Set Theory

Thomas Jech

September 8, 2021

Contents

1	Ord	inal Numbers	1
	1.1	Linear and Partial Ordering	1
	1.2	Well-Ordering	1
	1.3	Ordinal Numbers	3
	1.4	Induction and Recursion	4
	1.5	Ordinal Arithmetic	6
	1.6	Well-Founded Relations	8
2	Cardinal Numbers		
	2.1	Cardinality	9
	2.2	Alephs	12
	2.3	The Canonical Well-Ordering of $\alpha \times \alpha$	13
	2.4	Cofinality	13
3	Real Numbers		
	3.1	The Cardinality of the Continuum	16
4	Que	estion	16
1	O	rdinal Numbers	
1.	1 L:	inear and Partial Ordering	
D	efinit	ion 1.1. A binary relation $<$ on a set P is a partial ordering of P	'if
	1. <i>p</i>	$\not < p$ for any $p \in P$	
	2. if	p < q and $q < r$ then $p < r$	

- (P,<) is called a **partially ordered set**. A partial ordering < of P is a **linear ordering** if moreover
 - 3. p < q or p = q or q < p for all $p, q \in P$ If < is a partial ordering, then \le is also a partial ordering

if (P,<) and (Q,<) are partially ordered sets and $f:P\to Q$, then f is **order-preserving** if x< y implies f(x)< f(y). If P and Q are linearly ordered, then an order-preserving function is also called **increasing**

1.2 Well-Ordering

Definition 1.2. A linear ordering < of a set P is a **well-ordering** if every nonempty subset of P has a least element

Lemma 1.3. If (W, <) is a well-ordered set and $f: W \to W$ is an increasing function, then $f(x) \ge x$ for each $x \in W$

Proof. Assume that the set $X = \{x \in W : f(x) < x\}$ is nonempty and let z be the least element of X. If w = f(z), then f(w) < w, a contradiction \Box

Corollary 1.4. The only automorphism of a well-ordered set is the identity

Proof. By Lemma 1.3, $f(x) \ge x$ for all x, and $f^{-1}(x) \ge x$ for all x

Corollary 1.5. If two well-ordered sets W_1, W_2 are isomorphic, then the isomorphism of W_1 onto W_2 is unique

if W is a well-ordered set and $u \in W$, then $\{x \in W : x < u\}$ is an **initial** segment of W

Lemma 1.6. No well-ordered set is isomorphic to an initial segment of itself

Proof. If $ran(f) = \{x : x < u\}$, then f(u) < u, contrary to Lemma 1.3

Theorem 1.7. If W_1 and W_2 are well-ordered sets, then exactly one of the following three cases holds

- 1. W_1 is isomorphic to W_2
- 2. W_1 is isomorphic to an initial segment of W_2
- 3. W_2 is isomorphic to an initial segment of W_1

Proof. For $u \in W_i$, (i = 1, 2), let $W_i(u)$ denote the initial segment of W_i given by u. Let

$$f = \{(x, y) \in W_1 \times W_2 : W_1(x) \text{ is isomorphic to } W_2(y)\}$$

Using Lemma 1.6, f is a injective: if $f(x_1)=f(x_2)=y$, then $W_1(x_1)\cong W_2(y)\cong W_1(x_2)$, and $x_1< x_2$ or $x_2< x_1$ fail. If h is an isomorphism between $W_1(x)$ and $W_2(y)$, and x'< x, then $W_1(x')$ and $W_2(h(x'))$ are isomorphic. It follows that f is order-preserving

If $dom(f) = W_1$ and $ran(f) = W_2$, then case 1 holds

if $y_1 < y_2$ and $y_2 \in \operatorname{ran}(f)$, then $y_1 \in \operatorname{ran}(f)$. Thus if $\operatorname{ran}(f) \neq W_2$ and y_0 is the least element of $W_2 - \operatorname{ran}(f)$, we have $\operatorname{ran}(f) = W_2(y_0)$. Necessarily, $\operatorname{dom}(f) = W_1$, for otherwise we would have $(x_0, y_0) \in f$, where x_0 =the least element of $W_1 - \operatorname{dom}(f)$

if W_1 and W_2 are isomorphic, we say that they have the same **order-type**.

