Corrigé de la Série TD N° 05-06

1^{ere} PARTIE: DYNAMIQUE D'UN POINT MATERIEL

EXERCICE D'APPLICATION DU COURS

Un bloc de masse m remonte le long d'un point incliné d'un angle α , par rapport à l'horizontale, avec une vitesse initiale v_0 , et un coefficient de frottement f_d .

- 1. Déterminer jusqu'à quelle distance le bloc se déplace avant de s'arrêter.
- 2. Quelle est la valeur maximale que peut prendre le coefficient de frottement statique f_s pour que le corps puisse redescendre.
- 3. Pour une valeur du coefficient de frottement statique f_s inférieure à la valeur maximale trouvée dans la deuxième question, quelle est la vitesse v₁ du corps lorsqu'il revient à sa position de départ.

Corrigé de l'exercice

A
$$t=0$$
, $v=v_0$ et $\mu=f_d$

1-Cherchons la distance que peut parcourir le bloc avant

de s'arrêter

D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{p} + \vec{R} = m\vec{a}$$

La vitesse initiale v_i = v_0 et la vitesse finale v_f =0 (le corps va s'arrêter)

Nous avons $v_f^2 - v_i^2 = 2al(l \text{ étant la distance parcourue par le corps})$

Donc
$$a = \frac{v_f^2 - v_i^2}{2l}$$

Il faut choisir le repère, tel que l'axe (Ox) est suivant l'axe du mouvement, Donc il est parallèle à \vec{f} et (Oy) est perpendiculaire à (Ox) donc parallèle à \vec{N}

Suivant (Ox) $-f-p_x=-f-m g \sin\alpha=ma$

Suivant (Oy) N- p_v =0 \Rightarrow N=m g cos α

 $f_d=tg\phi=f/N \Rightarrow f=N tg \phi$ donc $f= f_d m g cos\alpha$

- f_d m g $\cos \alpha$ -m g $\sin \alpha$ =ma \Rightarrow - f_d g $\cos \alpha$ - g $\sin \alpha$ = $\frac{v_f^2 - v_i^2}{2l}$

Donc
$$l = \frac{-v_i^2}{2(-f_d g \cos\alpha - g \sin\alpha)} = \frac{v_0^2}{2g(f_d \cos\alpha + \sin\alpha)}$$

2- La valeur maximale que peut prendre le coefficient de

frottement statique f_s pour le corps puisse redescendre,

-A l'équilibre

Suivant (Ox) -f+ $p_x=0 \Rightarrow f=m g \sin \alpha$

Suivant (Oy) N- p_y =0 \Rightarrow N= $m g cos<math>\alpha$

Pour que le corps puisse redescendre, il faut que $p_x > f$

 $p_x > f \Rightarrow m g \sin \alpha > N f_s$ (*)

avec f= N f_s et f_s est le coefficient de frottement statique pour lequel le corps commence son mouvement

(*) \Rightarrow m g sin α > m g cos α f_s donc f_s<tg α

La valeur maximale que peut prendre f_s est tg α

3-La vitesse v₁ du corps lorsqu'il revient à sa position initiale

x=1, $v_i=0$ et on cherche v_f

 $v_f^2 - v_i^2 = 2al$ 1 est la distance parcourue par le corps

Donc
$$a = \frac{v_f^2 - v_i^2}{2l}$$

Il faut choisir le repère, tel que l'axe (Ox) est suivant l'axe du mouvement, Donc il est parallèle et suivant p_x et l'axe (Oy) est perpendiculaire à (Ox) donc parallèle à \vec{N}

Suivant (Ox) $-f + p_x = -f + m g \sin \alpha = ma$

Suivant (Oy) N-p_y=0⇒N=m g cosα

 $f_d=tg\phi=f/N \Rightarrow f=N tg \phi$ donc $f= f_d m g cos\alpha$

Alors - f_d m g $\cos \alpha$ +m g $\sin \alpha$ =ma \Rightarrow - f_d g $\cos \alpha$ +g $\sin \alpha$ = $\frac{v_f^2 - v_i^2}{2l}$

 $v_f^2 = 2gl(\sin\alpha - f_d \cos\alpha)$

Corrigé des exercices de TD

(Oy)

