

Chapter 10.2 Symmetric Encryption and Message Confidentiality

Book Reading: Computer Security Principles and Practice (3ed), 2015, p. 637-668

Symmetric Encryption and Message Confidentiality

- also known as: conventional encryption, secret-key, or single-key encryption
 - only alternative before public-key crypto in 70's
 - still most widely used alternative
 - has ingredients: plaintext, encryption algorithm, secret key, ciphertext, and decryption algorithm
- generically classified along dimensions of:
 - 1. type of operations used
 - 2. number of keys used
 - 3. way in which the plaintext is processed

Cryptanalysis

> attacks:

- ciphertext only least info, hardest
- known plaintext some plain/cipher pairs
- chosen plaintext get own plain/cipher pairs
- chosen ciphertext rarer
- chosen text rarer
- >only weak algs fail a ciphertext-only attack
- usually design algs to withstand a knownplaintext attack

Computationally Secure Algs

- encryption is computationally secure if:
 - cost of breaking cipher exceeds info value
 - time required to break cipher exceeds the useful lifetime of the info
- > usually very difficult to estimate the amount of effort required to break
- > can estimate time/cost of a brute-force attack (see Ch 2)

Feistel Cipher Structure

Block Cipher Structure

- have a general iterative block cipher structure
 - with a sequence of rounds
 - with substitutions / permutations controlled by key
- > parameters and design features:
 - block size
 - key size
 - number of rounds
 - subkey generation algorithm
 - round function
 - also: fast software en/decrypt, ease of analysis

Data Encryption Standard (DES)

Triple DES (3DES)

- > first used in financial applications
- in DES FIPS PUB 46-3 standard of 1999
- > uses three keys & three DES executions:

$$C = E(K_3, D(K_2, E(K_1, P)))$$

- > decryption same with keys reversed
- use of decryption in second stage gives compatibility with original DES users
- right feetive 168-bit key length, slow, secure
- > AES will eventually replace 3DES

Advanced Encryption Standard (AES)

AES Round Structure

Substitute Bytes

- > a simple table lookup in S-box
 - a 16 < 16 matrix of byte values
 - mapping old byte to a new value
 - e.g. {95} maps to {2A}
 - a permutation of all possible 256 8-bit values
- > constructed using finite field properties
 - designed to be resistant to known cryptanalytic attacks
- decrypt uses inverse of S-box

Shift Rows

- on encrypt left rotate each row of State by 0,1,2,3 bytes respectively
- decrypt does reverse
- to move individual bytes from one column to another and spread bytes over columns

Mix Columns & Add Key

➤ Mix Columns

- operates on each column individually
- mapping each byte to a new value that is a function of all four bytes in the column
- use of equations over finite fields
- to provide good mixing of bytes in column
- ➤ Add Round Key
 - simply XOR State with bits of expanded key
 - security from complexity of round key expansion and other stages of AES

Stream Ciphers

- > processes input elements continuously
- > key input to a pseudorandom bit generator
 - produces stream of random like numbers
 - unpredictable without knowing input key
 - XOR keystream output with plaintext bytes
- > are faster and use far less code
- > design considerations:
 - encryption sequence should have a large period
 - keystream approximates random number properties
 - uses a sufficiently long key

RC4

Modes of Operation

- block ciphers process data in blocks
 - e.g. 64-bits (DES, 3DES) or 128-bits (AES)
- for longer messages must break up
 - and possibly pad end to blocksize multiple
- have 5 five **modes of operation** for this
 - defined in NIST SP 800-38A
 - modes are: ECB, CBC, CFB, OFB, CTR

Electronic Codebook (ECB)

- > simplest mode
- split plaintext into blocks
- > encrypt each block using the same key
- "codebook" because have unique ciphertext value for each plaintext block
 - not secure for long messages since repeated plaintext is seen in repeated ciphertext

Cipher Block Chaining (CBC)

Cipher Feedback (CFB)

Counter (CTR)

Location of Encryption

Key Distribution

- > symmetric crypto needs a shared key:
- > two parties A & B can achieve this by:
 - A selects key, physically delivers to B
 - 3rd party select keys, physically delivers to A, B
 - reasonable for link crypto, bad for large no's users
 - A selects new key, sends encrypted using previous old key to B
 - good for either, but security fails if any key discovered
 - 3rd party C selects key, sends encrypted to each of A
 & B using existing key with each
 - best for end-to-end encryption

Key Distribution

Summary

- introduced symmetric encryption basics
- ➤ DES, 3DES and AES
- > stream ciphers and RC4
- modes of operation
- location of encryption
- > key distribution