Maker's Day

척추수술 2300만원

Arduino

감압 방석

- . 방석 구현에 필요한 선정리 내설설, 바느질 완료
- . 사람 마다 다른 무게 영점 조절을 위한 스위치, on, off를 위한 슬라이드 스위치 제작 및 코드 작 성 완료
 - 방석에 있는 센서들의 빵판과 보드를 보관하기 위한 (case) 제작 완료
- . 출전 모듈과 배터리 장착 완료(case에 보관)

Arduino

스탠드

- . 조도센서 구멍, 네오픽셀 전선 구멍 구현
- . 스탠드 모델링, 프린팅 완료
- . 각 부품 접착, 사포질 완료
- . 도색 작업 진행 중

Arduino

통신

- . 블루투스 ⇒□ 와이파이 ⇒□ 블루투스
- 블루투스 모듈 오류 원인 파악 및 부품교체
- 아두이노 PC 간 블루투스 통신
- . 아두이노 아두이노 간 블루투스 통신
- . 데이터 송/수신을 위해 코드 업데이트 예정

```
Code = 1 miles a Anthone

The Code = 1 miles and the Code = 1 miles
```

```
White the control of
```

boly [impage_crist = color (metric proteCO[0])

If total (amuse_crists = 0 and body (mause_prot(total (amuse_prot amuse()) >= 7:

- 자세교정을 위한 거북목, 어깨 비대칭 모델 제작 완료
- 자세가 바르면 'good'을 표시하고, 그렇지 않으면 각각 'Textneck', 'Shoulder' 표시
- 자세가 바르지 못할 경우에는, 그 횟수를 세서 금자 옆에 count 횟수를 나타냄
- AI를 학습시킬수록 정확도가 올라감

MI										
lass	50	ýl	21	*2	Sk	22	×3	y3	23	
1.0	0.574625	0.645155	-2,716515	0.613432	0.541128	-2.005490	0.639249	0.540540	-2.666276	
0.0	0.553470	0.509528	-0.966766	0.578971	0.449093	-0.893713	0.593508	0.450831	-0.893681	
0.0	0.558947	0.515051	-0.976771	0.586876	0.458080	-0.891556	0.602352	0.459791	-0.891732	
0.0	0.514702	0.311331	-1.469513	0.542640	0.250202	-1.378310	0.562116	0.251408	-1.378602	
0.0	0.549252	0.420117	-1.490885	0.575709	0.350068	-1.412757	0.590431	0.351519	-1.413012	
1.0	0.581935	0.793034	-3.754220	0.656170	0.674340	-3.753478	0.694430	0.672747	-3.752829	
0.0	0.567253	0.800274	-4.041223	0.650178	0.681071	-4.038610	0.687658	0.678491	-4.038176	
1.0	0.610389	0.679030	-2.702558	0.665414	0.567028	-2.717772	0.703793	0.568688	-2.716740	

EDA 및 전처리

- 상관계수 확인
- → 13 * 4개의 상관계수를 모두 그래프로 표현하기 어려울 것으로 판단.
- -> 각각의 관절 정보에 대한 상관계수를 뽑아내는 stats 모듈의 pearsonr 함수를 만들어 낮은 **상관계수** 들을 판별함.
- => 1-12까지의 관절 정보 중에서 visibility와 거북목 class 사이의 연관성이 없는 것으로 나와 전처리 진행

def angleS(a,b,c): #세 절 AFO(의 각도를 구한다 a,x=np.array(df['x()',format(a)]) #First a v = np.array(df['v()',format(a)])

b_x = np.array(df['x{}'.format(b)]) #Mid b_y = np.array(df['y{}'.format(b)])

c_x = np.array(df['x{}'.format(c)]) c_y = np.array(df['y{}'.format(c)]) #End

#y from endpoint - y form midpoint, x form end - x from mind radians=np.arctan2(c_y-b_y,c_x-b_x) - np.arctan2(a_y-b_y,a_x-b_x) angle=np.ato(radians=180.07np.ni)

for i in range(0,angle.shape(0)): if angle[i]>180.0: angle[i] = 380-angle[i]

angle[i] = 380-angle[i] return pd.Series(angle)

left right angle 상관계수 추가 확인 → 충분히 강력한 상관계수를 가진다.
 for item in ['left_magle','right_magle'];
 orint(item)
 orint('Orrelation:[::2f)',format[stats.pearsonn(X_train[item],y_train[it])])

left_angle Correlation:0.73 right_angle Correlation:0.84

ΑI

EDA 및 전처리

• 각도에 대한 정보 csv에 추가

->원래는 각 관절의 x,y,z좌표만 나타나 있었음. 하지 만, 이전의 실험에서 확인해보았을 때 얼굴에 나타나 는 **각도가 거북목을 판단**하는 데 중요한 지표가 될 것 이라고 판단을 내림

-> 실제로 함수를 만들어 각도 column을 추가해주었고, 80% 내외의 강력한 상관관계를 가지고 있음을 확인함 수 있었음.

- 젯슨나노에서 실행시키기 완료
- CUDA 설치를 통해 실시간 처리 할 예정

FRONT-END

- FIGMA 웹 디자인
- FIGMA DEVMODE기반 코딩
- 페이지 이동 버튼 구현

BACK-END

Node.is 서버 구축

● MySQL DB 생성

● Express, Node.js, MySQL 연동 회원가입, 로그인 구현 PostureTech

무게 중심에 따라

선서 작동

_

기북목 5 목과 어깨 통증 두통

두통 자세의 악화

척추 틀어짐

신경계 문제

통증 및 불편감

호흡 및 소화 문제

위젯 자세 돌어짐을 알려준 1) =

주천영상 통계 로그인

春刈

일병, 주병에 맞춰 개인 통계를 제공

Plan

CSV파일 수집, 통신, CUDA 세팅 완료
MODEL 배포
TEST
검증
모니터링 및 유지보수, PPT제작 시작
PPT제작 완료
발표 연습 및 마무리
최종발표

Thank you