1 Grammar

2 Functions

Definition (annot :: $\tau \times \varepsilon \to \hat{\tau}$)

- 1. $annot(\{\bar{r}\}, _) = \{\bar{r}\}$
- 2. $annot(Unit, _) = Unit$
- 3. $\operatorname{annot}(\tau_1 \to \tau_2, \varepsilon) = \operatorname{annot}(\tau_1, \varepsilon) \to_{\varepsilon} \operatorname{annot}(\tau_2, \varepsilon)$

Definition (annot :: $e \times \varepsilon \rightarrow \hat{e}$)

- 1. annot(x,) = e
- 2. annot(r,) = r
- 3. annot(unit, _) = unit
- 4. $\operatorname{annot}(e_1e_2,\varepsilon) = \operatorname{annot}(e_1)\operatorname{annot}(e_2)$
- 5. $annot(e.\pi, \varepsilon) = annot(e).\pi$
- 6. $\operatorname{annot}(\lambda x : \tau \cdot e, \varepsilon) = \lambda x : \operatorname{annot}(\tau, \varepsilon) \cdot \operatorname{annot}(e, \varepsilon)$

Definition (annot :: $\Gamma \times \varepsilon \to \hat{\Gamma}$)

- 1. $annot(\emptyset, _) = \emptyset$
- 2. $\operatorname{annot}((\Gamma, x : \tau), \varepsilon) = \operatorname{annot}(\Gamma, \varepsilon), x : \operatorname{annot}(\tau, \varepsilon)$

Definition (erase :: $\hat{\tau} \to \tau$)

- 1. $erase(\{\bar{r}\}, _) = \{\bar{r}\}$
- 2. $erase(Unit, _-) = Unit$
- 3. $\operatorname{erase}(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \operatorname{erase}(\hat{\tau}_1) \to \operatorname{erase}(\hat{\tau}_2)$

Definition (erase :: $\hat{e} \rightarrow e$)

- 1. erase(x) = x
- $2. \ \mathtt{erase}(r) = r$
- 3. erase(unit) = unit
- 4. $erase(e_1e_2) = erase(e_1)erase(e_2)$
- 5. $erase(e.\pi) = erase(e).\pi$
- 6. $\operatorname{erase}(\lambda x : \hat{\tau}.\hat{e}) = \lambda x : \operatorname{erase}(\hat{\tau}).\operatorname{erase}(\hat{e})$

Definition (effects :: $\tau \to \varepsilon$)

- 1. $effects(Unit) = \emptyset$
- 2. effects($\{\bar{r}\}\) = \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$
- 3. $\operatorname{effects}(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \operatorname{ho-effects}(\hat{\tau}_1) \cup \varepsilon \cup \operatorname{effects}(\hat{\tau}_2)$

Definition (ho-effects :: au o arepsilon)

- 1. ho-effects(Unit) = \emptyset
- 2. ho-effects($\{\bar{r}\}\) = \emptyset$
- 3. ho-effects $(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \texttt{effects}(\tau_1) \cup \texttt{ho-effects}(\hat{\tau}_2)$

3 Static Rules

$$\varGamma \vdash e : \tau$$

$$\overline{\Gamma, x : \tau \vdash x : \tau}$$
 (T-VAR) $\overline{\Gamma, r : \{r\} \vdash r : \{r\}}$ (T-RESOURCE)

$$\frac{\varGamma \vdash \mathtt{Unit} : \mathtt{Unit}}{\varGamma \vdash \mathtt{Unit} : \mathtt{Unit}} \ (\mathtt{T-Unit}) \qquad \frac{\varGamma, x : \tau_1 \vdash e : \tau_2}{\varGamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2} \ (\mathtt{T-Abs})$$

$$\frac{\varGamma \vdash e_1 : \tau_2 \to \tau_3 \quad \varGamma \vdash e_2 : \tau_2}{\varGamma \vdash e_1 \ e_2 : \tau_3} \ (\text{T-APP}) \qquad \frac{\varGamma \vdash e : \{\bar{r}\} \quad \forall r \in \bar{r} \mid r \in R \quad \pi \in \varPi}{\varGamma \vdash e.\pi : \text{Unit}} \ (\text{T-OperCall})$$

$$\hat{arGamma} dash \hat{e} : \hat{ au}$$
 with $arepsilon$

$$\frac{}{\varGamma, x : \tau \vdash x : \tau \text{ with } \varnothing} \ (\varepsilon\text{-VAR}) \qquad \frac{}{\varGamma, r : \{r\} \vdash r : \{r\} \text{ with } \varnothing} \ (\varepsilon\text{-RESOURCE})$$

