Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.Inf.1131: Data Science: Grundlagen	
English title: Data Science: Basics	

Lernziele/Kompetenzen:

Das Modul vermittelt grundlegende Kompetenzen im Umgang mit Daten und ihrer Analyse. Es gliedert sich in vier Teilbereiche

Konzepte. Nach erfolgreicher Teilnahme

- kennen Studierende verschiedene Datentypen und k\u00f6nnen sie mit deskriptiven Statistiken beschreiben
- kennen Studierende verschiedene Arten der Datenerhebung (experimentelles Design) und können deren Vorteile und Risiken benennen
- kennen Studierende verschiedene Formen von Voreingenommenheit (Bias) in den Daten und die resultierenden Risiken, und k\u00f6nnen neue Kontexte hinsichtlich Bias bewerten
- kennen Studierende Probleme der Fairness in Datenverarbeitung und Erhebung und können neue Kontexte hinsichtlich Fairness bewerten.

Software Werkzeuge. Erfolgreiche Teilnahme befähigt Studierende zum

- · benutzen einer Shell zur grundlegenden Datenvorverarbeitung
- analysieren von Daten mit grundlegenden Softwarebibliotheken für Datenverarbeitung in Python (Pandas, Numpy, Scipy, Matplotlib, ...)
- · testen von Software und statischen Algorithmen auf Korrektheit

Statistische Werkzeuge. Erfolgreiche Teilnahme befähigt Studierende zum

- · unterscheiden zwischen statistischer Inferenz und deskriptiver Statistik
- beherrschen der Grundlagen statistischer Inferenz (Fehler, p-Wert, Trennschärfe, Null-Hypothese, Konfidenzintervalle, ...) und vorhersagen welche Parameter diese beeinflussen
- durchführen einfacher statistischer Tests mit Bootstrap- und Permutationstests
- anwenden grundlegender Methoden des überwachten und unüberwachten Maschinellen Lernen (Klassifikation, Regression, Clustering).

Stil. Erfolgreiche Teilnahme befähigt Studierende zum

- anwenden guter Praktiken von Visualisierung von Daten
- · verfassen aussagekräftiger Projektberichte
- strukturieren von reproduzierbaren Daten- und Softwareprojekten
- strukturieren von Software für Wiederverwendbarkeit
- anwenden von Prinzipien guter Codestrukturierung und -praktiken
- anwenden grundlegende Formen des Projekt- und Team-Managements

Lehrveranstaltung: Data Science: Grundlagen (Vorlesung, Übung)	4 SWS
Prüfung: Klausurähnliche Hausarbeit (Bearbeitungszeit: 1 Woche)	6 C
Prüfungsanforderungen:	

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

- Fähigkeit grundlegende statistische Begrifflichkeiten und Konzepte anzuwenden (Statistiken, einfache Tests mit Permutationen oder Bootstrapping, Konfidenzintervalle, ...) und zu interpretieren
- Kenntnis verschiedener Datentypen, und die Fähigkeit sie mit deskriptiven Statistiken zu beschreiben und geeignet visuell darstellen
- Fertigkeit Daten mit geeigneten Softwarebibliotheken und Shell in Python zu verarbeiten
- Kenntnis verschiedener Arten der Datenerhebung und Fähigkeit zur Bewertung der Vorteile und Risiken
- Kenntnis verschiedener Formen von Voreingenommenheit (Bias) in den Daten und die resultierenden Risiken, und Fähigkeit zur Bewertung neuer Kontexte hinsichtlich Bias
- Fähigkeit zur Evaluation von Fairness in Datenverarbeitung und Erhebung in neuen Kontexten
- Kenntnis von Prinzipien guter Codestrukturierung und Fähigkeit diese auf Code anwenden
- Fähigkeit statistische Algorithmen zu testen und debuggen
- Fähigkeit grundlegende Methoden des überwachten und unüberwachten Maschinellen Lernen auf neue Probleme anzuwenden
- Kenntnis guter Praktiken von Berichtverfassung und Fähigkeit sie auf neue Projekte anwenden
- Fähigkeit Daten und Softwareprojekte reproduzierbar zu strukturieren

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse in Python
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Fabian Sinz
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl:	

Bemerkungen:

Durch erfolgreiches Lösen und Erklären der Übungsaufgaben können Bonus-Prozent für die Klausur erworben werden.