Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	28 /04 /2020	Client

1 Input Parameters

Modu	ıle		Bea	m Coverplate Connection
MainModule			Moment Connection	
Moment(kNm)*			0.0	
Shear(l	(N)*			0.0
Axial (l	(N) *			0.0
		Section		
	Beam S	Section *		JB 150
	Prefe	rences		Outside
т ү	Mate	erial *		E 250 (Fe 410 W)A
	Ultimate stren	ngth, fu (MPa)		410
<u>(B-t)</u> t — α Z D	Yield Strength , fy (MPa)	230	R2(mm)	1.5
	Mass	7.1	Iz(mm4)	3220000.0
R ₁	Area(mm2) -	901.0	Iy(mm4)	92000.0
В	D(mm)	150.0	rz(mm)	59.800000000000004
Y	B(mm)	50.0	ry(mm)	10.1
	t(mm)	3.0	Zz(mm3)	42900.0
	T(mm)	4.6	Zy(mm3)	3700.0
	FlangeSlope	91.5	Zpz(mm3)	42900.0
	R1(mm)	5.0	Zpy(mm3)	3700.0
		Bolt Details		
Diameter	,		[12.0,	16.0, 20.0, 24.0, 30.0, 36.0]
Grade	e *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*		Bearing Bolt	
Bolt.fu			1200.0	
Bolt.	Bolt.fy			1080.00000000000005
Bolt hole	e type		Standard	
Slip factor (µ_f)			0.3	
Type of	Type of edges		a - Sheared or hand flame cut	
Gap between beam and	 br>support (mm)		10.0
Are the members exposed to	 corrosive	influences		False

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	28 /04 /2020	Client

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{901.0 * 230}{1.1 * 1000}$ $= 188.39$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{140.8 * 3.0 * 230}{\sqrt{3} * 1.1 * 1000}$ $= 50.99158$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 14868 * 230}{1.1 * 1000000}$ $= 3.11$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 42900.0 * 230}{1.1}$ $= 13.46$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(3.11, 13.46)$ = 3.11	

2.2 Load Considered

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Applied Axial Load Au	= 0.3 * 188.39	= max(0.0, 56.52)	Pass
(kN)	= 56.52	= 56.52	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Applied Shear Load Vu	= 0.6 * 50.99	= max(0.0, 30.59)	Pass
(kN)	= 30.59	= 30.59	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Applied Moment Load Mu	= 0.5 * 3.11	= max(0.0, 1.55)	Pass
(kNm)	= 1.55	= 1.55	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
Forces Carried by Web		Frovided $A_{w} = Axial \ force \ in \ web$ $= \frac{(D-2*T)*t*Au}{A}$ $= \frac{(150.0-2*4.6)*3.0*56.52}{901.0}$ $= 26.5$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w}*Mu}{Z}$ $= \frac{14868*1.55}{42900.0}$ $= 0.54$	
Forces Carried by Flange		$A_{f} = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{56.52 * 50.0 * 4.6}{901.0}$ $= 14.43$ $M_{f} = Moment \ in \ flange$ $= Mu - M_{w}$ $= 1.55 - 0.54$ $= 1.02$ $f_{f} = flange \ force$ $= \frac{M_{f} * 1000}{D - T} + A_{f}$ $= \frac{1.02}{150.0 - 4.6} + 14.43$ $= 21.41$	

2.3 Flange Bolt Checks

Check	Required	Provided	Remarks
		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $1200.0 * 1 * 84.3$	
Shear Capacity (kN)		$= \frac{1200.0 * 1 * 34.3}{\sqrt{3} * 1.25}$ $= 46.72$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 4.6 * 410}{1.25}$ $= 23.5$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (46.72, 23.5)$ = 23.5	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 21.41^{2}}}{23.5}$ $= 2$	0	
No of Columns		0.0	
No of Rows		0.0	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 4.6, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 4.6, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. End Distance (mm)	$= 300$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ $= 1.7 * 13.0 = 22.1$	0.0	N/A
Max. End Distance (mm)	$= 1.7 * 13.0 = 22.1$ $e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$	0.0	N/A
Min. Edge Distance (mm)	= 1.7 * 13.0 = 22.1	0.0	N/A
Max. Edge Distance (mm)	$e/e^{\circ}_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e^{\circ}_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	0.0	N/A

2.4 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{1200.0 * 2 * 84.3}{\sqrt{3} \ * 1.25}$ $= 93.45$	

	Company Name		Project Title	
Ī	Group/Team Name		Subtitle	
	Designer		Job Number	
	Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ *0.52 *12.0 *3.0 *410}{1.25}$ $= 15.33$	
Bolt Capacity (kN)		$V_{db} = min \ (V_{dsb}, V_{dpb})$ = $min \ (93.45, 15.33)$ = 15.33	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{30.59^{2} + 26.5^{2}}}{15.33}$ $= 6$	9	
No of Columns		3	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * \ 3.0, \ 300 \ mm)$ = 300	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	35	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 3.0, \ 300 \ mm)$ $= 300$	35	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass

2.5 Outer flange plate Checks

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
Min. Plate Height (mm)		0.0	N/A
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{0.0}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 38.4000000000000000$	0.0	N/A
Min.Plate Thickness (mm)	$t_w = 4.6$	6.0	Pass

2.6 Member Checks

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{0.0 * 4.6 * 230}{\sqrt{3} * 1.1}$ $= 88.32$	
Flange Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (0.0 - 0.0 * 13.0) * 4.6 * 410}{1.25}$	
Flange Block Shear Capacity (kN)		$ T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}} $ $ T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}} $ $ T_{db} = min(T_{db1}, T_{db2}) = 0.0 $	
Flange Tension Capacity (kN)	21.41	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ = $Min(88.32, 0.0, 0.0)$ N/A	
Web Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{140.8 * 3.0 * 230}{\sqrt{3} * 1.1}$ $= 0.0$	
Web Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (140.8 - 3 * 13.0) * 3.0 * 410}{1.25}$ $= 0.0$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Web Block Shear Capacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 0.0$	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	26.5	= Min(0.0, 0.0, 0.0)	N/A
		= 0.0	

2.7 Flange Plate Capacity Checks in axial-Outside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{0.0 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 0.0$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (0.0 - 0.0 * 13.0) * 6.0 * 410}{1.25}$ $= 0.0$	
Block Shear Capacity (KN)		$T_{db1} = rac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + rac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = rac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + rac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 0.0$	
Plate Tension Capacity (kN)	21.41	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ = $Min(0.0, 0.0, 0.0)$ = 0.0 N/A	

2.8 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{120 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 0.0$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (120 - 3 * 13.0) * 6.0 * 410}{1.25}$ $= 0.0$	<u>)</u>

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Check	Required	Provided	Remarks
		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity (KN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 0.0$	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Plate Tension Capacity	26.5	= Min(0.0, 0.0, 0.0)	N/A
(kN)		= 0.0	

2.9 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
Shear yielding Capacity		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}} $ $= 120 * 6.0 * 230$	
(V_dy) (kN)		$= \frac{1}{\sqrt{3} \cdot 1.1}$ $= 0.0$	
Shear Rupture Capacity		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
(V_dn) (kN)		= 0.9 * (120 - (1.5 * 13.0)) * 6.0 * $= 0.0$	410
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 0.0$ $V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	30.59	= Min(0.0, 0.0, 0.0)	N/A
		= 0.0	

3 3D View

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /04 /2020	Client	

Figure 1: 3D View