

BEST AVAILABLE COPY

/ 501347

REPUBLIQUE FRANCAISE

PCT/FR 03/00484

15 JUL 2004

REC'D 14 MAY 2003
WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 19 FEV. 2003

Pour le Directeur général de l'Institut national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

SIEGE
INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE
26 bis, rue de Saint Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION

26bis, rue de Saint-Pétersbourg
75000 Paris Cédex 08
Téléphone: 01.53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES:	14 FEV. 2002
N° D'ENREGISTREMENT NATIONAL:	02-01868
DÉPARTEMENT DE DÉPÔT:	INPI
DATE DE DÉPÔT:	INPI LYON 14 FEV. 2002

Dominique GUERRE
Cabinet GERMAIN & MAUREAU
Cabinet GERMAIN & MAUREAU
12 rue Boileau
69006 LYON
France

Vos références pour ce dossier: IT/SC/B05B3898FR

1 NATURE DE LA DEMANDE

Demande de brevet

2 TITRE DE L'INVENTION

Métallocènes bifonctionnalisés, procédé d'obtention, utilisation pour le marquage de molécules biologiques

3 DECLARATION DE PRIORITE OU
REQUETE DU BENEFICE DE LA DATE DE
DEPOT D'UNE DEMANDE ANTERIEURE
FRANCAISE

Pays ou organisation Date N°

4-1 DEMANDEUR

Nom	BIO MERIEUX
Rue	Chemin de l'Orme
Code postal et ville	69280 MARCY L'ETOILE
Pays	France
Nationalité	France
Forme juridique	Société anonyme
N° SIREN	673 620 399
Code APE-NAF	0000

5A MANDATAIRE

Nom	GUERRE
Prénom	Dominique
Qualité	CPI: 921104
Cabinet ou Société	Cabinet GERMAIN & MAUREAU
Rue	Cabinet GERMAIN & MAUREAU 12 rue Boileau
Code postal et ville	69006 LYON
N° de téléphone	04.72.69.84.30
N° de télécopie	04.72.69.84.31
Courrier électronique	dominique.guerre@germainmaureau.com

1er dépôt

6 DOCUMENTS ET FICHIERS JOINTS		Fichier électronique	Pages	Détails
Description	desc.pdf	V	26	
Revendications		V	6	25
Dessins			1	1 fig., 3 ex.
Abrégé		V	2	
Désignation d'inventeurs				
Listage des séquences, PDF				
Rapport de recherche				
7 MODE DE PAIEMENT				
Mode de paiement	Prélèvement du compte courant			
Numéro du compte client	332			
Remboursement à effectuer sur le compte n°	332			
8 RAPPORT DE RECHERCHE				
Etablissement immédiat				
9 REDEVANCES JOINTES		Devise	Taux	Quantité
062 Dépôt		EURO	35.00	1.00
063 Rapport de recherche (R.R.)		EURO	320.00	1.00
068 Revendication à partir de la 11ème		EURO	15.00	15.00
Total à acquitter		EURO		225.00
				580.00
10 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE				
Signé par		Dominique GUERRE		

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

La présente invention concerne le domaine du marquage, notamment de molécules biologiques d'intérêt telles que les oligonucléotides et les peptides. Plus particulièrement, l'invention a pour objet de nouveaux métallocènes bifonctionnalisés, leur procédé d'obtention, leur utilisation pour le marquage d'oligonucléotides ou de peptides, les oligonucléotides et peptides marqués ainsi obtenus, ainsi qu'un support pour la synthèse supportée, fonctionnalisé par au moins un métallocène de l'invention.

Les métallocènes sont connus en tant que marqueurs d'oligonucléotides notamment pour la détection de fragments d'ADN ou d'ARN.

Ainsi, par exemple, le brevet US 6,211,356 décrit l'utilisation d'un métallocène monofonctionnel présentant la fonction phosphoramidite pour conférer, après couplage, un signal à de l'ADN et/ou de l'ARN qui sera alors détectable à l'aide d'un microscope électronique. L'addition du métallocène à l'oligonucléotide est effectuée de façon manuelle et uniquement en bout de chaîne.

La demande de brevet US 6,232,062 décrit des conjugués oligonucléotide-ferrocène en tant que sonde électrochimique pour détecter une hybridation. Lesdits conjugués sont obtenus par synthèse supportée à partir d'une uridine modifiée par un ferrocène et utilisée comme synthon. Les deux synthons décrits sont une uridine 3'-phosphoramidite ayant un ferrocène en position 5 et une uridine 3'-phosphoramidite ayant un ferrocène en position 2'. La production d'oligonucléotides marqués par un ferrocène à l'aide de cette technique a pour inconvénient un coût élevé du fait de l'utilisation d'un nucléoside modifié par un ferrocène comme synthon (monomère compatible avec la synthèse) dont l'élaboration est complexe.

On connaît de C.J. Yu et al. (J. Org. Chem., 2001, 66, 2937-2942) des phosphoramidites modifiées chimiquement comportant un substituant ferrocène en position 2' du ribose. Ces phosphoramidites permettent de synthétiser des oligonucléotides comportant des ferrocènes à diverses positions, mais les synthèses de ces phosphoramidites font appel à des techniques de synthèse avec protection et déprotection des fonctions amines de l'hétérocycle et des autres fonctions OH libres et nécessitent de procéder dans des conditions permettant de conserver la sélectivité de la substitution.

Les demandes de brevet WO 00/31750 et WO 01/81446 décrivent des ferrocènes bifonctionnalisés à titre de sonde électrochimique observable, lesquels ferrocènes sont greffés à un polypyrrole d'une part et à un oligonucléotide d'autre part. Le couplage du ferrocène à l'oligonucléotide est réalisé entre l'ester activé (N-hydroxy-5 phtalimide) du ferrocène et la terminaison NH₂ de l'oligonucléotide déjà synthétisé. Ce couplage a pour inconvénients qu'il n'est pas compatible avec la synthèse automatisée des oligonucléotides et qu'il manque de sélectivité (réactions parasites sur les amines des bases).

La synthèse supportée de conjugués métallocène/oligonucléotide ou métallocène/peptide avec les métallocènes utilisés dans l'art antérieur est fastidieuse car elle nécessite la synthèse d'un nucléoside modifié par un ferrocène, puis du synthon phosphoramidite correspondant. Par ailleurs, le couplage de métallocène sur des oligonucléotides ou des peptides n'est pas toujours sélectif de sorte qu'il ne peut pas être automatisé sur les synthétiseurs actuels du commerce.

La demanderesse a maintenant découvert de nouveaux métallocènes bifonctionnalisés qui permettent de palier les inconvénients dus aux métallocènes de l'art antérieur, à savoir qu'ils permettent :

- une synthèse automatisée des conjugués métallocène/oligonucléotide ou métallocène/peptide,
- un couplage sélectif entre le métallocène et l'oligonucléotide ou le métallocène et le peptide et
- une amélioration des coûts de production desdits conjugués car le synthon utilisé est le métallocène en tant que tel et non sous forme de nucléoside modifié par un métallocène.

