

FIG.1

ADAMTS-E nucleotide sequence [SEQ ID NO: 1]

CACGCGTCCGACGGCGCGGAGGCCCGGGCGCGCAGGAGCCCGGTGAT
5 GCTGCGAAGGCTGTGAACAGGGAGGGCGACTGTGGGGCTGCCGCAGCGGGG
CTGGGGAGAGACATGTGGACACGTGGCTCATGGCTCCCGCTGCCAGATCCCGC
TGGGCCCTCCGCCCTGGGCTGGCCTCATGTTGAGGTACGCACGCCCTCCGGTCTC
AAGATGAGTTCCTGTCCAGTCTGGAGAGCTATGAGATCGCCTCCCCACCCGCGTGAC
CACAAACGGGGCACTGCTGCCCTCTGCCACCTCCTCCCCGGAGGCAGCGCCCGGC
10 ACGGGGGCCACAGCGAGTCCCACCTTACAAGTGGCTGCCAGCACCCACT
TCCTGCTGAACCTGACCCCGAGCTCCCGTACTGGCAGGGCACGTCTCCGTGGAGTA
CTGGACACGGGAGGGCCTGGCAGAGGGCGCCCGGCCCCACTGCCTACGC
TGGTCACCTGCAGGGCCAGGCCAGCACCTCCATGTGGCCATCAGCACCTGTGGAGGC
CTGCACGGCCTGATCGTGGCAGACGAGGAAGAGTACCTGATTGAGCCCCTGCACGGTG
15 GGCCCAAGGGTCTCGAGCCCGAGGAAAGTGGACCACATGGGTGTACAAGCGTT
CTCTCGCTCACCCCCACCTGGACACAGCCTGTGGAGTGAGAGATGAGAACCGTGG
AAAGGGCGGGCATGGTGGCTGGGACCTGAAGCCACCGCCTGCCAGGCCCCCTGGGG
AATGAAACAGAGCGTGGCCAGCCAGGCCGAAGCGATCGGTAGCCGAGAGCGCTACG
TGGAGACCCCTGGTGGCTGACAAGATGATGGTGGCCTATCACGGGCGCCGGGATGT
20 GGAGCAGTATGTCCTGCCATCATGAAACATTGTTGCAAACATTCCAGGACTCGAGTC
GGGAAGCACCGTTAACATCCTCGTAACTCGCCTCATCTGCTCACGGAGGACCAGCCCA
CTCTGGAGATCACCCACCATGCCGGAAAGTCCCTGGACAGCTCTGTAAGTGGCAGAAA
TCCATCGTGAACCACAGCGGCCATGGCAATGCCATTCCAGAGAACGGTGTGGCTAACCA
TGACACAGCAGTGTCTACACGCTATGACATCTGCATCTACAAGAACAAACCTCGC
25 GCACACTAGGCCCTGGCCCCGGTGGCGGAATGTGTAGCGCGAGAGAACGCTCGAGCG
TCAATGAGGACATTGGCTGGCCACAGCGTTACCATGGCCACAGGAGATCGGCACACA
TTCGGCATGAACCATGACGGCGTGGGAAACAGCTGTGGGCCCCGTGGTCAAGGACCCAG
CCAAGCTATGGCTGCCACATTACCATGAAAGACCAACCCATTGCGTGGTCACTCTGC
AGCCGTGACTACATCACCAGCTTCTAGACTCGGGCTGGGCTTGCCCTAACACCG
30 GCCCCCCAGACAGGACTTGTGTACCCGACAGTGGCACCGGGCAAGCCTACGATGCA
GATGAGCAATGCCCTTCACTGGAGTCAAATCGCGTCAGTGAAATACGGGGAGGT
CTGCAGCGAGCTGTGGTCTGAGCAAGCAACCGGTGCATACCAACAGCATCCCG
GCCGCCAGGGCACGCTGTGCCAGAGCACCACATGACAAGGGGTGGTCAACAAAC
GGGTCTGTGCCCCCTTGGTCGCGCCCAAGAGGGTGTGGACGGAGCCTGGGGCGT
35 GGACTCCATGGGCGACTGCAGCCGGACCTGTGGCGCGCGTGTCTCTTAGCC
GTCACTGCGACAGCCCCAGGCCAACCATGGGGCAAGTACTGTCTGGGTGAGAGAAG
CGGGCACCGCTCTGCAACACGGATGACTGTCCCCCTGGCTCCAGGACTTCAGAGAA

