

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-018804

(43) Date of publication of application: 27.01.1987

(51)Int.CI.

H03F 1/30 F16K 31/06

H03F 3/20

(21)Application number: 60-157383

(71)Applicant: SMC CORP

(22)Date of filing:

17.07.1985

(72)Inventor: TOKUDA TETSURO

FUJITANI HIDEJI

FUJIWARA NOBUHIRO

(54) POWER AMPLIFIER FOR ELECTROMAGNETIC PROPORTIONAL CONTROL VALVE

(57) Abstract:

PURPOSE: To accelerate size reduction more, to reduce temperature drifts of various incorporated resistances and to perform stable operation by driving operational amplifiers by a single DC power source and holding the potential of a feedback signal from a feedback system negative.

CONSTITUTION: A DC voltage of +24V is supplied to a power supply circuit 12 to obtain outputs of -24, -18, and -8V. The output of -24V is impressed to the emitter side of a transistor TR3 constituting an output part 22. The output of -18V, on the other hand, is impressed to a zero-point adjusting device 26, a period adjusting device 28, and the 2nd linear computing element 18 which constitutes a negative feedback circuit. The 2nd linear computing element 18 is driven by this -18V. The zero-point adjusting device 26 is adjusted to determine the offset voltage of the operational amplifier 16a which constitutes the 1st linear computing element 16. The output signal of the period adjusting device 28 is supplied to one input terminal of an operational amplifier 14a which constitutes a function generator 14 and a reference voltage regarding the -8V from a power supply circuit 12 is impressed to the other input terminal, so that a saw-tooth wave from the function generator 14 is inputted to an operational amplifier 20a constituting a comparator 20.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62 - 18804

@Int_Cl.4

識別記号

庁内整理番号

匈公開 昭和62年(1987)1月27日

H 03 F 1/30 F 16 K 31/06 H 03 F 3/20

A-7114-3H 7827-5 J

審査請求 未請求 発明の数 1 (全5頁)

電磁比例制御弁用パワーアンプ 49発明の名称

> 20特 願 昭60-157383

29出 願 昭60(1985)7月17日

⑫発 明 者 徳 田

哲 朗 草加市稲荷6丁目19番1号 焼結金属工業株式会社草加工

⑦発 明 者 藤 谷 秀

次

草加市稲荷6丁目19番1号 焼結金属工業株式会社草加工

場内

79発 明 者 原 伸 広 草加市稲荷6丁目19番1号 焼結金属工業株式会社草加工

場内

エスエムシー株式会社 ⑦出 願 人

弁理士 千葉 剛宏 東京都港区新橋1-16-4

明 細

1. 発明の名称

仞代 理

電磁比例制御弁用パワーアンプ

2. 特許請求の範囲

(1) 単一の直流電源と、第1の線形演算器と、 この第1線形演算器の出力側に接続される比較 器と、前記比較器に出力信号を送給する関数発 生器と、前記比較器の出力側に接続されて電磁 比例制御弁を構成するソレノイドを駆動する出 力部と、この出力部からの出力信号を受け前記 第1線形演算器に帰還信号を送る第2の線形演 算器とからなり、少なくとも、前記第1線形演 算器に接続される零点調整器と、関数発生器に 接続される周期調整器と第2線形演算器とに前 記直流電源から送給される共通の電圧を印加し て付勢するよう機成することを特徴とする電磁 比例制御弁用パワーアンプ.

(2) 特許請求の範囲第1項記載のパワーアンプ

において、第1線形演算器、第2線形演算器、 比較器および関数発生器を単一のモジュールに 組み込んでなる電磁比例制御弁用パワーアンプ。

... e in

3. 発明の詳細な説明

本発明は、電磁比例制御弁用のパワーアンプ に関し、一層詳細には、電磁弁を構成するソレ ノイドを駆動するために用いられる温度ドリフ トの少ない安定した出力が得られるパワーアン プに関する。

従来から、電流の大きさによって空気の流量 や圧力を無段階に制御するものとして電磁比例 制御弁が多数採用されるに至っている。電磁比 例制御弁はその内部に比例ソレノイドを組み込 んでいる。この比例ソレノイドは有効ストロー クの範囲内では励磁電流に対する吸引力が一定 となる特性を有する。従って、電磁比例制御弁 は比例ソレノイドの吸引力がその励磁電流の大 きさに比例するという関係を利用して、空気流 量・圧力の制御を行う。

