Research in Computing

&

Data Science

Certified Journal

Submitted in partial fulfilment of the Requirements for the award of the Degree of

MASTER OF SCIENCE (INFORMATION_TECHNOLOGY)

 $\mathbf{B}\mathbf{y}$

Uday Valmik Lanke

DEPARTMENT OF INFORMATION TECHNOLOGY

KERALEEYA SAMAJAM (REGD.) DOMBIVLI'S MODEL COLLEGE (AUTONOMOUS) Re-Accredited 'A' Grade by NAAC

(Affiliated to University of Mumbai)

FOR THE YEAR

(2022-23)

Keraleeya Samajam(Regd.) Dombivli's

MODEL COLLEGE

Kanchan Goan Village, Khambalpada, Thakurli East – 421201 Contact No – 7045682157, 7045682158. <u>www.model-college.edu.in</u>

DEPARTMENT OF INFORMATION TECHNOLOGY AND COMPUTER SCIENCE

CERTIFICATE

This is to certify that Mr. /Miss	
Studying in Class	Seat No
Has completed the prescribed pr	racticals in the subject
During the academic year	
Date :	
External Examiner	Internal Examiner M.Sc. Information Technology

RESEARCH IN COMPUTING PRACTICAL

Sr No.			Name of the Practical	Datasets	Date	Signature
1.	1.	A	Write a program for obtaining descriptive statistics of data. Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R/Python/Excel) Perform suitable analysis of given secondary data. Perform testing of hypothesis using one sample t-test. Perform testing of hypothesis using two sample t-test. Perform testing of hypothesis using paired t-test. blood_pr essure.csv Perform testing of hypothesis using chi-squared goodness-of-fit test. Perform testing of hypothesis using chi-squared Students_ Score.xlsx Compute different types of correlation			
2.	 No. 1. A Write a program for obtaining of data. B Import data from different discover, mysql, sql server, oracle 2. B Perform suitable analysis of games 3. A Perform testing of hypothesistest. B Perform testing of hypothesistest. C Perform testing of hypothesisgoodness-of-fit test. B Perform testing of hypothesisgoodness-of-fit test. B Perform testing of hypothesistest of Independence 5. A Compute different types of compute different types		· ·			
3.	2.	В	Perform suitable analysis of given secondary data.			
4.	3.	A		ages.csv		
5.		В				
6.		С	Perform testing of hypothesis using paired t-test.			
7.	4.	Α				
8.		В		_		
9.	5.	Α	Compute different types of correlation			
10.	6.	Α	Perform testing of hypothesis using one-way ANOVA.	scores.xls x		
11.		В	Perform testing of hypothesis using two-way ANOVA.	ToothGro wth.csv		
12.	7.	A	Perform linear regression for prediction			
13.	8.	A	Perform Logistic regression	quality.cs v		
14.	9.	A	Perform testing of hypothesis using Z-test	blood_pr essure.csv		

Practical 1:

A. Write a program for obtaining descriptive statistics of data

Using Excel

Go to File Menu → Options → Add-Ins→ Select Analysis ToolPak→ Press OK

12

13 14

15 16

17

LL

Descriptive Statistics

\$C\$2:\$C\$13

46

3.65

? X

OUTPUT:

4	Α	В	С	D	E	F	G
1	Sr. No	Name	Age	Rating			
2	1	AA	25	4.23		Column1	
3	2	BB	26	3.24			
4	3	CC	25	3.98		Mean	31.83333
5	4	DD	23	2.56		Standard Error	2.665246
6	5	EE	30	3.2		Median	29.5
7	6	FF	29	4.6		Mode	25
8	7	GG	23	3.8		Standard Deviation	9.232682
9	8	HH	34	3.78		Sample Variance	85.24242
10	9	II	40	2.98		Kurtosis	0.24931
11	10	JJ	30	4.8		Skewness	1.135089
12	11	KK	51	4.1		Range	28
13	12	LL	46	3.65		Minimum	23
14						Maximum	51
15						Sum	382
16						Count	12
17						Largest(1)	51
18						Smallest(1)	23
19						Confidence Level (95.0%)	5.866167

B. Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R/Python/Excel)
 NOTE: Create database in MySqL named as itvoyagers using command: create database itvoyagers;

import mysql.connector
#creating connection object
db=mysql.connector.connect(user='root',passwd='',host='127.0.0.1',database='itvoyagers')
prepare a cursor object using cursor() method
cur = db.cursor()
execute SQL query using execute() method.
cur.execute("SELECT VERSION()")
Fetch a single row using fetchone() method.
data = cur.fetchone()
print ("Database version : " , data)
disconnect from server
db.close()

OUTPUT

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information.

>>>

Database version: ('5.1.36-community',)

Practical 2:

- B. Write a program for obtaining descriptive statistics of data
- **Step 1 -** Analyse the given Population Census Data for Planning and Decision Making by using the size and composition of populations.

Step 2 - Put the cursor in cell B22 and click on the AutoSum and then click Enter. This will calculate the total population. Then copy the formula in cell D22 across the row 22.

Step 3 - To calculate the percent of males in cell E4, enter the formula = -1*100*B4/\$D\$22. And copy the formula in cell E4 down to cell E21.

Step 4 - To calculate the percent of females in cell F4, enter the formula =1*100*C4/\$D\$22. Copy the formula in cell F4 down to cell F21.

