Applied Containerization for Machine Learning

A Hands-on Guide to Running ML Workloads in HPC Environments

RCC Workshop Series

Summer 2025

Parmanand Sinha,

Computational Scientist (GIS+HPC)

University of Chicago Research Computing Center

Workshop Overview

- **Duration**: 2 hours (1 hour presentation, 1 hour hands-on)
- Level: Intermediate
- Prerequisites:
 - Basic programming knowledge
 - Linux CLI familiarity
 - Active RCC/cluster account
- Repository: GitHub

1. Introduction to Containerization in HPC

Why Containers for ML in HPC?

• Dependency Management:

- Package complex ML software stacks with all dependencies (Python, CUDA, MPI, etc.).
- Resolve version conflicts and avoid "dependency hell."

Portability:

- Run the same containerized environment on any cluster, cloud, or laptop.
- "Build once, run anywhere" across diverse HPC systems.

Security & Isolation:

- Restrict software to a controlled environment, reducing risk to the host system.
- Run untrusted or experimental code safely.

• Collaboration:

- Share containers with colleagues for consistent results.
- Simplifies onboarding and reproducibility in research teams.

Why Containers for ML in HPC? (Cont.)

Reproducibility:

- Capture the exact software environment for consistent, repeatable results.
- Essential for scientific research and peer review.

Performance:

- Near-native speed with minimal overhead; direct access to GPUs and high-speed interconnects.
- Optimized images can boost job throughput and resource utilization.

Scalability:

- Easily scale workloads from a laptop to thousands of nodes.
- Integrate seamlessly with schedulers like SLURM for large ML jobs.

[!callout]

Summary: Why Containers?

- Solve dependency and environment headaches
- Speed up onboarding and collaboration
- Achieve reproducible, portable, and secure ML workflows
- Unlock scalable, high-performance computing for modern research

Container Basics: What is a Container?

- An isolated, encapsulated user-space instance.
- Runs on a shared OS kernel but has its own:
 - Filesystem
 - Processes
 - Network interfaces (can be configured)
- Lightweight compared to Virtual Machines (VMs) as they don't require a full guest OS.

Containers vs Virtual Machines (VMs)

Aspect	Virtual Machine (VM)	Container
Isolation	Full (hardware/emulated)	Process/user-space
Guest OS	Full OS per VM	Shares host OS kernel
Startup	Slow (minutes)	Fast (seconds)
Resource Use	Heavy (more RAM/CPU)	Lightweight (minimal overhead)
Portability	Hypervisor-dependent	"Build once, run anywhere"
Use Case	Legacy apps, OS-level isolation	ML, microservices, HPC, CI/CD

Container vs VM

Image source: apptainer.org

Key Takeaways:

Container Basics: Key Components

- Container Images:
 - Read-only templates used to create containers.
 - Contain application code, libraries, dependencies, and metadata.
 - Examples: Docker Hub images, SIF files (Apptainer).
- Runtime Environments:
 - Software that runs containers (e.g., Apptainer, Docker, Charliecloud).
 - Manages container lifecycle, isolation, and resource allocation.

Containerization Workflow in HPC

Container Basics: Key Components (Cont.)

- Mount Points for Data (Bind Mounts):
 - Mechanism to make host directories/files accessible inside the container.
 - Essential for accessing datasets, scripts, and output directories.
- Resource Allocation:
 - Containers share host resources (CPU, memory, GPUs).
 - HPC schedulers (like SLURM) manage resource allocation for containerized jobs.

2. Apptainer (formerly Singularity) Introduction

Apptainer & Singularity: A Quick Note

- Apptainer is the direct successor to Singularity.
- You might see singularity used in older documentation or as the module name on some HPC systems.
- Commands are largely interchangeable (e.g., singularity pull VS. apptainer pull).
- This workshop uses modern apptainer commands.

Hands-on with Apptainer (Introduction)

(This section introduces Apptainer. The actual hands-on will follow in the next hour.)

Apptainer: Getting Started

```
# Load Apptainer module (on HPC systems)
module load apptainer

# Pull a PyTorch container image from Docker Hub
apptainer pull docker://pytorch/pytorch:latest
# This creates a .sif file (e.g., pytorch_latest.sif)
```

- SIF (Singularity Image Format): Apptainer's default, optimized image format.
- Storage Tip: For large images, consider pulling/storing them in your scratch directory.
 - On Midway3: \$SCRATCH/\$USER/sif_files/ (where \$SCRATCH is /scratch/midway3).
 - Check your system's recommended scratch location.

