MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

3. Aplicaciones lineales

3.1. Estudia cuáles de las siguientes aplicaciones, definidas de \mathbb{R}^2 en \mathbb{R}^3 , son lineales:

a)
$$f(x,y) = (0,y,0)$$

a)
$$f(x,y) = (0, y, 0)$$

b) $f(x,y) = (x, x + y, x - y)$
c) $f(x,y) = (2x + y, 0, 2y + x)$
d) $f(x,y) = (x + y, 2, y)$

b)
$$f(x,y) = (x, x + y, x - y)$$

d)
$$f(x,y) = (x+y,2,y)$$

3.2. Estudia cuáles de las siguientes aplicaciones, definidas de $(\mathbb{R}^3, +, .\mathbb{R})$ en sí mismo, son lineales:

a)
$$f(x, y, z) = (3x, 4y, 5z)$$

c)
$$f(x, y, z) = (2x - y, 2y - z, 2z - x)$$

d) $f(x, y, z) = (x, -y, z + 1)$

a)
$$f(x, y, z) = (3x, 4y, 5z)$$

b) $f(x, y, z) = (x, x + y, x + y + z)$

d)
$$f(x, y, z) = (x, -y, z + 1)$$

- 3.3. Sea f un aplicación lineal de \mathbb{R}^2 en \mathbb{R}^3 tal que $f(\overrightarrow{u_1}) = \overrightarrow{v_1} + 2\overrightarrow{v_2} 3\overrightarrow{v_3}, f(\overrightarrow{u_2}) = -\overrightarrow{v_1} + 4\overrightarrow{v_2} \overrightarrow{v_3},$ siendo $\{\overrightarrow{u_1}, \overrightarrow{u_2}\}$ y $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ las correspondientes bases. Halla la imagen del vector $\overrightarrow{u} = (2, -1)$.
- 3.4. Calcula la matriz asociada a la aplicación lineal f definida entre los espacios vectoriales \mathbb{R}^3 y \mathbb{R}^2 por f(x,y,z)=(x-y+z,2x-z) respecto de las bases canónicas.
- 3.5. Se considera la aplicación lineal de \mathbb{R}^2 en \mathbb{R}^3 que está dada por f(x,y)==(x+y,-y,y-x). Halla, respecto de las bases canónicas:
 - a) La matriz asociada.
 - b) Las ecuaciones de la aplicación.
 - c) Una base del núcleo.
 - d) La dimensión del núcleo.
 - e) Una base de la imagen.
 - f) El rango de la aplicación.
 - g) Comprueba la fórmula $n = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$
- 3.6. Se dice que un vector \overrightarrow{u} es invariante por una aplicación lineal f si verifica que $f(\overrightarrow{u}) = \overrightarrow{u}$. Halla todos los vectores invariantes por las aplicaciones lineales de los apartados a), b), c) del ejercicio 3.2.
- 3.7. Halla todos los vectores que verifican la igualdad $f(\overrightarrow{u}) = \lambda \overrightarrow{u}$, para algún escalar λ , para las aplicaciones lineales de los apartados a), b) c) del ejercicio 3.2.

- 3.8. Sea f la aplicación lineal definida entre los espacios vectoriales $(V_3, +, \mathbb{R})$ y $(V_4, +, \mathbb{R})$ tal que $f(\overrightarrow{u_1}) = \overrightarrow{v_1} + 2\overrightarrow{v_2} \overrightarrow{v_3} 2\overrightarrow{v_4}$, $f(\overrightarrow{u_2}) = \overrightarrow{v_1} \overrightarrow{v_3}$, $f(\overrightarrow{u_3}) = \overrightarrow{v_2} \overrightarrow{v_4}$, donde $B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ y $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ son las bases correspondientes. Halla:
 - a) La imagen del vector $\overrightarrow{u} = \overrightarrow{u_1} + \overrightarrow{u_2} 2\overrightarrow{u_3}$.
 - b) La matriz de la aplicación lineal.
 - c) El núcleo y el rango de la aplicación lineal.
 - d) ¿ Qué vectores \overrightarrow{u} verifican $f(\overrightarrow{u}) = -\overrightarrow{v_1} \overrightarrow{v_2} + \overrightarrow{v_3} + \overrightarrow{v_4}$?
- 3.9. Sea f la aplicación lineal de $(V_3, +, \mathbb{R})$ en sí mismo, tal que $f(\overrightarrow{u_1}) = \overrightarrow{v_1} + \overrightarrow{v_3}$, $f(\overrightarrow{u_2}) = 2\overrightarrow{v_1} \overrightarrow{v_2}$, $f(\overrightarrow{u_3}) = \overrightarrow{v_2} \overrightarrow{v_3}$, donde $B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ y $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ son dos bases de V_3 . Halla:
 - a) La matriz de la aplicación lineal.
 - b) La dimensión de Ker f y el rango de la aplicación.
 - c) Las ecuaciones de la aplicación y la imagen del vector $\overrightarrow{u} = \overrightarrow{u_1} + \overrightarrow{u_2} + \overrightarrow{u_3}$.
 - d) ¿Es inyectiva? ¿Es sobreyectiva? ¿Es biyectiva?
- 3.10. Sea f una aplicación lineal de $(V_3, +, \mathbb{R})$ en sí mismo, tal que $f(\overrightarrow{u_1}) = 2\overrightarrow{u_1} \overrightarrow{u_2} \overrightarrow{u_3}$, $f(\overrightarrow{u_2}) = -7\overrightarrow{u_2} + \overrightarrow{u_3}$, $f(\overrightarrow{u_3}) = 3\overrightarrow{u_1} 2\overrightarrow{u_3}$, donde $B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ es una base de dicho espacio. Halla la matriz de la aplicación lineal f respecto de la base $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ donde $\overrightarrow{v_1} = \overrightarrow{u_1} \overrightarrow{u_3}$, $\overrightarrow{v_2} = \overrightarrow{u_1} + \overrightarrow{u_2}$, $\overrightarrow{v_3} = \overrightarrow{u_3}$.
- 3.11. Sean f y g dos aplicaciones lineales de $(V_2, +, \mathbb{R})$ en sí mismo, tales que $f(\overrightarrow{u_1}) = 2\overrightarrow{e_1} \overrightarrow{e_2}$, $f(\overrightarrow{u_2}) = \overrightarrow{e_1} + \overrightarrow{e_2}$, $g(\overrightarrow{e_1}) = \overrightarrow{v_1} 3\overrightarrow{v_2}$, $g(\overrightarrow{e_2}) = 2\overrightarrow{v_1} + \overrightarrow{v_2}$, siendo $\{\overrightarrow{u_1}, \overrightarrow{u_2}\}$, $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$, $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ tres bases del espacio vectorial. Halla:
 - a) La matriz de la aplicación $g \circ f$.
 - b) El núcleo y la imagen de $g \circ f$.
 - c) La imagen del vector $\overrightarrow{u} = 5\overrightarrow{u_1} 2\overrightarrow{u_2}$.
 - d) Las ecuaciones de la composición.
- 3.12. Sean f y g las aplicaciones lineales definidas de \mathbb{R}^2 en \mathbb{R}^3 y de \mathbb{R}^3 en \mathbb{R}^4 tales que $f(-1,1)=(-2,1,-2),\ f(2,1)=(1,1,4),\ g(1,1,2)=(4,1,1,7)\ g(-1,0,-2)=(-3,0,-2,-7),\ g(3,2,0)=(11,2,-2,-3).$ Halla:
 - a) La matriz de la aplicación $g \circ f$ respecto de las bases canónicas.
 - b) La dimensión del núcleo de $g \circ f$.
 - c) El rango y las ecuaciones de $g \circ f$.