Step 5 - To build the population pyramid, we need to choose a horizontal bar chart with two series of data (% male and % female) and the age labels in column A as the Category X-axis labels. Highlight the range E3:F21 and under inset tab, under horizontal bar charts select clustered bar chart.

Step 6 - Go to Charts Filter option and click on Select Data.

Step 7 – In Select Data Source Tab → Horizontal (Category) axis label and select the age range from A4:A21

Also, in Legend entries (series) \rightarrow Series1 \rightarrow Edit \rightarrow Series Name = Female(%).

Step 8 – Now in the chart \rightarrow Right click on Age range \rightarrow Format Axis \rightarrow Axis Options \rightarrow In Tick Marks \rightarrow Major Type, Minor Type = None \rightarrow In Labels \rightarrow Labels Position = Low.

Step 9 – Now put the tip of your mouse arrow on anywhere on the bars of chart \rightarrow Right Click \rightarrow Format Data Series \rightarrow Set the Overlap to 100 and Gap Width to 0 \rightarrow Click OK.

Step 10 - Go to Charts Filter option \rightarrow Scroll down Categories \rightarrow Untick the option after 85+ and Click on Apply.

OUTPUT:

Practical 3:

A. Perform testing of hypothesis using one sample t- test.

USING PYTHON

```
from scipy.stats import ttest_1samp
import numpy as np

ages = np.genfromtxt('ages.csv')
print(ages)

ages_mean = np.mean(ages)
print(ages_mean)

tset, pval = ttest_1samp(ages, 30)
print('p-values - ',pval)

if pval< 0.05:
    # alpha value is 0.05
    print(" we are rejecting null hypothesis")

else:
    print("we are accepting null hypothesis")
```

OUTPUT:

```
[20. 30. 25. 13. 16. 17. 34. 35. 38. 42. 43. 45. 48. 49. 50. 51. 54. 55. 56. 59. 61. 62. 18. 22. 29. 30. 31. 39. 52. 53. 67. 36. 47. 54. 40. 40. 35. 22. 59. 58. 30. 43. 22. 45. 21. 59. 51. 47. 25. 58. 50. 23. 24. 45. 37. 59. 28. 28. 48. 42. 54. 36. 36. 24. 26. 24. 50. 48. 34. 44. 56. 55. 35. 33. 39. 53. 34. 28. 56. 24. 21. 29. 28. 58. 35. 57. 26. 25. 59. 56. 22. 57. 48. 33. 23. 26. 57. 32. 53. 31. 35. 44. 54. 25. 31. 58. 26. 32. 26. 50. 41. 49. 26. 33. 34. 24. 43. 42. 51. 36. 38. 38. 40. 38. 56. 39. 23. 33. 53. 30. 38.] 39.47328244274809 p-values - 5.362905195437013e-14 we are rejecting null hypothesis
```

USING EXCEL

A2	22 🔻 🗄	× ~	fx	=SUM(A2:A21)/20
4	Α	В	С	D
1	Experimental	Comparison		
2	35	2		
3	40	27		
4	12	38		
5	15	31		
6	21	1		
7	14	19		
8	46	1		
9	10	34		
10	28	3		
11	48	1		
12	16	2		
13	30	3		
14	32	2		
15	48	1		
16	31	2		
17	22	1		
18	12	3		
19	39	29		
20	19	37		
21	25	2		
22	27.15	11.95	Mean	

Experimental Data

To calculate Standard Mean go to cell A22 and type =SUM(A2:A21)/20 To calculate Standard Deviation go to cell A23 and type =STDEV(A2:A21)

Comparison Data

To calculate Standard Mean go to cell B22 and type =SUM(B2:B21)/20

To calculate Standard Deviation go to cell B23 and type =STDEV(B2:B21) To find T-Test Statistics go to data \rightarrow Data Analysis

To caluculate the T-Test square value go to cell E20 and type =(A22-B22)/SQRT((A23*A23)/COUNT(A2:A21)+(B23*B23)/COUNT(A2:A21))

Now go to cell E20 and type =IF(E20<E12,"H0 is Accepted", "H0 is Rejected and H1 is Accepted")

Our calculated value is larger than the tabled value at alpha = .01, so we reject the null hypothesisand accept the alternative hypothesis, namely, that the difference in gain scores is likely the result of the experimental treatment and not the result of chance variation.

=(A22	2-B22)/SQRT((A23*A23)/C	OUNT(A2:A21)+(B23*B23)/COUNT(/	A2:A21)
Е	F	G	н	1
	t-Test: Paired Two Samp	le for Means		
	t-rest. Faired Two Samp	ile for Wearis		
		35		
	Mean	26.73684211		
	Variance	161.5380117		
	Observations	19		
	Pearson Correlation	-0.38128717		
	Hypothesized Mean Dif	0		
	df	18		
	t Stat	2.714013677		
	P(T<=t) one-tail	0.007110878		
	t Critical one-tail	1.734063607		
	P(T<=t) two-tail	0.014221756		
	t Critical two-tail	2.10092204		
	calculated value	3.534053898		

=IF(G20<G13,"H0 is Accepted", "H0 is Rejected and H1 is Accepted")

