

描述

HR4988是一种便于使用的内部集成了译码器的微特步进电机驱动器。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32、1/64和1/128步进模式工作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±2A。HR4988包含一个工作在慢衰或混合衰减模式的固定关闭时间的电流调节器。

译码器是HR4988易于实施的关键。通过STEP简单的输入一个脉冲就可以使电机完成一次步进,省去了相序表,高频控制线及复杂的编程接口。这使其更适于在没有复杂的微处理器或微处理器负担过重的场合。

在步进操作期间,HR4988的内部电路可以自动的控制其PWM操作工作在快、慢及混合衰减模式。在混合衰减模式下,器件初始经过一段时间的快衰减后,将切换至慢衰减模式直至固定关闭时间结束。混合衰减模式控制不但降低了电机工作时产生的噪声,还增加了步进的准确性,同时减小了系统的功耗。

内部的同步整流控制电路改善了PWM操作时的功耗。 内部保护电路包括:带迟滞额过热保护、欠压锁定及过 流保护。不需要特别的上电时序。

HR4988目前提供两种贴片封装:一是带有裸露焊盘的QFN-28封装,另一种是带有裸露焊盘的TSSOP-28封装,能有效改善散热性能,且是无铅产品,引脚框采用100%无锡电镀。

型号选择

型号	封装
HR4988sq	QFN28 with exposed thermal pad
HR4988мте	TSSOP28 with exposed thermal pad

特点

- ●低导通电阻R_{DS (ON)}
- ●自动检测并选择电流衰减模式
- 支持慢衰减和混合衰减模式
- ●降低功耗的同步整流功能
- ●内部欠压锁定
- ●过流保护
- ●兼容3.3V和5V逻辑电平
- ●过热关断电路
- ●对地短路保护
- ●负载短路保护
- ●八种步进模式,最高支持128细分

封装形式

QFN28 with exposed thermal pad

TSSOP28 with exposed thermal pad

典型应用图

功能模块图

电路工作极限 at Ta = 25 ℃

Parameter	Symbol	Conditions	Ratings	Unit
Load Supply Voltage	V_{BB}		35	V
Output Current	I_{OUT}		<u>+2</u>	A
Logic Input voltage	V _{IN}		-0.3 to 5.5	V
Logic Supply voltage	V_{DD}		-0.3 to 5.5	V
Motor Output Votage			-2.0 to 37	V
Sense Voltage	V _{SENSE}		-0.5 to 0.5	V
Reference Voltage	V_{REF}		5.5	V
Operating Ambient Temperature	T_A	Range S	-20 to 85	${\mathbb C}$
Maximum Junction	T _J (max)		150	\mathcal{C}
Storage Temperature	T_{stg}		-55 to 150	С

推荐工作条件 at Ta = 25℃

		Min	NOM	Max	Unit
负载供电电压	VBB	8	-	35	V
逻辑供电电压	VCC	3	-	5. 5	V
输出电流设置	IOUT	0		1.8	A

推荐外围设置

1、 ROSC: 128 细分应用建议下拉 10kΩ -15kΩ 电阻。

必要时,根据自身电机和应用控制频率选择合适的 ROSC 对地电阻。

t_{OFF} ≅ R_{OSC}/825, t_{OFF}单位为us。

16 细分应用可建议直接接地,选择全混合衰减,t_{off} ≅30us。

- 2、 CP 电容: 0.1uF/50V
- 3、 VCP 电容: 0.1uF/50V
- **4、** VREG 电容: 0.22uF/16V
- 5、 VREF 参考电压设置, 0.8V-3V。
- 6、 RSENSE 电阻,根据 REF 和目标电流合理设置

 $I_{\text{Trip MAX}} = VREF / (8 \times R_S)$

根据目标电流, 合理选择 Rsense 电阻和 Vref 参考电压, 使得 Vsense=Imax*Rsense 在 0.35V—0.45V 之间, 然后根据 Vref = 8*Vsense 选择参考电压输入。

电特性 1 at Ta = 25 °C, V_{BB} = 35 V

Parameter	Symbol	Conditions	Min	Typ ²	Max	Unit
Output Drivers						1
Load Supply Voltage Range	V_{BB}	Operating	8	-	35	V
Logic Supply Voltage Range	V_{DD}	Operating	3.0	-	5.5	V
Output On Resistance	D	Source Driver,I _{OUT} =-1.5A		320	430	mΩ
	R _{DS(ON)}	Sink Driver, I _{OUT} =1.5A		320	430	mΩ
Body Diode Forward Voltage	X7.	Source Diode,I _F =-1.5A			1.2	V
	V _F	Sink Diode, I _F =1.5A			1.2	V
Motor Supply Current	т.	f _{PWM} <50kHz			4	mA
	I_{BB}	Operating, outputs disabled			2	mA
Logic Supply Current	_	f _{PWM} <50kHz			8	mA
	I_{DD}	Operating,outputs disabled			5	mA
Control Logic						
Logic Input Voltage	V _{IN(1)}		$V_{DD}^{*}0.7$			V
	$V_{IN(0)}$				V _{DD} *0.3	V
Logic Input Current	I _{IN(1)}	$V_{IN}=V_{DD}\times 0.7$	-20	<1.0	20	uA
	$I_{IN(0)}$	$V_{IN}=V_{DD}\times0.3$	-20	<1.0	20	uA
	R _{MS1}		-	100		kΩ
Microstep Select	R _{MS2}		-	50	-	kΩ
	R _{MS3}		-	100	-	kΩ
Logic Input Hysteresis	V _{HYS(IN)}	As a $\%$ of V_{DD}	5	11	19	%
Blank Time	t _{BLANK}		0.7	1	1.3	us
Fixed Off-Time	t	OSC=VDD or GND	20	30	40	us
	t _{OFF}	$R_{OSC}=25k\Omega$	23	30	37	us
Reference Input Voltage Range	V_{REF}		0.5	-	4	V
Reference Input Current	I_{REF}		-3	0	3	uA
Current Trip-Level Error ³		$V_{REF}\!\!=\!\!2V,\!\!\%I_{TripMAX}\!\!=\!\!38.27\%$	-	-	±15	%
	err _I	$V_{REF}\!\!=\!\!2V,\!\%I_{TripMAX}\!\!=\!\!70.71\%$	-	-	±5	%
		$V_{REF} = 2V, \%I_{TripMAX} = 100\%$	-	-	±5	%
Crossover Dead Time	t_{DT}		100	475	800	ns
Protection						
Overcurren Protection ⁴	I _{OCPST}		3	-	-	A
Thermal Shutdown	T _{TSD}		-	165	-	\mathcal{C}
Thermal Shutdown Hysteresis	T _{TSDHYS}		-	15	-	${\mathbb C}$
VDD Undervoltage Lockout	V _{DDUVLO}	V_{DD} rising	2.7	2.8	2.9	V
VDD Undervoltage Hysteresis	$V_{DDUVLOH}$		-	90	-	mV

