GQR Reference Manual 0.1.0

Michael Carley m.j.carley@bath.ac.uk

Contents

1	GQR Module Index	1
	1.1 GQR Modules	1
2	GQR File Index	3
	2.1 GQR File List	3
3	GQR Module Documentation	5
	3.1 gqr	5
4	GQR File Documentation	9
	4.1 gqr.h File Reference	9
	4.2 grule.c File Reference	11
5	GQR Example Documentation	13
	5.1 example.c	13

GQR Module Index

1.1	GQR Modules
	O & TT TITO GRAND

ere is a list of all modules:		
gqr	 	

2 GQR Module Index

GQR File Index

2.1 GQR File List

Here is a list of all documented files with brief descriptions:	
gqr.h (Declarations for the GQR functions)	Ģ
grule.c (Gaussian quadrature rule generation and selection functions)	11

4 GQR File Index

GQR Module Documentation

3.1 gqr

Functions

- gqr_rule_t * gqr_rule_alloc (gint n)
- gqr_rule_t * gqr_rule_realloc (gqr_rule_t *g, gint n)
- gint gqr_rule_free (gqr_rule_t *g)
- gint **gqr_rule_write** (**gqr_rule_t** *g, FILE *f)
- gint **gqr_rule_select** (**gqr_rule_t** *g, **gqr_t** type, gint n, **gqr_parameter_t** *p)
- gint **gqr_rule_scale** (**gqr_rule_t** *g, gdouble a, gdouble b, gdouble *xbar, gdouble *dx)
- gchar * gqr_rule_name (gqr_t type)

3.1.1 Function Documentation

```
gqr_rule_t* gqr_rule_alloc (gint n)
```

Allocate a Gaussian quadrature rule.

Parameters:

n maximum length of rule (number of abscissae and weights).

Returns:

newly allocated rule.

```
gint gqr_rule_free (gqr_rule_t * g)
```

Free all memory associated with a Gaussian quadrature rule.

Parameters:

g rule to be freed.

Returns:

0 on success.

```
gchar* gqr_rule_name (gqr_t type)
```

Generate a string giving the name of the quadrature rule (Legendre, Hermite, etc.) and any singularities built into it.

Parameters:

```
type a gqr_t (p. 10) describing a quadrature rule.
```

Returns:

a string giving the name of rule type.

```
gqr_rule_t* gqr_rule_realloc (gqr_rule_t * g, gint n)
```

Reallocate memory for a Gaussian quadrature rule to allow for a change in rule length.

Parameters:

```
g gqr_rule_t (p. 10) to reallocate;
```

n new maximum length of rule (number of abscissae and weights).

Returns:

newly allocated rule.

```
gint gqr_rule_scale (gqr_rule_t * g, gdouble a, gdouble b, gdouble * xbar, gdouble * dx)
```

Set the scaling for a rule so that the integral is approximated by: $I \approx \Delta x \sum_{j=0}^{n} w_j f(x_j)$ where $x = \bar{x} + \Delta x t_j$.

Parameters:

```
g Gaussian quadrature rule;
```

a lower limit of integration;

b upper limit of integration;

 $xbar \bar{x};$

 $dx \Delta x$.

Returns:

0 on success.

```
gint gqr_rule_select (gqr_rule_t * g, gqr_t type, gint n, gqr_parameter_t * p)
```

Fill a Gaussian quadrature rule with abscissae and weights of a chosen type.

Parameters:

```
g rule to fill;
```

3.1 gqr

```
type a gqr_t for the rule;n number of points in rule;p gqr_parameter_t of parameters for rule.
```

Returns:

0 on success.

```
gint gqr_rule_write (gqr_rule_t * g, FILE * f)
```

Write the abscissae and weights of a Gaussian quadrature rule to a file.

Parameters:

```
\boldsymbol{g} Gaussian quadrature rule;
```

f file stream to write to.

Returns:

0 on success.

GQR File Documentation

4.1 gqr.h File Reference

Declarations for the GQR functions.

