Grau de Matemàtiques. Curs 2011-2012. Semestre de tardor MÈTODES NUMÈRICS I

Tasca 4: Zeros de funcions

La llei de les àrees dóna lloc a l'anomenada equació de Kepler

$$M = g(E) = E - e\sin(E)$$

que permet calcular l'anomalia excèntrica E en termes de l'anomalia mitjana M i l'excentricitat e de la trajectòria d'un planeta.

Considerem e = 1 (trajectòria parabòlica). L'objectiu de la tasca es calcular E per diferents valors de $M = M_i$,

$$M_i = 0.001 + i \, 10^{-4}, \ i = 0, ..., 190.$$

Notem que no es possible fer servir la iteració simple $E_0 = M$, $E_{k+1} = M - e \sin(E_k)$. L'alternativa que proposem es fer servir el mètode de Newton. Ho farem amb dues estratègies diferents.

- 1. Aplicant Newton per trobar E usant com a condició inicial $E = M_i$ per cada i.
- 2. Fent servir continuació:

Si e=0 la solució exacta és $E=M_i$. Llavors, considerem valors de $e=e_j=j$ 10^{-3} , $j=0,\ldots,1000$. Per cada valor e_j iterem el mètode de Newton amb condició inicial la solució obtinguda per e_{j-1} .

El programa realitzarà un nombre màxim de 30 iteracions del mètode de Newton. Si s'excedeix aquest nombre d'iteracions es considerarà que no s'ha pogut trobar el valor de E per M_i (i e_j) i el programa considerarà el següent valor M_{i+1} .

D'altra banda, aturarem el procés iteratiu en el pas $k \leq 30$ si $|M - g(E_k)| < 10^{-15}$, on E_k és l'aproximació k-èssima de E obtinguda aplicant el mètode de Newton. En tal cas, escriurem com a output del programa tres columnes M, E, niter, on E es el valor trobat (per e = 1) i niter es el nombre d'iteracions de (l'ultim) Newton necessàries per trobar E.

Escriviu el programa corresponent en un fitxer anomenat Cognom1Cognom2Nom.c, i envieu-lo al campus virtual.

Data límit d'entrega: dimecres 28 de desembre de 2011 a les 23h 55m.