Course Project

Modeling of MOS Transistor using Verilog-A in QUCS

Name: Ritesh Jha Roll No: EE24M059

Course: MOS Device Modelling (EE5341)

1. Abstract

This project implements and analyzes a Level-3 DC MOSFET model using Verilog-A. Both n-channel and p-channel devices are modeled, and their output and transfer characteristics are obtained under varying conditions of channel-length modulation (λ). Furthermore, a CMOS inverter composed of these devices is simulated to observe its voltage transfer characteristics. The influence of λ on device behavior and inverter performance is validated through comparative analysis.

2. Introduction

MOSFET modeling plays a crucial role in predicting circuit performance prior to fabrication. The Level-3 MOS model provides an enhanced physical representation over the Level-1 and Level-2 models by incorporating effects such as body bias and channel-length modulation while maintaining computational simplicity. In this project, the Verilog-A implementation of a Level-3 model is used to simulate DC characteristics for n-MOS and p-MOS devices. Subsequently, a CMOS inverter is analyzed to study how λ affects the voltage transfer curve and output swing.

3. Objectives

- 1. To implement the model using Verilog-A for circuit-level simulation.
- 2. To simulate and verify the device's I–V characteristics in QUCS.

4. Simulation Setup

4.1 Software Used

• Verilog-A modeling & waveform plotting : Ques Studio

4.2 Parameters Used

Parameter	n-MOS	p-MOS
W (µm)	5	10
L (µm)	0.2	0.25
VTO (V)	0.4	-0.4
$KP(A/V^2)$	5×10 ⁻⁴	2.5×10 ⁻⁴
GAMMA (V½)	0.5	0.5
PHI (V)	0.45	0.45
LAMBDA (V ⁻¹)	0, 0.1	0, 0.1
Temperature (K)	300	300

5. Methodology

5.1 n-Channel MOSFET Characteristics

Figure.1 Schematic for NMOS Level-3 Model

(i) Output Characteristics (ID-VDS):

Plotted for VGSV_{GS}VGS = $0.5 \text{ V} \rightarrow 1.5 \text{ V}$ (step 0.3 V), VBS= 0VV_{BS} =0 V.

The curves exhibit the expected quadratic rise in the linear region, followed by current saturation at higher VDSV {DS} VDS .

Increasing λ introduces finite slope in the saturation region due to channel-length modulation.

Figure.2(a) Id vs Vds plot for $\lambda=0$

Figure 2(b) Id vs Vds plot for λ =0.1

(ii) Transfer Characteristics (ID-VGS):

Simulated at VDSV_{DS} VDS = $0.1 \text{ V} \rightarrow 1.3 \text{ V}$ in steps of 0.4 V. The threshold voltage ($\sim 0.4 \text{ V}$) marks the onset of conduction. The higher VDSV_{DS} VDS values produce larger drain currents as expected.

Figure 2(c) Id vs Vgs plot for λ =0

Figure 2(d) Id vs Vgs plot for λ =0.1

5.2 p-Channel MOSFET Characteristics

Similar plots were generated for the p-MOS device. The characteristics mirror those of the n-MOS but with reversed polarity. The inclusion of $\lambda = 0.1 \text{ V}^{-1}$ produces the same qualitative slope increase in the saturation region.

Figure.3 Schematic for PMOS Level-3 Model

(i) Output Characteristics (ID-VDS):

Plotted for VGSV_{GS}VGS = $0.5 \text{ V} \rightarrow 1.5 \text{ V}$ (step 0.3 V), VBS= 0VV_{BS} =0 V.

The curves exhibit the expected quadratic rise in the linear region, followed by current saturation at higher VDSV {DS}VDS .

Increasing λ introduces finite slope in the saturation region due to channel-length modulation.

Figure.4(a) Id vs Vds plot for λ =0

Figure.4(b) Id vs Vds plot for λ =0.1

(ii) Transfer Characteristics (ID-VGS):

Simulated at VDSV_{DS} VDS = $0.1 \text{ V} \rightarrow 1.3 \text{ V}$ in steps of 0.4 V. The threshold voltage ($\sim 0.4 \text{ V}$) marks the onset of conduction. The higher VDSV_{DS} VDS values produce larger drain currents as expected.

Figure.4(c) Id vs Vgs plot for λ =0

Figure.4(d) Id vs Vgs plot for λ =0.1

6. CMOS Inverter Analysis

A CMOS inverter was constructed using the above n-MOS and p-MOS transistors. The input voltage was swept from 0 V to 1.5 V with supply VDD=1.5VV_{DD}=1.5 VVDD =1.5V.

For $\lambda = 0.01~V^{-1}$, the inverter exhibits a sharp transition with high gain and symmetric switching threshold.

When $\lambda = 0.1 \text{ V}^{-1}$, the finite output resistance of both transistors causes degraded logic levels and a reduced noise margin.

Figure.5 Schematic of CMOS Inverter Using Level-3 Model

Figure.6 Vout vs Vin plot for varying λ

7. Conclusion

In this project, Level-3 MOSFET models for n-channel and p-channel devices were implemented using Verilog-A, and a CMOS inverter was analyzed under varying channel-length modulation (λ). The following conclusions can be drawn:

Effect of λ on NMOS and PMOS devices:

- For $\lambda = 0$, the drain current (ID) reaches saturation at high VDS values, showing ideal flat saturation regions in the output characteristics (ID–VDS).
- For $\lambda = 0.1$, the drain current increases slightly with VDS in the saturation region, indicating non-zero output conductance due to channel-length modulation.
- Transfer characteristics (ID–VGS) remain qualitatively similar for both λ values, but the absolute current in saturation increases with higher λ .
- Overall, increasing λ introduces a more realistic representation of short-channel effects, with the slope in the saturation region reflecting finite output resistance.

CMOS inverter behavior:

- For $\lambda = 0.01$, the inverter exhibits a sharp voltage transfer curve (VTC) with near-ideal logic levels and high switching gain. The output switches cleanly between logic high and low.
- For $\lambda = 0.1$, the VTC shows a slightly reduced gain and a less ideal transition region due to increased drain currents in saturation. The logic levels remain functional but output resistance affects the slope and switching sharpness.
- The comparison shows that higher λ values reduce the output resistance of transistors, affecting inverter performance and slightly degrading noise margins.

General observations:

- Channel-length modulation is an important factor in short-channel MOSFET modeling, as it directly impacts saturation current, output resistance, and inverter switching behavior.
- Level-3 MOS models successfully capture these effects while maintaining computational simplicity, making them suitable for both device-level and circuitlevel simulations.