

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

⑫ Offenlegungsschrift

⑩ DE 44 38 854 A 1

⑮ Int. Cl. 6:

G 05 B 23/02

G 09 F 9/00

G 08 F 17/60

G 08 F 3/14

F 01 K 13/02

// H02J 13/00

⑯ Aktenzeichen: P 44 38 854.3

⑯ Anmeldetag: 2. 11. 94

⑯ Offenlegungstag: 15. 5. 96

DE 44 38 854 A 1

⑯ Anmelder:

Siemens AG, 80333 München, DE

⑯ Erfinder:

Mederer, Hans-Gerd, Dipl.-Phys., 91052 Erlangen, DE; Führing, Thorsten, Dipl.-Inform., 81543 München, DE; Jacoby, Konstantin, Dipl.-Math. Dr.rer.nat., 82178 Puchheim, DE; Panýr, Jiri, Dipl.-Math. Dr.phil., 81373 München, DE; Michelis, Rainer, Dipl.-Tonmeister, 82041 Oberhaching, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Überwachungssystem für eine technische Anlage

⑯ Bei einem Überwachungssystem für eine technische Anlage, insbesondere für eine Kraftwerksanlage, mit einer Anzahl von Anlagenteilen (a_i), die als Informationselemente ($I_{(i,m)}$) auf einer Anzeigeeinheit (28) darstellbar sind, sind zur Informationsverdichtung und zur Filterung sowie zur frühzeitigen Fehlerdiagnose erfindungsgemäß die Informationselemente ($I_{(i,m)}$) anhand von für einen Anlagenzustand relevanten Prozessdaten (PD_i) derart positioniert darstellbar, daß der Abstand zwischen jeweils zwei Informationselementen ($I_{(i,m)}$) den Grad ihrer kontextuellen Ähnlichkeit repräsentiert.

DE 44 38 854 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 03. 96 802 020/30

7/32

Beschreibung

Die Erfindung bezieht sich auf ein Überwachungssystem für eine technische Anlage, insbesondere für eine Kraftwerksanlage, mit einer Anzahl von Anlagenteilen, die als Informationselemente auf einer Anzeigeeinheit darstellbar sind.

In einer Leitwarte zur Steuerung einer technischen Anlage, insbesondere einer Kraftwerksanlage, fallen ständig große Mengen verschiedener Meßdaten an, die in ihrer Gesamtheit den Anlagen- oder Betriebszustand beschreiben. Das Bedienpersonal der Anlage steht vor der Aufgabe, die für den Betriebszustand jeweils relevanten Meßdaten oder Meßgrößen zu identifizieren und ihre Werte in bezug auf den Zustand der Anlage zu verfolgen, zu analysieren und zu interpretieren. Dabei ist die Prozeßführung der Leitwarte über Bildschirme durch Normen und Richtlinien in Form von Vorschriften weitgehend festgelegt. Diese Vorschriften umfassen Symbole für Anlagenteile oder Anlagenelemente, wie z. B. Pumpen und Ventile, und die Farbgebung von Anzeigen sowie den Aufbau der Anzeigen eines Leitsystems. Zusätzlich zu den verschiedenen Anzeigen ist üblicherweise ein Anlagenschaltbild vorhanden, das die gesamte Anlage im Überblick darstellt. Mit zunehmender Automatisierung und Komplexität einer derartigen technischen Anlage nimmt aber auch die Anzahl der erfaßten Meßdaten und damit die Wahrscheinlichkeit zu, daß die für den jeweiligen Betriebszustand der Anlage wichtigen Informationen nicht als solche frühzeitig identifiziert werden. Entsprechende Gegenmaßnahmen können somit erst verspätet eingeleitet werden.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Überwachungssystem für eine technische Anlage, insbesondere für eine Kraftwerksanlage, anzugeben, mit dem Besonderheiten im Anlagenprozeß unmittelbar aufgezeigt und frühzeitige Gegenmaßnahmen, insbesondere bei Störungen, ermöglicht werden.

Erfnungsgemäß wird diese Aufgabe bei einem Überwachungssystem für eine technische Anlage, insbesondere für eine Kraftwerksanlage, mit einer Anzahl von Anlagenteilen, die als Informationselemente auf einer Anzeigeeinheit darstellbar sind, gelöst, indem die Informationselemente anhand von für einen Anlagenzustand relevanten Prozeßdaten derart positioniert darstellbar sind, daß der Abstand zwischen jeweils zwei Informationselementen den Grad ihrer kontextuellen Ähnlichkeit repräsentiert.

