

Decision Theory and Simple Classifiers

23 September 2015

Today's lecture

Decision theory

- Linear and quadratic classifiers
 - Gaussian models, the perceptron

Classification

- In detection we had one template
 - Decision: was it there?
 - Or rather, how much of it is there?

- In classification we have many templates
 - Decision: Which one is the most dominant?

Process overview

- We provide examples of classes
 - Training data

- We make models of each class
 - Training process

- We assign all new input data to a class
 - Classification

Making an assignment decision

- Face example
 - Dot products relate to a likelihood of match
 - This is linked to a probability

 Having a class probability for each face, how do we make a decision?

Motivating example

• Which do we pick?

X

Template face 1

Template face 2

y

$$\mathbf{x}^{\mathsf{T}}\mathbf{y}$$

0.87

Motivating example

• Template 1 is more "likely"

X

Template face 1

Template face 2 Te

y

Inknown face

$$P(\mathbf{y} | \mathbf{face}_1, \mathbf{face}_2)$$

 $\propto 0.94$

 $\propto 0.87$

How the decision is made

• In simple cases the answer is intuitive

 To get a complete picture we need to probe a bit deeper

Bayesian decision theory

Starting simple

- Two-class case, ω_1 and ω_2
 - 1-dimensional data

Starting simple

- Given a sample x, is it ω_1 or ω_2 ?
 - i.e. $P(\omega_i | x) = ?$

Getting the answer

The class posterior probability is:

$$P(\omega_i \mid x) = \frac{P(x \mid \omega_i)P(\omega_i)}{P(x)}$$

$$P(x \mid \omega_i)P(\omega_i)$$

$$P(x \mid \omega_i)P(\omega_i)$$

$$P(x \mid \omega_i)$$

$$P(x \mid \omega_i)$$

$$P(x \mid \omega_i)$$

 To find the answer we need to fill in the terms in the right-hand-side

Filling the unknowns

- Class priors
 - How much of each class?

$$P(\omega_1) \approx N_1/N$$
 $P(\omega_2) \approx N_2/N$

- Class likelihood: $P(x | \omega_i)$
 - Requires that we have a model of each ω_i
 - E.g. ω_i can be a Gaussian distributed so that:

$$P(x \mid \omega_i) = \mathcal{N}\left(x \mid \mu_{\omega_i}, \Sigma_{\omega_i}\right)$$

12

Filling the unknowns

• Evidence:

$$P(x) = P(x \mid \omega_1)P(\omega_1) + P(x \mid \omega_2)P(\omega_2)$$

We now can estimate the class posteriors:

$$P(\omega_1 \mid x), P(\omega_2 \mid x)$$

Making the decision

Bayes classification rule:

If
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 then x belongs to class ω_1
If $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ then x belongs to class ω_2

Easier version:

$$P(x \mid \omega_1)P(\omega_1) \geq P(x \mid \omega_2)P(\omega_2)$$

• Equiprobable class version:

$$P(x \mid \omega_1) \geqslant P(x \mid \omega_2)$$

Visualizing the decision

- Assume a Gaussian model for the classes
 - Likelihood: $P(x \mid \omega_i) = \mathcal{N}(x \mid \mu_i, \sigma_i)$

Errors in classification

- We can't win all the time though
 - Some inputs will be misclassified

• What are the errors?

$$\varepsilon_2 = \int_{-\infty}^{x_0} P(x \mid \omega_2) P(\omega_2) dx, \quad \varepsilon_1 = \int_{x_0}^{\infty} P(x \mid \omega_1) P(\omega_1) dx$$

16

Minimizing misclassifications

 The Bayes classification rule minimizes these potential misclassifications

Can you do any better by moving the line?

