CMPUT 313 – COMPUTER NETWORKS

Assignment #2

Comparison of Medium Access Control Protocols

Due Oct 23rd, 2014

Tucker, Jesse – 1255723

Finlay, James – 1263258

Abstract

The purpose of this assignment is to create a simulation to compare different back off strategies for the Slotted ALOHA protocol and the Time Division Multiplexing protocol. This simulation was written in Python 2.7, with some C# wrapper code to produce data and graphs.

Design

The simulation was programmed using Object-Oriented Design methodology by splitting the different protocols into custom classes with their own Station objects. The main script, *psim.py*, iterates through the trials and manages the protocol execution for the simulation. The required parameters from the implementation requirements include:

Protocol	Type of protocol:
	T: Time Division Multiplexing
	P: Slotted ALOHA with probabilistic back-off
	I: Slotted ALOHA with interval-based back-off
	B: Slotted ALOHA with a binary exponential back-off
N	Number of stations
р	Frame generation probability for each node
R	Total number of slots to simulate
T	Number of trials, followed by seeds for the trials

And the required outputs are as follows:

Input Parameters
Average throughput followed by confidence interval
Overall average per-frame delay followed by confidence interval

Protocol T – Time Division Multiplexing

This protocol was implemented using a Protocol and Station class. For every slot, each station first tries to generate a frame, then the designated station tries to transmit. The station is chosen from the description in the assignment description, where the index was simplified with the following equation: $index = slot \% station_count$. Protocol's nature prevents collisions from occurring.

This is the simplest protocol implementation, where each protocol onwards expands its basic functionality.

Protocol P – Slotted ALOHA with probabilistic back-off

In this implementation, on the first slot, each station first tries to generate a frame. Next, all stations with frames try to transmit. If a collision occurs, the transmitting stations have a 1/N chance of transmitting in the next slot. This 1/N chance continues until the frame has successfully been transmitted, then the next generated frame is sent immediately. This loops for all slots and stations.

The slot loop and general logic take place in *Protocol's run* method. The *Station* class expands from the previous protocol's implementation by keeping track whether the previous transmission was a collision.

Protocol I – Slotted ALOHA with interval-based back-off

For Protocol I, the Station objects were given a variable to keep track of the next slot they are expected to transmit on. This allows the executer to iterate through the stations and transmit those that are expecting to send.

Using this new implementation, if any collisions occur on transmission, each colliding station is given a random slot in the upcoming [1, N] interval. The station is assigned a slot immediately, and then it waits for its turn before transmitting again.

Protocol B – Slotted ALOHA with a binary exponential back-off

Protocol B is a more extensive version of Protocol I. The *Station* class is given the same *next slot* variable, but also keeps track of the number of sequential collisions that have occurred. When a collision occurs, *next slot*'s back-off interval is increased exponentially for every sequential collision. Once a transmission is successful, the collision counter is reset to prevent the next frame from already being backed-off.

Test Methodology

Our goal is to test the effectiveness of the protocol under two specific conditions. Namely high load and low load. The amount of load in the system is controlled by the probability that, at any point, a station will have a new message to send. The two values we care about in this system are the overall throughput of messages over the shared medium as well as the expected delay for a message being added to the system. As such a series of simulations with varying probabilities are run and the data collated. In this case the number of stations are assumed to be constant as increasing the number of stations has the same impact as increasing the probability, namely more messages will be available for sending at any given point. In this case the simulation assumes 20 stations run for 10 000 slot intervals with varying probability.

Assumptions

Our assumptions in the simulation are the following:

- 1. Executions respect the protocol and do not try to transmit until the next time slot.
- 2. Every stations tries to generate a frame every time slot.
- 3. All stations are expected to generate frames at an equivalent rate with a uniform distribution.
- 4. Un-transmitted frames are not used in delay calculations.
- 5. The t_value for a 95% confidence interval is 2.776.
- 6. Each station generates new frames independently of the rest.
- 7. All frames are of fixed and equal size.
- 8. The time it takes to transmit a single frame is exactly equal to a single slot time.
- 9. Each slot is seen by all stations simultaneously (no propagation delay).
- 10. Collision takes place if 2+ stations transmit in the same slot.

Results

The testing was carried out in two phases. One that exemplified a system under low load (ie. very low probability of message generation) and another that exemplified a system under high load (ie. High probability of message generation). Firstly the throughput and delay performance of the protocols running under low load are displayed below.

