

## UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería



## Programa de Estudios

| Materia:           | Álgebra Lineal      | Álgebra Lineal         |  | Séptimo |
|--------------------|---------------------|------------------------|--|---------|
| Ciclo:             | Ingeniería Informát | Ingeniería Informática |  |         |
| Código:            | 009                 |                        |  |         |
| Horas Semanales:   | Teóricas:           | 4                      |  |         |
|                    | Prácticas:          |                        |  |         |
|                    | Laboratorio:        |                        |  |         |
| Horas Semestrales: | Teóricas:           | 68                     |  |         |
|                    | Prácticas:          |                        |  |         |
|                    | Laboratorio:        |                        |  |         |
| Pre-Requisitos:    |                     |                        |  |         |

### I - OBJETIVOS GENERALES:

Los objetivos de esta materia son desarrollar en el alumno las capacidades de:

- 1. Identificar, plantear y resolver problemas.
- 2. Utilizar en la práctica de la ingeniería, técnicas y herramientas adecuadas.
- 3. Modelar problemas con herramientas matemáticas (vectoriales y matriciales) y resolverlos

### II. OBJETIVOS ESPECIFÍCOS

Al término de este curso los alumnos deberán haber desarrollado las siguientes capacidades:

- 1. Definir estructura de espacio vectorial para estudiar modelos particulares indispensables en la formación actual de profesionales y en las aplicaciones a disciplinas de uso cotidiano, como Estadística, Investigación de Operaciones, Estructura en Ingeniería, Circuitos Eléctricos y en general, aquellas que requieren el uso de sistema lineales.
  - 2. Reconocer las estructuras de un espacio vectorial y las propiedades de las transformaciones lineales.
  - 3. Comprender los espacios vectoriales con producto interno, normados y métricos.
  - 4. Conocer las propiedades de los autovalores y autovectores.
  - 5. Relacionar matrices y transformaciones lineales.
  - 6. Conocer las formas bilineales, cuadráticos y hermíticas.

|              | Actualización No.: |               |               |
|--------------|--------------------|---------------|---------------|
| Aprobado por |                    |               | Página 1 de 3 |
|              | Resolución No.:    |               | g :           |
| Fecha:       |                    |               |               |
| recna:       | Fecha:             |               |               |
|              | recha              | Sello y Firma |               |



## UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería



#### Programa de Estudios

# III CONTENIDOS PROGRAMÁTICOS

#### Unidad I

#### Introducción

- 1. Sistemas de ecuaciones lineales.
- 2. Vectores en R<sup>n</sup> y C<sup>n</sup>
- 3. Matrices.
- 4. Matrices cuadradas y elementales
- 5. Determinantes

#### **Unidad II**

## Espacio vectoriales

- 1. Espacios vectoriales y subespacios.
- 2. Combinaciones lineales y envolventes lineal
- 3. Dependencia e independencia lineal. Base y dimensión de un espacio vectorial.
- 4. Coordenadas de un vector y cambio de base. Sumas y sumas directas de subespacios.

#### Producto interno

- 1. Producto interno, norma y distancia en un espacio vectorial.
- 2. Ortogonalidad de vectores. Conjuntos Ortogonales y Complemento Ortogonal.
- 3. Proyección de un vector en una dirección dada.
- 4. Bases ortogonales y ortonormales. Proceso de ortogonalización.

## Valores propios y vectores propios.

- 1. Polinomio de matrices.
- 2. Matriz característica, polinomio característico y ecuación característica de una matriz.
- 3. Determinación de valores y vectores propios en R<sup>n</sup> y C<sup>n</sup>.
- 4. Diagonalización de matrices. Polinomio mínimo.

#### **Unidad III**

#### Aplicaciones lineales

- 1. Aplicaciones en general y aplicaciones lineales.
- 2. Núcleo e imagen de una aplicación lineal.
- 3. Aplicaciones lineales singulares y no singulares
- 4. Operaciones con aplicaciones lineales. Álgebra de operadores lineales
- 5. Operadores invertibles.

#### **Unidad IV**

### Matrices y aplicaciones lineales

- 1. Representación matricial de un operador lineal.
- 2. Cambio de base y aplicaciones lineales.
- 3. Diagonalización de operadores lineales.
- 4. Matrices y operaciones lineales en general.

|              | Actualización No.: |               |               |
|--------------|--------------------|---------------|---------------|
| Aprobado por | Resolución No.:    |               | Página 2 de 3 |
| Fecha:       | 1000               |               |               |
|              | Fecha:             | Sello y Firma |               |



## UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería



#### Programa de Estudios

#### Formas canónicas

- 1. Forma triangular. Invariancia.
- 2. Descomposición en suma directa invariante. Operaciones primarias.
- 3. Operadores nilpotentes. Formas canónicas de Jordán y racional.

### Funcionales y lineales y espacio dual

- 1. Funcionales lineales y espacio dual.
- 2. Base dual y espacio segundo dual.
- 3. Traspuesta de una aplicación lineal

#### Formas bilineales y cuadráticas y hermiticas

- 1. Formas bilineales. Formas bilineales y matrices.
- 2. Formas bilineales alternadas, bilineales simétricas y cuadráticas.
- 3. Formas bilineales simétricas reales y ley de inercia.

# Operaciones Lineales en espacio con producto interno

- 1. Operadores adjuntos autoadjuntos, ortogonales y unitarios.
- 2. Matrices ortogonales y unitarias.
- 3. Cambio de base ortogonal.
- 4. Operadores positivos.
- 5. Diagonalización y forma canónica en espacio Euclides.
- 6. Teorema espectral

#### IV. METODOLOGIA

Introducción expositiva a cargo del profesor y los auxiliares de Enseñanza.

Análisis de temas a partir de técnicas de dinámicas de grupos con representación de guías de trabajo.

Apertura permanente para las declaraciones que los estudiantes consideren necesario.

### V- CRITERIOS DE EVALUACION

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

# VI. BIBLIOGRAFÍA

Seymour L. (1991) Álgebra lineal. 2da. Mc Graw Hill.

Rojo, A. (1995). Álgebra II. 13a. El Ateneo.

Lay D.C. (2007). Álgebra Lineal y sus aplicaciones. 3ra. Pearson Addison Wesley.

Bros, E.E. (1983). Problemas resueltos de Álgebra. Tomo I.

|              | Actualización No.: |               |               |
|--------------|--------------------|---------------|---------------|
| Aprobado por | Resolución No.:    |               | Página 3 de 3 |
| Fecha:       | Facha              |               |               |
|              | Fecha:             | Sello y Firma |               |