E F	G	Н
t-Test: Paired Two Sample	e for Means	
	35	
Mean	26.73684211	
Variance	161.5380117	
Observations	19	
Pearson Correlation	-0.38128717	
Hypothesized Mean Dif	0	
df	18	
t Stat	2.714013677	
P(T<=t) one-tail	0.007110878	
t Critical one-tail	1.734063607	
P(T<=t) two-tail	0.014221756	
t Critical two-tail	2.10092204	
calculated value	3.534053898	
H0 is Rejected and H1 is A		

B. Perform testing of hypothesis using two sample t-test. import numpy as np from scipy import stats from numpy.random import randn N = 20#a = [35,40,12,15,21,14,46,10,28,48,16,30, 32,48,31,22,12,39,19,25] #b = [2,27,31,38,1,19,1,34,3,1,2,1,3,1,2,1,3,29,37,2]a = 5 * randn(100) + 50b = 5 * randn(100) + 51 $var_a = a.var(ddof=1)$ var_b = b.var(ddof=1) $s = np.sqrt((var_a + var_b)/2)$ t = (a.mean() - b.mean())/(s*np.sqrt(2/N))df = 2*N - 2#p-value after comparison with the t p = 1 - stats.t.cdf(t,df=df)print("t = " + str(t))print("p = " + str(2*p))if t>p: print('Mean of two distribution are differnt and significant')

OUTPUT:

else:

```
t = -0.9017019457173832
p = 1.627104831513666
Mean of two distribution are same and not significant
```

print('Mean of two distribution are same and not significant')

```
C. Perform testing of hypothesis using paired t-test.
    from scipy import stats
    import matplotlib.pyplot as plt
    import pandas as pd
    df = pd.read csv("blood pressure.csv")
    print(df[['bp_before','bp_after']].describe())
    #First let's check for any significant outliers in
    #each of the variables.
    df[['bp_before', 'bp_after']].plot(kind='box')
    # This saves the plot as a png file
    plt.savefig('boxplot_outliers.png')
    # make a histogram to differences between the two scores.
    df['bp_difference'] = df['bp_before'] - df['bp_after']
    df['bp_difference'].plot(kind='hist', title= 'Blood Pressure Difference Histogram')
    #Again, this saves the plot as a png file
    plt.savefig('blood pressure difference histogram.png')
    stats.probplot(df['bp_difference'], plot= plt)
    plt.title('Blood pressure Difference Q-Q Plot')
    plt.savefig('blood pressure difference qq plot.png')
    stats.shapiro(df['bp_difference'])
    stats.ttest_rel(df['bp_before'], df['bp_after'])
```

OUTPUT:

```
bp before
                    bp after
count 120.000000 120.000000
mean 156.450000 151.358333
       11.389845 14.177622
std
      138.000000 125.000000
     147.000000 140.750000
25%
50%
      154.500000 149.500000
75%
      164.000000 161.000000
max
      185.000000 185.000000
Ttest_relResult(statistic=3.3371870510833657, pvalue=0.0011297914644840823)
```


Patient	gender	agegrp	bp_before	bp_after	Difference
1	Male	30-45	143	153	-10
2	Male	30-45	163	170	-7
3	Male	30-45	153	168	-15
4	Male	30-45	153	142	11
5	Male	30-45	146	141	5
6	Male	30-45	150	147	3
7	Male	30-45	148	133	15
8	Male	30-45	153	141	12
9	Male	30-45	153	131	22

10	Male	30-45	158	125	33
11	Male	30-45	149	164	-15
12	Male	30-45	173	159	14
13	Male	30-45	165	135	30
14	Male	30-45	145	159	-14
15	Male	30-45	143	153	-10
16	Male	30-45	152	126	26
17	Male	30-45	141	162	-21
18	Male	30-45	176	134	42
19	Male	30-45	143	136	7
20	Male	30-45	162	150	12
21	Male	46-59	149	168	-19
22	Male	46-59	156	155	1
23	Male	46-59	151	136	15
24	Male	46-59	159	132	27
25	Male	46-59	164	160	4
26	Male	46-59	154	160	-6
27	Male	46-59	152	136	16
28	Male	46-59	142	183	-41
29	Male	46-59	162	152	10
30	Male	46-59	155	162	-7
31	Male	46-59	175	151	24
32	Male	46-59	184	139	45
33	Male	46-59	167	175	-8
34	Male	46-59	148	184	-36
35	Male	46-59	170	151	19
36	Male	46-59	159	171	-12
37	Male	46-59	149	157	-8
38	Male	46-59	140	159	-19
39	Male	46-59	185	140	45
40	Male	46-59	160	174	-14
41	Male	60+	157	167	-10
42	Male	60+	158	158	0
43	Male	60+	162	168	-6
44	Male	60+	160	159	1
45	Male	60+	180	153	27
46	Male	60+	155	164	-9
47	Male	60+	172	169	3
48	Male	60+	157	148	9
49	Male	60+	171	185	-14
50	Male	60+	170	163	7
51	Male	60+	175	146	29
52	Male	60+	175	160	15
53	Male	60+	172	175	-3
54	Male	60+	173	163	10
55	Male	60+	170	185	-15

