

MISE EN ŒUVRE DE METHODES DE CLUSTERING

BASE DE DONNÉES D'ARTICLES flipkart_com-ecommerce_sample_1050.csv + PHOTOS

Plan

Présentation du jeu de données

Analyse exploratoire

Méthodologie et Feature Engineering

Benchmark des méthodes de Clustering

Fusion des modèles NLP + Image Processing

Conclusion

Analyse exploratoire

Présentation du jeu de données

BASE D'ARTICLES

1050 ENTREES x 15 COLONNES 1050 PHOTOS

colonnes TEXTE d'intérêts :

- DESCRIPTION
- NAME
- SPECIFICATIONS

Classification:

- Catégories : 7 classes

Analyse exploratoire

Wordcloud

Méthodologie modèles NLP

Feature Engineering & clustering

- *Preprocess pour BOW
- Suppression des caractères non-alphabétiques
- Tokenization
- Suppression des stop words
- Vocabulaire restreint au dictionnaire anglais
- Lemmatization
- ** word embeddings(word2vec), sentence embeddings (Transformers)

Tf-idf + ACP (TruncatedSVD)

Tf-idf + LDA Linear Discriminant Analysis

Tf-idf	ARI
LDA (6 composantes)	1

BERT: bert_en_uncased_L-12_H-768_A-12

Transformers: bert_en_uncased_L-12_H-768_A-12 (BERT)

Différentes Stratégie de traitement de last_hidden_states

Entrées	Stratégie	Nb_token	score
descr_dl	average	64	0.34
descr_dl	topic	64	0.33
descr_dl	ACP	64	0.29
descr_dl	average	128	0.29
name_dl	average	64	0.06
specs_dl	average	64	0.28

Transformers: Universal Sentence Encoding (USE)

transformers: Universal Sentence Encoding (USE)

Entrée	ARI
descr_dl	0.44
name_dl	0.32
specs_df	0.64

Méthodologie

Calcul des descripteurs / image avec Sift

Création d'un histogramme/image

Clustering des images (PCA,t-SNE, Kmeans)

Clustering k	PCA N-composant	t-SNE perplexity	t-SNE N-iter	ARI
500	NA	30	5000	0.059
idem	349	idem	idem	0.051
1000	593	Idem	Idem	0.041
1000	NA	idem	Idem	0.083
1000	NA	50	Idem	0.062
1500	NA	30	Idem	0.05
1500	723	30	Idem	0.065
900	NA	30	Idem	0.072

CNN: VGG16...

1050 photos RGB avec différentes définitions

CNN: VGG16

Sans tuning des paramètres du CNN

N_components PCA	ARI*
770	0.47
803	0.5
840	0.49
885	0.48
4096	0.43

*t-SNE: perplexity {30, 50}, Iterations {2000, 5000}

TSNE selon les clusters

VGG16, Resnet50, MobileNetV2*

^{*} Resnet50 (ARI=0.55) et MobileNetV2 (ARI=0.56) testés a posteriori surpassent VGG16 en rapidité de calcul et en précision.

5 stratégies testées

Stratégie 1B:

0.6

0.5

0.4

0.3

0.2

0.2

0.4

0.6

~ n components

Normalisation minmaxscaler avant ACP

ARI:0.53

t-SNE +

clustering

1.0

0.8

place de marché

5 stratégies testées

Stratégie 2 : LDA

Stratégie 3 : brut

5 stratégies testées

Stratégie 4 : t-SNE

Stratégie 5 - probabiliste

ARI (label_final, classe): 0.67

Stratégie probabiliste

ARI = 0.67

Accuracy = 0.83

Conclusion

- Différentes modèle NLP et Traitement d'images ont été testées:
 - Tf-idf, countervectorizer, Lattent Dirichlet Allocation, Word2Vec, Transformer: BERT, USE
 - > Sift, CNN: VGG16
- Le traitement le plus efficace est Tf-idf sur Description et Spécifications
- Sans classification : clustering des différents articles avec une ARI de 67%
 - utilisation de LDA permet de créer des clusters et d'obtenir un ARI de 100%
- Sur les données fournis il est donc possible de réaliser une classification de tous les articles.