Dạng 2: Bài tập về phản ứng oxi hóa của các hiđrocacbon thơm

A. Lý thuyết và phương pháp giải

1. Phản ứng oxi hóa hoàn toàn:

- Phương trình phản ứng:

$$C_n H_{2n-6} + \frac{3n-3}{2} O_2 \xrightarrow{t^o} nCO_2 + (n-3)H_2O$$

Ta thấy:
$$n_{CO_2} > n_{H_2O}$$
; $n_{C_nH_{2n-6}} = \frac{n_{CO_2} - n_{H_2O}}{3}$

- Phương pháp giải: Phối hợp triệt để các định luật bảo toàn:
- + Bảo toàn khối lượng:

$$m_{C_n H_{2n-6}} + m_{O_2} = m_{CO_2} + m_{H_2O}$$

+ Bảo toàn nguyên tố:

$$S \hat{o} C = n = \frac{n_{CO_2}}{n_{C_n H_{2n-6}}}$$

2. Phản ứng oxi hóa không hoàn toàn:

Benzen không bị oxi hóa bởi dung dịch KMnO₄, các đồng đẳng của benzen bị oxi hóa bởi KMnO₄ khi đun nóng.

VD:
$$C_6H_5CH_3 + 2KMnO_4 \xrightarrow{t^{\circ}} C_6H_5 - COOK + 2MnO_2 + KOH + H_2O$$

B. Ví dụ minh họa:

Ví dụ 1: Đốt cháy hoàn toàn hiđrocacbon X cho CO₂ và H₂O theo tỉ lệ mol 1,75:1 về thể tích. Cho bay hơi hoàn toàn 5,06 gam X thu được một thể tích hơi đúng bằng thể tích của 1,76 gam oxi trong cùng điều kiện.

Nhận xét nào sau đây là đúng đối với X?

- A. X tác dung với dung dịch brom tạo kết tủa trắng.
- B. X không làm mất màu dung dịch brom nhưng làm mất màu dung dịch KMnO₄ đun nóng.
- C. X có thể trùng hợp tạo PS.
- D. X tan tốt trong nước.

Hướng dẫn giải:

$$n_{O_2} = \frac{1,76}{32} = 0,055 \text{mol}$$

Có
$$n_C: n_H = 1,75: 2 = 7:8$$

 \Rightarrow Công thức của X có dạng $(C_7H_8)_n$

$$M_X = 5,06 ; 0,05 = 92$$

Suy ra
$$92n = 92 \implies n = 1$$

- ⇒ X là toluen.
- \Rightarrow Nhận định đúng là nhận định B: X không làm mất màu dung dịch brom nhưng làm mất màu dung dịch KMnO₄ đun nóng.

Đáp án B

Ví dụ 2: Đốt cháy hoàn toàn 6 gam chất hữu cơ A, đồng đẳng của benzen thu được 10,08 lít CO₂ (đktc). Công thức phân tử của A là

- A. C_7H_8 .
- B. C_8H_{10} .
- C. C_9H_{12} .
- D. $C_{10}H_{14}$.

Hướng dẫn giải:

Gọi công thức của A là C_nH_{2n-6}

$$n_{CO_2} = \frac{10,08}{22,4} = 0,45 \text{mol}$$

$$\Rightarrow$$
 Ta có $n_A = \frac{n_{CO_2}}{n} = \frac{0.45}{n}$

$$\Rightarrow$$
 M_A = $\frac{6}{0.45 \cdot n} = \frac{6n}{0.45}$

Mặt khác ta có $M_A = 14n - 6$ nên ta suy ra n = 9

A là C₉H₁₂

Đáp án C

Ví dụ 3: Để oxi hóa được hết 10,6 gam o-xylen (1,2- đimetylbenzen) cần bao nhiều lít dung dịch $KMnO_4$ 0,5M trong môi trường H_2SO_4 loãng. Giả sử dùng dư 20% so với lượng phản ứng.

