Introduction to Robotics E125	
Midterm 1, 2014 October 07	SID:

Calculators allowed, though use should be restricted to basic functions such as trigonometry and simple mathematical operations.

Please show all working. Marks are awarded for method.

A cheat sheet is provided. No other notes are allowed.

) W	Write the rotation matrix \mathbf{R}_{BA} for these two coordinate frames.
	ow would a vector $\mathbf{p}_A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ written in the A coordinate frame be written the B coordinate frame?
	ow would a vector $\boldsymbol{p}_B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ written in the B coordinate frame be written
in	the A coordinate frame?

(a)	Given the rota	tion matric	$ ext{res} \; oldsymbol{R}_{AB}, oldsymbol{R}_{BB}$	$C, \boldsymbol{R}_{CD}, ext{ write}$	and expression	on for $oldsymbol{R}_{AD}$.	
'h)	Given the rota	tion matrice	ung D D	P write	and overrossis	on for D	
0)	Given the rota			D, IC AD, WINCE	and expression	ni 101 16 4B.	
	4: Valid Rota	ions					
	e transformations why.		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo		ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if
	e transformation		r shown belo	ow a valid rota	ation matrix?	If so, prov	re it, if

Cons	on 5: Rigid Body Motion						
$oldsymbol{g}_{AB}$	Frame B starts aligned with frame A . Frame B is then translated so that its origin is at $\begin{bmatrix} l_0 & 0 & 0 \end{bmatrix}^T$ as seen in the A frame. Frame B is then rotated by $\frac{\pi}{2}$ radians about the X axis of the A frame.						
$oldsymbol{g}_{BC}$	Frame C starts aligned with frame B . Frame C is then translated so that its origin is at $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ as seen in the B frame. Frame C is then rotated by 0 radians about the Y axis of the B frame.						
$oldsymbol{g}_{CD}$	Frame D starts aligned with frame C . Frame D is then translated so that its origin is at $\begin{bmatrix} 0 & -l_1 & 0 \end{bmatrix}^T$ as seen in the C frame. Frame D is then rotated by $\frac{\pi}{2}$ radians about the Y axis of the C frame.						
(a)	Write the rigid body transform \boldsymbol{g}_{AB} in homogeneous form.	(4)					
(b)	Write the rigid body transform \boldsymbol{g}_{BC} in homogeneous form.	(4)					
(c)	Write the rigid body transform g_{CD} in homogeneous form.	(4)					

- (e)] 1	How would a point \boldsymbol{p} with the coordinates $\boldsymbol{p}_D = \begin{bmatrix} 0 & 0 & -l_2 \end{bmatrix}^T$ in the D frame be represented in the A frame?
	How would you alter your expression for g_{AD} if we added another joint F between the C and D frames? Explain your answer and any additional information required.

Figure 1: Schematic of a 3DoF Manipulator with axes of rotation shown in its initial configuration.

(a) Write the twists that represent each joint of the manipulator.

(8)

