Analisi Matematica III

Dalle lezioni del Prof. Maurizio Grasselli per il corso di Ingegneria Matematica

Dispense di Simone Paloschi

Politecnico di Milano ${\rm A.A.\ 2022/2023}$

Indice

1	Funzioni a variabile complessa		3
	1.1	Insieme numeri complessi	3
	1.2	Funzioni Complesse di una Variabile Complessa	3
	1.3	Serie Di Potenze nel campo complesso	4
	1.4	Cammini e circuiti	5
	1.5	Integrale di funzioni complesse di variabile complessa	5
	1.6	Analicità funzioni olomorfe	6
	1.7	Singolarità delle funzioni di variabile complessa e Sviluppi di Lourent	6
	1.8	Residui integrali	7
	1.9	Logaritmo e potenze di numeri complessi	8
2	Elementi di Analisi Funzionale		9
	2.1	Successioni negli spazi normati	9
	2.2	Integrale di Lebesgue	9
	2.3	Insiemi misurabili e integrali su insiemi misurabili	10
	2.4	Spazi $\mathbf{L}^{\mathbf{p}}$	11
	2.5	Spazi di Hilbert	12
	2.6	Ortogonalità	12
	2.7	Sistemi e basi ortonormali	12
	2.8	Serie di Fourier in $\mathbf{L^2}$	13
3	Elementi di Teoria delle Distribuzioni		14
	3.1	Spazio Duale di uno Spazio Vettoriale	14
	3.2	Derivata di una distribuzione	15
	3.3	Distribuzioni temperate	16
	3.4	Prodotto distribuzione-funzione	16
4			17
	4.1	La trasformata di Fourier e la derivazione	17
	4.2	Inversione della trasformata di Fourier	17
	4.3	Trasformata di Fourier per distribuzioni temperate	18
	4.4	Trasformata nello spazio $\mathbf{L^2}$	18
	4.5	Prodotto convoluzione e trasformata Fourier	19
	4.6	Applicazioni	19

1 Funzioni a variabile complessa

1.1 Insieme numeri complessi

Oss. Il campo $(\mathbb{C},+,\cdot)$ non può essere ordinato

In $\mathbb C$ vale il teorema fondamentale dell'algebra: un polinomio di grado n ha n radici

I numeri complessi possono essere scritti: $a + ib \rho(\cos(\eta) + i\sin(\eta)) \rho e^{i\eta}$

Topologia:

- distanza := |z-w| è simmetrica e positiva $(d = 0 \Leftrightarrow z = w)$
- **Disco** (aperto) R > 0 e $z_0 \in \mathbb{C}$ allora $B_R(z_0) := z \in \mathbb{C} : |z z_0| < R$ e chiuso con \leq
- $A \subseteq \mathbb{C}$ si dice **aperto** se $\forall z_0 \in A \ \exists R > 0 \ t.c. \ B_R(z_0) \subset A$
- Punto di accumulazione se $\forall R > 0$ $B_R(z_0)$ contiene almeno uno $z \in E$ (con $z \neq z_0$)
- $E \subseteq \mathbb{C}$ chiuso se contiene tutti i suoi punti di accumulazione
- Una succesione $[z_n]_{n\in\mathbb{N}}\subset\mathbb{C}$ converge a $z\in\mathbb{C}$ se $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}$ t.c. $|z_n-z|<\varepsilon, \forall n>n_0$

1.2 Funzioni Complesse di una Variabile Complessa

f:
$$E \subseteq \mathbb{C} \to \mathbb{C}$$
, $f(z) = Ref(z) + i Imf(z)$

Def. f è continua in
$$z_0 \in A$$
 se $\forall \varepsilon > 0$, $\exists \delta > 0$ t.c. $|f(z) - f(z_0)| < \varepsilon \ \forall z \in B_{\delta}(z_0) \cap A$

Oss. f(z) = u(x+iy) + i v(x+iy) (u e v funzioni)

data f
 possiamo definire in modo univoco $(u,v):E\subset\mathbb{R}^2\to\mathbb{R}^2\;$ e viceversa

Def. Sia $f: A \subseteq \mathbb{C} \to \mathbb{C}$ diremo che f è **derivabile** in $z_0 \in A$ se esiste finito $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0)$

Oss. Ovvero
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ t.c. $\left| \frac{f(z_0 + h) - f(z_0)}{h} - f'(z_0) \right| < \varepsilon$ $\forall h \neq 0$ t.c. $|h| < \delta$ e $z_0 + h \in A$

Oss. Derivabilità equivale a differenziabilità:

$$\exists \alpha \in \mathbb{C} \ t.c. \ f(z_0 + h) - f(z_0) = \alpha h + o(h) \ per \ h \to 0 \ con \ \alpha = f'(z_0)$$

Teo. Condizioni di Cauchy-Riemann DIM

f è derivabile in $z_0 \Longleftrightarrow$ u,v sono diffferenziabili in $(x_0,y_0), \ \frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) \ e \ \frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0)$

Def. $f:A\subseteq\mathbb{C}\to\mathbb{C}$ è **Olomorfa** in A se è derivabile $\forall z\in A$

Oss.
$$f: A \subseteq \mathbb{C} \to \mathbb{C}$$
 è derivabile in $z_0 = x_0 + iy_0 \in A$, allora

$$f'(z0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0) = (C.R.) = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0) \implies |f'(z0)|^2 = u_x^2 + v_x^2 = v_y^2 + u_y^2$$

Oss.
$$F: A \subseteq \mathbb{R}^2 \to \mathbb{R}^2$$
 $F(x,y) = (u(x,y), v(x,y))$ $J_F(x,y) = |f'(z_0)| \begin{bmatrix} \frac{u_x}{|f'(z_0)|} & \frac{v_x}{|f'(z_0)|} \\ \frac{u_y}{|f'(z_0)|} & \frac{v_y}{|f'(z_0)|} \end{bmatrix} = |f'(z_0)|\theta(z_0)$

Def. Una trasformazione di un aperto si dice **conforme** se conserva gli angoli tra coppie di curve (regolari)

Teo. f olomorfa in A con $f'(z) \neq 0 \ \forall z \in A$ allora f è una trasformazione conforme

Oss. Vogliamo mostrare che le funzioni olomorfe sono serie di potenze

1.3 Serie Di Potenze nel campo complesso

Def. Una serie di potenze di centro $z_0 \in \mathbb{C}$ e coefficienti $a_n \in \mathbb{C}$ è la successione $\{\sum_{k=0}^n a_k(z-z_0)^k\}_{n\in\mathbb{N}}$ che può essere chiamata con il simbolo $\; \sum_{n=0}^{\infty} a_n (z-z_0)^n \;$

Oss. Puoi sostituire la serie alla successione se sai che converge

Teo. Raggio di convergenza delle serie di potenze nel campo complesso

Sia $\alpha = \overline{\lim}_{n \to +\infty} |a_n|^{\frac{1}{n}} \in [0, +\infty]$ allora posto $R = \frac{1}{\alpha}$, avremo:

- i) la serie $\sum_{n \in \mathbb{N}} a_n (z-z_0)^n$ converge assolutamente $\ \forall z: |z-z_0| < R$
- ii) la serie non converge $\forall z : |z z_0| > R$

Def. Data la serie $\sum_{n\in\mathbb{N}}a_n(z-z_0)^n$ con raggio di convergenza R

Il cerchio di convergenza è $\Gamma_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}$

Il disco di convergenza è $\mathcal{D}_R(z_0)=\{z\in\mathbb{C}^*:|z-z_0|\leq R\}\quad con\ \mathbb{C}^*:\mathbb{C}\ \cup\{+\infty\}$

Oss. $\forall R' < R$ la serie converge totalmente in $|z - z_0| < R'$

Cor. Una serie di potenze converge totalmente e uniformemente in ogni E t.c. $\overline{E} \subset \Gamma_R(z_0)$

Teo. Una serie di potenze ha come somma una funzione continua in $|z-z_0| \leq R$ scriveremo $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

Prop. $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ e $\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$ (Serie derivata termine a termine) hanno lo stesso raggio di convergenza

Teo. Derivabilità delle serie di potenze DIM

La somma f(z) di una serie di potenze è olomorfa in $|z-z_0| \le R$ e risulta $f'(z) = \sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$

Cor. La somma ha derivate di ogni ordine continue in $|z-z_0| < R$ che si ottengono derivando termine a termine: $f^{(k)}(z) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n (z-z_0)^{n-k}$ e in particolare $f^{(k)}(z_0) = k! \ a_k$

Estensione delle trascendenti elementari (sin, cos, exp...)

Teo. Sia $f:(a,b)\subseteq\mathbb{C}$ derivabile in (a,b).

Se esiste una funzione olomorfa in A \supset (a,b) t.c. $F|_{(a,b)} = f$ allora F è unica

Cor. Relazioni fondamentali che continuano a valere:

$$sin^2z + cos^2z = 1 \quad \ sinz = \frac{e^{iz} - e^{-iz}}{2i} \quad \ cosz = \frac{e^{iz} + e^{-iz}}{2} \quad \ e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$$

Oss. Ma per esempio non è più vera: $|sinz| \le 1$

1.4 Cammini e circuiti

Def. $r:[a,b] \to \mathbb{C}$ è \mathbf{C}^1 a tratti se è C^0 ed $\exists \{t_0...t_k\} \ t.c.$ $t_0=a,t_k=b,t_{j-1}< t_j \ e \ r|_{[t_j=1,t_i]} \in C^1$

Def. $r_1, r_2 \in \widetilde{C}^1$ sono **equivalenti** se $\exists \varphi : D_1 \to D_2$ biettiva, strettamente crescente con D_i i rispettivi domini t.c. i) $\varphi, \varphi^{-1} \in \widetilde{C}^1$ ii) $r_1 = r_2(\varphi)$

Def. Sia $C = (\gamma, r)$ un **cammino** di \mathbb{C} , allora:

- i) C è chiuso se r(a) = r(b) (allora C è un **circuito**)
- ii) -C indica il cammino **inverso**, ovvero $\widetilde{r}(t) = r(a+b-t)$
- iii) se $C \in (a,b)$, allora è la **somma** dei cammini parametrizzati da $r_1 = r|_{[a,l]} e r_2 = r|_{[l,b]}$: $C = C_1 + C_2$
- iv) C è un cammino semplice se non ha intersezioni

Def. $A \subseteq \mathbb{C}$ è **connesso** se $\nexists A_1, A_2 \subset A$ non vuoti, digiunti t.c. $A_1 \cup A_2 = A$

Def. Siano C_1, C_2 circuiti in $A \subseteq \mathbb{C}$, **A-omotopia** è una funzione $H : [a, b] \times [0, 1] \to A$ continua t.c.

