General Topology Notes

Made by Leon:) Note: Any reference numbers are to the lecture notes

1 Topological Spaces and Examples

Definition 1.1: Topological Space

A **topological space** is a pair (X, \mathcal{T}) , where X is a nonempty set, and \mathcal{T} is a collection of subsets of X which satisfies:

- a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$
- b) if $U_{\lambda} \in \mathcal{T}$ for each $\lambda \in \Lambda$ (where Λ is some indexing set), then $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}$
- c) if $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$

The collection \mathcal{T} is called the **topology** of the topological space, and the members of \mathcal{T} are called the **open sets** of the topology

Example 1.7: Euclidean Spaces

Let \mathbb{R}^n denote the *n*-dimensional Euclidean vector space with elements $x=(x_1,x_2,\ldots,x_n)$ and $x_i\in\mathbb{R}$, and let

$$|x| = \sqrt{\sum_{i=1}^{n} x_i^2} \ge 0$$

be the length of x. ($\mathbb{R}^1 = \mathbb{R}$ is the real line). A subset U of \mathbb{R}^n is **open (for the usual topology)** iff for each $a \in U$ there exists an r > 0 such that

$$|x - a| < r \implies x \in U$$
.

The collection of open sets thus defined is called the **usual topology** on \mathbb{R}^n . Note that open balls $B(y,\rho)=\{x\in\mathbb{R}^n:|x-y|<\rho\}$ are open sets under this definition.

Example 1.8: Metric Spaces

A **metric space** (X, d) is a nonempty set X together with a function $d: X \times X \to \mathbb{R}$ with the following properties:

- a) $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- b) d(x, y) = d(y, x)
- c) $d(x,y) \le d(x,z) + d(z,y)$ (Triangle Inequality)

The function d is called the **metric**.

Let (X, d) be a metric space, x be a point in X, and r > 0. The **open ball** with center x and radius r is defined by

$$B(x,r) = \{y, \in X : d(x,y) < r\}.$$

A subset U of X is **open** (in the metric topology given by d) iff for each $a \in U$ there is an r > 0 such that $B(a, r) \subseteq U$. Just like euclidean spaces, open balls are open in this sense.

Proposition 1.11: Topology Equality

Let d, d' be metrics on the same set X, and let \mathcal{T} , \mathcal{T}' be the corresponding metric topologies. If for real numbers A, B > 0 we have

$$d(x,y) \le Ad'(x,y), d'(x,y) \le Bd(x,y)$$
 for all $x, y \in X$,
then $\mathcal{T} = \mathcal{T}'$.

Definition 1.16: Subspace Topology

Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ be any subset. Then the **subspace topology** on A consists of all sets of the form $U \cap A$ where $U \in \mathcal{T}$.

Definition 1.17: Closed Set

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is **closed** iff its complement $X \setminus A := \{x \in X \mid x \not\in A\}$ is open in X. Note that a set being *closed* does not mean it isn't *open*. Sets that are both *closed* and *open* are called **clopen**.

Definition 1.20: Properties of Topological Spaces

For a subset $A \subseteq X$,

• The closure of A is

$$\overline{A} := \bigcap_{\substack{C \subseteq X \text{ closed;} \\ A \subseteq C}} C$$

• The **interior** of
$$A$$
 is
$$\operatorname{int} A = A^{\circ} := \bigcap_{\substack{C \subseteq X \text{ open}; \\ A \subseteq C}} C.$$

• The **boundary** (or **frontier**) of A is

$$\partial A := \overline{A} \backslash A^{\circ}.$$

- A is dense in X iff $\overline{A} = X$.
- A **limit point** of A is a point $x \in X$ s.t. for every open subset $U \subseteq X$ with $x \in U$ there exists an element $a \in A \cup U$ with $a \neq x$. Let A' be the set of limit points of A. Note that this has nothing to do with limits of sequences.

— Proposition 1.22: Relating Toplogical Properties —

- \overline{A} is closed, and contains A and is the smallest set with this property. So A is closed iff $\overline{A} = A$.
- A° is open, and is contained in A, and is the largest set with this property. So A is open iff A° = A.
- The closure of the complement is the complement of the interior:

$$\overline{X \backslash A} = X \backslash (A^{\circ}).$$

 \bullet The interior of the complement is the complement of the closure:

$$(X\backslash A)^{\circ} = X\backslash \overline{A}.$$

— Proposition 1.26: Union of Limit Points —

Let (X, \mathcal{T}) be a topological space, and suppose $A \subseteq X$. Then

$$\overline{A} = A \cup A'$$

_____ Corollary 1.27 _____

A subset $A \subseteq X$ is closed iff it contains all its limit points.

