Recurrences

Tufts University

Warm-up question

How can we merge two sorted arrays?

0 3 7 9 10 11 13 15 18 22 50

Previously ...

- Proofs are an important part of 160
 - Break a big proof into Lemmas
- \triangleright Θ , O and Ω compare growth of functions
 - ▶ Population on Earth is $\Theta(1.02^n)$, resources are $\Theta(1)$
- ▶ In 160 we look at worst-case runtime of algorithms
 - Runtime R depends on input size (R = R(n))
 - Assume R(n) > 0
 - R defined on natural numbers

Warm-up question

How can we merge two sorted arrays?

0 3 7 9 10 11 13 15 18 22 50

Warm-up question

- Create empty solution
- ▶ 1 helping index per array (current position)
- Add smallest to solution. Advance indices. Repeat

MergeSort

Conceptually simple. Lots of details

- ▶ If array is small (say, $n \le 3$) solve by brute force
- Divide array into twoElse divide array into two
- Sort each subarray recursively
- Use warm-up to merge sorted arrays

Example

Example

Runtime?

- Forget recursion
 - ► Runtime of merge? Let's say 10n
- T(n) = worst-case time needed to sort n elements
- $T(1) = T(2) = T(3) = \Theta(1)$
- ► T(n) =

Let's draw $T(n) = 2T(\frac{n}{2}) + 10n$

Recursion tree

Key points:

- Identify level sum (grows? shrinks? equal?)
- Identify height of tree

 $height \cdot min(level sum) \le real cost \le height \cdot max(level sum)$

Example 2:
$$G(n) = G(\frac{n}{2}) + \log n$$

- Always assume $G(1) = \Theta(1)$
- ▶ Height of tree?
- Level sum? Grows? Shrinks?

Proof by substitution

- More math, less drawing
- Heavily based on induction
- Confirms recursion tree (or other) hunch

$$T(n) = 2T(\frac{n}{2}) + 10n$$

Educated guess: $T(n) \le cn \log n$ for some c > 0

Base case: T(2)

Induction step: T(n)

Key Points

Identify base case

Normally T(1)

Beware: may fail with $\log n$, \sqrt{n} , etc

Induction step

Use definition to make smaller Substitute Find compatible constraints on *c*

Bonus: can also give lower bounds!

INCORRECT use of substitution

$$T(n) = 2T(\frac{n}{2}) + 10n$$

Guess: $T(n) \le cn$ for some $c > 0$
Base case: $T(0)$

INCORRECT use of substitution

$$T(n) = 2T(\frac{n}{2}) + 10n$$

Guess: $T(n) \le cn$ for some $c > 0$
Base case: $T(1)$
Induction step: $T(n) = 2T(\frac{n}{2}) + 10n$

Remember $G(n) = G(\frac{n}{2}) + \log n$?

Height: log *n*

Level sum shrinks (min= $\Theta(1)$, max=log n)

$$G(n) = \Omega(\log n)$$
 and $G(n) = O(\log^2 n)$

Let's use substitution to prove $G(n) = \Theta(\log n)$

Guess $G(n) \le c \log n$ for some c > 0

Base case G(2)

Induction step $G(n) = G(\frac{n}{2}) + \log n$

Summary

- Recursive algorithms have complicated runtimes
- Math to the rescue!
 Recursion tree helps find intuition
 - Substitution nails it down
- Practice makes you perfect Go to recitation!

Additional practice questions

- What is your favorite recursive algorithm?
 - 1. Express its runtime as a recurrence
 - 2. Draw the recursion tree
 - 3. Prove upper/lower bounds using substitution
- Use substitution to show $T(n) = 2T(\frac{n}{2}) + 10n = \Omega(n \log n)$
- For $G(n) = 3G(\frac{n}{3}) + f(n)$, draw recursion tree for:

$$f(n) = 1$$

$$f(n) = n$$

$$f(n) = n^3$$

- ▶ Give upper and lower bounds for *G* in the three cases above
- For each of the cases above, which level sum was highest? lowest?