Lecture 8. Random variables and random vectors. Joint and marginal distributions. Expectation and variance.

YULIA R. GEL

CS/SE/STAT 3341 Probability and Statistics in Computer Science and Software Engineering

February 7, 2017

1 Distribution Functions of a Random variable (see lecture 7)

2 Expectation and Variance of a Discrete Random Variable

3 Extensions to a Multivariate Case: Random Vectors

Motivation: A wheel of Fortune

Suppose you spin a wheel of fortune many times. At each spin, one of the numbers m_1, m_2, \ldots, m_n comes up with corresponding probability p_1, p_2, \ldots, p_n , and this is your monetary reward from that spin.

What is the amount of money that you "expect" to get "per spin"?

The terms "expect" and "per spin" are a little ambiguous, but here is a reasonable interpretation.

Motivation: A wheel of Fortune

Suppose that you spin the wheel k times, and that k_i is the number of times that the outcome is m_i . Then, the total amount received is $m_1k_1 + m_2k_2 + \ldots + m_nk_n$. The amount received per spin is

$$M=\frac{m_1k_1+m_2k_2+\ldots+m_nk_n}{k}.$$

If the number of spins k is very large, and if we are willing to interpret probabilities as relative frequencies, it is reasonable to anticipate that m_i comes up a fraction of times that is roughly equal to p_i :

$$p_i \approx \frac{k_i}{k}, \quad i = 1, \ldots, n.$$

Thus, the amount of money per spin that you expect to receive is

$$M = \frac{m_1 k_1 + m_2 k_2 + \ldots + m_n k_n}{k} \approx m_1 p_1 + m_2 p_2 + \ldots + m_n p_n.$$

Expectation: Definition

Motivated by this example, we now introduce the notion of expectation.

Definition. We define the **expected value** (also called the **expectation** or the **mean**, or **averaged value**) of a random variable X, with PMF P(x), by

$$E(X) = \sum_{x} x P(x).$$

The expected value is often denoted by μ .

Examples: Coins

Consider two independent coin tosses, each with a 0.75 probability of a head, and let X be the number of heads obtained. Its PMF is

Then the PMF of X is:

$$P(x) = \begin{cases} 0.25 \times 0.25, & \text{if } x = 0\\ 0.25 \times 0.75 + 0.75 \times 0.25, & \text{if } x = 1\\ 0.75 \times 0.75, & \text{if } x = 2 \end{cases}$$

Let us calculate its expected value:

$$\mu_X = E(X)$$
= 0 × (0.25 × 0.25) + 1 × (0.25 × 0.75 + 0.75 × 0.25)
+ 2 × (0.75 × 0.75)
= $\frac{3}{2}$.

Expectation: Properties

Let X and Y to be random variables, and a, b and c be non-random (deterministic). Then

1
$$E(aX + bY + c) = aE(X) + bE(Y) + c$$
,

② if X and Y are independent random variables, then E(XY) = E(X)E(Y).

Variance, Covariance, Standard Deviation and Correlation: Definitions

Definitions:

• Variance, denoted by var(X), is defined as the expected value of the random variable $(X - E(X))^2$, i.e.

$$var(X) = E(X - E(X))^{2}.$$

The variance provides a measure of dispersion (or spread) of X around its mean. For discrete r.v.

$$var(X) = E(X - E(X))^2 = \sum_{x} (x - E(X))^2 P(x) = \sum_{x} (x - \mu)^2 P(x).$$

Variance, Covariance, Standard Deviation and Correlation: Definitions

Definitions:

• Another measure of dispersion is the **standard deviation** of X, denoted by σ_X and defined as

$$\sigma_X = \sqrt{\operatorname{var}(X)} = \sqrt{E(X - E(X))^2}.$$

• Linear interrelation between *X* and *Y* can be summarized via **covariance**, i.e.

$$\sigma_{X,Y} = \operatorname{cov}(X,Y) = \operatorname{E}(X - \operatorname{E}(X))(Y - \operatorname{E}(Y)).$$

 However, covariance is not unit free. Instead, in practice we more often use correlation:

$$\rho = \operatorname{cor}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}.$$

Examples: Alice and STAT3341

If the weather is good, which happens with probability 0.6, Alice walks the 2 miles to class at a speed 5 miles/hr, otherwise she rides a bus at speed 30 miles/hr. What is the expected time to get to class?

