# Puncte de echilibru. Stabilitate

In cadrul acestui laborator sunt prezentate instructiunile necesare studiului calitativ al solutiilor in jurul punctelor de echilibru in cazul ecuatiilor scalare autonome si a sistemelor planare de ecuatii autonome.

# Ecuatii scalare autonome

Ecuatiile scalare autonome sunt de forma:

$$x' = f(x)$$

Solutiile constante  $x(t) \equiv x^*$  ale ecuatiei diferentiale autonome se numesc **solutii de echilibru**, valoarea  $x^*$  se numeste **punct de echilibru**. Punctele de echilibru sunt solutiile reale ale ecuatiei:

$$f(x) = 0$$

Fie ecuatia diferentiala autonoma:

$$x' = x\left(1 - x^2\right)$$

In [1]:

```
reset()
t=var('t')
x=function('x')(t)
```

In [2]:

```
s=var('s')
f=function('f')(s)
f(s)=s*(1-s^2)
```

Punctele de echilibru se determina prin rezolvarea ecuatiei f(s) = 0

In [3]:

```
eqp=solve(f(s)==0,s)
eqp
```

Out[3]:

$$[s == -1, s == 0]$$

Pentru studiul stabilitatii punctelor de echilibru pot fi aplicate doua metode, fie se aplica Teorema stabilitatii in prima aproximatie sau metoda grafica (analiza campului de directii).

# Teorema stabilitatii in prima aproximatie

Fie  $x^*$  un punct de echilibru al ecuatiei diferentiale autonome:

$$x' = f(x)$$

unde f este de clasa  $C^1$ . Atunci:

- 1.  $\operatorname{Daca} f'(x^*) < 0$  atunci  $x^*$  este local asimptotic stabil;
- 2. Daca  $f'(x^*) > 0$  atunci  $x^*$  este instabil.

# Prin aplicarea Teoremei stabilitatii in prima aproximatie

Punctele de echilibru ale ecuatiei autonome date sunt stocate in variabila de tip lista eqp

```
In [4]:
eqp[0]
Out[4]:
s == -1
In [5]:
eqp[0].rhs()
Out[5]:
-1
In [6]:
x1=eqp[0].rhs()
Out[6]:
-1
In [7]:
x2=eqp[1].rhs()
Out[7]:
In [8]:
x3=eqp[2].rhs()
х3
Out[8]:
```

Pentru a aplica Teorema stabilitatii in prima aproximatie trebuie sa obtinem valoarea f'(-1)

In [9]:

diff(f,s)(x1)

Out[9]:

-2

Deoarece  $f'(x_1) = f'(-1) = -2 < 0$  atunci punctul de echilibru  $x_1 = -1$  este local asimptotic stabil.

Vom proceda similar pentru celelalte doua puncte de echilibru  $x_2 = 1$  and  $x_3 = 0$ :

In [10]:

```
diff(f,s)(x2)
```

Out[10]:

-2

Deoarece  $f'(x_2) = f'(1) = -2 < 0$  atunci punctul de echilibru  $x_2 = 1$  este local asimptotic stabil.

In [11]:

Out[11]:

1

Deci,  $f'(x_3) = f'(0) = 1 > 0$  ceea ce implica faptul ca punctul de echilibru  $x_3 = 0$  este instabil.

# Metoda grafica (analiza campului de directii)

In cazul ecuatiilor scalare autonome, Sagemath nu are o comandă pentru a genera portretul fazic, stabilitatea soluțiilor de echilibru se poate obtine prin analiza campului de directii si reprezentarea grafica a solutiilor reprezentative.

In general, pentru ecuatia diferentiala

$$x' = f(t, x)$$

campul de directii poate fi obtinut prin comanda

 $plot\_slope\_field(f(t,x),(t,a,b),(x,c,d),headaxislength=n, headlength=m,color='color\_name')$ 

In cazul ecuatiilor diferentiale autonome variabila independenta t nu apare in mod explicit in expresia ecuatiei x' = f(x)

astfel, campul de directii se obtine utilizand comanda in forma:

plot slope field(f(x),(t,a,b),(x,c,d),headaxislength=n, headlength=m,color='color name')

```
In [12]:
```

```
sf=plot\_slope\_field(f(s),(t,-5,5),(s,-3,3),headaxislength=3, headlength=4,color='red')\\ sf
```

## Out[12]:



Pentru a vizualiza comportamentul pe termen lung al solutiilor este necesara reprezentarea grafica a unor solutii reprezentative. Deoarece in general solutiile ecuatiilor autonome nu pot fi obtinute in mod explicit este necesara utilizarea unei metode numerice pentru reprezentarea grafica a solutiilor.

