第二章:一维随机变量及其分布

2.1 随机变量的概念及其分布函数

随机变量的简单认识

随机变量的引入:

- 1 掷一次骰子,出现的点数
- 2 家用电器的使用寿命
- 3 掷一枚硬币,观察向上的面
- 4 从含有白球,红球和黑球的篮子中随机抽取一个球,观察它的颜色

随机变量的简单认识

随机变量的引入:

- **1** 掷一次骰子, 出现的点数 $X \in \{1,2,3,4,5,6\}$.
- ② 家用电器的使用寿命 X ∈ [0,∞).
- ③ 掷一枚硬币,观察向上的面 $X \in \{0($ 正面),1(反面) $\}$.
- 4 从含有白球,红球和黑球的篮子中随机抽取一个球,观察它的颜色 $X \in \{0(\triangle), 1(\triangle), 2(\triangle)\}$.

随机变量的简单认识

随机变量的引入:

- **1** 掷一次骰子, 出现的点数 $X \in \{1,2,3,4,5,6\}$.
- ② 家用电器的使用寿命 X ∈ [0,∞).
- 3 掷一枚硬币,观察向上的面 $X \in \{0($ 正面),1(反面) $\}.$
- 4 从含有白球,红球和黑球的篮子中随机抽取一个球,观察它的颜色 $X \in \{0(\text{白色}), 1(\text{红色}), 2(\text{白色})\}$.

概率测度 P是 由事件域 \mathcal{F} 到 [0,1] 的映射 \Rightarrow 将事件($\in \Omega$)变换成量($\in \mathbb{R}$),将概率用随机变量的分布函数值来表示.

随机变量的定义

定义2.1.1

设 (Ω, \mathcal{F}, P) 为概率空间,称映射 $X: \Omega \to \mathbb{R}$ 为随机变量,如果对于任意的 $x \in \mathbb{R}$,有

$$\{\omega \mid X(\omega) \le x\} \in \mathcal{F}.$$
 (1)

注: 一般地, $X(\omega)$ 简记作 X, $A = \{\omega \in \Omega : X(\omega) \le x\}$ 简写作 $(X \le x)$, P(A) 可记为 $P(X \le x)$ 。

例子:对于随机事件 $A \in \mathcal{F}$,若定义

$$X(\omega) = \begin{cases} 1, & \text{ } \omega \not\in A, \\ 0, & \text{ } \omega \not\in \Omega \setminus A. \end{cases}$$

则 X 为随机变量,且 P(A) = P(X = 1)。

反例: 掷骰子问题 $\omega_i = \{ \text{点数为 } i \}, \quad \Omega = \{ \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6 \},$

$$A = \{\omega_1, \omega_3, \omega_5\}, \quad B = \{\omega_2, \omega_4, \omega_6\}, \quad \mathcal{F} = \{\Omega, \phi, A, B\}$$

定义映射 $X: \Omega \to \mathbb{R}$, $X(\omega_i) = i$. 然而

$$\{\omega \in \Omega \mid X(\omega) \le 2\} = \{\omega_1, \omega_2\} \notin \mathcal{F}.$$

因此, X不是 (Ω, \mathcal{F}, P) 上的随机变量.

随机变量和事件

假设,给定 $a < b \in \mathbb{R}$

$$A = \{\omega \mid X(\omega) < a\},\$$

$$B = \{\omega \mid X(\omega) < b\}.$$

请定义下面的事件

$$\bar{A}$$
, \bar{B} , $A \cap B$, $B - A$.

随机变量的分布函数

定义2.1.2

设 (Ω, \mathcal{F}, P) 为概率空间,X为随机变量,X的分布函数 F_X 定义为

$$F_X(x) = P(X \leq x) = P(\{\omega \in \Omega \mid X(\omega) \leq x\}), \ \forall x \in \mathbb{R}.$$

分布函数和事件的概率

根据分布函数的定义,显然的

$$P(a < X \le b) = F_X(b) - F_X(a), \ \forall a < b \in \mathbb{R}.$$

根据概率测度的上下连续性,对于∀a<b∈ℝ,有下面的事实

$$P(X = a) = F_X(a) - F_X(a - 0),$$

$$P(a \le X \le b) = F_X(b) - F_X(a - 0),$$

$$P(a \le X < b) = F_X(b - 0) - F_X(a - 0),$$

$$P(a < X < b) = F_X(b - 0) - F_X(a).$$

当 $F_X(x)$ 在 a 连续时, $F_X(a-0) = F_X(a)$.