- i) $\forall \lambda \in [0,1] \ H(\cdot,\lambda)$ è la parametrizzazione di un circuito di A
- ii) $H(\cdot,0)$ e $H(\cdot,1)$ sono parametrizzazioni di C_1 e C_2 che si diranno A-omotopi

DEF. A è semplicemente connesso se ogni circuito in A è A-omotopo ad un punto di A

DEF. A è stellato rispetto a $z_0 \in A$ se ogni segmento di z_0 è incluso in A (Stellato \implies sempl connesso)

Integrale di funzioni complesse di variabile complessa

Def. Siano $C=(\gamma,\{r\})$ un cammino di $\mathbb C$ e $f:\gamma\to\mathbb C$ continua, avremo $\int_C f(z)dz:=\int_a^b f(r(t))\cdot r'(t)dt$

Proprietà principali:

- i) lunghezza $L_{\gamma} = \int_{a}^{b} |r'(t)| dt$ ii) $\int_{-C} f(z) dz = -\int_{C} f(z) dz$ iii) $\int_{C_1 + C_2} f(z) dz = \int_{C} f(z) dz$ iv) $|\int_{C} f(z) dz| \leq \sup_{z \in \gamma} |f(z)| \cdot L_{\gamma}$

Possiamo separare l'integrale: $\int_C f(z)dz = \dots = \int_C (u(x,y)dx - v(x,y)dy) + i \int_C (v(x,y)dx + u(x,y)dy)$

Def. Sia f continua con (u,v), allora udx - vdy, vdx + udy si dicono forme differenziali associate a f

Teo. f è olomorfa se le forme diff associate sono chiuse (differenziabili e C^1)

Def. $F:A\subseteq\mathbb{C}\to\mathbb{C}$ è una **primitiva** di $f:A\subseteq\mathbb{C}\to\mathbb{C}$ se è olomorfa e F'(z)=f(z) $\forall z\in A$

Oss: Considerando F con (U,V), allora $U_x = V_y = u$, $V_x = -U_y = v$

ovvero $\nabla U = (u, -v) \nabla V = (v, u)$, perciò le forme diff di f sono esatte (hanno primitiva)

Teo. f continua ha primitiva in $A \iff$ le sue f.d.ass. sono esatte

Teo. forma diff esatta e $C^1 \implies$ f.d. chiusa

Ipotesi: d'ora in poi assumeremo $u, v \in C^1$

Teo. f continua ha primitiva in A \implies f è olomorfa in A (essendo chiusa)

Teo. f olomorfa su A semplicemente connesso ⇔ f ha primitiva in A

Cor. f continua e olomorfa in A $\iff \forall z \in A \exists \text{ un disco } B_R(z) \subset A \text{ t.c. f ha primitiva in } B_R$

Teo. f
 continua con una primitiva in A $\implies \int_C f(z)dz = 0 \ \forall$ circuit
o $C \subset A$

Cor. fissato $z_0 \in A$, $F(z) = \int_{C(z_0,z)} f(w) dw$ è una primitiva di f, con C un cammino con estemi z_0 e z

Teo. Cauchy DIM

Sia $f:A\subseteq\mathbb{C}\to\mathbb{C}$ olomorfa. Se A è semplicemente connesso, allora $\int_C f(z)dz=0\ \forall$ circuito $C\subset A$

Teo. Morera

Se f è t.c. $\int_C f(z)dz = 0 \ \forall$ circuito $C \subset A$ allora f è olomorfa

1.6 Analicità funzioni olomorfe

Def. f è **analitica** se si può scrivere localmente in serie di potenze, ovvero:

 $\forall z \in A \ \exists \delta > 0 \ t.c. \ B_{\delta}(z) \subset A \ \text{ ed } \exists \text{ una serie di potenze di centro } z \text{ che converge a } f(z+h) \ \forall h \in B_{\delta}(z) \subset A \ \text{ ed } \exists x \in A \ \exists x \in$

Oss. Nel caso reale esistono funzioni C^{∞} non analitiche

Teo. Se f è analitica allora è olomorfa

Teo. Formula di Cauchy DIM

Se $f: A \subseteq \mathbb{C} \to \mathbb{C}$ olomorfa in A, allora $\forall z \in B_r(z_0) \subset A$ $f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(w)}{w-z} dw$ con $C_r(z_0) = \partial B_r(z_0)$ Oss. I valori di f nel disco dipendono solo dai valori sul bordo

Teo. Weierstrass DIM

Se $f:A\subseteq\mathbb{C}\to\mathbb{C}$ è olomorfa in A, allora è f analitica in A

Quindi
$$\forall z \in A \ e \ B_r(z_0) \subseteq A$$
 vale lo sviluppo $f(z) = \sum_{n=0}^{+\infty} c_n (z-z_0)^n$ $c_n = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z-z_0)^{n+1}} dz$

Oss. Inoltre per lo sviluppo di Taylor, sappiamo che $c_k = \frac{f^{(k)}(z_0)}{k!}$, da cui ricaviamo la formula di Cauchy della derivata: $f^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z-z_0)^{k+1}} dz \quad \forall k \in \mathbb{N}$

1.7 Singolarità delle funzioni di variabile complessa e Sviluppi di Lourent

Def. Sia f olomorfa in A- $\{z_0\}$ diremo che z_0 è una singolarità isolata

Def. Per analizzare le singolarità useremo le **serie di potenze bilatere**, dette anche sviluppi di Lourent Ovvero $\sum_{-\infty}^{+\infty} a_n (z-z_0)^n = \sum_{n=1}^{+\infty} a_{-n} [(z-z_0)^{-1}]^n + \sum_{n=0}^{+\infty} a_n (z-z_0)^n$

Oss. Il primo termine ha raggio di convergenza R' e converge in $|z-z_0| > \rho = \frac{1}{R'}$

Oss. Se $0 \le \rho < R \le +\infty$ la serie bilatera converge assolutamente in $A_{\rho,R}(z_0) = \{z \in \mathbb{C} : \rho < |z - z_0| < R\}$ e converge uniformemente in ogni E t.c. $\overline{E} \subset A_{\rho,R}(z_0)$

Oss. Se $R = +\infty$ e $a_n = 0 \ \forall n > 0$ allora diremo che f è olomorfa all'infinito e $f(\infty) = a_0$

Teo. Sia f olomorfa in una corona circolare $A_{\rho,R}(z_0)$, allora f è somma di una serie bilatera di potenze: $f(z) = \sum_{-\infty}^{+\infty} a_n (z-z_0)^n$ dove $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z_0} dw$ con γ una circonferenza contenuta in $A_{\rho,R}(z_0)$

Def. Sia $f: A - \{z_0\} \subset \mathbb{C} \to \mathbb{C}$ olomorfa, allora z_0 è una singolarità:

- eliminabile se f è la restrizione di una funzione olomorfa in A
- polare se $\lim_{z\to z_0} f(z) = +\infty$
- essenziale, altrimenti

Prop. Sia $f: A - \{z_0\} \subset \mathbb{C} \to \mathbb{C}$ olomorfa, allora $\exists R > 0$ t.c. $B_R(z_0) \subset A$, valgono:

- $a_{-m} = 0 \ \forall m \ge 1 \implies z_0$ eliminabile
- \exists un numero finito (non nullo) di $a_{-m} \neq 0 \implies z_0$ è un polo
- \exists infiniti $a_{-m} \neq 0 \implies z_0$ è essenziale

Prop. Se $\exists m_0 \geq 1 \ (m_0 \in \mathbb{N}_0)$ t.c. $a_{-m_0} \neq 0$ e $a_{-m} = 0 \ \forall m > m_0$ allora z_0 è un polo di ordine m_0 Se $\exists n_0 \geq 1$ t.c. $a_{n_0} \neq 0$ e $a_n = 0 \ \forall n < n_0$ allora z_0 è uno zero di ordine n_0

Oss. Regola di De L'Hopital: se z_0 è un polo o uno zero di f e g (olomorfe dove serve), allora esistono finiti ed uguali $\lim_{z\to z_0}\frac{f(z)}{g(z)}=\lim_{z\to z_0}\frac{f'(z)}{g'(z)}$

1.8 Residui integrali

Oss. Abbiamo detto che presa f olomorfa in $B_R(z_0)$ (z_0 al più escluso), allora $f(z) = \sum_{-\infty}^{+\infty} a_n (z - z_0)^n$ Teo. Sia γ circonferenza interna a $B_R(z_0)$ (γ contiene z_0), allora $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = a_{-1}$

Def. a_{-1} è detto **residuo integrale** di f in z_0 e si indica con $Res(f, z_0)$

Teo. (dei residui 1) Sia f olomorfa tranne al più in un numero finito di singolarità isolate $z_1, ... z_N \in A$ Se γ è un circuito semplice in A contenente al suo interno tutte le singolarità, allora $\int_{\gamma} f(z) dz = 2\pi i \sum_{j=1}^{N} Res(f, z_j)$

