28 Struktury a hierarchie pamětí.
Způsoby adresace. Různá šíře adres
generovaných CPU (logických adres)
a fyzických adres paměti. Mapování,
stránkování, segmentace. Přerušení a
výjimky. Zdroje přerušení,
přerušovací vektory. DMA přenosy.
(A0B35SPS)

(pozn. autora: V předmětu SPS toto není. Čerpal jsem z přednášek OSS a APO.)

28.1 Struktury a hierarchie pamětí

- Rychlé a malé paměti jsou umístěny blízko CPU.
- Větší a pomalejší paměti jsou dále od CPU.
- Princip cachování nejčastěji používaných dat v rychlých pamětech zrychlení přístupu k datům.
- od nejrychlejší a nejmenší po největší a nejpomalejší:
 - on-chip L1 caches
 - off-chip L2 caches (SRAM)
 - hlavní paměť (DRAM)
 - vedlejší paměť (pevný disk)

28.2 Způsoby adresace

Máme 2 typy adres. Logickou a fyzickou adresu. Logická adresa je adresa, se kterou pracuje CPU. Tato adresa je překládána na fyzickou adresu, což je konkrétní adresa v dané paměti. Výhody - CPU vidí unifikované adresy - pro přístup do hlavní paměti i k IO zařízením. Data v hlavní paměti nejsou poskládána tak jak jdou za sebou, mohou být

zpřeházena - optimalizace využití prostoru paměti a fragmentace. Přes logickou adresu se nechá přistupovat k datům sekvenčně, tak jak jdou za sebou.

Velikost logického adresního prostoru je dána architekturou procesoru - kolik adres je procesor schopen generovat. Např. 32 bitový procesor generuje 2^{32} adres. Velikost fyzického adresního prostoru je dána nainstalovaným hardware počítače - fyzicky dostupnou pamětí.

Stránkování Souvislý LAP (Logický Adresní Prostor) není zobrazován jako jediná souvislá oblat FAP. FAP se dělí na úseky zvané rámce, LAP se dělí na úseky dané stránky.

Struktura logické adresy Logická adresa se zkládá ze dvou částí. První část je index v tabulce stránek - díky němu se v tabulce stránek vyhledá fyzická adresa stránky. Druhá část je offset - posunutí ve stránce.

Převod logické adresy na fyzickou

- K logické adrese je v tabulce stránek nalezena fyzická adresa dané stránky/rámce.
- K adrese rámce je přičten offset a výsledek je požadovaná fyzická adresa.

28.3 Různá šíře logických a fyzických adres

CPU může mít menší datovou sběrnici, než je šíře fyzické adresy. Např. fyzická adresa má 20 bitů, ale datová sběrnice CPU je jen 16 bitů. Zbývající 4 bity jsou offset segmentu a jsou uloženy ve 4 segmentových registrech CPU. FA = (segment << 4)+offset.

Opačný případ - CPU generuje více logických adres (např. 64 bitový procesor generuje 2^{64} adres) než je fyzických adres (LA je větší než FA). Tento problém se řeší virtualizací paměti. Virtualizace zpočívá v tom, že FAP se rozšiřuje o úseky na vnější paměti (např. na pevném disku).

28.4 Mapování, stránkování, segmentace

Stránkování LAP je rozdělen do úseků, které na sebe navazují - stránky. Logická adresa odkazuje na adresu stránky, která odkazuje na adresu rámce FAP. Rámce v FAP na sebe nemusí navazovat.

Segmentace LAP je rozdělena na segmenty. Segmenty jsou části programu - mají logický význam (hlavní program, procedura, funkce,...), jsou různě dlouhé - nízká vnitřní fragmentace. Výhody - lze určit přístup do nepovolené části paměti (segmentation fault), se segmenty v paměti lze libovolně hýbat, lze nastavovat práva k přístupu do segmentu. Nevýhoda - externí fragmentace.

Stránkování a segmentace najednou Výše uvedené metody lze kombinovat. Segmentace vybírá části LAP, stránkování zobrazuje LAP do FAP - LAP je dělena na segmenty, které jsou stránkovány.

28.5 Přerušení a výjimky

Přerušení

- cílem je zlepšení účinnosti systému
- je potřeba provést jinou posloupnost příkazů jako reakci na nějakou "neobvyklou" událost
- přerušující událost způsobí, že se pozastaví běh procesu v CPU takovým způsobem, aby ho bylo možné později znovu obnovit, aniž by to přerušený proces "poznal"
- využití např. při IO operacích
- testování, zda je voláno přerušení, se koná alespoň po dokončení každé instrukce
- přerušení bývá často voláno programem
- Maskovatelná, lze je zakazat v stavovem řídícím slovu CPU, případně řízení priorit (periferie, čítače, časovače)
- Nemaskovatelná ošetření HW chyb, hlídací obvod (Watch Dog)

Výjimka

- Výjimka ošetření zvláštních situací, které brání dalšímu vykonávání instrukcí (exception)
 - Matematické přetečení (výsledek instrukce s kontrolou saturace přetekl)
 - Načtena nedefinovaná instrukce (neznámý operační kód instrukce typu IR, nebo neznámá funkce instrukce typu R)
 - Systémové volání (instrukce syscall)

Zdroje přerušení, přerušovací vektory

Určení zdroje výjimky přerušení Softwarové vyhledání (polled exception handling)

- Veškerá přerušení a výjimky spouštějí rutinu od stejné adresy např. standardní MIPS, adresa 0x00000004
- Rutina zjistí důvod ze stavového registru (MIPS: cause registr)

Vektorová obsluha přerušení

- Již hardware CPU zjistí příčinu/číslo zdroje
- V paměti se nachází na pevné/řídicím registrem specifikované (VBR) adrese tabulka vektorů přerušení
- Procesor převede číslo zdroje na index do tabulky
- Z daného indexu načte slovo a vloží ho do PC

Nevektorová obsluha více pevně určených adres podle priorit/důvodu

• Často jsou přístupy kombinované, např. výjimky mají oddělené cílové adresy skoků, využívají tabulku atd., ale veškerá vnější přerušení končí pouze na jednom z vektorů

28.6 DMA přenosy

Direct Memory Access - přímý přístup do paměti. Využívá se při přenosu velkého množství dat - data nemusí jít přes procesor a nevytěsňují tak data z cache.

- Program/OS nastaví parametry přenosu
- Procesor nastaví adresy do DMA řadiče, ten na konci přenosu vyvolá přerušení