COST CURVES

- Directly plot the misclassif costs / error (in terms of prior probs)
- Might be easier to interpret than ROC, especially in case of different misclassif costs or priors

Example:

- f_1 and f_2 with intersecting ROC curves
- f_2 dominates first, then f_1

BUT: Unclear for which thresholds, costs or class distribs f_2 better than f_1

Nathalie Japkowicz (2004): Evaluating Learning Algorithms: A Classification Perspective. (p. 125)

COST CURVES

Simplifying assumption: equal misclassif costs, i.e., $cost_{FN} = cost_{FP}$ \Rightarrow Expected misclassif cost reduces to misclassif error rate With law of total prob, we write error rate as function of π_+ :

$$ho_{MCE}(\pi_{+}) = (1 - \pi_{+}) \cdot \mathbb{P}(\hat{y} = 1|y = 0) + \pi_{+} \cdot \mathbb{P}(\hat{y} = 0|y = 1)$$

$$= (1 - \pi_{+}) \cdot FPR + \pi_{+} \cdot FNR$$

$$= (FNR - FPR) \cdot \pi_{+} + FPR$$

Confusion matrix				
	True class			
	<i>y</i> = 1	y = 0		
Pred. $\hat{y} = 1$	TP	FP		
class $\hat{y} = 0$	FN	TN		

Cost matrix				
	True class			
	y = 1	y = 0		
Pred. $\hat{y} = 1$	0	cost _{FP}		
class $\hat{y} = 0$	cost _{FN}	0		

COST CURVES

• Cost line of a classifier with slope (FNR - FPR) and intercept FPR:

$$ho_{ extit{MCE}}(\pi_+) = (extit{FNR} - extit{FPR}) \cdot \pi_+ + extit{FPR}$$

 Cost curves are point—line duals of ROC curves, i.e., a single classifier is represented by a point in the ROC space and by a line in cost space

Chris Drummond and Robert C. Holte (2006): Cost curves: An improved method for visualizing classifier performance.

Machine Learning, 65, 95-130 (URL).

COST LINES

Cost line of a classifier with slope (FNR - FPR) and intercept FPR:

$$\rho_{MCE}(\pi_+) = (FNR - FPR) \cdot \pi_+ + FPR$$

- Hard classifiers are points (TPR, FPR) in ROC space
- The cost line of a classifier connects (π₊, ρ_{MCE})-points at (0, FPR) and (1, 1 – TPR)
- Classifier 3 always dominates classifier 1
- Classifier 3 is better than classifier 2 when $\pi_+ < 0.7$

Cost lines plot different values of

COST LINES - EXAMPLE

- Horizontal dashed line: worst classifier (100% error rate for all π_+) \Rightarrow FNR = FPR = 1
- x-axis: perfect classifier (0% error rate for all π_+) \Rightarrow FNR = FPR = 0

COST LINES - EXAMPLE

- Horizontal dashed line: worst classifier (100% error rate for all π_+) \Rightarrow *FNR* = *FPR* = 1
- x-axis: perfect classifier (0% error rate for all π_+) \Rightarrow FNR = FPR = 0
- Dashed diagonal lines: trivial classifiers, i.e., ascending diagonal always predicts negative instances (\$\Rightarrow\$ FNR = 1 and FPR = 0) and vice versa

PIVICE	(,,,,,,	, ,	.+ , , , , ,	
Confusion matrix True class				
		<i>y</i> = 1	y = 0	
Pred.	ŷ = 1	TP	FP	
class	$\hat{y} = 0$	FN	TN	

 $\rho_{MOF} = (FNR - FPR) \cdot \pi_{\perp} + FPR$

COST LINES - EXAMPLE

- Horizontal dashed line: worst classifier (100% error rate for all π_+) \Rightarrow *FNR* = *FPR* = 1
- x-axis: perfect classifier (0% error rate for all π_+) \Rightarrow FNR = FPR = 0
- Dashed diagonal lines: trivial classifiers, i.e., ascending diagonal always predicts negative instances (\$\Rightarrow\$ FNR = 1 and FPR = 0) and vice versa
- Descending/ascending bold lines: two families of classifiers A and B (represented by points in their respective ROC curves)

- Left: ROC = TPR & FPR of a classifier for different prob thresholds
- Right: Corresponding cost lines
- Duality: For every ROC point we can construct the CC line, and vice versa.

- Left: ROC = TPR & FPR of a classifier for different prob thresholds
- Right: Corresponding cost lines
- Duality: For every ROC point we can construct the CC line, and vice versa.

- Left: ROC = TPR & FPR of a classifier for different prob thresholds
- Right: Corresponding cost lines
- Duality: For every ROC point we can construct the CC line, and vice versa.

- Left: ROC = TPR & FPR of a classifier for different prob thresholds
- Right: Corresponding cost lines
- Duality: For every ROC point we can construct the CC line, and vice versa.
- Cost curve (right, black) is lower envelope of cost lines $\hat{}$ pointwise minimum of error rate (as function of π_+)

