Actuation can use executable and writeable (EW) resources.

A server Write-Composite to switch off 2 light sources, dim a 3rd to 20% and set the thermostat to 18 degrees will have a JSON payload as shown in table below. Lights are all controlled by instances of IPSO Light Control Object (Object ID 3311), while thermostat is controlled by an instance of IPSO object Set Point (Object ID 3308).

```
[{"n":"/3311/0/5850", "vb":false},

{"n":"/3311/1/5850", "vb":false},

{"n":"/3311/2/5851", "v":20},

{"n":"/3308/0/5900", "v":18}]
```


Example Actuation

A command to instruct the device to perform a factory reset will have no payload and will be a simple POST to a specific resource. Factory Reset is part of LWM2M Device Object (Object ID 3).

A configuration command to use an industrial timer (Object ID 3340). The POST operation can be targeted to multiple resources like the trigger (Resource ID 5523), the duration of the time delay (Resource ID 5521) and the duration of the rearm delay after triggering (Resource ID 5525).

```
[{"n":"/3340/0/5521", "v":23},
{"n":"/3340/0/5523", "vs":""},
{"n":"/3311/0/5525", "v":20}]
```


IPSO Serialization Formats

SenML - JSON

```
[{"bn":"/3/0/","n":"0","vs":"Open
Mobile Alliance"},
{"n":"1", "vs": Lightweight M2M
Client"},
{"n":"2", "vs":"345000123"},
{"n":"3","vs":"1.0"},
{"n":"6/0","v":1},
{"n":"6/1","v":5},
{"n":"7/0","v":3800},
{"n":"7/1","v":5000},
{"n":"8/0","v":125},
{"n":"8/1","v":900},
{"n":"9","v":100},
{"n":"10","v":15},
{"n":"11/0","v":0},
{"n":"13","v":1367491215},
{"n":"14","vs":"+02:00"},
{"n":"16","vs":"U"}]
```

SenML-CBOR

```
90 a3 21 65 2f 33 2f 30 2f 00 61 30
03 74 4f 70 65 6e 20 4d 6f 62 69 6c
65 20 41 6c 6c 69 61 6e 63 65 a2 00
61 31 03 76 4c 69 67 68 74 77 65 69
67 68 74 20 4d 32 4d 20 43 6c 69 65
6e 74 a2 00 61 32 03 69 33 34 35 30
30 30 31 32 33 a2 00 61 33 03 63 31
2e 30 a2 00 63 36 2f 30 02 01 a2 00
63 36 2f 31 02 05 a2 00 63 37 2f 30
02 19 0e d8 a2 00 63 37 2f 31 02 19
13 88 a2 00 63 38 2f 30 02 18 7d a2
00 63 38 2f 31 02 19 03 84 a2 00 61
39 02 18 64 a2 00 62 31 30 02 0f a2
00 64 31 31 2f 30 02 00 a2 00 62 31
33 02 1a 51 82 42 8f a2 00 62 31 34
03 66 2b 30 32 3a 30 30 a2 00 62 31
36 03 61 55
```

SenML-CBOR diagnostic

```
[\{-2: "/3/0/", 0: "0", 3: "Open \}]
Mobile Alliance"}, {0: "1", 3:
"Lightweight M2M Client"},
{0: "2", 3: "345000123"},
{0: "3", 3: "1.0"},
\{0: "6/0", 2: 1\},
\{0: "6/1", 2: 5\},\
\{0: "7/0", 2: 3800\},\
\{0: "7/1", 2: 5000\},
\{0: "8/0", 2: 125\},\
\{0: "8/1", 2: 900\},
{0: "9", 2: 100},
{0: "10", 2: 15},
\{0: "11/0", 2: 0\},\
{0: "13", 2: 1367491215},
{0: "14", 3: "+02:00"},
{0: "16", 3: "U"}]
```

Implementations and OMNA Registry

- IPSO Objects are MIT license.
- Several Implementations support IPSO:
 - <u>Example XML</u> of the supported LwM2M and IPSO Objects in <u>Leshan</u>.
 - Sample <u>C package</u> for use of IPSO Objects in <u>Contiki</u>.
 - JS code templates of IPSO-defined devices <u>code templates</u>.
 - Sample <u>Smart Objects</u> Class can be used to create IPSO Smart Objects in your JavaScript applications.
 - o BIPSO defines a set of BLE Characteristics that follows the IPSO Objects.
 - Contiki, Mbed and RIOT support IPSO Objects.
- Full object set available at the OMNA Registry:
 - o http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
- <u>"The total installed base of LwM2M-enabled devices will reach over 235 million units in 2022"</u> (IDATE Digiworld)