

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 10: SUCHEN & KORRIGIEREN, AVL-BÄUME

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 09.01.2020

ALGORITHMEN UND DATENSTRUKTUREN

Was bisher geschah ...

- Syntax von Programmiersprachen (Syntaxdiagramme, EBNF, Fixpunktsemantik)
- ▶ Programmieren in *C* Arrays, Pointer, Listen, Bäume
- grundlegende Algorithmen in der Informatik
 - Sortieren mit Quicksort und Heapsort
 - Suchen in Texten (KMP-Algorithmus)

Was heute geschieht ...

- Wiederholung: Suche mit dem KMP-Algorithmus
- Fehlerkorrektur mit der Levenshtein-Distanz
- ► Balancieren von Bäumen (AVL-Bäume)

KMP-Algorithmus

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

Tab[i]
$$= \max \{-1\} \cup \{m \mid 0 \le m \le i - 1 \land b_0 \dots b_{m-i} = b_{i-m} \land b_{i-1} \land b_m \neq b_j\}$$
 (*)

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- linker Finger: wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat[i] ≠ Pat[m]
- ▶ Parallelverschiebung beider Finger bis zum linken Rand: wenn Pat[0 ...m-1] = Pat[i-m ...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	а	b	b	а	b	b	а	a
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (b)

Position	0	1	2	3	4	5
Pattern	b	а	b	а	b	С
Tabelle	-1	?	?	0	?	3

- ▶ Pat[0 ... 2] = Pat[2 ... 4] wegen Tab[5] = 3 (Zyklenmethode), d.h. Pat[2] = Pat[0] = Pat[4] = b
- ▶ wegen Tab[3] = 0 ist Pat[3] ≠ Pat[0] = b und wegen Tab[5] = 3
 ist Pat[3] ≠ Pat[5] = c (Zwei-Finger-Methode bzw. Gleichung (??))
 ⇒ Pat[3] = Pat[1] = a

Levenshtein-Distanz

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$d(0,i) = i$$

$$d(j,0) = j$$

$$d(j,i) = \min \{d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i}\}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

AUFGABE 9.4

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →		2 →		
n	3	2	1	1 →		- 3	
S	4	3	2	100		3 →	4 4
t	5	4	↓ 3 -	2	1 →	2 →	3 → 4
a	6	5	4	↓ 3	2		2 → 3
S	7	, 6	↓ \ 5	↓ 4	↓ 3	↓ 2	$2 \rightarrow 3$

d(Dinstas, Distanz) = 3

AUFGABE 9.4

Alignments mit minimaler Levenshtein-Distanz:

```
D i n s t a * s
| | | | | | | | |
D i * s t a n z
d i s
```

d(j,i)		S	С	h	ü	r	z e
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 → 7
b	1	1 →	2 →	3 →	4 <i>→</i>	5 →	
ü	2	↓ ↓ 2		3	3 →	· 4 →	5 → 6
r	3	3	3	3 →		3 →	4 → 5
S	4	3 →			4	4	1 . 5
t	5	4	4 →	5	↓ \ 5	5	5 5
е	6	↓ ↓ 5	↓ \ 5	5 →	↓ \ 6	6 4	6 5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$ Anzahl der Backtraces = 3 * 2 = 6

AVL-Bäume

AVL-BÄUME

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Die *Höhe* des Baumes bezeichnen wir mit h(t). Wir ordnen jedem Knoten n einen *Balancefaktor* b(n) zu:

$$b(n) \coloneqq h(R) - h(L)$$

AVL-Baum: Suchbaum mit $b(n) \in \{-1, 0, 1\}$

BALANCIEREN

- ► Einfügen eines neuen Schlüssels s
- Berechne Balancefaktoren auf dem Pfad von s zur Wurzel bis zum ersten Auftreten von ±2
- Balancierungsalgorithmus:

Achtung: Die Blätter sind eigentlich links oder rechts des Elternknotens angeordnet, nicht exakt darunter.

