Часть 1. Тест.

Вопрос 1 ♣ блюдений	Предпосылка об отсу	тствии систематич	еской ошибки в модели означает, что для всех на-
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			С Нет верного ответа.
Вопрос 2 🐥	После применения МІ	НК к модели $y_i=eta$	$x_i + \varepsilon_i$ сумма $ESS + RSS$
А обязател	їьно равна TSS		\fbox{B} может быть не равна TSS
Вопрос 3 ♣ дели	При наличии ошибок	измерения зависи	мой переменной МНК-оценки коэффициентов мо-
А состояте	ельны		В несостоятельны
Вопрос 4 ♣ тервале	Индексы вздутия дис	персии (VIF) в случ	нае отсутствия мультиколлинеарности лежат в ин-
$\boxed{A} \ [0;1]$			$\boxed{\mathrm{B}} \ [1;+\infty)$
Вопрос 5 🐥	Незначимость всех ко	эффициентов регр	ессии
А может б стью	ыть не связана с муль	тиколлинеарно-	В обязательно свидетельствует о наличии мультиколлинеарности
-		-	емы Гаусса-Маркова, но остатки модели не подчи- ценки коэффициентов регрессии являются
А несмещ	ёнными		В смещёнными
Вопрос 7 ૈ	Если в модель добави.	ли незначимый фа	ктор, то коэффициент детерминации \mathbb{R}^2
А не изме	нится	В упадёт	С вырастет
Вопрос 8 ૈ	Нулевая гипотеза в те	сте Дарбина-Уотсо	на состоит в
А отсутстн	вии автокорреляции		В наличии автокорреляции
Вопрос 9 ૈ	При диагностике авто	корреляции третье	го порядка тест Бройша-Годфри
А примен	им	В неприменим	
Вопрос 10 ♣ несостоятелы	Стандартные ошибк ность оценок коэффиці		случае гетероскедастичности помогают устранить
А верно			В неверно

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$\ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 married_i + \beta_5 educ_i + \beta_6 black_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $educ_i$ количество лет обучения
- $married_i$ наличие супруга/супруги (1 есть, 0 нет)
- $black_i$ принадлежность к негроидной расе (1 да, 0 нет)

Показатель	Значение
R^2	B7
Скорректированный \mathbb{R}^2	0.219
Стандартная ошибка регрессии	B6
Количество наблюдений	B 2

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия	B1	5.993	1.199	B 5	0.000
Остаток	134	18.240	0.136		
Итого	B 3	B4			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	4.529	0.331	13.688	0.000	3.874	5.183
exper	0.090	0.037	2.419	0.017	0.016	0.164
$exper^2$	-0.003	0.002	-1.790	0.076	-0.006	0.000
married	0.240	0.079	3.045	0.003	B8	В9
educ	0.078	0.017	B10	0.000	0.045	0.111
black	0.073	0.171	0.424	0.672	-0.266	0.411

Найдите пропущенные числа В1-В10.

Ответ округляйте до 3-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. На основании данных по ценам на квартиры в Москве были построена модель

$$ln(price_i) = \beta_1 + \beta_2 totsp_i + \beta_3 metrdist_i + \beta_4 dist_i + \beta_5 floor_i + \varepsilon_i,$$

где:

- $ln(price_i)$ логарифм цены квартиры в тысячах долларов
- $totsp_i$ общая площадь квартиры в кв. м.
- $metrdist_i$ расстояние до метров в минутах
- $dist_i$ расстояние до центра города в км
- $floor_i$ дамми-переменная (1 если квартира не на первом и последнем этажах, 0 иначе)

Модели были оценены на пяти разных выборках, результаты представлены в таблице:

Коэффициент	Выборка А	Выборка В	Выборка С	Выборка D	Выборка Е
Константа	3.980***	3.926***	3.929***	3.719***	4.224***
totsp	0.0155^{***}	0.0148***	0.0163***	0.0179***	0.0139***
metrdist	-0.00858***	-0.0169***	-0.00566**	-0.0108***	-0.0077
dist	-0.0267***	-0.0186***	-0.0253***	-0.0150***	-0.0350***
floor	0.0419**	0.0633*	0.0224	0.0225	0.0228
Наблюдений	460	145	315	150	150
R^2	0.693	0.684	0.723	0.328	0.520
RSS	15.120	4.503	9.408	2.163	8.545

 $^{^*}$ — значимость на 10%, ** — значимость на 5%, *** — значимость на 1%.

- а) Для всей выборки (выборка A) проинтерпретируйте коэффициент при переменной $dist_i$.
- б) Определите на 5%-ом уровне значимости, можно ли использовать одну модель для квартир, находящихся в пешей доступности от метро (выборка С), и квартир, находящихся в транспортной доступности (выборка В).
- в) Исследователь предположил, что дисперсия ошибок модели возрастает с увеличением площади квартиры. Проверьте, есть ли в модели гетероскедастичность на 10% уровне значимости на основании соответствующего теста. В выборку D включены 150 квартир с наименьшей общей площадью, в выборку E-150 квартир с наибольшей общей площадью.

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

3. По ежемесячным данным, 146 наблюдений, была оценена зависимость

$$\widehat{credit}_t = 362.21 - 7.50r_cred_t - 13.09ipc_t, R^2 = 0.44$$

где:

- $credit_t$ объём потребительских кредитов, выданных домашним хозяйствам РФ
- r_credit_t ставка процента по кредитам
- ipc_t индекс потребительских цен

Известно, что
$$\sum_{t=2}^{146} (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 = 266491$$
, $\sum_{t=1}^{146} \hat{\varepsilon}_t^2 = 438952$, $\sum_{t=2}^{146} |\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1}| = 3617$, $\sum_{t=1}^{146} |\hat{\varepsilon}_t| = 6382$.

Кроме того, была оценена вспомогательная модель для остатков исходной модели:

$$\hat{\hat{\varepsilon}}_t = 15.67 - 0.75r_credit_t + 0.02ipc_t + 0.39\hat{\varepsilon}_{t-1} + 0.21\hat{\varepsilon}_{t-2} + 0.24\hat{\varepsilon}_{t-3}, \ R^2 = 0.56$$

- а) На 1%-ом уровне значимости проверьте гипотезу об адекватности исходной регрессии
- б) Проведите тест Дарбина-Уотсона на 5%-ом уровне значимости
- в) Проведите тест Бройша-Годфри на 5%-ом уровне значимости

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

4. Домохозяйка Глаша очень любит читать романы Л.Н. Толстого и смотреть сериалы. Её сын Петя учится на третьем курсе ВШЭ. Последние 30 дней он записывал, сколько Глаша прочитала страниц «Анны Карениной», $pages_t$, и посмотрела серий «Доктора Хауса», $series_t$. На основании этих наблюдений при помощи МНК Петя оценил следующую модель:

$$\widehat{pages}_t = 100 - 3series_t$$

Оценка ковариационной матрицы коэффициентов, $\widehat{\mathrm{Var}}(\hat{\beta}) = \begin{pmatrix} 11 & 0.5 \\ 0.5 & 1 \end{pmatrix}$

Оценка дисперсии ошибок равна $\hat{\sigma}^2 = 323$.

Завтра Глаша собирается посмотреть 10 серий «Доктора Хауса».

- а) Постройте точечный прогноз количества прочитанных Глашей страниц романа
- б) Постройте 95%-ый доверительный интервал для $\mathrm{E}(pages_t|series_t=10)$, ожидаемого количества прочитанных страниц
- в) Постройте 95%-ый предиктивный интервал для фактического количества прочитанных страниц

Часть 3. Теоретические вопросы

- 5. Опишите МНК для парной регрессии: выпишите целевую функцию, систему нормальных уравнений, оценки коэффициентов, оценки дисперсий коэффициентов.
- 6. Сформулируйте теорему Гаусса-Маркова для детерминированных регрессоров.
- 7. Опишите тест Уайта: сформулируйте нулевую и альтернативную гипотезы, способ получения тестовой статистики, её распределение при верной нулевой гипотезе, вид критической области.