Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.437 INFERENCE AND INFORMATION Spring 2015

Problem Set 2

Issued: Thursday, February 12, 2015 Due: Tuesday, February 24, 2015

Problem 2.1

Let k denote the uptime of a communication link in days. Given that the link is functioning at the beginning of a particular day, there is probability q that it will go down that day, independently of everything else. Thus, the uptime of the link k (in days) obeys a geometric distribution. If the link goes down within 24 hours from the beginning of the first day, we denote the uptime k = 0.

It is known that q is one of two values: q_0 or q_1 . By observing the actual uptime of the link in an experiment, we would like to determine which of the two values of q applies. The hypotheses are then:

$$H_0: p_{k|H}(k|H_0) = \mathbb{P}(k = k|H = H_0) = q_0(1 - q_0)^k \quad k = 0, 1, 2, \cdots$$

 $H_1: p_{k|H}(k|H_1) = \mathbb{P}(k = k|H = H_1) = q_1(1 - q_1)^k \quad k = 0, 1, 2, \cdots$

Suppose that $q_0 = 1/2$, $q_1 = 1/4$, and we observe k = k in our experiment.

- (a) Let $\mathbb{P}(H = H_0) = \mathbb{P}(H = H_1) = 1/2$. Find the decision rule $\hat{H}(k)$ corresponding to the minimum probability of error rule.
- (b) Make an approximate labeled sketch of the operating characteristic for the likelihood ratio test (LRT).
- (c) Find the decision rule $\hat{H}(k)$ that maximizes $P_D = \mathbb{P}\left(\hat{H} = H_1 \mid H = H_1\right)$, subject to the constraint that $P_F \leq 0.01$, where $P_F = \mathbb{P}\left(\hat{H} = H_1 \mid H = H_0\right)$. What is the corresponding value of P_D ?
- (d) We are now given $q_0 = 4/7$ and $q_1 = 1/7$. We again assume $\mathbb{P}(H = H_0) = \mathbb{P}(H = H_1) = 1/2$. Find all ML decision rules (including randomized ones), and sketch the corresponding (P_F, P_D) pairs.

Problem 2.2

Let y be a continuous random variable distributed over the closed interval [0,1]. Under the null hypothesis H_0 , y is uniform:

$$p_{y|H}(y|H_0) = \begin{cases} 1, & 0 \le y \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Under the alternative hypothesis H_1 , the conditional pdf of y is as follows:

$$p_{y|H}(y|H_1) = \begin{cases} 2y, & 0 \le y \le 1\\ 0, & \text{otherwise.} \end{cases}$$

The a priori probability that y is uniformly distributed is p.

- (a) Find the decision rule that minimizes the probability of error.
- (b) Find the closed form expression for the operating characteristic of the likelihood ratio test (LRT), i.e., $P_{\rm D}$ as a function of $P_{\rm F}$ for the LRT.
- (c) Suppose we require P_D to be at least $(1+\varepsilon)P_F$, where $\varepsilon > 0$ is a fixed constant.
 - (i) Find $P_{\rm D}^{\rm max}(\varepsilon)$, the maximal value of $P_{\rm D}$ that is achievable under this constraint.
 - (ii) Find the range of values of ε that lead to non-trivial performance, i.e. $P_{\rm D}^{\rm max}(\varepsilon)>0$.
 - (iii) When using the decision rule from part (a), what values of p guarantee that $P_{\rm D} \geq (1 + \varepsilon) P_{\rm F}$?

Problem 2.3

Consider the hypotheses

$$H_0: y_1 = -d + w_1 H_1: y_1 = d + w_1,$$
(1)

where the scalar y_1 is observed, where $d \neq 0$ is some known constant, and where the random variable w_1 represents measurement noise.

(a) Suppose that d = 1/2 and that the noise is discrete with distribution

$$p_{\mathbf{w}_1}(w_1) = \begin{cases} 1/8 & w_1 = -1\\ 3/8 & w_1 = 0\\ 1/2 & w_1 = 1 \end{cases}.$$

Draw a fully-labeled sketch of the operating characteristic of the likelihood ratio test (LRT) for this hypothesis test.

In the remainder of the problem, in addition to y_1 there is a second observation y_2 that behaves under the two hypotheses according to

$$H_0: y_2 = -d + w_2$$

 $H_1: y_2 = d + w_2$,

where d is the same as in (1), and where w_2 represents the measurement noise in y_2 .

(b) For general (arbitrary) $p_{w_1}(\cdot)$ and d, show that when

$$p_{w_2}(w_2) = p_{w_1}(-w_2), \text{ for all } w_2,$$
 (2)

then $(P_{\rm F}, P_{\rm D}) = (1 - \beta, 1 - \alpha)$ is on the operating characteristic of the LRT for y_2 if $(P_{\rm F}, P_{\rm D}) = (\alpha, \beta)$ is on the operating characteristic of the LRT for y_1 .

