

WORD REPRESENTATIONS

BAG OF WORDS TF-IDF WORD2VEC

Prashant Kodali
PhD Scholar @IIIT H
prashant.kodali@research.iiit.ac.in

TOPICS COVERED SO FAR

- Lecture 1: Python basics includes list, tuple, dictionary, loops and functions
- Lecture 2: Additional concepts in python, Introduction to Numpy, pandas, and matplotlib
- **Lecture 3**: Regular expressions, stop words, lemmatization, stemming, Tokenization and Challenges in tokenization
- **Lecture 4**: Spelling mistake detection and correction with minimum edit distance, Chunking and NER, POS tagging
- **Lecture 5**: Language Modeling, Smoothing

OVERVIEW

- Why Representations?
- Bag of words
 - In practice
- TF-IDF
 - Motivation
 - In practice
- Word2vec
 - Motivation
 - In practice

WHY DO WE NEED REPRESENTATIONS?

- To feed text into any ML algo we need features.
- Strength/Richness of these features
 - Should be sufficient for your task
- Bag of words, TF-IDF, word2vec are some examples.
 - Basic but still powerful for some tasks

BAG OF WORDS

- Break down text into the constituent words and represent the counts of these words in a vector
- Ignores
 - Word order
 - Any grammar
- Useful for some IR tasks
 - Document classification
- Steps involved:
 - Build vocab: extract all unique words in a corpus
 - Measure which words are present, along with their counts
- Can be scaled to grams: to capture some context
- Issues
 - Sparsity
 - Ignores any sense of grammar
 - Frequently occurring words will dominate over the words which are seen fewer times in the corpus

TF - IDF

- intended to reflect how important a word is to a document in a collection or corpus.
- A way to weight the occurrence scores
- Consists of two terms
 - Term frequency

$$\frac{\#_d(w)}{\sum_{w'\in d} \#_d(w')}$$

$$\frac{\#_d(w)}{\sum_{w' \in d} \#_d(w')} \times \log \frac{|D|}{|\{d \in D : w \in d\}|}$$

Inverse Documents Frequency

$$\log \frac{|D|}{|\{d \in D : w \in d\}|}$$

EXAMPLE OF TF-IDF

Sentence A: The car is driven on the road.

Sentence B: The truck is driven on the highway.

Word	TF		IDF	TF*IDF	
	Α	В	IDI	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	log(2/2) = 0	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	0	1/7	log(2/1) = 0.3	0	0.043

DISTRIBUTED SEMANTICS: WORD2VEC

Representing words by their context

- <u>Distributional semantics</u>: A word's meaning is given by the words that frequently appear close-by
 - "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
 - One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window).
- Use the many contexts of w to build up a representation of w

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

These context words will represent banking

TO REDUCE DIMENSIONALITY

- Singular Value Decomposition on X to get a USV^T decomposition.
- use the rows of U as the word embeddings for all words in our dictionary

3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:

- We have a large corpus of text
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

Figure 2: Continuous bag-of-word model

Figure 3: The skip-gram model.

6

LETS LOOK AT HOW TO IMPLEMENT THESE!

TOPIC FOR NEXT SESSION

- Neural Networks Basics:
 - Feedforward Neural Network,
 - Forward and Back propagation,
 - Activation Functions,
 - Gradient Descent