Department of Mathematics School of Advanced Sciences

MAT 1011 – Calculus for Engineers (MATLAB) Experiment 4–B

Triple Integrals

Triple integrals enable us to solve more general problems such as to calculate the volumes of three – dimensional shapes, the masses and moments of solids of varying density, and the average value of a function over a three –dimensional region.

The triple integral of f(x, y, z) over the region D is given by

$$\iiint_D f(x, y, z) dV$$

where the region *D* is bounded by the surfaces x = a, x = b, $y = \psi_1(x)$ to $y = \psi_2(x)$, $z = \phi_1(x, y)$ to $z = \phi_2(x, y)$.

Hence

$$\iiint\limits_D f(x,y,z)dV = \int\limits_a^b \int\limits_{\psi_1(x)}^{\psi_2(x)} \int\limits_{\phi_1(x,y)}^{\phi_2(x,y)} f(x,y,z)dzdydx.$$

Similarly when the region D is bounded by the surfaces y = c, y = d, $x = \psi_1(y)$ to $x = \psi_2(y)$, $z = \phi_1(x, y)$ to $z = \phi_2(x, y)$.

Hence

$$\iiint\limits_D f(x,y,z)dV = \int\limits_a^b \int\limits_{\psi_1(y)}^{\psi_2(y)} \int\limits_{\phi_1(x,y)}^{\phi_2(x,y)} f(x,y,z)dzdxdy.$$

Volume using Triple Integral

The volume of a closed, bounded region D in space is given by

$$V = \iiint\limits_{D} dV$$

Syntax for evaluation of triple integral:

int(int(int(f,z,za,zb),y,ya,yb),x,xa,xb)

or

I=int(int(int(f,z,za,zb),x,xa,xb),y,ya,yb)

Syntax for visualization of region bounded by the limits of integration:

viewSolid(z,za,zb,y,ya,yb,x,xa,xb)

viewSolidone(z,za,zb,xa,xb,y,ya,yb)

Example 1. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

```
clear
clc
syms x y z
xa=-2;
xb=2;
ya=-sqrt(2-x^2/2);
yb=sqrt(2-x^2/2);
za=x^2+3*y^2;
zb=8-x^2-y^2;
I=int(int(int(1+0*z,z,za,zb),y,ya,yb),x,xa,xb)
viewSolid(z,za,zb,y,ya,yb,x,xa,xb)
```

Output

$$I = 8*pi*2^{(1/2)}$$

Example 2. Find the volume of the region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane z = 3.

The limits of integration are z = 0 to 3 - x, $x = -\sqrt{4 - y}$ to $\sqrt{4 - y}$, y = -2 to 2.

```
clear
clc
syms x y z
ya=-2;
yb=2;
xa=-sqrt(4-y^2);
xb=sqrt(4-y^2);
za=0+0*x+0*y;
zb=3-x-0*y;
I=int(int(int(1+0*z,z,za,zb),x,xa,xb),y,ya,yb)
viewSolidone(z,za,zb,x,xa,xb,y,ya,yb)
```

Output

Example 3. Find the volume of the region in the first octant bounded by the coordinate planes, the plane y = 1 - x, and the surface $z = \cos(\pi x/2)$, $0 \le x \le 1$.

The limits of integration are z = 0 to $\cos(\pi x/2)$, y = 0 to 1 - x, x = 0 to 1.

```
clear
clc
syms x y z real
xa=0;
xb=1;
ya=0+0*x;
yb=1-x;
za=0*x+0*y;
zb=cos(pi*x/2)+0*y;
I=int(int(i+0*z,z,za,zb),y,ya,yb),x,xa,xb)
viewSolid(z,za,zb,y,ya,yb,x,xa,xb)
```

Output.

I =
4/pi^2

Exercise.

- 1. Find the volume of the region bounded between the planes x + y + 2z = 2 and 2x + 2y + z = 4 in the first octant.
- 2. Find the volume of the region cut from the solid elliptical cylinder $x^2 + 4y^2 \le 4$ by the xy plane and the plane z = x + 2.
- 3. The finite region bounded by the planes z = x, x + z = 8, z = y, y = 8 and z = 0.