- A. 0,48 lít.
- B. 0,24 lít.
- C. 0,12 lít.
- D. 0,576 lít.

Hướng dẫn giải:

Phương trình phản ứng:

$$5 H_{3}C - C_{6}H_{4} - CH_{3} + 12KMnO_{4} + 18H_{2}SO_{4} \rightarrow 5HOOC - C_{6}H_{4} - COOH + 6K_{2}SO_{4} + 12MnSO_{4} + 28H_{2}O$$

$$n_{KMnO_4} = \frac{12}{5} n_{o-xylen} = 0,24 mol$$

$$\Rightarrow$$
 n_{KMnO₄} dùng = 0,24.20% = 0,288 mol

$$V_{dd \ KMnO4} = 0.288 : 0.5 = 0.576 \ lit$$

Đáp án D

C. Bài tập tự luyện

Câu 1: Nitro hóa benzen được 14,1 gam hỗn hợp hai chất nitro có khối lượng phân tử hơn kém nhau 45 đvC. Đốt cháy hỗn hợp hai chất nitro này thu được 0,07 mol nitơ. Hai chất nitro đó là

A. $C_6H_5NO_2$ và $C_6H_4(NO_2)_2$.

B. $C_6H_4(NO_2)_2$ và $C_6H_3(NO_2)_3$.

C. $C_6H_3(NO_2)_3$ và $C_6H_2(NO_2)_4$.

D. $C_6H_2(NO_2)_4$ và $C_6H(NO_2)_5$.

Hướng dẫn giải:

Gọi công thức phân tử trung bình của 2 chất là: $C_6H_{6-\bar{n}}(NO_2)_{\bar{n}}$

Ta có sơ đồ:

$$C_{6}H_{6-\bar{n}}(NO_{2})_{\bar{n}} \xrightarrow{O_{2},t} 6CO_{2} + \frac{6-\bar{n}}{2}H_{2}O + \frac{\bar{n}}{2}N_{2}$$

$$\frac{14.2}{78 + 45\bar{n}} \frac{\bar{n}}{2} \cdot \frac{14.2}{78 + 45\bar{n}}$$

Từ đây suy ra:
$$\frac{\bar{n}}{2} \cdot \frac{14.2}{78 + 45\bar{n}} = 0.07 \implies \bar{n} = 1.4$$

Theo giả thuyết 2 chất hơn nhau 45 đvC nên phân tử của chúng hơn kém nhau 1 nhóm NO_2 . Suy ra 2 chất là $C_6H_5NO_2$ và $C_6H_4(NO_2)_2$.

Đáp án A

Câu 2: Đốt cháy hết 2,295 gam 2 đồng đẳng của benzen A, B thu được 2,025 gam H₂O và CO₂. Dẫn toàn bộ lượng CO₂ vào 250 ml dung dịch NaOH 1M thu được m gam muối. Giá trị của m và thành phần của muối là

A. 16,195; 2 muối.

B. 16,195; Na₂CO₃.

C. 7,98; NaHCO₃.

D. 10,6; Na₂CO₃.

Hướng dẫn giải:

$$n_{H_2O} = 0.1125 \text{mol}$$

Gọi công thức 2 đồng đẳng benzen là C_nH_{2n-6}

$$C_n H_{2n-6} + \frac{3n-3}{2} O_2 \xrightarrow{t^\circ} nCO_2 + (n-3)H_2O$$

$$\frac{1}{n-3}$$
.0,1125

0,1125 mol

Mặt khác:
$$n_{C_nH_{2n-6}} = \frac{2,295}{14n-6}$$

Suy ra
$$n_{C_nH_{2n-6}} = \frac{2,295}{14n-6} = \frac{1}{n-3}.0,1125 \implies n = 8,625$$

Suy ra A, B là C_8H_{10} và C_9H_{12}

Suy ra số mol CO₂ là 0,1725 mol

Ta có $1 < \frac{n_{OH^-}}{n_{CO_2}} = 1,44 < 2$ nên phản ứng trên tạo 2 muối là muối trung hòa và muối

axit.

