LPIC-2 / Examen 204 - Administración Avanzada de Dispositivos de Almacenamiento - Ejercicios

Nota: Estos ejercicios implican verificar y modificar configuraciones de dispositivos. **Realiza** cambios solo en dispositivos de prueba (loopback o discos virtuales dedicados) en una VM. Necesitarás privilegios de superusuario (Sudo).

Ejercicio 4.2.1: Identificando Planificadores de E/S Disponibles y Activos

- **Objetivo:** Determinar qué planificadores están disponibles en tu kernel y cuál se usa para un disco específico.
- Requisitos: Acceso a la línea de comandos. Un dispositivo de bloque para verificar (ej: /dev/sda, o tu dispositivo loop de prueba).
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.
 - 2. **Identifica un dispositivo de bloque:** Ejecuta lsblk. Anota el nombre de tu disco principal (ej: sda) o de un disco de prueba (ej: sdb).
 - 3. **Verifica el planificador activo y los disponibles:** Ejecuta Cat /sys/block/<nombre_dispositivo>/queue/scheduler (ej: cat /sys/block/sda/queue/scheduler). La salida mostrará los nombres de los planificadores disponibles, con el activo entre corchetes [].

Ejercicio 4.2.2: Cambiando el Planificador de E/S Temporalmente

- **Objetivo:** Modificar el planificador de E/S para un dispositivo hasta el próximo reinicio.
- Requisitos: Privilegios de superusuario (Sudo). Un dispositivo de prueba (loopback o disco virtual dedicado, NO tu disco principal). Identifica los planificadores disponibles (Ej. 4.2.1).
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.
 - 2. **Identifica tu dispositivo de prueba (desmontado):** Ejecuta lsblk. Anota el nombre (ej: /dev/loop0 o /dev/sdb). Asegúrate de que no está montado.
 - 3. **Identifica un planificador disponible diferente al actual:** Consulta la salida del Ej. 4.2.1.
 - 4. Cambia el planificador: Ejecuta sudo echo <nuevo_planificador> > /sys/block/<nombre_dispositivo_prueba>/queue/scheduler (ej: sudo echo noop > /sys/block/loop0/queue/scheduler).
 - 5. Verifica el cambio: Ejecuta Cat /sys/block/<nombre_dispositivo_prueba>/queue/scheduler. El nuevo planificador debería estar entre corchetes.
 - 6. **(Opcional) Monta y genera algo de carga de E/S en el dispositivo de prueba y observa el rendimiento (conceptual):** Puedes montar el dispositivo, generar E/S (ej: dd) y monitorizar con iostat -x o iotop. Luego cambia a otro planificador y

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 2 - 201

repite para comparar (esto requiere tiempo y una metodología de prueba controlada para ser significativo).

7. **(El cambio es temporal):** Este cambio se perderá al reiniciar.

Ejercicio 4.2.3: Verificando Opciones de Montaje Relacionadas con Rendimiento

- **Objetivo:** Identificar opciones de montaje que impactan el rendimiento.
- **Requisitos:** Acceso a la línea de comandos.
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.
 - 2. **Muestra todos los montajes y sus opciones:** Ejecuta findmnt. Observa la columna OPTIONS.
 - 3. Busca opciones relevantes para rendimiento/seguridad:
 - noatime, relatime, atime: Relacionadas con la actualización del tiempo de acceso. noatime ofrece el mejor rendimiento, relatime es un buen compromiso.
 - data=ordered, data=journal, data=writeback: Para sistemas ext4. writeback es el más rápido pero menos seguro en caso de fallo.
 - barrier=1, barrier=0: Para ext4/XFS. 0 puede ser más rápido pero riesgoso.
 - 4. **Visualiza /etc/fstab:** Ejecuta cat /etc/fstab. Verifica las opciones definidas aquí, ya que son persistentes.

