

SAVEETHA SCHOOL OF ENGINEERIING, SAVEETHA INSTITUTE OF MEDICAL AND TECHNICAL SCIENCES

TRANSMISSION LINES &
WAVEGUIDES

ECA15

NAME:

REG.NO:

LAB MANUEL

SAVEETHA SCHOOL OF ENGINEERING SAVEETHA INSTITUTE OF TECHNICAL AND MEDICAL SCIENCES

INDEX

S. No.	Experiment	CO	BTL	Date	Signature
1.	Investigating the significance of Characteristic Impedance (Zo), and Propagation Constant (γ) of a Transmission Line using the following parameters a) Resistance b) Capacitance c) Inductance d) Conductance		3		
2.	Estimation of Primary Constants (R,L,G &C) from Secondary Constants (Zo & γ)of an open wire transmission line		3		
3.	Examining the impact of open and short circuited loads on a)Characteristic Impedance b) Propagation Constant	CO1	3		
	Evaluation of current and voltage of a short circuited Lossless transmission line at the receiving end	CO2	3		
5.	Analysis of SWR (Standing Wave Ratio) pattern in High Frequency Transmission Lines by varying a) load impedance b) characteristic impedance	CO2	4		
6.	Exploration of the relationship between SWR (Standing Wave Ratio) and the position of Voltage minima nearest to the load by varying magnitude of reflection coefficient K		4		
	Designing a Quarter wave transformer for impedance matching for the following parameters a) frequency b) input impedance c) characteristic impedance	CO3	3		

8.	Strategize impedance matching with Short Circuited Stub for a given characteristic impedance and load impedance through the measurement of a) Location of the stub b) Length of the stub		4	
9.	Analysis of Electromagnetic Waves across the two parallel plates by estimating the following a) Critical Wavelength b) Guide Wavelength	CO4	3	
10.	Determination of Dominant mode of Rectangular waveguides by examining the TE and TM modes	CO4	3	
11.	Calculation of Group velocity, Phase velocity and phase constant of EM waves in rectangular waveguides	CO4	3	
12.	Examining the propagation characteristics of circular waveguide in terms of a)Cutoff wavelength b) Guide wavelength c) characteristic impedance	CO5	4	
13.	Inference of Q Factor of Rectangular Cavity Resonator for TE101 mode with the following inputs a) Dimension a in x axis b) Dimension b in y axis c) Dimension p in z axis	CO5	4	
14.	Computation of Resonant Frequency of Rectangular Cavity Resonator for a)Transverse Electric mode b)Transverse Magnetic mode	CO5	4	
15.	Estimation of Resonant Frequency in a Cylindrical Cavity Resonator for a)Transverse Electric mode b)Transverse Magnetic mode	CO5	3	

Investigating the significance of Characteristic Impedance (Zo), and Propagation Constant (γ) of a Transmission Line using the following parameters

- a) Resistance
- b) Capacitance
- c) Inductance
- d) Conductance

Experiment Number:1

AIM: Finding Characteristic Impedance, and Propagation Constant of a Transmission Line for the given values of R,L,G and C

SOFTWARE REQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear;
clc;
R=10;L=.0037;f=1000;G=.4*(10^-6);C=.0083*(10^-6);
w=2*%pi*
f;
Z=R+(%i*
w*L);
Y=G+(%i*
w*C);
Zo=sqrt(Z/
Y);
C=round(re
```

