UNIVERSIDADE DO VALE DO ITAJAÍ CURSO DE ENGENHARIA DE COMPUTAÇÃO ACADÊMICOS: STEPHEN MICHAEL APOLINÁRIO WELLITON DA SILVA DE LIMA

Objetivos:

- · Avaliar o funcionamento do transistor bipolar;
- Verificar o funcionamento do TBJ como chave;
- Verificar o funcionamento de circuitos de polarização DC;

Avaliar o funcionamento do TBJ como amplificador.

1) Meça com o multímetro as tensões "DC"da bancada/fonte e anote seus valores mínimo e máximo.

Tensão na bancada: 1,2v e 23,9v

2) Antes do experimento, meça com o multímetro o Beta dos transistores e os resistores utilizados.

Beta: 566 Resistor R1: 0,99 Resistor R2: 9k91

3) Monte o circuito apresentado, varie a tensão Vi (V3 mostrada na figura), meça VB, VC, VE e preencha a tabela. Faça uma comparação entre os valores obtidos no experimento e os teóricos.

Laboratório circuito 1

Vi (V)	VB	VC	VE	R_oper
0	0	5v	0	Cortado
5	0,7v	0,4	0	Saturado

Simulação circuito 1

Simulação:

Vi (V)	VB	VC	VE	R_oper
0	505 nV	5 V	0 V	ATIVA
5	675 mV	63,5 mV	0 V	SATURAÇÃO

Calculado:

$$Vi = 0$$

 $Como\ Vi=0\ ent{ao}\ Vb\ n{ao}\ possui\ tens{ao}\ e\ como\ Ve\ est{a}\ ligada\ ao\ terra\ tamb{\'e}m\ {\'e}\ 0;$

$$Vc = 5;$$

 $Vi = 5;$
 $Ib = 4,3 / 10k = 0,43 mA$
 $Vb = 5 - 0,43 mA * 10k = 0,7 V;$
 $Ic = 0,43 mA * 691 = 0,30 A;$

Vc = 5 - 0.3 * 1k = -295 V;

Vi (V)	VB	VC	VE	R_oper
0	0 V	5 V	0 V	ATIVA
5	0,7 V	0 V	0 V	SATURAÇÃO

4) Monte os circuitos de polarização "DC" e meça as tensões VB, VE e VC, para cada valor de RC (R2 na figura). De posse dessas tensões, calcule as correntes IB, IC e IE. Faça uma comparação entre os valores obtidos no experimento e os teóricos.

5)

Transistor BC548: 544
Resistor R1:462
Resistor R2:2k16
Resistor R3:217

Laboratório circuito 2

RC	VB	VE	VC	IB	IC	ΙE	R_oper
2K2	2,33v	1,56v	1,58v	5.72mA	1.58mA	7.3mA	Saturado
220	3,55	2,79	2,70	3.09mA	9.88mA	13mA	Saturado
560	2,86v	2,09	2,10	4.59mA	5.14mA	9.73mA	Saturado
680	2,76	1,98v	2v	4.86mA	4.4mA	9.23mA	Saturado

Tensão sobre o resistores Coletor, Emissor e Base com diferentes resistências de RC:

Resistência do RC	Coletor	Emissor	Base
2k16	3.26V	1.5V	2.6V
220	2.13V	2.68V	1.38V
550	2.82V	2.06V	2.05V
676	2.93V	1.97V	2.17V

Simulação circuito 2

Simulado

RC	VB	VE	VC	IB	IC	ΙE	R_oper
2K2	0,68 V	85,4 mV	4,17 V	9,19 uA	379 uA	388 uA	ATIVA
220	0,68 V	87,4 mV	4,91 V	9,18 uA	388 uA	397 uA	ATIVA
560	0,68 V	87 mV	4,78 V	9,18 uA	386 uA	396 uA	ATIVA
680	0,68 V	86,9 mV	4,74 V	9,18 uA	386 uA	395 uA	ATIVA

Calculado

$$B = 125;$$

$$Ib = (5 - 0.7) / (470K + 126 * 220) = 8,64 uA;$$

$$Ic = 125 * 8,64 uA = 1,08 mA;$$

$$Ie = Ic + Ib = 1,089 mA$$

$$Vb = 5 - 8,64 uA * 470 k = 0.94 V;$$

$$Ve = 0.94 - 0.7 = 0.24 V;$$

$$1 Vc = 5 - 1.08 mA * 2K2 = 2.62 V;$$

$$2 Vc = 5 - 1.08 mA * 220 = 4.76 V;$$

$$3 Vc = 5 - 1.08 mA * 560 = 4.40 V;$$

$$4 Vc = 5 - 1.08 mA * 680 = 4.27 V;$$

RC	VB	VE	VC	IB	IC	ΙE	R_oper
2K2	0,94 V	0,24 V	2,62 V	8,65 uA	1,08 mA	1,089 mA	ATIVA
220	0,94 V	0,24 V	4,76 v	8,65 uA	1,08 mA	1,089 mA	ATIVA
560	0,94 V	0,24 V	4,40 v	8,65 uA	1,08 mA	1,089 mA	ATIVA
680	0,94 V	0,24 V	4,27 v	8,65 uA	1,08 mA	1,089 mA	ATIVA

- 5) Verifique a calibração do scope (frequência de 1kHz e amplitude dada no aparelho).
- 6) Conecte a saída do gerador de funções ao Scope. Ajuste o gerador e meça no Scope um sinal senoidal de 50mV de pico e frequência de 1kHz.
- 7) Monte o circuito amplificador e meça as tensões VB, VE e VC. Obtenha o ganho de tensão (Av) teórico para as duas condições do circuito (chave S1 aberta e fechada). Ajuste o gerador (XFG1) para um sinal senoidal de 50mV de pico e frequência de 1kHz, meça com o Scope Vi e Vo e apresente as formas de onda. Faça uma comparação entre os valores obtidos no experimento e os teóricos. Obs: O transistor Q1 é um BC548

Laboratório circuito 3

VCC	VB	VC	VE
14,98v	1,91v	8,84v	1,30v

Vcc bancada: 14,98v Resistor RA: 22k Resistor RB 2: 3K28 Resistor C: 4k671 Resistor E: 1k

Tensão Resistor RA: 12,94v Resistor RB 2: 1,91v Resistor C: 5,99v Resistor E: 1,29v

VCC	VB	VC	VE
15 V	1,93 V	8,83 V	1,33 V

Calculado

$$B = 150;$$
 $Rth = 22K // 3,3K = 2869,6 Ohm;$
 $Eth = 15 * (3,3K / 25,3K) = 1,96 V;$
 $Ib = (1,96 - 0,7) / (2869,6 + 151 * 1K) = 8,19 uA;$
 $Ic = 150 * 8,19 uA = 1,23 mA;$
 $Vb = 1,96 - 8,19 uA * 2869,6 = 1,94 V;$
 $Ve = 1,94 - 0,7 = 1,24 V;$
 $Vc = 15 - (1,23 mA * 4,7 K) = 9,22 V;$

VCC	VB	VC	VE
15 V	1,94 V	9,22 V	1,24 V

Conclusão

Conclui-se que a realização deste trabalho foi de importância na contribuição para melhorar os conhecimentos na matéria eletrônica básica, atribuindo vários tipos de exercícios e montagem dos circuitos, em uma protoboard, para poder analisar como são fora do simulador, auxiliando na montagem e da visualização, além disso auxiliou na memorização dos cálculos fazendo com que o conteúdo ficasse muito mais claro. Trabalhamos com vários resistores, transistores e variação de fonte para a realização das simulações solicitadas e com isso conseguimos relacionar de forma mais clara a função de cada elemento presente nos circuitos. Por fim, concluímos que melhoramos nossos conhecimentos relacionando teoria e prática.