19 March - MATH 345

March 19, 2015 2:01 PM

· HW 5 due April 2 (Thursday 2 weeks from today)

Fixed Points and Linear Stability

$$X_{n+1} = \int (X_n) , X_n \in \mathbb{R}^1$$

· suppose X=X* is a fixed point, so f(X*)=X*

. orbits near x^* : let $\eta = x - x^*$ be the perturbation from x^* i.e. $x = x^* \cdot \eta$, $x_n = x^* + \eta_n$

. plug into difference equation

$$x^* + \eta_{n+1} = f(x^* + \eta_n)$$

. expand in Taylor series

$$x^{*} \uparrow \eta_{n+1} = \underbrace{\int (x^{*}) + \underbrace{\int (x^{*}) \eta_{n}}_{x^{*}} + \underbrace{\underbrace{\bigcup (|\eta_{n}|^{2})}_{higher \text{ order}}_{terms}}_{terms}$$

$$\eta_{n+1} = \underbrace{\int (x^{*}) \eta_{n} + \underbrace{\bigcup (|\eta_{n}|^{2})}_{higher \text{ order}}$$

of the map at the fixed point

. if we neglect the $O(|\eta_n|^2)$ terms, we get the <u>linearisation</u>

$$\eta_{n+1} = \lambda \eta_n$$
 where $\lambda = f'(x^*)$ is called the multiplier

· X* is hyperbolic if |X|≠1

(a) if $|\lambda| < 1$, x^{+} is an attractor and is slable

(b) if |x|>1, x* is a repeller and is unstable

(c) if $\lambda = 0$, then x^* is called superstable

note: \(\lambda=0\) is still valid for our Taylor series expansion because f is a map Not a differential equation

· if $|\lambda|=1$ (i.e. $\lambda=\pm 1$), then x^* is nonhyperbolic, and for a nonlinear map, slabilisation cannot be determined by linear sation alone

· e.g. Poincaré map of Example 2.14

Exercise: Evaluate $\lambda = P'(1)$ and thus verify $x^* = 1$ is a hyperbolic attractor and stable

Example 3.2

- g (xa) to x-axis this isx,
- 3) continue from X.

i.e.
$$x_{n+1} = f(x_n)$$
 where $f(x) = x - g(x)$

$$g'(x)$$

- . root of g > fixed point of f $g(x) = 0 \iff f(x) = x$
- · * is a fixed point of f
- . linear stability

$$\lambda = f'(x^*) = 1 - \frac{[g'(x^*)]^a - g(x^*)g''(x^*)}{[g'(x^*)]^a}$$

$$= 1 - 1 = 0$$

- the "Newton's method map" f(x) = x g(x) has a superstable g'(x)fixed point at any simple root of g
- . for sufficiently small η., perturbations go to O like η. ≈ Cy. which is much faster than $\lambda^n \eta_0$ for $0 < |\lambda| < 1$

Logistic map: analytics (1)

· discrete time analogue of logistic ODE model

$$X_{n+1} = \underbrace{r \times_n (1-x_n)}_{f(x_n, r) \text{ or } f(x_n)}$$
, where $r > 0$

- · consider only $0 \le x_n \le 1$, $0 < r \le 4$ so that $0 \le x_{n+1} = f(x_n) \le 1$
- · all iterates remain in [0,1] (a positively invariant set; discrete time trapping region)
- · find fixed points

$$r \times (l - x) = x$$
 Since $f(x^*) = x^*$

$$\begin{pmatrix} \times (r-rx-1)=0 \\ \times = 0 \\ r-rx-1=0 \\ r(1-x)=1 \\ \times = 1-\frac{1}{r} \end{pmatrix}$$

$$X^*=0$$
, $X^*=1-\frac{1}{r}$ (if $r\geq 1$ to keep X^* positive)

union of sets

· Plot of
$$Z = \{(r,x) \in (0,4] \times [0,1] : f(x,r) = x\} = \{x=0\} \cup \{x=1-\frac{1}{r}\}$$

· from picture of Z, we have a transcritical bifurcation at

$$\times_{\alpha}^* = 0$$
, $r_{\alpha} = 1$

· linear stability

$$\frac{\partial f}{\partial f}(x, r) = f'(x) = r - 3rx$$

at
$$x^*=0$$
, $\lambda=f'(0)=r$

$$Y=1$$
, $X^*=0$ is a nonhyperbolic, with multiplier |

· since there is a stability change at r=1, expect a bifurcation

. at
$$x^* = 1 - \frac{1}{r}$$
, $\lambda = f'(1 - \frac{1}{r}) = r - 2r(1 - \frac{1}{r}) = 2 - r$ (1

r=1, $x^*=1-\frac{1}{r}=0$ is non-hyperbolic, with multiplier I (same fixed point)

1< r<3, $x^* = 1 - \frac{1}{r}$ is hyperbolic and stable $(-1 < \lambda < 1)$, superstable when r=2

$$r=3$$
, $x^*=1-\frac{1}{7}=\frac{a}{3}$ is nonhyperbolic, with multiplier -1 ($\lambda=a-3=-1$)

$$3 < r \le 4$$
, $x^* = 1 - \frac{1}{7}$ is hyperbolic and unstable $(\lambda = 2 - r \rightarrow |\lambda| > 1)$

· stability change at $r_{co} = 3$, expect bifurcation

Exercise: Draw staircase/cobweb diagrams and phase portraits for various r

phase portrait

non hyperbolic, stable (from right

Logistic map: numerics (1)

- · expect bifurcations at ra=3
- · numerical experiments (XPP) "Numerical bifurcation diagram"
- . choose r-value, choose x_0 , compute iterates until iterates "settle down", any transients mostly finished