¹对于输入/输出电流,我们将从指定器件引脚流出的电流定义为负电流。

 $^{^2}$ 典型数据仅是在最佳制造和应用的假设条件下的数值,仅供初步设计概算使用。对于个体芯片,性能可能有所不同,在均在最大值和最小值间。

 $^{^{3}}V_{ERR} = [(V_{REF}/8) - V_{SENSE}] / (V_{REF}/8).$

⁴ 过流保护(OCP) 门限值是指在 T_A =25 ℃下能够保证性能的值

电路控制信号时序上的要求:

 $(T_A = +25^{\circ}C, V_{DD} = 5 \text{ V}, 逻辑电平为V_{DD} 或 GND)$

Time Duration	Symbol	Тур.	Unit
STEP minimum, HIGH pulse width	t _A	1	μs
STEP minimum, LOW pulse width	t _B	1	μs
Setup time, input change to STEP	tc	200	ns
Hold time, input change to STEP	t _D	200	ns

Figure 1: Logic Interface Timing Diagram

Table 1: Microstepping Resolution Truth Table

MS1	MS2	MS3	Microstep Resolution	Excitation Mode
L	L	L	Full Step	2 Phase
Н	L	L	Half Step	1-2 Phase
L	Н	L	Quarter Step	W1-2 Phase
Н	Н	L	1/8 Step	2W1-2 Phase
Н	Н	Н	1/16 Step	4W1-2 Phase
Н	L	Н	1/32 Step	8W1-2 Phase
L	Н	Н	1/64 Step	16W1-2 Phase
L	L	Н	1/128 Step	32W1-2 Phase

Figure 2. Missed steps in low-speed microstepping

Figure 3. Continuous stepping using automatically-selected mixed stepping (ROSC pin grounded)

模块功能描述

器件工作: HR4988是一种便于使用的内部集成了译码器的微特步进电机驱动器,只需少量的控制线。其设计能够让双极步进电机以全、半、1/4和1/8、1/16、1/32、1/64和1/128步进工作。每一个H桥都有一个有固定关闭时间的PWM电流控制电路,以限制其N沟道DMOS功率管的负载电流在一个设计值。每个步进的全桥输出电流是由外部检流电阻(RS1和RS2)的值,参考电压(VREF)和DAC(依次由译码器的输出控制)的输出电压来设定。

在上电或复位时,译码器将DAC和相电流的极性设为初始的Home状态(如图9~13所示),且两相的电流调节器均工作在混合衰减模式。当一个步进信号进入STEP端口,译码器自动将DAC排序进入下一电平和电流极性。(表2给出了电流台阶顺序)。微步细分精度由MS1、MS2和MS3输入组合确定,如表1所示。

当步进进行时,如果DAC的输出电平低于前一个输出电平,则当前的H全桥进入混合衰减模式。如果DAC输出电平高于或者等于前一个电平,则当前的H全桥进入慢衰减模式。自动的电流衰减选择通过减小电流波形失真改善了微步进性能,其产生原因是电机的反电动势。

微步进选择(MS1、MS2、MS3): 微步细分精度由 MS1、MS2 和 MS3 逻辑输入电压确定,如表 1 所示。MSx 均有下拉电阻。当改变步进模式时,直到下一个 STEP 的上升沿才起作用。

如果步进模式改变,而译码器没有复位,其绝对位置必须要保持。为了防止丢步,选择一个适用于所有步进模式的步进位置,再去改变步进模式,这点很重要。当器件断电或者由于过温重启或过流时,译码器被置于 home 位置,这是所有步进模式默认的共同位置。

混合衰减操作: 当上电复位后正常工作时,根据 ROSC 的配置和步进顺序,H 桥工作于混合衰减模式,如图 8~11 所示。在混合衰减期间,当达到预定值时,HR4988 初始进入快衰模式,快衰减时间占固定关闭时间 toff 的 31.25%。其后转为慢衰减直至固定关闭时间结束。时序框图在图 7 中呈现。

一般混合衰减只是在绕组中的电流从一个高的 值变为一个低的值时需要,由译码器的设置决定。对 大多数负载来说,混合衰减模式的自动选择很便利, 因为能够减小电流上升时的纹波和防止电流下降时的丢步。特别是在一些非常低速的微步进应用中十分必要,绕组中反电动势的不足造成负载中的电流增加很快,导致丢步。如图 2 所示。通过将 ROSC 管脚接地,混合衰减在 100%的时间内起作用,无论电流上升或者下降,同时防止丢步,如图 3 所示。如果不存在丢步问题,也推荐使用自动选择混合衰减模式,因为其会减小电流纹波。详细描述请参考固定关闭时间一节。

低电流微步进: 在某些应用中,过短的导通时间使得输出电流无法调节到程序设定的低电流水平。为了防止这种现象,器件可以在电流波形的上升和下降两个方向都工作在混合衰减模式。这是通过将ROSC管脚接地实现的。

复位输入(nRESET): RESET 输入(低电平有效)使得 TRANSLATOR 恢复初始状态(如图 9 \sim 13 所示),关断所有 DMOS 输出,此时 STEP 输入无效,直到 RESET 重新变为高电平为止。

STEP 输入: STEP 信号上升沿触发有效,通过TRANSLATOR 控制,每个STEP 上升沿触发使得电机有一个步进的变化。TRANSLATOR 控制 DAC 的输入和流过线圈的电流方向;每一步进的电流大小和转动角度由MS1、MS2和MS3输入逻辑电平控制。

方向控制(DIR): DIR 输入控制马达的转动方向,在STEP信号上升沿触发到来之前,任何DIR上的变动都对电路不产生影响;

内部 PWM 电流控制:每一个 H 桥都有一个有固定关闭时间的 PWM 电流控制电路,以限制其负载电流在一个设计值, I_{TRIP}。初始时,对角线上的一对 DMOS(一对上下桥臂)处于输出状态,电流流经电机绕组和 SENSE 脚所接的电流取样电阻, R_{Sx}。当取样电阻上的电压等于 DAC 的输出电压时,电流取样比较器将 PWM 锁存器锁定,从而关断源驱动器(上桥臂),进入慢衰减模式;或同时关断源驱动器和灌流驱动器(上下桥臂)进入快或混合衰减模式,使产生环流或电流回流至源端。该环流或回流将持续衰减至固定关闭时间结束为止。然后,正确的输出桥臂被再次启动,电机绕组电流再次增加,整个 PWM 循环完成。其中,最大限流是由取样电阻 RSx 和电流取样比较器的输入

