Class 29

Fundamental Thm of Calculus:

(I) f Lebesgue integrable on [a,b]

$$g(x) = \int_a^x f(t)dt$$
 for $x \in [a,b]$

Then g'(x) exists a.e. & g' = f a.e. on [a,b]

Pf: As in proof of Lma 4, g' exists a.e. & may assume $f \ge 0$

(Reason:
$$f = f^+ - f^-$$
; $g(x) = \int_a^x (f^+ - f^-)$, apply to f^+, f^-)

Let
$$f_n(x) = \begin{cases} f(x) & \text{if } f(x) \le n \\ n & \text{otherwise} \end{cases}$$

$$\therefore f - f_n \ge 0$$

$$\Rightarrow \int_a^x (f - f_n) \uparrow$$

Lma
$$2 \Rightarrow \frac{d}{dx} \int_{a}^{x} (f - f_n)$$
 exists, ≥ 0 a.e.

$$g'$$
 f_n (by Lma 4, since f_n bdd

Let
$$n \to \infty \implies g' \ge f$$
 a.e.

On the other hand, $: f \ge 0 \Rightarrow g \uparrow$

Lma
$$5 \Rightarrow \int_a^b g' \le g(b) - g(a) = \int_a^b f$$

$$g' \ge f$$
 a.e. $\Rightarrow \int_a^b g' \ge \int_a^b f$

$$\Rightarrow \int_a^b (g' - f) = 0$$

$$g' \ge f$$
 a.e. $\Rightarrow g' = f$ a.e.

Fund. Thm of Calculus (II):

Riemann: g' exists on [a,b] & conti. on [a,b]

$$\Rightarrow \int_a^x g'(t)dt = g(x) - g(a) \text{ for } x \in [a,b]$$

Lebesgue: g abso. conti. on [a,b]

$$\Leftrightarrow$$
 g' exists a.e., g' integrable on $[a,b]$ & $\int_a^x g'(t)dt = g(x) - g(a) \ \forall x \in [a,b]$

MANAGE

Pf: "
$$\Leftarrow$$
": $g(x) = g(a) + \int_a^x g' \Rightarrow g$ abso. conti. (Ex.2.8.2)

" \Rightarrow ": g abso. conti.

Ex.2.8.4 \Rightarrow g of bdd variation

Ex.2.8.3
$$\Rightarrow$$
 $g = g_1 - g_2$, where $g_1, g_2 \uparrow$

 g_1, g_2 exists a.e. & integrable (Lma 5)

$$\Rightarrow$$
 $g' = g'_1 - g'_2$ exists a.e. & integrable

Let
$$\varphi(x) = g(x) - \int_a^x g'(t)dt$$
 on $[a,b]$
 $\therefore \varphi' = g' - g' = 0$ a.e.
 $\Rightarrow \varphi = c$ on $[a,b]$ (Note: φ conti. & $\varphi' = 0$ a.e. $\Rightarrow \varphi = \text{constant}$)

(Royden, p.109, Lma 13)

Lma. f abso. conti. on [a,b], f'=0 a.e. $\Rightarrow f = \text{constant on } [a,b]$

Pf: Check:
$$f(c) = f(a) \ \forall c \in [a,b]$$
Let $c \in [a,b]$
Let $E = \{x \in (a,c): f'(x) = 0\} \Rightarrow m(E) = c - a$

Need Vitali's lemma:

$$m^*(E) < \infty$$
, $\ell = \{\text{intervals}\} \ni \ell \text{ covers } E \text{ in the sense of Vitali}$ i.e., $\forall \varepsilon > 0, \ x \in E, \ \exists I \in \ell \ni x \in I \ \& \ m(I) < \varepsilon$ Then $\forall \delta > 0, \ \exists \{I_1, ..., I_N\} \subseteq \ell \text{ disjoint } \ni m^*(E \setminus \bigcup_{n=1}^N I_n) < \delta$

Let
$$\eta > 0$$
 & $x \in E$

$$\therefore f'(x) = 0$$

$$\Rightarrow \exists [x, y] \subseteq [a, c] \Rightarrow |f(x) - f(y)| < \eta |x - y|$$
Let $I = \{[x, y]\}$ covers E in the sense of Vitali

On the other hand, : f abso. conti.

$$\therefore \forall \varepsilon > 0, \exists \delta > 0 \ni \left\{ \left[x_i, y_i \right] \right\} \text{ disj. } \ni \sum_{i=1}^n \left| y_i - x_i \right| < \delta \Rightarrow \sum_{i=1}^n \left| f(y_i) - f(x_i) \right| < \varepsilon$$

For this
$$\delta$$
, $\exists \{[x_1, y_1], ...[x_n, y_n]\} \subseteq \ell$ disj. $\ni m^*(E \setminus \bigcup_{n=1}^n [x_i, y_i]) < \delta$

