

Master Thesis Estimating Permeability of Porous Media with Fourier Neural Operators

by Lukas Schröder

Agenda

- 01 Task
- **02** Fourier Neural Operators
- 03 Experiments & Results
- 04 Discussion
- 05 Conclusion & Outlook

Technische Fakultät

Goal

- Aim is finding the hydraulic resistance *R* of provided 3D media
 - Governed by Darcy's law in steady state laminar flows
 - $Q = \frac{\Delta p}{R}$
- Hydraulic resistance can be calculated from a material property called permeability k together with the geometric scales

•
$$R = \frac{\mu L}{kA}$$

Classical way of permeability estimation

Experiments

Build a container filled with porous media and measure the pressure difference

Formulas from models

For some geometries, like regular sand and certain rock compositions, there are formulas for permeability from porosity and other properties. Basically, finding correlations with easier to measure parameters.

Numerical Simulation

Derive k from the pressure difference of flow simulations like Lattice Boltzmann methods (LBM) or finite volumes.

Thesis approach

Generate sphere geometry in waLBerla

Calculate Flow with LBM in waLBerla/lbmpy

Train machine learning model

Use surrogate model for optimization

 3D grid of spheres from different radii and distances, shifted randomly Calculate velocities and pressure field

- Input: fill flag field
- Output: pressure field
- Extract: pressure difference

- Inference
- Find geometry with lowest permeability
- Very fast

Neural Operator

- Idea to learn mapping between infinite function spaces $G: A \to U$
 - Used for example in learning PDEs
- Needs a lifting layer Q to transfer discrete input into higher dimensional codomain
 - Here 3D convolution with kernel size 1
- Projection layer P to transport result back into discrete structures
 - SIREN or 2 linear layers
 - This allows for different resolutions of the same problem with the same network

Fourier Transformation

FFT (nti-audio.com)

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$
- And with 1x1 convolutions as weight application (Wx + b)

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$
- And with 1x1 convolutions as weight application (Wx + b)
- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + K(x))$

- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + IFFT(R * FFT(x)))$

- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + IFFT(R * FFT(x)))$
- Resulting model: $G: Q \circ \sigma(L^{(1)} \circ L^{(2)} \circ L^{(3)} \circ L^{(4)}) \circ P$

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension
 - Reduction of model complexity

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension
- Borrows concepts from transformer and classical deeper networks
 - Feed forward block with two linear layers per Fourier block with weight normalization
 - Residual connections

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension
- Borrows concepts from transformer and classical deeper networks
 - Feed forward block with two linear layers per Fourier block with weight normalization
 - Residual connections
 - Added weight normalization
 - Cosine learning rate scheduling with warmups
- Deeper networks mean more layers that result in more calculation per epoch

Technische Fakultät November 15, 2024

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

Realizability with Packed Spheres

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts
- 256x128x128 domain filled with spheres of diameter [15, 30] and distances [diameter + 1, diameter + 8]
- Setup
 - Input as 128x64x64
 - [32, 16, 16] modes in spectral kernel
 - AdamW as optimizer
 - Learning rate in [0.0025, 0.000125]

- All reach an R² score > 98
- No performance increase for original model after 4 layers
- Factorized version better overall
- Proximity of the results
- Factorized models take longer than their original counterpart

Factoriz ed	Layer s	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R² Score	Max AE (10 ⁻²)	Time per epoch in s
False	2	0.039	1.20	4.04	99.18	6.86	24.28
False	4	0.017	1.11	3.80	99.35	5.93	44.66
False	6	0.040	1.46	4.80	98.84	7.01	54.75
False	8	0.021	1.34	5.26	99.17	5.56	74.12
True	2	0.054	1.25	5.28	99.42	4.10	48.23
True	4	0.006	0.51	2.02	99.91	1.44	102.32
True	6	0.009	0.73	3.23	99.80	2.29	131.28
True	8	0.008	0.56	2.66	99.88	1.98	171.56

- All reach an R² score > 98
- No performance increase for original model after 4 layers
- Factorized version better overall
- Proximity of the results
- Factorized models take longer than their original counterpart
- Best configuration: Factorized 4 layer

Factorized	Layers	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R² Score	Max AE (10 ⁻²)
True	4	0.006	0.51	2.02	99.91	1.44

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

Challenging DRP Dataset

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media
- Simulated with lbmpy

Challenging DRP Dataset

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media
- Simulated with lbmpy
- Data transformed with $x_{\rm trans} = \sqrt{x}$
- Setup
 - Input as 96x64x64
 - [24, 16, 16] modes in spectral kernel

Challenging DRP Dataset

- Hard to achieve R^2 Score > 80
- High maximum absolute errors > 0.4
- High inter-model score fluctuations

