Siyue Zhu AMATH 301 Spring 2020 HW3

Problem4

The lu method is the fastest method, backslash is the second and the inverse is the lowest method.

Problem5

	Time for 1000 Systems	Time for 10000 Systems
Backslash	0.2151	1.8869
LU	0.0255	0.2376
Inverse	0.3567	3.2293

Problem6

(b)(c)(d)

```
Code
```

```
%% Problem4
clear; close all; clc
nvec = 1000:500:4000;
for n = nvec
    A = rand(n);
    b = rand(n,1);
    tic
    x = A \setminus b;
    bstime = toc;
    loglog(n,bstime, 'ob', 'markersize', 10)
    hold on
    tic
    [L,U,P] = lu(A);
    y = L \setminus (P*b);
    x = U \setminus y;
    lutime = toc;
    loglog(n,lutime, 'r+', 'markersize', 10)
    hold on
    tic
    x = inv(A)*b;
    intime = toc;
    loglog(n,intime, 'kd', 'markersize', 10)
    hold on
end
xlabel('n')
ylabel('time')
set(gca, 'fontsize', 14)
loglog(nvec,3e-8*nvec.^2,'m')
loglog(nvec,3e-11*nvec.^3,'g')
print('HW3_fig1.png','-dpng')
```

```
clear; close all; clc
A = toeplitz(1:100);
b = rand(100,1);
[L,U,P] = lu(A);
tic
for k = 1:1000
    x = A \setminus b;
end
backslashtime1 = toc;
tic
for k = 1:10000
   x = A b;
end
backslashtime2 = toc;
tic
for k = 1:1000
    y = L \setminus (P*b);
    x = U \setminus y;
end
lutime1 = toc;
tic
for k = 1:10000
    y = L \setminus (P*b);
    x = U \setminus y;
end
lutime2 = toc;
tic
for k = 1:1000
   x = inv(A)*b;
end
intime1 = toc;
tic
for k = 1:10000
    x = inv(A)*b;
end
intime2 = toc;
backslashtime1
lutime1
intime1
backslashtime2
lutime2
intime2
```