

Diferentes níveis de esterco de coelhos na adubação de hortaliças

Samuel Victor Borba¹; Ana Carolina de Pinho², Diego Fincatto³, Cláudia Damo Bertoli⁴

RESUMO

O esterco de coelho pode ser um adubo de excelente qualidade, sendo rico principalmente em nitrogênio, fósforo e potássio. O objetivo deste trabalho é avaliar o esterco de coelho produzido na unidade didática e de produção de cunicultura (UDP Cunicultura) do Instituto Federal Catarinense Campus Camboriú (IFC-Camboriú) quando misturado em diferentes níveis ao substrato de hortaliças. Serão feitos 05 tratamentos (0%, 25%, 50%, 75% e 100% do resíduo de coelhos misturados ao substrato de produção) em vasos com rabanetes (*Raphanus sativus L.*). Serão avaliados a porcentagem de emergência (PE), o número de folhas/planta (NF), o diâmetro de coleto (DC), a altura de plantas (AP), a área foliar (AF), a matéria verde e seca da parte aérea (MVPA e MSPA), a matéria verde e seca do sistema radicular (MVR e MSR), a matéria verde e seca total (MVT e MST) resultantes dos tratamentos. Espera-se com este trabalho determinar a melhor combinação a ser utilizada na produção de rabanetes.

Palavras-chave: Adubo orgânico. Esterco. Coelhos

INTRODUÇÃO

Há diversos resíduos produzidos na cunicultura, como o couro (utilizado para fabricação de roupas); as orelhas (utilizado na produção de gelatina); as patas e a cauda (confecção de amuletos e chaveiros); o cérebro (purificação da tromboplastina); a urina (veículo de perfumes) e o estercos (utilizados na adubação orgânica) que podem ser aproveitados como sub-produtos. (FERREIRA *et al.*; 2012).

Os adubos orgânicos são fontes de nutrientes usadas frequentemente na composição de substratos. Eles apresentam atuação relevante na melhoria dos atributos físicos do solo e estimulam os processos microbianos. O esterco bovino é o

¹ Estudante, IFC Camboriú, e-mail: samuelvictorborba@gmail.com

² Estudante, IFC Camboriú, e-mail:carolinadepinho@hotmail.com

³ Engenheiro Agrônomo, Servidos IFC Camboriú, e-mail: diego.fincatto@ifc.edu.br

⁴ Engenheira Agrônoma, Dra, Professora EBTT IFC-Camboriú, e-mail:claudia.bertoli@ifc.edu.br

mais usado, apresentando um bom desempenho na produção de mudas de espécies florestais. (ARTUR *et al.*, 2007) A tabela 1 apresenta os resultados da composição química de vários estercos, de acordo com Vieira (1981).

Tabela 1 – Níveis de Nitrogênio, Fósforo e Potássio em diferentes estercos animais.

COELHO 2,48 2,50 1,33 CARNEIRO 1,00 0,35 0,60 GALINHA 1,75 1,25 0,85 PORCO 1,00 0,40 0,30 CAVALO 0,50 0,25 0,50	ANIMAL	Nitrogênio (%)	Fósforo (%)	Potássio (%)
GALINHA 1,75 1,25 0,85 PORCO 1,00 0,40 0,30	COELHO	2,48	2,50	1,33
Porco 1,00 0,40 0,30	CARNEIRO	1,00	0,35	0,60
,	GALINHA	1,75	1,25	0,85
CAVALO 0,50 0,25 0,50	Porco	1,00	0,40	0,30
	CAVALO	0,50	0,25	0,50
VACA 0,60 0,30 0,45	VACA	0,60	•	,

Fonte: (VIEIRA, 1981, P. 327)

Além da presença dos componentes químicos, uma parte considerável dos resíduos produzidos é de origem orgânica. O esterco de coelho apresenta uma vantagem econômica quanto sua produção, uma vez que não há necessidade de gastos com adubos industriais. O esterco de coelho apresenta composição média de 1,5 a 2,5% de N, 1,4 a 1,8% de P e 0,5 a 0,8% de K (MACHADO & FERREIRA, 2011 apud QUEIROZ et al., 2014).

Silva et al. (2018), estudando vários tipos de substratos encontraram melhores resultados para esterco ovino em relação ao de coelho. No entanto, quando compararam 2 níveis de esterco de coelho encontraram diferença significativa entre os diferentes níveis. Com apenas 50% de luminosidade, o substrato com 20% esterco de coelho se mostrou mais produtivo do que o de 40%.

Neste trabalho a hortaliça utilizada para o teste dos diferentes níveis de esterco de coelho a ser adicionado ao substrato, será o rabanete (*Raphanus sativus L.*). O rabanete é uma brassicácea de porte reduzido que se adapta melhor ao plantio no outono-inverno e tolera bem ao frio e geadas leves. A cultura se adapta melhor em solos com pH de 5,5 a 6,8. É intolerante ao transplante e deve ser efetuado o desbaste logo que as plantas atinjam 5 cm de altura (FILGUEIRA, 2000). Para não haver rachaduras e isoporização (processo que constitui na saída permanente de água das células do parênquima da planta e como consequência, tem-se a redução da densidade e do peso da cultura) deve-se manter o teor de água do solo alto e colher os rabanetes antes que atinjam o tamanho máximo (FILGUEIRA, 2000). A escolha do

rabanete se deu em função do rabanete possuir o menor ciclo dentre as hortaliças, podendo a colheita ser realizada a partir dos 25 a 30 dias após a semeadura (LOPES et al., 2019).

PROCEDIMENTOS METODOLÓGICOS

O trabalho está sendo conduzido no Instituto Federal Catarinense Campus Camboriú (IFC-Camboriú) desde abril de 2019 em condição de casa de vegetação, no município de Camboriú, Santa Catarina.

