The Singular Value Decomposition

We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general systems of equations

$$y = Ax$$
, $y \in \mathbb{R}^M$, $A \text{ is } M \times N$, $x \in \mathbb{R}^N$.

We have seen that a symmetric positive definite matrix can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$, where \mathbf{V} is an orthogonal matrix ($\mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I}$) whose columns are the eigenvectors of \mathbf{A} , and $\mathbf{\Lambda}$ is a diagonal matrix containing the eigenvalues of \mathbf{A} . Because both orthogonal and diagonal matrices are trivial to invert, this eigenvalue decomposition makes it very easy to solve systems of equations $\mathbf{y} = \mathbf{A}\mathbf{x}$ and analyze the stability of these solutions.

The singular value decomposition (SVD) takes apart an arbitrary $M \times N$ matrix \boldsymbol{A} in a similar manner. The SVD of a $M \times N$ matrix \boldsymbol{A} with rank¹ R is

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$$

where

1. U is a $M \times R$ matrix

$$oldsymbol{U} = egin{bmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_2 & oldsymbol{u}_R \end{bmatrix},$$

whose columns $\boldsymbol{u}_m \in \mathbb{R}^M$ are orthogonal. Note that while $\boldsymbol{U}^T\boldsymbol{U} = \mathbf{I}$, in general $\boldsymbol{U}\boldsymbol{U}^T \neq \mathbf{I}$ when R < M. The columns of \boldsymbol{U} are an orthobasis for the range space of \boldsymbol{A} .

¹Recall that the rank of a matrix is the number of linearly independent columns of a matrix (which is always equal to the number of linearly independent rows).

2. V is a $N \times R$ matrix

$$oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_2 & oldsymbol{v}_R \end{bmatrix},$$

whose columns $\boldsymbol{v}_n \in R^N$ are orthonormal. Again, while $\boldsymbol{V}^T\boldsymbol{V} = \mathbf{I}$, in general $\boldsymbol{V}\boldsymbol{V}^T \neq \mathbf{I}$ when R < N. The columns of \boldsymbol{V} are an orthobasis for the range space of \boldsymbol{A}^T (recall that Range(\boldsymbol{A}^T) consists of everything which is orthogonal to the nullspace of \boldsymbol{A}).

3. Σ is a $R \times R$ diagonal matrix with positive entries:

$$oldsymbol{\Sigma} = egin{bmatrix} \sigma_1 & 0 & 0 & \cdots \ 0 & \sigma_2 & 0 & \cdots \ dots & \ddots & dots \ 0 & \cdots & \cdots & \sigma_R \end{bmatrix}.$$

We call the σ_r the **singular values** of A. By convention, we will order them such that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_R$.

4. The v_1, \ldots, v_R are eigenvectors of the positive semi-definite matrix $\mathbf{A}^{\mathrm{T}}\mathbf{A}$. Note that

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathrm{T}},$$

and so the singular values $\sigma_1, \ldots, \sigma_R$ are the square roots of the non-zero eigenvalues of $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$.

5. Similarly,

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so the u_1, \ldots, u_R are eigenvectors of the positive semidefinite matrix AA^{T} . Since the non-zero eigenvalues of $A^{T}A$ and $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ are the same, the σ_r are also square roots of the eigenvalues of $\mathbf{A}\mathbf{A}^{\mathrm{T}}$.

The rank R is the dimension of the space spanned by the columns of A, this is the same as the dimension of the space spanned by the rows. Thus $R \leq \min(M, N)$. We say A is **full rank** if $R = \min(M, N)$.

As before, we will often times find it useful to write the SVD as the sum of R rank-1 matrices:

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ ext{T}} = \sum_{r=1}^{R} \, \sigma_r \, oldsymbol{u}_r oldsymbol{v}_r^{ ext{T}}.$$

When \boldsymbol{A} is **overdetermined** (M > N), the decomposition looks like this

$$\left[egin{array}{c} oldsymbol{A} \end{array}
ight] = \left[egin{array}{c} oldsymbol{U} \end{array}
ight] \left[egin{array}{cccc} oldsymbol{\sigma}_1 & & & \ & \ddots & & \ & & \sigma_R \end{array}
ight] \left[egin{array}{cccc} oldsymbol{V}^{\mathrm{T}} \end{array}
ight]$$

When \boldsymbol{A} is **underdetermined** (M < N), the SVD looks like this

$$egin{bmatrix} oldsymbol{A} & & \ \end{bmatrix} = egin{bmatrix} oldsymbol{U} & \ \end{bmatrix} egin{bmatrix} \sigma_1 & & \ & \ddots & \ & & \sigma_R \end{bmatrix} egin{bmatrix} oldsymbol{V}^{\mathrm{T}} & & \ & & \end{array}$$

When \boldsymbol{A} is **square** and full rank (M = N = R), the SVD looks like

Technical Details: Existence of the SVD

In this section we will prove that any $M \times N$ matrix \mathbf{A} with rank(\mathbf{A}) = R can be written as

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$$

where U, Σ, V have the five properties listed at the beginning of the last section.

