Лекция 17: Методы Байеса

Вероятностная постановка задачи классификации

- X -объекты, Y -классы, $X \times Y$ в.п. с плотностью p(x, y).
- Дано: $X^l = \{(x_i, y_i)\}_{i=1}^l \sim p(x, y)$ простая выборка (i.i.d.).
- Найти: $a: X \to Y$ с минимальной вероятностью ошибки.
- Пусть известна совместная плотность

$$p(x,y) = p(x)P(y|x) = P(y)p(x|y)$$

- \square P(y) априорная вероятность класса y
- p(x|y) функция правдоподобия класса y
- \square P(y|x) апостериорная вероятность класса y
- По формуле Байеса:

$$P(y|x) = \frac{P(y)p(x|y)}{p(x)}$$

Байесовский классификатор:

$$a(x) = \arg \max_{y \in Y} P(y|x) = \arg \max_{y \in Y} P(y)p(x|y)$$

M

Два подхода к обучению классификации

- Дискриминантный (discriminative):
 - □ x неслучайные векторы
 - \square P(y|x,w) модель классификации
 - □ Примеры: LR, GLM, SVM
- Генеративный (generative):
 - $\square x \sim p(x|y)$ случайные векторы
 - \Box $p(x|y,\theta)$ модель генерации данных
 - □ Примеры: NB, RBF, PW и др.
- Байесовские модели генеративные:
 - Моделируют форму классов не только вдоль границы, но и на всем пространстве, что избыточно для классификации
 - □ Требуют больше данных для обучения
 - □ Более устойчивы к шумовым выбросам

Оптимальный байесовский классификатор

Теорема:

□ Пусть P(y) и p(x|y) известны, $\lambda_y \ge 0$ – потеря от ошибки на объекте класса $y \in Y$. Тогда минимум среднего риска

$$R(a) = \sum_{y \in Y} \lambda_y \int [a(x) \neq y] p(x, y) dx$$

 \square достигается **оптимальным** байесовским классификатором $a(x) = \arg\max_{y \in Y} \pmb{\lambda}_y \pmb{P}(\pmb{y}) p(x|y)$

■ Замечание 1:

- □ после подстановки эмпирических оценок $\hat{P}(y)$ и $\hat{p}(x,y)$ байесовский классификатор уже **не оптимален**.
- Замечание 2:
 - задача оценивания плотности распределения более сложная, чем задача классификации.

Задачи эмпирического оценивания

Частотная оценка априорной вероятности (смещение?):

$$\widehat{P}(y) = \frac{l_y}{l}, \qquad l_y = |X_y|, \qquad X_y = \{x_i \in X : y_i = y\}$$

- Оценки плотности $\hat{p}(x|y)$ по i.i.d. выборкам $X_{v}, y \in Y$:
- Параметрическая оценка плотности:

$$\hat{p}(x|y) = \varphi(x, \theta_y); \quad \theta_y = \arg \max_{\theta} \sum_{x_i \in X_y} \log \varphi(x_i, \theta)$$

Непараметрическая оценка плотности:

$$\hat{p}(x|y) = \sum_{x_i \in X_V} \frac{1}{lV_h} K(\frac{\rho(x, x_i)}{h})$$

■ Восстановление смеси распределений:

$$\hat{p}(x|y) = \sum_{j=1}^{k} w_{yj} \varphi(x_i; \theta_{yj}); \quad (w_y, \theta_y) = \arg \max_{w, \theta} \sum_{x_i \in X_y} \log \hat{p}(x|y)$$

Наивный байесовский классификатор (Naïve Bayes)

Наивное предположение: признаки f_j : $X o D_j$ – независимые случайные величины с плотностями распределения

$$p_j(\xi|y), \qquad y \in Y, \qquad j = 1, \dots, n$$

■ Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам, $x^j = f_j(x)$:

$$p(x|y) = p_1(x^1|y) \cdots p_n(x^n|y), \qquad x = (x^1, \dots, x^n), \qquad y \in Y$$

■ Прологарифмировав под argmax, получим классификатор

$$a(x) = \arg\max_{y \in Y} (\ln \lambda_y \hat{P}(y) + \sum_{j=1}^n \ln \hat{p}_j(x^j | y))$$

■ Восстановление n одномерных плотностей — намного более простая задача, чем одной n-мерной.

