Contents

1	Pre	liminaries	3
	1.1	Base Category Requirements	3
	1.2	Well-Formed-ness	4
	1.3	Substitution and Weakening of the Effect Environment	4
	1.4	Fibre Categories	4
	1.5	Re-indexing Functors	4
		1.5.1 f^* Preserves Products	5
		1.5.2 f^* Preserves Terminal Object	5
		1.5.3 f^* Preserves Exponentials	5
		1.5.4 f^* Preserves Co-product on Terminal	5
		1.5.5 f^* Preserves Graded Monad	5
		1.5.6 f^* Preserves Tensor Strength	6
		1.5.7 f^* Preserves Ground Constants	6
		1.5.8 f^* Preserves Ground Sub-effecting	6
		1.5.9 f^* Preserves Ground Sub-typing	6
		1.5.10 Action on Objects	6
	1.6	Naturality Properties	6
	1.7	The \forall_I functor	6
	1.8	Naturality Corollaries	7
		1.8.1 Naturality	7
		1.8.2 $\overline{(-)}$ and Re-indexing Functors	7
		1.8.3 $(\hat{-})$ and Re-Indexing Functors	7
		1.8.4 Pushing Morphisms into f^*	7
2	Den	notations	8
	2.1	Effects	8
	2.2	Types	8
	2.3	Effect Substitution	8
	2.4	Effect Weakening	9
		Sub-Typing	9

	2.6	Type-Environments	9	
	2.7	Terms	9	
3 Effect Substitution Theorem			11	
	3.1	Effects	11	
	3.2	Types	12	
	3.3	Sub-typing	13	
	3.4	Type Environments	14	
	3.5	Terms	14	
4	Effe	ect Weakening Theorem	20	
	4.1	Effects	20	
	4.2	Types	20	
	4.3	Type Environments	20	
	4.4	Sub-typing	20	
	4.5	Terms	20	
5	Val	ue Substitution Theorem	21	
6	Type-Environment Weakening Theorem			
7	Unique Denotation Theorem			
8	Bet	a-Eta-Equivalence Theorem (Soundness)	24	

Preliminaries

1.1 Base Category Requirements

There are 3 distinct objects in the base category, \mathbb{C} :

- ullet U The kind of Effect
- ullet W The kind of Type
- 1 A terminal object

And we have finite products on U.

- $U^0 = 1$
- $\bullet \ U^{n+1} = U^n \times U$

We also have the following natural operations on morphisms in \mathbb{C} . Let $I=U^n$.

- $\diamond : \mathbb{C}(I, W) \times \mathbb{C}(I, W) \to \mathbb{C}(I, W)$ Generates exponential types.
- $\square : \mathbb{C}(I, W) \times \mathbb{C}(I, W) \to \mathbb{C}(I, W)$ Generates products of types.
- $\forall_I : \mathbb{C}(I \times U, W) \to \mathbb{C}(I, W)$ generates quantified types.
- Eff: $\mathbb{C}(I,U) \times \mathbb{C}(I,W) \to \mathbb{C}(I,W)$ generates monad types.
- Mul : $\mathbb{C}(I,U) \times \mathbb{C}(I,U) \to \mathbb{C}(I,U)$ Generates multiplication of effects.

With naturality conditions which mean, for $\theta : \mathtt{Unit}^m \to \mathtt{Unit}^n(I' \to I)$,

- $\diamond(\phi, \psi) \circ \theta = \diamond(\phi \circ \theta, \psi \circ \theta)$
- $\Box(\phi,\psi)\circ\theta=\Box(\phi\circ\theta,\psi\circ\theta)$
- $\forall_I(\phi) \circ \theta = \forall_{I'}(\phi \circ (\theta \times \mathrm{Id}_U))$
- $\mathrm{Eff}(\phi,\psi)\circ\theta=\mathrm{Eff}(\phi\circ\theta,\psi\circ\theta)$
- $Mul(\phi, \psi) \circ \theta = Mul(\phi \circ \theta, \psi \circ \theta)$

1.2 Well-Formed-ness

Each instance of the well-formed-ness relation on effects, $\Phi \vdash \epsilon$ has a denotation in \mathbb{C} :

$$\llbracket \Phi \vdash \epsilon : \mathtt{Effect} \rrbracket_M : I \to U \tag{1.1}$$

Each instance of the well-formed-ness relation on types, $\Phi \vdash A$ has a denotation in \mathbb{C} :

$$[P \vdash A: \mathsf{Type}]_M : I \to W \tag{1.2}$$

It should also be the case that

$$\mathtt{Mul}(\llbracket\Phi \vdash \epsilon_1 \colon \mathtt{Effect}\rrbracket_M, \llbracket\Phi \vdash \epsilon_2 \colon \mathtt{Effect}\rrbracket_M) = \llbracket\Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathtt{Effect}\rrbracket_M \in \mathbb{C}(I, U) \tag{1.3}$$

That is, Mul should be have identity $\llbracket \Phi \vdash 1 : \texttt{Effect} \rrbracket_M$ and be associative.

1.3 Substitution and Weakening of the Effect Environment

For each instance of the well-formed-ness relation on substitution of effects $\Phi' \vdash \sigma : \Phi$, there exists a denotation in \mathbb{C} :

$$\llbracket \Phi' \vdash \sigma : \Phi \rrbracket_M : I' \to I \tag{1.4}$$

For each instance of the well-formed weakening relation on effect-environments, $\omega: \Phi' \triangleright \Phi$ there exists a denotation in \mathbb{C} :

$$\llbracket \omega : \Phi' \triangleright \Phi \rrbracket_M : I' \to I \tag{1.5}$$

1.4 Fibre Categories

Each set of morphisms $\mathbb{C}(I, W)$ forms the objects of a semantic-closed (S-closed) category. That is, a category satisfying all the properties needed for the non-polymorphic language:

- Cartesian Closed
- \bullet Co-product of the terminal object with itself (1+1)
- Ground morphisms for each ground constant $(C^A : 1 \to A)$
- Partial order morphisms on ground types ($[A \leq :_{\gamma}]_M B$)
- A strong, monad, graded by the po-monoid $(E_{\Phi}, \cdot_{\Phi}, \leq_{\Phi}, 1)$.

1.5 Re-indexing Functors

For each morphism $f: I' \to I$ in \mathbb{C} , there should be a co-variant, re-indexing functor $f^*: \mathbb{C}(I, W) \to \mathbb{C}(I', W)$, which is S-closed. That is, it preserves the S-closed properties of $\mathbb{C}(I, W)$. (See below).

(−)* should be a contra-variant functor in its C argument and co-variant in its right argument.

