1 Обработка данных

Снимем зависимость резонансной частоты от емкости конденсатора. Входное напряжение $U_0=100\,$ мВ. Резонансную частоту будем измерять двумя способами: в режиме развертки и по фигурам Лиссажу (в режиме резонанса наблюдаем вырожденный эллипс). $\nu_{\rm pes1}$ – частота по фигурам Лиссажу, $\nu_{\rm pes2}$ – по развертке.

U_0 мВ	U_c мВ	$ u_{ m pes1}$ к Γ ц	$ u_{ m pes2}$ к Γ ц	Т мкс	$(T/2\pi)^2$	C н Φ
100	286	23,77	23,56	42	44,7	47,9
100	230	21,5	21,25	47	56,0	57,4
100	192	19,98	19,72	51	66,0	66,7
100	152,5	18,07	17,74	56	79,5	82,1
100	124	16,45	16,19	62	97,0	99,6

Построим график зависимости величины $(T/2\pi)^2$ от емкости. В соответствии с формулой $T=2\pi\sqrt{LC}$ по угловому коэффициенту найдем индуктивность.

$$L = \Gamma_{\rm H}$$

Снимем амплитудно-частотную характеристику для двух значений емкости $C_1=47.9$ нФ ($\nu_{\rm pes}=235.6$ кГц) и $C_2=99.6$ нФ ($\nu_{\rm pes}=235.6$ кГц). Входное напряжение $U_0=100$ мВ.

ν , к Γ ц	U_c , мВ	$A = \sqrt{2}U_c$
14,15	42,0	59,39
16,45	44,2	62,50
18,83	52,7	74,53
21,22	82,8	117,09
22,35	131,0	185,26
23,00	207,0	292,74
23,56	286,0	404,47
24,05	227,0	321,03
24,78	120,0	169,71
25,90	58,0	82,024
28,20	26,5	37,48
31,00	10,0	14,14

ν , к Γ ц	U_c , мВ	$A = \sqrt{2}U_c$
10,68	47,0	66,47
12,40	47,1	66,61
14,20	51,6	72,97
16,00	71,6	101,26
17,80	99,6	140,86
19,56	36,7	51,90
21,30	9,7	13,72