## Computer Exercise 1 EL2520 Control Theory and Practice

Jiaqi Li Sifan Jiang jiaqli@kth.se sifanj@kth.se 960326-1711 961220-8232

May 1, 2019

## Suppression of disturbances

The weight is

$$W_S(s) = \frac{1}{(s + \epsilon + i\sqrt{\omega^2 - \epsilon^2})(s + \epsilon - i\sqrt{\omega^2 - \epsilon^2})}$$

$$= \frac{1}{(s + 0.5 + i\sqrt{(100\pi)^2 - 0.5^2})(s + 0.5 - i\sqrt{(100\pi)^2 - 0.5^2})}$$



Figure 1: Simulation results with system G, using  $W_S$ .

- How much is the disturbance damped on the output? The rate between the output oscillations and the disturbance amplitude is  $4.543 \times 10^{-4}$ .
- What amplification is required for a P-controller to get the same performance, and what are the disadvantages of such a controller?

Since  $|FG| \gg 1$ , we have:

$$|S| \approx |FG|^{-1}$$
  
=  $|FG(i100\pi)|^{-1}$   
=  $(0.0920|F|)^{-1}$   
=  $4.543 \times 10^{-4}$ 

So,  $|F| = \frac{1}{0.0920 \times 4.543 \times 10^{-4}} = 2.3926 \times 10^4$ , which means the approximate amplification for a P-controller to get the same rate is  $2.3926 \times 10^4$ .

The disadvantage of such a P-controller is that it's not feasible to get controllers with such big amplification.

## **Robustness**

• What is the condition on T to guarantee stability according to the small gain theorem, and how can it be used to choose the weight  $W_T$ ?

Since  $G_0(s) = G(s)(1 + \Delta_G(s))$ ,  $\Delta_G(s) = -\frac{3}{s+2}$  is obtained. According to the small gain theorem,

$$|T(i\omega) \cdot \Delta_G(i\omega)| < 1 \Leftrightarrow |T(i\omega)| < |\Delta_G^{-1}(i\omega)|$$

Also, according to eq. (5), to ensure  $|T(i\omega)| \leq \gamma |W_T^{-1}(i\omega)|$  fulfilled, we let  $|\Delta_G^{-1}(i\omega)| \leq \gamma |W_T^{-1}(i\omega)|$ , thus obtain  $|W_T(i\omega)| \leq \gamma |\Delta_G(i\omega)|$ . So, we can choose  $|W_T(i\omega)| = \gamma |\Delta_G(i\omega)|$ . Setting  $\gamma$  to  $10^{-4}$ , the weights are

$$W_S(s) = \frac{1}{(s+0.5+i\sqrt{(100\pi)^2-0.5^2})(s+0.5-i\sqrt{(100\pi)^2-0.5^2})}$$
$$W_T(s) = 10^{-4} \frac{3}{s+2}$$

• Is the small gain theorem fulfilled? According to fig 2, small gain theorem  $|T(i\omega)|<|\Delta_G^{-1}(i\omega)|$  is always fulfilled.



Figure 2: Bode diagram showing that the small gain theorem is satisfied.

• Compare the results to the previous simulation, which is illustrated in fig 1: the rate between the output oscillations and the disturbance amplitude increases to  $3.743 \times 10^{-3}$ .



Figure 3: Simulation results with system  $G_0$ , using  $W_S$  and  $W_T$ .

## **Control signal**

The weights are

are 
$$W_S(s)=\frac{1}{(s+0.5+i\sqrt{(100\pi)^2-0.5^2})(s+0.5-i\sqrt{(100\pi)^2-0.5^2})}$$
 
$$W_T(s)=10^{-4}\frac{3}{s+2}$$
 
$$W_U(s)=\frac{0.5}{s+2}$$



Figure 4: Simulation results with system  $G_0$ , using  $W_S$ ,  $W_T$  and  $W_U$ .

Compare the results to the previous simulations: the amplitude of control signal is roughly half of the previous case. However, the output is increased to 0.5.