- $(g \circ f)^*(a) = f^*(\gamma^*(a))$
- $\operatorname{Id}_I^*(a) = a$
- $\bullet \ f^*(\mathrm{Id}_A)=\mathrm{Id}_{f^*(A)}$
- $\bullet \ f^*(a \circ b) = f^*(a) \circ f^*(b)$

1.5.1 f^* Preserves Products

If $\langle g, h \rangle : \mathbb{C}(I, W)(Z, X \times Y)$ Then

$$f^*(X \times Y) = f^*(X) \times f^*(Y) \tag{1.6}$$

$$f^*(\langle g, h \rangle) = \langle f^*(g), f^*h \rangle \qquad : \mathbb{C}(I', W)(f^*Z, f^*(X) \times f^*(Y)) \tag{1.7}$$

$$f^*(\pi_1) = \pi_1 \qquad : \mathbb{C}(I', W)(f^*(X) \times f^*(Y), f^*(X)) \tag{1.8}$$

$$f^*(\pi_2) = \pi_2 \qquad : \mathbb{C}(I', W)(f^*(X) \times f^*(Y), f^*(Y)) \tag{1.9}$$

1.5.2 f^* Preserves Terminal Object

If $Id_A : \mathbb{C}(I, W)(A, 1)$ Then

$$f^*(1) = 1 (1.10)$$

$$f^*(\langle \rangle_A) = \langle \rangle_{f^*(A)} \qquad : \mathbb{C}(I', W)(f^*A, 1) \tag{1.11}$$

(1.12)

1.5.3 f^* Preserves Exponentials

$$f^*(Z^X) = (f^*(Z))^{(f^*(X))}$$
(1.13)

$$f^*(app) = app$$
 : $\mathbb{C}(I', W)(f^*(Z^X) \times f^*(X), f^*(Z))$ (1.14)

$$f^*(\text{cur}(g)) = \text{cur}(f^*(g)) \qquad : \mathbb{C}(I', W)(f^*(Y) \times f^*(X), f^*(Z)^{f^*(X)}) \tag{1.15}$$

1.5.4 f^* Preserves Co-product on Terminal

$$f^*(1+1) = 1+1 \tag{1.16}$$

$$f^*(inl) = inl$$
 : $\mathbb{C}(I', W)(1, 1+1)$ (1.17)

$$f^*(inr) = inr$$
 : $\mathbb{C}(I', W)(1, 1+1)$ (1.18)

$$f^*([g,h]) = [f^*(g), f^*(h)] \qquad : \mathbb{C}(I', W)(1+1, f^*(Z)) \tag{1.19}$$

1.5.5 f^* Preserves Graded Monad

$$f^*(T_{\epsilon}A) = T_{f^*(\epsilon)}f^*(A) \qquad : \mathbb{C}(I', W) \qquad (1.20)$$

$$f^*(1) = 1$$
 The unit effect (1.21)

$$f^*(\eta_A) = \eta_{f^*(A)} \qquad : \mathbb{C}(I', W)(f^*(A), f^*(T_1 A)) \tag{1.22}$$

$$f^*(\mu_{\epsilon_1,\epsilon_2,A}) = \mu_{f^*(\epsilon_1),f^*(\epsilon_2),f^*(A)} \qquad : \mathbb{C}(I',W)(f^*(T_{\epsilon_1}T_{\epsilon_2}A),f^*(T_{f^*(\epsilon_1)\cdot f^*(\epsilon_2)}f^*(A))) \tag{1.23}$$

$$f^*(\epsilon_1 \cdot \epsilon_2) = f^*(\epsilon_1) \cdot f^*(\epsilon_2) \tag{1.24}$$

(1.25)

1.5.6 f^* Preserves Tensor Strength

$$f^*(\mathsf{t}_{\epsilon,A,B}) = \mathsf{t}_{f^*(\epsilon),f^*(A),f^*(B)} \qquad : \mathbb{C}(I',W)(f^*(A \times T_{\epsilon}B),f^*(T_{\epsilon}(A \times B))) \tag{1.26}$$

1.5.7 f^* Preserves Ground Constants

For each ground constant $[\![\mathbb{C}^A]\!]_M$ in $\mathbb{C}(I,W),$

$$f^*(\mathbb{C}^A|_M) = \mathbb{C}^{f^*(A)} : \mathbb{C}(I', W)(1, f^*(A))$$
(1.27)

1.5.8 f^* Preserves Ground Sub-effecting

For ground effects e_1, e_2 such that $e_1 \leq e_2$

$$f^*(e) = e : \mathbb{C}(I', U) \tag{1.28}$$

$$f^* \llbracket \epsilon_1 \le e_2 \rrbracket_A = \llbracket e_1 \le e_2 \rrbracket_{f^*(A)} : \mathbb{C}(I', W) f^*(T_{e_1} A), f^*(T_{e_2} A)$$
(1.29)

(1.30)

1.5.9 f^* Preserves Ground Sub-typing

For ground types γ_1, γ_2 such that $\gamma_1 \leq :_{\gamma} \gamma_2$

$$f^*\gamma = \gamma : \mathbb{C}(I', W)(1, \gamma) \tag{1.31}$$

$$f^*(\llbracket \gamma_1 \leq :_{\gamma} \gamma_2 \rrbracket_M) = \llbracket \gamma_1 \leq :_{\gamma} \gamma_2 \rrbracket_M \qquad : \mathbb{C}(I', W)(\gamma_1, \gamma_2)$$
 (1.32)

(1.33)

1.5.10 Action on Objects

It follows that the action of f^* on an object A in $\mathbb{C}(I,W)$ (i.e. a morphism $I \to U$ in \mathbb{C}) is:

$$f^*(A) = A \circ f: I' \to I \to W \tag{1.34}$$

1.6 Naturality Properties

1.7 The \forall_I functor

We expand $\forall_I : \mathbb{C}(I \times U, W) \to \mathbb{C}(I, W)$ to be a functor which is right adjoint to the re-indexing functor π_1^* .

$$\overline{(_)} : \mathbb{C}(I \times U, W)(\pi_1^* A, B) \leftrightarrow \mathbb{C}(I, W)(A, \forall_I B) : \widehat{(_)}$$
(1.35)

For $A : \mathbb{C}(I, W), B : \mathbb{C}(I \times U, W)$.

Hence the action of \forall_I on a morphism $l:A\to A'$ is as follows:

$$\forall_I(l) = \overline{l \circ \epsilon_A} \tag{1.36}$$

Where $\epsilon_A : \mathbb{C}(I \times U, W)(\pi_1^* \forall_I A \to A)$ is the co-unit of the adjunction.

1.8 Naturality Corollaries

Here are some simple corollaries of the adjunction between π_1^* and \forall_I .

