What Is A Blockchain

 A decentralized computation and information sharing platform that enables multiple authoritative domains, who do not trust each other, to cooperate, coordinate and collaborate in a rational decision making process

Microsoft Word to Google Doc - Sharing Information

Traditional way of sharing documents

Microsoft Word to Google Doc – Sharing Information

Shared Google doc – both the users can edit simultaneously

Problems with a Centralized System

Watch later

Share

- A single point of failure
 - If you do not have sufficient bandwidth to load Google doc, you'll not be able to edit
 - What if the server crashes?

mage courtesy: http://timkellogg.me/

Centralized vs Decentralized vs Distributed

Complete reliance on single point (centralized) is not safe

- Decentralized: Multiple points of coordination
- Distributed: Everyone collectively execute the job

Photo courtesy: Baran, Paul. On distributed communications: I. Introduction to distributed communications networks. No. RM3420PR. RAND CORP SANTA MONICA CALIF, 1964.

A Plausibly Ideal Solution

Everyone edits on their local copy of the document – the Internet takes care of ensuring consistency

Blockchain – The Internet Database to Support Decentralization

A decentralized database with strong consistency support

A Very Simplified Look of the Blockchain

- Every node maintains a local copy of the global data-sheet
- The system ensures consistency among the local copies
 - The local copies at every node is identical
 - The local copies are always updated based on the global information

A Very Simplified Look of the Blockchain

- We call this a Public Ledger
 - A database of "historical information" available to everyone
 - The "historical information" may be utilized for future computation
- An Example:
 - Say, the historical information are the banking transactions
 - The old transactions are used to validate the new transactions

An Example of Public Ledger from Banking Sectors Alice: ₹100 **Public Ledger** Alice: ₹100 **Public Ledger** of Bob of Alice Alice ₹ 100 Alice: ₹100 Alice: ₹100 **Public Ledger Public Ledger** of Jane of Eve Eve Jane

An Example of Public Ledger from Banking Sectors

Blockchains and Public Ledgers

- Blockchains work like a public ledger
- However, we need to ensure a number of different aspects
 - Protocols for Commitment: Ensure that every valid transaction from the clients are committed and included in the blockchain within a finite time.
 - Consensus: Ensure that the local copies are consistent and updated.
 - Security: The data needs to be tamper proof. Note that the clients may act maliciously or can be compromised.
 - Privacy and Authenticity: The data (or transactions) belong to various clients; privacy and authenticity needs to be ensured.

Formal Definition of a Blockchain

- A Blockchain is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way" (lansiti, Lakhani 2017)
- The keywords: Open (accessible to all), Distributed or Decentralized (no single party control), efficient (fast and scalable), verifiable (everyone can check the validity of information), permanent (the information is persistent)

Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". Harvard Business Review. Harvard University.

The Fundamentals

- Cryptographically Secured Hash Functions
 - **Hash Functions**: Map any sized data to a fixed size; Example H(x) = x % n, where x and n are integers and % is the modular (remainder after division by n) operations. x can be of any arbitrary length, but H(x) is within the range [0,n-1].
 - Cryptographically Secured:
 - One way, given a x, we can compute H(x), but given a H(x), no deterministic algorithm
 can compute x
 - For two different x_1 and x_2 , $H(x_1)$ and $H(x_2)$ should be different

Cryptographic Hash Functions

- Examples: MD5, SHA256
- X is called the message and H(X) is called the message digest
- A small change in the data results in a significant change in the output – called the avalanche effect

Image source: Wikipedia

Cryptographically Secured Chain of Blocks

- The first use time-stamp a digital document (Harber and Stornetta, 1991)
 - A sequence of timestamps [TS₁, TS₂, TS₃, ...] denoting when the document is created or edited.
 - Whenever a client access a document, construct a block consisting of the sequence number of access, client ID, timestamp, a hash value from the previous request; and the entire thing is hashed to connect it to the previous blocks.

Haber, Stuart; Stornetta, W. Scott (January 1991). "How to time-stamp a digital document". *Journal of Cryptology*. 3 (2): 99–111

Merkle Trees (Ralph Merkle, 1979) Also known as hash **Root Hash** H_{root}=Hash(H₀+H₁) tree - every leaf node is labelled with the hash L₁ Hash L₁ Hash H₁=Hash(H₁₀+H₁₁) of a data block $H_0 = Hash(H_{00} + H_{01})$ every non-leaf node is labelled with the L, Hash L₂ Hash L2 Hash L, Hash cryptographic hash of H11=Has (104) H₀₁=Hash(D₂) H₁₀=Hash(D₃) Hoo=Hash(D1) the labels of its child nodes

Use of Merkle Trees

- Bayer, Harber and Stornetta used Merkle Tree in 1992 for timestamping and verifying a digital document - improved the efficiency by combining timestamping of several documents into one block
- Other uses of Merkle Tree
 - Peer to Peer Networks: Data blocks received in undamaged and unaltered; other peers do not lie about a block
 - Bitcoin implementation shared information are unaltered; no one can lie about a transaction