EXPRESS MAIL NO. E 144648267 US

GTGCAGTGTTCTGAATTGACAGCATCCCTTCCGTGGAAATTCTACAAGTGGAAAACG
TACCGGGGAGGGGGCGTGAAGGCCTGCGTCACCGCCTAGCGGAAGGCTCAACT
TCTACACGGAGGGCGGCAGCCGTGGTGGACGGGACACCCCTGCCGTCCAGACACGG
TGGACATTGCGTCAGTGGCGAATGCAAGCACGTGGCTGCGACCGAGTCCTGGCTC
5 CGACCTCGGGAGGACAAGTGCAGTGTGCGGTGACGGCAGTGCCTGCGAGAC
CATCGAGGGCGTCTCAGCCCAGCCTCACCTGGGGCGGGTACGAGGATGTCGCTGG
ATTCCCAAAGGCTCGTCCACATCTCATCCAGGATCTGAACCTCTCTCAGTCACTTG
GCCCTGAAGGGAGACCAGGAGTCCCTGCTGCTGGAGGGTCCCCGGGACCCCCCAG
CCCCACCGTCTGCCTTAGCTGGGACCACCTTCAACTGCGACAGGGCCAGACCAGG
10 TCCAGAGCCTCGAAGCCCTGGGACCGATAATGCATCTCATCGTCATGGTCTGGCC
CGGACCGAGCTGCCCTGCCCTCGTACCGCTTAATGCCCGATCGCCGTGACTCGC
TGCCCCCCTACTCCTGGCACTATGCGCCCTGGACCAAGTGCTCGGCCAGTGTGCAAGG
CGGTAGCCAGGTGCAGGGGTGGAGTGCGCAACCAGCTGGACAGCTCCGCGGTGCG
CCCCCACTACTGCAGTGCCACAGCAAGCTGCCAAAGGCAGCGCCCTGCAACACG
15 GAGCCTGCCCTCCAGACTGGTTGTAGGGAACTGGTCGCTCTGAGCCGAGCTGCG
ATGCAGGGCGTGCAGCCGCTCGGTGCGCCAGCGCCGCGTCTGCCCGGGAGG
AGAAGGGCGTGGACGACAGCCATGCCCGAGGCCGCCCCACCTGACTGGAGGCCT
GCCACGGCCCCACTTGCCCTCCGGAGTGGCGGGCCCTGACTGGTCTGAGTGCACCC
CCAGCTGCCGGCCGGGCGGCCACCGCGTGGTCTTGCAAGAGCGCAGACCACC
20 GCGCCACGCTGCCCGGCGACTGCTACCCGCCAGCCACCGGCCACCATGC
GCTGCAACTTGCAGCCGCTGCCCGCCGCTGGTGGCTGGAGTGGGTGAGT
GCTCTGCACAGTGCAGCCGCTGGCAGCGCAGCGCTCGGTGCGCTGCACAGCCACA
CGGGCCAGGCCTGCAAGTGCACGGAGGCCCTGCCGCGCCGACTACCACGCAGC
AGTGTGAGGCCAAGTGCAGCCACAGCCAAACCCCGGGAGGCCCTGAAGAGTGCAGG
25 ATGTGAACAAGGTGCCTACTGCCCTGGTCTCAAATTCTGAGCTGCAGCCGAGCC
TACTCCGCCAGATGTGCTGCAAAACCTGCCAGGGCCACTAGGGGGCGCGGCCACCC
GGAGGCCACAGCTGGCGGGCTCCGCCAGCCCTGAGCGGGCCGCCAGAGGG
GGCCCCGGGGGGGGGGAGGGAACTGGGAGGGAGGTGAGACGGAGGCCGGAAGTTATT
ATTGGGAACCCCTGCAAGGCCCTGGCTGGAGGATCCACCCCAACCTGCCCC
30 GCCCCAGGGCACACACTCCTGCCAGGAAGCCATCAATAAGTCTGTCTTAGAT
TTCTAAAAAAAAAAAAAA

FIG 2

ADAMTS-E amino acid sequence [SEQ ID NO: 2]

MAPACQILRWALALGLGLMFEVTHAFRSQDEFLSSLESYEIAFPTRVDHNGALLAFS
PPPPRQRRTGATAESRLFYKVASPSTHFLLNLTRSSRLLAGHVSVEWTREGLA
WQRRAARPHCLYAGHLQQQASTSHVAISTCGGLHGLIVADEEEYLIEPLHGGPKGSR
SPEESGPHVVYKRSSLRHPHLDTACGVRDEKPWKGRPWWRTLKPPPAPRLGNE
TERGQPGLKRSVSRERYVETLVVADKMMVAYHGRRDVEQYVLAIMNIVAKLFQDSS
LGSTVNILVTRLILLTEDQPTLEITHAGKSLSFCWKWQKSIVNHSGHGNAPIENGVA
NHDTAVLITRYDICIYKNKPCGTGLAPVGMCRERSCSVNEDIGLATAFTIAHEIG
HTFGMNHDGVGNSCGARGQDPAKLMAAHITMKTNPFWSSCSRDYITSFLDSGLG
LCLNNRPPRQDFVYPTVAPGQAYDAEQCRFQHGVKSRQCKYGEVCSELWCLSK
SNRCITNSIPAAEGTLQCQTHTIDKGWCYKRVCPFGSRPEGVDAWGPWTWGDC
SRTCAGGGVSSSSRHCDSPRPTIGGKYCLGERRRHRCNTDDCOPGSQDFREVQC
SEFDSPFGRKFYKWKTYRGGVVKACSLTCLAEGFNFYTERAAVVDGTPCRPDTV
DICVSGECKHVGCDRVLGSDLREDKCRVCGGDGSACETIEGVFSPASPGAGYEDV
VWIPKGSVHIFIQDLNLSLSHLALKGDQESLLEGLPGTPQPHRLPLAGTTFQLRQGP
DQVQSLEALGPINASLIVMVLARTELPALRYRFNAPIARDSLPPYSWHYAPWTKCSA
QCAGGSQVQAVERCRNQLDSSAVAPHYCSAHSKLPKRQRACNTEPCPPDWVGN
WSLCRSRSCDAGVRSRSVVCQRRVSAEAEKALDDSACPQPRPPVLEACHGPTCPPE
WAALDWSECTPSCGPGLRHRVVLCKSDAHRATLPPAHCSPAACKPATMRCNLRRC
PPARWVAGEWGECSAQCGVGQRQRSRCTSHTGQASHECTEALRPPTTQQCE
AKCDSPTEGDGPEECKDVNVAYCPLVLKFQFCRAYFRQMCCKTCQGH

Figure 3. Domain structure of ADAMTS-E and translated nucleic acid sequence. A) Diagram of ADAMTS-E showing the following domains and signature motifs (with amino acid numbers in parentheses): prodomain (1-66), furin cleavage site (63-66), metalloproteinase domain (67-453), zinc-binding motif (392-420), disintegrin domain (469-531), TSP1 motif (548-601), and four TSP1-like motifs (829-884, 888-944, 948-1002, and 1007-1058). Overlapping clones covering the indicated sequence segments are depicted at the bottom of the diagram. B) ADAMTS-E nucleotide sequence with translated amino acid sequence above.

