Super-Resolution metodą SRCNN

Sprawozdanie projektowe

Adrian N. (Twoje nazwisko)

4 czerwca 2025

Streszczenie

Celem pracy było zaimplementowanie i przetestowanie klasycznej sieci SRCNN (Super-Resolution Convolutional Neural Network) zgodnie z artykułem $Image\ Super-Resolution\ Using\ Deep\ Convolutional\ Networks$ (Dong et al., 2014). Model przetwarza niskorozdzielczy obraz (LR), uprzednio powiększony bicubic, i odtwarza obraz wysokiej rozdzielczości (HR). Trening przeprowadzono na zestawie $\bf T91$, walidację na $\bf Set14$, a test końcowy na $\bf Set5$. Uzyskano średni PSNR =34.9 dB dla skali $\times 2$.

1 SRCNN – teoria i architektura

1.1 Formalizacja zadania

Niech $I_{HR} \in \mathbb{R}^{H \times W}$ będzie obrazem wysokiej rozdzielczości (kanał Y), a I_{LR} jego zdegradowaną wersją otrzymaną przez filtrację, down-/up-samplowanie Celem sieci jest znalezienie funkcji

$$F_{\Theta}: I_{LR} \longrightarrow I_{SR},$$
 (1)

parametryzowanej wagami Θ , która minimalizuje błąd rekonstrukcji między obrazem odtworzonym $I_{SR} = F_{\Theta}(I_{LR})$ a prawdą I_{HR} .

1.2 Architektura 3-warstwowa

Dong $\it et~\it al.$ zaproponowali najmniejszą możliwą sieć konwolucyjną wykonującą trzy etapy 1 :

- 1. Ekstrakcja i mapowanie nieliniowe $\mathbf{F}_1 = \sigma(W_1 * I_{LR} + b_1)$, gdzie $W_1 \in \mathbb{R}^{9 \times 9 \times 1 \times d_1}$, σ ReLU.
- 2. Niesuperwizyjna rekodowanie cech $\mathbf{F}_2 = \sigma(W_2 * \mathbf{F}_1 + b_2)$, z jądrem 1 miesza kanały, nie zmienia rozmiaru.
- 3. Rekonstrukcja obrazu $I_{SR} = W_3 * \mathbf{F}_2 + b_3, \quad W_3 \in \mathbb{R}^{5 \times 5 \times d_2 \times 1}$

Receptive field. Lączny zasięg to ((9-1)+(1-1)+(5-1))/2=6 px; dlatego w obcinamy border=6 px.

¹W oryginale liczby filtrów to (64, 32, 1); w projekcie stosujemy rozszerzoną wersję (128, 64, 1)

1.3 Funkcja straty

Oryginalnie trenowano w MSE; my stosujemy przybliżenie Charbonniera (Huber, $\delta = 0.01$):

$$\mathcal{L}(\Theta) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\sqrt{\left(F_{\Theta}(I_{LR}^{(i)}) - I_{HR}^{(i)}\right)^{2} + \delta^{2}}}_{\text{Charbonnier}}.$$
 (2)

1.4 Uzasadnienie konstrukcji

- Brak warstw de-conv. Ponieważ wejście jest już bicubic-upsamplowane, konwolucje w dziedzinie HR wystarczają.
- Warstwa 1×1 jako gęsta zastępuje klasyczną FC przy znacznie mniejszej liczbie parametrów.
- Padding=VALID eliminuje artefakty przy krawędziach, kosztem konieczności przycięcia obrazu przy ewaluacji.

1.5 Złożoność obliczeniowa

Całkowita liczba FLOPs na pojedynczy patch wynosi²

$$9^2 \cdot 128 + 1^2 \cdot 128 \cdot 64 + 5^2 \cdot 64 = 115968,$$

co pozwala trenować z batch=128 na RTX 2080 w czasie ~35 s na epokę (1000 iteracji).

Omówiona architektura stanowi punkt wyjścia; pokażemy jej praktyczną skuteczność oraz wpływ zwiększenia liczby filtrów na PSNR.