Será utilizado o delineamento experimental DCC – delineamento completamente cazualizado, onde a produção de mudas de rabanete será analisada sob cinco tratamentos com oito repetições cada um.

Os tratamentos serão os diferentes níveis de esterco de coelho curtido misturado com substrato complementar. O esterco de coelho utilizado neste experimento não é esterco puro, mas sim o resíduo da produção da unidade didática de cunicultura, que é coletado numa cama de maravalha, que permanece na instalação por períodos aproximados de 12 meses, quando então é retirado para substituição por maravalha nova. No momento da retirada, este material se encontra totalmente decomposto e com a presença de minhocas. Para o experimento este material, aqui denominado esterco de coelho, é peneirado. O experimento será instalado usando vasos de polietileno, preenchidos com o esterco de coelho com volume dos seus respectivos tratamentos e com um substrato complementar, composto de 50% de solo vermelho (peneirado) e 50% de casca de arroz.

O tratamento 1 (T1) é o substrato acima descrito como substrato complementar, sem adição de esterco de coelhos; o tratamento 2 (T2) é o substrato complementar com adição de 25% de esterco de coelhos; o tratamento 3 (T3) é o substrato complementar com adição de 50% de esterco de coelhos; o tratamento 4 (T4) é o substrato complementar com adição de 75% de esterco de coelhos; o tratamento 5 (T5) é o substrato composto por 100% de esterco de coelhos. Foram

feitas 10 repetições para cada tratamento, prevendo o descarte das duas mudas de menor rendimento. Cada vaso foi preparado com o substrato referente a um dos tratamentos e distribuído na casa de vegetação aleatoriamente por sorteio. Cada vaso receberá 3 sementes de rabanete (*Raphanus sativus L.*). Caso germine mais de uma semente haverá o desbaste, deixando a planta mais robusta. O esterco de coelho está sendo analisado pelo Laboratório da Epagri.

Serão avaliados os efeitos dos tratamentos sobre a produção de mudas de rabanete em relação às seguintes características: contagem diária das plântulas normais emergidas em cada tratamento, sendo consideradas todas as sementes colocadas nos vasos para a determinação da porcentagem de emergência (PE) realizadas após o início da emergência, identificando-se o tempo desde a semeadura (TS). Aos 29 dias após a semeadura serão realizadas as avaliações das variáveis: número de folhas/planta (NF), diâmetro de coleto (DC) em cm, altura de plantas (AP) em cm, área foliar (AF) em cm², matéria verde da parte aérea (MVPA), matéria seca da parte aérea (MSPA), matéria verde do sistema radicular (MVR), matéria seca do sistema radicular (MSR), matéria verde total (MVT) e matéria seca total (MST) em gramas.

RESULTADOS ESPERADOS OU PARCIAIS

Até o momento da submissão deste trabalho, foi feito o preparo do substrato e a distribuição dos vasos nos locais definitivos. Foi realizada a peneiração do esterco de coelho e do solo vermelho. As partículas grandes foram descartadas. Na sequência foi feita a mistura e o preparo do substrato complementar (50% solo vermelho e 50% casca de arroz carbonizada). O preparo do substrato de cada tratamento foi feito misturando o esterco de coelho ao substrato complementar, , seguindo as porcentagens de cada tratamento (T1=0%, T2=25%, T3=50%, T4=75% e T5=100%).

Os vasos foram distribuídos em área com irrigação, conforme sorteio de aleatoriedade e identificados com plaquinhas indicando o tratamento e a repetição. O plantio será realizado após as férias para viabilizar a coleta das informações de porcentagem de emergência.

Espera-se que os substratos intermediários apresentem melhores resultados.

CONSIDERAÇÕES FINAIS

O experimento que está sendo realizado deve indicar a porcentagem mais adequada ao produtor de hortaliças para uso de esterco de coelho na produção de rabanetes. Este projeto prevê continuidade de estudo com outras plantas de interesse olerícola.

REFERÊNCIAS

ARTUR, Adriana Guirado et al. **Esterco bovino e calagem para formação de mudas de guanandi.** 1. ed. Brasília: [s.n.], 2007. 8 p. Disponível em: http://www.scielo.br/pdf/%0D/pab/v42n6/v42n6a11.pdf>. Acesso em: 11 maio 2018.

FERREIRA, Walter Motta et al. **Manual Prático de Cunicultura.** 1. ed. Bambu: Ed. do Autor, 2012. 75 p.

FILGUEIRA, Fernando Antonio Reis. **Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças.** 1. ed. Viçosa: UFV, 2000. 402 p.

QUEIROZ, Carla Regina Amorim dos Anjos *et al.* **Esterco de Coelho: Fonte de Nutrientes para Complementação da Adubação.** Revista Agrogeoambiental, [*S. I.*], p. 11-17, 2014. Disponível em: file:///C:/Users/samue/Downloads/680-2892-1-PB%20(4).pdf. Acesso em: 30 jun. 2019.

LOPES, H. L. S. *et al.* Crescimento inicial da cultura do rabanete (Raphanus sativus L.) submetida a níveis e fontes de fertilizantes orgânicos. Revista Brasileira de Gestão Ambiental, Pombal - PB, p. 19-24, 24 jan. 2019. Disponível em: file:///C:/Users/samue/Downloads/6152-29323-1-PB%20(1).pdf. Acesso em: 15 jun. 2019.

SILVA, Pâmella Gonçalves da *et al.* Germinação e crescimento inicial de capuchina em diferentes condições de cultivo. Revista Brasileira de Agroecologia, [*S. l.*], p. 239-246, 11 nov. 2018.