

ADDENDUM TO GRID NET, INC. TEST REPORT FC09-048A

FOR THE

GE WIMAX SMARTMETER, WX-I210+C

FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B AND PART 27

TESTING

DATE OF ISSUE: JULY 8, 2009

PREPARED FOR:

PREPARED BY:

Grid Net, Inc. 340 Brannan Street, Suite 501 San Francisco, CA 94107 Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: DEV 09-14 W.O. No.: 89201 Date of test: February 13 – July 8, 2009

Report No.: FC09-048B

This report contains a total of 83 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(8) DC Voltages	
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
Measurement Uncertainties	7
FCC 15.107 – AC Conducted Emissions	
FCC 15.109 – Radiated Emissions	
FCC 2.1033(c)(14)/2.1046/27.50 – Conducted RF Power Output	24
FCC 2.1049 - Occupied Bandwidth	33
FCC 2.1033(c)(14)/2.1051/27.53 - Spurious Emissions at Antenna Terminal	
FCC 27.53 – Bandedge Antenna Conducted	60
FCC 2.1033(c)(14)/2.1053/27.53 - Field Strength of Spurious Radiation	66
FCC 27.53 – Bandedge OATS	69
FCC 2.1033(c)(14)/2.1055 - Frequency Stability	75

Page 2 of 83 Report No.: FC09-048B

Amrinder Brar, EMC Engineer/Lab Manager

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 13 – March 30, 2009	DATE OF RECEIPT: February 13, 2009
REPRESENTATIVE: Patrick Orallo	
MANUFACTURER: GE Energy	TEST LOCATION: CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539
FREQUENCY RANGE TESTED: 10 kHz	-26.9 GHz
TEST METHOD: ANSI C63.4 (2003) and I	FCC Part 27
requirements for FCC Part 15 Subpart B Sec Addendum A: To correct the plot headers or	the GE WiMAX SmartMeter, WX-I210+c with the tions 15.107 & 15.109 Class B and Part 27 devices. In pages 29-30, add the spurious emissions limit quipment list on page 60 with no new testing. Flower Output with new test data.
QUALITY ASSURANCE:	TEST PERSONNEL:
	Art Rice
Steve Behm, Director of Engineering Services	Art Rice, Senior EMC Engineer
-	

Page 3 of 83 Report No.: FC09-048B

SUMMARY OF RESULTS

Test	Specification/Method	Results
Conducted Emissions	FCC 15.107	Pass
Radiated Emissions	FCC 15.109	Pass
Conducted RF Output Power	FCC 27.50(h)	Pass
Occupied Bandwidth	FCC 2.1049	Pass
Spurious Emissions at Antenna	FCC 27.53(m)	Pass
Terminal		
Bandedge Antenna Conducted	FCC 27.53(m)	Pass
OATS Spurious Emissions	FCC 27.53(m)	Pass
Bandedge OATS	FCC 27.53(m)	Pass
Frequency Stability	FCC 2.1055	Pass
Site File No.	FCC 958979	

CONDITIONS DURING TESTING

The plastic area above the RF connector was cut by the customer to accommodate connection of an RF cable for conducted tests.

Page 4 of 83 Report No.: FC09-048B

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following information has been changed by the customer since the time of testing. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets:

	At the Time of Testing	Customer Declaration
Device Name	ANSI WiMAX SmartMeter	GE WiMAX SmartMeter
Model Name	WX-i210+c	WX-I210+c
Manufacturer Name	Grid-Net	GE Energy
Customer Name	GE Energy	None

EQUIPMENT UNDER TEST

GE WiMAX SmartMeter

Manuf: GE Energy Model: WX-I210+c

Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop 1	<u>PC</u>	<u>Isolation</u>	<u>Transformer</u>
Manuf:	Dell	Manuf:	PCC
Model:	Latitude D830	Model:	ISO-300
Serial:	9THV3G1	Serial:	NA

110-220V Step-up TransformerWall Plugged BridgeManuf:PhilmoreManuf:NETGEARModel:ST-300Model:XE102

Serial: NA Serial: 1X618653036AE

Page 5 of 83 Report No.: FC09-048B

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c) (3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

4M44 W7D and 9M06 W7D

FCC 2.1033 (c)(5) FREQUENCY RANGE

2498MHz – 2688MHz

FCC 2.1033 (c)(6) OPERATING POWER

28.73 dBm

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION OFDMA, QPSK, 16QAM

Page 6 of 83 Report No.: FC09-048B

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Page 7 of 83 Report No.: FC09-048B

FCC 15.107 – AC CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 15.107 B COND [AVE]

Work Order #: 89201 Date: 3/26/2009
Test Type: Conducted Emissions Time: 16:13:18
Equipment: ANSI WiMAX SmartMeter Sequence#: 19
Manufacturer: Grid-Net Tested By: Art Rice
Model: WX-i210+c 240V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad	_	04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. EUT powered by 240VAC.

FCC 15.107B

NOTES:

1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz

Conducted emissions .15-30 MHz.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measurement Data: Reading listed by margin. Test Lead: Line 1 Freq Rdng T1 T2 T3 T4 Dist Corr Spec Margin Polar dΒ dΒ dΒ dB $dB\mu V$ MHz $dB\mu V$ Table $dB\mu V$ dB Ant 274.000k +10.0-2.2 48.5 +0.1+0.2+0.0+0.058.8 61.0 Line QP 273.624k 55.1 +0.0+10.0+0.2+0.0+0.065.3 51.0 +14.3Line 240.000k 47.9 +0.0+10.0+0.1+0.0+0.058.0 62.1 -4.1 Line QP

> Page 9 of 83 Report No.: FC09-048B

4	205.470k QP	48.1	+0.0	+10.0	+0.1	+0.0	+0.0	58.2	63.4	-5.2	Line
٨	209.630k	55.2	+0.0	+10.0	+0.1	+0.1	+0.0	65.4	53.2	+12.2	Line
6	343.260k QP	43.5	+0.0	+10.0	+0.1	+0.0	+0.0	53.6	59.1	-5.5	Line
7	3.203M	28.7	-0.1	+10.0	+0.1	+0.1	+0.0	38.8	46.0	-7.2	Line
8	171.000k QP	47.0	+0.0	+10.0	+0.4	+0.1	+0.0	57.5	64.9	-7.4	Line
^	171.089k	54.3	+0.0	+10.0	+0.4	+0.1	+0.0	64.8	54.9	+9.9	Line
10	2.893M	28.4	-0.1	+10.0	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
11	3.012M	28.4	-0.1	+10.0	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
12	3.080M	28.4	-0.1	+10.0	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
13	3.352M	28.2	-0.1	+10.0	+0.1	+0.2	+0.0	38.4	46.0	-7.6	Line
14	4.186M	27.9	+0.0	+10.1	+0.1	+0.2	+0.0	38.3	46.0	-7.7	Line
15	2.829M	28.1	-0.1	+10.0	+0.1	+0.1	+0.0	38.2	46.0	-7.8	Line
16	400.000k QP	39.7	+0.1	+10.1	+0.0	+0.1	+0.0	50.0	57.9	-7.9	Line
٨	400.157k	44.6	+0.1	+10.1	+0.0	+0.1	+0.0	54.9	47.9	+7.0	Line
18	3.382M	27.9	-0.1	+10.0	+0.1	+0.2	+0.0	38.1	46.0	-7.9	Line
19	3.425M	27.8	-0.1	+10.0	+0.1	+0.2	+0.0	38.0	46.0	-8.0	Line
20	2.782M	27.8	-0.1	+10.0	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Line
21	274.000k Ave	32.4	+0.1	+10.0	+0.2	+0.0	+0.0	42.7	51.0	-8.3	Line
22	3.505M	27.1	+0.0	+10.1	+0.1	+0.2	+0.0	37.5	46.0	-8.5	Line
23	3.488M	27.0	+0.0	+10.1	+0.1	+0.2	+0.0	37.4	46.0	-8.6	Line
24	894.012k	27.0	+0.0	+10.0	+0.1	+0.1	+0.0	37.2	46.0	-8.8	Line
25	4.326M	26.8	+0.0	+10.1	+0.1	+0.2	+0.0	37.2	46.0	-8.8	Line
26	4.028M	26.7	+0.0	+10.1	+0.1	+0.2	+0.0	37.1	46.0	-8.9	Line
27	3.692M	26.6	+0.0	+10.1	+0.1	+0.2	+0.0	37.0	46.0	-9.0	Line
28	3.731M	26.6	+0.0	+10.1	+0.1	+0.2	+0.0	37.0	46.0	-9.0	Line

Page 10 of 83 Report No.: FC09-048B

29	3.863M	26.7	+0.0	+10.1	+0.1	+0.1	+0.0	37.0	46.0	-9.0	Line
30	3.926M	26.7	+0.0	+10.1	+0.1	+0.1	+0.0	37.0	46.0	-9.0	Line
31	2.663M	26.7	-0.1	+10.0	+0.1	+0.1	+0.0	36.8	46.0	-9.2	Line
32	2.676M	26.6	-0.1	+10.0	+0.1	+0.1	+0.0	36.7	46.0	-9.3	Line
33	3.701M	26.3	+0.0	+10.1	+0.1	+0.2	+0.0	36.7	46.0	-9.3	Line
34	2.646M	26.3	-0.1	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Line
35	4.654M	26.1	+0.1	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Line
36	4.734M	26.1	+0.1	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Line
37	4.526M	26.0	+0.1	+10.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Line
38	4.862M	26.0	+0.1	+10.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Line
39	4.883M	26.0	+0.1	+10.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Line
40	3.586M	25.9	+0.0	+10.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
41	4.577M	25.8	+0.1	+10.0	+0.1	+0.2	+0.0	36.2	46.0	-9.8	Line
42	4.097M	25.7	+0.0	+10.1	+0.1	+0.2	+0.0	36.1	46.0	-9.9	Line
43	4.764M	25.7	+0.1	+10.0	+0.1	+0.2	+0.0	36.1	46.0	-9.9	Line
44	2.387M	25.6	+0.0	+10.0	+0.1	+0.2	+0.0	35.9	46.0	-10.1	Line
45	4.445M	25.5	+0.0	+10.1	+0.1	+0.2	+0.0	35.9	46.0	-10.1	Line
46	207.000k Ave	33.0	+0.0	+10.0	+0.1	+0.0	+0.0	43.1	53.3	-10.2	Line
47	4.998M	25.4	+0.1	+10.0	+0.1	+0.2	+0.0	35.8	46.0	-10.2	Line
48	2.506M	25.5	-0.1	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Line
49	2.527M	25.5	-0.1	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Line
50	4.905M	25.3	+0.1	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Line
51	425.000k QP	36.2	+0.1	+10.1	+0.0	+0.0	+0.0	46.4	57.3	-10.9	Line
52	381.000k QP	37.1	+0.1	+10.1	+0.0	+0.1	+0.0	47.4	58.3	-10.9	Line
	-										