1.8.1 Naturality

By the definition of an adjunction:

$$\overline{f \circ \pi_1^*(n)} = \overline{f} \circ n \tag{1.37}$$

1.8.2 $\overline{(-)}$ and Re-indexing Functors

TODO: Why does this occur? it comes from page 222 of Crole?

$$\theta^*(\overline{f}) = (\pi_1 \circ (\theta \times \mathrm{Id}_U))^*(\overline{f}) \tag{1.38}$$

$$= (\theta \times \operatorname{Id}_{U})^{*}(\pi_{1}^{*}(\overline{f})) \tag{1.39}$$

(1.40)

(1.41)

$$= \overline{(\theta \times \mathrm{Id}_U)^* f} \tag{1.42}$$

(1.43)

(1.44)

1.8.3 $(\hat{-})$ and Re-Indexing Functors

$$\theta^*(\langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m})) = (\langle \operatorname{Id}_I, \rho \rangle \circ \theta)^*(\widehat{m})$$
(1.45)

$$= ((\theta \times \mathrm{Id}_U) \circ \langle \mathrm{Id}_I, \rho \rangle)^*(\widehat{m}) \tag{1.46}$$

$$= \langle \operatorname{Id}_{I}, \rho \circ \theta \rangle^{*} (\theta \times \operatorname{Id}_{U})^{*}(\widehat{m})$$
(1.47)

$$= \langle \mathrm{Id}_{I}, \theta^{*} \rho \rangle^{*} (\theta^{*}(\widehat{m})) \tag{1.48}$$

1.8.4 Pushing Morphisms into f^*

$$\langle \operatorname{Id}_{I}, \rho \rangle^{*}(\widehat{m}) \circ n = \langle \operatorname{Id}_{I}, \rho \rangle^{*}(\widehat{m}) \circ \langle \operatorname{Id}_{I}, \rho \rangle^{*} \pi_{1}^{*}(n)$$
(1.49)

$$= \langle \operatorname{Id}_{I}, \rho \rangle^{*} \left(\widehat{m} \circ \pi_{1}^{*}(n) \right) \tag{1.50}$$

$$= \langle \mathrm{Id}_{I}, \rho \rangle^{*} (\widehat{m \circ n}) \tag{1.51}$$

Denotations

2.1 Effects

For each instance of the well-formed-ness relation on effects, we define a morphism $\llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket_M : \mathbb{C}(I,U)$

- $\bullet \ \ \llbracket \Phi \vdash e \text{:} \mathtt{Effect} \rrbracket_M = \llbracket \epsilon \rrbracket_M \circ \langle \rangle_I : \to U$
- $\llbracket \Phi, \alpha \vdash \alpha \colon \mathtt{Effect} \rrbracket_M = \pi_2 : I \times U \to U$
- $\bullet \ \ \llbracket \Phi, \beta \vdash \alpha \text{:} \, \mathsf{Effect} \rrbracket_M = \llbracket \Phi \vdash \alpha \text{:} \, \mathsf{Effect} \rrbracket_M \circ \pi_1 : I \times U \to U$
- $\bullet \ \ \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathtt{Effect} \rrbracket_M = \mathtt{Mul}(\llbracket \Phi \vdash \epsilon_2 \colon \mathtt{Effect} \rrbracket_M, \llbracket \Phi \vdash \epsilon_1 \colon \mathtt{Effect} \rrbracket_M) : I \to U$

2.2 Types

For each instance of the well-formed-ness relation on types, we define a morphism $\llbracket \Phi \vdash A : \mathtt{Type} \rrbracket_M : \mathbb{C}(I,W)$.

 $\llbracket \mathtt{Unit} \rrbracket_M$ is the morphism generating the terminal object of $\mathbb{C}(I,W)$. Bool is the morphism generating the co-product of this terminal object, 1+1.

- $\bullet \ \ \llbracket \Phi \vdash \mathtt{Unit} \colon \mathtt{Type} \rrbracket_M = \llbracket \mathtt{Unit} \rrbracket_M \circ \left\langle \right\rangle_I : I \to W$
- $\bullet \ \ \llbracket \Phi \vdash \mathtt{Bool} \colon \mathtt{Type} \rrbracket_{M} = \llbracket \mathtt{Bool} \rrbracket_{M} \circ \left\langle \right\rangle_{I} \colon I \to W$
- $\bullet \ \ \llbracket \Phi \vdash \gamma \text{:} \, \mathsf{Type} \rrbracket_{M} = \llbracket \gamma \rrbracket_{M} \circ \langle \rangle_{I} : I \to W$
- $\bullet \ \ \llbracket \Phi \vdash A \to B \text{:} \, \mathsf{Type} \rrbracket_M = \Diamond (\llbracket \Phi \vdash A \text{:} \, \mathsf{Type} \rrbracket_M, \llbracket \Phi \vdash B \text{:} \, \mathsf{Type} \rrbracket_M) : I \to W$
- $\bullet \ \ \llbracket \Phi \vdash \mathtt{M}_{\epsilon}A \text{:} \, \mathtt{Type} \rrbracket_{M} = \mathtt{Eff}(\llbracket \Phi \vdash \epsilon \text{:} \, \mathtt{Effect} \rrbracket_{M}, \llbracket \Phi \vdash A \text{:} \, \mathtt{Type} \rrbracket_{M}) : I \to W$
- $\llbracket \Phi \vdash \forall \alpha.A : \mathtt{Type} \rrbracket_M = \forall_I (\llbracket \Phi, \alpha \vdash A : \mathtt{Type} \rrbracket_M) : I \to W$

2.3 Effect Substitution

For each effect-substitution well-formed-ness-relation, define a denotation morphism, $\llbracket \Phi' \vdash \sigma : \Phi \rrbracket_M : \mathbb{C}(I',I)$

- $\bullet \ \ \llbracket \Phi' \vdash \diamond : \diamond \rrbracket_M = \langle \rangle_I : \mathbb{C}(I', \mathbf{1})$
- $\bullet \ \ \llbracket \Phi' \vdash (\sigma, \alpha := \epsilon) : \Phi, \alpha \rrbracket_M = \langle \llbracket \Phi' \vdash \sigma : \Phi \rrbracket_M, \llbracket \Phi \vdash \epsilon : \mathtt{Effect} \rrbracket_M \rangle : \mathbb{C}(I', I \times U)$

2.4 Effect Weakening

For each instance of the effect-environment weakening relation, define a denotation morphism: $[\![\omega:\Phi'\triangleright P]\!]_M:\mathbb{C}(I',I)$

- ullet $\llbracket\iota:\Phidash\Phi
 Vert_M=\operatorname{Id}_I:I o I$
- $\llbracket w\pi : \Phi', \alpha \triangleright \Phi \rrbracket_M = \llbracket \omega : \Phi' \triangleright \Phi \rrbracket_M \circ \pi_1 : I' \times U \to I$
- $\bullet \ [\![w\times:\Phi',\alpha\triangleright\Phi,\alpha]\!]_M=([\![\omega:\Phi'\triangleright\Phi]\!]_M\times\operatorname{Id}_U):I'\times U\to I\times U$

2.5 Sub-Typing

For each instance of the sub-typing relation with respect to an effect environment, there exists a denotation, $[\![A \leq :_{\Phi} B]\!]_M : \mathbb{C}(I, W)(A, B)$.