A

B

1	CACGCGTCCG ACGGCGCGGA GGCCCCGGGC GCGGCGCAGG AGCCCGGTGA TGCTGCGAAG GCTGTGAAACA GGGGAGGCGG <u>GTGCGCAGGC TGCCGCGCCT CGGGGGCCCG CGCGCGTCC TCGGGCCACT ACCGAGGCTTC CGACACTTGT CCCCTCCCGC</u>	
+1		M A P A C Q I ----- Prodomain
81	CACTGTGGGG GCTGCCGGCA GCCGGGGCTG GGGAGAGACA TGTGGACACG TGCCCTCAT GGCTCCGCC TGCCAGATCC <u>GTGACACCCC CGACGGCGT CGGGCCCGAC CCCTCTCTGT ACACCTGTGC ACCGGAGATA CCGAGGGCGG AGGGTCTAGG</u>	
+1	L R W A L A L G L G L M F E V T H A F R S Q D E F L S ----- Prodomain	
161	TCCGCTGGGC CCTCGCCCTG GGGCTGGGCC TCATGTTCGA GGTCAACGAC GCCTTCCGGT CTCAAGATGA GTTCCCTGCC <u>AGGCGACCCG GGAGCGGGAC CCCGACCCGG AGTACAAGCT CCAGTGCCTG CGGAAGGCCA GAGTTCTACT CAAGGACAGG</u>	
+1	S L E S Y E I A F P T R V D H N G A L L A F S P P P P Prodomain	
241	AGTCTGGAGA GCTATGAGAT CGCCTTCCCC ACCCGCGTGG ACCACAACGG GGCACTGCTG GCCTTCTCGC CACCTCTCC <u>TCAGACCTCT CGATACTCTA CGGGAGGGG TGGGCGACCC TGTTGTTGCC CCCTGACGAC CGGAAGGGG GTGAGGGAGG</u>	

+1 R R Q R R G T G A T A E S R L F Y K V A S P S T A F
 Furin Cleavage Site (Motif)
 =====
 Prodomain Metalloproteinase Domain
 =====

321 CGGGAGGCAG CGCCCGCGCA CGGGGGCCAC AGCCGAGTCC CGCTCTCTCT ACAAGTGGC CTGCCCGCAGC ACCGATTCG
GGCCTCCGTC GGGCGCCGT GCCCCCGGTG TCGGCTCAGG GCGGAGRAAGA TGTTCACCG GAGCGGGTGG TGGTGAACG

-1 L L N L T R S S R L L A G H V S V E Y W T R E G L A A
 Metalloproteinase Domain
 =====

401 TCGTGAACCT GACCCGACG TCCTCTACTAC TGGCAGGGCA CCTCTCCGCGT GAGTACTGGA CACGGAGGG CCTGGCTCTG
ACGACTTGGA CTGGCGCTCG AGGGCAGATG ACCGTCCTCG GCAGAGGCAC CTCATGACCT GTGCCCTCCC GGACCGAGG

+1 Q R A A R P H C L Y A G H L Q G Q A S T S H V A I S T
 Metalloproteinase Domain
 =====

481 CAGAGGGGG CGCGGCCCA CTGCTCTACTAC GCTGGTCACC TCCAGGGCA GCCCAGCACCC TCCCATGTGG CCATCGAC
GTCCTCCGCC GGGCGGGGT GACGGAGATG CGACCGATGG ACCTCCCGT CGGGTGTGG AGGTACACCC GGTAGTGCTG

+1 C G G L H G L I V A D E E E Y L I E P L H G G P K G
 Metalloproteinase Domain
 =====

561 CTGTGGAGGC CTGCA CGGCC TGATCGTGGC AGACGAGGAA GAGTACCTGA TTGACCCCT GCACGGTGGG CCCAGGGTT
GACACCTCG GACGTGCCGG ACTAGCACCG TCTGCTCTT CTCATGGACT AACCTGGGA CGTGCACCC GGGTTCGACAA

+1 S R S P E E S G P H V V Y K R S S L R H P H L D T A C
 Metalloproteinase Domain
 =====

641 CTCGGAGGCC GGAGGAAAGT GGACCRATG TGGTGTACAA GGTTCTCTCT CGCTGTCACC CCCACCTGG CAACAGCTGT
GAGCTCGGG CCTCCCTTCA CCTGGTGTAC ACCACATTT CGCAAGGAGA GACGCGATGG GGGTGGACCT GTGTCGACAA

+1 G V R D E K P W K G R P W W L R T L K P P P A R P L G
 Metalloproteinase Domain
 =====

721 GGAGTGAGG ATGAGAACCGT GTGAAAGGG CGGCATGGT GGTGCGGAC CTGGAGGCA CGGCCTGCCA CGCCGCTGGG
CCTCACTCTC TACTCTTGG CACCTTCCC GCCGGTACCA CGCACCGCTG GAACCTGGT GGCAGGACGGT CGGGGGACCC

