Planing, Learning and Intelligent Decision Making - Homework 2

99326 - Sebastião Carvalho, 99331 - Tiago Antunes February 25, 2024

Contents

1	Question 1	1
	1 a)	1
	1 b)	_
	1 c)	3

1 Question 1

1 a)

Using X as the state space, $X = \{A, B, C\}$.

The transition matrix is given by
$$\begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 1 & 0 & 0 \end{bmatrix}.$$

Where the first row represents the transition probabilities from state A, the second row from state B and the third row from state C. Each column represents the transition probabilities to state A, B and C, respectively.

The diagram of the Markov chain is given by

Figure 1: Markov Chain

1 b)

For state A, we have 2 possible paths to reach state A again, $A \to B \to A$ and $A \to B \to C \to A$. With the transition matrix, we can calculate the probability of each path.

Using x_t to represent the state at time t.

The probability of the first path is $P(x_1 = B | x_0 = A) * P(x_2 = A | x_1 = B) =$ 1 * 0.5 = 0.5.

The probability of the second path is $P(x_1 = B|x_0 = A) * P(x_2 = C|x_1 = C$ $(B) * P(x_3 = A | x_2 = C) = 1 * 0.5 * 1 = 0.5.$

Since the first path takes 2 steps and the second path takes 3 steps, $T_{AA} =$ 0.5 * 2 + 0.5 * 3 = 2.5.

For state B, we have 2 possible paths to reach state B again, $B \to A \to B$ and $B \to C \to A \to B$. With the transition matrix, we can calculate the probability of each path.

The probability of the first path is $P(x_1 = A | x_0 = B) * P(x_2 = B | x_1 = A) =$ 0.5*1=0.5. The probability of the second path is $P(x_1=C|x_0=B)*P(x_2=C|x_0=B)$ $A|x_1 = C| * P(x_3 = B|x_2 = A) = 0.5 * 1 * 1 = 0.5.$

Since the first path takes 2 steps and the second path takes 3 steps, $T_{BB} =$ 0.5 * 2 + 0.5 * 3 = 2.5.

For state C, we have infinite possible paths to reach state C again, since the bot can stay transitioning bwtween states A and B indefinitely.

The shortest path is $C \to A \to B \to C$, with 3 steps. The probability of this path is $P(x_1 = A|x_0 = C) * P(x_2 = B|x_1 = A) * P(x_3 = C|x_2 = B) =$ 1 * 0.5 * 1 = 0.5.

The second shortest path is $C \to A \to B \to A \to B \to C$, with 5 steps. The probability of this path is $P(x_1 = A|x_0 = C) * P(x_2 = B|x_1 = A) * P(x_3 = C)$ $A|x_2 = B$) * $P(x_4 = B|x_3 = A)$ * $P(x_5 = C|x_4 = B) = 1 * 1 * 0.5 * 1 * 0.5 = 0.25$.

To calculate the average number of steps, we need to calculate $\sum_{n=1}^{\infty} (2n +$ $1)/2^n$, where 2n + 1 is the number of steps and 1/2n is the probability of the path. n represents the number of times we arrive at state B.

We can split the sum into two parts, $\sum_{n=1}^{\infty} 2n/2^n$ and $\sum_{n=1}^{\infty} 1/2^n$. For the first sum, if we take the 2 from the denominator, we get $\sum_{n=1}^{\infty} n/2^{n-1}$, which is an Arithmetico-Geometric series. For an Arithmetico-Geometric series of the form $\sum_{n=1}^{\infty} nq^n$, the sum is given by $\frac{q}{(1-q)^2}$, if 0 < q < 1. With this, the first sum is $2 * \frac{1/2}{(1-1/2)^2} = 2 * \frac{0.5}{0.25} = 4$.

The second sum is a geometric series, with the sum given by $\frac{1}{1-q}$, if 0 < q < 1. With this, the second sum is 1.

With this, the sum of the 2 series is 4 + 1 = 5, and $T_{CC} = 5$.

1 c)

Knowing that μ_x is inversely proportional to T_{xx} we can calculate μ_x for each of the states with the results from above.

$$\mu_a = 1/T_{aa} = 1/2.5 = 2/5 = 0.4$$

 $\mu_b = 1/T_{bb} = 1/2.5 = 2/5 = 0.4$
 $\mu_c = 1/T_{cc} = 1/5 = 0.2$

To get the distribution μ we must normalize the values calculated previously.

$$\mu = \begin{bmatrix} \mu_a & \mu_b & \mu_c \end{bmatrix} / (\mu_a + \mu_b + \mu_c) = \begin{bmatrix} 0.4 & 0.4 & 0.2 \end{bmatrix} / 1 = \begin{bmatrix} 0.4 & 0.4 & 0.2 \end{bmatrix}$$

For this distribution to be an invariant of the chain, then $\mu_x > 0$: $x \in \mathbb{X}$ such that $\sum_{x \in \mathbb{X}} \mu_x = 1$, and $\mu_x = \mu_x P$, that is $\mu_x = \sum_{y \in \mathbb{X}} \mu_y P(x|y)$ for all $x \in \mathbb{X}$. The first condition is trivial to verify, all probabilities are higher than 0. From the second third condition we get:

$$\begin{cases} \mu_{a} = \sum_{y \in \mathbb{X}} \mu_{y} P(a|y) \\ \mu_{b} = \sum_{y \in \mathbb{X}} \mu_{y} P(b|y) \\ \mu_{c} = \sum_{y \in \mathbb{X}} \mu_{y} P(c|y) \\ \mu_{a} + \mu_{b} + \mu_{c} = 1 \end{cases} \Leftrightarrow \begin{cases} \mu_{a} = \mu_{a} * 0 + \mu_{b} * 0.5 + \mu_{c} * 1 \\ \mu_{b} = \mu_{a} * 1 + \mu_{b} * 0 + \mu_{c} * 0 \\ \mu_{c} = \mu_{a} * 0 + \mu_{b} * 0.5 + \mu_{c} * 0 \end{cases} \Leftrightarrow \begin{cases} \mu_{a} = 0.5\mu_{b} + \mu_{c} \\ \mu_{b} = \mu_{a} \\ \mu_{c} = 0.5\mu_{b} \\ \mu_{a} + \mu_{b} + \mu_{c} = 1 \end{cases} \Leftrightarrow \begin{cases} \mu_{b} = 2\mu_{c} \\ \mu_{b} = \mu_{a} \\ \mu_{c} = 0.5\mu_{b} \\ \mu_{c} = 0.5\mu_{b} \end{cases} \Leftrightarrow \begin{cases} \mu_{b} = 2\mu_{c} \\ \mu_{b} = \mu_{a} \\ \mu_{c} = 0.5\mu_{b} \end{cases} \Leftrightarrow \begin{cases} \mu_{b} = 2/5 \\ \mu_{a} = 2/5 \\ \mu_{c} = 1/5 \\ \mu_{c} = 1/5 \end{cases}$$

Which gives us the row vector $\begin{bmatrix} 0.4 & 0.4 & 0.2 \end{bmatrix}$, equal to the distribution obtained above thus proving that the distribution μ is invariant of the chain.