3.6 习题

2024年3月24日

3.6.1

证明.

①X和X有相等的基数。

构造一个从 X 到 X 的函数 f, 使得 f(x)=x ($\{x \in X\}$)。函数 f 是双射函数,是显而易见的,这里不做证明了。

(2)如果 X 和 Y 有相等的基数, 那么 Y 和 X 有相等的基数。

有 X 和 Y 有相等的基数,可知存在一个双射: $f: X \to Y$ 。那么存在 f 的逆 $f^{-1}: Y \to X$,由逆的定义可知 f^{-1} 是双射函数。

③如果 X 和 Y 有相等的基数且 Y 和 Z 有相等的基数,那么 X 和 Z 有相等的基数。

由 X和 Y有相等的基数,可知存在一个双射: $f: X \to Y$ 。由 Y和 Z有相等的基数,可知存在一个双射: $g: Y \to Z$ 。那么 g 和 f 的复合函数为 $g \circ f: X \to Z$ 。

由习题 3.3.7 可知 $g \circ f$ 是双射函数。由此可知存在一个双射: $g \circ f$: $X \to Z$, 所以 X 和 Z 有相等的基数。

3.6.2

证明.

①充分性: -个集合 X 的基数为 0, 则 X 是空集。

那么存在从 X 到 $\{i \in N: 1 \leq i \leq 0\}$ 的双射: $f: X \to \{i \in N: 1 \leq i \leq 0\}$ 。而 $\{i \in N: 1 \leq i \leq 0\}$ 是 Ø,即 $f: X \to \emptyset$ 。如果 X 不是空集,那 么则存在一个 $x \in X$ 使得 $f(x) \in \emptyset$,这显然是不成立的,所以 X 是空集

②必要性: X 是空集,则 X 的基数为 0。

若 X 是空集,由习题 3.3.3 知 $f: \varnothing \to \varnothing$ 为双射,而 $\{i \in N: 1 \leq i \leq 0\}$ 0 $\} = \varnothing$,即存在双射函数 $f: \varnothing \to \{i \in N: 1 \leq i \leq 0\}$,由定义 3.6.5 可知集合 X 基数为 0.

3.6.3

证明.

对 n 进行归纳:

n=0 时, f 是空函数, 命题空成立。

归纳假设 n=k 时, 命题成立。

下面我们证明该命题对于 k++ 也为真。设集合 $N_k=\{i\in\mathbb{N}:1\leq i\leq k\},N_{k++}=\{i\in\mathbb{N}:1\leq i\leq k++\}$ 。函数 $f_{k++}:N_{k++}\to N$ 是一个函数,我们可以由 f_{k++} 定义出一个函数 $f_k:N_k\to N$,对任意 $i\in N_k,f_k(i)=f_{k++}(i)$ 。由归纳假设可知,存在一个自然数 M 使得 $f_k(i)\leq M,i\in N_k$,即 $f_{k++}(i)\leq M,i\in N_k$,此时我们可以取 $f_{k++}(k++),M$ 中的较大值为 M',由此可知该 M' 使得 $f_{k++}(i)\leq M',i\in N_{k++}$ 。归纳法完成。

3.6.4

(a) 设 X 是一个有限集,设 x 是一个对象并且 x 不是 X 中的元素。那 么 $X \cup \{x\}$ 是有限的,且 $\#(X \cup \{x\}) = \#(X) + 1$

证明.

X 是有限集,不妨设 X 的基数是自然数 n。因此存在从 X 到 $\{i \in N : 1 \le i \le n\}$ 的双射函数 f。定义出一个函数 $g: X \cup \{x\} \to \{i \in N : 1 \le i \le n+1\}$,使得 g(x) = n+1, $g(i) = f(i), i \in X$ 。由 g 的定义可知其是双射函数,且 $X \cup \{x\}$ 的基数是 n+1,所以 $X \cup \{x\}$ 是有限的,且 $\#(X \cup \{x\}) = \#(X) + 1$

(b) 设 X 和 Y 都是有限集,那么 $X \cup Y$ 是有限的,且 $\#(X \cup Y) \le \#(X) + \#(Y)$ 。 另外,如果 X 和 Y 是不相交的(即 $X \cap Y = \emptyset$),那么 $\#(X \cup Y) = \#(X) + \#(Y)$

证明.