Ave	53	343.000k	27.7	+0.0	+10.0	+0.1	+0.0	+0.0	37.8	49.1	-11.3	Line
55 400,000k 24.3 +0.1 +10.1 +0.0 +0.1 +0.0 34.6 47.9 -13.3 Line 56 151,000k 27.2 +0.0 +10.0 +2.9 +0.0 +0.0 40.0 55.9 -15.9 Line Ave ^ 150,727k 45.4 +0.0 +10.0 +3.0 +0.0 +0.0 58.4 56.0 +2.4 Line 58 425,000k 19.8 +0.1 +10.1 +0.0 +0.0 29.9 47.3 -17.4 Line 60 504,000k 17.3 +0.1 +10.1 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504,000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line Ave - 504,146k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line Ave <td< td=""><td></td><td></td><td>_,,,</td><td>. 0.0</td><td>. 10.0</td><td>. 0.11</td><td>. 0.0</td><td>. 0.0</td><td>27.0</td><td>.,,,,</td><td>11.0</td><td>20</td></td<>			_,,,	. 0.0	. 10.0	. 0.11	. 0.0	. 0.0	27.0	.,,,,	11.0	20
Ave 56 151.000k 27.2 +0.0 +10.0 +2.9 +0.0 +0.0 40.0 55.9 -15.9 Line Ave 150.727k 45.4 +0.0 +10.0 +3.0 +0.0 +0.0 58.4 56.0 +2.4 Line 58 425.000k 19.8 +0.1 +10.1 +0.0 +0.0 +0.0 29.9 47.3 -17.4 Line Ave 424.882k 43.1 +0.1 +10.1 +0.0 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504.000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line Ave	٨	343.244k	49.0	+0.0	+10.0	+0.1	+0.0	+0.0	59.1	49.0	+10.1	Line
Ave 56 151.000k 27.2 +0.0 +10.0 +2.9 +0.0 +0.0 40.0 55.9 -15.9 Line Ave 150.727k 45.4 +0.0 +10.0 +3.0 +0.0 +0.0 58.4 56.0 +2.4 Line 58 425.000k 19.8 +0.1 +10.1 +0.0 +0.0 +0.0 29.9 47.3 -17.4 Line Ave 424.882k 43.1 +0.1 +10.1 +0.0 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504.000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line Ave	55	400 000k	24.3	⊥ 0.1	⊥10 1	±0.0	⊥ 0.1	±0.0	34.6	<i>1</i> 7 9	-133	Line
Ave ^ 150.727k			27.3	10.1	110.1	10.0	10.1	10.0	34.0	77.7	-13.3	Line
^ 150.727k 45.4 +0.0 +10.0 +3.0 +0.0 +0.0 58.4 56.0 +2.4 Line 58 425.000k 19.8 +0.1 +10.1 +0.0 +0.0 29.9 47.3 -17.4 Line ^ 424.882k 43.1 +0.1 +10.1 +0.0 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504.000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line 62 487.000k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line 62 487.000k 17.4 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line Ave 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line Ave 18.2 47.1	56	151.000k	27.2	+0.0	+10.0	+2.9	+0.0	+0.0	40.0	55.9	-15.9	Line
58 425,000k 19.8 +0.1 +10.1 +0.0 +0.0 +0.0 29.9 47.3 -17.4 Line ^ 424,882k 43.1 +0.1 +10.1 +0.0 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504,000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line ^ 504,146k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 46.4 46.0 +0.4 Line 62 487,000k 17.4 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line Ave ^ 486,694k 37.7 +0.1 +10.1 +0.0 +0.1 +0.0 48.0 46.2 +1.8 Line 64 381,000k 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line ^ 381,250k 47.1 +0.1 +10.1 +0.0 +0.0 +0.0 <td< td=""><td></td><td></td><td>47.4</td><td>0.0</td><td>10.0</td><td>2.0</td><td>0.0</td><td>0.0</td><td>70.4</td><td>7 6 0</td><td>2.4</td><td>* .</td></td<>			47.4	0.0	10.0	2.0	0.0	0.0	70.4	7 6 0	2.4	* .
Ave ^ 424.882k	^	150.727k	45.4	+0.0	+10.0	+3.0	+0.0	+0.0	58.4	56.0	+2.4	Line
^ 424.882k 43.1 +0.1 +10.1 +0.0 +0.0 +0.0 53.3 47.4 +5.9 Line 60 504.000k 17.3 +0.1 +10.1 +0.0 +0.1 +0.0 27.6 46.0 -18.4 Line ^ 504.146k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 46.4 46.0 +0.4 Line 62 487.000k 17.4 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line Ave ^ 486.694k 37.7 +0.1 +10.1 +0.0 +0.1 +0.0 48.0 46.2 +1.8 Line 64 381.000k 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line Ave 15.6 +0.1 +10.1 +0.0 +0.1 +0.0 57.4 48.3 +9.1 Line 66 454.000k 15.6 +0.1 +10.1 +0.0 +0.0 25.8 46.8 -21.0 Line <t< td=""><td>58</td><td>425.000k</td><td>19.8</td><td>+0.1</td><td>+10.1</td><td>+0.0</td><td>+0.0</td><td>+0.0</td><td>29.9</td><td>47.3</td><td>-17.4</td><td>Line</td></t<>	58	425.000k	19.8	+0.1	+10.1	+0.0	+0.0	+0.0	29.9	47.3	-17.4	Line
60 504.000k												
Ave ^ 504.146k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 46.4 46.0 +0.4 Line 62 487.000k Ave 17.4 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line ^ 486.694k 37.7 +0.1 +10.1 +0.0 +0.1 +0.0 48.0 46.2 +1.8 Line 64 381.000k Ave 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line 66 454.000k Ave 15.6 +0.1 +10.1 +0.0 +0.1 +0.0 57.4 48.3 +9.1 Line 68 240.000k Ave 15.6 +0.1 +10.1 +0.0 +0.0 +0.0 48.9 46.8 +2.1 Line 68 240.000k Ave 18.6 +0.0 +10.0 +0.1 +0.0 +0.0 28.7 52.1 -23.4 Line	^	424.882k	43.1	+0.1	+10.1	+0.0	+0.0	+0.0	53.3	47.4	+5.9	Line
^ 504.146k 36.1 +0.1 +10.1 +0.0 +0.1 +0.0 46.4 46.0 +0.4 Line 62 487.000k 17.4 +0.1 +10.1 +0.0 +0.1 +0.0 27.7 46.2 -18.5 Line ^ 486.694k 37.7 +0.1 +10.1 +0.0 +0.1 +0.0 48.0 46.2 +1.8 Line 64 381.000k 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line Ave ^ 381.250k 47.1 +0.1 +10.1 +0.0 +0.1 +0.0 57.4 48.3 +9.1 Line 66 454.000k 15.6 +0.1 +10.1 +0.0 +0.0 +0.0 25.8 46.8 -21.0 Line ^ 453.970k 38.7 +0.1 +10.1 +0.0 +0.0 +0.0 48.9 46.8 +2.1 Line 68 240.000k 18.6 +0.0 +10.0 +0.1 +0.0 +0.0 28.7 52.1 -23.4 <td< td=""><td>60</td><td>504.000k</td><td>17.3</td><td>+0.1</td><td>+10.1</td><td>+0.0</td><td>+0.1</td><td>+0.0</td><td>27.6</td><td>46.0</td><td>-18.4</td><td>Line</td></td<>	60	504.000k	17.3	+0.1	+10.1	+0.0	+0.1	+0.0	27.6	46.0	-18.4	Line
62 487.000k		Ave										
Ave	^	504.146k	36.1	+0.1	+10.1	+0.0	+0.1	+0.0	46.4	46.0	+0.4	Line
^ 486.694k 37.7 +0.1 +10.1 +0.0 +0.1 +0.0 48.0 46.2 +1.8 Line 64 381.000k 18.4 +0.1 +10.1 +0.0 +0.1 +0.0 28.7 48.3 -19.6 Line Ave ^ 381.250k 47.1 +0.1 +10.1 +0.0 +0.1 +0.0 57.4 48.3 +9.1 Line 66 454.000k 15.6 +0.1 +10.1 +0.0 +0.0 25.8 46.8 -21.0 Line Ave ^ 453.970k 38.7 +0.1 +10.1 +0.0 +0.0 48.9 46.8 +2.1 Line 68 240.000k 18.6 +0.0 +10.0 +0.1 +0.0 +0.0 28.7 52.1 -23.4 Line Ave ^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0	62	487.000k	17.4	+0.1	+10.1	+0.0	+0.1	+0.0	27.7	46.2	-18.5	Line
64 381.000k		Ave										
Ave A	^	486.694k	37.7	+0.1	+10.1	+0.0	+0.1	+0.0	48.0	46.2	+1.8	Line
Ave A	64	381.000k	18.4	+0.1	+10.1	+0.0	+0.1	+0.0	28.7	48.3	-19.6	Line
66 454.000k 15.6 +0.1 +10.1 +0.0 +0.0 +0.0 25.8 46.8 -21.0 Line Ave ^ 453.970k 38.7 +0.1 +10.1 +0.0 +0.0 +0.0 48.9 46.8 +2.1 Line 68 240.000k 18.6 +0.0 +10.0 +0.1 +0.0 +0.0 28.7 52.1 -23.4 Line Ave ^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0 Line												
Ave A	۸	381.250k	47.1	+0.1	+10.1	+0.0	+0.1	+0.0	57.4	48.3	+9.1	Line
Ave A	66	454.000k	15.6	+0.1	+10.1	+0.0	+0.0	+0.0	25.8	46.8	-21.0	Line
^ 453.970k 38.7 +0.1 +10.1 +0.0 +0.0 +0.0 48.9 46.8 +2.1 Line 68 240.000k 18.6 +0.0 +10.0 +0.1 +0.0 +0.0 28.7 52.1 -23.4 Line Ave ^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0 Line			10.0	. 0.1	. 10.1		. 0.0	. 0.0	20.0		21.0	2
Ave ^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0 Line	-		38.7	+0.1	+10.1	+0.0	+0.0	+0.0	48.9	46.8	+2.1	Line
Ave ^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0 Line	68	240 000k	18.6	+0.0	+10.0	+0.1	+0.0	+0.0	28.7	52.1	-23 4	Line
^ 240.173k 54.3 +0.0 +10.0 +0.1 +0.0 +0.0 64.4 52.1 +12.3 Line 70 171.000k 17.4 +0.0 +10.0 +0.4 +0.1 +0.0 27.9 54.9 -27.0 Line			10.0	. 5.0	1 10.0	10.1	. 3.0	10.0	20.7	J2.1	23.1	2
			54.3	+0.0	+10.0	+0.1	+0.0	+0.0	64.4	52.1	+12.3	Line
	70	171.000k	17.4	+0.0	+10.0	+0.4	+0.1	+0.0	27.9	54.9	-27.0	Line

CKC Laboratories, Inc. Date: 3/26/2009 Time: 16:13:18 GE Energy W0#: 89201 FCC 15.107 B COND [AVE] Test Lead: Line 1 240V 60Hz Sequence#: 19 WX-i210+c

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 15.107 B COND [AVE]

Work Order #:89201Date:3/26/2009Test Type:Conducted EmissionsTime:16:33:21Equipment:ANSI WiMAX SmartMeterSequence#:20Manufacturer:Grid-NetTested By:Art RiceModel:WX-i210+c240V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Eupation	Manufaatuman	Model #	C /NI	

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

EUT powered by 240VAC.

FCC 15.107B

NOTES:

1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz

Conducted emissions .15-30 MHz.