EXERCICE 1

 $v_A=1$ m/s et $\mu=0.5$ sur AB

La nature du mouvement sur AB

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{p} + \vec{N} + \vec{f} = m\vec{a}$$

On choisit le repère, tel que l'axe (Ox) est suivant l'axe du mouvement parallèle à \vec{f} et (Oy) est perpendiculaire à (Ox) donc suivant \vec{N}

Suivant (Ox)
$$-f + p_x = -f + m g \sin \alpha = ma$$

Suivant (Oy) N-p_y=0 \Rightarrow N=m g cos α

$$\mu = tg\phi = f/N \Rightarrow f=N tg \phi$$
 donc $f= \mu m g cos\alpha$

Alors $-\mu$ m g cos α + m g sin α =ma \Rightarrow a=g(sin α - μ cos α)

=10
$$a = 10 \left(\frac{\sqrt{2}}{2} - 0.5 \frac{\sqrt{2}}{2} \right) = 3.54 \text{ m/s}^2$$

L'accélération a est constante et positive donc le mouvement est uniformément accéléré

La vitesse du point M lorsqu'il atteint le point B

$$v_B^2 - v_A^2 = 2al \Rightarrow v_B^2 = v_i^2 + 2al$$

$$v_B = \sqrt{1 + 2a} = 2,84 \text{ m/s}$$

La nature du mouvement sur le plan horizontale

Les forces de frottement sont négligeables

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{p} + \vec{N} = m\vec{a}$$

Sur Oy : N-p=
$$0 \Rightarrow N = p = mg$$

Donc a'=0 alors le mouvement est uniforfme

-le mouvement est uniforme alors la vitesse est constante $v=v_B$ le bloc ne s'arretera pas

EXERCICE 2 θ $\overline{T1}$ $\overline{T2}$ M

1-Trouvons la force (tension du fil) que chaque fil exerce sur la boule.

D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{p} + \overrightarrow{T_1} + \overrightarrow{T_2} = m\vec{a}$$

Le mouvement de la boule est circulaire donc l'accélération dans ce cas est l'accélération normale a_N qui est dirigé vers le centre du cercle (avec $\underline{a_N}.=v^2/R$)

On choisit le repère tel que

(Ox) est suivant l'accélération normale et il est dirigé vers le centre du cercle (Oy) est perpendiculaire à (Ox)

Sur (Ox)
$$T_2+T_1 \sin \theta=ma_N \Rightarrow T_2+T_1 \sin \theta=m\frac{v^2}{R}$$

Sur (Oy) p-
$$T_1 \cos \theta = 0 \Rightarrow mg = T_1 \cos \theta$$

Donc
$$T_1 = \frac{mg}{\cos\theta}$$

$$T_2 = m \frac{v^2}{R} - T_1 \sin \theta = m \frac{v^2}{R} - \frac{mg}{\cos \theta} \sin \theta$$

Donc
$$T_2 = m \frac{v^2}{R} - m g tg \theta$$

La vitesse angulaire minimum ω_{min} pour laquelle le fil du bas reste tendu

Pour que le fil du bas reste tendu, il faut que T₂≥0

$$T_2 = m \frac{v^2}{R} - m g tg \theta \ge 0 \implies \frac{v^2}{R} \ge g tg \theta$$

Avec
$$v=\omega R \Rightarrow \frac{\omega^2 R^2}{R} \ge g tg \theta$$
 avec $R=OM=L$

Donc
$$\omega^2 L \ge g \operatorname{tg} \theta \Rightarrow \omega^2 \ge \frac{g \operatorname{tg} \theta}{L}$$

Et
$$\omega \ge \sqrt{\frac{g \operatorname{tg} \theta}{L}}$$
alors $\omega_{min} = \sqrt{\frac{g \operatorname{tg} \theta}{L}}$

EXERCICE 3

1- la vitesse linéaire du corps.

L=30cm , 2α =60°.(α =30°) et ω =10 tr/mn.

$$\begin{cases} 10x2\pi \longrightarrow 60 \text{ s} \\ \omega \longrightarrow 1\text{s} \end{cases} \Rightarrow \omega = \frac{10x2\pi}{60} = \frac{\pi}{3}rd/s$$

$$v = \omega R$$
 et $R = l \sin \alpha$

Alors
$$v = \omega \operatorname{l} \sin \alpha = \frac{\pi}{3} x 0.3 x \sin 30 = 0.157 m/s$$

Déterminons la réaction (N) de la surface du cône sur le corps et la tension du fil (T).

