Discussion Questions for the Algebra of Sets:

Key Reminders:

- The union of two sets, $A \cup B$, consists of all of the elements in either A or B.
- The intersection of two sets, $A \cap B$, consists of all of the elements in both A and B.

Questions:

- 1. The formula for the number of elements in $A \cup B$, denoted as $n(A \cup B)$, is $n(A \cup B) = n(A) + n(B) n(A \cap B)$. If $A \cup B$ consists of all of the elements in either A or B, why do we need to subtract the number of elements in $A \cap B$ from the number of elements in A plus the number of elements in $A \cup B$?
- 2. How can we use the formula for the number of elements in $A \cup B$ to find a formula for the number of elements in $A \cap B$? Find this formula.
- 3. Suppose Brian made 22 cookies with chocolate chips and 35 cookies with raisins. Of these, 14 have raisins and chocolate chips. How many cookies did he make all together?

Answers:

- 1. If we add the number of elements in A and the number of elements in B, we are adding the number of elements in A and B, or $n(A \cap B)$ twice. Therefore, we must subtract one copy of $n(A \cap B)$ from this sum in order to find the correct number of elements in either A or B, or $n(A \cup B)$.
- 2. We can solve for $n(A \cap B)$ in $n(A \cup B) = n(A) + n(B) n(A \cap B)$ to find a formula for $n(A \cap B)$. To do this, we add $n(A \cap B)$ to both sides, and we subtract $n(A \cup B)$ from both sides. This gives $n(A \cap B) = n(A) + n(B) n(A \cup B)$.
- 3. If we let A = chocolate chip cookies and B = raisin cookies, then we want to find the number of cookies in $A \cup B$, or $n(A \cup B)$. Thus, we can use our formula, $n(A \cup B) = n(A) + n(B) n(A \cap B)$. The number of chocolate chip cookies is given as 22, so n(A) = 22. The number of raisin cookies is given as 35, so n(B) = 35. The number of cookies that have both raisins and chocolate chips is given as 14, so $n(A \cap B) = 14$. Plugging these in gives $(A \cup B) = 22 + 35 14$, and simplifying gives $n(A \cup B) = 43$. Thus, Brian made 43 cookies all together.