Reg. No.	:41				-					
----------	-----	--	--	--	---	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, JUNE 2024

First Semester

18MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

Part - B & Part - C should be answered in answer booklet. (ii)

Time: 3 hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. The matrix of the quadratic form $x^2 + xy$ is

1 1

Marks BL CO PO

$$\begin{pmatrix} A & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 0 & 4 \\ 5 & 1 \end{pmatrix}$$

(A)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(C) $\begin{pmatrix} 1 & 1/2 \\ 1/2 & 0 \end{pmatrix}$

(B)
$$\begin{pmatrix} 0 & 4 \\ 5 & 1 \end{pmatrix}$$

(D) $\begin{pmatrix} 1 & 3/2 \\ 5/2 & 1 \end{pmatrix}$

2 0 1 2. Two Eigen values of the matrix $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ are 1 and 2. Find the third 1 0 2

eigen value.

(A) 3

(B) 2

(C) 1

(D) 0

3 1 2 3. Find the eigen values of A^3 if $A = \begin{bmatrix} 0 & 1 & 4 \end{bmatrix}$ 0 0 2

(A) 3, 1, 2

(B) 9, 1, 4

(C) 27, 1, 8

(D) 81, 1, 16

4. Find the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$

1 1

1

- (A) Positive definite
- (B) Semi positive definite
- (C) Negative definite
- (D) Indefinite

5. If $z = x^2 + y^2 + 3xy$, then $\frac{\partial z}{\partial x}$ is

1

(A) x+y

(B) $x^2 + y^2$

(C) 2x + 3y

(D) 2x + 4xy

6. If $f(x,y) = e^x \cos y$, then the value of $f_{xx}(0,0)$ is

(A) 1

(B) 2

(C) 3

(D) 0

7.	If f((x,y) is an implicit function, then	$\frac{dy}{dx} =$		1	1	2	1
	(A)	$-\frac{\partial f}{\partial x} \bigg/ \frac{\partial f}{\partial y}$	(B)	$\frac{\partial f}{\partial x} \bigg/ \frac{\partial f}{\partial y}$				
	(C)	$\frac{\partial x}{\partial f} / \frac{\partial y}{\partial x}$	(D)	$\frac{\partial x}{\partial f} = \frac{\partial y}{\partial f}$				
	()	$\frac{\partial f}{\partial f} / \frac{\ddot{\partial x}}{\partial x}$	(-)	$-\frac{\partial f}{\partial y} \bigg/ \frac{\partial f}{\partial x}$				
8.		and v are functionally dependent	, then	their Jacobian value is	1	1	2	1
	(A) (C)		(B) (D)	1 3				
0			` /		1	,		
9.	The	general solution of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = c_1e^x + c_2e^{-4x}$ $y = (c_1 + c_2x)e^{-x}$	2y =	0 is	1	1	3	1
	(A)	$y = c_1 e^x + c_2 e^{-4x}$	(B)	$y = c_1 e^{-2x} + c_2 e^{-3x}$				
	(C)	$y = \left(c_1 + c_2 x\right) e^{-x}$	(D)	$y = c_1 e^{-x} + c_2 e^{-2x}$				
		particular integral of $(D^2 + 6D +$			1	1	3	1
		The state of the s						
	(C)	$\frac{x}{2}e^{-2x}$ $\frac{x}{3}e^{x}$	(D)	$\frac{x}{2}e^{-x}$ $\frac{x}{3}e^{2x}$				
		$\frac{\pi}{3}^e$		$\frac{1}{3}e^{2x}$				
11.	The	complementary function of (x^2L)	$0^2 + 4$	$xD+2)y=x+\frac{1}{1}is$	1	1	3	1
		$CF = (C_1 + C_2 z)e^z$		<i>x</i> .				
		$CF = C_1 e^{-2z} + C_2 e^{4z}$						
12.	The	general solution of $(D^2 + 1)y = 5$	is	-	²⁰ 1	1	3	1
		$y = C_1 \cos x + C_2 \sin x$		$y = (C_1 e^{-x} + C_2 e^x) + 5$				
	(C)	$y = \left(C_1 \cos x + C_2 \sin x\right) + 5$		$y = (C_1 + C_2 x)e^x + 5$				
13.	The	curvature of the straight line is			1	1	4	1
	(A)	0	(B)					
1./	(C)	*	(D)		1	1		
14.	The is	envelope of the family of curves	$A\alpha^2$	$C + B\alpha + C = 0$ (α is a parameter)	1	1	4	1
		$B^2 + 4AC = 0$		$B^2 - AC = 0$				
	(C)	$B^2 + AC = 0$	(D)	$B^2 - 4AC = 0$				
15.	The	radius of curvature of the curve	y = 4s	$\sin x \ at \ x = \frac{\pi}{2} \text{ is}$	1	1	4	1
	(A)		(B)					
16		1/4	(D)		1		ı.	
10.		evolute of the cycloid $x = a(\theta - s)$ Astroid			1	1	4	1
	(A) (C)	Cycloid		Parabola Circle				