Teo. (dei residui 2) Siano A un aperto esterno ad un circuito semplice γ e f olomorfa in A tranne al più in un numero finito di punti singolari z_j e continua in \overline{A} , allora $\int_{-\gamma} f(z)dz = 2\pi i [\sum_{j=1}^N Res(f,z_j) + Res(f,\infty)]$

Cor. Sia $f: \mathbb{C} \to \mathbb{C}$ olomorfa in \mathbb{C} tranne al più in un numero finito di singolarità, allora la somma dei resuidi (compreso ∞) è zero

Teo. (Principio di identità delle funzioni olomorfe)

Siano $f: A \subseteq \mathbb{C} \to \mathbb{C}$ olomorfa in A aperto connesso e Z(f) l'insieme degli zeri di f, allora f è identicamente nulla se e solo se Z(f) ha punti di accumulazione in A

Teo. (Unicità del prolungamento analitico)

Siano $f_0: S \subset A \subseteq \mathbb{C} \to \mathbb{C}$, A aperto connesso e S con un punto di accumulazione in A se $\exists f: A \to \mathbb{C}$ olomorfa t.c. $f|_S = f_0$ allora f è unica

Oss. $f(z) = \sin(z)$ ha zeri, ma il punto di accumulazione è ∞ , che è esterno a \mathbb{R}

Prop. I poli di una funzione f
 sono tutti e soli gli zeri di un prolungamento olomorfo di $\frac{1}{f}$

Prop. Se f è olomorfa in un aperto connesso e non è identicamente nulla, allora i suoi zeri sono tutti isolati e hanno ordine intero e finito

Lemma di Jordan DIM

Siano
$$R, w > 0$$
, $\rho: I \to (0, +\infty) \in \widetilde{C}^1$ con $I = [0, \pi]$ e $r_R = R\rho(t)e^{it}$ $t \in I$
Sia $C_R = (\gamma_R, r_R)$ un cammino con $\gamma_R = Im(r_R)$ e sia f continua su γ_R , allora: $|\int_{C_R} e^{iwz} f(z) dz| \leq \frac{c^*}{w} sup_{z \in \gamma_R} |f(z)|$ con c^* indipendente da R

Oss. Il lemma di Jordan vale anche nei seguenti casi:

$$\bullet \ \int_{C_R} e^{-iwz} f(z) dz \ I = [-\pi, 0] \qquad \bullet \ \int_{C_R} e^{wz} f(z) dz \ I = [\tfrac{\pi}{2}, \tfrac{3}{2}\pi] \qquad \bullet \ \int_{C_R} e^{-wz} f(z) dz \ I = [-\tfrac{\pi}{2}, \tfrac{\pi}{2}]$$

1.9 Logaritmo e potenze di numeri complessi

Oss. Dato
$$z \in \mathbb{C}_0$$
, esistono infiniti $w \in \mathbb{C}$ t.c. $e^w = z$. Precisamente $w = \ln|z| + i\theta$ con $\theta \in Arg(z)$ dove $Arg(z) := \{\theta \in \mathbb{R} : z = |z|e^{i\theta}\}$ n.b. se $z = 0$, $arg(z) = \mathbb{R}$

Def. La funzione logaritmo principale è Ln(z) = ln|z| + iArg(z) $con - \pi < Arg(z) < \pi$

Oss.
$$z \to Ln(z)$$
 è definta su $E = \mathbb{C} - \{z \in \mathbb{C} : \mathcal{R}e(z) \le 0, \mathcal{I}m(z) = 0\}$
Oss. Su E $Ln(z)$ è olomorfa e vale $\frac{d}{dz}Ln(z) = \frac{1}{z}$, ma non posso estenderla a \mathbb{C} perché c'è un salto

Def. Ln(z) è una branca massimale di ln(z), le altre sono $f(z) = Ln(z) + i2k\pi$ $k \in \mathbb{Z}$

Oss. Incollando i tagli delle branche generiamo una funzione continua, definita sulla superficie di Riemann

Def. Le funzioni simili a ln(z), cioè insiemi di branche sono dette polidrome

Def. I punti come z=0 per ln(z), cioè punti intorno a cui girano tutte le branche, sono di diramazione

Potenze a esponente complesso $\alpha \in \mathbb{C}$ $z^{\alpha} := e^{\alpha lnz} \ \forall z \in \mathbb{C}_0$, analizziamo i casi:

I)
$$\alpha \in \mathbb{Z} \iff e^{\alpha(\ln z + 2k\pi i)} = e^{\alpha \ln z}$$
, in tal caso z^{α} è olomorfa in \mathbb{C}_0

II)
$$\alpha \in \mathbb{C} - \mathbb{Q} \implies z^{\alpha} := \{ w = |z|^{\Re(\alpha)} e^{i \Im(\alpha) \ln|z|} e^{i \alpha \theta}, \theta \in Arg(z) \}$$

Oss. In questo caso z^{α} ha infinite branche massimali olomorfe in $\mathbb C$ - semiretta contenente l'origine

Oss. z^{α} è una funzione polidroma con punto di diramazione in z=0

Oss. Dall'equazione di Eulero $e^{i\pi}+1=0\,$ ricaviamo $\frac{ln(i)}{i}=\pi$

III) $\alpha \in \mathbb{Q} - \mathbb{Z}$ in questo caso otteniamo un numero finito di branche massimali

2 Elementi di Analisi Funzionale

Sia $X \neq 0$ uno spazio vettoriale su \mathbb{R} (o su \mathbb{C})

Def. Una **norma** in X, che si indica con $||\cdot||$, è una funzione $N: X \to [0, +\infty)$ t.c. i) $N(x) \ge 0$ e $x = 0 \Leftrightarrow N(x) = 0$ ii) $N(\alpha x) = \alpha N(x) \ \forall \alpha \in \mathbb{R}$ iii) $N(x + y) \le N(x) + N(y) \ \forall x, y \in X$

Def. Uno S.V. X munito di norma $||\cdot||$ si dice **spazio vettoriale normato** e si indica con $(X,||\cdot||)$

Oss. In $(X, ||\cdot||)$ è sempre possibile definire una distanza ponendo d(x, y) := ||x - y||Dunque uno S.V.N. è sempre uno spazio metrico e quindi possiamo introdurre le nozioni topologiche viste

2.1 Successioni negli spazi normati

Def. $\{x_n\}_{n\in\mathbb{N}}\subset X$ converge a $x\in X$ se $\forall \varepsilon>0, \exists n_0\in\mathbb{N} \ t.c. \ ||x_n-x||<\varepsilon \ \forall n>n_0$

Def. $\{x_n\}_{n\in\mathbb{N}}$ è di Cauchy se $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ t.c. \ ||x_n - x_m|| < \varepsilon \ \forall n, m > n_0$

Def. $(X, ||\cdot||)$ si dice **spazio di Banach** se rispetto alla distanza è completo, cioè ogni successione di Cauchy è convergente

2.2 Integrale di Lebesgue

Def. $R \subset \mathbb{R}^n$ è un plurirettangolo se $R = (a_1, b_1) \times ... \times (a_n, b_n)$ $a_j, b_j \in \mathbb{R} : a_j < b_j$ La **misura** (o volume) n-dim di R è: $|R|_n = \prod_{j=1}^n (b_j - a_j)$

Def. $E \subset \mathbb{E}^n$ è di **misura nulla**: $|E|_n = 0$ se $\forall \varepsilon > 0$, $\exists \{R_j\}_{j \in \mathbb{N}}$ t.c. i) $E \subseteq \bigcup_{j \in \mathbb{N}} R_j$ ii) $\sum_{j \in \mathbb{N}} |R_j|_n < \varepsilon$

Prop. Se $E \subset \mathbb{R}^n$ è t.c. $|E|_n = 0$ allora $\forall F \subseteq E$ è t.c. $|F|_n = 0$ Prop. $\{E_j\}_{j \in \mathbb{N}}$ t.c. $|E_j|_n = 0$ $\forall j \in \mathbb{N} \implies |\bigcup_{j \in \mathbb{N}} E_j|_n = 0$ Cor. $\forall E \subset \mathbb{R}^n$ numerabile $|E|_n = 0$ (i.e. $|\mathbb{Q}^n|_n = 0$)

Def. Una proprietà p(x) $x \in \mathbb{R}^n$ vale **quasi ovunque** (q.o.) se $\exists E \subset \mathbb{R}^n$ t.c. $|E|_n = 0$ e p(x) è vera $\forall x \in \mathbb{R}^n/E$

Def. Una f a valori in \mathbb{R} è definita q.o. in \mathbb{R}^n se è definita su un insieme del tipo \mathbb{R}^n/E con $|E|_n=0$

Def. Siano $R_1, ..., R_k$ k plurirettangoli mutuamente disgiunti. Una funzione **semplice** è una funzione del tipo $h(x) = \sum_{j=1}^k h_j \chi_{R_j}$ con $h_j \in \mathbb{R}$

Oss. É una combinazione lineare di funzioni caratteristiche, dove $\chi_E = \begin{cases} 1 & \text{in E} \\ 0 & \text{altrove} \end{cases}$

Def. Funzione $u: \mathbb{R}^n \to \mathbb{R}$ è **misurabile** se \exists succesione di funzioni semplici t.c. $h_m \to u$ q.o. in \mathbb{R}^n

Prop. Siano $u:\mathbb{R}^n \to I \subseteq \mathbb{R}\;$ misurabile e $f:I \to \mathbb{R}$ continua, allora $f\circ g$ è misurabile

Oss. Perciò u,v misurabili $\implies u \cdot v, \ u \pm v, \ max\{u,v\}, \ min\{u,v\}$ misurabili

Prop. Sia $\{u_m\}_{m\in\mathbb{N}}$ successione di funzioni misurabili t.c. $u_m\to u$ q.o. allora u è misurabile

Def. Se $h = \sum_{j=1}^n h_j \chi_{R_j}$ è una funzione semplice, allora definiamo l'**integrale** $\int_{\mathbb{R}^n} h(x) dx := \sum_{j=1}^n h_j |R_j|_n$