$$\frac{\varGamma \Gamma, x : \tau_2 \vdash \hat{e} : \tau_3 \text{ with } \varepsilon}{\varGamma \vdash \text{unit} : \text{Unit with } \varnothing} \ (\varepsilon\text{-Unit}) \qquad \frac{\varGamma, x : \tau_2 \vdash \hat{e} : \tau_3 \text{ with } \varepsilon}{\varGamma \vdash \lambda x : \tau_2 . \hat{e} : \tau_2 \to_\varepsilon \tau_3 \text{ with } \varnothing} \ (\varepsilon\text{-Abs})$$

$$\frac{\varGamma \vdash \hat{e}_1 : \tau_2 \to_{\varepsilon} \tau_3 \text{ with } \varepsilon_1 \quad \varGamma \vdash \hat{e}_2 : \tau_2 \text{ with } \varepsilon_2}{\varGamma \vdash \hat{e}_1 \hat{e}_2 : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon} \quad (\varepsilon\text{-APP}) \qquad \frac{\varGamma \vdash \hat{e} : \{\bar{r}\} \quad \forall r \in \bar{r} \mid r \in R \quad \pi \in \varPi}{\varGamma \vdash \hat{e}.\pi : \text{Unit with } \{\bar{r}.\pi\}} \quad (\varepsilon\text{-OPERCALL})$$

$$\begin{split} \hat{\varGamma} \vdash \hat{e} : \hat{\tau} \text{ with } \varepsilon_1 & \varepsilon = \texttt{effects}(\hat{\tau}) \\ & \texttt{ho-safe}(\hat{\tau}, \varepsilon) & x : \texttt{erase}(\hat{\tau}) \vdash e : \tau \\ & \hat{\varGamma} \vdash \texttt{import}(\varepsilon) \; x = \hat{e} \; \texttt{in} \; e : \texttt{annot}(\tau, \varepsilon) \; \texttt{with} \; \varepsilon \cup \varepsilon_1 \end{split} \ (\varepsilon\text{-Module})$$

 $\mathtt{safe}(\tau,\varepsilon)$

$$\frac{\mathbf{safe}(\{\bar{r}\},\varepsilon)}{\mathbf{safe}(\hat{r}_1,\varepsilon)} \overset{\text{(SAFE-RESOURCE)}}{=} \frac{\mathbf{safe}(\mathsf{Unit},\varepsilon)}{\mathbf{safe}(\hat{\tau}_1,\varepsilon)} \overset{\text{(SAFE-UNIT)}}{=} \frac{\varepsilon \subseteq \varepsilon_2 \quad \mathsf{ho\text{-}safe}(\hat{\tau}_1,\varepsilon) \quad \mathsf{safe}(\hat{\tau}_2,\varepsilon)}{\mathbf{safe}(\hat{\tau}_1 \to \varepsilon_2, \hat{\tau}_2,\varepsilon)} \overset{\text{(SAFE-ARROW)}}{=}$$

$$\mathtt{ho\text{-}safe}(\widehat{\tau},\varepsilon)$$

$$\frac{1}{\mathsf{ho\text{-}safe}(\{\bar{r}\},\varepsilon)} \ (\mathsf{HOSAFE\text{-}RESOURCE}) \qquad \frac{1}{\mathsf{ho\text{-}safe}(\mathsf{Unit},\varepsilon)} \ (\mathsf{HOSAFE\text{-}UNIT}) \\ \frac{\mathsf{safe}(\hat{\tau}_1,\varepsilon) \quad \mathsf{ho\text{-}safe}(\hat{\tau}_2,\varepsilon)}{\mathsf{ho\text{-}safe}(\hat{\tau}_1 \to_{\varepsilon_2} \hat{\tau}_2,\varepsilon)} \ (\mathsf{HOSAFE\text{-}ARROW})$$

 $\hat{\tau} <: \hat{\tau}$

$$\frac{\varepsilon \subseteq \varepsilon' \quad \hat{\tau}_2 <: \hat{\tau}_2' \quad \hat{\tau}_1' <: \hat{\tau}_1}{\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2 <: \hat{\tau}_1' \to_{\varepsilon'} \hat{\tau}_2'} \quad (S\text{-EFFECTS})$$

4 Dynamic Rules

$$\hat{e} \longrightarrow \hat{e} \mid \varepsilon$$

$$\begin{split} \frac{\hat{e}_1 \longrightarrow \hat{e}_1' \mid \varepsilon}{\hat{e}_1 \hat{e}_2 \longrightarrow \hat{e}_1' \hat{e}_2 \mid \varepsilon} \text{ (E-APP1)} & \quad \frac{\hat{e}_2 \longrightarrow \hat{e}_2' \mid \varepsilon}{\hat{v}_1 \hat{e}_2 \longrightarrow \hat{v}_1 \hat{e}_2' \mid \varepsilon} \text{ (E-APP2)} & \quad \frac{(\lambda x : \tau. \hat{e}) \hat{v}_2 \longrightarrow [\hat{v}_2/x] \hat{e} \mid \varnothing}{(\lambda x : \tau. \hat{e}) \hat{v}_2 \longrightarrow [\hat{v}_2/x] \hat{e} \mid \varnothing} \text{ (E-APP3)} \\ & \quad \frac{\hat{e} \to \hat{e}' \mid \varepsilon}{\hat{e}.\pi \longrightarrow \hat{e}'.\pi \mid \varepsilon} \text{ (E-OPERCALL1)} & \quad \frac{r \in R \quad \pi \in \Pi}{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}} \text{ (E-OPERCALL2)} \\ & \quad \frac{\text{import}(\varepsilon) \ x = \hat{v} \text{ in } e \longrightarrow [\hat{v}/x] \text{annot}(e, \varepsilon) \mid \varnothing}{\text{(E-MODULE2)}} \end{split}$$

