SR latch example: Calling an air hostess

- Design a network to control a lamp from two pushbutton switches labeled S and R.
 - If we push switch S the light should turn on.
 - If we then release S, the light should stay on.
 - If we push switch R, the lamp should turn off
 - If we release R the lamp should stay off.

Assume that both S and R are not pushed at the same time.

Dr. E. Paul Braineard

DLD C(16Feb2021)

SR Latch with control input

S	R	Next state of Q
X	X	No change
0	0	No change
0	1	Q = 0; reset state
1	0	Q = 1; set state
1	1	Indeterminate
	X 0 0	0 1

- (b) Function table
- In either case, when En returns to 0, the circuit remains in its current state.
- An indeterminate condition occurs when all three inputs are equal to 1

D Latch

 One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done in the D latch

En D	Next state of Q		
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state		

Dr. E. Paul Braineard

(b) Function table

10

DLD C(16Feb2021) ^

Graphic symbols for SR, S'R' and D latch

Storage elements: Flip-flops

- The state of a flip-flop is changed by switching the control input.
- This momentary change is called a trigger
 - The transition it causes is said to "trigger the flip-flop".
- Flip-flops are synchronous bistable devices
 - Also known as bistable multivibrators
 - Synchronous: the output changes state only at a specified point (leading or trailing edge) on the triggering input called the clock (CLK)
 - which is designated as a control input, C
 - Output changes in synchronization with the clock
 - · FFs are edge-triggered
 - Latches are level triggered
 - A flip-flop, that stores one bit
 - Combine that block to build multi-bit storage a register

TEJADITYA NACHIKETA P has left the meeting

Clock responses

Edge-triggered flip-flop

- Changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse
- Sensitive to the inputs only at this transition of the clock
- Two types of edge-triggered flip-flops are covered in this section
 - D FF
 - J-K FF

Positive edge triggered

Dynamic input indicator

Negative edge triggered

Dr. E. Paul Braineard

Logic symbols

14

DLD C(16Feb2021) ^

D Flip-Flop

- The D input of the D flip-flop is a synchronous
- Data on the input are transferred to the flip-flop's output only on the triggering edge of the clock pulse.
- When D is HIGH, the Q output goes HIGH on the triggering edge of the clock pulse, and the flip-flop is SET.
- When D is LOW, the Q output goes LOW on the triggering edge of the clock pulse, and the flip-flop is RESET

Dr. E. Paul Braineard

15

DLD C(16Feb2021) ^

O Type here to search

Operation of a positive edge-triggered D flip-flop

 The flip-flop cannot change state except on the triggering edge of a clock pulse

(a) D = 1 flip-flop SETS on positive clock edge. (If already SET, it remains SET.)

Truth table for a positive edge-triggered D flip-flop.

Inputs		Outputs		
D	CLK	Q	\overline{Q}	Comments
0	î,	0	1	RESET
1	10	1	0	SET

= clock transition LOW to HIGH

(b) D = 0 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

Dr. E. Paul Braineard

DLD C(16Feb2021) ^

× ~ ×

Problem

• Determine the Q and \overline{Q} output waveforms of the flip-flop in Figure 1 for the D and CLK inputs in Figure 2. Assume that the positive edge-triggered flip-flop is initially RESET.

Dr. E. Paul Braineard

17

D Flip-flop

The J-K Flip-Flop

- The J and K inputs of the J-K flip-flop are synchronous
 - Input data are transferred to the flip-flop's output only on the triggering edge
 of the clock pulse
- When J is HIGH and K is LOW, the Q output goes HIGH on the triggering edge of the clock pulse, and the flip-flop is SET.
- When J is LOW and K is HIGH, the Q output goes LOW on the triggering edge of the clock pulse, and the flip-flop is RESET.
- When both J and K are LOW, the output does not change from its prior state.
- When J and K are both HIGH, the flip-flop changes state. This called the toggle mode.

2

Operation of a positive edge-triggered J-K flip-flop

(b) J = 0, K = 1 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

(c) J = 1, K = 1 flip-flop changes state (toggle).

(d) J = 0, K = 0 flip-flop does not change. (If SET, it remains SET; if RESET, it remains RESET.)