GEOMETRIC QUANTISATION OF HYPERTORIC MANIFOLDS BY SYMPLECTIC CUTTING

GENERAL NOTES

ABSTRACT

Lorem ipsum.

1 Introduction

Lorem ipsum.

2 Hyperkähler Reduction and Hyperkähler Analogues

2.1 Introduction and Definitions

A hyperkähler manifold is a Riemannian manifold (M,g) equipped with three orthogonal, parallel complex structures J_1, J_2, J_3 , satisfying the usual quaternion relations. These three complex structures give rise to three symplectic forms

$$\omega_1(v, w) = g(J_1v, w), \quad \omega_2(v, w) = (J_2v, w), \quad \omega_3(v, w) = g(J_3v, w),$$

so that each (g,J_i,w_i) is in its own right a Kähler structure on M for i=1,2,3. The complex-valued two-form $\omega_2+\sqrt{-1}\omega_3$ is a closed, non-degenerate, and holomorphic two-form with respect to the complex structure J_1 . Thus any hyperkähler manifold can be considered as a holomorphic symplectic manifold with complex structure J_1 , real symplectic form $\omega_{\mathbb{R}}:=\omega_1$, and holomorphic symplectic form $\omega_{\mathbb{C}}:=\omega_2+\sqrt{-1}\omega_3$.

An action of a Lie group G on a hyperkähler manifold M is called *hyperhamiltonian* if it is hamiltonian with respect to $\omega_{\mathbb{C}}$, and holomorphic hamiltonian with respect to $\omega_{\mathbb{C}}$, with a G-equivariant moment map

$$\mu_{HK} := \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} \longrightarrow \mathfrak{g}^* \oplus \mathfrak{g}_{\mathbb{C}}^*.$$

The following theorem describes the *hyperkähler quotient* construction, which is the quaternionic analogue of a Kähler quotient:

Theorem 2.1 ([1]). Let M be a hyperkähler manifold equipped with a hyperhamiltonian action of a compact Lie group G, with moment maps μ_1, μ_2, μ_3 . Suppose that $\xi = \xi_{\mathbb{R}} \oplus \xi_{\mathbb{C}}$ is a central regular value for μ_{HK} , and that G acts freely on $\mu_{HK}^{-1}(\xi)/G$. Then there is a unique hyperkähler structure on the hyperkähler quotient $\mathfrak{M} = M$ $////_{\xi} G := \mu_{HK}^{-1}(\xi)/G$, with associated symplectic and holomorphic symplectic forms $\omega_{\mathbb{R}}^{\xi}$ and $\omega_{\mathbb{C}}^{\xi}$, such that $\omega_{\mathbb{R}}^{\xi}$ and $\omega_{\mathbb{C}}^{\xi}$ pull-back to the restrictions of $\omega_{\mathbb{R}}$ and $\omega_{\mathbb{C}}$ on $\mu_{HK}^{-1}(\xi)$.

In general, the action of G on $\mu_{HK}^{-1}(\xi)$ will not be free, but only locally free. In this situation, we would end up with a *hyperkähler orbifold*. However in the sequel, we shall only concern ourselves when the action is free, and that $\mathfrak M$ is smooth, *i.e.* a manifold.

Let us specialise to the case when $M=T^*\mathbb{C}^n$, and let G act on $T^*\mathbb{C}^n$ with the induced action from a linear action of G on \mathbb{C}^n , with moment map $\mu:\mathbb{C}^n\to\mathfrak{g}^*$. We can identify \mathbb{H}^n with $T^*\mathbb{C}^n$ such that the complex structure J_1 on \mathbb{H}^n is given by right multiplication by i, and that J_1 corresponds to the natural complex structure on $T^*\mathbb{C}^n$. With this identification in mind, $T^*\mathbb{C}^n$ inherits a hyperkähler structure. The real symplectic form $\omega_{\mathbb{R}}$ is obtained from the sum of the pull-backs of the standard Kähler forms on \mathbb{C}^n and $(\mathbb{C}^n)^*$, and the holomorphic symplectic form $\omega_{\mathbb{C}}$ is $\omega_{\mathbb{C}}=d\eta$, where η is the canonical holomorphic one-form on $T^*\mathbb{C}^n$.