5 Proofs

Lemma 1. If $\varepsilon \subseteq \text{effects}(\hat{\tau})$ and ho-safe $(\hat{\tau}, \varepsilon)$ then $\hat{\tau} <: \text{annot}(\text{erase}(\hat{\tau}), \varepsilon)$.

Lemma 2. If $\varepsilon \subseteq \text{ho-effects}(\hat{\tau})$ and $\text{safe}(\hat{\tau}, \varepsilon)$ then $\text{annot}(\text{erase}(\hat{\tau}), \varepsilon) <: \hat{\tau}$.

Theorem 1. If $\Gamma, x : \mathtt{erase}(\hat{\tau}) \vdash e : \tau \ and \ \varepsilon = \mathtt{effects}(\hat{\tau}) \ and \ \mathtt{ho\text{-safe}}(\hat{\tau}, \varepsilon) \ then \ \mathtt{annot}(\Gamma), x : \hat{\tau} \vdash \mathtt{annot}(e, \varepsilon) : \mathtt{annot}(\tau, \varepsilon) \ \mathtt{with} \ \varepsilon.$

Theorem 2 (Progress). If $\Gamma \vdash \hat{e}_A : \tau_A$ with ε_A then \hat{e}_A is a value or $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Proof. By induction on $\Gamma \vdash \hat{e}_A : \tau_A$ with ε_A .

Case: ε -RESOURCE, ε -UNIT, ε -ABS | Then \hat{e}_A is a value.

Case: ε -APP Then $\hat{e}_A = \hat{e}_1$ \hat{e}_2 . We consider the cases in which \hat{e}_1 and \hat{e}_2 are values.

If \hat{e}_1 is not a value then by inductive assumption there is a reduction $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. Then \hat{e}_1 \hat{e}_2 reduces by the rule E-APP1, giving \hat{e}_1 $\hat{e}_2 \longrightarrow \hat{e}'_1$ $\hat{e}_2 \mid \varepsilon$.

If \hat{e}_2 is not a value then WLOG \hat{e}_1 is a value. By inductive assumption $\hat{e}_2 \longrightarrow \hat{e}'_2 \mid \varepsilon$. Then \hat{v}_1 \hat{e}_2 reduces by the rule E-APP2, giving \hat{v}_1 $\hat{e}_2 \longrightarrow \hat{v}_1$ $\hat{e}'_2 \mid \varepsilon$.

If \hat{e}_1 and \hat{e}_2 are both values then by canonical forms $\hat{e}_1 = \hat{v}_1 = \lambda x : \tau_2.e$. Then \hat{v}_1 \hat{v}_2 reduces by the rule E-APP3, giving \hat{v}_1 $\hat{v}_2 \longrightarrow [\hat{v}_2/x]\hat{e} \mid \varnothing$.

Case: ε -OperCall Then $\hat{e}_A = \hat{e}_1.\pi$. We consider whether \hat{e}_1 is a value.

If \hat{e}_1 is not a value then by inductive assumption there is a reduction $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. Then $\hat{e}_1.\pi$ reduces by the rule E-OperCall, giving $\hat{e}_1.\pi \longrightarrow \hat{e}'_1.\pi \mid \varepsilon$.

If \hat{e}_1 is a value then $\hat{e}_1 = r$ by canonical forms. By the assumption that $r.\pi$ is closed under Γ , we know $r \in R$ and $\pi \in \Pi$. Then $\hat{e}_1.\pi$ reduces by the rule E-OPERCALL2, giving $r.\pi \longrightarrow \mathtt{unit} \mid \varepsilon$.

Case: ε -MODULE Then $e_A = \mathtt{import}(\varepsilon) \ x = \hat{e} \ \mathtt{in} \ e \ \mathtt{which} \ \mathtt{reduces} \ \mathtt{by} \ \mathtt{the} \ \mathtt{rule} \ \mathtt{E-MODULE}, \ \mathtt{giving} \ \mathtt{import}(\varepsilon) \ x = \hat{e} \ \mathtt{in} \ e \ \longrightarrow [\hat{v}/x] \ \mathtt{annot}(e,\varepsilon) \ | \ \varnothing.$