

EVALUATION METRICS

So far we have just been evaluating the performance of our algorithms based on accuracy

#correct Prediction

Total # of Predictions

So far we have just been evaluating the performance of our algorithms based on accuracy

#correct Prediction

Total # of Predictions

So far we have just been evaluating the performance of our algorithms based on accuracy

#correct Prediction

Total # of Predictions

So far we have just been evaluating the performance of our algorithms based on accuracy

#correct Prediction

Total # of Predictions

$$Accuracy = \frac{\# \ correct \ predictions}{\# \ total \ predictions} = \frac{6}{9} \sim 66\%$$

Predicted labels

Real Labels

How can accuracy be deceptive?

Imbalanced Datasets

Importance of incorrect prediction of a certain class

#correct Prediction

Total # of Predictions

PERFORMANCE EVALUATION METRICS - CONFUSION MATRIX

Predicted

Actual

		Negative	Positive
	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

$$Accuracy = \frac{True \ Positives + True \ Negatives}{All \ predictions}$$

PERFORMANCE EVALUATION METRICS - CONFUSION MATRIX

PERFORMANCE EVALUATION METRICS – CONFUSION MATRIX

Predicted

Positive

False Positive

Positive False Negative True Positive

Negative

True Negative

Negative

Actual

Type II error

Type I error

 $\label{eq:accuracy} \text{Accuracy} = \frac{\text{True Positives} + \text{True Negatives}}{\text{All predictions}}$

Data Squad | Supervised Learning

You're

pregnant!

PERFORMANCE EVALUATION METRICS - CONFUSION MATRIX

Predicted

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Actual

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

$$\label{eq:accuracy} \text{Accuracy} = \frac{\text{True Positives} + \text{True Negatives}}{\text{All predictions}}$$

Let's describe these two concepts through words & intuition

Precision of Class A:

From all the datapoints I predicted to be "A", how many were **A?**

Example: From a universe of 1000 people, we predicted 10 had coronavirus. In fact only 8 out of these 10 were actually infected.

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

 $Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$

Let'sdescribethesetwoconceptsthroughwords&intuition

Recall of Class A:

Fromallthedatapointsthattrulywere"A",howmanydidwepredi ct?

Example: From a universe of 1000 people, 100 are actually infected with coronavirus (wedonotknowthis, of course) we correctly predict edthat50 peoplehadthevirus Recall=50/100==50%

 $Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$

Which one should we prioritize?

DEPENDS ON THE PROBLEM

However, we have to learn how to decide which one we want to prioritize: Predict if a patient has cancer

Brute Force Precision: only claim the patient has cancer if every single test comes up true multiple times in a row

Brute Force Recall: assume that a patient has cancer "to play it safe" before more tests come in

Which one should we prioritize?

PERFORMANCE EVALUATION METRICS -LOGISTIC REGRESSION

How do you relate the decision boundary to precision/recall in the logistic regression algorithm?

PERFORMANCE EVALUATION METRICS - F1 SCORE

A Trade-off between both such that the algorithm doesn't improve too much one of them at the expense of the other

$$F1 = 2 \times \frac{Precision * Recall}{Precision + Recall}$$

PERFORMANCE EVALUATION METRICS – ROC CURVE

It is a plot of the false positive rate (x-axis) versus the true positive rate (y-axis) for a number of different candidate threshold values between 0.0 and 1.0. Put another way, it plots the false alarm rate versus the hit rate.

ANY QUESTIONS?