[Chart 1 – Low Load Throughput]

[Chart 2 - Low Load Delay]

These results are largely as expected with respect to the delay given the nature of the protocols. At a low throughput there are very few collisions and so the P, I and B protocols perform quite well with low delay compared to the T protocol. As the probability of generation approaches 0.015 the number of collisions begins to increase to the point that most of the probabilistic protocols begin to see delays comparable or greater than the collision free T protocol.

One interesting note is that the throughput of each protocol was about equal and grew linearly with respect to the increase in messages to transmit. Normally it would be expected that the collision free protocol T would perform slightly worse in this case due to having to wait for a time slot before transmitting despite the lack of a potential collision. However, it is likely that this behavior was not observed because the messages where generated in a uniformly distributed manner, rather than the more realistic burst generation. Further analysis would be needed to verify this hypothesis but for this particular statistical model of message generation it appears that each protocol produces approximately the same throughput in a low load environment.

An evident flaw in this source data is the rather odd variance in the B protocol near the right end of the delay graph. Normally it would not be expected for the delay to abruptly dip and then spike upwards as message density changes but this is what is observed. In all likelihood this is simply the result of an outlier in the data. However, it is also worth noting that the B protocol was observed to have the greatest variation over the course of the tests. This variance is further analyzed later.

Next is the high load environment; in this environment we expect the probabilistic protocols to begin to decay while the collision free protocol performs consistently well.

[Chart 3 - High Load Throughput]

[Chart 4 - High Load Delay]

In this case we are largely observing the probabilistic protocols P, I, and B gradually degrade as they are overwhelmed by the number of collisions and the impact this has on throughput and delay. As expected the collision free algorithm performs quite well. However, what is more interesting is how each probabilistic algorithm decays. Protocols P and I maintain a fairly steady decay but P does appear to consistently outperform I in terms of both delay and throughput.

Oddly enough B appears to somehow be outperforming both I and P as well as the collision free algorithm T with respect to the delay achieved. This result is highly unexpected but it does indicate a problem in the testing methodology. The test mechanism does not measure any information about messages that have not been sent, only those that have been sent. As such when the test terminates any messages remaining in the queue and not yet sent would be disregarded and not have an impact on the delay value. Normally this could be compensated for by increasing the slot time of the simulation but in the case of this data the slot time was not sufficiently large to avoid a distorted result.

The reason for this distortion is likely the large potential wait time in protocol B relative the overall simulation time. The protocol allows for messages to wait for up to 512 time slots before trying again. Given the simulation time is 10 000 time units it is possible for a single message to wait over 5% of the overall simulation time under protocol B. As such the results for B should be ignored when comparing delay values as most of the messages would have still been waiting in the queue at the end of the simulation and so were not counted in the delay. This distortion of results is also a likely candidate for explaining the large fluctuations seen in the B protocol. Combatting this variance should be easy. However, increasing the simulation time also increases the time required to generate the data. The current data set took over 20 minutes to generate; presumably any significant increase would require the simulator to run overnight and is not feasible at this point in time.

Finally two samples of the confidence intervals for the above data are show below. These comparisons show the confidence of measurements on the P and B protocols. However, the raw data found in "./OutputData/" contains the full details of the computed confidence for all tests.

[Chart 5 – Confidence Interval for Throughput of P at Low Load]

[Chart 6 - Confidence Interval for Delay of P at Low Load]

[Chart 7 – Confidence Interval for Throughput of B at Low Load]

[Chart 8 – Confidence Interval for Delay of B at Low Load]

The charts indicate that the simulation has a very high degree of confidence on the throughput measurements for both B and P protocols. Additionally the high variance in B does not appear to affect the throughput measurements. This lack of variance makes sense as the queued messages do not affect throughput and so the flaw in the analysis of B had little impact. However, in the case of the delay measurements the variance is observed to be much higher in both protocols. B suffers for a particularly

large confidence interval that is also uneven in size indicating wide fluctuations for the results generated. Our conclusion is that the throughput values are trustworthy. However, the delay values may be distorted and less reliable.

Conclusion

In this report, we created a simulation to compare and analyze various back-off strategies and protocols for Medium Access Control. These protocols include Time Division Multiplexing and the following Slotted ALOHA strategies: probabilistic back-off, interval-based back-off, and binary exponential back-off. The results were largely as expected with low delays on the probabilistic protocols at low loads and high delays and limited throughput at high loads. Meanwhile the collision free protocol maintained performance at high load but was suboptimal at low load.

One major outlier in the simulation was the large amount of variance in the delay calculated for the B protocol. This protocol appeared to produce results that were better than possible and was attributed to an error in the test methodology. This simulation error appears to have also contributed to a disproportionately large confidence interval and variance in the delay values collected for protocol B. It appears likely this error could be reduced simply by increasing the simulation length.

