Ejercicio 1

UVG Canvas

Autores

- Esteban Aldana
- Mariano Reyes
- Juan Carrera
- Luis Pedro Gonzalez

Instrucciones

- Revisar detalladamente el dataset y sacar conclusiones del mismo
 - Tipos de datos
 - Cantidad de columnas (campos)
 - Cantidad de filas (registros)
 - Estadísticas del dataset (media, moda, desviación estándar, máximo, mínimo, etc)
- Escribir una breve descripción de lo que representan cinco columnas del dataset
- Pensar en qué columnas se podrían usar como entrada para un modelo de machine learning que resuelva un problema en el contexto del dataset (Recomendar una tarjeta de crédito, predecir ingresos, detectar desnutrición, etc)
- Subir como archivo PDF
- El líder del equipo debe subir la tarea

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset
file_path = './FOOD-DATA-GROUP1.csv'
data = pd.read_csv(file_path)
```

Análisis explorativo

```
print(f"n de columnas: {data.shape[1]}")
print(f"n de filas: {data.shape[0]}")

for i, column in enumerate(data.columns):
    print(f"{i}. {column}")

Cantidad de columnas: 37
Cantidad de filas: 551
```

```
0. Unnamed: 0.1
1. Unnamed: 0
2. food
3. Caloric Value
4. Fat
Saturated Fats
6. Monounsaturated Fats
7. Polyunsaturated Fats
8. Carbohydrates
9. Sugars
10. Protein
11. Dietary Fiber
12. Cholesterol
13. Sodium
14. Water
15. Vitamin A
16. Vitamin B1
17. Vitamin B11
18. Vitamin B12
19. Vitamin B2
20. Vitamin B3
21. Vitamin B5
22. Vitamin B6
23. Vitamin C
24. Vitamin D
25. Vitamin E
26. Vitamin K
27. Calcium
28. Copper
29. Iron
30. Magnesium
31. Manganese
32. Phosphorus
33. Potassium
34. Selenium
35. Zinc
36. Nutrition Density
numeric data = data.select dtypes(include=['float64', 'int64'])
# Calculate the correlation matrix
correlation_matrix = numeric_data.corr()
# Display the correlation matrix
print("\nMatriz de Correlación:")
correlation matrix display = correlation matrix
# Visualize the correlation matrix using a heatmap
plt.figure(figsize=(16, 12))
```

```
heatmap = sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
fmt='.2f', linewidths=0.5)
plt.title('Mapa de Calor de la Matriz de Correlación')
plt.show()
Matriz de Correlación:
```



```
# Select columns with significant correlations

correlation_threshold = 0.5
significant_correlations = correlation_matrix[abs(correlation_matrix))
> correlation_threshold].stack().reset_index()
significant_correlations =
significant_correlations[significant_correlations['level_0'] !=
significant_correlations['level_1']]
significant_correlations.columns = ['Variable 1', 'Variable 2',
```

```
'Correlación'l
print("\nCorrelaciones Significativas (absolutas > 0.5):")
significant correlations display = significant correlations
target variable = 'Caloric Valor'
correlated features = correlation matrix[target variable]
[abs(correlation matrix[target variable]) > correlation threshold]
correlated features =
correlated features.drop(target variable).sort Valors(ascending=False)
print(f"\nCaracterísticas correlacionadas con '{target variable}':")
correlated features display = correlated features
print("\nRecomendaciones de Columnas para Modelos de Machine
Learning:")
input features = list(correlated features.index)
print("Características de Entrada (Input Features):", input features)
for i, feature in enumerate(input features):
    print(f"\t{i+1}. {feature}")
print("Variable Objetivo (Target Variable):", target variable)
# Display selected input features and target variable
print("\nPrimeras filas de las Características Seleccionadas y la
Variable Objetivo:")
selected features display = data[input features +
[target variable]].head()
print(selected features display)
Correlaciones Significativas (absolutas > 0.5):
Características correlacionadas con 'Caloric Value':
Recomendaciones de Columnas para Modelos de Machine Learning:
Características de Entrada (Input Features): ['Fat', 'Polyunsaturated
Fats', 'Monounsaturated Fats', 'Saturated Fats', 'Carbohydrates',
'Protein', 'Phosphorus', 'Nutrition Density', 'Cholesterol',
'Potassium'l
     1. Fat
     2. Polyunsaturated Fats
     3. Monounsaturated Fats
     4. Saturated Fats
     Carbohydrates
     6. Protein
     7. Phosphorus
     8. Nutrition Density
     9. Cholesterol
     10. Potassium
Variable Objetivo (Target Variable): Caloric Value
```

			ıs de	las	Cara	cter	ísticas	Selec	ciona	das y la	a Varial	ole	
0 1	jetivo: Fat 5.0 19.4		unsa	turat	0.	ats 200 800	Monoun	satura		ats Sat 1.3 4.9	urated	Fats 2.9 10.9	\
2 3 4	3.6 2.0 2.3				0. 0.	000 000 002 042				9.9 9.5 9.6		2.3 1.3 1.4	
\	Carbol	nydra	ites	Prot	cein	Pho	sphorus	Nutr	ition	Density	/ Chole	estero	ıl
ò			0.8		0.9		0.091			7.070)	14.	6
1			3.1		7.8		117.300			130.100)	62.	9
2			0.9		0.8		0.000			5.400)	0.	0
3			1.5		1.5		0.024			5.196	5	9.	8
4			1.2		1.2		22.800			27.007	1	8.	1
0 1 2 3 4	12	sium 15.5 29.2 0.0 30.8	Cal	oric	21 4 3	1							

Cinco columnas seleccionadas

- 1. Caloric Valor
- 2. Fat
- 3. Carbohydrates
- 4. Sodium
- 5. Protein

