Semantics for the λ -calculus

Arnoud van der Leer Delft University of Technology arnoudvanderleer@gmail.com

2023-11-01

Classical lambda calculus in modern dress

- Paper by Martin Hyland.
- About models for the λ -calculus.
- Three 'big' theorems.
- My job: 'annotate'.

Intro

Talking about the λ -calculus

Models

Semantics

The main theorems

Scott's representation theorem The fundamental theorem of the λ -calculus The category of retracts

My contribution

Annotating the paper Mechanization

Conclusion

Intro

Talking about the λ -calculus Models Semantics

The main theorems

Scott's representation theorem The fundamental theorem of the λ -calculus The category of retracts

My contribution

Annotating the paper Mechanization

Conclusion

The **untyped** λ -calculus

Describes a collection consisting of (only) functions.

The **untyped** λ -calculus

Describes a collection consisting of (only) functions. Has terms, consisting of *variables*, *application* and *abstraction*:

$$x_1$$

$$x_1(x_2x_1)$$

$$\lambda x_1, x_1$$

$$\lambda x_3 x_2 x_1, x_1(x_2x_3).$$

Can have β - and η -equality:

$$(\lambda x_n, f)g = f[x_n := g]$$
 $\lambda x_n, (fx_n) = f.$

The **untyped** λ -calculus

Describes a collection consisting of (only) functions. Has terms, consisting of *variables*, *application* and *abstraction*:

$$x_1$$

$$x_1(x_2x_1)$$

$$\lambda x_1, x_1$$

$$\lambda x_3 x_2 x_1, x_1(x_2x_3).$$

Can have β - and η -equality:

$$(\lambda x_n, f)g = f[x_n := g]$$
 $\lambda x_n, (fx_n) = f.$

The (pure) λ -calculus: Described exactly by the above.

Algebraic theories: objects with variables and substitution

Example

 λ -calculus: $\Lambda_n = \{(\lambda x_1, x_1), x_5, (\lambda x_3, x_7)x_{42}\}.$

Algebraic theories: objects with variables and substitution

Example

λ-calculus: $Λ_n = \{(λx_1, x_1), x_5, (λx_3, x_7)x_{42}\}.$

Example

Polynomial ring: $\mathbb{Z}[x_1,...,x_n] = \{1, x_3, 2048 + 7x_1^{37} - x_6x_{13}^{42}x_{17}^{1729}, ... \}.$

Algebraic theories: objects with variables and substitution

Example

λ-calculus: $Λ_n = \{(λx_1, x_1), x_5, (λx_3, x_7)x_{42}\}.$

Example

Polynomial ring: $\mathbb{Z}[x_1,...,x_n] = \{1, x_3, 2048 + 7x_1^{37} - x_6x_{13}^{42}x_{17}^{1729},...\}.$

Definition

An algebraic theory T is a sequence of sets T_n with variables $x_{i,n} \in T_n$ (for $0 \le i < n$) and a substitution operation $\bullet : T_m \times T_n^m \to T_n$.

λ -theory: structure with app and abs

Definition

A λ -theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \to L_n$ and application functions $\rho: L_n \to L_{n+1}$ (both compatible with the substitution).

λ -theory: structure with app and abs

Definition

A λ -theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \to L_n$ and application functions $\rho: L_n \to L_{n+1}$ (both compatible with the substitution).

The pure λ -calculus Λ is the initial λ -theory.

λ -theory: structure with app and abs

Definition

A λ -theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \to L_n$ and application functions $\rho: L_n \to L_{n+1}$ (both compatible with the substitution).

The pure λ -calculus Λ is the initial λ -theory.

 β - and η -equality:

$$\rho_n \circ \lambda_n = \mathrm{Id}_{L_{n+1}} \qquad \lambda_n \circ \rho_n = \mathrm{Id}_{L_n}.$$

Algebras: Interpretations (or denotations)

We want to interpret terms with free variables as functions from a context to a set

Example

In $T(n)=\mathbb{Z}[x_1,\ldots,x_n]$, we can take a set $A=\mathbb{Q}$ and get

$$2x_1 + 3x_1^2x_2 : A^2 \to A, \quad (a_1, a_2) \mapsto 2 \cdot a_1 + 3 \cdot a_1^2 \cdot a_2.$$

Algebras: Interpretations (or denotations)

We want to interpret terms with free variables as functions from a context to a set

Example

In $T(n)=\mathbb{Z}[x_1,\ldots,x_n]$, we can take a set $A=\mathbb{Q}$ and get

$$2x_1 + 3x_1^2x_2 : A^2 \to A, \quad (a_1, a_2) \mapsto 2 \cdot a_1 + 3 \cdot a_1^2 \cdot a_2.$$

Definition

For an algebraic theory T, a T-algebra A is a set A, together with interpretation functions $T_n \times A^n \to A$ for all n (respecting the variables and substitution).