X 和 Y 都是有限集,不妨设 X 和 Y 的基数分别为 m 和 n。通过对 n 进行归纳,完成证明;

n=0 时,即 Y 的基数是 0,也就是说 $Y=\varnothing$, $X\cup Y=X\cup\varnothing=X$,此时 (b) 命题显然是成立的。

归纳假设 n=k 时, (b) 命题成立。

现在需证明 n=k++,任取 $x \in Y, Z = Y \setminus \{x\}$,由引理 3.6.9 可知,Z 的基数为 k,由归纳假设可知,X 与 Z 满足命题 (b),由此可知 $X \cup Z$ 是有限的:

 $X \cup Y = X \cup Z \cup \{x\}$.

① $X \cap Y = \emptyset$, 由此可知 $x \notin X \cup Z$, 且由归纳假设知 $\#(X \cup Z) = \#(X) + \#(Z)$ 。由命题 (a) 可知 $X \cup Z \cup \{x\}$ 是有限的,且 $\#(X \cup Z) + 1$,即 $X \cup Y$ 是有限的,且 $\#(X \cup Y) = \#(X \cup Z) + 1 = \#(X) + \#(Z) + 1 = \#(X) + \#(Y)$,即 $\#(X \cup Y) = \#(X) + \#(Y)$;

(2) $X \cap Y \neq \emptyset$

如果 $x \in X \cup Z$ 则 $X \cup Y = X \cup Z \cup \{x\} = X \cup Z$, 即 $X \cup Y = X \cup Z$ 由于同一集合只有一个基数,所以 $\#(X \cup Y) = \#(X \cup Z)$,又由归纳假设 可知 $\#(X \cup Z) \le \#(X) + \#(Z)$,所以 $\#(X \cup Y) \le \#(X) + \#(Y)$ 。

如果 $x \notin X \cup Z$, (由 $X \cap Y \neq \emptyset$, 则必须 $X \cap Z \neq \emptyset$ 否则与假设矛盾, 所以 $\#(X \cup Z) \leq \#(X) + \#(Z)$) 由命题 (a) 可知 $\#(X \cup Z \cup \{x\}) = \#(X \cup Z) + 1$, 即 $X \cup Y$ 是有限的,且 $\#(X \cup Y) = \#(X \cup Z) + 1 \leq \#(X) + \#(Z) + 1 = \#(X) + \#(Y)$, 即 $\#(X \cup Y) \leq \#(X) + \#(Y)$;

综上, n=k++ 情况也成立, 至此, (b) 命题成立。

(c) 设 X 是一个有限集,Y 是 X 的一个子集。那么 Y 是有限的,且 $\#(Y) \le \#(X)$ 。另外,如果 $Y \ne X$ (即 Y 是 X 的一个真子集),那么我们有 #(Y) < #(X)。

证明.

对 X 的基数进行归纳。

X 的基数为 0, 即 $X=\varnothing$, 此时 Y 是 X 的子集,则 $Y=\varnothing$,很明显 Y 是有限的 (基数是 0),且 $\#(Y) \le \#(X)$ 。而命题的后半部分,因为空集不存在真子集,所以空成立。

归纳假设 n=k 时, X 的基数为 k, 命题 (c) 成立。

现需证明 n=k++,命题 (c) 成立。若 Y=X 显然 # $(Y) \le \#(X)$;若 $Y \ne X$,则存在 $x \in X$,使得 $Y \subseteq (X \setminus x)$,由归纳假设可知 # $(Y) \le \#(X \setminus x)$,由引理 3.6.9 可知 #(Y) < #(X)。

综上命题 (c) 成立。

(d) 如果 X 是一个有限集, 并且 $f: X \to Y$ 是一个函数, 那么 f(X)

是一个有限集并且满足 $\#(f(X)) \le \#(X)$ 。 另外,如果 f 是一对一的,那 么 #(f(X)) = #(X)。

证明.

对 X 的基数 n 进行归纳;

归纳基始 n=0, 即 $X=\varnothing$, 由定义 3.4.1 (集合的像) 可知 $f(X)=\varnothing$, 即 #(f(X))=0, 此时命题 (d) 成立

n=k++ 时,设 $X'=X\setminus\{x\}$,由归纳假设可知 $\#(f(X'))\leq \#(X')$,

- ① f(X') = f(X), 则 $\#(f(X)) = \#(f(X')) \le \#(X') < \#(X)$ 。此时 f 不是双射, 命题后半部分空成立。
- ② $f(X') \subsetneq f(X)$ 则 $f(x) \not\in f(X')$,且 $f(X) = f(X') \cup f(x)$,由命题 (a) 可知 #(f(X)) = #(f(X')) + 1,有 #(X) = #(X') + 1,所以由归纳假设 $\#(f(X')) \leq \#(X')$ 可知 $\#(f(X')) + 1 \leq \#(X') + 1$,即 $\#(f(X)) \leq \#(X)$;若 f 是一对一的,则 $X' \setminus \{x\} \to Y \setminus \{f(x)\}$ 也是一对一,由归纳假设知 #(f(X')) = #(X'),由此可知 #(f(X')) + 1 = #(X') + 1,#(f(X)) = #(X)。综上, $n = k + \ell$ 时命题 (d) 成立。