Gọi số mol Na₂CO₃ và NaHCO₃ lần lượt là x và y

Ta có hệ phương trình:

$$\begin{cases} x + y = 0.1725 \\ 2x + y = 0.25 \end{cases} \Rightarrow \begin{cases} x = 0.775 \\ y = 0.095 \end{cases}$$

$$m_{mu\acute{o}i} = 16,195 g$$

Đáp án A

Câu 3: Đốt cháy m gam 2 đồng đẳng của benzen A, B thu được 4,05 gam H₂O và 7,728 CO₂ (đktc). Giá trị của m và tổng số mol của A, B là

A. 4,59 và 0,04

B. 4.59 và 0,08

C. 9,14 và 0,04

D. 9,18 và 0,08

Hướng dẫn giải:

$$n_{H_{2O}} = 0,225 \text{mol}; n_{CO_2} = 0,345 \text{mol}$$

$$m = m_C + m_H = 0.345.12 + 0.225.2 = 4.59 \ g$$

Ta có:
$$n_{A,B} = \frac{n_{CO_2} - n_{H_2O}}{3} = 0,04 \text{mol}$$

Đáp án A

Câu 4: Đốt cháy hoàn toàn 0,1 mol C_xH_y thu được 20,16 lít CO_2 (đktc) và 10,8 gam H_2O . Công thức của C_xH_y là

A. C_7H_8 .

 $B. C_8 H_{10}.$

 $C. C_9H_{12}.$

D. $C_{10}H_{14}$.

Hướng dẫn giải:

 $n_{CO_2} = 0.9 \text{mol}; n_{H_2O} = 0.6 \text{mol}$

$$\Rightarrow$$
 x = $\frac{n_{CO_2}}{0.1}$ = 9; y = $\frac{0.6.2}{0.1}$ = 12

Công thức là C₉H₁₂

Đáp án C

Câu 5: Đốt cháy 0,13 gam mỗi chất A và B đều thu được 0,01 mol CO₂ và 0,09 mol H₂O. Tỉ khối hơi của A so với B là 3; tỉ khối của B so với H₂ là 13. Công thức của A và B lần lượt là

A. C_2H_2 và C_6H_6 .

B. C_6H_6 và C_2H_2 .

 $C. C_2H_2$ và C_4H_4 .

D. C_6H_6 và C_8H_8 .

Hướng dẫn giải:

 $M_B=13.2=26\; \text{n\'en}\; B\; \text{l\`a}\; C_2H_2.$

Dựa vào đáp án, ta có thể chọn luôn đáp án B

Đáp án B

Câu 6: Đốt cháy hoàn toàn 2,34 gam hiđrocacbon X, cho sản phẩm qua nước vôi trong dư thu được 18 gam kết tủa trắng. Biết $M_X = 78$ và X không làm mất màu dung dịch nước brom. CTPT của X là

A. benzen.

B.
$$CH \equiv C - CH_2 - C = CH$$

C.
$$CH_3 - C \equiv C - C \equiv C - CH_3$$

D.
$$CH \equiv C - C \equiv C - CH_2 - CH_3$$

Hướng dẫn giải:

 $n_{k\acute{e}t\ t\mathring{u}a} = 0,18\ mol;\ n_X = 0,03\ mol$

$$n_{\rm H} = \frac{m - m_{\rm C}}{1} = \frac{2,34 - 0,18.12}{1} = 0,18 \text{mol}$$

Gọi công thức của hiđrocacbon là C_xH_y

$$\Rightarrow$$
 x = $\frac{0.18}{0.03}$ = 6; y = 6 \rightarrow C₆H₆

X không làm mất màu dung dịch nước brom nên X là benzen

Đáp án A

Câu 7: Đốt cháy hoàn toàn 26,5 gam một ankylbenzen X cần 294 lít không khí (đktc). Oxi hóa X thu được axit benzoic. Giả thiết không khí chứa 20% oxi và 80% nitơ. X là

A. toluene.

B. o-metyltoluen.

C. etylbenzen.

D. o-etylbenzen.

Hướng dẫn giải:

Gọi công thức của X là C_nH_{2n-6}.

