12 Ways to Blink an LED

Charlotte Hackerspace Neil Roeth

LED basic circuit

- Need to limit current (no magic smoke)
- $\bullet \quad V = V_{LED} + V_{R}$
- $V_R = IR$ (Ohm's Law)
- $V = V_{LED} + IR = R = (V V_{LED})/I$
- LED: $V_{LED} \sim 2.5V$

- Raspberry Pi: 3.3V, 16mA
- R = (3.3 2.5)/0.016 = 50 ohms
- Arduino: 5V, 40mA
- R = (5 2.5)/0.040 = 62.5 ohms
- Bigger is safer

Blink LED with pushbutton

Blink LED with Pi

• Create a file named BlinkRaspberryPi.py with Python code:

```
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(25, GPIO.OUT)

while True:
    GPIO.output(25, GPIO.HIGH)
    time.sleep(1)
    GPIO.output(25, GPIO.LOW)
    time.sleep(1)
```

• Ensure you have the Python libraries for accessing GPIO pins installed:

```
$ sudo apt-get install python-rpi.gpio python3-rpi.gpio
```

- Runit: python BlinkRaspberryPi.py
- What does script do?
- Raspberry Pi has digital outputs only (HIGH, LOW)

555 Astable Multivibrator

- Connect 5V from Pi to red rail, ground to blue rail
- Dot on IC is pin 1, C1 has +/-
- Timing is determined by how quickly capacitor C1 charges/discharges

How the 555 circuit works

- Charging (left): Capacitor C1 charges through R1 and R2
- · When capacitor voltage reaches 2/3 V1, pin 7 connects to ground
- · Discharging (right): Capacitor C1 discharges through R2
- · When capacitor drops to 1/3 V1, pin 7 disconnects from ground
- · Water analogy: voltage like pressure, current like flow rate
- · Capacitor like bucket, resistor like hose restriction
- · Bigger capacitor or bigger resistor means longer time
- Time constant for charging = (R1+R2)*C1
- Time constant for discharging= R2*C1

Arduino

- https://www.arduino.cc/ , Download, "Linux ARM (experimental)"
- \$ cd ~/Downloads
- \$ tar Jxf arduino-1.6.*-linuxarm.tar.xz
- \$ cd arduino-1.6.*-linuxarm
- \$./install.sh
- \$./install.sh
- Start the Arduino IDE, set Board and Port
- Open the Blink example, compile and upload
- If using Nano, use built in LED on pin 13
- If not Nano, wire LED and resistor to a pin, change program to suit.

ATtiny

- Attiny 45 is a tiny Arduino (6 I/O pins, 4kb memory)
- Use Arduino IDE to set up:
 - Open File→Preferences
 - Go to "Additional Boards Manager URL"
 - https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json
 - Click OK
 - Open Tools→Board→Boards Manager
 - Scroll to the bottom to "attiny"
 - Click once, Install button will appear, click it
 - Should see "INSTALLED" next to "attiny" when complete
 - Should now have two ATtiny options in Tools→Board menu:
 - ATtiny 25/45/85
 - ATtiny 24/44/84

Set up Arduino as ATtiny programmer

- Load sketch File→Examples→11.ArduinoISP→ArduinoISP
- Upload to Arduino.
- Go to Tools→Board and select "ATtiny 25/45/85".
- Go to Tools→Processor and select "ATtiny 45".
- Go to Tools→Clock and select "Internal 1MHz".
- Go to Tools→Programmer and select "Arduino as ISP".

Connect Attiny to Arduino, upload sketch

- Wire up ATtiny to Arduino with jumpers (see below).
- If Nano, put 47uF capacitor between RST (+) and GND (-).
- Wire an LED and resistor to pin 5 (logical pin 0).
- Load the Blink sketch from Examples (or from GitHub).
- Modify to use pin 0 instead of 13.
- Upload, LED blinks.

Pin name	Attiny pin	Nano	Uno
RST	1	D10	10
GND	4	GND	GND
MOSI	5	D11	11
MISO	6	D12	12
SCK	7	D13	13
VCC	8	5V	5V

Transistor Astable Multivibrator

- Similar to the 555 astable multivibrator but with super simple transistor
- Timing similar to 555: R1*C1 and R2*C2
- Note: transistors as switches useful for Raspberry Pi pins, too

- Transistors Q1 and Q2 are switches (rather than amplifiers)
- Timing determined by R1*C1 and R2*C2
- If C1 discharged, C2 charged, then Q1 on, Q2 off
- C1 charges until it turns on Q2
- Voltage on C2 drops, which turns off Q1

