From Functional Data to Smooth Functions

Pang Du

Department of Statistics
Virginia Tech

Overview

Pang Du (VT)

- We need a flexible method for constructing functions from noisy discrete data.
- The method should be able to reproduce any feature that interests us in a function, no matter how complicated.
- The computation should be reasonably fast, even when tens or hundreds of thousands of discrete values are available.
- We first consider the most popular technique, basis function expansions.
- We then introduce the more appealing technique, smoothing by roughness penalty.

Smoothing

2/49

Overview

- We describe two basis function systems in detail:
 - Fourier bases
 - B spline bases
- as well as some other important systems.
- We also ask about how to estimate derivatives.

Basis representation

- A basis function system is a set of K known functions $\phi_k(t)$ that are:
 - linearly independent of each other,
 - can be extended to include any number K in the system.
- A function x(t) is constructed as a linear combination of these basis functions:

$$x(t) = \sum_{k=1}^{K} c_k \phi_k(t).$$

• If vector ${\bf c}$ contains the coefficients, and the vector ${\boldsymbol \phi}$ contains the basis functions, then

$$x(t) = \mathbf{c}' \boldsymbol{\phi}(t).$$

Derivatives in basis function systems

• In principle, computing derivatives is easy:

$$D^m x(t) = \sum_{k=1}^K c_k D^m \phi_k(t).$$

• but not all basis functions have derivatives that behave reasonably, or can even be calculated.

The monomial basis

- Polynomials are perhaps the oldest and best known basis function expansion.
- A polynomial is the form:

$$x(t) = \sum_{k=1}^K c_k t^{k-1}.$$

- The basis functions are the monomials: $1, t, t^2, t^3, \dots$
- Polynomials can work fine for simple problems only requiring K=5 or so, but have severe problems tracking sharp localized features, and can run into computational problems for unequally spaced data.

Derivatives of polynomials

- Derivative estimation is a big problem for polynomials because their derivatives become less and less complex, the higher the order of derivative.
- For a polynomial of degree m, the derivative of order m + 1 is zero.
- But in most real world systems, derivatives become more complex as the order of the derivative increases.

Fourier basis functions

 The basis functions are sine and cosine functions of increasing frequency:

$$1, \sin(\omega t), \cos(\omega t), \dots, \sin(m\omega t), \cos(m\omega t).$$

- The constant ω defines the period of oscillation of the first sine/cosine pair. That is, $\omega=2\pi/P$ where P is the period.
- K = 2M + 1 where M is the largest number of oscillations in period P that are required.

Pang Du (VT) Smoothing 8/49

Fourier basis functions

Advantages of Fourier basis functions

- Fourier bases were the only alternative to monomial bases until the middle of the 20th century.
- They have excellent computational properties, especially if the times of observation are equally spaced.
- They are natural for describing data which are periodic, such as the annual weather data, gait cycle data and so on.
- Their periodicity is a problem, however, for nonperiodic data, such as the growth curves.
- But the Fourier basis is still the first choice in many fields, such as signal analysis, even when the data are not periodic.

Derivatives of Fourier bases

Computing derivatives is easy since

$$D\sin(\omega t) = \omega\cos(\omega t), D\cos(\omega t) = -\omega\sin(\omega t).$$

- We say that this system is closed under differentiation: the derivative of a Fourier series expansion is also a Fourier series expansion.
- The Fourier series is infinitely differentiable.

The splines

- Splines are polynomial segments joined end-to-end.
- The segments are constrained to be smooth at the join. The values of t at which adjacent segments are joined are called knots.
- The order m(order = degree + 1) of the polynomial segments and the location of the knots define the spline basis system.

An example of spline functions

- The following figure shows splines of three orders, each with three knot values.
- The splines are defined so as to offer the best fit to a sine function, shown in the left panels.
- How well the derivatives of these splines fit the derivative of the sine, the cosine, is shown in the right panels.

An example of spline functions

Derivatives with splines

- Because splines are constructed from polynomials, computing their derivative at any point between two knots is simple. There, the highest nontrivial order of derivative is m-1 for order m splines.
- At a knot, it is usual to require that the derivatives up to order m-2 also join. That is, the derivative of order m-2 of a spline function is usually continuous.
- The most popular choice of order is 4, implying continuous second derivatives. The second derivatives have straight line segments.

