

Public Key Certificates

Levente Buttyán
CrySyS Lab, BME
buttyan@crysys.hu

Distribution of public keys

- security requirements for public keys:
 - confidentiality is not needed (they are public, anyway)
 - authenticity (and integrity protection) is indispensable (why?)
- how to authenticate public keys?
 - physical meeting with key owner (out-of-band channel)
 - download public key and call the key owner to check its hash value via phone (out-of-band channel)
 - these solutions are not always practical and they don't scale
- a scalable approach for public key authentication is provided by public key certificates and related PKI mechanisms

Basic idea of certificates

 key owner name and public key are linked together by the digital signature of a trusted entity called certification authority (CA)

- in order to verify a certificate you need to have an authentic copy of the public key of the CA
- advantages: only the CA's public key need to be distributed via out-of-band channels (scales better)

Validity periods and revocation

- for security reasons, key-pairs shouldn't be valid forever
 - certificates have a scheduled validity period (valid_from, expires_on)
 - a certificate should not be accepted outside its validity period, but ...
 - an expired certificate can still be used to verify signatures on documents that were generated within the certificate's validity period
- if a private key is (suspected to be) compromised, then the corresponding certificate needs to be revoked immediately
 - revocation is requested (from the CA)
 - certificate (and key inside) is invalidated (by the CA)
 - revocation information is published (by the CA)
 - revocation status must be be checked (by any relying party) before using a certificate

Certificates illustrated

Certification Authority (CA)

- collection of hardware, software, and staff (people)
- main functions:
 - issues certificates for users or other CAs
 - maintains certificate revocation information
 - publishes currently valid certificates and certificate revocation lists (CRL)
 - maintains archives
- must comply with strict security requirements related to the protection and usage of its private keys (basis of trust)
 - uses tamper resistant Hardware Security Modules that enforce security policies (access and usage control)
 - defines and publishes its certificate issuing policies
 - complies with laws and regulations
 - is subject to regular control (by national supervising authority)

Certificate life cycle

- subscriber registers with the CA and requests a certificate
- CA validates information provided by the subscriber
 - subscriber authentication
 - public-key verification (if supplied by the subscriber)
- key-pair generation
 - possibly in the hardware (e.g., smart card) of the subscriber where the private key will be stored later
 - extreme care is required if the key-pair is generated on the CA's system and the private key needs to be transferred to the subscriber's system
- issuance of the certificate
 - certificate is signed by the CA and transferred to the subscriber
 - copies are placed in repositories and archives
 - event is logged in secure audit trail
- certificate is used
- certificate may be revoked if needed
- certificate expires

Private-key protection

- protection of private keys from unauthorized access is of paramount importance (especially those of the CA)
- the CA's private key is stored in a tamper resistant hardware module
 - detection of tamper events and active response (deletion of keys)
- the private key of the subscriber is typically stored in
 - a tamper resistant hardware token (e.g., smart card)
 - an encrypted file on regular data storage media (e.g., USB key)
- access to the private key needs to be protected via one or more authentication mechanisms
 - typically, passwords and PINs ...
 - » can be used directly in case of hardware tokens
 - » encryption keys can be derived from them in case of encrypted files
 - ... and also biometric checks

Hierarchical PKI

- CAs are typically organized into a hierarchy where the key of a subordinate CA is certified by another, higher level CA
- this can be modelled as a (directed) tree
 - nodes are CAs
 - edges are certificates
- in practice, there exist multiple trees with different roots
- some roots may crosscertifiy each other to connect their trees

Certificate chains

- every end-user must have an authentic copy of the public key of the root CA (obtained out-of-band)
- every end-user certificate can be verified by verifying a chain of certificates that
 - starts with the root CA's self-signed certificate
 - ends with the end-user certificate
 - contains certificates of intermediate CAs on the path from the root to the user

Certificate revocation

- sometimes certificates need to be revoked before their expiration time
 - detected or suspected key compromise
 - change of data contained by the certificate (e.g., name, e-mail)
- revoked certificates are usually put on a Certificate Revocation List (CRL) published by the CA
- when verifying a certificate, one needs to
 - verify the CA's signature on the certificate
 - check the CRL in order to make sure that the certificate is still valid (not revoked)
- if you verify a certificate chain, then revocation status must be checked for every certificate in the chain!

Control questions

- Why do we need public key certificates?
- What essential elements does a public key certificate contain?
- Why should certificates have an expiration date?
- What could be reasons for revoking a certificate before it expires?
- What is a CA? What are its functions? Why do we trust CAs?
- What are the steps of the certificate life cycle?
- How are private keys stored and protected?
- How a hierarchical PKI operates?
- What is a certificate chain? How is it verified?
- Why and how are certificates revoked?