PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/00, 15/67, 15/70, 15/81, C12Q

(11) Internationale Veröffentlichungsnummer:

WO 95/20652

A1 (43) Internationales

Veröffentlichungsdatum:

3. August 1995 (03.08.95)

(21) Internationales Aktenzeichen:

PCT/EP95/00297

(22) Internationales Anmeldedatum: 27. Januar 1995 (27.01.95)

(30) Prioritätsdaten: P 44 02 569.6

28. Januar 1994 (28.01.94)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): MEDI-GENE GMBH [DE/DE]; Lochhamer Strasse 11a, D-82152 Martinsried (DE).

(71)(72) Anmelder und Erfinder: ALTMANN, Herbert [DE/DE]; Sternstrasse 7, D-82110 Germering (DE). WENDLER, Wolfgang [DE/DE]; Ringstrasse 25, D-81375 München

(74) Anwälte: DIEHL, Hermann, O., Th. usw.; Flüggenstrasse 13, D-80639 München (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, EE, JP, KR, LT, LV, MX, NZ, PL, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: METHOD OF DETERMINING THE ACTIVITY OF A REGULATORY FACTOR, AND USE OF THE METHOD

(54) Bezeichnung: VERFAHREN ZUR BESTIMMUNG DER AKTIVITÄT EINES REGULATORISCHEN FAKTORS SOWIE VER-WENDUNG DIESES VERFAHRENS

(57) Abstract

The invention concerns a method of determining the activity of a regulatory factor, this activity being detected by means of a reporter system. To this end, gene arrays are provided for a first and second regulatory factor and for one or more reporter systems. The active first regulatory factor affects the activity or expression of the second regulatory factor which affects, in turn, the reporter system. Following addition of an inhibitory component, the activation of the reporter system is detected by the interaction between the first and second regulatory factors.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Bestimmung der Aktivität eines regulatorischen Faktors, die über ein Reportersystem nachweisbar ist. Hierzu werden Genanordnungen für einen ersten und zweiten

Repression der Protein-Protein Wechselwirkung zwischen LexA-CTF2 und AD1-TIM im Repressor-abhängigen Verfahren

REPRESSION OF THE PROTEIN-PROTEIN INTERACTION ESTWEEN
LAA-CTPI AND ADI-TIM IN THE REPRESSOR-DEPENDENT PROCESS

regulatorischen Faktor sowie für ein oder mehrere Reportersysteme zur Verfügung gestellt. Der aktive erste regulatorische Faktor wirkt auf die Aktivität oder Expression des zweiten regulatorischen Faktors ein, der letztere wiederum wirkt auf das Reportersystem ein. Nach Zugabe einer inhibitorischen Komponente erfolgt der positive Nachweis der Aktivierung des Reportersystems über das Zusammenwirken der ersten und zweiten regulatorischen Faktoren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumānien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Słowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dānemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	υŻ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

1

<u>Verfahren zur Bestimmung der Aktivität eines regulatorischen Faktors sowie</u> <u>Verwendung dieses Verfahrens</u>

Beschreibung

5

30

35

Die Erfindung betrifft ein Verfahren zur Bestimmung der Aktivität von regulatorischen Faktoren, wobei diese Aktivität über die Aktivität eines Reportersystems nachweisbar ist.

In lebenden Zellen werden Stoffwechselleistungen entweder 10 kontinuierlich oder aber nur in bestimmten Entwicklungsphasen bzw. auf Grund äußerer Signale hin erbracht. Bei der durch Hormone vermittelten Signalübertragung etwa werden entsprechenden Signale über Wechselwirkungen zwischen 15 Proteinen von der äußeren Zellmembran in das Zellinnere hinein transportiert um dort, beispielsweise im Zellkern, in eine Aufforderung zur Teilung umgesetzt zu werden. Werden diese Wechselwirkungen gestört, kann dies eine gesunde Zelle dem Gleichgewicht bringen und zu Wachstumsstörungen 20 führen. So kann z.B. eine entartete Zelle zu einem Krebsgeschwür heranwachsen und über die Bildung Metastasen den totbringenden Tumor über den gesamten Körper verteilen. Auch Viren wie HIV (Human Immunodeficiency Virus) oder HPV (Human Papilloma Virus) greifen in die natürlichen Abläufe der Zelle ein und mißbrauchen sie dazu, sich zu 25 vervielfätigen um dann weitere Zellen zu infizieren.

ist offensichtlich, daß über solche Wechselwirkungen gezielt in das Geschehen einer Zelle eingegriffen werden kann, sofern die entsprechenden Proteine bekannt und einem einfachen Test zugänglich sind. In den vergangenen Jahren sind derartige Tests entwickelt worden. Sie beruhen letztlich darauf, daß eine einfache biochemische Reaktion, die durch eine Farbreaktion nachweisbar und vieltausendfach gleichzeitig durchführbar ist, von einer solchen Wechselwirkung zwischen Proteinen abhängig gemacht wird. Sogenannte in vivo Assays lassen diese Wechselwirkungen z.B.

in Hefezellen nachweisen, die leicht zu züchten und auch für die Bildung menschlicher Proteine g eignet sind (Brent, R. et al., PCT-Veröffentlichung WO 92/05286; Fields, S. et al., U.S. 5,283,173).

5

10

15

Die Transkription proteinkodierender Gene wird von einem Multiproteinkomplex bestehend aus Pol II und einer Reihe spezifischer und genereller Transkriptionsfaktoren initiiert. Eine Vielzahl dieser Faktoren ist in den letzten Jahren isoliert und charakterisiert worden, wodurch man Einblicke in die Mechanismen der eukaryontischen Genexpression erhalten hat (Zawel et al., Curr. Opin. Cell. Biol. (1992) 4, S. 488-495; Cortes et al., Mol. Cell. Biol. (1992) 12, S. 413-421; Flores et al., J. Biol. Chem. (1992) 267, S. 2786-2793).

Neben der basalen Transkriptionsmaschinerie spielen vor allem die DNA bindenden Transkriptionsfaktoren eine entscheidende Rolle bei der stimulierten Genexpression.

20

25

30

35

Die charakteristischen Merkmale von Transkriptionsaktivatoren, wie proto-Onkogene oder virale Transkriptionsfaktoren und Protein-Protein-Wechselwirkungen in Signalketten oder Multiproteinkomplexen, welche sie zu besonders geeigneten Targets für Untersuchungen machen, sind ihre hohe Diversität, ihre Spezifität sowie Ihre mögliche Rolle bei der Entstehung von Krankheiten. So sind z.B. mehr 300 genspezifische Transkriptionsfaktoren bis beschrieben und es wird angenommen, daß ca. 3000 weitere derartige Faktoren vom menschlichen Genom kodiert werden. Ähnlich wie Rezeptoren an der Zelloberfläche praktisch Faktor und keine Protein-Protein Wechselwirkung genau der anderen. Jedes Protein bietet eine einzigartige Oberfläche und stellt dadurch ein einzigartiges Target dar.

15

20

30

35

DNA-bindende und die stimulierende Aktivität müss n jedoch nicht auf einer Polypeptidkette lokalisiert vorliegen (Weston et al., Cell (1989) 58, S. 85-93). Die Teilung dieser beiden Eigenschaften erlaubt zum Beispiel die Untersuchung einer Wechselwirkung zwischen zwei Proteinen X und Y, wobei der DNA-bindende Teil auf einem Protein transkriptionsaktive Teil auf einem Protein Y lokalisiert sind (Fields et al., Nature (1989) 340, S. 245-246). Die spezifische Inhibierung dieser Interaktion resultiert Verlust der stimulierenden Aktivität dieses Elements.

Bisher sind Verfahren bekannt, um Inhibitoren nachzuweisen. welche die biologische Aktivität von Oncoproteinen hemmen (WO 92/05286). Diese Verfahren werden eingesetzt, inhibitorische Komponenten zu identifizieren und klassifizieren, indem die Fähigkeit einer solchen Komponente untersucht wird, die Expression von Reportergenen beeinflussen. Nach der vorgenannten PCT-Veröffentlichung werden Durchführung zur dieses Verfahrens Fusionsgene bereitgestellt, welche für Fusionsproteine codieren. Diese Fusionsproteine binden an eine Bindestelle auf der DNA, wobei diese DNA für die Reportergene codiert, und vermitteln so die Expression des Reportergens. Wird die Expression Reportergens untersucht, so ist eine Abnahme der Reportergen-25 Expression indikativ für eine Komponente, welche die Aktivität der Fusionsproteine hemmt.

Der Nachweis von Inhibitoren erfolgt bei Anwendung genannten Verfahren ausschließlich über eine Abnahme Expression der betreffenden Reportergene, d.h. es handelt sich um einen Negativnachweis. Das bekannte Nachweissystem ist insofern von Nachteil, da es gegebenenfalls Empfindlichkeit eines Testsystems herabsetzt. Wird Reportergen prinzipiell nur schwach exprimiert, so sind nach Inhibitorzugabe und somit noch weiter abnehmender Expression häufig k ine eindeutigen Aussagen möglich. Diese Nachteile

10

15

20

25

30

35

daß eine zugesetzte inhibitorische gehen darauf zurück, Komponente einen Transkriptionsfaktor hemmt, der Expression von Reportergenen beeinflußt, d.h. es handelt sich um eine direkte funktionelle Verbindung von Inhibitor und Reportergen. Insbesondere ist eine fehlende Expression nach Inhibitorzugabe von Nachteil, da Versuchsdurchführungen häufig auf Selektion von Organismen beruhen, wie im folgenden kurz erläutert. Wird so z.B. das Wachstum von Zellen nach Inhibitorzugabe untersucht, wachsen gerade untersuchenden gehemmten Zellen nicht und müssen über weitere Versuche nachgewiesen werden. Ein Screening verschiedener potentieller Inhibitoren ist daher nicht möglich. Die fehlende Expression von Reportergenen nach Inhibitorzugabe kann darüber hinaus auch auf die Einflußnahme weiterer Faktoren zurückzuführen sein, beispielsweise Inhibitors auf Faktoren der Translations-Replikationsmechanismen sowie des Zellzyclus. Somit ist der Wirkungsort des Inhibitors häufig nicht klar zu definieren, woraus eine mangelnde Spezifität der bisherigen Nachweissysteme resultiert.

Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Verfügung zu stellen, das die vorgenannten Nachteile nicht aufweist, das schnelle, eindeutige und spezifizische Aussagen über Testergebnisse ermöglicht sowie die Empfindlichkeit von Testsystemen verbessert.

Die Erfindung löst diese Aufgabe durch das im unabhängigen Patentanspruch 1 angegebene Verfahren und die Verwendung nach Patentanspruch 63. Weitere bevorzugte Ausgestaltungen, Aspekte und Details des erfindungsgemäßen Verfahrens sind in den abhängigen Patentansprüchen 2 bis 62 sowie 64 und 65, den Zeichnungen, Tabellen und den bevorzugten Ausführungsformen dargelegt. Die vorliegende Erfindung stellt ein wesentlich verbessertes Nachweissystem für die Aktivität regulatorischen Faktors zur Verfügung. Mit dem angegebenen Verfahren kann auch im lebenden Organismus eine inhibitorische Komponente durch Expression bzw. verstärkte Expression eines Reportersystems nachgewiesen werden, ohne daß die Nachteile bekannter Verfahren auftreten.

5

Damit wird die Empfindlichkeit des Testsystems entscheidend erhöht und ermöglicht das Screenen von Inhibitorbibliotheken großer Komplexität (über 10⁹ verschiedene Moleküle).

- Hiermit wird ein neues Prinzip zum Screenen nach Inhibitoren und Chemikalien, die entsprechende Aktivitäten modifizieren, eingesetzt. Der Assay kann auch zur Identifizierung bislang unbekannter Wechselwirkungen verwendet werden.
- 15 Wesentlich für das erfindungsgemäße Verfahren ist Bereitstellen mindestens eines zweiten regulatorischen Faktors. Das folgenden beschriebene Verfahren im bevorzugt in Wirtsorganismen durchgeführt, wodurch jedoch ausgeschlossen werden soll, entsprechende Verfahren 20 auch außerhalb eines Organismus durchzuführen. Wirtsorganismen werden Mikroorganismen, insbesondere Bakterien, oder eukaryotische Zellen, insbesondere Hefen, eingesetzt. Besonders bevorzugt sind der Bakterienstamm Escherichia coli oder der Hefestamm Saccharomyces cerevisia.

25

Gemäß der vorliegenden Erfindung werden, wie vorstehend erwähnt, bevorzugt in einem Wirtsorganismus, mindestens ein Reportersystem mit mindestens einer ersten Genanordnung, welche mindestens ein Reportergen aufweist, bereitgestellt. Die Expression der Reportergene dient als Nachweissystem.

30

35

Des weiteren wird mindestens ein erster regulatorischer Faktor bzw. die entsprechende Genanordnung bereitgestellt. Gemäß der vorliegenden Erfindung beeinflußt der mindestens eine erste regulatorische Faktor einen oder mehrere zweite regulatorische Faktoren und nicht direkt die Aktivität d s

Reportersystems, wodurch es erstmals ermöglicht wird, Aktivität eines ersten regulatorischen Faktors durch positives Signal nachzuweisen.

5 Der mindestens eine zweite regulatorische Faktor wird durch mindestens eine zweite Genanordnung codiert. Aus Gründen der Vereinfachung wird bei den bereits erwähnten und den im folgenden genannten, am Verfahren beteiligten Komponenten nicht immer ausdrücklich erwähnt, daß sowohl eine als auch mehrere Komponenten wie Gene, Genanordnungen, regulatorische 10 Proteine usw., beteiligt sein können. Faktoren, jedoch so ausgelegt werden, daß diese Möglichkeiten eingeschlossen sind. Bevorzugt wird die Aktivität des zweiten regulatorischen Faktors durch den ersten regulatorischen Faktor beeinflußt. Über eine Wechselwirkung des 15 regulatorischen Faktors mit Komponenten des Reportersystems wird auch Einfluß auf die Aktivität des Reportersystems genommen. Somit wird gemäß der vorliegenden Erfindung die Aktivierung des Reportersystems durch Zugabe inhibitorischen Komponente über das Zusammenwirken der ersten 20 und zweiten regulatorischen Faktoren nachgewiesen.

Der erste regulatorische Faktor enthält eine oder mehrere regulierende Komponenten. Enthält der erste regulatorische Faktor mehrere regulierende Komponenten, ist insbesondere die 25 zusammengesetzte Form die aktive Form. Bei den ein oder mehreren regulierenden Komponenten handelt es sich häufig um ein oder mehrere regulierende Proteine. Die regulierenden Proteine sind bevorzugt ein oder Transkriptionsregulatoren, beispielsweise Transkriptionsfaktoren. In einer bevorzugten Ausführungsform enthält der Transkriptionsfaktor nur ein Protein.

Gemäß einer weiteren, bevorzugten Ausgestaltung des 35 erfindungsgemäßen Verfahrens enthält der Transkriptionsregulator mindestens zwei Hybridproteine,

WO 95/20652 PCT/EP95/00297

7

insbesondere zwei Hybridproteine, welche von einer bereitgestellten dritten Genanordnung codiert werden.

Die Hybridproteine sind bevorzugt ein erstes Hybridprotein, welches ein Fusionsprotein aus einer DNA-Bindedomäne und einer ersten Proteinkomponente ist, und ein zweites Hybridprotein, welches ein Fusionsprotein aus einer Aktivierungsdomäne des Transkriptionsregulators und einer zweiten Proteinkomponente ist. Durch Bindung zwischen den beiden Proteinkomponenten, die auch Targets genannt werden, entsteht der aktive Transkriptionsregulator.

5

10

15

30

35

Die regulierenden Komponenten des ersten regulatorischen Faktors sind gemäß dem vorliegenden Verfahren nicht auf regulierende Proteine beschränkt. So kann beispielsweise der erste regulatorische Faktor Nucleinsäuren oder auch weitere Komponenten enthalten.

Die Aktivität des mindestens einen ersten regulatorischen Faktors wird durch inhibitorische Komponenten beeinflußt. Diese inhibitorischen Komponenten sind bevorzugt Naturstoffe wie Peptide, Nucleinsäuren und Kohlenhydrate oder niedermolekulare Substanzen oder andere chemische Substanzen oder auch durch Mutagenese veränderte Bestandteile des ersten regulatorischen Faktors.

