# culture media design by DoE

lichen

December 27, 2021

# 1 Bioprocess Optimization Using Design-of-Experiments Methodology[2]

### 1.1 in vitro experiment process

실험에 중요한 요소를 경험적으로 추론, 각 요소의 범위를 결정.



한번에 한 요소를 바꾸는 실험의 경우 실험 결과가 최적에 도달하기 까지 많은 시행 필요하기 때문에 여러 요소의 조합을 중복없이 시험하여 모델을 설정하고 검증함. 이러한 실험방법을 Factorial Design이라고 함.



2 수준 실험에선는 가능한 모든 경우의 수를 시험해 볼 수도 있지만, 요소의 수가 많아지면 그 중 일부만 실험하게 됨. 다변수 실험의 경우 한 중앙값을 잡아 반복실험을 진행함. 또한 실험 진행에서 오류를 막기 위해 실험 순서를 무작위로 배열 → 일반적인 소프트웨어는 실험에 사용하는 요소와 상관관계를 입력하면 실험에 사용할 요소의 조합과 수준, 반복 횟수를 제시함.

#### 1.2 experimental data explain

소프트웨어(Matlab, SPSS, MiniTab, JMP, python, R등 )를 통해 목표로 하는 값 (세포 성장 속도, 대사 작용 등)을 분석

### 1.3 data procssing

MLR, Multiple Linear Regression, PLS, Partial Least Squares 사용, 모델의 적합성과 예측 가능성을  $R^2, Q^2$  지표로 계산 DoE를 통한 FD를 진행하면 모델의 최적 값뿐만 아니라 모델의 안정성을 확인 할 수 있음 (Taguchi method)

# 1.4 results

FD를  $Pachysolen\ tannophilus$ 의 성장을 최적화하기 위해 적용하여 2개의 요소 (온도,PH) 수준에 따라 실험을 19번(9개 조건에서 두 번 반복하여)진행하고 반응 표면을 작성하여 최적의 성장조건을 탐색함.



# 2 Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology[1]

human hepatoma cell line, C3A을 위한 배지 최적화 목표 : hepatoma cell의 대사 작용에 대해 배지를 최적화 하는 것 → HGF, OSM, FGF4, EGF, albumin, nicotin- amide, dexamethasone의 요소가 Urea, Lac, LDH 반응에 미치는 영향 조사

### 2.1 in vitro experiment process

- Cell materials and culture procedures
- Analytical methods : enzymatic test kits 사용하여 6일에 걸쳐 2일 마다 대사 물질 수준 측정

Modde 사용하여 **two-level factioral design**실험 설계, 7개 요소에 대해 3개의 수준씩 실험진행

| Exp.no | HSA | HGF | OSM | DexM | FGF4 | EGF | NicA | Urea | Lac   | LDH   |
|--------|-----|-----|-----|------|------|-----|------|------|-------|-------|
| 1      | 0   | 0   | 0   | 7.4  | 50   | 100 | 10   | 6.3  | 133.0 | 35.0  |
| 2      | 6   | 0   | 0   | 0.0  | 0    | 100 | 100  | 9.0  | 135.0 | 147.0 |
| 3      | 0   | 50  | 0   | 0.0  | 50   | 0   | 100  | 7.6  | 110.0 | 22.3  |
| 4      | 6   | 50  | 0   | 7.4  | 0    | 0   | 10   | 6.3  | 149.0 | 23.0  |
| 5      | 0   | 0   | 50  | 7.4  | 0    | 0   | 100  | 8.0  | 132.0 | 8.0   |
| 6      | 6   | 0   | 50  | 0.0  | 50   | 0   | 10   | 9.6  | 143.0 | 27.6  |
| 7      | 0   | 50  | 50  | 0.0  | 0    | 100 | 10   | 8.0  | 137.0 | 27.0  |
| 8      | 6   | 50  | 50  | 7.4  | 50   | 100 | 100  | 6.3  | 87.0  | 25.7  |
| 9      | 3   | 25  | 25  | 3.7  | 25   | 50  | 55   | 6.7  | 147.0 | 24.7  |
| 10     | 3   | 25  | 25  | 3.7  | 25   | 50  | 55   | 8.0  | 149.0 | 22.7  |
| 11     | 3   | 25  | 25  | 3.7  | 25   | 50  | 55   | 8.3  | 139.0 | 30.0  |

실험 결과를 통해 주요 요소를 선별하고 주요 요소를 중심으로 추가 실험 진행

| Exp.no.       | HGF | OSM | FGF4 | Urea | Lac  | LDH  | Alb  |
|---------------|-----|-----|------|------|------|------|------|
| 1             | 0   | 0   | 0    | 8.0  | 121  | 34.0 | 14.1 |
| 2             | 40  | 0   | 0    | 11.0 | 123  | 44.0 | 12.0 |
| 3             | 0   | 50  | 0    | 14.0 | 202  | 66.0 | 18.4 |
| $\parallel$ 4 | 40  | 50  | 0    | 14.0 | 135  | 86.0 | 7.13 |
| 5             | 0   | 0   | 40   | 7.0  | 76.6 | 28.0 | 17.8 |
| 6             | 40  | 0   | 40   | 8.0  | 134  | 21.0 | 9.8  |
| 7             | 0   | 50  | 40   | 11.0 | 177  | 44.0 | 9.2  |
| 8             | 40  | 50  | 40   | 14.0 | 130  | 127  | 2.6  |
| 9             | 0   | 25  | 20   | 10.0 | 176  | 42.0 | 7.0  |
| 10            | 40  | 25  | 20   | 13.0 | 140  | 95.0 | 5.3  |
| 11            | 20  | 0   | 20   | 9.0  | 139  | 28.0 | 14.6 |
| 12            | 20  | 50  | 20   | 9.0  | 185  | 43.0 | 5.8  |
| 13            | 20  | 25  | 0    | 12.0 | 180  | 60.0 | 4.9  |
| 14            | 20  | 25  | 40   | 9.0  | 186  | 47.0 | 4.9  |
| 15            | 20  | 25  | 20   | 14.0 | 132  | 74.0 | 6.9  |
| 16            | 20  | 25  | 20   | 10.0 | 191  | 51.0 | 4.7  |
| 17            | 20  | 25  | 20   | 11.0 | 175  | 50.0 | 6.0  |
| 18            | 0   | 0   | 0    | 8.0  | 123  | 32.0 | 18.3 |

# 2.2 experimental data explain

# 2.3 data procssing

• model parameter select : 분산을 측정하여 결과 값에 가장 영향력 있는 요소를 측정 Lactate LDH



• reaction surface : 동일한 수준의 결과를 얻는 요소의 조합을 통해 경제적으로 우수한 조건을 탐색할 수 있음



### 2.4 results

- hepatocyte growth factor, oncostatin M, and fibro-blast growth factor 4 significantly influenced the metabolic activities of the C3A cell line
- $\bullet$ hepatocyte growth factor 30 ng/ml, oncostatin 35 ng/ml is optimal level for meida

# References

- [1] Jia Dong, Carl-Fredrik Mandenius, Marc Lübberstedt, Thomas Urbaniak, Andreas KN Nüssler, Daniel Knobeloch, Jörg C Gerlach, and Katrin Zeilinger. Evaluation and optimization of hepatocyte culture media factors by design of experiments (doe) methodology. *Cytotechnology*, 57(3):251–261, 2008.
- [2] Carl-Fredrik Mandenius and Anders Brundin. Bioprocess optimization using design-of-experiments methodology. *Biotechnology progress*, 24(6):1191–1203, 2008.