

Compiladores Aula 8

Celso Olivete Júnior

olivete@fct.unesp.br

Análise sintática tipos de analisadores

Analisadores TOP-DOWN:

- ➤ Árvore de derivação da raiz às folhas → Análise Descendente
- Tipo LL(1): Left to right / Leftmost derivation / 1 symbol each time lookahead
- Recursivo com Retrocesso (Backtracking)
- Preditivo Tabular (não recursivo pilha + tabela)
- > Tratamento de erros

□ Analisadores BOTTON-UP:

- Shift / Reduce Análise Redutiva
- > LR(k) →
 - √ i) SLR (simple)
 - √ ii) LR canônicos
 - √ iii) LALR (lookahead LR)

Análise sintática tipos de analisadores

- ☐ Top-down ou descendente
 - ☐ Da raiz para as folhas

- Bottom-up ou ascendente
 - ☐ Das folhas para a raiz

Parte-se dos símbolos terminais em direção ao símbolo inicial da gramática

☐ Processo de derivação mais à direita

☐ Entrada id * id

```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid id
```

id * id

 $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$

 $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$

Análise sintática ascendente Redução

□ O processo de análise sintática ascendente pode ser encarado como um processo de "reduzir" uma cadeia w para o símbolo inicial da gramática

Análise sintática ascendente Redução

- ☐ Redução: operação de substituição do lado direito de uma produção pelo não-terminal correspondente do lado esquerdo
 - \triangleright Para a regra $A \rightarrow \alpha$, α pode ser reduzido em A

Análise sintática ascendente Redução

□ Analisadores sintáticos ascendentes

- > Analisadores conhecidos como empilha-reduz (shift-reduce)
- Etapas do reconhecimento: determinar quando reduzir e determinar a produção a ser utilizada para que a análise prossiga

<u>Redução</u>

Exemplo de sequências de reduções

```
\triangleright id * id \rightarrow F * id \rightarrow T * id \rightarrow T * F \rightarrow T \rightarrow E
```



```
E \rightarrow E + T \mid T
T \rightarrow T * F \mid F
F \rightarrow (E) \mid id
```


- Componentes do analisador ascendente
 - ☐ Pilha, onde os símbolos a serem reduzidos são empilhados
 - ☐ Tabela sintática que guia o processo de empilhamento e redução
- Processo de reconhecimento de uma sentença
 - 1. Empilhar símbolos da cadeia de entrada
 - Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
 - 3. Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

A partir da gramática

<S> ::= [<L>] | a <L> ::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	

☐ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia		Regra	
\$		[a;a] \$		
\$		[a;a] \$	Empilha [1

☐ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] \$	Empilha [
\$[a;a] \$	Empilha a 1

A partir da gramática

<S> ::= [<L>] | a

<L> ::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S \rightarrow a 2

A partir da gramática

<S> ::= [<L>] | a

<L> ::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S 2

A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha; 1

□ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] \$	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$[L;	a] \$	Empilha a 1

□ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$[L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S \rightarrow a 2

☐ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha ;
\$[L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S → a
\$ [L;S]\$	Reduz L \rightarrow L;S 2

☐ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] <mark>\$</mark>	Empilha;
\$[L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S \rightarrow a
\$ [L;S]\$	Reduz L \rightarrow L;S
\$[L]\$	Empilha] 1

□ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha ;
\$[L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S → a
\$ [L;S]\$	Reduz L \rightarrow L;S
\$[L]\$	Empilha]
\$[L]	\$	Reduz S \rightarrow [L] 2

□ A partir da gramática

<S> ::= [<L>] | a

<L>::= <L>;<S> | <S>

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] \$	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$[L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S → a
\$ [L;S]\$	Reduz L → L;S
\$[L]\$	Empilha]
\$[L]	\$	Reduz S \rightarrow [L]
\$ S	\$	sucesso

Análise sintática ascendente funcionamento

- O analisador empilha símbolos até ter na pilha uma sequência de símbolos que corresponde à definição de um não-terminal
 - ☐ Sequência de símbolos: lado direito da produção
 - Não-terminal: lado esquerdo da produção
- Handle
 - □ Produção cujo lado direito está na pilha
- ☐ Operação de redução: substituição do lado direito do *handle* pelo seu lado esquerdo
 - ☐ O uso da sequência correta de *handles* no processo de análise leva ao símbolo inicial da gramática

A partir da gramática

☐ Reconhecer a cadeia:

[a;a]

Haveria outras opções de *handles*?

