Physics 5403 Homework #2Spring 2022

Instructor Bruno Uchoa

Due date: February 16, 2022

February 8, 2022

1 Parity operator

A wavefunction is written in the momentum representation $\psi(\mathbf{p}) \equiv \langle \mathbf{p} | \psi \rangle$.

- a) Using the Wigner definition of parity, $\pi\psi(\mathbf{p}) = \langle \mathbf{p} | \pi | \psi \rangle$, calculate the inverted wavefunction in momentum space.
- b) A charged particle with charge q sits in a 1D quantum well with eigenstates $|n\rangle$, $n=1,2,\ldots$ A small potential $U(x)=-qE_0x^m$ due to a weak electric field is then introduced, where m is a positive integer and x=0 at the center of the well. Using the properties of the parity operator, derive the parity selection rule for the matrix element

$$\langle n'|U(x)|n\rangle$$
.

2 Time reversal symmetry I

- a) If $|\hat{n}, -\rangle$ is a two component eigenstate of the spin projection $\mathbf{S} \cdot \hat{n} = \frac{1}{2} \vec{\sigma} \cdot \hat{n}$, with eigenstate $-\hbar/2$, show that application of the time reversal operator on this state, namely $-i\sigma_y K |\hat{n}, -\rangle$, results in a state with the spin reversed.
 - b) A spin 1 particle has the Hamiltonian

$$\mathcal{H} = \alpha S_z^2 + \beta (S_x^2 - S_y^2).$$

Is the Hamiltonian invariant under time reversal symmetry? Prove your answer using the properties of the time reversal symmetry operator \mathcal{T} .

c) Calculate the exact eigenstates of the Hamiltonian in part b, and show that those states obbey the same symmetry you found for the Hamiltonian under time reversal symmetry.

3 Time reversal symmetry II

Consider the time reversal symmetry operator $\mathcal{T} = \mathcal{U}K$ acting in angular momentum states $|j,m\rangle$, where \mathcal{U} is a unitary operator and K the conjugation.

- a) Using the properties of the time reversal symmetry operator \mathcal{T} and of the conjugation operator K, calculate:
- i) UJ_zU
- $ii) \mathcal{U} J_{\pm} \mathcal{U}$

$$iii) UJ^2U$$

Express your answer in angular momentum operators only. Find whether each of those angular momentum operators commute or anticommute with \mathcal{U} .

- b) Using your result in a), calculate the selection rule for the matrix elements $\langle j, m' | \mathcal{U} | j, m \rangle$.
- c) Now show that

$$\frac{\langle j,m'|\mathcal{U}|j,-m'\rangle}{\langle j,m|\mathcal{U}|j,-m\rangle}=i^{2(m'-m)}.$$

Choosing $\langle j, m|\mathcal{U}|j, -m\rangle = (i)^{2m}$, then find that

$$\mathcal{T}|j,m\rangle = (-1)^m|j,-m\rangle.$$

- d) Find the time reversed state of the rotated ket $\mathcal{D}(R)|jm\rangle$.
- e) Starting from the ket $\mathcal{D}(R)\mathcal{T}|j,m\rangle$, show that

$$\mathcal{D}_{m',m}^{(j)*}(R) = (-1)^{m-m'} \mathcal{D}_{-m',-m}^{(j)}(R).$$

Hint: Use the commutator $[\mathcal{D}(R), \mathcal{T}]$ in your derivation.

f) If a system is time reversal invariant and has no degeneracy in the energy spectrum $\mathcal{H}|E\rangle=E|E\rangle$, show that

$$\langle E|\mathbf{L}|E\rangle = 0.$$