Algorithmen und Datenstrukturen

Übungsgruppe 14

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

> Paul Testa paul.testa@gmx.de 6251548

26. Oktober 2015

Punkte für den Hausaufgabenteil:

2.1	2.2	2.3	2.4	\sum

1 Zettel vom 15.10. – Abgabe: 26.10.

1.1 Übungsaufgabe 2.1

 $\begin{bmatrix} & 2 \end{bmatrix}$

Begründen Sie formal, warum folgende Größenabschätzungen gelten bzw. nicht gelten:

1.
$$3n^3 - 6n + 20 \in O(n^3)$$

$$2. \ n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2)$$

1.1.1

$$3n^{3} - 6n + 20 \in O(n^{3}) \Leftrightarrow \lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} < \infty$$

$$\lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} = \lim_{n \to \infty} \frac{3n^{3}}{n^{3}} - \frac{6n}{n^{3}} + \frac{20}{n^{3}} = \lim_{n \to \infty} 3 - \frac{6}{n^{2}} + \frac{20}{n^{3}} = 3 - 0 + 0 < \infty$$

$$\Rightarrow 3n^{3} - 6n + 20 \in O(n^{3}) \qquad \Box$$

1.1.2

$$\begin{split} n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) &\Leftrightarrow \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} < \infty \wedge \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^2} > 0 \\ &\frac{n^2 \cdot \log n}{n^2} = \frac{1 \cdot \log n}{1} = \log n > 0 \ \forall n > 1 \Rightarrow n^2 \cdot \log n \in \Omega(n^2) \\ \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} = \lim_{n \to \infty} \frac{\log n}{n} \overset{\text{l'H}}{=} \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{1} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{\infty} = 0 \Rightarrow n^2 \cdot \log n \in O(n^3) \\ &\Rightarrow n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) \quad \Box \end{split}$$

1.2 Übungsaufgabe 2.2

[| 4]

Ordnen Sie die folgenden Funktionen nach ihrem Wachstumsgrad in aufsteigender Reihenfolge, d.h. folgt eine Funktion g(n) einer Funktion f(n), so soll $f(n) \in O(g(n))$ gelten.

$$n, \log n, n^2, n^{\frac{1}{2}}, \sqrt{n}^3, 2^n, \ln n, 1000$$

Mit log ist hier der Logarithmus zur Basis 2, mit l
n der natürliche Logarithmus (Basis e) gemeint. Begründen Sie stets Ihre Aussage. Zwei Funktionen f(n) und g(n) befinden sich ferner in der selben Äquivalenzklasse, wenn $f(n) \in \Theta(g(n))$ gilt. Geben Sie an, welche Funktionen sich in derselben Äquivalenzklasse befinden und begründen Sie auch hier ihre Aussage.

Die bearbeitete Menge wird i.F. als M_F bezeichnet. Die Menge, die gerade alle Elemente von M_F in aufsteigend sortierter Reihenfolge enthält, wird als M'_F bezeichnet.

 M_F wird mit InsertionSort in M_F' hineinsortiert.

Sei $e \in M_F$. Für e wird das Element 1000 gewählt. Da $|M'_F|$ leer ist, muss 1000 nicht weiter geprüft werden.

$$M_F' = \{1000\}$$

e wird nun über M_F iteriert, bis $M'_F = Sorted(M_F)$.

$$e = n$$

$$\begin{array}{ll} f(n) = n \\ g(n) = 1000 & \lim_{n \to \infty} \frac{n}{1000} & = \infty & \Rightarrow n \not\in O(1000) \end{array}$$

$$\begin{array}{ll} f(n) = 1000 \\ g(n) = n & \lim_{n \to \infty} \frac{1000}{n} & = 0 & \Rightarrow 1000 \in O(n) & \Rightarrow n \text{ folgt } 1000 \end{array}$$