Spline functions and DFs

- How can we quantify the flexibility of a spline function of order m?
- In the usual case, there are m-1 constraints on the adjacent polynomials, corresponding to the requirement that m-2 derivatives plus the function values are required to match at the knot.
- Given the first segment, with m degrees of freedom, this means that we gain one degree of freedom with each knot to the right of the first segment.
- The total number of degrees of freedom is

order m + number of interior knots.

How are knots chosen?

- Knots are often spaced equally.
- But two important rules should be observed in placing knots:
 - Place more knots where you know there is strong curvature, and fewer where the function changes slowly.
 - But be sure that there is at least one data point in any interval.
- Some splines, such as smoothing splines, place a knot at each point of observation.

Coincident knots in splines

- Sometimes we need less smoothness at a specific point.
- For example, we will see problems where a function needs to be continuous at a point, but its derivative is discontinuous.
- When multiple knots are placed at the same point, the convention is that a spline loses one derivative for each additional knot.
- An order 4 spline with 3 coincident knots is continuous at that point, but does not have a first derivative.
- An order 4 spline with 4 coincident knots is discontinuous at that point.

An example: refinery data

There are three coincident knots at the second location for the refinery data to permit a discontinuous first derivative.

The B-spline basis system

- Any spline function with K degrees of freedom can be expressed as a linear combination of K basis spline functions.
- Among many possibilities, the B-spline system, developed in the 1940s, is the most popular.
- B-spline basis functions are themselves spline functions.
- Any B-spline basis function is positive over at most m adjacent intervals.
- This ensures that computation is fast for even tens of thousands of basis functions.

13 order 4 B-spline basis functions

Power basis and exponential basis systems

- **Power basis**: $t^{\lambda_1}, t^{\lambda_2}, \ldots$, where the powers are distinct but not necessarily integers or even positive.
- Exponential basis: $e^{\lambda_1 t}$, $e^{\lambda_2 t}$, ..., where the λ 's are distinct

Wavelet basis functions

- A recent development, wavelet bases combine some of the advantages of both Fourier and B-spline bases.
- They are especially good at tracking sharp highly localized features,
- and separating a signal into components which reflect both specific frequencies and specific locations on the t-axis. Because of their computational efficiency, they are often used for image compression.
- For example, the FBI uses wavelets to store fingerprint information.

Empirical basis functions

- We will look at *functional principal components* analysis later.
- This is essentially a method for estimating orthogonal basis functions from functional data that capture as much of the variation as possible given a fixed number of basis functions K.

Where do we go from here?

- Now we need to see how to fit a basis function expansion to noisy data.
- The simplest process is through least squares approximation (including kernel regression and local polynomials).
- This is essentially the use of multiple regression analysis, where the covariates are the basis function values corresponding to time sampling points.
- This works reasonably well, but we will see how to do even better later.

Why roughness penalties?

- Controlling smoothness by limiting the number of basis functions is discontinuous; roughness penalties allow continuous control over smoothness.
- We want to be able to define "smooth" in ways that are appropriate to our problems.
 - We may want a smooth derivative rather than just a smooth function.
 - What is smooth in one situation is not smooth in another. Smoothness has to be defined differently for periodic functions, for example.
- We find that roughness penalty smoothing gives better results.
- Roughness penalties are connected to fitting data by a differential equation; they are models for process dynamics.

Objectives

We have two competing objectives:

- Fit the data well; keep bias low.
- Keep the fit smooth so as to
 - filter out noise
 - get better estimates of derivatives

Mean squared error = $Bias^2 + Sampling Variance$.

We can often greatly reduce MSE by trading a little bias off against a lot of sampling variance.

Quantifying roughness

• The classic: curvature in the function

$$\mathsf{PEN}_2(x) = \int [D^2 x(s)]^2 ds.$$

 $[D^2x(s)]^2$ measures the squared curvature in x at s. This penalty measures total squared curvature.

• Curvature in acceleration:

$$\mathsf{PEN}_4(x) = \int [D^4 x(s)]^2 ds.$$

 These two penalties also define what we mean by "smooth"; any function that has zero penalty is "hyper-smooth". A straight line for the classic, a cubic polynomial for the acceleration penalty.