1.3 Ordinal Numbers

Definition 1.8. A set *T* is **transitive** if every element of *T* is a subset of *T*

Definition 1.9. A set is an **ordinal number** (an **ordinal**) if it is transitive and well-ordered by \in

Define

$$\alpha < \beta$$
 iff $\alpha \in \beta$

Lemma 1.10. 1. $0 = \emptyset$ is an ordinal

- 2. *if* α *is an ordinal and* $\beta \in \alpha$ *, then* β *is an ordinal*
- *3. if* $\alpha \neq \beta$ *are ordinals and* $\alpha \subset \beta$ *, then* $\alpha \in \beta$
- *4. if* α , β *are ordinals, then either* $\alpha \subset \beta$ *or* $\beta \subset \alpha$

Proof. 1,2 by definition

- 3. if $\alpha \subset \beta$, let γ be the least element of the set $\beta \alpha$. Since α is transitive, it follows that α is the initial segment of β given by γ : for $\eta \in \alpha$, $\eta \neq \gamma$ and $\gamma \notin \eta$, hence $\eta \in \gamma$ since ordinals are well-ordered by \in . Thus $\alpha = \{\xi \in \beta : \xi < \gamma\} = \gamma$, and so $\alpha \in \beta$.
- 4. $\alpha \cap \beta$ is an ordinal, $\alpha \cap \beta = \gamma$. We have $\gamma = \alpha$ or $\gamma = \beta$, for otherwise $\gamma \in \alpha$ and $\gamma \in \beta$, by 3. Then $\gamma \in \gamma$, which contradicts the definition of an ordinal (namely that \in is a **strict** ordering of α)

Using Lemma 1.10 one gets the followings

- 1. < is a linear ordering of the class Ord
- 2. for each α , $\alpha = \{\beta : \beta < \alpha\}$
- 3. if C is a nonempty class of ordinals, then $\bigcap C$ is an ordinal, $\bigcap C \in C$ and $\bigcap C = \inf C$

- 4. if X is a nonempty set of ordinals, then $\bigcup X$ is an ordinal, and $\bigcup X = \sup X$
- 5. for every α , $\alpha \cup \{\alpha\}$ is an ordinal and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$

We thus define $\alpha + 1 = \alpha \cup \{\alpha\}$. In view of 4, the class Ord is a proper class; otherwise consider $\sup \operatorname{Ord} + 1$

Theorem 1.11. Every well-ordered set is isomorphic to a unique ordinal number

Proof. The uniqueness follows from Lemma 1.6: suppose $\alpha \cong \beta$ and $\alpha \neq \beta$. As $\alpha \neq \beta$, either $\alpha \in \beta$ or $\beta \in \alpha$, thus α is isomorphic to an initial segment of β or vice versa. But by Lemma 1.6, we get a contradiction.

Given a well-ordered set W, define $F(x)=\alpha$ is α is isomorphic to the initial segment of W given by x. If such an α exists, then it is unique. By the Replacement Axioms, F(W) is a set. For each $x\in W$, such an α exists (otherwise consider the least x for which such an α does not exists). If γ is the least $\gamma\notin F(W)$, then $F(W)=\gamma$ and we have an isomorphism of W onto γ

0 is a limit ordinal and define $\sup \emptyset = 0$

Definition 1.12 (Natural Numbers). We denote the least nonzero limit ordinal ω (or \mathbb{N}). The ordinals less than ω are call **finite ordinals**, or **natural numbers**

1.4 Induction and Recursion

Theorem 1.13 (Transfinite Induction). *Let C be a class of ordinals and assume that*

- 1. $0 \in C$
- 2. if $\alpha \in C$, then $\alpha + 1 \in C$

3. if α is a nonzero limit ordinal and $\beta \in C$ for all $\beta < \alpha$, then $\alpha \in C$

Then C is the class of all ordinals

Proof. Otherwise, let α be the least $\alpha \notin C$ and apply 1,2 and 3.

A function whose domain is the set $\mathbb N$ is called an **(infinite) sequence** (A **sequence in** X is a function $f:\mathbb N\to X$). The standard notation for a sequence is

$$\langle a_n : n < \omega \rangle$$

A finite sequence is a function s s.t. $dom(s) = \{i : i < n\}$ for some $n \in \mathbb{N}$; then s is a sequence of length n

A **transfinite sequence** is a function whose domain is an ordinal

$$\langle a_{\xi} : \xi < \alpha \rangle$$

It is also called an α -sequence or a sequence of length α . We also say that a sequence $\langle a_{\xi} : \xi < \alpha \rangle$ is an **enumeration** of its range $\{a_{\xi} : \xi < \alpha\}$. If s is a sequence of length α , then $s^{\smallfrown}x$ or simply sx denotes the sequence of length $\alpha + 1$ that extends s and whose α th term is s:

$$s^{\hat{}}x = sx = s \cup \{(\alpha, x)\}\$$

Sometimes we call a "sequence"

$$\langle a_{\alpha} : \alpha \in \mathsf{Ord} \rangle$$

a function (a proper class) on Ord

"Definition by transfinite recursion" usually takes the following form: Given a function G (on the class of transfinite sequence), then for every θ there exists a unique θ -sequence

$$\langle a_{\alpha} : \alpha < \theta \rangle$$

s.t.

