PHYSICS REVISION

NOTES

FOR AQA GCSE (9-1) SIMPLE, CLEAR & MEMORABLE

PAPER 2

Ronaldo Butrus

CONTENTS

74	_			
5	FORG	CES		6
	5.1	FO	RCES AND THEIR INTERACTIONS	6
	5.1	.1	Scalar and vector quantities	
	5.1	.2	Contact and non-contact forces	6
	5.1	.3	Gravity	6
	5.1	.4	Resultant force	7
	5.2	WC	ORK DONE AND ENERGY TRANSFER	8
	5.3	FO	RCES AND ELASTICITY	8
	5.4		MENTS, LEVERS AND GEARS	
	5.5	PR	ESSURE AND PRESSURE DIFFERENCES IN FLUIDS	10
	5.5	5.1	Pressure in a fluid	10
	5.5	5.2	Atmospheric pressure	10
	5.6	FO	RCES AND MOTION	
	5.6	5.1	Describing motion along a line	11
	5.6	5.2	Forces, accelerations and Newton's Laws of motion	16
	5.6	5.3	Forces and braking	17
	5.7	MC	MENTUM	19
	5.7	'.1	Momentum is a property of moving objects	19
	5.7	7.2	Conservation of momentum	19
	5.7	7.3	Changes in momentum	19
6	WAV	ES		20
	6.1	WA	VES IN AIR, FLUIDS AND SOLIDS	20
	6.1	.1	Transverse and longitudinal waves	20
	6.1	.2	Properties of waves	20
	6.1	.3	Reflection of waves	21
	6.1	.4	Sound waves	22
	6.1	.5	Waves for detection and exploration	22
	6.2	ELI	ECTROMAGNETIC WAVES	23
	6.2	2.1	Types of electromagnetic waves	23
	6.2	2.2	Properties of electromagnetic waves 1	23
	6.2	2.3	Properties of electromagnetic waves 2	24
	6.2	2.4	Uses and applications of electromagnetic waves	25
7	MAG	NET	ISM & ELECTROMAGNETISM	26
	7.1	PΕ	RMANENT AND INDUCED MAGNETISM, MAGNETIC FORCES AND FIELDS	26

Contents

7.1.1	Poles of a magnet	26
7.1.2	Magnetic fields	26
7.2 TH	E MOTOR EFFECT	28
7.2.1	Electromagnetism	28
7.2.2	Fleming's left-hand rule	29
7.2.3	Electric motors	30
7.2.4	Loudspeakers	31
7.3 INI	DUCED POTENTIAL, TRANSFORMERS AND THE NATIONAL GRID	32
7.3.1	Induced potential	32
7.3.2	Uses of the generator effect	33
7.3.3	Microphones	34
7.3.4	Transformers	35
8 SPACE F	PHYSICS	36
8.1 SO	LAR SYSTEM; STABILITY OF ORBITAL MOTIONS; SATELLITES	36
8.1.1	Our solar system	36
8.1.2	The life cycle of a star	37
8.1.3	Orbital motion, natural and artificial satellites	38
8.2 RE	D-SHIFT	38
WORD EQ	UATIONS	39
SYMBOL F	COLIATIONS	40

NOOS SINT DNISU

This is **Higher Tier** only material – this means you will only need to revise this if you are sitting the higher tier Physics paper.

This is **Physics (separate science)** only material – this means you will only need to revise this if you are sitting the triple award separate science Physics paper (**8463**).

This is **Higher Tier and Physics (separate science)** only material – this means you will only need to revise this if you are sitting the higher tier Physics paper (**8463**).

THIS IS A SPECIFICATION CHAPTER

1	1	THIS	IS A	SPEC	IFIC A	MOIT	TOPIC
		1 1 11.3	.,,				

- 1.1.1 This is a specification subtopic
- 1.1.1.1 This is a section of a specification subtopic

5 FORCES

5.1 FORCES AND THEIR INTERACTIONS

5.1.1 Scalar and vector quantities

- Scalar quantities have magnitude only.
- Vector quantities have magnitude and an associated direction.
- A vector quantity may be represented by an arrow where:
 - the length of the arrow represents the magnitude
 - the direction of the arrow represents the direction of the vector quantity

5.1.2 Contact and non-contact forces

- A force is a push or pull that acts on an object due to the interaction with another object.
- Force is a vector quantity.
- All forces between objects are either:
 - contact forces: the objects are physically touching
 - e.g. friction, air resistance, tension and normal contact force
 - **non-contact forces:** the objects are physically separated
 - e.g. gravitational force, electrostatic force and magnetic force

