Inferencia Estadística Introducción

Edimer David Jaramillo - Bioestadística 1

Marzo de 2019

Inferencia Estadística

Inferencia

Inferencia

- Métodos de inferencia estadística:
 - Clásico
 - Bayesiano
- Inferencia:
 - Estimación
 - Puntual
 - Intervalos
 - Pruebas de hipótesis

Introducción

- Parámetro: medida numérica que se obtiene con todos los datos de la población. Los parámetros generalmente son desconocidos.
- **Estadístico:** medida numérica que se obtiene de las muestras con determinado nivel de variación entre muestras.
- Inferencia estadística: proceso mediante el cual se generalizan conclusiones a la población, cuyo punto de partida son las muestras. Objetivos de la inferencia estadística:
 - Estimación de parámetros
 - Estimación puntual
 - Intervalos de confianza
 - Pruebas de hipótesis o test de significancia estadística
- Un estadístico muestral, proveniente de una muestra aleatoria, tiene un patrón de comportamiento (predecible) en repetidas muestras, dicho patrón se conoce como la distribución muestral del estadístico.
- Si se conoce la distribución muestral, es posible hacer inferencia estadística.

Elementos básicos de inferencia estadística (1/3)

- Punto de partida: situaciones cotidianas que afectan la realidad del hombre.
- Tomar acciones frente a dichas situaciones requiere comprensión del sistema que las origina.
- Etapa de "idealización": modelación.
 - La modelación tiene como objetivo identificar los elementos que son importantes y determinar sus relaciones.
- Si el modelo es correcto, se constituye como una herramienta útil para planificar acciones.

Elementos básicos de inferencia estadística (2/3)

Relación entre la construcción de modelos y la inferencia estadística:

- Un modelo deber ser validado, es decir, mostrar que las estimaciones que se deducen del mismo, son aceptables.
- Un modelo se considera correcto para determinada situación, cuano no existen diferencias significativas entre lo observado y lo esperado.
- ¿Qué es diferencia significativa?
 - Asignación de probabilidades al evento
 - La medida de probabilidad permitirá tomar la decisión basado en la evidencia observada

Elementos básicos de inferencia estadística (3/3)

- Hipótesis científica: modelo no validado
 - Si las consecuencias de la hipótesis científica se puede establecer como propiedades estadísticas de una variable aleatoria, entonces será posible implementar herramientas de inferencia estadística que permitan la validación del modelo.
 - Hipótesis científica en términos estadísticos como Hipótesis Estadística
 - Analizar datos muestrales
 - Cálculo de estadísticos muestrales
 - Distribución del estadístico muestral
 - La distribución del estadístico depende de la hipótesis planteada
 - Se rechaza o no la hipótesis estadística y, en consecuencia, la hipótesis científica

Estimación de paramétros

Estimación puntual

Estimación por intervalo

Nivel α y Nivel de confianza (NC)

- Nivel α de uso frecuente:
 - 0.10
 - 0.05
 - 0.01
- Nivel de confianza de uso frecuente:
 - 0.90
 - 0.95
 - 0.99
- $NC + \alpha = 1$

Ilustración de IC

Ejemplo con un NC = 97%(0.97) y $\alpha = 3\%(0.03)$

Intervalos de confianza usuales

- Para una muestra:
 - μ
 - p
 - σ^2
- Para dos muestras:
 - $\mu_1 \mu_2$
 - $\mu_1 \mu_2$ (pareadas)
 - $p_1 p_2$
 - σ_1^2/σ_2^2

Pruebas de hipótesis

Tipos de hipótesis

Tipos de pruebas

$$H_0$$
: $\theta = \theta_0$ H_0 : $\theta = \theta_0$ H_0 : $\theta = \theta_0$
 H_1 : $\theta > \theta_0$ H_1 : $\theta < \theta_0$ H_1 : $\theta \neq \theta_0$

Área de aceptación

Pruebas de hipótesis usuales

- Para una muestra:
 - μ
 - p
 - σ^2
- Para dos muestras:
 - $\mu_1 \mu_2$
 - $\mu_1 \mu_2$ (pareadas)
 - $p_1 p_2$
 - σ_1^2/σ_2^2

Proceso de prueba de hipótesis

- Definir la hipótesis nula y la alternativa
- Tomar la muestra (muestreo)
- Calcular el estadístico (evidencias)
- Determinar el nivel α
- Calcular el valor P
- Concluir (toma de decisiones)

Tipos de errores en pruebas de hipótesis

		Naturaleza de $H_{\hat{0}}$	
		Verdadera	Falsa
Decisión	Rechazar H_{θ}	Error de tipo I	Decisión correcta
		P = α	P = 1 - β
	No rechazar $H_{\bar{\theta}}$	Decisión correcta	Error de tipo II
		P = 1 - α	$P = \beta$

- ullet α : máxima probabilidad de cometer el error tipo ${f I}$
- Potencia de la prueba (1β) : probabilidad de rechazar una hipótesis nula que es falsa.

Valor P: concepto

- Se puede definir como la probabilidad exacta de cometer el error tipo I.
- Probabilidad de obtener un estadístico de prueba (evidencias) igual al que se obtuvo o más extremo.
- Es la probabilidad calculada, suponiendo que la hipótesis nula es verdadera, de obtener un estadístico de prueba tan discrepante a H₀ como el valor que en realidad se obtuvo.
- En la medida que el valor P se hace más pequeño, más contradictorios son los datos con H_0

¿Dónde se encuenta el valor P?

¿Dónde se encuenta el valor P?

¿Dónde se encuenta el valor P?

Conclusión en una prueba de hipótesis

Formas de contrastar una hipótesis

- Intervalos de confianza
- Región de rechazo
- Valor P