МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича (СПбГУТ)»

СПб ГУТ)))

ФИЗИЧЕСКИЕ ОСНОВЫ АКУСТИКИ

ЛАБОРАТОРНАЯ РАБОТА № 3

Тональная пороговая аудиометрия по воздушной проводимости

Выполнил:

Балан К. А.

Студент группы:

РЦТ-22

Преподаватель:

Свиньина О.А.

Санкт-Петербург

1.1 Формирование тональных испытательных сигналов

1. Сформируем 24 тональных испытательных синусоидальных сигнала с амплитудой 1, длительностью 30 сек. и с частотами, значения которых приведены в табл. 1.

 $\label{eq:2.2} \begin{tabular}{ll} $T a f л u u a & 1 \\ \hline $S h a v e h u s u r o b o r o b$

№	Частота <i>f</i> , Гц	№	Частота f , Γ ц	№	Частота <i>f</i> , Гц
1	100	9	630	17	4000
2	125	10	800	18	5000
3	160	11	1000	19	6300
4	200	12	1250	20	8000
5	250	13	1600	21	10000
6	315	14	2000	22	12500
7	400	15	2500	23	14000
8	500	16	3150	24	16000

- 2. Сохраним данный проект два раза. В первый раз назовём его «АНТ_FadeUp», а во второй «АНТ FadeDown».
- 3. В проекте «АНТ FadeUp» установим следующие параметры инструмента:
 - Fade Type: Fade Up;
 - Mid-fade Adjust: минус 100%;
 - Start/End As: dB Gain;
 - Start (or End): 0 дБ;
 - End (or Start): минус 120 дБ.

1.2 Аудиометрия на восходящих сигналах

- 1. Откроем проект «АНТ_FadeUp»
- 2. Откроем Mixer Board.
- 3. Подключим к компьютеру головные телефоны и прослушаем первую звуковую дорожку. При появлении первых признаков слышимости звукового сигнала, останавливаем воспроизведение.
- 4. Полученное значение на шкале измерителя уровня в микшере занесем в Таблицу 2 в соответствующую ячейку столбца «Уровень нисходящего сигнала $N_{\text{восх}}$ FS, dBFS».
- 5. Повторим так со всеми звуковыми дорожками.

Таблица 2 Результаты измерения абсолютного порога слышимости

	Частота	Порог слышимости тонального сигнала							
№	тонального $curhanaf, \Gammau$	$N_{\text{Bocx }FS}$, dBFS	N_{Bocx} , dBSPL	$N_{\text{нисх }FS}$, dBFS	$N_{ m нисx}$, dBSPL	$N_{ m A\Pi C}$, dBSPL			
1	100	-45							
2	125	-47							
3	160	-48							
4	200	-50							
5	350	-52							
6	315	-54							
7	400	-60							
8	500	-65							
9	630	-67							
10	800	-69							
11	1000	-71							
12	1250	-72							
13	1600	-74							
14	2000	-76							
15	2500	-77							
16	3150	-77							
17	4000	-68							
18	5000	-67							
19	6300	-57							
20	8000	-55							
21	1000	-52							
22	12500	-51							
23	14000	-49							
24	16000	-44							

1.3 Аудиометрия на нисходящих сигналах

- 1. Откроем проект «АНТ_FadeDown»
- 2. Откроем Mixer Board.
- 3. Подключим к компьютеру головные телефоны и прослушаем первую звуковую дорожку. Как только звуковой сигнал перестаёт быть слышен, останавливаем воспроизведение.
- 4. Полученное значение на шкале измерителя уровня в микшере занесем в Таблицу 2 в соответствующую ячейку столбца «Уровень нисходящего сигнала N_{нисх} FS, dBFS».
- 5. Повторим так со всеми звуковыми дорожками.

 Таблица 2

 Результаты измерения абсолютного порога слышимости

	Частота	Порог слышимости тонального сигнала										
No	тонального c игнала f , Γ ц	$N_{\text{Bocx }FS}$, dBFS	$N_{\rm Bocx}$, dBSPL	$N_{\text{нисх }FS}$, dBFS	$N_{ m Hucx}$, dBSPL	$N_{\rm AIIC}$, dBSPL						
1	100	-45		-46								
2	125	-47		-48								
3	160	-48		-49								
4	200	-50		-52								
5	350	-52		-54								
6	315	-54		-54								
7	400	-60		-62								
8	500	-65		-67								
9	630	-67		-69								
10	800	-69		-71								
11	1000	-71		-74								
12	1250	-72		-75								
13	1600	-74		-75								
14	2000	-76		-75								
15	2500	-77		-76								
16	3150	-77		-78								
17	4000	-68		-68								
18	5000	-67		-65								
19	6300	-57		-60								
20	8000	-55		-54								
21	1000	-52		-53								
22	12500	-51		-51								
23	14000	-49		-51								
24	16000	-44		-46								

