CPE 110408423 VLSI Design Chapter 0: Fundamentals of VLSI Design

Bassam Jamil
[Computer Engineering Department,
Hashemite University]

Course Administration

- ☐ Instructor: Bassam Jamil
- Instructor's e-mail: <u>bassam@hu.edu.jo</u>
- ☐ Office Hours: Posted on my office door
- □Textbook:

Required: CMOS VLSI Design: A Circuits and Systems Perspective, 4th Edition, Neil H. E. Weste, and David Money Harris, <u>Pearson</u> Publication, Inc., 2011.

Optional:Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, <u>Prentice-Hall</u> Publication, Inc., 2002.

Sedra & Smith, Microelectronic Circuits Oxford University Press, 5th Edition.

Slides: pdf on the course web page (Moodle System)

Course Content

- Course goals
 - The ability to analyze and design of digital integrated circuits families.
 - The ability to model datapath subsystems.
 - Acquire a basic knowledge to analyze design and circuit optimization of digital building blocks with respect to different quality metrics: cost, speed, power dissipation, and reliability.
 - The ability to learn fabrication and layout process, invertors design, clocks and power distribution and memory design.
 - The ability to work in groups to do design problems in the assignments and the projects.
- Course prerequisites

Digital Integrated Circuits (0408422) Digital Electronics and Integrated Circuits (110408327).

Course Structure

- Design focused class:
 - Various homework assignments throughout the semester
- Lectures:

Ch0. Introduction

Ch11. Datapath Subsystems

Ch12. Array Subsystems

Ch13. Special-Purpose Subsystems (optional)

Ch14. Design Methodology Tools

Ch15. Testing, Debugging, and Verification

Grading Information

Grade determinates

• Midterm Exam ~30

• Project ~20%

• Final Exam ~50%

Let me know about any exam conflicts ASAP

Lecture 0: Introduction: Intel Processors

CMOS VLSI Design 4th Ed.

Introduction

- ☐ Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI): bucketloads!
- Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- □ Rest of the course: How to build a good CMOS chip

Outline

- Evolution of Intel Microprocessors
 - Scaling from 4004 to Core i7
 - Courtesy of Intel Museum

- ☐ First microprocessor (1971)
 - For Busicom calculator
- Characteristics
 - 10 μm process
 - 2300 transistors
 - -400 800 kHz
 - 4-bit word size
 - 16-pin DIP package
- Masks hand cut from Rubylith
 - Drawn with color pencils
 - 1 metal, 1 poly (jumpers)
 - Diagonal lines (!)

- **8-bit follow-on** (1972)
 - Dumb terminals
- Characteristics
 - 10 μm process
 - 3500 transistors
 - -500 800 kHz
 - 8-bit word size
 - 18-pin DIP package
- Note 8-bit datapaths
 - Individual transistors visible

- **16-bit address bus** (1974)
 - Used in Altair computer
 - (early hobbyist PC)
- Characteristics
 - 6 μm process
 - 4500 transistors
 - 2 MHz
 - 8-bit word size
 - 40-pin DIP package

8086 / 8088

- **16-bit processor** (1978-9)
 - IBM PC and PC XT
 - Revolutionary products
 - Introduced x86 ISA
- Characteristics
 - $-3 \mu m$ process
 - 29k transistors
 - 5-10 MHz
 - 16-bit word size
 - 40-pin DIP package
- Microcode ROM

- **□** Virtual memory (1982)
 - IBM PC AT
- Characteristics
 - 1.5 μ m process
 - 134k transistors
 - 6-12 MHz
 - 16-bit word size
 - 68-pin PGA
- Regular datapaths and ROMsBitslices clearly visible

- ☐ 32-bit processor (1985)
 - Modern x86 ISA
- Characteristics
 - 1.5-1 μ m process
 - 275k transistors
 - 16-33 MHz
 - 32-bit word size
 - 100-pin PGA
- 32-bit datapath, microcode ROM, synthesized control

- **☐** Pipelining (1989)
 - Floating point unit
 - 8 KB cache
- Characteristics
 - 1-0.6 μm process
 - 1.2M transistors
 - 25-100 MHz
 - 32-bit word size
 - 168-pin PGA
- Cache, Integer datapath,FPU, microcode,synthesized control

Pentium

- **□** Superscalar (1993)
 - 2 instructions per cycle
 - Separate 8KB I\$ & D\$
- Characteristics
 - 0.8-0.35 μ m process
 - 3.2M transistors
 - 60-300 MHz
 - 32-bit word size
 - 296-pin PGA
- Caches, datapath,FPU, control

