Chapter 1

Gaussian integers

1.1 Recap: Euclidian Algorithm

For any $a, b \in Z$ with |b| < |a|, we can decompose a as $a = \alpha \cdot b + r$ where $0 \le r \le |a|$. This immediately implies certain facts about the structure of ideals in \mathbb{Z} .

Theorem 1. every ideal $I \neq 0$ in \mathbb{Z} is principal. The generator of I is the smallest positive integer in the ideal. Formally: $I = (\min\{d \in I : d > 0\})$.

Proof. Let $i \in I$ be a general element. Find its decomposition into d using the Euclidian algorithm as $i = \alpha \cdot d + r$. Reasoning by ideals:

$$\begin{aligned} &\forall i \in I, \exists \alpha, r \in \mathbb{Z}, |r| \lneq d, \quad i = \alpha \cdot d + r \\ &\{ \text{writing in ideal notation,} \} \\ &\exists r \in \mathbb{Z}, r \not \in I, \quad I \subseteq Z \cdot d + r \\ &\{ \text{since } I = (d), \} \\ &\exists r \in Z, r \not \in \mathbb{Z}, \quad I \subseteq I + r \\ &\implies r = 0 \end{aligned}$$

Theorem 2. Ideal I = (a, b) is a principal ideal I = (gcd(a, b)).

Proof. We already know that every ideal I is generated by its smallest positive number d. We will show that d = gcd(a, b). We first show that d is a divisor of a, and a divisor of b. Since $a \in (a, b) = I = (d)$, we know that $a = \alpha \cdot d$ for some $\alpha \in \mathbb{Z}$. Hence d divides a. Similarly, d divides b. To show that d is the greatest common divisor, let there be another divisor common divisor d' which divides a and b:

 $d \in I = (a, b) \implies d = ma + nb$ (Any element in I can be written as ma + nb) $d'|a \implies d'|ma, d'|b \implies d'|nb$ $d'|ma \wedge d'|nb \implies d'|[(ma + nb) = d]$ $d' \le d$ (A divisor of a number must be less than or equal to the number)

Hence,
$$d = gcd(a, b)$$
.

Theorem 3. If p is a prime and p|ab then p|a or p|b.

Proof. We know that $gcd(a, p) = p \vee gcd(a, p) = 1$, since the only divisors of p are 1 and p itself. If p|a then we are done. If $p \not|a$, then $gcd(a, p) \neq p$, and we must have gcd(a, p) = 1. This means that $1 = \alpha a + \beta p$. Multiplying throughout by b, we get that $b = \alpha(ab)\beta(pb)$. We know that p|ab, and clearly p|pb. Hence, we must have that p|(ab+pb). Therefore, p|b.

Theorem 4. Every integer z has a unique decomposition into a product of primes of the form $z = \pm p_1 p_2 \dots p_n$.

Proof. Proof by induction on the number of factors and using the property that if $p|ab \implies p|a \vee p|b$. We prove this by induction on the size of the number. It clearly holds for 2 since 2 is prime. Now, let us assume it holds till number n. Now we consider (n+1). If (n+1) is prime, then the decomposition is immediate. Assume it is not. This means that $(n+1) = \alpha\beta$, for $\alpha, \beta \leq n$. We know that α, β have unique factorization. We can easily show that the product of two unique factorizations also has a unique factorization. Hence proved. \square

So really, given the Euclidian algorithm, we get this kind of prime decomposition and the unicity of factorization.

1.2 $\mathbb{Z}[i]$: The Gaussian integers

The size function is the absolute value $\delta(a+bi) \equiv |a+bi|^2 = a^2 + b^2$. A corollary of this is that every ideal of Z[i] is principal. In particular, the ideal I_p such that $\mathbb{Z}[i]/I_p \simeq \mathbb{Z}/p\mathbb{Z}$ where $p \equiv 1 \mod 4$ is principal, and is generated by a single element $a_p + b_p i$, and also that $a_p^2 + b_p^2 = p$. This is Fermat's theorem, which shows that every prime $p \equiv 1 \mod 4$ can be written as a sum of squares.

