The Chomsky Hierarchy

Linear-Bounded Automata:

Same as Turing Machines with one difference:

the input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power as Deterministic LBA's?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\} \qquad L = \{a^{n!}\}$$

LBA's have more power than PDA's (pushdown automata)

LBA's have less power than Turing Machines

Unrestricted Grammars:

Productions

String of variables and terminals

String of variables and terminals

Example unrestricted grammar:

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

$$Ac \rightarrow d$$

Theorem:

A language $\,L\,$ is Turing-Acceptable if and only if $\,L\,$ is generated by an unrestricted grammar

Context-Sensitive Grammars:

Productions

String of variables and terminals

String of variables and terminals

and: $|u| \leq |v|$

The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

A language L is context sensistive if and only if it is accepted by a Linear-Bounded automaton

Observation:

There is a language which is context-sensitive but not decidable

The Chomsky Hierarchy

Non Turing-Acceptable

Turing-Acceptable

decidable

Context-sensitive

Context-free

Regular