

Métodos Numéricos para Construção de Superfícies 3D

Alan dos Reis Lima, Cizé Lucas Gomes Lima, Pedro Victor Fontenele Felix

Sumário

- 1. Introdução
 - a. Ideia geral
 - b. Amostragem de Funções
 - c. Geração de Superfícies 3D
- 2. Técnicas de amostragem de Funções
 - a. Amostragem Uniforme de Grade
 - b. Amostragem Adaptativa
 - c. Amostragem por Hipercubo Latino
- 3. Técnicas de Geração de Superfícies 3D
 - a. Superfícies com Grade de Triângulos
 - b. Superfícies de Bézier
- 4. Referências

Introdução

Ideia Geral

Uma superfície é uma forma geométrica do **espaço R³** com **comprimento e largura** mas sem espessura, **descrita por um conjunto contínuo de pontos**.

Funções de 2 variáveis do tipo z = f(x,y) são visualizadas através de superfícies

Como são geradas?

- A função é amostrada em determinados pontos para obter seu comportamento;
- Esses pontos de amostragem são interpolados para obtermos a forma completa da superfície.

Técnicas de amostragem de Funções

1) Amostragem Uniforme de Grade

Pontos uniformemente espaçados na direção x e y (ou u e v) são gerados

2) Amostragem por Hipercubo Latino

O Domínio da função é dividido em intervalos iguais e um ponto é aleatoriamente escolhido dentro de cada um deles

3) Amostragem Adaptativa

Os pontos são distribuídos em maior quantidade onde os valores da função mudam com maior rapidez

Malhas de Triângulos

Malhas de Triângulos (Mesh Triangulation)

As malhas de triângulos são estudadas por suas aplicações na computação gráfica. São uma das representações de dados espaciais mais utilizadas, pois possibilitam a manipulação e visualização de superfícies de alta complexidade, além de apresentarem diversas vantagens, como suporte direto em software e hardware e maior velocidade e simplicidade. A transformação de conjuntos de dados espaciais distintos, entre eles modelos de terrenos, conjuntos de pontos tridimensionais e dados volumétricos, em malhas triangulares é amplamente estudado.

Malhas poligonais

Malhas poligonais são amplamente utilizadas para modelos geométricos, devido ao fato de serem flexíveis e suportadas pela maioria dos pacotes de modelagem e visualização. Uma malha poligonal é uma superfície ou objeto tridimensional representado por meio de um conjunto de polígonos

Triangulação

É uma decomposição de uma superfície em triângulos, e tem as seguintes propriedades:

- Qualquer aresta é aresta de exatamente dois triângulos;
- Qualquer vértice, V, é o vértice de pelo menos três triângulos, e todos os triângulos tendo V como vértice se dispõe em um ciclo em seu redor;

Qualidade dos Triângulos

A qualidade dos triângulos é analisada medindo o menor ângulo (entre 0° e 60°) de cada triângulo que compõe a malha. Os triângulos com essa característica são melhores porque são menos propensos a erros numéricos, que podem ser causados pela dificuldade em medir um triângulo com altura muito pequena

Distância entre dois pontos e Distância de ponto a plano

Como armazenar a descrição de um objeto em termos das faces que descrevem sua superfície?

VERTEX TABLE					
٧1	X ₁	Υ1	Z ₁		
V_2	X ₂	Y_2	Z ₂		
٧3	Х3	Y_3	Z ₃		
V_4	X_4	Y_4	Z_4		
V ₅	X ₅	Υ5	Z ₅		

FACE TABLE				
F ₁	٧1	٧2	٧3	
F_2	٧2	V_4	V_3	
F3	ν ₂	V_5	V_4	

Softwares que implementam o sistema de Malha de Triângulos (Mesh Triangulation)

- Blender: Ele utiliza malhas de triângulos para representar superfícies 3D em todos os aspectos do fluxo de trabalho, desde a modelagem até a renderização.
- Cinema 4D: Cinema 4D fornece ferramentas robustas para criar e gerenciar malhas trianguladas, incluindo a triangulação de polígonos e a geração de malhas de alta resolução.
- Unity: Unity utiliza malhas trianguladas para renderização e física dos modelos
 3D no ambiente do jogo.
- Unreal Engine: Unreal Engine utiliza malhas trianguladas para renderização e física dos modelos 3D.
- MeshLab: MeshLab oferece ferramentas para a triangulação de malhas, simplificação e reparação de geometria.