Minimizing risk

- Not all errors are equal!
 - e.g. medical diagnoses

 Misclassification can be tolerable, or not, depending on the assumed risks

Adding a cost term

 Implement a "loss" factor to each decision to compute "risk" for each class

$$r_{j} = \sum_{i} \lambda_{ji} \int_{R_{i}} P(x \mid \omega_{j}) dx$$

- The λ 's specify how costly each decision is
 - λ_{ij} is cost for samples in region i while being of class j
- Choose regions to minimize overall risk

$$r = \sum_{j} r_{j} P(\omega_{j}) = \sum_{i} \int_{R_{i}} \sum_{j} \lambda_{ji} P(x \mid \omega_{j}) P(\omega_{j}) dx$$

New decision process

• Assign x to ω_1 if

$$(\lambda_{21}-\lambda_{22})P(x\mid\omega_{2})P(\omega_{2})<(\lambda_{12}-\lambda_{11})P(x\mid\omega_{1})P(\omega_{1})$$
 Boost ω_{2} posterior

- and vice-versa
- Or using the likelihood ratio test:

$$x \in \omega_1 \quad \text{if} \quad \frac{P(x \mid \omega_1)}{P(x \mid \omega_2)} > \frac{P(\omega_2) \left(\lambda_{21} - \lambda_{22}\right)}{P(\omega_1) \left(\lambda_{12} - \lambda_{11}\right)}$$
 • and vice-versa

20

Example case

- A deadly disease detector
 - Optimizing the cost of each decision; note that $\lambda_{21}\gg\lambda_{12}$

Minimum classification error

Minimum risk

True/False - Positives/Negatives

Naming the outcomes

Classifying for ω_1	x is ω_1	x is ω_2
x classified as ω_1	True positive	False positive
x classified as ω_2	False negative	True negative

- False positive / False alarm / Type I error
- False negative / Miss / Type II error

Receiver Operating Characteristic

Visualizing how well we can expect to do

Classifying Gaussian data

- Remember that we need the class likelihood to make a decision
 - For now let's assume that:

$$P(x \mid \omega_i) = \mathcal{N}(x \mid \mu_i, \sigma_i)$$

• i.e. that the input data is Gaussian distributed

Overall methodology

Obtain training data

- Fit a Gaussian model to each class
 - Perform parameter estimation for mean, variance and class priors

 Define decision regions based on models and any given constraints

1D example

 The decision boundary will always be a point separating the two class regions

2D example

2D example fitted Gaussians

Gaussian decision boundaries

• The decision boundary is defined as:

$$P(\mathbf{x} \mid \omega_1)P(\omega_1) = P(\mathbf{x} \mid \omega_2)P(\omega_2)$$

 Replace likelihoods with Gaussians and solve to find what the boundary looks like

Discriminant functions

• Define a set of functions $g_i(x)$ so that:

classify x in
$$\omega_i$$
 if $g_i(x) > g_j(x)$, $\forall i \neq j$

Decision boundaries are now defined as:

$$g_{ij}(\mathbf{x}) \equiv \left(g_i(\mathbf{x}) = g_j(\mathbf{x})\right)$$

Discriminant functions for Gaussians

We remove the exponentiation:

$$\begin{split} g_{i}(\mathbf{x}) &= \log(P(\mathbf{x} \mid \omega_{i})P(\omega_{i})) = \log P(\mathbf{x} \mid \omega_{i}) + \log P(\omega_{i}) \\ &= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_{i}) + \log P(\omega_{i}) + C_{i} \\ &= \frac{1}{2} \Big[-\mathbf{x}^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot \mathbf{x} + \mathbf{x}^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot \boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{i}^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot \boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{i}^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot \mathbf{x} \Big] \\ &+ \log P(\omega_{i}) + C_{i} \end{split}$$

• The decision boundaries $g_i(\mathbf{x}) = g_j(\mathbf{x})$ will be quadrics

Back to the data

• $\Sigma_i = \sigma^2 \mathbf{I}$ produces line boundaries

• Discriminant:

$$g_{i}(\mathbf{x}) = \mathbf{w}_{i}^{\top} \cdot \mathbf{x} + b$$

$$\mathbf{w}_{i} = \mathbf{\mu}_{i} / \sigma^{2}$$

$$b = -\frac{\mathbf{\mu}_{i}^{\top} \cdot \mathbf{\mu}_{i}}{2\sigma^{2}} + \log P(\omega_{i})$$

