# Multi-model Maintenance Scheduling

# Christian Brunbjerg Jespersen

Technical University of Denmark

#### Introduction

Operations research (OR) traditionally focuses on optimizing processes within a single organization. However, many real-world problems involve multiple actors with diverse objectives and constraints. This poster explores a multi-actor approach to OR, emphasizing collaboration and conflict resolution among stakeholders.

# Objectives

- 1. Integrate multiple stakeholder perspectives into OR models.
- 2. Develop methods to handle conflicting objectives.
- 3. Propose collaborative optimization strategies.

# Results

- Improved Efficiency: Achieved a 15% reduction in total costs across the supply chain.
- Stakeholder Satisfaction: Increased satisfaction scores among all actors by 20%.
- Collaborative Strategies: Developed joint policies that benefit all parties.

#### Conclusion

Incorporating a multi-actor approach in operations research leads to more sustainable and acceptable solutions. It balances individual objectives with collective goals, fostering cooperation and long-term success.

# Future Work

- Extend the approach to international supply chains.
- Incorporate real-time data analytics for dynamic decision-making.
- Explore applications in other sectors like healthcare and transportation.

## Solution Method



#### Case Study

#### Supply Chain Management

A complex supply chain involving suppliers, manufacturers, distributors, and retailers. Each actor aims to optimize its own performance metrics, which may conflict with others. The multi-actor approach seeks a globally optimal solution that considers the objectives of all stakeholders.

# Methodology

#### 1 Strategic

| ricta variables.                                                                                                                                                |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $s \in S$                                                                                                                                                       | (1) |
| $	au \in [0, \infty]$                                                                                                                                           | (2) |
| Minimize:                                                                                                                                                       |     |
| $\sum \sum strategic\_value_{wp}(	au) \cdot lpha_{wp}(	au)$                                                                                                     |     |
| $w \in W(\tau) \ p \in P(\tau)$                                                                                                                                 |     |
| $+\sum_{T(s)}\sum_{per}strategic\_penalty\cdot\epsilon_{pr}(	au)$                                                                                               |     |
| $p \in P(\tau) \ r \in R(\tau)$                                                                                                                                 | (2) |
| $+\sum\sum\sum Clustering\_value_{w1,w2}\cdot lpha_{w1p}(	au)\cdot lpha_{w2p}(	au)$                                                                             | (3) |
| $p \in P(\tau) \ w1 \in W(\tau) \ w2 \in W(\tau)$                                                                                                               |     |
| Subject to:                                                                                                                                                     |     |
| $\sum work\_order\_work_{wr} \cdot \alpha_{wp}(\tau) \leq resource_{pr}(\tau, \beta(\tau)) + \epsilon_{pr}(\tau)  \forall p \in P(\tau)  \forall r \in R(\tau)$ | (4) |
| $w \in W(	au)$                                                                                                                                                  |     |
| $\sum \alpha_{wp}(\tau) = 1  \forall p \in P(\tau)$                                                                                                             | (5) |
| $w \in W(	au)$                                                                                                                                                  |     |
| $\alpha_{wp}(\tau) = 0  \forall (w, p) \in exclude(\tau)$                                                                                                       | (6) |
| $\alpha_{wp}(\tau) = 1  \forall (w, p) \in include(\tau)$                                                                                                       | (7) |
| $\alpha_{wp}(\tau) \in \{0,1\}  \forall w \in W(\tau)  \forall p \in P(\tau)$                                                                                   | (8) |
| $\epsilon_{pr}(	au) \in \mathbb{R}^+  \forall p \in P(	au)  \forall r \in R(	au)$                                                                               | (9) |
|                                                                                                                                                                 |     |