Ejercicio 4.2.4: Verificando Tiempos de Acceso a Archivos (Stat)

- Objetivo: Ver cómo las opciones atime/noatime/relatime impactan en los metadatos del archivo.
- **Requisitos:** Acceso a la línea de comandos. Un archivo de prueba.
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.
 - 2. Crea un archivo de prueba: Ejecuta touch testfile.txt.
 - 3. **Muestra la información del archivo, incluyendo tiempos:** Ejecuta stat testfile.txt. Observa las líneas "Access", "Modify", "Change". Access es atime, Modify es mtime, Change es ctime.
 - 4. Espera unos segundos (para sistemas con poca precisión en atime).
 - 5. **Lee el archivo de prueba:** Ejecuta cat testfile.txt.
 - 6. Muestra la información del archivo de nuevo: Ejecuta stat testfile.txt.
 - 7. Compara los tiempos de acceso: Si el sistema de archivos donde se encuentra el archivo está montado con atime completo, el tiempo de acceso debería haberse actualizado a la hora de cat. Si está montado con relatime, podría no haberse actualizado si mtime no cambió. Si está montado con noatime, el tiempo de acceso no debería haberse actualizado.

Ejercicio 4.2.5: (Conceptual) Configuración Persistente del Planificador de E/S con Udev

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX - LPIC 2 - 201

- **Objetivo:** Entender cómo usar reglas de udev para establecer el planificador de E/S para un dispositivo específico de forma permanente.
- **Requisitos:** Privilegios de superusuario (Sudo). Un dispositivo para configurar (ej: un disco virtual secundario /dev/sdb). Conocer los atributos del dispositivo (Ej. 2.4.1).
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.
 - 2. Comprende la sintaxis de la regla: Necesitarás claves de coincidencia para identificar el dispositivo (ej: KERNEL=="sdb", o una combinación de SUBSYSTEM y ATTRS usando el ID del fabricante/modelo para mayor precisión). La clave de asignación es ATTR{queue/scheduler}=.
 - 3. Crea un archivo de reglas en /etc/udev/rules.d/: Dale un nombre apropiado (ej: 60-schedulers.rules). Ejecuta sudo vi /etc/udev/rules.d/60-schedulers.rules.
 - 4. Añade la regla (ejemplo para /dev/sdb):

```
# Establecer planificador deadline para /dev/sdb
KERNEL=="sdb", ATTR{queue/scheduler}="deadline"
```

• O usando atributos más persistentes:

```
# Establecer planificador noop para mi SSD Crucial (ejemplo de
atributos)
SUBSYSTEM=="block", ATTRS{idVendor}=="Crucial",
ATTRS{idModel}=="CT500MX500SSD1", ATTR{queue/scheduler}="noop"
```

- Reemplaza los atributos con los de tu dispositivo si no es Sdb.
- 5. Guarda y sal.
- Recarga las reglas de udev: Ejecuta sudo udevadm control --reloadrules.
- 7. **Dispara eventos para el subsistema block:** Ejecuta sudo udevadm trigger --subsystem-match=block.
- 8. **Verifica el cambio:** Ejecuta cat /sys/block/<nombre_dispositivo>/queue/scheduler. El planificador debería haberse actualizado. Este cambio será persistente después de reiniciar.
- 9. (Limpieza en VM): Elimina o comenta la regla si no quieres que sea permanente.

Ejercicio 4.2.6: (Conceptual) Configuración Persistente del Planificador vía Parámetro del Kernel

- **Objetivo:** Entender cómo usar el parámetro elevator= en GRUB.
- Requisitos: Privilegios de superusuario (SUdo). VM de prueba.
- Desarrollo Paso a Paso:
 - 1. Abre una terminal.

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 2 - 201

- Edita el archivo de configuración global de GRUB: Ejecuta sudo vi /etc/default/grub.
- 3. Busca la línea GRUB_CMDLINE_LINUX_DEFAULT o GRUB_CMDLINE_LINUX.
- 4. **Añade elevator=<nombre_planificador> dentro de las comillas:** Por ejemplo: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash elevator=deadline".
- 5. Guarda y sal.
- 6. Regenera el archivo grub.cfg: Ejecuta el comando apropiado para tu distribución (Ej. 2.3.4): sudo update-grub (Debian/Ubuntu) o sudo grub2-mkconfig -o <ruta_a_grub.cfg> (Red Hat/Fedora).
- 7. Reinicia la VM.
- 8. **Después de reiniciar, verifica el planificador para tus discos:** Ejecuta Cat /sys/block/<nombre_disco>/queue/scheduler. El planificador por defecto debería ser el que especificaste en el parámetro elevator=.
- 9. (Limpieza en VM): Edita /etc/default/grub de nuevo, elimina el parámetro elevator=, regenera grub.cfg y reinicia.