Глубинное обучение

Функции активации, Инициализация весов,.

Recap

Объекты x_1, \ldots, x_n

Ответы $y_1, ..., y_n \in [0,1]$

Алгоритм предсказания $f(x, \theta) = P(y = 1 | x, \theta) > \frac{1}{2}$

нейросеть из двух блоков вида Linear -> Sigmoid

Input

 ${\mathcal X}$ - ч/б картинка

Input


```
{\mathcal X} - ч/б картинка
```

массив с элементами от 0 до 1 0 - черный, 1 - белый

Input


```
{\mathcal X} - ч/б картинка
```

массив с элементами от 0 до 1 0 - черный, 1 - белый

Какая размерность?

Input

 ${\mathcal X}$ - ч/б картинка

массив с элементами от 0 до 1 0 - черный, 1 - белый

$$H \times W \times C$$

Input


```
{\mathcal X} - ч/б картинка
```

массив с элементами от 0 до 1 0 - черный, 1 - белый

$$H \times W \times C = 10 \times 10 \times 1$$

параметры: $W_{\scriptscriptstyle 1}$ - матрица размера

 $W_1 \cdot x_{input}$

 $d1 \times d2$ - веса линейного слоя

$$W_1 \cdot x_{input}$$

параметры: W_1 - матрица размера $d1 \times d2$ - веса линейного слоя

Какие параметры выбираем?

Нужно сначала представить картинку в виде вектора размера $H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$

[0.0, 0.1875, 0.984375, 0.92578125, 0.0,

 $H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$

Операция flatten

параметры: W_1 - матрица размера

Какие параметры выбираем?

параметры: W_1 - матрица размера

веса линейного слоя

Output текущего слоя

 x_{output_1}

- вектор

размера 128

- вектор размера

$$H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$$

0.0,

Output текущего слоя

 x_{output_1}

- вектор размера 128

> Передаем дальше

- вектор размера

$$H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$$

0.92578125,

0.0,

Input текущего слоя

Input текущего слоя

Input текущего слоя

Input текущего слоя

$$X_{output_1}$$
 — вектор размера 128 \longrightarrow $\frac{1}{1+e^{-x_{output_1}}}$ — \longrightarrow X_{output_2} — вектор размера 128

Input текущего слоя

Input текущего слоя

Output текущего слоя

Какой размер W_2 выбираем?

Input текущего слоя

$$X_{output_2}$$
 — $W_2 \cdot x_{output_2}$ — $W_2 \cdot x_{output_2}$

$$W_2$$
 размера 1×128

Input текущего слоя

Output текущего слоя

 W_2 размера 1×128

Хотим оценить $P(y = 1 | x, \theta)$

Input текущего слоя

$$X_{output_3}$$
 — \rightarrow Sigmoid \rightarrow $P(y = 1 \mid x, \theta)$ размер 1

Input текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — \to $\frac{1}{1+e^{-x_{output_3}}}$ — \to $P(y=1\,|\,x,\theta)$ размер 1

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Хотим посчитать
$$\frac{\mathrm{d}L}{\mathrm{d}W_1}, \frac{\mathrm{d}L}{\mathrm{d}W_2}$$

и сделать шаг градиентного спуска

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

$$W_{new_i} = W_i - \alpha \frac{\mathrm{d}L}{\mathrm{d}W_i}$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — \to $\frac{1}{1+e^{-x_{output_3}}}$ — \to $P(y=1\,|\,x,\theta)$ размер 1

$$\frac{\mathrm{d}L}{\mathrm{d}L} = 1$$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

$$\frac{dL}{dL} = 1$$

$$\frac{dL}{dP} = -\frac{y}{P} + \frac{1-y}{1-P}$$

Input текущего слоя

$$X_{output_3}$$
 — число, размер 1
$$\frac{1}{1+e^{-x_{output_3}}} \longrightarrow P(y=1\,|\,x,\theta)$$

