Package 'multisensi'

July 12, 2017

2 multisensi-package

	Climat	14
	dynsi	14
	graph.bar	16
	graph.pc	17
	grpe.gsi	
	gsi	
	multisensi	
	multivar	
	planfact	
	planfact.as	
	plot.dynsi	
	plot.gsi	
	predict.gsi	
	print.dynsi	
	print.gsi	
	quality	
	sesBsplinesNORM	
	sesBsplinesORTHONORM	
	simulmodel	
	summary.dynsi	
	summary.gsi	
	yapprox	
Index		34
		_
mult	isensi-package Multivariate sensitivity Analysis	

Description

Sensitivity Analysis (SA) for models with multivariate output

Details

This package generalises sensitivity analysis to simulation models with multivariate output. It makes it easy to run a series of independent sensitivity analyses on a set of output variables and to plot the results. Alternatively, it allows to apply sensitivity analyses to the variables resulting from the application of a multivariate method (such as PCA or splines or polynomial regression) to the output data (Lamboni et al., 2009).

The function multisensi integrates all the different possible methods implemented in the package. Besides, the user may consider the functions which have existed since the first version of the package:

i) gsi function for the Generalised Sensitivity Analysis (Lamboni et al., 2011, Xiao and Li, 2016) based on inertia decomposition. This method synthesizes the information that is spread between the time outputs or between the principal components and produces a unique sensitivity index for each factor.

analysis.anoasg 3

ii) gsi function for the componentwise sensitivity analysis obtained by computing sensitivity indices on principal components (Campbell et al., 2006)

iii) dynsi function for the dynamic sensitivity analysis obtained by computing sensitivity indices on each output variable.

In the first version of **multisensi**, sensitivity indices were based on using a factorial design and a classical ANOVA decomposition. It is now possible to use other methods for the design and for the sensitivity analysis.

Simulation model management

The **multisensi** package works on simulation models coded either in R or using an external language (typically as an executable file). Models coded in R must be either functions or objects that have a predict method, such as Im objects. Models defined as functions will be called once with an expression of the form y < -f(X) where X is a vector containing a combination of levels of the input factors, and y is the output vector of length q, where q is the number of output variables. If the model is external to R, for instance a computational code, it must be analyzed with the decoupled approach: the methods require an input data frame (X) containing all the combinations of the input levels and the outputs data frame (Y) containing the response of the model corresponding to these combinations. The size of X is n * p and the size of Y is n * q where p is the number of the input factor, q is the number of the model outputs and n is the number of all the combinations of the input levels. This approach can also be used on R models that do not fit the required specifications.

References

Lamboni, M., Makowski, D., Monod, H., 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, volume 113, pp. 312-320.

Lamboni, M., Makowski, D., Monod, H., 2011. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability Engineering & System Safety, volume 96, pp. 450-459.

Xiao, H., Li, L., 2016. Discussion of paper by M. Lamboni, H. Monod, D. Makowski Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliab. Eng. Syst. Saf. 96 (2011) 450-459. Reliability Engineering & System Safety, volume 147, pp. 194-195.

Saltelli, A., Chan, K., Scott, E.M. eds, 2000. Sensitivity Analysis Wiley, New York.

analysis.anoasg

Runs a series of analyses of variance

Description

The analysis. anoasg function runs a series of analyses of variance on the columns of a data.frame, by using the aov function.

Usage

4 analysis.anoasg

Arguments

Y a data.frame of output variables or principal components.

plan a data.frame containing the design.

nbcomp the number of Y variables to analyse (the first nbcomp variables of Y will be

analysed).

sigma.car NULL or sum of squares of Y. If not NULL, compute the Generalised Sensitivity

Indices (saved in the last column of the data.frame mSI/tSI/iSI outputs.

analysis.args a list of arguments. The formula component is for ANOVA formula like "A+B+c+A:B"

OR an integer giving the maximum interaction order (1 for main effects). If it contains keep.outputs=TRUE, the outputs associated with the analysis of each

variable are returned (see section Value).

Value

A list containing:

SI data.frame of sensitivity indices

mSI data.frame of first-order sensitivity indices

tSI data.frame of total sensitivity indices

iSI data.frame of interaction sensitivity indices inertia vector of Inertia explained by the variables

indic.fact 0-1 matrix to indicate the factors associated with each factorial effect

Hpredict prediction of outputs

outputkept if analysis.args\$keep.outputs=TRUE, list of the outputs returned by the

sensitivity analysis performed on each variable

call.info list with first element analysis="anova"

See Also

aov

Examples

analysis.sensitivity 5

analysis.sensitivity	Runs a series of sensitivity analyses by a function from the sensitivity
	package

Description

The analysis.sensitivity function runs a series of sensitivity analyses on the columns of a data.frame, using a method implemented in the **sensitivity** package.

