The Grothendieck Construction for Double Categories

Martin Szyld¹ joint work with Marzieh Bayeh² and Dorette Pronk¹

¹Dalhousie University

²University of Ottawa

University of Ottawa Logic Seminar, Oct 22, 2020

Double Categories, the concise and the expanded definition

A double category is an internal category in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\circ} C_1 \xrightarrow{s \atop t} C_0$$
.

- It has
 - objects (objects of C₀),
 - vertical arrows (arrows of C_0), denoted $A \xrightarrow{u} A'$,
 - horizontal arrows (objects of C_1), denoted $A \xrightarrow{f} B$,
 - double cells (arrows of C₁), denoted

Compositions and identities

- Since C_0 is a category, we have vertical compositions $u' \bullet u : A \stackrel{u}{\longrightarrow} A' \stackrel{u'}{\longrightarrow} A''$ and identities $A \stackrel{id_A}{\longrightarrow} A$.
- ullet Since C_1 is a category too, we have vertical compositions (pastings)

Compositions and identities

Since $C_1 \times_{C_0} C_1 \xrightarrow{\circ} C_1 \xleftarrow{1} C_0$ are functors:

- horizontal arrows form a category too, we have thus $g \circ f : A \xrightarrow{f} B \xrightarrow{g} C$ and identities $A \xrightarrow{1_A} A$.
- double cells can also be pasted horizontally

Middle four interchange

Since $C_1 \times_{C_0} C_1 \stackrel{\circ}{\longrightarrow} C_1$ is a functor, it commutes with composition. That means that given two arrows of $C_1 \times_{C_0} C_1$

we have
$$(\beta' \circ \alpha') \bullet (\beta \circ \alpha) = (\beta' \bullet \beta) \circ (\alpha' \bullet \alpha)$$

Examples

- **1** A 2-category can be defined as a double category in which every horizontal arrow is an identity. It has 2-cells $\alpha: v \Longrightarrow u$.
- ② For any 2-category \mathcal{C} , $\mathbb{Q}(\mathcal{C})$ is the double category of quintets in \mathcal{C} ,

with double cells $u
ightharpoonup \frac{f}{\alpha}
ightharpoonup v for each <math>\alpha : vf \Rightarrow gu \text{ in } \mathcal{C}.$

- **1** More generally, if Σ is a 1-subcategory of \mathcal{C} , in $\mathbb{Q}^{\Sigma}(\mathcal{C}) \subseteq \mathbb{Q}(\mathcal{C})$ we require the horizontal arrows to be in Σ . $(\mathbb{Q}^{\{id\}}(\mathcal{C}) = \mathbb{V}(\mathcal{C}))$
- **5** The double category $\mathbb{H}(\mathcal{C})$ is defined analogously.

The category **DblCat** - Definition

The category **DblCat** of double categories has:

- objects: double categories $\mathbb{C}, \mathbb{D}, \ldots$;
- arrows: double functors F, G, . . .;
- transformations: these come in two flavors:
 - a horizontal transformation $\gamma \colon F \Rightarrow G$ is given by

functorial in the vertical direction and natural in the horizontal direction.

- vertical transformations $\nu \colon F \Longrightarrow G$ are defined dually;
- modifications given by a family of double cells.

The category **DblCat** - Properties

- **DblCat** is not a double category;
- a double category has two types of arrows, and **DblCat** has only one;
- a double category has one type of 2-cell, and DblCat has two;
- **DblCat** is enriched in double categories: **DblCat**(\mathbb{C}, \mathbb{D}) is a double category.

Review of the Grothendieck construction \(\sim \) Questions

Whiteboard

- Can we do this for $F: \mathbb{D} \to \mathbf{DblCat}$?
- What sort of colimit do we get?
- What's the relation to other pre-existing constructions?

Double Index Functors

- We would like to have a double functor $F: \mathbb{D} \to \mathbf{DblCat}$.
- So we need to build a double category out of **DblCat**.
- We first make the 2-category **DblCat**_v of double categories, double functors and vertical transformations.
- And then apply the quintet construction to get the double category $\mathbb{Q}\mathbf{DblCat}_{v}$.
- So a double index functor is a double functor $F: \mathbb{D} \to \mathbb{Q}\mathbf{DblCat}_{v}$.
- We will also call this a vertical double functor $\mathbb{D} \to \mathbf{DblCat}$.
- It looks as if at this point we have lost most of the horizontal data.

Double Transformations

 We regain use of some of the horizontal structure in the definition of double transformation between double index functors

$$F, G: \mathbb{D} \to \mathbb{Q}\mathbf{DblCat}_{v}$$
.

 Analogous to the set-up for bicategories, we will define these transformations in terms of a double category of *cylinders*, Cyl_v(**DblCat**).