Typedefs

- typedef _gqr_parameter_t gqr_parameter_t
- typedef _gqr_rule_t **gqr_rule_t**

Enumerations

```
    enum gqr_t {
    GQR_GAUSS_LEGENDRE = 1, GQR_GAUSS_CHEBYSHEV_1 = 2, GQR_GAUSS_CHEBYSHEV_2 = 3, GQR_GAUSS_HERMITE = 4,
    GQR_GAUSS_LAGUERRE = 5, GQR_GAUSS_JACOBI = 6, GQR_GAUSS_LOGARITHMIC = 1 << 8, GQR_GAUSS_SINGULAR = 1 << 9,</li>
    GQR_GAUSS_HYPERSINGULAR = 1 << 10, GQR_GAUSS_MULTISINGULAR = 1 << 11 }</li>
```

Functions

- gint **gqr_rule_free** (**gqr_rule_t** *g)
- gqr_rule_t * gqr_rule_alloc (gint n)
- gqr_rule_t * gqr_rule_realloc (gqr_rule_t *g, gint n)
- gint **gqr_rule_write** (**gqr_rule_t** *g, FILE *f)
- gint **gqr_rule_select** (**gqr_rule_t** *g, **gqr_t** type, gint n, **gqr_parameter_t** *p)
- gint **gqr_rule_scale** (**gqr_rule_t** *g, gdouble a, gdouble b, gdouble *xbar, gdouble *dx)
- gchar * gqr_rule_name (gqr_t type)

4.1.1 Detailed Description

Declarations for the GQR functions.

Author:

Michael Carley

Date:

Wed Nov 7 15:24:13 2007

4.1.2 Typedef Documentation

gqr_parameter_t

An data structure containing parameters for quadrature rules which require them.

gqr_rule_t

Data structure containing the nodes and weights of a quadrature rule. The rule is allocated using **gqr_rule_alloc** (p. 5) and initialized using **gqr_rule_select** (p. 6). To transform the range of integration use **gqr_rule_scale** (p. 6).

4.1.3 Enumeration Type Documentation

enum gqr_t

A type defining the quadrature rules available. A quadrature rule is defined as a basic type possibly combined with a singularity. For example GQR_GAUSS_LEGENDRE | GQR_GAUSS_HYPERSINGULAR specifies a Gauss-Legendre rule which handles singularities up to and including second order. Note that not all of these rules are implemented yet. GQR will return an error message if you try to use an unimplemented rule.

Enumerator:

```
GQR_GAUSS_LEGENDRE Gauss-Legendre
```

GQR_GAUSS_CHEBYSHEV_1 Gauss-Chebyshev of the first kind

GQR_GAUSS_CHEBYSHEV_2 Gauss-Chebyshev of the second kind

GQR_GAUSS_HERMITE Hermite

GQR_GAUSS_LAGUERRE Laguerre

GQR_GAUSS_JACOBI Jacobi

GQR_GAUSS_LOGARITHMIC Logarithmic singularities

GQR_GAUSS_SINGULAR First order and logarithmic singularities

GQR_GAUSS_HYPERSINGULAR Singularities up to second order

GQR_GAUSS_MULTISINGULAR Multiple singularities which must be specified in the rule initialization

4.2 grule.c File Reference

Gaussian quadrature rule generation and selection functions.

Functions

- gqr_rule_t * gqr_rule_alloc (gint n)
- gqr_rule_t * gqr_rule_realloc (gqr_rule_t *g, gint n)
- gint **gqr_rule_free** (**gqr_rule_t** *g)
- gint **gqr_rule_write** (**gqr_rule_t** *g, FILE *f)
- $\bullet \ \ gint \ \textbf{gqr_rule_select} \ (\textbf{gqr_rule_t} * \textbf{g}, \ \textbf{gqr_t} \ \text{type}, \ gint \ \textbf{n}, \ \textbf{gqr_parameter_t} * \textbf{p})$
- gint **gqr_rule_scale** (**gqr_rule_t** *g, gdouble a, gdouble b, gdouble *xbar, gdouble *dx)
- gchar * gqr_rule_name (gqr_t type)

4.2.1 Detailed Description

Gaussian quadrature rule generation and selection functions.