In einer weiteren bevorzugten Ausführungsform wird eine vierte Genanordnung für die Expression von bereitgestellt. Diese Peptide weisen insbesondere eine inhibitorische Aktivität auf. So können in vivo synthetisierte Peptidlibraries zur Inhibierung von regulatorischen Faktoren eingesetzt werden. In weiteren bevorzugten Ausgestaltungen werden beliebige Kombinationen der genannten Inhibitoren zugesetzt.

Besonders wichtig ist die Einwirkung der inhibitorischen Komponenten auf die Aktivität des ersten regulatorischen Faktors durch Einwirkung auf die Wechselwirkung zwischen zwei regulatorischen Komponenten, die in dem mindestens 5 regulatorischen ersten Faktor enthalten sind. Diese Einwirkung ist bevorzugt eine Hemmung der Wechselwirkung der regulatorischen Komponenten. Die Aktivität kann auch aufgrund mehrerer Komponenten, z.B. in einem Multiproteinkomplex, reguliert werden. Dieser Komplex ist solange aktiv, einzelne oder mehrere Bausteine diesen Komplex bilden. Erst 10 Inhibierung einer oder mehrerer dieser Komponenten zerstört die Aktivität des gesamten Komplexes. Auch vom bisher Beschriebenen abweichende Aktivitäten, die in irgendeiner Weise die Expression des zweiten regulatorischen 15 Faktors aktivieren, sind als erster regulatorischer Faktor geeignet. Die Inhibierung des ersten regulatorischen Faktors kann sowohl die Aktivität des Transkriptionsregulators und/oder die Generierung des Transkriptionsregulators betreffen. Insbesondere wird die Wechselwirkung zwischen zwei regulierenden Proteinen des ersten regulatorischen Faktors 20 gehemmt. Wird eine der genannten Wechselwirkungen gehemmt, liegt ein inaktiver oder in seiner Aktivität herabgesetzter erster regulatorischer Faktor vor. Infolgedessen ist die Interaktion des ersten regulatorischen Faktors mit zweiten regulatorischen Faktor gehemmt oder herabgesetzt. 25 einer weiteren bevorzugten Ausführungsform wird die Wechselwirkung zwischen dem ersten regulatorischen Faktor und dem zweiten regulatorischen Faktor beeinflußt. Auch diese Einwirkung ist besonders bevorzugt eine Hemmung. 30 besonders vorteilhaften Ausführungsform beeinflußt die Wechselwirkung des ersten Inhibitor regulatorischen Faktors mit Genabschnitten der zweiten Genanordnung. In einer Ausgestaltung des erfindungsgemäßen Verfahrens modifiziert der mindestens eine erste regulatorische Faktor, 35 bevorzugt ein oder mehrere Proteine enthält, mindestens einen zweiten regulatorischen Faktor,

10

15

20

beispielsweise über Kinasierung, Dephosphorylierung, Spaltung, Umfaltung oder Konformationsänderung.

Wird kein Inhibitor zugesetzt, liegt der erste regulatorische Faktor insbesondere in der aktiven Form vor und wirkt auf die Aktivität des zweiten regulatorischen Faktors ein. Es ist des weiteren bevorzugt, daß der erste regulatorische Faktor mit DNA-Abschnitten der für den zweiten regulatorischen Faktor codierenden zweiten Genanordnung wechselwirkt und somit die Expression des zweiten regulatorischen Faktors beeinflußt.

Die Zugabe einer inhibitorischen Komponente beeinflußt beispielsweise die Wechselwirkung zwischen mindestens zwei Komponenten, welche gemeinsam den ersten regulatorischen Faktor bilden. In einer weiteren Ausführungsform wirkt die Zugabe der inhibitorischen Komponente auf die Aktivität des ersten regulatorischen Faktors ein, unabhängig davon, ob er eine oder mehrere regulierende Komponenten enthält. Einwirkung auf die Aktivität betrifft beispielsweise transkriptionsaktivierende oder bindende Aktivität des ersten regulatorischen Faktors oder die Interaktion des ersten und zweiten regulatorischen Faktors.

In einer weiteren Ausführungsform beeinflußt die Zugabe einer inhibitorischen Komponente sowohl die genannte Wechselwirkung als auch die genannte Aktivität. Die Einwirkung ist bevorzugt eine Hemmung der Wechselwirkung und/oder der Aktivität.

Durch Zugabe der inhibitorischen Komponente wird bevorzugt die Wechselwirkung zwischen dem ersten regulatorischen Faktor 30 und einem DNA-Abschnitt der zweiten Genanordnung, welche den regulatorischen Faktor codiert, wobei sich insbesondere um eine Hemmung handelt, beeinflußt. Die Einwirkung bzw. die Hemmung der oben genannten Wechselwirkungen durch inhibitorische Komponenten führt zu 35 einer Einwirkung auf die Genexpression d r

5

10

25

30

35

10

PCT/EP95/00297

Genanordnung, insbesondere zu einer Hemmung dr Genexpression der zweiten Genanordnung. Besonders bevorzugt führt die Zugabe der inhibitorischen Komponente über eine Hemmung der Aktivität des regulierenden Proteins zu einer Hemmung der Expression der zweiten Genanordnung.

Gemäß einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird durch die Zugabe einer inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten eingewirkt, wobei eine dieser Komponenten eine regulatorische Komponente ist oder eine regulatorische Komponente enthält.

Vorteilhaft ist, wenn diese regulatorische Komponente eine Proteinkomponente ist oder mindestens eine Proteinkomponente enhält. Bevorzugt sind bei den Proteinkomponenten Fusionsproteine.

Gemäß einer besonders bevorzugten Ausgestaltung ist die 20 regulatorische Komponente eine inhibitorische Komponente.

Die mindestens eine zweite Komponente ist bespielsweise eine Proteinkomponente oder enthält eine Proteinkomponente. Es hat sich als vorteilhaft erwiesen, daß diese Proteinkomponente ein Fusionsprotein ist.

Bei den zweiten Proteinkomponenten handelt es sich insbesondere Proteinkomponenten, die Verankerungsfunktionen besitzen. Bevorzugt erfolgt die Verankerung der miteinander wechselwirkenden Proteinkomponenten im Cytoplasma. Als vorteilhaft hat sich Verankerung der miteinander in Wechselwirkung stehenden Proteine über die Verankerungsfunktion der zweiten Proteinkomponente in der Membran erwiesen.

10

15

20

Gemäß einer weiteren vorteilhaften Ausführungsform erfolgt über die Zugabe einer inhibitorisch n Komponent eine Hemmung der Wechselwirkung zwischen den mindestens zwei Komponenten die Freisetzung der mindestens einen ersten Komponente, welche den inhibitorisch wirksamen Abschnitt enthält. Diese freigesetzte erste Komponente interagiert mit dem transkriptionsaktivierenden Faktor der Genanordnung für den zweiten regulatorischen Faktor. Besonders bevorzugt wird der transkriptionsaktivierende Faktor durch den freigesetzten inhibitorisch wirkenden Faktor gehemmt, wodurch eine Hemmung der Expression der zweiten Genanordnung erfolgt.

In den bisher und auch im folgenden genannten Ausführungsformen enthalten die regulatorischen bzw. interagierenden Komponenten Abschnitte, regulatorische bzw. interagierende Funktionen bedingen. entsprechenden Proteinabschnitte können eine oder mehrere Abschnitte oder Domänen beinhalten. Diese Abschnitte oder Domänen können sich in verschiedenen Regionen eines Proteins bzw. auf verschiedenen Proteinen befinden.

Vorzugsweise werden die mindestens zwei Proteinkomponenten von einer fünften Genanordnung codiert.

- 25 Es hat sich als besonders vorteilhaft erwiesen, daß mindestens eine erste Proteinkomponente einen Abschnitt, der mit der mindestens einen zweiten Proteinkomponente wechselwirkt, Abschnitt, einen der mit einem Transkriptionsfaktor wechselwirkt sowie einen inhibitorischen Abschnitt enthält, wobei erst nach Hemmung der Wechselwirkung 30 der Bindung zwischen den mindestens zwei Proteinkomponenten inhibitorisch wirkende zweite Proteinkomponente Expression des zweiten regulatorischen Faktors hemmt.
- 35 Gemäß einer weiteren bevorzugten Ausgestaltung ist die mindestens eine erste regulatorische Komponent ein

10

15

Transkriptionsregulator oder Transkriptionsfaktor des zweiten regulatorischen Faktors, der nach Inhibierung Wechselwirkung mit der mindestens einen zweiten Proteinkomponente in seiner reduziert Aktivität oder inaktiviert wird, wodurch eine Inhibierung oder Reduzierung der Aktivität des zweiten regulatorischen Faktors erfolgt.

Bei den zweiten regulatorischen Faktoren handelt es sich insbesondere um Proteine, beispielsweise, nach Versuchsanordnung, um mindestens einen Repressor oder um mindestens eine Rekombinase. Die aktiven regulatorischen Faktoren wirken über eine Wechselwirkung mit des Reportersystems auf die Aktivität Reportersystems ein. Der zweite regulatorische Faktor bindet bevorzugt an DNA-Abschnitte des Reportersystems.

Ein Repressor, codiert durch die zweite Genanordnung, ist ein Beispiel für einen zweiten regulatorischen Faktor. Repressor beeinflußt die Expression mindestens eines 20 Reportergens, indem er bevorzugt an Komponenten Reportersystems bindet. Gemäß einer bevorzugten Ausgestaltung erfindungsgemäßen Verfahrens wird die Bindung Repressors an Komponenten des Reportersystems durch weitere reguliert. So induziert beispielsweise 25 Antibiotikum Tetrazyklin eine Ablösung eines prokaryotischen Repressors von der DNA. Ein aktiver Repressor hemmt die Expression mindestens eines Reportergens. Wird dagegen, zum Beispiel durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression des Repressor-30 Gens erfolgt die Expression mindestens gehemmt, Reportergens.

Eine Rekombinase, codiert durch die zweite Genanordnung, ist ein weiteres Beispiel für einen zweiten regulatorischen 35 Faktor. In einer entsprechenden Versuchsanordnung enthalten die Reportersysteme Rekombinationselemente. Liegt ein aktiver WO 95/20652 PCT/EP95/00297

13

erster regulatorischer Faktor vor, eliminiert oder invertiert die Rekombinase über Rekombinationsprozesse mindestens ein Reportergen. Hierbei interagiert die Rekombinase mit spezifischen, das Reportergen bzw. die Reportergene 5 flankierende Rekombinationselemente und eliminiert oder invertiert das Reportergen, welches von den Rekombinationselementen flankiert wird. Sowohl nach einer Elimination als auch nach Invertierung wird das Reportergen nicht exprimiert. Ist also kein Inhibitor dem Versuchsansatz zugesetzt worden, liegt ein aktiver erster regulatorischer 10 Faktor vor, der bevorzugt die für einen zweiten regulatorischen Faktor codierenden Gene aktiviert, insbesondere über Wechselwirkung mit DNA-Abschnitten. zweite aktive Faktor, wie z.B. ein Repressor oder eine Rekombinase, hemmt die Expression der Reportergene. 15

Durch die Beeinflussung der Wechselwirkung von mindestens zwei regulatorischen Komponenten des Transkriptionsregulators, wobei die regulatorischen Komponenten insbesondere zwei Hybridproteine sind, wird in 20 einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens die Expression mindestens einer Rekombinase gesteuert, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt. Durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators (bzw. anderer 25 regulatorischer Faktoren des Transkriptionsregulators) wird die Expression der Rekombinase insbesondere gehemmt und es erfolgt eine Expression des mindestens einen Reportergens.

Besonders bevorzugt ist eine Ausführungsform, bei der durch die Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens eines Repressor-Gens gesteuert wird, wodurch eine Veränderung der Expression des mindestens einen Reportergens erfolgt.

Insbesondere wird durch Hemmung der Wechs lwirkung der Proteinkomponenten die Expression des Repressor-Gens gehemmt und eine Expression des mindestens einen Reportergens erfolgt.

5

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung wird durch die Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens einer Rekombinase gesteuert, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.

Besonders bevorzugt wird durch Hemmung der Wechselwirkung der Proteinkomponenten die Expression der Rekombinase gehemmt und eine Expression des mindestens einen Reportergens erfolgt.

15

10

Die Versuche basieren darauf, daß unter den gegebenen Versuchsbedingungen mindestens ein Genprodukt des mindestens einen Reportergens nachweisbar ist.

20

Gemäß bevorzugter Ausführungsformen wird ein Genprodukt eines Reportergens oder werden mehrere Genprodukte mehrere Reportergene exprimiert. In einer weiteren Ausgestaltung werden je nach variierenden Versuchsbedingungen ein bis mehrere Reportergene exprimiert.

25

30

35

Der Nachweis des Genprodukts bzw. der Genprodukte erfolgt dann beispielsweise über eine oder mehrere Veränderungen des Phänotyps von Wirtszellen. In einer besonders bevorzugten Ausführungsform ermöglicht das Genprodukt des Reportergens Zellwachstum der Wirtszellen in Mangelmedium. Das Genprodukt z.B. des Reportergens Leu2 ermöglicht Zellwachstum in Leucindefizientem Medium. Bei einer weiteren vorteilhaften Abwandlung des erfindungsgemäßen Verfahrens werden Hefestämme mit chromosomalen Mutationen als Wirtszellen eingesetzt, die beispielsweise zu Leucin-Defizienzen bei der Verstoffwechselung der Aminosäure Leucin führen. Die

chromosomalen Mutationen können auch zu Defizienzen bei der V rstoffwechselung der Aminosäuren Tryptophan und Histidin führen. Gegebenenfalls ist auch der Einsatz proteasedefizienter Hefen sinnvoll.

5

10

15

Es ist auch bevorzugt, Genanordnungen bereitzustellen, die für ein oder mehrere Genprodukte codieren, wobei diese Genprodukte Substrate in einer meßbaren Farbreaktion umsetzen können, wie z.B. das Reportersystem Lacz. Das Genprodukt dieses Reportergens, die β -Galactosidase, reagiert mit verschiedenen Substraten in einer sichtbaren Farbreaktion.

Die für das vorliegende Verfahren genannten Genanordnungen können auf verschiedenen Vektoren oder demselben Vektor angeordnet sein. Als Vektoren werden insbesondere Plasmide verwendet. In einer weiteren bevorzugten Ausführungsform sind ein oder mehrere Vektoren mit einer oder mehreren Genanordnungen, oder eine oder mehrere Genanordnungen, ins Wirtsgenom integriert.

20

25

30

35

Gemäß der vorliegenden Erfindung wird also durch Einsatz einer oder mehrerer inhibitorischer Komponenten zunächst die Aktivität des ersten regulatorischen Faktors beeinflußt, wobei dieser wiederum auf die Aktivität des zweiten regulatorischen Faktors einwirkt.

Der zweite regulatorische Faktor wirkt schließlich auf die Expression des Reportergens ein. Bevorzugt wird gemäß der vorliegenden Erfindung durch Zusatz ein oder mehrerer inhibitorischer Komponenten die Aktivität des ersten regulatorischen Faktors gehemmt, dadurch bedingt ebenfalls der zweite regulatorische Faktor gehemmt, wobei einer bevorzugten Ausführungsform der regulatorische Faktor selbst gehemmt oder in einer weiteren bevorzugten Ausführungsform die Expression des regulatorischen Faktors gehemmt wird. Da in keinem Fall ein

10

aktiver zweit r regulatorischer Faktor vorliegt, wird das Reportergen bzw. werden die Report rgene xprimiert. Erst die Inhibierung des ersten regulatorischen Faktors bewirkt also eine Expression von Reportergenen. Der jeweilige Phänotyp hängt davon ab, ob der zweite regulatorische Faktor gebildet wird oder nicht. Besonders hervorgehoben werden soll eine weitere Ausgestaltung der vorliegenden Erfindung, wobei in einem Wirtsorganismus zwei Genanordnungen für zwei zweite regulatorische Faktoren, insbesondere Genanordnungen einen Repressor und eine Rekombinase, neben den in z.B. Anspruch 1 erwähnten übrigen zur Versuchsdurchführung notwendigen Genanordnungen, bereitgestellt werden.