As G acts \mathbb{H}^n -linearly on $T^*\mathbb{C}^n \cong \mathbb{H}^n$ from the left, the action is hyperhamiltonian with moment map $\mu_{HK} = \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}}$, where

$$\mu_{\mathbb{R}}(z, w) = \mu(z) - \mu(w), \quad \text{and} \quad \mu_{\mathbb{C}}(z, w)(\hat{v}_z),$$

where $w \in T_z^* \mathbb{C}^n$, $v \in \mathfrak{g}_{\mathbb{C}}$, and \hat{v}_z is the vector field in $T_z \mathbb{C}^n$ induced by v. For a central element $\alpha \in \mathfrak{g}^*$, we call the specialised hyperkähler quotient

$$\mathfrak{M} = T^* \mathbb{C}^n /\!\!/\!\!/_{(\alpha,0)} G := \left(\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0)\right)/G$$

the hyperkähler analogue of the corresponding Kähler quotient,

$$\mathfrak{X} = \mathbb{C}^n /\!\!/_{\alpha} G = \mu^{-1}(\alpha)/G.$$

We quote the following propositions without proof:

Proposition 2.2. Suppose that α and $(\alpha, 0)$ are regular values for μ and μ_{HK} , respectively. Then the cotangent bundle $T^*\mathfrak{X}$ is isomorphic to an open subset of \mathfrak{M} , and is dense if it is non-empty.

2.2 The C*-Action and the Core of a Hyperkähler Analogue

Consider the action of \mathbb{C}^* on $T^*\mathbb{C}^n$ given by

$$\hbar \cdot (z, w) = (z, \hbar w),$$

i.e. by scalar multiplication of the cotangent fibre. The holomorphic moment map $\mu_{\mathbb{C}}: T^*\mathbb{C}^n \to \mathfrak{g}_{\mathbb{C}}^*$ is \mathbb{C}^* -equivariant with respect to the scalar action on $\mathfrak{g}_{\mathbb{C}}^*$, and hence the \mathbb{C}^* -action descends to $\mu_{\mathbb{C}}^{-1}(0)$. Further, this \mathbb{C}^* -action commutes with the linear action of G on \mathbb{C}^n , and consequently the action of \mathbb{C}^* is J_1 -holomorphic on $\mathfrak{M} = (\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0))/G$. However, the \mathbb{C}^* -action does not preserve the holomorphic symplectic form nor the hyperkähler structure on \mathfrak{M} ; rather it scales $\mu_{\mathbb{C}}$ with "homogeneity one", i.e. $\hbar^*\omega_{\mathbb{C}} = \hbar\omega_{\mathbb{C}}$ for any $\hbar \in \mathbb{C}^*$.

Given that \mathfrak{M} is smooth, the action of the compact subgroup $S^1 \subset \mathbb{C}^*$ is hamiltonian with respect to the real symplectic two-form $\omega_{\mathbb{R}}$, with corresponding moment map $\Phi[z,w]=\frac{1}{2}\|w\|^2$. This map is a perfect Morse-Bott function, and its image is contained in $\mathbb{R}_{\geq 0}$. Further, we note that $\Phi^{-1}(0)=\mathfrak{X}\subset \mathfrak{M}$. The following proposition will be instrumental in the sequel, though again we quote it without proof:

Proposition 2.3. If the original moment map for the G-action on \mathbb{C}^n , $\mu: \mathbb{C}^n \to \mathfrak{g}^*$, if proper, then so is the moment map for the S^1 action, $\Phi: \mathfrak{M} \to \mathbb{R}_{\geq 0}$.

Next we shall define what is known as the *core* of a hyperkähler analogue, which will be essential in describing the fixed points of the \mathbb{C}^* -action of \mathfrak{M} .

Definition 2.4. Suppose that \mathfrak{M} is smooth and Φ is proper. The core $\mathcal{L} \subset \mathfrak{M}$ of the hypertoric variety is defined to be the union of the \mathbb{C}^* orbits whose closures are compact.

Let F be a connected component of $\mathfrak{M}^{S^1} = \mathfrak{M}^{\mathbb{C}^*}$, and let U_F be the closure of the set of points $p \in \mathfrak{M}$ such that $\lim_{h \to \infty} h \cdot p \in F$.

