From Last Time

- Permittivity (E) is the diagnostic physical property but electrical conductivity (o) plays an important role.
- Radiowaves propagate at different speeds in different materials:

 $v = \frac{\epsilon}{\sqrt{\epsilon_r}}$

Radiowaves attenuate (lose amplitude) while they propagate:

$$\frac{\text{Skin depth:}}{\delta \approx \begin{cases} 503\sqrt{\frac{1}{\sigma f}} & \text{for } \omega \varepsilon \ll \sigma \\ 0.0053\frac{\sqrt{\varepsilon_r}}{\sigma} & \text{for } \sigma \ll \omega \varepsilon \end{cases}}$$

From Last Time

 Radiowaves reflect at boundaries where the velocity/dielectric permittivity changes:

$$R = \frac{\text{Reflected Amplitude}}{\text{Incident Amplitude}} = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$

- Conductors are large reflectors of radiowaves
- Snell's law applies to GPR:

$$rac{\sin\! heta_1}{V_1} = rac{\sin\! heta_2}{V_2}$$

$$\sqrt{arepsilon_1} \sin\! heta_1 = \sqrt{arepsilon_2} \sin\! heta_2$$

Outline

- Common survey configurations and some applications
- The source wavelet signal
- Resolution
- GPR App
- Probing distance
- Sources of Noise

Geometrical Spreading

- As the wave front travels, it spreads geometrically
- The rate of geometrical spreading depends on the velocity
- Spreading causes the radiowave to lose amplitude

$$\frac{|\mathbf{A}|}{|\mathbf{A_0}|} \propto \frac{1}{R}$$

Radargram

Model

Radargram

2) Direct Ground Wave

Travel Time:

$$t_{air} = rac{x}{c}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$c=3.00 imes10^8$$
 m/s

Model

Radargram

2) Direct Ground Wave

Travel Time:

$$t_{air} = rac{x}{c}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$c=3.00 imes10^8$$
 m/s

Model

Radargram

3) Reflected Wave

Travel Time:

$$t_{ref}=rac{\sqrt{x^2+4h^2}}{V_1}$$

Model

Radargram

4) Refracted Wave

Travel Time:
$$t_c = \frac{x}{c} + \text{Constant}$$

$$V_1 < V_0$$

Can you recognize ray paths?

Survey and Data

Reading on the GPG:

https://gpg.geosci.xyz/content/GPR/GPR_survey_data.ht ml#

Common Offset Survey

- Tx-Rx distance is fixed
- Tx-Rx is moved for every shot
- Most common GPR survey
- Good for:
 - Finding horizontal interfaces
 - Locating discrete objects
- Zero offset survey has Tx-Rx coincident (same location)

Common Offset Survey

- Tx-Rx distance is fixed
- Tx-Rx is moved for every shot
- Most common GPR survey
- Good for:
 - Finding horizontal interfaces
 - Locating discrete objects
- Zero offset survey has Tx-Rx coincident (same location)

Zero Offset Survey: Finding Objects

- A thin pipe at x = 32 m and depth 8 m
- A block between xL and xR at 5 m depth

Zero Offset Survey: Finding Objects

Travel time for the pipe:

$$t_p=rac{2L_2}{V}=rac{2\sqrt{(x-x_p)^2+d^2}}{V}$$

where
$$t_p(x_p)=rac{2d}{V}$$

Zero Offset Survey: Finding Objects

For the block:

$$t_b = \left\{ egin{array}{ll} rac{2\sqrt{(x-x_L)^2+h^2}}{V} & ext{ for } & x < x_L \ rac{2h}{V} & ext{ for } & x_L \le x \le x_R \ rac{2\sqrt{(x-x_R)^2+h^2}}{V} & ext{ for } & x > x_R \end{array}
ight.$$

Finding Objects (Method 1)

Slope (red dashed): $\pm 2/V$

2) Get depth to object

Finding Objects (Method 2)

Using a point (blue dashed):

$$V=2\sqrt{rac{(x-x_p)^2}{t^2-t_0^2}}$$
 where $t_0=rac{2d}{V}$

- 1) Get velocity from a point on the curve
- 2) Get depth to object

Common Offset Survey: Dipping Layers

- Zero offset reflection is perpendicular to surface
- Can lead to underestimate of depth and slope of layer
- Can be corrected using migration correction (GPG)

Common Midpoint Survey

- Tx-Rx distance varies
- Midpoint between Tx-Rx is left constant
- Good for:
 - Finding horizontal interfaces

Common Midpoint Survey

 Travel time off same reflection point make a hyperbola:

$$t=\frac{2\big(x^2+d^2\big)^{1/2}}{V}$$

- Can use hyperbola to get velocity and layer depth
- Reading not hyperbola:Indicates uneven/dipping
 - indicates uneven/dippling interface

Transillumination Survey

- Tx and Rx are placed on opposing sides of a target.
- Sometimes many Tx and Rx
- Used for:
 - Structural integrity of mine shafts
 - Borehole surveys
 - Finding internal structures within objects

712 An introduction to applied and environmental geophysics

Recap Questions

Q: What is the most commonly used survey configuration?

Q: What kind of signatures do objects make in radargrams?