Theorem 1.19: Properties of open and closed sets

Let (X, \mathcal{T}) be a topological space.

- 1. \emptyset and X are closed.
- 2. The union of **finitely many** closed sets is a closed set.
- 3. The intersection of any collection of closed sets is a closed set.

Lemma 1.24: Limit Points and Open Balls

An element $x \in X$ in a metric space (X,d) is a limit point of a subset $A \subseteq X$ iff for every $\epsilon > 0$ there exists $a \in A$ with $0 < d(x,a) < \epsilon$, or iff there exists a sequence a_1, a_2, a_3, \cdots of elements $a_i \in A$, with $a_i \neq x$ for all i, s.t. $d(x_i, a_i) \to 0$ as $i \to \infty$. This interpretation does not extend to general topological spaces.

Theorem 1.30: Open and Closed sets in $\mathbb R$

Consider \mathbb{R} with the usual topology.

- 1. A nonempty set U is open iff it can be written as a countable union of disjoint nonempty open intervals I_i (shown left):
- 2. A set F is closed iff it can be written as a countable intersection where each F_i is a finite union of closed intervals (shown right).

$$U = \bigcup_{j=1}^{\infty} I_j, \qquad F = \bigcap_{j=1}^{\infty} F_j.$$

Definition 1.32: Hausdorff Spaces

A topological space (X, \mathcal{T}) is **Hausdorff** if for each $x, y \in X$ with $x \neq y$ there exist **disjoint** open sets U and V such that $x \in U$ and $y \in V$.

Any metrisable space is Hausdorff, The trivial topology on a set with more than one element is not Hausdorff.

Definition 1.33: Convergence of a Topological space

A sequence (x_n) of members of a topological space X converges to $x \in X$ if for every open set U containing x, there exists an N such that $n > N \implies x_n \in U$

Proposition 1.34: Convergence of Hausdorff Spaces

Suppose (X, \mathcal{T}) is Hausdorff. Then a sequence (x_n) can converge to at most one limit.

Definition 1.36: Cauchy and Completeness

Let (X, d) be a metric space.

- 1. A Cauchy sequence is a sequence (x_n) with each $x_n \in X$ with the property that for each $\epsilon > 0$, there exists an N such that $m, n \geq N \implies d(x_m, x_n) < \epsilon$
- 2. (X, d) is **complete** if every Cauchy sequence converges.

Definition 1.37: Topology Basis

A basis for a topology on a set X is a collection $\mathcal B$ of subsets $B\subseteq X$ such that:

1.
$$X = \bigcup_{B \in \mathcal{B}} B$$

2. The intersection of sets B_1 , $B_2 \in \mathcal{B}$ is a set $B_1 \cap B_2 \in \mathcal{B}$.

The topology \mathcal{T} generated by a basis \mathcal{B} has open sets the arbitrary unions of basis elements $B_{\lambda} \in \mathcal{B}$:

$$U = \bigcup_{\lambda \in \Lambda} B_{\lambda}$$

(Don't forget to check that this really is a topology)

Example 1.38: Finite Intersections of open balls

For any metric space (X, \mathcal{T}) the finite intersections of open balls

$$B(x,r) = \{ y \in X \mid d(x,y) < r \} \subseteq X \quad (r > 0, x \in X)$$

constitute a basis for the metric topology on X

$$\mathcal{B} = \{ B(x_1, r_1) \cap B(x_2, r_2) \cap \dots \cap B(x_k, r_k) \mid x_1, x_2, \dots, x_k \in X, r_1, r_2, \dots, r_k > 0 \}$$

2 Continuous functions and Homeomorphisms

Definition 2.1: Continuity

Let $(X, \mathcal{T}),$ (Y, \mathcal{U}) be topological spaces. A function $f: X \to Y$ is **continuous** iff

$$U \in \mathcal{U}$$
 implies $f^{-1}(U) \in \mathcal{T}$.