Usage

Arguments

Sumeries	
Υ	a data.frame of output variables or principal components.
plan	an object containing the design. It must be created by a function from the $sensitivity$ package with argument model=NULL.
nbcomp	the number of Y variables to analyse (the first nbcomp variables of Y will be analysed).
sigma.car	NULL or sum of squares of Y. If not NULL, compute the Generalised Sensitivity Indices (saved in the last column of the data.frame mSI/tSI/iSI outputs.
analysis.args	a list of arguments. If it contains keep.outputs=TRUE, the outputs associated with the analysis of each variable are returned (see section Value).

Details

The argument plan must be an object created by a method implemented in the **sensitivity** package. Thus it belongs to a class such as morris or fast99. The name of the class is stored in the element call.info\$fct of the output returned by analysis.sensitivity.

Value

A list containing:

SI	data.frame of sensitivity indices or other importance measures returned by the function from the sensitivity package used. Sometimes empty but kept for compatibility reasons.
mSI	data.frame of first-order sensitivity indices
tSI	data.frame of total sensitivity indices
iSI	data.frame of interaction sensitivity indices
inertia	empty (kept for compatibility reasons)
indic.fact	0-1 matrix to indicate the factors associated with each factorial effect
Hpredict	empty (kept for compatibility reasons)

6 basis.ACP

outputkept if analysis.args\$keep.outputs=TRUE, list of the outputs returned by the sensitivity analysis performed on each variable

call.info list with first element analysis="sensitivity" and second element fct storing the class name of the argument plan

Examples

```
# Test case : the Winter Wheat Dynamic Models (WWDM)
library(sensitivity) # to use fast99
# input factors design
data(biomasseX)
# input climate variable
data(Climat)
# example of the sensitivity:fast99 function
# design
newplan <- fast99(model = NULL, factors = names(biomasseX), n = 100,</pre>
            q = "qunif", q.arg = list(list(min = 0.9, max = 2.8),
                         list(min = 0.9, max = 0.99),
                         list(min = 0.6, max = 0.8),
                         list(min = 3, max = 12),
                         list(min = 0.0035, max = 0.01),
                         list(min = 0.0011, max = 0.0025),
                         list(min = 700, max = 1100)))
# simulations
wwdm.Y <- simulmodel(model=biomasse, plan=newplan$X, climdata=Climat)</pre>
# analysis
res <- analysis.sensitivity(data.frame(wwdm.Y), plan=newplan, nbcomp=4)
```

basis.ACP

A function to decompose multivariate data by principal components analysis (PCA)

Description

The basis.ACP function decomposes a multivariate data set according to principal components analysis.

Usage

```
basis.ACP(simuls, basis.args = list())
```

Arguments

simuls a data.frame of size N x T, typically a set of N simulation outputs of length T. basis.args an empty list of arguments for the PCA decomposition.

basis.bsplines 7

Details

This function uses prcomp.

Value

H a data frame of size N x T, containing the coefficients of the PCA decomposi-

tion. It is equal to the x output of function prcomp.

L a matrix of size T x T. It contains the eigenvectors of the PCA decomposition.

call.info list with the element reduction="pca"

See Also

prcomp

Examples

```
data(biomasseY)
res <- basis.ACP(biomasseY)</pre>
```

basis.bsplines

A function to decompose multivariate data on a B-spline basis

Description

The basis.bsplines function decomposes a multivariate data set on a B-spline basis defined by its knots and mdegree parameters.

Usage

```
basis.bsplines(simuls, basis.args = list(knots = 5, mdegree = 3))
```

Arguments

simuls a data frame of size N x T, typically a set of N simulation outputs of length T.

basis.args a list of arguments for the B-spline decomposition. The knots argument is the

number of knots or the vector of knot positions. The mdegree argument is the polynomial degree. For the optional x coord argument, see the Details section.

Details

The optional x. coord element of the list in basis.args can be used to specify the support of the B-spline decomposition, if different from 1:T. It must be a vector of length T.

8 basis.mine

Value

a data.frame of size N x d, where d is the dimension of the B-spline decomposition. It contains the coefficients of the decomposition for each row of the simuls data.frame.
 a matrix of size T x d. It contains the vectors of the B-spline basis.
 list with the element reduction="b-splines"

See Also

```
bspline, sesBsplinesNORM
```

Examples

```
data(biomasseY)
res <- basis.bsplines(biomasseY,basis.args=list(knots=7,mdegree=3))</pre>
```

basis.mine

A function to decompose multivariate data on a user-defined basis

Description

The basis.mine function decomposes a multivariate data set on a user-defined basis.

Usage

Arguments

simuls a data.frame of size N x T, typically a set of N simulation outputs of length T.

basis.args a list of arguments for the polynomial decomposition. The baseL argument is a matrix of size T x d containing the coordinates of the d basis vectors.

Details

The default basis.args argument generates a projection on a moving-average basis. But if in the multisensi function this basis.args argument is not given for reduction=basis.mine, the execution will be stopped.

Value

H a data.frame of size N x d, where d is the number of basis vectors. It contains the coefficients of the decomposition for each row of the simuls data.frame.

