Applied Probability

1 Continuous time Markov Chains

- right continuous $\forall t, \exists \epsilon, X_t(\omega) = X_{t+s}(\omega)$ for all $s \in [0, \epsilon]$
- finite dimension marginals $\mathbb{P}(X_{t_1} = x_1, \dots, X_{t_n} = x_n)$

Fact. process can be determined from the finite dimension marginals

– Memoryless property $\mathbb{P}(S>t+s|S>s)=\mathbb{P}(S>t)$

Theorem 1.1. Memoryless iff exponential distribution

1.1 Poisson process

- Poisson process with intensity λ
 - (i) $N(0) = 0, N(s) \le N(t)$ for s < t

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Theorem 1.2. $N(t) \sim Poi(\lambda t)$

Proof. derive differential equation, then generating function

- $p_j(t) = \mathbb{P}(N(t) = j)$
- Generating function $G(s,t) = \sum p_j(t)s^j$
- Arrival time T_n
- interarrival time U_n

Theorem 1.3.

- (i) $U_i \sim Exp(\lambda)$
- (ii) U_i independent

Proof. use N(t) Poisson

Fact. $N(t) \geq j \iff T_j \leq t$

- order statistics

Theorem 1.4. T_1, \ldots, T_n conditional on $\{N(t) = n\}$ same as joint distribution of order statistics of n i.i.d. Uniform[0,t]

Proof. U to T, then calculate density

Theorem 1.5. (X_n) increasing right-continuous, taking values $\{0,1,\ldots\}$, $X_0=0$, then following equivalent:

- (i) holding times $S_i \sim Exp(\lambda)$ i.i.d. ,jump chain $Y_n = n$, (Sousi defined X Poisson process in this manner)
- (ii) (infinitesimal) X independent increments, $h \downarrow 0$ uniformly in t, $\begin{cases} \mathbb{P}(X_{t+h} X_t = 1) = \lambda h + o(h) \\ \mathbb{P}(X_{t+h} X_t = 0) = 1 \lambda h + o(h) \end{cases}$
- (iii) X has independent, stationary increments, $X_t \sim Poi(\lambda t)$

Theorem 1.6 (Superposition). X, Y independent Poisson process, with parameters λ, μ , then $Z_t = X_t + Y_t$ Poisson process with parameters $\lambda + \mu$

Proof. infinitesimal

Theorem 1.7 (Thining). X Poisson process with parameters λ , $(Z_i) \sim Bernoulli(p)$ i.i.d., Y jumps \iff X jumps and $Z_{X_t} = 1$, then Y Poisson process of parameter λp , X - Y independent Poisson process of parameter $\lambda(1-p)$

Proof. infinitesimal for Poisson process, independence follows from expanding $\mathbb{P}(Y_t = n, X_t - Y_t = m)$ (suffice to prove independence using finite dimension marginals)

1.2 Birth process

- birth process with birth rates $\lambda_0, \lambda_1, \dots$
 - (i) N(0) = 0, N(s) < N(t) for s < t

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda_n h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda_n h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Example.

(i) Poisson process: $\lambda_n = \lambda$

(ii) Simple birth: $\lambda_n = n\lambda$

(iii) Simple birth with immigration: $\lambda_n = n\lambda + \nu$

Proposition 1.8. $T_k \sim Exp(q_k)$ independent, $0 < q = \sum q_k < \infty$, $T = \inf_k T_k$, then

- (i) infimum attained at unique K with probability 1
- (ii) T, K independent

(iii)
$$T \sim Exp(q), \mathbb{P}(K = k) = \frac{q_k}{q}$$

$$-T_{\infty} = \lim T_n = \sum_{i=1}^{\infty} U_i$$

– non-explosive / honest —— $\mathbb{P}(T_{\infty} = \infty) = 1$

Theorem 1.9. birth process N, $\lambda_n > 0$, then non-explosive $\iff \sum_n \frac{1}{\lambda_n} = \infty$