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] \$	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S \rightarrow a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$ [L;	a]\$	Empilha a
\$ [L;a]\$	Reduz S \rightarrow a
\$ [L;S]\$	Reduz L \rightarrow L;S
\$[L]\$	Empilha]
\$[L]	\$	Reduz S \rightarrow [L]
\$ S	\$	sucesso

A partir da gramática

☐ Reconhecer a cadeia:

[a;a]

Haveria outras opções de *handles*?

 $\Box L \rightarrow S$

➤O que aconteceria?

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] <mark>\$</mark>	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S → a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$ [L;	a] \$	Empilha a
\$ [L;a]\$	Reduz S → a
\$[L;S]\$	Reduz L \rightarrow L;S
\$[L]\$	Empilha]
\$[L]	\$	Reduz S \rightarrow [L]
\$ S	\$	sucesso

A partir da gramática

☐ Reconhecer a cadeia:

[a;a]

Haveria outras opções de *handles*?

 $\Box L \rightarrow S$

➤O que aconteceria?

> \$[L;L ERRO: cadeia

Pilha	Cadeia	Regra
\$	[a;a] \$	
\$	[a;a] \$	Empilha [
\$[a;a] \$	Empilha a
\$ [a	;a] \$	Reduz S \rightarrow a
\$ [S	;a] \$	Reduz L \rightarrow S
\$[L	;a] \$	Empilha;
\$[L;	a]\$	Empilha a
\$ [L;a]\$	Reduz S \rightarrow a
\$[L;S]\$	Reduz L \rightarrow L;S
\$[L]\$	Empilha]
\$[L]	\$	Reduz S \rightarrow [L]
\$S	\$	sucesso

Operações durante a análise

- Empilha: coloca-se no topo da pilha o primeiro símbolo da cadeia de entrada
- Reduz: substitui-se o lado direito do handle pelo seu lado esquerdo
- > Aceita: a cadeia de entrada é reconhecida
- > Erro: a cadeia de entrada não é reconhecida

Análise sintática ascendenteShift-Reduce

🗖 Exercício:

 Dada a gramática, mostre o reconhecimento para as entradas id+id, id+id*id e id+(id*id)

Processo de reconhecimento

- 1. Empilhar símbolos da cadeia de entrada
- Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
- Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

Processo de análise

Pilha	Cadeia	Regra
\$	\$	

- ☐ Bottom-up, ascendente ou redutiva
 - ☐ Analisadores de precedência de operadores
 - ☐ Analisadores LR
 - □SLR: Simple LR
 - □ LR Canônico
 - □ Look Ahead LR: LALR

Análise sintática ascendente precedência de operadores

- Simples e eficiente
- □ Aplicada, principalmente, para o <u>reconhecimento</u> <u>de expressões</u>
- ☐ Subclasse de gramáticas
 - > Gramáticas de (precedência de) operadores
 - 1. Não há símbolos não-terminais adjacentes
 - 2. Não há produções que derivam a cadeia nula

Análise sintática ascendente precedência de operadores

☐ Exemplo: a gramática abaixo não é de precedência de operadores – três não-terminais consecutivos do lado direito

```
<E> ::= <E><O><E> | (<E>) | id
<O> ::= + | -
```

☐ Transformando-a em gramática de operadores:

Análise sintática ascendente precedência de operadores

Para identificar os handles (substituições), utilizam-se relações de precedência existentes entre os símbolos terminais (operandos e operadores) em uma tabela sintática (ou de precedência)

- 1. Relações de precedência → Considere os terminais a e b
 - 1.1. a < b significa que a tem precedência menor do que b
 - 1.2. a=b significa que a e b têm a mesma precedência
 - 1.3. a>b significa que a tem precedência maior do que b
- 2. Durante a análise ascendente, na pilha:
 - 2.1. < identifica o limite esquerdo do lado direito do handle
 - 2.2. = indica que os terminais envolvidos pertencem ao mesmo handle
 - 2.3. > identifica o limite direito do lado direito do handle