L a matrix of size T x d. It contains the vectors of the user-defined basis.

call.info list with the element reduction="matrix"

9 basis.osplines

Examples

```
data(biomasseY)
M <- 1*outer(sort(0:(ncol(biomasseY)-1)%%5),0:4,"==")</pre>
norm.M <- sqrt(colSums(M^2))</pre>
for (i in 1:ncol(M)){
    M[,i]=M[,i]/norm.M[i]
res <- basis.mine(biomasseY, basis.args=list(baseL=M))</pre>
```

basis.osplines

A function to decompose multivariate data on an orthogonal B-spline basis (O-spline)

Description

The basis.osplines function decomposes a multivariate data set on an orthogonalised B-spline (or O-spline) basis defined by its knots and mdegree parameters.

Usage

```
basis.osplines(simuls, basis.args = list(knots = 5, mdegree = 3))
```

Arguments

simuls a data.frame of size N x T, typically a set of N simulation outputs of length T. a list of arguments for the O-spline decomposition. The knots argument is the basis.args number of knots or the vector of knot positions. The mdegree argument is the

polynomial degree. For the optional x. coord argument, see the Details section.

Details

The optional x. coord element of the list in basis. args can be used to specify the support of the O-spline decomposition, if different from 1:T. It must be a vector of length T.

Value

Н a data.frame of size N x d, where d is the dimension of the O-spline decomposition. It contains the coefficients of the decomposition for each row of the simuls data.frame. L a matrix of size T x d. It contains the vectors of the O-spline basis. call.info list with the element reduction="o-splines"

See Also

bspline, sesBsplinesORTHONORM

10 basis.poly

Examples

```
data(biomasseY)
res <- basis.osplines(biomasseY,basis.args=list(knots=7,mdegree=3))</pre>
```

basis.poly

A function to decompose multivariate data on a polynomial basis

Description

The basis. poly function decomposes a multivariate data set on a polynomial basis.

Usage

```
basis.poly(simuls, basis.args = list(degree = 3))
```

Arguments

simuls a data.frame of size N x T, typically a set of N simulation outputs of length T.

basis.args a list of arguments for the polynomial decomposition. The degree argument is

the maximum degree of the polynomial basis. For the optional x. coord argu-

ment, see the Details section.

Details

This function uses poly. The optional x.coord element of the list in basis.args can be used to specify the support of the polynomial decomposition, if different from 1:T. It must be a vector of length T.

Value

H a data.frame of size N x (d+1), where d is the degree of the polynomial decom-

position. It contains the coefficients of the decomposition for each row of the

simuls data.frame.

L a matrix of size $T \times (d+1)$. It contains the vectors of the polynomial basis.

call.info list with the element reduction="polynomial"

See Also

poly

Examples

```
data(biomasseY)
res <- basis.poly(biomasseY,basis.args=list(degree=3))</pre>
```

biomasse 11

asse The Winter Wheat Dynamic Mode	biomasse The Winter Wheat Dynamic Model
------------------------------------	---

Description

The Winter Wheat Dynamic Model, a toy model to illustrate the main multisensi methods

Usage

```
biomasse(input, climdata, annee = 3)
```

Arguments

input vector of input values.

annee year.

climdata a meteorological data.frame specific to biomasse.

Details

The Winter Wheat Dry Matter model (WWDM) is a dynamic crop model running at a daily time step (Makowski et al, 2004). It has two state variables, the above-ground winter wheat dry matter U(t), in g/m^2 and the leaf area index LAI(t) with t the day number from sowing (t=1) to harvest (t=223). In the **multisensi** package implementation, the biomasse function simulates the output for only one parameter set (the first row of input if it is a matrix or a data.frame).

Value

a vector of daily dry matter increase of the Winter Wheat biomass, over 223 days

References

Makowski, D., Jeuffroy, M.-H., Gu\'erif, M., 2004 Bayesian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

12 biomasseY

biomasseX

A factorial input design for the main example

Description

Factorial design (resolution V) data for the 7 WWDM model input factors

Usage

```
data(biomasseX)
```

Format

A data frame with 2187 observations on the following 7 variables.

Eb First WWDM input factor name

Eimax Second WWDM input factor name

K Thirth WWDM input factor name

Lmax Fourth WWDM input factor name

A Fifth WWDM input factor name

B Sixth WWDM input factor name

TI Seventh WWDM input factor name

See Also

```
biomasse, biomasseY
```

Examples

```
data(biomasseX)
## maybe str(biomasseX); plot(biomasseX) ...
```

biomasseY

Output of the biomasse model for the plan provided in the package

Description

Simplified output of the biomasse model (one column per decade), especially generated for examples in the package help files

Usage

```
data(biomasseY)
```

bspline 13

Format

A data frame with 2187 rows and 22 output variables (one per decade).