Appendix A: Data for charts listed

[Chart 1 – Low Load Throughput]

5 1 1 1111	1-	_		_
Probability	T	P	1	В
0.0003	0.00584	0.00585	0.00585	0.00585
0.0006	0.01178	0.0118	0.01179	0.01179
0.0009	0.01841	0.01847	0.01843	0.01843
0.0012	0.0243	0.02434	0.02432	0.02432
0.0015	0.0304	0.03047	0.03041	0.03041
0.0018	0.03666	0.0367	0.03666	0.03667
0.0021	0.04301	0.04313	0.043	0.043
0.0024	0.04901	0.04912	0.04899	0.04901
0.0027	0.05518	0.05529	0.05515	0.0552
0.003	0.06141	0.06151	0.0614	0.06143
0.0033	0.06755	0.06767	0.06757	0.06757
0.0036	0.07358	0.0736	0.0736	0.07359
0.0039	0.07996	0.07991	0.07995	0.07996
0.0042	0.0862	0.08623	0.08623	0.08621
0.0045	0.09212	0.09223	0.09214	0.09215
0.0048	0.09804	0.09819	0.09803	0.09807
0.0051	0.10381	0.10383	0.10385	0.10379
0.0054	0.10964	0.10948	0.1097	0.10967
0.0057	0.11562	0.11549	0.11563	0.11558
0.006	0.12133	0.12137	0.12134	0.12137
0.0063	0.1273	0.12747	0.12736	0.12734
0.0066	0.13381	0.13386	0.13384	0.13396
0.0069	0.13973	0.13985	0.13984	0.13984
0.0072	0.14587	0.14611	0.14597	0.14609
0.0075	0.15198	0.15246	0.15205	0.15217
0.0078	0.15761	0.15798	0.1577	0.15784
0.0081	0.16354	0.16392	0.16368	0.1637
0.0084	0.16965	0.17039	0.16984	0.16985
0.0087	0.17584	0.17631	0.17602	0.17615
0.009	0.18144	0.18186	0.18176	0.18184
0.0093	0.18732	0.18797	0.18755	0.18771
0.0096	0.19332	0.19364	0.19366	0.19362
0.0099	0.19894	0.19909	0.19933	0.1993
0.0102	0.20479	0.2051	0.20503	0.20517
0.0105	0.21053	0.21114	0.211	0.21111
0.0108	0.21665	0.21737	0.21686	0.21695
0.0111	0.22289	0.22307	0.22314	0.22352

0.0114	0.2288	0.22952	0.22914	0.22936
0.0117	0.2348	0.23533	0.23499	0.23537
0.012	0.24055	0.24089	0.2408	0.24101
0.0123	0.2467	0.24712	0.24702	0.24722
0.0126	0.25279	0.25244	0.25322	0.25345
0.0129	0.25869	0.25837	0.25916	0.25936
0.0132	0.26462	0.26432	0.26486	0.2648
0.0135	0.27025	0.27013	0.2706	0.27054
0.0138	0.27615	0.27638	0.27654	0.27663
0.0141	0.28184	0.28174	0.28219	0.28197
0.0144	0.28798	0.28767	0.28813	0.28838
0.0147	0.29385	0.2934	0.29411	0.2938

[Chart 2 – Low Load Delay]

Probability	T	Р	1	В
0.0003	10.41726	1.054098	1.04127	1.004762
0.0006	10.37785	1.196064	1.098434	1.024454
0.0009	10.4916	1.313115	1.132673	1.031221
0.0012	10.56648	1.369791	1.208375	1.09152
0.0015	10.75008	1.60753	1.261819	1.12236
0.0018	10.84381	1.691483	1.307554	1.116637
0.0021	10.93471	1.968271	1.448328	1.152904
0.0024	10.95613	1.987392	1.524542	1.187602
0.0027	10.97994	2.052633	1.558037	1.192246
0.003	10.99468	2.180945	1.684788	1.242106
0.0033	11.05963	2.456892	1.817761	1.26074
0.0036	11.15009	2.869233	1.883271	1.303907
0.0039	11.20289	2.91659	1.950946	1.319211
0.0042	11.31246	3.050976	2.067926	1.391731
0.0045	11.42203	3.244998	2.167418	1.451812
0.0048	11.50524	3.49254	2.23825	1.44728
0.0051	11.57326	3.649188	2.295365	1.516729
0.0054	11.66665	4.01074	2.401392	1.526898
0.0057	11.76522	4.024866	2.509888	1.605338
0.006	11.85355	4.38547	2.618246	1.689313
0.0063	 11.91719	4.639884	2.799019	1.768405
0.0066	 11.99783	4.954048	2.830926	1.75444
0.0069	 12.05225	5.082032	2.835638	1.943363
0.0072	 12.15423	5.446597	3.034277	1.963593
0.0075	12.23358	5.847471	3.099643	2.224023

