The GmSSL Project

FORK THE ON GIRALIS 支持国密SM2/SM3/SM4/SM9的密码工具箱

Quick Start Downloads **English Version** About Us Docs News

SM9 Digital Signature

System Paremeters

The system parameter set consists of the curve identifier cid; the parameters of the elliptic curve base filed F_q ; the parameters a and b of the elliptic curve equation; the parameter β of the curve (if the lower 4 bits of the cid are 2); The prime factor of the curve order N and the remainder factor cf with respect to N; The number of embedding times k of the curve $E(F_q)$ with respect to N; the generator P_1 of the N-th order cyclic subgroup G_1 of $E(F_{q^{d_1}})$ (divides k by d_1);agenerator P_2 of an N-th order cyclic subgroup G_2 of $E(F_{q^{d_2}})$ (divides k by d_2); bilinear pair identifier of e eid; (Optional)Homomorphism of G_2 to $G_1 \psi$.

The range of the bilinear pair e is an order-N multiplicative cyclic group G_T .

System Signature Master Key and User Signature Key Generation

KGC generates random number $ks \in [1,N-1]$ as the signature master-private key and calculates the element $P_{pub-s} = [ks]P_2$ in G_2 as the signature master public key. The signature master key pair is (ks, P_{pub-s}) . KGC secretly save ks, and set P_{pub-s} public.

KGC chooses and exposes the signed private key generate function identifier hid represented by one byte.

The ID of user A is ID_A . To generate the private key ds_A of user A, KGC first calculates $t_1 = H_1(ID_A \| hid, N) + ks$ on the finite field F_N . If $t_1 = 0$ we need to re-sign the signature of the main private key, calculate and public signature master public key, and update the signature private key of the existing user; otherwise calculate

$$t_2 = ks \cdot t_1^{-1} mod N$$
and then calculate $ds_A = [t_2] P_1.$

SM9 Digital Signature Generation Algorithm

The message to be signed is a bit string M, and in order to obtain the digital signature (h, S) of the message M, the user A who is the signer should implement the following operation steps:

- 1. Calculate the element $g=e(P_1,P_{pub-s})$ in the group \mathbb{G}_T ;
- 2. Generate a random number $r \in [1, N-1]$;
- 3. Calculate element $w=g^r$ in group G_T , convert data type of w into bit string;
- 4. Calculate integer $h=H_2(M\|w,N)$;
- 5. Calculate an integer l=(r-h)modN , return 2 if I = 0;
- 6. Compute elements $S=[l]ds_A$ in group G_1 ;
- 7. The signature of message M is $(h,S)_{\circ}$

SM9 Digital Signature Verification Algorithm

In order to check the received message M 'and its digital signature (h, S), the user B as the verifier should implement the following operation steps:

- 1. Check whether $h^{`} \in [1,N-1]$ holds; Then the verification fails;
- 2. Convert the data type of S ' to a point on the elliptic curve to test whether S ' $\in G_1$ holds; if not, the verification fails;
- 3. Calculate the element $g=e(P_1,P_{pub-s})$ in the group G_T ;
- 4. Compute elements $t=g^{h^{\cdot}}$ in group G_T ;
- 5. Calculate integer $h_1 = H_1(ID_A || hid, N)$;
- 6. Calculate elements $P=[h_1]P_2+P_{pub-s}$ in group G_2 ;
- 7. Calculate the element $u=e(S^{`},P)$ in group G_T ;
- 8. Calculate the element $w^{`}=u\dot{t}^{'}$ in group G_T , convert the data type of $w^{`}$ to a bit string;
- 9. Calculate the integer $h_2=H_2(H^`\|w^`,N)$, and test if $h_2=h^`$. If yes, then the verification is successful; otherwise, the verification fails

SM9 Key Exchange

System Paremeters

The system parameter set consists of the curve identifier cid; the parameters of the elliptic curve base filed F_q ; the parameters a and b of the elliptic curve equation; the parameter β of the curve (if the lower 4 bits of the cid are 2); The prime factor of the curve order N and the remainder factor cf with respect to N; The number of embedding times k of the curve $E(F_q)$ with respect to N; the generator P_1 of the N-th order cyclic subgroup G_1 of $E(F_{q^{d_1}})$ (divides k by d_1); agenerator P_2 of an N-th order cyclic subgroup G_2 of $E(F_{q^{d_2}})$ (divides k by d_2); bilinear pair identifier of e eid; (Optional)Homomorphism of G_2 to G_1 ψ .