May assume
$$a \le x_1 < y_1 < x_2 < ... < y_n \le c$$

$$||||$$

$$y_0 \qquad x_{n+1}$$

$$\therefore \sum_{k=0}^{n} |x_{k+1} - y_k| < \delta$$

$$\Rightarrow \sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| < \varepsilon$$

$$\Rightarrow |f(c) - f(a)| = \left| \sum_{k=0}^{n} (f(x_{k+1}) - f(y_k)) + \sum_{k=1}^{n} (f(y_k) - f(x_k)) \right|$$

$$< \varepsilon + \sum_{k=1}^{n} \eta(y_k - x_k)$$

$$< \varepsilon + \eta(c - a)$$
Let $\varepsilon, \delta \to 0 \Rightarrow f(c) = f(a)$

Let
$$\varepsilon, \delta \to 0 \implies f(c) = f(a)$$

$$\therefore \int_{a}^{b} \varphi' \le \varphi(b) - \varphi(a) < \infty$$

\Rightarrow \varphi' integrable on [a,b]

$$\therefore c = g(x) - \int_a^x g'(t)dt \ \forall x \in [a,b]$$

Let
$$x = a \Rightarrow c = g(a)$$

$$\therefore \int_a^x g' = g(x) - g(a)$$

Homework: Ex.2.14.5

Goal of Sec 2.15 & 2.16:

 $f \ge 0$ (Tonelli) or $\iint |f(x, y)| dxdy < \infty$ (Fubini)

 $\Rightarrow \iint f(x,y)dxdy = \int (\int f(x,y)dx)dy = \int (\int f(x,y)dy)dx$, i.e., double integral = interated integrals Sec. 2. 15 Product of measures

$$(X,\alpha)$$
 (Y,β) , $X\times Y$, $\alpha\times\beta$

Def.
$$\alpha \times \beta$$
 = the σ -algebra generated by $\{A \times B : A \in \alpha, B \in \beta\}$

Cartesian product of $\alpha \& \beta$

rectangle

Let $E \subseteq X \times Y, x \in X, y \in Y$

Def.
$$E_x = \{ y : (x, y) \in E \}$$
 X-section of E

$$E^y = \{x : (x, y) \in E\}$$
 Y-section of E

Lma 1 $E \in \alpha \times \beta$

$$\Rightarrow E_x \in \beta \& E^y \in \alpha \ \forall x \in X, y \in Y$$

Pf: Let
$$D = \{ F \in \alpha \times \beta : F_x \in \beta \ \forall x \in X \}$$

Then D $\supseteq \{A \times B : A \in \alpha, B \in \beta\} \& D \sigma$ -algebra

Reason: (1)
$$X \times Y \in D$$

(2) $F \in D \Rightarrow F^c \in D \ (\because (F_X)^c = (F^c)_X)$
(3) $A_n \in D \ \forall n \Rightarrow \bigcup_n A_n \in D \ (\because (\bigcup_n A_n)_X = \bigcup_n (A_n)_X)$

 \Rightarrow D $\supseteq \alpha \times \beta$

Lma $2 Z \in X \times Y \in \alpha \times \beta$, $Z \subseteq X \times Y$

$$\Gamma = \left\{ \bigcup_{i=1}^{n} (A_i \times B_i) : \left\{ A_i \times B_i \right\} \text{ disjoint, } A_i \in \alpha, B_i \in \beta, A_i \times B_i \in Z \right\}$$

Then Γ ring

Pf: (1) $\phi \in \Gamma$

- (2) Γ contains finitely disjoint union
- (3) Check: $E, F \in \Gamma \Rightarrow E \setminus F \in \Gamma$

Say,
$$E = \bigcup_{i=1}^{n} E_i$$
, $F = \bigcup_{j=1}^{m} F_j$

$$\therefore E \setminus F = (\bigcup_{i=1}^{n} E_i) \cap (\bigcap_{j=1}^{m} F_j^c)$$

$$= \bigcup_{i=1}^{n} \left[\bigcap_{j=1}^{m} E_i \cap F_j^c \right]$$

$$= \bigcup_{i=1}^{n} \left[\bigcap_{j=1}^{m} E_i \setminus F_j \right]$$

$$\parallel$$

$$\cap (D_{j_1} \cup D_{j_2}) \rightarrow \text{disjoint rectangles}$$

Say,
$$(D_{11} \cup D_{12}) \cap (D_{21} \cup D_{22})$$

 $= (D_{11} \cap D_{21}) \cup (D_{12} \cap D_{21}) \cup (D_{11} \cap D_{22}) \cup (D_{12} \cap D_{22})$
disjoint rectangles
 $\Rightarrow \bigcap_i E_i \setminus F_j \in \Gamma$
 $\cap \cap$
 E_i
 $\Rightarrow E \setminus F$ finite union of disjoint rectangles, $\in \Gamma$
 $\Rightarrow \Gamma$ ring

