# 第五节 两个随机变量的函数的分布

- 一、问题的引入
- 二、离散型随机变量函数的分布
- 三、连续型随机变量函数的分布

四、小结









# 一、问题的引入

有一大群人,令 X 和 Y 分别表示一个人的年龄和体重, Z 表示该人的血压,并且已知 Z 与 X, Y 的函数关系 Z = g(X,Y),如何通过 X, Y 的 分布确定 Z 的分布.

为了解决类似的问题下面 我们讨论随机变量函数的分布.









# 二、离散型随机变量函数的分布

例1 设随机变量 (X,Y) 的分布律为

| XY                       | -2        | -1 | 0         |
|--------------------------|-----------|----|-----------|
|                          | 1         | 1  | 3         |
| -1                       | 12        | 12 | 12        |
| 1                        | 2         | 1  | 0         |
| $\frac{\overline{2}}{2}$ | 12        | 12 | U         |
|                          | 2         | 0  | 2         |
| 3                        | <b>12</b> | U  | <b>12</b> |

求 (1)X + Y, (2) | X - Y | 的分布律.







解

$$X^{Y}$$

0

3

$$\frac{2}{12}$$

$$\frac{1}{12}$$

$$\frac{2}{12}$$

$$\frac{1}{12}$$

$$\frac{1}{12}$$

$$\frac{3}{12}$$

$$\frac{2}{12}$$

$$\frac{1}{12}$$

$$\frac{2}{12}$$

$$\frac{2}{12}$$

$$(-1,-2)$$

$$(-1,-1)$$
  $(-1,0)$ 

$$\left(\frac{1}{2},-2\right)$$

$$(X,Y)$$
  $(-1,-2)$   $(-1,-1)$   $(-1,0)$   $\left(\frac{1}{2},-2\right)\left(\frac{1}{2},-1\right)(3,-2)$   $(3,0)$ 





$$\frac{1}{12}$$

$$\frac{3}{12}$$

$$\frac{2}{12}$$

$$\frac{1}{12}$$

$$\frac{2}{12}$$

$$(X,Y)$$
  $(-1,-2)$   $(-1,-1)$   $(-1,0)$   $\left(\frac{1}{2},-2\right)\left(\frac{1}{2},-1\right)(3,-2)(3,0)$ 

$$\left(\frac{1}{2},-2\right)$$

$$\left(\frac{1}{2},-1\right)$$

$$(3,-2)(3,0)$$

$$X+Y-3$$
  $-2$   $-1$   $-\frac{3}{2}$   $-\frac{1}{2}$  1

$$-\frac{3}{2}$$

$$-\frac{1}{2}$$

$$|X-Y|$$
 1







所以X+Y, X-Y 的分布律分别为





# 结论

若二维离散型随机变量的联合分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \dots,$$

则随机变量函数 Z = g(X,Y) 的分布律为

$$P\{Z = z_k\} = P\{g(X,Y) = z_k\}$$

$$= \sum_{z_k = g(x_i, y_i)} p_{ij}, \qquad k = 1, 2, \dots.$$







例2 设两个独立的随机变量 X与 Y 的分布律为

| X       | 1   | 3   | Y       | 2   | 4   |  |
|---------|-----|-----|---------|-----|-----|--|
| $P_{X}$ | 0.3 | 0.7 | $P_{Y}$ | 0.6 | 0.4 |  |

求随机变量 Z=X+Y 的分布律.

解 因为X与Y相互独立,所以

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\},$$

得 X 2 4 1 0.18 0.12 3 0.42 0.28







#### 概率论与数理统计

| <b>T</b> 7 |      |      |   | P    | (X,Y)          | Z = X + Y |
|------------|------|------|---|------|----------------|-----------|
| $X^{Y}$    | 2    | 4    |   | 0.18 | (1,2)<br>(1,4) | 3         |
| 1          | 0.18 | 0.12 | 一 | 0.12 | (1,4)          | 5         |
| 3          | 0.42 | 0.28 |   |      | (3,2)          | 5         |
|            |      |      |   | 0.28 | (3,4)          | 7         |

所以 Z = X + Y 3 5 7 P 0.18 0.54 0.28







例3 设相互独立的两个随机变量 X, Y 具有同一分布律,且 X 的分布律为

试求: $Z = \max(X, Y)$ 的分布律.

