

تساوي متجهتين:

تعریف

ليكن \overrightarrow{AB} و \overrightarrow{CD} متجهتين غير منعدمتين. نقول أن المتجهتين \overrightarrow{AB} و \overrightarrow{CD} متساويتان إذا كان:

- ((AB)//(CD) وأي (AB)//(CD)
- لنحى $A\mapsto B$ هو نفس المنحى المنحى المنحى المنحى (أي المنحى ($C\mapsto D$
 - لهما نفس المنظم (أي AB = CD)

 $\overrightarrow{AA}=\overrightarrow{0}$: المتجهة المتجهة المتعدمة و ليس لها اتجاه و منظمها منعدم، نكتب: \overrightarrow{AA}

تساوي متجهتين ومتوازي الأضلاع

خاصية

لتكن A و B و D و D نقطا من المستوى A حيث $A \neq D$

يكون الرباعي ABCD متوازي أضلاع إذا و فقط إذا $\overrightarrow{AB} = \overrightarrow{DC}$

ملاحظة: يمكن أن تكون المتساوية $\overrightarrow{AB}=\overrightarrow{DC}$ صحيحة و النقط A و B و D و D مستقيمية هي هذه الحالة تظل الخاصية صحيحة و يسمى ABCD متوازي أضلاع مبطح

مجموع متجهتين

تعريف

مجموع المتجهتين \overrightarrow{AB} و \overrightarrow{AC} هو المتجهة حيث يكون الرباعى ABMC متوازي أضلاع

علاقةشال

C و B و A النقط A

 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$: فإن

ضرب متجهة في عدد حقيقي

تعريف

متجهة غير منعدمة و k عدد حقيقي.

جذاء المتجهة \overrightarrow{AB} في العدد k هي المتجهة \overrightarrow{AB} حيث M نقطة تحقق:

- نقط مستقیمیت M و B و A
- k>0 و \overrightarrow{AB} و \overrightarrow{AB} لهما نفس المنحى في حالة \overrightarrow{AB}
- k < 0 و \overrightarrow{AM} و \overrightarrow{AB} و \overrightarrow{AB} و \overrightarrow{AB} و \overrightarrow{AB}

 $\overrightarrow{AM} = -\frac{2}{3}\overrightarrow{AB}$

ملاحظات:

- $-1.\overrightarrow{AB} = -\overrightarrow{AB} = \overrightarrow{BA}$, $1.\overrightarrow{AB} = \overrightarrow{AB}$, $0\overrightarrow{AB} = \overrightarrow{0}$
- $\frac{1}{k}\overrightarrow{AB}$ و لا $\frac{\overrightarrow{AB}}{k}$ ، بل نكتب: $\frac{\overrightarrow{AB}}{k}$ و لا $\frac{\overrightarrow{AB}}{k}$ ، بل نكتب: \star

خصائص

. العددان الحقيقيان u و مهما يكن العددان الحقيقيان u و مهما يكن العددان الحقيقيان

- $a(\vec{b}\vec{u}) = (a\vec{b})\vec{u} (a+\vec{b})\vec{u} = a\vec{u} + b\vec{u}$, $a(\vec{u}+\vec{v}) = a\vec{u} + b\vec{v}$
 - $\vec{u} = \vec{0}$ أو $\vec{a} = 0$ فإن $\vec{a} = \vec{0}$ أو $\vec{a} = \vec{0}$

استقامية متجهتين

تعریف

نتيجة 1

 $\overrightarrow{AC} = k \ \overrightarrow{AB}$ أو $\overrightarrow{AB} = k \ \overrightarrow{AC}$ نقول تكون النقط A و B و A مستقيمية إذا وفقط إذا وجد عدد حقيقي A حيث

نتيجة 2

 $\overrightarrow{CD} = k \ \overrightarrow{AB}$ أو $\overrightarrow{AB} = k \ \overrightarrow{CD}$ خيث: k حيث: k أذا وفقط إذا وجد عدد حقيقي k حيث: k أو إذا وفقط إذا وجد عدد حقيقي

منتصف قطعت

نتيجۃ 1

$$\overrightarrow{AI} = \overrightarrow{IB}$$
 يعني AB يعنى I $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ يعني AB يعنى AB منتصف القطعة AB يعنى AB يعنى AB

نتيجة 2