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

for every $\alpha < \theta$

Theorem 1.14 (Transfinite Recursion). Let G be a function (on V), then (1) below defines a unique function F on Ord s.t.

$$F(\alpha) = G(F \upharpoonright \alpha)$$

for each α

In other words, if we let $a_{\alpha} = F(\alpha)$, then for each α

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

(Note that we tacitly use Replacement: $F \upharpoonright \alpha$ is a set for each α)

Corollary 1.15. Let X be a set and θ an ordinal number. For every function G on the set of all transfinite sequences in X of length $< \theta$ s.t. $\operatorname{ran}(G) \subset X$ there exists a unique θ -sequence $\langle a_{\alpha} : \alpha < \theta \rangle$ in X s.t. $a_{\alpha} = G(\langle a_{\varepsilon} : \xi < \alpha \rangle)$ for every $\alpha < \theta$

Proof. Let

$$F(\alpha) = x \leftrightarrow \text{there is a sequence } \langle a_{\xi} : \xi < \alpha \rangle \text{ s.t.:}$$

$$1. \ (\forall \xi < \alpha) a_{\xi} = G(\langle a_{\eta} : \eta < \xi \rangle)$$

$$2. \ x = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

For every α , if there is an α -sequence that satisfies 1, then such a sequence is unique: if $\langle a_{\xi}: \xi < \alpha \rangle$ and $\langle b_{\xi}: \xi < \alpha \rangle$ are two α -sequences satisfying 1, one shows $a_{\xi} = b_{\xi}$ by induction on ξ . Thus $F(\alpha)$ is determined uniquely by 2, and therefore F is a function.

it follows, again by induction, that for each α there is an α -sequence that satisfies 1 (at limit steps, we use Replacement to get the α -sequence as the union of all the ξ -sequences, $\xi < \alpha$). Thus F is defined for all $\alpha \in \operatorname{Ord}$. It obviously satisfies

$$F(\alpha) = G(F \upharpoonright \alpha)$$

If F' is any function on Ord that satisfies

$$F'(\alpha) = G(F' \upharpoonright \alpha)$$

then it follows by induction that $F'(\alpha) = F(\alpha)$ for all α

Definition 1.16. Let $\alpha > 0$ be a limit ordinal and let $\langle \gamma_{\xi} : \xi < \alpha \rangle$ be a **nondecreasing** sequence of ordinals. We define the **limit** of the sequence by

$$\lim_{\xi \to \alpha} \gamma_{\xi} = \sup \{ \gamma_{\xi} : \xi < \alpha \}$$

A sequence of ordinals $\langle \gamma_{\alpha} : \alpha \in \text{Ord} \rangle$ is **normal** if it is increasing and **continuous**, i.e., for every limit $\alpha, \gamma_{\alpha} = \lim_{\xi \to \alpha} \gamma_{\xi}$

1.5 Ordinal Arithmetic

Definition 1.17 (Addition). For all ordinal numbers α

- 1. $\alpha + 0 = \alpha$
- 2. $\alpha + (\beta + 1) = (\alpha + \beta) + 1$ for all β
- 3. $\alpha + \beta = \lim_{\xi \to \beta} (\alpha + \xi)$ for all limit $\beta > 0$

Definition 1.18 (Multiplication). For all ordinal numbers α

- 1. $\alpha \cdot 0 = 0$
- 2. $\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha$ for all β
- 3. $\alpha \cdot \beta = \lim_{\xi \to \beta} \alpha \cdot \xi$ for all limit $\beta > 0$

Definition 1.19 (Exponentiation). For all ordinal numbers α

- 1. $\alpha^0 = 1$
- 2. $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$ for all β
- 3. $\alpha^{\beta} = \lim_{\xi \to \beta} \alpha^{\xi}$ for all limit $\beta > 0$

Lemma 1.20. *For all ordinals* α *,* β *and* γ

- 1. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 2. $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

Proof. Induction on γ

Neither + nor \cdot are commutative:

$$1 + \omega = \omega \neq \omega + 1$$
, $2 \cdot \omega = \omega \neq \omega \cdot 2 = \omega + \omega$

Definition 1.21. Let $(A,<_A)$ and $(B,<_B)$ be disjoint linearly ordered sets. The **sum** of these linear orders is the set $A\cup B$ with the ordering defined as follows: x< y iff

- 1. $x, y \in A$ and $x <_A y$, or
- 2. $x, y \in B$ and $x <_B y$, or
- 3. $x \in A$ and $y \in B$