解 因为X与Y相互独立,

所以 
$$P{X = i, Y = j} = P{X = i}P{Y = j}$$
,

于是

| X | 0                | 1                |
|---|------------------|------------------|
| 0 | 1/2 <sup>2</sup> | 1/2 <sup>2</sup> |
| 1 | 1/2 <sup>2</sup> | 1/22             |







$$P\{\max(X,Y) = i\}$$

$$= P\{X = i, Y < i\}$$

$$+ P\{X \le i, Y = i\}$$

$$\Rightarrow P\{\max(X,Y)=0\}=P\{0,0\}=\frac{1}{2^2},$$

$$P{\max(X,Y) = 1} = P{1,0} + P{0,1} + P{1,1}$$

$$=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=\frac{3}{2^2}.$$

故
$$Z = \max(X, Y)$$
  $Z$   $0$   $1$  的分布律为  $P$   $\frac{1}{4}$   $\frac{3}{4}$ 







# 三、连续型随机变量函数的分布

# 1. Z=X+Y的分布

设(X,Y)的概率密度为f(x,y),则Z = X + Y的分布函数为

$$F_{Z}(z) = P\{Z \le z\} = \iint_{x+y \le z} f(x,y) \, \mathrm{d} x \, \mathrm{d} y$$

$$= \int_{-\infty}^{+\infty} \left[ \int_{-\infty}^{z-y} f(x,y) \, \mathrm{d} u \right] \, \mathrm{d} y$$

$$= \int_{-\infty}^{z} \left[ \int_{-\infty}^{+\infty} f(u-y,y) \, \mathrm{d} u \right] \, \mathrm{d} y$$

$$= \int_{-\infty}^{z} \left[ \int_{-\infty}^{+\infty} f(u-y,y) \, \mathrm{d} y \right] \, \mathrm{d} u.$$





### 由此可得概率密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy.$$

由于 X 与 Y 对称,  $f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx$ .

当 X, Y 独立时,  $f_z(z)$ 也可表示为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy,$$

或 
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$
.





例4 设两个独立的随机变量 X 与 Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

解 由于 
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, -\infty < y < +\infty,$$

由公式 
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$
,







得 
$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{(z-x)^2}{2}} dx$$

$$=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infty}^{+\infty}e^{-\left(x-\frac{z}{2}\right)^2}dx$$

$$\frac{t = x - \frac{z}{2}}{2\pi} \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}.$$

即 Z 服从 N(0,2) 分布.







### 说明

一般,设
$$X,Y$$
相互独立且 $X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2)$ .则 $Z = X + Y$ 仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$ .

有限个相互独立的正态随机变量的线性组合仍然服从正态分布.







例5 在一简单电路中,两电阻  $R_1$  和  $R_2$  串联联接,设  $R_1$ ,  $R_2$  相互独立,它们的概率密度均为

$$f(x) = \begin{cases} \frac{10-x}{50}, & 0 \le x \le 10, \\ 0, & \text{ 其他.} \end{cases}$$

求电阻  $R = R_1 + R_2$  的概率密度.

解由题意知R的概率密度为

$$f_R(z) = \int_{-\infty}^{+\infty} f(x) f(z-x) dx.$$









当
$$\begin{cases} 0 < x < 10, \\ 0 < z - x < 10, \end{cases}$$
 即 $\begin{cases} 0 < x < 10, \\ z - 10 < x < z, \end{cases}$  时,

 $f_R(z) = \int_{-\infty}^{+\infty} f(x) f(z-x) dx$  中被积函数不为零.