Factorized	Layers	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R ² Score	Max AE (10 ⁻²)	Time per epoch in s
False	2	0.815	6.28	20.83	79.19	46.26	15.15
False	4	0.902	6.56	29.25	79.85	52.77	24.97
False	8	0.877	5.98	16.86	76.43	51.40	45.09
True	2	1.249	7.46	31.86	73.11	59.94	27.21
True	4	1.061	6.00	13.68	68.19	70.02	49.50
True	8	0.862	4.42	13.17	88.54	37.48	102.87
True	12	0.662	5.40	16.79	77.57	65.52	139.31

Challenging DRP Dataset

- Hard to achieve R^2 Score > 80
- High maximum absolute errors > 0.4
- High inter-model score fluctuations
- Hard to predict high pressure cases drive errors
 - Idea: Filter highest 10% out

Factorized	Layers	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R ² Score	Max AE (10 ⁻²)
True	8	0.862	4.42	13.17	88.54	37.48

- Hard to achieve R² Score > 80
- High maximum absolute errors > 0.4
- High inter-model score fluctuations
- Hard to predict high pressure cases drive errors
 - Idea: Filter highest 10% out

<u>Filtered</u>	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R² Score	Max AE (10 ⁻²)
False	0.106	3.06	16.60	94.62	12.34
True	0.862	4.42	13.17	88.54	37.48

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

2D Comparison

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance
- Simulated with lbmpy
- Sets: 1000 generated polynomials, 600 rough sandstone and 200 rocks

2D Comparison

- Good results on standard, full and rock set with R² score > 94
- Noisy set fails with R^2 score < 50

Factorized	Layer	Dataset	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	R ² Score	Max AE (10 ⁻²)	Time per epoch in s
False	4	standard	1.374	1.68	8.44	94.06	28.29	4.51
True	4	standard	0.442	0.86	5.33	98.78	10.68	8.62
True	8	full	0.658	0.70	17.02	94.50	23.00	31.36
True	8	rocks (on full)	5.661	3.46	26.45	93.29	23.00	31.36
True	8	noisy (on full)	0.139	0.60	35.38	47.99	4.69	31.36

2D Comparison

- Good results on standard, full and rock set with R² score > 94
- Noisy set fails with R^2 score < 50
- Comparison
 - Slightly improved performance in R² scores and maximum AE
 - Training takes only 6% of the transformers time!
 - Noisy set still works with the transformer

Model	Dataset	R² Score	Max AE (10 ⁻²)	Time per epoch in s
FFNO 4-layer	standard	98.78	10.68	8.62
Swin Transformer	standard	98.14	~12	~140
FFNO 8-layer	rocks (on full)	93.29	-	32.36 (entire set)
Swin Transformer	rocks	93.82	-	~80
FFNO 8-layer	noisy (on full)	47.99	-	32.36 (entire set)
Swin Transformer	noisy	92.35	-	~30

Technische Fakultät November 15, 2024

Hyperparameter for FNOs

- AdamW, weight normalization and the cosine learning rate scheduling allow for short training time and stability
- Original FNO architecture deliver reliable results in a faster time
- Original architecture does **not improve for added depth** after 4 layers
- Factorized FNO architecture delivers the **best results** in all tested cases, but not always meaningfully better
- Factorized FNOs scale better with more layers until 8 layers (here)
- → 2/4-layer original FNO for efficiency
- → 8-layer factorized FNO for maximum performance

Use Cases for FNO based Surrogate Models

Comparison with Analytical Solution

- Formulaic solution are evaluated instantly
- Limited range of applicable geometries
- Performance Example:
 - Shifted spheres with Kozeny-Carman equation
 - R² score 95.04 (FFNO 4-layer 99.91)

Comparison with LBM

- LBM is more accurate and calculations can be parallelized
- Can be simulated for (nearly) any geometry
- Speed comparison
 - One sample $\sim 207s$ with Ibmpy (vs $\sim 0.15s$ inference) on the same GPU
 - Breaking even point with FNO training, simulating training samples and evaluation:
 - \sim 275 evaluation samples
 - when trained on 250 simulated geometries

Use Cases for FNO based Surrogate Models

05 Conclusion & Outlook

Technische Fakultät November 15, 2024 40

05 Conclusion & Outlook

5 Learnings

- Fourier neural operators can capture the pressure field to a reliable degree
- When enough geometries are provided of similar cases, wide ranges of cases can be predicted
- Original architecture is best for efficiency, while the factorized performs best
- It can bridge the range of LBM with the speed closer to analytical solutions with a state-of-the-art NN
- Use case is when many similar geometries need to be evaluated quickly

05 Conclusion & Outlook

Outlook

- Test scalability with big and complex databases
- Investigations of physically informed neural networks (PINNs)
- Comparison with more modern and elaborate analytical solution
- Test FNOs on entire flow prediction

Thanks for Your Attention