そこで、該る欠点を除去するために、ソレノィド駆動用のパワーアンプに帰還回路を用いる解決策が当然考慮されてくる。然しながらこの場合、帰還回路として差動増幅器を組み込むと、当該増幅器自体を構成する抵抗の抵抗値のばらつき、あるいは、温度係数の相違から温度ドリフトにより帰還精度が低下するという別の

のことは、回路構成自体を複雑化すると共に、特に、基板等を用いて電磁比例制御弁の制御系を小型化しようとする要請に沿えないという不都合を生じる。**

本発明は前記の不都合を克服するためになされたものであって、単一の直流電源によってオペアンプを駆動すると共にフィードバック系からの帰還信号の電位を負電位に保持し、しかも温度ドリフトが少なく、従って、動作の安定した電磁比例制御弁に好適に用いられるパワーアンプを提供することを目的とする。

前記の目的を達成するために、本発明は単一の直流電源と、第1の線形演算器と、この第1線形演算器と出力側に接続される比較器と出力側に接続されて電磁比例制御弁を構成するソレノィドを駆動する出力部と、介を構成するソレノィドを駆動する出力部と、介護器に帰還信号を送る第2の線形演算器に接らなり、少なくとも、前記第1線形演算器に接

不都合が顕れてくる。すなわち、これらのことは、ソレノイドを構成する励磁電流の変化となり、結局、設定された弁自体の位置制御が不安定となり、また、再現性を欠くことを意味する。

すなわち、前記のような構成ではオペアンプ 駆動用の電源と帰還用抵抗の後に生じる電位を 負電位に保持するためのパワー出力用電源の二 つの直流電源系を用意しなければならない。こ

統される羽点調整器と、関数発生器に接続される周期調整器と第2線形演算器とに前記直流電源から送給される共通の電圧を印加して付勢するよう構成することを特徴とする。

次に、本発明に係る電磁比例制御弁のパワー アンプについて好適な実施例を挙げ、添付の図 面を参照しなから以下詳細に説明する。

第1図において、参照符号10は本発明に係る 電磁比例制御弁を構成するソレノイド駆動用の 制御回路を示す。前記制御回路10は、基本的に は電源回路12、関数発生器14、第1の線形演算 器16、第2の線形演算器18、比較器20および出 力部22とから構成される。電源回路12には、こ の場合、例えば、+24 Vの電圧を導入し、出力 個にはGND端子12a、-18 Vの出力を供給する端子12 c および-24 Vの出力を保給する端子12 c を および-24 V の出力を保給する端子12 c を および-24 V の出力を と これらの端子12 a 、 12 b 、 12 c お よび12 d は 破線で囲痕された関数発生器14、線 形満質器16、18 および比較器20を一体的にモ

ュール化した回路に設けられた端子に接続する。 次に、前記第 1 線形演算器 16 はオペアンプ 16 a を含み、前記オペアンプ 16 a の一方の入力端子 には利得調整器 24 の出力端子を接続し、なお、 前記利得調整器 24 は一方において制御信号の入 力端子となる。可変抵抗を含む等点調整器 26 の 出力側は前記オペアンプ 16 a の反転入力端子に 接続され、また、周期調整器 28 の出力側は前記 関数発生器 14 を構成するオペアンプ 14 a の反転 入力端子に接続する。

ところで、前記第 1 線形演算器 16を構成するオペアンプ16 a の出力側は比較器 20を構成するアンプ20 a の一方の入力端子に接続され、なお、この入力端子には関数発生器 14 の出力側も接続されている。一方、前記アンプ20 a の非反転入力端子には抵抗R、R2 が接続され、且つ、この比較器 20 の出力側はその出力信号によって通断するスイッチングトランジスタ Tri の出力側はモジュールの外部に外付けされている。

調整器26、周期調整器28、第2線形演算器18に印加される。すなわち、零点調整器26に印加される前記-18 Vの電圧は関数発生器14を構成するオペアンプ14 a のオフセット電圧を調整する役割を果たす。一方、第2線形演算器18はこれに印加される-18 Vの電源電圧によって駆動されるうに構成している。すなわち、前記の説明がな通り、この発明では、特にプ18 内の電源を失々に共通に-18 Vが印加されるように構成している。このようにすることによって電源系をより簡素化出来る。

そこで、以上のような設定状態において、利得調整器24を調整してその目標値を選択し、一方、零点調整器26を調整してオペアンプ16 a のオフセット電圧を決定し、電磁比例制御弁にバイアス電流を流すことが出来る。従って、前記オペアンプ16 a からは利得調整器24の出力信号、零点調整器26の出力信号および第2級形演算器18のオペアンプ18 a の出力信号の和に相当する