Hint: You may find it convenient to first consider the special case when the two LRTs specialize to threshold tests on y_1 and y_2 , i.e., $\hat{H}(y_1) = H_1$ when $y_1 > \gamma$ for some γ , and then generalize.

- (c) Suppose that d and $p_{w_1}(\cdot)$ are as given in part (a), and that (2) holds, and further suppose that we can choose (potentially randomly) between measuring either y_1 or y_2 , but not both. Plot the efficient frontier of (P_F, P_D) operating points for such a scenario.
- (d) (practice) Does there exist a conditional distribution $p_{w_2|w_1}(w_2|w_1)$ such that (2) holds and perfect detection ($P_F = 0, P_D = 1$) is achievable when y_1 and y_2 are simultaneously observed? If so, specify such a conditional distribution; otherwise, explain why not.

Problem 2.4 (practice)

Let y be an *integer* random variable whose values are used to perform a binary hypothesis test using a decision rule of the following form:

$$\hat{H}(y) = \begin{cases} H_1, & y \ge \gamma \\ H_0, & \text{otherwise} \end{cases}$$
 (3)

where γ is a known constant threshold.

We are told that $\mathbb{P}(H = H_0) = 2/3$ and $\mathbb{P}(H = H_1) = 1/3$. We are also given (P_F, P_D) value pairs for different values of the threshold γ :

$\overline{\gamma}$	0	1	2	3
$P_{\rm F}$	1	0.9	0.1	0
$P_{\rm D}$	1	0.6	0.4	0

Table 1: Performance of decision rule in Eq. (3)

- (a) Could this be a likelihood ratio test? Explain.
- (b) Calculate the probability of error for each value of the threshold γ .
- (c) Determine the probability mass functions $p_{y|H}(y|H_0)$ and $p_{y|H}(y|H_1)$.

- (d) Draw and label the operating characteristic for all achievable points using decision rules of the form given in Eq. (3) and one flip of a fair coin, where the coin allows you to choose between the outcomes listed in Table 1.
- (e) Is there a decision rule that achieves smaller probability of error than all decision rules of the form given in Eq. (3)? If yes, specify such a decision rule and find the corresponding probability of error. If not, explain.

Problem 2.5

A 3-dimensional random vector \mathbf{y} is observed, and we know that one of the three hypotheses is true:

$$H_1:$$
 $y = m_1 + w$
 $H_2:$ $y = m_2 + w$
 $H_3:$ $y = m_3 + w$

where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \qquad \mathbf{m}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{m}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{m}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

and **w** is a vector whose elements are independently, identically distributed Gaussian random variables with mean zero and variance σ^2 .

(a) Let

$$\pi(\mathbf{y}) = \begin{bmatrix} \mathbb{P}(H = H_1 | \mathbf{y} = \mathbf{y}) \\ \mathbb{P}(H = H_2 | \mathbf{y} = \mathbf{y}) \\ \mathbb{P}(H = H_3 | \mathbf{y} = \mathbf{y}) \end{bmatrix} = \begin{bmatrix} \pi_1(\mathbf{y}) \\ \pi_2(\mathbf{y}) \\ \pi_3(\mathbf{y}) \end{bmatrix},$$

and suppose that the Bayes costs are

$$C_{11} = C_{22} = C_{33} = 0,$$
 $C_{12} = C_{21} = 1,$ $C_{13} = C_{31} = C_{23} = C_{32} = 2.$

- (i) Specify the optimum decision rule in terms of $\pi_1(\mathbf{y})$, $\pi_2(\mathbf{y})$, and $\pi_3(\mathbf{y})$.
- (ii) Recalling that $\pi_1 + \pi_2 + \pi_3 = 1$, express this rule completely in terms of π_1 and π_2 , and sketch the decision regions in the (π_1, π_2) plane.
- (b) Suppose that the three hypotheses are equally likely a priori and that the Bayes costs are

$$C_{ij} = 1 - \delta_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}.$$

Show that the optimum decision rule can be specified in terms of the pair of sufficient statistics

$$\ell_2(\mathbf{y}) = y_2 - y_1,$$

 $\ell_3(\mathbf{y}) = y_3 - y_1.$

Hint: To begin, see if you can specify the optimum decision rules in terms of

$$L_i(\mathbf{y}) = \frac{p_{\mathbf{y}|H}(\mathbf{y}|H_i)}{p_{\mathbf{y}|H}(\mathbf{y}|H_1)}, \quad \text{for } i = 2, 3.$$

Problem 2.6

A binary random variable x with prior $p_x(\cdot)$ takes values in $\{-1,1\}$. It is observed via n separate sensors; y_i denotes the observation at sensor i. The y_1, \ldots, y_n are conditionally independent given x, i.e.,

$$p_{y_1,...,y_n|x}(y_1,...,y_n|x) = \prod_{i=1}^n p_{y_i|x}(y_i|x).$$

A local decision $\hat{x}_i(y_i) \in \{-1, 1\}$ about the value of x is made at each sensor.

