

Journal of Statistical Software

 $MMMMMM\ YYYY,\ Volume\ VV,\ Issue\ II.$

http://www.jstatsoft.org/

comp3: um pacote em R para índices de competição em árvores indivuais

Ítalo Ramos Cegatta University of São Paulo

Cristian Villegas University of São Paulo

Abstract

The abstract of the article.

Keywords: floresta, índice de competição, árvore individual, R.

1. Introdução

A construção de modelos de crescimento é essencial para o planejamento florestal. Independente da abordagem do modelo, seja ele baseado em processo, empírico ou híbrido, o objetivo é representar o crescimento de árvores e povoamentos através de formulações matemáticas (BURKHART; TOMÉ, 2012).

O crescimento de árvores individuais é influenciado por fatores como idade, tamanho, microambiente, características genéticas e competição (TOMÉ, 1988). Os modelos que representam este crescimento podem ser construídos em função da idade, índice de sítio e o status competitivo, sendo este último o mais difícil de ser definido e mensurado quantitativamente (ZHANG; BURKHART; AMATEIS, 1996).

A competição pode ser definida pela interação entre indivíduos que competem por recursos e por esse motivo há redução de sobrevivência, crescimento e reprodução (BEGON; TOWNSEND; HARPER, 2006).

Entende-se que existem 3 motivos pelos quais se justificam o estudo da competição no componente arbóreo de uma floresta: (i) como suporte às decisões de manejo, onde informações facilmente coletadas em campo indicam o potencial de crescimento após uma interferência silvicultural; (ii) para entender qual a ordem e grandeza de influência de fatores como água, luz, densidade populacional e nutrientes no crescimento de uma árvore no povoamento; (iii) para a utilização de índices de competição em modelos de predição com estimativa acurada do incremento em diâmetro e altura das árvores (MORAVIE; DURAND; HOULLIER, 1999).

Em um modelo de crescimento de árvore individual, o índice de competição caracteriza o grau em que o espaço disponível para crescimento de uma planta é compartilhado pelas suas vizinhas (BURTON, 1993; RADTKE; WESTFALL; BURKHART, 2003). A avaliação da performance dos índices de competição é comumente realizada através da correlação do índice com o incremento em diâmetro, área basal e altura (DANIELS; BURKHART; CLASON, 1986). Diversos autores, ao modelar o crescimento e a produção, obtiveram ganhos na qualidade do ajuste ao incluir índices de competição no modelo (MORAVIE; DURAND; HOULLIER, 1999; SCHRÖDER; GADOW, 1999; SOARES; TOMÉ, 1999; CONTRERAS; AFFLECK; CHUNG, 2011; FRAVER et al., 2014)

É comum na literatura a classificação dos índices de competição em dois grupos: dependentes e independentes da distância (MALEKI; KIVISTE; KORJUS, 2015). Índices independentes da distância não necessitam das coordenadas das árvores, uma vez que são simples cálculos envolvendo variáveis do povoamento e da árvore-objeto. Já os dependentes da distância consideram as dimensões e localização parcial dos vizinhos competidores para o cálculo do índice. Para este índice, também é necessário um critério que define quais árvores são competidoras em relação a uma data árvore-objeto. (SOARES; TOMÉ, 1999; RIVAS et al., 2005).

2. The comp3 package

O software R é um ambiente computacional para desenvolvimento de análises estatísticas e gráficas (R CORE TEAM, 2016). Esta linguagem dispõe de várias funções para análises de dados e ainda possibilita utilizar funções disponíveis em pacotes criados por outros usuários. O CRAN [identificar sigla], principal repositório de pacotes da linguagem R possui poucos pacotes direcionados para resolução de problemas da área florestal, com destaque para os pacotes FAwR e lmfor. O pacote comp3 foi desenvolvido com o objetivo de disponibilizar funções que facilitam o cálculo de índices de competição de árvores individuais de um povoamento florestal. Estão implementados os principais índices de competição tanto para florestas plantadas quanto para florestas naturais. A concepção das funções do pacote sugere um fluxo de trabalho para o calculo dos índices, que envolve:

- criação de coordenadas locais para árvores que estejam dispostas em parcelas rigorosamente esquadrejada;
- delimitação da faixa de bordadura da parcela, que identifica as árvores como úteis para análise e as árvores de bordadura;
- determinação das árvores competidoras para cada árvore-objeto;
- cálculo de índices dependentes ou independentes da distância.

2.1. Coordenadas locais

Caso o banco de dados não possua a disposição espacial das árvore, mas se sabe que as árvores da parcela amostral foram plantadas com extremo rigor e esquadrejamento, é possível criar um grid de referencia e assim gerar coordenadas locais para as árvores da parcela.

A Figura 1 exemplifica a criação de coordenadas para um conjunto de dados hipotéticos. Pretende-se criar as coordenadas x e y de 25 árvores que pertencem a uma parcela de 5

Figure 1: Exemplo da construção de coordenadas locais para uma parcela amostral utilizando como referencia o caminhamento em zig-zag com início no vértice esquerdo inferior.

linhas por 5 plantas. A identificação de cada árvore é data pelo caminhamento em zig-zag. As funções xcoord e ycoord criam as coordenadas locais a partir do identificador da árvore, podendo ele ser numérico ou textual. É preciso especificar o arranjo de plantio e o número de linhas que a parcela possui. Por fim, é definido o início do caminhamento, podendo ser escolhido um dos quatro vértices da parcela.

A identificação de árvores de borda é caracterizado como processo comum em experimentos agrícolas e florestais, pelo fato destas unidades amostrais sofrerem influência de meio externo à parcela de estudo. É possivel delimitar uma faixa de bordadura para garantir que as árvores estudadas estejam livres desta influência. A função *avaliable_tree* retorna, a partir das coordenadas e do tamanho da bordadura, um vetor lógico que identifica as árvores úteis (TRUE) e de borda (FALSE), como pode ser visto na Figura 2.

2.2. Árvores competidoras

A determinação de uma árvore competidora ocorre somente nos índices de competição dependentes da distancia, uma vez que nos indices independentes da distância entende-se que

Figure 2: Identificação das árvores de bordadura baseada em uma faixa de 2 unidade de coordenada local.

Figure 3: Exemplo da seleção de competidores a partir de uma raio de busca definido.

todas as árvores da parcela contribui igualmente para o status competitivo do povoamento. O pacote fornece duas opções para a escolha do competidor, o primeiro delimita um raio de busca e seleciona todas as árvores que estão dentro desta faixa. A Figura 3 mostra 25 árvores hipotéticas, dispostas de maneira regular. A partir da árvore objeto, todas as árvores vizinhas que estiverem dentro do circulo com raio de 2,5 m são consideradas como competidoras. A determinação do raio de busca ou do número de arvores mais próximas é determinada pelo pesquisador e tem impacto relevante no cálculo dos índices dependentes da distância.

O segundo método estabelece um rank de distância entre as árvores-objeto e suas possíveis competidoras através da função search_nearest e seleciona o número de árvores de acordo com o parâmetro especificado na função. Internamente, os dois métodos de seleção de competidores estão implementados nas funções dos índices dependentes da distância, dessa forma, após seleção dos competidores a expressão de cálculo de cada índice é aplicada somente para a árvore objeto e suas competidoras.

2.3. Índices de competição

Foram implementados índices dependentes e independentes da distância. Cada índice, iden-

tificado com o nome do autor que o propôs, tem uma função própria e é calculado individualmente. Os índices independentes da distância necessitam obrigatoriamente do diâmetro das árvores e eventualmente da área da parcela amostral. Já os índices dependentes da distância exigem além do diâmetro, as coordenadas das árvores em um plano cartesiano e o método de seleção de competidores.

3. Estudo de caso

O pacote comp3 diponibiliza um banco de dados com medições sucessivas de um plantio experimental de Eucalyptus. Trata-se de um plantio clonal, implantado em 4 locais diferentes com extremo rigor silvicultural. A parcela de medição possui 8 linhas por 10 plantas, com arranjo de plantio de 3 x 3 m. Foram mensuradas em todas as árvores o diâmetro a 1,3 m, altura total, altura do início da copa e atributos qualitativos. A descrição completa pode ser vista na descrição do banco de dados em ?eucalyptus. A Tabela 1 mostra as médias das variáveis avaliadas em cada medição nos 4 sítios estudados.

Iniciando uma análise exploratória dos dados, podemos ver na Figura 4 o crescimento em área basal do clone nos 4 sítios. Pode-se notar que o crescimento a taxa de crescimento é semelhante entre os sítios, porém o patamar de produção de cada sítio se diferencia, podendo-se destacar o sítio 24 como o mais produtivo e o sítio 15 como o menos produtivo até os 50 meses de idade.

Para o cálculo dos índices de competição, será criada as coordenadas locais para as árvores da parcela, bem como uma faixa de bordadura equivalente a duas linhas de plantio e duas plantas. O código e Figura conforme indica a Figura 5.

```
base <- eucalyptus %>%
  group_by(site, age) %>%
  mutate(
    x = xcoord(x = tree, xspacing = 3, ncol = 8, star = "left-bottom"),
    y = ycoord(x = tree, yspacing = 3, ncol = 8, star = "left-bottom"),
    available = available_tree(x, y, 6)
)
```

O cálculo dos índices é feito a seguir, onde são computados 4 índices dependentes da distância e 6 índices independentes da distância. Para os índices dependentes da distancia foi padronizada seleção de competidores pelo crítério das 6 árvores mais próximas da árvore-objeto. Também foi calculado o incremento corrente da sessão transversal de cada árvore, com o objetivo de correlacioná-la com os índices de competição.

A Figura 6 apresenta um gráfico de dispensão do valor calculado para cada índice em função do incremento em sessão transversal. Alguns índices foram sensíveis às árvores dominadas e tiveram resultados que podem prejudicar a relação com o incremento da árvore. Entretando, nesta primeira etapa, estão incluídas todas as árvores úteis do banco de dados, podendo melhorar a visualização após a diferenciação por sítio e idade.

A primeira análise quantitativa será feita atravéz da correlação simples de Pearson entre o incremento em sessão transversal e o índice de competição. A corelação será calculada para cada sitio e idade, para ferificar qual índice possui maior consistência de correlação em função da idade.

Table 1: Banco de dados *eucalyptus*, médias de diâmetro (dbh), altura (h) e altura do início da copa (cbh) de 7 medições em 4 sítios diferentes.

site	area	age	dbh	h	cbh
15	720	1.2	5.9	6.9	1.5
15	720	1.7	7.6	9.8	2.9
15	720	2.3	10.3	13.4	5.2
15	720	2.7	11.1	15.9	10.1
15	720	3.2	11.9	16.5	11.9
15	720	3.8	12.6	17.2	14.5
15	720	4.2	14.0	19.3	15.0
20	720	1.2	8.6	9.5	0.5
20	720	1.7	11.1	13.6	7.0
20	720	2.3	12.5	17.3	10.2
20	720	2.7	13.1	18.2	11.2
20	720	3.2	14.4	19.1	12.6
20	720	3.8	15.2	22.5	16.9
20	720	4.2	15.7	24.0	18.2
24	720	1.2	8.4	8.5	0.5
24	720	1.7	10.9	12.5	5.1
24	720	2.3	12.6	15.4	7.9
24	720	2.7	13.3	16.7	10.4
24	720	3.2	14.7	19.4	11.5
24	720	3.8	15.6	21.7	14.4
24	720	4.2	16.6	24.3	19.9
4	720	1.2	8.6	11.4	0.8
4	720	1.7	9.9	13.5	8.9
4	720	2.3	12.4	15.0	9.6
4	720	2.7	13.0	17.7	10.1
4	720	3.2	13.6	19.5	11.5
4	720	3.8	14.1	20.9	14.5
4	720	4.2	14.6	23.7	18.4

Figure 4: Área basal em função da idade para os 4 sítios estudados

Figure 5: Disposição espacial das árvores na parcela amostral e identificação das árvores úteis e de bordadura.

Figure 6: Relação do índice calculado em função do incremento em diâmetro.

Figure 7: Correlação linar de Pearson entre o índice de competição e o incremento do diâmetro para cada idade e sítio.

O resultado das correlações estão apresentados na Figura 7. É possível notar que em determinadas idades, todos os índices tem baixa correlação com o incremento em diâmetro, com destaque para as medições referentes as idade 33 e 45 meses do sítio 24, onde nenhum índice obteve correlação maior que 0,5.

[buscar resultados de outros trabalhos para comparação]

Será feito uma breve análise dos 4 índices que obtiveram melhores resultados em termos de correlação com o incremento.

3.1.

```
base_index_sml %>%
  filter(index == "steneker") %>%
  ggplot(aes(cai, value, color = age %>% factor)) +
   geom_point(alpha = 0.4) +
  facet_wrap(~site) +
  labs(x = ~Incremento~em~diâmetro, y = ~Valor)
```



```
base_index_sml %>%
  filter(index == "alemdag") %>%
  ggplot(aes(cai, value, color = age %>% factor)) +
    geom_point(alpha = 0.4) +
    facet_wrap(~site) +
    labs(x = ~Incremento~em~diâmetro, y = ~Valor)
```



```
base_index_sml %>%
  filter(index == "hamilton") %>%
  ggplot(aes(cai, value, color = age %>% factor)) +
    geom_point(alpha = 0.4) +
    facet_wrap(~site) +
    labs(x = ~Incremento~em~diâmetro, y = ~Valor)
```



```
base_index_sml %>%
  filter(index == "daniels") %>%
  ggplot(aes(cai, value, color = age %>% factor)) +
    geom_point(alpha = 0.4) +
    facet_wrap(~site) +
    labs(x = ~Incremento~em~diâmetro, y = ~Valor)
```


Affiliation:

Ítalo Ramos Cegatta University of São Paulo First line Second line

 $E\text{-}mail: \verb|italocegatta@gmail.com||$

 URL : http://italocegatta.github.io

Accepted: yyyy-mm-dd

Submitted: