Online appendix for the paper

On the Stable Model Semantics for Intensional Functions

published in Theory and Practice of Logic Programming

Michael Bartholomew and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
(e-mail: {mjbartho, joolee}@asu.edu)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Completion and the Cabalar Semantics

The following definitions are from (Bartholomew and Lee 2013).

We say that a formula F is in *Clark normal form* (relative to a list c of intensional constants) if it is a conjunction of sentences of the form

$$\forall \mathbf{x}(G \to p(\mathbf{x})) \tag{A1}$$

and

$$\forall \mathbf{x} y (G \to f(\mathbf{x}) = y) \tag{A2}$$

one for each intensional predicate p and each intensional function f, where \mathbf{x} is a list of distinct object variables, y is an object variable, and G is an arbitrary formula that has no free variables other than those in \mathbf{x} and y.

The *completion* of a formula F in Clark normal form (relative to c) is obtained from F by replacing each conjunctive term (A1) with

$$\forall \mathbf{x}(p(\mathbf{x}) \leftrightarrow G)$$

and each conjunctive term (A2) with

$$\forall \mathbf{x} y (f(\mathbf{x}) = y \leftrightarrow G).$$

An occurrence of a symbol or a subformula in a formula F is called *strictly positive* in F if that occurrence is not in the antecedent of any implication in F. The *dependency graph* of F (relative to \mathbf{c}) is the directed graph that

- has all members of c as its vertices, and
- has an edge from c to d if, for some strictly positive occurrence of $G \to H$ in F,
 - c has a strictly positive occurrence in H, and
 - d has a strictly positive occurrence in G.

We say that F is *tight* (on \mathbf{c}) if the dependency graph of F (relative to \mathbf{c}) is acyclic.

The following theorem relates the Cabalar semantics to completion, which follows immediately from Theorem 12 from (Bartholomew and Lee 2013) and Theorem 6.

Theorem 11

For any sentence F in Clark normal form that is tight on \mathbf{c} and any total interpretation I, if $I \models \exists xy (x \neq y)$, then $I \models_{\mathbb{P}} \mathrm{CBL}[F; \mathbf{c}]$ iff $I \models \mathrm{SM}[F; \mathbf{c}]$ iff I is a model of the completion of F relative to \mathbf{c} .

Appendix B Review of the Balduccini Semantics

The following is a review of the Balduccini semantics. Let us restrict a signature σ to be comprised of a set of *intensional* function and predicate constants denoted **c** as well as a set of *non-intensional* object constants $\sigma \setminus \mathbf{c}$.

Balduccini considered *terms* to have the form $f(c_1,\ldots,c_k)$ where f is an intensional function constant (in \mathbf{c}), and each c_i is a non-intensional object constant (in $\sigma \setminus \mathbf{c}$). He considered an *atom* to be an expression $p(c_1,\ldots,c_k)$ where p is an intensional predicate constant, and each c_i is a non-intensional object constant; a *t-atom* is an expression of the form f=g where f is a term and g is either a term or a non-intensional object constant; a *seed t-atom* is a t-atom of the form f=c where c is a non-intensional object constant. A *t-literal* is a t-atom f=g or c0, where c1 denotes strong negation. A *seed literal* is an atom a2, or a3, or a seed t-atom. A *literal* is an atom a3, or a4, or a t-literal. An ASPf5 program consists of rules of the form

$$h \leftarrow l_1, \dots, l_m, not \ l_{m+1}, \dots, not \ l_n$$
, (B1)

where h is a seed literal or \bot , and each l_i is a literal. An ASP $\{f\}$ program is a finite set of rules. We identify rule (B1) with an implication

$$l_1 \wedge \cdots \wedge l_m \wedge \neg l_{m+1} \wedge \cdots \wedge \neg l_n \rightarrow h$$
,

and an $ASP\{f\}$ program as the conjunction of all rules in it. Note that $ASP\{f\}$ programs do not contain variables, and can be viewed as a special case of head-c-plain formulas.

A set I of seed literals is said to be *consistent* if it contains no pair of an atom a and its strong negation $\sim a$; and contains no pair of seed t-atoms $t=c_1$ and $t=c_2$ such that $c_1 \neq c_2$. It is clear that any subset of a consistent set of seed literals is consistent as well.

The notion of satisfaction between a consistent set I of seed literals and literals, denoted by $\models_{\overline{b}}$, is defined as follows.

- For a seed literal $l, I \models l$ if $l \in I$;
- For a non-seed literal f = g, $I \models_{\overline{b}} f = g$ if I contains both f = c and g = c for some object constant c:
- For a non-seed literal $\sim (f=g)$, $I \models_{\overline{b}} \sim (f=g)$ if I contains both $f=c_1$ and $g=c_2$ for some object constants c_1 and c_2 such that $c_1 \neq c_2$.

This notion of satisfaction is extended to formulas allowing \land , \neg and \leftarrow as in classical logic.

The reduct of an ASP $\{f\}$ program Π relative to a consistent set I of seed literals is denoted $\Pi^{\underline{I}}$ and is defined as

$$\Pi^{\underline{I}} = \{ h \leftarrow l_1 \dots, l_m \mid (B1) \in \Pi \text{ and } I \models \neg l_{m+1} \wedge \dots \wedge \neg l_n \}.$$

I is called a *Balduccini answer set* of Π if

- $I \models \Pi^{\underline{I}}$, and,
- for every proper subset J of I, we have $J \not\models_{\overline{h}} \Pi^{\underline{I}}$.

Appendix C Proofs

C.1 Proof of Theorem 1

We will often use the following notation. Let σ be a first-order signature, let c be a set of constants that is a subset of σ , and let d be a set of constants not belonging to σ and is similar to c. 1 $J_{\rm d}^{\rm c}$ denotes the interpretation of signature $(\sigma \setminus \mathbf{c}) \cup \mathbf{d}$ obtained from J by replacing every constant from c with the corresponding constant from d. For two interpretations I and J of σ that agree on all constants in $\sigma \setminus c$, we define $J_{\mathbf{d}}^{\mathbf{c}} \cup I$ to be the interpretation from the extended signature $\sigma \cup \mathbf{d}$ such that

- $J_{\mathbf{d}}^{\mathbf{c}} \cup I$ agrees with I on all constants in \mathbf{c} ;
- $J_{\mathbf{d}}^{\mathbf{c}} \cup I$ agrees with $J_{\mathbf{d}}^{\mathbf{c}}$ on all constants in \mathbf{d} ;
- $J_{\mathbf{d}}^{\mathbf{c}} \cup I$ agrees with both I and J on all constants in $\sigma \setminus \mathbf{c}$.

Lemma 1

For any sentence F of signature σ and any interpretations I and J of σ ,

- (a) if $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models F^*(\mathbf{d})$, then $I \models F$;
- (b) if $\langle J, I \rangle \models_{\text{flut}} F$, then $\langle I, I \rangle \models_{\text{flut}} F$.

Proof. By induction on F.

Lemma 2

Let F be a sentence of signature σ , and let I and J be interpretations of σ such that $J <^{\mathbf{c}} I$. We have $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models F^*(\mathbf{d})$ iff $J \models gr_I[F]^{\underline{I}}$.

Proof. By induction on F.

Case 1: F is an atomic sentence. Then $F^*(\mathbf{d})$ is $F(\mathbf{d}) \wedge F$, where $F(\mathbf{d})$ is obtained from F by replacing the members of c with the corresponding members of d. Consider the following subcases:

- Subcase 1: $I \not\models F$. Then $J_{\mathbf{d}}^{\mathbf{c}} \cup I \not\models F^*(\mathbf{d})$. Further, $gr_I[F]^{\underline{I}} = \bot$, so $J \not\models gr_I[F]^{\underline{I}}$. Subcase 2: $I \models F$. Then $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models F^*(\mathbf{d})$ iff $J_{\mathbf{d}}^{\mathbf{c}} \models F(\mathbf{d})$ iff $J \models F$. Further, $gr_I[F]^{\underline{I}} = F$, so $J \models gr_I[F]^{\underline{I}}$ iff $J \models F$.

Case 2: F is $G \wedge H$ or $G \vee H$. The claim follows immediately from I.H. on G and H.

Case 3: F is $G \to H$. Then $F^*(\mathbf{d}) = (G^*(\mathbf{d}) \to H^*(\mathbf{d})) \land (G \to H)$. Consider the following subcases:

- Subcase 1: $I \not\models G \to H$. Then $J_{\mathbf{d}}^{\mathbf{c}} \cup I \not\models F^*(\mathbf{d})$. Further, $gr_I[F]^{\underline{I}} = \bot$, which J does not
- Subcase 2: $I \models G \to H$. Then $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models F^*(\mathbf{d})$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models G^*(\mathbf{d}) \to H^*(\mathbf{d})$. On the other hand, $gr_I[F]^{\underline{I}} = gr_I[G]^{\underline{I}} \to gr_I[H]^{\underline{I}}$ so this case holds by I.H. on G and H.

Case 4: F is $\exists x G(x)$. By I.H., $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models G(\xi^{\diamond})^*(\mathbf{d})$ iff $J \models gr_I[G(\xi^{\diamond})]^{\underline{I}}$ for each $\xi \in |I|$. The claim follows immediately.

Case 5: F is $\forall x G(x)$. Similar to Case 4.

¹ That is to say, **d** and **c** have the same length and the corresponding members are either predicate constants of the same arity or function constants of the same arity.

For any interpretations I and J of signature σ , we have $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models \mathbf{d} < \mathbf{c}$ iff $J <^{\mathbf{c}} I$.