至此,命题成立

(e) 设 X 和 Y 都是有限集,那么笛卡尔积 $X \times Y$ 是有限的并且 $\#(X \times Y) = \#(X) \times \#(Y)$ 。

证明.

设 X,Y 的基数分别为 n、m, 对 n 进行归纳。

归纳基始 n=0, 即 X 是空集, 有笛卡尔积的定义可知, $X\times Y=\varnothing$, 由此可知 $\#(X\times Y)=0$, 且 $X\times Y$ 是有限的。又 $\#(X\times Y)=\#(X)\times \#(Y)=0$, 所以 n=0 时, 命题 (e) 成立。

n=k++ 时,设对任意 $x\in X$,构造 $X'=X\setminus\{x\}$,由习题 3.5.5 可知 $X\times Y=(X'\cup\{x\})\times(Y\cup Y)=(X'\times Y)\cup(\{x\}\times Y)$,由笛卡尔积的定义 可知 $(X'\times Y)\cap(\{x\}\times Y)=\varnothing$,由(b)可知,# $((X'\times Y)\cup(\{x\}\times Y))=$ # $(X'\times Y)+\#(\{x\}\times Y)$ 由归纳假设可知 # $(X'\times Y)=\#(X')\times\#(Y)$,现在只需证明 # $(\{x\}\times Y)=\#(Y)$,命题就能完成证明。(在直觉上是显然的,但为了严谨性,还是需要证明),要想证明基数相同,按照定义 3.6.1 只需找到从 $(\{x\}\times Y)$ 到 Y 的一个双射函数 $f:(\{x\}\times Y)\to Y$ 。可以定义 f 如下: $f((x,y))=y,(x,y)\in(\{x\}\times Y)$,这里的 f 是双射性是显然的,为了简洁不做说明了。由此可知 # $(X\times Y)=\#(X'\times Y)+\#(\{x\}\times Y)=\#(X'\times Y)+\#(Y)$

 $=\#(X')\times\#(Y)+\#(Y)=(\#(X')++)\times\#(Y)=\#(X)\times\#(Y),\ n=k++$ 时命题 (e) 成立。

至此归纳完成, 命题 (e) 得到证明。

(f) 设 X 和 Y 都是有限集,那么集合 Y^X (在公理 3.10 中被定义) 是有限的,并且 $\#(Y^X) = \#(Y)^{\#(X)}$

证明.

公理 3.10 中对幂集公理的定义,很难定量分析,我们使用其他公理对幂集 公理重新定义。

I 为一个集合,并对每一个元素 $y_0 \in I$ 均有一个集合 A_{y_0} , $A_{y_0} = \{\{f是 X 到 Y 的函数, f(x_0) = y_0\}: y_0 \in Y\}$ 幂集定义如下: $W = \bigcup_{y \in I} A_y = \bigcup \{A_y: y \in I\}$

现在需要证明该定义和幂集公理的等价性。

 $f \in W \Leftrightarrow$ 存在 $y \in I$ 使得 $f \in A_y$,由此可知 f是 X 到 Y 的函数,所以 $f \in Y^X$ 。

 $f \in Y^X$, 由于 $f \in X$ 到 Y 的函数,则对 $x_0 \in X$ 有 $y = f(x_0)$, $y \in Y$, 所以 $f \in A_u$, 所以 $f \in W$ 。

综上可证该定义和幂集公理的等价性。

设 X,Y 的基数分别为 n、m, 通过对 n 进行归纳, 证明该命题。

归纳基始 n=0, 即 $X=\varnothing$, 而 $f:\varnothing\to Y$ 的函数,由函数相等的定义可知是唯一的,所以 $\#(Y^X)=1,\#(Y)^{\#(X)}=m^0=1$,由此可知 $\#(Y^X)=\#(Y)^{\#(X)}$,在 n=0 时命题 (f) 成立

n=k++ 时,设 $X'=X\setminus\{x_0\}, x_0\in X$,证明 $\#(A_y)=\#(Y^{X'})$,函数 $G:A_y\to Y^{X'}$,定义如下: $g=G(f), x\in X', f(x)=g(x)$ 。