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measurement Data: Reading listed by margin. Test Lead: Line 2

ſ	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1	298.000k	47.6	+0.0	+10.0	+0.2	+0.0	+0.0	57.8	60.3	-2.5	Line
	(QP										
	2	278.000k	48.1	+0.0	+10.0	+0.2	+0.0	+0.0	58.3	60.9	-2.6	Line
		QP										
Ī	٨	277.987k	54.5	+0.0	+10.0	+0.2	+0.0	+0.0	64.7	50.9	+13.8	Line

Page 14 of 83 Report No.: FC09-048B

4	247.000k QP	46.4	+0.0	+10.0	+0.2	+0.0	+0.0	56.6	61.9	-5.3	Line
5	234.000k QP	46.8	+0.0	+10.0	+0.1	+0.0	+0.0	56.9	62.3	-5.4	Line
^	233.628k	54.8	+0.0	+10.0	+0.1	+0.0	+0.0	64.9	52.3	+12.6	Line
7	347.000k QP	43.0	+0.1	+10.1	+0.1	+0.0	+0.0	53.3	59.0	-5.7	Line
^	347.071k	49.4	+0.1	+10.1	+0.1	+0.0	+0.0	59.7	49.0	+10.7	Line
9	2.897M	29.8	+0.1	+10.0	+0.1	+0.1	+0.0	40.1	46.0	-5.9	Line
10	3.046M	29.5	+0.1	+10.0	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Line
11	175.000k QP	47.9	+0.0	+10.0	+0.4	+0.1	+0.0	58.4	64.7	-6.3	Line
12	2.825M	29.3	+0.1	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Line
13	2.748M	29.1	+0.1	+10.0	+0.1	+0.1	+0.0	39.4	46.0	-6.6	Line
14	2.931M	28.9	+0.1	+10.0	+0.1	+0.1	+0.0	39.2	46.0	-6.8	Line
15	3.072M	28.6	+0.1	+10.0	+0.1	+0.1	+0.0	38.9	46.0	-7.1	Line
16	3.029M	28.5	+0.1	+10.0	+0.1	+0.1	+0.0	38.8	46.0	-7.2	Line
17	2.957M	28.4	+0.1	+10.0	+0.1	+0.1	+0.0	38.7	46.0	-7.3	Line
18	3.016M	28.4	+0.1	+10.0	+0.1	+0.1	+0.0	38.7	46.0	-7.3	Line
19	3.220M	28.2	+0.1	+10.0	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
20	3.344M	28.2	+0.1	+10.0	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
21	3.195M	28.1	+0.1	+10.0	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Line
22	2.850M	28.0	+0.1	+10.0	+0.1	+0.1	+0.0	38.3	46.0	-7.7	Line
23	3.616M	27.7	+0.1	+10.1	+0.1	+0.2	+0.0	38.2	46.0	-7.8	Line
24	2.646M	27.5	+0.1	+10.0	+0.1	+0.2	+0.0	37.9	46.0	-8.1	Line
25	2.544M	27.1	+0.1	+10.0	+0.1	+0.2	+0.0	37.5	46.0	-8.5	Line
26	4.177M	26.9	+0.1	+10.1	+0.1	+0.2	+0.0	37.4	46.0	-8.6	Line
27	3.748M	26.8	+0.1	+10.1	+0.1	+0.2	+0.0	37.3	46.0	-8.7	Line
28	2.612M	26.7	+0.1	+10.0	+0.1	+0.2	+0.0	37.1	46.0	-8.9	Line

Page 15 of 83 Report No.: FC09-048B

29	2.680M	26.8	+0.1	+10.0	+0.1	+0.1	+0.0	37.1	46.0	-8.9	Line
30	3.599M	26.6	+0.1	+10.1	+0.1	+0.2	+0.0	37.1	46.0	-8.9	Line
31	4.279M	26.6	+0.1	+10.1	+0.1	+0.2	+0.0	37.1	46.0	-8.9	Line
32	278.000k Ave	31.7	+0.0	+10.0	+0.2	+0.0	+0.0	41.9	50.9	-9.0	Line
33	3.607M	26.3	+0.1	+10.1	+0.1	+0.2	+0.0	36.8	46.0	-9.2	Line
34	983.325k	26.4	+0.0	+10.1	+0.1	+0.1	+0.0	36.7	46.0	-9.3	Line
35	4.620M	26.3	+0.0	+10.0	+0.1	+0.2	+0.0	36.6	46.0	-9.4	Line
36	4.892M	26.1	+0.0	+10.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Line
37	889.759k	26.1	+0.0	+10.0	+0.1	+0.1	+0.0	36.3	46.0	-9.7	Line
38	2.502M	25.9	+0.1	+10.0	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
39	4.917M	26.0	+0.0	+10.0	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
40	1.294M	25.8	+0.0	+10.1	+0.1	+0.1	+0.0	36.1	46.0	-9.9	Line
41	906.771k	25.9	+0.0	+10.0	+0.1	+0.0	+0.0	36.0	46.0	-10.0	Line
42	1.183M	25.3	+0.0	+10.1	+0.1	+0.1	+0.0	35.6	46.0	-10.4	Line
43	298.000k Ave	29.5	+0.0	+10.0	+0.2	+0.0	+0.0	39.7	50.3	-10.6	Line
٨	298.349k	53.0	+0.0	+10.0	+0.2	+0.0	+0.0	63.2	50.3	+12.9	Line
45	347.000k Ave	27.1	+0.1	+10.1	+0.1	+0.0	+0.0	37.4	49.0	-11.6	Line
46	399.000k Ave	23.4	+0.1	+10.1	+0.0	+0.1	+0.0	33.7	47.9	-14.2	Line
۸	400.157k	46.2	+0.1	+10.1	+0.0	+0.1	+0.0	56.5	47.9	+8.6	Line
48	409.000k Ave	21.7	+0.1	+10.1	+0.0	+0.1	+0.0	32.0	47.7	-15.7	Line
۸	408.883k	44.9	+0.1	+10.1	+0.0	+0.1	+0.0	55.2	47.7	+7.5	Line
50	153.000k Ave	27.2	+0.0	+10.0	+1.8	+0.0	+0.0	39.0	55.8	-16.8	Line
٨	152.909k	46.0	+0.0	+10.0	+1.8	+0.0	+0.0	57.8	55.8	+2.0	Line
52	541.000k Ave	17.7	+0.0	+10.1	+0.0	+0.1	+0.0	27.9	46.0	-18.1	Line
۸	541.234k	35.8	+0.0	+10.1	+0.0	+0.1	+0.0	46.0	46.0	+0.0	Line

Page 16 of 83 Report No.: FC09-048B

54	513.000k	17.6	+0.0	+10.1	+0.0	+0.1	+0.0	27.8	46.0	-18.2	Line
	Ave										
^	512.873k	37.9	+0.0	+10.1	+0.0	+0.1	+0.0	48.1	46.0	+2.1	Line
56	476.000k	17.9	+0.0	+10.1	+0.0	+0.1	+0.0	28.1	46.4	-18.3	Line
	Ave										
^	475.786k	38.5	+0.0	+10.1	+0.0	+0.1	+0.0	48.7	46.4	+2.3	Line
58	439.000k	18.6	+0.0	+10.1	+0.0	+0.0	+0.0	28.7	47.1	-18.4	Line
	Ave										
^	439.426k	40.8	+0.0	+10.1	+0.0	+0.0	+0.0	50.9	47.1	+3.8	Line
^	435.790k	40.6	+0.0	+10.1	+0.0	+0.0	+0.0	50.7	47.1	+3.6	Line
61	325.000k	20.6	+0.1	+10.0	+0.1	+0.1	+0.0	30.9	49.6	-18.7	Line
	Ave										
^	324.528k	44.5	+0.1	+10.0	+0.1	+0.1	+0.0	54.8	49.6	+5.2	Line
63	429.000k	18.4	+0.0	+10.1	+0.0	+0.0	+0.0	28.5	47.3	-18.8	Line
	Ave										
^	429.245k	42.2	+0.0	+10.1	+0.0	+0.0	+0.0	52.3	47.3	+5.0	Line
^	430.699k	41.8	+0.0	+10.1	+0.0	+0.0	+0.0	51.9	47.2	+4.7	Line
66	255.000k	20.2	+0.0	+10.0	+0.2	+0.0	+0.0	30.4	51.6	-21.2	Line
——	Ave										
^	255.444k	49.9	+0.0	+10.0	+0.2	+0.0	+0.0	60.1	51.6	+8.5	Line
68		17.6	+0.0	+10.0	+0.2	+0.0	+0.0	27.7	51.9	-24.2	Line
	Ave										
٨	247.445k	54.1	+0.0	+10.0	+0.2	+0.0	+0.0	64.3	51.8	+12.5	Line
				10.5							
70		17.9	+0.0	+10.0	+0.1	+0.0	+0.0	28.0	52.3	-24.3	Line
	Ave	40.7	6.0	40.0	6.1		0.0	20.1		27.1	
71		18.7	+0.0	+10.0	+0.4	+0.1	+0.0	29.1	54.7	-25.6	Line
——	Ave			10.5							
٨	174.725k	54.4	+0.0	+10.0	+0.4	+0.1	+0.0	64.9	54.7	+10.2	Line

CKC Laboratories, Inc. Date: 3/26/2009 Time: 16:33:21 GE Energy W0#: 89201 FCC 15.107 B COND [AVE] Test Lead: Line 2 240V 60Hz Sequence#: 20 WX-i210+c

FCC 15.109 – RADIATED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 15.109 Class B Radiated 30-1000MHz

Work Order #: 89201 Date: 2/26/2009
Test Type: Maximized Emissions Time: 15:30:50
Equipment: ANSI WiMAX SmartMeter Sequence#: 14
Manufacturer: Grid-Net Tested By: Art Rice

Model: WX-i210+c

S/N: n/a

Test Equipment:

Function S/N Calibration Date Cal Due Date Asset # E4446A Spectrum US44300408 03/05/2007 03/05/2009 02668 Analyzer Preamp, HP8447D 2443A03707 02/09/2009 02/09/2011 00730 Antenna, Bilog 2630 12/22/2008 12/22/2010 00852 Cable None 04/21/2008 04/21/2010 P05440 Cable None 04/05/2007 04/05/2009 P05300 Cable None 04/07/2007 04/07/2009 P05399	1 cst Liquipinciii.					
Analyzer Preamp, HP8447D 2443A03707 02/09/2009 02/09/2011 00730 Antenna, Bilog 2630 12/22/2008 12/22/2010 00852 Cable None 04/21/2008 04/21/2010 P05440 Cable None 04/05/2007 04/05/2009 P05300	Function	S/N	Calibration Date	Cal Due Date	Asset #	
Preamp, HP8447D 2443A03707 02/09/2009 02/09/2011 00730 Antenna, Bilog 2630 12/22/2008 12/22/2010 00852 Cable None 04/21/2008 04/21/2010 P05440 Cable None 04/05/2007 04/05/2009 P05300	E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668	
Antenna, Bilog 2630 12/22/2008 12/22/2010 00852 Cable None 04/21/2008 04/21/2010 P05440 Cable None 04/05/2007 04/05/2009 P05300	Analyzer					
Cable None 04/21/2008 04/21/2010 P05440 Cable None 04/05/2007 04/05/2009 P05300	Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730	
Cable None 04/05/2007 04/05/2009 P05300	Antenna, Bilog	2630	12/22/2008	12/22/2010	00852	
	Cable	None	04/21/2008	04/21/2010	P05440	
Cable None $04/02/2007$ $04/02/2009$ P05299	Cable	None	04/05/2007	04/05/2009	P05300	
0 + 10110 $0 + 102/2007$ $0 + 103/299$	Cable	None	04/02/2007	04/02/2009	P05299	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. EUT powered by 220VAC.

