All-set-homogeneous spaces

Nina Lebedeva and Anton Petrunin

Abstract

We give a classification of a certain subclass of all-set-homogeneous length spaces; a metric space is all-set-homogeneous if any of its partial isometries can be extended to a genuine isometry.

1 Main result

A metric space M is said to be all-set-homogeneous if for any subset $A \subset M$ any distance-preserving map $A \to M$ can be extended to an isometry $M \to M$.

Given a metric space M and a positive integer n, consider all pseudometrics induced on n points $x_1, \ldots, x_n \in M$. Any such metric is completely described by $N = \frac{n \cdot (n-1)}{2}$ real numbers $|x_i - x_j|$ for i < j, so it can be encoded by a point in \mathbb{R}^N . The set of all these points $F_n(M) \subset \mathbb{R}^N$ will be called n^{th} fingerprint of M.

Let us denote by \mathbb{H}^m the hyperbolic space, \mathbb{E}^m — Euclidean space, \mathbb{S}^m — unit sphere, $\mathbb{R}\mathrm{P}^m$ — projective space, all with standard metrics; here m stands for the dimension of the space.

Given a metric space M, we denote by $\lambda \cdot M$ the rescaled M with factor $\lambda > 0$

Theorem. Let M be a complete all-set-homogeneous length space. Suppose that all fingerprints of M are closed. Then M is isometric to \mathbb{E}^m , $\lambda \cdot \mathbb{H}^m$, $\lambda \cdot \mathbb{S}^m$, or $\lambda \cdot \mathbb{R}P^m$ for some $\lambda > 0$ and nonnegative integer m.

The question about classifying all-set-homogeneous space was posted by Joseph O'Rourke [2]. The locally compact case of the theorem is proven by Jacques Tits [3]. In this case, the condition on fingerprints is not needed. Moreover, the three-point-homogeneity is sufficient; that is, any distance preserving map defined on a subset with at most 3 points can be extended to an isometry. Our result shows that one can trade local compactness to a better type of homogeneity and closed fingerprints.

Proof. If M is locally compact, then the statement follows from the result of Jacques Tits [3].

Assume M is not locally compact. Then there is an infinite sequence of points x_1, x_2, \ldots such that $\varepsilon < |x_i - x_j| < 1$ for some $\varepsilon > 0$. Applying the Ramsey theorem, we get that for arbitrary positive integer n and $\delta > 0$ there is a sequence x_1, x_2, \ldots, x_n such that $|x_i - x_j| \le r \pm \delta$ where $\varepsilon \le r \le 1$. Since the fingerprints are closed, there is an arbitrarily long sequence x_1, x_2, \ldots, x_n such that $|x_i - x_j| = r$ for some fixed r > 0.

Choose a maximal (with respect to inclusion) set of points $\{x_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ such that $|x_{\alpha}-x_{\beta}|=r$ for any $\alpha\neq\beta$. Since M is all-set-homogeneous, we can

assume that \mathcal{A} is infinite. In particular, there is an injective map $f: \mathcal{A} \to \mathcal{A}$ such that $f(\mathcal{A})$ is a proper subset of \mathcal{A} .

Note that the map $x_{\alpha} \mapsto x_{f(\alpha)}$ is distance preserving. Since $\{x_{\alpha}\}_{\alpha \in \mathcal{A}}$ is maximal, for any $y \notin \{x_{\alpha}\}_{\alpha \in \mathcal{A}}$ we have that $|y - x_{\alpha}|_{M} \neq r$ for some α . It follows that a distance preserving map $M \to M$ that agrees with $x_{\alpha} \mapsto x_{f(\alpha)}$ cannot have in its image a point x_{α} for $\alpha \in \mathcal{A} \setminus f(\mathcal{A})$. In particular, no isometry $M \to M$ agrees with the map $x_{\alpha} \mapsto x_{f(\alpha)}$ — a contradiction.