```
al(Zo));
D=round(i
mag(Zo));
printf('-Zo = %f + j(%f)
ohms\n',C,D);
P=sqrt(Z*Y); a=real(P);
a1=round(a*1000
0)/10000;
printf('-Attenuation constant a = %f
neper/km\n',a1); b=imag(P);
b1=round(b*10000)/10000;
printf('-Phase constant b = %f radians/km',b1);
```

Variable R

Constants L=.0037; f=1000; G=.4*(10^-6); C=.0083*(10^-6).

S. No.	Inputs (R)	Outputs		
		Z0(ohms)	α(neper/km)	β(radians/km)
1				
2				
3				
4				
5				

Variable L

Constants R=20; f=1000; G=.4*(10^-6); C=.0083*(10^-6);

S. No.	Inputs (L)	Outputs		
		Z0(ohms)	α (neper/km)	β (radians/km)
1				
2				
3				
4				
5				

Variable f

Constants R=20; L=.009; G=.4*(10^-6); C=.0083*(10^-6);

S. No.	Inputs (f)	Outputs		
		Z0(ohms)	α (neper/km)	β (radians/km)
1				
2				
3				
4				
5				

Variable C

Constants R=20; L=.009; f=2500; G=.4*(10^-6);

S. No.	Inputs (C)	Outputs		
		Z0(ohms)	α (neper/km)	β (radians/km)
1				
2				
3				
4				
5			_	

RESULT:

The characteristic impedance and propagation constant of a transmission line is calculated using SCILAB and the impact of primary constants on secondary constants are investigated.

Estimation of Primary Constants (R,L,G &C) from Secondary Constants (Zo & γ)of an open wire transmission line

Experiment Number:2

AIM: To estimate the primary constants of a transmission line from Secondary Constants (Zo & γ)of an open wire transmission line

SOFTWARE REQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clc;  \label{eq:clc} \ Zo=2039.6; f=800; //value of Zo as taken in solution \\ P=0.054* exp(%i*(%pi/(180/87.9))); \\ w=2*%pi*f; \\ Z=Zo*P; \\ R=real(Z); \\ printf('-Resistance R = %f ohms/km\n',R); \\ L=(imag(Z))/w; \\ printf('-Inductance L = %f mH/km\n',L*(10^3)); \\ Y=P/Zo; \\ G=real(Y); \\ printf('-Conductance G = %f micromhos/km\n',G*(10^6)); \\ C=((imag(Y))/w)*(10^6); \\ c=round(C*10000)/10000 \\ printf('-Capacitance C = %f microfarads/km\n',c); \\ \end{cases}
```

Variable Zo; Constant

F = 800 Hz;

S. No	Input (Zo)	Outputs			
	ohms	R(ohms/km)	L(mH/km)	G(microohms/km)	C(microfarads/km)
1					
2					
3					
4					
5					

Variable f;

Constant Zo= 3000Ω ;

S. No	Input(f)	Outputs			
	MHz	R(ohms/km)	L(mH/km)	G(microohms/km)	C(microfarads/km)
1					
2					
3					
4					
5					

RESULT:

The primary constants of a transmission line are estimated using SCILAB and the impact of frequency and characteristic impedance on the output is studied.

Examining the impact of open and short circuited loads on a)Characteristic Impedance

b) Propagation Constant

Experiment Number:3

AIM: To examine the impact of open and short circuited loads on Characteristic Impedance and Propagation Constant

SOFTWAREREQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clc;  \label{eq:clc}  \mbox{Zoc=2000*exp(\%i*(-\%pi/(180/80)));Zsc=20*exp(\%i*(\%pi/(180/20)));l=0.5;w=10000; } \mbox{/value of length of cable as taken in solution} \\  \mbox{Zo=sqrt(Zoc*Zsc);} \\  \mbox{C=real(Zo);} \\  \mbox{D=imag(Zo);} \\  \mbox{printf("-Zo = \%f /_ %f ohms \n",abs(Zo),atan(D,C)*180/\%pi);} \\  \mbox{A=atanh(sqrt(Zsc/Zoc));} \\  \mbox{P=A/l;} \\  \mbox{a=real(P);} \\  \mbox{printf("-a = \%f neper/km \n",fix(a*10000)/10000);} \\  \mbox{b=imag(P);} \\  \mbox{printf("-b = \%f henry/km",round(b*10000)/10000);} \\ \mbox{} \mbox{}
```

Z

o

c

=

C

o

n

S

t

a

n

t

V

a

r

i

a

b

1

e

_

Z

S

c

Zsc	Zo	γ

	V
	a
Z	r
S	i
c	a
=	b
C	1
0	e
n	_
S	Z
t	0
a	c
n	Č
t	

Zoc	Zo	γ

RESULT:

The impact of open and short circuited loads on Characteristic Impedance and Propagation Constant is investigated over various values of Zsc and Zoc.

Evaluation of current and voltage of short circuited Lossless transmission line at the receiving end

Experiment Number:4

AIM: To evaluate the value of current and voltage of short circuited Lossless transmission line at the receiving end

SOFTWAREREQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

PROGRAM:

```
clear; clc; Zo=600; a=0.1; b=0.05; x=10; Is=20*(10^{-3}); Vr=0; printf("-Receiving end voltage Vr=0 because the receiving end has been short ciruited\n"); P=a+(%i*b); Ir=Is/(cosh(10*P)); A=real(Ir); B=imag(Ir); printf("-Received current is Ir = %f /_ %f mA ",round(abs(Ir)*(10^3)*100)/100,fix(atan(B,A)*180*10/%pi)/10);
```

OUTPUT:

α	Current I _{R (mA)}

β	Current I _{R (mA)}

RESULT: The value of current and voltage of short circuited Lossless transmission line at the receiving end are determined using SCILAB for various values of short circuited load impedance.

Analysis of SWR (Standing Wave Ratio) Transmission Lines by varying

a) load impedance

b)characteristic impedance

Experiment Number:5

AIM: To analyze the impact of load impedance and characteristic impedance on SWR

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clc;
clear;
close;
Zo=200;ZR=650-(%i*475);
K=(ZR-Zo)/(ZR+Zo);
ampK=sqrt((real(K)^2)+(imag(K)^2));
S=(1+ampK)/(1-ampK);
printf("(c)Standing wave ratio = %f",round(S*1000)/1000);
```

Zo=50 ohms Variable: Z_R

ZR Ohms	SWR

 Z_R =50/ $_40^{\circ}$ ohms Variable: Z_{\circ}

Zo Ohms	SWR

RESULT:

The impact of load impedance and characteristic impedance on SWR is estimated using SCILAB by varying the of the load impedance and characteristic impedance

Exploration of the relationship between position of Voltage minima nearest to the load by varying magnitude of reflection coefficient K

Experiment Number:6

AIM: To explore the relationship between position of Voltage minima nearest to the load by varying magnitude of reflection coefficient K

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clc; Zo=50;f=300*(10^{\circ}6);ZR=50+(\%i*50); lo=300/(f*(10^{\circ}-6)); //where f is in megahertz ,lo=wavelength of wave in air K=(ZR-Zo)/(ZR+Zo); ampK=sqrt((real(K)^{\circ}2)+(imag(K)^{\circ}2)); S=(1+ampK)/(1-ampK); printf("-VSWR = %f\n",round(S*100)/100); phi=atan(imag(K)/real(K)); ymax=phi*lo/(2*2*%pi); ymin=ymax+(lo/4); printf("-Position of voltage minimum nearest load = %f metres",round(ymin*10000)/10000); }
```

OUTPUT: Z
0
=
5
0
0
h

R

Z _R Ohms	SWR

 Z_R =50/ $_40^{\circ}$ ohms Variable: Z_{\circ}

Z _o Ohms	SWR

RESULT: The relationship between position of Voltage minima nearest to the load is studied by varying magnitude of reflection coefficient K using Scilab.

.

Designing a Quarter wave transformer by varying following parameters

- a) frequency
- b) input impedance
- c) characteristic impedance

Experiment Number:7

AIM: To Design a Quarter wave transformer by varying following parameters

- a) frequency
- b) input impedance
- c) characteristic impedance

SOFTWAREREQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clc; Zr=100;s=9;d=0.1; Zs=50; Ro=sqrt(Zs*Zr);f=100*(10^6); r=d/2; Zof=276*log10(s/r); Zoq=sqrt(Zr*Zof); L=300/(f*(10^6)); printf("length of lambda/4 transformer = %f lambda\n",L); printf("characteristic impedance of quarter wave line = %f ",fix(Ro*10000)/10000);
```

Z_R=50 ohms Variable: Z_S

\mathbf{Z}_{S}	Ro

Z_S=50 ohms Variable: Z_R

$\mathbf{Z}_{\mathbf{R}}$	Ro

Frequency	Length of $\lambda/4$ transformer

Strategize impedance matching with characteristic impedance and load impedance through the measurement of

- a) Location of the stub
- b) Length of the stub

Experiment Number:8

AIM: To calculate the location and length of single stub for varying characteristic impedance and load impedance

SOFTWAREREQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clear; clc; ZR=100;Zo=600;f=100*(10^{\circ}6); lo=300/(f^{*}(10^{\circ}-6)); //lo=wavelength Ls=(lo/(2*\%pi))^{*}(atan(sqrt(ZR/Zo))); printf("-Point of attachment = \%f cms\n",round(Ls*(10^{\circ}2)*10)/10) Lt=(lo/(2*\%pi))^{*}(\%pi+(atan((sqrt(ZR*Zo))/(ZR-Zo)))); printf("-Length of the short circuited stub = \%f cms",round(Lt*(10^{\circ}2)));
```

Variables Z_R ; Constants Zo = 600; f=100*(10^6);

Input	Output	
ZR Ohms	Point of attachment	Length of short-circuited stub
100		
150		
200		
250		
350		

Variable Zo; Constants ZR =100; f=100*(10^6);

Input	Output	
Zo Ohms	Point of attachment	Length of short-circuited stub
600		
900		
1200		
1500		
1800		

RESULT:

The location and length of single stub are calculated using SCILAB.

Analysis of Electromagnetic Waves across the two parallel plates estimating the following

- a) Critical Wavelength
- b) Guide

Wavelength

Experiment Number:9

AIM: To analyze the critical and guide wavelength of Electromagnetic waves between parallel plates

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear;
clc;
c=3*(10^8);
f=3000*(10^8);
lo=c/f;
l=lo*(10^4);
m=1;n=0;a=7.62;
lc=2*a;
printf("-Critical wavelength = %f cm\n",lc);
lg=sqrt((l*l*lc*lc)/((lc*lc)-(l*l)));
printf("-Guide wavelength = %f cm",round(lg*10)/10);
```

Spacing a(cm)	Critical wavelength	Guide wavelength

RESULT:

The critical wavelength and guide wavelength of Electromagnetic waves between two parallel plates are calculated using SCILAB

Determination of Dominant mode of Rectangular waveguides by examining the TE and TM modes

Experiment Number:10

AIM: To determine the dominant mode in a waveguide by examining the TE and TM modes

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clc;
clear;
close;
//TE10 Mode
a=8.636*10^-2;
b=4.318*10^-2;
f=4*10^9;
V=3*10^8;
m=input("enter the value of m= ");
n=input("enter the value of n= ");
fc=(V/(2*3.14))*sqrt((m*3.14/a)^2+(n*3.14/b)^2);
disp("Cut off frquency=",fc*10^-9);
```

Variable: a , Constant: Zs = 600; N=477; C=3*(10^8),b=5 cm;

TE Mode (m,n)	Cutoff frequency GHz
TE 1,0	
TE _{1,1}	
TE _{1,2}	
TE _{2,1}	
TE 2,2	

TM Mode (m,n)	Cutoff frequency GHz
TM _{3,1}	
TM _{1,1}	
TM _{2,1}	
TM _{1,2}	
TM _{1,3}	

RESULT:

The dominant mode in a waveguide is estimated using SCILAB.

Calculation of Group velocity, Phase velocity and phase constant of EM waves in rectangular waveguides

Experiment Number:11

AIM: To find the group velocity, phase velocity and phase constant of Electromagnetic waves in Rectangular Waveguides

SOFTWARE REQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clc:
clear;
close;
//TE10 Mode
a=8.636*10^{-2};
b=4.318*10^{-2};
f=4*10^9;
V=3*10^8;
m=input("enter the value of m= ");
n=input("enter the value of n= ");
fc=(V/(2*3.14))*sqrt((m*3.14/a)^2+(n*3.14/b)^2);
disp("Cut off frquency=",fc*10^-9);
//let phase velocity = A
A=V/sqrt(1-(fc/f)^2);
disp("Phase velocity in Mm/sec=",A*10^-6);
//let group velocity = B
B=V*V/A;
disp("Group velocity in Mm/sec =", B*10^-6);
```

variable a; constant b=4; f=9*(10^9); c=3*(10^8); n=377;

Input a	Output		
(cm)	Phase velocity(m/sec)	Group Velocity(m/sec)	

Variable f requency Constants a=4; b=4; c=3*(10^8); n=377;

Freq uenc	Output		
y (Hz)	Phase velocity(m/sec)	Group Velocity(m/sec)	

RESULT:

The group velocity, phase velocity and phase constant of waves in a rectangular waveguide are estimated using SCILAB.

