Modelos Log-lineares usando SAS

EXEMPLO 1 - Bicicleta

Deseja-se estudar se existe associação entre o tipo de bicicleta ("moutain " ou outra) e o uso de capacete de segurança. Para tal foi selecionada uma amostra de 100 pessoas que andam de bicicleta e as classificou segundo tipo de capacete e se usa capacete ou não

Programa:

```
/* ******* Entrada de dados ******** */
data bicicleta;
  input tipo $ capacete $ freq;
  cards;
 moutain sim 34
  moutain nao 32
  outra sim 10
 outra nao 24
run;
/* **** Modelo Saturado **** */
proc catmod data=bicicleta;
  title ' Modelo Saturado ' ;
  weight freq;
  model tipo*capacete= response /noresponse noiter noparm;
  loglin tipo| capacete;
run;
/* **** Modelo de independencia **** */
proc catmod data=bicicleta;
    Title 'Modelo de independencia ';
    weight freq;
   model tipo*capacete=_response_/noresponse noiter noparm;
   loglin tipo capacete;
run;
```

Modelo Saturado

The CATMOD Procedure

Data Summary				
Response	tipo*capacete	Response Levels	4	
Weight Variable	freq	Populations	1	
Data Set	BICICLETA	Total Frequency	100	
Frequency Missing	0	Observations	4	

Population Profiles		
Sample	Sample Size	
1	100	

Response Profiles					
Response tipo capacete					
1	moutain	nao			
2	moutain sim				
3	outra	nao			
4	outra	sim			

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance				
Source DF Chi-Square Pr > ChiSq				
tipo	1	11.29	0.0008	
capacete	1	3.28	0.0700	
tipo*capacete	1	4.33	0.0374	
Likelihood Ratio	0			

Modelo de independencia

The CATMOD Procedure

Data Summary				
Response tipo*capacete Response Levels				
Weight Variable	freq	Populations	1	
Data Set	BICICLETA	Total Frequency	100	
Frequency Missing	0	Observations	4	

Population Profiles		
Sample Size		
1	100	

Response Profiles					
Response tipo capacete					
1	moutain	nao			
2	moutain	sim			
3	outra	nao			
4	outra	sim			

Maximum Likelihood Analysis		
Maximum likelihood computations converged.		

Maximum Likelihood Analysis of Variance				
Source	DF	Chi-Square	Pr > ChiSq	
tipo	1	9.87	0.0017	
capacete	1	1.43	0.2313	
Likelihood Ratio	1	4.56	0.0328	

Analysis of Maximum Likelihood Estimates						
Parameter Estimate Standard Chi- Estimate Error Square Pr > ChiSq						
tipo	moutain	0.3779	0.1124	11.29	0.0008	
capacete	nao	0.2037	0.1124	3.28	0.0700	
tipo*capacete	moutain nao	-0.2340	0.1124	4.33	0.0374	

EXEMPLO 2 - Uso de Álcool, Cigarro e Maconha (Agresti – cap. 7)

Uma pesquisa que perguntou a alunos do último ano de uma escola secundária perto de Dayton, Ohio, se eles já haviam usado álcool, cigarro ou maconha. Designando as variáveis nesta tabela de contingência $2 \times 2 \times 2$ por X para uso de álcool, Y para uso de cigarro e Z para uso de maconha.

Tabela 7.1 - Consumo de álcool (X), cigarro (Y) e maconha (Z) para alunos do último ano do ensino médio.

Alcohol	Cigarette	Marijuana Use	
Use	Use	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

Source: Thanks to Prof. Harry Khamis, Wright State University and United Health Services in Dayton for these data (the Substance data file at the text website).

