Optimization of IA algorithms applying high-performance computing techniques

Optimización de algoritmos de IA aplicando técnicas enfocadas en cómputo de alto rendimiento

TRABAJO DE FIN DE GRADO

DANIEL PIZARRO GALLEGO

Directores:
Alberto Núñez Covarrubias

Facultad de Informática Universidad Complutense de Madrid

14 de mayo del 2024

AUTORIZACIÓN PARA LA DIFUSIÓN DEL TRABAJO FIN DE GRADO Y SU DEPÓSITO EN EL REPOSITORIO INSTITUCIONAL E-PRINTS COMPLUTENSE

Los abajo firmantes, alumno/s y tutor/es del Trabajo Fin de Grado (TFG) en el Grado en NOM-BRE DEL GRADO REALIZADO de la Facultad de NOMBRE DE LA FACULTAD, autorizan a la Universidad Complutense de Madrid (UCM) a difundir y utilizar con fines académicos, no comerciales y mencionando expresamente a su autor el Trabajo Fin de Grado (TFG) cuyos datos se detallan a continuación. Así mismo autorizan a la Universidad Complutense de Madrid a que sea depositado en acceso abierto en el repositorio institucional con el objeto de incrementar la difusión, uso e impacto del TFG en Internet y garantizar su preservación y acceso a largo plazo.

Periodo de embargo (opcional):	
\Box 6 meses	
\square 12 meses	
Título del TFG:	
Curso académico: 20xx/20xx	
Nombre del Alumno/s:	
Tutor/es del TFG y departamento al que pertenece:	
En Madrid, a 7 de mayo de 2024	4
Firma del alumno	Firma del director/es

Dedicado a quien utilice esta plantilla.

 $To\ whomever\ who\ uses\ this\ template.$

Agradecimientos

Agradecer a...

Resumen

El trabajo que se presenta, se enfoca en la optimización de algoritmos de Inteligencia Artificial (IA). Mediante el uso de MPI (Message Passing Interface), una biblioteca estándar desarrollada para el cómputo de alto rendimiento. El objetivo principal, reducir el tiempo de ejecución de algoritmos de IA, mediante paralelización usando memoria distribuida. Es una tarea muy importante debido al alto costo temporal y de recursos que implica entrenar o ejecutar estos modelos.

Comenzamos con una explicación de los fundamentos teóricos de los algoritmos que se van a implementar, así como explicar el funcionamiento de la biblioteca MPI. Una vez puesto en contexto, se desarrollan en profundidad las estrategias implementadas para mejorar los algoritmos. Y para finalizar se ha realizado una fase de experimentación para analizar las mejoras desarrolladas a lo largo del proyecto. Esta evaluación incluye la ejecución de las mejoras en un superordenador con más de 1000 núcleos.

Palabras clave: IA, aprendizaje automático, MPI, speedup, memoria distribuida, redes neuronales, algoritmos evolutivos, clustering.

Abstract

The work presented focuses on the optimization of Artificial Intelligence (AI) algorithms. By using MPI (Message Passing Interface), a standard library developed for high-performance computing. The main objective, reduce the execution time of AI algorithms, through parallelization using distributed memory. It is a crucial task due to the high time and resource cost involved in training or running these models.

We initiate develving with an explanation of the theoretical foundations of the algorithms that will be implemented. Moreover, clarifying the functioning of the MPI library. Once put in context, the strategies employed to enhance the algorithms are thoroughly elaborated upon. And finally, an experimentation phase has been carried out to analyze the improvements developed throughout the project. This evaluation includes running the algorithms on a supercomputer with over 1000 cores.

Keywords: IA, machine learning, MPI, speedup, distributed memory, neural network, Evolutionary algorithm, clustering.

