## MA2219 Introduction to Geometry - Tutorial 4 Week 6: 18–22 February

1. Consider a circle as below, with A outside the circle and B, C, D on the circle such that AB is tangent to the circle and A, C, D are collinear. Prove that  $|AC| \cdot |AD| = |AB|^2$  and hence  $\Delta ABC \sim \Delta ADB$ .



2. Let ABCD be a non-convex quadrilateral in which  $\angle CDA > 180^{\circ}$ . Let P,Q,R and S be the midpoints of the sides AB,BC,CD and DA respectively. Prove that  $Area(PQRS) = \frac{1}{2}Area(ABCD)$ .

**Hint.** The case of a convex quadrilateral is done on p23 of last year's lecture notes. You can modify this proof to get the non-convex case.



3. Prove Stewart's theorem: Let  $\triangle ABC$  be a triangle with a=|BC|, b=|AC| and c=|AB|. Given any D on |AB|, let m=|DC|, n=|BD| and let d=|AD|. Then  $nc^2+mb^2=amn+ad^2$ .



4. In  $\triangle ABC$ , M and N are points on AB and AC respectively such that BM = CN. Let D and E be the midpoints of MN and BC respectively. Prove that the line through A parallel to DE bisects  $\angle A$ .



5. Prove *Monge's theorem*. Consider three non-intersecting circles with radii  $r_1, r_2$  and  $r_3$ . There are three pairs of common external tangents as in the diagram below. Let X, Y, Z be the points of intersection of these tangents. Prove that X, Y, Z are collinear.



**Hint:** Apply Menelaus' theorem to the triangle formed by the centres of the three circles.

6. The following tiling of the floor contains a proof of Pythagoras' theorem. See if you can discover how it works.