5.1.3 Gravity

- Weight is the force acting on an object due to gravity.
- The force of gravity close to Earth is due to the gravitational field around the Earth.
- The weight of an object depends on the gravitational field strength at the point where the object is.
- Weight is measured using a calibrated spring-balance (a newtonmeter).

weight (N) = mass (kg) x gravitational field strength (N/kg)

W = m g

- An object's centre of mass is a single point where the its weight is considered to act.
- How to find an object's centre of mass:
 - suspend object from a point using a stand
 - suspend a plumbline (string with weight on the end) from that point
 - use plumbline to draw a vertical line on the object
 - repeat from different points of suspension
 - the centre of mass is where the lines cross

5.1.4 Resultant force

- A resultant force is a single force that has the same effect as all the forces acting on an object.
- Free body diagrams can be used to represent this:

- A single force can be resolved into two components acting at right angles to each other.
- The two component forces together have the same effect as the single force.

5.2 WORK DONE AND ENERGY TRANSFER

- When a force causes an object to move through a distance work is done on the object.
- This means a force does work on the object when the force causes a displacement of the object.

work done (J) = force (N) x distance (m)

W = F s

- One joule of work is done when a force of one newton causes a displacement of one metre.
- 1 joule = 1 newton-metre
- Work done against the frictional forces acting on an object causes a rise in the temperature of the object.

5.3 FORCES AND ELASTICITY

- The extension of an object, such as a spring, is directly proportional to the force applied, provided that the limit of proportionality is not exceeded.

force (N) = spring constant (N/m) x extension (m)

F = ke

- An elastic deformation is a change in shape that is reversed when the force is removed.
- An inelastic deformation is not reversed when the force is removed.
- When an object's shape is changed (by stretching, bending or compressing), more than one force has to be applied because a single force would only displace the object.
- A force that stretches (or compresses) a spring does work and elastic potential energy is stored in the spring.
- Provided the spring is not inelastically deformed, the work done on the spring and the elastic potential energy stored are equal.
- In a linear relationship, the highest exponent is 1, and the graph of force and extension is a straight line. If it passes through the origin, they are directly proportional.
- In a non-linear relationship, the highest exponent exceeds 1, and the graph of force and extension is a curve.

5.4 MOMENTS, LEVERS AND GEARS

- A force or a system of forces may cause an object to rotate.
- The moment of a force is its turning effect.

moment of a force (Nm) = force (N) x distance (m)

M = F d

The distance is the perpendicular distance from the pivot to the line of action of the force.

- If an object is balanced, the total clockwise moment about a pivot equals the total anticlockwise moment about that pivot.
- A simple lever and a simple gear system can both be used to transmit the rotational effects of forces.
- A lever is used as a force multiplier as it exerts a greater force than is applied by the user:
 - it increases the perpendicular distance from the line of action of the force to the pivot
 - this increases the moment
- Low gear:
 - a small gear wheel (engine) turns a large gear wheel (output)
 - the output shaft turns slower than the engine shaft:
 - because the moment of the output shaft is greater than the moment of the engine shaft
 - low gear gives low speed and a high turning effect
- High gear:
 - a large gear wheel (engine) turns a small gear wheel (output)
 - the output shaft turns faster than the engine shaft:
 - because the moment of the output shaft is lower than the moment of the engine shaft
 - high gear gives high speed and a low turning effect

5.5 PRESSURE AND PRESSURE DIFFERENCES IN FLUIDS

5.5.1 Pressure in a fluid

5.5.1.1 Pressure in a fluid 1

- A fluid can either be a liquid or a gas.
- The pressure in fluids causes a force normal to any surface.

pressure (Pa) =
$$\frac{\text{force normal to a surface (N)}}{\text{area of that surface (m}^2)}$$

 $p = \frac{F}{\Delta}$

5.5.1.2 Pressure in a fluid 2

pressure (Pa) = height of column (m) x density of liquid (kg/m³) x gravitational field strength (N/kg)

$p = h \rho g$

- As the height of the column increases, there is a larger weight, hence a larger force.
- Upthrust is a force where:
 - a partially (or totally) submerged object experiences a greater pressure on the bottom surface than on the top surface
 - this creates a resultant force upwards
- Factors which influence floating and sinking:
 - **shape:** an object with a smaller bottom and larger top sinks faster
 - density: smaller contact area causes larger pressure downwards

5.5.2 Atmospheric pressure

- The atmosphere is a thin layer (relative to the size of the Earth) of air round the Earth.
- The atmosphere gets less dense with increasing altitude:
 - air molecules colliding with the surface create atmospheric pressure
 - the number of air molecules (and so the weight of air) above a surface decreases as the height of the surface above ground level increases
 - as height increases there is always less air above a surface than at a lower height
 - so atmospheric pressure decreases with an increase in height

5.6 FORCES AND MOTION

5.6.1 Describing motion along a line

5.6.1.1 Distance and displacement

Distance:

- how far an object moves
- scalar quantity (magnitude only no direction)

Displacement:

- how far and object moves in a straight line from start to finish
- vector quantity (magnitude and direction)

5.6.1.2 Speed

speed (m/s) =
$$\frac{\text{distance (m)}}{\text{time (s)}}$$

speed is a scalar quantity

$$v = \frac{s}{t}$$

- Typical values of speed:
 - walking ~ 1.5 m/s
 - running ~ 3 m/s
 - cycling ~ 6 m/s
 - car ~ 20 m/s
 - train ~ 56 m/s
 - plane ~ 250 m/s
 - sound ~ 330 m/s
- As speed involves **distance**, speed is a scalar quantity.

5.6.1.3 Velocity

velocity (m/s) =
$$\frac{\text{displacement (m)}}{\text{time (s)}}$$
 velocity is a vector quantity

$$v = \frac{s}{t}$$

- As velocity involves **displacement**, velocity is a vector quantity.

Chapter 5 – Forces

 Motion in a circle involves constant speed but changing velocity as the direction (and displacement) of motion constantly changes.

At point A, the direction of motion is 135° from the vertical.

At point B, the direction of motion is 45° from the vertical.

While speed is constant around the circle (as speed does not involve direction), displacement is continuously changing (as direction changes from 0° to 360°.

A graph showing distance covered in a 100-second race

- The speed of an object can be calculated from the gradient of its distance time graph:
- e.g. in Ciaran's section B, he ran 175m (y-axis) in 100-40s (x-axis)
- so distance = 175m, time = 60s
- and speed = $175 \div 60 = 2.9 \text{ m/s}$

If an object is accelerating, its speed can be determined by drawing a tangent to the curve and measuring its gradient:

E.g. at point P, we draw a tangent to the curve and measure its length on the x and y axes.

Speed at P = $40 \div 30 = 1.3 \text{ m/s}$

5.6.1.5 Acceleration

acceleration (m/s²) =
$$\frac{\text{change in velocity (m/s)}}{\text{time (s)}}$$

$$a = \frac{\Delta v}{t}$$
acceleration (m/s²) =
$$\frac{\text{final velocity - initial velocity (m/s)}}{\text{time (s)}}$$

$$a = \frac{v - u}{t}$$

- The acceleration of an object is the change in velocity per second.
- An object with a positive acceleration is said to be accelerating.
- An object with a negative acceleration is said to be decelerating, or accelerating in reverse.
- Typical acceleration values:
 - car ~ 4 m/s²
 - train $\sim 0.2 \text{ m/s}^2$
 - plane $\sim 3 \text{ m/s}^2$

- The acceleration of an object can be calculated from the gradient of its velocity-time graph, e.g.:
 - at **A**: velocity changes from 0 to 75 m/s in 30 s, so $75 \div 30 = 2.4 \text{ m/s}^2$

The distance travelled by an object can be calculated from the area under a velocity-time graph.

On this velocity-time graph, the area of the triangle (for section **D**) represents the distance travelled between 60 and 80s.

Alternatively, you can count the squares, where each square represents 250m (10 x 25):

3 squares x 250m = 750m

For objects in uniform acceleration (i.e. where acceleration is constant):

(final velocity)² (m/s) – (initial velocity)² (m/s) = 2 x acceleration (m/s²) x distance (m)

$$v^2 - u^2 = 2 a s$$

- Near the Earth's surface a freely falling object has an acceleration of 9.8 m/s² due to gravity.
- An object falling through a fluid initially accelerates at 9.8 m/s² due to gravity then, when the resultant force eventually gets zero, it moves at its terminal velocity (maximum speed).

This is a velocity-time graph for an object falling through a fluid.

- 1. Initially it accelerates downwards due to gravity.
- 2. Eventually, weight and drag force are equal and opposite, with no resultant force.
- 3. It reaches its terminal velocity at 1.0 m/s after about 0.15 s.

5.6.2 Forces, accelerations and Newton's Laws of motion

5.6.2.1 Newton's First Law

- If the resultant force acting on an object is zero it remains stationary or in uniform motion.
- A vehicle travelling at a constant speed has a zero resultant force by balancing the driving and resistive forces.
- Therefore, the velocity (speed and/or direction) of an object will only change is there is a resultant force on the object.
- Inertia is an object's tendency to continue in their state of rest or of uniform motion.

