

Skeletal Mechanism Generation for Surrogate Fuels

Kyle Evan Niemeyer
Combustion Diagnostics Laboratory
Department of Mechanical and Aerospace Engineering
Case Western Reserve University

Advisor: Prof. Chih-Jen Sung

Work supported by NASA and DOD NDSEG Fellowship

November 19, 2009

Outline of Presentation

- Motivation
- Objectives
- Description of Methodology
 - MARS
 - DRGEPSA
- Results
 - − *n*-heptane
 - iso-octane
 - *n*-decane
- Conclusions and Future Work

Importance of Combustion

- Combustion of hydrocarbons: 85% of the US power production
- Demand to improve efficiency and reduce emissions:
 - Dwindling fuel sources and rising costs
 - Climate concerns due to emissions
- New combustor and engine designs driven by computational modeling
 - Advancements in computing power and numerical methods (e.g. RANS/LES) allow practical simulations
 - Integration of chemistry modeling requires special treatment

Importance of Detailed Chemistry

- Real fuels (e.g. gasoline, diesel, jet fuels) contain complex blends of hydrocarbons: **surrogate** models have been developed that contain mixtures of a small number of component species
- One- or multi-step semi-global reactions used historically to enable inclusion of chemistry
 - e.g. methane oxidation: $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$
 - Suitable for equilibrium, but inadequate over wide ranges of conditions as well as phenomena such as ignition and extinction
- Accurate prediction of fuel combustion and pollutant emissions requires comprehensive detailed chemical reaction mechanisms

Need for Mechanism Reduction

- However, detailed mechanisms for hydrocarbons of interest contain too many species/reactions and time scales to be used in practical simulations.
 - Detailed mechanism for *n*-alkanes C₈-C₁₆: 2115 species and
 8157 reactions (Westbrook et al. *CNF* 2009)
 - Detailed mechanism for biodiesel surrogate methyl-decanoate:
 2878 species and 8555 reactions (Herbinet et al. CNF 2009)
- Reduction of these large mechanisms is needed.
 - Reduce number of species and reactions
 - Eliminate fast time scales to reduce stiffness

Mechanism Reduction Overview

- Two major categories of mechanism reduction:
 - Skeletal reduction
 - elimination of unimportant species and/or reactions
 - typically the first step in a integrated reduction scheme
 - focus of the current work
 - Time scale-based reduction
 - Eliminate short time scales in reaction system to reduce stiffness
 - CSP, ILDM: Jacobian analysis to decouple fast and slow modes
 - QSS species and PE reactions: replace differential equations with algebraic relations to solve for concentrations of QSS species

Skeletal Reduction Methods

Skeletal reduction: removal of unimportant species and reactions to reduce mechanism size

- Sensitivity analysis (Rabitz 1983, Turányi 1990)
- CSP (Valorani 2006, 2007; Prager 2009)
- Optimization (Bhattacharjee 2003, Oluwole 2006, Mitsos 2008)
- Level of importance (Løvås 2009)
- Simulation error minimization connectivity method (Nagy 2009)
- Directed relation graph (**DRG**) (Lu 2005)
 - DRG with error propagation (**DRGEP**) (Pepiot-Desjardins 2008)
 - DRG-aided sensitivity analysis (**DRGASA**) (Lu 2007)
 - Path Flux Analysis (Sun 2009)

Current Approach:

 Directed Relation Graph with Error Propagation and Sensitivity Analysis (DRGEPSA)

Objectives

- Develop computationally efficient and robust suite for automatic generation of skeletal and reduced mechanisms at various levels of complexity with limited user input
 - Mechanism Automatic Reduction Software (MARS)
- Detailed description of skeletal reduction method DRGEPSA
- Demonstration of mechanism reduction capability using detailed LLNL mechanisms of *n*-heptane, *iso*-octane, and *n*-decane
- Demonstration of validity of *n*-decane high-temperature skeletal mechanism using perfectly stirred reactor (PSR) and laminar flame (PREMIX) simulations

Mechanism Automatic Reduction Software (MARS)

MARS/DRGEPSA

Directed Relation Graph (DRG)

- Method used to develop skeletal mechanisms at various levels of complexity.
- Graph theory-based method to identify important species for designated target species using a normalized contribution value.
- Efficient method to identify and eliminate unimportant species.

