

Corten: Refinement Types for Imperative Languages with Ownership

Abschlusspräsentation Masterarbeit

Carsten Csiky | 26th Oktober 2022

Inhaltsverzeichnis

- 1. Motivation
- 2. Empirical Analysis
- 3. Solution
- 4. Soundness Justification
- 5. Related Work
- 6. Conclusion / Future Work


```
fn max(a: i32, b: i32) {
       if a > b { a } else { b }
```

Motivation •000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
fn max(a: i32, b: i32) {
    if a > b { a } else { b }
}
```

Return Value $(v): v \geq a \land v \geq b$

Soundness Justification


```
fn max(a: i32, b: i32) {
     if a > b { a } else { b }
}
```

Return Value (v) : $v > a \land v > b$

Refinement Typesrondon_liquid_2008 in Functional Programming Languages

Motivation •ooo Empirical Analysis

Solution

Soundness Justification

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
   max(a: i32, b: i32) -> i32 {
        if a > b { a } else { b }
}
```

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
          if a > b { a } else { b }
}
   let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
```

$$\Gamma \vdash \text{if } a > b \{a\} \text{ else } \{b\} : \tau$$

Empirical Analysis

Solution

Soundness Justification

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
          if a > b { a } else { b }
}
   let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
```

$$\overline{\Gamma, a > b \vdash a : \tau}$$
 $\overline{\Gamma, \neg(a > b) \vdash b : \tau}$

 $\Gamma \vdash \text{if } a > b \{a\} \text{ else } \{b\} : \tau$

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
         if a > b { a } else { b }
}
  let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
```

$$\frac{\Gamma, a > b \vdash \{v : i32 \mid v \doteq a\} \preceq \tau}{\Gamma, a > b \vdash a : \tau} \qquad \frac{\Gamma, \neg(a > b) \vdash b : \tau}{\Gamma, \neg(a > b) \vdash b : \tau}$$


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
           if a > b { a } else { b }
}
   let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
                       *
    \Gamma, a > b \vdash a : \{v : i32 \mid v = a\} \Gamma, a > b \vdash \{v : i32 \mid v = a\} \prec \tau
                                         \Gamma. a > b \vdash a : \tau
                                                                                                          \Gamma, \neg (a > b) \vdash b : \tau
```

 $\Gamma \vdash \text{if } a > b \{a\} \text{ else } \{b\} : \tau$

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
              if a > b { a } else { b }
}
    let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
                                                                SMT-VALID \begin{pmatrix} \text{true } \land \text{ true } \land a > b \\ \land v \doteq a \\ \implies (v \geq a \land v \geq b) \end{pmatrix}
     \Gamma, a > b \vdash a : \{v : i32 \mid v \doteq a\} \Gamma, a > b \vdash \{v : i32 \mid v \doteq a\} \leq \tau
                                                    \Gamma. a > b \vdash a : \tau
                                                                                                                                     \Gamma, \neg (a > b) \vdash b : \tau
                                                            \Gamma \vdash \text{if } a > b \{a\} \text{ else } \{b\} : \tau
```

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
//@ \max(a: i32, b: i32) -> \{v:i32 \mid v >= a \&\& v >= b \}
fn max(a: i32, b: i32) -> i32 {
             if a > b { a } else { b }
}
    let \Gamma = (a : \{v : i32 \mid true\}, b : \{v : i32 \mid true\}) and \tau = \{v : i32 \mid v \ge a \land v \ge b\}
                                                               SMT-VALID \begin{pmatrix} \text{true } \land \text{ true } \land a > b \\ \land v \doteq a \\ \implies (v \geq a \land v \geq b) \end{pmatrix}
     \Gamma, a > b \vdash a : \{v : i32 \mid v = a\} \Gamma, a > b \vdash \{v : i32 \mid v = a\} \leq \tau
                                                   \Gamma. a > b \vdash a : \tau
                                                                                                                                   \Gamma, \neg (a > b) \vdash b : \tau
                                                           \Gamma \vdash \text{if } a > b \{a\} \text{ else } \{b\} : \tau
```

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
clamp(a: &mut i32, b: i32) {
   if *a > b { *a = b }
```

Motivation 000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
clamp(a: &mut i32, b: i32) {
        if *a > b { *a = b }
}
    client(...) {
        . . .
        clamp(&mut x, 5);
        clamp(&mut y, 6);
        print(x);
        . . .
```

