Roundtrip Spanners and Roundtrip Routing in Directed Graphs

by Roditty, Thorup, and Zwick (2008)

Yuchong Pan

MIT 6.890

December 9, 2021

Definition (Spanner)

Let G = (V, E) be a weighted **undirected** graph. A subgraph H of G is a t-spanner if $d_H(u, v) \le t \cdot d_G(u, v)$ for all $u, v \in V$.

Definition (Spanner)

Let G = (V, E) be a weighted **undirected** graph. A subgraph H of G is a t-spanner if $d_H(u, v) \le t \cdot d_G(u, v)$ for all $u, v \in V$.

Theorem (Althöfer et al., 1993)

For any $k \in \mathbb{N}$, any weighted **undirected** graph on n vertices has a (2k-1)-spanner with $O(n^{1+1/k})$ edges.

Definition (Spanner)

Let G = (V, E) be a weighted **undirected** graph. A subgraph H of G is a t-spanner if $d_H(u, v) \le t \cdot d_G(u, v)$ for all $u, v \in V$.

Theorem (Althöfer et al., 1993)

For any $k \in \mathbb{N}$, any weighted **undirected** graph on n vertices has a (2k-1)-spanner with $O(n^{1+1/k})$ edges.

Directed graphs?

Definition (Spanner)

Let G = (V, E) be a weighted **undirected** graph. A subgraph H of G is a t-spanner if $d_H(u, v) \le t \cdot d_G(u, v)$ for all $u, v \in V$.

Theorem (Althöfer et al., 1993)

For any $k \in \mathbb{N}$, any weighted **undirected** graph on n vertices has a (2k-1)-spanner with $O(n^{1+1/k})$ edges.

Directed graphs?

Definition (Spanner)

Let G = (V, E) be a weighted **undirected** graph. A subgraph H of G is a t-spanner if $d_H(u, v) \le t \cdot d_G(u, v)$ for all $u, v \in V$.

Theorem (Althöfer et al., 1993)

For any $k \in \mathbb{N}$, any weighted **undirected** graph on n vertices has a (2k-1)-spanner with $O(n^{1+1/k})$ edges.

Directed graphs?

Roundtrip Spanners

Definition (Roundtrip spanner)

Let G be a weighted **directed** graph. A subgraph H of G is a t-roundtrip-spanner if $d_H(u \rightleftharpoons v) \le t \cdot d_G(u \rightleftharpoons v)$ for $u, v \in V$.

Roundtrip Spanners

Definition (Roundtrip spanner)

Let G be a weighted **directed** graph. A subgraph H of G is a t-roundtrip-spanner if $d_H(u \rightleftharpoons v) \le t \cdot d_G(u \rightleftharpoons v)$ for $u, v \in V$.

Theorem (Cowen and Wagner, 2000)

For any $k \in \mathbb{N}$, any weighted **directed** graph on n vertices has a $(2^k - 1)$ -roundtrip-spanner with $\tilde{O}(n^{1+1/k})$ edges.

Roundtrip Spanners

Definition (Roundtrip spanner)

Let G be a weighted **directed** graph. A subgraph H of G is a t-roundtrip-spanner if $d_H(u \rightleftharpoons v) \le t \cdot d_G(u \rightleftharpoons v)$ for $u, v \in V$.

Theorem (Cowen and Wagner, 2000)

For any $k \in \mathbb{N}$, any weighted **directed** graph on n vertices has a $(2^k - 1)$ -roundtrip-spanner with $\tilde{O}(n^{1+1/k})$ edges.

Theorem (Roditty, Thorup, and Zwick, 2008)

For any $k \in \mathbb{N}$, $\varepsilon > 0$, any weighted **directed** graph on n vertices with edge weights from [1, W] has a $(2k + \varepsilon)$ -roundtrip-spanner with $O((k^2/\varepsilon)n^{1+1/k}\log(nW))$ edges.

Procedure Partial Spanner (R)

Input: $R \in [1, 2nW]$.

Output: A subgraph H of G with $O(kn^{1+1/k})$ edges such that

 $d_H(u \rightleftharpoons v) \le 2kR$ for all $u, v \in V$ with $d_G(u \rightleftharpoons v) \le R$.

Procedure Partial Spanner (R)

Input: $R \in [1, 2nW]$.

Output: A subgraph H of G with $O(kn^{1+1/k})$ edges such that

 $d_H(u \rightleftharpoons v) \le 2kR$ for all $u, v \in V$ with $d_G(u \rightleftharpoons v) \le R$.

The Approach of Cohen (1998)

- 1 foreach $i \leftarrow 1, \ldots, \log_{1+\varepsilon}(2nW)$ do
- $R_i \leftarrow (1+\varepsilon)^i$
- 3 $H_i \leftarrow \text{PartialSpanner}(R_i)$
- $4 H \leftarrow \bigcup \{H_i : i \in [\log_{1+\varepsilon}(2nW)]\}$
- 5 return H

Procedure PartialSpanner(R)

Input: $R \in [1, 2nW]$.