Apptainer: Basic Commands

Interactive Shell:

```
# Start an interactive shell inside the container
# --nv enables NVIDIA GPU access
apptainer shell --nv pytorch_latest.sif
```

• Run a Python Script:

```
# Execute a command (e.g., a Python script) inside the container
apptainer exec --nv pytorch_latest.sif python my_script.py
```

Apptainer: Basic Commands (Cont.)

Bind Data Directories:

```
# Run a container and mount /data on host to /data in container
apptainer run --nv --bind /path/on/host:/path/in/container pytorch_latest.sif

# Example: Mount current working directory ($PWD) to /mnt inside container
apptainer run --nv --bind $PWD:/mnt pytorch_latest.sif
```

- apptainer run executes the default runscript defined in the image (if any).
- Binding \$PWD (current working directory) is very useful for accessing your scripts and local data within the container.

Apptainer: Key Features

- **GPU Support**: --nv flag for seamless NVIDIA GPU access.
- Data Binding: Mount host directories inside the container (--bind or -B).
 - Crucial for accessing datasets and saving results.
- Environment Variables: Pass configuration through the container boundary.
 - Apptainer typically inherits host environment; can be controlled.
- MPI Support: Run distributed workloads across nodes.
 - Often requires MPI compatibility between host and container.

3. Charliecloud Overview

Charliecloud vs. Apptainer

Feature	Apptainer (formerly Singularity)	Charliecloud
Security Model	set-UID (optional), rootless execution	Fully unprivileged (user namespaces)
Image Format	SIF (optimized, single file)	Directory trees, SquashFS
Build Process	.def files, build from Docker Hub	Direct Dockerfile support
Best Use Case	Complex ML workflows, ease of use	Security-critical environments, Docker familiarity

Charliecloud: Key Benefits

- Minimal Attack Surface:
 - Fully unprivileged operation using user namespaces.
 - Reduces security risks on shared HPC systems.
- Docker Compatibility:
 - Direct use of Dockerfiles for building images (ch-convert).
 - Easier transition for users familiar with Docker.
- Lightweight & Simple:
 - Simpler architecture and deployment compared to some other runtimes.
 - Focuses on core containerization features.

4. Practical ML Container Deployment (Examples)

TensorFlow Example with Apptainer

```
# 1. Pull TensorFlow container (GPU version)
apptainer pull docker://tensorflow/tensorflow:latest-gpu
# 2. Run training script
# Assumes train.py and data are accessible via bind mounts
apptainer exec --nv tensorflow_latest-gpu.sif \
    python /path/to/your/train.py --data /path/to/data
```

- --nv: Enables NVIDIA GPU access.
- Bind mount your script directory and dataset directory.

PyTorch Example with Apptainer (Multi-GPU)

```
# Pull PyTorch container (if not already done)
# apptainer pull docker://pytorch/pytorch:latest

# Multi-GPU training using torchrun (formerly torch.distributed.launch)
apptainer exec --nv pytorch_latest.sif \
    torchrun --nproc_per_node=4 /path/to/your/distributed_train.py
```

- Assumes distributed_train.py is set up for PyTorch DDP.
- --nproc per node should match available GPUs.

Distributed Training Topology (Multi-Node/Multi-GPU)

5. SLURM Integration (Brief Overview)

SLURM Job Lifecycle

SLURM: Single-Node Job Example

```
#!/bin/bash
#SBATCH --job-name=ml-training
#SBATCH --gres=gpu:1  # Request 1 GPU
#SBATCH --partition=gpu  # Specify GPU partition
#SBATCH --cpus-per-task=4  # Request 4 CPUs
#SBATCH --mem=16G
                             # Request 16GB RAM
# Load Apptainer module
module load apptainer
# Define paths (replace with your actual paths)
CONTAINER IMAGE=/path/to/pytorch latest.sif
SCRIPT DIR=/path/to/your/scripts
DATA DIR=/path/to/your/data
OUTPUT DIR=/path/to/your/output
# Ensure output directory exists
mkdir -p $OUTPUT DIR
# Run the containerized job
apptainer run --nv \
  --bind $SCRIPT DIR:/scripts \
  --bind $DATA DIR:/data \
  --bind $OUTPUT DIR:/output \
  $CONTAINER IMAGE python /scripts/train.py --data dir /data --output dir /output
```

