Algèbre générale et linéaire

28 novembre 2018

1 Groupes

1.1 Lemme de Dirichlet

Soient G un groupe et f_1, \ldots, f_n des morphismes de groupes deux à deux distincts de G dans C*. Montrer que f_1, \ldots, f_n est libre dans l'espace vectoriel complexe des fonctions de G dans C.

1.2 Classification

Déterminer, à un isomorphisme près, tous les groupes de cardinal 6.

1.3

Paris. Que dire d'un groupe G dont le groupe des automorphismes est trivial?

1.4

Soit G un groupe fini non commutatif. Lorsque $x \in G$, on pose $C(x) = \{y \in G \mid xy = yx\}$, $\tilde{C}(x) = \{(x,y) \mid y \in C(x)\}$ et l'on note $Com(G) = \{(x,y) \in G^2 \mid xy = yx\}$.

- a) Soit $x \in G \setminus Z(G)$. Montrer qu'il existe des entiers $k \geq 2$ et $m \geq 2$ tels que |G| = m|C(x)| et |C(x)| = n|Z(G)|. Que dire de l'index de Z(G) dans G?
- b) Montrer que

$$|Com(G)| = \sum_{x \in Z(G)} |\tilde{C}(x)| + \sum_{x \in G \setminus Z(G)} |\tilde{C}(x)|$$

et en déduire que la probabilité pour que deux éléments de G commutent et majorée par $\frac{5}{8}$.

problegen lelongor wile on home

2 Groupe symétrique.

2.1 Générateurs

Soit n dans N*, Monter que (1,2) et le cycle $(1,2,\ldots,n)$ engendrent S_n .

2.2 Cycles

- a) Montrer que deux cycles de même longueur sont conjugués. En déduire la signature d'un cycle de longueur p, puis celle d'une permutation en fonction de sa décomposition en cycles.
- b) Quels sont les cycles qui sont des carrés?

2.3 Commutateurs

- a) Montrer que toute permutation du groupe alterné est produit de cycles de longueur trois.
- b) Montrer que le groupe des commutateurs de S_n est A_n .

2.4 Sous-groupes de S_4

Décrire tous les sous-groupes de S_4 .

2.5

- a) Déterminer le nombre moyen de points fixes d'une permutation de n éléments. On pourra introduire la VA X_i qui à une permutation σ de $\{1, \ldots, n\}$ attache 0 si $\sigma(i) \neq i$ et 1 sinon. Donner ensuite l'écart-type de la distribution.
- b) De même, soit X la VA sur S_n muni de l'équiprobabilité qui à $\sigma \in S_n$ attache la longueur m de l'orbite de 1 pour σ . Donner la loi de X.

3 Arithmétique

3.1

Quel est le nombre maximal de points de \mathbb{Q}^2 appartenant à un cercle C? (Penser à une paramétrisation rationnelle du cercle unité). Et dans le cas où C est centré dans $\mathbb{R}^2 \setminus \mathbb{Q}^2$?

3.2 Liouville

Soit p un entier > 5. Montrer que l'équation $(p-1)! + 1 = p^m$, $m \in \mathbb{N}$ ne possède pas de solution.

(P-1)! - 10 - 3 - (p-2)! = P"; 11

modula P 1 (P-1)! = 1 [p1]

p2 - 1 - 1 - 2 [p2]

Md 2 mee(2) c

ž.

3.3 Premier résidu non quadratique

Soit p un nombre premier ≥ 3 . Montrer que le premier n qui n'est pas un résidu quadratique modulo p est $< 1 + \sqrt{p}$. $\Rightarrow 0 \stackrel{f}{=} 21[f]$

3.4

a) Montrer qu'il existe une infinité de nombres premiers de la forme 3k+2.

b) Soient p un nombre premier de la forme 3k + 2 et $A \subset (\mathbf{Z}/p\mathbf{Z})^*$. Si $x \in (\mathbf{Z}/p\mathbf{Z})^*$ on pose $B(x) = A \cap \{(k+1)x, \dots, (2k+1)x\}$. Calculer $\sum_{x \in (\mathbf{Z}/p\mathbf{Z})^*} |B(x)|$.

e) Si (G, +) est un groupe abélien, on dit qu'une partie B de $G \setminus \{0\}$ est sans somme lorsque $(B + B) \cap B = \emptyset$. Montrer que $k + 1, \ldots, 2k + 1$ donne une partie sans somme de $\mathbb{Z}/p\mathbb{Z}$. Soit A une partie non vide de $\mathbb{Z} \setminus \{0\}$. Montrer qu'il existe une partie sans somme B de A telle que $|B| \ge |A|/3$.