56	Male	60+	164	146	18
57	Male	60+	147	176	-29
58	Male	60+	154	147	7
59	Male	60+	172	161	11
60	Male	60+	162	164	-2
61	Female	30-45	152	149	3
62	Female	30-45	147	142	5
63	Female	30-45	144	146	-2
64	Female	30-45	144	138	6
65	Female	30-45	158	131	27
66	Female	30-45	147	145	2
67	Female	30-45	154	134	20
68	Female	30-45	151	135	16
69	Female	30-45	149	131	18
70	Female	30-45	138	135	3
71	Female	30-45	162	133	29
72	Female	30-45	157	135	22
73	Female	30-45	141	168	-27
74	Female	30-45	167	144	23
75	Female	30-45	147	147	0
76	Female	30-45	143	151	-8
77	Female	30-45	142	149	-7
78	Female	30-45	166	147	19
79	Female	30-45	147	149	-2
80	Female	30-45	142	135	7
81	Female	46-59	157	127	30
82	Female	46-59	170	150	20
83	Female	46-59	150	138	12
84	Female	46-59	150	147	3
85	Female	46-59	167	157	10
86	Female	46-59	154	146	8
87	Female	46-59	143	148	-5
88	Female	46-59	157	136	21
89	Female	46-59	149	146	3
90	Female	46-59	161	132	29
91	Female	46-59	142	145	-3
92	Female	46-59	162	132	30
93	Female	46-59	144	157	-13
94	Female	46-59	142	140	2
95	Female	46-59	159	137	22
96	Female	46-59	140	154	-14
97	Female	46-59	144	169	-25
98	Female	46-59	142	145	-3
99	Female	46-59	145	137	8
100	Female	46-59	145	143	2
101	Female	60+	168	178	-10

102	Female	60+	142	141	1
103	Female	60+	147	149	-2
104	Female	60+	148	148	0
105	Female	60+	162	138	24
106	Female	60+	170	143	27
107	Female	60+	173	167	6
108	Female	60+	151	158	-7
109	Female	60+	155	152	3
110	Female	60+	163	154	9
111	Female	60+	183	161	22
112	Female	60+	159	143	16
113	Female	60+	148	159	-11
114	Female	60+	151	177	-26
115	Female	60+	165	142	23
116	Female	60+	152	152	0
117	Female	60+	161	152	9
118	Female	60+	165	174	-9
119	Female	60+	149	151	-2
120	Female	60+	185	163	22

F1	22	- : [× ✓ f _x =SUM(F2:F121)/120						
4	Α	В	С	D	Е	F	G		
120	119	Female	60+	149	151	-2			
121	120	Female	60+	185	163	22			
122						5.091667	Mean diff		

H2	1	₹ :	× ✓	f _x =IF(H122 <i11,< th=""><th>"H0 is Accept</th><th>ted", "H0 is Re</th><th>jected and H1 is Accepted")</th><th></th><th></th></i11,<>	"H0 is Accept	ted", "H0 is Re	jected and H1 is Accepted")		
4	Α	В	С	D	E	F	G	Н	ı	J
1	patient	gender	agegrp	bp_before	bp_after	difference				
2	1	Male	30-45	143	153	-10				
3	2	Male	30-45	163	170	-7				
4	3	Male	30-45	153	168	-15		t-Test: Paired Two Sample for Means		
5	4	Male	30-45	153	142	11				
6	5	Male	30-45	146	141	5			143	153
7	6	Male	30-45	150	147	3		Mean	156.5630252	151.3445
8	7	Male	30-45	148	133	15		Variance	129.2820111	202.6854
9	8	Male	30-45	153	141	12		Observations	119	119
10	9	Male	30-45	153	131	22		Pearson Correlation	0.161241417	
11	10	Male	30-45	158	125	33		Hypothesized Mean Difference	0	
12	11	Male	30-45	149	164	-15		df	118	
13	12	Male	30-45	173	159	14		t Stat	3.403463555	
14	13	Male	30-45	165	135	30		P(T<=t) one-tail	0.000454744	
15	14	Male	30-45	145	159	-14		t Critical one-tail	1.657869522	
16	15	Male	30-45	143	153	-10		P(T<=t) two-tail	0.000909488	
17	16	Male	30-45	152	126	26		t Critical two-tail	1.980272249	
18	17	Male	30-45	141	162	-21				
19	18	Male	30-45	176	134	42				
20	19	Male	30-45	143	136	7				
21	20	Male	30-45	162	150	12		H0 is Rejected and H1 is Accepted		
22	21	Male	46-59	149	168	-19				

A paired sample t -test was used to analyze the blood pressure before and after the intervention to test if the intervention had a significant affect on the blood pressure. The blood pressure before the intervention was higher (156.45 \pm 11.39 units) compared to the blood pressure post intervention (151.36 \pm 14.18 units); there was a statistically significant decrease in blood pressure(t(119)=3.34,p=0.001) of 5.09 units

Practical 4:

A. Perform testing of hypothesis using chi-squared goodness-of-fit test.

Problem

An system administrator needs to upgrade the computers for his division. He wants to know what sort of computer system his workers prefer. He gives three choices: Windows, Mac, or Linux. Test the hypothesis or theory that an equal percentage of the population prefers each type of computer system

19		+ :		×	f _x
4	Α	В		С	D
1	System	0		Ei	$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$
2	Windows		20	33.33%	
3	Mac		50	33.33%	
4	Linux		20	33.33%	

 $\ensuremath{\mathsf{H0}}$: The population distribution of the variable is the same as the proposed distribution

HA: The distributions are different

To calculate the Chi –Squred value for Windows go to cell D2 and type =((B2-C2)*(B2-C2))/C2

