Actividad 2 – Búsqueda no informada (BFS vs DFS)

Laberinto 10×10 – Estado inicial S, objetivo G, paredes X. Costo uniforme = 1.

A. Marque orden de expansión y camino (BFS)

Indique: orden de expansión (1,2,3,...) y dibuje el *camino final*. Costo total del camino (número de pasos) =_____.

B. Marque orden de expansión y camino (DFS)

Indique: orden de expansión (1,2,3,...) y dibuje el *camino final*. Costo total del camino (número de pasos) = 2.

C. Comparación

	BFS	DFS
Estructura de datos principal	Cola (FIFO)	Pila (LIFO)
Completo (espacio finito)	Sí	Con control de ci- clos/profundidad
$\acute{O}ptimo~({ m costos}=1)$	Sí	No necesariamente
Uso de memoria	Alto	Bajo
Camino hallado (nº de pasos)	18	32

Sugerencia: Numere el orden de expansión dentro de cada celda y trace el camino final con una línea clara.

En este ejercicio se compararon los algoritmos de búsqueda BFS y DFS aplicados a un laberinto con costo uniforme. Se observó que BFS siempre encuentra el camino más corto hacia la meta, aunque utiliza más memoria, mientras que DFS puede encontrar caminos mucho más largos y no garantiza la solución óptima, pero requiere menos memoria. Por lo tanto, para problemas donde es importante la optimalidad y el co de los pasos es uniforme, BFS es la mejor opción. Sin embargo, si la memoria es limitada y no es necesario e camino más corto, DFS puede ser útil. Esta comparació evidencia la importancia de elegir el algoritmo adecua según las características y restricciones del problema.