Lemma 1.10.
$$U_n \sim Exp(\lambda_n)$$
, independent, then $\mathbb{P}(T_\infty < \infty) = \begin{cases} 0 & \text{if } \sum_n \frac{1}{\lambda_n} = \infty \\ 1 & \text{if } \sum_n \frac{1}{\lambda_n} < \infty \end{cases}$

- forward system of equations: $p'_{ij}(t) = \lambda_{j-1}p_{i,j-1}(t) \lambda_{j}p_{ij}(t)$
- backward system of equations: $p'_{ij}(t) = \lambda_i p_{i+1,j}(t) \lambda_i p_{ij}(t)$

Theorem 1.11.

- (i) forward system has unique solution $\{p_{ij}(t)\}$
- (ii) $\{p_{ij}(t)\}$ satisfy backward system

Theorem 1.12. $\{p_{ij}(t)\}$ unique solution of forward equations, $\{\pi_{ij}(t)\}$ any solution of backward equations, then $p_{ij}(t) \leq \pi_{ij}(t)$

Fact.
$$\sum_{j} p_{ij}(t) = 1 \iff \mathbb{P}(T_{\infty} > t) = 1$$

- weak Markov property
- stopping time
- strong Markov property
- right continuity
- stationary independent increments
 - (i) N(t) N(s) only depends on t s
 - (ii) $\{N(t_i) N(s_i)\}$ independent where $s_1 \leq t_1 \leq \cdots \leq s_n \leq t_n$

1.3 Continuous Markov Chain

Setting 1. (X(t)) takes values in countable S

- Markov property $\mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1}, \dots, X(t_1) = i_1) = \mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1})$
- continuous-time Markov chain —— right-continuous, Markov property
- transition probability $p_{ij}(s,t) = \mathbb{P}(X(t) = j|X(s) = i)$
- homogeneous $p_{ij}(s,t) = p_{ij}(0,t-s)$
- transition semigroup $(P_t)_{ij} = p_{ij}(t)$
- stochastic semigroup
 - (i) $P_0 = I$
 - (ii) P_t stochastic non-negative entries, row sum 1
 - (iii) (Chapman-Kolmogorov) $P_{s+t} = P_s P_t$

Setting 2. (X(t)) homogeneous Markov chain

Theorem 1.13. P_t stochastic semigroup

- \mathbb{P}_i —— probability measure conditional on X(0)=i
- $-\mathbb{E}_i$
- t-historical events given by $\{X(s) : s < t\}$
- t-future —— events given by $\{X(s): s > t\}$
- stopping time T —— $\{T \le t\}$ given by $\{X(s) : s \le t\}$

Theorem 1.14 (Extended Markov property). H t-historical, F t-future, then $\mathbb{P}(F|X(t) = j, H) = \mathbb{P}(F|X(t) = j)$

Theorem 1.15 (Strong Markov property). T stopping time, conditional on $\{T \leq T_{\infty}\} \cap \{X(T) = i\}$, then

- (i) $(X_{T+u})_u$ continuous Markov chain start at state i
- (ii) same transition prob
- (iii) independent to $\{X(s) : s < T\}$

Setting 3. X(0) = i

$$-U_0 = \inf\{t : X(t) \neq i\}$$

Fact. right continuous $\Rightarrow U_0 > 0$

Theorem 1.16.

