Introducción a la Bioinformática Ontologias

Fernán Agüero

Instituto de Investigaciones Biotecnológicas Universidad Nacional de General San Martín

Ontologías

Qué significa ontología?

- Webster's Revised Unabridged Dictionary
 - Ontology: the things which exist
 - The department of the science of metaphysics which investigates and explains the nature and essential properties and relations of all beings, ...
- The Free On-Line Dictionary of Computing
 - Ontology
 - Phylosophy: a systematic account of experience
 - Artificial Inteligence: an explicit formal specification of how to represent the objects, concepts and other entities that are assumed to exist in some area of interest and the relationships that hold among them. [...]
 - Information Science: the hierarchical structuring of knowledge about things by subcategorizing them according to their essential (or at least relevant and/or cognitive) qualities.

Otras definiciones y ejemplos

- Una ontología es un área del conocimiento que ha sido formalizada
 - Términos (conceptos) individuales
 - Afirmaciones que conectan términos entre sí
- Ejemplo: una ontología anatómica
 - Términos: húmero, brazo, osteoblasto, músculo, hueso
 - Conexiones (rules): es parte de, contiene células del tipo, tiene puntos de adhesión para, es un

Otros componentes

- Cada término en una ontología está asociado a:
 - un identificador único: GO:0019505
 - Un nombre: resorcinol metabolism
 - Una definición: "the chemical reactions and physical changes involving resorcinol (C₆H₄(OH)₂), a benzene derivative with many applications (including dyes, explosives, resins and as an antiseptic)"
 - Sinónimos: 1,3-benzenediol metabolism; 1,3dihydroxybenzene metabolism

Ontologías vs anotaciones

- Anotación: descripción textual de un objeto
- Las ontologías contienen reglas y afirmaciones que componen una 'descripción lógica' del área que abarcan
 - Se puede utilizar esta 'descripción lógica' de los objetos para:
 - realizar consultas a distintos niveles de un set de datos
 - realizar consultas a través de distintos sets de datos

Propiedades de las reglas

- En este ejemplo las conexiones tienen dirección
 - El húmero es parte del brazo, pero no viceversa

Mouse anatomy - Gene expression

Representación y reglas en una ontología

 Las afirmaciones (conexiones) y las reglas que definen una ontología pueden utilizarse para realizar inferencias lógicas acerca de los términos y sus propiedades asociadas

Gene Ontology (GO)

- Describe tres ontologías independientes
 - Molecular function: la actividad o funcion que cumple el producto de un gen. Ejemplos: transcription factor, DNA helicase.
 - Biological process: procesos en un sentido amplio, como "mitosis" o "metabolismo de purinas", que son llevados a cabo por conjuntos ordenados de funciones moleculares.
 - Cellular component: estructuras subcelulares, localizaciones, complejos macromoleculares. Ejemplos: nucleo, telomero, origin recognition complex
- Cualquier gen puede ser mapeado en estas ontologías. O dicho de otra forma: el producto de un gen individual tiene una funcion molecular, es parte de algun proceso biologico y ocurre en algun componente celular.

GO: molecular function

GO: biological process

GO: cellular component

GO en uso

- Ontology statistics (Aug.2012)
- > 37,928 términos
- Los términos están asociados (linkeados) a una base de datos de más de 597,000 genes de cerca de 50 organismos
 - Cada proteína está asociada a uno o más GO Ids
 - Se pueden buscar las proteínas asociadas a un determinado término
 - O todos los términos asociados con una proteína

GO browsers

AmiGO: http://amigo.geneontology.org

- Simple
 - Permite buscar términos en GO asociados a productos génicos
 - O viceversa
- Links a varias bases de datos: de secuencia, organismo específicas, etc.

AmiGO

AmiGO (cont.)

AmiGO: navegación

```
□ GO:0003673 : Gene_Ontology (146200 )  
□ GO:0008150 : biological_process (96312 )  
□ GO:0007610 : behavior (2293 )  
□ GO:0000004 : biological_process unknown (26924 )  
□ GO:0009987 : cellular process (31905 )  
□ GO:0007275 : development (14496 )  
□ GO:0008371 : obsolete biological process (90 )  
□ GO:0007582 : physiological process (60310 )  
□ GO:0050789 : regulation of biological process (2533 )  
□ GO:0016032 : viral life cycle (252 )  
□ GO:0003674 : molecular_function (97507 )
```

