

Universidade do Minho

Computação Gráfia 2018/2019

Phase 3 – Curves, Cubic Surfaces and VBOs

Trabalho realizado por:

Nelson Gonçalves

A78713
João Aloísio

César Henriques

Ricardo Ponte

Número de Aluno:

A78713

A78713

A77953

A77953

A64321

Ricardo Ponte

20 de Abril de 2019

Conteúdo

1	Introdução				
2	Descrição do Problema				
3	Res	olução do Problema	4		
	3.1	Gerador	4		
		3.1.1 Bezier Patch	4		
	3.2	Motor	7		
		3.2.1 Leitura do ficheiro XML	8		
	3.3	Utilização de VBO's	9		
		3.3.1 Inicialização	9		
		3.3.2 Desenho	9		
	3.4	Curvas de Catmull-Rom	10		
		3.4.1 Cálculo da posição	10		
		3.4.2 Cálculo da matriz rotação	11		
		3.4.3 Desenho da trajetória	11		
		3.4.4 Cálculo do tempo global t	12		
	3.5	Modelo do Sistema Solar	13		
4	Con	clusões	15		

1 Introdução

A vertente prática da unidade curricular de Computação Gráfica tem como base a utilização do OpenGL, recorrendo à biblioteca GLUT, para a construção de modelos 3D.

A produção dos modelos referidos envolve diversos temas, entre os quais, transformações geométricas, curvas e superfícies, iluminação e texturas. Com o objetivo de aplicar e demonstrar a aprendizagem destes tópicos, foi proposta a realização de um projeto prático, que se encontra dividido em quatro fases.

A existência destas quatro fases tem como objetivo a evolução gradual do desenvolvimento do projeto, sendo que cada uma das fases deverá respeitar os requisitos inicialmente estipulados no enunciado do trabalho.

Este relatório diz respeito à realização da terceira fase do projeto mencionado, que incide sobre curvas, superfícies cúbicas e VBOs. Para uma melhor compreensão do objetivo desta fase, na secção seguinte será devidamente descrito o problema a resolver.

2 Descrição do Problema

A terceira fase deste projeto tem como objetivo o desenvolvimento de novas funcionalidades aplicadas ao Gerador e ao Motor desenvolvidos na fase 2, sendo que desta vez as novas funcionalidades serão desenvolvidas com recurso a **Bezier patches** e **curvas de Catmull-Rom**. Dito isto, os requisitos estipulados para esta fase são:

- Gerador (recebe como parâmetros o tipo da primitiva gráfica, parâmetros relativos ao modelo e o nome do ficheiro onde vão ser guardados os vértices):
 - bezier Bezier_patch_file tessellation file.3d

Calcula os pontos necessários, utilizando as fórmulas de Bezier, para desenhar a primitiva com base no ficheiro que contém o *Bezier Patch* e o valor correspondente à tecelagem. Após este processo os pontos calculados são guardados no ficheiro **file.3d**.

• Motor:

- desenha modelos através de **VBOs**;
- realiza animações com rotações/translações;
- desenha curvas de Catmull-Rom.

• Modelo do Sistema Solar :

- utiliza a esfera, o anel e o teapot como primitivas, para representar o sol, os planetas os satélites e um cometa;
- utiliza curvas de Catmull-Rom para representar todas as trajetórias, quer sejam dos planetas em torno do Sol, dos satélites em torno dos planetas respectivos ou até a trajetória do cometa.
- utiliza o tempo como medida para representar as rotações do Sol, dos planetas e dos satélites sobre si mesmos.

3 Resolução do Problema

Nesta fase serão realizadas alterações, tanto ao Motor como ao Gerador desenvolvidos anteriormente, com o objectivo de cumprir com os requesitos propostos para a terceira fase do projeto.

3.1 Gerador

Nesta fase o gerador tem de ser capaz de desenvolver um novo modelo baseado num **Bezier Patch**. Posto isto, desenvolveu-se uma primitiva que calcula os pontos necessários para desenhar o modelo final baseado num ficheiro que contém os pontos de controlo.

3.1.1 Bezier Patch

Para além do ficheiro que contém o patch de Bezier, é também necessário fornecer como argumento o valor de tecelagem e o ficheiro onde vão ser escritos os pontos calculados. O ficheiro de input será lido sendo que primeiramente serão lidos o número de patches seguidos dos indices de cada um. Estes indices serão guardados num array bi-dimensional de floats, correspondendo assim a uma matriz. O próximo passo será percorrer cada um dos patches e armazenar os pontos respetivos a cada um num array bi-dimensional.

