Урок 1. Инструменты для работы с базами данных

Давайте знакомиться!

Меркушов Михаил

Ведущий разработчик баз данных

Меркушов Михаил Сергеевич - более 3 лет занимаюсь разработкой баз данных и созданием программ. Оканчиваю Волгоградский технический универститет по специальность "Информатика и вычислительная техника", профиль "Автоматизированное проектирование киберфизических систем". В данный момент занимаюсь разработкой приложения для людей с ограниченными возможностями для Бельгийского университета (компания mail инвестиционная технологическая корпорация)

Что будет на уроке сегодня

- •Базы данных, СУБД кто есть кто
- •Истории возникновения СУБД и языка SQL
- •Основные операторы SQL
- •Компоненты СУБД
- •Клиентские приложения для работы с СУБД
- •Работа с БД с помощью дизайнера
- •Запросы выборки данных

База данных VS СУБД

База данных - некоторый набор постоянно хранимых данных

Решаемые задачи:

- •Хранение данных
- •Получение данных
- •Обработка

СУБД (DBMS) — система управления базами данных

Наи	более	ИСПОЈ	пьзуемые СУБД	398 system	ns in rankir	ng, June	e 2022
Jun 2022	Rank May 2022	Jun 2021	DBMS	Database Model	Jun 2022	core May 2022	Jun 2021
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🛐	1287.74	+24.92	+16.80
2.	2.	2.	MySQL 🔠	Relational, Multi-model 📵	1189.21	-12.89	-38.65
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🛐	933.83	-7.37	-57.25
4.	4.	4.	PostgreSQL [5	Relational, Multi-model 🛐	620.84	+5.55	+52.32
5.	5.	5.	MongoDB 🛅	Document, Multi-model 🛐	480.73	+2.49	-7.49
6.	6.	↑ 7.	Redis 🔠	Key-value, Multi-model 🛐	175.31	-3.71	+10.06
7.	7.	4 6.	IBM Db2	Relational, Multi-model 🛐	159.19	-1.14	-7.85
8.	8.	8.	Elasticsearch	Search engine, Multi-model 👔	156.00	-1.70	+1.29
9.	9.	1 0.	Microsoft Access	Relational	141.82	-1.62	+26.88
10.	10.	4 9.	SQLite [5	Relational	135.44	+0.70	+4.90
11.	11.	11.	Cassandra 🚹	Wide column	115.45	-2.56	+1.34
12.	12.	12.	MariaDB 🚹	Relational, Multi-model 🛐	111.58	+0.45	+14.79
13.	1 4.	1 26.	Snowflake 🚹	Relational	96.42	+2.91	+61.67
14.	4 13.	4 13.	Splunk	Search engine	95.56	-0.79	+5.30
15.	15.	15.	Microsoft Azure SQL Database	Relational, Multi-model 🛐	86.01	+0.68	+11.22
16.	16.	16.	Amazon DynamoDB 🚹	Multi-model 🛐	83.88	-0.58	+10.12
17.	17.	4 14.	Hive 🖽	Relational	81.58	-0.03	+1.89
18.	18.	4 17.	Teradata 🖽	Relational, Multi-model 👔	70.41	+2.02	+1.07
19.	19.	4 18.	Neo4j 	Graph	59.53	-0.61	+3.78

Search engine, Multi-model 🛐

56.61

-0.64 +4.52

20.

20.

20.

Solr

Реляционные базы данных (от англ. Relation – связь) — базы данных, в которых данные распределены по отдельным, но связанным между собой таблицам.

Кортеж (tuple) — это множество пар {имя атрибута, значение}. (например {Фамилия, Петров}, {Телефон, +7921-123-56-69}) — фактически это строка таблицы, где имена атрибутов — это столбцы таблицы.

Отношение (relation) - это множество кортежей, соответствующих одной схеме. (На прикладном уровне это соотносится с таблицей.)

Небольшой пример на кортежи:

```
В таблице "Сотрудники" имеется кортеж данных:
```

```
{ [Идентиф_код], '2931123455' }
{ [Фамилия_и_инициалы], 'Петренко П.П.' }
```

Идентиф_код	Фамилия_и_инициалы
2931123455	Петренко П.П.

Первичный ключ (Primary key) – поле(или набор полей) позволяющее однозначно идентифицировать запись в БД. Если ключ состоит из нескольких полей его называют **составным.**

Суррогатный ключ - автоматически сгенерированное поле, никак не связанное с информационным содержанием записи.

Естественный ключ — ключ состоящий из информационных полей таблицы.

Фамилия	RMN	Год рождения	Паспорт серия	Паспорт номер
Иванов	Петр	1992	0111	121245
Пупкин	Федор	1995	1102	457879
Смирнов	Иван	1986	0013	787952
Смирнов	Степан	1997	0013	784593
Петрова	Ирина	1996	1802	596485

Теперь ваша очередь!

Вопрос

какие ключи можно выделить в этой таблицей? подумайте 1 минуту и разберем варианты

Фамилия	РМИ	Год рождения	Паспорт серия	Паспорт номер
Иванов	Петр	1992	0111	121245
Пупкин	Федор	1995	1102	457879
Смирнов	Иван	1986	0013	787952
Смирнов	Степан	1997	0013	784593
Петрова	Ирина	1996	1802	596485

Потенциальный ключ – подмножество атрибутов таблицы, удовлетворяющее требованиям уникальности и минимальности.

