МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Получение смеси сигнал + шум.

Вариант 2

Выполнил: Корнилов А. Н. Группа: M21-502

1. Расчетная часть – вывод расчетных характеристик

Группа	ФИО	Номер варианта	SNR, дБ
M21-502	Корнилов Артем	2	6

$$ext{SNR}(ext{dB}) = 10 \log_{10} \left(rac{P_{ ext{signal}}}{P_{ ext{noise}}}
ight) = 20 \log_{10} \left(rac{A_{ ext{signal}}}{A_{ ext{noise}}}
ight)$$

где Р - средняя мощность, А — среднеквадратичное значение амплитуды.

$$SNR_{dB} = 10 \log_{10}(SNR).$$

$$A = 1 \Rightarrow SNR = 0.501187$$

 $A = 0.2 \Rightarrow SNR = 0.1002374$

2. Графическое представление смеси

Рис. 1. Графическое представление сигнал + шум

Рис. 2. Графическое представление сигнал + шум увеличенный

3. Заключение

В данной лабораторной работе было произведено наложение шума на сигнал. Чем больше это отношение сигнал / шум, тем меньше шум влияет на характеристики системы.

4. Дополнительно

Hopma cos = 51.97400626274521

Норма шума = 57.88913925833566

Произведение = 8.063861543883805

Cos a = 0.002680154164837083

Угол примерно 90 градусов => шум почти никак не влияет на сигнал