Copper, Silver and Gold Alloys

Let us assume we are given the alloys M_1 , M_2 and M_3 , which are built of copper, silver and gold with the following percental proportions:

	M_1	M_2	M_3
Copper	20	70	50
Silver	60	10	50
Gold	20	20	0

Is it possible to mix these alloys to form a new alloy which consists of 40% copper, 50% silver and 10% gold.

Hint: Cast the problem into a linear system Ax = b.

Solution:

We want to find
$$M_4 = x_1 M_1 + x_2 M_2 + x_3 M_3$$
, so that $M_4 = \begin{pmatrix} 40 \\ 50 \\ 10 \end{pmatrix}$:

$$\begin{pmatrix} 20 & 70 & 50 & | & 40 \\ 60 & 10 & 50 & | & 50 \\ 20 & 20 & 0 & | & 10 \end{pmatrix} (II) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$(II)' = (III) - 3(I) \begin{pmatrix} 20 & 70 & 50 & | & 40 \\ 3 & -200 & -100 & | & -70 \\ 20 & 20 & 0 & | & 10 \end{pmatrix} (II)' \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$(III)' = (III) - (I) \begin{pmatrix} 20 & 70 & 50 & | & 40 \\ 3 & -200 & -100 & | & -70 \\ 1 & -50 & -50 & | & -30 \end{pmatrix} (II)' \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$(III)'' = (III)' - \frac{50}{200} (II)' \begin{pmatrix} 20 & 70 & 50 & | & 40 \\ 3 & -200 & -100 & | & -70 \\ 1 & \frac{1}{4} & -25 & | & -12,5 \end{pmatrix} (II)' \begin{pmatrix} 2 \\ 3 \\ (III)'' \end{pmatrix}$$

$$(III)'' \Rightarrow -25x_3 = -12,5 \Rightarrow x_3 = \frac{1}{2}$$

$$(III)'' \Rightarrow -25x_3 = -12,5 \Rightarrow x_3 = \frac{1}{2}$$

$$(III)' \Rightarrow -200x_2 - 100(\frac{1}{2}) = -70 \Rightarrow x_2 = -\frac{1}{200} (-70 + 50) = 0.1$$

$$(I) \Rightarrow 20x_1 + 70 \cdot 0, 1 + 50\frac{1}{2} = 40 \Rightarrow x_1 = \frac{1}{20}8 = 0,4$$

Answer: Yes!,
$$x = \begin{pmatrix} 0,4\\0,1\\0,5 \end{pmatrix}$$