【練習問題】 下表は、あるクラスの英語の試験の受験者から抽出した15人分の得点である。

受験番号	得点	偏差	偏差平方和
1	28	-17.2	295.84
2	38	-7.2	51.84
3	32	-13.2	174.24
4	41	-4.2	17.64
5	42	-3.2	10.24
6	50	4.8	23.04
7	42	-3.2	10.24
8	68	22.8	519.84
9	52	6.8	46.24
10	28	-17.2	295.84
11	67	21.8	475.24
12	22	-23.2	538.24
13	27	-18.2	331.24
14	79	33.8	1142.44
15	62	16.8	282.24
合計	678		4214.4

標本平均 45.2

① 標本平均と標本分散を求めよ

標本平均 45.2 標本分散 280.96

② 標本平均は正規分布にしたがい標本分散の値を母分散として考えることができるとした場合、95%信頼区間を求めよ。

レント 標準正規分布表 n = 15 $\bar{x} = 45.2$ Pr(-1.96 < Z < 1.96) = 0.95 $\widehat{\sigma_X^2} = S_x^2 = 280.96$

(36.72	,	53.68)

③ 標本平均は正規分布にしたがい標本分散は母集団の分散の推定値に過ぎないと考える場合、95%信頼区間を求めよ。

ヒント t分布表
②の例では $\widehat{G_x} = S_x^2$ だが
「推定値に過ぎない」と
考える場合は
「標本不偏分散」を求める

 $\widehat{\sigma_X^2} =$ 301.0286

 t%点は
 2.1448

 (35.59 , 54.81)

Memo 🛰

【練習問題】 下表は、ある日のコンビニ20店舗の売上高である。

店舗ID	売上高	偏差	偏差平方和
1	41	13.6	184.96
2	17	-10.4	108.16
3	14	-13.4	179.56
4	23	-4.4	19.36
5	33	5.6	31.36
6	38	10.6	112.36
7	36	8.6	73.96
8	26	-1.4	1.96
9	32	4.6	21.16
10	27	-0.4	0.16
11	41	13.6	184.96
12	25	-2.4	5.76
13	31	3.6	12.96
14	21	-6.4	40.96
15	27	-0.4	0.16
16	35	7.6	57.76
17	18	-9.4	88.36
18	19	-8.4	70.56
19	16	-11.4	129.96
20	28	0.6	0.36
合計	548		1324.8

🧏 Memo	

① 標本平均と標本分散を求めよ

標本平均	27.4
標本分散	66.24

② 標本平均は正規分布にしたがい標本分散の値を母分散として考えることができるとした場合、95%信頼区間を求めよ。

ヒント 標準正規分布表
$$n = 20$$
 $\bar{x} = 27.4$

$$Pr(-1.96 < Z < 1.96) = 0.95$$

$$\widehat{\sigma_X^2} = S_x^2 = 66.24$$
(23.83 , 30.97)

③ 標本平均は正規分布にしたがい標本分散は母集団の分散の推定値に過ぎないと考える場合、95%信頼区間を求めよ。

ヒント t分布表
②の例では $\widehat{G_X} = S_X^2$ だが
「推定値に過ぎない」と
考える場合は
「標本不偏分散」を求める

 $\widehat{\sigma_X^2} =$ 69.7263 t%点は 2.093 (23.49 , 31.31) 母分散の区間推定について学びます。

今日やることF分布の性質とF分布にしたがう統計量を理解します。

pp.117 母分散の区間推定

分布 標本の大きさnが大きいとき

> の分布は 分布に近似

$$Z = \frac{\overline{X} - \mu_X}{\sqrt{\frac{\sigma_X^2}{n}}} \sim N(0, 1)$$

分布

分布に

したがう統計量と

分布に

したがう統計量(独立)の

比に関する確率分布

$$T = \frac{\overline{X} - \mu_X}{\sqrt{\frac{\widehat{\sigma_X^2}}{n}}} \sim t(n-1)$$

分布

分布に

したがう統計量の

に関する確率分布

$$U = \frac{\sum (X_i - \overline{X})^2}{\sigma_X^2} \sim \chi^2 (n - 1)$$

分布

分布に

したがう統計量(独立)の

比に関する確率分布

$$F = \frac{\widehat{\sigma_1^2}}{\widehat{\sigma_2^2}} \frac{\sigma_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

📐 Memo

pp.118 母分散の区間推定

※ 母分散を含む統計量

$$U = \frac{\sum (x_i - \bar{x})^2}{\sigma_x^2} \sim \chi^2(n-1)$$

$$\frac{\sum (x_i - \mu_x)^2}{\sigma_x^2} = \frac{\sum (x_i - \bar{x})^2}{\sigma_x^2} + \frac{n(\bar{x} - \mu_x)^2}{\sigma_x^2}$$

$$\sim \chi^2(n)$$

$$= \lambda \chi^2(n - 1)$$

$$= \lambda \chi^2(n)$$

$$= \lambda \chi^2(n - 1)$$

$$= \lambda \chi^2(n)$$

$$=$$

※ 赤文字は未知

↑母分散のみを含む統計量(=U)

カイ二乗分布は自由度が小さいと

(担当:YOH)

pp.120 母分散の95%信頼区間

$$\Pr\left(\chi_{0.975}^{2}(n-1) < U < \chi_{0.025}^{2}(n-1)\right)$$

$$= \Pr\left(\frac{\sum (x_{i} - \bar{x})^{2}}{\chi_{0.025}^{2}(n-1)} < \sigma_{x}^{2} < \frac{\sum (x_{i} - \bar{x})^{2}}{\chi_{0.975}^{2}(n-1)}\right)$$

$$= \Pr\left(\frac{\text{偏差平方和}}{\text{力イ二乗統計量0.025}} < \sigma_{x}^{2} < \frac{\text{偏差平方和}}{\text{力イ二乗統計量0.975}}\right)$$

※ 下限値

※ 上限値

pp.123 母分散の区間推定に関する計算

問題10-1 5社を無作為抽出してROAを調べた結果

i	x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	5.6		
2	5.2		
3	3.2		
4	4.6		
5	8.4		
合計			
平均値			

母分散の95%	言頼区間を求める
---------	----------

標本数n

自由度n-1			
カイ二乗97.5%	210.378		
カイ二乗2.5%	点 $\chi^2_{0.025}$		
※ カイニ!	乗分布表から数	!値を読み取る	

標本平均 $ar{x}$ 偏差平方和 $\sum (x_i - ar{x})^2$

これらの数値を公式に代入して下限値, 上限値を計算する

(,)

下限値:14.56/11.1433 上限値:14.56/0.4844

pp.124 F分布

※ カイ二乗分布にしたがう2つの独立な確率変数の

比に関する確率分布

※ 自由度を

個もつ

※ 左右

$$F = \frac{\frac{\widehat{\sigma_1^2}}{\sigma_1^2}}{\frac{\widehat{\sigma_2^2}}{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 1)$$

※ 2つの が等しい仮定

 $\times \sigma_1^2 = \sigma_2^2$

※ 等分散の仮定のもとでのみ以下も成り立つ

$$F_0 = \frac{\widehat{\sigma_1^2}}{\widehat{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 1)$$

<u>></u> Memo	
	İ
	ļ
J	

今日の講義のまとめ

母分散の区間推定

母分散を含む統計量に基づいて行う

信頼係数 confidence coefficient

信頼区間 confidence interval

(下限 , 上限)

95%信頼区間

📐 Memo

信頼係数95%の信頼区間を、95%信頼区間ともいう

ランダムな標本抽出を100回繰り返し行って

信頼区間を100回計算するとき

区間内に母分散を含むものは100回中95回程度になる区間

$$\left(\frac{\sum (x_i - \bar{x})^2}{\chi_{0.025}^2}, \frac{\sum (x_i - \bar{x})}{\chi_{0.975}^2}\right)$$

カイ二乗分布表

カイ二乗分布のパーセント点

カイ二乗分布表では、自由度 ν と上側確率 α に対応したカイ二乗分布 $\chi^2(\nu)$ のパーセント点 $\chi^2_\alpha(\nu)$ を表す。

たとえば、自由度 ν =5、上側確率 α =0.025 のとき、表側 の 5 と表頭の 0.025 との交差点である 12.8325 が 2.5 パーセント点 $\chi^2_{0.025}(5)$ =12.8325 となる。

α	0.995	0.990	0.975	0.950	0.050	0.025	0.010	0.005
1	0.0000	0.0002	0.0010	0.0039	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	5.9915	7.3778	9.2103	10.5966
3	0.0717	0.1148	0.2158	0.3518	7.8147	9.3484	11.3449	12.8382
4	0.2070	0.2971	0.4844	0.7107	9.4877	11.1433	13.2767	14.8603
5	0.4117	0.5543	0.8312	1.1455	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	12.5916	14.4494	16.8119	18.5476
7	0.9893	1.2390	1.6899	2.1673	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	15.5073	17.5345	20.0902	21.9550
9	1.7349	2.0879	2.7004	3.3251	16.9190	19.0228	21.6660	23.5894
10	2.1559	2.5582	3.2470	3.9403	18.3070	20.4832	23.2093	25.1882
11	2.6032	3.0535	3.8157	4.5748	19.6751	21.9200	24.7250	26.7568
12	3.0738	3.5706	4.4038	5.2260	21.0261	23.3367	26.2170	28.2995
13	3.5650	4.1069	5.0088	5.8919	22.3620	24.7356	27.6882	29.8195
14	4.0747	4.6604	5.6287	6.5706	23.6848	26.1189	29.1412	31.3193
15	4.6009	5.2293	6.2621	7.2609	24.9958	27.4884	30.5779	32.8013
16	5.1422	5.8122	6.9077	7.9616	26.2962	28.8454	31.9999	34.2672
17	5.6972	6.4078	7.5642	8.6718	27.5871	30.1910	33.4087	35.7185
18	6.2648	7.0149	8.2307	9.3905	28.8693	31.5264	34.8053	37.1565
19	6.8440	7.6327	8.9065	10.1170	30.1435	32.8523	36.1909	38.5823
20	7.4338	8.2604	9.5908	10.8508	31.4104	34.1696	37.5662	39.9968
21	8.0337	8.8972	10.2829	11.5913	32.6706	35.4789	38.9322	41.4011
22	8.6427	9.5425	10.9823	12.3380	33.9244	36.7807	40.2894	42.7957
23	9.2604	10.1957	11.6886	13.0905	35.1725	38.0756	41.6384	44.1813
24	9.8862	10.8564	12.4012	13.8484	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	43.7730	46.9792	50.8922	53.6720
40	20.7065	22.1643	24.4330	26.5093	55.7585	59.3417	63.6907	66.7660
60	35.5345	37.4849	40.4817	43.1880	79.0819	83.2977	88.3794	91.9517
120	83.8516	86.9233	91.5726	95.7046	146.5674	152.2114	158.9502	163.6482
200	152.2410	156.4320	162.7280	168.2786	233.9943	241.0579	249.4451	255.2642
360	294.6414	300.5325	309.3278	317.0299	405.2435	414.4593	425.3470	432.8673