Chapter 10 Hypothesis Testing

Yale Note Ch. 17

Wackerly et al. Ch. 10

For a parameter,

- Estimation:
- consider the whole parameter space and
- guess what values of the parameter are most likely than others.
- Hypothesis Testing:
- ► pay attention to a particular set of values of the parameter space and
- ► decide if that set is likely or not, compared with some other set.
- \Rightarrow gives a rule that determines whether a particular value $\theta_0 \in \Theta$ is consistent with the evidence of the sample.
 - \triangleright Θ : parameter space the set of reasonable parameter values.

1. Introduction

- Null Hypothesis $\theta = \theta_0 \implies H_0 : \theta = \theta_0$.
- Alternative Hypothesis can be
 - ► one sided: $H_a: \theta > \theta_0$ (or $H_a: \theta < \theta_0$).
 - ► two sided: $H_a: \theta \neq \theta_0$.
- The test procedure is a rule, stated in terms of the data, that dictates whether the null hypothesis should be rejected or not.
- The classical, or Neyman-Pearson, methodology involves partitioning the sample space into two regions.
 - ▶ if the observed data(i.e., test statistic) fall in the rejection region then, the null hypothesis is rejected.
 - ▶ if they fall in the acceptance region, the null hypothesis is not rejected.

2. (Neyman-Pearson) Testing Paradigm

- (1) Two sided test
- X_1, X_2, \dots, X_n random sample from $N(\mu, \sigma^2)$, σ^2 known.

Test: $H_0: \mu = \mu_0, H_a: \mu \neq \mu_0$.

- ► Consider \overline{X} as an estimator of μ .
- ► Test statistic $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$ under H_0 .

(If σ^2 is unknown, use $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t(n-1)$).

► Acceptance/Rejection rule: Reject H_0 if $\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\alpha/2}$.

(2) One sided test

- X_1, X_2, \dots, X_n random sample from $N(\mu, \sigma^2)$, σ^2 known.
- ① Test: $H_0: \mu = \mu_0, H_a: \mu > \mu_0$.
 - ► Consider \overline{X} as an estimator of μ .
 - ► Test statistic $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$ under H_0 .

(If
$$\sigma^2$$
 is unknown, use $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t(n-1)$).

► Acceptance/Rejection rule: Reject H_0 if $\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \ge z_{\alpha}$.

Rejection region is $[z_{\alpha}, \infty)$.

Acceptance region is $(-\infty, z_{\alpha})$.

- ② Test: $H_0: \mu = \mu_0, H_a: \mu < \mu_0$.
 - ► Consider \bar{X} as an estimator of μ .
 - ► Test statistic $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$ under H_0 .

(If
$$\sigma^2$$
 is unknown, use $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t(n-1)$).

► Acceptance/Rejection rule: Reject H_0 if $\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \le -z_{\alpha}$.

Rejection region is $(-\infty, -z_{\alpha}]$.

Acceptance region is $(-z_{\alpha}, \infty)$.

(3) Errors

- Results of tests are probabilistic statements:
- a Tests can not reject any hypothesis with certainty.
- (b) We are likely to make mistakes in relying on outcomes of statistical tests.
- ► The same test procedure can lead to different conclusions in different samples. As such, we commit 2 types of errors:
- ► <u>Type 1 error</u>: The procedure may lead to rejection of H_0 when H_0 is true.
- ► <u>Type II error</u>: The procedure may fail to reject H_0 when H_0 is false.

	Do not reject H_0	Reject H ₀
H_0 true		Type I error
H_0 false	Type II error	V

(Definitions)

• P(Type I error)= $P(\text{reject H}_0 \mid \text{H}_0 \text{ true}) = \text{size of the test} \Rightarrow \text{significance level.}$

• *The power of the test*:

 $P(\text{reject H}_0 | \text{H}_0 \text{ false}) = 1 - P(\text{fail to reject H}_0 | \text{H}_0 \text{ false}) = 1 - \beta$.

- \triangleright β : probability of type II error.
- ► The size of test is under control of the analyst.
- ► The type I error could be eliminated by making the rejection region small.
- ► By doing this, we must increase the probability of type II error.

size vs. power

- For a given significance level, we would like β to be as small as possible.
- ► Equivalently, for a given significance level, we want the power of our test to be large.

- Some useful facts:
- 1) The power of a test depends on the alternative.