That is, **inverse** images of open sets are open. Continuous functions are often called **maps** or **mappings** of topological spaces.

Proposition 2.6: Topological and Analytic Continuity

Let (X,d) and (Y,ρ) be metric spaces with their induced topologies \mathcal{T} and \mathcal{U} respectively. A function $f:X\to Y$ is continuous (topologically) iff it is continuous analytically: for every $a\in X$ and every $\epsilon>0$ there exists $\delta>0$ such that

$$d(x, a) < \delta \implies \rho(f(x), f(a)) < \epsilon$$

Definition 2.7: Homeomorphism

Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. A **homeomorphism** is a bijection $f: X \to Y$ such that both f and f^{-1} are continuous. Two topological spaces are **homeomorphic** if there is a homeomorphism between them.

Proposition 2.18: The Punctured Sphere

Consider the n-dimensional sphere

$$\mathbb{S}^n = \{ x \in \mathbb{R}^{n+1} : |x| = 1 \}$$

with the metric topology inherited from \mathbb{R}^{n+1} . Let $x_0 \in \mathbb{S}^n$. Then $\mathbb{S}^n \setminus \{x_0\}$ is homeomorphic to \mathbb{R}^n .

3 Subspaces Revisited

Definition 3.65: Disjoint Unions

Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. Their **disjoint** union X+Y is the set $(X\times\{0\})\cup(Y\times\{1\})$ with the topology consisting of all sets of the form

$$(T \times \{0\}) \cup (U \times \{1\})$$
 such that $T \in \mathcal{T}, U \in \mathcal{U}$

Definition 3.8: Product Topology

Let (X, \mathcal{T}) , (Y, \mathcal{U}) be topological spaces. The **product topology** on their product $X \times Y$ consists of all sets of the form

$$T = \bigcup_{\alpha \in A} (U_{\alpha} \times V_{\alpha})$$

where \mathcal{A} is an arbitrary indexing set, and $U_{\alpha} \in \mathcal{U}$ and $V_{\alpha} \in \mathcal{V}$.

Lemma 3.10

The product topology is indeed a topology. (lol)

Lemma 3.9: Openness in Product Topologies

Let (X, \mathcal{T}) (Y, \mathcal{U}) be topological spaces. Then $T \subseteq X \times Y$ is open in the product topology if and only if for all $t \in T$ there exists $U \in \mathcal{U}$ and $V \in \mathcal{V}$ such that $t \in U \times V$ and $U \times V \subseteq T$.

Definition 3.11.5: Projection Maps

Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, and consider their product $X \times Y$ with the product topology. There are two natural maps Π_X and Π_Y , the projections of $X \times Y$ onto X and Y respectively, given by

$$\Pi_X : X \times Y \to X, \quad (x, y) \mapsto x$$

 $\Pi_Y : X \times Y \to Y, \quad (x, y) \mapsto y.$

Definition 3.14: Weak Topology

Suppose that X is a set. $(X_{\lambda}, \mathcal{T}_{\lambda})$ is a family of topological spaces, and that $f_{\lambda}: X \to X_{\lambda}$ are functions. The **weak topology generated by** $\{f_{\lambda}\}$ is the smallest topology on X making all the f_{λ} continuous.

Thus, the product topology on $X\times Y$ is the weak topology generated by the two maps Π_X and Π_Y

Definition 3.15: Cartesian Product Topology

If X_{λ} is a topological space, (with λ in some arbitrary indexing set Λ), the product topology on the cartesian product $\Pi_{\lambda \in \Lambda} X_{Ll}$ is defined to be the weak topology generated by the projections

$$\Pi_{\lambda}: \prod_{\mu \in \Lambda} X_{\mu} \to X_{\lambda}$$

Definition 3.5.0: Equivalence Relation

An **equivalence** relation on a set X is a binary operation \sim on X which is:

- 1. Reflexive: $x \sim x$ for all $x \in X$.
- 2. **Symmetric**: if $x \sim y$ then $y \sim x$.
- 3. Transitive: if $x \sim y$ and $y \sim z$ then $x \sim z$.

