Sistema de Distribuição de água

Técnicas de Modelagem de Sistemas Dinâmicos

Artur Soares Bezerra de Mello (2013030392)

Professor: Bruno Teixeira

O Sistema

- Possui 2 reservatórios de água em desnível, para escoamento por uma tubulação de conexão entre eles.
- A água escoa do tanque 1 para o tanque 2, quando a saída está aberta.
- O escoamento é turbulento, portanto há distúrbios no fluxo de água - não se comporta suavemente.

Figura Ex. 7.6 Diagrama do sistema de abastecimento de água de uma cidade.

Sistema de distribuição de água

Resposta do sistema ao degrau de período 50s

Espaço de Estados

$$A = \begin{bmatrix} 0 & 0 & 0.05 \\ 0 & 0 & -0.06667 \\ -1.96 & 1.96 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0.06667 \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 0.06667 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Função de Transferência calculada

$$H1 = \frac{0.006533}{s^3 + 1.11e - 18s^2 + 0.2287s - 6.419e - 18}$$

$$H2 = \frac{0.06667s^2 + 0.006533}{s^3 + 1.11e - 18s^2 + 0.2287s - 6.419e - 18}$$

Resposta do sistema ao degrau de período 50s (Tanque 1)

Estimativa de Primeira Ordem

$$K = 0.7112$$

$$\tau = 11.72s$$

$$H_{est} = \frac{0.7112}{11.72s + 1}$$

Comparativo entre dados do sistema e dados com ruído

Conclusões

- Modelo de primeira ordem aproxima comportamento de escoamento não turbulento da água pelo tubo conector;
- Sistema do tanque 2 foi de difícil modelagem, por apresentar características não lineares.