

Cache Design Project Report

Team NINE

September 6, 2024

Team Members

- Dhruv Ramesh Joshi (IMT2023032)
- Arnav Oruganty (IMT2023078)
- Vaishak Prasad Bhat (IMT2023085)

1 Introduction

In this report, we simulate a set-associative cache system and analyze its performance by varying three key parameters: cache size, block size, and associativity. The purpose of this simulation is to study how different configurations impact the hit and miss rates for various memory trace files. Our goal is to identify optimal configurations that maximize cache performance while minimizing cache misses.

Cache memory is a fundamental component in modern CPU architecture, acting as a temporary storage space that improves the speed of memory access by storing frequently used data closer to the processor. The performance of the cache is often gauged by hit rates (successful data retrievals from the cache) and miss rates (failures requiring data retrieval from the slower main memory).

To better understand these trade-offs, we implemented a Python-based cache simulation, which we used to analyze the impact of different cache configurations.

2 Code Design

The simulation was developed in Python and is structured with the following key components:

- Cache Class: Models the behavior of the cache, accepting parameters for cache size, block size, and associativity.
- Block Class: Represents individual cache blocks containing a tag, a valid bit, and an LRU (Least Recently Used) counter to handle cache replacements.

• Functions:

- Part-A: Simulates a 4-way set associative cache with a fixed cache size of 1024KB and a block size
 of 4 bytes.
- Part-B: Varies cache sizes from 128KB to 4096KB to observe changes in hit/miss rates.
- Part-C: Varies block sizes from 1 byte to 128 bytes while keeping the cache size constant at 1024KB.
- Part-D: Varies associativity from 1-way to 64-way with a fixed cache size of 1024KB.

3 Methodology

In this study, we used memory trace files representing various workloads to evaluate the performance of different cache configurations. The parameters varied include:

- Cache Size: The total amount of memory available in the cache (from 128KB to 4096KB).
- Block Size: The amount of data retrieved in a single access (from 1 byte to 128 bytes).
- Associativity: The number of cache lines available in each set (from 1-way to 64-way).

To simulate the performance, the Python implementation measured hit and miss rates for different trace files, providing insights into how the cache parameters affect the overall performance.

4 Results and Observations

4.1 Part A: Fixed Cache Size (1024KB) and Block Size (4 Bytes)

Cache Lines Calculation

The formula to calculate the number of cache lines is given by:

$$\label{eq:Cache Size} \text{Cache Size} \\ \frac{\text{Cache Size}}{\text{Block Size} \times \text{Number of Ways}}$$

Given:

- Cache Size = $1024 \text{ kB} = 1024 \times 1024 \text{ Bytes}$
- Block Size = 4 Bytes
- Number of Ways = 4

Calculation

First, convert the cache size to bytes:

Cache Size =
$$1024 \times 1024 = 1048576$$
 Bytes

Next, apply the formula:

Cache Lines =
$$\frac{1048576}{4 \times 4}$$

$$Cache\ Lines = \frac{1048576}{16}$$

Cache Lines = 65536

Therefore, the number of cache lines is 65536.

Figure 1: Output for Part A

4.2 Part B: Varying Cache Size (128KB to 4096KB)

By varying the cache size, we observed that the miss rates generally decrease as the cache size increases. However, beyond a cache size of 1024KB, the improvement in hit rate becomes marginal, indicating diminishing returns.

Cache Size (kB)	gcc	gzip	mcf	swim	twolf
128	6.19%	33.29%	98.97%	7.38%	1.24%
256	6.17%	33.29%	98.97%	7.38%	1.24%
512	6.16%	33.29%	98.97%	7.38%	1.24%
1024	6.16%	33.29%	98.97%	7.38%	1.24%
2048	6.16%	33.29%	98.97%	7.38%	1.24%
4096	6.16%	33.29%	98.95%	7.38%	1.24%

Table 1: Miss Rates for Different Cache Sizes

Cache Size (kB)	gcc	gzip	mcf	swim	twolf
128	93.81%	66.71%	1.03%	92.62%	98.76%
256	93.83%	66.71%	1.03%	92.62%	98.76%
512	93.84%	66.71%	1.03%	92.62%	98.76%
1024	93.84%	66.71%	1.03%	92.62%	98.76%
2048	93.84%	66.71%	1.03%	92.62%	98.76%
4096	93.84%	66.71%	1.05%	92.62%	98.76%

Table 2: Hit Rates for Different Cache Sizes

Figure 2: Miss Rate vs Cache Size

Figure 3: Hit Rate vs Cache Size $\,$

t Rate	:										
	128kB	256kB		512kB	102	 24kB	 2048	+ (B	4096kB	'	
=====- gcc	-======- 93.8016	93.8311	93.	.8354	93.8	=====+ 356	+======= 93.8356	===+ 5	-======= 93.8356	:+ 	
gzip	66.7055	66.7055	66.	.7055	66.7	055	66.7055	 	66.7055	+ 	
mcf	1.03241	1.03241	1.	.03241	1.0	3241	1.0324	ļ1	1.04547	+ 	
swim	92.6199	92.6225	92.	.6225	92.6	225	92.6225	 	92.6225	†	
twolf	98.7612	98.7615	98.	.7615	98.7	615	98.7615	 	98.7615	†	
ss Rate	e: 128kB	256kB		512kB	102	 24kB	2048	+ (B	4096kB	.+ 	
	·	256kB		512kB	102	 24kB	 2048k	+ <b td="" <=""><td>4096kB</td><td>-+ </td><td></td>	4096kB	-+ 	
gcc 	6.19838 	6.16891	6.	. 16464 	6.1	6445 	6.1644 	15 +	6.16445	 -	
gzip 	33.2945	33.2945	33.	. 2945	33.29	945 	33.2945	5 +	33.2945	 -	
mcf	98.9676	98.9676	98.	.9676	98.9	676	98.9676	5	98.9545	1	
swim	7.38012	7.37748	7.	.37748	7.3	7748	7.3774	7748 7.37748		İ	
twolf	1.23875	1.23855	1.	.23855	1.2	3855	1.2385	55	1.23855	Ī	
t/Miss	Ratio: 128kE	+ 3 256	ikB	 I :	512kB	+ I				+ 4096kB	
=====- gcc	 15.1332	== ; ======= 15.2103	:===- 	-====== 15.221	:===== 5	; 15.2	======== 2221	- -=== 15	- 5.2221	- 15.2221	
gee gzip				2.003		·			2.0035	2.0035	
		i	10	i					i	i	
mcf 	0.0104318 12.5499	i	18		94318 		0104318 		0.0104318	0.0105652	
swim		1 12.5548		12.554	18 12.5		548	12.5548		12.5548	

Figure 4: Output for Part B

Cache Size Variation and Its Impact on Hit Rates

Cache size ranges from 128 KiB to 4096 KiB

Block size: 4 Bytes Associativity: 4-Way

Observations:

- gcc.trace: There is a slight increase in hit rate when the cache size is increased from 128 to 1024 KiB. Beyond 1024 KiB, there is no further increase in the number of hits. This is likely because, with a larger cache size, the number of sets increases, and at 1024 KiB, all addresses in the trace can fit within the cache without evicting one another, leading to no additional increase beyond 1024 KiB.
- gzip.trace: The cache size does not affect the hit rates, likely because, similar to gcc.trace, at 1024 KiB and beyond, all addresses can be present simultaneously without evicting one another.
- mcf.trace: There is no increase in hit rate until the cache size reaches 4096 KiB. At 4096 KiB, we observe a slight increase in hit rate.
- swim.trace: The hit rate increases when the cache size is increased from 128 to 256 KiB, but there is no further improvement with additional cache expansion. This is likely for the same reason that gcc.trace and gzip.trace hit rates saturate.
- twolf.trace: Similar to swim.trace, there is a slight improvement when increasing the cache size from 128 to 256 KiB, but no further increase beyond that.

4.3 Part C: Varying Block Size (1 Byte to 128 Bytes)

When varying the block size, we noticed that larger block sizes initially reduce the miss rate. However, beyond a certain point (32 bytes), further increases in block size degrade performance as the number of cache lines decreases.

gcc	gzip	mcf	swim	twolf
6.80%	33.30%	98.98%	7.46%	1.52%
6.38%	33.30%	98.97%	7.40%	1.34%
6.16%	33.29%	98.97%	7.38%	1.24%
4.07%	33.29%	98.96%	6.54%	1.14%
2.17%	33.21%	49.50%	3.77%	0.61%
1.17%	33.17%	24.76%	2.11%	0.34%
0.65%	33.15%	12.39%	1.14%	0.20%
0.38%	33.14%	6.20%	0.60%	0.12%
	6.80% 6.38% 6.16% 4.07% 2.17% 1.17% 0.65%	6.80% 33.30% 6.38% 33.30% 6.16% 33.29% 4.07% 33.29% 2.17% 33.21% 1.17% 33.17% 0.65% 33.15%	6.80% 33.30% 98.98% 6.38% 33.30% 98.97% 6.16% 33.29% 98.97% 4.07% 33.29% 98.96% 2.17% 33.21% 49.50% 1.17% 33.17% 24.76% 0.65% 33.15% 12.39%	6.80% 33.30% 98.98% 7.46% 6.38% 33.30% 98.97% 7.40% 6.16% 33.29% 98.97% 7.38% 4.07% 33.29% 98.96% 6.54% 2.17% 33.21% 49.50% 3.77% 1.17% 33.17% 24.76% 2.11% 0.65% 33.15% 12.39% 1.14%

Table 3: Miss Rates for Different Block Sizes

Block Size (Bytes)	gcc	gzip	mcf	swim	twolf
1	93.20%	66.70%	1.02%	92.54%	98.48%
2	93.62%	66.70%	1.03%	92.60%	98.66%
4	93.84%	66.71%	1.03%	92.62%	98.76%
8	95.93%	66.71%	1.04%	93.46%	98.86%
16	97.83%	66.79%	50.50%	96.23%	99.39%
32	98.83%	66.83%	75.24%	97.89%	99.66%
64	99.35%	66.85%	87.61%	98.86%	99.80%
128	99.62%	66.86%	93.80%	99.40%	99.88%

Table 4: Hit Rates for Different Block Sizes

Figure 5: Miss Rate vs Block Size

Impact of Varying Block Sizes on Hit Rates

Cache size: 1024 KiB Block size: 1B to 128B Associativity: 4-Way Observations

- gcc.trace: Hit rates increase continuously as block sizes are increased, due to the effective use of spatial locality. However, the benefits diminish with further increases in block size.
- gzip.trace: There are steady and minimal increments in hit rates, presumably for similar reasons as gcc.trace.
- mcf.trace: Hit rates show a slight increase until the block size reaches 8B. Beyond this, there is a substantial increase in hit rates with each increment, because the addresses accessed by this trace file exploit spatial locality effectively after a certain point.
- swim.trace: Performance is similar to gcc.trace, with hit rates increasing as block sizes are increased.
- twolf.trace: Similar to gzip.trace, there are steady and minimal increments in hit rates.

Figure 6: Hit Rate vs Block Size

Observation: The hit rate improves up to a block size of 32 bytes, after which it starts to decline as the cache begins to lose capacity for unique blocks.

Additional Observation: Applications that exhibit strong spatial locality benefit from larger block sizes, but for those with random access patterns, smaller block sizes may yield better performance.

	1B	 2B	4B		+ 8B	 16B	+ 	+ 32B		+ 64B	12	+ 8B	
====== gcc	; 93.1989	-======= 93.6248	93.8356	-===== 95 . 926	===÷ 6	97 . 825	∔=== 98	====== ; 3.8289	99.3	====÷ 3459	99.62	=== ; 09	
 gzip	 66.7039	66.7041	66.7055	66.707	 2	 66.7856	; 66	i .8253	66.8	- 3461	66.85	+ 65	
mcf	+ 1.02457	1.0287	1.03241	1.038	32	50.503	+ 75	+ 5.2378	87.6	+ 508	93.79	+ 55	
 swim	92.5444	92.5935	92.6225	93.464	2	96.2324	+ 97	+ 7.8905	98.8	+ 3611	99.39	+ 77	
twolf	+ 98.4769	98.6608	98.7615	98.859	8	99.388	+ 99	.6599	99.8	+ 3024	99.88	+ 09	
gcc gzip	6.80108 33.2961 	6.37523 33.2959	6.16445 33.2945 	4.07 33.29	28	2.1749 + 33.2144 +		1.171 33.174	7	33.1		0.379 + 33.143 +	- 5 +
	1B +======	2B -======	4B :+======	i :+=====	8B	1 +======	6B ===-1	-=======	32B ====-	 -=====	64B	1 +======	28B ====+
gzip	33.2961	33.2959	33.2945	+ 33.29	28	+ 33.2144		33.174	7	33.1	 539	+ 33.143	+ 5
mcf	98 . 9754	98.9713	+ 98.9676	+ 98.96	17	49.497	 	24.762	2	12.3	92	+ 6.204	+ 5
swim	7.45565	7.4065	7.37748	6.53	577	3.7675	7	2.109	55	1.1	3888	0.602	 257
twolf	1.52312	1.3392	1.23855	1.14	017	0.6120	24	0.340	083	0.1	97588	0.119	091
lt/Miss	Rate: 1E		2B	+ 4B		- 8B		16B	+ :+===	32	+ B ==+===	64B	+ 128 +=======
gcc	13.7036	14.6857	15.22	21	23.	5493	44.9774		84.3921		15	1.886	262.776
gzip	2.00335	2.0033	7 2.00	35	2.0	00365	2	2.01074	į :	2.0143	4 :	2.01623	2.0171
	0.0403540	0.0103	939 0.01	0.0104318		0.0104922		1.02032		3.0384		7.06975	15.1173
mcf	0.0103518		i	i -		 14.3004		 25 . 5423					
mcf swim	0.0103518 + 12.4127	12.5016	12.55	t i48	14.	+ 3004	25	.5423	40	4035	81	6.8057	165.042

Figure 7: Output for Part \mathcal{C}

4.4 Part D: Varying Associativity (1-Way to 64-Way)

Increasing the associativity generally improves hit rates as it reduces conflicts between cache lines. However, beyond 16-way associativity, the benefits diminish, indicating that higher associativity does not always lead to better performance for all workloads.

Associativity	gcc	gzip	mcf	swim	twol
1-way	6.17%	33.29%	98.97%	7.38%	1.25%
2-way	6.17%	33.29%	98.97%	7.38%	1.24%
4-way	6.16%	33.29%	98.97%	7.38%	1.24%
8-way	6.16%	33.29%	98.97%	7.38%	1.24%
16-way	6.16%	33.29%	98.97%	7.38%	1.24%
32-way	6.16%	33.29%	98.97%	7.38%	1.24%
64-way	6.16%	33.29%	98.97%	7.38%	1.24%

Table 5: Miss Rates for Different Associativities

Associativity	gcc	gzip	mcf	swim	twol
1-way	93.83%	66.71%	1.03%	92.62%	98.75%
2-way	93.83%	66.71%	1.03%	92.62%	98.76%
4-way	93.84%	66.71%	1.03%	92.62%	98.76%
8-way	93.84%	66.71%	1.03%	92.62%	98.76%
16-way	93.84%	66.71%	1.03%	92.62%	98.76%
32-way	93.84%	66.71%	1.03%	92.62%	98.76%
64-way	93.84%	66.71%	1.03%	92.62%	98.76%

Table 6: Hit Rates for Different Associativities

Figure 8: Miss Rate vs Associativity

Figure 9: Hit Rate vs Associativity

Observation: Increasing number of ways from 1 to 2 or 4 gives a very slight increase in hit rate but anything beyond that seems to generally give negligible benefits.

Figure 10: Output for Part D

5 Conclusion

This project demonstrates how cache performance is affected by key parameters such as cache size, block size, and associativity. Larger cache sizes and higher associativity generally improve hit rates, but with diminishing returns. Varying the block size shows that a balance must be struck between exploiting spatial locality and maintaining enough cache lines to store unique blocks. Overall, our experiments highlight the importance of tuning cache parameters to match workload-specific characteristics for optimal performance.