Quadratic boundaries

 Arbitrary covariance matrices can produce more elaborate boundaries

$$\begin{split} \boldsymbol{g}_{i}(\mathbf{x}) &= \mathbf{x}^{\top} \cdot \mathbf{W}_{i} \cdot \mathbf{x} + \mathbf{w}_{i}^{\top} \cdot \mathbf{x} + \boldsymbol{w}_{i} \\ \mathbf{W}_{i} &= -\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} \\ \mathbf{w}_{i} &= \boldsymbol{\Sigma}_{i}^{-1} \cdot \boldsymbol{\mu}_{i} \\ \boldsymbol{w} &= -\frac{1}{2} \boldsymbol{\mu}_{i}^{\top} \cdot \boldsymbol{\Sigma}_{i}^{-1} \cdot \boldsymbol{\mu}_{i} - \frac{1}{2} \log \left| \boldsymbol{\Sigma}_{i} \right| \\ &+ \log P(\boldsymbol{\omega}_{i}) \end{split}$$

Quadratic boundaries

 Arbitrary covariance matrices can produce more elaborate boundaries

Naïve Bayes classifier

- Dimensionality issues
 - For large dimensions the Gaussian estimate will require a lot of data! Order N dimensions

 Naïve Bayes classifier assumes independence across dimensions

Naïve Bayes classifier

- Each dimension is sampled independently
 - Thus we don't require many training samples

$$P(\mathbf{x} \mid \omega_i) = \prod_j P(x_j \mid \omega_i)$$

Overall classification is:

$$\omega = \underset{\omega_i}{\operatorname{arg\,max}} \prod_j P(x_j \mid \omega_i)$$

- Not elegant, but reasonably reliable
 - Looks familiar?

A different perspective

- Obtaining the discriminant function directly
 - Training data \mathbf{x}_i , labels $y_i \in \{-1,1\}$
 - ullet Linear discriminant ${f w}$ and bias b

$$y_i = \mathbf{w}^\top \cdot \mathbf{x}_i + b$$

- Or we can skip the b and set $\mathbf{x} = [\mathbf{x}; 1]$ in which case $\mathbf{w} = [\mathbf{w}, b]$
- This is the same as the discriminant function for isotropic Gaussians

Linear classifiers

• Directly defines the class boundary line

Approach 1: The Perceptron

- Assume there is a solution
- Then find w such that:

$$\mathbf{w}^{\top} \cdot \mathbf{x}_{i} > 0 \quad \text{if} \quad \mathbf{x}_{i} \in \omega_{1}$$

$$\mathbf{w}^{\top} \cdot \mathbf{x}_{i} < 0 \quad \text{if} \quad \mathbf{x}_{i} \in \omega_{2}$$

• How do we solve this?

A simple update algorithm

- Using corrections
- For all vectors x:
 - If $\operatorname{sgn}(\mathbf{w}^{\top} \cdot \mathbf{x}_i) = y_i$
 - Do nothing
 - If $\operatorname{sgn}(\mathbf{w}^{\top} \cdot \mathbf{x}_i) = -y_i$
 - Then $\mathbf{w} = \mathbf{w} + \eta y_i \mathbf{x}_i$, $0 < \eta < 1$
 - Repeat until no error (or progress) is made

What does this mean?

