# Investigate the exponential distribution in R and compare it with the Central Limit Theorem

## Akanksh Samuel Mathias

#### 3rd October 2024

#### Overview

The purpose of this analysis is to understand exponential distribution and compare it to the Central Limit Theorem. We'll set lambda = 0.2, simulate 1000 averages of 40 exponentials, and perform the following tasks:

- 1) Sample Mean vs Theoretical Mean
- 2) Sample Variance vs Theoretical Variance
- 3) Distribution Approximation to Normal

### **Simulations**

Set the simulation variables lambda, exponentials, and seed.

```
ECHO=TRUE
set.seed(1337)
lambda = 0.2
exponentials = 40
```

Run Simulations with variables

```
simMeans = NULL
for (i in 1 : 1000) simMeans = c(simMeans, mean(rexp(exponentials, lambda)))
```

## Sample Mean versus Theoretical Mean

Sample Mean Calculating the mean from the simulations with give the sample mean.

```
mean(simMeans)
## [1] 5.055995
```

**Theoretical Mean** The theoretical mean of an exponential distribution is lambda<sup>-1</sup>.

```
lambda^-1
```

## [1] 5

Comparison There is a difference in the simulations sample mean and the exponential distribution's theoretical mean.

```
abs(mean(simMeans)-lambda^-1)
## [1] 0.05599526
```

# Sample Variance versus Theoretical Variance

Sample Variance Calculating the variance from the simulation means with give the sample variance.

```
var(simMeans)
## [1] 0.6543703
```

**Theoretical Variance** The theoretical variance of an exponential distribution is (lambda \* sqrt(n))^-2.

```
(lambda * sqrt(exponentials))^-2
```

## [1] 0.625

**Comparison** There is a slight difference between the simulations sample variance and the exponential distribution's theoretical variance.

```
abs(var(simMeans)-(lambda * sqrt(exponentials))^-2)
```

## [1] 0.0293703

#### Distribution

This is a density histogram of the 1000 simulations. There is an overlay with a normal distribution that has a mean of lambda $^-1$  and standard deviation of (lambda $^*$ sqrt(n)) $^-1$ , the theoretical normal distribution for the simulations.

```
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.

## Warning in stat_function(fun = dnorm, arg = list(mean = lambda^-1, sd = (lambda
## * : Ignoring unknown parameters: 'arg'

## Warning: The dot-dot notation ('..density..') was deprecated in ggplot2 3.4.0.
## i Please use 'after_stat(density)' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```

## Plot of the Simulations

