Определение аномалий (Anomaly detection)

Методы машинного обучения и численной оптимизации, часть 5
Центр математических финансов

Основная идея

Если количество наблюдений обучающей выборки, принадлежащих к одному из классов, крайне мало, то алгоритм классификации строится на изучении свойств доминирующего класса

При этом наблюдения из большего класса считаются «нормальными», а наблюдения из меньшего — «аномалиями»

Принцип определения аномалий

Производится проверка, похоже ли наблюдение из экзаменующей выборки $x_{test}^{(i)}$ на нормальные наблюдения из обучающей выборки

Рассчитывается «вероятность нормальности»:

$$p\left(\vec{x}_{test}^{(i)}\right) < arepsilon \Rightarrow$$
 аномалия, $p\left(\vec{x}_{test}^{(i)}\right) \geq arepsilon \Rightarrow OK$

Обычно делается предположение, что $x_{test} \sim N(\mu, \sigma)$, тогда

$$p(x_j; \mu_j, \sigma_j) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Оценки параметров находятся с помощью ММП:

$$\hat{\vec{\mu}} = \frac{1}{m} \sum_{i=1}^{m} \vec{x}_{train}^{(i)}, \ \hat{\vec{\sigma}}^2 = \frac{1}{m-1} \sum_{i=1}^{m} \left(x_{train}^{(i)} - \hat{\vec{\mu}} \right)^2$$

$$p(\vec{x}) = p(x_1; \mu_1, \sigma_1) \times \dots \times p(x_n; \mu_n, \sigma_n) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j)$$

Алгоритм определения аномалий

- 1. Выбрать показатели x_j , которые могут быть индикаторами аномалии
- 2. Подобрать параметры $\vec{\mu}$ и $\vec{\sigma}$

3. Рассчитать
$$p(\vec{x}) = \prod_{j=1}^{n} \frac{1}{\sigma_{j} \sqrt{2\pi}} \exp\left(-\frac{(x_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right)$$

4. $p(\vec{x}) < \varepsilon \Rightarrow$ аномалия

Значение ε может быть определено на валидационной выборке

Разделение выборки

На три части

	ОК	Аномалии
Обучающая	60 %	0 %
Валидационная	20 %	50 %
Тестовая	20 %	50 %

На две части

	ОК	Аномалии
Обучающая	80 %	0 %
Валидационная	20 %	100 %

Область применения алгоритма определения аномалий

Условия применения

Определение аномалий	LR, NN, SVM
Малое количество (0 – 20) аномальных наблюдений	Большое количество наблюдений каждого класса
Большое количество возможных типов аномалий	Фиксированный тип аномалий

Области применения

Определение аномалий	LR, NN, SVM
Недобросовестное поведение пользователей	Спам в электронных письмах
Брак изделий	Прогноз погоды
Неисправность компьютеров в сети	Постановка диагноза

Определение аномалий в R

Пусть X — матрица наблюдений, у — классификатор

Разделение выборки

```
m < - nrow(X)
# номера «аномальных» наблюдений
anom.obs \langle -(1:m)[y==1]; la \langle -length(anom.obs)
m.cv <- round(0.2*(m-la)) + la; m.train <- m - m.cv
# номера экзаменующей и обучающей выборок
cv.obs <- c( sample((1:m)[-anom.obs], size=m.cv-la, replace=FALSE),
             anom.obs )
train.obs \langle -(1:m)[-cv.obs]
# разделение выборки
X.train <- X[train.obs,]; X.cv <- X[cv.obs,]</pre>
y.train <- y[train.obs]; y.cv <- y[cv.obs]</pre>
```

Подбор параметров и расчёт «вероятности нормальности»

оценки параметров

```
mu <- apply(X.train,2,mean)
sigma <- apply(X.train,2,sd)

# функция «вероятности»

p <- function(X,mu,sigma) {
 m <- nrow(X); n <- ncol(X)
 prob <- matrix(nrow=m,ncol=n)
 for (j in 1:n) prob[,j] <- dnorm(X[,j],mu[j],sigma[j])
 apply(prob,1,prod)
}</pre>
```

определение «вероятностей»

```
prob.train <- p(X.train, mu, sigma)
prob.cv <- p(X.cv, mu, sigma)</pre>
```

Линии уровня функции «вероятности»

Определение параметра ε

```
pr \leftarrow range(prob.cv) # границы возможных значений \varepsilon
res <- NULL # в неё будут сохраняться результаты моделирования
# для каждого наблюдения экзаменующей выборки рассчитываем
\# прогноз при определённом значении \mathcal E и сравниваем его с фактом
for (eps in seq(pr[1], pr[2], length = 1000)) {
  v.pred <- 1*(prob.cv<eps)</pre>
  res <- rbind(res, c(eps, fitStats(y.pred, y.cv)))
dimnames (res) [[2]][1] <- "epsilon" # заголовки
\# выбор наиболее подходящего \mathcal E
j <- which.max(res[,"f1.score"])</pre>
eps <- res[j,"epsilon"]</pre>
# окончательный прогноз
y.pred <- 1*(prob.cv<eps)</pre>
```

Результаты моделирования

Случай негауссовских показателей

Применяется преобразование переменных

Случай зависимых показателей

Для коррелированных признаков произведение «вероятностей» может давать неподходящий результат:

Создание новых признаков

Одна из возможностей справиться с коррелированным случаем — создание нового признака, способного уловить корреляцию

Для показанного примера можно использовать

$$\vec{x}_3 = \left(\frac{\vec{x}_2}{\vec{x}_1}\right)^{\frac{1}{\alpha}}$$

 X_1

Многомерные распределения

Другой способ заключается в использовании многомерных распределений (например, нормального)

$$\vec{\mu} \in \mathbb{R}^n$$
, $\Sigma \in \mathbb{R}^{n \times n}$

$$p(\vec{x}; \vec{\mu}, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})\right)$$

ММП-оценки:

$$\hat{\vec{\mu}} = \frac{1}{m} \sum_{i=1}^{m} \vec{x}^{(i)}, \ \hat{\Sigma} = \frac{1}{m-1} (X - \hat{\vec{\mu}})^T (X - \hat{\vec{\mu}})$$

В вычислительном плане этот способ — более тяжёлый, чем создание новых признаков

Многомерные распределения

Домашнее задание

Для стабильной работы дата-центра необходимо отслеживание неполадок в работе его компьютеров

В файле «AD_comp_train.csv» имеются данные о двух характеристиках работы компьютеров: загрузке процессора и использовании оперативной памяти

Вашей задачей является определение машин с необычным режимом работы в тестовой выборке «AD_comp_test.csv»

Домашнее задание

