

Game theoretical approach of pricing a perpetual option

Annabel Malle, Minh Hieu Nguyen | 9. Februar 2022

Table of contents

- 1. Introduction
 - Motivation
- 2. Basics
 - Option pricing
 - Game theory
- 3. Game theoretical approach to option pricing
 - Method
 - Determining the price of a perpetual put option
- 4. Simulation
 - Simulation
- 5. Conclusion

ln	tr	0	d	u	С	ti	0	r	

Introduction

Introduction •0

Basics 0000000 Game theoretical approach to option pricing 00000000

Simulation 0000000000

Conclusion 000

Annabel Malle, Minh Hieu Nguyen: Game theoretical approach to option pricing

Mathematical modelling and simulation

Motivation

- Financial markets are affected by every agent's decision
- Agent's goal: maximize their economical (monetary) benefit
- Valuation of specific market instruments (e.g. perpetual options) is challenging

Which is the fair price *P* of the option?

- Standard method is the maximizing expected utility method
- Our approach: Combination of game theory and option pricing
- Wide spectrum for applications of this method

0

Basics

Introduction Basics 00 •000000 Game theoretical approach to option pricing 00000000

Simulation 0000000000

Put option

Put option: Investor may sell asset S to the intermediary at t > 0(without obligation) 1

Value

The value of a put option at time t > 0 of its exercise is

$$P(S,t) = \max(X - S(t), 0). \tag{1}$$

Perpetual put option: Option without expiry date and no restrictions on when it can be exercised

S(t): current value of underlying asset

X: pre-defined Strikeprice

P(S, t): value of put option

t: time

Introduction 00

Basics 0000000 Game theoretical approach to option pricing

Simulation

¹The following chapter is based on the lecture notes of [3].

Arbitrage-free market

Our option valuation model is based on the principle of *no-arbitrage*.

- No strategy of an agent can yield to risk-free profit
- No free lottery
- No free lunch
- \blacksquare Law of the one price (identical future cash flow \rightarrow identical price)

Options - Value

Options

The value of an option with underlying asset S follows a geometric Brownian motion

$$dS_t = \mu S_t dt + \sigma S_t dW_t, t \in [0, T], S(0) = S_0$$
(2)

where μ denotes the drift, σ the volatility and dW_t the Wiener process.

By Merton [1] it is shown that the value of any option P(S,t) must satisfy the linear partial differential equation:

$$\frac{1}{2}\sigma^2 S^2 P_{SS} + (rS - a)P_S + P_t - rP + b = 0$$
 (3)

a: dividend payout to holder of asset b: payout to holder of contigent claim r: interest rate P_S , P_t , P_{SS} : partial derivatives of P

Introduction 00

Basics 0000000 Game theoretical approach to option pricing

Simulation

Options - Boundary condition

- Boundary conditions specify each option
- Excercise of option if S reaches a specific level \bar{S} :

$$P(S) = \bar{P}(\bar{S})$$
, where $\bar{P}(\bar{S})$ is payoff received by owner of option upon excercise (4)

- Agents may influence this boundary condition (parameter \bar{S}) to find optimal strategy and maximize their payoff
- Then payoff isn't depending on time t anymore, thus the partial differential equation (3) is shortend:

$$\frac{1}{2}\sigma^2 S^2 P_{SS} + (rS - a)P_S - rP + b = 0$$
 (5)

Introd	uctior	
~ ~		

Game theory - Basics

- Modelling strategic interactions among agents
- Agents can influence the parameters and boundary conditions of the options by their strategies
- Assumptions:
 - The agents act rational
 - Each agent wants to maximize their profit respectivly their payoff

10/32

Game theory - Normal form

- Two agents A (intermediary) and B (investor)
- Strategies of agents are collected in sets $S_A = \{a_1, ..., a_{n_A}\}$ and $S_B = \{b_1, ..., b_{n_B}\}$ where n_A, n_B are the numbers of strategies
- lacksquare Game is decribed by the set of all strategies $S_{\mathit{all}} := S_{\mathit{A}} imes S_{\mathit{B}}$
- The option will be excercised as soon as S reaches \bar{S} for the first time (BD (4))
- lacktriangle The uncertain payoff $u_x:S_{all} o\mathbb{R}$ at t>0 of an agent will be valued by option pricing theory
- First agent A chooses a strategy, then chooses B a strategy and each agents knows which decision was made and what the payoff will be (game of perfect information)

Introduction Basics

Game theoretical approach to option pricing

Simulation 000000000

¹Those basics are retrieved from the lecture notes of [2] and adjusted to our specific model.

Game theoretical approach to option pricing

Introduction 00 Basics

Game theoretical approach to option pricing ●○○○○○○

Simulation 000000000

Determining the price of a perpetual put option

• Which price P_{∞} should the intermediary A ask for?

