The group G is isomorphic to the group labelled by [24, 11] in the Small Groups library. Ordinary character table of $G \cong C3 \times Q8$:

	1a	4a	4b	3a	2a	4c	12a	12b	3b	6a	12c	12d	12e	6b	12f
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	-1
χ_5	1	-1	-1	$E(3)^{2}$	1	1	$-E(3)^2$	$-E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^{2}$	-E(3)	-E(3)	E(3)	E(3)
χ_6	1	-1	-1	E(3)	1	1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	E(3)	$-E(3)^2$	$-E(3)^2$	$E(3)^{2}$	$E(3)^2$
χ_7	1	-1	1	$E(3)^{2}$	1	-1	$-E(3)^2$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	E(3)	E(3)	-E(3)
χ_8	1	-1	1	E(3)	1	-1	-E(3)	E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^{2}$
χ_9	1	1	-1	$E(3)^{2}$	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	-E(3)
χ_{10}	1	1	-1	E(3)	1	-1	E(3)	-E(3)	$E(3)^{2}$	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$
χ_{11}	1	1	1	$E(3)^{2}$	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)
χ_{12}	1	1	1	E(3)	1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_{13}	2	0	0	2	-2	0	0	0	2	-2	0	0	0	-2	0
χ_{14}	2	0	0	$2 * E(3)^2$	-2	0	0	0	2 * E(3)	$-2*E(3)^2$	0	0	0	-2 * E(3)	0
χ_{15}	2	0	0	2 * E(3)	-2	0	0	0	$2 * E(3)^2$	-2 * E(3)	0	0	0	$-2*E(3)^2$	0

Trivial source character table of $G \cong C3 \times Q8$ at p = 3:

This is source character table of $G = C_3$ x Q_3 at $p = 3$.											
Normalisers N_i	N_1					N_2					
p-subgroups of G up to conjugacy in G						P_2					
Representatives $n_j \in N_i$	1a	4a	4b	2a	4c	1a	4b	4a	2a	4c	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	3	3	3	3	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	-3	-3	3	3	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	-3	3	3	-3	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	3	-3	3	-3	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15}$	6	0	0	-6	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	1	-1	1	-1	1	-1	1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	-1	1	1	-1	1	1	-1	1	-1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	-1	-1	1	1	1	-1	-1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	2	0	0	-2	0	2	0	0	-2	0	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 4, 11)(2, 7, 15)(3, 9, 17)(5, 12, 19)(6, 13, 20)(8, 16, 22)(10, 18, 23)(14, 21, 24)]) \cong C3$

 $N_1 = Group([(1,2,5,8)(3,14,10,6)(4,7,12,16)(9,21,18,13)(11,15,19,22)(17,24,23,20),(1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,21)(11,17,19,23)(15,20,22,24),(1,4,11)(2,7,15)(3,9,17)(5,12,19)(6,13,20)(8,16,22)(10,18,23)(14,21,24),(1,5)(2,8)(3,10)(4,12)(6,14)(7,16)(9,18)(11,19)(13,21)(15,22)(17,23)(20,24)]) \cong C3 \times Q8$ $N_2 = Group([(1,4,11)(2,7,15)(3,9,17)(5,12,19)(6,13,20)(8,16,22)(10,18,23)(14,21,24),(1,2,5,8)(3,14,10,6)(4,7,12,16)(9,21,18,13)(11,15,19,22)(17,24,23,20),(1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,21)(11,17,19,23)(15,20,22,24)]) \cong C3 \times Q8$