The closer the alternative to the null, the lower the power given α and n.

- ② For any given alternative, power increases as $n \to \infty$, for a given α .
- ► Tests for which power goes to 1 as $n \to \infty$ are called *consistent tests*.
- ③ For a given alternative and sample size, power can increase as α increases.

- (4) Power function
- ① Power function in two-tailed test:
- ► Power: probability of rejecting false null.
- ► Power function: describing the <u>rejection rate of the test</u> as a <u>function of parameter</u> for given α and n.

•
$$X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$$
.
 $H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0$.

► The decision rule is to reject H_0 if $\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\alpha/2}$.

- The power of the test therefore is $\pi(\mu) = P\left(\left|\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}\right| \ge z_{\alpha/2} \mid \mu\right)$.
- ► To investigate how $\pi(\mu, n, \alpha)$ differs by H_a, α, n_a
- ① First, want to see $\pi(\mu, n, \alpha)$ as μ changes.

For fixed n and α ,

$$\overline{X} \sim N(\mu, \sigma/n) \Rightarrow \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1)$$
.

Let $R = \left\{ \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge 1.96 \right\}$ = the event the null is rejected.

Then,
$$\frac{\sqrt{n(\overline{X}-\mu_0)}}{\sigma} = \frac{\sqrt{n(\overline{X}-\mu)}}{\sigma} + \frac{\sqrt{n(\mu-\mu_0)}}{\sigma} = Z + \theta,$$

where
$$Z \sim N(0,1)$$
, $\theta = \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}$

$$\begin{split} P(\text{reject } H_0) &= P(R) = P\left(\left|Z + \theta\right| > 1.96\right) \\ &= P(Z + \theta > 1.96) + P(Z + \theta < -1.96) \\ &= 1 - \Phi(1.96 - \theta) + \Phi(-1.96 - \theta) \equiv \pi(\mu) \end{split} \ \ \, \text{; power function.} \end{split}$$

(Special case) $n=1, \sigma=1$

Then, $\theta = \mu - \mu_0$ = true value-hypothesized value.

If $\mu = \mu_0 \pm 1$ ($\theta = \pm 1$), then $\pi(\mu) = 0.17$.

If $\mu = \mu_0 \pm 2$ ($\theta = \pm 2$), then $\pi(\mu) = 0.52$.

If $\mu = \mu_0 \pm 3$ ($\theta = \pm 3$), then $\pi(\mu) = 0.85$.

If $\mu = \mu_0$ ($\theta = 0$), then $\pi(\mu) = 0.05$.

θ	Two-sided $\pi(\theta)$
-2	0.52
-1	0.17
0	0.05
1	0.17
2	0.52

(Special case)

②
$$n = 2, \sigma = 1$$

If
$$\mu = \mu_0 \pm 1$$
, then $\pi(\mu) =$

If
$$\mu = \mu_0 \pm 2$$
, then $\pi(\mu) =$

If
$$\mu = \mu_0 \pm 3$$
, then $\pi(\mu) =$

If
$$\mu = \mu_0$$
, then $\pi(\mu) =$

GAUSS Mon Jun 25 15:37:44 2018

Power function for two-sided test

- ► If $\theta = 0$, $\pi(\mu) = 0.05$.
- ► As $|\theta| \uparrow$, $\pi(\mu) \uparrow$.
- ► As $n \uparrow$, $\pi(\mu) \uparrow$.
- ► As $\alpha \uparrow$, $\pi(\mu) = ?$
- ⓐ The power of this test is equal to the significance level at $\mu = \mu_0$.
- **b** The test is more powerful the further the true mean is from μ_0 .
- © The power increases as $n \to \infty$, for a given α .
- d For a given alternative and sample size, power can increase as α increases.

2 Power function in one-tailed test:

•
$$X_1, X_2, \dots, X_n \sim N(\mu, 1)$$
.

$$H_0: \mu = \mu_0, \qquad H_1: \mu > \mu_0.$$

► For sample size n, test statistic: $\sqrt{n}(\overline{Y} - \mu_0)$.

Critical value at $\alpha = 0.05$: 1.645.

