Decaimiento del Higgs a dos fotones en VHDMM

```
Import["https://raw.githubusercontent.com/FeynCalc/feyncalc/master/install.m"];
    InstallFeynCalc[]
Out[*]= $Aborted
In[*]:=
    << FeynCalc`;</pre>
```

FeynCalc 9.2.0. For help, use the documentation center, check out the wiki or write to the mailing list.

See also the supplied examples. If you use FeynCalc in your research, please cite

- V. Shtabovenko, R. Mertig and F. Orellana,
 Comput. Phys. Commun., 207C, 432–444, 2016, arXiv:1601.01167
- R. Mertig, M. Böhm, and A. Denner, Comput. Phys. Commun., 64, 345–359, 1991.

Definiciones

```
Info]:= dm[mu ] := DiracMatrix[mu]
     dm[5] := DiracMatrix[5]
    ds[p_] := DiracSlash[p]
    mt[mu_, nu_] := MetricTensor[mu, nu]
     fv[p_, mu_] := FourVector[p, mu]
     epsilon[a_, b_, c_, d_] := LeviCivita[a, b, c, d]
     id[n_] := IdentityMatrix[n]
     sp[p_, q_] := ScalarProduct[p, q]
    li[mu_] := LorentzIndex[mu]
    prop[p_, m_] := ds[p] + m
    PR := (1 + dm[5]) / 2
    PL := (1 - dm[5]) / 2
     εA[p_, mu_] := PolarizationVector[p, mu]
    propz[p\_, mu\_, nu\_] := -I * \left( MetricTensor[mu, nu] - \frac{fv[p, mu] * fv[p, nu]}{MZ^2} \right) / \left( p^2 - MZ^2 \right)
    propw[p\_, mu\_, nu\_] := -I * \left( MetricTensor[mu, nu] - \frac{fv[p, mu] * fv[p, nu]}{MW^2} \right) / \left( p^2 - MW^2 \right)
    propW[p_{-}, mu_{-}, nu_{-}] := I * \left(-mt[mu, nu] + \frac{fv[p, mu] * fv[p, nu]}{MW^{2}}\right) *
        FeynAmpDenominator[PropagatorDenominator[p, MW]]
     propf[p_, Mf_] := i * prop[p, Mf] * FeynAmpDenominator[PropagatorDenominator[p, Mf]]
    propV[p_{nu}, nu_{nu}] := I * \left(-mt[mu, nu] + \frac{fv[p, mu] * fv[p, nu]}{MVC^{2}}\right) *
        FeynAmpDenominator[PropagatorDenominator[p, MVC]]
```

Feynman Rules

Feynman Rules

```
In[*]:= (*SM*)
                 (*HWW*)
               ΓΗWW[mu_, nu_] := i * g * MW * mt[mu, nu]
               \text{FAWW}[p1\_, p2\_, p3\_, mu\_, nu\_, rho\_] := -i * e * ((-fv[p1, rho] + fv[p2, rho]) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho]) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + fv[p2, rho])) * mt[mu, nu] + ((-fv[p1, rho] + 
                                  (-fv[p2, mu] + fv[p3, mu]) * mt[nu, rho] + (-fv[p3, nu] + fv[p1, nu]) * mt[mu, rho])
               \Gamma AAWW[mu_, nu_, rho_, sig_] := -i * e^2 *
                          (2 mt[mu, nu] * mt[rho, sig] - mt[mu, rho] * mt[nu, sig] - mt[mu, sig] * mt[nu, rho])
                 (*ffH*)
               rHff[Mf_{-}] = -i * \frac{e * Mf}{2 MW * sw};
                 (*Aff*)
               rAff[mu_{,}Q_{]} = -i * Q * e * dm[mu];
                 (*VHM*)
                 (*HVCVC*)(*ok*)
               \text{rHVCVC}[\text{mu}_{-}, \text{nu}_{-}] := -2 * \text{I} * \frac{\text{MW} * \text{sw} * \lambda 2}{\text{e}} \text{mt}[\text{mu}, \text{nu}]
                (*AVCVC*)
               FAVCVC[p1_, p2_, p3_, mu_, nu_, rho_] := -i * e * (fv[p2, rho] * mt[mu, nu] +
                                   (-fv[p2, mu] + fv[p3, mu]) * mt[nu, rho] + -fv[p3, nu] * mt[mu, rho])
                 (*AAWW*)
               \Gamma AAVCVC[mu_, nu_, rho_, sig_] := -i * e^2 *
                          (2 mt[mu, nu] * mt[rho, sig] - mt[mu, rho] * mt[nu, sig] - mt[mu, sig] * mt[nu, rho])
```