Proposition 2.5 ([?]; Proposition 2.8). *The core* $\mathcal{L} \subset \mathfrak{M}$ *has the following properties:*

- 1. \mathcal{L} is an S^1 -equivariant deformation retract of M;
- 2. U_F is isotropic with respect to the holomorphic symplectic form $\omega_{\mathbb{C}}$;
- 3. Provided that \mathfrak{M} is smooth at F, then $\dim U_F = \frac{1}{2} \dim \mathfrak{M}$.

3 Hypertoric Manifolds

3.1 Definition

In this section, we shall specialise further now to when a hyperkähler analogue \mathfrak{M} is the analogue to a toric symplectic manifold $\mathfrak{X} = \mu^{-1}(\alpha)/N$, i.e. we replace the compact Lie group G with the torus $N = \ker(\pi: T^n \to T^d)$, using the same notation as in the second chapter.

Recall the short exact sequence of tori:

$$1 \longrightarrow N \stackrel{i}{\longleftrightarrow} T^n \stackrel{\pi}{\longrightarrow} T^d \longrightarrow 1.$$

and extend the linear action of the torus N on \mathbb{C}^n to $T^*\mathbb{C}^n$. This action is trihamiltonian and we obtain the following hyperkähler moment map

$$\mu_{HK} = \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} : T^* \mathbb{C}^n \longrightarrow \mathfrak{n}^* \oplus \mathfrak{n}_{\mathbb{C}}^*,$$

where

$$\mu_{\mathbb{R}}(z,w)=i^*\bigg(\frac{1}{2}\sum_{i=1}^n(|z_i|^2-|w_i|^2)\partial_i\bigg),\quad\text{and}\quad\mu_{\mathbb{C}}(z,w)=i^*_{\mathbb{C}}\bigg(\sum_{i=1}^n(z_iw_i)\partial_i\bigg).$$

Given an element $\alpha \in \mathfrak{n}^*$ with a corresponding lift $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^n)^*$, the Kähler quotient

$$\mathfrak{X} = \mathbb{C}^n /\!\!/_{\alpha} N = \mu^{-1}(\alpha)/N$$

is our usual toric symplectic manifold with residual T^d -action from before, and moreover its hyperkähler analogue

$$\mathfrak{M} = T^* \mathbb{C}^n / / / (\alpha,0) N = \left(\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0) \right) / N$$

is what we shall call a hypertoric manifold¹. The hypertoric manifold \mathfrak{M} also admits a residual action of the torus T^d , which is hyperhamiltonian with hyperkähler moment map

$$\phi_{HK} := \phi_{\mathbb{R}} \oplus \phi_{\mathbb{C}} : \mathfrak{M} \longrightarrow (\mathbb{R}^d)^* \oplus (\mathbb{C}^d)^*,$$

where

$$\phi_{\mathbb{R}}[z,w] = \frac{1}{2} \sum_{i=1}^{n} (|z_i|^2 - |w_i|^2 - \lambda_i) \partial_i \in \ker(i^*) = (\mathbb{R}^d)^*,$$

$$\phi_{\mathbb{C}}[z,w] = \sum_{i=1}^{n} (z_i w_i) \partial_i \in \ker(i_{\mathbb{C}}^*) = (\mathbb{C}^d)^*.$$

3.2 Hyperplane Arrangements

A fundamental difference between the toric manifold $\mathfrak X$ and the hypertoric manifold $\mathfrak M$ is that the hyperkähler moment map for $\mathfrak M$ is surjective, and that $\mathfrak M$ is non-compact. Despite this, we can still describe the image of the real moment map $\phi_{\mathbb R}: \mathfrak M \to (\mathbb R^d)^*$ combinatorially by means of a hyperplane arrangement. To describe this arrangement, recall that the map $\pi: \mathbb R^n \to \mathbb R^d$ was defined by $\pi(e_i) = u_i$, for $i = 1, \ldots, n$, where the u_i were the primitive, integral, inward-pointing normal vectors to the hyperplanes that determined our Delzant polytope. In the hypertoric case, they instead now describe a collection of affine hyperplanes $H_i \subset (\mathbb R^d)^*$ as follows: consider

$$H_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i = 0 \},$$

so that the $u_i \in \mathbb{Z}^d$ is the normal vector to the hyperplane H_i . The hyperplane H_i divides $(\mathbb{R}^d)^*$ into two half-spaces

$$F_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i \ge 0 \},$$

$$G_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i \le 0 \}.$$

Let

$$\Delta = \bigcap_{i=1}^n F_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i \ge 0, \text{ for all } i = 1, \dots, n \}$$

be the (possibly empty) polyhedron in $(\mathbb{R}^d)^*$ defined by the affine hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_n\}$. We note that choosing a different lift λ' of α corresponds combinatorially to translating the arrangement \mathcal{A} inside of $(\mathbb{R}^d)^*$, and geometrically to shifting the Kähler and hyperkähler moment maps for the residual T^d -action by $\lambda' - \lambda \in \ker(i^*) = (\mathbb{R}^d)^*$.