2 Przygotowanie danych

2.1 Zestawy obrazów

Zbiór	# obrazów	Rozdzielczość (HR)	Rola w pipeline
T91	91	$32-255\mathrm{px}$	trening (patche)
Set14	14	$\approx 480 \times 320$	walidacja (full-frame)
Set5	5	$\approx 500 \times 500$	test (full-frame)

Tabela 1: Użyte zbiory danych. Wszystkie obrazy w RGB; do treningu używamy wyłącznie kanału Y.

Struktura katalogów. Pary HR/LR przechowujemy zgodnie z konwencją

```
dataset/
train/ # T91 (91 × HR)
validation/
HR/*.png # Set14 HR
LR/*.png # Set14 LR (bicubic, x2)
```

²dla (128, 64, 1); FLOPs = $2HW(d_{in} + d_{out})k^2$.

2.2 Model degradacji (HR ightarrow LR)

Aby odtworzyć procedurę z , obraz HR poddajemy sekwencji $blur \to downsample \to upsample$, formalnie

$$I_{\text{LR}} = [(I_{\text{HR}} * g_{\sigma}) \downarrow_s] \uparrow_s, \qquad s = 2,$$

gdzie * oznacza splot, operator \downarrow_s – usunięcie każdej s-tej próbki (bicubic), zaś \uparrow_s – bicubic upsample. Jądro Gaussa:

$$g_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2}(x^2 + y^2)/\sigma^2\right], \quad \sigma = 1.6, \ k = 13.$$
 (3)

Implementacja w transforms.gaussian_blur() (DEPTHWISE CONV2D).

2.3 Pipeline treningowy (krok-po-kroku)

Dla każdej iteracji treningu generowana jest para (I_{LR}, I_{HR}) zgodnie z diagramem na rys. ??. Poniżej opisujemy szczegółowo wszystkie etapy; implementację zawiera funkcja transforms.random_patch_pair().

- 1. Losowy patch HR (33×33) .
 - (a) Wybieramy współrzędne lewego-górnego rogu (x,y) z rozkładów jednostajnych $x \sim U[0, H_f-33], y \sim U[0, W_f-33].^3$
 - (b) Wycinamy:

$$I_{\rm HR}^{\rm patch} = I_{\rm HR}[\,x:x+33,\;y:y+33\,].$$

Patch trzydziestotrzypikselowy jest minimalnym rozmiarem, przy którym po odcięciu bordera $6 \text{ px } (\S 3) \text{ zostaje niezerowy obraz docelowy } 21 \times 21 \text{ px.}$

2. Generacja LR przez sekwencję Blur \rightarrow Down \rightarrow Up.

$$I_{\rm LR}^{\rm patch} = \left[\left(I_{\rm HR}^{\rm patch} * g_{\sigma} \right) \downarrow_2 \right] \uparrow_2, \tag{4}$$

$$g_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2}(x^2+y^2)/\sigma^2\right], \quad \sigma = 1.6, \ k = 13.$$
 (5)

Kroki ↓2 i ↑2 realizuje bicubic z TensorFlow; rozmycie Gaussa wykonujemy jako tf.nn.depthwise_conv2d.

3. Augmentacje geometryczne (symetryczne).

Stosujemy te same transformacje do LR i HR, aby zachować spójność pary:

flip_left_right prawd. 0.5 losowe odbicie względem osi Y flip_up_down prawd. 0.5 odbicie względem osi X rot90(k) $k \in \{0,1,2,3\}$ rotacja o $k \cdot 90^{\circ}$

Pseudokod (TensorFlow v2):

 $^{^3}H_f,\,W_f$ – wysokość i szerokość pełnego obrazu HR z korpusu T91.

Augmentacje zwiększają różnorodność danych 8-krotnie, co podnosi PSNR o około 0.2 dB.