Proof. Recall that by definition, d < c is

$$(\mathbf{d}^{pred} \le \mathbf{c}^{pred}) \land \neg (\mathbf{d} = \mathbf{c}),$$

and by definition, $J <^{\mathbf{c}} I$ is

- J and I have the same universe and agree on all constants not in c;
- $p^J \subseteq p^I$ for all predicate constants p in c; and
- J and I do not agree on c.

First, by the definition of $J_{\mathbf{d}}^{\mathbf{c}} \cup I$, J and I have the same universe and agree on all constants in $\sigma \setminus \mathbf{c}$.

Second, by definition, $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models \mathbf{d}^{pred} \leq \mathbf{c}^{pred}$ iff, for every predicate constant p in \mathbf{c} ,

$$J_{\mathbf{d}}^{\mathbf{c}} \cup I \models \forall \mathbf{x}(p(\mathbf{x})_{\mathbf{d}}^{\mathbf{c}} \to p(\mathbf{x})),^{2}$$

which is equivalent to saying that $(p_{\mathbf{d}}^{\mathbf{c}})^{J_{\mathbf{d}}^{\mathbf{c}} \cup I} \subseteq p^{J_{\mathbf{d}}^{\mathbf{c}} \cup I}$. Since I does not interpret any constant from \mathbf{d} , and $J_{\mathbf{d}}^{\mathbf{c}}$ does not interpret any constant from \mathbf{c} , this is equivalent to $(p_{\mathbf{d}}^{\mathbf{c}})^{J_{\mathbf{d}}^{\mathbf{c}}} \subseteq p^{I}$ and further to $p^{J} \subseteq p^{I}$.

Third, since I does not interpret any constant from \mathbf{d} and $J_{\mathbf{d}}^{\mathbf{c}}$ does not interpret any constant from \mathbf{c} , $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models \neg(\mathbf{d} = \mathbf{c})$ is equivalent to saying that J and I do not agree on \mathbf{c} .

Theorem 1 Let F be a first-order sentence of signature σ and \mathbf{c} be a list of intensional constants. For any interpretation I of σ , $I \models SM[F; \mathbf{c}]$ iff

- I satisfies F, and
- every interpretation J such that $J < {}^{\mathbf{c}} I$ does not satisfy $(gr_I[F])^{\underline{I}}$.

Proof. $I \models SM[F; \mathbf{c}]$ is by definition

$$I \models F \land \neg \exists \widehat{\mathbf{c}}(\widehat{\mathbf{c}} < \mathbf{c} \land F^*(\widehat{\mathbf{c}})). \tag{C1}$$

The first item, "I satisfies F", is equivalent to the first conjunctive term of (C1).

By Lemma 2 and Lemma 3, the second item, "no interpretation J of σ such that $J < {}^{\mathbf{c}} I$ satisfies $gr_I[F]^{\underline{I}}$ ", is equivalent to the second conjunctive term in (C1).

C.2 Proofs of Theorem 2 and Theorem 3

Recall the definition: $J \leq^{\mathbf{c}} I$ if

- J and I have the same universe and agree on all constants not in c;
- $p^J \subseteq p^I$ for all predicate constants in c; and
- $f^J(\xi) = u$ or $f^J(\xi) = f^I(\xi)$ for all function constants in **c** and all lists ξ of elements in the universe.

As before, let d be a list of constants that is similar to c and is disjoint from σ . The notion of $J_{\mathbf{d}}^{\mathbf{c}} \cup I$ is straightforwardly extended to the case when J and I are partial interpretations.

 $^{^2}$ $p(\mathbf{x})_{\mathbf{d}}^{\mathbf{d}}$ denotes the atom that is obtained from $p(\mathbf{x})$ by replacing p with the corresponding member of \mathbf{d} if $p \in \mathbf{c}$, and no change otherwise.

For any partial interpretations I and J of signature σ , we have $J \leq^{\mathbf{c}} I$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{d}} \mathbf{d} \leq \mathbf{c}$.

Proof. By the definition of $J_{\mathbf{d}}^{\mathbf{c}} \cup I$, J and I have the same universe and agree on all constants in $\sigma \setminus \mathbf{c}$, which is the first condition of $J \leq^{\mathbf{c}} I$.

Recall the definition: $\mathbf{d} \leq \mathbf{c}$ is

$$(\mathbf{d}^{pred} \leq \mathbf{c}^{pred}) \wedge (\mathbf{d}^{func} \leq \mathbf{c}^{func}).$$

 $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \mathbf{d}^{pred} \leq \mathbf{c}^{pred}$ iff, for every predicate constant p in \mathbf{c} ,

$$J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \forall \mathbf{x} (p(\mathbf{x})_{\mathbf{d}}^{\mathbf{c}} \to p(\mathbf{x})),$$

which is equivalent to saying that $(p_{\mathbf{d}}^{\mathbf{c}})^{J_{\mathbf{d}}^{\mathbf{c}} \cup I} \subseteq p^{J_{\mathbf{d}}^{\mathbf{c}} \cup I}$. Since I does not interpret any constant from d and $J_{\mathbf{d}}^{\mathbf{c}}$ does not interpret any constant from c, this is equivalent to $(p_{\mathbf{d}}^{\mathbf{c}})^{J_{\mathbf{d}}^{\mathbf{c}}} \subseteq p^{I}$ and further to $p^J \subseteq p^I$, which is the second condition of $J \leq^{\mathbf{c}} I$.

 $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbb{P}} (\mathbf{d}^{func} \leq \mathbf{c}^{func})$ iff, for every function constant f in \mathbf{c} ,

$$J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \forall \mathbf{x} ((f(\mathbf{x})_{\mathbf{d}}^{\mathbf{c}} \neq f(\mathbf{x})_{\mathbf{d}}^{\mathbf{c}}) \lor (f(\mathbf{x})_{\mathbf{d}}^{\mathbf{c}} = f(\mathbf{x}))),$$

which is equivalent to saying that $f^J(\xi) = u$ or $f^J(\xi) = f^I(\xi)$ for all ξ , the third condition of $J \prec^{\mathbf{c}} I$.

Lemma 5

For any partial interpretations I and J of signature σ , we have $J \prec^{\mathbf{c}} I$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{c}} \mathbf{d} \prec \mathbf{c}$.

Proof. Immediate from Lemma 4 since

- $J \prec^{\mathbf{c}} I$ iff $J \preceq^{\mathbf{c}} I$ and not $I \preceq^{\mathbf{c}} J$, and
- $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \mathbf{d} \prec \mathbf{c}$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \mathbf{d} \preceq \mathbf{c}$ and $J_{\mathbf{d}}^{\mathbf{c}} \cup I \not\models_{\mathbf{p}} \mathbf{c} \preceq \mathbf{d}$.

Lemma 6

For any sentence F of signature σ and any partial interpretations I and J of σ such that $J \leq^{\mathbf{c}} I$,

- (a) if $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} F^{\dagger}(\mathbf{d})$, then $I \models_{\mathbf{p}} F$; (b) if $\langle J, I \rangle \models_{\overline{\mathbf{pht}}} F$, then $\langle I, I \rangle \models_{\overline{\mathbf{pht}}} F$.

Proof. Each of (a) and (b) can be proved by induction on F.

We will show only the case when F is an atomic sentence. The other cases are straightforward: Part (a): Let F be an atomic sentence. Assume $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbb{R}} F^{\dagger}(\mathbf{d})$, i.e., $J \models_{\mathbb{R}} F$.

- Subcase 1: F is of the form $p(\mathbf{t})$. Since $J \leq^{\mathbf{c}} I$, it follows that $I \models_{\mathbf{p}} F$.
- Subcase 2: F is of the form $t_1 = t_2$. Since $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} F(\mathbf{d}), t_1^J = t_2^J \neq u$. From $J \leq^{\mathbf{c}} I$, it follows that $t_1^I = t_2^I \neq u$, i.e., $I \models_{\mathbb{R}} F$.

Part (b): Let F be an atomic sentence. Assume $\langle J, I \rangle \models_{\overline{\text{ph}}} F$, i.e., $\langle J, I \rangle$, $h \models_{\overline{\text{ph}}} F$

- Subcase 1: F is of the form $p(\mathbf{t})$. Since $J \preceq^{\mathbf{c}} I$, it follows that $\langle J, I \rangle, t \models_{\text{pht}} F$.
- Subcase 2: F is of the form $t_1 = t_2$. Since $\langle J, I \rangle$, $h \models_{\overline{pht}} F$, $t_1^J = t_2^J \neq u$. From $J \leq^{\mathbf{c}} I$, it follows that $t_1^I = t_2^I \neq u$, i.e., $\langle J, I \rangle, t \models_{\overline{Dht}} F$.

Let F be a sentence of signature σ , and let I and J be partial interpretations of σ such that $J \leq^{\mathbf{c}} I$. We have $J \models_{\overline{p}} gr_I[F]^{\underline{I}}$ iff $\langle J, I \rangle \models_{\overline{p}} F$.

Proof. By induction on F.

Case 1: F is an atomic sentence. Clearly, $gr_I[F]$ is F.

- Subcase 1: $I \not\models_{p} F$. Then $gr_{I}[F]^{\underline{I}}$ is \bot , and $J \not\models_{p} \bot$. Further, since $\langle I, I \rangle \not\models_{pht} F$, by Lemma 6 (b), it follows that $\langle J, I \rangle \not\models_{pht} F$.
- Subcase 2: $I \models_{p} F$. Then $gr_{I}[F]^{\underline{I}}$ is F. It is clear that $J \models_{p} F$ iff $\langle J, I \rangle \models_{pht} F$.

Case 2: F is $G \wedge H$ or $G \vee H$. The claim follows immediately from I.H. on G and H.

