МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Определение теплопроводности воздуха при атмосферном давлении

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследована зависимость теплопроводности воздуха в диапазоне темпператур 20-80 °C. Получена эмперическая зависимость коэффициента теплопроводности κ от температуры T: $\kappa = AT$.

Содержание

1	Введение	1
2	Методика 2.1 Теоретическая справка 2.2 Геометрия задачи 2.3 Проведение эксперимента	2
3	Результаты и их обсуждение	3
4	Выводы	7
5	Использованная литература	7
6	Приложения	8
	6.1 Параметры установки и погрешности приборов	8
	6.2 Данные результатов измерений	8

1 Введение

Цель настоящей работы заключалась в определении коэффициента теплопроводности воздуха при различных температурах.

2 Методика

2.1 Теоретическая справка

В эксперименте будет измеряться коэффициент теплопроводности κ - константа, фигурирущая в законе Фурье:

$$\vec{q} = -\kappa \nabla T,\tag{1}$$

где \vec{q} - количество теплоты переносимое через единичную площадку в единицу времени. Согласно [2] существует оценка для теплопроводности газов через длину свободного пробега молекул λ , среднюю скорости теплового движения $\overline{v} = \sqrt{\frac{8kT}{\pi m}}$, концентрацию n и теплоёмкость при постоянном объёме в расчёте на одну молекулу c_v :

$$k \sim \lambda \overline{v} n c_v.$$
 (2)

С учётом оценки длины пробега $\lambda = \frac{1}{n\sigma}$ получим ожидаемую зависимость теплопроводности от температуры:

$$k \propto \frac{\overline{v}}{\sigma} \propto \sqrt{T}$$
 (3)

Последний переход справедлив для модели твёрдых шариков ($\sigma = const$).

2.2 Геометрия задачи

Для измерения теплоёмкости было решено использовать простейший геометрический случай - циллиндрический (Рис. 1).

Рис. 1: Геометрия задачи

В таком случае закон Фурье(1) принимает вид:

$$q = -\kappa \frac{dT}{dr}. (4)$$

Тогда поток тепла Q через всю поверхность:

$$Q = -2\pi L \cdot \kappa \frac{dT}{dr}.\tag{5}$$

Пренебрегая зависимостью теплоёмкости от температуры для небольших ΔT , проинтегрируем выражение 5:

$$Q = \frac{2\pi L}{\ln\frac{r_0}{r_1}}\kappa\Delta T\tag{6}$$

2.3 Проведение эксперимента

Экспериментальная установка (Рис. 2) представляет собой циллиндрическую трубку заполненную воздухом с проведённом металлической нитью внутри. Температура внешних стенок t_0 поддерживается постоянной при помощи циркулирующей через стенки жидкости.

Рис. 2: Схема установки

Нить разогревается при пропускании через неё постоянного тока I. Подводимую мощность Q можно расчитать измеряя ток I и напряжение U на нити как

$$Q = UI. (7)$$

При этом сопротивление нити R вычисляется как

$$R = \frac{U}{I} \tag{8}$$

Так как сопротивление нити однозначно определяется её температурой, зная зависимость R(t) можно найти температуру нагревателя t_1 . Известно, что в исследуемом диапазоне температуру таккая зависимость выражается через температуру как

$$R = R_{273}(1 + \alpha T), \tag{9}$$

где t - температура в [°C], R_{273} - сопротивление нити при температуре 0 °C, $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ - температурный коэффициент сопротивления материала. Тогда измерив нагрузочные кривые R(Q) при различных t_0 и аппроксимируя их при значении $Q \to 0$ получим значение сопротивления R от температуры t_0 . Построив зависимость $R(t_0)$ найдём коэффициент $\frac{dR}{dT}$. И тогда найдём $\frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa = \frac{dQ}{d(\Delta T)} = \frac{dR}{dT} / \frac{dR}{dQ}$

