

#### **General information**

#### Designation

Bismuth, commercial purity

#### Typical uses

Bi (bismuth)

Alloying element, pharmaceuticals, electronics, catalysts, cosmetics, pigments, medicines, thermocouples, carrier for uranium fuel in nuclear reactors, fire sensing equipment

| Included in Materials Data for Simulation | ✓             |
|-------------------------------------------|---------------|
| Materials Data for Simulation name        | Bismuth, pure |

### **Composition overview**

### **Compositional summary**

Bi100

Material family

Metal (other)

Base material

Bi (Bismuth)

### Composition detail (metals, ceramics and glasses)

| Price                 |          |   |        |          |
|-----------------------|----------|---|--------|----------|
| Price                 | * 3.53   | - | 7.8    | USD/lb   |
| Price per unit volume | * 2.15e3 | - | 4.79e3 | USD/ft^3 |

100

%

# **Physical properties**

Density 0.352 - 0.354 lb/in^3

### **Mechanical properties**

| Young's modulus                  | 4.79 | - 5.08 | 10^6 psi |
|----------------------------------|------|--------|----------|
| Young's modulus with temperature | 5.14 | - 5.14 | 10^6 psi |
| Parameters: Temperature = 73.4°F |      |        |          |



| <b>/\nsys</b>          |
|------------------------|
| <b>GRANTA SELECTOR</b> |

| Specific stiffness                        | 1.13e6    | - | 1.2e6  | lbf.ft/lb   |
|-------------------------------------------|-----------|---|--------|-------------|
| Yield strength (elastic limit)            | * 0.29    | - | 2.03   | ksi         |
| Tensile strength                          | 0.58      | - | 2.9    | ksi         |
| Specific strength                         | * 68.6    | - | 478    | lbf.ft/lb   |
| Elongation                                | * 20      | - | 30     | % strain    |
| Tangent modulus                           | 3.32      |   |        | ksi         |
| Compressive strength                      | * 0.29    | - | 2.03   | ksi         |
| Flexural modulus                          | * 4.79    | - | 5.08   | 10^6 psi    |
| Flexural strength (modulus of rupture)    | * 0.29    | - | 2.03   | ksi         |
| Shear modulus                             | 1.74      | - | 1.96   | 10^6 psi    |
| Bulk modulus                              | 4.5       | - | 5.22   | 10^6 psi    |
| Poisson's ratio                           | 0.325     | - | 0.335  |             |
| Shape factor                              | 30        |   |        |             |
| Hardness - Vickers                        | * 5       | - | 10     | HV          |
| Elastic stored energy (springs)           | * 0.00116 | - | 0.0214 | ft.lbf/in^3 |
| Fatigue strength at 10^7 cycles           | * 1.16    | - | 1.45   | ksi         |
| Fatigue strength model (stress amplitude) | * 0.373   | - | 4.51   | ksi         |

<u>Parameters:</u> Stress Ratio = -1, Number of Cycles = 1e7cycles



**Impact & fracture properties** 

| impact & fracture properties |         |   |       |             |
|------------------------------|---------|---|-------|-------------|
| Fracture toughness           | * 4.55  | - | 18.2  | ksi.in^0.5  |
| Toughness (G)                | * 0.467 | - | 4.2   | ft.lbf/in^2 |
| Ductility index              | 0.0229  | - | 0.028 | mil         |
| Thermal properties           |         |   |       |             |

| Proposition Proposition               |      |   |      |              |
|---------------------------------------|------|---|------|--------------|
| Melting point                         | 513  | - | 522  | °F           |
| Maximum service temperature           | 464  | - | 482  | °F           |
| Minimum service temperature           | -459 |   |      | °F           |
| Thermal conductivity                  | 4.68 | - | 5.03 | BTU/hr.ft.°F |
| Thermal conductivity with temperature | 4.54 | - | 4.54 | BTU/hr.ft.°F |



| Specific heat capacity                  | 0.0275 | - | 0.031  | BTU/lb.°F |
|-----------------------------------------|--------|---|--------|-----------|
| Specific heat capacity with temperature | 0.0292 | - | 0.0292 | BTU/lb.°F |

Parameters: Temperature = 73.4°F



| Thermal expansion coefficient                  | 7.22 | - | 7.56 | μstrain/°F |
|------------------------------------------------|------|---|------|------------|
| Thermal expansion coefficient with temperature | 7.58 | - | 7.58 | μstrain/°F |

Parameters: Temperature = 73.4°F



Thermal expansion coefficient with



| Reference temp                | 68     |   |        | °F        |
|-------------------------------|--------|---|--------|-----------|
| Thermal shock resistance      | * 40   | - | 87.8   | °F        |
| Thermal distortion resistance | 6.29e5 | - | 6.84e5 | BTU/hr.ft |
| Latent heat of fusion         | 20.6   | - | 24.1   | BTU/lb    |

