第二次上机作业

问题叙述:

- 编写非线性方程求根的不动点迭代算法程序
- 从不同的初始点开始,分别采用以下三种迭代方式求解方程 $x^2 x 1 = 0$ 的正根,记录迭代过程并说明原因。

$$x = x^2 - 1 \tag{1}$$

$$x = 1 + \frac{1}{x} \tag{2}$$

$$x = \sqrt{x+1} \tag{3}$$

Matlab 代码:

```
1 function [k, p, ea, P, et, x] = fixpt(g, p0, tol, max1)
P(1)=p0;
real = 1.618033988749895;
  et(1) = abs((P(1) - real) / real);
  for k=2:\max 1
5
       P(k)=feval(g,P(k-1));%不动点迭代
6
       err=abs(P(k)-P(k-1));
7
       ea(k)=err/(abs(P(k))+eps);%计算相对误差
       p=P(k);
9
       et(k)=abs((P(k)-real)/real);
10
       x(k)=k;
11
       if ea(k)<tol, break; end
12
  end
13
  if k == max1
14
       disp ('maximum number of iterations exceeded')
15
  end
16
17 P=P';%记录每次迭代的值
18 ea=ea;
  et=et ';
19
  end
20
```

```
1 clc, clear, close all
2 start = 2.5; %start point
3 tol=eps;
```

```
4
  \%algorithm1
5
   [k1,p1,ea1,P1,et1,x]=fixpt(@f1,start,tol,10000);
6
   semilogy (x, P1);
   xlabel('迭代次数');
   ylabel('迭代值');
10
  %% algorithm 2
11
  [k2,p2,ea2,P2,et2,x]=fixpt(@f2,start,tol,10000);
12
  semilogy (x, P2);
  xlabel('迭代次数');
   ylabel('迭代值');
16
  %% algorithm3
17
  [k3, p3, ea3, P3, et3, x] = fixpt(@f3, start, tol, 10000);
   semilogy(x, P3);
   xlabel('迭代次数');
   ylabel('迭代值');
21
22
   function f=f1(x)
23
  f = x^2 - 1;
24
   end
25
26
   function f=f2(x)
27
   f = 1 + 1/x;
28
   end
29
30
   function f=f3(x)
31
   f = sqrt(x+1);
32
33 end
```

程序运行结果:

第一种算法:

无法收敛,输出"maximum number of iterations exceeded"。

表 1: 起始点 x=1.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	1.5000000000000000	Inf	0.072949016875158
2	1.2500000000000000	0.2000000000000000	0.227457514062631
3	0.562500000000000	1.2222222222222	0.652355881328184
4	-0.683593750000000	1.822857142857142	1.422484171996999
:	÷	÷ ·	:
22	-0.99999999999999	0.999999894563900	1.618033988749888
23	-2.220446049250313e-14	4.459009532049848e+13	1.000000000000014
24	-1	0.99999999999978	1.618033988749895
25	0	$4.503599627370496\mathrm{e}{+15}$	1
÷	:	:	:

表 2: 起始点 x=-2

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	-2	Inf	2.236067977499790
2	3	1.6666666666666667	0.854101966249685
3	8	0.6250000000000000	3.944271909999159
4	63	0.873015873015873	37.936141291243370
:	:	:	<u>:</u>
10	1.426569025399668e + 115	1	8.816681449948065e+114
11	2.035099184229757e + 230	1	1.257760466331174e + 230
12	inf	NaN	inf
13	inf	NaN	inf
:	:	:	:

图 1: 起始点 x=-2

表 3: 起始点 x=2.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	2.5000000000000000	Inf	0.545084971874737
2	5.250000000000000	0.523809523809524	2.244678440936948
3	26.5625000000000000	0.802352941176471	15.416527826169082
4	$7.045664062500000\mathrm{e}{+02}$	0.962299508230350	$4.344459863938664\mathrm{e}{+02}$
÷	:	÷	÷
9	1.359840060999618e + 91	1	8.404273769614945e + 90
10	1.849164991499446e + 182	1	1.142846815553068e + 182
11	inf	NaN	inf
12	inf	NaN	inf
:	÷	÷	÷ ·

图 2: 起始点 x=2.5

第二种算法:

表 4: 起始点 x=1.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	1.50000000000000000	Inf	0.072949016875158
2	1.666666666666667	0.100000000000000	0.030056647916491
3	1.60000000000000000	0.0416666666666667	0.011145618000168
4	1.62500000000000000	0.015384615384615	0.004305231718579
÷	:	:	:
36	1.618033988749895	6.861555643110580e-16	1.372311128622116e-16
37	1.618033988749895	1.372311128622116e-16	0

图 3: 起始点 x=1.5

表 5: 起始点 x=-2

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	-2	Inf	2.236067977499790
2	0.5000000000000000	4.99999999999998	0.690983005625053
3	3	0.833333333333333	0.854101966249685
4	1.3333333333333333	1.2500000000000000	0.175954681666807
÷	:	:	:
41	1.618033988749895	2.744622257244233e-16	0
42	1.618033988749895	0	0

图 4: 起始点 x=-2

表 6: 起始点 x=2.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	2.5000000000000000	Inf	0.545084971874737
2	1.40000000000000000	0.785714285714286	0.134752415750147
3	1.714285714285714	0.1833333333333333	0.059486837856963
4	1.5833333333333333	0.082706766917293	0.021446184479333
:	:	:	:
38	1.618033988749895	4.116933385866349e-16	1.372311128622116e-16
39	1.618033988749895	1.372311128622116e-16	0

图 5: 起始点 x=2.5

第三种算法:

表 7: 起始点 x=1.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	1.50000000000000000	Inf	0.072949016875158
2	1.581138830084190	0.051316701949486	0.022802462075726
3	1.606592303630324	0.015843144205669	0.007071350292469
4	1.614494442118128	0.004894497176117	0.002187560123197
÷	:	:	:
30	1.618033988749895	2.744622257244233e-16	1.372311128622116e-16
31	1.618033988749895	1.372311128622116e-16	0

图 6: 起始点 x=1.5

表 8: 起始点 x=-0.8

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	-0.8000000000000000	Inf	1.494427190999916
2	0.447213595499958	2.788854381999831	0.723606797749979
3	1.203001910015091	0.628251965539815	0.256503931079631
4	1.484251296113664	0.189489062152070	0.082682251155671
÷	:	:	:
33	1.618033988749895	4.116933385866349e-16	1.372311128622116e-16
34	1.618033988749895	1.372311128622116e-16	0

图 7: 起始点 x=-0.8

表 9: 起始点 x=2.5

序号	当前计算值 x	近似百分比相对误差 ε_a	真百分比相对误差 ε_s
1	2.50000000000000000	Inf	0.545084971874737
2	1.870828693386971	0.336306209562122	0.156235719641703
3	1.694351998076837	0.104155863427695	0.047167123717782
4	1.641448140538359	0.032229990233579	0.014470741623020
÷	:	:	:
31	1.618033988749895	5.489244514488464e-16	1.372311128622116e-16
32	1.618033988749895	1.372311128622116e-16	0

图 8: 起始点 x=2.5

心得体会:

对于第一问,定义当前迭代结果的近似相对误差:

$$\varepsilon_a = \frac{\text{当前近似值} - \text{前一近似值}}{\text{当前近似值}} \times 100\% \tag{4}$$

当 $\varepsilon_a < eps($ 机器精度) 或迭代次数达到上限时停止迭代。

对于第二问,取迭代到最后一次的值作为真值计算误差。可以发现,对于第一种算法,当初值的绝对值小于真值 x_0 时,迭代到最后会进入 0 和-1 之间循环;当初值的绝对值大于真值 x_0 时,迭代到最后会趋近于正无穷。无论哪种情况,该算法都无法收敛。这是因为在零点附近 $g(x)=x^2-1$ 的导数大于 1,出现了发散的情况。同时又因为 g(x) 有两个二阶不动点 0 和-1,因此若初值绝对值小于 x_0 ,最后会稳定在这两个点之间循环。

图 9: 单调发散

对于第二种算法,由图像可以发现迭代值在真值附近上下跳动最后收敛于真值。这是因为在零点附近 $g(x)=1+\frac{1}{x}$ 的导数小于 0 且大于-1,迭代值振荡收敛于真值。

图 10: 振荡收敛

对于第三种算法,由图像可以发现迭代值逐步趋近于真值且一直在真值得同一边。这是因为在零点附近 $g(x) = \sqrt{(x+1)}$ 的导数大于 0 且小于 1,迭代值单调收敛于真值。

图 11: 单调收敛