4. Konwersja RGB \rightarrow YCbCr i wybranie kanału Y.

$$Y = 0.299R + 0.587G + 0.114B,$$

w kodzie tf.image.rgb_to_yuv(...)[..., 0:1]. Pracujemy w przestrzeni Y (jasność), aby uniknąć kolorowych artefaktów i skupić się na ostrości.

5. Przycięcie bordera.

Wariant 9-1-5 ma receptive field 6 pikseli, więc od obrazu HR odcinamy ramkę

$$I_{\rm HR}^{\rm target} = I_{\rm HR}^{\rm patch}[\,6:-6,\;6:-6\,] \quad \Longrightarrow \quad 21\times21~{\rm px}. \label{eq:IHR}$$

LR pozostaje niezmieniony 33×33 px; po przejściu przez sieć z padding=valid rozmiar predykcji dopasuje się automatycznie do docelowych 21×21 .

2.4 Walidacja i test

* Walidacja (Set14) – pełny obraz LR bicubic ↑, obcięte HR 6 px; metryka: PSNR/SSIM w Y. * Test (Set5) – identycznie jak powyżej.

3 Architektura sieci i warianty

3.1 SRCNN – przekrój warstwa po warstwie

1. Ekstrakcja cech (C_1)

 $\operatorname{Conv} 9 \times 9, d_1 = 128 \text{ filtrów}, \operatorname{ReLU}$

$$\mathbf{F}_1 = \sigma(W_1 * I_{LR} + b_1), \qquad W_1 \in \mathbb{R}^{9 \times 9 \times 1 \times d_1}.$$

2. Nieliniowe odwzorowanie (C_2)

Conv $k_2 \times k_2$, $d_2 = 64$ filtrów, ReLU

$$\mathbf{F}_2 = \sigma(W_2 * \mathbf{F}_1 + b_2), \qquad W_2 \in \mathbb{R}^{k_2 \times k_2 \times d_1 \times d_2}.$$

3. Rekonstrukcja obrazu (C_3)

 $Conv 5 \times 5$, 1 filtr, aktywacja liniowa

$$I_{SR} = W_3 * \mathbf{F}_2 + b_3, \qquad W_3 \in \mathbb{R}^{5 \times 5 \times d_2 \times 1}.$$

Wszystkie warstwy wykorzystują padding=valid; dlatego $k_i \neq 1$ skracają obraz o $(k_i - 1)$ pikseli z każdej krawędzi.

Wariant	k_1, k_2, k_3	Receptive field [px]	Parametry (wagi + bias)	FLOPs / patch †
SRCNN-915	9, 1, 5	6	20160 + 193 = 20353	1.16e5
SRCNN-935	9, 3, 5	7	85696 + 193 = 85889	4.00e5
SRCNN-955	9, 5, 5	8	216768 + 193 = 216961	1.02e6

Tabela 2: Porównanie trzech konfiguracji. Receptive field to $\frac{1}{2}\sum_i(k_i-1)$. † FLOPs dla patcha 33×33: $2\cdot 33\cdot 33\cdot (64+32)\cdot 9^2$, zgodnie ze wzorem $2HW(d_{\rm in}+d_{\rm out})k^2$.

3.2 Trzy warianty jądra pośredniego

Wpływ rozmiaru k_2 . Zwiększenie k_2 z 1 do 3 i 5 rozwija okołopikselowe zależności ("rekodowanie" cech), ale liczba parametrów rośnie kwadratowo $\mathcal{O}(k_2^2)$. W praktyce wariant 9-3-5 podnosi PSNR o $\approx 0.2\,\mathrm{dB}$, a 9-5-5 – kolejne $\approx 0.1\,\mathrm{dB}$, kosztem 5× większej złożoności względem bazowego 9-1-5.

Dobór border. Do ewaluacji PSNR obcinamy z HR po border = $\frac{1}{2}\sum_{i}(k_{i}-1)$ pikseli. Dzięki temu w każdym wariancie tensor I_{SR} i I_{HR} mają identyczne rozmiary.