3 Результаты и их обсуждение

Для каждой из температур термостата измерены зависимости напряжения U и силы тока I на нагрузке R_n (Приложение 6.2, Таблицы 1 - 7). Рассчитаны зависимости сопротивления нагрузки $R_n = \frac{U}{I}$ от мощности, выделяемой на ней Q = UI. Для каждой из температур из графиков зависимости сопротивления нагрузки $R_n(Q)$ (Рис. 3) определёны коэффициенты наклона нагрузочных

кривых $\beta = \frac{dR}{dQ}$ и температуры нагрузки при температуре термостата R_0 (Таблица 8). Зависимости $R_n(Q)$ оказались линейными, что даёт подтверждение корректности используемой модели.

Рис. 3: Зависимость сопротивления нагрузки R_n от мощности Q, выделяющеейся на ней, при различных температурах. Цифрами обозначены данные для каждой из температур: 1 - 23 °C, 2 - 30 °C, 3 - 40 °C, 4 - 50 °C, 5 - 60 °C, 6 - 70 °C, 7 - 80 °C. Кресты погрешности малы по сравнению с масштабом графика и потому не были нанесены.

Построены графики зависимости сопротивления нагрузки R_0 от температуры T (Рис. 4). Полученный зависимость оказалась линейной, что подтверждает корректность использования формулы 9.

Рис. 4: Зависимость сопротивления нагрузки R_0 от температуры T. Кресты погрешности малы по сравнению с масштабом графика и потому не были нанесены.

Рассчитаны сопротивление нагрузки $R_{273}=(1.852\pm0.004)\cdot10^1$ Ом и температурный коэффициент сопротивления материала $\alpha=(3.836\pm0.010)\cdot10^{-3}~\frac{1}{\mathrm{C}}$. Согласно формуле 6 найдено значение теплопроводности для различных температур (Таблица 9), где $\frac{dQ}{d(\Delta T)}=\frac{dR}{dT}/\frac{dR}{dQ}$. С учётом предположенной зависимости, имеющий вид $\kappa=AT^n$ построим логарифмическую зависимость $\ln\kappa=n\ln T+\ln A$ (Рис. 5).

Рис. 5: Зависимость коэффициента теплопроводности воздуха κ от абсолютной температуры T в логарифмическом масштабе.

Полученные коэффициенты оказались равны $\ln A = (-8.9 \pm 0.4), n = (9.1 \pm 0.3) \cdot 10^{-1} \approx 1.$ По полученным значениям построим график зависимости $\kappa(T)$ (Puc. 6).

Рис. 6: Зависимость коэффициента теплопроводности воздуха κ от абсолютной температуры T. Цифрами обозначены кривые, аппроксимирующие зависимость: $1 - \kappa = AT^n$, $2 - \kappa = AT$.

Оказалось, что зависимость коэффициента теплопроводности от температуры близка к линейной, что разходится с теорией твёрдых шариков, где предсказывается зависимость, пропорциональная квадратному корню из температуры. Такое расхождение может объясняться малым диапазоном измерения температур или несовершенством модели.

4 Выводы

Найдены значения коэффициентов теплопроводности воздуха в диапазоне 20-80 °C. Определён экспериментальный вид зависимости коэффициента теплопроводности воздуха от температуры, вблизи указанного диапазона температур $\kappa = AT$, где $A = (8.717 \pm 0.034) \cdot 10^{-5} \frac{\text{Вт}}{\text{м.K}^2}$.

5 Использованная литература

Список литературы

- [1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна
- [2] Н.А. Кириченко «Термодинамика, статистическая и молекулярная физика», п. 5.5

6 Приложения

6.1 Параметры установки и погрешности приборов

Внутренний диаметр $d_1=(5.0\pm0.3)\cdot10^{-5}$ м, внешний диаметр $d_2=(7.00\pm0.10)\cdot10^{-3}$ м, длина установки $L=(4.000\pm0.020)\cdot10^{-1}$ м. Погрешности измерения амперметра и вольтметра взяты за последнюю цифру измерения, значение которой стабилизировалось при измерениях: $\sigma U=10^{-4}$ В, $\sigma I=10^{-5}$ А.

