Zusammenfassung Algebr. Topologie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein **affines** n-**Simplex** ist die konvexe Hülle von n+1 affin unabhängigen Punkten $p_0, ..., p_{n+1} \in \mathbb{R}^N$. Die konvexe Hülle von einer Teilmenge dieser Eckpunkte wird **Seite** genannt. Das **Standard**-n-**Simplex** Δ_n ist das von den n+1 Standard-Basisvektoren im \mathbb{R}^{n+1} aufgespannte Simplex.

Def. Ein (endlicher) **geometrischer Simplizialkomplex** ist eine (endliche) Menge S endlich vieler affiner Simplizes im \mathbb{R}^N , sodass:

- Ist $K \in \mathcal{S}$ und $T \subset K$ eine Seite von K, dann ist auch $T \in \mathcal{S}$.
- Für alle $K_1, K_2 \in \mathcal{S}$ ist $K_1 \cap K_2$ entweder eine Seite von K_1 und K_2 oder leer.

Def. Jeder Simplizialkomplex S ist eine **Triangulierung** seines **Polyeders**, dem topologischen Raum $|S| := \bigcup_{K \in S} K$.

Def. Ein geometrischer Simplizialkomplex mit einer Totalordnung auf der Menge der Eckpunkte heißt **geordnet**.

Notation. Ein *n*-Simplex mit Eckpunkten $v_0,...,v_n$ in einem geordneten geom. Simplizialkomplex wird mit $\langle v_0,...,v_n\rangle$ bezeichnet, falls $v_0 < v_1 < ... < v_n$.

Notation. $S_n := \{ \sigma \in S \mid \sigma \text{ ist geordneter } n\text{-Simplex} \}$

Def. Eine simpliziale *n*-Kette in einem geordneten geom. Simplizialkomplex ist eine endliche formale Linearkombination

$$\sum_{\sigma \in \mathcal{S}_n} \lambda_{\sigma} \cdot \sigma,$$

wobei $\lambda_{\sigma} \in \mathbb{Z}$. Die Menge solcher Linearkombinationen ist $C_n(\mathcal{S})$. Sie ist die freie abelsche Gruppen über der Menge der Simplizes.

Bemerkung. $C_n(\mathcal{S})$ ist eine Gruppe.

Def. Der Rand eines orientierten n-Simplex $\langle v_0, ..., v_n \rangle \in \mathcal{S}$ ist

$$\delta\langle v_0, ..., v_n \rangle := \sum_{i=0}^n (-1)^i \langle v_0, ..., \hat{v_i}, ..., v_n \rangle.$$

Durch lineare Fortsetzung erhalten wir einen Gruppenhomo $\partial_n : C_n(\mathcal{S}) \to C_{n-1}(\mathcal{S})$.

Def. Ein Kettenkomplex C_{\bullet} ist eine Folge $(C_n)_{n\in\mathbb{N}}$ und Gruppenhomomorphismen $\partial_n:C_n\to C_{n-1}$ mit der Eigenschaft $\partial_{n-1}\circ\partial_n=0.$

Def. Sei C_{\bullet} ein Kettenkomplex.

- $Z_n(C_{\bullet}) := \ker \partial_n \subset C_n(C_{\bullet})$ heißt Gruppe der n-Zykel,
- $B_n(C_{\bullet}) := \operatorname{im} \partial_{n+1} \subset Z_n(C_{\bullet})$ heißt Gruppe der *n*-Ränder,
- $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$ heißt n-te Homologiegruppe.

Prop. Für $n \ge 1$ gilt $\partial_{n-1} \circ \partial_n = 0$. Die simplizialen n-Ketten bilden also einen Kettenkomplex.

