Συναρτήσεις, Πράξεις, \boldsymbol{u}

Κωνσταντίνος Λόλας

Ισότητα Συναρτήσεων

Ορισμός

Δύο συναρτήσεις f και g θα είναι ίσες αν:

- έχουν ίδιο πεδίο ορισμού Α
- f(x) = g(x)για κάθε $x \in A$

Πράξεις Συναρτήσεων

Πρόσθεση

Έστω $f, x \in A$ και $g, x \in B$ δύο συναρτήσεις. Η συνάρτηση (f+g)(x) έχει

- \bullet Πεδίο ορισμού το $A \cap B$
- Κανόνα f(x) + g(x)

Πράξεις Συναρτήσεων

Πράξεις

Έστω f, $x \in A$ και g, $x \in B$ δύο συναρτήσεις.

•
$$(f-g)(x) = f(x) - g(x), x \in A \cap B$$

$$\circ$$
 $(f \cdot g)(x) = f(x) \cdot g(x), x \in A \cap B$

$$(f/g)(x) = f(x)/g(x), x \in A \cap B$$
 και $g(x) \neq 0$

Και κάτι καινούριο

Σύνθεση της g με την f

Έστω $f,x\in \mathbf{A}$ και $g,x\in \mathbf{B}$ δύο συναρτήσεις. Η συνάρτηση $(f\circ g)(x)$ έχει

- \circ Κανόνα f(g(x))
- ullet Πεδίο ορισμού το $\{x \in B | g(x) \in A\}$

Σύνθεση

Έστω $f, x \in \mathbf{A}$ και $g, x \in \mathbf{B}$ δύο συναρτήσεις. Η συνάρτηση $(f \circ g)(x)$ έχει

- lacktriangle Κανόνα f(g(x))
- Ορίζεται αν $A \cap g(B) \neq 0$
 - $x \in B$
 - $\circ g(x) \in A$
 - τύπος είναι απλά αντικατάσταση

Σύνθεση

Έστω $f, x \in \mathbf{A}$ και $g, x \in \mathbf{B}$ δύο συναρτήσεις. Η συνάρτηση $(f \circ g)(x)$ έχει

- lacktriangle Κανόνα f(g(x))
- Ορίζεται αν $A \cap g(B) \neq 0$
 - $x \in B$
 - $g(x) \in A$
 - τύπος είναι απλά αντικατάσταση

Σύνθεση

Έστω $f, x \in A$ και $g, x \in B$ δύο συναρτήσεις. Η συνάρτηση $(f \circ g)(x)$ έχει

- lacktriangle Κανόνα f(g(x))
- Ορίζεται αν $A \cap g(B) \neq 0$
 - $x \in B$
 - \circ $g(x) \in A$
 - τύπος είναι απλά αντικατάσταση

Σύνθεση

Έστω $f, x \in A$ και $g, x \in B$ δύο συναρτήσεις. Η συνάρτηση $(f \circ g)(x)$ έχει

- lacktriangle Κανόνα f(g(x))
- Ορίζεται αν $A \cap g(B) \neq 0$
 - $x \in B$
 - $g(x) \in A$
 - τύπος είναι απλά αντικατάσταση

Να εξετάσετε αν οι συναρτήσεις:

$$f(x) = x - \ln(e^x - 1)$$
 και $g(x) = \ln \frac{e^x}{e^x - 1}$

είναι ίσες

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

- 📵 Να εξετάσετε αν οι συναρτήσεις είναι ίσες
- ② Αν $f \neq g$ να βρείτε το ευρύτερο υποσύνολο του $\mathbb R$ στο οποίο να ισχύει f = g
- ③ Να γράψετε τη συνάρτηση g σε μορφή δύναμης

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

- 1 Να εξετάσετε αν οι συναρτήσεις είναι ίσες
- ② Αν $f \neq g$ να βρείτε το ευρύτερο υποσύνολο του $\mathbb R$ στο οποίο να ισχύει f = g
- ③ Να γράψετε τη συνάρτηση g σε μορφή δύναμης

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

- 1 Να εξετάσετε αν οι συναρτήσεις είναι ίσες
- ② Αν $f \neq g$ να βρείτε το ευρύτερο υποσύνολο του $\mathbb R$ στο οποίο να ισχύει f = g
- ③ Να γράψετε τη συνάρτηση g σε μορφή δύναμης

Δίνονται οι συναρτήσεις $f(x)=\sqrt{e^x-1}$ και $g(x)=\frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

- $\frac{1}{a}$
- $\frac{g}{3}$

Δίνονται οι συναρτήσεις $f(x)=\sqrt{e^x-1}$ και $g(x)=\frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

