The State Explosion Problem

Lecture #5a of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

November 4, 2008

The state explosion problem

- Time-complexity of model-checking algorithms
 - depends on the property to be checked
 - and on the size of the transition system
 - that models the system to be checked
- Size of a transition system
 - $|TS| = |S| + | \rightarrow |$
- The size of transition systems underlying
 - program graphs is exponential in number of program variables
 - concurrent systems is exponential in number of components
 - channel systems is exponential in number of channels

Sequential programs

The # states of a program graph is:

$$\# ext{program locations} | \cdot \prod_{variable \ x} | dom(x) |$$

- ⇒ number of states grows *exponentially* in the number of program variables
 - N variables with k possible values each yields k^N states
 - this is called the state explosion problem
- A program with 10 locations, 3 bools, 5 integers (in range 0 . . . 9):

$$10 \cdot 2^3 \cdot 10^5 = 800,000$$
 states

• Adding a single 50-positions bit-array yields 800,000.250 states

Concurrent programs

• The # states of $P \equiv P_1 \parallel \ldots \parallel P_n$ is maximally:

#states of $P_1 \times \ldots \times \#$ states of P_n

- ⇒ # states grows exponentially with the number of components
 - ullet The composition of N components of size k each yields k^N states
 - This is called the state-space explosion problem

Dijkstra's mutual exclusion program

- ullet two bit-arrays of size N
- ullet global variable k
 - with value in $1, \ldots, N$
- local variable *l*
 - with value in $1, \ldots, N$
- 6 program locations per process

 \Rightarrow totally $2^{2N} \cdot N \cdot (6N)^N$ states

© JPK

4

Channel systems

- Asynchronous communication of processes via channels
 - each channel c has a bounded capacity cap(c)
 - if a channel has capacity 0, we obtain handshaking
- # states of system with N components and K channels is maximally:

$$\prod_{i=1}^{N} \left(\left| \# \text{program locations} \right| \prod_{variable \ x} |dom(x)| \right) \cdot \prod_{j=1}^{K} |dom(c_j)|^{cap(c_j)}$$

this is the underlying structure of Promela

6

The alternating bit protocol

channel capacity 10, and datums are bits, yields $2 \cdot 8 \cdot 6 \cdot 4^{10} \cdot 2^{10} = 3 \cdot 2^{35} \approx 10^{11}$ states

© JPK

Summary of Chapter 2

Transition systems

are a fundamental model for modeling software and hardware systems

Executions

are alternating sequences of states and actions that cannot be prolonged

Interleaving

execution of independent concurrent processes by nondeterminism

Shared variables

- parallel composition on transition systems is not adequate
- instead, parallel composition of program graphs is used

Summary of Chapter 2

- Handshaking on a set H of actions
 - execute actions in H simultaneously and those not in H autonomously
- Channel systems = program graphs + FIFO communication channels
 - handshaking (cap = 0) or asynchronous communication (cap ¿ 0)
 - semantical model of nanoPromela modeling language
- State explosion problem
 - size of transition system is exponential in number of variables, concurrent components, and channels