Def. Ein singuläres n-Simplex in einem topologischen Raum X ist eine stetige Abbildung $\sigma: \Delta^n \to X$. Wir bezeichnen mit $\Delta_n(X)$ die Menge der singulären n-Simplizes in X und mit $C_n(X)$ die freie abelsche Gruppe über $\Delta_n(X)$. Wir definieren

$$\partial_n: C_n(X) \to C_{n-1}(X), \quad \sigma \mapsto \sum_{i=0}^n (-1)^i \sigma_{\langle e_o, \dots, \hat{e_i}, \dots, e_n \rangle}.$$

Analog zu oben gilt $\partial_{n-1} \circ \partial_n = 0$, man erhält also einen Komplex $C_{\bullet}(X)$ der singulären Ketten in X. Die Homologie dieses Komplexes bezeichnet man mit $H_n(X)$.

Def. Eine Kettenabbildung zwischen Kettenkomplexen C_{\bullet} und D_{\bullet} ist eine Familie $(f_n: C_n \to D_n)_{n \in \mathbb{N}}$ von Gruppenhomomorphismen, welche mit dem Differential verträglich sind, d. h.

$$\forall n \in \mathbb{N} : \partial_n^{(D)} \circ f_n = f_{n-1} \circ \partial_n^{(C)}.$$

Aus einer solchen Abbildung erhält man wiederum eine Abbildung $H_n(f): H_n(C_{\bullet}) \to H_n(C_{\bullet})$ für alle $n \in \mathbb{N}$. Somit definiert H_n einen Funktor von der Kategorie der Kettenkomplexe in die Kategorie der abelschen Gruppen.

Def. Für eine Abbildung $f: X \to Y$ von topologischen Räumen erhalten wir eine Abbildung $f_*: C_{\bullet}(X) \to C_{\bullet}(Y)$ definiert durch $f_*(\sigma) := f \circ \sigma$ für ein n-Simplex $\sigma: \Delta_n \to X$. Die Zuordnung $f \mapsto f_*$ erfüllt die Funktiorialitätsaxiome. Somit definiert H_n für alle $n \in \mathbb{N}$ einen Funktor $\mathbf{Top} \to \mathbf{AbGrp}$.

Korollar. Homöomorphe Räume haben isomorphe singuläre Homologiegruppen.

Prop. Sei $\pi_0(X)$ die Menge der Wegekomponenten von X. Die Inklusionen $A \hookrightarrow X$ (für $A \in \pi_0(X)$) induzieren einen Isomorphismus

$$\bigoplus_{A \in \pi_0(X)} H_*(A) \cong H_*(X).$$

Prop. Sei $X \neq \emptyset$ wegzusammenhängend. Dann ist $H_0(X) \cong \mathbb{Z}$.

Def. Eine Kettenhomotopie zw. Kettenabb. $\phi_*, \psi_*: C_{\bullet} \to D_{\bullet}$ ist eine Folge von Homomorphismen $P_n: C_n \to D_{n+1}$ mit

$$\forall n \in \mathbb{N} : \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n = \phi_n - \psi_n.$$

Prop. Seien $\phi_*, \psi_* : C_{\bullet} \to D_{\bullet}$ kettenhomotop. Dann gilt

$$H_*(\phi_*) = H_*(\psi_*) : H(C_{\bullet}) \to H(D_{\bullet}).$$

Satz. Seien $f,g:X\to Y$ homotope Abbildungen. Dann sind $f_*,g_*:X_\bullet\to Y_\bullet$ kettenhomotop.

Korollar. • Seien $f,g:X\to Y$ homotope Abbildungen. Dann gilt

$$f_* = g_* : H_*(X) \to H_*(Y).$$

 Homotopieäquivalente Räume haben isomorphe Homologiegruppen.

Def. Ein **Unterkomplex** D_{\bullet} von C_{\bullet} ist eine Folge von Untergruppen $D_n \subset C_n$, sodass gilt: $\partial D_n \subset D_{n-1}$ für alle $n \geq 1$.

