

CLAIMS

1. A stock shape for machining, which is composed of
an extruded product of a resin composition comprising 30 to
5 94 % by mass of a thermoplastic resin (A), 5 to 40 % by
mass of a carbon precursor (B) having a volume resistivity
of 10^2 to 10^{10} $\Omega \cdot \text{cm}$ and 1 to 30 % by mass of a conductive
filler (C) having a volume resistivity lower than 10^2 $\Omega \cdot \text{cm}$
and has a thickness or diameter exceeding 3 mm.

10

2. The stock shape for machining according to claim
1, wherein the thermoplastic resin (A) is a heat-resistant
thermoplastic resin having a melting point of at least
220°C or a glass transition temperature of at least 170°C.

15

3. The stock shape for machining according to claim
2, wherein the thermoplastic resin having a melting point
of at least 220°C is at least one thermoplastic resin
selected from the group consisting of polybutylene
20 terephthalate, polyethylene terephthalate, nylon 6, nylon
66, nylon 46, poly(phenylene sulfide), poly(ether ether
ketone), all-aromatic polyester, polymethylpentene,
polycarbonate, polytetrafluoro-ethylene,
tetrafluoroethylene/hexafluoropropylene/
25 perfluoroalkoxyvinyl ether terpolymers, tetrafluoro-
ethylene/ethylene copolymers, polyvinyl fluoride,
tetrafluoroethylene/hexafluoropropylene copolymers and

tetrafluoroethylene/perfluoroalkyl vinyl ether copolymers.

4. The stock shape for machining according to claim
2, wherein the thermoplastic resin having a glass
5 transition temperature of at least 170° is at least one
thermoplastic resin selected from the group consisting of
poly(phenylene ether), polyarylates, polysulfone,
poly(ether sulfone), poly(ether imide), polyamide-imide and
thermoplastic polyimide.

10

5. The stock shape for machining according to claim
1, wherein the thermoplastic resin (A) is at least one
thermoplastic resin selected from the group consisting of
poly(ether ether ketone), poly(ether imide), poly(phenylene
15 sulfide), polysulfone, poly(ether sulfone) and
polycarbonate.

6. The stock shape for machining according to claim
1, wherein the thermoplastic resin (A) is a mixture of at
20 least two thermoplastic resins.

7. The stock shape for machining according to claim
6, wherein the mixture of at least two thermoplastic resins
is a mixture composed of a combination of poly(ether ether
25 ketone)/poly(ether imide), poly(ether imide)/poly(phenylene
sulfide), poly(ether ether ketone)/poly(phenylene sulfide)
or poly(ether ether ketone)/poly(ether imide)/

poly(phenylene sulfide).

8. The stock shape for machining according to claim
7, wherein the mixture of at least two thermoplastic resins
5 is a mixture containing poly(ether ether ketone) and
poly(ether imide) in proportions of 40:60 to 95 to 5 in
terms of a mass ratio.

9. The stock shape for machining according to claim
10 7, wherein the mixture of at least two thermoplastic resins
is a mixture containing poly(phenylene sulfide) and
poly(ether imide) in proportions of 40:60 to 95 to 5 in
terms of a mass ratio.

15 10. The stock shape for machining according to claim
7, wherein the mixture of at least two thermoplastic resins
is a mixture containing poly(ether ether ketone) and
poly(phenylene sulfide) in proportions of 40:60 to 95 to 5
in terms of a mass ratio.

20 11. The stock shape for machining according to claim
7, wherein the mixture of at least two thermoplastic resins
is a mixture containing poly(ether ether ketone),
poly(phenylene sulfide) and poly(ether imide) in
25 proportions of 50:50 to 90 to 10 in terms of a mass ratio
of the total mass of the poly(ether ether ketone) and
poly(phenylene sulfide) to poly(ether imide).

12. The stock shape for machining according to claim 1, wherein the carbon precursor (B) is a carbon precursor having a carbon content of 80 to 97 % by mass.

5 13. The stock shape for machining according to claim 1, wherein the conductive filler (C) is carbon fiber.

14. The stock shape for machining according to claim 13, wherein the carbon fiber is polyacrylonitrile based
10 carbon fiber, pitch based carbon fiber or a mixture thereof.

15. The stock shape for machining according to claim 1, which comprises 60 to 85 % by mass of the thermoplastic resin (A), 12 to 25 % by mass of the carbon precursor (B)
15 and 3 to 15 % by mass of the conductive filler (C).

16. The stock shape for machining according to claim 1, wherein the surface resistivity is 10^5 to $10^{13} \Omega/\square$.

20 17. The stock shape for machining according to claim 1, which is a plate having a thickness exceeding 3 mm or a round bar having a diameter exceeding 3 mm.

25 18. The stock shape for machining according to claim 1, which is a plate having a thickness of 4 to 70 mm or a round bar having a diameter of 4 to 70 mm.

19. A process for producing a stock shape for machining, which comprises extruding and solidifying a resin composition comprising 30 to 94 % by mass of a thermoplastic resin (A), 5 to 40 % by mass of a carbon precursor (B) having a volume resistivity of 10^2 to 10^{10} $\Omega \cdot \text{cm}$ and 1 to 30 % by mass of a conductive filler (C) having a volume resistivity lower than 10^2 $\Omega \cdot \text{cm}$ through the following Steps 1 to 3:

(1) a step of feeding the resin composition to an extrusion forming machine, to which a die assembly composed of an extrusion die (i) and a forming die (ii) equipped with a cooling device at an exterior thereof and a passage in communication with a passage of the extrusion die at an interior thereof is coupled;

(2) a step of extruding the resin composition into a desired shape from the extrusion die (i) while melting the resin composition by the extrusion forming machine; and

(3) a step of cooling an extruded product in a molten state extruded from the extrusion die (i) in the interior of the forming die (ii) to solidify the extruded product,

thereby obtaining an extruded product having a thickness or diameter exceeding 3 mm.

20. The production process according to claim 19, which comprises subjecting the solidified extruded product to a heat treatment for at least 30 minutes at a temperature of from 150°C to a temperature capable of

retaining the solidified state after the extrusion and solidification.