

Biometric Backdoor?

- Accessories for impersonation:
 - Fashionable
 - Physically realizable
 - Suspicious
 - One-shot

Can we design an attack that grants (i) long-term and (ii) inconspicuous impersonation?

In Consumer Biometric Recognition

Backdoor (or Poisoning) Outline

Challenges

Crafting malicious inputs

Control input variability

Limit # of attempts

Method (briefly)

Optimize starting glasses

$$\min_{\mathbf{s.t.}} \ \mathbf{s.t.} \ \left\{ \begin{array}{c} \mathbf{min} \\ \mathbf{s.t.} \end{array} \right\} \ + \ \mathbf{coo} = \mathbf{centroid}$$

Generate all poisoning glasses

 Estimate sample to inject with population data

Results Takeaways

- Few injected samples suffice for the adversary to impersonate
- Victim can still authenticate with barely any performance degradation
- The system can still reject non-legitimate "other" users

Countermeasure

Countermeasure

- Insight: intra-user variation factors may generate consistent directional updates
- Evaluation:
 - 1. Select legitimate sequences of updates which generate directional shifts
 - 2. Test the detection with a binary threshold on the cosine similarity
- Result: 93% detection rate (@EER) on whether a pair of updates is malicious.

Conclusion

- Introduced a backdoor attack by exploiting the unsupervised template update procedure:
 - The attack copes with limited knowledge about the victim and limited capabilities of injection
 - A successful attack leads to inconspicuous and long-term impersonation
 - Some classifiers are particularly vulnerable, with only *one* injected sample sufficient to allow impersonation.
- We proposed a countermeasure and we evaluated its detection trade-offs with legitimate template updates:
 - Our countermeasure can detect poisoning samples 93% of times