Harmonic acceleration

 If the process is periodic, it is natural to think of a constant + sinusoid as "hyper-smooth". This suggests that we use

$$PEN_{H}(x) = \int [D^{3}x(s) + \omega^{2}Dx(s)]^{2}ds,$$

where $2\pi/\omega$ is the period.

• The functions $1, \sin(\omega t)$, and $\cos(\omega t)$ all have zero penalties, as does any linear combination of them.

Some questions to think about

• Writing $Lx(s) = D^3x(s) + \omega^2 Dx(s)$, we have

$$PEN_H(x) = \int [Lx(s)]^2 ds.$$

- Can we think of other differential operators L that might be useful?
- If we have a small number of "hyper-smooth" functions in mind, can we find a differential operator L that will assign zero penalty to them?
- Can we use the data themselves to tell us something about the right differential operator L?

Pang Du (VT) Smoothing 30 / 49

Notation

- Notation:
 - \mathbf{y} is the *n*-vector of data y_i to be smoothed.
 - \mathbf{t} is the *n*-vector of values of t_i .
 - W is a symmetric positive definite weight matrix, allowing for possible covariance structure among residuals.
 - $x(\mathbf{t})$ is the *n*-vector of fitted values, and $x(\mathbf{t})$ has the basis function expansion

$$x(\mathbf{t}) = \sum_{k=1}^{K} c_k \phi_k(\mathbf{t}) = \mathbf{c}' \phi(\mathbf{t}).$$

• The penalized least squares criterion is

$$PENSSE_{\lambda}(x|\mathbf{y}) = [\mathbf{y} - x(\mathbf{t})]'\mathbf{W}[\mathbf{y} - x(\mathbf{t})] + \lambda PEN(x)$$

How the smoothing parameter works?

Smoothing parameter λ controls the amount of roughness.

- As $\lambda \to 0$, roughness matters less and less, and x(t) fits the data better and better.
- As $\lambda \to \infty$, roughness matters more and more, and $x(\mathbf{t})$ becomes more and more "hyper-smooth".
- Our job is to find the right value where we trade enough bias off against sampling variance to minimize mean squared error.

Effect of smoothing parameter

Three estimates of x are calculated by minimizing $\sum_{i=1}^{n} (y_i - x(t_i))^2 + n\lambda \int_0^1 [x''(t)]^2 dt$ at $\log_{10} n\lambda = 0, -3, -6$.

The roughness penalty matrix

For the classic penalty,

$$PEN2(x) = \int [D^2 \mathbf{c}' \phi(t)]^2 dt$$
$$= \mathbf{c}' \int [D^2 \phi(t)] [D^2 \phi(t)]' dt \mathbf{c}$$
$$= \mathbf{c}' \mathbf{R} \mathbf{c}.$$

ullet The order-m roughness penalty matrix ${f R}$ is

$$\mathsf{R} = \int [D^m \phi(t)][D^m \phi(t)]' dt = \int (D^m \phi)(D^m \phi)'.$$

• substitute L for D^m for more general roughness penalties.

The estimates for c and y

- Φ is the $n \times K$ matrix of basis function values $\phi_k(t_j)$.
- The penalized least squares criterion becomes

$$\mathsf{PENSSE}(\mathbf{y}|\mathbf{c}) = (\mathbf{y} - \Phi \mathbf{c})' \mathbf{W} (\mathbf{y} - \Phi \mathbf{c}) + \lambda \mathbf{c}' \mathbf{R} \mathbf{c}.$$

• This is quadratic in c, and is minimized by

$$\hat{\mathbf{c}} = (\mathbf{\Phi}' \mathbf{W} \mathbf{\Phi} + \lambda \mathbf{R})^{-1} \mathbf{\Phi}' \mathbf{W} \mathbf{y}.$$

Pang Du (VT) Smoothing 35/49

The smoothing matrix $S_{\phi,\lambda}$

• The data-fitting vector $\hat{\mathbf{y}} = x(\mathbf{t})$ is

$$\hat{\mathbf{y}} = \Phi (\Phi' \mathbf{W} \Phi + \lambda \mathbf{R})^{-1} \Phi' \mathbf{W} \mathbf{y}.$$

Smoothing matrix

$$\mathbf{S}_{\phi,\lambda} = \mathbf{\Phi}(\mathbf{\Phi}'\mathbf{W}\mathbf{\Phi} + \lambda\mathbf{R})^{-1}\mathbf{\Phi}'\mathbf{W}$$

maps the data into the fit, and has many useful applications.