Comanda desolve\_rk4() rezolva numeric problema Cauchy atasata ecuatiei prin utilizarea metodei numerice Runge-Kutta si returneaza fie o lista a valorilor solutiei pe o anumita diviziune a intervalului considerat sau graficul solutiei pe acest interval.

#### Structura comenzii este:

desolve\_rk4(de, dvar, ics=None, ivar=None, end\_points=None, step=0.1, output='list')

- Varianta 1 (functie de doua variabile)
  - de membrul drept al ecuatiei, adica functia f(x, y) din ecuatia y' = f(x, y)
  - dvar variabila dependenta (functia necunoscuta)
- Varianta 2 (ecuatia diferentiala simbolica)
  - de ecuatia diferentiala incluzand termenul diff(y,x)
  - dvar variabila dependenta (functia necunoscuta)

- Alti parametrii:
  - ivar trebuie specificat in cazul in care ecuatia este autonoma sau apar mai multi parametrii in ecuatia diferentiala
  - ics conditia initiala de forma [x0,y0]
  - end\_points capetele intervalului

[5.0, 0.9999223524467028]]

- daca end\_points este a sau [a], integrarea se face pe intervalul min(ics[0],a) si max(ics[0],a)
- o daca end points este None, este utilizat implicit end points=ics[0]+10
- daca end points este [a,b] integrarea se face pe intervalul min(ics[0], a) and max(ics[0], b)
- *step* (optional, default:0.1) marimea pasului metodei (numar pozitiv)
- output (optional, default: 'list') este una din 'list', 'plot', 'slope\_field' (graficul contine solutia si campul de directii)

```
In [13]:
deq=diff(x,t)==f(x)
deq
Out[13]:
diff(x(t), t) == -(x(t)^2 - 1)*x(t)
In [14]:
desolve rk4(deq, x, [0,0.5], step=0.5, end points= [-5,5], output='list')
Out[14]:
[[-5.0, 0.003903791065104986],
[-4.5, 0.006433631876193118],
[-4.0, 0.01060269171808395],
 [-3.5, 0.01747228389973102],
 [-3.0, 0.02878800682685936],
 [-2.5, 0.04741101298323355],
 [-2.0, 0.07798679679354956],
 [-1.5, 0.1278641214708751],
 [-1.0, 0.2078424109397569],
 [-0.5, 0.3305423618917383],
 [0, 0.500000000000000],
 [0.5, 0.689416022585013],
 [1.0, 0.8431442383331245],
 [1.5, 0.9322733589084158],
 [2.0, 0.9730785242120609],
 [2.5, 0.9896725418081366],
 [3.0, 0.9960935743967014],
 [3.5, 0.998530305589941],
 [4.0, 0.9994481887463996],
 [4.5, 0.9997929755801175],
```

desolve\_rk4(deq, x, [0,0.5], step=0.1, end\_points= [-5,5], output='plot')

Out[15]:



In [16]:

desolve\_rk4(deq, x, [0,0.5], step=0.1, end\_points= [-5,5], output='slope\_field',color='red'

Out[16]:



In [17]:

desolve\_rk4(deq, x, [0,1.5], step=0.01, end\_points= [-5,5], output='slope\_field',color='red

Out[17]:



g=desolve\_rk4(deq, x, [0,1.5], step=0.01, end\_points= [-5,5], output='plot',color='red') g.show(ymin=-5,ymax=5)