电平 VREF 控制的, I_{TripMAX}(A)由下式决定:

 $I_{Trip MAX}$ =VREF / (8 \times Rs) 每步的实际电流为最大电流的百分比,近似为:

 $I_{\text{Ttip}} = (\%I_{\text{Ttip Max}}/100) I_{\text{Trip Max}}$

(表 2 给出了每步的最大电流百分比) 注意: SENSE 脚上的最大电压不能超过 0.5V。

固定关闭时间 t_{off}: 内部 PWM 控制电路是利用单触发电路来控制 DMOS 的剩余关闭时间。固定关闭时间 t_{off} 是由 ROSC 引脚决定的。ROSC 引脚有三种设置,即:

- ●ROSC接VDD一关闭时间内部设为30us,电流上升选择慢衰,电流下降自动选择为混合衰减模式,全步模式下为慢衰减模式。
- ●ROSC 接地一关闭时间初始设为 30us,对所有模式的电流上升和下降,衰减模式自动选择为混合衰减模式。
- ●ROSC 接对地的电阻一关闭时间由下面的公式决定,电流上升选择慢衰,电流下降自动选择为混合衰减模式,全步模式下为慢衰减模式。

 $t_{\text{OFF}} \cong R_{\text{OSC}}/825$

torr单位为us。

消隐(Blanking): 当输出在内部电流控制电路作用下开关时,该功能屏蔽电流检测比较器的输出,防止由于钳位二极管反向恢复电流,以及负载电容的开关瞬态电流导致的错误的过流检测。消隐时间,tblank(us),近似为1us。

电荷泵(CP1 和 CP2): 电荷泵用来生成一个高于 VBB 的电压,去驱动源 DMOS 的栅极。一个 0.1uF 的陶瓷电容接在 CP1、CP2 之间,实现电荷泵的目的。一个 0.1uF 陶瓷电容接在 VCP、VBB 之间,用来存储电荷,去驱动源 DMOS 器件。

电容值需为 Class2 介质, $\pm 15\%$ 最大波动或者耐压 R 级,根据 EIA。

VREG: 电路内部产生的基准电压,用于低端门级驱动的 DMOS 电源。正常工作时,VREG 电压为5.5V。VREG 外部必须通过一个

0.22uF 电容耦合到地。VREG 作为内部电路的一个监视器,当内部 VREG 没有正常工作时,DMOS 器件输出被禁止。

使能输入(nENABLE):该输入控制所有FET输出的开关。当其为逻辑高电平时,输出关断。当其为逻辑低电平时,内部控制使能起作用。译码器输入STEP,DIR,MS1、MS2和MS3,以及内部时序逻辑,全部有效,独立于nENABLE输入。

SHUTDOWN 关断: 当电路发生过温保护或者发生 VCP 的欠压闭锁时,SHUTDOWN 功能正常工作,此时电路的正常功能被禁止,直到电路脱离 SHUTDOWN 条件。在电路上电过程中,VDD 电压还没有达到电压阈值时,VDD 的欠压闭锁电路使输出 DMOS电路全部关断,输出被设置为 HOME 状态。

休眠模式(nSLEEP): 当 SLEEP 引脚输入为低电平时,器件将进入休眠模式,从而大大降低器件空闲的功耗。进入休眠模式后器件的大部分内部电路包括 DMOS 输出电路、调节器及电荷泵等都将停止工作。当其输入翻转为高电平时,系统恢复到正常的操作状态并将器件的输出预置到 HOME 状态,为了内部电荷泵恢复稳定工作,在 SLEEP 恢复高电平并延时1ms 后 STEP 信号才能起作用。

混合衰减操作: 当上电复位后正常工作时,根据 ROSC 的配置和步进顺序,H 桥工作于混合衰减模式,如图 9~13 所示。在混合衰减期间,当达到预定值时,HR4988 初始进入快衰模式,快衰减时间占固定关闭时间 toff 的 31.25%。其后转为慢衰直至固定关闭时间结束。时序框图在下页图中呈现。

同步整流: 在电流衰减期间,同步整流功能打开对应的 FET 由于 FET 的导通电阻低,有效的使体二极管短路。这样有效的降低了功耗,同时,在很多应用场合,省去了外置肖特基二极管。当负载电流接近0时,同步整流关闭,这样防止负载电流反向。

Figure 4. Short-to-ground event

Figure 5. Shorted load (OUTxA \rightarrow OUTxB) in Slow decay mode

Figure 6. Shorted load (OUTxA \rightarrow OUTxB) in Mixed decay mode

输出短路和对地短路保护:如果两电机输出管脚短接或者任一输出管脚对地短路,驱动器会通过检测这一过流事件,然后禁能短路的输出,这样事器件免于烧毁。当对地短路发生时,驱动器会一直保持禁能,直到SLEEP 进入高电平或者 VDD 被去除。图 4 为对地短路过流现象。

当两个输出短接在一起,电流通路经过检测电阻,经过一个消隐时间(约 1us),由于过流现象存在,检测电阻端电压会超过最大电压。这样会使驱动器进入固定衰减模式。经过一个固定关闭时间后,器件又会重新开始

保护。在这种情况下,器件的过流现象就会被彻底保护,但是短路还是会重复出现的,依据固定关闭周期。图 5表明了这种情况。

当负载短路发生时,由于混合衰减的作用,在电流换向的时候,很容易观察到一个正向或者反向的尖峰电流。 图 6 显示了这种情况。在这两种情况下,过流保护电路保护驱动器免于受烧毁。

Symbol	Characteristic						
t _{off}	Device fixed off-time						
I _{PEAK}	Maximum output current						
t _{SD}	Slow decay interval						
t _{FD}	Fast decay interval						
lout	Device output current						

Figure 7: Current Decay Modes Timing Chart

电路应用信息

版图注意事项: PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VBB,应该连接不小于 47uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置: AGND 和 PGND 的连线必须在芯片外部短接。所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

电流取样设置: 为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于 Rs 上的压降 V=I*Rs 小于 0.5V,PCB 上的连线压降与 0.5V 的 电压将显得不可忽视,这一点要考虑进去。

PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

 $R_S = 0.5/I_{TRIP\ max}$

热保护: 当内部电路结温超过 165 °C时,过温模块开始工作,关断内部多有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 15 °C。