2 Example

Recall that for any cardinality $n \ge 2$ there is the so-called universal \mathbb{R} -tree of valence n; let us denote it by \mathbb{T}_n .

- \diamond The space \mathbb{T}_n is a complete \mathbb{R} -tree; in particular, \mathbb{T}_n is geodesic.
- \diamond \mathbb{T}_n is homogeneous; that is, the group of isometries acts transitively on \mathbb{T}_n .
- \diamond The space \mathbb{T}_n is *n*-universal; that is, \mathbb{T}_n includes a copy of any \mathbb{R} -tree of maximal valence at most n

An explicit construction of \mathbb{T}_n is given by Anna Dyubina (now Erschler) and Iosif Polterovich [1]. Their proof of the universality of \mathbb{T}_n admits a straightforward modification that proves the following claim.

Claim. If n is finite, then \mathbb{T}_n is all-set-homogeneous.

The claim implies that the condition on fingerprints in the theorem is necessary.

Proof. Choose a subset $A \subset \mathbb{T}_n$. Let us extend any distance preserving map $f: A \to \mathbb{T}_n$ to a distance preserving map $\mathbb{T}_n \to \mathbb{T}_n$.

Applying the Zorn lemma, we can assume that A is maximal; that is, the domain of f cannot be extended by a single point. Note that in this case, A is a closed convex set in \mathbb{T}_n ; in particular, A is an \mathbb{R} -tree with maximal valence at most n. Suppose $A \neq \mathbb{T}_n$, choose $a \in A$ and $b \notin A$. Let $c \in A$ be the last point on the geodesic $[ab]_{\mathbb{T}_n}$. Note that the valence of c in A is smaller than n.

Let c' = f(c); since n is finite at least one of connected components $\mathbb{T}_n \setminus \{c'\}$ does not intersect A' = f(A). Choose a point b' in this connected component on distance |c - b| from c'. Observe that f can be extended by $b \mapsto b'$ — a contradiction.

It remains to show that $f(\mathbb{T}_n)=\mathbb{T}_n$ for any distance-preserving map $f\colon \mathbb{T}_n\to \mathbb{T}_n$. Assume the contrary; that is, $B=f(\mathbb{T}_n)$ is a proper subset on \mathbb{T}_n ; choose $a\notin B$. Note that B is a closed convex set in \mathbb{T}_n . Let $b\in \partial B$ be the point that minimizes the distance to a. Observe that the valence of b in B is smaller than n—a contradiction.

3 Remarks

Let us list examples for related classification problems. We would be interested to see other examples or a proof that there are no more.

First of all, we do not see other examples of complete all-set-homogeneous length spaces except those listed in the theorem and the claim.

The definition of all-set homogeneity can be restricted to the distance-preserving map with *small* domains; for example, *finite* or *compact* domains. In these cases, we say that the space is *finite-set-homogeneous* or *compact-set-homogeneous* respectively.

Examples of complete separable compact-set-homogeneous length spaces with closed fingerprints include the spaces listed in the theorem, plus the Urysohn space \mathbb{U} and its version \mathbb{U}_d of diameter d (it is isometric to a sphere of radius $\frac{d}{2}$ in \mathbb{U}). (Without separability condition, we get in addition the \mathbb{R} -trees from the claim.)

For finite-set-homogeneous we get in addition infinite-dimensional analogs of the spaces in the theorem; in particular the Hilbert space.

Acknowledgments. The second author wants to thank Rostislav Matveyev for an interesting discussion on the Rubinstein Street.

References

- [1] A. Dyubina and I. Polterovich. "Explicit constructions of universal \mathbb{R} -trees and asymptotic geometry of hyperbolic spaces". *Bull. London Math. Soc.* 33.6 (2001), 727–734.
- [2] J. O'Rourke. Which metric spaces have this superposition property? MathOver-flow. eprint: https://mathoverflow.net/q/118008.
- [3] J. Tits. "Sur certaines classes d'espaces homogènes de groupes de Lie". Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8° 29.3 (1955), 268.