1.3 $\delta(r) = |r|$ is a size function

Let's try to show that δ is a good size function. Let us pick $B, A \in \mathbb{Z}[i]$. We can write $B = A \cdot w$, where $w = \alpha + \beta i$ where $\alpha, \beta \in \mathbb{Q}$. This is easy to do because in the complex numbers, we know that $B/A = B\bar{A}/(A\bar{A})$, where \bar{A} is the complex conjugate. Hence $w = B/A = B\bar{A}/(A\bar{A})$. We split α, β into their

integer and fractional parts by writing $\alpha = \alpha_0 + r_0$, $\beta = \beta_0 + s_0$ where $\alpha_0, \beta_0 \in \mathbb{Z}$ and $-1/2 \le r_0, s_0 < 1/2$. This gives us:

$$B = Aw = A(\alpha + \beta i) = A(|\alpha| + i|\beta|) + A(r_0 + s_0 i)$$

Note that $A(\lfloor \alpha \rfloor + i \lfloor \beta \rfloor) \in \mathbb{Z}[i]$. What we have leftover is $r \equiv A(r_0 + s_0 i)$, the remainder. We claim that $\delta(r) < \delta(A)/2$. To prove this, we note that δ which is the absolute value is multiplicative: $\forall u, b \in \mathbb{C}, |ub| = |u||b|$. Hence, we get that $\delta(Ar) = \delta(A)\delta(r) = \delta(A)(r_0^2 + s_0^2)$. Hence we can conclude that:

$$\delta(Ar) = \delta(A)(r_0^2 + s_0^2) \le \left[\delta(A)(1/2^2 + 1/2^2) = \delta(A)(1/4 + 1/4) = \delta(A)/2\right]$$

$$\delta(Ar) \le \delta(A)/2$$

Note that the above trick of writing things in terms of $\alpha + \beta i = (\alpha_0 + \beta_0 i) + (r_0 + s_0 i)$ does not allow us to show that all rings of the form \mathbb{Z} with stuff adjoined is Euclidian. For a concrete non-example, take $\mathbb{Z}[\sqrt{-5}]$. Here, the factorization works out to be $(r_0 + 5s_0 i) \leq 1/4 + 5/4$ which does not decrease the size. More drastically, $\mathbb{Z}[\sqrt{-5}]$ cannot be a Euclidian domain for any choice of size function, since unique factorization fails. $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

1.4 Ideal of $\mathbb{Z}[i]$

Theorem 5. If $I \neq (0)$, then Z[i]/I is finite. That is, I has finite index in Z[i].

Proof. Let I be a non-zero principal ideal generated by α : $I=(\alpha)$. Then $\alpha\bar{\alpha}=a^2+b^2=n\in\mathbb{N}^+$. This integer $n\in I$, since $\alpha\in I, \bar{\alpha}\in Z[i]$, and the ideal is closed under multiplication with the rest of the ring. So $I\subseteq (n)$. We claim that $(n)\subseteq I\subseteq R$, and that (n) has finite index in R, and therefore I must have finite index in R. (n) has finite index in R because $(n)=\{na+nbi:a,b\in\mathbb{Z}\}$. The cosets of $R/(n)=\{a+bi:0\le a< n,0\le b< n\}$. There are n^2 such cosets.

Theorem 6. If $I \neq (0)$, $I = (\alpha)$, then the index of I in R denoted by #(R/I) is equal to $\delta(\alpha)$, which is exactly how it works for the integers as well.

Proof. We write $\alpha = re^{i\theta}$. Now we know that $\delta(\alpha) = r^2$. We want to find $\alpha \mathbb{Z}[i] = \alpha \mathbb{Z} + i\beta \mathbb{Z}$. Notice that what we've done is to rotate the lattice by an angle θ , and scale the lattice by r. The index of a sublattice in a lattice is the square of the scaling factor.

The size of a basic parallelogram is 1. On scaling, we get have area r^2 . Each element in the fundamental lattice is a coset, because after this the lattice repeats.