See Also

biomasse, biomasseX

Examples

```
data(biomasseY)
dim(biomasseY)
```

bspline

function to evaluate B-spline basis functions

Description

The bspline function evaluates ith B-spline basis function of order m at the values in x, given knot locations in k

Usage

```
bspline(x = seq(0, 1, len = 101), k = knots, i = 1, m = 2)
```

Arguments

Χ	vector or scalar, coordinate where to calculate the B-spline functions
k	vector of knot locations
i	integer; from 0 to length(knots)+1-m
m	integer, degree of the B-Splines

Details

B-splines are defined by recursion : $b_{i,0}(x) = 1$ if $k_j \le x < k_{j+1}$; 0 else.

$$b_{i,m}(x) = \frac{x - k_i}{k_{i+m} - k_i} b_{i,m-1}(x) + \frac{k_{i+m+1} - x}{k_{i+m+1} - k_{i+1}} b_{i+1,m-1}(x)$$

Value

values in x of the ith B-spline basis function of order m

Note

This is essentially an internal function for the multisensi package

References

Wood Simon, 2006. Generalized Additive Models: An Introduction with R Chapman and Hall/CRC.

14 dynsi

Climat

Climate data

Description

Climate data for the WWDM model (needed by the biomasse function)

Usage

```
data(Climat)
```

Format

A data frame with 3126 observations on the following 4 variables.

ANNEE a factor with levels 1 to 14, indicating 14 different years

RG daily radiation variable

Tmin daily maximum temperature

Tmax daily minimum temperature

Source

Makowski, D., Jeuffroy, M.-H., Gu\'erif, M., 2004 Bayesian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht.

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

dynsi

Dynamic Sensitivity Indices: DSI

Description

dynsi implements the Dynamic Sensitivity Indices. This method allows to compute classical Sensitivity Indices on each output variable of a dynamic or multivariate model by using the ANOVA decomposition

Usage

dynsi 15

Arguments

formula	ANOVA formula like "A+B+c+A:B" OR an integer equal to the maximum interaction order in the sensitivity model.
model	output data.frame OR the name of the R-function which calculates the model output. The only argument of this function must be a vector containing the input factors values.
factors	input data.frame (the design) if model is a data.frame OR a list of factors levels such as factor.example <- list($A=c(0,1),B=c(0,1,4)$).
cumul	logical value. If TRUE the sensitivity analysis will be done on the cumulative outputs.
simulonly	logical value. If TRUE the program stops after calculating the design and the model outputs.
nb.outp	The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered.
Name.File	optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc".
	possible fixed parameters of the model function.

Details

If factors is a list of factors, the dynsi function generates a complete factorial design. If it is a data.frame, dynsi expects that each column is associated with an input factor.

Value

dynsi returns a list of class "dynsi" containing the following components:

Χ	a data.frame containing the experimental design (input samples)
Υ	a data.frame containing the output (response)
SI	a data.frame containing the Sensitivity Indices (SI) on each output variable of the model and the Generalised SI (GSI) $$
mSI	a data.frame of first order SI on each output variable and first order GSI
tSI	a data.frame containing the total SI on each output variable and the total GSI
iSI	a data.frame of interaction SI on each output variable and interaction GSI
Att	0-1 matrix of association between input factors and factorial terms in the anovas
call.info	a list containing informations on the process (reduction=NULL, analysis, fct, call)
inputdesign	either the input data.frame or the sensitivity object used
outputs	a list of results on each output variable

Note

This function can now be replaced by a call to the multisensi function. It is kept for compatibility with Version 1 of the multisensi package.

16 graph.bar

References

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113, 312-320.

A. Saltelli, K. Chan and E. M. Scott eds, 2000. Sensitivity Analysis. Wiley, New York.

See Also

```
gsi, multisensi
```

Examples

graph.bar

Sensitivity index bar plot

Description

A function that plots sensitivity indices by a bar graph

Usage

Arguments

x an object of class gsi or dynsi

col the column number of GSI to represent in the bar graph

nb.plot number of input factors to be considered

xmax a user-defined maximal x value ($x \le 1$) in all the bar graphs that show sensitivity

indices; or NULL if the user wants to keep default values

graph.pc 17

beside	if TRUE, the main and total sensitivity indices are represented by two bars; if FALSE, they are represented by the same bar
xlab	a label for the x axis
	graphical parameters

graph.pc

Principal Components graph for gsi objects

Description

A function that plots the Principal Components (PCs) and the sensitivity indices on each PC

Usage

Arguments

X	gsi object.
nb.plot	number of input factors to be considered.
nb.comp	number of PCs.
xmax	a user-defined maximal x value ($x \le 1$) in all the bar graphs that show sensitivity indices; or NULL if the user wants to keep default values.
beside	if TRUE, the main and total sensitivity indices are represented by two bars; if FALSE, they are represented by the same bar.
cor.plot	if TRUE a correlation graph is made to represent the PCs ; if FALSE (default) a functionnal boxplot of the PCs is plotted.
xtick	if TRUE, put column names of outputs (Y) as ticks for the x axis.
type	what type of plot should be drawn for correlation graph ("l" for lines).
	graphical parameters.

