

Московский Физико-Технический Институт

Отчет по эксперименту

4.3.1. Изучение дифракции света

Цель работы

Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются

Оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Теоретическая сводка

Дифракция Френеля Суммарное ширина n зон Френеля z_n определяется соотношением

$$z_n = \sqrt{an\lambda} \tag{1}$$

где n — номер зоны, a — расстояние от щели до плоскости наьлюдений, λ — длина волны. В работе используется ртутная лампа с длиной волны $\lambda = 5461 \cdot 10^{-10}$ м.

Дифракция Фрауегофера При дифракции Фраунгофера на одной щели имеет место соотношение

$$X_m = f_2 m \frac{\lambda}{D} \tag{2}$$

где X_m – расстояние темной полосы от оптическое оси объектива, f_2 – фокусное расстояние линзы, m – номер темной полосы, D – ширина щели.

При дифракции Фраунгофера на двух щелях будем пользоваться соотношением

$$\delta x = f_2 \frac{\lambda}{d} = \frac{2d}{Dn} \tag{3}$$

где δx — линейное расстояние между соседними интерференционными полосами в плоскости наблюдения, n — число темных полос в центральном максимуме.

Влияние дифракции на разрешающую способность оптических приборов при исследовании влияния дифракции на разрешающую способность оптических систем будем пользоваться соотношеним

$$\frac{\lambda}{D_0} = \frac{l}{f_2} = \frac{d}{f_1} \tag{4}$$

где D_0 – ширина щели, при которых изображения обеих щелей едва различимы, f_1 – фокусное расстояние, l – расстояние между изображениями двух щелей.

Ход работы

Дифракция Френеля соберем схему согласно рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π . Щель S_2 освещается параллельным пучком монохроматического света с помощью коллиматора,

образованного объективом O_1 , и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи простого монохроматора G, в котором используется призма прямого зрения. Распределение интенсивности света в плоскости наблюдения Π проще всего рассчитывать с помощью зон Френеля. Настроим установку так, чтобы в микроскоп наблюдалась картина дифракции Френеля (пример на рис. 2).

Рис. 1: Схема установки для изучения дифракции Френеля

Будем медленно придвигать микроскоп и снимать его координату, когда меняется количество видимых темных полос. Также посчитаем по формуле (1) величину $2z_n$. Результаты занесем в табл. 1. Во время этих ихмерений ширина щели, измеренная микрометрическоим винтом, равна 0.21 мм.

Таблица 1: Дифракция Френеля

n	x_n , cm	$2z_n$, mm
1	46.3	0.20
2	46.2	0.19
3	46.0	0.21
4	45.8	0.21
5	44.4	0.23

Рис. 2: Наблюдение дифракции Френеля

Построим теперь по табл. 1 график зависимости $2z_n$ от n, отложив на нем также ширину щели, измеренную непосредственно.

Рис. 3: Зависимость $2z_n$ от n

Теперь проделаем качественные наблюдения: дифракция на краю экрана и дифркация на препятствии (рис. 4 и рис. 5) соответственно.

Рис. 4: Дифракция на краю экрана

Рис. 5: Дифракция на препятствии

Дифракция Фраунгофера на щели для иссладования дифракции Фраунгофера на щели соберем установку согласно схеме на рис. 6.

Рис. 6: Схема установки для изучения дифракции Фраунгофера на щели

Измерим координаты X_m нескольких дифракционных миниммумов. Результаты занесем в табл. 2. По ней построим график на рис. 7.

Таблица 2: Дифракция Фраунгофера на щели

\overline{m}	-3	-2	-1	0	1	2	3
X_m , MM	1.05	1.16	1.30	1.43	1.55	1.68	1.78

Рис. 7: Зависимость X_n от n

Из графика на рис. 7 и формулы (2) определим ширину щели D=0.22 мм.

Рис. 8: Дифракция Фраунгофера на щели

Дифракция Фраунгофера на двух щелях для наблюдения дифракции Фраунгофера на двух щелях заменим в установке для дифракции Фраунгофера на одной щели щель S_2 на экран с двумя щелями Э. При этом фокусные расстояния линз равны 10.2 см и 12.8 см.

Рис. 9: Дифракция Фраунгофера на двух щелях

После получения четкой картины проводим измерения. Получаем, что первое исчезновение полос происходит при $b_0=0.14$ мм, ширина центрального максимума X=1.5 мм,

в нем находится n=15 темных полос. Тогда $\delta x \approx \frac{X}{n}=0.1$ мм и согласно формуле (3) d=0.69 мм. Это значение близко к непосредственно измеренному d=0.72 мм, хоть и несколько отличается от него. Тем не менее, точность можно считать приемлемой.

Влияние дифракции на разрешающую способность оптических приборов для начала соберем установку согласно схеме на рис. 10.

Рис. 10: Схема установки для исследования влияния дифракции на разрешающую спосбоность

Определим ширину щели D_0 , когда изобаржения щелей становятся едва различимы: $D_0 = 0.32$ мм. Расстояние между щелями d = 0.72 мм, размеры щелей 0.32 мм и 0.16 мм. Оценим выполнимость криетрия Релея по формуле (4): $D_0 = 0.08$ мм. Это значение в 4 раза отличается от экспериментального значения D_0 . Принимая в расчет оценочный характер измерений, а также то, что непонятно, когда считать щели различимыми, можем считать, что критерий Релея выполняется с приемлемой точностью.

Рис. 11: Изображения двух щелей при исследовании влияния дифракции на разрешающую способность

Вывод

В работе была исследована дифракция Френеля, Фраунгофера на одной щели, Фраунговера на двух щелях. В опытах измерялась ширина щели и сравнивлась с реальной шириной, измеренной с помощью микрометричесокго винта. Также при исследованиии дифракции на двух щелях измерялось расстояние между ними. В каждом из опытов результаты измерений можно считать приемлемыми. Кроме того пронаблюдали явления дифракции на краю экрана и на препятствии (нити).

Оценили влияние дифракции на разрешающую способность оптического инструмента, убедились в применимости критерия Релея в данной ситуации.