Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Искусственый интеллект(Машинное обучение)»

Студент: А.О. Дубинин

Преподаватель:

Группа: М8О-306Б

Дата: Оценка:

Подпись:

Лабораторная работа №1

Задача: Необходимо сформировать два набора данных для приложений машинного обучения. Первый датасет должен представлять из себя табличный набор данных для задачи классификации. Второй датасет должен быть отличен от первого, и может представлять из себя набор изображений, корпус документов, другой табличный датасет или датасет из соревнования Kaggle, предназначенный для решения интересующей вас задачи машинного обучения. Необходимо провести анализ обоих наборов данных, поставить решаемую вами задачу, определить признаки необходимые для решения задачи, в случае необходимости заняться генерацией новых признаков, устранением проблем в данных, визуализировать распределение и зависимость целевого признака от выбранных признаков. В отчете описать все проблемы, с которыми вы столкнулись и выбранные подходы к их решению.

Датасеты:

- TMDB 5000 Movie Dataset
- New York City Airbnb Open Data

1 New York City Airbnb Open Data

Описание входных данных

File (AB_NYC_2019.csv):

- id id аппартаментов.
- name название аппартаментов.
- host ID id хозяина.
- host_name имя хозяина.
- neighbourhood group район нью йорка.
- neighbourhood окрестность.
- latitude широта.
- longitude долгота.
- room type тип аппартаментов.
- price цена аппартаментов.
- minimum_nights минимальное кол-во ночей.
- number of reviews кол-во отзывов.
- last review дата последнего отзыва.
- reviews_per_month кол-во отзывов за месяц.
- calculated host listings count кол-во записей на аппартаменты.
- availability_365 количество дней, когда аппартаменты доступно для бронирования.

Типы признаков

- Категориальные
 - name
 - host_name
 - neighbourhood group

- neighbourhood
- room type
- last_review

• Количественные

- -id
- host id
- latitude
- longitude
- price
- number_of_reviews
- reviews_per_month
- calculated host listings count
- availability_365

Размер

• Строк: 48895

Столбцов: 16

Решаемая задача

Задача предсказания: предсказать цену аппартаментов.

Будем предсказывать price.

Оставим признаки, которые понадобятся для нашей задачи

Оставим только эти колонки:

neighbourhood_group, neighbourhood, latitude, longitude, room_type, price, minimum_nights, number_of_reviews, reviews_per_month, calculated_host_listings_count, availability_365

Заполнение пропусков

	Total	Percent
reviews_per_month	10052	0.205583
rt_2	0	0.000000
availability_365	0	0.000000
longitude	0	0.000000
price	0	0.000000

reviews_per_month заполним средним значением.

Работа с категориальными признаками

	neighbourhood_group	neighbourhood	room_type
count	48895	48895	48895
unique	5	221	3
top	Manhattan	Williamsburg	Entire home/apt
freq	21661	3920	25409

room_type и neighbourhood_group:

Кодируем one_hot_encoder'oм.

neighbourhood:

Кодируем label encoder'ом.

Распределение признаков после нормировки

Корреляция

price	1.000000
rt_0	0.255857
ng_2	0.163976
availability_365	0.081829
neighbourhood	0.062057
calculated_host_listings_count	0.057472
minimum_nights	0.042799
latitude	0.033939
ng_4	-0.013840
reviews_per_month	-0.022373
ng_0	-0.041030
number_of_reviews	-0.047954
rt_2	-0.053613
ng_3	-0.080205
ng_1	-0.098603
longitude	-0.150019
rt_1	-0.240246
Name: price, dtype: float64	

Зависимость главного значения от остальных

2 TMDB 5000 Movie Dataset

Описание входных данных

File $N_1(tmdb_5000_movies.csv)$:

- budget бюджет фильма.
- genres жанры фильмов, в формате список json object {'id': id, 'name':genre}.
- homepage веб страница фильма.
- id id фильма.
- keywords ключевые слова фильмов, в формате список json object {'id': id, 'name':keyword}.
- original language оригинальный язык фильма.
- original title оригинальное название фильма.
- overview синопсис фильма.
- popularity популярность фильма.
- production_companies компании создатели фильма, в формате список json object {'id': id, 'name':company}.
- production_countries страны создатели фильма, в формате список json object {'id': id, 'name':company}.
- release date дата выхода фильма.
- revenue доход фильма.
- runtime продолжительность фильма в минутах.
- spoken_languages языки на которых говорят в фильме, в формате список json object {'id': id, 'name':language}..
- status статус фильма(вышел в прокат или нет).
- tagline слоган фильма.
- title название фильма.
- vote average средняя оценка фильма.

