Эволюционные и генетические алгоритмы

•••

Выполнили: Соколов Дмитрий, Кирильцев Даниил, Березовская Валерия и Самойлов Захар группа 0381

Цели работы:

- 1. Изучение курса "Эволюционные и генетические алгоритмы" профессора Сергея Августовича Вакуленко
- 2. Реализация алгоритма SSWM(strong selection weak mutation)

Поставленные задачи для реализации:

- 1. Ознакомление с магистерским курсом
- 2. Выбор способов визуализации
- 3. Основная реализация (написание кода)
- 4. Тестирование итоговой версии

Ознакомление с теоретической базой курса

Движущие силы эволюции

- Мутагенез
- Естественный отбор
- Дрейф генов
- Поток генов

Регуляция генов

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой морфогенеза и адаптации, осуществляется на следующих уровнях:

- на уровне транскрипции
- на уровне процессинга первичного транскрипта
- при отборе зрелых мРНК для их транспорта в цитоплазму
- на уровне трансляции отбор в цитоплазме мРНК для трансляции на рибосомах
- на уровне активности белка

Канализация

Мера способности популяции воспроизводить один и тот же фенотип независимо от изменчивости окружающей среды или генотипа. Это форма эволюционной устойчивости.

Мутация генов

Незапрограммированные случайные и стабильные изменения в структуре ДНК в результате действия мутагенных факторов или как результат ошибок.

Типы мутаций:

- Геномные
- Хромосомные
- Генные (точечные)

Зачем использовать эволюционные алгоритмы?

Достоинства:

- Универсальный механизм для решения большого класса оптимизационных задач;
- Применимы для слабо формализованных задач;
- Применимы для задач с большим пространством решений;
- Легко комбинируются с другими методами;
- Позволяют получать хорошо интерпретируемые результаты.

Недостатки:

- Отсутствие гарантии нахождения оптимального решения за конечное время алгоритм реализует локальную оптимизацию;
- Обычно требуют значительных вычислительных затрат;
- Слабая теоретическая база алгоритм является эвристическим, т.е. точность и строгость постановки приносятся в жертву реализуемости

SSWM — что это и с чем его едят

Входные данные:

 \pmb{M} — число признаков, N — число генов \pmb{pmut} — вероятность точечной мутации в течение одного поколения, \pmb{K} —коэффициент заполнение матрицы \pmb{B} , генотип булевский вектор — $s \in \{-1,1\}^N$ \pmb{T}_{stop} — количество итераций алгоритма,, параметры — $\pmb{\beta}$, $\pmb{\gamma}$, $\pmb{\lambda}$ и \pmb{h} - шаг обработки данных.

Алгоритм:

Генерируем произвольный вектор \mathbf{s} . В цикле вычисляем фитнес $\mathbf{F}(\mathbf{s})$. Затем мутируем \mathbf{s} с вероятностью ртши и получаем новый вектор \mathbf{snew} . Если $F(snew) \geqslant F(s)$, выполняем присваивание S = SNew. Продолжаем так этот цикл в течение \mathbf{T}_{stop} шагов.

Написание алгоритма

Структура программы была разработана с использованием *MVP* паттерна. Класс Presenter задает зерно для генератора псевдослучайных чисел, задает *K*, *M* и *N* по умолчанию и передает их в конструктор класса *SSWM (Model)*, наряду с другими параметрами. Метод *run_algorithm* запускает выполнение алгоритма *SSWM* и обеспечивает вывод данных через *View*.

SSWM (Model) использует вспомогательный класс **Generator**, содержащий методы для генерации s, F (вспомогательный вектор для расчета приспособленности), W, B, C. Метод **solver** является реализацией алгоритма **SSWM**, описанного выше.

Визуализация работы алгоритма

Список литературы

- Overcoming the phenotype complexity barrier,
 2022
- Andrew R. Barron, Universal Approximation Bounds for Superpositions of a Sigmoidal Function, 1993
- Algorithms, games, and evolution 62014
- Genomic patterns of pleiotropy and the evolution of complexity, 2010
- C. H. Waddington, Canalization of development and genetic assimilation of acquired characteristics, 1959
- Hsp90 as a capacitor for morphological evolution, 1998

Репозиторий проекта

Распределение ролей

Кирильцев Даниил	Изучение теоретического материалаРеализация алгоритма
Березовская Валерия	Изучение теоретического материалаВизуализация работы алгоритма, презентация
Самойлов Захар	Изучение теоретического материалаТестированиеПрезентация
Соколов Дмитрий	Изучение теоретического материалаРефакторинг кода, ССІ, документация

THE TEAM

Дмитрий Соколов

(адепт ООП в 13 поколении)

Даниил Кирильцев

(самый ответственный)

Валерия Березовская

(Мамка, уставшая за детьми следить)

Захар Самойлов

(Голодній, убивца холодильников)

Спасибо за внимание!