Linear Algebra II

Ji, Yong-hyeon

February 27, 2025

We cover the following topics in this note.

• Unique representation as a finite linear combination of the elements of Basis.

Proposition. Let V be a vector space over a field F, and let $\dim V < \infty$, say, $\dim V = n$. Fix a basis \mathcal{B} . Then every vector $\mathbf{v} \in V$ has a unique expression of linear combination by \mathcal{B} .

Proof. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis of V. Take any $\mathbf{v} \in V (= \operatorname{span} \mathcal{B})$. Then

$$\exists a_1, a_2, \dots, a_n \in F$$
 such that $a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{v}$.

Suppose that $\exists b_1, b_2, \dots, b_n \in F$ such that $\sum_{i=1}^n b_i \mathbf{v}_i = \mathbf{v}$. Then

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + \dots + b_n\mathbf{v}_n,$$

$$(a_1 - b_1)\mathbf{v}_1 + (a_2 - b_2)\mathbf{v}_2 + \dots + (a_n - b_n)\mathbf{v}_n = \mathbf{0},$$

and so $a_i = b_i$ for all i = 1, 2, ..., n since a basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is linearly independent. \square

Coordinate

Definition. Write

$$[\mathbf{v}]_{\mathcal{B}} = (a_1, a_2, \ldots, a_n).$$

is called the coordinate of \mathbf{v} with respect to \mathcal{B} .

Linear Transformation

Definition. We say $\Phi: V \to W$ is a linear transformation if Φ preserves a linearity, i.e.,

$$\Phi(a \cdot \mathbf{v} + b \cdot \mathbf{w}) = a \cdot \Phi(\mathbf{v}) + b \cdot \Phi(\mathbf{w})$$

for any $a, b \in F$ and $\mathbf{v}, \mathbf{w} \in V$. Here, if $\Phi : W \to V$ is also a linear transformation the we say Φ is the vector-space isomorphism.

Definition. finite-dimensional vector space V, W/F. Then

 $\dim V = \dim W \iff \exists \text{a vector-space isomorphism } \Phi: V \to W, \text{i.e., } V \simeq W.$

Proof. (\Rightarrow) Suppose that dim $V = \dim W = n \in \mathbb{N}$. Take basis $\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ of W. Define

$$\Phi : V \longrightarrow W$$

$$\mathbf{v} \longmapsto a_1 \mathbf{w}_1 + \dots + a_n \mathbf{w}_n$$

We claim that Φ is one-to-one and onto linear transformation.

(\Leftarrow) Suppose there exists Φ : V → W. Take any basis $\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of V. Define

$$\mathcal{B}_W := \left\{ \Phi(\mathbf{v}_1), \Phi(\mathbf{v}_2), \dots, \Phi(\mathbf{v}_n) \right\}.$$

We claim that \mathcal{B}_W be a basis of W:

(Linearly Independent) Suppose that $a_1\Phi(\mathbf{v}_1) + \cdots + a_n\Phi(\mathbf{v}_n) = 0$. Since Φ is a linear transformation, we have

$$\Phi(a_1\mathbf{v}_1+\cdots+a_n\mathbf{v}_n)=0.$$

Since Φ is one-to-one, and $0 = \Phi(0)$, $a_1\mathbf{v}_1 + a_n\mathbf{v}_n = 0$, $a_1 = a_n = 0$ since \mathcal{B}_V is a basis.

(Spanning Property) Take $\mathbf{w} \in W$. Since Φ is onto, $\exists \mathbf{v} \in V$ s.t. $\Phi(\mathbf{v}) = \mathbf{w}$. Since \mathcal{B}_V is a basis, $\exists ! a_1, a_2, \ldots, a_n$ s.t. $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n = \mathbf{v}_n$ 1, and so

$$\mathbf{w} = \Phi(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n) = a_1\Phi(\mathbf{v}_1) + \dots + a_n\Phi(\mathbf{v}_n)$$

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 16. 선형대수학 (c) 차원 과 벡터공간의 분류" YouTube Video, 29:08. Published October 11, 2019. URL: https://www.youtube.com/watch?v=rOKN645fRPs&t=399s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 17. 선형대수학 (d) 선형함수의 행렬 표현" YouTube Video, 29:14. Published October 12, 2019. URL: https://www.youtube.com/watch?v=Fsy-9KW9-PA.