- (i) $U_0 \sim Exp(g_i)$
- (ii) U_0 stopping time

Proof. Extended Markov and homogeneity to deduce memoryless

- transition matrix $\mathbf{Y} = (y_{ij})$ $y_{ij} = \begin{cases} \delta_{ij} & \text{if } g_i = 0\\ \mathbb{P}_i(X(U_0) = j) & \text{if } g_i > 0 \end{cases}$
- generator $\mathbf{G} = (g_{ij})$ $g_{ij} = \begin{cases} g_i y_{ij} & \text{if } j \neq i \\ -g_i & \text{if } j = i \end{cases}$

Fact. $\mathbb{P}(X(t+h) = j | X(t) = i) = g_{ij}h + o(h)$

Fact. $g_{ij} = g_i(y_{ij} - \delta_{ij})$

Theorem 1.17. X(0) = i, then

- (i) $X(U_0)$ independent of U_0
- (ii) conditional on $X(U_0) = j$, $X^*(s) = X(U_0 + s)$ continuous-time Markov chain, same transition prob, initial state j, independent to the past
- $-T_m$
- holding time $U_m = T_{m+1} T_m$
- jump chain $Y = \{Y_n\}$
- $-T_{\infty} = \lim T_n$
- minimal process
- explode from state $i \mathbb{P}_i(T_{\infty} < \infty) > 0$

Proposition 1.18. X minimal process, then $P_{s+t} = P_s$

Proof. may go to $\{\infty\}$

Theorem 1.19. $i \in S$, non-explosive from i if any of the following holds:

- (i) S finite
- (ii) $\sup_{j} g_{j} < \infty$
- (iii) i recurrent in jump chain Y

Proof. be dominated by Poisson process which is non-explosive

- irreducible $\longrightarrow \forall i, j, \exists t > 0, p_{ij}(t) > 0$

Theorem 1.20.

- (i) (Levy dichotomy) X irreducible, then $\forall t > 0, p_{ij}(t) > 0$
- (ii) X irreducible \iff Y irreducible

Proof. look at jump chain, $g_{i_0} \cdots g_{i_n} > 0$, $p_{i_k, i_{k+1}}(t) > 0$

Fact. birth process not irreducible

- $-T_A = \inf\{t > 0 : X_t \in A\}$
- $H_A = \inf \{ n \ge 0 : Y_n \in A \}$
- hitting probability $h_A(x) = \mathbb{P}_x(T_A < \infty)$
- expected hitting time $k_A(x) = \mathbb{E}_x(T_A)$

Theorem 1.21. $(h_A(x))_x$ minimal non-negative solution to

$$\begin{cases} h_A(x) = 1 & \forall x \in A \\ Qh_A(x) = \sum_y q_{xy} h_A(y) = 0 & \forall x \notin A \end{cases}$$

Theorem 1.22. $q_x > 0 \forall x \notin A$, then $k_A(x)$ minimal non-negative solution to

$$\begin{cases} k_A(x) = 0 & \forall x \in A \\ Qk_A(x) = \sum_y q_{xy} k_A(y) = -1 & \forall x \notin A \end{cases}$$

- recurrent $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 1$
- transient $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 0$
- $R_i = \inf \{t > U_0 : X(t) = i\}$
- mean return time $m_i = \mathbb{E}(R_i)$
- positive recurrent / non-null recurrent $m_i < \infty$

Theorem 1.23. continuous-time chain X, jump chain Y

- (i) $g_i = 0$, then i recurrent for X
- (ii) $g_i > 0$, then i recurrent for $X \iff$ recurrent for Y
- (iii) i recurrent $\iff \int p_{ii}(t)dt = \infty$
- (iv) i transient $\iff \int p_{ii}(t)dt < \infty$
- (v) X irreducible, then every state recurrent or every state transient

Proof. main point is no explosion. Interchange summation, then old result.

- Forward equation: $P'_t = P_t G$ with boundary condition $P_0 = 1$
- Backward equation: $P'_t = GP_t$ with boundary condition $P_0 = 1$

Fact. If states S finite, then $P_t = e^{tG}$

- minimal solution $p_{ij}(t) \leq \pi_{ij}(t)$
- sub-stochastic —— $\sum_{j} p_{ij}(t) < 1$

Theorem 1.24. S countable, X minimal Markov chain with generator G, then

(i) P_t minimal non-negative solution of backward equation $P'_t = GP_t$ with boundary condition $P_0 = 1$

(ii) P_t minimal non-negative solution of forward equation $P_t' = P_t G$

Proof. Solution: condition on $T_1 > t$ or $T_1 \le t$.

