Distributed Computing III

Murphy was an optimist

CSSE6400

Richard Thomas

April 11, 2022

What communication faults may occur?

What communication faults may occur?

Answer

Message not delivered

What communication faults may occur?

- Message not delivered
- Message delayed

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy
- Reply not received

What communication faults may occur?

Answer

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy
- Reply not received
- Reply delayed

- Lost in transit
- Network delay or receiver overloaded, but message will be processed later
- Receiver software has crashed or node has died
- Receiver temporarily not replying (e.g. garbage collection has
- Request was processed but reply lost in transit
- Reply will be received later

frozen other processes)

How do we detect faults?

How do we detect faults?

Answer

No listener on port – RST or FIN packet

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet
- Query switches

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet
- Query switches
- Timeout

- Assumes node is running & reachable. OS should close or refuse connection. Error packet may be lost in transit.
- Assumes node is running & reachable. Most reliable.
- Router has to determine address is not reachable, which is no easier than for your application.
- Need permissions to do this. Will only have this in your own data centre.
- UDP reduces network transmission time guarantee does not perform retransmission

What to do if fault is detected?

What to do if fault is detected?

- Retry
- Restart

- How many retries? How often?
- Exponential backoff with jitter
- How long to wait to restart?
- Too long reduces responsiveness.
- Unacknowledged messages need to be sent to other nodes reducing performance.
- Too short may prematurely declare nodes dead.
- May lead to contention two nodes processing the same request.
- May lead to cascading failure load is sent to other nodes, slowing them down so they are then declared dead

Definition 1. Idempotency

Repeating an operation does not change receiver's state.

- Idempotent consumer pattern
- Tag messages with an ID, so repeated messages can be ignored
- Or, redo messages that do not change state (e.g. queries)

Byzantine Generals Problem

- *n* generals need to agree on plan
- Can only communicate via messenger
- Messenger may be delayed or lost
- Some generals are traitors
 - Send dishonest messages
 - Pretend to have not received message

- Link analogy to Byzantine faults
- Mention idea of Byzantine fault-tolerant systems
- e.g. safety critical systems, blockchain, ...

How to order asynchronous messages?

How to order asynchronous messages?

- Timestamps?
 - Can't keep clocks in sync
 - Limited clock precision

- Trying to sync with NTP is unreliable
- Network delays during sync
- Clock drift between syncs
- Finite precision two events may end up with the same timestamp, if they occur in quick succession

Consistency

Eventual Consistency weak guarantee Linearisability strong guarantee Causal Ordering strong guarantee

- Once value is written, all reads see same value
 - Regardless of replica read from

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower
- Multi-leader replication can't be linearised

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower
- Multi-leader replication can't be linearised
- Leaderless replication
 - Lock value on quorum before writing

- Abstraction over replicated database
- Used when uniqueness needs to be guaranteed
- e.g. Multiple withdrawals from an account
- SLR defeats most performance benefits
 Leaderless similar performance cost to SLR

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events
- Single-leader replication
 - Record sequence number of writes in log
 - Followers read log to execute writes

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events
- Single-leader replication
 - Record sequence number of writes in log
 - Followers read log to execute writes
- Lamport timestamps

- Linearisation defines a total order
- Causal ordering defines a partial order
- e.g. Git repo history with branching as causal order
- Not as strict as linearisability, so less performance cost

Definition 2. Consensus

A set of nodes in the system agree on some aspect of the system's state.

Abstraction to make it easier to reason about system state.

Consensus Properties

Uniform Agreement All nodes must agree on the decision

Integrity Nodes can only vote once

Validity Result must have been proposed by a node

Termination Every node that doesn't crash must decide

- Uniform agreement and integrity are key
- Validity avoids nonsensical solutions (e.g. always agreeing to a null decision)
- Termination enforces fault tolerance, it requires that progress is made towards a solution

Definition 3. Atomic Commit

All nodes participating in a distributed transaction need to form consensus to complete the transaction.

Based on transaction atomicity from ACID.

Two-Phase Commit

Prepare Confirm nodes can commit transaction

Commit Finalise commit once consensus is reached

Abort if consensus can't be reached

- Transaction ID used to track writes
- Prepare does all steps of a commit, aside from confirming it –
 It cannot be revoked by participant
- Commit intent is recorded in log before sending to participants
- Even if a particiant fails, commit can proceed when it recovers
- Comment on performance costs