Author:

Michael Carley

Date:

Tue Jul 4 12:57:44 2006

The GQR library computes Gaussian and Gaussian-type quadrature rules including some which handle singular integrands. A simple example of its use to integrate a function is:

GQR Example Documentation

5.1 example.c

```
1 #include <stdio.h>
2 #include <math.h>
3 #include <unistd.h>
5 #include <glib.h>
6 #include <gsl/gsl_sf.h>
7 #include <gsl/gsl_math.h>
9 #include <gqr.h>
11 gdouble func(gdouble t, gdouble x, gdouble y)
13 {
    return (1.0/((x-t)*(x-t) + y*y));
14
15 }
16
17 gint main()
19 {
20 gqr_rule_t *g;
21 gqr_parameter_t p;
22 gdouble x, y;
23 gdouble a, b;
24 gdouble dx, xbar;
25 gdouble I, t;
    gint i, N, M;
26
27
    gqr_t rule ;
28
    M = 4 ; N = 16 ;
29
    x = 0.3; y = 0.2;
30
31 a = -1; b = 1;
32
    rule = GQR_GAUSS_LEGENDRE | GQR_GAUSS_HYPERSINGULAR ;
33
    g = gqr_rule_alloc(N) ;
34
35
    gqr_parameter_clear(&p) ;
36
    gqr_parameter_set_int(&p, M) ;
37
    gqr_parameter_set_double(&p, x);
38
    gqr_parameter_set_double(&p, y) ;
39
40
    gqr_rule_select(g, rule, N, &p);
41
42
    gqr_rule_scale(g, a, b, &xbar, &dx);
43
    I = 0.0;
```

```
for ( i = 0 ; i < gqr_rule_length(g) ; i ++ ) {
    t = gqr_rule_abscissa(g,i)*dx + xbar ;
    I += gqr_rule_weight(g,i)*dx*func(t, x, y) ;
}

fprintf(stdout, "I: %lg\n", I) ;

return 0 ;
}</pre>
```

Index

GQR	gqr_rule_alloc
gqr_rule_alloc, 5	GQR, 5
gqr_rule_free, 5	gqr_rule_free
gqr_rule_name, 5	GQR, 5
gqr_rule_realloc, 6	gqr_rule_name
gqr_rule_scale, 6	GQR, 5
gqr_rule_select, 6	gqr_rule_realloc
gqr_rule_write, 7	GQR, 6
gqr, 5	gqr_rule_scale
gqr.h, 9	GQR, 6
GQR_GAUSS_CHEBYSHEV_1, 10	gqr_rule_select
GQR_GAUSS_CHEBYSHEV_2, 10	GQR, 6
GQR_GAUSS_HERMITE, 10	gqr_rule_t
GQR_GAUSS_HYPERSINGULAR, 10	gqr.h, 10
GQR_GAUSS_JACOBI, 10	gqr_rule_write
GQR_GAUSS_LAGUERRE, 10	GQR, 7
GQR_GAUSS_LEGENDRE, 10	gqr_t
GQR_GAUSS_LOGARITHMIC, 10	gqr.h, 10
GQR_GAUSS_MULTISINGULAR, 10	grule.c, 11
GQR_GAUSS_SINGULAR, 10	8,
gqr_parameter_t, 10	
gqr_rule_t, 10	
gqr_t, 10	
GQR_GAUSS_CHEBYSHEV_1	
gqr.h, 10	
GQR_GAUSS_CHEBYSHEV_2	
gqr.h, 10	
GQR_GAUSS_HERMITE	
gqr.h, 10	
GQR_GAUSS_HYPERSINGULAR	
gqr.h, 10	
GQR_GAUSS_JACOBI	
gqr.h, 10	
GQR_GAUSS_LAGUERRE	
gqr.h, 10	
GQR_GAUSS_LEGENDRE	
gqr.h, 10	
GQR_GAUSS_LOGARITHMIC	
gqr.h, 10	
GQR GAUSS MULTISINGULAR	
ggr.h, 10	
GQR_GAUSS_SINGULAR	
gqr.h, 10	
gqr_parameter_t	
gqr.h, 10	