環論(第9回)

9. 素イデアルと極大イデアル

素イデアルと極大イデアルについて解説する.また、これらのイデアルと剰余環との関係を考察する.

定義 9-1 (素イデアルと極大イデアル)

可換環 A のイデアル I ($I \neq A$) を考える.

(1) 次の条件を満たすとき I を素イデアルという.

 $ab \in I \ (a, b \in A) \Rightarrow a \in I \ \sharp \mathcal{L} \ b \in I.$

(2) I を真に含むイデアルが A だけのとき, I を極大イデアルという. つまり,

 $I \subseteq J \subseteq A \Rightarrow J = A$.

※ 条件の $I \neq A$ に注意. A 自身は素イデアルでも、極大イデアルでもない.

整数環で例を挙げる.

例題 9-1

整数環 ℤにおいて考える.

- (1) 2 は素イデアルであることを示せ.
- (2) 2 は極大イデアルであることを示せ.
- (3) 4ℤ は素イデアルでも、極大イデアルでもないことを示せ.

[証明]

- (1) $2\mathbb{Z} \neq \mathbb{Z}$ に注意する. $ab \in 2\mathbb{Z}$ $(a,b \in \mathbb{Z})$ とする. ab は偶数より, a か b のどちらかは偶数. よって $a \in 2\mathbb{Z}$ または $b \in 2\mathbb{Z}$. 従って $2\mathbb{Z}$ は素イデアル.
- (2) $2\mathbb{Z} \subsetneq J \subseteq \mathbb{Z}$ となるイデアル J をとる.このとき, $1+2k \in J$ を満たす整数 k がある.ここで $2 \in 2\mathbb{Z} \subseteq J$ より $1 \in J$ が従う.よって $J = \mathbb{Z}$.従って $2\mathbb{Z}$ は極大イデアル.
- (3) $2 \cdot 6 \in 4\mathbb{Z}$ だが、 $2 \notin 4\mathbb{Z}$ かつ $6 \notin 4\mathbb{Z}$. よって $4\mathbb{Z}$ は素イデアルでない. また、

 $4\mathbb{Z} \subsetneq 2\mathbb{Z} \subsetneq \mathbb{Z}$

copyright ⓒ 大学数学の授業ノート

より 42 は極大イデアルでもない.

問題 9-1

- (1) A を整域とするとき, $\{0\}$ が A の素イデアルであることを示せ.
- (2) $\mathbb{C}[x]$ において, I=(x) が極大イデアルであることを示せ.

問題 9-2 環準同型 *f* : *A* → *B* を考える. *B* が整域ならば, ker *f* は素イデアルであることを示せ.

次に素イデアルと極大イデアルの関係を調べる.

定理 9-1

可換環 A とそのイデアル I を考える. I は極大イデアルならば素イデアルでもある.

[証明]

I は極大イデアルより $I \neq A$. 素イデアルの条件

$$ab \in I \ (a, b \in A) \Rightarrow a \in I \ \sharp \, t \ t \ b \in I \ (eq1)$$

を示せばよい. $a\in I$ のときは示すことはない. $a\not\in I$ のとき, J=(a)+I とおくと $I\subsetneq J$. ここで, I は極大イデアルより A=J である. $1\in A=J=(a)+I$ より

$$1 = ax + y \ (\exists x \in A, \ \exists y \in I).$$

$$b = abx + by \in I$$
.

以上より (eq1) が示せた.

[補足] 一般的に定理 9-1 の逆は成立しない. 例えば, $\{0\}$ は \mathbb{Z} の素イデアル (問題 9-1) だが,

$$\{0\} \subsetneq 2\mathbb{Z} \subsetneq \mathbb{Z}$$

より {0} は極大イデアルではない.

定理 9-2

- (1) 素数 p に対して $p\mathbb{Z}$ は \mathbb{Z} の極大イデアルである. よって, 定理 9-1 より $p\mathbb{Z}$ は素イデアルでもある.
- (2) $n \in \mathbb{Z}$ $(n \ge 2)$ が合成数ならば, $n\mathbb{Z}$ は \mathbb{Z} の素イデアルではない. よって極大イデアルでもない.

[証明]

(1) $p \ge 2$ より $p\mathbb{Z} \ne \mathbb{Z}$ に注意する. $p\mathbb{Z} \subsetneq J \subseteq \mathbb{Z}$ となるイデアル J を考える. $n \in J \setminus p\mathbb{Z}$ をとると, p は素数より $\gcd(n,p)=1$. よって

$$1 = nx + py \quad (\exists x, \ \exists y \in \mathbb{Z}).$$

 $n, p \in J$ より $1 \in J$. 従って $J = \mathbb{Z}$. よって $p\mathbb{Z}$ は極大イデアル.

(2) n は合成数より

$$n = ab \quad (a, b \in \mathbb{Z}, \ 1 < a, b < n)$$

と表せる. このとき,

$$ab\in n\mathbb{Z},\quad a\not\in n\mathbb{Z},\quad b\not\in n\mathbb{Z}.$$

従って $n\mathbb{Z}$ は素イデアルではない.

定理 9-3

可換環 A とそのイデアル I を考える.

- (1) I は素イデアル \iff A/I は整域.
- (2) I は極大イデアル $\iff A/I$ は体.

[証明]

 $(1) \Rightarrow$ を示す. $I \neq A$ より $A/I \neq \{0+I\}$. ここで,

$$(x+I)(y+I) = 0 + I (x+I, y+I \in A/I)$$

とすると, $xy \in I$. よって $x \in I$ または $y \in I$. これより x + I = 0 + I または y + I = 0 + I. 従って A/I は整域である.

 \Leftarrow を示す. A/I は整域より $A/I \neq \{0+I\}$. 従って $I \neq A$ である. $xy \in I$ $(x,y \in A)$ とする. このとき,

$$(x+I)(y+I) = xy + I = 0 + I$$

であり, A/I は整域より x+I=0+I または y+I=0+I. よって $x\in I$ または $y\in I$. よって I は素イデアル.

(2) ⇒ を示す. $I \neq A$ より $A/I \neq \{0+I\}$ である. $x+I \in A/I$ $(x+I \neq 0+I)$ とすると, $x \not\in I$ である. $I \subsetneq I + (x)$ であり, I は極大イデアルなので A = I + (x). よって

$$1 = a + bx \quad (\exists a \in I, \exists b \in A).$$

従って

$$1 + I = (a + bx) + I = (a + I) + (b + I)(x + I) = (b + I)(x + I)$$

より, x + I は A/I の可逆元. よって A/I は体.

 \Leftarrow を示す. A/I は体より $I \neq A$ である. $I \subsetneq J$ となるイデアル J をとる. さらに $x \in J \setminus I$ をとる. $x \notin I$ より $x + I \neq 0 + I$ となる. A/I は体なので、

$$1+I=(x+I)(y+I) \quad (\exists y+I\in A/I).$$

1+I=xy+I より $1-xy\in I\subseteq J$. また $x\in J$ より $1\in J$. 従って J=A. よって I は極大イデアル.

[補足] 定理 2-2 と定理 9-3 から次の流れで定理 9-1 が導ける.

I は極大イデアル \Rightarrow A/I は体 \Rightarrow A/I は整域 \Rightarrow I は素イデアル.

問題 9-3 可換環 $A = \{a + bi \mid a, b \in \mathbb{Z}\}$ とそのイデアル I = (1 + i) を考える.

- (1) $A/I = \{0+I, 1+I\}$ を示せ.
- (2) $0+I \neq 1+I$ を示せ.
- (3) IはAの極大イデアルであることを示せ.