In cazul ecuatiei considerate avem punctele de echilibru  $x_1 = -1$ ,  $x_2 = 1$  and  $x_3 = 0$ , solutiile reprezentative sunt solutiile ale caror conditii initiale x(0) < -1, cele cu conditii initiale -1 < x(0) < 0, cele cu 0 < x(0) < 1 si cele cu x(0) > 1. Pentru a vizualiza si solutiile de echilibru trebuiesc utilizate si conditiile initiale x(0) = -1, x(0) = 0 si x(0) = 1 corespunzatoare valorilor punctelor de echilibru:

```
sf=plot_slope_field(f(s),(t,-5,5),(s,-3,3),headaxislength=3, headlength=4,color='red')
g1=desolve_rk4(deq, x, [0,-1.5], step=0.01, end_points= [-5,5], output='plot',color='blue')
g2=desolve_rk4(deq, x, [0,-1], step=0.01, end_points= [-5,5], output='plot',color='black')
g3=desolve_rk4(deq, x, [0,-0.5], step=0.01, end_points= [-5,5], output='plot',color='blue')
g4=desolve_rk4(deq, x, [0,0], step=0.01, end_points= [-5,5], output='plot',color='black')
g5=desolve_rk4(deq, x, [0,0.5], step=0.01, end_points= [-5,5], output='plot',color='blue')
g6=desolve_rk4(deq, x, [0,1], step=0.01, end_points= [-5,5], output='plot',color='black')
g7=desolve_rk4(deq, x, [0,1.5], step=0.01, end_points= [-5,5], output='plot',color='blue')
g=sf+g1+g2+g3+g4+g5+g6+g7
g.show(ymin=-3,ymax=3)
```



# Sisteme planare. Puncte de echilibru. Stabilitate

Printr-un sistem planar de ecuatii diferentiale autonome intelegem un sistem de forma:

$$\begin{cases} x' = f_1(x, y) \\ y' = f_2(x, y) \end{cases}$$

Solutiile constante ale sistemului planar

$$\begin{cases} x(t) \equiv & x^* \\ y(t) \equiv & y^* \end{cases}$$

se numesc solutii de echilibru, punctul  $X^*(x^*, y^*)$  se numeste punct de echilibru.

Punctele de echilibru  $X^*(x^*, y^*)$  sunt solutiile reale ale sistemului algebric:

$$\begin{cases} f_1(x, y) = 0 \\ f_2(x, y) = 0 \end{cases}$$

# Cazul sistemelor liniare

In cazul sistemelor liniare:

$$\begin{cases} x' = a_{11}x + a_{12}y \\ y' = a_{21}x + a_{22}y \end{cases}$$

sau in forma vectoriala

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

unde

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

originea (0,0) este un punct de echilibru.

#### Criteriul de stabilitate in cazul sistemelor liniare

Punctul de echilibru (0,0) este:

- 1. local stabil  $\iff$  Re  $\lambda \le 0$ ,  $\forall \lambda$  valoare proprie a matricii A, egalitatea cu 0 avand loc pentru valori proprii simple;
- 2. asimptotic stabil  $\iff$  Re  $\lambda$  < 0,  $\forall \lambda$  valoare proprie a matricii A;
- 3. instabil  $\iff$  nu are loc 1.

#### Clasificarea punctului de echilibru (0,0):

Spunem ca punctul de echilibru (0,0) este:

- de tip **nod** daca  $\lambda_1, \lambda_2 \in \mathbb{R}$  si  $\lambda_1 \cdot \lambda_2 > 0$ ;
- de tip **sa** daca  $\lambda_1, \lambda_2 \in \mathbb{R}$  si  $\lambda_1 \cdot \lambda_2 < 0$ ;
- de tip focus daca  $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C}$ ,  $\alpha \neq 0$ ;
- de tip **centru** daca  $\lambda_{1,2} = \pm i\beta \in \mathbb{C}$ .

Fie sistemul liniar:

$$\begin{cases} x' = x + y \\ y' = x - y \end{cases}$$

In acest caz avem:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Valorile proprii ale matricii A pot fi determinate utilizand comanda eigenvalues

```
In [20]:
reset()
A=matrix([[1,1],[1,-1]])
A
Out[20]:
[ 1  1]
[ 1 -1]
In [21]:
A.eigenvalues()
Out[21]:
```

[-1.414213562373095?, 1.414213562373095?]

Sagemath avertizeaza faptul ca valorile proprii nu au fost determinate exact prin semnul ?, comanda returneaza o valoare aproximativa a acestora, dar pentru analiza stabilitatii acest lucru este suficient.

Astfel, pentru acest exemplu, punctul de echilibru (0,0) este instabil deoarece una dintre valorile proprii este pozitiva, 1.414... > 0, fiind de tip sa.

