Sensor Network for Smart Agriculture

Jiří Maňák

May 28, 2024

Live Demo

(or visit the link)

Motivation

Goals

Generic LoRa Module

- Design the PCBA
- ► Implement OTA update
- Validate wireless performance

Soil Moisture Sensor

- Find suitable form–factor
- Design measurement circuit
- Design power management

Implement and Test the MVP

STDES-WL5U4ILH

Nucleo-WL55JC

- ► STM32WLE5CC
- ▶ 868 MHz, 13 dBm
- ► 20.32 × 22.48 mm

- ▶ 1 MB FLASH
- ▶ 2.3-3.5 V
- ▶ 16 IO pins

Existing solution?

Seeed Studio Wio-E5

My LoRa Module

Firmware

Over The Air Update

Page 36, Figure 4.9

Soil Moisture Sensor

- PCB construction
- ▶ 4 capacitive zones (15 cm total depth)
- Solar powered

Sensor electronics

Sensor active area

Soil Moisture Sensor

Soil Moisture Sensor

manakjiri.cz/thesis

Live Demo

(or visit the link)

Thank You

- 2.8–3.3 V nominal voltage range,
- low power design support for switchable power rails,
- ▶ target the EU868,
- wide temperature range
- minimize the amount of specialized hardware,
- support for OTA updates,
- integrated RF,
- host communication interface,
- minimal footprint,
- low cost.

Page 15, Section 3.2.3