Lecture 3: Similarity and distance measures

Book chapter 3

image source Lin 2018. https://www.linkedin.com/pulse/cosine-similarity-classification-michael-lin

Contents

- Concepts of distance, similarity, metric
- Measures for numerical data (L_p -norms, similarity measures, accounting for distribution)
- Measures for categorical and mixed data
- Measures for sets, strings, text

What is distance?

Let $\mathcal S$ be a space of data objects. A distance function has the type

$$d: \mathcal{S} \times \mathcal{S} \to \mathbb{R}^+ \cup \{0\}$$

Ituitively: Let $x, y, z \in S$ be objects.

- if $d(\mathbf{x}, \mathbf{y})$ small, \mathbf{x} and \mathbf{y} are close or similar
- If $d(\mathbf{x}, \mathbf{y}) < d(\mathbf{x}, \mathbf{z})$, x is closer/more similar to y than z

Similarity vs. distance

Similarity function $s: S \times S \rightarrow \mathbb{R}$

- $s(\mathbf{x}, \mathbf{y})$ large when \mathbf{x} and \mathbf{y} similar (and $d(\mathbf{x}, \mathbf{y})$ small)
- often $s: S \times S \rightarrow [0, 1]$
- \bullet \Rightarrow possible to induce distance $d_s = 1 s$
- if $d: S \times S \rightarrow [0, 1]$, possible to induce similarity $s_d = 1 d$
- if not, then e.g., $s_d = 1 \frac{d}{D}$ (D=maximal possible distance) or $s_d = \frac{1}{1+d}$

Metric: distance d that satisfies 4 properties

- 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ (non-negativity or separation)
- 2. $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (coincidence axiom)
- 3. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry)
- 4. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (triangle inequality)

Metric space

Metric space (S, d) = data space equipped with a metric

- e.g., 3-D Euclidean space or any normed vector space
- no need to be a vector space! (e.g., space of strings + suitable metric)

Why they are so nice?

- many tasks can be performed more efficiently!
- especially similarity search (find nearest neighbours, closest cluster centers, similar documents,...)

Example how \(\triangle\) inequality can speed up things

Problem: Given cluster centroids c_1, \ldots, c_K , find the closest c_i for all data points x. (d is a metric)

- 1. Naive solution: calculate all $d(\mathbf{x}, \mathbf{c}_i)$. (nK calculations)
- 2. **Pruning trick**: Given $d(\mathbf{c}_i, \mathbf{c}_j)$ for all i, j and $d(\mathbf{x}, \mathbf{c}_1)$ to the currently closest \mathbf{c}_1 .

Test: If $d(\mathbf{c}_1, \mathbf{c}_2) > 2d(\mathbf{x}, \mathbf{c}_1)$, then \mathbf{c}_2 cannot be closer to \mathbf{x} !

If c_2 was closest to c_1 , then c_1 is closest to x.

 c_2 cannot be inside the circle since $d(c_1, c_2) > 2d(x, c_1)$

Example how \(\triangle\) inequality can speed up things

More pruning by utilizing upper and lower bounds of distances!

Further reading:

- Elkan: Using the triangle inequality to accelerate k-means. ICML 2003.
- Hamerly: Making k-means even faster. SDM 2010.

Do you know distance or similarity measures for these data types?

- numerical
- categorical
- mixed
- sets
- binary
- strings
- text
- graphs

Multidimensional numerical: L_p -norm

Objects are $\mathbf{x} = (x_1, \dots, x_k)$ and $\mathbf{y} = (y_1, \dots, y_k), x_i, y_i \in \mathbb{R}$

Most common measure L_p -norm or Minkowski distance:

$$L_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

- different variants by setting p
- e.g., Euclidean distance $L_2(\mathbf{x}, \mathbf{y}) = \left(\sum_i |x_i y_i|^2\right)^{1/2}$
- metric, if $p \ge 1$