We shall call that the arrangement A simple if every subset of m hyperplanes with non-empty intersection intersects with codimension m, and call A smooth if every collection of d linearly-independent vector $\{u_{i_1}, \ldots, u_{i_d}\}$ spans $(\mathbb{R}^d)^*$. The reason for this terminology is the following proposition.

Proposition 3.1. The hypertoric variety \mathfrak{M} is an orbifold if and only if A is simple, and \mathfrak{M} is smooth if and only if A is smooth.

As we wish to restrict our attention to the case where \mathfrak{M} is a manifold, we shall assume in the sequel that \mathcal{A} is a smooth arrangement of hyperplanes.

 $^{^{1}}$ More generally, \mathfrak{M} should be called a hypertoric variety, and only call \mathfrak{M} a manifold when it is smooth. However, we shall restrict our attention to the smooth case for simplicity.

3.3 The Core of a Hypertoric Manifold

The holomorphic moment map $\phi_{\mathbb{C}}: \mathfrak{M} \to (\mathbb{C}^d)^*$ is \mathbb{C}^* -equivariant with respect to the scalar action of \mathbb{C}^* on $(\mathbb{C}^d)^*$, hence both the core \mathcal{L} and the fixed-point set $M^{\mathbb{C}^*}$ will be contained in

$$\mathcal{E} := \phi_{\mathbb{C}}^{-1}(0) = \left\{ [z, w] \in \mathfrak{M} : z_i w_i = 0, \ 1 \le i \le n \right\}.$$

Definition 3.2. We shall call \mathcal{E} the extended core of \mathfrak{M} .

The restriction of $\phi_{\mathbb{R}}|_{\mathcal{E}}: \mathcal{E} \to (\mathbb{R}^d)^*$ is surjective from the defining equations, and further the extended core naturally breaks up into components

$$\mathcal{E}_A := \Big\{ [z,w] \in \mathcal{E} : w_i = 0 \text{ for all } i \in A \text{ and } z_i = 0 \text{ for all } i \not\in A \Big\},$$

where $A \subseteq \{1, ..., n\}$ is an indexing set. The hyperplanes $\{H_i\}_{i=1}^n$ divide $(\mathbb{R}^d)^*$ into a union of convex polyhedra

$$\Delta_A = \left(\bigcap_{i \in A} F_i\right) \cap \left(\bigcap_{i \notin A} G_i\right),\,$$

some of which may be empty. Note that $\mathcal{E}_{\emptyset} = \mathfrak{X}$ and that in general, each variety \mathcal{E}_A is a d-dimensional Kähler subvariety of \mathfrak{M} with an effective Hamiltonian T^d -action, so is itself a toric variety.

Lemma 3.3. If $w_i = 0$ then $\operatorname{Im}(\phi_{\mathbb{R}}) \subseteq F_i$, and if $z_i = 0$ then $\operatorname{Im}(\phi_{\mathbb{R}}) \subseteq G_i$.

Proof. Let $y \in (\mathbb{R}^d)^*$ be the image of the moment map $\phi_{\mathbb{R}}$ for a point $[z, w] \in \mathcal{E}$, then

$$y \cdot u_i + r_i = \mu_{\mathbb{R}}(z, w) \cdot e_i = \frac{1}{2} (|z_i|^2 - |w_i|^2),$$

and hence $y \ge 0$ if $i \in A$, and $y \le 0$ if $i \notin A$.

Lemma 3.4. The component \mathcal{E}_A of the extended core is isomorphic to the toric variety corresponding to the polytope Δ_A .