The range of the bilinear pair e is an order-N multiplicative cyclic group G_T .

System Encryption Master Key and User Encryption Key Generation

KGC generates random number $ks\in[1,N-1]$ as the signature master-private key and calculates the element $P_{pub-s}=[ks]P_2$ in G_2 as the signature master public key. The signature master key pair is (ks,P_{pub-s}) . KGC secretly save ks, and set P_{pub-s} public.

KGC chooses and exposes the signed private key generate function identifier hid represented by one byte.

The identities of users A and B are ID_A and ID_B respectively. To generate the encrypted private key de_A of user A, KGC first calculates $t_1 = H_1(ID_A\|hid,N) + ke$ on the finite field F_N , and if t1 = 0, it needs to regenerate the encrypted master private key to calculate and disclose the master public encrypt key, and update the private encrypt key of the existing user; otherwise calculate $t_2 = ks \cdot t_1^{-1} modN$ and then calculate $de_A = [t_2]P_2$. In order to generate the encrypted private key de_B of user B, KGC first computes $t_3 = H_1(ID_B\|hid,N) + ke$ on the finite field F_N , if $t_3 = 0$, it needs to regenerate the encrypted master private key to calculate and disclose the master public encrypt key, and update the private encrypt key of the existing user; otherwise, $t_4 = ke \cdot t_3^{-1} modN$ is calculated and then $de_B = [t_4]P_2$ is calculated.

Key Exchange Protocol And Process

Suppose that the length of the key data obtained through negotiation between users A

and B is klen bits, user A is the initiator, and user B is the responder. In order to obtain the same key, both users A and B should implement the following operation steps: User A:

- 1. Calculate element $Q_B = [H_1(ID_B \| hid, N)]P_1 + P_{pub-e}$ in group G_1 ;
- 2. Generate a random number $r_a \in [1,N-1]$;
- 3. Calculate element $R_A = [r_A]Q_B$ in group G_1 ;
- 4. Send R_A to user B;

User B:

- 1. Calculate element $Q_A = [H_1(ID_A \| hid, N)]P_1 + P_{pub-e}$ in group G_1 ;
- 2. Generate a random number $r_B \in [1, N-1]$;
- 3. Calculate the element $R_B = [r_B]Q_A$ in group G_1 ;
- 4. Verify whether $R_A\in G_1$ is true, and if not, the negotiation fails; otherwise, calculate the element $g_1=e(R_A,de_B),g_2=e(P_{pub-e},P_2)^{rB},g_3=g_1^{r_B}$ in group G_T , converti the data types of g1, g2, g3 into bit string;
- 5. Convert the data type of R_A and R_B into bit string and calculate $SK_B = KDF(ID_A \|ID_B\|R_A\|R_B\|g_1\|g_2\|g_3, klen);$
- 6. (Optional) Calculate $S_B=Hash(0x82\|g_1\|Hash(g_2\|g_3\|ID_A\|ID_B\|R_A\|R_B));$
- 7. Send R_B , (Optional S_B) to User A.

User A:

- 1. Verify whethe $RB\in G_1$ is established, and if not, the negotiation fails; otherwise, compute the elements $g_1^{`}=e(P_{pub-e},P_2)^{r_A},g_2^{`}=e(R_B,de_A),g_3^{`}=(g_2^{`})$, converting the data types of $g_1^{`},g_2^{`},g_3^{`}$ into a bit string;
- 2. Convert the data types of R_A and R_B into bit string, (optional) Calculate $S_1 = Hash(0x82\|g_1^{`}\|Hash(g_2^{`}\|g_3^{`}\|ID_A\|ID_B\|R_A\|R_B))$, and checks whether $S_1 = S_B$ holds, if the equation is not established, the key confirmation from B to A fails.
- 3. Calculate $SK_A=KDF(ID_A\|ID_B\|R_A\|R_B\|g_1^{`}\|g_2^{`}\|g_3^{`},klen)$;
- 4. (Optional) Calculate

 $S_A=Hash(0x83\|g_1^`\|Hash(g_2`\|g_3`\|ID_A\|ID_B\|R_A\|R_B))$ and send the S_A to user B.