Equivalent degrees of freedom

- It is useful to compare a fit using a roughness penalty to one using a fixed number of basis functions.
- A measure of the "degrees of freedom" in a roughness penalized fit is

$$df(\lambda) = \operatorname{trace}(\mathbf{S}_{\phi,\lambda}).$$

This corresponds to the number of basis functions
 K in an un-penalized fit.

Pang Du (VT) Smoothing 37/49

Cross-validation

If we choose smoothing parameter λ by cross-validation, we

- set aside a subset of data, the validation sample
- call the remaining data the **training sample**
- fit the model to the training sample
- assess fit to the validation sample
- repeat these steps a number of times (often five or ten times), and choose the λ value that gives the best fit averaged across the repetitions.

Delete-one cross-validation

We can also, for a sequence of values of λ ,

- set aside each observation (t_i, y_i) in turn
- fit the data with the rest of the sample,
- sum fits to the left out values to get a cross-validated error sum of squares $CV(\lambda)$.
- select the λ value that minimizes $CV(\lambda)$.

Generalized cross-validation

- Cross-validation is time-consuming, and tends too often to under-smooth the data.
- The generalized cross-validation criterion is

$$GCV(\lambda) = \left(\frac{n}{n - df(\lambda)}\right) \left(\frac{SSE}{n - df(\lambda)}\right),$$

where df is the equivalent degrees of freedom of the smoothing operator.

- GCV(λ) approximates CV(λ).
- The right factor is just the unbiassed estimate σ_e^2 of residual variance familiar in regression analysis.
- The left factor "discounts" this measure further to allow for the influence of optimizing with respect to λ .

Simulation: Jolicoeur's growth model

- How does GCV work in a simulated data example?
- A parametric growth model by Pierre Jolicoeur at the Université de Montréal (Canada) offers a nice test problem.
- The growth curve in Jolicoeur (1992) has the form

$$h(t) = \frac{a\sum_{k=1}^{3}[b_k(t+e)]^{c_k}}{1+\sum_{k=1}^{3}[b_k(t+e)]^{c_k}}.$$

How well do we estimate the Jolicoeur acceleration curves?

Simulation: Setup

- Parameter fits to the Fels growth data (Roche, 1992) by Bock (2000): $a = 164.7, e = 1.474, \mathbf{b} = (0.3071, 0.1106, 0.0816)', \mathbf{c} = (3.683, 16.665, 1.474)'.$
- Standard error curve s(t) is also available in the textbook, and used to simulate normal random errors that are added to the smooth growth curve.
- Sampling ages t_i : quarterly for 1-2 years, annually for 2-8 years, and every other year after that to 18 years of age.
- $1/s^2(t_i)$ define the entries of the diagonal weight matrix **W**.
- We simulate 1000 samples.
- We smooth using a range of values of λ , and note the value giving the best value of GCV.

20 Jolicoeur acceleration curves

GCV and RMSE

What we see?

- In the top panel, GCV favors $\lambda = 0.1$.
- This is about right for optimal RMSE for ages 8 and 16, but less smoothing would be better for age 12, in the middle of the pubertal growth spurt.
- One smoothing parameter value does not work best for all ages, but
- The value chosen by GCV certainly does a fine job.

RMSE, bias, and SE

What we see?

- The performance of the smoothing spline estimate deteriorates badly at the extremes.
- The sharp curvature at the pubertal growth spurt also causes some problems.
- Except at the extremes and PGS, the bias is negligible. The standard error is about the same as RMSE.
- Would we do better at the extremes if the smooth respected monotonicity?

Summary

- Roughness penalization, also called regularization, is a flexible and effective way to ensure that an estimated function is "smooth".
- We can tailor the definition of "smooth" to our needs.
- The roughness penalty idea extends to any type of functional parameter that we want to estimate from the data.
- Roughness penalties are one of the main ways in which we exploit the smoothness that we assume in the process generating the data.

Roughness and energy

- "Roughness" is like *energy* in physics
- Roughness requires energy to produce, and smoothness implies limited energy.
- Where we imagine that the amount of energy behind the data is limited, it is natural to assume smoothness.