- $\frac{1}{q}$
- 3

Δίνονται οι συναρτήσεις $f(x)=\sqrt{e^x-1}$ και $g(x)=\frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

- $\frac{1}{q}$
- $\frac{f}{g}$

Να βρείτε τη συνάρτηση f για την οποία ισχύει

$$f^2(x)=4e^x\left(f(x)-e^x\right)$$

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

- $g \circ f$
- 3 f o f

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

- $\bigcirc g \circ f$
- $3 f \circ f$

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

- $\bigcirc g \circ f$
- \circ $f \circ f$

Δίνονται οι συναρτήσεις $f(x) = \frac{x+1}{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσειςς

- \bullet $f \circ g$

Δίνονται οι συναρτήσεις $f(x)=\frac{x+1}{x-1}$ και $g(x)=\frac{1}{x}$. Να βρείτε τις συναρτήσειςs

- $2 g \circ \frac{1}{f}$

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f(\ln x) = 3x + 2 \ln x - 1$$
, για κάθε $x > 0$

Να βρείτε τη συνάρτηση f

Έστω δύο συναρτήσεις για τις οποίες ισχύει

$$(g\circ f)(x)=e^x-x+1$$
, $x\in\mathbb{R}$

- **1** Να βρείτε τη συνάρτηση g, αν $f(x) = e^x 1$
- ② Να βρείτε τη συνάρτηση f, αν g(x) = 3x 2

Έστω δύο συναρτήσεις για τις οποίες ισχύει

$$(g \circ f)(x) = e^x - x + 1, x \in \mathbb{R}$$

- **1** Να βρείτε τη συνάρτηση g, αν $f(x) = e^x 1$
- ② Να βρείτε τη συνάρτηση f, αν g(x) = 3x 2

Να εκφράσετε την συνάρτηση f ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:

- \bullet $f(x) = \eta \mu 3x$
- $f(x) = e^{-x}$
- $f(x) = \ln(1 + e^x)$

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- **1** Να βρείτε το f(0)
- \bigcirc Να βρείτε τις ρίζες και το πρόσημο της f
- \bigcirc Να λύσετε την ανίσωση f(x) < x-2
- Φ Αν θεωρήσουμε γνωστό ότι το σύνολο της f είναι το \mathbb{R} , να δείξετε ότι η εξίσωση $e^{f(x)}-2023=0$ έχει μία τουλάχιστον λύση

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- $\mathbf{0}$ Να βρείτε το f(0)
- ② Να βρείτε τις ρίζες και το πρόσημο της f
- \bigcirc Να λύσετε την ανίσωση f(x) < x-2
- Φ Αν θεωρήσουμε γνωστό ότι το σύνολο της f είναι το \mathbb{R} , να δείξετε ότι η εξίσωση $e^{f(x)}-2023=0$ έχει μία τουλάχιστον λύση

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- $\mathbf{0}$ Να βρείτε το f(0)
- ② Να βρείτε τις ρίζες και το πρόσημο της f
- 3 Να λύσετε την ανίσωση f(x) < x-2
- Φ Αν θεωρήσουμε γνωστό ότι το σύνολο της f είναι το \mathbb{R} , να δείξετε ότι η εξίσωση $e^{f(x)}-2023=0$ έχει μία τουλάχιστον λύση

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- **1** Να βρείτε το f(0)
- $oldsymbol{Q}$ Να βρείτε τις ρίζες και το πρόσημο της f
- **3** Να λύσετε την ανίσωση f(x) < x 2
- 4 Αν θεωρήσουμε γνωστό ότι το σύνολο της f είναι το \mathbb{R} , να δείξετε ότι η εξίσωση $e^{f(x)}-2023=0$ έχει μία τουλάχιστον λύση

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f(x^2+2)+f(3x)=0$$
, για κάθε $x\in\mathbb{R}$

Να δείξετε ότι η εξίσωση f(x)=0 έχει δύο τουλάχιστον ρίζες.

$$f\left(f(x)
ight)=2x-1$$
, για κάθε $x\in\mathbb{R}$

- ① Να δείξετε ότι f(2x-1)=2f(x)-1, $x\in\mathbb{R}$
- $oldsymbol{2}$ Να δείξετε ότι η εξίσωση f(x)=1 έχει μία τουλάχιστον ρίζα

$$f(f(x)) = 2x - 1$$
, για κάθε $x \in \mathbb{R}$

- ② Να δείξετε ότι η εξίσωση f(x)=1 έχει μία τουλάχιστον ρίζα

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση