编译原理第三章作业参考答案

以下是编译原理第三章作业的参考答案和一些可能的解题思路。 补充练习参考答案:

(4) ((ba*)*a)* (alb)

ONFA:

@NFA -> DFA:

3 NFA→DFA:	a	b -
Io={X,2,1,4,3}	$\{(I_{-}^{a})\{y_{1}z\}\}$ = $\{y_{1}z_{1}\}=I_{1}$	$4c(10^{b})\{y,5\}$ = $\{y,5,6,4,3\} = I_2$
I= { y, 2,1}	&c(1 2 { y, z})=I1	4(4 → {y,5})=I2
I2= {y,5/6,4/3}	&c(I23{6,2}) ={6,4,3,2,1}=I3	$\mathcal{L}(I_2 \xrightarrow{b} \{ 5 \}) = \{ 5, b, 4, 3 \}$ $= I_4$
In = [614, 3,2,1]	2-([3 3 (6,2,y)] = (6,4,3,2,1,y) = I5	5-([3 b) (5, y) = I2
I4={5,6,4,3}	4-(143>(6,2)=13	se(14 → (s))=14.
75 = (614,3,2,1,4)	42 (Is a) (6,2,4) = Is	2-(12-3-(5.y))=I2.

3 DFA - DFA°

选择 10、14、11, 12

第6页

龙书题目部分参考答案:

Dragon Book - exercises. Exercise 3.3.2 (a) a(a/b)*a 由山西湖南,且以西开外,以西西屋的草谷中 (b) ((zla)b*)* 由 a b 值成的过去。(包含生本) (alb) * a (alb) (alb) 由ab值成,且例教第3个中省为a的字符。 (d) a* ba*ba*ba*. 由外的组成,且只包含3个日的家体。 (e) (aa|bb)* ((ab|ba) (aa|bb)* (ab|ba) (aa|bb)*)* 由 a.b 值成,且 a 和 b 的 个被 的 为偶般的 这个多年(包含全年)

```
iai other -> Lbcdfghjklmnpqrstvwxyz]
   other a lother la) * e lother le) * i (other li) * o (other lo) * u lother lu) *
(h) a b = x
(C) /a[18"]*|".*"| 8+[1]*8*8/
             (田代起马)
  (d)以{0,1,2}新引
     10+0 , ri+1 , r2+2
      rol > orilles , roz > oralers, riz >1/2/2r,
      roiz -> oriz | 1002 | 2001
      r-> rolr, Iralralro1 tro2 ronz
  (e)挂(d),(Xfo,1,2)树刻
      100-000 , r, > 1r, rx >2r2
      1001 -> 0 To1 | 1100
      1002 -> 0102 | 2100
       112 -> 1122 | 2512
       10012- 00012 1 1002 | 2001
       roll2 -> ...
       +> 10/11 -- 15012 10012 10112 1 0112
      E -> (calbb)*((ablba)(aalbb)*(ablba)(aa(bb)*)* (答室不难一年中十年
 (f) 5 -> bE/a (aa/bb)*(ab/ba)E
 (1) b*(a | ab)* (13 +)
 (i) b'a*b? a* (同上)
```


I	a	b
D= {0,1,2,4,7}	J= {1,23,4,6,7}	I={5,6,1,2,4,7}
9	J _I	72
	I _l	I ₂

@NTA > DTA

1	a	b	
[= {x, 1, 2, 4,5, 6,7, 8, 10, y}	7	Zz	
[]) ={3,6,7,8,10,1,2,4,5,y}	I ₁	I_2	
D={9,8,10,1,2,4,5,6,7,y}	Z ₍	I_2	

NFA -> DAM :

	a	Ь
J. = {x,3,1}	$4-c(I_0 \xrightarrow{\alpha} \{3,2\})$ $= \{3,1,2\} = I_1$	$\xi_{-1}(I \xrightarrow{b} \{3\})$ $= \{311\} = I_2$
I1= { 3, 12}	$4-(1,\frac{a}{3},2,y)$ = $\{3,2,y,1\}=1_3$	5-c (1 1 5), y}) = {3, 1, 1/} = I4
I2= {3,1}	6-c(12 → (3,2) = 74	4-c (I2 b) {3}) = I2
13={3,2,1/1]	Se(13 => {3, y})= I4	5-c (13 b> {3, y}) = I4
I4 = {3,1,y}	4-(14 ² √3,2})=11	{-((1+ b→ f3))=12