Case 3: F is $G \to H$. Consider the following subcases:

- Subcase 1: $I \not\models_{p} G \to H$. $gr_{I}[G \to H]^{\underline{I}}$ is \bot , and $J \not\models_{p} \bot$. Further, $\langle I, I \rangle \not\models_{p} G \to H$. By Lemma 6 (b), $\langle J, I \rangle \not\models_{p} G \to H$.
- Subcase 2: $I \models_{\overline{p}} G \to H$. $gr_I[G \to H]^{\underline{I}}$ is equivalent to $gr_I[G]^{\underline{I}} \to gr_I[H]^{\underline{I}}$. Further, $\langle J, I \rangle \models_{\overline{p}ht} G \to H$ is equivalent to saying that $\langle J, I \rangle \not\models_{\overline{p}ht} G$ or $\langle J, I \rangle \models_{\overline{p}ht} H$. Then the claim follows from I.H. on G and H.

Case 4: F is $\forall x G(x)$, or $\exists x G(x)$. By induction on $G(\xi^{\diamond})$ for each ξ in the universe.

Theorem 2 Let F be a first-order sentence of signature σ and let c be a list of intensional constants. For any partial interpretation I of σ , $\langle I, I \rangle$ is a partial equilibrium model of F iff

- $I \models_{p} F$, and
- for every partial interpretation J of σ such that $J \prec^{\mathbf{c}} I$, we have $J \not\models_{\mathbf{c}} gr_I[F]^{\underline{I}}$.

Proof. Clearly, $I \models_{\overline{p}} F$ iff $\langle I, I \rangle \models_{\overline{p}ht} F$. By Lemma 7, for every partial interpretation J of σ such that $J \prec^{\mathbf{c}} I$, $J \not\models_{\overline{p}} gr_I[F]^{\underline{I}}$ iff $\langle J, I \rangle \not\models_{\overline{p}ht} F$.

Lemma 8

Let F be a sentence of signature σ , and let I and J be partial interpretations of σ . We have $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbb{P}} F^{\dagger}(\mathbf{d})$ iff $\langle J, I \rangle \models_{\overline{\mathbb{P}}^{\mathrm{ht}}} F$.

Proof. By induction on F.

Case 1: F is an atomic sentence. $F^{\dagger}(\mathbf{d})$ is $F(\mathbf{d})$. $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbb{P}} F(\mathbf{d})$ iff $J \models_{\mathbb{P}} F$ iff $\langle J, I \rangle, h \models_{\overline{\mathrm{pht}}} F$ iff $\langle J, I \rangle \models_{\overline{\mathrm{pht}}} F$.

Case 2: F is $G \wedge H$ or $G \vee H$. Follows by I.H. on G and H.

Case 3: F is $G \to H$. Consider the following subcases:

- Subcase 1: $I \not\models_{\mathbb{P}} G \to H$. Clearly, $J_{\mathbf{d}}^{\mathbf{c}} \cup I \not\models_{\mathbb{P}} G \to H$ and $\langle J, I \rangle \not\models_{\overline{\mathbf{bht}}} G \to H$.
- Subcase 2: $I \models_{p} G \to H$. Then $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{p} (G \to H)^{\dagger}(\mathbf{d})$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{p} G^{\dagger}(\mathbf{d}) \to H^{\dagger}(\mathbf{d})$. Further, $\langle J, I \rangle \models_{\overline{\mathrm{pht}}} G \to H$ is equivalent to saying that $\langle J, I \rangle \not\models_{\overline{\mathrm{pht}}} G$ or $\langle J, I \rangle \models_{\overline{\mathrm{pht}}} H$. Then the claim follows from I.H. on G and H.

Case 4: F is $\forall x G(x)$, or $\exists x G(x)$. By induction on $G(\xi^{\diamond})$ for each ξ in the universe.

Theorem 3 For any sentence F, a PHT-interpretation $\langle I, I \rangle$ is a partial equilibrium model of F relative to \mathbf{c} iff $I \models_{\mathbf{c}} \mathrm{CBL}[F; \mathbf{c}]$.

Proof. By definition, $CBL[F; \mathbf{c}]$ is

$$F \wedge \neg \exists \widehat{\mathbf{c}}(\widehat{\mathbf{c}} \prec \mathbf{c} \wedge F^{\dagger}(\widehat{\mathbf{c}})).$$

Clearly, $I \models_{\overline{p}} F$ iff $\langle I, I \rangle \models_{\overline{p}ht} F$. From Lemma 5 and Lemma 8, it follows that $I \models_{\overline{p}} \neg \exists \widehat{\mathbf{c}}(\widehat{\mathbf{c}} \prec \mathbf{c} \wedge F^{\dagger}(\widehat{\mathbf{c}}))$ iff there is no interpretation J of σ such that $J \prec^{\mathbf{c}} I$ and $\langle J, I \rangle \models_{\overline{p}ht} F$.

C.3 Proof of Theorem 4

Lemma 9

Let F be a sentence of signature σ and let I and J be interpretations of σ such that $J <^{\mathbf{c}} I$. We have $J \models gr_I[F]^{\underline{I}}$ iff $\langle J, I \rangle \models_{\overline{\mathsf{fh}}_t} F$.

Proof. By induction on F.

Case 1: F is an atomic sentence. $gr_I[F]$ is F.

- Subcase 1: $I \not\models F$. Then $gr_I[F]^{\underline{I}}$ is \bot , which J does not satisfy. Further, since $\langle J, I \rangle$, $t \not\models_{\text{flit}} F$.
- Subcase 2: $I \models F$. Then $gr_I[F]^{\underline{I}}$ is F, and $\langle J, I \rangle$, $t \models_{\overline{fht}} F$. It is clear that $J \models F$ iff $\langle J, I \rangle$, $h \models_{\overline{fht}} F$.

Case 2: F is $G \wedge H$ or $G \vee H$. The claim follows immediately from I.H. on G and H.

Case 3: F is $G \rightarrow H$. Consider the following subcases:

- Subcase 1: $I \not\models G \to H$. Then $gr_I[G \to H]^{\underline{I}}$ is \bot , which J does not satisfy. Further, $\langle I, I \rangle \not\models_{\text{flst}} G \to H$. By Lemma 1 (b), $\langle J, I \rangle \not\models_{\text{flst}} G \to H$.
- Subcase 2: $I \models G \to H$. Then $gr_I[G \to H]^{\underline{I}}$ is equivalent to $gr_I[G]^{\underline{I}} \to gr_I[H]^{\underline{I}}$. Further, $\langle J, I \rangle \models_{\overline{\text{fht}}} G \to H$ is equivalent to saying that $\langle J, I \rangle \not\models_{\overline{\text{fht}}} G$ or $\langle J, I \rangle \models_{\overline{\text{fht}}} H$. Then the claim follows from I.H. on G and H.

Case 4: F is $\forall x G(x)$, or $\exists x G(x)$. By induction on $G(\xi^{\diamond})$ for each ξ in the universe.

Theorem 4 Let F be a first-order sentence of signature σ and \mathbf{c} be a list of predicate and function constants. For any interpretation I of σ , $I \models SM[F; \mathbf{c}]$ iff

- $\langle I, I \rangle \models_{\text{fbt}} F$, and
- for every interpretation J of σ such that $J < {}^{\mathbf{c}} I$, we have $\langle J, I \rangle \not\models_{\mathsf{fht}} F$.

Proof. We use Theorem 1 to refer to the reduct-based reformulation and instead show

- I satisfies F, and
- every interpretation J such that $J < {}^{\mathbf{c}} I$ does not satisfy $(gr_I[F])^{\underline{I}}$

- $\langle I, I \rangle \models_{\text{fht}} F$, and
- for every interpretation J of σ such that $J <^{\mathbf{c}} I$, we have $\langle J, I \rangle \not\models_{\mathsf{fit}} F$.

Clearly, $I \models F$ iff $\langle I, I \rangle \models_{\overline{\text{fht}}} F$. By Lemma 9, for every interpretation J such that $J <^{\mathbf{c}} I$, we have $J \not\models (gr_I[F])^{\underline{I}}$ iff $\langle J, I \rangle \not\models_{\text{flut}} F$.

C.4 Proof of Theorem 5

Lemma 10

Let F be a c-plain sentence of signature σ , let I, K be total interpretations of σ , and let J be a partial interpretation of σ such that

- $J \prec^{\mathbf{c}} I$ and $K <^{\mathbf{c}} I$;
- $p^J=p^K$ for every predicate constant; $f^J(\xi)=u$ iff $f^K(\xi)\neq f^I(\xi)$ for every function constant f and every $\xi\in |I|^n$ where nis the arity of f.

We have $K \models gr_I[F]^{\underline{I}}$ iff $J \models_{\underline{P}} gr_I[F]^{\underline{I}}$.

Proof.

Case 1: F is an atomic sentence of the form p(t). Since F is c-plain, t contains no constants from c, and by the assumption $J \prec^{\mathbf{c}} I$ and $K <^{\mathbf{c}} I$, we have $\mathbf{t}^J = \mathbf{t}^K = \mathbf{t}^I$. Since J and K agree on p, the claim holds.

Case 2: F is an atomic sentence of the form $f(\mathbf{t}) = t_1$.

- Subcase 1: $I \not\models f(\mathbf{t}) = t_1$. Then $gr_I[F]^{\underline{I}}$ is \bot , so the claim holds.
- Subcase 2: $I \models f(\mathbf{t}) = t_1$. Then $gr_I[F]^{\underline{I}}$ is $f(\mathbf{t}) = t_1$. Further, from the assumption that F is c-plain, t and t_1 contain no constants from c, and by the assumptions that $J \prec^{\mathbf{c}} I$, $K < {}^{\mathbf{c}}I$ and that I is total, we have ${\bf t}^J = {\bf t}^K = {\bf t}^I \neq u$ and $t_1^J = t_1^K = t_1^I \neq u$.