Índice general \mathbf{I}

\mathbf{A}_{i}	gradecimientos	Ι
\mathbf{R}	esumen	II
\mathbf{A}	bstract	III
Ín	dice de figuras	V
1.	Introducción 1.1. Introduccion LaTeX TODO QUITAR 1.2. Definición y alcance del proyecto 1.3. Motivación 1.4. Objetivo 1.5. Estructura del documento	1 1 2 3 4 5
2.	Contextualización 2.1. MPI	6 7 8 9 10 11
3.	Diseño e Implementaciones 3.1. Ejemplos básicos MPI 3.2. Algoritmos de Clustering 3.2.1. Jerárquico Aglomerativo 3.2.2. K-Medias 3.2.3. K-Vecinos más cercanos (KNN) 3.3. Aprendizaje por refuerzo 3.4. Algoritmos Evolutivos 3.5. Redes Neuronales	12 13 14 14 14 14 15 16 17
4.	Estudio empírico	18
5.	Conclusiones y trabajo futuro	19
Bi	ibliography	20

Índice de figuras

1.1.	Sample figure												 							2

Capítulo 1

Introducción

En este capítulo se presenta una perspectiva general del contexto en el que se ha llevado a cabo el proyecto. Además de los desafíos enfrentados durante su desarrollo para alcanzar las contribuciones mencionadas, se detallan cada uno de los propósitos perseguidos en él.

1.1. Introduccion LaTeX TODO QUITAR

The document is divided into chapters, sections, and subsections.

Some important references are [1-3].

To add paragraphs in the document, one line break is not enough, two line breaks are needed.

An itemized list:

- An item.
- Another item.
- Final item.

An enumerated list:

- 1. First item.
- 2. Second item.
- 3. Third item.

A figure with an image is presented in Figura 1.1. Note that it floats away and latex places it where convenient.

Tables work in the same way, as seen in Tabla 1.1

```
# Prueba
print("Hola-Mundo\n")
```

-_- % # @ º

Row	English	Español
1	One	Uno
2	Two	Dos

Tabla 1.1: Sample table

Figura 1.1: Sample figure

1.2. Definición y alcance del proyecto

El desarrollo de las Inteligencias Artificiales en nuestra sociedad ha sido un fenómeno de gran relevancia, además de popular, en los últimos años. Estas tecnologías han llegado para quedarse. Están mejorando nuestra calidad de vida, desde la automatización de tareas hasta la asistencia virtual, estas IAs desempeñan un papel cada vez más importante en nuestro día a día. Con el advenimiento del Internet de alta velocidad y la proliferación de datos, las empresas tecnológicas se enfrentan a la necesidad creciente de desarrollar servicios de alta calidad en un mercado muy competitivo. Se invierte mucho dinero y tiempo en mejorar y diseñar algoritmos, para implementar Inteligencias Artificiales para el acceso público

TODO...

1.3. Motivación

Actualmente hay muchas implementaciones de algoritmos de IA. Scikit learn es una biblioteca de python perfecta para probar cualquier técnica. Secuencialmente está perfeccionado y demuestra un alto desempeño computacional, pero tiene sus limitaciones.

 $\mathrm{TODO}...$

1.4. Objetivo

El objetivo principal de este trabajo es paralelizar varios algoritmos de IA, desarrollando varias implementaciones que reduzcan el tiempo de ejecución. Además de evaluar dichas mejoras para optimizarlas lo máximo posible.

1.5. Estructura del documento

El resto de este documento está organizado en los siguientes capítulos:

- Capítulo 2, Contextualización. Proporcionar información de cada algoritmo estudiado, para la correcta lectura del trabajo.
- Capítulo 3, Diseño e implementaciones. Comenzando con unos ejemplos básicos fuera del ámbito de la inteligencia artificial, seguido de las mejoras desarrolladas para las diferentes técnicas abordadas.
- Capítulo 4, Estudio empírico. Presenta el estudio realizado, el cual consiste en medir los tiempos de las mejoras así como las implementaciones secuenciales, para poder medir el speed-up y realizar comparaciones significativas.
- Capítulo 5, Conclusiones y trabajo a futuro.

