Text embeddings similarity

We perform below steps to find similarity between two embeddings:

- Vector Representation: Text is first converted into vectors using methods like Word2Vec, GloVe, or transformer models (e.g., BERT). Each vector represents the semantic meaning of the text.
- Dot Product: The cosine similarity between two vectors is calculated using the dot product. For two vectors AAA and BBB:
 Dot Product=A · B=∑i=1nAi×Bi\text{Dot Product} = A \cdot B = \sum_{i=1}^{n} A_i
- \times B_iDot Product=A · B=i=1∑nAi×Bi
 Magnitude: Each vector's magnitude (or length) is computed:
 Magnitude of A=∑i=1nAi2\text{Magnitude of A} = \sqrt{\sum_{i=1}^n}^{n}
 A iA2\text{Magnitude of A=i=1∑nAi2 Magnitude of B=∑i=1nBi2\text{Magnitude of B}
 = \sqrt{\sum_{i=1}^n}^{n} \text{Magnitude of B}
 = \sqrt{\sqrt{\sum_{i=1}^n}^{n}}^{n} \text{Magnitude of B}
 = \sqrt{\s
 - Magnitude of $A=\sum_{i=1}^{n}1$ A_i^2\text{Magnitude of A} = \sqrt{\sum_{i=1}^{n}} A_i^2\text{Magnitude of B} = \sqrt{\sum_{i=1}^{n} B_i^2\text{Magnitude of B} = \sqrt{\sqrt{\sum_{i=1}^{n} B_i^2\text{Magnitude of B} = \sqrt{\sqrt{\sqrt{\sqrt{\sum_{i=1}^{n} B_i^2\text{Magnitude of B} = \sqrt{\
- 4. Cosine Similarity Formula: The cosine similarity is then calculated as:

 Cosine Similarity=A · B // A // × // B // \text{Cosine Similarity} = \frac{A \cdot B}{\|A\| \times \|B\|}Cosine Similarity= // A // × // B // A · B

 where // A // \|A\| // A // and // B // \|B\| // B // are the magnitudes of vectors AAA and BBB, respectively.

Interpretation:

- The value of cosine similarity ranges from -1 to 1.
 - 1: Indicates that the vectors are identical in direction (high similarity).
 - o **0**: Indicates orthogonality (no similarity).
 - -1: Indicates opposite directions (completely dissimilar).