

Dr. Jan-Willem Liebezeit Raphael Wagner SoSe 2021

20 Punkte

Übungen zu: Analysis 1 für Informatik

Blatt 06

(10)

Hinweise zur Abgabe

Abgabetermin: 07.06.21, 14:00 Uhr

Abgabeformat: Im PDF-Format via Moodle. Einzelabgaben (nicht in Gruppen). Ver-

spätete Abgaben sind ausdrücklich nicht möglich!

Sonstiges: Bitte geben Sie eine Erst- und Zweitpräferenz von jeweils einer Aufgabe zur

Korrektur an.

Aufgaben

1. Für $x \in \mathbb{R}$ definieren wir Funktionen sinh, cosh : $\mathbb{R} \to \mathbb{R}$ durch

$$\sinh(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \ \cosh(x) := \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}.$$

- i) Zeigen Sie, dass sinh, cosh wohldefiniert sind, also dass die Reihen in der (3) Definitionsvorschrift für alle $x \in \mathbb{R}$ konvergieren.
- ii) Zeigen Sie, dass für alle $x \in \mathbb{R}$

a)
$$2\sinh(x) = e^x - e^{-x}, 2\cosh(x) = e^x + e^{-x}$$
 (4)

b)
$$\cosh(x)^2 - \sinh(x)^2 = 1$$
. (3)

Die Funktion sinh nennt man Sinus Hyperbolicus und cosh nennt man Cosinus Hyperbolicus.

2. Lösen Sie die folgenden Gleichungen:

i)
$$\log_2 x = 10$$
 vi) $\sin(x) = \sin(2x), (0 \le x < 2\pi)$

ii)
$$\log_{10}(4x-2) = 1$$
 vii) $27^x = 6^{x+1}$

iii)
$$\log_x 4 = 3$$
, $(x > 0)$ viii) $8^{4x-5}27^{5x-3} = 18 \cdot 16^{3x-4}9^{4x+5}$

iv)
$$\log_2 x + \log_2(x-6) = 3$$
 ix) $4^x + 4 = 2^{x+2} + 2^x$

v)
$$2x^2 - 5x = 3$$

 x) $\sin^2(x) - \sin(x) = 2$, $(0 \le x < 2\pi)$

3. Zeigen Sie, dass e irrational ist. Hinweis: Nehmen Sie an, es gibt $p, q \in \mathbb{N}$, sodass $\frac{p}{q} = e$. Dann gilt insbesondere $\frac{p}{q} = e = \sum_{j=0}^{q} \frac{1}{j!} + \sum_{j=q+1}^{\infty} \frac{1}{j!}$ (10)

4. Sei $D \subset \mathbb{R}$ nicht-leer und $f: D \to \mathbb{R}$ sei eine reelle, streng monoton wachsende Funktionen. Sei weiter V = f(D) und $g: D \to V$ mit g(x) = f(x) für alle $x \in D$ und $h: V \to \mathbb{R}$ streng monoton wachsend.

i) Zeigen Sie, dass $h \circ f : D \to \mathbb{R}$ streng monoton wachsend ist.	(2)
---	-----

- ii) Zeigen Sie, dass f injektiv und g bijektiv ist. (3)
- iii) Zeigen Sie, dass auch $g^{-1}:V\to D$ streng monoton wachsend ist. (3)
- iv) Zeigen Sie, dass $\ln:(0,\infty)\to\mathbb{R}$ streng monoton wachsend ist. (2)