WHAT IS CLAIMED IS:

1	1. A structure for steering light, comprising:
2	a base layer;
3	a first conductive layer overlying a portion of said base layer;
4	a flexure assembly, with a portion of said flexure assembly
5	comprising an I-beam, said flexure assembly overlying a portion of said first conductive
6	layer; and
7	a beam layer overlying and coupled to said flexure assembly, said
8	beam layer adapted to rotate relative to said base layer.
1	2. The structure as in claim 1 wherein said base layer comprises a
2	non-conductive material.
1	The structure as in claim 1 further comprising a second conductive
2	layer overlying a portion of said first conductive layer, said first conductive layer
3	comprising a greater surface area than said second conductive layer.
1	4. The structure as in claim 1 wherein a portion of underlying edges
2	of said flexure assembly and said beam layer are adapted to contact said base layer upon
3	rotation of said beam layer.
1	5. The structure as in claim 3 wherein said first and second
2	conductive layers comprise polysilicon.
1	6. The structure as in claim 1 wherein said beam layer comprises an
2	electrically conductive material, said beam layer being electrically isolated from at least
3.	portions of said first conductive layer.
1	7. The structure as in claim 1 wherein said flexure assembly
2	comprises a torsion beam having first and second generally parallel arms each coupled to
3	a central beam that is generally orthogonal to said first and second arms.
1	8. The structure as in claim 7 wherein said first and second arms are
2	coupled to said beam layer.

1	9. The structure as in claim 3 wherein said first conductive layer and
2	said second conductive layer each have a central portion separate from a remaining
3	portion of the respective conductive layers, said central portions coupled together.
1	10. The structure as in claim 9 wherein said flexure assembly
2	comprises a central portion that is coupled to said second conductive layer central portion
1	11. The structure as in claim 3 further comprising a third conductive
2	layer overlying a portion of said second conductive layer, said third conductive layer
3	having a smaller surface area than said second conductive layer.
1	12. The structure as in claim 11 wherein said first, second and third
2	conductive layers have at least portions thereof electrically coupled together, said
3	electrically coupled portions adapted to operate together as a single electrode.
1	13. The structure as in claim 11 wherein said first, second and third
2	conductive layers are in separate planes.
1	14. The structure as in claim 1 wherein said underlying edges of said
2	flexure assembly and said beam layer are configured to simultaneously contact said base
3	layer upon rotation of said beam layer.
1	15. The structure as in claim 4 wherein said beam layer comprises a
2	substantially planar upper surface when said underlying edges are in contact with said
3	base layer.
1	16. An apparatus for steering light, said apparatus comprising:
2	a base layer;
3	a first conductive layer overlying said base layer;
4	a second conductive layer in a separate plane from said first
5	conductive layer, each of said conductive layers comprising at least a portion thereof that
6	is electrically coupled to at least a portion of said other conductive layer; and
7	a beam layer coupled to a rotation device, said rotation device
8	positioned between at least one of said conductive layers and said beam layer;
9	wherein said rotation device and beam layer rotate in response to
10	voltage applied to said coupled portions of said first and second conductive layers.

i	17. The apparatus as in claim 16 further comprising a third conductive
2	layer, wherein each of said first, second and third conductive layers are in a separate
3	plane from the other two conductive layers, and each of said conductive layers comprise
1	at least a portion thereof that is electrically coupled to at least a portion of said other two
5	conductive layers.

18. The apparatus as in claim 16, wherein an underlying edge of said beam layer is adapted to contact said base layer at a first location when a first voltage is applied to said electrically coupled conductive layer portions, and to contact said base layer at a second location when a second voltage is applied to said electrically coupled conductive layer portions.

1

2

3

4

5

1

2

3

1

2

3

- 19. 1 The apparatus as in claim 16 wherein said rotation device and said 2 beam layer further comprise underlying edges which are adapted to contact said base 3 layer when said voltage is applied to said electrically coupled conductive layer portions.
- 1 20. The apparatus as in claim 16 wherein said rotation device 2 comprises a torsion beam, said torsion beam underlying said beam layer and having at 3 least a portion thereof comprising an I-beam.
 - 21. The apparatus as in claim 16 wherein said first conductive layer coupled portion has a larger surface area than a surface area of said second conductive layer coupled portion.
 - 22. The apparatus as in claim 17 wherein said second conductive layer coupled portion has a larger surface area than a surface area of said third conductive layer coupled portion.
- 1 The apparatus as in claim 22 wherein said rotation device is 23. 2 coupled to said second conductive layer, said third conductive layer being disposed 3 between said second conductive and said beam layer.
- 1 24. A method of making an apparatus for steering light, said method comprising: 3
 - providing a base layer having a first portion and a second portion;

4	forming first and second stacked electrodes on said first portion
5	and said second portion, said stacked electrodes on said first portion electrically isolated
6	from said stacked electrodes on said second portion;
7	forming a flexure assembly coupled to said base layer and
8	electrically isolated from said first and second stacked electrodes; and
9	forming a beam layer coupled to said flexure assembly.
1	25. The method as in claim 24 wherein said flexure assembly
2	comprises an I-beam configuration.
1	26. The method as in claim 24 wherein said first stacked electrode is
2	formed overlying said base layer and said second stacked electrode is formed overlying
3	said first stacked electrode, said first stacked electrode comprising a greater surface area
4	than said a second stacked electrode surface area.
1	27. The method as in claim 26 further comprising forming a third
2	stacked electrode overlying said second stacked electrode, said third stacked electrode
3	comprising a greater surface area than said second stacked electrode surface area.
1	28. A method of steering light, comprising:
2	providing the structure for steering light as provided in claim 3;
3	applying a voltage to said first and second conductive layers to
4	rotate said beam layer to a desired position, said beam layer having a substantially planar
5	upper surface when in said desired position; and
6	directing a light at said beam layer.