- Je nach Versuchsbedingung wird einer der beiden zweiten 15 regulatorischen Faktoren, d.h. insbesondere Repressor oder Rekombinase, oder werden auch beide gleichzeitig exprimiert. Hierdurch bedingt wird eine erhöhte Spezifität des Verfahrens erreicht.
- Die Inhibierung der Aktivität des Transkriptionsfaktors bzw. des Transkriptionsregulators oder dessen Generierung führt schließlich zur Aktivierung des Reportergens bzw. der Reportergene.
- 25 dem Verfahren der vorliegenden Erfindung ist Gemäß hochspezifische Inhibitoren nachzuweisen, Selektivität und Spezifität des Nachweises von Inhibitoren zu erhöhen. Mit dem vorliegenden Verfahren sind so z.B. bei Wachstumsversuchen selektiv die Zellen nachweisbar, auf die der Inhibitor eingewirkt hat, während die "nicht gehemmten" 30 Zellen nicht wachsen, d.h. es ergeben sich keine Probleme wie Überwachsen der interessierenden Zellen. Damit wird Empfindlichkeit des Testsystems entscheidend erhöht ermöglicht das Screenen von Inhibitorbibliotheken großer Komplexität (über 10^9 verschiedene Moleküle). Somit ist es 35 mit dem erfindungsgemäßen Verfahr n überhaupt zum ersten Mal

möglich, nach Inhibitorzugabe ine Identifikation von Zellen, insbesondere auch aufgrund von Wachstum, durchzuführen. Dies erweist sich als sehr vorteilhaft, wenn z.B. ein sehr ungünstiges Verhältnis von Zellen, auf die der Inhibitor einwirkt (meist sehr geringer Anteil), zu Zellen, auf die der 5 Inhibitor nicht einwirkt, vorliegt. Des weiteren ist möglich, Aussagen bezüglich des spezifischen Wirkungsortes des Inhibitors zu machen, da gezielt auf z.B. regulatorische Faktoren eingewirkt wird und erst nach Hemmung des Faktors 10 Reportergene exprimiert werden. So ermöglicht Verfahren, Signalketten und andere Regulationsmechanismen zu untersuchen und bietet Voraussetzungen für eine spezifische Arzneimittelentwicklung. Das Verfahren dient zur Auffindung Leitstrukturen, die bevorzugt zur Entwicklung 15 Therapeutika eingesetzt werden. Des weiteren Verfahren bevorzugt zur Ermittlung von inhibierenden Substanzen, die beispielsweise als Leitstrukturen einsetzbar sind, Diese verwendet. inhibierenden Substanzen sind beispielsweise Peptide, Naturstoffe und synthetische Chemikalien. In einer besonders bevorzugten Ausführungsform . 20 werden zur Inhibierung des ersten regulatorischen Faktors in vivo synthetisierte Peptidlibraries bereitgestellt.

Im folgenden werden bevorzugte Ausführungsformen des
Verfahrens gemäß der vorliegenden Erfindung dargestellt,
wobei die Ausführung jeweils unter Berücksichtigung eines
aktiven bzw. inaktiven ersten regulatorischen Faktors
erläutert wird. Ausgegangen wird bei den Ausführungen von
Proteinen als regulatorische Faktoren.

30

35

Als Reportergen dienen z.B. das Leu2-Gen, welches Wachstum auf Leucin-defizientem Medium ermöglicht, und das LacZ-Gen, dessen Genprodukt, die β -Galactosidase, verschiedene Substrate in einer sichtbaren Farbreaktion umsetzt (X-Gal (5-Brom-4-chlor-3-indoxyl- β -D-galactopyranosid) ergibt Blaufärbung, ONPG (o-Nitro-phenyl-galactopyranosid) ergibt

Gelbfärbung). Entsprechend analog zu Leu2 können auch andere Gene, welche Enzyme aus der Biosynthes codieren, wie z.B. Gen URA3, eingesetzt werden, da seine Expression entsprechend defiziente Hefestämme komplementieren und damit Wachstum auf Uracil defizienten Medien ermöglichen kann (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986)). Auch die Aktivität von Luciferase oder Chloramphenikol-Acetyltransferase kann leicht und schnell in enzymatischen Reaktionen nachgewiesen werden (Ibelgaufts, Gentechnologie von A bis Z (1990) VCH-Verlag (Weinheim)).

Die Erfindung wird nachfolgend anhand der beiliegenden Zeichnungen näher erläutert.

15

10

5

Fig. la und 1b zeigen schematisch dargestellte Genanordnungen für einen Repressor sowie für die Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. la) und eines inaktiven (Fig. lb) Transkriptionsfaktors mit der DNA dargestellt ist.

20

Fig. 2a und 2b zeigen schematisch dargestellte
Genanordnungen für einen Repressor sowie
für die Reporterproteine, wobei die
Wechselwirkung eines aktiven (Fig. 2a) und
eines inaktiven (Fig. 2b) Transkriptionsregulators mit der DNA dargestellt ist.

25

30 Fig. 3a und 3b zeigen schematisch dargestellte
Genanordnungen für eine Rekombinase sowie
für Reporterproteine, wobei die
Wechselwirkung eines aktiven (Fig. 3a) und
eines inaktiven (Fig. 3b) Transkriptionsfaktors mit der DNA dargestellt ist.

WO 95/20652 PCT/EP95/00297

19

5	Fig.	4a und	4b	zeigen schematisch dargestellte Genanordnungen für eine Rekombinase sowie für Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 4a) und eines inaktiven (Fig. 4b) Transkriptionsregulators mit der DNA dargestellt ist.
10	Fig.	5a und	5b	zeigen schematisch dargestellte Genanordnungen für einen Repressor sowie für die Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 5a) und eines inaktiven (Fig. 5b) Transkriptionsregulators mit der DNA dargestellt ist.
20	Fig.	6a und	6b	zeigen schematisch dargestellte Genanordnungen für eine Rekombinase sowie für Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 6a) und eines inaktiven (Fig. 6b) Transkriptionsregulators mit der DNA dargestellt ist.
25	Fig.	7a und	7b	zeigen schematisch dargestellte Genanordnungen für einen Repressor sowie für die Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 7a) und eines inaktiven (Fig. 7b) Transkriptions- regulators mit der DNA dargestellt ist.
30 35	Fig.	8a und	8b	zeigen schematisch dargestellte Genanordnungen für eine Rekombinase sowie für Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 8a) und eines inaktiven (Fig. 8b) Transkriptionsregulators mit der DNA dargestellt ist.

15

20

35

Fig. 9a und 9b

zeigen schematisch dargestelle

Genanordnungen für einen R pressor LexAGST, wobei die Wechselwirkung eines
aktiven (Fig. 9a) und eines inaktiven
(Fig. 9b) ersten regulatorischen Faktors
AD1-Tet mit der DNA dargestellt wird.

Fig. 10a und 10b zeigen schematisch dargestellte Genanordnungen für einen zweiten 10 regulatorischen Faktor Tet-GST, wobei die Wechselwirkung eines aktiven (Fig. 10a) eines inaktiven (Fig. 10b) regulatorischen Faktors LexA-CTF7 mit der DNA dargestellt wird.

Fig. 11a und 11b zeigen schematisch dargestellte Genanordnungen für einen zweiten regulatorischen Faktor Tet-GST, wobei die Wechselwirkung eines aktiven (Fig. 11a) und eines inaktiven (Fig. 11b) ersten regulatorischen Faktors LexA-CTF2 - AD1-TIM mit der DNA dargestellt ist.

Bei den in den Fig. 1 und 3 genannten Targets (Zielen) bzw. 25 transkriptionsstimulierenden Targets handelt es sich regulatorische Faktoren, insbesondere um Transkriptionsfaktoren für die Expression der zweiten regulatorischen Faktoren, auf die der Inhibitor einwirkt. Die regulatorischen Faktoren sind in den in den Figuren gezeigten 30 Beispielen ein Repressor bzw. eine Rekombinase.

Bei den in den Fig. 2 und 4 genannten Targets (Zielen) handelt es sich um die miteinander interagierenden regulatorischen Komponenten des regulatorischen Faktors, wobei Target I die regulatorische Komponente mit der

10

15

bindenden Aktivität und Target II die r gulatorische Komponente mit der transkriptionsaktivierenden Aktivität ist.

Bei den in den Fig. 5 und 6 genannten Targets (Zielen) handelt sich um die miteinander interagierenden Komponenten des ersten regulatorischen Faktors, wobei Target I die regulatorische Komponente mit sowohl der DNA bindenden als auch der transkriptionsaktivierenden Aktivität und Target II die Komponente ist, mit der Target I wechselwirkt und ausschließlich bei ungestörter Wechselwirkung in der aktiven Form vorliegt.

Bei den in den Fig. 7 und 8 genannten Targets (Zielen) handelt es sich um miteinander interagierende Komponenten, wobei Target II die regulatorische Komponente mit sowohl inhibierenden Aktivität als auch einer bindenden Aktivität, und Target III eine verankerte Komponente ist.

Die bindende Aktivität des Target II bezieht sich auf die 20 Wechselwirkung des von Target III gelösten Targets II mit der X-Komponente von Target I. Die X-Komponente von Target I wiederum ist ein aktivierender Transkriptionsfaktor des zweiten regulatorischen Faktors.

25 Mit der Bezeichnung Aktivität werden insbesondere Proteinabschnitte bezeichnet, die die jeweilige Aktivität bzw. die betreffende Funktion bewirken. Hierbei können eine oder mehrere Domänen betroffen sein. Die Domänen bzw. Proteinabschnitte können in verschiedenen Bereichen eines Proteins oder auf verschiedenen Proteinen lokalisiert sein. 30

Entsprechend sind die Bindestellen dieser Faktoren Target-Bindestellen bezeichnet.

35 In den Beispielen 1 bis 11 wurde wie folgt vorgegangen:

30

<u>Hefe-Plasmide</u>

Zur Expression der verschiedenen Gene in dem zugrundeliegenden Assay werden sowohl kommerziell erhältliche Plasmide (z.B. pYES2 der Firma Invitrogen, Niederlande), als 5 auch andere Konstrukte (Altmann, H. Dissertation (1994), Altmann H. et al., Proc. Natl. Acad. Sci., USA (1994) 91, S. 3901-3905) eingesetzt. Normalerweise besitzen diese Plasmide einen Replikationsursprungsort zur Vervielfältigung ihrer DNA 10 in Hefen (z.B. "2µm-ori") sowie einen zur Replikation in Bakterien (z.B. "colEl-Ori"). Desweiteren werden Markergene zur Selektion dieser Plasmide in den beiden Organismen verwendet (z.B. URA3, HIS3, TRP1 oder LEU2 in Hefe sowie Ampr oder Tetr in E. coli) (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986); Ibelgaufts, 15 Gentechnologie von A bis Z (1990) VCH-Verlag (Weinheim)). Beispiele für Hefevektoren sind beschrieben (Winnacker et al., From Genes to Clones (1987) VCH-Verlag (Weinheim); The Molecular and Cellular Biology of the Yeast Saccharomyces (1991) Vol. 1 und 2, Cold Spring Harbor Laboratory Press). 20

Die Expression von Genen kann über konstitutive (z.B. ADHI-Promotor), induzierbare (z.B. Gall-Promotor) oder eigens konstruierte Target-abhängige Promotoren (NFI, Tet, LexA) erfolgen.

Anstelle in Plasmide kloniert können die einzelnen Elemente des Assays auch in das Genom des verwendeten Hefestammes integriert werden (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986)). Derartig in der Hefe lokalisierte Elemente benötigen keinen eigenen Replikationsursprungsort sowie Selektionsmarker.

Folgende Elemente werden im Testsystem verwendet:

WO 95/20652 PCT/EP95/00297

23

a) Promotoren:

5

ADHI-Promoter: Dieser konstitutiv expremierende Promotor wird über die Restriktion mit den Enzymen BamHI und HindIII funktionell aus dem Plasmid pAAH5 isoliert (Ammerer et al., Methods in Enzymology (1983) Academic Press, S. 192-201).

- Gall-Promoter: Dieser Glukose-haltigen auf Medien 10 reprimierbare und auf Galaktose-haltigen Medien induzierbare Promotor wird mit Hilfe des Restriktionsenzyms SpeI aus dem Vektor pYES2 der Firma Invitrogen (Niederlande) isoliert.
- 15 inaktiver Gal1/Gal10-Promoter: Dieser ursprünglich über Galaktose induzierbare Promotor wird auf Sequenzebene derart deletiert, daß er in Hefe nur mehr basale Aktivität besitzt (Yocum et al., Mol. Cell. Biol. (1984) 4, S. 1985-1998; West et al., Mol. Cell. Biol. (1984) 4, 20 S. 2467-2478). Mit Hilfe der Restriktionsenzyme BamHI, EcoRI und HindIII wird dieses Promotorelement aus dem so konstruierten Vektor pLR1 Δ 1 isoliert und für weitere Zwecke verwendet.
- 25 NFI-abhängiger Promoter: Die von Meisterernst et al. Acid Res. (1988) 236, S. 27-32) Konsensussequenz als DNA-Bindungsstelle für Mitglieder (Nuklear NFI-Familie Faktor I) wird Oligonukleotid synthetisiert und für die Konstruktion von NFI-abhängigen Promotoren verwendet (Altmann et 30 Proc. Natl. Acad. Sci. USA (1994) 91, S. 3901-3905).

6 NFI-Bindestellen konstruiert für Oligonukleotiden:

1. Oligo:

5'- TCG AGT TTT TGG CAC TGT GCC AAT TCT TTT TGG CAC TGT GCC AAT TCT

3'- CA AAA ACC GTG ACA CGG TTA AGA AAA ACC GTG ACA CGG TTA AGA

TTT TGG CAC TGT GCC AAT TC - 3'

AAA ACC GTG ACA CGG TTA AG - 5'

2. Oligo:

5'- TTT TTG GCA CTG TGC CAA TTC TTT TTG GCA CTG TGC CAA TTC TTT TTG

3'- AAA AAC CGT GAC ACG GTT AAG AAA AAC CGT GAC ACG GTT AAG AAA AAC

GCA CTG TGC CAA TTC - 3'

CGT GAC ACG GTT AAG AGC T - 5'

Tet-abhängiger Promoter: Die von Hillen et al. (Nature (1982) 297, S. 700-702) gefundene Konsensussequenz als DNA-Bindungsstelle für den Tet-Repressor wird als Oligonukleotid synthetisiert und für die Konstruktion von Tet-abhängigen Promotoren verwendet.

Sequenz für die Tet-Operator-Bindestelle 01/02:

20

5

10

15

5'- TCG ATC TCT ATC ACT GAT AGG GAG TGG TAA AAT AAC TCT ATC AAT GAT

3'- AG AGA TAG TGA CTA TCC CTC ACC ATT TTA TTG AGA TAG TTA CTA

AGA - 3'

TCT CAG A- 5'

25

30

35

LexA-abhängiger Promoter: Die DNA-Konsensussequenz als Bindungsstelle für den bakteriellen Repressor LexA wurde als Oligonukleotid synthetisiert und für die Konstruktion von LexA-abhängigen Promotoren verwendet (Altmann et al., Proc. Natl. Acad. Sci. USA (1994) 91, S. 3901-3905; Wendler et al., Nuc. Acid Res. (1994) 22, S. 2601-2603; Brent et al., Cell (1985) 43, S. 729-736). Um die reprimierende Aktivität von LexA-Fusionen auf den Galaktose-induzierten Gall-Promotor nachzuweisen, wird mit Hilfe ds Restriktionsenzyms BamHI dieser Promotor aus dem Plasmid JK101 (Gol mis et al., Mol. Cell. Biol.

(1992) 12, S. 3006-3014) isoliert und für weitere Klonierungen eingesetzt.

<u>loxP-abhängiger Promoter:</u> Die von Hoess et al. (Proc. 5 Sci. USA (1982)79, 3398-3402) s. beschriebenen loxP-Elemente, welche es der Rekombinase Coliphagen P1 ermöglichen zwischen derartigen Elementen liegende Sequenzen zu deletieren invertieren werden als Oligonukleotid 10 synthetisiert und für die Konstruktion von Cre-abhängigen Promotoren verwendet.