The laptop PC communicates to the EUT through the Wall Plugged Bridge.

The EUT uses carrier current signals over the power line to communicate with the Wall Plugged Bridge, which bridges to the Ethernet.

The Ethernet cable is routed under groundplane to the laptop located outside the chamber. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz, 30-1000 MHz RBW=120kHz
- 2) Testing the digital circuitry of the EUT.

Radiated emissions 30-1000 MHz.

Page 20 of 83 Report No.: FC09-048B

Transducer Legend:
T1=Cable Calibration ANP05299 T2=Cable Calibration ANP05300 T3=Cable Calibration ANP05440 T4=AMP-AN00730-020909 .01-1000 T5=ANT AN00852 25-1000MHz

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	Freq	Rdng		T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
1 499,990M				T5								
QP		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
A 499,987M 53.0 +0.2 +0.6 +1.3 -27.2 +0.0 45.8 46.0 -0.2 Horiz 140 3 499,989M 51.0 +0.2 +0.6 +1.3 -27.2 +0.0 43.8 46.0 -2.2 Vert 101 A 499,987M 51.9 +0.2 +0.6 +1.3 -27.2 +0.0 44.7 46.0 -1.3 Vert 101 A 499,987M 51.9 +0.2 +0.6 +1.3 -27.2 +0.0 44.7 46.0 -1.3 Vert 101 5 399,989M 52.3 +0.1 +0.5 +1.2 -27.3 +0.0 42.8 46.0 -3.2 Vert 101 A 399,994M 53.2 +0.1 +0.5 +1.2 -27.3 +0.0 43.7 46.0 -3.2 Vert 111 A 399,994M 53.2 +0.1 +0.5 +1.2 -27.3 +0.0 43.7 46.0 -2.3 Vert 111 A 395,732M 46.7 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert 100 A 35,753M 56.0 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert 100 A 599,989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 45.6 40.0 +5.6 Vert 100 A 599,989M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 102 A 599,989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 A 399,987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 A 399,987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 199 A 399,987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 199 A 33,3425M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 16.8 209 100 A 33,389M 50.0 +0.0 +0.2 +0.4 -27.4 +0.0 35.0 40.0 -5.0 Vert 16.8 209 100 A 33,383M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 47.0 47	1	499.990M	52.7	+0.2	+0.6	+1.3	-27.2	+0.0	45.5	46.0	-0.5	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+17.9				273				140
3 499,989M	٨	499.987M	53.0	+0.2	+0.6	+1.3	-27.2	+0.0	45.8	46.0	-0.2	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+17.9				273				140
A 499.987M 51.9	3	499.989M	51.0	+0.2	+0.6	+1.3	-27.2	+0.0	43.8	46.0	-2.2	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+17.9				25				101
5 399.989M QP 52.3 +0.1 +16.0 +16	^	499.987M	51.9	+0.2	+0.6	+1.3	-27.2	+0.0	44.7	46.0	-1.3	Vert
QP +16.0 346 111 ^ 399.994M 53.2 +0.1 +0.5 +1.2 -27.3 +0.0 43.7 46.0 -2.3 Vert 111 7 35.732M 46.7 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert QP +16.4 201 201 100 +5.6 Vert 100 ^ 35.753M 56.0 +0.0 +0.2 +0.4 -27.4 +0.0 45.6 40.0 +5.6 Vert 100 9 599.989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert QP +19.6 16 16 102 102 102 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz QP +16.0 +16.0 174 209 174 20				+17.9				25				101
^ 399.994M 53.2 +0.1 +0.5 +1.2 -27.3 +0.0 43.7 46.0 -2.3 Vert 1111 7 35.732M 46.7 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert 100 QP +16.4 201 -0 45.6 40.0 +5.6 Vert 100 9 599.989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 100 9 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 100 102 * 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 41.3 46.0 -3.4 Vert 100 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.1 Horiz 199 * 399.987M 51.4 +0.1 +0.5 +1.2	5	399.989M	52.3	+0.1	+0.5	+1.2	-27.3	+0.0	42.8	46.0	-3.2	Vert
111 7 35.732M 46.7 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert 100		QP		+16.0				346				111
7 35.732M 46.7 +0.0 +0.2 +0.4 -27.4 +0.0 36.3 40.0 -3.7 Vert 100 ^ 35.753M 56.0 +0.0 +0.2 +0.4 -27.4 +0.0 45.6 40.0 +5.6 Vert 100 9 599.989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 102 ^ 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 42.6 46.0 -3.4 Vert 102 ^ 599.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 101 11 399.989M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 100 ^ 35.084M 55.9 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -5.0 Vert 100 15 33.425M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 35.0 40.0 -5.0 Vert QP +17.5 301 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 35.0 40.0 -5.3 Vert QP +16.6 -209 -100 ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +16.6 -209 -100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100	٨	399.994M	53.2	+0.1	+0.5	+1.2	-27.3	+0.0	43.7	46.0	-2.3	Vert
QP +16.4 201 100 ^ 35.753M 56.0 +0.0 +0.2 +0.4 -27.4 +0.0 45.6 40.0 +5.6 Vert 100 9 599.989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 100 QP +19.6 16 16 46.0 -3.4 Vert 102 +19.6 16 16 46.0 -3.4 Vert 102 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 +5.9 Vert				+16.0				346				111
^ 35.753M 56.0 +0.0 +0.2 +0.4 -27.4 +0.0 45.6 40.0 +5.6 Vert 100 9 599.989M 46.9 +0.2 +0.6 +1.5 -27.1 +0.0 41.7 46.0 -4.3 Vert 102 ^ 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 42.6 46.0 -3.4 Vert 102 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 101 11 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 400			46.7		+0.2	+0.4	-27.4		36.3	40.0	-3.7	
100 9 599,989M		QP		+16.4				201				100
9 599.989M	٨	35.753M	56.0	+0.0	+0.2	+0.4	-27.4	+0.0	45.6	40.0	+5.6	Vert
QP +19.6 16 102 ^ 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 42.6 46.0 -3.4 Vert 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz QP +16.0 174 174 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert QP +16.8 209 100 -4.9 Vert 100 ^ 35.084M 55.9 +0.0 +0.2 +0.4 -27.4 +0.0 45.9 40.0 +5.9 Vert QP +17.5 301 -0.0 45.9 40.0 +5.9 Vert 17 35.333M 44.4								201				100
^ 599.987M 47.8 +0.2 +0.6 +1.5 -27.1 +0.0 42.6 46.0 -3.4 Vert +19.6 16 16 101 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz QP +16.0 174 174 200 41.9 46.0 -4.1 Horiz 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert QP +16.8 209 100 ^ 35.084M 55.9 +0.0 +0.2 +0.4 -27.4 +0.0 45.9 40.0 +5.9 Vert QP +16.8 209 100 15 33.425M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 35.0 40.0 +5.9 Vert QP +17.5 301 301 100 +6.6 Vert 17 35.333M 44.8 +0.0 +0.2	9	599.989M	46.9	+0.2	+0.6	+1.5	-27.1	+0.0	41.7	46.0	-4.3	
101 11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199				+19.6				16				102
11 399.989M 50.8 +0.1 +0.5 +1.2 -27.3 +0.0 41.3 46.0 -4.7 Horiz 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 199 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 200 QP +16.8 209 100 +5.9 Vert 100 Vert 100 +5.9 Vert 100 +5.9 Vert 100 Vert 100 +5.9 Vert 100 +6.6 </td <td>^</td> <td>599.987M</td> <td>47.8</td> <td></td> <td>+0.6</td> <td>+1.5</td> <td>-27.1</td> <td>+0.0</td> <td>42.6</td> <td>46.0</td> <td>-3.4</td> <td></td>	^	599.987M	47.8		+0.6	+1.5	-27.1	+0.0	42.6	46.0	-3.4	
QP +16.0 174 199 ^ 399.987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 200 ^ 35.084M 55.9 +0.0 +0.2 +0.4 -27.4 +0.0 45.9 40.0 +5.9 Vert 100 15 33.425M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 35.0 40.0 -5.0 Vert 100 QP +17.5 301 100 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 19 34.383M 57.2 +0.0 +0.2 +0.4				+19.6				16				101
^ 399,987M 51.4 +0.1 +0.5 +1.2 -27.3 +0.0 41.9 46.0 -4.1 Horiz 200 13 35.148M 45.1 +0.0 +0.2 +0.4 -27.4 +0.0 35.1 40.0 -4.9 Vert 100 0P +16.8 209 100 +5.9 Vert 100 15 33.425M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 35.0 40.0 +5.9 Vert 100 QP +17.5 301 100 17 35.338M 56.0 +0.0 +0.2 +0.3 -27.4 +0.0 34.7 40.0 +6.6 Vert 100 QP +16.7 301 301 100 -5.3 Vert 100 19 34.383M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 100 100 -0.0 -0.0<			50.8		+0.5	+1.2	-27.3		41.3	46.0	-4.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_										
13 35.148M	^	399.987M	51.4		+0.5	+1.2	-27.3		41.9	46.0	-4.1	
QP +16.8 209 40.0 +5.9 Vert Vert Vert Vert Vert Vert Vert Vert												
^ 35.084M 55.9			45.1		+0.2	+0.4	-27.4		35.1	40.0	-4.9	
+16.8 209 100 15 33.425M 44.4 +0.0 +0.2 +0.3 -27.4 +0.0 35.0 40.0 -5.0 Vert QP +17.5 301 100 17 33.389M 56.0 +0.0 +0.2 +0.3 -27.4 +0.0 46.6 40.0 +6.6 Vert 100 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +16.7 209 100 19 34.383M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 +7.0 Vert QP +16.6 209 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100				+16.8								
15 33.425M	^	35.084M	55.9		+0.2	+0.4	-27.4		45.9	40.0	+5.9	
QP +17.5 301 100 ^ 33.389M 56.0 +0.0 +0.2 +0.3 -27.4 +0.0 46.6 40.0 +6.6 Vert 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +16.7 209 100 ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100												
^ 33.389M 56.0 +0.0 +0.2 +0.3 -27.4 +0.0 46.6 40.0 +6.6 Vert 100 17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 209 100 ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 200 QP +17.1 230 100			44.4		+0.2	+0.3	-27.4		35.0	40.0	-5.0	
17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP		`										
17 35.333M 44.8 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert 209 100 ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert +16.6 209 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100	^	33.389M	56.0		+0.2	+0.3	-27.4		46.6	40.0	+6.6	
QP +16.7 209 100 ^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100												
^ 35.382M 57.2 +0.0 +0.2 +0.4 -27.4 +0.0 47.0 40.0 +7.0 Vert +16.6 209 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100			44.8		+0.2	+0.4	-27.4		34.7	40.0	-5.3	
+16.6 209 100 19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100		-										
19 34.383M 44.4 +0.0 +0.2 +0.4 -27.4 +0.0 34.7 40.0 -5.3 Vert QP +17.1 230 100	^	35.382M	57.2		+0.2	+0.4	-27.4		47.0	40.0	+7.0	
QP +17.1 230 100												
`			44.4		+0.2	+0.4	-27.4		34.7	40.0	-5.3	
l ^ 34 385M 57 9 +0.0 +0.2 +0.4 -27.4 +0.0 48.2 40.0 +8.2 Vert												
	^	34.385M	57.9	+0.0	+0.2	+0.4	-27.4	+0.0	48.2	40.0	+8.2	Vert
+17.1 230 100												
21 799.983M 43.1 +0.2 +0.7 +1.8 -27.1 +0.0 40.4 46.0 -5.6 Horiz			43.1		+0.7	+1.8	-27.1		40.4	46.0	-5.6	
QP +21.7 74 145												
^ 799.980M 44.7 +0.2 +0.7 +1.8 -27.1 +0.0 42.0 46.0 -4.0 Horiz	^	799.980M	44.7		+0.7	+1.8	-27.1		42.0	46.0	-4.0	
+21.7 74 145				+21.7				74				