0.0078	12.29866	5.891461	3.399012	2.313049
0.0081	12.36973	5.948167	3.632927	2.585153
0.0084	12.46203	6.322316	3.643553	2.36328
0.0087	12.55326	6.58174	3.819228	2.740205
0.009	12.63808	6.836213	4.04079	2.628389
0.0093	12.76074	7.611986	4.177233	3.087411
0.0096	12.83494	7.863351	4.215845	3.283592
0.0099	12.87301	8.055908	4.288072	3.556292
0.0102	12.96756	8.454095	4.528779	4.203518
0.0105	13.01761	8.960093	4.709143	3.905578
0.0108	13.09527	9.770322	4.941106	4.038055
0.0111	13.14702	10.24786	5.41012	4.999207
0.0114	13.23127	10.47398	5.549908	5.832701
0.0117	13.3528	11.1169	6.090221	5.842323
0.012	13.46973	12.0159	6.172666	6.272438
0.0123	13.55684	12.25244	6.370159	7.389162
0.0126	13.66154	12.55829	7.00329	7.591212
0.0129	13.76788	13.42636	7.466561	7.741005
0.0132	13.86866	14.11218	7.597506	12.51017
0.0135	13.96017	14.44006	7.948045	13.15357
0.0138	14.06547	16.26429	8.131627	16.09138
0.0141	14.18033	16.75648	8.705954	14.07673
0.0144	14.30965	17.2782	9.778328	16.08245
0.0147	14.45422	20.36197	10.41244	26.60158

[Chart 3 – High Load Throughput]

Probability	T	Р	1	В
0.003	0.06141	0.06151	0.0614	0.06143
0.006	0.12133	0.12137	0.12134	0.12137
0.009	0.18144	0.18186	0.18176	0.18184
0.012	0.24055	0.24089	0.2408	0.24101
0.015	0.29969	0.29915	0.29995	0.29937
0.018	0.36004	0.35811	0.28792	0.35514
0.021	0.41902	0.38098	0.25945	0.39946
0.024	0.47826	0.37963	0.25667	0.43582
0.027	0.53951	0.37904	0.25188	0.47557
0.030	0.59948	0.37913	0.25225	0.50628
0.033	0.65843	0.37734	0.2513	0.53825
0.036	 0.71722	0.37539	0.25097	0.55995
0.039	 0.77628	0.37982	0.25249	0.58224

0.042	0.83402	0.37754	0.25175	0.61055
0.045	0.89181	0.37883	0.25219	0.62999
0.048	0.94009	0.3773	0.25267	0.63504
0.051	0.97419	0.37724	0.25115	0.65513
0.054	0.98829	0.37901	0.2506	0.66661
0.057	0.99336	0.37799	0.24949	0.67745
0.060	0.99521	0.37642	0.25071	0.68491
0.063	0.99638	0.37815	0.252	0.69548
0.066	0.99702	0.37683	0.25156	0.70411
0.069	0.99742	0.37662	0.25164	0.70913
0.072	0.99782	0.37751	0.24908	0.72247
0.075	0.99806	0.37897	0.2492	0.73687
0.078	0.99821	0.37543	0.2512	0.73213
0.081	0.99836	0.37532	0.25194	0.74132
0.084	0.99846	0.37822	0.25082	0.7472
0.087	0.99862	0.37622	0.2503	0.74973
0.090	0.99871	0.37741	0.25208	0.74806
0.093	0.99883	0.3753	0.24937	0.75798
0.096	0.99889	0.37702	0.24813	0.76133
0.099	0.99895	0.37802	0.24816	0.76249
0.102	0.99903	0.37845	0.2496	0.76621
0.105	0.99909	0.37813	0.25177	0.76964
0.108	0.99913	0.37682	0.25127	0.77078
0.111	0.99916	0.37666	0.24944	0.76869
0.114	0.9992	0.37821	0.25166	0.77403
0.117	0.99921	0.37793	0.25141	0.77406
0.120	0.99926	0.37989	0.25224	0.77758
0.123	0.99929	0.37911	0.24999	0.78899
0.126	0.99929	0.37774	0.25121	0.78405
0.129	0.99933	0.37744	0.25293	0.78691
0.132	0.99937	0.37705	0.25244	0.79179
0.135	0.9994	0.37693	0.2506	0.78696
0.138	0.99944	0.37819	0.24968	0.79626
0.141	0.99947	0.37935	0.24825	0.7897
0.144	0.99947	0.37649	0.24883	0.79112
0.147	0.99948	0.37815	0.24891	0.79682