Sequenz für das loxP-Rekombinase Element:

5'- GAG ATC ATA TTC AAT AAC CCT TAA TAT AAC TTC GTA TAA TGT ATG CTA
3'- CTC TAG TAT AAG TTA TTG GGA ATT ATA TTG AAG CAT ATT ACA TAC GAT
TAC GAA GTT ATT AGG TCG - 3'
ATG CTT CAA TAA TCC AGC AGC T - 5'

20 b) Reportergene.

25

30

LacZ-Gen: Das LacZ-Gen wird über die Restriktionsenzyme BamHI und HindIII aus dem Plasmid pMC1871 (Casadaban et al., J. Meth. in Enzy. 100, (1983) 100, S. 293-308) isoliert und für die weiteren Klonierungen eingesetzt.

<u>Leu2-Gen</u>: Das Leu2-Gen wird mittels PCR-Reaktion aus dem Plasmid pAAH5 (Ammerer, Methods in Enzymology (1983), S. 192-201, Academic Press) isoliert und für die weiteren Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Leul: 5'- CGC GGA TCC ATG TCT GCC CCT AAG - 3'

Leulrev: 5'- GCT CTA GAT CTT TTT AAG CAA GGA TTT TC - 3'

. 10

15

25

30

35

<u>Tet-Gen</u>: Das Tet-Gen wird mittels der Restriktionsenzyme XbaI und BstEII aus dem Plasmid pWH1950, ein Derivat des Plasmides pRT240 (Wissmann et al., Genetics (1991) 128, S. 225-232) isoliert und für die weiteren Klonierungen eingesetzt.

<u>Crel-Gen</u>: Das Crel-Gen wird mittels PCR-Reaktion aus dem Coliphagen Pl (Hoess et al., J. Mol. Biol. (1985) 181, S. 351-363) isoliert und für die weiteren Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Crel: 5'- GGG GTA CCT ATG TCC AAT TTA CTG AC - 3'
Crelrev:5'- GGG GTA CCG CGG CCG CCT AAT CGC CAT CTT CC - 3'

c) Targetgene

NFI-Gene: Die verschiedenen NFI-Gene werden kloniert und für die weiteren Klonierungen eingesetzt (Meisterernst et al., Nuc. Acid Res. (1988) 236, S. 27-32; Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).

LexA-Gen: Das LexA-Gen wird mit Hilfe der Restriktionsenzyme HindIII und EcoRI aus dem Plasmid pEG202, einem Derivat des Vektors LexA202 mit einer zusätzlichen Polylinkersequenz hinter dem LexA-Gen (Ruden et al., Nature (1991) 350, S. 250-252) isoliert und für die weiteren Klonierungen eingesetzt.

NFkB-Gen: Die codierende Sequenz für die transkriptionsaktive Domäne TA₁ (Aminosäure 521-551) des Proteins NFkB wird mit Hilfe des Restriktionsenzyms EcoRI aus dem Plasmid pLexTA₁ (Schmitz et al., J. Biol. Chem. (1994) 269, S. 25613-25620) isoliert und für die weiteren Klonierungen eingesetzt.

TIM-Gen: Die codierende S quenz für d n C-terminalen Teil des TIM-Proteins wird mit CTF2, einem Mitglied der NFI-Familie, im sog. "interaction trap" (Current Protocols in Molecular Biology, 1994; Altmann (1994) Dissertation) isoliert.

GST-Gen: Die kodierende DNA-Sequenz für die 26 kDa-Domäne aus dem GST Protein (Glutathion-S-Transferase) mittels Restriktionsenzymen aus dem kommerziell erhältlichen Plasmid pGEX 3X Firma Pharmacia (Schweden) isoliert und für weitere Klonierungen eingesetzt.

AD1-Tet: Das Fusionsgen AD1-Tet setzt sich aus der sauren Aktivierungsdomäne AD1, isoliert aus dem Plasmid pJG4-5 (Gyuris et al., Cell (1983) 75, S. 791-803) mit Hilfe der Restriktionsenzyme HindIII und EcoRI, und der kodierenden Sequenz für den Tet-Repressor (siehe oben) zusammen.

20

25

30

5

10

d) Inhibitorexpression:

<u>TrxA-Gen:</u> Das TrxA-Gen wird mittels PCR-Reaktion aus dem Plasmid pCJF7 (Lim et al., J. Bact. (1985) 163, S. 31-36) isoliert und für die weiteren Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Trx1: 5'- GGA ATT CCC CGG GAT GAG CGA TAA AAT TAT TC - 3'
Trx1rev:5'- CGG GAT CCC TCG AGT CAG CTA ATT ACC CGG GTA CCA CTT G -3'

<u>"Random Oligo-Pool"</u>: Zur Konstruktion eines "Random Oligo-Pools" wird ein Einzelstrangoligonukleotid-Pool folgender Zusammensetzung synthetisiert:

Sequenz:

N bedeutet, daß an dieser Stelle alle 4 möglichen Basen (A, G, C und T) bei der Synthese zugegeben wurden (IUPAC-Nomenklatur).

10

15

5

B bedeutet, daß an dieser Stelle die drei Basen G, C und T bei der Synthese zugegeben wurden (IUPAC-Nomenklatur).

Mittels Klenow-Polymerase werden aus den Einzelsträngen Doppelstränge hergestellt.

Diese wurden anschließend nach Inkubation mit dem Restriktionsenzym SapI in die RsrII-Schnittstelle des TrxA-Genes kloniert.

20

25

30

35

Experimentelle Vorgehensweise

Die Kultivierung und Transformation von Bakterien, Hefen und höheren eukaryontischen Zellen erfolgt nach Standardbedingungen (Ausubel et al., Current Protocolls in Molecular Biology (1987), John Wiley & Sons (New York); Miller, Experiments in Molecular Genetics (1972), Cold Spring Harbour, N.Y.; Sambrook et al., Molecular Cloning (1989), Cold Spring Harbour Laboratory Press; Lindl et al., (1987); Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).

Die Bakterienstämme JK101 der Firma Stratagene (Deutschland) und Top10 der Firma Invitrogen (Deutschland), sowie die Hefestämme INVSc1 und INVSc2 der Firma ITC (Deutschland) wurden für die Experiment eingesetzt.

10

20

Die Bestimmung der β -Galaktosidase Aktivität, dem Lacz-Genprodukt, erfolgt in sogenannten β -Galaktosidase Assays (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).

Zur Bestimmung der CAT-Enzym Aktivität in Proteinextrakten nach dem Immunassayprinzip wird beispielsweise der von der Firma Boehringer (Deutschland) kommerziell erhältliche "CAT-ELISA"-Test verwendet.

<u>Beispiel 1</u>

- Dieses Beispiel stellt die in Fig. 1 angegebene 15 Konfiguration dar.
 - 1. Eine Genanordnung wird bereitgestellt, welche für einen Transkriptionsfaktor codiert. Dieser Transkriptionsfaktor bindet an DNA-Bereiche einer DNA (Target-Bindestelle), die für einen zweiten regulatorischen Faktor, in dieser Versuchsanordnung für einen Repressor, codiert.
- 2. Des weiteren wird eine Repressorgenanordnung mit einer Bindestelle auf der DNA (Target-Bindestelle) für den unter 1 genannten Transkriptionsfaktor bereitgestellt.
- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei 30 beide Reportergene im vorliegenden Verfahren vom den gleichen regulierbaren her besitzen. Dieser Promotor setzt sich aus sogenannten UAS-Elementen (Upstream Activation Sequence), an die 35 bevorzugt ein endogener Aktivator (weiterer Transkriptionsfaktor TF) bindet, aus einer

WO 95/20652 PCT/EP95/00297

5

10

15

20

25

30

35

mehreren R pressorerkennungssequenzen, an die ein Repressor binden kann, und einer TATA-Box für die basale Transkription zusammen.

- a. Wird der Versuchsanordnung kein Inhibitor zugesetzt, liegt ein aktiver Transkriptionsfaktor vor, der die Expression eines Repressorproteins positiv reguliert. Der aktive Repressor bindet an die oben genannte Repressorerkennungssequenz bzw. Repressorbindestelle und reprimiert die Expression des Reportergens LacZ und/oder Leu2, d.h. es findet kein Wachstum der Wirtsorganismen statt, eine Farbreaktion ist nicht nachzuweisen.
- Nach Zugabe eines Inhibitors wird die Aktivität ersten regulatorischen Faktors, Transkriptionsfaktor, gehemmt. Dies ist auf eine Hemmung der Interaktion des Transkriptionsfaktors mit der entsprechenden Bindestelle auf der DNA oder auf eine Hemmung der Aktivierungsdomäne zurückzuführen. Es findet keine Expression des Repressorgens statt. Somit steht kein Repressor zur Verfügung, und das dem Promotor nachgeschaltete Reportergen LacZ und/oder Leu2 durch einen induzierbaren endogenen Transkriptionsfaktor stark exprimiert. Infolgedessen wachsen die Hefen in Leucindefizienten Medien, und nach Wachstum in X-Galhaltigem Medium tritt ein Farbumschlag (Blau) auf.

Die Zugabe eines Inhibitors führt also gemäß der vorliegenden Erfindung zu einer Expression des Reportergens/der Reportergene, indem der zweite regulatorische Faktor, hier Repressor, gehemmt wird.

Beispiel 2

Dieses Beispiel stellt die in Fig. 2 dargestellte Konfiguration dar.

5

10

15

20

- 1. Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Hybridproteine des Transkriptionsregulators codieren sowie eine UAS-Sequenz und eine
 TATA-Box enthalten, wobei eine Anordnung für ein
 Hybridprotein codiert, welches ein Fusionsprotein aus
 einer Bindedomäne und einer ersten Proteinkomponente
 ist, sowie eine weitere Anordnung für ein
 Hybridprotein codiert, welches ein Fusionsprotein aus
 einer Aktivierungsdomäne des Transkriptionsregulators
 und einer zweiten Proteinkomponte ist (Fig. 2a).
- 2. Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsregulator bereitgestellt.
- Eine Reportergenanordnung, wie unter Beispiel 1,
 Punkt 3, beschrieben, wird ebenfalls bereitgestellt.
- 25
- 30
- 35
- Der Transkriptionsregulator setzt sich, wie oben a. beschrieben, aus zwei Fusionsproteinen zusammen, wobei nur bei ungestörter Protein-Protein-Wechselwirkung der beiden Fusionsproteine ein aktiver Transkriptionsregulator vorliegt (siehe Fig. 2a). Liegt kein Inhibitor vor, findet eine ungestörte Protein-Protein-Wechselwirkung statt und ein aktiver Transkriptionsregulator vorhanden. Dieser aktive Transkriptionsregulator bindet an seine entsprechende Bindestelle auf der DNA (Target-Bindestelle), welche für das R pressorgen codiert, und bewirkt eine Expression

5

30

35

32

des Repressorgens. Der Repressor bindet an die Repressorbindestelle im Promotorbereich Reportergene und reprimiert eine Expression der Reportergene. Da Leu2 und/oder LacZ exprimiert werden, findet weder Wachstum Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.

PCT/EP95/00297

10 b. Wird Versuchsanordnung der ein Inhibitor die vorstehend zugesetzt, wie z.B. erwähnten Inhibitoren, beispielsweise Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-15 Wechselwirkung der Fusionsproteine Transkriptionsregulators gehemmt. Es liegt kein aktiver Transkriptionsregulator oder ein in seiner Aktivität verminderter Transkriptionsregulator vor, da die 20 Aktivierungsdomäne des Transkriptionsregulators und DNA-Bindedomäne auf verschiedenen Fusionsproteinen lokalisiert sind und demzufolge bei einer Hemmung der Wechselwirkung Hybridproteine diese Domänen nicht oder vermindert 25 miteinander wechselwirken können.

Die DNA-bindende Domäne des einen Fusionsproteins des Transkriptionsregulators kann, je nach Versuchsbedingung und zugesetztem Inhibitor, an den betreffenden DNA-Abschnitt binden oder nicht binden. Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Aufgrund des inaktiven Transkriptionsregulators findet keine Expression des Repressorgens statt.

5

10

15

20

25

30

35

Da kein Repressor vorliegt, werden, nach Bindung entsprechenden weit ren Transkriptionsfaktors, die Reportergene Leu2 und/oder LacZ exprimiert. Es findet nun Wachstum der Wirtszellen Leucin-defizientem Medium statt bzw. Farbumschlag (Blaufärbung) nach Wachstum Gal-haltigem Medium ist nachweisbar. Gemäß der vorliegenden Erfindung führt die Zugabe eines über Inhibitors Hemmung des zweiten regulatorischen Faktors (Repressor) zu einer Expression der Reportergene.

Weitere bevorzugte Ausführungen ergeben sich aus Abwandlungen der unter den Beispielen 1 und 2 beschriebenen Ausführungsformen.

Beispiel 3

Dieses Beispiel bezieht sich auf die in Fig. 3 gezeigte Konfiguration.

- Eine Genanordnung, welche für einen Transkriptionsfaktor codiert, wird bereitgestellt. Dieser Transkriptionsfaktor bindet an Bereiche einer DNA (Target-Bindestelle), die für eine Rekombinase codiert.
- Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase des Coliphagen Pl codiert.
- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her d n gleichen regulierbaren Promotor besitzen. Dies r Promotor enthält UAS-Elemente, an die bevorzugt ein

endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-S quenzen als Rekombinationselemente auf.

a. Wie bereits unter Beispiel 1 beschrieben, liegt, sofern kein Inhibitor zugesetzt wird, ein aktiver Transkriptionsfaktor vor. Dieser Transkriptionsfaktor reguliert die Expression der Rekombinase Cre positiv. Die Rekombinase interagiert mit den lox P-Sequenzen, welche die Reportergene LacZ/Leu2 flankieren und eliminiert oder invertiert in einem Rekombinationsprozeß die genannten Reportergene.

Entsprechend werden keine funktionellen Reportergene exprimiert, es findet kein Wachstum der Wirtsorganismen statt, und es ist auch keine Farbreaktion nach Wachstum auf X-Gal-haltigem Medium nachweisbar.

20

25

30

35

5

10

15

Nach Zugabe eines Inhibitors wird die Aktivität b. des Transkriptionsfaktors gehemmt, wobei dies auf eine Hemmung der Interaktion des Transkriptionsfaktors mit der entsprechenden Bindestelle auf der DNA oder auf eine Hemmung der Aktivierungsdomäne zurückzuführen ist. Demzufolge findet keine Expression der Rekombinase statt und die dem Promotor nachgeschalteten Reportergene LacZ und/oder Leu2 werden durch induzierbaren, bevorzugt endogenen Transkriptionsfaktor stark exprimiert. Die Wirtsorganismen, in dieser Versuchsanordnung sind es bevorzugt Hefen, wachsen nun auf Leucin-defizienten Medien und bei Wachstum in X-Gal-haltigem Medium tritt Farbumschlag (Blau) auf.

WO 95/20652

Die Zugabe eines Inhibitors führt also wiederum zu einer Expression von Reportergenen.

Beispiel 4

5

30

35

Dieses Beispiel bezieht sich auf die in Fig. 4 dargestellte Konfiguration.

1. Es werden Genanordnungen, wie unter Beispiel 2
beschrieben, bereitgestellt, die für wechselwirkende
Hybridproteine codieren, welche über eine ProteinProtein-Wechselwirkung einen aktiven Transkriptionsregulator bilden.

- Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase Cre des Coliphagen P1 codiert. Diese Rekombinase entspricht dem zweiten regulatorischen Faktor.
- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, an die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-Sequenzen als Rekombinationselemente auf.
 - a. Wie auch unter Beispiel 2 beschrieben, findet, sofern kein Inhibitor vorliegt, eine ungestörte Protein-Protein-Wechselwirkung zwischen den den Transkriptionsfaktor bildenden Fusionsproteinen statt, womit ein aktiver Transkriptionsfaktor vorliegt. Der aktive Transkriptionsfaktor bindet an eine auf der DNA befindlichen Bindestelle, wob i diese DNA das für die Cre-Rekombinase

10

des

nach

kein

Eine

codierende cre-Gen nthält. Nach Bindung Transkriptionsfaktors wird die Cre-Rekombinase exprimiert. Diese Rekombinase eliminiert invertiert über Rekombinationsprozesse das oder die Reportergene, wobei sie mit den lox P-Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion werden keine funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem Medium statt, ebenso keine Blaufärbung bei Wachstum auf X-Gal-haltigem Medium.

