# 정수와 실수

- 보수와 Overflow
- 부동소수점 실수(IEEE 754)



# 정수



# 정수 리터럴

→ 정수를 표현하는 방법

→소수점 또는 10의 거듭제곱 없이 숫자문자로만 표현된 숫자

즉 소수부분이 없는 숫자 (예: 134)

### 보수: 특정한 수를 만들기 위한 보충해야하는 수

[ 10 진수 ]

19에 대한 9의 보수 (19에 대한 99의 보수) → 99을 만들기 위해 19에 보충해주어야 하는 수 → 80

 9 9

 1 9

 2 0

 8 0

 10의 보수 = 9의 보수 +1

 8 0

빼기의 결과를 더하기를 이용하여 얻기 위해 보수사용

## [2 진수]

0101에 대한 1의 보수 (0101에 대한 1111의 보수)

- → 1111을 만들기 위해 0101에 보충해주어야 하는 수
- **→** 1010

0101에 대한 2의 보수 (0101에 대한 10000의 보수)

- → 10000을 만들기 위해 0101에 보충해주어야 하는 수
- **→** 1011





unsigned ← 4bit 2진수 시스템 → signed

| 15 | 1 | 1 | 1 | 1 |
|----|---|---|---|---|
| 14 | 1 | 1 | 1 | 0 |
| 13 | 1 | 1 | 0 | 1 |
| 12 | 1 | 1 | 0 | 0 |
| 11 | 1 | 0 | 1 | 1 |
| 10 | 1 | 0 | 1 | 0 |
| 9  | 1 | 0 | 0 | 1 |
| 8  | 1 | 0 | 0 | 0 |
| 7  | 0 | 1 | 1 | 1 |
| 6  | 0 | 1 | 1 | 0 |
| 5  | 0 | 1 | 0 | 1 |
| 4  | 0 | 1 | 0 | 0 |
| 3  | 0 | 0 | 1 | 1 |
| 2  | 0 | 0 | 1 | 0 |
| 1  | 0 | 0 | 0 | 1 |
| 0  | 0 | 0 | 0 | 0 |

|       |   |   |   |   | _               |
|-------|---|---|---|---|-----------------|
| 15    | 1 | 1 | 1 | 1 | -1              |
| 14    | 1 | 1 | 1 | 0 | -2              |
| 13    | 1 | 1 | 0 | 1 | • )             |
| 12    | 1 | 1 | 0 | 0 | ] -3            |
| 11    | 1 | 0 | 1 | 1 |                 |
| 10    | 1 | 0 | 1 | 0 |                 |
| 9     | 1 | 0 | 0 | 1 | -7              |
| 8     | 1 | 0 | 0 | 0 | 2의 보수           |
| <br>7 | 0 | 1 | 1 | 1 | 23              |
| 6     | 0 | 1 | 1 | 0 |                 |
| 5     | 0 | 1 | 0 | 1 |                 |
| 4     | 0 | 1 | 0 | 0 |                 |
| 3     | 0 | 0 | 1 | 1 |                 |
| 2     | 0 | 0 | 1 | 0 |                 |
| 1     | 0 | 0 | 0 | 1 |                 |
| 0     | 0 | 0 | 0 | 0 |                 |
|       |   |   |   |   | <br>2의 보수→ 0000 |

| 1 |   |                                                     |                                         |                                                                 |
|---|---|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|
|   | 0 | 1                                                   | 1                                       | 1                                                               |
| - | 0 | 1                                                   | 1                                       | 0                                                               |
|   | 0 | 1                                                   | 0                                       | 1                                                               |
|   | 0 | 1                                                   | 0                                       | 0                                                               |
|   | 0 | 0                                                   | 1                                       | 1                                                               |
|   | 0 | 0                                                   | 1                                       | 0                                                               |
| - | 0 | 0                                                   | 0                                       | 1                                                               |
|   | 0 | 0                                                   | 0                                       | 0                                                               |
|   | 1 | 1                                                   | 1                                       | 1                                                               |
|   | 1 | 1                                                   | 1                                       | 0                                                               |
|   | 1 | 1                                                   | 0                                       | 1                                                               |
|   | 1 | 1                                                   | 0                                       | 0                                                               |
|   | 1 | 0                                                   | 1                                       | 1                                                               |
|   | 1 | 0                                                   | 1                                       | 0                                                               |
|   | 1 | 0                                                   | 0                                       | 1                                                               |
|   | 1 | 0                                                   | 0                                       | 0                                                               |
|   |   | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 | 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 |