此时

$$f_R(z) = \begin{cases} \int_0^z f(x) f(z-x) dx, & 0 \le z < 10, \\ \int_{z-10}^{10} f(x) f(z-x) dx, & 10 \le z \le 20, \\ 0, & \text{ 其他.} \end{cases}$$

将 
$$f(x) = \begin{cases} \frac{10-x}{50}, & 0 \le x \le 10, \\ 0, & 其他. \end{cases}$$







$$f(z-x) = \begin{cases} \frac{10-(z-x)}{50}, & 0 \le z-x \le 10, \\ 0, & \text{ i.e.} \end{cases}$$

# 代入(1)式得

$$f_R(z) = \begin{cases} (600z - 60z^2 + z^3)/15000, & 0 \le z < 10, \\ (20 - z)^3/15000, & 10 \le z < 20, \\ 0, & \sharp \text{ th.} \end{cases}$$







例6 设  $X_1, X_2$  相互独立且分别服从参数为  $\alpha_1, \beta$ ;  $\alpha_2, \beta$  的  $\Gamma$  分布  $(X_1 \sim \Gamma(\alpha_1, \beta), X_2 \sim \Gamma(\alpha_2, \beta)), X_1$ ,  $X_2$ 的概率密度分别为

$$f_{X_1}(x) = \begin{cases} \frac{\beta}{\Gamma(\alpha_1)} (\beta x)^{\alpha_1 - 1} e^{-\beta x}, x > 0, \\ 0, & \text{ 其他.} \end{cases} \quad \alpha_1 > 0, \beta > 0,$$

$$f_{X_2}(y) = \begin{cases} \frac{\beta}{\Gamma(\alpha_2)} (\beta y)^{\alpha_2 - 1} e^{-\beta y}, y > 0, \\ 0, & \text{ 其他.} \end{cases} \quad \alpha_2 > 0, \beta > 0,$$

试证明  $X_1 + X_2$  服从参数为  $\alpha_1 + \alpha_2$ ,  $\beta$  的  $\Gamma$  分布.







证明 
$$f_Z(z) = \int_{-\infty}^{+\infty} f_{X_1}(x) f_{X_2}(z-x) dx$$

当 z < 0 时, 易知  $f_z(z) = 0$ .

当z > 0时, $Z = X_1 + X_2$ 的概率密度为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_{X_1}(x) f_{X_2}(z-x) dx$$

$$= \int_0^z \frac{\beta}{\Gamma(\alpha_1)} (\beta x)^{\alpha_1 - 1} e^{-\beta x} \frac{\beta}{\Gamma(\alpha_2)} [\beta(z - x)]^{\alpha_2 - 1} e^{-\beta(z - x)} dx$$

$$=\frac{\beta^{\alpha_1+\alpha_2}e^{-\beta z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_0^z x^{\alpha_1-1}(z-x)^{\alpha_2-1}\,\mathrm{d}\,x, \ \diamondsuit \quad x=zt,$$







$$= \frac{\beta}{\Gamma(\alpha_1)\Gamma(\alpha_2)} (\beta z)^{\alpha_1+\alpha_2-1} e^{-\beta z} \int_0^1 t^{\alpha_1-1} (1-t)^{\alpha_2-1} dt$$

$$\underline{\underline{\Delta}} A(\beta z)^{\alpha_1+\alpha_2-1} e^{-\beta z},$$

其中 
$$A = \frac{\beta}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^1 t^{\alpha_1-1} (1-t)^{\alpha_2-1} dt.$$

由概率密度的性质可求得 A,

$$1 = \int_0^{+\infty} f_Z(z) dz = \frac{A}{\beta} \int_0^{+\infty} (\beta z)^{\alpha_1 + \alpha_2 - 1} e^{-\beta z} d(\beta z)$$









$$=\frac{A}{\beta}(\alpha_1+\alpha_2),$$

即有 
$$A = \frac{\beta}{\Gamma(\alpha_1 + \alpha_2)}.$$

于是 
$$f_Z(z) = \begin{cases} \frac{\beta}{\Gamma(\alpha_1 + \alpha_2)} (\beta z)^{\alpha_1 + \alpha_2 - 1} e^{-\beta z}, & z > 0, \\ 0, &$$
其他.

因此有  $X_1 + X_2$  服从参数为  $\alpha_1 + \alpha_2$ ,  $\beta$  的  $\Gamma$  分布.





