Inference with SLR Tutorial

For this tutorial, we will continue to work with the dataset elmhurst from the openintro package in R.

```
library(tidyverse)
library(openintro)
Data<-openintro::elmhurst</pre>
```

The key pieces of information are:

- A random sample of 50 students (all freshman from the 2011 class at Elmhurst College).
- Family income of the student (units are missing).
- Gift aid, in \$1000s.

We want to explore how family income may be related to gift aid, in a simple linear regression framework.

Hypothesis test for β_1 (and β_0)

Applying the summary() function to lm() gives the results of hypothesis tests for β_1 and β_0 :

```
##Fit a regression model
result<-lm(gift_aid~family_income, data=Data)

##look at t stats and F stat
summary(result)</pre>
```

```
##
## lm(formula = gift_aid ~ family_income, data = Data)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
  -10.1128 -3.6234 -0.2161
                               3.1587 11.5707
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                24.31933
                            1.29145 18.831 < 2e-16 ***
## (Intercept)
                            0.01081 -3.985 0.000229 ***
## family income -0.04307
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.783 on 48 degrees of freedom
## Multiple R-squared: 0.2486, Adjusted R-squared: 0.2329
## F-statistic: 15.88 on 1 and 48 DF, p-value: 0.0002289
```

Under coefficients, we can see the results of the hypothesis tests for β_1 and β_0 . Specifically, for β_1 :

- $\hat{\beta}_1 = -0.0430717$
- $se(\hat{\beta}_1) = 0.0108095$
- the test statistic is t = -3.984621
- the corresponding p-value is 2.2887345×10^{-4}

You can work out the p-value using R (slight difference due to rounding):

```
##pvalue
2*pt(-abs(-3.985), df = 50-2)

## [1] 0.0002285996

Or find the critical value using R:
```

```
##critical value
qt(1-0.05/2, df = 50-2)
```

```
## [1] 2.010635
```

Either way, we end up rejecting the null hypothesis. The data support the claim that there is a linear association between gift aid and family income.

Note:

- the t tests for regression coefficients are based on $H_0: \beta_j = 0, H_a: \beta_j \neq 0$. The reported p-value is based on this set of null and alternative hypotheses. If your null and alternative hypotheses are different, you will need to compute your own test statistic and p-value.
- For SLR, the two-sided t test for β_1 gives the exact same result as the ANOVA F test. Notice the p-values are the same. The F statistic of 15.88 is the squared of the t statistic, $(-3.985)^2$.

Confidence interval for β_1 (and β_0)

To find the 95% confidence intervals for the coefficients, we use the confint() function:

```
##to produce 95% CIs for all regression coefficients
confint(result,level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 21.72269421 26.91596380

## family_income -0.06480555 -0.02133775
```

The 95% CI for β_1 is (-0.0648056, -0.0213378). We have 95% confidence that for each additional thousand dollars in family income, the predicted gift aid decreases between \$21.3378 and \$64.8056.

Confidence interval for mean response for given **x**

Suppose we want a confidence interval for the average gift aid for Elmhurst College students with family income of 80 thousand dollars. We can use the predict() function:

```
##to produce 95% CI for the mean response when x=80,
newdata<-data.frame(family_income=80)
predict(result,newdata,level=0.95, interval="confidence")
## fit lwr upr</pre>
```

```
## fit lwr upr
## 1 20.8736 19.43366 22.31353
```

The 95% CI for the mean gift aid for students with family income of 80 thousand dollars is (19.4336609, 22.3135327). We have 95% confidence the mean gift aid for students with family income of 80 thousand dollars is between \$19 433.66 and \$22 313.53.

Prediction interval for a response for a given x

For a prediction interval for the gift aid of an Elmhurst College student with family income of 80 thousand dollars:

```
##and the 95% PI for the response of an observation when x=80
predict(result,newdata,level=0.95, interval="prediction")

## fit lwr upr
## 1 20.8736 11.15032 30.59687
```

We have 95% confidence that for an Elmhurst College student with family income of 80, this student's gift aid is between \$11 150.32 and \$30 596.87.

Visualization of CI for mean response given ${\bf x}$ and PI of response given ${\bf x}$

When using the ggplot() function to create a scatterplot, we can overlay the SLR equation by adding a layer via geom_smooth(method = lm). By default, the CI for the mean response for each value of the predictor gets overlaid as well. In the previous tutorial, we removed this by adding se=FALSE inside geom_smooth():

```
## `geom_smooth()` using formula = 'y ~ x'
```

Scatterplot of Gift Aid against Family Income

Overlaying prediction intervals require a bit more work. We need to compute the lower and upper bounds of the PI for each value of the predictor:

```
##find PIs for each observation
preds <- predict(result, interval="prediction")</pre>
```

Warning in predict.lm(result, interval = "prediction"): predictions on current data refer to _future

Drawiewely, when we used the predict() function, we provided the pumping lyalve of a to make a prediction.

Previously, when we used the predict() function, we provided the numerical value of x to make a prediction on. If this is not supplied, the function will use all the current values of x to make predictions, and will actually print out a warning message. For our purpose, this is not an issue since this is exactly what we want.

We then add preds to the data frame in order to overlay the lower and upper bounds on the scatterplot, by adding extra layers via geom_line() in the ggplot() function:

`geom_smooth()` using formula = 'y ~ x'

Scatterplot of Gift Aid against Family Income

As mentioned in the notes, the CI captures the location of the regression line, whereas the PI captures the data points.