注:引入随机变量的分布函数后,事件的概率可以用其分布函数表达,即随机变量的所有统计特性可由其分布函数来刻画.

课堂练习

- 1 向半径为r的圆内随机抛一点,求此点到圆心距离X的分布函数,并作图.
- 2 口袋中有5个球,编号为1,2,3,4,5,从中任取3个,以X表示3个球中最大的号码,求X的分布函数,并作图.

分布函数的性质

- **1** 有界性 $0 \le F_X(x) \le 1$, $\forall x \in \mathbb{R}$.
- 2 单调性 对于任意的 $x_1 < x_2$, 有 $F_X(x_1) \le F_X(x_2)$, 并且

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to +\infty} F_X(x) = 1.$$

3 右连续性 $\lim_{x\to x_0^+} F_X(x) = F_X(x_0)$. 思考:分布函数具有左连续性吗?

分布函数的性质证明 |

- 1 有界性证明: 因为对于任给的 $x \in \mathbb{R}$, $F_X(x)$ 表示事件 $\{\omega \in \Omega : X(\omega) \le x\}$ 发生的概率,根据概率的有界性可得.
- ② 单调性证明: (1) 因为 $x_1 < x_2$,所以 $\{X \le x_1\} \subset \{X \le x_2\}$. 则 $P(X \le x_1) \le P(X \le x_2)$,即 $F_X(x_1) \le F_X(x_2)$.
 - (2) 由函数极限的性质,有

$$\lim_{x \to \pm \infty} F_X(x) = \lim_{m \to \pm \infty} F_X(m), \ m \in \mathbb{Z}.$$

分布函数的性质证明 ||

由概率密度的可列可加性知

$$1 = P(\Omega) = P(\bigcup_{i=-\infty}^{+\infty} \{X \in (i-1,i]\})$$

$$= \sum_{i=-\infty}^{\infty} P(X \in (i-1,i])$$

$$= \lim_{n \to +\infty} \sum_{i=-n}^{n} P(i-1 < X \le i)$$

$$= \lim_{n \to +\infty} (F_X(n) - F_X(-n))$$

$$= \lim_{x \to +\infty} F_X(x) - \lim_{x \to -\infty} F_X(x).$$
(2)

再由 $0 \le F_X(x) \le 1$ 且 $F_X(x)$ 单调递增,可知

$$\lim_{x\to+\infty} F_X(x) = 1, \quad \lim_{x\to-\infty} F_X(x) = 0.$$

分布函数的性质证明 |||

3 右连续性证明:只需证明任一数列 $x_1 > x_2 > \cdots > x_n > \cdots > x_0$, 且 $x_n \to x_0 (n \to \infty)$,证明 $\lim_{n \to \infty} F(x_n) = F(x_0)$ 即可.

$$F_X(x_1) - F_X(x_0) = P(x_0 < X \le x_1)$$

$$= P(\bigcup_{i=1}^{\infty} \{x_{i+1} < X \le x_i\})$$

$$= \sum_{i=1}^{\infty} P(x_{i+1} < X \le x_i)$$

$$= \sum_{i=1}^{\infty} [F_X(x_i) - F_X(x_{i+1})]$$

$$= F_X(x_1) - \lim_{x \to \infty} F_X(x_n).$$
(4)

课堂练习

2.2一维离散型随机变量

一维离散型随机变量 |

当随机变量只能取有限个或者可数个函数值的时候, 称为离散型随机变量.

假设一个定义在概率空间 $\{\Omega,\mathcal{F},P\}$ 上的随机变量X只有有限/可列个取值,记作 x_1 , x_2 , ..., x_n , ..., 且

$$P(X = x_i) = p_i, i = 1, 2, \dots, n, \dots$$

通常称

$$X \sim \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_n & \cdots \\ p_1 & p_2 & \cdots & p_n & \cdots \end{array}\right)$$

的右端为X的分布列,称 $(p_1, p_2, \dots, p_n, \dots)$ 为概率分布.

分布列的性质

- 1 $p_i \ge 0, i = 1, 2, \cdots,$
- $\sum_{i=1}^{\infty} p_i = 1,$
- 3 X的分布函数为

$$F_X(x) = P(X \le x) = \sum_{x_i < x} p_i.$$

 $F_X(x)$ 的图像为右连续的阶梯函数.