Def. Ist $D_{\bullet} \subset C_{\bullet}$ ein Unterkomplex, so ist der **Quotientenkomplex** C_{\bullet}/D_{\bullet} definiert durch

$$(C_{\bullet}/D_{\bullet})_n := C_n/D_n, \quad \partial_n^{C/D}[c] := [\partial_n^C(c)].$$

Def. Sei (X,A) ein Raumpaar. Der relative singuläre Kettenkomplex $C_{\bullet}(X,A)$ ist definiert als Quotientenkomplex X_{\bullet}/A_{\bullet} . Dessen Homologiegruppen heißen relative singuläre Homologiegruppen $H_n(X,A)$.

Bemerkung. H_n ist ein Funktor $\mathbf{Top}(2) \to \mathbf{AbGrp}$.

Def. Eine Homotopie zwischen Abbildungen von Raumpaaren $f,g:(X,A)\to (Y,B)$ ist eine Homotopie $H:[0,1]\times X\to Y$ zwischen f und g mit $H([0,1]\times A)\subset Y$.

Prop. Homotope Abbildungen von Raumpaaren induzieren dieselbe Abbildung in relativer Homologie.

Def. Ein Kettenkomplex heißt **exakt** (oder **azyklisch**), falls seine Homologiegruppen alle Null sind, d. h. $\forall n \in \mathbb{N} : \text{im } \partial_{n+1} = \ker \partial_n$.

Def. Eine kurze exakte Sequenz (keS) ist ein exakter Kettenkomplex der Gestalt

$$0 \to A \to B \to C \to 0$$
.

Def. Eine kurze exakte Sequenz von Kettenkomplexen ist ein Diagramm der Form

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

in jedem Grad eine kurze exakte Sequenz

$$0 \to A_n \to B_n \to C_n \to 0$$

Bemerkung. Ist (X,A)ein Raumpaar, so erhält man eine kurze exakte Sequenz

$$0 \to C_{\bullet}(A) \to C_{\bullet}(X) \to C_{\bullet}(X, A) \to 0.$$

Prop (Schlangenlemma). Die ex. Sequenz $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ induziert in jedem Grad einen sogenannten **verbindenden Homomorphismus** $\partial_n : H_n(C) \to H_{n-1}(A)$, sodass die Sequenz

...
$$\to H_n(A) \to H_n(B) \to H_n(C) \xrightarrow{\partial_n} H_{n-1}(A) \to H_{n-1}(B) \to ...$$
 exakt ist. Diese Sequenz wird lange exakte Sequenz genannt.

Korollar. Sei (X, A) ein Raumpaar. Dann gibt es Homomorphismen $\partial_n : H_n(X, A) \to H_{n-1}(A)$, sodass die Sequenz

$$\dots \to H_n(A) \to H_n(B) \to H_n(X,A) \to H_{n-1}(A) \to \dots$$
 exakt ist.

Def. Die reduzierte Homologie $\hat{H}_*(X)$ eines topologischen Raumes X ist die Homologie des Kettenkomplexes

...
$$\to C_2(X) \xrightarrow{\partial_n} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\epsilon} X \to 0$$
,

wobei ϵ der sogenannte Augmentierungshomomorphismus ist:

$$\epsilon: \sum_{\sigma \in \Delta_0(X)} \lambda_{\sigma} \cdot \sigma \mapsto \sum_{\sigma} \lambda_{\sigma} \in \mathbb{Z}.$$

Prop. • $\tilde{H}_n(X) = H_n(X)$ für $n \ge 1$

- Ist $X = \emptyset$, so ist $\tilde{H}_n(X) = 0$ für $n \ge 0$ und $\tilde{H}_{-1}(X) = \mathbb{Z}$.
- Ist $X \neq \emptyset$, so ist $H_n(X) \cong \tilde{H}_n(X) \oplus \mathbb{Z}$, jedoch nicht kanonisch.

