Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №8.1.

по курсу общей физики на тему:

«Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного тела»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

Исследовать излучение накаленных тел с различной испускательной способностью, определить постоянные Планка и Стефана-Больцмана.

2. Суть исследуемого явления

Закон Стефана-Больцмана:

$$W = \varepsilon_{\rm T} S \sigma T^4 \tag{1}$$

W— потребляемая нитью электрическая мощность. S— площадь излучающей поверхности нити, T— температура нити, ε_T — коэффициент серости, σ — постоянная Стефана-Больцмана.

3. Теория явления

Абсолютное черное тело (АЧТ) — тело, поглощающее все падающее на него излучение. Энергия, излучаемая любым другим телом, может быть найдена путем умножения энергии, излучаемой абсолютно черным телом, на коэффициент поглощения рассматриваемого тела.

Закон Стефана-Больцмана (1) был получен экспериментально. Теоретически его можно получить, проинтегрировав по всем частотам формулу Планка для объемной спектральной плотности излучения.

$$u_{\omega} = \frac{\omega^2}{\pi^2 c^3} \frac{\hbar \omega}{\exp(\hbar \omega / kT) - 1} \tag{2}$$

При этом может быть получена связь между постоянной Стефана-Больцмана и другими константами:

$$\sigma = \frac{\pi^2 k^4}{60c^2 \hbar^3} \tag{3}$$

k — постоянная Больцмана, \hbar — постоянная Планка.

4. Эксперимент

В работе будет измерятся яркостная температура — температура абсолютно черного тела, при которой его спектральная испускательная способность равна спектральной испускательной способности исследуемого тела при той же длине волны.

Измерения температуры раскаленного тела производится при помощи оптического пирометра с исчезающей нитью, основанного на визуальной сравнении яркости раскаленной нити с яркостью изображения исследуемого тела. Равенство видимых яркостей, наблюдаемых через монохроматический светофильтр ($\lambda=6500\text{Å}$), фиксируется по исчезновению изображения нити на фоне раскаленного тела. Яркостный метод измерения температуры основан, в соответствии

с формулой Планка, на зависимости испускательной способности абсолютно черного тела от температуры и длины волны.

T, K	$\varepsilon_{\lambda,T} \ (\lambda = 6500\text{Å})$	ϵ_T
800	0,460	0,067
900	0,458	0,081
1000	0,456	0,105
1100	0,454	0,119
1200	0,452	0,133
1300	0,450	0,144
1400	0,448	0,164
1500	0,446	0,179
1600	0,443	0,195
1700	0,441	0,209
1800	0,439	0,223
1900	0,437	0,236
2000	0,435	0,249

Рис. 1. График зависимости термодинамической температуры T от яркостной температуры $T_{\rm ярк}$ для вольфрама

Рис. 2. Поправочные коэффициенты излучения для вольфрама

4.1. Экспериментальная установка

Экспериментальная установка $(puc.\ 3)$ состоит из оптического пирометра 9, модели АЧТ, трех исследуемых образцов $(18,\ 19,\ 20)$, блока питания и цифровых вольтметров B7-22A и B7-38.

Рис. 3. Схема экспериментальной установки

1 — блок питания; 2 — тумблер включения питания пирометра и образцов; 3 — тумблер нагрева нити пирометра; 4 — кнопка «Нагрев нити»; 6 — тумблер переключения образцов; 7 — регулятор мощности нагрева образцов; 8 — окуляр пирометра; 9 — корпус пирометра; 10 — объектив пирометра; 11 — переключение диапазонов; 12 — ручка перемещения красного светофильтра; 13 — регулировочный винт; 14 — вольтметр; 15 — амперметр; 16 — вольтметр в цепи термопары; 17 — модель АЧТ; 18 — трубка с кольцами из материалов с разной излучательной способностью; 19 — лампа накаливания; 20 — неоновая лампочка.

В работе исследуются три образца. Один образец выполнен в виде керамической трубки с набором колец из различных материалов, нагреваемой изнутри нихромовой спиралью. Материалы колец имеют различную испускательную способность. Спираль подключается к источнику питания 1 с помощью переключателя 6 и может нагревать трубку до температуры около $1100^{\circ}C$. Термодинамическая температура колец практически одинакова и равна температуре трубки.

Другой исследуемый образец — вольфрамовая нить электрической лампочки. Она питается от источника 1, когда переключатель 6 находится в положении 3. Сила тока через вольфрамовую нить измерется с помощью прибора B7-22A. Падение напряжения на самой нити измеряется непосредственно вольтметром B7-22A. Таким образом, зная показания обоих приборов, можно определить мощность, потребляемую нитью лампочки.

Третий образец — неоновая лампочка.

