Lab 3 Basic: Lights Out

Objective

1. Getting familiar with the LEDs, clock designs, and finite-state machines in Verilog.

Action Items

1 Lab3_basic.v (100%)

In this lab, you must design a game called "Lights Out." This game must be controlled by a finite-state machine (FSM) which controls the LEDs based on the switches.

a. I/O list

1/0	Connected to	Definition
clk	W5	Clock signal with the frequency of 100MHz
rst	SW15	Asynchronous positive reset signal, resetting the FSM to the INITIAL state
restart	SW14	Restarting the game from the FINISH state to the INITIAL state
SW[9:0]	SW9~SW0	Controlling the LEDs
led[9:0]	LD9~LD0	Lighting up or turning off the LEDs based on the control of the switches

b. Finite state machine (FSM)

The FSM may consist of an **INITIAL** state to initialize the game, a **PLAYING** state that allows the user to turn on or turn off the light, and after finishing the game, the FSM will enter a **FINISH** state, and the LEDs will keep flashing until the state of FSM is switched. You can design your own variant instead. However, the clock rate of the FSM must be **100MHZ/2**¹⁰. Note that in any state, when the rst == 1 (following the positive edge), the FSM will reset to the INITIAL state. When the rst goes back to 0, the FSM will operate normally.

✓ INITIAL state

- When entering this state, the FSM will switch to the **PLAYING** state at the next cycle if the restart is 0.
- In this state, the **LD9~LD0** should be as the pattern below. The LEDs in the **INITIAL** state:

LD9	$\overline{}$		$\bigcirc\bigcirc$		$)\bigcirc ($	\bigcirc	LD0
(: LED	on,	\bigcirc	: LE	D of	f)

✓ PLAYING state

- The restart is unfunctional in this state.
- In this state, when you toggle the switch, the adjacent LEDs will toggle between on and off.

EX:

- If the LEDs are all off, the FSM will enter the FINISH state.
- For the demo, you **must** set the initial LED pattern to:

Note: if you don't follow this rule, you won't the score of this part.

- ✓ FINISH state
 - When entering this state, the LD9~LD0 will keep flashing in the rate of 100MHZ/2²⁷ even if the switches are toggled.
 - The switches for SW[9:0] are unfunctional in this state.
 - The FSM can return to the **INITIAL** state by setting the **restart** to 1.
- c. You have to use the following template for your design:

```
module lab3_basic (
    input wire clk,
    input wire rst,
    input wire restart,
    input wire [9:0] SW,
    output reg [9:0] led
    );

/* Note that output ports can be either reg or wire.
    * It depends on how you design your module. */
    // add your design here
endmodule
```

Attention

 \checkmark DO NOT copy-and-paste code segments from the PDF materials. It may also paste

- invisible non-ASCII characters, leading to hard-to-debug syntax errors.
- ✓ If you have two or more modules used for any specific lab, merge them into one Verilog file before the submission.
- ✓ You should submit one source files, **lab3.v**. Upload source file individually to its corresponding OJ problem. DO NOT hand in any compressed ZIP files, which will be considered an incorrect format.