系所: 工工所 學號: 113034511 姓名: 孫秉新

1.

window sizes	step size	best val loss	
10	15	70. 0116	
5	1	1.5246	
10	5	4. 1130	
30	15	106. 6307	

一開始的WZ(window size)為10,SZ(step size)為15,得到的結果並不理想,除了預測結果並不好以外,損失函數的下降曲線也不夠平穩。因此,我實驗小、中、大三種WZ和SZ,結果上來看小的表現最好,損失函數的曲線很漂亮,預測結果也相當貼近真實數據,我認為WZ越小可以越反應最新的變動,SZ設小可以有更多的訓練資料,缺點是訓練時間比較久。同時可以觀察到WZ越大,預測結果通常只反映趨勢,所以val loss較大。而中型的之所以表現得比原始的好,是因為SZ較小,所以有較多的訓練資料。

2.

(1)

我使用WZ=5、SZ=1,並加入Volume這個特徵來訓練,得到的結果非常不好,預測的結果如圖1,若沒有加入Volume,預測結果如圖2。所以可以知道Volume這個特徵對預測股價完全沒有幫助,甚至會導致模型無法正常預測。我將各項特徵與隔天股價的相關係數列出來,如圖3,可以知道結果是合理的,因為Volume與股價的像關係數極低。

(2)

0pen	High	Low	Close	best val loss
有	有	有	無	1. 3097
無	有	有	無	1. 4240
無	有	有	有	1.8796
無	有	無	無	2. 4190
無	無	有	無	1.7777

如表格,我嘗試了以上這些組合,並且val loss最好的是使用Open、High、Low三個特徵,令我比較驚訝的是只使用Low的loss比只使用High的還要低。不過可以發現這幾種組合的loss其

實沒有差異到很大,實際上做的時候我應該還是會四種特徵都採用,因為他們都與股價高度相關。

3.

使用normalize後,我的best val loss是1.5705,比原先的1.5246差了一點,不過並沒有差很多,我認為這可能跟課堂上所學到的normalize有時可能會提供類似正規化的副效果有關,因為正規化相當於對模型添加一些噪音,所以會使得loss稍微上升,但我認為是值得的,因為觀察損失函數下降的曲線,可以發現加入normalize後,模型收斂的速度有變快,也就是可以讓模型更有效率的學習,可以降低訓練所需要的時間。

4.

在部分實驗設計中,將視窗大小設為小於步長有助於增加資料多樣性與減少重複樣本,提高訓練效率。不過根據前面的實驗,我發現在預測股價時,通常視窗大小通常應大於步長,這樣得到的結果都是比較好的。我認為可能是因為在時間序列的資料上若視窗大小小於步長,無法保留時序連貫性。因此,我認為此設定不一定合適,應視預測任務調整。

5.

有一種叫做時間扭曲的時間序列資料增強方法。透過在時間軸上隨機拉伸或壓縮某些區段,使 模型學會對時間尺度的變異具有更強的泛化能力。例如,在預測股價時,某些短期波動可被扭 曲以模擬市場震盪。這種方式可有效提升模型對於資料變異的容忍度與穩健性。

參考資料: Um, T.T. et al. (2017). Data augmentation of wearable sensor data for Parkinson's disease monitoring using convolutional neural networks. ICMI 2017.

6.

(1)

卷積模型通常是透過滑動視窗來處理資料,輸入長度可以大於等於訓練時的視窗大小,因為卷 積層本來就可以接收不同長度的資料,只是輸出長度會跟著變。因此,只要保證輸入維度正確, 就可以直接丟整段資料進去,不用特別手動切視窗。

(2)

RNN、LSTM、GRU 這種 recurrent models,天生就是一個時間步一個時間步慢慢讀進來的,所以推論時可以處理跟訓練時不同長度的序列。

(3)

Transformer 模型對長度非常敏感。因為它要計算所有 token 之間的 attention,推論時如果太長,可能會出問題或爆記憶體。所以通常做法是:推論時也會限制最大視窗大小(比如訓練時用 512 tokens,推論也限制512),或者用 sliding window 或 chunking 技巧把長序列分段處理。