Exercice 1. Soient a < b deux réels positifs. Définissons les deux suites (x_n) et (y_n) par récurrence par $x_0 = a, y_0 = b$ et pour tout $n \in \mathbb{N}, x_{n+1} = \sqrt{x_n y_n}$ et $y_{n+1} = \frac{x_n + y_n}{2}$.

- (i) Montrer que pour tout $x, y \in \mathbb{R}, x^2 + y^2 \ge 2xy$. En déduire que $x_n \le y_n$ pour tout $n \in \mathbb{N}$.
- (ii) Montrer que (x_n) croît et que (y_n) décroît.
- (iii) Montrer que (x_n) et (y_n) convergent (on notera leurs limites ℓ et ℓ'). Utiliser le fait que $y_{n+1} = \frac{x_n + y_n}{2}$ afin de montrer que $\ell' = \frac{\ell + \ell'}{2}$. En déduire que $\ell = \ell'$.

La limite commune est appelée moyenne arithmético-géométrique de a et b..

Exercice 2. Soit $\Phi: \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante. Montrer que $\Phi(n) \geq n$ pour tout $n \in \mathbb{N}$.

```
Exercice 2

Preuve pur récurrence: Comme \Psi(o) \in \mathbb{N}, \Psi(n) \geqslant 0 et en particulier \Psi(o) \geqslant 0.

Supposons que \Psi(n) \geqslant n. Alors \Psi(n+1) > \Psi(n) \geqslant n, et comme \Psi(n+1) \in \mathbb{N},

\Psi(n+1) > n \iff \Psi(n+1) \geqslant n+1.

Par récurrence, \Psi(o) \geqslant n pour tout n \in \mathbb{N}.
```

Exercice 3. Montrer que toute sous-suite extraite d'une suite convergente a la même limite.

```
Exercice 3

Soit (un) one suite convergente vers 1. Alors VE>0 INEN, VozV, lu-1/E

Soit (un) one sous-suite extraite de (un), avec 4:N->N strictement croissente

Comme 4 est strictement croissente, 4(0) > n et dooc 40>N, 4(0)>N, ainsi

[Uno-1/E, donc lim uni = 1.
```

Exercice 4. Soit (u_n) une suite et définissons $v_n := \sup_{k \ge n} u_k$. Montrer que la suite (v_n) est décroissante.

Exercice 5. Soit (u_n) une suite bornée. Montrer que (u_n) converge si et seulement si

$$\limsup_{n} u_n = \liminf_{n} u_n$$

et que dans ce cas ce nombre est égal à $\lim_n u_n$.

Exercice 6.

- (i) Donner un exemple de suites possédant respectivement une, deux, et trois valeurs d'adhérence.
- (ii) Même question avec m valeurs d'adhérence.
- (iii) Même question avec N comme ensemble des valeurs d'adhérence.

Déterminer, lorsqu'elles existent, les liminf et limsup de ces suites.

Est-ce qu'il serait plus correct de dire que lim sup n'existe pas pour la suite du point (iii)?

Exercice 7. Soient (u_n) et (v_n) deux suites telles que $\exists K \in \mathbb{N}, \forall n \geq K, u_n = v_n$.

- (i) Soit (u_n) convergente. Montrer que $\lim_n u_n = \lim_n v_n$.
- (ii) Soit (u_n) bornée. Montrer que

$$\limsup u_n = \limsup v_n$$
, $\liminf u_n = \liminf v_n$.

Cet exercice montre que les notions de $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$

Exercice 8. (Théorème de Cesàro) Soit $(u_n)_{n\in\mathbb{N}*}$ une suite convergeant vers ℓ . Posons $S_n=u_1+\ldots+u_n$. Nous désirons montrer le théorème de Cesàro, c'est-à-dire que $\frac{1}{n}S_n$ converge vers ℓ .

(i) Montrer que pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$,

$$\left| \sum_{k=N}^{n} u_k - (n-N+1)\ell \right| < (n-N+1)\varepsilon$$

(ii) Montrer que pour tout $\varepsilon > 0$ et $N \in \mathbb{N}$, il existe $N' \geq N$ tel que pour tout $n \geq N'$,

$$\left. \frac{1}{n} \left| \sum_{k=1}^{N-1} u_k \right| < \varepsilon$$

(iii) Montrer, en découpant la somme S_n astucieusement, que $\frac{1}{n}S_n$ converge vers ℓ .

Exercise 8

(i) Comme un converge vers 1,
$$\exists N \in \mathbb{N}$$
, $\forall a \geq N$, $|u_a - J| \leq \varepsilon$. Alors

$$\sum_{k=N}^{n} |u_k - J| < \sum_{k=N}^{n} \varepsilon$$
. Par l'inegalité trionquibire, $|\sum_{k=N}^{n} u_k| = \sum_{k=N}^{n} |u_k - J| < \sum_{k=N}^{n} \varepsilon$.

$$Donc, |\sum_{k=N}^{n} u_k| = (n-N+1) \mathbb{E}$$

(ii) $|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=N} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=N} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,j}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,j} u_{i,j} \dots, u_{N-1} s_{j,k}| = 1$$

(iii) Soit $n \geq N \cdot |\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\max_{k=1} s_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_k| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| \leq N \cdot |\sum_{k=1}^{n} u_{i,k} \dots, u_{N-1} s_{j,k}| = 1$$

$$|\sum_{k=1}^{n} u_{i,k}| = 1$$