User B:

1. (Optional) $S_2=Hash(0x83\|g_1\|Hash(g_2\|g_3\|ID_A\|ID_B\|R_A\|R_B))$ is calculated and it is checked whether $S_2=S_A$ is established. The key confirmation from A to B failed.

SM9 Key Encapsulation Mechanism and Public-key Cryptography

System Paremeters

The system parameter includes the curve identifier cid; the parameters of the elliptic curve base F_q ; the parameters of the elliptic curve a and b; the parameter of the twisting curve β (if the lower 4 bits of cid are 2); the prime factor of the curve N and the cofactor of N cf; the embedding times of the curve $E(F_q)$ with respect to N k; generation element P_1 of the N-th order cyclic subgroup \$\mathcal{G} 10fE(P(qd1))(d1dividesk); generationelement P_2 0 of the N-thorder cyclic subgroup \mathcal{G} 20f E(P(qd2))(d2dividesk); theidentifier of the bilinear pairing eeid; O(P(qd2)) of O(P(qd2)) when O(P(qd2)) is O(P(qd2)) in O(P(qd2)) and O(P(qd2)) is O(P(qd2)) in O(P(qd2)) i

The range of the bilinear pairing e is an order-N multiplicative cyclic group \mathcal{G}_T .

System Signature Master Key and User Signature Key Generation

KGC generates the random key $ke \in [1,N-1]$ as the master private key, and calculates $P_{pub-e} = [ke]P_1$ in $\frac{G}{asthemasterpublickey}$. Themasterkeypairis (ke, P{pub-e}) and KGC keeps kesecretand P_{pub-e}\$ public.

KGC chooses and exposes the encrypted private key represented by one byte to generate the function identifier hid.

The hid, N) + keonthe finite fieldF_N. Ift_1 = 0

identity of user B is ID_B to generate the encrypted private key d_{eB} of user B , KGC first calculates $t_1 = 0$, , , , , , , , , , , , , , , , , , ,	0 0	atethemasterprivatekey, comput clculated_{eB} = [t_2] P_2\$.
--	---------------------------------------	-----	---

Key Encapsulation Algorithm

In order to encapsulate a key with a bit length klen to user B, user A who is an encapsulator, needs to perform the following operation steps:

```
Calculate the element Q_B = \frac{1.}{[H_1 (ID_B)]} P_1 + P_{pub-e}ingroup
```

- 2. generate random numbers $r \in [1, N-1]$;
- 3. Calculate element $C=[r]Q_B$ in group \mathcal{G}_1 , convert the data C into a bit string;
- 4. Calculate the element $g=e(P_{pub-e},P_2)$ in group \mathcal{G}_T ;
- 5. Calculate the element $w=g^r$ in group \mathcal{G}_T and convert the data w into a bit string.
- 6. Calculate $K = KDF(C\|w\|ID_B, klen)$, If K is an all 0 bit string, return step 2.
- 7. Output (K,C), where K is the key being encapsulated and C is the encapsulated ciphertext.

Key Decapsulation Algorithm

After user B receives the encapsulated ciphertext C, in order to decapsulate the key with the klen bit length, the following steps need to be performed:

1. Verify that $C \in \mathcal{G}_1$ is valid, and if not, an error is reported and exit;

- 2. Calculate the element $w'=e(C,de_B)$ in the group \mathcal{G}_T and convert the data type of w' into a bit string;
- 3. convert the data type of C into a bit string, and calculate the encapsulated key $K'=KDF(C\|w'\|ID_B,klen)$, if K' is all 0 bits String, the error and exit;
- 4. output key K'.

