CS 2305: Discrete Mathematics for Computing I

Lecture 06

- KP Bhat

Quantifiers

- A quantifier specifies the extent to which a predicate is true over a range of elements from the pertinent domain
 - indicates for how many elements from the domain a given predicate is true
- There are two main types of quantifiers in Predicate Logic:
- 1. Universal Quantifier, "For all," symbol: ∀
 - ∀x P(x), read as "for all x P(x)", asserts P(x) is true for every x in the domain
- 2. Existential Quantifier, "There exists," symbol: 3
 - $-\exists x P(x)$, read as "for some x, P(x)", asserts P(x) is true for some x in the domain

Universal Quantifier

 $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

Examples:

- 1) If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- 2) If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- 3) If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.
- In some instances we want to emphasize the domain
 - $\forall x \in A P(x)$
 - \forall x ∈ A such that P(x)

Existential Quantifier

• $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- 1. If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
- 2. If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- 3. If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.
- In some instances we want to emphasize the domain
 - $-\exists x \in A P(x)$
 - $-\exists x \in A \text{ such that } P(x)$

Uniqueness Quantifier

- $\exists !x P(x)$ means that P(x) is true for <u>one and only one</u> x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique x such that P(x)."
 - "There is one and only one x such that P(x)"
- Examples:
 - 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists !x P(x)$ is true.
 - 2. But if P(x) denotes "x > 0," then $\exists !x P(x)$ is false.

Trailing Quantifiers

- Sometimes universal and existential quantifiers are restated informally by placing the quantification at the end of the sentence. In such a case the quantifier is said to "trail" the proposition
 - $\forall x \in \mathbf{R}, x^2 \ge 0$

For any real number x, x^2 is positive

- x^2 is positive for any real number x
- $-\exists x \in \mathbf{R}, x^2 3x + 2 = 0$

For some real number x, $x^2 - 3x + 2 = 0$

• x^2 -3x +2 = 0 for some real number x

Bound and Free Variables

- When a quantifier is used on the variable x, we say that this occurrence of the variable is bound
- An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free
- In the statement $\exists x(x + y = 1)$, the variable x is bound by the existential quantification $\exists x$, but the variable y is free

From Propositional Functions to Propositions (1)

- We already know that propositional functions become propositions when the predicate variables are assigned values
- Quantifiers provide an alternate way to convert propositional functions to propositions
 - Let P(x) be the propositional function "x + 1 > x". Then $\forall x P(x)$ is a proposition
- In general, all the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition
 - universal quantifiers
 - existential quantifiers
 - value assignments

From Propositional Functions to Propositions (2)

TABLE 1 Quantifiers.		
Statement	When True?	When False?
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .

- $\forall x P(x)$ is an extremely strong claim
 - One way to show that P(x) is false when x is in the domain is to find a single <u>counterexample</u> to the statement $\forall x P(x)$
 - The truth value of the quantification $\forall x Q(x)$, where Q(x) is the statement "x < 2" is false since Q(3) is false

Properties of Quantifiers

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain U.

Examples:

- 1. If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
- 2. If *U* is the negative integers and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
- 3. If *U* consists of 3, 4, and 5, and P(x) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true. But if P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false.

Quantifiers are incomplete unless the domain of discourse is known

A Word About Domains

- Generally, an implicit assumption is made that all domains of discourse for quantifiers are non-empty
- If the domain is empty, for any propositional function:
 - $\forall x P(x)$ is true
 - $-\exists xP(x)$ is false

Truth Set

- If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all elements of D that make P(x) true when they are substituted for x
 - The truth set of P(x) is denoted as follows:
 - $\{x \in D \mid P(x)\}.$
- Suppose the domain is \mathbf{Z}^+ , the set of positive integers. The truth set for $\exists x, x \text{ is a factor of } 8 \text{ is } \{1, 2, 4, 8\}$

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

The set Z⁺ x can be any of these values

1, 2, 4, 8

The truth set for $\exists x, x \text{ is a factor of 8}$ These are the only values for x for which the predicate is true

Thinking about Quantifiers

- We can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.

Quantifiers Over Finite Domains (1)

- When the domain of a quantifier is finite:
 - all its elements can be listed
 - e.g. X_1 , X_2 , X_3 , ..., X_n
 - $\forall x P(x) \equiv P(x_1) \land P(x_2) \land P(x_3) \land ... \land P(x_n)$
 - Conjunction of propositions
 - $-\exists x P(x) \equiv P(x_1) \vee P(x_2) \vee P(x_3) \vee ... \vee P(x_n)$
 - Disjunction of propositions

Quantifiers Over Finite Domains (2)

- P(x) is the statement " $x^2 < 10$ " and the domain consists of the positive integers not exceeding 4
 - What is the truth value of $\forall x P(x)$?

```
    ∀xP(x) ≡ P(1) ∧ P(2) ∧ P(3) ∧ P(4)
    - T ∧ T ∧ T ∧ F
    - F
```

– What is the truth value of $\exists xP(x)$?

```
• \exists x P(x) \equiv P(1) \lor P(2) \lor P(3) \lor P(4)

- T \lor T \lor T \lor F

- T
```

Quantifiers with Restricted Domains

- Sometimes it is not feasible to enumerate the domain of a quantifier. In such instances, an abbreviated notation is often used
 - a condition a variable must satisfy is included after the quantifier
 - Such quantifiers are called <u>restricted quantifiers</u>
- Examples (assumption: the domain in each case consists of the real numbers)
 - $(\forall x)_{x<0} (x^2 > 0)$
 - For all –ve real numbers, the square of the number is positive
 - $(\forall y)_{y \neq 0} (y^3 \neq 0)$
 - For all non-zero real numbers, the cube of the number is non-zero
 - $(\exists z)_{z>0} (z^2 = 2)$
 - There exists a non-zero number whose square is the number 2 (i.e. there is a positive square root of 2)