Motivation 000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
clamp(a: &mut i32, b: i32) {
        if *a > b { *a = b }
}
    client(...) {
        . . .
        clamp(&mut x, 5);
        clamp(&mut y, 6);
        print(x);
        . . .
```

What does this it print(x) output?

Could be: old x or 5

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work


```
clamp(a: &mut i32, b: i32) {
        if *a > b { *a = b }
}
    client(...) {
        . . .
        clamp(&mut x, 5);
        clamp(&mut y, 6);
        print(x);
        . . .
```

What does this it print(x) output?

- Could be: old x or 5
- But also 6 (if x aliases with y)!

Motivation 0000

Empirical Analysis

Solution

Soundness Justification

Related Work

Literatur

Backup-Teil

Folien, die nach \beginbackup eingefügt werden, zählen nicht in die Gesamtzahl der Folien.

Zweiter Abschnitt 0000

26.10.2022

Farben

Blöcke in den KIT-Farben

Greenblock

Standard (block)

Blueblock

= exampleblock

Redblock

= alertblock

Brownblock

Purpleblock

Cyanblock

Yellowblock

Lightgreenblock

Orangeblock

Grayblock

Contentblock

(farblos)

Zweiter Abschnitt

Farben o

Auflistungen

Text

- Auflistung Umbruch
- Auflistung
 - Auflistung
 - Auflistung

Zweiter Abschnitt

Bei Frames ohne Titel wird die Kopfzeile nicht angezeigt, und der freie Platz kann für Inhalte genutzt werden.

Zweiter Abschnitt

●○○

Farben
○

10/6 26.10.2022 Carsten Csiky: Rust & Refinement Types

Department of Informatics – Institute of Information Security and Dependability (KASTEL) Bei Frames mit Option [plain] werden weder Kopf- noch Fußzeile angezeigt.

Beispielinhalt

Bei Frames mit Option [t] werden die Inhalte nicht vertikal zentriert, sondern an der Oberkante begonnen.

Zweiter Abschnitt 0000

Beispielinhalt: Literatur

Zweiter Abschnitt 0000

Farben

Farbpalette

kit-green100	reen100 kit-green90		kit-green80 kit-green7		reen60 ki	t-green50	kit-gre	en40 k	it-greer	n30 kit	t-green25	kit-green2	green20 kit-g		kit-gre	een10	kit-green5	
kit-blue100	kit-blue90 kit-blue8		kit-blue70	kit-blue60	kit-blue50	kit-blue	40 kit	-blue30	kit-blu	ue25 k	kit-blue20	kit-blue15	kit-bl	kit-blue10				
kit-red100	kit-red90 k	kit-red80 kit	t-red70 kit-	red60 kit	-red50 ki	t-red40	kit-red30	kit-red	125 k	kit-red20	kit-red1	5 kit-red1	0 kit-	red5				
kit-gray100	kit-gray90	kit-gray80	kit-gray70	kit-gray60	kit-gray50	kit-gray	/40 ki	t-gray30	kit-gray25		kit-gray20 kit-gray15		kit-g	kit-gray10 kit-gr		ay5		
kit-orange100 kit-orange		90 kit-orar	kit-orange80 kit-orange		70 kit-orange60		nge50	kit-orange40		kit-orang	ange30 kit-orange		kit-ora	kit-orange20		kit-orange15 kit-		0 kit-oranges
kit-lightgreen	100 kit-ligh	tgreen90 k	it-lightgreen8	tgreen80 kit-light		en70 kit-lightgree		n60 kit-lightgre		kit-ligh	tgreen40 kit-lightgreer		en30	kit-lightgreen25		5 kit-lightgreen20		kit-lightgreen1
kit-lightgreen10 kit-lightgreen5																		
kit-brown100	kit-brown90 kit-brown90		180 kit-brow	vn70 kit-l	brown60	kit-brown50	kit-b	rown40 kit-br		own30 kit-brown		kit-brown20		kit-brown15 k		kit-brown10 kit-bro		wn5
kit-purple100	purple100 kit-purple90		e80 kit-pur	urple70 kit-purple6		kit-purples	50 kit-	it-purple40 ki		urple30 kit-pur		le25 kit-p	5 kit-purple20		kit-purple15 k		e10 kit-	purple5
kit-cyan100	kit-cyan90	kit-cyan80 kit-cyan70 kit-cyan60 kit-cyan50 kit-cyan4		yan40	kit-cyan3	n30 kit-cyan25		kit-cyar	20 kit-cyan15		kit-cyan1	0 kit-	cyan5					

Zweiter Abschnitt 0000

