# التمثيل المبياني لدالة

### 1- تقعر منحنى دالة -- نقطة انعطاف

### 1-1 <u>تعریف</u>

L لتكن f قابـلة للاشـتــــقاق على مجال انتكن مابـلة للاشـتـــقاق على مجال انتامنحنى  $(C_f$  محدب إذا كان يوجد فوق جميع مماسـاته

نقول إن المنحنى  $(C_f)$  مقعر إذا كان يوجد تحت  $(C_f)$ 





مقعر

. . . . . . . . . . . . .

لتكن f دالة عددية قابلة للاشــــقاق على مجال مفتوح I و  $x_0 \in I$  مجال مفتوح

نقول ان النقطة  $Aig(x_0;fig(x_0ig)ig)$  نقطة انعطاف

 $\left(C_f
ight)$  للمنحنى اذا تغير تقعر المنحنى للمنحنى

A عند



### 3-1 خــاصيات

 $\operatorname{I}$  دالة قابلة الاشتــــقاق مرتين على مجال f

 $^{ullet}$ ا انت" f موجبة على الانا الان $\left(C_{f}
ight)$  يكون محدبا على  $^{*}$ 

I يكون مقعرا على  $\left(C_{f}\right)$  فان  $\left(C_{f}\right)$  يكون مقعرا على \*

 $egin{aligned} \left[x_{0},x_{0}+lpha
ight] & (x_{0},x_{0}+lpha) & (x_{0},x_{0}+lpha) \end{aligned}$  اذا کانت " f تنعدم في  $x_{0}$  من الــمجال I وکان يـوجد  $x_{0}$  بحيث إشارة "  $x_{0}$  مخالـفة لإشارة "  $x_{0}$  على  $x_{0}$  فان  $x_{0}$  فان  $x_{0}$  فان  $x_{0}$  نقـطة انعطاف للمنحنى  $x_{0}$  نقـطة انعطاف للمنحنى المنحنى  $x_{0}$ 

 $oldsymbol{\mathsf{a}}$  ملاحظ في قد لا تكون الدالة f قابلة للاشتقاق مرتين ويكون مع ذلك لمبيانها نقطة انعطاف

$$g(x) = \frac{1-2x}{x^2-x-2}$$
 و  $f(x) = x^3 - 3x^2 + x + 1$  تمرین

 $C_f$  أدرس تقعر  $C_f$  و استنتج أن النقطة A ذات الأفصول 1 نقطة انعطاف للمنحنى -1

 $C_g$  و حدد نقط انعطاف المنحنى -2

2- الفروع اللانهائية

2-1 <u>تعريف</u>

إذا آلت إحدى إحداثـــيتي نقـطة من C منحنى دالة إلى اللانهاية فإننا نقول إن C يقبل فرعا لانهائيا.

تعريف

$$C_{\mathrm{f}}$$
 إذا كان  $x=a$  أو  $x=a$  أو  $\lim_{x \to a^{-}} f\left(x\right) = \pm \infty$  فان المستقيم الذي معادلته



$$f(x) = \frac{2x+1}{x-1}$$
 مثال

لدينا x=1 و منه المستقيم ذا المعادلة x=1 مقارب عمودي للمنحنى  $\lim_{x\to 1^-} f(x) = -\infty$  و منه المستقيم ذا المعادلة  $\int_{x\to 1^+}^{+} f(x) = -\infty$ 

ب- المقارب الموازي لمحور الأفاصيل

تعريف

ردا كان 
$$\int \lim_{x \to \pm \infty} f(x) = b$$
 فان المستقيم ذا المعادلة واب ل





$$f(x) = \frac{2x+1}{x-1}$$
 مثال

$$\lim_{x \to -\infty} f(x) = 2$$
 و  $\lim_{x \to +\infty} f(x) = 2$  لدينا

و منه المستقيم ذا المعادلة 
$$y=2\,$$
 مقارب  
أفقي للمنحنى



 $\lim_{x \to a} (f(x) - (ax + b)) = 0$  إذا وفقط إذا كان (f(x) - (ax + b)) = 0 إذا وفقط إذا كان (f(x) - (ax + b)) = 0

$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$$
 أو

يكون المستقيم الذي معادلته y = ax + b مقارب للمنحنى  $C_f$  إذا وفقط إذا كانت توجد دالة y = ax + b $(\lim_{x\to -\infty} h(x) = 0)$   $\lim_{x\to +\infty} h(x) = 0$ )  $\int_{\infty} f(x) = ax + b + h(x)$ 

مثال

$$f(x) = \frac{x^2 - 3x + 1}{x - 1}$$
 
$$\forall x \in \mathbb{R} - \{1\} \qquad f(x) = x - 2 - \frac{1}{x - 1}$$
 لدينا

(+
$$\infty$$
 بجوار) مقارب مائل للمنحنى  $y=x-2$  مقارب مائل للمنحنى  $\lim_{x\to +\infty} \frac{-1}{x-1}=0$ 

$$(-\infty$$
 رجوار مائل للمنحنى ا $\lim_{x\to -\infty} \frac{-1}{x-1} = 0$  ومنه المستقيم ذا المعادلة  $y=x-2$ 

 $\lim_{x\to +\infty} h(x)=0$  حيث f(x)=ax+b+h(x) حيث على شكل في كثير من الأحيان يصعب كتابة على شكل

$$\lim_{x\to +\infty} h(x) = 0$$
 و  $f(x) = ax + b + h(x)$  لنفترض أن

$$\lim_{x \to +\infty} \left( f(x) - ax \right) = \lim_{x \to +\infty} \left( b + h(x) \right) = b \quad \text{im} \quad \frac{f(x)}{x} = \lim_{x \to +\infty} \left( a + \frac{b}{x} + \frac{1}{x} h(x) \right) = a$$

$$\lim_{x\to +\infty}(f(x)-(ax+b))=0 \text{ فأن } \left(\lim_{x\to +\infty}\left(f\left(x\right)-ax\right)=b \text{ ; } \lim_{x\to +\infty}\frac{f\left(x\right)}{x}=a\right)$$
 فكسيا إذا كان  $\left(\lim_{x\to +\infty}\left(f\left(x\right)-ax\right)=b\right)$ 