Ainsi, la présente invention a pour objet des métallocènes de formule (I) :

25

dans laquelle

- Me représente un métal de transition, de préférence choisi parmi Fe, Ru et Os,

- Y et Z, identiques, sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$, ou bien
- Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$,
- n est un nombre entier compris entre 3 et 6,
- 5 - p est un nombre entier compris entre 1 et 4,
- q est un nombre entier compris entre 0 et 2,
- r est un nombre entier compris entre 0 et 2,
- s est un nombre entier compris entre 2 et 5,
- t est un nombre entier compris entre 3 et 6,
- 10 - R et R' représentent des atomes d'hydrogène ou sont des groupements protecteurs utilisés dans la synthèse des oligonucléotides et des peptides et sont tels que définis ci-après :
 - (i) lorsque Z et Y sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$, R est un groupement susceptible de laisser un groupement hydroxyle libre après déprotection, de préférence un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle ou le trifluoroacétyle, et R' est un groupement phosphoré susceptible de réagir avec un groupement hydroxyle libre, de préférence un groupement phosphodiester, phosphoramidite ou H-phosphonate et
 - 15 (ii) lorsque Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$, R représente un groupement protecteur des amines, de préférence le 9-fluorényloxy carbonyle, le *tert*-butoxycarbonyle ou le benzyloxycarbonyle, et R' représente un atome d'hydrogène.
- 20 Un autre objet de l'invention consiste en un procédé de préparation d'un métallocène de l'invention, caractérisé en ce qu'il comprend les étapes suivantes :
 - (i) lorsque Z et Y sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$:
 - une étape de protection d'un des groupements hydroxyle d'un composé de formule générale (II) :

dans laquelle Y' et Z', identiques, sont choisis parmi $-(CH_2)_n-$, $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$ et $-(CH_2)_q-CONH-(CH_2)_r-$, n, p, q et r étant tels que
 5 définis dans les revendications précédentes,
 par fixation d'un groupement susceptible de laisser un groupement hydroxyle libre après déprotection, de préférence choisi parmi un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle et le trifluoroacétyle, et

10 - une étape de condensation, sur l'autre groupement hydroxyle laissé libre, d'un groupement phosphoré susceptible de réagir avec un groupement hydroxyle libre, de préférence choisi parmi les groupements phosphodiester, phosphoramidite et H-phosphonate ; et

(ii) lorsque Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$:

15 - une étape de protection du groupement NH₂ d'un composé de formule générale
 (III) :

dans laquelle
 20 - Me est tel que défini précédemment,
 - Y'' est $-(CH_2)_s-$ et
 - Z'' est $-(CH_2)_t-$,
 - s et t étant tels que définis précédemment,

par fixation d'un groupement susceptible de laisser une fonction amine libre après déprotection, de préférence choisi parmi le 9-fluorényloxycarbonyle, le *tert*-butoxycarbonyle et le benzyloxycarbonyle.

Un autre objet de l'invention consiste en un (bis)hydroxymétallocène de
5 formule générale (II) telle que décrite ci-dessus.

Un autre objet de l'invention consiste en un procédé de marquage :

- d'un oligonucléotide par un métallocène bifonctionnalisé de formule (I), dans laquelle Y et Z, identiques, sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$, comprenant la substitution d'un ou plusieurs synthons de nucléotides
- 10 par un ou plusieurs desdits métallocènes de formule (I) dans le cycle de synthèse dudit oligonucléotide, et
- d'un peptide par un métallocène bifonctionnalisé de formule (I), dans laquelle Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$, comprenant la substitution d'un ou plusieurs synthons d'acides aminés par un ou plusieurs desdits métallocènes de formule (I) dans le
- 15 cycle de synthèse dudit peptide,

ainsi que les oligonucléotides et les peptides ainsi marqués.

Enfin, un dernier objet de l'invention consiste en un support de synthèse d'oligonucléotides ou de peptides, fonctionnalisé en surface par au moins un métallocène de formule (I) de l'invention, respectivement.

20 Avant de détailler l'invention, on définit ci-après certains termes utilisés dans la description et les revendications.

Le terme « oligonucléotide » désigne un enchaînement d'au moins 2 nucléotides (désoxyribonucléotides ou ribonucléotides, ou les deux), naturels ou modifiés, susceptibles de s'hybrider, dans des conditions appropriées d'hybridation, avec
25 un oligonucléotide au moins partiellement complémentaire. Par nucléoside, on entend un composé organique consistant en une base purine ou pyrimidine liée à un ose (ribose ou deoxyribose). Par nucléotide, on entend un composé organique consistant en une base purine ou pyrimidine liée à un ose (ribose ou deoxyribose) et à un groupe phosphate. Par nucléotide modifié, on entend par exemple un nucléotide comportant une base
30 modifiée et/ou comportant une modification au niveau de la liaison internucléotidique et/ou au niveau du squelette. A titre d'exemple de base modifiée, on peut citer l'inosine,

la méthyl-5-désoxycytidine, la diméthylamino-5-désoxyuridine, la diamino-2,6-purine et la bromo-5-désoxyuridine. Pour illustrer une liaison internucléotidique modifiée, on peut mentionner les liaisons phosphorothioate, N-alkylphosphoramidate, alkylphosphonate et alkylphosphotriester. Les alpha-oligonucléotides tels que ceux décrits dans FR-A-5 2 607 507 et les PNA qui font l'objet de l'article de M. Egholm et al., J. Am. Chem. Soc. (1992), 114, 1895-1897, sont des exemples d'oligonucléotides constitués de nucléotides dont le squelette est modifié.

Le terme « peptide » signifie notamment tout enchaînement d'au moins deux acides aminés, tels que protéine, fragment de protéine, oligopeptide qui a été 10 extrait, séparé, isolé ou synthétisé, comme un peptide obtenu par synthèse chimique ou par expression dans un organisme recombinant. Sont inclus aussi tous les peptides dans la séquence desquels un ou plusieurs acides aminés de la série L sont remplacés par un ou plusieurs acides aminés de la série D, et vice-versa ; tout peptide dont l'une au moins 15 des liaisons CO-NH est remplacée par une liaison NH-CO ; tout peptide dont l'une au moins des liaisons CO-NH est remplacée par une liaison NH-CO, la chiralité de chaque résidu aminoacyle, qu'il soit impliqué ou non dans une ou plusieurs desdites liaisons CO-NH, étant soit conservée, soit inversée par rapport aux résidus aminoacyle constituant un peptide de référence (ou immunorétroïdes) ; et tout mimotope.