SLURM: Multi-Node Distributed Training Example

```
#!/bin/bash
#SBATCH --job-name=dist-ml-train
#SBATCH --nodes=2
                     # Request 2 nodes
#SBATCH --ntasks-per-node=4  # 4 tasks (processes) per node
                    # 4 GPUs per node (total 8 GPUs)
#SBATCH --gres=gpu:4
#SBATCH --cpus-per-task=2  # 2 CPUs per task
#SBATCH --partition=gpu-multi  # Example partition for multi-node GPU jobs
module load apptainer
CONTAINER IMAGE=/path/to/your/ml container.sif
# Script should handle distributed setup (e.g., using torchrun environment variables)
# srun will launch 'ntasks-per-node' copies of this command on each node
srun apptainer run --nv \
  --bind /path/to/data:/data \
  $CONTAINER IMAGE \
  torchrun --nnodes=$SLURM NNODES \
          --nproc per node=$SLURM NTASKS PER NODE \
          --rdzv id=$SLURM JOB ID \
           --rdzv backend=c10d \
          --rdzv endpoint=$SLURM_STEP_NODELIST:29500 \
          /path/to/your/distributed train.py
```

6. Best Practices

Best Practices: Container Management

- Version Control & Tagging:
 - Tag containers with specific versions (e.g., myimage:1.0.0, myimage:latest-cuda11.8).
 - Store definition files (.def , Dockerfiles) in version control (Git).
- Data Management:
 - Use bind mounts for large datasets to avoid including them in images.
 - Keep images small and focused on software environment.
- Resource Allocation:
 - Match container resource needs to SLURM (or other scheduler) requests.
 - Avoid over-subscribing resources.

Best Practices: Performance Optimization

- **GPU Access**: Always use --nv (Apptainer) or equivalent for GPU workloads.
- I/O Optimization:
 - Bind fast storage for temporary files. On Midway3, compute nodes often have a high-throughput SSD directory at \$TEMP (e.g., /scratch/local/\$USER/) ideal for this.
 - For frequently accessed small files or datasets, consider staging them to such temporary storage.
 - Be mindful of I/O patterns within the container.
- MPI Configuration:
 - For multi-node MPI jobs, ensure compatibility between container MPI and host MPI (Hybrid model or Bind model).
 - Consult HPC center documentation for recommended MPI practices with containers.

Best Practices: Security Considerations

- Unprivileged Execution:
 - Run containers without root access whenever possible.
 - Apptainer runs as user by default. Charliecloud is designed for unprivileged execution.
- Data Protection:
 - Use appropriate bind mounts; be specific about what host paths are exposed.
 - Avoid overly broad mounts (e.g., binding /).
- Resource Limits:
 - Rely on the HPC scheduler (SLURM) to enforce resource limits (CPU, memory, GPU).
 - Containers operate within the cgroups/namespaces set by the scheduler.

7. Additional Resources

Resources: Documentation

Apptainer Official Documentation:

https://apptainer.org/docs/

Apptainer Logo

Charliecloud User Guide:

https://hpc.github.io/charliecloud/

Charliecloud Logo

Workshop Repository:

(Contains this presentation, examples, and hands-on materials)

Resources: Example Repositories & Further Learning

- ML Framework Containers (Official Hubs):
 - Docker Hub: https://hub.docker.com/

(e.g., `pytorch/pytorch`, `tensorflow/tensorflow`)

NVIDIA NGC: https://ngc.nvidia.com/

NVIDIA Logo

- SLURM Integration Scripts: Check your HPC center's documentation for specific examples.
- Further Learning Topics:
 - Advanced container building (multi-stage builds, custom base images)
 - Creating custom ML environments from scratch
 - Advanced distributed training patterns (e.g., with Horovod, DeepSpeed)

Key Takeaway

- Containerization enables reproducible, portable, and efficient ML workflows in HPC environments.
 - Choose between **Apptainer** and **Charliecloud** based on your specific needs for:
 - Security model
 - Ease of use
 - Image format preferences
 - Integration requirements with existing Docker workflows

Q&A and Thank You!

Next: Hands-on Session!

References & Further Reading

- Apptainer Documentation
- Charliecloud User Guide
- Singularity/Apptainer on RCC
- Docker Documentation
- NVIDIA NGC Containers
- PyTorch Containers
- TensorFlow Containers
- SLURM Documentation
- HPC Best Practices
- Research Computing Center, UChicago

For more info, see the workshop repo: github.com/rcc-uchicago/hpc-ml-containers-workshop