<u> </u>	2	% 6 8 7
b) (alb)*a(alb)(alb	0 w E	
	>3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	The same of the sa
NFA → DFA ,	a	Ь
Io={x,4,1}	$4-(I_0 + \{4, 2\})$ = $\{4, 1, 2\} = I_1$	$5e(1 \Rightarrow \{4\})$ = $\{4,1\} = I_2$
I= {4,112}	$4 - (I_1^a + \{4, 2, 3\})$ = $\{4, 1, 2, 3\} = I_3$	$\mathcal{E}_{c}(I_{1} \xrightarrow{b} \{4,3\})$ = $\{4,1,3\} = I_{4}$
J2={4,1}	$4c(I_2 \xrightarrow{\alpha} \{4,2\}) = I_4$	6-c(12-b>{4})=12
I3= {4,1,2,3}	$4-c(I_3 \xrightarrow{a} \{4,2,3,y\})$ $= \{4,1,2,3,y\} = I_5$	
14={4,1,3}	$2 - (24 \xrightarrow{9} \{4, 2, y\})$ $= \{4, 1, 2, y\} = I_7$	$2 - c (I_4 \rightarrow \{4, y\})$ = $\{4, 1, y\} = I_8$
Is = {4,1,2,3,y}	€c(I3 => {4,2,3,y}) = I3	$ \begin{array}{c} \text{fc}(I_{5} \xrightarrow{b} \{4,3,y\}) \\ = I_{b} \end{array} $
I6 = {4,1,3,y}	4-(16 4> {4,2,y}) = I	
17={4.1,2y}	52(4,2,3))	
18 = {4,1,7}	4(73°→{4,2})=]	$I_1 \qquad \{ \{ \{ \{ \{ \} \} \} \} \} = I_2$
-		

3.9.4

(C)

l° Re→NFA.

$$\rightarrow \otimes \stackrel{\stackrel{?}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{?}{\longrightarrow}}{\longrightarrow} \stackrel{?}{\longrightarrow} \stackrel{?}$$

2° NFA → DFA :

	1	
	a	Ь
In={ X,5,1}	$\mathcal{L}-\mathcal{L}(1 \xrightarrow{a} \{3,1\}) = \{3,2,1\} = 1$	Su(10 fs) = {r// = I2
ユ= {sizil}	&c (1, 3 {J13, 2})={J13, 21}=	13 (21 5 (513)) = (D3,1)
,		= I4
Iz={J1 }	Se (I2 → (5,2)) = (5,21) = I1	$\{(1, \frac{b}{b}) = \{J_{i}\} = I_{2}$
I3 = {5,3,2,1}	Ec (13 ª (5,43,21))= (5,4,3,2,1)	{c(I3 = {5,4,3}) = {5,4,3,1}
	= 4	= 76
I4={J,3,1}	Sec [74-3 [514,2]) =[5.4,21]	Er(I4 €) [514])=[574,1]
	= 17	$= I_{g}$
」 ることをある。 はなり、みなり	62 (2 → (5, y, 43,2))	Ec (I, b) {51x, K3})
,	= { J, y, 4,3,2,1 } = 29	S 5, y, 4,3,13 = 110
In = [] 14, 311]		([16 b) ([]) (1) (1)
	/ _	{514, 4,1} = 7/2

		1
] = {t,4,2,1}	62 (7, 3, 2)) 4	c(1, b) (J, y, 3))
	= { J1/313, 2,1} = 7/3	= { 5, y, 3, 1 } = Z14
I8 = {514,1}	51(7+3 (0),2})	c (2g b> { o,y})
	= \(\int \int \text{7,2,1} \right) = \(\frac{1}{3} \right)	= \ 51/1/3 = I16
Ig = {57,4,3,2,1}	бе (7 € (5, y, 4, 3, 2})	ce (Ig = { 5, y, x, 3 })
	$=\int s_{1}y_{1}4_{1}3_{1}2_{1}J=I_{p}$	= [5, 7, 4, 3, 1] = Ilo
Ip= { 514,4,3,1}	sc(Ibo = {07, 4,2})	(40 b) {5,y,4))
	$= \langle \mathcal{T}, \mathcal{Y}, \mathcal{Y}, \mathcal{Y}, \mathcal{Y}, \mathcal{Y} \rangle = \mathcal{I}_{1}$	= {5,1/14,1} = 7/2
II = (5, y, 4, 2,1)	51 (In 9 (014,3,2))	6c(In = { 5, y,3 })
	$= \int J_1 y_1 \beta_1 2_1 J = I_1 \beta_1$	= [J/Y, 3,] = I/4
I12 = { 5, y, 4, 1}	En(Z123 {J1Y,2})	EC (1/2 b) (5/4))
	= [], y, 2,1] = 2,15	= {5,7,1} = I16
Z13 = { 5,4,3,2,1}	&c(I1, € {5,4,3,2})	EC (13 5 (514,3 })
,	$= \{5,4,3,2,1\} = Z_5$	= {514,3,1} = 76
Icy = {5,4,3,1}	Ea (J14 3 (5-,4,2))	Sc (I14 5 (514))
	= {5,4,2,1} = I7	$= \{5, 4, 1\} = \mathbb{Z}_8$
	,	

II5 = {5,4,21)	2-c (215 → {J,3,2})	5-c(]+5 (513))
	= (513, 211) = 13	= \(J, 3, 1 \) = Iq
ILB = { J, Y, I}	& ([16 = {5,2})	¿~ (I16 € [5])
_	= { 5, 2, 1} = 7	={n1} = I2

3° DHA > DTA°

结论: 考有n f (alb),则状态数为 2 ntl (每多-4(alb),则状态数翻信)