LP04: Modèle de l'écoulement pardait d'un fluide

Thibault Hiron-Bédiée

Niveau : Deuxième année de CPGE

Prérequis : Équation de Navier-Stokes, actions de contact dans un fluide, description des fluides en mou-

vement

Extrait du programme de CPGE

Notions et contenus	Capacités exigibles
Thème 3. Mécanique (PC)	
2.2 Actions de contact dans un fluide en mouvement	
Forces de pression. Équivalent volumique.	Utiliser les relations $d\vec{F} = -pd\vec{S}$ et $d\vec{F} = -\overrightarrow{\text{grad}}pd\tau$
2.3 Équations dynamiques locales	
Notion d'écoulement parfait et de couche li-	Exploiter l'absence de forces de viscosité et le caractère
mite.	isentropique de l'évolution des particules de fluide. Utiliser
	la condition aux limites sur la composante normale du
	champ des vitesses.
Équation d'Euler.	Utiliser cette équation.
Relation de Bernoulli pour un écoulement	Justifier et utiliser cette relation. Interpréter d'éventuels
parfait, stationnaire, incompressible et ho-	écarts observés en vérifiant les conditions de validité.
mogène dans le champ de pesanteur uniforme	
dans un référentiel galiléen.	

On suit globalement ce que l'on trouve dans les bouquins de prépa (typiquement un Dunod)

1 Modèle de l'écoulement parfait

1.1 Définition

Dunod, Ch.9, 2.5. Compléments dans le Guyon, Hydrodynamique physique (4.2.3 — p. 135 — ou encore annexe A–3 du chapitre 7 p 367, ed. 2012)

1.1.1 Équation d'Euler

1.1.2 Conséquences

Jet rectiligne et effet de la courbure de courant.

2 Le théorème de Bernouilli

2.1 Énoncé

Peut s'écrire sous de nombreuses formes, on choisit la version en énergie par unité de masse (celle traité dans les bouquins). Insister sur l'aspect énergétique, mais on peut le présenter sous d'autres formes (cf le cours de BTS MS2).

2.2 Applications

2.2.1 Effet Venturi

2.2.2 Tube de pitot

Faire la manip (cf poly de Philippe — M03 - I.3). Fonctionne plutôt bien modulo les quelques incertitudes à discuter. (décalage statique)

3 Limite du modèle : écoulement réel

Introduire la notion de couche limite et les ordres de grandeur associés. 2.4 du ch9 du Dunod (p317 dans l'édition 2019)