+1 N E T E R G Q P G L K R S V S R E R Y V E T L V V A
 Metalloproteinase Domain
 =====

801 GAATGAAACA GAGCGTGGCC AGCCAGGCCT GAAGCGATCG GTCAGCCGAG AGCGCTACGT GGAGACCTG GTGGTGGCTG
CTTACTTTGT CTGGCACCGG TCGGCTCCGA CTTCGCTAGC CAGTCGGCTC TCGCGATGCA CCTCTGGAC CACCAACGAC

+1 D K M M V A Y H G R R D V E Q Y V L A I M N I V A K L
 Metalloproteinase Domain
 =====

881 ACAAGATGAT GGTTGGCTAT CACGGCGCC GGGATGTGGA GCAGTATGTC CTGGCCATCA TGAACTTGT TGCAAACATT
TGTTCTACTA CCACCGGATA GTGCCCCGG CCCTACACCT CGTCATACAG GACCGTAGT ACTTGAACA ACGGTTGAA

+1 F Q D S S L G S T V N I L V T R L I L L T E D Q P T I
Metalloproteinase Domain

=====

961 TTCCAGGACT CGAGTCTGGG AAGCACCGTT AACATCCTCG TAACTCGCCT CATCTGCTC ACGGAGGACG AGCCACCTGT
AAGGTCTGA GCTCAGACCC TTCTGGCAA TTGTAGGAGC ATTGAGCGGA GTAGGACGAG TGCCCTGCTG TCGGGTAGC

+1 E I T H H A G K S L D S F C K W Q K S I V N H G L
Metalloproteinase Domain

=====

1041 GGAGATCACCA CACCATGCCG GGAAAGTCCT GCACAGCTTC TGTAAGTGGC AGAACATCCAT CGTGACCCAC AGCGGCCATG
CCTCTAGTGG GTGGTACGCC CCTTCAGGG CCTGTCGAG ACATTCACCG TCTTGTGTTA GCACTGGTG TCGGGGTAC

+1 G N A I P E N G V A N H D T A V L I T R Y D I C I Y K
Metalloproteinase Domain

=====

1121 GCAATGCCAT TCCAGAGAAC GGTGTGGCTA ACCATGACAC :3CAGTGCTC ATCACACGCT ATGACATCTG CATCTACAGC
CGTTACGGTA AGGTCTCTTG CCACACCGAT TGTTACTGTG :3CTCACGAG TAGTGTGCGA TACTCTAGAC GTAGATCTG

+1 N K P C G T L G L A P V G G M C E R E R S C S V N E D
Metalloproteinase Domain

=====

1201 AACAAACACT CGGGCACACT AGGCCTGGCC CGGGTGGCG GAATGTGTGA GCGCGAGAGA AGCTGCAGCG TCAATGAGGA
TTGTTGGGA CGGGTGTGA TCGGGACCGG GGCCACCCCG CCTACACACT CGCGCTCTCT TCAGCTCGC AGTTACTCT

+1 I G L A T A F T I A H E I G H T F G M N H D G V G N
Zinc-binding Motif

=====

Metalloproteinase Domain

=====

1281 CATTGGCTG GCCACAGCGTC TCACCATTCG CCACGAGATC GGGCACACAT TCGGCATGAA CCATGACGGC GTGGGAAARCA
GTAACCGGAC CGGTGTGCGA AGTGGTAACG GGTGCTCTAG CCCGTGTGTA AGCCGTACTT GGTAATGCG CACCCCTTGT

+1 S C G A R G Q D P A K L M A A H I T M K T N P F V W S
Zinc-binding Motif

=====

Metalloproteinase Domain

=====

1361 GCTGTGGGC CGCTGGTCAG GACCCAGCCA AGCTCATGGC TGCCACATT ACCATGAGA CCAACCCATT CGTGTGGTCA
CGACACCCCG GGCACCAGTC CTGGTCTGGT TCGAGTACCG ACGGGTGTRA TTGTTACTCTT GGTTGGTAA GCACACCACT

+1 S C S R D Y I T S F L D S G L G L C L N N R P P R Q D
Metalloproteinase Domain

=====

1441 TCCCTGAGCC GTGACTACAT CACCAAGCTTT CTAGACTCGG GCCTGGGGCT CTGCCTGAAC AACCGGGCCC CGAGACAGGA
AGGACGTGG CACTGATGTA GTGGTCGAAA GATCTGAGCC CGGACCCCGA GACGGACTTG TTGGCCGGGG GGTCTGTCT

+1 F V Y P T V A P G Q A Y D A D E Q C R F Q H G V K S
Disintegrin Domain

=====

1521 CTTTGTGTAC CGGACAGTGG CACCGGGCCA AGCCTACGAT CGAGATGAGC ATAGCCGCTT TCAGCATGGA GTCAAATCGC
GAAACACATG GGCTGTCACT TTGGCCCCGT TCGGATGCTA CGTCTACTCG TTACGGCGAA AGTCTGACTCT CAGTTTACCG

+1 R Q C K Y G E V C S E L W C L S K S N R C I T N S I P
 Disintegrin Domain

=====

1601 GTCAGTGTAA ATACGGGGAG GCTCGCAGCG AGCTGTGGTG TCTGAGCAAG AGCAACCGT GCATCACCAA CAGCATGCC
CAGTCACATT TATGCCCTCC CAGACGTCGC TCGCACACCAG AGACTCGTTC TCGTTGGCCA CGTAGTGGTT GCGCTGCC