يكون المستقيم ذو المعادلة y=ax+b مقارب لمنحنى  $C_{\mathrm{f}}$  إذا وفقط إذا كان

$$\left(\lim_{x\to-\infty} \left(f(x)-ax\right)=b \quad ; \quad \lim_{x\to-\infty} \frac{f(x)}{x}=a\right) \quad \text{if} \quad \left(\lim_{x\to+\infty} \left(f(x)-ax\right)=b \quad ; \quad \lim_{x\to+\infty} \frac{f(x)}{x}=a\right)$$





ملاحظة دراسة إشارة ((f(x) - (ax + b))) تمكننا من معرفة وضع المنحنى ((f(x) - (ax + b)) بالنسبة للمقارب المائل.

$$f(x) = \sqrt{4x^2 + x - 2}$$

 $-\infty$  حدد المقارب المائل بجوار  $\infty+$  ثم بجوار

# 2- 3- الاتجاهات المقاربة

نقول إن 
$$(C_f)$$
 يقبل فرعا شلجميا في اتجاه محور  $\lim_{x \to \pm \infty} \frac{f\left(x\right)}{x} = \pm \infty$  يقبل فرعا شلجميا في اتجاه محور الأراتيب.

ب - إذا كان 
$$(C_f)$$
 يقبل فرعا شلجميا في اتجاه محور  $\lim_{x \to \pm \infty} \frac{f(x)}{x} = 0$   $\lim_{x \to \pm \infty} f(x) = \pm \infty$  باذا كان  $(C_f)$  يقبل فرعا شلجميا في اتجاه محور

الافاصيل

ج - إذا كان 
$$(C_f)$$
 يقبل فرعا شلجميا و  $\lim_{x \to \pm \infty} f(x) - ax = \pm \infty$  و  $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a$  يقبل فرعا شلجميا

في اتجاه المستقيم ذا المعادلة y= ax

إذا كان 
$$(C_f)$$
 يقبل المستقيم ذا المعادلة  $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a$  يقبل المستقيم ذا المعادلة

y= ax كاتجاه مقارب.

# 3 - <u>مركز ثماثل – محور</u> تماثل

# 3- 1 محور تماثل

اذا كان  $(C_f)$  يقبل المستقيم الذي معادلته x=a كمحور تماثل

 $\Omega(a;0)$  فهذا يعنى أن معادلة  $\left(C_f
ight)$  في المعلم  $\left(\Omega;ec{i}\,;ec{j}
ight)$  حيث

$$\left\{egin{aligned} X=x-a \ Y=y \end{aligned}
ight.$$
 هي على شكل  $Y=f\left(a+X\right)=arphi(X)$  حيث  $arphi$  دالة زوجية و

$$\forall X \in D_{\varphi}$$
  $\varphi(-X) = \varphi(X)$  أي أن

$$\forall X \in D_{\varphi}$$
  $f(a-X) = f(a+X)$  أي

$$\forall x \in D_f$$
  $f(2a-x)=f(x)$  فان  $X=x-a$  بما أن



f(a+x)

f(a-x)

في معلم متعامد , يكون المستقيم الذي معادلته x=a محور تماثل لمنحنى دالة  $\overline{f}$  إذا وفقط إذا كان  $\forall x \in D_f \quad (2a-x) \in D_f$ f(2a-x)=f(x)

# 2-3 مركز تماثل

اذا كان  $(C_f)$  يقبل النقطة النقطة ( $(C_f)$  كمركز

 $\left(\Omega;ec{i}\,;ec{j}
ight)$  فهذا يعنى أن معادلة  $\left(C_{f}
ight)$  في المعلم

$$Y + b = f(a + X)$$
هي على شـكل

$$Y = f(a+X) - b = \varphi(X)$$
 أي

$$\begin{cases} X = x - a \\ Y = y - b \end{cases}$$
 حيث  $\varphi$  دالة فردية و

$$\forall X \in D_{\varphi}$$
  $\varphi(-X) = -\varphi(X)$  أي أن

$$\forall X \in D_{\varphi}$$
  $f(a-X)-b=-f(a+X)+b$  أي

$$\forall X \in D_{\varphi}$$
  $f(a-X) = 2b - f(a+X)$  أي

$$\forall x \in D_x$$
  $f(2a-x) = 2b-f(x)$  فان  $X = x-a$ 

$$\forall x \in D_f$$
  $f(2a-x) = 2b - f(x)$  فان  $X = x - a$  بما أن



في معلم ما,تكون النقطة 
$$\Omegaig(a;big)$$
 مركز تماثل لدالة  $f$  إذا وفقط إذا كان

$$\forall x \in D_f$$
  $(2a-x) \in D_f$  ;  $f(2a-x) = 2b - f(x)$ 

تمرين



a+x

$$\left(C_{f}\right)$$
 بين أن المستقيم  $\left(D\right)$ :  $x=1$  محور تماثل للمنحنى  $f\left(x\right)=\sqrt{x^{2}-2x+3}$  (1

$$(C_f)$$
 بين أن النقطة  $\Omega(1;2)$  مركز تماثل للمنحنى  $f(x) = \frac{x^2 - 2}{x - 1}$  (2

نقول أن f دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث

$$\forall x \in D_f \qquad x + T \in D_f \; ; \quad x - T \in D_f \qquad f(x + T) = f(x)$$