Restrictions

Restrictions

$$In[*]:=$$
 onshell = $\{sp[k1, k1] \rightarrow 0, sp[k2, k2] \rightarrow 0, sp[k1, k2] \rightarrow \frac{MH^2}{2}\};$
 $R = p - k1;$
 $q = p - k1 - k2;$

Amplitudes

Amplitudes

```
Inf * ]:= MW1 = 2 * Simplify[
                                                                                                                                                               Contract[rHWW[alpha, a].propW[p, a, beta].rAWW[-k1, p, -R, mu, beta, rho].
                                                                                                                                                                                                                              propW[R, rho, sig]. FAWW[-k2, R, -q, nu, sig, gamma].
                                                                                                                                                                                                                           propW[q, gamma, alpha]].eA[k1, mu].eA[k2, nu]];
                                                                               MW12 = FullSimplify[MW1 /. onshell];
                                                                               MW13 = Simplify[PaVeReduce[OneLoop[p, MW12]]];
                                                                               MW14 = Series[MW13, {sp[k1, k1], 0, 1}, {sp[k2, k2], 0, 1}];
         ln[@]:= MW15 = Normal[MW14] /. \{D \rightarrow 4\}
                                                                                                                                    3 \,\mathrm{MW}^3 \,\overline{\mathrm{kl}}^2
                                                                                                                                                                         i\ g\ \pi^2\left(\overline{k1}\cdot\overline{k2}\right)\left(2\left(\overline{k1}\cdot\overline{\epsilon}(k1)\right)\left(\overline{k2}\cdot\overline{\epsilon}(k2)\right)A_0\left(MW^2\right)-2\ MW^2\left(\overline{k1}\cdot\overline{\epsilon}(k1)\right)\left(\overline{k2}\cdot\overline{\epsilon}(k2)\right)B_0\left(0,\ MW^2,\ MW^2\right)\right)e^2-4e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{k1}\cdot\overline{k2}\right)e^2\left(\overline{
                                                                                                                                              \frac{i\,g\,\pi^2\,\cdots\,1\,\cdots\,\left(\cdots\,1\,\cdots\right)\,e^2}{3\,\mathsf{MW}^3\,\cdots\,1\,\cdots\,^2} + \cdots\,1\,\cdots\, + \,\frac{\cdots\,1\,\cdots}{96\,\cdots\,1\,\cdots} + \,\overline{\mathsf{kl}}^2
Out[ • ]=
                                                                                                                                                                                            \frac{1}{6\,\text{MW}^3\,\overline{\text{k2}^2}}i\,g\,\pi^2\left(2\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k1})\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)-2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\cdots\,1\cdots\right)B_0\left(0,\,\text{MW}^2,\,\text{MW}^2\right)\right)e^2+\frac{1}{6\,\text{MW}^3\,\overline{\text{k2}^2}}i\,g\,\pi^2\left(2\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k1})\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)-2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\cdots\,1\cdots\right)B_0\left(0,\,\text{MW}^2,\,\text{MW}^2\right)\right)e^2+\frac{1}{6\,\text{MW}^3\,\overline{\text{k2}^2}}i\,g\,\pi^2\left(2\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k1})\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)-2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\cdots\,1\cdots\right)B_0\left(0,\,\text{MW}^2,\,\text{MW}^2\right)\right)e^2+\frac{1}{6\,\text{MW}^3\,\overline{\text{k2}^2}}i\,g\,\pi^2\left(2\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k1})\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)-2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)\left(\overline{\text{k2}}\cdot\overline{\epsilon}(\text{k2})\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\text{MW}^2\right)+2\,\text{MW}^2\left(\cdots\,1\cdots\right)A_0\left(\cdots\,1\cdots\right)A
                                                                                                               large output
                                                                                                                                                                                                                                                                                                           show less
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            show more
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           show all
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     set size limit...
```