Every Gaussian integer can be written as a unique factorization into primes upto the units, since it's a UFD. The primes are elements such that the ideal (p) is maximal with respect to the principal ideal. But in this ring, all ideals are principal ideals. Hence, (p) must be a maximal ideal. That is. Z[i]/(p) must be a finite field. The problem is that we don't know what the units are, and we don't know what the primes are.

1.5 Units of the $\mathbb{Z}[i]$

 $\delta: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}. \quad \alpha \mapsto \alpha \bar{\alpha}.$ This cannot be a ring homomorphism because it is not additive. A different way of looking at it is that the image $\mathbb{Z}_{\geq 0}$ is not a group, so it can't be a ring homomorphism. However, it is multiplicative: $\delta(\alpha \cdot \beta) = \delta(\alpha)\delta(\beta)$. This is thanks to complex multiplication. With that note done, let's begin chipping away at the units.

Theorem 7. (1) α is a unit if and only if (2) $\delta(\alpha) = 1$.

Proof. We first show $(2)\delta(\alpha) = 1 \implies (1)$ α is a unit. Assume that $\delta(\alpha) = 1$. Hence, $|\alpha|^2 = 1$. So, it can be written as $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. The only such numbers with $\cos(\theta)$, $\sin(\theta) \in \mathbb{Z}$ are $\pm 1, \pm i$. These are all units.

Proof. We wish to show (1) α is a unit \Longrightarrow (2) $\delta(\alpha) = 1$, Since α is a unit, there exists some element β such that $\alpha\beta = 1$. Now apply δ on both sides:

$$\delta(\alpha\beta) = \delta(1)$$
$$\delta(\alpha)\delta(\beta) = 1$$

Since $\delta(\alpha), \delta(\beta) \in \mathbb{Z}_{\geq 0}$ whose product is 1, we must have that $\delta(\alpha) = \delta(\beta) = 1$.

Proof. A more complicated version of (1) α is a unit \Longrightarrow (2) $\delta(\alpha) = 1$. Since α is a unit, we know that $1 \in (\alpha)$ since $\alpha \times \alpha^{-1} \in (\alpha)$ as (α) is closed under multiplication. However, if $1 \in (\alpha)$, then every number is in the ring, since $z \cdot 1 \in (\alpha)$. Formally:

$$\forall z \in Z[i], \forall i \in (\alpha), zi \in (\alpha)$$
pick $z = \alpha^{-1}, i = \alpha$:
$$\alpha^{-1} \cdot \alpha = 1 \in (\alpha)$$
pick z as an arbitrary $z_0 \in Z[i]$, and $i = 1$:
$$z_0 \cdot 1 = z_0 \in (\alpha)$$

$$R = (\alpha)$$

Therefore, $(\alpha) = Z[i]$. Now, we calculate $\delta(\alpha)$:

$$\delta(\alpha) = \#(R/(\alpha)) = \#(R/R) = 1$$

We now know the unit group of the ring. $Z[i]^{\times} = \{1, i, i^2, i^3\}$ which has order 4 in $\mathbb{Z}[i]$.

1.6 Primes of $\mathbb{Z}[i]$

We will use the letter π to denote a prime. We know that we need $\mathbb{Z}[i]/(\pi)$ is a finite field. Every finite field has order p^n for some prime $p \in \mathbb{Z}$ and $n \geq 1$. In our case, we claim that the dimension $(n = 1 \vee n = 2)$.

Theorem 8. Consider the quotient $F = \mathbb{Z}[i]/(\pi)$. This must be finite since it has finite order $\delta(pi)$, and is a field since π is prime. We claim that this finite field F of characteristic p with p^n elements has **size** p^1 **or** p^2 . That is, it is a vector space of dimension 1 or 2 over $\mathbb{Z}/p\mathbb{Z}$ but no larger.