Análise sintática ascendente precedência de operadores

- 🗷 Tabela sintática → usando precedência de operadores
 - \Box Matriz quadrada que relaciona todos os terminais da gramática e o símbolo delimitador utilizado (\$ ou λ ou ε)
 - ☐ Primeira linha da tabela: terminais da cadeia sendo analisada
 - ☐ Primeira coluna da tabela: terminais do topo da pilha

	id	+	*	\$	→ cadeia
id		>	>	>	
+	<	>	<	>	
*	<	>	>	>	
\$	<	<	<	ok	

pilha

Análise sintática ascendente precedência de operadores

- 🗖 Regras para o uso da tabela sintática
- ☐ Seja a o terminal mais ao topo da pilha (os não-terminais são ignorados) e b o primeiro terminal da cadeia sendo analisada
 - 1. Se a<b ou a=b, então empilha b
 - 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - ☐ Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
- 🗖 Tabela sintática 🗲 usando precedência de operadores
 - \square Ex: id + id * id

→ cadeia

Cadeia a ser analisada

id + id * id\$

	id	+	*	\$
id		>	>	>
+	<	>	<	>

* < > > >

\$ < < < ok

↓pilha

- \$ na pilha com id na entrada resulta em < → \$
- 2. Empilha id → \$<id
- 3. id na pilha com + na entrada resulta em > 🛨 \$<id>
- 4. Empilha + → \$<id>+
- 5. Na pilha tem + e na entrada id → \$<id>+<
- 6. Empilha id \rightarrow \$<id>+ <id
- 7. id na pilha com * na entrada resulta em > → \$<id>+ <id>>
- 8. Empilha * → \$<id>+ <id>*
- 9. Na pilha tem * e na entrada id resulta em < → \$<id>+ <id>*<
- 10. Empilha id → \$<id>+ <id>*<id
- 11. Na pilha tem id e na entrada \$ → \$<id>+ <id>*<id>\$

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
- ∠ Tabela sintática → usando precedência de operadores
- \square Ex: id + id * id $\langle E \rangle$::= $\langle E \rangle + \langle E \rangle$ $\langle E \rangle * \langle E \rangle$

↓pilha

- 11. Na pilha tem id e na entrada \$ → <id>+ <id>*<id>\$
- 12. Reduz id para E, segundo a gramática → \$ + <id>*<id>\$
- 13. Reduz id para E, segundo a gramática → \$ + *<id>\$
- 14. Reduz id para E, segundo a gramática → \$ + * \$
- 15. Após a remoção dos não terminais → \$ + * \$

Agora inserindo as relações de precedência segundo a tabela

- 16. Na pilha \$ e na entrada + → \$ <
- 17. Empilha + → \$< +
- 18. Na pilha + e na entrada * → \$ < + <
- 19. Empilha * → \$ < + < *
- 20. Na pilha * e na entrada \$ → \$ < + < * >
- 21. Indicando que o handle selecionado primeiramente é E * E

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
- ∠ Tabela sintática → usando precedência de operadores
- \square Ex: id + id * id

- 11. Na pilha tem id e na entrada \$ → <id>+ <id>*<id>\$
- 12. Reduz id para E, segundo a gramática → \$ + <id>*<id>\$
- 13. Reduz id para E, segundo a gramática → \$ + *<id>\$
- 14. Reduz id para E, segundo a gramática → \$ + * \$
- 15. Após a remoção dos não terminais → \$ + * \$

id + * \$ id > > > + <</td> > > * <</td> > > \$ <</td> <</td> <</td> ok

↓pilha

Agora inserindo as relações de precedência segundo a tabela

- 16. Na pilha \$ e na entrada + → \$ <
- 17. Empilha + → \$< +
- 18. Na pilha + e na entrada * → \$ < + <
- 19. Empilha * → \$ < + < *
- 20. Na pilha * e na entrada \$ → \$ < + < * >
- 21. Indicando que o *handle* selecionado primeiramente é E * E