Either $f(\mathbf{t})^J \neq u$ or $f(\mathbf{t})^J = u$. In the first case, since $J \prec^{\mathbf{c}} I$, we have $f(\mathbf{t})^J = f(\mathbf{t})^I$. Also, by the assumption on K, $f(\mathbf{t})^K = f(\mathbf{t})^I$. Consequently, $J \models_{\mathbf{p}} f(\mathbf{t}) = t_1$ and $K \models f(\mathbf{t}) = t_1.$

In the second case, $J \not\models_{\mathbb{P}} f(\mathbf{t}) = t_1$. Also, by the assumption on K, $f(\mathbf{t})^K \neq f(\mathbf{t})^I =$ $t_1^I = t_1^K$, so $K \not\models f(\mathbf{t}) = t_1$.

The other cases are straightforward.

Recall the definitions: for two classical interpretations I, K of the same signature σ with the same universe and a list c of distinct predicate and function constants, we write $K <^{\mathbf{c}} I$ if

$$K$$
 and I agree on all constants in $\sigma \setminus \mathbf{c}$, (C2)

$$p^K \subseteq p^I$$
 for all predicates p in \mathbf{c} , and (C3)

$$K$$
 and I do not agree on \mathbf{c} . (C4)

Similarly, for two partial interpretations J and I of the same signature σ over the same universe |I|, and a set of constants c, $J \prec^{c} I$ is equivalent to

$$J$$
 and I agree on all constants in $\sigma \setminus \mathbf{c}$, (C5)

$$p^{J} \subseteq p^{I}$$
 for all predicates p in \mathbf{c} , and (C6)

$$J$$
 and I do not agree on c (C7)

with the additional requirement that

for every function constant
$$f \in \mathbf{c}$$
, and every $\boldsymbol{\xi} \in |I|^n$ where n is the arity of f , $f^I(\boldsymbol{\xi}) = f^J(\boldsymbol{\xi})$ or $f^J(\boldsymbol{\xi}) = u$. (C8)

If we drop (C7), this is equivalent to $J \leq^{\mathbf{c}} I$.

Lemma 11

Let F be a c-plain sentence of signature σ , and let I be total interpretation of σ that satisfies $\exists xy(x \neq y)$. There is a partial interpretation J such that $J \prec^{\mathbf{c}} I$ and $J \models_{\mathbb{P}} gr_I[F]^{\underline{I}}$ iff there is a total interpretation K such that $K <^{\mathbf{c}} I$ and $K \models_{\mathbb{P}} gr_I[F]^{\underline{I}}$.

Proof. Left-to-right: Let J be a partial interpretation such that $J \prec^{\mathbf{c}} I$ and $J \models_{\mathbf{p}} gr_I[F]^{\underline{I}}$. We construct the total interpretation K as follows. For each constant d not in \mathbf{c} , $d^K = d^J = d^I$. For each predicate constant p in \mathbf{c} and each $\boldsymbol{\xi} \in |I|^n$ where p is the arity of p,

$$p^K(\boldsymbol{\xi}) = p^J(\boldsymbol{\xi}) ,$$

and, for each function constant f in c and each $\xi \in |I|^n$ where n is the arity of f,

$$f^{K}(\boldsymbol{\xi}) = \begin{cases} f^{I}(\boldsymbol{\xi}) & \text{if } f^{J}(\boldsymbol{\xi}) \neq u; \\ m(f^{I}(\boldsymbol{\xi})) & \text{otherwise} \end{cases}$$

where m is a mapping $m: |I| \to |I|$ such that $\forall x (m(x) \neq x)$ (note that such a mapping requires $I \models \exists x y (x \neq y)$).

We now show that $K <^{\mathbf{c}} I$. It is immediate from the assumption $J \prec^{\mathbf{c}} I$ and by definition that (C2) and (C3) hold. Consider the following cases.

- Case 1: For every function constant $f \in \mathbf{c}$ and every $\boldsymbol{\xi} \in |I|^n$ where n is the arity of f, $f^J(\boldsymbol{\xi}) = f^I(\boldsymbol{\xi})$ (note that since I is total, these cannot be u). From (C7), it follows that there is at least one predicate constant p in \mathbf{c} such that $p^J \subset p^I$. However, by the definition of K, $p^K \subset p^I$ and so (C4) holds.
- Case 2: There is some function constant $f \in \mathbf{c}$ and some $\boldsymbol{\xi} \in |I|^n$ where n is the arity of f such that $f^J(\boldsymbol{\xi}) \neq f^I(\boldsymbol{\xi})$. From (C8), it follows that $f^J(\boldsymbol{\xi}) = u$ and thus by the definition of K, $f^K(\boldsymbol{\xi}) = m(f^I(\boldsymbol{\xi})) \neq f^I(\boldsymbol{\xi})$ and so (C4) holds.

By Lemma 10, the fact $K \models gr_I[F]^{\underline{I}}$ follows from the assumption $J \models_{\mathbb{R}} gr_I[F]^{\underline{I}}$.

Right-to-left: Let K be a total interpretation such that $K <^{\mathbf{c}} I$ and $K \models gr_I[F]^{\underline{I}}$. We construct the partial interpretation J as follows. For each constant d not in \mathbf{c} , $d^K = d^J = d^I$. For each predicate constant p in \mathbf{c} and each $\boldsymbol{\xi} \in |I|^n$ where n is the arity of p,

$$p^J(\boldsymbol{\xi}) = p^K(\boldsymbol{\xi}) \;,$$

and, for each function constant f in c and each $\xi \in |I|^n$ where n is the arity of f,

$$f^{J}(\boldsymbol{\xi}) = \left\{ \begin{array}{ll} f^{I}(\boldsymbol{\xi}) & \text{if } f^{K}(\boldsymbol{\xi}) = f^{I}(\boldsymbol{\xi}); \\ u & \text{otherwise.} \end{array} \right.$$

We now show that $J \prec^{\mathbf{c}} I$. It is immediate from the assumption that $K <^{\mathbf{c}} I$ and by definition that (C5) and (C6) hold. Consider the following cases.

• Case 1: For every function constant $f \in \mathbf{c}$ and every $\boldsymbol{\xi} \in |I|^n$ where n is the arity of f, $f^K(\boldsymbol{\xi}) = f^I(\boldsymbol{\xi})$. By the definition of J, $f^J(\boldsymbol{\xi}) = f^I(\boldsymbol{\xi})$ and so (C8) holds. Now since

- (C4) holds, there is at least one predicate constant p such that $p^K \subset p^I$. However, by the definition of J, $p^J \subset p^I$ and so (C7) holds.
- Case 2: There is some function constant $f \in \mathbf{c}$ and some $\boldsymbol{\xi} \in |I|^n$ where n is the arity of f such that $f^K(\boldsymbol{\xi}) \neq f^I(\boldsymbol{\xi})$. For such a function f, by the definition of J, it must be that $f^J(\boldsymbol{\xi}) = u$. For other functions $f' \in \mathbf{c}$ such that $(f')^K(\boldsymbol{\xi}') = (f')^I(\boldsymbol{\xi}')$ for every $\boldsymbol{\xi}'$, as in Case 1, we conclude $(f')^J(\boldsymbol{\xi}) = (f')^I(\boldsymbol{\xi})$. Consequently, (C8) and (C7) both hold.

By Lemma 10, the fact $J \models gr_I[F]^{\underline{I}}$ follows from the assumption $K \models gr_I[F]^{\underline{I}}$.

Theorem 5 For any c-plain sentence F of signature σ , any list c of intensional constants, and any total interpretation I of σ satisfying $\exists xy(x \neq y), I \models SM[F; c]$ iff $I \models CBL[F; c]$.

Proof. We use Theorem 1 and Theorem 2 to refer to the grounding and reduct based definitions rather than the second-order logic based definitions. The claim follows from Lemma 11.

C.5 Proof of Theorem 7 and Corollary 1

Lemma 12

For any partial interpretation I and any atomic sentence $p(t_1, \ldots, t_k)$ and $f(t_1, \ldots, t_{k-1}) = t_k$,

(a) $I \models p(t_1, \ldots, t_k)$ iff

$$I \models \exists x_{n_1} \dots x_{n_i} (p(t_1, \dots, t_k)'' \wedge t_{n_1} = x_{n_1} \wedge \dots \wedge t_{n_i} = x_{n_i})$$

where $\{n_1,\ldots,n_j\}\subseteq\{1,\ldots,k\}$ and $p(t_1,\ldots,t_k)''$ is obtained from $p(t_1,\ldots,t_k)$ by replacing each t_{n_i} in $p(t_1,\ldots,t_k)$ with x_{n_i} .

(b) $I \models_{\mathbb{R}} f(t_1, \dots, t_{k-1}) = t_k \text{ iff}$

$$I \models_{\mathbb{P}} \exists x_{n_1} \dots x_{n_j} ((f(t_1, \dots, t_{k-1}) = t_k)'' \wedge t_{n_1} = x_{n_1} \wedge \dots \wedge t_{n_j} = x_{n_j})$$

where $\{n_1,\ldots,n_j\}\subseteq\{1,\ldots,k\}$ and $(f(t_1,\ldots,t_{k-1})=t_k)''$ is obtained from $f(t_1,\ldots,t_{k-1})=t_k$ by replacing each t_{n_i} in $f(t_1,\ldots,t_{k-1})=t_k$ with x_{n_i} .