```
selected_columns = ["Caloric Valor", "Fat", "Carbohydrates", "Sodium",
"Protein"]
for col in selected_columns:
    print(f"> {col}")
    print(data[col].describe())
    print("\n")

> Caloric Value
count    551.000000
mean    237.359347
std    199.235598
min     3.000000
```

```
25%
           94.500000
50%
          186.000000
75%
          337.000000
         1578.000000
max
Name: Caloric Value, dtype: float64
> Fat
count
         551.000000
          10.766933
mean
std
          12.544196
min
           0.000000
25%
           2.500000
50%
           6.600000
75%
          14.400000
          87.500000
max
Name: Fat, dtype: float64
> Carbohydrates
count
         551.000000
          15.819036
mean
std
          20.289320
min
           0.000000
25%
           0.000000
50%
           5.100000
75%
          28.700000
         128.300000
max
Name: Carbohydrates, dtype: float64
> Sodium
         551.000000
count
           0.573205
mean
           0.636126
std
min
           0.000000
25%
           0.100000
50%
           0.400000
75%
           0.900000
max
           6.100000
Name: Sodium, dtype: float64
> Protein
count
         551.000000
          18.417857
mean
std
          18.932404
           0.000000
min
25%
           5.300000
50%
          11.900000
```

75% 25.650000 max 86.900000

Name: Protein, dtype: float64

Resumen

Análisis Exploratorio

Tipo de datos

El dataset contiene columnas con tipos de datos enteros (int64), flotantes (float64) y cadenas de texto (object).

Dimensiones del dataset

Dato	Valor
No. Columnas	37
No. Filas	551

Estadística Descriptiva

Caloric Valor

Catoric vator	
Estadística	Valor
n	551.000000
Media	237.359347
Desviación Estándar	199.235598
Min	3.000000
25%	94.500000
50%	186.000000
75%	337.000000
Max	1578.000000
Fat	
Estadística	Valor
n	551.000000
Media	10.766933
Desviación Estándar	12.544196
Min	0.00000
25%	2.500000
50%	6.600000

Estadística	Valor
75%	14.400000
Max	87.500000
Carbohydrates	V 1
Estadística	Valor
n 	551.000000
Media	15.819036
Desviación Estándar	20.289320
Min	0.00000
25%	0.000000
50%	5.100000
75%	28.700000
Max	128.300000
Callina	
Sodium	Walan
Estadística	Valor
n 	551.000000
Media	0.573205
Desviación Estándar	0.636126
Min	0.00000
25%	0.100000
50%	0.400000
75%	0.900000
Max	6.100000
Protein	
Estadística	Valor
n	551.000000
Media	18.417857
Desviación Estándar	18.932404
Min	0.000000
25%	5.300000
50%	11.900000
75%	25.650000
Max	86.900000

Cinco columnas seleccionadas

• Caloric Value: Representa la cantidad de calorías en el alimento, medida en kilocalorías (kcal).

- Fat: Indica la cantidad total de grasa en el alimento, medida en gramos (g).
- Carbohydrates: Mide la cantidad de carbohidratos presentes en el alimento, en gramos (g).
- Protein: Representa la cantidad de proteínas en el alimento, en gramos (g).
- Sodium: Indica la cantidad de sodio en el alimento, medida en miligramos (mg).

Selección de columnas para modelo de machine learning

- Para un modelo de machine learning que tenga como objetivo predecir el valor nutricional de un alimento o recomendar alimentos saludables, las siguientes columnas podrían ser usadas como características de entrada:
 - Fat
 - Carbohydrates
 - Protein
 - Sodium
 - Cholesterol
- La variable objetivo en este caso sería Caloric Value.