Section 06: Solutions

1. Kernelized Linear Regression

Recall that the definition of a kernel is the following:

Definition 1. A function $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a *kernel* for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle$ for all x, x'.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters $\hat{w} = \arg\min_{w} L(W)$ for a dataset $(x_i, y_i)_{i=1}^n$ that minimize the following loss function:

$$L(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

Note that from class, we know there is an optimal \hat{w} that lies in the span of the datapoints. Concretely, there exist $\alpha_1,...,\alpha_n \in \mathbb{R}$ such that $\hat{w} = \sum_i^n \alpha_i x_i$. Also recall from lecture that the expression of our loss function L(w) in terms of the kernel is:

$$L(w) = ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

This derivation can be seen here on slide 14.

(a) Solve for the optimal $\hat{\alpha}$.

Solution:

Setting gradient of L(w) with respect to α equal to 0:

$$\begin{aligned} -2\mathbf{K} \left(\mathbf{y} - \mathbf{K} \alpha \right) + 2\lambda \mathbf{K} \alpha &= 0 \\ -\mathbf{K} (\mathbf{y} - \mathbf{K} \alpha) + \lambda \mathbf{K} \alpha &= 0 \\ \mathbf{K} \left(\mathbf{K} \alpha - \mathbf{y} + \lambda \alpha \right) &= 0 \\ \mathbf{K} \left((\mathbf{K} + \lambda I) \alpha - \mathbf{y} \right) &= 0 \\ \mathbf{K} (\mathbf{K} + \lambda I) \alpha &= \mathbf{K} \mathbf{y} \\ \hat{\alpha} &= (\mathbf{K} + \lambda I)^{-1} \mathbf{y} \end{aligned}$$

 $\nabla_{\alpha}L(w) = 0$

(b) Let us assume that we were using a linear kernel where $\mathbf{K}_{ij} = x_i^T x_j$. Suppose we have \mathbf{X}_{test} that we want to make prediction for after training on \mathbf{X}_{train} . Express the estimate $\hat{\mathbf{Y}}$ in terms of $\mathbf{K}_{train} = \mathbf{X}_{train} \mathbf{X}_{train}^T$, \mathbf{y}_{train} , \mathbf{X}_{train} and \mathbf{X}_{test} . What would the general prediction formula look like if we are not using a linear kernel? Express the solution in terms of $\mathbf{K}_{train, test}$ Solution:

$$\begin{split} \hat{\mathbf{Y}} &= \mathbf{X}_{\text{test}} \hat{w} \\ &= \mathbf{X}_{\text{test}} \mathbf{X}_{\text{Train}}^T \hat{\alpha} \\ &= \mathbf{X}_{\text{test}} \mathbf{X}_{\text{train}}^T \left(\mathbf{K}_{\text{train}} + \lambda I \right)^{-1} \mathbf{y}_{\text{train}} \end{split}$$

1

General Solution for Kernel Ridge

$$\hat{\mathbf{Y}} = \mathbf{K}_{\text{train. test}} \hat{\alpha}$$

Where $\mathbf{K}_{train,test} = \mathbf{X}_{test} \mathbf{X}_{train}^T$

2. Kernel Proofs

Let $\phi \colon \mathbb{R}^d \to \mathbb{R}^k$ be a feature map, and define K to be the kernel matrix of ϕ .

(a) Prove that the kernel matrix is symmetric. That is, show $K_{i,j} = K_{j,i}$. **Solution:**

Let $\phi(x_i)$ and $\phi(x_j)$ be the feature maps for x_i and x_j , respectively. Then $K_{i,j} = \phi(x_i)^T \phi(x_j) = \phi(x_j)^T \phi(x_i)$ $K_{j,i}$.

Alternatively, as the kernel itself represents a dot product and a dot product is a symmetric operation we can conclude that the kernel matrix is symmetric.

(b) Recall that a matrix M is positive semi-definite if $x^T M x \ge 0, \forall x \in \mathbb{R}^n$. Show that K is positive semi-definite. (Hint: consider the matrix B where the i^{th} column of B is $\phi(x_i)$. Solution:

Recall that $K_{i,j} = \phi(x_i)^T \phi(x_j)$. Observe that $K = B^T B$, as $(B^T B)_{i,j} = \phi(x_i)^T \phi(x_j)$. Now consider an arbitrary vector y. To show K is PSD it suffices to show $y^T K y$ is non-negative. We have:

$$y^T K y = y^T B^T B y = (By)^T (By) = ||By||_2^2 \ge 0$$

3. Proving $\hat{w} \in Span(x_1, ..., x_n)$

We will prove this through contradiction. Assume $\hat{w} \notin Span(x_1,...,x_n)$ solves $\arg\min_w L(w)$. Then, there exists a component of \hat{w} that is perpendicular to the span, which we will call w^{\perp} . Concretely,

$$\hat{w} = \bar{w} + w^{\perp}$$

Where $\bar{w} = \sum_{i=1}^{n} \alpha_{i} x_{i}$ is the component of \hat{w} in the span of the datapoints.

(a) Show that $\hat{w} \cdot x_i = \bar{w} \cdot x_i$, for every x_i . (Hint: what is the relationship of w^{\perp} and x_i) Solution:

$$\begin{split} \hat{w} \cdot x_i &= (\bar{w} + w^{\perp}) \cdot x_i \\ &= \bar{w} \cdot x_i + w^{\perp} \cdot x_i \\ &= \bar{w} \cdot x_i + 0 \\ &= \bar{w} \cdot x_i \end{split}$$
 w^{\perp} is perpendicular to each x_i

(b) Now, show that $||\hat{w}||_2^2 \ge ||\bar{w}||_2^2$. **Solution:**

$$\begin{split} ||\hat{w}||_2^2 &= ||\bar{w} + w^{\perp}||_2^2 \\ &= (\bar{w} + w^{\perp})^T (\bar{w} + w^{\perp}) \\ &= \bar{w}^T \bar{w} + 2 \bar{w}^T w^{\perp} + (w^{\perp})^T w^{\perp} \\ &= ||\bar{w}||_2^2 + ||w^{\perp}||_2^2 & \text{as } \bar{w}^T w^{\perp} = \langle \bar{w}, w^{\perp} \rangle = 0 \\ &\geq ||\bar{w}||_2^2 \end{split}$$

(c) Finally, show that $\hat{w} \in Span(x_1,...,x_n)$. (Hint: Think about the regularization term) **Solution:**

Note that in the loss function, we're trying to minimize the magnitude of w (with the regularization term $\lambda ||w||_2^2$). Now note that if $\forall_i \hat{w}^T x_i = \bar{w}^T x_i$, and $||\hat{w}||_2^2 \geq ||\bar{w}||_2^2$, then our optimization will always choose $w^\perp = 0$ (as we favor smaller solutions), meaning that $\hat{w} = \bar{w}$ and $\hat{w} \in Span(x_1,...,x_n)$, which completes the contradiction.