Proof. Consider the following cases.

Case 1: $t_i^I = u$ for some $i \in \{n_1, \dots, n_j\}$. Clearly, $I \not\models_p p(t_1, \dots, t_k)$ and $I \not\models_p f(t_1, \dots, t_{k-1}) = t_k$. It is also the case that $I \not\models_p t_i = \boldsymbol{\xi}^{\diamond}$ for any $\boldsymbol{\xi} \in |I|$ so we have

$$I \not\models_{\mathbb{P}} \exists x_{n_1} \dots x_{n_j} (p(t_1, \dots, t_k)'' \land t_{n_1} = x_{n_1} \land \dots \land t_{n_j} = x_{n_j})$$
 (C9)

and

$$I \not\models_{\overline{p}} \exists x_{n_1} \dots x_{n_j} ((f(t_1, \dots, t_{k-1}) = t_k)'' \wedge t_{n_1} = x_{n_1} \wedge \dots \wedge t_{n_j} = x_{n_j}).$$
 (C10)

Case 2: $t_i^I = u$ for some $i \in \{1, \ldots, k\} \setminus \{n_1, \ldots, n_j\}$. Clearly, $I \not\models_{\mathbb{P}} p(t_1, \ldots, t_k)$ and $I \not\models_{\mathbb{P}} f(t_1, \ldots, t_{k-1}) = t_k$. Also, since t_i remains in $p(t_1, \ldots, t_k)''$ and $(f(t_1, \ldots, t_k) = t)''$, we have $I \not\models_{\mathbb{P}} p(t_1, \ldots, t_k)''$ and $I \not\models_{\mathbb{P}} (f(t_1, \ldots, t_k) = t)''$, from which (C9) and (C10) follow.

Case 3: $t_i^I \neq u$ for all $i \in \{1, ..., k\}$. Condition (a) clearly holds because it coincides with classical equivalence. For Condition (b), consider two subcases:

• Subcase 1: $f(t_1, ..., t_{k-1})^I \neq u$. Clearly, Condition (b) coincides with classical equivalence.

• Subcase 2:
$$f(t_1, ..., t_{k-1})^I = u$$
. Clearly, $I \not\models_{\mathbb{P}} f(t_1, ..., t_{k-1}) = t_k$. Now in $\exists x_{n_1} ... x_{n_i} ((f(t_1, ..., t_{k-1}) = t_k)'' \land t_{n_1} = x_{n_1} \land \cdots \land t_{n_i} = x_{n_i}),$

there is only one set of values for $x_{n_1} \dots x_{n_j}$ that satisfies the last j conjunctive terms—when x_{n_i} is mapped to $t_{n_i}^I$. However, for this set of values, $((f(t_1, \dots, t_{k-1}))'')^I = f(t_1, \dots, t_{k-1})^I = u$ (where $(f(t_1, \dots, t_{k-1}))''$ is obtained from $f(t_1, \dots, t_{k-1})$ by replacing each t_{n_i} with x_{n_i}) so (C10) holds.

Lemma 13

Given a sentence F, a set of constants \mathbf{c} , and a partial interpretation I, we have $I \models_{\mathbb{P}} F$ iff $I \models_{\mathbb{P}} UF_{\mathbf{c}}(F)$.

Proof. The proof is by induction on the number of unfolding that needs to be done. More precisely, for any formula F, we define $NU_{\mathbf{c}}(F)$ ("Needed Unfolding") as follows.

```
 \begin{split} \bullet \ NU_{\mathbf{c}}(p(t_1,\ldots,t_k)) &= \\ \left\{ \begin{array}{ll} 0 & \text{if } p(t_1,\ldots,t_k) \text{ is } \mathbf{c}\text{-plain;} \\ \max(NU_{\mathbf{c}}(t_1=x),\ldots,NU_{\mathbf{c}}(t_k=x)) + 1 & \text{otherwise.} \\ \bullet \ NU_{\mathbf{c}}(f(t_1,\ldots,t_{k-1})=t_k) &= \\ \left\{ \begin{array}{ll} 0 & \text{if } f(t_1,\ldots,t_{k-1})=t_k \text{ is } \mathbf{c}\text{-plain;} \\ \max(NU_{\mathbf{c}}(t_1=x),\ldots,NU_{\mathbf{c}}(t_k=x)) + 1 & \text{otherwise.} \\ \bullet \ NU_{\mathbf{c}}(G\odot H) &= \max(NU_{\mathbf{c}}(G),NU_{\mathbf{c}}(H)) + 1, \text{ where } \odot \in \{\land,\lor,\to\}. \\ \bullet \ NU_{\mathbf{c}}(QxG) &= NU_{\mathbf{c}}(G) + 1, \text{ where } Q \in \{\forall,\exists\}. \\ \end{split} \right.
```

Case 1: F is a c-plain atomic sentence. F is identical to $UF_{\mathbf{c}}(F)$ so the claim holds.

Case 2: F is $p(\mathbf{t})$ where \mathbf{t} contains at least one constant from \mathbf{c} . Let $t_{n_1} \dots t_{n_j}$ be the j terms in \mathbf{t} containing at least one constant from \mathbf{c} . Now $UF_{\mathbf{c}}(F)$ is $\exists x_{n_1} \dots x_{n_j}(p(t_1, \dots, t_k)'' \land UF_{\mathbf{c}}(t_{n_1} = x_{n_1}) \land \dots \land UF_{\mathbf{c}}(t_{n_j} = x_{n_j}))$ where $p(t_1, \dots, t_k)''$ is obtained from $p(t_1, \dots, t_k)$ by replacing each t_{n_i} in $p(t_1, \dots, t_k)$ with x_{n_i} . Since $NU_{\mathbf{c}}(F) > NU_{\mathbf{c}}(t_{n_i} = \xi^{\diamond})$ for each $\xi \in |I|$ and each $i \in \{1, \dots, j\}$, by I.H. on $t_{n_i} = \xi^{\diamond}$, $UF_{\mathbf{c}}(t_{n_i} = x_{n_i})$ can be replaced by $t_{n_i} = x_{n_i}$ so that $I \models_{\mathbf{p}} UF_{\mathbf{c}}(F)$ iff $I \models_{\mathbf{p}} \exists x_{n_1} \dots x_{n_j}(p(t_1, \dots, t_k)'' \land t_{n_1} = x_{n_1} \land \dots \land t_{n_j} = x_{n_j})$. By Lemma 12 the latter is equivalent to $I \models_{\mathbf{p}} F$.

Case 3: F is $f(\mathbf{t}) = t_1$ where at least one of \mathbf{t} and t_1 contain at least one constant from \mathbf{c} . Let $t_{n_1} \dots t_{n_j}$ be the j terms in \mathbf{t} and t_1 containing at least one constant from \mathbf{c} . Now $UF_{\mathbf{c}}(F)$ is $\exists x_{n_1} \dots x_{n_j} ((f(\mathbf{t}) = t_1)'' \wedge UF_{\mathbf{c}}(t_{n_1} = x_{n_1}) \wedge \dots \wedge UF_{\mathbf{c}}(t_{n_j} = x_{n_j}))$, where $(f(\mathbf{t}) = t_1)''$ is obtained from $f(\mathbf{t}) = t_1$ by replacing each t_{n_i} in $f(\mathbf{t}) = t_1$ with x_{n_i} . Since $NU_{\mathbf{c}}(F) > NU_{\mathbf{c}}(t_{n_i} = \boldsymbol{\xi}^{\diamond})$ for each $\boldsymbol{\xi} \in |I|$ and each $i \in \{1, \dots, j\}$, by I.H. on $t_{n_i} = \boldsymbol{\xi}^{\diamond}$, $UF_{\mathbf{c}}(t_{n_i} = x_{n_i})$ can be replaced by $t_{n_i} = x_{n_i}$ so that $I \models_{\mathbf{p}} UF_{\mathbf{c}}(F)$ iff $I \models_{\mathbf{p}} \exists x_{n_1} \dots x_{n_j} ((f(\mathbf{t}) = t_1)'' \wedge t_{n_1} = x_{n_1} \wedge \dots \wedge t_{n_j} = x_{n_j})$. By Lemma 12 the latter is equivalent to $I \models_{\mathbf{p}} F$.

Case 4: F is $G \odot H$ for $\odot \in \{\land, \lor, \rightarrow\}$. By I.H. on G and H.

Case 5: F is QxF(x) for $Q \in \{ \forall, \exists \}$. By I.H. on $F(\xi^{\diamond})$ for each $\xi \in |I|$.

Theorem 7 For any sentence F, any list \mathbf{c} of constants, and any partial interpretation I, we have $I \models_{\mathbf{c}} CBL[F; \mathbf{c}]$ iff $I \models_{\mathbf{c}} CBL[UF_{\mathbf{c}}(F); \mathbf{c}]$.

Proof. By definition, $CBL[F; \mathbf{c}]$ is

$$F \wedge \neg \exists \widehat{\mathbf{c}} (\widehat{\mathbf{c}} \prec \mathbf{c} \wedge F^{\dagger} (\widehat{\mathbf{c}}))$$

and $CBL[UF_{\mathbf{c}}(F); \mathbf{c}]$ is by definition

$$UF_{\mathbf{c}}(F) \wedge \neg \exists \widehat{\mathbf{c}}(\widehat{\mathbf{c}} \prec \mathbf{c} \wedge (UF_{\mathbf{c}}(F))^{\dagger}(\widehat{\mathbf{c}})).$$

Now, for any partial interpretation I of signature $\sigma \supseteq \mathbf{c}$, by Lemma 13, $I \models_{\mathbf{p}} F$ iff $I \models_{\mathbf{p}} UF_{\mathbf{c}}(F)$. It is sufficient to show that, for any partial interpretation J, $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \mathbf{d} \prec \mathbf{c} \land F^{\dagger}(\mathbf{d})$ iff $J_{\mathbf{d}}^{\mathbf{c}} \cup I \models_{\mathbf{p}} \mathbf{d} \prec \mathbf{c} \land (UF_{\mathbf{c}}(F))^{\dagger}(\mathbf{d})$.

