

Physics Written Test no 1

Monday 11th October 2021

Time Allowed: 1h30

*Indicative mark scheme: exercise 1 out of 7 points, exercise 2 out of 6 points, exercise 3 out of 7 points.*No documents or calculators allowed.

Not only your answers, but above all your ability to clearly justify and analyze them critically will be evaluated. The mark scheme given above is only a guide.

Exercise 1: Electricity (~7 pts)

We will study the circuit shown. The capacitor is initially discharged. At the instant t = 0, switch (K) is closed.

- 1. Give at least three independent electrical equations that are valid in the circuit at all times.
- 2. We will consider in this section that the voltage source output is constant such that e(t) = E. After working on the electrical equations, we obtain the following differential equation (you don't need to demonstrate this):

$$\frac{d u_{s}}{dt} + \frac{R_{1} + R_{2}}{R_{1} R_{2} C} u_{s} = \frac{E}{R_{1} C}$$

Give the solution $u_s(t)$ detailing all steps of your working.

Draw a graph of the shape of $u_s(t)$ and comment on it.

- 3. We consider in this section that the voltage source has a sinusoidal output such that $e(t) = E \cos(\omega t)$.
 - a. Calculate the transfer function (in complex notation): $\underline{\underline{H}}(j\omega) = \frac{u_s}{u_e}$

Express $\underline{H}(j\omega)$ in the form $\underline{H}(j\omega) = \frac{A}{1+jB\omega}$ where A and B are real constants to be expressed as a

function of the data of the exercise. Hint: you can proceed by first calculating the equivalent impedance of the dipole composed of R_2 and C in parallel.

- b. Give the modulus $G(\omega)$ and the phase $\phi(\omega)$ of this transfer function such that $\underline{H}(j\omega) = G(\omega)e^{j\phi(\omega)}$
- c. The modulus G(f) is plotted in the following figure.

Deduce a relation between R_1 and R_2 .

Exercise 2: Fields (~6 pts)

Let \vec{U} be a vector field defined in Cartesian coordinates by (xy, ay, -yz), where a is a strictly positive constant.

- 1. Calculate the divergence and the curl (or rotational) of \vec{U} . What conclusions can be taken from them?
- 2. Using a preceding result, calculate the flux of \vec{U} through the <u>open</u> surface of $1/8^{th}$ of a sphere with radius a, defined by: $\{(x,y,z) \mid x^2+y^2+z^2=a^2 \text{ et } x>0, y>0, z>0\}$ and oriented along the spherical basis' radial vector $\vec{e_r}$, <u>without doing a direct flux calculation</u>. Justify your choices with a sketch. Hint: apply Ostrogradsky's theorem to an appropriate closed surface and deduce subsequently the flux through the open surface of the $1/8^{th}$ of sphere
- 3. Using a result from question 1, and not through an integral calculation, explain why the circulation of the field \vec{U} is nil over any closed path contained in the Oxz plane.

Divergence and curl (rotational) operators in Cartesian coordinates:

Exercise 3: Electrostatics - Zeta potential (~7 pts)

- 1. **Lecture question**. A clay grain has a spherical shape of center O and radius R and bears a total positive charge Q positive with a volume charge density that depends only on r. This grain is surrounded by water which permittivity is assumed to be ε_0 .
 - Study carefully the symmetries and invariances of the charge distribution and determine the electrostatic field $\overrightarrow{E_g}$ around the grain (r > R). Express the electrostatic potential V_g in the same region assuming that it is nil very far from the grain.
- 2. In reality, ions (such as H^+ and OH^-) are present in water and interact with the grain in the following way: a thin layer of anions of constant thickness e gets bound to the grain chemically and stiffly. We assume that this layer is uniformly charged in volume with the density $\rho < 0$ between the radii R and R + e. The permittivity remains unchanged.
 - a) By making a possible re-use of the reasoning of the preceding question but also by adapting it to the new configuration, determine the electrostatic field $\overrightarrow{E_c}$ created by this single layer alone in the whole space (r being arbitrary). You will consider 3 regions in space: r < R, R < r < R + e and r > R + e. After having done the calculations, since e < < R simplify the results obtained. Indication: it is given that $(r + e)^3 r^3 \approx 3r^2e$ when e < < r
 - b) Calculate the electrostatic potential V_c (also nil at infinity) outside the layer (r > R + e) by making use of the simplified expression of the electrostatic field $\overrightarrow{E_c}$.
- 3. No physical device makes it possible to measure the electrostatic potential V_g on the surface of the isolated grain of charge Q mentioned in the previous question (1). However, zetametry enables to measure the potential $Z = V_g + V_c$ at r = R + e (this Z is capitalized version of the Greek letter ζ , zeta, and is pronounced this way).

From the preceding questions calculate the potential zeta.

