

December 2000

FQPF17N08L

80V LOGIC N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as automotive, high efficiency switching for DC/DC converters, and DC motor control.

Features

- 11.2A, 80V, $R_{DS(on)} = 0.1\Omega$ @V_{GS} = 10 V Low gate charge (typical 8.8 nC)
- Low Crss (typical 29 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- · Low level gate drive requirements allowing direct operation from logic drives

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQPF17N08L	Units
V _{DSS}	Drain-Source Voltage		80	V
I _D	Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		11.2	А
			7.9	А
I _{DM}	Drain Current - Pulsed	(Note 1)	44.8	А
V_{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	100	mJ
I _{AR}	Avalanche Current	(Note 1)	11.2	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.5	V/ns
P _D	Power Dissipation (T _C = 25°C)		30	W
	- Derate above 25°C		0.2	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		5.0	°C/W
$R_{\theta JA}$	DJA Thermal Resistance, Junction-to-Ambient		62.5	°C/W

ΔBV _{DSS} Bre / ΔT _J Coc I _{DSS} Zer I _{GSSF} Gat I _{GSSR} Gat On Charact On V _{GS(th)} Gat R _{DS(on)} Sta On- Green Dynamic C C C _{iss} Inp C _{oss} Out C _{rss} Rev Switching C t _{d(on)}	ain-Source Breakdown Voltage eakdown Voltage Temperature efficient To Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics tut Capacitance	$\begin{split} &V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A} \\ &I_D = 250 \mu\text{A, Referenced} \\ &V_{DS} = 80 \text{ V, } V_{GS} = 0 \text{ V} \\ &V_{DS} = 64 \text{ V, } T_C = 150 ^{\circ}\text{C} \\ &V_{GS} = 20 \text{ V, } V_{DS} = 0 \text{ V} \\ &V_{GS} = -20 \text{ V, } V_{DS} = 0 \text{ V} \\ \end{split}$ $\begin{aligned} &V_{DS} = V_{GS}, I_D = 250 \mu\text{A} \\ &V_{GS} = 10 \text{ V, } I_D = 5.6 \text{ A} \\ &V_{GS} = 5 \text{ V, } I_D = 5.6 \text{ A} \\ &V_{DS} = 25 \text{ V, } I_D = 5.6 \text{ A} \end{aligned}$ $\begin{aligned} &V_{DS} = 25 \text{ V, } I_D = 5.6 \text{ A} \\ \end{aligned}$	I to 25°C (Note 4)	80 1.0	 0.08 0.076 0.090 11.4	 1 10 100 -100 2.0 0.100 0.115 	V V/°C μA μA nA nA
ΔBV _{DSS} Bre Cool / ΔT _J Cool I _{DSS} Zer I _{GSSF} Gat I _{GSSR} Gat On Charact V _{GS(th)} R _{DS(on)} Sta On- Gat PSFS For Dynamic C Ciss C _{iss} Inp C _{oss} Out C _{rss} Rev Switching C t _{d(on)}	eakdown Voltage Temperature efficient ro Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics att Capacitance	$\begin{split} I_D &= 250 \ \mu\text{A}, \ \text{Reference} \\ V_{DS} &= 80 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ V_{DS} &= 64 \ \text{V}, \ T_C = 150 ^{\circ}\text{C} \\ V_{GS} &= 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ V_{GS} &= -20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ \end{split}$			 0.076 0.090	 1 10 100 -100 -100 2.0 0.100 0.115	V/°C μA μA nA NA
ΔBV DSS Bree Coor / ΔT J Coor IDSS Zer IGSSF Gat IGSSR Gat On Charact On- VGS(th) Gat RDS(on) Sta On- Green Dynamic C C Ciss Inp Coss Out Crss Rev Switching C td(on) Tur Tur	efficient ro Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics aut Capacitance	$\begin{split} I_D &= 250 \ \mu\text{A}, \ \text{Reference} \\ V_{DS} &= 80 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ V_{DS} &= 64 \ \text{V}, \ T_C = 150 ^{\circ}\text{C} \\ V_{GS} &= 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ V_{GS} &= -20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ \end{split}$		1.0	 0.076 0.090	1 10 100 -100 -100 2.0 0.100 0.115	μΑ μΑ nA nA
Zer GSSF	te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics att Capacitance	$V_{DS} = 64 \text{ V}, T_{C} = 150^{\circ}\text{C}$ $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_{D} = 5.6 \text{ A}$	(Note 4)	1.0	 0.076 0.090	10 100 -100 2.0 0.100 0.115	μA nA nA V
GSSF Gat GSSR Gat GSSR Gat GSSR Gat On Charact VGS(th) Gat RDS(on) Sta On:	te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics att Capacitance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_{D} = 5.6 \text{ A}$	(Note 4)	1.0	 0.076 0.090	2.0 0.100 0.115	nA nA V
I _{GSSR} Gat On Characi V _{GS(th)} Gat R _{DS(on)} Sta On- gFS For For Dynamic C Ciss Inp Coss Out Out Crss Rev Switching C td(on) Tur	te-Body Leakage Current, Reverse teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics att Capacitance	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_{D} = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_{D} = 5.6 \text{ A}$	(Note 4)	1.0	 0.076 0.090	2.0 0.100 0.115	nA V Ω