Public Key Encryption Algorithm

Suppose the message to be sent is the bit string M, mlen is the bit length of M, $\fbox{K_1_len}$ is the bit length of the key K_1 in the block cipher algorithm, and $\fbox{K_2_len}$ is the bit length of the key K_2 in the function $MAC(K_2,Z)$.

To encrypt plaintext M to user B, user A as an encryptor, should implement the following computational steps:

	Calculate element \$Q_B =	hid, N)] P_1 + P_{pub-e} $ingroup$
1.	[H_1 (ID_B	\mathcal{G}_1\$;

- 2. generate random numbers $r \in [1, N-1]$;
- 3. Calculate element $C_1 = [r]Q_B$ in group \mathcal{G}_1 , convert the data C_1 into a bit string;
- 4. Calculate the element $g=e(P_{pub-e},P_2)$ in group \mathcal{G}_T ;
- 5. Calculate the element $w=g^r$ in group \mathcal{G}_T , convert the data w into a bit string;
- 6. Calculated by the method of encrypting plaintext:
- 7. If the method of encrypting a plaintext is based on a sequence cipher derived from a key-derived function, then 1. Calculate the integer klen = mlen + K_2_len and then calculate $K = KDF(C_1\|w\|ID_B, klen)$. Let K_1 be the leftmost mlen bits of K, K_2 be the remaining K_2_len bits. If K_1 is a full 0-bit string, return to step 2; 2. Calculate $C_2 = M \oplus K_1$.
- 8. If the method of encrypting plaintext is a block cipher algorithm that combines keyderived functions, then 1. Calculate the integer klen = K_1_len + K_2_len and then calculate $K = KDF(C_1 \| w \| ID_B, klen)$. Let K1 be the leftmost K_1_len bit of K, K_2 be the remaining K_2_len bits. If K_1 is a full 0-bit string, return to step 2; 2. Calculate $C_2 = Enc(K_1, M)$.
- 9. Calculate $C_3 = MAC(K_2, C_2)$;

10. Output ciphertext $C = C_1$ C_3 C_2

Public Key Decryption Algorithm

Let mlen be the bit length of C_2 in the ciphertext $C=C_1\|C_3\|C_2$, K_1len is the bit length of the key K_1 in the block cipher algorithm, and K_2len is the bit length of the key K_2 in the function $MAC(K_2,Z)$.

In order to decrypt ${\cal C}$, user ${\cal B}$ as a decryptor should implement the following computational steps:

- 1. Extract the bit string C_1 from C, convert the data C_1 into a point on the elliptic curve and verify whether $C_1 \in \mathcal{G}_1$, if not, report an error and exit;
- 2. Calculate the element $w'=e(C_1,de_B)$ in the group \mathcal{G}_T and convert the data w' into a bit string;
- 3. Calculated by the method of encrypting plaintext:
- 4. If the method of encrypting a plaintext is based on a sequence cipher derived from a key-derived function 1. Calculate the integer klen = mlen + K_2_len and then calculate $K' = KDF(C_1 \| w' \| ID_B, klen)$. Let K_1' be the leftmost mlen bits of K', K_2 be the remaining K_2_len bits. If K_1 is a full 0-bit string, then an error is reported and exit; 2. Calculate $M' = C2 \oplus K_1'$.
- 5. If the method of encrypting plaintext is a block cipher algorithm that combines keyderived functions, then 1. Calculate the integer klen = K_1_len + K_2_len and then calculate $K = KDF(C_1 \|w\| ID_B, klen)$. Let K1 be the leftmost K_1_len bit of K, K_2 be the remaining K_2_len bits. If K_1 is a full 0-bit string, then an error is reported and exit; 2. Calculate $M' = Dec(K_1', C_2)$.
- 6. Calculate $u=MAC(K_2',C_2)$, extract the bit string C_3 from C, and if $u\in C_3$, then error and exit;
- 7. Output plain text M'.

The GmSSL Project is maintained by Zhi Guan.

Copyright © 2014 - 2017 The GmSSL Project, All Rights Preserved.