8. Hamilton-kör, feltételek

Def: A G gráf Hamilton-köre (Hamilton-útja) a G olyan köre (útja), ami G minden csúcsát tartalmazza.

Megj: Nincs szükséges és elégségel feltétel a Hamilton körök meghatározására.

Szükséges feltételek:

- Ha a G gráfnak van Hamilton-köre, akkor bármely nemüres U ⊆ V (G) esetén G U komponenseinek száma legfeljebb |U |.
- 2. Ha a G gráfnak van Hamilton-útja, akkor bármely U ⊆ V (G) esetén G U komponenseinek száma legfeljebb |U | + 1.
- 3. A fenti feltétel szerint k csúcs törlésétől a gráf legfeljebb k (ill. k + 1) komponensre eshet szét. Ez feltétlenül szükséges ahhoz, hogy G-nek legyen Hamilton-köre (ill. útja). Csupán abból, hogy G-re teljesül ez a feltétel, nem következik, hogy G-nek csakugyan van Hamilton-köre (vagy útja). Ám ha a szükséges feltétel nem teljesül egy G gráfra, az azonnal cáfolja G-ben a Hamilton-kör (ill. -út) létezését. Ha pl. egy gráf 42 csúcs törlése nyomán 43 komponensre esik szét, akkor G-nek bizonyosan nincs Hamilton-köre. Ha pedig ez a komponensszám legalább 44, akkor afelől is biztosak lehetünk, hogy G-nek még Hamilton-útja sincs.

Biz: G-re tekinthetjük úgy, mint egy körre (ill. útra), amihez további éleket adunk hozzá. Könnyű látni, hogy egy kör (ill. út) k pont elhagyásától legfeljebb k (ill. k + 1) komponensre eshet szét. A további élek (amit a körhöz ill. úthoz adunk G felépítéséhez) az ÉlHaL miatt csak csökkenteni tudják a komponensek számát, növelni nem. Ezért G-ből k csúcsot törölve legfeljebb k (ill. k + 1) komponens keletkezhet.

Def: Peterson gráf: teljesül a szükséges feltétel de nincs Hamilton köre

Elégséges feltételek:

- 1. Dirac-feltétel, ha $d(v) \ge n/2 \ \forall v \in V \ (G)$ -re \Rightarrow G-nek van H-köre.
 - 1.1. G bármely két csúcsa gazdag párt alkot, ezért G-re teljesül az Ore-feltétel. Az Oretétel miatt G-nek van H-köre.
- 2. Ore-feltétel, ha G bármely két nem szomszédos csúcsa gazdag párt alkot: uv $\setminus \in E \Rightarrow d(u) + d(v) \ge n$
 - 2.1. A hízlalási lemma alapján G bármely két nemszomszédos csúcsát "ingyen" összeköthetjük. Így G Chátal-lezártja â $G = K_n$ teljes gráf. Mivel K_n -nek van H-köre, ezért G-nek is van

Ore feltétel erősebb.

Hízlalási lemma: Tegyük fel, hogy G egyszerű gráf, és (u, v) gazdag pár. Ekkor (G-nek van Hamilton-köre) \iff (G + uv-nek van Hamilton köre). Max behúzott élek gráfja: **Chvátallezárt**

Biz: ⇒: Világos, hogy ha C a G Hamilton köre, akkor C egyúttal (G + uv)-nek is Hamilton-köre.

 \Leftarrow : Legyen C a G+uv H-köre. Ha $uv \not\in C$, akkor C a G-nek is H-köre, kész vagyunk. Ha viszont $uv \in C$, akkor C-uv a G egy H-útja. Legyen ez a H-út $u=v_1,v_2,\ldots,v_n=v$. Legyen $A:=N(v)=\{v_i:vv_i\in E(G)\}$ a v szomszédainak halmaza, és legyen $B:=\{v_{i-1}:uv_i\in E(G)\}$ az u szomszédait a H-úton megelőző csúcsok halmaza.

Világos, hogy $v \notin A$ és $v \notin B$, így $|A \cup B| \le n-1$. Mivel (u,v) gazdag pár, ezért $|A| + |B| = d(u) + d(v) \ge n$. Ezek szerint $A \cap B \ne \emptyset$. Legyen pl. $v_i \in A \cap B$. Ekkor $v_1, v_2, \ldots, v_i, v_n, v_{n-1}, \ldots, v_{i+1}, v_1$ a G egy H-köre. \square