4 ∀a < b 有

$$P(a < X \le b) = \sum_{a < x \le b} p_i.$$

分布列

Figure: 概率分布与分布函数图

课堂练习

一汽车沿着街道行驶,需要经过三个红绿灯,若每个信号灯显示红绿两种信号的时间相等,且各个信号灯工作相互独立。以X表示该汽车首次遇到红灯前已经通过的路口数,求X的分布列及分布函数.

学习重点

本章将要学习几种特殊的离散型随机变量,它们分别服从以 下的分布

- 1 二项分布
- 2 泊松分布
- 3 几何分布

退化分布

退化分布 (单点分布)

若随机变量 X 只取常数值 c, 即 P(X=c)=1, 这时分布函数为

$$P_c(x) = \begin{cases} 0, & x < c, \\ 1, & x \ge c. \end{cases}$$

这样的 X 并不随机,但有时我们宁愿把它看作随机变量的退化情况更为方便。因此称之为退化分布,又称单点分布。

伯努利分布

伯努利分布 (两点分布)

在一次试验中,事件 A 发生的概率为 p,不发生的概率为 q=1-p。若以 X 记事件 A 出现的次数,则 X 仅取 0,1 两值,相应的概率分布为

$$b_k = P(X = k) = p^k q^{1-k}, \quad k = 0, 1$$

这个分布称为伯努利分布,也称两点分布。

二项分布

二项分布

若一个随机变量的取值为 $0,1,2,\cdots,n$,且

$$P(X = k) = b(k; n, p) = \binom{n}{k} p^{k} (1 - p)^{n-k}, \ k = 0, 1, \dots, n,$$

这里 $p \in [0,1]$, 我们称X服从二项分布, 记为 $X \sim B(n,p)$.

特别地,如果n=1,那么X只有0和1两个取值,我们称X服从两点分布(伯努利分布). 进一步,若p=1或者0,那么两点分布退化为单点分布.

二项分布的性质

$$若X \sim B(n,p)$$
, 则

1
$$0 \le P(X = k) \le 1$$
, $\mathbb{L} \sum_{k=0}^{n} P(X = k) = 1$.

$$P(X \le k) = \sum_{i=0}^{k} b(i; n, p).$$

3
$$P(X \ge k) = 1 - \sum_{i=0}^{k-1} b(i; n, p).$$

4
$$P(k_1 \le X \le k_2) = \sum_{i=k_1}^{k_2} b(i; n, p).$$

R代码

Usage

```
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
```

Arguments

x, q	vector of quantiles.
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required.
size	number of trials (zero or more).
prob	probability of success on each trial.
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.

课堂练习

- ② 设某种药物的治愈率是0.6,请问需要同时治疗多少位病人,才能使得至少有一位病人治愈的概率大于90%?
- 3 设随机变量 $X \sim B(2, p)$, $Y \sim B(3, p)$, 若 $P(X \ge 1) = 5/9$, 求 P(Y > 1).

二项分布的极值

定理2.2.1

设 $X \sim B(n,p)$, 当 (n+1)p 为整数 m 时, X 取 m 和 m-1 的概率最大,且 b(m;n,p)=b(m-1;n,p); 当 (n+1)p 不为整数时, X 取 $\lfloor (n+1)p \rfloor$ 的时候概率最大.

例子:估计鱼塘中的鱼的总数

为了估计一个鱼塘中鱼的总数,我们做下面的试验

- 1 网起一兜鱼,假设是100条,给这些鱼做上标记.
- 2 把做过标记的鱼放回鱼塘中,让这些放回去的鱼欢快的游一段时间.
- 3 再网起一兜,假设是80条,数出有标记的鱼的数目,假设有2条.

如何根据试验的结果,估计鱼塘中鱼的总数呢?

例子:多人合作问题

同类设备有80台,各台设备是否正常工作是独立事件,每台设备的故障率是p=0.01,一台设备发生故障时需要安排一人维修.求

- 1 一人负责维修20台设备的时候,设备发生故障无人维修的概率.
- 2 由三个人共同负责维修80台设备的时候,设备发生故障无人维修的概率.

泊松分布

泊松分布

如果一个随机变量只能取非负整数值,并且

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \ k = 0, 1, 2, \cdots,$$

则称 X 服从泊松(Poisson)分布,记为 $X \sim Pois(\lambda)$.

