Chapter 2: Divisibility & Primes

2.1 Divisibility

DIVIDES: a divides b, denoted as a|b, means $\exists c \in Z$ s.t. ac = b. We also say a is a divisor of b or b is divisible by a

Lemma 2.1.3: Let a, b, c, x, y be integers

```
i. if a|b and x|y, then ax|by
ii. if a|b and b|c, then a|c
iii. if a|b and b \neq 0, then |a| \leq |b|
iv. if a|b and a|c, then a|(bx+cy) (or a|(b-c))
```

PRIME: for any $p \in \mathbb{N}$ where p > 1, p is *prime* if its only positive divisors are 1 and p. Otherwise, p is *composite*

WELL ORDERING PRINCIPLE: every non-empty set of positive (or nonnegative) integers contains a smallest element

DIVISION THEOREM: Given integers a > 0 and b > 0, there exists a unique q, r such that a = bq + r with $0 \le r < b$. Here, r is the remainder, q is the quotient

```
FLOOR: For x \in \mathbb{R}, the floor of x, \lfloor x \rfloor, is the largest z \in \mathbb{Z} s.t. z \leq x CEILING: For x \in \mathbb{R}, the ceiling of x, \lceil x \rceil, is the smallest z \in \mathbb{Z} s.t. z \geq x
```

Lemma 2.1.11: Let $n, d \in \mathbb{N}$. The number of positive multiples of d that are less than or eqal to n is $\lfloor \frac{n}{d} \rfloor$

Lemma 2.1.13: if $x, y \in \mathbb{R}$ and $n \in \mathbb{Z}$, then:

```
i. x-1<\lfloor x\rfloor \leq x

ii. \lfloor x+n\rfloor=\lfloor x\rfloor+n

iii. \lfloor x+y\rfloor\geq \lfloor x\rfloor+\lfloor y\rfloor

iv. if n is positive, then \lfloor \frac{x}{n}\rfloor=\lfloor \frac{\lfloor x\rfloor}{x}\rfloor
```

2.2 Primes

Proposition 2.2.1: Every positive integer can be decomposed as a product of prime numbers

Theorem 2.2.2: (Euclid) There are infinitely many prime numbers

Proposition 2.2.3: (Primality Test) A number p is prime iff it is not divisible by any prime q, $1 < q \le \sqrt{p}$

 $\pi(x)$: The number of primes less than or equal to x

Property 2.2.9: There are arbitrarily large gaps in the sequence of prime numbers (eg. gap of k-1: k! + 2, k! + 3, ..., k! + k)

Mersenne Prime: Prime number of the form $2^p - 1$ Twin Primes: A pair of primes which differ by 2. (eg. 11, 13)

2.3 Unique Factorization

The factoring of any positive integer n into primes is unique apart from the order of the primes

Lemma 2.3.1: Let $a = p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$. A positive integer b divides a iff $b = p_1^{b_1} p_2^{b_2} ... p_k^{b_k}$ where $0 \le b_i \le a_i$ for i = 1, ..., k

v(n): Let n be a positive integer with prime factorization $n=p_1^{e_1}\cdots p_k^{e_k}$. v(n) is the number of positive divisors of n (including 1 and n). $v(n)=(e_1+1)\cdots(e_k+1)$

Proposition 2.3.2: Let n be a positive integer with prime factorization $n = p_1^{e_1} \cdots p_k^{e_k}$. The number of positive divisors of n is $v(n) = (e_1 + 1) \cdots (e_k + 1)$

Proposition 2.3.4: Let a, b be integers. If p is prime such that p|ab, then p|a or p|b

Proposition 2.3.5: The number $\sqrt{2}$ is irrational

Proposition 2.3.8: if $p \le n$, the exponent of p in the factorization of n! is $\lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \dots$

2.4 GCD and LCM

GCD: The *greatest common divisor* of two numbers a, b, not both zero, is the largest integer dividing both a and b, denoted as gcd(a, b) or (a, b)

Remark: every positive integer divides 0; hence (0,0) is undefined

COPRIME: Two integers a, b are relatively prime or coprime if (a, b) = 1

Lemma 2.5.4: GCD of two numbers satisfies the following:

```
\begin{array}{ll} \text{i.} & (a,b)=(-a,b)\\ \text{ii.} & (a,b)=(a-b,b)\\ \text{iii.} & \text{If } (a,b)=d\text{, then } (\frac{a}{d},\frac{b}{d})=1 \end{array}
```

Theorem 2.5.6: For any two integers a, b there exists m, n such that ma + nb = (a, b)

