Integration of Hybrid System Identification using Symbolic Regression into a Modeling Framework for Cyber-Physical Systems

Harshitha Viswanath Supervisor: Swantje Plambeck

1

A	1. Introduction a. Cyber-Physical System b. Hybrid System c. Symbolic Regression (SR)	TUHH	
Agenda:	2.	Foundations a. Flowceanb. Hybrid System Identification using SR	
	3.	Motivation	
	4.	Implementation a. Derivative Transform b. SR Learner c. SR Model d. Metric	
	5.	Optuna	
	6.	Case Study	
	7.	Conclusion & Future Work	2

Introduction – Cyber Physical System (CPS)

TUHH

- Integrated system that combines computation and communication with physical processes
- Example: Autonomous Driving
 - Cyber components
 - Onboard computer
 - Sensors
 - Physical components
 - Actuation, and power systems
 - Process sensor data and determine acceleration, braking, or steering
 - Send commands to physical components that execute maneuvering
 - Safety critical: Small delays/errors can trigger major failures

source: innovationcloud.com

Introduction – Modeling of CPS with Hybrid System

TUHH

- Hybrid Automaton—widely used CPS abstraction
- System modeled as discrete modes (control logic) with flow functions (physical processes), transitioning via guard conditions
- Example: Smart Sensor
 - Two discrete modes of operation:
 - Compression (mode=1): governed by square root law

$$y = \sqrt{(u+1)}$$

■ Amplification (mode=2): governed by quadratic law

$$y = 5u^2 + 3$$

Guard conditions: Switch to mode 2, if mode = 1 and u >= 2;
 switch to mode 1, if mode = 2 and u <= 1

Introduction – Symbolic Regression (SR)

- Nascent ML field infers mathematical expressions from data
- SR poses data optimization task spanned by analytical expressions
 - Optimization of prediction error and complexity
- Interpretability is the key, alongside accuracy
- PySR—an open-source Python library for human-interpretable symbolic models
- Approach: Uses genetic programming (on evolutionary algorithm)
- Employs Pareto Front: trade-off solutions where accuracy cannot improve without increasing complexity (or vice versa).

Foundations – Flowcean

TUHH

- Automated CPS model generation via data-driven learning
- Modular architecture integrating multiple learning libraries and tools
- Conventional ML frameworks (e.g., PyTorch, Scikit-learn) lack
 CPS-specific learning pipelines

CPS Modelling Task

Foundations – Flowcean : Modeling Pipeline

- Environment: define dataset and compatible learning algorithm
- **Transform:** data preprocessing for effective learning (e.g., mean, median, mode)
- Learning Strategy: integrates environment, transform and learner to produce model
 - Learner—an algorithm that trains on data
 - Model—final system abstraction produced
- Evaluation Strategy: assess model performance based on the Metric (e.g., MSE, MAE)

Foundations – Hybrid System Identification using SR

TUHH

Observed ____ Transition ___ Segment ___ Mode ___ Model
Trajectories Detection Grouping Identification Construction

- Central Idea: detection of transitions by analyzing the underlying system dynamics directly from data
- Mechanism of system identification
 - Identify governing equations of continuous behaviors
 - Separate data segments that have separate behaviors
 - Group segments that share the same behaviors
- Outcome: Human-readable equations, enabling interpretations and deeper insights into the system behavior

Foundations – Hybrid System Identification using SR

TUHH

Transition Detection

- Set starting point, window size, step size, expression loss (MSE)
- Move window along the data; learn expression and check the loss
- If loss changes, mark the transition; store segment and expression
- Reset window and continue until all the data points are processed

Segment Grouping and Mode Identification

- Set first detected segment as first group
- Combine each **new segment with existing group** and check for loss
- If **combined loss** is less, then add to the group; else, create a new group
- Continue until all segments are assigned

Motivation TUHH **Modeling Essentials: Data-driven modeling framework** dedicated for *CPS applications* Hybrid automata that naturally unifies the continuous physical processes and discrete cyber systems of the CPS **SR** for producing results in accurate, *human-interpretable* models

Flowcean + Hybrid System Identification using SR

Implementation

Implementation – Derivative Transform

- TUHH
- → Computes the first-order differences between consecutive data points, measuring the change of the variable over time
- → Mathematically expressed as

$$\Box \mathbf{y}_{t} = \mathbf{y}_{t} - \mathbf{y}_{t-1}$$

where,

y□ = current value at time t

 y_{t-1} = previous value at time t-1

- → Applicability:
 - ◆ Raw input data provides absolute measurements
 - ◆ The model often requires change in the variables recorded, to capture the continuous dynamics

Implementation – SR Learner

TUHH

→ Training algorithm: culmination of transition detection, segment grouping, and mode identification into a single learner module

Implementation – SR Learner

- → Elimination of verbose YAML configs
- → Input parameters to the learner classified into two categories
 - User-defined arguments
 - Dynamic, CPS-specific (e.g., sliding window frame length)
 - Provided at initialization of SR learner
 - Default arguments
 - Hyper-parameter passed to PySR() (e.g., population number)
 - Fixed within SR learner module
- → Precise parameter tuning
 - ◆ Configurable parameters: can override default arguments
 - Use case: parameter-sensitive segmentation and grouping