[Chart 4 – High Load Delay]

0.003 10.99468 2.180945 1.684788 1.242106 0.006 11.85355 4.38547 2.618246 1.689313 0.009 12.63808 6.836213 4.04079 2.628389 0.012 13.46973 12.0159 6.172666 6.272438 0.015 14.55321 20.62322 11.5157 35.75674 0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868		T_			
0.006 11.85355 4.38547 2.618246 1.689313 0.009 12.63808 6.836213 4.04079 2.628389 0.012 13.46973 12.0159 6.172666 6.272438 0.015 14.55321 20.62322 11.5157 35.75674 0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923	Probability	T	Р	I	В
0.009 12.63808 6.836213 4.04079 2.628389 0.012 13.46973 12.0159 6.172666 6.272438 0.015 14.55321 20.62322 11.5157 35.75674 0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.054 461.6 3206.395 3830.268 1820.568					
0.012 13.46973 12.0159 6.172666 6.272438 0.015 14.55321 20.62322 11.5157 35.75674 0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634			4.38547	2.618246	1.689313
0.015 14.55321 20.62322 11.5157 35.75674 0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568	0.009	12.63808	6.836213	4.04079	2.628389
0.018 15.85585 49.40732 747.9415 142.7697 0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62	0.012	13.46973	12.0159	6.172666	6.272438
0.021 17.42174 472.376 1750.759 338.8013 0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138	0.015	14.55321	20.62322	11.5157	35.75674
0.024 19.17841 1010.37 2172.707 565.1155 0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831	0.018	15.85585	49.40732	747.9415	142.7697
0.027 21.5318 1450.722 2599.743 757.891 0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597	0.021	17.42174	472.376	1750.759	338.8013
0.030 24.6777 1823.843 2841.824 916.8842 0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594	0.024	19.17841	1010.37	2172.707	565.1155
0.033 28.66303 2100.22 3040.696 1095.349 0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.075 1673.621 3718.589 4165.174 2078.675 <tr< td=""><td>0.027</td><td>21.5318</td><td>1450.722</td><td>2599.743</td><td>757.891</td></tr<>	0.027	21.5318	1450.722	2599.743	757.891
0.036 34.39041 2359.165 3212.487 1216.932 0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.075 1673.621 3718.589 4165.174 2078.675 0.075 1673.621 3718.589 4165.174 2078.675 <t< td=""><td>0.030</td><td>24.6777</td><td>1823.843</td><td>2841.824</td><td>916.8842</td></t<>	0.030	24.6777	1823.843	2841.824	916.8842
0.039 42.88314 2527.611 3343.679 1317.258 0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274	0.033	28.66303	2100.22	3040.696	1095.349
0.042 57.67387 2713.542 3472.73 1442.868 0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615	0.036	34.39041	2359.165	3212.487	1216.932
0.045 85.76936 2849.711 3588.627 1439.923 0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813	0.039	42.88314	2527.611	3343.679	1317.258
0.048 147.7574 2999.526 3661.393 1552.025 0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 <tr< td=""><td>0.042</td><td>57.67387</td><td>2713.542</td><td>3472.73</td><td>1442.868</td></tr<>	0.042	57.67387	2713.542	3472.73	1442.868
0.051 273.4237 3107.233 3750.144 1710.634 0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415	0.045	85.76936	2849.711	3588.627	1439.923
0.054 461.6 3206.395 3830.268 1820.568 0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415	0.048	147.7574	2999.526	3661.393	1552.025
0.057 662.5389 3332.262 3898.496 1762.62 0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.081 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 <t< td=""><td>0.051</td><td>273.4237</td><td>3107.233</td><td>3750.144</td><td>1710.634</td></t<>	0.051	273.4237	3107.233	3750.144	1710.634
0.060 866.679 3398.152 3948.048 1803.138 0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 <t< td=""><td>0.054</td><td>461.6</td><td>3206.395</td><td>3830.268</td><td>1820.568</td></t<>	0.054	461.6	3206.395	3830.268	1820.568
0.063 1054.809 3450.833 3987.524 1974.831 0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 <t< td=""><td>0.057</td><td>662.5389</td><td>3332.262</td><td>3898.496</td><td>1762.62</td></t<>	0.057	662.5389	3332.262	3898.496	1762.62
0.066 1229.722 3526.184 4025.684 1995.597 0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 <t< td=""><td>0.060</td><td>866.679</td><td>3398.152</td><td>3948.048</td><td>1803.138</td></t<>	0.060	866.679	3398.152	3948.048	1803.138
0.069 1387.869 3592.216 4071.018 2101.594 0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.98 <tr< td=""><td>0.063</td><td>1054.809</td><td>3450.833</td><td>3987.524</td><td>1974.831</td></tr<>	0.063	1054.809	3450.833	3987.524	1974.831
0.072 1535.49 3661.251 4115.487 2068.935 0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98	0.066	1229.722	3526.184	4025.684	1995.597
0.075 1673.621 3718.589 4165.174 2078.675 0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.069	1387.869	3592.216	4071.018	2101.594
0.078 1798.916 3764.15 4194.295 2197.274 0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.072	1535.49	3661.251	4115.487	2068.935
0.081 1913.308 3820.451 4211.43 2147.615 0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.075	1673.621	3718.589	4165.174	2078.675
0.084 2023.233 3856.978 4244.894 2254.813 0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.078	1798.916	3764.15	4194.295	2197.274
0.087 2122.993 3897.585 4261.757 2220.957 0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.081	1913.308	3820.451	4211.43	2147.615
0.090 2217.224 3922.781 4278.223 2302.902 0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.084	2023.233	3856.978	4244.894	2254.813
0.093 2310.846 3983.405 4293.254 2348.415 0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.087	2122.993	3897.585	4261.757	2220.957
0.096 2393.766 3986.81 4348.817 2262.704 0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.090	2217.224	3922.781	4278.223	2302.902
0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652	0.093	2310.846	3983.405	4293.254	2348.415
0.099 2471.68 4040.949 4383.828 2337.902 0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652				4348.817	
0.102 2545.297 4059.591 4395.53 2362.635 0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652					
0.105 2616.809 4090.615 4404.681 2396.453 0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652		2545.297	4059.591		
0.108 2683.139 4122.539 4411.583 2515.968 0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652					
0.111 2745.675 4134.878 4421.9 2515.98 0.114 2805.428 4148.899 4446.479 2407.652					
0.114 2805.428 4148.899 4446.479 2407.652					
0.11/ 2862.913 41/3.64 445/.301 2598.989	0.117	2862.913	4173.64	4457.301	2598.989

