

PERTEMUAN 2

RELASI DAN FUNGSI

Relasi

Hubungan antara elemen himpunan dengan elemen himpunan lain disebut dengan relasi.

Misalkan variabel x dan y adalah bilangan real dalam interval tertutup [x₁,x₂] dan [y₁,y₂] maka:

$$XxY = \{ (x_1,y_1),(x_1,y_2),(x_2,y_1),(x_2,y_2) \}$$

$$YxX = \{ (y_1,x_1),(y_1,x_2),(y_2,x_1),(y_2,x_2) \}$$

$$XxX = \{ (x_1,x_1),(x_1,x_2),(x_2,x_1),(x_2,x_2) \}$$

$$YxY = \{ (y_1,y_1),(y_1,y_2),(y_2,y_1),(y_2,y_2) \}$$

Grafik Relasi

Maka relasi R antara elemen-elemen dalam himpunan X dan himpunan Y adalah:

$$R \subseteq XxY$$

Relasi demikian disebut relasi binary, karena elemen dalam R terdiri dari pasangan 2 himpunan

PEMAPARAN Relasi dengan koordinat

PEMAPARAN KOORDINAT misalkan :

R = {(Microsoft, Win), (IBM,OS/2), (Mac,MacOs)}

Pemaparan Relasi dengan Matrik dan Pemetaan PEMAPARAN MATRIKS

IBM

Mac

	()
MacOS	0	0	1
OS/2	0	1	0
Win	1	0	0

Micro

PEMAPARAN PEMETAAN

Pemaparan Relasi dengan Graph berarah

PEMAPARAN GRAPH BERARAH

Aturan-aturannya sbb:

- Setiap anggota himpunan X digambarkan dengan lingkaran
- b. Garis berarah antar lingkaran menggambarkan adanya relasi antara anggota himpunan.

Contoh:

a₁ prasyarat tuk semua

a₃ prasyarat a₅ dan a₆

a₆ bukan prasyarat tuk semua

OPERASI DALAM RELASI BINARY

INVERS RELASI (R⁻¹)

Didefinisikan dengan menukar susunan anggota disemua pasangan yang ada dalam relasi, jadi Jika R : $X \rightarrow Y$, maka $R^{-1} : Y \rightarrow X$

KOMPOSISI RELASI

Operasi mengkombinasikan 2 buah relasi binary yang cocok dan menghasilkan sebuah relasi binary yang baru.

P: $X \rightarrow Y$ dan Q: $Y \rightarrow Z$ dimana Y di P harus sama dengan di Q relasi P ke Q atau PoQ, didefinisikan sebagai relasi: R: $X \rightarrow Z$

Komposisi relasi dengan himpunan

Sifat – sifat Relasi Biner

Refleksif (*reflexive*)
 relasi R pada himp. A disebut reflesif jika (a,a) ∈R untuk
 setiap a ∈ A

Contoh:

misalkan A={1,2,3} dan relasi R di bawah ini didefinisikan pada himpunan A, maka

a.
$$R = \{(1,1),(1,3),(2,1),(2,2),(3,3)\}$$
 refleksif

b.
$$R = \{(1,1),(1,3),(2,1),(2,2)\}$$
 Tidak refleksif

Relasi biner symetric

Setangkup (symmetric)
 relasi R pada himp. A disebut setangkup jika untuk semua
 a, b ∈ A, jika (a, b) ∈ R, maka (b,a) ∈ R

Contoh:

Misalkan A={1,2,3} dan relasi R di bawah ini didefinisikan pada himpunan A, maka

```
a. R = \{(1,1),(1,2),(2,3),(2,1),(3,2)\} ... setangkup
```

- b. $R = \{(1,1),(1,2),(2,3),(2,1),(3,3)\}$...tak setangkup
- Menghantar (transitive)
 Relasi R pada himpunan A disebut transitif jika (a,b) ∈ R dan (b,c) ∈ R maka (a,c) ∈ R untuk a,b,c ∈ R

Contoh Relasi Biner Symetric

Contoh:

Misalkan A={1,2,3,4} dan relasi R di bawah ini didefinisikan pada himpunan A, maka

a.
$$R = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$$
 ...transitif

Pas	Pasangan berbentuk			
(a,b)	(b,c)	(a,c)		
(3,2)	(2,1)	(3,1)		
(4,2)	(2,1)	(4,1)		
(4,3)	(3,1)	(4,1)		
(4,3)	(3,2)	(4,2)		

Contoh Relasi Biner Symetric dan Mengkombinasikan Relasi

b. $R = \{(1,1),(2,3),(2,4),(4,2) \dots \text{ tidak transitif } \}$ Mengkombinasikan Relasi

Jika R₁ dan R₂ masing-masing adalah relasi dari himp. A ke himp. B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 - R_2$, $R_1 \oplus R_2$ juga relasi.

Contoh:

Misalkan A={a,b,c} dan B={a,b,c,d}. Relasi R₁ = $\{(a,a),(b,b)(c,c)\}\ dan\ relasi\ R_2 = \{(a,a),(a,b),(a,c),(a,d)\}$ adalah relasi dari A ke B. kombinasi relasi-relasi tersebut bisa berupa:

$$R_1 \cap R_2 = \{(a,a)\}\$$

 $R_1 \cup R_2 = \{(a,a),(b,b),(c,c),(a,b),(a,c),(a,d)\}\$

Contoh kombinasi relasi dengan matrik

$$R_1$$
- R_2 = {(b,b),(c,c)}

$$R_1 \oplus R_2 = \{(b,b),(c,c),(a,b),(a,c),(a,d)\}$$

Jika relasi R₁dan R₂ masing-masing dinyatakan dengan matriks M_{R1}dan M_{R2}, maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah

$$M_{R1 \cup R2} = M_{R1} \vee M_{R2} \text{ dan } M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$$

$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad dan \qquad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

maka matriks yang menyatakan $R_1 \cup R_2$ dan $R_1 \cap R_2$

adalah:
$$M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 dan $M_{R1} \land M_{R2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}^2$

Relasi n-er (n-ary relation)

Tabel 1 PEMAIN

Nomor ID	Nama	Posisi	Umur
22012	Johnson	c	22
93831	Glover	Of	24
58199	Batty	p	18
84341	Cage	c	30
01180	Homer	1b	37
26710	Score	p	22
61049	Johnson	Of	30
39826	Singleton	2b	31

Penyajian dalam bentuk pasaangan himpunan

```
Tabel 1 bisa dinyatakan sebagai himpunan pasangan: {(22012,johnson,c,22),(93831,glover,0f,24),..., (39826,singleton,2b,31)}
```

dari 4-tupel.

- Basis data(database) merupakan kumpulan catatan yang dimanipulasi oleh komputer.
- Sistem manajemen basis data(database management system) merupakan program yang membantu pemakai mengakses informasi dalam basis data.
- Model basis data relasional yang ditemukan oleh E.F Codd pada tahun 1970, didasarkan pada konsep relasi n-er.

- Istilah-istilah dalam basis data relasional dan operasi relasinya
- Kolom-kolom dari *relasi n-er* disebut atribut(*attribute*)
- Daerah asal atribut adalah himpunan dimana semua

Istilah-istilah dalam basis data relasional

- Atribut tunggal atau kombinasi atribut bagi sebuah relasi merupakan kunci(key) jika nilai-nilai atribut secara unik mendefinisikan sebuah n-tupel
- Sistem manajemen basis data menjawab perintahperintah(queries).

Operasi-operasi pada relasi dalam model basis data relasional

1. Seleksi

Operasi ini memilih *n*-tupel tertentu dari suatu relasi. Pilihan dibuat dengan persyaratan pada atribut.

Contoh operasi relasi dalam basis data

Contoh1:

Relasi Pemain dari tabel 1.

PEMAIN [Posisi = c]

Akan memilih tupel: (22012,johnson,c,22), (84341,Cage,c,30)

Operasi menampilkan pasangan terurut mahasiswa yang mengambil matkul SIM.

σMK= "SIM" (MHS)

Notasi relasi dan operasi Proyek Notasi Operasi Relasi Tabel MHS

Notasi Operator Seleksi (σ)

NIM	Nama	MK
135011	Adi	SIM
135011	Adi	OR
135015	Irma	SIM
135032	Rani	PTI

2. Proyek

Operator proyek memilih kolom. Sebagai tambahan pengulangan akan dihilangkan.

