to review:

- · an eigenvector velle with eigenvalue Lell for nxn A is a nonzero vector satisfying $AV = \lambda \vec{v}$ (A just scales it) $\frac{ex}{2}$ $\binom{1}{2}$ $\binom{1}{1}$ = $3\binom{1}{1}$
- the eigenspace for λ is $Nul(A-\lambda I)$; eigenvectors are nonzero vectors in this subspace. Principal problem: find bases of eigenspaces. the characteristic polynomial for A is $P_A(\lambda) = |A-\lambda I|$. Its
- roots are eigenvalues of A.
- the $\lambda=0$ eigenspace is just NU(A) so eigenvalues are a generalization (also: A invertible \iff 0 is not an eigenvalue of A)

Similarity

Let A, B be nxn. A is similar to B if there is an invertible nxn P with A=PBP-1 (or: AP=PB).

relative to a loasis P, then they are similar.

- · A matrix is similar to itself: A = InAIn
- · If A sim. to B, B sim. to A = B = (p-1) A (p-1)-1
- · It A sim. to B sim. to C, A sim. to C:

$$A = PBP^{-1}$$
, $B = QCQ^{-1}$: $A = (PQ) C(PQ)^{-1}$

Thm If A similar to B, they have the some churacteristic polynomial. $\frac{PF}{A-\lambda I_n} = \frac{1}{PBP^{-1} - \lambda I_n}$ $= \frac{1}{PBP^{-1} - \lambda PP^{-1}}$ = [P(B-) In] P7] = |P| |B-1/In| |P-1] = |B-> In | |PP-1) $= |\beta - \lambda I_n|$. Thu If A, B similar, then dim Nol(A-SI) = dim Nol(B-SI). If $A\vec{v} = \lambda \vec{v}$, then $PBP^{-1}\vec{v} = \lambda \vec{v}$, so $BP^{-1} = \lambda P^{-1}\vec{v}$. This means P-17 is an eigenvector of B, with some eigenvalue So, $P^{-1}: Nol(A-\lambda I) \longrightarrow Nol(B-\lambda I)$ is a linear transformating and dim $MU(A-\lambda I) \leq dim NU(B-\lambda I)$ since P^{-1} is one-to-one. Swapping voles of A,B gets us equality. That is, V, ..., The independent => P-1 T, ---, P-T indep, too. ex (1), (1) have same char. poly (1-x)²
but are not similar (2-dim us 1-dim, e.spaces) ex Matrices similar to (c)? (ceIR) P(c)p-1 = P(cIn)p-1 = cIn. 50, only (c). Diagonalization

If a mostrix is similar to a diagonal matrix, it is diagonalizable. A = PDP-2 with D diagonal is a diagonalization.

A dynamical system describes a point/state through time. One kind is $\vec{X}_{n+1} = A\vec{x}_n$, with n the nth time step.

50
$$\vec{x}_1 = A\vec{x}_0$$
, $\vec{x}_2 = A\vec{x}_1 = A^2\vec{x}_0$, ..., $\vec{x}_n = A^n\vec{x}_0$.
If A is diagonalizable, $A = PDP^{-1}$, we have

$$\vec{x}_{n} = (PDP^{-1})^{N} \vec{x}$$

$$= (PDP^{-1})(PDP^{-1}) - - - (PDP^{-1}) \vec{x}$$

$$= PD(P^{-1}P)D(P^{-1}P)D - - - DP^{-1}\vec{x}$$

$$= PD^{N}P^{-1}\vec{x}_{0}.$$

How has this helped?

$$DD = \begin{pmatrix} \lambda_1 & & \\ & \lambda_k \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & & \lambda_k \end{pmatrix} = \begin{pmatrix} \lambda_1^2 & & \\ & & \lambda_k^2 \end{pmatrix}$$
in fact,
$$D^n = \begin{pmatrix} \lambda_1^n & & \\ & & \lambda_k^n \end{pmatrix}$$
Very easy to calculate!

Question: When is a motrix diagonalizable?