Capítulo 2

Contextualización

En este capítulo se presenta una breve descripción de los algoritmos de Inteligencia Artificial que se van a profundizar a lo largo del proyecto. Así como los usos y características.

El objetivo de este capítulo es explicar rápidamente los algoritmos, y facilitar la lectura de los capítulos posteriores. Que desarrollen las mejoras realizadas y resultados obtenidos.

2.1. MPI

Message Passing Interface[8] (MPI) es un estándar para una biblioteca de paso de mensajes, diseñado para funcionar en una amplia variedad de arquitecturas informáticas paralelas. Permite la comunicación entre procesos, mandando y recibiendo mensajes de todo tipo. Comúnmente usado en informática de alto rendimiento[9] (HPC) y entornos informáticos paralelos, para desarrollar aplicaciones paralelas escalables y eficientes.

TODO...

2.2. Aprendizaje por Refuerzo

Reinforcement Learning (RL), en español Aprendizaje por Refuerzo. Es un tipo de aprendizaje automático donde el agente aprende en base a las decisiones tomadas al interactuar con el entorno. El agente aprende a llegar a una meta o maximizar un cúmulo de recompensas obtenidas al realizar un determinado número de acciones consecutivas, y observar las posibles recompensas al realizar cada acción en los estados del entorno.

TODO...

2.3. Aprendizaje No-Supervisado

Los métodos no supervisados (unsupervised methods) son algoritmos de aprendizaje automático que basan su proceso en un entrenamiento con datos sin etiquetar. Es decir, a priori no se conoce ningún valor objetivo, ya sea categórico o numérico.

 $\mathrm{TODO}...$

2.4. Aprendizaje Supervisado

Al contrario que el apartado anterior, este tipo de aprendizaje automático, es entrenado con un dataset categorizado con su salida correcta. El algoritmo aprende de este conjunto, para hacer predicciones sobre unos datos desconocidos.

TODO...

2.5. Algoritmos Evolutiva

La programación evolutiva es una técnica de optimización inspirada en la teoría de la evolución biológica. Se basa en el concepto de selección natural y evolución de las poblaciones para encontrar soluciones a problemas complejos.

 $\mathrm{TODO}...$

Capítulo 3

Diseño e Implementaciones

El objetivo de este proyecto es mejorar los algoritmos de IA mencionados anteriormente. En este capítulo se presentan los diseños e implementaciones desarrolladas a lo largo del desarrollo del mismo.

3.1. Ejemplos básicos MPI

3.2. Algoritmos de Clustering

3.2.1. Jerárquico Aglomerativo

Este algoritmo usa una matriz para calcular las agrupaciones. Como es una matriz simétrica, podemos reducir la complejidad espacial usando solo el triángulo superior.

3.2.2. K-Medias

De las técnicas de clustering de aprendizaje no supervisado, en la cual tenemos una población inicial de individuos sin clasificar, y un valor K sujeto a una asignación flexible según nuestros criterios. Al contrario al algoritmo anterior no se usa una matriz, y solo se usa distancia por centroides.

3.2.3. K-Vecinos más cercanos (KNN)

Tenemos un valor K asignado de manera arbitraria como en el algoritmo de K-Medias. Esta técnica de clustering pertenece al aprendizaje supervisado, tenemos una población de individuos categorizados con las etiquetas de asignacion de cluster. Una población a predecir.

3.3. Aprendizaje por refuerzo

El algoritmo de Q-Learing actualiza iterativamente las estimaciones de calidad de las acciones permitidas en el entorno de desarrollo. Estos valores se almacenan en la Q-Table, representado como una matriz en la que cada fila es un estado, y las columnas son las acciones disponibles.

$3.4. \quad \textbf{Algoritmos Evolutivos}$

Los algoritmos evolutivos son sencillos de paralelizar, debido a que son procesos que se repiten muchas veces, y se ejecutan en muchos individuos.