4 Anneaux et corps

4.1 Anneau local.

Soit A l'anneau des fractions rationnelles complexes n'ayant pas de pôle en 0. Soit I un idéal non nul de A. Montrer qu'il existe un entier $k \ge 0$ tel que $I = X^k A$.

4.2 Anneaux de fonctions différentiables

a) Les anneaux $C([0,1], \mathbb{R})$ et $C^1([0,1], \mathbb{R})$ sont-ils isomorphes?

b) Soit I l'idéal de $A = C^1([0,1], \mathbf{R})$ formé par les fonctions de A qui s'annulent en 0, I est-il premier? Maximal? Principal? Mêmes questions si l'on remplace A par $C^{\infty}([0,1], \mathbf{R})$.

5 Polynômes

5.1

Soit $f(z) = z^{n+1} + a_n z^n + \ldots + a_o(a_o \neq 0)$, et pour n, $g(z) = z^{n+1} - |a_n|z^n - \ldots - |a_o|$. Montrer que g s'annule une et une seule fois sur $[0 + \infty[$, mettons en ρ , et que tout complexe x de f vérifie $|z| \leq \rho$.

ullion 5.2 km (x) P(x) = 12 2 m Com
pm. 18 Jane son P(px) / 2 menodo 5.2

Soit $P = \sum_{k=0}^{n} a_k z^k$ un polynôme à coefficients strictement positifs, et xune racine complexe de P. Montrer que

$$\min_{0 \le k \le n-1} \frac{a_k}{a_{k+1}} ||\zeta_q|x| \le \max_{0 \le k \le n-1} \frac{a_k}{a_{k+1}}$$

On pourra commencer par le cas où $r=\max_{0\leq k\leq n-1}\frac{a_k}{a_{k+1}}=1$, puis considérer Q = (X - 1)P(X).

5.3 Racines de l'unité

 $e^{i}(2n+1)$, avec $n \ge 1$, tel que P(-1) = P(1) = 0. $\sup_{|z|=1} |P(z)| \ge (1+\frac{1}{n})|P(0)|$ $\lim_{|z|=1} |P(z)| \ge (1+\frac{1}{n})|P(0)|$ Soit $P \in \mathbb{C}[X]$ de degré 2n+1, avec $n \geq 1$, tel que P(-1) = P(1) = 0. Montrer que

protes port

5.4

a) Soit $P \in \mathbf{Z}[X]$ unitaire. Montrer que toutes les racines rationnelles de Psont entières. Quelles sont les racines rationnelles possibles de P si en outre P(0) est premier?

b) Déterminer les polynômes $P \in \mathbf{R}[X]$ tels que $P(\mathbf{Q}) \subset \mathbf{Q}$ et $P(\mathbf{R} \setminus \mathbf{Q}) \subset$ $R \setminus Q$. Legenes -> what wells routes for N)

5.5

Trouver toutes les fractions rationnelles réelles R telles que $R(N) \subset N$. On pourra envisager $R(x+1) - R(x) \rightarrow R(x) + R(x) +$

Lo chira R do- follow

5.6

a) On note d l'opérateur sur $\mathbf{C}[X,Y]$ défini par $d(P) = P_X' - iP_Y', \overline{d}$ l'opérateur sur $\mathbf{C}[X,Y]$ défini par $\overline{d}(P) = P_X' + iP_Y', \Delta = d\overline{d}$ est le laplacien, $Z = X + iY; \overline{Z} = X - iY$. Etudier l'action de Δ sur $Z^m \overline{Z}^n$, $(m,n) \in \mathbb{N}^2$.

b) Soient n un entier ≥ 1 , et H le C-espace vectoriel des polynômes homogènes de degré n de $\mathbb{C}[X,Y]$. On pose $E=\{P\in H|\Delta(P)=0\}$ (Δ est le laplacien) et $F = \{Q \in H|X^2 + Y^2|Q\}$. Montrer que E et F sont supplémentaires dans H.

offe all

6.1) Factorisations

Soient E, F, G trois K-espaces vectoriels.

- a) Soit $u \in L(E, F)$, $v \in L(E, G)$. Montrer qu'il existe $w \in L(F, G)$ tel que $v = w \circ u$ si et seulement si $Keru \subset Kerv$.
- b) Soit $u \in L(E,G)$ et $v \in L(F,G)$. Montrer qu'il existe $w \in L(E,F)$ tel que $u = v \circ w$ si et seulement si $Imu \subset Imv$.