Die Erfindung geht dabei von der Überlegung aus, daß auf der Grundlage des mathematischen Modells der formalen Begriffsanalyse große Mengen von Prozeßdaten nach dem Prinzip "Kontextuelle Nähe entspricht räumlicher Nähe" hinsichtlich ihrer Bedeutung für den Anlagenzustand gefiltert, verdichtet und/oder strukturiert werden können.

Vom Informationssystem der technischen Anlage, das Teil des Betriebssystems der Anlage ist, wird eine Liste von Merkmalen bereitgestellt, wobei die Merkmale in ihrer Gesamtheit alle möglichen Betriebs- oder Anlagenzustände beschreiben. Die Merkmale selbst sind beispielsweise Statusmeldungen oder andere, den Zustand eines Anlagenteils eindeutig beschreibende Meldungen, die ihrerseits Glieder von Meldefolgen sein können. Die Zuordnung der Merkmale zu den Anlagenteilen erfolgt anhand von aktuell erfaßten oder modellierten (simulierten) Parametern, die ebenfalls vom Informationssystem der technischen Anlage bereitgestellt werden.

Die kontextuelle Ähnlichkeit oder auch inhaltliche

Nähe von jeweils zwei Anlagenteilen wird dann bestimmt durch das Verhältnis der Anzahl der ihnen gemeinsamen Merkmale zur Anzahl derjenigen Merkmale, die mindestens einer der Anlagenteile aufweist. Mit anderen Worten: Jeweils zwei Anlagenteile, die in allen Merkmalen übereinstimmen, werden als inhaltlich besonders nahe klassifiziert, während zwei Anlagenteile, die in keinem der Merkmale übereinstimmen, als inhaltlich nicht nahe klassifiziert werden.

Für die grafische Darstellung wird die inhaltliche Nähe zweier Anlagenteile in eine räumliche Nähe der die Anlagenteile repräsentierenden Informationselemente transformiert. Die räumliche Nähe jeweils zweier Merkmale wird zweckmäßigerverweise entsprechend dem Grad ihrer kontextuellen Äquivalenz bestimmt, wobei die Anzahl derjenigen Anlagenteile herangezogen wird, die diese Merkmale gemeinsam aufweisen. Die Zuordnung von Merkmalen zu jedem dieser aufweisenden Anlagenteil anhand der Parameter bestimmt eindeutig die Korrelation oder den Zusammenhang zwischen diesen Merkmalen und diesem Anlagenteil.

Die von dem Informationssystem der technischen Anlage bereitgestellten Parameter sind zweckmäßigerverweise Bestandteil von Ereignismeldungen, die Änderungen von Betriebszuständen oder Abweichungen vom Normalzustand der Anlage charakterisieren. Dabei sind die Ereignismeldungen anhand spezifischer Kennungen den entsprechenden Anlagenteilen eindeutig zugeordnet.

Die generierte grafische Darstellung kann lediglich eine Anordnung von Anlagenteile repräsentierenden Informationselementen oder lediglich eine Anordnung von Merkmalen repräsentierenden Informationselementen sein. Vorzugswise werden jedoch Informationselemente sowohl von Anlagenteilen als auch von Merkmalen grafisch dargestellt. Dabei wird die Positionierung der Informationselemente zueinander innerhalb der Anordnung derart bestimmt, daß folgendes Kriterium erfüllt ist: Falls ein Anlagenteil ein Merkmal aufweist, ist der Abstand deren Informationselemente zueinander kleiner als ein vorgebbarer erster Grenzwert. Falls ein Anlagenteil ein Merkmal nicht aufweist, ist der Abstand zwischen deren Informationselementen größer als dein vorgebbarer zweiter Grenzwert. Somit ist der Abstand zwischen diesen Informationselementen konsistent mit dem Grad der Zugehörigkeit dieses Merkmals zu diesem Anlagenteil.

