JUNIA^{ISEN} février 2022

II – Vecteurs aléatoires

Ce second TP contient trois parties indépendantes permettant de manipuler des vecteurs aléatoires.

A – Lancer de fléchettes

On cherche à générer des points uniformément répartis dans un disque de rayon 1, *i.e.* simuler des valeurs d'un couple (X,Y) de loi $\mathcal{U}(\mathcal{D})$ où

$$\mathcal{D} = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$$

Il est facile de simuler une distribution uniforme sur tout le carré $\mathcal{C} = [-1, 1] \times [-1, 1]$:

```
n = 5000;
x = 2 * rand(n,1) - 1;
y = 2 * rand(n,1) - 1;
plot(x, y, ".", "markersize", 4)
axis("equal")
```

On pourrait choisir de ne garder que les points tombant à l'intérieur du disque \mathcal{D} , mais il est un peu dommage de « gaspiller » ainsi des nombres pseudo-aléatoires (d'autant plus qu'avec cette méthode, on ne sait pas précisément à l'avance combien de points on récupère dans \mathcal{D}).

Une meilleure idée semble être de passer en coordonnées polaires : le disque est alors décrit par le « rectangle » $(r, \theta) \in [0, 1] \times [0, 2\pi]$. Nous allons donc simuler deux variables aléatoires uniformes,

$$R \sim \mathcal{U}([0,1])$$
 et $\Theta \sim \mathcal{U}([0,2\pi])$.

```
r = rand(n,1);
theta = 2 * pi * rand(n,1);
x = r .* cos(theta);
y = r .* sin(theta);
plot(x, y, ".", "markersize", 4)
axis("equal")
```

On obtient bien des points dans le disque... Mais la densité n'est pas uniforme, elle est plus élevée au centre. L'explication vient de l'expression de l'élément d'aire en coordonnées polaires

$$dx dy = r dr d\theta :$$

les points uniformément répartis dans $[0,1] \times [0,2\pi]$ sont étalés dans le plan (x,y) sur des surfaces d'aire plus grande lorsque r est grand que lorsque r est petit, on observe donc une raréfaction des points dans le disque à mesure que l'on s'approche du bord.

On va tenter de corriger ce biais vers le centre en introduisant un autre paramètre dans nos équations :

$$\begin{cases} X = R^{\alpha} \cos \Theta \\ Y = R^{\alpha} \sin \Theta. \end{cases}$$

- 1) Expérimenter avec différentes valeurs de $\alpha \in [0,1]$ jusqu'à obtenir une distribution qui semble uniforme, et observer à chaque fois les distributions marginales hist(x,30) et hist(y,30).
- 2) Pour la valeur de α trouvée ci-dessus, estimer numériquement l'espérance de $\sqrt{X^2+Y^2}$.

Vous savez donc maintenant à quelle distance du centre se trouvent, en moyenne, des points uniformément répartis dans un disque (NB : ce n'est **pas** la moitié du rayon).

(Sauriez-vous prouver tout cela? Suffit de faire un changement de variables dans une intégrale double . . .)

B – Simulation de variables normales, pt. 2

En modifiant légèrement les formules de la partie précédente, on obtient des distributions assez différentes. Avec toujours R et Θ comme ci-dessus, posons cette fois

$$\begin{cases} X = \sqrt{-\ln R} \cos \Theta, \\ Y = \sqrt{-\ln R} \sin \Theta. \end{cases}$$

On peut montrer que l'on obtient ainsi un couple de variables (exactement) normales indépendantes.

1) Générer des valeurs du couple (X, Y) ci-dessus, et observer les distributions conjointe (avec un **plot**) et marginales (avec des histogrammes).

En estimant numériquement les paramètres μ et σ^2 des lois normales obtenues, superposer les densités à vos histogrammes comme au TP1.

On en déduit une méthode simple pour obtenir générer des nombres aléatoires normalement distribués appelée méthode de Box-Muller. Quels sont ses avantages et inconvénients par rapport à celle présentée à la fin du TP1?

2) Vérifier que les variables X et Y sont décorrélées :

Est-ce suffisant pour se convaincre que X et Y sont indépendantes?

B – Moyennes échantillonnales

Dans cette dernière partie, nous allons observer les tendances asymptotiques pour $n \to \infty$ des moyennes

$$\overline{X}_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

d'une suite de variables aléatoires indépendantes, identiquement distribuées.

Pour bien voir ce qui se passe, choisissons une loi très asymétrique (et pourquoi pas discrète):

$$X_i \sim \mathcal{G}\left(\frac{1}{20}\right)$$

modélisant, par exemple, le nombre de lancers d'un D20 équilibré à effectuer avant d'obtenir un 13 pour la première fois.

Attention : la loi géométrique fournie par MATLAB compte le nombre d'échecs avant le premier succès, elle souffre donc d'un décalage de 1 par rapport à la définition « standard ».

Simulons donc une suite de valeurs x_1, x_2, \ldots et observons l'évolution de la moyenne échantillonnale au fil de celle-ci :

```
n = 2022;
p = 1/20;
x = geornd(p,n,1) + 1;

xbar = zeros(n,1);
sum = 0;

for i=1:n
    sum = sum + x(i);
    xbar(i) = sum/i;
end

clf
line([1,n],[1/p,1/p],"color","red")
hold on
plot(xbar)
hold off
```

On observe bien une convergence vers l'espérance de la loi géométrique tel que prédit par la loi des grands nombres, mais observez la nature un peu particulière de celle-ci : fluctuations très importantes au départ, qui s'atténuent à la longue mais restent toujours présentes, et globalement une convergence plutôt lente (en gros en $1/\sqrt{n}$).

1) Afficher sur le même graphe les résultats provenant de plusieurs séries de données et observer la variabilité des résultats.

Décrire cette variabilité, c'est précisément décrire la loi des variables aléatoires \overline{X}_n . Observons celles-ci en générant, pour un n fixé, un grand nombre d'observations.

2) Augmenter graduellement la taille n des échantillons et observer comment la distribution des moyennes se resserre et se « normalise ».