Algoritmi in podatkovne strukture – 2

Slovar

Razpršene tabele

Razpršena tabela

Lahko jo tudi imenujemo zgoščena tabela.

- Ključi, s katerimi imamo opravko so iz neke univerzalne množice U. Recimo, da je število predmetov, ki jih hranimo v slovarju n.
- Naredimo polje (tabelo) predmetov S iz razreda Elt tako, da se predmet elt nahaja na mestu S[elt.key].
- ullet Če je |U| velika, in je n glede na |U| majhno število, je ta način prostorsko **potraten**
- Rešitev: tabela S naj bo \gg primerno velika \ll , manjša od |U|.
- Mesto v tabeli S dolžine m, kamor vstavimo ključ, določa funkcija zgoščanja h

$$h: U \to \{0, 1, 2, \dots, m-1\}$$

Razpršena tabela – nadalj.

• Ključ key (točneje podatek elt s ključem elt.key) se nahaja na mestu S[h(elt.key)].

Sovpadanje

- Situacijo ($te\check{z}avo$), ko je $h(k_4)=h(k_5)$ imenujemo kolizija ali sovpadanje dva predmeta bi morala biti na istem mestu v tabeli s.
- Sovpadanjem se ne moremo izogniti, saj predpostavljamo, da je $m \ll |U|$. (h ne more biti injektivna funkcija.)
- Dobro je izbrati h, ki minimizira število sovpadanj (konstantna funkcija gotovo ni primerna), a hkrati zagotavlja velikost tabele m=O(n).

Reševanje sovpadanja

- veriženje ali
- naslavljanje

Veriženje

Veriženju se v angleščini reče chaining.

Vse elemente, ki se preslikajo na isto mesto v tabeli, hranimo v seznamu.

Veriženje – implementacija operacij

```
public class HTchaining implements Slovar {
    Seznam[] tabela;
    ...
    private int Hash(int v) { ... }
    public void Insert(Elt x) {
        int i= Hash(x.key);
        tabela[i].Insert= tabela[i].Insert(x);
    }
    public Object Find(int key) {
        int i= Hash(x.key);
        return tabela[i].Find(key);
    }
    public nekajDrugega Delete(int key) {
        // za domačo nalogo
    }
}
```

Veriženje – zahtevnost

Časovna zahtevnost iskanja v tabeli z n shranjenimi elementi.

- V najslabšem primeru $\Theta(n)$ (vsi elementi se preslikajo na isto mesto v tabeli in moramo preiskati celoten seznam).
- Če je povprečno število ključev, ki se preslikajo v isto polje tabele α , potem je časovna zahtevnost v povprečju $\Theta(\alpha)$.
- Želimo si $\alpha = O(1)$. To je odvisno od zgoščevalne funkcije *in* od podatkov

Razpršilna funkcija

Kakšna je dobra funkcija zgoščanja?

- Za vsak ključ k je enako verjetno, da se preslika na katerokoli mesto tabele.
- Bolj natančno: naj bo P(k) verjetnost, da izberemo ključ k. Potem

$$\sum_{k:h(k)=j} P(k) = \frac{1}{m} \quad \text{za } j = 0, 1, \dots, m-1.$$

ullet Primer: Naj bodo ključi naključna realna števila enakomerno porazdeljena na intervalu [0,1). Potem funkcija

$$h(k) = \lfloor k \cdot m \rfloor$$

zadošča zgornjemu pogoju. Funkcija razpršuje.

Zgoščevalna funkcija – metoda deljenja

$$h(k) = k \mod m$$

- Primer: če je m=12 in je k=100, potem je h(k)=4.
- Odlika: hitrost. (Komentar?)
- Na kaj moramo paziti: izogibati se moramo nekaterim vrednostim m. Na primer: ni dobro, če je m potenca števila 2, to je če je $m=2^p$, potem je h(k) odvisna le od p bitov ključa k. Je pa to hitra operacija: pomik in bitni in.
- ullet Dobre vrednosti m so praštevila, ki niso blizu potence 2.
- Primer: če želimo shraniti približno 2000 ključev in je za dolžino seznamov pri veriženju sprejemljivo število 3, potem izberemo za m število 701. To je praštevilo, ki ni blizu nobeni potenci števila 2 in je blizu 2000/3.
- Se pa lahko zalomi. Na primer, ko so ključi oblike m^k .
- Žal porazdelitve običajno ne poznamo.
- Na pomoč: paradoks rojstnega dne. Kaj je to? Kako deluje? Zakaj tako deluje?