Def. Sia $u: \mathbb{R}^n \to \mathbb{R}$ misurabile, u è intergabile secondo Lebesgue in \mathbb{R}^n se

 $\exists \{h_k\}_{k\in\mathbb{N}}$ successione di funzioni semplici t.c. i) $h_k \to u$ q.o. ii) $\{\int_{\mathbb{R}^n} h_k\}_{k\in\mathbb{N}}$ è di Cauchy

Oss. ii) $\Longrightarrow \exists \alpha \in \mathbb{R} \ t.c. \ \lim_{k \to +\infty} \int_{\mathbb{R}^n} h_k = \alpha$

Si può provare che α non dipende dalla successione $\{h_k\}_{k\in\mathbb{N}}$, perciò possiamo porre $\int_{\mathbb{R}^n}u(x):=\alpha$

Proprietà dell'integrale di Lebesgue:

- 1) u integrabile e v=u q.o. \implies v integrabile e $\int_{\mathbb{R}^n} v = \int_{\mathbb{R}^n} u$
- 2) u integrabile \implies |u| integrabile
- 3) u integrabile $\implies u^+, u^-$ integrabili
- 4) u,v integrabili \implies max $\{u,v\}$ e min $\{u,v\}$ integrabili
- 5) u reale, non negativa e integrabile $\implies \int_{\mathbb{R}^n} u \ge 0$
- 6) u,v integrabili e $u \leq v$ q.o. $\implies \int_{\mathbb{R}^n} u \leq \int_{\mathbb{R}^n} v$
- 7) u integrabile $\implies |\int_{\mathbb{R}^n} u| \le \int_{\mathbb{R}^n} |u|$
- 8) u,v integrabili $\implies \forall \alpha, \beta \in \mathbb{R} \ \alpha u + \beta v$ integrabile e vale $\int_{\mathbb{R}^n} \alpha u + \beta v = \alpha \int_{\mathbb{R}^n} u + \beta \int_{\mathbb{R}^n} v + \beta \int_{\mathbb{R}^n} v$

Teo. Sia $u: \mathbb{R}^n \to \mathbb{R}$ misurabile, se $\exists \varphi$ positiva e integrabile t.c. $|u| \leq \varphi$ q.o., allora u è integrabile

Teo. Convergenza dominata per Lebesgue

Siano $u_k : \mathbb{R}^n \to \mathbb{R}$ integrabili t.c. i) $u_k \to u$ q.o. ii) $\exists \varphi : \mathbb{R}^n \to [0, \infty)$ integrabile t.c. $|u_k| \le \varphi$ q.o. Allora u è integrabile e vale $\int_{\mathbb{R}^n} |u_k - u| \to 0$ per $k \to +\infty$ ovvero $\lim_{k \to \infty} \int_{\mathbb{R}^n} u_k = \int_{\mathbb{R}^n} u$

Teo. Convergenza monotona o Beppo Levi

Siano $u_k: \mathbb{R}^n \to \mathbb{R}$ integrabili e t.c. $u_{k+1} \ge u_k$ q.o. $\forall k \in \mathbb{N}$ allora:

- i) $\lim_{k\to +\infty}\int_{\mathbb{R}^n}u_k$ finito $\implies u_k\to u$ con u integrabile e $\lim_{k\to \infty}\int_{\mathbb{R}^n}|u_k-u|=0$
- ii) $\lim_{k\to+\infty}\int_{\mathbb{R}^n}u_k=+\infty\implies u_k\to u$ q.o. con u non integrabile, con $\int_{\mathbb{R}^n}u=+\infty$
- iii) $\{u_k\}_{k\in\mathbb{N}}$ non converge q.o. a valori finiti

2.3 Insiemi misurabili e integrali su insiemi misurabili

Def. $E \subset \mathbb{R}^n$ è **misurabile** (secondo Lebesgue) se χ_E è misurabile $|E|_n = \begin{cases} +\infty \text{ se } \int_{\mathbb{R}^n} \chi_E = +\infty \\ \int_{\mathbb{R}^n} \chi_E \text{ se } \chi_E \text{ è integrabile} \end{cases}$

Proprietà della misura n-dim di Lebesgue $|\cdot|_n$:

- Numerabilmente additiva: $\forall \{E_j\}_{j\in\mathbb{N}}$ insieme misurabile e disgiunto, risulta $|\bigcup_{j\in\mathbb{N}} E_j|_n = \sum_{j\in\mathbb{N}} |E_j|_n$
- Invariante per traslazioni: $\forall E\subseteq \mathbb{R}^n$ misuabile, risulta $|E\pm a|_n=|E|_n \ \forall a\in \mathbb{R}^n$

Def. Dati $E \subseteq \mathbb{R}^n$ misurabile e $u: E \to \mathbb{R}$ u è L-integrabile in E se $\widetilde{u}(x):=u(x)\chi_E$ è L-integrabile in \mathbb{R}^n , quindi sarà $\int_E u:=\int_{\mathbb{R}^n} \widetilde{u}(x)$

Teo. Ogni funzione limitata in \mathbb{R}^n , nulla al di fuori di un compatto e R-integrabile É L-integrabile e i due integrali coincidono

Oss. Esistono funzioni R-integrabili che non sono L-integrabili, come $f(x) = \frac{\sin x}{x}$

2.4 Spazi L^P

Def. Sia $\Omega \subseteq \mathbb{R}^n$ L-misurabile, L'insieme delle funzioni misurabili in Ω è $\mathcal{M}(\Omega) := \{u : \Omega \to \mathbb{R} \text{ misurabile}\}\$

Oss. Introduciamo la relazione di equivalenza: $u \sim v \Leftrightarrow u = v \ q.o. \ \forall u, v \in \mathcal{M}(\Omega)$

Oss. La classe di equivalenza con rappresentante u è $[u] := \{v \in \mathcal{M}(\Omega) \mid v = u \ q.o. \ in \ \Omega\}$

Oss. Consideriamo l'insieme quoziente: $M(\Omega) = \frac{\mathcal{M}(\Omega)}{\sim} = \{[u] : u \in \mathcal{M}(\Omega)\}$

Oss. Se Ω aperto, è unica la funzione continua in ogni classe di equivalenza

Def. Sia $\Omega \subseteq \mathbb{R}^n$ misurabile con $|\Omega|_n > 0$ e $p \in [1, \infty)$ fissato, allora $\mathbf{L}^{\mathbf{P}}(\mathbf{\Omega}) := \{u \in M(\Omega) : |u|^p \text{ è L-integrabile in } \Omega\}$

Oss. $L^P(\Omega)$ possono essere dotati di una struttura di S.V. Una buona norma è $||u||_p := (\int_{\Omega} |u|^p)^{\frac{1}{p}}$

Oss. Per verificare l'adeguatezza di questa norma, per $p \in (1, \infty)$ usiamo la seguente:

- Disuguaglianza Minkowski $(\int_{\Omega}|u+v|^p)^{\frac{1}{p}} \leq (\int_{\Omega}|u|^p)^{\frac{1}{p}} + (\int_{\Omega}|v|^p)^{\frac{1}{p}}$ che si dimostra con la seguente: Disuguaglianza di Hölder se $|u|^p$ e $|v|^q$ sono integrabili in Ω e $\frac{1}{p} + \frac{1}{q} = 1$ allora $\int_{\Omega}|uv| \leq (\int_{\Omega}|u|^p)^{\frac{1}{p}}(\int_{\Omega}|v|^q)^{\frac{1}{q}}$

Teo. $(L^p(\Omega), ||\cdot||_p)$ è uno spazio di Banach $\forall p \in [1, \infty)$

Def.
$$\mathbf{L}^{\infty}(\Omega) := \{ u \in M(\Omega) \mid \exists K \geq 0 \ t.c. \ |u| \leq K \ q.o. \ in \ \Omega \}$$

Oss. $L^{\infty}(\Omega)$ è uno S.V. su \mathbb{R}

Prop. $\forall u \in L^{\infty}(\Omega)$ esiste l'estremo superiore essenziale $\alpha = min\{K \geq 0 \ t.c. \ |u| \leq K \ q.o. \ in \ \Omega\}$

Oss. Una norma in $L^{\infty}(\Omega) ||u||_{\infty} := ess \ sup_{\Omega} |u(x)|$

Teo. $(L^{\infty}(\Omega), ||\cdot||_{\infty})$ è uno spazio di Banach

Oss. La disuguaglianza di Hölder si estende facilmente a $p=\infty$ $\int_{\Omega} |uv| \leq \int_{\Omega} (ess \ sup \ |u|)|v| \leq ||u||_{\infty} \cdot ||v||_{1}$

Oss. A questo punto abbiamo una famiglia infinita di spazi di Banach infito dimensionali, dotati di una norma, ora introduciamo nozione di prodotto scalare e quindi di spazio hilbertiano

2.5Spazi di Hilbert

Def. Sia X uno S.V. su \mathbb{R} $p: X \times X \to \mathbb{R}$ si dice **prodotto scalare** in X se:

i)
$$p(x,x) \ge 0$$
 e $p(x,x) = 0 \Leftrightarrow x = 0$

ii)
$$p(x,y) = p(y,x) \ \forall x,y \in X$$

$$\begin{split} &\text{i) } p(x,x) \geq 0 \text{ e } p(x,x) = 0 \Leftrightarrow x = 0 \\ &\text{ii) } p(x,y) = \overline{p(y,x)} \ \, \forall x,y \in X \\ &\text{iii) } p(\alpha x + \beta y,u) = \alpha p(x,u) + \beta p(y,u) \ \, \forall \alpha,\beta \in \mathbb{R} \ \, \forall x,y,u \in X \end{split}$$

Oss. $p(x,y) = \langle x,y \rangle$ (X, $\langle \cdot, \cdot \rangle$) si dice spazio **pre-Hilbertiano**

