JEDI Polarimetry

Paul Maanen
JEDI Collaboration | Physics Institute III B, RWTH Aachen University
Friday Seminar July 1, 2016

Outline

Introduction

Detector concept

Simulation studies

R&D Beam time @ COSY: First results

Summary & Outlook

Introduction

Motivation

Where is the Antimatter in our Universe?

- One precondition for Baryogenesis: *CP*
- Standard Model prediction: $\frac{n_B n_{\bar{B}}}{n_c} \approx 10^{-18}$
- WMAP and COBE (2012): $\frac{n_B n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10}$
- \Rightarrow Not enough \mathcal{CP} in Standard Modell

$$\mathcal{H} = -d\frac{\vec{S}}{S} \cdot \vec{E}$$
 $\mathcal{P}: \mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$
 $\mathcal{T}: \mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$
 $d = EDM$

- \Rightarrow Electric Dipole Moments violate CP (assuming CPT)
- ⇒Probe into the physics of the early universe

Charged particle EDM

- Most EDM searches measure neutron EDM. Current limit $\approx 10^{-25}e$ cm
- No limits for charged hadrons exist.
- Hadron EDM experiments have potentially better sensitivity.
 - Better lifetime
 - More particles
- To disentangle EDM sources, more than one measurement needed!

EDM search in storage rings

• All EDM experiments measure interaction between \vec{d} and electric field \vec{E}

$$-rac{dec{\mathcal{S}}}{dt}\propto dec{\mathcal{E}} imesec{\mathcal{S}}$$

 EDM search in storage rings: Let EDM interact with fields, wait for polarization change:

Current candidate method for EDM search implicates a linear buildup of

polarization with time at $\Delta P = \mathcal{O}(10^{-6}/1000s)$

Nuclear scattering polarimetry

- Nuclear scattering cross section for scattering of polarized particles: $\sigma(\theta, \phi) = \sigma_0(\theta) \cdot (1 + P_y A_y(\theta) \cdot \cos(\phi))$
- Measure left-right asymmetries in cross section: $P_y = \frac{1}{A_y} \frac{L-R}{L+R}$
- May need to also include up, down to account for tensor polarization
- Currently using elastic deuteron-carbon scattering

Design goals for an EDM polarimeter

- Design goals for polarimeter:
 - Large FoM
 - Minimal influence on beam
 - High sensitivity to systematic effects
 - Good long term stability and reproducibility

Detector concept

Target choice

200 MeV: T. Kawabata et al. Phys. Rev. C 70, 034318 270 MeV: Y. Satou et al. Phys. Let. B 549, 307

- Carbon was chosen as working choice
- Large analysing power, high elastic cross section

15

• FOM for Protons also concentrated in the forward region

20

25

30

Θ [deg]

Target concept

Detector concept

Readout concept

Simulation studies

HCal Candidate Materials: LYSO/Plastic Scintillator

	LYSO	Plastic
Density [g/cm3]	7.3	1.05
Decay [ns]	40	2.4
L. Y. % NaI(TI)	75	25
S. Peak [nm]	420	420
N ref.	1.82	1.58
Melt. [řC]	2050	75
Hygrosc.	No	No
Radioact	Yes	No
Cheap	No	Yes

Signal and Background

- Elastically scattered deuterons retain almost complete beam energy.
- Break-up has almost no analyzing power, so discard it
- Protons and neutrons from break-up are energetically well separated
 - ⇒Complete stop of particles provides good signal separation
- No reliable model for inelastic reactions available
 - Qualitative experiments: Inelastic reactions carry some analysing power, so maybe keep these

LYSO module

• Chosen detector size of $3 \times 3 \times 10 \, \text{cm}^3$ as starting value

Plastic scintillators

- Use absorber to suppress proton background and reduce length of plastic detector.
- Arbitrarily chosen 50 MeV as working point for calorimeter element
 - Tune thickness of absorber so that $E_{entry} = 100 \, \text{MeV}$ for every beam energy

Simulation setup

Geometry: Single detector element

• Generated 100k events each at $T_d = 270 \, \text{MeV}, 5^\circ < \Theta < 20^\circ, \, 0^\circ < \phi < 360^\circ$

- Signal: ${}^{12}C(d,d){}^{12}C$

- Background: ${}^{12}\dot{C}(d,pn){}^{12}C$

•
$$\mathcal{FOM} \propto \sigma_{eff} \times \langle A_y \rangle^2 = (\sigma_{el} \epsilon_{el} + \sigma_{bg} \epsilon_{bg}) \times \left(\frac{A_{y,el} \sigma_{el} \epsilon_{el} + \sigma_{bg} \epsilon_{bg} A_{y,bg}}{(\sigma_{el} \epsilon_{el} + \sigma_{bg} \epsilon_{bg})} \right)^2$$

Detector response - lyso

Edep in lyso

Breakup in detector element is main cause of efficiency loss.

Detection efficiencies (lyso)

dcbreakup detection efficiency in lyso

relative fom in lyso

Detector response - plastic

Detection efficiencies (plastic)

dcelastic detection efficiency in plastic

relative fom in plastic

dcbreakup detection efficiency in plastic

Simulation Results

- Main cause of efficiency loss is breakup in detector
- Maximum relative FOM:

	0%	20%
Plastic	15.5	14.5
LYSO	17	12

- LYSO and plastic scintillators provide comparable performance
- Plastic scintillator performance exhibits no strong dependence on energy resolution

R&D Beam time @ COSY: First results

Beam time Spring 2016

- External beam at COSY in Jülich
- LYSO crystals from two different manufacturers
- PMT and Silicon Photomultiplier (SiPM).
- Deuteron beam @ 100MeV, 150MeV, 200MeV, 235MeV and 270MeV

Struck 14 bit, 250 MS/s Flash ADC.

Measurement setup

Measurement setup (cont'd)

Energy calibration

Calibration of LYSO Modules

Energy resolution

Resolution of LYSO Modules

Efficiency

Deuteron Reconstruction Efficiency of LYSO Modules

Measurement Results

- 5 LYSO modules successfully commissioned, PMT and SiPM readout tested
- Calibration curve exhibits considerable nonlinearity
- Energy resolution between 1% and 4%
- Deuteron reconstruction efficiency above 70%

Summary & Outlook

Summary

- We have a candidate layout for JEDI polarimeter
- Simulations suggest promising performance
- A deuteron beam with five different energies up to 270MeV was used to examine the prototype LYSO modules
- The resolution of the LYSO modules was better than 3%
- A deuteron reconstruction efficiency over 65% have been achieved in the whole energy spectrum
- The SiPM readout promises good results without the need for an active amplification circuit and high voltage

Outlook

- Theoretical calculations for signal and background cross sections and analyzing powers are under progress and will be included in simulation.
- Next beamtime will include a greater number of crystals and test polarization measurements