5. Результаты эксперимента

Измерим температуру модели АЧТ с помощью пирометра:

$$T_{\pi} = (892 \pm 3)^{\circ} \text{C}$$

С помощью термопарного термометра:

$$T_{\rm T} = (956.8 \pm 0.2)^{\circ}{\rm C}$$

При направлении пирометра на поверхность керамической трубки с кольцами из различных материалов можно наблюдать различие между яркостной и термодинамической температурой. При термодинамической температуре $\simeq 900^{\circ}$ С одно кольцо становить бордовым, второе практически не меняет цвет.

Снимем зависимость яркостной температуры $T_{\rm spk}$ от мощности W, потребляемой нитью лампы. Перейдем к термодинамической температуре T при помощи графика на $puc.\ 1$.

Построим график зависимости логарифма мощности, потребляемой нитью лампы, $\ln W$ от логарифма абсолютной температуры $\ln T$. (puc. 4)

$T_{\mathrm{spk}}, ^{\circ}\mathrm{C}$	T, K	W, Bt	$\ln T$	$\ln W$
991	1300,00	0,938	7,170	-0,064
1092	1405,21	1,337	7,248	0,291
1196	1513,54	1,777	7,322	0,575
1282	1603,13	2,140	7,380	0,761
1337	1660,42	2,752	7,415	1,012
1488	1817,71	3,546	7,505	1,266
1609	1943,75	4,745	7,572	1,557
1703	2041,67	5,822	7,622	1,762
1802	2144,79	7,488	7,671	2,013
1900	2246,88	8,789	7,717	2,173
1948	2296,88	9,592	7,739	2,261

Рис. 4. Зависимость мощности, потребляемой нитью лампы, W от абсолютной температуры T

Измерим яркостную температуру неоновой лампочки:

$$T_{\rm Ne}\approx 1593\:{\rm K}$$

6. Анализ результатов

Прологарифмируем закон Стефана-Больцмана (1), где четвертую степень заменим на n:

$$\ln W = \ln(\varepsilon_T \sigma S) + n \ln T$$

По графику на puc. 4 получим n:

$$n = 4.05 \pm 0.06$$

Найдем величину постоянной Стефана-Больцмана по формуле:

$$\sigma = \frac{W}{\varepsilon_T S T^4}$$

для каждого $T > 1700 \; {\rm K}$

T, K	$\begin{array}{c} \sigma \cdot 10^{-8} \\ \text{Bt} \cdot \text{m}^{-2} \cdot \text{K}^{-4} \end{array}$
1817,71	5,4688
1943,75	5,1994
2041,67	4,9673
2144,79	4,9726
2246,88	4,6075
2296,88	4,4966

Таблица 2. Постоянная Стефана-Больцмана σ при температуре T

Усредняя получим:

$$\sigma = (4.95 \pm 0.13) \cdot 10^{-8} \,\mathrm{Bt \cdot M^{-2} \cdot K^{-4}}$$

Посчитаем постоянную Планка h по формуле:

$$h = 2\pi \sqrt[3]{\frac{\pi^2 k^4}{60c^2\sigma}}$$

Получим:

$$h = (6.93 \pm 0.06) \cdot 10^{-34}$$
 Дж \cdot с

7. Выводы

В работе была проведена проверка закона Стефана-Больцмана (1). По графику зависимости мощности, потребляемой нитью лампы, W от термодинамической температуры T (puc. 4) экспериментально была определена степень, в которую возводится T в законе Стефана-Больцмана:

$$n = 4.05 \pm 0.06$$

Значение в пределах погрешности совпадает с 4, что подтверждает возможность использования модели АЧТ и коэффициента серости.

Вычислено значение постоянной Стефана-Больцмана и постоянной Планка по результатам эксперимента:

$$\sigma = (4.95 \pm 0.13) \cdot 10^{-8} \,\mathrm{Br} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$$

 $h = (6.93 \pm 0.06) \cdot 10^{-34} \,\mathrm{Дж} \cdot \mathrm{c}$

Значения несколько отличаются от табличных:

$$\sigma_{\scriptscriptstyle
m T} = 5,6696 \cdot 10^{-8} \; {\rm Br} \cdot {\rm m}^{-2} \cdot {\rm K}^{-4}$$
 $h_{\scriptscriptstyle
m T} = 6,6254 \cdot 10^{-34} \; {\rm Дж} \cdot {\rm c}$

Это связано с селективностью излучения вольфрама (особенно при ярком накале) и с вычислениями по формулам, которую учитывают какую-то заданную окружающую температуру (puc. 2), а не фактическую комнатную при проведении эксперимента.

Были проведены наблюдения, доказывающую разницу между яркостной температурой и абсолютной термодинамической температурой. Кольца из разного материала при одинаковой температуре изменяли свой цвет по разному, также неоновая лампочка выдавала яркостную температуру сильно больше ее фактической термодинамической температуры. Это связано с тем, что яркостная температура по сути характеризует интенсивность излучения при этом никак не учитывает процессов из-за которых тело начинает излучать.