Contoh 2.PEMAIN[Nama,Posisi]

Akan memilih tupel : (Johnson,c), (Glover,of), (Batty,p),...,

(Singleton,2b)

Notasi Proyek

Notasi Operator Proyek (Π)

Tabel MHS

NIM	Nama	MK
135011	Adi	SIM
135011	Adi	OR
135015	Irma	SIM
135032	Rani	PTI

Contoh:

Notasi operasi proyeksi memilih kolom nama pada tabel MHS.

$$\Pi_{\text{Nama}}$$
 (MHS)

Operasi Gabungan

3. Gabungan

Operasi seleksi dan proyek memanipulasi relasi tunggal; gabungan memanipulasi dua relasi. Operasi gabungan pada R_1 dan R_2 mengawali dengan menguji semua pasangan dari tupel, satu dari R_1 dan satu dari R_2 jika persyaratan gabungan dipenuhi, tupel-tupel akan dikombinasikan untuk membentuk tupel baru. Persyaratan gabungan menjelaskan hubungan antara atribut di R_1 dan atribut di R_2 .

Contoh 3. (operasi gabungan tabel 1 dan 2)

Dengan persyaratan misal: Nomor ID = PID

Penyajian tabel yang akan digabungkan

Tabel 1 PEMAIN

Nomor ID	Nama	Posisi	Umur
22012	Johnson	c	22
93831	Glover	Of	24
58199	Batty	p	18
84341	Cage	c	30
01180	Homer	1b	37
26710	Score	p	22
61049	Johnson	Of	30
39826	Singleton	2b	31

Tabel 2. PENEMPATAN

PID	Tim
39826	Biru
26710	Merah
58199	Jingga
01180	Merah

Penyajian tabel yang telah digabungkan

Tabel 3. PeEMAIN [Nomor ID = PID] PENEMPATAN

Nomor ID	nama	Posisi	Umur	Tim
58199	Batty	p	18	Jingga
01180	Homer	1b	37	Merah
26710	Score	p	22	Merah
39826	singleton	2b	31	Biru

Notasi gabungan atau join

Notasi operasi Join (τ)

Operasi join menggabungkan dua buah tabel menjadi satu bila kedua tabel mempunyai atribut yang sama.

Contoh:

Misalkan relasi MHS1 dan relasi MHS2 bila digabungkan maka notasi operasinya adalah:

τ _{NIM,Nama} (MHS1,MHS2)

Tabel soal yang diketahui

Tabel MHS1

1HS2

NIM	Nama	JK
13598001	Hananto	L
13598002	Guntur	L
13598004	Heidi	W
13598006	Harman	L
13598007	Karim	L

\square 1 1	T	•
Tahel	- 1	01n
Tabel	J	OIII

NIM	Nama	Matkul	Nilai
13598001	Hananto	SIM	Α
13598001	Hananto	DBMS	В
13598004	Heidi	PTI	В
13598006	Harman	Statistik	С
13598006	Harman	OR	А
13598009	Yeni	Alin	В

NIM	Nama	JK	Matkul	Nilai
13598001	Hananto	L	SIM	Α
13598001	Hananto	L	DBMS	В
13598004	Heidi	W	PTI	В
13598006	Harman	L	Statistik	С
13598006	Harman	L	OR	Α

Tabel relasi 1

 Nyatakan relasi yang diberikan oleh tabel berikut sebagai himpunan dari n-tupel

ID	Nama	Manajer
1089	Budi	Zamora
5624	Candra	Ivan
9843	Herman	Rudi
7610	Rian	Irwan

2. Nyatakan relasi yang diberikan oleh tabel berikut sebagai himpunan dari n-tupel

Dept.	Manajer
23	Zamora
10	Rudi
12	Irwan

■ www.bsi.ac.id

Tabel relasi 2

3. Nyatakan relasi yang diberikan oleh tabel berikut sebagai himpunan dari n-tupel

Dept	No.Barang	banyaknya
23	23a	200
10	33c	45
23	500	56
25	11	150

4. Nyatakan relasi yang diberikan oleh tabel berikut sebagai himpunan dari n-tupel

Nama	No.Barang
United supplies	33c
ABC Limited	23a
ABC Limited	11
JCN Electronics	500

Untuk soal 5-8 tulislah serangkaian operasi relasi untuk menjawab permintaan. Juga berikanlah jawaban untuk permintaan tersebut.

- Carilah nama-nama semua pekerja (jangan sertakan nama manajer)
- 6. Carilah semua nomor produk
- 7. Carilah semua produk yang dipasok oleh departemen 23
- 8. Carilah nomor produk dari produk-produk yang menangani paling sedikit 50 jenis barang.

FUNGSI

FUNGSI

- adalah bentuk khusus dari relasi. Definisi fungsi adalah sebagai berikut:
- > Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika untuk setiap elemen a di dalam A (disebut daerah asal/domain) terdapat satu elemen tunggal b di dalam B (disebut daerah hasil/range/codomain) sedemikian sehingga (a,b)∈f. Kita tulis f(a)=b. Jika f adalah fungsi dari A ke B, kita menuliskan f : A \rightarrow B yang artinya f memetakan A ke B.

