Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Análise de Sobrevivência Testes Acelerados

Douglas de Paula Nestlehner Raquel Malheiro de Carvalho

> São Carlos Novembro de 2022

Sumário

1	Intr	codução	1						
2	Met	todologia	2						
	2.1	Análise de Sobrevivência	2						
	2.2	Modelo Weibull	4						
	2.3	Testes de Sobrevivência Acelerados	5						
		2.3.1 Modelo Lei de Potencia Inversa	6						
		2.3.2 Modelo Arrhenius	6						
		2.3.3 Modelo de Eyring	7						
	2.4	Modelo Weibull com Testes Acelerados	7						
3	Resultados								
	3.1	Análise Exploratória	9						
	3.2	Ajustes	10						
		3.2.1 Modelo de Teste de Sobrevivência Acelerado	11						
4	Cor	nclusão	14						
\mathbf{R}	e <mark>ferê</mark>	ncias Bibliográficas	15						

Introdução

Este trabalho tem como objetivo a aplicação das técnicas de análise de sobrevivência revisadas em aula em um banco de dados. Além disso, a análise com a criação de um modelo que seja adequado para os dados em estudo, aplicando metodologias de testes acelerados.

A partir da escolha de um modelo de *stress*-resposta, a princípio o de Potência Inversa, será indicado qual foi o modelo justado, seus parâmetros e suas estimativas, sendo o modelo escrito para cada nível de stress identificado no banco de dados.

Será feito o uso de gráficos das curvas de sobrevivências ajustadas por Kaplan-Meyer e pelo modelo de regressão, e comentado os ajustes.

Metodologia

2.1 Análise de Sobrevivência

Análise de sobrevivência é o estudo da variável tempo de um determinado evento de interesse, ou seja, analisar o tempo de vida do evento, na maioria das vezes caracterizado como falha o sucesso. Ela também pode ser aplicada na duração de componentes até o tempo de falha ou, de maneira geral, em estudos nos quais o tempo de vida é observado até a ocorrência de um evento de interesse, (Fogo, 2007).

A seguir apresentamos os principais conceitos e definições utilizados em análise de sobrevivência.

Censura

Censura é o termo dado para observações que não apresentaram o evento de interesse por algum motivo específico, motivo os quais caracterizam o tipo de censura. Geralmente observamos tres tipos de censura:

- Censura tipo I: é o tipo de censura em que o experimento tem um limite final de execução (coleta de dados), e quando esse limite é atingido, todas as observações que vem sendo acompanhadas ao longo do tempo são consideradas como censura do tipo I.
- Censura tipo II: é o tipo de censura em que o experimento estabelece um certo numero de eventos de interesse, e quando esse numero é atingido, todas as demais observações são consideradas como censura do tipo II.

• Censura Aleatória é o tipo de censura que ocorre ao longo do experimento por algum fator não esperado, ou seja, o evento de interesse não ocorre e a observação sai do estudo.

Função de Sobrevivência

Uma das principais medidas observadas em análise de sobrevivência é a função de sobrevivência, a qual tem como objetivo apresentar a probabilidade de um individuo apresentar o evento de interesse ao longo do tempo.

Definimos a função de sobrevivência S(t) como :

$$S(t) = P(T > t) = 1 - P(T \le t) = 1 - F(t). \tag{2.1}$$

Com as seguintes propriedades:

- 1. S(t) = 1, se t = 0;
- 2. S(t) = 0, se $t \longrightarrow \infty$;
- 3. S(t) é decrescente.

Em que F(T): função de distribuição acumulada de T; e T é a variável resposta tempo, continua e não negativa.

Função de Risco

A função de risco é outra medida importante em análise de sobrevivência, ela tem como intuito fornecer o risco do evento de interesse acontecer em um intervalo de tempo, geralmente muito pequeno [t, t+dt].

Podemos definir a função de risco h(t) como sendo:

$$h(t) = -\frac{d}{dt}log(S(t)) = \frac{f(t)}{S(t)}.$$
(2.2)

sendo f(t) a função de distribuição de probabilidade de T.

Função de Verossimilhança

A função de verossimilhança é a responsável pela estimação dos dados pelo método de verossimilhança, portanto é a função responsável pela modelagem.

Definindo D como os dados em estudo, D = (t, c), em que t indica o tempo da observação, e c indica se ela apresentou o evento de interesse ou censura (1,0 respectivamente).