Output: A subgraph H of G with $O(kn^{1+1/k})$ edges such that

 $d_H(u \rightleftharpoons v) \le 2kR$ for all $u, v \in V$ with $d_G(u \rightleftharpoons v) \le R$.

The Approach of Cohen (1998)

- 1 foreach $i \leftarrow 1, \ldots, \log_{1+\varepsilon}(2nW)$ do
- 2 $R_i \leftarrow (1+\varepsilon)^i$
- 3 $H_i \leftarrow \text{PartialSpanner}(R_i)$
- $4 H \leftarrow \bigcup \{H_i : i \in [\log_{1+\varepsilon}(2nW)]\}$
- 5 return H

Claim: H is a $2k(1+\varepsilon)$ -roundtrip-spanner of G with $O(kn^{1+1/k}\log_{1+\varepsilon}(nW))$ edges.

Definition (Ball)

For every $V' \subset V$, $v \in V$ and $r \geq 0$, let

$$\mathsf{ball}_{V'}(v,r) = \left\{ u \in V' : d_{G[V']}(v \rightleftarrows u) \le r \right\},$$

called a **ball** centered at v of radius r.

Definition (Ball)

For every $V' \subset V$, $v \in V$ and $r \geq 0$, let

$$\mathsf{ball}_{V'}(v,r) = \left\{ u \in V' : d_{G[V']}(v \rightleftarrows u) \le r \right\},\,$$

called a **ball** centered at v of radius r.

Definition ((k, R)-cover)

A set $\mathcal C$ of balls is a (k,R)-cover of a directed graph G=(V,E) if each ball in $\mathcal C$ is of radius at most kR, and for all $u,v\in V$ with $d_G(u\rightleftarrows v)\le R$, there is a ball $B\in \mathcal C$ such that $u,v\in B$.

Procedure Cover(G, k, R)

```
1 C \leftarrow \emptyset

2 V_{k-1} \leftarrow V(G)

3 foreach i \leftarrow k-1, \dots, 0 do

4 S_i \leftarrow \text{SAMPLE}(V_i, n^{-i/k})

5 C \leftarrow C \cup \{\text{ball}_{V_i}(v, (i+1)R) : v \in S_i\}

6 V_{i-1} \leftarrow V_i \setminus \bigcup_{v \in S_i} \text{ball}_{V_i}(v, iR)

7 return C
```

Procedure COVER(G, k, R)

```
1 C \leftarrow \emptyset

2 V_{k-1} \leftarrow V(G)

3 foreach i \leftarrow k-1, \dots, 0 do

4 S_i \leftarrow \text{SAMPLE}(V_i, n^{-i/k})

5 C \leftarrow C \cup \{\text{ball}_{V_i}(v, (i+1)R) : v \in S_i\}

6 V_{i-1} \leftarrow V_i \setminus \bigcup_{v \in S_i} \text{ball}_{V_i}(v, iR)

7 return C
```

Theorem

The collection C = COVER(G, k, R) is a (k, R)-cover of a directed graph G = (V, E). For each $v \in V$, the **expected** number of balls in C containing v is at most $kn^{1/k}$.

∘ Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.
- Let *i* be the largest index so that a vertex u' on c is contained in the **core** ball $V_i(w, iR)$ of ball $V_i(w, (i+1)R)$ added to C.

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.
- Let *i* be the largest index so that a vertex u' on c is contained in the **core** ball $_{V_i}(w, iR)$ of ball $_{V_i}(w, (i+1)R)$ added to C.
- o By maximality of i, all the vertices on c are contained in V_i .

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.
- Let *i* be the largest index so that a vertex u' on c is contained in the **core** ball $_{V_i}(w, iR)$ of ball $_{V_i}(w, (i+1)R)$ added to C.
- By maximality of i, all the vertices on c are contained in V_i .
- By the triangle inequality,

$$d_{G[V_i]}(w \rightleftharpoons v) \le d_{G[V_i]}(w \rightleftharpoons u) + d_{G[V_i]}(u \rightleftharpoons v)$$

$$\le iR + R = (i+1)R.$$

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.
- Let *i* be the largest index so that a vertex u' on c is contained in the **core** ball $_{V_i}(w, iR)$ of ball $_{V_i}(w, (i+1)R)$ added to C.
- By maximality of i, all the vertices on c are contained in V_i .
- By the triangle inequality,

$$d_{G[V_i]}(w \rightleftharpoons v) \le d_{G[V_i]}(w \rightleftharpoons u) + d_{G[V_i]}(u \rightleftharpoons v)$$

$$\le iR + R = (i+1)R.$$

• Therefore, $v \in \mathsf{ball}_{V_i}(w,(i+1)R)$.