Proof. Let $F = \mathbb{Z}[i]/(\pi)$ have characteristic p, and let $\phi : \mathbb{Z}[i] \to \mathbb{Z}[i]/(\pi)$ be the canonical map $\phi(z) \equiv z + \pi$. Now, we know that $p \in \mathbb{Z}[i]$, and also that $\phi(p) = 0$ since F is char. p. Therefore, $p \in \mathbb{Z}[i]/(\pi)$. This tells us that there is an inclusion of ideals $(p) \subseteq (\pi) \subsetneq \mathbb{Z}[i]$. Hence, $\#(Z[i] : (\pi)) \le \#(Z[i] : (p))$ intuitively, on squashing (p), we squash less elements than squashing (π) . Hence, the number of elements in the quotient of (π) is upper-bounded by number of elements in the quotient in (p). Now recall that $\#(Z[i] : (p)) = \delta(p) = p^2$. Hence:

$$|F| = p^n \#(Z[i] : (\pi)) \le \#(Z[i] : (p)) = \delta(p) = p^2$$

 $|F| = p^n \le p^2 \implies |F| = p^1 \lor |F| = p^2$

Hence proved.

This is where number theory starts. We have two cases.

Theorem 9. If $R/(\pi)$ has order p^2 . Then $(\pi) = (p)$

Proof. We argue by ideal-size-containment. Since

$$(p) \subset (\pi) \subset \mathbb{Z}[i]$$

If $\#(\mathbb{Z}[i]:(\pi))=p^2$ and $\#(\mathbb{Z}[i]:p)=\delta(p)=p^2$, then we know that $\#(\mathbb{Z}[i]:p)=\#(\mathbb{Z}[i]:(\pi))\times\#((\pi):p)$, or $p^2=p^2\cdot((\pi):p)$. This means that $((\pi):p)=1$ or $(\pi)=(p)$. Hence, an ideal that's generated by a prime p in \mathbb{Z} continues to be prime in $\mathbb{Z}[i]$.

Theorem 10. If $R/(\pi)$ has order p, then TODO fill in structure!

Proof. In this case, $\mathbb{Z}[i]/(p)$ is not a field, so there are non-trivial ideal (π) between (p) and $\mathbb{Z}[i]$, such that $Z[i]/(\pi) \simeq \mathbb{Z}/p\mathbb{Z}$ (since it's a field of order p).

To each Gaussian prime π we can associate a rational prime p as the characteristic of the field $\mathbb{Z}[i]/(\pi)$. We now try to make explicit the relationship between π , p, and the order of the field $\mathbb{Z}[i]/(\pi)$. Really, we should study the finite ring R/(p). If it's a field, we are done. If it continues to be a ring, then there are ideals (pi) in it that generate fields.

1.7 The ring Z[i]/(p)

We study $\mathbb{Z}[i]/(p)$. We write:

$$\mathbb{Z}[i]/(p) = (\mathbb{Z}[x]/(x^2+1))/(p)$$

$$= \mathbb{Z}[x]/(x^2+1,p)$$

$$= \mathbb{Z}[x]/(p,x^2+1)$$

$$= (\mathbb{Z}[x]/(p))/(x^2+1)$$

$$= \mathbb{Z}/p\mathbb{Z}[x]/(x^2+1)$$

The quotient ring of $\mathbb{Z}/p\mathbb{Z}[x]/(x^2+1)$ is a field if (x^2+1) to be an irreducible over $\mathbb{Z}/p\mathbb{Z}$. (TODO: link theorem). For it to be irreducible over $\mathbb{Z}/p\mathbb{Z}$, we need x^2+1 to not have roots over $\mathbb{Z}/p\mathbb{Z}$. That is, we need $x^2\equiv (-1)\mod p$ to have **no solutions**.

Example 11. Over p=2, we can write $x^2+1\equiv (x+1)^2\mod 2$. It has a repeated root x=1. In this case, there is a unique prime $\pi=1+i$ with $(2)\subset (\pi)\subset Z[i]$

Theorem 12. If $p \equiv 3 \mod 4$, then $x^2 + 1$ is irreducible modulo p, and $\mathbb{Z}[i]/(p)$ is a field.

Proof. If $p \equiv 3 \mod 4$, then:

$$|\mathbb{Z}/p\mathbb{Z}^{\times}| = p - 1 = (4k + 3) - 1 = 4k + 2 = 2(2k + 1) = 2 \cdot \text{odd}$$

Let r be a root of $x^2 + 1$ in $\mathbb{Z}/p\mathbb{Z}$.