 $M_F' = \{1000, n\}$

 $e = \log n$

$$\begin{split} f(n) &= log(n) \\ g(n) &= n & \lim_{n \to \infty} \frac{log(n)}{n} \overset{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{\frac{1}{ln(2) \cdot n}}{1} = \lim_{n \to \infty} \frac{1}{ln(2) \cdot n} &= 0 \quad \Rightarrow log(n) \in O(n) \\ &\Rightarrow n \text{ folgt } log(n) \end{split}$$

$$f(n) = log(n)$$

$$g(n) = 1000 \qquad \lim_{n \to \infty} \frac{log(n)}{1000}$$

$$= \infty \quad \Rightarrow log(n) \notin O(1000)$$

 $M_F' = \{1000, \log n, n\}$

e = 4

$$f(n) = 4$$
 $g(n) = n$ $\lim_{n \to \infty} \frac{4}{n}$ $= 0$ $\Rightarrow 4 \in O(n)$ $\Rightarrow n \text{ folgt } 4$

$$\begin{array}{ll} f(n) = 4 \\ g(n) = log(n) & \lim_{n \to \infty} \frac{4}{log(n)} & = 0 \\ & \Rightarrow 4 \in O(log(n)) & \Rightarrow log(n) \text{ folgt } 4 \end{array}$$

$$f(n) = 4$$

$$g(n) = 1000 \qquad \lim_{n \to \infty} \frac{4}{1000} \qquad = 0,004 \quad \Rightarrow 4 \in \Theta(1000) \qquad \Rightarrow 4 \text{ und } 1000 \text{ befinden sich in der selben \"{A}.-klasse}$$

$$M_F' = \{4,1000,\log n,n\}$$

$$e = n^{2}$$

$$f(n) = n^{2}$$

$$g(n) = n \quad \lim_{n \to \infty} \frac{n^{2}}{n} = \infty \quad \Rightarrow n^{2} \notin O(n)$$

$$f(n) = n$$

$$g(n) = n^{2} \quad \lim_{n \to \infty} \frac{n}{n^{2}} = 0 \quad \Rightarrow n \in O(n^{2}) \quad \Rightarrow n^{2} \text{ folgt } n$$

$$M'_{F} = \{4, 1000, \log n, n, n^{2}\}$$

$$e = n^{\frac{1}{2}}$$

$$\begin{split} f(n) &= n^{\frac{1}{2}} \\ g(n) &= n^2 \qquad \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{n^2} = \lim_{n \to \infty} \frac{1}{n^{\frac{3}{2}}} \\ &= 0 \qquad \Rightarrow n^{\frac{1}{2}} \in O(n^2) \qquad \Rightarrow n^2 \text{ folgt } n^{\frac{1}{2}} \end{split}$$

$$\begin{split} f(n) &= n^{\frac{1}{2}} \\ g(n) &= n & \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{n} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{2}}} \\ &= 0 \quad \Rightarrow n^{\frac{1}{2}} \in O(n) \qquad \Rightarrow n \text{ folgt } n^{\frac{1}{2}} \end{split}$$

$$\begin{split} f(n) &= n^{\frac{1}{2}} \\ g(n) &= log(n) \quad \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{log(n)} \overset{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{\frac{1}{2} \cdot n^{-\frac{1}{2}}}{\frac{1}{ln(2) \cdot n}} = \lim_{n \to \infty} \frac{ln(2) \cdot n^{\frac{1}{2}}}{2} &= \infty \quad \Rightarrow n^{\frac{1}{2}} \not\in O(log(n)) \\ M_F' &= \{4, 1000, \log n, n^{\frac{1}{2}}, n, n^2\} \end{split}$$

$$e = \sqrt{n}^3$$

$$f(n) = \sqrt{n}^3$$

$$g(n) = n^2 \qquad \lim_{n \to \infty} \frac{\sqrt{n}^3}{n^2} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{2}}} = 0 \quad \Rightarrow \sqrt{n}^3 \in O(n^2) \quad \Rightarrow n^2 \text{ folgt } \sqrt{n}^3$$

$$f(n) = \sqrt{n}^3$$

$$g(n) = n \qquad \lim_{n \to \infty} \frac{\sqrt{n}^3}{n} = \lim_{n \to \infty} n^{\frac{1}{2}} = \infty \quad \Rightarrow \sqrt{n}^3 \notin O(n)$$