Pour illustrer les diverses classes des peptides concernés, on peut 20 mentionner les hormones adrénocorticotropiques ou leurs fragments, les analogues d'angiotensine et leurs inhibiteurs, les peptides natriurétiques, la bradykinine et ses dérivés peptidiques, les peptides chimiotactiques, la dynorphine et ses dérivés, les endorphines et leurs dérivés, les encéphalines et leurs dérivés, les inhibiteurs d'enzyme, les fragments de fibronectine et leurs dérivés, les peptides gastrointestinaux, les peptides 25 opioïdes, l'oxytocine, la vasopressine, la vasotocine et leurs dérivés, les protéines kinase.

Les métallocènes de l'invention sont utiles en tant que synthon pour la préparation de dérivés d'haptènes ou toutes autres molécules qui peuvent être synthétisées.

En particulier, les métallocènes de l'invention sont utiles dans la synthèse 30 supportée des oligonucléotides et des peptides. Ils permettent le marquage d'oligonucléotides ou de peptides synthétisés de façon très selective du fait des deux

fonctions particulières qu'ils possèdent, à savoir deux fonctions hydroxyle telles que montrées dans la formule (II) pour la synthèse supportée des oligonucléotides, ou bien une fonction amine et une fonction acide telles que montrées dans la formule (III) pour la synthèse supportée des peptides.

5 Dans le cas de la synthèse supportée des oligonucléotides, les bras espaceurs fonctionnalisés Y et Z tels qu'indiqués dans la formule (I) possèdent chacun une fonction oxy donnant une fonction hydroxyle après déprotection et Y et Z sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$.

Selon un mode de réalisation de l'invention, Y et Z sont chacun
10 $-(CH_2)_n-O-$, n étant égal à 3.

Selon un autre mode de réalisation, Y et Z sont chacun
 $-(CH_2)-O-[(CH_2)_2-O]_p-$, p étant égal à 2.

Dans le cas de la synthèse supportée des peptides, les bras espaceurs fonctionnalisés Y et Z tels qu'indiqués dans la formule (I) possèdent soit une fonction
15 amide donnant une fonction amine après déprotection, soit une fonction acide et sont choisis parmi $-(CH_2)_t-NH-$ et $-(CH_2)_t-COO-$, étant entendu que Y et Z ne peuvent pas être identiques.

Selon un mode de réalisation de l'invention, s est égal à 3 et t est égal à 4.

Le métal de transition Me utilisé dans les métallocènes de formule (I) de
20 l'invention peut être tout métal de transition. De préférence, il est choisi parmi Fe, Ru et Os.

Selon un mode de réalisation de l'invention, Me est le fer.

Les groupements protecteurs utilisés dans la synthèse des oligonucléotides et des peptides sont tout groupement classiquement connu de l'homme du métier. Ils
25 sont décrits par exemple dans Solid Phase Synthesis, A practical Guide, Steven A. Kates, Fernando Albericio, Ed Maral Dekker, 2000.

Dans le cas d'un métallocène de l'invention utile comme synthon dans la synthèse des oligonucléotides, l'un des groupements protecteurs doit être un groupement phosphoré capable de réagir soit avec un hydroxyle libre en 5' ou en 3' du
30 nucléotide précédent dans la mesure où le métallocène de l'invention est placé après un nucléotide, soit avec un hydroxyle déprotégé du métallocène précédent dans la mesure

où l'oligonucléotide comporte plusieurs métallocènes à la suite, soit avec un hydroxyle libre d'un autre composé chimique pouvant servir par exemple de bras espaceur, tel que le poly(oxyde d'éthylène). Les exemples de tels groupements protecteurs phosphorés comprennent les groupements phosphodiester, phosphoramidite et H-phosphonate, ainsi 5 que leurs dérivés.

L'autre groupement protecteur du métallocène doit être capable de laisser un groupement hydroxyle libre après déprotection pour réagir soit avec un phosphore réactif (phosphodiester, phosphoramidite, H-phosphonate) du nucléotide suivant dans la mesure où le métallocène est placé avant un nucléotide, soit avec un phosphore réactif 10 du métallocène suivant dans la mesure où au moins deux métallocènes se suivent. A titre d'exemple de ce type de groupement protecteur, on peut citer les groupements photolabiles, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle et le trifluoroacétyle.

A titre d'exemples de groupement photolabile, on peut citer le 6-nitrovératryle, le 6-nitropipéronyle, le méthyl-6-nitrovératryle, le nitrovératrylcarbonyle, 15 le méthyl-6-nitropipéronyle, le nitrobenzyle, le nitrobenzyloxycarbonyle, le diméthylidiméthoxybenzyle, le diméthylidiméthoxybenzyloxycarbonyle, le 5-bromo-7-nitroindolinyle, l'hydroxy- α -méthylcinnamoyle, le 2-oxyméthylène anthraquinone, le pirényméthoxycarbonyle.

20 Des exemples de groupement protecteur des amines comprennent le 9-fluorényloxycarbonyle, le *tert*-butoxycarbonyle et le benzyloxycarbonyle.

Les métallocènes de l'invention sont préparés par un procédé nécessitant une ou deux étapes permettant d'obtenir les groupements protecteurs souhaités sur les bras espaces fonctionnalisés appropriés.

25 Ainsi, la présente invention a également pour objet un procédé de préparation d'un métallocène de l'invention, caractérisé en ce qu'il comprend les étapes suivantes :

(i) lorsque Z et Y sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[CH_2-O]_p-$ et $-(CH_2)_q-$ CONH- $(CH_2)_r-O-$:

30 - une étape de protection d'un des groupements hydroxyle d'un composé de formule générale (II) :

dans laquelle Y' et Z', identiques, sont choisis parmi $-(CH_2)_n-$,
 $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$ et $-(CH_2)_q-CONH-(CH_2)_r-$, n, p, q et r étant tels que
 5 définis dans les revendications précédentes,

par fixation d'un groupement susceptible de laisser un groupement hydroxyle libre après déprotection, de préférence choisi parmi un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle et le trifluoroacétyle, et

10 - une étape de condensation, sur l'autre groupement hydroxyle laissé libre, d'un groupement phosphoré susceptible de réagir avec un groupement hydroxyle libre, de préférence choisi parmi les groupements phosphodiester, phosphoramidite et H-phosphonate ; et

(ii) lorsque Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$:
 15 - une étape de protection du groupement NH₂ d'un composé de formule générale

(III) :

dans laquelle

20 - Me est tel que défini précédemment,
 - Y'' est $-(CH_2)_s-$ et
 - Z'' est $-(CH_2)_t-$,
 - s et t étant tels que définis précédemment,

par fixation d'un groupement susceptible de laisser une fonction amine libre après déprotection, de préférence choisi parmi le 9-fluorényloxycarbonyle, le *tert*-butoxycarbonyle et le benzyloxycarbonyle.

L'étape de protection d'un des groupements hydroxyle d'un composé de formule générale (II) par un groupement protecteur capable de laisser un groupement hydroxyle libre après déprotection, tel qu'un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle et le trifluoroacétyle, est effectuée dans des conditions bien connues de l'homme du métier telles que décrites dans Current Protocols in Nucleic Acid Chemistry (Volume 1), John Wiley & Sons, Inc., NY 1999.