- Let $u, v \in V$ be such that $d_G(u \rightleftharpoons v) \leq R$.
- Let c be a closed tour in G of length $\leq R$ containing u and v.
- Let *i* be the largest index so that a vertex u' on c is contained in the **core** ball $_{V_i}(w, iR)$ of ball $_{V_i}(w, (i+1)R)$ added to C.
- By maximality of i, all the vertices on c are contained in V_i .
- By the triangle inequality,

$$d_{G[V_i]}(w \rightleftharpoons v) \le d_{G[V_i]}(w \rightleftharpoons u) + d_{G[V_i]}(u \rightleftharpoons v)$$

$$\le iR + R = (i+1)R.$$

- Therefore, $v \in \mathsf{ball}_{V_i}(w,(i+1)R)$.
- Similarly, $u \in \text{ball}_{V_i}(w, (i+1)R)$, completing the proof.

Lemma

Lemma

• Let
$$B = \text{ball}_{V_{i+1}}(v, (i+1)R)$$
.

Lemma

- Let $B = \text{ball}_{V_{i+1}}(v, (i+1)R)$.
- If $u \in B$ is chosen to S_{i+1} (with probability $n^{-(i+1)/k}$), then $v \in \text{ball}_{V_{i+1}}(u,(i+1)R)$ and thus removed in iteration i+1.

Lemma

- Let $B = ball_{V_{i+1}}(v, (i+1)R)$.
- If $u \in B$ is chosen to S_{i+1} (with probability $n^{-(i+1)/k}$), then $v \in \text{ball}_{V_{i+1}}(u, (i+1)R)$ and thus removed in iteration i+1.
- $\quad \text{o If } v \in \mathsf{ball}_{V_i}(u,(i+1)R) \subset \mathsf{ball}_{V_{i+1}}(u,(i+1)R) \text{, then } u \in \mathcal{B}.$

Lemma

- Let $B = \text{ball}_{V_{i+1}}(v, (i+1)R)$.
- If $u \in B$ is chosen to S_{i+1} (with probability $n^{-(i+1)/k}$), then $v \in \mathsf{ball}_{V_{i+1}}(u,(i+1)R)$ and thus removed in iteration i+1.
- $\quad \quad \circ \ \, \mathsf{lf} \,\, v \in \mathsf{ball}_{V_i}(u,(i+1)R) \subset \mathsf{ball}_{V_{i+1}}(u,(i+1)R), \, \mathsf{then} \,\, u \in \mathcal{B}.$
- $\circ \ \mathbb{P}[u \in S_i \land v \in \mathsf{ball}_{V_i}(u, (i+1)R)] = \left(1 n^{-(i+1)/k}\right)^{|B|} n^{-i/k}.$

Lemma

- Let $B = \text{ball}_{V_{i+1}}(v, (i+1)R)$.
- If $u \in B$ is chosen to S_{i+1} (with probability $n^{-(i+1)/k}$), then $v \in \text{ball}_{V_{i+1}}(u, (i+1)R)$ and thus removed in iteration i+1.
- $\circ \ \mathsf{lf} \ v \in \mathsf{ball}_{V_i}(u,(i+1)R) \subset \mathsf{ball}_{V_{i+1}}(u,(i+1)R), \ \mathsf{then} \ u \in B.$
- $\circ \ \mathbb{P}[u \in S_i \land v \in \mathsf{ball}_{V_i}(u, (i+1)R)] = \left(1 n^{-(i+1)/k}\right)^{|B|} n^{-i/k}.$
- The expected number of balls containing v in iteration i is $|B| \left(1 n^{-(i+1)/k}\right)^{|B|} n^{-i/k}$.

 $\mathbb{E}[\# \text{ balls containing } v \text{ in iteration } i]$

$$= |B| \left(1 - n^{-(i+1)/k} \right)^{|B|} n^{-i/k} \le \frac{n^{-i/k}}{en^{-(i+1)/k}} = \frac{n^{1/k}}{e}.$$

Definition (Double-tree)

Let G = (V, E) be a weighted directed graph. Let $V' \subset V$, $v \in V$ and $r \geq 0$. Let $B = \mathsf{ball}_{V'}(v, r)$.

Let OutTree(B, v) be a tree containing directed shortest paths in G[V'] from v to all the vertices in B.

Let InTree(B, v) be a tree containing directed shortest paths in G[V'] from all the vertices in B to v.

Let $InOutTrees(B, v) = InTree(B, v) \cup OutTree(B, v)$, referred to as a **double-tree**.

Definition (Double-tree)

Let G = (V, E) be a weighted directed graph. Let $V' \subset V$, $v \in V$ and $r \geq 0$. Let $B = \mathsf{ball}_{V'}(v, r)$.