5.6.2.2 Newton's Second Law

force (N) = mass (kg) x acceleration (m/s²) F = m a

- Where you write an approximate answer, use the following symbol:
 - ~ weak approximation, e.g. ~ 2 m/s where the true value is 2.4
 - ≈ strong approximation, e.g. ≈ 6 m/s where the true value is 6.01

inertial mass (kg) =
$$\frac{\text{force (N)}}{\text{acceleration (m/s}^2)}$$

m = $\frac{F}{a}$

- Inertial mass is a measure of how difficult it is to change the velocity of an object.

5.6.2.3 Newton's Third Law

- Whenever two objects interact, they exert equal and opposite forces on each other.

5.6.3 Forces and braking

5.6.3.1 Stopping distance

stopping distance = thinking distance + braking distance

- Thinking distance is the distance travelled during the driver's reaction time.
- Braking distance is the distance travelled under the braking force.
- For a given braking force, the greater the speed of a vehicle, the greater the stopping distance.

5.6.3.2 Reaction time

- Typical reaction time is 0.2 to 0.9s.
- Factors affecting reaction time:
 - tiredness
 - drugs
 - alcohol
 - distractions
- Ways to measure reaction time:
 - dropping a ruler between forefingers and thumb and seeing how far the ruler travels at an acceleration of 9.8m/s²
 - pressing a button when you see a letter or number on a screen

5.6.3.3 Factors affecting braking distance 1

- Factors affecting braking distance:
 - adverse road and weather conditions (wet/icy)
 - poor vehicle condition (worn out brakes/tyres)

5.6.3.4 Factors affecting braking distance 2

- The greater the speed of a vehicle the greater the braking force needed to stop the vehicle in a certain distance.
- The greater the braking force the greater the deceleration of the vehicle.
- Large decelerations may lead to:
 - brakes overheating (sparks)
 - loss of control
- When the brakes are applied:
 - work is done by the frictional force between the brakes and the wheel
 - this reduces the vehicle's kinetic energy
 - energy is thereby transferred to the brakes' thermal energy store
 - large decelerations may lead to brakes overheating

5.7 MOMENTUM

5.7.1 Momentum is a property of moving objects

momentum (kg m/s) = mass (kg) x velocity (m/s)

$$p = m v$$

5.7.2 Conservation of momentum

- The law of conservation of momentum states:
- In a closed system, the total momentum before an event is equal to the total momentum after the event.

5.7.3 Changes in momentum

- Momentum changes when a force acts on a moving object.

$$F = ma$$
 where $a = \frac{\Delta v}{t}$

$$\therefore F = \frac{m \Delta v}{\Delta t}$$

$$\therefore F = \frac{\Delta p}{\Delta t} \quad \text{or} \quad \text{impact force (N)} = \frac{\text{change in momentum (kg m/s)}}{\text{change in time (s)}}$$

: impact force = rate of change of momentum

- Safety features typically work as follows:
 - increase impact time, Δt
 - ∴ decrease rate of change of momentum (to zero stationary)
 - : decrease force on colliding person on object and vice versa
- Safety features include:
 - air bags
 - seat belts
 - gymnasium crash mats
 - cycle helmets
 - cushioned surfaces for playgrounds

Chapter 6 - Waves

6 WAVES

6.1 WAVES IN AIR, FLUIDS AND SOLIDS

6.1.1 Transverse and longitudinal waves

- Transverse waves:
 - oscillations perpendicular to direction of energy transfer
 - e.g. ripples on water surface
- Longitudinal waves:
 - oscillations parallel to direction of energy transfer
 - show areas of compression and rarefaction
 - e.g. sound waves in air
- Why the wave, not the medium travels:
 - for ripples on a water surface, a floating object will not have a net movement
 - for sound waves in air, a vibrating tuning fork and air don't move, but vibrate

6.1.2 Properties of waves

- Properties of a wave:
 - amplitude: maximum displacement of a point on a wave away from its undisturbed position
 - wavelength: distance from a point on one wave to equivalent point on adjacent wave
 - frequency: number of waves passing a point each second

period (s) =
$$\frac{1}{\text{frequency (Hz)}}$$

$$T = \frac{1}{f}$$

- Wave speed is the speed at which energy is transferred through the medium.
- All waves obey the wave speed equation:

wave speed (m/s) = frequency (Hz) x wavelength (m)

$v = f \lambda$

- Measuring speed of sound waves in air:
 - two people stand on opposite sides of field
 - friend bangs two cymbals together
 - time interval between seeing and hearing cymbals crash using a stopwatch
 - speed = distance ÷ time
 - repeat experiment to calculate a mean
- Measuring speed of ripples on a water surface:

Measuring wavelength

- set up ripple tank above plain surface with stroboscope above
- connect oscillator (on water surface) to oscilloscope
- set stroboscope and oscilloscope to same frequency so as to make a 'still' image on the surface below
- place a relatively thin transparent ruler in the ripple tank
- on the reflection, count the number of strokes on the ruler the wavelength takes up
 Measuring frequency
- for 10 seconds, count how many waves pass a point (mark this using a label)
- divide this by 10 to obtain the frequency Calculating wave speed
- use the wave speed equation ($v = f \lambda$) to calculate wave speed

6.1.3 Reflection of waves

- Waves can be reflected, absorbed or transmitted at the boundary between two different materials:
 - reflection: wave reflected at same angle as that of incidence
 - absorption: some wave energy absorbed by medium
 - transmission: wave goes through to next medium

6.1.4 Sound waves

- Sound waves can travel through solids causing vibrations in the solid.
- How we hear:
 - sound waves cause ear drum and other parts to vibrate
 - this causes a sensation of sound
 - conversion of sound waves to vibrations of solids works over a limited range of frequencies
 - this restricts the limits of human hearing (20Hz to 20kHz)

6.1.5 Waves for detection and exploration

- Ultrasound waves:
 - have a frequency higher than 20kHz
 - are partially reflected when they meet a boundary line between two different media
 - time taken for reflections to reach detector can be used to determine distances
 - this allows ultrasound waves to be used for medical and industrial imaging e.g. prenatal scanning, undersea scanning
- Seismic waves:
 - produced by earthquakes
 - P-waves are longitudinal, seismic waves that travel through solids and liquids
 - S-waves are transverse, seismic waves cannot travel through a liquid
 - P-waves and S-waves provide evidence for the structure and size of the Earth's core, which are not directly observable otherwise
- Echo sounding:
 - using high frequency sound waves to:
 - detect objects in deep water
 - measure water depth

6.2 ELECTROMAGNETIC WAVES

6.2.1 Types of electromagnetic waves

- Electromagnetic waves are transverse waves that transfer energy from the source of the waves to an absorber.
- Electromagnetic waves form a continuous spectrum and all types of electromagnetic wave travel at the same velocity through a vacuum or air.
- In this order, wavelength decreases and frequency increases:
 - radio waves
 - microwaves
 - infrared
 - visible light
 - ultraviolet
 - X-rays
 - gamma rays
- Human eyes only detect visible light and so detect a limited range of electromagnetic waves.
- Examples of transfer of energy by electromagnetic waves:
 - humans cool down by emitting infrared radiation
 - remote control transmits signals to TV
 - radio waves carry mobile phone signals

6.2.2 Properties of electromagnetic waves 1

- Different substances may absorb, transmit, refract or reflect electromagnetic waves in ways that vary with wavelength.
- Some effects are due to the difference in velocity of the waves in different substances.
- Transmission of sound waves from one medium to another:
 - light ray enters glass box
 - wavelength decreases, so velocity decreases
 - ray bends towards normal
 - light ray exits glass box
 - wavelength increases, so velocity increases
 - ray bends away from normal

Chapter 6 – Waves

- A wave front diagram shows what happens to the wavelength of an electromagnetic wave.
- In the diagram above, the light ray refracts, as light travels slower through the glass (solid) than the air (gas).

6.2.3 Properties of electromagnetic waves 2

- Radio waves:
 - can be produced by oscillations in electrical circuits
 - may create an alternating current with the same frequency as the wave itself upon absorption, so can induce oscillations in an electrical circuit
- Ultraviolet waves, X-rays and gamma rays can have hazardous effects on human body tissue, depending on the:
 - type of radiation: X-rays and gamma rays are ionising radiation that can cause the mutation of genes and cancer
 - radiation dose: a measure of the risk of harm resulting from an exposure of the body to radiation, in sieverts (Sv)
- Ultraviolet waves:
 - can cause skin to age prematurely
 - increase the risk of skin cancer
- Gamma rays:
 - originate from changes in the nucleus of an atom
 - have a wide frequency range