- $[\gamma_1 \leq :_{\Phi} \gamma_2]_M = [\gamma_1 \leq :_{\gamma} \gamma_2]_M : \mathbb{C}(I, W)(\gamma_1, \gamma_2)$
- $\bullet \ \llbracket A \to B \leq :_{\Phi} A' \to B' \rrbracket_{M} = \llbracket B \leq :_{\Phi} B' \rrbracket_{M}^{A'} \circ B^{\llbracket A' \leq :_{\Phi} A \rrbracket_{M}}$
- $\bullet \ \ \llbracket \mathsf{M}_{\epsilon_1} A \leq :_\Phi \mathsf{M}_{\epsilon_2} B \rrbracket_M = \llbracket \epsilon_1 \leq_\Phi \epsilon_2 \rrbracket_M \circ T_{\epsilon_1} \llbracket A \leq :_\Phi B \rrbracket_M$
- $[\![\forall \alpha.A \leq :_{\Phi} \forall \alpha.B]\!]_M = \forall_I [\![A \leq :_{\Phi,\alpha} B]\!]_M$

2.6 Type-Environments

For each instance of the well-formed relation on type environments, define an object in $\llbracket I \vdash W \mathtt{Ok} \rrbracket_M \in \mathbb{C}(I, W)$.

- $\bullet \ \llbracket \Phi \vdash \diamond \mathtt{Ok} \rrbracket_{M} = \mathtt{1} : \mathbb{C}(I, W)$
- $\bullet \ \llbracket \Phi \vdash \Gamma, x : A \mathtt{Ok} \rrbracket_{M} = \Box (\llbracket \Phi \vdash \Gamma \mathtt{Ok} \rrbracket_{M}, \llbracket \Phi \vdash A : \mathtt{Type} \rrbracket_{M})$

2.7 Terms

For each instance of the typing relation, define a denotation morphism: $\llbracket \Phi \mid \Gamma \vdash v : A \rrbracket_M : \mathbb{C}(I, W)(\Gamma_I, A_I)$. Writing Γ_I and A_I for $\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M$ and $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M$.

For each ground constant, \mathbb{C}^A , there exists $c: \mathbb{1} \to A_I$ in $\mathbb{C}(I, W)$.

- $\bullet \ (\mathrm{Unit}) \frac{\Phi \vdash \Gamma \mathbf{0k}}{\llbracket \Phi \mid \Gamma \vdash () : \mathbf{Unit} \rrbracket_{M} = \langle \rangle_{\Gamma} : \Gamma_{I} \to \mathbf{1}}$
- $\bullet \ (\mathrm{Const}) \tfrac{\Phi \vdash \Gamma \mathsf{Ok}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{C}^A : A \rrbracket_M = \llbracket \mathsf{C}^A \rrbracket_M \circ \langle \rangle_\Gamma : \Gamma \to \llbracket A \rrbracket_M}$
- $\bullet \ (\mathrm{True}) \frac{\Phi \vdash \Gamma \mathsf{Ok}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{true} : \mathsf{Bool} \rrbracket_M = \mathsf{inl} \circ \langle \rangle_{\Gamma} : \Gamma \to \llbracket \mathsf{Bool} \rrbracket_M = 1 + 1}$

- $\bullet \ (\mathrm{False}) \frac{\Phi \vdash \Gamma \mathsf{0k}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{false} : \mathsf{Bool} \rrbracket_M = \mathsf{inr} \circ \langle \rangle_\Gamma : \Gamma \to \llbracket \mathsf{Bool} \rrbracket_M = 1 + 1}$
- $(\operatorname{Var}) \frac{\Phi \vdash \Gamma \mathsf{0k}}{\llbracket \Phi \mid \Gamma, x : A \vdash x : A \rrbracket_M = \pi_2 : \Gamma \times A \to A}$
- $\bullet \ \ \big(\text{Weaken}\big) \frac{f = \llbracket \Phi | \Gamma \vdash x : A \rrbracket_M : \Gamma \to A}{\llbracket \Phi | \Gamma, y : B \vdash x : A \rrbracket_M = f \circ \pi_1 : \Gamma \times B \to A}$
- $\bullet \ (\mathrm{Lambda}) \frac{f = \llbracket \Phi | \Gamma, x : A \vdash C : \mathsf{M}_{\epsilon}B \rrbracket_{M} : \Gamma \times A \to T_{\epsilon}B}{\llbracket \Phi | \Gamma \vdash \lambda x : A . C : A \to \mathsf{M}_{\epsilon}B \rrbracket_{M} = \mathsf{cur}(f) : \Gamma \to (T_{\epsilon}B)^{A}}$
- $\bullet \ \ (\mathrm{Subtype}) \frac{f = \llbracket \Phi | \Gamma \vdash v : A \rrbracket_M : \Gamma \to A \ \ g = \llbracket A \leq : B \rrbracket_M}{\llbracket \Phi | \Gamma \vdash v : B \rrbracket_M = g \circ f : \Gamma \to B}$
- $\bullet \ (\text{Return}) \frac{f = [\![\Phi | \Gamma \vdash v : A]\!]_M}{[\![\Phi | \Gamma \vdash \texttt{return} v : \texttt{M}_1 A]\!]_M = \eta_A \circ f}$
- $\bullet \ (\mathrm{If}) \frac{f = \llbracket \Phi | \Gamma \vdash v : \mathsf{Bool} \rrbracket_M : \Gamma \to 1 + 1 \ g = \llbracket \Phi | \Gamma \vdash C_1 : \mathsf{M}_{\epsilon} A \rrbracket_M \ h = \llbracket \Phi | \Gamma \vdash C_2 : \mathsf{M}_{\epsilon} A \rrbracket_M}{\llbracket \Phi | \Gamma \vdash \mathbf{if}_{\epsilon,A} \ v \ \mathsf{then} \ C_1 \ \mathsf{else} \ C_2 : \mathsf{M}_{\epsilon} A \rrbracket_M = \mathsf{appo}(([\mathsf{cur}(g \circ \pi_2), \mathsf{cur}(h \circ \pi_2)] \circ f) \times \mathsf{Id}_{\Gamma}) \circ \delta_{\Gamma} : \Gamma \to T_{\epsilon} A \cap \mathsf{M}_{\epsilon} A \cap \mathsf{M}_{\epsilon}$
- $\bullet \ \ \big(\mathrm{Bind} \big) \frac{f = \llbracket \Phi | \Gamma \vdash C_1 : \mathtt{M}_{\epsilon_1} A : \Gamma \to T_{\epsilon_1} A \ \ g = \llbracket \Phi | \Gamma, x : A \vdash C_2 : \mathtt{M}_{\epsilon_2} B \rrbracket_M \rrbracket_M : \Gamma \times A \to T_{\epsilon_2} B}{\llbracket \Phi | \Gamma \vdash \mathsf{do} \ x \leftarrow C_1 \ \ \mathsf{in} \ C_2 : \mathtt{M}_{\epsilon_1 \cdot \epsilon_2} \rrbracket_M = \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} g \circ \mathsf{t}_{\Gamma, A, \epsilon_1} \circ \big\langle \mathsf{Id}_{\Gamma}, f \big\rangle : \Gamma \to T_{\epsilon_1 \cdot \epsilon_2} B}$
- $\bullet \ \left(\mathrm{Apply} \right) \frac{f = \llbracket \Phi | \Gamma \vdash v_1 : A \to \mathsf{M}_{\epsilon} B \rrbracket_M : \Gamma \to (T_{\epsilon} B)^A \ g = \llbracket \Phi | \Gamma \vdash v_2 : A \rrbracket_M : \Gamma \to A}{\llbracket \Phi | \Gamma \vdash v_1 \ v_2 : \mathsf{M}_{\epsilon} B \rrbracket_M = \mathsf{app} \circ \langle f, g \rangle : \Gamma \to T_{\epsilon} B}$
- $\bullet \ \ \big(\text{Effect-Lambda} \big) \frac{f = \llbracket \Phi, \alpha | \Gamma \vdash v : A \rrbracket_M : \mathbb{C}(I \times U, W)(\Gamma, A)}{\llbracket \Phi | \Gamma \vdash \Lambda \alpha. A : \forall \epsilon. A \rrbracket_M = \overline{f} : \mathbb{C}(I, W)(\Gamma, \forall_I(A))}$
- $\bullet \ \ \big(\text{Effect-App} \big) \frac{g = [\![\Phi | \Gamma \vdash v : \forall \alpha.A]\!]_M : \mathbb{C}(I,W)(\Gamma,\forall_I(A)) \ \ h = [\![\Phi \vdash \epsilon : \texttt{Effect}]\!]_M : \mathbb{C}(I,U)}{[\![\Phi | \Gamma \vdash v \ \epsilon : A[\epsilon/\alpha]]\!]_M = \left\langle \texttt{Id}_I, h \right\rangle^* (\epsilon_{[\![\Phi, \beta \vdash A[\beta/\alpha]]\! : \texttt{Type}]\!]_M}) \circ g : \mathbb{C}(I,W)(\Gamma,A[\epsilon/\alpha])}$