Decision rule: reject if $\sqrt{n}(\overline{Y} - \mu_0) > 1.645$.

$$\Rightarrow$$
 If H_0 is true, $P(\sqrt{n}(\overline{Y} - \mu_0) > 1.645) = 0.05$.

$$\blacktriangleright$$
 Let $\theta = \sqrt{n}(\mu - \mu_0)$,

$$P(\text{reject } H_0) = P(R) = P(Z + \theta > 1.645)$$

= $P(Z > 1.645 - \theta)$; power function.
= $1 - \Phi(1.645 - \theta)$

θ	One-sided $\pi(\theta)$
-2	0.001
-1	0.004
0	0.05
1	0.26
2	0.64

GAUSS Thu Feb 18 10:02:28 2021

► This one-sided test is more powerful than two-sided test at right side.

3 Power function in one-tailed test 2:

•
$$X_1, X_2, \dots, X_n \sim N(\mu, 1)$$
.

$$H_0: \mu = \mu_0, \qquad H_1: \mu < \mu_0.$$

$$P(\text{reject } H_0) = P(R) = P(Z + \theta < -1.645)$$

= $P(Z < -1.645 - \theta)$; power function.
= $\Phi(-1.645 - \theta)$

GAUSS Thu Feb 18 10:04:01 2021

Power function for One-sided test

(Example) Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, 100)$ of size n = 25. Note that $\overline{X} \sim N(\mu, 100/25)$.

We want to test H_0 : $\mu = 60$, H_1 : $\mu > 60$.

Suppose $\alpha = 0.05$.

Then we reject if $\bar{X} \ge 63.29$.

Then the power function, $K(\mu) = 1 - \Phi\left(\frac{63.29 - \mu}{2}\right)$.

- ► In particular, K(65) = 0.8037.
- ► The size α corresponds to $K(\mu_0) = 1 \Phi\left(\frac{63.29 60}{2}\right) = 0.05$.

Similarly, K(60) = 0.05, K(62) = 0.2594, K(65) = 0.8037, K(68) = 0.9908So, we can plot the power function.

3. P-value(marginal significance level)

(Definition) Given the value of a test statistic(say $\hat{\theta}$), the <u>p-value(marginal significance level</u>) is the <u>lowest</u> α for which one would have to reject H_0 .

► For a sample mean, two-sided test, p-value= $2 \cdot P\left(T_n > \left| \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \right| \right)$

(Example)

① When
$$X \sim N(\mu, \sigma^2)$$
, $\hat{\theta} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = 1.96$, then p-value=0.05.

② When
$$X \sim N(\mu, \sigma^2)$$
, $\hat{\theta} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = 1.87$, then p-value=0.061.

- ③ When $X \sim N(\mu, \sigma^2)$, $\hat{\theta} = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}} = -1.87$, then p-value=0.061.
- ① When $X \sim N(\mu, \sigma^2)$, for n = 24, $\hat{\theta} = \frac{\overline{X} \mu_0}{S/\sqrt{n}} = 1.87$, then p-value=0.074.
- ⑤ When $X \sim N(\mu, \sigma^2)$, for n = 12, $\hat{\theta} = \frac{\overline{X} \mu_0}{S/\sqrt{n}} = 2.02$, then p-value=0.068.

• Testing procedure by p-value: If p-value $\leq \alpha$, reject H_0 .

- Advantages of reporting p-value:
- ① We leave it up to the reader to pick his own α .

(Example) For
$$X \sim N(\mu, \sigma^2)$$
, $\hat{\theta} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = 1.78$,

at $\alpha = 0.05$, $z_{\alpha/2} = 1.96$, then the decision: do not reject H_0 .

at $\alpha = 0.10$, $z_{\alpha/2} = 1.645$, then the decision: reject H_0 .

What do we set for α ?

► Since p-value=0.075 for $\hat{\theta} = 1.78$, we can leave it up to the reader to pick his own α .

- 2 They provide a measure of how decisive a test result is.
- \blacktriangleright tell us whether $\hat{\theta}$ is just inside or outside the critical region for a given α .
- ► tell us whether the result is unequivocal.

(Example) For
$$n = 15$$
, $\hat{\theta}_1 = 2.13$ vs. $\hat{\theta}_2 = 1.85$.
 $p - value_1 = 0.051$, $p - value_2 = 0.086$.

• P-value for one-sided test:

$$ightharpoonup H_0; \mu = \mu_0, \quad H_a: \mu < \mu_0$$

•
$$H_0$$
; $\mu = \mu_0$, H_a : $\mu > \mu_0$