as V= E

Paden 2	
a) phonograph mines a uniform density of "statue electricity" of	
It rotates at an angular velocity w.	
What is the surface current density is (including direction) a distance	
r from center?	
b) A informly charged solid sphere radius h & tit-I charge Q	
is centered a origin & spring a concept angular rate was zens	
Find current density I a any point (r, 0, 6) w/n the sphere.	
a) - Surface current donsity, V, is defined as: \[\bar{Z} = O\bar{V} - where O is surface charge 1 \bar{V} is velocity	
- Where Ors surface charge I V is velocity	
- The angular velocity w is defined as: w = I > V = wr	
$\omega = \sqrt{-}$	
- Plug in value for i into surface current density equation.	
Z=Owr?	
	7 7 0
b) - Generally, volume charge density is given by:	
b) - Generally, volume charge density is given by: g = Q - white Q=charge V= volume	
- w/ volume of a sphere = $\frac{4}{3}\pi R^3$, substitute n:	
$p = 3Q$ $4\pi B^3$	M. M. COLORES
- Volume current density is: J = pv - whose D is velocity to = volume change the sphere has angular velocity we about z axis, to get v from w: v = w x c	1. 71.
- that colons has a souls which it hat a soul it forms	desily
The synthe via organia utility a about 2 axis, to get a more	
$\vec{v} = w r s n \theta \hat{\theta}$	
- substitute in $\vec{V} \neq p$ into $\vec{J} = p\vec{V}$:	
(= 30 (wsnob)	
0 = 4763 (W) 110 P)	

Scott Kolous 302 HW7 Problem 3 magnetic field @ point P for each figure below a) Use the Bird-Savar Law to find the magnetic held b(i)= NoI (dexie - For Ines I and 2 the magnetic field is O because the de segnent and it are going to be colliner so their cross podut = 0. In 4, 2 will become \$1 12 will become b2 since Aujust the director of the radius (which is b for he 4) & if it is to then magnified - dlx6 will just be of 102 is b2. equal to de n magnitude sne det 6 ar population. de= rdo (or bdo for Ine4) by do = Ust 5 to do - limits of integration one O to 7/2 sna wereday only one quarter of a cricle. B(引= 4元 (至-0) exactsme for the 3 but a replaces r: B(i)= Nort

- total B will = B = B = B = Not Not Not 80 - Ra

B = NoT (1 - 1) |

b) - For lines 1 \$2 the magnetic field is just that of an infinitely long mine: (found in class) B= 41 B For line 3 it is the exact same as Ines 3 by from

port a) except it is a semicine so the limits of integration

are 0 + IT instead of 0 - 11/2 for a quart circle. B = 10 1 Add all 3 together to get total B: = NoT + NOT + NOT YE By= 40+ (++++1)

- We can plug in the value of z = acot 0 vito the integral $\frac{Q^3}{50^30} = (\alpha^2 + 2^2)^{3/2}$ - Ply n = (2422) 1/2 & dz = -a do into me integral B= 25 - a - a do - smplify $\frac{-\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha^3 \sin^3 \theta \\ \overline{\alpha^3 \sin^2 \theta} \end{array} \right\} = \frac{-\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{ont}}}{2} \left\{ \begin{array}{c} \alpha_2 \\ \overline{\alpha} \end{array} \right\} = \frac{\mu_{\text{$ - integrate: integrate: $\beta = \frac{-1501}{2} \left(-\cos\theta\right) \left| \frac{\partial}{\partial t} \right|$ picture. B= Non I (cos02 - cos01) @ port P - Infinite Silenoid: If the solenoid is infinite, Oz mill go to O and 0, will go to T (bosically a strong lit live) -plug n 0, 10,: B= Nort (COO-COUTT) B= NonI = 11-1

