Le clustering

Partie 1 : La théorie

Présenté par Morgan Gautherot

Classification vs clustering

Apprentissage supervisé - Classification - Données labélisées (x, y)

Apprendre à passer de x à y

Apprentissage non supervisé - Clustering - Données non labélisées (x)

Apprendre les structures cachées

Panier moyen

Centroïde

Les algorithmes de clustering

Le hierarchical clustering

Le K-means

Gaussian Mixture

DB-SCAN

Tout savoir sur la théorie

Code l'algorithme from scratch

Utilisation des sklearn

Valider un modèle de clustering

La forme

La stabilité

• Le cohérence

Tightness ou tension

 T_k faible

 T_k élevée

$$n_k = |C_k|$$

$$\mu_k = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$$

$$T_k = \frac{1}{n_k} \sum_{x \in C_k} d(x, \mu_k)$$

Tightness ou tension

$$T = \frac{1}{K} \sum_{k=1}^{K} T_k$$

T élevée

Séparation des clusters

$$S_{kl} = d(\mu_k, \mu_l)$$

$$S = \frac{2}{K(K-1)} \sum_{k=1}^{K} \sum_{l=k+1}^{K} S_{kl}$$

S élevée

S faible

Davies-Bouldin index

$$D_k = \max_{l:l \neq k} \frac{T_k + T_l}{S_{kl}}$$

1

$$DB = \frac{1}{K} \sum_{k=1}^{K} D_k$$

 $n_k = |C_k|$ C_k

Le coefficient de silhouette

 $s\epsilon[-1,1]$

$$a = \frac{1}{n_k} \sum_{i \in C_k} d(x_p, x_i)$$

Le coefficient de silhouette

Le coefficient de silhouette

K = 2

K = 2 Instable

$$K = 3$$

K = 2 Instable

K = 3

K = 2 Instable

K = 3 Stable

A vs B

A vs B

Rand index =
$$\frac{nb \ dans \ la \ même \ classe}{nb \ total \ d'observations} = \frac{12}{14}$$

 Utilisez les connaissances métiers de vos collaborateurs pour vérifier la pertinence du cluster.

Cas d'application

Personas

Cluster 1 Agé de plus de 50 ans, achète peu mais des gros montants

Cluster 2 Agé de moins de 20 ans, achète beaucoup mais des petits montants

Cluster 3 Agé de moins de 30 ans, achète beaucoup et des gros montants

Détermination du nombre de classes

Distortion ou Sum of Square Error (SSE)

$$SSE = \sum_{i} \sum_{i} D(c_{i}, x_{i})^{2}$$

Avec:

- *c_i*: Le centre du cluster (centroïd)
- x_i : la ième observation dans le cluster ayant pour centroïd c_i
- $D(c_i, x_i)$: La distance entre le centre du cluster et le point x_i

Détermination du nombre de classes

K = 3

SSE Faible

Méthode du coude

Nombre de clusters