Figure 8: Typical Application and Circuit Layout

Pin Circuit Diagrams

Figure 9: Decay Mode for Full-Step Increments

Figure 10: Decay Modes for Half-Step Increments

Figure 11: Decay Modes for Quarter-Step Increments

Figure 12: Decay Modes for Eighth-Step Increments

Figure 13: Decay Modes for Sixteenth-Step Increments

Table 2: Step Sequencing Settings

Home microstep position at Step Angle 45 °, DIR = H

1/128	1/64	1/32	1/16	1/8	1/4	1/2	full	Phase 1 Current	Phase 2 Current	Step Angle
								[%ItripMax] (%)	[% ItripMax] (%)	(°)
1	1	1	1	1	1	1		100.0	0.0	0.00
2								100.0	1.2	0.70
3	2							100.0	2.5	1.41
4								99.9	3.7	2.11
5	3	2						99.9	4.9	2.81
6								99.8	6.1	3.52
7	4							99.7	7.4	4.22
8								99.6	8.6	4.92
9	5	3	2					99.5	9.8	5.63
10								99.4	11.0	6.33
11	6							99.2	12.2	7.03
12								99.1	13.5	7.73
13	7	4						98.9	14.7	8.44
14								98.7	15.9	9.14
15	8							98.5	17.1	9.84
16								98.3	18.3	10.55
17	9	5	3	2				98.1	19.5	11.25
18								97.8	20.7	11.95
19	10							97.6	21.9	12.66
20								97.3	23.1	13.36
21	11	6						97.0	24.3	14.06
22								96.7	25.5	14.77
23	12							96.4	26.7	15.47
24								96.0	27.9	16.17
25	13	7	4					95.7	29.0	16.88
26								95.3	30.2	17.58
27	14							95.0	31.4	18.28
28								94.6	32.5	18.98
29	15	8						94.2	33.7	19.69
30								93.7	34.8	20.39
31	16							93.3	36.0	21.09
32								92.9	37.1	21.80
33	17	9	5	3	2			92.4	38.3	22.50
34								91.9	39.4	23.20
35	18							91.4	40.5	23.91
36								90.9	41.6	24.61
37	19	10						90.4	42.8	25.31
38								89.9	43.9	26.02
39	20							89.3	45.0	26.72

95009	1299							1177/1/1	MEXTORDINAL HANN	10 25 85 10 10 10 10 10 10 10 10 10 10 10 10 10
40								88.8	46.1	27.42
41	21	11	6					88.2	47.1	28.13
42								87.6	48.2	28.83
43	22							87.0	49.3	29.53
44								86.4	50.4	30.23
45	23	12						85.8	51.4	30.94
46								85.1	52.5	31.64
47	24							84.5	53.5	32.34
48								83.8	54.5	33.05
49	25	13	7	4				83.1	55.6	33.75
50								82.5	56.6	34.45
51	26							81.8	57.6	35.16
52								81.0	58.6	35.86
53	27	14						80.3	59.6	36.56
54								79.6	60.6	37.27
55	28							78.8	61.5	37.97
56								78.1	62.5	38.67
57	29	15	8					77.3	63.4	39.38
58								76.5	64.4	40.08
59	30							75.7	65.3	40.78
60								74.9	66.2	41.48
61	31	16						74.1	67.2	42.19
62								73.3	68.1	42.89
63	32							72.4	69.0	43.59
64								71.6	69.8	44.30
65	33	17	9	5	3	2	1	70.7	70.7	45.00
66								69.8	71.6	45.70
67	34							69.0	72.4	46.41
68								68.1	73.3	47.11
69	35	18						67.2	74.1	47.81
70								66.2	74.9	48.52
71	36							65.3	75.7	49.22
72								64.4	76.5	49.92
73	37	19	10					63.4	77.3	50.63
74								62.5	78.1	51.33
75	38							61.5	78.8	52.03
76								60.6	79.6	52.73
77	39	20						59.6	80.3	53.44
78								58.6	81.0	54.14
79	40							57.6	81.8	54.84
80								56.6	82.5	55.55
81	41	21	11	6				55.6	83.1	56.25
82								54.5	83.8	56.95
83	42							53.5	84.5	57.66

95009	1599					11757410/1	I THE STORONG HOLD	14 25 85 10 10 10 10 10
84						52.5	85.1	58.36
85	43	22				51.4	85.8	59.06
86						50.4	86.4	59.77
87	44					49.3	87.0	60.47
88						48.2	87.6	61.17
89	45	23	12			47.1	88.2	61.88
90						46.1	88.8	62.58
91	46					45.0	89.3	63.28
92						43.9	89.9	63.98
93	47	24				42.8	90.4	64.69
94						41.6	90.9	65.39
95	48					40.5	91.4	66.09
96						39.4	91.9	66.80
97	49	25	13	7	4	38.3	92.4	67.50
98						37.1	92.9	68.20
99	50					36.0	93.3	68.91
100						34.8	93.7	69.61
101	51	26				33.7	94.2	70.31
102						32.5	94.6	71.02
103	52					31.4	95.0	71.72
104						30.2	95.3	72.42
105	53	27	14			29.0	95.7	73.13
106						27.9	96.0	73.83
107	54					26.7	96.4	74.53
108						25.5	96.7	75.23
109	55	28				24.3	97.0	75.94
110						23.1	97.3	76.64
111	56					21.9	97.6	77.34
112						20.7	97.8	78.05
113	57	29	15	8		19.5	98.1	78.75
114						18.3	98.3	79.45
115	58					17.1	98.5	80.16
116						15.9	98.7	80.86
117	59	30				14.7	98.9	81.56
118						13.5	99.1	82.27
119	60					12.2	99.2	82.97
120						11.0	99.4	83.67
121	61	31	16			9.8	99.5	84.38
122						8.6	99.6	85.08
123	62					7.4	99.7	85.78
124						6.1	99.8	86.48
125	63	32				4.9	99.9	87.19
126						3.7	99.9	87.89
127	64					2.5	100.0	88.59