The S^1 -action does not act as a subtorus of T^d on $\mathfrak M$ globally, but does when restricted to each individual component $\mathcal E_A$ of the extended core. Consider a component $\mathcal E_A\subset \mathcal E$, then for some $[z,w]\in \mathcal E_A$ and $\tau\in S^1$,

$$\tau \cdot [z, w] = [z, \tau w] = [\tau_1 z_1, \dots, \tau_n z_n | \tau_i^{-1} w_1, \dots, \tau_n^{-1} w_n], \quad \text{where } \tau_i = \begin{cases} \tau^{-1} & \text{if } i \in A, \\ 1 & \text{if } i \notin A, \end{cases}$$

since for each pair (z_i, w_i) , if $i \in A$ then $(\tau z_i, \tau^{-1} w_i) = (0, \tau w_i)$, and if $i \notin A$, then $(\tau z_i, \tau^{-1} w_i) = (z_i, 0)$.

Thus when restricting our attention to each individual component \mathcal{E}_A of the extended core, the S^1 -action acts on \mathcal{E}_A via an inclusion homomorphism onto a one-parameter subgroup of T^n , which consequently then descends to a T^d -action after taking the quotient of T^n by K.

Let us denote the restricted action of the image of S^1 in T^d to \mathcal{E}_A by S^1_A ,

$$S^1 \stackrel{j_A}{\longleftarrow} T^n \stackrel{\pi}{\longrightarrow} S^1_A < T^d$$

$$\tau \longmapsto (\tau_1^{-1}, \dots, \tau_n^{-1}) \longmapsto v_A := \sum_{i \in A} u_i$$

where we have denoted the generator of the one-parameter subgroup S_A^1 in T^d by $v_A = \sum_{i \in A} u_i$.

Example 1. For $\mathfrak{M} = T^*\mathbb{CP}^2$,

Example 2. For \mathfrak{M} whose core consists of two \mathbb{CP}^2 intersecting at a point, so that the image of the real moment map is non-convex (todo)

Figure 1: Combinatorics of the action of the residual S^1 -action on the extended core \mathcal{E}_A of $T^*\mathbb{CP}^2$, represented by each generator v_A of S^1_A in T^2 .

Figure 2: Combinatorics of the action of the residual S^1 -action when the core consists of two non-convex components.

4 Compactifying the Hypertoric Variety via Symplectic Cutting

We will use the S^1 -action to perform a symplectic cut of the toric hyperkähler manifold \mathfrak{M} to compactify it, which has the effect of bounding the $\|w\|^2$ norm component of $\bar{\mu}_{\mathbb{R}}$ by above, and discarding the rest that lies above this bound. Consider the product $\mathfrak{M} \times \mathbb{C}$, and let S^1 act on $\mathfrak{M} \times \mathbb{C}$ via the diagonal product action, i.e. S^1 acts on M by rotating the cotangent fibre coordinates, and on \mathbb{C} in the standard way:

$$e^{i\theta} \cdot ([z, w], \xi) = (e^{i\theta} \cdot [z, w], e^{i\theta} \xi) = ([z, e^{i\theta} w], e^{i\theta} \xi).$$

This action is Hamiltonian, and the corresponding moment map $\Phi: \mathfrak{M} \times \mathbb{C} \to \mathbb{R}_{>0}$ for the S^1 -action is

$$\Phi([z, w], \xi) = \phi[z, w] + |\xi|^2 = ||w||^2 + |\xi|^2.$$

Then we have

$$\begin{split} \Phi^{-1}(\epsilon) &= \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \|w\|^2 + |\xi|^2 = \epsilon \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : |\xi| = \pm \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \xi = e^{i\arg(\xi)} \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \phi^{-1}(\epsilon) \bigsqcup \left(\mathfrak{M} \times S^1 \right) \\ &=: \Sigma_1 \sqcup \Sigma_2, \end{split}$$

where we denote the level-set $\phi^{-1}(\epsilon) \subseteq \mathfrak{M}$ by Σ_1 , and $\Sigma_2 \cong \mathfrak{M} \times S^1$ is the trivial S^1 -bundle over Σ_2 given by the globally defined section

$$\mathfrak{M} \to \mathfrak{M} \times S^1$$
, $[z, w] \longmapsto ([z, w], e^{i\theta} \sqrt{\epsilon - ||w||^2})$, $e^{i\theta} \in S^1$.