Three-step procedure²

- Definition of game by setting agent's action set, sequence of choices and resulting payoffs
- Valuation of the option considering all possible actions of the agents as parameters
- Finding the agent's optimal strategies and solving the game
 - Estimated value of option ≈ agent's expected utility (increasing monotonic relationship)
 - Maximizing the value of the option will maximize the agents utility (and vice-versa)

²Method of [4].

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 000000000

Step 1: Structure of the game

Abbildung: Structure of the option pricing game.

- lacktriangle First intermediary sells a perpetual put option to the investor at a price P_{∞}
- lacktriangle Then investor then chooses his optimal exercise strategy $ar{S}$
- Finally if the investor chooses to exercise the option, he receives $X \bar{S}$ from the intermediary

Introduction	Basics	Game theoretical approach to option pricing	Simulation	Conclusion
00	0000000	0000000	000000000	000

The second step in the method is to determine the arbitrage-free value of the perpetual put option, $P_{\infty}(S)$, given the investor's exercise strategy \bar{S} .

Since the option is perpetual, its value does not depend explicitly on t and must satisfy the ordinary differential equation (5)

$$\frac{1}{2}\sigma^2 S^2 P_{\infty}^{"} + rSP_{\infty}^{"} - rP_{\infty} = 0 \tag{6}$$

subject to the boundary conditions:

$$P_{\infty}(\infty) = 0 \tag{7}$$

means the option is worthless if the value of the underlying asset is very large.

$$P_{\infty}(\bar{S}) = X - \bar{S} \tag{8}$$

means the payoff from the option upon exercise.

Introduction

Step 2: Valuing the Option for a Given Exercise Strategy

The general solution to (6) is

$$P_{\infty}(S) = \alpha_1 S + \alpha_2 S^{-\gamma}, \tag{9}$$

where

$$\gamma \equiv \frac{2r}{\sigma^2}.\tag{10}$$

From boundary condition (7), we have $\alpha_1 = 0$. On the other hand, boundary condition. (8) requires that

$$P_{\infty}(\bar{S}) = X - \bar{S} = \alpha_2 \bar{S}^{-\gamma}. \tag{11}$$

Solving for α_2 yields

$$\alpha_2 = (X - \bar{S})\bar{S}^{\alpha}. \tag{12}$$

16/32

The value of the perpetual put option, given the investor's exercise strategy \bar{S}

$$P_{\infty}(S) = (X - \bar{S})\bar{S}^{\gamma}S^{-\gamma} = (X - \bar{S})(\frac{S}{\bar{S}})^{-\gamma}.$$
 (13)

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 000000000

Step 3: Solving the Game

- At this point, the investor's exercise strategy \bar{S} is still unknown (*free boundary*)
- Finding free boundary S: Investor exercises, if value of the option is maximal, thus setting

$$\frac{\partial P_{\infty}}{\partial \bar{S}} = -(\frac{S}{\bar{S}})^{-\gamma} + \frac{\gamma}{\bar{S}}(X - \bar{S})(\frac{S}{\bar{S}})^{-\gamma} = 0.$$
 (14)

Simplifying, this expression becomes

$$\bar{S} = \gamma (X - \bar{S}) \tag{15}$$

The underlying asset value S at which exercising the perpetual put option

$$\bar{S} = \frac{\gamma}{1+\gamma} X. \tag{16}$$

Introduction 00

Basics

Game theoretical approach to option pricing 00000000

Simulation

The Solution

- Intermediary anticipates that investor will exercise the option when it is optimal to do so
- She asks for a price equal to the value of the option assuming that the investor exercises optimally, which is given by (13)
- The optimal excercise strategy is given by (16)

The market price of the perpetual put option

$$P_{\infty}(S) = (X - \bar{S})(\frac{S}{\bar{S}})^{-\gamma} = \frac{X}{1+\gamma}(\frac{(1+\gamma)S}{\gamma S})^{-\gamma}.$$
 (17)

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 000000000

Simulation

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation •oooooooo

Simulation

The price of the underlying asset is modeled by the geometric Brownian motion (GBM)

$$S(t) = S_0 \exp(at + \sigma W(t)), \text{ where } a = \mu - \sigma^2/2, t \in [0, T]$$
 (18)

with $\mu, \sigma > 0$, initial condition $S_0 \ge 0$ and W(t) denoting the Wiener process. S(t) is the solution of the stochastic differential equation (2).

