Containers in Higher Kinds jww Zhili Tian and Håkon Gylterud

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

April 16, 2025

Old paper

TLCA01

A. "Representations of first order function types as terminal coalgebras." Typed Lambda Calculi and Applications: 5th International Conference, TLCA 2001

Example: Streams

Stream A $\,\cong\, \mathbb{N} \,\to\, \mathsf{A}$

Given $\mathbb{N} \cong 1 + \mathbb{N}$

$$\mathbb{N} \to \mathsf{A} \cong (\mathsf{1} + \mathbb{N}) \to \mathsf{A}$$
$$\cong \mathsf{A} \times (\mathbb{N} \to \mathsf{A})$$

Hence:

$$\mathbb{N} \to \mathsf{A} \cong \nu \mathsf{X} : \mathsf{Set.} \mathsf{A} \times \mathsf{X}$$

What about trees?

data BT: Type where

leaf : BT

 $\mathsf{node}\,:\,\mathsf{BT}\,\to\,\mathsf{BT}\,\to\,\mathsf{BT}$

Given BT
$$\cong$$
 1 + BT \times BT

$$\begin{array}{c} \mathsf{BT} \ \to \ \mathsf{A} \cong (\mathsf{1} + \mathsf{BT} \ \times \ \mathsf{BT}) \ \to \ \mathsf{A} \\ \cong \mathsf{A} \ \times \ (\mathsf{BT} \ \times \ \mathsf{BT} \ \to \ \mathsf{A}) \\ \cong \mathsf{A} \ \times \ (\mathsf{BT} \ \to \ (\mathsf{BT} \ \to \ \mathsf{A})) \end{array}$$

Hence:

$$\mathsf{BT} \ \to \ \mathsf{A} \ \cong \ (\nu \ \mathsf{F} \ : \ \mathsf{Set} \ \to \ \mathsf{Set} \ . \ \lambda \ \mathsf{X} \ . \ \mathsf{X} \ \times \ \mathsf{F} \ (\mathsf{F} \ \mathsf{X})) \ \mathsf{A}$$

```
record Bush (A: Type): Type where
  coinductive
  field
     head: A
     tail: Bush (Bush A)
app: Bush A \rightarrow BT \rightarrow A
app bsh leaf = head bsh
app bsh (node | r) = app (app (tail bsh) | r)
lam : (BT \rightarrow A) \rightarrow Bush A
head (lam f) = f leaf
tail (lam f) = \phi (\lambda I \rightarrow \phi (\lambda r \rightarrow f (node I r)))
```

Another old paper

TCS05

Abbott, Michael, A., and Neil Ghani.

"Containers: Constructing strictly positive types."

Theoretical Computer Science 342.1 (2005):

Results on containers

Initial and terminal algebras

$$\mu \llbracket \ \mathsf{S} \ \lhd \ \mathsf{P} \ \rrbracket \cong \mathsf{W} \ \mathsf{S} \ \mathsf{P}$$
$$\nu \llbracket \ \mathsf{S} \ \lhd \ \mathsf{P} \ \rrbracket \cong \mathsf{M} \ \mathsf{S} \ \mathsf{P}$$

Container morphisms

$$\int_{X:\mathsf{Set}} \llbracket \mathsf{S} \lhd \mathsf{P} \rrbracket \mathsf{X} \to \llbracket \mathsf{T} \lhd \mathsf{Q} \rrbracket \mathsf{X} \cong$$

$$\Sigma \llbracket \mathsf{f} \in \mathsf{S} \to \mathsf{T} \rrbracket (\mathsf{Q} (\mathsf{f} \mathsf{s}) \to \mathsf{P} \mathsf{s})$$

- Cont is cartesian closed.
 CIE 2010 (w Paul Levy and Sm Staton)
- Cont gives rise to a Category with families (CwF)
 TYPES 2021 abstract (w Ambrus Kaposi)

.

How to express the results from the TLCA01 paper in the language of TCS05?

What are containers in higher kinds?

$$\begin{array}{lll} H \,:\, \big(\mathsf{Set} \,\to\, \mathsf{Set}\big) \,\to\, \mathsf{Set} \,\to\, \mathsf{Set} \\ H \,F \,X \,=\, X \,\times\, F \,\big(F \,X\big) \end{array}$$

2nd order containers

```
record Cont<sub>2</sub>: Set<sub>1</sub> where
   \textbf{constructor} \ \_ \lhd \ \_, \_, \_
   inductive
   pattern
   field
       S: Set
       P_{\cap}: S \rightarrow Set
       R_0: (s:S) \rightarrow P_0 s \rightarrow Cont_2
       P_1: S \rightarrow Set
\llbracket \ \rrbracket : \mathrm{Cont}_2 \to (\mathsf{Set} \to \mathsf{Set}) \to \mathsf{Set} \to \mathsf{Set}
\llbracket S \triangleleft P_0, R_0, P_1 \rrbracket F X =
   \Sigma[s \in S]((p : P_0 s) \rightarrow F([R_0 s p] F X))
         \times (P_1 s \rightarrow X)
```

$$\begin{split} &H: \operatorname{Cont}_2 \\ &- \operatorname{H} \mathsf{F} \mathsf{X} = \mathsf{X} \times \mathsf{F} \left(\mathsf{F} \mathsf{X} \right) \\ &H = \top \vartriangleleft \left(\lambda_- \to \top \right), \\ &(\lambda_- \to - \operatorname{H'} \mathsf{F} \mathsf{X} = \mathsf{F} \mathsf{X} \\ &\top \vartriangleleft \left(\lambda_- \to \top \right), \\ &(\lambda_- \to - \operatorname{H''} \mathsf{F} \mathsf{X} = \mathsf{X} \\ &\top \vartriangleleft \left(\lambda_- \to \bot \right), \left(\lambda_- () \right), \lambda_- \to \top \right), \\ &\lambda_- \to \top \right), \\ &\lambda_- \to \top \end{split}$$