Daca dorim detereminarea exacta a valorilor proprii acest lucru se poate face prin determinarea radacinilor polinomului caracteristic al matricii *A*:

```
In [22]:
```

```
cp(x)=A.charpoly()
cp

Out[22]:
x |--> x^2 - 2

In [23]:
solve(cp==0,x)

Out[23]:
```

Pentru reprezentarea portretului fazic trebuie sa folosim comanda de rezolvare numerica *desolve\_system\_rk4* deoarece in general sistemele planare nu sunt rezolvabile.

Structura comenzii desolve\_system\_rk4 este:

[x == -sqrt(2), x == sqrt(2)]

desolve system rk4(des, vars, ics=None, ivar=None, end points=None, step=0.1)

## **INPUT**:

- des lista mebrilor drepti al ecuatiilor sistemului
- vars lista variabilelor dependende (functiile necunoscute)
- ivar (optional) trebuie specificat daca sistemul este autonom sau contine mai multi parametrii

- ics lista conditiilor initiale de forma [x0,y01,y02,y03,....]
- end points capetele intervalului
  - daca end\_points este a sau [a], integrarea se face pe intervalul min(ics[0],a) si max(ics[0],a)
  - daca end points este None, este utilizat implicit end points=ics[0]+10
  - daca end points este [a,b] integrarea se face pe intervalul min(ics[0], a) and max(ics[0], b)
- step (optional, default: 0.1) marimea pasului metodei (numar pozitiv)

#### **OUTPUT:**

Se returneaza o lista de forma  $[t_i, x(t_i), y(t_i)]$ .

Observatie. Comanda desolve system rk4 nu are ca si output reprezentarea grafica. Pentru reprezentare grafica trebuie utilizata in plus comanda list plot.

```
In [24]:
```

```
x,y,t=var('x,y,t')
f1(x,y)=x+y
f2(x,y)=x-y
```

```
In [25]:
```

```
desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,-1], ivar = t, end_points = [-1,1],
```

```
Out[25]:
[[-1.0, 2.178175582521938, -4.914760225614616],
[-0.9, 1.925422767612532, -4.252331374129021],
 [-0.8, 1.711242398200907, -3.675090485140899],
 [-0.7000000000000001, 1.531343747591895, -3.17147355560485],
 [-0.6000000000000001, 1.382122862773177, -2.73139150871942],
 [-0.5, 1.260590365556255, -2.346028077070541],
 [-0.4, 1.164311565637939, -2.007663184267604],
 [-0.3, 1.091357685852782, -1.709518286834819],
 [-0.2, 1.0402672225, -1.445620578055556],
 [-0.1, 1.010016666666667, -1.21068333333333],
 [0, 1, -1],
 [0.1, 1.010016666666667, -0.80935],
 [0.2, 1.0402672225, -0.6349138669444444],
 [0.3, 1.091357685852782, -0.4731970848707454],
 [0.4, 1.164311565637939, -0.3209599470082735],
 [0.5, 1.260590365556255, -0.1751526540419697],
 [0.6000000000000001, 1.382122862773177, -0.0328542168269349],
 [0.7000000000000001, 1.531343747591894, 0.1087860604210598],
 [0.8, 1.711242398200906, 0.2526056887390845],
 [0.9, 1.925422767612531, 0.4014858389039571],
 [1.0, 2.178175582521938, 0.5584090605707386]]
```

Se observa ca desolve\_system\_rk4 returneaza o lista de forma [t, x(t), y(t)] pentru  $t \in [a, b]$ , unde [a, b]este intervalul pe care se face integrarea, specificat prin optiunea end points.

Pentru a reprezenta orbita corespunzatoare solutiei ce satisface conditia initiala x(0) = x0, y(0) = y0 data prin optiunea  $[0, x_0, y_0]$  vom reprezenta punctele [x(t), y(t)] utilizand list plot cu optiunea plotioined=True.