The process S(t) is the solution of the SDE (2)

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t), t \in [0, T], S(0) = S_0$$
(19)

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation o•ooooooo

Wiener process - Standard Brownian Motion

Brownian motion can be described by a continuous-time stochastic process called the Wiener process. Let W(t) be a random variable that depends continuously on $t \in [0, T]$. The random variable is characterized by:

- W(0) = 0 with probability 1.
- For 0 < s < t < T, the increment:

$$W(t) - W(s) \sim \sqrt{(t-s)} \mathcal{N}(\mu, \sigma^2)$$

is normally distributed, where $\mathcal{N}(\mu, \sigma^2)$ denotes the normal distribution with mean μ and variance σ .

• W(t) has independent increments, which means that if $0 \le s < t < u < v \le T$, then W(t) - W(s) and W(v) - W(u) are also independent.

Į	n	tr	0	d	u	C	ti	0	r	

Wiener process - Standard Brownian Motion

To implement the scalar standard Brownian motion in Python, suppose we discrete the time interval [0, T] into N-1 equidistant sub-intervals or N points:

$$0 < t_1 < t_2 < ... < t_{i-1} < t_i < t_{i+1} < ... < t_{N-1} < t_N = T$$

The time step, $\triangle t = t_{j+1} - t_j$, is obtained from $\triangle t = \frac{\tau}{N-1}$. The increment can be given by

$$dW(t_{j}) = W(t_{j}) - W(t_{j-1}) = \sqrt{(\triangle t)\mathcal{N}(0,1)}$$
(20)

for standard normal distribution with $\mu = 0$ and $\sigma^2 = 1$.

Wiener process W(t) can be obtained by rearranging equation (20) to:

$$W(t_j) = W(t_{j-1}) + dW(t_j). (21)$$

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 0000000000

10 Wiener example paths

Conclusion

Introduction

00

Geometric Brownian motion

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 00000

Euler-Maruyama method

A numerical simulation of this SDE can be obtained by employing the Euler-Maruyama method:

■ Define step-size $\tau = \frac{T}{N}$, $N \in N$ and for n = 1, ..., N let $t_n = \tau n$

Compute the approximation $S_n \approx S(t_n)$ as

$$S_n = S_{n-1} + \tau \mu S_{n-1} + \sigma S_{n-1} \triangle W_{n-1}$$
 (22)

where $\triangle W_{n-1} = W(t_n) - W(t_{n-1})$

- lacktriangle Figure below shows approximation to the solution of above SDE with drift $\mu=0.3$, volatility $\sigma=0.4$ and initial condition $S_0 = 1$
- Using the Euler-Maruyama method with different time steps $\tau = T/N$, namely for $N \in \{16, 64, 256\}$

Introduction
00

Basics

Game theoretical approach to option pricing

Simulation 0000000000

Euler-Maruyama

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation ooooooo

Euler-Maruyama

Introduction 00

Basics 0000000 Game theoretical approach to option pricing 00000000

Simulation 0000000000

Price of perpetual put option

 $P_{\infty}(S) = (X - \bar{S})(\frac{S}{\bar{S}})^{-\gamma} = \frac{X}{1+\gamma}(\frac{(1+\gamma)S}{\gamma S})^{-\gamma}.$

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 000000000

Conclusion

Introduction 00

Basics 0000000 Game theoretical approach to option pricing 00000000

Simulation 0000000000

- Good alternative to the standard method for pricing such a specific option
- Main advantage: Separating valuation problem from analysis of strategic interactions of agents
- Best application on situations where
 - payoffs occur at random times (optimal stopping problem)
 - future decisions of the agent influences their payoffs
 - the risk-taking behaviour of agents are analyzed
- I imitations:
 - mathematical complexity → no general models
 - difficulty with stochastic optimal strategies
 - assumption that option values are a good proxy for agent's expected utility

ntroductio
0.0

Outlook

The game theoretical approach can be applied to other classical problems of corporate finance and financial intermediation: ³

- Financial contracting
- The bankruptcy problem
- Analyzing the phenomenon 'Bank runs'
- Incentive effects of subordinated debt
- Deposit insurance

³Applications can be found in [4]

Introduction

Basics 0000000 Game theoretical approach to option pricing

Simulation 000000000

Literatur

- [1] Robert C Merton. "On the pricing of contingent claims and the Modigliani-Miller theorem". In: Journal of Financial Economics 5.2 (1977), S. 241–249.
- PD Dr. Gudrun Thaeter. Lecture Notes: Mathematical Modelling and Simulation. Winter 2020/21. [2]
- Marliese Uhrig-Homburg. Lecture Notes: Derivate. Institut für Finanzwirtschaft, Banken und Versicherungen (FBV), Abteilung Flnancial Engineering und Derivate, Sommer 2021.
- Alexandre C Ziegler. A Game Theory Analysis of Options: Corporate Finance and Financial Intermediation in Continuous Time. Springer Science & Business Media, 2012.