Project #1: Spatial and Frequency Filtering CSC391: Introduction to Computer Vision

Grace Newman

Due date: Wednesday, February 6

3 Spatial Filtering

Original Noisy Gaussian(27x27) Median(27x27)

Based off of my experimentation using Gaussian blur and Median blur functions, it appears that Median in each case got rid of more of the noise by smoothing out the image, however the Gaussian filter kept more clarity and smoothed the image out less than the Median. I think that using k=3 as the filter size did not make much of an impact on the noisiness of the photo, however k=27 really compromised the subject of the photo by smoothing it out so much. I think that using k=9 was the best filter size option, and it depends on whether it is better to have less noise or a clearer photo whether to choose Gaussian or Median filter.

Noisy Image

Not noisy Image

window-05-05.JPG

Edges

Edges

Edges

I used cv2 Canny function to obtain these results. On the noisy image of the dog, there edges are more erratic and looks more like static, than having any real outline. The noise distracts the image from the edges and it becomes less clear what the image pattern is. However, in the not noisy image of the puppy, there are more distinct edges of the outlines of the puppy. Also with the other dataset field image used, the main outlines of where the greenery is are distinct, but within those outlines the edges are all over the places because there is more noise in the image data.

4 Frequency Analysis

DSC_9259

[2.11890000e+04 8.14108427e+03 1.43740725e+03 1.54054017e+03 1.15682117e+03 9.31837939e+02 1.20138002e+03 1.24584656e+03 4.43294263e+02 3.37862933e+02 3.99265776e+02 6.80224289e+02 1.79552489e+02 3.57678972e+02 4.62420135e+01 3.64735432e+02 6.12194182e+02 3.63302659e+02 3.48585959e+02 4.25640458e+02 4.65188832e+02 1.99034874e+02 4.00807410e+02 1.82676516e+02 3.28936109e+02 1.85008108e+02 1.61806690e+02 2.71659078e+02 2.96624991e+02 1.43671621e+02 1.63074367e+02 9.90771948e+01 7.59351191e+01 8.56745727e+01 1.54601722e+02 1.50233213e+02 3.40317590e+01 8.92185698e+01 1.18857960e+02 8.86230785e+01 7.65937015e+01 2.41558226e+02 5.24250582e+01 1.58660954e+02 1.43532936e+02 1.90659551e+02 1.03653496e+02 1.46768382e+02 1.04891195e+02 1.24234517e+02 1.32181693e+02 4.66750697e+01 etc.

DSC_9259-0.50

etc.

[2.10690000e+04 7.68367448e+03 1.38281115e+03 1.53916026e+03 9.16157673e+02 8.46189667e+02 1.36524584e+03 1.26194032e+03 5.09518285e+02 4.96841266e+02 2.37488745e+02 5.85316838e+02 2.69390040e+02 2.84834306e+02 6.56033443e+01 2.70511417e+02 7.55559154e+02 1.10112896e+02 3.29715824e+02 4.68590929e+02 4.14161557e+02 1.47460129e+02 3.95599903e+02 9.79702574e+01 2.35313046e+02 1.77687929e+02 6.99134735e+01 2.11879698e+02 1.60637844e+02 3.64895952e+02 2.53221146e+02 1.50738747e+02 1.56416091e+02 5.36024663e+01 1.68735066e+02 1.97773867e+02 1.61037033e+02 1.37921664e+02 2.76274068e+02 2.04998234e+02 8.67080941e+01 2.50873734e+02 2.48515810e+02 2.05130296e+02 4.06009151e+00 5.70523070e+02 7.24198020e+01 1.22733530e+02 1.54904312e+02 1.02820166e+02 8.97162193e+01 2.09633545e+02 2.71396365e+02 2.03050468e+02 1.34711202e+02 1.31483206e+02 1.92541833e+02 1.77399219e+02 2.21314322e+02 1.34146688e+02 5.82756464e+01 1.14799843e+02 2.39467530e+02 2.62843776e+02 1.42968808e+02 1.35213576e+02 7.74499482e+01 1.01568067e+02

[15208. 2274.35791095 1101.50845613 442.53640862 297.34238327 276.27444121 187.24166578 591.5051107 305.25659527 298.75431635 363.52565329 256.69247496 153.52578391 250.39937078 182.06015827 95.68427526 362.92105258 53.30125013 170.43752909 88.14769692 179.00667291 154.31599605 96.19787087 192.74902236 145.21114543 285.6605345 352.64979027 32.58783328 59.33819835 59.13880589 277.67006717 125.38916145 161.55429815 22.32403097 237.92609954 247.22797041 128.72271373 128.80733191 169.91607394 75.31422105 70.76636116 233.89720789 83.94441839 215.25399799 290.40909814 155.99535567 51.37822335 143.99725912 126.65948359 66.12276728 189.42296332 88.29868608 79.48483899 171.95319908 167.58880762 188.18032201 106.2785856 35.46414026 112.08829316 171.4842078 159.70618349 131.3123286 117.32054992 117.32054992 131.3123286 159.70618349 171.4842078 112.08829316 etc.