Effect Substitution Theorem

In this section, we state and prove a theorem that the action of a simultaneous effect-variable substitution upon a structure in the language has a consistent effect upon the denotation of the language. More formally, for the denotation morphism Δ of some relation, the denotation of the substituted relation, $\Delta' = \sigma^*(\Delta)$.

3.1 Effects

 $\text{If } \sigma = \llbracket \Phi' \vdash \sigma \colon \Phi \rrbracket_M \text{ then } \llbracket \Phi' \vdash \sigma(\epsilon) \colon \texttt{Effect} \rrbracket_M = \sigma^* \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket_M = \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket_M \circ \sigma.$

Proof: By induction on the derivation on $\llbracket \Phi \vdash \epsilon \text{: Effect} \rrbracket_M$

Case Ground:

$$\llbracket \Phi \vdash e \text{:} \mathsf{Effect} \rrbracket_M \circ \sigma = \llbracket e \rrbracket_M \circ \langle \rangle_I \circ \sigma \tag{3.1}$$

$$= \llbracket e \rrbracket_M \circ \langle \rangle_{I'} \tag{3.2}$$

$$= \llbracket \Phi' \vdash e : \mathsf{Type} \rrbracket_M \tag{3.3}$$

(3.4)

Case Var:

$$\llbracket \Phi, \alpha \vdash \alpha \colon \mathtt{Effect} \rrbracket_M \circ \sigma' = \pi_2 \circ \langle \sigma, \llbracket \Phi' \vdash \epsilon \colon \mathtt{Effect} \rrbracket_M \rangle \quad \text{ By inversion } \sigma' = (\sigma, \alpha := \epsilon) \tag{3.5}$$

$$= \llbracket \Phi' \vdash \epsilon : \texttt{Effect} \rrbracket_{M} \tag{3.6}$$

$$= \llbracket \Phi' \vdash \sigma'(\alpha) : \mathsf{Effect} \rrbracket_{M} \tag{3.7}$$

(3.8)

Case Weaken:

$$\begin{split} \llbracket \Phi, \beta \vdash \alpha \text{:Type} \rrbracket_M \circ \sigma' &= \llbracket \Phi \vdash \alpha \text{:Type} \rrbracket_M \circ \pi_1 \circ \langle \sigma, \llbracket \Phi' \vdash \epsilon \text{:Effect} \rrbracket_M \rangle & \text{By inversion, } \sigma' = (\sigma, \beta := \epsilon) \\ & (3.9) \end{split}$$

$$= \llbracket \Phi \vdash \alpha \text{:Type} \rrbracket_M \circ \sigma & (3.10) \\ &= \llbracket \Phi' \vdash \sigma(\alpha) \text{:Type} \rrbracket_M & (3.11) \\ &= \llbracket \Phi' \vdash \sigma'(\alpha) \text{:Type} \rrbracket_M & (3.12) \end{split}$$

$$(3.13)$$

Case Multiply:

$$\begin{split} \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathsf{Type} \rrbracket_M \circ \sigma &= \mathsf{Mul}(\llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket_M, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket_M) \circ \sigma \\ &= \mathsf{Mul}(\llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket_M \circ \sigma, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket_M \circ \sigma) \quad \mathsf{By \ Naturality} \quad (3.15) \\ &= \mathsf{Mul}(\llbracket \Phi' \vdash \sigma(\epsilon_1) \colon \mathsf{Effect} \rrbracket_M, \llbracket \Phi \vdash \sigma(\epsilon_2) \colon \mathsf{Effect} \rrbracket_M) \\ &= \mathsf{Mul}(\llbracket \Phi' \vdash \sigma(\epsilon_1) \colon \mathsf{Effect} \rrbracket_M, \llbracket \Phi \vdash \sigma(\epsilon_2) \colon \mathsf{Effect} \rrbracket_M) \end{split} \quad (3.16)$$

3.2 Types

$$\text{If } \sigma = \llbracket \Phi' \vdash \sigma \colon \Phi \rrbracket_M \text{ then } \llbracket \Phi' \vdash A \, [\sigma] \colon \mathsf{Type} \rrbracket_M = \sigma^* \llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket_M = \llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket_M \circ \sigma.$$

Proof: By induction on the derivation on $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M$. Making use of naturality properties of the type constructors.

Case Ground:

$$\begin{split} \llbracket \Phi \vdash \gamma \colon \mathsf{Type} \rrbracket_M \circ \sigma &= \llbracket \gamma \rrbracket_M \circ \langle \rangle_I \circ \sigma \\ &= \llbracket \gamma \rrbracket_M \circ \langle \rangle_{I'} \\ &= \llbracket \Phi' \vdash \gamma \colon \mathsf{Type} \rrbracket_M \\ &= \llbracket \Phi' \vdash \gamma \left[\sigma \right] \colon \mathsf{Type} \rrbracket_M \end{split} \tag{3.20}$$

Case Monad:

$$\begin{split} \llbracket \Phi \vdash \mathsf{M}_{\epsilon} A : \mathsf{Type} \rrbracket_{M} \circ \sigma &= \mathsf{Eff}(\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket_{M}, \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_{M}) \circ \sigma \\ &= \mathsf{Eff}(\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket_{M} \circ \sigma, \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_{M} \circ \sigma) \quad \mathsf{By \ naturality} \\ &= \mathsf{Eff}(\llbracket \Phi' \vdash \sigma(\epsilon) : \mathsf{Effect} \rrbracket_{M}, \llbracket \Phi' \vdash A \ [\sigma] : \mathsf{Type} \rrbracket_{M}) \\ &= \llbracket \Phi' \vdash \mathsf{M}_{\sigma(\epsilon)} A \ [\sigma] : \mathsf{Type} \rrbracket_{M} \\ &= \llbracket \Phi' \vdash (\mathsf{M}_{\epsilon} A) \ [\sigma] : \mathsf{Type} \rrbracket_{M} \end{aligned} \tag{3.25}$$