Oss. Disuguaglianza di Cauchy-Schwarz $|\langle x,y\rangle| \leq \sqrt{\langle x,x\rangle} + \sqrt{\langle y,y\rangle} \ \forall x,y\in X$

Prop. $||x|| := \sqrt{\langle x, x \rangle}$ è la norma indotta dal prodotto scalare

Def. $(X, <\cdot,\cdot>)$ è uno **spazio di Hilbert** se è completo rispetto alla norma indotta

Ortogonalità 2.6

Oss. C.-S.
$$\Longrightarrow -1 \le \frac{\langle x,y \rangle}{||x||\cdot||y||} \le 1 \implies \exists ! \ \theta \in [0,\pi] \ t.c. \ \cos\theta = \frac{\langle x,y \rangle}{||x||\cdot||y||} \quad \theta$$
è l'angolo tra i vettori x e y

Def. x è **ortogonale** a y se $\langle x, y \rangle = 0$

Teo. (Neumann): Se $(X, ||\cdot||)$ è di Banach, allora $||\cdot||$ è indotto da un prodotto scalare sse vale l'identità del parallelogramma: $||x-y||^2 + ||x+y||^2 = 2||x||^2 + 2||y||^2 \quad \forall x, y \in X$

2.7 Sistemi e basi ortonormali

Def. Dato uno spazio pre-Hilbertiano $(H, <\cdot, \cdot>)$ su $\mathbb R$

$$\{u_n\}_{n \in E} \ E \subseteq \mathbb{N} \ \text{è un sistema ortonormale di H se } < u_r, u_s > = \begin{cases} 1 & r = s \\ 0 & r \neq s \end{cases}$$

Oss. Ovvero se è ortogonale e tutti i suoi elementi hanno norma unitaria: $||u_i|| = 1 \quad \forall i \in E$

Prop. Se $\{u_j\}_{j\in E}$ è un sistema ortonormale in H Hilbert, allora:

- Se E non è finito $\sum_{j \in E} c_j u_j$ converge in $\mathbf{H} \Leftrightarrow \sum_{j \in E} |c_j|^2 < \infty \quad \forall \{c_j\}_{j \in E} \subset \mathbb{R}$ $u = \sum_{j \in E} c_j u_j \in H \quad c_j = \langle u, u_j \rangle$ Identità di Parseval: $x = \sum_{j \in E} c_j x_j \quad y = \sum_{j \in E} d_j y_j \implies \langle x, y \rangle = \sum_{j \in E} c_j d_j$

Def. Una base ortonormale di H Hilbert è un sistema ortonormale $\{u_j\}_{j\in E}$ t.c. $\forall x\in H \ \exists! \ \{c_j\}_{j\in E}\subset \mathbb{R}$ t.c. $x=\sum_{j\in E}c_ju_j$

Oss. Se E infinito, allora esiste sempre una base ortonormale

Def. Dato $(H, <\cdot, \cdot>)$ Hilbert e $\{u_j\}_{j\in E}$ un suo sistema ortonormale con E infinito, allora ogni $x\in H$ è somma della **serie di Fourier** astratta $\sum_{j\in E} x_j u_j$ con $x_j = < x, u_j> =$ coefficienti di Fourier

Oss. Se E è finito, non è più una "serie", è una somma finita equivalente a una proiezione ortogonale

Serie di Fourier in L²

Def. Dati $H=L^2([-\pi,\pi])$ in \mathbb{R} e $< f,g>:=\int_{-\pi}^{\pi}fg \quad (H,<\cdot,\cdot>)$ è di Hilbert $\{\frac{1}{\sqrt{2\pi}},\frac{\cos(nt)}{\sqrt{\pi}},\frac{\sin(nt)}{\sqrt{\pi}}\}_{n\in\mathbb{N}_0}$ è una base ortornomale di H

Oss. Per scrivere i coefficienti di Fourier è necessario $f \in L^1([-\pi, \pi])$

Oss. Posti $a_0 = \langle f, \frac{1}{\sqrt{2\pi}} \rangle$, $a_n = \langle f, \frac{\cos(nt)}{\sqrt{\pi}} \rangle$, $b_n = \langle f, \frac{\sin(nt)}{\sqrt{\pi}} \rangle$ $T_N(t) = \frac{a_0}{\sqrt{2\pi}} + \sum_{n=1}^N a_n \frac{\cos(nt)}{\sqrt{\pi}} + \sum_{n=1}^N b_n \frac{\sin(nt)}{\sqrt{\pi}}$ è detto polinomio trigonometrico $\{T_N(t)\}_{N\in\mathbb{N}}$ è detta serie trigonometrica, se converge a una f, allora si dirà serie di Fourier di f

Prop. Se $\sum_{n=1}^{+\infty} |a_n|$, $\sum_{n=1}^{+\infty} |b_n|$ convergono, allora la serie di Fourier di f converge ass. e unif. in $[-\pi, \pi]$

Def. $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ è **continua a tratti** in [a,b] se è continua in [a,b] tranne al più in un numero finito di punti, dove esistono finiti il limite destro e sinistro

Def. $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ soddisfa la **condizione di Dirichlet** \mathbb{D} in $x_o\in(a,b)$ se vale una delle seguenti:

- i) f è derivabile in x_0 ii) f è continua in x_0 e ha un punto angoloso in x_0 iii) f ha un salto in x_0 ed \exists finiti $\lim_{x\to x_0^-}\frac{f(x)-f(x_0^-)}{x-x_0}$ e $\lim_{x\to x_0^+}\frac{f(x)-f(x_0^+)}{x-x_0}$

Teo. (Convergenza puntuale)

Sia $f: [-\pi, \pi] \subset \mathbb{R} \to \mathbb{R}$ continua a tratti, allora la sua serie di Fourier converge in ogni $x_0 \in (-\pi, \pi)$ in cui è soddisfatta la condizione \mathbb{D} , più precisamente converge a $\frac{f(x_0^-)+f(x_0^+)}{2}$

Teo. (Convergenza uniforme)

Sia $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ continua in $[-\pi,\pi]$ con derivata continua, tranne al più un numero finito di punti nei quali vale la condizione \mathbb{D} , allora la serie F di f converge a f assolutamente e uniformemente in $[-\pi,\pi]$ Oss. In particular $f \in C^1([-\pi, \pi]) \implies$ serie F converge ass e unif in $[-\pi, \pi]$

Teo. (Carleson)

Se $f \in L^2([-\pi,\pi])$ allora la sua serie di Fourier converge puntualmente quasi ovunque Oss. In un insieme finito f continua a tratti $\implies f \in L^2$

Def. Dati $H=L^2([-\pi,\pi])$ in $\mathbb C$ e $< f,g>:=\int_{-\pi}^\pi f\overline g \quad (H,<\cdot,\cdot>)$ è di Hilbert $\{\frac{e^{int}}{\sqrt{2\pi}}\}_{n\in\mathbb Z}$ è una base ortornomale di H

Oss. $f \in L^1([-\pi, \pi]) \implies \gamma_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \quad n \in \mathbb{Z} \implies \text{la serie di Fourier è } \sum_{n \in \mathbb{Z}} \gamma_n e^{inx} dx$

Prop. $f \in L^p([-\pi,\pi]), \ p \in (1,\infty] \Longrightarrow \text{serie di F di f converge q.o.}$ Oss. Ovvero la successione $\sum_{n=-N}^N \gamma_n \frac{e^{inx}}{\sqrt{2\pi}}$ converge per $N \to +\infty$ a f in L^p

Oss. f derivabile con al più un num finito di punti angolosi \implies serie F converge uniformemente a f

Def. Un insieme A è denso in B se $\forall x \in B \ \exists \{u_n\}_{n \in \mathbb{N}} \subset A \ t.c. \ u_n \to x$ in B

Oss. $C^{\infty}(\Omega)$ è denso in $L^{P}(\Omega) \forall p \in [1, \infty)$

Elementi di Teoria delle Distribuzioni 3

Def. Sia $v:\Omega\to\mathbb{R},\ \Omega\subseteq\mathbb{R}^n$ aperto, non nullo e v continua Il **supporto** di v è l'insieme chiuso in \mathbb{R}^n $supp(v) := \overline{\{x \in \Omega : v(x) \neq 0\}}$

DEF. Sia $\Omega \subset \mathbb{R}^n$ aperto di \mathbb{R}^n , allora $\mathbf{C}^{\infty}(\Omega)$ è lo S.V. su \mathbb{R} delle funzioni $v:\Omega \to \mathbb{R}$ t.c. le derivate $D^{\alpha}v$ sono continue in $\Omega \ \forall \alpha \in \mathbb{N}^n$ multi-indice

Oss. $\alpha=(\alpha_1,...,\alpha_n)\in\mathbb{N}^n$ e $D^{\alpha}v(\underline{x})=D^{\alpha_1}_{x_1},...,D^{\alpha_n}_{x_n}$ di $v(\underline{x})$ D^i_x è la derivata i-esima rispetto a x

Def. $C_c^{\infty}(\Omega) = \{v \in C^{\infty}(\Omega) : supp(v) \text{ è compatto in } \mathbb{R}^n\}$ è uno S.V. su \mathbb{R}

Def. Convergenza successionale: $\{\varphi_j\}_{j\in\mathbb{N}}\subset C_c^\infty(\Omega)$ converge a $\varphi\in C_c^\infty(\Omega)$ se $\exists K \subset \mathbb{R}^n \text{ compatto t.c. } supp(\varphi_j) \subseteq K \ \forall j \in \mathbb{N} \quad \text{e} \quad \{D^\alpha \varphi_j\}_{j \in \mathbb{N}} \quad \text{converge unif. in } \Omega \text{ a } D^\alpha \varphi \ \forall \alpha \in \mathbb{N}^n$