window-06-06

I18726.
543.07252214
348.6871283
221.54878374

822.73143348
513.73497202
413.39002994
515.39867836

496.69349419
378.64866613
292.73281737
400.43118954

692.93453777
499.42297141
293.1944987
325.2157066

386.82135726
207.68892166
75.35003405
157.03700719

124.24109997
44.35900216
55.54695083
134.25005573

136.93632461
176.22443496
220.5735916
153.39523754

170.89715165
57.15554133
32.42912037
96.86616351

70.17813206
103.71809823
122.02003838
103.70216122

175.74179083
172.04821135
91.09948827
63.38235213

95.36117845
102.05293641
217.5774609
89.44322131

115.83607152
133.46446008
119.6235896
54.5874227

28.01742042
126.89237635
73.70175387
28.47883746

59.94393353
105.61175301
55.66879093
96.46389377

114.07902688
67.76891769
63.47120949
21.04073333 etc.</t

- A. The image content appears to affect the decay of the magnitude of the Fourier coefficients, based on the contrast of the contents of the image. In the images of the puppy, the values mostly go from lower magnitude to higher magnitude, and have a more gradual normal curve shape on the 2D DFT. In the image with a mixture of greenery, sandy, and water content, there is more change in the values of the magnitudes. In the image of mostly sand and murkier water that is a consistent color, the magnitudes are sporadic maybe because of the edge created, and then it levels out around 160, probably because of the color consistency.
- B. For the noisy and not noisy images of the puppy, the noisy one has a lot more sporadic back and forth and creates a more jagged curve. The original image of the puppy is a much smoother plot, and it's likely because of the lack of noise. However, the majority of the two plots mirrors the same magnitudes and trends.
- C. Some of the log plots of the magnitude have higher values around the outside, such as the two puppy images. This happens because of noise in the images because it is a prevalence of the higher frequencies.
- D. If you zero the values of the lower frequencies, it would be useful for edge detection because you are not including the most frequently occurring low valued frequencies. However, when you don't include the high frequencies further away from the center, it smooths the image out because it closely matches the magnitudes coefficients while removing the noise.

5 Frequency Filtering

DSC_9259-0.50

2D DFT

Butterworth Low Pass

Butterworth filters (low pass) n=1, 2, 3, 4

Butterworth (low pass) image gray n=1, 2, 3, 4

Ideal Low pass gray filter

Butterworth High Pass

2D DFT

Butterworth Scaled Magnitude (high pass)

Butterworth (high pass) filter n = 1, 2, 3, 4

Butterworth (high pass) image grey n = 1, 2, 3, 4

Ideal High Pass gray Filter

Butterworth Low Pass

2D DFT

Butterworth scaled magnitudes (low pass)

Butterworth low filter pass n = 1, 2, 3, 4

Butterworth low pass image gray n = 1, 2, 3, 4

Ideal Low Pass

Butterworth High Pass

DSC_9259

2D DFT

Butterworth Scaled Magnitude (high pass)

Butterworth Filter High pass n = 1, 2, 3, 4

'Butterworth (high pass) gray image n = 1, 2, 3, 4

Ideal High Pass

Butterworth Low Pass Window-05-10

2D DFT

Butterworth scaled magnitude (low pass)

Butterworth Filter low pass n = 1, 2, 3, 4

Butterworth low pass image grey n = 1, 2, 3, 4

Ideal Low Pass

Butterworth High Pass window-05-10

2D DFT

Butterworth scaled magnitude (high pass)

Butterworth filter high pass n = 1, 2, 3, 4

Butterworth high pass image grey n = 1, 2, 3, 4

Ideal High Pass

The ideal low pass filter is a white circle against a black background versus the ideal high pass filter which is a black circle against the white background. These ideal pass filters are different than the Butterworth filters, which blur out the edges of the circle depending on the value of n used. For n = 1, the filter is very blurred out and there is a lot of gray faded out from the white circle in the middle. When n = 4, It only soften the edges of the circle a little bit and the background is still mostly black. This means the butterworth filter does more smoothing to the images. The image after the Butterworth filter for n = 1 is a lot more clear than the image resulting from n = 4 Butterworth filter. However, on the noisy image of the puppy, it leaves a lot more of the noise in the image. The ideal low pass filter makes the image have more ripples than the Butterworth filter does. It looks like it filters the image less smoothly and leaves it blurrier and rippled on each of the ideal low pass images.

For the high pass filtered images, the high pass filter seems to be an edge detector. This is because the high pass filter is zeroing out the low frequencies of the image, which are the important ones. The high pass filters were created by taking (1 - lowPassFilter) for both the ideal high pass filter and the high pass Butterworth filters. The n = 1 Butterworth high pass filter seems to make the image less noisy than the n = 4 Butterworth high pass filter.