2.1 Обработка результатов исследования

- 1. Переведем полученные значения АПС из dBFS в dBSPL.
- 2. Для каждой частоты рассчитаем среднее арифметическое значение АПС, полученного на восходящем и на нисходящем сигнале.
- 3. Результаты расчетов перенесём в таблицу 2.

Таблица 2 Результаты измерения абсолютного порога слышимости

	Частота	Порог слышимости тонального сигнала										
№	тонального сигнала f , Γ ц	$N_{\text{Bocx }FS}$, dBFS	$N_{\rm Bocx}$, dBSPL	$N_{\text{HUCX }FS}$, dBFS	$N_{ m нисx}$, dBSPL	$N_{\rm AIIC}$, dBSPL						
1	100	-45	31	-46	29	30						
2	125	-47	29	-48	27	28						
3	160	-48	28	-49	26	27						
4	200	-50	26	-52	23	24.5						
5	350	-52	24	-54	21	22.5						
6	315	-54	22	-54	21	21.5						
7	400	-60	16	-62	13	14.5						
8	500	-65	11	-67	8	9.5						
9	630	-67	9	-69	6	7.5						
10	800	-69	7	-71	4	5.5						
11	1000	-71	5	-74	1	3						
12	1250	-72	4	-75	0	2						
13	1600	-74	2	-75	0	1						
14	2000	-76	0	-75	0	0						
15	2500	-77	-1	-76	1	0						
16	3150	-77	-1	-78	-3	-2						
17	4000	-68	8	-68	7	7.5						
18	5000	-67	9	-65	10	9.5						
19	6300	-57	19	-60	15	17						
20	8000	-55	21	-54	21	21						
21	1000	-52	24	-53	22	23						
22	12500	-51	25	-51	24	24.5						
23	14000	-49	27	-51	24	25.5						
24	16000	-44	32	-46	29	30.5						

3.1 Получение результатов измерения АПС для учебной группы/потока

1. Соберём со студентов группы статистический материал. Полученные значения занесём в

таблицу 3.

6

Таблица 3 Результаты измерения АПС в учебной группе/потоке

No	Фамилия		Порог слышимости N , dBSPL, тонального сигнала с частотой сигнала f , Γ ц																						
	ИО студента	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	2000	6300	8000	10000	12500	14000	16000
1	Валиахмето в В.А.	36	35	32.5	26.5	24.5	19.5	14.5	10.5	8.5	3	0.5	1	0	0	-0.5	-2.5	-3.5	-2.5	-3.5	-5	1.5	0.5	2.5	2
2	Сайдашева А.Р.	16,5	14,5	14,5	12	9	6,5	6	5,5	3	0,5	1	1,5	0,5	0	1	1	-0,5	-1,5	-3	-1,5	-0,5	1	4	15,5
3	Орехва В.Э.	9	13,5	13	6	7	10	4,5	4	-3	-3	-2,5	-0,5	0,5	0	1	-0,5	-1,5	-2,5	0,5	0	8,5	9	16	-0,5
4	Федоров Н.С.	3	1,5	1	-3	-1	-3	-4	-4,5	-4,5	-6,5	-0,5	-6,5	-3	0	-3,5	-4	0,5	1	-1	-3,5	3	6	10	40,5
5	Крапотухин а О.	5	3	1,5	-0,5	-2	-2	-4	-4,5	-3,5	-3	-4	-3	-2,5	0	-2	-3	2,5	-4	-2,5	-3	1	6	1	46
6	Тиджиева М.И.	19,5	12,5	11,5	9,5	4,5	-0,5	2	-3	-3,5	-5	-3	-2	-4	0	-4	-3	-4,5	-6	-1,5	0	2,5	4,5	10	16
7	Шамсадов М.И.	38	36	32,5	27,5	25,5	22	15,5	11,5	8	3	0	2,5	-0,5	0	2,5	-1	-2,5	-0,5	-1,5	-3	2,5	1,5	5	5,5
8	Модина Н.И.	22	17	17	16	12	7	5	5	2	0	2	0	1	0	0	-2	-4	-5	-3	-3	6	6	7	7
9	Поцелуйко Е.А.	21	15,5	2	6	6	0,5	3,5	-4,5	-0,5	-2	-3	1	-3	0	-5	-3,5	-3,5	-7	-3	-0,5	1,5	5	3,5	22
10	Репкина П.А.	25,5	19,5	16,5	12	10,5	10,5	7,5	1,5	0	-1,5	-4,5	-6	-4,5	0	-7,5	-9	-10,5	-12	1,5	6	-1,5	1,5	7,5	15