# **Electrical properties**

| Electrical resistivity                  | 41.3 | - 42.9 | µohm.in |
|-----------------------------------------|------|--------|---------|
| Electrical resistivity with temperature | 44.7 |        | µohm.in |

Parameters: Temperature = 73.4°F



| Electrical conductivity                  | 1.58   | - | 1.64 | %IACS      |
|------------------------------------------|--------|---|------|------------|
| Electrical conductivity with temperature | 2.69e5 |   |      | Siemens/ft |

Parameters: Temperature = 73.4°F





Galvanic potential \* -0.25 - -0.17 V

# **Magnetic properties**

Magnetic type Non-magnetic

# Optical, aesthetic and acoustic properties

| Transparency                            | Opaque |   |        |      |
|-----------------------------------------|--------|---|--------|------|
| Softness to touch                       | * 23   | - | 28     |      |
| Warmth to touch                         | 30.5   | - | 32.7   |      |
| Acoustic velocity                       | 7.24e4 | - | 7.44e4 | in/s |
| Mechanical loss coefficient (tan delta) | * 0.02 | - | 0.2    |      |

## **Healthcare & food**

| Food contact            | No                                 |
|-------------------------|------------------------------------|
| Guidance for MRI Safety | Low Risk for Potential Interaction |

# **Restricted substances risk indicators**

| RoHS 2 (EU) compliant grades?                       | ✓ |
|-----------------------------------------------------|---|
| REACH Candidate List indicator (0-1, 1 = high risk) | 0 |
| SIN List indicator (0-1, 1 = high risk)             | 0 |

### **Critical materials risk**

| Abundance risk level                 | High   |
|--------------------------------------|--------|
| Highest risk elements<br>Bismuth     |        |
| Sourcing and geopolitical risk level | High   |
| Highest risk elements                |        |
| Bismuth                              |        |
| Environmental country risk level     | High   |
| Highest risk elements                |        |
| Bismuth                              |        |
| Price volatility risk level          | Medium |
| Highest risk elements                |        |





| Bismuth                                             |                                                                                                                |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Conflict material risk level                        | None                                                                                                           |  |  |  |  |
| Durability                                          |                                                                                                                |  |  |  |  |
| Water (fresh)                                       | Excellent                                                                                                      |  |  |  |  |
| Water (salt)                                        | Excellent                                                                                                      |  |  |  |  |
| Weak acids                                          | Acceptable                                                                                                     |  |  |  |  |
| Strong acids                                        | Unacceptable                                                                                                   |  |  |  |  |
| Weak alkalis                                        | Acceptable                                                                                                     |  |  |  |  |
| Strong alkalis                                      | Limited use                                                                                                    |  |  |  |  |
| Organic solvents                                    | Excellent                                                                                                      |  |  |  |  |
| Oxidation at 500C                                   | Unacceptable                                                                                                   |  |  |  |  |
| UV radiation (sunlight)                             | Excellent                                                                                                      |  |  |  |  |
| Galling resistance (adhesive wear)                  | Limited use                                                                                                    |  |  |  |  |
| Flammability                                        | Non-flammable                                                                                                  |  |  |  |  |
| <u>.</u>                                            |                                                                                                                |  |  |  |  |
| Corrosion resistance of metals                      |                                                                                                                |  |  |  |  |
| Stress corrosion cracking                           | Not susceptible                                                                                                |  |  |  |  |
| Notes                                               | Rated in chloride; May be susceptible in halide, ammonia,<br>nitrogen, acidic, caustic, carbonate environments |  |  |  |  |
|                                                     |                                                                                                                |  |  |  |  |
| Primary production energy, CO2 and water            |                                                                                                                |  |  |  |  |
| Embodied energy, primary production (virgin grade)  | * 5.93e4 - 6.54e4 BTU/lb                                                                                       |  |  |  |  |
| Embodied energy, primary production (typical grade) | * 5.42e4 - 6.03e4 BTU/lb                                                                                       |  |  |  |  |
| CO2 footprint, primary production (virgin grade)    | * 8.63 - 9.51 lb/lb                                                                                            |  |  |  |  |
| CO2 footprint, primary production (typical grade)   | * 7.93 - 8.81 lb/lb                                                                                            |  |  |  |  |
| Water usage                                         | * 7.75e4 - 8.55e4 in^3/lb                                                                                      |  |  |  |  |
| Processing energy, CO2 footprint & water            |                                                                                                                |  |  |  |  |
| Casting energy                                      | * 2.27e3 - 2.5e3 BTU/lb                                                                                        |  |  |  |  |
| Casting CO2                                         | * 0.395 - 0.437 lb/lb                                                                                          |  |  |  |  |
| Casting water                                       | * 276 - 414 in^3/lb                                                                                            |  |  |  |  |
| Roll forming, forging energy                        | * 137 - 152 BTU/lb                                                                                             |  |  |  |  |
| Roll forming, forging CO2                           | * 0.0239 - 0.0265 lb/lb                                                                                        |  |  |  |  |
| Roll forming, forging water                         | * 46.8 - 70 in^3/lb                                                                                            |  |  |  |  |
| Extrusion, foil rolling energy                      | * 152 - 168 BTU/lb                                                                                             |  |  |  |  |
| Extrusion, foil rolling CO2                         | * 0.0265 - 0.0293 lb/lb                                                                                        |  |  |  |  |
| Extrusion, foil rolling water                       | * 47.1 - 70.6 in^3/lb                                                                                          |  |  |  |  |
| Wire drawing energy                                 | * 233 - 258 BTU/lb                                                                                             |  |  |  |  |
| Wire drawing CO2                                    | * 0.0407 - 0.045 lb/lb                                                                                         |  |  |  |  |
| Wire drawing water                                  | * 5.54 - 8.58 in^3/lb                                                                                          |  |  |  |  |
| Metal powder forming energy                         | * 1.79e3 - 1.99e3 BTU/lb                                                                                       |  |  |  |  |
| Metal powder forming CO2                            | * 0.334 - 0.37 lb/lb                                                                                           |  |  |  |  |
| Metal powder forming water                          | * 126 - 189 in^3/lb                                                                                            |  |  |  |  |
| Vaporization energy                                 | * 8.89e5 - 9.83e5 BTU/lb                                                                                       |  |  |  |  |
| Vaporization CO2                                    | * 155 - 171 lb/lb                                                                                              |  |  |  |  |
| Vaporization water                                  | * 2.39e4 - 3.58e4 in^3/lb                                                                                      |  |  |  |  |
| vaponzadon vvator                                   | 2.0007 - 0.00 <del>07</del> III 0/ID                                                                           |  |  |  |  |