العدد T يسمى دور الدالة f .اصغر دور موجب قطعا يسمى دور الدالةf

 $2\pi$  الدالتان  $x \to \sin x$  و  $x \to \cos x$  دوريتان و دورهما \*

$$\pi$$
 الدالة  $x \to \tan x$  دورية دورها \*

$$\frac{2\pi}{|a|}$$
 الدالتان  $x o \cos ax$  و  $x o \cos ax$  (حیث  $x o \cos ax$  الدالتان \*

$$\frac{\pi}{|a|}$$
 الدالة  $x o an ax$  ) دورية دورها \*

 $x \to \cos^2 x$  و  $x \to \tan 3x$  و  $x \to 3 - \cos \frac{1}{4}x$  و  $x \to \cos x - \sin x$  حدد دورا للدوال

$$\forall x \in D_f, \forall n \in \mathbb{Z}$$
  $f(x+nT) = f(x)$ 

إذا كانت للدالة f دور T فان

(نبين الخاصية بالاستدلال بالترجع)

3-4 التمثيل المبياني لدالة دورية

 $\left(O; \vec{i}\;; \vec{j}\;\right)$  منحناها في مستوى منسوب ال $\left(C_f\right)$  و T دورية دورها f



منحنى الـدالة f على  $D_f \cap [x_0,x_0+T]$  هـو صورة منحنى الدالة على  $D_f \cap [x_0+nT;x_0+(n+1)T]$  بواسطة الإزاحة دات المتجهة  $\vec{n}T\cdot \vec{i}$  حيث n خدد صحيح نسـبي. ملاحظة:

 $I_0 = D_f \cap \left[ x_0, x_0 + T \right]$  لإنشاء منحنى دالة دورية يكفي إنشائه جزئه على مجال من نوع

 $t_{T_{n\bar{i}}}$  استنتاج المنحنى باستعمال الإزاحة

### أمثلة

 $]-\pi;\pi]$  دورية ودورها  $2\pi$  إذن يكفي دراستها على  $x o\cos x$  دالة \*  $[0;\pi]$  وحيث أن  $x o \cos x$  زوجية فنقتصر دراستها على

$$\forall x \in [0; \pi] \quad (\cos x)' = -\sin x$$

جدول التغيرات

| Ī | х     | 0 | $\pi$ |
|---|-------|---|-------|
|   | cos x | 1 | -1    |



 $\left[ -\pi ;\pi 
ight]$  دورية ودورها  $2\pi$  إذن يكفي دراستها على  $x o \sin x$  دالة  $x o \sin x$  و حيث أن  $x o \sin x$  فردية فنقتصر دراستها على  $x o \sin x$  و حيث أن  $x o \sin x$ 

جدول التغيرات

| x     | $0 \qquad \qquad \frac{\pi}{2}$ | $\pi$ |
|-------|---------------------------------|-------|
| sin x | 0                               | 0     |



 $\left[\frac{-\pi}{2};\frac{\pi}{2}\right]$  و دوریة ودورها  $\pi$  إذن یکفي دراستها علی  $\mathbb{R}-\left\{\frac{\pi}{2}+k\pi/k\in\mathbb{Z}\right\}$  علی  $x o \tan x$  دالة  $x o \tan x$  دالة  $x o \tan x$  فردیة زوجیة فنقتصر دراستها علی  $x o \tan x$  فردیة زوجیة فنقتصر دراستها علی  $x o \tan x$ 

$$\forall x \in \left[0; \frac{\pi}{2}\right] \quad (\tan x)' = 1 + \tan^2 x$$



|       | جدول التغيرات   |
|-------|-----------------|
| x     | $\frac{\pi}{2}$ |
| tan x | +8              |
|       | 0 —             |

تصميم دراسة دالة

لدراسة دالة f في غالب الأحيان نتبع الخطوات التالية f

- تحديد مجموعة التعريف ثم تحديد مجموعة الدراسة (خاصة إذا كانت f زوجية أو فردية أو دورية)
  - دراسة الاتصال و الاشتقاق و تحديد الدالة الاشتقاق و دراسة إشارتها
    - وضع جدول التغيرات
    - دراسة الفروع الانهائية
    - دراسة التقعر ان كان ذلك ضروريا و تحديد نقط انعطاف إن وجدت
      - انشاء المنحني

تمرين أدرس ومثل مبيانيا الدالة f في الحالات التالية للم

$$c): f(x) = \cos x + \frac{1}{2}\cos 2x$$

$$(b): f(x) = \frac{2|x|}{x^2 + 1}$$

b): 
$$f(x) = \frac{2|x|}{x^2 + 1}$$
 a):  $f(x) = x - 3 + \frac{1}{x - 2}$ 

### تمارين و حلولها

### تمرین1

$$f(x) = x - 1 + \frac{1}{x - 2}$$
 :نعتبر الحقيقي المعرفة بيا الدالة العددية للمتغير الحقيقي المعرفة ب

 $\left(O;ec{i}\,;ec{j}
ight)$  منحنى الدالة f في مستوى منسوب إلى معلم متعامد ممنظم  $\left(C_{f}
ight)$ 

 $D_f$  أ) حدد -1

$$\lim_{x \to -\infty} f(x)$$
 و  $\lim_{x \to +\infty} f(x)$  ب) حدد

ج) حدد 
$$\lim_{x \to 2^-} f(x)$$
 و أول النتيجتين هندسيا

$$\forall x \in D_f$$
  $f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$  نبین أن -2

ب) أدرس تغيرات f و أعط جدول تغيراتها f

0 عند النقطة ذات الأفصول  $(C_f)$  عند النقطة ذات الأفصول -3

$$\left(C_{f}
ight)$$
 مركز تماثل للمنحنى  $Aig(2;1ig)$  مركز ماثل النقطة

 $-\infty$  و  $+\infty$  بجوار  $C_f$  بجوار y=x-1 مقارب مائل للمنحنى  $(C_f)$  بجوار y=x-1

