# 习题解答2.1 ndarray 快速入门

这里是2.1节的习题。我们先在这里 import 所有需要用到的库。

```
import numpy as np
import pandas as pd

arr1 = np.load("data/1-task-arr1.npy")
arr2 = np.load("data/1-task-arr2.npy")

iris_df = pd.read_csv("data/iris.csv")
```

## 基础练习

1. 请创建形状为 (3, 4, 5) 的全0, 全1, 全2 数组.

```
shape = (3, 4, 5)

arr_0 = np.zeros(shape) # 全0 数组

arr_1 = np.ones(shape) # 全1 数组

arr_2 = np.full(shape, 2) # 全2 数组
```

2. 请创建长度为16的一维数组, 其中数据为 24,22,20,18...,-6.

```
arr = np.arange(24, -8, -2)
arr
```

```
array([24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0, -2, -4, -6])
```

3. 请获取数组 arr1 的维度、形状与数据类型.

```
print("维度:", arr1.ndim)
print("形状:", arr1.shape)
print("数据类型:", arr1.dtype)
```

```
维度: 5
形状: (1, 2, 3, 4, 5)
数据类型: datetime64[s]
```

4. 请获取 arr2 的简略字符串与详细字符串表示.

```
print("简略字符串:", str(arr2))
print("详细字符串:\n", repr(arr2))
```

5. 请计算将 arr2 中的每个元素加100的平方根后的数组, 并求出它的最大值、均值与标准差.

```
arr = np.sqrt(arr2 + 100)
print("最大值:", np.max(arr))
print("均值:", np.mean(arr))
print("标准差:", np.std(arr))
arr
```

最大值: 10.295630140987 均值: 10.173148676451225 标准差: 0.08394049570182746

```
array([[10.04987562, 10.09950494, 10.14889157],
[10.19803903, 10.24695077, 10.29563014]])
```

6. 请遍历 arr2 中的所有元素并存储到一个集合 set 中.

```
result = set()
for i in arr2.flat:
    result.add(i)
result
```

```
{np.float64(1.0),
    np.float64(2.0),
    np.float64(3.0),
    np.float64(4.0),
    np.float64(5.0),
    np.float64(6.0)}
```

7. 请获取一个数值为1~9,形状为(3,3)的数组,将其存储至 arr3中.

```
arr3 = np.arange(1,10).reshape(3,3)
arr3
```

8. 请计算 arr2 与 arr3 在第一个轴上的堆叠, arr2 在 arr3 之前.

```
np.concatenate((arr2, arr3), axis=0)
```

### 实战演练

这里我们使用了经典的鸢尾花数据集(Iris Dataset)。已知数组 iris\_arr 存储的是 iris\_df 的特征,即其中第2-5列的数据(按照顺序),数组 iris\_index 存储的是这四列的名称, iris\_target 存储的是目标特征,即 species 列中的数据。请完成下述问题。

```
iris_arr = iris_df.to_numpy()[:,1:5].astype(np.float64)
iris_index = iris_df.columns[1:5].to_list().copy()
iris_target = iris_df.to_numpy()[:, 5].copy()
iris_df.head()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

|   | Unnamed:<br>0 | sepal_length | sepal_width | petal_length | petal_width | species         |
|---|---------------|--------------|-------------|--------------|-------------|-----------------|
| 0 | 0             | 5.1          | 3.5         | 1.4          | 0.2         | Iris-<br>setosa |
| 1 | 1             | 4.9          | 3.0         | 1.4          | 0.2         | lris-<br>setosa |
| 2 | 2             | 4.7          | 3.2         | 1.3          | 0.2         | Iris-<br>setosa |

|   | Unnamed:<br>0 | sepal_length | sepal_width | petal_length | petal_width | species         |
|---|---------------|--------------|-------------|--------------|-------------|-----------------|
| 3 | 3             | 4.6          | 3.1         | 1.5          | 0.2         | lris-<br>setosa |
| 4 | 4             | 5.0          | 3.6         | 1.4          | 0.2         | lris-<br>setosa |

#### 1. 请计算每个特征的均值和方差

```
means = np.mean(iris_arr, axis=0)
variances = np.var(iris_arr, axis=0)

for col_name, mean, variance in zip(iris_index, means, variances):
    print(f"特征{col_name}的均值为:", mean)
    print(f"特征{col_name}的方差为:", variance)
```

#### 2. 请将 iris 数据标准化 (均值为0, 方差为1)

```
iris_arr = (iris_arr - means) / np.sqrt(variances)
iris_df.iloc[:, 1:5] = iris_arr
iris_df.head()
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|   | Unnamed: 0 | sepal_length | sepal_width | petal_length | petal_width | species     |
|---|------------|--------------|-------------|--------------|-------------|-------------|
| 0 | 0          | -0.900681    | 1.032057    | -1.341272    | -1.312977   | Iris-setosa |
| 1 | 1          | -1.143017    | -0.124958   | -1.341272    | -1.312977   | Iris-setosa |
| 2 | 2          | -1.385353    | 0.337848    | -1.398138    | -1.312977   | Iris-setosa |

|   | Unnamed: 0 | sepal_length | sepal_width | petal_length | petal_width | species     |
|---|------------|--------------|-------------|--------------|-------------|-------------|
| 3 | 3          | -1.506521    | 0.106445    | -1.284407    | -1.312977   | Iris-setosa |
| 4 | 4          | -1.021849    | 1.263460    | -1.341272    | -1.312977   | Iris-setosa |

#### 3. 请计算每个类别的平均特征值

```
unique_classes = np.unique(iris_target)
class_means = {}

for cls in unique_classes:
    class_data = iris_arr[iris_target == cls]
    class_means[cls] = np.mean(class_data, axis=0)

print("每个类别的平均特征值:")
for class_name, mean_values in class_means.items():
    print(f"{class_name}: {mean_values}")
```

```
每个类别的平均特征值:
Iris-setosa: [-1.01457897 0.84230679 -1.30487835 -1.25512862]
Iris-versicolor: [ 0.11228223 -0.65718442 0.28508673 0.16740892]
Iris-virginica: [ 0.90229674 -0.18512237 1.01979162 1.08771971]
```