Естественный ключ (Паспорт серия + номер), недостатки:

- Может изменяться
- Может отсутствовать
- Широкий два текстовых поля

Фамилия	ВМИ	Год рождения	Паспорт серия	Паспорт номер
Иванов	Петр	1992	0111	121245
Пупкин	Федор	1995	1102	457879
Смирнов	Иван	1986	0013	787952
Смирнов	Степан	1997	0013	784593
Петрова	Ирина	1996	1802	596485

Связи между таблицами — использование ключей

Фамилия	ВМИ	Год рождения	Паспорт серия	Паспорт номер
Иванов	Петр	1992	0111	121245
Пупкин	Федор	1995	1102	457879
Смирнов	Иван	1986	0013	787952
Смирнов	Степан	1997	0013	784593
Петрова	Ирина	1996	1802	596485

Студент_Паспорт_серия	Студент_Паспорт_номер	Телефон	Использование
0111	121245	89211285696	основной
1102	457879	89651238956	основной
0013	787952	65428967	основной
0013	787952	49626548596	дополнительный
			600.1.

Суррогатный ключ

Студент_іс	Фамилия	РМИ	Год рождения	Паспорт серия	Паспорт номер
1	Иванов	Петр	1992	0111	121245
2	Пупкин	Федор	1995	1102	457879
3	Смирнов	Иван	1986	0013	787952
4	Смирнов	Степан	1997	0013	784593
5	Петрова	Ирина	1996	1802	596485

Язык SQL, история

1970-е — компанией IBM был разработан прототип СУБД System R, язык запросов (Structured Query Language) SQL

```
1986 — первый международный стандарт, SQL-86 ещё называют ANSI/ISO 1992 — стандарт SQL-92 (SQL2) 1999 — стандарт SQL3:1999 (SQL3) 2003 — стандарт SQL 2003
```

2006 — стандарт SQL 2003

2008 — стандарт SQL 2008

2011 — стандарт SQL 2011

2016 — стандарт SOL 2016

Декларативное программирование

парадигма программирования, в которой задаётся спецификация решения задачи, то есть описывается ожидаемый результат, а не способ его получения SQL — декларативный язык

Диалекты SQL

- •PL/SQL (Procedural Language SQL)
 Oracle
- •T/SQL (Transact SQL) MSSQL
- PL/pgSQL (Procedural Language PostGres SQL)
 Postgresql
- •Множество других
- •в каждой СУБД, свой диалект

Types of SQL Commands

Data Definition Language (DDL) – это группа операторов определения данных

create

создание новых объектов базы данных

alter

изменение существующих объектов

drop

удаление объектов

Data Manipulation Language (DML) – это группа операторов для манипуляции с данными

insert

добавление новых данных

update

изменение данных

delete

удаление данных

- select
- •выборка данных

Data Control Language (DCL) – группа операторов определения доступа к данным

grant

предоставить права на объект базы

revoke

отозвать у пользователя права на объект

deny

запрет на объект, имеет более высокий приоритет чем grant

Transaction Control Language (TCL) – группа операторов для управления транзакциями

Транзакция - это набор команд или инструкций которые выполняются как единый блок

- begin transacton определяет начало транзакции
- •commit transaction
 применяет транзакцию, конечная точка
- •rollback transaction откатывает все изменения транзакции
- save transaction
- •устанавливает промежуточную точку сохранения внутри транзакции

Основные компоненты СУБД

- Storage engine подсистема постоянного хранения данных
- Query parser парсер и транслятор запросов
- Query optimizer оптимизатор запросов
- Query executor
- •подсистема выполнения
- Buffer cache
- •подсистемы кэширования данных

Подключение к СУБД, компоненты доступа

- •ODBC (Open Database Connectivity) программный интерфейс (API) доступа к базам данных
- •JDBC (Java DataBase Connectivity) программный интерфейс (API) доступа к базам данных в среде Java
- •Другие провайдеры

Клиентские приложения для работы с СУБД

Dbeaver

open-source, поддержка более 20ти различных СУБД

Azure Data Studio

Microsoft, поддержка различных СУБД за счет плагинов

dbForge

компания Devart, требуется покупка лицензии

- DataGrip
- •компания JetBrain, требуется покупка лицензии
- MSMS
- •компания Microsoft, только для MSSQL
- PGAdmin
- •open-source, только для Postgres

Online sql песочницы

- sqlfiddle.com
- db-fiddle.com

Заполнение и просмотр данных, используя графический интерфейс

Создание схемы в MySQL Workbench

Выполнение запросов в MySQL

Создание таблицы в MySQL Workbench

Запрос выборки данных с простыми условиями

```
1 SELECT поле1, поле2, поле3 from имя_таблицы
2 [WHERE предложение]
3 [GROUP BY {имя_столбца}]
4 [HAVING условие_where]
5 [ORDER BY {имя_столбца} {ASC | DESC}, ...] [LIMIT{OFFSET M}{LIMIT N}]
```

Пример вывода всех пользователей через SELECT (оператор "*")

1 SELECT * FROM student;

Вывод ограниченного числа столбцов — нужно явно перечислить столбцы

1 SELECT fio, login FROM student;

Запросы SELECT с применением фильтров

