

Московский Физико-Технический Институт

Отчет по эксперименту

4.7.1. Двойное лучепреломление

Цель работы

Изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления n_0 – обыкновенной и n_e – необыкновенной волны в кристалле наблюдение эффекта полного внутреннего отражения.

Оборудование

Гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Теоретическая сводка

При падении световой волны на границу изотропной среды в этой среде от границы распространяется одна волна. Если среда анизотропна, то в ней в общем случае возникают две волны – обыкновенная и необыкновенная, распространяющиеся от границы в разных направлениях и с разными скоростями. При этом связь между вектором напряженности и индукции имеет вид $\mathbf{D} = \varepsilon \mathbf{E}$, где ε – тензор диэлектрической проницаемости. Это явление называется двойным лучепреломлением.

Обыкновенный луч ведет себя так же, как и луч в изотропной среде, то есть $n=n_o={
m const.}$ Для необыкновенного луча

$$\frac{1}{[n(\theta)]^2} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2},\tag{1}$$

где θ — угол между оптической осью и волновой нормалью, n_o — показатель преломления волны, распространяющейся вдоль оптической оси, n_e — показатель преломления волны, распространяющейся перпендикулярно оптической оси. При $n_o-n_e\ll n_o$ формулу (1) можно упростить и представить в виде

$$n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta$$
 (2)

В эксперименте исследуется ход лучей в призме, ход лучей в которой представлен на рис. 1. и рис. 2.

Рис. 1: a) Исследуемая призма из исландского шпата. б) Ход лучей в поляризационной призме

Рис. 2: Ход лучей в призме

Показатель преломления призмы может быть найден как

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}.$$
 (3)

Для призмы из изотропного матреиала в случае, когда $\varphi_1 = \varphi_2$, показатель преломления может быть рассчитан по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{4}$$

где ψ_m – угол наименьшего отклонения.

Экспериментальная установка

Рис. 3: Схема установки

Рис. 4: Фотография установки

Ход работы

Сначала выполним юстировку установки – столик устанавливим так, чтобы луч проходил через отметки 0 и 180, при этом проходя через центр входного отверстия.

Затем определим угол при вершине призмы – для этого сделаем ряд измерений угла отражения при прохождении луча через катет призмы и гипотенузы призмы. Результаты занесем в таблицу 1. и таблицу 2. Здесь α – угол, на который был повернут столик.

Таблица 1: Преломление луча при прохождении через катет

	$\alpha,^{\circ}$	0	350	340	330	320	310	300	290	280	270	260	250	240	230	220
ĺ	$2\varphi_1,^{\circ}$	190	185	180	175	170	165	160	155	150	145	140	135	130	125	120

Таблица 2: Преломление луча при прохождении через гипотенузу

$\alpha,^{\circ}$	0	350	340	330	320	310	300	290	280	270	260	250	240	230	220
$2\varphi_2,^{\circ}$	48	43	38	33	28	23	18	13	8	3	358	353	348	343	338

По данным из таблицы 2. и таблицы 3. определим угол при вершине призмы A

$$A = 38^{\circ} \pm 0.5^{\circ}$$

Затем определим разрешенное направление поляроида, используя для этого стол. Поляриоид нам потребуется для того, чтобы выделять обыкновенную и необыкновенную волны, которые имеют различную поляризацию.

Далее снимем зависимость углов отклонения на выходе из призмы для обыкновенной и необыкновенной волны от угла падения луча на призму. Результаты этих измерений представлены в таблице 3.

Таблица 3: Зависимость углов отклонения от угла падения

$2\varphi,^{\circ}$	$(180 + \psi_o),^{\circ}$	$(180 + \psi_e),^{\circ}$
20	215.5	205.5
30	213.0	204.5
40	211.5	204.0
50	211.0	204.0
60	210.5	204.5
70	211.0	205.0
80	211.5	206.0
90	212.5	207.5
100	214.0	209.0
110	216.0	211.5
120	218.5	214.0
130	222.0	216.5
140	225.0	220.0

Из таблицы 3 также видим, что минимальные значение $\psi_o = 30.5^{\circ}$, минимальное значение $\psi_e = 24.0^{\circ}$. По этим величинам проведем вычисления показателся преломления, используя формулу (4)

$$n_o = 1.673 \pm 0.014$$

$$n_e = 1.489 \pm 0.013$$

Теперь, использую таблицу 3 рассчитаем значения главного коэффициентов преломления n_o для обыкновенной и n_e для необыкновенной волны, а также величину $\cos^2\theta$. Результаты представлены в таблице 4. Затем потсроим график зависимости $n(\cos\theta)$. Этот график представлен на рис. 5.