Manhattan ("city block") distance L_1

$$L_1(\mathbf{x}, \mathbf{y}) = \sum_i |x_i - y_i|$$

image source https://medium.com/@paubric/the-square-circle-exploiting-

distance-cef434f7f550

L_p -norms

- p = 1: Manhattan distance $L_1(\mathbf{x}, \mathbf{y}) = \sum_i |x_i y_i|$
- p = 2: Euclidean distance $L_2(\mathbf{x}, \mathbf{y}) = \left(\sum_i |x_i y_i|^2\right)^{1/2}$
- $p \to \infty$: Chebyshev distance $L_{\infty}(\mathbf{x}, \mathbf{y}) = \max_i |x_i y_i|$

L_p -norms do not work well in high dimensions

Curse of dimensionality: Contrasts $\frac{D_{\max}-D_{\min}}{D_{avg}}$ between largest and smallest distances disappear. Behaviour in random data:

Image source: Aggarwal 2015, ch 3.2

L_p -norms do not work well in high dimensions

- ullet irrelevant features tend to dominate L_2,\ldots,L_∞
- Consider $L_{\infty}(\mathbf{x}, \mathbf{y})$, when \mathbf{x} and \mathbf{y} have similar value in 999 dimensions but dissimilar in 1 irrelevant attribute!

 \Rightarrow

- generalized Minkowski distance give weights a_i reflecting importance: $L_p(\mathbf{x}, \mathbf{y}) = (\sum_i a_i |x_i y_i|^p)^{\frac{1}{p}}$
- fractional L_p quasinorms set $p \in]0, 1[$ (not metrics)
- match-based similarity with proximity thresholding

Match-based similarity with proximity thresholding

Observations:

- 1. Features may be only **locally relevant** (e.g., blood glucose for diabetic patients but not for epileptic).
- 2. In large dimensions, two objects are unlikely to have similar values, unless the feature is relevant.
- ⇒ emphasize dimensions where objects are close/similar!

(Euclidean and pals do the opposite)

Match-based similarity with proximity thresholding

- discretize all dimensions to m equi-depth bins, bin_{ij} (i=dimension, j=bin number)
- x and y are in proximity on dimension i, if $x_i, y_i \in bin_{ij}$ for some j
- **proximity** set $S(\mathbf{x}, \mathbf{y}, m) =$ list of dimensions, where x_i and y_i in the same bin e.g., here $S(\mathbf{x}, \mathbf{y}, 4) = \{1, 3\}$

Match-based similarity with proximity thresholding

Similarity measure

$$PSelect(\mathbf{x}, \mathbf{y}, m) = \left[\sum_{i \in S(\mathbf{x}, \mathbf{y}, m); x_i \in bin_{i,j}} \left(1 - \frac{|x_i - y_i|}{width_{i,j}} \right)^p \right]^{1/p}$$

- ignores dimensions where x and y not in proximity
- value when i) $\mathbf{x} = \mathbf{y}$? ii) $S(\mathbf{x}, \mathbf{y}, m) = \emptyset$?
- how to choose parameters? $(m \propto k + \text{e.g.}, p = 1 \text{ or } p = 2)$

Aggarwal & Yu (2000): The IGrid Index: Reversing the Dimensionality Curse For Similarity Indexing in High Dimensional Space.

Cosine similarity and distance

Cosine similarity:

$$cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- suitable for numerical (continuous or integers) and binary data
- in [-1, 1], most similar if $cos(\mathbf{x}, \mathbf{y}) = 1$
- popular for text documents (their numerical presentation)

Cosine distance: $1 - cos(\mathbf{x}, \mathbf{y})$

• [0, 1] if all vector elements non-negative $(x_i \ge 0)$

Cosine similarity and distance

Relationship to Euclidean distance L_2 : if vectors are normalized (length 1), $L_2^2(\mathbf{x}, \mathbf{y}) = 2(1 - \cos(\mathbf{x}, \mathbf{y}))$

Should the distance reflect data distribution?

Should *A* and *B* be equally distant from the origin?

high variance direction \Rightarrow more likely to be distant \Rightarrow could consider A closer than $B \Rightarrow$ Mahalanobis distance

$$Maha(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})\Sigma^{-1}(\mathbf{x} - \mathbf{y})^{T}}$$

 $(\Sigma = covariance matrix)$

Read Aggarwal 3.2.1.6

Mahalanobis distance $Maha(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})\Sigma^{-1}(\mathbf{x} - \mathbf{y})^T}$

image source https://queirozf.com/entries/similarity-measures-and-distancesbasic-reference-for-data-science-practitioners

Should the distance reflect data distribution?

