CB N°6 - Suites numériques - Sujet 1

1. Questions de cours

Montrer que si (u_n) et (v_n) sont des suites réelles telles que pour $n \ge n_0, u_n \le v_n$ avec $\lim_{n \to +\infty} u_n = +\infty$,

- 2. Etablir la limite des suites suivantes, et justifier la réponse :
- **a.** $u_n = \frac{\cos(3n)}{3n}$ $\forall n > 0, \quad \frac{-1}{3n} \le \frac{\cos(3n)}{3n} \le \frac{1}{3n}$; le théorème d'encadrement donne $\lim_{n \to +\infty} u_n = 0$
- **b.** $v_n = n \sin\left(\frac{2}{n}\right)$ $\forall n > 0, v_n = 2 \frac{\sin\left(\frac{2}{n}\right)}{2}$; or $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ donc $\lim_{n \to +\infty} v_n = 2$
- $\mathbf{c.} \quad w_n = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right)$ Par télescopage, $w_n = \ln(n+1)$, donc $\lim_{n \to +\infty} w_n = +\infty$
- **d.** $x_n = \sqrt{n^2 + n} n$ $\forall n > 0, x_n = \frac{n^2 + n n^2}{\sqrt{n^2 + n} + n} = \frac{n}{n\left(\sqrt{1 + \frac{1}{n}} + 1\right)} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1}$; on en déduit $\lim_{n \to +\infty} x_n = \frac{1}{2}$
- **3.** Expliciter les suites suivantes en fonction de n:
- a. $\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = -u_{n+1} u_n \end{cases} \quad \forall n \in \mathbb{N}, \quad u_n = \cos\left(\frac{2\pi}{3}n\right) + \sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$ b. $\begin{cases} u_0 = 0, \quad u_1 = 1 \\ u_{n+2} = 3u_{n+1} 2u_n \end{cases} \quad \forall n \in \mathbb{N}, \quad u_n = 2^n 1$
- 4. Etablir les variations et la limite éventuelle des suites suivantes :
- $\mathbf{a.} \quad \left\{ \begin{array}{l} u_0 = 1 \\ u_{n+1} = \frac{u_n}{1 + u_n^2} \qquad \forall n \in \mathbb{N} \end{array} \right.$

Une rapide étude de variations montre que $f: x \mapsto \frac{x}{1+x^2}$ est croissante sur [0,1] et $f([0,1]) \subset [0,1]$. On en déduit que la suite (u_n) est monotone et bornée.

 $u_1 < u_0$ donc la suite est décroissante et, comme f est continue sur [0,1], la suite converge vers un réel $L \in [0,1]$ tel que $\frac{L}{1+L^2} = L$ c'est-à-dire 0.

b.
$$\begin{cases} u_0 \in]0,1] \\ u_{n+1} = u_n + \frac{1}{u_n} & \forall n \in \mathbb{N} \\ u_0 > 0 \; ; \; \forall n \in \mathbb{N}, \left(u_n > 0 \Rightarrow u_{n+1} = u_n + \frac{1}{u_n} > 0\right) \; ; \\ \text{par principe de récurrence, la suite } (u_n) \; \text{est donc strictement positive.} \end{cases}$$

Sup PTSI A CB6 - 2021-2022 $\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{u} > 0$ donc la suite (u_n) est croissante.

Si elle convergeait, par continuité de la fonction $x\mapsto x+\frac{1}{x}$ sur $]0,+\infty[$, la limite L vérifierait $L = L + \frac{1}{L}$. On en déduit que la suite (u_n) diverge, et comme elle est croissante, elle admet pour

5. On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 2, \quad v_0 = 1, \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2}, \quad u_n v_n = 2$$

a. Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} - v_{n+1} = \frac{(u_n - v_n)^2}{2(u_n + v_n)}$.

Pour $n \in \mathbb{N}$, on a

$$u_{n+1} - v_{n+1} = \frac{u_n + v_n}{2} - \frac{2}{\frac{u_n + v_n}{2}} = \frac{(u_n + v_n)^2 - 4 \times 2}{2(u_n + v_n)} = \frac{u_n^2 + 2u_n v_n + v_n^2 - 4u_n v_n}{2(u_n + v_n)} = \frac{(u_n - v_n)^2}{2(u_n + v_n)}.$$

b. En déduire que les suites (u_n) et (v_n) sont adjacentes.

$$u_0 > 0, v_0 > 0, \forall n \in \mathbb{N}, \left((u_n > 0 \land v_n > 0) \Rightarrow \left(u_{n+1} = \frac{u_n + v_n}{2} > 0 \land v_{n+1} = \frac{2}{u_{n+1}} > 0 \right) \right);$$

par principe de récurrence, les suites sont donc strictement positives.