- 1. Since $r \neq 0$, r is invertible in $\mathbb{Z}/p\mathbb{Z}$ ($\mathbb{Z}/p\mathbb{Z}$ is a field). So $r \in \mathbb{Z}/p\mathbb{Z}^{\times}$.
- 2. $r^2 + 1 = 0 \implies r^2 = -1$.
- 3. r has order 4: $r^4 = (r^2)^2 = (-1)^2 = 1$.
- 4. $\mathbb{Z}/p\mathbb{Z}^{\times}$ has no elements of order 4, since the order of an element must divide the order of the group, but $|\mathbb{Z}/p\mathbb{Z}^{\times}| = 2 \cdot \text{odd}$, and hence is not divisible by 4.

5. Hence, $r \notin \mathbb{Z}/p\mathbb{Z}^{\times}$. Contradiction with (1).

Hence, there is no root r of $x^2 + 1$.

7

Theorem 13. If $p \equiv 1 \mod 4$, then $x^2 + 1$ factors as (x - a)(x + a), where $a^2 \equiv (-1) \mod p$.

Proof.

$$|Z/pZ|^{\times} = p - 1 = 4k + 1 - 1 = 4k = 2^n$$
 where $n \ge 2$

Hence the Sylow-2 subgroup of $|Z/pZ|^{\times}$ has order 2^n (where $n \geq 2$). We claim that the only elements of order 2 is ± 1 . Let us assume we have an element of order 2. This means that $a^2 = 1$. Hence $a^2 - 1 = 0$, or $p|a^2 - 1$. Hence, $p|(a^2 - 1)(a^2 + 1)$. Since p is prime, p has to divide either $(a^2 - 1)$ or $(a^2 + 1)$. Hence $a^2 = \pm 1$.

Now that we know this, we need more elements in |Z/pZ| since it has order 2^n but we have only found 2 elements of order 2. So the other elements must have order 4 or larger. We can always take powers of such an element to create an element of order 4.

Spelling out the details, if an element $r \in \mathbb{Z}/p\mathbb{Z}^{\times}$ has order $4 \cdot m$, then $r^{4m} = 1$. So $(r^m)^4 = 1$. r^m is the element of order 4 we are looking for.

Consider $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} = \frac{\pi}{4}$. We will show that this is a theorem about Gaussian numbers.

Chapter 2

Atiyah MacDonald, Ch1 exercises

2.1 Q11

 $2x = x + x = (x + x)^2 = x^2 + 2x + x^2 = x + 2x + x = 2 \cdot 2x$. This gives us the equation $2x = 2 \cdot (2x)$, and hence 2x = 0.

2.2 Q15

Let X be the set of prime ideals of the ring A. We will denote elements of X as x, and when thinking of them as ideals, we will write them as \mathfrak{p}_x , though they are the same as sets $(x = \mathfrak{p}_x)$.

Let V(E) be the set of all points in X that contain E. That is, $V(E) = \{\mathfrak{p}_x \in X : E \subseteq \mathfrak{p}_x\}$. We need to show:

2.2.1 If a is generated by E, then V(E) = V(a)

 $V(E) = \{\mathfrak{p}_x \in X : E \subseteq \mathfrak{p}_x\} \ V(\mathfrak{a}) = \{\mathfrak{p}_x \in X : \mathfrak{a} \subseteq \mathfrak{p}_x\}.$ The idea is to exploit that since we are collecting ideals when building V(E), and ideals are closed under inclusion. if $e_1 \in \mathfrak{p}_x, e_2 \in \mathfrak{p}_x$, then all combinations $a_1e_1 + a_2e_2 \in \mathfrak{p}_x$. On the other hand, clearly the generated ideal will contain all elements of the original generating set. Hence, the points of x that we collect will be the same either way.

More geometrically, recall that for every (subset of A/polynomial) E, we let V(E) to be the points over which E vanishes. That is, $x \in V(E) \iff E \xrightarrow{\mathfrak{p}_x} 0$, where $E \xrightarrow{frakp_x} \cdot$ is rewriting E using the fact that every element in \mathfrak{p}_x is zero.