Whiteboard

The Double Category of (Vertical) Cylinders

The double category $Cyl_v(\mathbf{DblCat})$ of vertical cylinders has

- Objects f are arrows of **DblCat**, $\downarrow f$.
- Vertical arrows $f \xrightarrow{(u,\mu,v)} \overline{f}$ are given by vertical transformations,

• Horizontal arrows are given by horizontal transformations,

Double Cylinders

$$f \xrightarrow{(h,\kappa,k)} f'$$
 A double cell, $(u,\mu,v) \stackrel{\downarrow}{\psi} (\alpha,\Sigma,\beta) \stackrel{\downarrow}{\psi} (u',\mu',v')$ is given by two vertical
$$\overline{f} \xrightarrow[\overline{(h,\overline{\kappa},\overline{k})}]{\overline{f'}}$$

transformations $\psi \alpha \rightarrow 0$, $\psi \beta \rightarrow 0$

and a modification Σ ,

Cylinders lead to double lax transformations

- There are vertical double functors $\pi_0, \pi_1 : Cyl_{\nu}(\mathbf{DblCat}) \to \mathbf{DblCat}$, projecting to the top and the bottom of each cylinder respectively;
- A double lax transformation $\theta: F \Rightarrow G$ between vertical double functors $F, G: \mathbb{D} \to \mathbf{DblCat}$ is given by a double functor

$$\theta \colon \mathbb{D} \to \mathsf{Cyl}_{\nu}(\mathbf{DblCat}), \quad \text{with} \ \ \pi_0 \theta = F, \ \pi_1 \theta = G.$$

A Double Lax Transformation $\theta: F \Rightarrow G$

For each double cell
$$u \stackrel{f}{\downarrow} \alpha \stackrel{f}{\downarrow} v$$
:
 $A' \stackrel{f}{\longrightarrow} B'$

Double Lax Cones

Let $F : \mathbb{D} \to \mathbf{DblCat}$ be a vertical double functor and $\mathbb{E} \in \mathbf{DblCat}$. A **double lax (co)cone** for F, with vertex \mathbb{E} , is a double lax transformation

$$F \stackrel{\theta}{\Rightarrow} \triangle \mathbb{E}$$

A **double lax colimit** of *F* is a *universal* double lax cone $F \stackrel{\lambda}{\Rightarrow} \triangle \mathbb{L}$.

Recall the general double lax natural (6 double cells, one triple cell):

A double lax cone (5 double cells, one triple cell):

The double lax colimit of F:

$$H\lambda_A = \theta_A, \quad H\lambda_u = \theta_u, \quad H\lambda_f = \theta_f, \quad H\lambda_\alpha = \theta_\alpha$$
 (for all A, u, f, α !)

Examples "It matters how we index"

- If \mathcal{A} is a 2-category, then a 2-functor $\mathcal{A} \xrightarrow{F} \mathbf{DblCat}_{v}$ can be seen as a vertical double functor $\mathbb{V}\mathcal{A} \xrightarrow{F} \mathbf{DblCat}$ and as $\mathbb{H}\mathcal{A} \xrightarrow{F} \mathbf{DblCat}$.
- For $\mathbb{H}\mathcal{A} \xrightarrow{F} \mathbf{DblCat}$, we see that a lax cone is given by:
 - double functors $FA \xrightarrow{\theta_A} E$,
 - horizontal transformations $\theta_A \stackrel{\theta_f}{\Longrightarrow} \theta_B F f$,
 - for each 2-cell $f \stackrel{\alpha}{\Longrightarrow} f'$ of \mathcal{A} , a modification θ_{α} ,

$$\begin{array}{ccc}
\theta_{A} & \xrightarrow{\theta_{f}} \theta_{B} F f \\
\downarrow id & & & & & & \\
\theta_{\alpha} & & & & & \\
\theta_{A} & \xrightarrow{\theta_{f'}} \theta_{B} F f'
\end{array}$$

• For $\mathbb{V}\mathcal{A} \xrightarrow{F} \mathbf{DblCat}$, the 2-cells θ_f are required to be vertical, thus the triple cells θ_α are triple cells of \mathbf{DblCat}_v . Now everything is vertical! This is a *lax tricolimit* in the 3-category \mathbf{DblCat}_v .

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb D$ be a double category, and let $\mathbb D \xrightarrow{F} \mathbb Q \mathbf{DblCat}_v$ be a double functor. The **double category of elements**, $\mathbb G$ r $F = \mathbb E$ l $F = \int_{\mathbb D} F$, is defined by:

- Objects: (C, X) with C in \mathbb{D} and X in FC,
- Vertical arrows:

$$(C,X) \xrightarrow{(u,\rho)} (C',X'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $FuX \xrightarrow{\rho} X'$ in FC'.

Horizontal arrows:

$$(C,X) \xrightarrow{(f,\varphi)} (D,Y),$$

where $C \xrightarrow{f} D$ in \mathbb{D} , and $FfX \xrightarrow{\varphi} Y$ in FD.

