1) Wie häufig müssen Sie einen riesigen Bogen Papier (0.1mm dick) **falten**, damit der Stapel Raumhöhe (3.20m) erreicht? Erstellen Sie eine Tabelle! Erkennen Sie das Bildungsgesetz?

Schätzen Sie: Wie häufig müssen Sie falten, um den Abstand Erde – Mond von 384000 km zu übertreffen?

2) Skizzieren Sie die rekursiv definierten Funktionen

b) h(0) = 1, h(n) = 0.5 h(n-1).

- 3) a) Ohne Taschenrechner: log₁₀1000
- log₂16
- log₁₆4
- log₁₀0.001
- $\log_2 \sqrt{8}$

- b) Vereinfachen Sie: $\log_a (3\sqrt[3]{x^5})$
- c) $x^n = 7$. Wie ermitteln Sie x? Wie berechnen Sie n?
- 4) Die Basis der Exponentialfunktion bei kontinuierlichem Wachstum Herleitung (1 Zeiteinheit = 1 h)
 - 1. Eine Bakterienkultur mit K Bakterien verdoppelt sich in 1 h: Nach 1 h → K + K = K (1+1) Bakterien
 - 2. Die Vermehrung wird in 2 Schritte aufgeteilt:

Jeweils nach ½ h wächst K um die Hälfte des aktuellen Wertes:

Nach
$$\frac{1}{2}h \to K + \frac{1}{2}K = K(1 + \frac{1}{2})$$
,
nach $1h \to K(1 + \frac{1}{2}) + \frac{1}{2}K(1 + \frac{1}{2}) = (K + \frac{1}{2}K)(1 + \frac{1}{2}) = K(1 + \frac{1}{2})^2$

3. Die Vermehrung wird in 3 Schritte aufgeteilt:

Jeweils nach ½ h wächst K um ein Drittel des aktuellen Wertes:

Nach
$$\frac{1}{3}$$
 h \rightarrow K + $\frac{1}{3}$ K = K (1+ $\frac{1}{3}$),
nach $\frac{2}{3}$ h \rightarrow K (1+ $\frac{1}{3}$) + $\frac{1}{3}$ K (1+ $\frac{1}{3}$) = (K + $\frac{1}{3}$ K) (1+ $\frac{1}{3}$) = K (1+ $\frac{1}{3}$) $\frac{2}{3}$,
nach 1 h \rightarrow K (1+ $\frac{1}{3}$) $\frac{2}{3}$ + $\frac{1}{3}$ K (1+ $\frac{1}{3}$) $\frac{2}{3}$ = **K** (1+ $\frac{1}{3}$) $\frac{3}{3}$

Fortsetzung ergibt für kontinuierliches Wachstum nach 1h die Bakterienzahl

5) Stellt man y= a·e bx, b>0, mit MATLAB über **semilogy** dar, wird die y-Achse logarithmisch geteilt, und es ergibt sich die nebenstehende Grafik.

Lesen Sie aus der Zeichnung a und b ab. Wie lautet die e-Funktion?

6) Vergleichen Sie für $H(\Omega) = \frac{1}{\sqrt{1 + \Omega^2}}$ (Amplitudengang des Tiefpasses) die unterschiedlichen Darstellungen der H-Werte :

a) H = 1 auf der linearen y-Achse
$$\stackrel{\triangle}{=}$$
 H_{dB} = auf der 20 lg H – Achse H = auf der linearen y-Achse $\stackrel{\triangle}{=}$ H_{dB} = - 20 dB auf der 20 lg H – Achse

b) Warum ergibt sich im Bode-Diagramm für große Frequenzen eine Gerade?

7) Differenzieren Sie: a) $y = e^{-x^2}$

b)
$$y = \sqrt{x} e^{2x}$$

8) Stellen Sie für eine Ausgleichskurve der Form $y = \lambda_1 e^x + \lambda_2$ das überbestimmte Gleichungssystem auf.

3) a) 3, 4, ½, -3, 3/2 b)
$$\log 3 + 5/3 \cdot \log x$$
 c) $x = \sqrt[n]{7}$, $n = \log_a 7 / \log_a x$ bzw. $n = \log_x 7$
5) $y = 3 e^{2x}$ 7) a) $-2x e^{-x^2}$ b) ½ $x^{-1/2} e^{2x} + 2x^{1/2} e^{2x}$