0.120	2916.976	4182.386	4478.988	2562.112
0.123	2969.477	4221.786	4503.166	2498.481
0.126	3017.186	4241.884	4513.156	2660.517
0.129	3062.702	4257.442	4513.262	2551.763
0.132	3105.752	4281.625	4529.204	2599.256
0.135	3145.433	4283.657	4516.494	2624.86
0.138	3185.937	4307.005	4552.448	2711.926
0.141	3226.176	4353.486	4566.597	2623.402
0.144	3263.341	4341.018	4573.048	2873.566
0.147	3298.94	4351.685	4577.418	2834.021

[Chart 5 - Confidence Interval for Throughput of P at Low Load]

	ı			
			Throughput	Throughput
			Lower	Upper
Probability		Throughput	Interval	Interval
0		0	0	0
0.0003		0.00585	0.005436	0.006264
0.0006		0.0118	0.010394	0.013206
0.0009		0.01847	0.017055	0.019885
0.0012		0.02434	0.022861	0.025819
0.0015		0.03047	0.029055	0.031885
0.0018		0.0367	0.034851	0.038549
0.0021		0.04313	0.041309	0.044951
0.0024		0.04912	0.047246	0.050994
0.0027		0.05529	0.053185	0.057395
0.003		0.06151	0.059264	0.063756
0.0033		0.06767	0.065229	0.070111
0.0036		0.0736	0.071105	0.076095
0.0039		0.07991	0.07726	0.08256
0.0042		0.08623	0.083646	0.088814
0.0045		0.09223	0.089689	0.094771
0.0048		0.09819	0.09538	0.101
0.0051		0.10383	0.10137	0.10629
0.0054		0.10948	0.106996	0.111964
0.0057		0.11549	0.112831	0.118149
0.006		0.12137	0.118747	0.123993
0.0063		0.12747	0.124566	0.130374
0.0066		0.13386	0.130996	0.136724
0.0069		0.13985	0.136661	0.143039
0.0072		0.14611	0.143008	0.149212