6.2

Soit S l'ensemble des applications linéaires surjectives de \mathbb{R}^n dans \mathbb{R}^p . Montrer que S est soit vide, soit dense dans $L(\mathbb{R}^n,\mathbb{R}^p)$.

6.3

Soit E un espace vectoriel de dimension finie. Soit $u, v \in \mathcal{L}(\mathcal{E})$. On suppose que $u \circ v = 0$ et que u + v est inversible. Calculer $\operatorname{rg}(u) + \operatorname{rg}(v)$.

6.4 Crochet et nilpotence

Soient E un K-espace vectoriel de dimension n, et a dans L(E).

- a) Montrer qu'il existe $b \in L(E)$ tel que a = aba.
- b) Si a est nilpotent, vérifier que l'application définie sur L(E) par $u\mapsto a\circ u-u\circ a$ est nilpotente et calculer son indice de nilpotence en fonction de celui de a.

6.5 Fonctions splines

Soient [a, b] un segment de \mathbb{R} et $\sigma = (x_0 = a, ..., x_n = b)$ une subdivision de [a, b]. Soit S l'ensemble des applications de classe C^2 de [a, b] dans \mathbb{R} dont la restriction à chaque segment $[x_i, x_{i+1}]$ est un polynôme de degré au plus 3.

- 1) Nature de S? Dimension?
- 2) Pour $y = (y_0, \dots, y_n) \in \mathbb{R}^{n+1}$, on pose $\mathcal{T}(y) = \{ f \in \mathcal{S} ; \forall i \in [0, n] \mid f(x_i) = y_i \}$. Nature de $\mathcal{T}(y)$? Dimension?
- 3) Existence et unicité de $f \in \mathcal{T}(y)$ telle que f'(a) = f'(b) = 0? (Considérer pour un élément $f \in \mathcal{T}(0)$ vérifiant ces conditions, l'intégrale $\int_a^b (f''(x))^2 dx$).
- 4) Même question avec les conditions $f'(a) = \lambda$ et $f'(b) = \mu$.
- 5) Soit f une application C^2 de [a,b] dans \mathbf{R} et φ l'élément de S tel que $\varphi(x_i) = f(x_i)$ pour tout i, $\varphi'(a) = f'(a)$ et $\varphi'(b) = f'(b)$. Calculer $\int_a^b (\varphi'' f'')^2$ en fonction d'intégrales portant sur f, φ et leurs dérivées. Interpréter.

Plated Ci

7 Matrices et déterminants

7.1

Soit F une sous-algèbre de $M_n(K)$, contenant au moins un élément de $Gl_n(K)$. Montrer que $F \cap Gl_n(K)$ est un sous-groupe de $Gl_n(K)$.

7.2

Soient n et p deux entiers, avec $1 \le p \le n$. Montrer qu'il existe une base de $M_n(\mathbf{C})$ formée de matrices de rang p.

7.3

Cachan, Rennes. Un paysan possède (2n+1) vaches. Lorsqu'il isole n'importe laquelle d'entre elles, il peut séparer l'ensemble des 2n autres en deux groupes de n vaches dont la somme des masses est égale. Montrer que toutes les vaches ont la même masse.

7.4

Soit $n \in \mathbb{N}^*$.

- a) Montrer qu'il n'existe pas de norme sur $M_n(\mathbf{R})$ qui soit invariante par similitude.
- b) Montrer qu'un semi-norme sur $M_n(\mathbf{R})$ est continue, puis déterminer toutes les semi-normes sur $M_n(\mathbf{R})$ qui sont invariantes par similitude.

7.5

Soit $(A, B) \in M_n(\mathbf{R})^2$ avec $A^2 + B^2 = \sqrt{3}(AB - BA)$, et AB - BA inversible. Montrer que n est un multiple de 6.

7.6

Calculer le déterminant de la matrice $A = [(-1)^{max(i,j)}], 1 \le i, j \le n.$

7.7

Soient $X_{i,j}$ n^2 VAI possédant toutes un moment d'ordre 2. Donner l'espérance de la VA $X = \det(X_{i,j})$; en calculer la variance lorsque les $X_{i,j}$ sont centrées.

7.8

Calculer le déterminant de la matrice $A = [(i+j-1)^n]_{1 \le i,j \le n+1}$.