Sea lER, diremos que l= lim f(2) si

Yε>0, 3&>0 tal ge 15(2)-1/<ε si 0<12-201<δε

Es decir:

L= $\lim_{x\to x_0} f(x)$ \iff Los valores de f(x) se preden $\lim_{x\to x_0} f(x)$ \iff accercar a l tambo como opreramos sin mis que tomar la x suficiente mente cerca de x_0 (pero con $x \neq x_0$)

Observaciónes:

- (1) El valor de f en 2=20 NO mega ningún papol a la hora de calcular el límite. En particular, 20 no recesita perterecer al dominio de S.
- (2) Los valores de x alejados de xo tampoco juegan nimon papel a la hora de calcular un limite.

Este hecho invita a definir los cimites LATERALES

LATTERAL $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l_| / E$ LATTERAL $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l_| / E$ DERECHA $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l_| / E$ Si $x_0 < x < x_0 < x < x_0 < x_0$

Teorema
$$l = \lim_{x \to x_0} f(x) \iff \lim_{x \to x_0^+} f(x) = l = \lim_{x \to x_0^+} f(x)$$

Obs: En la práctica, casi núnca calcularemos los límites usando la definición

Obs: Propiedades de los limites:

Si
$$l_{\Lambda} = \lim_{X \to X_0} f_{\Lambda}(x)$$

 $l_2 = \lim_{X \to X_0} f_2(x)$

$$\Rightarrow \quad \text{lim} \left(f_1(x) \pm f_2(x) \right) = l_1 \pm l_2$$

.
$$\lim_{X\to X_0} \frac{f_1(x)}{f_2(x)} = \frac{l_1}{l_2}$$
 (si $l_2 \neq 0$)

· him
$$(f_{\Lambda}(x))^{f_{\Sigma}(x)} = l_{\Lambda}^{l_{\Sigma}} (si l_{\Lambda} y l_{\Sigma} + 0)$$

$$\lim_{X\to\infty} \log \left(f(x) \right) = \log l_{\Lambda}$$

$$\left(si \, l_{\Lambda} > 0 \right)$$

Obs: Si f: D-> R (on D= (21,22) o [21,22] o (21,22] o [21,22] o [2

$$l_{\lambda} = \lim_{X \to X_{\Lambda}} f(x) \iff l_{\lambda} = \lim_{X \to X_{\Lambda}} f(x)$$

$$l_{2} = \lim_{X \to X_{2}} f(x) \iff l_{2} = \lim_{X \to X_{2}} f(x)$$

Es decir, si el dominio es un intervalo (cerrado o no), el limite en los extremos del intervalo se defino a través de los limites laterales. Si ∞ es un punto avalquiera del dominio de f podemos comporour el valor de $f(x_0)$ con el valor, si existe, de $\lim_{x\to x_0} f(x)$.

Def: Función continua en 20 Sea 20 E Dominio (f). f es rontinua en 20 \Leftrightarrow him $f(z) = f(z_0)$ $f \approx f(z_0) = f(z_0)$

Def: Función continua:

Diremes que f es continua

para todo x de su dominio

Examples: f(x) = Lx)
es continua en $x_0 \iff x_0 \neq 0, \pm 1, \pm 2, ...$ • f(x) = x es una función continua

• $f(x) = \begin{cases} 1 & \text{si } x \text{ racional} \\ -1 & \text{si } x \text{ imacional} \end{cases}$ no es continua en ningún punto

TEOREMA: PUNCIONES CONTINUAS EN INTERVALOS

CERRADOS y ACOTADOS

Sea f: [x1, x2] -> PR ma función continua

(es decir, f(z) es continua +x en el intervalo

comado y acotado [x1, 2])

Entonces Im(f) = [m, M] = intervalo

corrado y acotado

Corolario: Si f: [x1,1x2] $\rightarrow \mathbb{R}$ es continua, entonces $\exists x_M \in [x_1, x_2)$ tal qe $f(x_M) \ge f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tal qe $f(x_M) \le f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tal qe $f(x_M) \le f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tales qe $f(x_M) = m$ $f(x_M) = M$ $\Rightarrow m = f(x_M) \le f(x_M) = M$

=> $m = f(x_m) \le f(x) \in f(x_m) = M$ $\forall x \in Cx_1, x_2 J$.

Cordanio: $f: \Gamma z_1, z_2) \rightarrow \mathbb{R}$ es antinua; $f(z_1) < 0 \ & f(z_2) > 0$; $\Rightarrow \exists z_0 \in (z_1, z_2) \ \text{tail} \ qe \ f(z_0) = 0$

Dem: $Im(f) = [m_1M]$ $m \le f(x_A) < 0 < f(x_B) \le M$ $\Rightarrow m < 0 < M \Rightarrow 0 \in [m_1M] = Im(f)$ Por tanks, prests ge $0 \in Im(f)$: $\exists x_0 \in D$ tal ge $f(x_0) = 0$.