Simulation

Nicolas Mansard

Gepetto
LAAS-CNRS & ANITI

Overview

Collision detection contact points and normals

Problem formulation intertia, biais forces, jacobians

Problem resolution search forces and accelerations

Temporal integration numerical integration (event loop)

Collision model

- Documentation of the kinematic tree
 - Placement wrt joint
 - Simple shape
 - Sphere, capsules, boxes ...

OR

- Polygon soup
- Collision pairs

Ad-hoc structure for broad phase

Credit: Real-time Collision Detection, Ericson

Collision detection and distances

Differentiability

From Louis Montaut thesis, must read

Dynamics with (bilateral) constraints

With no constraint:

$$Ma + b = \tau$$

Solve with triangular decomposition

Dynamics with (bilateral) constraints

• With constraints:

$$Ma + b = \tau + J^T f$$
$$Ja + a_0 = 0$$

Corresponding KKT matrix

$$\begin{pmatrix} 0 & J \\ J^T & M \end{pmatrix} = \begin{pmatrix} U_D & X \\ & U \end{pmatrix} \begin{pmatrix} -1 & \\ & 1 \end{pmatrix} \begin{pmatrix} U_D^T & 0 \\ X^T & U^T \end{pmatrix}$$

with
$$U = \sqrt{M}$$
, $X = J\sqrt{M^{-T}}$, $U_D = \sqrt{JM^{-1}J^T}$

Friction-less contacts

Complementarity problem

$$\ddot{q} = M^{-1}(\tau - b + J^T f)$$
 $J \ddot{q} + \dot{J} \dot{q} \geq 0 \quad \perp \quad f \geq 0$
no penetration no pulling one or the other

Equivalent to a principled QP

$$\min_{\ddot{q}} \|\ddot{q} - \ddot{q}_{free}\|_{M}$$
 Subject to $J\ddot{q} + \dot{J}\dot{q} \ge 0$

Maximum dissipation

$$\begin{split} f &\in K \text{ with } J v_q = 0 \\ f &= 0 \text{ with } J_\perp v_q > 0 \\ f &\in \partial K \text{ with } J_{//} v_q = \alpha f_{//}, \, \alpha > 0 \end{split}$$

... sticking contact

... breaking contact

... sliding contact

Overview of the main simulators

Simulator	Collision	Contact/Friction	Constraint Solving	Speed	Accuracy	GPU Support	RL Support	Open Source
MuJoCo	Convex + Mesh	Regularized contact model	Impl. Newton + constraints	Very fast	High	<u> </u>	✓	(Apache, DeepMind lead)
Isaac Gym/Sim	Mesh + SDF	Penalty + Coulomb	GPU-based PGS	Extremely fast	Good	✓	✓	
PyBullet	Convex + Mesh (GImpact)	LCP + Coulomb	PGS + constraints	Fast	Medium	<u> </u>	~	✓
DART	Mesh + primitives	LCP + Penalty	DAE-based LCP	Medium	High	×		✓
Drake	Convex + Analytic	Hydroelastic + Penalty	Implicit SCS / LCP	Medium	Very high	×	~	✓
RaiSim	Convex + Mesh	Rigid contact + Coulomb	NCP via PGS	Very fast	High	X (CPU only)	✓	X (Free academic)
ODE	Primitives	Penalty-based	PGS	Medium	Low-Med	×	<u> </u>	✓
Simple	Convex + Mesh + Primitives	Rigid with exact regularization	ADMM with prox	Fast	Excellent	X (CPU only)	×	✓ BSDv2

System simulator

- A contact simulator is only a part of a system simulator
 - Sensors
 - Software interface
 - Rendering
 - ..

SimScape

- Simulation par pénalité
 - Difficile à régler
 - Intégrateur fin (couteux en temps de calcul)
- Peu de documentation sur le modèle de collision
 - Ad-hoc? Défini par l'utilisateur?
- Intégration impossible
 - Pas de support RL ou GPU
 - Lien avec ROS?