Niranjan Kumar

Al Engineer

⊗ Bangalore | ⊗ +91-8084000917
 ⊘ <u>Linkedin</u> | <u>Github</u>
 □ meetniranjan17@gmail.com

Skills

- Languages : Python, SQL, Java
- Frameworks : Tensorflow, Scikit-learn, Flask, Keras, PyTorch
- Data Analysis & Visualization : Numpy, Pandas, Matplotlib , Seaborn
- Other Skills: Natural Language Processing(NLP), LLM(Hugging Face), Deep Learning,
 Machine Learning: Regression and classification algorithms (Logistic Regression, SVM, KNN),
 Tree-based algorithms (Random Forest, Gradient Boosting, XGBoost),
 GIT, Docker, Web Scraping, Data Structures and Algorithms, Time Series,
 Recommendation System, Statistics, Probability, and Hypothesis Testing, Linux, AWS,
 Generative Al

Experience

Software Engineer II (Machine Learning)

Jan 2023 - Nov 2024

Smarthub.ai Banglore

- Engineered and deployed Python-based adapters and simulators, integrating over 10,000+
 IoT devices on Azure and AWS, resulting in a 30% reduction in system downtime.
- Implemented clustering of IoT device alerts using unsupervised learning and NLP, enabling faster anomaly detection, improving alert response times, and enhancing customer satisfaction by 25%.
- **Implemented robust data management strategies** that improved operational efficiency by 40%, contributing to a more reliable and responsive IoT ecosystem.
- Developed an intelligent question-answering chatbot for IoT device user guides, leveraging GenAl tools like LangChain and GPT, with ChromaDB for local vector storage and Pinecone for scalable vector search.

Jr. Software Engineer

Dec 2021 - Oct 2022

Zensar Technologies

Banglore

- Executed web scraping projects using Python, extracting critical data that enhanced business intelligence and increased client satisfaction by 20%.
- Engineered and optimized SQL-based data storage systems, reducing query response times by 15% and accelerating project delivery timelines by 10%.
- Implemented **data visualization** tools that provided actionable insights, leading to a 25% increase in decision-making efficiency.

Projects

Conversational Text Summarization Using T5 Transformer

https://github.com/niranjan-17/text-summarization

- Problem Statement: Extracting concise and meaningful summaries from multi-turn conversations is challenging.
- **Solution:** Fine-tuned a T5 Transformer model on the SAMSum dataset, achieving 95% accuracy in conversational summarization.
- **Impact:** Enhanced user experience by providing precise summaries via a scalable Streamlit web app containerized with Docker.

Tech Stack: Python, TensorFlow, Hugging Face Transformers, Streamlit, Docker, Pandas and NumPy

Book Recommendation System

https://github.com/niranjan-17/book-recommendation-system

- **Problem Statement:** Users struggle to find personalized book recommendations due to generic suggestion systems.
- **Solution:** Built a collaborative filtering-based recommendation engine with 93% accuracy, integrated into a scalable Flask web app.
- Impact: Increased user engagement by implementing dynamic, community-driven trending book lists.

Tech Stack: Python, Flask, NumPy, Pandas, Scikit-learn, Numpy, Pandas, Matplotlib, Seaborn and Docker

Financial Stock Analysis using LlamaIndex

https://github.com/niranjan-17/GENAI Stock Analysis LlamaIndex

- Problem Statement: Extracting valuable insights from financial reports and articles is timeconsuming and inefficient.
- **Solution:** Developed a Streamlit web dashboard using LlamaIndex and GPT-4, enabling real-time querying through a vector-based document retrieval system.
- **Impact:** Enhanced financial research and decision-making by automating data ingestion, preprocessing, and intelligent analysis.

Tech Stack: Python, LlamaIndex, OpenAI GPT-4, Streamlit, Docker, NumPy and Pandas.

Multiple Disease Prediction System

https://github.com/niranjan-17/Multiple Disease Prediction System

- Problem Statement: Early detection of diseases like Diabetes, Heart Disease, and Parkinson's is crucial for timely intervention.
- **Solution**: Developed an interactive Streamlit web app that uses ML models (SVM, Logistic Regression) for real-time disease prediction, achieving 87% accuracy.
- **Impact:** Enabled users to assess health risks efficiently, with automated data ingestion and inference for seamless experience.

Tech Stack: Python, Scikit-learn, Streamlit, Docker, NumPy, Pandas and Pickle

Education

Scaler 2025

Specialized in Data Science & Machine Learning

- Mastered machine learning, deep learning, data analysis techniques (including probability, statistics, hypothesis testing, and EDA), and data structures and algorithms, with practical experience in model building, deployment, and problem-solving.
- Completed an advanced NLP and Large Language Models (LLM) course, acquiring expertlevel knowledge in AI techniques and their real-world applications, showcasing a strong command of cutting-edge AI advancements

University Institute Of Technology, Burdwan

2021