Temos que a função de verossimilhança é dada por:

$$L(\boldsymbol{\theta}|D) = \prod_{i=1}^{n} [f(t)]^{c} [S(t)]^{1-c}$$
(2.3)

Sendo θ o vetor de parâmetros, e n o números de observações.

2.2 Modelo Weibull

Em f(t) podemos caracterizar uma distribuição de probabilidade para a o tempo até ocorrência do evento de interesse. Dentre as principais distribuições utilizadas, temos a distribuição Weibull.

Nessa seção apresentamos a modelagem dos tempos de vida T, considerando a distribuição Weibull, ou seja, $T \sim Weibull(\lambda, k)$.

Desse modo, teremos que f(t) é dada por:

$$f(t) = \frac{k}{\lambda^k} t^{k-1} \exp\left\{-\frac{t^k}{\lambda^k}\right\}, \quad t \ge 0 \quad e \quad \lambda, k > 0,$$

em que é referente a média da distribuição, e k o formato da distribuição.

A função de sobrevivência S(t):

$$S(t) = \exp(-\lambda t)^{\alpha}$$
.

A função de risco h(t):

$$h(t) = \frac{f(t)}{S(t)} = \alpha \lambda (t\lambda)^{(\alpha-1)}.$$

E a função de verossimilhança $L(\boldsymbol{\theta}|\boldsymbol{D})$:

$$L(\boldsymbol{\theta}|\boldsymbol{D}) = \prod_{i=1}^{n} \left[\alpha \lambda (t\lambda)^{(\alpha-1)} e^{-(t\lambda)^{\alpha}} \right]^{c_i} \left[\exp(-\lambda t)^{\alpha} \right]^{1-c_i}$$

2.3 Testes de Sobrevivência Acelerados

Muitos estudos em análise de sobrevivência são relacionados a durabilidade de produtos, ou seja, deseja-se investigar o tempo até que o produto apresente o evento de interesse. Existem situações em que o produto em análise tem um tempo de vida (durabilidade) muito grande, como exemplo: lâmpadas, componentes eletrônicos, materiais resistentes, etc. Nesses casos a aplicação dos usuais métodos de análise de sobrevivência se torna algo inviável, pois a coleta de informações/dados para o experimento é impraticável.

Para poder analisar esses tipos de produtos, os estudos aplicam métodos no intuito de acelerar a ocorrência do evento de interesse, ou seja, diminuir o tempo de vida. Denotamos esses métodos como "variável-stress", variável responsável por gerar um stress no evento e diminuir seu tempo de vida, como exemplo aplicação de voltagem, temperatura, pressão, etc.

Considerando um experimento em que o tempo até a ocorrência do evento de interesse foi acelerado por uma "variável-stress" (V) em uma variável qualquer do evento, X (variável que foi exposta ao "stress"). Teremos que o tempo até o evento de interesse vai estar relacionado com a "variável-stress" pelo modelo relação estresse-resposta geral, dado por: (Klein, 1981).

$$\theta_i = e^{-(z_i + \beta_0 + \beta_1 X_i)}$$

Em que:

- θ_i : parâmetro do modelo de sobrevivência no i-ésimo nível de stress.
- X_i : variável stress;
- z_i : função da variável stress $g(X_i)$;
- $\beta = (\beta_0, \beta_1)$: vetor de parâmetros desconhecidos do modelo.

Do modelo modelo relação estresse-resposta geral, surgem diversos casos particulares de relações estresse-resposta que são utilizados em situações distintas. Entre as relações estresse-resposta mais utilizadas na prática, destacam-se o modelo Lei de Potência Inversa, o modelo de Taxa de Reação de Arrhenius e o modelo de Eyring (Mann, 1974).

2.3.1 Modelo Lei de Potencia Inversa

No Modelo Lei de Potencia Inversa, seu uso pratico se deve principalmente em estudos relacionados a lampadas, fadiga de metais, isolantes, dielétricos, etc.

Pelo modelo relação estresse-resposta geral, temos que para o caso do Modelo Lei de Potencia Inversa:

$$X_i = -\log(V_i); \quad Z_i = 0; \quad \beta_0 = \log(\delta); \quad e \quad \beta_1 = \gamma$$

Desse modo, teremos que o modelo θ_i é dado por:

$$\theta_i = \delta V_i^{-\gamma}$$

para V_i representando o i-ésimo nível da variável estresse de voltagem, V, e δ e γ são os parâmetros característicos do produto, como por exemplo, unidade, geometria, fabricação, método de teste, etc., desconhecidos, tais que, $\delta > 0$ e $-\infty < \gamma < \infty$, (Vieira, 2006).

