Documentation and Validation of EveryCalc's General Mechanism Tool

Thaddeus Hughes hughes.thad@gmail.com thaddeus-maximus.github.io

May 29, 2020

Abstract

Once upon a time, the man, myth, and legend built the JVN Calc. Since then many people have been devising tweaks and improvements to the system to handle more specific use cases and add additional analysis features. One of the more interesting features is transient analysis, also known as time-to-target or sprint-distance analysis. This considers not only the loads and motors acting on the system, but the accelerated mass, and allows for much more complex analysis of variable loads as well.

DC Motor Behavior 1

To begin with, we're going to consider DC motor behavior.

Figure 1: Complete motor curve.

The current and torque, which we are most interested in, could be expressed mathematically as

$$T_m(\omega_m) = T_{m,stall} \frac{\omega_m - \omega_{m,free}}{\omega_{m,free}} \tag{1}$$

$$T_{m}(\omega_{m}) = T_{m,stall} \frac{\omega_{m} - \omega_{m,free}}{\omega_{m,free}}$$

$$I_{m}(T_{m}) = (I_{m,stall} - I_{m,free}) \frac{T_{m}}{T_{m,stall}} + I_{m,free}$$

$$(2)$$

Gearbox and Coupled Mechanism $\mathbf{2}$

Multiple, N motors could be connected to a gear ratio G.

$$T_q(\omega_q) = N \ G \ T_m(G\omega_q) \tag{3}$$

$$I_q(\omega_q) = NI_m(T_q/G) \tag{4}$$

The torque might be limited by a clutch, or by some other friction interface (such as carpet against a wheel). The gearbox also may have non-perfect efficiency, so an efficiency factor can be applied here.

$$T_g(\omega_g) = min \begin{cases} N G T_m(G\omega_g)\eta_g \\ N\mu r \end{cases}, \tag{5}$$

where N is the normal force, μ is the friction coefficient, and r is the radius of the friction interface.

Let's consider the following generalized mechanism. Gearbox torque is applied, as is a resistance $M_resist.$ This could be computed from gravity, spring force... or something else entirely.

Figure 2: Free-body diagram for the flywheel, with additional resistance M_{resist} .

Using conservation of angular momentum,

$$T_{qbx} - M_{resist} = I_{sys}\alpha_q \tag{6}$$

$$\alpha_g = \frac{d}{dt}\omega_g \tag{7}$$

Solving yields the state equations

$$\frac{d}{dt}\omega_g = \frac{T_g(\omega_g) - M_{resist}}{I_{sys}}$$

$$\frac{d}{dt}\theta_g = \omega_g$$
(8)

$$\frac{d}{dt}\theta_g = \omega_g \tag{9}$$

With initial conditions

$$\omega_a(t=0) = \theta_a(t=0) = 0$$
 (10)

This could be adapted to the case of a linear mechanism by

$$M_{resist} = rF_{resist} \tag{11}$$

$$\omega_g = v/r \tag{12}$$

$$\theta_g = x/r \tag{13}$$

$$I_{sys} = mr^2 (14)$$

Current Limit 3

$$V_{motor} = V_{battery} - I_{motor}(\omega_m, \frac{V_{motor}}{V_{motor,nominal}})R \qquad (15)$$

$$V_{motor} = V_{battery} - \left[(I_{stall} - I_{free}) \frac{\omega_m - \omega_{free} \frac{V_{motor}}{V_{motor,nominal}}}{\omega_{free} \frac{V_{motor}}{V_{motor,nominal}}} + I_{free} \right] \frac{V_{motor}}{V_{motor,nominal}} R \qquad (16)$$

$$V_{motor} = \frac{V_{battery} + R(I_{stall} - I_{free}) \frac{\omega_m}{\omega_{free}}}{1 + \frac{R}{V_{motor,nominal}} I_{stall}} \qquad (17)$$

$$V_{motor} = \frac{V_{battery} + R(I_{stall} - I_{free}) \frac{\omega_m}{\omega_{free}}}{1 + \frac{R}{V_{motor} - I_{stall}} I_{stall}}$$
(17)

Steady-State Calculations 4

A fair bit of information can be gained from steady-state analysis, so EveryCalc produces these numbers as well. The first is the free speed, given as

$$v_{free} = \frac{\omega_{m,free}r}{G} \tag{18}$$

JVN's speed loss constant (SLC) is used to compute the JVN adjusted speed

$$v_{JVN} = SLC \times v_{free} \tag{19}$$

The running speed can be found at the steady-state condition of $T_q = M_{resist}$. Currently, M_{resist} is evaluated at all parameters being zero, though the use of a numerical method such as bisection could be used to make this a more interesting number.

5 Validation

Validation and verification are important aspects in trusting a tools' accuracy. This can be done either to test results or prior art. I would love to obtain test data for sprint distances (and it would be simple to obtain) but currently no such data exists. As such I will compare my results to a couple pre-existing tools.