3.13. Sea f la aplicación lineal definida entre los espacios vectoriales \mathbb{R}^3 y \mathbb{R}^4 tal que

$$f(\overrightarrow{u_1}) = \overrightarrow{v_1} + 2\overrightarrow{v_3} + \overrightarrow{v_4}, \qquad f(\overrightarrow{u_2}) = \overrightarrow{v_1} - \overrightarrow{v_2} + 2\overrightarrow{v_3}, \qquad f(\overrightarrow{u_3}) = \overrightarrow{v_2} + \overrightarrow{v_4},$$

donde $B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ y $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ son las bases de los espacios vectoriales. Halla:

- a) La matriz de la aplicación lineal.
- b) El núcleo de la aplicación.
- c) El rango.
- 3.14. Halla la matriz de la aplicación lineal definida entre \mathbb{R}^3 y \mathbb{R}^4 por

$$f(\overrightarrow{u_1}) = \overrightarrow{v_1} + \overrightarrow{v_2} + 2\overrightarrow{v_3} - \overrightarrow{v_4}, \qquad f(\overrightarrow{u_3}) = \overrightarrow{v_1} - \overrightarrow{v_2} + 3\overrightarrow{v_3},$$

donde $B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ y $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ son las bases y se sabe además que el vector $\overrightarrow{u_2}$ pertenece al núcleo. Halla una base de Imf.

3.15. Sea f la aplicación lineal definida entre los espacios vectoriales \mathbb{R}^2 y \mathbb{R}^4 tal que repecto de las

bases
$$B_1 = \{\overrightarrow{u_1}, \overrightarrow{u_2}\}$$
 y $B_2 = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ su matriz asociada es $\begin{pmatrix} -1 & 0 \\ 1 & 0 \\ 1 & 2 \\ -1 & -2 \end{pmatrix}$. Se eligen unas

nuevas bases $B_3 = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ y $B_4 = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \overrightarrow{w_3}, \overrightarrow{w_4}\}$ donde

$$\begin{cases}
\overrightarrow{e_1} = \overrightarrow{u_1} - 2\overrightarrow{u_2} \\
\overrightarrow{e_2} = \overrightarrow{u_1} + \overrightarrow{u_2}
\end{cases}$$

$$\begin{cases}
\overrightarrow{w_1} = \overrightarrow{v_1} - 2\overrightarrow{v_2} - \overrightarrow{v_3} - \overrightarrow{v_4} \\
\overrightarrow{w_2} = -\overrightarrow{v_2} - \overrightarrow{v_3} \\
\overrightarrow{w_3} = \overrightarrow{v_1} \\
\overrightarrow{w_4} = \overrightarrow{v_1}
\end{cases}$$

Halla la matriz de la aplicación lineal f:

- a) Cuando se consideran las bases B_1 y B_4 .
- b) Con relación a B_3 y B_2 .
- c) Respecto de B_3 y B_4 .
- 3.16. Se define la aplicación $T: C([a,b]) \to \mathbb{R}$ del siguiente modo $T(f) = \int_a^b f(t)dt, \forall f \in C([a,b])$. Prueba que T es una aplicación lineal. Dado $n \in \mathbb{N}$ encuentra n funciones linealmente independientes pertenecientes al núcleo de la aplicación.