Notes

14 December 2024 12:17

Consider the following three questions you might ask yourself:

- Given what I have, is it possible to get what I want?
- Given what I have, what is the *minimum cost* to get what I want?
- Given what I have, what is the set of ways to get what I want?

Power

we begin with a formal definition of symmetric monoidal preorders.

Definition 2.2. A *symmetric monoidal structure* on a preorder (X, \leq) consists of two constituents:

- (i) an element $I \in X$, called the *monoidal unit*, and
- (ii) a function \otimes : $X \times X \to X$, called the *monoidal product*.

These constituents must satisfy the following properties, where we write $\otimes(x_1, x_2) = x_1 \otimes x_2$:

- (a) for all $x_1, x_2, y_1, y_2 \in X$, if $x_1 \le y_1$ and $x_2 \le y_2$, then $x_1 \otimes x_2 \le y_1 \otimes y_2$,
- (b) for all $x \in X$, the equations $I \otimes x = x$ and $x \otimes I = x$ hold,
- (c) for all $x, y, z \in X$, the equation $(x \otimes y) \otimes z = x \otimes (y \otimes z)$ holds, and
- (d) for all $x, y \in X$, the equation $x \otimes y = y \otimes x$ holds.

We call these conditions *monotonicity*, *unitality*, *associativity*, and *symmetry* respectively. A preorder equipped with a symmetric monoidal structure, (X, \leq, I, \otimes) , is called a *symmetric monoidal preorder*.

monoid => way of combining

Wires = elements Boxes = relationships Parallelism = combination

$$\frac{x}{y}$$
 $x \otimes y$

We consider wires in parallel to represent the monoidal product of their labels, so we consider both cases above to represent the element $x \otimes y$. Note also that a wire labeled

I or an absence of wires:

both represent the monoidal unit I; another way of thinking of this is that the unit is the empty monoidal product.

A wiring diagram runs between a set of parallel wires on the left and a set of parallel wires on the right. We say that a wiring diagram is *valid* if the monoidal product of the elements on the left is less than the monoidal product of those on the right. For example, if we have the inequality $x \le y$, the diagram that is a box with a wire labeled x on the left and a wire labeled y on the right is valid; see the first box below:

Finally, the symmetry condition (d), that $x \otimes y = y \otimes x$, says that a diagram is valid even if its wires cross:

The inner boxes in Eq. (2.15) translate into the assertions:

$$t \le v + w \qquad w + u \le x + z \qquad v + x \le y \tag{2.16}$$

and the outer box translates into the assertion:

$$t + u \le y + z. \tag{2.17}$$

You can add more axioms to symmetric monoidal preorders and get -> discard, copy, etc

The Book Preorder

Example 2.27 (Booleans with AND). We can define a monoidal structure on \mathbb{B} by letting the monoidal unit be true and the monoidal product be \wedge (AND). If one thinks of false = 0 and true = 1, then \wedge corresponds to the usual multiplication operation *. That is, with this correspondence, the two tables below match up:

One can check that all the properties in Definition 2.2 hold, so we have a monoidal preorder which we denote **Bool** := $(\mathbb{B}, \leq, \mathsf{true}, \land)$.

The Cost Preorder

Example 2.37 (Lawvere's monoidal preorder, **Cost**). Let $[0, \infty]$ denote the set of nonnegative real numbers—such as $0, 1, 15.33\overline{3}$, and 2π —together with ∞ . Consider the preorder ($[0, \infty], \ge$), with the usual notion of \ge , where of course $\infty \ge x$ for all $x \in [0, \infty]$.

There is a monoidal structure on this preorder, where the monoidal unit is 0 and the monoidal product is +. In particular, $x + \infty = \infty$ for any $x \in [0, \infty]$. Let's call this

2.2. SYMMETRIC MONOIDAL PREORDERS

55

monoidal preorder

Cost :=
$$([0, \infty], \ge, 0, +),$$

because we can think of the elements of $[0, \infty]$ as costs. In terms of structuring "getting from here to there," **Cost** seems to say "getting from a to b is a question of cost." The monoidal unit being 0 will translate into saying that you can always get from a to a at no cost. The monoidal product being + will translate into saying that the cost of getting from a to c is at most the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to b plus the cost of getting from a to a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a to a plus the cost of getting from a from a to a plus the cost of getting from a from a from a to a plus the cost of getting from a from a

Opposite Categories

Proposition 2.38. Suppose $\mathfrak{X}=(X,\leq)$ is a preorder and $\mathfrak{X}^{\mathrm{op}}=(X,\geq)$ is its opposite. If (X,\leq,I,\otimes) is a symmetric monoidal preorder then so is its opposite, (X,\geq,I,\otimes) .

