Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

3BIT

Про виконання лабораторної роботи №1 з дисципліни: «Охорона праці та цивільний захист»

«ДОСЛІДЖЕННЯ ПАРАМЕТРІВ ВИРОБНИЧОГО ШУМУ ТА ВИЗНАЧЕННЯ ЕФЕКТИВНОСТІ ЗВУКОІЗОЛЯЦІЇ»

Виконавець: Студент 3-го курсу	(підпис)	Б.В. Лищенко
Перевірив:	(підпис)	В.В. Калінчик

Мета роботи: засвоїти методику вимірювання основних параметрів виробничого шуму, набути навичок і компетенції оцінювання виробничого шуму з точки зору санітарно-гігієнічних умов, ризиків і рівня безпеки праці; використовуючи положення законодавчих актів та нормативно-правових документів.

Методика вимірювання та оцінювання шуму на робочих місцях та звукоізолюючих властивостей захисних засобів.

Суть вимірювання шуму полягає у визначенні рівня звуку LA та рівнів звукових тисків LP у фіксованих смугах частот (звичайно, октавних) нормованого діапазону $(20...10000~\Gamma_{\rm II})$.

Основний прилад для вимірювання шуму - шумовимірювач, датчиком якого є мікрофон. Звуковий тиск, що сприймається мембраною мікрофона, перетворюється в пропорційну йому змінну напругу і далі трансформується в значення. Шум на робочих місцях вимірюється під час вмикання не менше ніж 2/3 діючих у приміщенні джерел шуму, які повинні працювати в нормальному режимі, характерному для даного приміщення. При проведенні вимірювань мікрофон слід розташовувати на висоті 1,5 м над рівнем підлоги чи робочого майданчика (якщо робота виконується стоячи) чи на висоті і відстані 15 см від вуха людини, на яку діє шум (якщо робота виконується сидячи чи лежачи). Мікрофон повинен бути зорієнтований у напрямку максимального рівня шуму та віддалений не менш ніж на 0,5 м від оператора, який проводить вимірювання. Якщо робоче місце не зафіксовано, то шум вимірюється в кількох характерних точках (не менше трьох).

Шум нормується за характером виконуваних робіт.

Хід роботи

- 1.1. Підготувати джерела шуму.
- 1.2. Увімкнути перше джерело шуму.
- 1.3.Виміряти створюваний джерелом шуму L_1 рівень звуку. Для цього на робочому місці на рівні вуха людини направити шумовимірювач В сторону джерела шуму. Отримані результати записати до таблиці Д2.1 результатів лабораторної роботи (додаток 2). Вимкнути джерело шуму L_1 .
- 1.4. Аналогічно п.п. 1.2-1.3 виміряти рівень звуку, який створюється джерелом шуму L_2 , а потім $-L_3$. Результати вимірювань занести в таблицю Д2.1 (додаток 2).
- 1.5. Також виміряти рівень звуку, який створюється одночасно такими комбінаціями джерел шуму L_1+L_2 , L_1+L_3 , L_2+L_3 , $L_1+L_2+L_3$. Результати вимірювання занести до таблиці Д2.1 (додаток 2).

1.6. Розрахувати сумарний рівень звуку методом енергетичного підсумовування результатів вимірювань рівнів звуку, який створюється кожним джерелом окремо (значення L_1, L_2, L_3 ,) за допомогою номограми, яка дана у вигляді таблиці для спрощеного розрахунку суми рівня джерел:

$L_1 - L_2$													
ΔL	3,0	2,5	2,0	1,8	1,5	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0

- 1.7. З таблиці Д1 (додаток 1) обрати допустимі рівні звуків для робочих місць обраного виду трудової діяльності (наприклад, пов'язаний з майбутньою професією, або навчанням) та занести значення в табл. Д2.1.
- 1.8. Зробити висновок про відповідність результатів вимірювання рівнів звуку $L_1, L_2, L_3, L_{1+2}, L_{1+3}, L_{2+3}$ допустимим значенням згідно СН 3.3.6.037-99 «Санітарні норми виробничого шуму, ультразвуку та інфразвуку».
- 1.9. Обчислити абсолютну та відносну похибку розрахункових та виміряних значень сумарних рівнів звуку. Результати занести до таблиці Д2.1. Зробити висновок про точність методу енергетичного підсумовування рівнів звуку, що створюються різними джерелами.

	Джерело Рівень звуку, дБА					Похиб	Висновок про	
	шуму Експеримент		Розрахунок	Допустиме	Висновок	абсолютна, дБА	відносна, %	точність методу
		Likenepumeni	1 ospazynok	значення	Duchobok	аосолютна, дри	відпоспа, 70	вимірювання
п.2.5	L_1	42	X			X	X	X
п.2.6	L_2	58	X			X	X	X
11.2.0	L_3	63	X		▼	X	X	X
	$L_1 + L_2$	59	16	20 - 120		0,4	0,67	***
п.2.7	$L_1 + L_3$	64	21		▼	0,4	0,62	***
	$L_1 + L_3$ $L_2 + L_3$	65	59,2		▼	0,5	0,61	***
	$L_1 + L_2 + L_3$	69	47		♦	0,9	0,57	***

- – допустиме значення для наукової діяльністі, конструювання, викладання, проектно-конструкторського бюро, програмування ЕОМ.
 - ▼ допустиме значення для висококваліфікованої роботи, вимірювальна та аналітична робота в лабораторіях.
- ♦ допустиме значення для роботи з акустичними сигналами, приміщенні диспетчерських служб, машинописних бюро.
 - *** дивлячись на те, що похибка лежить в межах допустимого, тобто < 1%, то вона ϵ незначною.

Формула для обчислення відносної похибки:

$$\delta = \frac{\triangle}{x} \cdot 100\%,\tag{1}$$

де x – результат вимірювання.