Which pair of points are closest to one another?

Analogy: what is your walking distance to the other shore?

Idea: Measure distances along shortest paths in a nearest neighbour graph

ISOMAP method:

- 1. Create a nearest neighbour graph G = (V, E) where each $v \in V$ in connected to K nearest neighbours and edge weights represent distances.
- 2. For any points $v_1, v_2 \in V$

$$Dist(v_1, v_2) = |shortest-path(v_1, v_2)|$$

 Optional step: embed the data into multidimensional space with multidimensional scaling → lower dimensional representation

Use either $Dist(v_1, v_2)$ or L_p distances in the new space

ISOMAP

The data shape becomes straightened out:

Figure 3.5: Impact of ISOMAP embedding on distances

Should the distance reflect data distribution?

Should d(A, B) < d(C, D) or vice versa?

shared nearest-neighbour similarity = number of shared neighbours ⇒ similarity graph

Read Aggarwal 3.2.1.8

Should the distance reflect data distribution?

Should d(A, B) < d(C, D) or vice versa?

- partition data and use local statistics to adjust distances (local Mahalanobis)
- but partitioning already requires distance measures!

Read Aggarwal 3.2.1.8

Categorical data: similarity

Generic function:

$$sim(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{k} w_i s(x_i, y_i)$$

- typically weight $w_i = \frac{1}{k}$ (k=number of features)
- ullet many choices for s, e.g., in overlap similarity s is

$$s(x_i, y_i) = \begin{cases} 1 & \text{if } x_i = y_i \\ 0 & \text{otherwise} \end{cases} \Rightarrow$$

overlap similarity = fraction of dimensions where \mathbf{x} and \mathbf{y} have an equal value

Categorical data: similarity

Or take into account frequency of value:

$$p_i(x_i) = \frac{fr(A_i = x_i)}{n}$$
 = fraction of records having $A_i = x_i$

Goodall measure (its one variant):

$$s(x_i, y_i) = \begin{cases} 1 - p_i^2(x_i) & \text{if } x_i = y_i \\ 0 & \text{otherwise} \end{cases}$$

Further reading Boriah et al. (2008): Similarity measures for categorical data: A comparative evaluation.

Task

Create a similarity graph using overlap similarity. Include only edges where similarity is $\geq 2/3$. Which foxes are most similar to Bella? What if you use the Goodall measure instead?

name	sex	colour	character
Bella	F	red	tame
Molly	F	red	shy
Teddy	M	red	tame
Ruby	F	red	brave
Coco	F	silver	cool
Max	M	silver	brave

Goodall =
$$\frac{\sum_{A_i \text{ shared}} (1 - p_i^2 \text{ (shared value)})}{\text{#features}}$$

Task

overlap =
$$\frac{\text{#(overlapping feature values)}}{3}$$

pair	common	overlap	Goodall
Bella-Molly	F, red	2/3	
Bella-Teddy	red, tame	2/3	
Bella-Ruby	F, red	2/3	
Molly-Ruby	F, red	2/3	

Task

Goodall =
$$\frac{\sum_{A_i \text{ shared}} (1 - p_i^2 \text{(shared value)})}{\text{#features}}$$

$$p_1(F)=2/3$$
, $p_1(M)=1/3$, $p_2(red)=2/3$, $p_2(silver)=1/3$, $p_3(tame)=p_3(brave)=1/3$, $p_3(shy)=p_3(cool)=1/6$
 $1-p_1^2(F)+1-p_2^2(red)=10/9$
 $1-p_2^2(red)+1-p_3^2(tame)=13/9$

pair	common	overlap	Goodall
Bella-Molly	F, red	2/3	10/27
Bella-Teddy	red, tame	2/3	13/27
Bella-Ruby	F, red	2/3	10/27
Molly-Ruby	F, red	2/3	10/27

Similarity in mixed data (without transformations)

Give weights to numerical and categorical components:

$$sim(\mathbf{x}, \mathbf{y}) = \lambda \cdot NumSim + (1 - \lambda) \cdot CatSim$$