Solution: Define the discrete r.v. X to take the value (2/5) hr with probability 0.6 and (2/30)hr with probability 0.4. The expected value of X

$$E(X) = 2/5 \times 0.6 + 2/30 \times 0.4 = 4/15$$
 hour.

Now, variance of X:

$$E(X - E(X))^{2} = \sum_{x} (x - E(X))^{2} P(x)$$

$$= \sum_{x} (x^{2} - 2E(X)x + E(X)^{2}) P(x)$$

$$= \sum_{x} (x^{2} P(x) - 2E(X)x P(x) + E(X)^{2} P(x))$$

$$= \sum_{x} (x^{2} P(x) - 2E(X) \sum_{x} x P(x) + E(X)^{2} \sum_{x} P(x)$$

$$= EX^{2} - 2(E(X))^{2} + E(X)^{2} = EX^{2} - (E(X))^{2}$$

$$= [(2/5)^{2} \times 0.6 + (2/30)^{2} \times 0.4] - (4/15)^{2}$$

$$= 0.02667 hours^{2}.$$

The respective standard deviation in hours rather than in hours² is $\sqrt{0.02667hr^2} = 0.1633$.

Motivation

Often, we need to consider the relationship between two or more events:

- It is cloudy and windy.
- A cat purring and being groomed.
- Getting a flu and high fever.

Joint distributions allow us to reason about the relationship between multiple events.

Definitions

- If X and Y are random variables, then the pair (X, Y) is a random vector.
- ② Distribution of (X, Y) is called a **joint distribution** of X and Y. The joint PMF of X and Y is

$$P(x,y) = \mathbf{P}\{(X,Y) = (x,y)\} = \mathbf{P}\{(X = x \cap Y = y)\}.$$

- Individual distribution of X and Y are called marginal distributions of X and Y. Marginalisation refers to the process of "removing" the inuence of one or more events from a probability.
- ① Two random variables X and Y are called **independent** if $P(x, y) = P_X(x) \times P_Y(y)$.

In information theory, corpus is a collection of text. Assume you have a corpus of a 100 words. You tabulate the words, their frequencies and probabilities in the corpus:

W	c(w)	P(w)	Χ	У
the	30	0.30	3	1
to	18	0.18	2	1
will	16	0.16	4	1
of	10	0.10	2	1
Earth	7	0.07	5	2
on	6	0.06	2	1
probe	4	0.04	5	2
some	3	0.03	4	2
Comet	3	0.03	5	2
CNN	3	0.03	3	0
CIVIN	3	0.03	3	U

We can now define the following random variables:

- X is the length of the word;
- Y is number of vowels in the word.

Examples for probability mass functions:

- $P_X(5) = P(Earth) + P(probe) + P(Comet) = 0.14;$
- $P_Y(2) = P(Earth) + P(probe) + P(some) + P(Comet) = 0.17$.

Examples for cumulative distribution functions:

- $F_X(3) = P_X(2) + P_X(3) = 0.34 + 0.33 = 0.67$;
- $F_Y(1) = P_Y(0) + P_Y(1) = 0.03 + 0.80 = 0.83$.

We can now model the relationship between word length (X and number of vowels Y.

Let
$$P(x, y) = P(X = x, Y = y)$$
.

Examples:

•
$$P(2,1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34$$
;

•
$$P(3,0) = P(CNN) = 0.03$$
;

•
$$P(4,3) = 0$$
.

Full joint distribution of (X, Y) is :

-		2	3	4	5
	0	0	0.03	0	0
у	1	0 0.34	0.30	0.16	0
	2	0	0	0.03	0.14

To calculate marginal distributions $P_X(x)$ and $P_Y(y)$, we can use the following formulas:

$$P_X(x) = \mathbf{P}\{X = x\} = \sum_y P_{X,Y}(x,y),$$

 $P_Y(y) = \mathbf{P}\{Y = y\} = \sum_x P_{X,Y}(x,y).$

Thus, we get the marginal distribution of Y, $P_Y(y)$, from the full joint distribution of (X, Y) as follows:

		2	3	4	5	$P_Y(y) = \sum_x P_{X,Y}(x,y)$
'	0	0	0.03	0	0	0.03
У	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17