AmiGO: pie charts

Gene Products Annotated Below molecular_function

Term Name	Total Gene Products	Percent of All molecular_function
All molecular_function	97507	100.0 %
catalytic activity	32256	33.0
molecular_function unknown	27869	28.5
binding	26483	27.1
transporter activity	8671	8.89
transcription regulator activity	7695	7.89
signal transducer activity	6386	6.54
structural molecule activity	2898	2.97
enzyme regulator activity	1810	1.85
chaperone activity	883	0.90
obsolete molecular function	672	0.68
translation regulator activity	586	0.60
triplet codon-amino acid adaptor activity	553	0.56
motor activity	414	0.42
antioxidant activity	320	0.32
nutrient reservoir activity	36	0.03
chaperone regulator activity	13	0.01
molecular_function	0	0

AmiGO: gene search

FlyBase SGD MGI

IMP IGI IPI

Submit

Evidence Code

All Curator Approved

GO: evidence codes

Evidence codes

IC: inferred by curator

IDA: inferred from direct assay

IEA inferred from electronic annotation

IEA inferred from electronic annotation

IGI inferred from genetic interaction

IMP inferred from mutant phenotype

IPI inferred from physical interaction

ISS inferred from sequence or structural similarity

TAS traceable author statement

NAS non-traceable author statement

ND no biological data available

http://www.geneontology.org/GO.evidence.shtml

Evidence Codes, explained

GO Evidence Code Decision Tree

of the gene product?

(molecular function, biological process or cellular component). The annotator will always look at all available literature for the gene. Depending on the resources and the annotation

philosophy of the annotating group, the annotator may also look at sequence comparison

data to determine if any predictions may be made based on the sequence.

http://www.geneontology.org/GO.evidence.tree.shtml

yes

AmiGO: term search

Cobertura variable!

Lomax J. Get ready to GO! A biologist's guide to the Gene Ontology. Brief Bioinform. 2005 Sep;6(3):298-304.

Ontologías anatómicas

 Comprenden la descripción de estructuras físicas supracelulares que hacen a un determinado organismo

Reglas del tipo:

- Localización relativa: el ventrículo es parte del corazón
- Linaje: el tubo digestivo deriva del endodermo
- Clase: el sistema cardiovascular es un sistema orgánico

Puntos de vista

- Distintos usuarios requieren distintas ontologías
 - Cirujano: ontología anatómica que incluya relaciones espaciales entre tejidos (next to)
 - Galen: www.opengalen.org
 - Digital Anatomist: depts.washington.edu/ventures/pfolio/fma.htm
 - Biólogo estudiando desarrollo: ontología con relaciones estructurales (part of) o de linaje (derived from)
 - Mouse Developmental Anatomy: genex.hgu.mrc.ac.uk/Databases/Anatomy
 - Human Developmental Anatomy: genex.hgu.mrc.ac.uk/Databases/HumanAnatomy

Ontologías cruzadas

- El uso de IDs para identificar los términos de una ontología facilita las referencias cruzadas entre distintas ontologías
 - ID: CL:0000188, skeletal muscle cell
- Ejemplos:
 - Edinburgh Mouse Atlas Project (EMAP): genex.hgu.mrc.ac.uk
 - Secciones de estadíos tempranos del desarrollo del ratón con sus tejidos identificados y mapeados a IDs en EMAP
 - Mouse Gene Expression Database (GXD): www.informatics.jax.org/searches/expression_form .shtml
 - ► Tabla de todos los genes que se expresan en el/los tejidos identificados por el/los EMAP IDs
 - A su vez GXD asocia términos de GO. Se pueden hacer búsquedas del tipo

Anatomy & Gene Expression

Aplicaciones: interpreter experimentos

Interpretar listas de genes

- Muchos experimentos de alta escala devuelven como resultado listas de genes
 - Transcriptómica
 - Proteómica
 - Metabolomics
 - Protein-protein interactions
 - CHIP-Seq (DNA-protein interactions)
 - Genetic association studies GWAS)

28 Fernán Agüero

Aplicaciones: interpretar experimentos

Al poner las listas en contexto biológico se puede analizar enriquecimiento en términos o conceptos

29 Fernán Agüero

Referencias

- Ontologies: formalising biological knowledge for bioinformatics. Bard J. Bioessays 25 (2003): 501-506.
- Ontologies in Biology: design, applications and future challenges. Bard JBL, Rhee SY. Nature Reviews Genetics 5 (2004): 213-222

Obofoundry