Tutorial #1 Solutions

Guo Yuanxin

January 2020

1. Find an example such that $\operatorname{Arg}(z \cdot w) \neq \operatorname{Arg} z + \operatorname{Arg} w$. And show that if $\operatorname{Re} z > 0$ and $\operatorname{Re} w > 0$ then $\operatorname{Arg}(z \cdot w) = \operatorname{Arg} z + \operatorname{Arg} w$.

Remark. Recall that the argument, denoted by arg, is not unique. Basically, for arguments, the relation

(1)
$$\arg(z \cdot w) = \arg z + \arg w$$

holds. This can be proved by the exponential form of complex numbers. However, the notation Arg denotes the principal value of the argument, which is restricted to $-\pi < \text{Arg } z \leq \pi$. The restriction makes the equality (1) unable to be inherited to principal values.

Solution. Take

$$z = w = e^{i\frac{3\pi}{4}} = \frac{1}{\sqrt{2}}(-1+i).$$

Now Arg $z = \text{Arg } w = \frac{3\pi}{4}$, and Arg $z + \text{Arg } w = \frac{3\pi}{4}$.

Now we compute $z \cdot w$.

$$z \cdot w = \left(e^{i\frac{3\pi}{4}}\right)^2 = e^{i\frac{-\pi}{2}} = -i,$$

and it is obvious from the exponential form that $\operatorname{Arg}(z \cdot w) = \frac{-\pi}{2}$. Still, we observe that although

$$\operatorname{Arg}(z \cdot w) \neq \operatorname{Arg} z + \operatorname{Arg} w$$

two sides of the inequality differ by an integer multiple of 2π . This follows readily from the definition.

For the second part, note that if $\operatorname{Re} z > 0$ and $\operatorname{Re} w > 0$, we have

$$\frac{-\pi}{2}<\operatorname{Arg} z,\ \operatorname{Arg} w<\frac{\pi}{2},$$

or more compactly,

$$|\operatorname{Arg} z|, \ |\operatorname{Arg} w| < \frac{\pi}{2}.$$

By triangle inequality for real numbers,

$$|\operatorname{Arg} z + \operatorname{Arg} w| \le |\operatorname{Arg} z| + |\operatorname{Arg} w| < \pi.$$

Since $\operatorname{Arg}(z \cdot w) = \operatorname{Arg} z + \operatorname{Arg} w + 2n\pi$, $n \in \mathbb{N}$, and $-\pi < \operatorname{Arg} z + \operatorname{Arg} w < \pi$. We can say that n = 0, which proves our claim.

2. Prove that

$$\left| \frac{z - w}{1 - \overline{z}w} \right| < 1$$

if |z| < 1 and |w| < 1.

Remark. One property of complex arithmetic is that the modulus of the product/quotient equals to the product/quotient of the modulus (Easily shown by exponential form).

Solution 1. Using the property stated in the remark, we have

$$\left| \frac{z - w}{1 - \overline{z}w} \right| < 1 \iff |z - w| < |1 - \overline{z}w| \iff |z - w|^2 < |1 - \overline{z}w|^2.$$

Expand both sides,

$$|z - w|^2 = (z - w)\overline{(z - w)}$$

$$= (z - w)(\overline{z} - \overline{w})$$

$$= |z|^2 - 2\operatorname{Re}(z\overline{w}) + |w|^2,$$

$$|1 - \overline{z}w|^2 = (1 - \overline{z}w)\overline{(1 - \overline{z}w)}$$

$$= (1 - \overline{z}w)(1 - z\overline{w})$$

$$= 1 - 2\operatorname{Re}(z\overline{w}) + |z|^2|w|^2.$$

Note that when |z| < 1 and |w| < 1,

$$(|z|-1)(|w|-1) = |z|^2|w|^2 - |z|^2 - |w|^2 + 1 > 0.$$

This essentially says that $|z-w|^2 < |1-\overline{z}w|^2$, which finishes our proof.