Superfície de Bézier

Curvas de Bézier

Uma curva de Bézier é definida por um conjunto de pontos de controle. A posição da curva é uma combinação ponderada desses pontos, o que dá a ela uma forma suave e flexível.

Tipos de Curvas

Curva de Bézier Linear

$$\mathbf{B}(t)=(1-t)\mathbf{B}_0+t\mathbf{B}_1\;,t\in[0,1]$$

Curva de Bézier Quadrática

$$\mathbf{B}(t) = (1-t)^2 \mathbf{B}_0 + 2t(1-t)\mathbf{B}_1 + t^2 \mathbf{B}_2 \;, t \in [0,1].$$

$$\mathbf{B}(t) = (1-t)^3 \mathbf{B}_0 + 3t(1-t)^2 \mathbf{B}_1 + 3t^2(1-t) \mathbf{B}_2 + t^3 \mathbf{B}_3 \; , t \in [0,1].$$

Tipos de Curvas

Exemplo de como se forma:

Para curvas de Bézier quadráticas, pode-se construir pontos intermediários \mathbf{Q}_0 e \mathbf{Q}_1 tais que, conforme t varia de 0 a 1:

- O ponto $\mathbf{Q}_0(t)$ varia de \mathbf{P}_0 a \mathbf{P}_1 e descreve uma curva de Bézier linear.
- O ponto $\mathbf{Q}_1(t)$ varia de \mathbf{P}_1 a \mathbf{P}_2 e descreve uma curva de Bézier linear.
- O ponto $\mathbf{B}(t)$ é interpolado linearmente entre $\mathbf{Q}_0(t)$ a $\mathbf{Q}_1(t)$ e descreve uma curva de Bézier quadrática.

Definição Explícita

$$egin{aligned} \mathbf{B}(t) &= \sum_{i=0}^n inom{n}{i} (1-t)^{n-i} t^i \mathbf{P}_i \;\; , \; inom{n}{i} = rac{n!}{i!(n-i)!} \;\; 0! \equiv 1 \ &= (1-t)^n \mathbf{P}_0 + inom{n}{1} (1-t)^{n-1} t \mathbf{P}_1 + \dots + inom{n}{n-1} (1-t) t^{n-1} \mathbf{P}_{n-1} + t^n \mathbf{P}_n, \qquad 0 \leqslant t \leqslant 1 \end{aligned}$$

Para n = 5, por exemplo:

$$\mathbf{B}(t) = (1-t)^5 \mathbf{P}_0 + 5t(1-t)^4 \mathbf{P}_1 + 10t^2(1-t)^3 \mathbf{P}_2 + 10t^3(1-t)^2 \mathbf{P}_3 + 5t^4(1-t)\mathbf{P}_4 + t^5 \mathbf{P}_5, \qquad 0 \leqslant t \leqslant 1.$$

\mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3} \mathbf{P}_{0}

DeCasteljau

P = lerp(d, e, t)

Bernstein

Polynomial Coefficients

$$\mathbf{P} = \mathbf{P}_{0} + t(-3\mathbf{P}_{0} + 3\mathbf{P}_{1}) + t^{2}(3\mathbf{P}_{0} - 6\mathbf{P}_{1} + 3\mathbf{P}_{2}) + t^{3}(-\mathbf{P}_{0} + 3\mathbf{P}_{1} - 3\mathbf{P}_{2} + \mathbf{P}_{3})$$