Pentium Pro / II / III

- **□ Dynamic execution** (1995-9
 - 3 micro-ops / cycle
 - Out of order execution
 - 16-32 KB I\$ & D\$
 - Multimedia instructions
 - PIII adds 256+ KB L2\$
- □ Characteristics
 - 0.6-0.18 μ m process
 - 5.5M-28M transistors
 - 166-1000 MHz
 - 32-bit word size
 - MCM / SECC

Pentium 4

- □ Deep pipeline (2001)
 - Very fast clock
 - 256-1024 KB L2\$
- □ Characteristics
 - 180 65 nm process
 - 42-125M transistors
 - 1.4-3.4 GHz
 - Up to 160 W
 - 32/64-bit word size
 - 478-pin PGA
- Units start to become invisible on this scale

Pentium M

- Pentium III derivative
 - Better power efficiency
 - 1-2 MB L2\$
- Characteristics
 - 130 90 nm process
 - 140M transistors
 - 0.9-2.3 GHz
 - 6-25 W
 - 32-bit word size
 - 478-pin PGA
- □ Cache dominates chip area

Core2 Duo

- **□ Dual core** (2006)
 - 1-2 MB L2\$ / core
- Characteristics
 - 65-45 nm process
 - 291M transistors
 - 1.6-3+ GHz
 - 65 W
 - 32/64 bit word size
 - 775 pin LGA
- Much better performance/power efficiency

Core i7

- □ Quad core (& more)
 - Refinement of Core architecture
 - 2 MB L3\$ / core
- Characteristics
 - 45-32 nm process
 - 731M transistors
 - 2.66-3.33+ GHz
 - Up to 130 W
 - 32/64 bit word size
 - 1366-pin LGA
 - Multithreading
- □ On-die memory controller

Atom

- □ Low power CPU for netbooks
 - Pentium-style architecture
 - 512KB+ L2\$
- Characteristics
 - 45-32 nm process
 - 47M transistors
 - 0.8-1.8+ GHz
 - 1.4-13 W
 - 32/64-bit word size
 - 441-pin FCBGA
- Low voltage (0.7 1.1 V) operation
 - Excellent performance/power

Summary

□ 10⁴ increase in transistor count, clock frequency over 3 decades!

Processor	Year	Feature Size (µm)	Transistors	Frequency (MHz)	Word Size	Power (W)	Cache (L1 / L2 / L3)	Package
4004	1971	10	2.3k	0.75	4	0.5	none	16-pin DIP
8008	1972	10	3.5k	0.5-0.8	8	0.5	none	18-pin DIP
8080	1974	6	6k	2	8	0.5	none	40-pin DIP
8086	1978	3	29k	5-10	16	2	none	40-pin DIP
80286	1982	1.5	134k	6–12	16	3	none	68-pin PGA
Intel386	1985	1.5-1.0	275k	16-25	32	1–1.5	none	100-pin PGA
Intel486	1989	1-0.6	1.2M	25-100	32	0.3-2.5	8K	168-pin PGA
Pentium	1993	0.8-0.35	3.2-4.5M	60-300	32	8-17	16K	296-pin PGA
Pentium Pro	1995	0.6-0.35	5.5M	166-200	32	29-47	16K / 256K+	387-pin MCM PGA
Pentium II	1997	0.35-0.25	7.5M	233-450	32	17-43	32K / 256K+	242-pin SECC
Pentium III	1999	0.25-0.18	9.5–28M	450-1000	32	14-44	32K / 512K	330-pin SECC2
Pentium 4	2000	180–65 nm	42–178M	1400-3800	32/64	21-115	20K+/256K+	478-pin PGA
Pentium M	2003	130–90 nm	77-140M	1300-2130	32	5-27	64K / 1M	479-pin FCBGA
Core	2006	65 nm	152M	1000-1860	32	6-31	64K / 2M	479-pin FCBGA
Core 2 Duo	2006	65–45 nm	167-410M	1060-3160	32/64	10–65	64K / 4M+	775-pin LGA
Core i7	2008	45 nm	731M	2660-3330	32/64	45-130	64K / 256K / 8M	1366-pin LGA
Atom	2008	45 nm	47M	800–1860	32/64	1.4–13	56K / 512K+	441-pin FCBGA