DRG/DRGASA Method (1)

$$r_{AB}^{DRG} \equiv \frac{\left| \sum_{i=1,I} v_{A,i} \omega_i \delta_B^i \right|}{\left| \sum_{i=1,I} v_{A,i} \omega_i \right|}$$

- Coupling of species determined by normalized contribution to overall production
- Directed arrow shows dependence of one species to another.

 r_{AB}^{DRG} – normalized interaction coefficient of species B to the production of species A $v_{A,i}$ – stoichiometric coefficient for the i^{th} elementary reaction for species A ω_i – production rate of the i^{th} reaction

 $\delta_{B}^{i} = \begin{cases} 1, & \text{if the } i^{th} \text{ reaction involves species B,} \\ 0, & \text{otherwise} \end{cases}$

DRG/DRGASA Method (2)

- Species B where $r_{AB}^{DRG} < \varepsilon_{DRG}$ is removed from the dependent set for target species A (ε_{DRG} is a small value, e.g. 0.1).
- Skeletal mechanism consists of set of dependent species for designated target species (fuel, oxidizer, important pollutants, etc) based on depth first search.
- Species with $\varepsilon_{DRG} < r_{AB}^{DRG} < \varepsilon^*$ (e.g. 0.4) are then analyzed with sensitivity analysis to produce a minimal skeletal mechanism for a given error threshold.

DRGEP Method (1)

$$r_{AB} = \frac{\left| \sum_{i=1,I} v_{A,i} \omega_i \delta_B^i \right|}{\max \left(P_A, C_A \right)}$$

$$P_A = \sum_{i=1,I} \max \left(0, v_{i,A} \omega_i\right)$$

$$C_A = \sum_{i=1,I} \max \left(0, -v_{i,A}\omega_i\right)$$

$$r_{AB,p} = \prod_{i=1}^{n-1} r_{S_i S_{i+1}}$$

$$R_{AB} = \max_{\text{all paths } p} \left(r_{AB,p} \right)$$

- Extension of DRG considering error propagation along species paths
- Identifies more unimportant species for an equivalent error
- Species *B* where $R_{AB} < \varepsilon_{EP}$ is removed from the dependent set for target species *A*

 $r_{AB,p}$ – path-dependent interaction coefficient for path p between species A and B

 R_{AB} – Overall Interaction Coefficient (OIC)

DRGEP Method (2)

$$R_{AD}^{\text{DRG}} = \max(r_{AB}, r_{BD}, r_{AC}, r_{CD}, r_{CE}, r_{ED})$$

$$R_{AD}^{\text{DRGEP}} = \max(r_{AD,1}, r_{AD,2}, r_{AD,3})$$

$$r_{AD,1} = r_{AB} \cdot r_{BD}, \quad r_{AD,2} = r_{AC} \cdot r_{CD}, \quad r_{AD,3} = r_{AC} \cdot r_{CE} \cdot r_{ED}$$

 R_{AD} is the overall interaction coefficient of species D to the target species A

DRGEPSA vs. DRGASA

- Sensitivity analysis (SA) included to eliminate more unimportant species, but computationally expensive
- By using DRGEP prior to SA phase, more species can be removed than with DRGASA to produce a smaller final mechanism for the same mechanism performance.
- DRGEP alone is insufficient because the relationship between interaction coefficient and induced error in global properties is unclear for some species, requiring sensitivity analysis.

DRGEPSA Method (1)

- DRGEP produces a preliminary skeletal mechanism.
 - Removed species: $R_{AB} < \varepsilon_{EP}$
- Species are classified into two categories based on overall interaction coefficient:
 - Limbo species: $\varepsilon_{EP} < R_{AB} < \varepsilon^*$ (e.g. 0.2)
 - analyzed with SA
 - Retained species: $R_{AB} > \varepsilon^*$
 - retained in mechanism without analysis

DRGEPSA Method (2)

- Iterative error threshold (ε_{EP}) selection:
 - Initial low ε_{EP} used (e.g. 0.01) to generate preliminary skeletal mechanism
 - Error of skeletal mechanism:

$$\delta_{\text{skel}} = \max_{k \in \mathcal{D}} \frac{\left| \tau_{\text{det}}^k - \tau_{\text{skel}}^k \right|}{\tau_{\text{det}}^k}$$

- If error is above user-defined error limit, ϵ_{EP} is lowered and procedure repeats
- If error is below error limit, ϵ_{EP} is raised until the error reaches the limit
- In this manner, the optimal skeletal mechanism (for given error limit) using DRGEP is generated

DRGEPSA Method (3)

- SA is performed by removing each species in the limbo category one at a time and calculating the induced error
- Species are arranged in order using:

$$\delta_B = |\delta_{B, \text{ind}} - \delta_{\text{DRGEP}}|$$

- $-\delta_{DRGEP}$: error of DRGEP-generated skeletal mechanism
- $-\delta_{B,ind}$: error induced by removal of species B
- Many species do not change the mechanism performance compared to the DRGEP mechanism, so using induced errors alone for ranking would be not correctly capture sensitivity
- The final skeletal mechanism is generated by removing species one at a time in order until the resulting error reaches the required tolerance level.

n-Heptane Preliminary Reduction (1)

Constant volume ignition of *n*-heptane: initial conditions 1000 K, 1 atm, and ϕ =0.5–1.5 from detailed mechanism of Curran *et al.* 1998 (561 species and 2539 reactions):