128										
130	128							1.2	100.0	89.30
131 66	129	65	33	17	9	5	3	0.0	100.0	90.00
132	130							-1.2	100.0	90.70
133 67 34	131	66						-2.5	100.0	91.41
134	132							-3.7	99.9	92.11
135 68 -7.4 99.7 94.22 137 69 35 18 -9.8 99.5 95.63 138 -11.0 99.4 96.33 139 70 -12.2 99.2 97.03 140 -13.5 99.1 97.73 97.73 98.9 98.44 142 -15.9 98.7 99.14 99.8 99.84 144 -15.9 98.7 99.14 99.8 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 102.66 102.66 148 -223.1 97.3 103.36 149.75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151.76 26.7 96.4 105.47 152 -27.9 96.0 106.17 153.77 39.20 29.0 95.7 106.88 154	133	67	34					-4.9	99.9	92.81
136	134							-6.1	99.8	93.52
137 69 35 18 -9.8 99.5 95.63 138 -11.0 99.4 96.33 139 70 -12.2 99.2 97.03 140 -13.5 99.1 97.73 141 71 36 -14.7 98.9 98.44 142 -15.9 98.7 99.14 143 72 -17.1 98.5 99.84 144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 102.66 148 -223.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 105.06 150 -25.5 96.7 104.77 151.76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 163.7 79.40 106.17 153 77 39	135	68						-7.4	99.7	94.22
138	136							-8.6	99.6	94.92
139 70	137	69	35	18				-9.8	99.5	95.63
140 -13.5 99.1 97.73 141 71 36 -14.7 98.9 98.44 142 -15.9 98.7 99.14 143 72 -17.1 98.5 99.84 144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 104.06 150 -25.5 96.7 104.76 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 15	138							-11.0	99.4	96.33
141 71 36 -14.7 98.9 98.44 142 -15.9 98.7 99.14 143 72 -17.1 98.5 99.84 144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 102.66 102.66 148 -21.9 97.6 102.66 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 105.47 151 76 -26.7 96.4 105.47 153 77 39 20 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 155 78 -31.4 95.0 108.28 155	139	70						-12.2	99.2	97.03
142 -15.9 98.7 99.14 143 72 -17.1 98.5 99.84 144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 102.66 102.66 102.66 102.66 148 -21.9 97.6 102.66 103.36 149 75 38 -24.3 97.0 104.06 150 103.36 149 75 38 -24.3 97.0 104.06 150 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 155 78 -31.4 95.0 108.28 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7<	140							-13.5	99.1	97.73
143 72 -17.1 98.5 99.84 144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 101.95 102.66 147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 158 -34.8 93.7 110.39 159 80 <td>141</td> <td>71</td> <td>36</td> <td></td> <td></td> <td></td> <td></td> <td>-14.7</td> <td>98.9</td> <td>98.44</td>	141	71	36					-14.7	98.9	98.44
144 -18.3 98.3 100.55 145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 101.95 147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 155 78 -31.4 95.0 108.28 156 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160<	142							-15.9	98.7	99.14
145 73 37 19 10 -19.5 98.1 101.25 146 -20.7 97.8 101.95 147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 155 78 -31.4 95.0 108.28 156 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 160 -37.1 92.9 111.80 161 81 41 2	143	72						-17.1	98.5	99.84
146 -20.7 97.8 101.95 147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 107.58 107.58 107.58 108.28 107.58 108.28 107.58 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 109.69 109.69 109.69 109.69 109.69 110.39 109.69 110.39 109.69 111.80 109.69 111.80 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 <td>144</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-18.3</td> <td>98.3</td> <td>100.55</td>	144							-18.3	98.3	100.55
147 74 -21.9 97.6 102.66 148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 151 76 -26.7 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 106.88 157 106.88 107.58 155 78 106.88 107.58 107.58 107.58 107.58 107.58 108.28 107.58 108.28 107.58 108.28 107.58 108.28 108.28 108.28 108.28 108.28 108.28 108.28 108.28 108.28 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 110.69 109.69 110.39 110.39 110.39 110.39 110.39 110.39 110.39 11	145	73	37	19	10			-19.5	98.1	101.25
148 -23.1 97.3 103.36 149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 107.58 107.58 108.28 107.58 108.28 108.28 108.28 108.28 108.28 108.28 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 108.28 109.69 109.69 118.09 109.69 118.09 109.69 118.09 109.69 118.09 109.69 118.09 109.69 109.69 118.09 109.69 109.69 118.09 109.69<	146							-20.7	97.8	101.95
149 75 38 -24.3 97.0 104.06 150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 107.58 107.58 108.28 155 78 -31.4 95.0 108.28 109.69 108.28 156 -32.5 94.6 108.98 109.69 118.98 109.69 118.98 110.39 109.69 118.98 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 110.39 111.09 160 -37.1 92.9 111.80 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 118.00 113.20 163 82 -40.5 91.4 113.91	147	74						-21.9	97.6	102.66
150 -25.5 96.7 104.77 151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 107.58 155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 <	148							-23.1	97.3	103.36
151 76 -26.7 96.4 105.47 152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 16 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 -46.1 88.8	149	75	38					-24.3	97.0	104.06
152 -27.9 96.0 106.17 153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168	150							-25.5	96.7	104.77
153 77 39 20 -29.0 95.7 106.88 154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85	151	76						-26.7	96.4	105.47
154 -30.2 95.3 107.58 155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2	152							-27.9	96.0	106.17
155 78 -31.4 95.0 108.28 156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	153	77	39	20				-29.0	95.7	106.88
156 -32.5 94.6 108.98 157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 91.4 113.91 164 -40.5 91.4 113.91 164 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	154							-30.2	95.3	107.58
157 79 40 -33.7 94.2 109.69 158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163.20 91.4 113.91 164 -40.5 91.4 113.91 14.61 165.83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167.84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169.85 43.22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	155	78						-31.4	95.0	108.28
158 -34.8 93.7 110.39 159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163.20 163.20 163.20 113.91 164 -40.5 91.4 113.91 164 165.83 42 -41.6 90.9 114.61 165.31 166 -42.8 90.4 115.31 160.02 167.84 -43.9 89.9 116.02 167.84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169.85 43.2 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	156							-32.5	94.6	108.98
159 80 -36.0 93.3 111.09 160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	157	79	40					-33.7	94.2	109.69
160 -37.1 92.9 111.80 161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	158							-34.8	93.7	110.39
161 81 41 21 11 6 -38.3 92.4 112.50 162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	159	80						-36.0	93.3	111.09
162 -39.4 91.9 113.20 163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	160							-37.1	92.9	111.80
163 82 -40.5 91.4 113.91 164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	161	81	41	21	11	6		-38.3	92.4	112.50
164 -41.6 90.9 114.61 165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	162							-39.4	91.9	113.20
165 83 42 -42.8 90.4 115.31 166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	163	82						-40.5	91.4	113.91
166 -43.9 89.9 116.02 167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	164							-41.6	90.9	114.61
167 84 -45.0 89.3 116.72 168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	165	83	42					-42.8	90.4	115.31
168 -46.1 88.8 117.42 169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	166							-43.9	89.9	116.02
169 85 43 22 -47.1 88.2 118.13 170 -48.2 87.6 118.83	167	84						-45.0	89.3	116.72
170 -48.2 87.6 118.83	168							-46.1	88.8	117.42
	169	85	43	22				-47.1	88.2	118.13
171 86 -49.3 87.0 119.53	170							-48.2	87.6	118.83
	171	86						-49.3	87.0	119.53