Minimal: reverse argument and induction.

Fact. any solution to both equations sub-stochastic

Fact. non-explosive $\Rightarrow P_t$ unique solution to both equations

- measure

- stationary measure $\boldsymbol{\pi} = \boldsymbol{\pi} \boldsymbol{P}_t$
- stationary distribution
- unique measure unique up to scalar multiplication
- first return time R_i
- $-m_i = \mathbb{E}_i(R_i)$

Theorem 1.25. X irreducible, $|S| \geq 2$

- (i) some state k positive recurrent, then
 - (a) \exists unique stationary distribution π
 - (b) unique distribution st $\pi G = 0$
 - (c) all states positive recurrent
- (ii) X non-explosive, $\exists \pi \text{ st } \pi G = 0$, then
 - (a) all states positive recurrent
 - (b) π stationary
 - (c) $\pi_k = \frac{1}{m_k q_k}$

Proof. (i) use 1.26(iv) $\pi = \mu(k)/m_k$, then uniqueness of measure \Rightarrow all state non-null

(ii) $\nu' = \frac{\pi_i g_i}{\pi_k g_k}$, then $\rho(k) \leq \nu'$ from discrete MC

$$- \nu_i = x_i g_i$$

$$- \boldsymbol{\mu}(k) = (\mu_j(k))_j - \mu_j(k) = \mathbb{E}_k \left(\int_0^{R_k} \mathbb{1} \left\{ X(s) = j \right\} ds \right)$$

 $- \rho(k) = (\rho_j(k))$ — mean visit to j starting from k in jump chain Y

Lemma 1.26. X irreducible Markov chain, $|S| \geq 2$

- (i) measure x, then $xG = 0 \iff \nu Y = \nu$
- (ii) X recurrent, xG = 0 unique measure
- (iii) \boldsymbol{x} measure, $\boldsymbol{x}\boldsymbol{G} = 0$, then $x_j > 0$
- (iv) X recurrent, $k \in S$, then $\mu(k)G = 0$ and stationary

Proof. (i) expand

- (ii) $\nu Y = \nu$, then uniqueness from discrete MC
- (iii) $\mu_j(k) = \frac{1}{g_j} \rho_j(k)$, then $\boldsymbol{\rho}(k) \boldsymbol{Y} = \boldsymbol{\rho}(k)$ from discrete MC
- (iv) strong Markov to shift time t

Fact. X non-explosive, then $R_k = \sum_j \int_0^{R_k} \mathbb{1} \{X(s) = j\} ds$

Fact. X irreducible, \exists more than one stationary distribution, then X explosive

Theorem 1.27 (Markov chain limit theorem). X irreducible, non-explosive

- (i) if \exists stationary distribution π , then
 - (a) π unique
 - (b) $p_{ij}(t) \to \pi_j$
- (ii) if no stationary distribution, then $p_{ij}(t) \to 0$

Proof. skeleton $Z_n = X(nh)$

Lemma 1.28. X minimal, then $|p_{ij}(t+u) - p_{ij}(t)| \le 1 - e^{-g_i u}$

1.4 Reversibility

Theorem 1.29. X irreducible, non-explosive, with invariant distribution π , let $X_0 \sim \pi$, fix T, $\hat{X}_t = X_{T-t}$, then

- (i) \hat{X} Markov with generator \hat{Q} and invariant distribution π , $\pi(x)\hat{q}_{xy} = \pi(y)q_{yx}$
- (ii) \hat{X} irreducible, non-explosive

Proof. expand $\mathbb{P}(\hat{X}_{t_0} = x_0, \dots, \hat{X}_{t_n} = x_n)$, then \hat{P} satisfies Komogorov backward with \hat{Q} , then minimal, easy to show irreducible, finally $\hat{p}_{xy}(t) = \mathbb{P}_x(\hat{X}_t = y, t < \hat{\zeta})$ where ζ explosion time \Box