Intro

Talking about the λ -calculus Models

Semantics

The main theorems

Scott's representation theorem The fundamental theorem of the λ -calculus The category of retracts

My contribution

Annotating the paper Mechanization

Conclusion

For every λ -theory L, we can find a category C and an object $X: C_0$, such that L is isomorphic to the endomorphism theory of X: the λ -theory E(X) given by $E(X)_n = X^n \to X$.

For every λ -theory L, we can find a category C and an object $X: C_0$, such that L is isomorphic to the endomorphism theory of X: the λ -theory E(X) given by $E(X)_n = X^n \to X$.

The variables of $E(X)_n$ are the projections $\pi_i: X^n \to X$. Also, substituting $g_1, \ldots, g_m: X^n \to X$ into $f: X^m \to X$ composes f with $\langle g_1, \ldots, g_m \rangle : X^n \to X^m$.

For every λ -theory L, we can find a category C and an object $X: C_0$, such that L is isomorphic to the endomorphism theory of X: the λ -theory E(X) given by $E(X)_n = X^n \to X$.

The variables of $E(X)_n$ are the projections $\pi_i: X^n \to X$. Also, substituting $g_1, \ldots, g_m: X^n \to X$ into $f: X^m \to X$ composes f with $\langle g_1, \ldots, g_m \rangle : X^n \to X^m$. For $\lambda: E(X)_{n+1} \to E(X)_n$, postcomposing with some morphism $\overline{abs}: (X \to X) \to X$ gives

$$\lambda: E(X)_{n+1} = (X^{n+1} \to X) \simeq (X^n \to (X \to X)) \xrightarrow{\overline{abs} \circ -} (X^n \to X) = E(X)_n.$$

In the same way, we get $\rho: E(X)_n \to E(X)_{n+1}$ from a morphism $\overline{app}: X \to (X \to X)$.

For every λ -theory L, we can find a category C and an object $X: C_0$, such that L is isomorphic to the endomorphism theory of X: the λ -theory E(X) given by $E(X)_n = X^n \to X$.

C is the category of sequences of sets $(P_i)_i$ with a composition $P_m \times L_n^m \to P_n$ and X is the sequence $(L_i)_i$.

With Hyland's definitions and some lemmas, the representation theorem arises before you know it *(on paper)*.

"The fundamental theorem of the λ -Calculus"

There is a functor from λ -theories to Λ -algebras, sending L to L_0 : its set of constants.

"The fundamental theorem of the λ -Calculus"

There is a functor from λ -theories to Λ -algebras, sending L to L_0 : its set of constants.

There is also a functor from Λ -algebras to λ -theories.

This functor again uses the endomorphism theory E(X) for some object X to construct the λ -theory.

"The fundamental theorem of the λ -Calculus"

There is a functor from λ -theories to Λ -algebras, sending L to L_0 : its set of constants.

There is also a functor from Λ -algebras to λ -theories.

This functor again uses the endomorphism theory E(X) for some object X to construct the λ -theory.

Hyland shows that these functors constitute an adjoint equivalence.

The category of retracts

Given a λ -theory L, we can view elements $f:L_1$ as one-argument functions, and we can compose them like $f\circ g:=f\bullet g$. Now we construct a category R

$$R_0 = \{a : L_1 \mid a \circ a = a\}, \qquad a \to b = \{f : L_1 \mid b \circ f \circ a = f\}.$$

The category of retracts

Given a λ -theory L, we can view elements $f:L_1$ as one-argument functions, and we can compose them like $f\circ g:=f\bullet g$. Now we construct a category R

$$R_0 = \{a : L_1 \mid a \circ a = a\}, \qquad a \to b = \{f : L_1 \mid b \circ f \circ a = f\}.$$

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ -calculus: we can do *type theory* with the morphisms.

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ -calculus: we can do *type theory* with the morphisms.