99009	3399							1177/1/1	MAY CHANGING TO WATER	
172								-50.4	86.4	120.23
173	87	44						-51.4	85.8	120.94
174								-52.5	85.1	121.64
175	88							-53.5	84.5	122.34
176								-54.5	83.8	123.05
177	89	45	23	12				-55.6	83.1	123.75
178								-56.6	82.5	124.45
179	90							-57.6	81.8	125.16
180								-58.6	81.0	125.86
181	91	46						-59.6	80.3	126.56
182								-60.6	79.6	127.27
183	92							-61.5	78.8	127.97
184								-62.5	78.1	128.67
185	93	47	24					-63.4	77.3	129.38
186								-64.4	76.5	130.08
187	94							-65.3	75.7	130.78
188								-66.2	74.9	131.48
189	95	48						-67.2	74.1	132.19
190								-68.1	73.3	132.89
191	96							-69.0	72.4	133.59
192								-69.8	71.6	134.30
193	97	49	25	13	7	4	2	-70.7	70.7	135.00
194								-71.6	69.8	135.70
195	98							-72.4	69.0	136.41
196								-73.3	68.1	137.11
197	99	50						-74.1	67.2	137.81
198								-74.9	66.2	138.52
199	100							-75.7	65.3	139.22
200								-76.5	64.4	139.92
201	101	51	26					-77.3	63.4	140.63
202								-78.1	62.5	141.33
203	102							-78.8	61.5	142.03
204								-79.6	60.6	142.73
205	103	52						-80.3	59.6	143.44
206								-81.0	58.6	144.14
207	104							-81.8	57.6	144.84
208								-82.5	56.6	145.55
209	105	53	27	14				-83.1	55.6	146.25
210								-83.8	54.5	146.95
211	106							-84.5	53.5	147.66
212								-85.1	52.5	148.36
213	107	54						-85.8	51.4	149.06
214								-86.4	50.4	149.77
215	108							-87.0	49.3	150.47

*****	3333						11年71年	MAY TORONA HAM	14 25 XT - C1/104E
216							-87.6	48.2	151.17
217	109	55	28				-88.2	47.1	151.88
218							-88.8	46.1	152.58
219	110						-89.3	45.0	153.28
220							-89.9	43.9	153.98
221	111	56					-90.4	42.8	154.69
222							-90.9	41.6	155.39
223	112						-91.4	40.5	156.09
224							-91.9	39.4	156.80
225	113	57	29	15	8		-92.4	38.3	157.50
226							-92.9	37.1	158.20
227	114						-93.3	36.0	158.91
228							-93.7	34.8	159.61
229	115	58					-94.2	33.7	160.31
230							-94.6	32.5	161.02
231	116						-95.0	31.4	161.72
232							-95.3	30.2	162.42
233	117	59	30				-95.7	29.0	163.13
234							-96.0	27.9	163.83
235	118						-96.4	26.7	164.53
236							-96.7	25.5	165.23
237	119	60					-97.0	24.3	165.94
238							-97.3	23.1	166.64
239	120						-97.6	21.9	167.34
240							-97.8	20.7	168.05
241	121	61	31	16			-98.1	19.5	168.75
242							-98.3	18.3	169.45
243	122						-98.5	17.1	170.16
244							-98.7	15.9	170.86
245	123	62					-98.9	14.7	171.56
246							-99.1	13.5	172.27
247	124						-99.2	12.2	172.97
248							-99.4	11.0	173.67
249	125	63	32				-99.5	9.8	174.38
250							-99.6	8.6	175.08
251	126						-99.7	7.4	175.78
252							-99.8	6.1	176.48
253	127	64					-99.9	4.9	177.19
254							-99.9	3.7	177.89
255	128						-100.0	2.5	178.59
256							-100.0	1.2	179.30
257	129	65	33	17	9	5	-100.0	0.0	180.00
258							-100.0	-1.2	180.70
259	130						-100.0	-2.5	181.41

*****	12999					11 = 11 (1)(1)	ATEN CONTRACTOR	14 25 85 10 10 10 10 10
260						-99.9	-3.7	182.11
261	131	66				-99.9	-4.9	182.81
262						-99.8	-6.1	183.52
263	132					-99.7	-7.4	184.22
264						-99.6	-8.6	184.92
265	133	67	34			-99.5	-9.8	185.63
266						-99.4	-11.0	186.33
267	134					-99.2	-12.2	187.03
268						-99.1	-13.5	187.73
269	135	68				-98.9	-14.7	188.44
270						-98.7	-15.9	189.14
271	136					-98.5	-17.1	189.84
272						-98.3	-18.3	190.55
273	137	69	35	18		-98.1	-19.5	191.25
274						-97.8	-20.7	191.95
275	138					-97.6	-21.9	192.66
276						-97.3	-23.1	193.36
277	139	70				-97.0	-24.3	194.06
278						-96.7	-25.5	194.77
279	140					-96.4	-26.7	195.47
280						-96.0	-27.9	196.17
281	141	71	36			-95.7	-29.0	196.88
282						-95.3	-30.2	197.58
283	142					-95.0	-31.4	198.28
284						-94.6	-32.5	198.98
285	143	72				-94.2	-33.7	199.69
286						-93.7	-34.8	200.39
287	144					-93.3	-36.0	201.09
288						-92.9	-37.1	201.80
289	145	73	37	19	10	-92.4	-38.3	202.50
290						-91.9	-39.4	203.20
291	146					-91.4	-40.5	203.91
292						-90.9	-41.6	204.61
293	147	74				-90.4	-42.8	205.31
294						-89.9	-43.9	206.02
295	148					-89.3	-45.0	206.72
296						-88.8	-46.1	207.42
297	149	75	38			-88.2	-47.1	208.13
298						-87.6	-48.2	208.83
299	150					-87.0	-49.3	209.53
300						-86.4	-50.4	210.23
301	151	76				-85.8	-51.4	210.94
302						-85.1	-52.5	211.64
303	152					-84.5	-53.5	212.34

*****	3399							1177/1/1/1	MAKE MANAGEMENT AND	14 5 75 64 645
304								-83.8	-54.5	213.05
305	153	77	39	20				-83.1	-55.6	213.75
306								-82.5	-56.6	214.45
307	154							-81.8	-57.6	215.16
308								-81.0	-58.6	215.86
309	155	78						-80.3	-59.6	216.56
310								-79.6	-60.6	217.27
311	156							-78.8	-61.5	217.97
312								-78.1	-62.5	218.67
313	157	79	40					-77.3	-63.4	219.38
314								-76.5	-64.4	220.08
315	158							-75.7	-65.3	220.78
316								-74.9	-66.2	221.48
317	159	80						-74.1	-67.2	222.19
318								-73.3	-68.1	222.89
319	160							-72.4	-69.0	223.59
320								-71.6	-69.8	224.30
321	161	81	41	21	11	6	3	-70.7	-70.7	225.00
322								-69.8	-71.6	225.70
323	162							-69.0	-72.4	226.41
324								-68.1	-73.3	227.11
325	163	82						-67.2	-74.1	227.81
326								-66.2	-74.9	228.52
327	164							-65.3	-75.7	229.22
328								-64.4	-76.5	229.92
329	165	83	42					-63.4	-77.3	230.63
330								-62.5	-78.1	231.33
331	166							-61.5	-78.8	232.03
332								-60.6	-79.6	232.73
333	167	84						-59.6	-80.3	233.44
334								-58.6	-81.0	234.14
335	168							-57.6	-81.8	234.84
336								-56.6	-82.5	235.55
337	169	85	43	22				-55.6	-83.1	236.25
338								-54.5	-83.8	236.95
339	170							-53.5	-84.5	237.66
340								-52.5	-85.1	238.36
341	171	86						-51.4	-85.8	239.06
342								-50.4	-86.4	239.77
343	172							-49.3	-87.0	240.47
344								-48.2	-87.6	241.17
345	173	87	44					-47.1	-88.2	241.88
346								-46.1	-88.8	242.58
347	174							-45.0	-89.3	243.28