Now, notice that if we have that E rewrites to zero, then all elements in the ideal generated by E also rewrite to zero, since $a_1e_1 + a_2e_2 \xrightarrow{\mathfrak{p}_x} a_10 + a_20 = 0$.

Similarly, if the ideal generated by E rewrites to zero, then so does E, because E is a subset of the ideal generated by E.

2.2.2 If \mathfrak{a} is generated by E, then $V(\mathfrak{a}) = V(radical(\mathfrak{a}))$

Recall that the radical of an ideal is defined as $radical(\mathfrak{a}) \equiv \{a \in A : a^n \in \mathfrak{a}\}$. X consists of prime ideals. Prime ideals contain the radicals of all of their elements. Recall that if $a^n \in \mathfrak{p}$ where \mathfrak{p} is prime, then $a \cdot a^{n-1} \in \mathfrak{p}$, hence $a \in \mathfrak{p} \vee a^{n-1} \in \mathfrak{p}$ by definition of prime ideal. Induction on n completes the proof. Therefore, the additional elements we add when we consider $radical(\mathfrak{a})$ don't matter; if $a \stackrel{\mathfrak{p}}{=} 0$, then $a \in \mathfrak{p}$, $radical(a) \subseteq \mathfrak{p}$, so $radical(\mathfrak{a}) \stackrel{\mathfrak{p}}{=} 0$.

2.3 Q17

For each $f \in A$, We denote $X_f \equiv V(f)^{\complement}$ where we have X = Spec(A). We first collect some information about these X_f and how to psychologically think of them. First, recall that V(f) will contain all the points $x \in X$ such that f vanishes over the point x: $f \xrightarrow{\mathfrak{p}_x} 0$. Hence, the complement X_f will contain all those point $x' \in X$ such that f does not vanish over x': $f \xrightarrow{\mathfrak{p}_{x'}} \neq 0$. So we are to imagine X_f as containing those points x' over which f does not vanish.

We will first show that we can union and intersect these X_f , and we will then show how that these X_f form an open base of the Zariski topology.

2.3.1 $X_f \cap X_g = X_{fg}$

 $X_f \cap X_g$ contains all the points in X where neither f nor g vanish. If neither f nor g vanish, then fg does not vanish. Conversely, if fg does not vanish at x, since the point x is prime, neither f nor g vanish over x (elements that do not belong to the prime ideal are a multiplicative subset: $xy \notin \mathfrak{p} \implies x \notin \mathfrak{p} \land y \notin \mathfrak{p}$).

Hence, the set where f and g do not both vanish, $X_f \cap X_g$ is equal to the set where fg does not vanish.

2.3.2 Incorrect conjecture: $X_f \cup X_g = X_{f+g}$

 $X_f \cup X_g$ contais all the points in X where either f or g do not vanish. But that does not mean that f+g has to not vanish. For example, let the the ring be $\mathbb{R}[X]$, and let $f=x^2+1$, $g=-x^2-1$. Both of these do not vanish over all of \mathbb{R} , and yet f+g=0 which vanishes everywhere. So it's not true that $X_f \cup X_g = X_{f+g}$ because addition can interfere with non-vanishing.

2.3.3 $X_f = \emptyset \iff f$ is nilpotent

(\iff): Let f be nilpotent. We want to show that $X_f = \emptyset$. Recall that $X_f = \{x \in X : f \xrightarrow{\mathfrak{p}_x} \neq 0\}$. If f is nilpotent, then f belongs to every prime

2.3. Q17 11

ideal: $\forall x \in X, f \in \mathfrak{p}_x$. Thus f vanishes on all prime ideals: $\forall x \in X, f \xrightarrow{\mathfrak{p}_x} = 0$. Hence, X_f , which contains prime ideals x where f does not vanish, is empty. (\Longrightarrow): Let $X_f = \emptyset$. We wish to show that f is nilpotent. This means that $\forall x \in X, f \in \mathfrak{p}_x$. But recall that the intersection of all prime ideals in a ring is the nilradical. Hence f is a nilpotent. We recollect the proof that the intersection of all prime ideals is the nilradical. **TODO!**

2.3.4 the sets X_f form a basis (base) of open sets for the Zariski topology