泊松分布描述的是"稀有事件",例如

- 在任给一段固定的时间间隔内,来到公共设施(公共汽车站,商店,电话交换台等)要求给予服务的顾客个数。
- 炸弹爆炸后落在平面上某区域的碎弹片个数,
- 落在显微镜片上的某种细菌个数.

泊松定理(与二项分布的联系)

设随机变量 $X \sim B(n, p_n), 0 < p_n < 1$ 是与 n 有关的概率,并且有 $\lim_{n \to \infty} np_n = \lambda$,那么

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} C_n^k p_n^k (1 - p_n)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}.$$

证明: 记 $\lambda_n = np_n$, 那么

$$b(k; n, p_n) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{\lambda_n}{n}\right)^k \left(1 - \frac{\lambda_n}{n}\right)^{n-k}$$

$$= \frac{\lambda_n^k}{k!} 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \left(1 - \frac{\lambda_n}{n}\right)^{n-k}.$$

固定k,有

$$\lim_{n\to\infty} \lambda_n^k = \lambda^k, \quad \lim_{n\to\infty} \left(1 - \frac{\lambda_n}{n}\right)^{n-k} = e^{-\lambda}$$

以及

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \left(1 - \frac{k-1}{n} \right) = 1,$$

故而

$$\lim_{n\to\infty}b(k;n,p_n)=\frac{e^{-\lambda}\lambda^k}{k!}.$$

注: 泊松分布是二项分布的极限分布.

泊松分布的应用

对于可以用二项分布 $X \sim B(n, p_n)$ 描述的随机变量,如果同时满足

- 1 $n \to \infty, p_n \to 0,$
- $\lim_{n\to\infty} np_n = \lambda,$

我们就可以用泊松分布代替二项分布.

R代码

Usage

```
dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)
```

Arguments

```
vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of (non-negative) means.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].
```

例子: 孕妇生三胞胎的问题

假如一个孕妇生三胞胎的概率是 $p = 10^{-4}$, 求在 100000 个孕妇中,有 2 个人生三胞胎的概率.

例子:多人合作问题

同类设备有80台,各台设备是否正常工作是独立事件,每台设备的故障率是p=0.01,一台设备发生故障时需要安排一人维修.求

- 1 一人负责维修20台设备的时候,设备发生故障无人维修的概率.
- 2 由三个人共同负责维修80台设备的时候,设备发生故障无人维修的概率.

几何分布

几何分布

考虑随机试验,是一次次地做伯努利试验,直到第一次成功为止,记录所做的伯努利试验次数. 设每次独立试验成功的概率为p,记首次成功的时候做的伯努利试验的次数为X,那么X=k代表事件

 $A = \{ \text{前 } k - 1$ 次试验都是失败的,第 k 次试验是成功的 \}.

则有

$$P(A) = P_{geo}(X = k) = (1 - p)^{k-1}p.$$

称 X 服从几何分布,记作 $X \sim \text{Geo}(p)$.

R代码

Usage

```
dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)
```

Arguments

x, q	vector of quantiles representing the number of failures in a sequence of Bernoulli trials before success occurs.
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required.
prob	probability of success in each trial. 0 < prob <= 1.
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical: if TRUE (default), probabilities are $PIX < xI$, otherwise, $PIX > xI$.

矿井逃生问题

设一个地下采矿点有5个可以上升到地面的通道,如果事故发生,只有一个通道可以逃生,且由于没有照明,所以遇险者每次只能随意地在5个通道中选择一个,若发现该通道不通,则需要返回原点再随意地选择一个,求

- 1 第三次才选择正确的通道的概率.
- 2 选择成功时已经选择其他错误的通道次数不大于6次的概率.

几何分布具有"无记忆性",也就是说当前k次试验都不成功时,第k+n次试验首次成功与k的大小无关,即

$$P(X = k + n \mid X > k) = P(X = n).$$

证明:

$$\begin{split} P(X = k + n \mid X > k) &= \frac{P((X = k + n) \cap (X > k))}{P(X > k)} \\ &= \frac{P(X = k + n)}{1 - P(X \le k)} \\ &= \frac{(1 - p)^{n + k - 1} p}{(1 - p)^k} \\ &= (1 - p)^{n - 1} p = P(X = n)., \end{split}$$

课堂练习

袋中有m个白球,n个黑球,现有放回的模球,直到模到白球停止,请问已知模球的次数大于3,那么在第5次后停止的概率.

