Plano de Trabalho – Bolsista 02									
	Síntese e caracterização físico-química e estrutural do material geopolimérico								
Modalidade de bolsa solicitada:	Iniciação Científica – IC								
Projeto de Pesquisa vinculado:	Síntese, desenvolvimento e aplicação de materiais não-metálicos obtidos a partir de argilo-minerais precursores com aplicação em diferentes ramos da indústria: Materiais Geopoliméricos								

1. OBJETIVOS

1.1 GERAL

• Síntese e caracterização físico-química e estrutural do material geopolimérico.

1.2 ESPECÍFICOS

- Realizar levantamento bibliográfico e estudo preliminar da literatura corrente e atual;
- Sintetizar materiais geopolimericos a partir dos argilominerais precursores;
- Caracterizar os materiais geopolimericos sintetizados;
- Realizar tratamento inicial dos dados para elaboração de relatório técnico científico;

2. METODOLOGIA

2.1. REVISÃO BIBLIOGRÁFICA

Ampla pesquisa em bases de dados nacionais e internacionais de bibliografias técnico—científicas sobre o assunto pesquisado.

2.2. TRATAMENTO TÉRMICO E DESALUMINIZAÇÃO

 $\label{eq:encoder} Em \ balão \ de \ fundo \ redondo \ colocar \ H_2SO_4 \ e \ argila \ não \ calcinada \ sob \ refluxo \ a \\ 80°C \ por \ 1h \ e \ 2h. \ Repetir \ o \ mesmo \ procedimento \ com \ a \ argila \ calcinada \ a \ 600°C \ por \ 1h.$

2.3. ENSAIOS PRA OBTENÇÃO DO GEOPOLÍMERO

Com base em levantamento bibliográfico, realizar ensaios de síntese do material geopolímerico com razão $SiO_2/Al_2O_3 = 3.8$ e $Al_2O_3/M_2O = 1.0$, onde M é Na ou K.

2.4. CARACTERIZAÇÃO DO MATERIAL GEOPOLIMÉRICO

Análise química do material geopolimérico sintetizado, obtida por Espectrometria de Fluorescência de Raios-X (FRX).

A umidade e perda ao fogo será obtida em dois cadinhos de porcelana calcinados em mufla a 1123K por 30 minutos, em seguida pesados. Cerca de 100 mg de amostra serão adicionados a cada cadinho e levados a estufa por 1 hora a 373K, em seguida retirados e resfriarão em dessecador e depois pesados, repetindo o processo até peso constante. Posteriormente o mesmo material será levado a forno mufla, aquecido por 30 minutos a 1123K e pesado novamente.

A verificação das fases cristalográficas será obtida mediante medidas de difração de raios-x, realizadas em um difratômetro de pó de raios-x usando uma geometria Bragg, Brentano em modo contínuo com velocidade de 0,25 e 0,5 grau.min- 1 , com radiação de Cu K α e/ou Co K α em tubo operando a 40 kV e 25 mA.

As análises termogravimétricas (TGA e DTG) serão obtidas em diferentes razões de aquecimento (2°, 5°, 10°, 15°, 20° e 25°C/min), a diferentes temperaturas (300°C, 400°C, 500°C e 600°C).

Os espectros Mössbauer serão registrados em modo de transmissão à temperatura ambiente. Uma fonte radioativa de ⁵⁷Co em matriz de ródio montada em um controlador de velocidade operando no modo sinusoidal, variando de -4 mm.s⁻¹ a +4 mm.s⁻¹, a fim de se observar todas as transições de energia possíveis dos parâmetros hiperfinos dos núcleos de ⁵⁷Fe.

Os espectros de absorção na região do infravermelho (FT-IR) serão obtidos a partir das amostras na forma de pastilhas puras e com KBr a 3,0 % m.m⁻¹.

Para caracterização dos sítios de alumínio tetracoordenados (tetraédricos, Al^{IV}) e hexacoordenados (octaédricos, Al^{VI}), serão realizadas análises por ressonância magnética nuclear do estado sólido – ^{27}Al .

2.5. RESULTADOS E DISCUSSÃO

Obtenção e tratamento dos dados, e posterior discussão dos resultados das análises de Espectroscopia na região do Infravermelho (FT-IR), Análise Termogravimétrica (TGA), Espectroscopia Mössbauer, Fluorescência de Raios – X (FRX) e Difração de Raios – X (DRX),

Ressonância Magnética Nuclear no estado sólido (Al RMN-MAS) e Ensaios Mecânicos e Termomecânicos.

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

AT1. Revisão bibliográfica

AT2. Tratamento térmico e desaluminização

AT3. Ensaios pra obtenção do geopolímero

AT4: Caracterização do material geopolimérico

AT5. Resultados e discussão

	MESES											
	01	02	03	04	05	06	07	08	09	10	11	12
AT1	X	X	X	X	X							
AT2			X	X	X	X						
AT3			X	X	X	X	X	X				
AT4			X	X	X	X	X	X	X	X		
AT5							X	X	X	X	X	X