٧

Признаки с плотностями экспоненциального вида

Предположение: одномерные плотности экспоненциальны:

$$p(x^{j}|y;\theta_{yj},\varphi_{yj}) = exp\left(\frac{x^{j}\theta_{yj}-c(\theta_{yj})}{\varphi_{yj}}+h(x^{j},\varphi_{yj})\right)$$

- \square где $\theta_{yj}, \varphi_{yj}$ параметры, $c(\theta), h(x, \varphi)$ параметры-функции.
- Задача максимизации log-правдоподобия:

$$L(\theta, \varphi) = \sum_{j=1}^{n} \sum_{y \in Y} \left(\sum_{x_i \in X_y} \ln \boldsymbol{p}(\boldsymbol{x}_i^j | \boldsymbol{y}; \boldsymbol{\theta}_{yj}, \boldsymbol{\varphi}_{yj}) \right) \to \max_{\theta, \varphi}$$

распадается на независимые подзадачи для каждой пары (y, j):

$$\sum_{x_i \in X_y} \left(\frac{x^j \theta_{yj} - c(\theta_{yj})}{\varphi_{yj}} + h(x^j, \varphi_{yj}) \right) \to \max_{\theta_{yj}, \varphi_{yj}}$$

■ По θ_{vj} задача решается аналитически, по ϕ_{vj} не всегда.

Напоминание. Примеры экспоненциальных распределений

 $m{\mu}$ – параметр матожидания, $m{ heta} = m{g}(m{\mu})$ – функции связи:

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \exp\left(\frac{x\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{x^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right)$$

$$\mu^x (1-\mu)^{1-x} = \exp\left(x\ln\frac{\mu}{1-\mu} + \ln(1-\mu)\right)$$

$$C_k^x \left(\frac{\mu}{k}\right)^x \left(1 - \frac{\mu}{k}\right)^{k-x} = \exp(x\ln\frac{\mu}{k-\mu} + k\ln(k-\mu) + \ln C_k^x - k\ln k)$$

$$\frac{1}{x!} e^{-\mu}\mu^x = \exp(x\ln(\mu) - \mu - \ln x!)$$

Распределение	Значения	$c(\theta)$	c'(heta)	$[c']^{-1}(\mu)$	φ	$h(x,\varphi)$
Нормальное	\mathbb{R}	$\frac{1}{2}\theta^2$	θ	μ	σ^2	$-\frac{x^2}{2\varphi} - \frac{\ln(2\pi\varphi)}{2}$
Бернулли	{0,1}	$\ln(1+e^{\theta})$	$\frac{1}{1+e^{-\theta}}$	$\ln \frac{\mu}{1-\mu}$	1	0
Биноминальное	{0,, <i>k</i> }	$k \ln \frac{1 + e^{\theta}}{k}$	$\frac{k}{1 + e^{-\theta}}$	$\ln \frac{\mu}{k-\mu}$	1	$\ln C_k^x - k \ln k$
Пуассона	{0, 1,}	e^{θ}	$e^{ heta}$	ln μ	1	$-\ln x!$

Линейный наивный байесовский классификатор

■ Решение θ_{yj} через среднее значение признака j в классе y:

$$\frac{\partial L}{\partial \theta_{yj}} = 0 \implies c'(\theta_{yj}) = \sum_{x_i \in X_y} \frac{x_i^j}{|X_y|} \equiv \bar{x}_{yj} \implies \boldsymbol{\theta}_{yj} = [\boldsymbol{c}']^{-1}(\overline{x}_{yj})$$