 $(C_f)$  انشئ -6

# الجواب

$$f(x) = x - 1 + \frac{1}{x - 2}$$

 $D_f$  أ) نحدد

$$D_f = \mathbb{R} - \{2\}$$

$$\lim_{x \to -\infty} f(x)$$
 و  $\lim_{x \to +\infty} f(x)$  نحدد

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x - 1 + \frac{1}{x - 2} = -\infty \quad \text{in} \quad f(x) = \lim_{x \to +\infty} x - 1 + \frac{1}{x - 2} = +\infty$$

ج) حدد 
$$\lim_{x \to 2^-} f(x)$$
 و أول النتيجتين هندسيا (ج

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} x - 1 + \frac{1}{x - 2} = -\infty \quad \text{im} \quad f(x) = \lim_{x \to 2^{+}} x - 1 + \frac{1}{x - 2} = +\infty$$

 $(C_f)$  ومنه المستقيم ذا المعادلة x=2 مقارب عمودي للمنحنى

$$\forall x \in D_f$$
  $f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$  نبین أن -2

$$\forall x \in \mathbb{R} - \{2\} \qquad f(x) = x - 1 + \frac{1}{x - 2}$$

دالة قابلة للاشتقاق في كل نقطة من  $\{2\}$  دالة قابلة للاشتقاق وي كل نقطة من f

$$\forall x \in \mathbb{R} - \{2\}$$
  $f'(x) = 1 - \frac{1}{(x-2)^2} = \frac{(x-2)^2 - 1}{(x-2)^2} = \frac{(x-3)(x-1)}{(x-2)^2}$ 

ب) ندرس تغیرات f و نعطی جدول تغیراتها

(x-3)(x-1) هي إشارة f'(x) هي إشارة

| x     | $-\infty$ | 1                        |   | 2    |   | 3   |   | $+\infty$   |
|-------|-----------|--------------------------|---|------|---|-----|---|-------------|
| f'(x) | +         | 0                        | - |      | - | 0   | + |             |
| f     | 8         | <b>→</b> <sup>-1</sup> \ |   | +∞ / |   | , 3 |   | <b>→</b> +∞ |

0- نحدد معادلة المماس للمنحنى  $\left(C_f
ight)$  عند النقطة ذات الأفصول 3

y=f'(0)x+f(0) معادلة المماس للمنحنى  $C_f$  عند النقطة ذات الأفصول 0 هي

$$y = -\frac{3}{4}x - \frac{3}{2}$$
 أي هي

 $\left(C_f
ight)$  مركز تماثل للمنحنى  $A\left(2;1
ight)$  -4

$$\forall x \in \mathbb{R} - \{2\} \qquad 4 - x \in \mathbb{R} - \{2\}$$

$$2-f(x)=2-x+1-\frac{1}{x-2}=3-x+\frac{1}{2-x}$$
;  $f(4-x)=3-x+\frac{1}{2-x}$ 

$$\left(C_{f}\right)$$
 ومنه  $A\left(2;1\right)$  اذن  $f\left(4-x\right)=2-f\left(x\right)$  ومنه

 $-\infty$  و $+\infty$  بجوار  $(C_f)$  بجوار مائل للمنحنى y=x-1 مقارب مائل المنحنى -5

$$\lim_{x \to -\infty} f(x) - (x-1) = \lim_{x \to -\infty} \frac{1}{x-2} = 0 \quad ; \quad \lim_{x \to +\infty} f(x) - (x-1) = \lim_{x \to +\infty} \frac{1}{x-2} = 0$$

 $-\infty$  و  $+\infty$  بجوار  $C_f$  بجوار مائل للمنحنى y=x-1 إذن المستقيم ذا المعادلة

 $\left(C_f
ight)$  ننشئ -6



# تمرین2

$$f(x) = 1 + \frac{1 - 2x}{x^2 - x - 2}$$

نعتبر الدالة العدية  $\,f\,$  للمتغير الحقيقي المعرفة بـ

 $D_f$  פ حدد نهایات f عند محدات -1

$$D_f$$
 من  $x$  لكل  $f'(x)$  من  $-2$   $f$  أدرس تغيرات  $-3$ 

$$f$$
 أدرس تغيرات  $^{-3}$ 

. كنقطة انعطاف، ا
$$I\left(rac{1}{2};1
ight)$$
 كنقطة انعطاف. -4

$$C_f$$
 بين أن  $I\!\left(rac{1}{2};1
ight)$  مركز تماثل لـ

I عند النقطة  $C_f$  عند النقطة -د-

5- أ- أدرس الفروع اللانهائية 
$$C_f$$
 بنشئ المنحنى  $C_f$ 

$$C_f$$
 بأنشئ المنحنى - أنشئ

# <u>الجواب</u>

$$f(x) = 1 + \frac{1 - 2x}{x^2 - x - 2}$$

 $D_f$  نحدد f و نحدد نهایات  $D_f$  عند محدات -2  $x \in \mathring{\mathbb{R}}$  ليكن

$$x\in D_f \Leftrightarrow x^2-x-2\neq 0 \Leftrightarrow x\neq -1$$
 et  $x\neq 2$  
$$D_f=\left]-\infty;-1\right[\cup\left]-1;1\right[\cup\left]1;+\infty\right[$$
 إذن

$$\lim_{x \mapsto \pm \infty} \frac{1 - 2x}{x^2 - x - 2} = \lim_{x \mapsto \pm \infty} \frac{-2x}{x^2} = \lim_{x \mapsto \pm \infty} \frac{-2}{x} = 0 \text{ if } \lim_{x \mapsto \pm \infty} f(x) = \lim_{x \mapsto \pm \infty} 1 + \frac{1 - 2x}{x^2 - x - 2} = 1$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x^2 - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \mapsto 2} 1 - 2x = -3 \qquad \lim_{x \mapsto 2} x - x - 2 = 0$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = +\infty \quad 9 \quad \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 - 2x = 3 \qquad \lim_{x \to -1^{+}} x^{2} - x - 2 = 0 \quad \text{loo}$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = +\infty \quad 9 \quad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x \to -1^{-}} 1 + \frac{1 - 2x}{x^{2} - x - 2} = -\infty \quad \text{aloo}$$

$$\lim_{x$$

| _ |                            |      |     | بعدوت تعديرات ر |
|---|----------------------------|------|-----|-----------------|
|   | $\boldsymbol{\mathcal{X}}$ | -∞ - | 1 2 | <u>2</u> +∞     |
|   | f'(x)                      | +    | +   | +               |
|   | f                          | 1 +∞ |     | -∞1             |
|   |                            |      |     | <u> </u>        |