De même, l'étape de condensation, sur l'autre groupement hydroxyle laissé libre du composé de formule (II), d'un groupement protecteur phosphoré tel qu'un groupement phosphodiester, phosphoramidite ou H-phosphonate est effectuée dans des conditions bien connues de l'homme du métier telles que décrites dans Current Protocols in Nucleic Acid Chemistry (Volume 1), John Wiley & Sons, Inc., NY 1999 et dans Protocols for Oligonucleotides and Analogs, Synthesis and Properties, Ed. Sudhir Agrawal, Methods in Molecular Biology, Humana Presse, 1993.

Les composés de formule (II) sont de nouveaux composés qui constituent un autre objet de l'invention.

Selon un mode de réalisation préféré, les composés de formule (II) possèdent au moins l'une des caractéristiques suivantes :

- Me est le fer, et
- Y' et Z' sont chacun $-(CH_2)_n-$, n étant égal à 3 ou bien Y' et Z' sont chacun $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$, p étant égal à 1.

Les composés de formule (II) peuvent être obtenus de différentes façons selon la nature du bras espaceur Y' et Z'.

Pour obtenir un métallocène avec $-(CH_2)_n-$ comme bras espaceurs, on greffe des fonctions aldéhyde sur un métallocène, puis on fait réagir le composé ainsi obtenu avec un diéthylphosphonoalkylate d'éthyle approprié pour obtenir un 1,1'-bis[(2-éthyoxy carbonyl)alcényl]métallocène, puis on effectue deux étapes de réduction pour

réduire d'une part la double liaison, puis pour libérer l'alcool primaire, comme indiqué ci-dessous :

5

où Et est l'éthyle et n' est compris entre 2 et 4.

Pour obtenir un métallocène avec $-\text{CH}_2\text{-O-}[(\text{CH}_2)_2\text{-O}]_{p-1}\text{-}(\text{CH}_2)_2-$ comme bras espaces, on fonctionnalise les groupements hydroxyle d'un bis(hydroxyméthyl)métallocène en groupements 2-chloroéthyl(poly(oxyde d'éthylène))
10 appropriés en présence d'une base telle que NaOH, puis on convertit le radical chloro en iodo, puis en hydroxyle, comme indiqué ci-dessous :

où Ts est le tosyle et p' est un nombre entier compris entre 0 et 3.

Pour obtenir un métallocène avec $-(CH_2)_q-CO-NH-(CH_2)_r-O-$ comme bras espaces, on traite un 1,1'-(N-hydroxyphthalimidecarbonylalkyl)métallocène approprié, tel qu'obtenu selon le mode opératoire décrit dans la demande WO01/81446, par de la 5 trifluoroacetoxyalkylamine appropriée, puis on convertit le radical trifluoroacéoxy en hydroxyle comme indiqué ci-dessous :

10 où q et r sont tels que définis précédemment

Le composé (III) peut être produit selon le mode opératoire suivant :

Un 1-*tert*-butoxycarbonylaminoalkyl-1'-iodométallocène approprié 1 est 15 mis à réagir avec un iodure organométallique 2, puis, en fin de traitement, la fonction acide est libérée pour donner le composé (III), comme indiqué ci-dessous :

où s et t sont tels que décrits précédemment.

Le composé 2 peut lui-même être obtenu selon la synthèse suivante :

5 Le composé 1 peut être obtenu par réaction de 1,1'-iodométallocène 3 avec un iodure organométallique 4 comme suit :

comme décrit dans :

10 a) « Comprehensive organic Synthesis », volume 3, Barry M. Trost and Ian Fleming
 b) « Palladium Reagents and catalysts » Juio Tsuji Wiley & sons 1995

L'iodure organométallique 4 peut lui-même être obtenu à partir d'un iodure d'alkylamine en 2 étapes, comme suit :

15 où s est tel que décrit précédemment,
 comme décrit dans « Protective groups in Organic Chemistry » Greene – Wuts, Third edition, Wiley Interscience.

Enfin, le 1,1'-iodométallocène 3 peut lui-même être obtenu selon le mode opératoire suivant, comme décrit dans l'article D. Guillaneux, H. B. Kagan, J. Org.

20 Chem. 1995, 60, 2502-2505.

Les métallocènes de formule (I) ainsi obtenus peuvent alors être utilisés pour le marquage, notamment de molécules biologiques d'intérêt telles que les oligonucléotides et les peptides au cours de leur synthèse supportée.

Ainsi, un autre objet de l'invention consiste en un procédé de marquage d'un oligonucléotide ou d'un peptide par un métallocène bifonctionnalisé de formule (I) de l'invention, lequel procédé comprend la substitution d'un ou plusieurs synthons de nucléosides ou d'acides aminés par un ou plusieurs desdits métallocènes de formule (I) dans le cycle de synthèse dudit oligonucléotide ou dudit peptide.

Dans le cas de la synthèse des oligonucléotides, on utilise un ou plusieurs métallocènes de formule (I), dans laquelle Y et Z, identiques, sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[CH_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$.

Dans le cas de la synthèse des peptides, on utilise un ou plusieurs métallocènes de formule (I) dans laquelle Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$.

La substitution des synthons de nucléosides ou d'acides aminés par des métallocènes de l'invention peut être réalisée sur les synthétiseurs actuels à n'importe quelle position de la chaîne. Selon un mode de réalisation de l'invention, la substitution remplit au moins l'une des conditions suivantes :

- elle est effectuée en positions 3' ou 5' dans le cas des oligonucléotides ou aux extrémités C-terminale ou N-terminale dans le cas des peptides et
- il y a au moins deux substitutions consécutives.

La substitution peut être mise en œuvre facilement par l'homme du métier car elle consiste uniquement à remplacer un nucléotide ou un acide aminé par un métallocène de l'invention.

Ainsi, par exemple, dans le cas du cycle de condensation phosphoramidite tel que représenté sur le schéma 1 ci-dessous, l'un quelconque des nucléotides de cette chaîne, ou plusieurs, peut ou peuvent être remplacé(s) par un ou plusieurs métallocènes

de formule (I) dans laquelle l'un des groupements protecteurs R ou R' est un phosphoramidite.

Schéma 1
Cycle de condensation phosphoramidite

Selon un autre exemple, dans le cas du cycle en série « H-phosphonate » tel que représenté sur le schéma 2 ci-dessous, l'un quelconque des nucléotides de ce cycle, ou plusieurs, peut ou peuvent être remplacé(s) par un ou plusieurs métallocènes de formule (I) dans laquelle l'un des groupements protecteurs R ou R' est un H-phosphonate.