■ Решение φ_{yj} не всегда выражается из уравнения $\frac{\partial L}{\partial \varphi_{yj}} = 0$, но для Пуассона, Бернулли, биноминального $\varphi_{yj} = 1$; для гауссовского распределения (и если φ_{yj} не зависит от y):

$$\frac{\partial L}{\partial \varphi_{yj}} = 0 \Rightarrow \varphi_{yj} = \frac{1}{l} \sum_{i=1}^{l} \left(x_i^j - \overline{x}_{y_i j} \right)^2$$

■ В итоге Naïve Bayes оказывается линейным классификатором:

$$a(x) = \arg\max_{y \in Y} \left(\sum_{j=1}^{n} x^{j} \frac{\theta_{yj}}{\varphi_{yj}} + \ln\left(\lambda_{y} P(y)\right) - \sum_{j=1}^{n} \frac{c(\theta_{yj})}{\varphi_{yj}} + \underbrace{\frac{h(x^{j}, \varphi_{yj})}{e_{\text{СЛИ ОТ } y \text{ He ЗАВИСИТ}}}}_{b_{y}} \right)$$

Пример

```
from sklearn.datasets import load iris
from sklearn import naive bayes
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.inspection import DecisionBoundaryDisplay
X, y = load_iris(return_X_y=True)
X = X[:, :2]
model = Pipeline([
    ("scaler", StandardScaler()),
    ("bayes", naive_bayes.GaussianNB())
])
model.fit(X, y)
DecisionBoundaryDisplay.from_estimator(model, X, cmap="Pastel1")
plt.scatter(*X.T, c=y, cmap="Set1")
DecisionBoundaryDisplay.from_estimator(Pipeline([
    ("1", StandardScaler(),),
    ("2", naive_bayes.BernoulliNB(),)]).fit(X, y), X, cmap="Pastel1")
plt.scatter(*X.T, c=y, cmap="Set1")
```


Пример: построить модель прогноза возможности поиграть в теннис

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

- Новый пример: <rain, hot, high, false>?
 - $P(x|p) \cdot P(p) = P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p) = 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
 - $P(x|n) \cdot P(n) = P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$
- Вывод скорее всего не поиграть, т.к. $P(x|n) \cdot P(n) > P(x|p) \cdot P(p)$

Задачи классификации (категоризации) текстов

■ Дано:

- x текстовый документ (последовательность слов)
- □ $y \in Y$ класс (тематическая категория или рубрика)
- $\Box \ j \in \{1, ..., n\} -$ слова, n число слов в словаре
- $\Box f_j(x_i) = x_i^j$ частота (число вхождений) слова j в документе x_i
- $p_{i}(x^{j}|y)$ распределение Пуассона, экспоненциального вида
- $\ \square \ \theta_{yj} = \ln \overline{x}_{yj}$ оценка максимума правдоподобия, $\varphi_{yj} = 1$
- Наивный байесовский классификатор линейный, с весами θ_{yj} :

$$a(x) = \arg\max_{y \in Y} \left(\sum_{j=1}^{n} \theta_{yj} x^{j} + \underbrace{\ln\left(\lambda_{y} P(y)\right) - \overline{N}_{y}}_{b_{y}} \right),$$

- $\square \ \overline{N}_y = \sum_{j=1}^n c(\theta_{yj}) = \sum_{j=1}^n \overline{x}_{yj}$ средняя длина документов в классе y
- Замечание: если \bar{x}_{yj} не зависит от y, то слово j не влияет на a(x)

Мультиномиальный наивный байесовский классификатор

 $x = (j_1, ..., j_{N_x})$ — текстовый документ, длиной N_x слов $a(x) = \arg\max_{y \in Y} \left(\ln p(x|y) + \ln \lambda_y P(y) \right)$ $\pi_{yj} = p(j|y)$ — вероятность слова j в текстах класса y $\ln p(x|y) = \ln \prod_{t=1}^{N_x} p(j_t|y) = \sum_{j=1}^n \ln(\pi_{yj})^{x^j} = \sum_{j=1}^n x^j \ln \pi_{yj}$