On déduit donc de la question précédente que $\forall n \in \mathbb{N}, u_{n+1} - v_{n+1} \ge 0$ et comme de plus $u_0 - v_0 \ge 0$, on a pour tout $n \in \mathbb{N}$, $u_n - v_n \ge 0$. Soit $n \in \mathbb{N}$, on a:

 $u_{n+1} - u_n = \frac{v_n - u_n}{2} \le 0 \text{ donc la suite } (u_n) \text{ est décroissante };$ de plus $v_n = \frac{2}{u_n} \text{ donc}$, la suite (u_n) étant décroissante et strictement positive, la suite (v_n) est

Ainsi, pour $n \in \mathbb{N}$, on $a : v_0 \le v_n \le u_n \le u_0$.

La suite (u_n) étant décroissante et minorée par v_0 , elle converge vers un réel U; la suite (v_n) étant croissante et majorée par u_0 , elle converge vers un réel V.

Pour $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n + v_n}{2}$ donc, par passage à la limite, U = V.

On déduit de ce qui précède que les suites (u_n) et (v_n) sont adjacentes.

c. Déterminer leur limite.

Pour $n \in \mathbb{N}$, $u_n v_n = 2$ donc par passage à la limite $U^2 = 2$. Comme les suites sont positives, on a $U=\sqrt{2}$.

Sup PTSI A CB6 - 2021-2022

CB N°6 - Suites numériques - Sujet 2

1. Questions de cours

Montrer que si $(u_n), (v_n)$ et (w_n) sont des suites telles que pour $n \geq n_0, u_n \leq v_n \leq w_n$ et si de plus $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l \in \mathbb{R} \text{ alors } (v_n) \text{ converge vers } l.$

- 2. Etablir la limite des suites suivantes, et justifier la réponse :
- **a.** $u_n = \frac{\sin(2n)}{2n}$

$$\forall n > 0, \quad -\frac{1}{2n} \le \frac{\sin(2n)}{2n} \le \frac{1}{2n};$$
 le théorème d'encadrement donne $\lim_{n \to +\infty} u_n = 0$

b. $v_n = n \sin\left(\frac{1}{n^2}\right)$

$$\forall n > 0, v_n = \frac{1}{n} \frac{\sin\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}}; \text{ or } \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \text{ donc } \lim_{n \to +\infty} v_n = 0$$

 $\mathbf{c.} \quad w_n = \sum_{k=1}^n \ln\left(\frac{k}{k+1}\right)$

télescopage, $w_n = -\ln(n+1)$ donc $\lim_{n \to +\infty} w_n = -\infty$

d.
$$x_n = \sqrt{n^2 + n} - n - 1$$

 $\forall n > 0, x_n = \frac{n^2 + n - (n+1)^2}{\sqrt{n^2 + n} + n + 1} = \frac{-n - 1}{n\left(\sqrt{1 + \frac{1}{n}} + 1 + \frac{1}{n}\right)} = \frac{-1 - \frac{1}{n}}{\sqrt{1 + \frac{1}{n}} + 1 + \frac{1}{n}};$

on en déduit $\lim_{n\to+\infty} x_n = -\frac{1}{2}$

3. Expliciter les suites suivantes en fonction de n:

a.
$$\begin{cases} u_0 = 1, & u_1 = 0 \\ u_{n+2} = 4u_{n+1} - 4u_n & \forall n \in \mathbb{N} \end{cases} \qquad u_n = (1-n)2^n$$
b.
$$\begin{cases} u_0 = 1, & u_1 = 0 \\ u_{n+2} = u_{n+1} - u_n & \forall n \in \mathbb{N} \end{cases} \qquad u_n = \cos\left(\frac{\pi}{3}n\right) - \frac{\sqrt{3}}{3}\sin\left(\frac{\pi}{3}n\right)$$

$$u_n = (1-n)2^n$$

b.
$$\begin{cases} u_0 = 1, & u_1 = 0 \\ u_{n+2} = u_{n+1} - u_n & \forall n \in \mathbb{N} \end{cases}$$

$$u_n = \cos\left(\frac{\pi}{3}n\right) - \frac{\sqrt{3}}{3}\sin\left(\frac{\pi}{3}n\right)$$

4. Etablir les variations et la limite éventuelle des suites suivantes :

$$\mathbf{a.} \quad \left\{ \begin{array}{l} u_0 = 1 \\ u_{n+1} = \frac{u_n^2}{u_n^2 + u_n + 1} \end{array} \right. \quad \forall n \in \mathbb{N}$$

Une rapide étude de variations donne la fonction $f: x \mapsto \frac{x^2}{x^2 + x + 1}$ croissante sur $[0, +\infty[$ avec $f([0,+\infty[)\subset [0,+\infty[.$

On en déduit que la suite (u_n) est monotone.

 $u_1 < u_0$ donc la suite est décroissante et minorée par 0; ainsi, f étant continue, la suite converge vers un réel L tel que $L = \frac{L^2}{L^2 + L + 1}$ c'est-à-dire 0.

b.
$$\begin{cases} u_0 \in]0,1] \\ u_{n+1} = u_n + u_n^2 & \forall n \in \mathbb{N} \end{cases}$$

b. $\begin{cases} u_0 \in]0,1] \\ u_{n+1} = u_n + u_n^2 & \forall n \in \mathbb{N} \\ \forall n \in \mathbb{N}, u_{n+1} - u_n = u_n^2 \geq 0. \text{ On en déduit que la suite est croissante.} \end{cases}$

Si elle convergeait vers une réel L, la fonction $x \mapsto x + x^2$ étant continue, on aurait $L = L + L^2$ donc L = 0. Or, $\forall n \in \mathbb{N}, u_n \geq u_0$ donc par passage à la limite, $L \geq u_0 > 0$. On en déduit que (u_n) croit vers $+\infty$.

5. On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 1, \quad v_0 = 2, \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2}, \quad u_n v_n = 2$$

a. Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} - v_{n+1} = \frac{(u_n - v_n)^2}{2(u_n + v_n)}$.

Pour $n \in \mathbb{N}$, on a :

From
$$n \in \mathbb{N}$$
, on a :
$$u_{n+1} - v_{n+1} = \frac{u_n + v_n}{2} - \frac{2}{\frac{u_n + v_n}{2}} = \frac{(u_n + v_n)^2 - 4 \times 2}{2(u_n + v_n)} = \frac{u_n^2 + 2u_n v_n + v_n^2 - 4u_n v_n}{2(u_n + v_n)} = \frac{(u_n - v_n)^2}{2(u_n + v_n)}.$$

b. En déduire que les suites (u_n) et (v_n) sont adjacentes.

$$u_0 > 0, v_0 > 0, \forall n \in \mathbb{N}, \left((u_n > 0 \land v_n > 0) \Rightarrow \left(u_{n+1} = \frac{u_n + v_n}{2} > 0 \land v_{n+1} = \frac{2}{u_{n+1}} > 0 \right) \right);$$

par principe de récurrence, les suites sont donc strictement positives.

On déduit donc de la question précédente que $\forall n \in \mathbb{N}, u_{n+1} - v_{n+1} \geq 0$ ou encore pour tout $n \in \mathbb{N}^*, u_n - v_n \geq 0$. Soit $n \in \mathbb{N}^*$, on a :

$$n \in \mathbb{N}^*, u_n - v_n \ge 0$$
. Soit $n \in \mathbb{N}^*$, on a : $u_{n+1} - u_n = \frac{v_n - u_n}{2} \le 0$ donc la suite (u_n) est décroissante à partir de $n = 1$;

de plus $v_n = \frac{2}{u_n}$ donc, la suite (u_n) étant décroissante à partir de n = 1 et strictement positive, la suite (v_n) est croissante à partir de n = 1.

Ainsi, pour $n \in \mathbb{N}^*$, on a : $v_1 \le v_n \le u_n \le u_1$.

La suite (u_n) étant décroissante et minorée par v_1 , elle converge vers un réel U; la suite (v_n) étant croissante et majorée par u_1 , elle converge vers un réel V.

Pour $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n + v_n}{2}$ donc, par passage à la limite, U = V.

On déduit de ce qui précède que les suites (u_n) et (v_n) sont adjacentes.

c. Déterminer leur limite.

Pour $n \in \mathbb{N}$, $u_n v_n = 2$ donc par passage à la limite $U^2 = 2$. Comme les suites sont positives, on a $U = \sqrt{2}$.

Sup PTSI A CB6 - 2021-2022