Monoidal Monotones

Definition 2.41. Let $\mathcal{P} = (P, \leq_P, I_P, \otimes_P)$ and $\Omega = (Q, \leq_Q, I_Q, \otimes_Q)$ be monoidal preorders. A *monoidal monotone* from \mathcal{P} to Ω is a monotone map $f: (P, \leq_P) \to (Q, \leq_Q)$, satisfying two conditions:

- (a) $I_O \leq_O f(I_P)$, and
- (b) $f(p_1) \otimes_Q f(p_2) \leq_Q f(p_1 \otimes_P p_2)$

for all $p_1, p_2 \in P$.

There are strengthenings of these conditions that are also important. If f satisfies the following conditions, it is called a *strong monoidal monotone*:

- (a') $I_O \cong f(I_P)$, and
- (b') $f(p_1) \otimes_Q f(p_2) \cong f(p_1 \otimes_P p_2);$

and if it satisfies the following conditions it is called a strict monoidal monotone:

- (a") $I_Q = f(I_P)$, and
- (b") $f(p_1) \otimes_{\mathbb{Q}} f(p_2) = f(p_1 \otimes_{\mathbb{P}} p_2).$

Enriched Categories

Definition 2.46. Let $\mathcal{V} = (V, \leq, I, \otimes)$ be a symmetric monoidal preorder. A \mathcal{V} -category \mathcal{X} consists of two constituents, satisfying two properties. To specify \mathcal{X} ,

- (i) one specifies a set Ob(X), elements of which are called *objects*;
- (ii) for every two objects x, y, one specifies an element $\mathfrak{X}(x,y) \in V$, called the *homobject*.²

The above constituents are required to satisfy two properties:

- (a) for every object $x \in \mathrm{Ob}(\mathfrak{X})$ we have $I \leq \mathfrak{X}(x,x)$, and
- (b) for every three objects $x, y, z \in \mathrm{Ob}(\mathfrak{X})$, we have $\mathfrak{X}(x, y) \otimes \mathfrak{X}(y, z) \leq \mathfrak{X}(x, z)$.

We call V the base of the enrichment for X or say that X is enriched in V.

Theorem 2.49. There is a one-to-one correspondence between preorders and **Bool**-categories.

Definition 2.53. A Lawvere metric space is a Cost-category.

Definition 2.51. A metric space (X, d) consists of:

- (i) a set X, elements of which are called points, and
- (ii) a function $d: X \times X \to \mathbb{R}_{\geq 0}$, where d(x, y) is called the *distance between x and y*.

A lawvere metric space drops criteria (b), (c) from the distance function

- (a) for every $x \in X$, we have d(x, x) = 0,
- (b) for every $x, y \in X$, if d(x, y) = 0 then x = y,
- (c) for every $x, y \in X$, we have d(x, y) = d(y, x), and
- (d) for every $x, y, z \in X$, we have $d(x, y) + d(y, z) \ge d(x, z)$.

Changing enrichment

2.4.1 Changing the base of enrichment

Any monoidal monotone $V \to W$ between symmetric monoidal preorders lets us convert V-categories into W-categories.

Construction 2.64. Let $f: \mathcal{V} \to \mathcal{W}$ be a monoidal monotone. Given a \mathcal{V} -category \mathcal{C} , one forms the associated \mathcal{W} -category, say \mathcal{C}_f as follows.

- (i) We take the same objects: $Ob(\mathcal{C}_f) := Ob(\mathcal{C})$.
- (ii) For any $c, d \in Ob(\mathcal{C})$, put $\mathcal{C}_f(c, d) := f(\mathcal{C}(c, d))$.

Enriched Functors

Definition 2.69. Let \mathfrak{X} and \mathfrak{Y} be \mathcal{V} -categories. A \mathcal{V} -functor from \mathfrak{X} to \mathfrak{Y} , denoted $F \colon \mathfrak{X} \to \mathfrak{Y}$, consists of one constituent:

(i) a function $F : Ob(\mathfrak{X}) \to Ob(\mathfrak{Y})$

subject to one constraint

(a) for all $x_1, x_2 \in \text{Ob}(\mathfrak{X})$, one has $\mathfrak{X}(x_1, x_2) \leq \mathfrak{Y}(F(x_1), F(x_2))$.

