Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has six (6) pages, including this one.
- The test is seventy-five (75) minutes long.
- Enter your answer in the boxes provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	20	
3	10	
4	10	
5	30	
6	30	
Total	100	

Problem 1 (10 pts). Evaluate $\int_R (3x + 4y^2) dA$, where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. Sketch the region of integration.

$$\int_{R} (3x + 4y^2) \, dA =$$

Problem 2 (10 pts). Sketch the domain of integration, and convert the following integrals to polar coordinates. **Do not evaluate.**

$$\int_0^1 \int_0^y x \, dx \, dy =$$

Problem 3 (10 pts). Evaluate the integral $\int_R \sin(y^2) dA$ where R is the triangle with vertices (0,0), (1,1) and (0,1). Sketch the domain of integration.

Hint: The order of integration really matters for this problem.

$$\int_{R} \sin(y^2) \, dA =$$

Problem 4 (10 pts). Use a double or a triple integral (your choice!) to compute the volume under the graph of f(x,y) = xy and above the region bounded by $x = y^2$ and x = y.

$$V = \iint_D f(x, y) dA = \iiint_R dV =$$

Problem 5 (30 pts—10 pts each part). Let's assume that we are using the spherical coordinates from the textbook: For $r \ge 0$, $0 \le \phi \le 2\pi$ and $0 \le \psi \le \pi$,

$$\begin{cases} x = r \sin \psi \cos \phi \\ y = r \sin \psi \sin \phi \\ z = r \cos \psi \end{cases}$$

We want to compute the volume of the solid bounded below by the xy-plane, on the sides by the sphere $x^2 + y^2 + z^2 = 4$, and above by the cone $\psi = \pi/3$.

(a) Sketch the object described above to the best of your ability.

(b) Express the volume of the object as a triple integral in either cylindrical or spherical coordinates (your choice).

$$V(D) = \iiint_D \mathbf{1} \, dV =$$

(c) Evaluate that integral to obtain the volume of the object.

$$V(D) = \iiint_D \mathbf{1} \, dV =$$

Problem 6 (30 pts—10 pts each part). Integrate the function f(x, y, z) = 3xy on the solid bounded above by the paraboloid $z = 5 - x^2 - y^2$ and below by the paraboloid $z = 4x^2 + 4y^2$.

(a) Sketch the object to the best of your ability.

(b) Express as a triple integral in either cylindrical or spherical coordinates (your choice).

$$\iiint_D f(x, y, z) dV =$$

(c) Evaluate that integral to obtain the volume of the object.

$$\iiint_D f(x, y, z) dV =$$