Definition 1.22. Let (A, <) and (B, <) be linearly ordered sets. The **product** of these linear orders is the set $A \times B$ with the ordering defined by

$$(a_1, b_1) < (a_2, b_2)$$
 iff either $b_1 < b_2$ or $(b_1 = b_2)$ and $a_1 < a_2$

Lemma 1.23. For all ordinals α and β , $\alpha + \beta$ and $\alpha \cdot \beta$ are isomorphic to the sum and product of α and β

Proof. We can define
$$S(\alpha, \beta) = \{(0, a) : a \in \alpha\} \cup \{(1, b) \in \beta\}$$
 if $\beta = 0$, then $S(\alpha, \beta) = \alpha$ if $\beta = \eta + 1$, then $S(\alpha, \beta) = S(\alpha, \eta) \cup \{(1, \eta)\}$

Lemma 1.24. 1. if $\beta < \gamma$ then $\alpha + \beta < \alpha + \gamma$

- 2. *if* $\alpha < \beta$ *then there exists a unique* δ *s.t.* $\alpha + \delta = \beta$
- 3. if $\beta < \gamma$ and $\alpha > 0$, then $\alpha \cdot \beta < \alpha \cdot \gamma$
- 4. *if* $\alpha > 0$ *and* γ *is arbitrary, then there exist a unique* β *and a unique* $\rho < \alpha$ *s.t.* $\gamma = \alpha \cdot \beta + \rho$
- 5. if $\beta < \gamma$ and $\alpha > 1$, then $\alpha^{\beta} < \alpha^{\gamma}$

Proof. 1. induction on γ

- 2. let δ be the order-type of the set $\{\xi : \alpha \leq \xi < \beta\}$; δ is unique by 1
- 3. n
- 4. let β be the greatest ordinal s.t. $\alpha \cdot \beta \leq \gamma$
- 5. *γ*

Theorem 1.25 (Cantor's Normal Form Theorem). *Every ordinal* $\alpha > 0$ *can be represented uniquely in the form*

$$\alpha = \omega^{\beta_1} \cdot k_1 + \dots + \omega^{\beta_n} \cdot k_n$$

where $n \geq 1$, $\alpha \geq \beta_1 > \dots > \beta_n$, and k_1, \dots, k_n are nonzero natural numbers

Proof. By induction on α . For $\alpha=1$, we have $1=\omega^0\cdot 1$; for arbitrary $\alpha>0$, let β be the greatest ordinal s.t. $\omega^\beta\leq\alpha$. By Lemma 1.24 (4) there exists a unique δ and a unique $\rho<\omega^\beta$ s.t. $\alpha=\omega^\beta\cdot\delta+\rho$; this δ must necessarily be finite

1.6 Well-Founded Relations

A binary relation E on a set P is **well-founded** if every nonempty $X \subset P$ has an E-**minimal** element, that is $a \in X$ s.t. there is no $x \in X$ with xEa

Given a well-founded relation E on a set P, we can define the **height** of E, and assign to each $x \in P$ an ordinal number, the **rank** of x in E

Theorem 1.26. If E is a well-founded relation on P, then there exists a unique function ρ from P into the ordinals s.t. for all $x \in P$

$$\rho(x) = \sup\{\rho(y) + 1 : yEx\}$$

The range of ρ is an initial segment of the ordinals, thus an ordinal number. This ordinal is called the **height** of E

Proof. By induction, let

$$\begin{split} P_0 &= \emptyset \\ P_{\alpha+1} &= \{x \in P : \forall y (yEx \to y \in P_\alpha)\} \\ P_\alpha &= \bigcup_{\xi < \alpha} P_\xi \quad \text{if } \alpha \text{ is a limit ordinal} \end{split}$$

Let θ be the least ordinal s.t. $P_{\theta+1}=P_{\theta}$ (such θ exists by Replacement, θ is at least α i guess). First $P_{\alpha}\subset P_{\alpha+1}$ for each α . Thus $P_0\subset P_1\subset \cdots \subset P_{\theta}$. We claim that $P_{\theta}=P$. Otherwise, let a be an E-minimal element of $P-P_{\theta}$. It follows that each xEa is an P_{θ} , and so $a\in P_{\theta+1}$, a contradiction. Now we define $\rho(x)$ as the least α s.t. $x\in P_{\alpha+1}$. The ordinal θ is the height of E.

Uniqueness: let ρ' be another function and consider an E-minimal element of the set $\{x \in P : \rho(x) \neq \rho'(x)\}$.

2 Cardinal Numbers

2.1 Cardinality

Two sets X, Y have the same **cardinality**

$$|X| = |Y|$$

if there exists a one-to-one mapping of *X* onto *Y*

$$|X| \leq |Y|$$

if there exists a one-to-one mapping of X into Y.