此结论可推广到n个相互独立的 $\Gamma$ 分布变量之和的情况。

若  $X_1, X_2, \dots, X_n$  相互独立,且  $X_i$  服从参数为  $\alpha_i$ ,  $\beta$  ( $i = 1, 2, \dots, n$ ) 的 $\Gamma$  分布,则

$$X_1 + X_2 + \dots + X_n$$
 服从参数为  $\sum_{i=1}^n \alpha_i$ ,  $\beta$  的  $\Gamma$  分布.







2. 
$$Z = \frac{X}{Y}$$
的分布

设(X,Y)的概率密度为f(x,y),则 $Z = \frac{X}{Y}$ 的

分布函数为

$$F_{Z}(z) = P\{Z \le z\} = P\{\frac{X}{Y} \le z\}$$

$$= \iint_{G_{1}} f(x,y) dx dy + \iint_{G_{2}} f(x,y) dx dy$$

$$= \int_{0}^{+\infty} \int_{-\infty}^{yz} f(x,y) dx dy + \int_{-\infty}^{0} \int_{yz}^{+\infty} f(x,y) dx dy,$$

$$\Rightarrow u = x/y,$$

$$G_{1}$$





$$\iint_{G_{t}} f(x,y) dx dy = \int_{0}^{+\infty} \int_{-\infty}^{yz} f(x,y) dx dy$$

$$= \int_0^{+\infty} \int_{-\infty}^z y f(yu, y) du dy = \int_{-\infty}^z \int_0^{+\infty} y f(yu, y) dy du$$

同理可得

$$\iint_{G_2} f(x,y) dx dy = -\int_{-\infty}^{z} \int_{-\infty}^{0} y f(yu,y) dy du,$$

故有 
$$F_Z(z) = P\{Z \le z\}$$

$$= \iint_{G_1} f(x,y) dx dy + \iint_{G_2} f(x,y) dx dy$$







$$= \int_{-\infty}^{z} \left[ \int_{0}^{+\infty} y f(yu, y) dy - \int_{-\infty}^{0} y f(yu, y) dy \right] du.$$

由此可得分布密度为

$$f(z) = \int_0^{+\infty} y f(yz, y) dy - \int_{-\infty}^0 y f(yz, y) dy$$
$$= \int_{-\infty}^{+\infty} |y| f(yz, y) dy.$$

当X, Y独立时,

$$f(z) = \int_{-\infty}^{\infty} |y| f_X(yz) f_Y(y) dy.$$







例7 设 X,Y 分别表示两只不同型号的灯泡的寿命,X,Y 相互独立,它们的概率密度分别为

$$f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{ i.e.} \end{cases} \qquad f(y) = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

试求  $Z = \frac{X}{Y}$  的概率密度函数.

解 由公式

$$f_Z(z) = \int_0^{+\infty} y f(yz, y) dy - \int_{-\infty}^0 y f(yz, y) dy,$$







$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & x > 0, y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

得所求密度函数 (当z > 0时)

$$f_Z(z) = \int_0^{+\infty} 2y e^{-yz} e^{-2y} dy = \int_0^{+\infty} 2y e^{-y(2+z)} dy = \frac{2}{(2+z)^2},$$

(当
$$z \le 0$$
时)  $f_z(z) = 0$ ,

得 
$$f_Z(z) = \begin{cases} \frac{2}{(2+z)^2}, z > 0, \\ 0, z \le 0. \end{cases}$$







# $3. M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的分布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$ ,

则有 
$$F_{\text{max}}(z) = P\{M \le z\} = P\{X \le z, Y \le z\}$$
  
=  $P\{X \le z\}P\{Y \le z\} = F_{X}(z)F_{Y}(z)$ .

$$F_{\min}(z) = P\{N \le z\} = 1 - P\{N > z\}$$

$$= 1 - P\{X > z, Y > z\}$$

$$= 1 - P\{X > z\} \cdot P\{Y > z\}$$







$$= 1 - [1 - P\{X \le z\}] \cdot [1 - P\{Y \le z\}]$$

$$= 1 - [1 - F_X(z)][1 - F_Y(z)].$$

## 故有

$$F_{\text{max}}(z) = F_{X}(z)F_{Y}(z),$$

$$F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)].$$







# 推广

设  $X_1, X_2, \dots, X_n$  是 n 个相互独立的随机变量,它们的分布函数分别为  $F_{X_i}(x_i)$  ( $i = 1, 2, \dots, n$ )