2.3 一维连续型随机变量

问题引入1

假如说我们现在有这样一组某个班50人身高的数据:

问题引入 ||

如果将上面频率密度直方图的组距不断调小会发生什么。我们可能会得到如下的一个演变过程:

一维连续型随机变量

定义2.3.1

设 (Ω, \mathcal{F}, P) 为概率空间,X为其上的随机变量, F_X 为X的分布函数. 如果存在非负可积的函数 f_X ,使得

$$F_X(x) = \int_{-\infty}^x f_X(t) dt, \quad \forall x \in (-\infty, \infty),$$

那么称X为连续型随机变量,称 $f_X(x)$ 为X的分布密度函数.

性质 |

- 1 在 $f_X(x)$ 的连续点上,有 $f_X(x) = F'_X(x)$.
- 2 若 $f_X(x)$ 是 X 的分布密度函数,那么
 - (1) $f_X(x) \ge 0, \ \forall x \in (-\infty, \infty).$
 - (2) $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$
- 3 若定义在 (-∞,∞)上的可积函数 f 满足(1)和(2),令

$$F(x) = \int_{-\infty}^{x} f(t) dt, x \in (-\infty, \infty),$$

那么F(x)一定是某随机变量的分布函数.

性质 ||

4 随机变量取个别值的概率为0:

$$P(X=a)=0.$$

注1:上面的式子表明连续型随机变量取任意的单点值的概率为 零,换句话说,连续型随机变量的分布特性不能通过列举它取单 点值的概率表示.

注2: 概率为0的事件不一定是不可能事件; 概率为1的事件不一定是必然事件.

5 对 $\forall a < b \in \mathbb{R}$,

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$
$$= F_X(b) - F_X(a) = \int_a^b f_X(x) \, dx.$$

性质 |||

6 对于 $\Delta x > 0$,

$$f_X(x)\Delta x \approx P(x < X \le x + \Delta x).$$

注:说明连续型随机变量在分布密度函数取值大的点附近取值的 概率也较大.

例题 |

- 1 设 F(x) 是连续型随机变量 X 的分布函数,则下列结论不正确的是()
 - A. F(x) 是 x 的不减函数
 - B. F(x) 是 x 的单增函数
 - C. F(x) 是 x 的连续函数
 - D. $F(-\infty) = 0$, $F(+\infty) = 1$
- 2 任一连续型随机变量 X 的概率密度 f(x) 一定满足 ()
 - **A**. $0 \le f(x) \le 1$
 - B. 在定义域内单调不减
 - C. $\int_{-\infty}^{+\infty} f(x) dx = 1$
 - $D. \lim_{x \to +\infty} f(x) = 1$

例题 ||

3 已知随机变量X的密度函数为:

$$f(x) = \begin{cases} x, & 0 \le x \le 1, \\ a - x, & 1 \le x < 2, \\ 0, & \not\equiv \text{th}. \end{cases}$$

求:

- (1) 确定a的值.
- (2) 求分布函数 F(x);
- (3) $RP(X \ge \frac{1}{2}) RP(\frac{1}{2} < X < \frac{3}{2})$

学习重点

本章将要学习几种特殊的连续型随机变量,它们分别服从以下的 分布

- 1 均匀分布
- 2 指数分布
- 3 正态分布

均匀分布

均匀分布

如果连续型随机变量X的分布密度函数为

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

则称X服从[a,b]上的均匀分布,记为 $X \sim U[a,b]$,其分布函数为

$$F_X(x) = \int_{-\infty}^x f(t) dt = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$$

R代码

```
dunif(x, min = 0, max = 1, log = FALSE)
punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
runif(n, min = 0, max = 1)
```

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number required.

min, max lower and upper limits of the distribution. Must be finite.

log, log, log, log logical; if TRUE, probabilities p are given as log(p).

lower_tail logical; if TRUE (default), probabilities are $P(X \le X)$, otherwise, P(X > X).

课堂练习

- 1 公交车从7点开始,每15分钟一班。乘客7点到7点半间等可能到 站。求
 - (1) 等车不超过5分钟的概率
 - (2) 等车超过10分钟的概率
- 2 设随机变量 $X \sim U[2,5]$,对X进行3次独立观测,求至少有2次观测值大于3的概率.
- 3 在 [0,1] 上任取一点记为 X,求 $P(X^2 \frac{3}{4}X + \frac{1}{8} \ge 0)$.

指数分布

指数分布

若连续型随机变量X的分布密度函数为

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

其中 $\lambda > 0$,则称X服从参数为 λ 的指数分布,记为 $X \sim \text{Exp}(\lambda)$,其分布函数为

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

R代码

dexp(x, rate = 1, log = FALSE)

```
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.
rate vector of rates.
log, log.p logical; if TRUE, probabilities p are given as log(p).
```

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

某窗口接待一位顾客的服务时间T服从参数为↓的指数分布,即

$$f_T(t) = \begin{cases} \frac{1}{10} e^{-\frac{1}{10}t}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

- 求某位顾客等待时间超过15分钟的概率。
- 2 假定某位顾客已经等待10分钟,在此条件下,他还要再等时间超过15分钟的概率。
- 3 若一次服务等待时间超过15分钟,顾客评价为"不满意",求十位顾客中恰有两位顾客评价为不满意的概率,最多有两位评价为不满意的概率,和至少有两位评价为不满意的概率。

无记忆性

指数分布也具有无记忆性,即 $\forall t > 0, s > 0$,有

$$P(X > t + s | X > s) = P(X > t).$$

正态分布

连续型随机变量服从的最常见的分布是正态分布

正态分布

若 X 服从正态分布,那么其分布密度函数为

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$$

其中 $\mu \in \mathbb{R}$ 和 $\sigma > 0$ 为正态分布的参数,记 $X \sim N(\mu, \sigma^2)$.

R代码

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
```

Arguments

```
x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number required.

mean vector of means.

sd vector of standard deviations.