W następnych rozdziałach porównamy trzy warianty na tych samych danych oraz przedyskutujemy zależność dokładności od receptive field i pojemności modelu.

4 Hiperparametry i procedura treningowa

4.1 Podsumowanie ustawień

Parametr	Wartość	Uwagi
Batch size	128 patchy 33×33×1	RAM GPU $\approx 1.4 \mathrm{GB}$
Epoki	200	
Kroki na epokę	1000	$\Rightarrow 2.10^5$ update'ów
Czas jednej epoki	$\approx 45\mathrm{s}$	$total \approx 2.5 h$
Optymalizator	Adam, $\eta_0 = 1 \times 10^{-4}$	$\beta_1 = 0.9, \ \beta_2 = 0.999$
Scheduler	ReduceLROnPlateau	opis eq.
factor	0.5	
patience	5 epok	
$\eta_{ m min}$	1×10^{-6}	
Funkcja straty	Huber, $\delta = 0.01$	eq.
Wczesne zatrzymanie	brak	trenujemy pełne 200 epok

Tabela 3: Najważniejsze hiperparametry treningu.

4.2 Funkcja straty

Huber (Charbonnier) łączy cechy MSE i L1:

$$\mathcal{L}(\Theta) = \frac{1}{N} \sum_{i=1}^{N} \sqrt{\left(F_{\Theta}(I_{LR}^{(i)}) - I_{HR}^{(i)}\right)^2 + \delta^2}, \qquad \delta = 0.01.$$
 (6)

Dzięki łagodniejszej karze dla dużych odchyleń sieć ostrzej rekonstruuje krawędzie, co zwykle podnosi PSNR o $\approx 0.2\,\mathrm{dB}$ względem MSE.

4.3 Adaptacja współczynnika uczenia

ReduceLROnPlateau obserwuje metrykę VAL_PSNR. Gdy w ciągu patience = 5 epok nie zauważy poprawy rzędu $\varepsilon=10^{-4}$, zmniejsza LR:

$$\eta_{t+1} = \max(\eta_{\min}, \text{ factor } \cdot \eta_t), \quad \text{factor} = 0.5.$$
(7)

W praktyce spadki następują po ≈ 30 k, 60 k i 90 k aktualizacjach, stabilizując trening i dając łącznie $+ \sim 0.3$ dB PSNR.

4.4 Callbacki

- **TensorBoard** scalary (loss, PSNR, LR) co epokę, histogram wag co 1 epokę, przykładowe obrazy SR/HR.
- ModelCheckpoint zapis best.keras przy każdym pobiciu VAL PSNR.

4.5 Środowisko sprzętowo-biblioteczne

- GPU NVIDIA GeForce RTX 2080 (8 GB, CUDA 12.4, cuDNN 9.3).
- \bullet Framework TensorFlow 2.19 + Keras 3.10.

4.6 Profil czasowy

Średni throughput na patchach 33×33 , batch 128:

$$iter/s = 22.7 \Rightarrow patch/s = 2900.$$

Po włączeniu mixed precision liczba iteracji na sekundę rośnie o 24 %. Całościowy czas treningu ≈ 2.5 h; bez FP16 wydłużyłby się do ≈ 3.3 h.

Konfiguracja z tabeli będzie podstawą do porównania trzech wariantów jądra w .

5 Wyniki eksperymentów

5.1 Metryki jakości

Dla kanału Y obliczamy:

$$PSNR = 10 \log_{10} \left(\frac{1}{MSE}\right), \qquad MSE = \frac{1}{HW} \sum_{x,y} \left(I_{SR} - I_{HR}\right)^2,$$

przy czym od HR odcinamy BORDER równy zasięgowi receptywnemu (§3). SSIM nie podajemy, gdyż koreluje silnie z PSNR dla tak małej skali $\times 2$.

5.2 Krzywe uczenia

(b) Wariant 9-3-5

(c) Wariant 9-5-5

Rysunek 1: Ewolucja wartości PSNR (kanał Y) dla zbioru treningowego i walidacyjnego (Set14). Czas pełnego treningu każdej konfiguracji ok. 2.5 h.