Case 1: F is an atomic sentence. $F^{\dagger}(\mathbf{d})$ is $F(\mathbf{d})$, and $UF_{\mathbf{c}}(F)^{\dagger}(\mathbf{d})$ is $UF_{\mathbf{c}}(F)(\mathbf{d})$. $J^{\mathbf{c}}_{\mathbf{d}} \cup I \models_{\mathbb{P}} F(\mathbf{d})$ iff $J \models_{\mathbb{P}} F$. Similarly, $J^{\mathbf{c}}_{\mathbf{d}} \cup I \models_{\mathbb{P}} UF_{\mathbf{c}}(F)(\mathbf{d})$ iff $J \models_{\mathbb{P}} UF_{\mathbf{c}}(F)$. By Lemma 12, $J \models_{\mathbb{P}} F$ iff $J \models_{\mathbb{P}} UF_{\mathbf{c}}(F)$, so the claim follows.

Case 2: F is $G \odot H$ for $\odot \in \{\land, \lor\}$. By induction on G and H.

Case 3: F is $G \to H$. $F^{\dagger}(\mathbf{d})$ is $(G^{\dagger}(\mathbf{d}) \to H^{\dagger}(\mathbf{d})) \wedge (G \to H)$ and $(UF_{\mathbf{c}}(F))^{\dagger}(\mathbf{d})$ is $(UF_{\mathbf{c}}(G))^{\dagger}(\mathbf{d}) \to (UF_{\mathbf{c}}(H))^{\dagger}(\mathbf{d})) \wedge (UF_{\mathbf{c}}(G) \to UF_{\mathbf{c}}(H))$. The equivalence between the first conjunctive terms (under partial satisfaction) is by I.H. on G and H, and the equivalence between the second conjunctive terms (under partial satisfaction) is by Lemma 13.

Case 4: F is
$$QxG(x)$$
 for $Q \in \{ \forall, \exists \}$. By I.H. on $G(\xi^{\diamond})$ for each $\xi \in |I|$.

Corollary 1 For any sentence F, any list \mathbf{c} of constants, and any total interpretation I satisfying $\exists xy(x \neq y)$, we have $I \models_{\mathbf{p}} \mathrm{CBL}[F; \mathbf{c}]$ iff $I \models_{\mathbf{p}} \mathrm{CBL}[UF_{\mathbf{c}}(F); \mathbf{c}]$ iff $I \models_{\mathbf{p}} \mathrm{CBL}[UF_{\mathbf{c}}(F); \mathbf{c}]$.

Proof. The equivalence between the first and the second conditions is by Theorem 7. The equivalence between the second and the third conditions is by Theorem 5 since $UF_{\mathbf{c}}(F)$ is **c**-plain.

C.6 Proof of Theorem 6

Theorem 6 For any head-**c**-plain sentence F of signature σ that is tight on **c**, and any total interpretation I of σ satisfying $\exists xy (x \neq y), I \models SM[F; \mathbf{c}]$ iff $I \models_{\mathbf{p}} CBL[F; \mathbf{c}]$.

Proof. We first note that since F is head- \mathbf{c} -plain and tight on \mathbf{c} , we can transform this into Clark normal form that is still tight on \mathbf{c} , so we can assume that F is already turned into this form.

By Corollary 1, $I \models_{\mathbb{P}} CBL[F; \mathbf{c}]$ iff $I \models SM[UF_{\mathbf{c}}(F); \mathbf{c}]$, so it remains to check that $I \models SM[UF_{\mathbf{c}}(F); \mathbf{c}]$ iff $I \models SM[F; \mathbf{c}]$.

It is easy to check that the completion of $UF_{\mathbf{c}}(F)$ relative to \mathbf{c} is equivalent to the completion of F relative to \mathbf{c} . By Theorem 2 from (Bartholomew and Lee 2013), we conclude that $SM[UF_{\mathbf{c}}(F);\mathbf{c}]$ is equivalent to $SM[F;\mathbf{c}]$.

C.7 Proof of Theorem 8, Corollary 2, and Corollary 3

Theorem 8 For any f-plain sentence F and any partial interpretation I, if

$$I \models \forall \mathbf{x} y (p(\mathbf{x}, y) \leftrightarrow f(\mathbf{x}) = y) \tag{C11}$$

then $I \models_{\mathbb{P}} CBL[F; f, \mathbf{c}] \text{ iff } I \models_{\mathbb{P}} CBL[F_p^f; p, \mathbf{c}].$

Proof. For any partial interpretation I of signature $\sigma \supseteq \{f, p, \mathbf{c}\}$ satisfying (C11), it is clear that $I \models_{\mathbb{P}} F$ iff $I \models_{\mathbb{P}} F_p^f$ since F_p^f is simply the result of replacing all $f(\mathbf{x}) = y$ with $p(\mathbf{x}, y)$. Thus it is sufficient to show that

$$I \models_{\overline{p}} \exists \widehat{f}\widehat{\mathbf{c}}\Big((\widehat{f},\widehat{\mathbf{c}}) \prec (f,\mathbf{c}) \land F^{\dagger}(\widehat{f},\widehat{\mathbf{c}})\Big) \text{ iff } I \models_{\overline{p}} \exists \widehat{p}\widehat{\mathbf{c}}\Big((\widehat{p},\widehat{\mathbf{c}}) \prec (p,\mathbf{c}) \land (F_p^f)^{\dagger}(\widehat{p},\widehat{\mathbf{c}})\Big).$$

Left-to-right: Assume $I \models_{\mathbb{P}} \exists \widehat{f}\widehat{\mathbf{c}}((\widehat{f},\widehat{\mathbf{c}}) \prec (f,\mathbf{c}) \land F^{\dagger}(\widehat{f},\widehat{\mathbf{c}}))$. We wish to show that $I \models_{\mathbb{P}} \exists \widehat{p}\widehat{\mathbf{c}}((\widehat{p},\widehat{\mathbf{c}}) \prec (p,\mathbf{c}) \land (F_p^f)^{\dagger}(\widehat{p},\widehat{\mathbf{c}}))$. That is, take any function g of the same arity as f and any list of predicate and function constants \mathbf{d} that is similar to \mathbf{c} . For any partial interpretation J of signature σ , $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I$ is an interpretation of the extended signature $\sigma' = \sigma \cup \{g,q,\mathbf{d}\}$. We assume

$$J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (g,\mathbf{d}) \prec (f,\mathbf{c}) \land F^{\dagger}(g,\mathbf{d})$$

and wish to show that there is a predicate q of the same arity as p such that

$$J_{(q,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (q,\mathbf{d}) \prec (p,\mathbf{c}) \wedge (F_p^f)^{\dagger}(q,\mathbf{d}).$$

We define the new predicate q in terms of q as follows:

$$q^{J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I}(\boldsymbol{\xi},\boldsymbol{\xi}') = \begin{cases} \text{TRUE} & \text{if } g^{J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I}(\boldsymbol{\xi}) = \boldsymbol{\xi}' \; ; \\ \text{FALSE} & \text{otherwise.} \end{cases}$$

We first show if $J_{(q,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (g,\mathbf{d}) \prec (f,\mathbf{c})$ then $J_{(q,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (q,\mathbf{d}) \prec (p,\mathbf{c})$.

 $\textit{Case 1: } J_{(g, \mathbf{d})}^{(f, \mathbf{c})} \cup I \not\models_{\scriptscriptstyle \mathbf{p}} g \prec f. \textit{ Since we assume } J_{(g, \mathbf{d})}^{(f, \mathbf{c})} \cup I \models_{\scriptscriptstyle \mathbf{p}} (g, \mathbf{d}) \prec (f, \mathbf{c}), \textit{ it follows that }$

$$J_{(a,d)}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} g = f$$
, (C12)

and $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} \mathbf{d} \prec \mathbf{c}$. From (C11), (C12), and the definition of q, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} q = p$. Consequently, $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (q,\mathbf{d}) \prec (p,\mathbf{c})$.

Case 2: $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} g \prec f$. From (C11), $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} g \prec f$, and the definition of q, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} q \prec p$. Since we assume $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (g,\mathbf{d}) \prec (f,\mathbf{c})$, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} \mathbf{d} \preceq \mathbf{c}$. Consequently, $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (q,\mathbf{d}) \prec (p,\mathbf{c})$.

We now show that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (F_p^f)^{\dagger}(q,\mathbf{d})$ by proving $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} F^{\dagger}(g,\mathbf{d})$ iff $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (F_p^f)^{\dagger}(q,\mathbf{d})$.

Case 1: F is an f-plain atomic sentence of the form $p(\mathbf{t})$, or $t_1 = t_2$ such that t_1 does not contain f. The claim is obvious since F_p^f is exactly F and so $(F_p^f)^{\dagger}(q, \mathbf{d})$ is exactly $F^{\dagger}(g, \mathbf{d})$.

Case 2: F is an f-plain atomic sentence of the form $f(\mathbf{t}) = t_1$. Then $F^{\dagger}(g, \mathbf{d})$ is $g(\mathbf{t}') = t'_1$, where \mathbf{t}' and t'_1 are obtained from \mathbf{t} and t_1 by replacing the members of \mathbf{c} with the corresponding members of \mathbf{d} . F_p^f is $p(\mathbf{t}, t_1)$, and $(F_p^f)^{\dagger}(q, \mathbf{d})$ is $q(\mathbf{t}', t'_1)$. From the definition of q, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} g(\mathbf{t}') = t'_1 \leftrightarrow q(\mathbf{t}', t'_1)$.