To calculate the Chi –Squred value for Mac go to cell D3 and type =((B3-C3)*(B3-C3))/C3

To calculate the Chi –Squred value for Mac go to cell D3 and type =((B4-C4)*(B4-C4))/C4 $\sim (O_i - E_i)^2$

Go to Cell D5 for $\stackrel{\triangle}{=}$ Ei and type=SUM(D2:D4)

To get the table value for Chi-Square for α = 0.05 and dof = 2, go to cell D7 and type

=CHIINV(0.05,2)

At cell D8 type =IF(D5>D7, "H0 Accepted","H0 Rejected")

D2	2	T	: []	× •	f _{sc} =((B2-C2)*(B2-	C2))/C2
4	Α		В	С	D	Е
1	System	0		Ei	$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$	
2	Windows		20	33.33%	116045.3312001200%	
3	Mac		50	33.33%	740108.3375007500%	
4	Linux		20	33.33%	116045.3312001200%	

D5	5	▼ :		×	fx =	SUM(D2:D4)	
4	Α	В		С		D	E
1	System	0		Ei	$\chi^2 = \frac{1}{2}$	$\sum_{i} \frac{(O_i - E_i)^2}{E_i}$	
2	Windows	_	20		116045.	3312001200%	
3	Mac		50	33.33%	740108.	3375007500%	
4	Linux		20	33.33%	116045.	3312001200%	
5					972198.	9999009900%	sum
D6	ō	- :		×	f _x =	:CHIINV(0.05,2	2)
4	Α	В		С		D	E
1	System	0		Ei	$\chi^2 = \frac{1}{2}$	$\sum_{i} \frac{(O_i - E_i)^2}{E_i}$	
2	Windows		20	33.33%	116045.	3312001200%	
3	Mac		50	33.33%	740108.	3375007500%	
4	Linux		20	33.33%	116045.	3312001200%	
5					972198.	9999009900%	sum
6						5.991464547	1.4

OUTPUT:

D8	D8 ▼ : X ✓ f _x =IF(D5>D6,"H0 Accepted","H0 rejected")							
4	Α	В	С	D	E	F	G	
1	System	0	Ei	$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$				
2	Windows	20	33.33%	116045.3312001200%				
3	Mac	50	33.33%	740108.3375007500%				
4	Linux	20	33.33%	116045.3312001200%				
5				972198.9999009900%	sum			
6				5.991464547	chi			
7	To get the	table valu	ie for Chi-S	quare for $\alpha = 0.05$ and	dof = 2,			
8				H0 Accepted				

B. Perform testing of hypothesis using chi-squared Test of Independence In a study to understand the performance of M. Sc. IT Part -1 class, a college selects a random sample of 100 students. Each student was asked his grade obtained in B. Sc. IT. The sample is as given below

Sr. No	Roll No	Student's Name	Gen	Grade
1	1	Gaborone	m	0
2	2	Francistown	m	0
3	5	Niamey m	0	
4	13	Maxixe m	0	
5	16	Tema m	0	
6	17	Kumasi m	0	
7	34	Blida m	0	
8	35	Oran m	0	
9	38	Saefda m	0	
10	42	Constantine	m	0
11	43	Annaba m	0	
12	45	Bejaefa m	0	
13	48	Medea m	0	
14	49	Djelfa m	0	
15	50	Tipaza m	0	
16	51	Bechar m	0	
17	54	Mostaganem	m	0
18	55	Tiaret m	0	
19	56	Bouira m	0	
20	59	Tebessam	0	
21	61	El Harrach	m	0
22	62	Mila m	0	
23	65	Fouka m	0	
24	66	El Eulma	m	0
25	68	SidiBel Abbes	m	0
26	69	Jijel m	0	
27	70	Guelmam	0	
28	85	Khemis El Khech	nna	m O
29	87	Bordj El Kiffan	m	0
30	88	Lakhdaria	m	0
31	6	Maputom	D	
32	12	Lichinga	m	D
33	15	Ressano Garcia		D
34	19	Accra m	D	
35	27	Wa m	D	
36	28	Navrongo	m	D
37	37	Mascara	m	D
38	44	Batna m	D	
39	57	El Biar m	D	_
40	60	Boufarik	m	D

```
41 63
          OuedRhiou
                                D
                        m
42 64
                                D
          Souk Ahras
                        m
43 71
          Dar El Befda
                                D
                        m
                                D
44 86
          Birtouta
                        m
                                С
45 18
          Takoradi
                        m
                                С
46 22
          Cape Coast
                        m
                                С
47 29
          Kwabeng
                        m
48 30
          Algiers m
                        С
                                С
49 31
          Laghouat
                        m
                                С
50 39
          Relizane
                        m
51 52
          Setif
                        C
52 53
                        C
          Biskra m
53 67
          Kolea
                 m
                        C
54 100
          AefnFakroun
                        m
                                С
55 26
          Nima
                 m
                        В
56 32
          TiziOuzou
                                В
                        m
57 33
          Chlef
                 m
                        В
Sr. No
          Roll No Student's NameGen
                                       Grade
62 3
          Maun f
                        0
63 7
          Tete
                 f
                        0
64 9
                        f
                                0
          Chimoio
65 11
          Pemba f
                        0
66 14
          Chibutof
                        0
67 25
          Mampong
                        f
                                0
                                0
68 36
          Tlemcen
                        f
69 40
          Adrar f
                        0
70 41
          Tindouf f
                        0
          Skikda f
                        0
71 46
72 47
          Ouarglaf
                        0
73 10
          Matola f
                        D
74 20
          Legon f
                        D
75 21
          Sunyanif
                        D
76 72
          Teenas f
                        D
77 73
          Kouba f
                        D
                        f
                                D
78 75
          HussenDey
79 77
          Khenchela
                        f
                                D
80 82
          HassiBahbah
                        f
                                D
81 84
          Baraki f
                        D
82 91
                        f
                                D
          Boudouaou
83 95
                        f
                                D
          Tadjenanet
                        f
                                С
84 4
          Molepolole
                        f
                                C
85 8
          Quelimane
86 23
                        f
                                С
          Bolgatanga
87 58
          Mohammadia
                        f
                                С
88 83
          Merouana
                        f
                                С
89 24
          Ashaiman
                        f
                                В
90 76
          N'gaousf
                        В
91 90
                        f
                                В
          Bab El Oued
```