+1 A A E G T L C Q T H T I D K G W C Y K R V C V ? F S S
 Disintegrin Domain

=====

1681 GCCGGCGAGG GCACGCTGTG CCAGACGCAC ACCATCGACA AGGGGTGGTG CTACAAACGG GTCTGTGTC COTTGGGTC
CGCGCGCTCC CGTGCACAC GGTCTCGGTG TGGTAGCTGT TCCCCAACAC GATGTTGCC CAGACACAGG GGAAACCG

+1 R P E G V D G A W G P W T P W G D C S R T C G G S V
 TSP1 Motif

=====

1761 GCGCCCAGAG GGTGTGGAGC GAGCTGGGG GCGCTGGACT CCATGGGGG ACTGCAGCG GACCTGTGGC GCGGGCGGT
CGCGGGTCTC CCACACCTGC CTCGGACCCC CGGCACCTGA GGTAACCCCG TGACGTCGCC CTGGACACCG CGCGCACAC

+1 S S S S R H C D S P R P T I G G K Y C L G E R R R R H R
 TSP1 Motif

=====

1841 CCTCTCTAG CGTCACTGC GACAGCECCA GCCAACCAT CGGGGGCAAG TACTGTCTGG GTAGAGGAAG CGCGCACCG
GGAGAGATC GGCAGTGCAC CTGTCGGGT CGGGTTGGA GCCCCGCTTC ATGACAGACCC CACTCTCTC CGCGCTGCC

+1 S C N T D D C P P G S Q D F R E V Q C S E F D S I P F
 TSP1 Motif

=====

1921 TCCTGCAACA CGGATGACTG TCCCCCTGGC TCCCAAGACT TCAGAGRAAGT GCAGTGTCT GAAITTGACA GCATCCCTT
AGGACGTGT GCCTACTGAC AGGGGGACCG AGGGTCTGA AGTCTCTCA CGTCACAAAGA CTTAAACTGT CGTAGGGAAA

+1 R G K F Y T K W K T Y R G G G V V K A C S L T C L A E G
 2001 CGCTGGGGAAA TTCTACAAAGT GGAAACCTA CGGGGGAGGG GCGTGTAGGG CCTCTCGCT CACCTGCTA CGGGAGGCT
CGCCACCTT AAGATGTTCA CCTTTGCTA CGCCCTCTCC CGCCGACTTCC GGACGAGCGA GTGACGGAT CGCCCTGCC

+1 F N F Y T E R A A A V V D G T P C R P D T V D I C V S
 2081 TCAACTCTA CACGGAGAGG CGGGCAGCGC TGGTGGAGGG GACACCTGC CGTCCAGACA CGGTGGACAT TTGCGTCAGT
AGTTGAAGAT GTCCCTCTCC CGCCGTCGGC ACCACCTGCC CTGTCGGACCG AGACTGTGA GCAACCTGTA AACCGAGCTCA

+1 G E C K H V G C D R V L G S D L R E D K C R V C G G D
 2161 GGCGAATGCA AGCACGTGGG CTGCGACCGA TGCTGGGGT CCAGACCTGC GGAGGACAAG TCCCGACTGT GTGGCGGTGA
CCGCTTAGCT TCGTCGACCC GACGTGGCT CAGGACCGGA GCGTGGACGC CCTCTGTTC ACGGCTCACCA CACCGCCAC

+1 G S A C E T I E G V F S P A S P G A G Y E D V V W I
 2241 CGGCAGTGC TGCGAGACCA TCGAGGGCGT CTTCAGCCCA GCCTCACCTG GGGCGGGTA CGAGGATGTC GTCTGGATTC
GGCGTCACCG AGCCTCTGGT AGCTCCCGCA GAAGTGGGT CGGAGTGGAC CCCGGCCCAT GCTCTACAG CAGACCTAAC

+1 P K G S V H I F I Q D L N L S L S H L A L K G D Q E S
 2321 CCAAAGGCTC CGTCCACATC TTCTACAGG ATCTGAACCT CTCTCTCAGT CACTTGGCCC TGAAGGGAGA CCAGGAGTC
GGTTCCGAG CGAGTGTAG AAGTAGGTCC TAGACTGGA GAGAGAGTC GTGAAACGGG ACTTCCCTCT GGTCTCAGG

+1 L L E G L P G T P Q P H R L P L A G T T F Q L R Q G
 2401 CTGCTGCTGG AGGGGCTGCC CGGGACCCCC CAGCCCCACC GTCTGGCTCT AGCTGGACCC ACCTTCAAC TGCGACAGGG
GACGACGACC TCCCCGACGG CCCCTGGGG GTCGGGGTGG CAGACGGAGA TGACCCCTGG TGGAAAGTT ACGCTGTCCC

+1 P D Q V Q S L E A L G P I N A S L I V M V L A R T E
 2481 CGCAGACOAG GTCCAGAGCC TCGAAGCCCT GGGACCGATT AATGCACTTC TCATCGTCAT GGTGCTGGC CGGACCGAGC
CGGTCTGGTC CAGGCTCGG AGCTTCCGG A CCTGGCTAA TTACGTAGAG AGTAGCAGTA CCACGACCGG GCCTGGCTGC