. 15 Nach Zugabe eines Inhibitors zu dem Versuchsansatz die Protein-Protein-Wechselwirkung Fusionsproteine des Transkriptionsregulators gehemmt. Es kein liegt somit aktiver Transkriptionsregulator vor. Die DNA-bindende 20 Domäne des einen Fusionsproteins Transkriptionsregulators bindet, jе Versuchsbedingungen und zugesetztem Inhibitor, an den betreffenden DNA-Abschnitt oder Aufgrund der gehemmten Protein-Protein-25 Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Infolge des fehlenden aktiven Transkriptionsregulators bindet Transkriptionsregulator an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die - 30 Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder LacZ weder eliminiert noch invertiert. fehlende Rekombinase führt somit Expression der Reportergene, wodurch Wachstum der 35 Zellen in Leucin-defizientem Medium ermöglicht

10

15

25

30

35

wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem loxcre-abhängigen Verfahren nach Zugabe Inhibitors die Expression des zweiten regulatorischen Faktors, der Cre-Rekombinase, gehemmt, wodurch eine Expression der Reportergene ermöglicht wird. Die Nutzung einer Rekombinase in dem vorliegenden Verfahren ermöglicht einen Inhibitornachweis nach einem "Alles-oder Nichts"-Prinzip, wobei sich, gemäß der vorliegenden Erfindung, der positive Nachweis von Reportergenen nach Inhibitorzugabe als besonders geeignet erweist und sehr empfindliche Nachweise ermöglicht.

Beispiel 5

- Dieses Beispiel stellt die in Fig. 5 angegebene Konfiguration dar.
 - 1. Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Proteine codieren, wobei eine Anordnung für ein Protein codiert, welches eine DNA-bindende Domäne, eine Domäne, welche an ein weiteres zweites Protein bindet, und eine aktivierende Domäne enthält, sowie eine weitere Anordnung für ein weiteres zweites Protein, welches mindestens eine mit dem ersten Protein wechselwirkende Domäne enthält (Fig. 5a).
 - Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsregulator bereitgestellt.

WO 95/20652

5

10

15

20

25

30

35

- Eine Reportergenanordnung, wie unter Beispiel 1,
 Punkt 3, beschrieben, wird ebenfalls bereitgestellt.
 - Der Transkriptionsregulator setzt sich aus den a. beiden oben beschriebenen Proteinen zusammen, wobei nur bei ungestörter Protein-Protein-Wechselwirkung der beiden Proteine ein aktiver Transkriptionsregulator vorliegt (siehe Fig. 5a). Liegt kein Inhibitor vor, findet eine ungestörte Protein-Protein-Wechselwirkung (Target I - Target II) statt und ein aktiver Transkriptionsregulator liegt vor. Der aktive Transkriptionsregulator bindet an seine entsprechende Bindestelle auf der I-Bindestelle), welche (Target Repressorgen codiert, und bewirkt eine Expression des Repressorgens. Der Repressor bindet an die Repressorbindestelle im Promotorbereich der Reportergene und reprimiert eine Expression der Reportergene. Da Leu2 und/oder LacZ nicht findet weder Wachstum exprimiert werden, auf Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.

b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. die vorstehend erwähnten Inhibitoren, beispielsweise Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-Wechselwirkung der Proteine des Transkriptionsregulators gehemmt. Es liegt nun kein aktiver Transkriptionsregulator vor, da bei einer Hemmung der Wechselwirkung der Proteine der Transkriptionsregulator nicht in der aktiven Form (Konformation) vorliegt.

PCT/EP95/00297

Die DNA-bindende Domäne des einen Proteins d s
Transkriptionsregulators kann, je nach
Versuchsbedingung und zugesetztem Inhibitor, an
den betreffenden DNA-Abschnitt binden oder nicht
binden. Aufgrund der gehemmten Protein-ProteinWechselwirkung liegt in keinem Fall ein aktiver
Transkriptionsregulator vor. Aufgrund des
inaktiven Transkriptionsregulators findet keine
Expression des Repressorgens statt.

Da kein Repressor vorliegt, werden, nach Bindung eines entsprechenden weiteren Transkriptionsfaktors TF, die Reportergene Leu2 und/oder LacZ exprimiert. Es findet nun Wachstum der Wirtszellen auf Leucin-defizientem Medium statt bzw. ein Farbumschlag (Blaufärbung) nach Wachstum auf X-Gal-haltigem Medium Gemäß der vorliegenden Erfindung nachweisbar. führt die Zugabe eines Inhibitors über Hemmung des zweiten regulatorischen Faktors (Repressor) einer Expression der Reportergene.

Beispiel 6

25

30

5

10

15

20

Dieses Beispiel bezieht sich auf die in Fig. 6 dargestellte Konfiguration.

- 1. Es werden Genanordnungen, wie unter Beispiel 5 beschrieben, bereitgestellt, die für wechselwirkende Proteine codieren, welche über eine Protein-Protein-Wechselwirkung einen aktiven Transkriptionsregulator bilden.
- Des weiteren wird eine Genanordnung bereitgestellt,
 w lche für die sequenzspezifische Rekombinase Cre des

10

15

20

25

30

35

Coliphagen Pl codiert. Diese R kombinase entspricht dem zweiten regulatorischen Faktor.

- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, an die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-Sequenzen als Rekombinationselemente auf.
 - Wie auch unter Beispiel 5 beschrieben, findet, a. sofern kein Inhibitor vorliegt, eine ungestörte Protein-Protein-Wechselwirkung zwischen den den Transkriptionsregulator bildenden Proteinen statt, womit ein aktiver Transkriptionsregulator vorliegt. Der aktive Transkriptionsregulator bindet an eine auf der DNA befindlichen Bindestelle, wobei diese DNA das für die Cre-Rekombinase codierende Cre-Gen enthält. Bindung des Transkriptionsregulator wird die Cre-Rekombinase exprimiert. Diese Rekombinase eliminiert oder invertiert Rekombinationsprozesse das oder die Reportergene, wobei sie mit den lox P-Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion werden keine funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem Medium statt, ebenso keine Blaufärbung Wachstum auf X-Gal-haltigem Medium.
- b. Nach Zugabe ines Inhibitors zu dem Versuchsansatz wird die Protein-Protein-Wechs lwirkung der

Proteine, z.B. über Konfirmationsänderung, Transkriptionsregulators gehemmt. Es liegt somit kein aktiver Transkriptionsregulator vor. Die DNAbindende Domäne des einen Proteins Transkriptionsregulators bindet, je nach Versuchsbedingungen und zugesetztem Inhibitor, an den betreffenden DNA-Abschnitt oder Aufgrund der Protein-Proteingehemmten Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Infolge des fehlenden Transkriptionsregulators bindet Transkriptionsregulator an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder weder eliminiert noch invertiert. Eine fehlende Rekombinase führt somit einer Expression der Reportergene, wodurch Wachstum der Zellen in Leucin-defizientem Medium ermöglicht wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem lox-Cre-abhängigen Verfahren nach Zugabe eines Inhibitors die Expression des zweiten regulatorischen Faktors, der Cre-Rekombinase, gehemmt, wodurch eine Expression der Reportergene erst ermöglicht wird. Die sich ergebenden Vorteile wurden bereits in Beispiel 4b beschrieben.

Beispiel 7

5

10

15

20

25

30

35

Dieses Beispiel stellt die in Fig. 7 dargestellte Konfiguration dar.

10

15

- Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Proteine Target II und Target III codieren sowie eine UAS-Sequenz und eine TATA-Box enthalten, wobei eine Anordnung für ein Protein Target III codiert, welches ein Protein aus einem verankernden Abschnitt und einer ersten Proteinkomponente ist, und eine weitere Anordnung für ein Protein Target II codiert, welches Fusionsprotein aus einem inhibierenden Abschnitt und einer zweiten Proteinkomponente ist (Fig. 7a).
- 2. Es wird eine Genanordnung für einen Transkriptionsfaktor Target I bereitgestellt, der inhibiert werden kann.
- Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsfaktor bereitgestellt.
 - 4. Eine Reportergenanordnung, wie unter Beispiel 1, Punkt 3, beschrieben, wird ebenfalls bereitgestellt.
- Bei ungestörter Protein-Protein-Wechselwirkung der 25 beiden Proteine kann der inhibierende Abschnitt des ersten Proteins nicht mit dem Transkriptionsfaktor wechselwirken, somit liegt ein aktiver Transkriptionsfaktor vor (siehe Fig. Liegt kein Inhibitor vor, findet 30 ungestörte Protein-Protein-Wechselwirkung und ein aktiver Transkriptionsfaktor ist vorhanden. Dieser aktive Transkriptionsfaktor bindet an seine entsprechende Bindestelle auf der DNA, welche für das Repressorgen codiert, 35 bewirkt eine Expression des Repressorgens. Repressor bindet an di Repressorbindestelle im

10

15

20

25

30

35

Promotorb reich der Reportergene und reprimiert ine Expression der Reportergene. Da Leu2 und/oder LacZ nicht exprimiert werden, findet weder Wachstum auf Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Galhaltigem Medium statt.

b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. die vorstehend erwähnten Inhibitoren, beispielsweise Peptide, Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-Wechselwirkung der Proteine Target II und Target III gehemmt. Das Protein mit dem inhibierenden Abschnitt Target II wird freigesetzt und bindet an den Transkriptionsfaktor Target I, wodurch dieser inhibiert wird. Es lieqt nun kein aktiver Transkriptionsfaktor vor.

Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Aufgrund des inaktiven Transkriptionsfaktors findet keine Expression des Repressorgens statt.

Da kein Repressor vorliegt, werden, nach Bindung entsprechenden weiteren Transkriptionsfaktors TF, die Reportergene Leu2 und/oder LacZ exprimiert. Es findet nun Wachstum der Wirtszellen auf Leucin-defizientem Medium statt bzw. Farbumschlag (Blaufärbung) nach Wachstum Gal-haltigem Medium ist nachweisbar. Gemäß vorliegenden Erfindung führt die Zugabe eines Inhibitors über Hemmung des zweiten regulatorischen Faktors (Repressor) zu einer. Expression der Reportergene.

WO 95/20652

Beispiel 8

5

10

15

20

25

Dieses Beispiel bezieht sich auf die in Fig. 8 dargestellte Konfiguration.

- Es werden Genanordnungen, wie unter Beispiel 7 beschrieben, bereitgestellt, die für wechselwirkende Proteine codieren.
- Es wird eine Genanordnung für einen Transkriptionsfaktor bereitgestellt (Target I).
 - 3. Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase Cre des Coliphagen Pl codiert. Diese Rekombinase entspricht dem zweiten regulatorischen Faktor.
- 4. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, an die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-Sequenzen als Rekombinationselemente auf.
- a. Wie auch unter Beispiel 7 beschrieben, findet, sofern kein Inhibitor vorliegt, eine ungestörte 30 Protein-Protein-Wechselwirkung zwischen den Proteinen statt, womit ein aktiver Transkriptionsfaktor vorliegt. Der aktive Transkriptionsfaktor Target I bindet an eine auf der DNA befindlichen Bindestelle, wobei diese DNA 35 das für die Cre-Rekombinase codierende Cre-Gen enthält. Nach Bindung des Transkriptionsfaktors

10

15

20

25

30

35

wird die Cre-Rekombinase exprimiert. Diese Rekombinase eliminiert oder invertiert über Rekombinationsprozesse das oder die Reportergene, wobei sie mit den lox P-Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion werden keine funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem statt, ebenso keine Blaufärbung Wachstum auf X-Gal-haltigem Medium.

b. Nach Zugabe eines Inhibitors zu dem Versuchsansatz die Protein-Protein-Wechselwirkung Proteine Target II und Target III gehemmt. Das Protein mit dem inhibierenden Abschnitt Target II wird freigesetzt und interagiert mit Transkriptionsfaktor, wodurch dieser inhibiert wird. liegt Es somit kein aktiver Transkriptionsfaktor vor. Die DNA-bindende Domäne Transkriptionsfaktors bindet, iе Versuchsbedingungen, an den betreffenden DNA-Abschnitt oder nicht. Aufgrund der Protein-Protein-Wechselwirkung liegt in Fall ein aktiver Transkriptionsfaktor vor. Infolge des fehlenden aktiven Transkriptionsfaktors bindet kein Transkriptionsfaktor an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder LacZ weder eliminiert noch invertiert. Eine fehlende Rekombinase führt somit zu Expression der Reportergene, wodurch Wachstum der Zellen in Leucin-defizientem Medium ermöglicht wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem loxcre-abhängigen Verfahren nach Zugabe Inhibitors die Expression des zweiten regulatorischen Faktors, der Cre-Rekombinase, gehemmt, wodurch eine Expression der Reportergene erst ermöglicht wird.

Beispiel 9

10

. 20

...

5

Die Funktionsweise des Verfahrens wird am Beispiel des Tet-Repressors und dessen spezifische Inhibierung durch Tetracyclin näher erläutert.

- Dieses Beispiel stellt die in Fig. 9 angegebene Konfiguration dar.
 - Eine Genanordnung wird bereitgestellt, welche für den ersten regulatorischen Faktor AD1-Tet codiert. Dieser regulatorische Faktor bindet an DNA-Bereiche einer DNA (Tet-Bindungsstelle), die für den zweiten regulatorischen Faktor, den Repressor LexA-GST, codiert.
- 25 2. Des weiteren wird eine Repressorgenanordnung des Repressors LexA-GST mit einer Bindestelle auf der DNA (Tet-Bindestelle) für den unter 1 genannten ersten regulatorischen Faktor AD1-Tet bereitgestellt.
- 30 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom her den gleichen regulierbaren besitzen. Dieser Promotor setzt sich aus sogenannten · 35 UAS-Elementen (Upstream Activation Sequence), an die bevorzugt ein endogener Aktivator (weiterer

WO 95/20652 PCT/EP95/00297

Transkriptionsfaktor Gal4) bindet, aus einer oder mehreren LexA Bindungsstellen, an die ein LexA-GST binden kann, und einer TATA-Box für die Initiation der basalen Transkription zusammen.

5

10

15

20

Durch die Expression des Fusionsklones AD1-Tet regulatorischer (erster Faktor) wird Expression Repressors LexA-GST des (zweiter regulatorischer Faktor) stimuliert. Dieses Repressorprotein wiederum reprimiert durch die Bindung an die LexA-Bindestelle des in Figur 9 beschriebenen Lacz- bzw. LEU2-Promotors die vom ersten regulatorischen Faktor unabhängige Gal4aktivierte Expression der Reportergene LacZ und die Gal4-aktivierte Expression Reportergene durch Glukose inhibiert und erst auf Galaktose stimuliert wird, können diese Hefen auf Leucin-defizienten Medien nicht wachsen bleiben auf X-Gal-haltigem Medium weiß (Tabelle 1). Besitzt das Medium Galaktose als Zuckerquelle, bleibt der Gall-LexA-Promotor durch die AD1-Tet abhängige Expression des LexA-GST Repressors weiter inhibiert: die Hefekolonien bleibt weiß und

25

b. In Abhängigkeit steigender Tetracyklinkonzentration (Figur 9 sowie Tabelle 1 und 2) wird die Bindung des AD1-Tet-Proteins an den Tet-abhängigen Promotor des LexA-GST Repressors spezifisch inhibiert. Die hier verwendete, steigende Tetracyklinkonzentration inhibiert das generelle Wachstum der Hefen nicht. Der zweite regulatorische Faktor ist nun nicht mehr in der Lage, die Aktivität Reportersystems inhibieren. zu Die Hefezellen werden nun mit Galaktose als Zuckerquelle und X-

wachsen auf Leucin-defizienten Medien nicht.