Product Category

Definition 2.74. Let \mathcal{X} and \mathcal{Y} be \mathcal{V} -categories. Define their \mathcal{V} -product, or simply product, to be the \mathcal{V} -category $\mathcal{X} \times \mathcal{Y}$ with

- (i) $Ob(X \times Y) := Ob(X) \times Ob(Y)$,
- (ii) $(\mathfrak{X} \times \mathfrak{Y})((x, y), (x', y')) := \mathfrak{X}(x, x') \otimes \mathfrak{Y}(y, y'),$

for two objects (x, y) and (x', y') in $Ob(X \times Y)$.

Example 2.76. Let \mathfrak{X} and \mathfrak{Y} be the Lawvere metric spaces (i.e. **Cost**-categories) defined by the following weighted graphs:

Their product is defined by taking the product of their sets of objects, so there are six objects in $\mathfrak{X} \times \mathfrak{Y}$. And the distance $d_{X \times Y}((x, y), (x', y'))$ between any two points is given by the sum $d_X(x, x') + d_Y(y, y')$.

Examine the following graph, and make sure you understand how easy it is to

derive from the weighted graphs for X and Y in Eq. (2.77):

Monoidal Closed Preorders

Definition 2.79. A symmetric monoidal preorder $\mathcal{V} = (V, \leq, I, \otimes)$ is called *symmetric monoidal closed* (or just *closed*) if, for every two elements $v, w \in V$, there is an element $v \multimap w$ in \mathcal{V} , called the *hom-element*, with the property

$$(a \otimes v) \leq w \quad \text{iff} \quad a \leq (v \multimap w).$$
 (2.80)

for all $a, v, w \in V$.

Proposition 2.87. Suppose $\mathcal{V} = (V, \leq, I, \otimes, \multimap)$ is a symmetric monoidal preorder that is closed. Then

- (a) For every $v \in V$, the monotone map $\otimes v \colon (V, \leq) \to (V, \leq)$ is left adjoint to $v \multimap \colon (V, \leq) \to (V, \leq)$.
- (b) For any element $v \in V$ and set of elements $A \subseteq V$, if the join $\bigvee_{a \in A} a$ exists then so does $\bigvee_{a \in A} v \otimes a$ and we have

$$\left(v \otimes \bigvee_{a \in A} a\right) \cong \bigvee_{a \in A} (v \otimes a). \tag{2.88}$$

- (c) For any $v, w \in V$, we have $v \otimes (v \multimap w) \leq w$.
- (d) For any $v \in V$, we have $v \cong (I \multimap v)$.
- (e) For any $u, v, w \in V$, we have $(u \multimap v) \otimes (v \multimap w) \leq (u \multimap w)$.

Quantales

18 December 2024

10:00

Definition 2.90. A *unital commutative quantale* is a symmetric monoidal closed preorder $\mathcal{V} = (V, \leq, I, \otimes, \multimap)$ that has all joins: $\bigvee A$ exists for every $A \subseteq V$. In particular, we often denote the empty join by $0 := \bigvee \emptyset$.

Proposition 2.96. Let $\mathcal{P} = (P, \leq)$ be a preorder. It has all joins iff it has all meets.

Remark 2.97. The notion of Hausdorff distance can be generalized, allowing the role of **Cost** to be taken by any quantale V. If X is a V-category with objects X, and $U \subseteq X$ and $V \subseteq X$, we can generalize the usual Hausdorff distance, on the left below, to the formula on the right:

$$d(U,V) \coloneqq \sup_{u \in U} \inf_{v \in V} d(u,v) \qquad \qquad \mathfrak{X}(U,V) \coloneqq \bigwedge_{u \in U} \bigvee_{v \in V} \mathfrak{X}(u,v).$$

For example, if $V = \mathbf{Bool}$, the Hausdorff distance between sub-preorders U and V answers the question "can I get into V from every $u \in U$," i.e. $\forall_{u \in U}$. $\exists_{v \in V}$. $u \leq v$. Or for another example, use $V = \mathsf{P}(M)$ with its interpretation as modes of transportation, as in Exercise 2.62. Then the Hausdorff distance $d(U, V) \in \mathsf{P}(M)$ tells us those modes of transportation that will get us into V from every point in U.

Proposition 2.98. Suppose $\mathcal{V} = (V, \leq, I, \otimes)$ is any symmetric monoidal preorder that has all joins. Then \mathcal{V} is closed—i.e. it has a \multimap operation and hence is a quantale—if and only if \otimes distributes over joins; i.e. if Eq. (2.88) holds for all $v \in V$ and $A \subseteq V$.