 +1 L P A L R Y R F N A P I A R D S L P P Y S W H Y R P N
TSP1-like Motif

 2561 TGCCTGCCCT CCGCTACCGC TTCAATGCC CCATCGCCG TGACTCGCTG CCCCCCTACT CCTGGCACTA TSGCGCCCTCG
ACGGACGGGA GGCATGGC AAGTTACGGG GTAGCGGC ACTGAGCGAC GGGGGATGA GGACCGATGA ACGGGGAGC

 +1 T K C S A Q C A G G S Q V Q A V E C R N Q L D S S I V
TSP1-like Motif

 2641 ACCAAGTGT CGGCCCTAGTG TGCAGGGCGGT AGCCAGGTGC AGGCAGTGGGA GTGCCGCAAC CAGCTGGACA GCTCCGGCT
TGGTTCACGA GCGGGTCAAC CGTCCGGCA TCGGTCACG TCCGGCACCT CACGGCGTTG CTGACCTGT CGGGGGGG

 +1 A P H Y C S A H S K L P K R Q R A C N T E P C P P D
TSP1-like Motif

 2721 CGCCCCCAC TACTGCAGTG CCCACAGCAA GCTGCCAAAGGCGAGCGG CCTGCAACAC GGACCTGTG CCTCCAGACT
GCGGGGGGTG ATGACGTCAC GGGTGTGTT CGCGTGCACG GGACGGTTT TCCGTCGCGC GGACGTTGTG CCTCGAACG GGAGGTCG

 +1 W V V G N W S L C S R S C D A G V R S R S V V C Q R R
TSP1-like Motif

 2801 GGGTTGTAGG GAATGCTCG CTCTGCAGCC GCAGCTGGGA TCGAGGCCTG CGCAGCCGCT CGGTCTGTG CGAGCCCGCC
CCCAACATCC CTTGACCAGC GAGACGTCGG CGTGCACGCT ACGTCGCAC GCGTCGGCGA GCCAGCACAC GGTGCGCGCG

 +1 V S A A E E K A L D D S A C P Q P R P P V L E A C H G
TSP1-like Motif

 2881 CTCTCTGCCG CGGAGGAGAA GGCCTGGAC GACAGGGCAT GCCCCCAGCC GGGCCACCT GTACTGGAGG CCTGCCACCG
CAGAGACGGC GCTCCCTCTT CGCGGACCTG CTGTCGCGTA CGGGCGTCGG CGGGGGTGGA CATGACCTCC GGACGGTGC

 +1 P T C P P E W A A L D W S E C T P S C G P G L R H R
TSP1-like Motif

 2961 CCCCCACTGCA CCTCCGGAGT GGGCGGCCCT CGACTGCTT GAGTGCACCC CCAGCTGGGG GCGGGGCCCT CGCCACCGG
GGGTGAACG GGAGGCTCA CCCCGGGGA GCTGACAGA CTCACGTGGG GTGCGACGCC CGGCCCGGAG CGGTGGCGC

 +1 V V W L C K S A D H R A T L P P A H C S P A A K P P A T
TSP1-like Motif

 3041 TGGTCCTTG CAAGAGGCCA GACCACCGCG CCACGCTGCC CCCGGCCAC TGGTCAACCGG CGCCCAAGCC ACCGGCCAC
ACCAGGAAAC GTTCTCCGT CTGGTGGCGC GTGCGACCG GGGCCCGTGTG ACCAGTGGGC GGCGGTTGG TGGCJGSTGG

 +1 M R C N L R R C P P A R W V A G E W G E C S A Q C G V
TSP1-like Motif

 3121 ATGCGCTGCA ACTTGCGCG CTGCCCCCG GCGCGCTGGG TGGCTGGCA GTGGGGTGGAG TGCTCTGAC AGTGGGGGT
TACCGACGT TGAACGGGGC GACGGGGGC CGGGCACCC ACCGACCGCT CACCCCACTC ACGAGACGTG TCAAGCCGCA

+1 G Q R Q R S V R C T S H T G Q A S H E C T E A L P F
TSP1-like Motif

=====

3201 CGGGCAGGGG CAGGGCTCGG TGGCCTGCAC CAGCCACACG GGGCAGGGGT CGCACGAGTG CACGGAGGCC CTGGCGGCCG
SCCCGTCGCC GTCGCGAGCC AC CGCAGCTG GTCGGTGTC CGCGTCCGCA CGCTGCTCAC GTGCCTCCGG GAGGCGCG

+1 P T T T Q Q C E A K C D S P T P G D G P E E C K D Y N
TSP1-like Motif

=====

3281 CGACTACAC GCAGCAGTGT GAGGCCAAGT GGACAGCCC AACCCCGGGG GACGCCCTG AAGAGTGCAGA GGATGTGAC
GCTGATGGTG CGTCGTCACA CTCCGGTTCA CGCTGTCGGG TTGGGGGCCG CTGGCGGGAC TTCTCACGTT CCTTCACGTC

+1 K V A Y C P L V L K F Q F C S R A Y F R Q M C C F T C
3361 AAGGTCGCT ACTGCCCTC GGTGCTAAA TTCAGTTCT GAGGCCAGC CTACTCCGC CAGATGTGCT GCAAAACCTG
TTCAGCGGA TGACGGGGGA CCACCGAGTT AAAGTCAGA CGTCGGCTCG GATGAAGGGG GTCTACACGA CGTTTGGAC

+1 Q G H

3441 CCAGGGCCAC TAGGGGGCGC GCGGCACCCG GAGGCCACAGC TGGCGGGTC TCCGCCGCCA GCCCTGCAGC GGGCGCGCG
GGTCCCGGTG ATCCCCCGG CGCCGTTGGC CTCGGTGTCG ACCGCCCGAG AGGGGGGGT CGGGACGTCG CCCGGCCGGT

