

Przetwarzanie języka naturalnego/05

Spis treści

Wektoryzacja tekstu

Miary podobieństwa

Spis treści

- Wektoryzacja tekstu
- 2 Miary podobieństwa

Wprowadzenie

Załóżmy, ze rozważamy problem stworzenia wyszukiwarki, tzn. mamy pewna bazę dokumentów (niekoniecznie stron), oraz użytkownika, który wpisuje jakaś frazę. Chcemy przedstawić mu najlepszy dokument (albo posortowana listę najlepszych dokumentów).

Problem wyszukiwania

Mając dane zapytanie q wyszukaj najlepszy dokument d z puli D.

Problem wyszukiwania

- jest to istotnie różne od sprawdzania, czy q jako zdanie, należy do jakiegoś modelu języka zadanego przez określony dokument d
- przede wszystkim *D* jest duże, wiec musimy mieć bardzo wydajną metodę (zarówno pamięciowo jak i obliczeniowo)
- zapytania bardzo rzadko sa zdaniami
- to, co nas tak na prawdę interesuje to **sens**, **potrzeba**, która doprowadziła do wpisania *q*, nie zaś samo *q*

Reprezentacja binarna (set of words)

 $\phi(\text{``Ala ma kota. Ala lubi też psy''}) = \{\text{Ala, ma, kota, lubi, też, psy}\}$

Jaccard coefficient

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Właściwości:

- J(A, A) = 1
- A i B mogą być dowolnej (różnej) długości
- $J(A, B) \in [0, 1]$

Jaccard coefficient

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

$$J(\phi("Ala ma kota"), \phi("Ala ma psa")) =$$

$$= \frac{|\{Ala, ma, kota\} \cap \{Ala, ma, kota\}|}{|\{Ala, ma, kota\} \cup \{Ala, ma, psa\}|}$$

$$= \frac{|\{Ala, ma\}|}{|\{Ala, ma, kota, psa\}|}$$

$$= \frac{2}{A}$$

Jaccard coefficient

- Nie bierze pod uwagę częstotliwości wystąpień słów
- Normalizacja przez sumę mnogościową nie jest najlepsza

Set of words

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Bag of words

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words – reprezentacja

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

$$\phi$$
(Antony and Cleopatra) = [157, 4, 232, 0, 57, 2, 2] $\in \mathbb{N}^7$

Term frequency

Term frequency

Częstotliwością termu (term frequency, tf) t w dokumencie d nazywamy liczbę wystąpień t w d i oznaczamy przez $tf_{t,d}$

$$tf_{t,d} = count(t,d) = \#\{i: d[i] = t\}$$

Term frequency – zastosowania i problemy

Można wykorzystywać do mierzenia na ile dany dokument odzwierciedla zapytanie w wyszukiwarce, tzn.:

$$score(q, d) = \sum_{t \in q} t f_{t,d}$$

- Jeśli szukamy hasła "dog", to dokument zawierający 100 słów "dog" będzie 100 razy lepszy niż ten zawierający jedno słówko"dog"
- Wraz ze wzrostem częstotliwości występowania termu powinna wzrastać "ocena", ale na pewno nie liniowo!

Log term frequency

$$w_{t,d} = egin{cases} 1 + \log(tf_{t,d}), & ext{jeśli } tf_{t,d} > 0 \ 0, & wpp. \end{cases}$$

$$\mathit{score}(q,d) = \sum_{t \in q} w_{t,d} = \sum_{t \in q \cap d} 1 + \log(t f_{t,d})$$

Log term frequency

tf_{t}	d	W_t	,d	sow
0		0		0
1		1		1
2		1.	3	1
10)	2		1
100	00	4		1

Document frequency weighting

- Rzadkie słowa sa bardziej informatywne, niż częste
- np. jeśli szukamy zapytaniem "William Shakespeare", to zdecydowanie większą wagę należy poświecić stronom, które zawierają term "Shakespeare" (35,000,000 wyników w Google) niż stronom zawierającym "William" (281,000,000 wyników w Google).
- bardziej skrajnie szukając danych o muszce owocówce (używając zapytania "melanogaster fly") ważniejsze sa strony o konkretnym gatunku ("drosophila melanogaster" -1,410,000 wyników) niż te o muchach ogólnie (188,000,000)

Document frequency

Document frequency

Częstotliwością termu (Document frequency, df) t w zbiorze dokumentów nazywamy liczbę dokumentów w których występuje t i oznaczamy przez df_t

$$df_t = \sum_{d \in D} \min\{1, tf_{t,d}\} = \#\{d \in D : tf_{t,d} > 0\}$$

Document frequency

- Document frequency jest miara nieinformatywności termu
- Chcąc mieć informatywności musimy ten obiekt "odwrócić"

Inverse Document frequency

$$idf_t = \log(\frac{N}{df_t})$$

gdzie N = #D to liczba dokumentów

Inverse Document frequency

df_t	$idf_t \ (N=100)$
100	0
99	0.004
98	0.009
50	0.3
5	1.3
4	1.4
3	1.5
2	1.7
1	2

tf-idf weighting

$$tf.idf_{t,d} = \underbrace{\left(1 + \log(tf_{t,d})\right)}_{ ext{tf- trafność}} \underbrace{\log\left(rac{N}{df_t}
ight)}_{ ext{idf-normalizacja}}$$

$$score(q, d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

tf-idf

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

tf-idf

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

document	×	У	Z
Antony and Cleopatra	5.25	1.21	1.51
Julius Caesar	3.18	6.1	0
The Tempest	0	0	1.9
Hamlet	0	1	0.12
Othello	0	0	5.25
Macbeth	0.35	0	0.88

Rysunek: VSM na bazie utworów Szekspira

VSM

- Vector Space Model
- mamy $\|V\|$ wymiarowa przestrzeń rzeczywista
- każdy term to wymiar przestrzeni (os)
- dokumenty to punkty (wektory) w tej przestrzeni
- bardzo wysoko wymiarowa przestrzeń
- bardzo rzadkie wektory

VSM w wyszukiwaniu

"Mając dane zapytanie q wyszukaj najlepszy dokument d z puli D"

- zapytania również można potraktować jak dokumenty i wyrazic je w naszym VSM
- dokumenty można posortować wg. trafności
- trafność = bliskość wektorów = odwrotność odległości

Co to jest "bliskość wektorów"?

