À Lire Attentivement :

- ✓ Documents, calculatrices et téléphones portables interdits.
- \checkmark Durée : 2 h 05 mins.
- ✓ Chaque question admet **une et une seule** bonne réponse.
- ✓ Pour chaque question, 1 point si réponse juste, 0 point si absence de réponse et -1/2 point si réponse fausse ou incohérente.
- ✓ Cocher (**x**) la bonne réponse.

Question 1. On pose $z = -\sqrt{2+\sqrt{2}} + i\sqrt{2-\sqrt{2}}$.

1) La forme algébrique de z^2 est :

 $(\mathbf{x}) \ 2\sqrt{2} - 2i\sqrt{2}$

$$2 + \sqrt{2} - i(2 - \sqrt{2})$$

2) La forme exponentielle de z^2 est :

 $4e^{3i\pi/4}$

3) La forme exponentielle de *z* est :

- $\begin{array}{c|c} \textbf{(x)} & 2e^{7i\pi/8} & \bigcirc & 2e^{i\pi/8} & \bigcirc & 2e^{5i\pi/8} \\ \textbf{4)} & \frac{\sqrt{2+\sqrt{2}}}{2} \text{ et } \frac{\sqrt{2-\sqrt{2}}}{2} \text{ sont les cosinus et sinus de :} \\ \end{array}$

Question 2. z vérifie $\overline{z} + |z| = 6 + 2i$; l'écriture algébrique de z est :

Question 3. On pose $z = \sqrt{3} - i$ alors :

 $\bigcirc Arg(z) = -\frac{5\pi}{6} \quad \mathbf{x} \quad Arg(\overline{z}) = \frac{\pi}{6} \quad \bigcirc Arg(z) = \frac{\pi}{6} \quad \bigcirc Arg(z) = \frac{5\pi}{6}$

Question 4. Dans le plan complexe, on donne les points A, B et C d'affixes respectives -2 + 3i, -3 - i et 2,08 + 1,98i. Le triangle ABC est :

isocèle et non rectangle

(**x**) rectangle et non isocèle

rectangle et isocèle

ni rectangle ni isocèle

Question 5.

La courbe représentative d'une fonction f est donnée ci-après. En chacun des points indiqués, la courbe admet une tangente qui est tracée? En vous servant du quadrillage:

1) La valeur de f'(0) est :

- $(\mathbf{x}) -1/2$

- (\mathbf{x}) $4e^{-i\pi/4}$ 2) La valeur de f'(-2) est :

- 3) La valeur de f'(1) est :

Question 6. À tout nombre complexe $z \neq 2$, on associe le nombre complexe Z défini par : $Z = \frac{z-4i}{z+2}$.

- 1) L'ensemble des points M d'affixe z tels que |Z| = 1 est :
 - (**x**) une droite

un cercle privé d'un point

un cercle de rayon 1

- une droite privée d'un point
- 2) L'ensemble des points M d'affixe z tels que Z est un réel est :
 - un cercle

- un cercle privé d'un point
- (x) une droite privée d'un point

une droite

Question 7. La limite en $+\infty$ de $\sqrt{x^2-x+2}-\sqrt{x^2+2x-5}$ est :

... Classe: MPSI.....

Question 8.

Avec une même ficelle de longueur 1 m, on forme un triangle équilatéral de côté x et un carré de côté a. On note S la somme des aires du triangle et du carré.

1) La valeur de S(x) est :

$$\frac{\sqrt{3}}{4}x^2 + \frac{1}{16}(a - 3x)^2$$

 $\int \frac{\sqrt{3}}{4}x^2 + \frac{1}{16}(1+3x)^2$

- $\sqrt[4]{\frac{\sqrt{3}}{4}}x^2 + \frac{1}{16}(a+3x)^2$
- 2) La valeur de x, pour laquelle S(x) est minimale, est :

 - $\bigcirc \frac{a\sqrt{3}}{3\sqrt{4}+9} \qquad \bigcirc \frac{\sqrt{3}}{4\sqrt{3}+9} \qquad \bigcirc \frac{3a}{3\sqrt{4}+9}$

- 3) Pour la valeur de x trouvée en 2), $\frac{x}{a}$ vaut :

Question 9. Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une bagarre éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier recoit alors 4 pièces. Dans un naufrage ultérieur, seul le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. La fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates est :

Question 10. Soit $f(x) = \frac{x^2 - 2x}{x^2 - 1}$ une fonction définie sur $\mathbb{R} \setminus \left\{ -1, 1 \right\}$ et (C) sa courbe représentative.

1) Le signe de f' est celui de :

- 2) (C) coupe la droite (y = 1) au point x égal à :

Question 11.

On considère un point M sur le diamètre [AB] d'un cercle. Il détermine deux cercles de diamètre [AM]et [MB]. On pose AB = 4 et AM = x.

1) L'aire A(x) de la surface colorée est définie par :

 $\bigcirc \frac{\pi}{2}(x^2-4x)$

 $\bigcirc \frac{1}{4} \qquad \bigcirc \frac{2}{2} (4x - x^2)$

- 2) La position de M, pour laquelle A(x) est maximale, est :

 (\mathbf{x}) 2

Question 12. Une entreprise fabrique et vend chaque jour un nombre x d'objets. Chaque objet est vendu 100 FCFA. Le coût de production unitaire U(x) exprime le coût de production par objet produit. On a déterminé qu'il est égal à $U(x) = x - 10 + \frac{900}{x}$ pour x appartenant à l'intervalle I = [10; 100].

- 1) La production pour laquelle le coût unitaire est le plus bas est :

- (\mathbf{x}) 30
- 2) La valeur du bénéfice correspondant, à la production dont le coût unitaire est le plus bas, est :
 - $(\mathbf{x}) 1500$

- 1200
- 2500

Nom & Prénoms:	Classe: MPSI
----------------	--------------

3) L'expression du bénéfice global d

\bigcap	110 - x -	900
	110 1	\boldsymbol{x}

$$()$$
 $x^2 - 10x + 900$

$$(\mathbf{x}) - x^2 + 110x - 900$$

$$100x - 1000 + \frac{90000}{x}$$

4) La production correspondant au bénéfice global maximal est :

$$(\mathbf{x})$$
 55

$$\bigcirc$$
 60

$$\bigcirc$$
 30

$$\bigcirc 1500$$

$$(\mathbf{x})$$
 2125

Question 13. Soit f la fonction trinôme telle que $f(x) = ax^2 + bx + c$. Le triplet (a, b, c) tel que sa courbe C_f admette au point A(1; 3) une tangente de cœfficient directeur égal à 1 ainsi qu'une tangente horizontale au point d'abscisse $\frac{1}{2}$. est :

$$(-1,1,3)$$

$$\bigcirc (1,1,3)$$

$$(1/2,-1,3)$$

$$(\mathbf{x})$$
 $(1,-1,3)$

Question 14. Soit f une fonction définie et dérivable sur $\mathbb{R} \setminus \{1\}$ dont le tableau de variation est :

1) L'équation f(x) = 2 admet exactement :

 (\mathbf{x}) 3 solutions

1 solution

0 solution

2) La courbe de f admet exactement :

 (\mathbf{x}) 2 asymptotes horizontales

1 asymptote horizontale

2 asymptotes verticales

3 asymptotes horizontales

Question 15. Soit (E) l'ensemble des points M d'affixe z vérifiant $z=1-2i+e^{i\theta}, \theta\in\mathbb{R}$, alors :

 \bigcirc (E) est une droite passant par le point d'affixe 2-2i

 $\bigcirc \ (E)$ est le cercle de centre d'affixe -1+2i et de rayon 1

 (\mathbf{x}) (E) est le cercle de centre d'affixe 1-2i et de rayon 1

(E) est le cercle de centre d'affixe 1-2i et de rayon $\sqrt{5}$

Question 16. Soit F l'ensemble des points M d'affixe z vérifiant : |z-1+i|=|z+1+2i|. Soient les points A, B et C d'affixes respectives : 1-i, -1+2i et -1-2i alors :

- (\mathbf{x}) (F) est la médiatrice du segment [AC]
- \bigcirc C est un point de (F)
- \bigcirc (F) est la médiatrice du segment [AB]
- \bigcirc (F) est le cercle de diamètre [AB]

Question 17. On considère dans l'ensemble des nombres complexes l'équation : $z + |z|^2 = 7 + i$. Cette équation admet :

- **x** Deux solutions distinctes qui ont pour partie imaginaire 1
- O Une solution réelle
- Deux solutions dont une seule a pour partie imaginaire 1
- O Une solution qui a pour partie imaginaire 2

Question 18. Soit z le nombre complexe de module $\sqrt{2}$ et d'argument $\frac{\pi}{3}$. La valeur de z^{14} est égale à :

 $\bigcirc -128\sqrt{3} - 128i$

 $\bigcirc 64 - 64i$

 $(\mathbf{x}) -64 + 64i\sqrt{3}$

 $\bigcirc -128 + 128i\sqrt{3}$

Question 19. On considère un hexagone régulier ABCDEF, dont les côtés sont de longueur 1. Le produit scalaire $\overrightarrow{AC} \cdot \overrightarrow{CF}$ est égal à :

 $\sqrt{3}$

 (\mathbf{x}) –

 \bigcirc $-\sqrt{}$

 $\bigcirc \frac{3}{2}$

Nom & Prénoms:		Classe: MPSI
Question 20. Une fonction g est définie sur $]-\infty;0]$ par $g(x)=\frac{\sqrt{x^2-2x}}{x-3}$; soit Γ sa courbe représentative dans un repère du plan : Γ n'admet pas d'asymptote Γ admet une asymptote d'équation $g=x$		l'espace passant par A et de vec droite \mathscr{D}' d'équations paramétriques s \mathscr{D} et \mathscr{D}' sont :
\bigcap Γ admet une asymptote d'équation $y=1$	(\mathbf{x}) non coplanaires	oplanaires et parallèles
(\mathbf{x}) Γ admet une asymptote d'équation $y = -1$	oplanaires et sécantes	coplanaires
Question 21. On considère, dans le plan complexe rapporté à un repère orthonormal, le point S d'affixe 3 et le point T d'affixe $4i$. Soit (E) l'ensemble des points M d'affixe z tels que $ z-3 = 3-4i $. Alors :	5) L'ensemble des points M de l'espacigle plan d'équation cartésienne :	ce équidistants des points A et B est le \bigcirc
\bigcirc (E) est la médiatrice du segment [ST]	$\bigcirc x + 7y - z + 7 = 0$	$\bigcirc 9x - y + 2z - 11 = 0$
\bigcirc (E) est le cercle de centre S et de rayon 5	Question 23. L'intégrale $\int_{\sqrt{e}}^{e} rac{d}{x \ln x}$	$\frac{x}{(x)}$ vaut:
\bigcirc (E) est la droite (ST)	$\bigcirc \frac{\ln(2)}{2} \qquad \bigcirc 2\ln(2)$	
\bigcirc (E) est le cercle de centre Ω , d'affixe $3-4i$, et de rayon 3	2	<u> </u>
Question 22. L'espace est rapporté au repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les points $A(3;1;3)$ et $B(-6;2;1)$. Le plan $\mathscr P$ admet pour équation cartésienne $x+2y+2z=5$.	Question 24. La limite en 0 de $\stackrel{\mathbf{c}}{-}$	$rac{\cos(2x)-1}{x\sin(x)}$ est:
1) L'ensemble des points M de l'espace tels que $ 4\overrightarrow{MA} - \overrightarrow{MB} = 2$ est :		e l'âge que mon grand-père avait il y a
Un plan de l'espace x Une sphère		grand-mère qui a actuellement 63 ans
\bigcirc L'ensemble vide \bigcirc Une droite \bigcirc Les coordonnées du point H , projeté orthogonal du point A sur le plan $\mathscr P$	$\bigcirc 14 \qquad \bigcirc 15$	<u> </u>
sont: $\left(\frac{7}{3}; \frac{1}{3}; -\frac{5}{3}\right) \left(\frac{11}{3}; \frac{1}{3}; \frac{1}{3}\right) \left(\frac{8}{3}; \frac{1}{3}; \frac{7}{3}\right) \mathbf{x} \left(\frac{7}{3}; -\frac{1}{3}; \frac{5}{3}\right)$	Question 26. Soit la suite (u_n) dé La limite de la suite (u_n) vaut :	finie sur $\mathbb N$ par $u_0=2$ et $u_{n+1}=rac{3}{5}u_n+3$
3) La sphère de centre B et de rayon 1 :	\bigcirc $\frac{15}{2}$ \bigcirc $\frac{3}{5}$	$\bigcirc \frac{5}{3}$
\bigcirc coupe le plan ${\mathscr P}$ suivant deux points	******	******
$oxed{x}$ ne coupe pas le plan ${\mathscr P}$	*	$\mathscr{F}\mathrm{in}$
\bigcirc coupe le plan $\mathscr P$ suivant un point \bigcirc est tangente au plan $\mathscr P$		**********