Khôlles de Mathématiques \mathbb{HXII} $Continuit\acute{e}\ et\ \acute{e}tude\ locale$

N. CLOAREC

Du 28-11-16 au 10-12-16

Exercice 1 Montrer qu'il n'existe pas de fonction continue $f: \mathbb{R} \to \mathbb{R}$ telle que $f(\mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$ et $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$.

Exercice 2 Étudier la continuité de la fonction

$$f \colon x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$$

définie sur \mathbb{R}_+ .

Indication: On pourra donner une forme plus explicite à f.

Exercice 3 Soit f une fonction croissante de [0;1] dans [0;1].

- a) Montrer que s'il existe $x \in [0;1]$ et $k \in \mathbb{N}^*$ tels que $f^k(x) = x$ alors x est un point fixe pour f.
- b) Montrer que f admet un point fixe.

Exercice 4 Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue, positive et telle que}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \ell < 1$$

Montrer qu'il existe $\alpha \in [0; +\infty[$ tel que $f(\alpha) = \alpha$.

Exercice 5 Soit $f: [0;1] \to \mathbb{R}$ continue telle que f(0) = f(1). Montrer que pour tout $n \in \mathbb{N}^*$, il existe $\alpha \in [0;1-1/n]$ tel que

$$f(\alpha + 1/n) = f(\alpha)$$

Exercice 6 Soient $f, g: [0;1] \rightarrow [0;1]$ continues vérifiant

$$f \circ q = q \circ f$$

Montrer qu'il existe $x_0 \in [0;1]$ telle que $f(x_0) = g(x_0)$.

Indication: On pourra raisonner par l'absurde en supposant $\phi = f - g$ de signe constant strictement.

Exercice 7 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\forall x, y \in \mathbb{R}, \ f(x+y) = f(x)f(y)$$

Déterminer f.

Exercice 8 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 et en 1 telle que

$$\forall x \in \mathbb{R}, f(x) = f(x^2)$$

Montrer que f est constante.

Exercice 9 Soit $f : \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x \in \mathbb{R}$,

$$f\left(\frac{x+1}{2}\right) = f(x)$$

Montrer que f est constante.

Exercice 10 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et prenant la valeur 1 en 0. On suppose que

$$\forall x \in \mathbb{R}, f(2x) = f(x) \cos x$$

Déterminer f.