Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 4.7.2 (Общая физика: оптика)

Эффект Поккельса

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2023 год

1 Введение

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля. В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластина, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осцилограф, линейка.

2 Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

Рис. 1: Схема для наблюдения интерфереционной картины.

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m \tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

Рис. 2: Схема установки.

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ – *полуволновое напряжение*, d – поперечный размер кристалла. При напряжении $U=E_{\text{эл}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

3 Ход работы

3.1 Изучение интерференционной картины

Измерим радиусы r(m) тёмных колец при расстоянии $L=81.5\pm1\,\mathrm{cm}$ от середины кристалла до экрана. Результаты занесем в таблицу

По полученным данным построим график $r^2(m)$ и аппроксимируем его линейнио. Тогда по полученному углу наклона с помощью формулы 2 определим двулучепреломление $(n_0 - n_e)$ ниобата лития:

$$n_0 - n_e = 0.108 \pm 0.006$$

Рис. 3: Данные $r^2(m)$

m	r, cm	r^2, cm	σr, cм	σr^2, cm^2
1	2,5	6,25	0,1	0,5
2	3,6	12,96	0,1	0,72
3	4,7	22,09	0,1	0,94
4	5,4	29,16	0,1	1,08
5	6,1	37,21	0,1	1,22
6	6,7	44,89	0,1	1,34
7	7,3	53,29	0,1	1,46

Рис. 4: График $r^2(m)$ и его линейная аппроксимация

3.2 Определение полуволнового напряжения

При нулевом напряжении наблюдается минимум интенсиности излучения на экране. Постепенно увеличивая его, получим напряжение, соответстующее максимуму интенсивности $U_{\lambda/2} = (450 \pm 15) \; \mathrm{B}.$

Увеличивая напряжение далее определяем U_{λ} и $U_{3\lambda/2}$:

$$U_{\lambda} = (900 \pm 30) \text{ B}$$
 $U_{3\lambda/2} = (1350 \pm 45) \text{ B}$

Подадим на кристалл напряжение $U_{\lambda/4} = \frac{1}{2}U_{\lambda/2}$. Вращая анализатор и наблюдая за яркостью пятна на экране, убеждаемся, что поляризация круговая.

Дальнейшие измерения проводим при помощи осциллографа. Определим полуволновое напряжение по разности напряжений при максимуме и минимуме у фигуры Лиссажу: $U_{\lambda/2} = 420 \pm 15 \text{ B}$. Продолжая увеличивать напряжение получаем и другие величины U_{λ} и $U_{3\lambda/2}$:

$$U_{\lambda} = (870 \pm 30) \text{ B}$$
 $U_{3\lambda/2} = (1320 \pm 45) \text{ B}$

Вид фигур Лиссажу для этих напряжений представлен в таблице:

Таблица 1: Фигуры Лиссажу для различных напряжений

4 Обсуждение результатов и выводы

• Было проведено измерение радиусов тёмных колец r(m) на расстоянии $L=81,5\pm 1$ см от середины кристалла до экрана. Отсюда получили

$$n_0 - n_e = 0.108 \pm 0.006$$

Табличное значение для двулучепреломления ниобата лития: $n_0 - n_e = 0.09$. Полученная погрешность оказалась равна $\varepsilon = 20\%$, что скорее всего связано с неточностью определения радиуса колец и расстояния от центра кристала до экрана.

• Было измерено полуполновое напряжение кристалла на длине волны $\lambda=0.63$ мкм при постоянном и переменном напряжениях. Первое определяем из условия максимума интенсивности, второе – при помощи осциллографа по разности напряжений при максимуме и минимуме у фигуры Лиссажу. Получили

$$U_{\lambda/2}^{AC} = 450 \pm 15B, U_{\lambda/2}^{DC} = 420 \pm 15B$$

Видим, что в пределах погрешности полученные значения совпадают.