35

10

15

20

Gal als Substrat für das Reportersystem blau und können auf Leucin-defizienten Medien wachsen. Glukose-haltiges Medium dagegen inhibiert die Aktivität endogenen des Transkriptionsfaktors Die Hefen wachsen nicht auf Leucindefizienten Medien und bleiben auf X-Gal-haltigen Medienplatten Andere weiß. Antibiotika Ampicillin, Chloramphenicol, Kanamycin und Carbenicillin haben keine derartig reprimierende Wirkung auf den ersten regulatorischen Faktor AD1-Tet (Tabelle 1). Auf Glukose-haltigen Platten wird Gal4 unabhängig vom ersten und regulatorischen Faktor inhibiert, weswegen auf derartigen Medien die Hefen nicht wachsen und weiß bleiben.

Tabelle 1:

Tetracyklin- zugabe	Wachstum	Wachstum auf LEU-		Blaufärbung auf X-Gal		
	Glukose	Galaktose	Glukose	Galaktose		
			weiß	weiß		
++		++	weiß	blau		

Tabelle 2: (nur die Ergebnisse der Galaktose-haltigen Platten dargestellt)

a)	Eingesetzte Konzentrationen [µg/ml]						
Verwendetes Antibiotikum	0	5	50	250			
Tetracyklin	/ weiß	/ weiß	/ weiß	+ + / blau			
Ampicillin	/ weiß	/ weiß	/ weiß	/ weiß			
Kanamycin	/ weiß	/ weiß	/ weiß	/ weiß			
Carbenicillin	/ weiß	/ weiß	/ weiß	/ weiß			
Chloramphenicol	/ weiß	/ weiß	/ weiß	/ weiß			

Wachstum auf LEU- / Blaufärbung auf X-Gal

5

b)	Eingesetzte Konzentrationen [μg/ml]							
Verwendetes Antibiotikum	0	5	50	100	150	200	250	300
Tetracyklin	/ weiß	/ weiß	/ weiß	/ weiß	/ weiß	++/ blau	+ + / blau	+ + / blau

- 1	Wachstum auf LEU-/
- 1	
- 1	Blaufärbung auf X-Gal
	9

- C) Nachweis der Funktionsweise der einzelnen Elemente im
 Assay
 - AD1-Tet als Transkriptionsfaktor:

15

20

Um nachzuweisen, daß der Fusionsklon AD1-Tet (erster regulatorischer Faktor) in der Hefe funktionell exprimiert, in den Kern transportiert und dort effizient an die DNA-Konsensussequenz gebunden wird und von dort aus die Transkription eines Genes aktivieren kann, wurde der folgende Assay durchgeführt:

Auf Galaktose-haltigen Medienplatten wird AD1-Tet exprimiert und ist damit in der Lage, an die Tet-Bindestelle eines entsprechenden Promotors vor dem LacZ-Gen zu binden und von dort die Expression des Reportergenes LacZ zu aktivieren. Dieses wiederum kann durch die Umwandlung des im Medium enthaltenen, farblosen Substrats X-Gal in einen Indigofarbstoff nachgewiesen werden. Da Glukose die Expression des AD1-Tet-Proteins inhibiert, auch keine Expression des Reportergenes LacZ statt. Die Kolonien bleiben weiß.

- Tetracyclin als spezifischer Inhibitor des Transkriptionsfaktors Tet-AD

> Um nachzuweisen, daß Tetracyklin die Bindungsaktivität des AD1-Tet-Proteins spezifisch zu inhibieren zusätzlich vermaq, wurden steigende Konzentrationen des Antibiotikums auf die Medienplatten gegeben:

Tabelle 3:

25

20

5

10

15

	Eingesetzte Konzentrationen Tetracyklin [µg/ml]							
	0 5 50 100 150 200 250 30				300			
Blaufärbung auf X-Gal	blau	blau	blau	blau	blau	weiß	weiß	weiß
Galaktose-haltige Platten mit Leucin im Medium	++	++	++	++	++	++	++	++
Glukose-haltige Platten mit Leucin im Medium	++	+-+	++	++	++	++	++	++

Wie die experimentellen Daten zeigen, kann in Abhängigkeit steigender Tetracyklinkonzentration (Tabelle 3) di Bindung des AD1-Tet-Proteins an den Promotor des Reportergenes LacZ spezifisch inhibiert werden. Bei einer Konzentration von 200 $\mu g/ml$ Tetracyklin im Medium bleiben die Hefezellen weiß. Das generelle Wachstum der Hefezellen wird dadurch nicht wesentlich beeinflußt, wie die Ergebnisse auf den Glukose- und Galaktose-haltigen Platten zeigen (das Wachstum wird durch "++" dargestellt).

LexA-GST als Repressor

10

15

20

25

5

Um nachzuweisen, daß der zweite regulatorische Faktor (LexA-GST) in der Hefe funktionell exprimiert, in den Kern transportiert und dort effizient an die LexA-Konsensussequenz gebunden wird <u>und</u> von dort aus die Transkription eines Genes inhibieren kann, wurde der folgende Assay durchgeführt.

Gegensatz Im zur Negativkontrolle CTF2 (einem Mitglied der NFI-Familie) bleiben die Hefeklone auf X-Gal- und Galaktose-haltigem Medium weiß. bedeutet, daß der LexA-GST-Fusionsklon zwischen der Gal4-Bindestelle und dem Transkriptionsstart Reportergens bindet und damit die Aktivität endogenen Hefetranskriptionsfaktors Gal4 inhibiert. dagegen ist nicht in der Lage die LexA-Bindestellen zu erkennen und kann so die Aktivität von Gal4 nicht reprimieren. Das Reportergen LacZ wird exprimiert und die Kolonien färben sich blau (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905).

30

Beispiel 10

Identifikation spezifischer Peptid-Inhibitoren von CTF7

35 Um inhibierende Peptidsequenzen gegen den in Hefe transkriptionsaktiven CTF7, einem Mitglied der NFI-

15

20

25

30

Familie (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905), zu screenen, wurd der folgende Assay (Fig. 10) durchgeführt.

- Dieses Beispiel stellt die in Fig. 10 angegebene Konfiguration dar.
 - 1. Eine Genanordnung wird bereitgestellt, welche für einen ersten regulatorischen Faktor LexA-CTF7 codiert. Das entsprechende Plasmid pEG-CTF7 enthält die Genanordnung für den ersten regulatorischen Faktor LexA-CTF7. Dieser erste regulatorische Faktor LexA-CTF7 bindet an DNA-Bereiche einer DNA (LexA-Bindestelle), die für einen zweiten regulatorischen Faktor Tet-GST codiert.
 - 2. Des weiteren wird eine Genanordnung für den zweiten regulatorischen Faktor Tet-GST mit einer Bindestelle auf der DNA (LexA-Bindestelle) für den unter 1 genannten ersten regulatorischen Faktor LexA-CTF7 bereitgestellt.
 - 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren besitzen. Dieser Promotor setzt sich aus sogenannten UAS-Elementen (Upstream Activation Sequence), an die bevorzugt ein endogener Aktivator (weiterer Transkriptionsfaktor Gal4) bindet, aus einer Tet-Bindungsstelle, an die Tet-GST binden kann, und einer TATA-Box für die Initiation der basalen Transkription zusammen.
- 35 a. Wird der Versuchsanordnung kein Inhibitor zugesetzt, liegt in aktiver erster

10

15

20

25

30

35

regulatorischer Faktor LexA-CTF7 vor, der die Expression des Tet-GST Gens positiv reguliert. Tet-GST bindet an die oben genannte Tet-GST Bindungsstelle und reprimiert die Expression des Reportergens LacZ und/oder Leu2, d.h. es findet kein Wachstum der Wirtsorganismen statt, eine Farbreaktion ist nicht nachzuweisen.

Nach Zugabe eines Trx-Peptids wird die Aktivität b. ersten regulatorischen Faktors LexA-CTF7 gehemmt. Dies ist auf eine Hemmung der Interaktion von LexA-CTF7 mit der entsprechenden Bindestelle auf der DNA oder auf eine Hemmung Aktivierungsdomäne zurückzuführen. Es findet keine Expression des Tet-GST-Gens statt. Somit steht kein Tet-GST zur Verfügung, und das dem Promotor nachgeschaltete Reportergen LacZ und/oder Leu2 wird durch einen induzierbaren endogenen Transkriptionsfaktor Gal4 stark exprimiert. Infolgedessen wachsen die Hefen · in Leucindefizienten Medien, und nach Wachstum in X-Galhaltigem Medium tritt ein Farbumschlag (Blau) auf.

Die Zugabe des Trx-Peptids führt also gemäß der vorliegenden Erfindung zu einer Expression des Reportergens/der Reportergene, indem der zweite regulatorische Faktor Tet-GST nicht bzw. vermindert reprimiert wird.

Im Detail wird der Versuch wie folgt durchgeführt:

Der Hefestamm INVSc1 wurde mit den in Fig. 10 dargestellten Plasmiden transformiert und der Transformationsansatz auf einer Glukose-haltigen Minimalmediumplatte (20 x 20 cm; Uracil-,

	And the same				No.
					*
				,	
3					.:
	4				
				,	
				÷.	
					44
		•		**	
*		·			• 17
e 1					. •
*			e, e		
			<i>"</i>		
			. J		
					7 ()
		,			. 3 * •
•					
· · · · · · · · · · · · · · · · · · ·	*		24	· · · · · · · · · · · · · · · · · · ·	
2	. *		an the Sea Control of the Sea Control	P4.	

10

15

20

25

30

35

Tryptophan- und Histidin-d fizient zur Selektion auf die Plasmide) ausgestrich n.

Der Vektor pEG-CTF7 (entspricht dem ersten regulatorischen Faktor) und wurde nach Altmann et al.(Proc. Natl. Acad. Sci. (1994) 91, 3901-3905) hergestellt.

pYES-Leu2/34-TetGST (Plasmid, welches den zweiten regulatorischen Faktor TetGST codiert und das Reportersystem beinhaltet).

Als Ausgangsvektor diente das Plasmid pYES2. Die LexA-Bindestellen Oligos wurden in XhoI Schnittstelle des inaktiven Gall/GallO Promotors ligiert, der gesamte Promotor mit BamHI isoliert und zusammen mit dem Fusionsklon Tet-GST in den Polylinker des Plasmides pYES2 kloniert. Der Gal1-Promotor war zuvor über die SpeI-Schnittstellen deletiert worden. In die mit Klenow-Polymerase behandelte NheI-Schnittstelle dieses Konstruktes erfolgte die Klonierung des über BamHI isolierten, ebenfalls mit Klenow behandelten Lacz-, bzw. des über PCR erhaltenen Leu2-Fragments. In die dabei rekonstituierte BamHI-Schnittstelle erfolgte die Ligation des Gal/Tet-Promotors. Dieser wurde durch Klonierung die von Tet-Oligos und die anschließende Ligation von Gal4-Bindestellen in XhoI-Schnittstelle inaktiven des Gal1/10-Promotors erhalten.

pYES2(TRP1)TRX-Oligo-Pool (Peptid-Pool exprimierendes Konstrukt; Komplexität ca. 10⁵)

Durch die Ligation des Trpl-Gens in den mit Apal und Nhel linearisierten pYES2-Vektor, wurde das

10

15

20

25

Ura3-Gen zerstört und das Plasmid auf Tryptophandefizienz selektierbar. Anschließend wurde das über PCR isolierte Trx-Gen in den EcoRI, XhoI linearisierten Vektor kloniert. Die Ligation der Pool-Fragmente erfolgte über die RsrII-Schnittstelle des Trx-Konstruktes.

Die ca. 30.000 Kolonien wurden vereinigt, für 5 Stunden in YPG-Medium (Galaktose-haltiges Vollmedium für Hefen) geschüttelt und auf Selektionsplatten ausgestrichen. Die Selektionsplatten besaßen Galaktose als Kohlenstoffquelle und waren Leucin-, Uracil-, Tryptophanund defizient. Im Zeitraum von 2 bis 5 Tagen waren 8 Kolonien (A, B, C, D, E, F, G, H) gewachsen (Tabelle 4). Aus diesen wurden zur weiteren Spezifizierung die für die inhibierenden Peptide kodierenden Plasmide isoliert und zusammen mit CTF7 und Tet-GST in Hefe exprimiert. Diesmal befand sich anstatt des Leu2 das LacZ-Gen auf dem Reporterplasmid, sodaß die inhibierende Wirkung der Peptide durch die Ausbildung eines zweiten Phänotyps untersucht werden konnte (Tabelle 4). Desweiteren wurden die Peptide exprimierenden Plasmide mit den beiden Reportersystemen (LacZ und Leu2) und einem von CTF7 verschiedenen Transkriptionsfaktor LexA-TA1 in Hefen transformiert. Auf diese Weise können CTF7 spezifisch inhibierende Peptide unspezifischen von Inhibitionen unterschieden werden.

Tab lle 4:

		Blaufärbung auf X Platten	aufärbung auf X-Gal-haltigen atten		
Identifizierte Inhibitoren	Wachstum auf Leucin- defizienten Platten	Glukose	Galaktose	Inhibierung von LexA-TA1 auf Galaktose	
A	+	-	+	•	
В	+	+	+	n.b.	
С	+	+	+	n.b.	
D	+	-	+	+	
E	+	-	+	-	
F	+	-	+	-	
G	+	-	+	-	
Н	+	-	+	+	

10

15

Die Inhibitoren B und C färbten sich auch auf Glukose-haltigen Platten, also unabhängig von der Galaktose-induzierten TRX-Peptidexpression, blau. Dies bedeutet, daß in den entsprechenden Klonen keine inhibierenden Peptide exprimiert werden, welche die Blaufärbung verursachen. Von den Peptiden A, D, E, F, G und H stellten sich D und H als unspezifisch heraus, da sie auch in der Lage waren die LexA-TA1 Domäne zu inhibieren. Die Inhibitoren A, E, F und G dagegen waren nur in der Lage die Aktivität von CTF7 zu reprimieren (n.b.: nicht bestimmt).

Beispiel 11

20 Identifikation spezifischer Inhibitoren der Protein-Protein-Wechselwirkung LexA-CTF2/AD1-TIM

Der in Fig. 11 beschriebene Assay wird durchgeführt, um inhibierende Peptidsequenzen gegen die in Hefe aktive Protein-Protein-Interaktion LexA-CTF2 und TIM-AD (Altmann Disseration) zu screenen. LexA-CTF2 ist Fusionskonstrukt aus dem bakteriellen Repressor LexA und CTF2, einem Mitglied der NFI-Familie. Hierzu wird der Hefestamm INVScl mit den in Fig. 11 dargestellten Plasmiden transformiert und der Transformationsansatz auf einer Glukose-haltigen Minimalmediumplatte (20 x 20 cm; Uracil-, Tryptophan- und Histidin-defizient zur Selektion auf die Plasmide) ausgestrichen.

Dieses Beispiel stellt die in Fig. 11 dargestellte Konfiguration dar.

15

20

10

5

1. Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Hybridproteine des Transkriptionsregulators codieren sowie eine UAS-Sequenz und eine TATA-Box enthalten, wobei eine Anordnung für ein LexA-CTF2, einem Fusionskonstrukt aus dem bakteriellen Repressor LexA und CTF2, einem Mitglied der NFI-Familie (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905) codiert, sowie eine weitere Anordnung für ein Hybridprotein TIM-AD (Altmann (1994), Dissertation).

25

pSH-CTF2/TIM (entspricht dem ersten regulatorischen Faktor) ist das entsprechende Plasmid, welches den ersten regulatorischen Faktor LexA-CTF2/AD1-TIM codiert.

30

 pYES-Leu2/34-TetGST (Plasmid, welches den zweiten regulatorischen Faktor TetGST codiert und das Reportersystem beinhaltet).

10

15

20

25

30

35

- pYES2(TRPI)TRX-Oligo-Pool (Peptid-Pool exprimierendes Konstrukt; Komplexität ca. 10⁵).
 - Der erste regulatorische Faktor LexA-CTF2/AD1-TIM setzt sich, wie oben beschrieben, Fusionsproteinen LexA-CTF2 und AD1-TIM zusammen, bei ungestörter Protein-Protein-Wechselwirkung der beiden Fusionsproteine ein aktiver erster regulatorischer Faktor pSH-CTF2/TIM vorliegt (siehe Fig. 11a). Liegt kein Inhibitor findet eine ungestörte Protein-Protein-Wechselwirkung statt und ein aktiver Transkriptionsregulator ist vorhanden. Der aktive Transkriptionsregulator LexA-CTF2/AD1-TIM bindet an seine entsprechende Bindestelle auf der DNA (LexA-Bindestelle), welche für das Tet-GST Gen codiert, und bewirkt eine Expression von Tet-GST. Tet-GST bindet an die entsprechende Bindestelle (Tet-GST Bindestelle) im Promotorbereich Reportergene und reprimiert eine Expression der Reprotergene. Leu2 Da und/oder LacZ exprimiert werden, findet weder Wachstum Leucin-defizientem Medium noch eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.

b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. ein Trx-Peptid, wird die Protein-Protein-Wechselwirkung der Fusionsproteine LexA-CTF2 und AD1-TIM gehemmt. Es liegt nun kein aktiver erster regulatorischer Faktor vor.