95009	3399						11五代次品	INHAZONOVA HAVA	10 % XT. 0.0 RAE
348							-43.9	-89.9	243.98
349	175	88					-42.8	-90.4	244.69
350							-41.6	-90.9	245.39
351	176						-40.5	-91.4	246.09
352							-39.4	-91.9	246.80
353	177	89	45	23	12		-38.3	-92.4	247.50
354							-37.1	-92.9	248.20
355	178						-36.0	-93.3	248.91
356							-34.8	-93.7	249.61
357	179	90					-33.7	-94.2	250.31
358							-32.5	-94.6	251.02
359	180						-31.4	-95.0	251.72
360							-30.2	-95.3	252.42
361	181	91	46				-29.0	-95.7	253.13
362							-27.9	-96.0	253.83
363	182						-26.7	-96.4	254.53
364							-25.5	-96.7	255.23
365	183	92					-24.3	-97.0	255.94
366							-23.1	-97.3	256.64
367	184						-21.9	-97.6	257.34
368							-20.7	-97.8	258.05
369	185	93	47	24			-19.5	-98.1	258.75
370							-18.3	-98.3	259.45
371	186						-17.1	-98.5	260.16
372							-15.9	-98.7	260.86
373	187	94					-14.7	-98.9	261.56
374							-13.5	-99.1	262.27
375	188						-12.2	-99.2	262.97
376							-11.0	-99.4	263.67
377	189	95	48				-9.8	-99.5	264.38
378							-8.6	-99.6	265.08
379	190						-7.4	-99.7	265.78
380							-6.1	-99.8	266.48
381	191	96					-4.9	-99.9	267.19
382							-3.7	-99.9	267.89
383	192						-2.5	-100.0	268.59
384							-1.2	-100.0	269.30
385	193	97	49	25	13	7	0.0	-100.0	270.00
386							1.2	-100.0	270.70
387	194						2.5	-100.0	271.41
388							3.7	-99.9	272.11
389	195	98					4.9	-99.9	272.81
390							6.1	-99.8	273.52
391	196						7.4	-99.7	274.22

99009	3399					11五代公前	MAY TOUNK TO HIS	14 25 25 10 10 10 10 10
392						8.6	-99.6	274.92
393	197	99	50			9.8	-99.5	275.63
394						11.0	-99.4	276.33
395	198					12.2	-99.2	277.03
396						13.5	-99.1	277.73
397	199	100				14.7	-98.9	278.44
398						15.9	-98.7	279.14
399	200					17.1	-98.5	279.84
400						18.3	-98.3	280.55
401	201	101	51	26		19.5	-98.1	281.25
402						20.7	-97.8	281.95
403	202					21.9	-97.6	282.66
404						23.1	-97.3	283.36
405	203	102				24.3	-97.0	284.06
406						25.5	-96.7	284.77
407	204					26.7	-96.4	285.47
408						27.9	-96.0	286.17
409	205	103	52			29.0	-95.7	286.88
410						30.2	-95.3	287.58
411	206					31.4	-95.0	288.28
412						32.5	-94.6	288.98
413	207	104				33.7	-94.2	289.69
414						34.8	-93.7	290.39
415	208					36.0	-93.3	291.09
416						37.1	-92.9	291.80
417	209	105	53	27	14	38.3	-92.4	292.50
418						39.4	-91.9	293.20
419	210					40.5	-91.4	293.91
420						41.6	-90.9	294.61
421	211	106				42.8	-90.4	295.31
422						43.9	-89.9	296.02
423	212					45.0	-89.3	296.72
424						46.1	-88.8	297.42
425	213	107	54			47.1	-88.2	298.13
426						48.2	-87.6	298.83
427	214					49.3	-87.0	299.53
428						50.4	-86.4	300.23
429	215	108				51.4	-85.8	300.94
430						52.5	-85.1	301.64
431	216					53.5	-84.5	302.34
432						54.5	-83.8	303.05
433	217	109	55	28		55.6	-83.1	303.75
434						56.6	-82.5	304.45
435	218					57.6	-81.8	305.16

22222	3399							1177.1147.11	MAY MANAGER	14 25 85 12-10-025
436								58.6	-81.0	305.86
437	219	110						59.6	-80.3	306.56
438								60.6	-79.6	307.27
439	220							61.5	-78.8	307.97
440								62.5	-78.1	308.67
441	221	111	56					63.4	-77.3	309.38
442								64.4	-76.5	310.08
443	222							65.3	-75.7	310.78
444								66.2	-74.9	311.48
445	223	112						67.2	-74.1	312.19
446								68.1	-73.3	312.89
447	224							69.0	-72.4	313.59
448								69.8	-71.6	314.30
449	225	113	57	29	15	8	4	70.7	-70.7	315.00
450								71.6	-69.8	315.70
451	226							72.4	-69.0	316.41
452								73.3	-68.1	317.11
453	227	114						74.1	-67.2	317.81
454								74.9	-66.2	318.52
455	228							75.7	-65.3	319.22
456								76.5	-64.4	319.92
457	229	115	58					77.3	-63.4	320.63
458								78.1	-62.5	321.33
459	230							78.8	-61.5	322.03
460								79.6	-60.6	322.73
461	231	116						80.3	-59.6	323.44
462								81.0	-58.6	324.14
463	232							81.8	-57.6	324.84
464								82.5	-56.6	325.55
465	233	117	59	30				83.1	-55.6	326.25
466								83.8	-54.5	326.95
467	234							84.5	-53.5	327.66
468								85.1	-52.5	328.36
469	235	118						85.8	-51.4	329.06
470								86.4	-50.4	329.77
471	236							87.0	-49.3	330.47
472								87.6	-48.2	331.17
473	237	119	60					88.2	-47.1	331.88
474								88.8	-46.1	332.58
475	238							89.3	-45.0	333.28
476								89.9	-43.9	333.98
477	239	120						90.4	-42.8	334.69
478								90.9	-41.6	335.39
479	240							91.4	-40.5	336.09

