Metody Inteligencji Obliczeniowej Laboratorium 7

Algorytmy genetyczne

Kamil Pyla

Wyniki zadania 1:

prawdopodobieńs two mutacji	sposób kodowania	znaleziony wynik	błąd względny [%]
0.0	binarne	2.638696798747 9553	0.185
0,1	binarne	2.641334399527 739	0.063
0,5	binarne	2.643538787104 327	0.00148
1	binarne	2.6435611360171 13	0.00064
0	gray	2.638696798747 9553	0.185
0,1	gray	2.641825476501 2477	0.066
0,5	gray	2.643565989519 7006	0.00045

1 gray	2.6435611360171 13	0.00064
--------	-----------------------	---------

1. Wyniki graficzne dla prawdopodobieństwa mutacji: 0, kodowanie: binarne

Przystosowanie najlepszego osobnika znalezionego podczas przebiegu algorytmu

2. Wyniki graficzne dla prawdopodobieństwa mutacji: 0.1, kodowanie: binarne

3. Wyniki graficzne dla prawdopodobieństwa mutacji: 0,5 kodowanie: binarne

Przystosowanie najlepszego osobnika znalezionego podczas przebiegu algorytmu

4. Wyniki graficzne dla prawdopodobieństwa mutacji: 0 kodowanie: graya:

2.2

2.0

1.8

Przystosowanie najlepszego osobnika w każdej iteracji

Przystosowanie najlepszego osobnika znalezionego podczas przebiegu algorytmu

5. Wyniki graficzne dla prawdopodobieństwa mutacji: 0,1 kodowanie: graya:

Średnia wartość funkcji przystosowania w populacji

Przystosowanie najlepszego osobnika znalezionego podczas przebiegu algorytmu

6. Wyniki graficzne dla prawdopodobieństwa mutacji: 0,5 kodowanie: graya:

7. Wyniki graficzne dla prawdopodobieństwa mutacji: 1 kodowanie: graya:

Wnioski: Mutacje w algorytmach genetycznych mogą pomóc w osiągnięciu lepszego wyniku, zauważam również podobieństwo do algorytmów

herudystycznych takich jak algorytm symulowanego wyżarzania, w tamtym jednak wypadku, przyjmujemy gorsze rozwiązanie z pewnym prawdopodobieństwem, co z kolei może doprowadzić do lepszego wyniku. W mutacji przyjmujemy pewną losowość, która może doprowadzić do wyniku, niemożniwego do osiągnięcia przy replikacji bez zmian. Korzyści z mutacji wynikają bezpośrednio z tabeli.

Wyniki zadania 2:

Jako chromosom użyłem wektora złożonego z 4 wartości typu int, w metodzie crossover każdą z wartości zamieniam na liczbę binarną, następnie łączę liczbę binarną, przy mutacji podobne działanie. Metoda doboru rodziców: koło ruletki

Wyniki dla wielkości populacji 100, licznie iteracji 1000:

Mutation probability: 30%

Best solution: [30, 35, 208, 48]

Best value: 5048.0

Mutation probability: 30%

Best solution: [20, 26, 223, 48]

Best value: 5048.0

Iterations 100:

Best solution: [50, 35, 205, 49]

Best value: 5049.0

Wynik obliczony za pomocą wolphram alpha:

maximize	function	$5000 - 600 \times \frac{(x - 20)^2 (y - 35)^2}{z} - (x - 50)^2 (w - 48)^2 + w$
	domain	x>1 and $x<255$ and $y>1$ and $y<255$ and $z>1$ and $z<255$ and $x>1$ and $x<255$
Global maxima		
(no global max	kima found)	
Local maxima		
$\begin{cases} x > \\ \text{at } (w, x, y) \end{cases}$ $\max \left\{ 5000 - \frac{6}{3} \right\}$	1, $x < 255$, y 7, z) $\approx (48.00)$ 100 $((x - 20)^2)$	$\frac{(y-35)^2}{} - (x-50)^2 (w-48)^2 + w$ $(y > 1, y < 255, z > 1, z < 255, w > 1, w < 255)$ $(66, 20., 36.9152, 7.87654)$ $\frac{(y-35)^2}{} - (x-50)^2 (w-48)^2 + w$
		$\langle v > 1, \ y < 255, \ z > 1, \ z < 255, \ w > 1, \ w < 255 \} \approx 5048.$ 06, 20., 143.806, 128.354)
$\max \left\{ 5000 - \frac{600 \left((x - 20)^2 (y - 35)^2 \right)}{z} - (x - 50)^2 (w - 48)^2 + w \right $ $\{x > 1, \ x < 255, \ y > 1, \ y < 255, \ z > 1, \ z < 255, \ w > 1, \ w < 255\} \right\} \approx 5048.$ at $(w, x, y, z) \approx (48.0006, 20., 128.512, 131.731)$		
$\max \left\{ 5000 - \frac{600 \left((x - 20)^2 (y - 35)^2 \right)}{z} - (x - 50)^2 (w - 48)^2 + w \right $ $\left\{ x > 1, \ x < 255, \ y > 1, \ y < 255, \ z > 1, \ z < 255, \ w > 1, \ w < 255 \right\} \approx 5255.$ $\text{at } (w, x, y, z) \approx (255, 50., 35., 180.337)$		

Ten sam algorytm przy kodowaniu Graya:

Best solution: [50, 35, 203, 244]

Best value: 5244.0

Best solution: [50, 35, 150, 148]

Best value: 5148.0

Wnioski: Przy doborze algorytmu genetycznego, najważniejsze znaczenie ma sposób doboru rodziców i sam sposób tworzenia potomków. Przed zmianą na kodowanie binarne lub kodowanie gray'a tworzyłem podomków przez wyliczenie średniej arytmetycznej z poszczególnych wartości rodziców, przynosiło to fatalne wyniki:

Best solution: [18, 182, 168, 53]

Best value: -329247.0

Kodowanie kodem Graya przynosi lepsze wyniki udalo się osiągnąć bardzo dobry wynik funkcji maximum.

Link do repozytorium z kodem:

 $\underline{https://github.com/KamilPyla/MIO_2023/tree/master/lab_07}$