

CSE 234: Data Systems for Machine Learning Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics

Logistics

- If 80% of you finish the course eval, all get +2 points in final score!
 - Currently: we are 50%
- TA will hold a recitation for exam make sure to attend

Recap: Next Token Prediction

Probability("San Diego has very nice weather")
= P("San Diego") P("has" | "San Diego") P("very" | "San Diego has") P("aty" | ...).... P("weather" | ...)

$$\max Prob(x_{1:T}) = \prod_{t=1}^{T} P(x_{t+1}|x_{1...t})$$

This is model we got – capable of "predicting the next token".

Inference process of LLMs

Repeat until the sequence

- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|end of sequence|>")

Generative LLM Inference: Autoregressive Decoding

- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- Decoding phase (all other iterations):
 - Process a single token generated from previous iteration
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation
 - what is KV cache essentially?

w/ KV Cache vs. w/o KV Cache

Zoom-in! (simplified without Scale and Softmax)

w/ KV Cache vs. w/o KV Cache

Potential Bottleneck of LLM Inference?

- Compute:
 - Prefill: largely same with training
 - Decode: s = 1
- Memory
 - New: KV cache
- Communication
 - mostly same with training

Q? how about batch size b?

Serving vs. Inference

large b

Serving: many requests, online traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

b=1

Inference: fewer request, low or offline traffic,

emphasize latency

Potential Bottleneck of LLM Inference in Serving

large b

- Compute:
 - Prefill:
 - Different prompts have different length: how to batch?
 - Decode
 - Different prompts have different, unknown #generated tokens
 - s = 1, b is large
- Memory
 - New: KV cache
 - b is large -> KV is linear with b -> will KVs be large?
- Communication
 - mostly same with training

Potential Bottleneck of LLM Inference in Serving

- Compute:
 - Prefill:
 - Different prompts have different length: how to batch?
 - Decode
 - Different prompts have different, unknown #generated tokens
 - s = 1, b=1
- Memory
 - New: KV cache
 - b = 1 -> KV is linear with b -> will KVs be large?
- Communication
 - mostly same with training

Problems of bs = 1

Recap: Inference process of LLMs

Repeat until the sequence

- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|end of sequence|>")

Latency = step latency * # steps

Speculative decoding reduces this, hence amortize the memory moving cost (but it may increase compute cost)

b='

Large Language Models

- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention ← come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics

Large Language Models

- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention ← come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics

LLM Decoding Timeline

Batching Requests to Improve GPU Performance

T,	Tz	T3	Ty	Ts	T6	To	Tg
Sil	Si	Si	SALL				
Sa	Sz	SX					
Sz	S	Sz	S				
Sy	Sy	Sy	Sy	Sy			

T,	Tz	T3	Ty	Ts	76	To	Tg
Si	Si	Si	SNI	8,	END		
Sa	Sa	SXI	Sx	Sall	81	SAL	END
Sz	S	S	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	END	

Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

Continuous Batching

T,	Tz	T3	Ty	Ts	T6	To	Tg
Sil	Si	Si	SALL				
Sa	Sz	SX					
Sz	S	Si	S				
Sy	Sy	Sy	Sy	Sy			

T_{i}	Tz	T3	Ty	Ts	16	To	Tg
Sil	Si	Si	SM	\$,,,	END	56	SG
Sa	Sa	SA	Sx	\$3.1	SA	SAL	END
Sz	Sz	S	S	END	Ss	55	\$5
Sy	Sy	Sy	Sy	Sy	Sy	END	S7

Benefits:

- Higher GPU utilization
- New requests can start immediately

Receives two new requests R1 and R2

R1: optimizing ML systems

R2: LLM serving is

Request Pool (CPU)

Maximum serving batch size = 3

Execution Engine (GPU)

Iteration 1: decode R1 and R2

Iteration 1

Request Pool (CPU)

Execution Engine (GPU)

Iteration 1: decode R1 and R2

(GPU)

Receive a new request R3; finish decoding R1 and R2

Execution Engine (GPU)

Maximum serving batch size = 3

R1: optimizing ML systems requires

R2: LLM serving is critical.

Q: How to batch these?

Receive a new request R3; finish decoding R1 and R2

Execution Engine (GPU)

Traditional Batching

Receive a new request R3; finish decoding R1 and R2

Request Pool (CPU)

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Request Pool (CPU)

Continuous Batching

Q: How to batch these?

Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Execution Engine (GPU)

Traditional vs. Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

(GPU)

(GPU)

28

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Request Pool (CPU)

• Iteration 3: decode R1, R3, R4

Request Pool (CPU)

Summary: Continuous Batching

- Handle early-finished and late-arrived requests more efficiently
- Improve GPU utilization
- Key observation
 - MLP kernels are agnostic to the sequence dimension

KV Cache

KV Cache

Output of Layer N -0.2 Artificial 0.1 -1.1 future 0.1 -2.1 Intelligence 0.9 0.7 0.2 is -0.1 -0.3 0.1 -1.1 0.5 the 0.4 **KV Cache** Layer 1

Artificial

Intelligence

is

the

-0.1

0.7

0.2

-0.7

0.3

-0.4

-0.1

0.1

1.2

8.0

1.1

-0.2

0.0

future -0.6

0.5

0.9

Input

KV Cache

- Memory space to store intermediate vector representations of tokens
 - Working set rather than a "cache"
- The size of KV Cache dynamically grows and shrinks
 - A new token is appended in each step
 - Tokens are deleted once the sequence finishes

of

Key insight

Efficient management of KV cache is crucial for high-throughput LLM serving

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving

13B LLM on A100-40GB

Memory waste in KV Cache

- Reservation: not used at the current step, but used in the future
- Internal fragmentation: over-allocated due to the unknown output length.

Memory waste in KV Cache

Only **20–40%** of KV cache is utilized to store token states

^{*} Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. "Orca: A Distributed Serving System for Transformer-Based Generative Models" (OSDI 22).

vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS

Memory management in vLLM

Token block

 A fixed-size contiguous chunk of memory that can store token states
 from left to right

Token block

• A **fixed-size** contiguous chunk of memory that can store token

Token blocks states from left to right (KV Cache) block 0 block 1 block 2 block 3 Block 4 Artificial -0.2 0.1 -1.1 block 4 0.9 0.7 0.2 Intelligence Artificial block 5 Intelligence is the -0.1 -0.3 0.1 is 0.5 the -1.1 0.4 block 6 820 KB / token block 7 (LLaMA-13B) Block size = 4

Paged Attention

 An attention algorithm that allows for storing continuous keys and values in non-contiguous memory space

Prompt: "Alan Turing is a computer scientist"

Logical token blocks

block 0	Alan	Turing	is	а
block 1	computer	scientist		
block 2				
block 3				

Physical token blocks (KV Cache) block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

Serving multiple requests

Block Table

Logical token blocks

Alan	Turing	is	а
computer	scientist	and	mathema tician
renowned			

Physical token blocks (KV Cache)

computer	scientist	and	mathem atician
Artificial	Intellige nce	is	the
renowned			
future	of	technolog y	
Alan	Turing	is	а

Block Table

Logical token blocks

Artificial	Intelligence	is	the
future	of	technology	

Memory efficiency of vLLM

- Minimal internal fragmentation
 - Only happens at the last block of a sequence
 - # wasted tokens / seq < block size
 - Sequence: O(100) O(1000) tokens
 - Block size: 16 or 32 tokens
- No external fragmentation

Alan	Turing	is	а
computer	scientist	and	mathemati cian
renowned			

Internal fragmentation

Effectiveness of PagedAttention

Large Language Models

- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention ← come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics
 - Prefill-decode disaggregation

LLM System Today Optimize Throughput

Motivation: Applications have Diverse SLO

High Throughput ≠ High Goodput

Throughput = 10 rps = completed request / time **High Throughput**System

. . .

High Throughput ≠ High Goodput

TTFT

Throughput = 10 rps

= completed request / time

Goodput = 3 rps

= completed request within SLO / time

High Throughput System

. .

can have Low Goodput!

High Throughput ≠ High Goodput

Background: Continuous Batching

Request Arrived

Worker

Timeline

Prefill and Decode have Distinct Characteristics

Prefill

Compute-bound

One prefill saturates compute.

Memory-bound

Must batch a lot of requests together to saturate compute

Continuous Batching Cause Interference

Continuous Batching Batch R1 and R2 together in 1 GPU Time wasted for decode **GPU** R2 time Time wasted for prefill Request R2 arrives arrival

Separate prefill / decode R1 and R2 in separate GPUs

No Interference

Continuous Batching Cause Interference

Continuous Batching Batch R1 and R2 together in 1 GPU Time wasted for decode **GPU** R2 time Time wasted for prefill Request R2 arrives arrival

Colocation → Overprovision Resource to meet SLO

Summary: Problems caused by Colocation

Disaggregating Prefill and Decode

Disaggregation is a technique that

Request Arrived

Timeline

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU

= 3.3 rps / GPU

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

Simple Disaggregation achieves **2x** goodput (per GPU)

Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU

= 3.3 rps / GPU

Disaggregation

- Published in 2024 at UCSD (yes, Hao's lab)
- Soon become the default architecture replacing continuous batching at large scale
- Deepseek v3 uses prefill-decode disaggregation combined with different parallelisms.