Case A: Drivetrain

We can compare a drive train to the $\underline{\rm JVN}$ calculator.

peed Drivetra	in						
	Free Speed (RPM)	Stall Torque (N*m)	Stall Current (Amp)	Free Current (Amp)		Speed Loss Constant	Drivetrain Efficiency
CIM	5330	2.41	131	2.7		81%	90%
# Gearboxes in Drivetrain	# Motors per Gearbox		Total Weight (lbs)	Weight on Driven Wheels		Wheel Dia. (in)	Wheel Coeff
1	2		154	100%		4	1.1
Driving Gear	Driven Gear		Drivetrain Free-Speed	Drivetrain Adjusted Speed		"Pushing" Current Draw per Motor	
12	40		6.66 ft/s	5.39 ft/s		83.75 Amps	
14	40		13.97:1	< Overall G	ear R	atio	
15	22						
1	1						

	JVN	EveryCalc V0.5	
Free Speed	6.66	6.669	ft / s
Adjusted Speed	5.39	5.395	ft / s
Current at Traction Limit	$83.75 \times 2 = 167.5$	167.56	A

No issues here other than minor rounding errors.

Case B: Mechanism

We can compare a drivetrain to the <u>JVN calculator</u>.

near Mechanis	m			
	Free Speed	Stall Torque	Stall Current	Free Current
	(RPM)	(N*m)	(Amp)	(Amp)
BAG Motor	13180	0.43	53	1.8
# Motors per	Gearbox	Travel	Applied Load	Pulley
Gearbox	Efficiency	Distance (in)	(lbs)	Diameter (in)
1	80%	12	154	2
Driving	Driven		Elevator Linear	Arm Time to
Gear	Gear			move Travel
Gear	Gear		Speed	Distance
1	10	No Load:	13.8 in/s	0.87 sec
1	10	Loaded:	6.8 in/s	1.76 sec
1	1			
1	1			
100.00 : 1	< Overall Ra	atio	Current Draw per	Stall Load
			Motor (loaded)	Stall Load
			22.52 amps	304.45 lbs

	JVN	EveryCalc V0.5	
Free Speed	1.150	1.150	ft/s
Loaded Speed	0.566	0.568	ft / s
Loaded Current	22.52	27.70	A
Stall Force	304.5	304.481	lbf
Time to Target	1.76	1.777	s

There is a discrepancy in the loaded current number. I believe this is an error in JVN's calculatorhis calculation of current does not take into consideration the gearbox efficiency, so is optimistic on current draw.

Note that EveryCalc predicts this mechanism taking slightly longer than JVN does- this is because of the time required to accelerate this mechanism, which the JVN calc does not consider.

Case C: Time-To-Target

We can compare a drive train to a modified JVN calculator by apalrd.

<u>Drivetrain</u>						
n this worksheet, one	e can graphically mod	del the motion of a l	FIRST drivetrain (usi	ng a numerical analy	sis method).	
Motor Specs (Or	Combined Moto	rs Specs) for m	odelina:			
Spec Voltage	Free Speed	Stall Torque		Free Current		
(V)	(RPM)	(N*m)	(Amp)	(Amp)		
12	5310	4.86	266	5.4		
Drivetrain Physic	al Constants:					
Drive Wheel Dia. (in)	Coeff of Friction	Robot Weight (lbs)	"Lifted" Weight (lbs)	Fractional Weight on Drive	System Interia @ Wheel	
5	50	154	0	1	0	
High Gear Overall Ratio	Low Gear Overall Ratio	Overall Gearbox Efficiency	Wheel-Floor Efficiency	Static Equilibrium Force (lbs)		
0.13333333	0.1333333	90%	1	3		
Drivetrain Calcs/	Drive Wheel	Total Robot	Static Equilibrium	Max Tractive		
Rad. (m)	Circ. (m/rev)	Mass (kg)	Force (N)	Force (N)		
0.0635	0.3989823	69.872958	13.34466	34272.686		
Modeling Consta	nts (adjust to ch	ange graphs):	D-#			
Time Step (sec) [.01 is max]	Battery Voltage	Battery Resistance	Battery Voltage Filter Gain			
0.01	12	0	0			
Reference Speed (ft/s)	Reference Current (Amp)	Reference Distance (ft)	Reference Motor Load (N*m)	Reference Time (sec)	Reference Battery Voltage (v)	HG Time to reach Rei Distance (s
19.1	100	20	3.5	0.5	12	1.62
Initial Low Gear Speed (ft/s)	Initial High Gear Speed (ft/s)	Initial LG Time (sec)	Initial HG Time (sec)	Initial LG Position (ft)	Initial HG Position (ft)	LG Time to reach Rei Distance (s

	JVN/apalrd	EveryCalc V0.5	
Time to Target	1.62	1.611	\overline{s}

Effectively the same result. Note: the modified calculator with sprint distance does not consider wheel slip due to friction, hence traction limiting is disabled in everycalc for a fair comparison.