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ -calculus: we can do *type theory* with the morphisms. If we want to do *dependent type theory*, we need dependent products and sums. For a morphism $f:A\to B$, we have a pullback functor between slice categories $f^*:R/B\to R/A$. We have a dependent product and sum along f if f^* has a right and a left adjoint.

If the category is *locally cartesian closed*, we have all dependent products, and so all pullback functors have both adjoints.

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ -calculus: we can do *type theory* with the morphisms. If we want to do *dependent type theory*, we need dependent products and sums. For a morphism $f:A\to B$, we have a pullback functor between slice categories $f^*:R/B\to R/A$. We have a dependent product and sum along f if f^* has a right and a left adjoint.

If the category is *locally cartesian closed*, we have all dependent products, and so all pullback functors have both adjoints.

But this is too strong a requirement. Not all pullback functors have both adjoints, but some do. *R* is *relatively cartesian closed*.

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ -calculus: we can do *type theory* with the morphisms.

If we want to do dependent type theory, we need dependent products and sums.

For a morphism $f: A \to B$, we have a pullback functor between slice categories $f^*: R/B \to R/A$. We have a dependent product and sum along f if f^* has a right and a left adjoint.

If the category is *locally cartesian closed*, we have all dependent products, and so all pullback functors have both adjoints.

But this is too strong a requirement. Not all pullback functors have both adjoints, but some do. *R* is *relatively cartesian closed*.

I am still working on understanding the proof.

Intro

Talking about the λ -calculus

Models Somenties

The main theorems

Scott's representation theorem The fundamental theorem of the λ -calculus The category of retracts

My contribution

Annotating the paper Mechanization

Conclusion

Annotating the paper

An algebraic theory T is first a functor $T: \mathbf{F} \to Sets$: so we have sets T(n) of n-ary multimaps with variable renamings. In addition, T is equipped with projections $pr_1, \ldots, pr_n: T(n)$ including as special case the identity $id \in T(1)$. Finally there are compositions $T(n) \times T(m)^n \to T(m)$ which are **associative**, **unital**, **compatible** with projections and natural in n and m. A map $F: S \to T$ of algebraic theories is a natural transformation with components $F_n: S(n) \to T(n)$ preserving projections and composition.

Annotating the paper

An algebraic theory T is first a functor $T: \mathbf{F} \to Sets:$ so we have sets T(n) of n-ary multimaps with variable renamings. In addition, T is equipped with projections $pr_1, \ldots, pr_n: T(n)$ including as special case the identity $id \in T(1)$. Finally there are compositions $T(n) \times T(m)^n \to T(m)$ which are **associative**, **unital**, **compatible** with projections and natural in n and m. A map $F: S \to T$ of algebraic theories is a natural transformation with components $F_n: S(n) \to T(n)$ preserving projections and composition.

- Learn the background.
- Decode the definitions and theorems.
- Find examples.
- Formalize.
- Mechanize.

Mechanization

- Displayed categories:
 - Univalence;
 - Limits (twice);
- Higher inductive types;
- $X^{n+1} = X \times X^n$;
- $X_{n+1} = X_{1+n}$;

Intro

Talking about the λ -calculus

Models

Semantics

The main theorems

Scott's representation theorem

The fundamental theorem of the λ -calculu

The category of retracts

My contribution

Annotating the paper Mechanization

Conclusion

Algebraic theories, λ -theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ -calculus.

Algebraic theories, λ -theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ -calculus.

3 'big' theorems:

- ullet Every model of the λ -calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ -calculus, and interpretations of the λ -calculus as functions on a set.
- From a model for the untyped λ -calculus, we can create a category in which we can do some form of dependent type theory.

Algebraic theories, λ -theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ -calculus.

3 'big' theorems:

- Every model of the λ -calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ -calculus, and interpretations of the λ -calculus as functions on a set.
- From a model for the untyped λ -calculus, we can create a category in which we can do some form of dependent type theory.

I am slowly processing the paper.

Algebraic theories, λ -theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ -calculus.

3 'big' theorems:

- ullet Every model of the λ -calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ -calculus, and interpretations of the λ -calculus as functions on a set.
- From a model for the untyped λ -calculus, we can create a category in which we can do some form of dependent type theory.

I am slowly processing the paper.

Mechanization is hard.

Do you have questions?

Do you have questions?

Because I have one: I am still a bit unsure about the exact 'meaning' of relative cartesian closedness. Can someone explain that better to me?