0.0075	0	.15246	0.1495	0.15542
0.0078	0	.15798	0.155366	0.160594
0.0081	0	.16392	0.160434	0.167406
0.0084	0	.17039	0.166759	0.174021
0.0087	0	.17631	0.172104	0.180516
0.009	0	.18186	0.177908	0.185812
0.0093	0	.18797	0.183772	0.192168
0.0096	0	.19364	0.189332	0.197948
0.0099	0	.19909	0.194883	0.203297
0.0102		0.2051	0.200827	0.209373
0.0105	0	.21114	0.206629	0.215651
0.0108	0	.21737	0.212177	0.222563
0.0111	0	.22307	0.218453	0.227687
0.0114	0	.22952	0.22461	0.23443
0.0117	0	.23533	0.230365	0.240295
0.012	0	.24089	0.236567	0.245213
0.0123	0	.24712	0.241413	0.252827
0.0126	0	.25244	0.247648	0.257232
0.0129	0	.25837	0.253176	0.263564
0.0132	0	.26432	0.258807	0.269833
0.0135	0	.27013	0.265408	0.274852
0.0138	0	.27638	0.271363	0.281397
0.0141	0	.28174	0.278003	0.285477
0.0144	0	.28767	0.281669	0.293671
0.0147		0.2934	0.288585	0.298215

[Chart 6 - Confidence Interval for Delay of P at Low Load]

		Average	Average
		Delay	Delay
	Average	Per	Per
	Delay	Frame	Frame
	Per	Lower	Upper
Probability	Frame	Interval	Interval
0	0	0	0
0.0003	1.054098	0.883024	1.225172
0.0006	1.196064	0.858143	1.533984
0.0009	1.313115	1.019205	1.607024
0.0012	1.369791	1.097108	1.642474
0.0015	1.60753	1.201333	2.013726
0.0018	1.691483	1.291845	2.091122
0.0021	1.968271	1.614	2.322541

0.0024	1.987392	1.574657	2.400126
0.0027	2.052633	1.746668	2.358597
0.003	2.180945	1.983479	2.378412
0.0033	2.456892	2.271445	2.642339
0.0036	2.869233	2.569396	3.169069
0.0039	2.91659	2.487191	3.345989
0.0042	3.050976	2.613096	3.488856
0.0045	3.244998	2.863683	3.626312
0.0048	3.49254	3.247715	3.737365
0.0051	3.649188	3.106905	4.191472
0.0054	4.01074	3.451856	4.569625
0.0057	4.024866	3.56215	4.487581
0.006	4.38547	3.580545	5.190394
0.0063	4.639884	3.803352	5.476417
0.0066	4.954048	4.107738	5.800359
0.0069	5.082032	4.263766	5.900298
0.0072	5.446597	4.764687	6.128507
0.0075	5.847471	4.969123	6.725819
0.0078	5.891461	4.889083	6.893838
0.0081	5.948167	5.243135	6.653198
0.0084	6.322316	5.455892	7.18874
0.0087	6.58174	5.776781	7.3867
0.009	6.836213	5.816369	7.856057
0.0093	7.611986	6.682001	8.541971
0.0096	7.863351	6.912729	8.813973
0.0099	8.055908	7.224646	8.887171
0.0102	8.454095	7.353373	9.554817
0.0105	8.960093	8.111479	9.808708
0.0108	9.770322	8.558572	10.98207
0.0111	10.24786	9.084148	11.41157
0.0114	10.47398	9.395937	11.55202
0.0117	11.1169	9.780456	12.45335
0.012	12.0159	10.67272	13.35909
0.0123	12.25244	10.62381	13.88107
0.0126	12.55829	11.95786	13.15873
0.0129	13.42636	12.19252	14.66019
0.0132	14.11218	12.61623	15.60813
0.0135	14.44006	13.81855	15.06157
0.0138	16.26429	14.34122	18.18737
0.0141	16.75648	15.54207	17.97088
0.0144	17.2782	15.75176	18.80463
0.0147	20.36197	18.04489	22.67904

[Chart 7 - Confidence Interval for Throughput of B at Low Load]