Contoh:

- 1. Diketahui $A = \{1, 2, 3\}$ dan $B = \{u, v, w\}$ maka
- $f = \{(1,u), (2,v), (3,w)\}$ adalah fungsi dari A ke B karena setiap anggota A memiliki satu kawan di B

Macam-macam jenis Fungsi

Macam – macam fungsi

Fungsi satu ke satu (one-to-one)
 jika tidak ada dua elemen himpunan A yang memiliki bayangan yang sama, dengan kata lain jika a dan b adalah anggota himpunan A maka f(a) ≠ f(b) bilamana a ≠ b.

Contoh:

 $F = \{(1,w), (2,u), (3,v)\}$ dari $A = \{1,2,3\}$ ke $B = \{u,v,w,x\}$ adalah fungsi satu ke satu

2. Fungsi pada (onto)

jika setiap himpunan b merupakan bayangan dari satu atau lebih elemen himpunan A, dengan kata lain fungsi f adalah apa bila semua elemen B merupakan daerah hasil dari f.

Contoh penerapan fungsi dan latihan

Contoh:

F = {(1,w),(2,u),(3,v)} dari A={1,2,3} ke B={u,v,w} merupakan fungsi pada, karena semua elemen B termasuk ke dalam daerah hasil f.

Latihan:

Selidiki jenis fungsi atau bukan, fungsi satu-ke-satu atau bukan, fungsi pada atau bukan.

- 1. $A=\{1,2,3,4\}$ dan $B=\{u,v,w\}$ diberikan $f=\{(1,u),(2,v),(3,w)\}$
- 2. $A=\{1,2,3\}$ dan $B=\{u,v,w\}$ diberikan $f=\{(1,u),(1,v),(2,v),(3,w)\}$
- 3. $A=\{1,2,3\}$ dan $B=\{u,v,w,x\}$ diberikan $f=\{(1,w),(2,u),(3,v)\}$
- 4. $A=\{1,2,3\}$ dan $B=\{u,v,w\}$ diberikan $f=\{(1,u),(2,u),(3,v)\}$
- 5. $A=\{1,2,3\}$ dan $B=\{u,v,w\}$ diberikan $f=\{(1,u),(2,w),(3,v)\}$

SOAL-SOAL LATIHAN

Soal 1 dan 2

1.Hubungan antara elemen himpunan dengan elemen himpunan lain disebut......

a. Fungsi d. Proyeksi

b. Himpunan e. Join

c. Relasi

2. Yang merupakan bentuk pemaparan relasi adalah......

a. Koordinat d. Graf berarah

b. Matrik e. semua benar

c. Pemetaan

Soal 2 dan 3

- 2. Yang merupakan bentuk pemaparan relasi adalah......
 - a. Koordinat d. Graf berarah
 - b. Matrik e. semua benar
 - c. Pemetaan

- 3. Misal A= { 1, 2, 3} dan R= { (1,1), (1,2), (2,2), (2,3), (3,3)} meenuhi sifat relasi.....
 - a. Refleksif d. Selection
 - b. Symetric e. Proyeksi
 - c. Transitif

Soal 3 dan 4

- 3. Misal A= { 1, 2, 3} dan R= { (1,1), (1,2), (2,2), (2,3), (3,3)} meenuhi sifat relasi......
 - a. Refleksif d. Selection
 - b. Symetric e. Proyeksi
 - c. Transitif
- 4. Notasi operator memilih kolom dalam suatu tabel adalah.....
 - **a.** τ

b. Π

C. σ

d. μ

e. ρ

Soal 4 dan 5

- 4. Notasi operator memilih kolom dalam suatu tabe adalah.....
 - a. τ
- **b**. Π

- **C.** σ
- **d.** μ
- **e.** ρ
- 5. Suatu relasi dimana tidak ada dua elemen himpunan asal yang memiliki bayangan yang sama disebut......
 - a. Relasi

d. One to one

b. Fungsi

e. Himpunan

c. Onto

Soal 5 dan 1

5. Suatu relasi dimana tidak ada dua elemen himpunan asal yang memiliki bayangan yang sama disebut......

a. Relasi

d. One to one

b. Fungsi

e. Himpunan

c. Onto

1.Hubungan antara elemen himpunan dengan elemen himpunan lain disebut......

a. Fungsi

d. Proyeksi

b. Himpunan

e. Join

c. Relasi