Theorem 2.1 (Cantor). For every set X, |X| < |P(X)|

Proof. Let f be a function from X into P(X). The set

$$Y = \{x \in X : x \notin f(x)\}$$

is not in the range of f: If $z \in X$ were such that f(z) = Y, then $z \in Y$ iff $z \notin Y$. Thus f is not a function of X onto P(X). Hence $|P(X)| \neq |X|$ The function $f(x) = \{x\}$ is the required one

Theorem 2.2 (Cantor-Bernstein). If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|

Proof. From a nice note

We will write $X \sim Y$ to denote the existence of a bijection from X to Y. Given injections $f: A \to B$ and $g: B \to A$. Let

$$\begin{split} A_0 &= A & B_0 &= B \\ A_1 &= g(B_0) & B_1 &= f(A_0) \\ A_2 &= g(B_1) & B_2 &= f(A_1) \\ \vdots & \vdots & \vdots \\ A_n &= g(B_{n-1}) & B_n &= f(A_{n-1}) \\ \vdots & \vdots & \vdots & \vdots \\ \end{split}$$

Then

$$\begin{split} A &= A_0 \sim B_1 \sim A_2 \sim B_3 \sim A_4 \cdots \\ B &= B_0 \sim A_1 \sim B_2 \sim A_3 \sim B_4 \sim \cdots \end{split}$$

and

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$$

$$B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots$$

If $A_n = A_{n+1}$, then $A \sim B$, hence we assume $A_n \supsetneq A_{n+1}$

Problem here now is that $X_1 \sim Y_1$ and $X_2 \sim Y_2$ do **not** imply $X_1 \cup X_2 \sim Y_1 \cup Y_2$ and therefore $A \cup A_1 \sim B_1 \cup B$

Lemma 2.3. Suppose we have sets $\{X_i\}$ and $\{Y_i\}$ satisfying $X_i \sim Y_i$ for all i. If all the X_i are pairwise disjoint, and all the Y_i are pairwise disjoint, then

$$\bigcup_i X_i \sim \bigcup_i Y_i$$

Continuation of proof 2.2. Hence for each n, set $A_n^* = A_n - A_{n+1}$. By our assumption, all A_n^* are nonempty, moreover they are pairwise disjoint. Also we get

$$A^* = A_0^* \sim B_1^* \sim A_2^* \sim B_3^* \sim A_4^* \cdots$$

$$B^* = B_0^* \sim A_1^* \sim B_2^* \sim A_3^* \sim B_4^* \sim \cdots$$

Hence we get

$$\tilde{A} := \bigcup_{n \geq 0} A_n^* \sim \tilde{B} := \bigcup_{n \geq 0} B_n^*$$

Let $\bar{A}=\bigcap_{n\geq 0}A_n$ and $\bar{b}=\bigcap_{n\geq 0}B_n$

Claim $\bar{A}=\bar{A}\cup\tilde{A}$ is a partition of A, and $B=\bar{B}\cup\tilde{B}$ is a partition of B. Now it remains to show that $\bar{A}\sim\bar{B}$, which is immediate as $f(\bar{A})=\bar{B}$ and $g(\bar{B})=\bar{A}$

The arithmetic operations on cardinals are defined as follows

$$\begin{split} \kappa + \lambda &= |A \cup B| \quad \text{ where } |A| = \kappa, |B| = \lambda, \text{ and } A, B \text{ are disjoint} \\ \kappa \cdot \lambda &= |A \times B| \quad \text{ where } |A| = \kappa, |B| = \lambda \\ \kappa^{\lambda} &= |A^B| \quad \text{ where } |A| = \kappa, |B| = \lambda \end{split}$$

Lemma 2.4. *if* $|A| = \kappa$, then $|P(A)| = 2^{\kappa}$

Proof. For every $X \subset A$, let χ_X be the function

$$\chi_X(x) = \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{if } x \in A - X \end{cases}$$

The mapping $f:X\to \chi_X$ is a one-to-one correspondence between P(A) and $\{0,1\}^A$

Thus Cantor's Theorem 2.1 can be formulated as

 $\kappa < 2^{\kappa}$ for every cardinal κ

Very useful link

Proposition 2.5. 1. + and \cdot is associative, commutative and distributive

2.
$$(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$$

- 3. $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$
- 4. $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$
- 5. if $\kappa \leq \lambda$, then $\kappa^{\mu} \leq \lambda^{\mu}$
- 6. if $0 < \lambda \le \mu$, then $\kappa^{\lambda} \le \kappa^{\mu}$
- 7. $\kappa^0 = 1$; $1^{\kappa} = 1$; $0^{\kappa} = 0$ if $\kappa > 0$

Proof. 1. commutativity of + follows from $A \cup B = B \cup A$, and so is the commutativity of ·. Similar for associativity

- 3. Given $f:A\cup B\to C$, we get $f\!\!\upharpoonright\!\! A$ and $f\!\!\upharpoonright\!\! B$. Therefore we have a map $f\mapsto (f\!\!\upharpoonright\!\! A,f\!\!\upharpoonright\!\! B)$
- 6. let $|A|=\kappa$, $|B|=\lambda$, $|C|=\mu$. Given injection $f:B\to C$, for each $h:B\to A$ we associate a $g(y):C\to A$ by g(f(x))=h(x) if $y\in f(B)$, otherwise g(y) can be anything.

