Completeness: 3Color

Weston Dransfield

March 12, 2016

Outline

Description

 $3COLOR = \{\langle G \rangle \mid \text{the nodes of G can be colored with three colors such that no two adjacent nodes are the same color }$

Example

Example

The Problem

Is a given graph G a member of the 3COLOR?

The Problem

Is a given graph G a member of the 3COLOR?

▶ This is tough to decide, but easy to verify!

$$V = "On input \langle G, c \rangle$$
,

1. Check that c includes 3 colors.

$$V =$$
 "On input $\langle G, c \rangle$,

- 1. Check that c includes 3 colors.
- 2. Color each node of G as specified by c.

```
V =  "On input \langle G, c \rangle,
```

- 1. Check that c includes 3 colors.
- 2. Color each node of G as specified by c.
- 3. For each node, check that each adjacent node is not the same color.

```
V = "On input \langle G, c \rangle,
```

- 1. Check that c includes 3 colors.
- 2. Color each node of G as specified by c.
- 3. For each node, check that each adjacent node is not the same color.
- 4. If all checks pass accept, otherwise reject."

- V = "On input $\langle G, c \rangle$,
 - 1. Check that c includes 3 colors.
 - 2. Color each node of G as specified by c.
 - 3. For each node, check that each adjacent node is not the same color.
 - 4. If all checks pass accept, otherwise reject."
 - ▶ Step 3 has largest time complexity of $O(n^2)$. 3COLOR is in NP because it can be verified in polynomial time.

Construct a transformation f from 3SAT to 3COLOR.

Construct a transformation f from 3SAT to 3COLOR.

1. Establish Truthiness

Construct a transformation f from 3SAT to 3COLOR.

- 1. Establish Truthiness
- 2. Force variables to be true or false

Construct a transformation f from 3SAT to 3COLOR.

- 1. Establish Truthiness
- 2. Force variables to be true or false
- 3. Use these subgraphs to create a graph that is 3 colorable iff variables are satisfiable

Constructing the Reduction - Truthiness

Constructing the Reduction - Variables

Constructing the Reduction - Variables

 $x \lor y$

Constructing the Reduction - Clause

Constructing the Reduction - Clause

TODO: Formal write it

1. Construct the truthiness subgraph T

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i
- 3. Connect the "output" node of O_i to both the "false" and "unused" nodes of T

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i
- 3. Connect the "output" node of O_i to both the "false" and "unused" nodes of T
- 4. For each variable in the Boolean statement:

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i
- 3. Connect the "output" node of O_i to both the "false" and "unused" nodes of T
- 4. For each variable in the Boolean statement:
- ightharpoonup Add nodes v and v_0 connected by an edge

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i
- 3. Connect the "output" node of O_i to both the "false" and "unused" nodes of T
- 4. For each variable in the Boolean statement:
- ▶ Add nodes v and v_0 connected by an edge
- Connect nodes v and v₀ to the "unused" end of t

- 1. Construct the truthiness subgraph *T*
- 2. For each clause add a 3 way OR gate subgraph O_i
- 3. Connect the "output" node of O_i to both the "false" and "unused" nodes of T
- 4. For each variable in the Boolean statement:
- \triangleright Add nodes v and v_0 connected by an edge
- Connect nodes v and v₀ to the "unused" end of t
- Connect node v₀ to one input of the clause's 3 way OR gate Oᵢ

Transformation - Forward

Forward proof

Transformation - Backward

Backwards proof

Transformation - P

poly time? See small.ppt

Sources