

02321 Hardware/Sofware Programmering

3 ugers projekt

Udarbejdet af:

Gruppe nr. 1

s093485 - Christensen, Anders Jan

s093478 - Hansen, Mathias

s072657 - Tang Khoa Nguyen, Nikolai

s010164 - Mitri Emil Kjær Rebeiz, Sami

s000536 - Vandall Zimsen, Jakob

DTU InformatikInstitut for Informatik og Matematisk Modellering

Vejledere: Edward Alexandru Todirica Afleveringsfrist: 21. juni 2011 kl. 13:00 Rapporten indeholder 17 sider inkl. forside

Timeregnskab

Dato	Deltager	Design	Impl.	Test	Dok.	Andet	I alt
2011-01-03	Mathias				1	4	5
	Total	24	116	78	121	57	396

Akkumuleret timeregnskab

I det akkumulerede timeregnskab er kun vist de aktive medlemmer i gruppen. Ved 3ugers periodens begyndelsen blev gruppen reduceret med ét medlem.

Sami	Mathias	Anders	Nikolai	Jakob
100	200	300	100	200

Analyse/Design

Lorem ipsum: ?

LC3 Implementering

IO: Primært udarbejdet af Mathias

VGA samt ROMs til VGA: Primært udarbejdet af Jakob & Nikolai

Hukommelse: Primært udarbejdet af Anders & Sami

Spil implementering

Lorem ipsum: ?

Test

Lorem ipsum: ?

Dokumentation

Lorem ipsum: ?

Indholds for tegnelse

1	Opgaveformulering	1
2	Design	4
3	Diskussion	6
4	Videreudvikling	7
	4.1 Hvad vi har nået	7
5	Konklusion	8
	5.1 ET UDKAST!!!	3
K	Gildehenvisninger	8
В	ilag	-1
F	igurer	_
	1.1 Simpelt mock-up over systemet	
	1.2 Videreudviklet mock-up over systemet	
	2.1 Design system	

Opgaveformulering

I dette 3 ugers projekt skal der sammensættes en komplet computer, baseret på von Neumann arkitekturen udfra en udleveret implementeret LC3 CPU, computeren implementeres på et Virtex II FPGA board.

LC3 Cpu'en er leveret til os som en black box, hvortil vi skal tilslutte de andre nødvendige komponenter for at have en komplet kørende computer; memory, vga, et rat påsat en A/D-converter som I/O til LC3'en. Et eksternt stykke hardware i form af en skærm er også nødvendig.

Såfremt det bliver nødvendigt, kan der være tale om at dele af spillet implementeres på en almindelig PC og med data sendt over seriel forbindelse til LC3 computeren. Derefter udvikles et spil baseret på den implementerede computer. Det er valgt at udvikle et bil spil, hvor bilen skal styres af et fysisk rat eller tastatur. Målet med spillet er at undgå forhindringer i form af andre biler, kasser og lignende som indsættes på kørebanen tilfældigt.

På figur 1.1 på den følgende side ses et simpelt mock-up over hvordan spillet kunne se ud, hvor der er indtegnet en simpel baggrund, en bil man styrer samt forhindringer man skal undgå.

Afhængigt af tiden op til aflevering, påtænkes der at udvide projektet med en eller flere ekstra tilføjelser. Disse tilføjelser kunne være at indsætte flere *forskellige* forhindringer på vejen, eller at benytte flere *forskellige* baggrunde, eller at have flere *forskellige* baner, eller at lave bedre grafik eller at implementere lyd.

På figur 1.2 på næste side ses et tænkt videreudviklet mock-up over spillet, hvor points og tid også er vist.

Vores mål, og krav fra kunden, er at implementere et minimum af funktionalitet, som beskrevet i den opgave case som ligger til grund for projektet, inden for den givne

Figur 1.1: Simpelt mock-up over systemet

Figur 1.2: Videreudviklet mock-up over systemet

tidshorisont. Ikraft af vores roller som udviklere, stiler vi naturligvis efter at lave verdens bedste simulator spil på den bedst kørende LC3 computer. Vi påtænker at kode hardwaren i VHDL og applikationen i C.

Desuden er det ønskeligt fra kundens side, at bruge viden fra andre af semesterets kurser til projektet, herunder f.eks. implementering af en database til at gemme highscores i spillet, med henvisning til kurset 02344 OOAD og databaser.

Design

Vores system som overordnet er beskrevet på figur 2.1 på modstående side, er opbygget af et FPGA board der implementerer en computer kørt af en LC3 CPU. Til computeren er der af eksterne I/O komponenter tilknyttet en skærm, et I/O board¹ samt et rat som essentielt er en variabel modstand. Desuden benyttes der to-vejs seriel kommunikation til en PC til upload af bruger programmer til LC3 computeren samt verificering af disse.

Spillet er først implementeret på PC i C kode, derefter skal indholdet overføres til FPGA board vha. en serial forbindelse. Indholdet af spillet gemmes i block ram på FPGA. En VGA skærm viser "output"altså baggrund,forgrund(bil, forhindringer), og er opdateret løbende, for at man kan se og følge med i hvad det sker og dermed kan spille. Spillet kan styres direkte fra FPGA board vha. en styrrings enhed, i dette tilfælde har vi valgt at bruge et rat i stedet for et keyboard.