Programa:

```
Exemplo - Uso de Drogas ************
    ****** Entrada de dados
/* X (A) - uso de \acute{a}lcool
/* Y (C) - uso de cigarros */
/* Z (M) - uso de maconha */
data dados;
 input x $ y $ z $ freq;
 datalines;
s s s 911
s s n 538
s n s 44
s n n 456
n s s
n s n 43
      2
n n s
n n n 279
run;
proc freq data=dados order=data;
 weight freq;
 table z*x*y;
run;
```

```
/* **** Modelo Saturado **** */
proc catmod data=dados order=data;
  title ' Modelo Saturado ' ;
   weight freq;
   m0: model x*y*z= response / noresponse noiter noparm;
   loglin x|y|z;
run;
/* **** Modelo Associação Homogênea **** */
proc catmod order=data;
   title ' Modelo Associacao Homogenea ' ;
   weight freq;
   model x*y*z= response / noprofile noresponse noiter noparm pred=freq;
   loglin x|y x|z y|z;
run;
/* **** Modelos Independência Condicional **** */
/* de Y e Z dado X */
proc catmod data=dados order=data;
   weight freq;
   model x*y*z= response /noresponse noiter noparm pred=freq;
   loglin x|y x|z;
run;
/* de X e Z dado Y */
proc catmod order=data;
   weight freq;
  model x*y*z=_response_/noresponse noiter noparm;
   loglin x|y y|z;
run;
/* de X e Y dado Z */
proc catmod order=data;
   weight freq;
   model x*y*z= response /noresponse noiter noparm;
   loglin x|z y|z;
run;
/* **** Modelos Independência Conjunta **** */
/* X conjuntamente indep. de Y e Z */
proc catmod order=data;
  weight freq;
   model x*y*z= response /noresponse noiter noparm;
   loglin x y|z;
run;
/* Y conjuntamente indep. de X e Z */
proc catmod order=data;
  weight freg;
   model x*y*z= response /noresponse noiter noparm;
   loglin y x \mid z;
run;
```

```
/* Z conjuntamente indep. de X e Y */
proc catmod order=data;
 weight freq;
 model x*y*z= response /noresponse noiter noparm;
  loglin z x|y ;
run;
/* **** Modelo Independência mútua **** */
proc catmod order=data;
weight freq;
  model x*y*z= response /noresponse noiter noparm;
  loglin x y z ;
run;
/* **** Determinando as Estimativas dos Parametros **** */
/* **** Modelo Associação Homogênea * *** */
proc catmod order=data;
  title ' Modelo Associacao Homogenea ' ;
  weight freq;
  model x*y*z= response / noprofile noresponse noiter;
  loglin x|y x|z y|z;
run;
/* **** Desterminando Frequências Esperadas **** */
proc catmod order=data;
 title ' Modelo Associacao Homogenea ' ;
  weight freq;
 model x*y*z= response / noprofile noresponse noiter noparm pred=freq;
  loglin x|y x|z y|z;
run;
/* ***** Imprimindo os valores Preditos ***** */
            Modelo Associação Homogênea * **** */
proc catmod order=data;
  title ' Modelo Associacao Homogenea ' ;
  weight freq;
  model x*y*z= response / noprofile noresponse noiter p;
  loglin x|y x|z y|z;
run;
```

Modelo de Interação Tripla - Saturado

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance				
Source	DF	Chi-Square	Pr > ChiSq	
x	1	157.46	<.0001	
у	1	3.37	0.0662	
x*y	1	24.46	<.0001	
z	1	99.76	<.0001	
x*z	1	37.74	<.0001	
y*z	1	29.76	<.0001	
x*y*z	1	0.39	0.5316	
Likelihood Ratio	0			

Modelo de Associação Homogênea

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance						
Source	ource DF Chi-Square Pr > Chi					
x	1	174.68	<.0001			
у	1	26.42	<.0001			
x*y	1	139.32	<.0001			
z	1	101.87	<.0001			
x*z	1	41.29	<.0001			
y*z	1	302.14	<.0001			
Likelihood Ratio	1	0.37	0.5408			

Modelos de Independência Condicional

Modelo de Independência Condicional de X e Y dado Z

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance					
Source DF Chi-Square Pr > ChiSq					
x	1	198.52	<.0001		
z	1	155.20	<.0001		
x*z	1	83.00	<.0001		
у	1	292.68	<.0001		
y*z	1	401.17	<.0001		
Likelihood Ratio	2	187.75	<.0001		

Modelo de Independência Condicional de X e Z dado Y

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance					
Source DF Chi-Square Pr > ChiSq					
x	1	579.20	<.0001		
у	1	10.93	0.0009		
x*y	1	295.07	<.0001		
z	1	207.36	<.0001		
y*z	1	401.17	<.0001		
Likelihood Ratio	2	92.02	<.0001		

Modelo de Independência Condicional de C e M dado A

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance							
Source	Source DF Chi-Square Pr > ChiSo						
x	1	213.50	<.0001				
у	1	19.87	<.0001				
x*y	1	295.07	<.0001				
z	1	86.20	<.0001				
x*z	1	82.95	<.0001				
Likelihood Ratio	2	497.37	<.0001				