### 2의 보수 표현 (4bit)

|    |   |   |   |   |   | _            |    |     |            |      |
|----|---|---|---|---|---|--------------|----|-----|------------|------|
| 7  | , | 0 | 1 | 1 | 1 |              |    |     |            |      |
| 6  |   | 0 | 1 | 1 | 0 |              |    |     |            |      |
| 5  |   | 0 | 1 | 0 | 1 |              |    |     |            |      |
| 4  |   | 0 | 1 | 0 | 0 | <del>(</del> |    | 2   | <b>- 4</b> |      |
| 3  |   | 0 | 0 | 1 | 1 |              |    |     |            |      |
| 2  |   | 0 | 0 | 1 | 0 |              |    | =2  | + (-4      | .)   |
| 1  |   | 0 | 0 | 0 | 1 |              |    |     |            |      |
| 0  |   | 0 | 0 | 0 | 0 | 2의           | 보수 | =0  | 010+1      | 1100 |
| -1 | L | 1 | 1 | 1 | 1 |              |    |     |            |      |
| -2 | 2 | 1 | 1 | 1 | 0 |              |    | =1  | 110        |      |
| -3 | 3 | 1 | 1 | 0 | 1 |              |    | •   |            |      |
| -4 | 1 | 1 | 1 | 0 | 0 | <del>-</del> | J  | = - | -2         |      |
| -5 | 5 | 1 | 0 | 1 | 1 |              |    | _   | _          |      |
| -6 | 6 | 1 | 0 | 1 | 0 |              |    |     |            |      |
| -7 | 7 | 1 | 0 | 0 | 1 |              |    |     |            |      |
| 0  |   | 1 | 0 | 0 | 0 |              |    |     |            |      |

## 4bit 2진수 시스템

### unsigned에는 2의 보수를 반환하는 단항연산자 – 를 사용할 수 없다!!!



## 4bit 2진수 시스템에서 뎟셈과 뺄셈



→ 계산 결과가 4비트로 표현할 수 있는 숫자 범위를 벗어나는 것



## 3+2 = 5

더한 결과 5가 4비트로 표현할 수 있는 숫자 범위(-8~+7)안에 있음
→ No Overflow



#### Overflow 확인 방법

→ 마지막 자리로 올라오는 올림수(carry)와 마지막 자리에서 다음 자리로 올려주는 올림수가 같으면 Overflow가 아니다.!!!



### **Overflow Check with XOR Gate**

Overflow 확인은 논리회로의 XOR 게이트를 이용해서 할 수 있다.

| 2 inp | ut XO | R gate |
|-------|-------|--------|
| A     | В     | A⊕B    |
| 0     | 0     | 0      |
| 0     | 1     | 1      |
| 1     | 0     | 1      |
| 1     | 1     | 0      |





# 7-2=5



#### No Overflow!!



## 4-6=-2



#### No Overflow!!



# -2-5=-7



#### No Overflow!!



## 5+4=-7



#### Overflow !!



## -5-7=+4



### Overflow !!



| 00                                  |   | 양수<br>8+2= |   | 수 | 큰 수-작은 수 <b>=</b> 양수<br>(7-2=7+(-2)=5) |             |   |   |    |  | 작은 수 - 큰 수= 음수<br>(4-6=4+(-6)=-2) |   |             |   |    |  |
|-------------------------------------|---|------------|---|---|----------------------------------------|-------------|---|---|----|--|-----------------------------------|---|-------------|---|----|--|
| carry                               | 0 | 1          | 0 |   | carry                                  | 1           | 1 | 0 |    |  | carry                             | 0 | 0           | 0 |    |  |
|                                     | 0 | 0          | 1 | 1 |                                        | 0           | 1 | 1 | 1  |  |                                   | 0 | 1           | 0 | 0  |  |
| +                                   | 0 | 0          | 1 | 0 | +                                      | 1           | 1 | 1 | 0  |  | +                                 | 1 | 0           | 1 | 0  |  |
| 0                                   | 0 | 1          | 0 | 1 | 1                                      | 0           | 1 | 0 | 1  |  | 0                                 | 1 | 1           | 1 | 0  |  |
| 음수 + 음수= 음수<br>(-2-5=+(-2)+(-5)=-7) |   |            |   |   | ! 양수                                   | + =<br>(5+4 |   |   | 음수 |  | 큰 음수                              |   | 큰 음<br>-7=· |   | 양수 |  |
| carry                               | 1 | 1          | 0 |   | carry                                  | 1           | 0 | 0 |    |  | carry                             | 0 | 1           | 1 |    |  |
|                                     | 1 | 1          | 1 | 0 |                                        | 0           | 1 | 0 | 1  |  |                                   | 1 | 0           | 1 | 1  |  |
| +                                   | 1 | 0          | 1 | 1 | +                                      | 0           | 1 | 0 | 0  |  | +                                 | 1 | 0           | 0 | 1  |  |
| 1                                   | 1 | 0          | 0 | 1 | 0                                      | 1           | 0 | 0 | 1  |  | 1                                 | 0 | 1           | 0 | 0  |  |
|                                     |   |            |   |   |                                        |             |   |   |    |  |                                   |   |             |   |    |  |

# 부동소수점 실수



# 실수 리터럴

→ 실수를 표현하는 방법

→소수점으로 표현된 숫자 (예: 13.4 / 1. / .5)

→10의 거듭제곱으로 표기하는 과학적 표기법이 적용된 숫자

(예: 123E-1 / 1e+3) 알파벳 e 또는 E,대소문자 구분없음

### IEEE 754 부동소수점 표현



#### 정수부분이 1이 되도록 이진수 지수형식으로 표현



메모리에 저장된 값

00 00 20 40