Spis treści

- 1 Wektoryzacja tekstu
- Miary podobieństwa

- mamy dokumenty di wyrazone jako wektory w $\mathbb{R}^{|V|}$, nazwijmy je x_i
- interesuje nas znalezienie funkcji f, takiej, że:

 - $f(x_i, x_i) = f(x_i, x_i)$

Norma euklidesowa różnicy wektorów

$$f(x_i,x_j) = ||x_i - x_j||$$

$$f(x_i, x_i) = ||x_i - x_i||$$

$$f(q, d_2) = ||q - d_2|| > ||q - d_1|| = f(q, d_1)$$

 $f(q, d_2) = ||q - d_2|| > ||q - d_3|| = f(q, d_3)$

- Wyobraźmy sobie sytuacje, gdzie mamy dokument d' będący konkatenacja dokumentu d z samym sobą
- "Semantycznie" te dwa dokumenty mają te sama informacje
- Odległość euklidesowa może być dowolnie duża

- Wyobraźmy sobie sytuacje, gdzie mamy dokument d' będący konkatenacja dokumentu d z samym sobą
- "Semantycznie" te dwa dokumenty mają te sama informacje
- Odległość euklidesowa może być dowolnie duża
- Idea: używajmy np. kąta zamiast odległości

Liczenie kata miedzy wektorami w wysoko wymiarowej przestrzeni

Prosta obserwacja, następujące działania są równoważne

- Sortowanie dokumentów po malejącym kacie miedzy nimi
- Sortowanie dokumentów po rosnącym kosinusie kata miedzy nimi

$\cos(\alpha)$

Kosinus kąta przy tfidf

$$\forall t, d: tf.idf_{t,d} \geqslant 0$$
$$\angle(x_i, x_j) \in [0, \pi/2]$$
$$\cos(\angle(x_i, x_j)) \in [0, 1]$$

Kosinus kąta

$$\cos(x,y) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sum_{i=1}^{|V|} x_i y_i}{\sqrt{\sum_{i=1}^{|V|} x_i^2} \sqrt{\sum_{i=1}^{|V|} y_i^2}}$$

- \mathbf{x} i \mathbf{y} to wektory tf.idf
- $\cos(x,y)$ to kosinus kąta miedzy nimi lub czasem "podobienstwo kosinusowe" (cosine similarity) tych wektorów
- gdyby *x* i *y* były jednostkowe, to wystarczyłoby liczyć iloczyn skalarny

Znormalizowana reprezentacja VSM

Proces porównywania dokumentów - klasyczna wersja VSM

- Policz tfidf_{t,d} dla każdego dokumentu i każdego termu
- Zapisz reprezentacje VSM każdego dokumentu korzystając z tfidf
- I Znormalizuj każdy z wektorów (podziel go przez jego normę)
- W przypadku potrzeby porównania dwóch dokumentów policz iloczyn skalarny pomiędzy ich reprezentacjami

Generalizacje tfidf

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_{t}(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \frac{\textit{N} - \text{d} f_t}{\text{d} f_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Czy to jedyna możliwość?

Jest wiele innych, używanych do analizy tekstu metryk, m.in.

- Korelacja Pearsona
- Uśredniona dywergencja Kullbacka-Leiblera

Korelacja Pearsona

Dywergencja KL

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx$$

Dywergencja KL

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx$$
$$D_{KL}(x||y) = \sum_{t} w_{t,x} \log \left(\frac{w_{t,x}}{w_{t,y}}\right)$$

Dywergencja KL

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx$$

$$D_{KL}(x||y) = \sum_{t} w_{t,x} \log \left(\frac{w_{t,x}}{w_{t,y}}\right)$$

$$D_{JS}(P||Q) = \frac{D_{KL}(P||\frac{P+Q}{2}) + D_{KL}(Q||\frac{P+Q}{2})}{2}$$

Klastrowanie dokumentów - Purity

Data	Euclidean	Cosine	Jaccard	Pearson	KLD
20news	0.1	0.5	0.5	0.5	0.38
classic	0.56	0.85	0.98	0.85	0.84
hitech	0.29	0.54	0.51	0.56	0.53
re0	0.53	0.78	0.75	0.78	0.77
tr41	0.71	0.71	0.72	0.78	0.64
wap	0.32	0.62	0.63	0.61	0.61
webkb	0.42	0.68	0.57	0.67	0.75

Na podstawie "Similarity Measures for Text Document Clustering" - Anna Huang (University of Waikato)

Klastrowanie dokumentów - Entropia

Data	Euclidean	Cosine	Jaccard	Pearson	KLD
20news	0.95	0.49	0.51	0.49	0.54
classic	0.78	0.29	0.06	0.27	0.3
hitech	0.92	0.64	0.68	0.65	0.63
re0	0.6	0.27	0.33	0.26	0.25
tr41	0.62	0.33	0.34	0.3	0.38
wap	0.75	0.39	0.4	0.39	0.4
webkb	0.93	0.6	0.74	0.61	0.51

Na podstawie "Similarity Measures for Text Document Clustering"

Appa Huang (University of Waikata)

- Anna Huang (University of Waikato)

Dziękuję za uwagę.