May 11, 2016

0.0.1 Languages

A, B, C typical names for languages

 Σ^* language of *all* strings over alphabet Σ

∅ empty language

 $A = \{\omega \in \Sigma^* : |\omega| \text{ is even}\}\$

Q: For an alphabet Σ (let us take $\Sigma = \{0, 1\}$). Is the language Σ^* countable or uncountable?

A: Countable.

0.0.2 Lexicographic ordering

The *lexicographic ordering* of Σ^* is the ordering of strings as follows: - order by increasing length - dictionary ordering among strings of the same length

For $\Sigma = \{0, 1\}$, we have: $\epsilon, 0, 1, 00, 01, 10, 11, 000, ...$

Now define a 1-to-1 and onto function $f : \mathbb{N} \to \Sigma^*$ in the natural way:

 $0 \rightarrow \epsilon, 1 \rightarrow 0, 2 \rightarrow 1, 3 \rightarrow 00, \dots$

Proposition: for any alphabet Σ , the language Σ^* is countable.

Q: now consider the set of all languages over $\Sigma = \{0,1\}$. Is $P(\Sigma^*)$ countable or uncountable? A: uncountable.

Proof: we know that there exists a bijective function $f: \mathbb{N} \to \Sigma^*$.

We want a bijective function $g: P(\mathbb{N}) \to P(\Sigma^*)$.

 $S \subseteq \mathbb{N}$. Let $g(S) = \{f(n) : n \in S\}$.

But that contradicts Cantor's theorem as if there is a bijective function $h: \mathbb{N} \to P(\Sigma^*)$, then $q^{-1} \circ h$ is also bijective.

0.0.3 Deterministic Finite Automata (DFA)

Things to keep in mind as we discuss the definition. 1. Definition is based on sets (and functions, etc). 2. It is a simple and not very powerful mode - but we're starting simple

Def: a DFA is a 5-tuple: $m=(Q,\Sigma,\delta,q_0,F)$ where: 1. Q= finite and nonempty set (whose elements we call *states*) 2. $\Sigma=$ alphabet 3. δ is a transition function of form $\delta:Q\times\Sigma\to Q$ 4. $q_0\in Q$ (*start* state) 5. $F\subseteq Q$ (set of *accept* states)

State diagrams: the circle-y pictures

Def: suppose $m=(Q,\Sigma,\delta,q_0,F)$ is a DFA and $\omega\in\Sigma^*$ is a string. The DFA m accepts ω if: 1. $\omega=\epsilon$ and $q_0\in F$, or 2. $\omega=\sigma_1...\sigma_n$ where $\sigma_i\in\Sigma$, and there exists states $r_0,...r_n\in Q$ such that $r_0=q_0,r_n\in F$, and $r_{k+1}=\delta(r_k,\sigma_{k+1})$ for k=0,...n-1

Remark: m rejects ω if m does not accept ω .

Another way to define acceptance/rejection is to define a function

$$\delta^*:Q\times\Sigma^*\to Q$$

 $\delta^*(q,\omega)$ is the state we land on if we start at q and read string ω . It is defined as:

$$\delta^*(q,\omega)=q$$

$$\delta^*(q,\omega\sigma) = \delta(\delta^*(q,\omega),\sigma)$$

$$\forall q \in Q, \omega \in \Sigma^*, \sigma \in \Sigma$$

The language *recognized* by a DFA m is $L(m) = \{\omega \in \Sigma^* : m \text{ accepts } \omega\}$.

 $A = \{ \omega \in \Sigma^* : |\omega| \text{ is prime} \}$

Def: Let Σ be an alphabet and let $A \subseteq \Sigma^*$. The language A is *regular* if there exists a DFA m such that A = L(m).

Q: Let $\Sigma = \{0, 1\}$. How many regular languages over the alphabet Σ are there?

A: Countably many

Proof: For any $n \ge 1$, there are at most finitely many DFAs with n states (up to renaming the states) $\le n^{2n}n2^n$. n possible sinks for each of the 2n edges, including into itself. n different starting states, and 2^n different sets of accepting states.

Now create a sequence of lists:

- $1 \rightarrow \text{all DFAs with } 1 \text{ state,}$
- $2 \rightarrow \text{all DFAs with 2 states...}$

The set of regular languages (over any alphabet) is countable \implies there are some languages that are not regular.