Disciplined Convex Optimization with CVXR

Anqi Fu Bala Narasimhan Stephen Boyd

EE & Statistics Departments

Stanford University

useR! Conference 2016

Convex Optimization

CVXR

Examples

Outline

Convex Optimization

CVXR

Examples

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_m$ are convex
- Equality constraints are linear

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_m$ are convex
- Equality constraints are linear

Why?

- We can solve convex optimization problems
- ► There are many applications in many fields, including machine learning and statistics

Convex Problems in Statistics

- Least squares, nonnegative least squares
- ► Ridge and lasso regression
- ► Isotonic regression
- ► Huber (robust) regression
- ► Logistic regression
- Support vector machine
- Sparse inverse covariance
- Maximum entropy and related problems
- ...and new methods being invented every year!

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- ► CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

```
from cvxpy import *
beta = Variable(n)
cost = norm(X * beta - y)
prob = Problem(Minimize(cost))
prob.solve()
beta.value
```

Outline

Convex Optimization

CVXR

Examples

CVXR

A modeling language in R for convex optimization

- Will connect to many open source solvers
- Uses disciplined convex programming to verify convexity
- Supports parameters, multiple constraints
- ▶ Mixes easily with general R code and other libraries

CVXR 8

Outline

Convex Optimization

CVXR

Examples

Future Work

Examples

9

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- $\triangleright \beta \in \mathbf{R}^m$ is variable, X and y are constants

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- ▶ $\beta \in \mathbf{R}^m$ is variable, X and y are constants

```
library(cvxr)
beta <- Variable(m)
obj <- SumSquares(y - X %*% beta)
prob <- Problem(Minimize(obj))
solution <- solve(prob)
solution$opt_val
solution$beta</pre>
```

- ▶ X and y are constants; beta, obj, and prob are S4 objects
- solve method returns a list that includes optimal beta

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

```
constr <- list(beta >= 0)
prob2 <- Problem(Minimize(obj), constr)
solution2 <- solve(prob2)
solution2$opt_val
solution2$beta</pre>
```

- ► Construct new problem with list constr of constraints formed from constants and variables
- Variables, parameters, expressions, and constraints exist outside of any problem

Example: True Coefficients and OLS Estimate

True Coefficients and NNLS Estimate

13

Direct Standardization

- \blacktriangleright Samples (X, y) drawn **non-uniformly** from a distribution
- ▶ Expectations of features of X are known $b \in \mathbf{R}^m$
- ▶ We'll estimate probability $p \in \mathbb{R}^n$ for all samples
- ightharpoonup Choose p_i to match known expectations, maximize entropy

Direct Standardization

- ▶ Samples (X, y) drawn **non-uniformly** from a distribution
- ▶ Expectations of features of X are known $b \in \mathbf{R}^m$
- ▶ We'll estimate probability $p \in \mathbb{R}^n$ for all samples
- ightharpoonup Choose p_i to match known expectations, maximize entropy

maximize
$$\sum_{i=1}^{n} \operatorname{entr}(p_{i})$$

subject to $p \geq 0$ $\mathbf{1}^{T}p = 1$ $X^{T}p = b$

- ightharpoonup entr $(p_i) = -p_i \log p_i$
- (y, p) is an estimate of the true sampling distribution of the response variable

Direct Standardization

```
probs <- Variable(n)
cost <- SumEntries(Entr(probs))
constr <- list(probs >= 0, SumEntries(probs) == 1,
    t(X) %*% probs == b)
prob <- Problem(Maximize(cost), constr)
solution <- solve(prob)
solution$probs</pre>
```

- ▶ Entr is the elementwise entropy function
- ▶ solution\$probs is an R vector of sample probabilities

True vs. Sample Cumulative Distribution

True vs. Estimated Cumulative Distribution

17

Outline

Convex Optimization

CVXR

Examples

Future Work

Future Work

- ► Connect to more solvers: SCS, CVXOPT, ...
- ▶ Flesh out convex functions in library
- ► Add warm start support