KP 2

Ilya Yaroshevskiy

December 24, 2020

1

1 1 1

2

 $\mathbf{2}$

 $\mathbf{2}$

2

Contents

1	Степенные ряды
2	Признаки 2.1 Дирихле 2.2 Абеля 2.3 Вейерштрасса
3	Непрерывность и дифференцируемость
4	Критерий Больциано-Коши
5	Разложение в ряд
6	Числовые ряды
1	Степенные ряды
	$a_n(x-x_0)^n$ - сходится при $ x-x_0 < R$ = $\frac{1}{\lim \sqrt[n]{ a_n }} [= \lim \left \frac{a_n}{a_{n+1}} \right]$ Прим. $\sum e^{-\ln np}$, при $p>1$ сходится, $p\leq 1$ расходится
2	Признаки
	$\sum a_n(x)b_n(x)$
2.	1 Дирихле
	1. Частичные суммы ряда $\sum a_n$ равномерно органичены $\exists C_a \ \forall N \ \forall x \in E \ \sum_{k=1}^N a_k(x) \leq C_a$
	2. Фиксируем x $b_n(x)$ монотонна по n $b_n(x) \to 0$
1),	$2)\Rightarrow$ ряд равномерно сходится
2.	2 Абеля
	1. $\sum a_n(x)$ равномерно сходится
	$2.\ b_n(x)$ монотонна по n $b_n(x)$ равномерно ограничена $\exists C_b \ \forall n \ \forall x \ b_n(x) < C_b$

2.3 Вейерштрасса

$$\sum u_n(x) \ x \in E$$

- 1. $\forall x \in E |u_n(x) \le C_n|$
- 2. $\sum C_n$ сходится

Непрерывность и дифференцируемость

 $\sum u_n(x) = f(x)$

- 1. (a) $u_n(x)$ непрерывна в x_0
 - (b) ряд равномерно сходится в $u(x_0)$

Тогда f - непрерывна в x_0

2. $\sum u_n'(x) = \varphi(x)$ $\sum u_n'(x)$ - равномерно сходится в $u(x_0)$

 $\overline{\text{Тогда}}\ f$ - дифференцируема в x_0 и $f'(x)=\varphi(x)=\sum u_n'(x)$

3. Ряд $\sum u_n(x)$ - равномерно сходится на [a,b]

 $u_n(x)$ - непрерывна на [a,b] Тогда $\int_b^a f(x) = \sum \int_b^a u_n(x) dx$

Критерий Больциано-Коши

 $\exists \varepsilon > 0 \ \forall N \ \exists n > N, \ \exists m \in \mathbb{N}, \ \exists x$

$$|u_{n+1}(x) + \dots + u_{n+m}(x)| > \varepsilon$$

Если выполняеся то ряд сходится не равномерно

Можно выбрать m=1, тогда если $\sup_{x\in E}u_n(x) \xrightarrow[x\to\infty]{} 0,$ то ряд не равномерно сходящийся

5 Разложение в ряд

Известные ряды

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots, -1 < x < 1$$

6 Числовые ряды

1. Прогрессия

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

2.

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

3.

$$\sum \frac{1}{n^2} = \frac{\pi^2}{6}$$

4.

$$\sum \frac{(-1)^{n+1}}{n} = \ln 2$$

5.

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

6. Телескопические

$$\sum_{k=1}^{+\infty} (a_k - a_{k+1}) = a_1 - \lim_{n \to +\infty} a_n$$

2