The equivalence class of any element $x \in X$ is the set

$$[x] = \{ y \in X \mid x \sim y \},\$$

and the set of equivalence classes is denoted by X/\sim . The function which assigns to each $x\in X$ the equivalence class $[x]\in X/\sim$ is a surjection

$$p: X \to X/\sim; \quad x \to [x]$$

Definition 3.17: Quotient Space

Given a topological space (X, \mathcal{T}) , and an equivalence relation \sim on X, the **quotient space** or **identification space** is the set of equivalence classes X/\sim together with the topology

$$\{U \subseteq X/\sim: p^{-1}(U) \in \mathcal{T}\}$$

Definition 3.25: Generated Topological Spaces

Let X be a topological space, and let $Y_0, Y_1 \subseteq X$ be subspaces related by a continuous function $f: Y_0 \to Y_1$. Let \sim_f be the equivalence relation on X generated by f, the intersection of all the equivalence relations on X (regarded as subsets of $X \times X$) containing the pairs $(y_0, f(y_0))$ with $y_0 \in Y_0$. The identification space

$$X/\sim_f = X/\{y_1 = f(y_0)\}$$

is obtained by identifying each $y_0 \in Y_0 \subseteq X$ with $y_1 = f(y_0) \in Y_1 \subseteq X$.

Proposition 3.34: Homeomorphisms of Relations

Given a continuous function $f:X\to Y$ let \sim be the equivalence relation defined on X by $x\sim x'$ if $f(x)=f(x')\in Y$. The function

$$g: X/ \sim \rightarrow Y; [x] \rightarrow f(x)$$

is continuous and injective, with

$$f = g \circ p : X \xrightarrow{p} X / \sim \xrightarrow{g} Y.$$

If f is onto, and such that $f(U)\subseteq Y$ is open for every open subset $U\subseteq X$ then g is a homeomorphism.

4 Compact Spaces

Definition 4.1: Open Covers and Compact Spaces

1. An **open cover** of a topological space X is a collection $\{U_{\lambda}\mid\lambda\in\Lambda\}$ of open subsets U_{λ} of X such that

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} = \lambda$$

2. A topological space X is **compact** if every open cover $\{U_{\lambda} \mid \lambda \in \Lambda\}$ of X has a finite subcover, i.e. there exists $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that

$$X = \bigcup_{j=1}^{n} U_{\lambda_j}.$$

—— Definition 4.2: Open Covers as Collections —

1. If $A \subseteq X$ is a subset of a topological space X, an **open cover** of A is a collection $\{V_{\lambda} \mid \lambda \in \Lambda\}$ of subsets V_{λ} which are open in X such that

$$X = \bigcup_{\lambda \in \Lambda} V_{\lambda}$$

2. A subset A of a toplogical space X is **compact** if it is compact as a subspace of X.

Proposition 4.7: Boundedness of Compact Spaces

A compact metric space (X,d) is bounded, i.e. there exists a number K > 0 such that d(x,y) < K for all $x, y \in X$.

Proposition 4.8: Compactness of Products

A product of closed bounded intervals $R = [a_1, b_1] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ is compact in the usual topology. A collection of subsets of a set X has the **finite intersection property** if every finite intersection of their members is nonempty.

Corollary 4.12: Limit Property of Compactness

Suppose that $f:X\to\mathbb{R}^n$ is a continuous map and that X is compact. Then there exists an M such that

$$|f(x)| \leq M$$
 for all $x \in X$.

Moreover, there exists an $x \in X$ such that

$$|f(x)| = \sup_{y \in X} |f(y)|.$$

If n = 1 there are x_0 and $x_1 \in X$ such that

$$f(x_0) = \min_{x \in X} f(x)$$
 and $f(x_1) = \max_{x \in X} f(x)$.

Theorem 4.13: Compact, Hausdorff, Bijection, Oh My!

Suppose X is compact, Y is Hausdorff, and that $f: X \to Y$ is a continuous bijection. Then it is a homeomorphism.

Theorem 4.14: Lebesgue Numbers

Let X be a compact metric space and $\{U_{\lambda} \mid \lambda \in \Lambda\}$ an open cover of X. Then there exists a positive number $\delta > 0$ (the **Lebesgue number** of the cover) such that for all $x \in X$, $B(x, \delta)$ lies entirely inside some single U_{λ} .

Corollary 4.17: Compactness of Identification Spaces

- 1. An identification space X/\sim of a compact space X is compact.
- 2. If $f:X\to Y$ is a map from a compact space X to a Hausdorff space Y and \sim is the equivalence relation on X defined by $x\sim x'$ if $f(x)=f(x')\in Y$, then the continuous bijection

$$g: X/ \sim \to f(X); \quad [x] \mapsto f(x)$$

is a homeomorphism.

Lemma 4.20: Open sets in Product spaces

Let X be a topological space, Y a compact space, $x \in X$, N an open set in $X \times Y$ such that $\{x\} \times Y \subseteq N$. Then there is an open set $W \subseteq X$ such that $x \in W$ and $W \times Y \subseteq N$.

Lemma 4.22 - 4.23: Collections and Intersections

- **4.22**) Let X be a set, and suppose \mathcal{C} is a collection of subsets of X which has the finite intersection property. Then there is a collection \mathcal{B} of subsets of X, with $\mathcal{C} \subseteq \mathcal{B}$, such that \mathcal{B} has the finite intersection property, and such that \mathcal{B} is maximal with respect to this property: i.e. no collection containing \mathcal{B} as a proper subcollection has the finite intersection property.
- **4.23**) Let X be a set, and suppose that \mathcal{B} is a collection of subsets of X which is maximal with respect to the finite intersection property. Then \mathcal{B} is closed under finite intersections, and any set which meets all members of \mathcal{B} is also in \mathcal{B} .

Definition 4.24: Compactifications

- 1. A **compactification** of a topological space X is a compact space Y which contains a homeomorphic copy of X as a subspace, i.e. such that there is a one-one map $f: X \to Y$ such that $X \to f(X)$; $x \mapsto f(x)$ is a homeomorphism.
- 2. A compactification Y is **dense** if X is dense in Y, i.e. $\overline{X} = Y$.

Definition 4.27: One-point compactification

The **one-point compactification** of a topological space X is the set

$$X^{\infty} = X \cup \{\infty\}$$

obtained by adjoining a "point at infinity" ∞ , where ∞ is a symbol not in X, with open sets of the form either

- 1. U, where $U \subseteq X$ is open, or
- 2. $X^{\infty}\backslash K$, where $K\subseteq X$ is compact and closed.

_____ Lemma 4.28 ___

- 1. The collection of open sets just defined does form a topology
- 2. The subspace topology on X induced by this topology coincides with its original topology.

Definition 4.32: Local Compactness

A topological space X is **locally compact** if for each $x \in X$, there exists an open subset $U \subseteq X$ and a compact C such that $x \in U \subseteq C$.

— Remark 4.33 —

When X is Hausdorff, it is locally compact iff for each $x \in X$ there exists an open subset $U \subseteq X$ and a compact $x \in U$ and the closure \overline{U} is compact.

Definition 4.35: Normal Space

A topological space (X,\mathcal{T}) is **normal** if for every pair of disjoint closed subsets C and $D\subseteq X$, there are disjoint open subsets $U,\,V\subseteq X$ such that $C\subseteq U$ and $D\subseteq V$

Lemma 4.37: Normal Complements

A space X is normal iff for every closed $F \subseteq X$ and open $G \subseteq X$ with $F \subseteq G$, there exist open G' and closed F' such that

$$F \subseteq G' \subseteq F' \subseteq G$$
.

Theorem 4.38: Urysohn's Lemma

Suppose that X is a normal topological space, and that C, D are disjoint closed subsets of X. Then there is a continuous function $f: X \to \mathbb{R}$ such that

- f(x) = 0 for all $x \in C$
- f(x) = 1 for all $x \in D$
- $0 \le f(x) \le 1$ for all $x \in X$

Theorem 4.39: Tietze extension theorem

Suppose that X is a normal topological space, and that C is a closed subset of X. Suppose that $f:C\to\mathbb{R}$ is continuous. Then there is a continuous function $\overline{f}:X\to\mathbb{R}$ such that

- $\overline{f}(x) = f(x)$ for all $x \in C$
- If $a \le f(x) \le b$ for all $x \in C$, then $a \le \overline{f}(x) \le b$ for all $x \in X$.

Theorem 4.40: Stone-Weierstrass Theorem

The algebra A is dense in the normed space C(X), i.e. $\overline{A} = C(X)$, i.e. for all $f \in C(X)$ and for all $\epsilon > 0$ there is $g \in A$ such that $\sup_{x \in X} |f(x) - g(x)| < \epsilon$

5 Connected Spaces

Definition 5.1: Connected Spaces

1. A topological space X is **connected** if it cannot be written as a union

$$X = A \cup B$$

where A and B are disjoint nonempty open subsets of X

2. A topological space X is **disconnected** if it is not connected, i.e. if it can be expressed as a union

$$X = A \cup B$$

where A and B are disjoint nonempty open subsets of X Connectedness is a **Topological Property** (See P6).

Remark 5.8: Connected Homeomorphisms

- If X is a compact connected metric space with exactly two points x such that $X \setminus \{x\}$ is connected, then X is homeomorphic to [0,1]
- If X is a compact connected space, where for every pair of distinct points $x, y \in X$ the complement $X \setminus \{x, y\}$ is disconnected, then X is homeomorphic to the circle \mathbb{S}_1

Proposition 5.11: Connectedness other properties

The following statements about a nonempty subset $A\subseteq \mathbb{R}$ are equivalent:

- 1. A is connected
- 2. A has the interval property
- 3. A is an interval

Theorem 5.12: Intermediate Value Theorem

Let I be a closed bounded interval and suppose $f:I\to\mathbb{R}$ is continuous. Then the image f(I) is a closed bounded interval

$$f(I) = [a, b] \subseteq \mathbb{R}(a \le b).$$

Definition 5.13: Fixed Points of Maps

A fixed point of a map $f: X \to X$ is an $x \in X$ s.t. f(x) = x.

Theorem 5.15: 1-D Brouwer Fixed Point Theorem

Every continuous map $f:[0,1]\to [0,1]$ has a fixed point, i.e. there exists $x\in [0,1]$ such that f(x)=x. General Case: Every continuous map $f:\mathbb{D}^n\to \mathbb{D}^n$ has a fixed

Definition 5.16: Path

point

A path in a topological space X is a continuous map $\alpha: I = [0,1] \to X$. Its **initial point** is $\alpha(0) \in X$ and its **terminal point** is $\alpha(1) \in X$.

Definition 5.18: Path Connectedness

A topological space X is **path-connected** if for any two points $x_0, x_1 \in X$ there exists a path $\alpha: I \to X$ from $\alpha(0) = x_0$ to $\alpha(1) = x_1$.

Theorem 5.24: Homeomorphisms of Real Spaces

If $n \geq 2$, the spaces \mathbb{R}^n and \mathbb{R} are not homeomorphic. Additionally, there is no bijection $f: \mathbb{R} \to \mathbb{R}^n$ which is continuous.

Definition 5.35: Connected Components

We define an equivalence relation \sim on a topological space x by $x \sim y$ iff there is a connected subset of X which contains both x and y. The resulting equivalence classes are called the **components** or **connected components** of X. For two homeomorphic topologial spaces there will be a bijection between the sets of their components. So spaces with differing numbers of components cannot be homemorphic. The components are the maximal connected subsets of a topological space and by Prop 5.9 are always closed in X. If we take $U \subseteq \mathbb{R}$ an open set, its connected component decomposition is its canonical representation as in Thm 1.30 as a countable disjoint union of open intervals.

Lemma 5.31.5: Path Components

Define a path (equivalence) relation

 $x_0 \sim x_1$ if there exists a path $\alpha: I \to X$

from
$$\alpha(0) = x_0 \in X$$
 to $\alpha(1) = x_1 \in X$.

5.32) The **constant path** at $x \in X$ is the path

$$\alpha_x: I \to X: \quad t \mapsto x$$

from
$$\alpha_x(0) = x \in X$$
 to $\alpha_x(1) = x \in X$

5.33) The **reverse** of a path $\alpha: I \to X$ is the path

$$-\alpha: I \to X$$
; $t \mapsto \alpha(1-t)$

retracting α backwards, with

$$-\alpha(0) = \alpha(1) \qquad -\alpha(1) = \alpha(0)$$

5.34) The **concatenation** of paths $\alpha:I\to X,\,\beta:I\to X$ with

$$\alpha(1) = \beta(0) \in X$$

is the path

$$\alpha \bullet \beta : I \to X, \quad t \mapsto \begin{cases} \alpha(2t) & \text{if } 0 \le t \le 1/2\\ \beta(2t-1) & \text{if } 1/2 \le t \le 1 \end{cases}$$

which starts at $\alpha(0)$, follows along α at twice the speed in the first half, switching at $\alpha(1) = \beta(0)$ to follow β at twice the speed in the second half.

$$\alpha \bullet \beta(0) = \alpha(0) \qquad \alpha(1) = \beta(0) \qquad \beta(1) = \alpha \bullet \beta(1)$$

Lemma 5.31: Connected Compoments and Openness

Let X be a topological space and C a connected component of X. Then C is open iff for all $x \in C$ there is an open connected V such that $x \in V \subseteq C$.

