```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

```
In [2]:
```

In [1]:

```
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn
from datetime import datetime, timedelta
from fredapi import Fred
import quandl
```

In [3]:

```
def get_info(names):
    data = []
    for i in range(len(names)):
        data.append(fred.get_series(names[i]).to_frame().rename(col
        data[i] = data[i].groupby(data[i].index.year).mean().dropna
    return data
```

In [4]:

```
# https://github.com/mortada/fredapi
fred = Fred(api_key="a02df0a22c57860f5f7cf25edc70ffb3")
quandl.ApiConfig.api_key = "QZLZXdHDDPZna9Yw48NP"
```

West - California

Define the variables to be used in analysis:

X attributes:

- Monthly Stocks
 - S&P 500 (MULTPL/SP500_REAL_PRICE_MONTH)
- Quarterly Gross Domestic Product (GDP)
- Annual Unemployment Rate (LAUST060000000000003A)
- Annual House Ownership Ratio (CAHOWN)
- Annual Resident Population (CAPOP)
- Annual Median Income Rate (MEHOINUSCAA672N)
- Annual Home Vacancy Rate (CAHVAC)

y attributes:

Quarterly California State Housing Price Index (CASTHPI)

Connect to APIs and create a dataframe with information from each dataset:

In [5]:

```
sp500 = quandl.get('MULTPL/SP500_REAL_PRICE_MONTH').rename(columns=
names_ca = ['LAUST0600000000000003A', "CAHOWN","CAPOP", "MEHOINUSCAA
sp500 = sp500.groupby(sp500.index.year).mean().dropna()
ca_data_series = get_info(names_ca) + [sp500]
```

In [6]:

```
# quarterly housing price index
caHPI = fred.get_series('CASTHPI').to_frame()
caHPI.index.name = "DATE"
caHPI = caHPI.rename(columns={0:"CASTHPI"})
# convert to annual
caHPI_annual = caHPI.groupby(caHPI.index.year).mean()
```

In [7]:

```
ca_annual = caHPI_annual.copy()
for df in ca_data_series:
    ca_annual = ca_annual.merge(df, left_index=True, right_index=Tr
ca_annual.tail()
```

Out[7]:

	CASTHPI	LAUST060000000000003A	CAHOWN	CAPOP	MEHOINUS
2014	489.2725	7.5	54.2	38625.139	_
2015	524.2275	6.2	54.3	38953.142	
2016	561.8125	5.5	53.8	39209.127	
2017	605.3800	4.8	54.4	39399.349	
2018	652.4350	4.2	55.1	39557.045	

Analyze the correlation coefficient for each indicator we have specified:

In [8]:

corr = ca_annual.corr().round(4)
sns.heatmap(data=corr)

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x123e8fd68>

In [9]:

corr

Out [9]:

. <u>.</u>	CASTHPI	LAUST060000000000003A	CAHOWN	С
CASTHPI	1.0000	-0.1523	0.3836	(
LAUST060000000000003A	-0.1523	1.0000	-0.1220	(
CAHOWN	0.3836	-0.1220	1.0000	(
CAPOP	0.8695	0.1263	0.2278	-
MEHOINUSCAA672N	0.7184	-0.5935	0.3126	(
CAHVAC	-0.0315	0.5236	0.1589	(
GDPA	0.8896	0.0619	0.1170	(
SP500	0.8241	-0.2165	0.0675	(

In [10]:

Create a model using linear regression to express the Case-Schiller

```
File "<ipython-input-10-e7298399cefe>", line 1
Create a model using linear regression to express
the Case-Schiller index as dependent on the other data
sets we have downloaded:
```

SyntaxError: invalid syntax

In []:

```
X = ca_annual.drop(columns=['CASTHPI'], axis=1)
Y = ca_annual['CASTHPI']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size lin_model = LinearRegression() lin_model.fit(X_train, Y_train)
```

```
In []:
```

```
# model evaluation for training set
v train predict = lin model.predict(X train)
rmse = (np.sqrt(mean squared error(Y train, y train predict)))
r2 = r2 score(Y train, y train predict)
print("The model performance for training set")
print("----
print('Root Mean Squared Error is {}'.format(rmse))
print('R-Squared score is {}'.format(r2))
print("\n")
# model evaluation for testing set
y test predict = lin model.predict(X test)
rmse = (np.sgrt(mean squared error(Y test, y test predict)))
r2 = r2_score(Y_test, y_test_predict)
print("The model performance for testing set")
print("----
print('Root Mean Squared Error is {}'.format(rmse))
print('R-Squared score is {}'.format(r2))
```

In	[1]:				
In	[2]:				
In	[3]:				
In	[4]:				

West - California

Define the variables to be used in analysis:

X attributes:

- Monthly Stocks
 - S&P 500 (MULTPL/SP500_REAL_PRICE_MONTH)
- Quarterly Gross Domestic Product (GDP)
- Annual Unemployment Rate (LAUST060000000000003A)
- Annual House Ownership Ratio (CAHOWN)
- Annual Resident Population (CAPOP)
- Annual Median Income Rate (MEHOINUSCAA672N)
- Annual Home Vacancy Rate (CAHVAC)

y attributes:

• Quarterly California State Housing Price Index (CASTHPI)

Connect to APIs and create a dataframe with information from each dataset:

In	[5]:	
In	[6]:	

In [7]:

Out[7]:

	CASTHPI	LAUST060000000000003A	CAHOWN	CAPOP	MEHOINUS
2014	489.2725	7.5	54.2	38625.139	_
2015	524.2275	6.2	54.3	38953.142	
2016	561.8125	5.5	53.8	39209.127	
2017	605.3800	4.8	54.4	39399.349	
2018	652.4350	4.2	55.1	39557.045	

Analyze the correlation coefficient for each indicator we have specified:

In [8]:

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x123e8fd68>

In [9]:

Out [9]:

	CASTHPI	LAUST060000000000003A	CAHOWN	С
CASTHPI	1.0000	-0.1523	0.3836	(
LAUST060000000000003A	-0.1523	1.0000	-0.1220	(
CAHOWN	0.3836	-0.1220	1.0000	(
CAPOP	0.8695	0.1263	0.2278	-
MEHOINUSCAA672N	0.7184	-0.5935	0.3126	(
CAHVAC	-0.0315	0.5236	0.1589	(
GDPA	0.8896	0.0619	0.1170	(
SP500	0.8241	-0.2165	0.0675	(

In [10]:

File "<ipython-input-10-e7298399cefe>", line 1
 Create a model using linear regression to express
the Case-Schiller index as dependent on the other data
sets we have downloaded:

SyntaxError: invalid syntax

In []:		
In []:		