Page 21 of 83

Report No.: FC09-048B

23	32.587M	42.7	+0.0	+0.2	+0.3	-27.4	+0.0	33.7	40.0	-6.3	Vert
	QP		+17.9				83				100
٨	32.588M	49.9	+0.0	+0.2	+0.3	-27.4	+0.0	40.9	40.0	+0.9	Vert
			+17.9				83				100
25	33.974M	43.1	+0.0	+0.2	+0.4	-27.4	+0.0	33.6	40.0	-6.4	Vert
	OP		+17.3				64				100
٨	33.944M	53.4	+0.0	+0.2	+0.4	-27.4	+0.0	43.9	40.0	+3.9	Vert
	33.744111	33.4	+17.3	10.2	10.4	27.4	64	73.7	40.0	13.7	100
27	30.078M	41.6		+0.1	+0.3	-27.4		33.6	40.0	-6.4	
		41.0	+0.0	+0.1	+0.5	-27.4	+0.0	33.0	40.0	-0.4	Vert
^	QP	52.2	+19.0	0.1	0.0	27.4	129	44.0	40.0	1.0	100
^	30.075M	52.3	+0.0	+0.1	+0.3	-27.4	+0.0	44.3	40.0	+4.3	Vert
			+19.0				129				100
29	32.227M	42.5	+0.0	+0.1	+0.3	-27.4	+0.0	33.5	40.0	-6.5	Vert
	QP		+18.0				337				100
٨	32.216M	52.9	+0.0	+0.1	+0.3	-27.4	+0.0	43.9	40.0	+3.9	Vert
			+18.0				337				100
31	33.190M	42.8	+0.0	+0.2	+0.3	-27.4	+0.0	33.5	40.0	-6.5	Vert
	OP	12.0	+17.6	10.2	10.5	27	308	55.5	10.0	0.0	100
٨	33.191M	53.6		+0.2	+0.3	-27.4	+0.0	44.3	40.0	+4.3	Vert
	33.191W	33.0	+0.0	+0.2	+0.3	-27.4	308	44.3	40.0	+4.3	
22	22.0001.6	12.5	+17.6	0.2	0.0	27.4		22.0	40.0	7.0	100
33		42.5	+0.0	+0.2	+0.3	-27.4	+0.0	33.0	40.0	-7.0	Vert
	QP		+17.4				301				100
٨	33.846M	52.3	+0.0	+0.2	+0.3	-27.4	+0.0	42.8	40.0	+2.8	Vert
			+17.4				301				100
35	899.962M	40.8	+0.3	+0.8	+1.9	-27.4	+0.0	38.9	46.0	-7.1	Horiz
			+22.5				227				146
36	33.612M	42.2	+0.0	+0.2	+0.3	-27.4	+0.0	32.8	40.0	-7.2	Vert
	QP		+17.5				301				100
^	33.617M	53.7	+0.0	+0.2	+0.3	-27.4	+0.0	44.2	40.0	+4.2	Vert
	33.017WI	33.1	+17.4	10.2	10.5	-27.4	301	77.2	40.0	17.2	100
38	68.657M	50.9	+0.1	+0.2	+0.5	-27.2	+0.0	30.6	40.0	-9.4	
30	08.03/WI	30.9		+0.2	+0.5	-21.2		30.0	40.0	-9.4	Horiz
20	20.60214	40.7	+6.1	.0.1	.0.7	27.2	254	20.0	40.0	10.0	270
39		40.7	+0.1	+0.1	+0.5	-27.3	+0.0	28.0	40.0	-12.0	Vert
	QP		+13.9				327				101
^	39.662M	53.0	+0.1	+0.1	+0.5	-27.3	+0.0	40.3	40.0	+0.3	Vert
			+13.9				327				101
41	66.448M	47.3	+0.1	+0.2	+0.4	-27.1	+0.0	26.9	40.0	-13.1	Vert
	QP		+6.0				356				100
٨	66.362M	57.2	+0.1	+0.2	+0.4	-27.1	+0.0	36.8	40.0	-3.2	Vert
			+6.0				356				100
43	41.045M	38.6	+0.1	+0.1	+0.4	-27.3	+0.0	25.0	40.0	-15.0	Vert
_	QP	30.0	+13.1	10.1	1 0. T	21.3	+0.0 17	23.0	40.0	13.0	102
^		40.5		₁ 0.1	LO 4	27.2		26.0	40.0	4.0	
,	40.979M	49.5	+0.1	+0.1	+0.4	-27.3	+0.0	36.0	40.0	-4.0	Vert
		=	+13.2				17		15 -		102
45	56.450M	44.7	+0.1	+0.2	+0.4	-27.3	+0.0	24.6	40.0	-15.4	Vert
	QP		+6.5				326				100
٨	56.461M	61.5	+0.1	+0.2	+0.4	-27.3	+0.0	41.4	40.0	+1.4	Vert
			+6.5				326				100
•											

47	39.831M	37.2	+0.1	+0.1	+0.5	-27.3	+0.0	24.4	40.0	-15.6	Vert
	QP		+13.8				322				101
٨	39.821M	49.6	+0.1	+0.1	+0.5	-27.3	+0.0	36.8	40.0	-3.2	Vert
			+13.8				322				101
49	57.620M	43.2	+0.1	+0.2	+0.5	-27.3	+0.0	22.9	40.0	-17.1	Vert
	QP		+6.2				342				101
٨	57.617M	60.0	+0.1	+0.2	+0.5	-27.3	+0.0	39.7	40.0	-0.3	Vert
			+6.2				342				101
51	54.302M	42.2	+0.0	+0.2	+0.4	-27.3	+0.0	22.6	40.0	-17.4	Vert
	QP		+7.1				353				102
٨	54.310M	55.8	+0.0	+0.2	+0.4	-27.3	+0.0	36.2	40.0	-3.8	Vert
			+7.1				353				102
53	65.640M	42.8	+0.1	+0.2	+0.4	-27.1	+0.0	22.3	40.0	-17.7	Vert
	QP		+5.9				164				100
٨	65.644M	56.1	+0.1	+0.2	+0.4	-27.1	+0.0	35.6	40.0	-4.4	Vert
			+5.9				164				100
55	31.645M	30.4	+0.0	+0.1	+0.4	-27.4	+0.0	21.8	40.0	-18.2	Horiz
	QP		+18.3				254				270
٨	31.635M	43.5	+0.0	+0.1	+0.4	-27.4	+0.0	34.9	40.0	-5.1	Horiz
			+18.3				254				270
57	69.630M	42.1	+0.1	+0.2	+0.5	-27.3	+0.0	21.8	40.0	-18.2	Vert
	QP		+6.2				110				100
٨	69.609M	57.7	+0.1	+0.2	+0.5	-27.3	+0.0	37.4	40.0	-2.6	Vert
			+6.2				110				100

FCC 2.1033(c)(14)/2.1046/27.50 – CONDUCTED RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum	02668	Agilent	E4446A	US44300408	03/09/09	03/09/11
Analyzer						
10 dB	ANP05411	Weinschel	54A-10	P7186	02/05/08	02/05/10
attenuator						

Test Conditions

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFMDA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) Channel Power measurements taken on the spectrum analyzer with Peak detector:

RBW =510kHz, VBW=5 MHz used for 5 MHz channel bandwidth.

RBW =1MHz, VBW=8 MHz used for 10 MHz channel bandwidth.

Page 24 of 83 Report No.: FC09-048B

Test Setup Photos

Test Data

Model: WX-i210+c 5 MHz Channel Bandwidth

Channel-Frequency in	Conducted Power Output-	Conducted Power Output-
MHz	dBm: QPSK 1/2	dBm:
		16 QAM 3/4
Low-2498.5	28.19	28.73
Mid-2600	27.51	27.85
Hi-2687.5	26.58	26.33

Model: WX-i210+c 10 MHz Channel Bandwidth

11100011 111111111111111111111111111111								
Channel-Frequency in	Conducted Power Output-	Conducted Power Output-						
MHz	dBm: QPSK 1/2	dBm:						
		16 QAM 3/4						
Low-2501	26.78	26.78						
Mid-2600	26.46	26.91						
Hi-2685	25.55	25.38						

Page 26 of 83 Report No.: FC09-048B

Channel Power – 5MHz 16QAM 3/4 – High

Channel Power – 5MHz 16QAM 3/4 – Middle

Channel Power – 5MHz 16QAM 3/4 – Low

Channel Power – 5MHz QPSK 1/2 – High

Channel Power – 5MHz QPSK 1/2 – Middle

Channel Power – 5MHz QPSK 1/2 – Low

Channel Power – 10MHz 16QAM 3/4 – High

Channel Power – 10MHz 16QAM 3/4 – Middle

Channel Power – 10MHz 16QAM 3/4 – Low

Channel Power – 10MHz QPSK 1/2 – High

Channel Power – 10MHz QPSK 1/2 – Middle

Channel Power – 10MHz QPSK 1/2 – Low

FCC 2.1049 - OCCUPIED BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum	02668	Agilent	E4446A	US44300408	03/05/07	03/05/09
Analyzer						
Cable	03015	Astrolab	32022-2-29094K-	none	02/04/08	02/04/10
			24TC			
10 dB	ANP05411	Weinschel	54A-10	P7186	02/05/08	02/05/10
attenuator						

Test Conditions

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) SA offset of 9.8 dB to correct for cable and attenuator loss.

