LABORATOR #11

EX#1 Fie seturile de date ataşate

- (i) sample_Bernoulli.npy;(iii) sample_Geom.npy;
- (ii) sample_Poisson.npy; (iv) sample_Exp.npy;

Creați un fișier în Python[®] prin care, pentru fiecare set de date $(x_1, x_2, ..., x_n)$ de la (i)-(iv):

- (a) să se afișeze într-o figură histograma datelor;
- (b) să se afișeze într-o figură graficul funcției log-verosimilitate $\log L(x_1, x_2, \dots x_n, \theta)$ corespunzătoare setului de date (x_1, x_2, \dots, x_n) , pentru θ în intervalul
 - (i) (0,1) pentru (i); (iii) (0,1) pentru (iii);
 - (ii) (0,50) pentru (ii); (iv) (0,50) pentru (iv);
- (c) să se determine estimarea $\hat{\theta}$ a parametrului distribuției maximizând funcția de logverosimilate corespunzătoare asociată setului de date;
- (d) să se afișeze în figura de la (b) graficul punctului $(\hat{\theta}, \log L(x_1, x_2, \dots x_n, \hat{\theta}))$.

 $\mathbf{EX\#2}$ Fie setul de date (x_1, x_2, \dots, x_n) din fişierul ataşat sample_Normal.npy. Creaţi un fişier în Python® prin care

- (a) să se afișeze într-o figură histograma datelor;
- (b) să se afișeze într-o figură graficul funcției log-verosimilitate $\log L(x_1, x_2, \dots x_n, \theta)$ corespunzătoare setului de date (x_1, x_2, \dots, x_n) , pentru $\theta = (\theta_1, \theta_2)$ cu $\theta_1 \in (-1, 1)$ și $\theta_2 \in (0, 0.1)$;
- (c) să se determine estimarea $\hat{\theta} = (\hat{\theta_1}, \hat{\theta_2})$ a parametrilor distribuției maximizând funcția de log-verosimilate corespunzătoare asociată setului de date;
- (d) să se afișeze în figura de la (b) graficul punctului $(\hat{\theta}_1, \hat{\theta}_2, \log L(x_1, x_2, \dots x_n, \hat{\theta}))$.

Indicații Python®: numpy, matplotlib.pyplot, 3D plotting