Частотная оценка (оценка максимума правдоподобия):

$$\pi_{yj} = \frac{\#count(y,j)}{\#count(y)} = \frac{\sum_{i \in X_y} x_i^J}{\sum_{j=1}^n \sum_{i \in X_y} x_i^j} = \frac{\bar{x}_{yj}}{\sum_{j=1}^n \bar{x}_{yj}} = \frac{\bar{x}_{yj}}{\bar{N}_y}$$

Тот же линейный NB, но с другой поправкой на длину текста:

$$a(x) = \arg\max_{y \in Y} (\sum_{j=1}^{n} x^{j} \ln \bar{x}_{yj} + \ln \left(\lambda_{y} P(y) \right) - N_{x} \ln \overline{N}_{y})$$

Выводы про наивный байесовский классификатор

- Достоинства:
 - \square Очень **быстрое обучение** за $\mathit{O}(l\;n)$ вычисление $\overline{x}_{ym{j}}$, $arphi_{ym{j}}$
 - □ Почти нет переобучения, даже на коротких выборках
 - Единообразная обработка разнотипных признаков
 - Хорошее начальное приближение для других методов
 - \square Оценка полезности признаков: $\max_{v} p(y|j)$
 - □ Базовый уровень качества при классификации текстов
 - При классификации текстов отбор признаков по полезности удаляет стоп-слова, общую и нерелевантную лексику
- Ограничения и недостатки:
 - Гипотеза о независимости признаков
 - Низкий уровень качества в большинстве приложений

M

Если зависимые признак?

Особенности:

- □ Случайные переменные (входные или скрытые) вершины ориентированного графа
- □ Отношения прямой зависимости ребра графа
- □ Каждая переменная может зависеть только от некоторого множества своих соседей
- □ Плотность совместной вероятности значений всех переменных редуцируется до произведения условных плотностей

Рак	0.8	0.5	0.7	0.1
~Рак	0.2	0.5	0.3	0.9

Байесовская сеть

- Сеть Байеса:
 - □ Состоит из множества случайных переменных и направленных связей между переменными;
 - Каждая переменная (входная или скрытая) может принимать одно из конечного множества взаимоисключающих значений;
 - Переменные вместе со связями образуют ориентированный граф без циклов;
 - □ К каждой переменной-потомку A с переменными-предками $B_1,...,B_n$ приписывается таблица условных вероятностей $P(A|B_1,...,B_n)$
 - □ Переменные, не имеющие предков, описываются безусловными вероятностями, а их потомки на графе условными
- Редукция совместной вероятности (цепное правило полной вероятности):

$$P(A_1,...,A_n) = \prod_j P(A_j | pa(A_j)),$$

где $pa(A_j)$ - состояния всех переменных — предков для переменной A_j .

М

Пример

Граф Байесовской сети

Таблицы вероятностей

Пример редукции вероятности (с учетом независимости):

$$P(R,S,C,W) = P(R) \cdot P(S|R) \cdot P(C|R,S) \cdot P(W|R,S,C)$$

$$P(R,S,C,W) = P(R) \cdot P(S) \cdot P(C|R,S) \cdot P(W|R)$$

$$P(C=t) = \sum_{R=\{t,f\},S=\{t,f\}} P(R) \cdot P(S) \cdot P(C=t|R,S) = P(W=t) = \sum_{R=\{t,f\}} P(R) \cdot P(W=t|R) = 0.31$$

$$= 0.3 \cdot 0.2 \cdot 0.9 + 0.3 \cdot 0.8 \cdot 0.8 + 0.7 \cdot 0.2 \cdot 0.7 + 0.7 \cdot 0.8 \cdot 0.1 = 0.4$$