3521 GAGGGGGGCC CGGGGGGGGC GGGAACTGGG AGGGAGGGT GAGACGGAGC CGGAAGTTAT TTATGGAA CCCCTGCAGG
CTCCCCCGG GCCCCCCCCG CCCTTGTCCC TCCCTTCCC CTCTGCCTCG GCCTCAATA AATAACCCCTT GGGGACGTC

3601 GCCCTGGCTG GGAGGATCCA CCCAACCTC TGCCCTGCC GCCCCAGGGG CACCCGACA TCCAGGCCAC CCCCTCATGG
CGGGACCGAC CCTCTAGGT GGGGTTGGAG ACGGGACGGG CGGGGTCCC GTGGGGTGT AGGTCCGGTG GGGGASTAC

3681 TGCTACAGAC CCTGCCCTGG GGCCCACACA CTCCCTGCCAG GAAGCCCTAC ATCAATAAG TTCTGCTTG TGTAGATTG
ACGATGTCTG GGACGGGACC CGGGGTGTGT GAGGACGGTC CTTCGGGATG TAGTTATTC AAGRCAAAAC ACATCTAAAG

3761 TAAAAAAA AAAA
ATTTTTTTT TTTTT

Metalloproteinase Domain Alignment of ADAMTS-E v. ADAMTS Family

Figure 5. Expression of ADAMTS-E in cDNA from osteoarthritic cartilage.

Figure 6. Amino acid alignment of human ADAMTS-E with a GenScan prediction of ADAMTS-E from mouse genomic sequence.

