Deep Q Learning: From Paper to Code

Model Free vs. Model Based Learning

Last Time

Markov property + policy → Value function

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Goodness of state

Bellman Equation

A Problem?

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

How to handle unknown?

No way to solve without p!

Known Probability Distribution

Suppose distribution is known ...

 $\Pi(s,a) \rightarrow \text{probability of selecting a in s}$

Success!

Work backwards from terminal state

$$G_T = 0$$

$$v_{\pi}(s_{terminal}) = E_{\pi}[G_t|S_t = s] = E_{\pi}[0] = 0$$

Use recursion relationship

Known Probability Distribution

Complete model of environment

Solve (large) system of equations

Allows explicit planning

Dynamic Programming

Unknown Probability Distribution

Model Free → **Q Learning**

Estimate p by playing

Much more flexible

Biological Parallels

Use model based and model free

We can learn from maps

We can also learn by trial and error

Summary

- Solve B.E. explicitly or through exploration
- Q learning is model free
- Dynamic programming → solving equations
- Estimating p is critical to our success

Up Next