Schéma 2
Cycle en série « H-phosphonate »

10

De même, selon un autre exemple, dans le cas du cycle de condensation « phosphotriester » tel que représenté sur le schéma 3 ci-dessous, l'un quelconque des nucléotides de ce cycle, ou plusieurs, peut ou peuvent être remplacé(s) par un ou plusieurs métallocènes de formule (I) dans laquelle l'un des groupements protecteurs R ou R' est un phosphodiester.

15

Schéma 3
Cycle de condensation phosphotriester

De même, l'homme du métier pourra facilement remplacer un ou plusieurs acides aminés par un ou plusieurs métallocènes de l'invention au cours de synthèses de peptides connues, telles que la synthèse selon la chimie du BOC (*tert*-butoxycarbonyle) ou du FMOc (9-fluorényloxycarbonyle).

5 Les oligonucléotides et peptides tels que marqués par les métallocènes de l'invention sont nouveaux et constituent un autre objet de l'invention.

Comme précédemment, les oligonucléotides sont marqués avec un ou plusieurs métallocènes issus de métallocènes de formule (I), dans laquelle Y et Z, chacun indépendamment, sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-$

10 CONH- $(CH_2)_r-O-$, et les peptides sont marqués avec un ou plusieurs métallocènes issus de métallocènes de formule (I) dans laquelle Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$. Les métallocènes de formule II de l'invention s'intègrent dans les séquences d'oligonucléotides de façon à remplacer, d'un point de vue chimique, les nucléosides dans lesdites séquences. De façon similaire les métallocènes de formule III s'intègrent

15 dans les séquences des peptides de façon à remplacer, d'un point de vue chimique les acides aminés dans lesdites séquences.

Selon un mode de réalisation préféré, les oligonucléotides ou peptides de l'invention comportent au moins un métallocène de l'invention en positions 3' ou 5', ou bien aux extrémités C-terminale ou N-terminale, respectivement.

20 Dans le cas où on vise à obtenir un oligonucléotide marqué en position 3', on peut utiliser un support solide sur lequel est greffé au moins un métallocène de l'invention, par réaction covalente de l'une de ses extrémités fonctionnalisées. Ce complexe support-métallocène(s) constitue un autre objet de l'invention.

A titre de support, on peut utiliser le support ci-dessous LCAA-CPG

25 (Long Chain alkylamine controlled Pore Glass) qui est classiquement utilisé en synthèse oligonucléotidique.

Le greffage du ou des métallocènes de l'invention sur le support peut être effectué par exemple selon le mode opératoire suivant :

5

où Dmtr est le diméthoxytrityle, DMAP est la diméthylaminopyridine,
DCC est le dicyclohexylcarbodiimide,
comme décrit dans Matteucci & Caruthers, J. Am. Chem. Soc., 1981, 103, 3185-3191.

La présente invention sera mieux comprise à l'aide des exemples suivants
10 qui font référence à la figure 1 annexée représentant le profil HPLC d'un oligonucléotide de l'invention présentant un ferrocène de l'invention en position 3', et qui sont donnés à titre illustratifs uniquement et non à titre limitatif.

Exemple 1 : Synthèse du 1-[3-O-diméthoxytritylpropyl]-1'-[3'-O-(2-cyanoéthyl-N,N-diisopropylphosphoramide)propyl]ferrocène 6

5 1.1 Synthèse du 1,1'-bisformylferrocène 1

On a traité 1 g (5,37 mmol) de ferrocène dissous dans 12 mL d'éther éthylique anhydre par 7,2 mL (11,56 mmol) de *n*BuLi (solution 1,6 M dans l'hexane) et par ajout de 1,74 mL (11,56 mmol) de N, N, N', N'-tétraméthyléthylène diamine. On a laissé la réaction sous argon et sous agitation pendant 20 heures à température ambiante. On a ajouté 1,33 mL (17,20 mmol) de DMF à -78°C. Après 2 heures d'agitation à -78°C, on a hydrolysé la mélange réactionnel (15 mL d'eau). On a extrait la phase aqueuse au dichlorométhane (3×15 mL). On a séché la phase organique résultante sur MgSO₄ puis on l'a concentré. On a purifié le résidu sur gel de silice avec un mélange pentane-acétate d'éthyle (50:50).

15 On a obtenu 0,62 g (2,56 mmol, 48%) du composé 1 sous la forme d'une pâte marron.

RMN ^1H (CDCl_3) : 4,62 (d, $J = 9$ Hz, 4H, $\text{H}_2\text{H}_3\text{-H}_2\text{H}_3$) ; 4,83 (d, $J = 8,7$ Hz, 4H, $\text{H}_1\text{H}_4\text{-H}_1\text{H}_4$) ; 9,89 (m, 2H, 2CHO).

RMN ^{13}C (CDCl_3) : 70,9 (C_2C_3) ; 74,20 (C_3C_4) ; 80,4 (C_1) ; 192,9 (C_6).

5 SM : 185 (60) ; 243 (M^+ , 95).

1.2 Synthèse du 1,1'-bis[(2-éthyoxy carbonyl)éthenyl]ferrocène 2

Dans un ballon tricol de 50 mL muni d'un réfrigérant et sous argon, on a introduit 0,094 g (4,08 mmol) de sodium et 25 mL d'éthanol absolu. Après consommation totale du sodium, on a refroidi la solution à 0°C, puis on a ajouté 0,809 mL (4,08 mmol) du diéthylphosphonoacétate d'éthyle et 0,470 g (1,94 mmol) de ferrocène 1,1'-carboxyaldéhyde 1 préalablement dissous dans 10 mL d'éthanol absolu.

Après retour à température ambiante et évaporation, on a purifié le résidu sur gel de silice avec un mélange cyclohexane-acétate d'éthyle (95 : 5).

15 On a obtenu 0,560 g (1,46 mmol, 75%) du composé 2 sous la forme de cristaux rouges.

RMN ^1H (CDCl_3) : 1,26 (t, $J=7,15$ et $J=7,12$ Hz, 6H, $\text{H}_9\text{H}_{10}\text{H}_{11}\text{-H}_9\text{H}_{10}\text{H}_{11}$) ; 4,15 (q, $J=7,14$ et $J=7,11$ Hz, 4H, $\text{H}_7\text{H}_8\text{-H}_7\text{H}_8$) ; 4,31 (m, 4H, $\text{H}_2\text{H}_3\text{-H}_2\text{H}_3$) ; 4,38 (m, 4H, $\text{H}_1\text{H}_4\text{-H}_1\text{H}_4$) ; 5,91 (d, $J=15,80$ Hz, 2H, $\text{H}_6\text{-H}_6$) ; 7,33 (d, $J=15,79$ Hz, 2H, $\text{H}_5\text{-H}_5$).

20 RMN ^{13}C (CDCl_3) : 14,2 (C_{10}) ; 60,1 (C_9) ; 69,7 (C_2C_5) ; 72,2 (C_3C_4) ; 79,9 (C_1) ; 116,2 (C_7) ; 143,7 (C_6) ; 166,9 (C_8).