Page 33 of 83 Report No.: FC09-048B

Test Setup Photos

Test Data

Model: WX-i210+c 5 MHz Channel Bandwidth

~ 1 -		
Channel-Frequency in	Occupied bandwidth in	Occupied bandwidth in
MHz	MHz: QPSK 1/2	MHz: 16 QAM 3/4
Low-2498.5	4.4424	4.4374
Mid-2600	4.4367	4.4277
Hi-2687.5	4.4306	4.4390

Model: WX-i210+c 10 MHz Channel Bandwidth

Channel-Frequency in MHz	Occupied bandwidth in MHz: QPSK 1/2	Occupied bandwidth in MHz: 16 QAM 3/4
Low-2501	9.0454	9.0665
Mid-2600	9.0626	9.0532
Hi-2685	9.0379	9.0616

Page 34 of 83 Report No.: FC09-048B

Test Plots

OCCUPIED BANDWIDTH - 5MHz QPSK LOW CHANNEL

OCCUPIED BANDWIDTH - 5MHz QPSK MID CHANNEL

Page 35 of 83 Report No.: FC09-048B

OCCUPIED BANDWIDTH - 5MHz QPSK HIGH CHANNEL

OCCUPIED BANDWIDTH - 5MHz 16QAM LOW CHANNEL

Page 36 of 83 Report No.: FC09-048B

OCCUPIED BANDWIDTH - 5MHz 16QAM MID CHANNEL

OCCUPIED BANDWIDTH - 5MHz 16QAM HIGH CHANNEL

Page 37 of 83 Report No.: FC09-048B

OCCUPIED BANDWIDTH - 10MHz QPSK LOW CHANNEL

OCCUPIED BANDWIDTH - 10MHz QPSK MID CHANNEL

Page 38 of 83 Report No.: FC09-048B

OCCUPIED BANDWIDTH - 10MHz QPSK HIGH CHANNEL

OCCUPIED BANDWIDTH - 10MHz 16QAM LOW CHANNEL

Page 39 of 83 Report No.: FC09-048B

OCCUPIED BANDWIDTH - 10MHz 16QAM MID CHANNEL

OCCUPIED BANDWIDTH - 10MHz 16QAM HIGH CHANNEL

FCC 2.1033(c)(14)/2.1051/27.53 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Setup Photos

Test Data

107+ (-13)=94 dBuV

Spurious emissions limit calculation: First convert maximum measured power output from dBm to dBW. Inv log [(26.6 dBm-30)/10]=0.457W Then calculate required attenuation: $43+10 \log(0.457W)$ =39.6dB attenuation Then calculate the limit in dBm: 26.6-39.6=-13dBm Convert to dBuV:

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #:89201Date:2/23/2009Test Type:Conducted EmissionsTime:09:07:31Equipment:ANSI WiMAX SmartMeterSequence#:2Manufacturer:Grid-NetTested By:Art Rice

Model: WX-i210+c 220V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411
10dB Pad 766-10	none	01/23/2008	01/23/2010	P05389

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Page 42 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on low channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10kHz-26900 MHz.

Transducer Legend:

1.4	
T1=CAB-AN03015-020408	T2=ATT-ANP05411-020508

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: Antenna	port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	24993.000	75.3	+1.0	+10.3			+0.0	86.6	94.0	-7.4	Anten
	M										
2	2499.187M	122.1	+0.4	+9.4			+0.0	131.9	140.0	-8.1	Anten
									Fundamen	tal	
3	25200.530	74.4	+1.2	+10.3			+0.0	85.9	94.0	-8.1	Anten
	M										
4	4996.701M	75.6	+0.7	+9.4			+0.0	85.7	94.0	-8.3	Anten
									Harmonic		
5	25217.360	73.8	+1.2	+10.3			+0.0	85.3	94.0	-8.7	Anten
	M										
6	25182.270	73.6	+1.2	+10.3			+0.0	85.1	94.0	-8.9	Anten
	M										
7	24143.890	73.8	+0.9	+10.3			+0.0	85.0	94.0	-9.0	Anten
	M										

Page 43 of 83 Report No.: FC09-048B

8 25179.420	73.5	+1.2	+10.3	+0.0	85.0	94.0	-9.0	Anten
M	73.3	T1.2	+10.5	+0.0	63.0	94.0	-9.0	Anten
9 25230.170 M	73.5	+1.2	+10.3	+0.0	85.0	94.0	-9.0	Anten
10 25279.250 M	73.3	+1.2	+10.3	+0.0	84.8	94.0	-9.2	Anten
11 25171.120 M	73.2	+1.2	+10.3	+0.0	84.7	94.0	-9.3	Anten
12 25152.390 M	73.1	+1.2	+10.3	+0.0	84.6	94.0	-9.4	Anten
13 25197.440 M	73.1	+1.2	+10.3	+0.0	84.6	94.0	-9.4	Anten
14 24190.900 M	73.3	+0.9	+10.3	+0.0	84.5	94.0	-9.5	Anten
15 25022.680 M	73.2	+1.0	+10.3	+0.0	84.5	94.0	-9.5	Anten
16 25151.440 M	73.0	+1.2	+10.3	+0.0	84.5	94.0	-9.5	Anten
17 25052.800 M	73.0	+1.1	+10.3	+0.0	84.4	94.0	-9.6	Anten
18 24199.900 M	73.0	+1.0	+10.3	+0.0	84.3	94.0	-9.7	Anten
19 24224.900 M	72.9	+1.0	+10.3	+0.0	84.2	94.0	-9.8	Anten
20 25139.350 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
21 25234.200 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
22 25266.680 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
23 26004.380 M	72.7	+1.0	+10.4	+0.0	84.1	94.0	-9.9	Anten
24 25076.980 M	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten

Page 44 of 83 Report No.: FC09-048B

25 25295.610 M	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
26 24324.920 M	72.7	+0.9	+10.3	+0.0	83.9	94.0	-10.1	Anten
27 24354.920 M	72.7	+0.9	+10.3	+0.0	83.9	94.0	-10.1	Anten
28 24401.930 M	72.7	+0.9	+10.3	+0.0	83.9	94.0	-10.1	Anten
29 25027.190 M	72.5	+1.1	+10.3	+0.0	83.9	94.0	-10.1	Anten
30 25044.730 M	72.5	+1.1	+10.3	+0.0	83.9	94.0	-10.1	Anten
31 25119.670 M	72.4	+1.2	+10.3	+0.0	83.9	94.0	-10.1	Anten
32 25195.540 M	72.4	+1.2	+10.3	+0.0	83.9	94.0	-10.1	Anten
33 25707.740 M	72.5	+1.0	+10.4	+0.0	83.9	94.0	-10.1	Anten
34 26563.760 M	72.4	+1.1	+10.4	+0.0	83.9	94.0	-10.1	Anten
35 26601.930 M	72.4	+1.1	+10.4	+0.0	83.9	94.0	-10.1	Anten
36 25037.150 M	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
37 25280.910 M	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
38 25941.540 M	72.4	+1.0	+10.4	+0.0	83.8	94.0	-10.2	Anten
39 24913.990 M	72.4	+0.9	+10.4	+0.0	83.7	94.0	-10.3	Anten
40 24948.990 M	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
41 25012.720 M	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten

Page 45 of 83 Report No.: FC09-048B

42 2	5282.810 M	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
43 2	4239.900 M	72.3	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
44 2	4317.910 M	72.3	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
45 2	5057.060 M	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
46 2	25073.430 M	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
47 2	5172.310 M	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
48 2	25677.860 M	72.2	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
49 2	6239.840 M	72.2	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
50 2	M 6224.670	72.1	+1.0	+10.4	+0.0	83.5	94.0	-10.5	Anten

CKC Laboratories, Inc. Date: 2/23/2009 Time: 09:07:31 GE Energy WO#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 220V 60Hz Sequence#: 2 WX-i210+c Antenna port through cable and 10 dB atten. Low ch. QPSK 1/2 5 MHz

Sweep Data Readings 1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Peak Readings

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #:89201Date:2/23/2009Test Type:Conducted EmissionsTime:09:05:03Equipment:ANSI WiMAX SmartMeterSequence#:3Manufacturer:Grid-NetTested By:Art RiceModel:WX-i210+c220V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668	
Analyzer					
Cable - HF - 32022-2	2- n/a	02/04/2008	02/04/2010	03015	
29094K-24TC					
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411	
10dB Pad 766-10	none	01/23/2008	01/23/2010	P05389	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Page 48 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30MHz RBW=VBW=9kHz, 30-1000MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.

Danding links d become

8) Transmitting on mid channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10kHz-26900 MHz.

Transducer Legend:

Managan and Data.

T1=CAB-AN03015-020408	T2=ATT-ANP05411-020508	
-----------------------	------------------------	--

Measu	asurement Data: Reading listed by margin.					Test Lead: Antenna port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2601.200M	123.8	+0.4	+9.4			+0.0	133.6	140.0	-6.4	Anten
									Fundamen	ıtal	
2	25089.080	75.4	+1.1	+10.3			+0.0	86.8	94.0	-7.2	Anten
	M										
3	25119.900	74.3	+1.2	+10.3			+0.0	85.8	94.0	-8.2	Anten
	M										
4		74.3	+1.1	+10.3			+0.0	85.7	94.0	-8.3	Anten
	M										
5	24952.990	74.2	+1.0	+10.3			+0.0	85.5	94.0	-8.5	Anten
	M										
6		74.0	+0.9	+10.4			+0.0	85.3	94.0	-8.7	Anten
	M										
<u> </u>	24054.000		1.0	10.0			0.0	07.5	0.1.6	0.5	
7	,	74.0	+1.0	+10.3			+0.0	85.3	94.0	-8.7	Anten
	M										

Page 49 of 83 Report No.: FC09-048B

8	24964.000 M	73.8	+1.0	+10.3	+0.0	85.1	94.0	-8.9	Anten
9	5201.476M	74.7	+0.7	+9.4	+0.0	84.8	94.0 Harmonic	-9.2	Anten
10	24125.890 M	73.6	+0.9	+10.3	+0.0	84.8	94.0	-9.2	Anten
11	25137.450 M	73.3	+1.2	+10.3	+0.0	84.8	94.0	-9.2	Anten
12	25196.490 M	73.3	+1.2	+10.3	+0.0	84.8	94.0	-9.2	Anten
13	26283.470 M	73.4	+1.0	+10.4	+0.0	84.8	94.0	-9.2	Anten
14	25112.080 M	73.3	+1.1	+10.3	+0.0	84.7	94.0	-9.3	Anten
15	25977.350 M	73.3	+1.0	+10.4	+0.0	84.7	94.0	-9.3	Anten
16	25152.630 M	73.0	+1.2	+10.3	+0.0	84.5	94.0	-9.5	Anten
17	26616.400 M	73.0	+1.1	+10.4	+0.0	84.5	94.0	-9.5	Anten
18	25048.530 M	72.9	+1.1	+10.3	+0.0	84.3	94.0	-9.7	Anten
19	25256.250 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
20	25277.590 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
21	24156.890 M	73.0	+0.9	+10.3	+0.0	84.2	94.0	-9.8	Anten
22	25039.520 M	72.8	+1.1	+10.3	+0.0	84.2	94.0	-9.8	Anten
23	25134.130 M	72.7	+1.2	+10.3	+0.0	84.2	94.0	-9.8	Anten
24	25131.050 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
-									

Page 50 of 83 Report No.: FC09-048B

25	26621.380 M	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
26	24931.990 M	72.7	+0.9	+10.4	+0.0	84.0	94.0	-10.0	Anten
27	25205.270 M	72.5	+1.2	+10.3	+0.0	84.0	94.0	-10.0	Anten
28	25342.560 M	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
29	25353.230 M	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
30	25955.290 M	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
31	26281.580 M	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
32	24992.000 M	72.6	+1.0	+10.3	+0.0	83.9	94.0	-10.1	Anten
33	25109.230 M	72.5	+1.1	+10.3	+0.0	83.9	94.0	-10.1	Anten
34	25223.760 M	72.4	+1.2	+10.3	+0.0	83.9	94.0	-10.1	Anten
35	24104.890 M	72.6	+0.9	+10.3	+0.0	83.8	94.0	-10.2	Anten
36	24967.000 M	72.5	+1.0	+10.3	+0.0	83.8	94.0	-10.2	Anten
37	25063.700 M	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
38	25073.900 M	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
39	25207.880 M	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
40	26084.760 M	72.4	+1.0	+10.4	+0.0	83.8	94.0	-10.2	Anten
41	26141.670 M	72.4	+1.0	+10.4	+0.0	83.8	94.0	-10.2	Anten