Proposition 5.35: Equivalence of Path Relations

The path relation defined on a space X by $x_0 \sim x_1$ if there exists a path $\alpha: I \to X$ from $\alpha(0) = x_0$ to $\alpha(1) = x_0$ is an equivalence relation.

Definition 5.36: Path Components Formally

Let X be a topological space.

1. The path components of X are the equivalence classes of the path equivalence relation \sim , i.e. the subspaces

$$\begin{split} [x] &= \{ y \in X \mid y \sim x \} \\ &= \{ y \in X \mid \exists \alpha : I \to X \text{ from } a(0) = x \text{ to } \alpha(1) = y \} \end{split}$$

2. The **set of path components** (which may be infinite) is denoted by

$$X/\sim=\pi_0(X)$$

3. The function

$$X \to \pi_0(X), \quad x \mapsto [x] = \{ \text{equivalence class of } x \}$$
 is surjective.

Lemma 5.39: Open Condition of Path Components

Let X be a topological space and P a path component of X. Then P is open iff for all $x \in P$ there is an open path connected V such that $x \in V \subseteq P$.

Lemma 5.40: Openness and Singular Components

Let C be a connected component of a topological space X. If every path component $P \subseteq C$ is open, then C consists of a single path component. Note that the converse of this is not true.

6 Relations between Top Props

Proposition A: Topological Invariants

A topological property of a topological space is one which is invariant under homeomorphism. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a homeomorphism. The following properties are true:

- **2.8**) \mathcal{U} is open in Y iff $f^{-1}(\mathcal{U})$ is open in X.
 - X is Hausdorff iff Y is Hausdorff.
- **3.6**) $X \setminus \{x_0\}$ is homeomorphic to $Y \setminus \{f(x_0)\}$.
- **4.11**) X is compact, iff Y is compact.
- **5.6**) X is connected iff Y is connected.
- **5.21**) X is path-connected iff Y is path-connected.
- **5.37**) There exists a bijection between the set of path components $\pi_0(X)$ and $\pi_0(Y)$. However, existence of a bijection between $\pi_0(X)$ and $\pi_0(Y)$ does *not* necessarily imply that X and Y are homeomorphic.

Proposition B: Hausdorff if...

- **3.4**) Suppose (X, \mathcal{T}) is a Hausdorff topological space and suppose A is a subspace. Then A is Hausdorff.
- **4.34**) The one-point compactification X^{∞} of a space X is Hausdorff iff X is Hausdorff and locally compact.

Proposition C: Compact if...

- **4.3**) Let X be a topological space and $A \subseteq X$. Then A is compact iff every open cover of A has a finite subcover.
- **4.5**) Heine-Borel Theorem: A subset $F \subseteq \mathbb{R}^n$ is compact iff it is closed and bounded.
- **4.6**) Let X be a topological space and $A \subseteq X$.
 - 1. If X is compact and A is closed, then A is compact
 - 2. If X is Hausdorff and A is compact, then A is closed.
- **4.10**) Let $f: X \to Y$ be a continuous map between topological spaces. If X is compact, so is f(X).
- **4.18**) **Tychonoff's Theorem**: Suppose X and Y are compact spaces. Then their product $X \times Y$ is compact. The converse is also true.
- **4.21**) Tychonoff's Theorem (General): Suppose that \mathcal{A} is an indexing set and that for each $\alpha \in \mathcal{A}$, X_{α} is a compact topological space. Then the product $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is compact.
- **4.30**) Suppose $X^{\infty} = X \cup \{\infty\}$ is the *one-point compactification* of X. Then either X^{∞} is compact, or X is dense in X^{∞}

Proposition D: Continuous if..