. كنقطة انعطاف.  $I\left(rac{1}{2};1
ight)$  كنقطة انعطاف. -4



$$\forall x \in D_f$$
  $f''(x) = \dfrac{-2(2x-1)\left(x^2-x+7\right)}{\left(x^2-x-2\right)^3}$  في المعلق  $I\left(\frac{1}{2};1\right)$  كنقطة انعطاف  $I\left(\frac{1}{2};1\right)$  كنقطة انعطاف  $I\left(\frac{1}{2};1\right)$  كنقطة انعطاف  $I\left(\frac{1}{2};1\right)$  مركز تماثل ل $I\left(\frac{1}{2};1\right)$  عند النقطة  $I\left(\frac{1}{2};1\right)$  عند النقطة  $I\left(\frac{1}{2};1\right)$  عند النقطة  $I\left(\frac{1}{2};1\right)$  مركز تماثل ل $I\left(\frac{1}{2};1\right)$  مركز تماثل ل $I\left(\frac{1}{2};1\right)$  مركز تماثل المماس ل $I\left(\frac{1}{2};1\right)$  عند النقطة  $I\left(\frac{1}{2};1\right)$  عند النقطة  $I\left(\frac{1}{2};1\right)$  مركز تماثل المماس ل $I\left(\frac{1}{2};1\right)$  ومنه  $I\left(\frac{1}{2};1\right)$ 

5- أ- ندرس الفروع اللانهائية للمنحنى y=1 مقارب أفقي للمنحنى الدينا  $f\left(x\right)=1$  مقارب أفقي للمنحنى المستقيم ذا المعادلة  $f\left(x\right)=1$ 

 $C_f$  لدينا ومنه x=2 مقارب عمودي للمنحنى  $\lim_{x\mapsto 2^-}f(x)=+\infty$  ومنه المستقيم ذا المعادلة  $\int_{x\mapsto 2^+}f(x)=+\infty$  مقارب عمودي للمنحنى  $C_f$  لدينا x=-1 مقارب عمودي للمنحنى  $\lim_{x\mapsto -1^-} f(x)=+\infty$  ومنه المستقيم ذا المعادلة  $\lim_{x\mapsto -1^+} f(x)=+\infty$ 

 $C_f$  بنشئ المنحنى -ب



$$f\left(x\right) = \frac{1 + \cos x}{1 - \cos x}$$

نعتبر الدالة العدية f للمتغير الحقيقي المعرفة بـ

$$\lim_{x \to 0} f(x)$$
 פ ר-2 -2 -2 -2

اً- بین أن 
$$f$$
 دالة دوریة و حدد دورها  $f$  داله دوریة و حدد دورها با تأکد أن  $f$  زوجیة استنتج  $D_{\scriptscriptstyle E}$  مجموعة دراسة

$$D_{\scriptscriptstyle E}$$
 على على -3

$$C_f$$
 أنشئ المنحنى -4

الجواب

$$f\left(x\right) = \frac{1 + \cos x}{1 - \cos x}$$

$$\lim_{x\to 0} f(x)$$
 و -5

$$x \in \mathbb{R}$$
 ليكن

$$x \in D_f \Leftrightarrow \cos x \neq 1 \Leftrightarrow x \neq 2k\pi$$
  $/k \in \mathbb{Z}$ 

$$D_f = \mathbb{R} - \left\{ 2k\pi/k \in \mathbb{Z} \right\}$$
 اذن

اً- أ- نبين أن f دالة دورية و حدد دورها f

$$\forall x \in \mathbb{R} - \left\{2k\pi/k \in \mathbb{Z}\right\} \qquad 2\pi + x \in \mathbb{R} - \left\{2k\pi/k \in \mathbb{Z}\right\} \qquad x - 2\pi \in \mathbb{R} - \left\{2k\pi/k \in \mathbb{Z}\right\}$$

$$2\pi$$
 اذن  $f$  دالة دورية و حدد دورها

$$f(x+2\pi) = \frac{1+\cos(x+2\pi)}{1-\cos(x+2)} = \frac{1+\cos x}{1-\cos x} = f(x)$$

f بتأكد أن f زوجية نستنتج  $D_{\!\scriptscriptstyle E}$  مجموعة دراسة

$$\forall x \in \mathbb{R} - \{2k\pi/k \in \mathbb{Z}\} \qquad -x \in \mathbb{R} - \{2k\pi/k \in \mathbb{Z}\}$$

$$D_E=\left]0;\pi
ight]$$
 ومنه

إذن 
$$f\left(-x\right) = \frac{1+\cos\left(-x\right)}{1-\cos\left(-x\right)} = \frac{1+\cos x}{1-\cos x} = f\left(x\right)$$

 $D_{\!\scriptscriptstyle E}$  ندرس تغيرات f على -7

$$\forall x \in ]0; \pi] \qquad f'(x) = \frac{(-\sin x)(1 - \cos x) - (1 + \cos x)\sin x}{(1 - \cos x)^2} = \frac{-2\sin x}{(1 - \cos x)^2}$$



| X     | 0  | 2 | 7 |
|-------|----|---|---|
| f'(x) |    | - | 0 |
| f(x)  | +∞ | - | 0 |

 $C_f$  أنشئ المنحنى -8

 $f(x) = \frac{1 - \cos x}{\sin x}$  نعتبر f الدالة العددية للمتغير الحقيقي المعرفة بـ:

 $\left(O;\vec{i}\,;\vec{j}
ight)$  منحنى الدالة f في مستوى منسوب إلى معلم متعامد ممنظم الدالة ر

 $D_f$  أ-1

بين أن f دالة فردية (ب

 $2\pi$  دوریة دورها f

ج) بين  $\lim_{x\to \pi^-} f(x)$  ثم حدد  $\lim_{x\to 0^+} f(x)$  مع تأويل النتيجة هندسيا

$$\forall x \in \left]0; \pi\right[ \quad f'(x) = \frac{1}{1 + \cos x}$$
 ابین أن (أ -2

ب) أدرس تغيرات f على  $]0;\pi[$  و أعط جدول تغيراتها

$$\left(C_{f}
ight)$$
 حدد تقعر (أ -3

$$\left(C_{f}
ight)$$
 ب) انشئ

الجواب

$$f(x) = \frac{1 - \cos x}{\sin x}$$

 $D_f$  نحدد أ -2

$$D_f = \mathbb{R} - \left\{ k\pi / k \in \mathbb{Z} \right\}$$

ب) نبين أن f دالة فردية

$$-x \in \mathbb{R} - \left\{ k\pi/k \in \mathbb{Z} \right\}$$
 :  $\forall x \in \mathbb{R} - \left\{ k\pi/k \in \mathbb{Z} \right\}$  لدينا

$$f(-x) = \frac{1 - \cos(-x)}{\sin(-x)} = \frac{1 - \cos x}{-\sin x} = - = \frac{1 - \cos x}{\sin x} = -f(x)$$

إذن f دالة فردية

 $2\pi$  دورية دورها f

$$\forall x \in \mathbb{R} - \left\{ k\pi / k \in \mathbb{Z} \right\} \qquad x + 2\pi \in \mathbb{R} - \left\{ k\pi / k \in \mathbb{Z} \right\}$$

$$f(x+2\pi) = \frac{1-\cos(x+2\pi)}{\sin(x+2\pi)} = \frac{1-\cos x}{\sin x} = f(x)$$

 $2\pi$  دوریة دورها f

 $D_E = \left]0;\pi
ight[$  و f دالة فردية فان مجموعة الدراسة هي f و  $2\pi$  ملاحظة: بما أن f دورية دورها

ج) نبین 
$$\lim_{x \to 0^+} f(x)$$
 ثم نحدد  $\lim_{x \to 0^+} f(x)$  مع تأویل النتیجة هندسیا

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0^{+}} x \frac{\frac{1 - \cos x}{x^{2}}}{\frac{\sin x}{x}} = 0 \times \frac{\frac{1}{2}}{1} = 0$$

$$\left(C_f\right)$$
ومنه  $x=\pi$  مقارب للمنحنى  $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^-} \frac{1-\cos x}{\sin x} = +\infty$ 

$$\forall x \in \left]0; \pi\right[ f'(x) = \frac{1}{1 + \cos x}$$
 نبین أن -2

$$\forall x \in ]0; \pi[ f'(x) = \frac{\sin^2 x - (1 - \cos x)\cos x}{\sin^2 x} = \frac{1 - \cos x}{1 - \cos^2 x} = \frac{1}{1 + \cos x}$$

ب) ندرس تغیرات f علی  $]0;\pi[$  و نعطی جدول تغیراتها

 $\forall x \in \left]0; \pi\right[\quad 1 + \cos x \succ 0 \quad \forall x \in \left]0; \pi\right[\quad f'(x) \succ 0$ 

 $]0;\pi[$  ومنه f تزایدیة علی

|   | - |          | -           |
|---|---|----------|-------------|
| x | 0 |          | $\pi$       |
| f | 0 | <b>—</b> | <b>→</b> +∞ |

 $\left(C_{f}
ight)$  نحدد تقعر (أ -3

$$\forall x \in ]0; \pi[ f'(x) = \frac{1}{1 + \cos x}$$
 لدينا

$$\forall x \in ]0; \pi[ f''(x) = \frac{\sin x}{(1 + \cos x)^2}$$

| х      | 0 | $\pi$ |
|--------|---|-------|
| f''(x) | + |       |

 $]-\pi;0[$  محدب علی  $]0;\pi[$  و حیث f فردیة فان f فردیة فان  $(C_f)$  محدب علی  $(C_f)$  محدب علی  $[2k\pi;\pi+2k\pi[$  و مقعر علی ویما أن f دوریة دورها f فان f فان f محدب علی کل مجال من شکل f و مقعر علی f و مقعر علی f و مقعر علی f و مقعر علی f حیث f ح





### تمارین و حلول

نعتبر الدالة العدية f للمتغير الحقيقي المعرفة بـ

$$\begin{cases} f(x) = x - \sqrt{1 - x^2} & |x| \le 1 \\ f(x) = \frac{1}{2}x + \frac{x}{x^2 + 1} & |x| > 1 \end{cases}$$

1-1 أورس اتصال في النقطتين 1 و 1-1

رس اشتقاق 
$$f$$
 في النقطتين 1 و 1- و أول النتائج هندسيا  $f$  أدرس اشتقاق  $f$  في النقطتين 1 و 1- و أول النتائج هندسيا  $f'(x)$  لكل  $f'(x)$  لكل  $f'(x)$  لكل  $f'(x)$  أحسب  $f'(x)$  أدرس تغيرات  $f$ 

 $C_f$  أدرس تقعر -5

 $C_f$  أنشئ -6

الحواب

$$\begin{cases} f(x) = x - \sqrt{1 - x^2} & |x| \le 1 \\ f(x) = \frac{1}{2}x + \frac{x}{x^2 + 1} & |x| > 1 \end{cases}$$

4- أ) ندرس اتصال في النقطتين 1 و 1-

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{1}{2} x + \frac{x}{x^{2} + 1} = 1 \quad \text{o} \quad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x - \sqrt{1 - x^{2}} = 1$$