LCM: The *least common multiple* (denoted [a,b]) of two integers a,b is the smallest positive integer disvisble by both a and b

Proposition 2.5.10: Suppose $a = p_1^{a_1} \cdots p_k^{a_k}$ and $b = p_1^{b_1} \cdots p_k^{b_k}$ with $a_i, b_i \ge 0$. Then:

$$\begin{array}{ll} \text{i. } (a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_k^{\min(a_k,b_k)} \\ \text{ii. } [a,b] = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_k^{\max(a_k,b_k)} \end{array}$$

Corollary 2.5.12: (a, b)[a, b] = |ab|

Corollary 2.5.13: If a|bc and (a,c)=1, then a|b

Proposition 2.5.15: Given two integers a, b, if a = bq + r and $0 \le r < b$ then (a, b) = (b, r)

Chapter 3: Modular Arithmetic

3.1 Conguences

CONGRUENT: if $a, b, m \in \mathbb{Z}$, then a is *congruent* to b modulo m, denoted as $a \equiv b \mod m$, if m|(a-b) (i.e., a and b leave the same remainder when you divide by m). Otherwise, $a \not\equiv b \mod m$

Proposition 3.1.3: congruence modulo m is an equivalence relation

```
i. a \equiv a \pmod{m}

ii. a \equiv b \pmod{m} iff b \equiv a \pmod{m}

iii. ((a \equiv b \pmod{m}) \land (b \equiv c \pmod{m})) \Rightarrow a \equiv c \pmod{m}
```

Proposition 3.1.5: Let $a, b, c, d \in \mathbb{Z}$. Then,

```
i. a \equiv a \pmod{m} \Rightarrow ac \equiv bc \pmod{m}
```

ii.
$$a \equiv b \pmod{m} \Rightarrow a \pm c \equiv b \pm c \pmod{m}$$

iii.
$$(a \equiv b \pmod{m} \land c \equiv d \pmod{m}) \Rightarrow ac \equiv bd \pmod{m}$$

iv. $a \equiv b \pmod{m}$ implies $a^k \equiv b^k \pmod{m}$ for all positive integers k

Proposition 3.1.7:

```
i. if a \equiv b \pmod{m} \land d \mid m, then a \equiv b \pmod{d}
```

ii. if
$$ac \equiv bc \pmod{m}$$
, then $a \equiv b \pmod{\frac{m}{(c,m)}}$

iii. if
$$ac \equiv bc \pmod{m} \land (c, m) = 1$$
, then $a \equiv b \pmod{m}$

Proposition 3.1.10: if (m, n) = 1, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{m}$ iff $a \equiv b \pmod{mn}$

Complete Residue System mod m: is a set S of integers which contains exactly one member of each equivalence class, i.e., exactly one value congruent to each of $\{0, 1, 2, ..., m-1\}$

3.2 Inverses Modulo m and Linear Congruences

INVERSE mod m: a number a' is an *inverse* of a mod m if $aa' \equiv 1 \pmod{m}$. We say a is *invertible modulo* m

Proposition 3.2.3: An integer a is invertible modulo m iff (a, m) = 1. If a has an inverse then it is unique modulo m

Proposition 3.2.7: The linear congruence $ax = b \pmod{m}$ has exactly d = (a, m) solutions if $d \mid b$, and no solutions if $d \nmid b$.

If $d \mid b$ and x_0 is a solution, then the d distinct solutions modulo m are $x_0 + (\frac{m}{d})i \pmod{m}$ for i = 0, 1, ..., d-1

3.3 Chinese Remainder Theorem

Chinese Remainder Theorem: Let $m_1, m_2, ..., m_r$ be pairwise relatively prime integers. Then the simultaneous congruence

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

•

.

$$x \equiv a_r \pmod{m_r}$$

has a unique solution modulo the product $m_1 m_2 \cdots m_r$

Steps:

- 1. Check if $m_1, m_2, ..., m_r$ are pairwise prime
- 2. Compute $M = m_1 m_2 \cdots m_r$
- 3. Compute $M_i = \frac{\dot{M}}{m_i}$
- 4. Solve $M_i x \equiv 1 \pmod{m_i}$

5. Compute $x=a_1M_1x_1+a_2M_2x_2+\ldots+a_rM_rx_r\ (mod\ M)$

Theorem 3.3.4: Let $m_1,...,m_r$ be integers; then the system of congruences $x\equiv a_i(mod\ m_i), i=1,...,r$ has a solution iff for al $i\neq j, (m_i,m_j)|a_i-a_j$. The solution is unique modulo $[m_1,...,m_r]$