	The sequence $S_n = \left(\frac{n}{n-1}\right)$, converges	το					
		B) D)	2				
	(C) 3	D)	4				
18.	Let $\sum_{n=1}^{\infty} u_n$ be a series of positive terms series $\sum u_n$ is convergent if (A) $l < l$ (I		ch that $\lim_{n\to\infty} n \log \frac{u_n}{u_{n+1}} = l$ then the $l > 1$	1	1	5	1
	(C) $l=1$	D)	<i>l</i> =0				
19.	$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is}$			1	1	5	1
	()	B)	Divergent Monotonically increasing				
20.	Let $\sum u_n$ be a series of positive terms such			1	1	5	1
	series $\sum u_n$ is divergent if						
			<i>l</i> >1				
	$ \begin{array}{c} \mathbf{PART} - \mathbf{B} \ (5 \times 4) \\ \mathbf{Answer} \ \mathbf{ANY} \ \mathbf{FI} \end{array} $			Marks	BL	CO	PC
21.	Find the constants a and b such that eigen values.	$\begin{bmatrix} a \\ 1 \end{bmatrix}$	$\begin{bmatrix} 4 \\ b \end{bmatrix}$ matrix has 3 and -2 as its	4	1	1	1
	eigen values.			4			
	Find the constants a and b such that eigen values. If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial (x, y)}{\partial (x, y)}$			4		2	
22.	eigen values.			4	1 2	2	1
22. 23.	If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial (x, \theta)}{\partial (r, \theta)}$	$\frac{y)}{\theta}$		4	1 2	2	1
22. 23.	If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial (x, \theta)}{\partial (r, \theta)}$ Solve $(D^2 + 6D + 9)y = 3e^{4x}$. Find the envelope of the straight line	$\frac{y}{\theta}$	$x\cos\alpha + y\sin\alpha = a\sin\alpha\cos\alpha, \alpha$	4	2	2	1 1 1
22.23.24.25.	If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial(x, \theta)}{\partial(r, \theta)}$ Solve $(D^2 + 6D + 9)y = 3e^{4x}$. Find the envelope of the straight line being the parameter.	$\frac{y}{\theta}$	$x\cos\alpha + y\sin\alpha = a\sin\alpha\cos\alpha, \alpha$ $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	4	2	2 3 4	1 1 1
22.23.24.25.26.	If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial(x, x)}{\partial(x, x)}$. Solve $(D^2 + 6D + 9)y = 3e^{4x}$. Find the envelope of the straight line being the parameter. Examine the convergence of the sequence.	$\frac{y}{\theta}$ me	$x\cos\alpha + y\sin\alpha = a\sin\alpha\cos\alpha, \alpha$ $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	4 4 4	2 2	2 3 4 5	1 1 1

Page 3 of 4

4JF1-18MAB101T

$PART - C (5 \times 12 = 60 Marks)$

Answer ALL Questions

Marks BL CO PO

28. a. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

(OR)

- b. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and hence find A^4 .
- 29. a. Expand $x^2y+3y-2$ in powers of (x-1) and (y+2) using Taylor's series $\begin{bmatrix} 12 & 2 & 2 \\ & 2 & 1 \end{bmatrix}$ upto terms of third degree.

(OR)

- b. A rectangular box open at the top is to have volume of 32 cubic ft. Find the 12 2 2 2 dimensions in order that the total surface area is minimum.
- 30. a. Solve $(D^2 5D + 6)y = x^2 + 3x 1$.

(OR)

- b. Solve $\frac{d^2y}{dx^2} + y = \sec x$ by the method of variation of parameters.
- 31. a. Find the equation of the circle of curvature of the parabola $y^2 = 12x$ at the point (3,6).

(OR)

- b. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is $\frac{12}{2}$ another cycloid.
- 32. a. Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.6} + \dots$

(0

b. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n^3 + 1}{2^n + 1}.$

* * * * *