Case Quantification:

$$\begin{split} \llbracket \Phi \vdash \forall \alpha.A \text{: Type} \rrbracket_M \circ \sigma &= \forall_I (\llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket_M) \circ \sigma \\ &= \forall_I (\llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket_M \circ (\sigma \times \text{Id}_U)) \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \left[\sigma, \alpha := \epsilon\right] \text{: Type} \rrbracket_M) \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \left[\sigma\right] \text{: Type} \rrbracket_M) \\ &= \llbracket \Phi' \vdash \forall \alpha.A \left[\sigma\right] \text{: Type} \rrbracket_M \\ &= \llbracket \Phi' \vdash (\forall \alpha.A) \left[\sigma\right] \text{: Type} \rrbracket_M \end{aligned} \tag{3.32}$$

Case Function:

$$\begin{split} \llbracket \Phi \vdash A \to B \colon \mathsf{Type} \rrbracket_M \circ \sigma &= \diamond (\llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket_M, \llbracket \Phi \vdash B \colon \mathsf{Type} \rrbracket_M) \circ \sigma \\ &= \diamond (\llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket_M \circ \sigma, \llbracket \Phi \vdash B \colon \mathsf{Type} \rrbracket_M \circ \sigma) \quad \mathsf{By \ Naturality} \\ &= \diamond (\llbracket \Phi' \vdash A \ [\sigma] \colon \mathsf{Type} \rrbracket_M, \llbracket \Phi' \vdash B \ [\sigma] \colon \mathsf{Type} \rrbracket_M) \\ &= \llbracket \Phi' \vdash (A \ [\sigma]) \to (B \ [\sigma]) \colon \mathsf{Type} \rrbracket_M \\ &= \llbracket \Phi' \vdash (A \to B) \ [\sigma] \colon \mathsf{Type} \rrbracket_M \end{split} \tag{3.38}$$

3.3 Sub-typing

If
$$\sigma = \llbracket \Phi' \vdash \sigma : \Phi \rrbracket_M$$
 then $\llbracket A \llbracket \sigma \rrbracket \leq :_{\Phi'} B \llbracket \sigma \rrbracket \rrbracket_M = \sigma^* \llbracket A \leq :_{\Phi} B \rrbracket_M : \mathbb{C}(I', W)(A, B)$.

Proof: By induction on the derivation on $[A \leq :_{\Phi} B]_{M}$. Using S-closure of σ^*

Case Ground:

$$\sigma^*(\gamma_1 \le :_{\gamma} \gamma_2) = (\gamma_1 \le :_{\gamma} \gamma_2) \tag{3.40}$$

Since σ^* is s-closed.

Case Monad:

$$\begin{split} \sigma^* \llbracket \mathsf{M}_{\epsilon_1} A \leq :_{\Phi} \mathsf{M}_{\epsilon_2} B \rrbracket_M &= \sigma^* (\llbracket \epsilon_1 \leq_{\Phi} \epsilon_2 \rrbracket_M) \circ \sigma^* (T_{\epsilon_1} (\llbracket A \leq :_{\Phi} B \rrbracket_M)) \\ &= \llbracket \sigma(\epsilon_1) \leq_{\Phi'} \sigma(\epsilon_2) \rrbracket_M \circ T_{\sigma(\epsilon_1)} \llbracket A \llbracket \sigma \rrbracket \leq :_{\Phi'} B \llbracket \sigma \rrbracket \rrbracket_M \quad \text{By S-Closure} \\ &= \llbracket \mathsf{M}_{\sigma(\epsilon_1)} A \llbracket \sigma \rrbracket \leq :_{\Phi'} \mathsf{M}_{\sigma(\epsilon_2)} B \llbracket \sigma \rrbracket \rrbracket_M \\ &= \llbracket (\mathsf{M}_{\epsilon_1} A) \llbracket \sigma \rrbracket \leq :_{\Phi'} \mathsf{M}_{\epsilon_2} B \llbracket \sigma \rrbracket \rrbracket_M \end{split} \tag{3.44}$$

$$(3.45)$$

Case For All:

$$\sigma^* \llbracket \forall \alpha. A \leq :_{\Phi} \forall \alpha. B \rrbracket_M = \sigma^* (\forall_I (\llbracket A \leq :_{\Phi,\alpha} B \rrbracket_M))$$

$$= \forall_{I'} ((\sigma \times \operatorname{Id}_U)^* (\llbracket A \leq :_{\Phi,\alpha} B \rrbracket_M))$$

$$= \forall_{I'} (\llbracket A [\sigma, \alpha := \alpha] \leq :_{\Phi',\alpha} B [\sigma, \alpha := \alpha] \rrbracket_M)$$

$$= \llbracket (\forall \alpha. A) [\sigma] \leq :_{\Phi'} (\forall \alpha. B) [\sigma] \rrbracket_M$$

$$(3.49)$$

$$(3.50)$$

Case Fn:

$$\sigma^* \llbracket (A \to B) \leq :_{\Phi} A' \to B' \rrbracket_M = \sigma^* (\llbracket B \leq :_{\Phi} B' \rrbracket_M^{A'} \circ B^{\llbracket A' \leq :_{\Phi} A \rrbracket_M}) \tag{3.51}$$

$$= \sigma^* (\operatorname{cur} (\llbracket B \leq :_{\Phi} B' \rrbracket_M \circ \operatorname{app})) \circ \sigma^* (\operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \llbracket A' \leq :_{\Phi} A \rrbracket_M))) \tag{3.52}$$

$$= \operatorname{cur} (\sigma^* (\llbracket B \leq :_{\Phi} B' \rrbracket_M) \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \sigma^* (\llbracket A' \leq :_{\Phi} A \rrbracket_M))) \tag{3.53}$$

$$= \operatorname{cur} (\llbracket B \llbracket \sigma \rrbracket \leq :_{\Phi'} B' \llbracket \sigma \rrbracket \rrbracket_M \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_{B \llbracket \sigma \rrbracket} \times \llbracket A' \llbracket \sigma \rrbracket \leq :_{\Phi'} A \llbracket \sigma \rrbracket \rrbracket_M)) \tag{3.54}$$

$$= \llbracket (A \llbracket \sigma \rrbracket) \to (B \llbracket \sigma \rrbracket) \leq :_{\Phi'} (A' \llbracket \sigma \rrbracket) \to (B' \llbracket \sigma \rrbracket) \rrbracket_M \tag{3.55}$$

$$= \llbracket (A \to B) \llbracket \sigma \rrbracket \leq :_{\Phi'} (A' \to B') \llbracket \sigma \rrbracket \rrbracket_M \tag{3.56}$$

3.4 Type Environments

$$\text{If } \sigma = \llbracket \Phi' \vdash \sigma \colon \Phi \rrbracket_M \text{ then } \llbracket \Phi' \vdash \Gamma \left[\sigma \right] \mathtt{Ok} \rrbracket_M = \sigma^* \llbracket \Phi \vdash \Gamma \mathtt{Ok} \rrbracket_M = \llbracket \Phi \vdash \Gamma \mathtt{Ok} \rrbracket_M \colon \mathbb{C}(I', W).$$

Proof: By induction on the derivation on $\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M$. Using Naturality.