SM : 382 (M^+ , 85).

25 1.3 Synthèse du 1,1'-bis[(2-éthyoxy carbonyl)éthyl]ferrocène 3

Dans un ballon de 100 mL, on a introduit 0,400g (1,05 mmol) de composé 2, 0,100 g (0,94 mmol) de palladium sur charbon (Pd/C à 10%) et 40 mL d'acétate d'éthyle. La solution a soigneusement été dégazée par bullage d'un flux d'argon (environ 30 minutes). On a mis à bulle de l'hydrogène contenu dans un ballon de

baudruche jusqu'à saturation de la solution. On a disposé un ballon de baudruche rempli d'hydrogène au dessus du montage. On a alors agité le mélange réactionnel vigoureusement pendant 48 à 72 heures.

Après filtration et concentration, on a obtenu 0,400 g (1,03 mmol, 99%) du composé 3 sous la forme d'une huile jaune.

RMN ¹H (CDCl₃) : 1,19 (t, J=7,15 et J=7,12 Hz, 6H, H₁₁H₁₂H₁₃-H_{11'}H_{12'}H_{13'}) ; 2,43 (m, 4H, H₇H₈-H_{7'}H_{8'}) ; 2,57 (m, 4H, H₅H₆-H_{5'}H_{6'}) ; 3,64 (s, 8H, H₁H₂H₃H₄-H_{1'}H_{2'}H_{3'}H_{4'}) ; 4,06 (q, J=7,13 et J=7,15 Hz, 4H, H₉H₁₀-H_{9'}H_{10'}).

10

1.4 Synthèse du 1,1'-bis(3-hydroxypropyl)ferrocène 4

Dans un ballon tricol muni d'un réfrigérant, sous agitation et sous argon, on a introduit 0,140 g (3,70 mmol) d'AlLiH₄. A l'aide d'une seringue, on a ajouté 7 mL d'éther éthylique anhydre. On a ajouté goutte à goutte 1,43 g (3,70 mmol) d'ester 3 dissous dans 9,5 mL d'éther éthylique anhydre de manière à maintenir un reflux constant. Le mélange a pris un aspect visqueux nécessitant l'addition de 15 mL de THF rigoureusement anhydre afin de faciliter la solubilisation des composés. On a contrôlé la réaction par CCM (éluion : cyclohexane-acétate d'éthyle (80 : 20)). Au bout de 40 minutes d'agitation, on a décomposé l'excès de lithien par addition lente d'eau (15 mL) tout en maintenant l'agitation. On a observé la formation d'un précipité blanc de lithine. Après filtration, on a extrait la phase aqueuse à l'éther éthylique (2×25 mL). On a combiné les phases organiques, on les a séchées sur MgSO₄ puis on les a concentrées.

On a recueilli 0,810 g (2,68 mmol, 72%) du composé 4 sous la forme d'une huile jaune.

25

RMN ¹H (CDCl₃) : 1,54 (m, 4H, H₇H₈-H_{7'}H_{8'}) ; 2,12 (t, J=7,81 et J=7,08 Hz, 4H, H₅H₆-H_{5'}H_{6'}) ; 3,43 (t, J=6,12 Hz, H₉H₁₀-H_{9'}H_{10'}) ; 3,89 (m, 8H, H₁H₂H₃H₄-H_{1'}H_{2'}H_{3'}H_{4'}).

RMN ¹³C (CDCl₃) : 25,7 (C₆) ; 34,1 (C₇) ; 62,3 (C₈) ; 69,0 (C₂C₅) ; 64,4 (C₃C₄) ; 70,3 (C₁C₂C₃C₄C₅) ; 89,1 (C₁).

SM : 161 (21) ; 179 (40) ; 302 (M^{*+} , 100).

1.5 Synthèse du 1-[3-O-diméthoxytritylpropyl]-1'-[3'-hydroxypropyl]ferrocène 5

Dans un ballon de 25 mL, on a introduit successivement 200 mg (0,662 mmol)
5 de 1,1'-dihydroxypropylferrocène 4 et 16 mg (0,132 mmol) de DMAP. Après 2 coévaporations successives par 5 mL de pyridine anhydre, on a repris l'huile obtenue avec 5 mL de pyridine anhydre. On a ajouté 247 mg (0,728 mmol) de chlorure de 4,4'-diméthoxytrityle et 115 μ L (0,662 mmol) de N,N-éthyldiisopropylamine. On a laissé le mélange réactionnel sous agitation à température ambiante sous flux d'azote. On a suivi
10 l'avancement de la réaction par CCM (élation : dichlorométhane-méthanol-TEA 89:10:1). Après élation, les plaques ont été systématiquement révélées dans un mélange éthanol-acide sulfurique. Après 4 heures d'agitation à température ambiante, on a ajouté 2 mL de méthanol au mélange réactionnel, afin de neutraliser le chlorure de 4,4'-diméthoxytrityle n'ayant pas réagi. Après concentration de moitié, on a repris le résidu
15 au dichlorométhane (25 mL), on l'a lavé avec une solution aqueuse saturée en NaHCO₃, puis à l'eau (5×25 mL). Après séchage sur MgSO₄ et concentration, on a fait coévaporer le brut par 2×10 mL de toluène, puis on a laissé sous vide toute une nuit. On a purifié le mélange sur gel de silice (préalablement neutralisé par de la TEA) avec des mélanges dichlorométhane-méthanol de polarité croissante.
20 On a isolé 304 mg (76%) du composé monotritylé 5. Ce dernier se présente sous la forme d'une huile orangée.

RMN ¹H (acétone D6) : 1,64-1,72 (m, 2H, H₇-H₈) ; 1,75-1,86 (m, 2H, H₇H₈) ; 2,38-
2,53 (m, 4H, H₅H₆-H₇-H₈) ; 3,08-3,14 (t, 2H, H₉H₁₀) ; 3,52-3,58 (t, 2H, H₉-H₁₀) ; 3,78,
25 3,79 (2s, 6H, -OCH₃) ; 3,95-3,98 (m, 8H, H₁H₂H₃H₄-H₁H₂-H₃H₄) ; 6,82-7,68 (m, 13H,
Ar).