Prop. Se $\{\varphi_j\}_{j\in\mathbb{N}}\subset C_c^\infty(\Omega)$ soddisfa (i) e $\{D^\alpha\varphi_j\}_{j\in\mathbb{N}}$ è di Cauchy uniformemente $\forall \alpha\in\mathbb{N}^n$ allora $\exists \varphi \in C_c^\infty(\Omega)$ t.c. $\{\varphi_j\}_{j \in \mathbb{N}}$ converge a $\varphi, \ \text{cioè abbiamo completezza}$

 $\mathbf{Def.}\ \mathcal{D}(\Omega)$ è lo S.V. $C_c^\infty(\Omega)$ munito della convergenza successionale

Spazio Duale di uno Spazio Vettoriale 3.1

Def. Sia X uno S.V. su \mathbb{R} , il **duale algebrico** di X è lo S.V. X':= $\{L: X \to \mathbb{R} \mid L \text{ funz. lineare}\}$

Oss. $\varphi_i \to \varphi$ in $\mathcal{D}(\Omega)$ significa che vale la convergenza successionale

Def. $u: \mathcal{D}(\Omega) \to \mathbb{R}$ è una **distribuzione** su Ω o funzione generalizzata se valgono: i) è lineare ii) $\forall \{\varphi_j\}_{j\in\mathbb{N}}\subset \mathcal{D}(\Omega)$ t.c. $\varphi_j\to \varphi$ in $\mathcal{D}(\Omega)$ si ha $u(\varphi_j)\to u(\varphi)$ per $j\to \infty$

Def. Lo spazio delle distribuzioni su Ω è lo S.V. $\mathcal{D}'(\Omega) := \{u : C_c^{\infty}(\Omega) \to \mathbb{R} \mid \text{soddisfano i) e ii}\}$

Def. $\{u_i\}_{i\in\mathbb{N}}\subset\mathcal{D}'(\Omega)$ converge a $u\in\mathcal{D}'(\Omega)\Longleftrightarrow\ u_j(\varphi)\to u(\varphi)$ per $j\to\infty\ \forall\varphi\in\mathcal{D}(\Omega)$

Oss. $\mathcal{D}'(\Omega)$ è completo:

 $\{u_j\}_{j\in\mathbb{N}}\subset\mathcal{D}'(\Omega) \text{ t.c. } \{u_j(\varphi)\}_{j\in\mathbb{N}} \text{ è di Cauchy } \forall \varphi\in\mathcal{D}(\Omega) \implies \exists u\in\mathcal{D}'(\Omega) \text{ t.c. } u_j\to u \text{ in } \mathcal{D}'(\Omega)$

Notazione: $\bullet < u, \varphi > := u(\varphi)$ $\bullet \mathcal{D}'(\Omega)$ si sottointenderà dotato di convergenza puntuale

Def. $L^1_{loc}(\Omega) := \{ f \in \mathcal{M}(\Omega) : f|_K \in L^1(K) \ \forall K \subset \Omega, \ K \text{ compatto} \} \text{ con } \Omega \subset \mathbb{R}^n \text{ aperto, non nullows} \}$

Oss. Siano $f \in L^1_{loc}(\Omega)$ e $u_f \in \mathcal{D}'(\Omega)$ la distribuzione associata a f, allora $\langle u_f, \varphi \rangle := \int_{\Omega} f \varphi \ dx$

Proprietà: • $\int_{\Omega} f\varphi \ dx \leq ||\varphi||_{\infty} \int_{supp(\varphi)} |f| \ dx \in \mathbb{R}$ • $u_f : \mathcal{D}(\Omega) \to \mathbb{R}$ ben definita e lineare • $\operatorname{se} \varphi_j \to \varphi$ in $\mathcal{D}(\Omega)$ allora $< u_f, \varphi_j > \to < u_f, \varphi > \operatorname{in} supp(\varphi_j)$

Lemma di annullamento: Sia $f \in L^1_{loc}(\Omega)$ allora $\int_{\Omega} f \varphi \ dx = 0 \ \forall \varphi \in \mathcal{D}(\Omega) \implies f = 0$ q.o. in Ω Oss. L'applicazione $\mathcal{F}: L^1_{loc}(\Omega) \to \mathcal{D}'(\Omega)$ $f \mapsto u_f$ è ben definitiva e iniettiva per il lemma

Perciò $L^1_{loc}(\Omega)$ può essere identificata con $\mathcal{F}(L^1_{loc}(\Omega)) \subset \mathcal{D}'(\Omega)$ ed è indifferente scrivere f o u_f

Oss. $\mathcal{F}(L^1_{loc}(\Omega)) \neq \mathcal{D}'(\Omega)$ Esempi:

•
$$f(t) = \frac{1}{t} \text{ per } t \neq 0 \implies f \notin L^1_{loc}(\mathbb{R}) \text{ però } u_f = v.p.\frac{1}{t} \in \mathcal{D}'(\Omega)$$

 $< u_f, \varphi > := v.p. \int_{\mathbb{R}} \frac{\varphi(t)}{t} dt = \lim_{\varepsilon \to 0^+} \int_{|t| > \varepsilon} \frac{\varphi(t)}{t} dt = \int_{\mathbb{R}} \frac{\varphi(t) - \varphi(0)}{t} dt \quad \forall \varphi \in \mathcal{D}(\mathbb{R})$

Teo. Se $u: \mathcal{D} \to \mathbb{R}$ è lineare, allora $u \in \mathcal{D}'(\Omega) \Leftrightarrow \forall K \subset \Omega$ K compatto, $\exists C_K > 0$ e $m_k \in \mathcal{N}$ t.c. $|\langle u, \varphi \rangle| | \leq C_k \sum_{|\alpha| < m_K} ||D^{\alpha}\varphi||_{\infty} \ \forall \varphi \in \mathcal{D}(\Omega)$ t.c. $supp(\varphi) \subseteq K$

Oss. Se m_k è indipendente da K, allora m si dirà ordine della distribuzione se m=0 le distribuzioni si diranno misure

3.2 Derivata di una distribuzione

Oss. Sia
$$f \in L^1(\mathbb{R}) \subset L^1_{loc}(\mathbb{R})$$
 t.c. $f' \in C^0(\mathbb{R}) \subset L^1_{loc}(\mathbb{R})$ allora $\langle u_{f'}, \varphi \rangle = \int_{\mathbb{R}} f' \varphi dt = -\int_{\mathbb{R}} f \varphi' dt$ ma questo non richiede $f \in C^1(\mathbb{R})$

Def. Se $u \in \mathcal{D}'(\mathbb{R})$ allora la **derivata distribuzionale** di u è la distribuzione Du = v t.c. $\langle v, \varphi \rangle := -\langle u, \varphi' \rangle \quad \forall \varphi \in \mathcal{D}(\mathbb{R})$

Oss. Se $f \in C^1(\mathbb{R})$ avremo $u_{f'} = Du_f$

Oss. In generale se $f \in C^{\infty}(\mathbb{R}^n)$ e $\alpha \in \mathbb{R}^n$ $\int_{\mathbb{R}^n} D^{\alpha} f \varphi dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f D^{\alpha} \varphi dx$, quindi

Def. La derivata ditribuzionale di ordince α di $u \in \mathcal{D}'(\mathbb{R}^n)$ è la distribuzione $D^{\alpha}u = v \; \text{t.c.}$ $< v, \varphi > := (-1)^{\alpha} \int_{\mathbb{R}^n} f D^{\alpha} \varphi \; dx$

Oss. Se $f \in C^k(\mathbb{R}^n)$ allora $u_{D^{\alpha}f} = D^{\alpha}u_f \ \forall \alpha : |\alpha| \leq k$

Proprità:

- $u_n \to u$ in $\mathcal{D}'(\Omega) \implies D^{\alpha}u_n \to D^{\alpha}u$ in $\mathcal{D}'(\Omega) \ \forall \alpha \in \mathbb{N}^n$
- Se $\sum_{n\in\mathbb{N}} u_n$ converge a u in $\mathcal{D}'(\Omega)$, cioè $<\sum_{n\in\mathbb{N}} u_n, \varphi> \to < u, \varphi> \ \forall \varphi\in\mathcal{D}(\Omega)$ allora $\sum_{n\in\mathbb{N}} D^{\alpha}u_n \to D^{\alpha}u$ in $\mathcal{D}'(\Omega)$ $\forall \alpha\in\mathbb{N}^n$
- $\langle u(Ax+\underline{b}), \varphi \rangle := \langle u, \varphi(A^{-1}(y-\underline{b})) \cdot (detA)^{-1} \rangle$ con $u \in \mathcal{D}'(\mathbb{R}^n), A \in \mathbb{R}^{n \times n}, detA \neq 0, \underline{b} \in \mathbb{R}^n$ In particolare dato un versore $\underline{v} \in \mathbb{R}^n$ $\langle D^{\underline{v}}u, \varphi \rangle = -\langle u, D^{\underline{v}}\varphi \rangle \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^n)$

Oss. Ogni $u \in \mathcal{D}'(\mathcal{R})$ ha una primitiva in $\mathcal{D}'(\mathcal{R})$, ovvero:

Teo. $\forall u \in \mathcal{D}'(\mathcal{R}), \exists v \in \mathcal{D}'(\mathcal{R}) \text{ t.c. } Dv = u, \text{ inoltre } \forall \tilde{v} = v + c \text{ con } c \in \mathbb{R} \implies D\tilde{v} = u$

$$\text{Oss. } f \in L^1(\mathbb{R}) \text{ t.c. } \exists g \in L^1(\mathbb{R}): ||\frac{f(\cdot + h_n) - f(\cdot)}{h_n} - g(\cdot)||_{L^1(\mathbb{R})} \to 0 \ \forall \{h_n\} \subset \mathbb{R}: h_n \to 0 \ \Longrightarrow \ Df = g(\cdot) + h_n \to 0$$

Oss. $u \in \mathcal{D}'(\mathbb{R})$ è T-periodica con $T \neq 0$ se $< u, \varphi(\cdot) > = < u, \varphi(\cdot - T) > \ \forall \varphi \in \mathcal{D}(\mathbb{R})$

Oss. Teorema di Schwarz

$$\forall u \in \mathcal{D}'(\Omega), \ \Omega \subseteq \mathcal{R}^n \text{ aperto, non nullo } \frac{\partial^2 u}{\partial x_i \partial x_j} = \frac{\partial^2 u}{\partial x_j \partial x_i} \ \forall i, j \in \{1, ..., n\}$$

3.3 Distribuzioni temperate

Def. Lo **spazio di Schwarz** o delle funzioni a decrescita rapida è:

$$\mathcal{S}(\mathbb{R}^n) := \{ \varphi \in C^\infty(\mathbb{R}^n) : D^\alpha \varphi = o(|x|^{-k}) \ \text{per} \ |x| \to \infty \ \forall \alpha \in \mathbb{N}^n, \forall k \in \mathbb{N} \}$$

Oss. $\mathcal{S}(\mathbb{R}^n)$ è uno S.V. in cui possiamo introdurre una convergenza successionale, per cui $\mathcal{S}(\mathbb{R}^n)$ è completo $\varphi_n \to \varphi$ in $\mathcal{S}(\mathbb{R}^n)$ per $n \to \infty \iff |x|^k D^{\alpha} \varphi_n \to |x|^k D^{\alpha} \varphi$ uniformemente $\forall \alpha \in \mathbb{N}^n \ \forall k \in \mathbb{N}$

Def. Sia $u: \mathcal{S}(\mathbb{R}^n) \to \mathbb{R}$ funzione lineare, u è **continua** se $\langle u, \varphi_n \rangle \to \langle u, \varphi \rangle \quad \forall ...$

Def. Lo spazio delle distribuzioni temperate è $S'(\mathbb{R}^n) := \{u : S(\mathbb{R}^n) \to \mathbb{R} \text{ lineare e continua}\}$

Oss.
$$\mathcal{D}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$$
, ma $\mathcal{D}(\mathbb{R}^n) \neq \mathcal{S}(\mathbb{R}^n)$ un esempio è $e^{-||x||_2^2}$
Oss. $u \in \mathcal{S}'(\mathbb{R}^n) \implies u|_{\mathcal{D}(\mathbb{R}^n)} \in \mathcal{D}'(\mathbb{R}^n)$

Teo. $u \in \mathcal{D}'(\mathbb{R}^n)$ si può estendere a $\tilde{u} \in \mathcal{S}'(\mathbb{R}^n)$ se e solo se

$$\forall \{\varphi_n\}_{n\in\mathbb{N}} \subset \mathcal{D}(\mathbb{R}^n) \text{ t.c. } \varphi_n \to 0 \text{ in } \mathcal{S}(\mathbb{R}^n) \text{ si ha } \langle u, \varphi_n \rangle \to 0 = \langle u, 0 \rangle$$

Oss. Equivale alla continuità di u in 0 in $\mathcal{S}(\mathbb{R}^n)$, che è sufficiente per estendere u a \tilde{u} per il lemma di densità

Lemma di densità: $\forall v \in \mathcal{S}(\mathbb{R}^n) \ \exists \{u_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(\mathbb{R}^n) \text{ t.c. } u_n \to v \text{ in } \mathcal{S}(\mathbb{R}^n) \text{ per } n \to \infty$

3.4 Prodotto distribuzione-funzione

Prop.
$$u \in \mathcal{D}'(\Omega), \ \psi \in C^{\infty}(\Omega) \ < u\psi, \varphi > := < u, \psi\varphi > \ \forall \varphi \in \mathcal{D}(\Omega) \implies u\psi \in \mathcal{D}'(\Omega)$$

Prop. $u \in \mathcal{S}'(\mathbb{R}^n), \ \psi \in \mathcal{S}(\mathbb{R}^n) \ < u\psi, \varphi > := < u, \psi\varphi > \ \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \implies u\psi \in \mathcal{S}'(\mathbb{R}^n)$

Oss. Per n=1 vale la regola di Leibniz per il prodotto $D^{\alpha}(u\psi) = \sum_{k \leq \alpha} {\alpha \choose k} D^k u D^{\alpha-k} \psi$

Problema di divisione:

Data $v \in \mathcal{D}'(\Omega)$ e $\psi \in C^{\infty}(\Omega)$ trovare $u \in \mathcal{D}'(\Omega)$ t.c. $\psi u = v$

4 Trasformata di Fourier

Def. Sia $u \in L^1(\mathbb{R}^n)$, la **trasformata di Fourier** di u è la funzione $\widehat{u} : \mathbb{R}^n \to \mathbb{C}$ $\widehat{u}(\xi) := \int_{\mathbb{R}^n} e^{-i\xi x} u(x) \ dx$

Oss. $|\widehat{u}(\xi)| \leq ||u||_{L^1(\mathbb{R}^n)} \ \forall \xi \in \mathbb{R}^n$ quindi \widehat{u} è ben definita e limitata Oss. $\mathcal{F}: L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n) \ u \mapsto \widehat{u}$ è ben definita e lineare

Proprietà: $\forall u \in L^1(\mathbb{R}^n), \ \forall a \in \mathbb{R}_0, \ \forall x_0 \in \mathbb{R}^n$

- 1) $v(x) = u(ax) \implies \widehat{v}(\xi) = \frac{1}{|a|}\widehat{u}(\frac{\xi}{a})$
- 2) $v(x) = u(x x_0) \implies \widehat{v}(\xi) = e^{-ix_0\xi} \widehat{u}(\xi)$
- 3) $v(x) = e^{ix_0x}u(x) \implies \widehat{v}(\xi) = \widehat{u}(\xi x_0)$
- 4) $v(x) = u(A^{-1}x) \ A \in \mathbb{R}^{n \times n}, det A \neq 0 \implies \widehat{v}(\xi) = |det A| \ \widehat{u}(A^T \xi)$
- 5) $v(x) = \overline{u(x)} \implies \widehat{v}(\xi) = \overline{\widehat{u}(-\xi)}$
- 6) u pari (dispari) $\implies \hat{u}$ pari (dispari)
- 7) u reale pari $\implies \hat{u}$ reale pari u reale dispari $\implies \hat{u}$ immaginaria dispari

Oss. Per la 4) vale: u radiale $\implies \hat{u}$ radiale

Lemma di Riemann-Lebesgue: DIM

 $\forall u \in L^1(\mathbb{R}^n) \text{ risulta} \quad \widehat{u} \in C^0(\mathbb{R}^n) \text{ e } \lim_{|\xi| \to \infty} \widehat{u}(\xi) = 0$

4.1 La trasformata di Fourier e la derivazione

Teo.1 Sia $u \in L^1(\mathbb{R})$ t.c. $xu \in L^1(\mathbb{R})$ allora $\widehat{u} \in C^1(\mathbb{R})$ e $\frac{\partial}{\partial \xi} \widehat{u}(\xi) = -i\widehat{(xu)}(\xi)$

Teo.2 Sia $u \in C^1(\mathbb{R})$ t.c. $u, u' \in L^1(\mathbb{R})$ allora $\widehat{u}'(\xi) = i\xi \widehat{u}(\xi)$

Teo.3 Sia $u \in L^1(\mathbb{R}^n)$ t.c. $x_j u \in L^1(\mathbb{R}^n)$ allora $\exists \partial_{\xi_j} \widehat{u} \in C(\mathbb{R}^n)$ e $\partial_{\xi_j} \widehat{u}(\xi) = -i\widehat{(x_j u)}(\xi)$

Teo.4 Sia $u\in C^1(\mathbb{R}^n)$ t.c. $u,\ \partial_{x_j}u\in L^1(\mathbb{R}^n)$ allora $\widehat{(\partial_{x_j}u)}(\xi)=i\xi_j\widehat{u}(\xi)$

Oss. Teo.3 (1) \Longrightarrow più la u si schiaccia all'infinito più \widehat{u} è regolare In particolare $||x||^n u \in L^1(\mathbb{R}^n) \Longrightarrow \widehat{u} \in C^{\infty}(\mathbb{R}^n) \ \forall n \in \mathbb{N}$

Oss. Teo.4 (2) \Longrightarrow più u è regolare più la \widehat{u} si schiaccia all'infinito In particolare $u \in C^{\infty}(\mathbb{R})$ t.c. $u^{(j)} \in L^{1}(\mathbb{R}) \ \forall j \in \mathbb{N} \implies \widehat{(u^{(j)})}(\xi) = (i\xi)^{j}\widehat{u}(\xi)$

Ovvero $(u^{(j)})(\xi) = o(|\xi|^j)$ per $|\xi| \to +\infty$

4.2 Inversione della trasformata di Fourier

Oss. Trovare u data \widehat{u} da problemi, infatti $\mathcal{F}(L^1(\mathbb{R}^n)) \not\subset L^1(\mathbb{R}^n)$

Teo. Formula di inversione

Sia $u \in L^1(\mathbb{R}^n)$ t.c. $u \in C^0(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ e $\widehat{u} \in L^1(\mathbb{R}^n)$ allora $u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} \ \widehat{u}(\xi) \ d\xi$

Def. Data una funzione v, la funzione \check{v} data dalla formula di inversione si dice **antitrasformata**

Oss. In generale non vale che $(\hat{u}) = u$, servono condizioni su u

4.3 Trasformata di Fourier per distribuzioni temperate

Def. Sia $u \in \mathcal{S}'(\mathbb{R}^n)$, la **trasformata di Fourier** di u è il funzionale $\widehat{u}(\varphi) = \langle \widehat{u}, \varphi \rangle := \langle u, \widehat{\varphi} \rangle = \int u \widehat{\varphi} \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^n)$

Teo: \widehat{u} è una trasformazione temperata $(\mathcal{S}'(\mathbb{R}^n))$

Dim:

Grazie a Fubini-Tonelli $\int_{\mathbb{R}^n} u \widehat{v} = \int_{\mathbb{R}^n} \widehat{u} v \quad \forall u, v \in L^1(\mathbb{R}^n)$, di conseguenza vale il seguente lemma: $\forall u \in \mathcal{S}'(\mathbb{R}^n)$ l'applicazione lineare $\widehat{u} : v \mapsto \langle u, \widehat{v} \rangle \quad \forall v \in \mathcal{D}(\mathbb{R}^n)$ è una distribuzione temperata Quindi $v \in \mathcal{D}(\mathbb{R}^n) \implies \widehat{v} \in \mathcal{S}(\mathbb{R}^n)$

Inoltre $\varphi \in \mathcal{S}(\mathbb{R}^n) \implies \widehat{\varphi} \in \mathcal{S}(\mathbb{R}^n) \ e \ \check{\varphi} \in \mathcal{S}(\mathbb{R}^n)$

 $\mathcal{F}:\varphi\mapsto\widehat{\varphi}$ per $\varphi\in\mathcal{S}(\mathbb{R}^n)$ è un'applicazione biunivoca e bicontinua

Ovvero $\varphi_n \to \varphi \implies \mathcal{F}(\varphi_n) \to \mathcal{F}(\varphi)$, ma anche $\mathcal{F}^{-1}(\varphi_n) \to \mathcal{F}^{-1}(\varphi)$

 $\widehat{u}: \mathcal{S}(\mathbb{R}^n) \to \mathbb{R}$ è ben definita e lineare

Inoltre dato $\{\varphi_n\}\subset\mathcal{S}(\mathbb{R}^n)$ t.c. $\varphi_n\to 0$ allora essendo \mathcal{F} biunivoca e bicontinua $\widehat{\varphi}_n\to 0$

Quindi $\langle u, \widehat{\varphi}_n \rangle \to 0 \implies \widehat{u}$ è continua in $\varphi = 0$, ma essendo lineare \widehat{u} è continua in $\mathcal{S}(\mathbb{R}^n)$

Concludiamo $\widehat{u} \in \mathcal{S}'(\mathbb{R}^n)$

Oss. Si può provare che anche $\widehat{u} \in \mathcal{S}'(\mathbb{R}^n)$ gode delle proprietà della trasformata classica $(\widehat{u} \in L^1)$

Def. Sia $u \in \mathcal{S}'(\mathbb{R}^n)$, l'antitrasformata \check{u} di u è la distribuzione temperata $\langle \check{u}, \varphi \rangle := \langle u, \check{\varphi} \rangle$

Teo. $\mathcal{F}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ è lineare, biunivoca e bicontinua t.c. $\check{u} = \mathcal{F}^{-1}(u)$ Oss. $\forall u \in \mathcal{S}'(\mathbb{R}^n)$ avremo $\widehat{(\check{u})} = u$

Oss. Affinchè valga la fomula integrale per l'antitraformata basta che $u \in \mathcal{S}'(\mathbb{R}^n)$ e $\widehat{u} \in L^1(\mathbb{R}^n)$

4.4 Trasformata nello spazio L²

Oss.
$$f \in L^p(\mathbb{R}^n) \implies u_f \in \mathcal{S}'(\mathbb{R}^n) \implies \widehat{u}_f \in \mathcal{S}'(\mathbb{R}^n)$$

Teo. Sia $u \in \mathcal{S}'(\mathbb{R}^n)$ allora $u \in L^2(\mathbb{R}^n) \iff \widehat{u} \in L^2(\mathbb{R}^n)$ in tal caso vale l'identità di Plancherel $||\widehat{u}||_{L^2}^2 = (2\pi)^n ||u||_{L^2}^2$

Cor. $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ è biunivoca e bicontinua

Oss. Se $u \in L^2(\mathbb{R}^n)$ non si può in generale usare la formula integrale per \widehat{u}

Tuttavia se considero una successione crescente $\{K_h\}_{h\in\mathbb{N}}$ di compatti di \mathbb{R}^n , la cui unione è \mathbb{R}^n

Posto $u_h = \chi_{K_h} u \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \quad u_h \to u \text{ in } L^2(\mathbb{R}^n)$

Dunque \hat{u}_h si calcola con l'integrale e se la successione delle trasformate converge q.o. allora $\hat{u}(\xi) = \lim_{k \to \infty} \int_{K_h} e^{-i\xi x} u(x) dx$

4.5 Prodotto convoluzione e trasformata Fourier

Def. Siano $f,g\in L^1(\mathbb{R}^n)$, il **prodotto di convoluzione** è $(f*g)(x)=\int_{\mathbb{R}}f(x-y)g(y)dy \in L^1(\mathbb{R}^n)$

Teo.
$$\widehat{(f * g)}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

Def. Siano $u \in \mathcal{D}'(\mathbb{R}^n)$ e $v \in \mathcal{D}(\mathbb{R}^n)$, il prodotto di convoluzione tra distribuzioni e funzioni è l'applicazione $(u*v)(x) = \langle u(\cdot), v(x-\cdot) \rangle = \int u(y)v(x-y)dy$ che è una funzione $C^{\infty}(\mathbb{R}^n)$

Oss. La definizione ha senso con l'integrale solo se u ha una funzione associata Dentro l'integrale per u si intende la funzione, per questo si integra su \mathbb{R}^n

Oss. Inoltre avremo $D^{\alpha}(u * v) = D^{\alpha}u * v = u * D^{\alpha}v$

Oss. Nel caso $u \in \mathcal{S}'(\mathbb{R}^n), \ v \in \mathcal{S}(\mathbb{R}^n) \quad u * v \in \mathcal{S}'(\mathbb{R}^n) \cap C^{\infty}(\mathbb{R}^n)$

Teo. Valgono le seguenti:

i)
$$u \in L^1(\mathbb{R}^n), v \in L^2(\mathbb{R}^n) \implies \widehat{u * v} = \widehat{u} \ \widehat{v}$$

ii)
$$u, v \in L^2(\mathbb{R}^n) \implies \widehat{u * v} = \widehat{u} \widehat{v} \in L^2(\mathbb{R}^n)$$

iii)
$$u \in \mathcal{S}'(\mathbb{R}^n), v \in \mathcal{S}(\mathbb{R}^n) \implies \widehat{u * v} = \widehat{u} \ \widehat{v} \in \mathcal{S}'(\mathbb{R}^n)$$

Oss. $f, g \in L^1(\mathbb{R}^n)$ o $f, g \in L^2(\mathbb{R}^n)$ o $f \in L^1(\mathbb{R}^n)$, $g \in L^2(\mathbb{R}^n) \implies$ prod convoluzione commutativo

Oss.
$$\{u_n\}_{n\in\mathbb{N}}\subset \mathcal{S}'(\mathbb{R}^n):\ u_n\to u\ in\ \mathcal{S}'(\mathbb{R}^n)\ e\ \{v_n\}_{n\in\mathbb{N}}\subset \mathcal{S}(\mathbb{R}^n):\ v_n\to v\ in\ \mathcal{S}(\mathbb{R}^n)\ allora u_n*v_n\to u*v\ in\ \mathcal{S}'(\mathbb{R}^n)$$

4.6 Applicazioni

Esempi di EDO

Consideriamo una edo a coefficienti costanti di operatore L: $Lu(x) := \sum_{k=0}^{n} a_k u^{(k)}(x) = f(x)$ Per risolvere l'equazione risolviamo nel caso $f = \delta$ e troviamo una soluzione E(x), dunque $LE = \delta$. Allora, se ha senso E * f, vale che $L(E * f) = (LE) * f = \delta * f = f \implies u(x) = E * f$ è una soluzione E si chiama **soluzione fondamentale** dell'operatore L

Oss. Data -u'' + u = f con $f \in L^1(\mathbb{R})$ $E(x) := \frac{e^{-|x|}}{2}$ e $u(x) = \int_{\mathbb{R}} \frac{e^{-|x|}}{2} f(y) dy$ Poichè E l'abbiamo trovata con Fourier, non è l'unica soluzione

Ci sono anche le soluzioni dell'omogenea $v(x) = c_1 e^x + c_2 e^{-x}$ che non sono Fourier-trasformabili

Oss. La soluzione fondamentale di u'' + u = f è $E(x) = \frac{\sin x}{2} sign(x)$ E * f ha senso se $f \in L^1$ Però bisogna risolvere il problema di divisione dell'omogenea (f=0) $(1 - \xi^2) \widehat{v}(\xi) = 0$, quindi l'integrale generale della edo ha la forma $U(x) = c_1 sinx + c_2 cosx + \int_{\mathbb{R}} E(x - y) f(y) dy$ con $c_1, c_2 \in \mathbb{C}$

Oss. Questa edo risolve i moti armonici, che è un contesto periodico, cioè con f e u periodiche Teo. Ogni $u \in \mathcal{D}'(\mathbb{R})$ T-periodica è temperata.

Inoltre $\forall \{u_n\}_{n\in\mathbb{N}}\subset \mathcal{D}'(\mathbb{R})$ con u_n T-periodica e convergente in $\mathcal{D}'(\mathbb{R})$, allora converge in $\mathcal{S}'(\mathbb{R})$

Equazione di Poisson

Problema: Sia Ω un aperto semplicemente connesso e sia $\underline{F}:\Omega\to\mathbb{R}^n$ un campo di forze Sia \underline{F} irrotazionale, regolare e soggetto a una distribuzione di sorgenti $f:\Omega\to\mathbb{R}$ ovvero t.c. $-div\underline{F}=f$ Equivale al problema $-\Delta U=f$ in Ω questa è detta equazione di Poisson

Oss. Per risolvere $-\nabla u=f$ dobbiamo trovare la soluzione fondamentale $E(x) \implies u(x)=(E_n*f)(x)$ Oss. Le soluzioni di $-\nabla u=\delta_0$ sono: $E(x)=\begin{cases} \frac{1}{2\pi}ln\frac{1}{|x|} & N=2\\ \frac{1}{4\pi|x|} & N=3 \end{cases}$