Example 2.6

Resultant Force by Summing Rectangular Components (Tabular Form)

Example 2.6:

Four forces act on a bracket as shown in the figure. Resolve the four forces into their rectangular components and determine the magnitude of the resultant of the four forces.

Force	Magnitude (N)	x – component (N)	y – component (N)
\mathbf{F}_{1}	80	-51.42	+61.28
F_2	45	-45	0
F_3	60	-20.52	-56.38
F_4	80	0	-80
	onents ⊌ltant, R	$\Sigma = -116.94 \text{ N}$	$\Sigma = -75.51 \text{ N}$

RESULTS

$$R^2 = \sqrt{(-116.94)^2 + (-75.1)^2}$$

$$R = 138.98N$$

$$\tan \theta = \frac{75.1}{116.94}$$

$$\theta = 57.3^{\circ}$$

Show Resultant, **R** either way

