Active galactic nuclei

Observable quantities

Spectral appearance

- Classification of sources done based on their energy spectrum
- In vF_v plot, equal graph area corresponds to equal energy
- Example: 3C 273, the 1st quasar
 - Peak power at low-E γ-rays
 - Narrow lines weak

Spectral appearance

- Radio emission has been an important characteristic for quasars
 - 10 % of quasars show strong radio emission
 - Still the major energy output in other wavelengths, i.e. IR or X-rays and γ-rays
- Radio-loud galaxies tend to be associated with elliptical galaxies while radio-quiet occur mostly in spirals
- Structures visible in radio VLBI, such as double lobes and jets, are important for the study of AGNs

Spectral appearance

- Strong emission lines of two types usually observed:
 - Broad lines (0.05 $< \delta v/v <$ 0.1 base of the line): in quasars and Seyfert 1 galaxies
 - Narrow lines ($\delta v/v \sim 0.002$ FWHM): Seyfert 2 only show narrow lines
- Recognized lines allow for the redshift to be measured $z=(\lambda_o-\lambda_e)/\lambda_e$
 - Redshift also determines, which shifted lines are seen within the fixed optical band (from H Balmer to originally UV lines of e.g. C or Mg)
- Objects, where there are no lines or they are weak, are called BL Lacs
 - Variability and polarization measurements help in classification
- Absorption lines also present in spectra, originating to either AGN outflows or the intergalactic medium

Unified model

- Radio-loud quasars are radio galaxies seen end-on
- Seyfert galaxies:
 - Emission lines come from reprocessing clouds, whose velocities determine the line widths
 - There is an outer dust torus which may block the view to the central region
 - Thus, Seyfert 1 are such systems seen more face-on while Seyfert 2 more edge-on

Distances

- Redshift: cosmological origin largely accepted
- Luminosity distance $d_L = cH_0^{-1}(z + 0.5(1-q_0)z^2 +...)$, where q_0 is the deceleration factor for cosmic expansion
 - Gives the diminution in total flux $F=L/4\pi d_L^2$
 - Therefore, based on the measured fluxes, intrinsic luminosities should have the energy of hundreds of galaxies in a volume million times smaller

Distances: arguments supporting cosmic interpretation

- Quasars appear associated with galaxy clusters of similar redshifts
- Continuity in object luminosities: from high-L Seyferts to low-L quasars
- Absorption line ratios are related to the size of the photoionized system, which should be that of intervening galactic haloes
- Gravitational lensing: light from a distant quasar may be seen as several lensed images (identical spectra&redshift, but variability may have delay)

Sizes

- optical: unable to see much, so the structures are probably ~1pc (indirect evidence from line-emitting regions suggests similar scales)
- radio: VLBI, size from angular size: $I=\theta cz/H_0$ (excluding relativistic corrections), giving ~1pc at 100 Mpc (z=0.03)
- variability from seconds to years observed: variable emission region constrained by light travel time: I<ct_{var}
 - X-ray flaring on hour timescale is common: I<10¹⁵ cm
 - relativistic motions, however, mean that the timescales are longer in the source rest frame and the sizes are underestimated
 - Thus, 10^{15} (M/ 10^8 M_{sol}) cm estimated upper limit for the central engine size, while the minimum radius, 3 Schwarzschild radii, is ~ 10^{14} (M/ 10^8 M_{sol}) cm

Mass determination

- Based on luminosity: matter is converted into energy so $M=L\Delta t/\eta c^2$
 - Assuming very efficient: $\eta^{-1}/10$
 - Source time can be estimated from radio lobes, measuring how fast the jet material pushes into the intergalactic medium: v^10^3 km/s
 - e.g. Cyg A with lobe separation 80 kpc has $\Delta t^4 \times 10^7$ yr, resulting in M $^10^8$ M_{sol}
 - Since 1% of galaxies are active, another time estimate got by taking 0.01 galaxy lifetime (10^{10} yr)
 - Activity time 10⁸ yr with a high luminosity 10⁴⁷ erg/s gives M~10¹⁰ M_{sol}

Mass determination

- Alignment time of rotational axes: $\Delta t_l > L/\eta \Delta M c^2$ so $M > L/\eta c^2 \Delta t_l$ (where L is angular momentum), giving 10^8 M_{sol}
- Luminosity constrained by the Eddington limit L_{Edd} = 1.3×10³⁸ (M/M_{sol}) erg/s, so AGNs require M at least in range 10⁶-10¹⁰ (assuming spherical accretion)
- Variability and light-crossing time: $t \ge R/c \ge 2GM/c^3 = 0.98 \times 10^{-5}$ (M/M_{sol}) s
 - In case of periodic motion, orbital time $t_K \ge 8.8 \times 10^{-5}$ (M/M_{sol}) s

Mass determination

- A central mass affects the distribution and movement of the stellar population
 - Connecting brightness to mass is difficult
 - Velocity dispersion gives a better estimate, and often a compact central object is needed to explain results
 - Direct observation of stellar orbits in our Galactic centre indicate the presence of a massive BH