- 3.2 Systems of two ODEs
- 3.3 Real Eigenvalues
- 3.4 Complex Eigenvalues
- 3.5 Repeated Eigenvalues

#### Eigenvector-Eigenvalue

For a linear transformation T, an **eigenvector** for T is a non-zero vector that doesn't change direction when T is applied. That is,  $\vec{v} \neq \vec{0}$  is an eigenvector of T if

$$T\vec{v} = \lambda \vec{v}$$

for some scalar  $\lambda$ . We call  $\lambda$  the **eigenvalue** of T corresponding to the eigenvector  $\vec{v}$ .

Eigenvector-Eigenvalue:

$$T\vec{v} = \lambda \vec{v}$$

The picture shows what the linear transformation  $\mathcal{T}$  does to the unit square.





- $\blacksquare$  Give an eigenvector for T. What is the eigenvalue?
- Can you find another?

For some matrix A,

$$A \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ \frac{2}{3} \end{bmatrix}.$$

 $\blacksquare$  Give an eigenvector and corresponding eigenvalue for A.

Consider

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

Motice that  $\vec{v}_1$ ,  $\vec{v}_2$ ,  $\vec{v}_3$  are eigenvectors for A.

 $\blacksquare$  Find the eigenvalues of A.

Consider

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

 $\bullet$  Find the eigenvalues of A.

**7** Find the eigenvectors of *A*.

#### Preparation for next lecture

#### Section 3.3

- How to solve a system of linear ODEs with real eigenvalues https://youtu.be/YUjdyKhWt6E
- How to sketch a phase portrait for such systems https://youtu.be/nyl\_JPDrJ\_I