Topic 1 Introduction to Digital Design

Why Study Digital Design?

- Many elements of our lives are or are to become digital
 - Computer, camera, cell phone, TV, car...
- Electronic devices are made smaller and smarter
 - Enabled by shrinking and more capable chips
 - Supported by "embedded systems"
 - Providing better quality
- Solid understanding benefits ECE engineers
 - For computer engineer fundamental
 - For electrical engineer many times necessary
 - Even for software engineer confident and insightful when aware of hardware resource issues

What Does "Digital" Mean?

- Analog signal
 - Infinite possible values

 Ex: voltage on a wire created by microphone

value

Finite possible values

Digital signal

 Ex: button pressed on a keypad

signal

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
 - low voltage (e.g. 0V or -5V) and high voltage (e.g. 3.3V or 5V)
 - Typically represented as **0** and **1**, respectively
 - All values are represented as combinations of 0's and 1's, e.g. 1011, 11010
 - Called binary value or binary number
 - Each binary digit is a bit
 - We'll only consider binary digital signals
 - Although there are other types of digital signals
 - Binary is popular because
 - Transistors, the basic digital electric component, operate using *two* voltages
 - Storing/transmitting one of *two* values is easier than three or more

From Analog to Digital – Digitization

- Analog signal (e.g., audio) may lose quality
 - Voltage levels not saved/copied/transmitted perfectly
 - Hard to recover
- Digitized version:
 - "Sample" voltage at particular rate
 - Easy to distinguish 0s from 1s, thus easy to recover
 - Increase sample rate to improve quality

Example: if only 4 sampled values let binary representation be: 0 V: "00" 1 V: "01" 2 V: "10" 3 V: "11"

Resolution

(source: cntv.cn)

(source: wikipedia.org)

From Analog to Digital – Digitization

Higher resolution (sample rate)

Typical Digital System

How Do We Encode Signal as Binary?

- Some signals are inherently binary
 - Example:

Button: not pressed (0), pressed (1)

- Some signals are inherently digital
 - But not binary digital
 - Outputs finite possible values
 - Each value maybe encoded in binary with multiple bits
 - More values need more bits to represent
 - e.g., multi-button input: encode "1"=001,"2"=010, ...

How Do We Encode Numbers with Bits

- Number systems: decimal, binary, octal, hexadecimal, ...
- Each position of a number is associated with a weight quantity
 - Base ten (decimal)

$$\frac{5}{10^4} \frac{5}{10^3} \frac{2}{10^2} \frac{3}{10^1} \frac{3}{10^0}$$

Base two (binary)

$$\frac{1}{2^4} \frac{1}{2^3} \frac{1}{2^2} \frac{1}{2^1} \frac{1}{2^0}$$

Binary System

- The Binary System is a base 2 (modulo 2) number system:
 - 2 digits: 0 or 1
- Counting beyond 1 requires additional place
- In a binary number, each position has a decimal weight in power of 2, 10011.01

	1	0	0	1	1	0	_1
	×16	$\times 8$	$\times 4$	$\times 2$	X1	1/2	1/4
weight	(2^4)	(2^3)	(2^2)	(2^1)	(2^0)	(2^{-1})	(2^{-2})
position	4	3	2	1	0	-1	-2

Find Equivalent Decimal for Binary Numbers

Example: Convert binary number 10011.01₂ to decimal

$$1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

= 16 + 0 + 0 + 2 + 1 + 0 + 1/4
= 19.25₁₀ = 10011.01₂

Encode Decimal as Binary Numbers: Subtraction Method (Easy for Humans)

- Subtraction method
 - To make the job easier (especially for big numbers), we can just subtract a selected binary weight from the (remaining) quantity
 - Then, we have a new remaining quantity, and we start again (from the present binary position)
 - Stop when remaining quantity is 0