Expressão id + id * id

Se a<b ou a=b, então empilha b
 Obs: a→topo da

\$<+

Obs: a→topo da pilha e b→terminal em análise

> reduz

aceitou

- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

- 🗷 Tabela sintática → usando precedência de operadores
- \square Ex: id + id * id

	id	+	*	\$
id		>	>	>
+	<	>	<	>
*	<	>	>	>
\$	<	<	<	ok

↓pilha

pilha	cadeia	regra
\$	id+id*id\$	< empilha id
\$ <id< td=""><td>+id*id\$</td><td>> reduz E>id</td></id<>	+id*id\$	> reduz E>id
\$	+id*id\$	< empilha +
\$<+	id*id\$	< empilha id
\$<+ <id< td=""><td>*id\$</td><td>reduz</td></id<>	*id\$	reduz
\$<+	*id\$	< empilha *
\$<+ <*	id\$	< empilha id
\$<+ <* < id	\$	> reduz
\$<+ <*	\$	> reduz
		<u> </u>

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise

Cadeia

id&id/id\$

Regra

- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

Pilha

☐ Exemplo: expressões lógicas

		_		_
id	&i	d	/i	d

<F> ::= (<E>) | id

	id	/	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

→ cadeia

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

<e> ::= <e>/<t> <t></t></t></e></e>
<t> ::= <t>&<f> <f></f></f></t></t>
<f> ::= (<e>) id</e></f>

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilna	Cadela	Regra
\$ \$<	id&id/id\$	
\$<	id&id/id <mark>\$</mark>	Empilha

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id <mark>\$</mark>	
\$< \$ <id>></id>	id&id/id <mark>\$</mark>	Empilha
\$ <id>></id>	&id/id\$	Reduz

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >

 \rightarrow cadeia

- □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
- Exemplo: expressões lógicas

	id	1	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$	id&id/id <mark>\$</mark>	
\$<	id&id/id <mark>\$</mark>	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$<	&id/id\$	Empilha

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$<	id&id/id\$	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$< \$<&<	&id/id\$	Empilha
\$ <&<	id/id\$	Empilha

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	11361.01
\$ <	id&id/id\$	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$<	&id/id\$	Empilha
\$ <&<	id/id\$	Empilha
\$<& <id>></id>	/id <mark>\$</mark>	Reduz
		,

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >

 \rightarrow cadeia

- □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
- Exemplo: expressões lógicas

	id	/	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$<	id&id/id <mark>\$</mark>	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$<	&id/id\$	Empilha
\$ <&<	id/id\$	Empilha
\$ <& <id></id>	/id\$	Reduz
\$ <&>	/id\$	Reduz

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$ <	id&id/id\$	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$ <	&id/id\$	Empilha
\$ <&<	id/id\$	Empilha
\$ <& <id></id>	/id <mark>\$</mark>	Reduz
\$ <&>	/id\$	Reduz
\$ <	/id\$	Empilha

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$<	id&id/id <mark>\$</mark>	Empilha
\$<id></id>	&id/id\$	Reduz
\$<	&id/id\$	Empilha
\$ <&<	id/id <mark>\$</mark>	Empilha
\$<& <id></id>	/id <mark>\$</mark>	Reduz
\$ <&>	/id\$	Reduz
\$<	/id <mark>\$</mark>	Empilha
\$ <</td <td>id\$</td> <td>Empilha</td>	id\$	Empilha

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$ <	id&id/id <mark>\$</mark>	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$ <	&id/id\$	Empilha
\$ <&<	id/id <mark>\$</mark>	Empilha
\$ <& <id></id>	/id <mark>\$</mark>	Reduz
\$ <&>	/id\$	Reduz
\$ <	/id <mark>\$</mark>	Empilha
\$ <</td <td>id\$</td> <td>Empilha</td>	id\$	Empilha
\$ <id	\$	Reduz