Finally, taking the symplectic reduction of $\Phi^{-1}(\epsilon)$ with respect to the S^1 -action, we obtain the symplectic cut of \mathfrak{M} at level- ϵ ,

$$M_{\leq \epsilon} := \Phi^{-1}(\epsilon)/S^1 = \Sigma_1/S^1 \mid \Sigma_2/S^1,$$

where $\Sigma_1/S^1 \cong \phi^{-1}(\epsilon)/S^1$ is just the usual symplectic reduction, and where Σ_2/S^1 is diffeomorphic to \mathfrak{M} for $||w||^2 < \epsilon$, which we will denote by $\mathfrak{M}_{<\epsilon}$.

4.1 The Combinatorics of the Cut Space, $\mathfrak{M}_{<\epsilon}$

Since the residual circle S^1 -action acts as a subtorus S^1_A of the residual torus T^d on each component \mathcal{E}_A of the extended core, the hyperplane arrangement determined in $(\mathfrak{t}^d)^*$ by the real moment map $\bar{\mu}_{\mathbb{R}}$ is compactified by dropping in half-spaces with an inwards-pointing normal vector, given by v_A when taking the cut.

Recall from the previous section that $j_A: S_1 \hookrightarrow T^n$ denoted the inclusion homomorphism of S^1 into the big torus T^n . let $j_A: \mathfrak{s}^1 \to \mathbb{R}^n$ be the derivative of the inclusion of S^1 into T^n on the Lie algebra level, that is

$$j_A(\xi) = (\xi_1, \dots, \xi_n), \quad \text{where } \xi_i = \begin{cases} -1 & \text{if } i \in A, \\ 0 & \text{if } i \notin A, \end{cases}$$

so that its image in \mathbb{R}^n generates a circle subgroup S^1 in T^n that depends on each component \mathcal{E}_A . Then the moment map for this restriction for the S^1 -action is

$$\Phi[z,w] = j_A^* \circ \mu_{\mathbb{R}}[z,w] = \left\langle \mu_{\mathbb{R}}(z,w), \sum_{i \in A} \xi_i u_i \right\rangle,$$

and so from our above discussion of how we constructed the symplectic cut, the image in $(\mathbb{R}^d)^*$ of the symplectic quotient $\Phi^{-1}(\epsilon)/S^1$ is

$$\phi_{\mathbb{R}}(\Phi^{-1}(\epsilon)) = \left\{ y \in \Delta_A : \left\langle y, \sum_{i \in A} \xi_i u_i \right\rangle + \epsilon = 0 \right\} =: H_A$$

which introduces an inward-pointing half-space

$$F_A := \left\{ y \in \Delta_A : \left\langle y, \sum_{i \in A} \hbar_i u_i \right\rangle + \epsilon \ge 0 \right\}$$

such that the image of the extended core component \mathcal{E}_A after being compactified is the original convex polytope Δ_A intersected with H_A . One can also see clearly that the symplectic quotient $\Phi^{-1}(\epsilon)/S^1$ has the restricted S^1 -action as its stabiliser subgroup since, by definition of H_A , the moment map $\Phi|_{\mathcal{E}_A}$ equals the hyperplane H_A , i.e. $\Phi|_{\mathcal{E}_A}$ is constant along $\Phi^{-1}(\epsilon)/S^1$.

Remark 1. If we had used instead the following action for S^1

$$e^{i\theta} \cdot ([z, w], \xi) = ([z, e^{i\theta}w], e^{-i\theta}\xi)$$

with respective moment map

$$\mu_{\mathrm{cut}}([z,w],\xi) = \frac{1}{2}\|w\|^2 - \frac{1}{2}|\xi|^2 - \epsilon,$$

and taken the cut, then the resulting then we would obtain the other "discarded half" $\mathfrak{M}_{>\epsilon}$ of the hypertoric manifold \mathfrak{M} along with the symplectic quotient $\Phi^{-1}(\epsilon)/S^1$ with the opposite orientation:

$$\mathfrak{M}_{\geq \epsilon} = \mathfrak{M}_{> \epsilon} \bigsqcup \Big(- (\Phi^{-1}(\epsilon)/S^1) \Big).$$

The component M_{ϵ} is non-compact however, so we focus on $M_{\leq \epsilon}$.

The following two figures show the resulting moment polytope after compactification, for the hypertoric varieties $T^*\mathbb{CP}^2$ and $T^*\mathbb{CP}^3$.

References

[1] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyper-Kähler metrics and supersymmetry. *Comm. Math. Phys.*, 108(4):535–589, 1987.