前記出力部22は、図から容易に諒解されるように、実質的にはスイッチングトランジスタ Trzとパワートランジスタ Trzとパワートランジスタ Trzとパワートランジスタ Trzとから構成されており、その出力側は電流検出用抵抗Rn、と電磁比例制御弁のソレノイド30に接続されている。ない内部の第2線形演算器18を構成力は はまそとに 大々接続されており、前記の通り、この第2線 形演算器18の出力側は前記第1線形演算器16を構成するオペアンプ16 a の非反転入力端子に接続さている。

本発明に係る電磁比例制御弁のパワーアンプ は基本的には以上のように構成されるものであ り、次にその作用並びに効果について説明する。

前記の通り、電源回路12には+24 Vの直流電圧が供給されて、-24 V、-18 Vおよび-8 Vの出力を得る。前記-24 Vの出力電圧は出力部22を構成するトランジスタTrsのエミッタ側に印加する。-方、前記-18 Vの出力電圧は零点

信号が比較器20に出力される。

一方、-18Vの電圧を印加される周期調整器 28の出力信号は関数発生器14を構成するオペア ・ンプ14aの一方の入力端子に導入され、また、 前記オペアンプ14 a の他方の入力端子には電源 回路12からの-8 Vに係る基準電圧が印加され る。これによって、関数発生器14では、例えば、 - 8 V 乃至 - 3 V の振幅の範囲内で鋸歯状波を 発生し、この鋸歯状波は比較器20を構成するオ ペアンプ20aに導入される。前記の通り、比較 器20の反転入力端子には第1線形演算器16の出 力信号が導入されるように構成されており、結 局、この反転入力端子には前記関数発生器14の 出力信号と第1線形演算器16の出力信号との和 の信号が導入される。この信号は、前記比較器 20の非反転入力端子側に接続された抵抗R」、 R 2 および比較器の出力レベルによって決定さ れる基準電圧Vi、VL(Vi>VL)と比較 され、基準電圧Vwよりも高い場合には低レベ ル信号しを出力し、一方、基準電圧Vょよりも

低い場合には高レベル信号Hを出力する。

スイッチング用トランジスタTr.は前記比較 器20からの出力信号を受けて、その信号が高い 場合、当該トランジスタTr.は疎通し、一方、 その出力信号が低い場合には遮断される。 従っ て、前記トランジスタTr.の通断する出力信号 によって、第2のスイッチングトランジスタ Tr.およびパワートランジスタTr.が通断する ことになる。 勿論、パワートランジスタTr.が 導通することによって、ソレノイド30には所定 の電流が流れ、励磁コイルが励磁されて図示し ないソレノイドを駆動する。

なお、この場合、前記関数発生器14からの鋸 歯状波の振幅の変化に伴い、比較器20からの出 力信号 H、しは当該鋸歯状波の周期に対応して 高速で反転し、これに伴って、パワートランジ スタT・1 は高速で通断するに至る。このため、 ソレノイド30に通流する電流はソレノイドのイ ンダクタンス成分により平滑化され、直流分に リップルがのった波形となる。結局、当該パル ス電流の総和が目標値に対応したものとなる。 そして、前記構成において、負帰還回路を構成 する第2線形演算器18の出力側は第1線形演算 器16に導入されている。このため、ソレノイド 30に対する通電量は利得調整器24において設定 された値と対応することになる。

本発明によれば、以上のように、単一の直流 電源により電磁比例制御弁の制御系を駆動する ように構成している。しかも第1、第2の線形 演算器、関数発生器、比較器を互いに可及の線に 接するように一体的に組み込んでモジュールと に組み込んでモジュールと と共にそれに組み込まれる各種抵抗の定したれ りつと共にそれに組み込まれる各種抵抗の定したが 作が得られると共に信頼性も一層向上する動作 が得られるという利点が得られる。

以上、本発明について好適な実施例を挙げて 説明したが、本発明は前記の実施例に限定され るものではなく、本発明の要旨を逸脱しない範 囲において種々の改良並びに設計の変更が可能

なことは勿論である。

4. 図面の簡単な説明

第1図は本発明に係る電磁比例制御弁のソレノイドを駆動制御するためのプロック図、第2図は第1図のプロック図の内容を詳細に説明する回路図である。

10…制御回路 12…電源回路

14…関数発生器 16、18…線形演算器

20… 比較器 22… 出力部

24…利得調整器 26…零点調整器

28…周期調整器 30…ソレノイド

特許出願人 烧結金属工業株式会社

出願人代理人 弁理士 千葉 岡