Aufgrund des inaktiven ersten regulatorischen Faktors LexA-CTF2/AD1-TIM findet keine Expression des Tet-GST Gens (Repressor-Gen) statt. Da kein Repressor Tet-GST vorliegt, werden, nach Bindung

10

15

20

25

eines weiteren Transkriptionsfaktors Gal4, die Reportergene Leu2 und/oder LacZ exprimiert.

Im Detail wird der Versuch, wie folgt,
durchgeführt:

Die ca. 35.000 Kolonien wurden eingesammelt, für 5 Stunden in YPG-Medium (Galaktose-haltiges Vollmedium für Hefen) geschüttelt und auf Selektionsplatten ausgestrichen. Die Selektionsplatten Galaktose als Kohlenstoffquelle und waren Leucin-, Uracil-, Tryptophanund Histidin-defizient. Zeitraum von 2 bis 5 Tagen sind 6 Kolonien (A, B, C, D, E, F) gewachsen. Aus diesen wurden zur weiteren Spezifizierung die für die inhibierenden Peptide kodierenden Plasmide isoliert und zusammen mit LexA-CTF2, TIM-AD und Tet-GST in Hefe exprimiert. Diesmal befand sich anstatt dem Leu2 das LacZ-Gen auf dem Reporteplasmid, so daß die inhibierende Wirkung der Peptide durch die Ausbildung eines zweiten Phänotyps untersucht werden konnte (Tabelle 5). Des weiteren wurden die Peptide exprimierenden Plasmide mit den beiden Reportersystemen (LacZ und Leu2) Transkriptionsfaktor LexA-TA1 in Hefen transformiert. Auf diese Weise konnten die TIM-CTF2 Interaktion spezifisch inhibierende Peptide von Unspezifischen abgetrennt werden.

Tabelle 5:

10

		Blaufärbung auf X Platten		
Identifizierte Inhibitoren	Wachstum auf Leucin- defizienten Platten	Glukose	Galaktose	Inhibierung von LexA-TA1 auf Galaktose
Α	+	+	+	n.b
В	+	-	+	-
С	+	+	+	n.b.
D	+		+	+
E	+	-	+	+
F	+	•	+	-

Die Inhibitoren A und C färbten sich auch auf Glukosehaltigen Platten, also unabhängig von der Galaktoseinduzierten TRX-Peptidexpression, blau. Dies bedeutet, daß in den entsprechenden Klonen keine inhibierenden Peptide exprimiert werden, welche die Blaufärbung verursachen. Von den Peptiden B, D, E und F stellten sich D und E als unspezifisch heraus, da sie auch in der Lage waren, die LexA-TA1 Domäne zu inhibieren. Dagegen waren die Inhibitoren B und F nicht in der Lage, AD1-Tet zu reprimieren, sind also Inhibitoren für die CTF2-TIM Protein-Protein Wechselwirkung.

In den dargestellten Versuchen 1 bis 11 ergeben sich bei verschiedenen Inhibitoren qualitative und/oder quantitative Unterschiede bezüglich der inhibitorischen Aktivität, d.h. neben einer vollständigen Hemmung des ersten regulatorischen Faktors sind auch graduelle Abschwächungen der Aktivität des ersten regulatorischen Faktors möglich. Entsprechend sind bei der Expression der Reportergene neben der vollständigen Expression auch graduelle Verstärkungen möglich und nachweisbar.

WO 95/20652

15

20

25

30

35

<u>Patentansprüche</u>

- 1. Verfahren zur Bestimmung der Aktivität mindestens
 5 eines ersten regulatorischen Faktors, welche über die
 Aktivität mindestens eines Reportersystems
 nachweisbar ist, gekennzeichnet durch die folgenden
 Schritte:
- a. Bereitstellen mindestens eines Reportersystems mit mindestens einer ersten Genanordnung, welche mindestens ein Reportergen aufweist,
 - b. Bereitstellen mindestens einer zweiten Genanordnung, die für mindestens einen zweiten regulatorischen Faktor codiert, und Wechselwirkung des zweiten regulatorischen Faktors mit Komponenten des Reportersystems, wodurch auf die Aktivität des Reportersystems eingewirkt wird,
 - c. Einwirkung vorzugsweise auf die Aktivität des zweiten regulatorischen Faktors durch den mindestens einen ersten regulatorischen Faktor, und
 - d. Nachweis der Aktivierung des mindestens einen Reportersystems durch Zugabe mindestens einer inhibitorischen Komponente über das Zusammenwirken der ersten und zweiten regulatorischen Faktoren.
 - **2.** . Verfahren nach Anspruch 1, dadurch gekennzeichnet, der erste daß regulatorische Faktor mit Abschnitten der für den zweiten regulatorischen Faktor codierenden zweiten Genanordnung wechselwirkt, wodurch auf die Expression des zweiten regulatorischen Faktors eingewirkt wird.

3. Verfahren nach einem der Ansprüche 1 od r 2, dadurch gekennzeichnet, daß der zweite regulatorische Faktor an DNA-Abschnitte des Reportersystems bindet.

5

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der mindestens eine erste regulatorische Faktor ein oder mehrere regulierende Komponenten enthält.

10

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die eine oder mehrere regulierende Komponenten ein oder mehrere regulierende Proteine sind.
- 15 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das regulierende Protein oder die regulierenden Proteine ein oder mehrere Transkriptionsregulatoren sind.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Transkriptionsregulator oder die Transkriptionsregulatoren ein oder mehrere Transkriptionsfaktoren sind.
- Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das regulierende Protein oder die regulierenden Proteine den mindestens einen zweiten regulatorischen Faktor modifizieren.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Modifikation des mindestens einen zweiten regulatorischen Faktors durch Kinasierung, Dephosphorylierung, Spaltung, Umfaltung oder Konformationsänderung erfolgt.

WO 95/20652 PCT/EP95/00297

63

- 10. Verfahren nach einem der vorhergeh nd n Ansprüche, dadurch gekennzeichnet, daß durch Zugabe der inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten, welche gemeinsam den ersten regulatorischen Faktor bilden, und/oder auf die Aktivität des mindestens einen ersten regulatorischen Faktors eingewirkt wird.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet,
 10 daß durch Zugabe der inhibitorischen Komponente auf
 die Wechselwirkung zwischen mindestens einem ersten
 regulatorischen Faktor und einem DNA-Abschnitt der
 mindestens einen zweiten Genanordnung eingewirkt
 wird.

15

20

35

- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beeinflussung der genannten Aktivität des ersten regulatorischen Faktors durch inhibitorische Komponenten zu einer Einwirkung auf die Genexpression der zweiten Genanordnung führt.
- Verfahren nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, daß ein Inhibitor über eine Hemmung der Aktivität des regulierenden Proteins zu einer Hemmung der Expression der zweiten Genanordnung führt.
- 14. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß durch die Zugabe der inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten eingewirkt wird, wobei die mindestens eine erste Komponente eine regulatorische Komponente ist oder enthält.

30

- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die regulatorische Komponente eine Proteinkomponente ist oder enthält.
- Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die mindestens eine erste Proteinkomponente ein Fusionsprotein ist.
- 17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die regulatorische Komponente eine inhibitorische Komponente ist oder enthält.
- Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß die mindestens eine zweite Komponente mindestens eine Proteinkomponente ist oder enthält.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die mindestens eine zweite Proteinkomponente mindestens ein Fusionsprotein ist.
 - 20. Verfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß die mindestens eine zweite Komponente eine Verankerungsfunktion besitzt.
 - Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß über eine Wechselwirkung der mindestens zwei Proteinkomponenten diese Proteinkomponenten im Cytoplasma lokalisiert sind.
 - Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß über eine Wechselwirkung der mindestens zwei Proteinkomponenten diese Proteinkomponenten an oder in einer Membran lokalisiert sind.

WO 95/20652 PCT/EP95/00297

65

23. Verfahren nach einem der Ansprüche 14 bis 22, dadurch gekennzeichnet, daß durch die Zugabe inhibitorischen Komponente über eine Hemmung der Wechselwirkung zwischen den mindestens zwei Komponenten die mindestens eine erste Komponente, welche den inhibitorisch wirksamen Abschnitt enthält, freigesetzt wird und mit transkriptionsaktivierenden Faktor der Genanordnung für den zweiten regulatorischen Faktor interagiert.

10

15

20

25

5

- 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß der transkriptionsaktivierende Faktor durch den freigesetzten inhibitorisch wirkenden Faktor gehemmt wird, wodurch eine Hemmung der Expression der zweiten Genanordnung erfolgt.
- 25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Wirtsorganismen Mikroorganismen, vorzugsweise Bakterien, oder eukaryotische Zellen, vorzugsweise Hefen, eingesetzt werden.
- 26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß der Bakterienstamm Escherichia coli oder der Hefestamm Saccharomyces cerevisiae eingesetzt wird.
 - 27. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Genprodukt des mindestens einen Reportergens nachweisbar ist.

30

35

Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß der Nachweis des Genproduktes durch eine oder mehrere Veränderungen des Phänotyps des Wirtsorganismus erfolgt.

WO 95/20652 PCT/EP95/00297

66

29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß das mindestens eine Genprodukt des Reportergens Zellwachstum der Wirtsorganismen in Mangelmedium ermöglicht.

5

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß das Genprodukt des Reportergens Leu2 ist und Zellwachstum in Leucin-defizientem Medium ermöglicht.

10 31. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß das Genprodukt des Reportergens LacZ Substrate in einer meßbaren Farbreaktion umsetzen kann.

- Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß die genannten
 Genanordnungen auf verschiedenen Vektoren angeordnet
 sind.
- Verfahren nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß die genannten Genanordnungen auf demselben Vektor angeordnet sind.
- 34. Verfahren nach einem der Ansprüche 32 oder 33, dadurch gekennzeichnet, daß die Vektoren Plasmide sind.
 - 35. Verfahren nach einem der Ansprüche 32 bis 34, dadurch gekennzeichnet, daß ein oder mehrere Vektoren mit einer oder mehreren Genanordnungen ins Wirtsgenom integriert sind.
 - 36. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Genanordnung für mindestens einen Repressor codiert.

- 37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß der R pressor auf die Expression des mindestens einen Reportergens einwirkt.
- 5 38. Verfahren nach einem der Ansprüche 36 oder 37, dadurch gekennzeichnet, daß der Repressor durch Bindung an Komponenten des Reportersystems wirkt.
- 39. Verfahren nach Anspruch 38, dadurch gekennzeichnet,
 10 daß die Bindung des Repressors an Komponenten des
 Reportersystems durch weitere Agenzien reguliert
 werden kann.
- 40. Verfahren nach einem der Ansprüche 36 bis 39, dadurch gekennzeichnet, daß in ein Reporterplasmid eine LacZ-Leu2 Genanordnung und die Repressor-Genanordnung integriert sind.
- Verfahren nach einem der Ansprüche 1 bis 35, dadurch gekennzeichnet, daß die zweite Genanordnung für mindestens eine Rekombinase codiert und die Reportersysteme Rekombinationselemente enthalten.
- Verfahren nach Anspruch 41, dadurch gekennzeichnet,
 daß die Rekombinase über Rekombinationsprozesse mindestens ein Reportergen eliminiert oder invertiert.
- 43. Verfahren nach einem der Ansprüche 41 oder 42,
 30 dadurch gekennzeichnet, daß die Rekombinase die sequenzspezifische Rekombinase Cre des Coliphagen P1 ist und das mindestens eine Reportergen flankierende lox P-Sequenzen als Rekombinationselemente aufweist.
- 35 44. Verfahren nach einem der Ansprüche 6 bis 13 und 25 bis 43, dadurch gekennzeichnet, daß der

Transkriptionsr gulator mindestens zwei Hybridproteine enthält, wobei die Hybridproteine von einer dritten Genanordnung codiert werden.

- 5 45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, daß ein erstes Hybridprotein ein Fusionsprotein aus einer DNA-Bindedomäne und einer Proteinkomponente und ein zweites Hybridprotein ein Fusionsprodukt aus einer Aktivierungsdomäne des 10 Transkriptionsregulators und einer zweiten Proteinkomponente ist, wobei durch Bindung zwischen den beiden Proteinkomponenten der aktive Transkriptionsregulator entsteht.
- 15 46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß eine Einwirkung auf die Wechselwirkung der Hybridproteine über inhibitorische Komponenten erfolgt.
- Verfahren nach einem der Ansprüche 15 bis 24, dadurch gekennzeichnet, daß die mindestens zwei Proteinkomponenten von einer fünften Genanordnung codiert werden.
- 25 48. Verfahren nach einem der Ansprüche 14 bis 24, dadurch gekennzeichnet, daß die mindestens eine erste Proteinkomponente einen Abschnitt, der mit der mindestens einen zweiten Proteinkomponente wechselwirkt. einen Abschnitt, der mit einem 30 Transkriptionsfaktor wechselwirkt sowie einen inhibitorischen Abschnitt enthält, wobei erst nach Hemmung der Wechselwirkung der Bindung zwischen den mindestens zwei Proteinkomponenten die inhibitorisch wirkende erste Proteinkomponente die Expression des 35 mindestens einen zweiten regulatorischene hemmt.

10

<u>.</u>..

- Verfahren nach einem der Ansprüche 14 bis 16, dadurch 49. gekennzeichnet, daß die mindestens eine regulatorische Komponente ein Transkriptionsregulator Transkriptionsfaktor der Genanordnung des regulatorischen zweiten Faktors ist, der nach Inhibierung der Wechselwirkung mit der mindestens einen zweiten Proteinkomponente in seiner Aktivität reduziert oder inaktiviert wird, wodurch Expression des zweiten regulatorischen Faktors gehemmt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese inhibitorischen Komponenten Naturstoffe wie Peptide, Nukleinsäuren und Kohlehydrate oder andere chemische Substanzen sind.
- 51. Verfahren nach Anspruch 50, dadurch gekennzeichnet,
 20 daß die inhibitorischen Komponenten durch Mutagenese
 veränderte Bestandteile des mindestens einen ersten
 regulatorischen Faktors sind.
- 52. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß mindestens eine weitere
 vierte Genanordnung für die Expression von Peptiden
 bereitgestellt wird.
- Verfahren nach einem der Ansprüche 44 bis 46 und 50 53. 30 52, bis dadurch gekennzeichnet, daß durch Einwirkung auf die Wechselwirkung der mindestens zwei Hybridproteine des Transkriptionsregulators Expression mindestens eines Repressor-Gens gesteuert wird, wodurch eine Veränderung der Expression des 35 mindestens einen Reportergens erfolgt.

5

10

. 20

25

- Verfahren nach Anspruch 53, dadurch gekennzeichnet, daß durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression des Repressor-Gens gehemmt wird und eine Expression des mindestens einen Reportergens erfolgt.
- 55. Verfahren nach einem der Ansprüche 44 bis 46 und 50 52, dadurch gekennzeichnet, daß durch Einwirkung auf die Wechselwirkung der mindestens zwei Hybridproteine des Transkriptionsregulators Expression mindestens einer Rekombinase gesteuert wird, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.
- Verfahren nach Anspruch 55, dadurch gekennzeichnet, daß durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression der Rekombinase gehemmt wird und eine Expression des mindestens einen Reportergens erfolgt.
 - 57. Verfahren nach einem der Ansprüche 14 bis 24 und 47 49, dadurch gekennzeichnet, daß durch Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens eines Repressor-Gens gesteuert wird, wodurch eine Veränderung der Expression des mindestens einen Reportergens erfolgt.
- Verfahren nach Anspruch 57, dadurch gekennzeichnet,
 daß durch Hemmung der Wechselwirkung der
 Proteinkomponenten die Expression des Repressor-Gens
 gehemmt wird und eine Expression des mindestens einen
 Reportergens erfolgt.
- 35 59. Verfahren nach einem der Ansprüche 14 bis 24 und 47 bis 49, dadurch gekennzeichnet, daß durch die

Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens einer Rekombinase gesteuert wird, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.

