Colorações por orientações de grafos

Bolsista (PIBIC-UFRJ): Tiago Montalvão

Orientadora: Márcia Cerioli

19 de outubro de 2016

Definimos a **cor por orientação** de um vértice u em um digrafo D como o grau de entrada $d_i(u)$ em D.

Definimos a **cor por orientação** de um vértice u em um digrafo D como o grau de entrada $d_i(u)$ em D.

Uma **coloração** de D é uma configuração de cores nos vértices, de tal forma que dois vértices adjacentes possuem cores distintas.

Definimos a **cor por orientação** de um vértice u em um digrafo D como o grau de entrada $d_i(u)$ em D.

Uma **coloração** de D é uma configuração de cores nos vértices, de tal forma que dois vértices adjacentes possuem cores distintas.

Uma **coloração por orientação** de um grafo G consiste em orientar as arestas em E(G) de tal maneira que as cores por orientação dos vértices de V(G) formem uma coloração.

Definimos a **cor por orientação** de um vértice u em um digrafo D como o grau de entrada $d_i(u)$ em D.

Uma **coloração** de D é uma configuração de cores nos vértices, de tal forma que dois vértices adjacentes possuem cores distintas.

Uma **coloração por orientação** de um grafo G consiste em orientar as arestas em E(G) de tal maneira que as cores por orientação dos vértices de V(G) formem uma coloração.

Dado um grafo G = (V, E), o problema estudado consiste em orientar as arestas em E de tal forma a criar uma coloração com a menor cor máxima $\vec{\chi}(G)$ possível.

Dificuldades:

- Inserção e remoção de arestas mudam completamente a estrutura do grafo.
- O grafo reverso pode n\u00e3o apresentar uma colora\u00e7\u00e3o.
- Subgrafos não dão informações sobre a coloração do grafo.

Dificuldades:

• Inserção e remoção de arestas mudam completamente a estrutura do grafo.

Dificuldades:

• Inserção e remoção de arestas mudam completamente a estrutura do grafo.

Dificuldades:

• Inserção e remoção de arestas mudam completamente a estrutura do grafo.

Dificuldades:

• O grafo reverso pode não apresentar uma coloração.

Dificuldades:

• O grafo reverso pode não apresentar uma coloração.

Dificuldades:

• Subgrafos não dão informações sobre a coloração do grafo.

Dificuldades:

Subgrafos não dão informações sobre a coloração do grafo.

$$\overrightarrow{\chi}(G) = 3$$

Dificuldades:

• Subgrafos não dão informações sobre a coloração do grafo.

Dificuldades:

Subgrafos não dão informações sobre a coloração do grafo.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

Nesta coloração, nenhum v_i tem cor Δ , pois eles teriam grau $d(v_i) \ge \Delta + 1$ em G.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

Nesta coloração, nenhum v_i tem cor Δ , pois eles teriam grau $d(v_i) \ge \Delta + 1$ em G.

Portanto, basta orientar todas as arestas de v_i para u e teremos uma coloração para G com maior cor Δ . Portanto, temos $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O caso base da indução consiste no grafo trivial, que claramente possui uma coloração, e $0 = \overrightarrow{\chi}(G) \le \Delta(G) = 0$.

32

Comparação com número cromático de G.

Como a coloração por orientação é uma coloração, temos que $\chi(G) \le \vec{\chi}(G) + 1$.

Juntando com a informação anterior, temos que $\chi(G)$ - $1 \le \overrightarrow{\chi}(G) \le \Delta(G)$.

Caminho de triângulos

Caminho de triângulos

A primeira classe de grafos estudada foi a de caminho de triângulos.

Caminho de triângulos

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos, como abaixo:

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos.

Obtivemos o seguinte resultado:

- $\vec{\chi}(T_i) = 2$, para i = 1, 2
- $\vec{\chi}(T_i) = 3$, para $i \ge 3$

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos.

Obtivemos o seguinte resultado:

- $\vec{\chi}(T_i) = 2$, para i = 1, 2
- $\vec{\chi}(T_i) = 3$, para $i \ge 3$

Dentro de cada triângulo, cada vértice deve ter um cor diferente. Portanto $\vec{\chi}(T_i) \ge 2$.