3.5. Redes Neuronales

Esta poderosa herramienta de aprendizaje supervisado, está diseñada para reconocer patrones complejos y realizar diversas tareas. Aprende con un proceso iterativo de entrenamiento, ajustando las conexiones entre neuronas. Este proceso secuencial es complejo de paralelizar. Al finalizar una predicción el modelo se tiene que actualizar propagando hacia atrás.

Capítulo 4

Estudio empírico

Después de implementar y diseñar los algoritmos y mejoras utilizando MPI, llevamos a cabo un análisis exhaustivo para evaluar los tiempos de ejecución, realizar pruebas, contrastar resultados y extraer conclusiones.

Ordenaciones

De las ordenaciones básicas con coste cuadrático $(\mathbf{O}(\mathbf{N}^2))$ comentadas anteriormente, SelectionSort es la que mejores resultados obtiene.

```
def sequential_sort(a):
def selection_sort(a):
   n = len(a)
                                                     INF=sys.maxsize
   minE = 0
                                                     n = len(a)
                                                     b=[(INF) for i in range(n)]
   pos = 0
   for i in range (n-1):
                                                      for i in range(n):
       minE = a[i]
                                                        cont=0
       pos = i
                                                        val=a[i]
       \quad \textbf{for} \quad j \quad \textbf{in} \quad \textbf{range} \left( \text{ } i+1, \text{ } n \right):
                                                        for i in range(n):
           if minE > a[j]:
                                                           if a[i] < val: cont+=1
               minE = a[j]
                                                             while b[cont]!=INF:
               pos = j
                                                                cont+=1
                                                             b[cont]=val
   tmp = a[i]
   a[i] = a[pos]
   a[pos] = tmp
```

Capítulo 5

Conclusiones y trabajo futuro

En este trabajo se han desarrollado varias mejoras en distintos algoritmos de IA, a través de la biblioteca estándar de paso de mensajes MPI. Los desafíos encontrados durante su desarrollo resultaron ser más complejos de lo que se había previsto inicialmente. Los problemas de configuración de la biblioteca MPI en windows, y adaptar la gestión de bibliotecas de Python usando Anaconda, fueron unos problemas completamente imprevistos. El desconocimiento general de MPI, se debe a la ausencia de asignaturas específicas de programación distribuidas en el grado de Ingeniería Informática, únicamente ofreciendo fundamentos teóricos, sin profundizar en la práctica. La escasa implementación práctica en las asignaturas de IA, en el itinerario Tecnología Específica de Computación del tercer curso ha derivado en tener que invertir más tiempo en investigar e implementar los algoritmos, proceso que he encontrado satisfactorio. La teoría vista en clase fue muy útil para el desarrollo del trabajo, pero usar exclusivamente la librería sklearn, de scikit-learn, provocó un desconocimiento de código para implementar estos algoritmos.

Una vez finalizadas las implementaciones, se ha llevado a cabo una fase de experimentación. Consistiendo en analizar los tiempos de ejecución, variando todos los parámetros disponibles, además de variar los conjuntos de poblaciones para cada tipo de algoritmo. Las ejecuciones de las pruebas requieren un coste computacional alto, además de mucho tiempo para finalizar. Para pruebas pequeñas no se consiguen apreciar reducciones significativas. Normalmente se pierde tiempo al paralelizar. Pero conforme aumentan los parámetros introducidos, mejora notablemente el speedup de las mejoras.

Cabe destacar TODO

Como trabajo a futuro se propone investigar otros algoritmos de las técnicas desarrolladas. Además de investigar y mejorar otras técnicas de IA, como puede ser el procesamiento del lenguaje natural.

Bibliografía

- [1] Albert Einstein. «Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]». En: Annalen der Physik 322.10 (1905), págs. 891-921.
- [2] Michel Goossens, Frank Mittelbach y Alexander Samarin. *The LATEX Companion*. Reading, Massachusetts: Addison-Wesley, 1993.
- [3] Donald Knuth. Knuth: Computers and Typesetting. URL: http://www-cs-faculty.stanford.edu/\~{}uno/abcde.html.