Точные и приближенные вычисления вероятностей

- Применение уже обученной сети (расчет вероятностей):
 - □ Сложность точных вычислений вероятностей растет комбинаторно
 - □ На практике широко используются приближенные алгоритмы: метод Монте-Карло, Expectation-Maximization, Belief propagation
- «Обучение» расчет вероятностей при заданной структуре сети:
 - П Множество обучающих примеров $\{x_i\}_{i=1}^l = \{x_i^1, ..., x_i^1\}_{i=1}^l$, каждый элемент множества вектор значений для всех переменных x^j (j-й признак), x_i^j j-й признак i-го примера.
 - □ Классическая схема поиск максимума правдоподобия:

$$L = \frac{1}{nl} \sum_{j=1}^{n} \sum_{i=1}^{l} \log \left(P(x^{j} | pa(x^{j}), x_{i}) \right)$$

 \square Условные вероятности переменные сети могут обучаться на отдельных наборах, учитывающих значения только тех переменных, которые влияют на данную, а условные вероятности $pa(x^j)$ могут быть представлены аппроксимациями плотности вероятности.

Синтез Байесовой сети на основе выборок

- Для построения «вручную» Байесовой сети необходимо:
 - 1. Сформулировать проблему в терминах вероятностей значений целевых переменных;
 - 2. Выбрать понятийное пространство задачи, определить переменные, имеющие отношение к целевым переменным, описать возможные значения этих переменных;
 - 3. Выбрать на основе опыта и имеющейся информации априорные вероятности значений переменных;
 - 4. Описать отношения "причина-следствие" (как косвенные, так и прямые) в виде ориентированных ребер графа, разместив в вершинах переменные;
 - 5. Для каждой вершины графа, имеющего входные ребра, указать оценки вероятностей различных значений переменной для комбинаций значений переменных-предков на графе.
- Машинное обучение сетей Байеса:
 - □ Шаги 2-5 желательно автоматизировать
 - □ Две задачи: поиск структуры сети и расчет условных вероятностей

2

Методы синтеза структуры

- Задача NP-трудная есть два приближенных подхода (часто используют их комбинацию)
- На основе ограничений:
 - □ Поиск сети Байеса, где набор ограничений на комбинации независимых атрибутов «соответствует» таким комбинациям в эмпирических данных
- Скоринговые методы (информационные критерии типа ВІС):
 - □ Поиск сети Байеса, наилучшим образом приближающей распределение в эмпирических данных

10

Методы синтеза сети

- Основные свойства:
 - Ограничивается пространство поиска с точностью до классов эквивалентности сети (графа)
 - □ Оценка качества, например, $BIC = -2loglik + log(l) \cdot dim(edges)$
 - «Жадный» поиск наилучшего класса эквивалентности
- Скоринговый подход «от простого к сложному»:

Инициализация пустым графом

Стадия 1: Последовательно добавлять по 1 дуге, приводящей к максимальному улучшению оценки пока улучшается *BIC*

Стадия 2: Последовательно удалять по 1 дуге, приводящей к максимальному улучшению оценки пока улучшается *BIC*

■ Подход на основе ограничений «от сложного к простому»:

Инициализация: полносвязный неориентированный граф

Шаг 1: Рекурсивно проверка условной независимости каждой дуги и удаление дуг (статистическим тестом, например, по χ^2)

Шаг 2: Получение ориентированного графа-для каждой дуги (A, B) статистический тест $A \Rightarrow B$ или $B \Rightarrow A$

Метод парзеновского окна тоже применим в «не наивном» случае (Parzen Window, PW)

■ Непараметрическая оценка плотности Парзена-Розенблатта с функцией расстояния \(\rho(x, x') \), для каждого класса \(y \in Y \):

$$\widehat{\rho}_h(x|y) = \frac{1}{l_y V_h} \sum_{x_i \in X_y} K(\frac{\rho(x, x_i)}{h}),$$

