Plans for Sprint 2,3

- 1. Present collected requirements for the client and ask for further clarification
- 2. Develop following requirements

User Story ID	Requirements to Develop	Sprin
CV.1	As an Operator, I want to see the tracking status of items on the GUI so that I can check whether the item is recognized.	2
CV.2	As an Operator, I want to see the tracking status of human anatomy on the GUI so that I can check whether the human anatomy is recognized.	2
CV.3	As Tech Support, I want to see the tracking status of items on the GUI so that I can debug when objects cannot be recognized.	2
CV.4	As Tech Support, I want to see the tracking status of human anatomy on the GUI so that I can debug when human anatomy cannot be recognized.	2
CV.5	As an Operator, I want to place the required items in the field of view of the robot camera so that I can ensure the vision system can detect the items.	3
CV.6	As an Operator, I want to receive feedback that the item could not be found so that I can identify the cause of the failure.	3
VR.1	As an Operator, I want to speak commands through the microphone so that I can give voice commands to the robotic arm.	2
VR.2	As an Operator, I want to see or hear the command I have given so that I can check whether the robot understands my command.	2
VR.3	As an Operator, I want to input the action commands that the robot can perform into the system so that I can command the robot to move.	3
VR.4	As an Operator, I want to see the tracking situation of various objects from the robot's vision so that I can check if the vision system is working properly.	3
VR.5	As an Operator, I want to receive feedback on command completion so that I can know the action is ended and check if it is correct.	3
VR.6	As an Operator, I want to receive feedback on command failure so that I can identify the cause of the failure.	3
DM.1	As an Operator, I want to integrate visual and audio sensory abilities into the robotic arm so that the robotic arm can act autonomously without the need for manual input.	3
RC.1	As an Operator, I want to see the robot's action as soon as possible after issuing the command so that I can know whether the system has received my command and is running normally.	3
RC.2	As an Operator, I want to create new actions for the robot so that I can design new actions and new commands.	3
RC.3	As an Operator, I want to receive feedback that the action could not be found so that I can identify the cause of the failure.	3
SS.1	As Tech Support, I want to reboot the entire system so that I can reset the configurations and parameters.	3
SS.2	As Tech Support, I want to receive notifications when a subroutine encounters a problem so that I can know where the problem specifically occurred and investigate it.	3
SS.3	As an Operator, I want to restore the robotic arm to its initial state after the command is completed so that I can make it execute other commands.	3

Sprint 2: Computer Vision Development & Speech Interface Development

Object Detection and Recognition

- 1. Azure Kinect Integration: Integrate the Azure Kinect sensor with ROS2 to capture RGB-D data.
- 2. YOLO Model Integration: Implement YOLO-based object detection using pre-trained models. Consider fine-tuning the model for novel objects in your application.
- 3. ROS2 Integration: Develop ROS2 nodes to process sensor data and publish object detection results.

People Detection and Tracking

- 1. MediaPipe Integration: Integrate MediaPipe or another suitable library for people detection and tracking.
- 2. ROS2 Nodes: Create ROS2 nodes to process camera data, detect and track people, and publish the tracking results.

Gesture Recognition

1. MediaPipe Gesture Module: Integrate MediaPipe's gesture recognition module or similar libraries.

- 2. Gesture Labeling: Develop a system to capture and label gestures for training.
- 3. ROS2 Integration: Implement ROS2 nodes to recognize and interpret gestures from camera data.

Speech Recognition System

- 1. Google Speech API: Integrate the Google Speech-to-Text API for accurate speech recognition.
- 2. Voice Data Collection: Gather voice data to fine-tune the model for domain-specific commands.

Natural Language Processing

- 1. OpenAl GPT-4: Utilize the OpenAl GPT-4 API for natural language understanding and command interpretation.
- 2. Command Categorization: Define a set of command categories for the robot to understand.
- 3. ROS2 Integration: Develop ROS2 nodes to process interpreted commands.

Sprint 3: Robotic Arm Control Integration

- 1. ROS2 Arm Control: Utilize the ROS2 Franka Emika package to control the robotic arm.
- 2. Command Execution: Map-interpreted commands to robotic arm actions (e.g., pick-and-place).
- 3. Safety Measures: Implement collision avoidance and safety protocols to ensure safe movements.

Integration and Testing

- 1. Combine Software Components:
 - Integrate the computer vision, speech interface, and robotic arm control components.
 - Develop ROS2 nodes to manage communication between these components.
- 2. Unified Software System:
 - Ensure seamless interaction and coordination between the different modules.
 - · Handle synchronization of data and commands.
- 3. I Spy + Pick and Place Demo:
 - Create a demo scenario where the robot responds to "I spy" commands and performs pick-and-place actions.

Infrastructure and Deployment

Hardware Setup

- 1. Franka Emika Arm: Ensure the robotic arm is properly connected and calibrated.
- 2. Azure Kinect: Set up the Azure Kinect sensor and ensure it's properly calibrated with the robot.

Simulation Environment

- 1. Gazebo Setup: Set up the Gazebo simulator to test and debug the robotic arm control and vision modules.
- 2. Simulation Integration: Integrate ROS2 nodes with the Gazebo simulation environment.