6.2 Данные результатов измерений

	U, B	<i>I</i> , A	Q, BT	R, Om	$\sigma Q, {\rm Br} \cdot 10^{-6}$	σR , Ом
0	0.2658	0.01319	0.00351	20.156	3.0	0.017
1	0.5277	0.02610	0.01377	20.217	6.0	0.009
2	0.7959	0.03917	0.03117	20.320	9.0	0.006
3	1.1636	0.05675	0.06603	20.505	13	0.004
4	1.4514	0.07010	0.10174	20.705	16	0.003
5	1.7358	0.08294	0.14397	20.928	19	0.003
6	2.0635	0.09721	0.20059	21.227	23	0.002
7	2.3684	0.10994	0.26038	21.543	26	0.002

Таблица 1: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=23^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток I, σQ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, BT	R, Ом	σQ , BT $\cdot 10^{-6}$	σR , Om
0	0.2849	0.01378	0.00393	20.675	3.0	0.017
1	0.5684	0.02743	0.01559	20.722	6.0	0.008
2	0.8556	0.04108	0.03515	20.828	9.0	0.006
3	1.1502	0.05484	0.06308	20.974	13	0.004
4	1.4509	0.06852	0.09942	21.175	16	0.003
5	1.7650	0.08244	0.14551	21.410	19	0.003
6	2.0824	0.09595	0.19981	21.703	23	0.002
7	2.4158	0.10962	0.26482	22.038	27	0.002

Таблица 2: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=30^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток $I,\,\sigma Q$ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, Bt	R, Om	σQ , BT $\cdot 10^{-6}$	σR , Ом
0	0.6760	0.03150	0.02129	21.460	7.0	0.008
1	0.9648	0.04473	0.04316	21.569	11	0.005
2	1.1871	0.05474	0.06498	21.686	13	0.004
3	1.3774	0.06319	0.08704	21.798	15	0.004
4	1.5488	0.07067	0.10945	21.916	17	0.003
5	1.7034	0.07732	0.13171	22.031	19	0.003
6	1.8505	0.08355	0.15461	22.148	20	0.003
7	1.9870	0.08925	0.17734	22.263	22	0.003
8	2.1199	0.09472	0.2008	22.381	23	0.003
9	2.2515	0.10005	0.22526	22.504	25	0.002

Таблица 3: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=40^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток I, σQ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, Bt	R, Om	σQ , BT $\cdot 10^{-6}$	σR , Om
0	0.6981	0.03149	0.02198	22.169	8.0	0.008
1	0.9949	0.04465	0.04442	22.282	11	0.005
2	1.2258	0.05473	0.06709	22.397	13	0.004
3	1.4288	0.06344	0.09064	22.522	16	0.004
4	1.6056	0.07096	0.11393	22.627	18	0.003
5	1.7726	0.07791	0.13810	22.752	19	0.003
6	1.9092	0.08353	0.15948	22.856	21	0.003
7	2.0549	0.08942	0.18375	22.98	22	0.003
8	2.1616	0.09369	0.20252	23.072	24	0.003
9	2.3284	0.10026	0.23345	23.224	25	0.003

Таблица 4: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=50^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток I, σQ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, Bt	R, Om	σQ , B _T ·10 ⁻⁶	σR , Ом
0	0.7199	0.03147	0.02266	22.876	8.0	0.008
1	1.0280	0.04470	0.04595	22.998	11	0.006
2	1.2664	0.05480	0.06940	23.109	14	0.005
3	1.4694	0.06326	0.09295	23.228	16	0.004
4	1.6349	0.07008	0.11457	23.329	18	0.004
5	1.8201	0.07758	0.14120	23.461	20	0.003
6	1.9728	0.08366	0.16504	23.581	21	0.003
7	2.1178	0.08939	0.18931	23.692	23	0.003
8	2.2594	0.09487	0.21435	23.816	25	0.003
9	2.3919	0.09996	0.23909	23.929	26	0.003