D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{p} + \vec{N} + \vec{T} = m\vec{a}$$

On choisit un repère tel que (N) est suivant l'accélération normale et dirigé vers le centre du cône et l'axe (T) est perpendiculaire à (N)

$$sur(N) : T_{N}-N_{N} = m a_{N} (*)$$

 $sur(T): T_T + N_T - p = m a_T = 0$ (car $a_T = 0$, parce que la vitesse est constante)

 \Rightarrow T cos α + N sin α - p = 0

(*)
$$\Rightarrow$$
T sin α – N cos α = $m\frac{v^2}{R}$ = $m\frac{\omega^2 R^2}{R}$

Donc
$$T = \frac{m\omega^2 R}{\sin \alpha} + N \frac{\cos \alpha}{\sin \alpha}$$

Onle remplace dans la deuxième équation

$$\left(\frac{m\omega^2 R}{\sin\alpha} + N \frac{\cos\alpha}{\sin\alpha}\right) \cos\alpha + N \sin\alpha - p = 0$$

$$N\left(\frac{\cos^{2}\alpha}{\sin\alpha} + \sin\alpha\right) = p - \frac{m\omega^{2}R}{\sin\alpha}\cos\alpha \Rightarrow N\left(\frac{1}{\sin\alpha}\right) = \frac{mg\sin\alpha - m\omega^{2}R\cos\alpha}{\sin\alpha}$$

Donc N=m(g sin $\alpha - \omega^2 R$), En remplaçant R par l sin α , on aura

 $N=m(g \sin \alpha - \omega^2 l \sin \alpha \cos \alpha) = 7,92 N$

Alors
$$T = \frac{m\omega^2 l \sin\alpha}{\sin\alpha} + N \frac{\cos\alpha}{\sin\alpha} = 5,88 \text{ N}$$

(si on remplace N par son expression, on trouve T=m g cos α +m ω^2 l (1 - cos $^2\alpha$) alors T= m g cos α +m ω^2 l sin $^2\alpha$)

Ou

On peut choisir un autre repère. (Ox) est parallèle au fil dans le sens de \vec{T} et (Oy) est perpendiculaire à (Ox), mais dans ce cas, il faut faire la projection du vecteurs accélération normale $\vec{a_N}$.

Sur (Ox): N-p sin
$$\alpha = -ma_N \cos \alpha$$
 (*)

Sur (Oy) T-p $\cos \alpha = ma_N \sin \alpha$

(*) \Rightarrow N= p sin α - m a_Ncos α =m g sin α -m ω ²l sin α cos α

Et $T=mg \cos \alpha + m \omega^2 l \sin^2 \alpha$

2^{eme} PARTIE: TRAVAIL ET ENERGIE

EXERCICE 1

$$\Delta Ec = \Sigma W_{f_{ext}} \Rightarrow Ec_B - Ec_A = W_p + W_T + W_N + W_f$$

Donc
$$Ec_B = W_T + W_f$$
 (*)

 $Ec_A =$

0 car la vitesse initiale est nulle

Avec
$$W_T = \frac{1}{2}kx^2$$
 et $W_f = -f x$

D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{N} + \vec{p} + \vec{T} + \vec{f} = m\vec{a}$$

$$\mu = tg\varphi = \frac{f}{N}$$

On choisit un repère composés de l'axe (Ox) suivant l'axe de mouvement donc dans la même direction de \vec{T} et l'axe (Oy) est suivant \vec{N}

En faisant la projection sur l'axe Oy

N-p=0
$$\Rightarrow$$
 N = mg et μ = $tg\varphi$ = $\frac{f}{mg}$

Alors f=mg tg φ

Donc (*)
$$\Rightarrow \frac{1}{2}mv_B^2 = \frac{1}{2}kx^2 - \text{mg} \text{ (tg }\varphi\text{)}$$