2.2 Alephs

An ordinal α is called a **cardinal number** if $|\alpha| \neq |\beta|$ for all $\beta < \alpha$.

If W is a well-ordered set, then there exists an ordinal α s.t. $|W|=|\alpha|$. Thus we let

$$|W|=$$
 the least ordinal s.t. $|W|=|\alpha|$

Every natural number is a cardinal

The infinite ordinal numbers that are cardinals are called **alephs**

Lemma 2.6. 1. For every α there is a cardinal number greater than α

2. *if* X *is a set of cardinals, then* $\sup X$ *is a cardinal*

for every α , let α^+ be the least cardinal number greater than α , the **cardinal successor** of α

Proof. 1. for any set X, let h(X)=the least α s.t. there is no one-to-one function of α into X. There is only a set of possible well-orderings of subsets of X. (But the collection of ordinals is a class) Hence there is only a set of ordinals for which a one-to-one function of α into X exists. Thus h(X) exists.

if α is an ordinal, then $|\alpha|<|h(\alpha)|$

2. let $\alpha = \sup X$. if f is a one-to-one mapping of α onto some $\beta < \alpha$, let $\kappa \in X$ be s.t. $\beta < \kappa \leq \alpha$. Then $|\kappa| = |\{f(\xi) : \xi < \kappa\}| \leq \beta$, a contradiction. Thus α is a cardinal

Use Lemma 2.6 we define the increasing enumeration of all alephs. We usually use \aleph_α when referring to the cardinal number, and ω_α to denote the order-type

$$\begin{split} \aleph_0 &= \omega_0 = \omega \\ \aleph_{\alpha+1} &= \omega_{\alpha+1} = \aleph_\alpha^+ \\ \aleph_\alpha &= \omega_\alpha = \sup\{\omega_\beta : \beta < \alpha\} \quad \text{ if } \alpha \text{ is a limit ordinal} \end{split}$$

Theorem 2.7. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$

2.3 The Canonical Well-Ordering of $\alpha \times \alpha$

relevant reading

We define a well-ordering of the class $\operatorname{Ord} \times \operatorname{Ord}$ of ordinal pairs. Under this well-ordering, each $\alpha \times \alpha$ is an initial segment of Ord^2 ; the induced well-ordering of α^2 is called the **canonical well-ordering** of α^2 . Moreover, the well-ordered class Ord^2 is isomorphic to the class Ord

We define

$$\begin{split} (\alpha,\beta) < (\gamma,\delta) &\leftrightarrow \text{either } \max\{\alpha,\beta\} < \max\{\gamma,\delta\} \\ \text{or } \max\{\alpha,\beta\} &= \max\{\gamma,\delta\} \text{ and } \alpha < \gamma \\ \text{or } \max\{\alpha,\beta\} &= \max\{\gamma,\delta\}, \alpha = \gamma \text{ and } \beta < \delta \end{split}$$

If $X \subset \operatorname{Ord} \times \operatorname{Ord}$ is nonempty, then X has a least element. For each α , $\alpha \times \alpha$ is the initial segment given by $(0, \alpha)$. If we let

$$\Gamma(\alpha, \beta)$$
 = the order-type of the set $\{(\xi, \eta) : (\xi, \eta) < (\alpha, \beta)\}$

then Γ is a one-to-one mapping of Ord^2 onto Ord , and

$$(\alpha,\beta)<(\gamma,\delta)\quad \text{ iff }\quad \Gamma(\alpha,\beta)<\Gamma(\gamma,\delta)$$

Note that $\Gamma(\omega \times \omega) = \omega$ and since $\gamma(\alpha) = \Gamma(\alpha \times \alpha)$ is an increasing function of α , we have $\gamma(\alpha) \geq \alpha$ for every α . However, $\gamma(\alpha)$ is also continuous, and so $\Gamma(\alpha \times \alpha) = \alpha$ for arbitrary large α .