Solution 2. Note that we can write z - w and $\overline{z}w$ in the following form:

$$z - w = |z|e^{i\theta_z} - |w|e^{i\theta_w}$$

$$= e^{i\theta_z} \cdot (|z| - |w|e^{i(\theta_w - \theta_z)}),$$

$$\overline{z}w = |z|e^{-i\theta_z} \cdot |w|e^{i\theta_w}$$

$$|z||w|e^{i(\theta_w - \theta_z)}.$$

Hence,

$$\left| \frac{z - w}{1 - \overline{z}w} \right| = \left| \frac{e^{i\theta_z} \cdot \left(|z| - |w|e^{i(\theta_w - \theta_z)} \right)}{1 - |z||w|e^{i(\theta_w - \theta_z)}} \right|$$
$$= \left| \frac{|z| - |w|e^{i(\theta_w - \theta_z)}}{1 - |z||w|e^{i(\theta_w - \theta_z)}} \right|$$

The whole expression does not depend on the choice of θ_z , but rather the difference $\theta_w - \theta_z$. W.l.o.g, we can assume that z is real.

Exercise 1. Finish the proof with the assumption that z is real.

Exercise 2. If $\overline{z}w \neq 1$, prove that

$$\left| \frac{z-w}{1-\overline{z}w} \right| = 1$$
 if $|z| = 1$ or $|w| = 1$.

Exercise 3. Consider the mapping F_w

$$F_w: z \mapsto \frac{w-z}{1-\overline{w}z}.$$

This family of mappings, sometimes called **Blaschke factors**, has various applications in complex analysis. It satisfies the following conditions:

- (i) F_w maps \mathbb{D} to \mathbb{D} , and is holomorphic.
- (ii) F_w interchanges 0 and w, namely $F_w(0) = w$ and $F_w(w) = 0$.
- (iii) $|F_w(z)| = 1$ if |z| = 1.
- (iv) F_w is a involution, i.e. $F_w \circ F_w = i$. This implies F_w is bijective.
- (v) Construct a bijective, holomorphic function that interchanges two given complex numbers z and w.

Solution. By Exercise 3, it is direct that F_w maps \mathbb{D} to \mathbb{D} and $|F_w(z)| = 1$ if |z| = 1. The holomorphicity follows from that the function is the quotient of two holomorphic (linear) functions. Note that the denominator is never 0 when $z \in \mathbb{D}$ because $|\overline{w}z| = |w||z| < 1$. For (ii), this is obtained by direct calculation.

For (iv), we compute $(F_w \circ F_w)(z)$:

equivalent, F_w is bijective.

 $(F_w \circ F_w)(z) = \frac{w - \frac{w - z}{1 - \overline{w}z}}{1 - \overline{w} \cdot \frac{w - z}{z - \overline{w}}} = \frac{w - |w|^2 z - w + z}{1 - \overline{w}z - |w|^2 + \overline{w}z} = \frac{z - z|w|^2}{1 - |w|^2} = z.$

Hence $F_w \circ F_w = i$, otherwise put, $F_w = F_w^{-1}$. Since bijectivity and invertibility are

For (v), by our previous argument, we essentially need to find a complex number a such that F_{ζ} maps z to w and maps w to z (readily follows by F_{ζ} is an involution.) Hence we have:

$$w = F_{\zeta}(z) = \frac{\zeta - z}{1 - \overline{\zeta}z}.$$

Simplify, we get

$$\zeta = z + w - \overline{\zeta}zw.$$

Equating the real and imaginary parts respectively, we eventually get

Re
$$\zeta = \frac{bd - a(1 - c)}{d^2 + c^2 + 1}$$

Im $\zeta = \frac{ad - b(1 + c)}{d^2 + c^2 + 1}$,

where

$$a = \text{Re}(z + w), \ b = \text{Im}(z + w), \ c = \text{Re}(zw), \ d = \text{Im}(zw).$$