How would your expression change if we wanted the transformation g_{WF} where the frame F is attached to the limb segment connecting joint 2 and joint 3? Write the twist ξ_T that describes a prismatic joint moving along the positive Y axis. $\xi_3 \text{ is now modified so that it now takes the form:}$ $\xi_3' = \xi_3 + \xi_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as θ_3 varies about this new ξ_3' .	How would your expression change if we added another joint (joint 4) between joint 3 and the E frame?
frame F is attached to the limb segment connecting joint 2 and joint 3? Write the twist $\boldsymbol{\xi}_T$ that describes a prismatic joint moving along the positive Y axis. $\boldsymbol{\xi}_3$ is now modified so that it now takes the form: $\boldsymbol{\xi}_3' = \boldsymbol{\xi}_3 + \boldsymbol{\xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
frame F is attached to the limb segment connecting joint 2 and joint 3? Write the twist ξ_T that describes a prismatic joint moving along the positive Y axis. ξ_3 is now modified so that it now takes the form: $\xi_3' = \xi_3 + \xi_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
ξ_3 is now modified so that it now takes the form: $\boldsymbol{\xi}_3' = \boldsymbol{\xi}_3 + \boldsymbol{\xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
ξ_3 is now modified so that it now takes the form: $\boldsymbol{\xi}_3' = \boldsymbol{\xi}_3 + \boldsymbol{\xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
ξ_3 is now modified so that it now takes the form: $\boldsymbol{\xi}_3' = \boldsymbol{\xi}_3 + \boldsymbol{\xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
${m \xi}_3'={m \xi}_3+{m \xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	Write the twist ξ_T that describes a prismatic joint moving along the positive Y axis
${m \xi}_3'={m \xi}_3+{m \xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
${m \xi}_3'={m \xi}_3+{m \xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
${m \xi}_3'={m \xi}_3+{m \xi}_T$ Describe the motion of a point that is fixed in the E frame as seen in W frame as	
Describe the motion of a point that is fixed in the E frame as seen in W frame as	ξ_3 is now modified so that it now takes the form:
	$\boldsymbol{\xi}_{3}^{'}=\boldsymbol{\xi}_{3}+\boldsymbol{\xi}_{T}$

We wish to compute the Inverse Kinematics for this manipulator.

Figure 4: Six DoF manipulator with joints shown

C	Write an expression for the forward Kinematics of the manipulator in the product of exponentials form. You expression should relate an initial configuration $g_{WT}(0)$, with the configuration after applying a set of twists: $g_{WT}(\theta_1, \ldots, \theta_6)$.
, [with the configuration after applying a set of twister $g_{WI}(v_1, \ldots, v_6)$.
]) [Use this product of exponentials form to find a matrix a_1 where:
])	Use this product of exponentials form to find a matrix g_1 where: $g_1 = e^{\widehat{\xi}_1 \theta_1} e^{\widehat{\xi}_2 \theta_2} e^{\widehat{\xi}_3 \theta_3} e^{\widehat{\xi}_4 \theta_4} e^{\widehat{\xi}_5 \theta_5} e^{\widehat{\xi}_6 \theta_6}$

Figure 5: Six DoF manipulator with joints and key points shown. Point 3 is rigidly attached to joint 2 at a distance l_3 and does not move with θ_3 .

(d) Using the joint labelling and points shown in Figure 5, we wish to compute the Inverse Kinematics of this manipulator. Assume we are given a desired tool configuration of:

 $g_{DT} = \begin{bmatrix} R_{DT} & p_{DT} \\ 0 & 1 \end{bmatrix}$

(2)

Using the fact that joints 4,5,6 rotate the tool frame about point p_4 from an initial position $\begin{bmatrix} 0 & 0 & -l_5 \end{bmatrix}^T$ to our desired point p_{DT} , show that the desired position of point 4 can be written:

$$p_{D4} = p_{DT} - R_{DT} \begin{bmatrix} 0 \\ 0 \\ -l_5 \end{bmatrix}$$

8	move with prismatic joint 3. Write this desired point p_{D3} in terms of p_{D4} entries and manipulator lengths.
	We now have expressions for the desired points p_{D3} and p_{D4} . How can we solve for θ_3 given these two points. (Note, you do not have to use a Paden-Kahan subproblem to solve for this joint.)
	Looking at the first two joints of the manipulator we can write the expression:
	booking at the first two joints of the manipulator we can write the expression.
	Ecoking at the first two joints of the manipulator we can write the expression: $e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p_3=p_{D3}$
	$e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p_3=p_{D3}$ where p_3 is the initial position of point 3 and p_{D3} is the desired end point. Why
	$e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p_3=p_{D3}$ where p_3 is the initial position of point 3 and p_{D3} is the desired end point. Why
	$e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p_3=p_{D3}$ where p_3 is the initial position of point 3 and p_{D3} is the desired end point. Why

X 7 1	1 6 0 0	1.0 0 :1		C C	
Ne now have	values for θ_1 , θ_2		er the matrix g_3	of form:	
		$g_3 = e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5}$	$e^{\zeta 6^{06}}$		

(5)