Метод окна Парзена – это метрический классификатор:

$$a(x) = \arg\max_{y \in Y} \lambda_y \frac{P(y)}{l_y} \sum_{x_i \in X_y} K(\frac{\rho(x, x_i)}{h})$$

- Замечание 1:
 - □ нормирующий множитель $V_h = \int K(\frac{\rho(x,x_i)}{h}) \, dx$ сокращается под argmax, если он не зависит от x_i и y_i .
- Замечание 2 (напоминание):
 - имеем проблемы выбора ядра K(r), ширины окна h, функции расстояния $\rho(x,x')$.

Дискриминантный анализ

- Моделируем:
 - □ распределение в каждом из классов по отдельности
- Если используем нормальные распределения, это приводит к:
 - линейному (если считаем ковариационную матрицу одинаковой для всех классов) дискриминантному анализу
 - □ квадратичному (если матрицы разные) дискриминантному анализу
- Дискриминантная функция:
 - □ получаем логарифмируя оценку условной вероятности отклика и отбрасывая слагаемые, не зависящие от класса
 - □ для нескольких классов softmax

$$P(y = k|x) = \frac{e^{g_k(x)}}{\sum_{j=1}^{K} e^{g_j(x)}}$$

Дискриминантный анализ

- Используем теорему Байеса:
 - □ для получения условных вероятностей откликов
 - □ когда априорные вероятности различны, учитываем их
- Для классификации:
 - используем правило Байеса для апостериорных вероятностей
 - □ или для максимума дискриминантной функции
- Параметры распределений:
 - □ оцениваем по выборке

Линейный дискриминант Фишера (Fisher Linear Discriminant)

- Проблема: для малочисленных классов возможно $\det \widehat{\Sigma}_{\mathcal{Y}} = 0$
- lacktriangle Пусть ковариационные матрицы классов равны: $oldsymbol{arSigma}_{oldsymbol{
 u}} = oldsymbol{arSigma}$, $oldsymbol{y} \in Y$
- Оценка максимума правдоподобия для Σ:

$$\widehat{\Sigma} = \frac{1}{l} \sum_{i=1}^{l} (x_i - \widehat{\boldsymbol{\mu}}_{y_i}) (x_i - \widehat{\boldsymbol{\mu}}_{y_i})^T$$

Линейный дискриминант – подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} \lambda_y \hat{P}(y) \hat{p}(x|y) =$$

$$= \arg\max_{y \in Y} \left(\underbrace{\ln(\lambda_y \hat{P}(y)) - \frac{1}{2} \hat{\mu}_y^T \hat{\Sigma}^{-1} \hat{\mu}_y}_{\beta_y} + x^T \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_y}_{\alpha_y} \right)$$

$$a(x) = \arg\max_{y \in Y} \left(x^T \alpha_y + \beta_y \right)$$

lacksquare В случае мультиколлинеарности – обращать матрицу $\widehat{\Sigma} + au l_n$.

- В одномерной проекции на направляющий вектор разделяющей гиперплоскости классы разделяются наилучшим образом, то есть с минимальной вероятностью ошибки.
- Пунктирные линии границы решений Байеса. Если бы они были известны, они бы дали наименьшее число ошибочных классификаций среди всех возможных классификаторов.

Дискриминантная диаграмма

- Как в РСА можно найти главные компоненты (они независимы) по направлениям, наилучшим образом отделяющие классы.
- Когда есть К классов, линейный дискриминантный анализ можно рассматривать в К-1-мерной проекции.
- Даже при К> 3 мы можем определить «лучшую» двумерную плоскость для визуализации дискриминантного правила.