3. Prove the Cauchy-Schwarz inequality

$$\left| \sum_{k=1}^{n} z_k w_k \right|^2 \le \sum_{k=1}^{n} |z_k|^2 \sum_{k=1}^{n} |w_k|^2.$$

Solution. As you might have noticed, the form is not very similar to *Cauchy-Schwarz* inequality that you have learnt in Linear Algebra at first sight. However, a direct use of triangle inequality yields

$$\left| \sum_{k=1}^{n} z_k w_k \right|^2 \le \left(\sum_{k=1}^{n} |z_k w_k| \right)^2 \le \sum_{k=1}^{n} |z_k|^2 \sum_{k=1}^{n} |w_k|^2.$$

The right hand part of this inequality is the classical Cauchy-Schwarz inequality, always written as $(x^{\top}y)^2 \leq ||x||^2 ||y||^2$ in a Linear Algebra context.

Remark. Here we give a delicate proof of the Cauchy-Schwarz inequality. We claim that

$$(\sum_{i} x_{i} y_{i})^{2} = (\sum_{i} x_{i}^{2})(\sum_{i} y_{i}^{2}) - \frac{1}{2} \sum_{i} \sum_{j} (x_{i} y_{j} - x_{j} y_{i})^{2}.$$

Note that the Cauchy-Schwarz inequality is the direct consequence of our claim since the last term is always negative.

We expand the L.H.S. as

L.H.S. =
$$(\sum_{i} x_i y_i)^2 = (\sum_{i} x_i y_i)(\sum_{j} x_j y_j) = \sum_{i} \sum_{j} x_i y_i x_j y_j.$$

While the R.H.S can be written as

R.H.S.
$$= \frac{1}{2} \left(\sum_{i} x_{i}^{2} \right) \left(\sum_{j} y_{j}^{2} \right) + \frac{1}{2} \left(\sum_{j} x_{j}^{2} \right) \left(\sum_{i} y_{i}^{2} \right) - \frac{1}{2} \sum_{i} \sum_{j} \left(x_{i} y_{j} - x_{j} y_{i} \right)^{2}$$

$$= \frac{1}{2} \sum_{i} \sum_{j} \left(x_{i}^{2} y_{j}^{2} + x_{j}^{2} y_{i}^{2} - x_{i}^{2} y_{j}^{2} - x_{j}^{2} y_{i}^{2} + 2 x_{i} y_{i} x_{j} y_{j} \right)$$

$$= \sum_{i} \sum_{j} x_{i} y_{i} x_{j} y_{j}.$$

The proof is complete.

4. Use de Moivre's formula to derive

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin \theta^2$$
 $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$.

Solution. We use de Moivre's formula together with the binomial formula.

$$(\cos \theta + i \sin \theta)^3 = \cos^3 \theta + 3i \cos^2 \theta \sin \theta - 3 \cos \theta \sin \theta^2 - i \sin^3 \theta$$
$$= \cos 3\theta + i \sin 3\theta.$$

By equating the real part and the imaginary part of both sides, the two identities are readily established.

5. Sketch the following sets and determine which are domains

(a)
$$|z-2+i| \le 1$$
 (b) $|2z+3| > 4$ (c) $\text{Im } z < 2$ (d) $|z-4| \le |z|$

Remark. It is useful to remind yourself that \mathbb{C} is isomorphic to \mathbb{R}^2 , and modulus is "isomorphic" to the Euclidean distance.

Solution.

