1. In order to show that the language T is undecidable we will utilize a proof by contradiction which supposes that T is decidable. If T is decidable then there is a Turing Machine TM_T which decides it. We will show that if this supposition is true, then we can construct a Turing Machine TM_S which decides the language A_{TM} . That of course will be the contradiction showing that TM_T cannot exist, and therefore T is an undecidable language.

Proof by contradiction:

Assume for some contradiction's sake that the language T is decidable.

Then Turing Machine TM_T is the Turing Machine which decides it

We will show how to construct a Turing Machine TM_S which decides the language A_{TM} using TM_T .

Let T' be the complement language of T with the addition of also accepting input if the input M also accepts the null language. We can presume that TM_T would have rejected this input, so by our construction below of $TM_{T'}$, the Turing Machine which decides T' we will show that the Turing Machine which accepts the null language will be decided and accepted by $TM_{T'}$.

 $TM_S =$ "On input $\langle M \rangle$

- 1. Construct a different Turing Machine $TM_{T'}$ from TM_T which takes in an input < M > It is identical to TM_T but with one exception: For every accept state in TM_T , $TM_{T'}$ has a reject state, and for every reject state in TM_T , $TM_{T'}$ has an accept state.
- 2. Simulate TM_T on input $\langle M \rangle$
- 2. Simulate $TM_{T'}$ on input $\langle M \rangle$
- 3. If either TM_T or $TM_{T'}$ accepts then TM_S accepts, otherwise TM_S rejects."

In this way the problem of deciding A_{TM} reduces to the problem of deciding the language T. Since TM_T exists then for all possible Turing Machines exactly one of either TM_T or $TM_{T'}$ (which functions as the decider for the complement of T) will accept. We can be sure we properly constructed a Turing Machine which decides A_{TM} because the languages T and T' are mutually exclusive and exhaustive. For every Turing Machine including the one that accepts the null language if TM_T does not accept, then $TM_{T'}$ will. Therefore our Turing Machine TM_S decides the language of all turing machines. There in lies our contradiction because we know this language is not decidable so we have proved that LTmust be undecidable.

2. In order to show that the language L is undecidable we will utilize a proof by contradiction which supposes that L is decidable. If L is decidable then there is a Turing Machine TM_L which decides it. We will show that if this supposition is true, then we can construct a Turing Machine TM_S which decides the language E_{TM} . That of course will be the contradiction showing that TM_L cannot exist, and therefore L is an undecidable language.

Proof by contradiction:

Assume for some contradiction's sake that the language L is decidable.

Then Turing Machine TM_L is the Turing Machine which decides it

We will show how to construct a Turing Machine TM_S which decides the language E_{TM} using TM_L .

$$TM_S =$$
 "On input $\langle M \rangle$

- 1. Construct a different Turing Machine $TM_{L'}$ from TM_L which takes in an input < M' > It is identical to TM_L but with two exceptions. One: that it writes some character not in the tape language of TM_L instead of the blank space. Two: instead of accepting or rejecting right away when TM_L does, it reads every character printed on its tape. If the tape is blank then accept, if the tape has any characters written on it, then reject.
- 2. Simulate $TM_{L'}$ on input $\langle M \rangle$
- 3. If $TM_{L'}$ accepts then TM_S accepts, otherwise TM_S rejects."

In this way the problem of deciding E_{TM} reduces to the problem of deciding the language L. if TM_L exists then for all possible Turing Machines $TM_{L'}$ can decide if that Turing Machine accepts the empty language. There in lies our contradiction so we have proved that L must be undecidable.

3. Let language $L = \{ \langle M, w \rangle \mid M \text{ is a Turing Machine which ever tries to move its head left when the head is already on the leftmost part of the tape during its computation on w.}$

In order to show that the language L is undecidable we will utilize a proof by contradiction which supposes that L is decidable. If L is decidable then there is a Turing Machine TM_L which decides it. We will show that if this supposition is true, then we can construct a Turing Machine TM_S which decides the language $HALT_{TM}$. That of course will be the contradiction showing that TM_L cannot exist, and therefore L is an undecidable language.

Proof by contradiction:

Assume for some contradiction's sake that the language L is decidable.

Then Turing Machine TM_L is the Turing Machine which decides it

We will show how to construct a Turing Machine TM_S which decides the language $HALT_{TM}$ using TM_L .

$$TM_S =$$
 "On input $\langle M, w \rangle$

- 1. Simulate TM_L on input $\langle M, w \rangle$
- 2. If TM_L accepts or rejects then TM_S accepts, otherwise TM_S rejects."

In this way the problem of deciding $HALT_{TM}$ reduces to the problem of deciding the language L. if TM_L exists then for all possible Turing Machines TM_L can decide if the

Turing Machine passed into it as input ever moves left when on the leftmost part of the tape. In order to decide this as it simulates M, M must be able to finish computing the entirety of its input w. We know that TM_L , being a decider, must be able to decide for any input $\langle M, w \rangle$. If it can decide for any input, then it can decide for the same input that is passed into TM_S . As a result we can deduce there must not be any combination of Turing Machines and input words which will ever fail to halt. That is, for every possible Turing Machine, TM_L will not halt when deciding if its head ever moves left when on the leftmost part of the tape. Then clearly whatever Turing Machine passed into and being used by TM_L must also also halt on input w. So then every Turing Machine must Halt on every input. But we know there are Turing Machines which on certain inputs do not halt. So there in lies our contradiction and we have proved that L must be undecidable.

4. Let language $L = \{ \langle M, w \rangle \mid M \text{ is a Turing Machine which ever tries to move its head left at any point during its computation on w.}$

In order to show that the language L is decidable it is sufficient to show that we can construct a turing machine which decides it.

WE will utilize a proof by construction to show this. Let TM_L be the Turing Machine which decides L.

 $TM_L =$ "On input $\langle M, w \rangle$

- 1. Construct a different Turing Machine $TM_{M'}$ from M which takes in an input < M', w' > It is identical to M but with two exceptions. One: Every time there is a clause in M's δ function which tells M's head to move to the left we replace that clause in $TM_{M'}$'s δ function to immediately accept. Two: for every accept state in M switch it to a reject state in $TM_{M'}$, but all of the reject states in M remain identical in $TM_{M'}$.
- 2. Simulate $TM_{M'}$ on input $\langle M, w \rangle$
- 3. If $TM_{M'}$ accepts then TM_L accepts, otherwise TM_L rejects."

We can be sure that TM_L decides the language L because if $TM_{M'}$ accepts then we know M would have attempted to move its head left at least once when computing the same word w. This does not violate Rice's principle because the feature we are deciding is that of a Turing Machine itself and not of language it recognizes.