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha Cadeia Regra \$ id&id/id\$ \$< id&id/id\$ Empilha **\$**<id>> &id/id\$ Reduz \$< &id/id\$ Empilha \$<&< id/id\$ Empilha \$<&<id> /id\$ Reduz **\$**<&> /id\$ Reduz \$< /id\$ Empilha \$</< id\$ Empilha \$</<id> **\$** Reduz **\$**</> \$ Reduz

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 - □Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - ☐ Exemplo: expressões lógicas

	id	/	&	()	\$	→ cadeia
id		>	>		>	>	
/	<	>	<	<	>	>	
&	<	>	>	<	>	>	
(<	<	<	<	=		
)		>	>		>	>	
\$	<	<	<	<			

Pilha	Cadeia	Regra
\$	id&id/id\$	
\$<	id&id/id\$	Empilha
\$ <id>></id>	&id/id\$	Reduz
\$<	&id/id\$	Empilha
\$<&<	id/id\$	Empilha
\$<& <id>></id>	/id\$	Reduz
\$ <&>	/id\$	Reduz
\$<	/id\$	Empilha
\$ <</td <td>id\$</td> <td>Empilha</td>	id\$	Empilha
\$ <id	\$	Reduz
\$	\$	Reduz
\$E	\$	Sucesso

- 1. Se a<b ou a=b, então empilha b Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 □ Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos
 - **Exercício**: reconheça a expressão

(id)

	id	/	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra	
\$	(id) \$		1

- 1. Se a<b ou a=b, então empilha b Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 □ Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

Exercício: resposta

(id)

	id	/	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$	(id) \$	
\$ <	(id) \$	Empilha
\$<(id) \$	Reduz
\$<(<	id) \$	Empilha
\$ <(<id< td=""><td>)\$</td><td>Reduz</td></id<>)\$	Reduz
\$ <(<id>></id>)\$	Reduz
\$<()\$	Empilha
\$ <(=)	\$	Reduz
\$<()>	\$	Reduz
\$E	\$	Aceito

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 □ Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

Exercício: reconheça a expressão

Pilha	Cadeia	Regra
\$	(id/id)&id\$	

(id/id)&id

	id	1	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

- 1. Se a<b ou a=b, então empilha b
- Obs: a→topo da pilha e b→terminal em análise
- 2. Se a>b, então procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - □ O lado direito do handle estará delimitado na pilha pelos símbolos < e >
 □ Os não terminais não precisam aparecer, mas se deve saber que foram
 - produzidos e que seus derivados correspondentes foram consumidos

Exercício: resposta

(id/id)&id

<T> ::= <T>&<F> | <F>

<F> ::= (<E>) | id

	id	/	&	()	\$
id		>	>		>	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

pilha	cadeia	regra
\$	(id/id)&id\$	< empilha (
\$<(id/id)&id\$	< empilha id
\$<(<id< td=""><td>/id)&id\$</td><td>reduz F->id</td></id<>	/id)&id\$	reduz F->id
\$<(F	/id)&id\$	reduz T->F
\$<(T	/id)&id\$	reduz E->T
\$<(E	/id)&id\$	reduz E->T
\$<(E </td <td>id)&id\$</td> <td><empilha <="" td=""></empilha></td>	id)&id\$	<empilha <="" td=""></empilha>
\$<(E <id</td <td>)&id\$</td> <td><empilha id<="" td=""></empilha></td>)&id\$	<empilha id<="" td=""></empilha>
\$<(E <F</td <td>)&id\$</td> <td>reduz F->id</td>)&id\$	reduz F->id
\$<(E <T</td <td>)&id\$</td> <td>reduz T->F</td>)&id\$	reduz T->F
\$<(E)&id\$	> reduz E> E/T
\$<(=E)	&id\$	= empilha
\$<(=F)	&id\$	> reduz F> (E)
\$T	&id\$	> reduz T> F
\$T <&	id\$	<empilha &<="" td=""></empilha>
\$T <& <id< td=""><td>\$</td><td><empilha id<="" td=""></empilha></td></id<>	\$	<empilha id<="" td=""></empilha>
\$T <&F	\$	reduz F->id
\$T <&F	\$	reduz T->T&F
\$T	\$	> reduz E> T
\$E	\$	