

Introduction to Information Security

Dr. Ashok Kumar Das

IEEE Senior Member

Associate Proofessor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas

https://sites.google.com/view/iitkgpakdas/

Principle of Shannon (1945)

- Diffusion: The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to deduce the key.
 - Diffusion can be achieved by repeatedly performing some permutation on the data followed by applying a function to that permutation.
- Confusion: It seeks to make the statistical relationship between the ciphertext and the value of encrypted key as complex as possible in order to thwart attempts to deduce the key.
 - Confusion can be achieved by the use of a complex substitution algorithm.

The Fiestel Cipher

- All modern day block ciphers are based on Fiestel cipher structure.
- Fiestel structure is based on the principle of Shannon (1945):
 Diffusion and Confusion
- Fiestel structure is useful to construct a SPN (Substitution-Permutation Network) cipher

Data Encryption Standard (DES)

- The most widely used encryption is based on the Data Encryption Standard (DES) adopted in 1977 by the National Institute of Standards and Technology (NIST), USA.
- For DES, data are encrypted in 64-bit blocks using a 56-bit key.
- The encryption algorithm transforms 64-bit input in a series of steps into a 64-bit output.
- The same steps, with the same key, are used to reverse the encryption (decryption).
- Mathematically, $DES: \{0,1\}^{64} \times \{0,1\}^{56} \longrightarrow \{0,1\}^{64}$ such that the ciphertext be $C = DES_K(P)$, where $K \in \{0,1\}^{56}$ is the 56-bit key, $P \in \{0,1\}^{64}$ is the plaintext message (block) and $C \in \{0,1\}^{64}$ is the ciphertext block.

Overview of Data Encryption Standard (DES)

Data Encryption Standard (DES)

- K: given 56 bit key
- K is converted to 64 bit key packed with 8 bit parity: parity 8 bits at positions 8, 16, 24, 32, 40, 48, 56, and 64.
- K_1, K_2, \dots, K_{16} : 16 round keys
- Schedule of left circular shifts:

```
if (round number = 1, 2, 9, 16), then bits_rotated = 1 else bits_rotated = 2
```


$$L_i = R_{i-1}$$
; $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$, $\forall i = 1, 2, \dots 16$

E: Expansion/permutation; S-Box (S_i) : Substitution/choice; P: permutation; L_i : left half (32 bits) of message; R_i : right half (32 bits) of message; C_i : left half (28 bits) of key; D_i : left half (28 bits) of key.

Calculation of function $F(R_i, K_i)$ in DES

$$F(R_i, K_i) = P(S(E(R_i) \oplus K_i))$$

E: Expansion/permutation; S: S-Box; L_i : left half (32 bits) of message; R_i : right half (32 bits) of message; K_i : i^{th} round key.

Initial Permutation (IP) and IP^{-1}

IP									IP^{-1}									
58	50	42	34	26	18	10	2	40	8	48	16	56	24	64	32			
60	52	44	36	28	20	12	4	39	7	47	15	55	23	63	31			
62	54	46	38	30	22	14	6	38	6	46	14	54	22	62	30			
64	56	48	40	32	24	16	8	37	5	45	13	53	21	61	29			
								36										
								35										
								34										
63	55	47	39	31	23	15	7	33	1	41	9	49	17	57	25			

E: Expansion/permutation

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	28
24	25	26	27	28	29
28	29	30	31	32	1

S-Box Rule

S-Box (S_1) Example

Example: Input (6 bits) = 1 1 1 0 0 1; row-index = b_1b_6 = (1 1)₂ = 3; col-index = $b_2b_3b_4b_5$ = (1 1 0 0)₂ = 12; output = S_1 [row-index][col-index] = 10 = (1 0 1 0)₂

DES S-Box Tables

Substitution Boxes S-Boxes

										humn							
Box	Row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
								S									
	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
		•				•		S	,								
	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	110
	1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	- 5
	2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	1:
	3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	•	•						S	_								_
	0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
	1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	3	1	10	13	0	6	9	8	7	4	15	14	3	11	- 5	2	12
								S.	_								
	0	7	13	14	3	0	6	9	10	1	2	8	- 5	11	12	4	1:
	1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	3	15	0	6	10	12	13	8	9	4	- 5	11	12	7	2	14
		•					4	S	_								_
	0	1 2	12	4	1	7	10	111	6	8	- 5	3	15	13	0	14	9
	1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	2	4	2	1	11	10	13	7	8	15	9	12	3	6	3	ō	14
_	3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	_							S									_
_	0	112	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
	i	10	15	4	2	7	12	9	3	6	1	13	14	0	11	3	8
_	2	9	14	15	5	2	8	12	3	7	Ô	4	10	1	13	11	6
_	3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
						_		S-	_		-		_				_
_	0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
_	1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
_	2	1	4	11	13	12	3	7	14	10	15	6	8	ő	5	9	2
	3	6	11	13	8	1	4	10	7	9	5	ŏ	15	14	2	3	13
	-		- 4		-	_	_	S		,					25		
_	0	13	2	8	4	6	15	111	1	10	9	3	14	5	0	12	7
_	1	13	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	ñ
-		- 4	- 4	4.4	,		.0	- 3	4.0			-				- 0	1

Data Encryption Standard (DES)

Theorem

Let $DES_{K_1K_2\cdots K_{16}}$ denote the DES encryption function, where K_1,K_2,\ldots,K_{16} be the 16 round keys of a given 56-bit input key K. Then, for all plaintext messages $x\in\{0,1\}^{64}$, $DES_{K_{16}K_{15}\cdots K_{1}}$ ($DES_{K_{16}K_{2}\cdots K_{16}}(x)$) = x, that is, $DES_{K_{16}K_{15}\cdots K_{1}}$ becomes the DES decryption function.