Zgoščevalna funkcija – metoda množenja

$$h(k) = (k \cdot p) \bmod m ,$$

kjer je p neka konstanta.

- Vrednost m tu ni kritična.
- Kaj je z vrednostjo p? Izkaže se, da je najbolje, če je p praštevilo.
- h() lahko zapišemo tudi kot:

$$h(k) = |m(kA \bmod 1)|,$$

kjer 0 < A < 1 in $x \mod 1$ pomeni decimalni del x. V tem primeru Knuth $A \approx (\sqrt{5} - 1)/2 = 0.6180339887\dots$

Naslavljanje

- Za shranjevanje podatkov sedaj uporabljamo samo polja tabele.
- V primeru sovpadanja izračunamo nov indeks tabele, kamor bomo vstavili element. Če
 je tudi to mesto že zasedeno, postopek ponavljamo, dokler ne najdemo prostega mesta
 (če tabela ni že polna).
- Problem: kako naračunati zaporedje indeksov (poskusov) tako, da bomo
 - uporabili čim manj poskusov preden bomo našli prosto mesto,
 - poskusili vstaviti v vsa polja tabele.
- Slabosti:
 - omejen prostor
 - težava pri brisanju
- Angleški izraz: open addressing.

Naslavljanje

Formalno zgoščevalna funkcija sedaj slika

$$h: U \times \{0, 1, \dots, m-1\} \to \{0, 1, \dots, m-1\},$$

to pomeni, da bomo najprej poskusili vstaviti element s ključem k v polje h(k,0), nato (če je to polje že zasedeno) v h(k,1), nato v h(k,2), . . .

Da je funkcija sedaj dobra, zanjo veljajo:

- pogoji iz prosojnice 9 verjetnost slikanja v vsako polje tabele je (približno) enaka; in
- za vsak k mora biti zaporedje poskusov

$$(h(k,0),h(k,1),h(k,2),\ldots,h(k,m-1))$$

permutacija zaporedja $(0,1,2,\ldots,m-1)$. To pomeni da za vsak ključ preizkusimo vsako polje tabele.

Naslavljanje – implementacija operacij

```
public class HTopen implements Slovar {
    Seznam[] tabela;
    ...
    private int Hash(int v, int j) { ... }
    public void Insert(Elt x) {
        for (int j= 0; tabela[ Hash(x.key, j) ] != NULL; j++)
            tabela[i]= x;
    }
    public Object        Find(int key) { ... }
    public nekajDrugega Delete(int key) { ... }
}
```

- Kaj če je tabela polna?
- Lahko ne dovolimo vstavljanja exception.
- Lahko naredimo novo tabelo dvojne velikosti in vanjo prestavimo vse elemente iz stare tabele – doubling.
- Kako izgleda h(_, i)?

Linearno naslavljanje

• Naj bo h' = h(x, 0) in $h_i = h(x, i)$, kjer je i > 0. Pri linearnem naslavljanju potem velja

$$h(k, i) = (h_{i-1} + 1) \mod m = (h'(k) + i) \mod m$$

V resnici ni nujno, da prištejemo 1, ampak lahko prištejemo poljubno konstanto c.

- Slabost je, da se lahko tvorijo se zaporedja polnih polj, kar podaljšuje povprečni čas iskanja prostega polja.
- Če je polje prosto in je pred njim že i polnih polj, potem je verjetnost, da bomo to polje zapolnili, enaka (i+1)/n, če pa je polje pred tem poljem prazno, je verjetnost, da ga zasedemo, 1/m.
- Če imamo prosto vsako sodo polje in je vsako liho polje zasedeno, potem povprečno potrebujemo 1, 5 poskusa.
- ullet Če je zasedenih prvih m/2 polj tabele, potem povprečno potrebujemo že m/8 poskusov.

Kvadratično naslavljanje

• Naj bo h' = h(x, 0), in konstanti c_1 in $c_2 \neq 0$. Potem pri kvadratičnem naslavljanju velja:

$$h(k,i) = (h'(k) + c_1 i^2 + c_2 i) \mod m$$

- S kvadratičnim naslavljanjem smo se znebili zaporedij sovpadanj.
- ullet Toda, če se dva ključa s h' preslikata v isto vrednost, potem se zaporedje sovpadanj ohranja.
- Imamo $\Theta(m)$ možnih zaporedij.

Kvadratično naslavljanje malce drugače

Spet imamo funkcijo zgoščanja h', ki slika iz množice ključev v množico $\{0, 1, \ldots, m-1\}$, kjer $m=2^k$. Pozor: slednja predpostavka je povsem običajna. Zakaj?

Postopek iskanja naj bo naslednji.

- Algoritem je poseben primer kvadratičnega naslavljanja. Kakšni sta konstanti c_1, c_2 ?
- Algoritem v najslabšem primeru preišče vsako polje v tabeli.

Dvojno naslavljanje (double hashing)

Problem sovpadanja smo reševali:

- z linearno funkcijo: $(h'(k) + ci) \mod m$
- s kvadratično funkcijo: $(h'(k) + \mathbf{c_1i} + \mathbf{c_2i^2}) \mod m$
- v splošnem je lahko poljubna funkcija: $(h'(k) + ih"(k)) \mod m$ in temu rečemo *dvojno naslavljanje*.
- Ker je sedaj h odvisna od dveh načinov zgoščanja, od h' in h", imamo $\Theta(m^2)$ možnih zaporedij.
- To odpravi težavo s prosojnice 16, če se dva ključa s h' preslikata v isto vrednost (potem se zaporedje sovpadanj ohranja).
- Na kaj moramo paziti? Vrednosti h''(k) morajo biti za vsak k tuje proti m, sicer, če je $d = \gcd(h''(k), m) > 1$, preiščemo le (1/d)-tino tabele. Možni rešitvi
 - *m* je praštevilo.
 - $m=2^p$ in poskrbimo, da je h''(k) vedno liho število.

Analiza zgoščanja z naslavljanjem

Imamo m! permutacij indeksov tabele in vsaka permutacija predstavlja niz vrednosti, ki jih vrača naša zgoščevalna funkcija.

Recimo, da je pri vsakem ključu k verjetnost, da dobimo enega izmed m! zaporedij, enaka ter da je enako verjetno, da iščemo katerikoli ključ.

Naj bo *faktor napolnitve tabele* $\alpha = n/m < 1$.

Potem je pričakovano število poskusov največ

$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha} + \frac{1}{\alpha}.$$

Npr., če je tabela napol polna ($\alpha=1/2$), potem bomo pričakovano število poskusov manjše od 3,4. Če je tabela 90% polna, bomo pričakovano potrebovali manj kot 3,7 poskusa.

V obeh primerih je čas dostopa O(1). Kaj manjka pri tej izjavi?

Zapletenost

	Find	Insert	Delete
seznam	O(n)	O(1)	O(n)
urejen seznam	O(n)	O(n)	O(n)
binarno drevo	O(n)	O(n)	O(n)
AVL drevo	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$
B drevo	$O(\log_b n)$	$O(\log_b n)$	$O(\log_b n)$
RB-drevo	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$
preskočna vrsta	$O(\log n)$	$O(\log n)$	$O(\log n)$
razpršena tabela	O(1)	O(1)	O(1)

- Kakšen je čas pri razpršeni tabeli: največji, najmanjši, povprečni, pričakovan?
- Ne dâ se narediti največji (Dietzfelbinger in ostali).
- Za slovar velja $\Omega(\log n)$, če je prostor O(n).