Após isto será invocada a função *calculate_control_points* que receberá como argumento o array criado anteriormente e calculará 3 matrizes produto, sendo que cada uma corresponde às coordenadas x,y e z.

Nesta função serão criadas 9 matrizes (4x4) temporárias , sendo que as fórmulas de cálculo dessas matrizes são :

- $temp_matrix_x[i][j] = controlPoints[k1][0];$
- temp_matrix_y[i][j] = controlPoints[k1][1];
- temp_matrix_z[i][j] = controlPoints[k1][2];
- temp_const_matrix_x[i][j] = m[i][k] * temp_matrix_x[k][j];
- $temp_const_matrix_y[i][j] = m[i][k] * temp_matrix_y[k][j];$
- $\bullet \ temp_const_matrix_z[i][j] = m[i][k] \ * \ temp_matrix_z[k][j];$
- temp_prod_matrix_x[i][j] = temp_const_matrix_x[i][k] * m[k][j];
- $temp_prod_matrix_y[i][j] = temp_const_matrix_y[i][k] * m[k][j];$
- temp_prod_matrix_z[i][j] = temp_const_matrix_z[i][k] * m[k][j];
- $i,j,k \in [0,3];$
- k1 = [0, N], N = number of control points.

O array bi-dimensional de floats m[][] corresponde à matriz de Bezier que é dada por:

$$M = \begin{bmatrix} 1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ 3 & -3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

A matriz temp_prod_matrix é então dada seguindo as expressões abaixo e tendo em conta o valor de M.

$$CP = \begin{bmatrix} x_{00} & x_{01} & x_{02} \\ x_{10} & x_{11} & x_{12} \\ x_{20} & x_{21} & x_{22} \\ x_{30} & x_{31} & x_{32} \\ \vdots & \vdots & \vdots \\ x_{k0} & x_{k1} & x_{k2} \end{bmatrix}$$

• temp_prod_matrix = $CP \times M \times M^T$

Sendo que CP corresponde à matriz dos pontos de controlo lidos e as matrizes $temp_prod_matrix_x, temp_prod_matrix_y$ e $temp_prod_matrix_z$ dizem respeito, respecitvamente, às componentes x,y,z da matriz calculada.

As matrizes produto temporárias depois são armazenadas como variáveis globais (prod_matrix_x , prod_matrix_y e prod_matrix_z) e os seus valores serão utilizados na função de cálculo de um *patch* de Bezier *calculate_Bezier_Patch*.

Após os armazenamentos das matrizes produto serão então calculados os pontos. De seguida será apresentado o algoritmo de cálculo dos pontos com auxílio da figura abaixo.

Figura 1: Representação do método de cálculo dos pontos dos triângulos com base em u e v.

Tendo em conta as fórmulas apresentadas, vamos calcular as coordenadas x, y e z de cada um dos pontos, sabendo que o que varia para cada um deles é o valor de u e v. Para além disto é preciso ter em conta no cálculo dos pontos 1,2,3 e 4 que:

- $step = \frac{1}{tecelagem}$
- us = [0, tecelagem]
- vs = [0, tecelagem]

Para cada $x \in [0, tecelagem]$ será calculado $\underline{\mathbf{u}}$ e $\underline{\mathbf{v}}$, como também os pontos descritos na figura. Isto é feito na função $calculate_Bezier_Patch$ que recebe como argumento os ponto \mathbf{u} e \mathbf{v} como também um indice

que indicará que coordenada (x,y,z) deve ser calculada. Neste caso se o indice for 0, será calculado o ponto x do patch de Bezier, caso seja 1 calcula-se o ponto y e finalmente se for 2 calcula-se o ponto z. Após receber os argumentos a função irá multiplicar a matriz produto $(prod_matrix)$ da respectiva coordenada (x,y,z) selecionada ,pela matriz linha u_line e pela matriz coluna v_column sendo que estas são definidas por:

$$u_line = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$$

$$v_column = \begin{bmatrix} v^3 \\ v^2 \\ v \\ 1 \end{bmatrix}$$

Feito este processo, retorna-se o valor de *patch* calculado. Este valor de patch corresponderá a uma das coordenadas dos pontos 1,2,3 e 4 representados na figura 1. O que significa que serão calculadas as coordenadas x,y e z de cada um dos pontos, em cada iteração. Após estarem calculados os pontos, os triângulos serão desenhados tendo em conta a regra da mão direita. Dito isto, desenha-se o primeiro triângulo com os pontos 1,2 e 3, respetivamente , sendo que o segundo triângulo foi desenhado com os pontos 3,2 e 4. Nas figuras abaixo encontra-se o *patch* de Bezier gerado (neste caso o ficheiro de input foi o *teapot*) desenhado com diferentes tecelagems.