Observation 1: Let
$$D = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$$

 $A(P\vec{e_i}) = PDP^TP\vec{e_i} = PD\vec{e_i} = P(\lambda_i\vec{e_i}) = \lambda_i(P\vec{e_i})$

50: the columns of P are eigenvectors of A, with the diagonal entries of D the corresponding eigenvalues.

Observation 2: Let Vi, ---, Vin be a locs is of IRM which owe eigenvectors of A, \lambda, ---, \lambda n the corress eigenvals.

A(
$$C_1\vec{V_1}+\cdots+C_n\vec{V_n}$$
) = $C_1\lambda_1\vec{V_1}+\cdots+C_n\lambda_n\vec{V_n}$
So, relative basis $P=(\vec{V_1}-\cdots \vec{V_n})$,
A is a diagonal matrix $\begin{pmatrix} \lambda_1 & \cdots & \lambda_n \end{pmatrix}$.

Then nxn anatrix A is diagonalizable if and only
if there is a basis of IRM of eigenvectors of IRM
(i.e., n lin. indep. eigenvectors of A)

This suggests the following diagonalization method:

1. find eigenvalues (roots of IA-AII)

2. find bases of eigenspaces

3. if howe enough, let P hove as columns the vectors from all the bases, and D the cour. eigenvals.

In fact, we do not always need to do step 2 if fosting diagonalizability is all we care about:

That If A (nxn) has a distinct eigenvalues, if

14 diagonalizable.

Pt Each eigenspace has at least one eigenvector, so we get n eigenvectors with distinct eigenvalues. By yesterday's theorem, they are independent. Thus, A diagonalizable.

Ex Diagonalize
$$\binom{2}{2}$$
.

 $|A-\lambda I| = (1-\lambda)^2 - 1 = (\lambda - 3)(\lambda + 1)$
 $\lambda = 3, -1$

There it is diagonalizable.

 $\lambda = 3$: $\binom{1}{1} \lambda = -1$: $\binom{1}{1}$ (from yesterday)

 $\binom{1}{2} = \binom{1}{1-1}\binom{3}{3} - \binom{1}{1-1}$.

Aliagonalized.

Ex Of course, about need noudistinct:

 $A = I_2$ has $\lambda = 1, 1$
 $A = I_2 I_2 I_2^2$

Though, repeated eigenvalues allow mondiagonalizable?

 $A = \binom{1}{0}$ has $\lambda = 1, 1$, but $A(A - \lambda I) = Spon\{[6]\}$,

So not enough eigenvectors to form a longis?

(however, $A^n = \binom{1}{0} \binom{n}{1}$, which is easy enough)

Aside: Jordan Normal Form is the next-best thing to diagonalization. Every matrix is similar to a Jordan matrix — theoretically useful?

Ex The Fibonacci sequence goes $O(1) \cdot (1, 2, 3, 5, 8, -1, -1)$

with $x_{n+2} = x_n + x_{n+1}$. Let $x_n = \binom{x_{n+1}}{x_n}$ be the "state vector"

 $\vec{X}_{n+1} = \begin{bmatrix} x_n \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \vec{X}_n$

For
$$\vec{x}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $\vec{x}_{n+1} = A^n \vec{x}_1$ gives the Fiberacci sequence?

 $|A - \lambda \vec{x}_2| = \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = (1-\lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1$
 $\lambda = \frac{1+\sqrt{1+4}}{2} = \frac{1+\sqrt{5}}{2}$

Let $\phi = \frac{1+\sqrt{5}}{2}$ (the "golden ratio")

The other root is $(-\phi = [-\frac{1+\sqrt{5}}{2}] = \frac{1-\sqrt{5}}{2}]$.

Two distinct eigenvalues implies both eigenspaces are 1-dan.

 $\lambda = \phi : NUI(A - \phi \vec{x}) = NUI(-\frac{\phi}{1}) = AUI(-\frac{\phi}{1}) = AUI(-\frac{\phi}{1})$

Since
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} x_n \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{15} & 0^n \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{1$