Remaining quantity: 12

$$\frac{1}{32} \frac{1}{16} \frac{8}{8} \frac{4}{4} \frac{2}{2} \frac{1}{1}$$

$$\frac{1}{32} \frac{1}{16} \frac{8}{8} \frac{4}{4} \frac{2}{2} \frac{1}{1}$$

$$\frac{0}{32} \frac{1}{16} \frac{1}{8} \frac{4}{4} \frac{2}{2} \frac{1}{1}$$

$$\frac{0}{32} \frac{0}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1}$$

$$\frac{0}{32} \frac{0}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1}$$

$$\frac{12 - 8 = 4}{1}$$

$$\frac{4 - 4 = 0}{1}$$
DONE
$$\frac{0}{32} \frac{0}{16} \frac{1}{8} \frac{1}{4} \frac{0}{2} \frac{0}{1}$$
answer

Encode Decimal in Binary Numbers: Division Method (Good for Computers)

- Example: Convert decimal number 37 to binary
 - Repeated-division-by-base (here, base 2)

$$(37)_{10} = (100101)_2$$

Encode Fractional Decimal in Binary

- Example: Convert fractional part 0.715₁₀ to binary
 - Repeated-multiplication-by-base (here, base 2)

$$(0.715)_{10} \approx (0.10110...)_2$$

Encode Numbers with Bits

- Bigger number needs more bits to encode
 - $-37_{10} = 100101_2$ (6 bits)
 - $-137_{10} = 10001001_2$ (8 bits)
 - $-10307_{10} = 10100001000011_2(14 \text{ bits})$
- N bits can represent 2^N non-negative integers
 - $-0, 1, 2, ..., 2^{N}-1$
 - Negative numbers will be discussed later

Encode Decimal Numbers by Binary Bits

	Bir	Decimal		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15
		16		
	•••			

Hexadecimal System

- The Hexadecimal system is a base 16 (modulo 16) number system:
 - 16 digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Letters A ~ F represent decimal 10 through decimal 15
- Each position has a decimal weight in power of 16, e.g.
 E3A

Encode Decimal to Hexadecimal

- Example: Convert decimal number 58 to hexadecimal
 - Repeated-division-by-base (here, base 16)

$$(58)_{10} = (3A)_{16}$$

Summary

	Bin	ary		Decimal	Hexaecimal
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	Α
1	0	1	1	11	b
1	1	0	0	12	С
1	1	0	1	13	d
1	1	1	0	14	E
1	1	1	1	15	F

Convert Binary to Hexadecimal

- Look for groups of 4 bits starting from the LSB
- Example: Convert 11 1011 0101.11 to hexadecimal:

 $(11\ 1011\ 0101.11)_2 = (3b5.c)_{16}$

Binary				Decimal	Hexaecimal
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	Α
1	0	1	1	11	b
1	1	0	0	12	С
1	1	0	1	13	d
1	1	1	0	14	E
1	1	1	1	15	F

Convert Hexadecimal to Binary

- Each digit is converted to 4 bits in binary
- Arrange the groups of 4 bits in the same order
- Example: convert (3F7)₁₆ to binary:

Drop the initial 0's to simplify

$$(3F7)_{16} = (11\ 1111\ 0111)_2$$

	Binary			Decimal	Hexaecimal		
0	0	0	0	0	0		
0	0	0	1	1	1		
0	0	1	0	2	2		
0	0	1	1	3	3		
0	1	0	0	4	4		
0	1	0	1	5	5		
0	1	1	0	6	6		
0	1	1	1	7	7		
1	0	0	0	8	8		
1	0	0	1	9	9		
1	0	1	0	10	Α		
1	0	1	1	11	b		
1	1	0	0	12	С		
1	1	0	1	13	d		
1	1	1	0	14	E		
1	1	1	1	15	F		

Octal System

- The Octal number system is a base 8 (modulo 8) number system:
 - 8 digits: 0 1 2 3 4 5 6 7
- Each position has a decimal weight in power of 8
- Each octal digital corresponds to a 3-bit binary number

Convert Base-M System to Base-N System

- Decimal can always be used as the intermediate number system
- Generally, the rule "divide/multiply by the base of destination system" applies to all the number system conversions
 - Example, to convert a Hex number to base-3 number, just divide the Hex number by 3

