Question 1

ACP est la plus adaptée à ce tableau.

```
> df.pr=princomp(df,cor=TRUE)
> summary(df.pr,loadings=TRUE)
Importance of components:
                        Comp.1
                                 Comp.2
                                           Comp.3
                                                      Comp.4
                                                               Comp.5
                                                                                     Comp.7
                                                                         Comp.6
Standard deviation
                    1.8251902 1.2386426 0.9332301 0.83274390 0.7056016 0.23969062 0.121405716
Proportion of Variance 0.4759027 0.2191765 0.1244169 0.09906606 0.0711248 0.00820737 0.002105621
Cumulative Proportion 0.4759027 0.6950792 0.8194962 0.91856221 0.9896870 0.99789438 1.000000000
Loadings:
     Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
HVEG 0.476 0.284
                         0.306 0.262 0.617 0.389
HANT
            -0.705 -0.225 -0.202 0.570
                                              0.293
FLEG 0.495 0.216 -0.281 0.134
                                -0.730 0.281
                                 0.269 -0.793
VIA
      0.528 - 0.124
POIS -0.177 0.482 -0.639 -0.454 0.280 0.128 -0.164
      0.343 -0.334 -0.456 -0.192 -0.674 0.265
POIDS 0.319 0.126 0.501 -0.776
                                              0.168
>
```

Après la standardisation (Lai dont le poids est en litres, celui des autres variables est en kg), on peut faire l'interpretation:

7 variables (HVEG, HANI, FLEG, VIA, POIS, LAI, POIDS) 9 observations (Japon, France, UK, Espagne, Pays-Bas, Norvège, USA, Mexique Hongrie)

- i) Grâce à ACP, on peut choisir les quatrièmes (Com.4) qui représentent 91.856221% des contenue de la donnée initiale. On peut aussi choisir les troisièmes, car les troisième dont les contributions sont de 81.94962%. Pourtant, selon moi, les quatrièmes sont meilleurs.
- ii) Standard deviation: Écart-type
- iii) Proportion of Variance: Variance(c'est la dispersion des individus par rapport au centre de gravité)
- iv) Cumulative Proportion: des contribution cumulatives qui représente combien des contenues de la donné initiale.
- v) La matrice de coefficient de corrélation

```
> cor(df)
                                 FLEG
                                             VIA
                                                        POIS
                                                                   LAI
                                                                            POIDS
           HVEG
                      HANI
      1.0000000 -0.2372659 0.88293619 0.8235966 -0.12862546 0.2761247 0.3945196
HVEG
HANI -0.2372659 1.0000000 -0.15167635 0.2325121 -0.26882819 0.3137630 -0.1052135
FLEG
      0.8829362 -0.1516763 1.00000000 0.8191516 -0.02117174 0.5312231 0.3731277
      0.8235966 0.2325121 0.81915157 1.0000000 -0.40583835 0.5488358 0.5265758
VIA
POIS -0.1286255 -0.2688282 -0.02117174 -0.4058384 1.000000000 -0.2267833 -0.1332672
      0.2761247 0.3137630 0.53122312 0.5488358 -0.22678332 1.0000000 0.2107747
LAI
POIDS 0.3945196 -0.1052135 0.37312773 0.5265758 -0.13326721 0.2107747 1.0000000
```

vi) Les valeurs propres(l'inertie du nuage)

	HVEG	HANI	FLEG	VIA	POIS	LAI	POIDS
Valeur propre	3.33131912	1.53423557	0.87091838	0.69346240	0.49787359	0.05745159	0.01473935

vii) Scree plot (Parcelle d'éboulis graphique)

viii) La tendance de la consommation de chaque pays (9 pays) sur les denrées (7 genres d'alimentations)

viv) En conclusion. On peut savoir que HVEG, FLEG et POIDS dont la tendance des consommation est plus forte à USA; Lai dont la tendance de la consommation est plus forte en France et au Pays-Bas, en plus, pour VIA dont la tendance de la consommation est moyenne à USA, en France et au Pays-Bas; POIS dont la tendance de la consommation au Japon est plus forte; HANI dont la tendance de la consommation en Hongrie est plus forte.

vv) Les scores générals des quatrièmes

Question 2

Évidemment, AFC est la plus adaptée à ce tableau.(c'est un tableau qualitatif et ce sont les données de contingence)

```
Columns:
                           Bon Excellent
       Mauvais
                 Moyen
        0.5999 0.19897
                        0.0722
Mass
                                 0.1290
ChiDist
        0.1955
               0.20626
                        0.9494
                                 0.3146
Inertia 0.0229 0.00847
                        0.0651
                                 0.0128
Dim. 1
        0.6281 -0.33155 -3.0681
                                -0.6917
Dim. 2 -0.0999 1.53799 0.1815
                                -2.0100
```

L'analyse factorielle Grâce à AFC, on peut faire l'interpretation:

i) Pour Principale inertias: value : les valeurs propres (l'inertie de nuage), Percentage: les contributions de chaque factor.

ii) ChiDist : le test de khi-carré (Chi-Squared Test)

iii) Inertia: inertie de nuage

iv) En conclusion. On peut savoir que les preados ont tendance à trouver bon à propos de ce film; les jeunes, murs et ados ont tendance à avoir le sentiment entre moyen et mauvais sur ce film; les seniors ont tendance à trouver mauvais concernant ce film; les retraites et les ages ont tendance à avoir l'impression entre excellent et mauvais à props de ce film. (je suis vraiment désolé que ce graphique n'est pas jolie, mon ordinateur marche pas très bien. Désolé pour ça)