

The REACH global 21cm instrument Daniel Molnar **Cavendish Astrophysics**

Structure of the talk

- REACH collaboration
- REACH Radiometer system
 - Receiver design
- Calibration
- Future directions

REACH global experiment

https://www.astro.phy.cam.ac.uk/research/re search-projects/reach/collaboration

Introduction

J.Cumner et al:Journal of Astr.Instr Vol. 11, No. 01, 2250001 (2022)

E. de Lera Acedo et al: Nat Astron 6, 984–998 (2022)

Receiver Calibration

- Schematic representation of a global 21cm receiver
- Noise is added to the signal by the receiver
- Can be characterized by a noise temperature (degrading the SNR from in- to output)

Noise parameters

- In general, 4 real parameters are needed to characterize a noisy receiver
- This could be extended to noisy NPorts (Bucher and Molnar in prep)
- The noise temperature in general (noise parameter):

$$T(\Gamma_s) = \underbrace{T_{\min}} + T_0 \underbrace{\frac{4R_N}{Z_0}}_{(1-|\Gamma_s|^2)|1+|\Gamma_{\text{opt}}|^2}$$

• NB: we use the different but equivalent formulation of noise waves

Receiver design

- Components and sensitivity was designed for 20mK sensitivity
- Cover the antenna S11 smith chart
- The calibration is done in situ for each run
- Currently commissioning phase but data has already been produced!

N. Razavi-Ghods, I.Roque et al: arxiv:2307.00099v2

The REACH Receiver chain

The schematic of the Front end of the REACH receiver

Digital Backend

- RFI proof boxes house the spectrometer and services nodes
- Connected to Front end receiver through fibre

Picture courtesy of S.Pegwal

Calibration strategies

 The final goal is to correct for impact of receiver on the power measured from antenna

 Bayesian (conjugate prior based), Polynomial, least squares fit and machine learning for solving for the unknown receiver parameters

 $\sigma_{pred} = 0.01 \ \sigma_{true} = 0.01 \ \sigma_{diff} = 0.0$

Sam Leeny, with Harry Bevins

I L V Roque+, MNRAS, https://doi.org/10.1093/mnras/stab1453

Calibration- ML in action

Courtesy of Sam Leeny

Forward modelling

 Forward modelling is crucial to understand the system and mock data generation

 Currently we are developing a system for systematic ranking of calibration methods based on mock data

Thermal considerations

- Thermal stability crucial for calibration and operation
- Temperature resolution of sources affects overall sensitivity too
- The current design relies on a complex system of control mechanism

$$T_{source}^* = T_{NS} \frac{P_s - P_L}{P_{NS} - P_L} + T_L$$

N. Razavi-Ghods, I.Roque et al: arxiv:2307.00099v2

Future directions

- Thermal management improvements
- Calibration strategy selection
 - Implications beyond REACH
- REACH phase 1 with one dipole antenna, further antennae on site at Karoo
- 2nd system being built for test purposes and beyond at Cambridge

MRAO at Cambridge

Thanks

Main references:

- [1]: N. Razavi-Ghods, I.Roque et al: Radiometer Design for the REACH global 21-cm experiment (arxiv: 2307.00099v2.pdf (arxiv.org))
- [2]: I.L.V.Roque et al: Bayesian Noise wave calibration for 21-cm global experiments

Calibration metric

Courtesy of H.Bevins

How do we do that? Mock data?

- Mock data standard
 - Mock 1 With Cables + flat antenna
 - Mock 2 With Cables at different temperatures to loads + flat antenna
 - Mock 3 With power law antenna + cables
 - Mock 4 With power law antenna + cables at different temp to loads
 - Mock 5 With power law antenna + 21cm
 Signal + cables
 - Mock 6 With power law antenna + 21cm
 Signal + cables at different temp to loads

Calibration

- The radiometer is based on the 3-way Dicke switching
- Calibration is based on EDGES (noise waves) formalism

$$T_{\rm NS}\left(\frac{P_{\rm source}-P_{\rm L}}{P_{\rm NS}-P_{\rm L}}\right) + T_{\rm L} = T_{\rm source}\left[\frac{1-|\Gamma_{\rm source}|^2}{|1-\Gamma_{\rm source}\Gamma_{\rm rec}|^2}\right] + T_{\rm unc}\left[\frac{|\Gamma_{\rm source}|^2}{|1-\Gamma_{\rm source}\Gamma_{\rm rec}|^2}\right] + T_{\rm cos}\left[\frac{{\rm Re}(\frac{\Gamma_{\rm source}}{1-\Gamma_{\rm source}\Gamma_{\rm rec}})}{\sqrt{1-|\Gamma_{\rm rec}|^2}}\right] + T_{\rm sin}\left[\frac{{\rm Im}(\frac{\Gamma_{\rm source}}{1-\Gamma_{\rm source}\Gamma_{\rm rec}})}{\sqrt{1-|\Gamma_{\rm rec}|^2}}\right]$$

S-parameters for simulations

Antenna and calibrator impedances

- Smith Chart showing the simulated dipole antenna impedance and the sources
- Antenna impedance shown is between 50-150MHz

Schematic of the Receiver

- Block diagram of RF chain (analogue part)
- Note that the LNA is based on S parameter measuremen t done in Cambridge

RF chain response

- Simulation by Nima
- LNA: measured, the other components are simulation based

Cable current

- 10m cable is 10.1m; model LBC195 2m cable is 2.02m; model: not sure could be LMC195 or LBC195
- New cables: 2m and 10m LCOM200

- Noise waves from Meys paper
- Supposed to have a uncorrelated noise from receiver Tunc and describing the correlated part by Tsin and Tcos

Additional temp sensors

There's a
 possibility to
 extend the 8
 existing ones

Fig 0. The bottom and ton lawers of the stocked

Pros

- Direct comparison of Antenna Power with a Noise source, using calibrated, passive components.
- Using a long cable between the antenna and the LNA, the period of any standing waves (SWs) can be put outside the range of structure expected in the HI spectrum.
- The SWs can either be fitted to a model or the spectrum convolved with a narrow bandstop filter. [Because the amplitude of the SWs will vary across the spectrum, fitting to a constant amplitude sine-wave is not appropriate.] Note that it is NOT necessary to know the phase of the SWs.
- Measurements can be repeated with the 2:1 inputs interchanged if thought necessary.
- Test measurements can easily be made with the Antenna replaced by alternative Noise sources for diagnostic purposes.

Cons

- The effective system temperature is increased due to the loss in the 2:1 and the long cable. However the sky temperature is likely to be a significant factor in any receiving system.
- The long cable will be bulky! However, it does mean that the active part of the receiving system can be a long way from the antenna (and the cable could also carry the drive signal for the noise source, if required).
- There do not appear to be any requirements for temperature control anywhere in the system.
- Because the calibration signal is relatively small e.g. ~10 to 20 K, a longer integration time will be required to reduce the noise level in the chosen spectral resolution bandwidth. These numbers need to be quantified!

Radically new ideas are also being looked at too, an idea by Paul Scott> advantage very simple, but perhaps too simple

TC08 stability

Specifications

Hardware		
Number of channels (single unit)	8	
Maximum number of channels (using up to 20 units)	160	
Conversion time	100 ms per thermocouple channel + 100 ms for CJC (this can be disabled if all channels are used as voltage inputs)	
Temperature accuracy	Sum of ±0.2% of reading and ±0.5 °C	
Voltage accuracy	Sum of $\pm 0.2\%$ of reading and $\pm 10~\mu V$	
	Number of channels (single unit) Maximum number of channels (using up to 20 units) Conversion time Temperature accuracy	

	- 100 mo to too (time can be discassed in an emanner are accessed in parts)	
Temperature accuracy	Sum of ±0.2% of reading and ±0.5 °C	
Voltage accuracy	Sum of $\pm 0.2\%$ of reading and $\pm 10~\mu V$	
Overvoltage protection	±30 V	
Maximum common-mode voltage	±7.5 V	
Input impedance	2 ΜΩ	
Input range (voltage)	±70 mV	
Resolution	20 bits	
Noise-free resolution	16.25 bits	
Thermocouple types supported	B, E, J, K, N, R, S, T	
Input connectors	Miniature thermocouple	

General			
Connectivity	USB 2.0		
Device connector type	USB 2.0, Type B		
Power requirements	USB port		
Dimensions	201 n 104 n 34 mm (7.9 1 x 4.09 x 1.34 in)		
Temperature range, operating	0 °C to 50 °C		
Temperature range, operating, for quoted accuracy	20 °C to 30 °C		
Temperature range, storage	-20 C to 60 C		
Humidity range, operating	5 to 80 % RH non-condensing		
Humidity range, storage	5 to 95 % RH non-condensing		
Altitude	Up to 2000 m		
Pollution degree	Pollution degree 2		
Water resistance	Not water-resistant		
Safety approvals	Designed to 2014/35/EU: Low Voltage Directive		
EMC approvals	Tested to 2014/30/EU: Electromagnetic Compatibility Directive		
Environmental approvals	RoHS and WEEE compliant		
Software	PicoLog Cloud, PicoSDK (available from www.picotech.com/downloads) Example code (available from Pico's GitHub organization page, github.com/picotech)		

VNA operating conditions

Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)	
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)	
Humidity	90 % at 25 °C (77 °F)	
Atmospheric pressure	70.0 kPa to 106.7 kPa	

Measurement Accuracy³

Accuracy of transmission measurements ⁴	Magnitude / Phase (S ₁₁ = S ₂₂ = 0)	Magnitude / Phase (S ₁₁ = S ₂₂ = 0.1)
+10 dB to +13 dB	±0.2 dB / ±2°	±0.2 dB / ±2°
-50 dB to +10 dB	±0.1 dB / ±1°	±0.15 dB / ±1.5°
-70 dB to -50 dB	±0.2 dB / ±2°	±0.2 dB / ±2°
-85 dB to -70 dB	±1.0 dB / ±6°	±1.0 dB / ±6°
Accuracy of reflection measurements ⁵	Magnitude / Phase	
-15 dB to 0 dB	±0.4 dB / ±4°	
-25 dB to -15 dB	±1.5 dB / ±7°	
-35 dB to -25 dB	±4.0 dB / ±22°	
Trace noise magnitude (IF bandwidth 3 kHz)	0.002 dB rms	
Temperature dependence	0.02 dB/°C	

Noise waves for LNA

- What are the noise waves for our LNA?
- That can be got from the NF and 4 noise parameters
- Meys worked these out:
 - Meys: $T_{nS} = T_a + |\Gamma_s|^2 T_b + 2T_c |\Gamma_s| cos(\Phi_s + \Phi_c) + (T_s(1 |\Gamma_s|^2))$ converting between noise description:

$$T_d = 4T_0 \frac{R_n}{Z_0|1+\Gamma_{opt}|^2}$$

$$T_a = T_{nmin} + T_d|\Gamma_{opt}|^2$$

$$T_b = T_d - T_nmin$$

$$T_c = T_d|\Gamma_{opt}|$$

$$\Phi_c = \pi - \Phi_0, \text{ where } \Phi_0 = arg(\Gamma_{opt})$$

4 noise waves of Meys