证明函数 G 的定义是合法,即证明 g 的唯一性,假设存在 g 满足定义,即对任意 $f \in A_y$,存在 g'(x) = f(x) = g(x),由函数相等的定义可知 g = g',g 的唯一性得证。

证明 G 是双射的,先证明单射,如果 G 不是单射,则存在 $f_1 \neq f_2$,有相同的函数值 g,由于 $f_1 \neq f_2$ 所以存在 $x \in X', f_1(x) \neq f_2(x)$,有 G 的定义可知 $g(x) = f_1(x) = f_2(x)$,这与 $f_1(x) \neq f_2(x)$ 矛盾,所以 G 是单射。

证明 G 是满射的,对任意函数值 $g\in Y^{X'}$,可以定义出一个函数 $f:X\to Y, f(x_0)=y, f(x)=g(x)$,该函数 $f\in A_y$,所以 G 是满射的。

由此可知 $\#(A_u) = \#(Y^{X'}) = m^k$

由 A_y 的定义方式可知是不相交的,即对任意 $y_0 \neq y_1, A_{y_0} \cap A_{y_1} = \varnothing$,由 (b) 可知 # $(W) = \sum_{y \in I} \#(A_y) = m \times \#(Y^{X'}) = m \times (m^k) = m^{k++}$,由此可知 n=k++ 命题(f)也成立。

至此命题 (f) 成立。

3.6.5

证明.

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

$$\tag{1}$$

$$B \times A = \{(b, a) : b \in B, a \in A\}$$

$$(2)$$

现在定义函数 $f: A \times B \to B \times A, f(a,b) := (b,a)$ 。

接下来要证明 f 的双射性 (为了简洁不做说明了)。

由命题 3.6.14 可知

$$\#(A \times B) = \#(A) \times \#(B) \tag{3}$$

$$\#(B \times A) = \#(B) \times \#(A) \tag{4}$$

又因为 $A \times B$, $B \times A$ 之间存在一个双射 f, 所以两个集合之间有相同的基数, 由此通过(3)(4)可知 $\#(A) \times \#(B) = \#(B) \times \#(A)$

3.6.6

证明.

①构造双射

由公理 3.10 (幂集公理) 可知,

$$(A^B)^C = \{ f : f \in \mathcal{L} - \mathcal{L} \setminus \mathcal{L} \setminus$$

$$A^{B \times C} = \{g : g$$
是一个定义域为 $B \times C$, 值域为 A 的函数 $\}$ (6)

定义函数 $G:(A^B)^C \to A^{B \times C}$ 如下: G(f):=g, f,g 满足以下性质: 对任意 $b \in B, c \in C$ 有 [f(c)](b)=g(b,c)

现需证明 G 是满足函数定义的,对相同的输入只存在唯一的函数值。 函数 f 对任意 $b \in B, c \in C$ 存在 g, g' 使得 [f(c)](b) = g(b, c) = g'(b, c),对 任意 $b \in B, c \in C$, g(b, c) = g'(b, c) 通过函数相等的定义可知 g = g'。 现需证明 G 是双射函数。对任意 $f \neq f'$,

$$[f(c)](b) = g(b,c) \tag{7}$$

$$[f'(c)](b) = g'(b,c)$$
 (8)

由于 $f \neq f'$ 所以存在 (b',c') 使得 $[f(c')](b') \neq [f'(c')](b')$, 可得 $g(b',c') \neq g'(b',c')$, 所以 $g \neq g'$, 所以 G 是单射函数。

 $g \in A^{B \times C}$, 对某个 $c_0 \in C$ 我们定义函数 $h_0: B \to A, h_0(b) := g(b, c_0)$; 再对每个 $c \in C$ 我们定义函数 $f: C \to A^B, f(c) := h_c$ 。此时对任意 $c \in C, b \in B$ 有 $[f(c)](b) = h_c(b) = g(b, c)$ 。故 G(f) = g。故 G 是满射的

②
$$(a^b)^c = a^{bc}$$

设 $A \setminus B \setminus C$ 的基数分别为 $a \setminus b \setminus c$, 由命题 3.6.14 可知

$$\#((A^B)^C) = \#(A^B)^{\#(C)} = (\#(A)^{\#B})^{\#(C)} = (a^b)^c \tag{9}$$

$$\#(A^{B \times C}) = \#A^{\#(B \times C)} = \#A^{\#(B) \times \#(C)} = a^{bc}$$
(10)