- reversible (X_t) , (X_{T-t}) same distribution
- detailed balanced $---- \lambda(x)q_{xy} = \lambda(y)q_{yx}$

Lemma 1.30. detail balanced $\Rightarrow \lambda$ invariant measure

Theorem 1.31. X irreducible, non-explosive, $X_0 \sim \pi$, then detail balanced \iff (X_t) reversible

Lemma 1.32. π invariant for birth-death chain \iff detail balanced

1.5 Ergodic theorem

– long run proportion of time spends at $x - \frac{1}{t} \int_0^t \mathbb{1}(X_s = x) ds$

Theorem 1.33. X irreducible, then

(i)
$$\frac{1}{t} \int_0^t \mathbb{1}(X_s = x) ds \xrightarrow{a.s.} \frac{1}{m_x g_x}$$

(ii) if
$$\pi$$
 invariant, f bounded, then $\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow{a.s.} \sum_x f(x) \pi(x)$

1.6 Birth-death process and imbedding

- birth rate $\lambda_0, \lambda_1, \dots$
- death rate μ_1, μ_2, \dots
- birth-death process

Theorem 1.34. X birth-death process, generator G

(i) measure
$$x_n = \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} x_0$$
 satisfies $\mathbf{x} \mathbf{G} = 0$

(ii)
$$\exists$$
 distribution π satisfies $\pi G = 0 \iff \sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty$

(iii) if
$$\sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} (\lambda_n + \mu_n) < \infty$$
, then π stationary

Proof. (i) solve xG = 0

- (ii) trivial
- (iii) condition for jump chain Y recurrent, then non-explosive

Example.

- Pure birth $\mu_n = 0$
- Simple death with immigration $\lambda_n = \lambda, \mu_n = n\mu$

Theorem 1.35. X(t) asymptotically $Poi(\rho) = Poi\left(\frac{\lambda}{\mu}\right)$

- Simple birth-death $\lambda_n = n\lambda$, $\mu_n = n\mu$, X(0) = IFact. state 0 absorbing

 $\textbf{Theorem 1.36.} \ G(s,t) = \mathbb{E}(s^{X(t)}) = \begin{cases} \left(\frac{\lambda t(1-s)+s}{\lambda t(1-s)+1}\right)^I & \text{if } \mu = \lambda \\ \left(\frac{\mu(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}{\lambda(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}\right)^I & \text{if } \mu \neq \lambda \end{cases}$

Proof. Forward equation

Fact. non-explosive as $\sum p_j(t) = G(1,t) = 1$

Fact.
$$\mathbb{E}_I(X(t)) \to \begin{cases} 0 & \text{if } \rho < 1 \\ \infty & \text{if } \rho > 1 \end{cases}$$

• extinction probability $\eta(t) = \mathbb{P}_I(X(t) = 0)$

Corollary 1.37.
$$\eta(t) \to \begin{cases} 1 & \text{if } \rho \leq 1 \\ \rho^{-I} & \text{if } \rho > 1 \end{cases}$$

- imbedded random walk —— jump chain Y with parameter $\frac{\lambda}{\lambda + \mu}$, absorbing at 0
- imbedded branching process —— lives $Exp(\lambda+\mu)$, then born n individuals where $\begin{cases} p_0 = \mathbb{P}(n=0) = \frac{\mu}{\lambda+\mu} \\ p_2 = \mathbb{P}(n=2) = \frac{\lambda}{\lambda+\mu} \end{cases}$

- age-dependent branching process
- age density function $f_T(u) = (\lambda + \mu)e^{-(\lambda + \mu)u}$
- family-size generating function $G(s) = \frac{\mu + \lambda s^2}{\mu + \lambda} = p_0 + p_2 s^2$

2 Queues

- interarrival time X_n with common distribution F_X
- service time S_n with common distribution F_S
- *n*-th customer arrival time $T_n = \sum X_i$
- length of queue Q(t)
- $-A/B/s F_X/F_S/\#$ servers

Example.