Mai intai generam aceasta lista de valori extragand-o din lista returnata de desolve system rk4, apoi aplicam list\_plot.

```
In [26]:
```

```
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,-1], ivar = t, end_points = [-1,1] XY=[ [j,k] for i,j,k in P] XY
```

## Out[26]:

```
[[2.178175582521938, -4.914760225614616],
[1.925422767612532, -4.252331374129021],
[1.711242398200907, -3.675090485140899],
 [1.531343747591895, -3.17147355560485],
 [1.382122862773177, -2.73139150871942],
 [1.260590365556255, -2.346028077070541],
 [1.164311565637939, -2.007663184267604],
 [1.091357685852782, -1.709518286834819],
 [1.0402672225, -1.445620578055556],
 [1.010016666666667, -1.21068333333333],
 [1, -1],
 [1.010016666666667, -0.80935],
 [1.0402672225, -0.6349138669444444],
 [1.091357685852782, -0.4731970848707454],
 [1.164311565637939, -0.3209599470082735],
 [1.260590365556255, -0.1751526540419697],
 [1.382122862773177, -0.0328542168269349],
 [1.531343747591894, 0.1087860604210598],
 [1.711242398200906, 0.2526056887390845],
 [1.925422767612531, 0.4014858389039571],
 [2.178175582521938, 0.5584090605707386]]
```

# In [27]:

```
list_plot(XY,plotjoined=True, color='blue')
```

## Out[27]:



Daca dorim reprezentarea mai multor orbite trebuie generat graficul pentru fiecare orbita corespunzatoare

setului de conditii initiale ales, adica trebuiesc executati pasii anteriori pentru fiecare orbita. In plus, pentru a vizualiza sensul de parcurgere al acestora trebuie generat si campul de directii prin utilizarea comenzii plot\_vector\_field.

Pentru sistemul considerat sa reprezentam campul de directii si orbitele corespunzatoare punctelor (1,0), (2,0), (-1,0), (-2,0), (0,1), (0,2), (0,-1), (0,-2):

```
n=sqrt(f1(x,y)^2+f2(x,y)^2)
g=plot_vector_field([f1(x,y)/n,f2(x,y)/n],[x,-5,5],[y,-5,5],color='red',aspect_ratio=
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,0], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,2,0], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-1,0], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-2,0], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,0,1], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,0,2], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,0,-1], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,0,-2], ivar = t, end_points = [-5,5]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
g.show(xmin=-5,xmax=5,ymin=-5,ymax=5)
```



## Cazul sistemelor neliniare

In cazul sistemelor neliniare de forma:

$$\begin{cases} x' = f_1(x, y) \\ y' = f_2(x, y) \end{cases}$$

mai intai determinam punctele de echilibru  $X^*(x^*,y^*)$  prin determinarea solutiilor reale ale sistemul algebric:

$$\begin{cases} f_1(x, y) = 0 \\ f_2(x, y) = 0 \end{cases}$$

Stabilitatea punctului de echilibru se obtine prin aplicarea Teoremei stabilitatii in prima aproximatie.

## Teorema stabilitatii in prima aproximatie

Fie  $X^*(x^*, y^*)$  un punct de echilibru al sistemului neliniar.

- Daca  $\operatorname{Re}(\lambda) < 0$  pentru orice valoare proprie  $\lambda$  a matricii  $J_f(X^*) = J_f(x^*, y^*)$  atunci  $X^*$  este local asimptotic stabil.
- Daca exista o valoare proprie  $\lambda$  a matricii  $J_f(X^*) = J_f(x^*, y^*)$  cu  $\text{Re}(\lambda) > 0$  atunci  $X^*$  este instabil, unde  $J_f(X)$  este matricea jacobiana a functiei vectoriale  $f = (f_1, f_2)$

Fie sistemul neliniar:

$$\begin{cases} x' = x \cdot (1 - \frac{1}{2}x - y) \\ y' = y \cdot (x - 1 - \frac{1}{2}y) \end{cases}$$

In [29]:

```
reset()
x,y,t=var('x,y,t')
f1(x,y)=x*(1-1/2*x-y)
f2(x,y)=y*(x-1-1/2*y)
```

In [30]:

```
EquilP=solve([f1(x,y)==0,f2(x,y)==0],x,y)
EquilP
```

Out[30]:

$$[[x == 0, y == 0], [x == 2, y == 0], [x == 0, y == -2], [x == (6/5), y == (2/5)]]$$

Generam matricea jacobiana a functiei vectoriale  $f = (f_1, f_2)$  utilizand comanda *jacobian*:

In [31]:

```
jacobian((f1(x,y),f2(x,y)), (x,y))
```

Out[31]:

$$\begin{bmatrix} -x - y + 1 & -x \\ y x - y - 1 \end{bmatrix}$$

```
In [32]:
```

```
J=jacobian((f1(x,y),f2(x,y)), (x,y))
J
```

Out[32]:

$$\begin{bmatrix} -x - y + 1 & -x \\ y & x - y - 1 \end{bmatrix}$$

Pentru fiecare punct de echilibru  $X^*(x^*, y^*)$  evaluam  $J_f(x^*, y^*)$ , calculam valorile proprii corespunzatoare si aplicam Teorema stabilitatii in prima aproximatie.