1 ومنه f متصلة في  $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1)$  ومنه

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{1}{2} x + \frac{x}{x^{2} + 1} = -1 \quad \text{o} \quad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} x - \sqrt{1 - x^{2}} = -1$$

-1 ومنه 
$$f(x) = \lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x) = f(-1)$$
 ومنه

ب) ندرس اشتقاق 
$$f$$
 في النقطتين 1و 1- و نؤول النتائج هندسيا (باندرس اشتقاق  $f$  في النقطتين 1و  $f$  و نؤول النتائج  $f$   $f(x) - f(1) = \lim_{x \to 1^{-}} \frac{x - \sqrt{1 - x^2} - 1}{x - 1} = \lim_{x \to 1^{-}} 1 + \frac{\sqrt{1 - x}}{1 - x} \sqrt{x + 1} = \lim_{x \to 1^{-}} 1 + \sqrt{\frac{1}{1 - x}} \sqrt{x + 1} = +\infty$ 

ومنه f لا تقبل الاشتقاق على يسار1 و منحنى f يقبل نصف مماس عمودي على يسار f

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\frac{1}{2}x + \frac{x}{x^{2} + 1} - 1}{x - 1} = \lim_{x \to 1^{+}} \frac{1}{2} + \frac{\frac{x}{x^{2} + 1} - \frac{1}{2}}{x - 1} = \lim_{x \to 1^{+}} \frac{1}{2} + \frac{-x + 1}{2(x^{2} + 1)} = \frac{1}{2}$$

ومنه f تقبل الاشتقاق على يمين1 و منحنى f يقبل نصف مماس معامله الموجه  $rac{1}{2}$ على يمين f

$$\lim_{x \to -1^{+}} \frac{f(x) - f(1)}{x + 1} = \lim_{x \to -1^{+}} \frac{x - \sqrt{1 - x^{2}} + 1}{x + 1} = \lim_{x \to -1^{+}} 1 - \frac{\sqrt{x + 1}}{x + 1} \sqrt{1 - x} = \lim_{x \to -1^{+}} 1 - \sqrt{\frac{1}{1 + x}} \sqrt{1 - x} = -\infty$$

-1 ومنه f لا تقبل الاشتقاق على يمين f و منحنى و منحنى ماس عمودي على يمين f

$$\lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x+1} = \lim_{x \to -1^{-}} \frac{\frac{1}{2}x + \frac{x}{x^{2}+1} + 1}{x+1} = \lim_{x \to -1^{-}} \frac{1}{2} + \frac{\frac{x}{x^{2}+1} + \frac{1}{2}}{x+1} = \lim_{x \to -1^{-}} \frac{1}{2} + \frac{x+1}{2(x^{2}+1)} = \frac{1}{2}$$

-ومنه f تقبل الاشتقاق على يسار1- و منحنى f يقبل نصف مماس معامله الموجه  $rac{1}{2}$ على يسار

$$]-\infty;-1[\,\cup\,]1;+\infty[\,$$
 لكل  $f'(x)$  لكل  $f'(x)$  أحسب أ $f'(x)$  لكل  $f'(x)$  لكل  $f'(x)$  لكل أ-5

$$\forall x \in ]-1;1[ \qquad f'(x) = 1 + \frac{x}{\sqrt{1-x^2}}$$

$$\forall x \in ]-\infty;-1[ \cup ]1;+\infty[ \qquad f'(x) = \frac{1}{2} + \frac{x^2 + 1 - 2x^2}{x^2 + 1} = \frac{2}{2(x^2 + 1)} = \frac{1}{x^2 + 1}$$

$$f = \frac{1}{x^2 + 1}$$

$$\forall x \in ]-1;1[ \qquad f'(x) = 1 + \frac{x}{\sqrt{1-x^2}} = \frac{1 - 2x^2}{(\sqrt{1-x^2} - x)\sqrt{1-x^2}}$$

$$\forall x \in [0;1[ \quad f'(x) > 0]$$

$$\forall x \in ]-1;1[ \qquad f'(x) = 1 + \frac{x}{\sqrt{1-x^2}} = \frac{1 - 2x^2}{(\sqrt{1-x^2} - x)\sqrt{1-x^2}}$$

$$\forall x \in ]-1;1[ f'(x) = 1 + \frac{x}{\sqrt{1 - x^2}} = \frac{1 - 2x^2}{\left(\sqrt{1 - x^2} - x\right)\sqrt{1 - x^2}}$$

$$]-1;0[$$
 على  $]-1;0[$  هي إشارة  $f'(x)$  على  $[$ 

$$x \in ]-1;0[$$
  $f'(x) = 0 \Leftrightarrow x = -\frac{\sqrt{2}}{2}$ 

$$\forall x \in \left] -1; -\frac{\sqrt{2}}{2} \right]$$
  $f'(x) \le 0$   $\forall x \in \left] -\frac{\sqrt{2}}{2}; 0 \right[$   $f'(x) > 0$  ومنه

$$\forall x \in ]-\infty; -1[\cup]1; +\infty[ \qquad f'(x) \succ 0 \text{ gain } \forall x \in ]-\infty; -1[\cup]1; +\infty[ \qquad f'(x) = \frac{1}{x^2+1}]$$

| x     | -∞ | -1 | $-\frac{\sqrt{2}}{2}$ | 1 |      |
|-------|----|----|-----------------------|---|------|
| f'(x) | +  | -  | 0                     | + | +    |
| f     |    | 1  | $-\sqrt{2}$           |   | 1 +∞ |

.6 ندرس الفروع اللانهائية لـ  $C_f$  ثم الوضع النسبي لـ  $C_f$  و مقاربه.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} x + \frac{x}{x^2 + 1} = -\infty \quad ; \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{2} x + \frac{x}{x^2 + 1} = +\infty$$

$$\text{Legul } \int_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{2} x + \frac{x}{x^2 + 1} = +\infty \quad ;$$