18 gsi

grbe.gs:	1

Group factor GSI, obsolete function

Description

An obsolete function that computed the GSI of a group factor as one factor

Usage

```
grpe.gsi(GSI, fact.interet)
```

Arguments

GSI a gsi or dynsi object fact.interet input factor to be grouped

Note

This is essentially an internal function for the multisensi package

gsi

Generalised Sensitivity Indices: GSI

Description

The gsi function implements the calculation of Generalised Sensitivity Indices. This method allows to compute a synthetic Sensitivity Index for the dynamic or multivariate models by using factorial designs and the MANOVA decomposition of inertia. It computes also the Sensitivity Indices on principal components

Usage

Arguments

formula	ANOVA formula like "A+B+C+A:B" OR an integer equal to the maximum interaction order in the sensitivity model
mode1	output data.frame OR the name of the R-function which calculates the model output. The only argument of this function must be a vector containing the input factors values
factors	input data.frame (the design) if model is a data.frame OR a list of factors levels such as: factor.example $<-$ list(A=c(0,1),B=c(0,1,4))

gsi 19

inertia	cumulated proportion of inertia (a scalar < 1) to be explained by the selected Principal components OR number of PCs to be used (e.g 3)
normalized	logical value. TRUE (default) computes a normalized Principal Component analysis.
cumul	logical value. If TRUE the PCA will be done on the cumulative outputs
simulonly	logical value. If TRUE the program stops after calculating the design and the model outputs
Name.File	optional name of a R script file containing the R-function that calculates the simulation model. e.g " $exc.ssc$ "
	possible fixed parameters of the model function

Details

If factors is a list of factors, the gsi function generates a complete factorial design. If it is a data.frame, gsi expects that each column is associated with an input factor.

Value

gsi returns a list of class "gsi", containing all the input arguments detailed before, plus the following components:

Χ	a data.frame containing the experimental design (input samples)
Υ	a data.frame containing the output matrix (response)
Н	a data.frame containing the principal components
L	a data.frame whose columns contain the basis eigenvectors (the variable loadings)
lambda	the variances of the principal components
inertia	vector of inertia percentages per PCs and global criterion
cor	a data.frame of correlation between PCs and outputs
SI	a data.frame containing the Sensitivity Indices (SI) on PCs and the Generalised SI (GSI)
mSI	a data.frame of first order SI on PCs and first order GSI
tSI	a data.frame containing the total SI on PCs and the total GSI
iSI	a data.frame of interaction SI on PCs and interaction GSI
pred	a data.frame containing the output predicted by the metamodel arising from the PCA and anova decompositions
residuals	a data.frame containing the residuals between actual and predicted outputs
Rsquare	vector of dynamic coefficient of determination
Att	0-1 matrix of association between input factors and factorial terms in the anovas
scale	logical value, see the arguments
normalized	logical value, see the arguments
cumul	logical value, see the arguments

20 gsi

```
call.info a list containing informations on the process (reduction, analysis, fct, call) inputdesign either the input data.frame or the sensitivity object used outputs a list of results on each output variable
```

Note

This function can now be replaced by a call to the multisensi function. It is kept for compatibility with Version 1 of the multisensi package.

References

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, volume 113. pp. 312-320

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Submitted to Reliability Engineering and System Safety.

See Also

```
dynsi, multisensi
```

Examples

```
# Test case : the Winter Wheat Dynamic Models (WWDM)
# input factors design
data(biomasseX)
# input climate variable
data(Climat)
# output variables (precalculated to speed up the example)
data(biomasseY)
GSI <- gsi(2, biomasseY, biomasseX, inertia=3, normalized=TRUE, cumul=FALSE,
           climdata=Climat)
summary(GSI)
print(GSI)
plot(x=GSI, beside=FALSE)
#plot(GSI, nb.plot=4)
                              # the 'nb.plot' most influent factors
                              # are represented in the plots
#plot(GSI,nb.comp=2, xmax=1) # nb.comp = number of principal components
#plot(GSI,nb.comp=3, graph=1) # graph=1 for first figure; 2 for 2nd one
                               # and 3 for 3rd one; or 1:3 etc.
#graph.bar(GSI,col=1, beside=F) # sensitivity bar plot on the first PC
#graph.bar(GSI,col=2, xmax=1)
```

multisensi 21

	multisensi	A function with multiple options to perform multivariate sensitivity analysis
--	------------	---

Description

The multisensi function can conduct the different steps of a multivariate sensitivity analysis (design, simulation, dimension reduction, analysis, plots). It includes different options for each of these steps.

