Theorem 1

(Integral Operator Coverring Number Upper Bounds) Let T_K be the compact self-adjoint integral operator on $L^2[0,\infty)$ defined by kernel K:

$$(T_K f)(z) = \int_0^\infty K(z, w) f(w) dw$$
 (1)

where

$$K(z,w) = \sum_{n=1}^{\infty} \lambda_n \, \phi_n(z) \, \phi_n(w)$$
 (2)

with $\{\phi_n\}_{n=1}^{\infty}$ an orthonormal sequence in $L^2[0,\infty)$ and $\{\lambda_n\}_{n=1}^{\infty}$ the corresponding eigenvalues ordered such that

$$|\lambda_n| \ge |\lambda_{n+1}| \forall n \tag{3}$$

Let T_{K_N} be the truncated operator with kernel

$$K_N(z, w) = \sum_{n=1}^{N} \lambda_n \, \phi_n(z) \, \phi_n(w) \tag{4}$$

then:

$$||T_K - T_{K_N}|| \le |\lambda_{N+1}| \tag{5}$$

Proof. Let $E_N = T_K - T_{K_N}$ be the difference of integral operators. For any unit vector $f \in L^2[0,\infty)$:

$$||E_N f||^2 = \langle E_N f, E_N f \rangle = \langle E_N^* E_N f, f \rangle$$
(6)

Since E_N is self-adjoint (as difference of self-adjoint operators T_K and T_{K_N}), we have:

$$||E_N|| = \sup_{||f||=1} |\langle E_N f, f \rangle| \tag{7}$$

Let f = g + h where g is in span $\{\phi_k\}_{k \le N}$ and h is in span $\{\phi_k\}_{k > N}$. Then:

$$\langle E_N f, f \rangle = \langle E_N g, g \rangle + 2 \Re \langle E_N g, h \rangle + \langle E_N h, h \rangle \tag{8}$$

By construction of E_N , for any g in span $\{\phi_k\}_{k\leq N}$:

$$E_N g = 0 \Longrightarrow \langle E_N g, g \rangle = 0 \text{ and } \langle E_N g, h \rangle = 0$$
 (9)

For h in span $\{\phi_k\}_{k>N}$, $E_N h = \lambda_k h$ where $|\lambda_k| \leq |\lambda_{N+1}|$, thus:

$$|\langle E_N h, h \rangle| \le |\lambda_{N+1}| ||h||^2 \le |\lambda_{N+1}| ||f||^2$$
 (10)

Therefore:

$$||E_N|| \le |\lambda_{N+1}| \tag{11} \quad \Box$$

Remark 2. The appearance of \Re in the expansion $\langle E_N f, f \rangle = \langle E_N g, g \rangle + 2\Re\langle E_N g, h \rangle + \langle E_N h, h \rangle$ is due to the properties of inner products in complex Hilbert spaces. When expanding $\langle E_N f, f \rangle$ with f = g + h, the cross terms $\langle E_N g, h \rangle$ and $\langle E_N h, g \rangle$ are complex conjugates. Since $\langle E_N h, g \rangle = \overline{\langle E_N g, h \rangle}$, their sum equals $2\Re\langle E_N g, h \rangle$. While this term ultimately vanishes in our proof due to orthogonality, this expansion technique is standard when dealing with sesquilinear forms.