Lema estrutural:

Seja T um triângulo, com um vértice de cor 1 devido a uma aresta externa ao triângulo.

Lema estrutural:

Seja T um triângulo, com um vértice de cor 1 devido a uma aresta externa ao triângulo. Esta configuração não pode existir em nenhuma orientação de G para gerar uma coloração com $\vec{\chi}(G) = 2$.

Prova:

Os demais vértices do triângulo devem ter as cores 0 e 2.

Prova:

Os demais vértices do triângulo devem ter as cores 0 e 2. Mas como o vértice está fixado com cor 1 com aresta externa, as arestas do triângulo incidentes a ele estarão saindo dele.

Prova:

Os demais vértices do triângulo devem ter as cores 0 e 2. Mas como o vértice está fixado com cor 1 com aresta externa, as arestas do triângulo incidentes a ele estarão saindo dele.

Prova:

Os demais vértices do triângulo devem ter as cores 0 e 2. Mas como o vértice está fixado com cor 1 com aresta externa, as arestas do triângulo incidentes a ele estarão saindo dele. Mas isso já impede um vértice de ter cor 0.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Pelo lema, u não pode ter a cor 1.

Como o vértice u pode ser qualquer vértice do triângulo, nenhum pode ter a cor 2.

Seja T_i , $i \ge 5$.

Seja u um vértice de grau 4.

Pelo lema, u não pode ter a cor 1.

Como o vértice u pode ser qualquer vértice do triângulo, nenhum pode ter a cor 2.

Portanto, precisamos da cor 3, sendo então $\vec{\chi}(T_i) \ge 3$.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Seja T_i , $i \le 4$.

A demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Árvores

Árvores

Esforço atualmente voltados para árvores.

Classes estudadas:

- Caterpillars
- Lobsters
- Árvores com "caminho central"

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\chi(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\chi(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) \le 3$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) \le 3$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) \le 3$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) \le 3$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \leq 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Conjectura

Baseado nos resultados, há a possibilidade de existir um inteiro k, tal que

$$\overrightarrow{\chi}(G) \leq k$$
,

para qualquer árvore.

Neste período de estudos, alguns resultados e observações valem ser ressaltados:

 Foi desenvolvido um programa que testa exaustivamente todas as possíveis orientações de G, com algumas otimizações.

Neste período de estudos, alguns resultados e observações valem ser ressaltados:

- Foi desenvolvido um programa que testa exaustivamente todas as possíveis orientações de G, com algumas otimizações.
- Foi estudado um artigo de programa inteira que relaxa a restrição de coloração, dando portanto uma cota inferior para $\vec{\chi}(G)$.

Neste período de estudos, alguns resultados e observações valem ser ressaltados:

- Foi desenvolvido um programa que testa exaustivamente todas as possíveis orientações de G, com algumas otimizações.
- Foi estudado um artigo de programa inteira que relaxa a restrição de coloração, dando portanto uma cota inferior para $\vec{\chi}(G)$.
- Mesmo tendo $\vec{\chi}(G) \leq \Delta(G)$, conseguimos uma cota superior constante para algumas classes específicas.

Neste período de estudos, alguns resultados e observações valem ser ressaltados:

- Foi desenvolvido um programa que testa exaustivamente todas as possíveis orientações de G, com algumas otimizações.
- Foi estudado um artigo de programa inteira que relaxa a restrição de coloração, dando portanto uma cota inferior para $\vec{\chi}(G)$.
- Mesmo tendo $\vec{\chi}(G) \leq \Delta(G)$, conseguimos uma cota superior constante para algumas classes específicas.
- Devido à dificuldade intrínseca do problema, não conseguimos ainda um algoritmo eficiente para determinar se $\vec{\chi}(G) \le p$, fixado $p \le \Delta(G)$ salvo testar várias possibilidades e tirar vantagem de simetrias.

Obrigado!

Colorações por orientações de grafos

Bolsista (PIBIC-UFRJ): Tiago Montalvão

Orientadora: Márcia Cerioli

19 de outubro de 2016

