Lecture Summary: Multiple Random Variables and Joint PMFs

Source: Lec1.1.pdf

Key Points

• Transition to Multiple Random Variables:

- Random variables simplify probability spaces by mapping complex outcomes to numerical values.
- Multiple random variables often arise in experiments with interconnected outcomes, requiring tools to analyze their relationships.

• Examples of Multiple Random Variables:

- Coin Toss Experiment:

- * Toss a fair coin three times, defining random variables X_1 , X_2 , and X_3 to indicate whether the first, second, and third tosses are heads.
- * These are indicator random variables, taking values 1 for heads and 0 for tails.
- * Events based on X_1 (e.g., $X_1 = 1$) are independent of events based on X_2 or X_3 .

- Two-Digit Lottery:

- * Random variable X: Units digit of the number.
- * Random variable Y: Remainder when the number is divided by 4.
- * X and Y are uniformly distributed over their respective ranges, but they are not independent.
- * Example: If X = 1, Y = 0 is impossible because numbers ending in 1 are not multiples of 4.

- IPL Powerplay Data:

- * Random variable X: Total runs scored in an over.
- * Random variable Y: Number of wickets lost in the over.
- * A relationship exists: Overs with more wickets typically have fewer runs.

• Modeling Multiple Random Variables:

- Relationships between random variables help model complex experiments (e.g., IPL data).
- Dependencies are modeled probabilistically rather than deterministically.

• Joint PMFs (Probability Mass Functions):

- For discrete random variables X and Y defined on the same probability space:

$$f_{XY}(t_1, t_2) = P(X = t_1 \text{ and } Y = t_2).$$

- Properties:

- * $f_{XY}(t_1, t_2) \ge 0$ for all t_1, t_2 .
- * $\sum_{t_1,t_2} f_{XY}(t_1,t_2) = 1.$

• Examples of Joint PMFs:

- Coin Toss:

- * X_1 : First toss indicator, X_2 : Second toss indicator.
- * Joint PMF: $f_{X_1X_2}(t_1, t_2) = P(X_1 = t_1 \text{ and } X_2 = t_2) = (1/2) \cdot (1/2) = 1/4$ for independent tosses.

- Two-Digit Lottery:

- * X: Units digit, Y: Remainder modulo 4.
- * Example: $f_{XY}(0,0) = P(X=0 \text{ and } Y=0)$ includes numbers like 00, 20, 40, ..., totaling 5 outcomes: 5/100 = 1/20.

• Properties of Joint PMFs:

- All probabilities in the PMF lie between 0 and 1.
- The sum of all probabilities in the PMF equals 1, covering all possible outcomes.
- PMFs can be represented as tables or matrices for easier interpretation and computation.

Simplified Explanation

Multiple Random Variables: These arise when experiments have interconnected outcomes. Examples include: - Coin tosses (independent variables). - Two-digit lottery numbers (dependent variables). - IPL data (complex dependencies).

Joint PMFs: Functions that assign probabilities to pairs of values taken by two random variables, satisfying:

$$f_{XY}(t_1, t_2) \ge 0, \quad \sum f_{XY}(t_1, t_2) = 1.$$

Conclusion

In this lecture, we:

- Explored multiple random variables and their applications.
- Defined joint PMFs and derived examples.
- Discussed how dependencies between variables help model real-world scenarios.

Joint PMFs are crucial for analyzing and modeling relationships between random variables in complex experiments.