

Walmart Sales Forecast Using ARIMA and Machine Learning

August 7, 2020

WHY RETAIL SALES FORECASTING

- ➤ Mass retailing is a high volume / low margin business
- ➤ Retailing is a seasonal and cyclical business
- ➤ Upfront investments in merchandise and stores
- ► Fixed costs in store maintenance
- ➤ Sales foresting is a business critical factor
 - Overstocking results in markdowns and less profit
 - •Under stocking results in loss sales, lower customer satisfactions

Variables	17
Observations	421570
Store	Factor, 45 levels
Dept	Factor, 81 levels
Туре	Factor, 3 levels
Size	Interger
Date	Date, format"2010-02-05"
IsHoliday	Logic
Weekly_Sales	Numeric
MarkDown1	Numeric, anonymous
MarkDown 2	Numeric, anonymous
MarkDown 3	Numeric, anonymous
MarkDown 4	Numeric, anonymous
MarkDown 5	Numeric, anonymous
CPI	Numeric
Unemployment	Numeric
Temperature	Numeric
Fuel_Price	Numeric
Week	Numeric

Data background:

- ➤ A Kaggle recruiting competition in 2014
- ➤ Test set is withheld
- ➤ Time period: weekly sales data from 2010-02-05 to 2012-10-26 (143 weeks)

Initial Data Cleaning

- ➤ Change "Store", "Dept" from Integer to Factor
- ➤ Change "Date" from Integer to Factor
- ➤ Add "Week" variable with isoweek()
- Missing values: missing values only exist in
 5 MarkDown variables, accounting for 64%
 74% of variable observations respectively
- ➤ Small numbers of negative "Weekly_Sales"

3e+05

1e+06

Per Store Log Weekly Sales

3e+06

200000

100000

Store Size Distribution by Type

50000

- ➤ Time series plotting shows strong seasonality
- ➤ Four holidays:

Super Bowl

Labor Day

Thanksgiving

Christmas

 Sales are dominated by Thanksgiving and Christmas holidays

- Four holidays all appear on the same week of the year
- ➤ Super Bowl: week 6, Labor Day: week 36, Thanksgiving: week 47, Christmas: week 52

Data	IsHoliday	Week
Date	<lgl></lgl>	<dbl></dbl>
2010-02-12	TRUE	6
2010-09-10	TRUE	36
2010-11-26	TRUE	47
2010-12-31	TRUE	52
2011-02-11	TRUE	6
2011-09-09	TRUE	36
2011-11-25	TRUE	47
2011-12-30	TRUE	52
2012-02-10	TRUE	6

DATA PREPARATION

- > Five markdown features are skewed by outliers
- External indices have almost zero correlation with Weekly_Sales
- Drop Markdown and external indices features

Unemployment

Fuel_Price

Temperature

CPI

Weekly_Sales

To Balance and a series of the control of the control

Correlations Matrix

DATA PREPARATION

- > 3331 Dept-Store ID: use paste() to create ID for every department in every store
- Expensive to compute: 3331 factors X 143 weeks
- ➤ This analysis focuses on forecasting 45 stores' aggregated weekly sales

DECOMPOSITION OF MULTIPLICATIVE TIME SERIES

- - ➤ Decompose mean store weekly sales time series
 - ➤ Results: strong trend, seasonal components; random component shows randomness

DIFFERENCING TIME SERIES

Differencing removes seasonality in mean store weekly sales time series

TIME SERIES TRAINING / TEST SETS SELECTION

TIMES SERIES FORECASTING

Methods:

- ➤ Seasonal ARIMA
- Random Forests Regression
- ➤ XG Boosted Trees
- Neural Networks Regression

Results Diagnostics:

- ➤ MAE: scale dependent
- ➤ RMSE: scale dependent
- ➤ MAPE: non scale dependent

SEASONAL ARIMA MODEL

Challenges:

- ➤ Shorter time periods constraint seasonal lag to 1
- ➤ Iterate over 45 time series using for() loop, resulting in slower speed

Residual Plots for Store #18, 65/35 Temporal Split

Forecasts Plot for Store #18, 65/35 Temporal Split

RANDOM FORESTS VS. XG BOOSTED TREES

XG Boosted Tress has considerably improved prediction accuracy as compared with Random Forests

Random Forests, 65/35 Temporal Split

XG Boosted Trees, 65/35 Temporal Split

NEURAL NETWORKS

.....

- ➤ Feed forward nnetar() model with one hidden layer
- > 5 neurons in hidden layer, repeat 20 times
- ➤ Lambda = 0, no initial data transformation

Residuals Plots for Store # 18, 65/35 Temporal Split

Forecast Plot for Store # 18, 65/35 Temporal Split

MODEL DIAGNOSTICS

- ➤ Seasonal ARIMA model outperforms in both time split cases
- ➤ XG Boost improves tree prediction accuracy notably
- ➤ Neural Networks can capture non-linearity better in 65/35 split

80/20 Temporal Split on 2012-04-13

65/35 Temporal Split on 2011-11-18

	MAE	RMSE	MAPE
ARIMA	57517	71755	5.53
Random Forests	65746	77079	7.04
Xgboost	63740	73969	6.75
Neural Networks	116660	137922	10.49

	MAE	RMSE	MAPE
ARIMA	61988	78263	5.76
Random Forests	70209	86753	7.29
Xgboost	66535	80961	6.92
Neural Networks	98224	152123	8.37

SHORTCOMINGS

- ➤ Lack of true test set data penalizes machine learning models
- ➤ Abnormally large missing values force to drop MarkDown features
- ➤ Model diagnostics are equal-weight store accuracy statistics
- Overweighting holiday prediction errors should be explored