3.2 Обработка результатов проведения измерения АПС для учебной группы/потока

- 1. Из полученной таблицы 3 отбросим 2-3 крайних значения для каждой частоты.
- 2. Рассчитаем среднее значение порога слышимости NAПС ср(f), dBSPL по формуле:

$$N_{\text{A\PiC cp}}(f) = \frac{\sum_{i=1}^{n} N_{\text{A\PiC }i}(f)}{n}$$

3. Вычислим дисперсию по формуле:

$$\widetilde{D}(f) = \frac{\sum_{i=1}^{n} (N_i - N_{\rm cp})^2}{n-1}$$

4. Вычислим среднеквадратическое отклонение по формуле:

$$\sigma(f) = \sqrt{\frac{\widetilde{D}(f)}{n}}$$

- 5. Принимая гипотезу, что распределение статистического материала является нормальным, при доверительной вероятности β =0,9 следует, что значение величины $t\beta$ =1,643.
- 6. Рассчитаем значения доверительного интервала: $I\beta(f) = (Ncp(f) t\beta * \sigma(f); Ncp(f) + t\beta * \sigma(f)).$
- 7. Занесем полученные данные в таблицу 4.

Таблица 4

№		1	2	3	4
Параметры, dBSPI	Ĺ	NАПС cp	\tilde{D}	σ	I_{eta}
Частота тонального сигнала f, Гц	100	17.6	27.4	2.3	Частота тонального сигнала f, Гг
	125	14.6	3.1	0.8	(13.3; 15.9)
	160	11.5	35.4	2.7	(7.1; 15.9)
	200	9.9	18.1	1.9	(6.8; 13)
	250	7.7	8.5	1.3	(5.5; 9.8)
	315	4.7	20.3	2	(1.4; 8)
	400	4.2	2.3	0.7	(3; 5.3)
	500	0.6	17.7	1.9	(-2.5; 3.7)
	630	0.3	5.5	1	(-1.4; 2)
	800	-1.2	2.1	0.6	(-2.2; -0.1)
	1000	-0.4	2.4	0.7	(-1.5; 0.7)
	1250	0.6	0.7	0.4	(0; 1.2)
	1600	-1.6	2.9	0.8	(-2.9; -0.3)
	2000	0	0	0	(0; 0)
	2500	0.8	1.3	0.5	(0; 1.6)
	3150	-1.8	1.1	0.5	(-2.5; -1)
	4000	-1.9	3.3	0.8	(-3.2; -0.6)
	5000	-2.4	2.8	0.8	(-3.7; -1.2)
	6300	-1.2	1.2	0.5	(-2; -0.4)
	8000	-1	1.6	0.6	(-1.9; 0)
	10000	1.2	1.2	0.5	(0.4; 2)
	12500	2.7	3.6	0.9	(1.3; 4)
	14000	4.4	2.9	0.8	(3.1; 5.6)
	16000	9.1	37.6	2.7	(4.6; 13.6)

4.1 Построение графиков частотных зависимостей АПС и ПМ

1. Построим график частотной зависимости среднего значения АПС и график частотной зависимости теоретической аппроксимации АПС.

Рис.1 Графики частотных зависимостей

5.1 Анализ результатов исследования

1. Соответствует ли полученная частотная зависимость АПС теоретической аппроксимации?

Не соответствует на высоких частотах.

2. Чем обусловлены отклонения измеренного АПС от его теоретической аппроксимации (при их наличии)?

В теоретической аппроксимации мы рассчитываем общие показатели отклонения, а в нашем исследовании использовались данные ограниченного количества человек одной возрастной группы.

- 3. Как влияют условия проведения измерений на получаемые результаты аудиометрии? Проведение испытаний должно проводиться в условиях полной тишины. В ином случае полученные данные могут быть искажены.
- 4. Как влияют характеристики оборудования, использованного для проведения измерений, на результаты аудиометрии?

Используемое оборудование должно уметь воспроизводить сигналы необходимых частот, иначе данные могут быть искажены.