6.2.4 Uses and applications of electromagnetic waves

- Electromagnetic waves have many practical applications:
 - radio waves:
 - television (between TV masts)
 - radio (around local radio stations)
 - microwaves:
 - satellite communications (enough energy to travel into space)
 - cooking food (can penetrate food in microwave)
 - infrared:
 - electrical heaters (emit infrared radiation to transfer energy)
 - cooking food (electrical hobs emit infrared radiation to cook food)
 - infrared cameras (detect levels of infrared being emitted by objects)
 - visible light:
 - fibre optic communications (light rays repeatedly reflected through glass core)
 - ultraviolet:
 - energy efficient lamps (absorb UV light produced inside lamp and re-emit this as visible light)
 - sun tanning (skin darkens to protect from UV light)
 - X-rays and gamma rays:
 - medical imaging (X-rays only absorbed by denser parts of body)
 - treatment (gamma rays used to kill cancerous cells)

7 MAGNETISM & ELECTROMAGNETISM

7.1 PERMANENT AND INDUCED MAGNETISM, MAGNETIC FORCES AND FIELDS

7.1.1 Poles of a magnet

- The poles of a magnet are the places where the magnetic forces are strongest.
- When two magnets are brought close together they exert a force on each other.
- Two like poles repel each other.
- Two unlike poles attract each other.
- Attraction and repulsion between two magnetic poles are examples of non-contact force.
- A permanent magnet produces its own magnetic field.
- An induced magnet is a material that becomes a magnet when placed in a magnetic field.
- Induced magnetism always causes a force of attraction.
- When removed from the magnetic field, an induced magnet loses most/all of its magnetism quickly.

7.1.2 Magnetic fields

- A magnetic field is the region around a magnet where a force acts on another magnet or on a magnetic material (iron, steel, cobalt and nickel).
- The force between a magnet and a magnetic material is always one of attraction (induced).
- The strength of the magnetic field depends on the distance from the magnet.
- The field is strongest at the poles of the magnet.
- The direction of the magnetic field at any point is given by the direction of the force that would act on another north pole placed at that point.
- The direction of a magnetic field line is from the north(seeking) pole of a magnet to the south(seeking) pole of the magnet.
- A magnetic compass contains a small bar magnet which points in the direction of the Earth's magnetic field.
- To plot the magnetic field pattern of a magnet using a compass:
 - place the compass at different points around the magnet
 - at each point, mark the direction the compass is pointing in

Chapter 7 - Magnetism & Electromagnetism

- To draw the magnetic field pattern of a bar magnet:
 - closer lines mean a stronger magnetic field
 - field lines should point from north to south
- The Earth's magnetic field:
 - its outer core is liquid iron and nickel
 - this causes a magnetic field
 - when a magnet is freely suspended, the north-seeking pole of the magnet points to Earth's magnetic north pole and it aligns with the Earth's magnetic field

7.2 THE MOTOR EFFECT

7.2.1 Electromagnetism

- When a current flows through a conducting wire a magnetic field is produced around the wire.
- The strength of the magnetic field depends on:
 - the current through the wire
 - the distance from the wire
- Shaping a wire to form a solenoid increases the strength of the magnetic field created by a current through the wire.
- The magnetic field inside a solenoid is strong and uniform.
- The magnetic field around a solenoid has a similar shape to that of a bar magnet.
- Adding an iron core increases the strength of the magnetic field of a solenoid.
- An electromagnet is a solenoid with an iron core.

7.2.2 Fleming's left-hand rule

- **Motor effect:** when a conductor carrying a current is placed in a magnetic field the magnet producing the field and the conductor exert a force on each other.

- Factors affecting the size of the force on the conductor:
 - the size of the current (in amperes, A)
 - the magnetic flux density of magnet (in tesla, T)
 - the **length of conductor** in the magnet (in metres, m)

force (N) = magnetic flux density (T) x current (A) x length (m)

F = BIl

7.2.3 Electric motors

- **Electric motor:** a coil of wire carrying a current in a magnetic field tends to rotate.

- How a motor works:
 - there is a magnetic field which acts from the north to south pole of the magnet
 - a current flows through the coil
 - at the north pole, the coil experiences a force at right angles to the current and field
 - at the south pole, the coil also experiences a force (in the opposite direction)
 - the coil rotates until the force is parallel to the field lines
 - every half turn, the split ring commutator reverses the current
 - this causes the forces to reverse direction
 - the coil continuously rotates

7.2.4 Loudspeakers

 Loudspeakers and headphones use the motor effect to convert variations in current in electrical circuits to the pressure variations in sound waves.