Usage

Arguments

design	EITHER a function such as expand.grid to generate the design OR a data.frame of size N x P containing N combinations of levels of the P input factors OR a function from the sensitivity package such as fast99 OR an object generated by a function from the sensitivity package. The first and third cases require additional information to be given in the design.args argument.
model	EITHER a function to run the model simulations OR a data.frame of size N \times T containing N realizations of T output variables.
reduction	EITHER a function to decompose the multivariate output on a basis of smaller dimension OR NULL. The first case requires additional information to be given in the basis.args argument. In the second case, sensitivity analyses are performed on the raw output variables.
dimension	EITHER the number of variables to analyse, specified by an integer or by the minimal proportion of inertia (a scalar < 1) to keep in the output decomposition OR a vector specifying a subset of columns in the output data.frame OR NULL if all variables must be analysed.
center	logical value. If TRUE (default value) the output variables are centred.
scale	logical value. If TRUE (default value) the output variables are normalized before applying the reduction function.
analysis	a function to run the sensitivity analysis. Additional information can be given in the analysis.args argument.
cumul	logical value. If TRUE the output variables are replaced by their cumulative sums.
simulonly	logical value. If TRUE the program stops after the model simulations.

22 multisensi

Name.File	Name of file containing the R-function model.
design.args	a list of arguments for the function possibly given in the design argument.
basis.args	a list of arguments for the function given in the reduction argument. See the function help for more precision.
analysis.args	a list of arguments for the function possibly given in the analysis argument. See the function help for more precision.
	optional parameters of the function possibly given in the model argument.

Value

an object of class dynsi if reduction=NULL, otherwise an object of class gsi. See the functions dynsi and gsi for more information.

See Also

```
dynsi, gsi
```

Examples

```
## Test case : the Winter Wheat Dynamic Models (WWDM)
# input factors design
data(biomasseX)
# input climate variable
data(Climat)
# output variables (precalculated to speed up the example)
data(biomasseY)
# to do dynsi process
# argument reduction=NULL
resD <- multisensi(design=biomasseX, model=biomasseY, reduction=NULL,</pre>
                 dimension=NULL, analysis=analysis.anoasg,
                 analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resD)
# to do gsi process
#-----
# with dimension reduction by PCA
# argument reduction=basis.ACP
resG1 <- multisensi(design=biomasseX, model=biomasseY, reduction=basis.ACP,</pre>
                   dimension=0.95, analysis=analysis.anoasg,
                   analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resG1)
plot(x=resG1, beside=FALSE)
# with dimension reduction by o-splines basis
# arguments reduction=basis.osplines
# and basis.args=list(knots= ... , mdegree= ... )
```

multivar 23

```
resG2 <- multisensi(design=biomasseX, model=biomasseY, reduction=basis.osplines,</pre>
                   dimension=NULL, center=FALSE, scale=FALSE,
                   basis.args=list(knots=11, mdegree=3), analysis=analysis.anoasg,
                   analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resG2)
#-----
library(sensitivity) # to use fast99
# with dimension reduction by o-splines basis
# and sensitivity analysis with sensitivity:fast99
resG3 <- multisensi(design=fast99, model=biomasse,</pre>
                   analysis=analysis.sensitivity,
                   design.args=list(factors = names(biomasseX), n = 100,
                   q = "qunif", q.arg = list(list(min = 0.9, max = 2.8),
                   list(min = 0.9, max = 0.99), list(min = 0.6, max = 0.8),
                   list(min = 3, max = 12), list(min = 0.0035, max = 0.01),
                   list(min = 0.0011, max = 0.0025),
                   list(min = 700, max = 1100))), climdata=Climat,
                   reduction=basis.osplines,
                   basis.args=list(knots=7, mdegree=3),
                   center=FALSE,scale=FALSE,dimension=NULL)
summary(resG3)
```

multivar

A function to decompose the output data set and reduce its dimension

Description

The function multivar applies a multivariate method to decompose the output variables on a given basis.

Usage

Arguments

simuls	a data.frame of size N x T, typically a set of N simulation outputs of length T
dimension	the number of variables to analyse, specified by an integer (for example 3) or by the minimal proportion of inertia (for example 0.95) to keep in the output decomposition
reduction	a function to decompose the multivariate output on a basis of smaller dimension
centered	logical value. If TRUE the output variables are centred.
scale	logical value. If TRUE the output variables are normalized.
basis.args	a list of arguments for the function given in the reduction argument. See the function help for more precision.

24 planfact

Value

A list containing:

H a data frame of size N x d, where d is the number of basis vectors. It contains

the coefficients of the decomposition for each row of the simuls data.frame.

L a matrix of size T x d. It contains the vectors of the user-defined basis.

sdev standard deviations of the columns of H

nbcomp number of components kept from the decomposition

SStot total sums of squares of the simulations (after application of centered and

scale)

centering either 0 or the column averages of simuls

scaling either 1 or sdY, depending on the scale argument sdY standard deviations of the columns of simuls cor correlation matrix (L*sdev), of size T x nbcomp

scale kept in case the option scale has been changed in the function importance cumulated percentage of SS_H (sdev^2) with respect to SStot

call.info list with the element reduction storing the name of the argument reduction

See Also

```
basis.ACP, basis.bsplines, basis.poly, basis.osplines
```

Examples

```
data(biomasseY)
res <- multivar(biomasseY, dimension=0.95, reduction=basis.ACP)</pre>
```

planfact

Complete factorial design in lexical order

Description

Function that generates a complete factorial design in lexical order

Usage

```
planfact(nb.niv, make.factor = TRUE)
```

Arguments

nb.niv vector containing the number of each input levels

make.factor logical value. If TRUE the columns of the output are of class factor

planfact.as 25

Value

plan

data frame of the complete factorial design

Note

This is essentially an internal function for the multisensi package

planfact.as

Complete factorial design

Description

Computation of a complete factorial design for model input factors.