hADAMTS-E	1 -----HASSGAERPGAAQEGG---DAAKAVNRGGGTGVAAGSRGWGETCGHVASMAPACQILRWALALG (1) XMCDSHSYSPPFVPLLLRVRNGQCLPHKVDVKGTSDAAQTVNRGGSTVGAASSRGWGETCGHVAPMASACQILRWALALG Consensus (1) G P G DAA VNRRGG TVGAA SRGWGETCGHVA MA ACQILRWALALG	20
mADAMTS-E	81 (62) LGLMFVEVTHAFRSQDEFLLSLESYEIAFPTRVDHNGALLAFLSFSSPPPRQRRTGATAESRLFYKVASPSTHFLNLTPSS (81) GLUTFKVTHAFRSODELLSLESYEIAFPTRVDHNGAMLAFLSPFAFRQRGRGATTESLRFYKVAPSTHFLNLTRP Consensus (81) LGL F VTHAFRSQDE LSSESLEYIAFPTRVDHNGA LAFSPP RRQRGG GAT ESRLFYKVA PSTHFLNLTPS	160
hADAMTS-E	161 (142) RLLAGHVSVEYWTREGLAWQRAARPHCLYAGHLQGQASTSHVAISTCGLLHGLIVADEEYIEPLHGGPKGSRSPEESG mADAMTS-E (161) RLLAGHVSVEYWTREGLAWQRAARAHCLYAGHLQGQAGSSHVAVSTCGGLHGLIVADEEYIEPLQGGPKGHRGPEESG Consensus (161) RLLAGHVSVEYWTREGLAWQRAAR HCLYAGHLQGQA SHVA STCGGLHGLIVAD EYIEPL GGPK R PEESG	240
hADAMTS-E	241 (222) PHVYVKRSSLRHPHLDTAGCVRDEPKWKGRPWVLTLKPPPAPLGNETERGQPGLKRSVSRERYVETLVADKMMVAYH mADAMTS-E (241) PHVYVKRSSLRHPHLDTAGCVRDEPKWKGRPWVLTLKPPPARELGNESERGQQLGKLRSVSRERYVETLVADKMMVAYH Consensus (241) PHVYVKRSSLRHPHLDTAGCVRDEPKWKGRPWVLTLKPPPAPLGNE ERGQ GLKRSVSRERYVETLVADKMMVAYH	320
hADAMTS-E	321 (302) GRDVQEYVVLAIMNIV-----AKLFQDSSLGISTVNILVTRLILLTEDOPTLEITHHAGKSLDSFCWKQKSIVVNS mADAMTS-E (321) GRDVQEYVVLAIMNITRSLLFLGGQVAKLFQDSSLGISTVNILVTRLILLTEDOPTLEITHHAGKSLDSFCWKQKSIVVNS Consensus (321) GRDVQEYVVLAIMNI AKLFQDSSLG VNILVTRLILLTEDOPTLEITHHAGKSLDSFCWKQKSIVVNS	400
hADAMTS-E	401 (372) GHGNAPIENGVANHDATAVLITYRDIC1YKNNPCGTGLGAPVGGMCERERSCSVNEDIGLATAFTIAHEIGHTFGMHNHDGV mADAMTS-E (401) GHGNAPIENGVANHDATAVLITYRDIC1YKNNPCGTGLGAPVGGMCERERSCSINEDIGLATAFTIAHEIGHTFGMHNHDGV Consensus (401) GHGNAPIENGVANHDATAVLITYRDIC1YKNNPCGTGLGAPVGGMCERERSCS NEDIGLATAFTIAHEIGHTFGMHNHDGV	480
hADAMTS-E	481 (452) GNSCGARGQDPAKLMAAHITMKTNFVWSSCSRDIYTSLFDSLGLCLNNRPPRQDFVYPTVAPGQAYDADEQCRFQHG mADAMTS-E (481) GNNGCARGQDPAKLMAAHITMKTNFVWSSCSRDIYTSLFDSLGLCLNNRPPRQDFVYPTVAPGQAYDADEQCRFQHG Consensus (481) GN CGARGQDPAKLMAAHITMKTNFVWSSCSRDIYTSLFDSLGLCLNNRPPRQDFVYPTVAPGQAYDADEQCRFQHG	560
hADAMTS-E	561 (532) KSRQCKYGEVCSELWCLSKSNRCITNSI PAAEGTLQCHTIDKGWCYKRVCPFGSPLPEGVGDANGFWTFGDSRCTGG mADAMTS-E (561) KSRQCKYGEVCSELWCLSKSNRCITNSI PAAEGTLQCHTIDKGWCYKRVCPFGSPLPEGVGDANGFWTFGDSRCTGG Consensus (561) KSRQCKYGEVCSELWCLSKSNRCITNSI PAAEGTLQCHTIDKGWCYKRVCPFGSPLPEGVGDANGFWTFGDSRCTGG	640
hADAMTS-E	641 (612) GVSSSSRHCDSPRPTIGGYKCLGERRRHRSCTNDCCPPGSQDFREVCQCEFDSDIPFRGKFYKWKTYRGGGVKACSLTCLA mADAMTS-E (641) GVSSSSRHCDSPRPTIGGYKCLGERRRHRSCTNDCCPPGSQDFREVCQCEFDSDIPFRGKFYWTKYRGGGVKACSLTCLA Consensus (641) GVSSSSRHCDSPRPTIGGYKCLGERRRHRSCTNDCCPPGSQDFREVCQCEFDSDIPFRGKFY WTQYRGGGVKACSLTCLA	720
hADAMTS-E	721 (692) EGFNFTTERAAA VV DGTPCRDTVDICVSGECKHVGCDRVLGSLDRDKECRVCGGDSACETIEGVFSPPASPGAGYDEVV mADAMTS-E (721) EGFNFTTERAAA VV DGTPCRDTVDICVSGECKHVGCDRVLGSLDRDKECRVCGGDSACETIEGVFSPPALPGTYDEVV Consensus (721) EGFNFTTERAAA VV DGTPCRDTVDICVSGECKHVGCDRVLGSLDRDKECRVCGGDSACETIEGVFSPPA PG GYDEVV	800
hADAMTS-E	801 (772) WIPKGSHVIFIQDLNLSLSSLHSLALKGDQESLLELGLPGTPQPHRPLLAGTTFOLRQGDQVQSLEALGPINASLIMVLLAR mADAMTS-E (801) WIPKGSHVIFIQDLNLSLSSLHSLALKGDQESLLELGLPGTPQPHRPLLAGTTFHLRQGDQVQSLEALGPINASLIMVLLAQ Consensus (801) WIPKGSHVIFIQDLNLSLSSLHSLALKGDQESLLELGLPGTPQPHRPLLAGTTF LRQGDQV QSLEALGPINASLIMVLLAQ	880
hADAMTS-E	881 (852) AELPALBYRFNAPIARDLPPYSWYAPWTKCSAQCAAGGSQVQAVECRNQLDSSAVAPHYCSAHSKLPKRQRACNTTECP mADAMTS-E (881) AELPALHYRFNAPIARDLPPYSWYAPWTKCSAQCAAGGSQVQVECRNQLDSSAVAPHYCSGHSKLPKRQRACNTTECP Consensus (881) ELPAL YRFNAPIARD LPPYSWYAPWTKCSAQCAAGGSQVQ VECRNQLDSSAVAPHYCS HSMLPKRQRACNTTECP	960
hADAMTS-E	961 (932) PDWWVGNWSLCSRSRCDAGVRSRSVVCQRRVSAEEKALDDSACPQPRPPVLEACHGPTCPPEWAALDWSECTPSCCPGLR mADAMTS-E (961) PDWWVGNWSRCSRSRCDAGVRSRSVVCQRRVSAEEKALDDSACPQPRPPVLEACCGPMPCEWEATLDWSECTPSCCPGLR Consensus (961) PDWWVGNWS CSRSRCDAGVRSRSVVCQRRVSAEEKALDDSACPQPRPPVLEAC GP CPPEWA LDWSECTPSCCPGLR	1040

RADAMTS-E (1012) HRVVVLCKSADHRATLPPAHCSPAAKPPATMRCNLRRCPPARWVAGEWGECSAQCGVGQQRORSVRCTSHTGQASRECTEAL
RADAMTS-E (1041) HRVVVLCKSADQRSTLPBGHCLPAAKPSTMRCNLRRCPPARWVSEWGECS---GLQQQORTVRCTSHTGQPSPRECTEAL
Consensus (1041) HRVVVLCKSAD R TLPP HC PAAKPP TMRCNLRRCPPARWV EWGEC G GQ QR VRCTSHTGQ S ECTEAL

1121

1180

RADAMTS-E (1092) RPPTTTQQCEAKCDSPTP-GDGPEECKDVNKVAYCPLVLKFQFCSRAYFRQMCCKTQGH
RADAMTS-E (1117) R-PSTMQQCEAKCDSVVPGDPEECKDVNKVAYCPLVLKFQFCSRAYFRQMCCKTQGR
Consensus (1121) R P T QQCEAKCDS P GDGPEECKDVNKVAYCPLVLKFQFCSRAYFRQMCCKTQG