2.3.2 Modelo Arrhenius

No caso do Modelo Arrhenius, sua aplicação está relacionada principalmente em estudos de dielétricos, plásticos, filamentos de lampadas incandescentes, etc.; de modo geral, em situações que a "variável-stress" é temperatura.

Pelo modelo relação estresse-resposta geral, temos que para o caso do Modelo Arrhenius:

$$X_i = \frac{1}{V_i}; \quad Z_i = 0; \quad \beta_0 = -\alpha; \quad e \quad \beta_1 = \beta.$$

Desse modo, teremos que o modelo θ_i é dado por:

$$\theta_i = \exp\left(\alpha - \frac{\beta}{V_i}\right)$$

em que, V_i é o i-ésimo nível da "variável-stress" temperatura.

2.3.3 Modelo de Eyring

As aplicações do Modelo de Eyring também são relacionadas a estudos em que a "variável-stress" é temperatura. O modelo foi derivado dos princípios da mecânica quântica com uma "variável-stress" que expressa a variação da taxa de falha como uma função da temperatura de operação (Mann, 1974).

Pelo modelo relação estresse-resposta geral, temos que para o caso do Modelo de Evring:

$$X_i = \frac{1}{V_i}; \quad Z_i = -\log(V_i); \quad \beta_0 = -\alpha; \quad e \quad \beta_1 = \beta.$$

Desse modo, teremos que o modelo θ_i é dado por:

$$\theta_i = V_i \exp\left(\alpha - \frac{\beta}{V_i}\right)$$

2.4 Modelo Weibull com Testes Acelerados

Nas seções anteriores apresentamos as definições do modelo Weibull e os modelos de testes acelerados. Nessa seção apresentamos a aplicação de um modelos de testes acelarados considerando a distribuição Weibull para os tempos de vidas.

Por definição, a função de verossimilhança para o modelo considerando o *i*-ésimo nível de stress é dada por:

$$L_i(\lambda_i, k|D) = \prod_{j=1}^{n_i} [f(t_{ij}, \lambda_i, k)]^{c_{ij}} [S(t_{ij}, \lambda_i, k)]^{1-c_{ij}},$$

em que c_{ij} é um indicador de falhas, assumindo valores 1 ou 0 para indicar falha ou censura, respectivamente (Fogo, 2022).

Logo, considerando a variável stress V, com g=4 níveis, afetando o parâmetro escala λ , conforme o modelo potência inversa, sendo κ uma constante para todos os 4 níveis de stress, temos que a função de verossimilhança para o modelo, considerando os 4 níveis, é dada por:

$$L_i(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \kappa) = \prod_{i=1}^4 L_i(\lambda_1, k|D)$$

ou seja:

$$L_i(\lambda_1, ..., \lambda_4, k|D) = \prod_{i=1}^4 \prod_{j=1}^{n_i} \left[f(t_{ij}, \lambda_i, k) \right]^{c_{ij}} \left[S(t_{ij}, \lambda_i, k) \right]^{1 - c_{ij}}$$

Substituindo as funções de densidade e sobrevivência da Weibull, teremos:

$$L_i(\lambda_1, ..., \lambda_4, k|D) = \prod_{i=1}^4 \prod_{j=1}^{n_i} \left[\frac{k}{\lambda_i^k} t^{k-1} \exp\left\{ -\frac{t^k}{\lambda_i^k} \right\} \right]^{c_{ij}} \left[\exp(-\lambda_i t)^{\alpha} \right]^{1-c_{ij}}$$

Iremos fazer o uso do modelo de lei potencia inversa, portanto temos por definição que $\lambda_i = \delta V_i^{-\gamma}.$

Desse modo, substituindo λ_i na verossimilhança, teremos como modelo da lei de potencia inversa Weibull, considerando g = 4, como sendo:

$$L(k, \delta, \gamma | D) = \frac{k^c}{\delta^{kc}} \left[\prod_{i=1}^4 V_i^{\gamma k c_i} \right] \left[\prod_{i=1}^4 \prod_{j=1}^{n_i} t_{ij}^{k-1} c_{ij} \right] \exp \left\{ -\sum_{i=1}^4 \sum_{j=1}^{n_i} \left(\frac{t_{ij} V_i^{\gamma}}{\delta} \right)^k \right\}$$

em que c_i é o numero de falhas do *i*-ésimo nível de stress e c é o total de falhas.

