Analysis 1 – Tutorium 2 robin.mader@campus.lmu.de 13.11.2020

Aufgabe 1. Sei $f: A \to B$ eine Abbildung. Zeige:

$$f(f^{-1}(X)) \subseteq X$$
 für $X \subseteq B$, (1)

$$f^{-1}(f(X)) \supseteq X$$
 für $X \subseteq A$, (2)

$$f(X \setminus Y) \supseteq f(X) \setminus f(Y)$$
 für $X, Y \subseteq A$, (3)

$$f^{-1}(X \setminus Y) = f^{-1}(X) \setminus f^{-1}(Y) \qquad \text{für } X, Y \subseteq B. \tag{4}$$

Warum gilt in (1)–(3) im Allgemeinen keine Gleichheit? Gib jeweils ein Gegenbeispiel an.

Lösung. (1) Sei $x \in f(f^{-1}(X))$, d.h. wir finden $y \in f^{-1}(X)$ mit x = f(y). $y \in f^{-1}(X)$ bedeutet $f(y) \in X$. Also:

$$x = f(y) \in X$$
.

(2) Sei $x \in X$. Dann ist $f(x) \in f(X)$, aber das bedeutet genau

$$x \in \{y \in A \mid f(y) \in f(X)\} = f^{-1}(f(X)).$$

(3) Sei $b \in f(X) \setminus f(Y)$, d.h. b = f(x) für ein $x \in X$, und $\neg (\exists y \in Y : b = f(y))$. Aber daraus folgt $x \notin Y$, also $x \in X \setminus Y$, und somit

$$b = f(x) \in f(X \setminus Y).$$

(4) Für $a \in A$ bemerke, dass

$$a \in f^{-1}(X \setminus Y) \iff f(a) \in X \setminus Y$$

$$\iff f(a) \in X \land f(a) \notin Y$$

$$\iff a \in f^{-1}(X) \land a \notin f^{-1}(Y)$$

$$\iff a \in f^{-1}(X) \setminus f^{-1}(Y).$$

Um zu sehen, dass Gleichheit nicht gelten muss, betrachte die Mengen $A=\{1,2,3\},$ $B=\{4,5,6\}$ und die Funktion

$$f: A \to B$$
, $1 \mapsto 4$, $2 \mapsto 5$, $3 \mapsto 5$.

In (1), betrachte $X = B = \{4, 5, 6\}$, und bemerke $f(f^{-1}(X)) = f(A) = \{4, 5\} \neq X$. In (2), betrachte $X = \{1, 2\}$, und bemerke $f^{-1}(f(X)) = f^{-1}(\{4, 5\}) = A \neq X$. In (3), betrachte $X = A = \{1, 2, 3\}$ und $Y = \{3\}$, und bemerke $f(X \setminus Y) = f(\{1, 2\}) = \{4, 5\}$, sowie $f(X) = \{4, 5\}$ und $f(Y) = \{5\}$, also $f(X) \setminus f(Y) = \{4\} \neq \{4, 5\}$.

Aufgabe 2. Seien E eine Menge und $\mathcal{P}(E)$ die Potenzmenge von E. Zeige: Es gibt keine Bijektion

$$f: E \to \mathcal{P}(E)$$
.

Lösung. Angenommen, es gäbe eine Bijektion $f: E \to \mathcal{P}(E)$. Betrachte

$$Y := \{ x \in E \mid x \notin f(x) \} \in \mathcal{P}(E).$$

Da f insbesondere surjektiv ist, gibt es für $Y \in \mathcal{P}(E)$ ein $y \in E$ mit f(y) = Y. Wir unterscheiden zwei Fälle:

- 1. Fall: $y \in Y$. Dann $y \notin f(y) = Y$, Widerspruch.
- 2. Fall: $y \notin Y$. Dann $y \in f(y) = Y$, Widerspruch.

Da wir in jedem Fall einen Widerspruch erhalten, war unsere Annahme falsch, und es gibt keine solche Bijektion. \Box

Aufgabe 3 (Vollständige Induktion). 1. Aus der GOP des Wintersemesters 2012/2013 (Übung 2.5):

- (a) Formuliere eine Version des Induktionsprinzips, die zur Lösung der folgenden Teilaufgabe (b) nützlich ist.
- (b) Die Folge $(a_n)_{n\in\mathbb{N}_0}\in\mathbb{Z}^{\mathbb{N}_0}$ sei rekursiv wie folgt definiert:

$$a_0 := 0, \quad a_1 := 2, \quad a_{n+1} := 4(a_n - a_{n-1}) \text{ für } n \in \mathbb{N}.$$

Beweise mit Hilfe des Induktionsprinzips aus Teilaufgabe (a):

$$\forall n \in \mathbb{N}_0 : a_n = n2^n.$$

2. Aus der Nachklausur des Wintersemesters 2012/2013: Die Folge $(a_n)_{n\in\mathbb{N}_0}\in\mathbb{R}^{\mathbb{N}_0}$ werde rekursiv wie folgt definiert:

$$a_n := 1 + (n-1) \sum_{k=0}^{n-1} \frac{n^k a_k}{k^k} \text{ für } n \in \mathbb{N}_0.$$

(In dieser Formel ist der Rekursionsanfang enthalten.) Beweise mit vollständiger Induktion:

$$\forall n \in \mathbb{N}_0 : a_n = n^n.$$

Aufgabe 4 (Fibonacci-Zahlen, Aktivierungselement 1.18). Die Folge der Fibonacci-Zahlen $(f_n)_{n\in\mathbb{N}_0}\in\mathbb{N}_0^{\mathbb{N}_0}$ wird rekursiv wie folgt definiert:

$$f_0 := 0, \quad f_1 := 1, \quad f_{n+1} := f_n + f_{n-1}, n \in \mathbb{N}.$$

Setze nun

$$\omega_{+} := \frac{1}{2}(1 + \sqrt{5}), \quad \omega_{-} = \frac{1}{2}(1 - \sqrt{5}).$$

Das sind genau die beiden Nullstellen des Polynoms $x^2 - x - 1$. Zeige mit vollständiger Induktion über $n \in \mathbb{N}_0$:

$$f_n = \frac{1}{\sqrt{5}}(\omega_+^n - \omega_-^n).$$

Aufgabe 5 (Wohlordnung der natürlichen Zahlen, Übung 2.6). Beweise, dass jede nichtleere Menge $M \subseteq \mathbb{N}$ ein minimales Element bestitzt, d.h.

$$\forall M \subseteq \mathbb{N} : (M \neq \emptyset \Rightarrow \exists n \in M \forall m \in \mathbb{N} : (m < n \Rightarrow m \notin M)).$$

Hinweis: Nutze Kontraposition, d.h. die Gleichwertigkeit der Implikationen $A \Rightarrow B$ und $\neg B \Rightarrow \neg A$, für Aussagen A und B. Verwende, dass für alle $M \subseteq \mathbb{N}$ gilt:

$$M = \emptyset \iff \forall n \in \mathbb{N} : n \notin M.$$