

UNIVERSITY OF ALASKA FAIRBANKS COLLEGE OF ENGINEERING AND MINES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COURSE CODE		EE F102 F01 (CRN: 32862)				
COURSE NAME		INTRODUCTION TO ELECTRICAL AND COMPUTER ENGINEERING				
		Γ				
SEMESTER		SPRING	YE	AR	2023	
		Γ				
LABORATORY LOCATION		JUB 331 (ELECTRONICS LAB)				
		ı				
LAB SESSION DATE AND TIME		MONDAY 20 FEB 2023				
					ı	
TYPE OF SUBMISSION		LABORATORY REPORT NUMBER 5		5		
TITLE OF SUBMISSION		BOARD LAYOUT				
METHOD OF SUBMISSION		ONI THE WIA GANWAG				
METHOD OF SUBMISSION		ONLINE VIA CANVAS				
DUE DATE OF SUBMISSION MONDAY		DUE TIME OF SUBMISSION		SSION	23:59	
STUDENT NAME						
MAKE THIS FORM A "COVER PAGE" FOR YOUR REPORT SUBMISSION.						
FOR THE TA USE ONLY						
REMARKS:						

BOARD LAYOUT

Objective

In this lab we will gain experience creating a circuit board layout. We will investigate footprints and other physical constraints of a board layout. This lab will create a voltage regulator board to use with your Arduino when it is not connected to the computer. J1 will connect to a battery connector, and J2 and J3 will connect to a 4-pin SIP that can be plugged directly into your protoboard.

Fig I: Complete Schematic for voltage regulator board

Fig 2. Final Layout

Fig 3. Final (Physical) Board Layout

Conclusion

The layout for the board provides an understanding of how the schematic will work in the physical board and how each component is connected. The routing in Fig 2 and the schematic in Fig 1 provide an understanding of the final board layout that is shown in Fig 3.

BOARD LAYOUT

Objective

In this lab we will gain experience creating a circuit board layout. We will investigate footprints and other physical constraints of a board layout. This lab will create a voltage regulator board to use with your Arduino when it is not connected to the computer. J1 will connect to a battery connector, and J2 and J3 will connect to a 4-pin SIP that can be plugged directly into your protoboard.

Fig I: Complete Schematic for voltage regulator board

Fig 2. Final Layout

Conclusion

The layout for the board provides an understanding of how the schematic will work in the physical board and how each component is connected.