CSE 471 Machine Learning

K Nearest Neighbor

Prepared by Madhusudan Basak Assistant Professor CSE, BUET

k-Nearest Neighbor

- Also known as kNN/KNN
- KNN can be used for both classification and regression predictive problems.
- Non-parametric approach: Don't assume any strong/fixed model or functional form
- For each test input point,
 - considers the class/output of its nearest k number of train (available) data points and
 - ➤ Determine its class by voting of the k data points
 - ✓ May use different distance calculation measure (e.g., Euclidean, Manhattan)
 - ✓ Voting system can be equal/weighted

k-Nearest Neighbor

- Calculate Distance from **point p** to all the training points
- If k=1, nearest point = {A}Predicted Class= Green
- If k=2, nearest points = {A, D} Predicted Class= Green
- If k=3, nearest points = {A, D, E} Predicted Class= Green
- What if k=7?

k-Nearest Neighbor Issues

- Tuning the k (hyperparameter) value
 - ➤ Too small k: sensitive to outliers (as indicated by the figure)
 - ➤ Too large k: too many points from other classes (As the case in the previous slide)

k-Nearest Neighbor Issues

- Weight of nearest neighbors
 - ➤ Equal weight
 - ➤ Different weights
- If k=7, Nearest points = {A, D, E, B, F, H, G}
- If equal weighted, predicted class = Blue
- If weighted voting and $weight = \frac{1}{Distance}$
- Distances ={PA = 0.5, PD = 1.2, PE = 1.5, PB = 1.7, PF = 2, PH = 2.5, PG = 3}
- Vote for Green =2*1+0.8*1+0.6*1 = 3.4
- Vote for Blue = 0.7*1 + 0.5*1 + 0.4*1 + 0.3*1 = 1.9
- Predicted class = Green

Document Classification

- One type of Text Classification
- kNN can be used here!
- kNN works fine on structured data but cannot handle unstructured data (Text).
- Solution?
 - ➤ Structured representation of Text (Unstructured Data)

Structured Representation of Text

- Two Common Techniques
 - ➤ Binary Vector Representation
 - ✓ 1/0 bit is used for presence/absence of a word
 - ➤ Bag-of-Word (BoW) Representation
 - ✓ Word (hash id of the word) and frequency of the word is used here

Binary Vector Representation of Text

• Example Train Documents

Document 1 (Sports): I play cricket. I play football. **Document 2 (Music):** Play this music.

Document 3 (Music): I like singing.

Document 4 (**Biology**): Cricket is a very small insect

Example Text Document

Document t: *I want to play music*

• Create the full vocabulary

➤ Comprising all words of all documents

Vocabulary/					
Feature Spac	D_1	D_2	D_3	D_4	D_t
$\lceil play \rceil$	[1]	[1]	[0]	[0]	[1]
cricket	1	0	0	1	0
football	1	0	0	0	0
music	0	1	0	0	1
like	0	0	1	0	0
singing	0	0	1	0	0
very	0	0	0	1	0
small	0	0	0	1	0
insect	0	0	0	1	0
want	0	0	0	0	1

- For each document, create a vector by putting 1 is the word presents in the document, otherwise put o
- Vocabulary -> Fixed length -> Fixed input size (input feature space) -> Structured Representation of Text

Binary Vector Representation of Text

Vocabulary/

• Example Train Documents

Document 1 (Sports): I play cricket. I play football. **Document 2 (Music):** Play this music.

Document 3 (Music): *I like singing.*

Document 4 (**Biology**): Cricket is a very small insect

Example Test Document

Document t: *I want to play music*

vocabalal y/					
Feature Space	D_1	D_2	D_3	D_4	D_t
$\lceil play \rceil$	[1]	Γĺ	[o]	[0]	[1
cricket	1	0	0	1	0
football	1	0	0	0	0
music	0	1	0	0	1
like	0	0	1	0	0
singing	0	0	1	0	0
very	0	0	0	1	0
small	0	0	0	1	0
insect	0	0	0	1	0
want	0	0	0	0	1
_					

 Calculate Hamming Distance from test document to all other train documents and select the k nearest neighbor

hd
$$(Dt,D_1)$$
= $(o+1+1+1+0+0+0+0+0+1)$ = 4
hd (Dt,D_2) = $(o+0+0+0+0+0+0+0+0+1)$ = 1
hd (Dt,D_3) = $(1+0+0+1+1+1+0+0+0+1)$ = 5
hd (Dt,D_4) = $(1+1+0+1+0+0+1+1+1+1)$ = 7

If k=1, Nearest Points/Documents ={Music} Predicted Document Class/Type ={Music}

If k=3, Nearest Points/Documents = {Music, Sports, Music} Predicted Document Class/Type ={Music}

References

Code Implementation Reference:

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/

Lecture References:

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

https://www.geeksforgeeks.org/weighted-k-nn/

Lecture Note by Madhusudan Basak