GPR Source Signal

Examine properties of the source pulse

GPR Source Signal: Wavelet

Wavelet

- Wavelet: A wave-like oscillation of short duration
- Bandwidth: Range of frequencies in the wavelet
- Pulse Width: Time-duration of wavelet
- Spatial Length: Wavelength of the wavelet
- Central Frequency: Operating frequency of GPR survey

Frequencies in Wavelet

GPR Source Signal: Wavelet

- Shorter pulse overall contain higher frequencies
- Spatial length increases as pulse length increases
- Shorter pulses contain a wider range of frequencies

GPR Source Signal: Spatial Length

 The spatial length (wavelength) of the GPR pulse is dependent on the central frequency and velocity

$$\lambda = rac{V}{f_c} = rac{c}{f_c \sqrt{arepsilon_r}}$$

 When the GPR signal at some frequency is transmitted across an interface, it can be stretched or contracted

Lower velocity

Shorter spatial length

Lower frequency

Larger spatial length

GPR Source Signal: Spatial Length

• Since $f_c = 1/\Delta t$, the spatial width is given by:

$$\lambda = V \, \Delta t = rac{c \, \Delta t}{\sqrt{arepsilon_r}}$$

Shorter pulse width

Higher frequencies

Shorter pulse length

Spatial Length: 2D Example

- Does the reflected signal coming up to the surface becomes stretched or contracted?
- Why is this?

Resolution of GPR Surveys

- Resolution: Smallest features which can be distinguished using the survey.
- Resolution depends on:
 - The frequency of the GPR signal
 - The physical properties of the ground
 - The dimensions and separations of features

Resolution of GPR Surveys: Layers

1/4 wavelength rule:

The thickness of a layer must be at least ¼ the wavelength of the GPR signal.

$$L>rac{c}{4f_c\sqrt{arepsilon_r}}=rac{c\Delta t}{4\sqrt{arepsilon_r}}$$

Resolution of GPR Surveys: Separation

- If objects are too close to one another:
 - The two way travel time is almost the same
 - The two returning wavelet signals will overlap
 - They will appear to be one object
- For zero offset survey

$$L>\sqrt{rac{V\,d}{2f_c}}$$

Antenna length

$$L \simeq \frac{\lambda}{2} = \frac{c}{2f_c}$$

Wavelenth: $\lambda = \frac{c}{f_c}$

Probing Distance (Depth of Investigation)

- Maximum depth at which GPR can be used to get information about subsurface
- Probing distance is approximation 3 skin depths:

Probing Distance (Depth of Investigation)

Generally decreases as frequency increases

Is lower for more conductive materials and non-dielectric

materials

Probing Distance vs. Resolution

- Want to find two buried tunnels.
- Using a zero offset survey configuration.
- Higher frequencies give better resolution
- Lower frequencies give larger probing distance

Radargram 200 MHz

- Little to no useful signal after 200 ns
- Can't see features from the tunnels

- Too much attenuation of signal
- Probing distance insufficient

Radargram 100 MHz

- Useful signals up to 300 ns
- See top of hyperbolas from tunnels

- Lower resolution
- Can see tunnels

Radargram 50 MHz

- Useful signals through 400 ns
- Well-defined hyperbolas from tunnels

- Lower resolution image
- Best frequency for what we want to observe

Recap of Material

 There is a compromise between resolution and probing distance:

Higher frequencies

Better resolution

Layers:
$$L>rac{c}{4f_c\sqrt{arepsilon_r}}=rac{c\Delta t}{4\sqrt{arepsilon_r}}$$
 Objects: $L>\sqrt{rac{V\,d}{2f_c}}$

$$L>\sqrt{rac{V\,d}{2f_c}}$$

Higher frequencies

Lower probing distance

GPR Applet

Recap Questions

Q: If a GPR signal contains more high frequency waves, is its pulse length longer or shorter?

$$f_c = rac{1}{\Delta t}$$

Q: How thick does a layer need to be for us to see it?

Q: What happens when objects are too close together?

Recap Questions:

Q: Does probing distance increase/decrease as frequency increases?

$$f_c = rac{1}{\Delta t}$$

Q: What are some things you want to know before choosing an operating frequency?

Source of noise

Any signal which interferes from useful signals from GPR targets.

Examples:

- External radiowave sources
- Above ground objects
- Ringing
- Scattering

Interference from other Radiowave Sources

- Radio towers
- Cell phones
- Power Lines

Tx and Rx usually shielded to avoid these signals

Noise from Above Ground Objects

- Signals can reflect off neaby building and trees.
- Two-way travel time:

$$t=\frac{2\big(x^2+d^2\big)^{1/2}}{V}$$

 Makes hyperbolas in zero offset surveys

Noise from "Ringing"

Caused when signals reverberate in regular fashion

Signal repeatedly bounces within a layer or between objects.

Wire below surface

Noise from "Ringing"

- Caused when signals reverberate in regular fashion
- Signal repeatedly bounces within a layer or between objects.

Wire below surface

2 nearby objects

Noise from Scattering

Deviations in signal path due to localized non-uniformities.

Reduces amplitude of usable signal and increases noise.

End of GPR lecture 2