- **2.14**) Suppose (X, \mathcal{T}) and (Y, \mathcal{U}) are topological spaces and that $f: X \to Y$. Then f is continuous iff for every closed subset $F \subseteq Y$ its inverse image $f^{-1}(F)$ is closed in X.
- **2.14**) f is continuous iff the image of the closure of every subset $A \subseteq X$ is contained in the closure of the image, i.e., $\forall A \subseteq X$,

$$f(\overline{A}) \subseteq \overline{f(A)}$$

- **3.5**) Suppose (X, \mathcal{T}) and (Y, \mathcal{U}) are topological spaces and suppose A is a subspace of X. Let $f: X \to Y$ be continuous. Then $f|_A: A \to Y$ is continuous.
- **3.12**) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and \mathcal{T} the product topology on $X \times Y$. Then the projection maps Π_X and Π_Y are continuous. Moreover, \mathcal{T} is the smallest topology on $X \times Y$ such that the projection maps are continuous.
- **3.13**) Let X, Y, Z be topological spaces. Endow $X \times Y$ with the product topology. A function $f: Z \to X \times Y$ is continuous iff the functions $\Pi_X \circ f: Z \to X$ and $\Pi_Y \circ f: Z \to Y$ are both continuous.

Let X be a topological space with an equivalence relation \sim .

- 1. The function $p: X \to X/\sim$; $x \mapsto [x]$ is continuous.
- 2. A continuous function $f: X \to Y$ such that $f(x) = f(x') \in Y$ for all $x, x \in X$ with $x \sim x'$ determines a continuous function

$$g: X/ \sim \to Y; \quad [x] \mapsto f(x)$$

such that

$$f = q \circ p : X \xrightarrow{p} X / \sim \xrightarrow{g} Y$$

 $f = q \circ p$ is best described by a commutative triangle:

In fact, every continuous function on X determines an equivalence relation.

Proposition E: Connected if...

- **5.2**) X is connected iff the only subsets of X which are clopen are \emptyset and X
- **5.4**) \mathbb{R} with the usual topology is connected.
- **5.5**) If $f: X \to Y$ is continuous and X is connected, then f(X) (with the subspace topology) is connected.
- **5.9**) Let A be a connected subset of a topological space X and suppose $A \subseteq B \subseteq \overline{A}$. Then B is connected.
- **5.10**) Every nonempty interval $I \subseteq \mathbb{R}$ is connected.
- **5.25**) If a topological space X is path-connected, then it is also connected. Note that the converse need not be true.
- **5.30**) Let $A_{\lambda} \subseteq X$, $(\lambda \in \Lambda)$ be a family of connected subsets of a topological space X. Suppose $\bigcup_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is connected.

Proposition F: Path-Connected if...

- Suppose $f: X \to Y$ is a continuous map between topological spaces and that X is path-connected. Then f(X) is path-connected as a subspace of Y.
- For any equivalence relation \sim on a path-connected space X the identification space $Y = X/\sim$ is path-connected.
- Any connected open subset $\Omega \subseteq \mathbb{R}^n$ is also path-connected.
- Let X be a topological space. Then X is path connected iff X is connected and for all x ∈ X there is an open path connected V such that x ∈ V.

7 Examples

Example 7.0.1: Other Topologies and Metrics

If (X, \mathcal{T}) is a topological space, and X admits a metric whose metric topology is precisely \mathcal{T} , then we say that (X, \mathcal{T}) is **metrisable**.

- Euclidean spaces with their usual topologies are metrisable.
- **1.9)** The **Discrete Topology** is the topology of all subsets of a set X. We can define the **discrete metric** of X to be

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}.$$

- **1.10)** The **Trivial** or **Indiscrete Topology** is the topology $\mathcal{T} := \{\emptyset, X\}$ for a set X. This is a non-metrisable topology when X has more than one member.
- **1.14)** Let $X = \{a, b, c\}$, where a, b, c are distinct. Then

$$\mathcal{T} = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\$$

is a topology on X

1.15) Give $\mathbb R$ the topology whose open subsets $U\subseteq \mathbb R$ are precisely the subsets with finite complement $\mathbb R\backslash U$, or $U=\emptyset$. Then $\mathbb R$ with this topology is not metrisable. This is an example of a **Zariski Topology**

Example B: The Punctured Sphere