1.6 Synthèse du 1-[3-O-diméthoxytritylpropyl]-1'-[3'-O-(2-cyanoéthyl-N,N-diisopropylphosphoramidyl)propyl]ferrocène 6

Dans un ballon de 25 mL, on a introduit successivement 255 mg (0,42 mmol) du composé ferrocène ODMT 5 et 7 mg (0,05 mmol) de DMAP. Après des coévaporations 5 successives par 2x2 mL de pyridine anhydre et 2x2 mL de THF anhydre, on a repris le résidu par 3 mL de THF anhydre. On a placé le mélange réactionnel sous flux d'azote, puis on a ajouté 147 µL (0,84 mmol) de N,N-éthyldiisopropylamine en une seule fois. On a ajouté alors lentement à la seringue en verre 104 µL (0,46 mmol) de 2-cyanoéthyl-diisopropylchlorophosphoramidite (l'addition dure environ 10 minutes). 10 Après la moitié de l'addition, on a observé la formation d'un précipité. Après 3h30 d'agitation à température ambiante, on a contrôlé la réaction par CCM (élution : pentane-acétate d'éthyle, 70:30). Le phosphoramidite formé étant très réactif, il ne subit pas le traitement classiquement utilisé. On a concentré le brut de moitié. La colonne de silice (assez courte) a été montée avec un mélange pentane-TEA (0,5%) pour neutraliser 15 la silice, puis rincée au pentane pur. Après dépôt rapide du brut, le produit a été élué avec un mélange pentane-acétate d'éthyle (85:15) en poussant avec de l'argon pour accélérer la migration, afin de limiter au maximum le contact du produit avec la silice. Après concentration, on a obtenu 190 mg (56%) d'une huile. On a placé le produit sous vide pendant 12 heures puis on l'a conservé à -20°C.

20 Avant utilisation de ce produit pour la synthèse des ODN modifiés, il est préférable de vérifier la présence éventuelle de produits de dégradation par une RMN du phosphore et d'effectuer une purification rapide du produit si cela s'avère nécessaire.

RMN ^{31}P (CD_3CN) : 148,25 (P).

25

Exemple 2 : Synthèse d'un oligonucléotide 22mer 3'Fc-C7-NH₂ 7

La séquence de l'ODN 7 est :

3'NH₂-C7-Fc-TGG AAT ACT CAG GTT CCT TAT G 5'

On a introduit 17 mg de support (2-diméthoxytrityloxymethyl-6-30 fluorenylmethoxycarbonylamino-hexane-1-succinoyl)-long chain alkylamino-CPG 1000)

fonctionnalisé à 59 $\mu\text{mol/g}$ (Glen Research, Sterling US) dans une colonne de synthèse (Applied Biosystems, Courtaboeuf, France). On a mis en solution 100 mg de 6 (0.124 mmol) dans 1,24 mL d'acétonitrile anhydre (AB, France). On a utilisé la solution de 6 en position 5 d'un synthétiseur AB 394, suivant le même protocole opératoire que pour les 5 phosphoramidites commerciaux (A, C, G, T). On a effectué la synthèse de l'oligonucléotide 7 avec le programme standard 1 μM dont l'étape de couplage des phosphoramidites a été modifiée comme suit : deux prélèvements de 3,5 s de la solution de phosphoramidite (au lieu d'un prélèvement comme dans le programme standard) intercalés par une pose de 15 s et suivis d'une pose de 25 s. Le rendement global de 10 couplage par cycle a été de 97.5%. Après traitement de la CPG à l'ammoniaque aqueuse 30% (55°C pendant 16 h), on a concentré le surnageant au Speed Vac. On a repris le culot dans 1mL H₂O et on a purifié 7 sur colonne préparative (Merck Lichrospher RP18E, 12 μ , 100Å, 300x7.5).

On a concentré les fractions au rotavapor puis on les a coévaporées 4 fois par 15 H₂O avant lyophilisation dans un eppendorf. On a obtenu 15 DO (unités d'absorbance à 260 nm) de produit pur.

La pureté du produit a été vérifiée par analyse HPLC effectuée sur une colonne Waters Deltapak C₁₈ 5 μ 300Å (3,9x150 mm). La figure 1 donne le chromatogramme obtenu à 260 nm.

20

Spectrométrie de masse (MALDI-TOF), Voyager DE (Perseptive Biosystem) :
masse théorique m/z : 7352.9 , masse observée m/z : 7338.3.

REVENDICATIONS

1. Métallocène bifonctionnalisé de formule générale (I) :

5

dans laquelle

- Me représente un métal de transition, de préférence choisi parmi Fe, Ru et Os,
- Y et Z, identiques, sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$, ou bien

10 - Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$,

- n est un nombre entier compris entre 3 et 6,

- p est un nombre entier compris entre 1 et 4,

- q est un nombre entier compris entre 0 et 2

- r est un nombre entier compris entre 0 et 2,

15 - s est un nombre entier compris entre 2 et 5,

- t est un nombre entier compris entre 3 et 6,

- R et R' représentent des atomes d'hydrogène ou sont des groupements protecteurs utilisés dans la synthèse des oligonucléotides et des peptides et sont tels que définis ci-après :

20 (i) lorsque Z et Y sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$, R est un groupement susceptible de laisser un groupement hydroxyle libre après déprotection, de préférence un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle ou le trifluoroacétyle, et R' est un groupement phosphoré susceptible de réagir avec un

25 groupement hydroxyle libre, de préférence un groupement phosphodiester, phosphoramidite ou H-phosphonate et

(ii) lorsque Y est $-(CH_2)_s-NH-$ et Z est $-(CH_2)_t-COO-$, R représente un groupement protecteur des amines, de préférence le 9-fluorényloxycarbonyle, le *tert*-butoxycarbonyle ou le benzyloxycarbonyle, et R' représente un atome d'hydrogène.

5 2. Métallocène selon la revendication 1, caractérisé en ce que Me est le fer.

3. Métallocène selon l'une des revendications 1 ou 2, caractérisé en ce que Y et Z sont choisis parmi $-(CH_2)_n-O-$, $-(CH_2)-O-[(CH_2)_2-O]_p-$ et $-(CH_2)_q-CONH-(CH_2)_r-O-$.

10 4. Métallocène selon l'une des revendications 1 à 3, caractérisé en ce que Y et Z sont chacun $-(CH_2)_n-O-$, n étant égal à 3.

5. Métallocène selon l'une des revendications 1 à 3, caractérisé en ce que Y et Z sont chacun $-(CH_2)-O-[(CH_2)_2-O]_p-$, p étant égal à 2.

15 6. Métallocène selon l'une des revendications 1 ou 2, caractérisé en ce que Y est $-(CH_2)_s-NH-$, Z est $-(CH_2)_t-COO-$.

7. Métallocène selon la revendication 6, caractérisé en ce que s est égal à 3 et t est égal à 4.

20 8. Procédé de préparation d'un métallocène de formule (I) selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il comprend les étapes suivantes :

25 - une étape de protection d'un des groupements hydroxyle d'un composé de formule générale (II) :

dans laquelle Y' et Z', identiques, sont choisis parmi $-(CH_2)_n-$, $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$ et $-(CH_2)_q-CONH-(CH_2)_r-$, n, p, q et r étant tels que définis dans les revendications précédentes,

- 5 par fixation d'un groupement susceptible de laisser un groupement hydroxyle libre après déprotection, de préférence choisi parmi un groupement photolabile, le monométhoxytrityle, le diméthoxytrityle, le *tert*-butyldiméthylsilyle, l'acétyle et le trifluoroacétyle, et
 - une étape de condensation, sur l'autre groupement hydroxyle laissé libre,
- 10 d'un groupement phosphoré susceptible de réagir avec un groupement hydroxyle libre, de préférence choisi parmi les groupements phosphodiester, phosphoramidite et H-phosphonate.