Let OutTree(B, v) be a tree containing directed shortest paths in G[V'] from v to all the vertices in B.

Let InTree(B, v) be a tree containing directed shortest paths in G[V'] from all the vertices in B to v.

Let $InOutTrees(B, v) = InTree(B, v) \cup OutTree(B, v)$, referred to as a **double-tree**.

Lemma

Let $V' \subset V$ and $v \in V$. If $u \in B := \text{ball}_{V'}(v, r)$ and w is on a shortest path in G[V'] from u to v, or from v to u, then $w \in B$.

Definition (Double-tree)

Let G = (V, E) be a weighted directed graph. Let $V' \subset V$, $v \in V$ and $r \geq 0$. Let $B = \mathsf{ball}_{V'}(v, r)$.

Let OutTree(B, v) be a tree containing directed shortest paths in G[V'] from v to all the vertices in B.

Let InTree(B, v) be a tree containing directed shortest paths in G[V'] from all the vertices in B to v.

Let $InOutTrees(B, v) = InTree(B, v) \cup OutTree(B, v)$, refered to as a **double-tree**.

Lemma

Let $V' \subset V$ and $v \in V$. If $u \in B := \text{ball}_{V'}(v, r)$ and w is on a shortest path in G[V'] from u to v, or from v to u, then $w \in B$.

Corollary

 $V(InOutTrees(B, v)) \subset B$, so $e(InOutTrees(B, v)) \leq 2(|B| - 1)$.

Lemma

Let $V' \subset V, v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

• Let
$$\varepsilon' = \varepsilon/(2k)$$
.

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

- Let $\varepsilon' = \varepsilon/(2k)$.
- ∘ For $i \in [\log_{1+\varepsilon'}(2nW)]$, let $C_i = \text{PARTIALSPANNER}(G, k, R_i)$ be a (k, R_i) -cover, where $R_i = (1 + \varepsilon')^i$.

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

- Let $\varepsilon' = \varepsilon/(2k)$.
- ∘ For $i \in [\log_{1+\varepsilon'}(2nW)]$, let $C_i = \text{PARTIALSPANNER}(G, k, R_i)$ be a (k, R_i) -cover, where $R_i = (1 + \varepsilon')^i$.
- ∘ Let $H = \bigcup \{ InOutTrees(B) : B \in \bigcup_i C_i \}.$

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

- Let $\varepsilon' = \varepsilon/(2k)$.
- For $i \in [\log_{1+\varepsilon'}(2nW)]$, let $C_i = \text{PARTIALSPANNER}(G, k, R_i)$ be a (k, R_i) -cover, where $R_i = (1 + \varepsilon')^i$.
- ∘ Let $H = \bigcup \{ \text{InOutTrees}(B) : B \in \bigcup_i C_i \}.$
- Therefore, H is a $(2k + \varepsilon)$ -roundtrip-spanner of G with $O((k^2/\varepsilon)n^{1+1/k}\log(nW))$ edges in expectation.

Lemma

Let $V' \subset V$, $v \in V$. If $u_1, u_2 \in B := \mathsf{ball}_{V'}(v, r)$, $\mathsf{InOutTrees}(B, v)$ contains a closed directed tour containing u_1, u_2 of $\mathsf{length} \leq 2r$.

Obtaining a $(2k + \varepsilon)$ -roundtrip-spanner of G:

- Let $\varepsilon' = \varepsilon/(2k)$.
- For $i \in [\log_{1+\varepsilon'}(2nW)]$, let $C_i = \text{PARTIALSPANNER}(G, k, R_i)$ be a (k, R_i) -cover, where $R_i = (1 + \varepsilon')^i$.
- ∘ Let $H = \bigcup \{ \text{InOutTrees}(B) : B \in \bigcup_i C_i \}.$
- Therefore, H is a $(2k + \varepsilon)$ -roundtrip-spanner of G with $O((k^2/\varepsilon)n^{1+1/k}\log(nW))$ edges in expectation.

Application: Compact roundtrip routing schemes.

State-of-the-Art

Theorem (Cen, Duan, and Gu, 2019)

For any $k \in \mathbb{N}$, any weighted directed graph on n vertices has a (2k-1)-roundtrip-spanner with $O(kn^{1+1/k} \log n)$ edges.

State-of-the-Art

Theorem (Cen, Duan, and Gu, 2019)

For any $k \in \mathbb{N}$, any weighted directed graph on n vertices has a (2k-1)-roundtrip-spanner with $O(kn^{1+1/k}\log n)$ edges.

Proposition

If the Erdős girth conjecture is true, there is an **undirected** graph on n vertices such that any (2k-1)-spanner has $\Omega(n^{1+1/k})$ edges.

Thank you and happy holidays!