Proof of Theorem 2.7. We will show that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) = \omega_{\alpha}$. This is true for $\alpha = 0$. Thus let α be the least ordinal s.t. $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) \neq \omega_{\alpha}$. Let $\beta, \gamma < \omega_{\alpha}$ be s.t. $\Gamma(\beta, \gamma) = \omega_{\alpha}$. Pick $\delta < \omega_{\alpha}$ s.t. $\delta > \beta$ and $\delta > \gamma$. Since $\delta \times \delta$ is an initial segment of Ord \times Ord in the canonical well-ordering and contains (β, γ) , we have $\Gamma(\delta \times \delta) \supset \omega_{\alpha}$, and so $|\delta \times \delta| \geq \aleph_{\alpha}$. However $|\delta \times \delta| = |\delta| \cdot |\delta|$, and by the minimality of α , $|\delta| \cdot |\delta| = |\delta| < \aleph_{\alpha}$.

As a corollary we have

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max{\{\aleph_{\alpha}, \aleph_{\beta}\}}$$

2.4 Cofinality

Let $\alpha>0$ be a limit ordinal. We say that an increasing β -sequence $\langle \alpha_\xi:\xi<\beta\rangle$, β a limit ordinal, is **cofinal** in α if $\lim_{\xi\to\beta}\alpha_\xi=\alpha$. Similarly, $A\subset\alpha$ is **cofinal** in α if $\sup A=\alpha$. If α is an infinite limit ordinal, the **cofinality** of α is

$$\label{eq:alpha} \text{cf } \alpha = \text{the least limit ordinal } \beta \text{ s.t. there is an increasing} \\ \beta \text{-sequence } \langle \alpha_{\xi} : \xi < \beta \rangle \text{ with } \lim_{\xi \to \beta} \alpha_{\xi} = \alpha$$

Lemma 2.8. $\operatorname{cf}(\operatorname{cf} \alpha) = \operatorname{cf} \alpha$

Lemma 2.9. Let $\alpha > 0$ be a limit ordinal

- 1. *if* $A \subset \alpha$ *and* $\sup A = \alpha$ *, then the order-type of* A *is at least* $\operatorname{cf} \alpha$
- 2. if $\beta_0 \leq \beta_1 \leq ... \leq \beta_\xi \leq ...$, $\xi < \gamma$, is a nondecreasing γ -sequence of ordinals in α and $\lim_{\xi \to \gamma} \beta_\xi = \alpha$, then cf $\gamma = \operatorname{cf} \alpha$

Proof. 1. the order-type of A is the length of the increasing enumeration of A which is an increasing sequence with limit α

2. if $\gamma = \lim_{\nu \to \operatorname{cf} \gamma} \xi(\nu)$, then $\alpha = \lim_{\nu \to \operatorname{cf} \gamma} \beta_{\xi(\nu)}$, and the nondecreasing sequence $\langle \beta_{\xi(\nu)} : \nu < \operatorname{cf} \gamma \rangle$ has an increasing subsequence of length $\leq \operatorname{cf} \gamma$, with the same limit. Thus $\operatorname{cf} \alpha \leq \operatorname{cf} \gamma$

To show that $\operatorname{cf} \gamma \leq \operatorname{cf} \alpha$, let $\alpha = \lim_{\nu \to \operatorname{cf} \alpha} \alpha_{\nu}$. For each $\nu < \operatorname{cf} \alpha$, let $\xi(\nu)$ be the least ξ greater than all $\xi(\iota)$, $\iota < \nu$, s.t. $\beta_{\xi} > \alpha_{\nu}$. Since $\lim_{\nu \to \operatorname{cf} \alpha} \beta_{\xi(\nu)} = \alpha$, it follows that $\lim_{\nu \to \operatorname{cf} \alpha} \xi(\nu) = \gamma$, and so $\operatorname{cf} \gamma \leq \operatorname{cf} \alpha$.

An infinite cardinal \aleph_{α} is **regular** if cf $\omega_{\alpha}=\omega_{\alpha}$. It is **singular** if cf $\omega_{\alpha}<\omega_{\alpha}$

Lemma 2.10. For every limit ordinal α , cf α is a regular cardinal

Proof. if α is not a cardinal, then by an bijection $f: |\alpha| \sim \alpha$, we get a cofinal sequence in α of length $\leq |\alpha|$, therefore cf $\alpha < \alpha$

if α is a cardinal, cf $\alpha = \alpha$ by Lemma 2.9

Let κ be a limit ordinal. A subset $X \subset \kappa$ is **bounded** if $\sup X < \kappa$, and **unbounded** if $\sup X = \kappa$

Lemma 2.11. *Let* κ *be an aleph*

- 1. If $X \subset \kappa$ and $|X| < \operatorname{cf} \kappa$ then X is bounded
- 2. If $\lambda < \operatorname{cf} \kappa$ and $f : \lambda \to \kappa$ then the range of f is bounded

it follows from 1 that every unbounded subset of a regular cardinal has cardinality $\boldsymbol{\kappa}$

Proof. 1. Lemma 2.9

2. if $X = \operatorname{ran} f$, then $|X| \leq \lambda$, then use 1.