Таблица 4: Вычисленные значения коэффициентов преломления

$\varphi_1,^{\circ}$	$\psi_o,^\circ$	n_o	$\psi_e,^{\circ}$	n_e	$\cos^2 \theta$
10.0	35.5	1.602 ± 0.011	25.5	1.468 ± 0.011	0.014
15.0	33.0	1.597 ± 0.011	24.5	1.472 ± 0.012	0.031
20.0	31.5	1.593 ± 0.012	24.0	1.478 ± 0.012	0.054
25.0	31.0	1.598 ± 0.012	24.0	1.487 ± 0.012	0.081
30.0	30.5	1.593 ± 0.012	24.5	1.501 ± 0.012	0.111
35.0	31.0	1.603 ± 0.012	25.0	1.508 ± 0.012	0.145
40.0	31.5	1.605 ± 0.012	26.0	1.521 ± 0.012	0.179
45.0	32.5	1.611 ± 0.012	27.5	1.538 ± 0.012	0.211
50.0	34.0	1.621 ± 0.011	29.0	1.549 ± 0.011	0.245
55.0	36.0	1.634 ± 0.011	31.5	1.574 ± 0.011	0.271
60.0	38.5	1.650 ± 0.010	34.0	1.591 ± 0.010	0.296
65.0	42.0	1.680 ± 0.010	36.5	1.598 ± 0.010	0.322
70.0	45.0	1.687 ± 0.010	40.0	1.617 ± 0.009	0.338

Рис. 5: Зависимость коэффициента преломления от квадрата косинуса

Видим, что для необыкновенной волны выполняется соотношение (2), а для обыкновенной также заметно изменение от угла. Окончательные значения главных коэффициентов преломления найдем как среднее арифметическое соответствующих величин

$$n_o = 1.649 \pm 0.008$$

$$n_e = 1.502 \pm 0.008$$

Наконец, добьемся полного внутреннего отражения каждого из лучей, и с помощью него определим коэффициенты преломления. Полное внутренне отражение обыкновенной волны достигается при $2\varphi = 2^{\circ} \pm 2^{\circ}$, а необыкновенной – при $2\varphi = 8^{\circ} \pm 3^{\circ}$. Отсюда

$$n_o = 1.661 \pm 0.038$$

$$n_e = 1.494 \pm 0.043$$

Вывод

В работе были изучена зависимость показателся преломления необыкновенной волны от направления ее распространения в двоякопреломляющем кристалле. Несколькими способами были определены значения главных показателей преломления обыкновенной и необыкновенной волны.

- При измерении по минимальному углу получены значения $n_o=1.673\pm0.014,\ n_e=1.489\pm0.013$
- При измерении множества коэффициентов преломления при различных углах и последующем усреднении получены значения $n_o=1.649\pm0.008,\ n_e=1.502\pm0.008$
- При измерении по углу полного внутреннего отражения получены значения $n_o=1.661\pm0.038,\,n_e=1.494\pm0.043$

Табличные значения этой величины для кальцита, разновидностью которого является исландский шпат, составляют $n_o = 1.640 - 1.660$, $n_e = 1.486$.

То что получены близкие между собой и к теории, но различные в пределах погрешности величины, объясняется тем, что при измерениях использовался поляроид, настраиваемый по отражению от плоскости стола, в результате чего разрешенное направление поляроида могло быть установлено не вертикально, а под небольшим углом к горизонту, в результате чего необыкновенная волна оказывала влияние на измерения для обыкновенной, и наоборот. Также стоит отметить, что измерения по углу полного внутреннего отражения являются приблизительными, так как при достижении полного внутреннего отражения преломленный луч не исчезает сразу, а постепенно теряет яркость, из-за чего можно измерить лишь интревал, в котором достигается полное внутреннее отражение.