Изучение Осциллографа

 $\mathsf{M}.\ \mathsf{A}$ ношин 1 Д. Лежнев 2

МФТИ, Сентябрь 2022

Выбор части

1 Основа устройства осциллографа

2 Усиление, развертка и синхронизация

З Ход лабораторной работы работа

Рис.: 1 Электронно-лучевая трубка

Аношин М, Б04-203

- Подогреватель катода
- Катод
- Модулятор (электрод, управляющий яркостью изображения)
- Фокусирующий анод
- Ускоряющий анод
- Горизонтально отклоняющие пластины
- Вертикально отклоняющие пластины
- Ускоряющий анод
- Экран

Электрон движется в электрическом поле двух пластин. Пусть его начальная скорость v_0 вдоль OZ

Тогда уравнения представляющие движения электрона имеют вид:

$$\begin{split} \dot{z} &= v_0 \Rightarrow z = v_o \cdot t \\ m\ddot{y} &= e \cdot E_y \Rightarrow \dot{y} = \int \frac{e \cdot E_y}{m} \, dt \ = \frac{e \cdot E_y \cdot t}{m} \Rightarrow y = \frac{e \cdot E_y \cdot t^2}{2m} \end{split}$$

Откуда следует, что:

$$y = \frac{e \cdot E_y}{2m \cdot v_0^2} z^2$$

Видно, что траектория электрона между отклоняющими пластинами представляет собой параболу. (После выхода из пластин электроны будут двигаться по прямой). Найдём смещение пучка y_1 и угол α между этой прямой и осью z

Пусть к моменту выхода из ускоряющих пластин электрон прошел I вдоль OZ:

$$y_1 = \frac{e \cdot E_y}{2m \cdot v_0^2} I^2 \Rightarrow \tan(\alpha) = \frac{y_1}{I} = \frac{e \cdot E_y}{2m \cdot v_0^2} I$$

Внимание!

Абсолютно такие же действия нужно провести для расчета отклонения вдоль OX

Аношин М, Б04-203 Осциллограф 14.09.2022 6 / 18

Усиление сигнала

Итак, в рабочем режиме координаты х и у точки попадания электронного луча на экран (относительно его центра) пропорциональны значениям напряжений $U_x(t)$ и $U_y(t)$, где $E_i=\frac{U_i}{d}$, а d - растояние между пластинами Ясно, что отклонение луча должно быть не должно выходить за пределы экрана. Что подводит нас к мысле о необходимости усиления(ослабления) сигнала

Для усиления слабых сигналов в осциллографе имеются усилители вертикального (и горизонтального) отклонения луча.

$$K_y = U_y/h_y, K_x = U_x/h_x-$$

отношение величины поданного напряжения к смещению луча на экране.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q @

Развёртка сигнала

Для развертки сигнала, нужно подавать такое напряжение $U_i:U_i(t)=U_{0i}+K_i\cdot U(t)$, что будет изменятся со временем, вынуждая картирнку на экране доходить до конца и обратно

Рис.: 2 Напряжение развёртки

(Тобр $\ll T)$

Синхронизация

Для получения статичной картины на экране осциллографа необходимо, чтобы период развёртки был кратен периоду изучаемого периодического сигнала — тогда повторная «прорисовка» пройдёт по тому же пути, что и предыдущая. Но полная сихронизация трудно выполнима из-за неточностей и генератора, и осциллографа. В таком случае применяют **принудительное согласование периодов**, при котором напряжение U(t) «навязывает» свой период генератору развёртки. При этом начало прямого хода развёртки должно совпадать строго с одной и той же характерной точкой исследуемого периодического сигнала

Последовательность дейстивий

- Включаение осциллографа. Подгтовка к работе, прогрев прибора
- ② Проведение первой серии измерений для синусоиды, полученной осциллографом от велечины исходного сигнала генератора
- Проведение второй серии измерений для амплитулы, работа с понижением сигнала на -20dB и -40dB
- Проведение третиий серии измерений для фигур Лиссажу, полученных на экране осциллографа
- Проведение четвертой серии измерений для определения коэффициента ослабления АЧХ осциллографа
- Анализ полученных зависмостей и заключение о результатах экспериментов

Результаты первой серии измерений

ν , Γ ц	Т, дел	TIME/DIV	Т, с	ν , Г ц	δu , Γ ц	ν , Г ц
997.6	10	0.5 ms	0.001	1000	50	2.4
58.8	17	5 ms	0.017	58.82	1.73	0.02
298.4	17	2 ms	0.0034	294.12	8.7	-4.28
603.2	17	1 ms	0.0017	588.24	17.3	-14.96
1999.3	13	0.2 ms	0.00052	1923.08	73.96	-76.22
5000.3	10	0.1 ms	0.0002	5000.00	250.00	-0.30

Для 2 - 5 написаны деления для двух периодов, для повышения точности

Аношин М, Б04-203 Осциллограф 14.09.2022 11 / 18

Результаты второй серии измерений

		U, B	VOLTS/DIV	Т, дел	dU_max, B	dU_max/U_max
- (U_max, B	7.2	2	36	0.2	0.028
ı	U min, B	0.56	0.2		0.02	0.036

Для 2 - 5 написаны деления для двух периодов, для повышения точности

Аношин М, Б04-203 Осциллограф 14.09.2022 12 / 18

Результаты второй серии измерений

	U_ max, B	VOLTS/DIV	Т, дел
-40dB	0.12	0.2	6
-20dB	1.1	0.5	22

Деления для двух периодов, для повышения точности

Аношин М, Б04-203 Осциллограф 14.09.2022 13 / 18

Результаты третьей серии измерений

(a) $\nu_1 : \nu_2 = 2 : 3$

(b) $\nu_1 : \nu_2 = 1 : 3$

Рис.: 3 Фигуры Лиссажу, часть 1

Результаты третьей серии измерений

(a) $\nu_1 : \nu_2 = 1 : 2$

(b) $\nu_1 : \nu_2 = 1 : 1$

Рис.: 4 Фигуры Лиссажу, часть 2

Результаты третьей серии измерений

(a) $\nu_1 : \nu_2 = 2 : 5$

(b) $\nu_1 : \nu_2 = 2 : 3$

Рис.: 5 Фигуры Лиссажу, часть 3

Аношин М, Б04-203

Результаты четвертой серии измерений

	Umax/U20dB	U20dB/U40dB	U40dB/Umin
-40dB	16.319	19.24	-13.380
-20dB	1.1	0.5	22

ν, Гц	U, B
1000	4
30000000	3.4
23115000	3.8
23000000	3.8
100	4
10	4

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 9000

Обработка данных:

$K(\nu) = U(\nu) : U_0$	U, B
0.85	3.4
0.95	3.8
0.95	3.8
1	4
100	4
10	4

Полученные коэффициенты ослабления АЧХ говорят о том, что осциллограф способен качественно обрабатывать сигнал на всей полосе пропускания, т.к увелечение частоты в 30 тысяч раз увеличило помехи лишь в 1.17 раза