则 $M = \max(X_1, X_2, \dots, X_n)$ 及 $N = \min(X_1, X_2, \dots, X_n)$ 的分布函数分别为

$$F_{\text{max}}(z) = F_{X_1}(z) \cdot F_{X_2}(z) \cdots F_{X_n}(z),$$

 $F_{\min}(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)] \cdots [1 - F_{X_n}(z)].$  若  $X_1, X_2, \cdots, X_n$ 相互独立且具有相同的分布函数 F(x),则

$$F_{\text{max}}(z) = [F(z)]^n, F_{\text{min}}(z) = 1 - [1 - F(z)]^n.$$







例8 设系统 L由两个相互独立的子系统  $L_1$ ,  $L_2$  联接而成,连接的方式分别为 (i) 串联, (ii) 并联, (iii) 备用 (当系统  $L_1$  损坏时,系统  $L_2$  开始工作), 如图所示.

设  $L_1$ ,  $L_2$  的寿命分别为 X, Y, 已知它们的概率密度分别为







$$f_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0, \end{cases} \qquad f_Y(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

其中 $\alpha > 0$ ,  $\beta > 0$  且  $\alpha \neq \beta$ . 试分别就以上三种联接方式写出 L 的寿命 Z 的概率密度.

# 解 (i)串联情况

由于当  $L_1, L_2$  中有一个损坏时,系统 L 就停止工作, 所以这时 L 的寿命为  $Z = \min(X, Y)$ .







$$F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

$$=\begin{cases}1-e^{-(\alpha+\beta)z}, z>0,\\0, & z\leq 0.\end{cases}$$

$$\Rightarrow f_{\min}(z) = \begin{cases} (\alpha + \beta)e^{-(\alpha + \beta)z}, z > 0, \\ 0, & z \le 0. \end{cases}$$







### (ii)并联情况

由于当且仅当  $L_1$ ,  $L_2$  都损坏时,系统 L 才停止工作,

所以这时 L的寿命为  $Z = \max(X,Y)$ .

 $Z = \max(X, Y)$ 的分布函数为

$$F_{\max}(z) = F_X(z) \cdot F_Y(z) = \begin{cases} (1 - e^{-\alpha z})(1 - e^{-\beta z}), z > 0, \\ 0, & z \le 0. \end{cases}$$

$$f_{\max}(z) = \begin{cases} \alpha e^{-\alpha z} + \beta e^{-\beta z} - (\alpha + \beta) e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$







## (iii)备用的情况

由于这时当系统  $L_1$  损坏时,系统  $L_2$  才开始工作, 因此整个系统 L 的寿命 Z 是  $L_1$ ,  $L_2$  两者之和,即

$$Z = X + Y$$

当z > 0时, Z = X + Y的概率密度为

$$f(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy = \int_{0}^{z} \alpha e^{-\alpha(z - y)} \beta e^{-\beta y} dy$$

$$= \alpha \beta e^{-\alpha z} \int_0^z e^{-(\beta - \alpha)y} dy$$







$$=\frac{\alpha\beta}{\beta-\alpha}[e^{-\alpha z}-e^{-\beta z}].$$

当
$$z < 0$$
时, $f(z) = 0$ ,

于是 Z = X + Y 的概率密度为

$$f(z) = \begin{cases} \frac{\alpha \beta}{\beta - \alpha} [e^{-\alpha z} - e^{-\beta z}], & z > 0, \\ 0, & z \le 0. \end{cases}$$







# 四、小结

### 1. 离散型随机变量函数的分布律

若二维离散型随机变量的联合分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \dots,$$

则随机变量函数 Z = g(X,Y)的分布律为

$$P\{Z = z_k\} = P\{g(X,Y) = z_k\}$$

$$= \sum_{z_k = g(x_i, y_i)} p_{ij}, \qquad k = 1, 2, \dots.$$







## 2. 连续型随机变量函数的分布

(1) 
$$Z = X + Y$$
 的分布

(2) 
$$Z = \frac{X}{Y}$$
的分布

(3) 
$$M = \max(X, Y)$$
 及  $N = \min(X, Y)$  的分布





