MLDS Homework 4 Report

b05902127 劉俊緯 b05902013 吳宗翰

4-1 Policy Gradient

4-1-1 Policy Gradient model

Model

layer	RGB image from observation	Shape
perpro	TA的preprocess code.	observation -> 80*80 image
hidden	Dense(128 , activation='relu')	(None,6400) -> (None,128)
output	Dense(6,activation='softmax')	(None,128) -> (None,6)

Details

Details	Parameteres
Optimizer	pyTorch's 預設 Adam,lr=1e-4
Discount value	0.99

4-1-2 Plot the learning curve to show the performance of your Policy Gradient on Pong

4-1-3 Implement 1 improvement method on page 8

Describe your tips for improvement

- variance reduction 加入 baseline
- 我們使用最靠近現在的10000步的rewards(包含被discount的部份)作為我們的mean。
- 要更新參數的時候,計算loss前的reward會-= mean。

Learning curve

● 有baseline的learning curve一起畫在上面了。

Compare to the vallina policy gradient

- 我們會看到一般的pg相較於reduce variance的版本,會學習的非常緩慢。因為一般的pg variance非常大。原本在計算pg的公式的時候,因為我們不會知道policy的期望值是多少,所以 才用採樣的方式去逼近。但是要是原本的distribution variance非常大,那麼採樣的可信度會大幅下降。例如只要採樣時的variance變大,在同個信賴區間的機率就會變低。
- 而為什麼增加baseline就會降低variance,這件事情在課堂上已經有證明了。
- 因此,我認為一般的pg可能因為期望值預測不準確導致學習叫緩慢。

proof : https://en.wikipedia.org/wiki/Variance_reduction

4-2 Deep Q Learning

4-2-1 DQN Model

1. Network Structure

```
# CNN * 3 + Dense * 2
CNN (in_channel=4, out_channel=16, kernel=8, stride=4) + ReLU
CNN (in_channel=16, out_channel=32, kernel=4, stride=2) + ReLU
CNN (in_channel=32, out_channel=64, kernel=3, stride=1) + ReLU
Dense(64*7*7, 512) + ReLU
Dense(512, 4) (action數是4)
```

2. Training method

o batch size: 32

 \circ Optimizer: RMSProp, lr = 1.5×10^{-4}

Loss function: mse

3. DQN parameter

。 使用Double DQN

○ 更新online network的頻率: 4 timestamp

○ 更新target network的頻率: 1000 timestamp

 \circ $\gamma = 0.99$

。 ϵ greedy使用Linear Decay,總共訓練500萬個iteration,不過只有在前面 0.3×5000000 個iteration從1降到0.025。其餘的iteration都是 $\epsilon=0.025$

4-2-2 Learning Curve

4-2-3 Implement 1 improvement method

- 1. Tips
 - 。 基於第一題的Double DQN再加上Dueling上去
 - 基本上就按照投影片上面所述在最後一層做分岔然後再加起來,簡單更改network structure而已

2. Learning Curve

3. Compare to origin one

- 由圖看出有沒有多加上Dueling在收斂時間上並沒有太大的差距,另外在最終的表現上也差不多
- 由圖看出在Dueling + Dobule DQN在後期會有大震盪的狀況,而這是在原本只有Double DQN不曾出現的狀況

4-3 Actor Critic

4-3-1 Actor Critic Model

Pong

```
# Dense * 2
Input (80 * 80)
Linear (6400, 256) + ReLU
-> Actor : Linear (256, 2) + Softmax
-> Critic : Linear (256, 1)
```

其他參數:

Optimizer: adam, lr=10⁻⁴
 Reward Discount: 0.99

Breakout

```
# CNN * 3 + Dense * 2
CNN (in_channel=4, out_channel=16, kernel=8, stride=4) + ReLU
CNN (in_channel=16, out_channel=32, kernel=4, stride=2) + ReLU
CNN (in_channel=32, out_channel=64, kernel=3, stride=1) + ReLU
-> Actor :
    Linear (64 * 7 * 7, 512) + ReLU -> Linear (512, 4) + Softmax
-> Critic :
    Linear (64 * 7 * 7, 512) + ReLU -> Linear (512, 1)
```

4-3-2 Learning Curve

可以看到Actor Critic在Pong上面表現的跟使用單純Policy Gradient差不多,不過breakout則是train不太起來。不過在後面有看到是有上升趨勢的,在4-3-3inference別人的A3C就看到他跑起來了,因此估計是跑得起來的。另外也有猜測像是Breakout這類有明顯reward的遊戲使用DQN就算很穩了。

4-3-3 One improvement method of Actor-Critic

Model Description

```
# A3CLSTM
CNN (in_channel=4, out_channel=32, kernel=5, stride=1) + Maxpooling + ReLU
CNN (in_channel=32, out_channel=32, kernel=5, stride=1) + Maxpooling + ReLU
CNN (in_channel=32, out_channel=64, kernel=3, stride=1) + Maxpooling + ReLU
h, c = LSTM(1024, 512)
-> Actor : Linear (512, action_num) + Softmax
-> Critic : Linear (512, 1)
```

其他參數:

• Optimizer: Shared Adam, $Ir=10^{-4}$

• Number of process: 4

Learning Curve

上面第一個表格是pong的Learning Curve,下面第二個表格則是breakout的Learning Curve。可以 明顯看到使用A3C的效能遠高於我們原本的DQN以及Policy Gradient。

Reference

• https://github.com/dgriff777/rl a3c pytorch

分工表

• 4-1: b05902127 劉俊緯

• 4-2: b05902013 吳宗翰

• 4-3: b05902013 吳宗翰