

Detecting Money Laundering with Machine Learning

Martin Jullum

Joint with Anders Løland, Ragnar Bang Huseby, Aliaksandr Hubin, Geir Ånonsen and Johannes Lorentzen

Insurance seminar UiO 2020

October 1st 2020

Money laundering

- Making money from criminal activity appear legal
- Examples
 - Buy antics with dirty money –
 state as attic finding sell legally
 - Incorporate criminal funds in your own legal business
 - Buy (single premium) insurance policy (via straw person) with dirty money – surrender the policy

Money laundering

- Making money from criminal activity appear legal
- Examples
 - Buy antics with dirty money –
 state as attic finding sell legally
 - Incorporate criminal funds in your own legal business
 - Buy (single premium) insurance policy (via straw person) with dirty money – surrender the policy

All financial institutions are legally binded to report "suspicious transactions" to Økokrim

A Money-Laundering Megawit wit to Resign Biggest D. Selection A NATIONE -n fine Of Denmark's Biggest Bank

A NA TONE -n fine A Money-Laur of Donardal Li ware of Doring Mega-d the CEO swedt The over EGuardian Standard Chartered fined \$1.1bn for st Bank money-laundering and sanctions breaches

Current AML process at DNB

What we have done

- Replace the AMLsystem with a machine learning model
- Available data types:
 - transaction history
 - customer data
 - alerts
 - manually inspected cases

What we have done

More realistic setting!

- Available data types:
 - transaction history
 - customer data
 - alerts
 - manually inspected cases

What makes this hard?

Modelling

- Binary response (Y): Transaction sent to Økokrim (Yes = 1, no = 0)
- Want to predict P(Y = 1|data related to present transaction)
- State of the art: Gradient boosting machines (GBM)
- XGBoost very efficient and flexible implementation of GBM based on tree models

Tree models

Learn model $f(x) \approx y$ using $x = (x_1, ..., x_p)$

■ Conceptually very simple: Constructed as a series of IF-ELSE rules on x_i

Tree models

Learn model $f(x) \approx y$ using $x = (x_1, ..., x_p)$

■ Conceptually very simple: Constructed as a series of IF-ELSE rules on x_i

Benefits:

- Easy to train (greedy algorithm)
- Direct modeling of non-linearities and interactions
- Invariant under monotone transformations of x
- Naturally combines continuous and categorical features

Drawbacks

- High variance
- Limited predictive power

Boosting

• Given some loss function $L(y, \cdot)$, iteratively fit simple models $f_m(x)$ (weak learners) trying to correct «errors» of previous models:

$$f_m(\mathbf{x}) = \arg\min_{h \in \Phi} s_h(x), \qquad s_h(x) = \frac{1}{n} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

and sum them into a strong learner

$$f^{(M)}(x) = \sum_{m=1}^{M} f_m(x)$$

Boosting illustration

Tree model drawbacks

- High variance
- Limited predictive power

Both fixed using boosting!

XGBoost and gradient boosting

Generally hard to solve

$$\arg\min_{h \in \Phi} s_h(x), \qquad s_h(x) = \frac{1}{n} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

Transforming raw data (feature engineering)

XGBoost requires numeric tabular data as input!

Raw input data

- Specific transaction info
- Background info about sender/receiver
- Sender/receiver's transaction history
- Previously reported transactions from sender/receiver

Υ	X1	X2	X3	X4	X5	X6
1	0,453406	0,992838	0,734389	0,159918	0,397515	0,949952
0	0,274	0,654207	0,169886	0,493841	0,407112	0,939789
0	0,741897	0,855005	0,585788	0,366456	0,365123	0,57955
1	0,488119	0,465754	0,716517	0,493048	0,855049	0,632114
0	0,134458	0,762057	0,848194	0,098779	0,872603	0,063026
0	0,531914	0,998817	0,808215	0,060721	0,716595	0,35374
0	0,341509	0,8398	0,637808	0,48304	0,279987	0,730286
0	0,530306	0,463271	0,338713	0,986781	0,925251	0,272484
1	0,864123	0,652763	0,689599	0,080937	0,990294	0,364736
0	0,106812	0,900351	0,450224	0,143815	0,593244	0,020764

1716 columns (features)

Data refinement

2 years of modellable transaction data

- All transactions leading to
 - A report (C)
 - An alert, but no report (B)
- A sample of normal transactions (A)

Data refinement

- We chose #A = #B
- Use only one transaction from each manual investigation (2)
- No transactions with same sender/receiver two consecutive days

Training, testing and modelling

Modelling

- 10-fold cross validation (CV)
- Stopping criterion (# boosting rounds): AUC
- Tuning: Random + iterative grid-search
- Model trained on GPU
- Final model used for prediction on test data:

$$\hat{f}(x_{\text{test}}) = \frac{1}{10} \sum_{i=1}^{10} \hat{f}_{cv,-i}(x_{\text{test}})$$

2 training scenarios

No unreported transactions

Evaluation metrics

Ranking: AUC

Probabilities: Brier score

$$\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} (y_i - \hat{p}_i)^2$$

Comparing scenarios

ML vs current AML system

Hard to properly compare

■ PPP = Proportion of Positive Predictions:
Proportion of transactions that needs to be controlled to find 95% of the reported transactions

	ML (all data types)	Current system
PPP	31.5 %	48.9 %

Limitations

- We are not really using the time-evolving transaction network
 - Who are you sending/receiving money to/from
 - When are you sending/receiving
- Social/professional network information is not used
- Many variables complicates putting the model into production
- The model only learns what has already been reported

Current work: Utilize the transaction <u>network</u>

Borrowing strength from NLP (Natural Language Processing)

Current work: Utilize the transaction <u>network</u>

Borrowing strength from NLP (Natural Language Processing)

word2vec → node2vec

Current work: Utilize the transaction network

Borrowing strength from NLP (Natural Language Processing)

word2vec → node2vec → trans2vec

Current work: Utilize the transaction <u>network</u>

Borrowing strength from NLP (Natural Language Processing)

word2vec → node2vec → trans2vec

Detecting money laundering transactions with machine learning

Martin Jullum, Anders Løland and Ragnar Bang Huseby

Norwegian Computing Center, Oslo, Norway, and

Geir Ånonsen and Johannes Lorentzen

DNB, Oslo, Norway

jullum@nr.no