92	92	BordjM	f	В	
93	93	Ksar El	Boukhar	if	В
94	74	Reghaa	f	Α	
95	78	Cheria	f	Α	
96	79	Mouza	af	Α	
97	80	Meskia	na	f	Α
98	81	Miliana	f	Α	
99	94	Sig	f	Α	
100	99	Kadiria	f	Α	

Null Hypothesis - H0 : The performance of girls students is same as boys students. **Alternate Hypothesis - H1 :** The performance of boys and girls students are different. Open Excel Workbook

	0	A	В	С	D	Total	
Girls	11	7	5	5	11	39	6.075
Boys	30	4	3	10	14	61	6.075
Total	41	11	8	15	25	100	12.150
Ei	20.5	5.5	4	7.5	12.5	50	

Prepare a contingency table as shown above.

To calculate Girls Students with 'O' Grade

Go to Cell N6 and type =COUNTIF(\$J\$2:\$K\$40,"O")

To calculate Girls Students with 'A' Grade

Go to Cell O6 and type =COUNTIF(\$J\$2:\$K\$40,"A")

To calculate Girls Students with 'B' Grade

Go to Cell P6 and type =COUNTIF(\$J\$2:\$K\$40,"B")

To calculate Girls Students with 'C' Grade

Go to Cell Q6 and type =COUNTIF(\$J\$2:\$K\$40,"C")

To calculate Girls Students with 'D' Grade

Go to Cell R6 and type =COUNTIF(\$J\$2:\$K\$40,"D")

To calculate Boys Students with 'O' Grade

Go to Cell N7 and type =COUNTIF(\$D\$2:\$E\$62,"O")

To calculate Boys Students with 'A' Grade

```
Go to Cell O7 and type =COUNTIF($D$2:$E$62,"A")
To calculate Boys Students with 'B' Grade
Go to Cell P7 and type =COUNTIF($D$2:$E$62,"B")
To calculate Boys Students with 'C' Grade
Go to Cell Q7 and type =COUNTIF($D$2:$E$62,"C")
To calculate Boys Students with 'D' Grade
Go to Cell R7 and type =COUNTIF($D$2:$E$62,"D")
To calculated the expected value Ei
Go to Cell N9 and type =N8/2
Go to Cell O9 and type = 08/2
Go to Cell P9 and type =P8/2
Go to Cell Q9 and type =Q8/2
Go to Cell R9 and type =R8/2
Go to Cell S6 and calculate total girl students = SUM(N6:R6)
Go to Cell S7 and calculate total girl students = SUM(N7:R7)
Now Calculate
Go to cell T6 and type
=SUM((N6-$N$9)^2/$N$9,(O6-$O$9)^2/$O$9,(P6-$P$9)^2/$P$9,(Q6-Q$9)^2/$Q$9,
(R6-$R$9)^2/$R$9)
Go to cell T7 and type
=SUM((N7-$N$9)^2/$N$9,(O7-$O$9)^2/$O$9,(P7-$P$9)^2/$P$9,(Q7-Q$9)^2/$Q$9,
(R7-$R$9)^2/$R$9)
To get the table value go to cell T11 and type =CHIINV(0.05,4)
```

Go to cell O13 and type =IF(T8>=T11," H0 is Accepted", "H0 is Rejected")

Practical 5:

A. Compute different types of correlation

Positive Correlation

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
np.random.seed(1)
1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
Positive Correlation with some noise
y = x + np.random.normal(0, 10, 1000)
np.corrcoef(x, y)
matplotlib.style.use('ggplot')
plt.scatter(x, y)
plt.show()

Negative Correlation

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
np.random.seed(1)
1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
Negative Correlation with some noise
y = 100 - x + np.random.normal(0, 5, 1000)
np.corrcoef(x, y)
plt.scatter(x, y)
plt.show()

No/Weak Correlation

import numpy as np import matplotlib.pyplot as plt np.random.seed(1) x = np.random.randint(0, 50, 1000) y = np.random.randint(0, 50, 1000) np.corrcoef(x, y) plt.scatter(x, y) plt.show()

Practical 6:

- A. Perform testing of hypothesis using one-way ANOVA.
 - H0 There are no significant differences between the Subject's mean SAT scores. $\mu 1 = \mu 2$ = $\mu 3 = \mu 4 = \mu 5$
 - H1 There is a significant difference between the Subject's mean SAT scores. To perform ANOVA go to data → Data Analysis

