G12: Contrôle continu nº 2.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives; pour tout $n\geq 1, X_n$ suit la loi exponentielle de paramètre $\lambda_n>0: X_n$ a pour densité $x\longmapsto \lambda_n e^{-\lambda_n x}\mathbf{1}_{\mathbf{R}_+}(x)$.

- 1. Donner une condition nécessaire et suffisante pour que $(X_n)_{n\geq 1}$ converge vers 0 :
 - (a) en probabilité;
 - (b) dans L^1 .
- 2. On suppose les $(X_n)_{n\geq 1}$ indépendantes. Donner un exemple dans lequel $(X_n)_{n\geq 1}$ converge vers 0 dans L¹ mais pas presque sûrement.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées.

Montrer que la suite $(X_n/n)_{n\geq 1}$ converge presque sûrement vers 0 si et seulement si X_1 est intégrable.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans [0,1], indépendantes et identiquement distribuées suivant la loi uniforme sur [0,1]; X_1 a pour fonction de répartition F où F(t) = 0 si t < 0, $F(t) = \min(t,1)$ si $t \geq 0$.

On note, pour tout $n \ge 1$, $M_n = \max_{1 \le k \le n} X_k$.

- 1. Déterminer, pour tout $n \geq 1$, la fonction de répartition, F_n , de M_n .
- 2. (a) Calculer, pour tout $n \ge 1$ et tout $\varepsilon > 0$, $\mathbb{P}(|1 M_n| > \varepsilon)$.
 - (b) En déduire que $(M_n)_{n>1}$ converge presque sûrement vers 1.
- 3. Montrer que la suite $(n(M_n-1))_{n\geq 1}$ converge en loi vers une variable aléatoire Z de fonction de répartition G définie par $G(t)=e^t$ si $t\leq 0, G(t)=1$ pour t>0.