- D(d) --- deterministic
- $M(\lambda)$ —— $Exp(\lambda)$ (Markovian)
- $\Gamma(\lambda,k)$
- $-\ G\ ---\ general$

Example.

- M/M/1
- -M/D/1
- G/G/1
- traffic intensity $\rho = \frac{\mathbb{E}(S)}{\mathbb{E}(X)}$

2.1 M/M/1

Setting 4.
$$M(\lambda)/M(\mu)/1$$
, $\lambda_n = \lambda$, $\mu_n = \mu$

Fact.
$$\rho = \frac{\lambda}{\mu}$$

Theorem 2.1.

(i) if
$$\rho < 1$$
, then $\mathbb{P}(Q(t) = n) \to (1 - \rho)\rho^n = \pi_n$

(ii) if
$$\rho \geq 1$$
, then $\mathbb{P}(Q(t) = n) \rightarrow 0$

Fact. can define underlying discrete random walk $Q_{n+1} = \begin{cases} Q_n + 1 & \text{with probability } \frac{\lambda}{\lambda + \mu} = \frac{\rho}{1 + \rho} \\ Q_n - 1 & \text{with probability } \frac{\mu}{\lambda + \mu} = \frac{1}{1 + \rho} \end{cases}$ for $n \geq 1$, and $\mathbb{P}(Q_{n+1} = 1 | Q_n = 0) = 1$

Fact.
$$Q_n$$
 is
$$\begin{cases} positive \ recurrent & if \ \rho < 1 \\ null \ recurrent & if \ \rho = 1 \\ transient & if \ \rho > 1 \end{cases}$$

- waiting time of customer arrived at time t, W

Theorem 2.2. $\rho < 1$, queue in equilibrium, then $W \sim Exp(\mu - \lambda)$

Fact. expected queue length at equilibrium = $\frac{\lambda}{\lambda + \mu}$

$2.2 \quad M/M/\infty$

Setting 5.
$$\begin{cases} q_{i,i+1} = \lambda \\ q_{i,i-1} = i\mu \end{cases}$$

Theorem 2.3.

- (i) Q(t) positive recurrent
- (ii) invariant distribution $\pi \sim Poi(\rho)$

Proof. solve detail balanced for invariant, coupling to prove non-explosive

Setting 6. M/M/1 queue, $\rho < 1$

 $-D_t$ — number of customers have departed queue up to time t

Theorem 2.4 (Burke's theorem).

- (i) At equalibrium, $D_t \sim Poi(\lambda)$
- (ii) X_t independent from $(D_s: s \leq t)$

Proof. (i) fix T, time reversal, then Poisson process for all T, use independent increment criterion.

(ii) X_0 independent to [0,T], then reverse

2.3 Queues in tandem

Setting 7. two M/M/1 with λ, μ_1, μ_2

Theorem 2.5. X_t , Y_t queue length of first, second queue, then (X,Y) positive recurrent Markov chain $\iff \lambda < \mu_1, \mu_2$ In this case, $\pi(m,n) = (1-\rho_1)\rho_1^m(1-\rho_2)\rho_n$, so X_t, Y_t indepedent, geometric distributed

Proof. (i) (Proof 1:) $(m,n) \to \begin{cases} (m+1,n) & \text{with rate } \lambda \\ (m,n+1) & \text{with rate } \mu_1 \text{ if } m \geq 1, \text{ then check directly.} \\ (m,n-1) & \text{with rate } \mu_2 \text{ if } n \geq 1 \end{cases}$

Rate bounded so non-explosive

(ii) (Proof 2:) Burke's

Fact. r.v. independent while process not independent