Resultados

3.1 Análise Exploratória

Para aplicar os estudos de modelos de Testes de Sobrevivência Acelerados apresentado em 2.3, utilizamos os dados representados na Figura 3.1

Stress	Em risco	Falhas	Tempos		
V_i	ni	r_i	t_{ij}		
50	25	16	0,036 0,048 0,061 0,065+0,065 0,070+0,073 0,076 0,080+ 0,085+0,094 0,100 0,114 0,124+0,128 0,134 0,135 0,135 0,144+0,144+0,145+0,152 0,157 0,169+0,264		
25	18	12	0,075 0,130 0,181 0,205 0,235+0,239 0,247 0,257+0,262+ 0,263 0,285 0,307+0,334 0,358 0,361+0,400 0,434+0,450		
10	20	12	0,214 0,317+0,419 0,422+0,451 0,542 0,575+0,602 0,617 0,620 0,643+0,660 0,766+0,800 0,854+0,930 0,949 1,073 1,099+1,119+		
5	24	14	0,610 0,874 1,196 1,329+1,348 1,448+1,665+1,671 1,767 1,956+1,966 2,083+2,085 2,161 2,277 2,391+2,513 2,676+2,945+2,963+3,016 3,278+3,295 3,348		

Figura 3.1: Dados de tempos de vidas em testes acelerados com censura do tipo I. Sinal "+" indica censura.

Observando os dados brutos podemos notar diferentes níveis de stress com diferentes numero de observações e censuras. Portanto, já esperamos comportamentos distintos para cada nível de stress, considerando κ níveis de uma variável stress $V_i = 1, 2, 3e4$.

Entretanto, para poder confirmar os comportamentos distintos, plotamos o gráfico de Kaplan-Meier representado na Figura 3.2 para cada nível de stress.

Estimação de Sobrevivencia de Kaplan-Meier por Grupos

Figura 3.2: Kaplan-Meier para cada nível de stress.

Na Figura 3.2, nota-se que, quanto maior o nível de stress, menor é o tempo de vida do evento. Como exemplo:

- \bullet No stress V=5 observamos uma curva de sobrevivência "longa", indicando que os eventos tem um tempo de vida maior, ou seja, uma probabilidade maior de não apresentar a falha ao longo de tempo;
- \bullet Já no caso do stress V=50, notamos uma curva de sobrevivência que decresce rapidamente, indicando que a probabilidade de não apresentar o evento de interesse é menor em relação aos demais níveis de stress.

3.2 Ajustes

Afim de verificar qual distribuição apresentava melhores estimativas no ajuste do modelo, ajustamos os modelos Exponecial e Weibull (considerando os níveis de stress) e observamos as estimativas.

Para poder definir qual modelo iriamos utilizar, observamos as medidas AIC e BIC estimadas. Na Tabela 3.1 temos representados as estimativas para cada modelo.

Tabela 3.1: Qualidade do Ajuste via AIC e BIC

$\mathbf{Modelos}$	\mathbf{df}	\mathbf{AIC}	BIC
Weibull	3	29.44180	36.83952
Exponencial	2	75.02956	79.96138

Observamos que o ajuste que apresenta menores AIC e BIC é o Weibull, sendo assim, este é o modelo escolhido para dar seguimento a análise.

3.2.1 Modelo de Teste de Sobrevivência Acelerado

Com o objetivo de interpretar o que acontece em cada nível de stress, utilizamos um dos modelo "stress-resposta" apresentado em 2.4.

Para a escolha de qual modelo utilizar, aplicamos o critério de qual variável stress está sendo usada no experimento. Não temos a informação exata de qual stress o experimento utiliza, porem a variável é denotada como V o que parece indicar uma variável de voltagem. Portanto, o modelo a ser utilizado é o modelo Lei de Potencia Inversa.

