The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Normally the first step in debugging is to attempt to reproduce the problem. Code-breaking algorithms have also existed for centuries. It is usually easier to code in "high-level" languages than in "low-level" ones. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Scripting and breakpointing is also part of this process. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Techniques like Code refactoring can enhance readability. Use of a static code analysis tool can help detect some possible problems. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. However, readability is more than just programming style. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Also, specific user environment and usage history can make it difficult to reproduce the problem. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line.