Input текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Input текущего слоя

$$X_{output_3}$$
- число, \longrightarrow размер 1
$$\frac{\mathrm{d}L}{\mathrm{d}x_{output_3}} = \frac{\mathrm{d}L}{\mathrm{d}P} \frac{\mathrm{d}P}{\mathrm{d}x_{output_3}}$$

$$\frac{1}{1 + e^{-x_{output_3}}} \longrightarrow P(y = 1 \mid x, \theta)$$

$$\frac{dP}{dx_{output_3}} = P(1 - P) \quad \frac{dL}{dP} = -\frac{y}{P} + \frac{1 - y}{1 - P}$$

Input текущего слоя

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_3}$ — размер 1 $\frac{dL}{dx_{output_3}} = \frac{dL}{dP} \frac{dP}{dx_{output_3}}$

Input текущего слоя

Input текущего слоя

Output текущего слоя

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{out$

Input текущего слоя

Output текущего слоя

 $\frac{L}{-x_{output_2}^T} => W_{new_2} = W_2 - \alpha \frac{\Delta L}{dW_2}$

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ W_3 — число, размер 1 $\frac{\mathrm{d} x_{output_3}}{\mathrm{d} W_2} = x_{output_2}^T$ $\frac{\mathrm{d} L}{\mathrm{d} x_{output_3}}$

 dx_{output_3}

 dW_2 dx_{output_3} dW_2 dx_{output_3}

Input текущего слоя

Output текущего слоя

$$X_{output_2}$$
- вектор размера 128

$$W_2 \cdot x_{output_2}$$

$$\frac{\mathrm{d}x_{output_3}}{\mathrm{d}x_{output_2}} = W_2^T$$

$$dL$$
 dx_{output_3}

$$x_{output_3} -$$
 число, размер 1

Input текущего слоя

Output текущего слоя

$$X_{output_2}$$
- вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_3 \cdot x_{output_2}$ $W_4 \cdot x_{output_2}$ $W_5 \cdot x_{out$

Train loop

```
for epoch in range(epochs): # эпоха - проход по датасету
   model.train() # переключаем все в режим тренировки (DO/BN/...)
   for x, gt in tqdm(train_loader): # датасет разбит на (мини)батчи
       logits = network.forward(x) # предсказания сети
       loss = loss_fn(logits, gt) # nodcчem οшибки
       accuracy = accuracy(logits, gt) # подсчет метрик
                       # подсчет градиентов
       loss.backward()
       network.apply_updates() # обновление весов
   model.eval() # переключаем все в режим валидации (DO/BN/...)
   for x, gt in tqdm(val_loader): # валидация
       logits = network.forward(x)
       loss = loss_fn(logits, gt) # nodcuem oшибок
       accuracy = accuracy(logits, gt) # подсчет метрик
```

Функции активации

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Функции активации: Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Выход в диапазоне от 0 до 1

Проблемы?

Функции активации: Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Выходы в диапазоне от 0 до 1

- На краях одинаково работает
- Local grad на краях маленький
- Выходы не центрированы

Функции активации: Tanh

tanh(x)

Выходы в диапазоне от -1 до 1

- Выходы центрированы

Функции активации: Tanh

tanh(x)

Выходы в диапазоне от -1 до 1

- На краях одинаково работает
- Local grad на краях маленький
- Выходы центрированы

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)
- Выходы не центрированы
- Local grad для x < 0

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)
- Выходы не центрированы
- Local grad для x < 0

Хороший выбор, но learning rate не должен быть большим

Функции активации: Leaky ReLU

Leaky ReLU $\max(0.1x, x)$

Выходы в диапазоне от -inf до +inf

Функции активации: Leaky ReLU

Leaky ReLU $\max(0.1x, x)$

Выходы в диапазоне от -inf до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость

Функции активации: ELU

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Функции активации: ELU

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Выходы в диапазоне от -inf до +inf

- На краях работает по-разному
- Быстрая сходимость
- Вычисляем ехр

Функции активации: вывод

ReLU - хороший базовый выбор

Можно пробовать LeakyReLU, ELU, GELU, etc.

Избегать Sigmoid

Функции активации: вывод

ReLU - хороший базовый выбор

Можно пробовать LeakyReLU, ELU, GELU, etc.

