Todays Content

LPS: longest Prefin, which is suffin, neglect complete string

LPS[]: LPs value of all substrings starting at inden o

// Calculating [ps[]=

Obsi: Given 8 of len N q assume Lps [i] = 5

$$S_N:$$
 S_0 S_1 S_2 S_3 S_4 S_5 S_5

: Lps[i] = 5

11 Gieneralize:

Say (ps[i] = n

: (ps[i-i] 7= n-1

: Lps[i-1] > = Lps[i]-1

: Lps[i-1] +1 > = (ps[i]

: [ps[i] <= [ps[i-1]+1

of (ps[i-1] = a, (ps[i] r = a+1

obs: lps Value, if increasing it can at man increase by 1.

11 Generalize:

$$S_{N} = \begin{bmatrix} S_{0} & S_{1} & S_{2} & ... & S_{N} & S_{N} & ... & S_{N} & S_{N} & ... & S_{N} & S_{N} & ... & ... & S_{N} & ...$$

Step:3

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

$$S = \begin{bmatrix} C & C & Y & C & A &$$

$$1 = 23$$
, $1 = 10$


```
PATE (reatelps (String s) &
```

```
int n = S. Sizec)

int lps(n)

lps(o) = 0;

i=1; ixn; i+1) {

We need calculate ups[i]?

int n = lps[i-i]

While (S[i]! = s[n]) {, s[i]! = s[o]}

if (n == 0) { n=-1, breaky

n = lps[n-i] // if n == 0 avord update

lps[i] = n+1

}

Method (se[i])
```

return (ps 1)

Obs: If Ups value increases, it will increase by 1, Only literation

1=6, n = Lps[i-i] = Lps[s] = 5

7	S[i] = = S[n]				
5	5[6]==5(5)	*	n= lps[n-1]	n= (ps(4)=	y
4	ST6) = = S TY]	*	n= lps[n-1]	n= (ps(3)=	
3	S[6] == S [3]	х	n = lps[n-1]		
2	56) == 5 [2]		n= lps[n-i]		
ſ	STL) == S[1)		n= Lps[n-1]		
0	S[6] == ST0]	,),	7=-1 bm		

Perrod of Shing

Given S, period is defined a minimum n such that

Ly for a given strong, if there no matchang Nitself is period?

$$N=1$$
? $S[o] = S[i] \times N=y$:

 $S_0 = S_y - S_0$
 $S_1 = S_2 - S_0$
 $S_2 = S_0 - S_0$
 $S_2 = S_0 - S_0$
 $S_3 - S_0 - S_0$
 $S_4 = S_0 - S_0$
 $S_1 = S_0 - S_0$
 $S_2 = S_0 - S_0$
 $S_3 - S_0 - S_0$

3: STO] = ST3] nocomparton

9n2: a b c a b ans=3 1: s[o] == s[i] *

Say
$$S_{N}$$
: perfod = n

So $S_{1} S_{2} S_{3} - S_{N} S_{N-1} S_$

- linkedlist basius

Doubts:

Doubts:

A: abadec] Turand B: abel | Tay =

S=0, C=0, hs1, h12: film

while (ex=N) {

if (hs, contain all trys house) have any = Man (ans, e-s)

remove Sitis from how, s=sq1

elas

if (e == N) & breaky

and sites in hom;

l = cost

return ans