Input Range: \$\$\$1:\$U\$436(Select columns to be analyzed in group)

Output Range :\$K\$453:\$S\$465(Can be any Range)

Anova: Single Factor					
SUMMARY					
Groups	Count	Sum	Average	Variance	
Average Score (SAT Math)	375	162354	432.944	5177.144	
Average Score (SAT Reading)	375	159189	424.504	3829.267	
Average Score (SAT Writing)	375	156922	418.4587	4166.522	

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	39700.57	2	19850.28	4.520698	0.01108	3.003745
Within Groups	4926677	1122	4390.977			
Total	4966377	1124				

Since the resulting pvalue is less than 0.05. The null hypothesis (H0) is rejected and conclude that there is a significant difference between the SAT scores for each subject.

B. Perform testing of hypothesis using two-way ANOVA.Go to Data tab → Data Analysis

Input Range - \$A\$1:\$C\$61

Rows Per Sample – 30 (Beacause 30 Patients are given each dose)

Alpha – 0.05

Output Range - \$F\$1:\$M\$24

Output:

Anova: Two-Factor With Replication

SUMMARY		len	dose	Total			
	1						
Count		30	30	60			
Sum		508.9	35	543.9			
Average		16.96333	1.166667	9.065			
Variance		68.32723	0.402299	97.22333			
	31						
Count		30	30	60			
Sum		619.9	35	654.9			
Average		20.66333	1.166667	10.915			
Variance		43.63344	0.402299	118.2854			
	Total						
Count		60	60				
Sum		1128.8	70				
Average		18.81333	1.166667				
Variance		58.51202	0.39548				
ANOVA							
Source of							
Variation		SS	df	MS	F	P-value	F crit
Sample		102.675	1	102.675	3.642079	0.058808	3.922879
Columns		9342.145	1	9342.145	331.3838	8.55E-36	3.922879
Interaction		102.675	1	102.675	3.642079	0.058808	3.922879
Within		3270.193	116	28.19132			
Total		12817.69	119				

P-value = 0.0588079 column in the ANOVA Source of Variation table at the bottom of the output. Because the p -values for both medicine dose and interaction are less than our significance level, these factors are statistically significant. On the other hand, the interaction effect is not significant because its p-value (0.0588) is greater than our significance level. Because the interaction effect is not significant, we can focus on only the main effects and not consider the interaction effect of the dose.

Practical 7:

```
A. Perform linear regression for prediction
   Using R tools
   > x < -c(151,174,138,186,128,136,179,163,152,131)
   > y <-c(63,81,56,91,47,57,76,72,62,48)
   > relation <-lm(y^x)
   > print(relation)
   Call:
   Im(formula = y \sim x)
   Coefficients:
   (Intercept)
                    Х
     -38.4551
                 0.6746
   > print(summary(relation))
   Call:
   Im(formula = y \sim x)
   Residuals:
     Min
            1Q Median 3Q Max
   -6.3002 -1.6629 0.0412 1.8944 3.9775
   Coefficients:
          Estimate Std. Error t value Pr(>|t|)
   (Intercept) -38.45509 8.04901 -4.778 0.00139 **
           Х
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Residual standard error: 3.253 on 8 degrees of freedom
   Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
   F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06
   > a <-data.frame(x=170)
   > result <- predict(relation,a)
   > print(result)
       1
   76.22869
   > png(file= "linearregression.png")
   > plot(y,x,col="blue",main= "Height & Weight
   Regression",abline(lm(x~y)0,cex=1.3,pch=16,xlab="WEIGHT in Kg",ylab="HEIGHT in cm")
   Error: unexpected numeric constant in "plot(y,x,col="blue",main= "Height & Weight
   Regression",abline(lm(x~y)0"
   > plot(y,x,col="blue",main= "Height & Weight
   Regression",abline(lm(x~y)0,cex=1.3,pch=16,xlab="WEIGHT in Kg",ylab="HEIGHT in cm")
```

Height & Weight Regression

Practical 8:

> library(caTools)