Figura 2: Representação do teapot gerado , com tecelagem $3\,$

Figura 3: Representação do teapot gerado , com tecelagem $10\,$

3.2 Motor

Senddo que nesta fase é necessário que o *Engine* desenhe curvas, é necessário que este armazene mais dados, tais como, os pontos de controlo da curva, o tempo de animação da curva e tempo de rotação do modelo. De referir as variáveis:

- bool curved: Esta variável vai permitir a distinção entre um modelo dinamico e um modelo estático.
- ControlP contp: Esta variável é um vector de 4 ou mais Vertex (caso seja dinamico), sendo que Vertex é uma estrutura de 3 float (x,y,z).

```
typedef std::vector<Vertex> ControlP;
typedef struct groupData{
    float traX, traY, traZ;
    float rotX, rotY, rotZ;
    float scaleX , scaleY , scaleZ;
} Group;
typedef struct pathInfo{
    Path path;
    float traX=0, traY=0, traZ=0;
    float rot X=0, rot Y=0, rot Z=0;
    float scale X = 1, scale Y = 1, scale Z = 1;
    ControlP contp;
    int nrcontp;
    bool curved;
    float trans_time = 0;
    float rot_time = 0;
} Paths;
typedef struct modelData{
    Model model;
    float traX=0, traY=0, traZ=0;
    float rot X = 0, rot Y = 0, rot Z = 0;
    float scaleX=1, scaleY=1, scaleZ=1;
    ControlP contp;
    int nrcontp;
    bool curved;
    float trans_time = 0;
    float rot_time = 0;
} ModelData;
```

Posto isto, foi declarada uma variável global que irá ser o array de buffers, permitindo a aplicação de VBO's e uma variável number_of_groups que irá permitir percorrer o array paths e armazenar os valores do time na devida posição.

```
GLuint *buffers;
```

3.2.1 Leitura do ficheiro XML

Nesta fase foram feitas pequenas alterações à leitura do ficheiro XML, sendo estas o armazenamento do atributo da variável time na estrutura Paths ao encontrar rotate, e no caso do translate se for encontrado a variável time é armazenado o atributo e alterado a valor para true da variável curved na estrutura Paths no devido índice. Para armazenar os pontos de controlo foi implementado uma função auxiliar readPoints.

3.3 Utilização de VBO's

Nesta fase era também pedido a aplicação de *Vertex Burffer Objects*, que permite a eficiência no desenho dos pontos necessários por partes da placa gráfica, visto que estes são passados diretamente para a placa gráfica e não triângulo a triângulo.

3.3.1 Inicialização

A inicialização dos VBO's é feita da seguinte forma:

- Tendo todos os modelos carregados nas estruturas, a variável buffer é inicializada com um tamanho igual ao número de modelos lidos;
- É chamada a função glEnableClientState(GL_VERTEX_ARRAY), para que seja possível a utilização de arrays no desenho dos vértices e também é chamda a função glGenBuffers(paths_size,buffers), para que sejam gerados os buffers que irão armazenar os pontos dos modelos;
- Posto isto, é chamada a função preparaBuffers() que tem como objectivo inserir os vértices dos modelos nos buffers, sendo que cada modelo tem um buffer, isto através das funções glBindBuffer() que liga o devidoo buffer ao devido id e glBufferData() que copia os dados para o buffer.

3.3.2 Desenho

Com a fase de inicialização finalizada, é necessário passar passar para a fase de desenho que é feita da seguinte forma:

- Para cada modelo:
 - $1. \ \ \acute{\rm E} \ {\rm feita} \ {\rm a} \ {\rm liga} \\ {\rm cada} \ {\rm buffer} \ {\rm com} \ {\rm a} \ {\rm função} \ {\it glBindBuffer} ({\it GL_ARRAY_BUFFER}, \ {\it buffers[j]});$
 - 2. É indicado o tipo de apontador que está nos arrays, com a função $glVertexPointer(3, GL_FLOAT, 0, 0)$;
 - 3. É pedido o desenho do modelo, através da função qlDrawArrays(GL_TRIANGLES, 0, model.size());

3.4 Curvas de Catmull-Rom

De modo a animar as curvas de Catmull-Rom foi criado outro módulo de suporte para efetuar esses cálculos. Nas secções seguintes são explicadas as funções que tornam possível a animação com as curvas referidas.

