K-means

- Centroid-based: describe each cluster by its mean
- Goal: assign data to K.
- Algorithm objective: minimize the within-cluster variances of all clusters.

Initialize 2 clusters and assign points to clusters

Adjust mean

Reassign points to clusters and adjust mean

Reassign points to clusters and adjust mean

Repeat this, until no cluster changes

If we have a different starting point

K-means

- A non-deterministic method
- Finds a local optimal result (multiple restarts are often necessary)

Algorithm description

- Initialization
 - Data are x_{1:N}
 - Choose initial cluster means $\mathbf{m}_{1:k}$ (same dimension as data).
- 2 Repeat
 - 1 Assign each data point to its closest mean

Euclidean distance

$$\mathbf{z}_n = \arg\min_{i \in \{1, \dots, k\}} d(\mathbf{x}_n, \mathbf{m}_i)$$

$$z_n = rg\min_{i \in \{1, \dots, k\}} d(\mathbf{x}_n, \mathbf{m}_i)$$
 $d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_i - q_i)^2 + \dots + (p_n - q_n)^2}.$

2 Compute each cluster mean to be the coordinate-wise average over data points assigned to that cluster,

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{\{n: z_n = k\}} \mathbf{x}_n \qquad \Longrightarrow \qquad$$

For each dimension j of x_i in cluster k:

$$(\sum_{i} x_{i,j})/N_k$$

3 Until assignments $\mathbf{z}_{1:N}$ do not change

K-means: finding optimal k

Plot the cost for each k and find the "Elbow"

within-cluster variance vs k