5

60. Verfahren nach Anspruch 59, dadurch gekennzeichnet, daß Hemmung der Wechselwirkung Proteinkomponenten die Expression der Rekombinase gehemmt wird und eine Expression des mindestens einen Reportergens erfolgt.

10

61. Verfahren nach einem der Ansprüche 41 bis 60, dadurch gekennzeichnet, daß in einem Wirtsorganismus gleichzeitig Genanordnungen für mindestens Repressor und mindestens eine Rekombinase bereitgestellt werden.

20

15

62. Verfahren nach Anspruch 61, dadurch gekennzeichnet, je nach eingestellten Versuchsbedingungen der Repressor oder die Rekombinase oder beide exprimiert werden.

63. Verwendung eines der Verfahren nach einem Ansprüche 1 bis 62 zur Ermittlung von inhibierenden 25 Substanzen, bevorzugt die als Leitstrukturen einsetzbar sind.

30

64.

65. Verwendung nach einem der Ansprüche 63 oder dadurch gekennzeichnet, daß die inhibierenden Substanzen und Peptide Entwicklung zur Therapeutika eingesetzt werden.

daß die inhibierenden Substanzen Peptide sind.

Verwendung nach Anspruch 63, dadurch gekennzeichnet,

Transkriptionsstimulierende Targets im Repressor-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor abhängigen Verfahren

Transkriptionsstimulierende Targets im Rekombinase-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor-abhängigen Verfahren

Protein-Protein Interaktion im Rekombinase-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor-abhängigen Verfahren

Protein-Protein Interaktion im Rekombinase-abhängigen Verfahren

Repression des transkriptionsstimulierenden Targets AD1-Tet im Repressor-abhängigen Verfahren

LexA-CTF2 und AD1-TIM im Repressor-abhängigen Verfahren Repression der Protein-Protein Wechselwirkung zwischen

International A :atton No
PCT/EP 95/00297

	·			
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C12N15/00 C12N15/67 C	12N15/70	C12N15/81	C12Q1/68
According	to International Patent Classification (IPC) or to both na	tional classification	and IPC	
	S SEARCHED			
Minumum of IPC 6	tocumentation searched (classification system followed to C12N C12Q	y classification syn	nbols)	
Documenta	tion searched other than minimum documentation to the	extent that such do	ocuments are included in	the fields searched
Electronic d	lata base consulted during the international search (name	e of data base and,	where practical, search t	erms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropria	ate, of the relevant	passages	Relevant to claim No.
X	PROC. NATL.ACAD SCI., vol. 89, no. 12, 15 June 19 SCI.,WASHINGTON,DC,US;, pages 5547-5551, M. GOSSEN AND H. BUJARD '1			1-5, 10-14, 25-27
Y	gene expression in mammalia tetracycline-responsive pro see page 5548, right column page 5551, left column, par	an cells by omoters' 1, paragra	у	6-9, 29-40, 44-53, 57,58,
		-/		63-65
·				
X Furt	her documents are listed in the continuation of box C.	X	Patent family members	are listed in annex.
-	egories of cited documents : ent defining the general state of the art which is not	ci	priority date and not in	fter the international filing date conflict with the application but
consider of filing of	ered to be of particular relevance document but published on or after the international late	in "X" do	vention cument of particular rele	nciple or theory underlying the evance; the claimed invention t or cannot be considered to
which citator	mt which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	'Y' do	cument of particular rele anot be considered to in	then the document is taken alone wance; the claimed invention wolve an inventive step when the
other n		m in		n one or more other such docu- eing obvious to a person skilled ame patent family
Date of the	actual completion of the international search	Da	te of mailing of the inter	national search report
19	9 June 1995		ც 4 -0	7- 1995
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (-31-70) 340-3016	Au	thorized officer Hornig, H	

International A :ation No
PCT/EP 95/00297

(Continual	cion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		1.5
	THE PLANT JOURNAL, vol. 2, no. 3, 1992 BLACKWELL, OXFORD, UK, pages 397-404, C. GATZ ET AL. 'Stringent repression and	1-5, 25-28
	homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants'	
	see page 357, right column, line 36 - page 402, right column, paragraph 2	6-9, 29-40, 44-53, 57,58, 63-65
	MOLECULAR & GENERAL GENETICS, vol. 227, no. 2, June 1991 SPRINGER INTERNATIONAL, AMSTERDAM, NL, pages 229-237,	1-5, 25-28
	C. GATZ ET AL. 'Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet	
	repressor in transgenic tobacco ¹ the whole document	6-9, 29-40, 44-53, 57,58, 63-65
	WO-A-91 16429 (GEN HOSPITAL CORP) 31 October 1991	1-5,50
	see page 6, line 27 - page 26, line 2 the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Ţ.	WO-A-91 16456 (GEN HOSPITAL CORP) 31 October 1991	1-5,50
ſ	see page 4, line 10 - page 20, line 8; claims 1-8	6-9, 29-40, 44-53, 57,58, 63-65
(WO-A-92 05286 (BRENT ROGER ;GOLEMIS ERICA (US); LECH KAREN F (US); ANDERSON CATHE) 2 April 1992	1-5,50
'	cited in the application see page 12, line 1 - page 26, line 9; claims 1-20; examples 1-6	6-9, 29-40, 44-53, 57,58, 63-65
	-/	
		,

1

International A cation No PCT/EP 95/00297

	ACTION OF CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PROC. NATL.ACAD SCI., vol. 86, no. 14, July 1989 NATL. ACAD SCI., WASHINGTON, DC, US;, pages 5473-5477, G.W. BYRNE AND F.H. RUDDLE 'Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	PROC. NATL.ACAD SCI., vol. 88, no. 21, 1 November 1991 NATL. ACAD SCI., WASHINGTON, DC, US;, pages 9578-9582, CT. CHIEN ET AL. 'The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	SCIENCE, vol. 257, 31 July 1992 AAAS,WASHINGTON,DC,US, pages 680-682, X. YANG ET AL. 'A protein kinase substrate identified by the two-hybrid system' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	WO-A-93 10250 (MASSACHUSETTS INST TECHNOLOGY) 27 May 1993 see page 11, line 1 - page 15, line 18 see page 26, line 16 - page 57, line 19 see claims 16-19	6-9, 29-40, 44-53, 57,58, 63-65
Y	WO-A-93 15227 (UNIV DUKE) 5 August 1993	6-9, 29-40, 44-53, 57,58, 63-65
	see page 5, line 22 - page 9, line 30; claims 15-35	
A	BIOL CHEM HOPPE-SEYLER 373 (9). 1992. 857. CODEN: BCHSEI ISSN: 0177-3593, ALTMANN H ET AL. 'Nuclear factor I a DNA-binding protein that can act as a transcriptional activator in yeast' Autumn meeting of the gesellschaft für biologische chemie (German society for biological chemistry), Rostock, Germany, September 24-26, 1992;	1-4, 25-27
	1	1

International A :ation No
PCT/EP 95/00297

- · ·	DOCUMENTS COMMISSION TO THE PROPERTY OF THE PR	PC1/EP 95/0029/
Category *	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Ρ,Χ	WO-A-94 04672 (DNX CORP ;BYRNE GUERARD (US)) 3 March 1994	1-5, 10, 11, 14-17, 25-28
	the whole document	
Ρ,Χ	WO-A-94 09133 (GEN HOSPITAL CORP) 28 April 1994 see page 5, line 8 - page 26, line 19;	1-5, 10-19, 23, 25-28, 34, 36-39,50
	claims 1-14	
Ρ,Χ	WO-A-94 29442 (BASF AG ;BUJARD HERMANN (DE); GOSSEN MANFRED (DE); SALFELD JOCHEN) 22 December 1994 the whole document	1-5, 10-14, 33-39
-		
	•	
	·	
	·	

information on patent family members

International A :ation No PCT/EP 95/00297

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9116429	31-10-91	AU-A- 7676691 EP-A- 0528827 US-A- 5322801	11-11-91 03-03-93 21-06-94
WO-A-9116456	31-10-91	AU-A- 7667191	11-11-91
WO-A-9205286	02-04-92	AU-B- 650677 AU-A- 8627291 CA-A- 2092000 CN-A- 1065092 CZ-A- 9300496 EP-A- 0550592 HU-A- 66827 JP-T- 6503713 ZA-A- 9107616	30-06-94 15-04-92 25-03-92 07-10-92 16-02-94 14-07-93 30-01-95 28-04-94 24-09-93
WO-A-9310250	27-05-93	CA-A- 2123906 EP-A- 0614491	27-05-93 14-09-94
WO-A-9315227	05-08-93	AU-B- 3609693	01-09-93
WO-A-9404672	03-03-94	AU-B- 5099393 CA-A- 2143326	15-03-94 03-03-94
WO-A-9409133	28-04-94	US-A- 5322801 AU-B- 5325594	21-06-94 09-05-94
WO-A-9429442	22-12-94	AU-B- 7108194	03-01-95

Internationales nzeichen
PCT/EP 95/00297

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES K 6 C12N15/00 C12N15/67 C12 IPK 6 C12N15/70 C12N15/81 C12Q1/68 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C12N C12Q IPK 6 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile 1-5, X PROC. NATL.ACAD SCI., 10-14, Bd. 89, Nr. 12, 15.Juni 1992 NATL. ACAD SCI., WASHINGTON, DC, US;, 25-27 Seiten 5547-5551, M. GOSSEN AND H. BUJARD 'Tight control of gene expression in mammalian cells by tetracycline-responsive promoters' Y 6-9. siehe Seite 5548, rechte Spalte, Absatz 4 29-40. - Seite 5551, linke Spalte, Absatz 2 44-53, 57,58, 63-65 -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu \mathbf{x} Siehe Anhang Patentfamilie Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der * Besondere Kategorien von angegebenen Veröffentlichungen Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhast erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist stein deer die alle einem auteen descineren Greine ausgeführt)
Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche 04 -07- 1995 19.Juni 1995 Name und Postanschrift der Internationale Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Hornig, H

Internationales mzeichen
PCT/EP 95/00297

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	PCT/EP 95/00297
Kategorie*	Bezeichnung der Veröffendichung, soweit erforderlich unter Angabe der in Betracht kommen	den Teile Betr. Anspruch Nr.
X	THE PLANT JOURNAL, Bd. 2, Nr. 3, 1992 BLACKWELL, OXFORD, UK, Seiten 397-404, C. GATZ ET AL. 'Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants'	1-5, 25-28
Y	siehe Seite 357, rechte Spalte, Zeile 36 - Seite 402, rechte Spalte, Absatz 2	6-9, 29-40, 44-53, 57,58, 63-65
X	MOLECULAR & GENERAL GENETICS, Bd. 227, Nr. 2, Juni 1991 SPRINGER INTERNATIONAL, AMSTERDAM, NL, Seiten 229-237, C. GATZ ET AL. 'Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco'	1-5, 25-28
Y	the whole document	6-9, 29-40, 44-53, 57,58, 63-65
x	WO-A-91 16429 (GEN HOSPITAL CORP) 31.Oktober 1991 siehe Seite 6, Zeile 27 - Seite 26, Zeile 2	1-5,50
Y	the whole document	6-9, 29-40, 44-53, 57,58, 63-65
(WO-A-91 16456 (GEN HOSPITAL CORP) 31.Oktober 1991	1-5,50
(siehe Seite 4, Zeile 10 - Seite 20, Zeile 8; Ansprüche 1-8	6-9, 29-40, 44-53, 57,58, 63-65
	WO-A-92 05286 (BRENT ROGER ;GOLEMIS ERICA (US); LECH KAREN F (US); ANDERSON CATHE) 2.April 1992 in der Anmeldung erwähnt	1-5,50
	siehe Seite 12, Zeile 1 - Seite 26, Zeile 9; Ansprüche 1-20; Beispiele 1-6	6-9, 29-40, 44-53, 57,58, 63-65
	-/	

Internationales inzeichen
PCT/EP 95/00297

C.(Fortsetz	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN	PC1/EP 95/0029/
Categorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom	rmenden Teile Betr. Anspruch Nr.
Y	PROC. NATL.ACAD SCI., Bd. 86, Nr. 14, Juli 1989 NATL. ACAD SCI.,WASHINGTON,DC,US;, Seiten 5473-5477, G.W. BYRNE AND F.H. RUDDLE 'Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	PROC. NATL.ACAD SCI., Bd. 88, Nr. 21, 1.November 1991 NATL. ACAD SCI.,WASHINGTON,DC,US;, Seiten 9578-9582, CT. CHIEN ET AL. 'The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	SCIENCE, Bd. 257, 31.Juli 1992 AAAS,WASHINGTON,DC,US, Seiten 680-682, X. YANG ET AL. 'A protein kinase substrate identified by the two-hybrid system' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Υ	WO-A-93 10250 (MASSACHUSETTS INST TECHNOLOGY) 27.Mai 1993	6-9, 29-40, 44-53, 57,58, 63-65
	siehe Seite 11, Zeile 1 - Seite 15, Zeile 18 siehe Seite 26, Zeile 16 - Seite 57, Zeile 19 siehe Ansprüche 16-19	
Y	WO-A-93 15227 (UNIV DUKE) 5.August 1993	6-9, 29-40, 44-53, 57,58, 63-65
	siehe Seite 5, Zeile 22 - Seite 9, Zeile 30; Ansprüche 15-35	
	-/	

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

Internationales inzeichen
PCT/EP 95/00297

•	·	CI/EP 95/0029/
C.(Fortsetzu	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommen	den Teile Betr. Anspruch Nr.
A	BIOL CHEM HOPPE-SEYLER 373 (9). 1992. 857. CODEN: BCHSEI ISSN: 0177-3593, ALTMANN H ET AL. 'Nuclear factor I a DNA-binding protein that can act as a transcriptional activator in yeast' Autumn meeting of the gesellschaft für biologische chemie (German society for biological chemistry), Rostock, Germany, September 24-26, 1992;	1-4, 25-27
P,X	WO-A-94 04672 (DNX CORP ; BYRNE GUERARD (US)) 3.März 1994	1-5,10, 11, 14-17, 25-28
	the whole document	
Ρ,Χ	WO-A-94 09133 (GEN HOSPITAL CORP) 28.April 1994	1-5, 10-19, 23, 25-28, 34, 36-39,50
	siehe Seite 5, Zeile 8 - Seite 26, Zeile 19; Ansprüche 1-14	
P,X	WO-A-94 29442 (BASF AG ;BUJARD HERMANN (DE); GOSSEN MANFRED (DE); SALFELD JOCHEN) 22.Dezember 1994 the whole document	1-5, 10-14, 33-39
		ļ.
-		

Formbiatt PCT/ISA/210 (Fortsetzung von Statt 2) (Juli 1992)

1

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales nzeichen
PCT/EP 95/00297

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO-A-9116429	31-10-91	AU-A- EP-A- US-A-	7676691 0528827 5322801	11-11-91 03-03-93 21-06-94
WO-A-9116456	31-10-91	AU-A-	7667191	11-11-91
WO-A-9205286	02-04-92	AU-B- AU-A- CA-A- CN-A- CZ-A- EP-A- HU-A- JP-T- ZA-A-	650677 8627291 2092000 1065092 9300496 0550592 66827 6503713 9107616	30-06-94 15-04-92 25-03-92 07-10-92 16-02-94 14-07-93 30-01-95 28-04-94 24-09-93
WO-A-9310250	27-05-93	CA-A- EP-A-	2123906 0614491	27-05-93 14-09-94
WO-A-9315227	05-08-93	AU-B-	3609693	01-09-93
WO-A-9404672	03-03-94	AU-B- CA-A-	5099393 2143326	15-03-94 03-03-94
WO-A-9409133	28-04-94	US-A- AU-B-	5322801 5325594	21-06-94 09-05-94
WO-A-9429442	22-12-94	AU-B-	7108194	03-01-95