Таблица 5: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=60^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток I, σQ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, Bt	R, Om	$\sigma Q, {\rm Bt} \cdot 10^{-6}$	σR , Ом
0	0.7457	0.03161	0.02357	23.591	8.0	0.008
1	1.0598	0.04470	0.04737	23.709	12	0.006
2	1.3027	0.05468	0.07123	23.824	14	0.005
3	1.5142	0.06325	0.09577	23.940	16	0.004
4	1.7019	0.07074	0.12039	24.059	18	0.004
5	1.8752	0.07758	0.14548	24.171	20	0.003
6	2.0318	0.08366	0.16998	24.286	22	0.003
7	2.1524	0.08828	0.19001	24.382	23	0.003
8	2.3261	0.09483	0.22058	24.529	25	0.003
9	2.4691	0.10018	0.24735	24.647	27	0.003

Таблица 6: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=70^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток $I,\,\sigma Q$ и σR - погрешности косвенных измерений.

	U, B	I, A	Q, Bt	R, Om	$\sigma Q, {\rm Bt} \cdot 10^{-6}$	σR , Om
0	0.7697	0.03165	0.02436	24.319	8.0	0.008
1	1.0913	0.04469	0.04877	24.419	12	0.006
2	1.3441	0.05478	0.07363	24.536	15	0.005
3	1.5588	0.06324	0.09858	24.649	17	0.004
4	1.7518	0.07072	0.12389	24.771	19	0.004
5	1.9298	0.07755	0.14966	24.885	21	0.003
6	2.0909	0.08363	0.17486	25.002	23	0.003
7	2.2438	0.08932	0.20042	25.121	24	0.003
8	2.3926	0.09481	0.22684	25.236	26	0.003
9	2.5402	0.10017	0.25445	25.359	27	0.003

Таблица 7: Результаты измерений сопростивления R от выделяемого тепла Q при температуре $T=80^{\circ}\mathrm{C}$. Прямыми измерениями являются напряжение U и ток I, σQ и σR - погрешности косвенных измерений.

	T, °C	R_0 , Om	$\beta, \frac{O_{M}}{B_{T}}$	σR_0 , Om	$\sigma \beta$, $\frac{O_{M}}{B_{T}}$
0	23.0	20.157	5.33	0.003	0.01
1	30.0	20.646	5.27	0.003	0.01
2	40.0	21.355	5.11	0.004	0.02
3	50.0	22.064	4.97	0.004	0.03
4	60.0	22.777	4.84	0.004	0.02
5	70.0	23.489	4.69	0.005	0.03
6	80.0	24.203	4.55	0.007	0.04

Таблица 8: Значения сопротивлений нагрузок R_0 при температурах T и коэффициентов $\beta = \frac{dR}{dQ}$.

	T, °C	$\kappa, \frac{B_T}{M \cdot K}$	$\sigma \kappa, \frac{B_T}{M \cdot K}$	$\ln T$	$\sigma \ln T$	$\ln \kappa$	$\sigma \ln \kappa$
0	23.0	0.0262	0.0004	5.6914	0.0003	-3.64	0.01
1	30.0	0.0265	0.0004	5.7147	0.0003	-3.63	0.01
2	40.0	0.0273	0.0004	5.7472	0.0003	-3.60	0.01
3	50.0	0.0281	0.0004	5.7786	0.0003	-3.57	0.01
4	60.0	0.0289	0.0004	5.8090	0.0003	-3.54	0.01
5	70.0	0.0298	0.0004	5.8386	0.0003	-3.51	0.01
6	80.0	0.0307	0.0005	5.8673	0.0003	-3.48	0.02

Таблица 9: Значения коэффициентов теплопроводности κ в зависимости от температуры T.