- How to choose λ ? ($\lambda \in [0, 1]$)
- e.g., fraction of numerical features in data
- NumSim and CatSim often in different scales \Rightarrow
 - calculate standard deviations (σ_N and σ_C) of pairwise similarities with NumSim and CatSim

$$sim(\mathbf{x}, \mathbf{y}) = \lambda \cdot NumSim/\sigma_N + (1 - \lambda) \cdot CatSim/\sigma_C$$

Binary data: distance and similarity

Data points x and y are bit strings (length k)

Hamming distance = L_1 norm for binary data

$$L_1(\mathbf{x}, \mathbf{y}) = \sum_i |x_i - y_i|$$

=number of positions where bits differ

Hamming distance 5

image source CS-E4600 fall 2019 slides

Set data can be presented as binary

e.g., basket1: {white bread, cheese} \Rightarrow 001100000000...

	low fat milk	apple juice	white bread	edam cheese	oranges	
basket1	0	0	1	1	0	
basket2	1	1	0	0	0	
basket3	0	1	0	1	0	
basket4	1	0	1	0	1	
basket5			•			

- transactions (like market baskets)
- occurrence of words in documents
- over-expressed or underexpressed genes in samples

Set data often very sparse (= most values are 0s) ⇒ number of common elements more important

Hamming distance for transaction data?

- 1. Two sets with 1000 items and 995 common
- 2. Two sets with 5 items, but none common

Both have Hamming distance 10

image source CS-E4600 fall 2019 slides/Aris Gionis

Jaccard coefficient for set similarity

Given sets x and y

$$J(\mathbf{x}, \mathbf{y}) = \frac{|\mathbf{x} \cap \mathbf{y}|}{|\mathbf{x} \cup \mathbf{y}|}$$

- treats 0s and 1s differently
- Previous example, case 1: $J = \frac{995}{1005} \approx 0.99$, case: 2 J = 0

String data: distance

Given strings x and y of the same length. Modification of the Hamming distance

add 1 for all positions that are different

Is Hamming distance good for strings?

- Strings must have equal length
- Punishes a lot for small typos:

string Hamming distance = 6

String edit distance

Given two strings x and y, try to change one to another!

- only single-character edits are allowed
 - insert character
 - delete character
 - substitute character
- edit distance=minimum cost of such operations
- Levenshtein distance=minimum number of such operations (unit costs)
- edit operations can have different costs w_{ins} , w_{del} , w_{sub}
- metric, if positive costs and each operation has an inverse operation with the same cost

String edit distance examples

Levensteihn(kitten, sitting)=3:

- 1. $kitten \rightarrow sitten$ (substitute "s" for "k")
- 2. sitten \rightarrow sittin (substitute "i" for "e")
- 3. sittin \rightarrow sitting (insert "g" at the end)

Text data: similarity between documents

Let's present text documents as document-term matrices.

- \mathbf{x} and \mathbf{y} are m -dimensional vectors (m = lexicon size)
- x_i = frequency of term i in the document x
 - alternatively tf-idf value (tf-idf presentation) or binary value (Boolen model)
- then take cosine similarity:

$$cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||}$$

in the Boolean model, Jaccard coefficient also possible

Task: Simplify the equation of cosine similarity when data is binary

Text data: Example (Hand et al. 2001)

	t1	t2	t3	t4	t5	t6
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	3	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

source: Hand, Mannila, Smyth: Principles of data mining, 2001

Text data: Example (Hand et al. 2001)

Left: Euclidean distance (bright=small distance), right: cosine similarity (bright=large similarity)

Other data types

See the text book!

time series: Ch 3.4

graphs: Ch 3.5 and later in the course

Warning: There are many variants of the same measures and the names are not fixed! Give always the equation of the measure you use (+ a literature reference)!

Summary

- Choose distance and similarity measures carefully!
- Curse of dimensionality \rightarrow for multidimensional data consider L_p with small p, cosine or match-based similarity
- If the distribution is very heterogenous, it is beneficial to adjust to local variations in distances (but costs!)
- Metric distances can speed similarity search, but non-metrics may perform better in high dimensions