- How a moving-coil loudspeaker works:
 - coil is wrapped around iron core and placed between poles of permanent magnet
 - input p.d. has the same frequency as the sound waves
 - varying p.d. leads to varying current in wire, and therefore a varying magnetic field around the coil
 - varying magnetic field of coil and magnetic field of permanent magnet interact,
 leading to a varying force being exerted on the cone
 - this vibrates the paper cone, causing compressions/rarefactions in the air, producing a sound wave

7.3 INDUCED POTENTIAL, TRANSFORMERS AND THE NATIONAL GRID

7.3.1 Induced potential

- Generator effect:
 - if an electrical conductor:
 - moves relative to a magnetic field or
 - there is a change in the magnetic field around a conductor then
 - a potential difference is induced across the ends of the conductor
 - if the conductor is part of a complete circuit, a current is induced in the conductor
- An induced current generates a magnetic field that opposes the original change, either the movement of the conductor or the change in magnetic field.
- Factors affecting the size of an induced p.d./current:
 - **speed** of movement of conductor
 - magnetic flux density
 - **number of loops** in solenoid (more loops mean more current flows at a given time)
- Factors affecting the direction of the induced p.d./current:
 - **direction of motion** of the conductor
 - direction of magnetic field

7.3.2 Uses of the generator effect

- The generator effect is used in:
 - an alternator to generate AC
 - a dynamo to generate DC
- Alternators:
 - permanent magnets produce a uniform magnetic field
 - the coil is wound on an iron core to increase the size of the current
 - the coil is turned by an external force
 - an alternating current is induced
 - brushes connect the slip rings to the ends of the coil
 - slip rings allow the coil to rotate without twisting the wires

- Dynamos:

- permanent magnets produce a uniform magnetic field
- the coil is wound on an iron core to increase the size of the current
- the coil is turned by an external force
- the ends of the coil are connected to a split ring commutator
- at each half turn, the direction of the current is reversed
- a direct current is induced in the wire

7.3.3 Microphones

- Microphones use the generator effect to convert the pressure variations in sound into variations in current in electrical circuits.

- How a microphone works:
 - sound waves are made of compressions and rarefactions
 - these cause the diaphragm to move in and out
 - the varying force causes a varying p.d. to be induced across the ends of the conductor
 - a varying electrical current is produced
 - the varying electrical current flows through the wire to the loudspeaker to be output

7.3.4 Transformers

- A basic transformer consists of a primary coil and a secondary coil wound on an iron core.
- Iron is used because it is easily magnetised.
- The ratio of the p.d. across the primary and secondary coils of a transformer V_p and V_s depends on the ratio of the number of turns on each coil, n_p and n_s .

p.d. across primary coil (V)
p.d. across secondary coil (V) = number of turns on primary coil number of turns on secondary coil

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

- In a step-up transformer, there are more turns on the secondary coil, so the p.d. across the secondary coil is greater.
- In a step-down transformer, there are less turns on the secondary coil, so the p.d. across the secondary coil is smaller.

p.d. across x current through = p.d. across x current through secondary coil secondary coil primary coil primary coil

$$V_s \times I_s = V_p \times I_p$$

Therefore, power output (secondary coil) = power input (primary coil)

- How transformers work:
 - alternating current flows through primary coil
 - alternating magnetic field is produced in iron core
 - there is a continuous change in the magnetic field around the conductor
 - this induces an alternating p.d. across secondary coil
 - an alternating current flows through the secondary coil
- Advantages of power transmission at high p.d.:
 - high p.d. means more energy transferred per unit charge
 - this means energy is shared between fewer electrons
 - less electrons mean less resistance
 - less energy is wasted as heat energy by resistance heating

8 SPACE PHYSICS

8.1 SOLAR SYSTEM; STABILITY OF ORBITAL MOTIONS; SATELLITES

8.1.1 Our solar system

- Within our solar system there is:
 - a star (the Sun)
 - eight planets that orbit around the Sun
 - dwarf planets that orbit around the Sun
 - natural satellites (the moons) orbit their planets
- Our solar system is a small part of the Milky Way Galaxy.
- The Sun was formed from a nebula (cloud of dust and gas) pulled together by gravitational attraction.
- Formation of a star:
 - particles in the nebula merge together due to their gravitational attraction
 - **nebulae merge** together to form a more concentrated protostar
 - protostar becomes denser and particles collide more
 - collisions transfer heat energy to the protostar
 - if the star becomes hot enough, the **nuclei of hydrogen atoms fuse** together to form **helium nuclei**
 - this releases more energy, which makes the star even hotter
 - fusion reactions lead to an equilibrium between the gravitational collapse of the star and the expansion of a star due to fusion energy

8.1.2 The life cycle of a star

- A star goes through a life cycle which is determined by the size of the star:

- Stars about the same size of the Sun:
 - the star runs out of hydrogen nuclei to fuse
 - hydrogen fusion stops
 - the star is now a **red giant**
 - helium nuclei in the core fuse to form heavier elements
 - eventually there are **no more light elements** and **fusion stops**
 - there is no longer equilibrium so the star collapses in on itself and releases heat
 - the star is now a white dwarf
 - the star cools down and becomes a black dwarf
- Stars much bigger than the sun:
 - the star runs out of hydrogen nuclei to fuse
 - hydrogen fusion stops
 - the star is now a **red super giant**
 - helium and other **light elements in the core fuse to form heavier elements**
 - eventually there are no more light elements and fusion stops
 - the **massive star** collapses in a **supernova** explosion
 - there is enough energy to fuse small nuclei into nuclei bigger than iron nuclei
 - elements are scattered around the universe
- Fusion processes in stars produce all of the naturally occurring elements.
- Elements heavier than iron are produced in a supernova, as there is not enough energy to produce iron in a red giant.

8.1.3 Orbital motion, natural and artificial satellites

- Gravity provides the force that allows planets and satellites (both natural and artificial) to maintain their circular orbits.
- For circular orbits, the force of gravity can lead to changing velocity but unchanged speed:
 - the magnitude of its velocity does not change
 - the direction of its velocity continually changes as it is always perpendicular to the direction of gravity
 - it experiences an acceleration towards the centre of the circle
- For a stable orbit, the radius must change if the speed changes:
 - if speed increases
 - body moves out of its circular orbit (radius increases)

this also means:

- energy transferred from kinetic to gravitational potential energy store of body
- so speed decreases

Body	Orbits around
Planet	the Sun
Moon (natural satellite)	its planet
Artificial satellite	the Earth

- Types of artificial satellite orbits:
 - **geostationary:** orbit anticlockwise at same speed as Earth's rotation (used for GPS)
 - **low polar orbits:** orbit by the poles at a lower height (used for weather monitoring, military, spying, and Earth observation)

8.2 RED-SHIFT

- Red-shift is when:
 - there is an observed increase in the wavelength of light from most distant galaxies
 - the further away the galaxies:
 - the faster they are moving
 - the bigger the observed increase in wavelength
- The observed red-shift provides evidence that the universe is expanding and supports the Big Bang Theory:
 - the Big Bang Theory suggests that the universe began from a very small region that was extremely hot and dense
 - since 1998 onwards, observations of supernovae suggest that distant galaxies are receding ever faster
- There is still much about the universe that is not understood, e.g. dark mass and dark energy.

WORD EQUATIONS

```
weight (N) = mass (kg) x gravitational field strength <math>(N/kg)
work done (J) = force (N) x distance (m)
force (N) = spring constant (N/m) x extension (m)
moment of a force (Nm) = force (N) x distance (m)
pressure (Pa) = \frac{\text{force normal to a surface (N)}}{\text{area of that surface (m}^2)}
pressure (Pa) = height of column (m) x density of liquid (kg/m³) x gravitational field strength (N/kg)
speed (m/s) = \frac{\text{distance (m)}}{\text{time (s)}}
                                                speed is a scalar quantity
velocity (m/s) = \frac{\text{displacement (m)}}{\text{time (s)}} velocity is a vector quantity
acceleration (m/s<sup>2</sup>) = \frac{\text{change in velocity (m/s)}}{\text{time (s)}}
acceleration (m/s<sup>2</sup>) = \frac{\text{final velocity - initial velocity (m/s)}}{\text{time (s)}}
force (N) = mass (kg) x acceleration (m/s^2)
momentum (kg m/s) = mass (kg) x velocity (m/s)
impact force (N) = change in momentum (kg m/s)
                                 change in time (s)
period (s) = \frac{1}{\text{frequency (Hz)}}
wave speed (m/s) = frequency (Hz) x wavelength (m)
force (N) = magnetic flux density (T) x current (A) x length (m)
p.d. across primary coil (V) = number of turns on primary coil number of turns on secondary coil
```

primary coil

primary coil

p.d. across x current through = p.d. across x current through

secondary coil secondary coil

Equations

SYMBOL EQUATIONS

W = m g

W = F s

F = ke

M = F d

 $p = h \rho g$

 $p = \frac{F}{A}$

 $v = \frac{s}{t}$

 $a = \frac{\Delta v}{t}$

 $a = \frac{v - u}{t}$

F = ma

p = mv

 $F = \frac{\Delta p}{\Delta t}$

 $T = \frac{1}{F}$

 $v = f \lambda$

F = BIl

 $\frac{V_p}{V_s} = \frac{N_p}{N_s}$

 $V_s \times I_s = V_p \times I_p$

PHYSICS PAPER 2

5	FORCES
6	WAVES
7	MAGNETISM AND ELECTROMAGNETISM
8	SPACE PHYSICS