Example 3

In $\triangle ABC$, $\angle BAD=30^{\circ}$. $\angle BAC=120^{\circ}$. D is the midpoint of BC. Prove: AB=2AC.

Solution:

Extend AD to E such that AD = DE. Connect BE. Since $DE = AD, \angle BDE = \angle CDA.BD = DC$. Thus $\triangle BDE \cong \triangle CDA, BE = AC$, and $\angle E = \angle DAC$.

Since $\angle BAC=120^\circ, \angle BAD=30^\circ, \angle DAC=\angle BAC-\angle BAD=90^\circ.$ Thus, $\angle E=90^\circ.$ Since $\angle BAD=30^\circ, AB=2AC.$