INFERENCIA FILOGENÉTICA

- 1. DISTANCIA
- 2. ARGUMENTACIÓN HENNIGIANA

Forma simple de medir **divergencia** entre dos terminales y construir árboles filogenéticos

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

1. Medir distancias pareadas (p-distance) y agrupar a aquellos que tienen menor distancia

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

2. Medir distancias pareadas (p-distance) desde el cluster a los otros terminales y reptir primer paso hasta terminar

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

PROBLEMA: no estima correctamente la distancia genética entre dos terminales

SOLUCIÓN: convertir distancias pareadas a distancias evolutivas usando MODELOS DE EVOLUCIÓN

P.e. corrección con JC69

$$P_{ii}(t) = 1/4 + 3/4 \exp(-\mu t)$$

$$P_{ij}(t) = 1/4 - 1/4 \exp(-\mu t)$$

$$\mu t = -1/2 \log(1 - 4/3 p)$$

$$p = 3/4[1 - \exp(-2\mu t)]$$

$$d = -3/4 \ln(1 - 4/3 p)$$

Método 2: Neighbor-Joining: minimiza la longitud total de las ramas

VENTAJAS:

- Muy rápido para matrices muy grandes
- Usa distancias evolutivas y estima longitud de ramas
- Buen estimativo de árbol inicial para otros análisis

DESVENTAJAS:

- No se basa en evolución de caracteres individuales
- No permite evaluar la calidad del árbol

SISTEMÁTICA FILOGENÉTICA

Objetivo: reconstruir las relaciones de parentesco entre taxones y proveer una clasificación concordante usando clados monofiléticos

En la naturaleza hay un orden jerárquico

Los caracteres permiten reconstruir ese orden

Especies y taxones superiores pueden definirse como monofiléticos si y solo si comparten una novedad evolutiva única (sinapomorfía)

Argumentación Hennigiana

- Determinar homología primaria
- Determinar polaridad (Grupo ajeno)
- Identifique congruencias
- Construya el o los árboles

Supuestos sobre homología y polaridad

En ausencia de evidencia en contra, asuma que los caracteres compartidos son resultado de ancestralidad: Homología *a priori*

En ausencia de evidencia en contra, asuma que los caracteres derivados compartidos permiten reconocer relaciones

Argumentación Hennigiana

Algunos problemas con la argumentación Hennigiana

- Polarización a priori de caracteres (grupo ajeno = ancestral)
- El método asume que no hay homoplasia (poco realista)
 - Caracteres inconsistentes con otros violan el modelo Hennigiano
- Imposible evitar errores o malas interpretaciones al codificar caracteres

CRITERIO DE OPTIMALIDAD

 Medida que permite decidir, con base en un conjunto de datos, cuales hipótesis (árboles) son mejores y cuales son peores

Cuchilla de Occam: la mejor hipótesis para explicar un proceso es aquella que requiere el menor número de suposiciones

En inferencia filogenética: el mejor árbol es aquel que explica los datos observados con la menor cantidad de homoplasia posible (menos transformaciones)

1. MÁXIMA PARSIMONIA IMPLEMENTACIÓN

- 1. Construir matriz con base en homología primaria
- 2. Contar el mínimo número de cambios (pasos) de cada caracter en un árbol determinado
- 3. Sumar todos los números de pasos para determinar la LONGITUD DEL ÁRBOL
- Repetir en los otros árboles alternativos y escoger aquel con la menor longitud com el ÁRBOL MÁS PARSIMONIOSO

EJEMPLO

	1	2	3	4	5	6	7	8
o	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

Árbol 1

	1	2	3	4	5	6	7	8
О	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

 $0 \longrightarrow 1$

1 pasos

 $1 \longrightarrow 0$

3 pasos

Árbol 1

	1	2	3	4	5	6	7	8
О	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

 $0 \longrightarrow 1$

 $1 \longrightarrow 0$

2 pasos

2 pasos

2 pasos

Árbol 1

	1	2	3	4	5	6	7	8
О	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

Árbol 3

	1	2	3	4	5	6	7	8
О	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

Caracteres informativos y no informativos para parsimonia

ACCTRAN y DELTRAN

- ACCTRAN: Transformación acelerada (favorece reversiones)
- DELTRAN: Transformación retrasada (favorece los paralelismos)