又 $(A^B)^C$, $A^{B\times C}$ 基数相同, 所以 $(a^b)^c = a^{bc}$

$$(3) a^b \times a^c = a^{b+c}$$

通过构造明确的双射来证明:集合 $A^B \times A^C$ 和集合 $A^{B \cup C}$ 有相同的基数 $(B \cap C = \varnothing)$ 。由公理 3.10 (幂集公理) 和定义 3.5.4 (笛卡尔积) 可知

$$A^{B} \times A^{C} = \{ (f, f') : f \in A^{B}, f' \in A^{C} \}$$
 (11)

$$A^{B\cup C}=\{g:g$$
是定义域为 $B\cup C$ 值域为 A 的函数} (12)

定义函数 $G: A^B \times A^C \to A^{B \cup C}$ 如下:

G(f,f'):=g, f,f',g 满足如下性质: 对任意 $b\in B,c\in C$ 有 f(b)=g(b),f'(c)=g(c)

现需证明 G 是满足函数定义的,对相同的输入只存在唯一的函数值。函数 f, f' 对任意 $b \in B, c \in C$ 存在 g, g' 使得 f(b) = g(b), f'(c) = g(c); f(b) = g'(b), f'(c) = g'(c);,对任意 $b \in B, c \in C$, g(b) = g'(b); g(c) = g'(c) 通过函数相等的定义可知 g = g'。

现需证明 G 是双射函数。对任意 $(f1,f2) \neq (f1',f2')$,g = G(f1,f2),g' = G(f1',f2'),如果 g = g',那么对任意 $b \in B$, $c \in C$ 有 g(b) = g'(b) = f1(b) = f1'(b),g(c) = g'(c) = f2(c) = f2'(c),由此可知 f1 = f1',f2 = f2',那么 (f1,f2) = (f1',f2'),这与前提 $(f1,f2) \neq (f1',f2')$ 矛盾, $g \neq g'$,所以 G 是单射。

任意 $g \in A^{B \cup C}$, 对任意 $b \in B, c \in C$ 定义 $f1: B \to A, f1(b) = g(b); f2: C \to A, f2(c) = g(c), f1, f2$ 满足如下性质: 对任意 $b \in B, c \in C$ 有 f1(b) = g(b), f2(c) = g(c), 故 G(f1, f2) = g。故 G 是满射。

设 $A \setminus B \setminus C$ 的基数分别为 $a \setminus b \setminus c$, 由命题 3.6.14 可知

$$\#(A^B \times A^C) = \#(A^B) \times \#(A^C) = \#(A)^{\#B} \times \#(A)^{\#C} = a^b \times a^c$$
 (13)

$$\#(A^{B \cup C}) = \#(A)^{\#(B \cup C)} = \#(A)^{\#(B) + \#(C)} = a^{b+c}$$
(14)

又 $A^B \times A^C$, $A^{B \cup C}$ 基数相同, 所以 $a^b \times a^c = a^{b+c}$

3.6.7

证明.

① 充分性

假设 A 的基数小于或等于 B 基数,则存在一个从 A 到 B 的单射 $f:A\to B$,由定义 3.4.1 (集合的像) 可知 $f(X)\subseteq B$; 又由命题 3.6.14 (c) 可知

$$\#(f(X)) \le \#(B) \tag{15}$$

定义函数 $g: A \to f(X), g(x) = f(x)$, 函数 g 是双射函数(证明略),由此可知 #(A) = #(f(X))。综上可知 $\#(A) = \#(f(X)) \le \#(B)$,必要性得证。
② 必要性

假设 #(A) \leq #(B), 基数分别为 m、n ($m \leq n$), 由定义 3.6.5 可知, 存在双射函数 $f: A \to \{i \in N: 1 \leq i \leq m\}$ 。存在双射函数 $g: \{i \in N: 1 \leq i \leq n\} \to B$ 。由此我们可以定义从 A 到 B 的单射 $h: A \to B$ 如下:对任意 $x \in A$, h(x) = g(f(x))。现在证明 h 是单射函数,对任意 $x_1 \neq x_2$,由于 f 是单射函数,所以 $f(x_1) \neq f(x_2)$,又 g 是单身函数,所以 $g(f(x_1)) \neq g(f(x_2))$,即 $h(x_1) \neq h(x_2)$,所以 h 是单射函数。

综上命题得证