《微积分 1》16 秋

- 一、单项选择题 (5 小题,每小题 3 分,共 15 分)
- 1. 函数 $y = \frac{1}{\sqrt[3]{r^2 3r + 2}}$ 的连续区间是().

- A. (1,2) B. $(-\infty,1)$ C. $(-\infty,1)$, $(2,+\infty)$ D. $(-\infty,1)$, (1,2), $(2,+\infty)$
- 2. 设 $f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$ 在 x = 0 处连续但不可导,则常数 α 的取值范围是().

 - A. $\alpha > 0$ B. $0 < \alpha \le 1$ C. $\alpha > 1$ D. $\alpha < 1$
- 3. 设 f(x) 在闭区间 [0,1] 上满足 f'''(x) < 0,且 f''(0) = 0,则 f'(0),f'(1),f(1) f(0), f(0) - f(1) 的大小关系是().
 - A. f'(0) > f(1) f(0) > f'(1)
- B. f'(1) > f(1) f(0) > f'(0)
 - C. f(1) f(0) > f'(1) > f'(0) D. f'(1) > f(0) f(1) > f'(0)
- 4. 当 x > 0 时,曲线 $y = x \sin \frac{1}{x}$ ().
 - A. 既无水平渐近线又无铅直渐近线 B. 仅有铅直渐近线

C. 仅有水平渐近线

- D. 既有水平渐近线又有铅直渐近线
- 5. $\int_{-1}^{1} (x + \sqrt{1 x^2})^2 dx = ().$
- A. 1 B. 2 C. 3
- D. 4
- 二、填空题 (5 小题, 每小题 3 分, 共 15 分)
- 6. $\[\exists f(x) = \begin{cases} x, & x \ge 0, \\ 0, & x < 0. \end{cases} \] g(x) = \begin{cases} x+1, & x < 1, \\ x, & x \ge 1, \end{cases} \] \iint f(x) + g(x) \] \[\text{bind} \] \[\exists f(x) = f(x) =$
- 7. 当 $x \rightarrow 0$ 时, $\sqrt[4]{1-ax^2} 1$ 与 $x \sin x$ 是等价无穷小,则常数a = ...
- 8. 设函数 f(u) 可导,且 $y = f^2(\cos^2 x)$,则 $\frac{dy}{dx} =$.

9. 若
$$f(x)$$
 的导函数为 $\sin x$,则 $\int f(x) dx = -\sin x + C_1 x + C_2$.

10. 设
$$f(x)$$
 是连续函数,且 $\int_0^{x^3-1} f(t) dt = x$,则 $f(7) =$.

三、计算题 (5 小题, 每小题 6 分, 共 30 分)

11. (6 分) 计算
$$\lim_{x \to +\infty} x^3 \left(\sin \frac{1}{x} - \frac{1}{2} \sin \frac{2}{x} \right)$$
.

12. (6 分) 计算
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$$
.

13. (6 分) 设
$$y = 3^{\sqrt{x}} + \arcsin \frac{2x}{1+x^2} + \ln 2$$
 (0 < x < 1),求 dy.

14. (6 分) 设函数
$$y = y(x)$$
 由参数方程 $\begin{cases} x = t^2 - 2t, \\ y = \ln(1 + 2t) \end{cases}$ 所确定,求 $\frac{d^2x}{dy^2}$.

15. (6 分) 设函数
$$y = y(x)$$
 由方程 $xe^{f(y)} = e^y$ $(x > 0)$ 所确定, 其中 f 二阶可导, 且 $f' \neq 1$, 求 $\frac{d^2y}{dx^2}$.

四、计算题 (3 小题, 每小题 6 分, 共 18 分)

16. (6 分) 计算
$$\int \frac{\sqrt[4]{x}}{1+\sqrt{x}} dx$$
.

17. (6 分) 设
$$f(x)$$
 连续,且 $\int_0^x t f(x-t) dt = e^{-x^2}$,求 $\int_0^1 f(x) dx$.

18. (6 分) 计算
$$\int_0^{\frac{\pi}{4}} \frac{x}{1+\cos 2x} dx$$
.

五、计算题 (2 小题, 每小题 8 分, 共 16 分)

19. (1) (2 分)设 f(x) 连续, 证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$;

(2) (6 分)计算
$$I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin^2 x}{x(\pi - 2x)} dx$$
.

20. (8 分) 设x > 0, 求满足不等式 $\ln x \le A\sqrt{x}$ 的最小正数 A.

六、证明题 (1小题, 共6分)

21. (6 分) 设连续函数 f(x) 在[a,b]上单调减少,证明

$$(b-a)\int_{a}^{x} f(t)dt \ge (x-a)\int_{a}^{b} f(t)dt, \ x \in [a,b].$$