ومنه المستقيم 
$$y=\frac{1}{2}x$$
 مقارب للمنحنى 
$$\lim_{x\to\pm\infty}f(x)-\frac{1}{2}x=\lim_{x\to\pm\infty}\frac{x}{x^2+1}=\lim_{x\to\pm\infty}\frac{1}{x}=0$$

$$\forall x \in ]-\infty; -1[\cup]1; +\infty[ \qquad f(x) - \frac{1}{2}x = \frac{x}{x^2 + 1}$$

$$]-\infty;-1[$$
 و منه  $(D)$  علی  $[1;+\infty[$  و علی  $(D)$  علی  $(D)$  علی و منه  $(D)$ 

$$]-1;1[ \quad \int "(x) = \frac{\sqrt{1-x^2} + \frac{x^2}{\sqrt{1-x^2}}}{1-x^2} = \frac{1}{\left(1-x^2\right)\sqrt{1-x^2}} > 0$$

: easier 
$$\forall x \in ]-\infty; -1[\cup]1; +\infty[$$
  $f''(x) = \frac{-2x}{(x^2+1)^2}$ 



$$]$$
ا;  $+\infty[$  مقعر علی  $C_f$  أي  $\forall x\in ]$ ا;  $+\infty[$   $f$  " $(x)=\frac{-2x}{\left(x^2+1\right)^2}\prec 0$   $]-\infty;-1[$  محدب علی  $C_f$  أي  $\forall x\in ]-\infty;-1[$   $f$  " $(x)\succ 0$   $C_f$  ننشئ 6



# تمرين2

$$f(x) = \frac{1}{\cos x} + \frac{1}{\sin x}$$
 نعتبر الدالة العدية  $f$  للمتغير الحقيقي المعرفة بـ

$$f$$
 حدد  $D_f$  حيز تعريف الدالة -1

$$f$$
 دور للدالة  $2\pi$  -2 دور للدالة

$$\forall x \in D_f$$
  $f(x+\pi) = -f(x)$  ب- بین أن

$$f'(x)$$
 أحسب -3

$$igl[0;\piigl]\!\cap\!D_f$$
 على على على -4

$$[0;2\pi]\cap D_f$$
 على عنحنى قصور الدالة  $f$  على منحنى عنحنى -5

# الجواب

$$f(x) = \frac{1}{\cos x} + \frac{1}{\sin x}$$

$$D_f$$
 نحدد -3  $x \in \mathbb{R}$  ليكن

$$x\in D_f \Leftrightarrow \sin x \neq 0$$
  $et$   $\cos x \neq 0$  
$$x\in D_f \Leftrightarrow \left(x\neq k\pi \quad et \quad x\neq \frac{\pi}{2}+k\pi\right) \quad /k\in \mathbb{Z}$$
 
$$x\in D_f \Leftrightarrow x\neq k\frac{\pi}{2} \quad /k\in \mathbb{Z}$$
 
$$D_f = \mathbb{R} - \left\{k\frac{\pi}{2}/k\in \mathbb{Z}\right\} \text{ then } f$$
 it is a constant of  $f$  in  $f$  in

$$\forall x \in \mathbb{R} - \left\{ k \frac{\pi}{2} / k \in \mathbb{Z} \right\} \qquad x \in \mathbb{R} - \left\{ k \frac{\pi}{2} / k \in \mathbb{Z} \right\}$$
$$f\left(x + 2\pi\right) = \frac{1}{\sin\left(x + 2\pi\right)} + \frac{1}{\cos\left(x + 2\pi\right)} = f\left(x\right)$$

f دور للدالة  $\pi$ 

$$orall x \in D_f$$
  $f\left(x+\pi
ight) = -f\left(x
ight)$   $f\left(x+\pi
ight) = \frac{1}{\sin\left(x+\pi
ight)} + \frac{1}{\cos\left(x+\pi
ight)} = \frac{1}{-\sin x} + \frac{1}{-\cos} = -f\left(x
ight)$ 

f'(x) نحسب 3

$$f'(x) = \frac{-\cos x}{\sin^2 x} + \frac{\sin x}{\cos^2 x} = \frac{\sin^3 x - \cos^3 x}{\sin^2 x \cdot \cos^2 x} = \frac{(\sin x - \cos x)(1 + \cos x \cdot \sin x)}{\sin^2 x \cdot \cos^2 x} = \frac{(\sin x - \cos x)\left(1 + \frac{\sin 2x}{2}\right)}{\sin^2 x \cdot \cos^2 x}$$

 $igl[0;\piigl]\!\cap\!D_f$  على ندرس تغيرات f على -4

 $\sin x - \cos x$  إشارة f'(x) هي إشارة

$$x \in \left]0; \frac{\pi}{2} \left[ \quad \bigcup \frac{\pi}{2}; \pi \left[ \quad \sin x - \cos x = 0 \Leftrightarrow x = \frac{\pi}{4} \right] \right]$$

$$x \quad 0 \quad \frac{\pi}{4} \quad \frac{\pi}{2} \quad \pi$$

$$f'(x) \quad - \quad 0 \quad + \quad +$$

$$f \quad +\infty \quad +\infty$$

 $igl[0;2\piigr]\!\cap\!D_f$  على على قصور الدالة -5

 $C_f$  ومنه المستقيم ذا المعادلة  $x=\pi$  مقارب للمنحنى  $\lim_{x \to \pi^-} f(x) = +\infty$ 

$$C_f$$
 ومنه المستقيم ذا المعادلة  $x=rac{\pi}{2}$  مقارب للمنحنى  $\lim_{x orac{\pi}{2}}f\left(x
ight)=+\infty$  ;  $\lim_{x orac{\pi}{2}}f\left(x
ight)=-\infty$ 

 $C_f$  ومنه المستقيم ذا المعادلة x=0 مقارب للمنحنى  $\lim_{x \to 0^+} f(x) = +\infty$ 