Binary Arithmetic

• Example:

Hexadecimal Arithmetic

• Example:

How Do We Encode Text with Binary Bits

- A popular code: ASCII
 (American Standard Code for Information Interchange)
 - 7- (or 8-) bit encoding of each letter, number, or symbol

Symbol	Encoding
R	1010010
S	1010011
T	1010100
L	1001100
N	1001110
Е	1000101
0	0110000
•	0101110
<tab></tab>	0001001

Symbol	Encoding
r	1110010
S	1110011
t	1110100
1	1101100
n	1101110
e	1100101
9	0111001
!	0100001
<spa ce=""></spa>	0100000

- Unicode: Increasingly popular 16-bit encoding
 - Encodes characters from various world languages

ASCII Coding Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
64	01000000	100	40	@	96	01100000	140	60	
65	01000001	101	41	Α	97	01100001	141	61	a
66	01000010	102	42	В	98	01100010	142	62	b
67	01000011	103	43	С	99	01100011	143	63	С
68	01000100	104	44	D	100	01100100	144	64	d
69	01000101	105	45	E	101	01100101	145	65	е
70	01000110	106	46	F	102	01100110	146	66	f
71	01000111	107	47	G	103	01100111	147	67	g
72	01001000	110	48	Н	104	01101000	150	68	h
73	01001001	111	49	1	105	01101001	151	69	i
74	01001010	112	4A	J	106	01101010	152	6A	j
75	01001011	113	4B	K	107	01101011	153	6B	k
76	01001100	114	4C	L	108	01101100	154	6C	1
77	01001101	115	4D	M	109	01101101	155	6D	m

•

Signed Binary Numbers

- To represent negative numbers
 - Cannot use minus sign: binary systems work with only two values,
 0 and 1
 - The left-most bit of a binary number represents the sign of a number sign bit
 - Sign bit 0 indicates positive numbers
 - Sign bit 1 indicates negative number

Representation of Negative Numbers

- Negative numbers are represented by
 - Sign and magnitude
 - 1's complement code
 - 2's complement code
- Sign and magnitude
 - MSB is the sign bit: 0 → positive, 1 → negative
- 1's complement representation of –N
 - Negation of every bit of N
 - Example, 1's complement representation of -3
 - N = 3 = 0011
 - -N = -3 = 1100
- 2's complement representation of –N is
 - Negation of every bit of N, then plus 1
 - Example, 2's complement representation of -3
 - N = 3 = 0011
 - -N = -3 = 1100 + 1 = 1101

Signed 2's Complement Number

- Signed numbers are represented as 2's complement numbers in computers
- Recognize a signed 2's complement number
 - Sign bit = 0, positive number, recognize as a regular binary number
 - 0101 = +5;
 - Sign bit = 1, negative number, the magnitude of the number is obtained by 2's complement operation
 - 1011
 - Sign: negative number
 - Magnitude: 2's complete operation of (1011) = 0100+1 = 0101 = 5
 - So 1011 = -5

Ranges of Signed 2's Complement Number

- In general the 2's complement values range from –2ⁿ⁻¹ to 2ⁿ⁻¹-1
- For n = 4, the 2's complement values range from –8 to 7
- For n = 8, the 2's complement values range from –128 to 127
- For n = 16, the 2's complement values range from -2^{15} to 2^{15} -1

Overflow

– If an n-bit 2's complement number is greater than 2^{n-1} -1 or less than -2^{n-1} , we say there is an overflow

Detecting Overflow: Method 1

- Overflow detection logic
 - Two numbers' sign bits are the same but are different from the result's sign bit
 - If the two numbers' sign bits are different, overflow is impossible
 - Adding a positive and negative can't exceed largest magnitude positive or negative
- 4-bit example

Binary Number Subtraction

Using two's complement representation

$$A - B = A + (-B)$$

= A + (two's complement of B)
= A + invert bits(B) + 1

Example:

