1. SVD

Suppose we have a matrix $A \in \mathbb{R}^{m \times n}$ with rank r.

We define the compact SVD as follows:

$$\underbrace{A}_{m \times n} = \underbrace{U_r}_{m \times r} \underbrace{\Sigma_r}_{r \times r} \underbrace{V_r^{\top}}_{r \times n}.$$

Here, $\Sigma_r \in \mathbb{R}^{r \times r}$ is a diagonal matrix containing non-zero singular values of A.

$$\Sigma_r = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix},$$

with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$.

Next, $U_r \in \mathbb{R}^{m \times r}$ is given by,

$$U_r = \left[\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r \right],$$

where u_i is a left singular vector corresponding to non-zero singular value, σ_i , for i = 1, 2, ..., r. The columns of U_r are orthonormal and together they span the columnspace of A.

Finally, $V_r^{\top} \in \mathbb{R}^{r \times n}$ is given by,

$$V_r^{ op} = egin{bmatrix} ec{v}_1^{ op} \ ec{v}_2^{ op} \ dots \ ec{v}_r^{ op} \end{bmatrix} \,,$$

where \vec{v}_j is a right singular vector corresponding to non-zero singular value, σ_j for $j=1,2,\ldots,r$. The rows of V_r^{\top} are orthonormal and span the rowspace of A. Equivalently the columns of V_r span the column space of A^{\top} .

The matrix A can be expressed as,

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \sigma_2 \vec{u}_2 \vec{v}_2^\top + \ldots + \sigma_r \vec{u}_r \vec{v}_r^\top.$$

Assume now that $m \geq n$.

Another type of SVD which might be more familiar is the full SVD of A which is defined as follows:

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times m} \underbrace{\Sigma}_{m \times n} \underbrace{V}_{n \times n}^{\top}.$$

Here, $\Sigma \in \mathbb{R}^{m \times n}$ has non-diagonal entries as zero. The diagonal entries of Σ contain the singular values and we can write Σ in terms of Σ_r as,

$$\Sigma = \begin{bmatrix} \Sigma_r & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

Next, $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix. U can be expressed in terms of U_r as,

$$U = \underbrace{\begin{bmatrix} U_r \\ m \times r \end{bmatrix}}_{m \times (m-r)} \underbrace{\vec{u}_{r+1} \dots \vec{u}_m}_{m}$$

The columns $\vec{u}_{r+1}, \vec{u}_{r+2}, \dots, \vec{u}_n$ are left singular vectors corresponding to singular value 0, and together span the nullspace of A^{\top} .

Finally, V^{\top} is an orthogonal matrix and can be expressed in terms of V_r^{\top} as,

$$V^{\top} = \begin{bmatrix} V_r^{\top} \\ \vec{v}_{r+1}^{\top} \\ \vdots \\ \vec{v}_n^{\top} \end{bmatrix} \right\} \qquad r \times n$$

$$(n-r) \times n$$

The rows $\vec{v}_{r+1}^{\top}, \vec{v}_{r+2}^{\top}, \dots, \vec{v}_n^{\top}$ when transposed are the right singular vectors corresponding to singular value of 0 and together span the nullspace of A.

- (a) For this problem assume that m > n > r. Which of the following are True:
 - (a) $UU^{\top} = I$
 - (b) $U^{\top}U = I$
 - (c) $V^{\top}V = I$
 - (d) $VV^{\top} = I$
 - (e) $U_r^{\top}U_r = I$
 - (f) $U_r U_r^{\top} = I$
 - (g) $V_r V_r^{\top} = I$

(h)
$$V_r^{\top} V_r = I$$

(b) Going from the full SVD to compact SVD. Find the compact SVD of A which has the full SVD:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(c) Going from compact SVD to full SVD: Find the full SVD of A which has the compact SVD:

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

(d) For a given matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = r = \min\{m, n\}$. Prove the rank nullity theorem, i.e., $n = r + \dim(\mathcal{N}(A))$

2. SVD Part 2

Consider A to be the 4×3 matrix

$$A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} \tag{1}$$

where \vec{a}_i for $i \in \{1, 2, 3\}$ form a set of *orthogonal* vectors satisfying $\|\vec{a}_1\|_2 = 3$, $\|\vec{a}_2\|_2 = 2$, $\|\vec{a}_3\|_2 = 1$.

(a) What is the SVD of A? Express it as $A = U\Sigma V^{\top}$, with Σ the diagonal matrix of singular values ordered in decreasing fashion, and explicitly describe U and V.

(b) What is the dimension of the null space, $\dim(\mathcal{N}(A))$?

- (c) What is the rank of A, rank(A)? Provide an orthonormal basis for the range of A.
- (d) Let I_3 denote the 3×3 identity matrix. Consider the matrix $\tilde{A} = \begin{bmatrix} A \\ I_3 \end{bmatrix} \in \mathbb{R}^{7 \times 3}$. What are the singular values of \tilde{A} (in terms of the singular values of A)?
- (e) (Optional) Find an SVD of the matrix \tilde{A} .