Case Nil:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \diamond \mathsf{Ok} \rrbracket_M &= \langle \rangle_I \circ \sigma & (3.57) \\ &= \langle \rangle_{I'} & (3.58) \\ &= \llbracket \Phi' \vdash \diamond \mathsf{Ok} \rrbracket_M & (3.59) \\ \llbracket \Phi' \vdash \diamond \llbracket \sigma \rrbracket \, \mathsf{Ok} \rrbracket_M & (3.60) \\ & (3.61) \end{split}$$

Case Var:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \Gamma, x : A \mathsf{Ok} \rrbracket_M &= \sigma^* (\Box (\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M, \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M)) \\ &= \Box (\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M, \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M) \circ \sigma \\ &= \Box (\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M \circ \sigma, \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M \circ \sigma) \\ &= \Box (\llbracket \Phi' \vdash \Gamma [\sigma] \, \mathsf{Ok} \rrbracket_M, \llbracket \Phi' \vdash A \, [\sigma] : \mathsf{Type} \rrbracket_M) \\ &= \llbracket \Phi' \vdash \Gamma [\sigma], x : A \, [\sigma] \, \mathsf{Ok} \rrbracket_M \\ &= \llbracket \Phi' \vdash (\Gamma, x : A) \, [\sigma] \, \mathsf{Ok} \rrbracket_M \end{split} \tag{3.65}$$

3.5 Terms

If

$$\sigma = \llbracket \Phi' \vdash \sigma : \Phi \rrbracket_M \tag{3.69}$$

$$\Delta = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket_M \tag{3.70}$$

$$\Delta' = \llbracket \Phi' \mid \Gamma \left[\sigma \right] \vdash v \left[\sigma \right] : A \left[\sigma \right] \rrbracket_{M} \tag{3.71}$$

Then

$$\Delta' = \sigma^*(\Delta) \tag{3.73}$$

Proof: By induction over the derivation of Δ . Using the S-Closure of σ^* . We use Γ_I to indicate $\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M$, an A_I to indicate $\llbracket \Phi \vdash A \colon \mathsf{Effect} \rrbracket_M$

Case Unit:

$$\Delta = \langle \rangle_{\Gamma_I} \tag{3.74}$$

So

$$\sigma^*(\Delta) = \langle \rangle_{\Gamma_I[\sigma]} = \Delta' \tag{3.75}$$

Case True, False: Giving the case for true as false is the same but using inr

$$\Delta = \operatorname{inl} \circ \left\langle \right\rangle_{\Gamma_I} \tag{3.76}$$

So

$$\sigma^*(\Delta) = \operatorname{inl} \circ \langle \rangle_{\Gamma_I[\sigma]} = \Delta' \tag{3.77}$$

Since σ^* is S-closed.

Case Constant:

$$\Delta = [\![\mathbf{C}^A]\!]_M \circ \langle \rangle_{\Gamma_I} \tag{3.78}$$

So

$$\sigma^*(\Delta) = \sigma^* \mathbb{C}^A \mathbb{I}_M \circ \langle \rangle_{\Gamma_I[\sigma]} = \mathbb{C}^{A[\sigma]} \mathbb{I}_M \circ \langle \rangle_{\Gamma_I[\sigma]} = \Delta'$$
 (3.79)

Since σ^* is S-closed.

Case Subtype: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket_M \tag{3.80}$$

Then

$$\Delta = [A \le :_{\Phi} B]_M \circ \Delta_1 \tag{3.81}$$

So

$$\sigma^*(\Delta) = \sigma^* \llbracket A \leq :_{\Phi} B \rrbracket_M \circ \sigma^* \Delta_1 \tag{3.82}$$

$$= \left[\!\!\left[A\left[\sigma\right] \leq :_{\Phi'} B\left[\sigma\right]\right]\!\!\right]_{M} \circ \Delta'_{1} \quad \text{By induction} \tag{3.83}$$

$$=D' \tag{3.84}$$

Case Lambda: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma, x : A \vdash v : B \rrbracket_M \tag{3.85}$$

Then

$$\Delta = \operatorname{cur}(()\Delta_1) \tag{3.86}$$

So

$$\sigma^*(\Delta) = \sigma^*(\operatorname{cur}(\Delta_1)) \tag{3.87}$$

$$= \operatorname{cur}(\sigma^*(\Delta_1))$$
 By S-closure (3.88)

$$= \operatorname{cur}(\Delta_1)$$
 By induction (3.89)

$$=\Delta' \tag{3.90}$$

Case Application: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v_1 \colon A \to B \rrbracket_M \tag{3.91}$$

$$\Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket_M \tag{3.92}$$

Then

$$\Delta = \operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle \tag{3.93}$$

So

$$\sigma^* \Delta = \sigma^*(\operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle) \tag{3.94}$$

$$= \operatorname{app} \circ \langle \sigma^*(\Delta_1), \sigma^*(\Delta_2) \rangle \quad \text{By S-closure}$$
 (3.95)

$$= \operatorname{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Induction} \tag{3.96}$$

$$=\Delta' \tag{3.97}$$

Case Return: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket_M \tag{3.98}$$

Then

$$\Delta = \eta_{A_I} \circ \Delta_1 \tag{3.99}$$

So

$$\sigma^*(\Delta) = \sigma^*(\eta_{A_I} \circ \Delta_1) \tag{3.100}$$

$$= \eta_{A_{I'}} \circ \sigma^*(\Delta_1) \quad \text{By S-closure}$$
 (3.101)

$$=\eta_{A_{I'}}\circ\Delta_1'$$
 (3.102)

$$=\Delta' \tag{3.103}$$

Case Bind: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v_1 : \mathsf{M}_{\epsilon_1} A \rrbracket_M \tag{3.104}$$

$$\Delta_2 = \llbracket \Phi \mid \Gamma, x : A \vdash v_2 : \mathsf{M}_{\epsilon_2} B \rrbracket_M \tag{3.105}$$

Then

$$\Delta = \mathbf{M}_{\epsilon_1} \epsilon_2 A_I \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1, \Gamma_I, A_I} \circ \langle \mathbf{Id}_{\Gamma_I}, \Delta_1 \rangle \tag{3.106}$$