log, log, p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P|X \le x| otherwise, P|X > x|.
```

正态分布的密度函数图像

正态分布

正态分布的分布密度 f 具有如下性质:

- 1 f 的图形是关于 $x = \mu$ 对称的, $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$ 为最大值。
- 2 当 σ 固定,改变 μ 时, f 的图形形状不变,只是整体沿 Ox 轴平 行移动,所以称 μ 为位置参数。
- 3 当 μ 固定,改变 σ 时, f 的图形形状要发生变化,随着 σ 变大, f 图形的形状变得平坦,所以称 σ 为形状参数。

例题

设
$$X \sim N(2, \sigma^2)$$
,且 $P(2 < X \le 4) = 0.3$,求 $P(X < 0) = ()$ 。

- A. 0.1
- B. 0.2
- C. 0.3
- D. 0.5

标准正态分布|

标准正态分布

当 $\mu = 0$, $\sigma = 1$ 时,称X 服从标准正态分布,记为 $X \sim N(0,1)$.其密度函数为

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

其分布函数为 $\Phi(x)$,

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt$$

性质:

$$\phi(x) = \phi(-x)$$

$$\Phi(-x) = 1 - \Phi(x).$$

标准正态分布 ||

p225 - p227

附录: 数理统计常用分布表

附表 1 标准正态分布表

$$\varPhi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \mathrm{e}^{-\frac{t^2}{2}} \, \mathrm{d}t \ (x \geqslant 0)$$

注: 表中的 0.9* 表示小数点后有 & 个 9. 比如 0.9⁶6981 表示 0.999 999 698 1.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	2
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	0.
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	0.
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	0.
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	0
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	0.
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	0
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	0.
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852	0
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	0.

标准正态分布 |||

例题:对于 $X \sim N(0,1)$,求

- 1 $P(X \le 0.5), P(X \le -0.5)$
- 2 a使得P(X < a) = 0.8成立

正态分布

命题 2.3.1

设
$$X \sim N(\mu, \sigma^2)$$
, 令 $Y = \frac{X - \mu}{\sigma}$, 那么 $Y \sim N(0, 1)$.

证明稍后给出.

对于服从一般正态分布的随机变量X,有

$$P(X < a) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{a} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{(x-\mu)^2}{2\sigma^2}} d\left(\frac{x-\mu}{\sigma}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{a-\mu}{\sigma}} e^{-\frac{y^2}{2}} dy$$

$$= \Phi\left(\frac{a-\mu}{\sigma}\right).$$

上面的 $\Phi\left(\frac{a-\mu}{\sigma}\right)$ 可以查表计算.

当服从正态分布的随机变量 在一个区间内取值,则

$$P(a < X < b) = \frac{1}{\sqrt{2\pi}\sigma} \int_{a}^{b} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} d\left(\frac{x-\mu}{\sigma}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{a-\mu}{\sigma}}^{\frac{b-\mu}{\sigma}} e^{-\frac{y^{2}}{2}} dy$$

$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

上面的
$$\Phi\left(\frac{a-\mu}{\sigma}\right)$$
和 $\Phi\left(\frac{b-\mu}{\sigma}\right)$ 都可以查表计算.

特别地,

$$P(|X-\mu| \le k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

补充:

$$P(|X - \mu| \le \sigma) = 68.27\%$$

 $P(|X - \mu| \le 2\sigma) = 95.45\%$
 $P(|X - \mu| \le 3\sigma) = 99.73\%$

例题 |

- 1 设 X ~ N(3,4), 求:
 - (1) P(2 < X < 5), $P(-4 < X \le 10)$, P(|X| > 2), P(X > 3);
 - (2) 常数 C, 使得 P(X > C) = P(X < C).
- 2 假设一次测量误差 $X \sim N(0, 10^2)$, 现在独立重复的进行 100 次测量, 求误差的绝对值超过 19.6 的次数不小于 3 的概率.
- 3 公共汽车车门的高度是按照男子与车门顶碰头的机会 0.01 以下来设计的. 设男子的身高 $X \sim N(170, 6^2)$. 确定车门高度.

例题 ||

4 设某只股票的初始价格为 $S_0 = 40$ 元,预期收益率 μ 为每年16%,波动率 σ 为每年20%. 在Black-Scholes模型下,股票在每个时刻t的价格 S_t 为随机变量,且

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma B_t\right),\,$$

其中 $B_t \sim N(0,t)$,试估计六个月(按年计)后这只股票的价格范围(允许出错的概率为5%).

2.4 一维随机变量函数的分布

一维随机变量函数的分布

问题:设随机变量 Y 是随机变量 X 的函数 Y=g(X),如果 X 的分布函数 F_X 或密度函数 f_X 已知,如何求出 Y=g(X) 的分布函数 F_Y 或密度函数 f_Y ?

一维离散型随机变量函数的分布

解题方法

当 X 为离散型时,对 Y 的每个取值,找出对应该 Y 值的所有 X 的取值,将 X 取这些值的概率相加,即得 Y 取该值的概率。

例: 设X的分布列如下, 求 $Y = X^2$, Z = 2X - 1, W = |X| + 1的分布列.

$$\left(\begin{array}{ccccc} -2 & -1 & 0 & 1 & 2 \\ 0.15 & 0.2 & 0.2 & 0.2 & 0.25 \end{array}\right).$$

一维连续型随机变量函数的分布

解题方法

当 X 为连续型时,先求 Y = g(X) 的分布函数,再对分布函数求导数得到 g(X) 的分布密度函数.

■ 若 g 在 X 的取值范围内严格单调,且有一阶连续导数,则

$$f_Y(y) = f_X(g^{-1}(y)) |(g^{-1}(y))'|.$$

证明

1 g为严格单调递增函数,有分布函数:

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)).$$

对两边求导:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \cdot \frac{d}{dy} g^{-1}(y).$$

2 g为严格单调递减函数,有分布函数:

$$F_Y(y) = P(g(X) \le y) = P(X \ge g^{-1}(y)) = 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y)).$$

对两边求导:

$$f_Y(y) = -f_X(g^{-1}(y)) \cdot (g^{-1}(y))' = f_X(g^{-1}(y)) \left| (g^{-1}(y))' \right|.$$

(注: g 单调递减, $(g^{-1}(y))'$ 为负数,因此取绝对值)

例题

- 1 设X的分布函数为 f_X ,求Y = aX + b的分布密度函数,其中 $a \neq 0$.
- **2** 设 *X* ∼ *N*(0, 1),
 - (1) 求 $Y = e^X$ 的概率密度。
 - (2) 求 $Y = X^2$ 的概率密度。
 - (3) 求 Y = |X| 的概率密度。

作为特列,若 $X \sim N(\mu, \sigma^2)$,且 $Y = \frac{X - \mu}{\sigma}$,那么由上式

$$f_Y(y) = \frac{1}{\frac{1}{\sigma}} f_X\left(\frac{y + \frac{\mu}{\sigma}}{\frac{1}{\sigma}}\right) = \sigma \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\sigma y + \mu - \mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}.$$

即 $Y \sim N(0,1)$, 与命题 2.3.1 吻合.