

Building your own CGN with Linux

Maximilian Wilhelm

DENOG12

■ Agenda

- Background
- Why?
- How?
- The struggles
- The solution
- Questions

Background

- Mid-size German university
 - 20k students
 - 2.5k employees
 - Some guests
 - Main campus+ 3.5 remote sites
 - Part of eduroam

© University Paderborn, Johannes Pauly

■ The WIFI challenge

- 10k users (peak, pre-covid)
- 7 IPv4 (public) prefixes
- VLAN mapping magic in radius
 - Based on first character of username
 - Has to be updated each semester
- We're out of prefixes to add
- 4Gb/s WIFI traffic

■ The Plan

- Add IPv6
- Use one large private IPv4 prefix
- Get rid of VLAN-mapping magic
- NAT external IPv4 traffic

Constraints

- Two groups of users
 - Internal (student, employee, local guest)
 - External (roamed user from remote org)
- Distinction required for some services
 - Intranet
 - Licensed stuff (library, etc.)
 - Has to be represented in IP prefixes

■ Network topology

- Classic campus design
 - Border
 - Layer 3 core
 - Distribution
 - Access
 - WIFI with CAPWAP to DC

■ Plan A – use existing boxes

- Simple, border routers should NAT
 - It's shiny ASR 9ks, they can do it!
- Turns out, they can't
 - ASR 9k need Virtualized Services Module for NAT
 - X Doesn't fit into our ASR 9001

■ Plan B – buy

- 2x ASR 1001-HX
 - 2RU
 - IOS-XE
 - 4x 10G
 - 4 million NAT sessions
 - 2x 750W PSU
- ~150 k€

■ Plan C – build

- Get two commodity servers
- Shove decent NICs into it
- Install (Debian) Linux
- Configure bird
- Configure nftables
- Profit

■ Sizing – CPU

- One or two CPUs?
 - Avoid NUMA*
- How many cores?
 - Distribute packet processing load, utilise NIC queues
 - 1 Core routes 3Gb/s
- Intel oder AMD?
 - It's gonna be EPYC
- → Single socket EPYC system

■ Sizing – RAM

- Last peak: 10k users
 - Assume 200 sessions per users
 - → Design for 5m sessions
- One session roughly consists of two 5-tuple + x
 - 5-tuple <= 16B
 - Let's asume 48B / session
- 5m * 48B / 10^20 = 228MB

■ Sizing – Network

- NIC should have
 - Large Buffers
 - Decent number of queues
 - 2x 10/25G ports
- Not Broadcom & Intel
- → Mellanox ConnectX 4

Hardware configuration

- 2x Dell R6515
 - 1RU
 - 1x EPYC 7542, 32C
 - 4x 10/25G Mellanox ConnectX 4
 - 32GB RAM
 - >1 billion sessions*
 - 2x 550W PSU
- ~10 k€

How to integrate CGN into network?

- Active-Active setup would be nice
 - BGP + Anycast
 - Requires ECMP
- Policy
 - Internal traffic should be routed regulary
 - Traffic to external destinations should be NATed
 - → Will need policy-based routing (PBR)

■ Option 1 – DC

- Nexus 7010
 - NX-OS
 - PBR via route-map
- PBR on SVIs to WIFI clients
 - set next-hop to CGN-IP
- Only useful for DC networks

■ Option B – Border

- ASR 9001
 - 4x SFP+ 8x XFP
 - IOS-XR
 - Supports PBR via VRF
- Router ports expensive
- Config complicated

■ Option C – Core

- Catalyst 9500-48Y4C
 - IOS-XE
 - PBR via route-map
- PBR on interfaces do DC
 - Easily extendible
- Ports available, cheap(er) and 25G possible

■ Core it is

- Straight forward setup
 - eBGP Core ↔ CGN nodes
 - Anycast for CGN-srv-IP
 - Route-map with
 - ACL to catch traffic
 - set next-hop recursive
- So you would think...

■ PBR on IOS-XE on Catalyst 9500

- IOS-XE 16.9.4
 - Recommended release when I started
 - Configurable in route-map
 - x Route-map not applied to interface
 - x Log entry that something isn't supported
- → Upgrade to IOS-XE 16.12.3e

■ PBR on IOS-XE on Catalyst 9500

- IOS-XE 16.12.3e
 - Configurable in route-map
 - Applied to interface
 - Seems to work (with one NH)
- 2nd box added, 1st box drained
 - x 1st drained box get's ALL traffic
- TAC says
 - » "Not supported on Cat9500"
 - x "Not on the BU roadmap either"

■ The solution

- Two sub-interfaces
 - Internal / external
- BGP in GRT
- VRF cgn
 - Static default route to CGN-srv-IP in GRT
- PBR
 - set vrf cgn

■ NAT – Nftables

```
# NATs are good
table ip nat {
 chain postrouting {
    type nat hook postrouting priority 100; policy accept;
    ip saddr 100.64.0.0/12 snat to 192.0.2.0-192.0.2.15
   persistent
    ip saddr 100.127.0.0/16 snat to 203.0.113.240-
    203.0.113.247 persistent
```


Conntrackd

- User-space daemon for conntrack table sync
- Allows sync via unicast or multicast
- Setup
 - Unicast
 - NOTRACK mode
 - Internal/external cache disabled
 - TCPWindowTracking Off
 - ExpectationSync On

■ The CGN box

- Debian stable
- **bird** for BGP
 - Plus drain switch
- nftables for NAT (three rules!)
- conntrackd for stateful failover
- Bloody details: BLOG

■ Bird

```
root@cgn-o2c-01[~]# birdc show route
0.0.0.0/0
                  via 198.51.100.28 on twe1-2.3101 [cr cua 01 e 2020-09-15] * (100) [AS65049i]
                  via 198.51.100.40 on twe2-1.3101 [cr n2a 01 e 2020-09-15] (100) [AS65049i]
                  via 198.51.100.24 on twe1-1.3101 [cr o2g 01 e 2020-09-15] (100) [AS65049i]
100.64.0.0/10
                  via 198.51.100.17 on twe1-2 [cr cua 01 i 2020-09-15] * (100) [AS65049i]
                  via 198.51.100.33 on twe2-1 [cr n2a 01 i 2020-09-15] (100) [AS65049i]
                  via 198.51.100.9 on twe1-1 [cr o2g 01 i 2020-09-15] (100) [AS65049i]
# NAT Pools für interne User
192.0.2.0/28
                  unreachable [nat pools 2020-09-15] * (200)
192.0.2.32/28 unreachable [nat pools 2020-09-15] * (200)
# NAT Pools für externe User
203.0.113.240/29
                  unreachable [nat pools 2020-09-15] * (200)
203.0.113.248/29 unreachable [nat pools 2020-09-15] * (200)
# Host-IP
198.51.100.252/32 dev lo [nat srv ip 2020-09-15] * (240)
# Anycast CGN Service-IP
198.51.100.254/32 dev anycast srv [nat srv ip 2020-09-15] * (240)
```


■ Thank you

• Questions?