Modelos de Independência Conjunta

Modelo de Independência Conjunta X de Y e Z

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance						
Source DF Chi-Square Pr > ChiSq						
x	1	892.31	<.0001			
у	1	292.71	<.0001			
z	1	207.38	<.0001			
y*z	1	401.20	<.0001			
Likelihood Ratio	3	534.21	<.0001			

Modelo de Independência Conjunta Y de X e Z

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance						
Source DF Chi-Square Pr > ChiSq						
у	1	216.28	<.0001			
x	1	198.44	<.0001			
z	1	86.22	<.0001			
x*z	1	82.97	<.0001			
Likelihood Ratio	3	939.56	<.0001			

Modelo de Independência Conjunta Z de X e Y

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance						
Source DF Chi-Square Pr > ChiSq						
z	1	55.22	<.0001			
x	1	579.20	<.0001			
у	1	19.87	<.0001			
x*y	1	295.07	<.0001			
Likelihood Ratio	3	843.83	<.0001			

Modelo de Independência Mútua

Maximum Likelihood Analysis	
Maximum likelihood computations converged	J.

Maximum Likelihood Analysis of Variance				
Source	DF	Chi-Square	Pr > ChiSq	
x	1	892.65	<.0001	
у	1	216.28	<.0001	
z	1	55.22	<.0001	
Likelihood Ratio	4	1286.02	<.0001	

Resumindo e Analisando os Resultados:

Complete a tabela a seguir consultando as saídas apresentadas anteriormente.

Modelo	Equação do Modelo	G^2	Gl	p-value
1 [XYZ]		-	0	-
2 [XY] [XZ] [YZ]				
3 [XZ] [YZ]				
4 [XY] [YZ]				
5 [YX] [XZ]				
6 [X] [YZ]				
7 [Y] [XZ]				
8 [Z] [XY]				
9 [X] [Y] [Z]				

Modelo Associação Homogênea

• Estimativas dos Parâmetros

The CATMOD Procedure

Data Summary				
Response	x*y*z	Response Levels	8	
Weight Variable	freq	Populations	1	
Data Set	PRED	Total Frequency	2276	
Frequency Missing	0	Observations	8	

Maximum Likelihood Analysis
Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance					
Source	DF	Chi-Square	Pr > ChiSq		
x	1	174.68	<.0001		
у	1	26.42	<.0001		
x*y	1	139.32	<.0001		
z	1	101.87	<.0001		
x*z	1	41.29	<.0001		
y*z	1	302.14	<.0001		
Likelihood Ratio	1	0.37	0.5408		

Analysis of Maximum Likelihood Estimates						
Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq	
x	s	1.5040	0.1138	174.68	<.0001	
у	s	0.2823	0.0549	26.42	<.0001	
x*y	s s	0.5136	0.0435	139.32	<.0001	
z	s	-1.1960	0.1185	101.87	<.0001	
x*z	s s	0.7465	0.1162	41.29	<.0001	
y*z	s s	0.7120	0.0410	302.14	<.0001	

Note que:

$$\hat{\theta}_{AC} = \exp(4x0,5136) = \exp(2,0544) = 7,8021$$

$$\hat{\theta}_{AM} = \exp(4x0,7465) = \exp(2,9686) = 19,8062$$

$$\hat{\theta}_{CM} = \exp(4x0,7120) = \exp(2,848) = 17,2532$$

• Frequências Esperadas

	Maximum Likelihood Predicted Values for Frequencies							
			Observed		Predi			
x	у	z	Frequency	Standard Error	Frequency	Standard Error	Residual	
s	s	s	911	23.37434	910.3832	23.3514	0.61683	
s	s	n	538	20.26889	538.6168	20.2535	-0.61683	
s	n	s	44	6.568819	44.61683	6.541681	-0.61683	
s	n	n	456	19.09554	455.3832	19.06099	0.61683	
n	s	s	3	1.730909	3.61683	1.631699	-0.61683	

Podemos montar a seguinte tabela com as frequências esperadas segundo o modelo obtidas com o SAS:

	maconha				
Cigarro	sim		não		
Alcool	sim	não	sim	não	
sim					
não					

Observe que:

$$\hat{\theta}_{AC} = \exp(4x0,5136) = \exp(2,0544) = 7,8021$$

ou usando as frequências esperadas temos: