

Aprendizado não supervisionado

- · Porém, podemos utilizar grandes quantidades de dados não rotulados para treinamento e somente então "usar supervisão" para rotular os agrupamentos encontrados.
- · Isto é apropriado para aplicações de mineração de dados (datamining), onde o conteúdo de grandes bases de dados não é conhecido antecipadamente.

UFRPE

DEINFO

Aprendizagem Não Supervisionada

- · Classificação não supervisionada
 - · Se propõe a encontrar grupos homogêneos a partir de um conjunto de indivíduos
 - · Objetivo: os indivíduos semelhantes devem pertencer ao mesmo grupo
 - É um objetivo intuitivo mas não é uma definição precisa da noção de grupo

DEINFO

Aprendizado não supervisionado

O interesse principal é desvendar a organização dos padrões em clusters (agrupamentos) consistentes, os quais permitirão descobrir similaridades e diferenças entre padrões bem como derivar conclusões úteis a respeito deles.

· Clustering = Aprendizagem Não Supervisionada = Aprendizado Sem Professor = Taxonomia Numérica = Tipologia = Partição.

DEINFO

Aprendizagem Não Supervisionada

- · Agrupar para que?
- Existem classes "naturais" e o desafio é encontrá-las
- · Deseja-se construir as classes segundo estruturas classificatórias (impostas)
- · Encontrar classes úteis para o usuário
- Simplificação dos dados
- · Geração de Hipóteses
- · Predição com base nos grupos formados

Aplicações de Clustering

- · Reconhecimento de Padrões
- · Análise de Dados
- · Processamento de Imagens
- · Bioinformática
- · Economia (especialmente pesquisa de mercado)
- Internet
 - Classificação de documentos
 - · Agrupamento de dados provenientes do Weblog para descobrir grupos de acesso similares

DEINFO

Exemplos de Aplicações de Clustering

- Marketing: Ajuda a descobrir grupos de clientes e usa esse conhecimento para orientar as campanhas publicitárias
- · Geoprocessamento: Identificação de áreas de propriedades similares
- Seguro: Identificação de grupos de segurados com um custo médio elevado de reembolso
- · Planejamento Urbano: Identificação de grupos de habitação segundo o tipo, valor e localização geográfica

DEINFO

Exemplo 1 Input: raw text (100 million words of news articles)... Output: Cluster 1: Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays Cluster 2: June March July April January Discember October November September August Cluster 2: June March July April January Discember October November September August Cluster 4: great big vast sudden mesh here gjantic Effong scant colossal Cluster 5: man woman boy girl lawyer doctor goy farmer teacher citizen Cluster 6: American Indian European Japanese German African Cathotic Israeli Italian Arab Cluster 7: pressure temperature permeability density porosity stess velocity viscosity gravity tension Cluster 8: mother wife father son husband brother daughter sister boss uncle Cluster 9: mother device controller processor CPU printer spindle subsystem compiler plotter Cluster 10: John George James Bob Robert Paul William Jim David Milke Cluster 11: anyone someone anybody somebody Cluster 12: direct miles pounds degrees inches barrels tons acres meters bytes Cluster 13: director chief professor commissioner commander trassurer founder superintendent dean cut Cluster 13: director chief professor commissioner commander trassurer founder superintendent dean cut Cluster 13: head body hands eyes voice arm seat eye hair mouth

UFRPE Transpired DEINFO

Definição formal

· Dado um conjunto de dados X:

$$X = \{x_1, x_3, x_3, \dots x_n\}$$

 definimos como um m–agrupamento de X a partição de X em *m* conjuntos (clusters ou grupos) C₁, C₂, ..., C_m tal que as três condições seguintes sejam satisfeitas:

C_i ≠Ø, i= 1,2,..., m (nenhum cluster pode ser vazio)

(a união de todos os clusters é igual ao conjunto que os gerou)

 $C_i \cap C_j = \emptyset, i \neq j$

(a interseção de dois clusters é vazia, i.e, não devem ter padrões em comum) -> HARD CLUSTERING

DEINFO

O que é um bom agrupamento?

- Um bom método de agrupamento fornece grupos de alta qualidade com
 - · Alta similaridade intra-grupo
 - · baixa similaridade inter-grupo
- A qualidade do resultado de um agrupamento depende tanto da medida de similaridade usada pelo método como da sua implementação.
- A qualidade de um método de agrupamento é também medido pela sua habilidade para

descobrir os padrões escondidos.

DEINFO

UFRPE

Principais Etapas • e) Análise e Interpretação dos Resultados • Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de clusterização levam a resultados totalmente diferentes. • Qual resultado é o correto?

Principais Etapas

- a) Aquisição dos dados
 - 1) Seleção das observações (indivíduos, objetos, casos, itens)
 - 2) Seleção das variáveis (caracteres, descritores) e das correspondentes escalas
- 3) Construção da Tabela de Dados
- · b) Pré-processamento dos dados
 - 1) Mudança de escala
 - · 2) Normalização
 - · 3) Extração de caracteres

DEINFO

Principais Etapas

- · c) Cálculo da Proximidade
 - Medida para quantificar quão similar ou dissimilar são dois vetores de atributos.
 - 1) Escolha de um Índice de Proximidade
 - 2) Construção da Matriz de Proximidades
- d) Seleção de um Algoritmo de Formação de Grupos em função do tipo de agrupamento desejado
- Depende da interpretação que o especialista dá ao termo sensível com base no tipo de cluster que são esperados.
- Por exemplo, um cluster compacto de vetores de atributos pode ser sensível de acordo com um critério enquanto outro cluster alongado, pode ser sensível de acordo com outro critério.

Deinco

Dissimilaridade entre objetos

- <u>Distâncias</u> são normalmente usadas como medida de <u>dissimilaridade</u> entre objetos
- □ Entre as mais populares: distância de *Minkowski*

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q)}$$

- \square onde $i=(x_{i1},x_{i2},...,x_{ip})$ e $j=(x_{j1},x_{j2},...,x_{jp})$ são dois vetores p-dimensionais, e q é um inteiro positivo
- \square Se q = 1, d é a distância de Manhattan

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Variáveis nominais

- Variável de escala nominal que pode assumir mais de 2 categorias, e.x., vermelho, amarelo, azul, verde
- Método 1: Concordâncias simples
 - m: # das concordâncias, p: número de variáveis

$$d(i,j) = \frac{p-m}{p}$$

- Método 2: usa um grande número de variáveis binárias
 - Criação de uma nova variável binária para cada uma das M categorias

Dissimilaridade entre objetos

Se q = 2, d é a distância euclidiana:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Outras alternativas: distância ponderada, correlação (similaridade), cosseno, etc.

Outros aspectos relativos aos índices de proximidade

- · Escala das Variáveis
- · Correlação entre as Variáveis
- Descrições heterogêneas (Variáveis de diferentes tipos)
- Índices de proximidade entre padrões descritos por strings ou árvores
- · Índices de proximidade dependentes do contexto
- · Índices de proximidade conceptual

Tipos de Clustering

- · Algoritmos Flat (ou Particional)
 - Geram partição "plana", i.e. não existe relação hierárquica entre os clusters
- · Algoritmos Hierárquicos
 - Geram uma hierarquia de clusters, i.e. cada cluster é associado a um cluster-pai mais genérico
 - · Vantagem: diferentes visões dos dados

DEINFO

Tipos de Clustering

- Incremental
 - Partição é atualizada a cada novo objeto observado
 - Em geral, apenas um número pequeno de clusters é modificado
- Não-incremental
 - Partição é gerada de uma única vez usando todos os objetos disponíveis

DEINFO

Tipos de Clustering

- Hard
 - Cada objeto pertence exclusivamente a um único grupo na partição
- Fuzzy
 - Cada objeto está associado a um cluster com certo grau de pertinência
 - Partição Fuzzy pode ser convertida facilmente para uma partição hard

Tipos de Clustering

- Completos
- · Cada objeto pertence a pelo menos um cluster
- Parciais
- Existem objetos que n\u00e3o est\u00e3o associados a nenhum cluster (outliers, ru\u00eddos, sem interesse)

DEINFO

TÉCNICAS DE AGRUPAMENTO

Algoritmos Hierárquicos Produzem uma hierarquia de agrupamentos Podem ser divididos em 2 subcategorias: Aglomerativos: Produzem uma seqüência de agrupamentos com um número decrescente de clusters, m a cada passo. Os agrupamentos produzidos em cada passo resultam do anterior pela fusão de dois clusters em um. Divisivos: Atuam na direção oposta, isto é, eles produzem uma seqüência de agrupamentos com um número crescente de clusters, m a cada passo. Os agrupamentos produzidos em cada passo resultam da partição de um único cluster em dois.

Tipos de Algoritmos Hierárquicos

- · Algoritmos Hierárquicos Divisivos ou Particionais
 - · Assumem estratégia top-down
 - Iniciam com cluster mais geral que é progressivamente dividido em sub-cluster
- Algoritmos Hierárquicos Aglomerativos
 - · Assumem estratégia bottom-up
 - Iniciam com clusters específicos que são progressivamente unidos

Algoritmos Hierárquicos Divisivos

- Passo 1: Inicie alocando todos os documentos em um cluster:
- Passo 2: A partir da estrutura existente de grupos, selecione um cluster para particionar;
 - Em geral, o maior cluster, ou o cluster menos homogêneo
- Passo 3: Particione o grupo em dois ou mais subgrupos;
- Passo 4: Repita os passos 2 e 3 até que um critério de parada seja verificado
 - · e.g., até atingir um número desejado de grupos

Algoritmos Hierárquicos Divisivos

- · Bi-Secting k-Means
 - Uso do algoritmo k-Means na etapa de divisão dos clusters
 - Clusters s\u00e3o sucessivamente particionados em 2 sub-clusters
 - · Complexidade: O(n log(n))

Algoritmos Hierárquicos Aglomerativos

- Passo 1: Inicie alocando cada documento como um cluster diferente;
- Passo 2: Selecionar o par de clusters mais similares entre si e os agrupe em um cluster mais geral;
- Passo 3: Repita o passo 2 até a verificação de um critério de parada
 - e.g., até que todos os documentos sejam agrupados em um único cluster
 - Complexidade: O(n² log(n))

Algoritmos Hierárquicos

- · Resumo:
 - Os algoritmos hierárquicos divisivos são menos custosos que os aglomerativos
 - Dentre os aglomerativos, o Average-Link funciona melhor em algumas aplicações
 - Desempenho pode ser melhorado através da combinação de técnicas

K-means

- Cada cluster k=1, ..., K é representado por um centroide $u \in \mathbb{R}^{d}$
- Atribuir cada ponto $\phi(x_i)$ ao centróide mais próximo μ_{z_i}
- · Função objetivo

$$\mathsf{Loss}_{\mathsf{kmeans}}(z,\mu) = \sum_{i=1}^n \|\phi(x_i) - \mu_{oldsymbol{z}_i}\|^2$$

DEINFO

ALGORITMOS PARTICIONAIS

Algoritmo k-Means

- Passo 1: Defina k centróides iniciais, escolhendo k objetos aleatórios;
- Passo 2: Aloque cada objeto para o cluster correspondente ao centróide mais similar;
- · Passo 3: Recalcule os centróides dos clusters.
- Passo 4: Repita passo 2 e 3 até atingir um critério de parada
 - e.g. até um número máximo de iterações ou;
 - até não ocorrer alterações nos centróides (i.e. convergência para um mínimo local da função de erro quadrado)

K-means

- O algoritmo k-Means ou k-Médias é uma técnica iterativa muito simples e poderosa para particionar um conjunto de dados em grupos separados, onde o valor de k, deve ser pré-determinado
- · Um dos mais antigos algoritmos de clustering
- · Também um dos mais usados

UFRPE

Algoritmo k-Means

- · Pontos fortes
 - Relativamente eficiente: O(tkn), onde n é # objetos, k é # grupos, e t é # iterações. Normalmente, k, t << n.
 - · Frequentemente termina em um ótimo local.
 - O ótimo global pode ser encontrado usando técnicas como: deterministic annealing e algoritmos genéticos
- Pontos fracos
 - Aplicável apenas quando a média é definida, o que fazer com dados categóricos?
 - É necessário especificar a priori k, o número de grupos
 - · É sensível a ruídos e outliers
 - Não é apropriado para a descoberta de grupos não esféricos

K-means Agrupando pixels em uma imagem

- Podemos usar o algoritmo k–Means para agrupar a intensidade dos pixels de uma imagem em k clusters.
- É uma maneira simples de segmentar uma imagem em k regiões.
- É um método mais automático do que um limiar escolhido manualmente.

DEINFO

K-means

- · Computacionalmente simples.
- O Erro Quadrático Total (TSE) decresce a cada iteração.
- · Ele encontra um TSE mínimo global?
- Não necessariamente
- Os resultados são sensíveis ao ponto inicial (inicialização dos centróides)
- Na prática, podemos executá-lo a partir de múltiplos pontos de partida e pegar a solução com menor erro (TSE).
- Clusters definidos com base nos centróides (centro de gravidade, ou o ponto médio dos cluster:

$$c''' = \frac{1}{|C|} \sum_{i=0}^{m} d_i$$

Alocação dos objetos nos clusters feita com base na similaridade com o centróide até critério de parada

DEINFO

K-means Agrupando pixels em uma imagem

- · Como fazer?
- Tamanho (matriz de pixels) = mx n
- Converter para um vetor com (m x n) linhas e 1 coluna
- Executar o algoritmo k-Means com entrada = vetor de intensidades.
- Atribuir para cada pixel a "cor ou nível de cinza" do cluster a que ele for atribuído.

UFRPE //markets