42	24984.000 M	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
43	25062.990 M	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
44	25080.540 M	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
45	24294.910 M	72.3	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
46	24853.980 M	72.3	+0.9	+10.4	+0.0	83.6	94.0	-10.4	Anten
47	25167.090 M	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
48	25346.590 M	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
49	25989.910 M	72.2	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
50	25160.690 M	72.0	+1.2	+10.3	+0.0	83.5	94.0	-10.5	Anten
51	26430.260 M	72.0	+1.1	+10.4	+0.0	83.5	94.0	-10.5	Anten

CKC Laboratories, Inc. Date: 2/23/2009 Time: 09:05:03 GE Energy W0#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 220V 60Hz Sequence#: 3 WX-i210+c Antenna port through cable and 10 dB atten. Mid ch. QPSK 1/2 5 MHz

Sweep Data Readings 1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Peak Readings

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #: 89201 Date: 2/23/2009
Test Type: Conducted Emissions Time: 09:34:08
Equipment: ANSI WiMAX SmartMeter Sequence#: 4

Manufacturer: Grid-Net Tested By: Art Rice Model: WX-i210+c 220V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668	
Analyzer					
Cable - HF - 32022-2	2- n/a	02/04/2008	02/04/2010	03015	
29094K-24TC					
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411	
10dB Pad 766-10	none	01/23/2008	01/23/2010	P05389	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Page 54 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on High channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10kHz-26900 MHz.

Transducer Legend:

2	
T1=CAB-AN03015-020408	T2=ATT-ANP05411-020508

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Antenna	a port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2688.148M	123.1	+0.4	+9.4			+0.0	132.9	140.0	-7.1	Anten
									Fundamen	ıtal	
2	25141.240	74.7	+1.2	+10.3			+0.0	86.2	94.0	-7.8	Anten
	M										
3	26657.890	74.4	+1.1	+10.4			+0.0	85.9	94.0	-8.1	Anten
	M										
4	25085.760	74.1	+1.1	+10.3			+0.0	85.5	94.0	-8.5	Anten
	M										
5	25177.760	73.9	+1.2	+10.3			+0.0	85.4	94.0	-8.6	Anten
	M										
6	25213.090	73.9	+1.2	+10.3			+0.0	85.4	94.0	-8.6	Anten
	M										
7	25072.240	73.7	+1.1	+10.3			+0.0	85.1	94.0	-8.9	Anten
	M										

Page 55 of 83 Report No.: FC09-048B

8	25016.280 M	73.7	+1.0	+10.3	+0.0	85.0	94.0	-9.0	Anten
9	24894.990 M	73.6	+0.9	+10.4	+0.0	84.9	94.0	-9.1	Anten
10	25031.690 M	73.4	+1.1	+10.3	+0.0	84.8	94.0	-9.2	Anten
11	25057.060 M	73.4	+1.1	+10.3	+0.0	84.8	94.0	-9.2	Anten
12	24999.000 M	73.4	+1.0	+10.3	+0.0	84.7	94.0	-9.3	Anten
13	25003.000 M	73.3	+1.0	+10.3	+0.0	84.6	94.0	-9.4	Anten
14	25055.640 M	73.2	+1.1	+10.3	+0.0	84.6	94.0	-9.4	Anten
15	25185.110 M	73.1	+1.2	+10.3	+0.0	84.6	94.0	-9.4	Anten
16	25035.010 M	73.0	+1.1	+10.3	+0.0	84.4	94.0	-9.6	Anten
17	25152.390 M	72.9	+1.2	+10.3	+0.0	84.4	94.0	-9.6	Anten
18	25023.390 M	72.9	+1.0	+10.3	+0.0	84.2	94.0	-9.8	Anten
19	25063.230 M	72.8	+1.1	+10.3	+0.0	84.2	94.0	-9.8	Anten
20	26247.670 M	72.8	+1.0	+10.4	+0.0	84.2	94.0	-9.8	Anten
21	26343.230 M	72.8	+1.0	+10.4	+0.0	84.2	94.0	-9.8	Anten
22	24100.890 M	72.9	+0.9	+10.3	+0.0	84.1	94.0	-9.9	Anten
23	24871.980 M	72.8	+0.9	+10.4	+0.0	84.1	94.0	-9.9	Anten
24	24896.990 M	72.8	+0.9	+10.4	+0.0	84.1	94.0	-9.9	Anten

Page 56 of 83 Report No.: FC09-048B

25	25150 250	72.6	1.0	10.0	0.0	0.4.1	0.4.0	0.0	A .
25	25159.270 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
26	26030.220 M	72.7	+1.0	+10.4	+0.0	84.1	94.0	-9.9	Anten
27	24049.880 M	72.9	+0.8	+10.3	+0.0	84.0	94.0	-10.0	Anten
28	24911.990 M	72.7	+0.9	+10.4	+0.0	84.0	94.0	-10.0	Anten
29	24953.990 M	72.7	+1.0	+10.3	+0.0	84.0	94.0	-10.0	Anten
30	24995.000 M	72.7	+1.0	+10.3	+0.0	84.0	94.0	-10.0	Anten
31	25293.240 M	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
32	26157.090 M	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
33	26666.670 M	72.5	+1.1	+10.4	+0.0	84.0	94.0	-10.0	Anten
34	25015.570 M	72.6	+1.0	+10.3	+0.0	83.9	94.0	-10.1	Anten
35	25247.240 M	72.4	+1.2	+10.3	+0.0	83.9	94.0	-10.1	Anten
36	24167.900 M	72.6	+0.9	+10.3	+0.0	83.8	94.0	-10.2	Anten
37	24249.910 M	72.5	+1.0	+10.3	+0.0	83.8	94.0	-10.2	Anten
38	24292.910 M	72.5	+1.0	+10.3	+0.0	83.8	94.0	-10.2	Anten
39	25172.070 M	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
40	25208.590 M	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
41	24807.980 M	72.5	+0.8	+10.4	+0.0	83.7	94.0	-10.3	Anten

Page 57 of 83 Report No.: FC09-048B

42	23979.870 M	72.5	+0.8	+10.3	+0.0	83.6	94.0	-10.4	Anten
43	24794.970 M	72.4	+0.8	+10.4	+0.0	83.6	94.0	-10.4	Anten
44	25020.310 M	72.3	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
45	25162.590 M	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
46	25200.050 M	72.0	+1.2	+10.3	+0.0	83.5	94.0	-10.5	Anten
47	25984.220 M	72.1	+1.0	+10.4	+0.0	83.5	94.0	-10.5	Anten
48	26042.320 M	72.1	+1.0	+10.4	+0.0	83.5	94.0	-10.5	Anten
49	26597.900 M	72.0	+1.1	+10.4	+0.0	83.5	94.0	-10.5	Anten
50	5375.294M	72.0	+0.8	+9.5	+0.0	82.3	94.0 Harmonic	-11.7	Anten

CKC Laboratories, Inc. Date: 2/23/2009 Time: 09:34:08 GE Energy W0#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 220V 60Hz Sequence#: 4 WX-i210+c Antenna port through cable and 10 dB atten. High ch. QPSK 1/2 5 MHz

Sweep DataReadings

1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Yeak Readings

FCC 27.53 – BANDEDGE ANTENNA CONDUCTED

Test Setup Photos

Page 60 of 83 Report No.: FC09-048B

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) Band Edge dBm Ave

Work Order #: Date: 2/20/2009 89201 Test Type: **Conducted Emissions** Time: 15:49:17 Equipment: Sequence#: 3 ANSI WiMAX SmartMeter Manufacturer: Grid-Net Tested By: Art Rice Model: WX-i210+c

220V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ANSI WiMAX	Grid-Net	WX-i210+c	n/a
SmartMeter*			

Support Devices:

Manufacturer	Model #	S/N
Dell	Latitude D830	9THV3G1
PCC	ISO-300	none
Philmore	ST-300	none
NETGEAR	XE102	1X618653036AE
	Dell PCC Philmore	Dell Latitude D830 PCC ISO-300 Philmore ST-300

Page 61 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 220VAC.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 9kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Averaged (100 samples) readings.
- 8) Band edge readings performed at 1% of 26dB BW of signal. 47 kHz for 5 MHz BW (26dB BW=4.7MHz). 100kHz for 10 MHz BW (26dB BW=9.3 MHz), per 27.53(m)(6).
- 9) SA offset of 9.8 dB to correct for cable and attenuator loss.

FCC 27.53(m)(2)(v)

Conducted emissions 2.4-2.7 GHz.

Transducer Legend:

Measi	Measurement Data: Reading listed by margin. Test Lead: Antenna port										
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2497.600M	26.3					+0.0	26.3	26.3	+0.0	Anten
	Ave								Fundamen	ıtal,	
									5MHz QP	SK 1/2,	
									Low		
2	2688.110M	23.8					+0.0	23.8	26.1	-2.3	Anten
	Ave								Fundamen	ıtal, 5	
									MHz QPS	K 1/2,	
									High		
3	2499.780M	21.2					+0.0	21.2	26.1	-4.9	Anten
	Ave								Fundamen	tal, 10	
									MHz QPS	K 1/2,	
									Low		
4	2685.450M	19.9					+0.0	19.9	26.1	-6.2	Anten
	Ave								Fundamen	ıtal, 10	
									MHz QPS	K 1/2,	
									High	,	

Page 62 of 83 Report No.: FC09-048B

5 2495.998M	-28.2	+0.0	-28.2	-13.0	-15.2	Anten
Ave				Band Edge, 5MHz		
				QPSK 1/2,	Low,	
				RBW=47k		
6 2495.990M	-28.6	+0.0	-28.6	-13.0	-15.6	Anten
Ave				Band Edge	, 10	
				MHz QPSI	X 1/2,	
				Low,		
				RBW=100	kHz	
7 2690.060M	-29.5	+0.0	-29.5	-13.0	-16.5	Anten
Ave				Band Edge	, 5MHz	
				QPSK 1/2,		
				RBW=47k	•	
8 2690.048M	-30.5	+0.0	-30.5	-13.0	-17.5	Anten
Ave				Band Edge	, 10MHz	
				QPSK 1/2,	High,	
				RBW=100	•	

FCC 27.53 BANDEDGE - 5MHz QPSK LOW CHANNEL

FCC 27.53 BANDEDGE - 5MHz QPSK HIGH CHANNEL

FCC 27.53 BANDEDGE - 10MHz QPSK LOW CHANNEL

FCC 27.53 BANDEDGE - 10MHz QPSK HIGH CHANNEL

Page 65 of 83 Report No.: FC09-048B

$\underline{FCC~2.1033(c)(14)/2.1053/27.53}-\underline{FIELD~STRENGTH~OF~SPURIOUS~RADIATION}$

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) Spurious Rad dBuV Ave

Work Order #: 89201 Date: 2/25/2009
Test Type: Maximized Emissions Time: 10:41:39
Equipment: ANSI WiMAX SmartMeter Sequence#: 10
Manufacturer: Grid-Net Tested By: Art Rice

Model: WX-i210+c

S/N: n/a

9kHz-26.9 GHz Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Active Horn 26-40GHz	1097854	11/12/2008	11/12/2010	02695
Active Horn 18-26GHz	1087835	11/12/2008	11/12/2010	02694
HF Cable		02/28/2008	02/28/2010	01206
HF Cable		02/28/2008	02/28/2010	01205
Horn - DRG-118A	1064	01/09/2009	01/09/2011	02061
Cable	None	04/21/2008	04/21/2010	P05440
Cable	None	04/05/2007	04/05/2009	P05300
Cable	None	04/02/2007	04/02/2009	P05299
Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730
Antenna, Bilog	2630	12/22/2008	12/22/2010	00852
Mag Loop - 6502	2078	06/11/2007	06/11/2009	00432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Page 67 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. EUT powered by 220VAC.