Um dem Bedienpersonal die für eine Identifizierung von für den jeweiligen Anlagenzustand wichtigen Informationen in besonders einfacher und/oder übersichtlicher Weise zu ermöglichen, werden die innerhalb des Anlagenprozesses aufgenommenen Meßdaten oder daraus abgeleitete Parameter gefiltert. Dazu ist zweckmäßigerverweise ein Filterbaustein vorgesehen, mit dem anhand eines vorgebbaren Kriteriums bestimmt wird, welche der Anlagenteile dargestellt werden. Beispielsweise können diejenigen Anlagenteile dargestellt werden, die in einem Merkmal, wie z. B. im Zustand "Störung"/"Nicht Störung" oder im Status AN/AUS, übereinstimmen. Vorteilhafterweise wird ein Zeitfenster als Kriterium vorgegeben, so daß Zusammenhänge oder Wechselwirkungen zwischen denjenigen Anlagenteilen erkannt werden, die innerhalb eines bestimmten Zeitraums Störungen melden. Dadurch können Rückschlüsse auf ursächliche Störungen — im Gegensatz zu symptomatischen Störungen — gezogen werden.

Um einen Entwicklungstrend auf eine Störung hin frühzeitig erkennen zu können, kann vorteilhafterweise ein Zeitfenster auch als Merkmal vorgegeben werden.

Dadurch ist eine zeitliche Ordnung der die Anlagenteile und Merkmale darstellenden Informationselemente möglich. Vorzugsweise werden Informationselemente aufeinander folgender Ereignismeldungen als Zustandskomplex gemeinsam dargestellt. Der Zustandskomplex kann dabei eine charakteristische Struktur aufweisen, deren Muster in unmittelbarem Zusammenhang mit einem Systemverhalten steht. Dabei wird zweckmäßigerverweise aus der gemeinsamen Darstellung der Informationselemente ein Systemzustand prognostiziert und in einem Datenspeicher hinterlegt. Dadurch ist es möglich, einer sich anbahnenden Störung bereits im Anfangsstadium geeignet entgegenzuwirken.

Dieser Zustandskomplex kann als Referenzkomplex herangezogen und mit einem aktuellen Zustandskomplex verglichen werden. In diesem Referenzkomplex sind dann für ein bestimmtes Anlagenverhalten charakteristische Muster vorgegeben. Beispielsweise kann eine auf einen Schnellschluß eines Sicherheitsventils in einer Kraftwerksanlage hinlaufende Störung in Form eines Referenzkomplexes vorliegen. Durch Vergleichen des Zustandskomplexes mit diesem Referenzkomplex kann ein sich on-line anbahnender Schnellschluß daher aufgrund der diesem vorausgehenden Störungsmeldungen erkannt werden.

Der Informationsraum, in dem die Informationselemente dargestellt werden, ist n-dimensional, vorzugsweise 3-dimensional: Zur Festlegung der Position jedes Informationselementes in diesem Informationsraum werden daher vorzugsweise drei räumliche Koordinaten ermittelt. Auf einem geeigneten Anzeigegerät, z. B. auf einem Bildschirm, ist somit eine 3-dimensionale Darstellung in der Leitwarte möglich.

Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Darin zeigen:

Fig. 1 ein Funktionsschema eines Überwachungssystems für eine technische Anlage,

Fig. 2 eine für einen Betriebszustand der technischen Anlage charakteristische Anordnung von Anlagenteile und deren Merkmale repräsentierenden Informationselementen, und

Fig. 3 einen für den Trend des Betriebsverhaltens der Anlage charakteristischen Zustandskomplex.

Der im Ausführungsbeispiel gemäß Fig. 1 dargestellte Prozeßablauf innerhalb einer Anlagenkomponente 1 ist Teil eines Gesamtprozesses einer nicht näher dargestellten Kraftwerksanlage. Die Anlagenkomponente 1 umfaßt eine in einer Dampfleitung 2 geschaltete Pumpe a₁ mit vorgeschaltetem Dampfventil a₂ und in einer Abzweigleitung 8 ein Abblaseregelventil a₃. Zwischen der Pumpe a₁ und dem Dampfventil a₂ ist ein Durchflußsensor 12 vorgesehen, mit dem die pro Zeiteinheit durch die Dampfleitung 2 strömende Dampfmenge erfaßt wird. Außerdem ist auf der Druckseite der Pumpe a₁ ein Drucksensor 13 vorgesehen. Die Pumpe a₁ ist mit einem Drehzahlsensor 14 versehen. Das Dampfventil a₂ sowie das Abblaseregelventil a₃ weisen jeweils ein Steuer- und Meldeelement 15 bzw. 16 auf. Die Pumpe a₁ und das Dampfventil a₂ sowie das Abblaseregelventil a₃ werden im folgenden auch als Anlagenteile a₁ bis a₃ bezeichnet.

Von den Sensoren 12, 13 und 14 erfaßte Meßwerte sowie von den Meldeelementen 15 und 16 abgegebene Meldesignale werden in Form von Prozeßdaten PD_i einem Automatisierungssystem 18a und einem leittechnischen Informationssystem 18b zugeführt.

In Automatisierungseinheiten des Automatisierungs- und Informationssystems 18a, 18b der Kraftwerksanlage werden die Prozeßdaten PD_i vorverarbeitet. Gege-

nenfalls werden Steuersignale S_i an die Anlagenteile a_i der Anlagenkomponente 1 abgegeben. Die zusammenlaufenden Informationen über Messungs-, Regelungs- und Steuerungereignisse sowie über die Signalerzeugung werden in dem Informationssystem 18b hinterlegt. Durch die innerhalb des Automatisierungs- und Informationssystems 18a, 18b ablaufenden Prozesse wird die Kraftwerksanlage mit ihren Anlagenteilen a_i, wie z. B. der Pumpe a₁ sowie den Ventilen a₂ und a₃ der Anlagenkomponente 1, automatisch gesteuert.

Von dem Automatisierungs- und Informationssystem 18a, 18b werden anhand der Prozeßdaten PD_i sowie der Steuersignale S_i für den Anlagenprozeß und somit auch für den innerhalb der Anlagenkomponente 1 ablaufenden Prozeß relevante Parameter P_i generiert und in Meldungen M_i zusammengefaßt. Diese Meldungen M_i umfassen auch die Anlagenteile a_i identifizierende Kenntnisse.

Die Parameter P_i und/oder die Meldungen M_i werden 20 einem Analysemodul 20 des Überwachungssystems über einen Filterbaustein 21 zugeführt. Dem Analysemodul 20 werden darüber hinaus den Anlagenprozeß charakterisierende Merkmale m_i bereitgestellt.

Die Merkmale M_i sind sowohl Status-, Störungs- und 25 Zustandsmeldungen als auch funktionelle, verfahrenstechnische und konstruktive Details der Anlagenteile a_i oder Anlagenkomponenten, wobei diese Details die Arbeitsweise der Anlagenteile und deren Anordnung und Zuordnung innerhalb der Gesamtanlage beschreiben. 30 Innerhalb des Analysemoduls 20 wird für jeden Anlagenteil a_i das Vorhandensein der Merkmale m_i anhand der Parameter P_i oder aufgrund der Meldungen M_i für ein vorgebares Zeitfenster geprüft. Dazu wird für jedes Zeitfenster ein Kontext K_{Ti} generiert, in dem in 35 Form einer Matrix 22 eine eindeutige Zuordnung von Merkmalen m_i zu Anlagenteilen a_i durchgeführt wird.

Anhand von in den Kontexten K_{Ti} vorhandenen Informationen werden den Anlagenteilen a_i und/oder den Merkmalen m_i in einem Positionierungsmodul 24 des 40 Überwachungssystems räumliche Koordinaten zugeordnet. Dabei wird nach dem Prinzip "kontextuelle Nähe entspricht räumlicher Nähe" der Grad der Korrelationen zwischen Kombinationen von Anlagenteilen a_i und Merkmalen m_i bestimmt, indem beispielsweise für 45 zwei Anlagenteile a_i das Verhältnis der Anzahl der ihnen gemeinsamen Merkmale m_i zur Anzahl der Merkmal m_i, die mindestens eines der beiden Anlagenteile a_i aufweist, bestimmt wird. Aus diesem Verhältnis ergibt sich dann ein quantitatives Maß für den Grad der Korrelation zwischen diesen beiden Anlagenteilen a_i. Weisen z. B. beide Anlagenteile a_i nur gemeinsame Merkmale m_i auf, so sind die beiden Anlagenteile a_i hochgradig korreliert. Demgegenüber sind zwei Anlagenteile a_i nicht miteinander korreliert, wenn sie sich in allen 55 Merkmalen m_i unterscheiden. Dieses quantitative Maß der Korrelation zwischen zwei Anlagenteilen a_i wird in einen entsprechenden Abstand ihrer räumlichen Koordinaten zueinander transformiert. Die Korrelation der Merkmale m_i zueinander wird analog bestimmt, indem die Anzahl der sie aufweisenden Anlagenteile a_i sinngemäß herangezogen wird.

Auf der Grundlage dieser räumlichen Zuordnung wird eine grafische Darstellung für die Anlagenteile a_i und die Merkmale m_i in einem Grafikmodul 26 des 60 Überwachungssystems erzeugt. Von dem Grafikmodul 26 werden zunächst Informationselemente I_(ai) für die Anlagenteile a_i und Informationselemente I_(mi) für die Merkmale m_i generiert und anhand der räumlichen Ko-

ordinaten auf einer Anzeige 28 positioniert. Die gemeinsame Anordnung der Informationselemente $I_{i(ai)}$ und $I_{i(mi)}$ erfolgt dabei unter folgender Bedingung: Der Abstand zwischen einem Informationselement $I_{i(mi)}$ und einem Informationselement $I_{i(ai)}$ überschreitet einen vorgegebenen ersten Grenzwert dann nicht, wenn dieses Anlagenteil a_i ; dieses Merkmal m_i aufweist, und dieser Abstand unterschreitet einen vorgegebenen zweiten Grenzwert dann nicht, wenn dieses Anlagenteil a_i ; dieses Merkmal m_i nicht aufweist. Mit anderen Worten: Wenn ein Anlagenteil a_i ; ein Merkmal m_i aufweist, dürfen die sie repräsentierenden Informationselemente $I_{i(ai)}$ und $I_{i(mi)}$ nicht zu weit voneinander entfernt positioniert sein. Wenn dagegen ein Anlagenteil a_i ; ein Merkmal m_i nicht aufweist, dürfen sich die sie repräsentierenden Informationselemente $I_{i(ai)}$ und $I_{i(mi)}$ nicht zu nahe sein.

Führt z. B. eine Störung in einem in die Dampfleitung 2 geschalteten (nicht dargestellten) Anlagenteil zu einer Druckerhöhung in der Dampfleitung 2, so sinkt die Drehzahl der Pumpe a_1 ab, und das Abblaseregelventil a_3 öffnet. Das Automatisierungssystem 18a schließt daraufhin das Dampfventil a_2 , so daß sich die Drehzahl der Pumpe a_1 normalisiert und das Abblaseregelventil a_3 wieder schließt. Nach einer darauf folgenden erneuten Öffnung des Dampfventils a_2 durch das Automatisierungssystem 18a erhöht sich wiederum der Druck innerhalb der Dampfleitung 2, so daß sich der Vorgang so lange wiederholt, bis die Störung beseitigt ist.

Diesen Vorgang beschreibende Prozeßdaten PD_i , d. h. die vom Durchflußsensor 12 erfaßte Dampfmenge und der vom Drucksensor 13 erfaßte Dampfdruck sowie die vom Drehzahlsensor 14 erfaßte Pumpendrehzahl, werden dem leittechnischen Informationssystem 18b zugeführt. Als Reaktion auf die im leittechnischen Informationssystem 18b eintreffenden Prozeßdaten PD_i werden Steuersignale S_i zum Öffnen oder Schließen der Ventile a_2 und a_3 vom Automatisierungssystem 18a an die Anlagenkomponente 1 gegeben.

Zur Analyse werden aus den Prozeßdaten PD_i und den Steuersignalen S_i Meldungen M_i erstellt. Derartige Meldungen M_i sind z. B.: "Zeitpunkt t_1 — Anlagenkomponente 1 — Drucksensor 13 — Druck zu hoch — Störung — Priorität hoch"; "Zeitpunkt t_2 — Anlagenkomponente 1 — Drehzahlsensor 14 — Drehzahl zu niedrig — Störung — Priorität hoch"; "Zeitpunkt t_3 — Anlagenkomponente 1 — Abblasenventil a_3 -Statussignal auf"; "Zeitpunkt t_3 — Anlagenkomponente 1 — Dampfventil a_2 — Statussignal zu"; usw.

Im Analysemodul 20 werden anhand dieser Meldungen M_i den Anlagenteilen a_1 , a_2 und a_3 Merkmale m_i zugeordnet, d. h. anhand der Meldungen M_i wird nun das Vorhandensein jedes Merkmals m_i dieser Anlagenteile a_1 , a_2 und a_3 geprüft. Alle zum Meldungsbestandteil "Anlagenkomponente 1" gehörenden Merkmale m_i werden somit jedem der Anlagenteile a_1 , a_2 und a_3 zugeordnet. Bereits dadurch stimmen die Anlagenteile a_1 , a_2 und a_3 in einer Vielzahl von Merkmalen m_i überein, so daß sie in einem hohen Grad korreliert sind. Dementsprechend werden diesen Anlagenteilen a_1 bis a_3 im Positionierungsmodul 24 nahe beieinanderliegende räumliche Koordinaten zugeordnet. Eine aufgrund dieser räumlichen Zuordnung im Grafikmodul 26 erstellte grafische Darstellung ist in Fig. 2 dargestellt.