Definindo:

$$X_i = -\log(V_i); \quad Z_i = 0; \quad \beta_0 = \log(\alpha); \quad e \quad \beta_1 = \beta,$$

ajustamos o modelo Weibull considerando o modelo da Lei de Potencia Inversa. A seguir observamos a saída do software RStudio:

```
Call:
```

No geral, temos os seguintes parâmetros e estimativas do modelo:

Tabela 3.2: Parâmentros e Estimativas do Modelo Aj
--

Parâmetros	Fórmulas	Estimativas
$Kappa(\kappa)$	$1/1 - e^{-\frac{z}{\gamma}k}$	2.494091
δ	$exp(\beta_0)$	19.91812
γ	eta_1	1.253665
$ heta_1$	$\delta \cdot V_1^{-\gamma}$	2.648339
$ heta_2$	$\delta \cdot V_2^{-\gamma}$	1.110664
θ_3	$\delta \cdot V_3^{-\gamma}$	0.352126
θ_4	$\delta \cdot V_4^{-\gamma}$	0.147675

Então, para cada nível de stress, dado que no banco tem 4 níveis, tem-se Para V_1 :

$$\theta_1 = \delta \cdot V_1^{-\gamma}$$
= 19.91912 \cdot 50^{-1.25}

Para V_2 :

$$\theta_2 = \delta \cdot V_2^{-\gamma}$$
= 19.91912 \cdot 25^{-1.25}

Para V_3 :

$$\theta_3 = \delta \cdot V_3^{-\gamma}$$

= 19.91912 \cdot 10^{-1.25}

Para V_4 :

$$\theta_4 = \delta \cdot V_4^{-\gamma}$$

= 19.91912 \cdot 15^{-1.25}

Na Figura 3.3, pode-se observar o modelo ajustado para cada um dos níveis de stress.

Figura 3.3: Modelo Ajustado para cada um dos níveis de stress.

Nota-se que, para todos os níveis de stress os pontos aparentam ter uma distribuição linear, indicando a adequabilidade do modelo.

Sendo assim, dado que X_i é a variável stress da definição de potência inversa, temos que o ajuste pelo modelo Weibull que apresentou melhor adequação é dado por:

Com isso, temos como modelo da Lei de Potência Inversa Weibull, sendo g=4, o seguinte modelo:

$$L_{(2.494,19,92,1,25|D)} = \frac{2.49^{c_i}}{19.92^{2.49 \cdot c_i}} \left[\prod_{i=1}^4 V_i^{1,25} \right] \left[\prod_{i=1}^4 \prod_{j=1}^{n_i} t_{ij}^{k-1} c_{ij} \right] \exp \left\{ -\sum_{i=1}^4 \sum_{j=1}^{n_i} \left(\frac{t_{ij} V_i^{1,25}}{19,92} \right)^{2,494} \right\}$$

sendo c=54, número de falhas totais, e $c_1=16$ $c_2=12$ $c_3=12$ $c_4=14$, número de falhas dada suas respectivas voltagens.

Conclusão

Através das análises realizadas, foi possível a aplicação dos conceitos vistos em Análise de Sobrevivência e a extensão da incorporação de uma "variável-stress" adicionadas aos "modelos de stress-resposta".

Para o desenvolvimento, ajustamos um modelo Weibull para testes acelerados, mais especificamente, ajustamos um modelo Weibull utilizando o modelo da Lei da Potencia Inversa para incorporar os efeitos de cada nível de stress.

Contudo, conseguimos obter um modelo para os tempos de vidas até o evento de interesse, considerando os dados, a distribuição Weibull e o modelo da Lei de Potencia Inversa.

Referências Bibliográficas

- Fogo, J. C. (2007). Modelo de regressão para um processo de renovação Weibull com termo de fragilidade. Tese (Doutorado em agronomia), Escola superior de Agronomia Luiz de Queiroz, Universidade de São Paulo, SP.
- Fogo, J. C. (2022). Notas de aula da disciplina Laboratório de Estatística Aplicada. Universidade Federal de São Carlos DEs/UFSCar.
- Klein, J.P e Basu, A. P. (1981). Weibull Accelerated Life Tests When There are Competing Causes of Failure. Communications in Statistics; Theory and Methods, A10 (20), pp. 2073-2100.
- Mann, N.R; Schaffer, R. N. (1974). Methods for Statistical Analysis of Reliability and Life Test Data.. John Wiley Sons - New York.
- Vieira, D. S. (2006). Uso de Métodos Bayesianos em Testes de Vida Acelerados no Comtrole de Qualidade de Produtos Industriais. Dissertação apresentada ao Departamento de Estatística da Universidade Federal de São Carlos - DEs/UFSCar.