

CHEMISTRY Chapter 19

ÁCIDOS Y BASES

MOTIVATING STRATEGY

Ácidos

- ✓ Neutralizan los efectos de las bases formando sales.
- ✓ Cambian el papel tornasol azul a rojo.
- ✓ Tienen sabor agrio.
- ✓ Son corrosivos generalmente.
- ✓ Conducen la electricidad en solución acuosa (son electrolitos).

Bases

- Tienen un sabor amargo.
- Al igual que los ácidos, en disolución acuosa conducen la electricidad (son electrolitos).
- Colorean de azul el papel de tornasol rojo.
- Reaccionan con los ácidos para formar una sal más agua.
- Son untuosas al tacto (jabonosas).
- Son corrosivas generalmente.

Teoría de Svante Arhenius

Ácidos

Los ácidos producen iones hidrógeno (H⁺) en solución acuosa.

$$H_2SO_{4(I)} \xrightarrow{H_2O} 2H^+_{(ac)} + SO_4^{(-2)}_{(ac)}$$
 $HCI_{(g)} \xrightarrow{H_2O} H^+_{(ac)} + CI^{(-)}_{(ac)}$
 $CH_3COOH_{(I)} \xrightarrow{H_2O} H^+_{(ac)} + CH_3COO^{(-)}_{(ac)}$
 $H_2CO_{3(g)} \xrightarrow{H_2O} 2H^+_{(ac)} + CO_3^{(-2)}_{(ac)}$

Bases

Las bases producen iones hidróxido (OH⁻) en solución acuosa.

NaOH_(s)
$$\xrightarrow{\text{H,0}}$$
 Na⁽⁺⁾_(ac) + OH⁽⁻⁾_(ac)

CaOH₂ (s) $\xrightarrow{\text{H,0}}$ Ca⁽⁺²⁾_(ac) + 2OH⁽⁻⁾_(ac)

Al(OH)_{3(s)} $\xrightarrow{\text{H,0}}$ Al⁽⁺³⁾_(ac) + 3OH⁽⁻⁾_(ac)

Teoría de Brösnted y Lowry

Ácido: Especie química que cede un protón y genera una base conjugada.

Base: Especie química que acepta un protón y genera un ácido conjugado.

Anfóteros, anfipróticos o anfolitos: Especies químicas que presentan carácter ácido o básico. Ejemplo: H_2O , $Al(OH)_3$, CH_3COOH , etc.

Teoría de Lewis

Ácido: Sustancia capaz de aceptar un par de electrones.

Base: Sustancia capaz de donar un par de electrones.

Escala de pH

PH = 0
PH = 1
PH = 2
PH = 3
PH = 4
PH = 5
PH = 6
PH = 7
PH = 8
PH = 9
PH = 10
PH = 11
PH = 12
PH = 13
PH = 14

Acido de Baterias Acido Sulfurico Jugo de Limon / Vinagre Jugo de Naranja / Coca Cola Lluvia acida Bananas Lago saludable / Leche Agua pura Agua de mar / Huevos Bicarbonato de Sodio Detergente /Leche de magnasia Amoniaco Soda Caustica Lavandina Limpiador liquido de cañerias

Dadas las proposiciones respecto a los ácidos y bases, indique si son verdaderas (V) o falsas (F) según corresponda.

- Los ácidos tienen sabor agrio como el vinagre.
 ()
- Las bases tiñen de color grosella al papel tornasol. ()
- Las bases neutralizan a los ácidos (V)

Determine si la sustancia es un ácido o base de Arrhenius.

Usando la teoría de Brönsted y Lowry, determine los ácidos y bases para:

$$CH_3COOH + H_2O \leftrightarrows CH_3COO^- + H_3O^+$$

El compuesto HNO_3 produce 1×10^{-5} mol/L de iones hidrógeno. Calcule el pH de la solución acuosa de dicho compuesto.

SOLUCIÓN:

HNO₃
$$\Rightarrow$$
 H⁺ + NO₃⁻

1×10⁻⁵M 1×10⁻⁵M

 $pH = -\log[H^+]$
 $pH = -\log[1 \cdot 10^{-5}]$
 $pH = -\log[10^{-5}]$
 $pH = 5$

El compuesto $Ca(OH)_2$ tiene una concentración de 0,001 mol/L. Calcule el pH de la solución. Dato: log2 = 0,3

SOLUCIÓN:

1Ca(OH)₂
$$\leftrightarrows$$
 Ca⁺² + 2OH⁻
0,001 mol/L 2(0,001 mol/L)
 $pOH = -log[OH^-]$ Recordar:
 $pOH = -log[0,002]$ $pH + pOH = 14$
 $pOH = -log[2x10^{-3}]$ $pH + 2,7 = 14$
 $pOH = -[0,3-3]$ $pH = 11,3$
 $pOH = 2,7$

Si la concentración de iones oxidrilo es 10⁻² M, calcule la concentración de iones hidrógeno de una solución acuosa.

SOLUCIÓN:

$$[OH^{-}] = 10^{-2} M$$

$$pOH = -log[OH^{-}]$$

$$pOH = -\log[10^{-2}]$$

$$pOH = 2$$

Recordar:

$$pH + pOH = 14$$

$$pH+2=14$$

$$pH = 12$$

$$[H^{+}] = 10^{-12} M$$

Una muestra biológica tiene un pH = 4. Determine la concentración de iones hidrógeno y de iones oxidrilo en la solución acuosa.

SOLUCIÓN:

$$[H^{+}] = 10^{-4} M$$

Recordar:

$$pH + pOH = 14$$

$$4 + pOH = 14$$

$$pOH = 10$$

$$[OH^{-}] = 10^{-10} M$$

En la teoría de Brönsted y Lowry de 1920, el danés J. N. J Brönsted y el inglés T. M. Lowry desarrollaron casi simultáneamente una teoría para identificar un ácido, pero considere que el protón al cuál nos referimos será representado por H⁺.

Ácido: Sustancia que dona protones (H⁺)

Base: Sustancia que acepta protones (H⁺)

De la siguiente ecuación indicar los ácidos de Bronsted

$$HCI + H_2O \Leftrightarrow CI^- + H_3O^+$$

SOLUCIÓN:

HCI
$$+ H_2O \implies C\Gamma + H_3O^{\dagger}$$
Acido

Base

Acido

Conjugada

Acido

Conjugado

Los ácidos de Bronsted y Lowry

HCl y H₃O⁺

•