CS 346 Class Notes

Mark Lindberg

Apr 18, 2016

This Time:

Chapter 11: Public-key encryption. PKE.

Definition 11-1. A PKE scheme is a set of PPT algorithms GenEncDec where

- 1. $Gen(1^n)$ produces (pk, sk). Assume pk, sk are at least n bits long, and can determine n from pk, sk.
- 2. $\mathsf{Enc}_{pk}(m)$. Randomized, yields ciphertext $c.\ m$ is drawn from the message space, which can depend on pk.
- 3. $\mathsf{Dec}_{sk}(m)$. Computes m or \bot , which indicates failure. Deterministic.

Correctness: Except for the possibility with negl probability over (pk, sk) produced by Gen, $Dec_{sk}(Enc_{pk}(m)) = m$ for all m in message space.

PKE security notions. Start with indistinguishable in the presence of an eavesdropper. (EAV-security).

Experiment: $\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$. $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$.

- 1. Run $Gen(1^n)$ to get (pk, sk).
- 2. \mathcal{A} is given pk (!) and outputs equal-length m_0, m_1 . (From the message space associated with pk.
- 3. Choose a random bit b. $c \leftarrow \mathsf{Enc}_{pk}(m_b)$. Give c to \mathcal{A} .
- 4. \mathcal{A} outputs b'. \mathcal{A} succeeds if b' = b.

Definition 11.2: Π is EAV-secure if \forall PPT adversaries \mathcal{A} ,

$$\Pr[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathtt{negl}(n).$$

This experiment is analogous to the CPA experiment in the private key setting, since \mathcal{A} can compute polynomially many encryptions, because it was given the public key pk. (It can make its own oracle.)

Proposition 11.3. If a PKE scheme satisfies definition 11.2, then it is CPA-secure.

Impossibility of perfectly secret PKE. Related to 11.1 (Also 11.2?)

Modify definition 11.2 to

- 1. Allow \mathcal{A} to take an arbitrary amount of time...
- 2. Require $\Pr[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2}$.

Proof of impossibility: Let t denote the upper bound on random bits used by Enc_{pk} on input m_0 .

 \mathcal{A} can run simulate $\mathsf{Enc}_{pk}(m_0)$ using all possible sequences of t random bits, and see if c is produced. Correctness is now guaranteed.

Insecurity of a deterministic PKE.

Theorem 11.4: No deterministic PKE scheme is secure:

It's easy to compute the c and check with no random bits...

11.2.2: Multiple Encryptions.

Definition 11.5: A PKE scheme Π has indistinguishable multiple encryptions if for all PPT \mathcal{A} ,

$$\Pr[\mathsf{PubK}^{\mathsf{LR-CPA}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Theorem 11.6: (There is a lengthy proof of this in the textbook) If a PKE scheme is CPA-secure, then it is secure with respect to definition 11.5.

Encryption of arbitrary-length messages.

Claim 11.7:

CPA-secure PKE Π for fixed length messages \to CPA-secure Π' for arbitrary length messages.

CCA-security: $\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{CCA}}(n)$. Main difference here is that \mathcal{A} gets access to a decryption oracle, except it can't call $\mathsf{Dec}_{sk}(c)$.

Definition 11.8: Π has indistinguishable encryption under a chosen-ciphertext attack if \forall PPT \mathcal{A} ,

$$\Pr[\mathsf{PubK}^{\mathsf{CCA}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathtt{negl}(n).$$

The analogue of theorem 11.6 holds!

Unfortunately, claim 11.2 does not.

Section 11.3: Hybrid encryption and the KEM/DEM paradigm.

Private vs public key encryption:

- PKE building blocks are *much* slower.
- Also, PKE has greater "expansion".
- No need for a shared key. $(O(n) \text{ vs } O(n^2))$.

KEM: Key-Encapsulation Mechanism. We'll use a PKE to implement this.

DEM: Data-Encapsulation Mechanism. We'll use private-key encryption here.

KEM=(Gen, Encaps, Decaps)

• $Gen(1^n)$ produces (pk, sk).

- Encaps_{pk}(1ⁿ) produces (c, k), where length of $k = \ell(n)$.
- Decaps_{sk}(c) produces k.

Figure 11.2 from the textbook. Whee. :P