Usage

```
planfact.as(input)
```

Arguments

input

list of factor levels

Value

comp2

complete factorial design of model input

Note

This is essentially an internal function for the **multisensi** package. It is almost equivalent to the function expand.grid.

plot.dynsi

Plot method for dynamic sensitivity results

Description

Plot method for dynamic sensitivity results of class dynsi

Usage

26 plot.gsi

Arguments

x	a dynsi object.
normalized	logical value, $FALSE \Rightarrow SI$ plotted within $var(Y)$.
text.tuning	NULL or a small integer to improve the position of input factor labels.
shade	if TRUE, put different shadings to enhance the different factorial effects in the plot (long).
color	a palette of colors to enhance the different factorial effects in the plot (for example color=heat.colors).
xtick	if TRUE, put column names of outputs (Y) as ticks for the x axis.
total.plot	logical value, TRUE => a new plot is produced with the total SI.
gsi.plot	logical value, TRUE => a new plot is produced for the Generalised Sensitivity Indice.
	graphical parameters.

Details

For labels that would be partly positioned outside the plot frame, the argument "text.tuning" may allow to get a better positioning. If it is equal to n, say, these labels are moved by n positions inside the frame, where 1 position corresponds to 1 output variable on the x-axis.

See Also

```
dynsi, multisensi
```

plot.gsi	Plot method for generalised sensitivity analysis
, ,	

Description

Plot method for generalised sensitivity analysis of class gsi

Usage

Arguments

Χ	a gsi object.
nb.plot	number of input factors to be considered.
nb.comp	number of Principal Components to be plotted.
graph	figures number: 1 or 2 or 3. 1 is for plotting the PCs and their sensitivity indices, 2 is for plotting the Generalised Sensitivity Indice, 3 is for plotting the Rsquare.

predict.gsi	2.7
predictign	<u>~</u> ,

xmax	a user-defined maximal x value ($x \le 1$) in all the bar graphs that show sensitivity indices; or NULL if the user wants to keep default values.
beside	if TRUE, the main and total sensitivity indices are represented by two bars; if FALSE, they are represented by the same bar.
cor.plot	if TRUE a correlation graph is made to represent the PCs ; if FALSE (default) a functionnal boxplot of the PCs is plotted.
xtick	if TRUE, put column names of outputs (Y) as ticks for the x axis.
type	what type of plot should be drawn for correlation graph ("l" for lines).
	graphical parameters.

See Also

```
gsi, multisensi, graph.bar, graph.pc
```

predict.gsi	A function to predict multivariate output	
-------------	---	--

Description

The function predict.gsi generates predicted multivariate output for user-specified combinations of levels of the input factors.

Usage

```
## S3 method for class 'gsi'
predict(object, newdata, ...)
```

Arguments

object Object of class gsi.

newdata An optional data frame in which to look for variables with which to predict. If

omitted, the fitted values are used. need to be same factors and levels as for

obtained the gsi object.

... others parameters

Details

Only available if the gsi object was obtained with analysis.anoasg and analysis.args\$keep.outputs=TRUE.

Value

a data.frame of predicted values for newdata

See Also

```
gsi, multisensi, analysis.anoasg
```

28 print.gsi

Examples

print.dynsi

print DYNSI

Description

A function to print DYNSI results

Usage

```
## S3 method for class 'dynsi'
print(x, ...)
```

Arguments

x a dynsi object... print parameters

See Also

```
dynsi, multisensi
```

print.gsi

print GSI

Description

function to print GSI results

Usage

```
## S3 method for class 'gsi'
print(x, ...)
```

Arguments

```
x a gsi object
... print parameters
```

quality 29

See Also

```
gsi, multisensi
```

quality

quality of any approximation

Description

Function that computes the sensitivity quality after making some assumptions about the number of PCs and the number of interactions

Usage

```
quality(echsimul, echsimul.app)
```

Arguments

echsimul

model outputs

echsimul.app

Predicted model output

Value

A list with the following components:

moy.biais mean of the residuals

residuals biais

coef.det R-square

Note

This is essentially an internal function for the multisensi package

sesBsplinesNORM

normalized B-splines basis functions

Description

The sesBsplinesNORM evaluates B-Splines basis functions at some points.