Pentru punctul de echilibru (0,0) obtinem:

```
In [33]:
```

```
J(x=0,y=0)
```

Out[33]:

[ 1 0] [ 0 -1]

In [34]:

```
J(x=0,y=0).eigenvalues()
```

Out[34]:

[-1, 1]

In cazul punctului de echilibru (0,0) avem  $\lambda_1 = -1$  si  $\lambda_2 = 1$ , cum  $\lambda_2 > 0$  atunci (0,0) este *instabil*, el fiind de tip *sa* (si in cazul sistemelor neliniare se pastreaza clasificarea lui (0,0) din cazul sistemelor liniare).

Pentru al doilea punct de echilibru obtinem:

```
In [35]:
```

```
J(x=2,y=0)
```

Out[35]:

[-1 -2] [ 0 1]

In [36]:

```
J(x=2,y=0).eigenvalues()
```

Out[36]:

[-1, 1]

Observam ca avem aceleasi valori proprii ca in cazul punctului (0,0), deci si punctul de echilibru (2,0) este *instabil* de tip sa.

Pentru cel de al treilea punct de echilibru obtinem:

```
In [37]:
```

J(x=0,y=-2)

Out[37]:

[ 3 0] [-2 1]

In [38]:

```
J(x=0,y=-2).eigenvalues()
```

Out[38]:

[1, 3]

Pentru (0,-2) avem  $\lambda_1=1$  si  $\lambda_2=3$ , ambele valori proprii  $\lambda_{1,2}>0$  deci (0,-2) este *instabil* de tip *nod*.

Pentru ultimul punct de echilibru obtinem:

In [39]:

```
J(x=6/5,y=2/5)
```

Out[39]:

[-3/5 -6/5] [ 2/5 -1/5]

In [40]:

```
J(x=6/5,y=2/5).eigenvalues()
```

Out[40]:

$$[-1/5*I*sqrt(11) - 2/5, 1/5*I*sqrt(11) - 2/5]$$

Pentru punctul de echilibru (6/5, 2/5) avem  $\lambda_{1,2} = -\frac{2}{5} \mp i \frac{\sqrt{11}}{5}$  cu  $\text{Re}(\lambda_{1,2}) = -\frac{2}{5} < 0$ , deci punctul de echilibru (6/5, 2/5) este *local asimptotic stabil* de tip *focus*.

Pentru reprezentarea portretului fazic trebuie aleasa o fereastra de reprezentare  $[a,b] \times [c,d]$  care sa contina toate punctele de echilibru si trebuiesc alese cateva orbite aflate in vecinatatea acestor puncte de echilibru.

In cazul sistemului considerat putem considera fereastra de reprezentare  $[-3,3] \times [-3,3]$ 

```
n=sqrt(f1(x,y)^2+f2(x,y)^2)
g=plot_vector_field([f1(x,y)/n,f2(x,y)/n],[x,-3,3],[y,-3,3],color='red',aspect_ratio=
P=desolve\_system\_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,1], ivar = t, end\_points = [-10,1]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,3], ivar = t, end_points = [-10,1]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve\_system\_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-1,1], ivar = t, end\_points = [-10,-1], ivar = [-10,-1], ivar = [-10,-1], 
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-0.5,3], ivar = t, end_points = [-1]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve\_system\_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-0.5,-1], ivar = t, end\_points = [-1,-1], ivar = t, end\_points = [-1
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,-2,-2], ivar = t, end_points = [-10]
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,1,-1], ivar = t, end_points = [-10,
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
P=desolve_system_rk4([f1(x,y),f2(x,y)], [x,y], ics = [0,2,-2], ivar = t, end_points = [-10,
XY=[ [j, k] for i,j,k in P]
g=g+list_plot(XY,plotjoined=True, color='blue')
g.show(xmin=-3,xmax=3,ymin=-3,ymax=3)
```



| In [ ]: |  |
|---------|--|
|         |  |
|         |  |
| In [ ]: |  |
|         |  |