3.4.1 Cálculo da posição

Para ilustrar as curvas de Catmull-Rom primeiro é necessário calcular a posição do objeto (P(t)). Esse cálculo será feito com base na matriz pré-definida de Catmull-Rom e com 4 pontos pertences à curva formada por P(0), P(1), P(2) e P(3), dado um instante t. Segue-se abaixo as definições utilizadas para este cálculo.

$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} -0.5 & 1.5 & -1.5 & 0.5 \\ 1 & -2.5 & 2 & -0.5 \\ -0.5 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} P_{0x} & P_{0y} & P_{0z} \\ P_{1x} & P1_{1y} & P_{1z} \\ P_{2x} & P_{2y} & P_{2x} \\ P_{3x} & P_{3y} & P_{3z} \end{bmatrix}$$

Depois destes valores serem conhecidos, serão aplicadas as fórmulas enunciadas abaixo:

$$A = P \times M$$

$$P(t) = A \times T$$

Estes cálculos são feitos na função **getCatmullRomPoint**. É de realçar, que de forma semelhante ao cálculo feito nos patches de Bezier, as matrizes definidas acima estão divididas em sub-matrizes representativas das respetivas coordenadas x,y e z (à exceção da matriz M e da matriz T). Tendo isto em conta os cálculos serão efetuados na seguinte ordem:

$$A_x = Px \times M$$

$$A_y = Py \times M$$

$$A_z = Pz \times M$$

$$P(t)_x = Ax \times T$$

$$P(t)_y = Ay \times T$$

$$P(t)_z = Az \times T$$

3.4.2 Cálculo da matriz rotação

Tendo feito o processo de cálculo da posição do objeto será agora necessário calcular a sua derivada de modo a obter a matriz de rotação que alinha o objeto com a curva. As fórmulas abaixo foram usadas para este cálculo, sendo apenas necessário recorrer à matriz T' e à matriz A, foi possível obter a derivada da posição, P'(t). Note-se que a matriz A diz respeito à matriz calculada para a posição do objeto.

$$T' = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}$$

$$P'(t) = A \times T'$$

Como as matrizes P'(t) e A encontram-se divididas em sub-matrizes onde estão armazenadas as suas coordenadas x,y e z , respetivamente, as fórmulas de cálculo adaptadas agora serão:

$$P'(t)_x = A_x \times T'$$

$$P'(t)_y = A_y \times T'$$

$$P'(t)_z = A_z \times T'$$

Para obter a matriz de rotação, precisou-se de calcular $X,Y\in Z$, sendo estes dados pelas fórmulas enunciadas abaixo:

$$X = ||P'(t)||$$

$$Y_i = \frac{Z \times X}{||Z \times X||}$$

$$Y_0 = (0, 1, 0)$$

$$Z = \frac{X \times Y_{i-1}}{||X \times Y_{i-1}||}$$

Tendo isto feito, de seguida , foi utilizada a função **build_Rotation_Matrix** e, posteriormente a **glMult-Matrixf** para multiplicar a matriz de rotação pela atual. O cálculo de P'(t) é também realizado na função **getCatmullRomPoint**.

3.4.3 Desenho da trajetória

A função **renderCatmullRomCurve** é responsável pelo desenho da trajetória. Esta função recebe um conjunto de pontos pertencentes à curva e de seguida passa-os como argumento à função **getGlobalCatmullRomPoint** para calcular as diferentes posições dos restantes pontos pertencentes à curva.