Examining the propagation characteristics of circular waveguide in terms of a)Cutoff wavelength

- b) Guide wavelength
- c) characteristic impedance

Experiment Number:12

AIM: To determine the propagation characteristics of circular waveguide in terms of Cutoff wavelength. Guide wavelength and characteristic impedance

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear; clc; c=3*(10^8);f=8*(10^9);r=2.5;h=1.84;n=377; l=c/f; lo=l*(10^2); lc=2*%pi*r/h; printf("-Cutoff wavelength = %f cm\n",round(lc*100)/100); lp=lo/(sqrt(1-((lo/lc)^2))); printf("-Guide wavelength = %f cm\n",round(lp*100)/100); Zo=n/(sqrt(1-((lo/lc)^2))); printf("-Characteristic wave impedance = %f ohm",fix(Zo*10)/10);
```

a (cm)	λg m	λc m	Zo Ohms	

RESULT: The propagation characteristics of circular waveguide in terms of Cutoff wavelength Guide wavelength and characteristic impedance

Inference of Q Factor of Rectangular Cavity Resonator for TE101 mode with the following inputs

- a) Dimension a in x axis
- b) Dimension b in y axis
- c) Dimension p in z axis

Experiment Number:13

AIM: To determine the Q Factor of Rectangular Cavity Resonator for TE101 mode by varying three dimensions

SOFTWAREREQUIRED:

SCILAB

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clear;
clc;
a=5*10^-2,b=4*10^-2,c=10*10^-2,C=5.8*10^7,Uo=4*%pi*10^-7;
f101=3.335*10^9;
d=sqrt(1/(%pi*f101*Uo*C));
Q=(a*a+c*c)*a*b*c/(d*(2*b*(a^3 + c^3)+a*c*(a*a+c*c)));
disp(Q,'Quality factor of TE101 = ');
```

OUTPUT:		
Constant: b, d Variable :a		
	a (cm)	Q factor
Constant: a, d Variable :b		
	b (cm)	Q factor
Constant: a, b Variable :d		
	d(cm)	Q factor
	d(cm)	Q factor

RESULT: The Q Factor of Rectangular Cavity Resonator for TE101 mode by varying three dimensions is determined using Scilab

Computation of Resonant Frequency of Rectangular Cavity Resonator for a)Transverse Electric mode

b) Transverse Magnetic mode

Experiment Number:14

AIM: To find the Resonant Frequency of Rectangular Cavity Resonator for TE and TM mode

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

```
clc;
clear;
format('e',11);
a=0.05;
b=0.04;
c=0.03;
v=3*10^8;
p=1;
//for m=0,n=1.
m=0;
n=1;
fr011=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
disp(fr011,"fr011(in Hz)=");
//for m=1,n=0.
```

```
m=1;
n=0;
fr101=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
disp(fr101,"fr101(in Hz)=");
```

a (cm)	fr (TE101) MHz	b (cm)	fr (TE011) MHz

RESULT:

The Resonant Frequency of Rectangular Cavity Resonator for TE mode is determined using SCILAB

Estimation of Resonant Frequency in a Cylindrical Cavity Resonator for a)Transverse Electric mode

b) Transverse Magnetic mode

Experiment Number:15

AIM: To determine the resonant frequency of a Cylindrical Cavity Resonator for TE and TM mode

SOFTWAREREQUIRED:

SCILAB Version 6.1.1

PROCEDURE:

- Open SCILAB software
- Open file-new
- Put the input values
- Type the program
- Execute the program
- End the program

PROGRAM:

TE Mode

```
clc;
clear;
a=0.0274;
v=3*10^8;
Xnm=3.832;
d=2*a;
TE011=v/2*%pi*sqrt((Xnm/a)^2+(%pi/d)^2)*10^-9;
printf("TE011(in Hz)=%f GHZ",TE011);
```

```
TM Mode
```

```
clc;
clear;
a=0.0274;
v=3*10^8;
Xnm=2.405;
d=2*a;
TM011=v/2*%pi*sqrt((Xnm/a)^2+(%pi/d)^2)*10^-9;
printf("TM011(in Hz)=%f GHZ",TM011);
OUTPUT:
```

a (cm) fr (TE101) MHz fr (TM011) MHz

RESULT: The resonant frequency of a Cylindrical Cavity Resonator for TE and TM mode are determined using Scilab