Implementation – SR Model

- → Static grouping: same data for training and evaluation
 - Maps group start and end indices (from SR learner) on data
 - Assigns a group ID to each data point
- → Hybrid system representation
 - Data points with same group ID form discrete modes
 - ◆ Each mode linked to its **symbolic equation**, representing continuous dynamics
- → Prediction and evaluation
 - Symbolic equations evaluated to generate numerical values
 - ◆ Output: dataframe with predicted numerical values
 - Enables metric-based evaluation (e.g., MSE, MAE)

Implementation – Metric

TUHH

- → Existing Flowcean metrics
 - Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - ♠ R² Score, Max Error
- → New addition: Root Mean Squared Error (RMSE)

$$\sqrt{rac{1}{N}\sum_{i=1}^N(y_i-\hat{y}_i)^2}$$

where, y_i = actual values; y_i^{\wedge} = predicted values; N = total data points

- → Sensitive to large deviations (unlike MAE)
- → Higher stability (no division by near-zero value)
- → Same units as prediction values → easier to interpret than MSE

Optuna – Hyper-parameter Tuning

- → SR accuracy and efficiency depend on hyper-parameter values
- → Manual tuning is **time-consuming** and **non-reproducible**
- → Optuna tuning: data-driven search strategy
 - ◆ Objective: minimize loss (MSE) across entire dataset
 - **♦** Explores multiple hyper-parameter combinations
 - ◆ Reduces ambiguity in selection of hyper-parameter values
- → Implementation
 - Optimization over 20 trials per case study
 - Optimized set of hyper-parameters: Niterations, Parsimony, Binary and unary operators, Number of populations, and Model selection

Case Study – Smart Sensor

- → System Overview:
 - ◆ Alternates between two operational regimes
 - Compression (q = 1) : $y = \sqrt{(u+1)}$
 - Amplification (q = 2): $y = 5u^2 + 3$
- \rightarrow Mode switching when input u(t) crosses over guard conditions
- → Guard conditions
 - If q = 1 and $u \ge 2$, switch to mode 2
 - lack If q = 2 and $u \leq 1$, switch to mode 1
- → Dataset
 - lack Records time, input u(t), output y
 - Captures detailed switching behavior

Case Study – Smart Sensor

Parameter	Value	Importance (%)	
niterations	120 (segmentation only)		
parsimony	5.158×10^{-5}	3%	
binary_operators	[+, -, *]	62%	
unary_operators	[sqrt, sin, cos]	3%	
populations	48	4%	
model_selection	best	5%	

Case Study – Smart Sensor

Group 0:
$$y = u \cdot (u \cdot 4.781374 + 1.6382203)$$

Group 1:
$$y = \frac{u^2}{0.19230054}$$

Group 2:
$$y = \sqrt{u+1}$$

- → Start width = 100; Step width = 60 (Sliding window)
- → Evaluation metrics: MSE = 5.732 & RMSE = 2.394
- → Insights from grouping
 - ◆ Group 0 & Group 2 → distinct mode behaviors
 - ◆ Group 1 → mixed-mode dynamics
 - Captures overlap of both modes due to sliding window width; identifies as a separate mode

Seamless integration of toolchain with emphasis on hybrid systems **Key enhancements** Derivative transform + SR learner + SR model + RMSE metric **Optuna** integration for efficient hyper-parameter tuning Validation from case studies: robust hybrid system identification leveraging Flowcean's modular architecture **Future Work** Enhanced hyper-parameter optimization Improved interpretability using SymPy library Scalability to high-dimensional data sets

Data-driven selection of segmentation window parameters

Conclusion & Future Work

References

- [1] Schmidt, M., Plambeck, S., Fey, G., Knitt, M., Rose, H., Wieck, J. C., Balduin, S., "Flowcean—Model Learning for Cyber-Physical Systems," Institute of Embedded Systems & Institute of Logistics Engineering, Hamburg University of Technology, Hamburg, Germany; Fraunhofer CML, Hamburg, Germany; OFFIS Institute for Information Technology, Oldenburg, Germany.
- [2] Plambeck, S., Schmidt, M., Fey, G., Subias, A., Travé-Massuyès, L., "Dynamics-Based Identification of Hybrid Systems using Symbolic Regression," Hamburg University of Technology, Germany; LAAS CNRS & INSA Université de Toulouse, France.
- [3] Makke, N., Chawla, S., "Interpretable Scientific Discovery with Symbolic Regression: A Review," Qatar Computing Research Institute, HBKU, Doha, Qatar, May 3, 2023.
- [4] Cranmer, M., "Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl," Princeton University, Princeton, NJ, USA; Flatiron Institute, New York, NY, USA; arXiv:2305.01582v3 [astro-ph.IM], May 5, 2023.

Thank you very much.

Hamburg University of Technology (TUHH) Am Schwarzenberg-Campus 1 21073 Hamburg www.tuhh.de

tuhh.de

TUHH Hamburg University of Technológy