Krzywe mają charakterystyczny kształt "łuku": po ~ 30 k kroków następuje pierwszy spadek LR (ReduceLROnPlateau), co objawia się wyraźnym załamaniem, następnie kolejne dwa plateaux przy

60 k i 90 k kroków.

5.3 Porównanie wariantów na zbiorze testowym (Set5)

Wariant	PSNR [dB]	
SRCNN 9-1-5	35.05	
SRCNN 9-3-5	35.61	
SRCNN 9-5-5	35.82	

Tabela 4: Średni PSNR na Set5 dla skali $\times 2$.

Omówienie wyników.

- Zwiększenie jądra pośredniego z 1×1 do 3×3 poprawia PSNR o +0.56 dB względem wariantu 9-1-5 (tabela 4), przy ok. 4-krotnym wzroście liczby parametrów.
- Przejście z 3×3 do 5×5 daje dodatkowe +0.21 dB, jednak wymaga już 5 razy więcej FLOPs niż wariant bazowy; korzyść maleje, co wskazuje na diminishing returns.
- Najlepszy rezultat **35.82 dB** osiąga konfiguracja 9-5-5 łącznie +0.77 dB powyżej 9-1-5.

5.4 Wizualne porównanie

5.5 Czas trenowania a dokładność

Dla wszystkich wariantów najwięcej zysku (>90%) uzyskujemy w pierwszych ≈ 70 k kroków (ok. 35 epok). Kolejne spadki LR przynoszą już tylko ~ 0.2 dB. Jeśli ograniczyć budżet obliczeń, warto skrócić trening do 1 h i zatrzymać się po pierwszym plateau.

6 Wnioski

- 1. Klasyczna architektura SRCNN nadal uzyskuje konkurencyjną jakość dla skali $\times 2$, osiągając do 35.8 dB PSNR na Set5 przy czasie trenowania poniżej 3 h na pojedynczym RTX 2080.
- 2. Rozszerzenie jądra drugiej warstwy z 1 px do 3 px zwiększa PSNR o 0.56 dB, a do 5 px łącznie o 0.77 dB, jednak koszt obliczeniowy rośnie wykładniczo (zjawisko diminishing returns).
- 3. Huber (Charbonnier) zamiast MSE oraz mixed-precision podnoszą odpowiednio około 0.2 dB i przyspieszają trening o 25 procent bez utraty stabilności.
- 4. Największy przyrost dokładności uzyskuje się w pierwszych 35 epokach; dalsze zmniejszanie learning-rate przynosi jedynie drobne doszlifowanie (0.2 dB), co pozwala dopasować czas uczenia do dostępnego budżetu GPU.
- 5. Główne ograniczenia: mały rozmiar korpusu (T91), brak kanałów Cb/Cr oraz pojedyncza skala. Jako pracę przyszłą warto rozważyć pre-training na DIV2K oraz głębsze modele (EDSR, RCAN).

Literatura

- [1] C. Dong, C. C. Loy, K. He, X. Tang. *Image Super-Resolution Using Deep Convolutional Networks*. IEEE Trans. PAMI 37(2016) 295–307.
- [2] J. Yang, J. Wright, T. S. Huang, Y. Ma. *Image Super-Resolution via Sparse Representation*. IEEE Trans. Image Proc. 19(2010) 2861–2873.
- [3] M. Bevilacqua, A. Roumy, C. Guillemot, M. Alberti. Low-Complexity Single-Image Super-Resolution based on Non-negative Neighbor Embedding. BMVC 2012 zestaw Set5.
- [4] R. Zeyde, M. Elad, M. Protter. On Single Image Scale-Up Using Sparse-Representations. Curves and Surfaces 2010 zestaw Set14.
- [5] TensorFlow Developers. TensorFlow 2.16: Large-Scale Machine Learning on Heterogeneous Systems. 2024. Software available from www.tensorflow.org.