Избегать Sigmoid

Важно - подбирать Ir, инициализации весов...

Виды слоев в нейросетях

Функции активации

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Функции активации: вывод

ReLU - хороший базовый выбор

Можно пробовать LeakyReLU, ELU, GELU, etc.

Избегать Sigmoid

Важно - подбирать Ir, инициализации весов...

Какие значения выбрать при построении сети для весов?

Инициализация нулями?

Инициализация нулями?

Градиентный спуск:
$$\theta_{t+1} = \theta_t - \alpha \frac{\mathrm{d}L}{\mathrm{d}\theta}$$

Веса будут меняться одинаково!

Инициализация случайными значениями

А есть значения слишком большие?

Инициализация случайными значениями

А есть значения слишком большие?

Рассмотрим MLP с L слоями, без активация (identity активации)

$$W_1 = W_2 = \dots = W_L = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} = 1.5 \cdot I$$

$$y_L = W_L \cdot \ldots \cdot W_1 \cdot x = 1.5^L x$$

Инициализация случайными значениями

А есть значения слишком большие?

Рассмотрим MLP с L слоями, без активация (identity активации)

$$W_1 = W_2 = \dots = W_L = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} = 1.5 \cdot I$$

$$y_L = W_L \cdot \ldots \cdot W_1 \cdot x = 1.5^L x$$

Backward pass: exploding gradients

Инициализация небольшими случайными значениями

Инициализация небольшими случайными значениями

Рассмотрим MLP с L слоями, без активация (identity активации)

$$W_1 = W_2 = \dots = W_L = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} = 0.5 \cdot I$$

$$y_L = W_L \cdot \ldots \cdot W_1 \cdot x = 0.5^L x$$

Инициализация небольшими случайными значениями

Рассмотрим MLP с L слоями, без активация (identity активации)

$$W_1 = W_2 = \dots = W_L = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} = 0.5 \cdot I$$

$$y_L = W_L \cdot \ldots \cdot W_1 \cdot x = 0.5^L x$$

Backward pass: vanishing gradients

Инициализация небольшими случайными значениями

Поможет калиброванная инициализация: Xavier/Glorot init, He init

Инициализация небольшими случайными значениями

Поможет калиброванная инициализация: Xavier/Glorot init, He init

Идея:

- Mean выходов слоев должны быть 0 $E y_{L-1} = E y_L = 0$
- Variance выходов слоев должны быть одинаковыми $Var y_{L-1} = Var y_L$

Инициализация: Xavier/Glorot

Рассмотрим **нейрон**
$$y = w^T x = \sum_i w_i x_i$$

Инициализация: Xavier/Glorot

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию

$$ext{Var}[y_i] = ext{Var}[w_i x_i] = \mathbb{E}ig[w_i^2 x_i^2ig] - (\mathbb{E}[w_i x_i])^2 = 0$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию

$$egin{aligned} \operatorname{Var}[y_i] &= \operatorname{Var}[w_i x_i] = \mathbb{E}\left[w_i^2 x_i^2
ight] - \left(\mathbb{E}[w_i x_i]
ight)^2 = \ &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] \end{aligned}$$

Формула для дисперсии произведения независимых с.в.

Рассмотрим **нейрон**
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию

$$egin{aligned} \operatorname{Var}[y_i] &= \operatorname{Var}[w_i x_i] = \mathbb{E}ig[w_i^2 x_i^2ig] - (\mathbb{E}[w_i x_i])^2 = \ &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] \end{aligned}$$

Потребуем, чтобы мат.ожидания были 0

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Рассмотрим нейрон
$$y = w^T x = \sum w_i x_i$$

$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Для всего нейрона:

$$ext{Var}[y] = ext{Var}igg[\sum_{i=1}^{n_{ ext{out}}} y_iigg] = \sum_{i=1}^{n_{ ext{out}}} ext{Var}[w_i x_i] = n_{ ext{out}} ext{ Var}[w_i] ext{Var}[x_i]$$