Higher containers

```
data Nf : Con \rightarrow Ty \rightarrow Set
record Ne (\Gamma : Con)(B : Ty) : Set
data Sp: Con \rightarrow Ty \rightarrow Ty \rightarrow Set
data Nf where
   lam : Nf (\Gamma \triangleright A) B \rightarrow Nf \Gamma (A \Rightarrow B)
   ne : Ne \Gamma \circ \to Nf \Gamma \circ
record Ne Γ B where
   inductive
   field
       S : Set
       P: S \rightarrow Var \Gamma A \rightarrow Set
       R: (s:S) (x:Var \Gamma A) (p:Psx) \rightarrow Sp \Gamma A B
data Sp where
   \epsilon : Sp \Gamma A A
   , : \mathsf{Nf} \Gamma \mathsf{A} \to \mathsf{Sp} \Gamma \mathsf{B} \mathsf{C} \to \mathsf{Sp} \Gamma (\mathsf{A} \Rightarrow \mathsf{B}) \mathsf{C}
```

Semantics

```
\llbracket \ \rrbracket_{\mathrm{nf}} : \mathsf{Nf} \, \mathsf{\Gamma} \, \mathsf{A} \, 	o \, \llbracket \, \mathsf{\Gamma} \, \rrbracket_{\mathrm{C}} \, 	o \, \llbracket \, \mathsf{A} \, \rrbracket_{\mathrm{T}}
\llbracket \ \rrbracket_{ne} : \mathsf{Ne} \ \mathsf{\Gamma} \circ \to \llbracket \ \mathsf{\Gamma} \ \rrbracket_{\mathsf{C}} \to \mathsf{Set}
\llbracket \ \rrbracket_{\operatorname{sn}} : \operatorname{\mathsf{Sp}} \Gamma \operatorname{\mathsf{A}} \operatorname{\mathsf{B}} \to \llbracket \Gamma \rrbracket_{\operatorname{C}} \to \llbracket \operatorname{\mathsf{A}} \rrbracket_{\operatorname{T}} \to \llbracket \operatorname{\mathsf{B}} \rrbracket_{\operatorname{T}}
\llbracket \operatorname{\mathsf{lam}} \mathsf{x} \rrbracket_{\mathrm{nf}} \gamma \mathsf{a} = \llbracket \mathsf{x} \rrbracket_{\mathrm{nf}} (\gamma, \mathsf{a})
[ ]_{ne} \{ \Gamma \} \text{ record } \{ S = S; P = P; R = R \} \gamma = [ ]
       \Sigma[s \in S](\{A : Tv\}(x : Var \Gamma A)
                                             (p : Psx) \rightarrow [Rsxp]_{sp} \gamma ([x]_{v} \gamma)
\llbracket \epsilon \rrbracket_{\mathrm{sp}} \gamma \mathsf{a} = \mathsf{a}
[\![ n, ns ]\!]_{sp} \gamma f = [\![ ns ]\!]_{sp} \gamma (f([\![ n ]\!]_{nf} \gamma))
```

Results?

- Interpretation of simply typed λ -calculus Using ideas from heredetary substitutions Still need to check equations.
- Functoriality
 Need to interpret using heredetary higher functors
 In progress
- Morphisms ?Seems to work for Cont₂, generalize?
- Initial algebras, terminal coalgebras

$$\mu$$
: HCont (A \Rightarrow A) \Rightarrow A
 ν : HCont (A \Rightarrow A) \Rightarrow A

Some issues (restrict universe?)

Translation from TLCA01 sketch on paper proof?

Heredetary functors

Example for μ

```
HFX = 1 + X \times F(FX)
construct \mu H
      data S : Set
      P: S \rightarrow Set
      data S where
        s_{\perp}: S
        node : (s : S) \rightarrow (P s \rightarrow S) \rightarrow S
      P s_{\perp} = \bot
      P \text{ (node s f)} = Maybe (\Sigma[p \in Ps](P(fp)))
```

Example for ν

```
HFX = X \times F(FX)
construct nu H (we know it is 1 \triangleleft BT)
        record S : Set
        data P: S \rightarrow Set
        record S where
            coinductive
            field
               s : S
                f: Ps \rightarrow S
        data P where
            hd: (sf: S) \rightarrow P sf
            \mathsf{tl} : (\mathsf{sf} : \mathsf{S}) (\mathsf{p} : \mathsf{P} (\mathsf{S}.\mathsf{s}\,\mathsf{sf})) (\mathsf{q} : \mathsf{P} (\mathsf{S}.\mathsf{f}\,\mathsf{sf}\,\mathsf{p})) \to \mathsf{P}\,\mathsf{sf}
```

Problem: not strictly positive!