A. Perform Logistic regression **Using RTools** > quality <- read.csv('C:/Users/Gauri/Downloads/quality.csv') > str(quality) 'data.frame': 131 obs. of 14 variables: \$ MemberID : int 12345678910... \$ InpatientDays : int 0 1 0 0 8 2 16 2 2 4 ... \$ ERVisits : int 0101201012... \$ OfficeVisits : int 18 6 5 19 19 9 8 8 4 0 ... \$ Narcotics : int 1130321032... \$ DaysSinceLastERVisit: num 731 411 731 158 449 ... : int 10 0 10 34 10 6 4 5 5 2 ... \$ Pain \$ TotalVisits : int 18 8 5 20 29 11 25 10 7 6 ... \$ ProviderCount : int 21 27 16 14 24 40 19 11 28 21 ... \$ MedicalClaims : int 93 19 27 59 51 53 40 28 20 17 ... \$ ClaimLines : int 222 115 148 242 204 156 261 87 98 66 ... \$ StartedOnCombination: logi FALSE FALSE FALSE FALSE FALSE FALSE ... \$ AcuteDrugGapSmall : int 0150040000... : int 0000010010...\$ PoorCare > table(quality\$PoorCare) 0 1 98 33 > 98/131 [1] 0.7480916 > install.packages("caTools") Installing package into 'C:/Users/Gauri/Documents/R/win-library/4.1' (as 'lib' is unspecified) --- Please select a CRAN mirror for use in this session --- (Select Canada NS / Canada US) also installing the dependency 'bitops' trying URL 'https://cran.utstat.utoronto.ca/bin/windows/contrib/4.1/bitops 1.0-7.zip' Content type 'application/zip' length 42557 bytes (41 KB) downloaded 41 KB trying URL 'https://cran.utstat.utoronto.ca/bin/windows/contrib/4.1/caTools_1.18.2.zip' Content type 'application/zip' length 316382 bytes (308 KB) downloaded 308 KB package 'bitops' successfully unpacked and MD5 sums checked package 'caTools' successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\Gauri\AppData\Local\Temp\RtmpQjbOOR\downloaded packages

```
package 'caTools' was built under R version 4.1.3
> set.seed(88)
> split = sample.split(quality$PoorCare, SplitRatio = 0.75)
> split
[1] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
[25] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[37] FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
[49] FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[97] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[109] TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[121] FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
> qualityTrain = subset(quality, split == TRUE)
> qualityTest = subset(quality, split == FALSE)
> nrow(qualityTrain)
[1] 99
> nrow(qualityTest)
[1] 32
> QualityLog = glm(PoorCare ~ OfficeVisits + Narcotics,data=qualityTrain, family=binomial)
> summary(QualityLog)
Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial,
 data = qualityTrain)
Deviance Residuals:
  Min
        1Q Median
                     3Q
                          Max
-2.06303 -0.63155 -0.50503 -0.09689 2.16686
Coefficients:
     Estimate Std. Error z value Pr(>|z|)
Narcotics 0.07630 0.03205 2.381 0.01728 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 111.888 on 98 degrees of freedom
Residual deviance: 89.127 on 96 degrees of freedom
AIC: 95.127
```

Warning message:

Number of Fisher Scoring iterations: 4

```
> predictTrain = predict(QualityLog, type="response")
> summary(predictTrain)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.06623 0.11912 0.15967 0.25253 0.26765 0.98456
> tapply(predictTrain, qualityTrain$PoorCare, mean)
    0
0.1894512 0.4392246
> table(qualityTrain$PoorCare, predictTrain > 0.5)
  FALSE TRUE
0 70 4
 1 15 10
> 10/25
[1] 0.4
> 70/74
[1] 0.9459459
> table(qualityTrain$PoorCare, predictTrain > 0.2)
  FALSE TRUE
0 54 20
 1 9 16
> 16/25
[1] 0.64
> 54/74
[1] 0.7297297
> install.packages("ROCR")
Installing package into 'C:/Users/Gauri/Documents/R/win-library/4.1'
(as 'lib' is unspecified)
also installing the dependencies 'gtools', 'gplots'
trying URL 'https://cran.utstat.utoronto.ca/bin/windows/contrib/4.1/gtools_3.9.2.zip'
Content type 'application/zip' length 366977 bytes (358 KB)
downloaded 358 KB
trying URL 'https://cran.utstat.utoronto.ca/bin/windows/contrib/4.1/gplots 3.1.1.zip'
Content type 'application/zip' length 603166 bytes (589 KB)
downloaded 589 KB
trying URL 'https://cran.utstat.utoronto.ca/bin/windows/contrib/4.1/ROCR_1.0-11.zip'
Content type 'application/zip' length 454019 bytes (443 KB)
downloaded 443 KB
package 'gtools' successfully unpacked and MD5 sums checked
package 'gplots' successfully unpacked and MD5 sums checked
package 'ROCR' successfully unpacked and MD5 sums checked
```

The downloaded binary packages are in

C:\Users\Gauri\AppData\Local\Temp\RtmpQjbOOR\downloaded_packages

> library(ROCR)

Warning message:

package 'ROCR' was built under R version 4.1.3

- > ROCRpred = prediction(predictTrain, qualityTrain\$PoorCare)
- > ROCRperf = performance(ROCRpred, "tpr", "fpr")

- > plot(ROCRperf)
- > plot(ROCRperf, colorize=TRUE)
- > plot(ROCRperf, colorize=TRUE, print.cutoffs.at=seq(0,1,by=0.1), text.adj=c(-0.2,1.7))

Practical 9:

A. Perform testing of hypothesis using Z-test from statsmodels.stats import weightstats as stests import pandas as pd from scipy import stats df = pd.read_csv("blood_pressure.csv") df[['bp_before','bp_after']].describe() print(df) ztest ,pval = stests.ztest(df['bp_before'], x2=None, value=156) print(float(pval)) if pval<0.05: print("reject null hypothesis") else: print("accept null hypothesis")</p>

OUTPUT:

OUTPU)1;				
	patient	gender	agegrp	bp_before	bp_after
0	1	Male	30-45	143	153
1	2	Male	30-45	163	170
2	3	Male	30-45	153	168
3	4	Male	30-45	153	142
4	5	Male	30-45	146	141
115	116	Female	60+	152	152
116	117	Female	60+	161	152
117	118	Female	60+	165	174
118	119	Female	60+	149	151
119	120	Female	60+	185	163
0.66	rows x 5 516147302 pt null h	55063	-		