#### 2 Tactical

| Meta variables:                                                                                                                                                                                       |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| s = S                                                                                                                                                                                                 | (10)         |
| lpha(	au)                                                                                                                                                                                             | (11)         |
| $	au \in [0, \infty]$                                                                                                                                                                                 | (12)         |
| Minimize:                                                                                                                                                                                             |              |
| $\sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} tactical\_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical\_penalty \cdot \mu_{rd}(\tau)$        | (13)         |
| Subject to:                                                                                                                                                                                           |              |
| $\sum work_o(\tau) \cdot \beta_{do}(\tau) \leq tactical\_resource_{dr}(\tau) + \mu_{rd}(\tau) \forall d \in D(\tau)  \forall r \in R(\tau)$                                                           | (14)         |
| $o \in O(	au, lpha(	au))$ $latest\_finish_o(	au)$                                                                                                                                                     |              |
| $\sum_{c} \sigma_{do}(	au) = duration_o(	au)  orall o \in O(	au, lpha(	au))$                                                                                                                         | (15)         |
| $d = earliest\_start_o(	au)$                                                                                                                                                                          |              |
| $\sum_{od \in \mathcal{O}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau)  \forall o \in \mathcal{O}(\tau, \alpha(\tau))  \forall d \in \mathcal{D}(\tau)$                                             | (16)         |
| $\sum_{d' \in D_{duration_o(\tau)}(\tau)} \eta_{do}(\tau) = 1,  \forall d \in D(\tau)$                                                                                                                |              |
| $\int_{0}^{\infty} \eta do(t) = 1,  \forall \alpha \in D(t)$ $o \in O(\tau, \alpha(\tau))$                                                                                                            |              |
| $\sum_{i} d \cdot \sigma_{do1}(	au) + \Delta_o(	au) = \sum_{i} d \cdot \sigma_{do2}(	au)  orall (o1, o2) \in finish\_start_{o1,o2}$                                                                  | (17)         |
| $d \in D(\tau) \qquad \qquad d \in D(\tau)$                                                                                                                                                           |              |
| $\sum d \cdot \sigma_{do1}(\tau) = \sum d \cdot \sigma_{do2}(\tau)  \forall (o1, o2) \in start\_start_{o1, o2}$                                                                                       | (18)         |
| $d \in D(\tau) \qquad \qquad d \in D(\tau)$                                                                                                                                                           | (10)         |
| $\beta_{do}(\tau) \leq number_o(\tau) \cdot operating\_time_o  \forall d \in D(\tau)  \forall o \in O(\tau, \alpha(\tau))$                                                                            | (19)         |
| $\beta_{do}(\tau) \in \mathbb{R} \qquad \forall d \in D(\tau)  \forall o \in O(\tau, \alpha(\tau))$ $\mu_{rd}(\tau) \in \mathbb{R} \qquad \forall r \in R(\tau)  \forall d \in D(\tau)$               | (20)<br>(21) |
| $ \mu_{rd}(\tau) \in \mathbb{R}  \forall t \in R(\tau)  \forall a \in D(\tau) $ $ \sigma_{do}(\tau) \in \{0, 1\}  \forall d \in D(\tau)  \forall o \in O(\tau, \alpha(\tau)) $                        | (22)         |
| $ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall a \in D(\tau)  \forall o \in O(\tau, \alpha(\tau)) $ $ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau)  \forall o \in O(\tau, \alpha(\tau)) $ | (23)         |
| $\Delta_o(\tau) \in \{0,1\}$ $\forall a \in \mathcal{D}(\tau)$ $\forall b \in \mathcal{O}(\tau,\alpha(\tau))$ $\forall c \in \mathcal{O}(\tau,\alpha(\tau))$                                          | (24)         |

#### 3 Supervisor

| Meta variables:                                                                                                                                                                       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $z \in Z$                                                                                                                                                                             | (25) |
| lpha(	au)                                                                                                                                                                             | (26) |
| heta(	au)                                                                                                                                                                             | (27) |
| $	au \in [0, \infty]$                                                                                                                                                                 | (28) |
| Maximize:                                                                                                                                                                             |      |
| $\sum_{a \in A(\tau, \alpha(\tau))} \sum_{t \in T(\tau)} supervisor\_value_{at}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{at}(\tau)$                                      | (29) |
| Subject to:                                                                                                                                                                           |      |
| $\sum_{a \in A_o(\tau, \alpha(\tau))} \rho_a(\tau) = work_o(\tau)  \forall o \in O(\tau, \alpha(\tau))$                                                                               | (30) |
| $\sum \qquad \gamma_{at}(\tau) = \phi_o(\tau) \cdot number_o(\tau)  \forall o \in O(\tau, \alpha(\tau))$                                                                              | (31) |
| $\sum_{\tau \in O_{\sigma}(\tau,\alpha(\tau))} \phi_o(\tau) =  O_w(\tau,\alpha(\tau))   \forall w \in W(\tau,\alpha(\tau))$                                                           | (32) |
| $\sum_{o \in O_w(\tau, \alpha(\tau))} \gamma_{at}(\tau) \le 1  \forall o \in O(\tau, \alpha(\tau))  \forall t \in T(\tau)$                                                            | (33) |
| $a \in A_o(\tau, \alpha(\tau))$<br>$\gamma_{at}(\tau) \le feasible_{at}(\theta(\tau))  \forall o \in O(\tau, \alpha(\tau))  \forall t \in T(\tau)$                                    | (34) |
| $\gamma_{at}(\tau) \subseteq f$ case $\sigma(t, \alpha(\tau))$ $\forall t \in T(\tau)$ $\gamma_{at}(\tau) \in \{0, 1\}$ $\forall o \in O(\tau, \alpha(\tau))$ $\forall t \in T(\tau)$ | (35) |
| $\rho_a(\tau) \in [lower\_activity\_work_a(\tau), work_a(\tau)]  \forall a \in A(\tau, \alpha(\tau))$                                                                                 | (36) |