4. Bonus question: the largest the absolute value of Z is, the more stable a dispersion of grains in water is (mud for example). In your opinion, why does Z depend on the pH?

Gradient and divergence operators in spherical coordinates:

$$\overrightarrow{grad}(V) = \frac{\partial V}{\partial r}\overrightarrow{u_r} + \frac{1}{r}\frac{\partial V}{\partial \theta}\overrightarrow{u_\theta} + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \varphi}\overrightarrow{u_\varphi} \qquad \qquad div(\overrightarrow{X}) = \frac{1}{r^2\sin\theta}\left(\frac{\partial \left(r^2\sin\theta X_r\right)}{\partial r} + \frac{\partial \left(r\sin\theta X_\theta\right)}{\partial \theta} + \frac{\partial \left(rX_\theta\right)}{\partial \varphi}\right)$$

Interrogation de Physique n° 1

Lundi 11 octobre 2021 Durée : 1h30

Exer	Exercice 1 – Electrocinétique (7 pts)				
1a	$i_1(t) = i_2(t) + i_C(t)$				
	$u_e(t) = e(t) = R_1 i_1(t) + R_2 i_2(t)$	3 x			
	$i_c(t) = C \frac{d u_s(t)}{dt}$	0,25	0,75		
	$u_s(t) = R_2 i_2(t) \qquad \dots$				
2	$u_{s}(t) = R_{2}i_{2}(t) \qquad \dots$ $u_{s}(t) = Ke^{-\frac{t}{\tau}} + U_{s,permanent}$	0.5			
	$avec \ \tau = \frac{R_1 R_2 C}{R_1 + R_2}$	0.25			
	$U_{s,permanent} = \frac{R_2}{R_1 + R_2} E \text{ (ce qui correspond à la tension aux bornes du condensateur}$	0.5			
	chargé) Condition initiale: $u_s(t=0^+)=0$ continuité de la charge et de la tension aux	0.25			
	bornes du condensateur		2,75		
	D'où $K = \frac{R_2}{R_1 + R_2} E$	0.25	2,73		
	Et finalement $u_s(t) = \frac{R_2}{R_1 + R_2} E\left(1 - e^{-\frac{t}{\tau}}\right)$	0.5			
	Tracé de $u_s(t)$ avec une croissance exponentielle	0.25			
	Au départ $u_s(0) = 0$ (condensateur déchargé) et au final $u_s(t >> \tau) \to \frac{R_2}{R_1 + R_2} E$	0.25			
	(condensateur chargé)				
3a	$\underline{H}(j\omega) = \frac{\underline{u_s}}{\underline{u_e}} = \frac{\underline{Z_{eq}} \underline{i_1}}{\left(R_1 + \underline{Z_{eq}}\right) \underline{i_1}} = \frac{\underline{Z_{eq}}}{R_1 + \underline{Z_{eq}}}$	0.5			
	$\underline{Z_{eq}} = \left\{ R_2 / / C \right\} = \frac{R_2}{1 + j R_2 C \omega}$	0.5			
	$\underline{H}(j\omega) = \frac{R_2}{R_1 + R_2 + jR_1R_2C\omega} = \frac{R_2}{R_1 + R_2} \frac{1}{1 + j\frac{R_1R_2}{R_1 + R_2}C\omega}$		2		
	Donc $A = \frac{R_2}{R_1 + R_2}$ et $B = \frac{R_1 R_2}{R_2 + R_2} c$	0.5 0.5			
3b	et $B = \frac{R_1 R_2}{R_1 + R_2} c$ $G(\omega) = \frac{A}{\sqrt{1 + (B\omega)^2}}$	0.5	1		
	$\phi(\omega) = -\arctan(B\omega)$	0.5			
3c	Pour $G(\omega) \xrightarrow{\omega \to 0} A$ sur le tracé on peut lire 0.5 soit $A = \frac{R_2}{R_1 + R_2} = 0.5$	0.25	0.5		
			0.5		
	et finalement $R_1 = R_2$	0.25			