Usage

```
sesBsplinesNORM(x = seq(0, 1, len = 101), knots = 5, m = 2)
```

Arguments

vector, coordinates where to calculate the B-spline functions Χ

number of knots or vector of knots locations knots

integer, degree of the B-Splines m

Value

as input

bsplines matrix, values in x of all B-spline basis functions of order m

knots vector of knots locations inverse matrix of bsplines projecteur

Note

This is essentially an internal function for the multisensi package

See Also

bspline, basis.bsplines

sesBsplinesORTHONORM orthogonalized B-splines basis functions

Description

The sesBsplinesORTHONORM evaluates O-Splines basis functions at some points.

Usage

```
sesBsplinesORTHONORM(x = seq(0, 1, len = 101), knots = 5, m = 2)
```

Arguments

vector, coordinates where to calculate the B-spline functions Χ

knots number of knots or vector of knots locations

integer, degree of the B-Splines

Value

as input

matrix, values in x of all O-spline basis functions of order m osplines

vector of knots locations knots inverse matrix of osplines projecteur

simulmodel 31

Note

This is essentially an internal function for the multisensi package

See Also

bspline, basis.osplines

simulmodel Model simulation

Description

Function that simulates the model outputs

Usage

```
simulmodel(model, plan, nomFic = NULL, verbose = FALSE, ...)
```

Arguments

model name of R-function

plan data frame of input design

nomFic name of file that contains the model function

verbose verbose

... ... possible fixed parameters of the R-function

Details

The model function must be a R-function. Models defined as functions will be called once with an expression of the form y < f(X) where X is a vector containing a combination of levels of the input factors, and y is the output vector of length q, where q is the number of output variables

Value

data frame of model outputs

Note

This is essentially an internal function for the multisensi package

32 summary.gsi

summary.dynsi

dynsi summary

Description

Function to summarize the dynamic sensitivity results

Usage

```
## S3 method for class 'dynsi'
summary(object, ...)
```

Arguments

object a dynsi object

... summary parameters

See Also

```
dynsi, multisensi
```

summary.gsi

summary of GSI results

Description

function to summarize the GSI results

Usage

```
## S3 method for class 'gsi'
summary(object, ...)
```

Arguments

```
object a GSI object
```

... summary parameters

See Also

```
gsi, multisensi
```

yapprox 33

yapprox

Prediction based on PCA and anovas (NOT ONLY)

Description

A function that predicts the model output after PCA and aov analyses

Usage

```
yapprox(multivar.obj, nbcomp = 2, aov.obj)
```

Arguments

multivar.obj output of the multivar function

nbcomp number of columns

aov.obj aov object

Value

model output predictions

Note

This is essentially an internal function for the multisensi package

Index

*Topic B-spline	multisensi, 21	
basis.bsplines,7	*Topic sensitivity package	
bspline, 13	analysis.sensitivity,5	
sesBsplinesNORM, 29		
*Topic datasets	analysis.anoasg, 3, 27	
biomasseX, 12	analysis.sensitivity,5	
biomasseY, 12	aov, <i>3</i> , <i>4</i>	
Climat, 14		
*Topic dimension reduction	basis.ACP, 6, 24	
basis.ACP, 6	basis.bsplines, 7, 24, 30	
basis.bsplines,7	basis.mine, 8	
basis.mine, 8	basis.osplines, 9, 24, 31	
basis.osplines, 9	basis.poly, 10, 24	
basis.poly, 10	biomasse, 11, <i>12</i> , <i>13</i>	
multivar, 23	biomasseX, 12, <i>13</i>	
*Topic internal function	biomasseY, <i>12</i> , 12	
bspline, 13	bspline, 8, 9, 13, 30, 31	
grpe.gsi, 18	671	
planfact, 24	Climat, 14	
planfact, 24 planfact.as, 25	dynsi, 3, 14, 20, 22, 26, 28, 32	
quality, 29	uyiis1, 3, 14, 20, 22, 20, 20, 32	
•	expand.grid, 25	
sesBsplinesNORM, 29	CAPANA . 61 14, 25	
sesBsplinesORTHONORM, 30	graph.bar, 16, 27	
simulmodel, 31	graph.pc, 17, 27	
yapprox, 33	grpe.gsi, 18	
*Topic multivariate analysis	gsi, 2, 3, 16, 18, 22, 27, 29, 32	
multivar, 23		
*Topic multivariate data	multisensi, 2, 8, 15, 16, 20, 21, 26–29, 32	
multisensi, 21	multisensi-package, 2	
*Topic orthogonalized B-spline	multivar, 23	
basis.osplines, 9		
sesBsplinesORTHONORM, 30	planfact, 24	
*Topic polynomial basis	planfact.as, 25	
basis.poly, 10	plot.dynsi,25	
*Topic principal components analysis	plot.gsi, 26	
basis.ACP, 6	poly, <u>10</u>	
*Topic sensitivity analysis	prcomp, 7	
analysis.anoasg,3	predict.gsi, 27	
analysis.sensitivity,5	print.dynsi,28	

INDEX 35

```
print.gsi, 28
quality, 29
sesBsplinesNORM, 8, 29
sesBsplinesORTHONORM, 9, 30
simulmodel, 31
summary.dynsi, 32
summary.gsi, 32
yapprox, 33
```