$$M'_F = \{4, 1000, \log n, n^{\frac{1}{2}}, n, \sqrt{n}^3, n^2\}$$

$$\begin{split} e &= 2^n \\ f(n) &= 2^n \\ g(n) &= n^2 \quad \lim_{n \to \infty} \frac{2^n}{n^2} \overset{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{\ln(2) \cdot 2^n}{2 \cdot n} \overset{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{\ln^2(2) \cdot 2^n}{2} &= \infty \quad \Rightarrow 2^n \not \in O(n^2) \end{split}$$

$$f(n) = n^2$$

$$g(n) = 2^n \quad \lim_{n \to \infty} \frac{n^2}{2^n} \stackrel{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{2 \cdot n}{\ln(2) \cdot 2^n} \stackrel{\text{L'Hospital}}{=} \lim_{n \to \infty} \frac{2}{\ln^2(2) \cdot 2^n} = 0 \quad \Rightarrow n^2 \in O(2^n) \quad \Rightarrow n^2 \text{ folgt } 2^n$$

$$M'_F = \{4, 1000, \log n, n^{\frac{1}{2}}, n, \sqrt{n}^3, n^2, 2^n\}$$

 $e = \ln n$

$$\begin{split} f(n) &= \ln(n) \\ g(n) &= 2^n \qquad \lim_{n \to \infty} \frac{\ln(n)}{2^n} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln(2) \cdot 2^n} = \lim_{n \to \infty} \frac{1}{n \cdot \ln(n) \cdot 2^n} = 0 \qquad \Rightarrow \ln(n) \in O(2^n) \qquad \Rightarrow 2^n \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= n^2 \qquad \lim_{n \to \infty} \frac{\ln(n)}{n^2} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{\frac{1}{n}}{2^{n}} = \lim_{n \to \infty} \frac{1}{2 \cdot n^2} \qquad = 0 \qquad \Rightarrow \ln(n) \in O(n^2) \qquad \Rightarrow n^2 \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= \sqrt{n} \qquad \lim_{n \to \infty} \frac{\ln(n)}{\sqrt{n^3}} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{\frac{3}{2} \cdot n}{2^{n}} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{1}{6 \cdot n^{\frac{3}{2}}} = 0 \qquad \Rightarrow \ln(n) \in O(\sqrt{n^3}) \Rightarrow \sqrt{n^3} \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= n \qquad \lim_{n \to \infty} \frac{\ln(n)}{n} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \\ &= n \to \infty \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0 \qquad \Rightarrow \ln(n) \in O(n) \qquad \Rightarrow n \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= n^{\frac{1}{2}} \qquad \lim_{n \to \infty} \frac{\ln(n)}{n^{\frac{1}{2}}} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{2}{n^{\frac{1}{2}}} = 0 \qquad \Rightarrow \ln(n) \in O(n^{\frac{1}{2}}) \Rightarrow n^{\frac{1}{2}} \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= \log(n) \qquad \lim_{n \to \infty} \frac{\ln(n)}{\log(n)} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{2}{\ln(n)} = 0 \Rightarrow \ln(n) \in O(n^{\frac{1}{2}}) \Rightarrow n^{\frac{1}{2}} \text{ folgt } \ln(n) \\ f(n) &= \ln(n) \\ g(n) &= \log(n) \qquad \lim_{n \to \infty} \frac{\ln(n)}{\log(n)} \overset{\operatorname{L'Hospital}}{=} \lim_{n \to \infty} \frac{1}{\ln(n)} = \lim_{n \to \infty} \frac{1}{\ln(n)} = \ln(n) \\ &= \ln(n) &= &= \ln(n) \\ &= \ln(n) &= \ln(n) \\ &= \ln($$

$$M_F' = \{4, 1000, \ln n, \log n, n^{\frac{1}{2}}, n, \sqrt{n}^3, n^2, 2^n\}$$

 $= ln(2) \Rightarrow ln(n) \in \Theta(log(n)) \Rightarrow ln(n) \text{ und } log(n)$

befinden sich in der selben Ä.-klasse

In der selben Äquivalenzklasse befinden sich zum einen 4 und 1000 und zum anderen log(n) und ln(n). Die restlichen Werte sind jeweils alleine in ihrer Äquivalenzklasse.