480						91.9	-39.4	336.80
481	241	121	61	31	16	92.4	-38.3	337.50
482						92.9	-37.1	338.20
483	242					93.3	-36.0	338.91
484						93.7	-34.8	339.61
485	243	122				94.2	-33.7	340.31
486						94.6	-32.5	341.02
487	244					95.0	-31.4	341.72
488						95.3	-30.2	342.42
489	245	123	62			95.7	-29.0	343.13
490						96.0	-27.9	343.83
491	246					96.4	-26.7	344.53
492						96.7	-25.5	345.23
493	247	124				97.0	-24.3	345.94
494						97.3	-23.1	346.64
495	248					97.6	-21.9	347.34
496						97.8	-20.7	348.05
497	249	125	63	32		98.1	-19.5	348.75
498						98.3	-18.3	349.45
499	250					98.5	-17.1	350.16
500						98.7	-15.9	350.86
501	251	126				98.9	-14.7	351.56
502						99.1	-13.5	352.27
503	252					99.2	-12.2	352.97
504						99.4	-11.0	353.67
505	253	127	64			99.5	-9.8	354.38
506						99.6	-8.6	355.08
507	254					99.7	-7.4	355.78
508						99.8	-6.1	356.48
509	255	128				99.9	-4.9	357.19
510						99.9	-3.7	357.89
511	256					100.0	-2.5	358.59
512						100.0	-1.2	359.30

Pin-out Diagram SENSE2 VBB1 OUT2B (21)OUT1B (20 **ENABLE** NC 3) (19 **GND** DIR PAD CP1 4) (18 GND 5) CP2 (17)REF 6) VCP (16 STEP (15 NC VDD SLEEP ROSC MS1

QFN28

28 1 NC NC2 CP1 GND 3 26 CP2 **ENABLE** 4 25 VCP OUT2B 5 24 VREG VBB23 6 MS1 SENSE2 7 22 MS2OUT2A 8 21 MS3 OUT1A 9 20 RESET SENSE1 10 19 ROSC **VBB** 18 11 SLEEP **OUT1B** 12 17 VDDDIR 13 16 STEP **GND** 14 15 REF NC TSSOP28

嘉兴禾润电子科技有限公司

Terminal List Table

QFN28	TSSOP28		Pin Description
4	2	CP1	Charge pump capacitor terminal
5	3	CP2	Charge pump capacitor terminal
6	4	VCP	Reservoir capacitor terminal
8	5	VREG	Regulator decoupling terminal
9	6	MS1	Logic input
10	7	MS2	Logic input
11	8	MS3	Logic input
12	9	\RESET	Logic input
13	10	ROSC	Timing set
14	11	\SLEEP	Logic input
15	12	VDD	Logic supply
16	13	STEP	Logic input
17	14	REF	Gm reference voltage input
3,18	16,27	GND	Ground*
19	17	DIR	Logic input
21	18	OUT1B	DMOS Full Bridge 1 Output B
22	19	VBB1	Load supply
23	20	SENSE1	Sense resistor terminal for Bridge 1
24	21	OUT1A	DMOS Full Bridge 1 Output A
26	22	OUT2A	DMOS Full Bridge 2 Output A
27	23	SENSE2	Sense resistor terminal for Bridge 2
28	24	VBB2	Load supply
1	25	OUT2B	DMOS Full Bridge 2 Output B
2	26	\ENABLE	Logic input
7,20,25	1,15,28	NC	No connection
-	_	PAD	Exposed pad for enhanced thermal dissipation*

^{*}The GND pins must be tied together externally by connecting to the PAD ground plane under the device.

QFN28-5*5 with exposed thermal pad

Top View

Bottom View

Side View

Cumbal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203	BREF.	0.008	BREF.
D	4.900	5.100	0.193	0.201
E	4.900	5.100	0.193	0.201
D1	3.050	3.250	0.120	0.128
E1	3.050	3.250	0.120	0.128
k	0.20	OMIN.	0.008	BMIN.
b	0.180	0.300	0.007	0.012
е	0.500	TYP.	0.020	TYP.
L	0.450	0.650	0.018	0.026

TSSOP 28 with exposed thermal pad

C1-1	Dimensions I	n Millimeters	Dimension	is In Inches
Symbol	Min	Max	Min	Max
D	9.600	9.800	0.378	0.386
D1	3.710	3.910	0.146	0.154
E	4. 300	4. 500	0.169	0. 177
b	0.190	0.300	0.007	0.012
С	0. 090	0. 200	0.004	0.008
E1	6. 250	6. 550	0. 246	0. 258
E2	2.700	2. 900	0.106	0.122
Α		1. 100		0.043
A2	0.800	1.000	0.031	0.039
A1	0.020	0. 150	0.001	0.006
e	0.65	(BSC)	0.026	S(BSC)
L	0.500	0.700	0.02	0.028
Н	0.25(TYP)	0.01((TYP)
θ	1 °	7°	1°	7°

IMPORTANT NOTICE

注意

Jiaxing Heroic Electronic Technology Co., Ltd (HT) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any products or services without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

嘉兴禾润电子科技有限公司(以下简称HT)保留对产品、服务、文档的任何修改、更正、提高、改善和其他改变,或停止提供任何产品和服务,并不提供任何通知的权利。客户在下单和生产前应确保所得到的信息是最新、最完整的。

HT assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using HT components.

HT对相关应用的说明和协助以及客户产品的板级设计不承担任何责任。

HT products are not authorized for use in safety-critical applications (such as life support devices or systems) where a failure of the HT product would reasonably be expected to affect the safety or effectiveness of that devices or systems.

HT的产品并未授权用于诸如生命维持设备等安全性极高的应用中。

The information included herein is believed to be accurate and reliable. However, HT assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

本文中的相关信息是精确和可靠的,但HT并不对其负责,也不对任何可能的专利和第三方权利的侵害负责。

Following are URLs and contacts where you can obtain information or supports on any HT products and application solutions: 下面是可以联系到我公司的相关联系方式:

嘉兴禾润电子科技有限公司

Jiaxing Heroic Electronic Technology Co., Ltd.

地址: 浙江省嘉兴市凌公塘路3339号JRC大厦A座三层

Add: A 3rd floor, JRC Building, No. 3339, LingGongTang Road, Jiaxing, Zhejiang Province

销售/Sales: 0573-82583866

支持/Support: 0573-82586151

传真/Fax: 0573-82585078

E-mail: sales@heroic.com.cn 网址/Website: www.heroic.com.cn