第3节 求带参函数的单调区间、极值、最值(★★★)

强化训练

1. (2022 • 四川模拟 • ★★) 设 $f(x) = a \ln x - x + 1 (a \in \mathbb{R})$, 讨论 f(x) 的单调性.

解: 由题意, $f'(x) = \frac{a}{x} - 1 = \frac{a - x}{x}(x > 0)$,

 $(f'(x)=0 \Rightarrow x=a$, 但 a 是否在定义域内,与 a 的正负有关,故据此讨论)

①当 $a \le 0$ 时, (如图1, 在 $(0,+\infty)$ 上, a-x<0)

 $a-x \le -x < 0$, 所以 f'(x) < 0, 故 f(x) 在 $(0,+\infty)$ 上单调递减,

②当a > 0时, (如图 2, a - x在 $(0,+\infty)$ 上先正后负)

 $f'(x) > 0 \Leftrightarrow a - x > 0 \Leftrightarrow 0 < x < a \;, \quad f'(x) < 0 \Leftrightarrow a - x < 0 \Leftrightarrow x > a \;,$

所以 f(x) 在 (0,a) 上单调递增,在 $(a,+\infty)$ 上单调递减.

2. (★★) 设 $f(x) = \frac{1}{2}e^{2x} + (2-a)e^{x} - 2ax - 1(a \in \mathbf{R})$, 讨论 f(x) 的单调性.

解: $f'(x) = e^{2x} + (2-a)e^x - 2a = (e^x + 2)(e^x - a)$,

(f'(x))的符号与 $e^x - a$ 这个因式的符号相同,该因式是否有零点由a的正负决定,如图,故据此讨论)

①当 $a \le 0$ 时, $e^x - a > 0$, $e^x + 2 > 0$,所以f'(x) > 0,故f(x)在**R**上单调递增;

②当a > 0时, $f'(x) > 0 \Leftrightarrow x > \ln a$, $f'(x) < 0 \Leftrightarrow x < \ln a$,

所以 f(x) 在 $(-\infty, \ln a)$ 上单调递减,在 $(\ln a, +\infty)$ 上单调递增.

3. $(2021 \cdot 浙江卷节选 \cdot ★★★)设 <math>a, b$ 为实数,且 a > 1,函数 $f(x) = a^x - bx + e^2(x \in \mathbb{R})$,求 f(x) 的单调区间.

解: 由题意, $f'(x) = a^x \ln a - b$,(注意到a > 1,所以 $a^x > 0$, $\ln a > 0$,从而 $a^x \ln a \in (0, +\infty)$,那么b的正负就决定了f'(x)是否有零点,故据此讨论)

①当 $b \le 0$ 时,因为a > 1,所以 $a^x \ln a > 0$,从而f'(x) > 0,故f(x)在**R**上单调递增;

所以 f(x) 在 $(-\infty, \log_a \frac{b}{\ln a})$ 上单调递减,在 $(\log_a \frac{b}{\ln a}, +\infty)$ 上单调递增.

4. (★★★) 已知函数
$$f(x) = \frac{2}{3}x^3 + \frac{a-2}{2}x^2 - ax + 1(a \in \mathbb{R})$$
, 讨论 $f(x)$ 的单调性.

解: 由题意, $f'(x) = 2x^2 + (a-2)x - a = (2x+a)(x-1)$,

$(两根-\frac{a}{2}和1的大小不确定,故讨论两根的大小)$

①
$$a < -2$$
 时, $-\frac{a}{2} > 1$, $f'(x) > 0 \Leftrightarrow x < 1$ 或 $x > -\frac{a}{2}$, $f'(x) < 0 \Leftrightarrow 1 < x < -\frac{a}{2}$,

所以 f(x) 在 $(-\infty,1)$ 上单调递增,在 $(1,-\frac{a}{2})$ 上单调递减,在 $(-\frac{a}{2},+\infty)$ 上单调递增;

②当a = -2时, $f'(x) = 2(x-1)^2 \ge 0$,所以f(x)在**R**上单调递增;

③当
$$a > -2$$
时, $-\frac{a}{2} < 1$,所以 $f'(x) > 0 \Leftrightarrow x < -\frac{a}{2}$ 或 $x > 1$, $f'(x) < 0 \Leftrightarrow -\frac{a}{2} < x < 1$,

故 f(x) 在 $(-\infty, -\frac{a}{2})$ 上单调递增,在 $(-\frac{a}{2}, 1)$ 上单调递减,在 $(1, +\infty)$ 上单调递增.

5. $(2022 \cdot 郑州期末 \cdot ★★★)$ 已知函数 $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - ax + a \ln x + 1 (a \in \mathbb{R})$,讨论 f(x) 的单调性.