Квадратичный дискриминант (Quadratic Discriminant Analysis)

■ Гипотеза: **каждый класс** $y \in Y$ имеет n-мерную гауссовскую плотность с центром μ_y и **ковариационной матрицей** Σ_v :

$$p(x|y) = N(x; \mu_y, \Sigma_y) = \frac{\exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma_y^{-1}(x - \mu_y)\right)}{\sqrt{(2\pi)^n \det \Sigma_y}}$$

- Теорема
 - □ Разделяющая поверхность, определяемая уравнением $\lambda_{y}P(y)p(x|y) = \lambda_{s}P(s)p(x|s)$, **квадратична** для всех пар $y, s \in Y$.
 - \square Если $\Sigma_{v} = \Sigma_{s}$, то поверхность вырождается в линейную.
- Квадратичный дискриминант подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} (\ln \lambda_y P(y) - \frac{1}{2} (x - \widehat{\mu}_y)^T \widehat{\Sigma}_y^{-1} (x - \widehat{\mu}_y) - \frac{1}{2} \ln \det \widehat{\Sigma}_y)$$

Геометрический смысл квадратичного дискриминанта

M

Логистическая регрессия по сравнению с нормальным дискриминантным анализом

- Для задачи двух классов можно показать, что модели LDA и логистическая регрессия имеют одну и ту же линейную форму(лу)
- Разница заключается в том, как оцениваются параметры:
 - □ Логистическая регрессия использует условное правдоподобие, на основе условной вероятности отклика (дискриминационное обучение).
 - □ LDA использует правдоподобие, основанное на совместном распределении отклика и признаков (*генеративное обучение*).
 - □ Несмотря на эти различия, на практике результаты часто похожи.

Замечание:

□ логистическая регрессия может также быть построена с квадратичными границами, такими как у QDA, путем явного включения квадратичных членов в модель.

Почему используется дискриминантный анализ?

- Когда классы хорошо отделимы:
 - □ оценки параметров модели логистической регрессии очень **неустойчивы**, а оценки линейного дискриминанта **устойчивы**
- Если число наблюдений **мало** и распределение предикторов **близко к нормальному** в каждом из классов:
 - линейная дискриминантная модель снова более устойчива, чем модель логистической регрессии.
- Дискриминантный анализ хорош для нескольких классов
 - Можно использовать функцию softmax от дискриминантной функции как и в логистической регрессии

LDA – Пример

-1

-2

-3

8

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.datasets import fetch_covtype 5.0 X, y = load_iris(return_X_y=True) 4.5 -4.0 X = X[:, :2]3.5 X.shape, y.shape, np.unique(y) 3.0 ((150, 2), (150,), array([0, 1, 2]))2.5 -2.0 lda = LinearDiscriminantAnalysis(n_components=2) lda.fit(X, y) 1.5 -1.0 DecisionBoundaryDisplay.from_estimator(lda, X, cmap="Pastell") 5 7 6 plt.scatter(*X.T, c=y, cmap="Set1") transform = lda.transform(X) transform.shape (150, 2)

plt.scatter(*transform.T, c=y, cmap="rainbow")

QDA - Пример

```
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qda = QuadraticDiscriminantAnalysis()
qda.fit(X, y)
DecisionBoundaryDisplay.from_estimator(qda, X, cmap="Pastel1")
plt.scatter(*X.T, c=y, cmap="Set1")
```

<matplotlib.collections.PathCollection at 0x167af6902e0>

Гауссовская смесь с диагональными матрицами ковариации

- Гауссовская смесь GMM Gaussian Mixture Model
- Допущения:
 - □ Функции правдоподобия классов p(x|y) представимы в виде **смесей** k_v компонент, $y \in Y$.
 - □ Компоненты $j=1,...,k_y$ имеют n-мерные гауссовские плотности с некоррелированными признаками:

$$\mu_{yj} = (\mu_{yj1}, \dots, \mu_{yjn}), \quad \Sigma_{yj} = diag(\sigma_{yj1}^2, \dots, \sigma_{yjn}^2)$$
:

$$p(x|y) = \sum_{j=1}^{k_y} w_{yj} p_{yj}(x), p_{yj}(x) = N(x; \mu_{yj}, \Sigma_{yj}), \sum_{j=1}^{k_y} w_{yj} = 1, \ w_{yj} \ge 0$$