The Double Grothendieck Construction: Double Cells

$$(C,X) \xrightarrow{(f,\varphi)} (D,Y)$$
• Double cells: $(u,\rho) \downarrow (\alpha,\Phi) \qquad \downarrow (v,\lambda)$, where $\alpha: (u \xrightarrow{f} v)$ is a double
$$(C',X') \xrightarrow{(f',\varphi')} (D',Y')$$

cell in \mathbb{D} and Φ is a double cell in FD':

$$FvFfX \xrightarrow{Fv\varphi} FvY$$

$$(F\alpha)_X \downarrow \qquad \qquad \downarrow$$

$$Ff'FuX \quad \Phi \qquad \downarrow$$

$$Ff'\rho \downarrow \qquad \qquad \downarrow$$

$$Ff'X' \xrightarrow{\varphi'} Y'$$

Examples

Let A be a 2-category and $F: A \to \mathbf{2\text{-}Cat}$ a 2-functor. There are several ways to construct a double index functor: "first compose, then apply \mathbb{Q} , and then (optional) restrict"

- $② \ \mathbb{Q}(\mathsf{A}) \to \mathbb{Q}(\mathsf{DblCat}_{\nu})$
- **3** Restrict to $\mathbb{H}(A)$ or $\mathbb{V}(A)$
 - $\int_{\mathbb{V}A} \mathbb{Q}(\mathbb{V} \circ F) = \int_{\mathbb{V}A} \mathbb{V}(\mathbb{V} \circ F) = \mathbb{V} \int_{A} F$ (Bakovic, Buckley)
 - $\int_{\mathbb{Q}A} \mathbb{Q}(\mathbb{Q} \circ F) = \mathbb{Q} \int_A F$
 - $\int_{\mathbb{Q}A} \mathbb{Q}(\mathbb{V} \circ F) = \mathbb{Q}^{\{cart\}} \int_{A} F$ (only the cartesian arrows horizontally)
 - $\int_{\mathbb{H}A} \mathbb{Q}(\mathbb{V} \circ F) = \mathbb{E}I(F)$ (Pare)
 - $\int_{\mathbb{O}\mathsf{A}} \mathbb{Q}(\mathbb{Q}^{op} \circ F) = F \wr F^{op}$ (Myers)

Factorization

- Any horizontal arrow (f, φ) can be factored as $(A, x) \xrightarrow{(f, id)} (B, Ffx) \xrightarrow{(id, \varphi)} (B, y)$.
- Any vertical arrow (u, ρ) can be factored as $(A, x) \xrightarrow{(u, id)} (A', Fux) \xrightarrow{(id, \rho)} (A', x')$.
- And any double cell (α, Φ) can be factored as

\mathbb{G} r F as a double lax cone

For $F : \mathbb{D} \to \mathbf{DblCat}$ a vertical double functor, construct $F \stackrel{\lambda}{\Longrightarrow} \triangle \mathbb{G} r F$ as follows:

- Double functors $FA \xrightarrow{\lambda_A} \mathbb{G}r F: \lambda_A(-) = (A, -).$
- Vertical transformations $\lambda_A \xrightarrow{\lambda_u} \lambda_{A'} Fu$: for each $x \in FA$, resp. $x \xrightarrow{\varphi} y$:

$$(A,x) \qquad (A,x) \xrightarrow{(id,\varphi)} (A,y)$$

$$\downarrow (\lambda_u)_x = (u,id) , \qquad (u,id) \downarrow \qquad (\lambda_u)_\varphi = (id,id) \qquad \downarrow (u,id)$$

$$(A', F\varphi x) \qquad (A', Fux) \xrightarrow{(id,Fu\varphi)} (A', Fuy)$$

\mathbb{G} r F as a double lax cone

• Hor. transformations $\lambda_A \stackrel{\lambda_f}{\Longrightarrow} \lambda_B Ff$: for each $x \in FA$, resp. $x \stackrel{\rho}{\longrightarrow} x'$:

$$(A,x) \xrightarrow{(f,id)} (B,Ffx)$$

$$(A,x) \xrightarrow{(\lambda_f)_x = (f,id)} (B,Ffx), \quad (id,\rho) \downarrow \quad (\lambda_f)_\rho = (id,id) \quad \downarrow (id,Ff\rho)$$

$$(A,x') \xrightarrow{(f,id)} (B,Ffx')$$

• The modifications λ_{α} , given for each $x \in FA$:

Theorem: \mathbb{G} r F is the double lax colimit of F (in DblCat)

Factorization gives H on double cells

Recall that any double cell (α, Φ) can be factored as

this is why this works

A corollary: Recall that $\int_{\mathbb{V}\mathsf{A}} \mathbb{V}(\mathbb{V} \circ F) = \mathbb{V} \int_\mathsf{A} F$. We obtain that $\int_\mathsf{A} F$ is the *lax tricolimit* of F in 2-Cat. Looking at the other examples gives other universal properties of those constructions.

Thank you!