Рассмотрим нейрон
$$y = w^T x = \sum w_i x_i$$

$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Для всего нейрона:

77

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Для всего нейрона:

$$egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} Var[y] &= \sum_{i=1}^{n_{ ext{out}}} Var[w_ix_i] = n_{ ext{out}} & Var[w_i] egin{align*} egin{alig$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Для всего нейрона:

MNTOX

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию
$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

Для всего нейрона:
$$n_{
m out}\,{
m Var}[w_i]=1$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию

$$\mathrm{Var}[y_i] = \mathrm{Var}[w_i] \, \mathrm{Var}[x_i]$$

Для всего нейрона:

$$n_{
m out}\, {
m Var}[w_i]=1$$

$$\operatorname{Var}[w_i] = rac{1}{n_{ ext{out}}}$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Считаем дисперсию

$$\mathrm{Var}[y_i] = \mathrm{Var}[w_i] \, \mathrm{Var}[x_i]$$

Для всего нейрона:

$$n_{\mathrm{out}} \operatorname{Var}[w_i] = 1$$

$$\sqrt{\mathrm{Var}[w_i]} = rac{1}{n_{\mathrm{out}}}$$

A есть тоже самое для backward pass?

Рассмотрим **нейрон**
$$y = w^T x = \sum_i w_i x_i$$

Forward pass:

$$n_{
m out}\, {
m Var}[w_i]=1$$

$$ext{Var}[w_i] = rac{1}{n_{ ext{out}}}$$

Backward pass:

$$n_{\mathrm{in}} \, \operatorname{Var}[w_i] = 1$$

$$ext{Var}[w_i] = rac{1}{n_{ ext{in}}}$$

Рассмотрим **нейрон**
$$y = w^T x = \sum_i w_i x_i$$

Forward pass:

$$n_{
m out}\, {
m Var}[w_i]=1$$

$$ext{Var}[w_i] = rac{1}{n_{ ext{out}}}$$

Возьмем среднее

Backward pass:

$$n_{
m in} \; {
m Var}[w_i] = 1$$

$$ext{Var}[w_i] = rac{1}{n_{ ext{in}}}$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

$$ext{Var}[w_i] = rac{2}{n_{ ext{in}} + n_{ ext{out}}}$$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев должны быть 0 \rightarrow E $w_L = 0$
- Variance выходов слоев должны быть одинаковыми \rightarrow Var $w_L = \frac{2}{n_{in} + n_{out}}$

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев должны быть 0 \rightarrow E $w_L=0$
- Variance выходов слоев должны быть одинаковыми \rightarrow Var $w_L = \frac{2}{n_{in} + n_{out}}$

Какое распределение подходит?

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев должны быть 0 $\to E \ w_L = 0$
- Variance выходов слоев должны быть одинаковыми \rightarrow Var $w_L = \frac{2}{n_{in} + n_{out}}$

Какое распределение подходит? $w_i \sim U \left| -\frac{\sqrt{6}}{\sqrt{n_{
m in} + n_{
m out}}}, \frac{\sqrt{6}}{\sqrt{n_{
m in} + n_{
m out}}} \right|$

Инициализация: Не

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев может быть не 0 (например, с ReLU активациями)
- Variance выходов слоев должны быть одинаковыми

Логика вывода похожая

Инициализация: Не

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев может быть не 0 (например, с ReLU активациями)
- Variance выходов слоев должны быть одинаковыми \rightarrow Var $w_L = \frac{2}{n_{in}}$

Какое распределение подходит?

Инициализация: Не

Рассмотрим нейрон
$$y = w^T x = \sum_i w_i x_i$$

Идея:

- Mean выходов слоев может быть не 0 (например, с ReLU активациями)
- Variance выходов слоев должны быть одинаковыми \rightarrow Var $w_L = \frac{2}{n_{in}}$

Какое распределение подходит? $w_i \sim N(0, \sqrt{2/n_{
m in}^{(l)}})$

Пара полезных ссылок

https://towardsdatascience.com/

https://www.deeplearning.ai/ai-notes/initialization/index.html