Coeficientes de Fourier

Seja $f:\mathbb{R}\to\mathbb{R}$ uma função 2π -periódica tal que

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right], \quad x \in \mathbb{R}.$$

Se esta série trigonométrica convergir uniformemente, a_n e b_n são completamente determinadas pela função f.

• Determinação de *a*₀: Mostra-se que

$$\int_{-\pi}^{\pi} f(x) \, dx = \pi a_0$$

e portanto

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

2. Sucessões e Séries de Funções; Séries de p Cálculo II – Agrup. IV 18/19

Séries de Fourier Definições e exemplos

Coeficientes de Fourier (cont.)

• Determinação de a_m , com $m \ge 1$: Multiplica-se

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right],$$

por cos(mx) e integra-se no intervalo $[-\pi, \pi]$, obtendo-se:

$$\int_{-\pi}^{\pi} \cos(mx) f(x) \, dx = \pi a_m$$

e portanto

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) dx$$
, para $m = 1, 2, ...$

• Determinação de b_m , com $m \ge 1$: Usando argumentos análogos, obtém-se

$$b_m=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin(mx)\,dx$$
, para $m=1,2,\ldots$