• vote_count – продолжительность фильма в минутах.

File N_2 (tmdb_5000_credits.csv):

- movie id id фильма.
- title название фильма фильма.
- cast актерский состав.
- crew съемочная команда.

Анализ данных

Данные из двух файлов нужно переделать в один датасет. Из даты выхода фильма взять только год. Из стран создателей фильма взять только первую страну. Возьмем первый язык из колонки с языками, прозвучавшими в фильме. Из команды создателей фильма возьмем только режиссера. Из каста возьмем трех первых актеров. Из компаний создателей возьмем первые 3 компании. Жанры фильма запишем в одну строку с разделяющим символом, тоже самое сделаем с ключевыми словами.

Типы признаков

- Категориальные
 - genres
 - homepage
 - plot keywords
 - language
 - original title
 - overview
 - production companies
 - production_countries
 - release date
 - spoken languages
 - status
 - tagline
 - movie title
 - country

- director name
- actor 1 name
- actor 2 name
- actor 3 name
- companies_1
- companies 2
- companies 3
- actor_1_name

• Количественные

- budget
- -id
- popularity
- gross
- duration
- vote_average
- num voted users
- title year

Размер

• Строк: 4803

Столбцов: 29

Решаемая задача

Задача классификации: классификация на хороший/плохой фильм.

Добавим столбец Nice классификации по средней оценке, если оценка фильма больше или равна средней то, будем считать, что это хороший фильм и добавим 1 в строке с фильмом в столбец Nice, иначе 0.

Оставим признаки, которые понадобятся для нашей задачи

Оставим только эти колонки:

budget, genres, popularity, gross, duration, vote_average, num_voted_users, title_year, director_name, actor_1_name, actor_2_name, actor_3_name, companies_1, companies_2, companies_3, Nice

Заполнение пропусков

	Total	Percent
companies_3	2479	0.516136
companies_2	1417	0.295024
companies_1	351	0.073079
actor_3_name	63	0.013117
actor_2_name	53	0.011035
actor_1_name	43	0.008953
director_name	30	0.006246
duration	2	0.000416
title_year	1	0.000208
num_voted_users	0	0.000000
vote_average	0	0.000000
gross	0	0.000000
popularity	0	0.000000
genres	0	0.000000
budget	0	0.000000

duration и title_year заполним средними значениями. Остальные столбцы заполним значением unknown.

Работа с категориальными признаками

Жанры:

Возьмем все жанры, которые встречались в датасете. Разобьем все жанры на колонки, т.е. сделаем бинарное представление, если жанр встретился в фильме, то ставим 1 в колонке с жанром и в строке с фильмом.

Актеры, режиссеры, компании:

Кодируем label encoder'ом.

Распределение признаков после нормировки

Корреляция

корреляция	
Nice	1.000000
duration	0.304372
num_voted_users	0.252808
Drama	0.244391
popularity	0.211466
gross	0.163047
History	0.112426
War	0.087326
Crime	0.066535
Music	0.054356
Documentary	0.050325
budget	0.035926
Mystery	0.031368
Animation	0.028805
Western	0.025831
Romance	0.023815
Foreign	0.022551
actor_3_name	0.014963
actor_1_name	0.009964
director_name	0.007537
TV Movie	-0.016421
Adventure	-0.017386
companies_3	-0.025096
actor_2_name	-0.029793
Family	-0.037299
Fantasy	-0.040506
companies_2	-0.040591
companies_1	-0.041067
Science Fiction	-0.041468
Thriller	-0.051529
Action	-0.064225
Comedy	-0.132650
Horror	-0.151625
title_year	-0.167973
Name: Nice, dtype	: float64

Отношение классов

3 Выводы

В ходе лабораторной работы я проанализировал 2 датасета. Посмотрев на анализ датасетов на kaggle в ноутбуках других людей понял, что для обработки признаков нужны знания статистики, например, чтобы строить различные сложные графики и уметь их понимать. Важно так же уметь создавать новые признаки из имеющихся и отбирать только самые нужные из изначальных. Так же в этой работе я научился кодировать категориальные признаки различными способами.