Indian Institute of Technology Roorkee Department of Computer Science & Engineering Theory of Computation (CSN-353)

Mid-Term Exam, Date: Sept 11, 2024

Timing: 7:30 to 9:15 AM

Max mark: 30

Attempt all questions

Part A: Multiple Choice Questions (2 marks each)

1. Let M be the 5-state NFA with ϵ -transitions shown in the diagram below.

A.
$$(00)^* + 1(11)^*$$

B.
$$0^* + (1 + 0(00)^*)(11)^*$$

C.
$$(00)^* + (1 + (00)^*)(11)^*$$

D.
$$0^+ + 1(11)^* + 0(11)^*$$

2. Consider the following two regular expressions over the alphabet $\{0,1\}$:

$$r = 0^* + 1^*$$
$$s = 01^* + 10^*$$

The total number of strings of length less than or equal to 5, which are neither in r nor in s, is ______.

- A. 44
- B. 55
- C. 66
- D. 33

3. In some programming languages, an identifier is permitted to be a letter followed by any number of letters or digits. If L and D denote the sets of letters and digits, respectively, which of the following expressions defines an identifier?

A.
$$(L + D)^+$$

B.
$$(L \cdot D)^*$$

C.
$$L(L+D)^*$$

D.
$$L(L \cdot D)^*$$

4. Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive 0's and two consecutive 1's?

A.
$$00(0+1)*11+11(0+1)*00$$

B.
$$(0+1)*00(0+1)* + (0+1)*11(0+1)*$$

C.
$$(0+1)^*(00(0+1)^*11+11(0+1)^*00)(0+1)^*$$

D.
$$(0+1)*00(0+1)*11(0+1)* + (0+1)*11(0+1)*00(0+1)*$$

5. Consider the following deterministic finite automaton (DFA).

The number of strings of length 8 accepted by the above automaton is _____

- A. 32
- B. 256
- C. 64
- D. 512
- 6. If the final states and non-final states in the DFA below are interchanged, then which of the following languages over the alphabet $\{a,b\}$ will be accepted by the new DFA?

- A. The set of all strings that do not end with ab
- B. The set of all strings that begin with either an a or a b
- C. The set of all strings that do not contain the substring ab
- D. The set described by the regular expression $b^*aa^*(ba)^*b^*$
- 7. Consider the following Deterministic Finite Automaton M.

Let S denote the set of eight-length bit strings whose second, third, sixth, and seventh bits are 1. The number of strings in S that are accepted by M is

- A. ()
- B. 1
- C. 2
- D. 3
- 8. Consider the two regular expressions $\alpha = (0^*10^*)^*$ and $\beta = ((11^*) + (00^*))^*$. Which of the following statements is true?
 - A. α and β are equivalent.
 - B. α and β are not equivalent because 010101 is matched by α but not by β .
 - C. α and β are not equivalent because 101010 is matched by β but not by α .
 - D. α and β are not equivalent because 000000 is matched by β but not by α .
- 9. Let N be an NFA with n states. Let k be the number of states of a minimal DFA that is equivalent to N. Which one of the following is necessarily true?

A.
$$k \ge 2^n$$

B.
$$k \ge n$$

C.
$$k \le n$$

D.
$$k \leq 2^n$$

10. Let L_1 , L_2 be two regular languages and L_3 a language which is not regular. Which of the following statements is/are always TRUE?

A.
$$L_1 = L_2$$
 if and only if $L_1 \cap \overline{L_2} = \emptyset$

B.
$$L_1 \cup L_3$$
 is not regular

C.
$$\overline{L_3}$$
 is not regular

D. $\overline{L_1} \cup \overline{L_2}$ is regular

Part B: Subjective Questions

1. Construct the minimum DFA that is equivalent to the given DFA using the Myhill-Nerode theorem, showing the steps of the construction clearly.

Marks: 5

2. Convert the NFA with ϵ -transitions into its equivalent DFA. Show all the transition states.

Marks: 5