LC-3 system efter vores design består af forskellige komponenter som er sat sammen, dette kan tælles: CPU, rat, MEM, UART og forbindende "busser".

Udover VGA skærm kan man koble flere hardware enheder til når der er behov for det. De kan være lydkort,... o.s.v. CPU har til formål at udføre de beregninger som ligger til grund for hvilke instruktioner som skal udføres, dvs. hvad applikationen "siger" der skal ske hvornår.... MEM bruges generelt til at gemme div. Data, bl.a. de respektive instruktioner som skal udføres ... UART bruges til at "holde" styr på at sende/modtage data instruktioner til/fra komponenterne i computeren rattet bruges til at styre bilen, som kører i forgrunden. Figur xx viser vores overordnede system. (OBS! Vi skal selv tegne LC-3 system diagram som ligner denne figur)

¹Digilent DIO4TMI/O board

KAPITEL 2. DESIGN 5

Figur 2.1: Design system

Diskussion

Under 3 uger arbejdet med projekt, har vi lært og oplevet mange nye tinge. Det tales om både gode og svære tilgang.

De gode: • Vi får implementeret vores advandced/udvidelse version af spillet, og det virker som forventning. Bilens form og farver kan tegnes efter vores vilje, den kan styres fra raten. • Point statistik for hver spiller kan vises på skærm vha. en lokale database. Dette er en ekstra tinges som vi har implementeret ved brug af viden fra kurset OOAD Database. •

De svære: • Det tager meget længere tid at implementere hele computeren system og få dem op at køre end vi regner med i starten. Hardware/Vhld delen tog os 2 uger at blive færdig med. • Især UART og MEM var en udfordring for os at implementere, der ligger masse "tricks" bag i. • Efter implementering af hver komponent, har vi det svært at få dem til at "snakke" sammen med LC-3 CPU, der opstod fejl i forskellige steder i vores program, som tog os ekstrem lang tid at finde rundt og rette dem. • For at nå vores tidsplanlægning om deadline for arbejde er vi nødt til at bruge weekenderne på laboratoriet.

Videre	udvik	cling
--------	-------	-------

Hvad vi har nået..

4.1

Vi har nået baseret på start vanskeligheder men føler os tilfredse med det produkt vi har udviklet. Vi har komponenter der virker og et kørende/næsten kørende produkt og hvis vi havde haft mere tid ville vi have bygget videre på (grafikken, spillet generelt etc). Vi tænker at en version 2 af dette spil kunne være med (bedre grafik, flere baner, større DB til yderligere data der skal gemems, bedre statistik over f.eks. hændelser i spillet så som antal "sejre"kontra antal spillede spil.. etc.) En videre udvikling kunne også være (bedre boards, bedre komponenter, måske noget med spil over netværk, etc)

5.1

Konklusion

5.1 ET UDKAST!!!

ET UDKAST!!!

Vi har med dette projekt fået en bedre forståelse for sammenspillet mellem hardware og software, hvordan de nødvendige komponenter i LC3'en bruges i samspil med et stykke software - her vores simulator spil. Vi har udviklet os fremadrettet mht. at forstå hvad der egentligt sker på komponent niveau når man bruger en computer, der kører noget software. Vi føler os bedre til at kunne abstrahere på forskellige niveauer mht. at "dykke ned"på/i komponent niveau og få et sådant til at fungere, i sammenspil med et stykke software (her vores simulator spil) og bevæge os op og ned mellem de forskellige abstraktions lag iht. low-level/high-level udvikling. Det har været meget interessant at lave/kode de respektive komponenter(så som memory, VGA.. etc) vi har brugt og derefter få dem til at "snakke"sammen med vores spil. Det har været et meget interessant projekt at gå i krig med, det har givet en meget bedre forståelse for hvad der egentligt sker "inden i"en computer, når man som bruger "bare"sidder foran skærmen og bruger den til div. ting. Vores viden er blevet bredere efter dette projekt. Dog er tidsfaktoren en afgørende faktor for udviklingen af produktet kontra ønskede opnåede mål, vi forestiller os at man ude i erhvervslivet har mere tid til udviklingen, men vi er generelt tilfredse med det vi har nået på den givne tid.. :)

BILAG A-1

Bilag

I/O Registers

.1

Address	Description
	-
xFE00	Stdin Status Register
xFE02	Stdin Data Register
xFE04	Stdout Status Register
xFE06	Stdout Data Register
xFE0A	Switches Data Register
xFE0E	Buttons Data Register
xFE12	7SegDisplay Data Register
xFE16	Leds Data Register
xFE18	Steering Wheel Status Register
xFE1A	Steering Wheel Data Register
xFE1C	Car VGA X position
xFE1E	Obstacle 1 VGA X position
xFE20	Obstacle 1 VGA Y position
xFE22	Obstacle 2 VGA X position
xFE24	Obstacle 2 VGA Y position
xFE26	Obstacle 3 VGA X position
xFE28	Obstacle 3 VGA Y position
xFE2A	VGA Refresh Tick register

BILAG	A-3
Kildetekst	.2

A-4 BILAG

Indholds for tegnelse

Figurer