There are arbitrary large singular cardinals. For each α , $\aleph_{\alpha+\omega}$ is a singular cardinal of cofinality ω

Lemma 2.12. An infinite cardinal κ is singular iff there exists a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} : \xi < \lambda\}$ of subsets of κ s.t. $|S_{\xi}| < \kappa$ for each $\xi < \lambda$, and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$. The least cardinal λ satisfies the condition is cf κ .

Proof. If κ is singular, then there is an increasing sequence $\langle \alpha_{\xi} : \xi < \operatorname{cf} \kappa \rangle$ with $\lim_{\xi} \alpha_{\xi} = \kappa$. Let $\lambda = \operatorname{cf} \kappa$, and $S_{\xi} = \alpha_{\xi}$ for all $\xi < \lambda$.

If the condition holds, let $\lambda < \kappa$ be the least cardinal for which there is a family $\{S_{\xi}: \xi < \lambda\}$ s.t. $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$ and $\left|S_{\xi}\right| < \kappa$ for each $\xi < \lambda$. For every $\xi < \lambda$, let β_{ξ} be the order-type of $\bigcup_{\nu < \xi} S_{\nu}$. The sequence $\langle \beta_{\xi}: \xi < \lambda \rangle$ is nondecreasing, and by the minimality of λ , $\beta_{\xi} < \kappa$ for all $\xi < \lambda$. If not, then $\beta_{\xi} = \kappa$ and $\bigcup_{\nu < \xi} S_{\nu} = \kappa$. We shall show that $\lim_{\xi} \beta_{\xi} = \kappa$, thus proving that cf $\kappa \leq \lambda$.

Let $\beta = \lim_{\xi \to \lambda} \beta_{\xi}$. There is a one-to-one mapping f of $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$ into $\lambda \times \beta$: if $\alpha \in \kappa$, let $f(\alpha) = (\xi, \gamma)$, where ξ is the least ξ s.t. $\alpha \in S_{\xi}$ and γ is the order type of $S_{\xi} \cap \alpha$. Since $\lambda < \kappa$ and $|\lambda \times \beta| = \lambda \cdot |\beta|$, it follows that $\beta = \kappa$

Theorem 2.13. *If* κ *is an infinite cardinal, then* $\kappa < \kappa^{\text{cf} \kappa}$

Proof. Let F be a collection of κ functions from cf κ to κ : $F=\{f_\alpha: \alpha<\kappa\}$. It is enough to find f: cf $\kappa\to\kappa$ that is different from all the f_α . Let $\kappa=\lim_{\xi\to \mathrm{cf}\,\kappa}\alpha_\xi$. For $\xi<\mathrm{cf}\,\kappa$, let

$$f(\xi) = \text{ least } \gamma \text{ s.t. } \gamma \neq f_{\alpha}(\xi) \text{ for all } \alpha < \alpha_{\mathcal{E}}$$

Such γ exists since $\left|\{f_\alpha(\xi):\alpha<\alpha_\xi\}\right|\leq \left|\alpha_\xi\right|<\kappa.$ Obviously, $f\neq f_\alpha$ for all $\alpha<\kappa$

Consequently $\kappa^{\lambda} > \kappa$ whenever $\lambda \ge \operatorname{cf} \kappa$.

3 Real Numbers

Theorem 3.1 (Cantor). *The set of all real numbers is uncountable*

Proof. Suppose not, let $c_0, c_1, ...$ be an enumeration of \mathbb{R}

Let $a_0 = c_0$ and $b_0 = c_{k_0}$, where k_0 is the least k s.t. $a_0 < c_k$. For each n, let $a_{n+1} = c_{i_n}$ where i_n is the least i s.t. $a_n < c_i < b_n$ and $b_{n+1} = c_{k_n}$ where k_n is the least k s.t. $a_{n+1} < c_k < b_n$. If we let $a = \sup\{a_n : n \in \mathbb{N}\}$, then $a \neq c_k$ for all k.

3.1 The Cardinality of the Continuum

Let $\mathfrak c$ denote the cardinality of $\mathbb R$. As the set $\mathbb Q$ of all rational numbers is dense in $\mathbb R$, every real number r is equal to $\sup\{q\in\mathbb Q:q< r\}$ and because $\mathbb Q$ is countable, it follows that $\mathfrak c\leq |P(\mathbb Q)|=2^{\aleph_0}$

4 Question

2 1.23 2.3