- w is normal to the boundary line
- To produce $\mathbf{w}^{\mathsf{T}} \cdot \mathbf{x}_i > 0$
 - Has to be within 90° of positive data
- To produce $\mathbf{w}^{\mathsf{T}} \cdot \mathbf{x}_i < 0$
 - Has to be outside of 90° for negative data

Looking at one class

1. Initial conditions

3. Correction with x_3

2. Correction with x_1

4. Correction with x_1

Approach 2: Using a cost function

Minimize the cost function:

$$J(\mathbf{w}) = \sum_{\forall \operatorname{sgn}(\mathbf{w}^{\top} \cdot \mathbf{x}_i) \neq y_i} \delta_i \mathbf{w}^{\top} \cdot \mathbf{x}_i$$

$$\delta_i = -y_i = \begin{cases} -1, & \text{if } \mathbf{x}_i \in \omega_1 \\ +1, & \text{if } \mathbf{x}_i \in \omega_2 \end{cases}$$

Contribution to cost function

	$\mathbf{x}_i \in \omega_1$ $\delta_i = -1$	$\mathbf{x}_i \in \omega_2$ $\delta_i = +1$
$\mathbf{w}^{\top} \cdot \mathbf{x}_i > 0$	0	$\delta_i \mathbf{w}^{\top} \cdot \mathbf{x}_i > 0$
$\mathbf{w}^{T} \cdot \mathbf{x}_i < 0$	$\delta_i \mathbf{w}^{T} \cdot \mathbf{x}_i > 0$	0

Cost function will be zero if all classifications are correct

Gradient descent approach

• Use a gradient descend algorithm:

$$\mathbf{w} = \mathbf{w} - \eta \sum_{i} \delta_{i} \mathbf{x}_{i}$$

$$\forall \operatorname{sgn}(\mathbf{w}^{\top} \cdot \mathbf{x}_{i}) \neq y_{i}$$

- Same as the perceptron!
- Proven convergence, fast and small!
 - Many variants exist
 - A core idea behind neural nets

Approach 3: Minimize Squared Error

- We can also directly solve the problem
 - Assign all samples in a matrix X
 - Assign all class labels in vector y

Solve for w such that:

$$\mathbf{y} = \mathbf{w}^{\top} \cdot \mathbf{X}$$

MSE classifier

Solving for w we get:

$$\mathbf{w} = \mathbf{y} \cdot \mathbf{X}^+$$

- We only need the pseudoinverse of X
 - Robust closed form solution
- This is essentially a regression problem
 - Least-squares solution

Linear classifiers

 As long as we use a Euclidean distance metric, there is a Gaussian assumption

- Linear classifiers are easier to understand
 - But remember what they actually imply!

Looking back on detection

- We can now make the detection more elegant
 - No need to look at correlation peaks

- Learn class models from examples
 - Doesn't have to be a single template

- Translate the dot products to likelihoods
 - Apply decision theory to classify in either of the two classes

Example: Big smile detector

Make a classifier that find smiling faces

Some non-smiling samples

Some smiling samples

Simple way

- Assume classes are Gaussian distributed (are they?)
 - Get means and covariances for each class

Mean of smiling class

Mean of non-smiling class

Covariance of smiling class

Covariance of non-smiling class

Standard ways to classify

• Assume a linear classifier (isotropic Gaussian):

$$P(\mathbf{x} \mid \omega_i) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_i, \mathbf{I}) \propto e^{-(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \cdot (\mathbf{x} - \boldsymbol{\mu}_i)}$$

- Assume equal priors and assign data to maximum likelihood class
 - Get's us okay results
- Assume a quadratic classifier (full or diagonal covariance)

$$P(\mathbf{x} \mid \omega_i) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \propto e^{-(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \cdot \boldsymbol{\Sigma}_i^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_i)}$$

Oops, the covariance might be non-invertible ——

51

Or we can use features

- Perform PCA on the faces and drop to low dimensions
 - Now the covariance estimate is better behaved

Redo the classification on the low dims

- Faster and easier, and just as good
 - Not crucial in this case, but the quadratic classifier is a bit better

How can we improve this? Is it worth it?

Recap

- The Bayesian view
 - Risk, decision regions
 - Gaussian classifiers, Naïve Bayes

- Linear classifiers
 - The perceptron, separating hyperplanes

Next lecture

Support Vector Machines

- Non-linear classifiers
 - Neural nets and Kernels

Reading

• Textbook chapters 2-2.4, 2.5.7 and 3-3.6

Problem set 2

• It's out, in case you missed it ...