PROBLEM 1

Given any convex $\mathcal{X} \neq \varnothing$, norm $\|\cdot\|$, and scalar $\epsilon \geq 0$, the following is convex:

$$\mathcal{X}_{\epsilon} := \{ x : \inf_{\overline{x} \in \mathcal{X}} \parallel x - \overline{x} \parallel \leq \epsilon \}$$

Proof. Consider $(x_1,x_2) \in \mathcal{X}_{\varepsilon} \times \mathcal{X}_{\varepsilon}$, with the definition of $\mathcal{X}_{\varepsilon}$, we know that

$$\inf_{\overline{x} \in \mathcal{X}} \| x_1 - \overline{x} \| \le \epsilon \tag{1}$$

$$\inf_{\overline{x} \in \mathcal{X}} \| x_1 - \overline{x} \| \le \epsilon$$

$$\inf_{\overline{x} \in \mathcal{X}} \| x_2 - \overline{x} \| \le \epsilon$$
(2)

and according to the definition of convex set, \mathcal{X}_{ϵ} is convex