Ta có $V_{oxi} = 294.20\% = 58,8 \text{ lít} \rightarrow n_{_{O_2}} = 2,625\text{mol}$

$$C_n H_{2n-6} + \frac{3n-3}{2} O_2 \xrightarrow{t^o} nCO_2 + (n-3)H_2O$$

$$\frac{2}{3n-3}$$
.2,625 2,625 mol

Mặt khác $n_X = 26.5 : (14n - 6)$ nên ta có

$$\frac{2}{3n-3}$$
.2,625 = $\frac{2}{6}$,5 : (14n - 6) \rightarrow n = 8

X là C₈H₁₀

Đáp án C

Câu 8: Đốt cháy hết 9,18 gam 2 đồng đẳng của benzen A, B thu được 4,05 gam H₂O và V lít CO₂ (đktc). Giá trị của V là

A. 15,654

B. 15,465.

C. 15,546.

D. 15,456.

Hướng dẫn giải:

$$n_{H_2O} = \frac{8.1}{18} = 0.45 \text{mol} \Rightarrow n_H = 0.9 \text{mol}$$

Ta có

$$n_{C} = \frac{m_{A,B} - m_{H}}{12} = \frac{9,18 - 0,9.1}{12} = 0,69 \text{mol}$$

$$\Rightarrow$$
 $n_{CO_2} = n_C = 0,69 \text{mol}$

$$V = 0,69. 22,4 = 15,456$$
lít

Đáp án D

Câu 9: Đốt cháy hoàn toàn A (C_xH_y) thu được 8 lít CO_2 và cần dùng 10,5 lít oxi.

Công thức phân tử của A là

A. C_7H_8 .

 $B. C_8 H_{10}.$

 $C. C_9H_{12}.$

D. $C_{10}H_{14}$.

Hướng dẫn giải:

Coi tỉ lệ về thể tích cũng chính là tỉ lệ về số mol

Bảo toàn nguyên tố oxi: $V_{H2} = 2$. 10,5 - 2.8 = 5 lít

$$\Rightarrow$$
 x: y = 8: (5.2) = 8:10

Đáp án B

Câu 10: Đốt cháy hoàn toàn một thể tích hơi hợp chất hữu cơ A cần 10 thể tích oxi (đo cùng điều kiện nhiệt độ và áp suất), sản phẩm thu được chỉ gồm CO_2 và H_2O với m_{CO_2} : $m_{H_2O} = 44:9$. Biết $M_A < 150$. A có công thức phân tử là

A. C_4H_6O .

B. C_8H_8O .

 $C. C_8H_8.$

D. C₂H₂.

Hướng dẫn giải:

Từ giả thiết m_{CO_2} : $m_{H_2O} = 44:9$ suy ra n_{CO_2} : $n_{H_2O} = 1:0,5 \Rightarrow n_C: n_H = 1:1$

A có thể có hoặc không có oxi, đặt công thức của A là $C_xH_xO_y$ Phương trình phản ứng:

$$C_x H_x O_y + \left(\frac{5x}{4} - \frac{y}{2}\right) O_2 \xrightarrow{t^\circ} xCO_2 + \frac{x}{2} H_2 O$$

$$1 \qquad \left(\frac{5x}{4} - \frac{y}{2}\right) \text{ mol}$$
Suy ra $\left(\frac{5x}{4} - \frac{y}{2}\right) = 10 \text{ và } x = 8; y = 0$

Vậy X là C₈H₈.

Đáp án C