Como é demonstrado pela figura acima, a função **getGlobalCatmullRomPoint** é chamada para valores de $i \in [0.01, 100]$ com um incremento de 0.01 por iteração. Esta função terá 10000 iterações sendo assim gerados 10000 vértices pertencentes à curva. Estes vértices serão ligados por uma linha, isto será gerado recorrendo à primitiva GL_LINE_LOOP .

```
void renderCatmullRomCurve(float controlPoints[][3], int number_points) {
    float deriv[3];
    glBegin(GL_LINE_LOOP);
    for(float i=0.01; i< 100; i += 0.01) {
        getGlobalCatmullRomPoint(i,pos,deriv, controlPoints, number_points);
        glVertex3f(pos[0],pos[1],pos[2]);
    }
    glEnd();
}</pre>
```

3.4.4 Cálculo do tempo global t

Visto que agora a translação vai estar dependente do tempo será necessário calcular, a cada instante, qual o instante *global_t* atual para que os planetas e satélites possam se mover de acordo com o mesmo. Este tempo será cálculado de acordo com a seguinte fórmula:

$$global_t = \frac{glutGet(GLUT_ELAPSED_TIME)}{1000*m.translate_time}$$

Esta fórmula relaciona o tempo que já passou desde o render inicial da cena (dado pela variável $GLUT_ELAPSED_TIME$) com o tempo de translação do modelo (em segundos, dado pela variável $m.translate_time$), permitindo assim que a translação seja feita iterativamente em função do tempo passado.

3.5 Modelo do Sistema Solar

No modelo do sistema solar, descrito no ficheiro XML, serão representados o Sol, os 8 planetas (Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Neptuno). Para representar os planetas foram utilizadas as mesmas escalas da fase anterior, no entanto, foi preciso obter novas escalas para obter os tempos de rotação e translação dos planetas.

Para os tempo de translação foi definido o tempo máximo de 180 segundos que corresponde ao Neptuno, que é o planeta que tem um maior tempo de translação, tendo isto em conta obtemos os tempos dos restantes planetas. No entanto como a maior parte dos tempos eram demasiado curtos, estes foram aumentados de forma a tornar o modelo mais operceptíve.

Para o tempo de rotação foi utilizado o mesmo método de escala mas desta vez o tempo máximo é de 100 segundos que corresponde ao planeta Vénus.

Nome	Rotação (segundos)	$Translaç\~ao (segundos)$
Sol	50	-
Mercúrio	60	70
Vénus	100	80
Terra	10	95
Marte	12	105
Júpiter	6	130
Saturno	7	150
Urano	7.5	170
Neptuno	8	180

Tabela 3: Tempos de rotação e translação de cada planeta.

De seguida, definimos as curvas de Catmull-Rom, para cada curva vamos calcular 8 pontos tendo em conta a distancia do planeta ao Sol que vai definir o raio da circunferência.

Para calcular os pontos vamos definir d como a distancia do plaena ao sol.

Figura 4: Pontos da trajétoria dos planetas.

•
$$1 x = d; z=0$$

• 2 x =
$$\frac{d\sqrt{2}}{2}$$
; z = $-\frac{d\sqrt{2}}{2}$

•
$$3 x = 0; z = -d$$

•
$$4 = -\frac{d\sqrt{2}}{2}$$
; $z = -\frac{d\sqrt{2}}{2}$

•
$$\mathbf{5} \ x = -d; \ z = 0$$

• 6
$$x = \frac{d\sqrt{2}}{2}$$
; $z = \frac{d\sqrt{2}}{2}$

•
$$7 x = 0; z = d$$

• 8
$$x = \frac{d\sqrt{2}}{2}$$
; $z = \frac{d\sqrt{2}}{2}$

Em relação á trajectória do cometa foi utilizada este metodo, no enta
o, adicionamos valores á componente \boldsymbol{Y} de maneira a tornar a sua orbita menos linear.

 $_{\rm As}$

Figura 5: $Modelo\ do\ Sistema\ Solar$

Figura 6: Modelo do Sistema Solar

4 Conclusões

Após a finalização do trabalho que conclui a terceira fase do trabalho prático, é possível obter uma avaliação crítica sobre o mesmo.

Os resultados conseguidos pelo grupo são satisfatórios, visto que conseguimos um engine capaz de executar animações baseadas em tempos e estáticas, possibilitando assim a criação da cena "Sistema Solar", que demonstra a rotação dos planetas em torno do Sol e a rotação sobre si mesmos.

De referir também as dificuldades que o grupo encontrou, tais como, as fórmulas de rotação, a contrução do cometa utilizando os patches Bezier que foram ultrapassadas. Porém, não foi possível executar a rotação da lua em torno da terra, a qual se encontra em falta na cena.

Concluindo, o trabalho desenvolvido apresenta uma qualidade razoável e responde aos critérios pedidos inicialmente, apesar deste não estar completo, principalmente pela situação da rotação das luas em torno dos seus planetas, sendo assim esta a fase que apresentou mais dificuldades até ao momento.