		Throughput	Throughput
		Lower	Upper
Probability	Throughput	Interval	Interval
0	0	0	0
0.0003	0.00585	0.005436	0.006264
0.0006	0.01179	0.010399	0.013181
0.0009	0.01843	0.017057	0.019803
0.0012	0.02432	0.022909	0.025731
0.0015	0.03041	0.02902	0.0318
0.0018	0.03667	0.034893	0.038447
0.0021	0.043	0.041216	0.044784
0.0024	0.04901	0.04718	0.05084
0.0027	0.0552	0.053135	0.057265
0.003	0.06143	0.059269	0.063591
0.0033	0.06757	0.065218	0.069922
0.0036	0.07359	0.071318	0.075862
0.0039	0.07996	0.077439	0.082481
0.0042	0.08621	0.083675	0.088745
0.0045	0.09215	0.089725	0.094575
0.0048	0.09807	0.095386	0.100754
0.0051	0.10379	0.101508	0.106072
0.0054	0.10967	0.107562	0.111778
0.0057	0.11558	0.113302	0.117858
0.006	0.12137	0.118982	0.123758
0.0063	0.12734	0.124629	0.130051
0.0066	0.13396	0.131471	0.136449
0.0069	0.13984	0.137088	0.142592
0.0072	0.14609	0.143108	0.149072
0.0075	0.15217	0.149348	0.154992
0.0078	0.15784	0.155361	0.160319
0.0081	0.1637	0.160565	0.166835
0.0084	0.16985	0.166314	0.173386
0.0087	0.17615	0.172603	0.179697
0.009	0.18184	0.178242	0.185438
0.0093	0.18771	0.183932	0.191488
0.0096	0.19362	0.189811	0.197429
0.0099	0.1993	0.195462	0.203138
0.0102	0.20517	0.201688	0.208652
0.0105	0.21111	0.207287	0.214933
0.0108	0.21695	0.212672	0.221228
0.0111	0.22352	0.219415	0.227625

0.0114	0.22936	0.225339	0.233381
0.0117	0.23537	0.230919	0.239821
0.012	0.24101	0.236695	0.245325
0.0123	0.24722	0.242648	0.251792
0.0126	0.25345	0.249238	0.257662
0.0129	0.25936	0.255143	0.263577
0.0132	0.2648	0.259988	0.269612
0.0135	0.27054	0.266624	0.274456
0.0138	0.27663	0.271735	0.281525
0.0141	0.28197	0.278197	0.285743
0.0144	0.28838	0.284484	0.292276
0.0147	0.2938	0.289909	0.297691

[Chart 8 - Confidence Interval for Throughput of B at Low Load]

		Average	Average
		Delay	Delay
	Average	Per	Per
	Delay	Frame	Frame
	Per	Lower	Upper
Probability	Frame	Interval	Interval
0	0	0	0
0.0003	1.004762	0.989703	1.01982
0.0006	1.024454	0.988516	1.060392
0.0009	1.031221	0.996003	1.066439
0.0012	1.09152	1.019233	1.163808
0.0015	1.12236	0.997445	1.247275
0.0018	1.116637	1.013267	1.220007
0.0021	1.152904	1.034059	1.271748
0.0024	1.187602	1.102833	1.272372
0.0027	1.192246	1.132659	1.251833
0.003	1.242106	1.156206	1.328006
0.0033	1.26074	1.207333	1.314147
0.0036	1.303907	1.248313	1.3595
0.0039	1.319211	1.264096	1.374325
0.0042	1.391731	1.320455	1.463006
0.0045	1.451812	1.35814	1.545483
0.0048	1.44728	1.370777	1.523784
0.0051	1.516729	1.374931	1.658527
0.0054	1.526898	1.406972	1.646823
0.0057	1.605338	1.446809	1.763867
0.006	 1.689313	1.531434	1.847192

0.0063	1.768405	1.571192	1.965619
0.0066	1.75444	1.652011	1.856868
0.0069	1.943363	1.5774	2.309325
0.0072	1.963593	1.667919	2.259267
0.0075	2.224023	1.764657	2.683389
0.0078	2.313049	2.01723	2.608867
0.0081	2.585153	2.131974	3.038332
0.0084	2.36328	1.984712	2.741848
0.0087	2.740205	1.780134	3.700275
0.009	2.628389	2.125004	3.131774
0.0093	3.087411	2.170819	4.004004
0.0096	3.283592	2.563101	4.004082
0.0099	3.556292	2.411946	4.700638
0.0102	4.203518	2.812988	5.594049
0.0105	3.905578	3.014063	4.797093
0.0108	4.038055	3.243229	4.832882
0.0111	4.999207	3.021127	6.977286
0.0114	5.832701	4.022074	7.643328
0.0117	5.842323	3.013505	8.671142
0.012	6.272438	4.300981	8.243896
0.0123	7.389162	4.292935	10.48539
0.0126	7.591212	4.655274	10.52715
0.0129	7.741005	6.311319	9.170691
0.0132	12.51017	8.889376	16.13097
0.0135	13.15357	5.4985	20.80863
0.0138	16.09138	9.378677	22.80409
0.0141	14.07673	10.09799	18.05547
0.0144	16.08245	12.91221	19.25269
0.0147	26.60158	18.79864	34.40452