1.3 Übungsaufgabe 2.3

g(n) = log(n)

2

Beweisen oder widerlegen Sie:

$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) \cdot g(n) \in O((h(n))^2)$$

Für diesen Beweis wird der Beweis des dritten Satzes der Summen- und Produkteigenschaften der O-Notation¹ zu Hilfe genommen:

Beweis. Sei $f \in O(h_1)$ und $g \in O(h_2)$, dann gibt es ein c, n_0 , so dass $f(n) \le c \cdot h_1(n) \forall n \ge n_0$ und ebenso c', n'_0 , so dass $g(n') \le c' \cdot h_2(n') \forall n' \ge n'_0$. Daraus folgt $f(n'') \cdot g(n'') \le c \cdot c' \cdot h_1(n'') \cdot h_2(n'') \forall n'' \ge max(n_0, n'_0)$, also $f \cdot g \in O(h_1 \cdot h_2)$.

Setzt man nun $h_1, h_2 = h$ folgt daraus für den letzten Ausdruck des Beweises $f(n) \cdot g(n) \in O(h(n) \cdot h(n)) \Rightarrow$ $f(n) \cdot g(n) \in O((h(n))^2).$

¹vgl. Vorlesung, Foliensatz 1 (14.10.), S.33

1.4 Übungsaufgabe 2.4

[8]

Seien

1.

$$T(n) := \begin{cases} 0, & \text{für } n = 0\\ 3 \cdot T(n-1) + 2, & \text{sonst} \end{cases}$$

2.

$$S(n) := \begin{cases} c, & \text{für } n = 1\\ 16 \cdot S(\frac{n}{4}) + n^2, & \text{sonst} \end{cases}$$

Rekurrenzgleichungen (c ist dabei eine Konstante).

Bestimmen Sie wie in der Vorlesung jeweils die Größenordnung der Funktion $T: \mathbb{N} \to \mathbb{N}$ einmals mittels der (a) Substitutionsmethode und einmal mittes des (b) Mastertheorems. Ihre Ergebnisse sollten zumindest hinsichtlich der O-Notation gleich sein, so dass Sie etwaige Rechenfehler entdecken können! Führen Sie bei (a) auch den Induktionsbeweis, der in der Vorlesung übersprungen wurde!

1. a)
$$T(n) = 3 \cdot T(n-1) + 2$$

$$= 3 * (3 * T(n-2) + 2) + 2 = 3^2 * T(n-2) + 3^2 - 1$$

$$= 3^2 * (3 * T(n-3) + 2) + 8 = 3^3 * T(n-3) + 3^3 - 1$$

$$= \dots$$

$$= 3^k * T(n-k) + 3^k - 1$$

Wir kommen auf eine sinnvolle Verallgemeinerung der Formel.

Beweis der Formel durch vollständige Induktion:

Induktionsanfang: T(0) gilt nach Definiton.

Induktionsschritt: Sei $n \in \mathbb{N}$ (s. Aufgabenstellung). Wir nehmen an, dass T(n) gilt (Induktionsannahme) und zeigen T(n+1). Es gilt

$$T(n) = 3 * T(n-1) + 2$$

$$T(n+1) = 3 * T(n+1-1) + 2$$

$$= 3 * T(n) + 2$$

$$T(n) = 3^{k} * T(n-k) + 3^{k} - 1$$

$$T(n+1) = 3^{k} * T(n+1-k) + 3^{k} - 1$$

Das zeigt T(n+1).

Damit sind der Induktionsanfang und der Induktionsschritt bewiesen. Es folgt, dass T(n) für alle $n \in \mathbb{N}$ gilt.

Da die Rekursion bei T(0) = 0, also n - k = 0 abbricht, wird mit k = n weiter gerechnet.

$$T(n) = 3^{k} * T(n-k) + 3^{k} - 1$$

$$= 3^{n} * T(n-n) + 3^{n} - 1$$

$$= 3^{n} * T(0) + 3^{n} - 1$$

$$= 3^{n} * 0 + 3^{n} - 1$$

$$= 3^{n} - 1 \in \Theta(3^{n})$$

b) Das Mastertheorem ist auf Aufgabe 1. nicht anwendbar, da die Form

$$T(n) := \begin{cases} c, & \text{falls } n = 1\\ a \cdot T(\frac{n}{b}) + f(n), & \text{falls } n > 1 \end{cases}$$

bei

$$T(n) := \begin{cases} 0, & \text{für } n = 0\\ 3 \cdot T(n-1) + 2, & \text{sonst} \end{cases}$$

nicht eingehalten wurde.

2. a)

$$\begin{split} S(n) &= 16 \cdot S(\frac{n}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2) + n^2 \end{split}$$

 $\label{eq:Keines} \mbox{Keine sinnvolle Vereinfachung erkennbar.} => \mbox{Substitutions} \mbox{methode nicht anwendbar.}$

b) Die Form

$$S(n) := \begin{cases} c, & \text{falls } n = 1\\ a \cdot T(\frac{n}{b}) + f(n), & \text{falls } n > 1 \end{cases}$$

ist bei

$$S(n) := \begin{cases} c, & \text{für } n = 1\\ 16 \cdot S(\frac{n}{4}) + n^2, & \text{sonst} \end{cases}$$

eingehalten. Das Mastertheorem ist daher anwendbar.

I. $S(n) \in \Theta(n^{\log_b(a)})$, falls $f(n) \in O(n^{\log_b(a)-\epsilon})$ für ein $\epsilon > 0$.

$$f(n) \in O(n^{\log_b(a) - \epsilon})$$

$$n^2 \in O(n^{\log_4(16) - \epsilon})$$

$$n^2 \in O(n^{2 - \epsilon})$$

Hierfür kann kein ϵ gefunden werden. Daher gilt diese Aussage nicht

II. $S(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$, falls $f(n) \in \Theta(n^{\log_b(a)})$.

$$f(n) \in O(n^{log_b(a)})$$

$$n^2 \in O(n^{log_4(16)})$$

$$n^2 \in O(n^2)$$

Dies stimmt, daher gilt diese Aussage.

III. $S(n) \in \Theta(f(n))$, falls $f(n) \in \Omega(n^{\log_b(a) + \epsilon})$ für ein $\epsilon > 0$ und $a \cdot f(\frac{n}{b}) \le \delta \cdot f(n)$ für ein $\delta < 1$ und große n.

$$\begin{array}{ll} f(n) & \in \Omega(n^{\log_b(a)+\epsilon}) \\ n^2 & \in \Omega(n^{\log_4(16)+\epsilon}) \\ n^2 & \in \Omega(n^{2+\epsilon}) \end{array}$$

Dies stimmt für alle $\epsilon \geq 0$, also auch für mindestens ein $\epsilon > 0$.

$$\begin{array}{ll} a\cdot f(\frac{n}{b})\leq \delta\cdot f(n) & \text{ \einsetzen} \\ 16\cdot (\frac{n}{4})^2\leq \delta\cdot n^2 & \sqrt{()} \\ 4\cdot \frac{n}{4}\leq \sqrt{\delta}\cdot n & \text{ \tangenty} & (n \text{ ist immer positiv, da } n\in \mathbb{N}, \text{ s. Aufgabenstellung)} \\ 1\leq \sqrt{\delta} & \text{ \tangenty} & ()^2 \\ 1\leq \delta & & \end{array}$$

Damit ist $\delta \geq 1$ und nicht, wie benötigt, $\delta < 1$. Daher gilt diese Aussage nicht.

Da nur II. gilt, gilt $S(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$, also $S(n) \in \Theta(n^2 \cdot \log_2(n))$.