So

$$\sigma^*(\Delta) = \sigma^*(\mu_{\epsilon_1, \epsilon_2, A} \circ T_{\epsilon_1} \Delta_2 \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, \Delta_1 \rangle) \tag{3.107}$$

$$= \sigma^*(\mu_{\epsilon_1,\epsilon_2,A}) \circ \sigma^*(T_{\epsilon_1}\Delta_2) \circ \sigma^*(\mathsf{t}_{\epsilon_1,\Gamma,A}) \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}), \sigma^*(\Delta_1) \rangle \quad \text{By S-Closure}$$
 (3.108)

$$= \mu_{\sigma(\epsilon_1),\sigma(\epsilon_2),A[\sigma]'} \circ T_{\sigma(\epsilon_1)}\sigma^*(\Delta_2) \circ \mathsf{t}_{\sigma(\epsilon_1),\Gamma[\sigma],A[\sigma]} \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}),\sigma^*(\Delta_1) \rangle \quad \text{By S-Closure} \quad (3.109)$$

$$= \mu_{\sigma(\epsilon_1), \sigma(\epsilon_2), A[\sigma]'} \circ T_{\sigma(\epsilon_1)} \Delta_2' \circ \mathsf{t}_{\sigma(\epsilon_1), \Gamma[\sigma], A[\sigma]} \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}), \Delta_1' \rangle \quad \text{By Induction}$$
(3.110)

$$=\Delta' \tag{3.111}$$

(3.112)

Case If: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : \mathsf{Bool} \rrbracket_M \tag{3.113}$$

$$\Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket_M \tag{3.114}$$

$$\Delta_3 = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket_M \tag{3.115}$$

(3.116)

Then

$$\Delta = \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma}$$
(3.117)

So

$$\sigma^*(\Delta) = \sigma^*(\operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma}) \tag{3.118}$$

 $= \operatorname{app} \circ (([\operatorname{cur}(\sigma^*(\Delta_2) \circ \pi_2), \operatorname{cur}(\sigma^*(\Delta_3) \circ \pi_2)] \circ \sigma^*(\Delta_1)) \times \operatorname{Id}_{\Gamma[\sigma]}) \circ \delta_{\Gamma[\sigma]} \quad \text{By S-Closure}$ (3.119)

$$= \operatorname{\mathsf{app}} \circ (([\operatorname{\mathsf{cur}}(\Delta_2' \circ \pi_2), \operatorname{\mathsf{cur}}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \operatorname{\mathsf{Id}}_{\Gamma[\sigma]}) \circ \delta_{\Gamma[\sigma]} \quad \text{By Induction} \tag{3.120}$$

$$=\Delta' \tag{3.121}$$

(3.122)

Case Effect-Lambda: Let

$$\Delta_1 = \llbracket \Phi, \alpha \mid \Gamma \vdash v : A \rrbracket_M \tag{3.123}$$

Then

$$\Delta = \hat{\Delta_1} \tag{3.124}$$

And also

$$\sigma \times \mathrm{Id} = [\![(\Phi', \alpha) \vdash (\sigma, \alpha := \epsilon) : (\Phi, \alpha)]\!]_M \tag{3.125}$$

So

$$\sigma^* \Delta = \sigma^* (\hat{\Delta_1}) \tag{3.126}$$

$$= (\sigma \times \hat{\mathsf{Id}}_U)^* \Delta_1 \quad \text{By naturality} \tag{3.127}$$

$$=\hat{\Delta}'_1$$
 By induction (3.128)

$$=\Delta' \tag{3.129}$$

Case Effect-Application: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : \forall \alpha . A \rrbracket_M \tag{3.130}$$

$$h = \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket_{M} \tag{3.131}$$

(3.132)

Then

$$\Delta = \left\langle \operatorname{Id}_{\Gamma}, h \right\rangle^* \left(\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta/\alpha \rrbracket : \operatorname{Type} \rrbracket_M} \right) \circ \Delta_1 \tag{3.133}$$

So Due to the substitution theorem on effects

$$h \circ \sigma = \llbracket \Phi \vdash \epsilon : \mathtt{Effect} \rrbracket_M \circ \sigma = \llbracket \Phi' \vdash \sigma(\epsilon) : \mathtt{Effect} \rrbracket_M = h' \tag{3.134}$$

$$\sigma^* \Delta = \sigma^* (\langle \operatorname{Id}_{\Gamma}, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta / \alpha \rrbracket; \operatorname{Type} \rrbracket_{\mathcal{M}}}) \circ \Delta_1)$$

$$(3.135)$$

$$= (\langle \operatorname{Id}_{\Gamma}, h \rangle \circ \sigma)^* (\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta / \alpha \rrbracket : \operatorname{Type} \rrbracket_M}) \circ \sigma^* (\Delta_1)$$
(3.136)

$$= ((\sigma \times \operatorname{Id}_{U}) \circ (\operatorname{Id}_{\Gamma}, h \circ \sigma))^{*} (\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta / \alpha \rrbracket : \operatorname{Type} \rrbracket_{M}}) \circ \Delta_{1})'$$
(3.137)

$$= (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^* ((\sigma \times \operatorname{Id}_{U})^* \epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket_{M}}) \circ \Delta_1)' \tag{3.138}$$

(3.139)

Looking at the inner part of the functor application: Let

$$A = \llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] : \mathsf{Type} \rrbracket_{M} \tag{3.140}$$

(3.141)

$$(\sigma \times \operatorname{Id}_{U})^{*} \epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta/\alpha \rrbracket : \operatorname{Type} \rrbracket_{M}} = (\sigma \times \operatorname{Id}_{U})^{*} \epsilon_{A}$$

$$(3.142)$$

$$= (\sigma \times \operatorname{Id}_{U})^{*}(\widehat{\operatorname{Id}_{\forall_{I}(A)}}) \tag{3.143}$$

$$= \overline{(\sigma \times \operatorname{Id}_{U})^{*}(\widehat{\operatorname{Id}_{\forall_{I}(A)}})} \quad \text{By bijection}$$
 (3.144)

$$=\sigma^*(\widehat{\overline{\mathrm{Id}_{\forall_I(A)}}})$$
 By naturality (3.145)

$$= \widehat{\sigma^*(\mathrm{Id}_{\forall_I(A)})} \quad \text{By bijection} \tag{3.146}$$

$$= \overline{\mathsf{Id}_{\forall_I(A \circ (\sigma \times \mathsf{Id}_U))}} \quad \text{By S-Closure, naturality} \tag{3.147}$$

$$= \overline{\mathrm{Id}_{\forall_I(A[\sigma,\alpha:=\alpha])}} \quad \text{By Substitution theorem}$$
 (3.148)

$$= \epsilon_{A[\sigma]} \tag{3.149}$$

Going back to the original expression:

$$\sigma^* \Delta = (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^* ((\sigma \times \operatorname{Id}_{U})^* \epsilon_{A[\sigma]}) \circ \Delta_1)'$$

$$= \Delta'$$
(3.150)
$$(3.151)$$

$$=\Delta' \tag{3.151}$$

(3.152)

Effect Weakening Theorem

- 4.1 Effects
- 4.2 Types
- 4.3 Type Environments
- 4.4 Sub-typing
- 4.5 Terms

Value Substitution Theorem

Type-Environment Weakening Theorem

Unique Denotation Theorem

Beta-Eta-Equivalence Theorem (Soundness)