۲

EM-алгоритм. Эмпирические оценки средних и дисперсий

- Числовые признаки: f_d : $X \to \mathbb{R}$, d = 1, ..., n.
 - \square Е-шаг: для всех $y \in Y$, $j = 1, ..., k_y$, d = 1, ..., n:

$$g_{yij} = \frac{w_{yj}N(x_i; \mu_{yj}, \Sigma_{yj})}{p(x_i|y)} \equiv P(j|x_i, y_i = y)$$

 \square М-шаг: для всех $y \in Y$, $j = 1, ..., k_y$, d = 1, ..., n

$$w_{yj} = \frac{1}{l_y} \sum_{i: y_i = y} g_{yij}$$

$$\hat{\mu}_{yjd} = \frac{1}{l_y w_{yj}} \sum_{i: y_i = y} g_{yij} f_d(x_i)$$

$$\hat{\sigma}_{yjd}^2 = \frac{1}{l_y w_{yj}} \sum_{i: y_i = y} g_{yij} (f_d(x_i) - \hat{\mu}_{yjd})^2$$

Замечание: компоненты «наивны», но смесь не «наивна».

v

Байесовский классификатор

Подставим гауссовскую смесь в байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} \left(\lambda_{y} P_{y} \sum_{j=1}^{k_{y}} w_{yj} \underbrace{N_{yj} exp\left(-\frac{1}{2}\rho_{yj}^{2}(x, \mu_{yj})\right)}_{p_{yj}(x)} \right)$$

- $\square N_{yj} = (2\pi)^{-\frac{n}{2}} (\sigma_{yj1}, ..., \sigma_{ijn})^{-1}$ нормировочные множители;
- \square $\rho_{\gamma j}(x,\mu_{\gamma j})$ взвешенная евклидова метрика в $X=\mathbb{R}^n$:

- Интерпретация как у метрического классификатора:
 - $\ \square \ p_{yj}(x)$ близость объекта x к j-ой компоненте класса y;
 - $\ \ \ \ \Gamma_y(x)$ близость объекта x к классу y.

10

Сеть радиальных базисных функций (RBF)

■ Трехслойная сеть RBF (Radial Basis Functions):

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y \sum_{j=1}^{\kappa_y} w_{yj} p_{yj}(x)$$

EM-алгоритм как метод обучения радиальных сетей

- Отличия **генеративного** RBF-EM от **дискриминативного** RBF-SVM:
 - □ Векторы μ_{yj} это не пограничные объекты выборки, а центры локальных сгущений классов.
 - Автоматически строится структурное описание каждого класса в виде совокупности компонент – кластеров.
- Преимущества ЕМ-алгоритма:
 - □ легко сделать устойчивым к шуму.
 - □ довольно быстро сходится.
- Недостатки ЕМ-алгоритма:
 - □ чувствителен к начальному приближению.
 - □ определение числа компонент

M

Резюме по байесовской теории классификации

Основная формула:

$$a(x) = \arg \max_{y \in Y} \lambda_y P(y) p(x|y)$$

- Байесовские модели классификации генеративные:
 - □ моделируют форму классов на всем пространстве;
 - требуют большего объема данных для обучения;
 - □ менее чувствительны к шумовым выбросам.
- Наивный байесовский классификатор:
 - □ основан на предположении о независимости признаков, для зависимых сети Байеса;
 - □ неплохо работает в задачах категоризации текстов.
- Три подхода к восстановлению плотности p(x|y) по выборке:
 - □ Параметрический подход: гауссовские классы => нормальный дискриминантный анализ
 - Непараметрический подход: задана функция расстояния => метод парзеновского окна
 - □ Разделение **смеси** распределений: классы описываются смесями гауссиан => **сеть RBF**