# Bismuth, commercial purity

| Coarse machining energy (per unit wt removed)           | * 206    | - | 228    | BTU/lb |
|---------------------------------------------------------|----------|---|--------|--------|
| Coarse machining CO2 (per unit wt removed)              | * 0.036  | - | 0.0398 | lb/lb  |
| Fine machining energy (per unit wt removed)             | * 226    | - | 250    | BTU/lb |
| Fine machining CO2 (per unit wt removed)                | * 0.0395 | - | 0.0436 | lb/lb  |
| Grinding energy (per unit wt removed)                   | * 248    | - | 275    | BTU/lb |
| Grinding CO2 (per unit wt removed)                      | * 0.0433 | - | 0.0479 | lb/lb  |
| Non-conventional machining energy (per unit wt removed) | * 8.89e3 | - | 9.83e3 | BTU/lb |
| Non-conventional machining CO2 (per unit wt removed)    | * 1.55   | - | 1.71   | lb/lb  |

## Recycling and end of life

| Recycle                            | ✓      |   |       |        |
|------------------------------------|--------|---|-------|--------|
| Embodied energy, recycling         | 1.09e4 | - | 1.2e4 | BTU/lb |
| CO2 footprint, recycling           | 2      | - | 2.2   | lb/lb  |
| Recycle fraction in current supply | 9.59   | - | 10.6  | %      |
| Downcycle                          | ✓      |   |       |        |
| Combust for energy recovery        | ×      |   |       |        |
| Landfill                           | ×      |   |       |        |
| Biodegrade                         | ×      |   |       |        |

### Possible substitutes for principal component

Antibiotics, magnesia, and alumina can replace bismuth in pharmaceutical applications. Titanium dioxide-coated mica flakes and fish scale extracts are substitutes in pigment uses. Indium can replace bismuth in low-temperature solders. Resins can replace bismuth alloy jigs used for holding metal shapes during machining. Glycerine-filled glass bulbs can replace bismuth alloys as a triggering device for fire sprinklers. Selenium, tellurium, and lead could replace bismuth in free-machining alloys.

## Geo-economic data for principal component

| Principal component                          | Bismuth          |
|----------------------------------------------|------------------|
| Typical exploited ore grade                  | 0.404 - 0.446 %  |
| Minimum economic ore grade                   | 0.05 - 0.8 %     |
| Abundance in Earth's crust                   | 0.008 - 0.18 ppm |
| Abundance in seawater                        | 2e-5 - 4e-4 ppm  |
| Annual world production, principal component | 1.89e4 ton/yr    |

#### Main mining or production areas

China, 76% Laos, 14% Republic of Korea, 4% Japan, 3% Mexico, 1% Kazakhstan, 1%

#### **Notes**

#### Warning

Excess bismuth can cause mild kidney damage to humans;

#### Other notes

Bismuth is one of the less toxic heavy metals. It has a silver luster with a pink tinge.



# Bismuth, commercial purity

| nks                     |  |
|-------------------------|--|
| ements in this material |  |
| AHM Curve data          |  |
| ocessUniverse           |  |
| oducers                 |  |
| eference                |  |
| nape                    |  |