Matrix form

$$\mathbf{P}(t) = egin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 & 0 \ -3 & 3 & 0 & 0 \ 3 & -6 & 3 & 0 \ -1 & 3 & -3 & 1 \end{bmatrix} egin{bmatrix} \mathbf{P}_0 \ \mathbf{P}_1 \ \mathbf{P}_2 \ \mathbf{P}_3 \end{bmatrix}$$

Superfícies de Bézier

Uma superfície de Bézier é definida por um conjunto de pontos de controle. Semelhante à interpolação em muitos aspectos, uma diferença fundamental é que a superfície não passa, em geral, pelos pontos de controle centrais; em vez disso, ela é "esticada" em direção a eles como se cada um fosse uma força atrativa.

Definição Explícita (Curva de Bézier)

$$P(t) = \sum_{i=0}^{n} B_i J_{n,i}(t)$$
 $0 \le t \le 1$

$$J_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i} \quad (0)^0 \equiv 1$$
$$\binom{n}{i} = \frac{n!}{i!(n-i)!} \quad 0! \equiv 1$$

Definição Explícita (Superfícies de Bézier)

$$Q(u,w) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,j} J_{n,i}(u) K_{m,j}(w)$$

$$J_{n,i}(u) = \binom{n}{i} u^{i} (1-u)^{n-i} \quad (0)^{0} \equiv 1$$

$$K_{m,j}(w) = \binom{m}{j} w^{j} (1-w)^{m-j}$$

$$\binom{n}{i} = \frac{n!}{i!(n-i)!} \quad 0! \equiv 1$$

$$\binom{m}{i} = \frac{m!}{i!(m-i)!}$$

A forma e suavidade de uma superfície de Bézier podem ser manipuladas ajustando os pontos de controle que influenciam os vetores tangentes e de torção, sem precisar de conhecimento matemático avançado sobre vetores.

Representação Matricial

$$Q(u, w) = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} N \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} M \end{bmatrix}^T \begin{bmatrix} W \end{bmatrix}$$
$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} u^n & u^{n-1} & \cdots & 1 \end{bmatrix}$$
$$\begin{bmatrix} W \end{bmatrix} = \begin{bmatrix} w^m & w^{m-1} & \cdots & 1 \end{bmatrix}^T$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} B_{0,0} & \cdots & B_{0,m} \\ \vdots & \ddots & \vdots \\ B_{n,0} & \cdots & B_{n,m} \end{bmatrix}$$

Representação Matricial (Exemplo)

Para o caso específico de uma superfície Bézier bicúbica 4 x 4:

$$Q(u,w) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \times$$

$$\begin{bmatrix} B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\ B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\ B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\ B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w^3 \\ w^2 \\ w \\ 1 \end{bmatrix}$$

Implementação

Repositório GitHub:

Referências:

Amostragem de Funções:

https://github.com/bayertom/sampling

https://github.com/python-adaptive/adaptive?tab=readme-ov-file

https://github.com/sparks-baird/self-driving-lab-demo/blob/main/notebooks/escience/1.0-traditional-doe-vs-bayesian.ipynb

Superfícies por Triangulação:

https://www.dpi.inpe.br/gilberto/livro/introd/cap7-mnt.pdf

https://www.facom.ufu.br/~backes/publi_peq/tcc_esqueleto3D.pdf

https://ubibliorum.ubi.pt/bitstream/10400.6/3632/1/Tese_ASilva%272010.pdf

Bibliotecas utilizadas:

https://numpy.org/

https://matplotlib.org/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial. Delaunay.html

Curvas de Bézier:

https://www.youtube.com/watch?v=aVwxzDHniEw

Superfícies de Bézier:

https://en.wikipedia.org/wiki/Bézier_surface

https://www.youtube.com/watch?v=0JYGNH3ZKS8

https://www.gamedeveloper.com/programming/curved-surfaces -using-b-zier-patches

Rogers, David F., An introduction to NURBS: with historical perspective / David F. Rogers. ISBN-13:978-1-55860-669-2 ISBN-10:1-55860-669-6

Obrigado pela Atenção!