#### 4 Operational

| Meta variables:                                                                                                                                            |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $t \in T(\tau)$                                                                                                                                            | (37) |
| lpha(	au)                                                                                                                                                  | (38) |
| $\gamma(	au)$                                                                                                                                              | (39) |
| $\tau \in [0, \infty]$                                                                                                                                     | (40) |
| Maximize:                                                                                                                                                  |      |
| $\sum$ $\delta_{ak}(	au)$                                                                                                                                  | (41) |
| $a \in A(\tau, \gamma_t(\tau)) \ k \in K(\gamma(\tau))$                                                                                                    | ` ,  |
| Subject to:                                                                                                                                                |      |
| $\sum \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity\_work_a(\tau, \rho(\tau)) \cdot \theta  (\tau) \forall a \in A(\tau, \gamma_t(\tau))$              | (42) |
| $k \in K(\gamma(	au))$                                                                                                                                     |      |
| $\lambda_{a21}(\tau) \ge \Lambda_{a1last(a1)}(\tau) + preparation_{a1,a2}  \forall a1 \in A(\tau, \gamma_t(\tau))  \forall a2 \in A(\tau, \gamma_t(\tau))$ | (43) |
| $\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint\_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$                                            |      |
| $\forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                                                                                     | (44) |
| $\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau)  \forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                        | (45) |
| $\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint\_limit \cdot (1 - \omega_{akie}(\tau))$                                                    |      |
| $\forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))  \forall i \in I(\tau)  \forall e \in E(\tau)$                                       | (46) |
| $\Lambda_{ak}(\tau) \leq event_{ie} + constraint\_limit \cdot \omega_{akie}(\tau)$                                                                         |      |
| $\forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))  \forall i \in I(\tau)  \forall e \in E(\tau)$                                       | (47) |
| $\lambda_{a1}(\tau) \ge time\_window\_start_a(\beta(\tau))  \forall a \in A(\tau, \gamma_t(\tau))$                                                         | (48) |
| $\Lambda_{alast(a)}(\tau) \leq time\_window\_finish_a(\beta(\tau))  \forall a \in A(\tau, \gamma_t(\tau))$                                                 | (49) |
| $\pi_{ak}(\tau) \in \{0,1\}  \forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                                                         | (50) |
| $\lambda_{ak}(\tau) \in [availability\_start(\tau), availability\_finish(\tau)]$                                                                           |      |
| $\forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                                                                                     | (51) |
| $\Lambda_{ak}(\tau) \in [availability\_start(\tau), availability\_finish(\tau)]$                                                                           |      |
| $\forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                                                                                     | (52) |
| $\delta_{ak}(\tau) \in [0, work_{a \ to \ o(a)}(\tau)]  \forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))$                              | (53) |
| $\omega_{akie}(\tau) \in \{0,1\}  \forall a \in A(\tau, \gamma_t(\tau))  \forall k \in K(\gamma(\tau))  \forall i \in I(\tau)  \forall e \in E(\tau)$      | (54) |
| $\theta_a(\tau) \in \{0,1\}  \forall a \in A(\tau, \gamma_t(\tau))$                                                                                        | (55) |
|                                                                                                                                                            |      |