- Ist X kontrahierbar, so gilt $\tilde{H}_n(X) = 0$ für alle $n \in \mathbb{N}$.
- $\bullet\,$ Ist (X,A) ein Raumpaar, so gibt es eine lange exakte Sequenz

$$\dots \to \tilde{H}_0(A) \to \tilde{H}_0(X) \to \tilde{H}_0(X,A) \to \tilde{H}_{-1}(A) \to \tilde{H}_{-1}(X) \to 0$$

Satz. Sei (X,R) ein Raumpaar, $U\subset R$ mit $\overline{U}\subset$ int R. Dann induziert die Inklusion $(X-U,R-U)\hookrightarrow (X,R)$ Isomorphismen

$$H_n(X-U,R-U) \to H_n(X,R)$$
 für alle $n \ge 0$.

Bemerkung. Eine äquivalente Aussage zum Ausschneidungssatz ist: Seien $A, B \subset X$ mit $X = \operatorname{int} A \cup \operatorname{int} B$. Dann induziert die Inklusion $(B, A \cap B) \to (X, A)$ Isomorphismen in Homologie.

Def (Eilenberg-Steenrod-Axiome). Eine Homologietheorie ist eine Folge von Funktoren

$$H_n: \mathbf{Top}(2) \to \mathbf{AbGrp},$$

und natürlichen Transformationen

$$\delta_n: H_n(X,A) \to H_{n-1}(A,\emptyset)$$

mit den folgenden Eigenschaften:

- Homotopieinvarianz: Seien f, g: (X, A) → (B, Y) homotop als Abbildungen von Raumpaaren. Dann gilt f* = g*: Hn(X, A) → Hn(Y, B).
- Lange exakte Sequenz: Die Inklusionen $A \hookrightarrow X$ und $(X,\emptyset) \hookrightarrow (X,A)$ induzieren eine l.e.S.

...
$$\rightarrow H_n(A) \rightarrow H_n(X) \rightarrow H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A) \rightarrow ...$$

• Ausschneidung: Ist $U \subset A$ mit $\overline{A} \subset \operatorname{int}(A)$, dann induziert die Inklusion $(X - U, A - U) \hookrightarrow (X, A)$ Isomorphismen

$$H_n(X-U,A-U) \to H_n(X,A).$$

Def. Die Koeffizienten einer Homologietheorie sind die Homologiegruppen $H_n(pt)$ des einpunktigen Raums. Eine Homologietheorie heißt gewöhnlich, falls $H_n(pt) = 0$ für n > 0.

Bemerkung. Manchmal fordert man auch das Summenaxiom: Für eine Familie $(X_i)_{i\in I}$ von topologischen Räumen induzieren die Inklusionen $X_i \to X$ in die disjunkte Summe X aller X_i einen Iso

$$\bigoplus_{i \in I} H_n(X_i) \xrightarrow{\cong} H_n(X).$$

 $Bemerkung.\ Die singuläre Homologie ist eine gewöhnliche Homologietheorie, die das Summenaxiom erfüllt.$

Bsp (Homologie von wichtigen Räumen).

$$H_i(S^n) = H_i(\mathbb{R}^n, \mathbb{R}^n - \{0\}; R) = \begin{cases} R, & \text{wenn } i = 0, n \\ 0, & \text{sonst} \end{cases}$$

$$H_i(\mathbb{R}P^n) = \begin{cases} \mathbb{Z}, & \text{wenn } i = 0\\ \mathbb{Z}/2, & \text{wenn } i < n \text{ ungerade}\\ \mathbb{Z}, & \text{wenn } i = n \text{ ungerade}\\ 0, & \text{sonst} \end{cases}$$

$$H_i(\mathbb{R}P^n; \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2, & \text{wenn } i \leq n \\ 0, & \text{sonst} \end{cases}$$

$$H_i(\mathbb{C}P^n) = \begin{cases} \mathbb{Z}, & \text{wenn } i \leq 2n \text{ und } i \text{ gerade} \\ 0, & \text{sonst} \end{cases}$$