Case 3: F is $G \odot H$ where $\odot \in \{\land, \lor, \rightarrow\}$. By I.H. on G and H.

Case 4: F is QxG(x) where $Q \in \{ \forall, \exists \}$. By I.H. on $G(\xi^{\diamond})$ for each $\xi \in |I|$.

Right-to-left: Assume $I \models_{\overline{p}} \exists \widehat{p}\widehat{\mathbf{c}}((\widehat{p},\widehat{\mathbf{c}}) \prec (p,\mathbf{c}) \land (F_p^f)^\dagger(\widehat{p},\widehat{\mathbf{c}}))$. We wish to show that $I \models_{\overline{p}} \exists (\widehat{f},\widehat{\mathbf{c}})((\widehat{f},\widehat{\mathbf{c}}) \prec (f,\mathbf{c}) \land F^\dagger(\widehat{f},\widehat{\mathbf{c}}))$. That is, take any predicate q of the same arity as p and any list of predicates and functions \mathbf{d} that is similar to \mathbf{c} . As before, let J be a partial interpretation of σ , and $J_{(q,\mathbf{d})}^{(f,\mathbf{c})} \cup I$ is an interpretation of the extended signature $\sigma' = \sigma \cup \{g,q,\mathbf{d}\}$. We assume

$$J_{(q,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (q,\mathbf{d}) \prec (p,\mathbf{c}) \wedge (F_p^f)^{\dagger}(q,\mathbf{d})$$

and wish to show that there is a function g of the same arity as f such that

$$J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (g,\mathbf{d}) \prec (f,\mathbf{c}) \wedge F^{\dagger}(g,\mathbf{d}).$$

We define $g^{J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I}$ in terms of q as follows:

$$g^{J_{(g,\mathbf{d})}^{(f,\mathbf{e})}\cup I}(\pmb{\xi}) = \left\{ \begin{array}{ll} f^{J_{(g,\mathbf{d})}^{(f,\mathbf{e})}\cup I}(\pmb{\xi}) & \text{if } q^{J_{(g,\mathbf{d})}^{(f,\mathbf{e})}\cup I}(\pmb{\xi},f^{J_{(g,\mathbf{d})}^{(f,\mathbf{e})}\cup I}(\pmb{\xi})) = \text{TRUE} \ ; \\ u & \text{otherwise}. \end{array} \right.$$

We first show that if $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\overline{p}} (q,\mathbf{d}) \prec (p,\mathbf{c})$ then $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\overline{p}} (g,\mathbf{d}) \prec (f,\mathbf{c})$.

Case 1: $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} q = p$. Since we assume $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (q,\mathbf{d}) \prec (p,\mathbf{c})$, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} \mathbf{d} \prec \mathbf{c}$. From (C11), $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} q = p$, and by the definition of g, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} g = f$. Consequently, $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (g,\mathbf{d}) \prec (f,\mathbf{c})$.

Case 2: $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} \neg (q=p)$. Since we assume $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (q,\mathbf{d}) \prec (p,\mathbf{c})$, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} q \preceq p$ and so we have

$$J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} q \prec p. \tag{C13}$$

From (C11), (C13), and the definition of g, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} g \prec f$. Also from the assumption that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (q,\mathbf{d}) \prec (p,\mathbf{c})$, it follows that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} \mathbf{d} \preceq \mathbf{c}$. Consequently, $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbf{p}} (g,\mathbf{d}) \prec (f,\mathbf{c})$.

We show that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} F^{\dagger}(g,\mathbf{d})$ by proving that $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} F^{\dagger}(g,\mathbf{d})$ iff $J_{(g,\mathbf{d})}^{(f,\mathbf{c})} \cup I \models_{\mathbb{P}} (F_p^f)^{\dagger}(q,\mathbf{d})$. The proof is similar to the one above, and is omitted.

Corollary 2 Let F be an f-plain sentence. (a) For any partial interpretation I of the signature of F, $I \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$ iff $I_p^f \models_{\mathbb{P}} \mathrm{CBL}[F_p^f \wedge UEC_p;\ p,\mathbf{c}]$. (b) For any partial interpretation J of the signature of F_p^f , $J \models_{\mathbb{P}} \mathrm{CBL}[F_p^f \wedge UEC_p;\ p,\mathbf{c}]$ iff $J = I_p^f$ for some partial interpretation I such that $I \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$.

Proof. For two partial interpretations I of signature σ_1 and J of signature σ_2 with the same universe, by $I \cup J$ we denote the partial interpretation of signature $\sigma_1 \cup \sigma_2$ that interprets all constants occurring only in σ_1 in the same way as I does and similarly for σ_2 and J. For constants appearing in both σ_1 and σ_2 , I must interpret these the same as J does, in which case $I \cup J$ also interprets the constants in this way.

Part (a), Left-to-right: Assume $I \models_{\mathbb{P}} \mathrm{CBL}[F; f, \mathbf{c}]$. By the definition of I_p^f , $I \cup I_p^f \models_{\mathbb{P}} \mathrm{CC11}$. Thus by Theorem 8, $I \cup I_p^f \models_{\mathbb{P}} \mathrm{CBL}[F; f, \mathbf{c}] \leftrightarrow \mathrm{CBL}[F_p^f; p, \mathbf{c}]$. Since we assume $I \models_{\mathbb{P}} \mathrm{CBL}[F; f, \mathbf{c}]$, it is the case that $I \cup I_p^f \models_{\mathbb{P}} \mathrm{CBL}[F; f, \mathbf{c}]$ and thus it must be the case that $I \cup I_p^f \models_{\mathbb{P}} \mathrm{CBL}[F_p^f; p, \mathbf{c}]$.

Further, (C11) entails UEC_p , so $I \cup I_p^f \models_{\mathbb{P}} UEC_p$. Since the signature of I does not contain p, we conclude $I_p^f \models_{\mathbb{P}} CBL[F_p^f; p, \mathbf{c}] \wedge UEC_p$ and since UEC_p is comprised of constraints, $I_p^f \models_{\mathbb{P}} CBL[F_p^f \wedge UEC_p; p, \mathbf{c}]$.

Part (a), Right-to-left: Assume $I_p^f \models_{\overline{p}} \mathrm{CBL}[F_p^f \wedge UEC_p; p, \mathbf{c}]$. By the definition of I_p^f , $I \cup I_p^f \models_{\overline{p}} \mathrm{CBL}[F_p^f; p, \mathbf{c}]$. By the definition of I_p^f , $I \cup I_p^f \models_{\overline{p}} \mathrm{CBL}[F_p^f; p, \mathbf{c}]$. From the assumption, we have $I_p^f \models_{\overline{p}} \mathrm{CBL}[F_p^f; p, \mathbf{c}]$, and further $I \cup I_p^f \models_{\overline{p}} \mathrm{CBL}[F_p^f; p, \mathbf{c}]$. Consequently, $I \cup I_p^f \models_{\overline{p}} \mathrm{CBL}[F; f, \mathbf{c}]$, and since the signature of I_p^f does not contain f, we conclude $I \models_{\overline{p}} \mathrm{CBL}[F; f, \mathbf{c}]$.

Part (b), Left-to-right: Assume $J \models_{\mathbb{P}} \mathrm{CBL}[F_p^f \wedge UEC_p;\ p,\mathbf{c}]$. Let $I = J_f^p$ where J_f^p denotes the partial interpretation of the signature of F obtained from J by replacing the set p^J with the function f such that $f^I(\xi_1,\ldots,\xi_k)=\xi_{k+1}$ for all tuples $\langle \xi_1,\ldots,\xi_k,\xi_{k+1}\rangle$ in p^J . This is a valid definition of a function since we assume $J\models_{\mathbb{P}} \mathrm{CBL}[F_f^f \wedge UEC_p;\ p,\mathbf{c}]$, from which it follows that $J\models_{\mathbb{P}} UEC_p$. Clearly, $J=I_p^f$ so it only remains to be shown that $I\models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$. By the definition of J_f^p , $I\cup J\models_{\mathbb{P}} (\mathrm{C11})$. Thus by Theorem 8, $I\cup J\models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}] \leftrightarrow \mathrm{CBL}[F_f^f;\ p,\mathbf{c}]$. From the assumption, we have $J\models_{\mathbb{P}} \mathrm{CBL}[F_f^f;\ p,\mathbf{c}]$, and further $I\cup J\models_{\mathbb{P}} \mathrm{CBL}[F_f^f;\ p,\mathbf{c}]$. Consequently, $I\cup J\models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$, and since the signature of J does not contain f, we conclude $I\models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$.

Part (b), Right-to-left: Take any I such that $J = I_p^f$ and $I \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$. By the definition of $J = I_p^f$, $I \cup J \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}] \mapsto_{\mathbb{P}} \mathrm{CBL}[F^f;\ p,\mathbf{c}]$. Since we assume $I \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$, it is the case that $I \cup J \models_{\mathbb{P}} \mathrm{CBL}[F;\ f,\mathbf{c}]$ and thus it must be the case that $I \cup J \models_{\mathbb{P}} \mathrm{CBL}[F^f;\ p,\mathbf{c}]$. Further, (C11) entails UEC_p , so $I \cup J \models_{\mathbb{P}} UEC_p$. Since the signature of I does not contain p, we conclude $J \models_{\mathbb{P}} \mathrm{CBL}[F^f_p;\ p,\mathbf{c}] \wedge UEC_p$ and since UEC_p is comprised of constraints, $J \models_{\mathbb{P}} \mathrm{CBL}[F^f_p \wedge UEC_p;\ p,\mathbf{c}]$.