(a) In this part of the problem, each sensor sends its local decision to a fusion center. The fusion center combines the local decisions from all sensors to produce a global decision $\hat{x}(\hat{x}_1,\ldots,\hat{x}_n)$. Consider the special case in which: i) $p_x(1) = p_x(-1) = 1/2$; ii) $y_i = x + w_i$, where w_1,\ldots,w_n are independent and each uniformly distributed over the interval [-2,2]; and iii) the local decision rule is a simple thresholding of the observation, i.e.,

$$y_i \underset{\hat{x}_i(y_i)=-1}{\overset{\hat{x}_i(y_i)=1}{\geq}} 0.$$

Determine the minimum probability of error decision rule, $\hat{x}(\cdot, \ldots, \cdot)$, at the fusion center.

In the remainder of the problem, there is no fusion center. The prior $p_{\chi}(\cdot)$, observation model $p_{y_i|\chi}(\cdot|x)$, i=1,2, and local decision rules $\hat{x}_i(\cdot)$, are no longer restricted as in part (a). However, we restrict our attention to the two-sensor case (n=2).

Consider local decisions $\hat{x}_i(y_i)$, i=1,2, that minimize the expected cost, where the cost is defined for the two local rules jointly. Specifically, $C(\hat{x}_1, \hat{x}_2, x)$ is the cost of deciding \hat{x}_1 at sensor 1 and deciding \hat{x}_2 at sensor 2 when the true value of x is x. The cost C strictly increases with the number of errors made by the two sensors, but is not necessarily symmetric.

(b) First, assume the local decision rule $\hat{x}_2(\cdot)$ is given. Show that the choice $\hat{x}_1^*(\cdot)$ for $\hat{x}_1(\cdot)$ that minimizes the expected (joint) cost is a likelihood ratio test of the form

$$\frac{p_{y_1|x}(y_1|1)}{p_{y_1|x}(y_1|-1)} \ \mathop{\lesssim}\limits_{\hat{x}_1^*(y_1)=-1}^{\hat{x}_1^*(y_1)=1} \ \gamma_1,$$

where γ_1 is a threshold that depends on the rule $\hat{x}_2(\cdot)$. Determine the threshold γ_1 .

- (c) Assuming, instead, that the local decision rule $\hat{x}_1(\cdot)$ is given, determine the choice $\hat{x}_2^*(\cdot)$ for $\hat{x}_2(\cdot)$ that minimizes the expected joint cost.
- (d) Consider a joint cost function $C(\hat{x}_1, \hat{x}_2, x)$ such that the cost is: 0 if both sensors making correct decisions; 1 if exactly one sensor makes an error; and L if both sensors make an error. Determine the value of L such that the optimal local decision rules at the two sensors are decoupled, i.e., the optimal threshold γ_1 does not depend on $\hat{x}_2^*(\cdot)$, and vice versa.

Problem 2.7

A random variable y is observed and used to decide between two hypotheses, H_0 and H_1 . Under each of these two hypotheses, y is as follows:

$$H_0$$
: $y = s_0 + w$
 H_1 : $y = s_1 + w$

where s_0 and s_1 are known scalars with $s_0 < s_1$, and w is a zero-mean Gaussian random variable with known variance σ^2 . Assume symmetric costs (i.e., $C_{00} = C_{11} = 0$, $C_{10} = C_{01} = 1$).

The *a priori* probabilities $\mathbb{P}(H_0) = 1 - p$ and $\mathbb{P}(H_1) = p$ are unknown; hence we wish to conduct a minimax test.

- (a) What is the least favorable prior and its corresponding decision rule $\hat{H}_{\mathrm{M}}(y)$?
- (b) Assuming now that the priors 1-p and p are known, what is the expected cost of the minimax decision rule $\hat{H}_{\rm M}(y)$ calculated in part (a), and how does it compare to the expected cost (Bayesian risk) of the optimum Bayes' decision rule $\hat{H}_{\rm B}(y)$? Determine an expression for the expected costs in terms of the unspecified parameters, and then evaluate both costs when $p=(e^2+1)^{-1}$, $s_0=0, s_1=2, \text{ and } \sigma^2=1.$