I _{GSSR} Gat On Charact V _{GS(th)} Gat R _{DS(on)} Sta On- gFS For For Dynamic C Ciss Inp C _{oss} Out Out C _{rss} Rev Switching C Tur	teristics te Threshold Voltage atic Drain-Source -Resistance rward Transconductance characteristics aut Capacitance	$V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{GS} = 10 \text{ V}, I_D = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_D = 5.6 \text{ A}$	(Note 4)	1.0	 0.076 0.090	2.0 0.100 0.115	V
$V_{GS(th)}$ Gat $V_{GS(th)}$ Gat $R_{DS(on)}$ Sta $On Sta$ $On On O$	te Threshold Voltage atic Drain-Source -Resistance rward Transconductance Characteristics aut Capacitance	$V_{GS} = 10 \text{ V}, I_D = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_D = 5.6 \text{ A}$	(Note 4)		0.076 0.090	0.100 0.115	Ω
$V_{GS(th)}$ Gat $V_{GS(th)}$ Gat $R_{DS(on)}$ Sta $On Sta$ $On On O$	te Threshold Voltage atic Drain-Source -Resistance rward Transconductance Characteristics aut Capacitance	$V_{GS} = 10 \text{ V}, I_D = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_D = 5.6 \text{ A}$	(Note 4)		0.076 0.090	0.100 0.115	Ω
R _{DS(on)} Sta On- 9FS For Dynamic C C _{iss} Inp C _{oss} C _{rss} Rev Switching (t _{d(on)} Tur	tic Drain-Source -Resistance rward Transconductance Characteristics out Capacitance	$V_{GS} = 10 \text{ V}, I_D = 5.6 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_D = 5.6 \text{ A}$	(Note 4)		0.076 0.090	0.100 0.115	Ω
On- GFS	-Resistance rward Transconductance characteristics out Capacitance	$V_{GS} = 5 \text{ V}, I_D = 5.6 \text{ A}$ $V_{DS} = 25 \text{ V}, I_D = 5.6 \text{ A}$	(Note 4)		0.090	0.115	
	Characteristics out Capacitance	V _{DS} = 25 V, I _D = 5.6 A	(Note 4)		11.4		S
$egin{array}{ccc} C_{iss} & & & & & & & & & & \\ C_{oss} & & & & & & & & & \\ C_{rss} & & & & & & & & \\ \textbf{Switching} & & & & & & & \\ \textbf{t}_{d(on)} & & & & & & & & \\ \hline \end{array}$	ut Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,			1]
$egin{array}{ccc} C_{oss} & {\sf Out} \\ C_{rss} & {\sf Rev} \\ \hline {\bf Switching} & {\sf t}_{\sf d(on)} & {\sf Tur} \\ \hline \end{array}$	<u>'</u>	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$					
C _{rss} Rev Switching (t _{d(on)} Tur	to 1 O - 1 - 1 't - 1 - 1				400	520	pF
Switching (tput Capacitance	f = 1.0 MHz			120	155	pF
t _{d(on)} Tur	verse Transfer Capacitance				29	37	pF
t _{d(on)} Tur	Characteristics						
` ,	rn-On Delay Time	V 40 V I 46 F A			7	25	ns
t _r Tur	rn-On Rise Time	$V_{DD} = 40 \text{ V}, I_{D} = 16.5 \text{ A},$ $R_{G} = 25 \Omega$			290	590	ns
t _{d(off)} Tur	rn-Off Delay Time				20	50	ns
	rn-Off Fall Time	-	(Note 4, 5)		75	160	ns
_	al Gate Charge	V _{DS} = 64 V, I _D = 16.5 A,			8.8	11.5	nC
-	te-Source Charge	$V_{GS} = 5 \text{ V}$	•		2.0		nC
_	te-Drain Charge	(Note 4, 5			5.4		nC
Drain-Sour	ce Diode Characteristics a		S			11.2	А
	Maximum Continuous Drain-Source Diode Forward Current Maximum Pulsed Drain-Source Diode Forward Current					44.8	
CIVI		V _{GS} = 0 V, I _S = 11.2 A				_	A V
~-	ain-Source Diode Forward Voltage				 EE	1.5	
t_{rr} Rev	verse Recovery Time	$V_{GS} = 0 \text{ V, } I_S = 16.5 \text{ A,}$ $dI_F / dt = 100 \text{ A/}\mu\text{s}$ (Note 4)			55		ns

- Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.1mH, $I_{AS} = 11.2A$, $V_{DD} = 25V$, $R_G = 25~\Omega$, Starting $T_J = 25^{\circ}C$ 3. $I_{SD} \le 16.5A$, di/dt $\le 300A/\mu$ s, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$ 4. Pulse Test : Pulse width $\le 300\mu$ s, Duty cycle $\le 2\%$ 5. Essentially independent of operating temperature

Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

©2000 Fairchild Semiconductor International Rev. A2, December 2000

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Reverse Current

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM FASTrTM QFETTM VCXTM

Bottomless[™] GlobalOptoisolator[™] QS[™]

CoolFET™ GTO™ QT Optoelectronics™

CROSSVOLT™ HiSeC™ Quiet Series™ DOME™ SuperSOT™-3 ISOPLANAR™ E²CMOS™ MICROWIRE™ SuperSOT™-6 EnSigna™ OPTOLOGIC™ SuperSOT™-8 FACT™ OPTOPLANAR™ SyncFET™ РОР™ TinyLogic™ FACT Quiet Series™

FAST[®] PowerTrench[®] UHCTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. F