Exerci	ce 2 – Champs (6 pts)		
1	$\operatorname{div}(\vec{U}) = y + a - y = a$ uniforme; $\overrightarrow{rot}(\vec{U})$ de composantes $(-z, 0, -x)$. Le	4*0.5	2
	champ \vec{U} n'est pas à flux conservatif, ni à circulation conservative.		
2	On a grandement intérêt à fermer le $1/8^{\text{ème}}$ de sphère par les plans $x = 0$, $y = 0$, $z = 0$	1	3
	0.		
	Ces surfaces étant orientées vers l'extérieur du 1/8 ^{ème} de boule ainsi formé, on peut		
	affirmer que la somme du flux Φ cherché et du flux sortant par les trois quarts de		
	disque est égal à l'intégrale triple sur le $1/8^{\text{ème}}$ de boule de $\text{div}(\vec{U})d\tau = a\ dxdydz$	1	
	(Ostrogradsky), soit $\pi a^4/6$. (a. 1/8. $4\pi a^3/3$)		
	Flux sortant par le plan $x = 0$ nul car U_x est alors nul dans ce plan; idem pour les	1	
	deux autres plans. Il vient $\Phi = \pi a^4/6$.	1	
3	La circulation le long d'une courbe fermée contenue dans le plan Oxz est égale au	1	1
	flux du rotationnel de \vec{U} à travers la surface fermée délimitée par la courbe, de		
	normale $\pm \overrightarrow{u_{\nu}}$ (Stokes). Or le rotationnel de \overrightarrow{U} a une composante nulle sur $\overrightarrow{u_{\nu}}$, donc		
	ce flux est nul.		

Exerci	ice 3 – Champs (X=7 pts)		
1	En un point M hors du grain, tout plan contenant l'axe OM est plan de symétrie des		2,5
	charges, donc $\overrightarrow{E_q}$ est radial. L'invariance par rotation fait aussi que sa mesure	2*0,5	
	algébrique E_g sur $\overrightarrow{u_r}$ ne dépend que de r.		
	Théorème de Gauss : le flux de $\overrightarrow{E_q}$ sortant d'une sphère de rayon $r > R$ centrée en	0,5	
	O (donc englobant toute la charge Q du grain) vaut Q/ε_0 . Mais par les symétries ce	(Gauss)	
	flux vaut aussi $4\pi r^2 E_g(r)$. Donc $E_g(r) = Q/(4\pi \varepsilon_0 r^2)$. Par ailleurs d'après le formulaire	0,5 (E)	
	$E_g = -dV_g/dr$, donc $V_g(r) = Q/(4\pi \varepsilon_0 r) + c$, c nulle avec la condition aux limites	2*0.25	
	imposée. On retrouve les formules de la charge ponctuelle placée en O.	2 0.23	
2	a/ Les mêmes symétries que précédemment s'appliquent. On peut de plus affirmer		2,5
	que $\overrightarrow{E_c}$ est nul en O (Oxy, Oxz, Oyz plans de symétrie).		
	Si on continue d'utiliser le théorème de Gauss avec comme surface fermée une		
	sphère de rayon r centrée en O:		
	$r < R$: pas de charge intérieure donc flux et $\overrightarrow{E_c}$ nuls	0,5	
	$R < r < R+e$: la charge intérieure est l'intégrale de R à r de $4\pi\rho u^2$ du donc $4\pi\rho [r^3-$	0.5	
	R^3]/3 et le champ E_c vaut $\rho[r^3-R^3]/3\varepsilon_0r^2$	0,5	
	R+e < r : la charge intérieure est l'intégrale de R à e de $4\pi\rho u^2$ du donc $4\pi\rho[(R+e)^3$ -	0,5	
	R^3]/3 et le champ E_c vaut $\rho[(R+e)^3-R^3]/3\varepsilon_0 r^2$	0,5	
	Simplifications liées à e $<<$ R : champ interne à la couche $\rho(r-R)/\epsilon$; à l'extérieur	2*0,25	
	droit de la couche $\rho R^2 e/\varepsilon_0 r^2$	2 0,20	
	b/ On trouve V _c par intégration en partant de l'extérieur (constante nulle à l'infini)	0,5	
	$R+e < r : V_c = \rho R^2 e / \varepsilon_0 r$		
3	Par application du principe de superposition et parce que le potentiel est continu en	1,0	2
	tout point de l'espace, le potentiel zêta vaut donc $V_g(R+e) + V_c(R+e) = Q/(4\pi \varepsilon_0)$	o =	
	$(R+e)$)+ $\rho R^2 e/\varepsilon_0$ (R+e) qu'on peut simplifier en $Q/(4\pi \varepsilon_0 R)$ + $\rho Re/\varepsilon_0$ avec les	0,5	
	hypothèses. On n'a effectivement pas accès au terme isolé et positif $Q/(4\pi \varepsilon_0 R)$,	0,5	
	mais à une valeur plus petite (ρ <0).		
4	Q> 0 étant donné, le second terme est négatif et tend à diminuer le potentiel zêta,	1 bonus	1
(bonus)	particulièrement lorsque de nombreux anions sont disponibles (pH élevé par		bonus
	exemple): ρ peut alors être grand et négatif, e grand et positif, et le potentiel zêta		
	décroît beaucoup. En ce cas la barrière de potentiel pour agglomérer deux grains		
	(sous l'effet du mouvement brownien par exemple) décroît et la suspension flocule		
	rapidement, c'est-à-dire qu'elle se sédimente. D'où l'intérêt de la zétamétrie pour		