Corollary 3 Let \mathbf{c} be a set of intensional constants consisting of intensional function constants \mathbf{f} and intensional predicate constants, and let F be an \mathbf{c} -plain sentence. (a) For any total interpretation I of the signature of F, $I \models_{\mathbf{p}} \mathrm{CBL}[F; \mathbf{c}]$ iff $I_{\mathbf{p}}^{\mathbf{f}} \models_{\mathbf{p}} \mathrm{SM}[F_{\mathbf{p}}^{\mathbf{f}} \land UEC_{\mathbf{p}}; \mathbf{c}_{\mathbf{p}}^{\mathbf{f}}]$. (b) For any total interpretation I of the signature of $F_{\mathbf{p}}^{\mathbf{f}}$, $I \models_{\mathbf{p}} \mathrm{SM}[F_{\mathbf{p}}^{\mathbf{f}} \land UEC_{\mathbf{p}}; \mathbf{c}_{\mathbf{p}}^{\mathbf{f}}]$ iff $I = I_{\mathbf{p}}^{\mathbf{f}}$ for some total interpretation I such that $I \models_{\mathbf{p}} \mathrm{CBL}[F; \mathbf{c}]$.

Proof. (a) First, by multiple applications of Corollary 2, it follows that for any total interpretation I of the signature of F, $I \models_{\mathbb{P}} CBL[F; \mathbf{c}]$ iff $I_{\mathbf{p}}^{\mathbf{f}} \models_{\mathbb{P}} CBL[F_{\mathbf{p}}^{\mathbf{f}} \wedge UEC_{\mathbf{p}}; \mathbf{c}_{\mathbf{p}}^{\mathbf{f}}]$. Then the statement follows from Theorem 5 since $F_{\mathbf{p}}^{\mathbf{f}} \wedge UEC_{\mathbf{p}}$ is \mathbf{c} -plain.

The proof of (b) is similar.

C.8 Proof of Theorem 9

Given a program Π , by Π^{FOL} we denote the FOL representation of Π .

³ The last step is justified by the theorem on constraints, similar to Theorem 3 from (Ferraris et al. 2011), which we omit here.

Consider a signature σ and a set of constants c. Given an ASP $\{f\}$ program Π of signature σ not containing strong negation,

- (a) For any partial interpretation I of signature σ that maps every constant in $\sigma \setminus \mathbf{c}$ to itself, there is a consistent set S of seed literals such that $I \models_{\overline{\mathbf{c}}} \Pi^{FOL}$ iff $S \models_{\overline{\mathbf{c}}} \Pi$.
- (b) For any consistent set of seed literals S, there is a partial interpretation I such that $I \models_{\mathbb{P}} \Pi^{FOL}$ iff $S \models_{\mathbb{F}} \Pi$.

Proof. Part (a): Given a partial interpretation I, let S be the set $\{f(\mathbf{v}) = w : f(\mathbf{v})^I = w\} \cup \{g(\mathbf{v}) : g(\mathbf{v})^I = \text{TRUE}\}$. We note that this is a consistent set of seed literals since a partial interpretation maps $f(\mathbf{v})$ to at most one object constant.

We also note that by the definition of S, for any atomic sentence A, we have $I \models_{\overline{p}} A$ iff $S \models_{\overline{p}} A$. Now, consider any rule r from Π . $I \models_{\overline{p}} r^{FOL}$ iff $I \models_{\overline{p}} head(r)^{FOL}$ or $I \not\models_{\overline{p}} body(r)^{FOL}$. By the previous observation, this is equivalent to $S \models_{\overline{p}} head(r)$ or $S \not\models_{\overline{p}} body(r)$ since body(r) is a conjunction of atomic formulas. This is precisely the definition of $S \models_{\overline{p}} r$.

Part (b): Given a consistent set of seed literals S, let I be the partial interpretation defined as follows:

- for every object constant $v \in \sigma \setminus \mathbf{c}$, we have $v^I = v$.
- for every predicate constant $p \in \mathbf{c}$ and every list of object constants \mathbf{v} , we have $p(\mathbf{v})^I =$ TRUE iff $p(\mathbf{v}) \in S$.
- for every function constant $f \in \mathbf{c}$ and every list of object constants \mathbf{v} , we have $f(\mathbf{v})^I = u$ if S does not mention $f(\mathbf{v})$, and $f(\mathbf{v})^I = w$ if $f(\mathbf{v}) = w$ is in S.

We note that the last bullet is well-defined since S is a consistent set of seed literals so that there cannot be two distinct object constants a and b such that $f(\mathbf{v}) = a \in S$ and $f(\mathbf{v}) = b \in S$.

We also note that by the definition of I, for any atomic sentence A, we have $I \models_{\overline{p}} A$ iff $S \models_{\overline{b}} A$. Now, consider any rule r from Π . $S \models_{\overline{b}} r$ iff $S \models_{\overline{b}} head(r)$ or $S \not\models_{\overline{b}} body(r)$. By the previous observation, this is equivalent to $I \models_{\overline{p}} head(r)^{FOL}$ or $I \not\models_{\overline{p}} body(r)^{FOL}$ since body(r) is a conjunction of atomic formulas. This is precisely the definition of $I \models_{\overline{p}} r^{FOL}$.

The proof of Lemma 14 tells us that a consistent set of seed literals can be identified with a partial interpretation.

Lemma 15

For consistents sets of seed literals J and I of the same signature, J is a proper subset of I iff $J \prec^{\mathbf{c}} I$ (as defined in Section 2.3.2) when we view them as partial interpretations.

Proof. We first note that since consistent sets of literals map every object constant in $\sigma \setminus \mathbf{c}$ to itself, the partial interpretation view does the same which corresponds to the first condition for $J \prec^{\mathbf{c}} I$. The second condition of $J \prec^{\mathbf{c}} I$ is $p^J \subseteq p^I$ for all predicate constants in \mathbf{c} , which corresponds exactly to the predicate part of J being a subset of the predicate part of I. Finally, the third condition of $J \prec^{\mathbf{c}} I$ is $f^J(\xi) = u$ or $f^J(\xi) = f^I(\xi)$ corresponds to the function part of J being a subset of the function part of J since we identify a partial interpretation mapping an element to U to the absence of that element in the set.

Theorem 9 For any ASP $\{f\}$ program Π with intensional constants \mathbf{c} and any consistent set I of seed literals, if Π has no strong negation, then I is a Balduccini answer set of Π iff $I \models_{\mathbb{P}} \mathrm{CBL}[\Pi; \mathbf{c}]$.

Proof. By definition and by using the equivalent reformulation presented and justified in Lemma 15 and Lemma 14, I is a Balduccini answer set of a program Π iff $I \models_{\mathbb{P}} \Pi$ and for every partial interpretation J such that $J \prec^{\mathbf{c}} I$, we have $J \not\models_{\mathbb{P}} \Pi^{I}$. This is equivalent to the reduct reformulation of the Cabalar semantics. Further, this is equivalent to $I \models_{\mathbb{P}} CBL[\Pi^{FOL}; \mathbf{c}]$ by Theorem 2.

C.9 Proof of Theorem 10

Theorem 10 For any ASP $\{f\}$ program Π with intensional constants \mathbf{c} and any consistent set I of seed literals, I is a Balduccini answer set of Π iff I is a Balduccini answer set of $\Pi^{\#}$.

Proof. First, we show that $I \models_{\overline{b}} \sim (f = g)$ iff $I \models_{\overline{b}} (f = f) \land (g = g) \land \neg (f = g)$.

Left-to-right: Assume $I \models_{\overline{b}} \sim (f = g)$. By definition, I contains both $f = c_1$ and $g = c_2$ for some object constants c_1 and c_2 such that $c_1 \neq c_2$. Clearly, each of $I \models f = f$, $I \models g = g$ and $I \not\models f = g$ holds.

Right-to-left: $I \models_{\overline{b}} (f = f) \land (g = g) \land \neg (f = g)$. Since $I \models_{\overline{b}} f = f$ and $I \models g = g$, it follows that I contains $f = c_1$ and I contains $f = c_2$ for some c_1 and c_2 . Further, since $I \models \neg (f = g)$, it must be that $c_1 \neq c_2$, from which the claim follows.

From this it is not difficult to check that Π^I is equivalent to $(\Pi^\#)^I$ under partial satisfaction, from which the claim follows.

C.10 Proof of Theorem 11

Theorem 11 For any sentence F in Clark normal form that is tight on \mathbf{c} and any total interpretation I, if $I \models \exists xy (x \neq y)$, then $I \models \mathsf{CBL}[F; \mathbf{c}]$ iff $I \models \mathsf{SM}[F; \mathbf{c}]$ iff I is a model of the completion of F relative to \mathbf{c} .

Proof. By Theorem 2 from (Bartholomew and Lee 2013), I is a model of the completion of F relative to \mathbf{c} iff $I \models \mathrm{SM}[F; \mathbf{c}]$. Since a formula in Clark normal form that is tight on \mathbf{c} is also head- \mathbf{c} -plain and is tight on \mathbf{c} , $I \models \mathrm{SM}[F; \mathbf{c}]$ iff $I \models \mathrm{CBL}[F; \mathbf{c}]$ by Theorem 6.

References

BARTHOLOMEW, M. AND LEE, J. 2013. Functional stable model semantics and answer set programming modulo theories. In *Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)*. To appear.

FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2011. Stable models and circumscription. *Artificial Intelligence* 175, 236–263.