1 Nesupervizované učení

Nesupervizované učení se zabývá problematikou neoznačených dat. Cílem je tedy datům porozumět, případně odhalit nějakou vnitřní strukturu. To většinou znamená odhalit nějaké omezené oblasti v prostoru příznaků, ve kterých se data vyskytují častěji (data se zpravidla nevyskytují náhodně, často tvoří nějaké shluky). Bývají nějakým způsobem lokalizovaná (např. v nějakých méně dim. oblastech, apod.).

Obecným problémem je, že zpočátku typicky o datech nemáme žádnou informaci. Tu se snažíme různými metodami z dat extrahovat. Na rozdíl od nesupervizového učení zde není jasný postup, nebo přímočarý způsob, jak úspěšnost řešení vyhodnocovat.

Z pohledu teorie pravděpodobnosti Uvažujme realizaci náhodného vektoru $\mathbf{X} = (X_1, \dots, X_p)^T$ v prostoru \mathcal{X} , které je v případě binárních příznaků $\mathcal{X} = \{0, 1\}^p$ a v případě spojitých příznaků $\mathcal{X} = \mathbb{R}^p$.

Porozuměním vnitřní struktuře znamená porozumění rozdělení \boldsymbol{X} tak, že jsme schopni spolehlivě predikovat pravděpodobnost $P(\boldsymbol{X} \in O)$, kde O je nějakou zajímavou podmnožinou \mathcal{X} .

Odhadujeme tedy pravděpodobnostní hustotu $f_{\mathbf{X}}(x_1, \dots, x_p)$, respektive pravděpodobnostní funkci $P_{\mathbf{X}}(X_1 = x_1, \dots, X_p = x_p)$.