€ listra A10 pdf (cape 1 o	
* Aucune documentation n'est permise.	F2 3+12=15
Décrivez vos algorithmes en pseudocode ou en Java(-esque).	F2 3+12=15 F3 14 5
* Répondez à toutes les questions dans les cahiers d'examen.	F4 15+10=25 5 F5 10+10+5=25 5
A separate a control questions dans as cannels a coantent	$\frac{F5}{\Sigma} = \frac{10 + 10 + 5 = 25}{100} = \frac{5}{15}$
FO Votre nom (1 point)	
► Mettez votre nom et code permanent sur tous les cahiers sou	mis.
F1 Théorie et pratique (20 points)	
i. Presque partout (6 points) Soit P(n) une proprieté ² des entiers na	
rels qui est soit vrai soit faux pour chaque $n = 0, 1, 2, \ldots, \triangleright$ Do	
une définition précise de l'expression "pour presque tout" dans l'é	nonce constante $c > 0$.
P(n) est viai pour presque tout n .	I
ii. Comparaisons de taux de croissance (14 points) > Comparez le tau	x de crois-
sance des fonctions dans les rangées. Pour chaque paire f, g, écrive	
$f = \Theta(g)$, "\leftilder si $f = o(g)$, "\rightarrow" si $g = o(f)$, et "???" si auct	n des trois
cas n'applique. Chaque réponse vaut 2 points, et il n'est pas nécess	ire de les
justifier. $\lg n$ dénote le logarithme binaire de n .	
a $f(n) = n^2 \cdot 2^{2015}$ $g(n) = (n + 2015)^2$	
a $f(n) = n^2 \cdot 2^{2015}$ $g(n) = (n + 2015)^2$ b $f(n) = \sqrt{\lg n}$ $g(n) = \lg(\sqrt{n})$ c $f(n) = \sum_{i=0}^{n} 2015^i$ $g(n) = 2015^n$	
c $f(n) = \sum_{i=0}^{n} 2015^{i}$ $g(n) = 2015^{n}$	
d $f(n) = \log_{2015}(n!)$ $g(n) = n \ln n$	
e $f(n) = 3 \lg n$ $g(n) = \log_{2015}(n)$	
$f(n) = n \lg \lg(n+2)$ $g(n) = n (\lg(n+2))^2$	
$g f(n) = \sin^2 n \qquad \qquad g(n) = \cos^2 n$	

-