解: 由题意,
$$f'(x) = x^2 - x - a + \frac{a}{x} = \frac{x^3 - x^2 - ax + a}{x} = \frac{x^2(x-1) - a(x-1)}{x} = \frac{(x-1)(x^2 - a)}{x}$$
, $x > 0$,

(a) 的正负决定因式 x^2 –a 在定义域上是否有零点,故先分a ≤ 0 和 a > 0 两类讨论)

①当 $a \le 0$ 时, $x^2 - a > 0$,所以 $f'(x) > 0 \Leftrightarrow x > 1$, $f'(x) < 0 \Leftrightarrow 0 < x < 1$,

故 f(x) 在 (0,1) 上单调递减,在 $(1,+\infty)$ 上单调递增;

(当a>0时, f'(x)可变形成 $\frac{(x-1)(x-\sqrt{a})(x+\sqrt{a})}{x}$, 可只看 $(x-1)(x-\sqrt{a})$ 这部分, 两个零点分别为 1 和 \sqrt{a} ,

又需讨论它们的大小)

②当
$$0 < a < 1$$
时, $0 < \sqrt{a} < 1$, $f'(x) = \frac{(x-1)(x-\sqrt{a})(x+\sqrt{a})}{x}$,

所以 $f'(x) > 0 \Leftrightarrow 0 < x < \sqrt{a}$ 或 x > 1, $f'(x) < 0 \Leftrightarrow \sqrt{a} < x < 1$,

故 f(x) 在 $(0,\sqrt{a})$ 上单调递增,在 $(\sqrt{a},1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增;

③当
$$a=1$$
时, $f'(x)=\frac{(x-1)^2(x+1)}{x}\geq 0$,所以 $f(x)$ 在 $(0,+\infty)$ 上单调递增;

④当
$$a>1$$
时, $\sqrt{a}>1$,所以 $f'(x)>0\Leftrightarrow 0< x<1$ 或 $x>\sqrt{a}$, $f'(x)<0\Leftrightarrow 1< x<\sqrt{a}$,

故 f(x) 在 (0,1) 上单调递增,在 $(1,\sqrt{a})$ 上单调递减,在 $(\sqrt{a},+\infty)$ 上单调递增.

6. (★★★) 已知函数 $f(x) = (x-3)e^x - ax^2 + 4ax + 1(a ∈ \mathbf{R})$, 讨论 f(x) 的单调性.

解: $f'(x) = (x-2)e^x - 2ax + 4a = (x-2)(e^x - 2a)$,

(接下来对a讨论, 先按 $e^x - 2a$ 有无零点, 分 $a \le 0$ 和a > 0两类考虑)

①当 $a \le 0$ 时, $e^x - 2a > 0$,所以 $f'(x) > 0 \Leftrightarrow x > 2$, $f'(x) < 0 \Leftrightarrow x < 2$,

故 f(x) 在 $(-\infty,2)$ 上单调递减,在 $(2,+\infty)$ 上单调递增;

(当a>0时, f'(x)有零点2和 $\ln(2a)$, 故再讨论2与 $\ln(2a)$ 的大小,即讨论 $a与\frac{e^2}{2}$ 的大小)

②当 $0 < a < \frac{e^2}{2}$ 时, $\ln(2a) < 2$,(2 和 $\ln(2a)$ 将实数集划分成了三段,故分三段分别判断 f'(x)的正负)

若 $x < \ln(2a)$,则 x-2 < 0, $e^x - 2a < e^{\ln(2a)} - 2a = 0$,所以 f'(x) > 0,

若 $\ln(2a) < x < 2$, 则 x - 2 < 0, $e^x - 2a > e^{\ln(2a)} - 2a = 0$, 所以 f'(x) < 0,

若x>2,则x-2>0, $e^x-2a>e^2-2a>0$,所以f'(x)>0,

故 f(x) 在 $(-\infty, \ln(2a))$ 上单调递增,在 $(\ln(2a), 2)$ 上单调递减,在 $(2, +\infty)$ 上单调递增;

③当 $a = \frac{e^2}{2}$ 时, $f'(x) = (x-2)(e^x - e^2)$,若x < 2,则x - 2 < 0, $e^x - e^2 < 0$,所以f'(x) > 0,

若 x>2,则 x-2>0, $e^x-e^2>0$, 所以 f'(x)>0,结合 f'(2)=0知 f'(x)≥0在 **R** 上恒成立,

④当 $a>\frac{e^2}{2}$ 时, $\ln(2a)>2$,若x<2,则x-2<0, $e^x-2a<e^2-2a<0$,所以f'(x)>0,

若 $2 < x < \ln(2a)$,则 x - 2 > 0, $e^x - 2a < e^{\ln(2a)} - 2a = 0$, 所以 f'(x) < 0,

若 $x > \ln(2a)$, 则 x-2>0, $e^x - 2a > e^{\ln(2a)} - 2a = 0$, 所以 f'(x) > 0,

故 f(x) 在 $(-\infty,2)$ 上单调递增,在 $(2,\ln(2a))$ 上单调递减,在 $(\ln(2a),+\infty)$ 上单调递增.