Since $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is symmetric positive semi-definite, we can write:

$$oldsymbol{A}^{ ext{T}}oldsymbol{A} = \sum_{n=1}^{N} \lambda_n oldsymbol{v}_n oldsymbol{v}_n^{ ext{T}},$$

where the \boldsymbol{v}_n are orthonormal and the λ_n are real and non-negative. Since rank(\boldsymbol{A}) = R, we also have rank($\boldsymbol{A}^T\boldsymbol{A}$) = R, and so $\lambda_1, \ldots, \lambda_R$ are all strictly positive above, and $\lambda_{R+1} = \cdots = \lambda_N = 0$.

Set

$$\boldsymbol{u}_m = \frac{1}{\sqrt{\lambda_m}} \boldsymbol{A} \boldsymbol{v}_m, \quad \text{for } m = 1, \dots, R, \qquad \boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_R \end{bmatrix}.$$

Notice that these u_m are orthonormal, as

$$\langle \boldsymbol{u}_m, \boldsymbol{u}_\ell \rangle = \frac{1}{\sqrt{\lambda_m \lambda_\ell}} \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_m = \sqrt{\frac{\lambda_m}{\lambda_\ell}} \, \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{v}_m = \begin{cases} 1, & m = \ell, \\ 0, & m \neq \ell. \end{cases}$$

These \boldsymbol{u}_m also happen to be eigenvectors of $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$, as

$$oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{u}_{m}=rac{1}{\sqrt{\lambda_{m}}}oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{A}oldsymbol{v}_{m}=\sqrt{\lambda_{m}}oldsymbol{A}oldsymbol{v}_{m}=\lambda_{m}oldsymbol{u}_{m}.$$

Now let $\boldsymbol{u}_{R+1}, \ldots, \boldsymbol{u}_{M}$ be an orthobasis for the null space of $\boldsymbol{U}^{\mathrm{T}}$ — concatenating these two sets into $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}$ forms an orthobasis for all of \mathbb{R}^{M} .

Let

$$oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_R \end{bmatrix}, \quad oldsymbol{V}_0 = egin{bmatrix} oldsymbol{v}_{R+1} & oldsymbol{v}_{R+2} & \cdots & oldsymbol{v}_N \end{bmatrix}, \quad oldsymbol{V}_{ ext{full}} = egin{bmatrix} oldsymbol{V} & oldsymbol{V}_0 \end{bmatrix}$$

and

$$oldsymbol{U}_0 = egin{bmatrix} oldsymbol{u}_{R+1} & oldsymbol{u}_{R+2} & \cdots & oldsymbol{u}_M \end{bmatrix}, \quad oldsymbol{U}_{ ext{full}} = egin{bmatrix} oldsymbol{U} & oldsymbol{U}_0 \end{bmatrix}.$$

It should be clear that $\boldsymbol{V}_{\text{full}}$ is an $N \times N$ orthonormal matrix and $\boldsymbol{U}_{\text{full}}$ is a $M \times M$ orthonormal matrix. Consider the $M \times N$ matrix $\boldsymbol{U}_{\text{full}}^{\text{T}} \boldsymbol{A} \boldsymbol{V}_{\text{full}}$ — the entry in the mth rows and nth column of this matrix is

$$(\boldsymbol{U}_{\text{full}}^{\text{T}} \boldsymbol{A} \boldsymbol{V}_{\text{full}})[m, n] = \boldsymbol{u}_{m}^{\text{T}} \boldsymbol{A} \boldsymbol{v}_{n} = \begin{cases} \sqrt{\lambda_{n}} \, \boldsymbol{u}_{m}^{\text{T}} \boldsymbol{u}_{n} & n = 1, \dots, R \\ 0, & n = R + 1, \dots, N. \end{cases}$$

$$= \begin{cases} \sqrt{\lambda_{n}}, & m = n = 1, \dots, R \\ 0, & \text{otherwise.} \end{cases}$$

Thus

$$oldsymbol{U}_{ ext{full}}^{ ext{T}}oldsymbol{A}oldsymbol{V}_{ ext{full}} = oldsymbol{\Sigma}_{ ext{full}}$$

where

$$\Sigma_{\text{full}}[m, n] = \begin{cases} \sqrt{\lambda_n}, & m = n = 1, \dots, R \\ 0, & \text{otherwise.} \end{cases}$$

Since $\boldsymbol{U}_{\text{full}}\boldsymbol{U}_{\text{full}}^{\text{T}}=\mathbf{I}$ and $\boldsymbol{V}_{\text{full}}\boldsymbol{V}_{\text{full}}^{\text{T}}=\mathbf{I}$, we have

$$oldsymbol{A} = oldsymbol{U}_{ ext{full}} oldsymbol{\Sigma}_{ ext{full}} oldsymbol{V}_{ ext{full}}^{ ext{T}}.$$

Since Σ_{full} is non-zero only in the first R locations along its main diagonal, the above reduces to

$$m{A} = m{U}m{\Sigma}m{V}^{ ext{T}}, \quad m{\Sigma} = egin{bmatrix} \sqrt{\lambda_1} & & & & \ & \sqrt{\lambda_2} & & & \ & & \ddots & & \ & & \sqrt{\lambda_R} \end{bmatrix}.$$