КАФЕДРА						
OTHER						
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ						
РУКОВОДИТЕЛЬ						
должность, уч. степень, звание	подпись, дата	инициалы, фамилия				
Отчет о	лабораторной работе М	<u>6</u> 4				
Основные поня	ятия теории конечных а	втоматов				
По дисциплине:	Геория вычислительных	х процессов				
РАБОТУ ВЫПОЛНИЛ						
СТУДЕНТ ГР. №						

подпись, дата

инициалы, фамилия

Цель работы:

Целью данной работы является разработка конечного автомата Мили, который позволяет проверять входные слова на соответствие заданному регулярному выражению. В ходе выполнения задания автомат будет представлен тремя различными способами, что позволит продемонстрировать его функциональность и гибкость в реализации алгоритма проверки.

Задание:

- Построить конечный автомат Мили, который осуществляет проверку входного слова на допустимость в заданном регулярном выражении;
- Задать построенный КНА, тремя способами.

Выполнение задания:

Вариант:

13) < x < e > f > abc(x | < l | m >)

- 1. Основные сведения из теории
- 1.1. Определение конечного автомата (КНА).

КНА называется кортеж (пятерка)

 $S = \langle X, Q, U, \delta, \lambda \rangle$, где

 $X = \{x1, x2, ..., xn\}$ - входной алфавит КНА

 $Q = \{q1, q2, ..., qm\}$ - алфавит внутренних состояний конечного автомата

 $U = \{u1, u2, ..., uk\}$ - выходной алфавит КНА

δ: X * Q -> Q - функция переходов (отображение) внутренних состояний КНА

 $\lambda: X * U -> U$ - функция выходов

 $X = \{x, e, f, a, b, c, l, m\}$ - входной алфавит КНА

 $Q = \{q0, q1, q2, q3, q4, q5, q6\}$ - алфавит внутренних состояний конечного автомата

 $U = \{0, 1\}$ - выходной алфавит КНА

 $Q_f = \{q5, q6, q7\}$

1.

Объединенная:

q_j/x_i	X	e	f	a	b	С	1	m
q0	q1/0			q3/0				
q1		q1/0	q2/0					
q2	q1/0			q3/0				
q3					q4/0			
q4						q5/1		
q5	q6/1						q5/1	Q5/1
q6								

2.

3.							
q_j/q_i	q0	q1	q2	q3	q4	q5	q6
q0		e/1		a/0			
q1		e/0	f/0				
q2		x/0		a/0			
q3					b/0		
q4						c/1	
q5						1/1 m/1	x/1
q6							

Вывод:

В результате выполнения работы был успешно разработан конечный автомат Мили, который эффективно проверяет входные слова на допустимость в соответствии с заданным регулярным выражением. Все поставленные задачи выполнены, и автомат был представлен тремя различными способами, что подтвердило его функциональность и правильность реализации.