Alors

$$v_B^2 = \frac{2}{m} \left(\frac{1}{2} k x^2 - \text{mg x tg } \phi \right)$$

EXERCICE 2

D'après le principe de la conservation de l'énergie mécanique :

- entre les deux points A et B

$$E_{M_A} = E_{M_B} \Rightarrow E_{C_A} + E_{P_A} = E_{C_B} + E_{P_B}$$

Alors
$$E_{P_A} = E_{C_B}(*)$$

 $car E_{C_A} = 0$ puisque $v_A = 0$ car la bille est lancée sans vitesse initiale et

$$E_{P_B}=0 \; puisque \; E_{P_B}=mgh \; et \; h=0$$

Donc (*)
$$\Rightarrow mgh = \frac{1}{2}mv_B^2$$

- entre les deux points B et C

$$E_{M_B} = E_{M_C} \Rightarrow E_{C_B} + E_{P_B} = E_{C_C} + E_{P_C}$$

Alors
$$E_{C_B} = E_{C_C} + E_{P_C}$$

Donc
$$mgh = \frac{1}{2}mv_c^2 + 2mgr(*)$$

La bille quitte la gouttière au point C quand N=0,

D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{N} + \vec{p} = m\vec{a}$$

On choisit un repère composés de l'axe (OT) tangent à la demi sphère et l'axe (ON) suivant le rayon et dans le sens de \vec{N} et \vec{p}

En faisant la projection sur l'axe ON

N+p=ma_N
$$\Rightarrow N + mg = m \frac{v^2}{r}$$

Au point C pour N=0 la vitesse sera

$$mg = m\frac{v_c^2}{r} \Rightarrow v_c^2 = r g$$

$$(*) \Rightarrow mgh_C = \frac{1}{2}mgr + 2mgr = \frac{5}{2}mgr$$

Alors
$$h_C = \frac{5}{2}r$$

 h_C est la valeur minimale pour la quelle la bille atteint le point C sans quitter la gouttière

Pour $h < h_C$ la bille n'atteint pas le point C

Pour $h > h_C$ la bille atteint le point C et quitte la gouttière

EXERCICE 3

1-D'après le principe de la conservation de l'énergiemécanique :

- entre les deux points A et B

$$E_{M_A} = E_{M_B} \Rightarrow E_{C_A} + E_{P_A} = E_{C_B} + E_{P_B}$$

Alors
$$E_{C_A} = E_{C_B} + E_{P_B}$$

$$car E_{C_A} = 0$$
 puisque $v_A =$

O car le point matériel est lancée sans vitesse initiale

 $avech_B = Rcos\theta$

Donc (*)
$$\Rightarrow mgR = \frac{1}{2}mv_B^2 + \text{mg R}\cos\theta$$

Alors
$$gR = \frac{1}{2}v_B^2 + g \operatorname{Rcos}\theta (*) \Rightarrow v_B^2 = 2(gR - gR\cos\theta)$$

$$\Rightarrow v_B = \sqrt{2(gR - gRcos\theta)}$$

2-D'après le principe fondamental de la dynamique

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{N} + \vec{p} = m\vec{a}$$

On choisit un repère composés de l'axe (OT) tangent à la demi sphère et l'axe (ON) suivant le rayon et dans le sens de \vec{N}

En faisant la projection sur l'axe ON

N-p
$$\cos\theta = \max N - mg\cos\theta = -m\frac{v^2}{r}$$

3-Quand le point P quitte la sphère alors N=0

$$mg\cos\theta = m\frac{v_p^2}{R} \Rightarrow v_p^2 = Rg\cos\theta$$

(*')
$$\Rightarrow R = \frac{1}{2}R g\cos\theta + g R\cos\theta \text{ alors } \cos\theta = \frac{2}{3}$$

Donc
$$\theta_0 = 48^{\circ}$$

Le point matériel P quitte la sphère à une hauteur $h_p = \frac{2}{3} R$

L'angle par rapport à l'horizontale pour lequel le point quitte la demi sphère est 90-48=52

4-La vitesse du point matériel en ce point

$$v_p^2 = Rg\cos\theta \Rightarrow v_p = \sqrt{\frac{2}{3}Rg}$$

(Les résultats trouvés sont les mêmes que ceux trouvés en utilisant le principe fondamentale de la dynamique)