9. Procédé de préparation d'un métallocène de formule (I) selon l'une des

- 15 revendications 6 ou 7, caractérisé en ce qu'il comprend les étapes suivantes :
 - une étape de protection du groupement NH₂ d'un composé de formule générale (III) :

- 20 dans laquelle
 - Me est tel que défini précédemment,
 - Y'' est $-(CH_2)_s-$ et
 - Z'' est $-(CH_2)_t-$,

- s et t étant tels que définis précédemment,
par fixation d'un groupement susceptible de laisser une fonction amine libre après déprotection, de préférence choisi parmi le 9-fluorényloxycarbonyle, le *tert*-butoxycarbonyle et le benzyloxycarbonyle.

5

10. Bis(hydroxy)métallocène de formule générale (II) :

10 dans laquelle

- Me est un métal de transition, de préférence choisi parmi Fe, Ru et Os,
- Y' et Z', identiques, sont choisis parmi $-(CH_2)_n-$, $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$ et $-(CH_2)_q-COOH-(CH_2)_r-$,
- n est un nombre entier compris entre 3 et 6,

15 - p est un nombre entier compris entre 1 et 3,
 - q est un nombre entier compris entre 0 et 2 et
 - r est un nombre entier compris entre 0 et 2,

11. Bis(hydroxy)métallocène selon la revendication 10, caractérisé en ce que Me
20 est le fer.

12. Bis(hydroxy)métallocène selon l'une des revendications 10 ou 11, caractérisé
en ce que Y' et Z' sont chacun $-(CH_2)_n-$, n étant égal à 3.

25 13. Bis(hydroxy)métallocène selon l'une des revendications 10 ou 11, caractérisé
en ce que Y' et Z' sont chacun $-(CH_2)-O-[(CH_2)_2-O]_{p-1}-(CH_2)_2-$, p étant égal à 1.

14. Procédé de marquage d'un oligonucléotide par un métallocène bifonctionnalisé de formule (I) selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il comprend la substitution d'un ou plusieurs synthons de nucléotides par un ou plusieurs desdits métallocènes de formule (I) dans laquelle R et R' sont des groupements protecteurs utilisés dans la synthèse des oligonucléotides, dans le cycle de synthèse dudit oligonucléotide.

15. Procédé selon la revendication 14, caractérisé en ce que la substitution est effectuée en positions 3' ou 5' en remplacement du ou des premiers ou derniers nucléotides, respectivement.

16. Procédé de marquage d'un peptide par un métallocène bifonctionnalisé de formule (I) selon l'une des revendications 6 ou 7, caractérisé en ce qu'il comprend la substitution d'un ou plusieurs synthons d'acides aminés par un ou plusieurs desdits métallocènes de formule (I) dans laquelle R représente un groupement protecteur des amines et R' représente un atome d'hydrogène, dans le cycle de synthèse dudit peptide.

17. Procédé selon la revendication 16, caractérisé en ce que la substitution est effectuée aux extrémités C-terminale ou N-terminale en remplacement des premiers ou derniers acides aminés, respectivement.

18. Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce qu'au moins deux substitutions consécutives sont effectuées.

19. Oligonucléotides marqués caractérisés en ce qu'ils sont susceptibles d'être obtenus par le procédé de marquage selon l'une des revendications 14 ou 15.

20. Oligonucléotides marqués caractérisés en ce qu'au moins l'un des nucléosides le constituant est substitué par un bis(hydroxy)métallocène de formule générale (II).

21. Oligonucléotides marqués selon l'une des revendications 19 ou 20, caractérisés en ce qu'ils comportent au moins bis(hydroxy)métallocène de formule générale (II) en position 3' ou 5'.

5 22. Peptides marqués caractérisés en ce qu'ils sont susceptibles d'être obtenus par le procédé selon l'une quelconque des revendications 16 à 18.

23. Peptides marqués caractérisés en ce que au moins l'un des peptides les constituant est substitué par un métallocène bifonctionnalisé de formule (III).

10 24. Peptides selon l'une des revendications 22 ou 23, caractérisés en ce qu'ils comportent au moins un métallocène bifonctionnalisé de formule (III) aux extrémités C-terminale ou N-terminale.

15 25. Support de synthèse d'oligonucléotides, caractérisé en ce que au moins un métallocène de formule (I) est greffé sur ledit support par réaction covalente de l'une des ses extrémités fonctionnalisées.

1er dépôt

1/1

FIGURE 1

reçue le 06/03/02

BREVET D'INVENTION

Désignation de l'inventeur

Vos références pour ce dossier	IT/SC/B05B3898FR
N°D'ENREGISTREMENT NATIONAL	07-01868
TITRE DE L'INVENTION	
	Métallocènes bifonctionnalisés, procédé d'obtention, utilisation pour le marquage de molécules biologiques
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	Dominique GUERRE

DESIGNE(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	CHAIX-BAUVAIS
Prénoms	Carole
Rue	Chemin de Tholomé
Code postal et ville	69970 CHAPONNAY
Société d'appartenance	
Inventeur 2	
Nom	MOUSTROU
Prénoms	Corinne
Rue	8 Square des Frères Ambrogianni Bât. B, Eastern Prado
Code postal et ville	13008 MARSEILLE
Société d'appartenance	
Inventeur 3	
Nom	NAVARRO
Prénoms	Aude-Emmanuelle
Rue	26 rue Pierre Laurent
Code postal et ville	13008 MARSEILLE
Société d'appartenance	
Inventeur 4	
Nom	BRISSET
Prénoms	Hugues
Rue	179 allée Sainte-Lucie Le plan de la Mer
Code postal et ville	83270 SAINT CYR SUR MER
Société d'appartenance	

reçue le 06/03/02

Inventeur 5	
Nom	GARNIER
Prénoms	Francis
Rue	17 Villa Rémy
Code postal et ville	94500 CHAMPIGNY SUR MARNE
Société d'appartenance	
Inventeur 6	
Nom	MANDRAND
Prénoms	Bernard
Rue	21 rue de la Doua
Code postal et ville	69100 VILLEURBANNE
Société d'appartenance	
Inventeur 7	
Nom	SPINELLI
Prénoms	Nicolas
Rue	Résidence Louise Labe, appt 206 11 rue Montesquieu
Code postal et ville	69007 LYON
Société d'appartenance	

**DATE ET SIGNATURE(S) DU (DES)
DEMANDEUR(S) OU DU MANDATAIRE**

Signé par:	Dominique GUERRE
<p style="text-align: center;">Dominique GUERRE CPI 921104</p>	
Date	14 fév. 2002

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.