- (b). By the analysis in the remark, it is not hard to find that the set is simply $\mathbb{C} \setminus \{z : |z (-3/2)| \le 2\}$. It is the complement of a closed disc, so it is open and connected. By definition, it is a domain.
- (d). This characterizes the halfplane $\{z : \text{Re } z \geq 2\}$. This is a closed set, so it's not a domain.
- **6. Some topology.** A point z_0 is an *interior point* of a set S if there is a neighbourhood of z_0 contained in S. A point z_0 is an *exterior point* of a set S if there is a neighbourhood of z_0 contained in the complement of S. If z_0 is neither an interior nor an exterior point of S, it is called a *boundary* point. A set S is *open* if it does not contain any boundary points, or equivalently, each point of S is an interior point. A set S is *closed* if it contains all its boundary points; hence its complement is open.

A point z_0 is an accumulation point or limit point of a set S if each deleted neighbourhood of z_0 contains at least one point of S. A set is closed if and only if it contains all of its accumulation points.

A set is bounded if it is contained in a disk |z| < R for some positive R, otherwise it is unbounded.

Bolzano-Weierstrass theorem says that every bounded infinite set has at least one accumulation point.

A set S (as a topological space) is *sequentially compact* if every sequence of points in S has a convergent subsequence converging to a point in S. Assume S is a subset of \mathbb{C} , (or more general, of \mathbb{R}^n). If S is sequentially compact, then S is bounded and closed.

Exercise 4. A set Ω is said to be **pathwise connected** if any two points in Ω can be joined by a (piecewise-smooth) curve entirely contained in Ω . The purpose of this exercise is to prove that an *open* set Ω is pathwise connected if and only if Ω is connected.

(a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let γ denote a curve in Ω joining w_1 to w_2 . Consider a parametrization $z : [0,1] \to \Omega$ of this curve with $z(0) = w_1$ and $z(1) = w_2$, and let

$$t^* = \sup_{0 \le t \le 1} \{ t : z(s) \in \Omega_1, \ \forall \ 0 \le s < t \}$$

Arrive at a contradiction by considering the point $z(t^*)$.

(b) Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also,

let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω . Prove that both Ω_1 and Ω_2 are open, disjoint and their union is Ω . Finally, since Ω_1 is non-empty (why?) conclude that $\Omega = \Omega_1$ as desired.

The proof actually shows that the regularity and type of curves we used to define pathwise connectedness can be relaxed without changing the equivalence between the two definitions when Ω is open. For instance, we may take all curves to be continuous, or simply polygonal lines.

Solution.

(a) By the way we select t^* , $z(t^*)$ is a limit point of Ω_1 . But $z(t^*) \notin \Omega_1$. Consider the part of the curve γ parametrized by z(t) where $t \in [t^*, 1]$. If $z(t^*) \in \Omega_1$, by openness of Ω_1 , there exists a $\epsilon > 0$ where $z(t) \in \Omega_1$ whenever $t \in [t^*, t^* + \epsilon)$. This contradicts with the selection of t^* . Hence $z(t^*) \in \Omega_2$ since $\Omega = \Omega_1 \cup \Omega_2$. But by openness of Ω_2 , there exists a δ -neighborhood $V_{\delta}(z(t^*))$ that is entirely contained in Ω_2 . But since $z(t^*)$ is a limit point of Ω_1 , $V_{\delta}(z(t^*)) \cap \Omega_1 \neq \emptyset$, which implies $V_1 \cap V_2 \neq \emptyset$. This contradicts with the assumption that Ω_1 and Ω_2 are disjoint.

(b) The disjointness of the two sets are straightforward from the definitions. It is also direct that $\Omega = \Omega_1 \cup \Omega_2$. Now consider an arbitrary element $x \in \Omega_1$, by openness of Ω , there exists $V_{\delta}(z(t^*)) \subset \Omega$. It is obvious that any point x' in a open disc $V_{\delta}(z(t^*))$ can be connected by a smooth curve to the center x. By adjoining the smooth curve from x to x' to the curv

Still by openness of Ω , there exists a $V_{\delta}(w) \subset \Omega$. Therefore Ω_1 is not empty since $V_{\delta}(w) \subset \Omega_1$. By definition of connectedness, we conclude that $\Omega_2 = \emptyset$.

- End -