The laptop PC communicates to the EUT through the Wall Plugged Bridge. The Ethernet cable is routed under groundplane to the laptop located outside the chamber.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3)

- 5) Spectrum analyzer atten=0dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Frequencies above 1 GHz were pre-scanned near field. Signals found in the pre-scans 10kHz-26900MHz were maximized.

FCC 27.53(m)(2(v))

Radiated emissions 4.9-5.4 GHz.

 Operating Frequency:
 2489MHz - 2688MHz

 Channels:
 Low, Mid and High

 Highest Measured Output
 Power:
 25.29
 ERP(dBm)=
 0.338
 ERP(Watts)

 Distance:
 3
 meters

 Limit:
 43+10Log(P)=
 38.29
 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
5,200.10	-22.9	Vert	48.19
5,200.10	-18.5	Vert	43.79
4,997.18	-23.5	Vert	48.79
4,997.18	-19.5	Vert	44.79
4,997.12	-26.5	Horiz	51.79
4,997.12	-22	Horiz	47.29
5,375.20	-27.3	Vert	52.59
5,375.20	-23.4	Vert	48.69
5,200.10	-27.6	Horiz	52.89
5,200.10	-22.5	Horiz	47.79
5,375.00	-31.6	Horiz	56.89
5,375.02	-27.9	Horiz	53.19

Page 68 of 83 Report No.: FC09-048B

FCC 27.53 – BANDEDGE OATS

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) Band Edge Rad dBuV Ave

Work Order #: 89201 Date: 2/25/2009
Test Type: Band Edge Measurements Time: 14:16:54
Equipment: ANSI WiMAX SmartMeter Sequence#: 11
Manufacturer: Grid-Net Tested By: Art Rice

Model: WX-i210+c

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Horn - DRG-118A	1064	01/09/2009	01/09/2011	02061
Cable HF FSJ1P-50A-4	HOL-HF-025-06	05/06/2008	05/06/2010	P05138
Cable, HF	n/a	05/06/2008	05/06/2010	P04241

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ANSI WiMAX	Grid-Net	WX-i210+c	n/a
SmartMeter*			

Support Devices:

Manufacturer	Model #	S/N
Dell	Latitude D830	9THV3G1
PCC	ISO-300	none
Philmore	ST-300	none
NETGEAR	XE102	1X618653036AE
	Dell PCC Philmore	Dell Latitude D830 PCC ISO-300 Philmore ST-300

Page 70 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. EUT powered by 220VAC.

The laptop PC communicates to the EUT through the Wall Plugged Bridge. The Ethernet cable is routed under groundplane to the laptop located outside the chamber.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

- 5) Spectrum analyzer atten=0dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation QPSK 1/2.
- 8) Averaged (100 samples) readings.
- 9) Band edge readings performed at 1% of 26dB BW of signal. 47 kHz for 5 MHz BW (26dB BW=4.7MHz). 100kHz for 10 MHz BW (26dB BW=9.3 MHz), per 27.53(m)(6).

FCC 27.53(m)(2)(v)

Radiated emissions 2.4-2.7 GHz.

Transaucer Legena:		_
T1=ANT AN02061 900MHz-18.5GHz	T2=CAB-ANP05138-050608	
T3=CAB-ANP04241-050608		

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	 	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	2687.740M	88.6	+29.5	+2.6	+0.8		+0.0	121.5	122.6	-1.1	Vert
	Ave						177		Fundamen	tal, High,	103
									5 MHz QP	SK 1/2,	
									RBW=1M	Hz	
2	2499.160M	86.9	+28.8	+2.5	+0.8		+0.0	119.0	122.6	-3.6	Vert
	Ave						197		Fundamen	tal, Low,	103
									5 MHz QP	SK 1/2,	
									RBW=1M	Hz	
^	2499.180M	88.0	+28.8	+2.5	+0.8		+0.0	120.1	122.6	-2.5	Vert
							360				103
4	2501.220M	85.7	+28.8	+2.5	+0.8		+0.0	117.8	122.6	-4.8	Vert
	Ave						197		Fundamen	tal, Low,	103
									10 MHz Q	PSK 1/2,	
									RBW=1 M	IHz	

Page 71 of 83 Report No.: FC09-048B

5 2685.240M	84.0	+29.5	+2.6	+0.8	+0.0	116.9	122.6	-5.7	Vert
Ave					177		Fundament	al, High,	103
							10 MHz QI	PSK 1/2,	
							RBW=1MI	Hz	
6 2690.042M	42.8	+29.5	+2.6	+0.8	+0.0	75.7	83.2	-7.5	Vert
Ave					177		Band Edge	High, 5	103
							MHz QPSI	X 1/2	
^ 2690.088M	34.3	+29.5	+2.6	+0.8	+0.0	67.2	83.2	-16.0	Vert
					177		Band edge,	High,	103
							10 MHz QI	PSK 1/2	
8 2495.812M	39.0	+28.8	+2.5	+0.8	+0.0	71.1	83.2	-12.1	Vert
Ave					197		Band edge,	Low, 5	103
							MHz QPSI	X 1/2	
9 2495.986M	35.5	+28.8	+2.5	+0.8	+0.0	67.6	83.2	-15.6	Vert
Ave					197		Band edge,	Low, 10	103
							MHz QPSk	ζ 1/2	

Page 72 of 83 Report No.: FC09-048B

FCC 27.53 RADIATED BANDEDGE - 5MHz QPSK LOW CHANNEL

FCC 27.53 RADIATED BANDEDGE - 5MHz QPSK HIGH CHANNEL

Page 73 of 83 Report No.: FC09-048B

FCC 27.53 RADIATED BANDEDGE - 10MHz QPSK LOW CHANNEL

FCC 27.53 RADIATED BANDEDGE - 10MHz QPSK HIGH CHANNEL

Page 74 of 83 Report No.: FC09-048B

FCC 2.1033(c)(14)/2.1055- FREQUENCY STABILITY

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.50(h)(2) Max Power dBuV

Work Order #: **89201** Date: 3/4/2009 Test Type: **Frequency Stability with Voltage** Time: 10:08:00

Variations

Equipment: ANSI WiMAX SmartMeter Sequence#: 17

Manufacturer: Grid-Net Tested By: Art Rice

Model: WX-i210+c 230V 60Hz

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411
DMM, Fluke 85	65380320	07/17/2008	07/17/2010	02361
Powerstat Type 126	none	07/16/2007	07/16/2009	00435
Temperature	10911-S	04/03/2008	04/03/2010	02721
Chamber				

Equipment Under Test (* = EUT):

. 1 1	,			
Function	Manufacturer	Model #	S/N	
ANSI WiMAX	Grid-Net	WX-i210+c	n/a	
SmartMeter*				

Support Devices:

II			
Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Isolation Transformer	PCC	ISO-300	none
110-220V Step-up	Philmore	ST-300	none
Transformer			
Wall Plugged Bridge	NETGEAR	XE102	1X618653036AE

Page 78 of 83 Report No.: FC09-048B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 230VAC +/- 15%. The variac adjusts the voltage input to the isolation transformer. The voltage is checked at the 220V output of the step-up transformer, which powers the WX-i210+c SmartMeter.

The laptop PC communicates through the Wall Plugged Bridge to the EUT through the AC power line.

NOTES:

1) The EUT is transmitting continuously with a single-tone signal.

Low ch=2498.5 MHz Mid ch=2600MHz Hi ch=2687.5MHz

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: RBW=VBW=1 kHz
- 7) Frequency stability with voltage variation per FCC 2.1055(d)

Conducted emissions 2.4-2.7 GHz.

Transducer Legend:

T1=CAB-AN03015-020408	T2=ATT-ANP05411-020508

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: Antenna	port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2498.502M	120.0	+0.4	+9.4			+0.0	129.8	140.0	-10.2	Anten
									Low ch, 19	95.5V -	
									15%		
2	2687.501M	119.8	+0.4	+9.4			+0.0	129.6	140.0	-10.4	Anten
									High ch, 1	95.5V -	
									15%		
3	2498.502M	119.8	+0.4	+9.4			+0.0	129.6	140.0	-10.4	Anten
									Low ch, 23	30VAC	
									nominal		
4	2498.502M	119.8	+0.4	+9.4			+0.0	129.6	140.0	-10.4	Anten
									Low ch, 20	64.5V	
									+15%		
5	2687.501M	119.6	+0.4	+9.4			+0.0	129.4	140.0	-10.6	Anten
									High ch, 2	64.5V	
									+15%		
6	2687.501M	119.6	+0.4	+9.4			+0.0	129.4	140.0	-10.6	Anten
									High ch, 2	30VAC	
									nominal		

Page 79 of 83 Report No.: FC09-048B

FREQUENCY STABILITY - LOW CHANNEL NOMINAL

FREQUENCY STABILITY - LOW CHANNEL +15%

Page 80 of 83 Report No.: FC09-048B

FREQUENCY STABILITY - LOW CHANNEL -15%

FREQUENCY STABILITY - HIGH CHANNEL NOMINAL

FREQUENCY STABILITY - HIGH CHANNEL +15%

FREQUENCY STABILITY - HIGH CHANNEL -15%

Page 82 of 83 Report No.: FC09-048B

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel Fr	equency:	2498.5	
Temp (C)	Voltage		
-30	230	2498.50507	0.00507
-20	230	2498.50443	0.00443
-10	230	2498.50420	0.00420
0	230	2498.50403	0.00403
10	230	2498.50510	0.00510
20	230	2498.50513	0.00513
30	230	2498.50433	0.00433
40	230	2498.50260	0.00260
50	230	2498.50050	0.00050

Channel 3 (MHz)	Dev. (MHz)
2687.5	
2687.50510	0.00510
2687.50440	0.00440
2687.50403	0.00403
2687.50380	0.00380
2687.50493	0.00493
2687.50497	0.00497
2687.50453	0.00453
2687.50167	0.00167
2687.50087	0.00087

Voltage Variations (±15%)

20	195.5	2498.50210	0.00210
20	230	2498.50171	0.00171
		, 0.0 01, 1	
20	264.5	2498.50182	0.00182

2687.50129	0.00128
2687.50102	0.00101
2687.50096	0.00096

1	N/ D : 4: 0	NATT \	0.00510
	Max Deviation (NIHZ)	0.00513

0.00510

Page 83 of 83 Report No.: FC09-048B