Wie aus Fig. 2 ersichtlich, sind dabei die den Anlagenteilen a_1 bis a_3 und den Merkmalen m_i zugeordneten Informationselemente $I_{i(ai)}$ bzw. $I_{i(mi)}$ gemeinsam dargestellt. Für eine bessere Übersicht sind die Informationselemente $I_{i(mi)}$ der Merkmale m_i und die Informations-

elemente $I_{i(ai)}$ der diese Merkmale m_i aufweisenden Anlagenteile a_1 bis a_3 durch sogenannte Inzidenzlinien L verbunden. Die Informationselemente $I_{i(ai)}$ sind in Form von Quadraten oder Würfeln dargestellt, während die Informationselemente $I_{i(mi)}$ der Merkmale m_i in Form von Kreisen oder Kugeln veranschaulicht sind. Die Einflußnahme der Anlagenteile a_1 , a_2 und a_3 aufeinander ist dabei durch Wirkungspfeile W symbolisiert.

Die Meldungen oder Ereignismeldungen M_i weisen auch Zeitmerkmale auf. Anhand dieser Zeitmerkmale kann eine zeitliche Korrelation der Anlagenteile a_i abgeleitet werden. Beispielsweise weisen zwei der oben genannten Meldungen M_i das gleiche Zeitmerkmal " t_3 " auf, so daß dadurch auf Gleichzeitigkeit der zugehörigen Ereignisse geschlossen wird.

Zeitlich und auf andere Art korrelierte Informationselemente $I_{i(ai), mi}$ werden zum Zweck einer Diagnose in Form eines Zustandskomplexes dargestellt. Dies ist in Fig. 3 gezeigt. Je nach Art einer Störung weist ein derartiger Zustandskomplex ein charakteristisches Muster auf, anhand dessen die Art und zeitliche Entwicklung der Störung identifiziert werden kann. Ein derartiger Zustandskomplex kann auch als Referenzkomplex abgespeichert sein, der zu einem Vergleich mit aktuellen Ereignissen herangezogen werden kann.

Patentansprüche

1. Überwachungssystem für eine technische Anlage mit einer Anzahl von Anlagenteilen (a_i), die als Informationselemente ($I_{i(ai)}$) auf einer Anzeigeeinheit (28) darstellbar sind, wobei die Informationselemente ($I_{i(ai)}$) anhand von für einen Anlagenzustand relevanten Prozeßdaten (PD_i) derart positioniert darstellbar sind, daß der Abstand zwischen jeweils zwei Informationselementen ($I_{i(ai)}$) den Grad ihrer kontextuellen Ähnlichkeit repräsentiert.

2. Überwachungssystem nach Anspruch 1, wobei eine Vielzahl von die technische Anlage sowie deren Anlagenteile (a_i) vollständig inhaltlich charakterisierenden Merkmalen (m_i) als Informationselemente ($I_{i(mi)}$) derart positioniert darstellbar ist, daß der Abstand zwischen jeweils zwei Informationselementen ($I_{i(mi)}$) den Grad ihrer kontextuellen Äquivalenz repräsentiert.

3. Überwachungssystem nach Anspruch 2, wobei die Informationselemente ($I_{i(ai)}$, $I_{i(mi)}$) derart zueinander positioniert darstellbar sind, daß der Abstand zwischen jeweils einem Merkmal (m_i) repräsentierenden Informationselement ($I_{i(mi)}$) und einem Anlagenteil (a_i) repräsentierenden Informationselement ($I_{i(ai)}$) mit dem Grad der Zugehörigkeit dieses Merkmals (m_i) zu diesem Anlagenteil (a_i) konsistent ist.

4. Überwachungssystem nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen Filterbaustein (21) zum Selektieren von Prozeßdaten (PD_i), Parametern (P_i), Anlagenteilen (a_i) oder Merkmalen (m_i) anhand eines vorgebbaren Kriteriums.

5. Überwachungssystem nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen Datenspeicher für Anlagenzustände charakterisierende Anordnungen von Informationselementen ($I_{i(ai)}$, $I_{i(mi)}$) in Zustandskomplexen.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

FIG 2

FIG 3

FIG 1