- Maximum tolerable error: 0.5-40%
- Target species: *n*-heptane, oxygen, nitrogen, H-radical

Wide range of error limits used to compare the methods at varying levels of complexity

n-Heptane Preliminary Reduction (2)

n-Heptane Preliminary Reduction (3): DRG

n-Heptane Preliminary Reduction (4): DRGEP

DRGEPSA Reduction Capability Extended to LLNL Mechanisms

• *n*-Heptane

- Detailed: 561 species and 2539 reactions
- Skeletal: 108 species and 406 reactions

• iso-Octane

- Detailed: 857 species and 3606 reactions
- Skeletal: 165 species and 779 reactions

• *n*-Decane

- − Detailed: 2115 species and 8157 reactions (covering C₈-C₁₆)
- Skeletal: 202 species and 846 reactions
- High-temperature skeletal: 51 species and 256 reactions

n-Heptane

Constant volume ignition of *n*-heptane: initial conditions 600–1600 K, 1-20 atm, and ϕ =0.5–1.5 from detailed mechanism of Curran *et al.* 1998:

- Maximum tolerable error: 30%
- $-\varepsilon_{\mathrm{DRG}}=0.16, \varepsilon_{\mathrm{EP}}=0.01$
- Target species: *n*-heptane, oxygen, nitrogen, H-radical

	Detailed	DRG	DRGEP	DRGASA	DRGEPSA
Species	561	211	173	153	108
Reactions	2539	1044	868	691	406
Maximum error		21%	28%	24%	27%

n-Heptane Autoignition Results

n-Heptane Limbo Species

iso-Octane

Constant volume ignition of *iso*-octane: initial conditions 600–1600 K, 1-20 atm, and ϕ =0.5–1.5 from detailed mechanism of Curran *et al.* 2002:

- Maximum tolerable error: 30%
- $\varepsilon_{DRG} = 0.15, \varepsilon_{EP} = 0.004$
- Target species: *iso*-octane, oxygen, nitrogen, H-radical

	Detailed	DRG	DRGEP	DRGASA	DRGEPSA
Species	857	275	232	211	165
Reactions	3606	722	1140	885	779
Maximum error		13%	15%	26%	19%

iso-Octane Autoignition Results

n-Decane Skeletal Mechanisms

- Two skeletal mechanisms generated from constant volume autoignition **n-decane** from mechanism of Westbrook *et al.* 2009 (2115 species, 8157 reactions):
 - Initial conditions: 600–1600 K, 1–20 atm, and ϕ = 0.5–1.5 (*comprehensive mechanism*)
 - Skeletal mechanism: 202 species, 846 reactions
 - Initial conditions: 1000–1300 K, 1.0 atm, and $\phi = 0.5$ –1.5 (*high-temperature mechanism*)
 - Skeletal mechanism: 51 species, 256 reactions
- Validation performed with autoignition, PSR, and PREMIX.

n-Decane Skeletal Mechanism: Autoignition Results (1)

n-Decane Skeletal Mechanism: Autoignition Results (2)

n-Decane Skeletal Mechanism: PSR Results (1)

n-Decane Skeletal Mechanism: PSR Results (2)

n-Decane Skeletal Mechanism: PREMIX Results (1)

n-Decane Skeletal Mechanism: PREMIX Results (2)

Conclusions (1)

- By combining error propagation and sensitivity analysis, DRGEPSA provides greater reduction of large mechanisms with equivalent performance compared to the DRGASA and DRGEP methods
 - Even at strict error limits, DRGEPSA generates noticeably smaller skeletal mechanisms
- DRGEPSA can be used to generate skeletal mechanisms to match the performance of large reaction mechanisms in predicting autoignition with acceptable error
- As one component of MARS package, DRGEPSA provides simple and automated method to generate skeletal mechanisms
 - Additional reduction techniques and strategies are needed to further improve the skeletal mechanisms

Conclusions (2)

- By limiting the range of validity to that desired, compact skeletal mechanisms for use in large-scale simulations can be developed
- Both *n*-decane skeletal mechanisms show good performance in external validation (PSR, PREMIX)
 - These results validate the rationale of using constant autoignition simulations for chemical kinetics data sampling and error evaluation

Future Work

- Improvements to DRGEPSA:
 - Investigate species whose importance is not well identified by DRGEP overall interaction coefficient
 - Implement smarter error threshold (ε_{EP}) selection
 - Implement smarter limbo species threshold (ϵ^*) selection
- Improvements to MARS:
 - Unimportant reaction elimination
 - Isomer lumping
 - Diffusive species bundling
 - CSP-based QSS reduction
 - Hybrid iterative/analytic solution for QSS species concentrations

Questions?

Acknowledgements

- -Prof. Sung
- -Committee members
- −Dr. Kamal Kumar and CDL Staff
- -Bryony DuPont for the refreshments

